# **Data Analysis**

26820228

10/08/2021

#### **Information**

Please refer to 'Data Cleaning' script prior to accessing this script.

#### Setup

```
knitr::opts_chunk$set(echo = TRUE)
require("knitr")

## Loading required package: knitr

opts_knit$set(root.dir = "~/Library/Mobile
Documents/com~apple~CloudDocs/Documents/Uni/Masters/Empirical
Project/Code/Empirical_Project")

# turn off scientific notation
options(scipen = 999)
```

#### **Load Libraries**

```
library("ggplot2") # for figures
library("psych") # for Cronbach's alpha, for describe function
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
##
      %+%, alpha
library("ppcor") # for partial correlation p-values
## Loading required package: MASS
library("dplyr") # for mutate function
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
##
##
       select
```

```
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
library("ggpubr") # for qq-plots
library("GGally") # for scatterplot matrix
## Registered S3 method overwritten by 'GGally':
    method from
##
     +.gg ggplot2
library("effsize") # for calculation of effect size
##
## Attaching package: 'effsize'
## The following object is masked from 'package:psych':
##
##
       cohen.d
library("pwr") # for power calculation
library("performance") # for assessing robustness of model
library("effsize") # for eta squared
library("reshape2") # for transforming data from wide to long format
library("tidyverse") # for data cleaning
## — Attaching packages -
                                                                - tidyverse
1.3.1 ---
## √ tibble 3.1.3
                       √ purrr
                                 0.3.4
## √ tidyr
             1.1.3
                      √ stringr 1.4.0
## √ readr
             2.0.0
                       ✓ forcats 0.5.1
## — Conflicts —
tidyverse_conflicts() ---
## x psych::%+%() masks ggplot2::%+%()
## x psych::alpha() masks ggplot2::alpha()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## x dplyr::select() masks MASS::select()
library("rstatix") # for ANOVA and ANCOVA
##
## Attaching package: 'rstatix'
```

```
## The following object is masked from 'package:MASS':
##
##
       select
## The following object is masked from 'package:stats':
##
##
       filter
library("gridExtra") # for grid.arrange function
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
       combine
library("car") # for Levene's test
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:purrr':
##
##
       some
## The following object is masked from 'package:dplyr':
##
##
       recode
## The following object is masked from 'package:psych':
##
##
       logit
library("emmeans") # to obtain estimated marginal means
##
## Attaching package: 'emmeans'
## The following object is masked from 'package:GGally':
##
##
       pigs
```

# **Set Working Directory**

```
# please change this to your own working directory path
setwd("~/Library/Mobile
Documents/com~apple~CloudDocs/Documents/Uni/Masters/Empirical
Project/Code/Empirical_Project")
```

#### Read in Data and Save Data to an Object

```
# please change this to however you have stored the data file
# reading in dataframe 2, as this is the one with exclusion of n = 5
df <- read.csv(file = "data/cleaned/dataframe_2.csv", header = TRUE,
na.strings = "NA")</pre>
```

```
Change Variable Classifications
# change variable classifications to meet requirements for later analyses
# ensure IVs and categorical variables are factor variables
# and DVs or continuous variables are numeric variables
# participant id and demographics
df$id <- factor(df$id)</pre>
df$age <- as.numeric(df$age)</pre>
df$sex <- factor(df$sex)</pre>
df$ethnicity <- factor(df$ethnicity)</pre>
df$sexual_orientation <- factor(df$sexual_orientation)</pre>
# fixation count DVs
df$acq csp fix count <- as.numeric(df$acq csp fix count)</pre>
df$acq_csm_fix_count <- as.numeric(df$acq_csm_fix_count)</pre>
df$ext_csp_fix_count <- as.numeric(df$ext_csp_fix_count)</pre>
df$ext_csm_fix_count <- as.numeric(df$ext_csm_fix_count)</pre>
df$e_ext_csp_fix_count <- as.numeric(df$e_ext_csp_fix_count)</pre>
df$1_ext_csp_fix_count <- as.numeric(df$1 ext csp fix count)</pre>
df$e ext csm fix count <- as.numeric(df$e ext csm fix count)</pre>
df$1_ext_csm_fix_count <- as.numeric(df$1_ext_csm_fix count)</pre>
# fixation duration DVs
df$acq_csp_fix_duration <- as.numeric(df$acq_csp_fix_duration)</pre>
df$acq_csm_fix_duration <- as.numeric(df$acq_csm_fix_duration)</pre>
df$ext_csp_fix_duration <- as.numeric(df$ext_csp_fix_duration)</pre>
df$ext_csm_fix_duration <- as.numeric(df$ext_csm_fix_duration)</pre>
df$e ext csp fix duration <- as.numeric(df$e ext csp fix duration)</pre>
df$1 ext csp fix duration <- as.numeric(df$1 ext csp fix duration)</pre>
df$e_ext_csm_fix_duration <- as.numeric(df$e_ext_csm_fix_duration)</pre>
df$1 ext csm fix duration <- as.numeric(df$1 ext csm fix duration)</pre>
# saccade amplitude DVs
df$acq_csp_sacc_amplitude <- as.numeric(df$acq_csp_sacc_amplitude)</pre>
df$acq_csm_sacc_amplitude <- as.numeric(df$acq_csm_sacc_amplitude)</pre>
df$ext_csp_sacc_amplitude <- as.numeric(df$ext_csp_sacc_amplitude)</pre>
df$ext csm sacc amplitude <- as.numeric(df$ext csm sacc amplitude)</pre>
df$e_ext_csp_sacc_amplitude <- as.numeric(df$e_ext_csp_sacc_amplitude)</pre>
df$1 ext csp sacc amplitude <- as.numeric(df$1 ext csp sacc amplitude)</pre>
df$e ext csm sacc amplitude <- as.numeric(df$e ext csm sacc amplitude)</pre>
df$1_ext_csm_sacc_amplitude <- as.numeric(df$1_ext_csm_sacc_amplitude)</pre>
```

### **Internal Consistency of IUS and STICSA**

```
## IUS total
# compute & extract alpha value and save as an object
alpha_ius <- psych::alpha(df[, c("ius_1", "ius_2", "ius_3", "ius_4",</pre>
                                          "ius_5", "ius_6", "ius_7", "ius_8",
"ius_9", "ius_10", "ius_11", "ius_12",
"ius_13", "ius_14", "ius_15",
"ius 16",
                                           "ius 17", "ius_18", "ius_19",
"ius 20",
                                           "ius_21", "ius_22", "ius_23",
"ius 24",
                                           "ius 25", "ius 26",
"ius_27")])$total[1]
## STICSA total
# compute & extract alpha value and save as an object
alpha_sticsa <- psych::alpha(df[, c("sticsa_1", "sticsa_2", "sticsa_3",
"sticsa_4",
                                           "sticsa 5", "sticsa_6", "sticsa_7",
"sticsa 8",
                                           "sticsa_9", "sticsa_10", "sticsa_11",
"sticsa 12",
                                           "sticsa_13", "sticsa_14", "sticsa_15",
"sticsa 16",
                                           "sticsa 17", "sticsa 18", "sticsa 19",
"sticsa 20",
                                           "sticsa_21")])$total[1]
# create table of both Crobach's alpha values
cronbachs alpha questionnaires <- rbind(alpha ius, alpha sticsa)</pre>
# clean up row and column names for easier interpretation
rownames(cronbachs_alpha_questionnaires) <- c("IUS-27", "STICSA")</pre>
colnames(cronbachs_alpha_questionnaires) <- "Cronbach's Alpha"</pre>
# obtain Cronbach's alpha table
cronbachs alpha questionnaires
##
          Cronbach's Alpha
## IUS-27
                  0.9496736
## STICSA
                  0.8766597
```

# **Compute Questionnaire Totals**

```
#### IUS total
# all items, no reverse scoring
df$ius_total <- as.numeric(df$ius_1 + df$ius_2 + df$ius_3 + df$ius_4 +
df$ius_5 +</pre>
```

# Create High / Low IU Classifications

```
# compute variable classifying participants as high/ low IU on basis of
median split,
# and store as factor
df$iu_group <- factor(ifelse(df$ius_total >= 65, 1, -1))
# high IU = 1
# low IU = -1
```

# Check Distribution and Range to Identify Extreme Scores and Potential Data Errors in Questionnaires

# For IUS 27 Total in Both Groups

```
# possible total scores for the IUS range from 27-135
############################## check distributions
hist ius total <- df %>%
  ggplot(aes(ius_total, fill = iu_group)) +
  geom_histogram(binwidth = 5, colour = "white", alpha = .5, position =
"identity") +
  theme classic() +
  theme(text = element text(family = "serif"),
         plot.title = element_text(face = "bold", hjust = 0.5, size = 15)) +
  scale_x_continuous(breaks = seq(20, 140, 10)) +
  labs(x = "IUS-27 Total", y = "Frequency") +
  theme(plot.title = element text(face = "bold", hjust = 0.5, size = 12)) +
  ggtitle("Histogram of IUS-27 Scores") +
  theme(legend.position = "bottom", legend.title = element_text(face =
"bold")) +
  guides(fill = guide legend(reverse = TRUE)) +
```

```
scale_fill_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
 labs(fill = "IU Group")
hist_ius_total
```





IU Group High IU Low IU

```
# save plot to file
ggsave(filename = "graphs/histograms/hist_ius_total.png",
       plot = hist_ius_total,
       width = 20,
       height = 10,
       dpi = 300,
       units = "cm")
#################### check ranges
range_ius_total <- by(df$ius_total, df$iu_group, range)</pre>
range_ius_total
## df$iu_group: -1
## [1] 32 64
## ----
## df$iu group: 1
## [1] 65 125
```

```
# for high IU: 65-125
# for low IU: 32-64
##### overall: all scores are in range of possible scores, no errors apparent
```

### For STICSA Total in Both Groups

```
# possible total scores for the STICSA range from 21-84
############################## check distributions
hist sticsa total <- df %>%
  ggplot(aes(sticsa_total, fill = iu_group)) +
  geom_histogram(binwidth = 5, colour = "white", alpha = .5, position =
"identity") +
  theme classic() +
  theme(text = element_text(family = "serif"),
         plot.title = element_text(face = "bold", hjust = 0.5, size = 15)) +
  scale_x_continuous(breaks = seq(20, 90, 10)) +
  labs(x = "STICSA Total", y = "Frequency") +
  theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
  ggtitle("Histogram of STICSA Scores") +
  theme(legend.position = "bottom", legend.title = element_text(face =
"bold")) +
  guides(fill = guide_legend(reverse = TRUE)) +
  scale_fill_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
  labs(fill = "IU Group")
hist_sticsa_total
```

# Histogram of STICSA Scores



```
# save plot to file
ggsave(filename = "graphs/histograms/hist_sticsa_total.png",
       plot = hist_sticsa_total,
       width = 20,
       height = 10,
       dpi = 300,
       units = "cm")
#################### check ranges
range_sticsa_total <- by(df$sticsa_total, df$iu_group, range)</pre>
range_sticsa_total
## df$iu_group: -1
## [1] 22 57
## df$iu_group: 1
## [1] 30 69
# for high IU: 30-69
# for Low IU: 22-57
##### overall: all scores are in range of possible scores, no errors apparent
```

**Compute Demographics** 

```
#### for age
# for all participants
all_age_table <-
  describe(df[, "age"])
# for high IU
high iu age table <-
  describe(df[df$iu group =="1", "age"])
# for Low IU
low iu age table <-
  describe(df[df$iu_group =="-1", "age"])
# combine in a table
age table <- rbind(all age table, high iu age table, low iu age table)
# re-name rows for easier interpretation
rownames(age_table) <- c("Age (All Participants", "Age (High IU Group)",</pre>
                          "Age (Low IU Group)")
### for sex
sex_table <- xtabs(~ iu_group + sex, data = df)</pre>
sex table <- prop.table(sex table) %>%
  round(digits = 4) * 100
rownames(sex table) <- c("Low IU", "High IU")</pre>
sex_table
##
            sex
## iu_group Female Male
     Low IU
             26.28 24.82
##
     High IU 34.31 14.60
### for sexual orientation
sexual_orientation_table <- xtabs(~ iu_group + sexual_orientation, data = df)</pre>
sexual orientation table <- prop.table(sexual orientation table) %>%
  round(digits = 4) * 100
rownames(sexual orientation table) <- c("Low IU", "High IU")</pre>
sexual orientation table
##
            sexual_orientation
## iu_group Heterosexual Sexual Minority
     Low IU
                   42.15
                                      7.44
##
     High IU
                   42.98
                                      7.44
### for ethnicity
ethnicity table <- xtabs(~ iu group + ethnicity, data = df)
ethnicity table <- prop.table(ethnicity table) %>%
round(digits = 4) * 100
```

```
rownames(ethnicity table) <- c("Low IU", "High IU")</pre>
ethnicity_table
##
           ethnicity
## iu group Asian Black Middle Eastern/ Arab Mixed White
## Low IU 7.26 1.61
                                        2.42 0.81 37.90
##
    High IU 16.13 0.00
                                         0.81 0.81 32.26
#### write each to csv
# age
write.csv(age_table, file = "tables/demographics/age_table.csv",
          row.names = TRUE)
# ethnicity
write.csv(ethnicity table, file = "tables/demographics/ethnicity table.csv",
          row.names = TRUE)
# sex
write.csv(sex_table, file = "tables/demographics/sex_table.csv",
          row.names = TRUE)
# sexual orientation
write.csv(sexual orientation table, file =
"tables/demographics/sexual_orientation_table.csv",
         row.names = TRUE)
```

# Check for Difference in Demographics Between Groups

# Check for Difference in Age Between Groups

# Q-Q Plot Age

iu\_group -- -1 -- 1



```
# save plot to file
ggsave(filename = "graphs/qqplots/qqplot_age.png",
       plot = qqplot_age,
       width = 20,
       height = 10,
       dpi = 300,
       units = "cm")
## Warning: Removed 1 rows containing non-finite values (stat_qq).
## Warning: Removed 1 rows containing non-finite values (stat_qq_line).
## Warning: Removed 1 rows containing non-finite values (stat_qq_line).
# check significance of data for both groups using Shapiro-Wilk Test
shapiro_age <- by(df$age, df$iu_group, shapiro.test)</pre>
shapiro_age
## df$iu group: -1
##
##
   Shapiro-Wilk normality test
##
## data: dd[x, ]
## W = 0.95698, p-value = 0.016
```

```
##
## df$iu_group: 1
##
##
   Shapiro-Wilk normality test
##
## data: dd[x, ]
## W = 0.88408, p-value = 0.00001422
# high IU: p-value < .05, data violate assumption of normality
# low IU: p-value < .05, data violate assumption of normality
## check assumption of homogeneity of variances using Bartlett Test ##
bartlett age <- bartlett.test(age ~ iu group, data = df)
bartlett_age
##
   Bartlett test of homogeneity of variances
## data: age by iu_group
## Bartlett's K-squared = 0.27665, df = 1, p-value = 0.5989
# p-value > .05, data meet assumption of equal variances
## compute independent samples t.test ##
# as data violate assumption of normality,
# use non-parametric Mann Whitney U
# compute t.test and assign values to an object
age_groupdiff <- wilcox.test(age ~ iu_group, data = df, paired = FALSE)</pre>
# obtain t.test values
age_groupdiff
##
## Wilcoxon rank sum test with continuity correction
## data: age by iu_group
## W = 2585.5, p-value = 0.3773
## alternative hypothesis: true location shift is not equal to 0
# p-value > .05, there is no statistical difference in age between groups
Check for Difference in Ethnicity Between Groups
# compute chi-square of cross-tabulation and save as object
chi_ethnicity <- chisq.test(table(df$iu_group, df$ethnicity))</pre>
## Warning in chisq.test(table(df$iu_group, df$ethnicity)): Chi-squared
## approximation may be incorrect
```

```
# check assumption of chi-square
chi_ethnicity$expected
##
##
       Asian Black Middle Eastern/ Arab Mixed White
     -1 14.5
                                       2
##
         14.5
                                       2
                                             1 43.5
# multiple cells with values less than 5, does not meet assumptions
# and therefore requires Fisher's Exact Test
# obtain statistic and df
chi_ethnicity
##
##
   Pearson's Chi-squared test
##
## data: table(df$iu_group, df$ethnicity)
## X-squared = 7.7356, df = 4, p-value = 0.1018
# obtain corrected p-value
chi_ethnicity_pval <- fisher.test(df$iu_group, df$ethnicity)</pre>
chi_ethnicity_pval
##
## Fisher's Exact Test for Count Data
##
## data: df$iu group and df$ethnicity
## p-value = 0.05899
## alternative hypothesis: two.sided
# p-value > .05, no evidence of statistical difference in ethnicity between
groups
```

# Check for Difference in Sex Between Groups

```
# compute chi-square of cross-tabulation and save as object
chi_sex <- chisq.test(table(df$iu_group, df$sex))

# check assumption of chi-square
chi_sex_expected <- chi_sex$expected
chi_sex_expected

##

## Female Male
## -1 42.40876 27.59124
## 1 40.59124 26.40876

# no cells less than 5, meets assumptions

# obtain statistic, df and p-value
chi_sex</pre>
```

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(df$iu_group, df$sex)
## X-squared = 4.2708, df = 1, p-value = 0.03877
# p-value < .05, there appears to be a statistical difference in sex between
groups
# therefore, obtain observed values
chi_sex_observed <- chi_sex$observed</pre>
chi_sex_observed
##
##
       Female Male
##
     -1
           36
##
    1 47
```

### Check for Difference in Sexual Orientation Between Groups

```
# compute chi-square of cross-tabulation and save as object
chi_sexual_orientation <- chisq.test(table(df$iu_group,</pre>
df$sexual_orientation))
# check assumption of chi-square
chi_sexual_orientation$expected
##
##
       Heterosexual Sexual Minority
##
           51.07438
                             8.92562
    -1
##
    1
           51.92562
                             9.07438
# no cells with values less than 5, meets assumptions
# obtain statistic and df
chi_sexual_orientation
##
##
  Pearson's Chi-squared test with Yates' continuity correction
## data: table(df$iu_group, df$sexual_orientation)
## X-squared = 0, df = 1, p-value = 1
# p-value > .05, no evidence of statistical difference in sexual orientation
between groups
```

### **Distribution Checks of Eye-Movement Variables**

### **Fixation Count**

#### **Acquisition CS+**

```
hist acg csp fix count <- df %>%
  ggplot(aes(acq csp fix count, fill = iu group)) +
  geom_histogram(binwidth = 1, colour = "white", alpha = .5, position =
"identity") +
  theme_classic() +
  theme(text = element_text(family = "serif"),
         plot.title = element_text(face = "bold", hjust = 0.5, size = 15)) +
  scale x continuous(breaks = seq(0, 30, 5)) +
  labs(x = "Fixation Count", y = "Frequency") +
  theme(plot.title = element text(face = "bold", hjust = 0.5, size = 12)) +
  ggtitle("Histogram Acquisition CS+ Fixation Count") +
  theme(legend.position = "bottom", legend.title = element_text(face =
"bold")) +
  guides(fill = guide legend(reverse = TRUE)) +
  scale_fill_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
  labs(fill = "IU Group")
hist_acq_csp_fix_count
```



Fixation Count

High IU

Low IU

IU Group

#### **Acquisition CS-**

```
scale_fill_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
  labs(fill = "IU Group")
hist_acq_csm_fix_count
```

# **Histogram Acquisition CS- Fixation Count**





```
# save plot to file
ggsave(filename = "graphs/histograms/hist_acq_csm_fix_count.png",
       plot = hist_acq_csm_fix_count,
       width = 20,
       height = 10,
       dpi = 300,
       units = "cm")
# combine acquisition fixation count graphs
hists_acq_fix_count <-
  grid.arrange(hist_acq_csp_fix_count, hist_acq_csm_fix_count,
             ncol = 2)
```

### **Histogram Acquisition CS+ Fixatio Histogram Acquisition CS- Fixation**



#### Early Extinction CS+

```
scale_fill_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
labs(fill = "IU Group")
hist e ext csp_fix count
```

### Histogram Early Extinction CS+ Fixation Count



#### **Early Extinction CS-**

```
theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
    ggtitle("Histogram Early Extinction CS- Fixation Count") +
    theme(legend.position = "bottom", legend.title = element_text(face =
    "bold")) +
    guides(fill = guide_legend(reverse = TRUE)) +
    scale_fill_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
    "High IU")) +
    labs(fill = "IU Group")
hist_e_ext_csm_fix_count
```

### Histogram Early Extinction CS- Fixation Count



#### **Late Extinction CS+**

```
hist_l_ext_csp_fix_count <- df %>%
   ggplot(aes(l_ext_csp_fix_count, fill = iu_group)) +
   geom_histogram(binwidth = 1, colour = "white", alpha = .5, position =
"identity") +
```

## **Histogram Late Extinction CS+ Fixation Count**



#### **Late Extinction CS-**

```
hist l ext csm fix count <- df %>%
  ggplot(aes(1 ext csm fix count, fill = iu group)) +
  geom_histogram(binwidth = 1, colour = "white", alpha = .5, position =
"identity") +
  theme classic() +
  theme(text = element_text(family = "serif"),
         plot.title = element text(face = "bold", hjust = 0.5, size = 15)) +
  scale_x_continuous(breaks = seq(0, 30, 5)) +
  labs(x = "Fixation Count", y = "Frequency") +
  theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
  ggtitle("Histogram Late Extinction CS- Fixation Count") +
  theme(legend.position = "bottom", legend.title = element_text(face =
"bold")) +
  guides(fill = guide legend(reverse = TRUE)) +
  scale fill manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
  labs(fill = "IU Group")
hist 1 ext csm fix count
```

### Histogram Late Extinction CS- Fixation Count



### ogram Early Extinction CS+ FixHtstogram Early Extinction CS- Fixati



### ogram Late Extinction CS+ Fixatiotogram Late Extinction CS- Fixatio



#### **Fixation Duration**

#### **Acquisition CS+**

```
hist acq csp fix duration <- df %>%
  ggplot(aes(acq_csp_fix_duration, fill = iu_group)) +
  geom histogram(binwidth = 220, colour = "white", alpha = .5, position =
"identity") +
  theme classic() +
  theme(text = element_text(family = "serif"),
         plot.title = element_text(face = "bold", hjust = 0.5, size = 15)) +
  scale x continuous(breaks = seq(0, 6000, 1000)) +
  labs(x = "Fixation Duration (ms)", y = "Frequency") +
  theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
  ggtitle("Histogram Acquisition CS+ Fixation Duration") +
  theme(legend.position = "bottom", legend.title = element_text(face =
"bold")) +
  guides(fill = guide legend(reverse = TRUE)) +
  scale_fill_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
  labs(fill = "IU Group")
hist_acq_csp_fix_duration
```

### **Histogram Acquisition CS+ Fixation Duration**



#### **Acquisition CS-**

```
hist_acq_csm_fix_duration <- df %>%
  ggplot(aes(acq_csm_fix_duration, fill = iu_group)) +
  geom_histogram(binwidth = 220, colour = "white", alpha = .5, position =
"identity") +
  theme_classic() +
  theme(text = element text(family = "serif"),
         plot.title = element_text(face = "bold", hjust = 0.5, size = 15)) +
  scale_x_continuous(breaks = seq(0, 6000, 1000)) +
  labs(x = "Fixation Duration (ms)", y = "Frequency") +
  theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
  ggtitle("Histogram Acquisition CS- Fixation Duration") +
  theme(legend.position = "bottom", legend.title = element_text(face =
"bold")) +
  guides(fill = guide_legend(reverse = TRUE)) +
  scale fill manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
  labs(fill = "IU Group")
hist_acq_csm_fix_duration
```

# **Histogram Acquisition CS- Fixation Duration**



### stogram Acquisition CS+ Fixatio HIstogram Acquisition CS- Fixation D



#### Early Extinction CS+

```
scale_fill_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
labs(fill = "IU Group")
hist e ext csp_fix duration
```

### Histogram Early Extinction CS+ Fixation Duration



```
IU Group High IU Low IU
```

### **Early Extinction CS-**

```
theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
    ggtitle("Histogram Early Extinction CS- Fixation Duration") +
    theme(legend.position = "bottom", legend.title = element_text(face =
"bold")) +
    guides(fill = guide_legend(reverse = TRUE)) +
    scale_fill_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
    labs(fill = "IU Group")
hist_e_ext_csm_fix_duration
```

### Histogram Early Extinction CS- Fixation Duration



#### Late Extinction CS+

```
hist_l_ext_csp_fix_duration <- df %>%
   ggplot(aes(l_ext_csp_fix_duration, fill = iu_group)) +
   geom_histogram(binwidth = 220, colour = "white", alpha = .5, position =
"identity") +
```

## Histogram Late Extinction CS+ Fixation Duration



```
IU Group High IU Low IU
```

#### **Late Extinction CS-**

```
hist l ext csm fix duration <- df %>%
  ggplot(aes(1 ext csm fix duration, fill = iu group)) +
  geom_histogram(binwidth = 220, colour = "white", alpha = .5, position =
"identity") +
  theme classic() +
  theme(text = element_text(family = "serif"),
         plot.title = element_text(face = "bold", hjust = 0.5, size = 15)) +
  scale_x_continuous(breaks = seq(0, 6000, 1000)) +
  labs(x = "Fixation Duration (ms)", y = "Frequency") +
  theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
  ggtitle("Histogram Late Extinction CS- Fixation Duration") +
  theme(legend.position = "bottom", legend.title = element_text(face =
"bold")) +
  guides(fill = guide legend(reverse = TRUE)) +
  scale fill manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
  labs(fill = "IU Group")
hist 1 ext csm fix duration
```

# **Histogram Late Extinction CS- Fixation Duration**



### gram Early Extinction CS+ Fixitimgram Early Extinction CS- Fixation



### gram Late Extinction CS+ Fixhlistogram Late Extinction CS- Fixation



### **Saccade Amplitude**

#### **Acquisition CS+**

```
hist_acq_csp_sacc_amplitude <- df %>%
  ggplot(aes(acq_csp_sacc_amplitude, fill = iu_group)) +
  geom_histogram(binwidth = .5, colour = "white", alpha = .5, position =
"identity") +
  theme classic() +
  theme(text = element_text(family = "serif"),
         plot.title = element_text(face = "bold", hjust = 0.5, size = 15)) +
  scale x continuous(breaks = seq(0, 10, 2)) +
  labs(x = "Saccade Amplitude (deg/ms)", y = "Frequency") +
  theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
  ggtitle("Histogram Acquisition CS+ Saccade Amplitude") +
  theme(legend.position = "bottom", legend.title = element_text(face =
"bold")) +
  guides(fill = guide legend(reverse = TRUE)) +
  scale_fill_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
  labs(fill = "IU Group")
hist_acq_csp_sacc_amplitude
```

### Histogram Acquisition CS+ Saccade Amplitude



#### **Acquisition CS-**

```
hist acq csm sacc amplitude <- df %>%
  ggplot(aes(acq_csm_sacc_amplitude, fill = iu_group)) +
  geom_histogram(binwidth = .5, colour = "white", alpha = .5, position =
"identity") +
  theme classic() +
  theme(text = element_text(family = "serif"),
         plot.title = element text(face = "bold", hjust = 0.5, size = 15)) +
  scale_x_continuous(breaks = seq(0, 10, 2)) +
  labs(x = "Saccade Amplitude (deg/ms)", y = "Frequency") +
  theme(plot.title = element text(face = "bold", hjust = 0.5, size = 12)) +
  ggtitle("Histogram Acquisition CS- Saccade Amplitude") +
  theme(legend.position = "bottom", legend.title = element_text(face =
"bold")) +
  guides(fill = guide legend(reverse = TRUE)) +
  scale_fill_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
  labs(fill = "IU Group")
hist_acq_csm_sacc_amplitude
## Warning: Removed 2 rows containing non-finite values (stat bin).
```

# Histogram Acquisition CS- Saccade Amplitude



## togram Acquisition CS+ Saccad Hastogram Acquisition CS- Saccade Aı



#### Early Extinction CS+

