TUTORIAL

CLASSIFICATION

Q1

 Given the following training data of building materials, train a decision tree model using the entropy-based impurity measure at a node t, i.e.,

$$Entropy(t) = -\sum_{j} p(j|t) \log_2 p(j|t)$$

where $p(j \mid t)$ is the relative frequency of class j at node t.

- Use the trained decision tree model to determine if a material instance (Size="small", Color="green", Shape= "wedge") is appropriate to be used for construction?
- each distinct value of a categorical value will become a child node at splitting.

ld	Size	Color	Shape	Can be used?
1	Medium	blue	brick	Yes
2	Small	red	sphere	Yes
3	Large	green	pillar	Yes
4	Large	green	sphere	Yes
5	Small	red	wedge	No
6	Large	red	wedge	No
7	Large	red	pillar	No

Information at the root

- Which attribute to select for splitting?
- □ Attribute Size: Medium (1), Small (2), Large (4)
- □ Medium: I(1,0)=0
- □ Small: I(1,1)=1
- Large: I(2,2)=1

□ E(Size)=
$$\frac{1}{7} \cdot 0 + \frac{2}{7} \cdot 1 + \frac{4}{7} \cdot 1 = \frac{6}{7} = 0.857$$

 \Box Gain(Size) = I(3,4) - E(Size) = 0.985-0.857 = 0.128

- Attribute Color: Blue (1), Green (2), Red (4)
- □ Blue: I(1,0)=0
- □ Green: I(2,0) = 0
- □ Red: $I(1,3) = -\frac{3}{4} \cdot \log_2 \frac{3}{4} \frac{1}{4} \cdot \log_2 \frac{1}{4} = 0.811$
- \square E(Color) = $\frac{1}{7} \cdot 0 + \frac{2}{7} \cdot 0 + \frac{4}{7} \cdot 0.811 = 0.463$
- □ Gain(Color)=I(3,4) E(Color) = 0.985-0.463=0.522

- Attribute Shape: Brick (1), Sphere (2), Pillar (2), Wedge (2)
- \square Brick: I(1,0)=0
- \square Sphere: I(2,0) = 0
- □ Pillar: I(1,1) = 1
- □ Wedge: I(2,0) = 0□ $E(Shape) = \frac{1}{7} \cdot 0 + \frac{2}{7} \cdot 0 + \frac{2}{7} \cdot 1 + \frac{2}{7} \cdot 0 = 0.286$
 - Gain(Shape)=I(3,4)-E(Shape)=0.985-0.286=0.699

Therefore, among the three attributes, **Shape** has the maximal information gain!

□ Select Shape

ld	Size	Color	Shape	Can be Used?
3	Large	Green	Pillar	Yes
7	Large	Red	Pillar	No

□ Information at the non-leaf node: I(1,1)=1

- Attribute Size: Large(2)
- □ Large: I(1,1)=1
- □ E(Size) = $\frac{2}{2} \cdot 1 = 1$
- □ Gain(Size) = 1-1=0

- Attribute Color: Green(1), Red(1)
- Green: I(1,0)=0
- Red: I(1,0) = 0

• E(Color) =
$$\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 0 = 0$$

• Gain(Color) = 1-0=1

Select Color

Classify the test example

(Size="small", Color="green", Shape= "pillar") as ``**YES**" class, i.e., appropriate for construction.

Q2

The tree growth phase in the construction of a tree classifier is computationally expensive and also data-intensive. Briefly describe why this is so.

Q2 Answer

 Because of recursive splitting, the data is scanned again and again. This makes it computationally and memory-wise expensive.

Q3

Extract rules from the decision given below.

