Sistemas Operativos

Práctica 1: Procesos y API del SO

Notas preliminares

■ Los ejercicios marcados con el símbolo ★ constituyen un subconjunto mínimo de ejercitación. Sin embargo, aconsejamos fuertemente hacer todos los ejercicios.

Parte 1 – Estado y operaciones sobre procesos

Ejercicio 1

¿Cuáles son los pasos que deben llevarse a cabo para realizar un cambio de contexto?

Ejercicio 2 ★

El PCB (Process Control Block) de un sistema operativo para una arquitectura de 16 bits es

a) Implementar la rutina Ke_context_switch(PCB* pcb_0, PCB* pcb_1), encargada de realizar el cambio de contexto entre dos procesos (cuyos programas ya han sido cargados en memoria) debido a que el primero ha consumido su quantum. pcb_0 es el puntero al PCB del proceso a ser desalojado y pcb_1 al PCB del proceso a ser ejecutado a continuación. Para implementarla se cuenta con un lenguaje que posee acceso a los registros del procesador R0, R1, ..., R15, y las siguientes operaciones:

b) Identificar en el programa escrito en el punto anterior cuáles son los pasos del ejercicio 1.

Ejercicio 3

Describir la diferencia entre un system call y una llamada a función de biblioteca.

Ejercicio 4 ★

En el esquema de transición de estados que se incluye a continuación:

- a) Dibujar las puntas de flechas que correspondan. También puede agregar las transiciones que crea necesarias entre los estados disconexos y el resto.
- b) Explicar qué causa cada transición y qué componentes (*scheduler*, proceso, etc.) estarían involucrados.

Ejercicio 5 ★

Un sistema operativo ofrece las siguientes llamadas al sistema:

pid fork()	Crea un proceso exactamente igual al actual y devuelve	
	el nuevo process ID en el proceso padre y 0 en el proceso	
	hijo.	
<pre>void wait_for_child(pid child)</pre>	Espera hasta que el <i>child</i> indicado finalice su ejecución.	
<pre>void exit(int exit_code)</pre>	de) Indica al sistema operativo que el proceso actual ha	
	finalizado su ejecución.	
<pre>void printf(const char *str)</pre>	Escribe un <i>string</i> en pantalla.	

- a) Utilizando únicamente la llamada al sistema fork(), escribir un programa tal que construya un árbol de procesos que represente la siguiente genealogía: Abraham es padre de Homer, Homer es padre de Bart, Homer es padre de Lisa, Homer es padre de Maggie. Cada proceso debe imprimir por pantalla el nombre de la persona que representa.
- b) Modificar el programa anterior para que cumpla con las siguientes condiciones: 1) Homer termine sólo después que terminen Bart, Lisa y Maggie, y 2) Abraham termine sólo después que termine Homer.

Ejercicio 6

El sistema operativo del punto anterior es extendido con la llamada al sistema void exec(const char *arg). Esta llamada al sistema reemplaza el programa actual por el código localizado en el string (char *arg). Implementar una llamada al sistema que tenga el mismo comportamiento que la llamada void system(const char *arg), usando las llamadas al sistema ofrecidas por el sistema operativo. Nota: Revisar man system, como ayuda.

Ejercicio 7 (Interfaz del SO POSIX) ★

Programar en C el ejercicio 5b y 6.

Ejercicio 8 (Interfaz del SO POSIX) ★

Veamos el siguiente fragmento de código de un fork

```
int main(int argc, char const *argv[]){
  int dato = 0;
  pid_t pid = fork();
  //si no hay error, pid vale 0 para el hijo
  //y el valor del process id del hijo para el padre
  if (pid == -1) exit(EXIT_FAILURE);
  //si es -1, hubo un error
  else if (pid == 0) {
    for (int i=0; i< 3; i++) {
      dato++;
      printf("Dato hijo: %d\n", dato);
    }
  }
  else {
    for (int i=0; i< 3; i++) {
      printf("Dato padre: %d\n", dato);
  }
  exit(EXIT_SUCCESS); //cada uno finaliza su proceso
}
```

¿Son iguales los resultados mostrados de la variable dato para el padre y para el hijo? ¿Qué está sucediendo?

