```
In [1]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

In [2]:

```
bd=pd.read_csv('E:/housing.csv')
```

In [3]:

bd.head(3)

Out[3]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_valu
0	-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.
1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.
2	-122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	352100.
4									Þ

In [4]:

bd.info()

```
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
longitude
                    20640 non-null float64
                    20640 non-null float64
latitude
housing_median_age 20640 non-null float64
total_rooms
                   20640 non-null float64
                   20433 non-null float64
total bedrooms
population
                    20640 non-null float64
households
                    20640 non-null float64
median income
                   20640 non-null float64
median house value
                  20640 non-null float64
ocean_proximity
                   20640 non-null object
```

<class 'pandas.core.frame.DataFrame'>

dtypes: float64(9), object(1)

memory usage: 1.6+ MB

In [5]:

bd.describe()

Out[5]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income
count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000	20640.000000	20640.000000	20640.000000
mean	-119.569704	35.631861	28.639486	2635.763081	537.870553	1425.476744	499.539680	3.870671
std	2.003532	2.135952	12.585558	2181.615252	421.385070	1132.462122	382.329753	1.899822
min	-124.350000	32.540000	1.000000	2.000000	1.000000	3.000000	1.000000	0.499900
25%	-121.800000	33.930000	18.000000	1447.750000	296.000000	787.000000	280.000000	2.563400
50%	-118.490000	34.260000	29.000000	2127.000000	435.000000	1166.000000	409.000000	3.534800
75%	-118.010000	37.710000	37.000000	3148.000000	647.000000	1725.000000	605.000000	4.743250
max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	35682.000000	6082.000000	15.000100
4								Þ

In [7]:

Out[7]:

<matplotlib.legend.Legend at 0x651823c508>

In [8]:

```
corr_matrix=bd.corr()
```

In [9]:

```
corr_matrix["median_house_value"].sort_values(ascending=False)
```

Out[9]:

median house value 1.000000 0.688075 median income 0.134153 total_rooms housing_median_age 0.105623 households 0.065843 total bedrooms 0.049686 population -0.024650 longitude -0.045967 latitude -0.144160

Name: median_house_value, dtype: float64

In [10]:

import seaborn as sns

In [11]:

```
plt.figure(figsize=(10,8))
sns.heatmap(bd.corr(), annot=True)
```

Out[11]:

<matplotlib.axes. subplots.AxesSubplot at 0x6517647788>

т... гаот.

```
from pandas.plotting import scatter_matrix
attributes = ["median_house_value", "median_income", "total_rooms", "housing_median_age"]
scatter_matrix(bd[attributes], figsize=(12,8))
```

Out[12]:

```
array([[<matplotlib.axes. subplots.AxesSubplot object at 0x00000065175D5848>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000006517692AC8>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000006517AD99C8>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000006517A921C8>],
       [<matplotlib.axes. subplots.AxesSubplot object at 0x00000065176CEC08>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x000000651789AD08>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000006517B36E08>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x00000065179A3F08>],
       [< matplotlib.axes.\_subplots.AxesSubplot object at 0x000000651798CB08>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000000651B08DCC8>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000006517907288>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0000006517550348>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x0000006517518488>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x00000065173CB588>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x00000065174A9E88>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x00000065174E67C8>]],
      dtype=object)
```


In [13]:

```
sns.distplot(bd.median_house_value)
```

Out[13]:

<matplotlib.axes. subplots.AxesSubplot at 0x65184b5a08>


