ESCUELA DE INGENIERÍA INSTITUTO DE INGENIERÍA MATEMÁTICA Y COMPUTACIONAL

Series de tiempo

Syllabus

Equipo Docente

Jonathan Acosta

Doctor en Matemática. Profesor asistente del departamento de estadísticas de la facultad de matemáticas de la Pontificia Universidad Católica de Chile.

Sus líneas de investigación e interés son el modelamiento de Datos Dependientes, la estadística Computacional y extracción de conocimiento desde bases de datos no estructuradas y la modelación Estadística para Aplicaciones Multidisciplinarias.

Descripción del curso

El estudiante estudiará los modelos de series cronológicas y sus aplicaciones. El estudiante deberá ser capaz de identificar y aplicar metodologías de series de tiempo para el manejo de modelos de predicción y su aplicación a casos reales. Actividades prácticas con datos reales serán utilizadas como mecanismo de aprendizaje y evaluación.

Resultados de Aprendizaje

- Identificar problemas que pueden resolverse mediante análisis de series de tiempo.
- 2. Proponer modelos de series de tiempo según las características de la aplicación.

- 3. Evaluar el mejor modelo que se ajuste a los datos observados.
- Realizar predicciones con diferentes modelos de series de tiempo a partir de problemas reales.

Estrategias metodológicas

El curso tiene como estrategias metodológicas:

- Videoclases.
- Cátedra en sesiones sincrónicas.
- Estudios de casos.
- Aprendizaje basado en problemas.
- Aprendizaje entre pares.
- Tutoriales.
- Trabajo personal de lectura.

Estructura del curso

El curso está estructurado de la siguiente forma:

1. Introducción:

- Ejemplos
- Dependencia serial
- Ausencia de estacionariedad
- Test de blancura

2. Procesos Lineales:

- Estacionariedad e invertibilidad
- Causalidad
- Representación de procesos lineales
- Dependencia
- Modelo ARMA

Función de auto-covarianza, ACF y PACF

3. Estimación y Predicción:

- Construcción de modelos
- Parsimonia y criterios de información
- Estimación de la media, de auto-covarianzas, de momentos y máximo verosímil
- Inferencia estadística
- Predicción pasado finito e infinito
- Construcción de bandas de predicción

4. Procesos No Estacionarios y Estacionales:

- Tendencia determinística y estocástica
- Test de raíces unitarias
- Modelos ARIMA, ARIMAX, SARIMA y SARIMAX

Para aprobar cada curso, el alumno debe cumplir con:

 Realizar todas las actividades e-learning, examen y obtener una nota final igual o superior a 4.0.

Actividad	Evaluación
Pruebas	50%
Participación en Foros	15%
Trabajo final	35%

El curso contendrá además actividades formativas (sin calificación), las que tienen como propósito la preparación para las evaluaciones calificadas.

Plataforma e Información General

Traducción: Time series

Sigla: EPG4507
Créditos: 5 UC

Duración: 90 horas de dedicación total (24 directas y 66 indirectas)

• Requisitos: INF3103

Restricciones: (Programa MDS)

Conector: Y

Carácter: MínimoTipo: Cátedra

• Calificación: Estándar

Palabras clave: Econometría, Finanzas, Modelos de Series de Tiempo, Predicción

Nivel formativo: Magíster.

Política de entregas de evaluaciones calificadas fuera de plazo

En caso de entregar una evaluación calificada, sea esta Tarea o Cuestionario, fuera del plazo informado (fecha límite), se aplicará un descuento progresivo a la nota máxima por entrega tardía. El plazo para entregar evaluaciones o tareas fuera de plazo será de 7 días desde la fecha límite. Luego de los 7 días de plazo adicional, el alumno obtendrá una nota de 0% en dicha evaluación.

Si por razones de fuerza mayor, el alumno/a no pudiera rendir la prueba dentro del plazo regular o excepcional, deberá enviar una solicitud al correo de Soporte de su programa, adjuntando respaldos para que su requerimiento sea evaluado por la Unidad Académica (UA). La resolución de esta solicitud guedará a criterio de la UA.

Integridad Académica

La Pontificia Universidad Católica de Chile aspira a lograr la excelencia en la creación y transferencia de conocimiento y en la formación de las personas, inspirada en una concepción católica y siempre al servicio de la iglesia y de la sociedad.

A través de la Educación Continua, se espera aportar al cumplimiento de los ejes de desarrollo de la universidad, innovando en la docencia, fortaleciendo la interdisciplina y profundizando el compromiso público.

Así mismo la Dirección de Educación Continua, se compromete a una constante búsqueda de la satisfacción de las expectativas de los estudiantes, a fortalecer las competencias de los funcionarios y profesionales, a mejorar continuamente el sistema de gestión de la calidad y a mantenerse siempre dentro del marco legal vigente.

Bibliografía

Mínima:

- Box, G.E.P., Jenkins, G.M., Reinsel, G.C., & Ljung, G.M. (2015) Time Series Analysis:
 Forecasting and Control, Wiley.
- Brockwell, P.J. & Davis, R.A. (2016) Introduction to Time Series and Forecasting,
 Springer.
- Chan, N.H. (2002) Time Series Applications to Finance, Wiley.
- Fuller, W.A. (1996) Introduction to Statistical Time Series, Wiley.
- Kirchgässner, G. & Jürgen, W. (2007) Introduction to Modern Time Series Analysis,
 Springer.
- Montgomery, D.C., Jennings, C.L., & Kulahci, M. (2015) Introduction to Time Series
 Analysis and Forecasting, Wiley.
- Palma, W. (2016) Time Series Analysis, Wiley.
- Shumway, R.H. & Stoffer, D.S. (2017) Time Series Analysis and Its Applications:
 With R Examples, Springer.
- Tsay, R.S. (2013) Multivariate Time Series Analysis: With R and Financial Applications, Wiley.

Complementaria

Cowpertwait, P.S.P. & Metcalfe, A.V. (2009) Introductory Time Series with R,
 Springer.

- Cryer, J.D. & Chan, K.S. (2008) Time Series Analysis: With Applications in R,
 Springer.
- Derryberry, D.R. (2014) Basic Data Analysis for Time Series with R, Wiley.
- Doukhan, P., Oppenheim, G., & Taqqu, M. (2003) Theory and Applications of Long-Range Dependence, Birkhäuser.
- Kitagawa, G. (2020) Introduction to Time Series Modeling with Applications in R, Chapman and Hall/CRC.
- Palma, W. (2007) Long-Memory Time Series: Theory and Methods, Wiley.
- Tsay, R.S. (2010) Analysis of Financial Time Series, Wiley.
- Tsay, R.S. (2012) An Introduction to Analysis of Financial Data with R, Wiley.