Analysis of a GRTS Survey Design for a Finite Resource

Thomas Kincaid

April 4, 2019

Contents

1	Preliminaries	1
2	Load the survey design and analytical variables data set	2
3	Analysis of site status evaluation variables	5
4	Analysis of lake condition variables	8
5	Analysis of lake condition variables correcting for population size	10
6	Analysis of quantitative variables	12

1 Preliminaries

This document presents analysis of a GRTS survey design for a finite resource. The finite resource used in the analysis is small lakes in Florida. The analysis will include calculation of three types of population estimates: (1) estimation of proportion and size (number of lakes) for site evaluation status categorical variables; (2) estimation of proportion and size for lake condition categorical variables; and (3) estimation of the cumulative distribution function (CDF) and percentiles for quantitative variables. Testing for difference between CDFs from subpopulations also will be presented.

The initial step is to use the library function to load the spsurvey package. After the package is loaded, a message is printed to the R console indicating that the spsurvey package was loaded successfully.

Load the spsurvey package

```
> # Load the spsurvey package
> library(spsurvey)
>
```

Version 3.5.0 of the spsurvey package was loaded successfully.

2 Load the survey design and analytical variables data set

The original Florida small lakes data file contains more than 3,800 records and 29 basins. To produce a more manageable number of records, only six basins were retained in the data that will be analyzed, which produced a file containing 930 records.

The next step is to load the data set, which includes both survey design variables and analytical variables. The data function is used to load the data set and assign it to a data frame named FL_lakes. The nrow function is used to determine the number of rows in the FL_lakes data frame, and the resulting value is assigned to an object named nr. Finally, the initial six lines and the final six lines in the FL_lakes data frame are printed using the head and tail functions, respectively.

Load the survey design and analytical variables data set

```
> # Load the data set and determine the number of rows in the data frame
> data(FL_lakes)
> nr <- nrow(FL_lakes)
>
```

Display the initial six lines in the data file.

```
> # Display the initial six lines in the data file
> head(FL_lakes)
```

```
TNT
         siteID xcoord
                          ycoord
                                       wgt
                                              Basin
                                                              Status
1 FLW03414-0014 8635535 12860896 5.369048 NWFWMD-1
                                                             Sampled
                                                                        Target
2 FLW03414-0046 8636136 12886783 5.369048 NWFWMD-1 Physical_Barrier
                                                                        Target
3 FLW03414-0062 8617834 12869126 5.369048 NWFWMD-1
                                                           NonTarget NonTarget
4 FLW03414-0078 8673500 12883071 5.369048 NWFWMD-1 Physical_Barrier
                                                                        Target
5 FLW03414-0086 8631884 12816428 5.369048 NWFWMD-1
                                                           NonTarget NonTarget
6 FLW03414-0118 8607699 12856644 5.369048 NWFWMD-1
                                                           NonTarget NonTarget
  pH_Cat Coliform_Cat Oxygen Turbidity
1(0,6]
                (0,5]
                         9.9
                                    0.4
```

2	<na></na>	<na></na>	NA	NA
3	<na></na>	<na></na>	NA	NA
4	<na></na>	<na></na>	NA	NA
5	<na></na>	<na></na>	NA	NA
6	<na></na>	<na></na>	NA	NA

Display the final six lines in the data file.

- > # Display the final six lines in the data file
- > tail(FL_lakes)

	siteII) xcoord	ycoord	wgt	Basin	Status	TNT
925	FLW03414-3878	8880656	12694963	4.80791	SWFWMD-4	Dry	Target
926	FLW03414-3886	8892406	12732977	4.80791	SWFWMD-4	Sampled	Target
927	FLW03414-3894	8836528	12723056	4.80791	SWFWMD-4	Dry	Target
928	FLW03414-3918	8 8923107	12725502	4.80791	SWFWMD-4	${\tt Landowner_Denial}$	Target
929	FLW03414-3926	8861298	12715824	4.80791	SWFWMD-4	Dry	Target
930	FLW03414-3950	8888601	12715641	4.80791	SWFWMD-4	${\tt NonTarget}$	${\tt NonTarget}$
	pH_Cat Colif	orm_Cat O	xygen Turl	oidity			
925	<na></na>	<na></na>	NA	NA			
926	(6,8]	(5,50]	1.98	8.2			
927	<na></na>	<na></na>	NA	NA			
928	<na></na>	<na></na>	NA	NA			
929	<na></na>	<na></na>	NA	NA			
930	<na></na>	<na></na>	NA	NA			

>

The sample of small lakes in Florida is displayed in Figure 1. The sample sites for each basin are displayed using a unique color.

