2022 인공지능

표정 인식을 통한 실시간 감정 분류

박수민 성민재 이주현 한혜원

데이터

FER 2013

- 2013 Kaggle Competition "Challenges in Representation Learning: Facial Expression Recognition Challenge"
- https://www.kaggle.com/datasets/deadskull7/fer2013

	Input feature data type	Input feature dimension	Training data size	Test data size
FER 2013	이미지	48x48	28709	7178

FER 2013

- 35887 rows
- 3 columns
 - emotion: 0~6(Anger, Disgust, Fear, H appiness, Sadness, Surprise, Neutral)
 - pixels: 이미지의 픽셀 값(2304(48x48))
 - Usage: string "Training" or "Test"
- 7 Classes: Anger, Disgust, Fear, Happines s, Sadness, Surprise, Neutral

구현 환경 및 모델

- 구현 환경
 - 모델 구현: Kaggle Notebook / Google Colab
 - for GPU Acceleration
 - Local
 - 구현한 모델을 이용하여 카메라를 통해 실시간으로 얼굴 표정을 인식하는 프로그램 개발
- 모델 아키텍처
 - VGGNet
 - https://arxiv.org/pdf/2105.03588.pdf
- 실시간 이미지 처리
 - OpenCV를 이용하여 카메라로 실시간 이미지 처리

역할 분담 및 일정

5/2 - 5/8

5/9 – 5/15

5/16- 5/29

주제 발표 및 역할 분담

교수님 피드백에 맞추어 목표 조정 및 역할 분담

모델 구현

모델 구현 마무리

Accuracy 높이기 등

선행 학습

본격적인 구현에 앞서 CNN 개념, VGGNet 등 학습

중간 점검

구현한 모델의 Accuracy 측정 등

프로그램 개발

구현한 모델을 이용해 카메라를 통한 표정 인식 기능 개발

구현 시작

EDA 등으로 데이터 살펴보기, 기초적인 모델 구현 등

최종 점검

최종 발표 및 시연 준비

예상되는 난관

• 모델 구현의 어려움

- numpy등을 이용하여 from scratch로 구현하기에는 다소 난이도 있는 모델
- Keras or PyTorch를 사용하여 구현
- 라이브러리를 이용하여 구현 한 후, 시간적 여유가 있다면 from scratch로 구현 도전

Accuracy

- FER 2013 데이터셋 기준 평균 60~70%의 Accuracy를 보임
- 실시간으로 시연할 경우 Accuracy가 더 떨어질 우려

감사합니다!