Q3 Answer:

IF age ≤ 30 AND student = no

IF age <=30 AND student = yes

IF $31 \le age \le 40$

IF age > 40 AND credit_rating = excellent

IF age >40 AND credit_rating = fair

THEN $buys_computer = NO$

THEN buys_computer = YES

THEN buys_computer = YES

THEN $buys_computer = NO$

THEN buys_computer = YES

Q4 CBA-RG

The CBA-RG Algorithm

```
F_1 = \{ \text{large 1-ruleitems} \};
2 CAR_1 = genRules(F_1);
3 prCAR_1 = pruneRules(CAR_1);
    for (k = 2; F_{k-1} \neq \emptyset; k++) do
         C_k = \text{candidateGen}(F_{k,1});
        for each data case d \in D do
            C_d = ruleSubset(C_k, d);
            for each candidate c \in C_d do
                c.condsupCount++;
10
                if d.class = c.class then c.rulesupCount++
11
            end
12
        end
13
        F_k = \{c \in C_k \mid c.\text{rulesupCount} \geq minsup\};
14 CAR_{\nu} = \text{genRules}(F_{\nu});
     prCAR_k = pruneRules(CAR_k);
15
16 end
17 CARs = \bigcup_{k} CAR_{k};
18 prCARs = \bigcup_{i} prCAR_{i}
```

Dataset:

Attribute A	Attribute B	Class C
е	p	y
е	p	y
е	q	y
g	q	y
g	q	y
g	q	n
g	W	n
g	W	n
е	p	n
f	q	n

Minimum Class supports:

minsup: 15%

minconf: 60%

Dataset:

Attribute A	Attribute B	Class C
е	p	у
e	p	у
е	q	у
g	q	y
g	q	у
g	q	n
g	W	n
g	W	n
е	p	n
f	q	n

```
1 F_1 = \{ \text{large 1-ruleitems} \};
```

- 2 $CAR_1 = genRules(F_1);$
- 3 $prCAR_1 = pruneRules(CAR_1);$
- Enumerate all possible attribute + class
- Check minsup > 15%

ruleitem = < (condset, condsupCount), (y, rulesupCount) >

Enumerations	$<(\{A,e\},4),((C,y),3)>,<(\{A,e\},4),((C,n),1)>,$ $<(\{A,g\},5),((C,n),3)>,<(\{A,g\},5),((C,y),2)>,$ $<(\{A,f\},1),((C,n),1)>,<(\{B,p\},3),((C,y),2)>,$ $<(\{B,p\},3),((C,n),1)>,<(\{B,q\},5),((C,y),3)>,$ $<(\{B,q\},5),((C,n),2)>,<(\{B,w\},2),((C,n),2)>$
F_1	$<({A,e},4),((C,y),3)>,<({A,g},5),((C,n),3)>,$ $<({A,g},5),((C,y),2)>,<({B,p},3),((C,y),2)>,$ $<({B,q},5),((C,y),3)>,<({B,q},5),((C,n),2)>,$ $<({B,w},2),((C,n),2)>$

Dataset:

Attribute A	Attribute B	Class C
е	p	y
e	p	y
е	q	y
g	q	y
g	q	y
g	q	n
g	W	n
g	W	n
е	p	n
f	q	n

```
1  F<sub>1</sub> = {large 1-ruleitems};
2  CAR<sub>1</sub> = genRules(F<sub>1</sub>);
3  prCAR<sub>1</sub> = pruneRules(CAR<sub>1</sub>);
```

• Check minconf > 60%

Enumerations	$<(\{A,e\},4),((C,y),3)>, <(\{A,e\},4),((C,n),1)>,$ $<(\{A,g\},5),((C,n),3)>, <(\{A,g\},5),((C,y),2)>,$ $<(\{A,f\},1),((C,n),1)>, <(\{B,p\},3),((C,y),2)>,$ $<(\{B,p\},3),((C,n),1)>, <(\{B,q\},5),((C,y),3)>,$ $<(\{B,q\},5),((C,n),2)>, <(\{B,w\},2),((C,n),2)>,$
F_1	$<(\{A, e\}, 4), ((C, y), 3)>, <(\{A, g\}, 5), ((C, n), 3)>,$ $<(\{A, g\}, 5), ((C, y), 2)>, <(\{B, p\}, 3), ((C, y), 2)>,$ $<(\{B, q\}, 5), ((C, y), 3)>, <(\{B, q\}, 5), ((C, n), 2)>,$ $<(\{B, w\}, 2), ((C, n), 2)>$
CAR_1	$<({A, e}, 4), ((C, y), 3)>, <({A, g}, 5), ((C, n), 3)>,$ $<({B, p}, 3), ((C, y), 2)>, <({B, q}, 5), ((C, y), 3)>,$ $<({B, w}, 2), ((C, n), 2)>$