Florida Small Lake Sites Color-Coded by Basin

Figure 1: Location of small lake sample sites in Florida color-coded by basin.

3 Analysis of site status evaluation variables

The first analysis that will be examined is calculation of extent estimates for site status evaluation variables. Extent is measured both by the proportion of the resource in status evaluation categories and by size of the resource in each category. For a finite resource like lakes, size refers to the number of lakes in a category. For calculating extent estimates (and for all of the analyses we will consider), the survey design weights are incorporated into the calculation process. Weights used in the analyses were modified from the original survey design weights to ensure that the weights sum to the known size of the resource. Further information regarding weight adjustment is provided in the help page for the adjwgt (weight adjustment) function. Two site status variables will be examined: (1) status, which classifies lakes into six evaluation categories and (2) TNT, which classifies lakes as either "Target" or "NonTarget". The table and addmargins functions are used to create tables displaying the count for each code (level) of the two status variables.

> addmargins(table(FL_lakes\$Status))

A table displaying the number of values for each level of the status variable follows:

Dry	Landowner_Denial	${ t NonTarget}$
223	119	317
Otherwise_Unsampleable	Physical_Barrier	Sampled
1	99	171
Sum		
930		

> addmargins(table(FL_lakes\$TNT))

A table displaying the number of values for each level of the TNT variable follows:

${\tt NonTarget}$	Target	Sum
317	613	930

The cat.analysis function in the spsurvey package will be used to calculate extent estimates. Four data frames constitute the primary input to the cat.analysis function. The first column (variable) in the four data frames provides the unique identifier (site ID) for each sample site and is used to connect records among the data frames. The siteID variable in the FL_lakes data frame is assigned to the siteID variable in the data frames. The four data frames that will be created are named as follows: sites, subpop, design, and data.cat. The sites data frame identifies sites to use in the analysis and contains two variables: (1) siteID - site ID

values and (2) Use - a logical vector indicating which sites to use in the analysis. The rep (repeat) function is used to assign the value TRUE to each element of the Use variable. Recall that nr is an object containing the number of rows in the FL_lakes data frame. The subpop data frame defines populations and, optionally, subpopulations for which estimates are desired. Unlike the sites and design data frames, the subpop data frame can contain an arbitrary number of columns. The first variable in the subpop data frame identifies site ID values and each subsequent variable identifies a type of population, where the variable name is used to identify type. A type variable identifies each site with a character value. If the number of unique values for a type variable is greater than one, then the set of values represent subpopulations of that type. When a type variable consists of a single unique value, then the type does not contain subpopulations. For this analysis, the subpop data frame contains three variables: (1) siteID - site ID values, (2) CombinedBasins - which will be used to calculate estimates for all of the basins combined, and (3) Basin - which will be used to calculate estimates for each basin individually. The basin variable in the FL_lakes data frame is assigned to the Basin variable in the subpop data frame. The design data frame consists of survey design variables. For the analysis under consideration, the design data frame contains the following variables: (1) siteID - site ID values; (2) wgt - final, adjusted, survey design weights; (3) xcoord - x-coordinates for location; and (4) ycoord - y-coordinates for location. The wgt, xcoord, and ycoord variables in the design data frame are assigned values using variables with the same names in the FL_lakes data frame. Like the subpop data frame, the data cat data frame can contain an arbitrary number of columns. The first variable in the data.cat data frame identifies site ID values and each subsequent variable identifies a response variable. The two response variables are Status and Target_NonTarget, which are assigned the status and TNT variables, respectively, in the FL_lakes data frame. Missing data (NA) is allowed for the response variables, which are the only variables in the input data frames for which NA values are allowed.

Create the sites data frame.

