CME 307 / MS&E 311: Optimization

Convex duality

Professor Udell

Management Science and Engineering
Stanford

February 28, 2024

Announcements

- new plan for course:
 - 1. KKT conditions and IPMS
 - 2. first order methods
 - 3. Bayesian optimization
 - 4. two sessions of project presentations

Fenchel dual

Definition (Fenchel dual)

The **Fenchel dual** of a function $f: \mathcal{X} \to \mathbf{R}$ is

$$f^*(w) = \sup_{x \in \mathcal{X}} \langle w, x \rangle - f(x)$$

also called the **conjugate function**. draw picture! https://remilepriol.github.io/dualityviz/

Fenchel dual

Definition (Fenchel dual)

The **Fenchel dual** of a function $f: \mathcal{X} \to \mathbf{R}$ is

$$f^*(w) = \sup_{x \in \mathcal{X}} \langle w, x \rangle - f(x)$$

also called the **conjugate function**. draw picture! https://remilepriol.github.io/dualityviz/

example:
$$f(x) = ||x||_1$$
, $x \in \mathbb{R}^n$

$$f^*(w) = \sup_{x \in \mathbf{R}^n} \langle w, x \rangle - \|x\|_1 = \begin{cases} 0 & \|w\|_{\infty} \le 1 \\ \infty & \text{otherwise} \end{cases}$$

 \implies fenchel dual of ℓ_1 norm is indicator of ℓ_∞ ball

Biconjugate

Definition (Biconjugate)

The **biconjugate** of a function $f: \mathcal{X} \to \mathbf{R}$ is

$$f^{**}(x) = \sup_{w \in \mathcal{X}^*} \langle w, x \rangle - f^*(w)$$

- ▶ for convex $f: \mathbf{R} \to \mathbf{R}$, $f^{**} = f$
- ▶ for nonconvex f, f^{**} is convex hull of f
- ⇒ biconjugate is a convexification operation

Biconjugate

Definition (Biconjugate)

The **biconjugate** of a function $f: \mathcal{X} \to \mathbf{R}$ is

$$f^{**}(x) = \sup_{w \in \mathcal{X}^*} \langle w, x \rangle - f^*(w)$$

- ▶ for convex $f: \mathbf{R} \to \mathbf{R}$, $f^{**} = f$
- ▶ for nonconvex f, f^{**} is convex hull of f
- ⇒ biconjugate is a convexification operation

example: consider $f : \mathbf{R} \to \mathbf{R}$ defined by

$$f(x) = \begin{cases} 0 & x \in \{-1, 1\} \\ \infty & \text{otherwise} \end{cases}$$

what is f^* ? f^{**} ?

Outline

Lagrange duality

Why duality?

- certify optimality
 - ► turn ∀ into ∃
 - use dual lower bound to derive stopping conditions
- new algorithms based on the dual
 - solve dual, then recover primal solution

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize f(x)subject to Ax = b: dual y (\mathcal{P}) variable $x \in \mathbf{R}^n$

if x is feasible, then Ax = b, so $\langle y, Ax - b \rangle = 0$.

primal problem with solution $x^* \in \mathbb{R}^n$, optimal value p^* :

minimize
$$f(x)$$

subject to $Ax = b$: dual y
variable $x \in \mathbf{R}^n$

if x is feasible, then Ax = b, so $\langle y, Ax - b \rangle = 0$. define the **Lagrangian**

$$\mathcal{L}(x,y) := f(x) - \langle y, b - Ax \rangle$$

 (\mathcal{P})

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$f(x)$$

subject to $Ax = b$: dual y (\mathcal{P})
variable $x \in \mathbf{R}^n$

if x is feasible, then Ax = b, so $\langle y, Ax - b \rangle = 0$. define the **Lagrangian**

$$\mathcal{L}(x,y) := f(x) - \langle y, b - Ax \rangle$$

$$p^* = \inf_{x:Ax=b} \mathcal{L}(x,y) \ge \inf_{x} \mathcal{L}(x,y)$$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$f(x)$$

subject to $Ax = b$: dual y

variable $x \in \mathbf{R}^n$

if x is feasible, then Ax = b, so $\langle y, Ax - b \rangle = 0$.

