

RX23W Group Renesas MCUs

R01DS0342EJ0100 Rev.1.00 Aug 06, 2019

54-MHz 32-bit RX MCUs, built-in FPU, 88.56 DMIPS, up to 512-KB flash memory, Bluetooth® 5.0, various communication functions including USB 2.0 full-speed host/function/OTG, CAN, SD host interface, serial sound interface, capacitive touch sensing unit, 12-bit A/D converter, 12-bit D/A converter, RTC, Encryption functions

Features

■ 32-bit RXv2 CPU core

- Max. operating frequency: 54 MHz
 Capable of 88.56 DMIPS in operation at 54 MHz
- Enhanced DSP: 32-bit multiply-accumulate and 16-bit
- multiply-subtract instructions supported

 Built-in FPU: 32-bit single-precision floating point (compliant to
- IEEE754)
- Divider (fastest instruction execution takes two CPU clock cycles)
- · Fast interrupt
- CISC Harvard architecture with 5-stage pipeline
- Variable-length instructions, ultra-compact code
- On-chip debugging circuit
- Memory protection unit (MPU) supported

■ Low power design and architecture

- Operation from a single 1.8-V to 3.6-V supply
- RTC capable of operating on the battery backup power supply
- Three low power consumption modes
- Low power timer (LPT) that operates during the software standby state

■ On-chip flash memory for code

- 384- to 512-Kbyte capacities
- On-board or off-board user programming
- Programmable at 1.8 V
- For instructions and operands

■ On-chip data flash memory

- 8 Kbytes (1,000,000 program/erase cycles (typ.))
- BGO (Background Operation)

■ On-chip SRAM, no wait states

64-Kbyte size capacities

■ Data transfer functions

- DMAC: Incorporates four channels
- DTC: Four transfer modes

■ ELC

- Module operation can be initiated by event signals without using
- Linked operation between modules is possible while the CPU is sleeping.

■ Reset and supply management

- Eight types of reset, including the power-on reset (POR)
 Low voltage detection (LVD) with voltage settings

■ Clock functions

- Main clock oscillator frequency: 1 to 20 MHz
- · External clock input frequency: Up to 20 MHz
- Sub-clock oscillator frequency: 32.768 kHz
- Frequency of Bluetooth-dedicated clock oscillator: 32 MHz
- PLL circuit input: 4 MHz to 12.5 MHz
 On-chip low- and high-speed oscillators, dedicated on-chip low-speed oscillator for the IWDT
- USB-dedicated PLL circuit: 4, 6, 8, or 12 MHz
- 54 MHz can be set for the system clock and 48 MHz for the USB clock
- Generation of a dedicated 32.768-kHz clock for the RTC
- Clock frequency accuracy measurement circuit (CAC)

■ Realtime clock

- Adjustment functions (30 seconds, leap year, and error)
- Calendar count mode or binary count mode selectable
- Time capture function
- Time capture on event-signal input through external pins

■ Independent watchdog timer

15-kHz on-chip oscillator produces a dedicated clock signal to drive IWDT operation.

■ Useful functions for IEC60730 compliance

· Self-diagnostic and disconnection-detection assistance functions for the A/D converter, clock frequency accuracy measurement circuit, independent watchdog timer, RAM test assistance functions using the DOC, etc.

Input/output functions selectable from multiple pins

PTBG0085KB-A 5.5 × 5.5 mm, 0.5 mm pitch

PVQN0056LA-A 7 × 7 mm, 0.4 mm pitch

■ Up to 12 communication functions

 Bluetooth Low Energy (1 channel)
 An RF transceiver and link layer compliant with the Bluetooth 5.0 Low Energy specification

LE 1M PHY, LE 2M PHY, LE Coded PHY (125 kbps and 500 kbps),

and LE Advertising extension support
On-chip Bluetooth-dedicated AES-CCM (128-bit blocks) encryption

- USB 2.0 host/function/On-The-Go (OTG) (one channel), full-speed = 12 Mbps, low-speed = 1.5 Mbps, isochronous transfer, and BC (Battery Charger) supported
- CAN (one channel) compliant to ISO11898-1: Transfer at up to 1 Mbps
- SCI with many useful functions (up to 4 channels) Asynchronous mode, clock synchronous mode, smart card interface Reduction of errors in communications using the bit modulation
- IrDA interface (one channel, in cooperation with the SCI5)
- I2C bus interface: Transfer at up to 400 kbps, capable of SMBus operation (one channel)
- RSPI (one channel): Transfer at up to 16 Mbps
- Serial sound interface (one channel)
- SD host interface (optional: one channel) SD memory/ SDIO 1-bit or 4-bit SD bus supported

■ Up to 19 extended-function timers

- 16-bit MTU: input capture, output compare, complementary PWM output, phase counting mode (five channels)
- 16-bit TPU: input capture, output compare, phase counting mode (six channels)
- 8-bit TMR (four channels)
- 16-bit compare-match timers (four channels)

■ 12-bit A/D converter

- Capable of conversion within 0.83 us
- 14 channels
- Sampling time can be set for each channel
- · Self-diagnostic function and analog input disconnection detection assistance function

■ 12-bit D/A converter

· Two channels

■ Capacitive touch sensing unit

- · Self-capacitance method: A single pin configures a single key, supporting up to 12 keys
- Mutual capacitance method: Matrix configuration with 12 pins, supporting up to 36 keys

■ Analog comparator

Two channels × one unit

■ General I/O ports

• 5-V tolerant, open drain, input pull-up, switching of driving capacity

■ Encryption functions (TSIP-Lite)

- · Unauthorized access to the encryption engine is disabled and imposture and falsification of information are prevented
- Safe management of keys
- 128- or 256-bit key length of AES for ECB, CBC, GCM, others
- True random number generator

Temperature sensor

Operating temperature range

Applications

· General industrial and consumer equipment

1. Overview

1.1 Outline of Specifications

Table 1.1 lists the specifications, and Table 1.2 gives a comparison of the functions of the products in different packages.

Table 1.1 is for products with the greatest number of functions, so the number of peripheral modules and channels will differ in accordance with the package type. For details, see Table 1.2, Comparison of Functions for Different Packages.

Table 1.1 Outline of Specifications (1/4)

Classification	Module/Function	Description					
CPU	СРИ	 Maximum operating frequency: 54 MHz 32-bit RX CPU (RX v2) Minimum instruction execution time: One instruction per clock cycle Address space: 4-Gbyte linear Register set General purpose: Sixteen 32-bit registers Control: Ten 32-bit registers Accumulator: Two 72-bit registers Basic instructions: 75 (variable-length instruction format) Floating-point instructions: 11 DSP instructions: 23 Addressing modes: 10 Data arrangement Instructions: Little endian Data: Selectable as little endian or big endian On-chip 32-bit multiplier: 32-bit → 32-bit → 64-bit On-chip divider: 32-bit + 32-bit → 32 bits Barrel shifter: 32 bits Memory protection unit (MPU) 					
	FPU	Single precision (32-bit) floating point Data types and floating-point exceptions in conformance with the IEEE754 standard					
Memory	ROM	 Capacity: 384/512 Kbytes Up to 32 MHz: No-wait memory access 32 to 54 MHz: Wait state required. No wait state if the instruction is served by a ROM accelerator hit Programming/erasing method: Serial programming (asynchronous serial communication/USB communication), self-programming 					
	RAM	Capacity: 64 Kbytes 54 MHz, no-wait memory access					
	E2 DataFlash	Capacity: 8 Kbytes Number of erase/write cycles: 1,000,000 (typ)					
MCU operating mo	ode	Single-chip mode					
Clock	Clock generation circuit	 Main clock oscillator, sub-clock oscillator, low-speed on-chip oscillator, high-speed on-chip oscillator, PLL frequency synthesizer, USB-dedicated PLL frequency synthesizer, and IWDT-dedicated on-chip oscillator, Bluetooth-dedicated low-speed on-chip oscillator Oscillation stop detection: Available Clock frequency accuracy measurement circuit (CAC) Independent settings for the system clock (ICLK), peripheral module clock (PCLK), and FlashIF clock (FCLK) The CPU and system sections such as other bus masters run in synchronization with the system clock (ICLK): 54 MHz (at max.) MTU2a runs in synchronization with the PCLKA: 54 MHz (at max.) The ADCLK for the S12AD runs in synchronization with the PCLKD: 54 MHz (at max.) Peripheral modules other than MTU2a and S12ADE run in synchronization with the PCLKB: 32 MHz (at max.) The flash peripheral circuit runs in synchronization with the FCLK: 32 MHz (at max.) 					
Resets		RES# pin reset, power-on reset, voltage monitoring reset, watchdog timer reset, independent watchdog timer reset, and software reset					
Voltage detection	Voltage detection circuit (LVDAb)	 When the voltage on VCC falls below the voltage detection level, an internal reset or internal interrupt is generated. Voltage detection circuit 0 is capable of selecting the detection voltage from 3 levels Voltage detection circuit 1 is capable of selecting the detection voltage from 10 levels 					

Table 1.1 Outline of Specifications (2/4)

Classification	Module/Function	Description					
Low power consumption	Low power consumption functions	 Module stop function Three low power consumption modes Sleep mode, deep sleep mode, and software standby mode Low power timer that operates during the software standby state 					
	Function for lower operating power consumption	 Operating power control modes High-speed operating mode, middle-speed operating mode, and low-speed operating mode 					
Interrupt controller (ICUb)		 Interrupt vectors: 148 External interrupts: 7 (NMI, IRQ0, IRQ1, IRQ4 to IRQ7 pins) Non-maskable interrupts: 6 (NMI pin, oscillation stop detection interrupt, voltage monitoring 1 interrupt, WDT interrupt, IWDT interrupt, and VBATT power monitoring interrupt) 16 levels specifiable for the order of priority 					
DMA	DMA controller (DMACA)	 4 channels Three transfer modes: Normal transfer, repeat transfer, and block transfer Activation sources: Software trigger, external interrupts, and interrupt requests from peripheral functions 					
	Data transfer controller (DTCa)	Transfer modes: Normal transfer, repeat transfer, and block transfer Activation sources: Interrupts Chain transfer function					
I/O ports	General I/O ports	85-pin/56-pin I/O: 43/29 Input: 1/1 Pull-up resistors: 43/29 Open-drain outputs: 31/24 5-V tolerance: 5/4					
Event link control	ler (ELC)	 Event signals of 59 types can be directly connected to the module Operations of timer modules are selectable at event input Capable of event link operation for port B and port E 					
Multi-function pin controller (MPC)		Capable of selecting the input/output function from multiple pins					
Timers	16-bit timer pulse unit (TPUa)	(16 bits × 6 channels) × 1 unit Maximum of 10 pulse-input/output possible Select from among seven or eight counter-input clock signals for each channel Supports the input capture/output compare function Output of PWM waveforms in up to 9 phases in PWM mode Support for buffered operation, phase-counting mode (two-phase encoder input) and cascade connected operation (32 bits × 2 channels) depending on the channel. Capable of generating conversion start triggers for the A/D converters Signals from the input capture pins are input via a digital filter Clock frequency measuring method					
	Multi-function timer pulse unit 2 (MTU2a)	 (16 bits × 5 channels) × 1 unit Up to 15 pulse-input/output lines are available based on the six 16-bit timer channels Select from among eight or seven counter-input clock signals for each channel (PCLK/1, PCLK/4, PCLK/16, PCLK/64, PCLK/256, PCLK/1024, MTCLKA, MTCLKB, MTCLKC, MTCLKD). Input capture function 18 output compare/input capture registers Pulse output mode Complementary PWM output mode Reset synchronous PWM mode Phase-counting mode Capable of generating conversion start triggers for the A/D converter 					
	Port output enable 2 (POE2a)	Controls the high-impedance state of the MTU's waveform output pins					
	Compare match timer (CMT)	 (16 bits × 2 channels) × 2 units Select from among four clock signals (PCLK/8, PCLK/32, PCLK/128, PCLK/512) 					
	Watchdog timer (WDTA)	14 bits × 1 channel Select from among six counter-input clock signals (PCLK/4, PCLK/64, PCLK/128, PCLK/512, PCL 2048, PCLK/8192)					

Table 1.1 Outline of Specifications (3/4)

Classification	Module/Function	Description
Timers	Independent watchdog timer (IWDTa)	 14 bits × 1 channel Count clock: Dedicated low-speed on-chip oscillator for the IWDT Frequency divided by 1, 16, 32, 64, 128, or 256
	Realtime clock (RTCe)	 Clock source: Sub-clock Time/calendar Interrupts: Alarm interrupt, periodic interrupt, and carry interrupt Time-capture facility for two values
	Low power timer (LPT)	 16 bits × 1 channel Clock source: Sub-clock, Dedicated low-speed on-chip oscillator for the IWDT Frequency divided by 2, 4, 8, 16, or 32
	8-bit timer (TMR)	 (8 bits × 2 channels) × 2 units Seven internal clocks (PCLK/1, PCLK/2, PCLK/8, PCLK/32, PCLK/64, PCLK/1024, and PCLK/8192) and an external clock can be selected Pulse output and PWM output with any duty cycle are available Two channels can be cascaded and used as a 16-bit timer
Communication functions	Serial communications interfaces (SCIg, SCIh)	4 channels (channel 1, 5, 8: SClg, channel 12: SClh) SClg Serial communications modes: Asynchronous, clock synchronous, and smart-card interface Multi-processor function On-chip baud rate generator allows selection of the desired bit rate Choice of LSB-first or MSB-first transfer Average transfer rate clock can be input from TMR timers for SCl5, and SCl12 Start-bit detection: Level or edge detection is selectable. Simple I ² C Simple SPI 9-bit transfer mode Bit rate modulation Event linking by the ELC (only on channel 5) SClh (The following functions are added to SClg) Supports the serial communications protocol, which contains the start frame and information frame Supports the LIN format
	IrDA interface (IRDA)	1 channel (SCI5 used)Supports encoding/decoding of waveforms conforming to IrDA standard 1.0
	I ² C bus interface (RIICa)	 1 channel Communications formats: I²C bus format/SMBus format Master mode or slave mode selectable Supports fast mode
	Serial peripheral interface (RSPIa) USB 2.0 host/function	 1 channel Transfer facility Using the MOSI (master out, slave in), MISO (master in, slave out), SSL (slave select), and RSPCK (RSPI clock) enables serial transfer through SPI operation (four lines) or clock-synchronous operation (three lines) Capable of handling serial transfer as a master or slave Data formats Choice of LSB-first or MSB-first transfer The number of bits in each transfer can be changed to 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit buffers for transmission and reception Up to four frames can be transmitted or received in a single transfer operation (with each frame having up to 32 bits) Double buffers for both transmission and reception USB Device Controller (UDC) and transceiver for USB 2.0 are incorporated.
	module (USBc)	 Host/function module: 1 port Compliant with USB version 2.0 Transfer speed: Full-speed (12 Mbps), low-speed (1.5 Mbps) OTG (ON-The-Go) is supported. Isochronous transfer is supported. BC1.2 (Battery Charging Specification Revision 1.2) is supported.
	CAN module (RSCAN)	1 channel Compliance with the ISO11898-1 specification (standard frame and extended frame) 16 Message boxes

Table 1.1 Outline of Specifications (4/4)

Classification	Module/Function	Description
Communication functions	Serial Sound Interface (SSI)	1 channel Capable of duplex communications Various serial audio formats supported Master/slave function supported Programmable word clock or bit clock generation function 8/16/18/20/22/24/32-bit data formats supported On-chip 8-stage FIFO for transmission/reception Supports WS continue mode in which the SSIWS signal is not stopped.
	SD Host Interface (SDHIa)	 1 channel Transfer speed: Default speed mode (8MB/s) SD memory card interface (1 bit / 4bits SD bus) MMC, eMMC Backward-compatible are supported. SD Specifications Part 1: Compliant with Physical Layer Specification Ver.3.01 (Not support DDR) Part E1: SDIO Specification Ver. 3.00 Error check function: CRC7 (command), CRC16 (data) Interrupt Source: Card access interrupt, SDIO access interrupt, Card detection interrupt, SD buffer access interrupt DMA transfer sources: SD_BUF write, SD_BUF read Card detection, Write protection
	Bluetooth low energy (BLE)	 On-chip RF transceiver and link layer compliant with the Bluetooth 5.0 Low Energy specification Bit rates: 1 Mbps, 2 Mbps, 500 kbps, and 125 kbps LE Advertising extension support Includes an RF transceiver power supply (selectable as a DC-to-DC converter or linear regulator) On-chip matching circuit to help reduce the number of external parts Transmission power: +4 dBm support
Encryption functio	ns	 Access management circuit Encryption engine 128- or 256-bit key sizes of AES Block cipher mode of operation: GCM, ECB, CBC, CMAC, XTS, CTR, GCTR Hash function True random number generator Prevention from illicit copying of a key
12-bit A/D convert	er (S12ADE)	 12 bits (14 channels × 1 unit) 12-bit resolution Minimum conversion time: 0.83 µs per channel when the ADCLK is operating at 54 MHz Operating modes Scan mode (single scan mode, continuous scan mode, and group scan mode) Group A priority control (only for group scan mode) Sampling variable Sampling time can be set up for each channel. Self-diagnostic function Double trigger mode (A/D conversion data duplicated) Detection of analog input disconnection A/D conversion start conditions A software trigger, a trigger from a timer (MTU, TPU), an external trigger signal, or ELC Event linking by the ELC
Temperature sens	,	 1 channel The voltage output from the temperature sensor is converted into a digital value by the 12-bit A/D converter.
12-bit D/A convert	,	 2 channels 12-bit resolution Output voltage: 0.4 to AVCC0-0.5V
CRC calculator (C	:RC)	 CRC code generation for arbitrary amounts of data in 8-bit units Select any of three generating polynomials: X⁸ + X² + X + 1, X¹⁶ + X¹⁵ + X² + 1, or X¹⁶ + X¹² + X⁵ + 1 Generation of CRC codes for use with LSB-first or MSB-first communications is selectable.
Comparator B (CM	иРВа) 	 2 channels × 1 unit Function to compare the reference voltage and the analog input voltage Window comparator operation or standard comparator operation is selectable
Capacitive touch	sensing unit (CTSU)	Detection pin: 12 channels
Data operation cir	cuit (DOC)	Comparison, addition, and subtraction of 16-bit data
Power supply volt	ages/Operating frequencies	VCC = 1.8 to 2.4 V: 8 MHz, VCC = 2.4 to 2.7 V: 16 MHz, VCC = 2.7 to 3.6 V: 54 MHz
		D version: -40 to +85°C
Operating temperating	ature range	D Version. —40 to +65 C

Table 1.2 Comparison of Functions for Different Packages

		RX23W Group		
Module/Functions		85 Pins	56 Pins	
External bus	External bus	Not su	oported	
Interrupts	External interrupts	NMI, IRQ0, IRQ	1, IRQ4 to IRQ7	
DMA	DMA controller	4 channels (DM	AC0 to DMAC3)	
	Data transfer controller	Avai	lable	
Timers	16-bit timer pulse unit	6 channels (TPU0 to TPU5)	5 channels (TPU0 to TPU3, TPU	
	Multi-function timer pulse unit 2	5 channels (MTU0 to MTU4)		
	Port output enable 2	POE0#, POE1#, POE3#, POE8#	POE0#, POE8#	
	8-bit timer	2 channel	s × 2 units	
	Compare match timer	2 channel	s × 2 units	
	Low power timer	1 cha	annel	
	Realtime clock	Avai	lable	
	Watchdog timer	Avai	lable	
	Independent watchdog timer	Avai	lable	
Communication functions	Serial communications interfaces (SCIg)	3 channels (SCI1, 5, 8)		
	IrDA interface	1 channel (SCI5)		
	Serial communications interfaces (SCIh)	1 channel (SCI12)	Not supported	
	I ² C bus interface	1 cha	annel	
	CAN module	1 channel		
	Serial peripheral interface	1 channel		
	USB 2.0 host/function module	1 channel		
	Serial sound interface	1 channel		
	SD Host Interface	1 channel	Not supported	
	Bluetooth low energy		compliant with Bluetooth 5.0 low ecification	
Capacitive touch sensing u	ınit	12 channels	9 channels	
12-bit A/D converter (inclu	ding high-precision channels)	14 channels (8 channels)	8 channels (4 channels)	
Temperature sensor		Available		
D/A converter		2 channels 1 channel		
CRC calculator		Avai	lable	
Event link controller		Avai	lable	
Comparator B		2 cha	annels	
Packages		85-pin BGA	56-pin QFN	

1.2 List of Products

Table 1.3 is a list of products, and Figure 1.1 shows how to read the product part no., memory capacity, and package type.

