Course Overview

Computer Graphics Instructor: Sungkil Lee

Course Webpage

- The official syllabus can be downloaded from the course webpage as well as GLS.
 - This slide is an extended version of the official syllabus.
- Course web page: http://cg.skku.edu/course/cg/

ID: cg password: skku

- All the written course materials will be announced on the web.
- Various resources concerning this course will be also available.
- Check the web page regularly.
- Only videos and assignment submission will use i-campus.

Who am I?

• Sungkil Lee, Ph.D.

- Associate Professor, Department of Software
- Director, Computer Graphics Lab.

- Expert in real-time GPU rendering
- High-end C++ programmer
- many others ...

TAs and Office Hour

Teaching assistants (TAs):

• Cho, Hoonmin (조훈민), 27336

Office hour

- Tuesday 13:15-14:15, at my office (27328)
- During the office hour, I will provide real-time feedback for emails.

Contacts

I will answer questions for the official course email.

- The official course email: cg_g@g.skku.edu
- This email address is shared with me and all of the TAs.
- This way is the fastest way to reach us.

I will not answer for:

- non-email contacts (e.g., do not use iCampus messaging).
 - I do not regularly check the iCampus messaging.
- emails:
 - sent to my private address (not shared with the TA).
 - sent outside working times and days (e.g., emails sent during the weekend).
 - when any of the sender or recipients are not identified.

Email Examples

Korean version

[cg41] A1 채점 오류에 관한 문의

컴퓨터그래픽스 수업 조교님 (or xxx 조교님, or 이성길 교수님),

저는 학부 (또는 대학원) 컴퓨터그래픽스 수업을 수강하고 있는 홍길동입니다. 제 학번은 xxxxxxxxx 입니다.

다름이 아니라, 이번 숙제 A1 채점에 문의드릴 것이 있습니다. 제가 xxx를 구현하였는데, 채점에 반영되지 않은 것 같습니다. 착오가 없는지 확인을 부탁드립니다.

홍길동 드림

- 제목과 본문에 본인의 정보와 주제를 포함하고, 구체적으로 작성한다.
- 본문 시작에 반드시 수신자의 이름을 넣는다.
- 마지막에 본인의 이름을 넣고 드림 (또는 올림/배상)으로 마무리한다.
 - 드림: 본인의 지위보다 높거나, 같거나, 낮은 경우, 올림/배상: 본인의 지위보다 높은 경우

Email Examples

English version

[cg41] Inquiry on A1 rating

Dear TA (or professor),

This is Gildong Hong who is taking the computer graphics course. My student ID is xxxxxxxxxx.

I would like to ask you about the rating of the first assignment, A1. I am sure that I did ..., but

Would it be possible for you to check if there is a mistake in the rating?

Best regards, Gildong Hong

Languages

English section

- Basically, most of the lecture will be given in English.
- But, when it is considered too complex or hard to explain, Korean can be also used for Korean students.

For exams, assignments, and presentations:

- Make sure to use English.
- If you write in Korean, you do not get credits for that.

Course Summary

Implication of CG

 Computer graphics is a fundamental tool for creating and manipulating visual media including games, animation, virtual reality, and web, and is also a crucial component for science and engineering software.

What to cover

 This course covers basic theory and practical techniques of computer graphics for digital media.

Particulars in this course

 This course particularly deals with modern-style shader programming for its implementation.

What you will learn in this course

Algorithms for creating realistic images

Having fun improving your C++ programming skills

- CG is one of the most appropriate topics for object-oriented C++ programming.
- You will also learn how to use third-party libraries.

GPU programming

- The concepts of OpenGL programming
- This course is a *very unique class that covers modern-style OpenGL* which utilizes the power of modern GPU.
- The basic knowledge of GPU programming can be easily extended to mobile graphics (e.g., OpenGL ES) and general-purpose GPU programming (e.g., CUDA, OpenCL).

Prerequisites

Data structures, Algorithms

- The core of CG can be effective data structures and algorithms for computing realistic imagery, which can be also parallelized.
- If you did not learn data structures or algorithms, I recommend taking the course after having them first.

C++

- The concept of object-oriented programming
- The concept of event-driven programming
- Still one of the most powerful languages for high-performance computing

Linear Algebra

- The basics of vector and matrix manipulation
- Mostly high-school algebra

Textbook and References

Textbook

- Interactive Computer Graphics: A Top-Down Approach with Shader-Based OpenGL
- Edward Angel and Dave Shreiner
- 6th Edition, 2011

References

- OpenGL Programming Guide: The Official Guide to Learning OpenGL, Versions 4.3 or later} (aka Red Book). Dave Shreiner, 2013.
- http://www.opengl.org/

Grading Policy

General grading rule

- In general, hard-working students will get a good grade.
- Programming assignments are very important throughout the course.