grangian
$$\mathcal{L}(x,y) := f(x) - \langle y, b - Ax
angle$$

$$p^* = \inf_{x:Ax=b} \mathcal{L}(x,y) \ge \inf_{x} \mathcal{L}(x,y)$$

$$= \inf_{x} f(x) + \langle y, -b + Ax \rangle$$

$$= \langle y, -b \rangle + \inf_{x} \left(f(x) + \langle A^{T} y, x \rangle \right)$$

$$= \langle y, -b \rangle - \sup_{x} \left(\langle -A^{T} y, x \rangle - f(x) \right)$$

$$= \langle y, -b \rangle - f^{*}(-A^{T} y) = g(y)$$

 (\mathcal{P})

Lagrange duality

inequality holds for any $y \in \mathbf{R}^m$, so we have proved **weak duality**

$$\rho^{\star} \geq g(y) \quad \forall y \in \mathbf{R}^{m} \\
\geq \sup_{\mathcal{D}} g(y) =: d^{\star} \tag{1}$$

dual optimal value $d^\star \leq p^\star$

Strong duality

Definition (Duality gap)

The duality gap for a primal-dual pair (x, y) is f(x) - g(y)

by weak duality, duality gap is always nonnegative

Strong duality

Definition (Duality gap)

The **duality gap** for a primal-dual pair (x, y) is f(x) - g(y)

by weak duality, duality gap is always nonnegative

Definition (Strong duality)

A primal-dual pair (x^*, y^*) satisfies **strong duality** if

$$p^{\star} = d^{\star} \iff f(x^{\star}) - g(y^{\star}) = 0$$

Strong duality

Definition (Duality gap)

The **duality gap** for a primal-dual pair (x, y) is f(x) - g(y)

by weak duality, duality gap is always nonnegative

Definition (Strong duality)

A primal-dual pair (x^*, y^*) satisfies **strong duality** if

$$p^* = d^* \iff f(x^*) - g(y^*) = 0$$

strong duality holds

- ▶ for feasible LPs
- ► for convex problems under **constraint qualification** aka **Slater's condition**. feasible region has an **interior point** *x* so that all inequality constraints hold strictly

strong duality fails if either primal or dual problem is infeasible or unbounded

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize f(x)

subject to $Ax \leq b$: $y \geq 0$

variable $x \in \mathbf{R}^n$

 (\mathcal{P})

primal problem with solution $x^* \in \mathbb{R}^n$, optimal value p^* :

minimize
$$f(x)$$

subject to $Ax \le b$: $y \ge 0$ (\mathcal{P})
variable $x \in \mathbf{R}^n$

to construct Lagrangian $\mathcal{L}(x,y) = f(x) - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$f(x)$$

subject to $Ax \le b$: $y \ge 0$ (\mathcal{P})
variable $x \in \mathbf{R}^n$

to construct Lagrangian $\mathcal{L}(x,y) = f(x) - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

$$\mathcal{L}(x,y) := f(x) - \langle y, b - Ax \rangle$$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$f(x)$$

subject to $Ax \le b$: $y \ge 0$ (\mathcal{P})
variable $x \in \mathbf{R}^n$

to construct Lagrangian $\mathcal{L}(x,y) = f(x) - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

$$\mathcal{L}(x,y) := f(x) - \langle y, b - Ax \rangle$$

$$p^* \geq \inf_{x \text{ feas}} f(x) - \langle y, b - Ax \rangle$$

$$\geq \inf_{x} f(x) - \langle y, b - Ax \rangle$$

$$= \langle y, -b \rangle - f^*(-A^*y) =: g(y)$$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$f(x)$$

