Jacobians of Curves

Lecture notes by Ferdinand Wagner

Wintersemester 2018/19

This text consists of notes on the lecture Jacobians of Curves, taught at the University of Bonn by Professor Jens Franke in the winter term (Wintersemester) 2018/19.

Please report bugs, typos etc. through the *Issues* feature of github.

Contents

1.	Introduction
	1.1. A note on limits and their derived functors
	1.2. The theorem about formal functions
	1.3. Application to Zariski's main theorem
Α.	. Appendix
	A.1. Some prerequisites about completions

1. Introduction

1.1. A note on limits and their derived functors

Let $X_{\bullet} : \dots \xrightarrow{p_{i+1}} X_i \xrightarrow{p_i} \dots \xrightarrow{p_2} X_1 \xrightarrow{p_1} X_0$ be a diagram of abelian groups or R-modules. As usual, we may view X_{\bullet} as a functor $X_{\bullet} : (\mathbb{N}, \geqslant) \to \mathbf{Ab}$ or $\mathbf{Mod}(R)$, where the category (\mathbb{N}, \geqslant) has the nonnegative integers as objects and an arrow $j \to i$ iff $j \geqslant i$. Let

$$d: \prod_{i=0}^{\infty} X_i \longrightarrow \prod_{i=0}^{\infty} X_i, \quad d(x_i)_{i=0}^{\infty} = (p_{i+1}(x_{i+1}) - x_i)_{i=0}^{\infty}.$$

Then we put

$$\varprojlim_{i \in \mathbb{N}} X_i = \ker d \quad \text{and} \quad \varprojlim_{i \in \mathbb{N}}^1 X_i = \operatorname{coker} d.$$

Remark 1. It is easy to see that $\varprojlim X_i$ equals the usual category-theoretical limit (that's how you construct it). It can also be shown that \varprojlim^1 is the first right-derived functor of \varprojlim , and that its higher derived functors vanish.

Fact 1. Let $0 \to X'_{\bullet} \to X_{\bullet} \to X''_{\bullet} \to 0$ be a short exact sequence of diagrams of the above type. Then there is a canonical exact sequence

$$0 \longrightarrow \varprojlim_{i \in \mathbb{N}} X'_i \longrightarrow \varprojlim_{i \in \mathbb{N}} X_i \longrightarrow \varprojlim_{i \in \mathbb{N}} X''_i \longrightarrow \varprojlim_{i \in \mathbb{N}}^1 X'_i \longrightarrow \varprojlim_{i \in \mathbb{N}}^1 X_i \longrightarrow \varprojlim_{i \in \mathbb{N}}^1 X''_i \longrightarrow 0.$$

Proof. Since products preserve exact sequences in Ab or Mod(R), we get a diagram

$$0 \longrightarrow \prod_{i=0}^{\infty} X_i' \longrightarrow \prod_{i=0}^{\infty} X_i \longrightarrow \prod_{i=0}^{\infty} X_i'' \longrightarrow 0$$

$$\downarrow d' \downarrow \qquad \downarrow d \downarrow \qquad d'' \downarrow$$

$$\downarrow d' \downarrow \qquad \downarrow d' \downarrow$$

$$\downarrow d' \downarrow \qquad \downarrow d'' \downarrow$$

$$\downarrow d' \downarrow \qquad \downarrow d' \downarrow$$

$$\downarrow d' \downarrow q' \downarrow$$

with exact rows. Then the snake lemma finishes the job.

Fact 2. Let X_{\bullet} have the property that for every $i \in \mathbb{N}$ there is a $j \geqslant i$ such that the composition $p_{j,i} \colon X_j \xrightarrow{p_j} X_{j-1} \xrightarrow{p_{j-1}} \dots \xrightarrow{p_{i+1}} X_i$ vanishes. Then

$$\varprojlim_{i\in\mathbb{N}} X_i = \varprojlim_{i\in\mathbb{N}}^1 X_i = 0.$$

Proof. If $x = (x_i)_{i=0}^{\infty} \in \varprojlim X_i$, then $x_i = p_{j,i}(x_j)$ for all $j \ge i$ by construction, hence $x_i = 0$ for all $i \in \mathbb{N}$. Moreover, let

$$s : \prod_{i=0}^{\infty} X_i \longrightarrow \prod_{i=0}^{\infty} X_i , \quad s(x)_i = \sum_{j \geqslant i} p_{j,i}(x_j) .$$

By assumption s is well-defined. Then

$$d(s(x))_i = p_{i+1} \left(\sum_{j \ge i+1} p_{j,i+1}(x_j) \right) - \sum_{j \ge i} p_{j,i}(x_j) = -p_{i,i}(x_i) = -x_i.$$

Hence -s is a right-inverse of d, so $\lim_{i \to \infty} X_i = \operatorname{coker} d$ vanishes as well.

Fact 3. Let X_{\bullet} have the Mittag-Leffler property that for every $i \in \mathbb{N}$ there is a $j \geqslant i$ such that for all $k \geqslant j$ the images of $p_{j,i}$ and $p_{k,i}$ in X_i coincide. Then $\lim_{i \to \infty} X_i = 0$.

Proof. Let's first deal with the special case that each $p_i \colon X_i \to X_{i-1}$ is surjective. Let $x = (x_i)_{i=0}^{\infty} \in \prod_{i=0}^{\infty} X_i$. For every $i \in \mathbb{N}$ we may select $x_j^{(i)} \in X_j$ for all $j \geqslant i$ in such a way that $x_i^{(i)} = x_i$ and $p_{j+1}(x_{j+1}^{(i)}) = x_j^{(i)}$. Then s(x) defined by

$$s(x)_i = \sum_{k=0}^{i-1} x_i^{(k)}$$

is a preimage of x under d, so $\lim_{i \to \infty} X_i = \operatorname{coker} d = 0$ in this case.

Now let X_{\bullet} be arbitrary with the Mittag-Leffler property. Let $Y_i = \bigcap_{j \geqslant i} p_{j,i}(X_j) \subseteq X_i$. Then $\varprojlim^1 Y_i = 0$ by the special case we just treated, and $\varprojlim^1 X_i/Y_i = 0$ by Fact 2. Since $\varprojlim^1 X_i$ is sandwiched between these two in the exact sequence from Fact 1, this shows $\varprojlim^1 X_i = 0$, as required.

1.2. The theorem about formal functions

Let $f: X \to Y = \operatorname{Spec} A$ be a morphism of quasi-compact schemes. Let $I \subseteq A$ be any ideal. Consider

$$i_n: X_n = X \times_Y \operatorname{Spec}(A/I^n) \longrightarrow X$$
,

which is a base change of the closed immersion $Y_n = \operatorname{Spec}(A/I^n) \hookrightarrow \operatorname{Spec} A$, hence indeed a closed immersion itself. Also, if f is proper, then so is $X_n \to Y_n$ because properness is another property (tee-hee) that is stable under base change (by [AG2, Remark 2.4.1]).

Let \mathcal{F} be a quasi-coherent sheaf of \mathcal{O}_X -modules and $\mathcal{F}|_{X_n} = i_n^* \mathcal{F}$ its restriction to X_n (this notation is slightly abusive, but convenient). We put $\mathcal{F}_n = i_{n,*} \mathcal{F}|_{X_n}$. It's easy to check (e.g. affine-locally) that $\mathcal{F}_n \cong \mathcal{F}/I^n \mathcal{F}$. Since i_n is a closed immersion and thus affine, we have an isomorphism $H^p(X, \mathcal{F}_n) \cong H^p(X_n, \mathcal{F}|_{X_n})$ for all $p \geqslant 0$ by [AG2, Corollary 1.5.1]. Together with

the canonical projection $\mathcal{F}_{n+1} \cong \mathcal{F}/I^{n+1}\mathcal{F} \to \mathcal{F}/I^n\mathcal{F} \cong \mathcal{F}_n$ this gives canonical morphisms $H^p(X_{n+1}, \mathcal{F}|_{X_{n+1}}) \to H^p(X_n, \mathcal{F}|_{X_n})$ for all $n \in \mathbb{N}$.

