Benutzerendgeräte & Peripheriegeräte

Hardwaresysteme (Vertiefung)

Inhalt

Benutzerendgeräte & Peripheriegeräte	1
Hardwaresysteme (Vertiefung)	1
Fachbegriff Multicore-Prozessor	2
Unterschiede Desktop-/Server-Prozessoren	3
Aufbau und Funktionsweise eines Mainboards	4
Fachbegriff Chipset	5
Fachbegriffe Jumper, DIP-Schalter	7
Kenntnisse über den Fachbegriff Formfaktor in Zusammenhang mit Mainboards	38
Kenntnisse über ATX/Micro-ATX-Formfaktor in Zusammenhang mit Mainboards	9
Funktionsweise von auf Mainboards befindlichen Bussystemen	10
Kenntnisse über die wesentlichen UEFI-Einstellungen	11
Funktionsprinzip eines Plotters	12
Funktionsprinzip der Bubblejet-Technik/Piezo-Technik (Tintenstrahldrucker)	14
Funktionsprinzip eines 3D-Druckers	15
Fachbegriffe Interpolation, TWAIN, OCR im Zusammenhang mit Scannern	16
Kenntnisse über Funktionsweise und Leistungsdaten eines Netzteiles	17
Aufbau und Funktionsweise einer HDD (Umdrehungszahl, Zugriffszeit, Schnitts	, ,
Aufbau und Funktionsweise einer SSD	
Fachbegriffe TLC, MLC, SLC in Zusammenhang mit SSD	
Kenntnis der aktuellen SATA-Standards	
Fachbegriff Modem	
Fachbegriff BD-ROM	
Kenntnisse über Schreibformate BD-R, BD-RE Fehler! Textmarke nicht o	
Kenntnisse über Regionalcodes in Zusammenhang mit DVD/BD	
Kenntnis der Technologie von LCD-Bildschirmen	
Fachbegriff Full-HD bzw. UHD	28

Fachbegriff Multicore-Prozessor

Ein Multicore-Prozessor ist ein einzelner physischer Prozessorchip, der mehrere Recheneinheiten Kerne enthält. Diese Kerne können gleichzeitig unabhängig oder gemeinsam Aufgaben ausführen, wodurch die Parallelverarbeitung verbessert wird.

Grundlegende Funktionsweise:

Jeder Kern kann eigenständig Befehle verarbeiten und gemeinsam mit anderen Kernen an Aufgaben arbeiten Multithreading / Parallelverarbeitung. Das Betriebssystem verteilt Prozesse und Threads inteligent auf die verfügbaren Kerne.

Wichtigste Vorteile:

Höhere Leistung bei Parallelen Aufgaben z.b Videobearbeitung Serverbetrieb Bessere Energieeffizienz als Single-Core-Prozessor mit hohem Takt Skalierbarkeit bei modernen Anwendungen und Betriebssystemen

Seit den 2010er Jahren sind Multicore-Prozessoren Standard in PCs, Servern und Mobilen Geräten mit Entwicklungen bis hin zu 64-Kern-CPU i Serverbereich und Hybriden Architekturen wie bei Apple Silicon oder Intel Adler Lake.

Merkmal	CISC	RISC	
Befehlssatz	Komplex viele Befehle pro	Einfach, wenige Befehle	
	,Instruktion		
Energieverbrauch	Tendenziell höher	Tendenziell Niedriger	
Leistung Pro Takt	Hoch aber ineffizient bei	Effizient gut Skalierbar	
	niedriger Last		
Beispielsysteme	Intel Core AMD Ryzen	Apple M1/M2	
		Viele Smartphones,	
		Server-SoCs	

Server on a Chip = SoCs

Unterschiede Desktop-/Server-Prozessoren

Desktop Prozessoren Intel AMD Ryzen

Merkmal Beschreibung

Ziel Optimiert für Typische Desktop-Aufgaben wie Office, Gaming, Medienbearbeitung

Kerne / Threads Meist 4-24 kerne, SMT/Hyper-Threading oft vorhanden

Taktfrequenz Höhere Basistakt auf Boost z.B. 3.5 – 5.5. Ghz

Cache-Größe Relativ kleiner L3-Cache 16-64MB

Stromverbrauch TDP 65 – 125W

ECC-RAM Meist nicht untersützt Skalierbarkeit Einzelprossor-Systeme

ServerProzessoren Intel Xeon EPYC

Merkmal Beschreibung

Ziel Dauerbetrieb, Virtualisierung, Datenbanken, Multisocket-Systeme

Kerne/ Threads 8-125 Kerne pro CPU, oft Multi-CPU-Systeme z.B Dual-Socket Taktfrequenz Meist niedriger, aber stabil unter Dauerlast z.B. 2.0- 3.5GHz

Stromverbrauch 95/400 W

ECC-RAM Standardmäßig unterstützt

Skalierbarkeit Hoch, inkl. NUMA, PCIe-Lanes, Viele Speicherkanäle

Weitere Unterschiede:

Zuverlässigkeit: Server-CPUs unterstützen oft RAS-Features = Reliability, Availability, Serviceabillity

Virutalisierung: Server-CPUs bieten meist erweiterte Virtualisierungsfunktionen VT-d, SR-IOV

Plattform-Unterstützung; Server-CPUs laufen in Spezifialisierten Mainboards mit IPMI, mehreren LAN-Ports

Hot-Plug-Fähigkeiten etc.

Aufbau und Funktionsweise eines Mainboards

Das Mainboard / Motherboard ist die zentrale Leiterplatte eines Computers, auf der alle wesentlichen Komponenten verbunden sind und miteinander kommunizieren.

Grundstruktur & Funktionsweise

Das Mainboard verbindet CPU, Arbeitsspeicher, Massenspeicher, Erweiterungskarten und Peripheriegeräte. Es steuert den Datenfluss und die Stromversorgung zwischen den Komponenten und ist entscheidend für die Kompatibilität und Leistung des Systems

Komponenten Funktion

CPU-Sockel Aufnahme der Hauptprozessor-Einheit z.B. LGA, BGA, verbindet CPU elektrisch mit

dem Mainboard

RAM-Slots DIMM Steckplätze für Arbeitsspeicher DDR4, DDR5 Kommuniziert direkt mit dem RAM

Chipsatz Steuert Daten zwischen CPU RAM GPU Storage und I/O-Geräten; unterteilt

In PCH Intel oder SOC-Funktionalität AMD

Erweiterungssteckplätze PCIe-Slots für Grafikkarten, Netzwerkkarten SSDs etc.

Speicheranschlüsse 24-Pin ATX + 8/4-Pin EPS zur Versorgung von Mainboard und CPU

Anschlüsse extern USB, HDMI, LAN, Audio etc, über I/O-Panel erreichbar

BIOS/UEFI-Chip Initialisiert Hardware beim Start Bietet Konfigurationsoberfläche für

Systemparameter

Beim Systemstart initialisiert das BIOS / UEFI die Hardware Danach übernimmt das Betriebssystem die Steuerung. CPU führt Berechnungen aus, RAM dient als Arbeitsspeicher, der Chipssatz koordiniert Datenflüsse und Erweiterungskarten ergänzen Funktionalitäten. Alles ist über Leiterbahnen auf dem Mainboard verbunden

Fachbegriff Chipset

Chipsatz – Herzstück der Systemlogik

Der Chipsatz ist ein Zentraler Baustein auf dem Mainboard, der die Kommunikation und Datenströme zwischen CPU, Arbeitsspeicher, Massenspeicher, Grafikkarte, und Peripheriegeräten steuert. Er ist maßgeblich für die Funktionalität, Leistung und Erweiterbarkeit eines Computersystems verantwortlich.

North / South
CPU GPU RAM
I/O Festplatte Pherrieriegeräte
Cache BIOS

Northbridge: Zuständige für Schnelle Datenverbindungen CPU, RAM, CPU. Southbridge: Verwaltete langsame I/O-Geräte SATA, USB, Audio, LAN, PCI.

NorthBridge war direkt mit der CPU Verbunden und koordinierte Hochgeschwindigkeitsverbindungen wie dem Speichercontroller und AGP/PCIe für die Grafikkarte. Die Southbridge war über einen internen Bus mit der Northbridge verbunden und handhabe z.B. Festplatten, USB-Anschlüsse und Netzwerkcontroller.

Ablösung durch integrierte Architekturen:

Mit Intel Nehalem ab 2008 und AMD Ryzen ab 2017 wurden viele NorthBride Funktionen Direkt in die CPU verlagert:

Speichercontroller Memory Controller

PCIe-Lanes

Grafikschnistelle

Seitdem gibt es statt North / Soutbridge meist nur noch einen Plattform Controller Hub PCH Intel oder einen Chipsatz-SoC bei AMD der als Ergänzung zur CPU fungiert.

Grundlegende Funktionen eines modernen Chipsatzes

Bereich Aufgabe des Chipsatzes

Datenweiterleitung Steuerung der Kommunikation zwischen CPU und Komponenten außer RAM

& PCIe-GPU

Schnittstellenmanagement Verwaltung von USB, SATA, NVMe, Audio, Netzwerk, Thunderbolt

Erweiterungssupport Bereitstellung zusätzlicher PCIe-lanes

Energie und Taktmanagment Feinsteuerung von Stromsparmodi, Wake-on-Lan, Taktfrequenz

BIOS/UEFI Integration Initialisierung und Konfiguration über Firmware

Arten von Chipsätzeen und ihre Eigenschaften

Intel-Chipsätze:

Serien wie Z, H, Q, W, X.

Z-Serie: Übertaktung, viele PCIe-Lanes, RAID, Hohe RAM-Geschwindigkeiten

B-Serie Budget-Orientiert, kein Overclocking z.B. B760.

