

DEPARTMENT OF ECE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

SET-A Batch 1 Placement Students

Academic Year: 2023-24 (ODD)

Test: CLAT-II Date: 17/10/2023

Course Code & Title: 18ECC301T Wireless Communications Duration: 12.30 PM to 2.15 PM

Year & Sem: IV / VII Max. Marks: 50

Course Articulation Matrix:

	18ECC301T - Wireless Communication	Pro	grar	n Ou	tcon	ıes (I	POs)									
		Gra	dua	te At	tribı	ıtes								PSO		
COs	Course Outcomes (COs)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	Interpret the concepts of Wireless communication and basic cellular networks	3	-	-	3	-	-	-	-	-	-	-	2	-	-	-
CO-2	Analyze different Radio wave propagation models for cellular communication	-	3	-	3	-	-	-	-	-	-	-	-	-	-	3
CO-3	Apply different multipath propagation channel models in wireless systems	-	3	3	-	-	-	-	-	-	-	-	-	-	-	2
CO-4	Illustrate the Link performance improvement techniques	-	3	-	-	-	-	2	-	-	-	-		-	-	3
CO-5	Summarize different wireless communication standards and systems	-	-	2	-	-	2	-	-	-	-	-	-	2	-	-

	Part – A $(10 \times 1 = 10 \text{ Marks})$ [Instructions: Answe	r ALL Qu	iestions]	
Q. No.	Question	Marks	BL	CO	PO
1	Calculate the Brewster angle for a wave impinging on ground having	1	2	2	4
	a permittivity of $\mathcal{E}_r = 6$.				
2	(a)25.09 (b) 22.21 (c) 27.09 (d) 23.09	1	1	2	2
2	occurs when a propagating electromagnetic wave impinges upon a rain drop	1	1	2	2
	(a) Refraction (b) Diffraction				
	(c) Reflection (d) Scattering				
3	If a transmitter produces 100 W of power, express the transmit power	1	2	2	4
	in units of dBm and dBw.				
	(a) 17 and 47 (b) 19 and 49				
	(c) 50 and 20 (d) 47 and 17	1	1	2	4
4	The Fraunhofer distance is given by	1	1	2	4
	(a) df = $(2 D^2)/\lambda^2$ (b) df = $(4 D)^2/2\lambda$				
	(c) df = $(4 D^2)/\lambda$ (d) df = $(2 D^2)/\lambda$				
5	Model uses diffraction to predict average signal strength at	1	1	2	2
	street level.				
	(a) Okumara (b) Walfish and Bertoni				
	(c) Hata (d) Durkins				_
6	small scale multipath measurement uses a wideband	1	1	3	2
	pulsed bistatic radar that transmits a repetitive pulse width.				
	(a) Spread spectrum (b) Indirect RF pulse				
	(c) Direct RF pulse (d) Envelope detector	1	1	3	2
7	In slow fading channels, Doppler spread of the channel is much less	1	1	3	2
	than theof baseband signal (a) Bandwidth (b) Time				
0		1	1	2	2
8	If coherence bandwidth is smaller than the bandwidth of the signal, fading occurs.	1	1	3	3
	(a)Flat (b) Frequency selective				
	(c) Fast fading (d) Time selective				
9	The distribution present in small scale fading envelope of a non-fading	1	1	3	2
-	signal component is	1	-	J	-
	(a) Rayleigh (b) Ricean				
	(c) Gaussian (d) Normal				

10				Τ .	Τ
10	Power delay profile is represented as plots of with respect	1	1	3	3
	to fixed time delay reference.				
	(a)Relative received power (b) Frequency (c)Transmitted power (d)Relative phase				
	(c)Transmitted power (d)Relative phase Part – B1 (2 × 4 = 8 Marks) [Instructions: Answer ar		<u> </u> 	nel	1
11	For a wireless system, using Friis transmission formula and free space	ny TWO 4	Questio 2	ons] 2	2
11	path loss model, deduce the path loss for the receiver to be placed at a	"			
	distance 'd'.				
12	Calculate the far field distance for an antenna with maximum	4	3	2	2
	dimension of 2m and operating frequency of 1 GHz, also calculate the				
	length of the monopole antenna if the antenna used is a monopole.				
13	Brief about the amoeba cells.	4	2	2	4
	Part – B2 ($2 \times 4 = 8$ Marks) [Instructions: Answer ar	, <u> </u>	Questio	_	
14	Compare flat and frequency selective fading of multipath fading	4	1	3	2
	channel.	ļ			
15	Draw the block diagram of Frequency domain channel sounding	4	2	3	2
	system.	1	<u> </u>		
16	Brief about the significance of Rayleigh fading.	4	2	3	3
<u></u>	B / C/A /A A/37	<u> </u>	<u> </u>	<u> </u>	<u> </u>
	$Part - C (2 \times 12 = 24 \text{ Marks})$	1	1	ī	ı
17	(a) Using necessary equations, derive the path loss for a wireless	6+6	3	2	2
	system using two ray model.				
	OB				
	OR				
	(b) Elaborate on Okumara model and calculate the mean path loss				
	using the aforementioned model for the distance $d = 50 \text{ km}$, height				
	of the transmitter and receiver to be 50m and 5m respectively in				
	a suburban environment. If the base station transmitter radiates an				
	EIRP of 1KW at a carrier frequency of 900 MHz, Find the EIRP				
	(dBm) and the power received at the receiver where gain at the	12	3	2	4
	receiving antenna is 20 dB. Assume the following data for				
	computations (from the Okumura curves Amu $(f, d) = 43 dB$ and				
10	GArea = 9 dB).	10	2	2	
18	(a) For the scenario of small scale fading, derive the baseband	12	3	3	2
	impulse response model with relevant expressions.				
	OR				
	(b) Consider an aircraft is moving at a constant velocity 'v', along a				
	path segment having length 'd' between the points X and Y, while				
	it receives signals from a remote source 'P'. Derive the path				
	length, phase change in the received signal and the apparent	8+4	3	3	3
	change in the doppler frequency. With the aid of the		_	[
	aforementioned derivation, assuming the speed of an aircraft				
	(which is moving towards the airport control tower with an				
	elevation angle of 25 deg) to be 1000 km/hr. What is the expected				
	doppler shift of the received signal if the communication between				
	the aircraft and control tower operations are at 200 MHz?				

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions $\label{eq:course}$

		Part-A	$(10 \times 1 = 10 \text{ Mark})$	(s)						
Q. No	СО	PO	Maximum Marks	Marks Obtained	Total					
1	CO2	4	1							
2	CO2	2	1							
3	CO2	4	1							
4	CO2	4	1							
5	CO2	2	1							
6	CO3	2	1							
7	CO3	2	1							
8	CO3	3	1							
9	CO3	2	1							
10	CO3	3	1							
		Part-B	$1 (2 \times 4 = 8 Marks)$	s)						
11	CO2	2	4							
12	CO2	2	4							
13	CO2	4	4							
		Part-B	$2 (2 \times 4 = 8 \text{ Marks})$	s)						
14	CO3	2	4							
15	CO3	2	4							
16	CO3	3	4							
	Part-C $(2 \times 12 = 24 \text{ Marks})$									
17(a)	CO2	2	12							
17(b)	CO2	4	4 12							
18(a)										
18(b)	CO3	3	12							

Consolidated Marks:

СО	Maximum Marks	Marks Obtained
2	25	
3	25	
Total	50	

PO	Maximum Marks	Marks Obtained
2	45	
3	18	
4	19	
Total	72	

Signature of Course Teacher

DEPARTMENT OF ECE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

Academic Year: 2023-24 (ODD)

Date:17/10/2023

Duration: 12.30 PM to 02.15 PM

Max. Marks: 50

Test: CLAT-II
Course Code & Title: 18ECC301T Wireless Communications

Course Articulation Matrix:

Year & Sem: IV / VII

	18ECC301T - Wireless Communication	Pro	grai	n Ou	tcon	ıes (POs)									
		Gra	dua	te At	tribı	ıtes								PSO		
COs	Course Outcomes (COs)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	Interpret the concepts of Wireless communication and basic cellular networks	3	-	-	3	-	-	-	-	-	-	-	2	-	-	-
CO-2	Analyze different Radio wave propagation models for cellular communication	-	3	-	3	-	-	-	-	-	-	-	-	-	-	3
CO-3	Apply different multipath propagation channel models in wireless systems	-	3	3	-	-	-	-	-	-	-	-	-	-	-	2
CO-4	Illustrate the Link performance improvement techniques	-	3	-	-	-	-	2	-	-	-	-	-	-	-	3
CO-5	Summarize different wireless communication standards and systems	-	-	2	-	-	2	-	-	-	-	-	-	2	-	-

	Part – A									
	(10 × 1 = 10 Marks)									
	Instructions: Answer ALL Questions.									
Q. No.	Question	Ma rks	BL	CO	PO					
	(1) 22 21		2	2	4					
1	(b) 22.21	1	2	2	4					
2	(d) Scattering	1	1	2	2					
3	(c) 50 and 20	1	2	2	4					
4	(d) df = $(2 D^2)/\lambda$	1	1	2	4					
5	(b) Walfish and Bertoni	1	1	2	2					
6	(c) Direct RF pulse	1	1	3	2					
7	(a) Bandwidth	1	1	3	2					
8	(b) Frequency selective	1	1	3	3					
9	(b) Ricean	1	1	3	2					
10	(a)Relative received power	1	1	3	3					
	Part – B1									

Part - B1 $(2 \times 4 = 8 Marks)$

Instructions: Answer any TWO Questions.

