3.4 NAND / NOR (universal gates)

NAND

A **NAND** gate is the opposite (the NOT, hence the "N") of an AND gate, outputting 0 if all inputs are 1s; else the output is 1.

O 0

A NAND gate is a universal gate

NAND gates are popular due to having a simpler CMOS transistor circuit implementation than AND gates: Recall that an AN from a NAND transistor circuit followed by a NOT circuit.

Furthermore, NAND gates are popular due to being a universal gate. A *universal gate* is a single gate type that can impleme combinational circuit. NAND can implement NOT, AND, and OR, as shown below, and is thus universal.

PARTICIPATION ACTIVITY	3.4.3: Universal gates.	_
1) A NAND ga O True O False	te is a universal gate.	~
2) A NAND ga gate.O TrueO False	te cannot implement a NOT	•
_	e output of a NAND gate n AND gate.	~
4) Inverting the produces aO TrueO False		•

Converting to NAND gates

NAND being a universal gate enables chip makers to pre-fabricate a chip consisting of millions of NAND gates. Any circuit can be implemented simply by adding wires. Pre-fabricating the chip with AND, OR, and NOT gates would involve complexing how many of each gate to pre-fabricate, and where to place each gate type. Using NAND is much simpler.

A chip with pre-fabricated gates is sometimes called a gate-array ASIC. ASIC is short for Application-Specific Integrated Ci

Converting an AND/OR/NOT circuit to a NAND-only circuit enables implementation using fewer transistors as well as enab implementation on a gate-array ASIC. The conversion can be done simply by replacing each AND, OR, and NOT gate by the structure of NAND gates, then removing double-inversions.

PARTICIPATION

NOR

A **NOR** gate is the opposite of an OR gate, outputting 0 if any of the inputs are 1s; else the output is 1.

A discussion analogous to the above NAND discussion exists for NOR. Such discussion is omitted here. Briefly, NOR's transfimpler than OR's. NOR is also a universal gate. NOT: (a + a)' = a'a' = a' (NOR with inputs tied together). OR: ((a + b)')' = (a + b)' = a''b'' = ab (NOR with each input NOTed).

PARTICIPATION ACTIVITY 3.4.7: NOR gates.	
1) 0 NOR 0 = ? O 1 O 0	
2) 1 NOR 1 = ? O 1 O 0	
3) 0 NOR 1 NOR 1=? O 1 O 0	
4) A NOR gate is a universal gate.O TrueO False	
5) An AND gate is a universal gate.O TrueO False	
6) A NOT gate is a universal gate.O TrueO False	