Real Variables II - MATH6321

Joel Sleeba joelsleeba1@gmail.com

April 1, 2025

Contents

Contents		1	
1	Hilbert Spaces (continuation)		3
	1.1	Orthonormal Sets	3
2	Banach Space Techniques		10
	2.1	Consequence of Baire category theorem	11
	2.2	Applications of Banach-Steinhaus	15
	2.3	Application of open mapping theorem	17
	2.4	Hahn-Banach Theorem	18
	2.5	Applications of Hahn-Banach Theorem	18
3	Complex Measures		20
	3.1	Consequence of Radon-Nikodym Theorem	20
		Bounded linear functionals on L^p	

Course Information

 $_{14/01/2025}$ Office : Tuesday 11:30 - 12:30 PM, Wednesday 1-2PM

Midterm: 4th March 2025, in class

Chapter 1

Hilbert Spaces (continuation)

Exercise 1.0.1 (Warm up). Show that if $f \in \ell^2(X)$, then utmost countably many values of f are non-zero.

Solution 1.0.1.1. Take the sets

$$E_n = \{x \in X : |f(x)| > 1/n\}$$

and consider their union.

1.1 Orthonormal Sets

Definition 1.1.1. A orthonormal family in a Hilbert space is a family $(u_{\alpha})_{\alpha \in A}$ such that $\langle u_{\alpha}, u_{\beta} \rangle = 0$ if $\alpha \neq \beta$ and $||u_{\alpha}|| = 1$ for each $\alpha, \beta \in A$.

Theorem 1.1.1 (Bessel's Inequality). Given an orthonormal family $(u_{\alpha})_{\alpha \in A}$ in a Hilbert space \mathcal{H} , and $h \in \mathcal{H}$, then

$$||h||^2 \ge \sum_{\alpha \in A} |\langle h, u_\alpha \rangle|^2$$

Proof. Let $B \subset A$ be finite, and let

$$g = \sum_{\alpha \in B} \langle h, u_{\alpha} \rangle u_{\alpha}$$

We can easily show that, $\langle h - g, g \rangle = 0$. Thus

$$||h||^{2} = ||h - g + g||^{2}$$

$$= \langle h - g + g, h - g + g \rangle$$

$$= ||h - g||^{2} + ||g||^{2}$$

$$\geq ||g||^{2}$$

Now the inequality follows form the definition of summation as the supremum of finite index sums. \Box

Definition 1.1.2. Let \mathcal{H} be a Hilbert space. An orthonormal family $(u_{\alpha})_{{\alpha}\in A}$ is called complete, or an orthonormal basis, if for each $h\in H$,

$$||h||^2 = \sum_{\alpha \in A} |\langle h, u_\alpha \rangle|^2$$

Definition 1.1.3. A set $U = \{u_{\alpha} : \alpha \in A\}$ is a maximal orthonormal set if for any V with $V \supset U$ and V is orthonormal, then V = U.

Theorem 1.1.2. Let \mathcal{H} be a Hilbert space, $(u_{\alpha})_{\alpha \in A}$ an orthonormal family, then the following are equivalent.

- 1. $(u_{\alpha})_{\alpha \in A}$ is an orthonormal basis
- 2. $span\{u_{\alpha} : \alpha \in A\}$ is dense in \mathcal{H}
- 3. $\{u_{\alpha}\}$ is a maximal orthonormal set

Proof. $(1 \implies 2)$ Let h be given. Consider for any $B \subset A$,

$$g = \sum_{\alpha \in P} \langle h, u_{\alpha} \rangle u_{\alpha}$$

then we recall $\langle h - g, g \rangle = 0$. And thus

$$||h||^2 = ||h - g||^2 + ||g||^2$$

We know from equality in Bessel's inequality that, for given $\varepsilon > 0$ we can choose B such that $||h||^2 - ||g||^2 < \varepsilon^2$. Hence

$$||h - g||^2 = ||h||^2 - ||g||^2 < \varepsilon^2$$

Thus, we can find a g that is arbitrarily close to h.

 $(\neg 3 \implies \neg 2)$. Assuming 3 is wrong, there exists $u \in \mathcal{H}$, such that ||u|| = 1, and $\langle u, u_{\alpha} \rangle = 0$ for each $\alpha \in A$. Next, for any finite $B \subset A$, and any $c_{\alpha} \in \mathbb{C}$, we look at

$$||u - \sum_{\alpha \in B} c_{\alpha} u_{\alpha}|| = ||u||^{2} + ||\sum_{\alpha \in B} c_{\alpha} u_{\alpha}||^{2}$$
$$= ||u||^{2} + \sum_{\alpha \in B} |c_{\alpha}|^{2}$$
$$\geq ||u||^{2} = 1$$

Thus $u \notin \overline{\operatorname{span}\{u_{\alpha}\}}$.

 $(\neg 1 \implies \neg 3)$. Assume there is $h \in \mathcal{H}$ such that

$$||h||^2 > \sum_{\alpha \in A} |\langle h, u_{\alpha} \rangle|^2$$

We know that $A_o = \{\alpha \in A : \langle h, u_\alpha \rangle \neq 0\}$ is at most countable from Exercise 1.0.1. We can find $A_1 \subset A_2 \subset \ldots$ each finite where

$$A_n = \{ \alpha \in A_o : |\langle h, u_\alpha \rangle| \ge \frac{1}{n} \}$$

and

$$A_o = \bigcup_{n=1}^{\infty} A_n$$

Let $g_n = \sum_{\alpha \in A_n} \langle h, u_\alpha \rangle u_\alpha$. By monotone convergence theorem, given $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$\sum_{\alpha \in A} |\langle h, u_{\alpha} \rangle|^2 < \sum_{\alpha \in A_N} |\langle h, u_{\alpha} \rangle|^2 + \varepsilon$$

