Lab00-Proof

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2021.

* If there is any problem, please contact TA Haolin Zhou.

- * Name:Renyang Guan Student ID:519021911058 Email: guanrenyang@sjtu.edu.cn
- 1. Prove that for any integer n > 2, there is a prime p satisfying n . (Hint: consider a prime factor <math>p of n! 1 and prove by contradiction)

Proof.

Case 1: p is a prime factor of n! - 1, then p is a prime factor of n!. The statement is obviously true

Case 2: n! - 1 has no prime factor, then n! - 1 is a prime number and $n - 1 \ge 1$, such that p = n! - 1 is a prime factor of n!.

2. Use the minimal counterexample principle to prove that for any integer $n \geq 7$, there exists integers $i_n \geq 0$ and $j_n \geq 0$, such that $n = i_n \times 2 + j_n \times 3$.

Proof. We proof the statement is true for $n \geq 7$ by induction.

Basis step:

 $\begin{array}{ll} n=7: \; \exists i_n=2, j_n=1, \quad st. n=i_n\times 2+j_n\times 3\\ n=8: \; \exists i_n=1, j_n=2, \quad st. n=i_n\times 2+j_n\times 3\\ n=9: \; \exists i_n=0, j_n=3, \quad st. n=i_n\times 2+j_n\times 3\\ n=10: \; \exists i_n=2, j_n=2, \quad st. n=i_n\times 2+j_n\times 3 \end{array}$

Induction Hypothesis: Assume that exists n > 10, there any intergers $i_n \ge 0$ and $j_n \ge 0$, such that $n \ne i_n \times 2 + j_n \times 3$

Proof of Induction Step: Define a new variable m,

$$m = \begin{cases} n - 2 & i_n \neq 0 \\ n - 3 & i_n = 0 \end{cases}$$
 (1)

Because $n \ge 10$, therefore $m \ge 7$ and m < n and

$$m \neq \begin{cases} (i_n - 1) \times 2 + j_n \times 3 & i_n \neq 0 \\ i_n \times 2 + (j_n - 1) \times 3 & i_n = 0 \end{cases}$$
 (2)

 $i_n - 1$ and $j_n - 1$ can take arbitrary values in \mathbb{N} .

3. Suppose the function f be defined on the natural numbers recursively as follows: f(0) = 0, f(1) = 1, and f(n) = 5f(n-1) - 6f(n-2), for $n \ge 2$. Use the strong principle of mathematical induction to prove that for all $n \in N$, $f(n) = 3^n - 2^n$.

Proof. We proof $f(n) = 3^n - 2^n$ is true for $n \ge 2$ by induction.

Basis step: For n = 0, $f(n) = 3^0 - 2^0 = 0$.

Induction Hypothesis: Let n > 0. Assume that for any integer $k \in [0, n]$ and k > 0, such that $f(k) = 3^k - 2^k$.

1

Proof of Induction Step: Now let us prove that $f(n+1) = 3^{n+1} - 2^{n+1}$ is true.

$$f(n+1) = 5f(n) - 6f(n-1)$$
(3)

$$=5(3^{n}-2^{n})-6(3^{n-1}-2^{n-1})$$
(4)

$$= 9 \times 3^{n-1} - 4 \times 2^{n-1} \tag{5}$$

$$=3^{n+1}-2^{n+1}\tag{6}$$

4. An *n*-team basketball tournament consists of some set of $n \geq 2$ teams. Team p beats team q iff q does not beat p, for all teams $p \neq q$. A sequence of distinct teams $p_1, p_2, ..., p_k$, such that team p_i beats team p_{i+1} for $1 \leq i < k$ is called a ranking of these teams. If also team p_k beats team p_1 , the ranking is called a k-cycle.

Prove by mathematical induction that in every tournament, either there is a "champion" team that beats every other team, or there is a 3-cycle.

Proof. We prove the statement is true by induction.

Basis step: n=2: Suppose that team team p and team q are in the tournament. Because team p beats team q iff q does not beat p, the winner is the champion.

Induction Hypothesis: Assume that for any tournament having n teams, either there is a "champion" team that beats every other team, or there is a 3-cycle.

Proof of Induction Step: For any tournament having n+1 teams denoted as $p_1, p_2, \dots, p_n, p_{n+1}$ there are two cases:

Case 1: There is a team denoted as p_n that beats all other n-1 teams in $\{p_1, p_2, \dots, p_n\}$. If p_n beats p_{n+1} , then p_n is the champion. If p_{n+1} beats p_n , there are two cases:

Case 1.1: p_{n+1} beats all of the teams in $\{p_1, p_2, \dots, p_{n-1}\}$, then p_{n+1} is the champion.

Case 1.2: Exists p_i in $\{p_1, p_2, \dots, p_{n-1}\}$, such that p_i beats p_{n+1} . Then $p_n, p_{n+1}, and p_i$ consists of a 3-cycle.

Case 2: There is a 3-cycle in $\{p_1, p_2, \dots, p_n\}$. Such 3-cycle will be maintained after the participation of team p_{n+1} .

Remark: You need to include your .pdf and .tex files in your uploaded .rar or .zip file.