Q/W/X-Serie Für Workstation und Server ECC-RAM, VPro-Unterstüzung

AMD-Chipsätze

Serie: X B A WRX TRX

X-Serie: High-End mit PCIe-Gen5, CrossFure/SLI, viele Anschlüsse

B-Serie: Solider Mittelklasse-Chipsatz

A-Serie: Einstiegsbereich ohne Overcloacking

WRTX: Für Threadripper-Workstations/Server Massiv viele PCIe-Lanes RAM-Kanäle

Bedeutung für Systemleistung und Kompatibilität

Leistungsgrenzen: Der Chipsatz bestimmt, wie viele Speichergeräte, Erweiterungskarten, USB-Ports nutzbar sind.

Kompatibilität: Er legt fest, welche CPUs, RAM-Typen, SSDs oder GPUs unterstützung werden.

Features: Raid, PCIe-Gen4/5, USB 4.0, Thunderbolt, ECC-RAM etc sind chipsatz abhängig

Overclocking und Tuning: Nur Bestimmte Chipsätze erlauben CPU/RAM-Overclocking oder RAM-XMP

Der Chipsatz ist das Zentrale Steuerzentrum eines Mainboards, das alle nicht direkt in der CPU integrierten Komponenten verbindet und deren Zusammenarbeit regelt. Er ist entscheidend für die Erweiterbarkeit, Geschwindigkeit und Systemkompatibilität und beeinflusst damit maßgeblich die Gesamtleistung des Computers.

Fachbegriffe Jumper, DIP-Schalter

Physische-Beschaffenheit und Funktionsweise eines Jumper:

Ein Jumper besteht aus zwei oder mehr metallischen Pins auf der Leiterplatte und einem kleinen Kunststoffgehäuse mit einer leitenden Metallbrücke im inneren "Jumper-Brücke" Wird der Jumper auf zwei Pins gesteckt stellt er einen elektrischen Kontakt her Kurzschluss was einem Logischen Schalter "an" entspricht. Entfernt man ihn ist der Schaltkreis offen "Aus" keine verbindung.

Typische Anwendungsbereiche:

Frühere Mainboards: Einstellung von CPU-FSB-Takt, Spannung, Reset-CMOS

Festplatten DIE/PATA Wahl von Master/Slave/Cable Select Erweiterungskarten ISA: IRQ, DMA, I/O-Port-Adressen

Industrielle Steuerplatinen: Geräteerkennung, Betriebsmodi

Vor / Nachteile

Vor -

Mechanisch simpel und günstig Kein Strom notwendig zur Konfiguration

Beibehalten der Konfiguration auch ohne Softwarezugriff

Nach -

Umständlich Gehäuse öffnen, Pinbelegung oft schwer Isbar Fehleranfällig verloren Jumper, falsche Position Eingeschränkte Anzahl möglicher Einstellungen

Relevanz in modernen Systemen

Kaum mehr üblich auf Consumer-Hardware

Noch genutzt auf Server-Mainboard, Backplanes, Embedded oder Industrie Hardware Watchdog Aktivierung Moduswahl

Ersetzt Durch: BIOS/UEFI Optionen Softwaretools Hot-Plug / Plug & Play

Jumper sind mechanische Kurzschlussbrücken zur Hardwarekonfiguration, die vorrangig in älteren PCs zur Festlegung von Betriebsmodi eingesetzt wurden. Heute sind sie weitgehend durch softwarebasierte Konfigurationen ersetzt, finden aber noch vereinzelt in Server und Embedded-Systemen Anwendung

DIP-Schalter Dual Inline Package

Dip-Schalter sind Miniatur-Multipositionschalter zur festen, manuellen Konfiguration von Hardwarefunktionen, besonders verbreitet in älteren und industriellen Geräten. In modernen PCs kaum noch genutzt, bleiben sie in bestimmten steuerungssystem wegen ihrer Unabhängigkeit und Robustheit relevant.

Physische Beschaffenheit und Funktionsweise

Ein DIP-Schalter ist ein Kleines Rechteckiges Bauteil mit mehreren Miniaturschaltern in einem Plastikgehäuse, meist in einer Reihe zum Beispiel DIP-4, DIP-8 jeder Schalter lässt sich eizeln zwischen On Geschlossen und OFF offen stellen meist per Schraubenzieher oder Fingernagel.

Typische Anwendung ISA / PCI Karten: Adresszuweisung I/O IRQ DMA

SCSI-Controller: Geräte-ID Einstellungen

Router / Switches Industrie Moduswahl Reset Feature-Aktivierung

Mikrocontroller-platine Konfiguration von Boot Modi oder Debugging Optionen

Vor / Nachteile

Vor

Mehrere Konfigurationen gleichzeitig möglich mehr Kombinationsmöglichkeiten als Jumper Dauerhafte Einstellung ohne Softwareabhänigkeit Besser Beschrifftet leichter zu bedienen

Nachteil

Mechanische Abnutzung Teurer und größer als Jumper Für Laien schwer verständlich ohne Dokumentation

Relevanz in modernen Systemen In Klassischen PCs kaum noch vorhanden

Weiter verbreitet in industrieelektronik Netzwerrktechnik, Mikrocontroller-Platinen z.B. Arduino Shields Steuerungsbaugruppen.

Ersetzt durch Konfigurierbare Firmware I²C/SPI Kommunikation Flash-Speicherbassierte Einstellung.

Kenntnisse über den Fachbegriff Formfaktor in Zusammenhang mit Mainboards

Der Formfaktor eines Mainboards bezeichnet dessen Physikalische Abmessungen, Bohrlochpositionen, Anschlussanordnung und Schnittstellenlayout was entscheidend für die Kompatibilität mit Gehäusen, Netzteilen und Kühllössungen ist. Es sorgt für eine Standarddisierung, die den Austausch und die Planung von PC-Komponenten erleichtert

Kenntnisse über ATX/Micro-ATX-Formfaktor in Zusammenhang mit Mainboards

Typische Formfaktoren:

Formfaktor	Maße B x H in mm	Merkmale	
ATX	305 x 244	Standardgröße viele Steckplätze	
		Und Anschlüsse	
Micro-ATX	244 x 244	Kompakter, weniger	
		Erweiterungsslots	
Mini-ITX	170 x 170	Sehr Klein ideal für HTPC	
		Oder kompakte Builds	

Der Fromfaktor legt Größen und Anschlusslayout eines Mainboards fest und bestimmt maßgeblich, mit welchen Gehäuse, Kühlungen und Komponenten es kompatibel ist – Typische Varianten wie ATX, Micro ATX und Mini ITX folgen dabei genormten standards zur Sicherstellung der Systemintegration.

Funktionsweise von auf Mainboards befindlichen Bussystemen

Ein Bussystem auf dem Mainboard – Funktionsweise und Bedeutung

Ein Bussystem ist ein logisches und physikalisches System zur übertragung von Daten, Adressen und Steuerinformationen zwischen den Hauptkomponenten eines Computers – insbesondere CPU, RAM, Massenspeicher, GPU und Peripherie. Man unterscheidet zwischen internen Systembussen Daten / Adress / Steuerbus und Peripheriebussen beipsiel SATA PCIe USB.

Klassische Systembusse

Datenbus Transportiert die eigentlichen Daten Breite z.B. 32, 64 bestimmt, wie viele Daten in einem Takt übertragen werden können Zweiseitig Nutzbar Lesen / Schreiben

Adressbus:

Überträgt die Speicheradressen auf die CPU oder Geräte zugreifen möchten Unidirektional meist CPU → RAM I/O Breite bestimmt adressierbare Speicherbereiche 32 / 64 Bit

Steuerbus

Überträgt Steuersignale wie Lese / Schreibbefehle, Interrupts Takt und Synchronisationssignale Koordiniert die Interaktion zwischen den Komponenten

Kenntnisse über die wesentlichen UEFI-Einstellungen

Boot-Reihenfolge Festlegen von welchem Gerät das System startet z.B SSD, USB, Netzwerk.

Secure Boot Schutz vor nicht signierten Betriebssystemen / Bootloaden Fast Boot Beschleunigt Startvorgang durch überspringen von Checks

Compatibillity Support Modul CSM Aktiviert Legacy-BIOS Modus für Ältere Betriebssysteme UEFI/ Legacy Boot Modus Auswahl des Startmodus wichtig für OS-Installation

CPU Konfiguration Hyper-Threading, Virtualisierung VT-x/AMD-V Energiesparfunktion

RAM XMP Profil Aktiviert vom Hersteller geteste Hochleistungsspeicherprofil

Lüftersteuerung Regelung von CPU und Gehäuselüftern Drehzahlkurven

UEFI erlaubt die feingranulare Konfiguration von Hardwarefunktionen, Sicherheitsfeatures und Bootverhalten eines PCs und ist damit essenziell für Stabilität, Perfomance und Kompatibilität eines modernen Systems.

Funktionsprinzip eines Plotters

Ein Plotter ist ein Ausgabegerät das Vektorbasiererte Zeichnungen, Pläne oder Schnittmuster präzise und maßstabgetreu auf Papier, Folie oder anderen Materialien erstellt. Im Gegensatz zu Rasterdruckern, die mit Punkten arbeiten, folgen Plotter mathematischen Koordinatenpfaden Vektoren.

Grundlegendes Funktionsprinzip Ein Plotter bewegt ein Schreib / Schneidwerkzeug z.B Stift, Messer, Druckerkopf entlang x – und y Achse Präzise über das Medium. Die Bewegungen werden über schrittmotoren oder Linearantriebe gesteuert und durch Softwarebefehle meist Vekorformate wie HPGL SVG DXF gelenkt.

Stiftplotter Vektorplotter

Mechanismus: Führt echte Stifte Kugelschreiber, über die Zeichenfläche.