subject to $Ax \le b$: $y \ge 0$
variable $x \in \mathbf{R}^n$ (\mathcal{P})

to construct Lagrangian $\mathcal{L}(x,y) = f(x) - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

$$\mathcal{L}(x,y) := f(x) - \langle y, b - Ax \rangle$$

$$p^* \geq \inf_{\substack{x \text{ feas}}} f(x) - \langle y, b - Ax \rangle$$

$$\geq \inf_{\substack{x}} f(x) - \langle y, b - Ax \rangle$$

$$= \langle y, -b \rangle - f^*(-A^*y) =: g(y)$$

this holds for all $y \ge 0$, so we have weak duality

$$p^{\star} \geq \sup_{y} g(y) =: d^{\star}$$

support vector machine: for
$$x_i \in \mathbf{R}^n$$
, $y_i \in \{-1, 1\}$, $i = 1, \dots, m$

minimize
$$\frac{1}{2} ||w||^2 + 1^T s$$

subject to $y_i w^T x_i + s_i \ge 1$ $i = 1, ..., m : \alpha \ge 0$
 $s \ge 0 : \mu \ge 0$ (SVM)

verify Slater's condition. strong duality holds!

support vector machine: for $x_i \in \mathbb{R}^n$, $y_i \in \{-1, 1\}$, i = 1, ..., m

minimize
$$\frac{1}{2} \|w\|^2 + 1^T s$$

subject to $y_i w^T x_i + s_i \ge 1$ $i = 1, ..., m : \alpha \ge 0$
 $s \ge 0 : \mu \ge 0$ (SVM)

verify Slater's condition. strong duality holds! Lagrangian: for $\alpha \geq$ 0, $\mu \geq$ 0,

$$\mathcal{L}(w, s, \alpha, \mu) = \frac{1}{2} ||w||^2 + 1^T s - \sum_{i=1}^m \alpha_i (y_i w^T x_i + s_i - 1) - \mu^T s$$

ightharpoonup minimize $\mathcal{L}(w, s, \alpha, \mu)$ over w:

$$w = \sum_{i=1}^{m} \alpha_i y_i x_i$$

ightharpoonup minimize $\mathcal{L}(w, s, \alpha, \mu)$ over $s \implies \alpha + \mu = 1$

so simplify:

$$g(\alpha) = \inf_{w,s} \mathcal{L}(w,s,\alpha,1-\alpha)$$

$$= \frac{1}{2} ||w||^2 - w^T \sum_{i=1}^m \alpha_i y_i x_i + 1^T \alpha$$

$$= -\frac{1}{2} ||\sum_{i=1}^m \alpha_i y_i x_i||^2 + 1^T \alpha$$

so simplify:

$$g(\alpha) = \inf_{w,s} \mathcal{L}(w, s, \alpha, 1 - \alpha)$$

$$= \frac{1}{2} ||w||^2 - w^T \sum_{i=1}^m \alpha_i y_i x_i + 1^T \alpha$$

$$= -\frac{1}{2} ||\sum_{i=1}^m \alpha_i y_i x_i||^2 + 1^T \alpha$$

define $K \in \mathbf{R}^m$ so $K_{ij} = y_i y_j x_i^T x_j$. then

$$\|\sum_{i=1}^{m} \alpha_i y_i x_i\|^2 = \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j x_i^{\mathsf{T}} x_j = \alpha^{\mathsf{T}} \mathsf{K} \alpha$$

so simplify:

$$g(\alpha) = \inf_{w,s} \mathcal{L}(w, s, \alpha, 1 - \alpha)$$

$$= \frac{1}{2} ||w||^2 - w^T \sum_{i=1}^m \alpha_i y_i x_i + 1^T \alpha$$

$$= -\frac{1}{2} ||\sum_{i=1}^m \alpha_i y_i x_i||^2 + 1^T \alpha$$

define $K \in \mathbf{R}^m$ so $K_{ii} = y_i y_i x_i^T x_i$. then

$$\|\sum_{i=1}^{m} \alpha_i y_i x_i\|^2 = \sum_{i=1}^{m} \sum_{i=1}^{m} \alpha_i \alpha_j y_i y_j x_i^T x_j = \alpha^T K \alpha$$