+

wgt=FL_lakes\$wgt,

xcoord=FL_lakes\$xcoord, ycoord=FL_lakes\$ycoord)

> design <- data.frame(siteID=FL_lakes\$siteID,</pre>

Create the data.cat data frame.

Use the cat.analysis function to calculate extent estimates for the site status evaluation variables.

```
> # Calculate extent estimates for the site status evaluation variables
> Extent_Estimates <- cat.analysis(sites, subpop, design, data.cat)
>
```

The extent estimates for all basins combined are displayed using the print function. The object produced by cat. analysis is a data frame containing thirteen columns. The first five columns identify the population (Type), subpopulation (Subpopulation), response variable (Indicator), levels of the response variable (Category), and number of values in a category (NResp). A category labeled "Total" is included for each combination of population, subpopulation, and response variable. The next four columns in the data frame provide results for the proportion (percent scale) estimates: the proportion estimate (Estimate.P), standard error of the estimate (StdError.P), lower confidence bound (LCB95Pct.P), and upper confidence bound (UCB95Pct.P). Argument conf for cat.analysis allows control of the confidence bound level. The default value for conf is 95, hence the column names for confidence bounds contain the value 95. Supplying a different value to the conf argument will be reflected in the confidence bound names. Confidence bounds are obtained using the standard error and the Normal distribution multiplier corresponding to the confidence level. The final four columns in the data frame provide results for the size (units scale) estimates: the size estimate (Estimate.U), standard error of the estimate (StdError.U), lower confidence bound (LCB95Pct.U), and upper confidence bound (UCB95Pct.U). Note that the size estimate for the Total category will be equal to the sum of the survey design weights.

```
> # Print the extent estimates for all basins combined
> print(Extent_Estimates[c(1:7, 45:47),])
```

	Туре	Subpopulation	Indicator	Category	NResp
1	${\tt CombinedBasins}$	All Basins	Status	Dry	223
2	${\tt CombinedBasins}$	All Basins	Status	Landowner_Denial	119
3	${\tt CombinedBasins}$	All Basins	Status	${\tt NonTarget}$	317
4	${\tt CombinedBasins}$	All Basins	Status	Otherwise_Unsampleable	1
5	${\tt CombinedBasins}$	All Basins	Status	Physical_Barrier	99
6	${\tt CombinedBasins}$	All Basins	Status	Sampled	171
7	${\tt CombinedBasins}$	All Basins	Status	Total	930
45	CombinedBasins	All Basins	Target_NonTarget	NonTarget	317

```
46 CombinedBasins
                      All Basins Target_NonTarget
                                                                    Target
                                                                             613
47 CombinedBasins
                      All Basins Target_NonTarget
                                                                     Total
                                                                             930
     Estimate.P StdError.P LCB95Pct.P
                                        UCB95Pct.P
                                                     Estimate.U StdError.U
1
    23.01117939 0.97789814
                             21.094534
                                         24.9278245 1184.155291
                                                                  50.188531
2
    13.32737468 0.99049216
                             11.386046
                                         15.2687037
                                                     685.826701
                                                                  50.967147
3
    36.91250997 1.15995817
                             34.639034
                                         39.1859862 1899.517763
                                                                  60.260564
4
     0.09422536 0.08497475
                              0.000000
                                                                   4.372792
                                          0.2607728
                                                       4.848837
5
     8.47917794 0.71507723
                              7.077652
                                          9.8807036
                                                     436.338497
                                                                  36.766620
6
    18.17553265 1.03356643
                             16.149780
                                        20.2012856
                                                     935.312910
                                                                  53.169549
   100.0000000 0.00000000 100.000000 100.000000 5146.000000
                                                                   9.275053
45
    36.91250997 1.15995817
                             34.639034
                                        39.1859862 1899.517763
                                                                  60.260564
    63.08749003 1.15995817
                             60.814014
                                        65.3609663 3246.482237
46
                                                                  59.166424
47 100.00000000 0.00000000 100.000000 100.0000000 5146.000000
                                                                   9.275053
   LCB95Pct.U UCB95Pct.U
1
    1085.7876 1282.52300
2
     585.9329
               785.72047
3
    1781.4092 2017.62630
4
       0.0000
                13.41935
5
     364.2772
               508.39975
6
     831.1025 1039.52331
7
    5127.8212 5164.17877
45
    1781.4092 2017.62630
    3130.5182 3362.44630
46
47
    5127.8212 5164.17877
>
```

