DIM0436

9. Lógica

Richard Bonichon

20140819

Outline

Lógica proposicional

2 Lógica da primeira ordem

- Lógica proposicional
- 2 Lógica da primeira ordem

Notações

Proposições

- Frases declarativas
- Proposições abstratas $P, Q, R, A, B, \varphi, \Psi, \Phi, \dots$
- Conjuntos de proposições: $\Gamma, \Delta, \Delta_i, \ldots$

Sintaxe especifica

- ullet \perp é a proposição sempre falsa
- ullet \top é a proposição sempre verdadeira

Sintaxe

Proposição atômica

Literais são o conjunto de letras $\{P, Q, R, A, B, \varphi, \Psi, \Phi, \ldots\}$

Proposições

O conjunto das proposições é o menor conjunto \mathcal{S}_P tal que

- Se P é um literal $P \in \mathcal{S}_P$
- ② Se $P ∈ S_P$, $\neg P ∈ S_P$
- **③** Se $P, Q \in S_P$, $P ⋄ Q ∈ S_P$, com $⋄ ∈ {\land, \lor, ⇒}$

Definição (Subfórmulas imediatas)

O conjunto IS de subfórmulas imediatas de uma fórmula é definido como:

$$IS(A) = \emptyset \text{ if } A \text{ atomic}$$

 $IS(\neg \Phi) = \{\Phi\}$
 $IS(\Phi \circ \Psi) = \{\Phi, \Psi\}$

Definição (Subfórmulas)

Seja Φ uma fórmula. O conjunto Sub de subfórmulas de Φ é definido como:

$$Sub(\Phi) = \emptyset$$
 se Φ é um literal $Sub(\neg \Phi) = \{\Phi\} \cup Sub(\Phi)$ $Sub(\Phi \circ \Psi) = \{\Phi, \Psi\} \cup Sub(\Phi) \cup Sub(\Psi)$

Primeira semantica

Nome	Símbolo	Semântica informal	
C:			
Conjuncão	^	$P \wedge Q = \top \iff P = \top \notin Q = \top$	
Disjuncão	V	$P \lor Q = \top \iff P = \top \text{ ou } Q = \top$	
Implicação	\Rightarrow (or \rightarrow , \supset)	$P \Rightarrow Q = \top \iff Q = \top \text{ ou } P = \bot$	
Negação	_	$\neg P = \top \iff P = \bot$	

Tabelas de verdade

Ρ	Q	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$\neg P$
0	0	0 0 0 0	0	1	1
0	1	0	1	1	1
1	0	0	1	0	0
1	1	1	1	1	0
		I			

Valoração booleana

Definição

Uma valoração booleana é um mapeamento $v: \mathcal{S}_P \to \mathbb{B}$:

$$\begin{array}{rcl}
\nu(\bot) & = & 0 \\
\nu(\top) & = & 1 \\
\nu(\neg\Phi) & = & \neg\nu(\Phi) \\
\nu(\Phi \circ \Psi) & = & \nu(\Phi) \circ \nu(\Psi)
\end{array}$$

Valoração enraizada

$$\forall f: A \to \mathbb{B}, \exists v: S_P \to \mathbb{B}, \forall A \in A, f(A) = v(A)$$

Unicidade

Seja $\mathcal{S}_{P_{\mathcal{A}}}$ o conjunto de fórmulas proposicionais gerado por proposições em \mathcal{A} $\forall v_1, v_2 : \mathcal{A} \to \mathbb{B}, \forall A \in \mathcal{A} \ v_1(A) = v_2(A), \forall \Phi \in \mathcal{S}_{P_{\mathcal{A}}} \ v_1(\Phi) = v_2(\Phi)$

Exemplo

Seja $v: \mathcal{S}_P o \mathbb{B}$ tal que

- v(P) = 1
- v(Q) = 0,
- v(R) = 0,
- $\forall A \in \mathcal{A} \setminus \{P, Q, R\}, v(A) = 0.$

Sabemos que existe uma valoração satisfazendo essas condições, e que ela é única.

$$v((P \land \neg Q) \Rightarrow R) = v(P \land \neg Q) \Rightarrow v(R)$$

$$= (v(P) \land v(\neg Q)) \Rightarrow v(R)$$

$$= (v(P) \land \neg v(Q)) \Rightarrow v(R)$$

$$= (1 \land \neg 0) \Rightarrow 0$$

$$= (1 \land 1) \Rightarrow 0$$

$$= 1 \Rightarrow 0$$

$$= 0$$

Tautologia e satisfazibilidade

Tautologia

Uma fórmula proposicional Φ é uma tautologia se $v(\Phi)=1$ para toda valoração booleana v