dual problem:

maximize
$$-\frac{1}{2}\alpha^T K\alpha + 1^T\alpha$$
 subject to $\alpha \ge 0$

so simplify:

$$g(\alpha) = \inf_{w,s} \mathcal{L}(w, s, \alpha, 1 - \alpha)$$

$$= \frac{1}{2} ||w||^2 - w^T \sum_{i=1}^m \alpha_i y_i x_i + 1^T \alpha$$

$$= -\frac{1}{2} ||\sum_{i=1}^m \alpha_i y_i x_i||^2 + 1^T \alpha$$

define $K \in \mathbf{R}^m$ so $K_{ii} = y_i y_i x_i^T x_i$. then

$$\|\sum_{i=1}^{m} \alpha_i y_i x_i\|^2 = \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j x_i^T x_j = \alpha^T K \alpha$$

dual problem:

maximize
$$-\frac{1}{2}\alpha^T K \alpha + 1^T \alpha$$
 subject to $\alpha > 0$

many adjustice idead was small account (CMO) bewalthink

(SVM-dual)

Generalize Lagrangian duality

Generalize Lagrangian duality

► nonlinear duality: replace

$$0 \ge Ax - b$$
 with $0 \ge g(x)$

(harder to derive explicit form for dual problem)

Generalize Lagrangian duality

nonlinear duality: replace

$$0 \ge Ax - b$$
 with $0 \ge g(x)$

(harder to derive explicit form for dual problem)

 \triangleright conic duality: for cone K, replace

$$b - Ax \ge 0$$
 with $b - Ax \in K$

define **slack vector** $s = b - Ax \in K$ for weak duality, dual y must satisfy

$$\langle y, s \rangle \ge 0 \quad \forall s \in K$$

Dual cones

this inequality defines the **dual cone** K^* :

Definition (dual cone)

the dual cone K^* of a cone K is the set of vectors y such that

$$\langle y, s \rangle \geq 0 \quad \forall s \in K$$

Dual cones

this inequality defines the **dual cone** K^* :

Definition (dual cone)

the dual cone K^* of a cone K is the set of vectors y such that

$$\langle y, s \rangle \ge 0 \quad \forall s \in K$$

examples of cones and their duals:

- ► K acute, K* obtuse
- $ightharpoonup K = \mathbf{R}_{+}^{m}, K^{*} = \mathbf{R}_{+}^{m}$
- $K = \{x \in \mathbb{R}^n \mid ||x|| \le x_0\}, K^* = \{y \in \mathbb{R}^n \mid ||y|| \le y_0\}$
- ▶ $K = \{X \in \mathbf{S}^n \mid X \succeq 0\}, K^* = \{Y \in \mathbf{S}^n \mid Y \succeq 0\}$

inner product $\langle X, Y \rangle = \operatorname{tr}(X^T Y) = \sum_{ij} X_{ij} Y_{ij}$ for $X, Y \in \mathbf{S}^n$

Conic duality

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$\langle c, x \rangle$$

subject to $b - Ax \in K : y \in K^*$ (\mathcal{P})
variable $x \in \mathbf{R}^n$

Conic duality

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$\langle c, x \rangle$$

subject to $b - Ax \in K$: $y \in K^*$
variable $x \in \mathbf{R}^n$

for $y \in K^*$, construct Lagrangian $\mathcal{L}(x,y) = \langle c, x \rangle - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

