

Programowanie systemów autonomicznych

Kateryna Kuzmenko 36389 Jakub Szaraj 36786 Jakub Wiatr 36414

Spis treści

1. Osiągnięte rezultaty projektu	3
2. Architektura systemu	4
3. Diagramy przepływu	5
3.1 Diagramy aktywności	6
4 Zestawienie technologii	7
5. Przykład działania systemu	8
6. Kod oprogramowania	9
7. Podział prac	9

1 Osiągnięte rezultaty projektu

Stworzyliśmy prostego robota mobilnego "MonsterTruck", działającego w dwóch trybach:

- Autonomiczny robot samodzielnie eksploruje, omija przeszkody (LIDAR VL53L5CX, MPU6050).
- **Zdalny** użytkownik steruje robotem przez przeglądarkę, bez potrzeby internetu (lokalna sieć Wi-Fi).

Zaprojektowaliśmy lekki interfejs WWW (HTML/CSS/JS), umożliwiający:

- regulację prędkości,
- przełączanie trybów,
- wirtualny joystick,
- konfigurację adresów IP ESP32 i serwera,
- podgląd i czyszczenie zarejestrowanych odczytów.

Wdrożyliśmy mechanizm zbierania danych LIDAR-a:

- wysyłka do zdalnej bazy MongoDB Atlas,
- zapasowa lokalna kopia w SQLite na serwerze PC,
- możliwość wyświetlenia historii pomiarów w tabeli.

Powstał działający **prototyp**, który może zarówno **samodzielnie eksplorować** otoczenie, jak i **reagować na polecenia** użytkownika, jednocześnie archiwizując dane w chmurze i lokalnie.

2 Architektura systemu

Centralna jednostka sterująca: ESP32-C3-ZeroW

Czujniki:

- LiDAR (pomiar odległości VL53L5CX)
- Żyroskop i akcelerometr (MPU6050)

Układ napędowy:

- Dwa silniki DC z przekładniami
- Sterownik silników TB6612FNG

Zasilanie:

• Baterie, przetwornica boost do 5V, regulator napięcia 3,3V

Komunikacja

- Lokalna sieć Wi-Fi hostowana przez ESP32.
- HTTP GET/POST do sterowania i wysyłki danych.

Interfejs użytkownika:

• Strona HTML (desktop + mobilna).

3 Diagramy przepływu

3.1 Diagramy aktywności

4 Zestawienie technologii

Platforma: ESP32-C3

Język programowania: C/C++, Arduino IDE

Biblioteki Arduino:

- Wire (I2C)
- VL53L5CX (LiDAR) SparkFun https://github.com/sparkfun/SparkFun_VL53L5CX_Arduino_Library
- MPU6050_light (IMU) Electronic Cats https://github.com/ElectronicCats/mpu6050
- TB6612FNG (sterowanie silnikami) autorskie
- ArduinoOTA OTA
- WebServer (ESP32) Serwer www

Sensory:

- LiDAR (VL53L5CX) detekcja przeszkód.
- MPU6050 akcelerometr i żyroskop, wykrywanie ruchu oraz orientacji.

Interfejs użytkownika: prosta strona HTML.

Komunikacja: bezprzewodowa (lokalna sieć Wi-Fi).

System kontroli wersji: GitHub

Baza danych: MongoDB, SQLite

5 Przykład działania systemu

5.1. Strona HTML

5.2. Sterowanie mobilne

5.3. Działanie robota

https://drive.google.com/drive/folders/1qSsjkXssr3BIvSTFcuZnZurtBkeST_fl?usp=sharing

6 Kod oprogramowania

https://drive.google.com/drive/folders/1hNmyajBKfpIUuRQ2Dvikjvw1qeH3RM5o?usp=sharin g

7 Podział prac

Jakub Szaraj: sterowanie robota, implementacja serwera strony, opracowanie i wdrożenie systemu autonomicznego, zarys projektu

Kateryna Kuzmenko: zaprojektowanie i stworzenie strony HTML, debugging kodu, dokumentacja postępów, podsumowanie projektu

Jakub Wiatr: zaprojektowanie i połączenie bazy danych MongoDB, połączenie i przetwarzanie danych z czujnika Lidar