Ejercicio 9 (Uso de strace) ★

Dado el siguiente fragmento de strace. Escribir el código correspondiente.

```
execve("./programa", ["./programa"], 0x7fff6ac6fab8 /* 50 vars */) = 0
arch_prctl(0x3001 /* ARCH_??? */, 0x7ffe6cd07d90) = -1 EINVAL (Argumento inválido)
brk(NULL)
                                        = 0x2460000
brk(0x24611c0)
                                        = 0x24611c0
arch_prctl(ARCH_SET_FS, 0x2460880)
uname({sysname="Linux", nodename="compu", ...}) = 0
readlink("/proc/self/exe", "/so/2"..., 4096) = 88
brk(0x24821c0)
                                        = 0x24821c0
brk(0x2483000)
                                        = 0x2483000
mprotect(0x4be000, 12288, PROT_READ)
                                        = 0
clone(child_stack=NULL, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLDstrace: Proc
, child_tidptr=0x2460b50) = 10552
[pid 10551] write(1, "Soy Juan\n\0", 10) = 10
[pid 10552] write(1, "Soy Julieta\n", 12 <unfinished ...>
[pid 10551] clock_nanosleep(CLOCK_REALTIME, 0, {tv_sec=1, tv_nsec=0}, <unfinished ...>
[pid 10552] <... write resumed>)
                                        = 12
[pid 10552] clock_nanosleep(CLOCK_REALTIME, 0, {tv_sec=1, tv_nsec=0}, <unfinished ...>
[pid 10551] <... clock_nanosleep resumed>0x7ffe6cd07ca0) = 0
[pid 10551] wait4(-1, <unfinished ...>
```

```
[pid 10552] <... clock_nanosleep resumed>0x7ffe6cd07ca0) = 0
[pid 10552] clone(child_stack=NULL, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD
, child_tidptr=0x2460b50) = 10557
[pid 10557] write(1, "Soy Jennifer\n\0", 14 <unfinished ...>
[pid 10552] exit_group(0)
                                        = ?
[pid 10557] <... write resumed>)
                                        = 14
[pid 10557] clock_nanosleep(CLOCK_REALTIME, 0, {tv_sec=1, tv_nsec=0},
[pid 10552] +++ exited with 0 +++
[pid 10551] <... wait4 resumed>[{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 10552
[pid 10551] --- SIGCHLD {si_signo=SIGCHLD, si_code=CLD_EXITED, si_pid=10552, si_uid=1000,
[pid 10551] clone(child_stack=NULL, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD
strace: Process 10558 attached
[pid 10551] exit_group(0)
[pid 10558] write(1, "Soy Jorge\n", 10) = 10
[pid 10558] clock_nanosleep(CLOCK_REALTIME, 0, {tv_sec=1, tv_nsec=0}, <unfinished ...>
[pid 10551] +++ exited with 0 +++
[pid 10557] <... clock_nanosleep resumed>0x7ffe6cd07ca0) = 0
[pid 10557] exit_group(0)
[pid 10558] <... clock_nanosleep resumed>0x7ffe6cd07ca0) = 0
[pid 10558] exit_group(0)
                                        = ?
[pid 10557] +++ exited with 0 +++
+++ exited with 0 +++
```

Ejecutar strace del código que realizó y contrastarlos. ¿Qué comando exacto utilizó para strace

Parte 2 – Comunicación entre procesos

Ejercicio 10 ★

Un nuevo sistema operativo ofrece las siguientes llamadas al sistema para efectuar comunicación entre procesos:

<pre>void bsend(pid dst, int msg)</pre>	Envía el valor msg al proceso dst.
<pre>int breceive(pid src)</pre>	Recibe un mensaje del proceso src.

Ambas llamadas al sistema son bloqueantes y la cola temporal de mensajes es de capacidad *cero*. A su vez, este sistema operativo provee la llamada al sistema pid get_current_pid() que devuelve el process id del proceso que invoca dicha llamada.