AK - SET-A – Placement Students

			1	1	
11	The free space propagation model is used to predict received signal strength when the	4	2	2	2
	transmitter and receiver have a clear line-of-sight path between them.				
	As with most large-scale radio wave propagation models, the free space model predicts that received power decays as a function of the T -R separation distance raised to some				
	newer (i.e. a newer leve function)				
	Friis free space equation: $P_iG_iG_i\lambda^2$				
	A = A $A = A$ $A =$				
	Friis free space equation: $G = \frac{4\pi A_e}{\lambda^2} \qquad \lambda = \frac{C}{f} = \frac{2\pi c}{\omega_c} \qquad EIRP = P_t G_t$				
	$PL(dB) = 10\log\frac{P_t}{P_t} = -10\log\left(\frac{G_tG_t\lambda^2}{(4\pi)^2d^2}\right)$				
	$PL(dB) = 10 \log \frac{1}{P_r} = -10 \log \left(\frac{1}{(4\pi)^2} d^2 \right)$				
	When antenna gains are excluded				
	$P(dP) = 10\log^2 \frac{P_t}{r} = 10\log^2 \left(\frac{\lambda^2}{r} \right)$				
	$PL(dB) = 10 \log \frac{P_t}{P_t} = -10 \log \left(\frac{\lambda^2}{(4\pi)^2 d^2} \right)$ The far-field region of a transmitting antenna is defined as the region beyond				
	 The far-field region of a transmitting anténna is defined as the region beyond 				
	the far-field distance				
	$d_f = \frac{2D^2}{2}$				
	Λ.				
	 To be in the far-filed region the following equations must be satisfied d_f >> D and df >> λ 				
	• $P_r(d) = \frac{P_r G_r G_r \lambda^2}{(4\pi)^2 d^2 L}$ • Use close-in distance and a known received power at that point				
	' \((4π)' d'L \) • Use close-in distance and a known received power at that point				
	$P_r(d) = P_r(d_0) \left(\frac{d_0}{d}\right)^2 \qquad d \ge d_0 \ge d_f$				
	(d)				
	Friis Equation – (1)				
	Friis Equation – (1) Briefing + Derivation – (2)				
	Briefing + Derivation – (2)				
	-				
	Briefing + Derivation – (2)				
12	Briefing + Derivation – (2) Final Expression – (1)	4	2	2	2
12	Briefing + Derivation – (2) Final Expression – (1) Calculate the far field distance for an antenna with maximum dimension	4	3	2	2
12	Briefing + Derivation – (2) Final Expression – (1) Calculate the far field distance for an antenna with maximum dimension of 2m and operating frequency of 1 GHz, also calculate the length of the	4	3	2	2
12	Briefing + Derivation – (2) Final Expression – (1) Calculate the far field distance for an antenna with maximum dimension of 2m and operating frequency of 1 GHz, also calculate the length of the monopole antenna if the antenna used is a monopole.	4	3	2	2
12	Briefing + Derivation – (2) Final Expression – (1) Calculate the far field distance for an antenna with maximum dimension of 2m and operating frequency of 1 GHz, also calculate the length of the monopole antenna if the antenna used is a monopole.	4	3	2	2
12	Briefing + Derivation – (2) Final Expression – (1) Calculate the far field distance for an antenna with maximum dimension of 2m and operating frequency of 1 GHz, also calculate the length of the monopole antenna if the antenna used is a monopole.	4	3	2	2
12	Briefing + Derivation – (2) Final Expression – (1) Calculate the far field distance for an antenna with maximum dimension of 2m and operating frequency of 1 GHz, also calculate the length of the monopole antenna if the antenna used is a monopole.	4	3	2	2
12	Briefing + Derivation – (2) Final Expression – (1) Calculate the far field distance for an antenna with maximum dimension of 2m and operating frequency of 1 GHz, also calculate the length of the monopole antenna if the antenna used is a monopole.	4	3	2	2
12	Briefing + Derivation – (2) Final Expression – (1) Calculate the far field distance for an antenna with maximum dimension of 2m and operating frequency of 1 GHz, also calculate the length of the monopole antenna if the antenna used is a monopole.	4	3	2	2
12	Briefing + Derivation – (2) Final Expression – (1) Calculate the far field distance for an antenna with maximum dimension of 2m and operating frequency of 1 GHz, also calculate the length of the monopole antenna if the antenna used is a monopole.	4	3	2	2
12	Briefing + Derivation – (2) Final Expression – (1) Calculate the far field distance for an antenna with maximum dimension of 2m and operating frequency of 1 GHz, also calculate the length of the monopole antenna if the antenna used is a monopole.	4	3	2	2
12	Briefing + Derivation – (2) Final Expression – (1) Calculate the far field distance for an antenna with maximum dimension of 2m and operating frequency of 1 GHz, also calculate the length of the monopole antenna if the antenna used is a monopole.	4	3	2	2
12	Briefing + Derivation – (2) Final Expression – (1) Calculate the far field distance for an antenna with maximum dimension of 2m and operating frequency of 1 GHz, also calculate the length of the monopole antenna if the antenna used is a monopole. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	4	3	2	2
12	Briefing + Derivation – (2) Final Expression – (1) Calculate the far field distance for an antenna with maximum dimension of 2m and operating frequency of 1 GHz, also calculate the length of the monopole antenna if the antenna used is a monopole. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	4	3	2	2
12	Briefing + Derivation – (2) Final Expression – (1) Calculate the far field distance for an antenna with maximum dimension of 2m and operating frequency of 1 GHz, also calculate the length of the monopole antenna if the antenna used is a monopole. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	4	3	2	2
12	Briefing + Derivation – (2) Final Expression – (1) Calculate the far field distance for an antenna with maximum dimension of 2m and operating frequency of 1 GHz, also calculate the length of the monopole antenna if the antenna used is a monopole. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	4	3	2	2
12	Briefing + Derivation – (2) Final Expression – (1) Calculate the far field distance for an antenna with maximum dimension of 2m and operating frequency of 1 GHz, also calculate the length of the monopole antenna if the antenna used is a monopole. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	4	3	2	2
12	Briefing + Derivation – (2) Final Expression – (1) Calculate the far field distance for an antenna with maximum dimension of 2m and operating frequency of 1 GHz, also calculate the length of the monopole antenna if the antenna used is a monopole. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	4	3	2	2
12	Briefing + Derivation – (2) Final Expression – (1) Calculate the far field distance for an antenna with maximum dimension of 2m and operating frequency of 1 GHz, also calculate the length of the monopole antenna if the antenna used is a monopole. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	4	3	2	2
12	Briefing + Derivation – (2) Final Expression – (1) Calculate the far field distance for an antenna with maximum dimension of 2m and operating frequency of 1 GHz, also calculate the length of the monopole antenna if the antenna used is a monopole. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	4	3	2	2
12	Briefing + Derivation – (2) Final Expression – (1) Calculate the far field distance for an antenna with maximum dimension of 2m and operating frequency of 1 GHz, also calculate the length of the monopole antenna if the antenna used is a monopole. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	4	3	2	2

13 Combined path loss and shadowing leads to outage and amoeba-like cell shapes. The coverage area of a given cell in a cellular system is defined as the area of locations within the cell where the received power is above a given minimum. Consider a base station inside a circular cell of a given radius R. All mobiles within the cell require some	2	4
The coverage area of a given cell in a cellular system is defined as the area of locations within the cell where the received power is above a given minimum. Consider a base station inside		
received power is above a given minimum. Consider a base station inside	l	
I A CITCUIAL CEILULA ELVEILIAULUS IX. ATH HIODHES WITHII THE CEILLEUTHE SOINE I		
minimum received SNR for acceptable performance. Assuming a given		
model for noise, the SNR requirement translates to a minimum received		
power Pmin throughout the cell. The transmit power at the base station is		
designed for an average received power at the cell boundary of P_R ,		
averaged over the shadowing variations. In the absence of shadowing, the		
coverage area of this system is πR^2 since all locations have received power		
above the required minimum. However, shadowing will cause some		
locations within the cell to have received power below P_R , and others will		
have received power exceeding P_R . This is illustrated in Figure		
nave received power exceeding Fig. This is indistrated in Figure		
Path loss and random shadowing		
Path loss and average shadowing		
R Base Station		
where we show contours of constant received power based on a fixed		
transmit power at the base station for path loss and average shadowing		
and for path loss and random shadowing. For path loss and average		
shadowing, constant power contours form a circle around the base station		
because combined path loss and average shadowing is the same at a		
uniform distance from the base station.		
For path loss and random shadowing, the contours form an amoeba-like		
shape due to the random shadowing variations about the average.		
Part – B2		
$(2 \times 4 = 8 \text{ Marks})$		
Instructions: Answer any TWO Questions.		
14 Flat fading: 4 1	3	2
In this bandwidth of the signal is smaller than the bandwidth of		_
the channel.		
In the flat fading all the components of the frequency of the		
signal will have the same magnitude of fading with respect to		
each other.		
Flat fading, is that type of fading in which all frequency		
components of the received signal fluctuate in the same		
proportions simultaneously.		
Signal undergoes flat fading if following conditions are met:		
Bs << Bc		
Ts >> ot		
Frequency Selective Fading:		
In selective fading, the bandwidth of the signal is larger than the		
bandwidth of the channel.		
Hence ,different components of the frequency signal will not experience the same fading.		
experience the same fading.		
· · · · · · · · · · · · · · · · · · ·		