Aufbau: Häufig zwei Achsen: Papier wird bewegt y-Achse Stiftarm bewegt sich horizontal x-Achse

Merkmal: Sehr Präzise Linien, ideal für CAD Zeichnungen, Architekturpläne

Status: Heute weitgehend von Großformatdruckern abgelöst.

Schneideplotter

Mechanismus: Führt ein scharfes Messer über selbstklebende Folie oder Textilmaterialien Verwendung: Schneidet Buchstaben, Logos, Aufkleber, Textilveredelung Flex Flockfolie

Merkmal: Kein Druck sondern nur Schnitt kein Farbauftrag

Oft mit Optical Eye zur Passmarkenerkennung für konturgenaues Schneiden Print

Großformatplotter Large Format Plotter

Mechanismus: Kombination aus Tintenstrahldrucker Inkjet und präziser Materialführung Verwendung: Druck von Plakaten, Architekturplänen, CAD-Zeichnungen, GIS-Karten

Typen: Inkjet-Plotter Arbeiten mit pigmentierter oder farbstoffbasierter Tinte

Technische Plotter: Bieten höhere Liniengenauigkeit und Feinzeichnung für Bauwesen und

Ingenieurwesen

Typische Anwendungsbereiche

Technische Zeichnungen	CAD-Pläne, Bauzeichnungen	
	Architektur & Machinenbau	
Werbetechnik	Folienschnitt für Schilder, Fahrzeugbeschriftung	
Textilveredelung	Schneideplotter für Flex & Flockfolien	
Grafikdesign	Großformatdruck, Poster, Kunststoff	

Ein Plotter setzt vektorbasierte Daten in Präzise Linienbewegungen um und eignet sich für detailgetreue Zeuchnungen oder Schnitte. Je nach Typ erzeugt er Technische Zeichnungen Stiftplotter, Folienschnitte Schneideplotter oder Großformatdrucke Inkjet Plotter.

Plotter sind besonders dort unverzichtbar, wo maßstabsgetreue, hochpräzise und großflächige Darstellungen gefordert sind.

Funktionsprinzip der Bubblejet-Technik/Piezo-Technik (Tintenstrahldrucker)

Bubblejet-Technik Thermodruckprinzip z.B. Canon, HP. Funktionsprinzip: Ein Hezelement erhitzt die Tinte Lokal auf >300°C

Dampfblase Bubble Entsteht Tintentropfen wird aus der Düse gedrückt

Vorteil Günstige Herstellung, feine Tröpfchen

Nachteile: Eingeschränkte Tintensorten nur Thermische Stabile

Tinte höhere Düsenwärmung

Piezo-Technik Mechanisch-Elektrisch z.B. Epson

Funktionsprinzip: Ein Piezo-Kristall verformt sich elektrisch →
Druck auf Tintenkanal → Tintentropfen wir ausgestoßen.
Vorteil Höhere Präzision, breitere Tintenauswahl Pigmenttinten
Textiltinten

Nachteil Aufwendigere und Teurere Druckkopfherstellung

Bubblejet Drucker arbeiten mit Hitze und erzeugen Dampfblasen zur Tintenausgabe, während.

Piezo-Drucker elektrisch verformbare kristalle nutzen was eine Präzisere und vielseitigere Tintenausgabe erlaubt besonders wichtig in Profil und Fotodruck.

Funktionsprinzip eines 3D-Druckers

Ein 3D-Drucker erstellt dreidimensionale Objekte durch schichtweises Aufbauen eines Materials anhand digitaler 3D-Modelle z.B. STL-Dateien Der Druck erfolgt additiv – im Gegensatz zur subtraktiven Fertigung z.B. Fräsen.

Grundschritte des Druckprozesses:

Modellvorbereitung: CAD-Modell wird in Schichten Silces zerlegt.

Materialauftrag: Schicht für Schicht wird das Material Präzise aufgetragen.

Aushärtung / Abkühlung Jede Schicht verbindet sich mit dervorherigen.

Nachbearbeitung: Entfernen von Stützstrukturen, Glätten, Härten je nach verfahren

Gänige 3D-Drucktechnologien

Verfahren	Funktionsprinzip	Materialien
Fused Deposition Modeling	Schmilzt Kunststoff-Filament und PLA, ABS, PETG	
FDM	trägt es schichtweise auf	
Stereolithografie	Härtet flüssiges Harz	Photopolymerharze
SLA	Punktgenau mit UV Laser aus	
Selektives Lasersintern	Verschmilzt Kunststoffpulver	Nylon TPU Kunststoff
	Mithilfe eines Lasers	
	Schichtweise	

Komponenten Funktion

Filament-Spule Kunststoffdraht z.B. PLA ABS dient als Druckmaterial

Extruder Fördert das Filament zum Hotend; meist per Schrittmotor

Hotend Druckkopf

Heizt das Filament auf und drückt es durch eine feine Düse Nozzle

Druckbett Build Plate

Oberfläche, auf der das Objekt Schicht für Schicht aufgebaut wird.

Heizbett Heated Bed

Erhitzt die Bauplattform zur besseren Haftung der ersten Schicht

Achsantriebe x,y,z

Bewegen den Druckkopf x/y und oder das bett z angetrieben durch

Schrittmotoren

Linearschienen & Führungen Sichern präzise Bewegung entlang der Achsen

Stepper Motoren Ermöglichen genaue Positionierung der beweglichen Teile

Endstopps / Sensoren Begrenzen Bewegungen, erkennen Referenzpunkte

Mainboard / controllboard Steuert alle Funktionen verabeitet G-Code
Netzteil Versorgt Drucker mit Strom meist 12v oder 24v

Fachbegriffe Interpolation, TWAIN, OCR im Zusammenhang mit Scannern

Interpolation: Bedeutung Mathematische Methode zur künstlichen Erhöhung der Auflösung eines Scans. Funktionsweise: Neue Pixel werden auf Basis vorhandener Bildpunkte berechnet (nicht optisch erfasst)

Ziel: Vergrößerung des Bildes ohne sichtbare Pixelung z.B. von 600 dpi auf 1200 dpi

Kein echter Informationsgewinn oft nur kosmetisch

Interpolation verbessert optisch die Auflösung, ohne echte Details hinzuzufügen

TWAIN: Technology Without an interesting Name

Bedeutung: Schnittstellenstandard zwischen Scanner-Hardware und Software Treiberprotokoll

Funktion: Erlaubt Programmen z.B. Photoshop, Acrobat, direkt auf Scanner zugreifen.

Merkmal: Ersetzt Herstellerspezifische Lösungen, sorgt für Kompatibilität und Bedienkomfort. Beispiel: Ein Scanner Button in einem Programm öffnet direkt das TWAIN-Fenster des Scanners

Twain ist die Standardschnittstelle, die Scanner mit Anwendungen verbindet

Optical Character Recognition = OCR

Bedeutung: Texterkennung – Umwandlung von gescannten Bildern z.B. PDF in bearbeitbaren Text.

Funktion: Software analysiert Buchstabenformen und wandelt sie in Zeichen um z.B. Tesseract, Abby,

Einsatz: Digitalisieren von Dokumenten Druchsuchbarkeit von PDF, Barrierefreiheit

Grenzen: Fehleranfällig bei schlechter Scanqualität oder komplexem Layout.

OCR erkennt und extrahiert Text aus gescannten Bildern zur Weiterverarbeitung.

Kenntnisse über Funktionsweise und Leistungsdaten eines Netzteiles

Netzteil PSU

Ein PC-Netzteil wandelt Wechselstrom 230V AC aus der Steckdose in gleichstrombasierte Spannungen DC Für die Komponenten z.B. 12V 5V 3.3V.

Es arbeitet als Schaltnetzteil effizient Temperaturgesteuert und mit Sicherheitsfunktionen z.B. Überspannungsschutz.

Leistung Watt	Gesamtleistung z.B. 500 – 1000W, je nach Systemanforderung
+12V Schienen	Wichtigste Spannung für CPU & GPU hohe Stromstärke entscheidend
Effizienz	z.B. 80 Plus – Zertifizierung Bronze bis Titanium sparrt Energie & Wärme
Rail-Design	Single – vs Multi-Rail Verteilung der 12V Last
Anschlüsse	ATX 24-Pin, EPS 8-Pin CPU, PCIe, Sata, Molex je nach Bedarf
Schutzfunktionen	OVP, SCP, OCP, UVP, OTP etc sichern Hardware ab.

Ein PC Netzteil versorgt alle Komponenten mit stabilisiertem Gleichstrom, wobei Leistung, Effizienz und Schutzmechanismen entscheidend für Systemstabilität und Sicherheit sind. Die +12V Leistung ist dabei die wichtigste für moderne Hochleistungssysteme.

Aufbau und Funktionsweise einer HDD (Umdrehungszahl, Zugriffszeit, Schnittstellen, ...)

Funktionsweise

Platten rotieren ständig mit hoher Geschwindigkeit

Der Aktuator bewegt den Lesekopf auf die gewünschte Spur.

Daten werden magnetisch gelesen oder geschrieben – Bitweise durch Veränderung der Polarität.

Grundaufbau

Eine HDD ist ein magnetisches Speichermedium, das Daten Mechanisch auf rotierenden Platten, Disk Speichert. Sie besteht aus.