Dataset:

Attribute A	Attribute B	Class C
е	p	у
е	p	у
е	q	у
g	q	у
g	q	у
g	q	n
g	w	n
g	w	n
е	p	n
f	q	n

- 1 $F_1 = \{ large 1-ruleitems \};$
- 2 $CAR_1 = genRules(F_1)$;
- 3 $prCAR_1 = pruneRules(CAR_1);$

Pruning is optional.

<u> </u>		
Enumerations	$<(\{A,e\},4),((C,y),3)>,<(\{A,e\},4),((C,n),1)>,$ $<(\{A,g\},5),((C,n),3)>,<(\{A,g\},5),((C,y),2)>,$ $<(\{A,f\},1),((C,n),1)>,<(\{B,p\},3),((C,y),2)>,$ $<(\{B,p\},3),((C,n),1)>,<(\{B,q\},5),((C,y),3)>,$ $<(\{B,q\},5),((C,n),2)>,<(\{B,w\},2),((C,n),2)>$	
F_1	$<(\{A, e\}, 4), ((C, y), 3)>, <(\{A, g\}, 5), ((C, n), 3)>,$ $<(\{A, g\}, 5), ((C, y), 2)>, <(\{B, p\}, 3), ((C, y), 2)>,$ $<(\{B, q\}, 5), ((C, y), 3)>, <(\{B, q\}, 5), ((C, n), 2)>,$ $<(\{B, w\}, 2), ((C, n), 2)>$	
CAP	$<({A, e}, 4), ((C, y), 3)>, <({A, g}, 5), ((C, n), 3)>,$	

CAR_1	$<({A, e}, 4), ((C, y), 3)>, <({A, g}, 5), ((C, n), 3)>,$ $<({B, p}, 3), ((C, y), 2)>, <({B, q}, 5), ((C, y), 3)>,$ $<({B, w}, 2), ((C, n), 2)>$
$prCAR_1$	$<({A, e}, 4), ((C, y), 3)>, <({A, g}, 5), ((C, n), 3)>,$ $<({B, p}, 3), ((C, y), 2)>, <({B, q}, 5), ((C, y), 3)>,$ $<({B, w}, 2), ((C, n), 2)>$

Attribute A	Attribute B	Class C
е	p	у
е	p	у
е	q	у
g	q	у
g	q	у
g	q	n
g	W	n
g	W	n
e	p	n
f	q	n

- Algorithm Line 4-12
- Enumerate all possible pairs from F_1
- Compare each pair with dataset

F_1	$<({A, e}, 4), ((C, y), 3)> <({A, g}, 5), ((C, n), 3)>,$ $<({A, g}, 5), ((C, y), 2)> <({B, p}, 3), ((C, y), 2)>,$ $<({B, q}, 5), ((C, y), 3)> <({B, q}, 5), ((C, n), 2)>,$ $<({B, w}, 2), ((C, n), 2)>,$
Enumerations	

Attribute A	Attribute B	Class C
е	p	y
е	p	y
е	q	y
g	q	y
g	q	y
g	q	n
g	W	n
g	W	n
е	p	n
f	q	n

- Algorithm Line 4-12
- Enumerate all possible pairs from F_1
- Compare each pair with dataset

F_1	$<({A,e},4),((C,y),3)>,<({A,g},5),((C,n),3)>,$ $<({A,g},5),((C,y),2)>,<({B,p},3),((C,y),2)>,$ $<({B,q},5),((C,y),3)>,<({B,q},5),((C,n),2)>,$ $<({B,w},2),((C,n),2)>$
Enumerations	$<\{(A,e),(B,p)\},(C,y)>,<\{(A,e),(B,q)\},(C,y)>,\\ <\{(A,g),(B,p)\},(C,y)>,<\{(A,g),(B,q)\},(C,y)>,\\ <\{(A,g),(B,q)\},(C,n)>,<\{(A,g),(B,w)\},(C,n)>$
C_2	