Thus, for $m \ge n \ge N$

$$||g_m - g_n||^2 = ||\sum_{\alpha \in A_m \setminus A_n} \langle h, u_\alpha \rangle u_\alpha||^2$$

$$= \sum_{\alpha \in A_m \setminus A_n} |\langle h, u_\alpha \rangle|^2$$

$$= \sum_{\alpha \in A_m} |\langle h, u_\alpha \rangle|^2 - \sum_{\alpha \in A_n} |\langle h, u_\alpha \rangle|^2$$

$$= \sum_{\alpha \in A} |\langle h, u_\alpha \rangle|^2 - \sum_{\alpha \in A_n} |\langle h, u_\alpha \rangle|^2$$

$$\leq \varepsilon$$

Therefore, we conclude that (g_n) is a Cauchy sequence. By completeness of \mathcal{H} , $g_n \to g$ for some $g \in \mathcal{H}$. Let $\gamma = h - g$. If $\gamma \in A_o$, then $\gamma \in A_n$ for some $n \in \mathbb{N}$. Thus we'll get that

$$\langle h - g, u_{\alpha} \rangle = 0$$

verify

If $\gamma \notin A_o$, then $\langle h, u_{\gamma} \rangle = 0$ and $\langle g_n, u_{\gamma} \rangle = 0$, so again \langle , \rangle verify

16/01/2025

 $Use \ the \\ connection \\ between$

inner product and evaluation from above

to see that A_o is at most

countable.

Exercise 1.1.1. Find an orthonormal basis for $\ell^2(X)$

Solution 1.1.1.1. We want an orthonormal family $(u_{\alpha})_{{\alpha}\in A}$ such that

$$||h||^2 = \sum_{\alpha \in A} |\langle h, u_\alpha \rangle|^2$$

But here $||h||^2 = \sum_{x \in X} |h(x)|^2$, and

$$\langle h, g \rangle = \sum_{x \in X} h(x) \overline{g(x)}$$

If we choose $u_x = \chi_x$, then we see that this satisfy our required properties.

We formulate consequences of the characterization of orthonormal bases.

Theorem 1.1.3. Let $(u_{\alpha})_{\alpha \in A}$ be an orthonormal basis for a Hilbert space \mathcal{H} . Let

$$A_o = \{ \alpha : \langle h, \alpha \rangle \neq 0 \}$$

Then enumerating A_o by $A_o = \{\alpha_1, \alpha_2, \ldots\}$ and considering

$$h_n = \sum_{j=1}^n \langle h, u_{\alpha_j} \rangle u_{\alpha_j}$$

gives $h_n \to h$.

Proof. We saw that h_n forms a cauchy sequence bases on the last oproof and choose

$$A_j = \{ \alpha_k : 1 \le k \le j \}$$

Let $g = \lim_{n \to \infty} h_n$. Then the continuity of the inner product gives $\langle h - g, u_\alpha \rangle = 0$ for each $\alpha \in A$. Thus

$$||h - g||^2 = \sum_{\alpha \in A} |\langle h - g, u_{\alpha} \rangle|^2 = 0$$

so h = g.

Corollary 1.1.3.1. If $(u_{\alpha})_{{\alpha}\in\mathbb{N}}$ is an orthonormal basis for a Hilbert space \mathcal{H} , then for each $h\in\mathcal{H}$,

$$h = \sum_{n \in \mathbb{N}} \langle h, u_n \rangle u_\alpha$$

Conversely, if $\sum_{n\in\mathbb{N}} |c_n|^2 < \infty$, then

$$\sum_{n\in\mathbb{N}} c_n u_n \in \mathcal{H}$$

Proof. verify

Remark 1.1.1. We can also take \mathbb{Z} instead of \mathbb{N} in the above cases.

Example 1.1.1. Consider $L^2([-\pi, \pi])$, then

$$e_n(x) = \frac{1}{\sqrt{2\pi}}e^{inx}$$

defines an orthonormal basis $(e_n)_{n\in\mathbb{Z}}$ for $L^2([-\pi,\pi])$

Proof. It is clear that the above is an orthonormal family. We show that finite linear combinations of e_n s are dense in $L^2([-\pi, \pi])$. Find a $g \in C([-\pi, \pi])$, $\varepsilon/3$ away from g. Now find a h periodic which is $\frac{\varepsilon}{3}$ away from g. Now use Stone-Weierstrass theorem.

Corollary 1.1.3.2 (Reisz-Fischer Theorem). If $f \in L^2([-\pi, \pi])$, then

$$f = \sum_{n \in \mathbb{Z}} \langle f, e_n \rangle e_n$$

and $||f||^2 = \sum_{n \in \mathbb{Z}} |\langle f, e_n \rangle^2|$. Moreover, if $c \in \ell^2(\mathbb{Z})$, then

$$g = \sum_{n \in \mathbb{Z}} c_n e_n \in L^2([-\pi, \pi])$$

Remark 1.1.2. For $f \in L^2([-\pi, \pi])$, $c_n = \langle f, e_n \rangle$ are called Fourier coefficients.

Theorem 1.1.4. Let \mathcal{H} be a Hilbert space, then \mathcal{H} has an orthonormal basis.

Proof. We will show this using Zorn's lemma. Let

$$\mathscr{S} = \{U \subset H \ : \ U \text{ is an orthonormal set}\}$$

It is easy to see that $\mathscr S$ is nonempty. Order $\mathscr S$ by set inclusion. Let $\mathscr C$ be a chain in $\mathscr S$, then

$$U_{\mathscr{C}} = \bigcup_{C \in \mathscr{C}} C$$

will be an orthonormal set in \mathscr{S} . (Use the standard arguments to see this). Therefore $U_{\mathscr{C}}$ is the upper bound for the chain \mathscr{C} . Hence we see that \mathscr{S} has a maximal element by the Zorn's lemma. Hence \mathcal{H} has an orthonormal basis.

