Calcul Numeric –Laborator #5

- **Ex. 1** 1) Să se construiască în Python procedura $\mathbf{MetNewton}(X, Y, x)$ conform metodei Newton. Vectorii X, Y reprezintă nodurile de interpolare, respectiv valorile funcției f în nodurile de interpolare. Procedura returnează un vector y reprezentând valorile polinomului $y = P_n(x)$, iar x este un vector din Numpy.
 - 2) Să se construiască în Python în aceeași figură, graficele funcției f pe intervalul [a,b], punctele $(X_i,Y_i), i=\overline{1,n+1}$ și polinomul P_n obținut alternativ prin metoda Newton. Datele problemei sunt: $f(x)=sin(x), n=3, a=-\pi/2, b=\pi/2$. Se va considera diviziunea $(X_i)_{i=\overline{1,n+1}}$ echidistantă. Pentru construcția graficelor funcției f și P_n , folosiți o discretizare cu 100 noduri.
 - 3) Reprezentați grafic într-o altă figură eroarea $|e_t(x)| = |f(x) P_n(x)|$.
 - 4) Creșteți progresiv gradul polinomului P_n și rulați programele. Ce observați în comportamentul polinomului P_n ? Deduceți n maxim pentru care polinomu P_n își pierde caracterul.

Obs.: Polinoamele Lagrange sunt instabile pentru n mare, i.e., la o variație mică în coeficienți apar variații semnificative în valorile polinomului.

Ex. 3 Fie funcția $f(x) = \frac{1}{1+25x^2}$ definită pe intervalul [-1,1]. Să se construiască grafic funcția f(x), polinomul Lagrange $P_n(x)$ și punctele $(X_i,Y_i), i=\overline{1,n+1}$ pentru cazul unei discretizări uniforme cu 7 puncte. Măriți progresiv valoarea lui n. Construiți într-o altă figură eroarea de trunchiere $|e_t(x)| = |f(x) - P_n(x)|$. Ce observați? Alegeți o discretizare neuniformă folosind nodurile Chebyshev. Ce observați în noile figuri?