

MITx 6.86x

Machine Learning with Python-From Linear Models to Deep Learning

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Resources</u>

☆ Course / Unit 4. Unsupervised Learning (2 weeks) / Lecture 13. Clustering 1

8. The K-Means Algorithm: The Specifics

 \square Bookmark this page

Exercises due Apr 19, 2023 08:59 -03 Completed

The K-Means Algorithm: The Specifics

Video

♣ Download video file

Transcripts

- ▲ Download SubRip (.srt) file
- **▲** Download Text (.txt) file

Finding the Representative z

2/3 points (graded)

In this problem, we will find the "best" representative z_j for the cluster $\{x^{(i)}\}_{i\in\mathbb{C}_i}$.

First, compute the following gradient:

$$abla_{z_j} \left(\sum_{i \in \mathbb{C}_j} \left\| x^{(i)} - z_j
ight\|^2
ight).$$

$$\sum_{i\in\mathbb{C}_{j}}-2\left(x^{\left(i
ight) }-z_{j}
ight)$$

, assign each data point

find the best representatives

to the closest

, so that

, i.e. find

1. Given

2. Given

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Torms of Sorvice & Honor Code

So if K=1 and we just want one cluster and we randomly initiate z1, does z1 change around to reduce the cos

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>