Definition 1.1.4. Let \mathcal{H}, \mathcal{K} be Hilbert space. A linear map $V : \mathcal{H} \to \mathcal{K}$ is an isometry if

$$\langle Vh, Vg \rangle_{\mathcal{K}} = \langle h, g \rangle_{\mathcal{H}}$$

for each $h, g \in \mathcal{H}$. If V is onto, we say V is unitary. Then we say \mathcal{H} and \mathcal{K} are isomorphic. (From preservation of preservation of norm, V is one-one).

Proposition 1.1.1. A linear map $V : \mathcal{H} \to \mathcal{K}$ is an isometry if and only if for every $h \in \mathcal{H}$,

$$||Vh||_{\mathcal{K}} = ||h||_{\mathcal{H}}$$

Proof. One way is easy. That is if the inner product is preserved, then the norm is preserved. Conversely, we use the polarization identity.

$$\langle h, g \rangle = \frac{1}{4} \sum_{j=1}^{4} i^{j} ||h + i^{j} g||^{2}, \quad (i = \sqrt{-1})$$

Example 1.1.2. Let $\mathcal{H} = \ell^2(\mathbb{N})$. Define

$$S: \mathcal{H} \to \mathcal{H} := (x_1, x_2, \ldots) \mapsto (0, x_1, x_2, \ldots, x_n)$$

Then S is clearly an isometry, but not unitary since nothing maps to $(1, x_1, x_2, \ldots)$

23/01/2025

Example 1.1.3. Given an infinite dimensional Hilbert space with orthonormal basis $(u_n)_{n\in\mathbb{N}}$, show that $\{u_n\}$ is not compact.

Proof. Since $||u_{\alpha}-u_{\beta}|| = \sqrt{2}$, take $\frac{1}{\sqrt{2}}$ radius balls around each u_{α} to get a collection of open balls that cover the set with no finite subcover.

Another way to see is to use the sequential compactness criterion and see that the sequence (u_n) does not have any convergent subsequence. Since this is a metric space, sequential compactness is equivalent to compactness.

Theorem 1.1.5 (Every Hilbert space is $\ell^2(A)$). Let \mathcal{H} be a Hilbert space, $(u_{\alpha})_{\alpha \in A}$ is an orthonormal basis, then there is a unitary map $U: \mathcal{H} \to \ell^2(A)$ such that $U(u_{\alpha}) = \chi_{\alpha}$

Proof. We first note that by linearity, if $p \in \text{span}\{u_{\alpha} : \alpha \in A\}$, then U(p) is determined by χ_{α} . Next, by Bessel's inequality,

$$||U(p)||_{\ell^2(A)} \le ||p||$$

Hence U is bounded. Hence it can be continuously extended to $\mathcal{H} = \overline{\operatorname{span}\{u_{\alpha}\}}$ as a limit of sequences. Also, by the equivality in the Bessel's inequality, we get that U is an isometry, hence one-to-one.

Now it remains to show that U is onto. Given $g \in \ell^2(A)$, we know that there exists at most a countable set $\{\alpha_1, \alpha_2, \ldots\} = A_0$ such that $g(\alpha_i) \neq 0$. Consider

$$h_n = \sum_{j=1}^n g(\alpha_j) u_{\alpha_j}$$

then,

$$u(h_n)(\alpha) = \begin{cases} g(\alpha_j), & \alpha_j \in A_0 \\ 0, & \text{otherwise} \end{cases}$$

Moreover,

$$||U(h_n) - g||_{\ell^2(A)}^2 = \sum_{j=n+1}^{\infty} |g(\alpha_j)|^2 \to 0$$

Now if

$$h = \sum_{j=1}^{\infty} g(\alpha_j) u_{\alpha_j} \in \mathcal{H} \quad (\text{ since } g \in \ell^2(A))$$

we get

$$||h - h_n||^2 = ||U(h_n) - g||^2_{\ell^2(A)} \to 0$$

and the injectivity of U shows that U(h) = g.

Chapter 2

Banach Space Techniques

Definition 2.0.1. If X is a real or complex normed vector space with a norm, and the complete in the topology induced by the norm, it is called a Banach space.

Definition 2.0.2. If X, Y are normed vector spaces over \mathbb{R} or \mathbb{C} , $\Lambda : X \to Y$ linear, then the norm of the operator

$$\|\Lambda\| = \sup\{\|\Lambda x\| : \|x\| < 1\}$$

If $\|\Lambda\| < \infty$, then we say that Λ is bounded.

Proposition 2.0.1. Given $\Lambda: X \to Y$, a linear map between normed linear spaces, the following are equivalent

- (1) Λ is bounded
- (2) Λ is continuous
- (3) Λ is continuous at some $x_o \in X$

Proof. $(1 \implies 2)$

$$||\Lambda(x-y)|| \le ||\Lambda|| ||x-y||$$

gives $\|\Lambda\|$ -Lipschitz continuity.

 $(2 \implies 3)$ Follows from the definition.

 $(3 \implies 1)$ For each $\varepsilon > 0$, there is $\delta > 0$ such that for each $x \in X$, with $||x - x_o|| < \delta$, then $||\Lambda x - \Lambda x_o|| < \varepsilon$. Thus for $||y|| < \delta$, by linearity of Λ , we get

$$\|\Lambda y\| = \|\Lambda(x_o + y) - \Lambda x_o\| < \varepsilon$$

Again using linearity, we get for ||y'|| < 1,

$$\|\Lambda y'\| < \frac{\varepsilon}{\delta} < \infty$$

Now since $\overline{B_1(0)} \subset B_2(0)$, we see that $\|\Lambda\| < \frac{2\varepsilon}{\delta} < \infty$.

2.1 Consequence of Baire category theorem

Theorem 2.1.1 (Baire Category Theorem). If (X, d) is a complete metric space, and V_1, V_2, \ldots are dense subsets, then

$$\bigcap_{n=1}^{\infty} V_n$$

is dense in X.

