FEBRUARY 18, 2023

IST-718: LAB #2

JIE WANG JWANG326@SYR.EDU ist-718

Introduction

Property investment is often seen as an attractive option for investors, as it can offer numerous benefits such as steady cash flow, long-term appreciation, and the ability to leverage investment through borrowing. This could be achieved through rental income, capital appreciation, or a combination of both.

However, choosing the right property is one of the crucial of the investment. And the location is one of the most important factors when it comes to property investment. A property that is located in a desirable area with access to amenities such as public transport, schools, and shopping centers is likely to generate more demand and higher rental income. Additionally, a property in a location with strong economic growth and job opportunities is likely to appreciate in value over time.

This often brings to question: how does one analyze or predict investment property? To start, several Arkansas metro areas will be analyzed. Then, a national generalization will be made to gain a higher-level understanding, before addressing whether specific zip codes can be identified as better investment opportunities. Using forecasting techniques, an ARIMA model will be used to predict mean and median estimates for successive months in 2017, through 2018.

Analysis

Data Sources:

Multiple datasets (rawdata) were implemented.

- ❖ Base data available from Zillow: Zip_Zhvi_SingleFamilyResidence.csv
- ❖ Unemployment data (1996-2017): unemployment.csv
- ❖ Unemployment data_ by zip code in Syracuse city: syrcode.xlsx
- ❖ 500 Most populated zip code: population zip code

Specifically, a main was collected from Zillow, then used to estimate housing worth per city and state. This dataset covers a time series between 1996-01 through 2017-09.

The unemployment rate data from 1996 to 2017 was required from https://www.bls.gov/lau/. This additional unemployment ratio feature during years could help improve the time series model. By incorporating historical unemployment data into the model, it may be able to provide a more comprehensive understanding of the economic conditions in the time being analyzed.

The unemployment rate data by zip code in Syracuse city was required from https://www.bls.gov/lau/. Filtering the unemployment rate data (<5% unemployment rate were used) for different zip codes in Syracuse can assist the Syracuse Real Estate Investment Trust in making informed investment decisions. Any zip code area with unemployment rate greater than 5% was omitted from the data aggregation.

The 500 most populated zip code data from https://worldpopulationreview.com/zips was used to filter the top three zip code with highest investment potential for Syracuse Real Estate Investment Trust (SREIT).

Method:

Time series model: Multivariant Time series Forecasting that incorporates unemployment rate using Prophet.

Data splitting: The threshold date is chosen to split train test data. The data before 01/2017 is considered as training dataset, and the date after 01/2017 was considered as testing data. Based on the threshold date (train_end_date) we set before, there are 494 data points in the training dataset and 11 data points in the testing dataset.

House price rate: House potential investment opportunities were evaluated by measuring house price increase rate from year 2018 to year 2017.

$$dif_{2018_{2017(\%)}} = \frac{Medium(2018_{price}) - Medium(2017_{price})}{Medium(2017_{price})} * 100$$

Results

1. An aggregated plot of the full original dataset house price trend

The aggregated plot of individual zip code shows that the house price from 1996-01 through 2017-09 exhibit a similar trend (**Figure 1**). The code used to generate the plot above can be reviewed in Appendix A below.

Figure 1. Time series plots of house price by zip code.

2. Time series plot for metro areas in Arkansas

It appears that Fayetteville, Arkansas has the greatest increase of property value since 2012, followed by a visually difficult decision between Little Rock Arkansas, Hot Springs Arkansas, and Searcy Arkansas (**Figure 2**). The code used to generate the plot above can be reviewed in Appendix B below.

Figure 2. Time series plots for metro areas in Arkansas.

3. Develop model for forecasting average median housing value for 2018 by Prophet.

Now we build a time series model using Facebook Prophet Python using median house price from indicated time, a time series model was generated using a train dataset to determine whether a time series model could generalize housing data. This was done from 01/1997 to 01/2017, and the year 2018 median house price were also predicted (**Figure 3-4**).

Next, the forecast dataframe with the test dataframe were merged to compare the actual values with the prediction values. The mean absolute error (MAE) for the baseline model is \$ 4702.24, meaning that on average, the forecast is off by \$4702.24. Given the average house price in 2017 is \$ 240623, the prediction is not bad.

The mean absolute percent error (MAPE) for the baseline model is 2.39%, meaning that on average, the forecast is off by 2.39% of the house price. The code used to generate the plot above can be reviewed in Appendix C below.

Figure 3. Baseline Prophet time series model with 2018-year prediction.

Figure 4. Prophet time series components using default hyperparameters.

4. Develop model for forecasting average median housing value for 2018 by adding seasonality to the baseline model.

The above baseline model gives a good estimation. Now I tune the model to make the estimation and force the model to consider the yearly seasonality (**Figure 5**). This model performance does not perform better than the baseline model. The MEA for the season model is \$ 4856.94; The MAPE for the season model is 2.46%. The code used to generate the plot above can be reviewed in Appendix D below.

Figure 5. Prophet time series model with seasonality. The black dots are the actual values. The blue line is the prediction. The blue shades are the prediction for 2018.

5. Develop model for forecasting average median housing value for 2018 by adding unemployment rate

To further tune the model, unemployment as an additional predictor using add_regressor function (**Figure 6-7**). The multivariate model performance is much better than the baseline model. The MAE for the multivariate model is \$ 4386.48; The MAPE for the multivariate model is 2.23%. MAE decreased to \$ 4386.48 from the baseline model's \$4702.24. MAPE decreased to 2.23% from the baseline model's 2.39%. The code used to generate the plot above can be reviewed in Appendix E below.

Figure 6. Prophet multivariate model forecast with 2018-year prediction. The black dots are the actual values. The blue line is the prediction. The blue shades are the prediction for 2018.

Figure 7. Prophet multivariate model components, this components plot has one additional chart for the additional regressor.

