IN THE CLAIMS:

Please amend the claims as follows, substituting any amended claim(s) for the corresponding pending claim(s):

1 2. (Canceled)

1 3. (Canceled)

1 4. (Canceled)

(Canceled)

1

1.

1 6. (Canceled)

5.

1

(Canceled)

- 1 7. (Canceled)
- 1 8. (Canceled)

1	9.	(Canceled)
1	10.	(Canceled)
1	11.	(Canceled)
1	12.	(Canceled)
1	13.	(Canceled)
1	14.	(Canceled)
1	15.	(Canceled)
1	16	(Canceled)

l	17. (Withdrawn) A method of fabricating a portion of a semiconductor device comprising:
2	forming a gate structure on a substrate by:
3	depositing an insulating oxide layer on the substrate;
4	depositing a nitride layer on the oxide layer; and
5	depositing a polysilicon layer on the nitride layer; and
5	reoxidizing the gate structure to form a layer of oxide over the gate structure.
l	18. (Withdrawn) The method of claim 17, wherein the depositing step includes depositing the
2	nitride layer on the insulating oxide layer to a thickness from about 10 Å to about 50 Å.
l	19. (Withdrawn) The method of claim 17, wherein the reoxidizing step includes reoxidizing the gate
2	structure to form an oxide layer from about 25 Å to about 500 Å thick.

1	20. (Withdrawn) The method of claim 17, further comprising:
2	patterning the gate structure by selectively etching away portions of the insulating oxide,
3	nitride and polysilicon layers to expose a portion of the substrate and form a peripheral edge around
4	the gate structure; and
5	exposing the substrate to an oxidizing ambient during reoxidation to oxidize the exposed
5	portion of the substrate.
l	21. (Withdrawn) The method of claim 20, wherein the reoxidation causes an uplift in a peripheral
2	portion of the nitride layer.
l	22. (Withdrawn) The method of claim 20, wherein the reoxidation causes an indentation in the
2	substrate near the peripheral edge of the gate structure.
1	23. (Withdrawn) The method of claim 17, further comprising:
2	prior to the reoxidizing step, forming source and drain regions in the substrate.
l	24. (Canceled)

l	25. (V	vithdrawn) A method for fabricating a portion of a semiconductor device, comprising:
2		forming an oxide gate layer on a surface of a substrate;
3		forming a nitride layer on the oxide gate layer by depositing the nitride layer on the oxide
4	gate la	ayer;
5		forming a polysilicon layer on the nitride layer;
6		patterning the polysilicon and nitride layers to form a gate structure; and
7		reoxidizing the gate structure to form a layer of oxide over the gate structure and on sidewalls
8	of the	gate structure.
1	26.	(Canceled)
1	27.	(Canceled)
1	28.	(Canceled)
1	29.	(Canceled)
1	30.	(Canceled)

l	31.	(Canceled)
1	32.	(Canceled)
1	33.	(Canceled)
1	34.	(Canceled)
1	35.	(Canceled)
1	36.	(Canceled)
1	37.	(Canceled)
1	38.	(Canceled)
1	39.	(Canceled)
1	40.	(Canceled)

1	41.	(Canceled)
1	42.	(Canceled)
1	43.	(Canceled)
1	44.	(Canceled)
1	45.	(Canceled)
1	46. (A	mended) An integrated circuit device comprising:
2		a substrate;
3		a gate structure, wherein the gate structure includes:
4		a gate oxide layer on the substrate,
5		a nitride layer on and directly contacting the gate oxide layer, and
6		a polysilicon layer over the nitride layer;
7		a channel region under the gate structure; and
8		source/drain regions in the substrate adjacent the channel region.

1	47. (Unchanged) The integrated circuit device of claim 46, wherein the nitride layer is from about
2	10 Å to about 50 Å thick.
1	48. (Unchanged) The integrated circuit device of claim 46, wherein the nitride layer is deposited
2	over said gate oxide layer.
1	49. (Unchanged) The integrated circuit device of claim 46, wherein the nitride layer is formed by
2	nitrogen implantation to form an implanted area and by annealing of the implanted area.
1	50. (Unchanged) The integrated circuit device of claim 46, wherein the gate structure has a
2	peripheral edge and further including an uplift in portions of the nitride layer proximate the
3	peripheral edge of the gate structure, the uplift caused by reoxidation of the gate structure, wherein
4	asperities are absent from the polysilicon layer.
l	51. (Unchanged) The integrated circuit device of claim 46, wherein the substrate has a surface and
2	further including an indentation in the surface of the substrate located proximate to the peripheral
3	edge of the gate structure, the indentation resulting from reoxidation of the gate structure.

1	52. (Unchanged) The integrated circuit device of claim 46 further wherein the gate structure
2	includes sidewall spacers located on each edge of the gate structure and lightly doped drain regions
3	in the substrate below the sidewalls spacers.
1	53. (Unchanged) The integrated circuit device of claim 46, wherein the substrate is a p-type
2	substrate and wherein the source/drain regions are formed by implanting n-type impurities in the per-
3	type substrate.
1	54. (Unchanged) The integrated circuit device of claim 51, wherein the source/drain regions are
2	implanted prior to reoxidation.
1	55. (Unchanged) The integrated circuit device of claim 53, wherein the source/drain regions are
2	implanted after reoxidation.
1	56. (Unchanged) The integrated circuit device of claim 46, wherein the channel region has a length
2	not greater than 0.8 μm.

- 1 57. (Unchanged) The integrated circuit device of claim 46, wherein the gate oxide layer is not
- greater than 200 Å thick.
- 1 58. (Withdrawn) The method of claim 23, wherein a channel region beneath the gate structure
- between the source/drain regions has a length not greater than 0.8 μm.
- 1 59. (Withdrawn) The method of claim 25, further comprising:
- forming the oxide gate layer to a thickness not greater than 200 Å.