Attribute A	Attribute B	Class C
е	p	у
е	p	у
e	q	у
g	q	у
g	q	у
g	q	n
g	w	n
g	w	n
e	p	n
f	q	n

```
13
         F_k = \{c \in C_k \mid c.\text{rulesupCount} \geq minsup\};
14
         CAR_{\nu} = genRules(F_{\nu});
15
         prCAR_{k} = pruneRules(CAR_{k});
                   <(\{(A,e),(B,p)\},3),((C,y),2)>,
                   <(\{(A,e),(B,q)\},1),((C,y),1)>,
                   <(\{(A,g),(B,p)\},0),((C,y),0)>,
    \mathcal{C}_2
                   <(\{(A,g),(B,q)\},3),((C,y),2)>,
                   <(\{(A,g),(B,q)\},3),((C,n),1)>,
                   <(\{(A,g),(B,w)\},2),((C,n),2)>
                   <(\{(A,e),(B,p)\},3),((C,y),2)>,
                   <(\{(A,g),(B,q)\},3),((C,y),2)>,
    F_2
                   <(\{(A,g),(B,q)\},3),((C,n),1)>,
                   <(\{(A,g),(B,w)\},2),((C,n),2)>
```

Attribute A	Attribute B	Class C
е	p	у
е	p	y
е	q	у
g	q	y
g	q	у
g	q	n
g	W	n
g	W	n
е	p	n
f	q	n

13 $F_{\nu} = \{ e^{i\omega} \}$	$c \in C_{k} \mid c.\text{rulesupCount} \geq minsup\};$
14 CAR_{k} :	$= \operatorname{genRules}(F_{k});$
15 prCAF	$R_k = \text{pruneRules}(CAR_k);$
	$<(\{(A,e),(B,p)\},3),((C,y),2)>,$
	$\langle (\{(A,e),(B,q)\},1),((C,y),1)\rangle$
C	$<(\{(A,g),(B,p)\},0),((C,y),0)>,$
\mathcal{L}_2	$<(\{(A,g),(B,q)\},3),((C,y),2)>,$
	$<(\{(A,g),(B,q)\},3),((C,n),1)>,$
	$<(\{(A,g),(B,w)\},2),((C,n),2)>$
	$<(\{(A,e),(B,p)\},3),((C,y),2)>,$
r	$ \langle (\{(A,a),(B,a)\},3),((C,v),2)\rangle.$
F_2	$<({(A,g),(B,q)},3),((C,n),1)>,$ $conf = 33\% < 60\%$
	$<(\{(A,g),(B,w)\},2),((C,n),2)>$
CAD	$<(\{(A,e),(B,p)\},3),((C,y),2)>,$
CAR_2	$<(\{(A,g),(B,q)\},3),((C,y),2)>,$
	$<(\{(A,g),(B,w)\},2),((C,n),2)>$

Dataset:

Attribute A	Attribute B	Class C
е	p	у
e	p	у
e	q	у
g	q	у
g	q	у
g	q	n
g	W	n
g	W	n
e	p	n
f	q	n

```
13 F_k = \{c \in C_k \mid c.\text{rulesupCount} \ge minsup\};
```

14 $CAR_{\nu} = \text{genRules}(F_{\nu});$

15 $prCAR_k = pruneRules(CAR_k);$

$$CAR_{2} < (\{(A, e), (B, p)\}, 3), ((C, y), 2)>, < (\{(A, g), (B, q)\}, 3), ((C, y), 2)>, < (\{(A, g), (B, w)\}, 2), ((C, n), 2)>, < (\{(A, g), (B, w)\}, 2), ((C, n), 2)>, < ((A, g), (B, w)\}, ((C, n), 2)>, < ((A, g), (B, w)\}, ((C, y), 2)>, < ((A, g), (B, w)), ((C, y), (C, w)), ((C, y$$