6. Develop model for forecasting average median housing value for 2018 by zip code

Subsequently, utilizing the aforementioned model, predictions for the housing prices of individual zip codes were made. The median house values in the year 2018 were imported into a dataframe. The partial data of this dataframe is presented in **Table 1** and **Supplementary Table 1**. The code used to generate the plot above can be reviewed in Appendix F below.

	date	predict value
0	1001	215904.781
1	1002	334853.767
2	1005	233368.226
3	1007	271741.715
4	1008	223991.843

Table 1. Predicted house media price for individual zip code in 2018.

7. Identify three zip codes provide the best investment opportunity for SREIT.

To identify the top three zip codes with best investment opportunities in 2018 for SREIT. The original were first filtered with most populated zip code, and with the available zip codes available in the original dataset, there were total 321 zip code house price record data were used. Within those data, the median value of 2018 year predicted price were generated with the Prophet time series model prediction.

House price increase rate from year 2018 to year 2017 were calculated. As shown in **Figure 8** and **Supplementary Table 1**, and the top three zip code with the great investment potential in 2018 would be zip code 94806 (San Pablo, CA), 94565 (Pittsburge, CA), and 92570(Hutto, TX). The predicted 2018 price increased from 2017 is 15.020%, 14.364%, and 14.262%, respectively. The code used to generate the plot above can be reviewed in Appendix G below.

Figure 8. Bar graph shows top ten zip code shows the high house price increasement.

In addition, the Syracuse city local zip code house price in next year, were also considered, and the three zip codes would be Zip code13212, 13215, and 13219.

8. Develop a geographic visualization that show the predicted house price in Dec 2018 by state.

The predicted house price in 2018 by different state were shown in **Supplementary Table2**. Data were grouped by state, **Figure 9** shows the predicted house price in Dec 2018 in different state. From this map, it seems that in 2018, the house price in HI and CA are much higher than that in other states. The code used to generate the plot above can be reviewed in Appendix H below.

Figure 9. House price prediction in Dec 2018 by state

Conclusions

In this study, Figure 1-2 show different zip code areas house price, and amongst four Arkansas metro area, each depicting a similar trend, while Fayetteville having much greater recent value. Next, a base Prophet model (Figure 3) with median house price showed a highly accurate model. Prophet model with seasonality did not provide a better model. Interesting, the Prophet model with additional feature — unemployment rate (Multivariant Time series Forecasting) performed the best model and improved the prediction. Specifically, The MAE for the multivariate model is \$ 4386.48; The MAPE for the multivariate model is 2.23%.

To narrow down our target, most populated zip codes were focused, and with the prediction of house price in 2018, and calculate the house price the increasement percentage from 2018 to 2017, it was found that the top three zipcodes are zip code 94806 (San Pablo, CA), 94565 (Pittsburge, CA), and 92570(Hutto, TX). Two from CA, and one from TX. In addition, by Dec 2018, median house price in HI and CA are the higher than other state.

This study effectively demonstrated the fundamental principles of time series forecasting using Prophet. It is worth noting that incorporating alternative methodologies and algorithms could potentially enhance the model's accuracy and overall performance. Moreover, the integration of supplementary data sources, such as school district performance or public transportation accessibility by zip code, may result in further improvement of the forecasting model.

Supplementary Table 1

Zipcode	Med_price_2017	Med_price_2018	dif_2018_2017	dif_2018_2017(%)
94806	427400	491594.5514	64194.5514	15.01978
94565	388100	443848.2179	55748.2179	14.3644
92570	299200	341873.089	42673.089	14.2624
85033	152500	174094.137	21594.137	14.16009
94541	581600	663839.9936	82239.9936	14.1403
80219	269000	306195.5287	37195.5287	13.82733
77072	131300	149413.4304	18113.4304	13.79545
92201	249000	283042.8013	34042.8013	13.67181
95823	255100	289885.2359	34785.2359	13.63592
92509	346500	393648.458	47148.458	13.60706
94509	368200	417712.1077	49512.1077	13.44707
77433	209500	237644.5088	28144.5088	13.43413
33157	291300	330400.3014	39100.3014	13.42269
85301	160600	182093.7717	21493.7717	13.38342
94538	842100	954742.7457	112642.7457	13.37641
94544	580700	657143.956	76443.956	13.1641
33024	249500	282274.5566	32774.5566	13.13609
33142	143700	162462.6377	18762.6377	13.05681
33463	232100	262384.5238	30284.5238	13.04805
94080	882600	997463.8677	114863.8677	13.01426
95051	1218600	1376881.379	158281.379	12.98879
94015	885900	1000246.524	114346.524	12.90739
95355	300600	339086.8483	38486.8483	12.80334
77379	219500	247526.3306	28026.3306	12.76826
95206	239900	270475.8065	30575.8065	12.74523
92571	280600	315947.9827	35347.9827	12.59729
33125	266600	299937.2418	33337.2418	12.50459
89115	152600	171538.457	18938.457	12.41052
92507	331600	372583.8868	40983.8868	12.35944
30058	114800	128932.2831	14132.2831	12.31035
77373	137100	153936.8874	16836.8874	12.28073
95127	673100	755593.9628	82493.9628	12.25583
95828	276900	310829.4003	33929.4003	12.2533
30331	133200	149473.2559	16273.2559	12.21716
30044	172500	193565.9907	21065.9907	12.21217
95112	736800	826588.1644	89788.1644	12.18623
90004	1509300	1691655.164	182355.164	12.0821
33012	297900	333664.5273	35764.5273	12.00555
95014	1992200	2230048.574	237848.574	11.93899
94536	967300	1082519.283	115219.283	11.91143
95687	389300	435651.623	46351.623	11.9064