Table 1.3	List of Products:	D Version	$(T_a = -40 \text{ to})$	+85°C)
-----------	-------------------	-----------	--------------------------	--------

Group	Part No.	Order Part No.	Package	ROM Capacity	RAM Capacity	E2 DataFlash	Operationg Frequency	Scurity Function	Operating Temperature
RX23W	R5F523W8ADBL	R5F523W8ADBL#20	PTBG0085KB-A	512 Kbytes	64 Kbytes	8 Kbytes	54 MHz	Not available	-40 to +85°C
	R5F523W8ADNG	R5F523W8ADNG#30	PVQN0056LA-A					Not available	
	R5F523W8BDBL	R5F523W8BDBL#20	PTBG0085KB-A	1				Available	
	R5F523W8BDNG	R5F523W8BDNG#30	PVQN0056LA-A					Available	
	R5F523W7ADBL	R5F523W7ADBL#20	PTBG0085KB-A	384 Kbytes				Not available	
	R5F523W7ADNG	R5F523W7ADNG#30	PVQN0056LA-A					Not available	
	R5F523W7BDBL	R5F523W7BDBL#20	PTBG0085KB-A					Available	
	R5F523W7BDNG	R5F523W7BDNG#30	PVQN0056LA-A					Available	

Figure 1.1 How to Read the Product Part Number

1.3 Block Diagram

Figure 1.2 shows a block diagram.

Figure 1.2 Block Diagram

1.4 Pin Functions

Table 1.4 lists the pin functions.

Table 1.4 Pin Functions (1/4)

Classifications	Pin Name	I/O	Description			
Power supply	VCC	Input	Power supply pin. Connect it to the system power supply.			
	VCL	_	Connect this pin to the VSS pin via a 4.7 µF smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin.			
	VSS	Input	Ground pin. Connect it to the system power supply (0 V).			
	VBATT	Input	Backup power pin			
Clock	XTAL	Output	Pins for connecting a crystal. An external clock can be input through the			
	EXTAL	Input	EXTAL pin.			
	XCIN	Input	Input/output pins for the sub-clock oscillator. Connect a crystal between			
	XCOUT	Output	XCIN and XCOUT.			
	CLKOUT_RF	Output	Bluetooth-dedicated clock output pin for output of a 1-, 2-, or 4-MHz signal			
	XTAL1_RF	Input	Pins for connecting the Bluetooth-dedicated clock oscillator. Connect a 32			
	XTAL2_RF	Output	MHz oscillator to these pins.			
	CLKOUT	Output	Clock output pin.			
Operating mode control	MD	Input	Pin for setting the operating mode. The signal levels on this pin must not be changed during operation.			
	UB	Input	Pin used for boot mode (USB interface).			
	UPSEL	Input	Pin used for boot mode (USB interface).			
System control	RES#	Input	Reset pin. This MCU enters the reset state when this signal goes low.			
CAC	CACREF	Input	Input pin for the clock frequency accuracy measurement circuit.			
On-chip emulator	FINED	I/O	FINE interface pin.			
Interrupts	NMI	Input	Non-maskable interrupt request pin.			
	IRQ0, IRQ1, IRQ4 to IRQ7	Input	Interrupt request pins.			
16-bit timer	TIOCB0	I/O	The TGRB0 inputs capture input/output compare output/PWM output pins			
pulse unit	TIOCB1	I/O	The TGRB1 inputs capture input/output compare output/PWM output pins			
	TIOCB2	I/O	The TGRB2 inputs capture input/output compare output/PWM output pins			
	TIOCA3, TIOCB3, TIOCC3, TIOCD3	I/O	The TGRA3 to TGRD3 input capture input/output compare output/PWM output pins.			
	TIOCA4, TIOCB4	I/O	The TGRA4 and TGRB4 input capture input/output compare output/PWM output pins.			
	TIOCB5	I/O	The TGRB5 inputs capture input/output compare output/PWM output pins			
	TCLKA, TCLKB, TCLKC, TCLKD	Input	Input pins for external clock signals.			
Multi-function timer pulse unit 2	MTIOC0A, MTIOC0B, MTIOC0C	I/O	The TGRA0 to TGRC0 input capture input/output compare output/PWM output pins.			
	MTIOC1A, MTIOC1B	I/O	The TGRA1 and TGRB1 input capture input/output compare output/PWM output pins.			
	MTIOC2A, MTIOC2B	I/O	The TGRA2 and TGRB2 input capture input/output compare output/PWM output pins.			
	MTIOC3A, MTIOC3B, MTIOC3C, MTIOC3D	I/O	The TGRA3 to TGRD3 input capture input/output compare output/PWM output pins.			
	MTIOC4A, MTIOC4B, MTIOC4C, MTIOC4D	I/O	The TGRA4 to TGRD4 input capture input/output compare output/PWM output pins.			
	MTCLKA, MTCLKB, MTCLKC, MTCLKD	Input	Input pins for the external clock.			

Table 1.4 Pin Functions (2/4)

Classifications	Pin Name	I/O	Description
Port output enable 2	POE0#, POE1#, POE3#, POE8#	Input	Input pins for request signals to place the MTU pins in the high impedance state.
Realtime clock	RTCOUT	Output	Output pin for the 1-Hz/64-Hz clock.
	RTCIC0, RTCIC1	Input	Time capture event input pins.
8-bit timer	TMO0 to TMO2	Output	Compare match output pins.
	TMCI0 to TMCI3	Input	Input pins for the external clock to be input to the counter.
	TMRI1 to TMRI3	Input	Counter reset input pins.
Serial	Asynchronous mode/clock s	synchrono	us mode
communications interface (SCIg)	SCK1, SCK5, SCK8	I/O	Input/output pins for the clock.
interface (GOIg)	RXD1, RXD5, RXD8	Input	Input pins for received data.
	TXD1, TXD5, TXD8	Output	Output pins for transmitted data.
	CTS1#, CTS5#, CTS8#	Input	Input pins for controlling the start of transmission and reception.
	RTS1#, RTS5#, RTS8#	Output	Output pins for controlling the start of transmission and reception.
	Simple I ² C mode		
	SSCL1, SSCL5, SSCL8	I/O	Input/output pins for the I ² C clock.
	SSDA1, SSDA5, SSDA8	I/O	Input/output pins for the I ² C data.
	Simple SPI mode		
	SCK1, SCK5, SCK8	I/O	Input/output pins for the clock.
	SMISO1, SMISO5, SMISO8	I/O	Input/output pins for slave transmit data.
	SMOSI1, SMOSI5, SMOSI8	I/O	Input/output pins for master transmit data.
	SS1#, SS5#, SS8#	Input	Slave-select input pins.
rDA interface	IRTXD5	Output	Data output pin in the IrDA format.
	IRRXD5	Input	Data input pin in the IrDA format.
Serial	Asynchronous mode/clock s	synchrono	us mode
communications	SCK12	I/O	Input/output pin for the clock.
nterface (SCIh)	RXD12	Input	Input pin for receiving data.
	TXD12	Output	Output pin for transmitting data.
	CTS12#	Input	Input pin for controlling the start of transmission and reception.
	RTS12#	Output	Output pin for controlling the start of transmission and reception.
	Simple I ² C mode	•	
	SSCL12	I/O	Input/output pin for the I ² C clock.
	SSDA12	I/O	Input/output pin for the I ² C data.
	Simple SPI mode		
	SCK12	I/O	Input/output pin for the clock.
	SMISO12	I/O	Input/output pin for slave transmit data.
	SMOSI12	I/O	Input/output pin for master transmit data.
	SS12#	Input	Slave-select input pin.
	Extended serial mode		
	RXDX12	Input	Input pin for data reception by SCIf.
	TXDX12	Output	Output pin for data transmission by SCIf.
	SIOX12	I/O	Input/output pin for data reception or transmission by SCIf.
I ² C bus interface	SCL	I/O	Input/output pin for I ² C bus interface clocks. Bus can be directly driven b
I-O DUS IIILEITACE			the N-channel open drain output.
	SDA	I/O	Input/output pin for I^2C bus interface data. Bus can be directly driven by the N-channel open drain output.

Table 1.4 Pin Functions (3/4)

Classifications	Pin Name	I/O	Description		
Serial peripheral	RSPCKA	I/O	Input/output pin for the RSPI clock.		
interface	MOSIA	I/O	Input/output pin for transmitting data from the RSPI master.		
	MISOA	I/O	Input/output pin for transmitting data from the RSPI slave.		
	SSLA0	I/O	Input/output pin to select the slave for the RSPI.		
	SSLA1, SSLA3	Output	Output pins to select the slave for the RSPI.		
Serial sound	SSISCK0	I/O	SSI serial bit clock pin.		
interface	SSIWS0	I/O	Word selection pin.		
	SSITXD0	Output	Serial data output pin.		
	SSIRXD0	Input	Serial data input pin.		
	AUDIO_MCLK	Input	Master clock pin for audio.		
CAN module	CRXD0	Input	Input pin		
	CTXD0	Output	Output pin		
SD host	SDHI_CLK	Output	SD clock output pin		
interface	SDHI_CMD	I/O	SD command output, response input signal pin		
	SDHI_D3 to SDHI_D0	I/O	SD data bus pins		
	SDHI_CD	Input	SD card detection pin		
	SDHI_WP	Input	SD write-protect signal		
USB 2.0 host/ function module	VCC_USB	Input	Power supply pin for USB. Connect this pin to VCC or connect this pin VSS via a $0.33~\mu\text{F}$ smoothing capacitor for stabilizing the internal pow supply.		
	VSS_USB	Input	Ground pin for USB. Connect this pin to VSS.		
	USB0_DP	I/O	D+ I/O pin of the USB on-chip transceiver.		
	USB0_DM	I/O	D- I/O pin of the USB on-chip transceiver.		
	USB0_VBUS	Input	USB cable connection monitor pin.		
	USB0_EXICEN	Output	Low-power control signal for the OTG chip.		
	USB0_VBUSEN	Output	VBUS (5 V) supply enable signal for the OTG chip.		
	USB0_OVRCURA, USB0_OVRCURB	Input	External overcurrent detection pins.		
	USB0_ID	Input	Mini-AB connector ID input pin during operation in OTG mode.		
12-bit A/D converter	AN000 to AN007, AN016 to AN020, AN027	Input	Input pins for the analog signals to be processed by the A/D converter.		
	ADTRG0#	Input	Input pin for the external trigger signal that start the A/D conversion.		
12-bit D/A converter	DA0, DA1	Output	Analog output pins of the D/A converter.		
Comparator B	CMPB2, CMPB3	Input	Input pin for the analog signal to be processed by comparator B.		
	CVREFB2, CVREFB3	Input	Analog reference voltage supply pin for comparator B.		
	CMPOB2, CMPOB3	Output	Output pin for comparator B.		
CTSU	TS2 to TS4, TS7, TS8, TS12, TS13, TS22, TS23, TS27, TS30, TS35	Output	Electrostatic capacitance measurement pins (touch pins).		
	TSCAP	Output	LPF connection pin.		
Analog power supply	AVCC0	Input	Analog voltage supply pin for the 12-bit A/D converter and D/A converter. Connect this pin to VCC when not using the 12-bit A/D converter and D/A converter.		
	AVSS0	Input	Analog ground pin for the 12-bit A/D converter and D/A converter. Connect this pin to VSS when not using the 12-bit A/D converter and D/A converter.		
	VREFH0	Input	Analog reference voltage supply pin for the 12-bit A/D converter.		
	VREFL0	Input	Analog reference ground pin for the 12-bit A/D converter.		

Table 1.4 Pin Functions (4/4)

	` ,		
Classifications	Pin Name	I/O	Description
I/O ports	P03, P05, P07	I/O	3-bit input/output pins.
	P14 to P17	I/O	4-bit input/output pins.
	P21, P22, P25 to P27	I/O	5-bit input/output pins.
	P30, P31, P35 to P37	I/O	5-bit input/output pins (P35 input pin).
	P40 to P47	I/O	8-bit input/output pins.
	PB0, PB1, PB3, PB5, PB7	I/O	5-bit input/output pins.
	PC0, PC2 to PC7	I/O	7-bit input/output pins.
	PD3	I/O	1-bit input/output pins.
	PE0 to PE4	I/O	5-bit input/output pins.
	PJ3	I/O	1-bit input/output pin.
Bluetooth low energy	ANT	I/O	RF single I/O pin for RF transceiver Set the impedance of the signal line to 50 Ω .
	DCLOUT	Output	RF transceiver power-supply output pin
	DCLIN_A	Input	RF transceiver power-supply output connection pin
	DCLIN_D	Input	RF transceiver power-supply output connection pin
	VCC_RF	Input	RF transceiver power supply pin
	AVCC_RF	Input	RF transceiver power supply pin
	VSS_RF	Input	RF transceiver ground pin

1.5 Pin Assignments

Figure 1.3 and Figure 1.4 show the pin assignments. Table 1.5 and Table 1.6 show the lists of pins and pin functions.

Figure 1.3 Pin Assignments of the 85-Pin BGA

Figure 1.4 Pin Assignments of the 56-Pin QFN

Table 1.5 List of Pins and Pin Functions (85-Pin BGA) (1/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, TPU, TMR, RTC, CMT, POE, CAC)	Communications (SCI, RSPI, RIIC, RSCAN, USB, SSI)	Memory Interface (SDHI)	Touch sensing	Others
A1		P25	MTIOC4C/MTCLKB/TIOCA4			TS4	ADTRG0#
A2		P30	MTIOC4B/TMRI3/POE8#/ RTCIC0	RXD1/SMISO1/SSCL1/ AUDIO_MCLK			IRQ0/CMPOB3
А3	VCC						
A4	EXTAL	P36					
A5	VSS						
A6	XTAL	P37					
A7	XCOUT						
A8	XCIN						
A9	VCL						
A10	AVSS0						
B1		P17	MTIOC3A/MTIOC3B/TMO1/ POE8#/TIOCB0/TCLKD	SCK1/MISOA/SDA/SSITXD0			IRQ7/CMPOB2
B2		P26	MTIOC2A/TMO1	TXD1/SMOSI1/SSDA1/SSIRXD0/ USB0_VBUSEN		TS3	CMPB3
В3		P27	MTIOC2B/TMCI3	SCK1/SSIWS0		TS2	CVREFB3
B4		P31	MTIOC4D/TMCI2/RTCIC1	CTS1#/RTS1#/SS1#/SSISCK0			IRQ1
B5	UPSEL	P35					NMI
B6	RES#						
B7	MD						FINED
B8		P03					DA0
В9		P05					DA1
B10	AVCC0						
C1		P14	MTIOC3A/MTCLKA/TMRI2/ TIOCB5/TCLKA	CTS1#/RTS1#/SS1#/CTXD0/ USB0_OVRCURA		TS13	IRQ4/ CVREFB2
C2		P15	MTIOC0B/MTCLKB/TMCI2/ TIOCB2/TCLKB	RXD1/SMISO1/SSCL1/CRXD0		TS12	IRQ5/CMPB2
C3		P16	MTIOC3C/MTIOC3D/TMO2/ TIOCB1/TCLKC/RTCOUT	TXD1/SMOSI1/SSDA1/MOSIA/SCL/ USB0_VBUS/USB0_VBUSEN/ USB0_OVRCURB			IRQ6/ ADTRG0#
C4		P22	MTIOC3B/MTCLKC/TMO0/ TIOCC3	USB0_OVRCURB/AUDIO_MCLK		TS7	
C5	VBATT						
C6		PJ3	MTIOC3C				
C7		P07					ADTRG0#
C8		P41					AN001
C9		P40					AN000
C10	VREFH0						
D1				USB0_DM			
D2	VCC_USB						
D3		P21	MTIOC1B/TMCI0/TIOCA3	USB0_EXICEN/SSIWS0		TS8	
D4	VSS_RF						
D8		P42					AN002
D9		P43					AN003
D10	VREFL0						
E1				USB0_DP			
E2	VSS_USB						
E3	VSS_RF						
E8		P46					AN006
E9		P45					AN005
E10		P44					AN004
F1	UB	PC7	MTIOC3A/MTCLKB/TMO2	TXD8/SMOSI8/SSDA8/MISOA	1		CACREF
F2		PC6	MTIOC3C/MTCLKA/TMCI2	RXD8/SMISO8/SSCL8/MOSIA/ USB0_EXICEN		TS22	
F3	VSS_RF						
F8	VSS_RF						