- a) Escribir un programa que cree un segundo proceso, para luego efectuar la siguiente secuencia de mensajes entre ambos:
 - 1. Padre envía a Hijo el valor 0,
 - 2. Hijo envía a Padre el valor 1,
 - 3. Padre envía a Hijo el valor 2,
 - 4. *Hijo* envía a *Padre* el valor 3, etc...
- b) Modificar el programa anterior para que cumpla con las siguientes condiciones: 1) *Padre* cree dos procesos hijos en lugar de uno, y 2) se respete esta nueva secuencia de mensajes entre los tres procesos.

- 1. Padre envía a Hijo_1 el valor 0,
- 2. $Hijo_1$ envía a $Hijo_2$ el valor 1,
- 3. Hijo_2 envía a Padre el valor 2,
- Padre envía a Hijo_1 el valor 3, ...hasta llegar al valor 50.

Ejercicio 11 ★

El siguiente programa se ejecuta sobre dos procesos: uno destinado a ejecutar el procedimiento cómputo_muy_difícil_1() y el otro destinado a ejecutar el procedimiento cómputo_muy_difícil_2(). Como su nombre lo indica, ambos procedimientos son sumamente costosos y duran prácticamente lo mismo. Ambos procesos se conocen mutuamente a través de las variables pid_derecha y pid_izquierda.

```
int result;

void proceso_izquierda() {
  result = 0;
  while (true) {
    bsend(pid_derecha, result);
    result = cómputo_muy_dificil_1();
  }
}

void proceso_derecha() {
  while(true) {
    result = cómputo_muy_dificil_2();
    int left_result = breceive(pid_izquierda);
    printf("%s %s", left_result, result);
  }
}
```

El hardware donde se ejecuta este programa cuenta con varios procesadores. Al menos dos de ellos están dedicados a los dos procesos que ejecutan este programa. El sistema operativo tiene una cola de mensajes de capacidad cero. Las funciones bsend() y breceive() son las mismas descriptas en el ejercicio anterior (ambas bloqueantes).

a) Sea la siguiente secuencia de uso de los procesadores para ejecutar los procedimientos costosos.

Tiempo	Procesador 1	Procesador 2
1	cómputo_muy_difícil_1	cómputo_muy_difícil_2
2	cómputo_muy_difícil_1	cómputo_muy_difícil_2
3	cómputo_muy_difícil_1	cómputo_muy_difícil_2

Explicar por qué esta secuencia no es realizable en el sistema operativo descripto. Escribir una secuencia que sí lo sea.

b) ¿Qué cambios podría hacer *al sistema operativo* de modo de lograr la secuencia descripta en el punto anterior?

Ejercicio 12

Mencionar y justificar qué tipo de sistema de comunicación (basado en memoria compartida o en pasaje de mensajes) sería mejor usar en cada uno de los siguientes escenarios:

- a) Los procesos cortarBordes y eliminarOjosRojos necesitan modificar un cierto archivo foto.jpg al mismo tiempo.
- b) El proceso cortarBordes se ejecuta primero y luego de alguna forma le avisa al proceso eliminarOjosRojos para que realice su parte.
- c) El proceso cortarBordes se ejecuta en una casa de fotos. El proceso eliminarOjosRojos es mantenido en tan estricto secreto que la computadora que lo ejecuta se encuentra en la bóveda de un banco.

Ejercicio 13 ★

Un sistema operativo provee las siguientes llamadas al sistema para efectuar comunicación entre procesos mediante pasaje de mensajes.

<pre>bool send(pid dst, int *msg)</pre>	Envía al proceso dst el valor del puntero.
	Retorna false si la cola de mensajes
	estaba llena.
<pre>bool receive(pid src, int *msg)</pre>	Recibe del proceso src el valor del puntero.
	Retorna false si la cola de mensajes
	estaba vacía.

- a) Modificar el programa del ejercicio 12 para que utilice estas llamadas al sistema.
- b) ¿Qué capacidad debe tener la cola de mensajes para garantizar el mismo comportamiento?

