Tarea3

ocorrales

April 2023

 $Si\theta: G \to H$ es un homomorfismo :

$$Kernel(\theta) = \{x \in G : \theta x = 1\}$$

$$Img(\theta) = \{y\epsilon H : \theta x = y\}$$

1 Kernel(θ)

1.1 Cerrada

Sea a,b en Kernel(θ), es decir:

$$\theta(a) = \theta(b) = 1$$

Entonces $\theta(ab) = \theta(a)\theta(b) = 1 * 1 = 1$ por lo que ab también esta en Kernel (θ) , lo que quiere decir que Kernel (θ) es cerrado bajo la operación del grupo G.

1.2 Inversa

Si a esta en Kernel(θ), entonces tTheta(a)=1, por lo que, $\theta(a^{-1})=(\theta(a))^{-1}=1^{-1}=1$. Esto quiere decir que el inverso de a también esta en Kernel(θ), y Kernel(θ) es cerrado bajo inversos.

1.3 Elemento neutro

El elemento neutro del grupo G, denotado como 1G, está en Kernel(θ) porque $(\theta)(1G) = 1H$ (ya que es un homomorfismo), y por lo tanto kernel(θ) contiene el elemento neutro.

2 $Img(\theta)$

2.1 Cerrada

Sea c,d en $\mathrm{Img}(\theta)$ es decir, existen a,b en G tales que $\theta(a)=cy\theta(b)=d.Entonces$: $\theta(ab^{-1})=\theta(a)\theta(b^{-1})=c\theta(b)^{-1}=cd^{-1}.$ esto quiere decir que ab también esta en el $\mathrm{Kernel}(\theta)$