97701	404600	452078.475	47478.475	11.73467
34953	204000	227927.074	23927.074	11.72896
77449	159500	178165.9995	18665.9995	11.70282
33064	192800	215328.267	22528.267	11.68479
30349	121400	135561.5922	14161.5922	11.66523
94533	342900	382834.4129	39934.4129	11.64608
85041	169200	188847.9615	19647.9615	11.61227
30281	145600	162462.2627	16862.2627	11.58122
60804	158400	176733.9901	18333.9901	11.57449
33015	322300	359435.8598	37135.8598	11.52214
33311	169000	188299.5574	19299.5574	11.41986
77084	158700	176781.5389	18081.5389	11.39353
89123	276800	308261.5874	31461.5874	11.36618
94587	811600	903204.6447	91604.6447	11.28692
94112	924700	1028956.693	104256.693	11.27465
94513	543000	603644.3988	60644.3988	11.1684
95020	695000	772211.8386	77211.8386	11.10962
90042	698600	776017.2976	77417.2976	11.08178
80013	314600	349430.2037	34830.2037	11.07127
92407	295000	327603.7433	32603.7433	11.05212
77396	153500	170431.4857	16931.4857	11.03028
92336	416100	461829.1697	45729.1697	10.98995
33027	382800	424528.4096	41728.4096	10.90084
91762	398100	441401.5147	43301.5147	10.87704
30083	118300	131148.003	12848.003	10.86053
32822	170500	188930.1254	18430.1254	10.80946
33411	322900	357549.8253	34649.8253	10.73082
30135	151200	167401.2846	16201.2846	10.71514
94501	967500	1070685.275	103185.275	10.66514
95035	953000	1054313.053	101313.053	10.63096
77095	209700	231942.756	22242.756	10.60694
89108	178900	197826.818	18926.818	10.57955
92563	400300	442485.7732	42185.7732	10.53854
91331	444100	490789.8368	46689.8368	10.51336
33186	328900	363043.8832	34143.8832	10.38124
95111	670700	740105.7473	69405.7473	10.34826
94122	1277900	1410041.691	132141.691	10.34053
80634	273900	302186.4226	28286.4226	10.32728
85281	250000	275760.4365	25760.4365	10.30417
92503	356500	393201.4765	36701.4765	10.29494
89110	175200	193216.1616	18016.1616	10.2832
92882	446700	492592.3504	45892.3504	10.27364
30052	182300	200921.9423	18621.9423	10.215
89031	212300	233874.4865	21574.4865	10.16226
91766	376600	414615.0738	38015.0738	10.09428

91911	448800	493393.1572	44593.1572	9.936087
60640	727700	799108.8564	71408.8564	9.812953
95123	852300	935836.0866	83536.0866	9.801254
85225	243500	267364.6734	23864.6734	9.800687
80015	376800	413442.5368	36642.5368	9.724665
7087	378600	415241.4775	36641.4775	9.67815
85008	190100	208472.7113	18372.7113	9.664761
92346	327600	358878.763	31278.763	9.547852
30041	322600	353082.497	30482.497	9.449007
32244	138900	152007.4754	13107.4754	9.436627
34744	204600	223892.7268	19292.7268	9.429485
32818	177300	193938.1151	16638.1151	9.38416
60634	256000	279995.5581	23995.5581	9.373265
60647	407000	445087.2447	38087.2447	9.358045
95624	399800	437150.6025	37350.6025	9.342322
92880	521400	570087.3917	48687.3917	9.33782
91402	445600	486963.1561	41363.1561	9.282575
95758	363500	397193.2595	33693.2595	9.269122
84118	184800	201542.9643	16742.9643	9.060046
90805	419000	456839.3609	37839.3609	9.030874
60402	194100	211542.7014	17442.7014	8.986451
92562	405500	441898.6657	36398.6657	8.976243
91761	426500	464656.1032	38156.1032	8.946331
91710	460300	501244.8492	40944.8492	8.895253
91343	567600	618078.5125	50478.5125	8.893325
33414	375100	408272.1922	33172.1922	8.84356
85122	152600	166053.4872	13453.4872	8.816178
91706	429000	466697.5077	37697.5077	8.787298
91744	433100	470905.903	37805.903	8.729139
30062	314500	341789.3913	27289.3913	8.677072
92592	438700	476654.7047	37954.7047	8.651631
7055	298100	323816.7403	25716.7403	8.626884
91730	430000	467034.2286	37034.2286	8.612611
90706	489300	531394.9291	42094.9291	8.603092
93033	421500	457589.4158	36089.4158	8.562139
60632	167200	181488.9034	14288.9034	8.545995
91702	431700	468537.2758	36837.2758	8.533073
37211	237400	257595.755	20195.755	8.507058
32825	215900	234243.7378	18343.7378	8.496405
91950	406200	440674.8769	34474.8769	8.487168
92105	405300	439666.9333	34366.9333	8.479382
90650	443800	481399.6734	37599.6734	8.472211
30040	264600	286966.8759	22366.8759	8.45309
33458	423800	459532.5627	35732.5627	8.431468
90022	416300	451396.6551	35096.6551	8.430616

