Perceived versus Calibrated Income Risks in Heterogeneous-agent Consumption Models

Tao Wang, Johns Hopkins University January 26, 2023, Bank of Canada

Roadmap

Motivation

Empirical Evidence

Framework

Perceived v.s. calibrated risks

Unemployment risks

Perceived risks and decisions

Mode

Objective mode

Subjective mode

Conclusion

What is this paper about?

Motivation

- Risks matter for individual decisions
 - precautionary saving
 - stock market participation
 - portfolio choice

Motivation

- Risks matter for individual decisions
 - precautionary saving
 - stock market participation
 - portfolio choice
- Risks matter for macroeconomic outcomes
 - since idiosyncratic risks are not perfectly insured
 - → income/wealth inequality
 - \blacksquare \rightarrow heterogeneous MPCs
 - → distributional channel of macroeconomic policies
 - → business cycle fluctuations

Motivation

- Risks matter for individual decisions
 - precautionary saving
 - stock market participation
 - portfolio choice
- Risks matter for macroeconomic outcomes
 - since idiosyncratic risks are not perfectly insured
 - → income/wealth inequality
 - \blacksquare \rightarrow heterogeneous MPCs
 - → distributional channel of macroeconomic policies
 - → business cycle fluctuations
- Income risks are central inputs of any incomplete-market model
 - Conventional approach: calibrated risk from panel data
 - This paper: directly perceived risks from a survey

Conventional calibration: estimated from panel data

This paper: reported perceived risks in a survey

Perceived versus Calibrated Risk

Heterogeneous risks → differential savings

Smaller risks → lower level of savings

Roadmap

Motivation

Empirical Evidence

Framework

Perceived v.s. calibrated risks

Unemployment risks

Perceived risks and decisions

Mode

Objective mode

Subjective mode

Conclusion

Perceived v.s. calibrated risk

Data and sample

- Perception: New York Fed SCE (Density survey)
 - 2013M6-2020M4 (monthly)
 - 1300 households
 - 12-month panel
- Realization: SIPP (Income panel)
 - 2014M1-2019M12 (monthly)
 - hourly wage
 - primary/full-time/non-self-employed job
 - 900-2700 respondents
 - CPI adjusted
 - age 30-65
 - only job stayers with the same employer for \geq 2y (Low, Meghir, and Pistaferri, 2010)

The survey question

subjective distribution of wage growth

"Suppose that 12 months from now, you are working in the exact **same job** at the **same place** you currently work and working the exact **same number of hours**. In your view, what would you say is the percentage chance that 12 months from now, your earnings on this job, before tax and deductions, will increase by x%?"

An illustration of the density forecast estimation

Density estimation following Engelberg, Manski, and Williams, 2009

- case 1. 3+ bins with positive probs, a generalized beta dist
- case 2. exactly 2 adjacent bins with positive probs: a triangle dist
- case 3. one bin only: a uniform dist

Perceived Risk (PR)

- Measurement of PR:
 - variance: $Var_{i,t}(\Delta w_{i,t+1})$
 - implied by the fitted density distribution
- exl. endogenous labor supply changes
- exl. job switching/separation
- restricted to attentive/high numeracy score sample
- both nominal and real terms (adjusted by inflation uncertainty)

Log wage process

$$\underbrace{w_{i,t}}_{\text{log wage}} = \underbrace{z_{i,t}}_{\text{predictable by the agent}} + \underbrace{e_{i,t}}_{\text{stochastic component}}$$

Log wage process

$$\underbrace{w_{i,t}}_{\text{log wage}} = \underbrace{z_{i,t}}_{\text{predictable by the agent}} + \underbrace{e_{i,t}}_{\text{stochastic component}}$$

Wage growth

$$\Delta w_{i,t+1} = \Delta z_{i,t+1} + \Delta e_{i,t+1}$$

- individual i at time t
- the time-series nature of $e_{i,t}$ to be specified later

Perceived risks (PR)

• To the agent: conditional variance under FIRE

$$Var_{i,t}^*(\Delta w_{i,t+1}) = Var_{i,t}^*(\Delta e_{i,t+1})$$

Perceived risks (PR)

To the agent: conditional variance under FIRE

$$Var_{i,t}^*(\Delta w_{i,t+1}) = Var_{i,t}^*(\Delta e_{i,t+1})$$

• To econometricians: **approximated unconditional** variance

$$Var_c(\Delta \hat{e}_{i,c,t+1}) = Var_c(\Delta w_{i,t+1} - \Delta \hat{z}_{i,t+1})$$

