STAT S4240 002, Homework 1

Brian Weinstein (bmw2148)

July 13, 2015

Problem 1: James 2.4, Exercise 8

Part a

>	college	<	- re	ad.csv	(fi	ile="da	tase	ts/Co	ollege	e.csv")								
>	head(co	11	ege)															
						Х	Pri	vate	Apps	Accept	Enroll	Top10per	c Top25perc	F. Undergrad	P. Undergrad	Outstate	Room.Board	Books
1	Abilene	C	hris	tian U	Iniv	versity		Yes	1660	1232	721	2	52	2885	537	7440	3300	450
2			Ade	lphi U	Iniv	versity		Yes	2186	1924	512	1	5 29	2683	1227	12280	6450	750
3				Adria	ın (College		Yes	1428	1097	336	2	2 50	1036	99	11250	3750	400
4			Agne	s Scot	t (College		Yes	417	349	137	6	89	510	63	12960	5450	450
5	Alas	ka	Pac	ific U	Iniv	versity		Yes	193	146	55	1	6 44	249	869	7560	4120	800
6			Al	bertso	n (College		Yes	587	479	158	3	8 62	678	41	13500	3335	500
	Persona	1 1	PhD '	Termin	al	S.F.Ra	tio	perc.	alum	ni Expe	nd Grad	.Rate						
1	220	0	70		78	18	8.1		1	12 70	41	60						
2	150	0	29		30	1	2.2		1	16 105	27	56						
3	116	5	53		66	1	2.9			30 87	35	54						
4	87	5	92		97		7.7			37 190	16	59						
5	150	0	76		72	1	1.9			2 109	22	15						
6	67	5	67		73		9.4		1	11 97	27	55						

Part b

	row.names	Private	Apps	Accept	Enroll	Top10perc	Top25perc
1	Abilene Christian University	Yes	1660	1232	721	23	52
2	Adelphi University	Yes	2186	1924	512	16	29
3	Adrian College	Yes	1428	1097	336	22	50
4	Agnes Scott College	Yes	417	349	137	60	89
5	Alaska Pacific University	Yes	193	146	55	16	44
6	Albertson College	Yes	587	479	158	38	62
7	Albertus Magnus College	Yes	353	340	103	17	45
8	Albion College	Yes	1899	1720	489	37	68
9	Albright College	Yes	1038	839	227	30	63
10	Alderson-Broaddus College	Yes	582	498	172	21	44

Part c

Part i

> summary(college)												
Private	Apps	Accept	Enroll 1	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate				
No :212 N	1in. : 81	Min. : 72 Mi	n. : 35 Mir	n. :1.00	Min. : 9.0	Min. : 139	Min. : 1.0	Min. : 2340				
Yes:565 1	lst Qu.: 776	1st Qu.: 604 1s	t Qu.: 242 1st	t Qu.:15.00	1st Qu.: 41.0	1st Qu.: 992	1st Qu.: 95.0	1st Qu.: 7320				
1	1edian : 1558	Median: 1110 Me	dian : 434 Med	dian :23.00	Median : 54.0	Median : 1707	Median : 353.0	Median : 9990				
1	1ean : 3002	Mean : 2019 Me	an : 780 Med	an :27.56	Mean : 55.8	Mean : 3700	Mean : 855.3	Mean :10441				
3	3rd Qu.: 3624	3rd Qu.: 2424 3r	d Qu.: 902 - 3rd	d Qu.:35.00	3rd Qu.: 69.0	3rd Qu.: 4005	3rd Qu.: 967.0	3rd Qu.:12925				
1	1ax. :48094	Max. :26330 Ma	x . : 6392 Max	k. :96.00	Max. :100.0	Max. :31643	Max. :21836.0	Max. :21700				
Room.Boar	rd Books	Personal	PhD	Termir	nat S.F.Ra	tio perc.al	umni Expend	Grad.Rate				
Min. :178	30 Min. :	96.0 Min. :250	Min. : 8.8	30 Min. :	24.0 Min. :	2.50 Min. :	0.00 Min. : 3	3186 Min. : 10.00				
1st Qu.:359	97 1st Qu.: 4	70.0 1st Qu.: 850	1st Qu.: 62.0	30 1st Qu.:	71.0 1st Qu.:	11.50 1st Qu.:	13.00 1st Qu.: 6	6751 1st Qu.: 53.00				
Median :420	00 Median:5	00.0 Median :1200	Median : 75.0	30 Median:	82.0 Median :	13.60 Median :	21.00 Median : 8	3377 Median : 65.00				
Mean :435	58 Mean :5	49.4 Mean :1341	Mean : 72.6	66 Mean :	79.7 Mean ::	14.09 Mean :	22.74 Mean : 9	9660 Mean : 65.46				
3rd Qu.:505	50 3rd Qu.: 6	00.0 3rd Qu.:1700	3rd Qu.: 85.0	30 3rd Qu.:	92.0 3rd Qu.:	16.50 3rd Qu.:	31.00 3rd Qu.:10	9830 3rd Qu.: 78.00				
Max. :812	24 Max. :23	40.0 Max. :6800	Max. :103.8	00 Max. :1	100.0 Max. :	39.80 Max. :	64.00 Max. :56	6233 Max. :118.00				