Organization

- Attendance and attitude: 10 %
- Assignments: 60%
- Team Projects (Final exam): 30%

Attendance Policy

Rules

- When you are absent 6 times or less (a week has two lectures), the absence has no effect on your grade. Otherwise (absent more than 6 times), you get graded F.
 - One late attendance is equivalent to a half absence.
- When you miss the final exam, you will fail to pass this course.
- Absence will be considered presence, given a valid proof only for the following exceptions.

The only exceptions for attendance:

- You are in the quarantine associated with Covid19 virus.
- Your family passed away.

Desired Attitudes for this Course

This course is not an easy-going one.

- You will learn a lot of unique stuffs, unavailable from other courses.
- Participate the course actively.

Basic etiquette

- Attend in time.
- When you are late, please enter in a side door to avoid an interruption.
- Lecture recording without my permission is not allowed.
- Please take off slippers and hat/caps during the lecture.

No Cheating!

Any cheating = You get graded F

- For many years, I have found a lot of different cases.
- If cheating is found in any cases, you will not pass this course.

Cheating in assns. and exams

- Many of the assignments are available from the last year ones.
- All of the assignments are intended to improve your programming skills.
 Hence, do it on your own. It will significantly raise your value.

Cheating in attendance

- when you attend for your friends or remotely;
- when you left after attendance check (without my permission);
 - I will often manually check attendance.
- for any other unacceptable cases.

Agenda

The course will basically follow the schedule below:

ID	First			Second			Assn.	Due
	date	mode	subject	date	mode	subject		
1	02-23		Course overview	02-25		Images and displays		
2	03-02		Graphics systems	03-04		OpenGL: Introduction	A0	
3	03-09		OpenGL: Introduction	03-11 OpenGL: Hello triangles		A0		
4	03-16		OpenGL: GLSL	03-18		OpenGL: Circle modeling	A1	
5	03-23		Geometry and Math	03-25	streaming	Free QnA on A1		
6	03-30		Transformations	04-01		OpenGL: Transformations	A2	A1
7	04-06		Viewing	04-08	streaming	Introduction to T0 and T1	T0, T1	
8	04-13		Projection	04-15		OpenGL: Camera A3 A2		A2
9	04-20		Shading	04-22		OpenGL: Shading T0		T0
10	04-27		Textures	04-29		OpenGL: Textures A4 A3		
11	05-04		Advanced Texturing	05-06		OpenGL: Framebuffers		
12	05-11		Rasterization	05-13		OpenGL: Image Processing A4		
13	05-18		Ray Tracing	05-20		_		
14	05-25		Global Illumination	05-27		— T1		
15	06-01	streaming	T1: oral presentation	06-03	streaming	T1: oral presentation		

^{*} Unless noted, lectures are assumed to be pre-recorded online video lectures.

^{*} Real-time streaming lectures will use either of WebEx, Zoom, or Microsoft Teams (when available).

^{*} Make-up classes, compensating for national holidays and business travels, will be covered with (pre-recorded) online video lectures.

Programming Assignments

Five assignments in total will be given in the course.

- They are designed for step-by-step improvements, leading from geometric modeling to a more complex 3D animation.
- When you follow the schedule step by step, they will be in an acceptable level of difficulty.
- A submission due for each is usually given 2-3 weeks in most cases.
- You may need to fully spend at least 3 to 4 days for each.

Subjects

ID	Name	Percentages	Subjects
A0	The Book of Shaders		Read https://thebookofshaders.com/
A1	Moving circles	15%	A simple 2D animation of circles
A2	Planet in space	15%	Geometric modeling of a 3D sphere
A3	Solar system I: moving planets	15%	3D transformations with camera interaction
A4	Solar system II: full system	15%	Shading, textures, and more

Team Project (Final Exam)

ID	Name	Percentages	Subjects
T0	Team organization		Form a team for T1
T1	Your own 2D/3D OpenGL game	30%	animation, interaction, and fun

Finding members (T0)

- A team can consist of one, two, or three students.
- If you do not find a partner, you have to do it alone.

One team project (T1) has to be done.

- You can make a 2D or 3D game written in OpenGL.
- You can apply advanced stuffs and your own creativity and fun.
- You need to orally present/demonstrate T1 at the end of the semester.

Any questions?