

Attacks on TCP/IP and DNS

Agenda

- ♦ Brief Introduction to TCP/IP network
- ♦ Security Issues in TCP/IP
- ♦ DNS Security
- ◆ Router Security

Internet Infrastructure

- ◆ TCP/IP for packet routing and connections
- ♦ Border Gateway Protocol (BGP) for route discovery
- ◆ Domain Name System (DNS) for IP address discovery

TCP Protocol Stack

Data Formats

IP (Internet Protocol)

- **♦** Connectionless
 - Unreliable, "best-effort" protocol
- Uses numeric addresses for routing
 - Typically several hops in the route

User Datagram Protocol

- ♦ IP provides routing
 - IP address gets datagram to a specific machine
- UDP separates traffic by port
 - Destination port number gets UDP datagram to particular application process, e.g., 128.3.23.3, 53
 - Source port number provides return address
- Minimal guarantees (... mice and elephants)
 - No acknowledgment
 - No flow control
 - No message continuation

Transmission Control Protocol

- Sender: break data into packets
 - Sequence number is attached to every packet
- Receiver: reassemble packets in correct order
 - Acknowledge receipt; lost packets are re-sent
- Connection state maintained on both sides

ICMP (Control Message Protocol)

- Provides feedback about network operation
 - "Out-of-band" messages carried in IP packets
 - Error reporting, congestion control, reachability, etc.
- Example messages:
 - Destination unreachable
 - Time exceeded
 - Parameter problem
 - Redirect to better gateway
 - Reachability test (echo / echo reply)
 - Message transit delay (timestamp request / reply)

Agenda

- Brief Introduction to TCP/IP network
- ♦ Security Issues in TCP/IP
- ♦ DNS Security
- ◆ Router Security

Security Issues in TCP/IP

- Network packets pass by untrusted hosts
 - Eavesdropping (packet sniffing)
- ♦ Bug in ICMP implementation: Ping of Death
- ♦ ARP info is public: ARP Poisoning
- ♦ IP addresses are public: Smurf attacks
- ◆ TCP connection requires state: SYN flooding
- ♦ TCP state is easy to guess
 - TCP spoofing and connection hijacking
- TCP Congestion Control
 - Trick sender forget congestion control
- ♦ UDP data flooding

Packet Sniffing

- Many applications send data unencrypted
 - ftp, telnet send passwords in the clear
- Network interface card (NIC) in "promiscuous mode" reads all passing data
- ♦ Also in Switch, Router . . .

Solution: encryption (e.g., IPSec), improved routing

Problem with Switches? Flood it!

- ♦ The switch stores MAC addresses locally
- Dsniff keeps sending the switch bogus MAC address
- Eventually the switches memory fills and it turns into a hub
- ♦ Then, just run any sniffer you want to get data from the network

Security Issues in TCP/IP

- Network packets pass by untrusted hosts
 - Eavesdropping (packet sniffing)
- ♦ Bug in ICMP implementation: Ping of Death
- ♦ ARP info is public: ARP Poisoning
- ♦ IP addresses are public: Smurf attacks
- ◆ TCP connection requires state: SYN flooding
- ♦ TCP state is easy to guess
 - TCP spoofing and connection hijacking
- TCP Congestion Control
 - Trick sender forget congestion control
- ♦ UDP data flooding

"Ping of Death"

- ◆ If an old Windows machine received an ICMP packet with a payload longer than 64K, machine would crash or reboot
 - Programming error in older versions of Windows
 - Packets of this length are illegal, so programmers of Windows code did not account for them

Solution: patch OS, filter out ICMP packets

Security Issues in TCP/IP

- Network packets pass by untrusted hosts
 - Eavesdropping (packet sniffing)
- ♦ Bug in ICMP implementation: Ping of Death
- ♦ ARP info is public: ARP Poisoning
- ♦ IP addresses are public: Smurf attacks
- ◆ TCP connection requires state: SYN flooding
- ♦ TCP state is easy to guess
 - TCP spoofing and connection hijacking
- TCP Congestion Control
 - Trick sender forget congestion control
- ♦ UDP data flooding

ARP Poisoning

- ♦ ARP is stateless (we all knows how it works and what the problems are)
- Some operating systems do not update an entry if it is not already in the cache, others accept only the first received reply (e.g. Solaris)
- ♦ The attacker can forge spoofed ICMP packets to force the host to make an ARP request. Immediately after the ICMP it sends the fake ARP reply

ARP Poisoning: The Scenario

ARP Poisoning: Tools

- ettercap (http://ettercap.sourceforge.net)
 - Poisoning
 - Sniffing
 - Hijacking
 - Filtering
 - SSH v.1 sniffing (transparent attack)
- ♦ dsniff (http://www.monkey.org/~dugsong/dsniff)
 - Poisoning
 - Sniffing
 - SSH v.1 sniffing (proxy attack)

