Билет

Nt	У словия задач	K						
1.1	Plantage and the second							
1.2								
1.3	Стренок производит 10 выстрелов. Вероятность попадания р=0,4. Найти наивероятиейшее число попаданий К□.							
2.1								
2.2								
2.3	Случайная величина X распределена нормально с параметрами $(a=7,\sigma=3)$. Найти вероятность попадания на интервал (-2; 16).							
3.1	По выборке: 1;3;2;3;0;4;3;2;4;1. Составить статистический ряд и найти несмещенную оценку математического ожидания тенеральной совокупности							
3.2	Найти Δ для доверительного интервала математического ожидания пормально распределенной генеральной совокупности с надежностью γ = 0.99 по дляной выборке, если генеральное среднее квадратическое отклонение σ = 3 : 95;97;98;99;100;101;101;103;106.							
3.3	Заданы функции спросв $Q = Q_d(p)$ и предложения $Q = Q_s(p)$, где р-цен единину товара. При каком значении р спрос равен предложению, если $Q_d(p) = 8$ -р; $Q_s(p) = 6+0,25$ р?	a 33						
Pem	пенни задач 1.4, 2.4 и 3.4 привести на оборотной стороне этого листа.							
1.4	Дано; Р (A u B) = 0,6; Р (A n B) = 0,3; Р _в A = 0,6. Найдите Р(A), Р(B), Р _в зависимы ли события А и В.							
2.4	СВ X распределена по показательному закопу с параметром $\mu = 2$. Найти верояз $P(X>1)$, $P(X<2)$, $P(X>-1)$, $P(X=3)$, $P_{(X>0)}(X>1)$, математическое ожидание. Напис функцию распределения и нарисовать ее примерный график.							
	La Contract of the Contract of							
3.4	Найти уравнение линейной регрессии и построить график функцио	, устана						
3.4	Найти уравнение линейной регрессии и построить график функцио зависимость сбыти от цены товара по следующим данным: Цена товара (руб.) 2 3 4 6 10	, yeranai						

Решение

1.1 Необходимо расставить пять охранников по пяти постам. Подечитать количество способов, которыми можно осуществить эту операцию.

Решение. Так как речь идет о перестановках пяти различных объектах, используем формулу для числа перестановок: $P_n = n!$ для n = 5, получаем

 $N = P_5 = 5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$ способов.

Ответ: 120

1.2 Известно, что P(A)=0,5; P(B)= 0,6; P (A ∩ B) =0,3. Найти Р_AВ.

Помощь онлайн на экзамене по теории вероятностей (ГУУ) ©МатБюро - Решение задач по математике, экономике, статистике

Решение. По формуле условной вероятности

$$P_{A}(B) = \frac{P(A \cap B)}{P(A)}$$
. Подставляем известные вероятности и находим:

$$P_A(B) = \frac{P(A \cap B)}{P(A)} = \frac{0.3}{0.5} = 0.6.$$

Ответ: 0,6.

1.3 Стрелок производит 10 выстрелов. Вероятность попадания р=0,4. Найти наивероятиейшее число попаданий К□.

Решение. Наивероятнейшее число попаданий находится из формулы

$$np - q \le k < np + p$$

Здесь p = 0,4 (вероятность попадания),

$$q = 1 - p = 0.6$$
,

n = 10 — число выстрелов.

Подставляя данные значения, получаем:

$$10 \cdot 0, 4 - 0, 6 \le k < 10 \cdot 0, 4 + 0, 4,$$

$$3, 4 \le k < 4, 4,$$

откуда k=4.

Ответ: 4 попадания.

2.1	Случайная величина				Х зада	на рядом распределения
	X	1	3	5	7	
	P	0,1	0,2	0,2	0,5	

Решение. Сначала найдем математическое ожидание

$$M(X) = \sum x_i p_i = 1.0, 1+3.0, 2+5.0, 2+7.0, 5=5, 2...$$

Тогда дисперсия

$$D(X) = \sum_{i} (x_i)^2 p_i - (M(X))^2 =$$

= 1² · 0,1+3² · 0,2+5² · 0,2+7² · 0,5-5,2² = 4,36.

