

2022. 09. 19.

Mehta, Sachin, and Mohammad Rastegari. "Mobilevit: light-weight, general-purpose, and mobile-friendly vision transformer." proc. of. ICLR 2022

good slide

Transformer 주차별 계획

MobileViT: Light-weight, general-purpose, and mobile-friendly vision transformer

- Introduction + contributions
- Method
- 3 __ Experiments

Transformer

Introduction + contributions

1. ViT to Mobile-ViT

Mobile-ViT

Mobile과 같은 하드웨어의 자원이 제한된 곳에서 범용적으로(General purpose) 사용할 수 있도록 만든 작고(Light-weight) 빠른(Low-latency) ViT 모델

CNN

- Spatial(local) inductive bias
- -data augmentation에 덜 민감

ViT

- Input-adaptive weighting
- global processing

CNN

ViT

General purpose Light-weight Low-latency

Mobile-ViT

Generalization Problem

- Models are Brittle : 아무리 같은 의미의 데이터라도 조금만 바뀌면 모델이 망가진다.
- Models are Spurious : 데이터의 진정한 의미를 파악하지 못하고 결과(Arifacts)와 편향(Bias)를 암기한다.

Inductive Bias

학습 시에는 만나보지 않았던 상황에 대하여 정확한 예측을 하기 위해 사용하는 추가적인 가정

Inductive Bias

0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

Kernel			
0	-1	0	
-1	5	-1	
0	-1	0	

- Locality(spatial) Inductive bias
- Translation invariance Inductive bias

Battaglia, Peter W., et al. "Relational inductive biases, deep learning, and graph networks." arXiv preprint arXiv:1806.01261 (2018).

Transformer

2 Method

- 1. Mobile-ViT Architecture
- 2. Mobile-ViT Block
- 3. Additional Features

Method Mobile-ViT Architecture

long range non-local dependencies

long range non-local dependencies

Method Additional Features

- Relationship to convolutions (unfold → matrix multiplication → fold)
- Light weight
- Multi-scale Sampler for Training Efficiency

Transformer

3 _ Experiments

- 1. Model variants
- 2. Experiments results

Experiments Model variants

Model	# Params.	Top-1	Top-5
MobileViT-XXS	1.3 M	69.0	88.9
MobileViT-XS	2.3 M	74.8	92.3
MobileViT-S	5.6 M	78.4	94.1

(c) Validation accuracy

(d) Parameter distribution

Figure 3: MobileViT shows similar generalization capabilities as CNNs. Final training and validation errors of MobileNetv2 and ResNet-50 are marked with ★ and ○, respectively (§B).

Experiments Experiments results

(a) Comparison with light-weight CNNs

Model	# Params. 🎚	Top-1 ↑
MobileNetv1	2.6 M	68.4
MobileNetv2	2.6 M	69.8
MobileNetv3	2.5 M	67.4
ShuffleNetv2	2.3 M	69.4
ESPNetv2	2.3 M	69.2
MobileViT-XS (Ours)	2.3 M	74.8

(b) Comparison with light-weight CNNs (similar parameters)

Model	# Params. 🄱	Top-1
DenseNet-169	14 M	76.2
EfficientNet-B0	5.3 M	76.3
ResNet-101	44.5 M	77.4
ResNet-101-SE	49.3 M	77.6
MobileViT-S (Ours)	5.6 M	78.4

(c) Comparison with heavy-weight CNNs

Figure 6: MobileViT vs. CNNs on ImageNet-1k validation set. All models use basic augmentation.

Experiments Experiments results

Row #	Model	Augmentation	# Params. U	Top-1 ↑
R1	DeIT	Basic	5.7 M	68.7
R2	T2T	Advanced	4.3 M	71.7
R3	DeIT	Advanced	5.7 M	72.2
R4	PiT	Basic	10.6 M	72.4
R5	Mobile-former	Advanced	4.6 M	72.8
R6	PiT	Advanced	4.9 M	73.0
R7	CrossViT	Advanced	6.9 M	73.4
R8	MobileViT-XS (Ours)	Basic	2.3 M	74.8
R9	CeiT	Advanced	6.4 M	76.4
R10	DeIT	Advanced	10 M	75.9
R11	T2T	Advanced	6.9 M	76.5
R12	ViL	Advanced	6.7 M	76.7
R13	LocalVit	Advanced	7.7 M	76.1
R14	Mobile-former	Advanced	9.4 M	76.7
R15	PVT	Advanced	13.2 M	75.1
R16	ConViT	Advanced	10 M	76.7
R17	PiT	Advanced	10.6 M	78.1
R18	BoTNet	Basic	20.8 M	77.0
R19	BoTNet	Advanced	20.8 M	78.3
R20	MobileViT-S (Ours)	Basic	5.6 M	78.4

Figure 7: MobileViT vs. ViTs on ImageNet-1k validation set. Here, basic means ResNet-style augmentation while advanced means a combination of augmentation methods with basic (e.g., MixUp (Zhang et al., 2018), RandAugmentation (Cubuk et al., 2019), and CutMix (Zhong et al., 2020)).

Experiments Experiments results

Feature backbone	# Params. 🎚	mAP ↑
MobileNetv3	4.9 M	22.0
MobileNetv2	4.3 M	22.1
MobileNetv1	5.1 M	22.2
MixNet	4.5 M	22.3
MNASNet	4.9 M	23.0
MobileViT-XS (Ours)	2.7 M	24.8
MobileViT-S (Ours)	5.7 M	27.7

(a) Comparison w/ light-weight CNNs

Feature backbone	# Params. 🎚	mAP ↑
VGG	35.6 M	25.1
ResNet50	22.9 M	25.2
MobileViT-S (Ours)	5.7 M	27.7

(b) Comparison w/ heavy-weight CNNs

Feature backbone	# Params. U	mIOU 🕆
MobileNetv1	11.2 M	75.3
MobileNetv2	4.5 M	75.7
MobileViT-XXS (Ours)	1.9 M	73.6
MobileViT-XS (Ours)	2.9 M	77.1
ResNet-101	58.2 M	80.5
MobileViT-S (Ours)	6.4 M	79.1

Detection

Segmentation

감사합니다

Thank you

good slide