```
scale_fill_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
  labs(fill = "IU Group")
hist_e_ext_csp_sacc_amplitude
## Warning: Removed 1 rows containing non-finite values (stat_bin).
```

#### Histogram Early Extinction CS+ Saccade Amplitude



IU Group High IU

```
# save plot to file
ggsave(filename = "graphs/histograms/hist_e_ext_csp_sacc_amplitude.png",
       plot = hist e ext csp sacc amplitude,
       width = 20,
       height = 10,
       dpi = 300,
       units = "cm")
## Warning: Removed 1 rows containing non-finite values (stat_bin).
```

#### **Early Extinction CS-**

```
hist_e_ext_csm_sacc_amplitude <- df %>%
  ggplot(aes(e ext csm sacc amplitude, fill = iu group)) +
  geom_histogram(binwidth = .5, colour = "white", alpha = .5, position =
"identity") +
  theme classic() +
 theme(text = element_text(family = "serif"),
```

```
plot.title = element_text(face = "bold", hjust = 0.5, size = 15)) +
scale_x_continuous(breaks = seq(0, 14, 2)) +
labs(x = "Saccade Amplitude (deg/ms)", y = "Frequency") +
theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
ggtitle("Histogram Early Extinction CS- Saccade Amplitude") +
theme(legend.position = "bottom", legend.title = element_text(face =
"bold")) +
guides(fill = guide_legend(reverse = TRUE)) +
scale_fill_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
labs(fill = "IU Group")
hist_e_ext_csm_sacc_amplitude
## Warning: Removed 1 rows containing non-finite values (stat_bin).
```

## Histogram Early Extinction CS- Saccade Amplitude



#### **Late Extinction CS+**

```
hist_l_ext_csp_sacc_amplitude <- df %>%
  ggplot(aes(l_ext_csp_sacc_amplitude, fill = iu_group)) +
  geom histogram(binwidth = .5, colour = "white", alpha = .5, position =
"identity") +
  theme_classic() +
  theme(text = element_text(family = "serif"),
         plot.title = element text(face = "bold", hjust = 0.5, size = 15)) +
  scale_x_continuous(breaks = seq(0, 14, 2)) +
  labs(x = "Saccade Amplitude (deg/ms)", y = "Frequency") +
  theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
  ggtitle("Histogram Late Extinction CS+ Saccade Amplitude") +
  theme(legend.position = "bottom", legend.title = element_text(face =
"bold")) +
  guides(fill = guide legend(reverse = TRUE)) +
  scale_fill_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
  labs(fill = "IU Group")
hist 1 ext csp sacc amplitude
## Warning: Removed 1 rows containing non-finite values (stat_bin).
```

## Histogram Late Extinction CS+ Saccade Amplitude



#### Late Extinction CS-

```
hist l ext csm sacc amplitude <- df %>%
  ggplot(aes(1 ext_csm_sacc_amplitude, fill = iu_group)) +
  geom histogram(binwidth = .5, colour = "white", alpha = .5, position =
"identity") +
  theme classic() +
  theme(text = element text(family = "serif"),
         plot.title = element_text(face = "bold", hjust = 0.5, size = 15)) +
  scale x continuous(breaks = seq(0, 14, 2)) +
  labs(x = "Saccade Amplitude (deg/ms)", y = "Frequency") +
  theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
  ggtitle("Histogram Late Extinction CS- Saccade Amplitude") +
  theme(legend.position = "bottom", legend.title = element text(face =
"bold")) +
  guides(fill = guide legend(reverse = TRUE)) +
  scale_fill_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
  labs(fill = "IU Group")
hist 1 ext csm sacc amplitude
```

## Histogram Late Extinction CS- Saccade Amplitude



## ram Early Extinction CS+ Sallisdegram Early Extinction CS- Saccade



#### gram Late Extinction CS+ Sacklistogram Late Extinction CS- Saccade



# **Descriptives**

## **Questionnaire Variables**

```
# for all participants
descriptives_all_questionnaires <-
    describe(df[, c("ius_total", "sticsa_total")], na.rm = TRUE)

# for high IU group
descriptives_high_iu_questionnaires <-
    describe(df[df$iu_group == "1", c("ius_total", "sticsa_total")], na.rm =
TRUE)

# for Low IU group</pre>
```

```
descriptives low iu questionnaires <-
 describe(df[df$iu_group == "-1", c("ius_total", "sticsa_total")], na.rm =
TRUE)
# combine all into table
descriptives questionnaires table <-
round(rbind(descriptives_all_questionnaires,
descriptives high iu questionnaires,
descriptives_low_iu_questionnaires), 2)
# rename rows for easier interpretation
rownames(descriptives_questionnaires_table) <- c("IUS 27 (All Participants)",</pre>
                                                 "STICSA Total (All
Participants)",
                                                 "IUS 27 (High IU Group)",
                                                 "STICSA Total (High IU
Group)",
                                                 "IUS 27 (Low IU Group)",
                                                 "STICSA Total (Low IU
Group)")
descriptives questionnaires table
##
                                                     sd median trimmed
                                   vars
                                          n mean
                                                                         mad
min
## IUS 27 (All Participants)
                                     1 139 65.82 20.39
                                                          63.0
                                                                 64.27 20.76
## STICSA Total (All Participants)
                                                          39.0
                                                                 39.93 10.38
                                    2 139 40.54 9.54
22
## IUS 27 (High IU Group)
                                     1 68 82.65 14.77
                                                          78.0
                                                                 80.79 11.86
65
## STICSA Total (High IU Group)
                                     2 68 45.29 9.30
                                                          45.5
                                                                 44.77 9.64
## IUS 27 (Low IU Group)
                                                          51.0
                                                                 49.96 10.38
                                      1 71 49.70 8.51
32
                                                          35.0
## STICSA Total (Low IU Group)
                                      2 71 35.99 7.32
                                                                 35.35 5.93
22
##
                                   max range skew kurtosis
                                                              se
## IUS 27 (All Participants)
                                   125
                                          93 0.64
                                                       0.00 1.73
## STICSA Total (All Participants) 69
                                          47 0.65
                                                       0.06 0.81
## IUS 27 (High IU Group)
                                   125
                                          60 1.11
                                                      0.53 1.79
## STICSA Total (High IU Group)
                                    69
                                          39 0.47
                                                      -0.19 1.13
## IUS 27 (Low IU Group)
                                          32 -0.23
                                    64
                                                      -1.05 1.01
## STICSA Total (Low IU Group)
                                    57
                                          35 0.76
                                                      0.30 0.87
# write to csv
write.csv(descriptives questionnaires table, file =
```

```
"tables/descriptives/descriptives_questionnaires_table.csv",
row.names = TRUE)
```

## **Eye Movement Variables**

#### **Fixation Count**

```
# for all participants
descriptives all fix count <-
  describe(df[, c("acq_csp_fix_count", "acq_csm_fix_count",
                  "e_ext_csp_fix_count", "e_ext_csm_fix_count",
                  "l_ext_csp_fix_count", "l_ext_csm_fix_count")],
           na.rm = TRUE)
# for high IU group
descriptives high iu fix count <-
  describe(df[df$iu_group == "1", c("acq_csp_fix_count", "acq_csm_fix_count",
                                     "e_ext_csp_fix_count",
"e ext csm fix count",
                                     "l_ext_csp_fix_count",
"l_ext_csm_fix_count")],
           na.rm = TRUE)
# for Low IU group
descriptives low iu fix count <-
  describe(df[df$iu_group == "-1", c("acq_csp_fix_count", "acq_csm_fix_count",
                                      "e ext csp fix count",
"e ext csm fix count",
                                      "l_ext_csp_fix_count",
"l ext csm fix count")],
           na.rm = TRUE)
# combine all into table
descriptives_fix_count_table <- round(rbind(descriptives_all_fix_count,</pre>
                                             descriptives high iu fix count,
                                             descriptives low iu fix count),
2)
# rename rows for easier interpretation
rownames(descriptives fix count table) <- c("Acquisition CS+ Fix Count (All</pre>
Participants)",
                                             "Acquisition CS- Fix Count (All
Participants)",
                                             "Early Extinction CS+ Fix Count
(All Participants)",
                                             "Early Extinction CS- Fix Count
(All Participants)",
                                             "Late Extinction CS+ Fix Count
(All Participants)",
                                             "Late Extinction CS- Fix Count
```

```
(All Participants)",
                                            "Acquisition CS+ Fix Count (High
IU Group)",
                                            "Acquisition CS- Fix Count (High
IU Group)",
                                            "Early Extinction CS+ Fix Count
(High IU Group)",
                                            "Early Extinction CS- Fix Count
(High IU Group)",
                                            "Late Extinction CS+ Fix Count
(High IU Group)",
                                            "Late Extinction CS- Fix Count
(High IU Group)",
                                            "Acquisition CS+ Fix Count (Low
IU Group)",
                                            "Acquisition CS- Fix Count (Low
IU Group)",
                                            "Early Extinction CS+ Fix Count
(Low IU Group)",
                                            "Early Extinction CS- Fix Count
(Low IU Group)",
                                            "Late Extinction CS+ Fix Count
(Low IU Group)",
                                            "Late Extinction CS- Fix Count
(Low IU Group)")
descriptives fix count table
##
                                                    vars
                                                           n mean
                                                                    sd
median
## Acquisition CS+ Fix Count (All Participants)
                                                       1 139 6.90 3.65
## Acquisition CS- Fix Count (All Participants)
                                                       2 139 7.31 3.25
6.75
## Early Extinction CS+ Fix Count (All Participants)
                                                       3 139 7.16 3.70
## Early Extinction CS- Fix Count (All Participants)
                                                       4 139 7.40 3.53
6.75
## Late Extinction CS+ Fix Count (All Participants)
                                                       5 139 7.55 3.49
7.25
## Late Extinction CS- Fix Count (All Participants)
                                                       6 139 7.86 3.52
7.75
## Acquisition CS+ Fix Count (High IU Group)
                                                       1 68 7.51 3.84
## Acquisition CS- Fix Count (High IU Group)
                                                       2 68 7.97 3.07
7.79
## Early Extinction CS+ Fix Count (High IU Group)
                                                       3 68 7.54 3.26
6.75
## Early Extinction CS- Fix Count (High IU Group)
                                                       4 68 8.14 3.26
7.88
```

```
## Late Extinction CS+ Fix Count (High IU Group) 5 68 8.41 3.63
7.75
## Late Extinction CS- Fix Count (High IU Group)
                                                    6 68 8.89 3.33
8.75
## Acquisition CS+ Fix Count (Low IU Group)
                                                     1 71 6.33 3.38
5.50
## Acquisition CS- Fix Count (Low IU Group)
                                                     2 71 6.67 3.31
## Early Extinction CS+ Fix Count (Low IU Group)
                                                    3 71 6.80 4.06
6.00
## Early Extinction CS- Fix Count (Low IU Group)
                                                     4 71 6.70 3.66
## Late Extinction CS+ Fix Count (Low IU Group)
                                                    5 71 6.72 3.15
6.50
## Late Extinction CS- Fix Count (Low IU Group)
                                                     6 71 6.87 3.43
6.50
##
                                                  trimmed mad min
                                                                     max
range
## Acquisition CS+ Fix Count (All Participants)
                                                     6.57 3.71 1.50 23.17
## Acquisition CS- Fix Count (All Participants)
                                                    7.06 3.71 1.92 18.33
16.42
## Early Extinction CS+ Fix Count (All Participants)
                                                    6.75 3.71 1.50 20.50
19.00
## Early Extinction CS- Fix Count (All Participants)
                                                    7.14 3.71 1.50 21.50
## Late Extinction CS+ Fix Count (All Participants)
                                                    7.33 3.34 1.00 22.00
21.00
## Late Extinction CS- Fix Count (All Participants)
                                                    7.65 3.34 1.50 20.00
## Acquisition CS+ Fix Count (High IU Group)
                                                     7.14 3.46 2.00 23.17
## Acquisition CS- Fix Count (High IU Group)
                                                     7.78 3.21 2.92 18.33
## Early Extinction CS+ Fix Count (High IU Group)
                                                     7.26 2.97 2.25 19.25
17.00
## Early Extinction CS- Fix Count (High IU Group)
                                                     8.00 3.34 2.00 16.50
14.50
## Late Extinction CS+ Fix Count (High IU Group)
                                                     8.11 3.71 1.50 22.00
20.50
## Late Extinction CS- Fix Count (High IU Group)
                                                     8.61 2.41 3.25 20.00
16.75
## Acquisition CS+ Fix Count (Low IU Group)
                                                     6.02 3.71 1.50 15.67
## Acquisition CS- Fix Count (Low IU Group)
                                                     6.35 3.21 1.92 15.50
13.58
## Early Extinction CS+ Fix Count (Low IU Group)
                                                    6.22 3.71 1.50 20.50
## Early Extinction CS- Fix Count (Low IU Group)
                                                    6.31 3.34 1.50 21.50
20.00
```

```
## Late Extinction CS+ Fix Count (Low IU Group)
                                                         6.57 3.34 1.00 16.00
15.00
## Late Extinction CS- Fix Count (Low IU Group)
                                                         6.68 3.71 1.50 17.75
16.25
##
                                                      skew kurtosis
                                                                      se
## Acquisition CS+ Fix Count (All Participants)
                                                      1.18
                                                               2.52 0.31
## Acquisition CS- Fix Count (All Participants)
                                                      0.69
                                                               0.19 0.28
## Early Extinction CS+ Fix Count (All Participants) 1.18
                                                               1.74 0.31
## Early Extinction CS- Fix Count (All Participants) 0.82
                                                               0.96 0.30
## Late Extinction CS+ Fix Count (All Participants)
                                                      0.83
                                                               1.34 0.30
## Late Extinction CS- Fix Count (All Participants)
                                                      0.68
                                                               0.81 0.30
## Acquisition CS+ Fix Count (High IU Group)
                                                      1.43
                                                               3.48 0.47
## Acquisition CS- Fix Count (High IU Group)
                                                      0.74
                                                               0.76 0.37
## Early Extinction CS+ Fix Count (High IU Group)
                                                      1.09
                                                               1.81 0.40
## Early Extinction CS- Fix Count (High IU Group)
                                                              -0.42 0.39
                                                      0.36
## Late Extinction CS+ Fix Count (High IU Group)
                                                      1.00
                                                              1.61 0.44
## Late Extinction CS- Fix Count (High IU Group)
                                                      1.03
                                                               1.59 0.40
## Acquisition CS+ Fix Count (Low IU Group)
                                                              -0.01 0.40
                                                      0.75
## Acquisition CS- Fix Count (Low IU Group)
                                                      0.79
                                                              -0.13 0.39
## Early Extinction CS+ Fix Count (Low IU Group)
                                                               1.65 0.48
                                                      1.30
## Early Extinction CS- Fix Count (Low IU Group)
                                                      1.32
                                                               2.59 0.43
## Late Extinction CS+ Fix Count (Low IU Group)
                                                      0.47
                                                              -0.15 0.37
## Late Extinction CS- Fix Count (Low IU Group)
                                                      0.59
                                                              -0.05 0.41
# write to csv
write.csv(descriptives fix count table, file =
"tables/descriptives/descriptives fix count table.csv",
          row.names = TRUE)
```

#### **Fixation Duration**

```
# for all participants
descriptives all fix duration <-
  describe(df[, c("acq_csp_fix_duration","acq_csm_fix_duration",
                    "e_ext_csp_fix_duration", "e_ext_csm_fix_duration",
"l_ext_csp_fix_duration", "l_ext_csm_fix_duration")],
            na.rm = TRUE)
# for high IU group
descriptives_high_iu_fix_duration <-</pre>
  describe(df[df$iu_group == "1",
c("acq_csp_fix_duration","acq_csm_fix_duration",
                                         "e ext csp fix duration",
"e ext csm fix duration",
                                         "l ext_csp_fix_duration",
"l_ext_csm_fix_duration")],
            na.rm = TRUE)
# for low IU group
descriptives_low_iu_fix_duration <-</pre>
describe(df[df$iu group == "-1",
```

```
c("acq csp fix duration", "acq csm fix duration",
                                      "e ext csp fix duration",
"e_ext_csm_fix_duration",
                                      "l ext_csp_fix_duration",
"l_ext_csm_fix_duration")],
           na.rm = TRUE)
# combine all in a table
descriptives fix duration table <- round(rbind(descriptives all fix duration,
descriptives_high_iu_fix_duration,
descriptives low iu fix duration), 2)
# rename rows for easier interpretation
rownames(descriptives_fix_duration_table) <- c("Acquisition CS+ Fix Duration</pre>
(All Participants)",
                                             "Acquisition CS- Fix Duration
(All Participants)",
                                             "Early Extinction CS+ Fix
Duration (All Participants)",
                                             "Early Extinction CS- Fix
Duration (All Participants)",
                                             "Late Extinction CS+ Fix Duration
(All Participants)",
                                             "Late Extinction CS- Fix Duration
(All Participants)",
                                             "Acquisition CS+ Fix Duration
(High IU Group)",
                                             "Acquisition CS- Fix Duration
(High IU Group)",
                                             "Early Extinction CS+ Fix
Duration (High IU Group)",
                                             "Early Extinction CS- Fix
Duration (High IU Group)",
                                             "Late Extinction CS+ Fix Duration
(High IU Group)",
                                             "Late Extinction CS- Fix Duration
(High IU Group)",
                                             "Acquisition CS+ Fix Duration
(Low IU Group)",
                                             "Acquisition CS- Fix Duration
(Low IU Group)",
                                             "Early Extinction CS+ Fix
Duration (Low IU Group)",
                                             "Early Extinction CS- Fix
Duration (Low IU Group)",
                                             "Late Extinction CS+ Fix Duration
(Low IU Group)",
                                             "Late Extinction CS- Fix Duration
```

# (Low IU Group)") descriptives\_fix\_duration\_table

| ##                                                                        | vars | n     | mean        |
|---------------------------------------------------------------------------|------|-------|-------------|
| <pre>sd ## Acquisition CS+ Fix Duration (All Participants)</pre>          | 1    | 120   | 1309.36     |
| 1173.03                                                                   |      | 139   | 1303.30     |
| ## Acquisition CS- Fix Duration (All Participants)                        | 2    | 139   | 1200.18     |
| 1048.80 ## Early Extinction CS+ Fix Duration (All Participants)           | 3    | 139   | 1104.04     |
| 930.02                                                                    | ,    | 133   | 1104.04     |
| <pre>## Early Extinction CS- Fix Duration (All Participants)</pre>        | 4    | 139   | 1203.66     |
| 1288.87 ## Late Extinction CS+ Fix Duration (All Participants)            | 5    | 139   | 1066.13     |
| 1094.12                                                                   |      |       |             |
| <pre>## Late Extinction CS- Fix Duration (All Participants) 1204.27</pre> | 6    | 139   | 1068.60     |
| ## Acquisition CS+ Fix Duration (High IU Group)                           | 1    | 68    | 1153.24     |
| 1126.41                                                                   |      |       |             |
| ## Acquisition CS- Fix Duration (High IU Group)                           | 2    | 68    | 1003.87     |
| 938.91 ## Early Extinction CS+ Fix Duration (High IU Group)               | 3    | 68    | 869.88      |
| 621.12                                                                    | ,    | 00    | 003.00      |
| ## Early Extinction CS- Fix Duration (High IU Group)                      | 4    | 68    | 833.27      |
| 912.11 ## Late Extinction CS+ Fix Duration (High IU Group)                | 5    | 68    | 799.03      |
| 732.10                                                                    |      | 00    | , , , , , , |
| ## Late Extinction CS- Fix Duration (High IU Group)                       | 6    | 68    | 719.91      |
| 687.99 ## Acquisition CS+ Fix Duration (Low IU Group)                     | 1    | 71    | 1458.89     |
| 1204.96                                                                   |      |       |             |
| <pre>## Acquisition CS- Fix Duration (Low IU Group) 1118.70</pre>         | 2    | 71    | 1388.19     |
| ## Early Extinction CS+ Fix Duration (Low IU Group)                       | 3    | 71    | 1328.31     |
| 1109.79 ## Early Extinction CS- Fix Duration (Low IU Group)               | 4    | 71    | 1558.41     |
| 1489.19                                                                   | 4    | /1    | 1550.41     |
| ## Late Extinction CS+ Fix Duration (Low IU Group)                        | 5    | 71    | 1321.94     |
| 1308.18 ## Late Extinction CS- Fix Duration (Low IU Group)                | 6    | 71    | 1402.56     |
| 1474.73                                                                   |      |       |             |
| ## mad                                                                    | med: | ian 1 | trimmed     |
| ## Acquisition CS+ Fix Duration (All Participants)                        | 789  | .44 1 | 1121.85     |
| 639.02 ## Acquisition CS- Fix Duration (All Participants)                 | 778  | . 92  | 1017.24     |
| 606.82                                                                    | ,,,, |       |             |
| <pre>## Early Extinction CS+ Fix Duration (All Participants) 611.53</pre> | 786  | . 25  | 958.21      |
|                                                                           |      |       |             |

| <pre>## Early Extinction CS- Fix Duration (All Participants)</pre>                                                        | 674.06 937.16                    |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 519.93 ## Late Extinction CS+ Fix Duration (All Participants)                                                             | 657.98 830.55                    |
| <pre>472.15 ## Late Extinction CS- Fix Duration (All Participants)</pre>                                                  | 578.00 786.22                    |
| 397.29 ## Acquisition CS+ Fix Duration (High IU Group) 510.01                                                             | 666.40 943.03                    |
| ## Acquisition CS- Fix Duration (High IU Group) 412.10                                                                    | 649.90 830.74                    |
| <pre>## Early Extinction CS+ Fix Duration (High IU Group) 516.83</pre>                                                    | 716.65 780.80                    |
| ## Early Extinction CS- Fix Duration (High IU Group) 308.46                                                               | 533.31 641.57                    |
| ## Late Extinction CS+ Fix Duration (High IU Group) 334.40                                                                | 541.37 664.26                    |
| ## Late Extinction CS- Fix Duration (High IU Group) 306.25                                                                | 510.20 585.21<br>1002.75 1309.89 |
| <pre>## Acquisition CS+ Fix Duration (Low IU Group) 888.32 ## Acquisition CS- Fix Duration (Low IU Group)</pre>           | 1081.07 1216.87                  |
| 977.62 ## Early Extinction CS+ Fix Duration (Low IU Group)                                                                | 931.86 1181.94                   |
| 830.29 ** ## Early Extinction CS- Fix Duration (Low IU Group)                                                             | 1017.70 1282.48                  |
| 964.06 ## Late Extinction CS+ Fix Duration (Low IU Group)                                                                 | 781.46 1064.33                   |
| ## Late Extinction CS- Fix Duration (Low IU Group)                                                                        | 845.97 1102.87                   |
| 689.98<br>##<br>range                                                                                                     | min max                          |
|                                                                                                                           | 87.39 5083.82                    |
| ## Acquisition CS- Fix Duration (All Participants) 5358.35                                                                | 88.43 5446.78                    |
| <pre>## Early Extinction CS+ Fix Duration (All Participants) 5267.49</pre>                                                |                                  |
| <pre>## Early Extinction CS- Fix Duration (All Participants) 5950.52</pre>                                                |                                  |
| ## Late Extinction CS+ Fix Duration (All Participants) 5801.70                                                            |                                  |
| <pre>## Late Extinction CS- Fix Duration (All Participants) 5977.26 ## Acquisition CS+ Fix Duration (High IU Group)</pre> | 109.30 6086.56<br>87.39 5083.82  |
| 4996.43 ## Acquisition CS- Fix Duration (High IU Group)                                                                   | 88.43 5446.78                    |
| 5358.35 ## Early Extinction CS+ Fix Duration (High IU Group)                                                              |                                  |
| ## Laily Exclinection est tix baraction (high to droup)                                                                   | 110.04 3044.00                   |

```
## Early Extinction CS- Fix Duration (High IU Group) 65.23 6015.75
5950.52
## Late Extinction CS+ Fix Duration (High IU Group)
                                                        121.84 4252.33
4130.49
## Late Extinction CS- Fix Duration (High IU Group)
                                                        109.30 4299.36
4190.06
## Acquisition CS+ Fix Duration (Low IU Group)
                                                        129.50 4985.33
## Acquisition CS- Fix Duration (Low IU Group)
                                                        180.65 5219.17
5038.51
## Early Extinction CS+ Fix Duration (Low IU Group)
                                                        79.01 5346.50
5267.49
## Early Extinction CS- Fix Duration (Low IU Group)
                                                        119.97 5954.83
5834.86
## Late Extinction CS+ Fix Duration (Low IU Group)
                                                        121.30 5923.00
## Late Extinction CS- Fix Duration (Low IU Group)
                                                        203.15 6086.56
5883.41
##
                                                        skew kurtosis
                                                                          se
## Acquisition CS+ Fix Duration (All Participants)
                                                        1.41
                                                                 1.29 99.50
## Acquisition CS- Fix Duration (All Participants)
                                                        1.65
                                                                 2.73 88.96
## Early Extinction CS+ Fix Duration (All Participants) 1.58
                                                                 2.76 78.88
## Early Extinction CS- Fix Duration (All Participants) 2.05
                                                                 3.83 109.32
## Late Extinction CS+ Fix Duration (All Participants)
                                                        2.17
                                                                 4.52 92.80
## Late Extinction CS- Fix Duration (All Participants)
                                                        2.31
                                                                 4.85 102.14
## Acquisition CS+ Fix Duration (High IU Group)
                                                        1.94
                                                                 3.43 136.60
## Acquisition CS- Fix Duration (High IU Group)
                                                        2.30
                                                                 6.41 113.86
## Early Extinction CS+ Fix Duration (High IU Group)
                                                        1.50
                                                                 2.47 75.32
## Early Extinction CS- Fix Duration (High IU Group)
                                                                14.24 110.61
                                                        3.41
## Late Extinction CS+ Fix Duration (High IU Group)
                                                        2.66
                                                                 8.49 88.78
## Late Extinction CS- Fix Duration (High IU Group)
                                                                10.94 83.43
                                                        3.05
## Acquisition CS+ Fix Duration (Low IU Group)
                                                        0.98
                                                                -0.04 143.00
## Acquisition CS- Fix Duration (Low IU Group)
                                                        1.21
                                                                 1.01 132.77
## Early Extinction CS+ Fix Duration (Low IU Group)
                                                        1.16
                                                                 1.00 131.71
## Early Extinction CS- Fix Duration (Low IU Group)
                                                        1.41
                                                                 1.11 176.73
## Late Extinction CS+ Fix Duration (Low IU Group)
                                                        1.64
                                                                 1.90 155.25
## Late Extinction CS- Fix Duration (Low IU Group)
                                                        1.64
                                                                 1.62 175.02
# write to csv
write.csv(descriptives fix duration table, file =
"tables/descriptives/descriptives_fix_duration_table.csv",
         row.names = TRUE)
```

#### Saccade Amplitude

```
# for high IU group
descriptives high iu sacc amplitude <-
  describe(df[df$iu group == "1",
c("acq_csp_sacc_amplitude","acq_csm_sacc_amplitude",
                                     "e ext csp sacc amplitude",
"e_ext_csm_sacc_amplitude",
                                     "l ext csp sacc amplitude",
"l ext csm sacc amplitude")],
           na.rm = TRUE)
# for Low IU group
descriptives_low_iu_sacc_amplitude <-</pre>
  describe(df[df$iu_group == "-1",
c("acq_csp_sacc_amplitude","acq_csm_sacc_amplitude",
                                      "e ext csp sacc amplitude",
"e ext csm sacc amplitude",
                                      "l ext csp sacc amplitude",
"l_ext_csm_sacc_amplitude")],
           na.rm = TRUE)
# combine all into one table
descriptives_sacc_amplitude_table <-</pre>
round(rbind(descriptives_all_sacc_amplitude,
descriptives_high_iu_sacc_amplitude,
descriptives low iu sacc amplitude), 2)
# rename rows for easier interpretation
rownames(descriptives_sacc_amplitude_table) <- c("Acquisition CS+ Sacc</pre>
Amplitude (All Participants)",
                                             "Acquisition CS- Sacc Amplitude
(All Participants)",
                                             "Early Extinction CS+ Sacc
Amplitude (All Participants)",
                                             "Early Extinction CS- Sacc
Amplitude (All Participants)",
                                             "Late Extinction CS+ Sacc
Amplitude (All Participants)",
                                             "Late Extinction CS- Sacc
Amplitude (All Participants)",
                                             "Acquisition CS+ Sacc Amplitude
(High IU Group)",
                                             "Acquisition CS- Sacc Amplitude
(High IU Group)",
                                             "Early Extinction CS+ Sacc
Amplitude (High IU Group)",
                                             "Early Extinction CS- Sacc
```