The canonical morphism $\mathcal{F} \to i_{n,*}i_n^*\mathcal{F} = \mathcal{F}_n$ induces a morphism

$$H^p(X, \mathcal{F}) \longrightarrow H^p(X, \mathcal{F}_n) \cong H^p(X_n, \mathcal{F}|_{X_n})$$
 (1)

for all $p \ge 0$ (the isomorphism on the right-hand side comes from the fact that i_n is a closed immersion, hence affine, and we can apply [AG2, Corollary 1.6.1]). This is a morphism of A-modules, but $H^p(X_n, \mathcal{F}|_{X_n})$ is actually an A/I^n -module, so (1) factors over

$$H^p(X,\mathcal{F})/I^nH^p(X,\mathcal{F}) \longrightarrow H^p(X_n,\mathcal{F}|_{X_n})$$
.

This is compatible with the canonical morphisms $H^p(X_{n+1}, \mathcal{F}|_{X_{n+1}}) \to H^p(X_n, \mathcal{F}|_{X_n})$ (you can just check that on an affine Čech covers). Passing to the limit gives a morphism

$$H^p(X,\mathcal{F})^{\widehat{}} \longrightarrow \varprojlim_{n \in \mathbb{N}} H^p(X_n,\mathcal{F}|_{X_n}) ,$$
 (2)

where $\hat{}$ denotes the *I*-adic completion.

Theorem 1 (Grothendieck–Zariski). When $f: X \to Y = \operatorname{Spec} A$ is proper (in which case X is automatically a quasi-compact scheme), A is noetherian and \mathcal{F} is a coherent sheaf of \mathcal{O}_X -modules, then (2) is an isomorphism

$$H^p(X,\mathcal{F})^{\widehat{}} \xrightarrow{\sim} \varprojlim_{n \in \mathbb{N}} H^p(X_n,\mathcal{F}|_{X_n}) .$$

Proof. The following proof is essentially the one from [EGAIII, (4.1.7)]. Professor Franke also pointed out that the idea is pretty similar to the proof of the Artin–Rees lemma. Let $I \subseteq A$ be the ideal under consideration and let $R = \bigoplus_{n \geqslant 0} I^n$ be the Rees algebra associated to I. Then

$$K^p = \bigoplus_{n \geqslant 0} H^p(X, I^n \mathcal{F})$$

is a module over R as $i \in I^m$ (considered as the m^{th} homogeneous component of R) maps $I^n \mathcal{F}$ to $I^{n+m} \mathcal{F}$.

Claim 1. K^p is a finitely generated R-module for all $p \ge 0$.

Assuming this for the moment, recall that $\mathcal{F}_n \cong \mathcal{F}/I^n\mathcal{F}$ and $H^p(X,\mathcal{F}|_{X_n}) \cong H^p(X,\mathcal{F}_n)$, so the long exact cohomology sequence associated to $0 \to I^n\mathcal{F} \to \mathcal{F} \to \mathcal{F}_n \to 0$ appears as

$$H^p(X, I^n \mathcal{F}) \longrightarrow H^p(X, \mathcal{F}) \longrightarrow H^p(X_n, \mathcal{F}|_{X_n}) \longrightarrow H^{p+1}(X, I^n \mathcal{F})$$
. (3)

As pointed out after (1), $H^p(X, \mathcal{F}) \to H^p(X_n, \mathcal{F}|_{X_n})$ factors over $H^p(X, \mathcal{F})/I^nH^p(X, \mathcal{F})$, hence we can turn equation (3) into an exact sequence

$$0 \longrightarrow U_n \longrightarrow H^p(X, \mathcal{F})/I^nH^p(X, \mathcal{F}) \longrightarrow H^p(X_n, \mathcal{F}|_{X_n}) \longrightarrow V_n \longrightarrow 0,$$
 (4)

where U_n is a suitable quotient of $H^p(X, I^n \mathcal{F})$ and $V_n \subseteq H^{p+1}(X, I^n \mathcal{F})$ some submodule. This makes $U = \bigoplus_{n \ge 0} U_n$ a quotient of K^p and $V = \bigoplus_{n \ge 0} V_n$ an R-submodule of K^{p+1} .

Claim 2. We have $\lim_{n \to \infty} U_n = \lim_{n \to \infty} U_n = 0$ and $\lim_{n \to \infty} V_n = \lim_{n \to \infty} V_n = 0$.

Before we prove this (and Claim 1), let's see how Theorem 1 follows from it. Let W_n be the image of $H^p(X,\mathcal{F})/I^nH^p(X,\mathcal{F})$ in $H^p(X_n,\mathcal{F}|_{X_n})$. We may split (4) into two short exact sequences $0 \to U_n \to H^p(X,\mathcal{F})/I^nH^p(X,\mathcal{F}) \to W_n \to 0$ and $0 \to W_n \to H^p(X,\mathcal{F}|_{X_n}) \to V_n \to 0$. Applying Fact 1.1.1 to the first one gives $H^p(X,\mathcal{F})^{\wedge} \cong \varprojlim^1 W_n$. Then the six-term exact sequence associated to the second proves $\varprojlim^1 W_n \cong \varprojlim^1 H^p(X_n\mathcal{F}|_{X_n})$ and we are done.

It remains to show the two claims. Note that the Rees algebra R is noetherian. Indeed, I is finitely generated as an ideal in the noetherian ring A, hence R is of finite type over A. Let's also make the following convention: Whenever we write I^kU_n or I^kV_n in the following, this means multiplication as A-modules and the result is contained in U_n resp. V_n again, whereas R_kU_n or R_kV_n means multiplication by the kth homogeneous component of R (which equals I^k as well), so the result is contained on U_{k+n} resp. V_{k+n} .

Proof of Claim 2. Note that U is finitely generated over R, since it is a quotient of the finitely generated R-module K^p . Fix a finite set of generators and let d_0 the maximal non-zero homogeneous components occurring in this set. Then $U_n = R_n U_0 + R_{n-1} U_1 + \ldots + R_{n-d_0} U_{d_0}$ for all $n \ge d_0$. In particular, $U_{k+n} = R_k U_n$ for all $n \ge d_0$. Thus, for every $n \ge d_0$ the image of $U_{2n} = R_n U_n$ in U_n is contained in $I^n U_n$. But $U_n \subseteq H^p(X, \mathcal{F})/I^n H^p(X, \mathcal{F})$, so $I^n U_n$ vanishes. Therefore, the property from Fact 1.1.2 is fulfilled for all $n \ge d_0$. But then it clearly holds for all $n \ge 0$ as well, so Fact 1.1.2 is applicable.

Similarly, V is finitely generated as a submodule of K^{p+1} , which is finitely generated over the noetherian ring R by Claim 1. By the same argument as above we find a d_1 such that $V_n = R_n V_0 + R_{n-1} V_1 + \ldots + R_{n-d_1} V_{d_1}$ for all $n \ge d_1$. In particular, we have $V_{k+n} = R_k V_n$ for all $n \ge d_1$. Thus, for $n \ge d_1$ the image of V_{2n} in V_n is contained in $I^n V_n$. But $I^n V_n$ vanishes again, since V_n is the image of $H^p(X_n, \mathcal{F}|_{X_n})$, which is a A/I^n -module. As above, we can apply Fact 1.1.2. This shows Claim 2.

Proof of Claim 1. Let $v : \widetilde{Y} = \operatorname{Spec} R \to Y$ correspond to $A \hookrightarrow R$ and let $\xi : \widetilde{X} = X \times_Y \widetilde{Y} \to X$ be its base change by f. Note that ξ is affine as a base change of the affine morphism v (we use [AG1, Corollary 2.5.1] here). We claim

$$\xi_*\xi^*\mathcal{F}\cong\bigoplus_{n\geqslant 0}I^n\mathcal{F}$$
.

