Neural Feature Search: A Neural Architecture for Automated Feature Engineering

Xiangning Chen^{1,*}, Qingwei Lin^{2,*,**}, Chuan Luo^{2,*}, Xudong Li³, Hongyu Zhang⁴, Yong Xu², Yingnong Dang⁵, Kaixin Sui², Xu Zhang⁶, Bo Qiao², Weiyi Zhang², Wei Wu⁷, Murali Chintalapati⁵ and Dongmei Zhang²

1 Tsinghua University, China
2 Microsoft Research, China
3 University of California, Los Angeles, United States
4 The University of Newcastle, Australia
5 Microsoft Azure, United States
6 Nanjing University, China
7 University of Technology Sydney, Australia

ICDM 2019

Total cites: 7 2021.06.30

최영제

1. Introduction

2. Methods

3. Experiments and Results

1 Introduction

Introduction & related works

- Traditional manual feature engineering relies heavily on domain knowledge
- Expansion-reduction approach
 - It first expands the feature space and then performs feature selection to reduce redundancy
 - There are several algorithms (i.e. FEADIS, Deep Feature Synthesis, One Button Machine, ExploreKit) aka heuristic approach

Perform all transformation functions on the whole dataset

- Genetic algorithm based approach: Cognito
- Reinforcement learning based approach: Transformation Graph
- Above methods are suffer from computational cost, <u>feature space explosion</u> problem

1 Introduction

Introduction & related works

- The contributions of neural feature search (NFS) as follow:
 - Proposed a <u>novel neural architecture</u> for automated feature engineering (AutoFE)
 - Neural feature search (NFS) approach does not suffer from the feature explosion problem
 - Significantly outperforms the existing state-of-the-art methods for AutoFE
- Neural architecture search (NAS)

the controller – to generate string which denoted hyperparameter of architectures

Figure 1: An overview of Neural Architecture Search.

the child network – training on the real data will result in an accuracy on a validation set

? Methods

Overview of Neural Feature Search

- NFS는 controller로 복수의 recurrent neural networks (RNN)을 사용함(make transformation rules)
- Rules를 따라 생성된 dataset을 바탕으로 머신러닝 모델 적합 후 개선 정도를 reward로 할당
- 최적의 features를 탐색하는 architecture 구축

Figure 1. An Overview of Neural Feature Search

Methods

Problem Formulation

- Dataset: $D = \langle F, y \rangle / \text{Raw features}$: $F = \{f_1, f_2, ..., f_n\} / \text{Target vector}$: y
- Performance of machine learning: $V_L^E(F, y)$ / Algorithms: L / Evaluation metric: E
- Transformed feature set: \hat{F}
- Set of transformation functions: $\{A_1, A_2, ..., A_n\}$
 - There are two categories of transformation functions: unary functions (e.g. square, logarithm), binary functions (e.g. plus, minus)
 - High-order features can be constructed by applying to recursive transformation (e.g. $BMI = \frac{weight}{height^2}$)
- Two activities of feature transformation
 - Generating new feature
 - Deleting exiting features

Generation of Transformation Rules by Controller

• RNN은 각 feature 마다 하나씩 존재하며 time step 마다 transformation function이 출력됨

Figure 2. The Generation of Transformation Rule by a RNN

$$\{RNN_1, RNN_2, ..., RNN_n\} = \{A_1, A_2, ..., A_n\}$$

Feature Reconstruction through High-order Transformation

- Two types of transformations: unary (takes one feature as input) and binary (takes two features as input)
- Unify a binary transformation by converting it into a set of unary transformations for each individual features f_i
 - Convert *Plus* transformation into a set of unary transformation $addition(f_i)$

Mathematical functions Special functions Logarithm, square, square-root, min-maxnormalization, reciprocal, addition, subtraction, multiplication, division Delete, terminate

• Two special functions enable NFS to eliminate features and stop at the most suitable order of transformation

Training with Policy Gradient

• 학습에 사용되는 policy gradient는 다음과 같음

Figure 2. The Generation of Transformation Rule by a RNN

$$R_t = V_t - V_{t-1}$$
 $V_t = V_L^E$, cross-validation score $G_t^{(k)} = R_t + \gamma R_t + ... + \gamma^k R_{t+k}$
$$G_t^{\lambda} = (1 - \lambda) \sum_{k=1}^{n \times T} \lambda^{k-1} G_t^{(k)}$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{m} \sum_{k=1}^{m} \sum_{t=1}^{n \times T} \nabla_{\theta} log P(a_t | a_{1:t-1}; \theta) G_{t|k|}^{\lambda}$$

Research questions & experimental settings

- RQ1: How effective is the proposed NFS approach?
- RQ2: How effective are the high-order transformations?
- RQ3: Is NFS robust to hyperparameters?
- Set the parameter beta to 50 (beta represents the top N variables by random forest variable importance)
- Use one-layer LSTM
- Evaluation metrics: F1-score (classification), 1-relative absolute error (regression)

$$1 - rae = 1 - \frac{\sum |\hat{y} - y|}{\sum |\bar{y} - y|}$$

RQ1: How effective is the proposed NFS approach?