Ejercicio 14

¿Qué sucedería si un sistema operativo implementara *pipes* como único sistema de comunicación interprocesos? ¿Qué ventajas tendría incorporar memoria compartida? ¿Y sockets?

Ejercicio 15

Pensar un escenario donde tenga sentido que dos procesos (o aplicaciones) tengan entre sí un canal de comunicaciones bloqueante y otro no bloqueante. Describir en pseudocódigo el comportamiento de esos procesos.

Ejercicio 16 ★

Escribir el código de un programa que se comporte de la misma manera que la ejecución del comando "ls -al | wc -1" en una *shell*. No está permitido utilizar la función **system**, y cada uno de los programas involucrados en la ejecución del comando deberá ejecutarse como un subproceso.

Ejercicio 17 ★

Implementar el inciso b del ejercicio 11 usando pipes en C. Determinar si el comportamiento del intercambio de mensajes obtenido es igual al especificado por las funciones bsend y breceive.

Ejercicio 18

Se desea hacer un programa que corra sobre una arquitectura con 8 núcleos y calcule promedios por fila de un archivo de entrada que contiene una matriz de enteros positivos de $N \times M$. Se quiere que el promedio de cada fila sea calculado en un proceso separado, con un máximo de 8 procesos simultáneos, y que los procesos se comuniquen utilizando *pipes*. Cada proceso debe recibir una fila para calcular del proceso padre, quien las distribuirá entre sus hijos siguiendo una política *round-robin*. Finalmente, la salida del programa debe mostrarse por la salida estándar, ordenada de menor a mayor. Por ejemplo, si el programa recibe como entrada un archivo con la siguiente matriz (con N=3 y M=4):

$$\left(\begin{array}{ccccc}
4 & 4 & 2 & 2 \\
1 & 2 & 8 & 9 \\
1 & 1 & 1 & 1
\end{array}\right)$$

la salida debe ser $(1 \ 3 \ 5)^{\top}$.

Escribir la implementación del programa. Se puede asumir que N, M, el nombre del archivo y la cantidad de núcleos se encuentran hardcodeados, y que se cuenta con las siguientes funciones auxiliares:

- int cargar_fila(const int fd, int* lista): lee una línea del archivo indicado por el file descriptor fd como una lista de enteros, y la almacena en lista. Devuelve 1 en caso de éxito, 0 si no quedan más filas.
- int calcular_promedio(const int *lista): toma la lista de enteros indicada por lista y devuelve su promedio utilizando división entera.
- void sort(char *s): toma la cadena de texto indicada por s y conformada por un número por línea, y la modifica de forma que quede ordenada de menor a mayor (similar a ejecutar sort -n en UNIX).
- int dup2(int oldfd, int newfd): linkea los file descriptors newfd y oldfd, de forma tal que realizar una operación sobre newfd es equivalente a hacerla sobre oldfd.

Ejercicio 19 ★

Se cuenta con una operación computacional costosa que se desea repartir entre N subprocesos.

Para ello, el proceso padre dispone de una función *int dameNumero(int pid)* que dado el **PID** de un hijo le devolverá un número secreto. Este número secreto deberá ser enviado al hijo correspondiente utilizando pipes. Esta función solo puede ser llamada por el padre.

Cada subproceso deberá encargarse de realizar el cómputo del número correspondiente utilizando para ello la función *int calcular(int numero)*. El número que deben utilizar como parámetro es el resultado de la función *dameNumero* que el padre les envió.

Los subprocesos ejecutarán la función calcular y, a medida que vayan terminando, le informarán el resultado al padre.

El proceso padre deberá llamar a la función void informarResultado(int numero, int resultado), la cual recibirá como parámetros el número sobre el que se ejecutó el cálculo, y el resultado que éste produjo. Esta función solamente podrá ser llamada desde el proceso padre.

La función *informarResultado* deberá ser llamada en el mismo orden en que los procesos fueron terminando los distintos cómputos.

