Multiple unea legression onthine, - model setup & US estimates & their dot 1) matrix representation - Gauss-Markur again - tited values & estimate or (2) Wodel Setup SUR? 121,-.-,5 Y=Bo+B, Xi+Ei 5 N(0, 02) In other words: YIZ BOTBIXITE, 12= Bot B, X2 + 22 n equations YN= BotB, XntEn

Let's define
$$y = \begin{bmatrix} y_2 \\ y_2 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ x_2 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ x_2 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ x_2 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ x_2 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ x_2 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ x_2 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ x_2 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ x_2 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ x_2 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ x_2 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ x_2 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ x_2 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ x_2 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ x_2 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ x_2 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ x_2 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ x_2 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ x_2 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ x_2 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ B_1 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ B_1 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ B_1 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ B_1 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ B_1 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ B_1 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ B_1 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ B_1 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ B_1 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ B_1 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ B_1 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ B_1 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ B_1 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ B_1 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ B_1 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ B_1 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ B_1 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ B_1 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ B_1 \end{bmatrix}, & B = \begin{bmatrix} B_0 \\ B_1 \end{bmatrix}$$

$$\begin{array}{c}
X = \begin{bmatrix} 1 & x_1 \\ B_1 \end{bmatrix}, & B =$$

Vandom Vectors

Lets say I have a random vector 2

$$z=\left(\begin{array}{c} z_1\\ z_2\end{array}\right)$$

Then
$$E(2) = \begin{bmatrix} E(2) \\ E(2) \end{bmatrix}$$
 is the mean vector = μ

The
$$Var(2) = \begin{bmatrix} Var(2_1) & (ar(2_1, 2_2) \\ (ar(2_1, 2_2) & Var(2_1) \end{bmatrix}$$

$$= E\left(\left(\frac{2}{2} - \mu\right)\left(\frac{2}{2} - \mu\right)^{T}\right)^{2\times 2}$$

Multivarate Normal Dist: A + (21, 22) દ) $f(\varepsilon_1,...,\varepsilon_n) = T_i f(\varepsilon_i)$ - \frac{\pi^2}{20^2} $= \pi$ $\frac{1}{1-1} e$ = 1 h - \(\frac{2}{2\tau^2}\) e \(\frac{2}{2\tau^2}\) speatrally the pdf to N(0, 0=1) in general for $z \sim N(\mu, \Sigma)$ the pdf is: $f(2n)=\frac{1}{2n}\int_{-\infty}^{\infty}\frac{1}{2}(z-n)/2$

Hor Con I estimate B? (Solving the LS problem) Last him. mnimize Q(8, B,) = $\sum_{i=1}^{9} (y_i - \beta_i - \beta_i x_i)^2$ / exact some thing Nov: minimize Q(B) = 117-XB1)2 over all choices of B Idea: DQ I D ... U need motors derivatives. Matrix Differentiaties: ZAB JA LI SYM.

$$\frac{\partial Q}{\partial B} = \frac{\partial}{\partial B} \left(\frac{\|Y - XB\|^2}{\|Y - XB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) \left(\frac{XB}{\|Y - XB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - Y - Y - XB}{\|Y - XB\|} \right) \left(\frac{XB}{\|Y - XB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - Y - Y - XB}{\|Y - XB\|} \right) \left(\frac{XB}{\|Y - XB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - Y - Y - XB}{\|Y - Y - XB\|} \right) \left(\frac{XB}{\|Y - Y - Y - Y - Y - Y - YB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) + 2(XB) \left(\frac{XB}{\|Y - Y - Y - Y - Y - Y - YB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) + 2(XB) \left(\frac{Y}{\|Y - Y - Y - YB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) + \frac{\partial}{\partial B} \left(\frac{Y}{\|Y - Y - YB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) + \frac{\partial}{\partial B} \left(\frac{Y}{\|Y - Y - YB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) + \frac{\partial}{\partial B} \left(\frac{Y}{\|Y - Y - YB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) + \frac{\partial}{\partial B} \left(\frac{Y}{\|Y - YB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) + \frac{\partial}{\partial B} \left(\frac{Y}{\|Y - YB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) + \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - YB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) + \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - YB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) + \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - YB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) + \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - YB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) + \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) + \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) + \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) + \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) + \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) + \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) + \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) + \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) + \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right) + \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y - XB\|} \right)$$

$$= \frac{\partial}{\partial B} \left(\frac{Y - XB}{\|Y -$$

Now	that I has	re a CS	Solution	. in
great	l, I can	ayph It to	tre case	\sim
multip	de prediches:			
Multo	a mear Re	gressu M	odel	
Y;= P	307 B1X11 + B2X2	et t q	3p X pi + 2	
	1 X, X,	- XIP		Bo
$\chi = $	1 X11 X12 1 X21 X22	X 2p	& B 2/	
		1		Br J.
) Xn1 Xn2	Xnp J		
	design mat			
	aeshir waa			
From H	re Normal EU:	Bo)		
BZ	= (XTX) -1 XTY =	1		
		L Fr /		

$$X = (\text{binniver}, \text{vegeterian}, \text{vesan}) \qquad 1$$

$$X_1 = \text{Invegation}) = \{0 \text{ if vegeterian}\}$$

$$X_2 = \text{Invegation}\} = \{0 \text{ if not}\}$$

$$X_2 = \text{Invegation}\} = \{0 \text{ if not}\}$$

$$X_3 = \text{Invegation}\} = \{0 \text{ if not}\}$$

$$X_4 = \{0 \text{ inverse of the design mothers}\} = \{0 \text{ inverse of the last of t$$

