Christopher John Frederick Cameron

With the advent of the Chromosome Conformation Capture (3C) technologies, the ability to quantify long-range interactions of genomic loci at high-resolution has become possible. My Ph.D. dissertation focuses on this biochemical technology (in particular, 3C Carbon-Copy [5C] and high-throughput [Hi-C]) by using novel implementations of statistical modeling, machine learning, and bioinformatics approaches to understand how cells regulate themselves through the organization of chromatin's higher-order structures.

Keywords: bioinformatics, 4D regulatory genomics, AI specialist

Contact information

christopher dot cameron at mail dot mcgill dot ca https://ccameron.github.io/

Positions held

2019-Present	Postdoctoral Researcher
	Department of Molecular Biophysics and Biochemistry, Yale University
2013-2019	Research Assistant
	School of Computer Science, McGill University
2017	Course Lecturer
	School of Computer Science, McGill University
2013-2017	Teaching Assistant
	School of Computer Science, McGill University
2012-2013	Graduate Service Assistant
	School of Computer Science, University of Guelph

Education

2019-Present	Postdoctoral Researcher
	Yale University, New Haven, USA
	Advisors: Mark Gerstein and Yong Xiong
2013-2019	Ph.D. in Computer Science (conc. in Bioinformatics)
	McGill University, Montréal, Canada
	Thesis: High-resolution computational analysis of chromatin architecture and
	function
	Advisors: Mathieu Blanchette and Josée Dostie
2012-2014	M.Sc. in Bioinformatics (February 2014)
	University of Guelph, Guelph, Canada
	Thesis: Tissue-to-plasma Partition Coefficient Prediction by a Multi-channel
	Restricted Boltzmann Machine
	Advisors: Andrea Edginton, Ronald Johnson, and Stefan Kremer
2006-2012	B.Sc. in Biomedical Toxicology (February 2012)
	University of Guelph, Guelph, Canada
	Thesis: Molecular Graph Neural Networks for Toxicology
	Advisor: Stefan Kremer

¹ McGill School of Computer Science and Centre for Bioinformatics, McGill University

² Department of Biochemistry and Goodman Cancer Research Centre, McGill University

Journal publications

*co-first authors

- 6. Bonetti A., Agostini F., Hashimoto K., Suzuki A.M., Pascarella G., Gimenez J., Arner E., Cameron C.J.F., et al. (2018) RADICL-seq, a novel methodology for identifying genomewide RNA-chromatin interactions. In preparation for submission to Nature Genetics.
- 5. <u>Cameron C.J.F.</u>, Dostie J., and Blanchette M. (2018) **Estimating DNA-DNA interaction frequency from Hi-C data at restriction-fragment resolution**. *In review at Genome Biology*. doi:10.1101/377523
- 4. Wang X.Q.D.*, <u>Cameron C.J.F.</u>*, Paquette D., Segal D., Warsaba R., Blanchette M., and Dostie J. (2019) **2C-ChIP: measuring chromatin immunoprecipitation signal from defined genomic regions with deep sequencing**. *BMC Genomics*, **20**:162. doi:10.1186/s12864-019-5532-5
- 3. Roche P.J.R., Gytz H., Hussain F., <u>Cameron C.J.F.</u>, Paquette D., Blanchette M., Dostie J., Nagar B., and Akavia U.D. (2018) **Double-Stranded Biotinylated Donor Enhances Homology-Directed Repair in Combination with Cas9 Monoavidin in Mammalian Cells**. *The CRISPR Journal*, 1(6). doi:10.1089/crispr.2018.0045
- 2. Malina A. <u>Cameron C.J.F.</u>, Robert F., Blanchette M., Dostie J., and Pelletier J. (2015) **PAM multiplicity marks genomic target sites as inhibitory to CRISPR/Cas9 editing**. *Nature Communications*, **6**:10124. doi:10.1038/ncomms10124
- 1. Ma E.Y.T., <u>Cameron C.J.F.</u>, and Kremer S.C. (2010) Classifying and scoring of molecules with the NGN: new data sets, significance tests, and generalization. *BMC Bioinformatics*, **11**(Suppl 8):S4. doi:10.1186/1471-2105-11-S8-S4

Peer-reviewed conference papers

1. <u>Cameron C.J.F.</u>, Ma E.Y.T., and Kremer S.C. (2010) **Neural Grammar Networks for Toxicology**. *In Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)*, 2010 IEEE Symposium on: 1-8. doi:10.1109/CIBCB.2010.5510322