Table 1.5 List of Pins and Pin Functions (85-Pin BGA) (2/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, TPU, TMR, RTC, CMT, POE, CAC)	Communications (SCI, RSPI, RIIC, RSCAN, USB, SSI)	Memory Interface (SDHI)	Touch sensing	Others
F9		PD3	POE8#				AN027
F10		P47					AN007/ CLKOUT_RF
G1		PC4	MTIOC3D/MTCLKC/TMCI1/ POE0#	CTS8#/RTS8#/SS8#/SSLA0/SCK5	SDHI_D1	TSCAP	
G2		PC5	MTIOC3B/MTCLKD/TMRI2	SCK8/RSPCKA/USB0_ID		TS23	
G3	VSS_RF						
G8	VSS_RF						
G9		PE0		SCK12			AN016
G10	DCLIN_A						
H1		PC3	MTIOC4D/TCLKB	TXD5/SMOSI5/SSDA5/IRTXD5	SDHI_D0	TS27	
H2		PC2	MTIOC4B/TCLKA	RXD5/SMISO5/SSCL5/SSLA3/ IRRXD5	SDHI_D3	TS30	
НЗ	VSS_RF						
H4		PB3	MTIOC0A/MTIOC4A/TMO0/ POE3#/TIOCD3/TCLKD		SDHI_WP		
H5	VSS_RF						
H6	VSS_RF						
H7	VSS_RF						
H8		PE3	MTIOC4B/POE8#	CTS12#/RTS12#/SS12#/ AUDIO_MCLK			AN019/ CLKOUT
H9		PE2	MTIOC4A	RXD12/RXDX12/SMISO12/SSCL12			IRQ7/AN018
H10	DCLIN_D						
J1		PC0	MTIOC3C/TCLKC	CTS5#/RTS5#/SS5#/SSLA1		TS35	
J2	VSS_RF						
J3		PB7	MTIOC3B/TIOCB5		SDHI_D2		
J4		PB5	MTIOC2A/MTIOC1B/TMRI1/ POE1#/TIOCB4	USB0_VBUS	SDHI_CD		
J5		PB1	MTIOC0C/MTIOC4C/TMCI0/ TIOCB3		SDHI_CLK		IRQ4
J6		PB0	TIOCA3	RSPCKA	SDHI_CMD		
J7	VSS_RF						
J8		PE4	MTIOC4D/MTIOC1A				AN020/ CLKOUT
J9		PE1	MTIOC4C	TXD12/TXDX12/SIOX12/SMOSI12/ SSDA12			AN017
J10	VCC_RF						
K1	VSS_RF						
K2							ANT
K3	VSS_RF						
K4	VCC						
K5	VSS						
K6	XTAL2_RF						
K7	XTAL1_RF						
K8	AVCC_RF						
K9	DCLOUT						
K10	VSS_RF						

Table 1.6 List of Pins and Pin Functions (56-PinQFN) (1/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, TPU, TMR, RTC, CMT, POE, CAC)	Communications (SCI, RSPI, RIIC, RSCAN, USB, SSI)	Touch sensing	Others
1	VCL					
:	MD					FINED
}	XCIN					
	XCOUT					
;	RES#					
i	XTAL	P37				
7	VSS					
}	EXTAL	P36				
)	VCC					
0	UPSEL	P35				NMI
1		P31	MTIOC4D/TMCI2/RTCIC1	CTS1#/RTS1#/SS1#/SSISCK0		IRQ1
2		P30	MTIOC4B/TMRI3/POE8#/RTCIC0	RXD1/SMISO1/SSCL1/AUDIO_MCLK		IRQ0/CMPOB3
3		P27	MTIOC2B/TMCI3	SCK1/SSIWS0	TS2	CVREFB3
4		P26	MTIOC2A/TMO1	TXD1/SMOSI1/SSDA1/SSIRXD0/ USB0_VBUSEN	TS3	СМРВ3
5		P17	MTIOC3A/MTIOC3B/TMO1/POE8#/ TIOCB0/TCLKD	SCK1/MISOA/SDA/SSITXD0		IRQ7/CMPOB2
16		P16	MTIOC3C/MTIOC3D/TMO2/TIOCB1/ TCLKC/RTCOUT	TXD1/SMOSI1/SSDA1/MOSIA/SCL/ USB0_VBUS/USB0_VBUSEN/ USB0_OVRCURB		IRQ6/ADTRG0#
17		P15	MTIOC0B/MTCLKB/TMCI2/TIOCB2/ TCLKB	RXD1/SMISO1/SSCL1/CRXD0	TS12	IRQ5/CMPB2
8		P14	MTIOC3A/MTCLKA/TMRI2/TIOCB5/ TCLKA	CTS1#/RTS1#/SS1#/CTXD0/ USB0_OVRCURA	TS13	IRQ4/CVREFB
9	VCC_USB					
20				USB0_DM		
21				USB0_DP		
22	VSS_USB					
23	UB	PC7	MTIOC3A/MTCLKB/TMO2	TXD8/SMOSI8/SSDA8/MISOA		CACREF
24		PC6	MTIOC3C/MTCLKA/TMCI2	RXD8/SMISO8/SSCL8/MOSIA/ USB0_EXICEN	TS22	
25		PC5	MTIOC3B/MTCLKD/TMRI2	SCK8/RSPCKA/USB0_ID	TS23	
26		PC4	MTIOC3D/MTCLKC/TMCI1/POE0#	CTS8#/RTS8#/SS8#/SSLA0/SCK5	TSCAP	
27		PC3	MTIOC4D/TCLKB	TXD5/SMOSI5/SSDA5/IRTXD5	TS27	
18	VSS RF					
29	_	PC2	MTIOC4B/TCLKA	RXD5/SMISO5/SSCL5/SSLA3/IRRXD5	TS30	
0		PC0	MTIOC3C/TCLKC	CTS5#/RTS5#/SS5#/SSLA1	TS35	
31		PB7	MTIOC3B/TIOCB5			
32						ANT
33		PB1	MTIOC0C/MTIOC4C/TMCI0/TIOCB3			IRQ4
34	VCC					
35		PB0	TIOCA3	RSPCKA		
6	VSS					
37	XTAL2_RF					
88	XTAL1_RF	<u> </u>				
39	AVCC_RF	1				
10	DCLOUT					
1	502001	PE4	MTIOC4D/MTIOC1A			AN020/CLKOU
2		PE3	MTIOC4B/POE8#	AUDIO MCLK		AN019/CLKOU
3		PE2	MTIOC4A	//OSIO_INIOLIX		IRQ7/AN018
14	VCC_RF	1	INTIOOTA			ii voci // AINU 10
14 15	DCLIN_D	-				
	DCLIN_D	-				
16	DOLIN_A	PD3	DOE8#			AN027
17		PD3	POE8#			AN027 AN007/
18		F4/				CLKOUT_RF

Table 1.6 List of Pins and Pin Functions (56-PinQFN) (2/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, TPU, TMR, RTC, CMT, POE, CAC)	Communications (SCI, RSPI, RIIC, RSCAN, USB, SSI)	Touch sensing	Others
49		P46				AN006
50		P45				AN005
51		P41				AN001
52	VREFL0					
53	VREFH0					
54	AVCC0					
55		P05				DA1
56	AVSS0					

Note: VSS_RF is assigned as the exposed die pad. For details, refer to Appendix 2, Package Dimensions.

2. Electrical Characteristics

2.1 Absolute Maximum Ratings

Table 2.1 Absolute Maximum Ratings

Conditions: VSS = AVSS0 = VREFL0 = VREFL = VSS USB = VSS RF = 0 V

	Item	Symbol	Value	Unit	
Power supply vo	oltage	VCC, VCC_USB	-0.3 to +4.0	V	
VBATT power s	upply voltage	VBATT	-0.3 to +4.0	V	
Input voltage	Ports for 5 V tolerant*1	V _{in}	-0.3 to +6.5	V	
P03, P05, P07, P40 to P47			-0.3 to AVCC0 + 0.3		
	ANT		-1.0 to +1.4		
	XTAL1_RF, XTAL2_RF		-0.3 to +1.4		
	DCLIN_A, DCLIN_D		-0.3 to +2.2		
	Ports other than above		-0.3 to VCC + 0.3		
Reference power	er supply voltage	VREFH0	-0.3 to AVCC0 + 0.3	V	
Analog power s	upply voltage	AVCC0	-0.3 to +4.0	V	
		VCC_RF	-0.3 to +4.0	V	
		AVCC_RF	-0.3 to +4.0	V	
Analog input	When AN000 to AN007 are used	V_{AN}	-0.3 to AVCC0 + 0.3	V	
voltage When AN016 to AN020, AN027 are used			-0.3 to VCC + 0.3		
Operating tempor	erature	T _{opr}	-40 to +85	°C	
Storage tempera	ature	T _{stg}	-55 to +125	°C	

Caution: Permanent damage to the MCU may be caused if absolute maximum ratings are exceeded.

To preclude any malfunctions due to noise interference, insert capacitors with high frequency characteristics between the VCC and VSS pins, between the AVCC0 and AVSS0 pins, between the VCC_USB and VSS_USB pins, between the VREFH0 and VREFL0 pins, between the VCC_RF and VSS_RF pins, and between the AVCC_RF and VSS_RF pins. Place capacitors with values of about 2.2 μ F in the case of the VCC_RF pin and about 0.1 μ F otherwise as close as possible to every power supply pin, and use the shortest and thickest possible traces for the connections.

Connect the VCL pin to a VSS pin via a 4.7 μ F capacitor. The capacitor must be placed close to the pin. For details, refer to section 2.16.1, Connecting VCL Capacitor and Bypass Capacitors.

Do not input signals or an I/O pull-up power supply to ports other than 5-V tolerant ports while the device is not powered. The current injection that results from input of such a signal or I/O pull-up may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Even if –0.3 to +6.5 V is input to 5-V tolerant ports, it will not cause problems such as damage to the MCU.

Note 1. Ports 16, 17, 30, 31, and B5 are 5 V tolerant.

Table 2.2 Recommended Operating Voltage Conditions

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Power supply voltages	VCC*1, *2, *3	When USB is not used	1.8	_	3.6	V
		When USB is used	3.0	_	3.6	
	VSS		_	0	_	
USB power supply voltages	VCC_USB	When USB regulator is not used	_	VCC	_	V
	VSS_USB		_	0	_	
VBATT power supply voltage	VBATT		1.8	_	3.6	V
Analog power supply voltages	AVCC0*1, *2		1.8	_	3.6	V
	AVSS0		_	0	_	
	VREFH0		1.8	_	AVCC0	
	VREFL0		_	0	_	
BLE power supply voltages	VCC_RF*3		1.8	_	3.6	V
	AVCC_RF*3		1.8	_	3.6	
	VSS_RF		_	0	_	

Note 1. P41 and P47: Set AVCC0 to the same voltage as VCC.

If conditions other than those above are applicable, those listed below apply.

While VCC > 2.4 V: AVCC and VCC can be set independently when AVCC0 ≥ 2.4 V

While VCC ≤ 2.4 V: AVCC and VCC can be set independently when AVCC0 ≥ VCC

Note 2. When powering on the VCC and AVCC0 pins, power them on at the same time or the VCC pin first and then the AVCC0 pin.

Note 3. Set VCC_RF and AVCC_RF to the same voltage as VCC.

2.2 **DC** Characteristics

DC Characteristics (1) Table 2.3

Conditions: $2.7 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{AVCC0} \le 3.6 \text{ V}, \\ \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V}, \\ \text{T}_{a} = -40 \text{ to } +85 ^{\circ}\text{C}$

	Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger input voltage	RIIC input pin (except for SMB)	us, 5 V tolerant)	V _{IH}	VCC × 0.7	_	5.8	٧	
	Ports 16, 17, por (5 V tolerant)	t B5		VCC × 0.8	_	5.8		
	ports 35 to 37, ports B0, B1, B3, ports C0, C2 to C ports D3, ports E0 to E4, port J3, Ports 30, 31 (who	27,		VCC × 0.8	_	VCC + 0.3		
	Ports 03, 05, 07,	ports 40 to 47		AVCC0 × 0.8	_	AVCC0 + 0.3		
	Ports 30, 31 (when time	When VCC is supplied		VCC × 0.8	_	VCC + 0.3		
	capture event input is selected)	When VBATT is supplied		VBATT × 0.8	_	VBATT + 0.3		
	Ports 03, 05, 07,	ports 40 to 47	V _{IL}	-0.3	_	AVCC0 × 0.2		
	RIIC input pin (ex	ccept for SMBus)		-0.3	_	VCC × 0.3		
	Other than RIIC 30, 31	nput pin or ports		-0.3	_	VCC × 0.2		
	Ports 30, 31 (when time	When VCC is supplied		-0.3	_	VCC × 0.3		
	capture event input is selected)	When VBATT is supplied		-0.3	_	VBATT × 0.3		
	Ports 03, 05, 07,	ports 40 to 47	ΔV_{T}	AVCC0 × 0.1	_	_		
	RIIC input pin (ex	(cept for SMBus)		VCC × 0.05	_	_		
	Ports 16, 17, Por	t B5		VCC × 0.05	_	_		
	Other than RIIC	nput pin		VCC × 0.1				
Input level	MD		V _{IH}	VCC × 0.9		VCC + 0.3	V	
voltage (except for Schmitt	EXTAL (external	clock input)		VCC × 0.8	_	VCC + 0.3		
trigger input	RIIC input pin (S	MBus)		2.1	_	VCC + 0.3		
pins)	MD		V _{IL}	-0.3	_	VCC × 0.1		
	EXTAL (external	clock input)		-0.3		VCC × 0.2		
	RIIC input pin (S	MBus)		-0.3		0.8		

Table 2.4 DC Characteristics (2)

Conditions: 1.8 V \leq VCC = VCC_USB = VCC_RF = AVCC_RF \leq 2.7 V, 1.8 V \leq AVCC0 < 2.7 V, VSS = AVSS0 = VSS_USB = VSS_RF = 0 V, T_a = -40 to +85°C

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger input voltage	Ports 16, 17, port B5 (5 V tolerant)	V _{IH}	VCC × 0.8	_	5.8	V	
	Ports 14, 15, ports 21, 22, 25 to 27, ports 30, 31, 35 to 37, ports B0, B1, B3, B5, B7, ports C0, C2 to C7, ports D3, ports E0 to E4, port J3, RES#		VCC × 0.8	_	VCC + 0.3		
	Ports 03, 05, 07, ports 40 to 47		AVCC0 × 0.8	_	AVCC0 + 0.3		
	Ports 03, 05, 07, ports 40 to 47	V _{IL}	-0.3	_	AVCC0 × 0.2		
	Ports other than above		-0.3	_	VCC × 0.2		
	Ports 03, 05, 07, ports 40 to 47	ΔV_{T}	AVCC0 × 0.01		_		
	Ports other than above		VCC × 0.01	_	_		
Input level	MD	V _{IH}	VCC × 0.9	_	VCC + 0.3	V	
voltage (except for Schmitt	EXTAL (external clock input)		VCC × 0.8	_	VCC + 0.3		
trigger input	MD	V_{IL}	-0.3	_	VCC × 0.1		
pins)	EXTAL (external clock input)		-0.3	_	VCC × 0.2		

Table 2.5 DC Characteristics (3)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V},$ $T_a = -40 \text{ to } +85^{\circ}\text{C}$

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Input leakage current	RES#, MD, port 35	I _{in}	_	_	1.0	μA	V _{in} = 0 V, VCC
Three-state leakage current (off-state)	Ports for 5 V tolerant	I _{TSI}	_	_	1.0	μA	V _{in} = 0 V, 5.8 V
	Ports except for 5 V tolerant		_	_	0.2	μA	V _{in} = 0 V, VCC
Input capacitance All input pins (except for port 35, USB0_DM, USB0_DP)		C _{in}	_	_	15	pF	V _{in} = 0 mV, f = 1 MHz, T _a = 25°C
	Port 35, USB0_DM, USB0_DP		_	_	30		

Table 2.6 DC Characteristics (4)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V},$ $T_a = -40 \text{ to } +85^{\circ}\text{C}$

	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Input pull-up resistor	All ports (except for port 35)	R _U	10	20	50	kΩ	V _{in} = 0 V

Table 2.7 DC Characteristics (5)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V}, \\ T_a = -40 \text{ to } +85 ^{\circ}\text{C}$

		Ite	m		Symbol	Typ. *4	Max.	Unit	Test Conditions
Supply	High-speed	Normal	No peripheral	ICLK = 54 MHz	I _{CC}	6.5	_	mA	
current *1	operating mode	operating mode	operation*2	ICLK = 32 MHz		4.1	_		
·				ICLK = 16 MHz		2.9	_		
				ICLK = 8 MHz		2.2	_		
				ICLK = 4 MHz		1.9	_		
			All peripheral	ICLK = 54 MHz*11		26.5	_		
			operation: Normal	ICLK = 32 MHz*3		21.0	_		
				ICLK = 16 MHz*3		11.8	_		
				ICLK = 8 MHz*3		6.6	_		
				ICLK = 4 MHz*3		4.2	_		
			All peripheral	ICLK = 54 MHz*11		_	53.3		
			operation: Max.	ICLK = 32 MHz*3		_	40.8		
			Increase due to	PCLKB = 32 MHz		-	2		
			operation of the Trusted Secure IP						
		Sleep mode	No peripheral	ICLK = 54 MHz		3.5	_		
			operation*2	ICLK = 32 MHz		2.4	_		
				ICLK = 16 MHz		1.9	_		
				ICLK = 8 MHz		1.6	_		
				ICLK = 4 MHz		1.5	_		
			All peripheral	ICLK = 54 MHz*11		13.4	_		
			operation: Normal	ICLK = 32 MHz*3		12.5	_		
				ICLK = 16 MHz*3		7.3	_		
				ICLK = 8 MHz*3		4.6	_		
				ICLK = 4 MHz*3		3.3	_		
		Deep sleep	No peripheral	ICLK = 54 MHz		2.3	_		
		mode	operation*2	ICLK = 32 MHz		1.5	_		
				ICLK = 16 MHz		1.3	_		
				ICLK = 8 MHz		1.2	_		
				ICLK = 4 MHz		1.1	_		
			All peripheral	ICLK = 54 MHz*11		10.6	_		
			operation: Normal	ICLK = 32 MHz*3		9.9	_		
				ICLK = 16 MHz*3		5.9	_		
				ICLK = 8 MHz*3		3.8	_		
				ICLK = 4 MHz*3		2.7	_		
		Increase during E	3GO operation*5			2.5	_		
	Middle-speed	Normal	No peripheral operation*6	ICLK = 12 MHz	I _{CC}	2.7	_	mA	
	operating mode	operating mode	operation •	ICLK = 8 MHz		1.8	_		
				ICLK = 4 MHz		1.4	_		
				ICLK = 1 MHz		1.1	_		
			All peripheral operation: Normal*7	ICLK = 12 MHz		9.6	_		
			орегацоп. погтаг	ICLK = 8 MHz		6.2	_		
				ICLK = 4 MHz		3.8	_		
				ICLK = 1 MHz		2.3	_		

		Ite	m		Symbol	Typ. *4	Max.	Unit	Test Conditions
Supply	Middle-speed operating mode	Normal operating mode	All peripheral operation: Max.*7	ICLK = 12 MHz	I _{CC}	_	16.7	mA	
*1		Sleep mode	No peripheral	ICLK = 12 MHz		1.9	_		
			operation*6			1.2	_		
				ICLK = 4 MHz		1.1	_		
				ICLK = 1 MHz		1.0	_		
			All peripheral	ICLK = 12 MHz		6.1	_		
			operation: Normal*7	ICLK = 8 MHz		4.4	_		
				ICLK = 4 MHz		3.0	_		
				ICLK = 1 MHz		2.0	_		
		Deep sleep	No peripheral	ICLK = 12 MHz		1.6	_		
		mode	operation*6	ICLK = 8 MHz		1.0	_		
				ICLK = 4 MHz		0.9	_		
				ICLK = 1 MHz		0.8	_	-	
			All peripheral operation: Normal*7	ICLK = 12 MHz		5.1	_		
				ICLK = 8 MHz		3.7	_		
				ICLK = 4 MHz		2.6	_		
				ICLK = 1 MHz		1.8	_		
		Increase during BGO operation*5				2.5	_		
	Low-speed operating mode	Normal operating mode	No peripheral operation*8	ICLK = 32 kHz	I _{CC}	5.2	_	μA	
			All peripheral operation: Normal *9, *10	ICLK = 32 kHz		22.3	_		
			All peripheral operation: Max.*9, *10	ICLK = 32 kHz		_	74.4		
		Sleep mode	No peripheral operation*8	ICLK = 32 kHz		3.0	_		
			All peripheral operation: Normal*9	ICLK = 32 kHz		13.1			
		Deep sleep mode	No peripheral operation*8	ICLK = 32 kHz		2.4	_		
			All peripheral operation: Normal*9	ICLK = 32 kHz		10.5	_		

- Note 1. Supply current values do not include the output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.
- Note 2. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is PLL. FCLK, and PCLK are set to divided by 64.
- Note 3. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is PLL. FCLK, and PCLK are the same frequency as that of ICLK.
- Note 4. Values when VCC is 3.3 V.
- Note 5. This is the increase when data is programmed to or erased from the ROM or E2 DataFlash during program execution.
- Note 6. Clock supply to the peripheral functions is stopped. The clock source is PLL when ICLK is 12 MHz and HOCO for other cases. FCLK, and PCLK are set to divided by 64.
- Note 7. Clocks are supplied to the peripheral functions. The clock source is PLL when ICLK is 12 MHz and HOCO for other cases. FCLK, and PCLK are the same frequency of that of the ICLK.
- Note 8. Clock supply to the peripheral functions is stopped. The clock source is the sub oscillation circuit. FCLK, and PCLK are set to divided by 64.
- Note 9. Clocks are supplied to the peripheral functions. The clock source is the sub oscillation circuit. FCLK, and PCLK are the same frequency as that of ICLK.
- Note 10. This is the value when the MSTPCRA.MSTPA17 (12-bit A/D converter module stop bit) is in the module stop state.
- Note 11. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is PLL. FCLK, and PCLKB are set to divided by 2 and PCLKA and PCLKD are the same frequency as that of ICLK.