The write.csv function is used to store the extent estimates as a comma-separated value (csv) file. Files in csv format can be read by programs such as Microsoft Excel.

```
> write.csv(Extent_Estimates, file="Extent_Estimates.csv")
```

4 Analysis of lake condition variables

The second analysis that will be examined is estimating resource proportion and size for lake condition variables. Two lake condition variables will be examined: (1) pH_cat, which classifies lakes by categories of pH value and (2) coliform_cat, which classifies lakes by categories of fecal coliform count. The table and addmargins functions are used to create tables displaying the count for each level of the two lake condition variables.

```
> addmargins(table(FL_lakes$pH_Cat))
```

A table displaying the number of values for each level of the pH category variable follows:

> addmargins(table(FL_lakes\$Coliform_Cat))

A table displaying the number of values for each level of the fecal coliform category variable follows:

As for extent estimates, the cat.analysis function will be used to calculate condition estimates. The sites data frame for this analysis differs from the one used to calculate extent estimates. The Use logical variables in sites is set equal to the value "Sampled", so that only sampled sites are used in the analysis. The subpop and design data frames created in the prior analysis can be reused for this analysis. The data.cat data frame contains the two lake condition variables: pHCat and ColiformCat. Variables pH_cat and coliform_cat in the FL_lakes data frame are assigned to pHCat and ColiformCat, respectively.

Create the sites data frame.

Create the data.cat data frame.

Use the cat.analysis function to calculate estimates for the lake condition variables.

```
> # Calculate estimates for the categorical variables
> Condition_Estimates <- cat.analysis(sites, subpop, design, data.cat)
>
```

Print the lake condition estimates for all basins combined.

```
> # Print the condition estimates for all basins combined
> print(Condition_Estimates[c(1:4, 28:32),])
```

```
Type Subpopulation
                                    Indicator
                                                  Category NResp Estimate.P
   CombinedBasins
                      All Basins
                                        pHCat
                                                     (0,6]
                                                               78
                                                                   42.915056
2
   CombinedBasins
                                                               82
                      All Basins
                                        pHCat
                                                     (6,8]
                                                                   50.396558
3
   CombinedBasins
                      All Basins
                                                    (8,14]
                                                                    6.688386
                                        pHCat
                                                               11
   CombinedBasins
                      All Basins
                                                     Total
                                                              171 100.000000
                                        pHCat
28 CombinedBasins
                      All Basins ColiformCat
                                                     (0,5]
                                                               97
                                                                   55.986933
                      All Basins ColiformCat
29 CombinedBasins
                                                    (5,50]
                                                               40
                                                                   24.108155
30 CombinedBasins
                      All Basins ColiformCat
                                                  (50,500]
                                                               31
                                                                   18.521502
31 CombinedBasins
                      All Basins ColiformCat
                                              (500, 5e+03]
                                                                2
                                                                    1.383410
32 CombinedBasins
                      All Basins ColiformCat
                                                              170 100.000000
                                                     Total
   StdError.P LCB95Pct.P UCB95Pct.P Estimate.U StdError.U LCB95Pct.U UCB95Pct.U
    2.8530505
                37.323179
                           48.506932
                                       401.39005
                                                   26.886965
                                                               348.69257
                                                                           454.08754
1
2
    3.0180108
                44.481366
                           56.311751
                                       471.36552
                                                   28.637754
                                                               415.23655
                                                                           527.49448
3
    1.5603961
                 3.630066
                            9.746706
                                        62.55734
                                                   14.557867
                                                                34.02444
                                                                            91.09023
4
    0.0000000 100.000000 100.000000
                                       935.31291
                                                    7.447521
                                                               920.71604
                                                                           949.90978
28
    2.8761564
                50.349770
                           61.624096
                                       519.19950
                                                   26.470305
                                                               467.31866
                                                                           571.08035
29
    3.0417644
                18.146407
                           30.069904
                                       223.56900
                                                   28.568114
                                                               167.57652
                                                                           279.56147
30
    2.4596628
                13.700651
                           23.342352
                                       171.76069
                                                   22.738993
                                                               127.19309
                                                                           216.32830
31
    0.8268103
                 0.000000
                            3.003929
                                        12.82917
                                                    7.673900
                                                                 0.00000
                                                                            27.86974
32
    0.0000000 100.000000 100.000000
                                       927.35836
                                                    7.435967
                                                               912.78414
                                                                           941.93259
```

Use the write.csv function to write the condition estimates as a csv file.