```
Amplitude (High IU Group)",
                                           "Late Extinction CS+ Sacc
Amplitude (High IU Group)",
                                            "Late Extinction CS- Sacc
Amplitude (High IU Group)",
                                            "Acquisition CS+ Sacc Amplitude
(Low IU Group)",
                                            "Acquisition CS- Sacc Amplitude
(Low IU Group)",
                                           "Early Extinction CS+ Sacc
Amplitude (Low IU Group)",
                                           "Early Extinction CS- Sacc
Amplitude (Low IU Group)",
                                           "Late Extinction CS+ Sacc
Amplitude (Low IU Group)",
                                           "Late Extinction CS- Sacc
Amplitude (Low IU Group)")
descriptives sacc amplitude table
                                                         vars
                                                                n mean
## Acquisition CS+ Sacc Amplitude (All Participants)
                                                            1 139 2.88 1.51
## Acquisition CS- Sacc Amplitude (All Participants)
                                                            2 137 2.98 1.57
## Early Extinction CS+ Sacc Amplitude (All Participants)
                                                            3 138 3.07 1.81
## Early Extinction CS- Sacc Amplitude (All Participants)
                                                            4 138 3.13 1.73
## Late Extinction CS+ Sacc Amplitude (All Participants)
                                                            5 138 3.00 1.92
## Late Extinction CS- Sacc Amplitude (All Participants)
                                                            6 139 3.10 1.97
## Acquisition CS+ Sacc Amplitude (High IU Group)
                                                            1 68 3.10 1.71
## Acquisition CS- Sacc Amplitude (High IU Group)
                                                            2 67 3.16 1.70
## Early Extinction CS+ Sacc Amplitude (High IU Group)
                                                            3
                                                               68 3.21 1.80
## Early Extinction CS- Sacc Amplitude (High IU Group)
                                                            4 67 3.46 1.88
## Late Extinction CS+ Sacc Amplitude (High IU Group)
                                                            5
                                                               68 3.21 1.78
## Late Extinction CS- Sacc Amplitude (High IU Group)
                                                            6 68 3.37 1.85
## Acquisition CS+ Sacc Amplitude (Low IU Group)
                                                            1
                                                               71 2.66 1.27
## Acquisition CS- Sacc Amplitude (Low IU Group)
                                                               70 2.80 1.43
                                                            2
## Early Extinction CS+ Sacc Amplitude (Low IU Group)
                                                               70 2.95 1.83
                                                            3
## Early Extinction CS- Sacc Amplitude (Low IU Group)
                                                            4 71 2.81 1.53
                                                            5 70 2.79 2.03
## Late Extinction CS+ Sacc Amplitude (Low IU Group)
## Late Extinction CS- Sacc Amplitude (Low IU Group)
                                                            6 71 2.84 2.06
##
                                                         median trimmed mad
min
## Acquisition CS+ Sacc Amplitude (All Participants)
                                                           2.64
                                                                   2.71 1.35
## Acquisition CS- Sacc Amplitude (All Participants)
                                                           2.65
                                                                   2.81 1.25
## Early Extinction CS+ Sacc Amplitude (All Participants)
                                                           2.78
                                                                   2.85 1.65
## Early Extinction CS- Sacc Amplitude (All Participants)
                                                           2.66
                                                                   2.94 1.35
0.42
## Late Extinction CS+ Sacc Amplitude (All Participants) 2.69 2.78 1.61
```

```
0.38
## Late Extinction CS- Sacc Amplitude (All Participants)
                                                            2.90
                                                                    2.86 1.89
## Acquisition CS+ Sacc Amplitude (High IU Group)
                                                            2.99
                                                                    2.92 1.74
0.43
## Acquisition CS- Sacc Amplitude (High IU Group)
                                                            2.86
                                                                    2.96 1.49
## Early Extinction CS+ Sacc Amplitude (High IU Group)
                                                            3.08
                                                                    3.02 1.75
0.64
## Early Extinction CS- Sacc Amplitude (High IU Group)
                                                            3.18
                                                                    3.28 1.74
0.69
## Late Extinction CS+ Sacc Amplitude (High IU Group)
                                                            2.90
                                                                    3.03 1.78
0.38
## Late Extinction CS- Sacc Amplitude (High IU Group)
                                                            3.13
                                                                    3.22 1.90
0.61
## Acquisition CS+ Sacc Amplitude (Low IU Group)
                                                                    2.56 1.17
                                                            2.52
## Acquisition CS- Sacc Amplitude (Low IU Group)
                                                            2.60
                                                                    2.66 1.23
0.59
## Early Extinction CS+ Sacc Amplitude (Low IU Group)
                                                            2.48
                                                                    2.70 1.52
0.58
## Early Extinction CS- Sacc Amplitude (Low IU Group)
                                                            2.34
                                                                    2.65 1.07
0.42
## Late Extinction CS+ Sacc Amplitude (Low IU Group)
                                                            2.25
                                                                    2.52 1.69
## Late Extinction CS- Sacc Amplitude (Low IU Group)
                                                            2.63
                                                                    2.53 1.93
0.42
##
                                                            max range skew
## Acquisition CS+ Sacc Amplitude (All Participants)
                                                           8.15 7.72 1.01
## Acquisition CS- Sacc Amplitude (All Participants)
                                                           8.57
                                                                 8.04 1.12
## Early Extinction CS+ Sacc Amplitude (All Participants)
                                                           9.18 8.59 1.14
## Early Extinction CS- Sacc Amplitude (All Participants) 11.42 11.00 1.44
## Late Extinction CS+ Sacc Amplitude (All Participants)
                                                          13.11 12.73 1.72
## Late Extinction CS- Sacc Amplitude (All Participants)
                                                          10.95 10.53 1.25
## Acquisition CS+ Sacc Amplitude (High IU Group)
                                                           8.15 7.72 0.96
## Acquisition CS- Sacc Amplitude (High IU Group)
                                                           8.57 8.04 1.14
## Early Extinction CS+ Sacc Amplitude (High IU Group)
                                                           8.65 8.01 0.89
## Early Extinction CS- Sacc Amplitude (High IU Group)
                                                          11.42 10.73 1.38
## Late Extinction CS+ Sacc Amplitude (High IU Group)
                                                           9.62 9.24 1.11
## Late Extinction CS- Sacc Amplitude (High IU Group)
                                                           9.74 9.13 0.93
## Acquisition CS+ Sacc Amplitude (Low IU Group)
                                                           6.35 5.76 0.68
## Acquisition CS- Sacc Amplitude (Low IU Group)
                                                           7.37
                                                                 6.78 0.93
## Early Extinction CS+ Sacc Amplitude (Low IU Group)
                                                           9.18 8.59 1.37
## Early Extinction CS- Sacc Amplitude (Low IU Group)
                                                           9.11 8.69 1.33
## Late Extinction CS+ Sacc Amplitude (Low IU Group)
                                                          13.11 12.68 2.20
## Late Extinction CS- Sacc Amplitude (Low IU Group)
                                                          10.95 10.53 1.57
##
                                                          kurtosis
                                                                     se
## Acquisition CS+ Sacc Amplitude (All Participants)
                                                              0.86 0.13
## Acquisition CS- Sacc Amplitude (All Participants)
                                                              1.35 0.13
## Early Extinction CS+ Sacc Amplitude (All Participants) 1.13 0.15
```

```
## Early Extinction CS- Sacc Amplitude (All Participants)
                                                              3.30 0.15
## Late Extinction CS+ Sacc Amplitude (All Participants)
                                                              5.31 0.16
## Late Extinction CS- Sacc Amplitude (All Participants)
                                                              1.95 0.17
## Acquisition CS+ Sacc Amplitude (High IU Group)
                                                             0.40 0.21
## Acquisition CS- Sacc Amplitude (High IU Group)
                                                             1.13 0.21
## Early Extinction CS+ Sacc Amplitude (High IU Group)
                                                             0.32 0.22
## Early Extinction CS- Sacc Amplitude (High IU Group)
                                                             3.07 0.23
## Late Extinction CS+ Sacc Amplitude (High IU Group)
                                                             1.55 0.22
## Late Extinction CS- Sacc Amplitude (High IU Group)
                                                             0.76 0.22
## Acquisition CS+ Sacc Amplitude (Low IU Group)
                                                             -0.16 0.15
## Acquisition CS- Sacc Amplitude (Low IU Group)
                                                             0.81 0.17
## Early Extinction CS+ Sacc Amplitude (Low IU Group)
                                                             1.92 0.22
## Early Extinction CS- Sacc Amplitude (Low IU Group)
                                                            2.40 0.18
## Late Extinction CS+ Sacc Amplitude (Low IU Group)
                                                             7.87 0.24
## Late Extinction CS- Sacc Amplitude (Low IU Group)
                                                            3.05 0.25
# write to csv
write.csv(descriptives_sacc_amplitude_table, file =
"tables/descriptives/descriptives_sacc_amplitude_table.csv",
          row.names = TRUE)
```

# **Data Transformation**

# **Log-Transformation of Fixation Duration**

```
# as fixation duration had high skew (>3) in high IU group for early and late
# extinction CS-, fixation duration will be log-transformed for each
condition

# for acquisition CS+

df$acq_csp_fix_duration_log <- log(df$acq_csp_fix_duration)

# for acquisition CS-

df$acq_csm_fix_duration_log <- log(df$acq_csm_fix_duration)

# for early extinction CS+

df$e_ext_csp_fix_duration_log <- log(df$e_ext_csp_fix_duration)

# for early extinction CS-

df$e_ext_csm_fix_duration_log <- log(df$e_ext_csm_fix_duration)

# for late extinction CS+

df$1_ext_csp_fix_duration_log <- log(df$1_ext_csp_fix_duration)

# for late extinction CS-

df$1 ext_csm_fix_duration_log <- log(df$1_ext_csp_fix_duration)</pre>
```

## **Check Descriptives of Fixation Duration Following Log-Transformation**

```
# re-compute descriptives for fixation duration following log transformation
# for all participants
descriptives all fix duration log <-
  describe(df[, c("acq_csp_fix_duration_log","acq_csm_fix_duration_log",
                  "e_ext_csp_fix_duration_log", "e_ext_csm_fix_duration_log",
                  "l_ext_csp_fix_duration_log",
"l ext csm fix duration log")],
           na.rm = TRUE)
# for high IU group
descriptives_high_iu_fix_duration_log <-</pre>
  describe(df[df$iu group == "1",
c("acq_csp_fix_duration_log","acq_csm_fix_duration_log",
                                     "e_ext_csp_fix_duration_log",
"e ext csm fix duration log",
                                     "l ext csp fix duration log",
"l_ext_csm_fix_duration_log")],
           na.rm = TRUE)
# for Low IU group
descriptives_low_iu_fix_duration_log <-</pre>
  describe(df[df$iu_group == "-1",
c("acq_csp_fix_duration_log","acq_csm_fix_duration_log",
                                      "e ext csp fix duration log",
"e_ext_csm_fix_duration_log",
                                      "l ext csp fix duration log",
"l_ext_csm_fix_duration_log")],
           na.rm = TRUE)
# combine all to table
descriptives fix duration table log <-
round(rbind(descriptives_all_fix_duration_log,
descriptives_high_iu_fix_duration_log,
descriptives_low_iu_fix_duration_log), 2)
# rename rows for easier interpretation
rownames(descriptives fix duration table log) <- c("Acquisition CS+ Fix</pre>
Duration (All Participants)",
                                             "Acquisition CS- Fix Duration
(All Participants)",
                                             "Early Extinction CS+ Fix
Duration (All Participants)",
                                             "Early Extinction CS- Fix
Duration (All Participants)",
                                             "Late Extinction CS+ Fix Duration
```

```
(All Participants)",
                                            "Late Extinction CS- Fix Duration
(All Participants)",
                                            "Acquisition CS+ Fix Duration
(High IU Group)",
                                            "Acquisition CS- Fix Duration
(High IU Group)",
                                            "Early Extinction CS+ Fix
Duration (High IU Group)",
                                            "Early Extinction CS- Fix
Duration (High IU Group)",
                                            "Late Extinction CS+ Fix Duration
(High IU Group)",
                                            "Late Extinction CS- Fix Duration
(High IU Group)",
                                            "Acquisition CS+ Fix Duration
(Low IU Group)",
                                            "Acquisition CS- Fix Duration
(Low IU Group)",
                                            "Early Extinction CS+ Fix
Duration (Low IU Group)",
                                            "Early Extinction CS- Fix
Duration (Low IU Group)",
                                            "Late Extinction CS+ Fix Duration
(Low IU Group)",
                                            "Late Extinction CS- Fix Duration
(Low IU Group)")
descriptives_fix_duration_table_log
##
                                                               n mean
                                                                        sd
                                                        vars
median
## Acquisition CS+ Fix Duration (All Participants)
                                                           1 139 6.80 0.89
## Acquisition CS- Fix Duration (All Participants)
                                                           2 139 6.76 0.83
6.66
## Early Extinction CS+ Fix Duration (All Participants)
                                                          3 139 6.68 0.84
6.67
## Early Extinction CS- Fix Duration (All Participants)
                                                          4 139 6.67 0.90
## Late Extinction CS+ Fix Duration (All Participants)
                                                           5 139 6.60 0.83
6.49
## Late Extinction CS- Fix Duration (All Participants)
                                                           6 139 6.56 0.85
## Acquisition CS+ Fix Duration (High IU Group)
                                                           1 68 6.68 0.87
6.50
## Acquisition CS- Fix Duration (High IU Group)
                                                           2 68 6.60 0.78
                                                           3 68 6.54 0.70
## Early Extinction CS+ Fix Duration (High IU Group)
6.57
```

| ## Early Extinction CS- Fix Duration (High IU Group)                    | 4 68 6.40 0.75  |  |  |
|-------------------------------------------------------------------------|-----------------|--|--|
| <pre>6.28 ## Late Extinction CS+ Fix Duration (High IU Group)</pre>     | 5 68 6.41 0.72  |  |  |
| 6.29                                                                    | 6 60 6 24 0 74  |  |  |
| <pre>## Late Extinction CS- Fix Duration (High IU Group) 6.23</pre>     | 6 68 6.31 0.71  |  |  |
| <pre>## Acquisition CS+ Fix Duration (Low IU Group) 6.91</pre>          | 1 71 6.92 0.89  |  |  |
| ## Acquisition CS- Fix Duration (Low IU Group)                          | 2 71 6.91 0.85  |  |  |
| <pre>6.99 ## Early Extinction CS+ Fix Duration (Low IU Group)</pre>     | 3 71 6.81 0.94  |  |  |
| <pre>6.84 ## Early Extinction CS- Fix Duration (Low IU Group)</pre>     | 4 71 6.92 0.96  |  |  |
| 6.93                                                                    | 4 /1 0.92 0.90  |  |  |
| ## Late Extinction CS+ Fix Duration (Low IU Group)                      | 5 71 6.79 0.89  |  |  |
| <pre>6.66 ## Late Extinction CS- Fix Duration (Low IU Group)</pre>      | 6 71 6.81 0.91  |  |  |
| 6.74                                                                    | 0 71 0.01 0.31  |  |  |
| ##                                                                      | trimmed mad min |  |  |
| max                                                                     |                 |  |  |
| <pre>## Acquisition CS+ Fix Duration (All Participants) 8.53</pre>      | 6.80 0.94 4.47  |  |  |
| ## Acquisition CS- Fix Duration (All Participants)                      | 6.74 0.97 4.48  |  |  |
| 8.60                                                                    |                 |  |  |
| <pre>## Early Extinction CS+ Fix Duration (All Participants)</pre>      | 6.69 0.93 4.37  |  |  |
| 8.58                                                                    |                 |  |  |
| <pre>## Early Extinction CS- Fix Duration (All Participants) 8.70</pre> | 6.63 0.84 4.18  |  |  |
| ## Late Extinction CS+ Fix Duration (All Participants)                  | 6.55 0.86 4.80  |  |  |
| <pre>8.69 ## Late Extinction CS- Fix Duration (All Participants)</pre>  | 6.50 0.71 4.69  |  |  |
| 8.71                                                                    | 6 67 0 70 4 47  |  |  |
| <pre>## Acquisition CS+ Fix Duration (High IU Group) 8.53</pre>         | 6.67 0.79 4.47  |  |  |
| ## Acquisition CS- Fix Duration (High IU Group)                         | 6.57 0.74 4.48  |  |  |
| 8.60 ## Early Extinction CS+ Fix Duration (High IU Group)               | 6.54 0.77 4.70  |  |  |
| <pre>8.02 ## Early Extinction CS- Fix Duration (High IU Group)</pre>    | 6.35 0.67 4.18  |  |  |
| 8.70                                                                    | C 20 0 7F 4 90  |  |  |
| <pre>## Late Extinction CS+ Fix Duration (High IU Group) 8.36</pre>     | 6.38 0.75 4.80  |  |  |
| <pre>## Late Extinction CS- Fix Duration (High IU Group) 8.37</pre>     | 6.29 0.61 4.69  |  |  |
| <pre>## Acquisition CS+ Fix Duration (Low IU Group) 8.51</pre>          | 6.94 1.15 4.86  |  |  |
| ## Acquisition CS- Fix Duration (Low IU Group)                          | 6.91 1.01 5.20  |  |  |
| <pre>8.56 ## Early Extinction CS+ Fix Duration (Low IU Group)</pre>     | 6.86 1.15 4.37  |  |  |
| 8.58                                                                    |                 |  |  |

```
## Early Extinction CS- Fix Duration (Low IU Group) 6.91 1.14 4.79
8.69
## Late Extinction CS+ Fix Duration (Low IU Group)
                                                        6.75 0.91 4.80
## Late Extinction CS- Fix Duration (Low IU Group)
                                                        6.75 0.96 5.31
8.71
##
                                                      range skew kurtosis
se
## Acquisition CS+ Fix Duration (All Participants)
                                                     4.06 0.02
                                                                    -0.64
0.08
## Acquisition CS- Fix Duration (All Participants)
                                                 4.12 0.11
                                                                    -0.65
## Early Extinction CS+ Fix Duration (All Participants) 4.21 -0.11
                                                                    -0.40
0.07
## Early Extinction CS- Fix Duration (All Participants) 4.52 0.34
                                                                    -0.31
## Late Extinction CS+ Fix Duration (All Participants)
                                                       3.89 0.45
                                                                    -0.27
0.07
## Late Extinction CS- Fix Duration (All Participants) 4.02 0.59
                                                                    -0.02
0.07
## Acquisition CS+ Fix Duration (High IU Group)
                                                      4.06 0.09
                                                                    -0.21
0.11
## Acquisition CS- Fix Duration (High IU Group) 4.12 0.25
                                                                    -0.01
## Early Extinction CS+ Fix Duration (High IU Group)
                                                     3.32 -0.08
                                                                    -0.48
## Early Extinction CS- Fix Duration (High IU Group)
                                                       4.52 0.48
                                                                     1.07
0.09
## Late Extinction CS+ Fix Duration (High IU Group)
                                                       3.55 0.41
                                                                    -0.03
## Late Extinction CS- Fix Duration (High IU Group)
                                                                     0.66
                                                       3.67 0.35
## Acquisition CS+ Fix Duration (Low IU Group)
                                                       3.65 -0.07
                                                                     -1.03
## Acquisition CS- Fix Duration (Low IU Group)
                                                       3.36 -0.07
                                                                    -1.05
0.10
## Early Extinction CS+ Fix Duration (Low IU Group)
                                                      4.21 -0.32
                                                                    -0.53
0.11
## Early Extinction CS- Fix Duration (Low IU Group)
                                                      3.90 0.03
                                                                    -0.87
0.11
## Late Extinction CS+ Fix Duration (Low IU Group)
                                                       3.89 0.29
                                                                    -0.67
## Late Extinction CS- Fix Duration (Low IU Group)
                                                       3.40 0.47
                                                                    -0.83
0.11
# write to csv
write.csv(descriptives_fix_duration_table_log, file =
"tables/descriptives/descriptives_fix_duration_table_log.csv",
row.names = TRUE)
```

### there are no longer any skew values of +/-3.

# **Check Histograms of Fixation Duration Following Log-Transformation**

#### **Acquisition CS+**

```
######## pre-log-transformation
hist_acq_csp_fix_duration
```

#### Histogram Acquisition CS+ Fixation Duration



IU Group

```
######## post-log-transformation
hist_acq_csp_fix_duration_log <- df %>%
 ggplot(aes(acq_csp_fix_duration_log, fill = iu_group)) +
 geom_histogram(binwidth = .2, colour = "white", alpha = .5, position =
"identity") +
 theme classic() +
 theme(text = element_text(family = "serif"),
         plot.title = element_text(face = "bold", hjust = 0.5, size = 15)) +
 scale x continuous(breaks = seq(0, 12, 2)) +
 labs(x = "Fixation Duration (ms)", y = "Frequency") +
 theme(plot.title = element text(face = "bold", hjust = 0.5, size = 12)) +
 ggtitle("Histogram Acquisition CS+ Fixation Duration (Log-Transformed)") +
 theme(legend.position = "bottom", legend.title = element_text(face =
"bold")) +
```

```
guides(fill = guide_legend(reverse = TRUE)) +
    scale_fill_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
    labs(fill = "IU Group")
hist_acq_csp_fix_duration_log
```

# Histogram Acquisition CS+ Fixation Duration (Log-Transformed



#### **Acquisition CS-**

```
######### pre-log-transformation
hist_acq_csp_fix_duration_log
```

## Histogram Acquisition CS+ Fixation Duration (Log-Transformed



```
######## post-log-transformation
hist acq csm fix duration log <- df %>%
  ggplot(aes(acq_csm_fix_duration_log, fill = iu_group)) +
  geom histogram(binwidth = .2, colour = "white", alpha = .5, position =
"identity") +
  theme classic() +
  theme(text = element text(family = "serif"),
         plot.title = element_text(face = "bold", hjust = 0.5, size = 15)) +
  scale_x_continuous(breaks = seq(0, 12, 2)) +
  labs(x = "Fixation Duration (ms)", y = "Frequency") +
  theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
  ggtitle("Histogram Acquisition CS- Fixation Duration (Log-Transformed)") +
  theme(legend.position = "bottom", legend.title = element_text(face =
"bold")) +
  guides(fill = guide legend(reverse = TRUE)) +
  scale fill manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
  labs(fill = "IU Group")
hist_acq_csm_fix_duration_log
```

# Histogram Acquisition CS- Fixation Duration (Log-Transformed)



#### stogram Acquisition CS+ Fixatio HIstogram Acquisition CS- Fixation D



## equisition CS+ FixationisDogrationAcquisition CS- Fixation Duration (L.



#### Early Extinction CS+

######### pre-log-transformation
hist\_e\_ext\_csp\_fix\_duration

## Histogram Early Extinction CS+ Fixation Duration



```
IU Group High IU Low IU
```

```
######## post-log-transformation
hist e ext csp fix duration log <- df %>%
  ggplot(aes(e_ext_csp_fix_duration_log, fill = iu_group)) +
  geom_histogram(binwidth = .2, colour = "white", alpha = .5, position =
"identity") +
  theme classic() +
  theme(text = element text(family = "serif"),
         plot.title = element_text(face = "bold", hjust = 0.5, size = 15)) +
  scale_x_continuous(breaks = seq(0, 12, 2)) +
  labs(x = "Fixation Duration (ms)", y = "Frequency") +
  theme(plot.title = element text(face = "bold", hjust = 0.5, size = 12)) +
  ggtitle("Histogram Early Extinction CS+ Fixation Duration (Log-
Transformed)") +
  theme(legend.position = "bottom", legend.title = element_text(face =
"bold")) +
  guides(fill = guide_legend(reverse = TRUE)) +
  scale_fill_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
  labs(fill = "IU Group")
hist e ext csp fix duration log
```

# Histogram Early Extinction CS+ Fixation Duration (Log-Transforme



#### **Early Extinction CS-**

```
######### pre-log-transformation
hist_e_ext_csm_fix_duration
```

## Histogram Early Extinction CS- Fixation Duration



######## post-log-transformation

"High IU")) +

labs(fill = "IU Group")
hist e ext csm fix duration log

```
hist e ext csm fix duration log <- df %>%
  ggplot(aes(e_ext_csm_fix_duration_log, fill = iu_group)) +
  geom_histogram(binwidth = .2, colour = "white", alpha = .5, position =
"identity") +
  theme classic() +
  theme(text = element text(family = "serif"),
         plot.title = element_text(face = "bold", hjust = 0.5, size = 15)) +
  scale_x_continuous(breaks = seq(0, 12, 2)) +
  labs(x = "Fixation Duration (ms)", y = "Frequency") +
  theme(plot.title = element text(face = "bold", hjust = 0.5, size = 12)) +
  ggtitle("Histogram Early Extinction CS- Fixation Duration (Log-
Transformed)") +
  theme(legend.position = "bottom", legend.title = element_text(face =
"bold")) +
  guides(fill = guide_legend(reverse = TRUE)) +
  scale_fill_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
```

# Histogram Early Extinction CS- Fixation Duration (Log-Transforme



## gram Early Extinction CS+ Fixitiongram Early Extinction CS- Fixation



# y Extinction CS+ Fiklithog Duration Extinction CS- Fixation Duration



#### **Late Extinction CS+**

######### pre-log-transformation
hist\_l\_ext\_csp\_fix\_duration

#### Histogram Late Extinction CS+ Fixation Duration



```
######## post-log-transformation
hist l ext csp fix duration log <- df %>%
  ggplot(aes(l_ext_csp_fix_duration_log, fill = iu_group)) +
  geom_histogram(binwidth = .2, colour = "white", alpha = .5, position =
"identity") +
  theme classic() +
  theme(text = element text(family = "serif"),
         plot.title = element_text(face = "bold", hjust = 0.5, size = 15)) +
  scale_x_continuous(breaks = seq(0, 12, 2)) +
  labs(x = "Fixation Duration (ms)", y = "Frequency") +
  theme(plot.title = element text(face = "bold", hjust = 0.5, size = 12)) +
  ggtitle("Histogram Late Extinction CS+ Fixation Duration (Log-
Transformed)") +
  theme(legend.position = "bottom", legend.title = element_text(face =
"bold")) +
  guides(fill = guide_legend(reverse = TRUE)) +
  scale_fill_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
  labs(fill = "IU Group")
hist 1 ext csp fix duration log
```

# Histogram Late Extinction CS+ Fixation Duration (Log-Transforme



#### **Late Extinction CS-**

```
######### pre-log-transformation
hist_l_ext_csm_fix_duration
```

### **Histogram Late Extinction CS- Fixation Duration**



```
######## post-log-transformation
hist l ext csm fix duration log <- df %>%
  ggplot(aes(l_ext_csm_fix_duration_log, fill = iu_group)) +
  geom_histogram(binwidth = .2, colour = "white", alpha = .5, position =
"identity") +
  theme classic() +
  theme(text = element text(family = "serif"),
         plot.title = element_text(face = "bold", hjust = 0.5, size = 15)) +
  scale_x_continuous(breaks = seq(0, 12, 2)) +
  labs(x = "Fixation Duration (ms)", y = "Frequency") +
  theme(plot.title = element text(face = "bold", hjust = 0.5, size = 12)) +
  ggtitle("Histogram Late Extinction CS- Fixation Duration (Log-
Transformed)") +
  theme(legend.position = "bottom", legend.title = element_text(face =
"bold")) +
  guides(fill = guide_legend(reverse = TRUE)) +
  scale_fill_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
  labs(fill = "IU Group")
hist 1 ext csm fix duration log
```

## Histogram Late Extinction CS- Fixation Duration (Log-Transforme



### gram Late Extinction CS+ Fixhlistogram Late Extinction CS- Fixation



### Extinction CS+ Fixation Duration Extinction CS- Fixation Duration



### **ANOVAs**

# **ANOVA Acquisition Fixation Count**

