BSYS_EVAL

Ionuţ Cicio

Contents

1	Bsys_eval		3
	1.1	Introduction	3
	1.2	Requirements	3
2	UM	L class diagram	5
3	Data	a types specification	6
	3.1	Interval	6
	3.2	ReactomeDbId	6
	3.3	StableId	6
4	Classes specification		7
	4.1	CatalystActivity	7
	4.2	Compartment	7
	4.3	Event	8
	4.4	FastReaction	8
	4.5	Model	8
	4.6	ModelInstance	8
	4.7	SimulatedModelInstance	8
	4.8	Pathway	8
	4.9	PhysicalEntity	8
	4.10	ReactionLikeEvent	9
	4.11	ReactionParameter??	9
Bibliography			0

1 BSYS_EVAL

1.1 Introduction

BSYS_EVAL is a tool meant to help study the likelihood of a given situation in a biological system.

Given a set of target species, a set of constraints on the target species (constraints which model a situation that could present, for example, in a disease) and by taking into account all the reactions that lead to the production, both directly and indirectly, of the target species, the goal is to find a subset of virtual patients for the situation.

TODO: find papers in literature that do similar things; what does this method add compared to other approaches? (i.e. using multiple pathways by generating the fixed point, ensemble of SAs etc...)

TODO: add case study, multiple if possible

1.2 Requirements

The algorithm

TODO: better notation here, write something decent to introduce the algorithm

Algorithm 1: (high level pseudocode)

```
\begin{split} & \text{input: } S_T, \text{ set of PhysicalEntity;} \\ & \text{input: } C_T, \text{ set of constraints on } S_T; \\ & \text{input: } P_I, \text{ set of ignored pathways;} \\ & \text{input: } \varepsilon, \delta \in (0,1); \\ & \text{input: seed, random seed;} \\ & F \leftarrow \text{fixed\_point}(S_T, P_I) \\ & \text{model} \leftarrow (S_T, S(F), R(F), E(F)) \\ & \text{env} \leftarrow \text{define env for model} \\ & V = \emptyset \text{ // set of virtual patients} \\ & \text{while } \neg \text{ halt requested do} \\ & v \leftarrow \text{parameter assignement for model // virtual patient} \\ & \text{if } \neg v \text{ satisfies structural constraints then} \\ & \text{continue;} \\ & \text{if APSG}(\text{model, } v, \text{ env, seed, } \varepsilon, \delta) \text{ then} \\ & V \leftarrow V \cup \{v\}; \end{split}
```

The idea is to expand a portion of Reactome

Definition 1 (... Model). A ... model G is a tuple (S_T, S, R, E) where:

- S_T the set of target species
- S is the finite set of species s.t.
 - $ightharpoonup S_T \subseteq S$
 - ightharpoonup S is the transitive closure of S_I within the Reactome graph (to be more precise, the closure within the specified bounds, bounds yet to be defined)

 - $\bullet \ \dot{s} = f(s_1, s_2, s_3, ..., s_n)$
- \bullet R is the finite set of reactions
 - $R = R_{\text{fast}} \cup R_{\text{slow}}$
- E is the set edges in the graph (where and edge goes from a species to a reaction, it also has a stoichiometry)
 - $E \subseteq S \times R \times \mathbb{N}^1$
 - $E = E_{\text{reactant}} \cup E_{\text{product}} \cup E_{\text{modifier}}$
 - ► TODO: account for order (edges also have an "order" attribute, I have to check how it impacts the simulation and if it's optional)

Average quantities

- $S' = S \cup \{S_{\text{avg}} \mid s \in S\}$
- S' = G(S')
- $K: R \to \mathbb{R}_+^{|R|} = \left[10^{-6}, 10^6\right]^{|R|}$
- find k
- subject to
 - structural constraints
 - partial order on k due to
 - fast/non fast reactions (TODO: as given by Reactome, but how?)

$$\forall r_f, r_s \ \left(r_f \in R_{\mathrm{fast}} \land r_s \in R_{\mathrm{slow}}\right) \rightarrow r_f > r_s$$

- reaction modifiers (like above?)
- for all dynamics of environment
 - avg concentration of species consistent to knowledge

$$\begin{split} \exists t_0 \;\; \forall t \;\; \forall s \\ & \left(t > t_0 \land s \in S_{\mathrm{avg}}\right) \to s(t) \in [\text{known range}] \end{split}$$

3 Data types specification

```
• \d = /[0-9]/
• \w = /[A-Za-z0-9_]/

ReactomeDbId = Integer [1]
StableIdVersion (Reactome) =
    String matching regex /^R-[A-Z]{3}-\d{8}\.\d{2,3}$/ [2]
SId = String matching regex /^[a-zA-Z_]\w*$/ [3, Section 3.1.7]
Interval = (min: Real [0..1], max: Real [0..1])
MathML = String according to https://www.w3.org/1998/Math/MathML/
```

3.1 Interval

The Interval type represents a real open interval of the type (min, max).