Satisfazibilidade

Uma fórmula proposicional Φ é satisfazível se $v(\Phi)=1$ para alguma valoração booleana v

Ler uma regra de dedução

Definição (Sequente)

Um sequente tem a forma geral $\Gamma \vdash \Phi$ onde

- Γ é o conjunto de hipóteses: é uma conjunção de proposição
- Φ é o conjunto de proposições deduzidas a partir das hipóteses: é uma disjunção de proposições.

Definição (Regra de dedução)

- Um conjunto de premissas $P = \cap \mathcal{P}_i$.
- ullet Uma conclusão ${\cal C}$
- Significado $\mathcal{P}_1 \wedge \ldots \wedge \mathcal{P}_n \Rightarrow \mathcal{C}$

Exemplo

$$\frac{\Gamma \vdash \Phi \qquad \Delta \vdash \Psi}{\Gamma, \Delta \vdash \Phi \land \Psi} \land_{I}$$

Axioma

$$\Gamma, \Phi \vdash \Phi$$

Conjunção

$$\frac{\Gamma \vdash \Phi \qquad \Delta \vdash \Psi}{\Gamma, \Delta \vdash \Phi \land \Psi} \land_{I}$$

$$\frac{\Gamma \vdash \Phi \land \Psi}{\Gamma \vdash \Phi} \land_{EL}$$

$$\frac{\Gamma \vdash \Phi \land \Psi}{\Gamma \vdash \Psi} \land_{ER}$$

$$\frac{\Gamma \vdash \Phi \lor \Psi \qquad \Delta_{1}, \Phi \vdash \chi \qquad \Delta_{2}, \Psi \vdash \chi}{\Gamma, \Delta_{1}, \Delta_{2} \vdash \chi} \lor_{E}$$

$$\frac{\Gamma \vdash \Psi}{\Gamma \vdash \Phi \lor \Psi} \lor_{IL}$$

$$\frac{\Gamma \vdash \Phi}{\Gamma \vdash \Phi \lor \Psi} \lor_{IR}$$

Goal $(P \wedge Q) \wedge R \vdash P$ Rule

$$(P \wedge Q) \wedge R \vdash P$$

Proof

$$(P \wedge Q) \wedge R \vdash (P \wedge Q) \wedge R$$

Rule

$$\Gamma, \Phi \vdash \Phi$$

$$(P \wedge Q) \wedge R \vdash P$$

Rule

$$\frac{\Gamma \vdash \Phi \land \Psi}{\Gamma \vdash \Phi} \land_{\mathit{EL}}$$

Proof

$$\frac{(P \wedge Q) \wedge R \vdash (P \wedge Q) \wedge R}{(P \wedge Q) \wedge R \vdash P \wedge Q} \wedge_{EL}$$

16 / 52

Goal

$$(P \wedge Q) \wedge R \vdash P$$

Rule

$$\frac{\Gamma \vdash \Phi \land \Psi}{\Gamma \vdash \Phi} \land_{EL}$$

Proof

$$\frac{(P \land Q) \land R \vdash (P \land Q) \land R}{(P \land Q) \land R \vdash P \land Q} \land_{EL}}{(P \land Q) \land R \vdash P} \land_{EL}$$

16 / 52

Regras adicionais

$$\frac{\Gamma \vdash \Phi \Rightarrow \Psi \qquad \Delta \vdash \Phi}{\Gamma, \Delta \vdash \Psi} \Rightarrow_{\mathcal{E}}$$

$$\frac{\Gamma, \Phi \vdash \Psi}{\Gamma \vdash \Phi \Rightarrow \Psi} \Rightarrow_{I}$$

$$\frac{\Gamma \vdash \Phi}{\Gamma \vdash \neg \neg \Phi} \neg \neg_{E}$$

$$\frac{\Gamma \vdash \neg \neg \Phi}{\Gamma \vdash \Phi} \neg \neg_{E}$$

Regras finais

$$\frac{\Gamma \vdash \Phi \lor \Psi \qquad \Delta \vdash \neg \Psi}{\Gamma, \Delta \vdash \Phi} \operatorname{Syll}_{L}$$