60618	416000	451033.5573	35033.5573	8.421528
90731	593000	642581.9726	49581.9726	8.36121
91910	503200	545039.8272	41839.8272	8.314751
92126	567500	614566.2688	47066.2688	8.293616
97007	426000	461267.9117	35267.9117	8.278853
97229	560500	606684.6689	46184.6689	8.239905
89121	193500	209437.0015	15937.0015	8.236176
80134	454300	491590.4238	37290.4238	8.208326
60657	1073900	1161713.118	87813.118	8.177029
91732	490000	529983.1647	39983.1647	8.15983
90631	584400	631903.0723	47503.0723	8.12852
91342	488200	527883.2973	39683.2973	8.128492
30004	430000	464783.2612	34783.2612	8.089131
30188	212600	229745.792	17145.792	8.064813
92154	444200	479994.4058	35794.4058	8.058173
34711	239100	258299.0927	19199.0927	8.029733
8701	368500	397806.8561	29306.8561	7.953014
91335	515100	555982.9229	40882.9229	7.93689
91709	645100	696237.5921	51137.5921	7.92708
30024	331400	357665.7675	26265.7675	7.925699
33511	204600	220741.2941	16141.2941	7.889196
85032	255700	275823.6128	20123.6128	7.870009
92057	481700	519547.6924	37847.6924	7.857109
60073	144500	155844.6354	11344.6354	7.850959
93727	236300	254799.3759	18499.3759	7.828767
30127	176100	189838.5359	13738.5359	7.801554
93722	225800	243389.6581	17589.6581	7.789928
7093	370100	398924.1306	28824.1306	7.788201
30096	218000	234865.4404	16865.4404	7.736441
90250	573300	617614.3651	44314.3651	7.729699
97006	397500	428153.1944	30653.1944	7.711495
90660	444600	478831.0678	34231.0678	7.699296
92115	500100	538452.057	38352.057	7.668878
30043	216000	232478.7865	16478.7865	7.629068
60614	1525300	1640935.956	115635.956	7.581194
90640	526000	565816.9179	39816.9179	7.569756
93065	561100	603168.6819	42068.6819	7.497537
93312	271200	291197.9491	19997.9491	7.373875
93030	503700	540710.6803	37010.6803	7.347763
30047	198700	213298.5802	14598.5802	7.347046
90026	875700	939725.9576	64025.9576	7.311403
91770	552800	593007.1472	40207.1472	7.273362
85364	126900	136108.1046	9208.1046	7.25619
92021	470000	503719.1677	33719.1677	7.174291
85308	273100	292583.5681	19483.5681	7.134225

60641	284900	305072.8844	20172.8844	7.08069
2301	272200	291366.1718	19166.1718	7.041209
32210	120700	129190.879	8490.879	7.034697
60623	141000	150847.3571	9847.3571	6.983941
93536	322800	345066.1393	22266.1393	6.897813
34787	278300	297478.0035	19178.0035	6.891126
2155	553200	591118.9866	37918.9866	6.854481
78640	183800	196085.3588	12285.3588	6.684091
30022	421500	449492.8326	27992.8326	6.641241
48197	198400	211534.8533	13134.8533	6.62039
84095	387900	413370.2097	25470.2097	6.566179
96706	639200	680862.7862	41662.7862	6.517958
37013	193300	205773.4688	12473.4688	6.452907
83709	222300	236563.3414	14263.3414	6.416258
2148	423700	450578.9164	26878.9164	6.343856
60085	109400	116234.6193	6834.6193	6.247367
28277	382400	406214.1531	23814.1531	6.22755
37075	257100	273085.8779	15985.8779	6.217767
60629	159500	169324.4746	9824.4746	6.159545
43081	228200	242246.2547	14046.2547	6.155239
30263	152200	161547.8553	9347.8553	6.141823
32218	157100	166644.3598	9544.3598	6.07534
29445	165300	175324.4204	10024.4204	6.06438
60639	221600	234990.4475	13390.4475	6.042621
95747	449500	476657.7189	27157.7189	6.041762
28027	198500	210450.0654	11950.0654	6.020184
37122	279200	295853.4957	16653.4957	5.964719
60651	160800	170314.0997	9514.0997	5.916729
60625	423100	448060.1671	24960.1671	5.899354
98052	827500	874986.1205	47486.1205	5.738504
96818	876700	926991.653	50291.653	5.736472
32765	292000	308614.0959	16614.0959	5.689759
28269	186300	196819.9028	10519.9028	5.646754
98012	521800	551247.6988	29447.6988	5.643484
60016	269300	284382.2417	15082.2417	5.600535
29483	180700	190653.8509	9953.8509	5.508495
32808	106100	111944.3303	5844.3303	5.508323
84043	309100	326123.6451	17023.6451	5.507488
78130	197900	208791.3969	10891.3969	5.503485
37167	190900	201086.0698	10186.0698	5.335814
95630	516800	544196.167	27396.167	5.301116
95608	381300	401464.2181	20164.2181	5.288282
37064	412000	433758.6277	21758.6277	5.28122
22193	322200	339188.0052	16988.0052	5.272503
37128	221400	233036.0165	11636.0165	5.255653

30144	202900	213436.709	10536.709	5.193055
28078	276900	291245.0267	14345.0267	5.18058
83646	234200	246009.4835	11809.4835	5.042478
37129	208600	218898.6478	10298.6478	4.937032
96797	679900	713466.1043	33566.1043	4.936918
77840	204800	214871.0558	10071.0558	4.917508
60608	231200	242549.6315	11349.6315	4.90901
43026	234500	246005.4583	11505.4583	4.906379
74012	153300	160779.2517	7479.2517	4.878833
84015	201700	211451.8202	9751.8202	4.834814
7047	398400	417080.3708	18680.3708	4.688848
32828	281900	294940.2127	13040.2127	4.625829
33647	304900	318655.8234	13755.8234	4.511585
2360	340000	355319.0831	15319.0831	4.505613
27587	281600	294255.5824	12655.5824	4.49417
22030	585600	610995.1269	25395.1269	4.3366
22407	250600	261419.3006	10819.3006	4.317359
14850	250100	260631.1164	10531.1164	4.210762
29681	221400	230612.6332	9212.6332	4.161081
84404	179200	186556.4153	7356.4153	4.105142
43123	165400	172017.9674	6617.9674	4.001189
20906	383900	398791.3086	14891.3086	3.878955
28215	148700	154382.1958	5682.1958	3.821248
22191	303700	314858.1711	11158.1711	3.674077
29485	197500	204752.4371	7252.4371	3.67212
72712	194500	201502.0787	7002.0787	3.60004
19720	177900	184055.5297	6155.5297	3.460107
78045	169000	174739.8066	5739.8066	3.396335
43230	200000	206763.5269	6763.5269	3.381763
63376	192300	198757.9582	6457.9582	3.358273
45011	185900	192009.844	6109.844	3.286629
27406	114800	118505.8916	3705.8916	3.228129
38401	152000	156844.0641	4844.0641	3.186884
44060	175300	180689.8134	5389.8134	3.074623
21234	204000	210166.2281	6166.2281	3.022661
44256	212600	218909.971	6309.971	2.968001
99301	192300	197897.797	5597.797	2.910971
27610	149100	153395.9211	4295.9211	2.881235
19134	113800	116851.1073	3051.1073	2.681114
6902	568000	583101.3731	15101.3731	2.658692
20147	606700	622802.5309	16102.5309	2.654118
73160	133300	136689.1573	3389.1573	2.542504
20874	515200	528200.8003	13000.8003	2.523447
29072	196300	201011.5144	4711.5144	2.40016
23464	268200	274231.011	6031.011	2.248699