	 Selective fading affects unequally the different spectral components of a radio signal. Signal undergoes selective fading if following conditions are met: Bs >Bc Ts <στ 				
15	Draw the block diagram of Frequency domain channel sounding system. Tx Vector Network Analyzer with Swept Frequency Oscillator $X(\omega)$ S-parameter test set $S_{21}(\omega) \propto H(\omega) = \frac{Y(\omega)}{X(\omega)}$ Inverse DFT Processor $h(t) = FT^{-1}[H(\omega)]$	4	2	3	2
16	Briefing - (2) Equation + Graph - (2) Rayleigh - Used to describe the statistical time Vanying nature of received envelope of a Hat fading signal of envelope of ind surdual multipalt Component: - Envelope of sum of two quadrature gaussian noise signal obeys a Rayleigh Pdf P(r): \[\frac{x}{\signal} \cong \frac{x}{2\signal} \cong \frac{x}{2\	4	2	3	3
	$Part - C$ $(2 \times 12 = 24 \text{ Marks})$				
17	(a)Two ray model Diagram : (2) Explanation with equation : (10) In a mobile radio channel, a single direct path between the base station and a mobile is seldom the only physical means for propagation, and hence the free space propagation model of Equation Pl(dB) is in most cases inaccurate when used alone. The two-ray ground reflection model shown in the below slide is a useful propagation model that is based on geometric optics, and considers both the direct path and a ground reflected propagation path between transmitter and receiver. This model has been found to be reasonably accurate for predicting the large-scale signal strength over distances of several kilometers for mobile radio systems that use tall towers (heights which exceed 50 m), as well as for line-of-sight microcell channels in urban environments.	12	3	2	2

In most mobile communication systems, the maximum T-R separation distance is at most only a few tens of kilometers, and the earth may be assumed to be flat.

The total received E-field, E_{tot} , is then a result of the direct line-of-sight component, E_{tot} and the ground reflected component, E_sht is the height of the transmitter and h, is the height of the receiver. If E_0 is the free space E-field (in units of V/m) at a reference distance d_0 from the transmitter, then ford> d_0 the free space propagating E-field is given by

$$E(d,t) = \frac{E_0 d_0}{d} \cos\left(\omega_c \left(t - \frac{d}{c}\right)\right) \qquad (d > d_0)$$

$$E_{LOS}(d',t) = \frac{E_0 d_0}{d'} \cos\left(\omega_c \left(t - \frac{d'}{c}\right)\right)$$

Figure 4.7 Two-ray ground reflection model.

$$\vec{E}_{TOT} = \vec{E}_{LOS} + \vec{E}_{g}$$

let E_o be $|\vec{E}|$ at reference point d_o then

$$\vec{E}(d,t) = \left(\frac{E_0 d_0}{d}\right) \cos\left(\omega_c \left(t - \frac{d}{c}\right)\right) \quad d > d_0$$

$$\begin{split} \tilde{E}_{TOT}(d,t) &= \left(\frac{E_0 d_0}{d'}\right) \cos\left(\omega_c \left(t - \frac{d'}{c}\right)\right) + \Gamma\left(\frac{E_0 d_0}{d''}\right) \cos\left(\omega_c \left(t - \frac{d''}{c}\right)\right) \\ &= \text{Equation (4.40): } \Delta = d'' - d' = \sqrt{\left(h_t + h_r\right)^2 + d^2} - \sqrt{\left(h_t - h_r\right)^2 + d^2} \\ \Delta &= d'' - d' = \sqrt{\left(h_t + h_r\right)^2 + d^2} - \sqrt{\left(h_t - h_r\right)^2 + d^2} \\ &= d\sqrt{\left(\left(\frac{h_t + h_r}{d}\right)^2 + 1\right)} - d\sqrt{\left(\left(\frac{h_t - h_r}{d}\right)^2 + 1\right)} \\ &\approx d\left(1 + \frac{1}{2}\left(\frac{h_t + h_r}{d}\right)^2\right) - d\left(1 + \frac{1}{2}\left(\frac{h_t - h_r}{d}\right)^2\right) \\ &\approx \frac{1}{2d}\left(\left(h_t + h_r\right)^2 - \left(h_t - h_r\right)^2\right) \\ &\approx \frac{1}{2d}\left(\left(h_t^2 + 2h_t h_r + h_r^2\right) - \left(h_t^2 - 2h_t h_r + h_r^2\right) \\ &\approx \frac{2h_t h_r}{d} \end{split}$$

$$\theta_{\Delta}$$
 radians = $\left(\frac{\Delta}{\lambda}$ wavelengths $\left(\frac{2\pi \text{ radians}}{\text{wavelength}}\right) = \frac{2\pi\Delta}{\lambda} = \frac{2\pi\Delta}{\left(\frac{c}{f_{L}}\right)} = \frac{\omega_{c}\Delta}{c}$