Proof. We show that for any non-empty open set $W \subset X$,

$$\bigcap_{n=1}^{\infty} V_j \cap W \neq \emptyset$$

We write $B_r(x) = \{y \in X : d(x,y) < r\}$. Since V_1 is dense and open, $V_1 \cap W$ is open and dense in W. Thus we can find an $r_1 > 0$ such that $\overline{B_{r_1}(x_1)} \subset W \cap V_1$. (First find an r' > 0 such that $B_{r'}(x_1) \subset W \cap V_1$. Then take $r_1 = \frac{r'}{2}$).

We inductively proceed by taking $x_n \in V_n \cap B_{r_{n-1}}(x_{n-1})$ such that $\overline{B_{r_n}(x_n)} \subset V_n \cap B_{r_{n-1}}(x_{n-1})$. Without loss of generality, choose $0 < r_n < \frac{1}{n}$. This gives a sequence which satisfies for i, j > n that $x_i, x_j \in B_{r_n}(x_n) \Longrightarrow d(x_i, x_j) < 2r_n < \frac{2}{n}$. Hence x_n is Cauchy. By completeness $x_n \to x \in \overline{B_{r_n}(x_n)} \subset V_n \cap W$ for all n. Thus $x \in W$ and

$$x \in \bigcap_{n=1}^{\infty} V_n$$

28/01/2025

Corollary 2.1.1.1. Let G_1, G_2, \ldots be a sequence of dense G_{δ} subsets, then $\bigcap_{n=1}^{\infty} G_n$ is dense and G_{δ} .

Theorem 2.1.2 (Banach-Steinhaus theorem). If X is a Banach space and Y a normed vector space. Let $(T_{\alpha})_{{\alpha}\in A}$ be a family of bounded linear maps from $X\to Y$. Then either of the two holds,

- (1) $\exists M \geq 0 \text{ such that } ||T_{\alpha}|| \leq M \text{ for all } \alpha \in A.$
- (2) The set $\{x \in X : \sup_{\alpha} ||T_{\alpha}x|| = \infty\}$ is a dense G_{δ} set.

Corollary 2.1.2.1. With X, Y, T_{α} as above, if for each $x \in X$, $\sup_{\alpha \in A} ||T_{\alpha}x|| < \infty$, then there is a $M \ge 0$ such that

$$\sup_{\alpha \in A} \|T_{\alpha}\| \le M$$

We study consequences before looking at the proof of Theorem 2.1.2.

Exercise 2.1.1. Suppose (a_n) is a sequence such that for each $(b_n) \in \ell^2(\mathbb{N})$, $\sum_{n \in \mathbb{N}} a_n b_n < \infty$, then $a \in \ell^2(\mathbb{N})$.

Proof. To see this, take

$$T_n: \ell^2(\mathbb{N}) \to \mathbb{C} := T_n(b) \mapsto \sum_{i=1}^n \overline{a_i} b_i$$

and observe

$$|T_n(b)| \le \left(\sum_{i=1}^n |a_i|^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^n |b_j|^2\right)^{\frac{1}{2}}$$

$$\le \left(\sum_{i=1}^n |a_i|^2\right)^{\frac{1}{2}} ||b||$$

Hence each T_n is linear (by definition) and bounded by the inequality above. Let $(b_n) \in \ell^2(\mathbb{N})$, then for $n \in \mathbb{N}$, we get

$$|T_n(b)| \le \sum_{i=1}^n |a_i b_i|$$

$$\le \sum_{i=1}^\infty |a_i b_i| < \infty$$

Now a direct application of Theorem 2.1.2 gives that three is a $M \ge 0$ such that $|T_n b| \le M||b||$ for each $n \in \mathbb{N}$. Hence if we consider

$$T: \ell^2(\mathbb{N}) \to \mathbb{C} := b \mapsto \sum_{i=1}^{\infty} a_i b_i$$

we find that $||T|| \leq M$. By Reisz representation theorem for Hilbert space s, there is a $c \in \ell^2(\mathbb{N})$ such that $T(b) = \langle b, c \rangle$. Choosing $b = e_m$, we get $T(e_m) = \bar{c_m} = a_m$. We conclude that $a \in \ell^2(\mathbb{N})$.

Proof of Banach-Steinhaus Theorem 2.1.2. Let $\phi_{\alpha}: X \to [0, \infty) := x \to ||T_{\alpha}x||$. Look at

$$|\phi_{\alpha}(x) - \phi_{\alpha}(y)| = |||T_{\alpha}x|| - ||T_{\alpha}y|||$$

$$\leq ||T_{\alpha}(x - y)||$$

$$\leq ||T_{\alpha}|| ||x - y||$$

Hence ϕ_{α} is (lower-semi) continuous.

Therefore, we can define a lower semi-continuous function

$$\phi(x) = \sup_{\alpha \in A} \phi_{\alpha}(x)$$

Thus, for $n \in \mathbb{N}$, $V_n = \{x \in X : \phi(x) > n\}$ is open. If each V_n is dense in X, then $G = \bigcap_{n=1}^{\infty} V_n$ is a dense G_{δ} set, and $\phi(G) = \{\infty\}$. Otherwise, if for some $n \in \mathbb{N}$, one of V_n is not dense. Then that particular V_n^c contains a non-empty open set. Choosing a $B_{\delta}(y) \subset W$ centered at y, we get that for $x \in X$, $||x-y|| < \delta$, we have $\phi_{\alpha}(x) = ||T_{\alpha}x|| \le n$ for each $\alpha \in A$. This implies that there is an $M \ge 0$ for which

$$\sup_{\alpha \in A} \|T_{\alpha}\| \le M$$

We investigate more consequences of Banach-Steinhaus' theorem.

Theorem 2.1.3 (Open mapping theorem). Let X, Y be Banach spaces, $T: X \to \text{review this}$ Y is bounded, linear. If T is onto and $U \subset X$ is open, then T(U) is open.