- $\hat{e}_{i,c,t+1}$: the first-step regression residual controlling observable vars
- group c: assumed to share income process/risks
 - e.g. education/year of birth/gender/age

Limitations with risk estimates from panel data

- Superior information/unobservable heterogeneity: $\hat{z}_{i,t} \neq z_{i,t}$
 - $\hat{z}_{i,t}$ unlikely capture all in the information set of i at t
 - 1. Intrinsic heterogeneity of individual i
 - 2. Foresight about individual circumstances

Limitations with risk estimates from panel data

- Superior information/unobservable heterogeneity: $\hat{z}_{i,t} \neq z_{i,t}$
 - $\hat{z}_{i,t}$ unlikely capture all in the information set of i at t
 - 1. Intrinsic heterogeneity of individual i
 - 2. Foresight about individual circumstances
- Model misspecfication
 - lacksquare Risks may differ within group c

Limitations with risk estimates from panel data

- Superior information/unobservable heterogeneity: $\hat{z}_{i,t} \neq z_{i,t}$
 - $\hat{z}_{i,t}$ unlikely capture all in the information set of i at t
 - 1. Intrinsic heterogeneity of individual i
 - 2. Foresight about individual circumstances
- Model misspecfication
 - \blacksquare Risks may differ within group c
- Surveyed PR can be a useful alternative
 - \blacksquare Directly conditional on information set of each i at t
 - lacksquare No need to restrict risk heterogeneity by group c
 - But need to be careful with measurement errors

Perceived risk v.s. wage volatility

Conditional v.s. unconditional

- PR < wage volatility
- PRs are more heterogeneous than the dispersion of wage volatility explained by observable factors

Time series structure of wage shocks

$$\begin{split} e_{i,t} &= \underbrace{p_{i,t}}_{\text{permanent}} + \underbrace{\theta_{i,t}}_{\text{transitory}} \\ p_{i,t} &= p_{i,t-1} + \psi_{i,t} \\ \psi_{i,t} &\sim N(0,\sigma_{i,t,\psi}^2), \quad \theta_{i,t} \sim N(0,\sigma_{i,t,\theta}^2) \end{split}$$

Time series structure of wage shocks

$$e_{i,t} = \underbrace{p_{i,t}}_{ ext{permanent}} + \underbrace{\theta_{i,t}}_{ ext{transitory}}$$
 $p_{i,t} = p_{i,t-1} + \psi_{i,t}$ $\psi_{i,t} \sim N(0, \sigma^2_{i,t,\theta}), \quad \theta_{i,t} \sim N(0, \sigma^2_{i,t,\theta})$

• The agent's PR: $Var_{i,t}^*(\Delta w_{i,t+1}) = \sigma_{i,t+1,\psi}^2 + \sigma_{i,t+1,\theta}^2$

Time series structure of wage shocks

$$e_{i,t} = \underbrace{p_{i,t}}_{\text{permanent}} + \underbrace{\theta_{i,t}}_{\text{transitory}}$$

$$p_{i,t} = p_{i,t-1} + \psi_{i,t}$$

$$\psi_{i,t} \sim N(0, \sigma_{i,t,\psi}^2), \quad \theta_{i,t} \sim N(0, \sigma_{i,t,\theta}^2)$$

- The agent's PR: $Var_{i,t}^*(\Delta w_{i,t+1}) = \sigma_{i,t+1,\psi}^2 + \sigma_{i,t+1,\theta}^2$
- Econometricians' calibrated risk

$$\widehat{Var}_{c,t}(\Delta \hat{e}_{i,c,t+1}) = \hat{\sigma}_{c,t+1,\psi}^2 + \hat{\sigma}_{c,t+1,\theta}^2$$

Average PR < calibrated risk

PRs < calibrated risks within groups

PRs < calibrated risks within groups

- The wage risk estimates by Low, Meghir, and Pistaferri, 2010:
 - low education: permanent risk = 0.09, transitory risk = 0.08
 - high education: permanent risk = 0.106, transitory risk = 0.08

What explains the PR heterogeneity?