$E_{TOT}(d, t = \frac{d^*}{c}) = \frac{E_0 d_0}{d} \cos(\omega_c \left(\frac{d^* - d^*}{c}\right)) - \frac{E_0 d_0}{d^*} \cos \delta^\circ$ $= \frac{E_0 d_0}{d^*} \cos \delta_\Delta - \frac{1}{6d^*}$ $= \frac{E_0 d_0}{d^*} \cos \delta_\Delta - \frac{1}{1}$ $ E_{TOT}(d) = \sqrt[4]{\left(\frac{E_0 d_0}{d}\right)^2 \left(\cos \delta_\Delta - 1\right)^2 + \left(\frac{E_0 d_0}{d}\right)^2 \sin^2 \theta_\Delta}$ $ E_{TOT}(t) = 2 \frac{E_0 d_0}{d} \sin\left(\frac{\theta_\Delta}{2}\right)$ $\frac{\theta_\Delta}{2} \approx \frac{2\pi h_t h_t}{\lambda d} < 0.3 \text{ rad}$ $E_{TOT}(t) \approx 2 \frac{E_0 d_0}{d} \frac{2\pi h_t h_t}{\lambda d} \approx \frac{k}{d^2} \text{ V/m}$ $\frac{d}{d} > \sqrt{\frac{h_t}{h_t}} \frac{h_t}{h_t}$ $E_{TOT}(d) = \frac{4\pi E_0 d_0 h_t h_t}{\lambda d^2}$ $P_r \approx \frac{P_t G_t G_r h_t^2 h_r^2}{d^4}$ Two-ray path loss model: $PL(dB) = 40 \log d - [10 \log G_t + 10 \log G_t + 20 \log h_t + 20 \log h_t]$ Now d^t instead of d^2 for free space OR (b) Elaborate on Okumara model and calculate the mean path loss using the aforementioned model for the distance $d = 50 \text{ km}$, height of the transmitter and receiver to be 50 m and 5 m respectively in a suburban environment. If the base station transmitter radiates an EIRP of 1KW at a carrier frequency of 900 MHz, Find the EIRP (dBm) and the power received at the receiver where gain at the receiving antenna is 20 dB. Assume the following data for computations (from the Okumura curves Amu (f. d) = 43 dB and GArca = 9 dB). Elaboration of the model = (f)	 <u></u>				
$ E_{TOT}(d) = \frac{E_0 d_0}{d} \sqrt{2 - 2 \cos \theta_\Delta}$ $ E_{TOT}(t) = 2 \frac{E_0 d_0}{d} \sin \left(\frac{\theta_\Delta}{2}\right)$ $\frac{\theta_\Delta}{2} \approx \frac{2\pi h_i h_i}{\lambda d} < 0.3 \text{ rad}$ $E_{TOT}(t) \approx 2 \frac{E_0 d_0}{d} \frac{2\pi h_i h_i}{\lambda d} \approx \frac{k}{d^2} \text{ V/m}$ $d \gg \sqrt{h_i h_i}$ $\bar{E}_{TOT}(d) \approx \frac{4\pi E_0 d_0 h_i h_r}{\lambda d^2}$ $P_r \approx \frac{P_t G_t G_r h_t^2 h_r^2}{d^4}$ Two-ray path loss model: $PL(dB) = 40 \log d - [10 \log G_i + 10 \log G_r + 20 \log h_i + 20 \log h_r]$ Now d^i instead of d^2 for free space OR (b) Elaborate on Okumara model and calculate the mean path loss using the aforementioned model for the distance $d = 50 \text{ km}$, height of the transmitter and receiver to be 50m and 5m respectively in a suburban environment. If the base station transmitter radiates an EIRP of 1KW at a carrier frequency of 900 MHz. Find the EIRP (dBm) and the power received at the receiver where gain at the receiving antenna is 20 dB. Assume the following data for computations (from the Okumura curves Amu (f, d) = 43 dB and GArea = 9 dB).	$=\frac{E_0 d_0}{d'} \cos \theta_{\Delta} - \frac{E_0 d_0}{d''}$				
$ E_{TOT}(t) = 2\frac{E_0 d_0}{d} \sin\left(\frac{\theta_{\Delta}}{2}\right)$ $\frac{\theta_{\Delta}}{2} \approx \frac{2\pi h_r h_t}{\lambda d} < 0.3 \text{ rad}$ $E_{TOT}(t) \approx 2\frac{E_0 d_0}{d} \frac{2\pi h_t h_t}{\lambda d} \approx \frac{k}{d^2} \text{ V/m}$ $d >> \sqrt{h_t h_r}$ $\bar{E}_{TOT}(d) \approx \frac{4\pi E_0 d_0 h_t h_r}{\lambda d^2}$ $P_r \approx \frac{P_t G_t G_r h_t^2 h_r^2}{d^4}$ Two-ray path loss model: $PL(dB) = 40 \log d - [10 \log G_t + 10 \log G_r + 20 \log h_t + 20 \log h_r]$ Now d^t instead of d^2 for free space OR (b) Elaborate on Okumara model and calculate the mean path loss using the aforementioned model for the distance $d = 50$ km, height of the transmitter and receiver to be 50m and 5m respectively in a suburban environment. If the base station transmitter radiates an EIRP of 1KW at a carrier frequency of 900 MHz, Find the EIRP (dBm) and the power received at the receiver where gain at the receiving antenna is 20 dB. Assume the following data for computations (from the Okumura curves Amu (f, d) = 43 dB and GArea = 9 dB).	$ E_{TOT}(d) = \sqrt{\left(\frac{E_0 d_0}{d}\right)^2 \left(\cos\theta_{\Delta} - 1\right)^2 + \left(\frac{E_0 d_0}{d}\right)^2 \sin^2\theta_{\Delta}}$				
$\frac{\theta_{\Delta}}{2} \approx \frac{2\pi h_t h_t}{\lambda d} < 0.3 \text{ rad}$ $E_{TOT}(t) \approx 2 \frac{E_0 d_0}{d} \frac{2\pi h_t h_t}{\lambda d} \approx \frac{k}{d^2} \text{ V/m}$ $d \gg \sqrt{h_t h_r}$ $\bar{E}_{TOT}(d) = \frac{4\pi E_0 d_0 h_t h_r}{\lambda d^2}$ $P_r \approx \frac{P_t G_t G_r h_t^2 h_r^2}{d^4}$ Two-ray path loss model: $PL \text{ (dB)= 40 log } d - [10 \log G_t + 10 \log G_r + 20 \log h_t + 20 \log h_r]$ Now d^t instead of d^2 for free space OR (b) Elaborate on Okumara model and calculate the mean path loss using the aforementioned model for the distance $d = 50 \text{ km}$, height of the transmitter and receiver to be 50m and 5m respectively in a suburban environment. If the base station transmitter radiates an EIRP of IKW at a carrier frequency of 900 MHz, Find the EIRP (dBm) and the power received at the receiver where gain at the receiving antenna is 20 dB. Assume the following data for computations (from the Okumura curves Amu (f, d) = 43 dB and GArea = 9 dB).	$ E_{TOT}(d) = \frac{E_0 d_0}{d} \sqrt{2 - 2\cos\theta_{\Delta}}$				
$E_{TOT}(t) \approx 2 \frac{E_0 d_0}{d} \frac{2\pi h_r h_t}{\lambda d} \approx \frac{k}{d^2} \text{ V/m}$ $d \gg \sqrt{h_t h_r}$ $E_{TOT}(d) \approx \frac{4\pi E_0 d_0 h_r h_r}{\lambda d^2}$ $P_r \approx \frac{P_t G_t G_r h_t^2 h_r^2}{d^4}$ Two-ray path loss model: $PL (dB) = 40 \log d - [10 \log G_t + 10 \log G_r + 20 \log h_t + 20 \log h_r]$ Now d^4 instead of d^2 for free space OR (b) Elaborate on Okumara model and calculate the mean path loss using the aforementioned model for the distance $d = 50 \text{ km}$, height of the transmitter and receiver to be 50m and 5m respectively in a suburban environment. If the base station transmitter radiates an EIRP of 1KW at a carrier frequency of 900 MHz, Find the EIRP (dBm) and the power received at the receiver where gain at the receiving antenna is 20 dB. Assume the following data for computations (from the Okumura curves Amu (f, d) = 43 dB and GArea = 9 dB).	$\left E_{TOT}(t) \right = 2 \frac{E_0 d_0}{d} \sin \left(\frac{\theta_{\Delta}}{2} \right)$				
$d \gg \sqrt{h_t h_r}$ $\bar{E}_{TOT}(d) \approx \frac{4\pi E_0 d_0 h_t h_r}{2d^2}$ $P_r \approx \frac{P_t G_t G_r h_t^2 h_r^2}{d^4}$ Two-ray path loss model: $PL (dB) = 40 \log d - [10 \log G_t + 10 \log G_r + 20 \log h_t + 20 \log h_r]$ Now d^t instead of d^2 for free space OR (b) Elaborate on Okumara model and calculate the mean path loss using the aforementioned model for the distance $d = 50$ km, height of the transmitter and receiver to be 50m and 5m respectively in a suburban environment. If the base station transmitter radiates an EIRP of 1KW at a carrier frequency of 900 MHz, Find the EIRP (dBm) and the power received at the receiver where gain at the receiving antenna is 20 dB. Assume the following data for computations (from the Okumura curves Amu (f, d) = 43 dB and GArea = 9 dB).	$\frac{\theta_{\Delta}}{2} \approx \frac{2\pi h_r h_t}{\lambda d} < 0.3 \text{ rad}$				
$ E_{TOT}(d) \approx \frac{4\pi E_0 d_0 h_t h_r}{\lambda d^2}$ $P_r \approx \frac{P_t G_t G_r h_t^2 h_r^2}{d^4}$ Two-ray path loss model: $PL (dB) = 40 \log d - [10 \log G_t + 10 \log G_r + 20 \log h_t + 20 \log h_r]$ Now d^4 instead of d^2 for free space OR (b) Elaborate on Okumara model and calculate the mean path loss using the aforementioned model for the distance $d = 50$ km, height of the transmitter and receiver to be 50m and 5m respectively in a suburban environment. If the base station transmitter radiates an EIRP of 1KW at a carrier frequency of 900 MHz, Find the EIRP (dBm) and the power received at the receiver where gain at the receiving antenna is 20 dB. Assume the following data for computations (from the Okumura curves Amu (f, d) = 43 dB and GArea = 9 dB).	$E_{TOT}(t) \approx 2 \frac{E_0 d_0}{d} \frac{2\pi h_r h_t}{\lambda d} \approx \frac{k}{d^2} \text{ V/m}$				
$P_{r} \approx \frac{P_{t}G_{t}G_{r}h_{t}^{2}h_{r}^{2}}{d^{4}}$ Two-ray path loss model: $PL (dB) = 40 \log d - [10 \log G_{t} + 10 \log G_{r} + 20 \log h_{t} + 20 \log h_{r}]$ Now d^{4} instead of d^{2} for free space OR (b) Elaborate on Okumara model and calculate the mean path loss using the aforementioned model for the distance $d = 50$ km, height of the transmitter and receiver to be 50m and 5m respectively in a suburban environment. If the base station transmitter radiates an EIRP of 1KW at a carrier frequency of 900 MHz, Find the EIRP (dBm) and the power received at the receiver where gain at the receiving antenna is 20 dB. Assume the following data for computations (from the Okumura curves Amu $(f, d) = 43$ dB and GArea = 9 dB).	$d >> \sqrt{h_t h_r}$				
Two-ray path loss model: $PL(dB) = 40 \log d - [10 \log G_t + 10 \log G_r + 20 \log h_t + 20 \log h_t]$ Now d^4 instead of d^2 for free space OR (b) Elaborate on Okumara model and calculate the mean path loss using the aforementioned model for the distance $d = 50$ km, height of the transmitter and receiver to be 50m and 5m respectively in a suburban environment. If the base station transmitter radiates an EIRP of 1KW at a carrier frequency of 900 MHz, Find the EIRP (dBm) and the power received at the receiver where gain at the receiving antenna is 20 dB. Assume the following data for computations (from the Okumura curves Amu (f, d) = 43 dB and GArea = 9 dB).	$\left \vec{E}_{TOT}(d) \right \approx \frac{4\pi E_0 d_0 h_t h_r}{\lambda d^2}$				
Now d^4 instead of d^2 for free space OR (b) Elaborate on Okumara model and calculate the mean path loss using the aforementioned model for the distance $d = 50$ km, height of the transmitter and receiver to be 50m and 5m respectively in a suburban environment. If the base station transmitter radiates an EIRP of 1KW at a carrier frequency of 900 MHz, Find the EIRP (dBm) and the power received at the receiver where gain at the receiving antenna is 20 dB. Assume the following data for computations (from the Okumura curves Amu (f, d) = 43 dB and GArea = 9 dB).	$P_r \approx \frac{P_t G_t G_r h_t^2 h_r^2}{d^4}$				
OR (b) Elaborate on Okumara model and calculate the mean path loss using the aforementioned model for the distance d = 50 km, height of the transmitter and receiver to be 50m and 5m respectively in a suburban environment. If the base station transmitter radiates an EIRP of 1KW at a carrier frequency of 900 MHz, Find the EIRP (dBm) and the power received at the receiver where gain at the receiving antenna is 20 dB. Assume the following data for computations (from the Okumura curves Amu (f, d) = 43 dB and GArea = 9 dB).					
(b) Elaborate on Okumara model and calculate the mean path loss using the aforementioned model for the distance d = 50 km, height of the transmitter and receiver to be 50m and 5m respectively in a suburban environment. If the base station transmitter radiates an EIRP of 1KW at a carrier frequency of 900 MHz, Find the EIRP (dBm) and the power received at the receiver where gain at the receiving antenna is 20 dB. Assume the following data for computations (from the Okumura curves Amu (f, d) = 43 dB and GArea = 9 dB).	Now d^4 instead of d^2 for free space				
the aforementioned model for the distance d = 50 km, height of the transmitter and receiver to be 50m and 5m respectively in a suburban environment. If the base station transmitter radiates an EIRP of 1KW at a carrier frequency of 900 MHz, Find the EIRP (dBm) and the power received at the receiver where gain at the receiving antenna is 20 dB. Assume the following data for computations (from the Okumura curves Amu (f, d) = 43 dB and GArea = 9 dB).	OR				
Elaboration of the model – (6)	the aforementioned model for the distance d = 50 km, height of the transmitter and receiver to be 50m and 5m respectively in a suburban environment. If the base station transmitter radiates an EIRP of 1KW at a carrier frequency of 900 MHz, Find the EIRP (dBm) and the power received at the receiver where gain at the receiving antenna is 20 dB. Assume the following data for computations (from the Okumura curves				
	Elaboration of the model – (6)		3	2	4
Numerical – (6)	Numerical – (6)				4
6+6		6+6			