Part ii

Part iii

Part iv

There are 78 colleges categorized as "Elite".

Part v

Part vi

I chose to explore acceptance and enrollment rates, with acceptance rate defined as the number of students accepted per application received (college\$Accept/college\$Apps), and enrollment rate defined as the number of students enrolled per applicant accepted (college\$Enroll/college\$Accept).

Somewhat surprisingly, there's little correlation between acceptance and enrollment rate.

> cor(college\$acceptRate, college\$enrollRate)

[1] 0.0824304

I also looked at summary statistics by public vs private schools.

```
> college %>%
+ group_by(Private) %>%
+ summarize(min.acceptRate=min(acceptRate),
+ median.acceptRate=median(acceptRate),
+ mean.acceptRate=mean(acceptRate),
+ min.enrollRate=max(acceptRate),
+ min.enrollRate=min(enrollRate),
+ median.enrollRate=median(enrollRate),
+ mean.enrollRate=mean(enrollRate),
+ max.enrollRate=max(enrollRate)) %>%
+ as.data.frame()
```

```
Private min.acceptRate median.acceptRate mean.acceptRate max.acceptRate min.enrollRate
               0.3397060
                                  0.7443387
                                                  0.7265305
1
       No
                                                                          1
                                                                                0.13242009
2
               0.1544863
      Yes
                                  0.7885653
                                                  0.7545812
                                                                          1
                                                                                0.09975397
 median.enrollRate mean.enrollRate max.enrollRate
          0.4405908
                          0.4620216
                                          0.9382716
1
2
          0.3660934
                          0.3932510
                                          1.0000000
```


Problem 2: James 2.4, Exercise 9

Part a

Quantitative predictors: mpg, cylinders, displacement, horsepower, weight, acceleration, year

Qualitative predictors: origin, name

Part b

	statistic	mpg	cylinders	${\tt displacement}$	horsepower	weight	acceleration	year	origin	name	
1	min	9.0	3	68	46	1613	8.0	70	NA	NA	
2	max	46.6	8	455	230	5140	24.8	82	NA	NA	

Part c

statistic mpg cylinders displacement horsepower weight acceleration year origin

1	mean 23.445918	5.471939	194.412 10	04.46939	2977.5842	15.541327	75.979592	N
2	sd 7.805007	1.705783	104.644	38.49116	849.4026	2.758864	3.683737	N.

Part d

	statistic	mpg	cylinders	displacement	horsepower	weight	${\tt acceleration}$	year	origi
1	min	11.000000	3.000000	68.00000	46.00000	1649.0000	8.500000	70.000000	N
2	max	46.600000	8.000000	455.00000	230.00000	4997.0000	24.800000	82.000000	N
3	mean	24.404430	5.373418	187.24051	100.72152	2935.9715	15.726899	77.145570	N
4	sd	7.867283	1.654179	99.67837	35.70885	811.3002	2.693721	3.106217	N

Part e

MPG generally increased between 1970 and 1982.

Figure 1: MPG vs year

As the number of cylinders increases, MPG generally decreases.

Figure 2: MPG vs number of cylinders

There isn't a particularly strong relationship between weight and acceleration (at least not one that is easily seen graphically).

But there is a strong negative relationship between horsepower and acceleration.

And unsurprisingly, as the weight of a car increases, so does its horsepower.

Japanese cars (3) are usually lighter than American (1) and European (2) cars.

Japanese cars also have higher MPG.