Se implementó una versión de este programa, en la cual el proceso padre realiza polling sobre los hijos para ver si terminaron, es decir, los va recorriendo en orden y para cada hijo le pregunta si terminó, en caso de responder afirmativamente, llama a la función *informarResultado*.

```
void ejecutarHijo (int i, int pipes[][2]) {
    // ...
}
int main(int argc, char* argv[]){
```

```
if (argc< 2) {
    printf ("Debe ejecutar con la cantidad de hijos como parametro\n");
return 0; }
int N = atoi(argv[1]);
int pipes[N*2][2];
for ( int i=0; i< N*2; i++){
    pipe(pipes[i]); }
for (int i=0; i< N; i++) {</pre>
    int pid = fork ();
    if (pid==0) {
        ejecutarHijo(i,pipes);
        return 0;
    } else {
        int numero = dameNumero(pid) ;
        write(pipes[i][1], &numero, sizeof(numero)); } }
int cantidadTerminados = 0;
char hijoTermino [N] = {0};
while (cantidadTerminados < N) {</pre>
    for ( int i=0; i< N; i++) {
        if (hijoTermino[i]) {
        continue; }
        char termino = 0;
        write(pipes[i][1], &termino, sizeof(termino));
        read(pipes[N+i][0], &termino, sizeof(termino));
        if (termino) {
            int numero;
            int resultado ;
            read(pipes[N+i][0], &numero, sizeof(numero));
            read(pipes[N+i][0], &resultado, sizeof(resultado));
            informarResultado(numero, resultado);
            hijoTermino[i] = 1;
            cantidadTerminados++; } } }
wait(NULL) ;
return 0; }
```

Resolver la función ejecutarHijo() utilizando pipes y señales, respetando el siguiente comportamiento. Para poder responder al polling del padre, cada hijo deberá crear un segundo subproceso que será el encargado de ejecutar la función calcular. Este subproceso (nieto) le avisará a su padre cuando haya terminado mediante una señal, comunicándole además el resultado. El proceso hijo una vez que sepa que su proceso nieto terminó, responderá afirmativamente al polling del padre, enviándole el número y el resultado. A efectos del ejercicio y para evitar las posibles condiciones de carrera ocasionadas por el polling, se asumirá que dos llamados concurrentes a la función calcular no pueden terminar a la vez ni tampoco cercanos en el tiempo, sino con varios minutos de diferencia entre uno y otro.

Ejercicio 20

Se tiene un programa que cada vez que se lo ejecuta (sin parámetros) imprime lo siguiente a la salida estándar:

```
¿Cuál es el significado de la vida?

Dejame pensarlo...

Ya sé el significado de la vida.

Mirá vos. El significado de la vida es 42.
```

