MATH 302

Chapter 5

Section 5.4: The Method of Undetermined Coefficient I

Contents

Vhen The																															
Case I .																															
Case II .																															
Case III																															
Recap .																															
Vhen The	For	rce	Fì	ını	·ti	on	T	s 1	F.v	m	Ωr) Pi	nt	ia ̇̀	וו	Γiı	m	26	P) (1)	137	n	'n	nis	a I						
Case I .																															
Case II .																															
Case III																															
Recap .																															

Created by: Pierre-Olivier Parisé Fall 2022

WHEN THE FORCE FUNCTION IS AN EXPONENTIAL

We consider the following basic case:

$$ay'' + by' + cy = ke^{\alpha x}$$

where a, b, c, α , and k are fixed real numbers.

Case I

When $e^{\alpha x}$ is not a solution to the complementary equation ay'' + by' + cy = 0.

EXAMPLE 1. Find the general solution of

$$y'' - 7y' + 12y = 4e^{2x}.$$

2) Gives year

$$y_{par}(x) = Ae^{2x} \implies y_{par} = 2Ae^{2x} \quad \text{if } y'' = 4Ae^{2x}$$

$$\Rightarrow 4Ae^{2x} - 14Ae^{2x} + 17Ae^{2x} = 4e^{2x}$$

$$\Rightarrow 2Ae^{2x} = 4e^{2x} \implies A = 2$$
So, $y_{par}(x) = 2e^{2x}$.

3) Greneral Soluti:

$$y(x) = \int par + (iy_1 + izy_2)$$

$$= 2e + (ie^{4x} + ize^{3x})$$

Case II

When $e^{\alpha x}$ is a solution to the complementary equation.

EXAMPLE 2. Find the general solution of

$$y'' - 7y' + 12y = 5e^{4x}.$$

2) Guess ypar:

$$y_{par} = Ae^{4x}$$
 $\Rightarrow y' = 4Ae^{4x} A y'' = 16Ae^{4x}$
 $\Rightarrow 16Ae^{4x} - 28Ae^{4x} + 77Ae^{4x} = 5e^{4x}$
 $\Rightarrow 0e^{4x} = 5e^{4x}$
 $\Rightarrow 0e^{4x} = 5e^{4x}$
 $\Rightarrow because e^{x}$
 $\Rightarrow betain to compl. eq. 8$

Use Variation of panameter.

$$y_{par} = u(x)e^{4x} \Rightarrow y_{par} = u'e^{4x} + 4u'e^{4x} + 4u'e^{4x} + 16ue^{4x}$$

$$y_{par} = u''e^{4x} + 4u'e^{4x} + 4u'e^{4x} + 16ue^{4x}$$

$$\Rightarrow u''e^{4x} + 8u'e^{4x} + 16ue^{4x} - 7u'e^{4x} - 28ue^{4x} + 17ue^{4x} = 5e^{4x}$$

$$\Rightarrow u''e^{4x} + 8u'e^{4x} + 16ue^{4x} - 7u'e^{4x} - 16ue^{4x} = 5e^{4x}$$

$$\Rightarrow u''e^{4x} + 8u'e^{4x} - 7u'e^{4x} = 5e^{4x}$$

$$\Rightarrow u''e^{4x} + 8u'e^{4x} - 7u'e^{4x} = 5e^{4x}$$

$$\Rightarrow u'' + 8u' - 7u' = 5$$

$$\Rightarrow u'' + u' = 5$$

We want particular solution:

$$u = A$$
 not working $\sqrt{u} = Ax + B$ $-b$ $u'' = O$ $u'' = A$

So,
$$u(x) = 5x + 13$$
 — $v(x) = 5x$.

Dimplotone

Thue fore,
$$y_{par}(x) = 5xe$$
.

1) Solution complementary equation

$$y'' - 7y' + 17y = 0$$
 \rightarrow $r^2 - 7r + 17 = (r - 4)(r - 3)$
 \rightarrow $y_1 = e^{4x}$ 4 $4z = e^{3x}$

3) Greneral Solo.

$$y(x) = 5xe^{4x} + c_1e^{4x} + c_7e^{3x}$$

= $(5x+c_1)e^{4x} + c_7e^{3x}$.