Conic duality

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$\langle c, x \rangle$$

subject to $b - Ax \in K$: $y \in K^*$ (\mathcal{P})
variable $x \in \mathbf{R}^n$

for $y \in K^*$, construct Lagrangian $\mathcal{L}(x,y) = \langle c, x \rangle - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

$$\mathcal{L}(x,y) := \langle c, x \rangle - \langle y, b - Ax \rangle$$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$\langle c, x \rangle$$

subject to $b - Ax \in K$: $y \in K^*$
variable $x \in \mathbf{R}^n$ (\mathcal{P})

for $y \in K^*$, construct Lagrangian $\mathcal{L}(x,y) = \langle c, x \rangle - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

$$\mathcal{L}(x,y) := \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$p^* \geq \inf_{\substack{x \text{ feas} \\ x \text{ feas}}} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$\geq \inf_{\substack{x \text{ feas} \\ x \text{ feas}}} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$= \langle y, -b \rangle + \inf_{\substack{x \text{ for } x \text{ for } x$$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$\langle c, x \rangle$$

subject to $b - Ax \in K$: $y \in K^*$
variable $x \in \mathbf{R}^n$ (\mathcal{P})

for $y \in K^*$, construct Lagrangian $\mathcal{L}(x,y) = \langle c, x \rangle - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

$$\mathcal{L}(x,y) := \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$p^* \geq \inf_{\substack{x \text{ feas} \\ x \text{ feas}}} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$\geq \inf_{\substack{x \text{ foas} \\ x \text{ foas}}} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$= \langle y, -b \rangle + \inf_{\substack{x \text{ foas} \\ x \text{ foas}}} \langle c + A^*y, x \rangle$$

which is $-\infty$ unless $c + A^*y = 0$, so

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$\langle c, x \rangle$$

subject to $b - Ax \in K$: $y \in K^*$
variable $x \in \mathbf{R}^n$ (\mathcal{P})

for $y \in K^*$, construct Lagrangian $\mathcal{L}(x,y) = \langle c, x \rangle - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

$$\mathcal{L}(x,y) := \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$p^* \geq \inf_{\substack{x \text{ feas}}} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$\geq \inf_{\substack{x \text{ feas}}} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$= \langle y, -b \rangle + \inf_{\substack{x \text{ for } x \text{ f$$

which is $-\infty$ unless $c + A^*y = 0$, so define the **dual problem**

maximize
$$\langle y, -b \rangle$$

subject to $c + A^* y = 0$

primal problem with solution $x^* \in \mathbf{R}^n$, optimal value p^* :

minimize
$$\langle c, x \rangle$$

subject to $b - Ax \in K$: $y \in K^*$
variable $x \in \mathbf{R}^n$ (\mathcal{P})

for $y \in K^*$, construct Lagrangian $\mathcal{L}(x,y) = \langle c, x \rangle - \langle y, b - Ax \rangle$, ensure value is **better** (lower) when x and y are feasible

$$\mathcal{L}(x,y) := \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$p^* \geq \inf_{\substack{x \text{ feas}}} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$\geq \inf_{\substack{x \text{ feas}}} \langle c, x \rangle - \langle y, b - Ax \rangle$$

$$= \langle y, -b \rangle + \inf_{\substack{x \text{ for } x \text{ f$$

which is $-\infty$ unless $c + A^*y = 0$, so define the **dual problem**

maximize
$$\langle y, -b \rangle$$

subject to $c + A^* y = 0$

Dual of the dual

- ightharpoonup if (\mathcal{P}) is convex, then the dual of (1) is (\mathcal{P})
- ▶ otherwise, the dual of the dual is the **convexification** of the primal

Strong duality and complementary slackness

Definition (complementary slackness)

The primal-dual pair x and y are complementary if

$$\langle y, b - Ax \rangle = 0$$

They satisfy **strict complementary slackness** if $y_i(b_i - a_i^T x) = 0$ for i = 1, ..., n.

for conic problem, strong duality \iff complementary slackness

$$\langle y, s \rangle = \langle y, b - Ax \rangle$$

$$= \langle y, b \rangle - \langle A^*y, x \rangle$$

$$= \langle y, b \rangle - \langle c, x \rangle$$

First-order optimality condition

The KKT conditions are first-order **necessary** conditions for optimality of optimization problem.