Indeed, this is easily checked affine-locally (where ξ^* is given by tensoring with R); we leave the details to the reader. Also $H^p(\tilde{X}, \xi^* \mathcal{F}) \cong H^p(X, \xi_* \xi^* \mathcal{F})$ as ξ is affine. This shows

$$H^p(\widetilde{X},\xi^*\mathcal{F})\cong H^p(X,\xi_*\xi^*\mathcal{F})\cong H^p\bigg(X,\bigoplus_{n\geqslant 0}I^n\mathcal{F}\bigg)\cong \bigoplus_{n\geqslant 0}H^p(X,I^n\mathcal{F})=K^p\;.$$

Note that direct sums usually don't commute with cohomology, but here they do, because X is quasi-compact and $\bigoplus_{n\geqslant 0} I^n\mathcal{F}$ is quasi-coherent (for which we need quasi-compactness as well), so we may compute $H^p(X, \bigoplus_{n\geqslant 0} I^n\mathcal{F})$ via finite affine Čech covers. In this case, the products in the Čech complex are all finite, hence commute with the direct sum, which is what we needed.

Now $\tilde{f}: \tilde{X} \to \tilde{Y} = \operatorname{Spec} R$ is proper (as a base change of the proper morphism f), hence the right-hand side is a finitely generated R-module by our finiteness results for the cohomology of proper morphisms (cf. [AG2, Theorem 5]). We win.

Remark 1. Note that in the lecture Franke used $\mathcal{K}_n \cong \mathcal{J}^n \mathcal{F}$ instead of $I^n \mathcal{F}$, where $\mathcal{J} = f^{-1} \mathcal{I}$ is the inverse image (in the sense of Definition 1). But $\mathcal{J}^n \mathcal{F} \cong I^n \mathcal{F}$ – which is not that surprising, since the I^n -action on \mathcal{F} is given via the algebraic component $\mathcal{O}_Y \to f_* \mathcal{O}_X$ of f, so $I^n \mathcal{F} = \mathcal{J}^n \mathcal{F}$ is pretty obvious from the construction of f^{-1} described in the proof of Lemma 1 below. I prefer the notation $I^n \mathcal{F}$ – in particular, this is how Grothendieck denotes it in [EGAIII, (4.1.7)], so I believe it's my right to do so as well. Nevertheless, Lemma 1 is perhaps worthwhile to know (if you get what I mean), so we will include it now.

Definition 1. Let $f: X \to Y$ be any morphism of preschemes and $\mathcal{J} \subseteq \mathcal{O}_Y$ a sheaf of ideals on Y. Then define $f^{-1}\mathcal{J}$ to be the image of $f^*\mathcal{J} \to \mathcal{O}_X$ (which is obtained as the composition of the pull-back of $\mathcal{J} \to \mathcal{O}_Y$ with the isomorphism $f^*\mathcal{O}_Y \cong \mathcal{O}_X$).

Lemma 1. Let $f: X \to Y$ be any morphism of preschemes and $\mathcal{J} \subseteq \mathcal{O}_Y$ quasi-coherent.

- (a) $f^{-1}\mathcal{J}\subseteq\mathcal{O}_X$ is quasi-coherent.
- (b) Let Y_0 and X_0 be the closed subpreschemes of Y and X defined by \mathcal{J} , $f^{-1}\mathcal{J}$ respectively. Then $X_0 \cong X \times_Y Y_0$.
- (c) For all $n \ge 0$ we have $f^{-1}(\mathcal{J}^n) \cong (f^{-1}\mathcal{J})^n$.

Sketch of a proof. The question is easily seen to be local on both X and Y. So let's consider the affine situation where $Y = \operatorname{Spec} A$, $X = \operatorname{Spec} B$, and $\mathcal{J} = \widetilde{J}$ for some ideal $J \subseteq A$. Let $\varphi \colon A \to B$ be the morphism of rings corresponding to f. Then $f^{-1}\mathcal{J} = \widetilde{I}$ where I is the image of $B \otimes_A J \to B$ sending $b \otimes j \mapsto b \cdot \varphi(j)$. All three assertions are then easily checked.

Remark 2. Recall that for a morphism $f: X \to Y$ of preschemes and a point $y \in Y$ the fibre $f^{-1}\{y\}$ of f at y is defined as the prescheme $f^{-1}\{y\} = X \times_Y \operatorname{Spec} \mathfrak{K}(y)$. This makes sense, since $f^{-1}\{y\}$ is indeed – topologically – the preimage of y, as proved in [AG1, Corollary 1.3.3]. Moreover, $\operatorname{Spec} \mathcal{O}_{Y,y}/\mathfrak{m}_{Y,y}^n \to Y$ is immersive for all $n \ge 1$ and has image $\{y\}$ as well. So [AG1, Corollary 1.3.3] is applicable again and shows that $X_n = X \times_Y \operatorname{Spec}(\mathcal{O}_{Y,y}/\mathfrak{m}_{Y,y}^n)$ has $f^{-1}\{y\}$ as underlying topological space too (but, of course, the prescheme structure differs in general). We may thus think of X_n as the n^{th} infinitesimal thickening of $f^{-1}\{y\}$.

Using this, Theorem 1 can be restated as follows.

Theorem 1a. Let $f: X \to Y$ be a proper morphism between locally noetherian¹ preschemes. Let \mathcal{F} be a coherent \mathcal{O}_X -module. For every $y \in Y$ let $X_n = X \times_Y \operatorname{Spec}(\mathcal{O}_{Y,y}/\mathfrak{m}_{Y,y}^n)$ be the n^{th} infinitesimal thickening of $f^{-1}\{y\}$. Then there is an isomorphism

$$(R^p f_* \mathcal{F})_{\widehat{y}} \xrightarrow{\sim} \varprojlim_{n \in \mathbb{N}} H^p(X_n, \mathcal{F}|_{X_n}),$$

where $\hat{}$ denotes the $\mathfrak{m}_{Y,y}$ -adic completion.

¹Franke only assumes Y to be locally noetherian, but f being of (locally) finite type implies that X is locally noetherian as well by Hilbert's Basissatz. This happens multiple times throughout the text.

Proof. We may assume that $Y = \operatorname{Spec} A$ is affine, and that A is a noetherian ring. Indeed, replacing Y by an affine neighbourhood $U \cong \operatorname{Spec} A$ and X by $f^{-1}(U)$ doesn't change $(R^p f_* \mathcal{F})_y$ (because the construction of $R^p f_* \mathcal{F}$ is base-local) and also X_n is preserved since $f^{-1}\{y\}$ is already contained in $f^{-1}(U)$ (by [AG2, postnote]).

In this case, $R^p f_* \mathcal{F} = H^p(X, \mathcal{F})^{\sim}$ by [AG2, Proposition 1.5.1(d)]. Let $\mathfrak{p} \in \operatorname{Spec} A$ be the prime ideal associated to y. Then $R^p f_* \mathcal{F} \cong H^p(X, \mathcal{F})_{\mathfrak{p}}$ and $\mathcal{O}_{Y,y} \cong A_{\mathfrak{p}}$ is flat over A. Let $\mathfrak{m} = \mathfrak{p} A_{\mathfrak{p}} \cong \mathfrak{m}_{Y,y}$ be its maximal ideal. We denote $\pi \colon \operatorname{Spec} A_{\mathfrak{p}} \to \operatorname{Spec} A$. Applying [AG2, Fact 4.1.1] to π gives

$$H^p(X \times_Y \operatorname{Spec} A_{\mathfrak{p}}, \pi^* \mathcal{F}) \cong H^p(X, \mathcal{F})_{\mathfrak{p}} \cong (R^p f_* \mathcal{F})_y$$
.

Also

$$(X \times_Y \operatorname{Spec} A_{\mathfrak{p}}) \times_{\operatorname{Spec} A_{\mathfrak{p}}} \operatorname{Spec}(A_{\mathfrak{p}}/\mathfrak{m}^n) \cong X \times_Y \left(\operatorname{Spec} A_{\mathfrak{p}} \times_{\operatorname{Spec}_{A_{\mathfrak{p}}}} \operatorname{Spec}(A_{\mathfrak{p}}/\mathfrak{m}^n) \right)$$

 $\cong X \times_Y \operatorname{Spec}(A_{\mathfrak{p}}/\mathfrak{m}^n)$
 $\cong X_n$

by a bit abstract nonsense. Now Theorem 1 may be applied to $X \times_Y \operatorname{Spec} A_{\mathfrak{p}} \to \operatorname{Spec} A_{\mathfrak{p}}$ (the base change of f) and the assertion follows.