Error rate of r_1 : $<(\{(A, e), (B, p)\}, 3), ((C, y), 2)> = 33\%$

Error rate of r_1^- : $<({A, e}, 4), ((C, y), 3)> = 25\%$

Error rate of r_1 > Error rate of $r_1^- \Rightarrow$ Prune r_1

Dataset:

Attribute A	Attribute B	Class C
е	p	у
е	p	у
е	q	у
g	q	у
g	q	у
${\cal g}$	q	n
g	W	n
g	w	n
e	p	n
f	q	n

```
13 F_k = \{c \in C_k \mid c.\text{rulesupCount} \ge minsup\};

14 CAR_k = \text{genRules}(F_k);

15 prCAR_k = \text{pruneRules}(CAR_k);
```

$$CAR_{2} \leftarrow \frac{\langle \{(A,e),(B,p)\},3\rangle, ((C,y),2)\rangle,}{\langle \{(A,g),(B,q)\},3\rangle, ((C,y),2)\rangle,} \\ \langle \{(A,g),(B,w)\},2\rangle, ((C,n),2)\rangle$$

Error rate of r_1 : $<(\{(A, e), (B, p)\}, 3), ((C, y), 2)> = 33\%$

Error rate of r_1^- : $<({A, e}, 4), ((C, y), 3)> = 25\%$

Error rate of r_1 > Error rate of $r_1^- \Rightarrow$ Prune r_1

Dataset:

Attribute A	Attribute B	Class C
е	p	у
е	p	у
е	q	у
g	q	у
g	q	у
g	q	n
g	w	n
g	w	n
е	p	n
f	q	n

```
13 F_k = \{c \in C_k \mid c.\text{rulesupCount} \ge minsup\};
```

14 $CAR_{\nu} = \text{genRules}(F_{\nu});$

15 $prCAR_k = pruneRules(CAR_k);$

$$CAR_{2} \begin{tabular}{ll} $<(\{(A,e),(B,p)\},3),((C,y),2)>,\\ $<(\{(A,g),(B,q)\},3),((C,y),2)>,\\ $<(\{(A,g),(B,w)\},2),((C,n),2)>.\\ \end{tabular}$$

Error rate of r_2 : $<(\{(A, g), (B, q)\}, 3), ((C, y), 2)> = 33\%$

Error rate of r_2^- : $<({A, g}, 5), ((C, y), 2)> = 60\%$

Error rate of r_2^- : $<(\{B, q\}, 5), ((C, y), 3)> = 40\%$

Error rate of r_2 < Error rates of $r_2^- \Rightarrow$ Keep r_2

Dataset:

Attribute A	Attribute B	Class C
е	p	у
е	p	у
е	q	у
g	q	у
g	q	у
${\it g}$	q	n
g	W	n
g	W	n
е	p	n
f	q	n

```
13 F_k = \{c \in C_k \mid c.\text{rulesupCount} \ge minsup\};

14 CAR_k = \text{genRules}(F_k);

15 prCAR_k = \text{pruneRules}(CAR_k);
```

$$CAR_{2} \leftarrow \frac{\langle \{(A,e),(B,p)\},3\rangle, ((C,y),2)\rangle,}{\langle \{(A,g),(B,q)\},3\rangle, ((C,y),2)\rangle,} \\ \langle \{(A,g),(B,w)\},2\rangle, ((C,n),2)\rangle$$

Error rate of r_3 : $<(\{(A, g), (B, w)\}, 2), ((C, n), 2)> = 0\%$

Error rate of r_3^- : $<({A, g}, 5), ((C, n), 2)> = 40\%$

Error rate of r_3^- : $<(\{B, w\}, 2), ((C, n), 2)> = 0\%$

Error rate of $r_3 >=$ Error rates of $r_3^- \Rightarrow$ Prune r_3

Dataset:

