Assignment 6: Explaining the periodic table

Introduction

In this report, an attempt is made to qualitatively understand general atomic systems by using a mean field approximation. The charge density resulting from the occupied orbitals of an atomic system can be written as

$$\rho(r,\theta,\varphi) = \sum_{n=1}^{N} \sum_{\ell=0}^{n-1} \sum_{m=-\ell}^{\ell} g_{n\ell m} \rho_{n\ell m}(r,\theta,\varphi) \qquad (1)$$

where $g_{n\ell m}$ takes the value zero, one or two which is the number of electrons occupying the (n, ℓ, m) state, and $\rho_{n\ell m}$ is the charge density of an electron in the (n, ℓ, m) state:

$$\rho_{n\ell m}(r,\theta,\varphi) = -e \left| \psi_{n\ell m}(r,\theta,\varphi) \right|^2$$

$$= -e R_{n\ell}^2(r) \left| Y_{\ell m}(\theta,\varphi) \right|^2$$
(2)

where R is the radial wave function and Y are the spherical harmonics. We'll replace the spherical harmonic with its average

$$|Y_{\ell m}(\theta,\varphi)|^{2} \rightarrow \frac{1}{4\pi} \int_{\theta=0}^{\pi} \int_{\varphi=0}^{2\pi} |Y_{\ell m}(\theta,\varphi)|^{2} r^{2} \sin\theta d\theta d\varphi = \frac{1}{4\pi}$$
(3)

so that $\rho_{n\ell m} \to -eR_{n\ell}^2/4\pi$. This enables us to write

$$\rho(r) = -\frac{e}{4\pi} \sum_{n=1}^{N} \sum_{\ell=0}^{n-1} g_{n\ell} R_{n\ell}^{2}(r)$$
 (4)

where $g_{n\ell}$ is the number electrons being in a state with principal and azimuthal quantum number (n, ℓ) and $\rho(r)$ is to be understood as the approximation of $\rho(r, \theta, \varphi)$ in which we have averaged over the spherical harmonics.

The radial wavefunctions are solutions to

$$E_{n\ell}(rR_{n\ell}) = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2(rR_{n\ell})}{\mathrm{d}r^2} + \left[\frac{\hbar^2\ell(\ell+1)}{2mr^2} - \frac{Ze^2}{4\pi\epsilon_0 r} - e\varphi_{ee}(r) \right] (rR_{n\ell})$$
(5)

where $P_{n\ell} = rR_{n\ell}$ is the reduced radial wavefunction and $\varphi_{ee}(r)$ is a yet unknown electric potential. It is decomposed into two parts

$$\varphi_{ee} = \varphi_{ee}^{dir} + \varphi_{ee}^{exch} \tag{6}$$

where the direct part is the solution to the Poisson equation

$$\frac{\mathrm{d}^2(r\varphi_{ee}^{dir}(r))}{\mathrm{d}r^2} + \frac{r\rho(r)}{\epsilon_0} = 0 \tag{7}$$

with boundary conditions that $r\varphi_{ee}^{dir}$ should vanish at the origin and that $r\varphi_{ee}^{dir}$ should approach $-Ze/4\pi\epsilon_0$ as $r\to\infty$. The exchange part is calculated with the formula

$$\varphi_{ee}^{exch}(r) = \frac{3e}{4\pi\epsilon_0} \left| \frac{3\rho(r)}{8\pi e} \right|^{1/3}. \tag{8}$$

To determine the right φ_{ee}^{dir} , the system was solved iteratively until it became self-consistent.

Numerical implementation

The implementation can be summarized with the following steps:

- 1. Set $\varphi_{ee} = 0$.
- 2. Calculate $\rho(r)$ by solving (5) for the different n and ℓ and calculating the sum in (4).
- 3. Use $\rho(r)$ to solve Poisson's equation (7) and obtain from it the potential φ_{ee}^{dir} .
- 4. Calculate the exchange potential φ_{ee}^{exch} using equation (8) and set $\varphi_{ee} = \varphi_{ee}^{dir} + \varphi_{ee}^{exch}$.
- 5. Repeat from 2. until convergence of energies $E_{n\ell}$.

Atomic units were used (for more details, see end of report).

Test on helium atom

For helium, the charge distribution takes the simple form

$$\rho(r) = -\frac{e}{4\pi} \cdot 2R_{10}^2(r). \tag{9}$$

Applying the steps above, the energy converges to the value $E_{10} = -0.76$ Hartree (see figure 1). The electric potential φ_{ee} after six iterations is plotted in figure 2. To calculate the total energy, the following formula was used:

$$E_{tot} = -2E_{10} - \frac{1}{2} \int_{0}^{r_{max}} P_{10}^{2}(r) e\varphi_{ee} dr \qquad (10)$$

The integral above was calculated numerically and found to be equal to -0.92 which gies a total energy (6) of $E_{tot} = -1.06$.

Figure 1: The energy E_{10} as a function of iteration step for the helium atom. The energy converges to a value $E_{10} = -0.76$ Hartree.

Figure 2: The electric potential φ_{ee} for the helium atom after six iterations. The potential should converge to the Coulomb potential for large r.

Other atoms

The method seemed to work fine for the Helium atom but I didn't get it to work for Neon. The problem was that when I was solving for $rR_{n\ell}$ with a non-zero φ_{ee} , I got unbound solutions in the iteration, like this one:

I haven't been able to locate the problem yet, but it could be a sign error somewhere or that I'm implementing the Poisson equation incorrectly.

Units

Defining $u_{n\ell}$ to be the numerical solution to $rR_{n\ell}$ and making the substitutions

$$\xi = r/a_0, \quad E' = E/(\hbar^2/a_0^2 m), \quad u = a_0^{1/2} r R_{n\ell},$$
(11)

the radial function becomes

$$-\frac{1}{2}u'' + \left[\frac{\ell(\ell+1)}{2\xi^2} - \frac{mea_0^2}{\hbar^2}(\varphi_C + \varphi_{ee})\right]u = E'u.$$
(12)

The direct part of φ_{ee} is the solution to the Poisson equation:

$$(r\varphi_{ee}^{dir})'' + r\rho(r)/\epsilon_0 = 0. \tag{13}$$

Now, define

$$\hat{\varphi}_{ee}^{dir} = \frac{\varphi_{ee}^{dir}}{\hbar^2 / (ma_0^2 e)} \tag{14}$$

and set $\sigma = \rho/B$ where B is to be determined. Making these substitutions, and setting $r = a_0 \xi$, we get

$$(\xi \hat{\varphi}_{ee}^{dir})'' + \frac{4\pi a_0^3}{e} B\sigma(\xi)\xi = 0.$$
 (15)

So if we let $B = e/(4\pi a_0^3)$, we get

$$(\xi \hat{\varphi}_{ee}^{dir})'' + \xi \sigma(\xi) = 0. \tag{16}$$

The Coulomb part is always the same,

$$\hat{\varphi}_C = \frac{\varphi_C}{\hbar^2 / (ma_0^2 e)} = \frac{Z}{\xi}.$$
 (17)