> write.csv(Condition_Estimates, file="Condition_Estimates.csv")

5 Analysis of lake condition variables correcting for population size

The frame is a data structure containing spatial location data in addition to other attributes regarding a resource of interest and is used to create a survey design. A frame often takes the form of a shapefile. The frame can be used to obtain size values (e.g., number of lakes) for the populations and subpopulations examined in an analysis. Examination of the Estimates.U column in the Condition_Estimates data frame produced by cat.analysis reveals that the estimated Total value for both condition variables and each combination of population value and subpopulation value does not sum to the corresponding frame size value. For example, the Total entry in the Estimate.U column for the pHcat variable, population "CombinedBasins" and subpopulation "All Basins" is 935 (rounded to a whole number). This value is an estimate of the size of the sampled resource. The corresponding frame size value is 5,146. The popsize (population size) argument to cat.analysis provides a mechanism for forcing the size estimates to sum to a desired value, e.g., the frame size

value. Note that including popsize as an argument results in assigning the popsize value to the Total category of the size estimates. Use of the popsize argument assumes that sites which were evaluated but not sampled were missing at random. The missing at random asumption may not be a valid assumption, e.g., sites for which access was denied by the landowner may not be the same as sites that were sampled. For the current analysis, we will assume that the assumption is valid. As a first step for use of the popsize argument, the c (combine) function is used to create a named vector of frame size values for each basin. Output from the c function is assigned to an object named framesize. The popsize argument is a list, which is a particular type of R object. The popsize list must include an entry for each population type included in the subpop data frame, i.e., CombinedBasins and Basin for this analysis. The sum function applied to framesize is assigned to the CombinedBasins entry in the popsize list. Recall that the basin population type contains subpopulations, i.e., basins. When a population type contains subpopulations, the entry in the popsize list also is a list. The as list function is applied to framesize, and the result is assigned to the Basin entry in the popsize list.

Assign frame size values.

```
> framesize <- c("NWFWMD-1"=451, "NWFWMD-2"=394, "SFWMD-9"=834, "SJRWMD-1"=1216,
+ "SRWMD-1"=1400, "SWFWMD-4"=851)</pre>
```

Use the cat.analysis function to calculate estimates for the lake condition variables.

```
> Condition_Estimates_popsize <- cat.analysis(sites, subpop, design, data.cat,
+ popsize=list(CombinedBasins=sum(framesize),
+ Basin=as.list(framesize)))</pre>
```

Print the lake condition estimates for all basins combined.

```
> # Print the lake condition estimates for all basins combined
> print(Condition_Estimates_popsize[c(1:4, 28:32),])
```

