МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по практической работе №1 по дисциплине «Операционные системы»

Тема: Исследование структур загрузочных модулей

Студентка гр. 8381	Гречко В.Д.
Преподаватель	Ефремов М.А

Санкт-Петербург 2020

Цель работы.

Исследование различий в структурах исходных текстов модулей .COM и .EXE, структур файлов загрузочных модулей и способов их загрузки в основную память.

Необходимые сведения для составления программы.

Тип IBM PC хранится в байте по адресу 0F000:0FFFE, в предпоследнем байте ROM BIOS. Соответствие кода и типа в таблице:

PC	FF
PC/XT	FE, FB
AT	FC
PS2 модель 30	FA
PS2 модель 50 или 60	FC
PS2 модель 80	F8
PCjr	FD
PC Convertible	F9

Для определения версии MS DOS следует воспользоваться функцией 30H прерывания 21H. Входным параметром является номер функции в AH:

MOV AH,30h INT 21h

Выходными параметрами являются:

AL – номер основной версии. Если 0, то <2.0;

АН – номер модификации;

BH – серийный номер OEM (Original Equipment Manufacturer);

BL:CX – 24-битовый серийный номер пользователя;

Постановка задачи.

Требуется реализовать текст исходного .COM модуля, который определяет тип PC и версию системы. Ассемблерная программа должна читать содержимое предпоследнего байта ROM BIOS, по таблице, сравнивая коды, определять тип PC и выводить строку с названием модели. Если код не совпадает ни с одним значением, то двоичный код переводиться в символьную строку, содержащую запись шестнадцатеричного числа и выводиться на экран в виде соответствующего сообщения. Затем определяется версия системы. Ассемблерная программа должна по

значениям регистров AL и AH формировать текстовую строку в формате xx.yy, где xx - номер основной версии, а yy - номер модификации в десятичной системе счисления, формировать строки с серийным номером OEM (Original Equipment Manufacturer) и серийным номером пользователя. Полученные строки выводятся на экран.

Далее необходимо отладить полученный исходный модуль и получить «хороший» .COM модуль, а также необходимо построить «плохой» .EXE, полученный из исходного текста для .COM модуля.

Затем нужно написать текст «хорошего» .EXE модуля, который выполняет те же функции, что и модуль .COM, далее его построить, отладить и сравнить исходные тексты для .COM и .EXE модулей.

Ход работы.

Шаг 1. Написан текст исходного .COM модуля, определяющего тип PC и версию системы. За основу взят шаблон, приведенный в разделе "Основные сведения". Ассемблерная программа читает содержимое предпоследнего байта ROM BIOS по таблице, сравнивая коды, определяет тип PC и выводит строку с названием модели.

Если код не совпадает ни с одним значением, то двоичный код переводится в символьную строку, содержащую запись шестнадцатеричного числа и выводится на экран в виде соответствующего сообщения.

Затем определяется версия системы. Ассемблерная программа по значениям регистров AL и AH формирует текстовую строку в формате хх.уу, где хх — номер основной версии, а уу — номер модификации в десятичной системе счисления, формирует строки с серийным номером ОЕМ и серийным номером пользователя. Полученные строки выводятся на экран.

Отлажен полученный исходный модуль.

Результатом выполнения этого шага стал «хороший» .COM модуль, а также был построен «плохой» .EXE, полученный из исходного текста для .COM модуля.

C:\>new_com.com Type of PC: FC Version of System: 5.0 Serial number of OEM: 255 Serial number of user: 000000

Рисунок 1 – «Хороший» .COM модуль

Рисунок 2 – «Плохой» .EXE модуль

Шаг 2. Запуск «хорошего» .EXE модуля.

Написан текст исходного .EXE модуля, который выполняет те же функции, что и "хороший" .COM модуль. Таким образом, был получен «хороший» .EXE.

C:\>new_exe.exe Type of PC: FC Version of System: 5.0 Serial number of OEM: 255 Serial number of user: 000000

Рисунок 3 – «Хороший» .EXE модуль

Шаг 3. Сравнены исходные тексты для .COM и .EXE модулей. Даны ответы на контрольные вопросы «Отличия исходных текстов .COM и .EXE модулей»

1) Сколько сегментов должна содержать СОМ программа?

Ответ: один сегмент.

2) ЕХЕ программа?

Ответ: три сегмента: кода, данных и стека.