Okumura Model:

Okumura's model is one of the most widely used models for signal prediction in urban areas. This model is applicable for frequencies in the range 150 MHz to 1920 MHz (although it is typically extrapolated up to 3000 MHz) and distances of 1 km to 100 km. It can be used for base station antenna heights ranging from 30 m to 1000 m. Okumura developed a set of curves giving the median attenuation relative to free space (Amu), in an urban area over a quasi-smooth terrain with a base station effective antenna height (hte) of 200 m and a mobile antenna height (hre) of 3 m. These curves were developed from extensive measurements using vertical omni-directional antennas at both the base and mobile, and are plotted as a function of frequency in the range 100 MHz to 1920 MHz and as a function of distance from the base station in the range 1 km to 100 km. To determine path loss using Okumura's model, the free space path loss between the points of interest is first determined, and then the value of Amu(f, d) (as read from the curves) is added to it along with correction factors to account for the type of terrain. The model can be expressed as

$$L50(dB) = LF + Amu(f, d) - G(te) - G(re) - G_{AREA}$$

where L50 is the 50th percentile (i.e., median) value of propagation path loss, LF is the free space propagation loss, A_{mu} is the median attenuation relative to free space, $G(h_{te})$ is the base station antenna height gain factor, $G(h_{re})$ is the mobile antenna height gain factor, and G A R E A is the gain due to the type of environment. Note that the antenna height gains are strictly a function of height and have nothing to do with antenna patterns.

$$\begin{split} G(h_{te}) &= 20 \log \left(\frac{h_{te}}{200}\right) & 1000 \text{ m} > h_{te} > 30 \text{ m} \\ \\ G(h_{re}) &= 10 \log \left(\frac{h_{re}}{3}\right) & h_{re} \leq 3 \text{ m} \\ \\ G(h_{re}) &= 20 \log \left(\frac{h_{re}}{3}\right) & 10 \text{ m} > h_{re} > 3 \text{ m} \end{split}$$

Numericals(6)

-					1
	receives signals from a remote source 'P'. Derive the path length,]	
	phase change in the received signal and the apparent change in the				
]	
	doppler frequency. With the aid of the aforementioned derivation,				
	assuming the speed of an aircraft (which is moving towards the]	
	airport control tower with an elevation angle of 25°) to be 1000 km/hr.				
	What is the expected doppler shift of the received signal if the				
	communication between the aircraft and control tower operations are				
	at 200MHz?				
	Derivation each step 2 marks – (6)				
	Diagram $-(2)$				3
	Numerical – (4)				3
		8+4	3	3	
	S				
	/!				
	X Y Y				
	· ·				
	Path length				
	$\Delta l = d\cos\theta = v\Delta t\cos\theta$				
	Phase change				
	$\Delta \phi = \frac{2\pi \Delta I}{\lambda} = \frac{2\pi v \Delta t}{\lambda} \cos \theta$				
	λ λ				
	Apparent shift in frequency:				
	$f_d = \frac{1}{2\pi} \cdot \frac{\Delta \phi}{\Delta t} = \frac{\mathbf{V}}{\lambda} \cos \theta$				
	$I_d = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{2} \cos \theta$				
	2π $\Delta \mathcal{U}$ λ				
	Speed of duciple + 1000 km/ by				
	Speed of aways + look king by				
	ton - town tently				
	= 1000 × 103 = 274,77 m/s (2m)				
	3600				
	0 = 25				
	Cos 25 = 0.906				
	: doppler freq Ad = you was a				
	7				
	= de um coso				
	To the second se]	
	4]	
	×277,77×0.906.				
	- 200 x 15 x 277,77 x 0. 90C.				
	= 16777 16 /- 2]	
	= 167-77 Hz. (2m)				
	Af = fo +ld				
	= 250MyH6777718.				
	V				
				<u> </u>	

DEPARTMENT OF ECE

SET-B
Batch 2
Placement Students

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

Academic Year: 2023-24 (ODD)

Test: CLAT-II Date: 17/10/2023

Course Code & Title: 18ECC301T Wireless Communications Duration: 12.30 PM to 2.15 PM

Year & Sem: IV / VII Max. Marks: 50

Course Articulation Matrix:

	18ECC301T - Wireless Communication	Program Outcomes (POs)														
		Gra	idua	ite At	tribu	ıtes								PSC)	
COs	Course Outcomes (COs)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	Interpret the concepts of Wireless communication and basic cellular networks	3	-	-	3	-	-	-	-	-	-	-	2	-	-	-
CO-2	Analyze different Radio wave propagation models for cellular communication	-	3	-	3	-	-	-	-	-	-	-	-	-	-	3
CO-3	Apply different multipath propagation channel models in wireless systems	-	3	3	-	-	-	-	-	-	-	-	-	-	-	2
CO-4	Illustrate the Link performance improvement techniques	-	3		-	-	-	2	-	-	-		-	-	-	3
CO-5	Summarize different wireless communication standards and systems		_	2	-	-	2	-	-	-	-	-		2	-	-