y al correrlo con strace se obtiene la siguiente salida (se omiten las partes irrelevantes):

```
execve("./estrella", ["./estrella"], [/* 33 \text{ vars } */]) = 0
                                                                    [6590] nanosleep(\{5, 0\}, 0x7ffdd8790e00) = 0
                                                                    [6590] write(1, "Ya sé el significado de la vida"..., 34) = 34
[6590] write(4, "42", 2) = 2
pipe([3, 4])
                                         = 0
clone(child_stack=0, flags=CLONE_CHILD_CLEARTID|
                                                                                                       = 2
= 0
                                                                    [6590] kill(6589, SIGINT)
     CLONE_CHILD_SETTID|SIGCHLD, child_tidptr=0x15acb50) = 6590
[6590] close(3)
                                                                    [6589] --- SIGINT {si_signo=SIGINT, si_code=SI_USER, si_pid
                                                                          =6590} ---
[6590] getppid( <unfinished ...>
[6589] close(4)
                                    = 0
                                                                    [6590] rt_sigreturn()
[6589] rt_sigaction(SIGINT, {0x40105e, [INT], ...}, <
                                                                    [6589] read(3, "42", 3)
                                                                                                        = 2
                                                                    [6589] write(1, "Mirá vos. El significado de la "..., 44) = 44
     unfinished ...>
[6590] <... getppid resumed> )
                                   = 6589
                                                                     [6589] write(1, "¡Bang Bang, estás liquidado!\n", 31) = 31
[6589] <... rt_sigaction resumed> {SIG_DFL, [], 0}, 8) = 0
                                                                    [6589] kill(6590, SIGHUP <unfinished ...>
[6590] rt_sigaction(SIGINT, {0x4010ea, [INT], ...},
                                                                    [6590] --- SIGHUP {si_signo=SIGHUP, si_code=SI_USER, si_pid
     unfinished ...>
                                                                          =6589}
                                                                    [6589] <... kill resumed> )
[6589] rt_sigprocmask(SIG_BLOCK, [CHLD], <unfinished ...>
                                                                                                        = 0
[6590] <... rt_sigaction resumed> {SIG_DFL, [], 0}, 8) = 0
                                                                    [6589] rt\_sigprocmask(SIG\_BLOCK, [CHLD], [INT], 8) = 0
                                                                    [6590] write(1, "Me voy a mirar crecer las flores"..., 46 <
[6589] < ... rt_sigprocmask resumed > [], 8) = 0
[6590] rt_sigaction(SIGHUP, {0x40115d, [HUP], ...}, <
                                                                          unfinished ...>
     unfinished ...>
                                                                    [6589] rt_sigaction(SIGCHLD, NULL, {SIG_DFL, [], 0}, 8) = 0
[6589] rt_sigaction(SIGCHLD, NULL, <unfinished ...>
                                                                    [6589] rt_sigprocmask(SIG_SETMASK, [INT], <unfinished ...>
[6590] <... rt_sigaction resumed> {SIG_DFL, [], 0}, 8) = 0
                                                                     [6590] <... write resumed> )
                                                                                                        = 46
[6589] <... rt_sigaction resumed> {SIG_DFL, [], 0}, 8) = 0
                                                                     [6589] <... rt_sigprocmask resumed> NULL, 8) = 0
[6589] rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
                                                                     [6590] close(4)
[6589] nanosleep(\{1, 0\}, 0x7ffdd87913d0) = 0
                                                                     [6590] exit_group(0)
[6589] fstat(1, ...) = 0
                                                                     [6589] nanosleep({10, 0}, <unfinished ...>
[6589] mmap(NULL, 4096, PROT_READ|PROT_WRITE, ...) = 0x7f4
                                                                    [6590] +++ exited with 0 +++
[6589] write(1, "¿Cuál es el significado de la "..., 38) = 38
                                                                    <... nanosleep resumed> {10, 32866})
[6589] kill(6590, SIGINT <unfinished ...>
                                                                          ERESTART_RESTARTBLOCK (Interrupted by signal)
[6590] --- SIGINT {si_signo=SIGINT, si_code=SI_USER, si_pid
                                                                    --- SIGCHLD {si_signo=SIGCHLD, si_code=CLD_EXITED, si_pid=6590,
     =6589}
                                                                           si_status=0, si_utime=100, si_stime=0}
[6589] <... kill resumed> )
                                                                    restart_syscall(<... resuming interrupted call ...>) = 0
[6590] fstat(1, ...\}) = 0
                                                                    write(1, "Te voy a buscar en la oscuridad.\n", 33) = 33
[6590] mmap(NULL, 4096, PROT_READ|PROT_WRITE, ...) = 0x7f4
                                                                    close(3)
[6590] write(1, "Dejame pensarlo...\n", 19) = 19
                                                                    {\tt exit\_group(0)}
[6590] rt_sigprocmask(SIG_BLOCK, [CHLD], [INT], 8) = 0
                                                                    +++ exited with 0 +++
[6590] rt_sigaction(SIGCHLD, NULL, {SIG_DFL, [], 0}, 8) = 0
[6590] rt_sigprocmask(SIG_SETMASK, [INT], NULL, 8) = 0
```

- a) Identificar qué funciones de la libc generan cada una de las syscalls observadas.
- b) Escribir un programa que posea un comportamiento similar al observado. Es decir que, al ejecutarlo, produzca la misma salida, y que la secuencia de *syscalls* observadas al correrlo con **strace** sea la misma que se muestra aquí.