Attribute A	Attribute B	Class C
e	p	у
e	p	у
е	q	у
${\cal g}$	q	у
g	q	у
${\cal g}$	q	n
g	W	n
${\mathcal G}$	W	n
e	p	n
f	q	n

```
13 F_k = \{c \in C_k \mid c.\text{rulesupCount} \ge minsup\};

14 CAR_k = \text{genRules}(F_k);

15 prCAR_k = \text{pruneRules}(CAR_k);
```

$$CAR_{2} \leftarrow \frac{\langle \{(A,e),(B,p)\},3\rangle, ((C,y),2)\rangle,}{\langle \{(A,g),(B,q)\},3\rangle, ((C,y),2)\rangle,} \\ \leftarrow \frac{\langle \{(A,g),(B,w)\},2\rangle, ((C,n),2)\rangle}{\langle \{(A,g),(B,w)\},2\rangle, ((C,n),2)\rangle}$$

Error rate of r_3 : $<(\{(A, g), (B, w)\}, 2), ((C, n), 2)> = 0\%$

Error rate of r_3^- : $<({A, g}, 5), ((C, n), 2)> = 40\%$

Error rate of r_3^- : $<(\{B, w\}, 2), ((C, n), 2)> = 0\%$

Error rate of $r_3 >=$ Error rates of $r_3^- \Rightarrow$ Prune r_3

Attribute A	Attribute B	Class C
е	p	у
е	p	у
е	q	у
g	q	у
g	q	у
g	q	n
g	W	n
g	W	n
e	p	n
f	q	n

```
13 F_k = \{c \in C_k \mid c.\text{rulesupCount} \ge minsup\};

14 CAR_k = \text{genRules}(F_k);

15 prCAR_k = \text{pruneRules}(CAR_k);
```

CAR_2	$<(\{(A,e),(B,p)\},3),((C,y),2)>,$ $<(\{(A,g),(B,q)\},3),((C,y),2)>,$ $<(\{(A,g),(B,w)\},2),((C,n),2)>$
$prCAR_2$	$<(\{(A,g),(B,q)\},3),((C,y),2)>$

Attribute A	Attribute B	Class C
е	p	y
e	p	y
е	q	y
g	q	y
g	q	y
g	q	n
g	w	n
g	W	n
e	p	n
f	q	n

17	$CARs = \bigcup_{k} CAR_{k};$
18	$prCARs = \bigcup_{k} prCAR_{k};$

CAR_1	$<({A, e}, 4), ((C, y), 3)>, <({A, g}, 5), ((C, n), 3)>,$ $<({B, p}, 3), ((C, y), 2)>, <({B, q}, 5), ((C, y), 3)>,$ $<({B, w}, 2), ((C, n), 2)>$
$prCAR_1$	$<({A, e}, 4), ((C, y), 3)>, <({A, g}, 5), ((C, n), 3)>,$ $<({B, p}, 3), ((C, y), 2)>, <({B, q}, 5), ((C, y), 3)>,$ $<({B, w}, 2), ((C, n), 2)>$
CAR_2	$<(\{(A,e),(B,p)\},3),((C,y),2)>,$ $<(\{(A,g),(B,q)\},3),((C,y),2)>,$ $<(\{(A,g),(B,w)\},2),((C,n),2)>$
$prCAR_2$	$<(\{(A,g),(B,q)\},3),((C,y),2)>$
CARs	$CAR_1 \cup CAR_2$
prCARs	$prCAR_1 \cup prCAR_2$

Q5: CBA

Attribute A	Attribute B	Class C
e	p	??
g	q	??
g	m	??
k	p	??

$$\begin{cases} r_5 \colon & B = w \to n \\ r_1 \colon & A = e \to y \\ r_6 \colon & A = g, B = q \to y \\ R7 \colon & A = g \not \to n \end{cases}$$
 Default Class

Attribute A	Attribute B	Class C
e	p	<i>y</i> (<i>r</i> 1)
g	q	<i>y</i> (<i>r</i> 6)
g	m	n(r7)
k	p	n(default)