$$\frac{\Gamma \vdash \Phi \lor \Psi \qquad \Delta \vdash \neg \Phi}{\Gamma, \Delta \vdash \Psi} \operatorname{Syll}_{R}$$

$$\frac{\Gamma \vdash \Phi \Rightarrow \Psi \qquad \Delta \vdash \neg \Psi}{\Gamma, \Delta \vdash \Phi} MT$$

$$\frac{\Gamma, \Phi \vdash \Psi \lor \neg \Psi}{\Gamma \vdash \neg \Phi} RAA$$

Rule

$$\neg(P \to Q) \vdash \neg Q$$

Proof

19 / 52

Rule

$$\neg(P \to Q) \vdash \neg Q$$

 $\Gamma, \Phi \vdash \Phi$

Proof

 $P \vdash P$

Goal

Rule

$$\neg(P \to Q) \vdash \neg Q$$

$$\frac{\Gamma \vdash \Phi \qquad \Delta \vdash \Psi}{\Gamma, \Delta \vdash \Phi \land \Psi} \land_{I}$$

$$\frac{P \vdash P \qquad Q \vdash Q}{Q, P \vdash P \land Q}$$

Rule

$$\neg(P \to Q) \vdash \neg Q$$

$$\frac{ \ \Gamma \vdash \Phi \land \Psi \ }{ \Gamma \vdash \Phi } \land_{\textit{EL}}$$

$$\frac{P \vdash P \qquad Q \vdash Q}{Q, P \vdash P \land Q}$$

Goal

Rule

$$\neg(P \to Q) \vdash \neg Q$$

$$\frac{\Gamma, \Phi \vdash \Psi}{\Gamma \vdash \Phi \Rightarrow \Psi} \Rightarrow_I$$

$$\frac{P \vdash P \qquad Q \vdash Q}{Q, P \vdash P \land Q} \\ \hline Q, P \vdash Q \\ \hline Q \vdash P \rightarrow Q}$$

Rule

$$\neg(P \to Q) \vdash \neg Q$$

$$\frac{\Gamma, \Phi \vdash \Psi}{\Gamma \vdash \Phi \Rightarrow \Psi} \Rightarrow_{I}$$

$$\frac{P \vdash P \qquad Q \vdash Q}{Q, P \vdash P \land Q} \\
\frac{Q, P \vdash Q}{Q \vdash P \rightarrow Q} \\
\vdash Q \rightarrow (P \rightarrow Q)$$

Goal

$\neg (P \rightarrow Q) \vdash \neg Q$

Rule

$$\frac{\Gamma \vdash \Phi \Rightarrow \Psi \qquad \Delta \vdash \neg \Psi}{\Gamma, \Delta \vdash \Phi} \mathsf{MT}$$

$$\frac{P \vdash P \qquad Q \vdash Q}{Q, P \vdash P \land Q} \\
\frac{Q, P \vdash Q}{Q \vdash P \rightarrow Q} \\
\hline \vdash Q \rightarrow (P \rightarrow Q) \qquad \neg (P \rightarrow Q) \vdash \neg (P \rightarrow Q) \\
\hline \neg (P \rightarrow Q) \vdash \neg Q$$

Exercícios

Mostre que:

$$\bullet$$
 A \Rightarrow (B \Rightarrow A)

$$\bigcirc$$
 (A \Rightarrow A \Rightarrow B) \Rightarrow A \Rightarrow B

- Lógica proposicional
- 2 Lógica da primeira ordem

Sintaxe adicional

Extensão da sintaxe proposicional

Toda proposição da lógica proposicional é uma fórmula da lógica da primeira ordem.

Ingredientes adicionais

Variáveis x, y, \dots

Quantificadores ∀ e ∃

Dois mundos

- Termos
- Fórmulas

Símbolos lógicos

```
Variáveis \mathcal{V} = \{x, y, z, x_1, \ldots\}
Conectivos \{\land, \lor, \Rightarrow\}, \neg
Quantificadores \forall, \exists
Parênteses ()
Símbolo de igualdade =
```

Símbolos não lógicos

Símbolos de função

$$\mathcal{F} = \bigcup_{i \in \mathbb{N}} \mathcal{F}_i$$

 \mathcal{F}_0 é o conjunto de símbolos constantes

Símbolos de predicados

$$\mathcal{R} = \bigcup_{i \in \mathbb{N}^*} \mathcal{R}_i$$

Uma linguagem de primeira ordem é completamente determinado por $L=\mathcal{F}\cup\mathcal{R}$