Figure 2.1 Voltage Dependency in High-Speed Operating Mode (Reference Data)

Figure 2.2 Voltage Dependency in Middle-Speed Operating Mode (Reference Data)

Figure 2.3 Voltage Dependency in Low-Speed Operating Mode (Reference Data)

Table 2.8 DC Characteristics (6)

Conditions: 1.8 V \leq VCC = VCC_USB = AVCC0 = VCC_RF = AVCC_RF \leq 3.6 V, VSS = AVSS0 = VSS_USB = VSS_RF = 0 V, T_a = -40 to +85°C

	Item		Symbol	Typ.*3	Max.	Unit	Test Conditions
Supply	Software standby	T _a = 25°C	I _{CC}	0.8	3.7	μΑ	
current*1	mode*2	T _a = 55°C		1.2	4.3		
		T _a = 85°C		3.5	18.6		
	Increment for IWDT operation			0.4	_		
	Increment for LPT	Increment for LPT operation		0.4	_		Use IWDT-Dedicated On-Chip Oscillator for clock source
	Increment for RTC	operation*4		0.4	_		RCR3.RTCDV[2:0] set to low drive capacity
				1.2	_		RCR3.RTCDV[2:0] set to normal drive capacity

- Note 1. Supply current values are with all output pins unloaded and all input pull-up MOSs in the off state.
- Note 2. The IWDT, LVD, and CMPB are stopped.
- Note 3. When VCC is 3.3 V.
- Note 4. This increment includes the oscillation circuit.

Figure 2.4 Voltage Dependency in Software Standby Mode (Reference Data)

Figure 2.5 Temperature Dependency in Software Standby Mode (Reference Data)

Table 2.9 DC Characteristics (7)

Conditions: 1.8 V \leq VCC = VCC_USB = AVCC0 = VCC_RF = AVCC_RF \leq 3.6 V, VSS = AVSS0 = VSS_USB = VSS_RF = 0 V, T_a = -40 to +85°C

	Item	·	Symbol	Тур.	Max.	Unit	Test Conditions
Supply	RTC operation	T _a = 25°C	I _{CC}	0.8	_	μA	VBATT = 2.0 V
current*1	when VCC is off	T _a = 55°C		0.9	_		RCR3.RTCDV[2:0] set to low drive capacity
		T _a = 85°C		1.0	_		
		T _a = 25°C		0.9	_		VBATT = 3.3 V
		T _a = 55°C		1.0	_		RCR3.RTCDV[2:0] set to low drive capacity
		T _a = 85°C		1.1	_		
		T _a = 25°C		1.5	_		VBATT = 2.0 V
		T _a = 55°C	1	1.8	_		RCR3.RTCDV[2:0] set to normal drive capacity
		T _a = 85°C		2.1	_		dapasity
		T _a = 25°C		1.6	_		VBATT = 3.3 V
		T _a = 55°C		1.9	_		RCR3.RTCDV[2:0] set to normal drive capacity
		T _a = 85°C		2.2	_		

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

Figure 2.6 Temperature Dependency of RTC Operation with VCC Off (Reference Data)

Table 2.10 DC Characteristics (8)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Permissible total power consumption*1	Pd	_	_	350	mW	D-version product

Note 1. Total power dissipated by the entire chip (including output currents)

Table 2.11 DC Characteristics (9)

Conditions: 1.8 V \leq VCC = VCC_USB = AVCC0 = VCC_RF = AVCC_RF \leq 3.6 V, VSS = AVSS0 = VSS_USB = VSS_RF = 0 V, T_a = -40 to +85°C

	Item	Symbol	Min.	Typ.* ⁷	Max.	Unit	Test Conditions
Analog power	During A/D conversion (at high-speed conversion)	I _{AVCC}	_	0.7	1.7	mA	
supply current	During A/D conversion (in low-current mode)		_	0.6	1.0		
	During D/A conversion (per channel)*1		_	0.4	8.0		
	Waiting for A/D and D/A conversion (all units)		_	_	0.4	μΑ	
Reference	During A/D conversion (at high-speed conversion)	I _{REFH0}	_	25	150	μΑ	
power supply current	Waiting for A/D conversion (all units)		_	_	60	nA	
darrone	During D/A conversion (per channel)	I _{REFH}	_	50	100	μΑ	
	Waiting for D/A conversion (all units)		_	_	100	nA	
LVD1	_	I _{LVD}	_	0.15	_	μΑ	
Temperature sensor*6	_	I _{TEMP}	_	75	_	μΑ	
Comparator B	Window mode	I _{CMP} *5	_	12.5	28.6	μΑ	
operating current* ⁶	Comparator high-speed mode (per channel)	1	_	3.2	16.2	μΑ	
Current	Comparator low-speed mode (per channel)	1	_	1.7	4.4	μA	
CTSU operating current	When sleep mode Base clock frequency: 2MHz Pin capacitance: 50pF	I _{CTSU}	_	150	_	μA	
USB operating current*4	During USB communication operation under the following settings and conditions Host controller operation is set to full-speed mode Bulk OUT transfer (64 bytes) × 1, bulk IN transfer (64 bytes) × 1 Connect peripheral devices via a 1-meter USB cable from the USB port.	l _{USBH} *2	_	4.3 (VCC) 0.9 (VCC_USB)	_	mA	
	During USB communication operation under the following settings and conditions Function controller operation is set to full-speed mode Bulk OUT transfer (64 bytes) × 1, bulk IN transfer (64 bytes) × 1 Connect the host device via a 1-meter USB cable from the USB port.	l _{USBF} *2	_	3.6 (VCC) 1.1 (VCC_USB)	_	mA	
	During suspended state under the following setting and conditions • Function controller operation is set to full-speed mode (pull up the USB0_DP pin) • Software standby mode • Connect the host device via a 1-meter USB cable from the USB port.	I _{SUSP} *3	_	0.35 (VCC) 170 (VCC_USB)	_	μА	

Note 1. The value of the D/A converter is the value of the power supply current including the reference current.

Note 2. Current consumed only by the USB module.

Note 3. Includes the current supplied from the pull-up resistor of the USB0_DP pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.

Note 4. Current consumed by the power supplies (VCC and VCC_USB).

Note 5. Current consumed only by the comparator B module.

Note 6. Current consumed by the power supply (VCC).

Note 7. When VCC = AVCC0 = VCC_USB = 3.3 V.

Table 2.12 DC Characteristics (10)

Conditions: $VCC = VCC_USB = AVCC0 = VCC_RF = AVCC_RF = 3.3 \text{ V}, VSS = AVSS0 = VSS_USB = VSS_RF = 0 \text{ V}, T_a = +25^{\circ}C$

		T	/p.		
Item	Symbol	Transmit o	utput power	Unit	Test Conditions
		0 dBm	4 dBm		
BLE operating current	Idd_tx	4.3	8.7	mA	Transmit mode, 2Mbps
(when the DC-to-DC converter is selected)					Transmit mode, 1Mbps
selected)		4.5	8.7		Transmit mode, 500kbps
					Transmit mode, 125kbps
	ldd_rx	3.0	3.5	mA	Receive mode, 2Mbps Prf = -67dBm
		3.0	3.4		Receive mode, 1Mbps Prf = -67dBm
		3.2	3.5		Receive mode, 500kbps Prf = -72dBm
		3.3	3.5		Receive mode, 125kbps Prf = -79dBm
	Idd_idle	0.5		mA	Idle mode
	Idd_slp	1.5		μΑ	Deep sleep mode
	Idd_down	0.1		μA	Power down mode
BLE operating current	ldd_tx	ldd_tx 10.2		mA	Transmit mode, 2Mbps
(when the linear regulator is selected)					Transmit mode, 1Mbps
					Transmit mode, 500kbps
					Transmit mode, 125kbps
	ldd_rx	6	.9	mA	Receive mode, 2Mbps Prf = -67dBm
		6	.9		Receive mode, 1Mbps Prf = -67dBm
		6	.9		Receive mode, 500kbps Prf = -72dBm
		7	.1		Receive mode, 125kbps Prf = -79dBm
	Idd_idle	0	.7	mA	Idle mode
	ldd_slp	1	.5	μA	Deep sleep mode
	ldd_down	0	.1	μA	Power down mode

Table 2.13 DC Characteristics (11)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V}, \text{T}_a = -40 \text{ to} +85 ^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
RAM standby voltage	V_{RAM}	1.8	_	_	٧	

Table 2.14 DC Characteristics (12)

Conditions: $0 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{ VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V}, \\ T_a = -40 \text{ to } +85^{\circ}\text{C}$

	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Power-on VCC rising gradient	At normal startup*1	SrVCC	0.02	_	20	ms/V	
	During fast startup time*2		0.02	_	2		
	Voltage monitoring 0 reset enabled at startup*3, *4		0.02		_		

- Note 1. When OFS1.(FASTSTUP, LVDAS) bits are 11b.
- Note 2. When OFS1.(FASTSTUP, LVDAS) bits are 01b.
- Note 3. When OFS1.LVDAS bit is 0.
- Note 4. Turn on the power supply voltage according to the normal startup rising gradient because the settings in the OFS1 register are not read in boot mode.

Table 2.15 DC Characteristics (13)

Conditions: 1.8 V \leq VCC = VCC_USB = AVCC0 = VCC_RF = AVCC_RF \leq 3.6 V, VSS = AVSS0 = VSS_USB = VSS_RF = 0 V, T_a = -40 to +85°C

The ripple voltage must meet the allowable ripple frequency $f_{r,(VCC)}$ within the range between the VCC upper limit and lower limit. When VCC change exceeds VCC ±10%, the allowable voltage change rising/falling gradient dt/dVCC must be met.

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Allowable ripple frequency	f _{r (VCC)}	_	_	10	kHz	Figure 2.7 $V_{r \text{ (VCC)}} \le VCC \times 0.2$
		_	_	1	MHz	Figure 2.7 $V_{r (VCC)} \le VCC \times 0.08$
		_	_	10	MHz	Figure 2.7 $V_{r (VCC)} \le VCC \times 0.06$
Allowable voltage change rising/falling gradient	dt/dVCC	1.0	_	_	ms/V	When VCC change exceeds VCC ±10%

Figure 2.7 Ripple Waveform

Table 2.16 DC Characteristics (14)

Conditions: $1.8 \text{ V} \leq \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \leq 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V},$ $T_a = -40 \text{ to } +85^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Permissible error of VCL pin external capacitance	C _{VCL}	1.4	4.7	7.0	μF	

Note: The recommended capacitance is 4.7 µF. Variations in connected capacitors should be within the above range.

Table 2.17 Permissible Output Currents

Conditions: 1.8 V \leq VCC = VCC_USB = AVCC0 = VCC_RF = AVCC_RF \leq 3.6 V, VSS = AVSS0 = VSS_USB = VSS_RF = 0 V, T_a = -40 to +85°C

	Item		Symbol	Max.	Unit	
Permissible output low current	Ports 03, 05, 07, ports 36, 3	37, ports 40 to 47	I _{OL}	4.0	mA	
(average value per pin)	Ports other than above	Normal output mode		4.0		
		High-drive output mode	1	8.0		
Permissible output low current	Ports 03, 05, 07, ports 36, 3	37, ports 40 to 47		4.0		
(maximum value per pin)	Ports other than above	Normal output mode		4.0		
		High-drive output mode		8.0		
Permissible output low current	Total of ports 03, 05, 07, po	rts 40 to 47	Σl _{OL}	40		
	Total of ports 14 to 17, ports to 37, port PJ3		40			
	Total of ports B0, B1, B3, B5		40			
	Total of port D3, ports E0 to	E4		40		
	Total of all output pins			80		
Permissible output high current	Ports 03, 05, 07, ports 36, 3	I _{OH}	-4.0			
(average value per pin)	Ports other than above	Normal output mode		-4.0		
		High-drive output mode		-8.0		
Permissible output high current	Ports 03, 05, 07, ports 36, 3		-4.0			
(maximum value per pin)	Ports other than above	Normal output mode		-4.0		
		High-drive output mode		-8.0		
Permissible output high current	Total of ports 03, 05, 07, po	rts 40 to 47	ΣI_{OH}	-40		
	Total of ports 14 to 17, ports to 37, port PJ3		-40			
	Total of ports B0, B1, B3, B5	Total of ports B0, B1, B3, B5, B7, ports C0, C2 to C7				
	Total of port D3, ports E0 to	E4	1	-40		
	Total of all output pins			-80		

Note: Do not exceed the permissible total supply current.

Table 2.18 Output Values of Voltage (1)

Conditions: 1.8 V \leq VCC = VCC_USB = AVCC0 = VCC_RF = AVCC_RF \leq 2.7 V, VSS = AVSS0 = VSS_USB = VSS_RF = 0 V, T_a = -40 to +85°C

	Item				Min.	Max.	Unit	Test Conditions
Output low	All output ports*1	Normal output mode		V _{OL}	_	0.8	V	I _{OL} = 0.5 mA
		High-drive output mode			_	0.8		I _{OL} = 1.0 mA
Output high	All output ports*1	Normal output mode	Ports 03, 05, 07, Ports 40 to 47	V _{OH}	AVCC0 - 0.5	_	V	I _{OH} = -0.5 mA
			Ports other than above		VCC - 0.5	_		
		High-drive output mode			VCC - 0.5	_		I _{OH} = -1.0 mA

Note 1. This excludes the CLKOUT_RF pin.

Table 2.19 Output Values of Voltage (2)

Conditions: $2.7 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V},$ $T_a = -40 \text{ to } +85^{\circ}\text{C}$

	ļi	tem		Symbol	Min.	Max.	Unit	Test Conditions
Output low	·		V _{OL}	_	0.8	V	I _{OL} = 1.0 mA	
	(except for RIIC) *1	High-drive outp	High-drive output mode		_	8.0		I _{OL} = 2.0 mA
	RIIC pins Standard mode (Normal output mode)			_	0.4		I _{OL} = 3.0 mA	
		Fast mode (High-drive output mode)			_	0.6		I _{OL} = 6.0 mA
Output high	All output ports*1	Normal output mode	Ports 03, 05, 07, Ports 40 to 47	V _{OH}	AVCC0 - 0.8	_	V	I _{OH} = -1.0 mA
			Ports other than above		VCC - 0.8	_		
		High-drive outp	out mode		VCC - 0.8	1		I _{OH} = -2.0 mA

Note 1. This excludes the CLKOUT RF pin.

Table 2.20 Output Values of Voltage (3)

Conditions: $3.0V \le VCC = VCC_USB = AVCC0 = VCC_RF = AVCC_RF \le 3.6V$, $VSS = AVSS0 = VSS_USB = VSS_RF = 0V$, $Ta = -40 \text{ to } +85^{\circ}C$

Item			Min.	Max.	Unit	Test Conditions
Output low	CLKOUT_RF	V _{OL}	_	0.3	V	I _{OL} = 0.5 mA
Output high	CLKOUT_RF	V _{OH}	VCC_RF - 0.3	_	V	$I_{OH} = -0.5 \text{ mA}$

2.2.1 Normal I/O Pin Output Characteristics (1)

Figure 2.8 to Figure 2.11 show the characteristics when normal output is selected by the drive capacity control register.

Figure 2.8 V_{OH}/V_{OL} and I_{OH}/I_{OL} Voltage Characteristics at $T_a = 25^{\circ}$ C When Normal Output is Selected (Reference Data)

Figure 2.9 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics at VCC = 1.8 V When Normal Output is Selected (Reference Data)

Figure 2.10 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics at VCC = 2.7 V When Normal Output is Selected (Reference Data)

Figure 2.11 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics at VCC = 3.3 V When Normal Output is Selected (Reference Data)

2.2.2 Normal I/O Pin Output Characteristics (2)

Figure 2.12 to Figure 2.15 show the characteristics when high-drive output is selected by the drive capacity control register.

Figure 2.12 V_{OH}/V_{OL} and I_{OH}/I_{OL} Voltage Characteristics at T_a = 25°C When High-Drive Output is Selected (Reference Data)

Figure 2.13 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics at VCC = 1.8 V When High-Drive Output is Selected (Reference Data)

Figure 2.14 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics at VCC = 2.7 V When High-Drive Output is Selected (Reference Data)

Figure 2.15 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics at VCC = 3.3 V When High-Drive Output is Selected (Reference Data)

2.2.3 Normal I/O Pin Output Characteristics (3)

Figure 2.16 to Figure 2.18 show the characteristics of the RIIC output pin.

