Пирамида. Правильная пирамида. Усеченная пирамида.

Определение.

Пирамида — это многогранник, одна из граней которого (основание) про- извольный многоугольник ABCDE, а остальные грани — треугольники с общей вершиной S.

При этом, разумеется, предполагается, что вершина пирамиды и ее основание не лежат в одной плоскости. Вершина пирамиды соединена ребрами с вершинами основания. Боковые грани пирамиды — треугольники.

Треугольная пирамида это тетраэдр

Основные элементы

Определение

Высотой пирамиды называется перпендикуляр, опущенный из её вершины к основанию

- Сумма площадей боковых граней пирамиды называется площадью её боковой поверхности
- Сумма площадей всех граней (и основания и боковых граней), называется площадью полной поверхности пирамиды

$$S_{\text{полн}} = S_{\text{осн}} + S_{\text{бок}}$$

Если у пирамиды одно ребро перпендикулярно плоскости основания, то вершина пирамиды проецируется на одну из вершин основания.

На рисунке дана треугольная пирамида с ребром ${\color{blue}DA}$, перпендикулярным основанию.

DA — перпендикулярное основанию ребро, DA также является высотой, ΔDAC и ΔDAB — прямоугольные, угол DEA — двугранный угол при основании.

На следующем рисунке дана пирамида, основание которой — прямоугольник.

Ребро SB перпендикулярно основанию, SB также является высотой, ΔSBA и ΔSBC — прямоугольные; если основание — прямоугольник, то ΔSAD и SCD — прямоугольные.

Если боковые грани пирамиды с её основанием образуют равные двугранные углы, то все высоты боковых граней пирамиды равны (у правильной пирамиды это апофемы), и вершина пирамиды проецируется в центр окружности, вписанной в многоугольник основания.

Формула нахождения объёма применяется для всех видов пирамид: $V=rac{1}{3}S_{
m ochoвания}\cdot H$.

2.Правильная пирамида

Пирамида, основанием которой является правильный многоугольник и вершина проецируется в центр основания, называется *правильной*.

Высота боковой грани правильной пирамиды называется апофемой.

Внимание! В задачах не путайте высоту пирамиды Н и апофему - высоту боковой грани правильной пирамиды h.

Основные свойства правильной пирамиды

- І. Боковые ребра, боковые грани и апофемы соответственно равны.
- II. Двугранные углы при основании равны.
- III. Двугранные углы при боковых ребрах равны.
- IV. Каждая точка высоты равноудалена от всех вершин основания.
- V. Каждая точка высоты равноудалена от всех боковых граней.

Все **апофемы** правильной пирамиды равны, а так же все **двугранные углы при основании** равны

Все боковые рёбра правильной пирамиды равны

Боковые грани правильной пирамиды являются равными равнобедренными треугольниками

Поэтому посчитать площадь боковой поверхности правильной пирамиды не составит труда — это сумма площадей равнобедренных треугольников. Основание этих треугольников — сторона правильного многоугольника, лежащего в основании правильной пирамиды.

$$AB = BC = CD = DE = EA$$
 — основания $F = F_1 = ... = F_n = d$ — апофемы $S_{60K} = \frac{1}{2} d (AB + BC + CD + DE + EA) = \frac{1}{2} d \cdot P$

$$S_{60K} = \frac{1}{2} d \cdot P$$

3. Усеченная пирамида. Часть пирамиды, заключенная между ее основанием и секущей плоскостью, параллельной основанию, называется усеченной пирамидой

 $\mathsf{ABCDA}_1\mathsf{B}_1\mathsf{C}_1\mathsf{D}_1$ — усечённая пирамида ABCD и $A_1B_1C_1D_1$ — основания AA_1B_1B — боковая грань

 AA_1 — боковое ребро OO_1 — высота

 $A_1A_2 \parallel B_1B_2$ $A_1B_1 \nmid A_2B_2$

 $A_1A_2B_2B_1$ трапеция

Усеченная пирамида называется **правильной**, если она составляет часть правильной пирамиды.

 AA_1B_1B — равнобедренная трапеция B_1E — апофема

АА₁В₁В — равнобедренная трапеция

$$S_{\text{бок.}} = S_1 + S_2 + ... + S_n$$

h — апофема

Ра — периметр нижнего основания

 $P_{\rm b}$ — периметр верхнего основания

$$S_1 = \frac{1}{2} h(a_1 + b_1), S_2 = \frac{1}{2} h(a_2 + b_2), ... S_n = \frac{1}{2} h(a_n + b_n)$$

$$S_{60K} = \frac{1}{2} h(a_1 + b_1) + \frac{1}{2} h(a_2 + b_2) + ... + \frac{1}{2} h(a_n + b_n) = \frac{1}{2} h(P_a + P_b)$$

Основные свойства правильной усеченной пирамиды

- І. Боковые ребра, боковые грани и апофемы соответственно равны.
- II. Двугранные углы при основании равны.
- III. Двугранные углы при боковых ребрах равны.
- IV. Каждая точка оси равноудалена от всех вершин основания.
- V. Каждая точка оси равноудалена от плоскостей боковых граней.

Глава 8 «Многогранники и круглые тела», учебник Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: учеб. для студ. учреждений сред.проф. образования/ М.И. Башмаков. — 4-е изд.,стер. — М.: ИЦ «Академия», 2017, - 256 с.

В случае отсутствия печатного издания, Вы можете обратиться к Электроннобиблиотечной системе «Академия»

Список использованных интернет-ресурсов:

- 1. https://urait.ru/
- 2. https://23.edu-reg.ru/
- 3. https://infourok.ru/videouroki/