```
In [14]:
bd.isnull().sum()
Out[14]:
                        0
longitude
latitude
housing_median_age
                        0
                        0
total_rooms
total bedrooms
                      207
population
                        0
households
                        0
median income
                        0
median_house_value
                        0
ocean proximity
dtype: int64
In [15]:
df= bd.fillna(bd.mean())
In [16]:
df.isnull().sum()
Out[16]:
longitude
                      0
latitude
housing median age
                      0
total_rooms
total bedrooms
population
                      0
households
                      0
median income
                      0
median_house_value
                      0
ocean_proximity
dtype: int64
In [17]:
from sklearn.preprocessing import LabelEncoder
In [18]:
labelEncoder = LabelEncoder()
print(df["ocean_proximity"].value_counts())
df["ocean_proximity"] = labelEncoder.fit_transform(df["ocean_proximity"])
df["ocean_proximity"].value_counts()
df.describe()
<1H OCEAN
              9136
INLAND
              6551
NEAR OCEAN
              2658
NEAR BAY
              2290
ISLAND
                5
Name: ocean_proximity, dtype: int64
```

count 20640.00000 20640.00000 20640.00000 20640.00000 20640.00000 20640.00000 20640.00000 20640.00000

total rooms total bedrooms

population

households median income

latitude housing_median_age

Out[18]:

Ionaitude

	-1 10nfgi9704	35 1651666	housing_m@@ia6094g6	260:0 <u>.76300</u> 6\$	total <u>5</u> 6@c6700568	14p25p4l7a6074n4	14009s 53006d 9	median <u>3</u> i8n7006n76
std	2.003532	2.135952	12.585558	2181.615252	419.266592	1132.462122	382.329753	1.899822
min	-124.350000	32.540000	1.000000	2.000000	1.000000	3.000000	1.000000	0.499900
25%	-121.800000	33.930000	18.000000	1447.750000	297.000000	787.000000	280.000000	2.563400
50%	-118.490000	34.260000	29.000000	2127.000000	438.000000	1166.000000	409.000000	3.534800
75%	-118.010000	37.710000	37.000000	3148.000000	643.250000	1725.000000	605.000000	4.743250
max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	35682.000000	6082.000000	15.000100
4								<u>)</u>
In [19	9]:							
In [20 from s	sklearn.mode	l_selecti ature_tes	on import train_ t,label_train, la		train_test_:	split(featu	re,label, t	est_size=0.2
In [21	1]:							
from s	sklearn impo sklearn.metr		_model t r2_score, mean	_squared_er	ror			
from s	sklearn impo sklearn.metr	ics impor	t r2_score, mean		ror			
from s from s In [22 linear	sklearn imposklearn.metr 2]: r_reg = line r_reg.fit(fe	ar_model.ature_tra		()				
from s from s In [22 linear linear r2_scc	sklearn imposklearn.metr 2]: r_reg = line r_reg.fit(fe	ar_model.ature_tra	t r2_score, mean LinearRegression in,label_train)	()				
from s from s In [22 linear linear r2_sco	sklearn imposklearn.metr 2]: r_reg = line r_reg.fit(fe	ar_model.ature_tra	t r2_score, mean LinearRegression in,label_train)	()				
from s from s In [22 linear linear r2_scc Out [22 0.4330	sklearn imposklearn.metr 2]: r_reg = line r_reg.fit(fe pre(linear_r 2]: 069087226281	ar_model.ature_tra	t r2_score, mean LinearRegression in,label_train)	()				
from s from s In [22 linear linear r2_sco Out [22 0.4330 In [23	sklearn imposklearn.metr 2]: r_reg = line r_reg.fit(fe pre(linear_r 2]: 069087226281	ar_model. ature_tra eg.predic	LinearRegression in,label_train) t(feature_train)	()				
from s from s In [22 linear linear r2_sco Out [22 0.4330 In [23	sklearn imposklearn.metr 2]: r_reg = line r_reg.fit(fe pre(linear_r 2]: 069087226281	ar_model. ature_tra eg.predic	LinearRegression in,label_train) t(feature_train)	()				
from s from s In [22 linear linear r2_sco Out [22 0.4330 In [23	sklearn imposklearn.metr 2]: r_reg = line r_reg.fit(fe pre(linear_r 2]: 069087226281 3]: r_reg.predic	ar_model. ature_tra eg.predic	LinearRegression in,label_train) t(feature_train)	()				
from s from s In [22 linear linear r2_scc Out[22 0.4330 In [23 linear	sklearn imposklearn.metr 2]: r_reg = line r_reg.fit(fe pre(linear_r 2]: 069087226281 3]: r_reg.predic ([266002.097	ar_model. ature_tra eg.predic t(feature	LinearRegression in,label_train) t(feature_train)	() ,label_trai	n) 955,,			