	Part – A $(10 \times 1 = 10 \text{ Marks})$ [Instructions: Answe	r ALL Qı	iestions]	
Q.	Question	Marks	BL	CO	PO
No.					
1	Find the far – field distance (in metres) for an antenna with maximum dimension of 1 m and operating frequency of 3000 MHz	1	2	2	4
	(a) 20 (b) 40				
	(c) 60 (d) 80				
2	occurs when a propagating electromagnetic wave impinges upon an object which has very sharp edges (a) Refraction (b) Reflection	1	1	2	2
	(c) Diffraction (d) Scattering			_	
3	A mobile is located 10 km away from a base station and uses a vertical $\lambda/4$ monopole antenna with a gain of 2.55 dB to receive cellular radio signals. The E field at 1 km from the transmitter is measured to be 10-3 V/m. The carrier frequency used for this system is 900 MHz, calculate the length (in metres) of the receiving antenna. (a) 0.093 (b) 1.083 (c) 0.077 (d) 0.083	1	2	2	4
4	The path loss exponent 'n' value for free space is	1	1	2	4
	(a) 0 (b) 2				
	(c) 1 (d) 1.5				
5	Model is a special case of the piecewise model.	1	1	2	2
	(a) Okumara (b) Dual slope				
	(c) Hata (d) Durkins				
6	Flat fading or Frequency non-selective fading is a type of (a) Multipath delay spread small scale fading (b) Doppler spread small scale fading (c) Multipath doppler spread large scale fading Delay spread large scale fading	1	1	3	2
7	When the dominant component fades away, the Rayleigh distribution degenerates to distribution. (a)Gaussian (b)Ricean (c) Log normal (d) Gamma	1	1	3	2
8	The maximum excess delay of the channel is given by (a) $N\Delta\tau$ (b) $\Delta\tau/N$ (c) 2 $N\Delta\tau$ (d) $(N-1)\Delta\tau$	1	1	3	3
9	Power delay profile is represented as plots of with respect to fixed time delay reference.	1	1	3	2

	() P. 1 .:		1	1	1
	(a)Relative received power (b) Frequency				
40	(c)Transmitted power (d)Relative phase	-			
10	The presence of reflecting objects and scatters in the channel create a	1	1	3	3
	constantly changing environment that dissipates the signal energy in				
	amplitude, phase, and time is known as				
	(a) Multipath propagation (b) Doppler effect				
	(c) Line of sight (d) Doppler shift				
	Part – B1 ($2 \times 4 = 8$ Marks) [Instructions: Answer ar	1	1	_	
11	For a wireless system with two paths between transmitter and receiver,	4	2	2	2
	express an expression for path loss if the receiver is placed at a				
	distance 'd'.				
12	Calculate the ratio of the Brewster angle with respect to two dielectrics	4	3	2	2
	with dielectric constants of 5 and 6.				
13	Elaborate on the piece wise linear model.	4	2	2	4
				_	
	Part – B2 (2 × 4 = 8 Marks) [Instructions: Answer ar				
14	List the factors influencing the small scale fading.	4	1	3	2
15	Draw the block diagram of Spread spectrum sliding correlator channel	4	2	3	2
	sounding.				
16	Compare fast and slow fading of multipath fading channel.	4	2	3	3
	$Part - C (2 \times 12 = 24 Marks)$	s)			
17	(a) Using Friis transmission formula, derive the path loss for a	6+6	3	2	2
	wireless system using free space path loss model.				
	If a transmitter produces 100 watts of power, express the transmit				
	power in units of (a) dBm, and (b) dBW. If 100 watts is applied				
	to a unity gain antenna with a 900 MHz carrier frequency, find				
	the received power in dBm at a free space distance of 300 m from				
	the antenna, What is Pr (30 km)? Assume unity gain for the				
	receiver antenna.				
	OR				
	(b) Explain in detail Okumara empirical model to calculate the mean	12	3	2	4
	path loss.				
18		8+4	3	3	2
	(a) Describe frequency domain measurement technique of small				
	scale multipath channels.				
	Assuming the speed of an aircraft (which is moving towards the				
	airport control tower with an elevation angle of 60°) to be 300				
	km/hr. What is the expected doppler shift of the received signal if				
	the communication between the aircraft and control tower				
	operations are at 128MHz?				
	OR				
	(A) Police declares have				
	(b) Explain the impulse response model with relevant expression and	1.2		_	2
	graphical representation.	12	3	3	3
		1	İ	I	1

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

		Part-A	$(10 \times 1 = 10 \text{ Mark})$	is)	
Q. No	СО	PO	Maximum Marks	Marks Obtained	Total
1	CO2	4	1		
2	CO2	2	1		
3	CO2	4	1		
4	CO2	4	1		
5	CO2	2	1		
6	CO3	2	1		
7	CO3	2	1		
8	CO3	3	1		
9	CO3	2	1		
10	CO3	3	1		
		Part-B	$1 (2 \times 4 = 8 Marks)$	s)	
11	CO2	2	4		
12	CO2	2	4		
13	CO2	4	4		
		Part-B	$2 (2 \times 4 = 8 \text{ Marks})$	s)	
14	CO3	2	4		
15	CO3	2	4	-	
16	CO3	3	4		
		Part-C	$(2 \times 12 = 24 \text{ Mark})$	s)	
17(a)	CO2	2	12		
17(b)	CO2	4	12		
18(a)	CO3	2	12		
18(b)	CO3	3	12		

Consolidated Marks:

СО	Maximum Marks	Marks Obtained
2	25	
3	25	
Total	50	

РО	Maximum Marks	Marks Obtained
2	45	
3	18	
4	19	
Total	72	

Signature of Course Teacher

DEPARTMENT OF ECE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

AK - SET-B – Placement Students

Academic Year: 2023-24 (ODD)

Test: CLAT-II Date: 1710/2023

Course Code & Title: 18ECC301T Wireless Communications Duration: 12.30 PM to 02.15 PM

Year & Sem: IV / VII Max. Marks: 50

Course Articulation Matrix:

	18ECC301T - Wireless Communication	Pro	Program Outcomes (POs)													
		Gra	dua	te At	tribu	ıtes								PSC)	
COs	Course Outcomes (COs)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1	Interpret the concepts of Wireless communication and basic cellular networks	3	-	-	3	-	-	-	-	-	-	-	2	-	-	-
CO-2	Analyze different Radio wave propagation models for cellular communication	-	3	-	3	-	-	-	-	-	-	-	-	-	-	3
CO-3	Apply different multipath propagation channel models in wireless systems	-	3	3	-	-	-	-	-	-	-	-	-	-	-	2
CO-4	Illustrate the Link performance improvement techniques	-	3	<u> </u>	-	-	-	2	-	-	-	-	-	-	-	3
CO-5	Summarize different wireless communication standards and systems	-	-	2	-	-	2	-	-	-	-	-		2	-	-

	Part – A (10 × 1 = 10 Marks)				
	Instructions: Answer ALL Ques	stions.			
Q.	Question	Marks	BL	CO	PO
No.					
1	(a) 20	1	2	2	4
2	(c) Diffraction	1	1	2	2
3	(d) 0.083	1	2	2	4
4	(d) 1.5	1	1	2	4
5	(b) Dual slope	1	1	2	2
6	(a) Multipath delay spread small scale fading	1	1	3	2
7	(b)Ricean	1	1	3	2
8	$(a)N\Delta\tau$	1	1	3	3
9	(a)Relative Received Power	1	1	3	2
10	(a) Multipath Propagation	1	1	3	3
	Part – B1 $(2 \times 4 = 8 \text{ Marks})$ Instructions: Answer any TWO Quest	tions.			
11	For a wireless system with two paths between transmitter and receiver, express an expression for path loss if the receiver is placed at a distance 'd'. Two-ray path loss model: $PL \text{ (dB)} = 40 \log d - [10 \log G_t + 10 \log G_r + 20 \log h_t + 20 \log h_r]$	4	2	2	2
12	Equation - Sin(θ_B) = $\sqrt{(\epsilon_r - 1)/\sqrt{(\epsilon_r^2 - 1)}}$ - (1) Brewster angle - 24.09° for dielectric const 5- (1)	4	3	2	2

	Brewster angle -22.14^{0} for dielectric const $6-(1)$ Ratio -1.088 - (1)				
13	Piece wise linear model $\Pr(dB) = \begin{cases} \Pr(dB) & \text{log}(d/d_d) & \text{log}(d/d_d) \\ \text{Piecewise Linear Model for Path Loss.} \end{cases}$ A piecewise linear model with N segments must specify N = 1 breakpoints d1,,dN=1 and the slopes corresponding to each segment s1,,sN . $ \text{Dual-slope model} \\ \Pr(dB) = \begin{cases} \Pr(dB) & \text{d} \leq d \leq d_c \\ \Pr(dB) & \text{d} \leq d \leq d_c \end{cases} .$	4	2	2	4
	Part – B2 (2 × 4 = 8 Marks) Instructions: Answer any TWO Quest	tions.			
14	Fact Factors influencing small-scale fading Multipath propagation: reflection objects and scatters Speed of the mobile: Doppler shifts Speed of surrounding objects Transmission bandwidth of the signal The received signal will be distorted if the transmission bandwidth is greater than the bandwidth of the multipath channel. Coherent bandwidth: bandwidth of the multipath channel.	4	1	3	2
15	Draw the block diagram of Spread spectrum sliding correlator channel sounding. $Tx \text{ chip clock}$ $R_c = \alpha \text{ [Hz]} = 1/T_c$ $Resolution \sim \frac{1}{R_c} \text{ (rms pulse width)}$ $Rx \text{ chip clock}$ $Generator$	4	2	3	2
16	Fast Fading	4	2	3	3