Figure 2.16 V_{OL} and I_{OL} Voltage Characteristics of RIIC Output Pin at $T_a = 25^{\circ}$ C (Reference Data)

Figure 2.17 V_{OL} and I_{OL} Temperature Characteristics of RIIC Output Pin at VCC = 2.7 V (Reference Data)

Figure 2.18 V_{OL} and I_{OL} Temperature Characteristics of RIIC Output Pin at VCC = 3.3 V (Reference Data)

2.3 AC Characteristics

2.3.1 Clock Timing

Table 2.21 Operating Frequency Value (High-Speed Operating Mode)

Conditions: $1.8 \text{ V} \leq \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \leq 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V},$ $T_a = -40 \text{ to } +85^{\circ}\text{C}$

				V	CC		
	Item	Symbol	1.8 V ≤ VCC < 2.4 V	2.4 V ≤ VCC < 2.7 V	2.7 V ≤ VCC ≤ 3.6 V	When USB is in Use*3	Unit
Maximum	System clock (ICLK)	f _{max}	8	16	54	54	MHz
operating frequency* ⁴	FlashIF clock (FCLK)*1, *2		8	16	32	32	
nequency	Peripheral module clock (PCLKA)		8	16	54	54	
	Peripheral module clock (PCLKB)		8	16	32	32	
	Peripheral module clock (PCLKD)		8	32	54	54	
	USB clock (UCLK)	f _{usb}	_	_	_	48	

Note 1. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When FCLK is in use at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Table 2.22 Operating Frequency Value (Middle-Speed Operating Mode)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V},$ $T_a = -40 \text{ to } +85^{\circ}\text{C}$

'				V	CC		
	Item	Symbol	1.8 V ≤ VCC < 2.4 V	2.4 V ≤ VCC < 2.7 V	2.7 V ≤ VCC ≤ 3.6 V	When USB is in Use*3	Unit
Maximum	System clock (ICLK)	f _{max}	8	12	12	12	MHz
operating frequency* ⁴	FlashIF clock (FCLK)*1, *2		8	12	12	12	
rioquerioy	Peripheral module clock (PCLKA)		8	12	12	12	
	Peripheral module clock (PCLKB)		8	12	12	12	
	Peripheral module clock (PCLKD)		8	12	12	12	
	USB clock (UCLK)	f _{usb}	_	_	_	48	

Note 1. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 2. The frequency accuracy of FCLK must be within ±3.5%.

Note 3. The VCC_USB range is 3.0 to 3.6 V when the USB clock is in use.

Note 4. The maximum operating frequency listed above does not include errors of the external oscillator and internal oscillator. For details on the range for the guaranteed operation, see Table 2.24, Clock Timing.

Note 2. The frequency accuracy of FCLK must be within ±3.5%.

Note 3. The VCC USB range is 3.0 to 3.6 V when the USB clock is in use.

Note 4. The maximum operating frequency listed above does not include errors of the external oscillator and internal oscillator. For details on the range for the guaranteed operation, see Table 2.24, Clock Timing.

Table 2.23 Operating Frequency Value (Low-Speed Operating Mode)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V},$ $T_a = -40 \text{ to } +85^{\circ}\text{C}$

				VCC		
	Item	Symbol	1.8 V ≤ VCC < 2.4 V	2.7 V ≤ VCC ≤ 3.6 V	Unit	
Maximum	System clock (ICLK)	f _{max}		32.768		kHz
operating frequency* ³	FlashIF clock (FCLK)*1					
nequency	Peripheral module clock (PCLKA)			32.768		
	Peripheral module clock (PCLKB)			32.768		
	Peripheral module clock (PCLKD)*2			32.768		

Note 1. Programming and erasing the flash memory is impossible.

Note 2. The A/D converter cannot be used.

Note 3. The maximum operating frequency listed above does not include errors of the external oscillator. For details on the range for the guaranteed operation, see Table 2.24, Clock Timing.

Table 2.24 Clock Timing

Conditions: 1.8 V \leq VCC = VCC_USB = AVCC0 = VCC_RF = AVCC_RF \leq 3.6 V, VSS = AVSS0= VSS_USB = VSS_RF = 0 V, T_a = -40 to +85°C

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
EXTAL external clock input cycle	time	t _{Xcyc}	50	_	_	ns	Figure 2.19
EXTAL external clock input high		t _{XH}	20	_	_	ns	-
EXTAL external clock input low p	·	t _{XL}	20	_	_	ns	-
EXTAL external clock rise time		t _{Xr}	_	_	5	ns	
EXTAL external clock fall time		t _{Xf}	_	_	5	ns	-
EXTAL external clock input wait t	time*1	t _{XWT}	0.5	_	_	μs	
Main clock oscillator oscillation	2.4 ≤ VCC ≤ 3.6	f _{MAIN}	1	_	20	MHz	-
frequency*2	1.8 ≤ VCC < 2.4	- IVIAIN	1	_	8	-	
Main clock oscillation stabilization	n time (crystal)*2	t _{MAINOSC}	_	3	_	ms	Figure 2.20
Main clock oscillation stabilization resonator)*2	t _{MAINOSC}	_	50	_	μs		
LOCO clock oscillation frequency		f _{LOCO}	3.44	4.0	4.56	MHz	
LOCO clock oscillation stabilization time		t _{LOCO}	_	_	0.5	μs	Figure 2.21
IWDT-dedicated clock oscillation frequency		f _{ILOCO}	12.75	15	17.25	kHz	
IWDT-dedicated clock oscillation	stabilization time	t _{ILOCO}	_	_	50	μs	Figure 2.22
Bluetooth-dedicated clock oscilla	tion frequency	f _{BLECK}	_	32	_	MHz	
Bluetooth-dedicated low-speed o oscillation frequency	n-chip oscillator	f _{BLELOCO}	_	32.768	_	kHz	
HOCO clock oscillation frequence	у	f _{HOCO}	31.36	32	32.64	MHz	T _a = 0 to +85°C
		(32 MHz)	31.04	32	32.96		$T_a = -40 \text{ to } +85^{\circ}\text{C}$
		f _{HOCO}	52.96	54	55.08	MHz	T _a = 0 to +85°C
		(54 MHz)	52.38	54	55.62		$T_a = -40 \text{ to } +85^{\circ}\text{C}$
HOCO clock oscillation stabilizat	ion time	t _{HOCO}	_	_	30	μs	Figure 2.24
PLL input frequency*3		f _{PLLIN}	4	_	12.5	MHz	
PLL circuit oscillation frequency*	3	f _{PLL}	24	_	54	MHz	
PLL clock oscillation stabilization	time	t _{PLL}	_	_	50	μs	Figure 2.25
PLL free-running oscillation frequ	iency	f _{PLLFR}	_	8	_	MHz	
USBPLL input frequency*5		f _{PLLIN}	_	6, 8* ⁶	_	MHz	
USBPLL circuit oscillation freque	JSBPLL circuit oscillation frequency*5		_	48* ⁶	_	MHz	
USBPLL clock oscillation stabiliz	SBPLL clock oscillation stabilization time		_	_	50	μs	Figure 2.25
Sub-clock oscillator oscillation fre	ub-clock oscillator oscillation frequency*7			32.768	_	kHz	
Sub-clock oscillation stabilization	time*4	t _{SUBOSC}	_	0.5	_	s	Figure 2.26

- Note 1. Time until the clock can be used after the main clock oscillator stop bit (MOSCCR.MOSTP) is set to 0 (operating).
- Note 2. Reference values when an 8-MHz resonator is used.
 - When specifying the main clock oscillator stabilization time, set the MOSCWTCR register with a stabilization time value that is equal to or greater than the resonator-manufacturer-recommended value.
 - After the MOSCCR.MOSTP bit is changed to enable the main clock oscillator, confirm that the OSCOVFSR.MOOVF flag has become 1, and then start using the main clock.
- Note 3. The VCC range should be 2.4 to 3.6 V when the PLL is used.
- Note 4. Reference values when a 32.768-kHz resonator is used.
 - After the setting of the SOSCCR.SOSTP bit or RCR3.RTCEN bit is changed to operate the sub-clock oscillator, only start using the sub-clock after the sub-clock oscillation stabilization wait time that is equal to or greater than the oscillator-manufacturer-recommended value has elapsed.
- Note 5. The VCC range should be 3.0 to 3.6 V when the USBPLL is used.
- Note 6. The input frequency can be set to 6 or 8 MHz and the oscillation frequency can be set to 48 MHz only.
- Note 7. Only 32.768 kHz can be used.

Figure 2.19 EXTAL External Clock Input Timing

Figure 2.20 Main Clock Oscillation Start Timing

Figure 2.21 LOCO Clock Oscillation Start Timing

Figure 2.22 IWDT-Dedicated Clock Oscillation Start Timing

Figure 2.23 HOCO Clock Oscillation Start Timing (After Reset is Canceled by Setting OFS1.HOCOEN Bit to 0)

Figure 2.24 HOCO Clock Oscillation Start Timing (Oscillation is Started by Setting HOCOCR.HCSTP Bit)

Figure 2.25 PLL Clock Oscillation Start Timing (PLL is Operated after Main Clock Oscillation Has Been Stabled)

Figure 2.26 Sub-Clock Oscillation Start Timing

2.3.2 Reset Timing

Table 2.25 Reset Timing

Conditions: 1.8 V \leq VCC = VCC_USB = AVCC0 = VCC_RF = AVCC_RF \leq 3.6 V, VSS = AVSS0 = VSS_USB = VSS_RF = 0 V, T_a = -40 to +85°C

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
RES# pulse width	At power-on	t _{RESWP}	3	_	_	ms	Figure 2.27
	Other than above	t _{RESW}	30	_	_	μs	Figure 2.28
Wait time after RES#	At normal startup*1	t _{RESWT}	_	8.5	_	ms	Figure 2.27
cancellation (at power-on)	t _{RESWT}	_	560	_	μs		
Wait time after RES# of (during powered-on sta	t _{RESWT}	_	120	_	μs	Figure 2.28	
Independent watchdog	timer reset period	t _{RESWIW}	_	1	_	IWDT clock cycle	Figure 2.29
Watchdog timer reset p	period	t _{RESWWW}	_	4	_	PCLKB cycle	
Software reset period		t _{RESWSW}	_	1	_	ICLK cycle	
Wait time after indeper	t _{RESWT2}	_	300	_	μs		
Wait time after watchde	Wait time after watchdog timer reset cancellation*4			300		μs	
Wait time after software	e reset cancellation	t _{RESWT2}	_	170	_	μs	

- Note 1. When OFS1.(LVDAS, FASTSTUP) bits are 11b.
- Note 2. When OFS1.(LVDAS, FASTSTUP) bits are a value other than 11b.
- Note 3. When IWDTCR.CKS[3:0] bits are 0000b.
- Note 4. When WDTCR.CKS[3:0] bits are 0001b.

Figure 2.27 Reset Input Timing at Power-On

Figure 2.28 Reset Input Timing (1)

Figure 2.29 Reset Input Timing (2)

2.3.3 Timing of Recovery from Low Power Consumption Modes

Table 2.26 Timing of Recovery from Low Power Consumption Modes (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V},$ $T_a = -40 \text{ to } +85^{\circ}\text{C}$

ltem S					Min.	Тур.	Max.	Unit	Test Conditions
Recovery time from software	High-speed mode	Crystal connected to main clock oscillator	Main clock oscillator operating*2	t _{SBYMC}	_	2	3	ms	Figure 2.30
standby mode*1		External clock input to main clock oscillator	Main clock oscillator operating*3	t _{SBYEX}	_	35	50	μs	
		Sub-clock oscillator o	perating	t _{SBYSC}		650	800	μs	
		HOCO clock oscillato	or operating	t _{SBYHO}	_	40	55	μs	
		LOCO clock oscillato	r operating	t _{SBYLO}	_	40	55	μs	

- Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. When multiple oscillators are operating, the recovery time varies depending on the operating state of the oscillators that are not selected as the system clock source. The above table applies when only the corresponding clock is operating.
- Note 2. When the frequency of the crystal is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.

Note 3. When the frequency of the external clock is 20 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h.

Table 2.27 Timing of Recovery from Low Power Consumption Modes (2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V},$ $T_a = -40 \text{ to } +85^{\circ}\text{C}$

	Item					Тур.	Max.	Unit	Test Conditions
Recovery time from software	Middle-speed mode	Crystal connected to main clock oscillator	Main clock oscillator operating*2	t _{SBYMC}	_	2	3	ms	Figure 2.30
standby mode*1			Main clock oscillator and PLL circuit operating*3	t _{SBYPC}	_	2	3	ms	
		External clock input to main clock	Main clock oscillator operating*4	t _{SBYEX}	_	3	4	μs	
		oscillator	Main clock oscillator and PLL circuit operating*5	t _{SBYPE}	_	65	85	μs	
		Sub-clock oscillator o	perating	t _{SBYSC}		600	750	μs	
		HOCO clock oscillato	or operating*6	t _{SBYHO}		40	50	μs	
		LOCO clock oscillato	r operating	t _{SBYLO}	_	5	7	μs	

- Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. When multiple oscillators are operating, the recovery time varies depending on the operating state of the oscillators that are not selected as the system clock source. The above table applies when only the corresponding clock is operating.
- Note 2. When the frequency of the crystal is 12 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.

- Note 3. When the frequency of PLL is 12 MHz.
 - When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.
- Note 4. When the frequency of the external clock is 12 MHz.
 - When the main clock oscillator wait control register (MOSCWTCR) is set to 00h.
- Note 5. When the frequency of PLL is 12 MHz.
 - When the main clock oscillator wait control register (MOSCWTCR) is set to 00h.
- Note 6. This is the case when HOCO is selected as the system clock and its frequency division is set to be 8 MHz.

Table 2.28 Timing of Recovery from Low Power Consumption Modes (3)

Conditions: $1.8 \text{ V} \leq \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \leq 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +85^{\circ}\text{C}$

		ltem	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Recovery time from software standby mode*1	Low-speed mode	Sub-clock oscillator operating	t _{SBYSC}		600	750	μs	Figure 2.30

Note 1. The sub-clock continues oscillating in software standby mode during low-speed mode.

Figure 2.30 Software Standby Mode Recovery Timing

Table 2.29 Timing of Recovery from Low Power Consumption Modes (4)

Conditions: 1.8 V \leq VCC = VCC_USB = AVCC0 = VCC_RF = AVCC_RF \leq 3.6 V, VSS = AVSS0 = VSS_USB = VSS_RF = 0 V, T_a = -40 to +85°C

Ite	em	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Recovery time from deep	High-speed mode*2	t _{DSLP}	_	2	3.5	μs	Figure 2.31
sleep mode*1	Middle-speed mode*3	t _{DSLP}	_	3	4	μs	
Low-speed mode*4		t _{DSLP}		400	500	μs	

- Note 1. Oscillators continue oscillating in deep sleep mode.
- Note 2. When the frequency of the system clock is 32 MHz.
- Note 3. When the frequency of the system clock is 12 MHz.
- Note 4. When the frequency of the system clock is 32 kHz.

Figure 2.31 Deep Sleep Mode Recovery Timing

Table 2.30 Operating Mode Transition Time

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V}, \\ T_a = -40 \text{ to } +85^{\circ}\text{C}$

Mode before Transition	Mode after Transition	ICLK Fraguency	Tr	Unit		
Wode before Transition	Widde after Transition	ICLK Frequency	Min.	Тур.	Max.	Offic
High-speed operating mode	Middle-speed operating modes	8 MHz	_	10	_	μs
Middle-speed operating modes	High-speed operating mode	8 MHz	_	37.5	_	μs
Low-speed operating mode	Middle-speed operating mode, high-speed operating mode	32.768 kHz	_	215	_	μs
Middle-speed operating mode, high-speed operating mode	Low-speed operating mode	32.768 kHz	_	185	_	μs

Note: Values when the frequencies of PCLKA, PCLKB, PCLKD, and FCLK, are not divided.

2.3.4 Control Signal Timing

Table 2.31 Control Signal Timing

Conditions: 1.8 V \leq VCC = VCC_USB = AVCC0 = VCC_RF = AVCC_RF \leq 3.6 V, VSS = AVSS0 = VSS_USB = VSS_RF = 0 V, T_a = -40 to +85°C

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditio	ns
NMI pulse width	t _{NMIW}	200	_	_	ns	NMI digital filter is disabled	t _{Pcyc} × 2 ≤ 200 ns
		t _{Pcyc} × 2*1	_	_		(NMIFLTE.NFLTEN = 0)	t _{Pcyc} × 2 > 200 ns
		200	_	_		NMI digital filter is enabled	t _{NMICK} × 3 ≤ 200 ns
		t _{NMICK} × 3.5*2	_	_		(NMIFLTE.NFLTEN = 1)	t _{NMICK} × 3 > 200 ns
IRQ pulse width	t _{IRQW}	200	_	_	ns	IRQ digital filter is disabled	t _{Pcyc} × 2 ≤ 200 ns
		t _{Pcyc} × 2*1	_	_		(IRQFLTE0.FLTENi = 0)	t _{Pcyc} × 2 > 200 ns
		200	_	_		IRQ digital filter is enabled	t _{IRQCK} × 3 ≤ 200 ns
		t _{IRQCK} × 3.5*3	_	_		(IRQFLTE0.FLTENi = 1)	t _{IRQCK} × 3 > 200 ns

Note: 200 ns minimum in software standby mode.

- Note 1. t_{Pcyc} indicates the cycle of PCLKB.
- Note 2. $t_{\mbox{\scriptsize NMICK}}$ indicates the cycle of the NMI digital filter sampling clock.
- Note 3. t_{IRQCK} indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 7).