Proof. We claim it is equivalent to show $T(B_1(0)) \subset B_{\delta}(0)$ for some $\delta > 0$. The statement then follows by choosing for U open, a vector $u \in U$ with $\varepsilon > 0$ such that $B_{\varepsilon}(u) \subset U$. In that case, if $y \in Y$ satisfies

$$||y - Tu|| < \varepsilon \delta$$

or

$$\left\| \frac{y - Tu}{\varepsilon} \right\| < \delta$$

By the inclusion, we get $z \in X$ such that ||z|| < 1 and $Tz = \frac{y - Tu}{z}$. Solving for y, gives $y = T(\varepsilon z + y)$. Letting $w = \varepsilon z + u$, then $||w - u|| = \varepsilon ||z|| < \varepsilon$ and Tw = y. We have found for each y near Tu a vector $w \in U$ which maps to y. Let $U \subset X$ be open. Fix $u \in U$. Then there is $\delta > 0$ with $\{x : ||x - u|| < \delta\} \subset U$. We also know that if $y \in Y$

Now for the rest, follow the same logic as in functional analysis last semester to see that $T(B_1^X(0))$ is not nowhere dense, and thus $\exists y \in Y, r > 0$ such that

$$B_{4r}(y_0) \subset \overline{T(B_1^X(0))}$$

Choose $y' \in B_{2r}(y_0) \cap T(B_1(0))$. (The fact that this is non-empty follows from the fact that every open ball in the closure must intersect the original set pre-closure). Then there is $x' \in B_1^X(0)$ such that y' = T(x'). Now using triangle inequality

$$B_{2r}(y') \subset B_{4r}(y_0) \subset \overline{T(B_1^X(0))}$$

Thus for $y \in B_{2r}(0)$,

$$y = -y' + (y + y')$$

$$\in -y' + B_{2r}(y')$$

$$\subset -y' + \overline{T(B_1(0))}$$

$$= \overline{T(-x' + B_1(0))}$$

$$\subset \overline{T(B_2^X(0))}$$

Now by resclaing with 2, we see that

$$B_r(0) \subset \overline{T(B_1^X(0))}$$

Again by further scaling we see that for all $n \in \mathbb{N}$,

$$B_{r2^{-n}}(0) \subset \overline{T(B_{2^{-n}}(0))}$$

For $y \in B_{\frac{r}{2}}(0)$, there is a $x_1 \in B_{2^{-1}}(0)$ such that

$$||y - T(x_1)|| < r2^{-1}$$

Now let $y_1 = y - T(x_1)$ and repeat the same procedure to get $x_2 \in B_{2^{-2}(0)}$ such that

$$y_2 := y_1 - T(x_2)$$

= $y - T(x_1 + x_2)$
 $\in B_{r2^{-3}}(0)$

Proceeding inductively, we get $x_n \in B_{2^{-n}}(0)$ such that $y_n = y - T(\sum_{i=1}^n x_i) \in B_{r^{2^{-n-1}}(0)}$. That is

$$||y_n|| = ||y - T(\sum_{i=1}^n x_i)|| < \frac{r}{2^{n+1}}$$

verify

Corollary 2.1.3.1. If T is one-one and onto, then T^{-1} is bounded.

30/01/2025

Definition 2.1.1. A set $E \subset X$ is called **nowhere dense** if \overline{E} does not contain a non-empty open set in X. A set is called **first category** if it is a union of nowhere dense sets, otherwise the set is called **second category**.

Theorem 2.1.4 (Baire category theorem, version II). Let (X, d) be a complete metric space. Then X is not of first category.

Proof. Let E_1, E_2, \ldots be a sequence of nowhere dense sets. Then $\overline{E_n}$ has an empty interior for all $n \in \mathbb{N}$. Thus $\overline{E_n}^c$ is open and dense. Then by Theorem 2.1.1 $\bigcap_{n=1}^{\infty} \overline{E_n}^c$ is a dense G_{δ} set. Thus $\bigcap_{n=1}^{\infty} \overline{E_n}^c \neq \emptyset$. Thus taking complements, we get

$$\bigcup_{n=1}^{\infty} E_n \subset \bigcup_{n=1}^{\infty} \overline{E_n} \neq X$$

missed something here

04/02/2025

Corollary 2.1.4.1. Let X, Y be Banach spaces. If $T: X \to Y$ is linear, bounded map and T is one-to-one and onto, then T^{-1} is bounded.

Proof. Use the fact the open mapping theorem gives that T^{-1} is continuous, and that continuity is boundedness in linear spaces.

Theorem 2.1.5 (Closed graph theorem). Let X, Y be Banach spaces, then the graph of T, defined as $G(T) = \{(x, Tx) : x \in X\} \subset X \times Y$, under the norm $\|(x, y)\| = \|x\|_X + \|y\|_Y$ is closed if and only if T is bounded.

Proof. Refer back to functional analysis notes.

2.2 Applications of Banach-Steinhaus

Let $C_{per}([-\pi, \pi])$ denote continuous functions $f : [-\pi, \pi] \to \mathbb{C}$ such that $f(\pi) = f(-\pi)$. Since each $C_{per}([-\pi, \pi]) \subset L^2([-\pi, \pi])$, each such f has a Fourier series. Let

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{int} dt$$

and

$$s_n(t) = \sum_{j=-n}^{n} c_j e^{ijt}$$

We know that $s_n \to f$ in L^2 .

But what about pointwise convergence. Let

$$D_n = \sum_{j=-n}^{n} e^{ijt} = \frac{\sin((n+\frac{1}{2})t)}{\sin(\frac{t}{2})}$$

Observe that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f_n(t) D_n(x-t) dx = \sum_{j=-n}^{n} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ijt} dt \right) e^{ijx}$$
$$= \sum_{j=-n}^{n} c_j e^{ijx} = s_n(x)$$

Choose linear functionals $\Lambda_n: C_{per}([-\pi, \pi]) \to \mathbb{C}$ defined as

$$\Lambda_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) D_n(-t) \ dt = s_n(0)$$

Putting sup norm on $C_{per}([-\pi,\pi])$, we get that Λ_n is linear, bounded, with

$$|\Lambda_n(f)| = \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) D_n(-t) dt \right|$$

$$\leq \frac{1}{2\pi} ||f||_{\infty} ||D_n||_1$$

Read the rest from Rudin

06/02/2025

Exercise 2.2.1. Show that for $L^p(\mu)$, and a bounded linear functional Λ and letting

$$\mathcal{M} = \{ f \in L^p(\mu) : \Lambda(f) = 1 \}$$

If 1 , then M has at most one norm minimizer.