- Observables + time FE: $R^2 = 0.10$
- Individual fixed-effects only: $R^2 = 0.60$

Accounting for the survey evidence

Fit a truncated log-normal dist over the cross-section of PRs

Heterogeneity in UE risk and expected wage growth

Perceived UE risks and realization

realizations are computed from CPS panel data of workers following
 Fujita and Ramey, 2009

Individual PRs explain their own spending decisions

$$E_{i,t}(\Delta c_{i,t+1}) = u_0 + u_1 E_{i,t}(\Delta w_{i,t}) + \frac{\mathbf{u_2}}{\mathbf{v_2}} Var_{i,t}(\Delta w_{i,t+1}) + \xi_{i,t}$$

	(1)	(2)	(3)	(4)	(5)
expected wage growth	0.324***	0.306***	0.254***	0.243***	
	(0.0825)	(0.0828)	(0.0334)	(0.0334)	
perceived wage risk	6.127***	6.185***	2.096***	1.711***	7
	(1.163)	(1.165)	(0.439)	(0.442)	
perceived UE risk next 4m					0.353***
					(0.0553)

	(1.103)	(1.100)	(0.439)	(0.442)	
perceived UE risk next 4m					0.353*** (0.0553)
R-squared	0.000939	0.00318	0.953	0.953	0.633
Sample Size	56046	56046	56046	56046	6269
Time FE	No	Yes	No	Yes	Yes
Individual FE	No	No	Yes	Yes	Yes

Higher perceived risks → higher expected spending growth.

Roadmap

Motivation

Empirical Evidence

Framework

Perceived v.s. calibrated risks

Unemployment risks

Perceived risks and decisions

Model

Objective model

Subjective model

Conclusion

Macro implications of PRs

Preview of the model mechanisms

On the level of savings

- a lower PR
 - \rightarrow lower precautionary saving motives
 - ightarrow less liquid asset holding
 - \rightarrow a higher MPC

Preview of the model mechanisms

On the level of savings

- a lower PR
 - → lower precautionary saving motives
 - ightarrow less liquid asset holding
 - \rightarrow a higher MPC

On wealth inequality

- heterogeneous PRs
 - → heterogeneity in savings/wealth

Model overview

- Overlapping generation
- Uninsured idiosyncratic income risks
 - Permanent+ transitory idiosyncratic wage shock
 - Persistent unemployment spells
- Partial/general equilibrium
- No aggregate risk a la Krusell and Smith, 1998
- A blend of Huggett, 1996 and C. D. Carroll, 1997
- Only one risk-free asset
- Calibrating income risks using survey versus estimates from panel
- Extension: subjective model
 - subjective PR ≠ objective income risks

Benchmark model

$$\max \quad \mathbb{E}\left[\sum_{\tau=0}^{\tau=L-1}(1-D)^{\tau}\beta^{\tau}u(c_{i,\tau})\right]$$

$$\underbrace{a_{i,\tau}}_{\text{Savings}} = \underbrace{m_{i,\tau}}_{\text{Cash in hand}} -c_{i,\tau}$$

$$b_{i,\tau+1} = a_{i,\tau}R$$

$$m_{i,\tau+1} = b_{i,\tau+1} + (1-\underbrace{\lambda}_{\text{Income tax}})(1-\underbrace{\lambda}_{\text{SS}})y_{i,\tau+1}$$

$$a_{i,\tau} \geq 0$$

- CRRA: $u(c) = \frac{c^{1-\rho}}{1-\rho}$
- Work age: $\tau = 1, 2, ..., T$; retirement : $\tau = T + 1, ..., L$ (since entering job market)

Income process over the life-cycle

income

$$y_{i,\tau} = n_{i,\tau} W$$
$$n_{i,\tau} = p_{i,\tau} \xi_{i,\tau}$$

permanent component

$$p_{i,\tau} = G_{\tau} p_{i,\tau-1} \psi_{i,\tau}, \quad log(\psi_{i,\tau}) \sim N(-\sigma_{\psi}^2/2, \sigma_{\psi}^2) \quad \forall \tau \leq T$$

Income process over the life-cycle

income

$$y_{i,\tau} = n_{i,\tau} W$$
$$n_{i,\tau} = p_{i,\tau} \xi_{i,\tau}$$

persistent/transitory component

$$\xi_{i,\tau} = \left\{ \begin{array}{ll} \theta_{i,\tau} & \text{if} \quad \nu_{i,\tau} = e \quad \& \quad \tau \leq T, \quad log(\theta_{i,\tau}) \sim N(-\frac{\sigma_{\theta}^2}{2}, \frac{\sigma_{\theta}^2}{2}) \\ \zeta & \text{if} \quad \nu_{i,\tau} = u \quad \& \quad \tau \leq T \\ \mathbb{S} & \text{if} \quad \tau > T \end{array} \right.$$