Figure 2.32 NMI Interrupt Input Timing

Figure 2.33 IRQ Interrupt Input Timing

2.3.5 Timing of On-Chip Peripheral Modules

Table 2.32 Timing of On-Chip Peripheral Modules (1)

Conditions: 1.8 V \leq VCC = VCC_USB = AVCC0 = VCC_RF = AVCC_RF \leq 3.6 V, VSS = AVSS0 = VSS_USB = VSS_RF = 0 V, T_a = -40 to +85°C

	Ite	m		Symbol	Min.	Max.	Unit *1	Test Conditions
I/O ports	Input data pulse width			t _{PRW}	1.5	_	t _{Pcyc}	Figure 2.34
MTU/TPU	Input capture input pulse	width	Single-edge setting	t _{TICW}	1.5	_	t _{Pcyc}	Figure 2.35
			Both-edge setting	1	2.5	_		
	Timer clock pulse width		Single-edge setting	t _{TCKWH} ,	1.5	_	t _{Pcyc}	Figure 2.36
			Both-edge setting	t _{TCKWL}	2.5	_		
			Phase counting mode		2.5	_		
POE	POE# input pulse width			t _{POEW}	1.5	_	t _{Pcyc}	Figure 2.37
TMR	Timer clock pulse width		Single-edge setting	t _{TMCWH} ,	1.5	_	t _{Pcyc}	Figure 2.38
			Both-edge setting	t _{TMCWL}	2.5	_		
SCI	Input clock cycle time		Asynchronous	t _{Scyc}	4	_	t _{Pcyc}	Figure 2.39
			Clock synchronous	1	6	_		
	Input clock pulse width		<u> </u>	t _{SCKW}	0.4	0.6	t _{Scyc}	
	Input clock rise time			t _{SCKr}	_	20	ns	
	Input clock fall time			t _{SCKf}	_	20	ns	
	Output clock cycle time		Asynchronous	t _{Scyc}	16	_	t _{Pcyc}	Figure 2.40
			Clock synchronous	1	4	_		
	Output clock pulse width			t _{SCKW}	0.4	0.6	t _{Scyc}	
	Output clock rise time			t _{SCKr}	_	20	ns	
	Output clock fall time			t _{SCKf}	_	20	ns	
	Transmit data delay time (master)	Clock synchro	nous	t _{TXD}	_	40	ns	
	Transmit data delay time	Clock	2.7 V or above		_	65	ns	
	(slave)	synchronous	1.8 V or above		_	100	ns	
	Receive data setup time	Clock	2.7 V or above	t _{RXS}	65	_	ns	
	(master)	synchronous	1.8 V or above		90	_	ns	
	Receive data setup time (slave)	Clock synchro	nous		40	_	ns	
	Receive data hold time	Clock synchro	nous	t _{RXH}	40	_	ns	
A/D converter	Trigger input pulse width	•		t _{TRGW}	1.5	_	t _{Pcyc}	Figure 2.41
CAC	CACREF input pulse widt	h	t _{Pcyc} ≤ t _{cac} *2	t _{CACREF}	4.5 t _{cac} + 3 t _{Pcyc}	_	ns	
			$t_{Pcyc} > t_{cac}^{*2}$	1	5 t _{cac} + 6.5 t _{Pcyc}			
CLKOUT	CLKOUT pin output cycle	*4	VCC = 2.7 V or above	t _{Ccyc}	62.5	_	ns	Figure 2.42
			VCC = 1.8 V or above		125			
	CLKOUT pin high pulse v	vidth*3	VCC = 2.7 V or above	t _{CH}	15	_	ns	
			VCC = 1.8 V or above	-	30			
	CLKOUT pin low pulse width*3	idth*3	VCC = 2.7 V or above	t _{CL}	15	_	ns	
			VCC = 1.8 V or above		30			
	CLKOUT pin output rise t	ime	VCC = 2.7 V or above	t _{Cr}	_	12	ns	1
			VCC = 1.8 V or above	1		25		=
	CLKOUT pin output fall ti	me	VCC = 2.7 V or above	t _{Cf}	_	12	ns	1
			VCC = 1.8 V or above	1		25		

Table 2.32 Timing of On-Chip Peripheral Modules (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V},$

 $T_a = -40 \text{ to } +85^{\circ}\text{C}$

	Item	Symbol	Min.	Max.	Unit *1	Test Conditions
_	CLKOUT_RF pin output cycle	t _{CRFcyc}	250	_	ns	Figure 2.43
*5	CLKOUT_RF pin high pulse width	t _{CRFH}	100	_	ns	
	CLKOUT_RF pin low pulse width	t _{CRFL}	100	_	ns	
	CLKOUT_RF pin output rise time	t _{CRFr}	_	5	ns	
	CLKOUT_RF pin output fall time	t _{CRFf}	_	5	ns	

Note 1. t_{Pcyc}: PCLK cycle
Note 2. t_{cac}: CAC count clock source cycle

Note 3. When the LOCO is selected as the clock output source (the CKOCR.CKOSEL[2:0] bits are 000b), set the clock output division ratio selection to divided by 2 (the CKOCR.CKODIV[2:0] bits are 001b).

Note 4. When the EXTAL external clock input or an oscillator is used with divided by 1 (the CKOCR.CKOSEL[2:0] bits are 010b and the CKOCR.CKODIV[2:0] bits are 000b) to output from CLKOUT, the above should be satisfied with an input duty cycle of 45 to 55%.

Note 5. The voltage for VCC_RF when CLKOUT_RF pin is to be used is between 3.0 V and 3.6 V.

Timing of On-Chip Peripheral Modules (2) **Table 2.33**

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V}, \\ T_a = -40 \text{ to } +85^{\circ}\text{C}, \text{ C} = 30 \text{ pF}, \text{ when high-drive output is selected by the drive capacity control register}$

		Ite	m	Symbol	Min.	Max.	Unit	Test Condition
- 1	RSPCK clock	Master		t _{SPcyc}	2	4096	t _{Pcyc} *1	Figure 2.44
	cycle	Slave			8	4096		
	RSPCK clock high pulse width	Master		t _{SPCKWH}	$(t_{SPcyc} - t_{SPCKr} - t_{SPCKf})/2 - 3$	_	ns	
		Slave			(t _{SPcyc} - t _{SPCKr} - t _{SPCKf})/2	_		
- 1	RSPCK clock low pulse width	Master		t _{SPCKWL}	$(t_{SPcyc} - t_{SPCKr} - t_{SPCKf})/2 - 3$		ns	
	Slave				(t _{SPcyc} – t _{SPCKr} – t _{SPCKf})/2			
	RSPCK clock			t _{SPCKr} ,	_	10	ns	
	rise/fall time			t _{SPCKf}	_	15		
		Input			_	1	μs	1
	Data input setup	Master	2.7 V or above	t _{SU}	10	_	ns	Figure 2.4
	time		1.8 V or above		30	_		to Figure 2.4
		Slave	l		25 – t _{Pcyc}			rigure 2.4
	Data input hold time	Master	RSPCK set to a division ratio other than PCLKB divided by 2	t _H	t _{Pcyc}	_	ns	-
			RSPCK set to PCLKB divided by 2	t _{HF}	0	_		
		Slave		t _H	20 + 2 × t _{Pcyc}	_		
-	SSL setup time	Master		t _{LEAD}	-30 + N*2 × t _{SPcyc}	_	ns	1
		Slave			2	_	t _{Pcyc}	1
	SSL hold time	Master		t _{LAG}	-30 + N*3 × t _{SPcyc}	_	ns	1
		Slave			2	_	t _{Pcyc}	
-	Data output	Master	2.7 V or above	t _{OD}	_	14	ns	
	delay time		1.8 V or above		_	30		
		Slave	2.7 V or above		_	3 × t _{Pcyc} + 65		
			1.8 V or above		_	3 × t _{Pcyc} +105		
-	Data output hold	Master		t _{OH}	0	—	ns	1
	time	Slave		J	0	_		
	Successive transmission	Master		t _{TD}	t _{SPcyc} + 2 × t _{Pcyc}	8 × t _{SPcyc} + 2 × t _{Pcyc}	ns	-
	delay time	Slave			4 × t _{Pcyc}	_		
ŀ	MOSI and MISO	Output	2.7 V or above	t _{Dr} , t _{Df}	_	10	ns	1
	rise/fall time		1.8 V or above		_	15		
		Input	I		_	1	μs	
-	SSL rise/fall Out		2.7 V or above	t _{SSLr} ,	_	10	ns	
	time	1.8 V or above		t _{SSLf}	_	15	ns	1
		Input			_	1	μs	1
ŀ	Slave access time	<u> </u>	2.7 V or above	t _{SA}	_	6	t _{Pcyc}	Figure 2.4
			1.8 V or above		_	7	,.	Figure 2.4
-	Slave output rele	ase	2.7 V or above	t _{REL}	_	5	t _{Pcyc}	1
			1	INEL			I Cyc	1

Note 1. t_{Pcyc}: PCLK cycle

Note 2. N: An integer from 1 to 8 that can be set by the RSPI clock delay register (SPCKD)

Note 3. N: An integer from 1 to 8 that can be set by the RSPI slave select negation delay register (SSLND)

Table 2.34 Timing of On-Chip Peripheral Modules (3)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V}, \\ T_a = -40 \text{ to } +85^{\circ}\text{C}$

	Item		Symbol	Min.	Max.	Unit*1	Test Conditions
Simple	SCK clock cycle output (master)		t _{SPcyc}	4	65536	t _{Pcyc}	Figure 2.44
SPI	SCK clock cycle input (slave)		6	65536	t _{Pcyc}		
	SCK clock high pulse width		t _{SPCKWH}	0.4	0.6	t _{SPcyc}	
	SCK clock low pulse width		t _{SPCKWL}	0.4	0.6	t _{SPcyc}	
	SCK clock rise/fall time		t _{SPCKr} , t _{SPCKf}	_	20	ns	
	Data input setup time (master)	2.7 V or above	t _{SU}	65	_	ns	Figure 2.45,
		1.8 V or above		95	_		Figure 2.46
	Data input setup time (slave)	•		40	_		
	Data input hold time		t _H	40	_	ns	
	SSL input setup time		t _{LEAD}	3	_	t _{SPcyc}	
	SSL input hold time		t _{LAG}	3	_	t _{SPcyc}	
	Data output delay time (master)		t _{OD}	_	40	ns	
	Data output delay time (slave)	2.7 V or above		_	65		
		1.8 V or above		_	100		
	Data output hold time (master)	2.7 V or above	t _{OH}	-10	_	ns	
		1.8 V or above		-20	_		
	Data output hold time (slave)	•		-10	_		
	Data rise/fall time		t _{Dr} , t _{Df}	_	20	ns	
	SSL input rise/fall time		t _{SSLr} , t _{SSLf}	_	20	ns	
	Slave access time		t _{SA}	_	6	t _{Pcyc}	Figure 2.47,
	Slave output release time		t _{REL}	_	6	t _{Pcyc}	Figure 2.48

Note 1. t_{Pcyc}: PCLK cycle

Timing of On-Chip Peripheral Modules (4) **Table 2.35**

Conditions: $2.7 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V}, \text{ fPCLKB} \le 32 \text{ MHz}, \text{ T}_a = -40 \text{ to } +85^{\circ}\text{C}$

	Item	Symbol	Min.*1, *2	Max.	Unit	Test Conditions
RIIC	SCL cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 1300	_	ns	Figure 2.49
(Standard mode, SMBus)	SCL high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	_	ns	
mede, embde)	SCL low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	_	ns	
	SCL, SDA rise time	t _{Sr}	_	1000	ns	
	SCL, SDA fall time	t _{Sf}	_	300	ns	
	SCL, SDA spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns	
	SDA bus free time	t _{BUF}	3 (6) × t _{IICcyc} + 300	_	ns	
	START condition hold time	t _{STAH}	t _{IICcyc} + 300	_	ns	
	Repeated START condition setup time	t _{STAS}	1000	_	ns	
	STOP condition setup time	t _{STOS}	1000	_	ns	
	Data setup time	t _{SDAS}	t _{IICcyc} + 50	_	ns	
	Data hold time	t _{SDAH}	0	_	ns	
	SCL, SDA capacitive load	C _b	_	400	pF	
RIIC	SCL cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 600	_	ns	Figure 2.49
(Fast mode)	SCL high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	_	ns	
	SCL low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	_	ns	
	SCL, SDA rise time	t _{Sr}	_	300	ns	
	SCL, SDA fall time	t _{Sf}	_	300	ns	
	SCL, SDA spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns	
	SDA bus free time	t _{BUF}	3 (6) × t _{IICcyc} + 300	_	ns	
	START condition hold time	t _{STAH}	t _{IICcyc} + 300	_	ns	
	Repeated START condition setup time	t _{STAS}	300	_	ns	
	STOP condition setup time	t _{STOS}	300		ns	
	Data setup time	t _{SDAS}	t _{IICcyc} + 50		ns	
	Data hold time	t _{SDAH}	0		ns	
	SCL, SDA capacitive load	C _b	_	400	pF	

Note: t_{IICcyc}: RIIC internal reference clock (IICφ) cycle

Note 1. The value in parentheses is used when the ICMR3.NF[1:0] bits are set to 11b while a digital filter is enabled with the ICFER.NFE bit = 1.

Note 2. C_b is the total capacitance of the bus lines.

Table 2.36 Timing of On-Chip Peripheral Modules (5)

Conditions: $2.7 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V}, \text{ fPCLKB} \le 32 \text{ MHz}, \text{ } \text{T}_{a} = -40 \text{ to } +85^{\circ}\text{C}$

	Item	Symbol	Min.*1	Max.	Unit	Test Conditions
Simple I ² C	SSDA rise time	t _{Sr}	_	1000	ns	Figure 2.49
(Standard mode)	SSDA fall time	t _{Sf}	_	300	ns	
	SSDA spike pulse removal time	t _{SP}	0	4 × t _{Pcyc}	ns	
	Data setup time	t _{SDAS}	250	_	ns	
	Data hold time	t _{SDAH}	0	_	ns	
	SSCL, SSDA capacitive load	C _b	_	400	pF	
Simple I ² C	SSDA rise time	t _{Sr}	_	300	ns	Figure 2.49
(Fast mode)	SSDA fall time	t _{Sf}	_	300	ns	
	SSDA spike pulse removal time	t _{SP}	0	4 × t _{Pcyc}	ns	
	Data setup time	t _{SDAS}	100	_	ns	
	Data hold time	t _{SDAH}	0	_	ns	
	SSCL, SSDA capacitive load	C _b	_	400	pF	

 $\label{eq:Note:theory:equation:total} \begin{aligned} & \text{Note:} & & t_{\text{Pcyc}} \text{: PCLK cycle} \\ & \text{Note 1.} & & C_b \text{ is the total capacitance of the bus lines.} \end{aligned}$

Timing of On-Chip Peripheral Modules (6) Table 2.37

Conditions: 1.8 V \leq VCC = VCC_USB = AVCC0 = VCC_RF = AVCC_RF \leq 3.6 V, VSS = AVSS0 = VSS_USB = VSS_RF = 0 V, fPCLKB \leq 32 MHz, $T_a = -40$ to +85°C

	Item		Symbol	Min.	Max.	Unit	Test Conditions
SSI	AUDIO_MCLK input	2.7 V or above	t _{AUDIO}	1	25	MHz	
	frequency	1.8 V or above		1	4		
	Output clock cycle	Dutput clock cycle			_	ns	Figure 2.50
Input clock cycle			t _l	250	_	ns	=
	Clock high level Clock low level		t _{HC}	0.4	0.6	to, ti	=
			t _{LC}	0.4	0.6	to, ti	=
	Clock rise time		t _{RC}	_	20	ns	
	Data delay time	2.7 V or above	t _{DTR}	_	65	ns	Figure 2.51
		1.8 V or above		_	105		Figure 2.52
	Setup time	2.7 V or above	t _{SR}	65	_	ns	
		1.8 V or above		90	_		
	Hold time	•	t _{HTR}	40	_	ns	
	WS changing edge SSID	ATA output delay	t _{DTRW}	_	105	ns	Figure 2.53

Table 2.38 Timing of On-Chip Peripheral Modules (7)

Conditions: $2.7 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V}, \\ \text{fPCLKB} \le 32 \text{ MHz}, T_a = -40 \text{ to } +85^{\circ}\text{C}, \\ \text{when high-drive output is selected by the drive capacity control register}$

	Item	Symbol	Min.	Max.	Unit	Test Conditions
SDHI	SDHI_CLK pin output cycle time	t _{PP(SD)}	62.5	_	ns	Figure 2.54
	SDHI_CLK pin output high pulse width	t _{WH(SD)}	18.25	_	ns	
	SDHI_CLK pin output low pulse width	t _{WL(SD)}	18.25	_	ns	
	SDHI_CLK pin output rise time	t _{TLH(SD)}	_	10	ns	
	SDHI_CLK pin output fall time	t _{THL(SD)}	_	10	ns	
	Output data delay time (data transfer mode) for SDHI_CMD and SDHI_D0 to SDHI_D3 pins	t _{ODLY(SD)}	-18.25	18.25	ns	
	Input data setup time for SDHI_CMD and SDHI_D0 to SDHI_D3 pins	t _{ISU(SD)}	9.25	_	ns	
	Input data hold time for SDHI_CMD and SDHI_D0 to SDHI_D3 pins	t _{IH(SD)}	8.3	_	ns	

Figure 2.34 **I/O Port Input Timing**

Figure 2.35 MTU Input/Output Timing

Figure 2.36 MTU Clock Input Timing

Figure 2.37 POE# Input Timing

Figure 2.38 TMR Clock Input Timing

Figure 2.39 SCK Clock Input Timing

Figure 2.40 SCI Input/Output Timing: Clock Synchronous Mode

Figure 2.41 A/D Converter External Trigger Input Timing

Figure 2.42 CLKOUT Output Timing

Figure 2.43 CLKOUT_RF Output Timing

Figure 2.44 RSPI Clock Timing and Simple SPI Clock Timing

Figure 2.45 RSPI Timing (Master, CPHA = 0) and Simple SPI Clock Timing (Master, CKPH = 1)

Figure 2.46 RSPI Timing (Master, CPHA = 1) and Simple SPI Clock Timing (Master, CKPH = 0)

Figure 2.47 RSPI Timing (Slave, CPHA = 0) and Simple SPI Clock Timing (Slave, CKPH = 1)

Figure 2.48 RSPI Timing (Slave, CPHA = 1) and Simple SPI Clock Timing (Slave, CKPH = 0)

Figure 2.49 RIIC Bus Interface Input/Output Timing and Simple I²C Bus Interface Input/Output Timing

Figure 2.50 SSI Clock Input/Output Timing

Figure 2.51 SSI Transmission/Reception Timing (SSICR.SCKP=0)

Figure 2.52 SSI Transmission/Reception Timing (SSICR.SCKP=1)

Figure 2.53 SSIDATA Output Delay After SSIWSn Changing Edge

Figure 2.54 SD Host Interface Input/Output Signal Timing

2.4 USB Characteristics

Table 2.39 USB Characteristics (USB0_DP and USB0_DM Pin Characteristics)

Conditions: $3.0 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC} = \text{VCC_RF} = \text{AVCC_RF} < 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V},$ $T_a = -40 \text{ to } +85^{\circ}\text{C}$

	Item		Symbol	Min.	Max.	Unit	Test (Conditions	
Input	Input high level voltage	je	V_{IH}	2.0	_	V			
characteristics	Input low level voltage	Э	V _{IL}	_	0.8	V			
	Differential input sens	itivity	V_{DI}	0.2	_	V	USB0_DP	- USB0_DM	
	Differential common mode range		V _{CM}	0.8	2.5	V			
Output			V _{OH}	2.8	VCC_USB	V	I _{OH} = -200	μA	
characteristics	Output low level volta	ge	V _{OL}	0.0	0.3	V	I _{OL} = 2 mA		
	Cross-over voltage		V_{CRS}	1.3	2.0	V		Figure 2.55,	
	Rise time	FS	t _r	4	20	ns		Figure 2.56	
		LS		75	300				
	Fall time	FS	t _f	4	20	ns			
		LS		75	300				
	Rise/fall time ratio	FS	t _r /t _f	90	111.11	%	t _r /t _f		
		LS		80	125				
	Output resistance		Z _{DRV}	28	44	Ω		ne resistance by ments is not	
VBUS	VBUS input voltage		V _{IH}	VCC × 0.8	_	V			
characteristics			V _{IL}	_	VCC × 0.2	V			
Pull-up,	Pull-down resistor		R _{PD}	14.25	24.80	kΩ			
pull-down	Pull-up resistor		R _{PUI}	0.9	1.575	kΩ	During idle	state	
			R _{PUA}	1.425	3.09	kΩ	During rece	ption	
Battery	D+ sink current		I _{DP_SINK}	25	175	μA			
Charging Specification	D- sink current		I _{DM_SINK}	25	175	μA			
Ver 1.2	DCD source current		I _{DP_SRC}	7	13	μΑ			
	Data detection voltag	е	V _{DAT_REF}	0.25	0.4	V			
	D+ source current		V _{DP_SRC}	0.5	0.7	V	Output curre	ent = 250 µA	
	D- source current		V _{DM_SRC}	0.5	0.7	V	Output curre	ent = 250 μA	

Figure 2.55 USB0_DP and USB0_DM Output Timing

Figure 2.56 Test Circuit

2.5 A/D Conversion Characteristics

Figure 2.57 VREFH0 Voltage Range vs. AVCC0

Table 2.40 A/D Conversion Characteristics (1)

Conditions: $2.7 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{VREFH0} \le \text{AVCC0},$ reference voltage = VREFH0 selected, VSS = AVSS0 = VREFL0 = VSS_USB = VSS_RF = 0 V, $T_a = -40 \text{ to } +85^{\circ}\text{C}$

Item		Min.	Тур.	Max.	Unit	Test Conditions
Frequency		1	_	54	MHz	
Resolution		_	_	12	Bit	
Conversion time*1 (Operation at PCLKD = 54 MHz)	Permissible signal source impedance (Max.)	0.83	_	_	μs	High-precision channel The ADCSR.ADHSC bit is 0 The ADSSTRn register is 0Dh
	= 0.3 kΩ	1.33	_	_		Normal-precision channel The ADCSR.ADHSC bit is 0 The ADSSTRn register is 28h
Analog input capacitance	Cs	_	_	15	pF	Pin capacitance included Figure 2.58
Analog input resistance	Rs	_	_	2.5	kΩ	Figure 2.58
Analog input voltage range	Ain	0	_	VREFH0	V	
Offset error	•	_	±0.5	±4.5	LSB	High-precision channel
				±6.0	LSB	Other than above
Full-scale error		_	±0.75	±4.5	LSB	High-precision channel
				±6.0	LSB	Other than above
Quantization error		_	±0.5	_	LSB	
Absolute accuracy		_	±1.25	±5.0	LSB	High-precision channel
				±8.0	LSB	Other than above
DNL differential non-linearity	error	_	±1.0	_	LSB	
INL integral non-linearity erro	or	_	±1.0	±3.0	LSB	

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential non-linearity error, and INL integral non-linearity error do not include quantization errors.

