Computer Vision

Deep Learning

Artificial Neural Networks

 Idea: mimic the brain to do computation

Source: Khan Academy

- Artificial neural network:
 - Nodes (a.k.a. units) correspond to neurons
 - Links correspond to synapses
- Computation:
 - Numerical signal transmitted between nodes corresponds to chemical signals between neurons
 - Nodes modifying numerical signal corresponds to neurons firing rate

Perceptron

- Basic building block for composition is a perceptron (Rosenblatt 1958)
- Vector of weights w and a 'bias' b

Perceptron – Decision

$$y = sign(w^T x)$$

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Neural Networks - multiclass

Add more perceptrons

Multi-layer perceptron (MLP)

Sets of layers and the connections (weights) between them define the *network architecture*.

Each layer receives its inputs from the previous layer and forwards its outputs to the next layer

Multi-layer perceptron (MLP)

To handle more **complex problems** (than linearly separable ones) we need **multiple layers** → combination of linear boundaries which allow the separation of complex data

Theoretically, using at least two layers (one hidden + one output), with enough hidden units, we can **approximate any function**

Multi-layer perceptron (MLP)

It's all just matrix multiplication!

GPUs -> special hardware for fast/large matrix multiplication.

Network structure

- Feed-forward network
 - Directed acyclic graph
 - No internal state
 - Simply computes outputs from inputs

- Recurrent network
 - Directed cyclic graph
 - Dynamical system with internal states
 - Can memorize information

Learning the weight matrices **W**

TRAINING NEURAL NETWORKS

Gradient descent

Pick random starting point.

Compute gradient at point (analytically or by finite differences)

Move along parameter space in direction of negative gradient

 γ = amount to move = *learning rate*

Move along parameter space in direction of negative gradient.

Stop when we don't move any more.

Gradient descent

- Optimizer for functions
- Guaranteed to find optimum for convex functions.
 - Non-convex = find *local* optimum.
 - Most vision problems aren't convex.

- Works for multi-variate functions.
 - Need to compute matrix of partial derivatives ("Jacobian")

Train NN with Gradient Descent

- $x^i, y^i = n$ training examples
- f(x) = feed forward neural network
- $L(x, y; \theta) = some loss function$
- Loss function (or cost function) measures how 'good' our network is at classifying the training examples wrt. the parameters of the model, i.e. the perceptron weights.

Train NN with Gradient Descent

Loss function (Evaluate NN on training data)

Sequential gradient descent

- In practice, the training is typically done using sequential gradient descent, i.e. in each iteration (step), calculate the error and update the weights
- A complete pass over the training set is called an <u>epoch</u>
- How can we compute the gradient efficiently given an arbitrary network structure?
- Answer: backpropagation algorithm
 - propagating errors backward into the network

Sequential gradient descent

- If each iteration is done:
 - with every input, we have stochastic descent → on-line training
 - after accumulating error of all input samples → batch
 learning
 - as a mix of both → mini-batch learning
 - This is the usual setup, especially considering the hardware limitations when training models with large datasets
- Important: training with with some samples at each step is not the same as with all the samples (batch) → error surface changes

What is an appropriate loss?

- Define some output threshold on detection
- Classification: compare training class to output class
- Zero-one loss L (per class)

```
y = true \ label \ \hat{y} = predicted \ label L(\hat{y}, y) = I(\hat{y} \neq y),
```

- Is it good?
 - Nope it's a step function.
 - I need to compute the gradient of the loss.
 - This loss is not differentiable, and 'flips' easily.

Cross-entropy loss function

Negative log-likelihood

$$L(\mathbf{x}, \mathbf{y}; \boldsymbol{\theta}) = -\sum_{j} y_{j} \log p(c_{j}|\mathbf{x})$$

- Is it a good loss?
 - Differentiable
 - Cost decreases as probability increases

 $p(c_i|x)$

Typical Loss functions

- Regression
 - Mean Squared Error (MSE) / L2
- **Binary Classification**

 - Hinge Loss
- Multi-Class Classification
 - Multi-Class Cross-Entropy (CE)

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (\hat{Y_i} - Y_i)^2$$

$$ext{MAE} = rac{\sum_{i=1}^{n} |y_i - x_i|}{n}$$

$$CE = -\frac{1}{m} \sum_{i=1}^{m} y_i \cdot \log(\hat{y}_i)$$

- The output of the last layer must be coupled with the loss function:
 - Regression → linear activation
 - Binary classification → sigmoid
 - Multiclass classification → softmax

Class probability

Special function on last layer - 'Softmax':

- "squashes" a C-dimensional vector \mathbf{O} of arbitrary real values to a C-dimensional vector $\sigma(\mathbf{O})$ of real values in the range (0, 1) that add up to 1.
- Turns the output into a probability distribution on classes.

$$p(c_k=1|\mathbf{x}) = \frac{e^{o_k}}{\sum_{j=1}^{C} e^{o_j}}$$

For binary classification, with <u>one output unit</u>, the sigmoid activation function already outputs a probability distribution.

