Números Ímpares

Faça um programa que imprima na tela se um número lido do teclado é par ou ímpar. Se for par imprima também o próximo número par, caso contrário imprima o próximo ímpar.

Entrada

Apenas um inteiro.

Saída

A saída conterá duas linhas, uma informando se o número é par ou ímpar e outra mostrando o próximo par ou ímpar, conforme exemplo abaixo.

Exemplo de Entrada	Exemplo de Saída
0	2 é par
	4
2	3 é ímpar
3	5
4	-4 é par
' ±	-2

Média Ponderada

Faça um programa que leia 5 números reais e calcule a **média ponderada** desses números, **usando apenas duas variáveis**.

Entrada

A entrada contém cinco números reais: x_1 , x_2 , x_3 , x_4 e x_5 .

Saída

Calcule e imprima a média m (com 3 casas decimais) usando a fórmula:

$$\mathbf{m} = \frac{1x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5}{15}$$

Exemplo de Entrada	Exemplo de Saída
4	
4	
4	4.0000
4	
4	
0	
1	
2	2.667
3	
4	
1.525	
2	
2	2.702
2	
4.2	

Relógio Digital

Leia do teclado um valor inteiro x, que é o tempo de duração em segundos de um determinado evento, e informe-o expresso no formato: *horash:minutosm:segundoss*.

Entrada

Um único inteiro x.

Saída

Imprima o tempo lido em segundos, convertido para horash:minutosm:segundoss, conforme a tabela abaixo.

Nota

Uma das formas de imprimir mais de um valor/variável com textos no print é separá-los por vírgulas.

Exemplo: print(horas, "h:", minutos, "m:", tempo, "s"). Nesse caso seria apresentado na tela: 1 h: 1 m: 1 s (supondo, é claro, que as três variáveis tenham o valor 1). Isso acontece porque os valores/textos do print são separados (separamos valores e textos usando a vírgula) por um espaço em branco, por padrão. Entretanto, é possível mudar o separador padrão para o que quisermos, usando a keyword sep:

print(horas, "h:", minutos, "m:", tempo, "s", sep=""). Nesse caso, seria apresentado na tela: 1h:1m:1s.

Dica

Existe um operador em Python que faz a divisão inteira entre dois números.

Exemplo de Entrada	Exemplo de Saída
556	0h:9m:16s
1	0h:0m:1s
140153	38h:55m:53s

Troco em Cédulas

Leia um valor inteiro. A seguir, calcule o menor número de notas possíveis (cédulas) no qual o valor pode ser decomposto. As notas consideradas são de 100, 50, 20, 10, 5, 2 e 1. A seguir mostre o **valor lido** e a relação de notas necessárias.

Entrada

A entrada contém um valor inteiro N.

Saída

Imprima o valor lido e, em seguida, a quantidade mínima de notas de cada tipo necessárias, conforme o exemplo fornecido abaixo.

Exemplo de Entrada	Exemplo de Saída	
	576	
	5 nota(s) de R\$ 100,00	
	1 nota(s) de R\$ 50,00	
576	1 nota(s) de R\$ 20,00	
370	0 nota(s) de R\$ 10,00	
	1 nota(s) de R\$ 5,00	
	0 nota(s) de R\$ 2,00	
	1 nota(s) de R\$ 1,00	
	11257	
	112 nota(s) de R\$ 100,00	
	1 nota(s) de R\$ 50,00	
11257	0 nota(s) de R\$ 20,00	
11201	0 nota(s) de R\$ 10,00	
	1 nota(s) de R\$ 5,00	
	1 nota(s) de R\$ 2,00	
	0 nota(s) de R\$ 1,00	
	99	
99	0 nota(s) de R\$ 100,00	
	1 nota(s) de R\$ 50,00	
	2 nota(s) de R\$ 20,00	
	0 nota(s) de R\$ 10,00	
	1 nota(s) de R\$ 5,00	
	2 nota(s) de R\$ 2,00	
	0 nota(s) de R\$ 1,00	