ARP Poisoning: Countermeasures

- ♦ YES passive monitoring (arpwatch)
- ♦ YES active monitoring (ettercap)
- ♦ YES IDS (detect but not avoid)
- ♦ YES Static ARP entries (avoid it)
- ♦ YES Secure-ARP (public key authentication)

Security Issues in TCP/IP

- Network packets pass by untrusted hosts
 - Eavesdropping (packet sniffing)
- Bug in ICMP implementation: Ping of Death
- ♦ ARP info is public: ARP Poisoning
- ♦ IP addresses are public
 - Smurf attacks, Source Routing
- ◆ TCP connection requires state: SYN flooding
- ♦ TCP state is easy to guess
 - TCP spoofing and connection hijacking
- TCP Congestion Control
 - Trick sender forget congestion control
- ◆ UDP data flooding

Spoofing with Source Routing

- Source routing allows the attacker to specify a certain path the packet will take on the network
- "loose source routing" allows the attacker to tell the computer some hops but not all

Source IP Address:

Destination IP Address:

Router(Partial Router): x, x, x, x, x

Spoofing with Source Routing

- ◆ The attacker sets source routed packets from a fake source IP (trusted by the victim) to the victim
- ♦ Include the attackers IP address as one of the hops
- ♦ When the victim's computer tries to establish a three-wayhandshake the attacker intercepts the SYN-ACK and submits its own ACK
- ♦ An open connection has been established between the attacker and victim, the attacker can view the responses from the victim

Security Issues in TCP/IP

- Network packets pass by untrusted hosts
 - Eavesdropping (packet sniffing)
- ♦ Bug in ICMP implementation: Ping of Death
- ♦ ARP info is public: ARP Poisoning
- ♦ IP addresses are public: Smurf attacks
- ♦ TCP connection requires state: SYN flooding
- ♦ TCP state is easy to guess
 - TCP spoofing and connection hijacking
- TCP Congestion Control
 - Trick sender forget congestion control
- ♦ UDP data flooding

TCP Handshake

SYN Flooding Attack SYN_{C1} Listening... Spawn a new thread, SYN_{C2} store connection data SYN_{C3} ... and more ... and more SYN_{C4} ... and more SYN_{C5} ... and more ... and more

SYN Flooding Explained

- Attacker sends many connection requests with spoofed source addresses
- Victim allocates resources for each request
 - Connection state maintained until timeout
 - Fixed bound on half-open connections
- ♦ Once resources exhausted, requests from legitimate clients are denied
- ◆ This is a classic denial of service (DoS) attack
 - Common pattern: it costs nothing to TCP initiator to send a connection request, but TCP responder must allocate state for each request (asymmetry!)

Preventing Denial of Service

- ◆ If SYN queue is full, delete random entry
 - Legitimate connections have a chance to complete
 - Fake addresses will be eventually deleted
- Easy to implement

Another Defense: SYN-ACK Cookies

- ◆ DoS is caused by asymmetric state allocation
 - If server opens a state for each connection attempt, attacker can initiate thousands of connections from bogus or forged IP addresses
- ♦ Cookies ensure that the server is stateless until client produced at least 2 messages

TCP Handshake

Examples of SYN-ACK Cookies

- ♦ SYN cookies are now a standard part of Linux and FreeBSD.
 - But, they are not enabled by default under Linux.
 - To enable, add the following line to your boot scripts
 - echo 1 > /proc/sys/net/ipv4/tcp_syncookies.

Security Issues in TCP/IP

- Network packets pass by untrusted hosts
 - Eavesdropping (packet sniffing)
- ♦ Bug in ICMP implementation: Ping of Death
- ♦ ARP info is public: ARP Poisoning
- ♦ IP addresses are public: Smurf attacks
- ◆ TCP connection requires state: SYN flooding
- ♦ TCP state is easy to guess
 - TCP spoofing and connection hijacking
- TCP Congestion Control
 - Trick sender forget congestion control
- ♦ UDP data flooding

TCP Connection Spoofing

- ♦ Each TCP connection has an associated state
 - Port number, Sequence number
- ♦ TCP state is easy to guess
 - Port numbers are standard, sequence numbers are often predictable
 - Can inject packets into existing connections
- ◆ If attacker knows initial sequence number and amount of traffic, can guess likely current number
 - Send a flood of packets with likely sequence numbers

"Blind" IP Spoofing Attack

- ◆ In order to insert into the communication between Alice and Bob, Attacker can use/forge Bob's identity if Alice uses IP address-based authentication
 - For example, rlogin and many other remote access programs uses address-based authentication