```
df long acq fix count$stimulus <-</pre>
  factor(ifelse(df long acq fix count$condition == "acq csp fix count", 1, -
1))
# compute 2(IU: High & Low) x 2 (Stimulus: CS+, CS-) mixed ANOVA,
# and obtain effect size (partial eta squared)
acq_fix_count_anova <-</pre>
  anova_test(df_long_acq_fix_count, fix_count ~ iu_group * stimulus +
Error(id/stimulus),
                        effect.size = "pes")
# obtain the mixed ANOVA results
get_anova_table(acq_fix_count_anova)
## ANOVA Table (type III tests)
##
##
                Effect DFn DFd
                                             p p<.05
                                                        pes
## 1
                         1 137 4.806 0.030000
                                                   * 0.034
              iu_group
                         1 137 11.441 0.000937
                                                   * 0.077
## 2
              stimulus
## 3 iu group:stimulus
                         1 137 0.258 0.613000
                                                     0.002
# results:
# IU: F(1,137) = 4.81, p = .030*, eta2(partial) = .034
# Stimulus: F(1,137) = 11.44, p < .001***, eta2(partial) = .077
# IU * Stimulus: F(1, 137) = 0.26, p = .613, eta2(partial) = .002
# therefore, there is a significant effect of IU & Stimulus on fixation count
in acquisition,
# and no significant IU*Stimulus interaction
# write to csv
write.csv((get_anova_table(acq_fix_count_anova)),
          file = "tables/anovas/acq fix count anova.csv")
```

### **ANOVA Acquisition Fixation Duration (Log Transformed)**

```
colnames(df long acq fix duration log) = c("id", "iu group", "condition",
"fix duration log")
# create column to code stimulus as CS+ (1) and CS- (-1)
df long acq fix duration log$stimulus <-</pre>
 factor(ifelse(df long acq fix duration log$condition ==
"acq_csp_fix_duration_log", 1, -1))
# compute 2(IU: High & Low) x 2 (Stimulus: CS+, CS-) mixed ANOVA,
# and obtain effect size (partial eta squared)
acq fix duration anova log <-
 anova_test(df_long_acq_fix_duration_log, fix_duration_log ~ iu_group *
stimulus + Error(id/stimulus),
                       effect.size = "pes")
# the error(id/stimulus) variable is unique to repeated-measures ANOVA, and
means
# that the variable 'stimulus' is manipulated within 'id'
# obtain the mixed ANOVA results
get_anova_table(acq_fix_duration_anova_log)
## ANOVA Table (type III tests)
##
##
               Effect DFn DFd F
                                        p p<.05
                                                 pes
             iu group 1 137 3.907 0.050
## 1
                                               0.028
             stimulus 1 137 2.921 0.090
                                               0.021
0.009
# results:
# IU: F(1,137) = 3.91, p = .050*, eta2(partial) = .028
# Stimulus: F(1,137) = 2.92, p = .090, eta2(partial) = .021
# IU * Stimulus: F(1, 137) = 1.27, p = .261, eta2(partial) = .009
# therefore, there is a sig effect of IU, and no
# sig effect of stimulus or IU-stimulus interaction
# write to csv
write.csv((get_anova_table(acq_fix_duration_anova_log)),
         file = "tables/anovas/acq fix duration anova log.csv")
```

### **ANOVA Acquisition Saccade Amplitude**

```
# create column to code stimulus as CS+ (1) and CS- (-1)
df long acq sacc amplitude$stimulus <-</pre>
 factor(ifelse(df long acq sacc amplitude$condition ==
"acq_csp_sacc_amplitude", 1, -1))
# compute 2(IU: High & Low) x 2 (Stimulus: CS+, CS-) mixed ANOVA,
# and obtain effect size (partial eta squared)
acq sacc amplitude anova <-
 anova_test(df_long_acq_sacc_amplitude, sacc_amplitude ~ iu_group * stimulus
+ Error(id/stimulus),
            effect.size = "pes")
## Warning: NA detected in rows: 234,259.
## Removing this rows before the analysis.
# obtain the mixed ANOVA results
get_anova_table(acq_sacc_amplitude_anova)
## ANOVA Table (type III tests)
##
##
               Effect DFn DFd F
                                        p p<.05
                                                 pes
## 1
             iu group 1 135 2.984 0.086
                                               0.022
## 2
             stimulus 1 135 0.950 0.332
                                               0.007
0.003
# results:
# IU: F(1,135) = 2.98, p = .086, eta2(partial) = .022
# Stimulus: F(1,135) = 0.95, p = .332, eta2(partial) = .007
# IU * Stimulus: F(1, 135) = 0.38, p = .539, eta2(partial) = .003
# therefore, there are no significant effects on saccade amplitude in
# acquisition
# write to csv
write.csv((get_anova_table(acq_sacc_amplitude_anova)),
         file = "tables/anovas/acq sacc amplitude anova.csv")
```

### **ANOVA Extinction Fixation Count**

```
# create column to code stimulus as CS+ (1) and CS- (-1)
df long ext fix count$stimulus <-</pre>
 factor(ifelse(df_long_ext_fix_count$condition == "e_ext_csp_fix_count" |
                  df_long_ext_fix_count$condition == "l_ext_csp_fix_count",
1, -1))
# create column to code extinction as early (1) and late (-1)
df long ext fix count$time <-</pre>
 factor(ifelse(df long ext fix count$condition == "e ext csp fix count" |
                  df_long_ext_fix_count$condition == "e_ext_csm_fix_count",
1, -1))
# compute 2(IU: High & Low) x 2 (Stimulus: CS+, CS-) x 2 (Time: Early, Late)
mixed ANOVA,
# and obtain effect size (partial eta squared)
ext_fix_count_anova <-
 anova test(df long ext fix count,
             fix_count ~ iu_group * stimulus * time +
Error(id/(stimulus*time)),
            effect.size = "pes")
# obtain the mixed ANOVA results
get anova table(ext fix count anova)
## ANOVA Table (type III tests)
##
                                             p p<.05
##
                    Effect DFn DFd
                                      F
## 1
                  iu group
                             1 137 7.672 0.006
                                                   * 0.053000
## 2
                  stimulus
                             1 137 4.155 0.043
                                                   * 0.029000
## 3
                      time 1 137 5.733 0.018
                                                   * 0.040000
## 4
         0.025000
## 5
             iu_group:time 1 137 4.572 0.034
                                                   * 0.032000
## 6
             stimulus:time 1 137 0.061 0.806
                                                     0.000443
## 7 iu_group:stimulus:time 1 137 0.600 0.440
                                                     0.004000
# results:
# IU: F(1,137) = 7.67, p = .006 ***, eta2(partial) = .053
# Stimulus: F(1,137) = 4.16, p = .043 *, eta2(partial) = .029
# Time: F(1,137) = 5.73, p = .018 *, eta2(partial) = .049
# IU * Stimulus: F(1, 137) = 3.46, p = .065, eta2(partial) = .025
# IU * Time: F(1,137) = 4.57, p = .034 *, eta2(partial) = . 032
# Stimulus * Time: F(1,137) = 0.06, p = .806, eta2(partial) < .001
# IU * Stimulus * Time: F(1,137) = 0.60, p = .440, eta2(partial) = .004
# therefore, there is a significant effect of IU, Stimulus and Time on
fixation count in extinction,
# as well as a significant interaction effect of IU * Time,
# but no other significant interactions.
# write to csv
```

```
write.csv((get anova table(ext fix count anova)),
          file = "tables/anovas/ext fix count anova.csv")
# as there was a significant IU*Time interaction, conduct simple
# main effects analysis:
## obtain effect of IU at each level of time
simple_effects_ext_fix_count_iu <- df_long_ext_fix_count %>%
  group by(time) %>%
  anova test(dv = fix count, wid = id, between = iu group, within = stimulus,
effect.size = "pes") %>%
  get_anova_table() %>%
  adjust_pvalue(method = "bonferroni")
# get the output
simple_effects_ext_fix_count_iu
## # A tibble: 6 × 9
## time Effect
                              DFn
                                    DFd
                                             F
                                                      p `p<.05`
                                                                  pes
p.adj
## * <fct> <chr>
                            <dbl> <dbl> <dbl>
                                                  <dbl> <chr>>
                                                                <dbl>
<dbl>
## 1 -1
                                    137 11.4
                                               0.000952 "*"
          iu_group
                                1
                                                                0.077
0.00571
                                                        11 11
## 2 -1
                                                                0.024 0.408
         stimulus
                                1
                                    137 3.38 0.068
## 3 -1
          iu_group:stimulus
                                    137
                                         0.864 0.354
                                                                0.006 1
                                1
## 4 1
                                                                0.026 0.354
          iu group
                                1
                                    137 3.63 0.059
                                                        ...
                                    137
## 5 1
         stimulus
                                1
                                         1.50 0.222
                                                                0.011 1
## 6 1
         iu group:stimulus
                                1
                                    137 3.04 0.084
                                                               0.022 0.504
# results:
# the effect of IU group at early extinction was significant [F(1,137)] =
11.41, p = .006, pes = .077
# The effect of IU group at late extinction was not significant [F(1,137)] =
3.63, p = .354, pes = .026
```

# ANOVA Extinction Fixation Duration (Log Transformed)

```
# transform wide format data into long format for mixed ANOVA
df_long_ext_fix_duration_log <- melt(df, id = c("id", "iu_group"),</pre>
                                 measure.vars =
c("e ext csp fix duration log",
"e_ext_csm_fix_duration_log",
"l_ext_csp_fix_duration_log",
"l ext csm fix duration log"))
# rename columns for easier interpretation
colnames(df_long_ext_fix_duration_log) = c("id", "iu_group", "condition",
```

```
"fix duration log")
# create column to code stimulus as CS+ (1) and CS- (-1)
df long ext fix duration log$stimulus <-</pre>
  factor(ifelse(df_long_ext_fix_duration_log$condition ==
"e ext csp fix duration log"
                  df_long_ext_fix_duration_log$condition ==
"l_ext_csp_fix_duration_log", 1, -1))
# create column to code extinction as early (1) and late (-1)
df long ext fix duration log$time <-</pre>
  factor(ifelse(df_long_ext_fix_duration_log$condition ==
"e_ext_csp_fix_duration_log" |
                  df_long_ext_fix_duration_log$condition ==
"e_ext_csm_fix_duration_log", 1, -1))
# compute 2(IU: High & Low) x 2 (Stimulus: CS+, CS-) x 2 (Time: Early, Late)
mixed ANOVA,
# and obtain effect size (partial eta squared)
ext_fix_duration_anova_log <-
  anova_test(df_long_ext_fix_duration log,
             fix duration log ~ iu group * stimulus * time +
Error(id/(stimulus*time)),
             effect.size = "pes")
# obtain the mixed ANOVA results
get anova table(ext fix duration anova log)
## ANOVA Table (type III tests)
##
##
                     Effect DFn DFd
                                               p p<.05
                                         F
                                                          pes
## 1
                              1 137 11.213 0.001
                                                      * 0.076
                   iu group
## 2
                   stimulus
                              1 137 0.510 0.477
                                                       0.004
## 3
                       time
                              1 137 4.351 0.039
                                                     * 0.031
## 4
          iu group:stimulus
                            1 137 5.823 0.017
                                                     * 0.041
## 5
              iu_group:time 1 137 0.241 0.624
                                                       0.002
## 6
              stimulus:time
                              1 137
                                     0.171 0.680
                                                       0.001
## 7 iu_group:stimulus:time
                            1 137 0.946 0.333
                                                       0.007
# results:
# IU: F(1,137) = 11.21, p < .001 *, eta2(partial) = .076
# Stimulus: F(1,137) = 0.51, p = .477, eta2(partial) = .004
# Time: F(1,137) = 4.35, p = .039*, eta2(partial) = .031
# IU * Stimulus: F(1, 137) = 5.82, p = .017*, eta2(partial) = .041
# IU * Time: F(1,137) = 0.24, p = .624, eta2(partial) = .002
# Stimulus * Time: F(1,137) = 0.17, p = 680, eta2(partial) = .001
# IU * Stimulus * Time: F(1,137) = 0.95, p = .333, eta2(partial) = .007
# therefore, there is a significant effect of IU, Time and IU-Stimulus
# interaction on fixation duration in extinction,
```

```
# and no other significant effects or interactions.
# write to csv
write.csv((get anova table(ext fix duration anova log)),
          file = "tables/anovas/ext fix duration anova log.csv")
# as there was a significant IU*Stimulus interaction, conduct simple
# main effects analysis:
## obtain effect of IU at each level of stimulus
simple effects ext fix duration log iu <- df long ext fix duration log %>%
 group_by(stimulus) %>%
 anova test(dv = fix duration log, wid = id, between = iu group, within =
time, effect.size = "pes") %>%
 get_anova_table() %>%
 adjust pvalue(method = "bonferroni")
# get the output
simple_effects_ext_fix_duration_log_iu
## # A tibble: 6 × 9
   stimulus Effect
                                            F
##
                             DFn
                                   DFd
                                                     p `p<.05`
                                                                    pes
p.adj
## * <fct>
                        <dbl> <dbl> <dbl>
             <chr>
                                                 <dbl> <chr>
                                                                  <dbl>
<dbl>
## 1 -1
                                   137 14.4
                                              0.000218 "*"
                                                               0.095
             iu_group
                               1
0.00131
## 2 -1
                                   137 4.34 0.039
                                                               0.031
             time
0.234
                                                       11 11
## 3 -1
             iu group:time
                                                               0.000192 1
                                   137 0.026 0.871
                               1
                                   137 6.70 0.011
## 4 1
             iu group
                               1
                                                               0.047
0.066
## 5 1
             time
                               1
                                   137 1.94 0.166
                                                               0.014
0.996
## 6 1
             iu group:time
                               1
                                   137 0.816 0.368
                                                               0.006
                                                                        1
# results:
# The effect of IU group in response to CS+ was not significant [F(1,137)] =
6.70, p = .066, pes = .047
# the effect of IU group in response to CS- was significant [F(1,137) =
14.43, p = .001, pes = .095
```

### **ANOVA Extinction Saccade Amplitude**

```
# rename columns for easier interpretation
colnames(df_long_ext_sacc_amplitude) = c("id", "iu_group", "condition",
"sacc_amplitude")
# create column to code stimulus as CS+ (1) and CS- (-1)
df long ext sacc amplitude$stimulus <-</pre>
  factor(ifelse(df_long_ext_sacc_amplitude$condition ==
"e ext csp sacc amplitude"
                 df long ext sacc amplitude$condition ==
"l_ext_csp_sacc_amplitude", 1, -1))
# create column to code extinction as early (1) and late (-1)
df_long_ext_sacc_amplitude$time <-</pre>
  factor(ifelse(df_long_ext_sacc_amplitude$condition ==
"e ext csp sacc amplitude"
                 df_long_ext_sacc_amplitude$condition ==
"e ext csm sacc amplitude", 1, -1))
# compute 2(IU: High & Low) x 2 (Stimulus: CS+, CS-) x 2 (Time: Early, Late)
mixed ANOVA.
# and obtain effect size (partial eta squared)
ext sacc amplitude anova <-
  anova_test(df_long_ext_sacc_amplitude,
            sacc_amplitude ~ iu_group * stimulus * time +
Error(id/(stimulus*time)),
            effect.size = "pes")
## Warning: NA detected in rows: 116,181,301.
## Removing this rows before the analysis.
# obtain the mixed ANOVA results
get_anova_table(ext_sacc_amplitude_anova)
## ANOVA Table (type III tests)
##
##
                    Effect DFn DFd
                                      F
                                            p p<.05
## 1
                  iu group 1 134 3.170 0.077
                                                    0.023000
## 2
                  stimulus
                            1 134 0.740 0.391
                                                    0.005000
## 3
                      time 1 134 0.275 0.601
                                                    0.002000
         ## 4
                                                    0.012000
## 5
             0.000977
## 6
             stimulus:time 1 134 0.077 0.781
                                                    0.000577
## 7 iu group:stimulus:time 1 134 0.609 0.437
                                                    0.005000
# results:
\# IU: F(1,134) = 3.17, p = .077, eta2(partial) = .023
# Stimulus: F(1,134) = 0.74, p = .391, eta2(partial) = .005
# Time: F(1,134) = 0.28, p = .601, eta2(partial) = .002
# IU * Stimulus: F(1, 134) = 1.69, p = .196, eta2(partial) = .012
# IU * Time: F(1,134) = 0.13, p = .718, eta2(partial) < .001
```

### **Bar Graphs - Extinction Only**

### **Fixation Count**

```
# obtain mean fix count for each group at each stimulus type and save as
vector
mean_e_ext_fix_count_high_iu_csp <-</pre>
  mean(df$e ext csp fix count[df long ext fix count$iu group == "1"], na.rm =
TRUE) # high IU CS+ early
mean e ext fix count low iu csp <-
  mean(df$e_ext_csp_fix_count[df_long_ext_fix_count$iu_group == "-1"], na.rm
= TRUE) # Low IU CS+ early
mean_e_ext_fix_count_high_iu_csm <-</pre>
  mean(df$e_ext_csm_fix_count[df_long_ext_fix_count$iu_group == "1"], na.rm =
TRUE) # high IU CS- early
mean_e_ext_fix_count_low_iu_csm <-</pre>
  mean(df$e_ext_csm_fix_count[df_long_ext_fix_count$iu_group == "-1"], na.rm
= TRUE) # Low IU CS- early
mean_l_ext_fix_count_high_iu_csp <-</pre>
  mean(df$1 ext csp fix count[df long ext fix count$iu group == "1"], na.rm =
TRUE) # high IU CS+ Late
mean_l_ext_fix_count_low_iu_csp <-</pre>
  mean(df$1_ext_csp_fix_count[df_long_ext_fix_count$iu_group == "-1"], na.rm
= TRUE) # Low IU CS+ Late
mean_l_ext_fix_count_high_iu_csm <-</pre>
  mean(df$1 ext csm fix count[df long ext fix count$iu group == "1"], na.rm =
TRUE) # high IU CS- late
mean_l_ext_fix_count_low_iu_csm <-</pre>
  mean(df$1 ext_csm fix_count[df long ext_fix_count$iu_group == "-1"], na.rm
= TRUE) # Low IU CS- Late
# combine into single variable
all_mean_ext_fix_count <-
  c(mean_e_ext_fix_count_high_iu_csp, mean_e_ext_fix_count_low_iu_csp,
    mean_e_ext_fix_count_high_iu_csm, mean_e_ext_fix_count_low_iu_csm,
    mean_l_ext_fix_count_high_iu_csp, mean_l_ext_fix_count_low_iu_csp,
    mean l ext fix count high iu csm, mean l ext fix count low iu csm)
# obtain SD fix count for each group at each stimulus type and save as vector
```

```
sd e ext fix count high iu csp <-
  sd(df$e_ext_csp_fix_count[df_long_ext_fix_count$iu_group == "1"], na.rm =
TRUE) # high IU CS+ early
sd e ext fix count low iu csp <-
  sd(df$e_ext_csp_fix_count[df_long_ext_fix_count$iu_group == "-1"], na.rm =
TRUE) # Low IU CS+ early
sd e ext fix count high iu csm <-
  sd(df$e_ext_csm_fix_count[df_long_ext_fix_count$iu_group == "1"], na.rm =
TRUE) # high IU CS- early
sd e ext fix count low iu csm <-
  sd(df$e ext csm fix count[df long ext fix count$iu group == "-1"], na.rm =
TRUE) # Low IU CS- early
sd l ext fix count high iu csp <-
  sd(df$1 ext csp fix count[df long ext fix count$iu group == "1"], na.rm =
TRUE) # high IU CS+ Late
sd_l_ext_fix_count_low_iu_csp <-</pre>
  sd(df$1_ext_csp_fix_count[df_long_ext_fix_count$iu_group == "-1"], na.rm =
TRUE) # Low IU CS+ Late
sd_l_ext_fix_count_high_iu_csm <-</pre>
  sd(df$1_ext_csm_fix_count[df_long_ext_fix_count$iu_group == "1"], na.rm =
TRUE) # high IU CS- Late
sd_l_ext_fix_count_low_iu_csm <-</pre>
  sd(df$l_ext_csm_fix_count[df_long_ext_fix_count$iu_group == "-1"], na.rm =
TRUE) # Low IU CS- Late
# obtain SE:
se_e_ext_fix_count_high_iu_csp <-</pre>
sd_e_ext_fix_count_high_iu_csp/sqrt(length(df$id))
se_e_ext_fix_count_low_iu_csp <-</pre>
sd_e_ext_fix_count_low_iu_csp/sqrt(length(df$id))
se e ext fix count high iu csm <-
sd e ext fix count high iu csm/sqrt(length(df$id))
se e ext fix count low iu csm <-
sd_e_ext_fix_count_low_iu_csm/sqrt(length(df$id))
se_l_ext_fix_count_high_iu_csp <-</pre>
sd_l_ext_fix_count_high_iu_csp/sqrt(length(df$id))
se_l_ext_fix_count_low_iu_csp <-</pre>
sd l ext fix count low iu csp/sqrt(length(df$id))
se_l_ext_fix_count_high_iu_csm <-</pre>
sd_l_ext_fix_count_high_iu_csm/sqrt(length(df$id))
se l ext fix count low iu csm <-
sd_l_ext_fix_count_low_iu_csm/sqrt(length(df$id))
# Combine all into single variable called all se
all_se_ext_fix_count <- c(se_e_ext_fix_count_high_iu_csp,</pre>
se e ext fix count low iu csp,
                           se_e_ext_fix_count_high_iu_csm,
se e_ext_fix_count_low_iu_csm,
                           se_l_ext_fix_count_high_iu_csp,
se_l_ext_fix_count_low_iu_csp,
```

```
se_l_ext_fix_count_high_iu_csm,
se l ext fix count low iu csm)
### Create new data frame for figures
# Which includes mean and SE for each condition
df fig extinction fix count <- data.frame(all mean ext fix count,
all se ext fix count)
### add Labels
# add two more variables to indicate IU group and stimulus type.
# for IU group
df_fig_extinction_fix_count$iu_group[1] <- "High IU"</pre>
df_fig_extinction_fix_count$iu_group[2] <- "Low IU"</pre>
df_fig_extinction_fix_count$iu_group[3] <- "High IU"</pre>
df_fig_extinction_fix_count$iu_group[4] <- "Low IU"</pre>
df_fig_extinction_fix_count$iu_group[5] <- "High IU"</pre>
df fig extinction fix count$iu group[6] <- "Low IU"</pre>
df_fig_extinction_fix_count$iu_group[7] <- "High IU"</pre>
df_fig_extinction_fix_count$iu_group[8] <- "Low IU"</pre>
# for stimulus
df fig extinction fix count$stimulus[1] <- "CS+"</pre>
df_fig_extinction_fix_count$stimulus[2] <- "CS+"</pre>
df fig extinction fix count$stimulus[3] <- "CS-"</pre>
df fig extinction fix count$stimulus[4] <- "CS-"</pre>
df_fig_extinction_fix_count$stimulus[5] <- "CS+"</pre>
df_fig_extinction_fix_count$stimulus[6] <- "CS+"</pre>
df fig extinction fix count$stimulus[7] <- "CS-"</pre>
df_fig_extinction_fix_count$stimulus[8] <- "CS-"</pre>
# and re-order levels of stimulus factor so that CS+ appears on left in the
graph
df fig extinction fix count$stimulus <-</pre>
  factor(df_fig_extinction_fix_count$stimulus,levels=c("CS+","CS-"))
# for early / late extinction
df_fig_extinction_fix_count$time[1] <- "Early"</pre>
df_fig_extinction_fix_count$time[2] <- "Early"</pre>
df_fig_extinction_fix_count$time[3] <- "Early"</pre>
df_fig_extinction_fix_count$time[4] <- "Early"</pre>
df fig extinction fix count$time[5] <- "Late"</pre>
df_fig_extinction_fix_count$time[6] <- "Late"</pre>
df_fig_extinction_fix_count$time[7] <- "Late"</pre>
df fig extinction fix count$time[8] <- "Late"</pre>
### create figure
fig extinction fix count <-
  ggplot(df_fig_extinction_fix_count, aes(x = iu_group, y =
all_mean_ext_fix_count,
```

```
fill = stimulus)) +
  geom bar(stat = "identity", position = position dodge(.6), width = .5,
alpha = .85) +
  scale y continuous(limits = c(0, 10), expand = c(0,0)) +
  facet wrap(~ time) +
  theme_classic() +
  theme(text = element text(family = "serif"),
        plot.title = element_blank()) +
  theme(axis.text.y = element_text(size = 15), axis.ticks.y =
element_line(size = 1),
         axis.line.y = element line(colour = "black")) +
  theme(axis.text.x = element text(colour = "black", size = 15),
         axis.ticks.x = element blank(),
         axis.line.x = element_line(colour = "black")) +
  theme(axis.title = element_text(size = 20, face = "bold")) +
  theme(legend.position = "top",
         legend.title = element_text(size = 20, face = "bold"),
         legend.box.background = element rect(size = .75, colour =
"#403250")) +
  theme(legend.text = element_text(size = 15)) +
  scale fill manual(values = c("#c45150", "#824372")) +
  labs(fill = "Stimulus") +
  labs(y = "Mean Fixation Count", x = "Intolerance of Uncertainty") +
  geom errorbar(aes(ymin = all mean ext fix count - all se ext fix count,
                    ymax = all mean ext fix count + all se ext fix count),
                width = .15, position = position_dodge(.6), colour =
"#090707", size = .3) +
  theme(strip.background = element blank()) +
  theme(strip.text = element_text(size = 20, face = "bold"))
 # obtain and check figure
print(fig extinction fix count)
```





# **Fixation Duration (Log Transformed)**

```
# obtain mean fix duration for each group at each stimulus type and save as
vector
# high IU CS+ early
mean_e_ext_fix_duration_high_iu_csp_log <-
    mean(df$e_ext_csp_fix_duration_log[df_long_ext_fix_duration_log$iu_group ==
"1"], na.rm = TRUE)

# Low IU CS+ early
mean_e_ext_fix_duration_low_iu_csp_log <-
    mean(df$e_ext_csp_fix_duration_log[df_long_ext_fix_duration_log$iu_group ==
"-1"], na.rm = TRUE)

# high IU CS- early
mean_e_ext_fix_duration_high_iu_csm_log <-</pre>
```

```
mean(df$e ext csm fix duration log[df long ext fix duration log$iu group ==
"1"], na.rm = TRUE)
# low IU CS- early
mean e ext fix duration low iu csm log <-
  mean(df$e ext csm fix duration log[df long ext fix duration log$iu group ==
"-1"], na.rm = TRUE)
# high IU CS+ late
mean 1 ext fix duration high iu csp log <-
  mean(df$1 ext csp fix duration log[df long ext fix duration log$iu group ==
"1"], na.rm = TRUE)
# Low IU CS+ Late
mean_l_ext_fix_duration_low_iu_csp_log <-</pre>
  mean(df$1 ext csp fix duration log[df long ext fix duration log$iu group ==
"-1"], na.rm = TRUE)
# high IU CS- late
mean_l_ext_fix_duration_high_iu_csm_log <-</pre>
  mean(df$1_ext_csm_fix_duration_log[df_long_ext_fix_duration_log$iu_group ==
"1"], na.rm = TRUE)
# Low IU CS- Late
mean l_ext_fix_duration_low_iu_csm_log <-</pre>
  mean(df$1_ext_csm_fix_duration_log[df_long_ext_fix_duration_log$iu_group ==
"-1"], na.rm = TRUE)
# combine into single variable called
all mean ext fix duration log <-
  c(mean e ext fix duration high iu csp log,
mean e ext fix duration low iu csp log,
    mean e ext fix duration high iu csm log,
mean_e_ext_fix_duration_low_iu_csm_log,
    mean_l_ext_fix_duration_high_iu_csp_log,
mean_l_ext_fix_duration_low_iu_csp_log,
    mean_l_ext_fix_duration_high_iu_csm_log,
mean 1 ext fix duration low iu csm log)
# obtain SD fix duration for each group at each stimulus type and save as
vector
# high IU CS+ early
sd e ext fix duration high iu csp log <-
  sd(df$e_ext_csp_fix_duration_log[df_long_ext_fix_duration_log$iu_group ==
"1"], na.rm = TRUE)
# low IU CS+ early
sd e ext fix duration low iu csp log <-
  sd(df$e ext csp fix duration log[df long ext fix duration log$iu group ==
```