	It varies quickly with the frequency. Fast fading originates due to effects of constructive and destructive interference patterns which is caused due to multipath. Doppler spread leads to frequency dispersion and time selective fading. Fast Fading results due to following: → High Doppler Spread → Coherence Time < Symbol Period → Channel impulse response changes rapidly within the symbol duration. → Occurs if Ts > Tc, Bs < B _D → It occurs for very low data rates. Slow Fading It does not vary quickly with the frequency. It originates due to effect of mobility. It is result of signal path change due to shadowing and obstructions such as tree or buildings etc. Slow Fading results due to following: → Low Doppler Spread → Coherence Time >> Symbol Period → Impulse response changes much slower than the transmitted signal. → It occurs if Ts << Tc, Bs >> B _D				
	Part – C				
	$(2 \times 12 = 24 \text{ Marks})$				
17	(a) Using Friis transmission formula, derive the path loss for a wireless system using free space path loss model. If a transmitter produces 100 watts of power, express the transmit power in units of (a) dBm, and (b) dBW. If 100 watts is applied to a unity gain antenna with a 900 MHz carrier frequency, find the received power in dBm at a free space distance of 300 m from the antenna, What is Pr (30 km)? Assume unity gain for the receiver antenna. Friis Equation – (2) Briefing + Derivation – (2) Final Expression – (2)	6+6	3	2	2

The free space propagation model is used to predict received signal strength when the				
transmitter and receiver have a clear line-of-sight path between them. As with most large-scale radio wave propagation models, the free space model predicts				
that received power decays as a function of the T -R separation distance raised to some				
power (i.e. a power law function).				
power (i.e. a power law function). Frijs free space equation: $G = \frac{4\pi A_{\rm e}}{\lambda^2} \qquad \lambda = \frac{c}{f} = \frac{2\pi c}{\omega_{\rm e}} \qquad EIRP = P_{\rm t}G_{\rm t}$				
$G = \frac{4\pi A_{\rm e}}{2}$ $\lambda = \frac{C}{c} = \frac{2\pi c}{c}$ $EIRP = P_tG_t$				
λ^2 f ω_c				
$PL(dB) = 10 \log \frac{P_t}{P_t} = -10 \log \left(\frac{G_t G_r \lambda^2}{(4\pi)^2 d^2} \right)$				
$P_r = 10\log P_r = 10\log (4\pi)^2 d^2$				
When antenna gains are excluded				
$PL(dB) = 10\log\frac{P_t}{P_t} = -10\log\left(\frac{\lambda^2}{(4\pi)^2d^2}\right)$				
• The far-field region of a transmitting antenna is defined as the region beyond				
the far-field distance				
$d_f = \frac{2D^2}{2}$				
λ • To be in the far-filed region the following equations must be satisfied d _t >> D				
and df $>> \lambda$				
• $P_{i}G_{i}G_{i}\lambda^{2}$				
• $P_r(d) = \frac{P_r G_r G_r \lambda^2}{(4\pi)^2 d^2 L}$ • Use close-in distance and a known received power at that point				
$P_r(d) = P_r(d_0) \left(\frac{d_0}{d}\right)^2 \qquad d \ge d_0 \ge d_f$				
(d)				
Transiation Power				
Pt (den) = 10 kg Temor				
- lotog [lacres]				
α				
= 50d Bm				
F. (4EW) = 10 kg P4 W				
Falden) = 10 leg Pt 11				
= la lea [ian]				
= lo log[100]				
= 20dEW				
Received Power.				
Received Power.				
(an)2. L.				
= 100 × 1 × 1 × (1/2)2				
(AX\$ (200)2 (1)				
= 3-12×10 bW = 3-12×10 mW - (1)				
= 3-12/10				
Pr (den) = 10 log Pr (mH). = 10 log (8.12×10 ³) = -55.05dBm (1) dor 30km, de= 200m d= 30km.				
= 10 kag (3.12×10) (1)			2	
= -55.05 dBM				
for 30 km, de= 200 m or 2 km.	12	3		4
Pr(30en) = Pr(300) -(20log (300)				
The state of the s				
=-5518m+(-4088)				
= -95dBm . (2) ments				
OR				
(b) Explain in detail Okumara empirical model to calculate the mean				
path loss.				
Explanation – (4)				
I I		1		1
Equation – (3) Sub Equations – (3)				

