

Fluid: 7 T = 373 K	- M	
$I = 3/3 K^{-1}$ h = 133 W/m ²		
k=0.01 W/mK		
Cp = 4000 J/k		
ρ = 1000 kg/n	n3	
	0	

B140.1

Solid sphere at T = 273 K

Is dropped in large volume of fluid:

D= 2 cm
k=0.6 W/mK
Cp = 1000 J/kgK

$$\rho$$
 = 2000 kg/m3

Q1 (3 points): Determine the Biot number.

$$Bi = \frac{h}{K_{Body}} \frac{V}{A} = \frac{\frac{4}{3}\pi R^{3}}{4\pi R^{2}} = \frac{R}{3}$$

$$Bi = \frac{(133)(0.01)}{3(0.6)} = 0.74$$

Q2 (3 points): Determine the Fourier modulus after 10 hours.

Fo =
$$\frac{\sqrt{\pm}}{(\sqrt{A})^2}$$
 $t = 10 \text{ hrs} (36005/hr) = 3.6 \times 10^4$

Fo = $\frac{(3 \times 10^7)(3.6 \times 10^7)}{(3.6 \times 10^7)(3.6 \times 10^7)}$

Fo = $\frac{(3 \times 10^7)(3.6 \times 10^7)}{(3.6 \times 10^7)(3.6 \times 10^7)}$

$$F_0 = \frac{(3 \times 10^7)(3.6 \times 10^4)}{(9.01)^2}$$

$$F_0 = 972$$

Q3 (2 points): What approach would you take to solving this problem to determine temperature T at t = 10 hours?

Bi>0,1 internal resistance dominant Sphere is I finite media. essler Charts/ would be used.