Thème: Dérivées d'une fonction

Série 7

Exercice 1

En appliquant la définition, calculer la dérivée des fonctions suivantes :

a)
$$f(x) = \frac{1}{2x+1}$$
 en $x_0 = 1$

b)
$$f(x) = 3x^2 - 2$$
 en $x_0 = 2$ puis en un nombre réel quelconque x_0

Exercice 2

Sans calcul, déterminer la dérivée de la fonction f(x) dans les cas suivants :

a)
$$f(x) = 5$$

d)
$$f(x) = -x + 6$$

b)
$$f(x) = c, c \in \mathbb{R}$$

e)
$$f(x) = 7x + 4$$

c)
$$f(x) = 7x$$

f)
$$f(x) = ax + b, a, b \in \mathbb{R}$$

Exercice 3

Pour les fonctions suivantes, déterminer l'équation de la droite tangente à son graphe au point d'abscisse x_0 donné.

a)
$$f(x) = \frac{1}{x}$$
 et $x_0 = 3$

c)
$$f(x) = \sqrt{x}$$
 et $x_0 = 9$;

b) $f(x) = 5x^2 - 6x + 2$ et $x_0 = 1$

en quel point la tangente coupe-t-elle l'axe Ox?

Exercice 4

Déterminer les points du graphe de la fonction f(x) = 1/x pour lesquels la droite tangente au graphe de f passe par le point M(-3, 1).

Exercice 5

Déterminer les coefficients p et q de la parabole d'équation $y = x^2 + px + q$ tangente à la droite d'équation y - x = 0 au point (1, 1).

Exercice 6

Un athlète court le 100 m et sa position en mètres aprés t secondes est donnée par $s(t)=\frac{1}{5}t^2+8t$. Calculer la vitesse de l'athlète

- a) au moment du départ
- b) quand t = 5s
- c) sur la ligne d'arrivée.