Platten	Magnetisch beschichtete Scheiben zur Datenspeicherung	
Spindelmotor	Dreht die Platten mit konstanter Geschwindigkeit:	
	z.B. 5400 7200 10.000 U/min	
Schreib/Lesekopf	Magnetisiert/liest Daten ohne direkten Kontakt zur Plattenoberfläche	
Aktuatoram /Zugriffsarm	Positioniert den Schreib -/ Lesekopf radial über Platten	
Controller PCB	Steuert die Mechanik, verwaltet Cache und Kommuniziert über Schnittstellen Sata	
Cache DRAM	Zwischenspeicher meist 16 – 256 MB zur Leistungsverbesserung	
Umdrehungszahl RPM	5400 7200 10.000 Server/Enterprise	
Zugriffszeit	5 – 15ms abhängig von Mechanik und Cache	
Datenrate Lese/Schreib	80 – 250MB/s	
Schnittstellen	SATA Consumer SAS Server früher auch DIE	
Kapazität	500 GB – 20+ TB	

Eine HDD speichert Daten magnetisch auf rotierenden Platten und nutzt bewegliche schreib / Leseköpfe zur Datenerfassung. Sie bietet hohe Kapazität zu günstigen Kosten, ist aber mechanisch langsamer und anfälliger als SSDs daher heute vor allem als Massenspeicher im Einsatz.

Aufbau und Funktionsweise einer SSD

Grundaufbau: Solid State Drive

Eine SSD ist ein halbleiterbasierter Massenspeicher, der keine beweglichen Teile enthält.

Sie speichert Daten elektronisch in Flash-Speicherzellen und arbeitet damit deutlich schneller und robuster als eine HDD.

Flash Speicher NAND	Nichtflüchtiger Speicher zur Datenspeicherung
Controller	Verwalter aller Speicheroperationen, Datenverteilung,
	Wear Leveling Fehlerorrektur
DRAM – Cache Optional	Puffert Schreib / Lesevorgänge und Schnittstelle z.B. Sata NVMe
Spannungsregler	Versorgt alle komponenten mit geregelter Energie
Interface Chip	Bindeglied zwischen Controller und Schnittstelle

Funktionsweise:

Daten werden elektronisch in Speicherzellen geschrieben, indem Ladungszaustände in Floating-Gate Transistoren verändert werden.

Beim Lesen erkennt der Controller den Ladungszustand jeder Zelle und interpretiert ihn als binären Wert Komplexe Algorithmen steuern Wear Leveling, TRIM Löschoptimierung und Fehlerkorrektur ECC.

Zugriffszeit	<0.1 ms Keine Mechanik	
Datenrate Lesen /Schreiben	SATA bis 550MB/s	
	NVMe PCIe 4.0 3500 – 7000+ MB/s	
Schnittstelle	SATA, NVMe PCle M.2 U.2 USB	
Kapazität	120GB – 8TB Consumer 30TB + Enterprise	
Lesedauer	Abhängig von TBW Total Bytes Written Zelltyp	

Eine SSD speichert Daten elektronisch im Flash-Speicher, ohne bewegliche Teile. Sie ist:

Extrem Schnell Leise und stoßresistent wodurch sie ideal für Betriebssysteme und leistungskritische Anwendungen ist besonders im Vergleich zu mechanischen HDD.

Fachbegriffe TLC, MLC, SLC in Zusammenhang mit SSD

Diese Begriffe beziehen sich auf die Speicherzellentechnologie von NAND – Flash Speichern in SSDs, Sie geben an, wie viele Bits pro Speicherzelle gespeichert werden, was Auswirkungen auf Haltbarkeit Geschwindigkeit und Kosten hat.

SLC	MLC	TLC	QLC
Single Level Cell	Multi Level Cell	Triple Level Cell	Quad Level Cell
1 Bit pro Zelle 0 or 1	2 Bits Pro Zelle:	3 Bits Pro Zelle	4 Bits Pro Zelle
	00,01, 10, 11	8 Zustände	16 Zustand
Sehr Schnell und Langlebig	Gute Balance zwischen	Höhere Dichte,	
~ 100.000 Schreibzyklen	Haltbarkeit ~10.000	Günstiger Preis	
	Und Kapazität	Geringe Lebensdauer	
		~ 3.000 Zyklen	
Teuer, vor allem im	Langsamer und günstiger	Langsamer	
Enterprise-Umfeld	Als SLC	Oft durch SLC Cache	
Industrie, Server		Kompensiert	
Cache in High End SSD	Ältere Performance SSD	Consummer SSDs	Ideal für günstige
Professionelle Anwendungen	Professionelle Nutzung	Heute Standard	Kapazitätsorientierte
			Anwendungen
			Archivierung

Kenntnis der aktuellen SATA-Standards

Die Serial Advanced Technology Attachment dient zur Anbindung von Festplatten, SSD und optischen Laufwerken. Seit ihrer Einführung hat sie sich mehrfach weiterentwickelt, bleibt aber rückwärtskompatibel.

Standard	Max Datenrate	Bezeichnung	Typische Anwendung
SATA – I	1,5 Gbit/s ~ 150MB/s	SATA 1.0	Alte HDDs
			Optische Laufwerke
SATA – II	3 Gbit/s ~ 300 MB/s	SATA 3Gb/S	Mittelklasse HDD
			Ältere SSDs
SATA – III	6 Gbit/s ~ 600 MB/s	SATA 6Gb/s	Moderne SSDs / HDDs

Wichtige Merkmale moderner SATA Geräte SATA-III

Kompatibilität: Abwärtskompatibel mit SATA I / II

AHCI – Unterstützung: Ermöglicht erweiterte Funktionen wie Native Command Queuing NCQ

TRIM – Befehl: Unterstützung von modernen SSDs zur Lebensdaueroptimierung

Hot-Plug-Fähigkeit: Laufwerkswechsel im Laufenden Betrieb möglich bei unterstützter Hardware

Stromversorgung: Seperate SATA Power-Stecker 15 Polig

Non Volatile Memory Express NVMe

Direkte PCIe Anbindung: keine SATA oder AHCI bremse

Hohe geschwindigkeit : Datenraten bis → 7000 MB/s PCIe 4.0 niedrige Latenz

Massive Parallelität: Tausende Warteschlangen mit je vielen Befehlen möglich vs AHCI 1 Queue mit 32 Befehlen

Formfaktor Typischerweise M.2 oder U.2 2.5"

Der aktuelle SATA Standard ist SATA – III mit bis zu 6Gbit/s weit verbreitet für SSDs und HDDs im Consumerbereich. Trotz begrenzter Leistung bleibt er wegen Stabilität, Kompatibilität und einfacher Handhabung relevant, wird aber im Hochleistungsbereich zunehmend durch NVMe über PCIe ersetzt der als neuer Hochleistungsstandard für SSDs optimiert für schnellen Flash Speicher und moderne Mehrkernsysteme es bietet deutlich höhere Leistung und geringere Latenz als ältere SATA – SSDs und ist damit die erste wahl für: Gaming Professionelle Anwendungen und Server.

Fachbegriff Modem

Ein Modem = Modulator / Demodulator ist ein Gerät das digitale Signale in analoge Signale umwandelt und umgekehrt, um Daten über analoge Übertragungswege z.B. Telefon, Kabel, Funkleitungen, zu übertragen.

Funktion:

Modulation: Wandelt digitale Daten in Analoge signale zur Übertragung z.B. über Kupferleitung

Demodulation: Wandelt empfangene analoge Signale wieder in digitale Daten

Typische Einsatzgebiete:

DSL-Modem: Internet über Telefonleitung
Kabelmodems: Internet über TV-Kabelnetz
LTE/5G Modems: Internet über Mobilfunknetz

Kurzfazit

Ein Modem ist die Schnittstelle zwischen digitaler Datenwelt und Analoger Leitungstechnik essenziell für den Internetzuggang über DSL, Kabel oder Mobilfunk.

Fachbegriff BD-ROM

Blue-Ray-Disk Read Only Memory:

Ist ein nur lesbares Blu-Ray Format, das industirelle gepresst wird und nicht vom Nutzer beschrieben werden kann

Einsatz von Filmen Spielen Software

Kapazität Einlagig Single Layer 25 GB

Doppellagig Double Layer 50 GB

Sonderfall Triple Layer 100 GB

Lesbar mit Blu-Ray Laufwerken

Blu-Ray-Disk Recordable BD-R

Einmal beschreibbar danach nur Lesbar wie BD-ROM

Verwendung : Backup, Archivierung große Datenmengen

Blu-Ray-Disk Rewriteable BD-RE Wiederbeschreibbar, bis zu 1000x

Verwendung: Test oder Wechselmedien, Videoaufzeichnung Camcorder Recorder

Kenntnisse über Regionalcodes in Zusammenhang mit DVD/BD

Regionalcodes sind Digitale Ländersperren, die verhindern sollen, dass DVDs oder Blu-Rays außerhalb ihrer vorgesehenen Verkaufsregion abgespielt werden – ein Mittel zur Verwertungskontrolle durch Filmstudios.

DVD Regionalcodes

Nummer 2 Europa, Japan, Südafrika, Naher Osten

BD Regionalcodes

Nummer B Europa, Afrika, Australien

Technische Umsetzung:

Der player prüft beim Einlegen den Disc-Code gegen seine eigene Ländereinstellung Code-Mismatch \rightarrow Wiedergabe blockiert

Einige Geräte sind "codefrei!" oder per Firmware manipulierbar Region Free Hack.

Regionalcodes beschränken die Wiedergabe von DVDs und Blu Ray auf bestimmte Weltregionen um Player oder Software umgangen werden.

Kenntnis der Technologie von LCD-Bildschirmen

Liquid Crystal Display LCD

Ist eine bildschirmtechnologie bei der Flüssigkristalle verwendet werden, um Licht von einer Hintergrundbeleuchtung zu modulieren, ohne selbst Licht zu erzeugen.

Funktionsweise

Hintergrundbeleuchtung meist LED Light-Emitting-Diode erzeugt weißes Licht.

Das Licht passiert Polarisationsfilter.

Flüssigkristalle drehen – je nach elektrischer Spannung – die Polarisationsebene das Lichts. Ein Zweiter Filter lässt das Licht ganz, teilweise oder gar nicht durch daraus entsteht das Bild. Farbfilter RGB erzeugen Farbinformationen je Subpixel.