10314	514700	525413.0088	10713.0088	2.081408
23462	231500	236153.4194	4653.4194	2.010116
43130	129700	132269.1247	2569.1247	1.980821
37042	124100	126434.2711	2334.2711	1.88096
21122	309400	315049.1628	5649.1628	1.825844
23322	343600	349431.0842	5831.0842	1.697056
87121	135700	138002.8432	2302.8432	1.69701
22192	435900	443218.4566	7318.4566	1.67893
10701	456100	463364.9919	7264.9919	1.592851
44035	92100	93515.20656	1415.20656	1.536598
60620	137400	139465.8934	2065.8934	1.503561
60609	135700	137637.4336	1937.4336	1.427733
23320	285800	289876.9773	4076.9773	1.426514
20878	652300	661380.064	9080.064	1.392007
21740	152600	154706.6666	2106.6666	1.380515
8753	266800	270011.5992	3211.5992	1.203748
10312	509100	514961.3204	5861.3204	1.15131
28314	110800	112000.1939	1200.1939	1.083207
7002	352100	355016.967	2916.967	0.828448
17603	146100	147181.9947	1081.9947	0.740585
87120	186300	187409.0944	1109.0944	0.595327
46307	201400	202383.8727	983.8727	0.488517
21117	273400	274631.5	1231.5	0.450439
72401	118700	119225.0591	525.0591	0.442341
53215	98800	99007.79288	207.79288	0.210317
40475	155300	155555.6669	255.6669	0.164628
87114	208800	208942.03	142.03	0.068022
19124	120400	120437.178	37.178	0.030879
47906	182900	182813.3887	-86.6113	-0.04735
19111	176300	176183.6509	-116.3491	-0.06599
6010	182200	181446.5327	-753.4673	-0.41354
79912	171400	170472.7915	-927.2085	-0.54096
79938	130900	129967.5139	-932.4861	-0.71237
79936	114000	113071.2382	-928.7618	-0.8147
19120	119700	118328.3412	-1371.6588	-1.14591
7305	261900	258606.4313	-3293.5687	-1.25757
78520	77400	76117.23403	-1282.76597	-1.65732
60619	149100	146564.1571	-2535.8429	-1.70077
78521	71700	70274.15176	-1425.84824	-1.98863
79924	91200	89066.43495	-2133.56505	-2.33944
92345	227100	219898.6611	-7201.3389	-3.171
60617	122600	118684.2441	-3915.7559	-3.19393
90280	413300	396657.1935	-16642.8065	-4.02681
92404	254100	242125.2372	-11974.7628	-4.71262
60628	112900	105385.2273	-7514.7727	-6.65613
55525	112300			0.03013

93306	187200	174390.3513	-12809.6487	-6.84276
90262	409900	374610.4136	-35289.5864	-8.60932
92376	303300	266145.4316	-37154.5684	-12.2501
92335	317900	276318.615	-41581.385	-13.08
90044	397000	335474.2467	-61525.7533	-15.4977
90037	427600	357104.3676	-70495.6324	-16.4863
92324	272100	224850.8409	-47249.1591	-17.3646
92553	267800	218004.7984	-49795.2016	-18.5942
90003	361400	287180.098	-74219.902	-20.5368
93307	159100	125347.8213	-33752.1787	-21.2144

Supplementary Table 2

0	State AK AL	price_2008_Dec 290624.887 129409.082
2	AR	126863.087
3	AZ	239688.622
4	CA	572128.541
5	CO CT	372992.446
6 7	DE	251239.503 205904.569
8	FL	235010.886
9	GA	153125.784
10	HI	746944.256
11	IA	161692.172
12	ID	186350.539
13	IL	153277.740
14	IN	112596.076
15	KS	107891.853
16	KY	142804.012
17	LA	151972.657
18	MA	378283.485
19	MD	303163.917
20	ME	204078.356
21	MI	150648.258
22	MN	209381.069
23	MO	140831.063
24	MS	106502.079
25	MT	207108.352
26 27	NC ND	156643.442 218698.309
28	NE	161647.614
29	NH	248778.195
30	NJ	328048.035
31	NM	177612.018
32	NV	299415.326
33	NY	186522.255
34	ОН	130882.527
35	OK	117913.034
36	OR	302498.018
37	PA	156255.171
38	RI	285581.490
39	SC	140385.085
40	SD	186867.540
41	TN	125525.111
42	TX	169015.761
43	UT	274032.485
44	VA	231316.516
45 46	WA	323330.541
46 47	WI wy	168896.700
47 48	WV WY	124189.228 202158.164
40	VVT	202130.104

Appendix A

Time series plots of house price by zip code

```
\ensuremath{\text{\#}} read data and check the summary of the data
df = pd.read_csv("Zip_Zhvi_SingleFamilyResidence.csv")
df.describe()
\# clean up the dataframe
\ensuremath{\mathtt{\#}} Rename RegionName to ZipCode and Change Zip Code to String
df.rename(columns={"RegionName":"ZipCode"}, inplace=True)
df["ZipCode"]=df["ZipCode"].map(lambda x: "{:.0f}".format(x))
df.head()
# 2.2 visulize the price of all the zip code using seaborn.
# group by zipcode
df_zipcode = df.groupby('ZipCode').agg(np.median).dropna().T
# remove columns: column 0 indicates an NaN column
df_zipcode_clean = df_zipcode.drop(['SizeRank'], axis=0)
# df zipcode clean = df zipcode clean.drop([0], axis=1)
df_zipcode_clean.plot(legend=None)
plt.grid(False)
plt.show()
```