Ответ: 4,36

Помощь онлайн на экзамене по теории вероятностей (ГУУ) ©МатБюро - Решение задач по математике, экономике, статистике

Решение. Используем формулу для нахождения вероятности попадания нормальной случайной величины в интервал:

$$P(\alpha < X < \beta) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right),$$
 где $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-z^2/2} dz$

функция Лапласа (значения берутся из таблицы), a=7 - математическое ожидание, $\sigma=3$ - среднее квадратическое отклонение. Получаем:

$$P(4 < X < 10) = \Phi\left(\frac{10-7}{3}\right) - \Phi\left(\frac{4-7}{3}\right) = \Phi(1) - \Phi(-1) =$$

$$=\Phi(1)+\Phi(1)=2\cdot\Phi(1)=2\cdot0,3413=0,6826.$$

Ответ: 0,6826

2.3	Случайная величина X распределена нормально с параметрами
	$(a = 7, \sigma = 3)$. Найти вероятность попадания на интервал (-2; 16).

Решение. Используем формулу для нахождения вероятности попадания нормальной случайной величины в интервал:

$$P(\alpha < X < \beta) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right),$$
 где $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-z^2/2} dz$

функция Лапласа (значения берутся из таблицы), a=7 - математическое ожидание, $\sigma=3$ - среднее квадратическое отклонение. Получаем:

$$P(-2 < X < 16) = \Phi\left(\frac{16-7}{3}\right) - \Phi\left(\frac{-2-7}{3}\right) = \Phi(3) - \Phi(-3) =$$

$$=\Phi(3)+\Phi(3)=2\cdot\Phi(3)=2\cdot0,4987=0,9974.$$

Ответ: 0,9974.

3.1	По выборке: 1;3;2;3;0;4;3;2;4;1. Составить статистический ряд и найти						
	несмещенную оценку математического ожидания генеральной						
	совокупности						

Решение. Составим ряд:

	Частота
\mathcal{X}_{i}	n_{i}
0	1
1	2
2	2
3	3
4	2

Помощь онлайн на экзамене по теории вероятностей (ГУУ) ©МатБюро - Решение задач по математике, экономике, статистике

Тогда несмещенная оценка математического ожидания есть выборочное среднее:

$$\overline{x} = \frac{1}{n} \sum x_i n_i = \frac{0.1 + 1.2 + 2.2 + 3.3 + 4.2}{1 + 2 + 2 + 3 + 2} = \frac{23}{10} = 2,3.$$

Ответ: 2,3

3.2 Найти Δ для доверительного интервала математического ожидания нормально распределенной генеральной совокупности с надежностью γ=0,99 по данной выборке, если генеральное среднее квадратическое отклонение σ=3:95;97;98;99;100;101;101;103;106.

Решение. Используем формулу $\Delta = t_{\gamma} \cdot \frac{\sigma}{\sqrt{n}}$, где t_{γ} определяется по доверительной вероятности из таблицы распределения Лапласа $t_{0,99} = \Phi^{-1}(0,99/2) = \Phi^{-1}(0,495) = 2,58$, $\sigma = 3$, n = 9 (по условию). Подставляем и находим:

$$\Delta = t_{\gamma} \cdot \frac{\sigma}{\sqrt{n}} = 2,58 \cdot \frac{3}{\sqrt{9}} = 2,58.$$

Ответ: 2,58.

отклюнение σ = 3 : 95;97;98;99;100;101;101;105;106.

3.3 Заданы функции спроса $Q = Q_d(p)$ и предложения $Q = Q_s(p)$, где р-цена за единицу товара. При каком значении р спрос равен предложению, если $Q_d(p)$ =8-p; $Q_s(p)$ =6+0,25p?

Решение. Приравниваем спрос и предложение:

$$Q_d(p) = Q_s(p),$$

$$8 - p = 6 + 0,25 p$$

$$1,25 p = 2,$$

$$p = 1, 6.$$

Получаем цену 1,6.

Ответ: 1,6.