Solution 2.2.1.1. Assume we have two minimizers for the norm, $f, g \in M$, then we know from Problem 1 in Assignment 2, if $f \neq g$, then

$$||(f+g)/2|| < \frac{1}{2}||f|| + \frac{1}{2}||g|| = ||f||$$

This contradicts our assumption that f is a norm minimizer.

2.3 Application of open mapping theorem

Let $\mathbb{T} = [-\pi, \pi]$, and $f \in L^1(\mathbb{T})$. Then

$$c_n := \hat{f}(n) = \frac{1}{2\pi} \int_{\mathbb{T}} f \bar{e_n} \ dm$$

where $e_n(t) = e^{int}$. c_n are called the *n*-th Fourier coefficient of f.

Theorem 2.3.1 (Riemann - Lebesgue lemma). If $f \in L^1(\mathbb{T})$, then

$$\lim_{n \to +\infty} \hat{f}(n) = 0$$

Proof. Let $\epsilon > 0$ be given. Take trigonometric polynomials

$$P = \left\{ p(t) = \sum_{k=-m}^{m} p_k e^{ikt} : m \in \mathbb{N} \right\}$$

which are dense in $L^1(\mathbb{T})$, so we can choose $p \in P$ such that $||f - p||_1 < \varepsilon$. For sufficiently large |n|, that is |n| > m, we also have

$$\frac{1}{2\pi} \int_{\mathbb{T}} (f - p)\bar{e_n} \ dm - \frac{1}{2pi} \int_{\mathbb{T}} f\bar{e_n} \ dm = \hat{f}(n)$$

We also observe that for any $n \in \mathbb{Z}$,

$$|\hat{f}(n) - \hat{p}(n)| = \left| \frac{1}{2\pi} \int_{\mathbb{T}} (f - p) \bar{e_n} \, dm \right| \le \frac{1}{2\pi} ||f - p||_1 < \frac{\varepsilon}{2\pi} < \varepsilon$$

By comparing $\hat{p}(n) \to 0$ as $n \to 0$, with $\hat{f}(n)$, we get that

$$\lim_{n \to \pm \infty} \sup |\hat{f}(n)| < \varepsilon$$

Since $\varepsilon > 0$, we get our proof.

Let $c_0 = \{\phi : \mathbb{Z} \to \mathbb{C} : \lim_{n \to \pm \infty} \phi(n) = 0\}$. We conclude that computing the Fourier coefficients gives us a linear map $\Lambda : L^1(\mathbb{T}) \to c_0$, such that

$$\Lambda(f)(n) = \hat{f}(n)$$

We know Λ is continuous by

$$|\Lambda(f)(n)| = \left| \frac{1}{2\pi} \int_{\mathbb{T}} f \bar{e_n} \, dm \right|$$

$$\leq \frac{1}{2\pi} \int_{\mathbb{T}} |f| \, dm$$

$$= \frac{1}{2\pi} ||f||_1$$

Now taking supremums over $n \in \mathbb{Z}$, we get $\|\Lambda(f)\|_{\infty} \leq \frac{1}{2\pi} \|f\|_{1}$. Again by the usual trick, we see that $\|\Lambda\| \leq \frac{1}{2\pi}$.

Theorem 2.3.2. Λ as defined above is not onto.

Proof. We establish that Λ is one to one. This follows easily from Weierstrass and Lusin by using trigonometric polynomials, and then continuous functions to approximate $L^1(\mathbb{T})$.

Now assume that Λ^{-1} is bounded, then for each $\hat{f} \in c_0$,

$$\|\Lambda^{-1}(\hat{f})\| \le \|f\|$$

If we choose

$$\hat{f}(m) = \begin{cases} \frac{1}{2\pi}, & ||m|| \le n\\ 0, & \text{else} \end{cases}$$

the coefficients corresponding to the n-th Dirichlet's kernel. Then since Λ is one-to-one, we get $\Lambda^{-1}(\hat{D_n}) = D_n$. But we know that $||D_n||_1 \to \infty$, as $n \to \infty$, while $||\hat{D_n}||_{\infty} = 1$. Thus we see that Λ^{-1} is unbounded. We conclude by the open mapping theorem that Λ is not onto.

Corollary 2.3.2.1. We see that the range of Λ is not a closed subspace of c_0 , by the same proof.

2.4 Hahn-Banach Theorem

13/02/2025

Example 2.4.1. Kadison Singer problem.

2.5 Applications of Hahn-Banach Theorem

For the god given Hahn-Banach theorem, refer Chapter 1 of last semester's functional notes.

Proposition 2.5.1. Let $D = \{z \in \mathbb{C} : |z| < 1\}$, and let $D = S^1$. Now, if $p(z) = \sum_{j=1}^{n} p_j z^j$, then

$$\max\{|p(z)| \ : \ z \in \bar{D}\} = \max\{|p(z)| \ : \ z \in S^1\}$$

Proof. Since p is continuous and \bar{D} is compact, the maximum is attained at \bar{D} . Assume $z_0 \in D$ is where the maximum is achieved. Then if we rewrite $p(z) = \sum_{j=1}^{n} q_j (z-z_0)^j$, for 0 < r < 1 such that $z_0 + re^{i\theta} \in D$ for any $\theta \in [0, 2\pi)$,

$$\int_0^{2\pi} p(z_0 + re^{i\theta}) \frac{d\theta}{2\pi} = \sum_{j=0}^n \int_0^{2\pi} q_j(re^{i\theta}) \frac{d\theta}{2\pi} = q_0 = p(z_0)$$

This using the max property (abs value of integral is \leq integral of abs value) of the integral forces $p(z_0) = p(z_0 + re^{i\theta})$ for all $\theta \in [0, 2\pi]$. Use again the fact that p(z) is a polynomial and see. Then p will be take a constant value q_0 in D.