Tipos de Triângulos

Leia 3 valores de ponto flutuante A, B e C e ordene-os de modo que A representa o maior dos 3 lados. A seguir, determine o tipo de triângulo que estes três lados formam, com base nos seguintes casos, sempre escrevendo uma mensagem adequada:

- Se $A \ge B + C$, apresente a mensagem: NAO FORMA TRIANGULO
- Se $A^2 = B^2 + C^2$, apresente a mensagem: **TRIANGULO RETANGULO**
- Se os três lados forem iguais, apresente a mensagem: TRIANGULO EQUILATERO
- Se apenas dois dos lados forem iguais, apresente a mensagem: TRIANGULO ISOSCELES
- Caso contrário, apresente a mensagem: TRIANGULO ACUTANGULO OU OBTUSANGULO

Entrada

A entrada contém 3 valores reais todos maiores que zero. Não terá como entrada um valor tal que o triângulo seja retângulo e isósceles ao mesmo tempo.

Saída

Imprima a classificação do triângulo.

Exemplo de Entrada	Exemplo de Saída
7.0	
5.0	TRIANGULO ISOSCELES
7.0	
6.0	
6.0	TRIANGULO EQUILATERO
6.0	
1.0	
3.0	NAO FORMA TRIANGULO
1.0	

Jogo de Adivinhação

Um pequeno jogo de adivinhação funciona da seguinte forma: você define um número **n** e chama um amigo, que deverá adivinhar o número escolhido. Faça um programa que peça um inteiro e então fique pedindo que um usuário tente adivinhá-lo até que acerte. Em cada tentativa o programa deve dizer se o chute foi maior ou menor que o número certo.

Entrada

A primeira linha de entrada será o inteiro n, que deverá ser adivinhado. As próximas linhas serão os números chutados pelo jogador, que continuará chutando números até que adivinhe o número correto.

Saída

Se o número digitado for menor que n apresente a mensagem: "O número correto é maior.". Se o número digitado for maior que n apresente a mensagem: "O número correto é menor.". Quando o usuário acertar o número imprima: "Parabéns! Você acertou.".

Exemplo de Entrada	Exemplo de Saída
7 5 8 7	O número correto é maior. O número correto é menor. Parabéns! Você acertou.
5 4 5	O número correto é maior. Parabéns! Você acertou.
-2 -1 -3 -2	O número correto é menor. O número correto é maior. Parabéns! Você acertou.

Sequência de Inteiros

Faça um programa que peça ao usuário para digitar uma sequência de inteiros. O programa deve parar quando **0** for digitado, que será desconsiderado na sequência de números lidos. No final, você deve apresentar a quantidade de números lidos, o maior inteiro e a média aritmética simples dos inteiros.

Entrada

A entrada consistirá de uma sequência de inteiros que será terminada quando o valor 0 for digitado, o qual não fará parte da sequência. É possível que a sequência não tenha nenhum número (nesse caso considere 0 como o maior número da sequência).

Saída

Apresente x, y e z, um por linha, onde x, y e z representam, respectivamente, a quantidade de números, o maior número e a média dos inteiros da sequência com 2 casas decimais após a vírgula.

Exemplo de Entrada	Exemplo de Saída
3	
3	
-1	6
-2	3
-4	-1.00
-5	
0	
-1	
-2	E
-3	5 -1
-4	-3.00
-5	-3.00
0	
2	
2	4
-2 -2	2
-2	0.00
0	

Ímpares Consecutivos

Leia um valor inteiro N que é a quantidade de casos de teste que vem a seguir. Cada caso de teste consiste de dois inteiros X e Y. Você deve apresentar a soma de Y ímpares consecutivos a partir de X, inclusive o próprio X se ele for ímpar. Por exemplo: para a entrada 4 5, a saída deve ser 45, que é equivalente à: 5 + 7 + 9 + 11 + 13, para a entrada 7 4, a saída deve ser 40, que é equivalente à: 7 + 9 + 11 + 13. No final imprima também a maior e a menor soma.

