Lecture 09: The Efficiency of Algorithms

CS 0445: Data Structures

Constantinos Costa

http://db.cs.pitt.edu/courses/cs0445/current.term/

Sep 23, 2019, 8:00-9:15 University of Pittsburgh, Pittsburgh, PA

Why Efficient Code?

- Computers are faster, have larger memories
 - So why worry about efficient code?
- And ... how do we measure efficiency?

Importance of Efficiency

Consider the problem of summing

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n$$

Algorithm A	Algorithm B	Algorithm C
long sum = 0; for (long i = 1; i <= n; i++) sum = sum + i;	sum = 0; for (long i = 1; i <= n; i++) { for (long j = 1; j <= i; j++) sum = sum + 1; } // end for	sum = n * (n + 1) / 2;

• Three algorithms for computing the sum 1 + 2 + ... + n for an integer n > 0

What is "best"?

- An algorithm has both time and space constraints that is complexity
 - Time complexity
 - Space complexity
- This study is called analysis of algorithms

Counting Basic Operations

- A basic operation of an algorithm
 - Most significant contributor to its total time requirement

	Algorithm A	Algorithm B	Algorithm C	
long sum = 0; for (long i = 1; i <= n; i++) sum = sum + i;		<pre>sum = 0; for (long i = 1; i <= n; i++) { for (long j = 1; j <= i; j++) sum = sum + 1; } // end for</pre>	sum = n * (n + 1) / 2;	
Additons	n	n(n+1)/2	1	
Multiplications	0	0	1	
Divisions	0	0	1	
Total Basic Operations	n	$(n^2+n)/2$	3	

The number of basic operations required by the algorithms

Counting Basic Operations

Number of basic operations required by the algorithms as a

function of n

© 2019 Pearson Education, Inc.

Counting Basic Operations

Typical growth-rate functions evaluated at increasing values of n

n	$(\log(\log n)$	log n	$\log^2 n$	n	n log n	n^2	n^3	2 ⁿ	n!
10	2	3	11	10	33	10^2	10^3	10^3	10 ⁵
10^{2}	3	7	44	100	664	10^{4}	10^{6}	10^{30}	1094
10^{3}	3	10	99	1,000	9,966	10^{6}	10 ⁹	10^{301}	101435
10^{4}	4	13	177	10,000	132,877	10^{8}	10 ¹²	10 ³⁰¹⁰	10 ^{19,335}
10 ⁵	4	17	276	100,00	1,660,964	10^{10}	10 ¹⁵	10 ^{30,103}	10 ^{243,338}
10^{6}	4	20	397	1,000,000	19,931,569	10^{12}	10 ¹⁸	10 ^{301,301}	10 ^{2,933,369}

Best, Worst, and Average Cases

- For some algorithms, execution time depends only on size of data set
- Other algorithms depend on the nature of the data itself
 - Goal is to know best case, worst case, average case

Big Oh Notation

- A function f(n) is of order at most g(n)
- That is, f(n) is O(g(n)) if
 - A positive real number c and positive integer N exist ...
 - Such that $f(n) \le c \times g(n)$ for all $n \ge N$
 - That is:
 - $c \times g(n)$ is an upper bound on f(n) when n is sufficiently large

Big Oh Notation

• An illustration of the values of two growth-rate functions

Increasing values of n

© 2019 Pearson Education, Inc.

Big Oh Notation

$$O(k g(n)) = O(g(n))$$
 for a constant k
 $O(g 1 (n)) + O(g 2 (n)) = O(g 1 (n) + g 2 (n))$
 $O(g 1 (n)) * O(g 2 (n)) = O(g 1 (n) * g 2 (n))$
 $O(g 1 (n) + g 2 (n) + ... + g m (n)) =$
 $O(max(g 1 (n), g 2 (n), ..., g m (n))$
 $O(max(g 1 (n), g 2 (n), ..., g m (n)) =$
 $max(O(g 1 (n)), O(g 2 (n)), ..., O(g m (n)))$

Identities for Big Oh Notation

• An O(n) algorithm

```
long sum = 0;
for (long i = 1; i <= n; i++)
  sum = sum + i;</pre>
```


O(n)

1

© 2019 Pearson Education, Inc.

3

n

• An $O(n^2)$ algorithm

sum = 0;for (long i = 1; i <= n; i++) for (long j = 1; j <= i; j++) sum = sum + 1;} // end for

 $O(1 + 2 + ... + n) = O(n^2)$

© 2019 Pearson Education, Inc.

Another $O(n^2)$ algorithm

 $O(n \times n) = O(n^2)$

© 2019 Pearson Education, Inc.

The effect of doubling the problem size on an algorithm's time requirement

Growth-Rate Function for for Size <i>n</i> Problems Growth-Rate Function for Size 2 <i>n</i> Problems Effect on Time Requirements		Effect on Time Requirement
1	1	None
log n	$1 + \log n$	Negligible
n	2 <i>n</i>	Doubles
$n \log n$	$2n \log n + 2n$	Doubles and then adds 2n
n^2	$(2n)^2$	Quadruples
n^3	$(2n)^3$	Multiples by 8
2^n	2^{2n}	Squares

• The time required to process one million items by algorithms of various orders at the rate of one million operations per second

Growth-Rate Function g	$g(10^6) / 10^6$	
log n	0.0000199 seconds	
n	1 second	
n log n	19.9 seconds	
n^2	11.6 days	
n^3	31,709.8 years	
2^n	10 ^{301,016} years	

Efficiency of ADT Bag Implementations

• The time efficiencies of the ADT bag operations for two implementations, expressed in Big Oh notation

Operation	Fixed-Size Array	Linked
add(newEntry)	O(1)	O(1)
remove()	O(1)	O(1)
remove(anEntry)	O(1), $O(n)$, $O(n)$	O(1), $O(n)$, $O(n)$
clear()	O(n)	O(n)
getFrequencyOf(anEntry)	O(n)	O(n)
contains (anEntry)	O(1), $O(n)$, $O(n)$	O(1), $O(n)$, $O(n)$
toArray()	O(n)	O(n)
<pre>getCurrentSize(), isEmpty()</pre>	O(1)	O(1)

