Source: KBhPHYS201IntroToElectrostaticsLN

1 | Resistance and Current

Resistance roughly measures how much pressure against current — electron flow there is in a conductor.

Current

Use the variable I, a unit Coulombs/Second, to measure current. This also equals $\frac{\Delta V}{Resistance}$. Big resistance, little current.

- · So let's figure out resistance

 - $V = \frac{J}{C}$ Resistance = $\Omega = \frac{\Delta V}{I} = \frac{Js}{C^2}$
- $I = \frac{C}{s} = \text{Amps}$ Calculating resistance
 - · So, let's think. With a wire of length L and with a wire of area A, if we increase L, the resistance in the wire would increase; if we increase area A, the resistance in the the wire would decrease.
 - $Resistance = \frac{L}{A} * Resistivity Of Material$ with units $\frac{m}{m^2} * (\Omega * m)$.