Appendix B

Arkansas Metro Area

ax.plot(AR_Searcy.iloc[-1], linestyle='solid')

```
# 2.1 develop time serier plots for the following Arkansaa metro areas: Hot Springs, Little Rock, Fayetteville,
options = ['Fayetteville','Hot Springs', 'Little Rock', 'Searcy']
AR df = df.loc[(df['State'] == 'AR') & df['Metro'].isin(options)]
\mbox{\tt\#} fill the NA value with the mean of the group
# generate individual dataframe
AR_Fay = AR_df.loc[AR_df['Metro'] == 'Fayetteville']
AR_Hot = AR_df.loc[AR_df['Metro'] == 'Hot Springs']
AR_Little = AR_df.loc[AR_df['Metro'] == 'Little Rock']
AR_Searcy = AR_df.loc[AR_df['Metro'] == 'Searcy']
AR_Fay = AR_Fay.fillna(AR_Fay.mean())
AR Hot = AR Hot.fillna(AR Hot.mean())
AR Little = AR Little.fillna(AR Little.mean())
AR Searcy = AR Searcy.fillna(AR Searcy.mean())
# clean data, delete not significant columns
# delet RegionID, ZipCode, City, State, CountyName, SizeRank, Metro
cols = [0,1,2,3,4,5,6]
AR_Fay.drop(df.columns[cols],axis=1,inplace=True)
AR Hot.drop(df.columns[cols],axis=1,inplace=True)
AR Little.drop(df.columns[cols],axis=1,inplace=True)
AR_Searcy.drop(df.columns[cols],axis=1,inplace=True)
AR Fay.loc['mean'] = AR Fay.mean()
AR Hot.loc['mean'] = AR Hot.mean()
AR Little.loc['mean'] = AR Little.mean()
AR Searcy.loc['mean'] = AR Searcy.mean()
# timeseries plot
fig, ax = plt.subplots()
ax.plot(AR Fay.iloc[-1], linestyle='solid')
ax.plot(AR_Hot.iloc[-1], linestyle='solid')
ax.plot(AR_Little.iloc[-1], linestyle='solid')
```

```
# decrease ticks
xmin, xmax = ax.get_xlim()
ax.set_xticks(np.round(np.linspace(xmin, xmax, 23), 2))

# rotate ticks + show legend
plt.xticks(rotation=90)
plt.gca().legend(('fayetteville','hot_springs', 'little_rock', 'searcy'))
plt.grid(False)
# show overall plot
plt.show()
```

Appendix C

Baseline Prophet time series model

```
# transforms the dataset into a time series modeling dataset.
# Prophet requirs at least two colums as input: a ds column and a y colum
\# the ds column has the time information. currently we have the date as the index
# the y column has the time series values. in this case, we are predicting the house price, we will use median
# train: collapse colums by median
# train: collapse column by median
train start = df.columns.get loc('1997-01')
train_stop = df.columns.get_loc('2017-01')
test_stop = df.columns.get_loc('2017-09')
train columns = df.iloc[:, train start:train stop].columns.tolist()
test_columns = df.iloc[:, (train_stop ):test_stop].columns.tolist()
# remove rows with 0's beginning (1997-01) with trainset
date_columns = df.iloc[:, train_start:test_stop].columns.tolist()
df[date_columns] = df[date_columns].replace(0, np.nan)
df[date_columns] = df[date_columns].dropna()
# transpose dataframe: left column data, right column value
     date1 val1
     date2 val2
     daten valn
df_train = df[train_columns].median().T
df_test = df[test_columns].median().T
df_train = pd.DataFrame({'ds': df_train.index, 'y':df_train.values})
df_test = pd.DataFrame({'ds': df_test.index, 'y':df_test.values})
# check the shape of the dataset
print(df train.shape)
print(df_test.shape)
\# check the minimum and maximum values for the train and test dataset separately gave us the starting and
ending dates
```

```
print('The start time of the training dataset is ',df train['ds'].min())
print('The end time of the training dataset is ',df train['ds'].max())
print('The start time of the testing dataset is ',df test['ds'].min())
print('The end time of the testing dataset is ',df_test['ds'].max())
### baseline model
# In this step, we will build a univariate baseline model using the default prophet hyperparameters, and fit
the model using the training dataset
# Prophet automatically fits dailym weekly, and yearly seasonalities if the time series is more than two cycles
# use the default hyperparameters to initiate the Prophet model
model_baseline = Prophet()
# Fit the model on the training dataset
model baseline.fit(df train)
# we will continue with the default values for the baseline model and force the yearly seasonality in the next
model to see the impact of the yearly seasonality
\# to make a forecast, we first need to create a future dataframe, (2017-2 to 2017-8 test, 2017-9 to 2018-12
prediction)
# there are total 23 period
# create the time range for the forcast
future baseline = model baseline.make future dataframe(periods = 24, freq = 'MS') # frequency is Month, use
'MS', instead of 'M'
# make prediction
forecast_baseline = model_baseline.predict(future_baseline)
# Visualize the forecast
model_baseline.plot(forecast_baseline);
# the black dots are the actual values
# the blue line is the prediction
# visulize the forecast components
# from the component plot, we can see the the house price has an overall upward trend.
# the monthly seasonality shows that the price tends to be lower at the beginning of year, and higher at June,
and much high at Dec.
model baseline.plot components(forecast baseline);
test1 = forecast baseline.iloc[[240, 241,242,243,244,245,246,247]]
test1['y'] = df test['y'].tolist()
# baseline model performance
```

```
# next let's check the model performance
# the forcast dataframe does not include the actual values, so we need to merger the forecast dataframe with
the test dataframe to compare the actual value with the predicted values.
# merge actual and predicted values
# performance_baseline = pd.merge(df_test, forcast_baseline[['ds','yhat','yhat_lower','yhat_upper']][-23:], on
= 'ds')
performance baseline = test1
# check MAE value
performance_baseline_MAE = mean_absolute_error(performance_baseline['y'], performance_baseline['yhat'])
print(f'The MAPE for the baseline model is {performance_baseline_MAE}')
# check MAPE value
performance_baseline_MAPE = mean_absolute_percentage_error(performance_baseline['y'])
performance_baseline['yhat'])
print(f'The MAPE for the baseline model is {performance_baseline_MAPE}')
\#\#\# Check the prediction media value of house price in 2018
pred table = forecast baseline.tail(16)
pred_table1 = pred_table[['ds', 'yhat_lower', 'yhat_upper', 'yhat']]
pred_table1.rename (columns = {'ds':'date', 'yhat_lower': 'predict_lower', 'yhat_upper': 'predict_upper',
'yhat': 'predict value'}, inplace =True)
```