• transition probability between $\nu = u$ and $\nu = e$

$$\pi(\nu_{\tau+1}|\nu_{\tau}) = \begin{bmatrix} \mathbf{0} & 1 - \mathbf{0} \\ 1 - E & \mathbf{E} \end{bmatrix}$$

Value function and transitions

Value function

$$\begin{split} V_{\tau}(\underbrace{\nu_{i,\tau}, m_{i,\tau}, p_{i,\tau}}_{x_{i,\tau}}) &= \max_{\{c_{i,\tau}, a_{i,\tau}\}} \ u(c_{i,\tau}) \\ &+ (1-D)\beta \mathbb{E}_{\tau} \left[V_{\tau+1}((\nu_{i,\tau}, m_{i,\tau+1}, p_{i,\tau+1}) \right] \end{split}$$

Transitions

$$\psi_{\tau}(B) = \int_{x \in X} \underbrace{P(x, \tau - 1, B)}_{\text{transition funcs}} d\psi_{\tau - 1} \quad \text{for all} \quad B \in B(X)$$

- \blacksquare B(X): distribution measure on state space X
- $lack \psi_{ au}$: distribution over state variables x for agents in age au
- lue ψ_1 depends on initial draws of income shocks

Calibration of the benchmark model

block	parameter name	values	source
risk	σ_{ψ}	0.15	Median estimate from the literature
risk	$\sigma_{ heta}$	0.15	Median estimates from the literature
risk	U2U	0.18	Median estimate from the literature
risk	E2E	0.96	Median estimate from the literature
initial condition	σ_{ψ}^{init}	0.629	Estimated for age 25 in the 2016 SCF
initial condition	bequest ratio	0	assumption
life cycle	T	40	standard assumption
life cycle	L	60	standard assumption
life cycle	1 - D	0.994	standard assumption
preference	ρ	2	standard assumption
preference	β	0.96	calibrated to match wealth/income ratio
policy	S	0.65	U.S. average
policy	λ	N/A	endogenously determined
policy	λ_{SS}	N/A	endogenously determined
policy	μ	0.15	U.S. average
production	W	1	target values in steady state
production	K2Y ratio	3	target values in steady state
production	α	0.33	standard assumption
production	δ	0.025	standard assumption

StE distribution in the baseline model

- $\sigma_{\psi}=0.15$, $\sigma_{ heta}=0.15$, U2U=0.18, E2E=0.96 other parameters
- H2M: net liquid asset < half-month income Kaplan, Moll, and Violante, 2018

StE distribution in the baseline model

- $m{\sigma}_{\psi}=0.15$, $\sigma_{ heta}=0.15$, U2U=0.18, E2E=0.96 other parameters
- H2M: net liquid asset < half-month income Kaplan, Moll, and Violante, 2018

Heterogeneous perceived wage /UE risks (HPRUR)

$$\sigma_{\psi} = \sigma_{\theta} = [0.01, 0.02, 0.04] \text{, } U2U = [0, 0.02, 0.24] \text{, } E2E = [0.96, 0.99, 1.0]$$

Hetero perceived wage /UE risks/ growth rates (HPRURG)

$$\sigma_{\psi} = \sigma_{\theta} = [0.01, 0.02, 0.04], U2U = [0.1, 0.5, 0.8], E2E = [0.85, 0.97, 0.99], \operatorname{std}(G) = 0.03$$

Taking stock

Model/Data	Gini	Top 0.05	Top 0.1	Top 0.5	Mean wealth/income ratio	H2M share
SCF (liquid)	0.88	0.72	0.82	0.99	0.67	0.34
baseline (PE)	0.63	0.40	0.53	0.89	1.17	0.01
HPR (PE)	0.64	0.43	0.57	0.89	0.84	0.01
HPRUR (PE)	0.71	0.48	0.62	0.93	0.51	0.07
HPRURG (PE)	0.80	0.56	0.70	0.97	0.63	0.10
SCF (net worth)	0.81	0.57	0.71	0.98	6.72	0.12
baseline (GE)	0.64	0.40	0.53	0.90	1.65	0.00
HPR (GE)	0.65	0.43	0.57	0.89	1.23	0.01
HPRUR (GE)	0.70	0.47	0.61	0.92	1.12	0.02
HPRURG (GE)	0.76	0.52	0.65	0.95	0.99	0.04

