Лекция 10 — Заключительное занятие

Преподаватель: Дмитрий Меркушев

Управление ML проектами

Описание:

Рассмотрим типы задач, которые можно решить с помощью ML, рассмотрим, какое оборудование нужно для обучения и применения моделей.

ML проект это что-то продовое, не решается в 100% точности для ML это недостижимая история. Они уменьшают энтропию, но не убирают ее. Она заложена внутри логики.

Как обучают GPT сейчас?

- 1. Сбер обучают по своему(говорят)
- 2. Базовая модель DeepSeek берется
- 3. У mail-a есть GPT

4 фазы у проекта

Постановка задачи: зачем?

Как это объяснил

Как это понял руководитель проекта

Как спроектировал дизайнер

Как это реализовал программист

Что реально хотел

Постановка задачи: а чего хотим?

Постановка задачи: что делать?

постановка абсолютно на всех уровнях

OKR — какие-то необычные/важные проекты оцениваются ей

ГЛАВНАЯ ОШИБКА: бросать все и решать задачи. В SMART отвечает почему / зачем и как оценивать.

Постановка задачи: пример

- 1. Для кого делаем проект? Для пользователя, для нас
- 2. Какая проблема решится? Неважные письма захламляют Входящие
- 3. Когда? Через 2 квартала
- 4. Какие возможности появятся у каждой стороны?
- У нас новая технология трансформера и модель эмбеддинга письма
- У пользователя новая папка рассылок

Почему не надо прорабатывать просто давая решение какой-то проблемы, нужно отвечать на вопрос: хорошая ли это фича или нет.

КЛЮЧЕВЫЕ МЕТРИКИ БИЗНЕСА:

- деньги (НА рекламе и подписках). Что нужно делать? Нужно доказать ценность для пользователя и научиться материализировать все это.
- То сколько пользователь проводит времени в сервисе. (**TIME SPAN** длительность сессии пользователя)
- Частота использования: пользователи принадлежат к ежедневному/еженедельному/ ежемесячным пользователям . Они с такой периодичностью заходят в наш сервис (ПРИМЕР: ПОЧТА)
- Почта зарабатывает на том, что при заходе на почту она выдает рекламу. Запихиваем рекламы между письмами. Донаты от пользователей/ подписки от пользователей, так же дают прибыль. Нужно подписывать сверху, что это реклама...

• Подписки: дает классный функционал (специально вшивается в подписку, чтобы кампания заработала...)

Зачем нужна категоризация писем?

- Степень удовлетворенности пользователей
- Меньше времени будет проводить в почте, т. е. пользователей будет меньше тратить время на бесполезные задачи...
- Спам это и визуальный шум...

ЕЩЕ одна метрика — оценка пользователей, что это не спам... т. е. пользователи меньше жалуются, что это спам. Пользователь будет оставаться в нашем сервисе. Это все будет работать на ключевые метрики бизнеса.

Drilldown

- 1. По каким **продуктовым** метрикам можно понять, что все ок? Количество жалоб "это спам" снизится
- 2. Что значит "ок" в цифрах? Снизится на 5%
- 3. По каким **техническим** метрикам можно понять, что все ок? тайминги, нагрузка, service availability
- 4. Что значит "ок" в цифрах? тайминги менее 20 мс, нагрузка 1.5 млрд писем в сутки (1М писем/мин), service availability 99.99%

Это более точно, здесь цифры решают, но на некоторые вопросы нельзя дать четкого ответа

Постановка задачи: что получаем?

Цель на 2 квартала: снизить количество жалоб "это спам" за счет вынесения рассылок из папки Входящие

Критерии:

- 1. Число жалоб это спам в АВ-тесте снижено на 5%+
- 2. Точность и полнота классификатора рассылок 99/70
- 3. Тайминг на письмо не превышает 20 мс
- 4. В среднем сервис держит 1M rpm, в пике 2M rpm с SLA 99.99%
- 5. BERT-трансформер обучен на 100М дедуплицированных анонимизированных писем

Анонимизация — модель будет слушать персональные данные. Нужно для обучения генеративных моделей... Иначе будет плохо... Мы должны заменять имя и данные пользователя на какие-то общее название, это улучшит модель.

Дедуплицирование -

Мы находимся в точке А и думаю о точке В

Планирование: этапы жизненного цикла

Запуск в	Эксплуатация	Вывод из эксплуатации
эксплуатацию	Сбор фолзов	Сохранение выборок
Данные	Дообучение	Отключение системы
Research	А/В-тестирование	
Shadow Run	Production-метрики	
	Быстрые фиксы	
	Аварии	
	Учения	

- shadow run чтобы пользователь не понимал, что мы уже ищем данные для нашей модели.
- Выход из ресерча с моделью осуществляется это все создание системы...
- Затем мы эксплуатируем это все и проверяем.

Фолзы — false positive

Важные метрики: Precciision (100% - не будет вообще false positive-a) / Recall

Собираем кейсы, где моделька ошиблась и дообучаем модель.

А/В тестирование — тестируем профит нашей модели.

Планирование: направления разработки

Направления:

- 1. Hardware
- 2. Back-end
- 3. Infrastructure
- 4. ML/Logics
- 5. Product Features
- Back-end
- · Front-end
- Testing/QA

Hardware — работает с железом INFEASTRUCTURE - база

PRODUCT FEATURES- обеспечивают виденье продуктовое/ дают метрики для оценки моделей.