1.3. Application to Zariski's main theorem

Out there in the real world, there are multiple *main theorems* of Zariski around, and usually they're only loosely related. Professor Franke recommends Mumford's *The red book of varieties* and schemes for a discussion of various such version.

Corollary 1. Let $f: X \to Y$ be any proper morphism between locally noetherian preschemes and let $d = \sup_{y \in Y} \dim (f^{-1}\{y\})$. If \mathcal{F} is a coherent \mathcal{O}_X -module and p > d, then $R^p f_* \mathcal{F} = 0$.

Proof. Since $R^p f_* \mathcal{F}$ is coherent (this is [AG2, Theorem 5]), $(R^p f_* \mathcal{F})_y$ is a finitely generated $\mathcal{O}_{Y,y}$ -module, hence it vanishes iff it $\mathfrak{m}_{Y,y}$ -adic completion vanishes by Fact A.1.1(b). But $X_n = X \times_Y \operatorname{Spec}(\mathcal{O}_{Y,y}/\mathfrak{m}_{Y,y}^n)$ has underlying space $f^{-1}\{y\}$ (as explained in Remark 1.2.2), hence $H^p(X_n, \mathcal{F}|_{X_n}) = 0$ when p > d by Grothendieck's theorem on cohomological dimension (cf. [AG2, Proposition 1.4.1]). The assertion now follows from Theorem 1a.

Definition 1. A morphism $f: X \to Y$ of finite type is called **quasi-finite at** $x \in X$ if x is discrete in its fibre, i.e., if $\{x\}$ is an open and closed subset of $f^{-1}\{y\}$ where y = f(x). We call f **quasi-finite** if it is quasi-finite at every $x \in X$.

The following fact wasn't mentioned in the lecture, but it's definitely (in particular, not only perhaps) worthwhile to know!

Fact 1. Let $f: X \to Y$ be a morphism of finite type. Let $x \in X$ be open in its fibre $f^{-1}\{y\}$, where y = f(x). Then f is already quasi-finite at x.

Proof. Choose an affine open neighbourhood $y \in U \cong \operatorname{Spec} A$. Then $f^{-1}\{y\}$ is contained in $f^{-1}(U)$, so we may w.l.o.g. assume that $Y = \operatorname{Spec} A$ is affine. Put $k = \mathfrak{K}(y)$. Since X may be covered by affine open subsets $\operatorname{Spec} R$, where R is of finite type over A, we may cover the fibre product $f^{-1}\{y\} = X \times_Y \operatorname{Spec} k$ by affine open subsets $\operatorname{Spec}(R \otimes_A k)$, in which $R \otimes_A k$ is a k-algebra of finite type, hence a Jacobson ring. This proves that $f^{-1}\{y\}$ is a Jacobson prescheme as in [AG1, Definition 2.4.2(c)]. But then x is a closed point of the open subset $\{x\} \subseteq f^{-1}\{y\}$, hence also a closed point of $f^{-1}\{y\}$ by [AG1, Fact 2.4.1(c)].

Fact 2. (a) Any finite morphism is quasi-finite.

- (b) If k is a field, a morphism $f: X \to \operatorname{Spec} k$ of finite type is quasi-finite iff it is finite.
- (c) Let $f: X \to Y$ and $g: Y \to Z$ be morphisms of finite type such that g is quasi-finite at y = f(x) for some $x \in X$. Then gf is quasi-finite at x iff f is quasi-finite at x.

Proof. Maybe that's my bad, but the proof of this is actually annoyingly laborious. We begin with part (a). Let $f: X \to Y$ be a finite morphism, $x \in X$ and y = f(x). Then the morphism

$$f^{-1}{y} = X \times_Y \operatorname{Spec} \mathfrak{K}(y) \longrightarrow \operatorname{Spec} \mathfrak{K}(y)$$

is finite again, as a base changes of finite morphisms are finite again (cf. [AG1, Corollary 1.5.1]). Letting $k = \mathcal{R}(y)$ this puts us in the situation from (b), so it's sufficient to prove (b).

In the case of (b) we have $f^{-1}\{y\} = X$, so what we need to show is that X carries the discrete topology if f is finite. We know that $X \cong \operatorname{Spec} R$ where R is some finite-dimensional k-algebra (using finiteness of f). For $x \in X$ let \mathfrak{p} be the corresponding prime ideal of R. Then R/\mathfrak{p} is a domain and a finite-dimensional k-vector space, hence a finite field extension of k by Hilbert's Nullstellensatz. This means that \mathfrak{p} is a maximal ideal of R. Consequently, all points of X are closed, so it suffices to show that X has finitely many points. Let $\{x_1,\ldots,x_n\}$ be any finite subset of X and $\{\mathfrak{m}_1,\ldots,\mathfrak{m}_n\}$ the corresponding maximal ideals of R. For every i, we may choose an element $\alpha_i \in \mathfrak{m}_i$ which is not contained in any \mathfrak{m}_j for $j \neq i$ (e.g. by the prime avoidance lemma, cf. [Alg1, Lemma 2.5.1]). Put $\beta_i = \prod_{j \neq i} \alpha_j$ (so that $\beta_i \in \mathfrak{m}_j$ for all $j \neq i$ but $\beta_i \notin \mathfrak{m}_i$). We claim that β_1,\ldots,β_n are k-linearly independent. Indeed, if $\lambda_1\beta_1+\ldots+\lambda_n\beta_n=0$ for some coefficients $\lambda_1,\ldots,\lambda_n\in k$, then reducing modulo \mathfrak{m}_i gives $\lambda_i\beta_i=0$ in $R/\mathfrak{m}_i=\mathfrak{K}(\mathfrak{m}_i)$. But $\beta_i \neq 0$ in $\mathfrak{K}(\mathfrak{m}_i)$, so $\lambda_i=0$ for all $i=1,\ldots,n$. This proves $\dim_k R \geqslant n$. But R is finite-dimensional over k, hence X must have finitely many points, as claimed.

Conversely, assume that $f: X \to \operatorname{Spec} k$ is quasi-finite. Then X is discrete, so it must have finitely many points. Indeed, f being of finite type implies it is quasi-compact (by definition), so X is quasi-compact because $\operatorname{Spec} k$ is, and any discrete quasi-compact space is finite. Let $X = \{x_1, \ldots, x_n\}$. Every point $x_i \in X$ together with the restriction $\mathcal{O}_X|_{\{x_i\}}$ of the structure sheaf is a prescheme again, hence affine (because $x_i \in \{x_i\}$ must have an affine neighbourhood). Let $\{x_i\} \cong \operatorname{Spec} R_i$. Then

$$X \cong \coprod_{i=1}^{n} \operatorname{Spec} R_i \cong \operatorname{Spec} \left(\bigoplus_{i=1}^{n} R_i \right)$$

is affine. This shows that f is affine, but finiteness is yet to prove. Clearly, it suffices that each R_i is a finite-dimensional k-vector space. Note that R_i has precisely one prime ideal \mathfrak{m}_i

(corresponding to x_i), which is then automatically maximal. Since f is of finite type, R_i has finite type over k. In particular R_i is noetherian and we may choose generators r_1, \ldots, r_m of \mathfrak{m}_s . Since \mathfrak{m}_i is the only prime ideal of R_s , we have $\mathfrak{m}_i = \operatorname{nil} R_i$. Consquently, there is an $N \in \mathbb{N}$ such that $r_\ell^N = 0$ for all ℓ . Moreover, R_i/\mathfrak{m}_i is a field extension of finite type over k, hence a finite field extension by Hilbert's Nullstellensatz. Let $\beta_1, \ldots, \beta_d \in R_i$ be elements whose images modulo \mathfrak{m}_i form a k-basis of R_i/\mathfrak{m}_i . Then it is straightforward to check that R is generated as a k-vector space by the elements

$$\beta_j \cdot r_1^{e_1} r_2^{e_2} \cdots r_n^{e_n}$$
 where $0 \le e_\ell < N$ for all ℓ .

