

Présentation de l'étude

Contexte

Application smartphone grand public de reconnaissance de fruit et affichage d'informations

Développementnt des robots cueilleurs intelligents permettant des traitements spécifiques pour chaque espèce de fruits

- Accès grand public
- Données massives : variées, volumineuses, vitesse d'obtention

- Développement d'une première version de l'architecture Big Data
- Mise en place d'une première version du moteur de classification des images de fruits

Dataset (source: https://www.kaggle.com/moltean/fruits)

Description:

- Ensemble de données contenant des images de haute qualité de fruits et légumes, avec les labels associés
- 120 variétés de fruits (un fruit peut avoir plusieurs variétés)

Caractéristique du jeu :

Taille: 90483 images

Jeu de Train : 67692 images

Jeu de Test : 22688 images

<u>Caractéristique des images :</u>

Taille: 100x100 pixels

Format : JPG RGB

Photos sur fond blanc de fruit sous différents angles

Méthodologie

1. Création de l'environnement Big Data sur le cloud

Quelques Concepts utils

AWS (Amazon Web Services)

Plateforme spécialisée dans les services de cloud computing à la demande

→ fournisseur de services informatiques via Internet

EC2 (Elastic Compute Cloud)

- Interface web permettant de créer des machines virtuelles ou instances du serveur (partie des serveurs d'Amazon)
- Services de calculs variées, complètes et performantes

S3 (Simple Storage Service)

- Stockage d'objets conçu pour extraire n'importe quelle quantité de données, depuis n'importe où
- Capacité de mise à l'échelle, disponibilité des données, performances et sécurité

Spark - PySpark

Framework open source de calcul distribué

> essentiellement dédié au Big Data et Machine Learning

Librairie de Python pour Spark

Chaque **worker** instancie un **executor** chargé d'exécuter les différentes tâches de calculs.

Environnement Big Data sur le cloud

Architecture

Instance EC2

AMI (Amazon Machine Image):

Image du disque, configuration logicielle

Type d'instance : t2.medium

- Instance à usage général à faible coût avec la possibilité de booster en cas de besoin
- Idéal pour les bases de données, environnements de développement

Groupe de sécurité:

SSH, HTTP, HTTPS, règle TCP personnalisé (port 8888)

Stockage: 30Go

Maximum de l'offre gratuit

Type d'instance	vCPU	Mémoire (Gio)	Stockage (Go)	Performances de mise en réseau	Processeur physique
t2.medium	2	4	EBS uniquement	Faibles à modérées	Série Intel Xeon

Swap file:

fichier système qui crée un espace de stockage temporaire sur un disque SSD ou un disque dur lorsque le système manque de mémoire.

Applications: Python 3, Java 8, Spark 3, Hadoop-AWS 2.7, Anaconda, Jupyter notebook

S3 Bucket

- Upload des données via Interface web ou AWS CLI (Interface de ligne de commande)
- Lecture des fichiers depuis Spark
- Enregistrement de fichier depuis Spark
- Contrôle d'accès par utilisateurs ou groupe d'utilisateurs
 - → (Droit d'accès défini via resource-based Policy)
 A partir d'identifiants de sécurité : Id, secret_key

Première Chaîne de traitements

Différentes étapes

Setup Spark & Chargement images

Setup Spark

- Localisation de Spark dans l'EC2
- Configuration de la session Spark
- Connexion à S3 : IAM credentials
- Création du contexte Spark capable de communiquer avec S3

Upload images

- Lecture de l'image en format binaryFile
- Spark Dataframe contenant le path et le content de l'image
- Ajout d'une colonne label obtenu par split du path

4			4	
path			content	
s3a://ocp8s3/Data s3a://ocp8s3/Data s3a://ocp8s3/Data s3a://ocp8s3/Data s3a://ocp8s3/Data	[FF D8 [FF D8 [FF D8 [FF D8	FF E0 FF E0 FF E0	00 1 00 1 00 1	Apple Peach Apple Pear
only showing top 5 row				

Librairie utilisé

findspark, Python Imaging Library, Pyspark

Preprocessing & Extraction Features

Preprocessing

- Redimensionnement des images (224, 224)
- Conversion en numpy array

Extraction des Features

- Transfert learning
- Modèle Resnet50 sans top layer
- 50 couches de neurones

Librairie utilisé

Tensorflow, Numpy, Pyspark

Réduction dimensions & Sauvegarde

Conversion au format vecteur dense

Normalisation

- Suppression de la moyenne
- Scaling variance unitaire

+	featuresVct featuresStd feature	features
[0.0, 13.786607, [0.0,13.786606788 [-0.2545462489499 [-178.60495683676. [0.0, 13.263342, [0.0,13.263341903 [-0.2545462489499 [57.3152703321728. [8.7571144E-4, 14 [8.75711441040039 [-0.2235875500555 [94.8506550363394. [0.0, 11.68219, 6 [0.0,11.682189941 [-0.2545462489499 [186.945236921911. [0.0, 13.927928, [0.0,13.927927970 [-0.2545462489499 [-118.07431465861.	.3.786606788 [-0.2545462489499 [-178.6049568367 .3.263341903 [-0.2545462489499 [57.315270332172 711441040039 [-0.2235875500555 [94.850655036339 .1.682189941 [-0.2545462489499 [186.94523692193	, 13.786607, , 13.263342, 571144E-4, 14 , 11.68219, 6 , 13.927928,

only showing top 5 rows

Transformation PCA sur les k premières composantes

• k= 25

Librairie utilisé

Pyspark (ML)

Résumé de l'étude

- Accès et configuration de services AWS:
 - Mise en place d'une instance EC2 et d'un Bucket S3
 - Gestion des droits d'accès du S3
- Communication / Accès au serveur par SSH
- Configuration de session et contexte Spark
- Première chaîne de traitements des images

- Lenteur des calculs : configuration serveur pas assez puissante (t2.medium)
- Nombreuses possibilités techniques : choix complexes
- Debug compliqué : erreurs peu explicites, superposition Spark/Java/S3

Recommandations

Amélioration de l'étude

- Prétraitement d'images réels (recadrage, plusieurs fruits, arrière plan, etc.)
- Essaie d'autres modèles pour le transfer learning
- Choix d'un k adapté pour le pca
- Choix d'une instance plus performante

Passage à l'échelle

- Déployement du modèle
- Évolution de l'infrastructure de calcul : instance EC2 de plus grande capacité RAM/Processeur
- Augmentation du nombre d'instances esclaves (nœuds) sans coupure
- Utilisation de EMR : cluster de calculs (plus adéquats pour exécuter des tâches de traitement de données distribuées à grande échelle)

Pousser le cas d'usage

- Identification de la maturité des fruits pour les cueillir au bon moment
- Identification des pathologies ou des fruits abîmés

MERCI

Questions