Table 2.41 A/D Conversion Characteristics (2)

Conditions: $2.4 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, 2.4 \text{ V} \le \text{VREFH0} \le \text{AVCC0},$ reference voltage = VREFH0 selected, VSS = AVSS0 = VREFL0 = VSS_USB = VSS_RF = 0 V, $T_a = -40 \text{ to } +85^{\circ}\text{C}$

Item		Min.	Тур.	Max.	Unit	Test Conditions
Frequency		1	_	32	MHz	
Resolution		_	_	12	Bit	
Conversion time*1 (Operation at PCLKD = 32 MHz)	Permissible signal source impedance (Max.) = 1.3 kΩ	1.41	_	_	μs	High-precision channel The ADCSR.ADHSC bit is 0 The ADSSTRn register is 0Dh
		2.25	_	_		Normal-precision channel The ADCSR.ADHSC bit is 0 The ADSSTRn register is 28h
Analog input capacitance	Cs	_	_	15	pF	Pin capacitance included Figure 2.58
Analog input resistance	Rs	_	_	2.5	kΩ	Figure 2.58
Offset error	•	_	±0.5	±4.5	LSB	
Full-scale error		_	±0.75	±4.5	LSB	
Quantization error		_	±0.5	_	LSB	
Absolute accuracy		_	±1.25	±5.0	LSB	High-precision channel
				±8.0	LSB	Other than above
DNL differential non-linearity error		_	±1.0	_	LSB	
INL integral non-linearity er	ror	_	±1.0	±4.5	LSB	

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential non-linearity error, and INL integral non-linearity error do not include quantization errors.

Table 2.42 A/D Conversion Characteristics (3)

Conditions: $2.7 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, 2.7 \text{ V} \le \text{VREFH0} \le \text{AVCC0},$ reference voltage = VREFH0 selected, VSS = AVSS0 = VREFL0 = VSS_USB = VSS_RF = 0 V, $T_a = -40 \text{ to } +85^{\circ}\text{C}$

Item		Min.	Тур.	Max.	Unit	Test Conditions
Frequency		1	_	27	MHz	
Resolution		_	_	12	Bit	
Conversion time*1 (Operation at PCLKD = 27 MHz)	Permissible signal source impedance (Max.) = 1.1 kΩ	2	_	_	μs	High-precision channel The ADCSR.ADHSC bit is 1 The ADSSTRn.SST[7:0] bits are 0Dh
		3	_	_		Normal-precision channel The ADCSR.ADHSC bit is 1 The ADSSTRn.SST[7:0] bits are 28h
Analog input capacitance	Cs	_	_	15	pF	Pin capacitance included Figure 2.58
Analog input resistance	Rs	_	_	2.5	kΩ	Figure 2.58
Offset error	•	_	±0.5	±4.5	LSB	
Full-scale error		_	±0.75	±4.5	LSB	
Quantization error		_	±0.5	_	LSB	
Absolute accuracy		_	±1.25	±5.0	LSB	High-precision channel
				±8.0	LSB	Other than above
DNL differential non-linearity error		_	±1.0	_	LSB	
INL integral non-linearity er	ror	_	±1.0	±3.0	LSB	

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential non-linearity error, and INL integral non-linearity error do not include quantization errors.

Table 2.43 A/D Conversion Characteristics (4)

Conditions: $2.4 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, 2.4 \text{ V} \le \text{VREFH0} \le \text{AVCC0}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = 0 \text{ V}, \text{ reference voltage} = \text{VREFH0 selected}, \text{T}_a = -40 \text{ to} +85^{\circ}\text{C}$

Item		Min.	Тур.	Max.	Unit	Test Conditions
Frequency		1	_	16	MHz	
Resolution		_	_	12	Bit	
Conversion time*1 (Operation at PCLKD = 16 MHz)	Permissible signal source impedance (Max.) = 2.2 kΩ	3.38	_	_	μs	High-precision channel The ADCSR.ADHSC bit is 1 The ADSSTRn register is 0Dh
		5.06	_	_		Normal-precision channel The ADCSR.ADHSC bit is 1 The ADSSTRn register is 28h
Analog input capacitance	Cs	_	_	15	pF	Pin capacitance included Figure 2.58
Analog input resistance	Rs	_	_	2.5	kΩ	Figure 2.58
Offset error	•	_	±0.5	±4.5	LSB	
Full-scale error		_	±0.75	±4.5	LSB	
Quantization error		_	±0.5	_	LSB	
Absolute accuracy		_	±1.25	±5.0	LSB	High-precision channel
				±8.0	LSB	Other than above
DNL differential non-linearity error		_	±1.0	_	LSB	
INL integral non-linearity er	ror	_	±1.0	±3.0	LSB	

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential non-linearity error, and INL integral non-linearity error do not include quantization errors.

Table 2.44 A/D Conversion Characteristics (5)

Conditions: 1.8 V \leq VCC = VCC_USB = AVCC0 = VCC_RF = AVCC_RF \leq 3.6 V, 1.8 V \leq VREFH0 \leq AVCC0, VSS = AVSS0 = VSS_USB = 0 V, reference voltage = VREFH0 selected, $T_a = -40$ to +85°C

Item		Min.	Тур.	Max.	Unit	Test Conditions
Frequency		1	_	8	MHz	
Resolution		_	_	12	Bit	
Conversion time*1 (Operation at PCLKD = 8 MHz)	Permissible signal source impedance (Max.) = $5 \text{ k}\Omega$	6.75	_	_	μs	High-precision channel The ADCSR.ADHSC bit is 1 The ADSSTRn register is 0Dh
		10.13	_	_		Normal-precision channel The ADCSR.ADHSC bit is 1 The ADSSTRn register is 28h
Analog input capacitance	Cs	_	_	15	pF	Pin capacitance included Figure 2.58
Analog input resistance	Rs	_	_	2.5	kΩ	Figure 2.58
Offset error		_	±1	±7.5	LSB	
Full-scale error		_	±1.5	±7.5	LSB	
Quantization error		_	±0.5	_	LSB	
Absolute accuracy		_	±3.0	±8.0	LSB	
DNL differential non-linearity error		_	±1.0	_	LSB	
INL integral non-linearity er	ror	_	±1.25	±3.0	LSB	

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential non-linearity error, and INL integral non-linearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.

Table 2.45 A/D Converter Channel Classification

Classification Channel		Conditions	Remarks			
High-precision channel	AN000 to AN007	AVCC0 = 1.8 to 3.6 V	Pins AN000 to AN007 cannot be used as digital			
Normal-precision channel	AN016 to AN020, AN027		outputs when the A/D converter is in use.			
Internal reference voltage input channel	Internal reference voltage	AVCC0 = 2.0 to 3.6 V				
Temperature sensor input channel	Temperature sensor output	AVCC0 = 2.0 to 3.6 V				

Figure 2.58 Equivalent Circuit

Figure 2.59 Illustration of A/D Converter Characteristic Terms

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of analog input voltage (1-LSB width), that can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and if reference voltage (VREFH0 = 3.072 V), then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, 1.5 mV, ... are used as analog input voltages.

If analog input voltage is 6 mV, absolute accuracy = ± 5 LSB means that the actual A/D conversion result is in the range of 003h to 00Dh, although an output code, 008h, can be expected from the theoretical A/D conversion characteristics.

Integral non-linearity error (INL)

The integral non-linearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

Differential non-linearity error (DNL)

The differential non-linearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics and the width of the actual output code.

Offset error

An offset error is the difference between a transition point of the ideal first output code and the actual first output code.

Full-scale error

A full-scale error is the difference between a transition point of the ideal last output code and the actual last output code.

2.6 D/A Conversion Characteristics

Table 2.46 D/A Conversion Characteristics (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V},$ $T_a = -40 \text{ to } +85^{\circ}\text{C}, \text{ Reference voltage} = \text{AVCC0 or AVSS0 selected}$

Item	Min.	Тур.	Max.	Unit	Test Conditions
Resolution	_	_	12	Bit	
Resistive load	30	_	_	kΩ	
Capacitive load	_	_	50	pF	
Output voltage range	0.35	_	AVCC0 - 0.47	V	
DNL differential non-linearity error	_	±0.5	±2.0	LSB	
INL integral non-linearity error	_	±2.0	±8.0	LSB	
Offset error	_	_	±30	mV	
Full-scale error	_	_	±30	mV	
Output resistance	_	5	_	Ω	
Conversion time	_	_	30	μs	

Table 2.47 D/A Conversion Characteristics (2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V},$ $T_a = -40 \text{ to } +85^{\circ}\text{C}, \text{ Reference voltage} = \text{internal reference voltage selected}$

Item	Min.	Тур.	Max.	Unit	Test Conditions
Resolution	_	_	12	Bit	
Internal reference voltage (Vbgr)	1.36	1.43	1.50	V	
Resistive load	30	_	_	kΩ	
Capacitive load	_	_	50	pF	
Output voltage range	0.35	_	Vbgr	V	
DNL differential non-linearity error	_	±2.0	±16.0	LSB	
INL integral non-linearity error	_	±8.0	±16.0	LSB	
Offset error	_	_	30	mV	
Output resistance	_	5	_	Ω	
Conversion time	_	_	30	μs	

Figure 2.60 Illustration of D/A Converter Characteristic Terms

Integral non-linearity error (INL)

The integral non-linearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

Differential non-linearity error (DNL)

The differential non-linearity error is the difference between 1-LSB width based on the ideal D/A conversion characteristics and the width of the actually output code.

Offset error

An offset error is the difference between a transition point of the ideal first output code and the actual first output code.

Full-scale error

A full-scale error is the difference between a transition point of the ideal last output code and the actual last output code.

2.7 Temperature Sensor Characteristics

Table 2.48 Temperature Sensor Characteristics

Conditions: $2.0 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +85^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Relative accuracy	_	_	±1.5	_	°C	2.4 V or above
		_	±2.0	_		Below 2.4 V
Temperature slope	_	_	-3.65	_	mV/°C	
Output voltage (25°C)	_	_	1.05	_	V	VCC = 3.3 V
Temperature sensor start time	t _{START}	_	_	5	μs	
Sampling time	_	5	_	_	μs	

2.8 Comparator Characteristics

Table 2.49 Comparator Characteristics

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +85^{\circ}\text{C}$

	Item		Min.	Тур.	Max.	Unit	Test Conditions
CVREFB2, CVRE	FB3 input reference voltage	VREF	0	_	VCC - 1.4	V	
CMPB2, CMPB3 i	nput voltage	VI	-0.3	_	VCC + 0.3	V	
Offset	Comparator high-speed mode	_	_	_	50	mV	
	Comparator high-speed mode Window function enabled	_	_	_	60	mV	
	Comparator low-speed mode	_	_	_	40	mV	
Comparator output delay time	Comparator high-speed mode	Td	_	_	1.2	μs	VCC = 3 V, input slew rate ≥ 50 mV/µs
	Comparator high-speed mode Window function enabled	Tdw	_	_	2.0	μs	
	Comparator low-speed mode	Td	_	_	5.0	μs	
High-side reference (comparator high- function enabled)	ce voltage speed mode, window	VRFH	_	0.76 VCC	_	V	
Low-side reference voltage (comparator high-speed mode, window function enabled)		VRFL	_	0.24 VCC	_	V	
Operation stabiliza	ation wait time	Tcmp	100	_	_	μs	

Figure 2.61 Comparator Output Delay Time in Comparator High-Speed Mode and Low-Speed Mode

Figure 2.62 Comparator Output Delay Time in High-Speed Mode with Window Function Enabled

2.9 CTSU Characteristics

Table 2.50 CTSU Characteristics

Conditions: 1.8 V \leq VCC = VCC_USB = AVCC0 = VCC_RF = AVCC_RF \leq 3.6 V, VSS = AVSS0 = VSS_USB = VSS_RF = 0 V, T_a = -40 to +85°C

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
External capacitance connected to TSCAP pin	C _{tscap}	9	10	11	nF	
TS pin capacitive load	C _{base}	_	_	50	pF	
Permissible output high current	Σl _{OH}	_	_	-24	mA	When the mutual capacitance method is applied

2.10 Characteristics of Power-On Reset Circuit and Voltage Detection Circuit

Table 2.51 Characteristics of Power-On Reset Circuit and Voltage Detection Circuit (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V}, \\ T_a = -40 \text{ to } +85^{\circ}\text{C}$

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Voltage detection level	Power-on reset (POR)	V_{POR}	1.35	1.50	1.65	V	Figure 2.63, Figure 2.64
	Voltage detection circuit	V _{det0_1}	2.70	2.82	3.00	V	Figure 2.65
	(LVD0)*1	V _{det0_2}	2.37	2.51	2.67		At falling edge VCC
		V _{det0_3}	1.80	1.90	1.99		
	Voltage detection circuit	V _{det1_4}	2.99	3.10	3.29	V	Figure 2.66
	(LVD1)*2	V _{det1_5}	2.89	3.00	3.19	-	At falling edge VCC
		V _{det1_6}	2.79	2.90	3.09		
		V _{det1_7}	2.68	2.79	2.98		
		V _{det1_8}	2.57	2.68	2.87		
		V _{det1_9}	2.47	2.58	2.67		
		V _{det1_A}	2.37	2.48	2.57		
		V _{det1_B}	2.10	2.20	2.30		
		V _{det1_C}	1.86	1.96	2.06		
		V _{det1_D}	1.80	1.86	1.96		

Note: These characteristics apply when noise is not superimposed on the power supply.

Note 1. n in the symbol Vdet0_n denotes the value of the OFS1.VDSEL[1:0] bits.

Note 2. n in the symbol Vdet1_n denotes the value of the LVDLVLR.LVD1LVL[3:0] bits.

Table 2.52 Characteristics of Power-On Reset Circuit and Voltage Detection Circuit (2)

Conditions: 1.8 V \leq VCC0 = VCC_USB = AVCC0 = VCC_RF = AVCC_RF \leq 3.6 V, VSS = AVSS0 = VSS_USB = VSS_RF = 0 V, T_a = -40 to +85°C

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Wait time after	At normal startup*1	t _{POR}	_	9.1	_	ms	Figure 2.64
power-on reset cancellation	During fast startup time*2	t _{POR}	_	1.6	_		
Wait time after voltage monitoring 0 reset cancellation	Power-on voltage monitoring 0 reset disabled*1	t _{LVD0}	_	568	_	μs	Figure 2.65
	Power-on voltage monitoring 0 reset enabled*2		_	100	_		
Wait time after voltage cancellation	Wait time after voltage monitoring 1 reset cancellation		_	100	_	μs	Figure 2.66
Response delay time		t _{det}	_	_	350	μs	Figure 2.63
Minimum VCC down t	Minimum VCC down time*3		350	_	_	μs	Figure 2.63, VCC = 1.0 V or above
Power-on reset enable	e time	t _{W(POR)}	1	_	_	ms	Figure 2.64, VCC = below 1.0 V
LVD operation stabilizenabled)	ation time (after LVD is	Td _(E-A)	_	_	300	μs	Figure 2.66
Hysteresis width (pow	ver-on rest (POR))	V _{PORH}	_	110	_	mV	
Hysteresis width (volta	age detection circuit:	V_{LVH}	_	70	_	mV	When Vdet1_4 is selected
LVD1)			_	60	_		When Vdet1_5 to Vdet1_9 is selected
			_	50	_		When Vdet1_A or Vdet1_B is selected
			_	40	_		When Vdet1_C or Vdet1_D is selected

Note: These characteristics apply when noise is not superimposed on the power supply.

- Note 1. When OFS1.(LVDAS, FASTSTUP) = 11b.
- Note 2. When OFS1 (LVDAS, FASTSTUP) ≠ 11b.
- Note 3. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V_{POR}, V_{det0}, and V_{det1} for the POR/LVD.

Figure 2.63 Voltage Detection Reset Timing

Figure 2.64 Power-On Reset Timing

Figure 2.65 Voltage Detection Circuit Timing (Vdet0)

Figure 2.66 Voltage Detection Circuit Timing (V_{det1})

2.11 Oscillation Stop Detection Timing

Table 2.53 Oscillation Stop Detection Timing

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V},$ $\text{VSS} = \text{AVSS0} = \text{VREFL0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V}, T_a = -40 \text{ to } +85^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Detection time	t _{dr}	_		1	ms	Figure 2.67

Figure 2.67 Oscillation Stop Detection Timing

2.12 Battery Backup Function Characteristics

Table 2.54 Battery Backup Function Characteristics

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text{VBATT} \le 3.6 \text{ V}, 1.8 \text{ V} \le \text$

VSS = AVSS0 = $VREFL0 = VSS_USB = VSS_RF = 0 V$, $T_a = -40 \text{ to } +85^{\circ}\text{C}$

Item	Item			Тур.	Max.	Unit	Test Conditions
Voltage level for switching to bat	V _{DETBATT}	1.99	2.09	2.19	V	Figure 2.68	
Hysteresis width	V_{VBATTH}	_	100	_	mV		
VCC-off period for starting powe	t _{VOFFBATT}	_	_	350	μs		
Allowable voltage change rising/	Allowable voltage change rising/falling gradient			_	_	ms/V	Figure 2.7
Level for detection of voltage	VBTLVDLVL[1:0] = 10b	V _{DETBATLVD}	2.11	2.20	2.29	V	Figure 2.68
drop on the VBATT pin (falling)	VBTLVDLVL[1:0] = 11b		1.87	2.00	2.13	V	
Hysteresis width for detection of VBATT pin	V _{BATLVDH}	_	50	_	mV		

Note: The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum value of the voltage level for switching to battery backup (V_{DETBATT}).

