PRINCIPAL COMPONENT ANALYSIS

- 1) Calculate Ex
- 2) Find first K eigenvectors of 5x 2 = WX (x = m) sample mean

 2 = NX (x = m) e protectro

Mzi=WWT(xi-m)

Reconstriction Erron

 $\sum_{i=1}^{N} \|x_i - \hat{x}_i\|^2$

MULTIDIMENISIONAL SCALINIS

Ankera	- London =	,	6ndon	2 - 1-1
Ankera	- Peris =	g 9		· Delor
	•	\Rightarrow \approx	, poris	Ankera.
,	b		#2	And A.
	b 6	7 all possible		2,
•	24,1	Sporituise		
Taput	D = 3 dij3i=1,	J= 1 Stylences.	~ ~	
THE			1	mates for xis
	21,22,,21	no exe	nct con a	
		K		
L	2.1	, EK		
Output	21, 22, 1	1		
			.1	
	11	eij=112i-	25/2	D≈F
1	= xi - xj 2	E15=11-00) 1. 2	Nat
dit) !			
	_			
		6-		
D=		E=	1	
V-				

Sommon mapping (Sammon stress) $Error = \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{\left(e_{ij} - d_{ij}\right)^{2}}{d_{i+2}} = \sum_{i=1}^{N} \frac{\left(\left\|\frac{2}{2}i - \frac{2}{2}i\right\|_{2} - d_{ij}\right)^{2}}{d_{i+2}}$ dit minimize Error = \frac{\text{X}}{2} \frac{(||2i-2j||_2-dij)^2} with respect to zi EIRK, e embedding. If we know xis zi= W.xi minimize 1/2 (||Wxi-Wxj||2-dij)² swith respect to WEIR KXD out-of somple # = Wx#

(4)

1 Mear possible possible. RLA if class is En N (W.Xi-m1). yi yi= O if class is C2 $1 = \frac{1}{12} \sum_{i=1}^{2} \frac{N}{N} \left(\frac{1}{N} \cdot \frac{1}{N} - \frac{1}{N^2} \right) \left(\frac{1-y}{y} \right)$ (w^T, x_i) (

(5)

$$J(w) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2} \Rightarrow (m_1 - m_2)^2 = (w^T p_1 - w^T p_2)^2$$

$$= \frac{w^T (p_1 - p_2) (p_1 - p_2)^T}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times D} \Rightarrow \sum_{\substack{1 \times D \\ 1 \times D}} \frac{1}{1 \times$$

$$J(W) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2} = \frac{WT.S_8.W}{WT.S_1W + WT.S_2.W} = \frac{WT.S_8.W}{WT.S_W.W}$$

$$Vilhin-class scatter natrice Sw = S_1 + S_2$$

$$J(W) = \frac{WT.S_8.W}{WT.S_W.W} \implies W = \frac{?}{Reading exercise} \text{ Read the derivation from the extbook}$$

$$V = \frac{S_W.(\gamma_1 - \gamma_2)}{px_1}$$

$$V = \frac{S_W.(\gamma_1 - \gamma_2)}{px_2}$$

$$V = \frac{S_W.(\gamma_1 - \gamma_2)}{px_3}$$

$$V = \frac{S_W.(\gamma_2 - \gamma_3)}{px_3}$$

$$V = \frac{S_W.(\gamma_1 - \gamma_2)}{px_3}$$

$$V = \frac{S_W.(\gamma_2 - \gamma_3)}{px_3}$$

$$V = \frac{S_W.(\gamma_1 - \gamma_2)}{px_3}$$

 $S_{c} = \sum_{i=1}^{N} y_{ic} (x_{i} - p_{c}) (x_{i} - p_{c})^{T}$ $S_{w} = \sum_{i=1}^{N} S_{c}$ S_{w} Sc= \frac{1}{2} yic (xi-pc) (xi-pc) \frac{1}{2} J(W) = det (WT. SB.W)

det (WT. Sw.W)

A.W = 2.W * The largest expervectors of 5W. SB

fonk (SB) = K-1

DXD

DXD Y= N1. Y1+ N2. Y2+ . . . + HKYK all (K-1) nonzero en en entre s L= M. P1+ N2. P2 + . . . + Nkpk.