Appendix D

Baseline Prophet time series model with seasonality

print(f'The MAPE for the season model is {performance_season_MAPE}')

the baseline already give a good estimations, now we tune the model to make the estimations better

we will force the model to consider the yearly seasonality. # add seasonality model_season = Prophet(yearly_seasonality =True, weekly_seasonality =True) # Fit the model on the training data set model_season.fit(df_train) # create the time range for the forcast future_season = model_season.make_future_dataframe(periods = 24, freq = 'MS') # frequency is Month, use 'MS', instead of 'M' # make prediction forecast_season = model_season.predict(future_season) # Visualize the forecast model_season.plot(forecast_season); model_season.plot_components(forecast_season); test2 = forecast_season.iloc[[241,242,243,244,245,246,247]] test2['y'] = df_test['y'].tolist() # merge actual and predicted values # performance_baseline = pd.merge(df_test, forcast_baseline[['ds','yhat','yhat_lower','yhat_upper']][-23:], on performance season = test2 # check MAE value performance season MAE = mean absolute error(performance season['y'], performance season['yhat']) print(f'The MAPE for the season model is {performance season MAE}') # check MAPE value performance season MAPE = mean absolute percentage error(performance season['y'], performance season['yhat'])

Appendix E

Baseline Prophet time series model with unemployment rate

```
### Multivariate Model
# In this step, we will add additional data
# require data from Bureau of Labor Statistics gathering unemployment from 1997 to 2023 monthly.
# read data https://data.bls.gov/pdq/SurveyOutputServlet
unemployment = pd.read csv('unemployment.csv')
unemployment train= unemployment[unemployment['Year']<2017]</pre>
# merge unemployment with train data
df_train_1 = pd.concat([unemployment_train, df_train], axis =1)
df_train_1 = df_train_1.drop(df_train_1.columns[[0,1,2]], axis=1)
unemployment_test= unemployment[unemployment['Year']==2017]
# unemployment_test = unemployment_test.iloc[1:, :]
df test['Value'] = unemployment test['Value'].tolist()
df test 1 = df test.copy()
data = pd.concat([df train 1,df test 1], axis = 0)
data.rename({'ds':'date'}, axis =1, inplace =True)
## Here we added unemployment rate as an additional predictor using the add regressor function. standardize =
False means the regressor will not be standardized
# unemployment is chosen as a convenient example of illustrating the process of building multivariate model
model multivariate = Prophet()
# add regressor
model multivariate.add regressor('Value', standardize = False)
#Fit the model on the training data set
model multivariate.fit(df train 1)
unemploydata full = pd.read csv('dataa.csv')
# when make forecasts for the multivariate model, we need to make sure that the regressors have values for the
forecast periods, so we used left join and appended value data to the future dataframe
# in the case that the forecast is for the future without the regressor data, separate model need to buillt for
the regressors to get the predictions for the future dates
\# create the time range for the forcast
future_multivariate = model_multivariate.make_future_dataframe(periods = 24, freq = 'MS') # frequency is
Month, use 'MS', instead of 'M'
# Append the regressor values
test = pd.concat([future multivariate, unemploydata full], axis =1)
```

```
# # Fill the missing values with the previous value
# future multivariate = test.fillna(method = 'ffill')
# # # check the data
test.tail(10)
# make prediction
forecast_multivariate = model_multivariate.predict(test)
# visu
model_multivariate.plot(forecast_multivariate);
model_multivariate.plot_components(forecast_multivariate);
test_v = forecast_multivariate.iloc[[240, 241,242,243,244,245,246,247]]
test v['y'] = df test['y'].tolist()
test v
## multivariate model performance
# next let's check the model performance
# the forcast dataframe does not include the actual values, so we need to merger the forecast dataframe with
the test dataframe to compare the actual value with the predicted values.
# merge actual and predicted values
# performance_baseline = pd.merge(df_test_1, forcast_baseline[['ds','yhat','yhat_lower','yhat_upper']][-23:],
on = 'ds')
performance_mul = test_v
# check MAE value
performance_mul_MAE = mean_absolute_error(performance_mul['y'], performance_mul['yhat'])
print(f'The MAPE for the multivariate model is {performance_mul_MAE}')
# check MAPE value
performance mul MAPE = mean absolute percentage error(performance mul['y'], performance mul['yhat'])
print(f'The MAPE for the multivariate model is {performance_mul_MAPE}')
```