Theorem (KKT conditions)

Suppose x^* and y^* are primal and dual optimal, respectively. Then

> stationarity. x^* minimizes the Lagrangian at y^* . If \mathcal{L} is differentiable, then

$$\nabla_{\mathsf{x}} \mathcal{L}(\mathsf{x}^{\star}, \mathsf{y}^{\star}) = 0.$$

- **Feasibility.** x^* is primal feasible; y^* is dual feasible.
- **complementary slackness.** dual variable y_i^* is nonzero only if the *i*th constraint is active at x^* .
- KKT conditions are named after Karush, Kuhn, and Tucker.
- ▶ KKT conditions turn optimization problem into a system of equations.
- ▶ If the problem is convex, then the KKT conditions are also sufficient for optimality.

KKT conditions: example

nonlinear optimization with inequality constraints:

minimize
$$f(x)$$

subject to $Ax \le b$: $y \ge 0$

Lagrangian
$$\mathcal{L}(x,y) = f(x) - \langle y, Ax - b \rangle$$
.

Suppose x^* and y^* are primal and dual optimal, respectively. Then

stationarity. x^* minimizes the Lagrangian at y^* :

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^{\star}, \mathbf{y}^{\star}) = 0 \implies \nabla f(\mathbf{x}^{\star}) = A^{T} \mathbf{y}^{\star}$$

- feasibility. $Ax^* \le b$ is primal feasible; $y^* \ge 0$ is dual feasible.
- **complementary slackness.** dual variable y_i^* is nonzero only if the *i*th constraint is active at x^* :

$$\langle y^{\star}, b - Ax^{\star} \rangle = 0$$

KKT Example

Consider the following optimization problem:

minimize
$$x^2 + y^2$$
 subject to $x + y \le -1$: $\lambda \ge 0$ $x - y = 0$: μ

Lagrangian:

KKT Example

Consider the following optimization problem:

minimize
$$x^2 + y^2$$
 subject to $x + y \le -1$: $\lambda \ge 0$ $x - y = 0$: μ

Lagrangian:

$$\mathcal{L}(x, y, \lambda, \mu) = x^2 + y^2 + \lambda(x + y + 1) + \mu(x - y)$$

$$\mathcal{L}(x, y, \lambda, \mu) = x^2 + y^2 + \lambda(x + y + 1) + \mu(x - y)$$

$$\mathcal{L}(x, y, \lambda, \mu) = x^2 + y^2 + \lambda(x + y + 1) + \mu(x - y)$$

KKT conditions:

1. stationarity: $\nabla_x L(x, y, \lambda, \mu) = 0$, $\nabla_y L(x, y, \lambda, \mu) = 0$, ie, $\frac{\partial \mathcal{L}}{\partial x} = 2x + \lambda + \mu = 0$ $\frac{\partial \mathcal{L}}{\partial y} = 2y + \lambda - \mu = 0$

- 2. feasibility:
 - ightharpoonup primal: $x + y \le -1$ and x y = 0
 - dual: $\lambda \geq 0$
- 3. complementary slackness: $\lambda=0$ or x+y=-1 (or both)

solve!

$$\mathcal{L}(x, y, \lambda, \mu) = x^2 + y^2 + \lambda(x + y + 1) + \mu(x - y)$$

KKT conditions:

1. stationarity: $\nabla_x L(x, y, \lambda, \mu) = 0$, $\nabla_y L(x, y, \lambda, \mu) = 0$, ie,

$$\frac{\partial \mathcal{L}}{\partial x} = 2x + \lambda + \mu = 0$$
$$\frac{\partial \mathcal{L}}{\partial y} = 2y + \lambda - \mu = 0$$

- 2. feasibility:
 - ightharpoonup primal: $x + y \le -1$ and x y = 0
 - dual: $\lambda \geq 0$
- 3. complementary slackness: $\lambda = 0$ or x + y = -1 (or both)

solve!