```
"-1"], na.rm = TRUE)
# high IU CS- early
sd e ext fix duration high iu csm log <-
  sd(df$e_ext_csm_fix_duration_log[df_long_ext_fix_duration_log$iu_group ==
"1"], na.rm = TRUE)
# Low IU CS- early
sd_e_ext_fix_duration_low_iu_csm_log <-</pre>
  sd(df$e_ext_csm_fix_duration_log[df_long_ext_fix_duration_log$iu_group ==
"-1"], na.rm = TRUE)
# high IU CS+ late
sd l ext fix duration high iu csp log <-
  sd(df$1 ext csp fix duration log[df long ext fix duration log$iu group ==
"1"], na.rm = TRUE)
# Low IU CS+ Late
sd_l_ext_fix_duration_low_iu_csp_log <-</pre>
  sd(df$1 ext csp fix duration log[df long ext fix duration log$iu group ==
"-1"], na.rm = TRUE)
# high IU CS- Late
sd l ext fix duration high iu csm log <-
  sd(df$1 ext csm fix duration log[df long ext fix duration log$iu group ==
"1"], na.rm = TRUE)
# Low IU CS- Late
sd_l_ext_fix_duration_low_iu_csm_log <-</pre>
  sd(df$1 ext csm fix duration log[df long ext fix duration log$iu group ==
"-1"], na.rm = TRUE)
# obtain SE:
se e ext fix duration high iu csp log <-
sd_e_ext_fix_duration_high_iu_csp_log/sqrt(length(df$id))
se_e_ext_fix_duration_low_iu_csp_log <-</pre>
sd e ext fix duration low iu csp log/sqrt(length(df$id))
se_e_ext_fix_duration_high_iu_csm_log <-</pre>
sd_e_ext_fix_duration_high_iu_csm_log/sqrt(length(df$id))
se e ext fix duration low iu csm log <-
sd_e_ext_fix_duration_low_iu_csm_log/sqrt(length(df$id))
se_l_ext_fix_duration_high_iu_csp_log <-</pre>
sd l ext fix duration high iu csp log/sqrt(length(df$id))
se l ext fix duration low iu csp log <-
sd_l_ext_fix_duration_low_iu_csp_log/sqrt(length(df$id))
se l ext fix duration high iu csm log <-
sd_l_ext_fix_duration_high_iu_csm_log/sqrt(length(df$id))
se_l_ext_fix_duration_low_iu_csm_log <-</pre>
sd l ext fix duration low iu csm log/sqrt(length(df$id))
```

```
# combine all into single variable
all se ext fix duration log <- c(se e ext fix duration high iu csp log,
se_e_ext_fix_duration_low_iu_csp_log,
                            se_e_ext_fix_duration_high_iu_csm_log,
se e ext fix duration low iu csm log,
                           se_l_ext_fix_duration_high_iu_csp_log,
se_l_ext_fix_duration_low_iu_csp_log,
                            se l ext fix duration high iu csm log,
se_l_ext_fix_duration_low_iu_csm_log)
# create new data frame for figures which includes mean and SE for each
condition
df fig extinction fix duration log <-
data.frame(all mean_ext_fix_duration_log, all_se_ext_fix_duration_log)
# add labels - add two more variables to indicate IU group, stimulus type and
extinction time
# for IU group
df_fig_extinction_fix_duration_log$iu_group[1] <- "High IU"</pre>
df fig extinction fix duration log$iu group[2] <- "Low IU"</pre>
df fig extinction fix duration log$iu group[3] <- "High IU"</pre>
df_fig_extinction_fix_duration_log$iu_group[4] <- "Low IU"</pre>
df fig extinction fix duration log$iu group[5] <- "High IU"</pre>
df fig extinction fix duration log$iu group[6] <- "Low IU"</pre>
df_fig_extinction_fix_duration_log$iu_group[7] <- "High IU"</pre>
df_fig_extinction_fix_duration_log$iu_group[8] <- "Low IU"</pre>
# for stimulus
df_fig_extinction_fix_duration_log$stimulus[1] <- "CS+"</pre>
df_fig_extinction_fix_duration_log$stimulus[2] <- "CS+"</pre>
df fig extinction fix duration log$stimulus[3] <- "CS-"</pre>
df fig extinction fix duration log$stimulus[4] <- "CS-"</pre>
df fig extinction fix duration log$stimulus[5] <- "CS+"</pre>
df_fig_extinction_fix_duration_log$stimulus[6] <- "CS+"</pre>
df fig extinction fix duration log$stimulus[7] <- "CS-"</pre>
df_fig_extinction_fix_duration_log$stimulus[8] <- "CS-"</pre>
# and re-order levels of stimulus factor so that CS+ appears on left in the
graph
df fig extinction fix duration log$stimulus <-</pre>
  factor(df_fig_extinction_fix_duration_log$stimulus,levels=c("CS+","CS-"))
# for early / late extinction
df_fig_extinction_fix_duration_log$time[1] <- "Early"</pre>
df_fig_extinction_fix_duration_log$time[2] <- "Early"</pre>
df fig extinction fix duration log$time[3] <- "Early"</pre>
df_fig_extinction_fix_duration_log$time[4] <- "Early"</pre>
df_fig_extinction_fix_duration_log$time[5] <- "Late"</pre>
```

```
df fig extinction fix duration log$time[6] <- "Late"</pre>
df fig extinction fix duration log$time[7] <- "Late"</pre>
df_fig_extinction_fix_duration_log$time[8] <- "Late"</pre>
# create figure
fig extinction fix duration log <-
   ggplot(df_fig_extinction_fix_duration_log, aes(x = iu_group, y =
all_mean_ext_fix_duration_log,
                                        fill = stimulus)) +
  geom_bar(stat = "identity", position = position_dodge(.6), width = .5,
alpha = .85) +
  scale y continuous(limits = c(0, 8), expand = c(0, 0)) +
  facet wrap(~ time) +
  theme classic() +
  theme(text = element text(family = "serif"),
         plot.title = element_blank()) +
  theme(axis.text.y = element_text(size = 15), axis.ticks.y =
element_line(size = 1),
         axis.line.y = element_line(colour = "black")) +
  theme(axis.text.x = element_text(colour = "black", size = 15),
         axis.ticks.x = element blank(),
         axis.line.x = element line(colour = "black")) +
  theme(axis.title = element_text(size = 20, face = "bold")) +
  theme(legend.position = "top",
         legend.title = element text(size = 20, face = "bold"),
         legend.box.background = element rect(size = .75, colour =
"#403250")) +
  theme(legend.text = element_text(size = 15)) +
  scale_fill_manual(values = c("#c45150", "#824372")) +
  labs(fill = "Stimulus") +
  labs(y = "Mean Fixation Duration (ms)", x = "Intolerance of Uncertainty") +
  geom errorbar(aes(ymin = all mean ext fix duration log -
all_se_ext_fix_duration_log,
                    ymax = all_mean_ext_fix_duration_log +
all se ext fix duration log),
                width = .15, position = position_dodge(.6), colour =
"#090707", size = .3) +
  theme(strip.background = element blank()) +
  theme(strip.text = element text(size = 20, face = "bold"))
# obtain and check figure
print(fig_extinction_fix_duration_log)
```



## Saccade Amplitude

```
# obtain mean sacc amplitude for each group at each stimulus type and save as
vector
# high IU CS+ early
mean_e_ext_sacc_amplitude_high_iu_csp <-
    mean(df$e_ext_csp_sacc_amplitude[df_long_ext_sacc_amplitude$iu_group ==
"1"], na.rm = TRUE)

# Low IU CS+ early
mean_e_ext_sacc_amplitude_low_iu_csp <-
    mean(df$e_ext_csp_sacc_amplitude[df_long_ext_sacc_amplitude$iu_group == "-
1"], na.rm = TRUE)

# high IU CS- early
mean_e_ext_sacc_amplitude_high_iu_csm <-</pre>
```

```
mean(df$e ext csm sacc amplitude[df long ext sacc amplitude$iu group ==
"1"], na.rm = TRUE)
# low IU CS- early
mean e ext sacc amplitude low iu csm <-
  mean(df$e ext csm sacc amplitude[df long ext sacc amplitude$iu group == "-
1"], na.rm = TRUE)
# high IU CS+ late
mean 1 ext sacc amplitude high iu csp <-
  mean(df$1 ext csp sacc amplitude[df long ext sacc amplitude$iu group ==
"1"], na.rm = TRUE)
# Low IU CS+ Late
mean_l_ext_sacc_amplitude_low_iu_csp <-</pre>
  mean(df$1 ext_csp_sacc_amplitude[df_long_ext_sacc_amplitude$iu_group == "-
1"], na.rm = TRUE)
# high IU CS- late
mean_l_ext_sacc_amplitude_high_iu_csm <-</pre>
  mean(df$1_ext_csm_sacc_amplitude[df_long_ext_sacc_amplitude$iu_group ==
"1"], na.rm = TRUE)
# Low IU CS- Late
mean_l_ext_sacc_amplitude_low_iu_csm <-</pre>
  mean(df$1_ext_csm_sacc_amplitude[df_long_ext_sacc_amplitude$iu_group == "-
1"], na.rm = TRUE)
# combine into single variable called
all mean ext sacc amplitude <-
  c(mean e ext sacc_amplitude_high_iu_csp,
mean e ext sacc amplitude low iu csp,
    mean e ext sacc amplitude high iu csm,
mean_e_ext_sacc_amplitude_low_iu_csm,
    mean 1 ext sacc amplitude high iu csp,
mean l ext sacc amplitude low iu csp,
    mean 1 ext sacc amplitude high iu csm,
mean 1 ext sacc amplitude low iu csm)
# obtain SD sacc amplitude for each group at each stimulus type and save as
vector
# high IU CS+ early
sd e ext sacc amplitude high iu csp <-
  sd(df$e_ext_csp_sacc_amplitude[df_long_ext_sacc_amplitude$iu_group == "1"],
na.rm = TRUE)
# Low IU CS+ early
sd e ext sacc amplitude low iu csp <-
  sd(df$e ext csp sacc amplitude[df long ext sacc amplitude$iu group == "-
```

```
1"], na.rm = TRUE)
# high IU CS- early
sd e ext sacc amplitude high iu csm <-
  sd(df$e_ext_csm_sacc_amplitude[df_long_ext_sacc_amplitude$iu_group == "1"],
na.rm = TRUE)
# Low IU CS- early
sd e ext sacc amplitude low iu csm <-
  sd(df$e_ext_csm_sacc_amplitude[df_long_ext_sacc_amplitude$iu_group == "-
1"], na.rm = TRUE)
# high IU CS+ late
sd l ext sacc amplitude high iu csp <-
  sd(df$1 ext csp_sacc_amplitude[df_long_ext_sacc_amplitude$iu_group == "1"],
na.rm = TRUE)
# Low IU CS+ Late
sd_l_ext_sacc_amplitude_low_iu_csp <-</pre>
  sd(df$1_ext_csp_sacc_amplitude[df_long_ext_sacc_amplitude$iu_group == "-
1"], na.rm = TRUE)
# high IU CS- Late
sd l ext sacc amplitude high iu csm <-
  sd(df$1_ext_csm_sacc_amplitude[df_long_ext_sacc_amplitude$iu_group == "1"],
na.rm = TRUE)
# Low IU CS- Late
sd l ext sacc amplitude low iu csm <-
  sd(df$1_ext_csm_sacc_amplitude[df_long_ext_sacc_amplitude$iu group == "-
1"], na.rm = TRUE)
# obtain SE:
se e ext sacc amplitude high iu csp <-
sd e ext sacc amplitude high iu csp/sqrt(length(df$id))
se_e_ext_sacc_amplitude_low_iu_csp <-</pre>
sd e ext sacc amplitude low iu csp/sqrt(length(df$id))
se_e_ext_sacc_amplitude_high_iu_csm <-</pre>
sd_e_ext_sacc_amplitude_high_iu_csm/sqrt(length(df$id))
se e ext sacc amplitude low iu csm <-
sd_e_ext_sacc_amplitude_low_iu_csm/sqrt(length(df$id))
se_l_ext_sacc_amplitude_high_iu_csp <-</pre>
sd l ext sacc amplitude high iu csp/sqrt(length(df$id))
se l ext sacc amplitude low iu csp <-
sd_l_ext_sacc_amplitude_low_iu_csp/sqrt(length(df$id))
se l ext sacc amplitude high iu csm <-
sd_l_ext_sacc_amplitude_high_iu_csm/sqrt(length(df$id))
se_l_ext_sacc_amplitude_low_iu_csm <-</pre>
sd l ext sacc amplitude low iu csm/sqrt(length(df$id))
```

```
# combine all into single variable
all se ext sacc amplitude <- c(se e ext sacc amplitude high iu csp,
se e ext sacc amplitude low iu csp,
                               se_e_ext_sacc_amplitude_high_iu_csm,
se e ext sacc amplitude low iu csm,
                               se_l_ext_sacc_amplitude_high_iu_csp,
se_l_ext_sacc_amplitude_low_iu_csp,
                               se l ext sacc amplitude high iu csm,
se_l_ext_sacc_amplitude_low_iu_csm)
# create new data frame for figures which includes mean and SE for each
condition
df fig extinction sacc amplitude <- data.frame(all mean ext sacc amplitude,
all_se_ext_sacc_amplitude)
# add labels - add two more variables to indicate IU group, stimulus type and
extinction time
# for IU group
df_fig_extinction_sacc_amplitude$iu_group[1] <- "High IU"</pre>
df_fig_extinction_sacc_amplitude$iu_group[2] <- "Low IU"</pre>
df fig extinction sacc amplitude$iu group[3] <- "High IU"</pre>
df_fig_extinction_sacc_amplitude$iu_group[4] <- "Low IU"</pre>
df fig extinction sacc amplitude$iu group[5] <- "High IU"</pre>
df fig extinction sacc amplitude$iu group[6] <- "Low IU"</pre>
df_fig_extinction_sacc_amplitude$iu_group[7] <- "High IU"</pre>
df_fig_extinction_sacc_amplitude$iu_group[8] <- "Low IU"</pre>
# for stimulus
df_fig_extinction_sacc_amplitude$stimulus[1] <- "CS+"</pre>
df fig extinction sacc amplitude$stimulus[2] <- "CS+"</pre>
df fig extinction sacc amplitude$stimulus[3] <- "CS-"</pre>
df fig extinction sacc amplitude$stimulus[4] <- "CS-"</pre>
df fig extinction sacc amplitude$stimulus[5] <- "CS+"</pre>
df_fig_extinction_sacc_amplitude$stimulus[6] <- "CS+"</pre>
df fig extinction sacc amplitude$stimulus[7] <- "CS-"</pre>
df_fig_extinction_sacc_amplitude$stimulus[8] <- "CS-"</pre>
# and re-order levels of stimulus factor so that CS+ appears on left in the
araph
df fig extinction sacc amplitude$stimulus <-</pre>
  factor(df_fig_extinction_sacc_amplitude$stimulus,levels=c("CS+","CS-"))
# for early / late extinction
df_fig_extinction_sacc_amplitude$time[1] <- "Early"</pre>
df_fig_extinction_sacc_amplitude$time[2] <- "Early"</pre>
df fig extinction sacc amplitude$time[3] <- "Early"</pre>
df fig extinction sacc amplitude$time[4] <- "Early"</pre>
df_fig_extinction_sacc_amplitude$time[5] <- "Late"</pre>
```

```
df fig extinction sacc amplitude$time[6] <- "Late"</pre>
df fig extinction sacc amplitude$time[7] <- "Late"</pre>
df_fig_extinction_sacc_amplitude$time[8] <- "Late"</pre>
# create figure
fig extinction sacc amplitude <-
  ggplot(df_fig_extinction_sacc_amplitude, aes(x = iu_group, y =
all_mean_ext_sacc_amplitude,
                                        fill = stimulus)) +
  geom_bar(stat = "identity", position = position_dodge(.6), width = .5,
alpha = .85) +
  scale y continuous(limits = c(0, 4), expand = c(0, 0)) +
  facet wrap(~ time) +
  theme classic() +
  theme(text = element text(family = "serif"),
         plot.title = element_blank()) +
  theme(axis.text.y = element_text(size = 15), axis.ticks.y =
element_line(size = 1),
         axis.line.y = element_line(colour = "black")) +
  theme(axis.text.x = element_text(colour = "black", size = 15),
         axis.ticks.x = element blank(),
         axis.line.x = element line(colour = "black")) +
  theme(axis.title = element_text(size = 20, face = "bold")) +
  theme(legend.position = "top",
         legend.title = element text(size = 20, face = "bold"),
         legend.box.background = element rect(size = .75, colour =
"#403250")) +
  theme(legend.text = element_text(size = 15)) +
  scale_fill_manual(values = c("#c45150", "#824372")) +
  labs(fill = "Stimulus") +
  labs(y = "Mean Saccade Amplitude \n (degrees/ms)", x = "Intolerance of
Uncertainty") +
  geom_errorbar(aes(ymin = all_mean_ext_sacc_amplitude -
all_se_ext_sacc_amplitude,
                    ymax = all mean ext sacc amplitude +
all_se_ext_sacc_amplitude),
                width = .15, position = position_dodge(.6), colour =
"#090707", size = .3) +
  theme(strip.background = element blank()) +
  theme(strip.text = element_text(size = 20, face = "bold"))
# obtain and check figure
print(fig extinction sacc amplitude)
```





# **Combine Bar Graphs**



### ANCOVAs to test Specificity of IU over Trait Anxiety

# **ANCOVA Acquisition Fixation Count**

```
df long acq fix count$stimulus <-</pre>
 factor(ifelse(df long acq fix count$condition == "acq csp fix count", 1, -
1))
# mean centre continuous covariate (STICSA)
# to apply mean centring, first obtain average sticsa scores for all
participants,
# and save as a variable
df long acq fix count$sticsa total avg <-</pre>
mean(df_long_acq_fix_count$sticsa_total)
# next, subtract this average from all participants' sticsa scores,
# and save as a variable
df_long_acq_fix_count$sticsa_total_centred <-</pre>
 df long acq fix count$sticsa total - df long acq fix count$sticsa total avg
# from this we have mean sticsa scores after centring
# compute 2(IU: High & Low) x 2 (Stimulus: CS+, CS-) mixed ANCOVA,
# with mean-cenred STICSA as covariate
# and obtain effect size (partial eta squared)
acq fix count ancova <-
 anova_test(df_long_acq_fix_count, fix_count ~ iu_group * stimulus +
Error(id/stimulus),
            covariate = sticsa total centred, effect.size = "pes")
# obtain the mixed ANCOVA results
get anova table(acq fix count ancova)
## ANOVA Table (type III tests)
##
                                                        p p<.05
##
                           Effect DFn DFd
                                                                     pes
## 1
             sticsa total centred
                                    1 136 0.059 0.808000
                                                                0.000434
## 2
                                    1 136 3.191 0.076000
                         iu group
                                                                0.023000
                         stimulus 1 136 11.622 0.000858
## 3
                                                              * 0.079000
0.013000
## 5
                iu group:stimulus
                                    1 136 1.230 0.269000
                                                                0.009000
# results:
# STICSA (centred): F(1,136) = 0.06, p = .808, eta2(partial) = < .001
# IU: F(1,136) = 3.19, p = .076, eta2(partial) = .023
# Stimulus: F(1,136) = 11.62, p < .001***, eta2(partial) = .079
# STICSA * Stimulus: F(1,136) = 1.85, p = .177, eta2(partial) = .013
# IU * Stimulus: F(1, 136) = 1.23, p = .269, eta2(partial) = .009
# therefore, after accounting for trait anxiety, IU no longer has a
significant
# effect on fixation count in acquisition, but stimulus continues to have
# significant effect. IU*Stimulus interaction also remains non-significant,
# even after controlling for trait anxiety.
```

```
# write to csv
write.csv((get anova table(acq fix count ancova)),
          file = "tables/ancovas/acq_fix_count_ancova.csv")
```

### ANCOVA Acquisition Fixation Duration (Log Transformed)

```
# transform wide format data into Long format for mixed ANCOVA
df_long_acq_fix_duration_log <- melt(df, id = c("id", "iu_group",</pre>
"sticsa_total"),
                                 measure.vars = c("acq_csp_fix_duration_log",
"acq csm fix duration log"))
# rename columns for easier interpretation
colnames(df_long_acq_fix_duration_log) = c("id", "iu_group", "sticsa_total",
"condition", "fix_duration_log")
# create column to code stimulus as CS+ (1) and CS- (-1)
df long acq fix duration log$stimulus <-</pre>
  factor(ifelse(df_long_acq_fix_duration_log$condition ==
"acq_csp_fix_duration_log", 1, -1))
# mean centre continuous covariate (STICSA)
# to apply mean centring, first obtain average sticsa scores for all
participants.
# and save as a variable
df long acq fix duration log$sticsa total avg <-</pre>
mean(df_long_acq_fix_duration_log$sticsa_total)
# next, subtract this average from all participants' sticsa scores,
# and save as a variable
df long acq fix duration log$sticsa total centred <-
  df long acq fix duration log$sticsa total -
df_long_acq_fix_duration_log$sticsa_total_avg
# from this we have mean sticsa scores after centring
# compute 2(IU: High & Low) x 2 (Stimulus: CS+, CS-) mixed ANCOVA,
# with mean-cenred STICSA as covariate
# and obtain effect size (partial eta squared)
acq_fix_duration_ancova_log <-</pre>
  anova test(df long acq fix duration log, fix duration log ~ iu group *
stimulus + Error(id/stimulus),
             covariate = sticsa total centred, effect.size = "pes")
# obtain the mixed ANCOVA results
get_anova_table(acq_fix_duration_ancova_log)
## ANOVA Table (type III tests)
##
##
                            Effect DFn DFd F p p<.05 pes
```

```
## 1
              sticsa total centred
                                    1 136 0.268 0.606
                                                             0.002
## 2
                          iu group 1 136 3.890 0.051
                                                             0.028
## 3
                                                             0.021
                          stimulus 1 136 2.935 0.089
## 4 sticsa_total_centred:stimulus    1 136 0.409 0.524
                                                             0.003
## 5
                 iu group:stimulus 1 136 1.674 0.198
                                                             0.012
# results:
# STICSA (centred): F(1,136) = 0.27, p = .606, eta2(partial) = .002
# IU: F(1,136) = 3.89, p = .051, eta2(partial) = .028
# Stimulus: F(1,136) = 2.94, p = .089, eta2(partial) = .021
# STICSA * Stimulus: F(1,136) = 0.41, p = .524, eta2(partial) = .003
# IU * Stimulus: F(1, 136) = 1.67, p = .198, eta2(partial) = .012
# there are no significant effects or interactions on fixation duration in
acquisition.
# write to csv
write.csv((get_anova_table(acq_fix_duration_ancova_log)),
          file = "tables/ancovas/acq_fix_duration_ancova_log.csv")
```

### **ANCOVA Acquisition Saccade Amplitude**

```
# transform wide format data into long format for mixed ANCOVA
df_long_acq_sacc_amplitude <- melt(df, id = c("id", "iu_group",</pre>
"sticsa_total"),
                                  measure.vars = c("acq_csp_sacc_amplitude",
                                                    "acq_csm_sacc_amplitude"))
# rename columns for easier interpretation
colnames(df_long_acq_sacc_amplitude) = c("id", "iu_group", "sticsa_total",
"condition", "sacc_amplitude")
# create column to code stimulus as CS+ (1) and CS- (-1)
df long acq sacc amplitude$stimulus <-</pre>
  factor(ifelse(df long acg sacc amplitude$condition ==
"acq_csp_sacc_amplitude", 1, -1))
# mean centre continuous covariate (STICSA)
# to apply mean centring, first obtain average sticsa scores for all
participants.
# and save as a variable
df long acq sacc amplitude$sticsa total avg <-</pre>
mean(df_long_acq_sacc_amplitude$sticsa_total)
# next, subtract this average from all participants' sticsa scores,
# and save as a variable
df long acq sacc amplitude$sticsa total centred <-</pre>
  df_long_acq_sacc_amplitude$sticsa_total -
df_long_acq_sacc_amplitude$sticsa_total_avg
# from this we have mean sticsa scores after centring
```

```
# compute 2(IU: High & Low) x 2 (Stimulus: CS+, CS-) mixed ANCOVA,
# with mean-cenred STICSA as covariate
# and obtain effect size (partial eta squared)
acq sacc amplitude ancova <-
 anova_test(df_long_acq_sacc_amplitude, sacc_amplitude ~ iu_group * stimulus
+ Error(id/stimulus),
             covariate = sticsa_total_centred, effect.size = "pes")
## Warning: NA detected in rows: 234,259.
## Removing this rows before the analysis.
# obtain the mixed ANCOVA results
get_anova_table(acq_sacc_amplitude_ancova)
## ANOVA Table (type III tests)
##
##
                            Effect DFn DFd F
                                                     p p<.05
                                                                   pes
## 1
             sticsa total centred 1 134 0.007 0.935
                                                             0.0000503
## 2
                          iu group 1 134 2.128 0.147
                                                             0.0160000
## 3
                          stimulus 1 134 0.943 0.333
                                                             0.0070000
## 4 sticsa total centred:stimulus 1 134 0.643 0.424
                                                             0.0050000
                iu_group:stimulus
## 5
                                    1 134 0.864 0.354
                                                             0.0060000
# results:
# STICSA (centred): F(1,134) = 0.01, p = .935, eta2(partial) < .001
# IU: F(1,134) = 2.13, p = .147, eta2(partial) = .016
# Stimulus: F(1,134) = 0.94, p = .333, eta2(partial) = .007
# STICSA * Stimulus: F(1,134) = 0.64, p = .424, eta2(partial) = .005
# IU * Stimulus: F(1, 134) = 0.86, p = .354, eta2(partial) = .006
# therefore, after accounting for trait anxiety, there continue not
# to be any significant effects of IU, stimulus, and interaction
# effects on saccade amplitude in acquisition.
# write to csv
write.csv((get anova table(acq sacc amplitude ancova)),
         file = "tables/ancovas/acq sacc amplitude ancova.csv")
```

### ANCOVA Extinction Fixation Count

```
# create column to code stimulus as CS+ (1) and CS- (-1)
df long ext fix count$stimulus <-</pre>
  factor(ifelse(df long ext fix count$condition == "e ext csp fix count" |
                  df long ext fix count$condition == "l ext csp fix count",
1, -1))
# create column to code extinction as early (1) and late (-1)
df long ext fix count$time <-</pre>
  factor(ifelse(df long ext fix count$condition == "e ext csp fix count" |
                  df long ext fix count$condition == "e ext csm fix count",
1, -1))
# mean centre continuous covariate (STICSA)
# to apply mean centring, first obtain average sticsa scores for all
participants,
# and save as a variable
df_long_ext_fix_count$sticsa_total_avg <-</pre>
mean(df long ext fix count$sticsa total)
# next, subtract this average from all participants' sticsa scores,
# and save as a variable
df_long_ext_fix_count$sticsa_total_centred <-</pre>
  df_long_ext_fix_count$sticsa_total - df_long_ext_fix_count$sticsa_total_avg
# from this we have mean sticsa scores after centring
# compute 2(IU: High & Low) x 2 (Stimulus: CS+, CS-) x 2 (Time: Early, Late)
mixed ANOVA,
# with mean-centred STICSA as covariate,
# and obtain effect size (partial eta squared)
ext_fix_count_ancova <-</pre>
  anova_test(df_long_ext_fix_count,
             fix_count ~ iu_group * stimulus * time +
Error(id/(stimulus*time)),
             covariate = sticsa_total_centred, effect.size = "pes")
# obtain the mixed ANCOVA results
get_anova_table(ext_fix_count_ancova)
## ANOVA Table (type III tests)
##
##
                                   Effect DFn DFd
                                                         F
                                                               p p<.05
pes
## 1
                    sticsa_total_centred
                                          1 136 0.433000 0.512
0.00300000
## 2
                                 iu group 1 136 4.361000 0.039
0.03100000
## 3
                                 stimulus
                                           1 136 4.209000 0.042
0.03000000
```