Exemplos

Exemplo

$$\ L_d = \{ \ c, \ f, \ g, \ R \ \} \$$

- $\mathcal{F}_o = \{c\}$
- $F_1 = \{ f \}$
- $F_2 = \{g\}$
- $R_2 = \{R\}$

Exemplo (Aritmética)

$$L_a = \{0, S, +, *, <\}$$

- $\mathcal{F}_o = \{0\}$
- $F_1 = \{ S \}$
- $F_2 = \{+, *\}$
- $R_2 = \{<\}$

Termos

Definição (Termos)

O conjunto ${\mathcal T}$ de termos é definido indutivamente:

- $\forall x \in \mathcal{V}, x \in \mathcal{T}$
- $(t_1,\ldots,t_n\in\mathcal{T})\land f\in\mathcal{F}_n\Rightarrow f(t_0,\ldots,t_n)\in\mathcal{T}$

Exemplo

- g(f(c), c), c and g(g(c, c), f(c)) são termos válidos de L_d
- (x + y) * z, ((x * x) * x + S(0) * x) + S(S(0)) são termos para L_{ar}

Posição em um termo

Definição

A posição p em um termo t é uma sequência $s \in [1|2]^*$

Posições

$$(x + y) * z$$

- $pos(*) = \varepsilon$
- pos(x) = 11
- pos(z) = 2

Subtermos e substituições

Ocorrência & subtermos

- Um termo s é um subtermo de um termo t se existe uma posição p de t tal que $t_{|p}=s$.
- s *ocorre\$ na posição p no termo t

Substituição

Uma substituição é um mapeamento $\sigma: \mathcal{V} \to \mathcal{T}$

Substituição

Definição (Notação da substituição)

Seja t um termo, x_1, \ldots, x_n subtermos distintos de t e u_1, \ldots, u_n termos.

$$t_{\sigma} = t[x_1 \mapsto u_1, \dots, x_n \mapsto u_n]$$

é o resultado da substituição da cada variável x_i de t por u_i . t_s é também um termo.

Exemplo

Seja
$$t(x,y) = f(g(x), h(a,y)).$$

$$t[x \mapsto g(a), y \mapsto h(a, x)] = f(g(g(a)), h(a, h(a, x)))$$

Fórmulas atômicas

Definição (Fórmula atômica)

Seja t_1, \ldots, t_n termos, é $R \in \mathcal{R}_n$

$$R(t_1,\ldots,t_n)$$

é uma fórmula atômica

Exemplo

P é uma fórmula atômica para L_{ar}

$$P = (x + y) * z = ((x * x) * x + S(0) * x) + S(S(0))$$

Fórmulas bem formadas

Definição (Fórmulas bem formadas)

O conjunto das fórmulas bem formadas ${\cal W}$ é definido indutivamente:

- ullet Se P é uma fórmula atômica $P \in \mathcal{W}$
- $P \in \mathcal{W} \land Q \in \mathcal{W} \Rightarrow \{\neg P, P \land Q, P \lor Q, P \Rightarrow Q\} \subseteq \mathcal{W}$
- $x \in \mathcal{V} \land P \in \mathcal{W} \Rightarrow \{ \forall x P, \exists x P \} \subseteq \mathcal{W}$

Exemplo

Seja $L = \{>\}$ onde $> \in \mathcal{R}_2$. As seguintes fórmulas são bem formadas:

- $\forall x \exists y (x > y)$
- $\forall x \forall y \forall z ((x > z) \land (z > y) \Rightarrow (y > x))$

Porque "primeira ordem" ?

- ullet Uma linguagem de primeira ordem permite o uso de quantificadores sobre ${\cal V}$
- \bullet Uma linguagem de segunda ordem permite o uso de quantificadores sobre $\mathcal{V} \cup \mathcal{R}_1$
- Uma linguagem de ordem superior permite o uso de quantificadores sobre $\mathcal{V} \cup \mathcal{R}$

Exemplo

- $\forall x \exists y \ P(x, y)$ é uma fórmula de primeira ordem
- $\forall x \exists Q \ P(x, Q)$ é uma fórmula de ordem superior

Escopo

- ullet Seja $A\in w\!f\!f$, $Q\in\{orall,\exists\}$ uma ocorrência de um quantificador em A
- Seja B uma subfórmula de A tal que B começa com Qx, i.e. B = QxC.
- C é o escopo de Qx.

