G53FUZ Fuzzy Sets and Systems

Module Introduction

Bob John

ASAP Research Group

Module Outline

Overview

- Module outline
 - module delivery
 - website
 - aims and objectives
 - weekly topics
 - assessment
 - resources
- Classical (Boolean) logic and set theory
 - refresher of basic concepts
 - deficiencies / weaknesses

© University of Nottingham

G53FUZ

Module Delivery

- Lectures
 - theoretical / conceptual issues
 - Bob John
 - room C72
 - robert.john@nottingham.ac.uk
- Labs
 - a single ONE hour lab per week, in A32 (CS)
 - practical issues
 - creating a fuzzy system in R
 - coursework assistance

© University of Nottingham G53FUZ

Aims and Objectives

Aim

 present how the fuzzy method can be used to represent knowledge and perform reasoning, in the presence of uncertainty, in a principled manner

Objectives

- to introduce the theory and principles of fuzzy logic, fuzzy sets and systems
- to explain how fuzzy methods can be used to model uncertainty in real world examples
- to convey the properties and concepts underlying fuzzy inference systems and their applications
- to provide practical experience on the design and implementation of fuzzy logic systems

© University of Nottingham G53FUZ

Module Assessment

- Coursework
 - **-** 40%
 - implement a fuzzy inference system (in R)
 - write report describing your system
- Exam
 - 60%
 - 1 hour
 - one compulsory and one from two

Weekly Topics

Week	Lecture	Lab					
1	Module Introduction	No Lab					
2	Fuzzy Concepts	MATLAB Fuzzy Toolbox					
3	Linguistic Variables	Basic R					
4	Mamdani Inference and Defuzzification	R Fuzzy Toolkit					
5	TSK Inference and Fuzzy Control	R Fuzzy Toolkit; CW Issue					
6	Fuzzy Modelling and Tuning	CW Assistance					
7	Learning using ANFIS	CW Assistance					
8	Real-world Applications	CW Assistance					
9	Non-Standard Inference Systems	CW Hand-In					
EASTER HOLIDAYS							
10	Coursework Feedback						
11	Module Revision and Exam Guidance						

Resources

G53FUZ

Fuzzy sets and systems

- Fuzzy Sets, Uncertainty and Information, Klir and Folger
 - Prentice Hall PTR, 1988, ISBN 0133459845
- The Fuzzy Systems Handbook, Cox
 - Academic Press, 1994, ISBN 0121942708
- Artificial Intelligence, Negnevitsky
 - Addison Wesley, 2002, ISBN 0201711591
- MATLAB / R

© University of Nottingham

- MATLAB Fuzzy Logic Toolbox
- R (www.r-project.org)
 - loads of online tutorials, docs, help, examples
 - R Fuzzy toolbox (www.cs.nott.ac.uk/~jmg/fuzzy-v0_7.r)

© University of Nottingham G53FUZ 7 © University of Nottingham G53FUZ 8

Classical (Boolean) Logic

Propositional Logic

- All concepts (statements) are true or false
 represented by symbols T and F
- Symbols used to represent connectives

− and ∧ (conjunction / intersection)

- or v (disjunction / union)

- *implies* \Rightarrow (implication)

• Truth table defines meanings of connectives

р	q	$\neg p$	p∧q	p v q	$p \Rightarrow q$
F	F	T	F	F	Τ
Τ	F	F	F	Τ	F
F	T	T	F	Τ	Τ
T	Τ	F	Τ	Τ	Τ

Classical (Crisp) Logic

- Origins in Ancient Greece
 - Aristotle
 - Plato
- Two truth values
 - true, false
- Connectives
 - not, and, or

© University of Nottingham G53FUZ

Boolean Algebra (Logic)