Appendix F

Develop model for forecasting average median housing value for 2018 by zip code

```
zipcode = list(df_zipcode_clean.columns.values)
#### This is significant to predict individual house price in 2018 by zip code
\#\# import the median value of house price in 2018 into a dataframe
cols = ['Zipcode', 'Med price 2018']
zipcode = list(df zipcode clean.columns.values)
# zipcode50 = zipcode[0:50]
dat = pd.DataFrame(columns = cols)
for i in zipcode:
   model_baseline1 = Prophet()
   inputdata = df_zipcode_clean[i]
   df = pd.DataFrame(inputdata).reset_index()
   df1 = df.set_axis(['ds','y'], axis=1, inplace=False)
   \ensuremath{\mbox{\#}} 
 Fit the model on the training dataset
   model baseline1.fit(df1)
   # create the time range for the forcast
   future baseline = model baseline1.make future dataframe(periods = 15, freq = 'MS') # frequency is Month,
use 'MS', instead of 'M'
   # make prediction
   forecast baseline = model baseline1.predict(future baseline)
   # Visualize the forecast
   # model baseline1.plot(forecast baseline);
   ### Check the prediction media value of house price in 2018
   pred table = forecast baseline.tail(12)
   pred_table1 = pred_table[['ds', 'yhat']]
   pred_table1.rename (columns = {'ds':'date', 'yhat': 'predict value'}, inplace =True)
   price_2008 = pred_table1['predict value'].median()
   dat = dat.append(('Zipcode': str(i), 'Med_price_2018':price_2008),ignore_index=True)
```

Appendix G

Identify three zip codes provide the best investment opportunity for SREIT.

```
### down sample with selecting the top 500 populated zip code
## read the top 500 populated zip code
pp zip = pd.read csv('population zip code.csv')
pp_zip_list = pp_zip['zip'].tolist()
pp_zip_list
## select the zip code for downsampling
str_list = [str(i) for i in pp_zip_list]
seleted cols = list(filter(lambda col: col in str list,df zipcode clean.columns))
df_zipcode_500 = df_zipcode_clean.loc[:,seleted_cols]
df_zipcode_500
\#\#\# This is significant to predict individual house price in 2018 by zip code
## import the median value of house price in 2018 into a dataframe
cols = ['Zipcode', 'Med price 2018']
zipcode = list(df_zipcode_500.columns.values)
dat = pd.DataFrame(columns = cols)
for i in zipcode:
    model baseline1 = Prophet()
    inputdata = df zipcode clean[i]
    df = pd.DataFrame(inputdata).reset_index()
    df1 = df.set_axis(['ds','y'], axis=1, inplace=False)
    # Fit the model on the training dataset
    model baseline1.fit(df1)
    # create the time range for the forcast
    future baseline = model baseline1.make future dataframe(periods = 15, freq = 'MS') # frequency is Month,
use 'MS', instead of 'M'
    # make prediction
    forecast_baseline = model_baseline1.predict(future_baseline)
    # Visualize the forecast
    # model baseline1.plot(forecast baseline);
    ### Check the prediction media value of house price in 2018
    pred_table = forecast_baseline.tail(12)
    pred_table1 = pred_table[['ds', 'yhat']]
pred_table1.rename (columns = {'ds':'date', 'yhat': 'predict value'}, inplace =True)
    price_2008 = pred_table1['predict value'].median()
    dat = dat.append({'Zipcode': str(i), 'Med_price_2018':price_2008},ignore_index=True)
## now get the median price from 2017. and merege data to caluculate the increase price (%) from 2017 to 2018
last 9 rows = df zipcode 500.tail(9)
medians = last_9_rows.median()
print (medians)
# export data
dat.to csv('2018predicted.csv')
dfa.to csv('2017.csv')
combined2017 2018 = pd.read csv('2017 2018combined.csv')
combined2017_2018['dif_2018_2017'] = combined2017_2018['Med_price_2018'] - combined2017_2018['Med_price_2017']
combined2017_2018['dif_2018_2017(%)'] = 100 *
combined2017_2018['dif_2018_2017']/combined2017_2018['Med_price_2017']
\#\#\# the top 3 zip code is 94806, 94565, and 926570
# visulize the the top ten zip code
sorted combined2017 2018a = sorted combined2017 2018[['Zipcode', 'dif 2018 2017(%)']]
sorted combined2017 2018b = sorted combined2017 2018a.set index('Zipcode')
sorted combined2017 2018b[0:10].plot(kind="bar")
```

Appendix H

Develop a geographic visualization that show the predicted house price in Dec, 2018 by state.

```
### predict house price in 2018 by state
#### This is significant to predict individual house price in 2018 by zip code
\#\# import the median value of house price in 2018 into a dataframe
cols = ['State', 'price_2008_Dec']
state = list(df state.columns.values)
dat = pd.DataFrame(columns = cols)
for i in state:
   model baseline1 = Prophet()
   inputdata = df state[i]
   df = pd.DataFrame(inputdata).reset index()
   df1 = df.set_axis(['ds','y'], axis=1, inplace=False)
   # Fit the model on the training dataset
   model baseline1.fit(df1)
   \ensuremath{\text{\#}} create the time range for the forcast
   future_baseline = model_baseline1.make_future_dataframe(periods = 15, freq = 'MS') # frequency is Month,
use 'MS', instead of 'M'
   # make prediction
   forecast baseline = model baseline1.predict(future baseline)
   # Visualize the forecast
   # model_baseline1.plot(forecast_baseline);
   ### Check the prediction media value of house price in 2018
   pred table = forecast baseline.tail(12)
   pred_table1 = pred_table[['ds', 'yhat']]
   pred_table1.rename (columns = {'ds':'date', 'yhat': 'predict value'}, inplace =True)
   price 2008 Dec = pred table1['predict value'].iloc[-1]
   dat = dat.append({'State': str(i), 'price 2008 Dec':price 2008 Dec},ignore index=True)
import plotly.express as px
# read in your dataframe (replace 'your dataframe.csv' with the name of your actual file)
# dat
\# create a choropleth map using the 'state' and 'median price' columns in the dataframe
fig = px.choropleth(dat, locations='State', locationmode='USA-states', color='price_2008_Dec', scope='usa',
                  title='Predicted Housing Price by US State 2018 Dec')
\ensuremath{\text{\#}}\xspace display the resulting visualization
fig.show()
```