Extension: subjective PR

Key assumption:

- Ex-ante: saving decisions ← subjective PRs
- Ex-post: realized income inequality ← objective size of income risks

Two purposes:

- A robustness check: what if PRs are incorrect?
 - but we did find people behave according to their PRs
- A model breakdown into ex-ante and ex-post channels

Evolution of the distribution over state variables

objective:

$$\psi_{\tau}(B) = \int_{x \in X} \underbrace{P(x, \tau - 1, B)}_{\text{transition funcs}} d\psi_{\tau - 1} \quad \text{for all} \quad B \in B(X)$$

subjective:

$$\tilde{\psi}_{\tau}(\tilde{B}) = \int_{\tilde{x} \in \tilde{X}} \tilde{P}(\tilde{x}, \tau - 1, \tilde{B}) d\tilde{\psi}_{\tau - 1} \quad \text{ for all } \quad \tilde{B} \in \tilde{B}(X)$$

 \tilde{P} depends on both subjective and objective risks

Subjective (SHPRUR) v.s. Objective (HPRUR)

Roadmap

Motivation

Empirical Evidence

Framework

Perceived v.s. calibrated risks

Unemployment risks

Perceived risks and decisions

Mode

Objective mode

Subjective mode

Conclusion

Conclusion

- People's saving behaviors better explained by their perceptions
 ... than what economists assume to be their perceptions
- Survey data can inform incomplete-market macro models
 - Direct evidence for heterogeneity in perceptions that matter
 - Closer to agents' information set that truly affects their decisions
- More work needed on
 - heterogeneous beliefs in HM models
 - understanding risk perception formation

Other results: drivers of PR

- Macroeconomic conditions
- Experienced labor market outcomes
- Experienced income volatility

References I

- Aiyagari, S Rao (1994). "Uninsured idiosyncratic risk and aggregate saving". *The Quarterly Journal of Economics* 109.3, pp. 659–684.
- Arellano, Manuel, Richard Blundell, and Stéphane Bonhomme (2017). "Earnings and consumption dynamics: a nonlinear panel data framework". *Econometrica* 85.3, pp. 693–734.
- Armantier, Olivier et al. (2017). "An overview of the Survey of Consumer Expectations". *Economic Policy Review* 23-2, pp. 51–72.
- Bayer, Christian et al. (2019). "Precautionary savings, illiquid assets, and the aggregate consequences of shocks to household income risk". *Econometrica* 87.1, pp. 255–290.
- Bertrand, Marianne and Sendhil Mullainathan (2001). "Do people mean what they say? Implications for subjective survey data". *American Economic Review* 91.2, pp. 67–72.
- Bewley, Truman (1976). *The permanent income hypothesis: A theoretical formulation*. Tech. rep. HARVARD UNIV CAMBRIDGE MASS.

References II

- Bloom, Nicholas et al. (2018). "The Great Micro Moderation". Working paper.
- Blundell, Richard, Luigi Pistaferri, and Ian Preston (Dec. 2008). "Consumption Inequality and Partial Insurance". *American Economic Review* 98, pp. 1887–1921.
- Carroll, Christopher et al. (2017). "The distribution of wealth and the marginal propensity to consume". *Quantitative Economics* 8.3, pp. 977–1020.
- Carroll, Christopher D (1997). "Buffer-stock saving and the life cycle/permanent income hypothesis". *The Quarterly journal of economics* 112.1, pp. 1–55.
- Carroll, Christopher D, Edmund Crawley, et al. (2018). Sticky expectations and consumption dynamics. Tech. rep. National Bureau of Economic Research.
- Carroll, Christopher D and Andrew A Samwick (1997). "The nature of precautionary wealth". *Journal of monetary Economics* 40.1, pp. 41–71.
- Cunha, Flavio, James Heckman, and Salvador Navarro (2005). "Separating uncertainty from heterogeneity in life cycle earnings". *oxford Economic papers* 57.2, pp. 191–261.