This shows $\dim_k R < \infty$, hence f is finite.

Part (c). Since g is quasi-finite at y, the subset $\{y\} \subseteq g^{-1}\{g(y)\}$ is open and closed, hence $f^{-1}\{y\} \subseteq (gf)^{-1}\{g(y)\}$ is open and closed. This means that $\{x\}$ is open and closed in the fibre $(gf)^{-1}\{g(y)\}$ iff it is open and closed in $f^{-1}\{y\}$ and we win.

Theorem 2 (Grothendieck's version of Zariski's main theorem). (a) Let $f: X \to Y$ be a quasi-finite proper morphism between locally noetherian preschemes. Then f is finite.

- (b) Let $f: X \to Y$ be a quasi-finite morphism between noetherian preschemes. Then there exists a factorization $X \xrightarrow{j} \overline{X} \xrightarrow{g} Y$ of f where j is an open immersion and g is finite.
- (c) If $f: X \to Y$ is any morphism of finite type between locally noetherian preschemes, then

$$U = \{x \in X \mid f \text{ is quasi-finite at } x\}$$

is open in X, and the restriction $f|_U$ is quasi-finite (by definition).

Proof. Part (a). We may assume that $Y = \operatorname{Spec} A$ is affine (indeed, all involved properties are base-local). Let $\mathcal{J} \subseteq \mathcal{O}_X$ be a sheaf of ideals, then \mathcal{J} is coherent as X is locally noetherian. Since f is quasi-finite, all fibres carry the discrete topology. In particular, they are zero-dimensional and Corollary 1 shows that $R^1 f_* \mathcal{J} = 0$. Then also $0 = R^1 f_* \mathcal{J}(Y) = H^1(X, \mathcal{J})$ (using [AG2, Proposition 1.5.1(d)]), hence X is affine by Serre's affinity criterion. This shows that f is affine. Moreover, $f_* \mathcal{O}_X$ is a coherent \mathcal{O}_Y -module by [AG2, Theorem 5], hence f is finite.

Part (b) is hard, see the discussion on page 12. We only prove a special case there, which, however, is sufficient to prove (c). But before we can do this, we need to prove some more theorems of Zariski.

Theorem 3 (Zariski's connectedness theorem). Let $f: X \to Y$ be a proper morphism between locally noetherian schemes, whose algebraic component $f^*: \mathcal{O}_Y \to f_*\mathcal{O}_X$ is an isomorphism.

- (a) The fibres $f^{-1}\{y\}$ are connected for all $y \in Y$.
- (b) The set

$$U = \left\{ x \in X \mid \{x\} = f^{-1}\{f(x)\} \right\} = \left\{ x \in X \mid f \text{ is quasi-finite at } x \right\}$$

is open in X, and the restriction $f|_U$ is quasi-finite (by definition).

Proof. Part (a). Assume $f^{-1}\{y\}$ is not connected, say, $f^{-1}\{y\} = U_1 \cup U_2$ for disjoint non-empty open subsets $U_1, U_2 \subseteq f^{-1}\{y\}$. Since all infinitesimal thickenings $X_n = X \times_Y \operatorname{Spec}(\mathcal{O}_{Y,y}/\mathfrak{m}_{Y,y}^n)$ have underlying topological space $f^{-1}\{y\}$, there is a unique $\varepsilon_n \in \mathcal{O}_{X_n}(X_n) = H^0(X_n, \mathcal{O}_{X_n})$ such that $\varepsilon_n|_{U_1} = 0$ and $\varepsilon_n|_{U_2} = 1$. The sequence $(\varepsilon_n)_{n \in \mathbb{N}}$ clearly defines an element ε of

$$\lim_{n\in\mathbb{N}} H^0(X_n, \mathcal{O}_{X_n}) \cong (f_*\mathcal{O}_X)_y^{\widehat{}} \cong \widehat{\mathcal{O}}_{Y,y}.$$

The left isomorphism here is due to Theorem 1a and the fact that $\mathcal{O}_{X_n} = \mathcal{O}_X|_{X_n}$, and the right one holds by assumption. Hence $\widehat{\mathcal{O}}_{Y,y}$ is a local ring (by Corollary A.1.5) with an idempotent $\varepsilon \neq 0, 1$. Then $1 - \varepsilon \neq 0, 1$ is another non-trivial idempotent. Both ε and $1 - \varepsilon$ can't be units in $\widehat{\mathcal{O}}_{Y,y}$, otherwise $\varepsilon^2 = \varepsilon$ implies $\varepsilon = 1$. But then they are elements of the maximal ideal \mathfrak{m} , so $\varepsilon + (1 - \varepsilon) = 1$ is an element of \mathfrak{m} as well, contradiction!

Part (b). By (a), any point $x \in X$ is open and closed in its fibre iff $f^{-1}\{f(x)\} = \{x\}$. Therefore the two definitions of U indeed coincide.

We must show that U is open. This is a local question with respect to Y, hence we may assume that $Y = \operatorname{Spec} A$ is affine. Let $x \in U$ and $V \subseteq X$ an affine open neighbourhood of x. Put $Z = X \setminus V$. Then $Z \subseteq X$ is closed and disjoint from $f^{-1}\{f(x)\} = \{x\}$. As f is proper, $Z' = f(Z) \subseteq Y$ is closed, and $y = f(x) \notin Z'$. There's an $\alpha \in A$ such that $y \notin V(\alpha)$ and $V(\alpha) \supseteq Z'$. Let $Y_1 = Y \setminus V(\alpha)$. Note that $Y_1 \cong \operatorname{Spec} A_\alpha$ is affine and $x \in X_1 = f^{-1}(Y_1) \subseteq V$. Then $X_1 = X \setminus V(f^*\alpha) = V \setminus V(f^*\alpha)$ is affine as well, so the restriction $f|_{X_1} \colon X_1 \to Y_1$ of f is affine and proper. But every affine proper morphism is finite (because $f|_{X_1,*}\mathcal{O}_{X_1}$ is a coherent \mathcal{O}_{Y_1} -module by [AG2, Theorem 5]), so $f|_{X_1}$ is, in particular, quasi-finite by Fact 2 and $U \cap X_1 = X_1$. This proves that U is open.

Remark 1. On first glance, the argument from Theorem 3(b) might look like it proves that every proper morphism is affine, but what it actually shows is the following: If $f: X \to Y$ is a proper morphism such that for each $x \in X$ the fibre $f^{-1}\{f(x)\}$ is contained in some affine subset $V \subseteq X$, then f is already affine (and hence finite).

Remark 2. Recall that a prescheme X is called **normal** if it is integral and all local rings $\mathcal{O}_{X,x}$ (which are domains if X is integral) are normal (cf. [AG1, Definition 2.4.5]). This is the case iff $\mathcal{O}_X(U)$ is a normal domain for all affine $U \subseteq X$, cf. the discussion in [AG1, Remark 2.5.1].

Corollary 2 (Zariski's birationality theorem). Let $f: X \to Y$ be a proper morphism between locally noetherian preschemes, where Y is normal. Suppose that f is **birational** in the sense that there is a dense open subset $U \subseteq Y$ such that the restriction $f|_{f^{-1}(U)}: f^{-1}(U) \xrightarrow{\sim} U$ is an isomorphism and $f^{-1}(U)$ is dense in X. Then all assertions from Theorem 3 apply to f. In particular, f has connected fibres.