Exemplo

•
$$P(x,y) \Rightarrow \forall x \ (\exists y \ \underbrace{R(x,y)}_{scope\exists y} \Rightarrow \forall x \ \underbrace{Q(x,y)}_{scope\forall x})$$

• $\exists y \ \forall x \ (\exists y \ R(x,y) \Rightarrow Q(x,y))$

Definição (Variáveis livres)

As variáveis livres de $P \in wff$ são definidas indutivamente:

$$FV(P \circ Q) = FV(P) \cup FV(Q)$$

$$FV(\neg P) = FV(P)$$

$$FV(\square x P) = FV(P) \setminus \{x\}$$

$$FV(P(t_1, ..., t_n) = \mathbf{var}(t_1) \cup ... \cup \mathbf{var}(t_n)$$

onde

- $\bullet \circ \in \{\land, \lor, \Rightarrow\};$
- $\bullet \ \Box \in \{\forall,\exists\};$
- var(t) é o conjunto das variáveis que ocorrem em t.

Variáveis ligadas e livres

Calcular os conjuntos BV e FV para a fórmula

$$\Phi = \forall x \; \exists y \; (R(f(x,y),c)) \Rightarrow \exists z \; Q(y,z)$$

Variáveis ligadas e livres

Calcular os conjuntos BV e FV para a fórmula

$$\Phi = \forall x \; \exists y \; (R(f(x,y),c)) \Rightarrow \exists z \; Q(y,z)$$

Resposta

$$FV(\Phi) = \{y\}$$

 $BV(\Phi) = \{x, y, z\}$

Substituição (fórmulas)

Definição (Notação)

Seja σ uma substituição, y uma variável. σ_x é definida como:

$$y\sigma_x = \begin{cases} y\sigma \text{ if } y \neq x \\ x \text{ if } y = x \end{cases}$$

Definição (Substituição)

$$(A(t_1,\ldots,t_n))\sigma = A(t_1\sigma,\ldots,t_n\sigma)$$
 se A is atômica $(\neg P)\sigma = \neg(P\sigma)$ $(P\circ Q)\sigma = P\sigma\circ Q\sigma,\circ\in\{\land,\lor,\Rightarrow\}$ $(\Box x\;P)\sigma = \Box x\;(P\sigma_x)$

Modelos

Definição

Seja $L = \bigcup_{n \in \mathbb{N}} \mathcal{F}_n \cup \bigcup_{n \in \mathbb{N}^*} \mathcal{R}_n$. Um modelo $M = (D, [\cdot]_I)$ para L consiste em:

- Um conjunto não vazio D: o domínio
- Um mapeamento $[\cdot]_I:L\to D$, a *interpretação
 - ▶ Uma função $[f]_I: M^n \to M$ para toda $f \in \mathcal{F}_n$;
 - Uma relação $[R]_I\subseteq M^m$ para toda $R\in\mathcal{R}_m$;

$$\mathcal{M} = (M, \{[f]_{\mathcal{M}}\}_{f \in \bigcup_{n \in \mathbb{N}} \mathcal{F}_n}, \{[R]_{\mathcal{M}}\}_{R \in \bigcup_{n \in \mathbb{N}^*} \mathcal{R}_n})$$

 f^M é a intepretação de f e R^M a interpretação de R em $\mathcal M$

Atribuição

Definição

Uma atribuição num modelo $M=(D,[\cdot]_I)$ é um mapeamento $[\cdot]_A:\mathcal{V}\to D$. A imagem duma variável ν numa atribuição é denotada $[\cdot]_A$ by ν^A .