TCP Sequence Numbers

- Need high degree of unpredictability
 - If attacker knows initial seq # and amount of traffic sent,
 can estimate likely current values
 - Send a flood of packets with likely seq numbers
 - larger bandwidth => larger flood possible
- Reported to be safe from practical attacks
 - Cisco IOS, OpenBSD 2.8-current, FreeBSD 4.3 RELEASE, AIX, HP/UX 11i, Linux Kernels after 1996
 - Solaris 2.6 if strong seq numbers turned on:
 - Set TCP_STRONG_ISS to 2 in /etc/default/inetinit.
 - HP/UX, IRIX 6.5.3, ... if so configured

DoS by Connection Reset

- ♦ If attacker can guess current sequence number for an existing connection, can send Reset packet to close it
 - With 32-bit sequence numbers, probability of guessing correctly is 1/2³² (not practical)
 - Most systems accept large windows of sequence numbers ⇒ much higher probability of success
 - Need large windows to handle massive packet losses
- Especially effective against long-lived connections
 - For example, BGP route updates

Cryptographic protection

- Solutions above the transport layer
 - Examples: SSL and SSH
 - Protect against session hijacking and injected data
 - Do not protect against denial-of-service attacks caused by spoofed packets
- Solutions at network layer
 - IPSec
 - Can protect against
 - session hijacking and injection of data
 - denial-of-service attacks using session resets

Security Issues in TCP/IP

- Network packets pass by untrusted hosts
 - Eavesdropping (packet sniffing)
- ♦ Bug in ICMP implementation: Ping of Death
- ♦ ARP info is public: ARP Poisoning
- ♦ IP addresses are public: Smurf attacks
- ◆ TCP connection requires state: SYN flooding
- ♦ TCP state is easy to guess
 - TCP spoofing and connection hijacking
- TCP Congestion Control
 - Trick sender forget congestion control
- ♦ UDP data flooding

TCP Congestion Control

Source

Destination

- ♦ If packets are lost, assume congestion
 - Reduce transmission rate by half, repeat
 - If loss stops, increase rate very slowly

Competition

- Amiable Alice yields to malicious Bob
 - Alice and Bob both experience packet loss
 - Alice backs off
 - Bob disobeys protocol, gets better results

TCP Attack on Congestion Control

- Misbehaving receiver can trick sender into ignoring congestion control
 - Receiver: duplicate ACK indicates gap
 - Packets within seq number range assumed lost
 - Sender executes fast retransmit algorithm
 - Malicious receiver can
 - Send duplicate ACK
 - ACK before data is received
 - needs some application level retransmission e.g. HTTP 1.1
 range requests ... See RFC 2581
 - Solutions
 - Add nonces ACKs return nonce to prove reception

See: Savage et al., TCP Congestion Control with a Misbehaving Receiver

Security Issues in TCP/IP

- Network packets pass by untrusted hosts
 - Eavesdropping (packet sniffing)
- ♦ Bug in ICMP implementation: Ping of Death
- ♦ ARP info is public: ARP Poisoning
- ♦ IP addresses are public: Smurf attacks
- ◆ TCP connection requires state: SYN flooding
- ♦ TCP state is easy to guess
 - TCP spoofing and connection hijacking
- TCP Congestion Control
 - Trick sender forget congestion control
- UDP data flooding

User Datagram Protocol (UDP)

- UDP is a connectionless protocol
 - Simply send datagram to application process at the specified port of the IP address
 - Source port number provides return address
 - Applications: media streaming, broadcast
- No acknowledgement, no flow control, no message continuation
- Denial of service by UDP data flood

Agenda

- ♦ Brief Introduction to TCP/IP network
- ♦ Security Issues in TCP/IP
- ♦ DNS Security
- ♦ Router Security

Domain Name System

♦ Hierarchical Name Space

DNS Root Name Servers

- Root name servers
- Local name servers
 contact root servers
 when they cannot
 resolve a name

DNS: Domain Name Service

DNS maps symbolic names to numeric IP addresses (for example, www.cs.utexas.edu ↔ 128.83.120.155)

DNS Caching

- DNS responses are cached
 - Quick response for repeated translations
 - Other queries may reuse some parts of lookup
 - NS records for domains
- ◆ DNS negative queries are cached
 - Don't have to repeat past mistakes
 - For example, misspellings
- Cached data periodically times out
 - Lifetime (TTL) of data controlled by owner of data
 - TTL passed with every record

Cached Lookup Example

DNS Vulnerabilities

- DNS implementations have vulnerabilities
 - Reverse query buffer overrun in old releases of BIND
 - Gain root access, abort DNS service...
 - MS DNS for NT 4.0 crashes on chargen stream
 - telnet ntbox 19 | telnet ntbox 53
- ♦ Denial of service is a risk
 - Oct '02: ICMP flood took out 9 root servers for 1 hour
- Can use "zone transfer" requests to download DNS database and map out the network
- ◆ DNS host-address mappings are <u>not</u> authenticated (see next slides DNS-Spoofing)