Backpropagation algorithm

- Two phases:
 - Forward phase: compute output z_i , of each unit j

$$z_j = h(a_j)$$
 where $a_j = \sum_i w_{ji} z_i$

- Backward phase: compute δ_j , of each unit j
 - Use chain rule to recursively compute gradient

– For each weight
$$w_{ji}$$
: $\frac{\partial L}{\partial w_{ji}} = \frac{\partial L}{\partial a_j} \frac{\partial a_j}{\partial w_{ji}} = \delta_j \ z_i$

$$\delta_j = \begin{cases} h'(a_j)(z_j - y_j) & \text{base case: } j \text{ is an output unit} \\ h'(a_j)\sum_k w_{kj}\delta_K & \text{recursion: } j \text{ is a hidden unit} \end{cases}$$

Deep learning frameworks use automatic differentiation

Training Deep NNs

 Deep neural networks of sigmoid and hyperbolic units often suffer from vanishing gradients

- ReLU and other training strategies helped overcome this
- In fact, both the forward and backward passes have L matrices multiplications → can lead to numerical issues

Vanishing and exploding gradients

Diagnosis:

- Exploding: model not learning; cost/loss oscillating or NaN, weights growing exponentially to NaN
- Vanishing: learning very slow or even stopped very early; weights on the last layers change but those closer to the input don't

Popular solutions:

- Limiting the size of the gradients (gradient clipping)
- Pre-training or proper weight initialization (e.g. Xavier, Kaiming for ReLU layers)
- Skip connections
- Batch normalization

Learning rate

- LR is the most important hyperparameter in backpropagation and the most **difficult** to set
- Affects: speed of learning, stabilization, escaping from local minima, etc.
 - Too small slow training, difficult to escape from small gradient areas
 - Too large oscillating too much (or not converging), not reaching narrow minimums
- Learning rate strategies:
 - Initial large LR to adapt quickly to the initial random weights
 - Modify the LR during training (many possible strategies)

loss

minimize the distance to the target as a function of the angles $\boldsymbol{\theta}_i$

Faster convergence

- Adaptive gradients
 - Idea: adjust the learning rate of each dimension separately
 - AdaGrad, RMSprop
- Adaptive moment estimation
 - Idea: also replace gradient by its moving average to induce momentum
 - Adam

Overfitting

 There is serious risk of overfitting, since typically the number of parameters is much larger than the amount of data

- Some solutions:
 - Early stopping
 - Regularization
 - L1 or L2 penalty term in the Loss (penalizes large weights)
 - Dropout
 - Data augmentation

Overfitting

- Dropout Perturbations in the network
 - randomly "drop" some units from the network when training
- Data augmentation Perturbations in the input data
 - create new data by applying transformations to the given dataset

Models

- Unsupervised learning (unlabelled data)
 - Restricted Boltzman Machine (RBM)
 - Autoencoder
- Supervised learning (e.g. classification)
 - Deep Belief Network (DBN)
 - Convolutional Neural Network (CNN)
- Learning in a time series (e.g. forecasting)
 - Recurrent network (e.g. LSTM)
- Learning hierarchical structures
 - Recursive networks

Deep Learning Revolution

Better Architectures and Learning Strategies

A Looooot More Data

Processing Power

IM GENET

www.image-net.org

22K categories and 14M images

- - Flower
 Tools
 Indoor
- Invertebrate Materials Structures
- Animals
 Bird
 Fish
 Plants
 Structures
 Artifact
 Scenes
 Flower
 Tools
 Ind

- Mammal
 Food
 Appliances
 Geological **Formations**
 - Sport Activities

Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009

Image classification

ImageNet Large Scale Visual Recognition Challenge

The power of depth (practice)

Deep neural networks learn hierarchical feature representations

Deep Learning Libraries

- TensorFlow: https://www.tensorflow.org/
- Keras: http://keras.io
- PyTorch: http://pytorch.org
- MXNet: https://mxnet.apache.org/

- Architectures easy to create
- CPU/GPU
- Pre-existing models

