

Facultad de Ciencias Escuela de Matemáticas

Año de la Consolidación de la Calidad en la Gestión Universitaria

CÁLCULO Y ANALÍTICA Programa de: Clave MAT-2590 Créditos: 04

Cátedra: Análisis Matemático I (AC) Horas/Semana

Cátedra Análisis Matemático I Horas Teóricas 03 Preparado por: **Horas Practicas** Fecha: 02

Cátedra Análisis Matemático I Semanas 16 Actualizado por:

Fecha: Agosto 2010 Nivel Grado

• DESCRIPCIÓN DE LA ASIGNATURA:

El Cálculo y Analítica en su estructura holística desarrolla los siguientes aspectos: técnicas algebraicas, Límites y continuidad, la Derivación y sus aplicaciones una introducción a la integración, integrales de área y sus aplicaciones y un estudio de las funciones trascendentes tales como las logarítmicas, exponenciales, hiperbólicas y sus inversas

JUSTIFICACIÓN:

El Cálculo y Analítica está diseñada para contribuir a formar profesionales con la capacidad de observar, conceptualizar, deducir, y sintetizar con carácter científico la esencia de los objetos que estudia, de modo que a través de los conceptos de limite, derivada e integral y sus procesos de cálculo, se tenga la capacidad de procesar, modelar, y analizar los fenómenos en el entorno de un punto, Fomentando la construcción de los conocimientos y competencias propios del cálculo diferencial.

OBJETIVOS:

Introducir los fundamentos y herramientas del cálculo, necesarios para que los estudiantes en las diversas áreas del quehacer humano puedan reconocer, interpretar y utilizar, el lenguaje universal de las ciencias, con modelos simbólicos, utilizar los procedimientos del cálculo diferencial para obtener respuestas concretas a las interrogantes y problemas, alrededor de vecindades que se presenten en cada una de dichas áreas.

METODOLOGÍA:

El docente presentará los conceptos fundamentales del cálculo diferencial, en un lenguaje, lógico-matemático para introducir los estudiantes en el manejo práctico-formal de los contenidos de la asignatura. Promoverá la investigación y la participación activa de los estudiantes, haciendo uso de, mapas mentales y conceptuales, trabajos y prácticas dirigidos. Valorará en estos el manejo del lenguaje formal y la socialización en un ambiente de trabajo armónico, con niveles técnicos y científicos acorde con la misión y visión de nuestra universidad.

COMPETENCIAS A DESARROLLAR EN LA ASIGNATURA:

Manejo de símbolos matemáticos, Pensamiento lógico, numérico y abstracto, identificación de las partes de problemas básicos y uso del cálculo diferencial para su solución; organización, claridad, exactitud, creatividad, trabajo individual y en equipo.

• RECURSOS:

Recursos del aula. Libros de consulta, Software y WEB recomendados en la bibliografía

BIBLIOGRAFÍA:

Cálculo Stewart, James. Cálculo. (6^{ta} ed.). Cengage Learning. (2012)

Cálculo Larson – Hostetler; Cálculo Esencial. (6ta ed.). Cengage Learning. (2012)

Cálculo Purcell (Pearson);

Cálculo Edwards – Penney (Pearson)

Software: Maple, Octave, Winplot, Graph, Scientific Workplace, Geogebra 4.0

Facultad de Ciencias Escuela de Matemáticas

Año de la Consolidación de la Calidad en la Gestión Universitaria

Programa de:

CÁLCULO Y ANALÍTICA

Clave MAT-2590

Créditos: 04

No. 1

Geometría Analítica.

No. Horas

Teóricas 04 Prácticas 02

OBJETIVOS: Introducir los elementos básicos de la geometría analítica

CONTENIDOS:

1.1. Las ideas fundamentales de la geometría analítica.

1.2. Distancia entre dos puntos, en un sistema unidimensional, y en sistemas bidimensionales.

No. 2 Las Gráficas de algunas ecuaciones de uso común.

Teóricas 80 OBJETIVOS: Trazado de graficas de ecuaciones, la línea recta No. Horas

Prácticas 04

CONTENIDOS:

2.1. Discutir y graficar curvas

2.2. Ecuación de primer grado. Ecuación de línea recta. Discusión.

2.3. Reducción de la formula general a normal

2.4. Distancia de un punto a una recta

2.5. Distancia entre dos rectas.

No. 3 Límites y Derivadas.

OBJETIVOS: Definir y analizar antiderivadas, Evaluar integrales definidas utilizando Teóricas 12 No. Horas

el teorema fundamental del cálculo. Prácticas

CONTENIDOS:

3.1. Límites de funciones.

3.2. Continuidad de curvas

3.3. Límites de funciones algebraicas.

3.4. Concepto de derivada

3.4.1. Interpretación geométrica.

3.4.2. Aplicaciones

3.4.3. Derivadas de funciones algebraicas

No. 4 La Derivación

Teóricas **OBJETIVOS:** Derivar funciones inversas, y compuestas. Determinar máximos y No. Horas

Prácticas 08 mínimos

CONTENIDOS:

4.1. Derivadas de funciones inversas.

4.2. Derivadas de funciones compuestas.

4.3. Derivadas de funciones implícitas.

4.4. Máximos y mínimos.

Uníversidad Autónoma de Santo Bomingo

Primada de América Fundada el 28 de octubre de 1538

Facultad de Ciencias Escuela de Matemáticas

Año de la Consolidación de la Calidad en la Gestión Universitaria

Programa de:

CÁLCULO Y ANALÍTICA

Clave MAT-2590

2590 Créditos: **04**

No. 5 Aplicaciones de las derivadas.

No. Horas

Teóricas

12 OBJETIVOS: Definir, analizar, calcular y graficar los valores extremos de una

Prácticas 08 función en un intervalo cerrado, Resolver problemas de máximos y mínimos

CONTENIDOS:

- 5.1. Valores extremos de una función.
- 5.2. Teorema del valor medio
- 5.3. Funciones monótonas y el criterio de la primera derivada.
- 5.4. Concavidad y trazado de curvas.
- 5.5. Problemas de optimización.