Example 2.5.1. Let $A \subset C(\overline{D})$ be a subspace containing all polynomials, and all such functions for which maximum modulus holds.

For example, let $A(\mathbb{D})$ be the closure of the space of polynomials with $\|\cdot\|_{\infty}$ on S^1 . Then for any $f \in A(\mathbb{D})$, there exist a sequence of polynomials p_n such that $p_n \to f$ uniformly, and then $\|p_n\|_{\infty} \to \|f\|_{\infty}$ by uniform convergence.

By max-modulus property of the polynomials and uniform convergence,

$$||f||_{\infty,\partial\mathbb{D}} = ||f||_{\infty,\mathbb{D}}$$

Moreover if $||f||_{\infty,\partial\mathbb{D}} = 0$ for some $f \in A(\mathbb{D})$, then the maximum modulus principle forces $||f||_{\infty,\mathbb{D}} = 0$. Hence we see that the restriction of f to the circle is a injective linear map. Thus we can identify $A(\mathbb{D})$ with a closed subspace of $C(\partial\mathbb{D})$.

Example 2.5.2. Consider $M: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N}) := (x_n) \mapsto (\frac{x_n}{n})$. Show that M is not onto.

Proof. If Mx = 0, this forces x = 0. Thus we see that M is injective. If M were onto, then M would have a bounded inverse by open mapping theorem. Then working with the orthonormal basis $\{e_n\}$, we see that $M^{-1}(e_n) = ne_n$, which shows that $||M^{-1}|| = \infty$, a contradiction.

18/03/2025

Chapter 3

Complex Measures

20/03/2025

3.1 Consequence of Radon-Nikodym Theorem

Theorem 3.1.1. If μ, ν are positive σ -finite measures such that $\nu \ll \mu$, then there is a positive measurable function h such that $d\nu = h\mu$

Theorem 3.1.2 (Hahn-Decomposition Theorem). Let μ be a real-valued complex measure (signed measure) on a measurable space (X, \mathcal{M}) . Then there are two sets A, B such that $A \cup B = X, A \cap B = \emptyset$ and

$$\mu_+(E):=\mu(E\cap A),\quad \mu_-(E)=\mu(E\cap B)$$

with $\mu_+ \perp \mu_-$ and $\mu_+ + \mu_- = \mu$, and $\mu_+ + \mu_- = |\mu|$.

Moreover, if $\mu = \mu_1 - \mu_2$ with μ_1, μ_2 being positive measures, then for any $E \in \mathcal{M}$ we have $\mu_1(E) \ge \mu_+(E), \mu_2(E) \ge \mu_-(E)$

Proof. Since μ is a complex measure, $\mu \ll |\mu|$ and by Radon-Nikodym, there is a $h \in L^1(\mu)$ with $h(x) \in \{1, 2\}$ (polar decomposition) such that $d\mu = hd|\mu|$.

Let $A = h^{-1}(1)$, $B = X \setminus A$. We find that $d\mu_+ = \frac{1}{2}(d|\mu| + d\mu) = \frac{1}{2}(|h|d|\mu| + hd|\mu|) = h_+d|\mu|$, and similarly $\mu_- = h_-d|\mu|$. The rest follows easily.

3.2 Bounded linear functionals on L^p

Note. Let μ be a positive measure, $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Fixing $g \in L^1(\mu)$. Holder's inequality gives that for any $f \in L^p(\mu)$,

$$\left| \int fg \ d\mu \right| \le \|f\|_p \|g\|_q$$

So that $\Lambda_g: L^p(\mu) \to \mathbb{C} := f \to \int fg \ d\mu$ is a bounded linear functional. Thus, we have a map $\Lambda: L^p(\mu) \to L^p(\mu)^* := g \mapsto \Lambda_g$.

For $1 \leq p < \infty$, the converse is true, too

Lemma 3.2.1. If μ is σ -finite on (X, \mathcal{M}) , then there is a $\omega \in L^1(\mu)$ such that $\forall x \in X : 0 < \omega(x) < 1$.

Proof. Choose a partition E_j of X such that $\mu(E_j) < \infty$ for each $j \in \mathbb{N}$. Let

$$\omega = \sum_{n \in \mathbb{N}} \frac{1}{2^n} \frac{1}{1 + \mu(E_n)} \chi_{E_n}$$

Since E_j is a partition, we get that

$$\int |\omega| \ d\mu = \int \omega \ d\mu$$

$$= \int \sum_{n \in \mathbb{N}} \frac{1}{2^n} \frac{1}{1 + \mu(E_n)} \chi_{E_n} \ d\mu$$

$$= \sum_{n \in \mathbb{N}} \frac{1}{2^n} \frac{1}{1 + \mu(E_n)} \mu(E_n)$$

$$\leq \sum_{n \in \mathbb{N}} \frac{1}{2^n} = 1$$

Hence $\omega \in L^1(\mu)$ is the required function.

Corollary 3.2.0.1. If μ is σ -finite, then $\tilde{\mu}$ given by $d\tilde{\mu} = \omega d\mu$ is finite.