DNS Spoofing

If the attacker is able to sniff the ID of the DNS request, he/she can reply before the real DNS server

DNS Spoofing: Tools

- ♦ ettercap (http://ettercap.sf.net)
 - Phantom plugin
- dsniff (http://www.monkey.org/~dugsong/dsniff)
 - Dnsspoof
- ◆ zodiac (http://www.packetfactory.com/Projects/zodiac)

DNS Spoofing: Countermeasures

◆ YES - detect multiple replies (IDS)

◆ YES - use Imhost or host file for static resolution of critical hosts

◆ YES - DNSSEC

Defenses Against DNS Spoofing

- ◆ Double-check reverse DNS
 - Modify rlogind, rshd to query DNS server and check if symbolic address maps to numeric address
 - Cache poisoning still an issue
- ♦ Authenticate entries in DNS tables
 - Hard to do; need public-key infrastructure

See http://cr.yp.to/djbdns/notes.html

DNS Poisoning

- ♦ Type 1 attack
 - The attacker sends a request to the victim DNS asking for one host
 - The attacker spoofs the reply which is expected to come from the real DNS
 - The spoofed reply must contain the correct ID (brute force or semi-blind guessing)

DNS Poisoning

- ♦ Type 2 attack
 - The attacker can send a "dynamic update" to the victim DNS
 - If the DNS processes it, it is even worst
 because it will be authoritative for those entries

DNS Poisoning: Tools

- ◆ ADMIdPack
 - http://packetstormsecurity.org/groups/ADM/ADMIDpack/

- ◆ Zodiac
 - http://www.packetfactory.com/Projects/zodiac

DNS Poisoning: Countermeasures

YES - Use DNS with random transaction ID (Bind v9)

♦ YES - DNSSec (Bind v9) allows the digital signature of the replies.

 NO - restrict the dynamic update to a range of IPs (they can be spoofed)

Other DNS Risks

- DNS cache poisoning
 - False IP with a high time-to-live will stay in the cache of the DNS server for a long time
 - Basis of pharming
- ◆ Spoofed ICANN registration and domain hijacking
 - Authentication of domain transfers based on email addr
 - Aug '04: teenager hijacks eBay's German site
 - Jan '05: hijacking of panix.com (oldest ISP in NYC)
 - "The ownership of panix.com was moved to a company in Australia, the actual DNS records were moved to a company in the United Kingdom, and Panix.com's mail has been redirected to yet another company in Canada."
- Misconfiguration and human error

JavaScript/DNS Intranet attack (I)

- Consider a Web server intra.good.net
 - IP: 10.0.0.7, inaccessible outside good.net network
 - Hosts sensitive CGI applications
- Attacker at evil.org gets good.net user to browse www.evil.org
- Places Javascript on www.evil.org that accesses sensitive application on intra.good.net
 - This doesn't work because Javascript is subject to "sameorigin" policy
 - ... but the attacker controls evil.org DNS

JavaScript/DNS Intranet attack (II)

DNSSEC

- Goals: authentication and integrity of DNS requests and responses
- ♦ PK-DNSSEC (public key)
 - DNS server signs its data (can be done in advance)
 - How do other servers learn the public key?
- ◆ SK-DNSSEC (symmetric key)
 - Encryption and MAC: $E_k(m, MAC(m))$
 - Each message contains a nonce to avoid replay
 - Each DNS node shares a symmetric key with its parent
 - Zone root server has a public key (hybrid approach)

Agenda

- ♦ Brief Introduction to TCP/IP network
- ♦ Security Issues in TCP/IP
- ♦ DNS Security
- ♦ Router Security

ROUTE mangling

The attacker can forge packets for the gateway (GW) pretending to be a router with a good metric for a specified host on the internet

ROUTE mangling

• Now the problem for the attacker is to send packets to the real destination. He/she cannot send it through GW since it is convinced that the best route is AT.

ROUTE mangling: Tools

♦ IRPAS (Phenoelit) (http://www.phenoelit.de/irpas/)

♦ Nemesis (http://www.packetfactory.net/Projects/nemesis/)

ROUTE mangling: Countermeasures

♦ YES - Disable dynamic routing protocols in this type of scenario

♦ YES - Enable ACLs to block unexpected update

♦ YES - Enable authentication on the protocols that support authentication

Reading Assignment

- ◆ "SYN cookies" by Bernstein
- "IP Spoofing Demystified" from Phrack magazine
- ♦ Joncheray's paper about TCP connection hijacking