TN Twisted Nematic Schnell, günstig, aber schwache Farben und Blickwinkel

IPS In-Plane Switching Sehr gute Farben und Blickwinkel, ideal für Grafik & Office

VA Vertical Alignment Hoher Kontrast, Gute Farben mittelmäßiger Blickwinkel

Technische Kennwerte:

Auflösung Anzahl Pixel Full HD 4K Reaktionszeit Zeit zum Bildwechsel 1-5ms

Kontrastverhältnis Verhältnis von Hell zu Dunkel z.b. 1000:1 Helligkeit Leuchtkraft in cd/m² z.B. 250 – 400

Farbraumabdeckung Wichtig für Professionelle Bildbearbeitung

Ein LCD Liquid Crystall Display nutzt Flüssigkeitskristalle um Licht aus einer LED hintergrundbeleuchtung zu steuern und sichtbare Bilder zu erzeugen. Er ist energieeffizient, weit verbreitet und je nach Panel Technologie auf unterschiedliche Einsatzzwecke optimiert, Gaming, Office, Grafik.

Fachbegriff Full-HD bzw. UHD

Abkürzung Für Full High Definition
Auflösung 1920 x 1080 Pixel (1080p)
Seitenverhältnis 16:9
Pixelanzahl gesamt ~ 2.07 Millionen Pixel
Standard seit ~2007 besonders bei Fernsehern Monitoren, Blu-Ray

Technische Markmale:

Bietet gute Bildqualität bei geringem Datenvolumen Weit verbreitet für Streaming, Gaming, TV. Unterstützt meist 60 Hz Bildwiederholrate

Ultra High Definition

Auflösung: 3840 x 2160 (4K)

Seitenverhältnis 16:9

Pixelanzahl gesamt: ca 8.29 Millionen FHD

Standard seit ca 2012

Technische Merkmale

Sehr Hohe Bildschärfe Ideal für große Displays Benötigt höhere Bandbreite und leistungsstärke Hardware Unterstützt oft HDR High Dynamic Range höhere Farbtiefe und Bildraten z.B. 120 Hz

Kurzfazit:

Full-HD ist nach wie vor gängig effizient, während UHD eine deutlich höhere Bildqualität bietet dafür aber auch mehr Rechenleistung und Speicher benötigt.

Peripheriegeräte & Hardwaresysteme 2

Inhalt

Hardwaresysteme	30
Kenntnisse über Standards von Speicherkarten (Flash)	30
Kenntnisse mobile Datenträger, deren Bauformen und Kapazitäten	33
Fachbegriff SATA-Schnittstelle	39
Funktion und Aufbau der seriellen Schnittstelle	40
Funktionsweise einer Tastatur, optischen Maus	41
Vor- und Nachteile von Funk-Tastaturen, Funk-Mäusen	42
Funktionsprinzip eines Laser-Druckers	45
Funktionsprinzip eines Tintenstrahldruckers	47
Funktionsprinzip eines Scanners, Kenntnisse über verschiedene Arten von Scannern	49
Funktion und Spezifikation der USB-Schnittstellen (2.0. 3.0. 3.1. 3.2)	51

Hardwaresysteme

Kenntnisse über Standards von Speicherkarten (Flash)

Secure Digital (SD) Karten:

Eine SD-Karte besteht aus einem Kunststoffgehäuse einer Kontaktleiste mit 9, 11 bei UHS-II Pins, einem NAND-Speicher zur Datenspeicherung und einem Controller-Chip, der Funktionen wie Wear-Leveling Fehlerkorrektur (ECC) und die Kommunikation mit dem Host übernimmt

Secure Digital (SD) Karten	Speichergröße	Datei Format
SD Secure Digital: SC Standard Capacity:	2GB	FAT16
Secure Digital (SD) High Capacity (HC)	32GB	FAT 32
Secure Digital (SD) eXtended Capacity (XT	64 GB	exFAT
Secure Digital (SD) Ultra Capacity (UC)	128 GB	exFAT

Geschwindigkeitsklassen:	Geschwindigkeit
Ultra High Speed 1, 2, 3.	UHS1 10MB/s UHS2 300MB/s UHS3 624MB/s
Video Speed Klasse V6 V30 V60 V90	V30 30MB/s 4K; V90 90MB/s 8K;
Application Performance Klasse A1, A2	10MB/s 500 IOPS; A2 10MB/s 2000IOPS

Input-Output Operation Per Second = IOPS

Formfactor der Speicher Karten

Bezeichnung	Abkürzung	Breite	Länge	Höhe	Kapazität
SecureDigital Memory Card	SD	24 mm	32 mm	2,1 mm	bis 2 GByte
SecureDigital High Capacity	SDHC	24 mm	32 mm	2,1 mm	bis 32 GByte
SecureDigital Extended Capacity	SDXC	24 mm	32 mm	2,1 mm	bis 2 TByte
miniSD (veraltet)	miniSD	20 mm	21,5 mm	1,4 mm	bis 2 GByte
miniSDHC (veraltet)	miniSDHC	20 mm	21,5 mm	1,4 mm	bis 8 GByte
microSD	microSD	11 mm	15 mm	1 mm	bis 2 GByte
microSDHC	microSDHC	11 mm	15 mm	1 mm	bis 16 GByte
microSDXC	microSDXC	11 mm	15 mm	1 mm	bis 256 GByte

CompactFlash (CF)

Bestehen aus einem robusten Gehäuse, einem 50-Poligen Anschluss, einem Controller-Chip und NAND-Speicher

SLC: Single Level Cell 1 Bit Pro Zelle
MLC: Multi Level Cell 2 Bits Pro Zelle
TLC: Triple Level Cell 3 Bits Pro Zelle

CF-Typen 1 & 2: ATA-kompatibel, meist in DSLRs

CFast: basiert auf SATA (bis 600 MB/s) nicht rückwärtskompatibel CFexpress: PCIe / NVMe basiert, sehr hohe Leistung 2-4 GB/s

Formfaktoren

Typ-A: 20mm x 28mm x 2,8mm Typ-B: 38,5mm x 29,6mm x 3,8mm Typ-C: 54mm x 74mm x 4,8mm

Memory Stick (MS)

Nutzung: Sony PSP

Typen: Memory Stick, Memory Stick Pro, Memory Stick Duo, Memory Stick Pro-HG Duo

Memory Stick Pro-HG Duo

Lesegeschwindigkeit bis zu 50 MB/s Schreibgeschwindigkeit (min) 15MB/s

Speichercontroller: Neuer Intelligenter HX-Flash-Speicher Controller

Speicherkapazität Max 32 GB

xD-Picture Card
Nutzung kameras
Standards Typ M , Typ H
Veraltet durch SD ersetzt

Größe 2GB

Technologie NAND Speicher Verwendung Digitalkameras

eMMC (embedded Multi Media Card)

Nutzung Smartphones Tablets Einplatinencomputer

Standards 4.5, 5.0, 5.1

Anbindung Parallel-Schnittstelle (langsamer als UFS)

Universal Flash Storage (UFS)

Nutzung: High End Smartphones Embedded Systeme

Interface: Voll-Duplex LVDCS/PCIe

Version: 4.0 23GB/s

Kenntnisse mobile Datenträger, deren Bauformen und Kapazitäten

Magnetische Datenträger

Prinzip: Magnetisierung von Eisenoxidschichten

Floppy Disk Diskette Größen: 8", 5.25", 3.5"

Speichergrößen 360 KB 5.25" bis 1.44 MB 3.5"

Status: Nostalgie

ZIP-Disk

Speichergröße 100MB, 250 MB, 750MB

Größe: ~3.5" Diskette

Status: Nostalgie

Magnetband Linear Tape Open (LTO)

Bauform Kassette

Speichergröße: LTO 4 = 800GB komprimiert 1,6TB

LTO 9 = 18TB Komprimiert 45 TB

Einsatz: Langzeitarchivierung Backup Zugriffsart: Sequentiell nicht zufällig

Optische Datenträger

Compact Disc (CD)

Material: Polycarbonat

Speichergröße: 700MB

Durchmesser: 120mm 4,75"

Typen: CD-ROM, CD-R (einmal beschreibbar), CD-RW (Mehrfach beschreibbar)
Speicherung: Daten werden auf Spiralförmigen Spur mit Pits und Lands gespeichert.

Digital Versatile Disc (DVD) Mini DvD Aufbau einer DVD

Material: Polycarbonat

 Speichergröße:
 4.7GB / 8.5GB
 2.6GB / 5.2GB

 Durchmesser:
 12cm / 4.75"
 8cm / 3.1"

Typen: DVD-ROM, DVD-R, DVD-RW

Speicherung: Der Abstand zwischen den Spuren wurde von 1.6 µm (CD) auf 0,74 µm (DVD) mehr als

halbiert.