Решения задач 1.4, 2.4 и 3.4 привести на оборотной стороне этого листа.

1.4 Дано: Р (А и В) = 0.6; Р (А п В) = 0.3; РаА = 0.6. Найдите Р(А), Р(В), РаВ и выясните,

Решение. Используем формулу для условной вероятности

$$P_B(A) = \frac{P(A \cap B)}{P(B)}$$
 и формулу $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Помощь онлайн на экзамене по теории вероятностей (ГУУ) ©МатБюро - Решение задач по математике, экономике, статистике

Из первой найдем: $0,6 = \frac{0,3}{P(B)}, \Rightarrow P(B) = 0,5$. Теперь подставляем во

вторую формулу: $0,6 = P(A) + 0,5 - 0,3, \Rightarrow P(A) = 0,4$.

Найдем
$$P_A(B) = \frac{P(A \cap B)}{P(A)} = \frac{0.3}{0.4} = 0.75$$
.

Так как $0,3 = P(A \cap B) \neq P(A) \cdot P(B) = 0,5 \cdot 0,4 = 0,2$, события A и B зависимы.

2.4 СВ X распределена по показательному закону с параметром μ = 2. Найти вероятности P(X>1), P(X<2), P(X>-1), P(X=3), P_(X>0)(X>1), математическое ожидание. Написать функцию распределения и нарисовать ее примерный график.

Решение. Найдем вероятности, используя формулу:

$$P(a < X < b) = e^{-\mu a} - e^{-\mu b} = e^{-2a} - e^{-2b}, \ a, b > 0.$$

Получаем:

$$P(X > 1) = P(1 < X < \infty) = e^{-2} - e^{-\infty} = e^{-2} \approx 0.135.$$

$$P(X < 2) = P(0 < X < 2) = e^{0} - e^{-4} = 1 - e^{-4} \approx 0.982.$$

P(X > -1) = 1, так как X принимает только значения большие нуля.

P(X = 3) = 0, так как X непрерывная случайная величина.

$$P_{(X>0)}(X>1) = \frac{P(X>1, X>0)}{P(X>0)} = \frac{P(X>1)}{P(X>0)} = \frac{P(1 < X < \infty)}{1} = 0.135.$$

Математическое ожидание $MX = \frac{1}{\mu} = \frac{1}{2} = 0,5$

Так как CB X распределена по показательному закону с параметром $\mu = 2$, то функция распределения имеет вид:

$$F(x) = \begin{cases} 0, & x < 0, \\ 1 - e^{-2x}, & x \ge 0. \end{cases}$$

Построим график функции.

Помощь онлайн на экзамене по теории вероятностей (ГУУ) ©МатБюро - Решение задач по математике, экономике, статистике

3.4	зависимос	устанавливающее						
	Sapiron	Цена товара (руб.)	2	3	4	6	10	
		Сбыт (шт.)	45	30	10	10	5	

Решение. Параметры а и b уравнения линейной регрессии y = ax + b по методу наименьших квадратов можно найти из системы уравнений:

$$\begin{cases} a\sum_{i} x_{i}^{2} + b\sum_{i} x_{i} = \sum_{i} x_{i} y_{i} \\ a\sum_{i} x_{i} + bn = \sum_{i} y_{i} \end{cases}$$

где суммирование ведется по i от 1 до n, n = 5. Составим расчетную таблицу:

						Сумма
\mathcal{X}_{i}	2	3	4	6	10	25
y_i	45	30	10	10	5	100
x_i^2	4	9	16	36	100	165
$x_i y_i$	90	90	40	60	50	330

Получаем систему:

$$\begin{cases} 165a + 25b = 330 \\ 25a + 5b = 100 \end{cases}$$

откуда находим a=-4,25 , b=41,25 , то есть получаем функцию y=-4,25x+41,25 , которая выражает зависимость сбыта Y от цены товара X .

Работа выполнена авторами www.MatBuro.ru Помощь онлайн на экзамене по теории вероятностей (ГУУ) ©МатБюро - Решение задач по математике, экономике, статистике

Ответ: y = -4,25x + 41,25