Proof. First note that U is irreducible as an open subset of the irreducible space Y (irreducibility of Y is implied by Y being normal). Hence X is irreducible because it has the dense irreducible subset $f^{-1}(U) \cong U$. Let $\operatorname{Spec} A \cong V \subseteq Y$ be an affine open subset, where A is a domain. Then $f^{-1}(V)$ is open in X, hence dense in X and thus irreducible. Since U is dense in Y, the intersection $U \cap V$ is non-empty, hence $f^{-1}(U \cap V) \subseteq f^{-1}(V)$ is a non-empty open subset and thereby dense again. This shows that we can actually reduce to the case $Y = \operatorname{Spec} A$ (all the

other involved properties are clearly base-local). Moreover, we may assume that X is integral. Indeed, the assertions from Theorem 3 are purely topological, so we may replace X by its reduction $X^{\text{red}} = V(\text{nil}(\mathcal{O}_X))$ to obtain an X which is irreducible and reduced (hence integral) and has the same underlying topological space as the original one.

Claim 1. The ring $B = \mathcal{O}_X(X)$ is a domain in the above situation, and A and B have the same field of quotients K. Moreover, we have $A \subseteq B$ as subrings of K.

Believing this for the moment, the proof can be finished as follows. Since B is finitely generated as an A-module (because $f_*\mathcal{O}_X = \widetilde{B}$ is coherent by [AG2, Theorem 5]), it is integral over A. But A is integrally closed in K, hence $A \subseteq B$ implies A = B. We conclude $f_*\mathcal{O}_X \cong \mathcal{O}_Y$, as needed.

Unfortunately, the proof of Claim 1 wasn't discussed in the lecture, but I think it should have been. Since X and Y are irreducible, they have unique generic points η_X and η_Y . As η_Y is dense in Y, we have $\eta_Y \in U$ and similarly $\eta_X \in f^{-1}(U)$. Hence $f(\eta_X) = \eta_Y$ and the induced morphism $\mathcal{O}_{Y,\eta_Y} \xrightarrow{\sim} \mathcal{O}_{X,\eta_X}$ is an isomorphism by the birationality assumption. Moreover, η_Y corresponds to $0 \in \operatorname{Spec} A$, hence $\mathcal{O}_{Y,\eta_Y} \cong K$ is the quotient field of A. So we should prove that \mathcal{O}_{X,η_X} is the quotient field of $B = \mathcal{O}_X(X)$ as well.

It's clear that B is a domain because X is integral. Since $U \subseteq \operatorname{Spec} A$ is open, we find an affine open subset $V = \operatorname{Spec} A \setminus V(\alpha) \subseteq U$. Then $f^{-1}(V) = X \setminus V(f^*\alpha) = f^{-1}(U) \setminus V(f^*\alpha) \cong V$ is affine again by birationality of f. We know that X is quasi-compact and separated since so are f and $\operatorname{Spec} A$. In particular, [AG1, Proposition 1.5.1(c)] is applicable to \mathcal{O}_X and gives $\mathcal{O}_X(f^{-1}(V)) \cong \mathcal{O}_X(X)_{f^*\alpha}$, so these two rings have the same quotient field. But $\mathcal{O}_X(f^{-1}(V)) \cong \mathcal{O}_Y(V) \cong A_\alpha$ has quotient field K, so we win.

The fact that $A \subseteq B$ as subrings of K follows from the commutative diagram

$$\begin{array}{ccc}
A & \longrightarrow & B \\
\downarrow & & \downarrow \\
\mathcal{O}_{Y,\eta_Y} & \xrightarrow{\sim} & \mathcal{O}_{X,\eta_X}
\end{array}$$

in which every arrow except the top one is injective, hence $A \to B$ is injective as well.

Fact 3. Every proper morphism $f: X \to Y$ between locally noetherian preschemes can be factorized via the Stein factorization as

$$f: X \xrightarrow{\widetilde{f}} \mathbf{Spec}_{Y}(f_{*}\mathcal{O}_{X}) \xrightarrow{g} Y$$
.

In this composition, g is finite and the assumptions of Theorem 3 hold for \tilde{f} .

Sketch of a proof. It's pretty obvious that this factorization exists (to construct \tilde{f} , use the adjunction from [AG2, Proposition 1.6.2(b)]). To show that \tilde{f} and g have the required properties,

we look at things locally and assume that $Y = \operatorname{Spec} A$ is affine (and A is noetherian). Then the facorization looks like

$$f: X \xrightarrow{\widetilde{f}} \operatorname{Spec} \mathcal{O}_X(X) \xrightarrow{g} \operatorname{Spec} A$$
,

so g is affine. Moreover, $\mathcal{O}_X(X)$ is a finitely generated A-module because $f_*\mathcal{O}_X$ is a coherent \mathcal{O}_Y -module (by [AG2, Theorem 5], as usual), so g is actually finite. Also proving that $\tilde{f}_*\mathcal{O}_X = \mathcal{O}_{\operatorname{Spec}\mathcal{O}_X(X)}$ is straightforward, so it remains to show that \tilde{f} is proper. But g is finite, hence separated, and $g\tilde{f} = f$ is proper, so \tilde{f} is proper as well by [AG2, Proposition 2.4.1]. \square

Discussion of Theorem 2(b) and (c). Let's assume that $f: X \to Y$ factors over

$$f: X \stackrel{j}{\longleftrightarrow} \overline{X} \stackrel{\overline{f}}{\longrightarrow} Y$$
,

where j is an open immersion and \overline{f} is proper. It can be shown that such a factorization always exists for morphisms of finite type between noetherian schemes, for which Professor Franke refers to notes of *Brian Conrad* or *Paul Vojta*, although he isn't sure whether using their results to prove Theorem 2(b) doesn't involve any circular reasoning.

Be that as it may, if we can factorize f as above, then

$$\{x \in X \mid f \text{ is quasi-finite at } x\} = X \cap \{x \in \overline{X} \mid \overline{f} \text{ is quasi-finite at } x\}$$
 . (1)

Indeed, a point $x \in X$ is open in $\overline{f}^{-1}\{y\}$ (where y = f(x)) iff it is open in the open subset $f^{-1}\{y\} = X \cap \overline{f}^{-1}\{y\} \subseteq \overline{f}^{-1}\{y\}$. In view of Fact 1 this shows (1). We thus have reduced (c) (under the assumption that \overline{f} exists) to the case of proper morphisms.

If $f: X \to Y$ is proper, then consider its Stein factorization. Since g is finite, it's quasi-finite as well by Fact 2(a). So Fact 2(c) shows that

$$\{x \in X \mid f \text{ is quasi-finite at } x\} = \{x \in X \mid \widetilde{f} \text{ is quasi-finite at } x\}$$
.

But the right-hand side is open in X by Fact 3 and Theorem 3(b) and we're happy!

Note that such an \overline{f} always exists when X and Y are affine. Indeed, if X has finite type over Y and both are affine, we get a closed embedding $X \hookrightarrow \mathbb{A}^n_Y$ for some $n \in \mathbb{N}$. Together with the open embedding $\mathbb{A}^n_Y \hookrightarrow \mathbb{P}^n_Y$ this makes X a closed subprescheme of an open subprescheme of \mathbb{P}^n_Y . But then X is also an open subprescheme of some closed subprescheme $\overline{X} \subseteq \mathbb{P}^n_Y$. This gives a factorization

$$f \colon X \stackrel{j}{\longleftrightarrow} \overline{X} \stackrel{\overline{f}}{\longrightarrow} Y$$

in which $\overline{f} \colon \overline{X} \hookrightarrow \mathbb{P}^n_Y \to Y$ is (strongly) projective, hence proper by [AG2, Proposition 2.4.2]. But (c) is completely local on both X and Y (thanks to Fact 1), so by checking the affine case we have actually covered all of (c).

A. Appendix

A.1. Some prerequisites about completions

We briefly recall the most important facts about completions. An excellent introduction to this subject can be found in [AM94, Section 10].

Definition 1. Let R be a ring (commutative with 1) and I an ideal in R. Let M be an R-module.

- (a) The *I*-adic topology on M is the unique topology such that $\{I^n\}_{n\in\mathbb{N}}$ is a fundamental system of neighbourhoods of 0 and M (with its additive structure) becomes a topological group in this topology.
- (b) The **completion** of M with respect to the I-adic topology is

$$\widehat{M} = \varprojlim_{n \in \mathbb{N}} M/I^n M .$$

Note that \widehat{R} is a ring again. We call M complete in the I-adic topology if the canonical morphism $M \to \widehat{M}$ is an isomorphism.