Figure 2.68 Battery Backup Function Characteristics

2.13 ROM (Flash Memory for Code Storage) Characteristics

Table 2.55 ROM (Flash Memory for Code Storage) Characteristics (1)

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Reprogramming/er	asure cycle*1	N _{PEC}	1000	_	_	Times	
Data hold time	After 1000 times of N _{PEC}	t _{DRP}	20*2, *3	_	_	Year	T _a = +85°C

Note 1. Definition of reprogram/erase cycle: The reprogram/erase cycle is the number of erasing for each block. When the reprogram/erase cycle is n times (n = 1000), erasing can be performed n times for each block. For instance, when 4-byte programming is performed 256 times for different addresses in a 1-Kbyte block and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasing is not enabled (overwriting is prohibited).

Note 2. Characteristic when using the flash memory programmer and the self-programming library provided from Renesas Electronics.

Note 3. This result is obtained from reliability testing.

Table 2.56 ROM (Flash Memory for Code Storage) Characteristics (2) High-Speed Operating Mode

Conditions: $2.7 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = 0 \text{ V}$ Temperature range for the programming/erasure operation: $T_a = -40 \text{ to } +85 ^{\circ}\text{C}$

Item		Cumbal	F	CLK = 1 MH	lz	F	CLK = 32 MI	Нz	Unit
item		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Programming time	8-byte	t _{P8}	_	112	967	_	52.3	491	μs
Erasure time	2-Kbyte	t _{E2K}	_	8.75	278	_	5.50	215	ms
	512-Kbyte (when block erase command is used)	t _{E512K}	_	928	19218	_	72.0	1679	ms
	512-Kbyte (when all- block erase command is used)	t _{EA512K}	_	923	19013	_	66.7	1469	ms
Blank check time	8-byte	t _{BC8}	_	_	55.0	_	_	16.1	μs
	2-Kbyte	t _{BC2K}	_	_	1840	_	_	136	ms
Erase operation forced	stop time	t _{SED}	_	_	18.0	_	_	10.7	μs
Start-up area switching	setting time	t _{SAS}	_	12.3	566.5	_	6.2	434	ms
Access window time		t _{AWS}	_	12.3	566.5	_	6.2	434	ms
ROM mode transition w	ait time 1	t _{DIS}	2.0	_	_	2.0	_	_	μs
ROM mode transition w	ait time 2	t _{MS}	5.0	_	_	5.0	_	_	μs

Note: The time until each operation of the flash memory is started after instructions are executed by software is not included.

Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below

4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: The frequency accuracy of FCLK must be within ±3.5%.

Table 2.57 ROM (Flash Memory for Code Storage) Characteristics (3) Middle-Speed Operating Mode

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V}$ Temperature range for the programming/erasure operation: $T_a = -40 \text{ to } +85^{\circ}\text{C}$

Item		Cumbal	F	CLK = 1 MH	łz	F	CLK = 8 MH	lz	Unit
nem		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Programming time	8-byte	t _{P8}	_	152	1367	_	97.9	936	μs
Erasure time	2-Kbyte	t _{E2K}	_	8.8	279.7	_	5.9	221	ms
	512-Kbyte (when block erase command is used)	t _{E512K}	_	928	19221	_	191	4108	ms
	512-Kbyte (when all- block erase command is used)	t _{EA512K}	_	923	19015	_	185	3901	ms
Blank check time	8-byte	t _{BC8}	_	_	85.0	_	_	50.88	μs
	2-Kbyte	t _{BC2K}	_	_	1870	_	_	402	μs
Erase operation force	d stop time	t _{SED}	_	_	28.0	_	_	21.3	μs
Start-up area switching	g setting time	t _{SAS}	_	13.0	573.3	_	7.7	451	ms
Access window time		t _{AWS}	_	13.0	573.3	_	7.7	451	ms
ROM mode transition	wait time 1	t _{DIS}	2.0	_	_	2.0	_	_	μs
ROM mode transition	wait time 2	t _{MS}	3.0	_	_	3.0	_	_	μs

Note: The time until each operation of the flash memory is started after instructions are executed by software is not included.

Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below

4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: The frequency accuracy of FCLK must be within ±3.5%.

2.14 E2 DataFlash Characteristics (Flash Memory for Data Storage)

Table 2.58 E2 DataFlash Characteristics (1)

	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Reprogramming/erasure cycle*1		N _{DPEC}	100000	1000000	_	Times	
Data hold time	old time After 10000 times of N _{DPEC}		20*2, *3	_	_	Year	T _a = +85°C
	After 100000 times of N _{DPEC}		5*2, *3	_	_	Year	
	After 1000000 times of N _{DPEC}		_	1*2, *3	_	Year	T _a = +25°C

- Note 1. The reprogram/erase cycle is the number of erasing for each block. When the reprogram/erase cycle is n times (n = 100000), erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1000 times for different addresses in a 1-Kbyte block and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasing is not enabled (overwriting is prohibited).
- Note 2. Characteristic when the flash memory programmer is used and the self-programming library is provided from Renesas Electronics.
- Note 3. These results are obtained from reliability testing.

Table 2.59 E2 DataFlash Characteristics (2): high-speed operating mode

Conditions: $2.7 \text{ V} \le \text{VCC} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V}$ Temperature range for the programming/erasure operation: $T_a = -40 \text{ to } +85 ^{\circ}\text{C}$

Item		Symbol	FCLI	<= 1 MHz		FCLK	Unit		
item	item		Min.	Тур.	Max.	Min.	Тур.	Max.	Offic
Programming time	1 byte	t _{DP1}	_	95.0	797	_	40.8	376	μs
Erasure time	1 Kbyte	t _{DE1K}	_	19.5	498	_	6.2	230	ms
	8 Kbyte	t _{DE8K}	_	119.8	2556	_	12.9	368	ms
Blank check time	1 byte	t _{DBC1}	_	_	55.00	_	_	16.1	μs
	1 Kbyte	t _{DBC1K}	_	_	0.72	_	_	0.50	ms
Erase operation forced	stop time	t _{DSED}	_	_	16.0	_		10.7	μs
DataFlash STOP recov	ery time	t _{DSTOP}	5.0	_	_	5.0	_	_	μs

Note: The time until each operation of the flash memory is started after instructions are executed by software is not included.

Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below

4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: The frequency accuracy of FCLK must be within ±3.5%.

Table 2.60 E2 DataFlash Characteristics (3): middle-speed operating mode

Conditions: $1.8 \text{ V} \le \text{VCC0} = \text{VCC_USB} = \text{AVCC0} = \text{VCC_RF} = \text{AVCC_RF} \le 3.6 \text{ V}, \text{VSS} = \text{AVSS0} = \text{VSS_USB} = \text{VSS_RF} = 0 \text{ V}$ Temperature range for the programming/erasure operation: $T_a = -40 \text{ to } +85^{\circ}\text{C}$

•	J		0 1	u					
Item		Symbol	FCLI	<= 1 MHz		FCLI	Unit		
		Syllibol	Min.	Тур.	Max.	Min.	Тур.	Max.	Offic
Programming time	1 byte	t _{DP1}	_	135	1197	_	86.5	823	μs
Erasure time	1 Kbyte	t _{DE1K}	_	19.6	501	_	8.0	265	ms
	8 Kbyte	t _{DE8K}	_	120	2558	_	27.7	669	ms
Blank check time	1 byte	t _{DBC1}	_	_	85.0	_	_	50.9	μs
	1 Kbyte	t _{DBC1K}	_	_	0.72	_	_	1.45	ms
Erase operation forced	stop time	t _{DSED}	_	_	28.0	_	_	21.3	μs
DataFlash STOP recove	ery time	t _{DSTOP}	0.72	_	_	0.72	_	_	μs

Note: The time until each operation of the flash memory is started after instructions are executed by software is not included.

Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below

4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: The frequency accuracy of FCLK must be within ±3.5%.

2.15 BLE Characteristics

2.15.1 Transmission Characteristics

Table 2.61 Transmission Characteristics

Conditions: VCC = VCC_RF = AVCC_RF = 3.3 V, VSS = VSS_RF = 0 V, $T_a = +25 ^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Range of frequency	RF _{CF}	2402	_	2480	MHz	
Data rate	RF _{DATA_2M}	_	2	_	Mbps	
	RF _{DATA_1M}	_	1	_	Mbps	
	RF _{DATA_500k}	_	500	_	kbps	
	RF _{DATA_125k}	_	125	_	kbps	
Maximum transmitted output	RF _{POWER}	_	0	2	dBm	0 dBm output mode
power		_	4	6	dBm	4 dBm output mode
Output frequency error	RF _{TXFERR}	-10	_	10	ppm	*1

Note: The characteristics are based on pins and functions other than those for the BLE interface not being in use.

Note 1. This does not take frequency errors due to manufacturing irregularities, drift with temperature, or deterioration of the crystal over time into account.

2.15.2 Reception Characteristics (2 Mbps)

Table 2.62 Reception Characteristics

Conditions: VCC = VCC_RF = AVCC_RF = 3.3 V, VSS = VSS_RF = 0 V, T_a = +25°C

Item	Symbol	Min.	Тур.	Max.	Unit	Tes	st Conditions		
Input frequency	RF _{RXFIN_2M}	2402	_	2480	MHz				
Maximum input level	RF _{LEVL_2M}	-10	4	_	dBm	*1	*1		
Receiver sensitivity	RF _{STY_2M}	_	-92	_	dBm	*1			
Secondary emission strength	RF _{RXSP_2M}	_	-72	– 57	dBm	30 MHz to 1 GHz			
		_	-54	-47	dBm	1 GHz to 12 GHz			
Co-channel rejection ratio	RF _{CCR_2M}	_	-8	_	dB	Prf = -67 dBm*1			
Adjacent channel rejection	RF _{ADCR_2M}	_	2	_	dB	Prf = -67 dBm*1	±2 MHz		
ratio		_	35	_	dB]	±4 MHz		
		_	39	_	dB]	±6 MHz		
Blocking	RF _{BLK_2M}	_	– 1	_	dBm	Prf = -67 dBm*1	30 MHz to 2000 MHz		
		_	-25	_	dBm]	2000 MHz to 2399 MHz		
		_	-21	_	dBm]	2484 MHz to 3000 MHz		
		_	-10	_	dBm		> 3000 MHz		
Allowable frequency deviation*2	RF _{RXFER_2M}	-120	_	120	ppm	*1			
RSSI accuracy	RF _{RSSIS_2M}	_	±4	_	dB	-70 dBm ≤ Prf ≤ -	–10 dBm		

Note: The characteristics are based on pins and functions other than those for the BLE interface not being in use.

Note 1. PER \leq 30.8%, and a 37-byte payload

Note 2. Allowable range of difference between the center frequency for the RF input signals and the carrier frequency generated within the chip

2.15.3 Reception Characteristics (1 Mbps)

Table 2.63 Reception Characteristics

Conditions: $VCC = VCC_RF = AVCC_RF = 3.3 \text{ V}, VSS = VSS_RF = 0 \text{ V}, T_a = +25^{\circ}C$

Item	Symbol	Min.	Тур.	Max.	Unit	Tes	t Conditions
Input frequency	RF _{RXFIN_1M}	2402	_	2480	MHz		
Maximum input level	RF _{LEVL_1M}	-10	4	_	dBm	*1	
Receiver sensitivity	RF _{STY_1M}	_	-95	_	dBm	*1	
Secondary emission strength	RF _{RXSP_1M}	_	-72	<i>–</i> 57	dBm	30MHz to 1GHz	
		_	-54	-4 7	dBm	1GHz to 12GHz	
Co-channel rejection ratio	RF _{CCR_1M}	_	-7	_	dB	Prf = -67dBm*1	
Adjacent channel rejection ratio	RF _{ADCR_1M}	_	-1	_	dB	$Prf = -67dBm^{*1}$	±1MHz
		_	34	_	dB]	±2MHz
		_	35	_	dB		±3MHz
Blocking	RF _{BLK_1M}	_	0	_	dBm	Prf = -67dBm*1	30MHz to 2000MHz
		_	-24	_	dBm]	2000MHz to 2399MHz
		_	-20	_	dBm]	2484MHz to 3000MHz
		_	-4	_	dBm	1	> 3000MHz
Allowable frequency deviation*2	RF _{RXFER_1M}	-120	_	120	ppm	*1	•
RSSI accuracy	RF _{RSSIS_1M}	_	±4	_	dB	–70dBm ≤ Prf ≤ –	-10dBm

Note: The characteristics are based on pins and functions other than those for the BLE interface not being in use.

Note 1. PER ≤ 30.8%, and a 37-byte payload

Note 2. Allowable range of difference between the center frequency for the RF input signals and the carrier frequency generated within the chip

2.15.4 Reception Characteristics (500 kbps)

Table 2.64 Reception Characteristics

Conditions: VCC = VCC_RF = AVCC_RF = 3.3 V, VSS = VSS_RF = 0 V, T_a = +25°C

Item	Symbol	Min.	Тур.	Max.	Unit	Tes	t Conditions
Input frequency	RF _{RXFIN_500k}	2402	_	2480	MHz		
Maximum input level	RF _{LEVL_500k}	-10	4	_	dBm	*1	
Receiver sensitivity	RF _{STY_500k}	_	-100	_	dBm	*1	
Secondary emission strength	RF _{RXSP_500k}	_	-72	– 57	dBm	30MHz to 1GHz	
		_	-54	-4 7	dBm	1GHz to 12GHz	
Co-channel rejection ratio	RF _{CCR_500k}	_	-4	_	dB	$Prf = -72dBm^{*1}$	
Adjacent channel rejection ratio	RF _{ADCR_500k}	_	6	_	dB	Prf = -72dBm*1	±1MHz
		_	36	_	dB		±2MHz
		_	42	_	dB	1	±3MHz
Blocking	RF _{BLK_500k}	_	0	_	dBm	$Prf = -72dBm^{*1}$	30MHz to 2000MHz
		_	-23	_	dBm	1	2000MHz to 2399MHz
		_	-20	_	dBm	1	2484MHz to 3000MHz
		_	-7	_	dBm	1	> 3000MHz
Allowable frequency deviation*2	RF _{RXFER_500k}	-120	_	120	ppm	*1	
RSSI accuracy	RF _{RSSIS_500k}		±4		dB	–70dBm ≤ Prf ≤ –	10dBm

Note: The characteristics are based on pins and functions other than those for the BLE interface not being in use.

Note 1. PER ≤ 30.8%, and a 37-byte payload

Note 2. Allowable range of difference between the center frequency for the RF input signals and the carrier frequency generated within the chip

2.15.5 Reception Characteristics (125 kbps)

Table 2.65 Reception Characteristics

Conditions: $VCC = VCC_RF = AVCC_RF = 3.3 \text{ V}, VSS = VSS_RF = 0 \text{ V}, T_a = +25^{\circ}C$

Item	Symbol	Min.	Тур.	Max.	Unit	Tes	st Conditions
Input frequency	RF _{RXFIN_125k}	2402	_	2480	MHz		
Maximum input level	RF _{LEVL_125k}	-10	4	_	dBm	*1	
Receiver sensitivity	RF _{STY_125k}	_	-105	_	dBm	*1	
Secondary emission strength	RF _{RXSP_125k}	_	-72	<i>–</i> 57	dBm	30 MHz to 1 GHz	:
		_	-54	-47	dBm	1 GHz to 12 GHz	
Co-channel rejection ratio	RF _{CCR_125k}	_	-2	_	dB	Prf = -79 dBm*1	
Adjacent channel rejection ratio	RF _{ADCR_125k}	_	12	_	dB	Prf = -79 dBm*1	±1 MHz
		_	39	_	dB		±2 MHz
		_	45	_	dB		±3 MHz
Blocking	RF _{BLK_125k}	_	0	_	dBm	Prf = -79 dBm*1	30 MHz to 2000 MHz
		_	-23	_	dBm		2000 MHz to 2399 MHz
		_	-20	_	dBm]	2484 MHz to 3000 MHz
		_	-1	_	dBm]	> 3000MHz
Allowable frequency deviation*2	RF _{RXFER_125k}	-120	_	120	ppm	*1	<u> </u>
RSSI accuracy	RF _{RSSIS_125k}		±4		dB	$T_a = +25^{\circ}C, -70^{\circ}C$	dBm ≤ Prf ≤ –10 dBm

Note: The characteristics are based on pins and functions other than those for the BLE interface not being in use.

Note 1. PER ≤ 30.8%, and a 37-byte payload

Note 2. Allowable range of difference between the center frequency for the RF input signals and the carrier frequency generated within the chip

2.16 Usage Notes

2.16.1 Connecting VCL Capacitor and Bypass Capacitors

This MCU integrates an internal voltage-down circuit, which is used for lowering the power supply voltage in the internal MCU automatically to the optimum level. A $4.7-\mu F$ capacitor needs to be connected between this internal voltage-down power supply (VCL pin) and the VSS pin. Place an external capacitor close to the pins. Do not apply the power supply voltage to the VCL pin.

Insert a multilayer ceramic capacitor as a bypass capacitor between each pair of the power supply pins. Implement a bypass capacitor as closer to the MCU power supply pins as possible. We recommend capacitors with a value of $2.2~\mu F$ for that connected to the VCC_RF pin and $0.1~\mu F$ for the others. For the capacitors related to crystal oscillation, see section 9, Clock Generation Circuit in the User's Manual: Hardware. For the capacitors related to analog modules, also see section 44, 12-Bit A/D Converter (S12ADE) in the User's Manual: Hardware.

For notes on designing the printed circuit board, see the descriptions of the application note, the Hardware Design Guide (R01AN1411EJ). The latest version can be downloaded from the Renesas Electronics website.

Appendix 1. Package Dimensions

Information on the latest version of the package dimensions or mountings has been displayed in "Packages" on Renesas Electronics Corporation website.

Figure A 85-Pin BGA (PTBG0085KB-A)

Figure B 56-Pin QFN (PVQN0056LA-A)

RX23W Group REVISION HISTORY

REVISION HISTORY	RX23W Group Datasheet
------------------	-----------------------

Classifications

- Items with Technical Update document number: Changes according to the corresponding issued Technical Update
- Items without Technical Update document number: Minor changes that do not require Technical Update to be issued

Rev.	Date		Classification	
TOV.	Date	Page	Summary	Oldoomodion
1.00	Aug 06, 2019	_	First edition, issued	

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

- 6. Voltage application waveform at input pin
 - Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).
- 7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the

Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment: industrial robots: etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics Canada Limited reet, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3

9251 Yonge Street, St Tel: +1-905-237-2004

Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia Tel: +60-3-5022-1288, Fax: +60-3-5022-1290

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700

Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338