	Туре	Subpopulati	on Indicator	Category	NResp	Estimate.	D
1	CombinedBasins	All Basi	ns pHCat	(0,6]	78	42.915056	5
2	CombinedBasins	All Basi	ns pHCat	(6,8]	82	50.396558	3
3	CombinedBasins	All Basi	ns pHCat	(8,14]	11	6.688386	5
4	CombinedBasins	All Basi	ns pHCat	Total	171	100.000000)
28	CombinedBasins	All Basi	ns ColiformCat	(0,5]	97	55.986933	3
29	CombinedBasins	All Basi	ns ColiformCat	(5,50]	40	24.10815	5
30	CombinedBasins	All Basi	ns ColiformCat	(50,500]	31	18.521502	2
31	CombinedBasins	All Basi	ns ColiformCat	(500,5e+03]	2	1.383410)
32	CombinedBasins	All Basi	ns ColiformCat	Total	170	100.000000)
	StdError.P LCB	95Pct.P UCBS	5Pct.P Estimat	e.U StdError.	U LCB9	95Pct.U UCI	395Pct.U
1	2.8530505 37	.323179 48.	506932 2208.40	876 146.8179	8 192	20.6508 24	196.1667

```
2
    3.0180108
                44.481366
                           56.311751 2593.40689
                                                   155.30684
                                                               2289.0111
                                                                           2897.8027
3
    1.5603961
                 3.630066
                             9.746706 344.18435
                                                    80.29798
                                                                186.8032
                                                                            501.5655
4
                                   NA 5146.00000
           NA
                       NA
                                                           NA
                                                                       NA
                                                                                   NA
28
    2.8761564
                50.349770
                            61.624096 2881.08756
                                                   148.00701
                                                               2590.9992
                                                                           3171.1760
    3.0417644
                                                                           1547.3973
29
                18.146407
                            30.069904 1240.60567
                                                   156.52920
                                                                933.8141
30
    2.4596628
                13.700651
                            23.342352
                                       953.11648
                                                   126.57425
                                                                705.0355
                                                                           1201.1974
    0.8268103
                 0.000000
                             3.003929
                                         71.19029
                                                    42.54766
                                                                  0.0000
                                                                            154.5822
31
32
           NA
                       NA
                                   NA 5146.00000
                                                           NA
                                                                       NA
                                                                                   NA
```

Use the write.csv function to write the condition estimates as a csv file.

> write.csv(Condition_Estimates_popsize, file="Condition_Estimates_popsize.csv")

6 Analysis of quantitative variables

The third analysis that will be examined is estimating the CDF and percentiles for quantitative variables. Two quantitative variables will be examined: (1) oxygen - dissolved oxygen value and (2) turbidity - turbidity value. The summary function is used to summarize the data structure of the two quantitative variables.

```
> summary(FL_lakes$0xygen)
```

Summarize the data structure of the dissolved oxygen variable:

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.830 4.880 6.870 6.468 8.310 12.480 759
```

> summary(FL_lakes\$Turbidity)

Summarize the data structure of the turbidity variable:

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.150 1.100 1.700 8.055 3.800 400.000 759
```

The cont.analysis function will be used to calculate estimates for quantitative variables. Input to the cont.analysis function is the same as input for the cat.analysis function except that the data frame containing response variables is named cont.data rather than cat.data. The sites, subpop, and design data frames created in the analysis of lake condition variables

can be reused for this analysis. The data.cont data frame contains the two quantitative variables: DissolvedOxygen and Turbidity. Variables oxygen and turbidity in the FL_lakes data frame are assigned to DissolvedOxygen and Turbidity, respectively. The popsize argument is included in the call to cont.analysis.

Create the data.cont data frame.

Use the cont.analysis function to calculate CDF and percentile estimates for the quantitative variables.

```
> CDF_Estimates <- cont.analysis(sites, subpop, design, data.cont,
+ popsize=list(CombinedBasins=sum(framesize),
+ Basin=as.list(framesize)))</pre>
```

The object produced by cont.analysis is a list containing two objects: (1) CDF, a data frame containing the CDF estimates and (2) Pct, a data frame containing percentile estimates plus estimates of population values for mean, variance, and standard deviation. Format for the CDF data frame is analogous to the data frame produced by cat.analysis. For the CDF data frame, however, the fourth column is labeled Value and contains the value at which the CDF was evaluated. Unlike the data frames produced by the other analysis functions we have examined, the Pct data frame contains only nine columns since there is a single set of estimates rather than two sets of estimates. In addition, the fourth column is labeled Statistic and identifies either a percentile or the mean, variance, or standard deviation. Finally, since percentile estimates are obtained by inverting the CDF estimate, the percentile estimates do not have a standard error value associated with them.

Use the write.csv function to write the CDF estimates as a csv file.

```
> write.csv(CDF_Estimates$CDF, file="CDF_Estimates.csv")
```

The cont.cdfplot function in spsurvey can be used to produce a PDF file containing plots of the CDF estimates. The primary arguments to cont.cdfplot are a character string containing a name for the PDF file and the CDF data frame in the CDF_Estimates object. In addition, we make use of the logx argument to cont.cdfplot, which controls whether the CDF estimate is displayed using a logarithmic scale for the x-axis. The logx argument accepts two values: (1) "", do not use a logarithmic scale and (2) "x" - use a logarithmic scale. For this analysis, dissolved oxygen is displayed using the original response scale and turbidity is displayed using a logarithmic scale.