Remark 1. M with its I-adic topology is pseudo-metrizable via $d(x,y) = e^{-\sup\{n \mid x-y \in I^n\}}$. It is easy to check that \widehat{M} is also the completion of M in the analytical sense, i.e. the set of Cauchy sequences modulo the zero sequences.

Example 1. If $I^n = 0$ for some $n \in \mathbb{N}$, then any R-module is complete in the I-adic topology.

Example 2. If $R = \mathbb{Z}$ and $I = p\mathbb{Z}$ for some prime p, then $\widehat{R} = \mathbb{Z}_p$ is the ring of p-adic integers.

Proposition 1 (Hensel's lemma). Suppose the ring R is complete in the I-adic topology. Let $P \in R[T]$ be a polynomial and $a_0 \in R$ such that $P(a_0) \equiv 0 \mod I$ and $P'(a_0)$ is a unit in R/I. Then there is a unique $a \in R$ such that $a \equiv a_0 \mod I$ and P(a) = 0.

Proof. Step 1. Consider the special case $I^2 = 0$. For $\delta \in I$ we have $P(a_0 + \delta) = P(a_0) + \delta P'(a_0)$ since all terms of order δ^2 or higher vanish in the binomial expansion. Now $P'(a_0)$ being a unit in R/I gives a unique $\delta \in I$ such that $a = a_0 + \delta$ satisfies P(a) = 0.

Step 2. Suppose that $I^{2^n} = 0$ for some $n \in \mathbb{N}$. Using induction on n (with the base case being precisely Step 1) we may assume that Hensel's lemma holds for $R/I^{2^{n-1}}$. In particular, there is a unique a_{n-1} such that $P(a_{n-1}) \equiv 0 \mod I^{2^{n-1}}$ and $a_{n-1} \equiv a_0 \mod I$. Moreover, $P'(a_{n-1})$ is invertible in $R/I^{2^{n-1}}$. Indeed, this follows from Hensel's lemma applied to $R/I^{2^{n-1}}$ (for

which it holds by induction hypothesis) and the polynomial $Q = P'(a_{n-1})T - 1$. The derivative $Q'(a_{n-1})$ equals $P'(a_{n-1})$ which is invertible in R/I since $P'(a_{n-1}) \equiv P'(a_0) \mod I$, so Hensel's lemma is indeed applicable. Now replacing I by $I^{2^{n-1}}$ and a_0 by a_{n-1} reduces the situation to Step 1, proving the inductive step.

Step 3. Now let I be arbitrary. By Step 2 there is for every $n \in \mathbb{N}$ a unique $a_n \in R/I^{2^n}$ such that $P(a_n) \equiv 0 \mod I^{2^n}$ and $a_n \equiv a_0 \mod I$. Then $a_n \equiv a_{n-1} \mod I^{2^{n-1}}$ is forced by uniqueness. Hence $a = (a_n)_{n \in \mathbb{N}}$ defines an element of

$$\varprojlim_{n\in\mathbb{N}}\,R/I^{2^n}=\varprojlim_{n\in\mathbb{N}}\,R/I^n=\widehat{R}\;,$$

providing the desired element $a \in \widehat{R}$.

Corollary 1. Let R be complete in the I-adic topology.

- (a) If $a \in R$ becomes a unit in R/I, then already $a \in R^{\times}$.
- (b) For every idempotent $\pi \in R/I$ there is a unique idempotent in R whose image modulo I is π . Therefore, Spec R and Spec R/I have the same connected components.
- (c) I is contained in the Jacobson radical rad R.

Proof. Part (a) follows from Proposition 1 applied to P=aT-1 (whose derivative a is a unit in R/I by assumption, so this is fine). For (b) we use the polynomial $P=T^2-T$. Again, $P'(\pi)=2\pi-1$ is a unit in R/I since $(2\pi-1)^2=4\pi^2-4\pi+1=1$ in R/I. To prove (c) recall the characterization

$$\operatorname{rad} R = \{ x \in R \mid 1 - rx \in R^{\times} \text{ for all } r \in R \} .$$

If $x \in I$, then 1 - rx is a unit in R/I, hence also in R by (a).

Proposition 2. Let R be noetherian and $N \subseteq M$ finitely generated R-modules. Then the I-adic topology on N coincides with the induced topology by the I-adic topology on M.

Sketch of a proof. By the Artin–Rees lemma (cf. [Alg2, Proposition 3.4.1]) there exists a number $c \in \mathbb{N}$ such that $N \cap I^{n+c}M \subseteq I^nN$. From this, the assertion is easily deduced.

Fact 1. (a) The canonical morphism $\widehat{M} = \underline{\lim} M/I^nM \to M/IM$ is surjective.

(b) If M is finitely generated and I is contained in the Jacobson radical of R, then $\widehat{M} = 0$ implies M = 0.

Proof. For (a), note that the composition $M \to \widehat{M} \to M/IM$ equals the projection $M \to M/IM$ by definition of the limit. Since the latter is surjective, so is $\widehat{M} \to M/IM$. In particular, part (a) shows that $\widehat{M} = 0$ implies M = IM. In the situation of (b) this is equivalent to M = 0 by Nakayama's lemma (which – as we all know – Professor Franke also likes to attribute to Azumaya and Krull, even though he regards Krull as a noob compared to Grothendieck). \square

Corollary 2. If R is noetherian, then the functor $M \mapsto \widehat{M}$ is exact on the category of finitely generated R-modules.

Proof. Let $0 \to M' \to M \to M'' \to 0$ be a short exact sequence of finitely generated R-modules. Then $M' + I^n M$ is the kernel of $M \to M'' / I^n M''$. Using $(M' + I^n M) / I^n M \cong M' / (M' \cap I^n M)$ we get short exact sequences

$$0 \longrightarrow M'/(M' \cap I^n M) \longrightarrow M/I^n M \longrightarrow M''/I^n M'' \longrightarrow 0 \tag{*}$$

for every $n \in \mathbb{N}$. Since $M'/(M' \cap I^n M)$ is sandwiched between $M'/I^n M'$ and $M'/I^{n+c} M'$ for some $c \in \mathbb{N}$ by the Artin–Rees lemma, it's easy to see that

$$\varprojlim_{n\in\mathbb{N}} M'/(M'\cap I^nM) = \varprojlim_{n\in\mathbb{N}} M'/I^{n+c}M' = \varprojlim_{n\in\mathbb{N}} M'/I^nM' = \widehat{M}' \ .$$

Moreover, each $M'/(M'+I^{n+1}M) \to M'/(M'+I^nM)$ is clearly surjective, so Fact 1.1.3 gives

$$\varprojlim_{n\in\mathbb{N}}^1 M'/(M'\cap I^n M) = 0.$$

Thus, taking the limit over (*) gives a short exact sequence $0 \to \hat{M}' \to \hat{M} \to \hat{M}'' \to 0$ by Fact 1.1.1. We are done.

Corollary 3. Let R be a Noetherian ring.

- (a) When M is a finitely generated R-module, then $\widehat{M} \cong M \otimes_R \widehat{R}$.
- (b) \hat{R} is flat as an R-module.
- (c) Suppose that I is contained in the Jacobson radical of R. If $\mu \colon M \to N$ is a morphism of finitely generated R-modules such that $\widehat{\mu} \colon \widehat{M} \to \widehat{N}$ is an isomorphism, then μ is an isomorphism.

Proof. Part (a). Every finitely generated R-module is finitely presented as well since R is noetherian. So take a representation $M \cong \operatorname{coker}(R^m \to R^n)$ for some $m, n \in \mathbb{N}$. It's obvious that $(R^n)^{\smallfrown} \cong \widehat{R}^n \cong R^n \otimes_R \widehat{R}$. Since both completion and tensor products commute with cokernels, this shows $\widehat{M} \cong M \otimes_R \widehat{R}$ as well.

Part(b). By Corollary 2 and (a), $-\otimes_R \widehat{R}$ is exact on finitely generated R-modules. By [Hom, Proposition 1.2.2] this is sufficient for flatness.