References III

- Delavande, Adeline, Xavier Giné, and David McKenzie (2011). "Measuring subjective expectations in developing countries: A critical review and new evidence". *Journal of development economics* 94.2, pp. 151–163.
- Engelberg, Joseph, Charles F Manski, and Jared Williams (2009). "Comparing the point predictions and subjective probability distributions of professional forecasters". *Journal of Business & Economic Statistics* 27.1, pp. 30–41.
- Fujita, Shigeru and Garey Ramey (2009). "The cyclicality of separation and job finding rates". *International Economic Review* 50.2, pp. 415–430.
- Gottschalk, Peter et al. (1994). "The growth of earnings instability in the US labor market". *Brookings Papers on Economic Activity* 1994.2, pp. 217–272.
- Guvenen, Fatih, Serdar Ozkan, and Jae Song (2014). "The nature of countercyclical income risk". *Journal of Political Economy* 122.3, pp. 621–660.

References IV

- Guvenen, Fatih and Anthony A Smith (2014). "Inferring labor income risk and partial insurance from economic choices". *Econometrica* 82.6, pp. 2085–2129.
- Heathcote, Jonathan, Kjetil Storesletten, and Giovanni L Violante (2009). "Quantitative macroeconomics with heterogeneous households". *Annu. Rev. Econ.* 1.1, pp. 319–354.
- Huggett, Mark (1996). "Wealth distribution in life-cycle economies". *Journal of Monetary Economics* 38.3, pp. 469–494.
- Kaplan, Greg, Benjamin Moll, and Giovanni L Violante (2018). "Monetary policy according to HANK". *American Economic Review* 108.3, pp. 697–743.
- Kaplan, Greg and Giovanni L Violante (2010). "How much consumption insurance beyond self-insurance?" *American Economic Journal: Macroeconomics* 2.4, pp. 53–87.

References V

- Kaufmann, Katja and Luigi Pistaferri (2009). "Disentangling insurance and information in intertemporal consumption choices". *American Economic Review* 99.2, pp. 387–92.
- Krueger, Dirk, Kurt Mitman, and Fabrizio Perri (2016). "Macroeconomics and household heterogeneity". *Handbook of Macroeconomics*. Vol. 2. Elsevier, pp. 843–921.
- Krusell, Per and Anthony A Smith Jr (1998). "Income and wealth heterogeneity in the macroeconomy". *Journal of political Economy* 106.5, pp. 867–896.
- Lian, Chen (2019). "Consumption with Imperfect Perception of Wealth". Working paper.
- Low, Hamish, Costas Meghir, and Luigi Pistaferri (2010). "Wage risk and employment risk over the life cycle". *American Economic Review* 100.4, pp. 1432–67.
- Manski, Charles F (2004). "Measuring expectations". *Econometrica* 72.5, pp. 1329–1376.

References VI

- Manski, Charles F (2018). "Survey measurement of probabilistic macroeconomic expectations: progress and promise". *NBER Macroeconomics Annual* 32.1, pp. 411–471.
- Meghir, Costas and Luigi Pistaferri (2004). "Income variance dynamics and heterogeneity". *Econometrica* 72.1, pp. 1–32.
- (2011). "Earnings, consumption and life cycle choices". Handbook of labor economics. Vol. 4. Elsevier, pp. 773–854.
- Moffitt, Robert A and Peter Gottschalk (2002). "Trends in the transitory variance of earnings in the United States". *The Economic Journal* 112.478, pp. C68–C73.
- Pischke, Jörn-Steffen (1995). "Individual income, incomplete information, and aggregate consumption". *Econometrica: Journal of the Econometric Society*, pp. 805–840.

References VII

- Pistaferri, Luigi (2001). "Superior information, income shocks, and the permanent income hypothesis". *Review of Economics and Statistics* 83.3, pp. 465–476.
- Primiceri, Giorgio E and Thijs Van Rens (2009). "Heterogeneous life-cycle profiles, income risk and consumption inequality". *Journal of monetary Economics* 56.1, pp. 20–39.
- Rozsypal, Filip and Kathrin Schlafmann (2017). "Overpersistence bias in individual income expectations and its aggregate implications".
- Storesletten, Kjetil, Chris I Telmer, and Amir Yaron (2004). "Cyclical dynamics in idiosyncratic labor market risk". *Journal of political Economy* 112.3, pp. 695–717.
- Wang, Neng (2004). "Precautionary saving and partially observed income". Journal of Monetary Economics 51.8, pp. 1645–1681.