Blu-Ray Disc

Merkmale	Blu-Ray	DvD
Laserfarbe	Blau / Violet	Rot Infrarot
Spurabstand	0,32μm	0,74 μm
Pitgröße	~0,15µm	0,4μm
Datendichte	Hoch	Niedrig (vergleich zu Blu-Ray)

Тур	Kapazität	Bezeichnung
BD-ROM SL	25 GB	Single Layer Read Only
BD-ROM DL	50 Gb	Double Layer Read Only
BD-RE / R	25 GB / 50 GB	RE = rewrite, R = Recordable
BD-XL	100 GB / 128 GB	Triple / Quad Layer

Aufbau einer Blu-Ray Disc

Schutzschicht Ca.0.1 mm, erfordert Hartbeschichtung gegen Kratzer

Datenschicht Enthalten die eigentlichen Informationen

Reflexionschicht Für Laserrückstrahlung

Trägerschicht Kunststoffbasis Mechanische Stabilität

Die Lesegenauigkeit wird durch aktive Fehlerkorrekturverfahren LDPC sichergestellt

Aufbau einer Hard Disk Drive

Eine HDD ist ein Elektromechanisches Speicheergerät, das magnetisch Daten speichert. Hauptkomponenten:

Bauteil	Funktion
Platten	Mehrere Magnetisch beschichtete Scheiben,
	auf denen die Daten gespeichert werden
Spindelmotor	Dreht die Platten konstant mit 5.4K – 7.2K
	Umdrehungen pro Minute
Schreib / Lesekopf	Magnetischer Kopf, der über der Platte fliegt
	Um Daten zu schreiben / lesen
Aktuatorarm trägt Schreibkopf	Bewegt die Köpfe radial über die
	Plattenflächen
Aktuatormotor Spule	Präzise Steuerung der Kopfposition
Controller / Platine	Steuert Motoren, verarbeitet Signale und
	Stellt Verbindung zur Schnittstelle her
Cache (DRAM)	Zwischenspeicher für Datenzugriffe
	64-256 MB

Schreibvorgang: Der Controller überträgt digitale Daten an den Schreibkopf

Der Kopf verändert die Magnetisierung auf der rotierenden Platte

Die Positionierung erfolgt auf bestimmten Spuren unterteilt in Sektoren

Lesevorgang: Der Lesekopf fliegt mit minimalem Abstand über die Platte ~nano

Änderungen im Magnetfeld erzeugen Spannungsimpulse im Kopf.

Diese werden verstärkt, decodiert und digitalisiert.

Mechanische Bewegung erhöht zugriffszeit Kombination aus "Seek Time" Kopfbewegung und "Rotational Latency" Wartezeit bis Sektor unter Kopf ist.

Technische Besonderheiten

Eigenschaften	Beschreibung
Speicherkapazität	500GB – 20TB Konsument 30TB Firmen
Drehgeschwindigkeit	5.4K – 7.2K / 10 -15K Firmen
Datendichte	Bis zu 1.1 TB/m² mit SMR-Technik
Aufzeichnungsarten	PMR, PMR, HAMR, MAMR
Schnitstellen	SATA SAS USB SCSI
Lebensdauer	Verschleiß durch mechanische Komponenten
	Lager, Motor, Kopf
Stoßempfindlichkeit	Hoch im Betrieb Lese/schreibkopf kann die
	Platten beschädigen.

Stromverbrauch

2.5" HDD Notebook	3.5" Desktop / Server
Leerlauf ~0.5 – 2 W	Leerlauf ~ 4 – 6 W
Betrieb ~ 2.5 – 6 Watt	Betrieb ~6 – 11W
Spitzenwert ~7 W	Spitzenwert 20W Firmen Modelle

Solid State Drive

Eine SSD besteht aus rein Elektronischen Komponenten, keine Bewegeglichen Teile wie bei einer HDD

Komponenten	Funktion	
Controller	Herzstück der SSD Steuert alle Abläufe	
	Lesen Schreiben ETC	
NAND-Speicher	Nichtflüchtiger Speicher, in dem die Daten Physisch	
Flash-Speicher	Gespeichert werden	
DRAM-Cache	Schneller Zwischenspeicher für Mapping-Tabelle und	
	Häufig genutzte Daten	
Firmware	Software im Controller Steuert Zugriffsoptimierung, ECC	
	Over Provisioning etc.	
C.L. W. A. II	CATA AA 2 DOL ANAA HA 2 HCD	
Schnittstelle	SATA, M.2, PCIe NVMe, U.2, USB	

Funktionsweise einer SSD

Daten werden in Elektonische Speicherzellen gespeichert, die aus sogenannten Floating-Gate-Transistoren bestehen. Jede Zelle speichert je nach Typ 1-4 Bits

Zell Typ	Beschreibung	Haltbarkeit	Geschwindigkeit
SLC	Single Layer Cell 1Bit	~100K	Sehr Schnell
MLC	Multi Layer Cell 2 Bit	~3K - 10K	Mittel
TLC	Triple Level Cell 3Bit	~1K -3K	Langsam
QLC	Quad level Cell 4Bit	~100 – 1K	Sehr Langsam

Lesevorgang: Controller ruft Daten aus den Speicherzellen ab

ECC-Logik überprüft und korrigiert Fehler.

Daten werden über die Schnittstelle an das System geliefert.

Schreiben: Nand muss zuerst Seite oder Block löschen erase before write

Neue Daten werden in freie blöcke geshrieben

Alte Daten werden als "Stale" markiert.

Garbage Collection: Reorganisation und Löschen nicht mehr benötigter Daten

Wear Leveling: Gleichmäßige Nutzung aller Speicherzellen zur Lebensdauerverlängerung

Over-Provisoning: Reservierter Speicherbereich für Hintergrundoperationen.

Technische Besonderheiten & Vorteile einer Solid State Drive

Merkmal	Beschreibung
Keine Beweglichen Teile	Stoßfest, lautlos, geringer Stromverbrauch
Schneller Datenzugriff	IOPS im Bereich von 10k bis 1Mil
Geringe Latenzzeiten	μs statt ms wie bei HDDs
Formfaktoren	2-5", M.2, U.2, PCIe-Karten
Protokolle	SATA AHCI, PCIe NVMe.
Temperaturmanagment	Höhere Performance = mehr Hitze häufig
	Mit kühlkörpern bei M.2 SSDs
Lebensdauer	Abhängig von P/E-Zyklen, Zell Typ, Nutzung

Speichertyp	Leerlauf Watt	Betrieb Watt	Spitzenlast Watt
2.5" HDD	0.5 – 2	2.5 – 6	7
3.5" HDD	4 – 6	6 – 11	20
SATA SSD	0.1 – 0.3	0.5 – 3	5.8
NVMw SSD	0.5 – 1	5-10	21

Fachbegriff SATA-Schnittstelle

Serial Advanced Technology Attachment:

Merkmale	Beschreibung	
Datenübertragung	Seriall Statt parallel	
Stecker & Kabel	7 Polig für Daten 15 für Strom	
Hot-Plugging	Unterstützt abhänig vom host	
Kabellänge	1m	

Verwendung bei Desktop-PCs, Server, Notebooks, externe Laufwerke.

Sata-Version	Jahr	Max Datentransferrate	Bemerkung
SATA-1	2003	1.5Gbit/s ~150MB/s	Erste Version
SATA-2	2004	3 Gbit/s ~300MB/s	NCQ
SATA-3	2009	6 Gbit/s ~600MB/s	Abwärtskompatibel

NCQ = Native Command Queuing Ab SATA-2

Mehrere, Lese / Schreibbefehle gleichzeitig zu empfangen und intern optimal zu sortieren. Effizienz zu Steigern.

External Serial Advanced Technology Attachment:

Jahr: 2003

Geschwindigkeit: Besser als USB 2.0 ~50MB/s

Merkmale: Spezieller Stecker Robuster als Interner SATA

Kabellänge: bis zu 2m

Stromversorgung: Zusätzliches Kabel nötig

Hot-Plug: Ja

Mini Serial Advanced Technology Attachment:

Zweck: Kompakter Formfaktor für SSDs, Laptops, Ultrabooks, Embedded-Geräte.

Schnittstelle: Mechanisch identisch mit mini PCIe, elektrisch aber SATA.

Speichergröße: 500GB Controller: AHCI

Serial Advanced Technology Attachment:

Zweck: Verbindung von SATA mit der PCI Express für höhere Bandbreite

Stecker: Zwei klassische SATA-Datenports eigenen PCIe-Port

Bandbreite: 10 Gibt/s 1.2 GB/s

Controller: AHCI

Funktion und Aufbau der Seriellen Schnittstelle

Die Serielle Schnittstelle auch RS-232, COM-Port oder Serielle Com-Schnittstelle wird heute noch bei industriellen Geräten Netzwerkhardware, Messsystemen oder Embedded Systemen eingesetzt.

Datenübertragung: Seriell Bitweise

Vollduplex: Ja

Kein Gemeinsamer Takt: Asynchrone Übertragung
Boudrate: Zwischen 300 Boud – 115.200

Verwendung:

Kommunikation mit Mikrocontrollern, Routern Konsolenport, POS-Systeme, Maschinensteuerungen Debugging-Interface Embedded IoT-Systemen

Eigenschaften	Wert / Info	
Signalpegel	+/- 3V bis +/-15V	
Logikpegel	HIGH = -12V, LOW = +12 (invertiert)	
Kabellänge	15m	
Übertragungsart	Asynchron 1Bit nach dem anderen	
Protokoll	Starbit	

Funktionsweise einer Tastatur, optischen Maus

Aufbau einer Tastatur:

Matrix aus Zeilen und Spalten:

Controller-Chip Mikrocontroller: Überwacht die Matrix erkennt Tastenschläge und wandelt sie in Scancodes um.

Schalttechnologie: Membran-Tastatur: Zwei Flexible Leiterbahnen, Drck bringt Kontakte zusammen.

Mechanische: Jeder Taste hat einen einzelnen Schalter / Switch mit eigener Charakterristik

Funktionsweise:

Taste wird gedrückt -> Kontakt wird geschlossen
Controller erkennt Matrixposition Beispiel Zeile3 ,Spalte 5
Scan-code wird generiert z.b für die taste "A"
Scan-Code wird via USB, PS/2 oder Bluetooth an den PC Übertragen.
Betriebssystem oder Treiber Ebene wandelt den Scan-Code in ein Zeichen

Funktionsweise oder Optischen Maus:

Aufbau:

LED oder Laserlichtquelle meist Rot CMOS-Kamerasensor Digitaler Signalprozessor DSP im Mikrocontroller

Funktionsweiße:

Oberfläche wird beleuchtet durch LED/Laser

CMOS-Sensor nimmt mehrere tausend Bilder Pro Sekunde häufig >1500 fps

Der Signalprozessor analysiert Bewegungsmuster zwischen den Bildern (Kanten Punkte Staub)

Aus den Differenzen wird die Bewegungsrichtung und geschwindigkeit ermittelt.