а	b	NOT a	NOT b	a AND b	a OR b
0	0	1	1	0	0
1	0	0	1	0	1
0	1	1	0	0	1
1	1	0	0	1	1

Some properties

associativity

 $a \vee (b \vee c) = (a \vee b) \vee c$

commutativitydistributivity

 $a \lor b = b \lor a$ $a \land (b \lor c) = (a \land b) \lor (a \land c)$

identity for v

 $a \vee 0 = a$

– identity for Λ

 $a \wedge 1 = a$

annihilator for A

 $a \wedge 0 = 0$

© University of Nottingham

G53FUZ

12

Sets

- A set is a collection elements, from some universe of discourse
- The set of all elements in the universe of discourse is the *universal set*
 - denoted by X
- The set that contains no elements is the empty set
 - denoted by \varnothing
- Set theory and propositional logic are isomorphic
 - every theorem in one has a counterpart in the other

© University of Nottingham G53FUZ

Intersection

- The intersection of sets A and B is the set containing all the elements that belong to both set A and set B
 - denoted by $A \cap B$
- Note that $A \cap X = A$, $A \cap \emptyset = \emptyset$, and $A \cap A^c = \emptyset$

Intersection is equivalent to logical and

Complement

- The *complement* of a set A is the set of all members of the universal set, X, that are not in A
 - denoted by A^c or \overline{A}
- So, if

$$X = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

 $A = \{0, 2, 4, 6, 8\}$

Then

$$A^{c} = \{ 1, 3, 5, 7, 9 \}$$

- Note that $X^c = \emptyset$, $\emptyset^c = X$, and $(A^c)^c = A$
- Complement is equivalent to logical negation

© University of Nottingham G53FUZ 14

Union

- The union of sets A and B is the set containing all the elements that belong to set A alone, to set B alone, or to both set A and set B
 - denoted by $A \cup B$
- Note that $A \cup X = X$, $A \cup \emptyset = A$, and $A \cup A^c = X$

• Union is equivalent to logical or

Deficiencies of Classical Logic

Cantor, Russell et al

- Let *R* be the set of all sets that are not members of themselves
 - if R qualifies as a member of itself, it would contradict its own definition as a set containing all sets that are not members of themselves
 - if R is not a member of itself, it would qualify as a member of itself by the same definition
- There are other such problems with classical set theory, including ones identified by Cantor

Aristotle, Zeno and Others

- Aristotle himself
 - future events: what is the truth of
 - it will rain tomorrow?
- Zeno
 - paradoxes (concerning infinities)
 - consider grains of sand
 - when have you got a 'heap'?

© University of Nottingham G53FUZ 18

Who is Tall?

© University of Nottingham G53FUZ 19 © University of Nottingham G53FUZ

Who is Tall?

© University of Nottingham

G53FUZ

21

Defining Everyday Concepts

- How would you define (in formal terms) membership of the set of:
 - children?
 - old people?
 - celebrities?
- Write down the age at which you would consider someone to be 'old'

© University of Nottingham G53FUZ 22

Fuzzy Logic – An Introduction

- This first-prize-winning video was sponsored by the IEEE Computational Intelligence Society (CIS) in its 2011 Fuzzy Logic Video Competition
- The IEEE CIS has free rights to use this video as it sees fit
- The video does not incorporate any copyrighted materials

Fuzzy Logic – Boiling Eggs

- This first-prize-winning video was sponsored by the IEEE Computational Intelligence Society (CIS) in its 2011 Fuzzy Logic Video Competition
- . The IEEE CIS has free rights to use this video as it sees fit
- · The video does not infringe any copyrighted materials

© University of Nottingham G53FUZ 23 © University of Nottingham G53FUZ 24

Summary

- Classical two-valued logic has short-comings when representing the real-world
 - classical, Boolean, two-valued, crisp
- Fuzzy logic relaxes the requirement to be either TRUE or FALSE
 - allows real-valued degrees of truth
- Logic and set theory are isomorphic
 - true/false statements can be mapped to set membership / non-membership

© University of Nottingham G53FUZ