Random: random하게 feature generation Random NFS: NFS 구조를 사용하되 학습 x

Table I

Comparison between NFS and the Existing Automated Feature Engineering Methods

Dataset	Source	C\R	Instances\ Features	Random	$Random_{NFS}$	Exp-Red	Trans- Graph	NFS
Higgs Boson	UCIrvine	С	50000\28	0.699	0.723	0.682	0.729	0.731
Amazon Employee	Kaggle	č	32769\9	0.740	0.945	0.744	0.806	0.945
PimaIndian	UCIrvine	č	768\8	0.709	0.772	0.712	0.756	0.805
		Č	267\44			0.712	0.788	0.876
SpectF	UCIrvine	C	\ \	0.748	0.801			
SVMGuide3	LibSVM		1243\21	0.753	0.834	0.711	0.776	0.865
German Credit	UCIrvine	C	1001\24	0.655	0.745	0.680	0.724	0.805
Bikeshare DC	Kaggle	R	10886\11	0.381	0.980	0.693	0.798	0.990
Housing Boston	UCIrvine	R	506\13	0.637	0.658	0.621	0.680	0.686
Airfoil	UCIrvine	R	1503\5	0.753	0.771	0.771	0.801	0.796
AP-omentum-ovary	OpenML	C	275\10936	0.710	0.831	0.725	0.820	0.864
Lymphography	UCIrvine	C	148\18	0.680	0.887	0.727	0.895	0.929
Ionoshpere	UCIrvine	C	351\34	0.934	0.923	0.939	0.941	0.969
Openml_618	OpenML	R	1000\50	0.428	0.403	0.411	0.587	0.640
Openml_589	OpenML	R	1000\25	0.571	0.511	0.650	0.689	0.754
Openml 616	OpenML .	R	500\50	0.343	0.284	0.450	0.559	0.673
Openml_607	OpenML	R	1000\50	0.411	0.366	0.590	0.647	0.688
Openml 620	OpenML	R	1000\25	0.524	0.471	0.533	0.683	0.732
Openml_637	OpenML	R	500\50	0.313	0.248	0.581	0.585	0.634
Openml_586	OpenML	R	1000\25	0.549	0.495	0.598	0.704	0.780
Credit Default	UCIrvine	C	30000\25	0.766	0.798	0.802	0.831	0.799
Messidor_features	UCIrvine	Č	1150\19	0.655	0.743	0.703	0.752	0.762
Wine Quality Red	UCIrvine	č	999\12	0.380	0.692	0.344	0.387	0.708
Wine Quality White	UCIrvine	č	4900\12	0.678	0.689	0.654	0.722	0.707
SpamBase	UCIrvine	Č	4601\57	0.937	0.954	0.951	0.961	0.955

RQ1: How effective is the proposed NFS approach?

Table II
COMPARISON BETWEEN NFS, LFE, AND OTHER RELATED METHODS

Dataset	Source	Instances\Features	Random	Exp-Red	LFE	$Random_{NFS}$	NFS
AP-omentum-lung	OpenML	203\10936	0.903	0.925	0.929	0.947	0.981
AP-omentum-ovary	OpenML	275\`10936	0.714	0.801	0.811	0.833	0.873
credit-a	UĈIrvine	690\6	0.657	0.521	0.771	0.770	0.803
diabetes	UCIrvine	768\8	0.729	0.737	0.762	0.760	0.786
fertility	UCIrvine	100\`9	0.846	0.861	0.873	0.903	0.913
gisette	UCIrvine	2100\5000	0.871	0.741	0.942	0.948	0.959
hepatitis	UCIrvine	155\6	0.751	0.753	0.831	0.821	0.905
higgs-boson-subset	UCIrvine	50000\28	0.660	0.661	0.68	0.824	0.827
ionosphere	UCIrvine	351\34	0.899	0.912	0.932	0.941	0.972
labor	UCIrvine	57\8	0.877	0.855	0.896	0.853	0.960
lymph	OpenML	138\10936	0.594	0.534	0.757	0.943	0.987
madelon	UCIrvine	780\500	0.602	0.585	0.617	0.697	0.836
megawatt1	UCIrvine	253\37	0.865	0.882	0.894	0.897	0.933
pima-indians-subset	UCIrvine	768\8	0.729	0.751	0.745	0.760	0.790
secom	UCIrvine	470\590	0.911	0.913	0.918	0.931	0.934
sonar	UCIrvine	208\60	0.723	0.468	0.801	0.709	0.839
spambase	UCIrvine	4601\57	0.911	0.39	0.947	0.938	0.948

RQ2: How effective are the high-order transformations?

Figure 4. Effect of High-order Transformations

RQ3: Is NFS robust to hyperparameters?

Table III Comparative results of NFS with different parameter settings of λ

Dataset	$\lambda = 0.2$	$\lambda = 0.25$	$\lambda = 0.3$	$\lambda = 0.35$	$\lambda = 0.4$	$\lambda = 0.45$	$\lambda = 0.5$	$\lambda = 0.55$	$\lambda = 0.6$
Airfoil	0.792	0.798	0.796	0.801	0.796	0.797	0.800	0.795	0.799
Housing Boston	0.690	0.690	0.694	0.691	0.686	0.686	0.685	0.686	0.687
AP-omentum-ovary	0.873	0.880	0.873	0.873	0.873	0.874	0.873	0.873	0.873
diabetes	0.785	0.784	0.785	0.786	0.786	0.785	0.784	0.789	0.786

Table IV Comparative results of NFS with different parameter settings of m

Dataset	m = 1	m = 2	m = 4	m = 8	m = 16	m = 32	m = 64
Airfoil	0.792	0.796	0.792	0.794	0.797	0.796	0.801
Housing Boston	0.678	0.688	0.688	0.687	0.692	0.686	0.693
AP-omentum-ovary	0.866	0.862	0.863	0.877	0.866	0.873	0.873
diabetes	0.776	0.775	0.785	0.777	0.784	0.786	0.784

Statistics of Effective Transformations

Figure 5. Statistics of Effective Transformations

A&Q