Produce a PDF file containing plots of the CDF estimates.

```
> cont.cdfplot("CDF_Estimates.pdf", CDF_Estimates$CDF, logx=c("","x"))
>
```

Print the percentile estimates for dissolved oxygen for all basins combined.

> # Print the percentile estimates for dissolved oxygen for all basins combined
> print(CDF_Estimates\$Pct[1:10,])

	Type Sul	bpopulation	Indicator	Statistic	NResp	Estimate
1	CombinedBasins	All Basins	DissolvedOxygen	5Pct	8	1.578342
2	CombinedBasins	All Basins	DissolvedOxygen	10Pct	17	2.285793
3	CombinedBasins	All Basins	DissolvedOxygen	25Pct	42	4.624982
4	CombinedBasins	All Basins	DissolvedOxygen	50Pct	83	6.809475
5	CombinedBasins	All Basins	DissolvedOxygen	75Pct	129	8.333775
6	CombinedBasins	All Basins	DissolvedOxygen	90Pct	153	9.428672
7	CombinedBasins	All Basins	DissolvedOxygen	95Pct	163	9.996570
8	CombinedBasins	All Basins	DissolvedOxygen	Mean	171	6.477253
9	CombinedBasins	All Basins	DissolvedOxygen	Variance	171	6.442747
10	CombinedBasins	All Basins	DissolvedOxygen Sto	d. Deviation	171	2.538257
	${ t StdError}$	LCB95Pct	UCB95Pct			
1		0.9546438	2.003976			
2		1.7532592	3.384501			
3		4.1087503	5.506396			
4		6.5621691	7.142007			
5		7.9711324	8.553456			
6		9.0237184	9.884125			
7		9.7570792	10.457057			
8	0.148905597115604	6.1854029	6.769102			
9	0.561664353995088	5.3419051	7.543589			
10	0.110639786234289	2.3214067	2.755107			

Use the write.csv function to write the percentile estimates as a csv file.

>

```
> write.csv(CDF_Estimates$Pct, file="Percentile_Estimates.csv")
```

The cont.cdftest function in spsurvey can be used to test for statistical difference between the CDFs from subpopulations. For this analysis we will test for statistical difference between the CDFs from the six basins. The cont.cdftest function will test all possible pairs of basins. Arguments to cont.cdftest are the same as arguments to cont.analysis. Since we are interested only in testing among basins, the subpop data frame is subsetted to include only the siteID and Basin variables. Note that the popsize argument was modified from prior examples to include only the entry for Basin.

```
> CDF_Tests <- cont.cdftest(sites, subpop[,c(1,3)], design, data.cont,
+ popsize=list(Basin=as.list(framesize)))</pre>
```

The print function is used to display results for dissolved oxygen of the statistical tests for difference between CDFs for basins. The object produced by cont.cdftest is a data frame containing eight columns. The first column (Type) identifies the population. The second and third columns (Subpopulation_1 and Subpopulation_2) identify the subpopulations. The fourth column (Indicator) identifies the response variable. Column five contains values of the test statistic. Six test statistics are available, and the default statistic is an F-distribution version of the Wald statistic, which is identified in the data frame as "Wald-F". The default statistic is used in this analysis. For further information about the test statistics see the help file for the cdf.test function in spsurvey, which includes a reference for the test for differences in CDFs. Columns six and seven (Degrees_of_Freedom_1 and Degrees_of_Freedom_2) provide the numerator and denominator degrees of freedom for the Wald test. The final column (p_Value) provides the p-value for the test.