Theorem 3.2.1. Let μ be a σ -finite measure, $1 \leq p < \infty$, q as usual. If $\Lambda \in L^p(\mu)^*$, then there is $g \in L^q(\mu)$ such that

$$\Lambda = \Lambda_a$$

and $\|\Lambda\| = \|g\|_q$

Proof. Begin by assuming μ is finite. Let $\Lambda: L^p(\mu) \to \mathbb{C}$ be a bounded linear functional. Notice that $\chi_E \in L^p(\mu)$ for each $E \in \mathcal{M}$. Consider $\lambda(E) = \Lambda(\chi_E)$. Let $\{E_j\}_{n=1}^{\infty}$ be a partition of E. We find

$$\lambda\left(\bigcup_{j=1}^{n} E_{j}\right) = \Lambda\left(\sum_{j=1}^{n} \xi_{E_{j}}\right)$$
$$= \sum_{j=1}^{n} \Lambda(\chi_{E_{j}})$$
$$= \sum_{j=1}^{n} \lambda(E_{j})$$

We conclude λ is finitely additive. Note

$$\left\|\chi_E - \chi_{\bigcup_{j=1}^n E_j}\right\|_p = \left(\mu\left(\bigcup_{j=n+1}^\infty E_j\right)\right)^{\frac{1}{p}}$$

Using monotone convergence and boundedness of Λ , we get

$$\Lambda(\chi_{\cup_{j=1}^n E_j}) \to \Lambda(\chi_E)$$

Thus λ is a measure and $\lambda \ll \mu$ by the definition of λ . By Radon-Nikodym, we have $g \in L^1(\mu)$ with $d\lambda = gd\mu$.

For f simple,

$$\Lambda(f) = \int f \ d\lambda = \int f g \ d\mu := \Lambda_g(f)$$

Now, consider p = 1. Then

$$\Big| \int f \ d\lambda \Big| = \Big| \int f g \ d\mu \Big| \le \|\Lambda\| \|f\|_1$$

01/04/2025

Lemma 3.2.2. Let X be locally compact Hausdorff and $\lambda: C_c(X) \to \mathbb{R}$ be bounded linear functional. Then there are positive bounded linear functionals λ_+, λ_- such that $\lambda = \lambda_+ - \lambda_-$.

Proof. For this, we find bounded linear functional ρ ,

$$|\lambda(f)| \le \rho(|f|) \le C||f||_{\infty}$$

and then let $\lambda_+ = \frac{1}{2}(\lambda + \rho)$ and $\lambda_- = \frac{1}{2}(\rho - \lambda)$ We define the map $\rho: C_c(X)^+ \to \mathbb{C} := f \mapsto \sup\{|\lambda(h)| | h \in C_c(X), |h| \le f\},$ where $C_c(X)^+$ is the set of non-negative real valued functions in $C_c(X)$. Let $f,g\in C_c(X)^+$, then there is a $h_1,h_2\in C_c(X)$ such that $|h_1|\leq f,|h_2|\leq g$ with $\rho(f) \leq |\lambda(h_1)| + \varepsilon$ and $\rho(g) \leq |\lambda(h_2)| + \varepsilon$. So, $\rho(f) + \rho(g) \leq |\lambda(h_1)| + |\lambda(h_2)| + 2\varepsilon$. Let $\alpha_1, \alpha_2 \in \{\pm 1\}$ such that $\lambda(\alpha_i h_i) = \alpha_i \lambda(h_i) > 0$. Then

$$|\lambda(\alpha_1 h_1)| + |\lambda(\alpha_2 h_2)| = \lambda(\alpha_1 h_1) + \lambda(\alpha_2 h_2) = \lambda(\alpha_1 h_1 + \alpha_2 h_2)$$

So,

$$\rho(f) + \rho(h) \leq \lambda(\alpha_1 h_1 + \alpha_2 h_2) + \varepsilon$$

$$\leq \rho(|\alpha_1 h_1 + \alpha_2 h_2|) + 2\varepsilon \quad \text{since } \alpha_1 h_2 + \alpha_2 h_2 \leq |\alpha_1 h_1 + \alpha_2 h_2|$$

$$\leq \rho(|h_1| + |h_2|) + 2\varepsilon \quad \text{since } \rho \text{ is order preserving}$$

$$\leq \rho(f + g) + 2\varepsilon \quad \text{since } \rho \text{ is order preserving}$$

Since this holds for any $\varepsilon > 0$, we get $\rho(f+g) \ge \rho(f) + \rho(g)$.

To show the reverse inequality, let $f, g \in C_c(X)^+$, and $h \in C_c(X)$ be such that $|h| \leq f + g$. We define

$$h_1(x) = \begin{cases} \frac{f(x)}{f(x)g(x)}h(x), & f(x) + g(x) > 0\\ 0, & \text{else} \end{cases}$$

and $h_2(x) = h(x) - h_1(x)$. Then $|h_1| \le f, |h_2| \le g$. Moreover, h_1, h_2 are continuous where $f(x) + g(x) \ge 0$. Next,

$$|\lambda(x)| = |\lambda(h_1 + h_2)|$$

$$\leq |\lambda(h_1)| + |\lambda(h_2)|$$

$$\leq \rho(f) + \rho(g)$$

Taking supremum over h, we get $\rho(f+g) \leq \rho(f) + \rho(g)$. We have established additivity of ρ for $f, g \geq 0$. For general $f, g \in C_c(X)$, split f, g, h into differences of positive and negative parts and rearrange to apply ρ with linearity. Thus we'll get $\rho(f+g) = \rho(f) + \rho(g)$.

Now to show homogeneity, let $c \in \mathbb{R}$ and $f \in C_c(X)$. If c < 0,

$$\rho(cf^+) = -\rho((cf^+)^-)$$

$$= -\rho(|c|f^+)$$

$$= -|c|\rho(f^+)$$

$$= c\rho(f^+)$$

Again by splitting $f = f^+ - f^-$, we get the homogeneity. Thus we get ρ is linear.

Lemma 3.2.3. If ν is a σ -finite regular positive measure on a locally compact Hausdorff space, and μ is a complex measure with $|\mu| \ll \nu$, then μ is regular.

Proof. Using Radon-Nikodym theorem, for a measurable set E, we have

$$\mu(E) = \int_E h \ d\nu$$

with $h \in L^1(\mu)$. Considering that μ is regular, there are sequences of open sets $V_j \supset E$, $\nu(V_j \setminus E) \xrightarrow{j \to \infty} 0$ and compact sets $K_j \subset E$, such that $\nu(E \setminus K_j) \xrightarrow{j \to \infty} 0$. Next, by dominated convergence theorem,