Main Equation Legends explanation — (2) Okumura Model: Okumura's model is one of the most widely used models for signal prediction in urban areas. This model is applicable for frequencies in the range 150 MHz to 1920 MHz (although it is typically extrapolated up to 3000 MHz) and distances of 1 km to 100 km. It can be used for base station antenna				
model is applicable for frequencies in the range 150 MHz to 1920 MHz (although it is typically extrapolated up to 3000 MHz) and distances of 1 km to 100 km. It can be used for base station antenna				
heights ranging from 30 m to 1000 m. Okumura developed a set of curves giving the median attenuation relative to free space (Amu), in an urban area over a quasi-smooth terrain with a base station effective antenna height (hte) of 200 m and a mobile antenna height (hre) of 3 m. These curves were developed from extensive measurements using vertical omni-directional antennas at both the base and mobile, and are plotted as a function of frequency in the range 100 MHz to 1920 MHz and as a function of distance from the base station in the range 1 km to 100 km. To determine path loss using Okumura's model, the free space path loss between the points of interest is first determined, and then the value of Amu(f, d) (as read from the curves) is added to it along with correction factors to account for the type of terrain. The model can be expressed as L50(dB) = LF+ Amu(f, d)-G(te)- G(re) - G _{AREA}				
propagation loss, A _{mu} is the median attenuation relative to free space, G(h _{te}) is the base station antenna height gain factor, G(h _{re}) is the mobile antenna height gain factor, and G A R E A is the gain due to the type of environment. Note that the antenna height gains are strictly a function of height and have nothing to do with antenna patterns.				
$G(h_{te}) = 20\log(\frac{h_{te}}{200})$ 1000 m > h_{te} > 30 m				
$G(h_{re}) = 10\log\left(\frac{h_{re}}{3}\right)$ $h_{re} \le 3 \text{ m}$				
$G(h_{re}) = 20\log(\frac{h_{re}}{3})$ 10 m > h_{re} > 3 m				
multipath channels. Assume the speed of an aircraft (which is moving towards the airport control tower with an elevation angle of 60 deg) to be 300 km/hr. What is the expected doppler shift of the received signal if the communication between the aircraft and control tower operations are at 128 MHz? Frequency domain - Diagram - (2) + Explanation - (2) Numerical - (4) requency domain: Frequency domain: Frequency domain:	8+4	3	3	3
A veiler network analyzer controls a Synthesized here Sparameter test set is used to monitor the freq response of the channel. See Sweeper Scans a Particular treg band by stepping				
Not real time - IR. Not of measurements needed. As every step. Too every freq point, channel changes are raying needed. Number and spacing of freq steps impact time resolution of IR. Number and spacing of freq steps impact time resolution of IR. Network analyzer determines the complex response Sol (w)				
Transmissivity - freq domain representation of				
	base and mobile, and are plotted as a function of frequency in the range 100 MHz to 1920 MHz and as a function of distance from the base station in the range 1 km to 100 km. To determine path loss using 0 kmmura's model, the free space path loss between the points of interest is first determined, and then the value of Amulf. d) (as read from the curves) is added to it along with correction factors to account for the type of terrain. The model can be expressed as $L50(B) = LF + Amulf. d) - G(te) - G(te) - G(te) - GAREA$ where L50 is the 50th percentile (i.e., median) value of propagation path loss, LF is the free space propagation loss, Amu is the median attenuation relative to free space, $G(h_{te})$ is the base station antenna height gain factor, $G(h_{te})$ is the mobile antenna height gain factor, and $G \cap G(h_{te})$ is the mobile antenna height gain factor, and $G \cap G(h_{te})$ is the mobile antenna height gains are strictly a function of height and have nothing to do with antenna patterns. $G(h_{te}) = 20\log(\frac{h_{te}}{3}) \qquad 1000 \text{ m} > h_{te} > 300 \text{ m}$ $G(h_{te}) = 20\log(\frac{h_{te}}{3}) \qquad 1000 \text{ m} > h_{te} > 300 \text{ m}$ $G(h_{te}) = 20\log(\frac{h_{te}}{3}) \qquad 1000 \text{ m} > h_{te} > 300 \text{ m}$ of $h_{te} > 20\log(\frac{h_{te}}{3}) \qquad 1000 \text{ m} > h_{te} > 300 \text{ m}$ If requency domain measurement technique of small scale multipath channels. Assume the speed of an aircraft (which is moving towards the airport control tower with an elevation angle of 60 deg) to be 300 km/hr. What is the expected doppler shift of the received signal if the communication between the aircraft and control tower operations are at 128 MHz? Frequency domain - Diagram - (2) + Explanation - (2) Numerical - (4) Frequency domain - Diagram - (2) + Explanation - (2) Numerical - (4) Frequency domain : Frequency Domain Channel Boarding: base and mobile, and are plotted as a function of frequency in the range I too 100 km. To determine path loss using Okumura's model, the free space path loss between the points of interest is first determined, and then the value of Amulf, d) (as read from the curves) is added to it along with correction factors to account for the type of terrain. The model can be expressed as L50(dB) = LF+ Amulf, d)-G(te)-G(re)-Garax where L50 is the 50th percentile (i.e., median) value of propagation path loss, LF is the free space propagation loss, Amu is the median attenuation relative to free space, G(the) is the base station antenna height gain factor, G(the) is the mobile antenna height gains factor, G(the) is the mobile antenna height gains are strictly a function of height and have nothing to do with antenna patterns. $G(h_{rs}) = 20 \log \left(\frac{h_{rs}}{3}\right) \qquad 1000 \text{ m} > h_{rs} > 3 \text{ m}$ $G(h_{rs}) = 20 \log \left(\frac{h_{rs}}{3}\right) \qquad 1000 \text{ m} > h_{rs} > 3 \text{ m}$ $G(h_{rs}) = 20 \log \left(\frac{h_{rs}}{3}\right) \qquad 1000 \text{ m} > h_{rs} > 3 \text{ m}$ of frequency domain measurement technique of small scale multipath channels. Assume the speed of an aircraft (which is moving towards the airport control tower with an elevation angle of 60 deg) to be 300 km/hr. What is the expected doppler shift of the received signal if the communication between the aircraft and control tower operations are at 128 MHz? Frequency domain - Diagram - (2) + Explanation - (2) Numerical - (4) Frequency domain is channel Several S	base and mobile, and are plotted as a function of frequency in the range 100 MHz to 1920 MHz and as a function of distance from the base station in the range 1 km to 1900 MHz to 1920 MHz and as a function of distance from the base station in the range 1 km to 1900 km To determine path loss using Okumura's model, the free space path loss between the points of interest is first determined, and then the value of Amulf, d) G(c) G(c) - GAREA where L50 is the 50th percentile (i.e., median) value of propagation path loss, LF is the free space propagation loss, Amis is the median attenuation relative to free space, G(hthe) is the base station antenna height gain factor, G(he) is the mobile antenna height gains are strictly a function of height and have nothing to do with antenna patterns. $G(h_{th}) = 20\log\left(\frac{h_{th}}{3}\right) \qquad 1000 \text{ m} > h_{th} > 30 \text{ m}$ $G(h_{th}) = 20\log\left(\frac{h_{th}}{3}\right) \qquad 100 \text{ m} > h_{th} > 30 \text{ m}$ $G(h_{th}) = 20\log\left(\frac{h_{th}}{3}\right) \qquad 100 \text{ m} > h_{th} > 30 \text{ m}$ $G(h_{th}) = 20\log\left(\frac{h_{th}}{3}\right) \qquad 100 \text{ m} > h_{th} > 30 \text{ m}$ $G(h_{th}) = 20\log\left(\frac{h_{th}}{3}\right) \qquad 100 \text{ m} > h_{th} > 30 \text{ m}$ $G(h_{th}) = 20\log\left(\frac{h_{th}}{3}\right) \qquad 100 \text{ m} > h_{th} > 30 \text{ m}$ $G(h_{th}) = 20\log\left(\frac{h_{th}}{3}\right) \qquad 100 \text{ m} > h_{th} > 30 \text{ m}$ $G(h_{th}) = 20\log\left(\frac{h_{th}}{3}\right) \qquad 100 \text{ m} > h_{th} > 30 \text{ m}$ $G(h_{th}) = 20\log\left(\frac{h_{th}}{3}\right) \qquad 100 \text{ m} > h_{th} > 30 \text{ m}$ $G(h_{th}) = 20\log\left(\frac{h_{th}}{3}\right) \qquad 100 \text{ m} > h_{th} > 30 \text{ m}$ $G(h_{th}) = 20\log\left(\frac{h_{th}}{3}\right) \qquad 100 \text{ m} > h_{th} > 30 \text{ m}$ $G(h_{th}) = 20\log\left(\frac{h_{th}}{3}\right) \qquad 100 \text{ m} > h_{th} > 30 \text{ m}$ $G(h_{th}) = 20\log\left(\frac{h_{th}}{3}\right) \qquad 100 \text{ m} > h_{th} > 30 \text{ m}$ $G(h_{th}) = 20\log\left(\frac{h_{th}}{3}\right) \qquad 100 \text{ m} > h_{th} > 30 \text{ m}$ $G(h_{th}) = 20\log\left(\frac{h_{th}}{3}\right) \qquad 100 \text{ m} > h_{th} > 30 \text{ m}$ $G(h_{th}) = 20\log\left(\frac{h_{th}}{3}\right) \qquad 100 \text{ m} > h_{th} > 30 \text{ m}$ $G(h_{th}) = 20\log\left(\frac{h_{th}}{3}\right) \qquad 100 \text{ m} > h_{th} > 30 \text{ m}$ $G(h_{th}) = 20\log\left(\frac{h_{th}}{3}\right) \qquad 100 \text{ m} > h_{th} > 30 \text{ m}$ $G(h_{th}) = 20\log\left(\frac{h_{th}}{3}\right) \qquad 100 \text{ m} > h_{th} > 1$	base and mobile, and are plotted as a function of frequency in the range 100 MHz to 1920 MHz and as a function of distance from the sex station in the range I han 100 flux. To determine path hos using Chammar's model, the free space path loss between the points of interest is first determined, and then the value of Amuff, d) are reform the curve) is added to it along with correction factors to account for the type of terrain. The model can be expressed as $1.50(B) = 1.F + \text{Amuff}, d) \cdot Gf(e) \cdot Gf(e) \cdot Gg(e) \cdot Gg(e) \cdot Gg(e)$ and the top of terrain. The model can be expressed as $1.50(B) = 1.F + \text{Amuff}, d) \cdot Gf(e) \cdot Gf(e) \cdot Gg(e) \cdot Gg(e) \cdot Gg(e)$ where LS0 is the 50th percentile (i.e., median) value of propagation loss, Amu is the modian antenuation relative to free space, $Gf(e)$ is the base station ancient height gain factor, and $G \times E \wedge A$ is the gain due to the yeo of environment. Note that the antenna height gains are strictly a function of height and have nothing to do with antenna patterns. $G(h_{nj}) = 20\log(\frac{h_n}{3}) \qquad 1000 \text{ m} \times h_{nj} \times 3 \text{ m}$ $G(h_{nj}) = 20\log(\frac{h_n}{3}) \qquad 1000 \text{ m} \times h_{nj} \times 3 \text{ m}$ $G(h_{nj}) = 20\log(\frac{h_n}{3}) \qquad 100 \text{ m} \times h_{nj} \times 3 \text{ m}$ $G(h_{nj}) = 20\log(\frac{h_n}{3}) \qquad 100 \text{ m} \times h_{nj} \times 3 \text{ m}$ $G(h_{nj}) = 20\log(\frac{h_n}{3}) \qquad 100 \text{ m} \times h_{nj} \times 3 \text{ m}$ $G(h_{nj}) = 20\log(\frac{h_n}{3}) \qquad 100 \text{ m} \times h_{nj} \times 3 \text{ m}$ $G(h_{nj}) = 20\log(\frac{h_n}{3}) \qquad 100 \text{ m} \times h_{nj} \times 3 \text{ m}$ $G(h_{nj}) = 20\log(\frac{h_n}{3}) \qquad 100 \text{ m} \times h_{nj} \times 3 \text{ m}$ $G(h_{nj}) = 20\log(\frac{h_n}{3}) \qquad 100 \text{ m} \times h_{nj} \times 3 \text{ m}$ $G(h_{nj}) = 20\log(\frac{h_n}{3}) \qquad 100 \text{ m} \times h_{nj} \times 3 \text{ m}$ $G(h_{nj}) = 20\log(\frac{h_n}{3}) \qquad 100 \text{ m} \times h_{nj} \times 3 \text{ m}$ $G(h_{nj}) = 20\log(\frac{h_n}{3}) \qquad 100 \text{ m} \times h_{nj} \times 3 \text{ m}$ $G(h_{nj}) = 20\log(\frac{h_n}{3}) \qquad 100 \text{ m} \times h_{nj} \times 3 \text{ m}$ $G(h_{nj}) = 20\log(\frac{h_n}{3}) \qquad 100 \text{ m} \times h_{nj} \times 3 \text{ m}$ $G(h_{nj}) = 20\log(\frac{h_n}{3}) \qquad 100 \text{ m} \times h_{nj} \times 3 \text{ m}$ $G(h_{nj}) = 20\log(\frac{h_n}{3}) \qquad 100 \text{ m} \times h_{nj} \times 3 \text{ m}$ $G(h_{nj}) = 20\log(\frac{h_n}{3}) \qquad 100 \text{ m} \times h_{nj} \times 3 \text{ m}$ $G(h_{n$	