▶ primal feasibility (PF) $\implies x = y$

$$\mathcal{L}(x, y, \lambda, \mu) = x^2 + y^2 + \lambda(x + y + 1) + \mu(x - y)$$

KKT conditions:

1. stationarity: $\nabla_x L(x, y, \lambda, \mu) = 0$, $\nabla_y L(x, y, \lambda, \mu) = 0$, ie,

$$\frac{\partial \mathcal{L}}{\partial x} = 2x + \lambda + \mu = 0$$
$$\frac{\partial \mathcal{L}}{\partial y} = 2y + \lambda - \mu = 0$$

- 2. feasibility:
 - primal: $x + y \le -1$ and x y = 0
 - \triangleright dual: $\lambda > 0$
- 3. complementary slackness: $\lambda = 0$ or x + y = -1 (or both)

solve!

ightharpoonup primal feasibility (PF) $\implies x = y$

• if $\lambda^* = 0$, stationarity $\implies \lambda^* + \mu^* = 1$ and $\lambda^* - \mu^* = 1$. impossible!

$$\mathcal{L}(x, y, \lambda, \mu) = x^2 + y^2 + \lambda(x + y + 1) + \mu(x - y)$$

KKT conditions:

1. stationarity: $abla_x L(x,y,\lambda,\mu) = 0$, $abla_y L(x,y,\lambda,\mu) = 0$, ie,

$$\frac{\partial \mathcal{L}}{\partial x} = 2x + \lambda + \mu = 0$$
$$\frac{\partial \mathcal{L}}{\partial y} = 2y + \lambda - \mu = 0$$

- 2. feasibility: > primal: x + v < -1 and x v = 0
- primal: $x + y \le -1$ and x y = 0dual: $\lambda > 0$
- 3. complementary slackness: $\lambda=0$ or x+y=-1 (or both)
- solve!
 - ▶ primal feasibility (PF) $\implies x = y$ ▶ if $\lambda^* = 0$, stationarity $\implies \lambda^* + \mu^* = 1$ and $\lambda^* \mu^* = 1$. impossible!

$$\mathcal{L}(x, y, \lambda, \mu) = x^2 + y^2 + \lambda(x + y + 1) + \mu(x - y)$$

KKT conditions:

1. stationarity: $abla_x L(x,y,\lambda,\mu) = 0$, $abla_y L(x,y,\lambda,\mu) = 0$, ie,

$$\frac{\partial \mathcal{L}}{\partial x} = 2x + \lambda + \mu = 0$$
$$\frac{\partial \mathcal{L}}{\partial y} = 2y + \lambda - \mu = 0$$

- 2. feasibility: > primal: x + v < -1 and x v = 0
- primal: $x + y \le -1$ and x y = 0dual: $\lambda > 0$
- 3. complementary slackness: $\lambda=0$ or x+y=-1 (or both)
- solve!
 - ▶ primal feasibility (PF) $\implies x = y$ ▶ if $\lambda^* = 0$, stationarity $\implies \lambda^* + \mu^* = 1$ and $\lambda^* \mu^* = 1$. impossible!

Summary

- ▶ Duality provides lower bounds on the optimal value of an optimization problem.
- Construct the Lagrangian for any optimization problem by
 - 1. adding a linear combination of the constraints to the objective,
 - 2. restricting the associated dual variables to ensure Lagrangian provides a lower bound when primal is feasible.
- Duality can be used to certify optimality or as a stopping condition.
- KKT conditions give necessary (and for convex problems, sufficient) conditions for optimality,
 - ...and hence new ways to solve the problem by solving the KKT system.
 - Solving KKT conditions reduces to a linear system for problems with equality constraints,
 - but more complex for problems with inequality (or conic) constraints.