Literature

- income risks and partial insurance: Gottschalk et al., 1994, C. D. Carroll and Samwick, 1997, Meghir and Pistaferri, 2004, Storesletten, Telmer, and Yaron, 2004, Blundell, Pistaferri, and Preston, 2008, Moffitt and Gottschalk, 2002, Low, Meghir, and Pistaferri, 2010, Guvenen, Ozkan, and Song, 2014, Arellano, Blundell, and Bonhomme, 2017, Bloom et al., 2018
 - "heterogeneity or risk": Cunha, Heckman, and Navarro, 2005, Primiceri and Van Rens, 2009, Guvenen and Smith, 2014
 - "insurance or information": Pistaferri, 2001, Kaufmann and Pistaferri, 2009, Meghir and Pistaferri, 2011, Kaplan and Violante, 2010
- subjective/probabilistic survey of beliefs: Manski, 2004, Delavande, Giné, and McKenzie, 2011, Manski, 2018, Bertrand and Mullainathan, 2001, Armantier et al., 2017
- incomplete market macro: Bewley, 1976, Aiyagari, 1994, Huggett, 1996, Krusell and Smith, 1998, Heathcote, Storesletten, and Violante, 2009, C. Carroll et al., 2017, Krueger, Mitman, and Perri, 2016, Bayer et al., 2019
- consumption/saving under incomplete information/imperfect perception: Pischke, 1995, Wang, 2004, Rozsypal and Schlafmann, 2017, C. D. Carroll,

Calibrating heterogeneous PRs

Fit a truncated log-normal dist over the cross-section of PRs

Appendix: PR and current labor market conditions

$$\underbrace{\Pr_t}_{\text{average perceived risk}} = \alpha + \underbrace{\beta \left(log(\mathsf{wage}_{t-k/12}) - log(\mathsf{wage}_{t-(k-3)/12}) \right)}_{\text{wage growth}} + \epsilon_{i,t}$$

	mean:var	mean:iqr	mean:rvar	mean:skew
0	-0.28**	-0.42***	-0.48***	-0.02
1	-0.42***	-0.53***	-0.51***	0.12
2	-0.43***	-0.48***	-0.44***	-0.01
3	-0.43***	-0.48***	-0.42***	-0.1
4	-0.31***	-0.41***	-0.32***	-0.21*

Counter-cyclical income risks: Storesletten, Telmer, and Yaron, 2004, Guvenen, Ozkan, and Song, 2014, Bayer et al., 2019

Appendix: PR and current labor market condition

$$\overbrace{\text{risk}_{s,t}} = r + \psi \underbrace{LM_{s,t}} + \eta_{s,t}$$
 median perceived risk in state s state labor market condition

	(1)	(2)	(3)	(4)
	log(var)	log(risk)	log(iqr)	log(iqr)
wage growth	-0.05***		-0.03***	
	(0.01)		(0.01)	
unemp rate		0.04*		0.04***
		(0.02)		(0.01)
Observations	3529	3529	3546	3546
R-squared	0.023	0.020	0.025	0.028

Deterministic wage profile over life cycle

Estimated from SIPP with a fourth-order age polynomial regression

Appendix: Extrapolation from individual experiences

- higher experienced volatility → higher PR
- recent unemployment experience → higher PR

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
income shock squared	0.0225***	0.0222***	0.0217***	0.0207***	0.000773	0.00205***	0.000566	0.00183***	0.000614	0.00184***
	(0.00562)	(0.00570)	(0.00562)	(0.00564)	(0.000743)	(0.000516)	(0.000744)	(0.000515)	(0.000745)	(0.000516)
recently unemployed				0.511* (0.260)	0.228*** (0.0330)	0.0895*** (0.0200)				
unemployed since m-8							0.161*** (0.0207)	0.0783*** (0.0121)		
unemployed since y-1									0.138***	0.0701*** (0.0113)
Observations	3662	3662	3662	3662	3701	1871	3701	1871	3701	1871
R-squared	0.004	0.013	0.016	0.017	0.015	0.030	0.019	0.041	0.016	0.039

Appendix: Experienced volatility and PR

- income volatility conditional on macroeconomic history Storesletten,
 Telmer, and Yaron, 2004
- e.g. the experience by a 25-year old till 2015 is between 1990-2015

Appendix: Experienced UE rates and PR

 e.g. experienced UE by a 25-year old in 2015 is between UE over 1990-2015