Entrada

A primeira linha de entrada é um inteiro N > 0 que é a quantidade de casos de teste que vem a seguir. Cada caso de teste consiste em uma linha contendo dois inteiros \boldsymbol{X} e \boldsymbol{Y} , onde $\boldsymbol{Y} > \boldsymbol{0}$.

Saída

Imprima a soma S dos Y consecutivos números ímpares a partir do valor X, para cada X e Y lidos. Imprima também a maior e a menor soma S, conforme exemplo abaixo.

Exemplo de Entrada	Exemplo de Saída
4	15
-2 5	15
33	-21
-10 3	32
4 4	32
	-21
3	-5
-5 1	-4
-3 2 -10 3	-21
	-4
	-21
2	-8
-5 2	-8
-5 4	-8
0 1	-8

Calendário

Raphael quer fazer um calendário para o mês atual. Para isso, ele desenha um tabela aonde as colunas correspondem às semanas (uma semana são 7 dias consecutivos de Segunda até Domingo), linhas correspondem aos dias da semana, e as células contém datas. Por exemplo, o calendário para Janeiro de 2017 seria como na imagem abaixo:

	2	9	16	23	30
	3	10	17	24	31
	4	11	18	25	
	5	12	19	26	
	6	13	20	27	
	7	14	21	28	
1	8	15	22	29	

Raphael quer saber quantas colunas sua tabela deve ter, dado o mês e o dia da semana do primeiro dia do mês. Você pode fazer um programa para ajudá-lo, assumindo que o ano não é bissexto?

Entrada

A entrada consiste de uma única linha contendo dois inteiros m e d ($1 \le m \le 12, 1 \le d \le 7$), o número do mês e o dia da semana do primeiro dia do mês (1 é Segunda, 7 é Domingo).

Saída

Imprima um único inteiro: o número de colunas que a tabela terá. O primeiro exemplo corresponde a Janeiro de 2017, mostrado na figura acima.

Exemplo de Entrada	Exemplo de Saída
1 7	6
11	5
11 6	5

O Jogo

Leia a hora inicial, minuto inicial, hora final e minuto final de um jogo. A seguir calcule a duração do jogo, considerando que o jogo pode acabar em um dia e terminar em outro, tendo uma duração máxima de 24 horas.

Entrada

Quatro números inteiros representando a hora de início e fim do jogo.

Saída

Mostre a seguinte mensagem: "O jogo durou XX hora(s) e YY minuto(s)."

Exemplo de Entrada	Exemplo de Saída
7 5 7 4	O jogo durou 23 hora(s) e 59 minuto(s).
7777	O jogo durou 24 hora(s) e 0 minuto(s).
7 10 8 9	O jogo durou 0 hora(s) e 59 minuto(s).

A Mais Longa Subsequência Incomum

Uma subsequência de uma string é uma sequência de caracteres que aparece na mesma ordem da string. As ocorrências não precisam ser consecutivas, por exemplo, "ac", "bc", "abc" e "a" são subsequências da string "abc", enquanto as strings "abbc" e "acb" não são. A string vazia é subsequência de qualquer string. Qualquer string é subsequência dela mesmo.

Dada duas strings a e b, encontre o tamanho da maior subsequência incomum, que é a maior string que é subsequência de uma das duas e não é subsequência da outra.

Entrada

A primeira linha contém a string a e a segunda linha contém a string b. As duas strings não são vazias e são compostas apenas por letras minúsculas.

Saída

Se não houver nenhuma subsequência incomum, imprima "-1". Caso contrário imprima o tamanho da maior subsequência incomum de a e b.

Dica

Existe uma função em Python que retorna o tamanho de uma string qualquer dada como parâmetro.

Nota

No primeiro exemplo você pode escolher "defgh" da string b como a maior subsequência da string que não aparece como subsequência da string a.

Exemplo de Entrada	Exemplo de Saída
abcd	5
defgh	J
a	_1
a	-1
aaaaaaaaacccccccc	20
aaaaaaaaadddddddddd	20