Daten "2 Pixel nach Links" werden per USB, PS/2 oder Funk an den PC Gesendet

Das Betriebssystem bewegt entsprechend den Mauszeiger.

Vor- und Nachteile von Funk-Tastaturen, Funk-Mäusen

Funk Tastatur

Komponenten	Funktion	
Tastenmatrix	Mechanischer oder elektronischer	
	Tastenaufbau zur eingabe	
Mikrocontroller	Liest Tastendrücke aus, erzeugt Scancodes	
	Steuert Funkmodul	
Funkmodul	Sorgt für Drahtlose Kommunikation 2.4GHz	
Stromversorgung	Baterie AA / AAA oder Akku	
Platine & Gehäuse	Elektronischer Träger & Physischwer Schutz	
Empfänger Dongle	USB Empfänger auf PC Seite bei 2.4GHz	
	Nicht bei Bluetooth notwendig	

Funktionsweise

Tastendruck erfolgt: Der Mikrocontroller erkennt durch die Matrix welche Taste gedrückt wurde

Scancode-Erzeugung: Die Tasteneingabe wird als Scancode Codiert

Funkübertragung: Der Scancode wird über das Funkprotokoll Bsp. Bluetooth 2.4GHz proprietär an den

Empfänger gesendet.

Empfänger am PC: Der USB-Dongle Bsp 2.4GHz Bluetooth empfängt das Signal

Verarbeitung: Betriebssystem oder Treiber wandeln den Scancode in ein Zeichen oder

Steuerbefehl um.

Technische Besonderheiten

Merkmal	Beschreibung	
Funktechnologie	Meist 2.4GHz mit USB Dongle	
	Bluetooth 4.0 / 5.0	
Reichweite	~ 10Meter einfluss von Umgebung & Technik	
Verzögerung Latenz	Gering bei modernen Systemen	
	Gaming Tastaturen <1ms Möglich	
Energieversorgung	Batterielaufzeit Monate / Jahre Selten in betrieb	
Stromsparmodi	Automatisches Abschalten oder Sleep Modus	
Sicherheit	Moderne Systeme nutzen AES 128 Verschlüsselung	
	Ältere unverschlüsselt = Abhörbar	
Verbindungsmanagement	Re-Pairing bei Bluetooth, Multi Device Switching Hochwertig	
Kompatibilität	Plattformübergreifend bei Bluetooth	
	Dongle meist bei OS-Spezifisch	

Typische Varianten

2.4 GHz USB Dongle nötig geringe Latenz Plug & Play

Bluetooth Tastatur Kein Dongel nötig unterstützt Smartphones/Tablets

Funk Maus

Aufbau einer Funkmaus

Komponenten	Funktion	
Bewegungssensor	CMOS-Sensor zur Erkennung der Bewegung	
	Optisch oder Laserbasiert	
Mikrocontroller MCU	Verarbeitet Sensordaten und Tastenaktionen	
Tasten & Mausrad	Mechanische Eingabegeräte zur Signalübertragung	
Funkmodul	Drahtlose Übertragung per 2.4GHz oder Bluetooth	
Batterie / Akku	Stromversorgung AA / AAA	
	Lition Ionen Akku	
Gehäuse + PCB	Schutz und Mechanische Struktur	
Empfang	USB Dongle bei 2.4GHz	
	Bluetooth 4.0 / 5.0	

Funktionsweise einer Funkmaus

Bewegungserfassung:

Die Maus beleuchtet die oberfläche LED oder Laser

Der CMOS-Sensor nimmt tausende Bilder Pro Sekunde auf.

Ein DSP analysiert die Bildunterschiede Bewegungsrichtung & Geschwindigkeit

Signalverarbeitung:

Der Microcontroller wandelt die Bewegungsdaten in Digitale Signale um.

Tasten und Radaktionen werden Parallel erfasst.

Datenübertragung Empfang & Umsetzung

Die erfassten Signale werden über das Funkmodul 2.4GHz oder Bluetooh übertragen

Das Betriebssystem setzt die Signale in Mauszeigerbewegung und Klicks um

Am Rechner nimmt der USB-Dongle oder das Bluetooth Modul die Signale auf

Technische Besonderheiten

Merkmal	Beschreibung	
Funktechnologie	2.4GHz USB Dongle oder Bluetooth 4.0 / 5.0	
Reichweite	Typisch 5 – 10meter	
Auflösung DPI / CPI	800 – 1600 DPI je nach Modell oft einstellbar	
Polling Rate	Typisch 125 Hz Standard 500 – 1000 Gaming	
Energieverbrauch	Niedrig Typische Laufzeit Wochen bis Monate	
Energiesparmodus	Automatisch bei Inaktivität	
Latenz Verzögerung	~8 -10ms bei Standardmodellen <1 ms bei Gaming Modellen	
Sicherheit	Bluetooth verbindung oft mit AES Verschlüsselt 2.4GHz je nach Hersteller	

Zusätzliche features bei hochwertigen Modellen:

DPI-Switch on the fly Einstellung
Profile Onboard Speicher
Multifunktionstasten / Makroprogrammierung
Dual Mode Fähigkeit 2.4GHz + Bluetooth umschaltbar
Wireless Charging oder Magnetische Lade-Docks

Funktionsprinzip eines Laser-Druckers

Übersicht Laserdrucker

Ein Laserdrucker ist ein Elektrofotografisches Drucksystem, das auf dem Prinzip der lichtempfindlichen Ladungsmanipulation einer Bildtrommel basiert. Er zeichnet sich durch hohe Druckgeschwindigkeit, präzise Text und Grafikdarstellung sowie wirtschaftlichen Betrieb bei hohem Volumen aus.

Druckprozess – Schrit für Schritt

Der Druckauftrag wird vom Computer über eine Schnittstelle (USB, Ethernet, WLAN)

Gesendet.

Die Druckersprache meist PostScript oder PCL (Printer Command Language) beschreibt die zu druckenden Seiten. Ein Controller im Drucker Rastert das Dokumment in ein Bitmap – Bild (Raster Image Processing RIP) das der Druckerzeile enstspricht. Dieses Raster wird in einem Zwischenspeicher RAM gehalten

Ladung der Bildtrommel

Eine Bildtrommel auch Photoleiter genannt beschichtet, mit einem photoleitfähigen Material zum Beispiel Organische Photoleiter – OPC wird durch eine Ladekorona oder eine Ladewalze auf eine gleichmäßige negative Spannung typ -600V aufgeladen.

Belichtung durch Lasereinheit

Die Lasereinheint bestehend aus Laserdiode rotierender Polygonspiegel Linsen moduliert den Laserstrahl basierend auf dem Rasterbild.

Der Laserstrahl entlädt gezielt Punkte auf der Bildtrommel die belichteten Stellen verlieren ihre Ladung und repräsentieren das spätere Druckbild.

Entwicklung - Tonerauftrag

Der Toner ein feines Pulver bestehend aus Kunstharz Pigmenten Ladungsreglern und Trägerstoffen wird durch eine Entwicklereinheit auf die Bildtrommel gebracht.

Der Toner haftet nur an den vorher belichteten entladenen Bereichen der Trommel da dort ein Ladungspotenzialgefälle entsteht.

Übertragung auf das Papier

Ein Papierbogen wird über das Papiereinzugssystem zur Transferstelle geführt.

Eine Transferwalze oder korona lädt das Papier positiv auf

Der negativ geladene Toner auf der Trommel wird durch das entgegengesetzt geladene Papier abgezogen und haftet temporär darauf

Fixierung Einbrennen

Das Papier durchläuft die Fixiereinheit, bestehend aus einer beheizten Walze "Heizwalze" und einer Gegendruckwalze

Unter hoher Temperatur ca. 180 – 200 C und Druck wird der Toner auf dem Papier aufgeschmolzen und mechanisch fixiert.

Der Toner verbindet sich dauerhaft mit der Papieroberfläche "Einbrennen".

Reinigung und Restladung

Eine Reinigungseinheit entfernt Tonerreste von der Trommel.

Eine Restentladungslöschung "Löschlampe oder Entladungslampe" neutralisiert restliche Ladungen, um die Trommel für den nächsten Zyklus vorzubereiten,

Aufbau eines Typischen Laserdruckers

Komponenten	Beschreibung	Material
Lasereinheit	Erzeugt den Laserstrahl der das Druckbild auf die Trommel	Laserdiode Polygonspiegel Linsen
	schreibt Hauptkomponenten	
Bildtrommel	Zylindischer Träger mit photoleitfähiger Beschichtung	Amorphes Silizium
Photoleiter		
Tonerbehälter	Enthält Tonerpuler mit einem Mischmechanismus	
	Gegen Verklumpung	
Entwicklereinheit	Überträgt Toner zur Bildtrommel	Magnetwalze & Steuermechanik
Transferwalze	Erzeugt eine elektrostatische Ladung zur Tonerübertragung	
	das Papier	
Fixiereinheit	Heiz und Druckwalze zum dauerhaften Einbrennen des Tone	
	auf das Papier	
Papiereinzugssystem	Mechanismen wie Pickup Rollen Papierführung	
	Sensoren für Bahnführung und Papierformat	

Verwendete Materialien in Laserdrucker

Toner Kunstharz Ruß Wachsanteil Ladungsregler

Bildtrommel Aluminium mit Beschichtung aus organischen Photoleitern QPC amorphem Silizium

Oder Selenverbindungen

Fixiereinheit Heizwalze Metallkern "Aluminium" mit Silikon oder Teflonbeschichtung

Gegendruckwalze Gummiartig Elastomer

Lasereinheit Optische Linsen aus Glas/Kunststoff , Laserdioden aus Halbleitermaterial

Beispiel Galliumarsenid.