```
## 4
                                    time
                                          1 136 5.692000 0.018
0.04000000
## 5
          sticsa_total_centred:stimulus
                                          1 136 1.098000 0.297
0.00800000
## 6
                       iu group:stimulus
                                          1 136 4.560000 0.035
0.03200000
## 7
               sticsa total centred:time
                                          1 136 0.000429 0.984
0.00000316
## 8
                           iu_group:time
                                          1 136 3.489000 0.064
0.02500000
## 9
                           stimulus:time
                                           1 136 0.066000 0.797
0.00048800
## 10 sticsa_total_centred:stimulus:time
                                          1 136 0.901000 0.344
0.00700000
## 11
                  iu_group:stimulus:time
                                          1 136 0.044000 0.834
0.00032500
# results:
# STICSA (centred): F(1,136) = 0.43, p = .512, eta2(partial) = .003
# IU: F(1,136) = 4.36, p = .039*, eta2(partial) = .031
# Stimulus: F(1,136) = 4.21, p = .042*, eta2(partial) = .030
# Time: F(1,136) = 5.69, p = .018 *, eta2(partial) = .040
\# STICSA * Stimulus: F(1,136) = 1.10, p = .297, eta2(partial) = .008
# IU * Stimulus: F(1, 136) = 4.56, p = .035*, eta2(partial) = .032
# STICSA* Time: F(1,136) = 0.00, p = .982, eta2(partial) < .001
# IU * Time: F(1,136) = 3.49, p = .064, eta2(partial) = .025
# Stimulus * Time: F(1,136) = 0.07, p = .797, eta2(partial) < .001
# STICSA * Stimulus * Time: F(1,136) = 0.90, p = .344, eta2(partial) = .007
# IU * Stimulus * Time: F(1,136) = 0.04, p = .834, eta2(partial) < .001
# therefore, after accounting for trait anxiety, IU, Stimulus, and Time
# continue to have a significant effect on fixation duration in acquisition.
# there is no longer a significant interaction effect of IU*Time,
# but there is now a significant interaction effect of IU*stimulus
# write to csv
write.csv((get_anova_table(ext_fix_count_ancova)),
          file = "tables/ancovas/ext_fix_count_ancova.csv")
# as there was a significant IU*Stimulus interaction (which differed from
observed
# mixed ANOVA), conduct simple main effects analysis:
## obtain effect of IU at each level of stimulus
simple effects ext fix count iu ancova <- df long ext fix count %>%
  group by(stimulus) %>%
  anova test(dv = fix count, wid = id, between = iu group, within = time,
             covariate = sticsa total centred, effect.size = "pes") %>%
  get anova table() %>%
  adjust_pvalue(method = "bonferroni")
```

```
# get the output
simple_effects_ext_fix_count_iu_ancova
## # A tibble: 10 × 9
##
      stimulus Effect
                                          DFn
                                                DFd
                                                        F
                                                              p `p<.05`
                                                                          pes
p.adj
## * <fct>
               <chr>>
                                        <dbl> <dbl> <dbl> <dbl> <chr>
                                                                        <dbl>
<dbl>
               sticsa_total_centred
                                                136 0.142 0.707 ""
## 1 -1
                                            1
                                                                        0.001
1
                                            1
## 2 -1
                                                136 6.66 0.011 "*"
                                                                        0.047
               iu group
0.11
               time
                                                136 5.02 0.027 "*"
                                                                        0.036
## 3 -1
                                            1
0.27
               sticsa total centred:ti...
                                                136 0.369 0.545 ""
## 4 -1
                                                                        0.003
1
                                                136 2.25 0.136 ""
## 5 -1
               iu group:time
                                            1
                                                                        0.016
1
## 6 1
               sticsa_total_centred
                                            1
                                                136 0.796 0.374 ""
                                                                        0.006
1
## 7 1
               iu_group
                                            1
                                                136 2.16 0.143 ""
                                                                        0.016
1
## 8 1
               time
                                                136 2.86 0.093 ""
                                                                        0.021
0.93
## 9 1
               sticsa_total_centred:ti...
                                                136 0.253 0.616 ""
                                                                        0.002
1
                                                136 2.40 0.124 ""
## 10 1
               iu group:time
                                            1
                                                                        0.017
1
# results:
# The effect of IU group on CS+ was not significant [F(1,136) = 2.17, p =
.1.00, pes = .016]
# the effect of IU group on CS- was not significant [F(1,136) = 6.66, p =
.110, pes = .047
# as there was significant IU-stimulus interaction that was
# not observed before in mixed ANOVA, obtain estimated
# marginal means to be reported:
## IU-Stimulus interaction
# obtain emmeans
emmeans ext fix count ancova iu stimulus <- df long ext fix count %>%
  group by(stimulus) %>%
  emmeans test(fix count ~ iu group, covariate = sticsa total centred) %>%
  get_emmeans()
## Warning: Expected 2 pieces. Additional pieces discarded in 2 rows [1, 2].
emmeans_ext_fix_count_ancova_iu_stimulus
```

```
## # A tibble: 4 × 9
     sticsa total centred stimulus iu group emmean
                                                              df conf.low
                                                        se
conf.high
                    <dbl> <fct>
                                    <fct>
                                              <dbl> <dbl> <dbl>
##
                                                                    <dbl>
<dbl>
## 1
                -2.86e-15 -1
                                    -1
                                               6.88 0.303
                                                             551
                                                                      6.29
7.48
## 2
                -2.86e-15 -1
                                    1
                                               8.41 0.311
                                                                     7.80
                                                             551
9.02
## 3
                -2.86e-15 1
                                    -1
                                               6.86 0.303
                                                             551
                                                                      6.26
7.45
## 4
                -2.86e-15 1
                                    1
                                               7.88 0.311
                                                             551
                                                                     7.27
8.49
## # ... with 1 more variable: method <chr>
# save them as variables
emmeans ext fix count ancova high iu csp <- 7.88
emmeans_ext_fix_count_ancova_high_iu_csm <- 8.41</pre>
emmeans_ext_fix_count_ancova_low_iu_csp <- 6.86</pre>
emmeans ext fix count ancova low iu csm <- 6.88
```

### **ANCOVA Extinction Fixation Duration (Log Transformed)**

```
# transform wide format data into long format for mixed ANCOVA
df_long_ext_fix_duration_log <- melt(df, id = c("id", "iu_group",</pre>
"sticsa_total"),
                                  measure.vars =
c("e ext csp fix duration log",
"e_ext_csm_fix_duration_log",
"l_ext_csp_fix_duration_log",
"l ext csm fix duration log"))
# rename columns for easier interpretation
colnames(df_long_ext_fix_duration_log) = c("id", "iu_group", "sticsa_total",
"condition", "fix_duration_log")
# create column to code stimulus as CS+ (1) and CS- (-1)
df long ext fix duration log$stimulus <-</pre>
  factor(ifelse(df_long_ext_fix_duration_log$condition ==
"e_ext_csp_fix_duration_log" |
                  df_long_ext_fix_duration_log$condition ==
"l_ext_csp_fix_duration_log", 1, -1))
# create column to code extinction as early (1) and late (-1)
df long ext fix duration log$time <-</pre>
  factor(ifelse(df long ext fix duration log$condition ==
"e ext csp fix duration log" |
```

```
df long ext fix duration log$condition ==
"e_ext_csm_fix_duration_log", 1, -1))
# mean centre continuous covariate (STICSA)
# to apply mean centring, first obtain average sticsa scores for all
participants,
# and save as a variable
df_long_ext_fix_duration_log$sticsa_total_avg <-</pre>
mean(df long ext fix duration log$sticsa total)
# next, subtract this average from all participants' sticsa scores,
# and save as a variable
df_long_ext_fix_duration_log$sticsa_total_centred <-</pre>
  df_long_ext_fix_duration_log$sticsa_total -
df_long_ext_fix_duration_log$sticsa_total_avg
# from this we have mean sticsa scores after centring
# compute 2(IU: High & Low) x 2 (Stimulus: CS+, CS-) x 2 (Time: Early, Late)
mixed ANOVA,
# with mean-centred STICSA as covariate,
# and obtain effect size (partial eta squared)
ext fix duration ancova log <-
  anova_test(df_long_ext_fix_duration_log,
             fix_duration_log ~ iu_group * stimulus * time +
Error(id/(stimulus*time)),
             covariate = sticsa_total_centred, effect.size = "pes")
# obtain the mixed ANCOVA results
get_anova_table(ext_fix_duration_ancova_log)
## ANOVA Table (type III tests)
##
##
                                                            p p<.05
                                  Effect DFn DFd
## 1
                    sticsa_total_centred
                                           1 136 0.001 0.972
                                                                    0.00000901
## 2
                                                                  * 0.05800000
                                iu_group
                                           1 136 8.365 0.004
## 3
                                stimulus
                                          1 136 0.514 0.475
                                                                    0.00400000
## 4
                                    time
                                           1 136 4.358 0.039
                                                                  * 0.03100000
## 5
           sticsa total centred:stimulus 1 136 0.195 0.659
                                                                    0.00100000
                                          1 136 5.357 0.022
## 6
                       iu_group:stimulus
                                                                  * 0.03800000
## 7
               sticsa_total_centred:time 1 136 0.329 0.567
                                                                    0.00200000
## 8
                           iu group:time
                                          1 136 0.501 0.480
                                                                    0.00400000
## 9
                           stimulus:time
                                          1 136 0.174 0.677
                                                                    0.00100000
## 10 sticsa_total_centred:stimulus:time
                                          1 136 0.221 0.639
                                                                    0.00200000
## 11
                                          1 136 0.379 0.539
                  iu_group:stimulus:time
                                                                    0.00300000
# results:
# STICSA (centred): F(1,136) = 0.01, p = .972, eta2(partial) < .001
# IU: F(1,136) = 8.37, p = .004**, eta2(partial) = .058
# Stimulus: F(1,136) = 0.51, p = .475, eta2(partial) = .004
# Time: F(1,136) = 4.36, p = .039*, eta2(partial) = .031
```

```
\# STICSA * Stimulus: F(1,136) = 0.20, p = .659, eta2(partial) = .001
# IU * Stimulus: F(1, 136) = 5.36, p = .022*, eta2(partial) = .038
# STICSA* Time: F(1,136) = 0.33, p = .567, eta2(partial) = .002
# IU * Time: F(1,136) = 0.50, p = .480, eta2(partial) = .004
# Stimulus * Time: F(1,136) = 0.17, p = .677, eta2(partial) = .001
# STICSA * Stimulus * Time: F(1,136) = 0.22, p = .639, eta2(partial) = .002
# IU * Stimulus * Time: F(1,136) = 0.34, p = .539, eta2(partial) = .003
# there were significant main effects of IU, time,
# and a significant IU-stimulus interaction on fixation duration in
extinction.
# and no further main effects or interactions.
# write to csv
write.csv((get_anova_table(ext_fix_duration_ancova_log)),
          file = "tables/ancovas/ext_fix_duration_ancova_log.csv")
# as there was a significant IU*Stimulus interaction, conduct simple
# main effects analysis:
## obtain effect of IU at each level of stimulus
simple effects ext fix duration iu ancova <- df long ext fix duration log %>%
  group by(stimulus) %>%
  anova_test(dv = fix_duration_log, wid = id, between = iu_group, within =
time,
             covariate = sticsa total centred, effect.size = "pes") %>%
  get_anova_table() %>%
  adjust_pvalue(method = "bonferroni")
# get the output
simple_effects_ext_fix_duration_iu_ancova
## # A tibble: 10 × 9
##
      stimulus Effect
                                      DFn
                                            DFd
                                                     F
                                                           p `p<.05`
                                                                          pes
p.adj
                                    <dbl> <dbl> <dbl> <dbl> <chr>
## * <fct>
               <chr>
                                                                        <dbl>
<dbl>
## 1 -1
               sticsa_total_centred
                                        1
                                            136 0.008 0.928 ""
                                                                      6.02e-5
1
## 2 -1
               iu_group
                                            136 11.2
                                                       0.001 "*"
                                                                      7.6 e-2
0.01
## 3 -1
               time
                                            136 4.37 0.038 "*"
                                                                      3.1 e-2
0.38
## 4 -1
               sticsa_total_centre...
                                            136 0.627 0.43
                                        1
                                                                          e-3
1
## 5 -1
                                            136 0.061 0.806 ""
                                                                      4.45e-4
               iu_group:time
                                        1
1
## 6 1
               sticsa total centred
                                            136 0.027 0.87
                                                                      1.99e-4
                                        1
                                            136 4.70 0.032 "*"
## 7 1
               iu group
                                        1
                                                                      3.3 e-2
0.32
```

```
## 8 1
               time
                                            136 1.93 0.167 ""
                                                                      1.4 e-2
1
## 9 1
                                            136 0.036 0.849 ""
                                                                      2.66e-4
               sticsa_total_centre...
                                        1
1
               iu group:time
## 10 1
                                            136 0.771 0.381 ""
                                                                          e-3
# results:
# The effect of IU group on CS+ was not significant [F(1,136) = 4.70, p =
.320, pes = .0331
# the effect of IU group on CS- was significant [F(1,136) = 11,19, p = .01,
```

## **ANCOVA Extinction Saccade Amplitude**

```
# transform wide format data into long format for mixed ANCOVA
df long ext sacc amplitude <- melt(df, id = c("id", "iu group",</pre>
"sticsa_total"),
                                  measure.vars = c("e_ext_csp_sacc_amplitude",
                                                   "e ext csm sacc amplitude",
                                                   "l_ext_csp_sacc_amplitude",
"l ext csm sacc amplitude"))
# rename columns for easier interpretation
colnames(df_long_ext_sacc_amplitude) = c("id", "iu_group", "sticsa_total",
"condition", "sacc_amplitude")
# create column to code stimulus as CS+ (1) and CS- (-1)
df long ext sacc amplitude$stimulus <-</pre>
  factor(ifelse(df_long_ext_sacc_amplitude$condition ==
"e ext csp sacc amplitude"
                  df_long_ext_sacc_amplitude$condition ==
"l_ext_csp_sacc_amplitude", 1, -1))
# create column to code extinction as early (1) and late (-1)
df long ext sacc amplitude$time <-</pre>
 factor(ifelse(df_long_ext_sacc_amplitude$condition ==
"e ext csp sacc amplitude"
                  df_long_ext_sacc_amplitude$condition ==
"e ext csm sacc amplitude", 1, -1))
# mean centre continuous covariate (STICSA)
# to apply mean centring, first obtain average sticsa scores for all
participants,
# and save as a variable
df_long_ext_sacc_amplitude$sticsa_total_avg <-</pre>
mean(df long ext sacc amplitude$sticsa total)
# next, subtract this average from all participants' sticsa scores,
```

```
# and save as a variable
df long ext sacc amplitude$sticsa total centred <-</pre>
  df_long_ext_sacc_amplitude$sticsa_total -
df_long_ext_sacc_amplitude$sticsa_total_avg
# from this we have mean sticsa scores after centring
# compute 2(IU: High & Low) x 2 (Stimulus: CS+, CS-) x 2 (Time: Early, Late)
mixed ANOVA,
# with mean-centred STICSA as covariate,
# and obtain effect size (partial eta squared)
ext_sacc_amplitude_ancova <-</pre>
  anova_test(df_long_ext_sacc_amplitude,
            sacc_amplitude ~ iu_group * stimulus * time +
Error(id/(stimulus*time)),
            covariate = sticsa_total_centred, effect.size = "pes")
## Warning: NA detected in rows: 116,181,301.
## Removing this rows before the analysis.
# obtain the mixed ANCOVA results
get anova table(ext sacc amplitude ancova)
## ANOVA Table (type III tests)
##
                                 Effect DFn DFd
##
                                                   F
                                                         p p<.05
                                                                      pes
## 1
                   sticsa_total_centred
                                        1 133 1.134 0.289
                                                                 0.008000
## 2
                               iu_group
                                         1 133 1.025 0.313
                                                                 0.008000
## 3
                               stimulus
                                         1 133 0.754 0.387
                                                                 0.006000
## 4
                                   time
                                        1 133 0.255 0.615
                                                                 0.002000
## 5
          sticsa_total_centred:stimulus 1 133 0.370 0.544
                                                                 0.003000
                      iu group:stimulus 1 133 2.035 0.156
## 6
                                                                 0.015000
## 7
              sticsa_total_centred:time
                                         1 133 1.359 0.246
                                                                 0.010000
## 8
                          0.006000
## 9
                          stimulus:time
                                        1 133 0.071 0.790
                                                                 0.000533
0.003000
## 11
                 iu_group:stimulus:time
                                         1 133 0.997 0.320
                                                                 0.007000
# results:
# STICSA (centred): F(1,133) = 1.13, p = .289, eta2(partial) = .008
# IU: F(1,133) = 1.03, p = .313, eta2(partial) = .008
# Stimulus: F(1,133) = 0.75, p = .387, eta2(partial) = .006
# Time: F(1,133) = 0.26, p = .615, eta2(partial) = .002
\# STICSA * Stimulus: F(1,133) = 0.37, p = .544, eta2(partial) = .003
# IU * Stimulus: F(1, 133) = 2.04, p = .156, eta2(partial) = .015
\# STICSA* Time: F(1,133) = 1.36, p = .246, eta2(partial) = .010
# IU * Time: F(1,133) = 0.80, p = .372, eta2(partial) = .006
# Stimulus * Time: F(1,133) = 0.07, p = .790, eta2(partial) = .001
# STICSA * Stimulus * Time: F(1,133) = 0.42, p = .517, eta2(partial) = .003
# IU * Stimulus * Time: F(1,133) = 0.10, p = .320, eta2(partial) = .007
# therefore, even after accounting for trait anxiety, there continue
```

# **Assumption Checks**

```
############ assumptions of mixed ANOVA:
# categorical IVs, interval/ratio DVs
# outcome variable(s) should be approximately normally distributed
# no significant outliers in the groups
# homogeneity of variances
# sphericity (not applicable in this case, as no within-subjects factors with
> 3 levels)
# homogeneity of variance-covariance matrices

############ additional assumptions of ANCOVA:
# independence of covariate and IVs
# homogeneity of regression slopes
# linearity between covariate and outcome variable(s) at each level of
grouping variables
```

# **Normality of Outcome Variables**

```
########### note: variables coded as follows:
#### IU
# high IU: 1
# Low IU: -1
#### stimulus
# CS+: 1
# CS-: -1
#### time
# early: 1
# Late: -1
######## acquisition fix count
## check QQ plot
qqplot_acq_fix_count <- ggqqplot(df_long_acq_fix_count, "fix_count", ggtheme</pre>
= theme classic()) +
           facet grid(stimulus ~ iu group, labeller = "label both")
qqplot_acq_fix_count
```



```
## check shapiro
shapiro_acq_fix_count <- df_long_acq_fix_count %>%
  group_by(iu_group, stimulus) %>%
  shapiro_test(fix_count)
shapiro_acq_fix_count
## # A tibble: 4 × 5
     iu_group stimulus variable statistic
##
     <fct>
              <fct>
                        <chr>>
##
                                      <dbl>
                                                 <dbl>
## 1 -1
              -1
                        fix_count
                                      0.929 0.000611
## 2 -1
              1
                        fix_count
                                      0.934 0.00108
## 3 1
              -1
                        fix_count
                                      0.962 0.0364
              1
## 4 1
                        fix_count
                                      0.895 0.0000312
# p-values < .05: data violate assumption of normality</pre>
####### extinction fix count
## check QQ plot
qqplot_ext_fix_count <- ggqqplot(df_long_ext_fix_count, "fix_count", ggtheme</pre>
= theme classic()) +
           facet_grid(stimulus + time ~ iu_group, labeller = "label_both")
qqplot_ext_fix_count
```



```
## check shapiro
shapiro_ext_fix_count <-df_long_ext_fix_count %>%
  group_by(iu_group, stimulus, time) %>%
  shapiro_test(fix_count)
shapiro_ext_fix_count
## # A tibble: 8 × 6
     iu_group stimulus time variable
                                        statistic
##
     <fct>
              <fct>
                        <fct> <chr>
##
                                            <dbl>
                                                        <dbl>
## 1 -1
              -1
                              fix_count
                                            0.961 0.0263
                        -1
## 2 -1
              -1
                        1
                              fix_count
                                            0.904 0.0000488
## 3 -1
              1
                        -1
                              fix_count
                                            0.977 0.228
## 4 -1
              1
                              fix_count
                        1
                                            0.881 0.00000681
## 5 1
              -1
                        -1
                              fix_count
                                            0.929 0.000810
                              fix count
## 6 1
              -1
                        1
                                            0.981 0.391
                              fix count
## 7 1
              1
                        -1
                                            0.945 0.00457
## 8 1
              1
                        1
                              fix_count
                                            0.931 0.000995
# p-values < .05: data violate assumption of normality for all except:</pre>
# high IU late extinction CS- and low IU early extinction CS+ (ps > .05)
####### acquisition fix duration log
## check QQ plot
```



```
## check shapiro
shapiro_acq_fix_duration_log <- df_long_acq_fix_duration_log %>%
  group_by(iu_group, stimulus) %>%
  shapiro_test(fix_duration_log)
shapiro_acq_fix_duration_log
## # A tibble: 4 × 5
     iu_group stimulus variable
##
                                         statistic
##
     <fct>
              <fct>
                       <chr>>
                                             <dbl> <dbl>
                       fix_duration_log
## 1 -1
              -1
                                             0.970 0.0814
## 2 -1
              1
                       fix duration log
                                             0.964 0.0398
                       fix_duration_log
## 3 1
              -1
                                             0.981 0.385
## 4 1
              1
                       fix_duration_log
                                             0.981 0.408
# p-values > .05: data meet assumption of normality for all except:
# Low IU CS+ (p = .039)
####### extinction fix duration log
## check QQ plot
```



```
## check shapiro
shapiro_ext_fix_duration_log <- df_long_ext_fix_duration_log %>%
  group_by(iu_group, stimulus, time) %>%
  shapiro_test(fix_duration_log)
shapiro_ext_fix_duration_log
## # A tibble: 8 × 6
     iu_group stimulus time variable
##
                                               statistic
                                                                р
##
     <fct>
              <fct>
                       <fct> <chr>
                                                   <dbl>
                                                            <dbl>
## 1 -1
                        -1
                              fix duration log
              -1
                                                   0.945 0.00364
## 2 -1
              -1
                       1
                              fix duration log
                                                   0.974 0.143
                              fix duration_log
## 3 -1
              1
                       -1
                                                   0.972 0.112
## 4 -1
              1
                       1
                              fix_duration_log
                                                   0.970 0.0913
## 5 1
              -1
                       -1
                             fix duration log
                                                   0.973 0.146
                              fix duration log
## 6 1
              -1
                       1
                                                   0.959 0.0242
## 7 1
                              fix_duration_log
                                                   0.984 0.523
              1
                       -1
                             fix duration log
## 8 1
              1
                                                   0.983 0.460
```



```
## check shapiro
shapiro_acq_sacc_amplitude <- df_long_acq_sacc_amplitude %>%
    group_by(iu_group, stimulus) %>%
    shapiro_test(sacc_amplitude)
shapiro_acq_sacc_amplitude

## # A tibble: 4 × 5
## iu_group stimulus variable statistic p
```

```
##
     <fct>
              <fct>
                       <chr>>
                                           <dbl> <dbl>
## 1 -1
              -1
                       sacc amplitude
                                          0.940 0.00227
## 2 -1
                       sacc_amplitude
                                           0.954 0.0111
              1
## 3 1
              -1
                       sacc_amplitude
                                          0.913 0.000176
                       sacc_amplitude
## 4 1
              1
                                          0.918 0.000275
# p-values < .05: data violate assumption of normality</pre>
####### extinction sacc amplitude
## check QQ plot
qqplot_ext_sacc_amplitude <- ggqqplot(df_long_ext_sacc_amplitude,</pre>
"sacc_amplitude", ggtheme = theme_classic()) +
           facet grid(stimulus + time ~ iu group, labeller = "label both")
qqplot_ext_sacc_amplitude
## Warning: Removed 3 rows containing non-finite values (stat_qq).
## Warning: Removed 3 rows containing non-finite values (stat_qq_line).
## Warning: Removed 3 rows containing non-finite values (stat_qq_line).
```



```
## check shapiro
shapiro_ext_sacc_amplitude <- df_long_ext_sacc_amplitude %>%
group_by(iu_group, stimulus, time) %>%
```

```
shapiro test(sacc amplitude)
shapiro_ext_sacc_amplitude
## # A tibble: 8 × 6
##
     iu_group stimulus time variable
                                             statistic
##
     <fct>
              <fct>
                       <fct> <chr>
                                                 <dbl>
                                                               <dbl>
## 1 -1
              -1
                        -1
                              sacc amplitude
                                                 0.849 0.000000535
## 2 -1
              -1
                       1
                              sacc amplitude
                                                 0.889 0.0000125
                              sacc amplitude
## 3 -1
              1
                       -1
                                                 0.821 0.00000000925
## 4 -1
              1
                       1
                              sacc amplitude
                                                 0.880 0.00000688
## 5 1
                              sacc amplitude
              -1
                                                 0.930 0.000946
                       -1
## 6 1
              -1
                              sacc amplitude
                                                 0.902 0.0000659
                       1
## 7 1
              1
                       -1
                              sacc_amplitude
                                                 0.925 0.000514
## 8 1
              1
                       1
                              sacc amplitude
                                                 0.926 0.000578
# p-values < .05: data violate assumption of normality</pre>
Outliers
# identify outliers using identify_outliers function from rstatix package,
# where third quartile + 3xIQR or below first quartile - 3xIQR
# are considered as extreme points (or extreme outliers).
## acquisition fix count
outliers_acq_fix_count <- df_long_acq_fix_count %>%
  group by(iu group, stimulus) %>%
  identify_outliers(fix_count)
outliers_acq_fix_count
## # A tibble: 4 × 10
     iu_group stimulus id
                             sticsa_total condition
                                                          fix count
sticsa_total_avg
     <fct>
              <fct>
                       <fct>
                                     <dbl> <fct>
##
                                                               <dbl>
<dbl>
## 1 1
                       086_1
                                        68 acq_csm_fix_c...
              -1
                                                                18.3
40.5
## 2 1
                       099_1
                                        52 acq_csm_fix_c...
              -1
                                                                16
40.5
```

```
## 3 1
                                        68 acq_csp_fix_c...
              1
                       086 1
                                                                23.2
40.5
## 4 1
              1
                       099 1
                                        52 acq_csp_fix_c...
                                                                20.2
40.5
## # ... with 3 more variables: sticsa_total_centred <dbl>, is.outlier <lgl>,
       is.extreme <lgl>
# no extreme outliers
## extinction fix count
outliers_ext_fix_count <-
df_long_ext_fix_count %>%
group_by(iu_group, stimulus, time) %>%
```