- > # Print results of the statistical tests for difference between CDFs from
- > # basins for dissolved oxygen
- > print(CDF_Tests, digits=3)

	Туре	${\tt Subpopulation_1}$	${\tt Subpopulation_2}$	Indicator	$Wald_F$
1	${\tt Basin}$	NWFWMD-1	NWFWMD-2	${\tt DissolvedOxygen}$	3.1442
2	${\tt Basin}$	NWFWMD-1	SFWMD-9	DissolvedOxygen	4.4795
3	${\tt Basin}$	NWFWMD-1	SJRWMD-1	${\tt DissolvedOxygen}$	20.2917
4	${\tt Basin}$	NWFWMD-1	SRWMD-1	${\tt DissolvedOxygen}$	0.3048
5	${\tt Basin}$	NWFWMD-1	SWFWMD-4	${\tt DissolvedOxygen}$	10.6685
6	${\tt Basin}$	NWFWMD-2	SFWMD-9	${\tt DissolvedOxygen}$	2.6095
7	${\tt Basin}$	NWFWMD-2	SJRWMD-1	${\tt DissolvedOxygen}$	6.1606
8	${\tt Basin}$	NWFWMD-2	SRWMD-1	${\tt DissolvedOxygen}$	2.8194
9	${\tt Basin}$	NWFWMD-2	SWFWMD-4	${\tt DissolvedOxygen}$	3.8223
10	${\tt Basin}$	SFWMD-9	SJRWMD-1	${\tt DissolvedOxygen}$	12.7598
11	${\tt Basin}$	SFWMD-9	SRWMD-1	${\tt DissolvedOxygen}$	6.0877
12	${\tt Basin}$	SFWMD-9	SWFWMD-4	${\tt DissolvedOxygen}$	14.1179
13	${\tt Basin}$	SJRWMD-1	SRWMD-1	${\tt DissolvedOxygen}$	16.9733
14	${\tt Basin}$	SJRWMD-1	SWFWMD-4	${\tt DissolvedOxygen}$	5.2374
15	${\tt Basin}$	SRWMD-1	SWFWMD-4	${\tt DissolvedOxygen}$	6.4086
16	${\tt Basin}$	NWFWMD-1	NWFWMD-2	Turbidity	0.5751
17	${\tt Basin}$	NWFWMD-1	SFWMD-9	Turbidity	1.5886
18	${\tt Basin}$	NWFWMD-1	SJRWMD-1	Turbidity	1.1966
19	${\tt Basin}$	NWFWMD-1	SRWMD-1	Turbidity	1.8996
20	${\tt Basin}$	NWFWMD-1	SWFWMD-4	Turbidity	11.3469
21	${\tt Basin}$	NWFWMD-2	SFWMD-9	Turbidity	0.2456
22	${\tt Basin}$	NWFWMD-2	SJRWMD-1	Turbidity	0.2944
23	${\tt Basin}$	NWFWMD-2	SRWMD-1	Turbidity	0.4627

24 Basin	NWFWMD-2	SWFWMD-4	Turbidity 11.0052
25 Basin	SFWMD-9	SJRWMD-1	Turbidity 0.3688
26 Basin	SFWMD-9	SRWMD-1	Turbidity 0.0753
27 Basin		SWFWMD-4	Turbidity 13.5140
28 Basin	SJRWMD-1	SRWMD-1	Turbidity 0.6625
29 Basin	SJRWMD-1	SWFWMD-4	Turbidity 17.2017
30 Basin	SRWMD-1	SWFWMD-4	Turbidity 9.7487
	of_Freedom_1 Degre		· ·
1	2		5.09e-02
2	2		1.56e-02
3	2		2.21e-07
4	2		7.39e-01
5	2		1.35e-04
6	2		8.27e-02
7	2		3.85e-03
8	2		6.88e-02
9	2		2.87e-02
10	2		2.63e-05
11	2		4.13e-03
12	2		1.32e-05
13	2		1.91e-06
14	2		8.54e-03
15	2	48	3.41e-03
16	2	55	5.66e-01
17	2	57	2.13e-01
18	2	57	3.10e-01
19	2	54	1.59e-01
20	2	51	8.39e-05
21	2	55	7.83e-01
22	2	55	7.46e-01
23	2	52	6.32e-01
24	2	49	1.13e-04
25	2	57	6.93e-01
26	2	54	9.28e-01
27	2	51	1.95e-05
28	2	54	5.20e-01
29	2	51	1.95e-06
30	2	48	2.80e-04
>			

Use the write.csv function to write CDF test results as a csv file.

> # Write CDF test results as a csv file

> write.csv(CDF_Tests, file="CDF_Tests.csv", row.names=FALSE)