P.-O. Parisé MATH 302 Page 4

Case III

When $e^{\alpha x}$, and $xe^{\alpha x}$ are solutions to the complementary equation.

EXAMPLE 3. Find the general solution of

$$y'' - 8y' + 16y = 2e^{4x}.$$

$$y'' - 8y' + 16y = 0 \rightarrow r^7 - 8r + 16 = (r - 4)^2$$

-> root is 4 (repealed)

-> $y_1 = e^{4x}$, $y_2 = xe^{4x}$.

2) Part. Sol.

$$50$$
, $y_{par}(x) = x^2 e^{4x}$

3) Grenual solution.

$$y(x) = x^2 e^{4x} + (e^{4x} + c_1 e^{4x}) = (c_1 + c_2 x + x^2) e^{4x}$$

Recap

To find a particular solution to

$$ay'' + by' + cy = ke^{\alpha x}$$

where k is a fixed real number, we follow the following tips:

- If $e^{\alpha x}$ is not a solution of the complementary equation, then we take $y_{par}(x) = Ae^{\alpha x}$, where A is a constant.
- If $e^{\alpha x}$ is a solution of the complementary equation, then we take $y_{par}(x) = xAe^{\alpha x}$, where A is a constant.
- If both $e^{\alpha x}$ and $xe^{\alpha x}$ are solutions of the complementary equation, then we take $y_{par}(x) = Ax^2e^{\alpha x}$, where A is a constant.

We now consider a more general case:

$$ay'' + by' + cy = e^{\alpha x}G(x)$$

where a, b, c, α are fixed real numbers and G(x) is a polynomial.

Case I

When $e^{\alpha x}$ is not a solution to the complementary equation ay'' + by' + cy = 0.

EXAMPLE 4. Find the general solution to

$$y'' - 3y' + 2y = e^{3x}(x^2 + 2x - 1).$$

1) Compl. Eq.

$$y'' - 3y' + 2y = 0$$
 $-b$
 $r^2 - 3r + 2 = (r - 2)(r - 1)$
 $-b$
 $rools$
 $rools$
 $rools$
 $rools$

50,
$$y_1(x)=e^{2x}$$
 & $y_2(x)=e^{2x}$ fund-sol.

2) Gruss ypar.
Observation: ezz d ez is not in the K-hand side "

$$y_{par}(x) = e^{3x} \left(Ax^2 + Bx + C \right)$$

$$\Rightarrow y' = 3e^{3x} \left(Ax^2 + Bx + C \right) + e^{3x} \left(2Ax + B \right)$$

$$y'' = 9e^{3x} (Ax^{2}+Bx+c) + 3e^{3x} (2Ax+B)$$

$$+3e^{3x} (7Ax+B) + e^{3x} 2A$$

$$= 9e^{3x} (Ax^{2}+Bx+c) + 6e^{3x} (7Ax+B) + e^{x} 2A$$

$$9e^{3x}(Ax^{2}+Bx+C) + (6e^{3x}(7Ax+B) + 7Ae^{3x} - 9e^{3x}(Ax^{2}+Bx+C)$$

$$-3e^{3x}(7Ax+B) + 2e^{3x}(Ax^{2}+Bx+C) = e^{3x}(x^{2}+7x-1)$$

$$\Rightarrow$$
 $2Ax^2 + (2B+6A)x+(2C+3B+2A) = x^2+7x-1$

$$\Rightarrow$$
 $A = \frac{1}{2}$, $B = -\frac{1}{2}$, $C = -\frac{1}{4}$

Thurstore,
$$y_{par}(x) = e^{3x} \left(\frac{x^2}{z} - \frac{x}{z} - \frac{1}{4} \right)$$

3) Grennal Sol.

$$y(x) = e^{3x} \left(\frac{x^2}{2} - \frac{x}{2} - \frac{1}{4} \right) + c_1 e^{2x} + c_2 e^{x}$$

Case II

When $e^{\alpha x}$ is a solution to the complementary equation.

