Interrogation 1 (durée 15mn) - — corrigé

Répondre directement sur la feuille de façon courte mais précise

Question 1 : Donner un exemple de fonction partielle de $\mathbb{N} \times \mathbb{N}$ dans \mathbb{N} .

▶ La fonction f de $\mathbb{N} \times \mathbb{N}$ dans \mathbb{N} de la division exacte par 3 de la somme de deux arguments. Elle est partielle car elle n'est définie que pour les couples d'entiers (x, y) dont la somme est divisible par 3 :

$$f(x,y) = p$$
 si $x + y = 3p$

Question 2 : Soit une Machine de Turing simple Z, avec un ensemble de symboles $A(Z) = \{B, |, a, b\}$, et un ensemble d'états $E(Z) = \{q_0, q_1, q_2\}$.

Dire précisément ce que signifient les notations suivantes :

- 1. $q_0|^3$
 - ▶ Cette notation représente une configuration initiale de la MT Z où Z est dans l'état q_0 , sa tête de lecture est positionnée sur une case contenant |, les 2 cases suivantes contiennent également |, et ces 3 cases sont les seules cases non vides de la bande. \blacktriangleleft
- 2. $q_0|^3 \mid_{\overline{Z}} q_1 a|^2 \mid_{\overline{Z}} a q_1|^2$
 - ▶ Cette notation représente une séquence de 2 pas de calcul de la MT Z : le premier correspond à l'application d'une instruction qui écrit le symbole "a" dans la case courante et passe dans l'état q_1 , le second correspond à l'application d'une instruction qui déplace la tête de lecture d'une case vers la droite en restant dans l'état q_1 . \blacktriangleleft
- 3. $a|^2b|^2q_2B = Res_Z(q_0|^3)$
 - ▶ Cette notation représente un calcul (une séquence finie de pas de calculs) effectué par la MT Z à partir de la configuration initiale $q_0|^3$ dont le résultat est la configuration terminale $a|^2b|^2q_2B$ (Z s'arrête sur cette configuration car aucune instruction ne s'applique). \blacktriangleleft
- 4. $\Psi_{Z}^{(1)}$
 - ▶ Cette notation représente la fonction de \mathbb{N} dans \mathbb{N} calculée par la MT Z, en lui donnant comme entrée $|^{n+1}$ (le codage unaire d'un entier n) et en interprétant comme résultat de la fonction appliquée à n le nombre de | sur la bande de Z au moment de l'arrêt (pour les entiers n tels que Z ne s'arrête pas à partir de la configutation intiale $q_0|^{n+1}$, la fonction n'est pas définie). \blacktriangleleft
- 5. $\Psi_Z^{(1)}(2)$
 - ▶ Cette notation représente la valeur de la fonction de \mathbb{N} dans \mathbb{N} calculée par la MT Z, quand elle est calculée sur l'entier 2 (cette valeur, si elle existe, est le nombre de | sur la bande de Z au moment de l'arrêt après l'exécution de Z à partir de la configutation initiale $q_0|||$, puisque le mot ||| est le codage unaire de l'entier 2 en entrée de Z). \blacktriangleleft

Question 3: Donner un exemple d'un programme de MT Z définie sur l'ensemble de symboles $A(Z) = \{B, |\}$, qui diverge à partir de la configuration initiale q_0 et qui s'arrête quand on l'exécute à partir de la configuration initiale q_0 .

$$Z = \left[\begin{array}{cccc} q_0 & | & R & q_1 \\ q_1 & B & B & q_1 \\ q_1 & | & | & q_2 \end{array} \right]$$