Part (c). Let $K = \ker \mu$ and $Q = \operatorname{coker} \mu$. Since completion is exact on finitely generated R-modules, we get an exact sequence

$$0 \longrightarrow \widehat{K} \longrightarrow \widehat{M} \stackrel{\widehat{\mu}}{\longrightarrow} \widehat{N} \longrightarrow \widehat{Q} \longrightarrow 0 \; .$$

But $\hat{\mu}$ is an isomorphism, so $\hat{K}=0$ and $\hat{Q}=0$. By Fact 1 this shows K=0 and Q=0. We are done.

Corollary 4. If $J \subseteq R$ is any ideal and M a finitely generated R-module, then $(JM)^{\smallfrown} \to \widehat{M}$ defines an isomorphism $(JM)^{\smallfrown} \xrightarrow{\sim} J\widehat{M}$.

Proof. We may view $(JM)^{\hat{}}$ as a submodule of \widehat{M} since completion preserves injectivity of the inclusion $JM \subseteq M$ by Corollary 2. It's easy to see that $J\widehat{M}$ is contained in $(JM)^{\hat{}}$. To prove the converse, take generators j_1, \ldots, j_n of J. Then completion preserves surjectivity of $(j_1, \ldots, j_n) \colon M^n \to JM$ and we are done.

Corollary 5. If R is a noetherian local ring with maximal ideal \mathfrak{m} , then \widehat{R} is local with maximal ideal $\mathfrak{m}\widehat{R}$.

Proof. We proved this in [Hom, Corollary 2.2.2].

Proposition 3. Let R be noetherian and $I \subseteq R$ any ideal, then the I-adic completion \widehat{R} is noetherian again.

To prove this, we need to prove the evil twin of Hilbert's Basissatz first.

Lemma 1. If R is noetherian, then so is the power series ring R[T].

Proof. We can (and will) basically copy the proof of Hilbert's Basissatz. Let $J \subseteq R[T]$ be any ideal and put $J_n = \left\{a_n \mid \sum_{k=n}^{\infty} a_k T^k \in J\right\}$ for $n \geqslant 0$. Then $(J_n)_{n \in \mathbb{N}}$ form an ascending sequence of ideals in R. Noetherianness of R tells us that this sequence becomes eventually stationary, say, at n = s. So we may choose $a^{(i)} = \sum_{k=s}^{\infty} a_k T^k \in R[T]$ for $i = 1, \ldots, N$ such that $a_s^{(1)}, \ldots, a_s^{(N)}$ generate J_s . Then $a^{(1)}, \ldots, a^{(N)}$ generate $J \cap T^s R[T]$. Indeed, given any $b = \sum_{k=s}^{\infty} b_k T^k \in J$ we can inductively choose coefficients $r_k^{(1)}, \ldots, r_k^{(N)} \in R$ such that $r^{(i)} = \sum_{k=0}^{\infty} r_k^{(i)} T^k$ satisfy $r^{(1)}a^{(1)} + \ldots + r^{(N)}a^{(N)} = b$ up to degree T^{s+k} . This works because $J_{k+s} = J_s$ for all $k \geqslant 0$ is generated by $a_s^{(1)}, \ldots, a_s^{(N)}$ again.

Now $R[T]/T^sR[T]$ is a finitely generated R-module, hence the image of J in it is finitely generated as well, R being noetherian. We thus may choose $a^{(N+1)}, \ldots, a^{(N+M)} \in J$ whose images modulo $T^sR[T]$ generate the image of J in $R[T]/T^sR[T]$. Then $a^{(1)}, \ldots, a^{(N+M)}$ generate J and our job's done here.

Proof of Proposition 3. Let r_1, \ldots, r_n be generators of I. Then sending $X_i \mapsto r_i$ defines a surjective morphism $R[X_1, \ldots, X_n] \to \widehat{R}$. Since $R[X_1, \ldots, X_n]$ is noetherian by Lemma 1 and induction on n, so is its quotient \widehat{R} .

Corollary 6. Suppose that R is a noetherian local ring and $I \subseteq R$ any (proper) ideal. Then $\dim R = \dim \widehat{R}$. In particular, R is regular iff \widehat{R} is regular.

Proof. Let \mathfrak{m} be the maximal ideal of R. Then $\widehat{\mathfrak{m}} = \mathfrak{m} \widehat{R}$ (this equality holds because of Corollary 4) is the maximal ideal of the local ring \widehat{R} as was shown in the proof of [Hom, Corollary 2.2.2]. Since $I \subseteq \mathfrak{m}$, the quotients $\mathfrak{m}^i/\mathfrak{m}^{i+1}$ already have I-torsion, hence

$$\mathfrak{m}^i/\mathfrak{m}^{i+1}\cong \left(\mathfrak{m}^i/\mathfrak{m}^{i+1}\right)^{\widehat{}}\cong \widehat{\mathfrak{m}}^i/\widehat{\mathfrak{m}}^{i+1}$$

(the last isomorphism follows from exactness of completion). This shows that the associated graded rings $\operatorname{gr}(R,\mathfrak{m})$ and $\operatorname{gr}(\widehat{R},\widehat{\mathfrak{m}})$ agree, hence (R,\mathfrak{m}) and $(\widehat{R},\widehat{\mathfrak{m}})$ have the same Hilbert–Samuel polynomials, which shows dim $R=\dim\widehat{R}$ by [Alg2, Theorem 20].

Now R and \widehat{R} have the same residue field k and $\mathfrak{m}/\mathfrak{m}^2 \cong \widehat{\mathfrak{m}}/\widehat{\mathfrak{m}}^2$ by the I-torsion arguments we have seen several times now, so $\dim_k \mathfrak{m}/\mathfrak{m}^2 = \dim_k \widehat{\mathfrak{m}}/\widehat{\mathfrak{m}}^2$. Clearly this implies that R is regular iff \widehat{R} is.

Remark 2. In a similar fashion one can show that a noetherian local ring is Cohen–Macaulay, or Gorenstein, or a complete intersection, iff its I-adic completion is one as well. For example, for Cohen–Macaulayness one would need to show $\operatorname{depth}_R(R) = \operatorname{depth}_{\widehat{R}}(\widehat{R})$, which follows from the isomorphism $\operatorname{Ext}_R^p(k,R) \cong \operatorname{Ext}_{\widehat{R}}^p(k,\widehat{R})$ that was described in the proof of [Hom, Proposition 2.4.2].

Bibliography

- [AG1] Nicholas Schwab; Ferdinand Wagner. Algebraic Geometry I by Jens Franke (lecture notes). GitHub: https://github.com/Nicholas42/AlgebraFranke/tree/master/AlgGeoI.
- [AG2] Ferdinand Wagner. Algebraic Geometry II by Jens Franke (lecture notes). GitHub: https://github.com/Nicholas42/AlgebraFranke/tree/master/AlgGeoII.
- [Alg1] Nicholas Schwab; Ferdinand Wagner. Algebra I by Jens Franke (lecture notes). GitHub: https://github.com/Nicholas42/AlgebraFranke/tree/master/AlgebraI.
- [Alg2] Nicholas Schwab; Ferdinand Wagner. Algebra II by Jens Franke (lecture notes). GitHub: https://github.com/Nicholas42/AlgebraFranke/tree/master/AlgebraII.
- [AM94] M.F. Atiyah and I.G. MacDonald. *Introduction To Commutative Algebra*. Addison-Wesley series in mathematics. Avalon Publishing, 1994. ISBN: 9780813345444.
- [EGAIII] A. Grothendieck. "Éléments de géométrie algébrique: III. Étude cohomologique des faisceaux cohérents, Première partie". In: *Publications Mathématiques de l'IHÉS* 11 (1961). URL: http://www.numdam.org/articles/PMIHES_1961__11__5_0.
- [Hom] Ferdinand Wagner. Homological Methods in Commutative Algebra by Jens Franke (lecture notes). GitHub: https://github.com/Nicholas42/AlgebraFranke/tree/master/HomAlg.