Lógica y Algebra - Parcial N° 2 - Fecha 03/07/2019 - Grupo I
Apellos y Nombre 10 Jon , Moscon Goldel un m
27 Jenso A = (1, 2, 3, 4) y dada ii en A, definida por R = ((1,3), (4, 2), (3, 1), (2, 2), (2, 4)). (25 pts.)
a) Indica el Domínio y el codominio b) Representar la matriz y el digrafo de la relación
 Clasificar justificando en cada caso si la relación es (Reflexiva, Irreflexiva, Simétrica, Asimétrica, Antisimétrica, Transitiva, Relación de equivalencia)
2) Dados los siguientes vectores: $\vec{u} = (-2, 4, 0, 3)$, $\vec{v} = (-1, 3, 4, 0)$ $\vec{v} = (\frac{1}{2}, \frac{1}{3}, -1, 2)$. (10 pts.) (log) 2)
b) Obtener \vec{x} talque: $2\vec{u} - 3\vec{x} - 2\vec{w} = 5\vec{v}$
3) Dadas las siguientes matrices: $A = \begin{pmatrix} 2 & 1 & 3 \\ 2 & -1 & 2 \\ 1 & 2 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 2 \\ 5 & -2 \\ -1 & 3 \end{pmatrix}$ (15 pts.) (A3) 3) Calcular si es posible: a) AB b) A^3 c/BA A^2
15 14) Dado el siguiente sistema: $\begin{cases} 1x_1 + 3x_2 + 4x_1 = 1 \\ 1x_1 + 1x_2 + 0x_2 = 2 \text{ (20 pts.)} \end{cases} \text{ hero 2}$
Escribir el sistema en su forma matricial Resolverlo y clasificario
c) Identificar la solución al sistema homocáneo secriado
5) Exprese la suma de matrices en forma analítica y la multiplicación por un escalar. Enuncie las propiedades (AGY) 4
operaciones? (20 pts.)

1001	De= € 1,2,3,	1} ; Box	le = {1	,2,3	4)	
B R.	100000			(2)		
© Reflec				9		
NO			- Asim	Andry	B. Bone	RE
101	NO	3, 10	NO	NO	S; No	NO
181	255	181	272	482 +287 4	122R4	700 21
/		1×1 3×3	18378	414	282	eftern
00			/	10	3) (3,1)	A series
6004	wercontion an	glove Rai	F Rb	3,6	eW'	
6 M	Mixter rangion	for d convers	ر ليد ه	ings.	1	
R./r.)	Rn→Rn(↑	1. SI F.	>0.	7	. 6 1	4
(1)	7	1. 3	, ,	1	1 - 11	1
	Rn - Rn (-1	1. S. ty	<0.			
(3) Ju	mur renglows	1	,			
P	R + Re		2.0	IN/F		
0.1. 00	n - PRn + Re	n	1,66	//V ;		
Drenes of	evilors se se	elizon por	u lley	you a		
to gouna	escharacto.	neducido ,	un 10.	la a		
for de	tod. an	a older	en en			
identi	dest con	0.00		mu	Jan Jan	
		The state of	s eq	an Uz	tente	3

(1 3 4 1 6) 2 (-1341) (-2 41) RE-P. (-1) 12-9-4 3/2,-21(-2)+2, (0-2-41 (1341 Rooks) 21/10-29/2 S.C. I 10-2-44 lez-Petz)-14 (0000) Sixty comedful indeterminable (c) 4t X2+2t=-1/2 => X2=-1/2-2t (X) /5/2 /2 12 = -1/2 H-2 T (x3/ 10/11/ (a) (1 39) (x) 1 (1) 1 1 0 (x) 2 2 [299] (3) fella got al giskuz homogerso xac

a .. - (26+)+3(+)+3(-1) = 4 212: (2(2)+(1(-2)+3/0)=71 221=/2(4)+-1(5)+2(4) >-5 231 = (1(4)+2(5)+2(-1))= 9 122 222-(2(2)-1(-2)+2(3)=12 232=(1(2)+2(-2)+2(3)=4 100 | R1 - 8, (1/2/1 1 1/2 3/2 1/200 122001 R2+ R1(-2)+R2 11/2 =/2 1/200 R37 8. (-1) + P3 0 -2 X-1) -1 10 87 1/2 F2. 10 3/2 1/2 /-1/2 0 8º 1/2 -1/2 00 / Ro-R. (-3/2) +R3 luc.

(2)
$$\vec{0} \cdot \vec{v} = \frac{1/3}{3}$$

$$\begin{vmatrix} \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v$$