EXAMPLE 5. Find the general solution to

$$y'' - 4y' + 3y = e^{3x}(12x^2 + 8x + 6).$$

1)
$$(\underline{\text{ompl. Eq.}})$$

 $y'' - 4y' + 3y = 0$ \longrightarrow $r^2 - 4r + 3 = (r - 3)(r - 1)$
 \longrightarrow $roots$ are $3 & 1$
 \longrightarrow $y_1(x) = e^{3x}$ d $y_2(x) = e^{x}$

2) Gruss ypar.

$$y_{par}(x) = xe^{3x} (Ax^{2}+Bx+c) = e^{3x} (Ax^{3}+Bx^{2}+Cx)$$

$$y' = 3e^{3x} (Ax^{3}+Bx^{2}+cx) + e^{3x} (3Ax^{2}+7Bx+c)$$

$$y'' = 9e^{3x} (Ax^{3}+Bx^{2}+cx) + 3e^{3x} (3Ax^{2}+7Bx+c)$$

$$+3e^{3x} (3Ax^{2}+7Bx+c) + e^{3x} (6Ax+7B)$$

$$= 9e^{3x} (Ax^{3}+Bx^{2}+cx) + be^{3x} (3Ax^{2}+7Bx+c)$$

$$+ e^{3x} (6Ax+2B)$$

Replace in the ODE:

$$= 9e^{3x}(Ax^{3}+Bx^{2}+Cx) + 6e^{8x}(3Ax^{2}+2Bx+c) + e^{3x}(6Ax+2B)$$

$$-12e^{3x}(Ax^{3}+Bx^{2}+(x) - 4e^{3x}(3Ax^{2}+2Bx+c) + 3e^{3x}(Ax^{3}+Bx^{2}+cx)$$

$$= e^{3x}(12x^{2}+8x+6)$$

$$\Rightarrow$$
 A=Z, B=-1, C=4

50,
$$y_{par}(x) = e^{3x} (2x^3 - x^2 + 4x)$$

3) Grennal Solution.

$$y(x) = e^{3x} (7x^3 - x^2 + 4x) + (1e^{-x} + 12e^{-x})$$

Case III

When $e^{\alpha x}$ and $xe^{\alpha x}$ are solutions to the complementary equation.

EXAMPLE 6. Find the general solution to

$$4y'' + 4y' + y = e^{-x/2}(144x^2 + 48x - 8).$$

$$2 |y'' + 4y' + y = 0$$
 $\Rightarrow 4r^2 + 4r + 1 = (2r + 1)^2$
 $\Rightarrow root_{is} = \frac{1}{z} \text{ (repeated)}$
 $\Rightarrow y_1 = e^{-x/z} + 4r + 1 = (2r + 1)^2$
 $\Rightarrow root_{is} = \frac{1}{z} \text{ (repeated)}$

2) Gruss ypar:

$$y_{par} = x^{2}e^{-x/2}(Ax^{2}+Bx+c)$$

 $= e^{-x/2}(Ax^{4}+Bx^{3}+(x^{2}))$

Compute y' dy" & replace in ODE to

find AIBIC:

$$A = 3$$
 , $B = 2$, $C = -1$

$$\Rightarrow$$
 $y_{par}(x) = e^{-x/2} (3x^4 + 2x^3 - x^2)$

3) Gieneral Sol.
$$y(x) = e^{-x/2} (3x^4 + 2x^3 - x^2) + (1e^{-x/2} + cxxe^{-x/2})$$

Recap

To find a particular solution to

$$ay'' + by' + cy = ke^{\alpha x}G(x)$$

where k is a fixed real number and G(x) is a polynomial, we follow the following tips:

- If $e^{\alpha x}$ is not a solution of the complementary equation, then we take $y_{par}(x) = Ae^{\alpha x}Q(x)$, where A is a constant and Q(x) is a polynomial of the same degree as G(x).
- If $e^{\alpha x}$ is a solution of the complementary equation, then we take $y_{par}(x) = Axe^{\alpha x}Q(x)$, where A is a constant and Q(x) is a polynomial of the same degree as G(x).
- If $e^{\alpha x}$ and $xe^{\alpha x}$ are solutions to the complementary equation, then we take $y_{par}(x) = Ax^2e^{\alpha x}Q(x)$, where A is a constant and Q(x) is a polynomial of the same degree as G(x).