```
identify outliers(fix count)
outliers_ext_fix_count
## # A tibble: 14 × 11
      iu group stimulus time id
                                  sticsa total condition
fix count
##
      <fct>
               <fct>
                        <fct> <fct>
                                           <dbl> <fct>
<dbl>
## 1 -1
               -1
                        -1
                              122_1
                                               37 l_ext_csm_fix_count
17.8
## 2 -1
               -1
                              047 1
                                                                           17
                        1
                                               41 e ext csm fix count
## 3 -1
               -1
                        1
                                               37 e_ext_csm_fix_count
                              122_1
21.5
               1
## 4 -1
                        -1
                              122 1
                                               37 l_ext_csp_fix_count
                                                                           16
## 5 -1
               1
                        1
                              122_1
                                               37 e_ext_csp_fix_count
20.5
                                               44 e ext csp fix count
## 6 -1
               1
                        1
                              143 1
19.5
## 7 1
               -1
                        -1
                              033 1
                                               54 l_ext_csm_fix_count
                                                                           20
## 8 1
               -1
                        -1
                              065 1
                                               33 l_ext_csm_fix_count
14.8
## 9 1
                              086_1
                                               68 l_ext_csm_fix_count
               -1
                        -1
19.2
## 10 1
               -1
                        -1
                              099 1
                                               52 l_ext_csm_fix_count
                                                                           16
## 11 1
               -1
                        -1
                              113 1
                                               31 l_ext_csm_fix_count
                                                                           15
                        -1
                                                                           22
## 12 1
               1
                              086 1
                                               68 l ext csp fix count
                              086_1
## 13 1
               1
                        1
                                               68 e ext csp fix count
19.2
                                               31 e_ext_csp_fix_count
## 14 1
               1
                        1
                              113 1
17.8
## # ... with 4 more variables: sticsa_total_avg <dbl>, sticsa_total_centred
<dbl>,
       is.outlier <lgl>, is.extreme <lgl>
## #
# two extreme outliers: ppt 33 and 86
# acquisition fix duration log
outliers acq fix duration log <- df long acq fix duration log %>%
  group_by(iu_group, stimulus) %>%
  identify_outliers(fix_duration_log)
# no extreme outliers
outliers acq fix duration log
    [1] iu_group
                             stimulus
##
                                                   id
## [4] sticsa_total
                             condition
                                                   fix duration log
## [7] sticsa_total_avg
                             sticsa_total_centred is.outlier
## [10] is.extreme
## <0 rows> (or 0-length row.names)
```

```
## extinction fix duration log
outliers ext fix duration log <- df long ext fix duration log %>%
  group_by(iu_group, stimulus, time) %>%
  identify_outliers(fix_duration_log)
outliers_ext_fix_duration_log
## # A tibble: 6 × 11
    iu group stimulus time id
                                    sticsa total condition
fix duration log
   <fct>
              <fct>
                       <fct> <fct>
                                           <dbl> <fct>
##
<dbl>
## 1 1
                        -1
                              009 1
                                              41 l_ext_csm_fix_dur...
              -1
8.00
## 2 1
              -1
                        -1
                              010 1
                                              43 l ext csm fix dur...
4.69
## 3 1
                                              55 l_ext_csm_fix_dur...
              -1
                        -1
                              015_1
8.37
## 4 1
                              044 1
                                              36 l_ext_csm_fix_dur...
              -1
                        -1
7.91
                                              36 e ext csm fix dur...
## 5 1
              -1
                       1
                              044 1
8.70
## 6 1
              -1
                              113_1
                                              31 e_ext_csm_fix_dur...
                       1
## # ... with 4 more variables: sticsa_total_avg <dbl>, sticsa_total_centred
<dbl>,
       is.outlier <lgl>, is.extreme <lgl>
## #
# no extreme outliers
## acquisition sacc amplitude
outliers_acq_sacc_amplitude <- df_long_acq_sacc_amplitude %>%
  group_by(iu_group, stimulus) %>%
  identify_outliers(sacc_amplitude)
outliers_acq_sacc_amplitude
## # A tibble: 9 × 10
                             sticsa total condition sacc amplitude
     iu group stimulus id
sticsa_total_avg
              <fct>
                       <fct>
                                     <dbl> <fct>
                                                               <dbl>
##
     <fct>
<dbl>
## 1 -1
              -1
                       016 1
                                        26 acq_csm_...
                                                                7.37
40.5
## 2 -1
              -1
                       026 1
                                        55 acq_csm_...
                                                                6.87
40.5
              1
                       016 1
                                                                6.35
## 3 -1
                                        26 acq_csp_...
40.5
## 4 1
                       017_1
              -1
                                        33 acq_csm_...
                                                                7.81
40.5
## 5 1
              -1
                       021 1
                                        54 acq_csm_...
                                                                7.50
40.5
```

```
## 6 1
              -1
                        022 1
                                         50 acq_csm_...
                                                                 8.57
40.5
## 7 1
              1
                        009_1
                                                                 7.47
                                         41 acq_csp_...
40.5
## 8 1
              1
                        043 1
                                         39 acq_csp_...
                                                                 6.88
40.5
## 9 1
              1
                        044 1
                                         36 acq_csp_...
                                                                 8.15
40.5
## # ... with 3 more variables: sticsa_total_centred <dbl>, is.outlier <lgl>,
       is.extreme <lgl>
# no extreme outliers
## extinction sacc amplitude
outliers_ext_sacc_amplitude <- df_long_ext_sacc_amplitude %>%
  group_by(iu_group, stimulus, time) %>%
  identify_outliers(sacc_amplitude)
outliers_ext_sacc_amplitude
## # A tibble: 17 × 11
##
      iu group stimulus time id
                                      sticsa total condition
sacc amplitude
                         <fct> <fct>
                                             <dbl> <fct>
      <fct>
               <fct>
##
<dbl>
## 1 -1
               -1
                         -1
                               016_1
                                                26 l_ext_csm_sacc_amp...
10.9
## 2 -1
               -1
                                                35 l_ext_csm_sacc_amp...
                         -1
                               075_1
8.98
## 3 -1
               -1
                         -1
                               078 1
                                                42 1 ext csm sacc amp...
8.03
## 4 -1
               -1
                         -1
                               111_1
                                                41 l_ext_csm_sacc_amp...
8.21
## 5 -1
               -1
                         1
                               016_1
                                                26 e_ext_csm_sacc_amp...
9.11
                                                26 l_ext_csp_sacc_amp...
## 6 -1
               1
                         -1
                               016 1
13.1
## 7 -1
               1
                         -1
                               075_1
                                                35 l_ext_csp_sacc_amp...
7.84
## 8 -1
               1
                         1
                               016_1
                                                26 e_ext_csp_sacc_amp...
9.02
## 9 -1
                         1
                               051 1
                                                28 e ext csp sacc amp...
               1
7.40
                                                43 e_ext_csp_sacc_amp...
## 10 -1
               1
                         1
                               119_1
9.18
## 11 1
                         -1
                               009 1
                                                41 l_ext_csm_sacc_amp...
               -1
8.00
## 12 1
                -1
                         -1
                               105 1
                                                33 1 ext csm sacc amp...
9.74
## 13 1
                                                33 e_ext_csm_sacc_amp...
               -1
                         1
                               105_1
11.4
```

```
## 14 1
                         -1
                                009_1
                                                 41 l_ext_csp_sacc_amp...
9.62
## 15 1
                                022_1
               1
                         -1
                                                 50 l_ext_csp_sacc_amp...
8.34
## 16 1
               1
                         1
                                009 1
                                                 41 e_ext_csp_sacc_amp...
7.67
## 17 1
               1
                         1
                                129 1
                                                 46 e ext csp sacc amp...
8.65
## # ... with 4 more variables: sticsa_total_avg <dbl>, sticsa_total_centred
<dbl>,
## #
       is.outlier <lgl>, is.extreme <lgl>
# two extreme outliers: ppt 16 and 105
```

## Homogeneity of Variance

```
# this will be done using levene's test
## acquisition fix count
levene_acq_fix_count <- df_long_acq_fix_count %>%
  group by(stimulus) %>%
  levene_test(fix_count ~ iu_group)
levene_acq_fix_count
## # A tibble: 2 × 5
##
     stimulus df1
                      df2 statistic
     <fct>
##
              <int> <int>
                              <dbl> <dbl>
## 1 -1
                  1
                      137
                             0.477 0.491
## 2 1
                             0.0415 0.839
                  1
                      137
# p-values > .05, data meet assumption of homogeneity of variance
## extinction fix count
levene_ext_fix_count <-df_long_ext_fix_count %>%
  group_by(stimulus, time) %>%
  levene_test(fix_count ~ iu_group)
levene ext fix count
## # A tibble: 4 × 6
     stimulus time
                      df1
                            df2 statistic
                                    <dbl> <dbl>
##
     <fct>
              <fct> <int> <int>
## 1 -1
              -1
                        1
                            137
                                    1.45 0.231
## 2 -1
                            137
              1
                        1
                                    0.181 0.671
## 3 1
              -1
                        1
                            137
                                    0.264 0.608
## 4 1
              1
                        1
                            137
                                    1.86 0.174
# p-values > .05, data meet assumption of homogeneity of variance
# acquisition fix duration log
levene_acq_fix_duration_log <- df_long_acq_fix_duration_log %>%
  group_by(stimulus) %>%
```

```
levene test(fix duration log ~ iu group)
levene_acq_fix_duration_log
## # A tibble: 2 × 5
##
     stimulus
                df1
                      df2 statistic
     <fct>
              <int> <int>
                              <dbl> <dbl>
##
                              2.04 0.155
## 1 -1
                  1
                      137
## 2 1
                  1
                      137
                              0.753 0.387
# p-values > .05, data meet assumption of homogeneity of variance
## extinction fix count
levene ext fix duration log <- df long ext fix duration log %>%
  group_by(stimulus, time) %>%
  levene_test(fix_duration_log ~ iu_group)
levene ext fix duration log
## # A tibble: 4 × 6
##
     stimulus time
                      df1
                            df2 statistic
              <fct> <int> <int>
##
     <fct>
                                    <dbl>
                                             <dbl>
## 1 -1
                            137
                                     8.18 0.00490
              -1
                        1
## 2 -1
              1
                        1
                            137
                                     7.74 0.00616
## 3 1
              -1
                        1
                            137
                                     2.78 0.0977
## 4 1
              1
                        1
                            137
                                     7.14 0.00843
# p-value for early extinction and CS+ > .05, data meet assumption of
homogeneity of variance
# p-values for early extinction and CS-, and late extinction and both
stimulli < .05,
# data violate assumption of homogeneity of variance
## acquisition sacc amplitude
levene_acq_sacc_amplitude <- df_long_acq_sacc_amplitude %>%
  group_by(stimulus) %>%
  levene test(sacc amplitude ~ iu group)
levene_acq_sacc_amplitude
## # A tibble: 2 × 5
     stimulus df1
##
                      df2 statistic
##
     <fct>
              <int> <int>
                              <dbl> <dbl>
## 1 -1
                  1
                      135
                               1.03 0.311
## 2 1
                  1
                      137
                               3.42 0.0665
# p-values > .05, data meet assumption of homogeneity of variance
## extinction sacc amplitude
levene_ext_sacc_amplitude <- df_long_ext_sacc_amplitude %>%
  group_by(stimulus, time) %>%
  levene_test(sacc_amplitude ~ iu_group)
levene_ext_sacc_amplitude
```

```
## # A tibble: 4 × 6
    stimulus time
                     df1
##
                           df2 statistic
##
    <fct>
             <fct> <int> <int>
                                  <dbl> <dbl>
## 1 -1
             -1
                       1 137
                                  0.364 0.547
## 2 -1
             1
                       1
                           136
                                  1.72
                                         0.191
                       1
                           136
## 3 1
             -1
                                  0.0230 0.880
## 4 1
             1
                       1
                           136
                                  0.0324 0.857
# p-values > .05, data meet assumption of homogeneity of variance
# however, in large samples, levene's test can be sig even when group
variances
# are not very different.
```

## **Homogeneity of Variance-Covariance Matrices**

```
# this tests whether covariance matrices are equal across cells formed by
# between-subjects factor (IU)
# use Box's M (however, this is highly sensitive, so unless p < .001 and
sample
# sizes are unequal, can ignore it)
box m acq fix count <-
box_m(df_long_acq_fix_count[, "fix_count", drop = FALSE],
df long acq fix count$iu group)
box_m_acq_fix_count
## # A tibble: 1 × 4
     statistic p.value parameter method
         <dbl> <dbl> <dbl> <chr>
##
## 1
         0.224
                 0.636
                               1 Box's M-test for Homogeneity of Covariance
Matric...
# p-value > .05, data meet assumption of homogeneity of variance-covariance
matrices
box m ext fix count <-
box_m(df_long_ext_fix_count[, "fix_count", drop = FALSE].
df_long_ext_fix_count$iu_group)
box_m_ext_fix_count
## # A tibble: 1 × 4
     statistic p.value parameter method
##
##
         <dbl> <dbl>
                           <dbl> <chr>>
## 1
         0.753
                0.385
                               1 Box's M-test for Homogeneity of Covariance
Matric...
# p-value > .05, data meet assumption of homogeneity of variance-covariance
matrices
```

```
bom_m_acq_fix_duration log <-</pre>
box_m(df_long_acq_fix_duration_log[, "fix_duration_log", drop = FALSE],
df_long_acq_fix_duration_log$iu_group)
bom m acq fix duration log
## # A tibble: 1 × 4
    statistic p.value parameter method
##
         <dbl>
               <dbl>
                       <dbl> <chr>
## 1
         0.358
                0.550
                               1 Box's M-test for Homogeneity of Covariance
Matric...
# p-value > .05, data meet assumption of homogeneity of variance-covariance
matrices
box m ext fix duration log <-
box_m(df_long_ext_fix_duration_log[, "fix_duration_log", drop = FALSE],
df_long_ext_fix_duration_log$iu_group)
box_m_ext_fix_duration_log
## # A tibble: 1 × 4
## statistic p.value parameter method
                <dbl>
                           <dbl> <chr>
##
         <dbl>
                                 1 Box's M-test for Homogeneity of Covariance
## 1
         16.7 0.0000435
Matr...
# p-value < .05, data violate assumption of homogeneity of variance-
covariance matrices
```

# **Independence of Covariate and IVs**

### **Fixation Count**

### Acquisition

```
# sticsa and iu group
t_test_independence_sticsa_iu_group_acq_fix_count <-
  t.test(
    df long acq fix count[df long acq fix count$iu group == "1",
"sticsa_total_centred"],
    df long acq fix count[df long acq fix count$iu group == "-1",
"sticsa_total_centred"],
    var.equal = TRUE
t test independence sticsa iu group acq fix count
##
## Two Sample t-test
##
## data: df long acq fix count[df long acq fix count$iu group == "1",
"sticsa_total_centred"] and
df_long_acq_fix_count[df_long_acq_fix_count$iu_group == "-1",
"sticsa total centred"]
```

```
## t = 9.3255, df = 276, p-value < 0.00000000000000022
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 7.343247 11.273157
## sample estimates:
## mean of x mean of y
## 4.754549 -4.553653
# p < .05 : sticsa is not independent of iu group
# sticsa and stimulus
t_test_independence_sticsa_stimulus_acq_fix_count <-
 t.test(
    df_long_acq_fix_count[df_long_acq_fix_count$stimulus == "1",
"sticsa_total_centred"],
    df long acq fix count[df long acq fix count$stimulus == "-1",
"sticsa_total_centred"],
    var.equal = TRUE
t_test_independence_sticsa_stimulus_acq_fix_count
##
## Two Sample t-test
##
## data: df_long_acq_fix_count[df_long_acq_fix_count$stimulus == "1",
"sticsa_total_centred"] and
df_long_acq_fix_count[df_long_acq_fix_count$stimulus == "-1",
"sticsa_total_centred"]
## t = 0, df = 276, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.252832 2.252832
## sample estimates:
                  mean of x
                                           mean of y
## -0.000000000000002862893 -0.0000000000000002862893
# p > .05 - sticsa is independent of stimulus
Extinction
```

```
# sticsa and iu group
t_test_independence_sticsa_iu_group_ext_fix_count <-
    t.test(
    df_long_ext_fix_count[df_long_ext_fix_count$iu_group == "1",
    "sticsa_total_centred"],
    df_long_ext_fix_count[df_long_ext_fix_count$iu_group == "-1",
    "sticsa_total_centred"],
    var.equal = TRUE
    )
t_test_independence_sticsa_iu_group_ext_fix_count</pre>
```

```
##
## Two Sample t-test
##
## data: df_long_ext_fix_count[df_long_ext_fix_count$iu_group == "1",
"sticsa total centred" | and
df_long_ext_fix_count[df_long_ext_fix_count$iu_group == "-1",
"sticsa total centred"]
## t = 13.212, df = 554, p-value < 0.00000000000000022
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 7.924338 10.692067
## sample estimates:
## mean of x mean of y
## 4.754549 -4.553653
# p < .05 : sticsa is not independent of iu group
# sticsa and stimulus
t test independence sticsa stimulus ext fix count <-
  t.test(
    df_long_ext_fix_count[df_long_ext_fix_count$stimulus == "1",
"sticsa total centred"],
    df_long_ext_fix_count[df_long_ext_fix_count$stimulus == "-1",
"sticsa total centred"],
    var.equal = TRUE
t_test_independence_sticsa_stimulus_ext_fix_count
##
## Two Sample t-test
##
## data: df_long_ext_fix_count[df_long_ext_fix_count$stimulus == "1",
"sticsa_total_centred"] and
df_long_ext_fix_count[df_long_ext_fix_count$stimulus == "-1",
"sticsa total centred"]
## t = 0, df = 554, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.586608 1.586608
## sample estimates:
                  mean of x
                                           mean of y
## -0.000000000000002862855 -0.0000000000000002862855
# p > .05 - sticsa is independent of stimulus
# sticsa and time
t_test_independence_sticsa_time_ext_fix_count <-
  t.test(
    df_long_ext_fix_count[df_long_ext_fix_count$time == "1",
"sticsa_total_centred"],
```

```
df long ext fix count[df long ext fix count$time == "-1",
"sticsa total centred"],
    var.equal = TRUE
    )
t test independence sticsa time ext fix count
##
##
   Two Sample t-test
##
## data: df long ext fix count[df long ext fix count$time == "1",
"sticsa total centred"] and df long ext fix count[df long ext fix count$time
== "-1", "sticsa_total_centred"]
## t = 0, df = 554, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.586608 1.586608
## sample estimates:
                  mean of x
                                           mean of y
## -0.000000000000002862855 -0.0000000000000002862855
# p > .05 - sticsa is independent of time
```

### Fixation Duration (Log Transformed)

#### **Acquisition**

```
# sticsa and iu group
t test independence sticsa iu group acq fix duration log <-
  t.test(
    df_long_acq_fix_duration_log[df_long_acq_fix_duration_log$iu_group ==
"1", "sticsa_total_centred"],
    df_long_acq_fix_duration_log[df_long_acq_fix_duration_log$iu_group == "-
1", "sticsa_total_centred"],
    var.equal = TRUE
t_test_independence_sticsa_iu_group_acq_fix_duration_log
##
## Two Sample t-test
##
## data: df long acq_fix_duration_log[df_long_acq_fix_duration_log$iu_group
== "1", "sticsa total centred"] and
df_long_acq_fix_duration_log[df_long_acq_fix_duration_log$iu_group == "-1",
"sticsa total centred"]
## t = 9.3255, df = 276, p-value < 0.00000000000000022
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 7.343247 11.273157
## sample estimates:
## mean of x mean of y
## 4.754549 -4.553653
```

```
# p < .05 : sticsa is not independent of iu group
# sticsa and stimulus
t test independence sticsa stimulus acq fix duration log <-
  t.test(
    df long acq fix duration log[df long acq fix duration log$stimulus ==
"1", "sticsa_total_centred"],
    df_long_acq_fix_duration_log[df_long_acq_fix_duration_log$stimulus == "-
1", "sticsa total centred"],
    var.equal = TRUE
t test independence sticsa stimulus acq fix duration log
##
## Two Sample t-test
##
## data: df long acq_fix_duration_log[df_long_acq_fix_duration_log$stimulus
== "1", "sticsa_total_centred"] and
df long acq fix duration log[df long acq fix duration log$stimulus == "-1",
"sticsa total centred"]
## t = 0, df = 276, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.252832 2.252832
## sample estimates:
                  mean of x
                                           mean of y
## -0.000000000000002862893 -0.0000000000000002862893
# p > .05 - sticsa is independent of stimulus
Extinction
# sticsa and iu group
t test independence sticsa iu group ext fix duration log <-
    df_long_ext_fix_duration_log[df_long_ext_fix_duration_log$iu_group ==
"1", "sticsa_total_centred"],
    df_long ext_fix_duration_log[df_long ext_fix_duration_log$iu_group == "-
1", "sticsa_total_centred"],
    var.equal = TRUE
    )
t_test_independence_sticsa_iu_group_ext_fix_duration_log
##
##
   Two Sample t-test
##
## data: df long ext fix duration log[df long ext fix duration log$iu group
== "1", "sticsa total centred"] and
df_long_ext_fix_duration_log[df_long_ext_fix_duration_log$iu_group == "-1",
"sticsa total centred"]
```

## t = 13.212, df = 554, p-value < 0.000000000000000022

```
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
    7.924338 10.692067
## sample estimates:
## mean of x mean of y
## 4.754549 -4.553653
# p < .05 : sticsa is not independent of iu group
# sticsa and stimulus
t test independence sticsa stimulus ext fix duration log <-
 t.test(
    df long ext fix duration log[df long ext fix duration log$stimulus ==
"1", "sticsa_total_centred"],
    df_long ext_fix_duration_log[df_long_ext_fix_duration_log$stimulus == "-
1", "sticsa_total_centred"],
   var.equal = TRUE
t_test_independence_sticsa_stimulus_ext_fix_duration_log
##
## Two Sample t-test
##
## data: df long ext fix duration log[df long ext fix duration log$stimulus
== "1", "sticsa_total_centred"] and
df_long_ext_fix_duration_log[df_long_ext_fix_duration_log$stimulus == "-1",
"sticsa total centred"]
## t = 0, df = 554, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.586608 1.586608
## sample estimates:
                  mean of x
                                           mean of y
## -0.000000000000002862855 -0.00000000000000002862855
# p > .05 - sticsa is independent of stimulus
# sticsa and time
t_test_independence_sticsa_time_ext_fix_duration <-
  t.test(
    df_long_ext_fix_duration_log[df_long_ext_fix_duration_log$time == "1",
"sticsa total centred"],
    df_long_ext_fix_duration_log[df_long_ext_fix_duration_log$time == "-1",
"sticsa_total_centred"],
    var.equal = TRUE
t_test_independence_sticsa_time_ext_fix_duration
##
## Two Sample t-test
##
```

### Saccade Amplitude

#### **Acquisition**

```
# sticsa and iu group
t_test_independence_sticsa_iu_group_acq_sacc_amplitude <-
  t.test(
    df long acq sacc amplitude[df long acq sacc amplitude$iu group == "1",
"sticsa_total_centred"],
    df_long_acq_sacc_amplitude[df_long_acq_sacc_amplitude$iu_group == "-1",
"sticsa_total_centred"],
    var.equal = TRUE
t_test_independence_sticsa_iu_group_acq_sacc_amplitude
##
## Two Sample t-test
##
## data: df long acq sacc amplitude[df long acq sacc amplitude$iu group ==
"1", "sticsa total centred" | and
df_long_acq_sacc_amplitude[df_long_acq_sacc_amplitude$iu_group == "-1",
"sticsa_total_centred"]
## t = 9.3255, df = 276, p-value < 0.00000000000000022
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 7.343247 11.273157
## sample estimates:
## mean of x mean of y
## 4.754549 -4.553653
# p < .05 : sticsa is not independent of iu group
# sticsa and stimulus
t_test_independence_sticsa_stimulus_acq_sacc_amplitude <-
 t.test(
    df long acq sacc amplitude[df long acq sacc amplitude$stimulus == "1",
"sticsa total centred"],
```

```
df long acq sacc amplitude[df long acq sacc amplitude$stimulus == "-1",
"sticsa total centred"],
    var.equal = TRUE
    )
t_test_independence_sticsa_stimulus_acq_sacc_amplitude
##
## Two Sample t-test
##
## data: df long acq sacc amplitude[df long acq sacc amplitude$stimulus ==
"1", "sticsa total centred"] and
df_long_acq_sacc_amplitude[df_long_acq_sacc_amplitude$stimulus == "-1",
"sticsa_total_centred"]
## t = 0, df = 276, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.252832 2.252832
## sample estimates:
                  mean of x
                                           mean of y
## -0.000000000000002862893 -0.0000000000000002862893
# p > .05 - sticsa is independent of stimulus
```

#### **Extinction**

```
# sticsa and iu group
t test independence_sticsa_iu_group_ext_sacc_amplitude <-
  t.test(
    df_long ext_sacc_amplitude[df long_ext_sacc_amplitude$iu_group == "1",
"sticsa total_centred"],
    df_long_ext_sacc_amplitude[df_long_ext_sacc_amplitude$iu_group == "-1",
"sticsa total centred"],
    var.equal = TRUE
t test independence sticsa iu group ext sacc amplitude
##
## Two Sample t-test
##
## data: df_long_ext_sacc_amplitude[df_long_ext_sacc_amplitude$iu_group ==
"1", "sticsa total centred"] and
df long ext sacc amplitude[df long ext sacc amplitude$iu group == "-1",
"sticsa_total_centred"]
## t = 13.212, df = 554, p-value < 0.00000000000000022
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 7.924338 10.692067
## sample estimates:
## mean of x mean of y
## 4.754549 -4.553653
```

```
# p < .05 : sticsa is not independent of iu group
# sticsa and stimulus
t test independence sticsa stimulus ext sacc amplitude <-
  t.test(
    df long ext sacc amplitude[df long ext sacc amplitude$stimulus == "1",
"sticsa total centred"],
    df_long_ext_sacc_amplitude[df_long_ext_sacc_amplitude$stimulus == "-1",
"sticsa_total_centred"],
    var.equal = TRUE
t test independence sticsa stimulus ext sacc amplitude
##
## Two Sample t-test
##
## data: df_long_ext_sacc_amplitude[df_long_ext_sacc_amplitude$stimulus ==
"1", "sticsa_total_centred"] and
df long ext sacc amplitude[df long ext sacc amplitude$stimulus == "-1",
"sticsa total centred"]
## t = 0, df = 554, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.586608 1.586608
## sample estimates:
                  mean of x
                                           mean of y
## -0.000000000000002862855 -0.0000000000000002862855
# p > .05 - sticsa is independent of stimulus
# sticsa and time
t test independence sticsa time ext sacc amplitude <-
 t.test(
    df_long_ext_sacc_amplitude[df_long_ext_sacc_amplitude$time == "1",
"sticsa total centred"],
    df_long_ext_sacc_amplitude[df_long_ext_sacc_amplitude$time == "-1",
"sticsa_total_centred"],
    var.equal = TRUE
t_test_independence_sticsa_time_ext_sacc amplitude
##
## Two Sample t-test
## data: df long_ext_sacc_amplitude[df_long_ext_sacc_amplitude$time == "1",
"sticsa total centred" | and
df_long_ext_sacc_amplitude[df_long_ext_sacc_amplitude$time == "-1",
"sticsa total centred"]
## t = 0, df = 554, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
```

# Homogeneity of Regression Slopes

```
###### check homogeneity of regression slopes
###### fixation count
### acquisition
homogeneity_regression_slopes_acq_fix_count <-
df_long_acq_fix_count %>%
    anova_test(fix_count ~ sticsa_total_centred + iu_group + stimulus +
iu group*stimulus +
                 sticsa total centred*iu group +
sticsa_total_centred*stimulus +
                 sticsa_total_centred*iu_group*stimulus)
## Coefficient covariances computed by hccm()
 homogeneity_regression_slopes_acq_fix_count
## ANOVA Table (type II tests)
##
##
                                     Effect DFn DFd
                                                       F
                                                              p p<.05
ges
## 1
                       sticsa_total_centred 1 270 0.114 0.736
0.0004210
## 2
                                   iu group 1 270 6.146 0.014
0.0220000
                                   stimulus
                                            1 270 0.957 0.329
## 3
0.0040000
## 4
                          iu_group:stimulus
                                            1 270 0.103 0.749
0.0003810
## 5
             sticsa_total_centred:iu_group 1 270 3.336 0.069
0.0120000
              sticsa_total_centred:stimulus 1 270 0.154 0.695
## 6
0.0005710
## 7 sticsa total centred:iu group:stimulus 1 270 0.021 0.885
0.0000783
# p-values > .05: no interactions between STICSA and grouping variables
### extinction
homogeneity_regression_slopes_ext_fix_count <-
df long ext fix count %>%
    anova test(fix count ~ sticsa total centred + iu group + stimulus + time
```

