MAC0338 - Entrega da lista x

Exercício 1

Lembre-se que lg n denota o logaritmo na base 2 de n. Prove os seguintes itens usando a definição de notação \mathcal{O} e escreva explicitamente a escolha de constantes c e n_0 .

(a) 3^n não é $\mathcal{O}(2^n)$

Proof. Vamos provar por contradição. Portanto, assuma que 3^n seja $\mathcal{O}(2^n)$. Logo, há constantes inteiras positivas c e n_0 tal que, para todo $n \ge n_0$, então $3^n \le c \, 2^n$.

Note que, para $n > \frac{\lg c}{\lg \frac{3}{2}}$, temos

$$n > \frac{\lg c}{\lg \frac{3}{2}} \implies n \lg \frac{3}{2} > \lg c \implies \lg \left(\frac{3}{2}\right)^n > \lg c \implies \frac{3^n}{2^n} > c \implies 3^n > c 2^n,$$

uma contradição. Portanto, 3^n não é $\mathcal{O}(2^n)$.

(c) $\lg n \in \mathcal{O}(\log_{10} n)$

Proof. Note que

$$\lg n = \frac{\log_{10} n}{\log_{10} 2} = \frac{1}{\log_{10} 2} \log_{10} n \implies \lg n \le \frac{1}{\log_{10} 2} \log_{10} n$$

Como temos uma igualdade, podemos adotar $c = \frac{1}{\log_{10} 2}$ e $n_0 = 1$, e está provado.

Exercício 2

Prove os seguintes itens usando a definição de notação \mathcal{O} e escreva explicitamente a escolha de constantes c e n_0 .

(a)
$$n^2 + 10n + 20 = \mathcal{O}(n^2)$$

Proof. Vamos provar que existem constantes positivas c e n_0 tais que, para $n \ge n_0$, então $n^2 + 10n + 20 \le c n^2$. Adote c = (1 + 10 + 20). Então, temos que

$$c\,n^2 = (1+10+20)n^2 = n^2+10n^2+20n^2 \geq n^2+10n+20$$

para todo $n \ge 1 = n_0$. Como explicitamos as constantes, está provado.

(b) $\lceil n/3 \rceil = \mathcal{O}(n)$

Proof. Vamos provar que existem constantes positivas c e n_0 tais que, para todo $n \ge n_0$, então $\lceil n/3 \rceil \le c n$. Note que $\lceil n/3 \rceil \le n/3 + 1$. Adote c = (1+1) e perceba que

$$cn = (1+1)n = n+n \ge \frac{n}{3}+1$$

para todo $n \ge 1 = n_0$. Como as constantes foram explicitadas, então está provado.

(e) n/1000 não é $\mathcal{O}(1)$

que, para todo $n \ge n_0$, temos $n/1000 \le c \cdot 1$. Ora, mas para qualquer $n > 1000c$, temos $n/1000 > c$ contradição. Portanto, $n/1000$ não é $\mathcal{O}(1)$.	c, uma
(e) $n^2/2$ não é $\mathcal{O}(n)$	
<i>Proof.</i> Vamos supor por contradição que $n^2/2$ seja $\mathcal{O}(n)$. Logo, há constantes positivas c e n_0 tais que todo $n \geq n_0$, então $n^2/2 \leq c n$. Isso implica que $n/2 \leq c$. Ora, mas para todo $n > 2c$ temos $n > c$ contradição. Logo, $n^2/2$ não é $\mathcal{O}(n)$.	
Exercício 3	
Proof.	

Proof. Vamos supor por contradição que n/1000 é $\mathcal{O}(1)$, ou seja, que existem constantes positivas c e n_0 tais

Exercício 4

Proof.