Esercizi sui vettori nel piano, nello spazio e \mathbb{R}^n Corso di Laurea in Informatica A.A. 2004-2005 Docente: Andrea Loi

0. Sia $\lambda = 3$, $\mu = 2$ v = 2i - j e w = i + j. Calcolare:

$$u = \lambda v + \mu w, \ t = \mu v + \lambda w.$$

Calcolare inoltre il loro prodotto scalare cioè $u \cdot t$.

- 1. Calcolare il prodotto scalare e vettoriale tra i vettori v=i-2j+k e w=-3i-j+k. Verificare inoltre la disuguaglianza di Cauchy–Schwarz, cioè: $|v\cdot w|\leq \|v\|\|w\|$.
- 2. Siano v e w due vettori di \mathbb{R}^3 a λ e μ due numeri reali. Dimostrare che:

$$(\lambda v + \mu w) \wedge u = \lambda(v \wedge u) + \mu(w \wedge u).$$

- 3. Sia $S = \{v = (1, 1, 1), w = (2, 2, 2)\}$. Descrivere S^{perp} .
- 4. Siano $v \in w$ vettori non nulli di \mathbb{R}^3 .
 - a. Se w = -v quanto vale $pr_w(v)$?
 - b. Se $ang(v, w) = \theta$, calcolare $pr_w(v)$ e $pr_v(w)$.
- 5. Siano v = (1, 4, 5) e w = (0, -2, -1). Calcolare l'area del parallelogramma di vertici O, v, w, w + v. Tale parallelogramma è un rombo, un rettangolo e(o) un quadrato?
- 6. Siano v e w vettori di \mathbb{R}^n e λ un numero reale.
 - a) Dimostrare che $\|\lambda v\| = |\lambda| \|v\|$.

- b) Dimostrare che se w è ortogonale a v, allora è ortogonale anche a tutti i multipli di v.
- 6. Dimostrare che $e_1 = \frac{1}{\sqrt{2}}(i+j)$ e $e_2 = \frac{1}{\sqrt{2}}(-i+j)$ è una base ortonormale nel piano. Scrivere le componenti del vettore v = 3i j rispetto alla base (e_1, e_2) . Come si scrivono le componenti di un vettore v = xi + yj rispetto alla base (e_1, e_2) .