3.2 ReactomeDbId

Other Reactome entities can be identified with a ReactomeDbId, but it's pattern does not match the definition of SId used to identify objects in SBML. In order to generate a correct SBML Model the ReactomeDbId must be converted.

```
into(db_id: ReactomeDbId): SId

POSTCONDITIONS:
    . . .
```

3.3 StableId

The StableId type is used to identify a PhysicalEntity or an Event in Reactome, but it's pattern does not match the definition of SId used to identify objects in SBML. In order to generate a correct SBML Model the StableId must be converted.

4 Classes specification

4.1 CatalystActivity

The one above is the reason why a **PhysicalEntity**'s role in catalyst_entity has multiplicity 0..*.

"If a PhysicalEntity can enable multiple molecular functions, a separate CatalystActivity instance is created for each" [4, Page 5]

"If the PhysicalEntity is a Complex and a component of the complex mediates the molecular function, that component should be identified as the active unit of the CatalystActivity." [4, Page 5]

C.CatalystActivity.active_unit_is_in_complex

4.2 Compartment

TODO: move this information to the *compartment_entity* association, or to PreferredCompartmentForSimulation

The Compartment class has some quirks. In Reactome, the Compartment's role in the compartment_entity association has multiplicity 0..*. The problem is that the SBML model requires 1..1 multiplicity for this association to be simulated.

In Reactome there are currently (TODO: version??) 19 physical entities which don't have a compartment (see queries/helper.cypher), so this can be easily solved by just adding a **default compartment** to the SBML model to which these entities map to.

On the other hand there are 14046 entities which have multiple compartments (TODO: how many compartments has each exactly?), so the easiest choice right now is to just pick any of them. For this reason the

4.3 Event

4.4 FastReaction

4.5 Model

4.6 ModelInstance

```
C.ModelInstance.every_reaction_has_a_parameter
```

```
C.ModelInstance.reaction_parameters_are_structurally_valid
```

4.7 SimulatedModelInstance

```
is_valid()
    postconditions:
```

4.8 Pathway

4.9 PhysicalEntity

TODO: how should I handle complexes here?

```
produced_by(): ReactionLikeEvent [0..*]
```

```
POSTCONDITIONS:
    result = { reaction |
         ReactionLikeEvent(reaction) \( \Lambda \)
         output(this, reaction) ∧
         \neg \exists pathway
              IgnoredPathway(pathway) \( \text{reactions}(pathway, reaction) \)
    }
TODO: union with CatalystActivity
fixed_point(): DatabaseObject [0..*]
  POSTCONDITIONS:
    result =
         { this } U
         produced_by(this) ∪
         \{ \text{ object } \mid \exists \text{ reaction, reaction\_input } \}
             produced_by(this, reaction) \( \Lambda \)
                  input(reaction, reaction_input) 
                  (\exists catalyst_activity)
                       CatalystActivity(catalyst_activity) \( \)
                       catalyzed_event(catalyst_activity, reaction)) \( \Lambda \)
                       catalyst_entity(
                            catalyst_activity,
                           reaction_input
             ) \
              fixed_point(reaction_input, object)
         }
```

4.10 ReactionLikeEvent

4.11 ReactionParameter??

ullet it must satisfy structural constraints

Bibliography

- [1] [Online]. Available: https://reactome.org/content/schema/ DatabaseObject
- [2] [Online]. Available: $\frac{https://reactome.org/documentation/faq/37-general-website/201-identifiers}{}$
- [3] [Online]. Available: https://raw.githubusercontent.com/combine-org/combine-org/combine-org/combine-specifications/main/specifications/files/sbml.level-3.version-2.core.release-2.pdf
- [4] [Online]. Available: $\frac{https://download.reactome.org/documentation/Data}{ModelGlossary_V90.pdf}$