

COURSE HANDOUT (PART-II) Date: 07-Jan-2016

In addition to part I (General handout for all courses appended to the timetable) this portion gives further details regarding the course.

Course No. : CHEM F343

Course Title : Inorganic Chemistry III
Instructor-in-charge : Bibhas Ranjan Sarkar

Co-Instructor : Saumi Ray

Course Description:

This course encompasses several aspects of the elements of periodic table encountered in inorganic chemistry typically in numerous application/ functional areas such as, life processes, modern day-to-day living, medical and fine chemical applications etc. Some important key-phrases are as follows,

Bio-inorganic chemistry; metalloenzymes; metalloproteins; role of alkali and alkaline earth metal ions, iron, copper and molybdenum etc. in life processes; metals in medicine; metal deficiency and toxicity aspects (mercury, cadmium, lead, beryllium, selenium and arsenic etc.); metals used in diagnosis and chemotherapy; electronic, magnetic and photonic materials; emerging research topics in inorganic chemistry, such as catalysis, inorganic polymers, nanomaterials and hybrid materials.

Learning Objective of the Course:

The most important objective of the course is to acquire understanding about the roles and importance of the different elements (majorly metals) in life processes, medicinal purposes and augmenting the quality of life of mankind by breakthrough advancements in human civilization. As an integral part of learning the applications of inorganic chemistry, this course will be utilizing the knowledge and understanding gained in the foundation courses of IC-1 and IC-2 for probing deeper in to the chemistry of biological systems, chemistry of modern materials, chemistry in industrial processes for commodity and fine chemicals, medicines, sensors etc. On successful completion of the course, the following learning objectives will be fulfilled

- i) Introduction to bioinorganic chemistry
- ii) Understanding the role of metal centers in biological systems (typically redox systems)
- iii) Metals in medical applications, toxicity and deficiency aspects
- iv) Introduction to electronic, photonic and magnetic materials involving inorganic chemistry
- v) Inorganic chemistry involved in industrial applications such as polymer synthesis, catalysis etc.
- vi) Exposure to the emerging research areas of functional materials chemistry including inorganic polymers, nanomaterials, hybrid materials etc.

Text Books

- T1. J. A. Cowan, "Inorganic Biochemistry An Introduction", Wiley-VCH, 2nd edition.
- T2. The Science and Engineering of Materials, Donald R. Askeland, Pradeep P. Phule, Cengage Learning (India edition)

Reference Books

- R1. S. J. Lippard and J. M. Berg, "Principles of Bioinorganic Chemistry", University Science Books
- R2. I. Bertini, H. B. Gray, S. J. Lippard, J. S. Valentine, Bioinorganic Chemistry", Viva, 1998.
- R3. William D. Callister, Materials Science and Engineering, Wiley-India Edition, 2007.

Course Plan:

Lec. No.	Topics to be covered	Learning Objectives	Reference:
1	Bioinorganic Chemistry	Introduction	Classnotes, T1, Ch-1
2-4	Metal ion Storage and Transport	Metal ion uptake and transmembrane ion transport, storage of metal ions	T1; p133-61
5-7	Metalloproteins and Metalloenzymes	Oxygen carriers and Hydrolase enzymes	T1; p167- 194
8-10	Redox reactions involving transition elements	Redox Chemistry of transition metal ions in biology	T1; p203- 221 and Class note
11-13	Electron transfer pathways	Involvement of Redox Chemistry in electron transfer pathways	T1; p221- 247 and Class note
14-16	Role of alkali and alkaline earth metal ions	Membrane translocation, ion pumps, complexes with nucleic acids etc.	T1; p257- 284
17-19	Choice, uptake and assembly of metal containing units in biological system	Enrichment strategies and intracellular chemistry of low-abundant metals, Spontaneous self-assembly of metal clusters	Classnotes
20	Metal Deficiency and Disease	Introduction and overview, Essential metals, Anemia and Iron, Causes and consequences of zinc deficiency, copper deficiency	Classnotes
21	Toxic effects of Metals	Copper overload and Wilkinson diseases, Iron Toxicity, Toxic effects of other essential elements, Mercury Toxicity and Bacterial resistance, cadmium and lead toxicity	Classnotes
22	Metals used in diagnosis and	Radiodiagnostic agents, Magnetic Resonance Imaging, Lithium and mental health, Gold and	Classnotes

	chemotherapy	Rheumatoid Arthritis	
23-25	Electronic Materials	Band structure of solids, Conductivity in solids, Superconductivity, Semiconductors, Insulators and dielectric properties, Piezoelectricity, Pyroelectrocity, Ferroelectrocity	T2; p677- 718
26-28	Magnetic Materials	Classification of magnetic materials, Magnetization, Permeability, Diamagnetic, Paramagnetic, Ferromagnetic, Superparamagnetic materials, Domain structure and the hysteresis loop, The curie temperature, Metallic and ceramic magnetic materials	T2; p725- 751
29-31	Photonic Materials	The electromagnetic spectrum, Refraction, Reflection, Absorption and Transmission, Selective absorption, Transmission or Reflection, Example and use of emission phenomena	T2; p757- 781
32-35	Polymer synthesis, catalysis by metals	Types of polymerization reactions using metals, Catalysis types, variants	Classnotes
36-40	Emerging areas in inorganic chemistry	Inorganic polymers, Nanomaterials, Hybrid materials etc	Classnotes

Evaluation Scheme:

Serial	Evaluation	Duration	Weightage	Date, Time	Nature of Component.
No.	Component.			& Venue.	
1	MIDSEM Test	1.5h	30%	19/3 2:00 -	Close Book
				3:30 PM	
2	Tutorial Tests		30%	Tutorial hour	Continuous, closed book
3	Comprehensive	3h	40%	16/5 FN	Close/Open Book
	Examination				

Chamber Consultation Hour: To be announced in the class

Notices: Notices concerning the course will be put up on the chemistry notice board and/ or Nalanda. **Make-up Policy:** Make-up for the MidSem & Comprehensive will be granted only for genuine cases

Bibhas R. Sarkar Instructor-in-charge