```
+ iu group*stimulus +
                 iu group*time + stimulus*time +
sticsa_total_centred*iu_group +
                 sticsa_total_centred*stimulus + sticsa_total_centred*time +
                 sticsa_total_centred*iu_group*stimulus +
sticsa_total_centred*iu_group*stimulus*time)
## Coefficient covariances computed by hccm()
homogeneity regression slopes ext fix count
## ANOVA Table (type II tests)
##
                                            Effect DFn DFd
##
                                                                             р
p<.05
## 1
                              sticsa_total_centred
                                                     1 540 1.391000 0.239000
## 2
                                          iu group
                                                     1 540 14.015000 0.000201
## 3
                                          stimulus
                                                     1 540
                                                            0.866000 0.353000
## 4
                                              time
                                                     1 540
                                                            1.996000 0.158000
## 5
                                 iu group:stimulus
                                                     1 540
                                                            0.988000 0.321000
## 6
                                     iu_group:time
                                                     1 540
                                                            1.272000 0.260000
## 7
                                     stimulus:time
                                                     1 540
                                                            0.013000 0.910000
## 8
                    sticsa_total_centred:iu_group
                                                     1 540
                                                            0.719000 0.397000
## 9
                    sticsa_total_centred:stimulus
                                                     1 540
                                                            0.238000 0.626000
## 10
                        sticsa_total_centred:time
                                                     1 540
                                                            0.000156 0.990000
           sticsa_total_centred:iu_group:stimulus
## 11
                                                     1 540
                                                            0.024000 0.876000
## 12
               sticsa_total_centred:iu_group:time
                                                     1 540
                                                            0.335000 0.563000
## 13
               sticsa_total_centred:stimulus:time
                                                     1 540
                                                           0.166000 0.683000
## 14
                            iu_group:stimulus:time
                                                     1 540
                                                            0.008000 0.928000
## 15 sticsa_total_centred:iu_group:stimulus:time
                                                     1 540 0.103000 0.748000
##
             ges
      0.00300000
## 1
## 2 0.02500000
## 3 0.00200000
## 4 0.00400000
## 5
      0.00200000
## 6 0.00200000
## 7
      0.00002370
## 8
      0.00100000
## 9 0.00044000
## 10 0.00000029
## 11 0.00004500
## 12 0.00062000
## 13 0.00030800
## 14 0.00001510
## 15 0.00019100
# p-values > .05: no interactions between STICSA and grouping variables
```

```
###### fixation duration
### acquisition
homogeneity_regression_slopes_acq_fix_duration_log <-
df_long_acq_fix_duration_log %>%
    anova_test(fix_duration_log ~ sticsa_total_centred + iu_group + stimulus
+ iu_group*stimulus +
                 sticsa total centred*iu group +
sticsa_total_centred*stimulus +
                 sticsa_total_centred*iu_group*stimulus)
## Coefficient covariances computed by hccm()
homogeneity_regression_slopes_acq_fix_duration_log
## ANOVA Table (type II tests)
##
                                     Effect DFn DFd
##
                                                                 p p<.05
## 1
                       sticsa_total_centred
                                             1 270 0.515000 0.473
## 2
                                   iu_group 1 270 7.485000 0.007
## 3
                                   stimulus 1 270 0.207000 0.650
                          iu group:stimulus 1 270 0.123000 0.727
## 4
## 5
              sticsa_total_centred:iu_group 1 270 1.643000 0.201
              sticsa_total_centred:stimulus 1 270 0.030000 0.863
## 6
## 7 sticsa_total_centred:iu_group:stimulus 1 270 0.000261 0.987
##
             ges
## 1 0.002000000
## 2 0.027000000
## 3 0.000766000
## 4 0.000454000
## 5 0.006000000
## 6 0.000111000
## 7 0.000000967
# p-values > .05: no interactions between STICSA and grouping variables
### extinction
homogeneity_regression_slopes_ext_fix_duration_log <-
df_long_ext_fix_duration_log %>%
    anova_test(fix_duration_log ~ sticsa_total_centred + iu_group + stimulus
+ time + iu_group*stimulus +
                 iu_group*time + stimulus*time +
sticsa_total_centred*iu_group +
                 sticsa_total_centred*stimulus + sticsa_total_centred*time +
                 sticsa total centred*iu group*stimulus +
sticsa_total_centred*iu_group*stimulus*time)
## Coefficient covariances computed by hccm()
homogeneity_regression_slopes_ext_fix_duration_log
```

```
## ANOVA Table (type II tests)
##
                                           Effect DFn DFd
                                                                   F
##
р
                             sticsa_total_centred
## 1
                                                    1 540 0.004000
0.951000000
                                         iu group
                                                    1 540 26.131000
## 2
0.000000444
                                                    1 540 0.121000
## 3
                                         stimulus
0.728000000
## 4
                                             time
                                                    1 540 1.651000
0.199000000
## 5
                                iu_group:stimulus
                                                    1 540 1.492000
0.222000000
## 6
                                    iu_group:time
                                                    1 540 0.193000
0.661000000
## 7
                                    stimulus:time
                                                    1 540 0.035000
0.852000000
                    sticsa_total_centred:iu_group
## 8
                                                    1 540 0.228000
0.633000000
                    sticsa_total_centred:stimulus
                                                    1 540 0.054000
## 9
0.816000000
## 10
                        sticsa_total_centred:time
                                                    1 540 0.127000
0.722000000
           sticsa_total_centred:iu_group:stimulus
                                                    1 540 0.000829
## 11
0.977000000
               sticsa_total_centred:iu_group:time
                                                    1 540 0.189000
## 12
0.664000000
## 13
               sticsa_total_centred:stimulus:time
                                                    1 540 0.041000
0.839000000
                           iu_group:stimulus:time
                                                    1 540 0.070000
## 14
0.791000000
## 15 sticsa_total_centred:iu_group:stimulus:time
                                                    1 540 0.010000
0.919000000
##
      p<.05
                   ges
## 1
            0.00000709
          * 0.04600000
## 2
## 3
            0.00022500
## 4
            0.00300000
## 5
            0.00300000
## 6
            0.00035700
## 7
            0.00006460
## 8
            0.00042200
## 9
            0.00010100
## 10
            0.00023400
## 11
            0.00000153
## 12
            0.00035000
            0.00007630
## 13
## 14
            0.00013100
## 15
            0.00001900
```

```
# p-values > .05: no interactions between STICSA and grouping variables
###### saccade amplitude
### acquisition
homogeneity_regression_slopes_acq_sacc_amplitude <-
df_long_acq_sacc_amplitude %>%
    anova test(sacc amplitude ~ sticsa total centred + iu group + stimulus +
iu group*stimulus +
                 sticsa total centred*iu group +
sticsa total centred*stimulus +
                 sticsa_total_centred*iu_group*stimulus)
## Warning: NA detected in rows: 234,259.
## Removing this rows before the analysis.
## Coefficient covariances computed by hccm()
homogeneity regression slopes acq sacc amplitude
## ANOVA Table (type II tests)
##
                                     Effect DFn DFd F
##
                                                             p p<.05
ges
## 1
                      sticsa_total_centred 1 268 0.018 0.894
0.0000664
## 2
                                   iu group 1 268 3.272 0.072
0.0120000
## 3
                                   stimulus
                                            1 268 0.298 0.585
0.0010000
## 4
                         iu_group:stimulus
                                            1 268 0.162 0.688
0.0006040
## 5
             sticsa_total_centred:iu_group 1 268 0.038 0.846
0.0001410
              sticsa total centred:stimulus 1 268 0.166 0.684
## 6
0.0006180
## 7 sticsa_total_centred:iu_group:stimulus 1 268 0.136 0.713
0.0005060
# p-values > .05: no interactions between STICSA and grouping variables
### extinction
homogeneity_regression_slopes_ext_sacc_amplitude <-
df_long_ext_sacc_amplitude %>%
    anova_test(sacc_amplitude ~ sticsa_total_centred + iu_group + stimulus +
time + iu_group*stimulus +
                 iu group*time + stimulus*time +
sticsa_total_centred*iu_group +
                 sticsa total centred*stimulus + sticsa total centred*time +
                 sticsa total centred*iu group*stimulus +
sticsa total centred*iu group*stimulus*time)
```

```
## Warning: NA detected in rows: 116,181,301.
## Removing this rows before the analysis.
## Coefficient covariances computed by hccm()
homogeneity_regression_slopes_ext_sacc_amplitude
## ANOVA Table (type II tests)
##
##
                                           Effect DFn DFd
                                                              F
                                                                     p p<.05
## 1
                             sticsa total centred
                                                    1 537 2.227 0.136
## 2
                                         iu_group
                                                    1 537 3.433 0.064
## 3
                                         stimulus
                                                    1 537 0.267 0.605
## 4
                                             time
                                                    1 537 0.125 0.724
## 5
                                iu group:stimulus
                                                    1 537 0.682 0.409
## 6
                                    iu_group:time
                                                    1 537 0.163 0.686
                                    stimulus:time 1 537 0.033 0.855
## 7
## 8
                    sticsa_total_centred:iu_group 1 537 7.992 0.005
## 9
                    sticsa_total_centred:stimulus
                                                    1 537 0.097 0.755
## 10
                        sticsa total centred:time
                                                    1 537 0.420 0.517
           sticsa_total_centred:iu_group:stimulus
## 11
                                                    1 537 1.339 0.248
## 12
               sticsa_total_centred:iu_group:time
                                                    1 537 0.209 0.648
               sticsa total centred:stimulus:time
## 13
                                                    1 537 0.202 0.653
                           iu_group:stimulus:time
## 14
                                                    1 537 0.407 0.524
## 15 sticsa_total_centred:iu_group:stimulus:time
                                                    1 537 1.359 0.244
##
## 1 0.0040000
## 2 0.0060000
## 3 0.0004970
## 4 0.0002330
## 5 0.0010000
## 6 0.0003040
     0.0000619
## 7
## 8 0.0150000
## 9 0.0001810
## 10 0.0007810
## 11 0.0020000
## 12 0.0003890
## 13 0.0003760
## 14 0.0007570
## 15 0.0030000
# p-values > .05: no interactions between STICSA and grouping variables,
except for
# sticsa*iu p = .005
```

# **Linearity Between Covariate and Outcome Variables**

#### **Fixation Count**

```
Acquisition
```

```
## this is at each level of grouping variable.
# check by computing grouped scatterplot of covariate and outcome variable
# sticsa and IU group
scatterplot_acq_fix_count_sticsa_centred_by_iu <-</pre>
  ggplot(df_long_acq_fix_count,aes(x = sticsa_total_centred, y = fix_count,
                                   colour = iu_group)) +
  geom_point() +
  geom_jitter(width = .5, alpha = .30, size = 2.5) +
  geom_smooth(method = lm, se = FALSE) +
  labs(title = "Plot of the Relationship Between Trait Anxiety (Covariate)
  Fixation Count in Acquisition by IU Group",
       x = "STICSA Total (Centred)",
       y = "Acquisition Fixation Count") +
  theme classic() +
  theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
  theme(text = element_text(family = "serif")) +
  guides(colour = guide legend(reverse = TRUE)) +
  scale_colour_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
    labs(colour = "IU Group") +
  theme(legend.position = "bottom", legend.title = element_text(face =
"bold"))
print(scatterplot acq fix count sticsa centred by iu)
## `geom_smooth()` using formula 'y ~ x'
```

# Plot of the Relationship Between Trait Anxiety (Covariate) and Fixation Count in Acquisition by IU Group



IU Group - High IU - Low IU

```
# relationship between STICSA and fixation count appears linear at both
levels of IU
# sticsa and stimulus
scatterplot_acq_fix_count_sticsa_centred_by_stimulus <-</pre>
  ggplot(df_long_acq_fix_count,aes(x = sticsa_total_centred, y = fix_count,
                                   colour = stimulus)) +
  geom point() +
  geom_jitter(width = .5, alpha = .30, size = 2.5) +
  geom smooth(method = lm, se = FALSE) +
  labs(title = "Plot of the Relationship Between Trait Anxiety (Covariate)
  Fixation Count in Acquisition by Stimulus",
       x = "STICSA Total (Centred)",
       y = "Acquisition Fixation Count") +
  theme classic() +
  theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
  theme(text = element_text(family = "serif")) +
  guides(colour = guide legend(reverse = TRUE)) +
  scale_colour_manual(values = c("#c45150", "#824372"), labels = c("CS-",
"CS+")) +
    labs(colour = "Stimulus") +
 theme(legend.position = "bottom", legend.title = element_text(face =
```

```
"bold"))
print(scatterplot_acq_fix_count_sticsa_centred_by_stimulus)
## `geom_smooth()` using formula 'y ~ x'
```

# Plot of the Relationship Between Trait Anxiety (Covariate) and Fixation Count in Acquisition by Stimulus



# relationship between STICSA and fixation count appears linear at both levels of stimulus

#### **Extinction**

```
theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
    theme(text = element_text(family = "serif")) +
    guides(colour = guide_legend(reverse = TRUE)) +
    scale_colour_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
    labs(colour = "IU Group") +
    theme(legend.position = "bottom", legend.title = element_text(face =
"bold"))

print(scatterplot_ext_fix_count_sticsa_centred_by_iu)

## `geom_smooth()` using formula 'y ~ x'
```

# Plot of the Relationship Between Trait Anxiety (Covariate) and Fixation Count in Extinction by IU Group



IU Group - High IU - Low IU

```
labs(title = "Plot of the Relationship Between Trait Anxiety (Covariate)
and
  Fixation Count in Extinction by Stimulus",
       x = "STICSA Total (Centred)",
       y = "Extinction Fixation Count") +
  theme_classic() +
  theme(plot.title = element text(face = "bold", hjust = 0.5, size = 12)) +
  theme(text = element_text(family = "serif")) +
  guides(colour = guide_legend(reverse = TRUE)) +
  scale_colour_manual(values = c("#c45150", "#824372"), labels = c("CS-",
"CS+")) +
    labs(colour = "Stimulus") +
  theme(legend.position = "bottom", legend.title = element_text(face =
"bold"))
print(scatterplot_ext_fix_count_sticsa_centred_by_stimulus)
## `geom_smooth()` using formula 'y ~ x'
```

### Plot of the Relationship Between Trait Anxiety (Covariate) and Fixation Count in Extinction by Stimulus



# relationship between STICSA and fixation count appears linear at both
levels of stimulus
# sticsa and time

```
scatterplot ext fix count sticsa centred by time <-
  ggplot(df_long_ext_fix_count,aes(x = sticsa_total_centred, y = fix_count,
                                   colour = time)) +
  geom point() +
  geom_jitter(width = .5, alpha = .30, size = 2.5) +
  geom_smooth(method = lm, se = FALSE) +
  labs(title = "Plot of the Relationship Between Trait Anxiety (Covariate)
  Fixation Count in Extinction by Time",
       x = "STICSA Total (Centred)",
      y = "Extinction Fixation Count") +
  theme classic() +
  theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
  theme(text = element_text(family = "serif")) +
  guides(colour = guide_legend(reverse = TRUE)) +
  scale_colour_manual(values = c("#c45150", "#824372"), labels = c("Late",
"Early")) +
    labs(colour = "Time") +
  theme(legend.position = "bottom", legend.title = element_text(face =
"bold"))
print(scatterplot_ext_fix_count_sticsa_centred_by_time)
## `geom_smooth()` using formula 'y ~ x'
```

## Plot of the Relationship Between Trait Anxiety (Covariate) and Fixation Count in Extinction by Time



# relationship between STICSA and fixation count appears linear at both levels of time

#### **Fixation Duration - Log Transformed**

#### **Acquisition**

```
# sticsa and IU group
scatterplot acq fix duration log sticsa centred by iu <-
  ggplot(df_long_acq_fix_duration_log, aes(x = sticsa_total_centred, y =
fix duration log,
                                   colour = iu_group)) +
  geom_point() +
  geom_jitter(width = .5, alpha = .30, size = 2.5) +
  geom_smooth(method = lm, se = FALSE) +
  labs(title = "Plot of the Relationship Between Trait Anxiety (Covariate)
and
  Fixation Duration in Acquisition by IU Group",
       x = "STICSA Total (Centred)",
       y = "Acquisition Fixation Duration (Log-Transformed)") +
  theme classic() +
  theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
  theme(text = element text(family = "serif")) +
  guides(colour = guide_legend(reverse = TRUE)) +
```

```
scale_colour_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
   labs(colour = "IU Group") +
   theme(legend.position = "bottom", legend.title = element_text(face =
"bold"))

print(scatterplot_acq_fix_duration_log_sticsa_centred_by_iu)

## `geom_smooth()` using formula 'y ~ x'
```





# relationship between STICSA and fixation count appears linear at both levels of stimulus

```
Extinction
```

```
# sticsa and IU group
scatterplot_ext_fix_duration_log_sticsa_centred_by_iu <-
```

```
ggplot(df long ext fix duration log, aes(x = sticsa total centred, y =
fix_duration_log,
                                   colour = iu_group)) +
  geom point() +
  geom_jitter(width = .5, alpha = .30, size = 2.5) +
  geom_smooth(method = lm, se = FALSE) +
  labs(title = "Plot of the Relationship Between Trait Anxiety (Covariate)
  Fixation Duration in Extinction by IU Group",
       x = "STICSA Total (Centred)",
      y = "Extinction Fixation Duration (Log-Transformed)") +
  theme classic() +
  theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
  theme(text = element_text(family = "serif")) +
  guides(colour = guide_legend(reverse = TRUE)) +
  scale_colour_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
    labs(colour = "IU Group") +
  theme(legend.position = "bottom", legend.title = element_text(face =
"bold"))
print(scatterplot_ext_fix_duration_log_sticsa_centred_by_iu)
## `geom_smooth()` using formula 'y ~ x'
```

## Plot of the Relationship Between Trait Anxiety (Covariate) and Fixation Duration in Extinction by IU Group



IU Group - High IU - Low IU

```
# relationship between STICSA and fixation count appears linear at both
levels of IU
# sticsa and stimulus
scatterplot_ext_fix_duration_log_sticsa_centred_by_stimulus <-</pre>
  ggplot(df_long_ext_fix_duration_log, aes(x = sticsa_total_centred, y =
fix_duration_log,
                                   colour = stimulus)) +
  geom_point() +
  geom_jitter(width = .5, alpha = .30, size = 2.5) +
  geom_smooth(method = lm, se = FALSE) +
  labs(title = "Plot of the Relationship Between Trait Anxiety (Covariate)
and
  Fixation Duration in Extinction by Stimulus",
       x = "STICSA Total (Centred)",
       y = "Extinction Fixation Duration (Log-Transformed)") +
  theme classic() +
  theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
  theme(text = element text(family = "serif")) +
  guides(colour = guide legend(reverse = TRUE)) +
  scale_colour_manual(values = c("#c45150", "#824372"), labels = c("CS-",
"CS+")) +
   labs(colour = "Stimulus") +
```

```
theme(legend.position = "bottom", legend.title = element_text(face =
"bold"))
print(scatterplot_ext_fix_duration_log_sticsa_centred_by_stimulus)
## `geom_smooth()` using formula 'y ~ x'
```

### Plot of the Relationship Between Trait Anxiety (Covariate) and Fixation Duration in Extinction by Stimulus



Stimulus - CS+ - CS-

```
theme_classic() +
  theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
  theme(text = element_text(family = "serif")) +
    guides(colour = guide_legend(reverse = TRUE)) +
    scale_colour_manual(values = c("#c45150", "#824372"), labels = c("Late",
    "Early")) +
    labs(colour = "Time") +
    theme(legend.position = "bottom", legend.title = element_text(face =
    "bold"))

print(scatterplot_ext_fix_duration_log_sticsa_centred_by_time)

## `geom_smooth()` using formula 'y ~ x'
```

### Plot of the Relationship Between Trait Anxiety (Covariate) and Fixation Duration in Extinction by Time



# relationship between STICSA and fixation count appears linear at both levels of time

### Saccade Amplitude

```
Acquisition
```

```
# sticsa and IU group
scatterplot_acq_sacc_amplitude_sticsa_centred_by_iu <-
ggplot(df_long_acq_sacc_amplitude, aes(x = sticsa_total_centred, y =</pre>
```

```
sacc amplitude,
                                   colour = iu group)) +
  geom_point() +
  geom_jitter(width = .5, alpha = .30, size = 2.5) +
  geom smooth(method = lm, se = FALSE) +
  labs(title = "Plot of the Relationship Between Trait Anxiety (Covariate)
and
  Saccade Amplitude in Acquisition by IU Group",
       x = "STICSA Total (Centred)",
       y = "Acquisition Saccade Amplitude") +
  theme classic() +
  theme(plot.title = element text(face = "bold", hjust = 0.5, size = 12)) +
  theme(text = element text(family = "serif")) +
  guides(colour = guide_legend(reverse = TRUE)) +
  scale_colour_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
    labs(colour = "IU Group") +
  theme(legend.position = "bottom", legend.title = element text(face =
"bold"))
print(scatterplot_acq_sacc_amplitude_sticsa_centred_by_iu)
## `geom smooth()` using formula 'y ~ x'
## Warning: Removed 2 rows containing non-finite values (stat_smooth).
## Warning: Removed 2 rows containing missing values (geom_point).
## Warning: Removed 2 rows containing missing values (geom_point).
```

### Plot of the Relationship Between Trait Anxiety (Covariate) and Saccade Amplitude in Acquisition by IU Group



IU Group - High IU - Low IU

```
# relationship between STICSA and fixation count appears linear at both
levels of IU
# sticsa and stimulus
scatterplot_acq_sacc_amplitude_sticsa_centred_by_stimulus <-</pre>
  ggplot(df_long_acq_sacc_amplitude, aes(x = sticsa_total_centred, y =
sacc_amplitude,
                                   colour = stimulus)) +
  geom point() +
  geom_jitter(width = .5, alpha = .30, size = 2.5) +
  geom_smooth(method = lm, se = FALSE) +
  labs(title = "Plot of the Relationship Between Trait Anxiety (Covariate)
and
  Saccade Amplitude in Acquisition by Stimulus",
       x = "STICSA Total (Centred)",
       y = "Acquisition Saccade Amplitude ") +
  theme_classic() +
  theme(plot.title = element text(face = "bold", hjust = 0.5, size = 12)) +
  theme(text = element text(family = "serif")) +
  guides(colour = guide legend(reverse = TRUE)) +
  scale_colour_manual(values = c("#c45150", "#824372"), labels = c("CS-",
"CS+")) +
   labs(colour = "Stimulus") +
```

```
theme(legend.position = "bottom", legend.title = element_text(face =
"bold"))

print(scatterplot_acq_sacc_amplitude_sticsa_centred_by_stimulus)

## `geom_smooth()` using formula 'y ~ x'

## Warning: Removed 2 rows containing non-finite values (stat_smooth).

## Warning: Removed 2 rows containing missing values (geom_point).

## Warning: Removed 2 rows containing missing values (geom_point).
```

### Plot of the Relationship Between Trait Anxiety (Covariate) and Saccade Amplitude in Acquisition by Stimulus



# relationship between STICSA and fixation count appears linear at both levels of stimulus

#### **Extinction**

```
geom smooth(method = lm, se = FALSE) +
  labs(title = "Plot of the Relationship Between Trait Anxiety (Covariate)
and
  Saccade Amplitude in Extinction by IU Group",
       x = "STICSA Total (Centred)",
       y = "Extinction Saccade Amplitude") +
  theme classic() +
  theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
  theme(text = element_text(family = "serif")) +
  guides(colour = guide legend(reverse = TRUE)) +
  scale_colour_manual(values = c("#c45150", "#824372"), labels = c("Low IU",
"High IU")) +
    labs(colour = "IU Group") +
  theme(legend.position = "bottom", legend.title = element_text(face =
"bold"))
print(scatterplot_ext_sacc_amplitude_sticsa_centred_by_iu)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 3 rows containing non-finite values (stat_smooth).
## Warning: Removed 3 rows containing missing values (geom_point).
## Warning: Removed 3 rows containing missing values (geom point).
```

## Plot of the Relationship Between Trait Anxiety (Covariate) and Saccade Amplitude in Extinction by IU Group



IU Group - High IU - Low IU

```
# relationship between STICSA and fixation count appears linear at both
levels of IU
# there does appear to be an interaction (with high IU having higher
# saccde amplitude as levels of trait anxiety increase, and low IU showing
# opposite pattern)
# sticsa and stimulus
scatterplot ext sacc amplitude sticsa centred by stimulus <-
  ggplot(df_long_ext_sacc_amplitude, aes(x = sticsa_total_centred, y =
sacc_amplitude,
                                   colour = stimulus)) +
  geom_point() +
  geom jitter(width = .5, alpha = .30, size = 2.5) +
  geom_smooth(method = lm, se = FALSE) +
  labs(title = "Plot of the Relationship Between Trait Anxiety (Covariate)
and
  Saccade Amplitude in Extinction by Stimulus",
       x = "STICSA Total (Centred)",
       y = "Extinction Saccade Amplitude ") +
  theme classic() +
  theme(plot.title = element text(face = "bold", hjust = 0.5, size = 12)) +
  theme(text = element_text(family = "serif")) +
  guides(colour = guide legend(reverse = TRUE)) +
```

```
scale_colour_manual(values = c("#c45150", "#824372"), labels = c("CS-",
"CS+")) +
    labs(colour = "Stimulus") +
    theme(legend.position = "bottom", legend.title = element_text(face =
"bold"))

print(scatterplot_ext_sacc_amplitude_sticsa_centred_by_stimulus)

## `geom_smooth()` using formula 'y ~ x'

## Warning: Removed 3 rows containing non-finite values (stat_smooth).

## Warning: Removed 3 rows containing missing values (geom_point).

## Warning: Removed 3 rows containing missing values (geom_point).
```

### Plot of the Relationship Between Trait Anxiety (Covariate) and Saccade Amplitude in Extinction by Stimulus



# relationship between STICSA and fixation count appears linear at both
levels of stimulus

# sticsa and time
scatterplot\_ext\_sacc\_amplitude\_sticsa\_centred\_by\_time < ggplot(df\_long\_ext\_sacc\_amplitude, aes(x = sticsa\_total\_centred, y =
sacc\_amplitude,</pre>

```
colour = time)) +
  geom point() +
  geom_jitter(width = .5, alpha = .30, size = 2.5) +
  geom_smooth(method = lm, se = FALSE) +
  labs(title = "Plot of the Relationship Between Trait Anxiety (Covariate)
  Saccade Amplitude in Extinction by Time",
       x = "STICSA Total (Centred)",
       y = "Extinction Saccade Amplitude ") +
  theme classic() +
  theme(plot.title = element_text(face = "bold", hjust = 0.5, size = 12)) +
  theme(text = element text(family = "serif")) +
  guides(colour = guide legend(reverse = TRUE)) +
  scale_colour_manual(values = c("#c45150", "#824372"), labels = c("Late",
"Early")) +
    labs(colour = "Time") +
  theme(legend.position = "bottom", legend.title = element_text(face =
"bold"))
print(scatterplot_ext_sacc_amplitude_sticsa_centred_by_time)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 3 rows containing non-finite values (stat_smooth).
## Warning: Removed 3 rows containing missing values (geom point).
## Warning: Removed 3 rows containing missing values (geom point).
```

# Plot of the Relationship Between Trait Anxiety (Covariate) and Saccade Amplitude in Extinction by Time



# relationship between STICSA and fixation count appears linear at both levels of time