Conferences with abstract submission

- 9. <u>Cameron C.J.F.</u>, Dostie J., and Blanchette M. (2018) **Prediction of complete Hi-C interaction** matrices from sequence-based determinants. *IRIC 2018 Annual Symposium*, Montréal, Canada
- 8. <u>Cameron C.J.F.</u>, Dostie J., and Blanchette M. (2018) **Prediction of complete Hi-C contact maps** from genomic sequence. *SCS and RegSys COSI at ISMB 2018*, Chicago, USA
- 7. <u>Cameron C.J.F.</u>, Dostie J., and Blanchette M. (2018) **Prediction of complete Hi-C contact maps** from genomic sequence alone. *RECOMB 2018*, Paris, France
- Cameron C.J.F., Dostie J., and Blanchette M. (2017) High-resolution estimation of true DNA-DNA interaction frequency from Hi-C data. SCS and RegGen COSI at ISMB/ECCB 2017, Prague, Czech Republic
- 5. <u>Cameron C.J.F.</u>, Dostie J., and Blanchette M. (2016) **Improved Hi-C Contact Maps by Adaptive Density Estimation**. *MRCCT 1st International Symposium on Immunogenetics of Infectious and Inflammatory Diseases*, Montréal, Canada (Ph.D. poster prize)
- 4. <u>Cameron C.J.F.</u>, Blanchette M., De Hoon M., and Dostie J. (2016) **Identifying ncRNA Drivers of Architectural Change in Chromatin**. *RNA2016*, Kyoto, Japan
- 3. <u>Cameron C.J.F.</u>, Dostie J., and Blanchette M. (2016) **Improved Hi-C Contact Maps by Adaptive Density Estimation**. *GLBIO/CCBC 2016*, Toronto, Canada
- 2. <u>Cameron C.J.F.</u>, Kaplan M., Drouin A., and Blanchette M. (2016) **Linking Transposable Elements** to Chromatin Architecture in *Arabidopsis thaliana*. *GLBIO/CCBC 2016*, Toronto, Canada
- 1. Cameron C.J.F., Fraser J., Dostie J., and Blanchette M. (2014) Chromosome conformation capture data improves long-range eQTL prediction. 2014 CSHL Conference on Epigenetics & Chromatin, Huntington, USA

Book chapters, reviews, and non-refereed publications

- Cameron C.J.F., Fraser J., Blanchette M., and Dostie J. (2016) Mapping and Visualizing Spatial Genome Organization. In: Bazett-Jones D., Dellaire G. (eds) The Functional Nucleus. Springer, Cham. doi:10.1007/978-3-319-38882-3_16
- 1. Marhon S.A., <u>Cameron C.J.F.</u>, and Kremer S.C. (2013) Recurrent Neural Networks. In: Bianchini M., Maggini M., Jain L. (eds) Handbook on Neural Information Processing. *Intelligent Systems Reference Library, vol 49. Springer, Berlin, Heidelberg.* doi:10.1007/978-3-642-36657-4_2

Invited talks

- 3. (July 2017) **The future of Hi-C**. Birds of a Feather panel discussion at ISMB/ECCB 2017, Prague, Czech Republic
- 2. (April 2017) **High-resolution estimation of DNA-DNA contact frequency from Hi-C data**. The Physical Basis of Functional Genome Organization: Genome organization as viewed by molecular and visual techniques, Holetown, Barbados
- 1. (August 2016) **The 3D Genome**. Beijing Institute of Genomics (BIG) at the Chinese Academy of Sciences, Beijing, China

Awards and scholarships

2017-2019	Walter Sumner Fellowship, Walter Sumner Foundation
2018	Travel Fellowship Award for ISCB Student Council Symposium, ISCB SCS
2017	Graduate Research Enhancement and Travel Award, McGill University
2017	Graduate Mobility Award, McGill University
2016	Mitacs Globalink Research Award - Japan Society for the Promotion of Science
	(JSPS), $Mitacs/JSPS$
2013-2014	Grad Excellence Award in Computer Science, McGill University
2013-2014	Walter Hitschfeld Award - Computer Science, McGill University

Summary of teaching activities

Fall 2017	COMP 364: Computer Tools for Life Sciences, McGill University (with C.G.
	Oliver)