Trig Final (Solution v3)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The arc length is 18 meters. The angle measure is 4.6 radians. How long is the radius in meters?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

r = 3.913 meters.

Question 2

Consider angles $\frac{13\pi}{4}$ and $\frac{-8\pi}{3}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\cos\left(\frac{13\pi}{4}\right)$ and $\sin\left(\frac{-8\pi}{3}\right)$ by using a unit circle (provided separately).

Find $cos(13\pi/4)$

Find $sin(-8\pi/3)$

$$\cos(13\pi/4) = \frac{-\sqrt{2}}{2}$$

$$\sin(-8\pi/3) = \frac{-\sqrt{3}}{2}$$

Question 3

If $\sin(\theta) = \frac{60}{61}$, and θ is in quadrant II, determine an exact value for $\tan(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$A^{2} + 60^{2} = 61^{2}$$

$$A = \sqrt{61^{2} - 60^{2}}$$

$$A = 11$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant II in a unit circle.

$$\tan(\theta) = \frac{\frac{60}{61}}{\frac{-11}{61}} = \frac{-60}{11}$$

Question 4

A mass-spring system oscillates vertically with a frequency of 3.66 Hz, a midline at y = -7.54 meters, and an amplitude of 2.65 meters. At t = 0, the mass is at the midline and moving up. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = 2.65\sin(2\pi 3.66t) - 7.54$$

or

$$y = 2.65\sin(7.32\pi t) - 7.54$$

or

$$y = 2.65\sin(23t) - 7.54$$