Observação

- Uma interpretação dá um significado aos símbolos da linguagem
- Uma atribuição dá um significado às variáveis

Modelos e interpretações

Definição

Seja $M = (D, [\cdot]_I)$ um modelo de L e $[\cdot]_A$ uma atribuição nesse modelo Para todo termo t de L, associamos um valor $[t]_{I,A}$ assim:

$$\begin{aligned}
[c]_{I,A} &= c^{I}, c \in \mathcal{F}_{0} \\
[v]_{I,A} &= v^{A} \\
[f(t_{1}, \dots, t_{n})]_{I,A} &= f^{I}([t_{1}]_{I,A}, \dots, [t_{n}]_{I,A}), f \in \mathcal{F}_{n}
\end{aligned}$$

Interpretações

Exemplo

Seja
$$L_a = \{0, S, +, *, <\}.$$

- $N = \{\mathbb{N}, 0, S, +, *, <\}$ é uma estrutura para L_a . É a estrutura padrão.
- $A = \{A, 0^A, S^A, +^A, *^A, <^A\}$ onde
 - $A = \mathbb{R}$:
 - $[0]_A = \pi;$
 - $[S(a)]_A = e^{[a]_A};$
 - $[a+b]_A = [a]_A +_{\mathbb{R}} [b]_A$
 - $[a*b]_A = [a]_A *_{\mathbb{R}} [b]_A$
 - $[a < b]_A = T$ if $b = \cos(a)$

Definição

Seja $M=(D,[\cdot]_I)$ um modelo para a linguagem L(R,F), e $[\cdot]_A$ uma atribuição nesse modelo. Para toda fórmula ϕ de L(R,F), associamos um valor de verdade $[\phi]_{I,A}$ $(\top$ ou \bot) assim:

$$\begin{split} [P(t_1,\ldots,t_n)]_{I,A} &= \top &\iff & ([t_1]_{I,A},\ldots,[t_m]_{I,A}) \in [P]_I \\ & [\neg P]_{I,A} &= & \neg [P]_{I,A} \\ & [P \circ Q]_{I,A} &= & [P]_{I,A} \circ [Q]_{I,A} \\ & [\forall x \ P]_{I,A} = \top &\iff & [P]_{I,B} = \top \text{ for every assignment } B \text{ in } M \\ & [\exists x \ P]_{I,A} = \top &\iff & [P]_{I,B} = \top \text{ for some assignment } B \text{ in } M \end{split}$$

Validade, satisfazibilidade

* Seja $\phi \in wff$ de L(F,R). ϕ é verdadeira no modelo \vdash para L(F,R) se $[\phi]_{I,A} = \top$ para todas as atribuições A.

Definição (Fórmula válida)

Uma fórmula ϕ é válida se ϕ é verdadeira em todos os modelos da linguagem.

Definição (Conjunto satisfazível)

Um conjunto de fórmulas S é satisfazível em \vdash se existe uma atribuição A tal que $\forall \phi \in S, [\phi]_{I,A} = \top$

S é satisfazível se é satisfazível em algum modelo.

Modelos de Herbrand

- Atribuições são quase substituições
- Atribuições são mapeamentos de variáveis ao domínio D
- Elementos de D podem ser qualquer coisa, inclusive termos da linguagem L

Definição (Modelo de Herbrand)

Um modelo M = (D, I) da linguagem L é um modelo de Herbrand se:

- D é exatamente o conjunto dos termos fechados de L.
- Para todo termo t, t' = t.

Indução

Os vários princípios de indução são representáveis na lógica de primeira ordem como esquema de axiomas.

Definição (Indução simples)

$$(P(0) \land \forall n \in \mathbb{N} \ P(n) \Rightarrow P(n+1)) \Rightarrow \forall n \in \mathbb{N} \ P(n)$$

Definição (Indução forte)

$$(P(0) \land \forall k \in \mathbb{N}, k \leq n \ P(n) \Rightarrow P(n+1)) \Rightarrow \forall n \in \mathbb{N} \ P(n)$$

Definição (Indução estrutural)

Seja S um conjunto, \leq uma ordem parcial bem fundada sobre S e $M \subseteq S$ o conjunto de estruturas minimais de S.

$$(\forall m \in M, P(m) \land \forall k \in S, k \leq n \ P(n) \Rightarrow P(Succ(n))) \Rightarrow \forall x \in S, P(x)$$

Dedução natural

A dedução natural para a lógica de primeira ordem é uma extensão natural da dedução natural para lógica proposicional.

Regras adicionais para quantificadores

Regra ∀

$$\frac{\Gamma \vdash \Phi[x \mapsto a]}{\Gamma \vdash \forall x \Phi} \forall_I$$

$$\frac{\Gamma \vdash \forall x \; \Phi}{\Gamma \vdash \Phi[x \mapsto t]} \, \forall_E$$

a é um novo parâmetro. Ele não pode ocorrer em qualquer outra hipótese não descarregada da prova.

