组会报告

徐益

2018年12月3日

1 工作内容

- 1. 收数据程序结构化;
- 2. 编写并测试 RZF 预编码矩阵生成程序;
- 3. 根据当前架构修改 PHY-MAC 对接程序及多线程系统。

2 data_collection 程序结构化

图 1: data_collection 程序结构

3 编写并测试 RZF 预编码矩阵生成程序

3.1 RZF 预编码

$$W_{RZF} = \beta H (H^H H + \xi I_K)^{-1} \tag{1}$$

3.2 核心函数

void cblas_cgemm (const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE transa, const
CBLAS_TRANSPOSE transb, const MKL_INT m, const MKL_INT n, const MKL_INT k, const void
*alpha, const void *a, const MKL_INT lda, const void *b, const MKL_INT ldb, const void
*beta, void *c, const MKL INT ldc);

Include Files

• mkl.h

Description

The ?gemm routines compute a scalar-matrix-matrix product and add the result to a scalar-matrix product, with general matrices. The operation is defined as

```
C := alpha*op(A)*op(B) + beta*C,
```

where:

op (X) is one of op (X) = X, or op $(X) = X^{T}$, or op $(X) = X^{H}$,

alpha and beta are scalars,

A, B and C are matrices:

op (A) is an m-by-k matrix,

op (B) is a k-by-n matrix,

图 2: 矩阵运算函数

lapack_int LAPACKE_cgesv (int matrix_layout , lapack_int n , lapack_int nrhs ,
lapack_complex_float * a , lapack_int lda , lapack_int * ipiv , lapack_complex_float *
b , lapack int ldb);

Include Files

• mkl.h

Description

The routine solves for X the system of linear equations $A^*X = B$, where A is an n-by-n matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

The LU decomposition with partial pivoting and row interchanges is used to factor A as $A = P^*L^*U$, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations $A^*X = B$.

图 3: 线性方程求解函数

3.3 表达式变换

$$W_{RZF} = H\left(\frac{1}{\beta}H^{H}H + \frac{\xi}{\beta}I_{K}\right)^{-1} \tag{2}$$

$$W_{RZF} = HM^{-1} \tag{3}$$

$$W_{RZF}M = H (4)$$

$$M^T = W_{RZF}^T H^T (5)$$

3.4 测试结果

2x2: Time: 0.0113s Throughput: 88817.84times/s Time: 0.0024s Throughput: 415627.62times/s 0.0066s Time: Throughput: 152207.00times/s Time: 0.0116s Throughput: 86535.13times/s 32x32: Time: 0.1258s Throughput: 7946.16times/s 64x64: Time: 0.1771s
Throughput: 5647.13times/s 128x128: Time: Time: 0.2832s Throughput: 3531.32times/s

图 4: 测试结果

4 根据当前架构修改 PHY-MAC 对接程序及多线程系统