Все нормальные команды сходятся создать диаграмма ГАНТА

ML — это энтропийная профессия/ он не дает гарантии.

ПОСЛЕ ДИАГРАММЫ ГАНТА ПОЯВЛЯЕТСЯ МАТРИЦА:

	Hardware	Backend	Infra	ML/Logics	Product Features
Shadow Run	Закупка машин	Внедрение новой архитектуры в inference-ceps ис	Доставка тяжелых моделей в прод	Выбрать intrinsic-мет рики	Обучить 1 продуктовыі клф, 1 для антиспама
Эксплуатация					
Аварии	Поведение при аварии в датацентре	Поведение при отключении inference-серв иса	Поведение при накатывании кривой модели	Превентив ные и реактивные меры при утере выборок	
Вывод из эксплуатации					
Сохранение данных			Coxpaнeние raw data	Сохранени е распределе ний клф на бою	

Планирование: milestones

ЦЕЛЬ нужно декомпазировать:

Постановка задачи: что получаем?

Цель на 2 квартала: снизить количество жалоб "это спам" за счет вынесения рассылок из папки Входящие

Цель на 1 квартал: получить точный прототип классификатора рассылок на BERT-трансформере промежуточного размера

Критерии:

- 1. BERT-трансформер обучен на 10M (100M) дедуплицированных анонимизированных писем
- 2. Точность и полнота классификатора рассылок 97/50 (99/70)

Кампания должна знать сколько она будет зарабатывать через какой-то промежуток времени, чтобы планировать заранее.

РАБОТА С РИСКАМИ — это ключевое в IT

Планирование: How To?

Шаги:

- 1. Берем ближайший майлстоун
- 2. Из таблицы берем задачи, необходимые для достижения майлстоуна (с учетом приоритетов)
- 3. Если до майлстоуна 6 недель, то прикидываем объем работы на 3-4 недели, которые может сделать команда, если все складывается идеально (все идеально не сложится)
- 4. Если не хватает ресурсов, то либо упрощаем задачу, либо ищем дополнительные руки

В проекте никогда не будет такое, что мы все в сроки комитем... Нужно всегда писсемизировать результат...

Лучше упростить задачу, но сделать часть задачи для того, чтобы мы закончили в строки (4 пункт - это важно) ИЛИ бери дополнительные руки...

Пользователю, может только часть нашего функционала нужно. И мы так узнаем, когда можно закончить проект.

MVP: пример							
Антипаттерн							
Сделаем идеальный сторадж! 1	Сделаем идеальный кластер! 2	Побьем результаты Google на выборках! З	Запустим лучший классификатор! 4				
Паттерн							
Собрали первые 5М из 100М 1	Обучили BERT на этих 5М 2	Получили +1% относительно текущего решения З	Итеративно улучшаем инфру и модель 4				

Не нужно — думать, что мы сделаем лучшее что-то...

Risk Management: ранжирование

Risk = вероятность X последствия

Вероятность:

1 - редкое событие, вызванное стечением обстоятельств

2 - возникает периодически, но не

в большинстве проектов

3 - частое событие

Последствия:

1 - незначительно ухудшение

функионала

2 - ведет к ухудшению

функционала

3 - разрушительные последствия

Риск — совокупность вероятностей наступления события. (БЫВАЮТ ДВУХ ТИПОВ описано сверху)

Как понять, какие риски могут быть?

Задача: закупить сервера с GPU для обучения BERT

- 1. Что должно произойти, чтобы все было ок?
 - а. Сервера должны быть доставлены и установлены в датацентре до середины проекта
 - b. В стойке должно хватать питания для 3 серверов A100 с 8 GPU на борту
- 2. Чего не должно произойти, чтобы все было ок?
 - а. Сервера не должны ронять во время монтажа

Список возможных рисков

Задача: закупить машины с GPU для обучения BERT

- 1. Машины могут быть доставлены и установлены в датацентре с опозданием (позже середины проекта)
- 2. В стойке не хватит питания для 3 машин A100 с 8 GPU на борту
- 3. Машины могут уронить во время монтажа

Risk Management: ранжирование

	Вероятность	Последствия	Rank
Машины могут быть доставлены и установлены в датацентре с опозданием (после середины проекта)	3	3	9
В стойке не хватит питания для 3 машин A100 c 8 GPU на борту	2	2	4
Машины могут уронить во время монтажа	1	3	3

Risk Management: классификация

- Rank 1-3: либо принимаем, либо справляемся с последствиями
- Rank 4-6: предотвращаем, устраняем последствия
- Rank 7-9: предотвращаем, проводим красные линии, план Б, устраняем последствия

Risk Management: пример

Риск: Машины могут уронить во время монтажа

Rank: 3

Шаги:

- Предотвращение: заказываем одну лишнюю машину, если позволяет бюджет
- **2. Митигация:** договариваемся с дружественной командой, что может быть придем за 1 машиной

Documentations

- 1. Репозиторий
- 2. Куда пишутся логи?
- 3. Типичные проблемы и как их решать?
- 4. Какие ручки в конфигах?

Alerts

- 1. Метрики живучести
- 2. Счетчики
- 3. Продуктовые метрики
- 4. Автоматические уведомления
- 5. Дежурство: кто за всем этим следит?

Retrospective

- 1. Что было хорошо?
- 2. Что можно улучшить?
- 3. Как улучшим?
- 4. План и ответственные