Regra ∃

$$\frac{\Gamma \vdash \Phi[x \mapsto t]}{\Gamma \vdash \exists x \ \Phi} \, \exists_I$$

$$\frac{\Gamma \vdash \exists x \ \Phi \qquad \Delta, \Phi[x \mapsto a] \vdash \Psi}{\Gamma, \Delta \vdash \Psi} \ \exists_{E}$$

a é um novo parâmetro. Ele não pode ocorrer em qualquer outra hipótese não descarregada da prova.

Goal

$$\forall x \ (P(x) \Rightarrow Q(x)), P(c) \vdash Q(x)$$

Rule

$$\frac{\forall x \ (P(x) \Rightarrow Q(x)) \vdash \forall x \ (P(x) \Rightarrow Q(x))}{\forall x \ (P(x) \Rightarrow Q(x)) \vdash P(c) \Rightarrow Q(c)} \qquad P(c) \vdash P(c)$$

$$\forall x \ (P(x) \Rightarrow Q(x)), P(c) \vdash Q(c)$$

Goal

$$\forall x \ (P(x) \Rightarrow Q(x)), P(c) \vdash Q(x)$$

Rule

$$\Gamma, \Phi \vdash \Phi$$

$$\frac{\forall x (P(x) \Rightarrow Q(x)) \vdash \forall x (P(x) \Rightarrow Q(x))}{\forall x (P(x) \Rightarrow Q(x)) \vdash P(c) \Rightarrow Q(c)} \qquad P(c) \vdash P(c)$$
$$\forall x (P(x) \Rightarrow Q(x)), P(c) \vdash Q(c)$$

Goal

$$\forall x \ (P(x) \Rightarrow Q(x)), P(c) \vdash Q(x)$$

Rule

$$\Gamma, \Phi \vdash \Phi$$

$$\frac{\forall x (P(x) \Rightarrow Q(x)) \vdash \forall x (P(x) \Rightarrow Q(x))}{\forall x (P(x) \Rightarrow Q(x)) \vdash P(c) \Rightarrow Q(c)} \qquad P(c) \vdash P(c)$$
$$\forall x (P(x) \Rightarrow Q(x)), P(c) \vdash Q(c)$$

Goal

$$\forall x \ (P(x) \Rightarrow Q(x)), P(c) \vdash Q(x)$$

Rule

$$\frac{\Gamma \vdash \forall x \; \Phi}{\Gamma \vdash \Phi[x \mapsto t]} \; \forall_E$$

$$\frac{\forall x (P(x) \Rightarrow Q(x)) \vdash \forall x (P(x) \Rightarrow Q(x))}{\forall x (P(x) \Rightarrow Q(x)) \vdash P(c) \Rightarrow Q(c)} \qquad P(c) \vdash P(c)$$

$$\forall x (P(x) \Rightarrow Q(x)), P(c) \vdash Q(c)$$

Goal

$$\forall x \ (P(x) \Rightarrow Q(x)), P(c) \vdash Q(x)$$

Rule

$$\frac{\Gamma \vdash \Phi \Rightarrow \Psi}{\Gamma, \Delta \vdash \Psi} \xrightarrow{\Delta \vdash \Phi} \Rightarrow_{\mathcal{E}}$$

$$\frac{\forall x (P(x) \Rightarrow Q(x)) \vdash \forall x (P(x) \Rightarrow Q(x))}{\forall x (P(x) \Rightarrow Q(x)) \vdash P(c) \Rightarrow Q(c)} \qquad P(c) \vdash P(c)$$
$$\forall x (P(x) \Rightarrow Q(x)), P(c) \vdash Q(c)$$

Exercícios

Mostre que

$$\exists x \forall y R(x, y) \Rightarrow \forall y \exists x R(x, y)$$

$$\exists x (P(x) \lor Q(x)) \Rightarrow (\exists x P(x) \lor \exists x Q(x))$$

Resumo

Lógica proposicional

2 Lógica da primeira ordem

Referências

Melvin Fitting, *First-order logic and automated theorem proving (2nd ed.)*, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

A. S. Troelstra and H. Schwichtenberg, *Basic proof theory (2nd ed.)*, Cambridge University Press, New York, NY, USA, 2000.

Perguntas?

http://dimap.ufrn.br/~richard/dim0436