Papiertransport Kunststoff ABS Nylon Gummirollen Metallachsen

Druckprotokolle:

PostScript (Adobe)

PCL HP Printer Command Language

ESC/P Epson Standard Code for Point of Sale

PDF-Direct Portable Document Format

Funktionsprinzip eines Tintenstrahldruckers

Ein tintenstrahldrucker erzeugt bilder und Texte indem er winzige Tintentröpfchen gezielt auf das Papier schießt. Das verfahren ist nicht kontaktbasiert und ermöglicht hochauflösende Ausdrucke mit feinen Farbabstufungen was besonders im Fotodruck von Vorteil ist.

Der Benutzer sendet ein Dokument an den Drucker über USB, WLAn oder LAN

Der Drucker Speichert das Bild im Speicher und Bereitet das Tastermuster für die Steuerung der Düsenmatrix vor.

Steuerung und Positionierung

Der Druckkopf, der die Düsen enthält, ist auf einem beweglichen Schlitten montiert.

Über einen Schrittmotor oder Linearmotor wird der Druckkopf Zeilenweise horizontal X-Achse über das Papier bewegt.

Das Papiertransportsystem bewegt das Papier nach jedem Druckdurchgang in Y Richtung weiter

Ein Encoderband optisch oder magnetisch ermöglicht präzise Positionsbestimmung für korrekte Tropfenplazierung

Tropfenerzeugung Technologien

Thermisches Tintenstrahlverfahren Bubble Jet, HP, Canon, ETC.

In Jeder Düse befindet sich ein winziger Heizwiderstand

Bei Ansteuerung enthizt sich dieser inerhalt von Mikrosekunden auf ca. 300°C

Die Tinte bildet eine Dampfblase Kavitation die das Flüssigkeitsvolumen plötzlich vergrößert und einen Tropfen aus der Düse presst.

Nach dem tropfenausstoß kollabiert die Blase wodurch neue Tinte nachfließt

Vorteil: Günstig in der Herstellung einfaches Design

Nachteile: Hohe thermische Belastung, eingeschrängte Tintenauswahl (nur wasserbasierte Tinte)

Piezoelektrisches Tintenstrahlverfahren

Eine Piezoelektrische Keramik z.B. Tianat-Zirkonat ist hinter jeder Düse angebracht

Bei anlegen einer Spannung verformt sich das Piezoelement Biegestab oder Membran, was das Tintenvolumen in der Kammer verändert.

Der Drucker presst einen Tintentropfen aus der Düse

Vorteile: Kompatibel mit mehr Tintentypen Pigment Lösungsmittel UV Präzise Tropfengröße Nachteil Komplexer und teuerer in der Herstellung

Bildaufbau auf dem Papier

Der Druckkopf besteht aus Hunderten bis Tausenden feinster Düsen 300 – 600 pro Zoll

Während der Bewegung des Druckkopfes wird Jede Düse selektiv Aktiviert um einen Tropfen auf die gewünschte Position zu plazieren.

Die Tropfengröße liegt typischerweise zwischen 1 & 10 Pikoliter.

Mehrere Druchgänge Mehrere Zeilen Pro bewegung oder sogar mehrfache überlagerungen erzeugen hohe Druckdichten und Farbtiefe

Die Farbmischung erfolgt subtraktiv durch überlagerung von CMY(K) und ggf. zusätzlicher Farben.

Synchronisation von Bewegung und Düsensteuerung

Die Druckkopfbewegung X-Achse und die Düsenschaltung erfolgen synchron über einen Taktgeber und Mikrocontroller.

Ein Encoderband stellt sicher dass die genaue Position des Druckkopfs zu jedem Zeitpunkt bekannt ist.

Die Tropfen werden exakt getimt und abgeschossen um auf dem Papier ein hochauflösendes Raster zu erzeugen.

Nach jedem Zeilenpass bewegt der Papiereinzug das Medium um eine definierte Strecke Weiter.

Druckmedium und Tinte

Tinte: Dye Tinte Farbstoffbasiert

Pigmenttinte

Spezialtinten; UV härtend Lösungsmittelbasiert für industrielle injets

Papier

Für Optimalen Tintenauftrag beschichtet Fotopaier inkjet-Papier Normales Kopierpaiert führt oft zu verlaufendem Tinten Bild

Funktionsprinzip eines Scanners, Kenntnisse über verschiedene Arten von Scannern

Grundprinzip eines Scanners Ein Scanner ist ein Optoelektronisches Gerät das Physische Vorlagen zB. Dokummente Fotos zeilenweise abtastet und in digitale Bilddaten umwandelt. Die Vorlage wird dabei beleuchtet das reflektierte Licht wird erfasst und anschließend elektronisch in Digitale Werte überführt.

Physikalische Grundlagen der Bildabtastung

Optische Abtastung:

Die Vorlage wird mit einer gleichmäßigem Lichtquelle z.b LED Kaltkathodenröhre ausgeleuchtet je nach Reflexionsvermögen Helligkeit reflektiert die Oberfläche unterschiedlich viel Licht.

Diese Licht wird von einem Bildsensor CCD oder CIS aufgenommen

Farbspartion

Das Reflektierte Licht wird in RGB komponenten zerlegt

Drei getrennte Scans mit Farbfiltern

Farbsensitive Sensorzellen, Beleuchtung in Sequenzen mit roten grünen blauen LEDs

Bildsensortechnologien CCD vs CIS

CCD = Charge Coupled Device

CCD ist ein lichtempfindlicher Halbleiter mit einer Fotodioden Zeile

Licht fällt über eine Optik Spiegel + Licht auf die CCD Zeile

Jedes Pixel spricht elektrische Ladung Proportional zur Lichtintensität

Diese Ladungen werden seriell ausgelesenund weiterverarbeitet

Aufbau

Beleuchtung → Spiegeloptik → Linsensystem → CCD – Zeile

Vorteile: Hohe Bildqualität und Auflösung

Gute Farbtiefe und Dynamik

Geringe Verzerrung durch präzise Optik

Nachteile: Größere Bauform, Höherer Stromverbrauch Empfindlich gegen Erschütterungen

CIS = Contact Image Sensor

Jeder Sensorpunkt liegt direkt unter der Vorlage keine Spiegel/ Linsen

Beleuchtung RGB-LED ist direkkt neben dem Sensor integriert

Lichtreflexion wird ohne Optisches umleiten direkt gemessen

Aufbau

Beleuchtung + Sensor + Linse mikroskopisch kurz in einer Zeile

Vorteile : Sehr Kompakt flache Scannerbauweise möglich Energieeffizient → ideal für Mobile Geräte Günstiger in der Herstellung

Nachteile: Geringere Bildqualität schärfe Farbtiefe

Geringere Tiefenschärfe → nicht geeignet für unebene Vorlagen

Signalverarbeitung von Analog zu Digital

Lichteinfall erzeugt eine Elektrische Ladung in jedem sensorelement

Diese Analoge Spannung je nach Lichtmenge wird durch einen AD-Wandler Konverter digitalisiert

Typisch 8 Bit pro Farbkanal RGB 24Bit pro Pixel

Höhere Scanqualität 48 bit Farbtiefe möglich

Die Digitalen werte werden als Rasterbilddaten Pixelmatrix interpretiert.

Diese Daten werden über USB WLAN oder andere schnitstellen an das System Weitergegeben und z.B. an JPEG TIFF oder PDF gespeichert.

Scannerarten und Zugehörige Technologien

Flachbettscanner	Büro Heimgebrauch		CCD /CIS		Klassischer Tischscanner mit glassplatte	
Dokumentenscanner	r Office Archivierung		CIS	Schnel	Schnelles Einziehen mehrerer Blätter	
Fotoscanner	Fotografie Archiv		CCD		Sehr Hohe Auflösung Hohe Farbtreue	
Filmscanner / Diascanner Fotolabor			CCD	Hohe DPI bis 9600 Durchlichtscans		
Mobiler Handscanner Unterwegs Service			CSI		Geringe Auflösung	
3D / Oberflächenscanner		Industrie/Forschung		TOF (S	pezielle Sensoren)	Nicht relevant für 2D
Bildabtastung						

Funktion und Spezifikation der USB-Schnittstellen (2.0, 3.0, 3.1, 3.2, ...)

Die USB Schnittstellen Universal Serial Bus haben sich über die Jahre Weiterentwickelt seit ihrer ersten Version

Universal Serial Bus 2.0

Einführung: 2000

Max Geschwindigkeit 480 Mbit/s High Speed

Stromversorgung 2,5 Watt = 5V * 0,5A Steckertyp USB-A, USB-B, Micro-USB

Unterstützung zu USB 1.1

Universal Serial Bus 3.0

Einfühlung: 2008

Max Geschwindigkeit: 5Gbit/s SuperSpeed

Stromversorgung 4,5W = 5V * 0,5A

Steckertypen: USB-A Blau Makiert, USB-B

Zusätzliche Datenleitungen benötigt neue Kabel/Ports für maximale Geschwindikeit.

Universal Serial Bus 3.1

Einführung: 2013

Max Geschwindigkeit 10 Gbit/s

Stromversorgung: Bis 15W mit USB Power Delivery

Steckertypen Unterstützt auch USB-C

Universal Serial Bus 3.2

Einführung 2017

Max Geschwindigkeit: 20Gbit/s nur über USB-C Stromversorgung bis 100W Mit USB Power Delivery

Steckertypen: USB-C

Besonderheiten: Verwendung von 2 Datenkanälen bei USB-C x2 Modi

