

- a Find the $Cov(U_1, U_2)$ in terms of the variances of Y_1 and Y_2 .
- **b** Find an expression for the coefficient of correlation between U_1 and U_2 .
- c Is it possible that $Cov(U_1, U_2) = 0$? When does this occur?

5.141	Let Y_1 have an exponential distribution with mean λ and the conditional density of Y_2 given
	$Y_1 = y_1$ be

$$f(y_2 \mid y_1) = \begin{cases} 1/y_1, & 0 \le y_2 \le y_1, \\ 0, & \text{elsewhere.} \end{cases}$$

Find $E(Y_2)$ and $V(Y_2)$, the unconditional mean and variance of Y_2 .