3) Какие директивы должны обязательно быть в тексте СОМ программы?

Ответ: Директива ORG, которая резервирует 100h байт для сегмента данных

PSP.

4) Все ли форматы команд можно использовать в СОМ программе?

Ответ: Так как адрес сегмента неизвестен до загрузки этого сегмента в память, то нельзя пользоваться командами, которые используют адрес сегмента. Из-за того, что адрес не может быть определен, возникает ошибка при попытке конвертации .EXE в .COM. В .COM и код, и данные находятся в одном сегменте, поэтому отсутствуют межсегментные переходы и

межсегментные вызовы.

Шаг 4. Даны ответы на контрольные вопросы «Отличия форматов файлов

СОМ и EXE модулей»

Отличия форматов файлов СОМ и ЕХЕ модулей.

1) Какова структура файла СОМ? С какого адреса располагается код?

Ответ: Структура СОМ файла проста. В файлах данного типа содержатся только машинный код и данные программы. Размер СОМ - файла ограничен 64 кб, т.е. размером одного сегмента памяти. Код располагается с нулевого

адреса.

2) Какова структура файла «плохого» EXE? С какого адреса располагается код? Что располагается с 0 адреса?

Ответ: По структуре ЕХЕ файл сложнее, кроме кода программы в файле

также содержится: заголовок файла, таблица настройки адресов, данные. Код

располагается с адреса 300h. С 0 адреса располагается заголовок ЕХЕ файла,

который содержит данные необходимые для загрузки программы.

3) Какова структура файла «хорошего» EXE? Чем он отличается от

«плохого» EXE файла?

Ответ: ЕХЕ-программы могут состоять из нескольких сегментов (кодов,

данных, стека). ЕХЕ-файл имеет заголовок, который используется при его

загрузке. Заголовок состоит из форматированной части, содержащей

сигнатуру и данные, необходимые для загрузки ЕХЕ-файла, и таблицы для

настройки адресов. Файл может занимать больше 64 Кбайт. В "хорошем"

файле отсутствует директива ORG, поэтому код начинается с адреса 200h, а

не 300h.

Шаг 5. Даны ответы на контрольные вопросы «Загрузка СОМ модуля в

основную память»

Отличия форматов файлов СОМ и ЕХЕ модулей.

1) Какой формат загрузки СОМ модуля? С какого адреса располагается код?

Ответ: Загрузка СОМ модуля происходит по принципу: PSP, данные, код,

стек. Сегментные регистры указывают на начало PSP. Код располагается с

адреса 100h.

2) Что располагается с 0 адреса?

Ответ: С 0 адреса располагается PSP.

3) Какие значения имеют сегментные регистры? На какие области памяти

они указывают?

Ответ: Все сегментные регистры имеют значения 119С. Они указывают на PSP.

CS 119C DS 119C ES 119C SS 119C

4) Как определяется стек? Какую область памяти он занимает? Какие адреса?

Ответ: СОМ-программа генерирует стек автоматически. Значение регистра SP устанавливается так, чтобы он указывал на последнюю доступную в сегменте ячейку памяти. Таким образом программа занимает начало, а стек - конец сегмента. В стек записывается 0000h.

Шаг 6. Даны ответы на контрольные вопросы «Загрузка «хорошего» ЕХЕ модуля в память»

1) Как загружается «хороший» EXE? Какие значения имеют сегментные регистры?

Ответ: Загрузка ЕХЕ модуля происходит по принципу: PSP, сегмент кода, сегмент данных, сегмент стека. Определяются значения сегментных регистров. DS и ES =119C и указывают на начало PSP, т.к. в регистр данных еще не был помещен адрес сегмента данных. CS=11F3 – указывает на начало сегмента кода, а SS=11AC – указывает на начало сегмента стека.

CS 11F3 DS 119C ES 119C SS 11AC

2) На что указывают регистры DS и ES?

Ответ: На начало сегмента PSP.

3) Как определяется стек?

Ответ: Стек определяется в описании сегмента стека при помощи «DW 512 DUP(?)»

4) Как определяется точка входа?

Ответ: Точка входа определяется благодаря директиве END, которая определяет IP-адрес, с которого начинается выполнение программы.

Вывод.

В ходе работы было проведено исследование различий в структурах исходных текстов модулей .COM и .EXE, структур файлов загрузочных модулей и способов их загрузки в основную память.