Privacy and Anonymity Properties of HTTP/2, SPDY, QUIC, and TLS 1.3

Mike Perry
The Tor Project

Tor Basics

- TCP Overlay Network; Stream abstractions
 - TCP SOCKS Proxy
- ~3 million daily users
 - Not the same users every day!
 - − ~1 million users update the browser within 1 week
 - ~5 million Android installs
- Tor Browser is a small team
 - 5 engineers total
 - Standards participation is difficult for us

Abstract Privacy and Anonymity Issues

- Linkability sources
 - State management (supercookies/identifiers)
 - Browser fingerprinting
- Traffic integrity and confidentiality
- Traffic analysis
 - Traffic fingerprinting
 - Correlation
 - Confirmation
 - Route manipulation and analysis

Terminology Normalization

- "Linkability"
 - The ability to associate one user action with another
 - Types: "PBM"; "CPD"; "Fingerprinting"; "3rd party"
- "Fingerprinting" != "Identifier storage"
 - Identifiers are content-accessible browser state (aka "supercookies")
 - Fingerprinting is any stateless vector
- "First Party Isolation"
 - Bind all content-accessible browser state to the URL bar domain
 - AKA "Double-Keying"

First Party Relationships

Identifier Storage in HTTP/2 & SPDY

- Alternative-Services Header caching
- ALPN and NPN successes cached to govern initial connection counts
- Server PUSH response caching
- SETTINGS caching (better in HTTP/2)

Identifier Storage in QUIC

- Superset of HTTP/2, plus:
 - 0-RTT state caching
 - IP spoofing protection opaque cookie
 - Discovery and Alternate-Protocol state
 - 64bit connection-id (for third parties)
 - Congestion window information?

Traffic Analysis

- Confirmation, Correlation, Route Estimation
 - PING and SETTINGS are a concern
 - We may limit number of responses and introduce delays
 - RTT estimation in QUIC
- Website Traffic Fingerprinting
 - TLS: 'Side-Channel Leaks in Web Applications'
 - Padding ~256bytes mitigates many cases
 - Very sensitive to base rate: More pages → less accuracy and less padding
 - Tor's 512 byte cell size helps, as does multiplexing
 - Interestingly, pipelining may hurt

Effects of the Base Rate Fallacy

https://www.eecs.berkeley.edu/~sa499/papers/ccs-webfp-final.pdf

TLS 1.3 Wishlist

- Optional Encrypted SNI/Extensions?
 - Helps with traffic fingerprinting and censorship
 - Some users may want to burn an RTT for this...
- Update the PSK ticket id on every resume?
 - Eliminate observer linkability capability
- Can 0-RTT also get a PSK ticket id?
 - Enables Perspectives-style multipath verification
 - Help servers guard against key theft/MITM
- Padding?

Tor's View of Fingerprinting

- "Active" vs "passive" distinction insufficient
 - "Direct" vs "Inferred" might be better?
- Sources of fingerprinting in order of concern:
 - 1. End-user configuration details
 - 2. Device and hardware characteristics
 - 3. Operating System vendor and version differences
 - 4. User behavior
 - 5. Browser vendor and version differences (ignored)
- Fingerprinting is dependent on user base size
 - Let's standardize private network usage!

Fingerprinting

- QUIC
 - Timestamps in ACK, NONC
 - Local link property inference?
 - Congestion control properties/behavior?
- HTTP/2 and SPDY
 - Couldn't find anything other than browser version fingerprinting issues (which we ignore)..
 - Did I miss anything?

Other Discussion

- Most specifications typically tie state management to clearing all cookies
 - Can we also specify third party state management?
 - If a user disabled third party cookies, they probably don't want other third party state either..
- Third party connection and protocol discovery isolation
- Did I miss any identifier/fingerprinting vectors?

Thanks

Mike Perry <mikeperry@torproject.org>

C963 C21D 6356 4E2B 10BB 335B 2984 6B3C 6836 86CC

https://www.torproject.org/projects/torbrowser/design/