Figure 3: MPG by origin

Figure 4: MPG vs weight, by origin

Part f

As shown in **Part e**, the year (Figure 1), number of cylinders (Figure 2), origin (Figure 3), and weight (Figure 4) of a car are all useful in predicting MPG. Displacement is also a useful predictor, but acceleration is not (see Figures 5 and 6 below).

Figure 5: MPG vs displacemet

Figure 6: MPG vs acceleration

Problem 3: James 2.4, Exercise 10

Part a

In the Boston dataset there are 506 rows and 14 columns. Each row represents a town in Boston. The column definitions, as written in the help file, are:

crim: per capita crime rate by town.

zn: proportion of residential land zoned for lots over 25,000 sq.ft.

indus: proportion of non-retail business acres per town.

chas: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).

nox: nitrogen oxides concentration (parts per 10 million).

rm: average number of rooms per dwelling.

age: proportion of owner-occupied units built prior to 1940.

dis: weighted mean of distances to five Boston employment centres.

rad: index of accessibility to radial highways. tax: full-value property-tax rate per \$10,000.

ptratio: pupil-teacher ratio by town.

black: $1000(Bk - 0.63)^2$ where Bk is the proportion of blacks by town.

1stat: lower status of the population (percent).

medv: median value of owner-occupied homes in \$1000s.

Part b

Pupil-teacher ratio decreases slightly as home value increases.

As distance from employment centers increases, nitrogen oxides concentration decreases.

For plots incorporating crime rate (crim), see Part c.

Part c

Crime rates are associated with many of the predictors. As "lower status of the population (percent)" increases, crime rates do too.

Similarly, towns with a higher proportion of buildings built before 1940 have higher crime rates as well.

Towns further from employment centers have lower crime rates.

And crime rates decrease as the median home value increases.

Part d

Yes, some suburbs of Bostom appear to have particularly high crime rates. The suburbs in rows 381, 399, 401, 405, 406, 411, 414, 415, 418, 419, and 428 each have a per capita crime rate of more than 25. Crime rate ranges from 0.00632 to 88.97620.

There also appear to be some towns with incredibly high tax rates. There are 137 towns with full-value property-tax rate per \$10,000 of more than 600. Tax rate ranges from 187 to 711. A subset of the 137 towns are listed below:

```
[1] 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 ....
[121] 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
```

It doesn't look like any towns have particularly high pupil-teacher ratios. Pupil-teacher ratio ranges from 12.6 to 22.0. 20.2 students/teacher appears to be a very popular ratio.

Range of each predictor:

```
stat
         crim
              zn indus chas
                               nox
                                           age
                                                    dis rad tax ptratio black lstat medv
                                      rm
     0.00632
min
                0
                  0.46
                           0 0.385 3.561
                                            2.9
                                                1.1296
                                                          1 187
                                                                   12.6
                                                                          0.32 1.73
                                                                                        5
max 88.97620 100 27.74
                           1 0.871 8.780 100.0 12.1265 24 711
                                                                   22.0 396.90 37.97
                                                                                        50
```

Part e

35 town in the dataset bound the Charles river

Part f

Among towns in the dataset, the median pupil-teacher ratio is 19.05.

Part g

The towns in row numbers 399 and 406 have the lowest median values of owner-occupied homes at \$5,000.

For those towns:

```
rowNum
            crim zn indus chas
                                                   dis rad tax ptratio black lstat medv
                                  nox
                                         rm age
1
     399 38.3518
                     18.1
                              0 0.693 5.453 100 1.4896
                                                        24 666
                                                                   20.2 396.90 30.59
                                                                                        5
     406 67.9208
                              0 0.693 5.683 100 1.4254
2
                     18.1
                                                        24 666
                                                                   20.2 384.97 22.98
                                                                                        5
```

Crime rates here are on the upper end of the range, and the towns have an average number of rooms per dwelling. Neither town borders the Charles river, and 100% of owner-occupied buildings in both towns were built before 1940.

Part h

There are 64 towns that average more than 7 rooms per dwelling, and 13 towns that average more than 8 rooms per dwelling.

Towns with more than 8 rooms per dwelling:

	rowNum	crim	zn	${\tt indus}$	chas	nox	rm	age	dis	rad	tax	ptratio	black	lstat	${\tt medv}$
1	98	0.12083	0	2.89	0	0.4450	8.069	76.0	3.4952	2	276	18.0	396.90	4.21	38.7
2	164	1.51902	0	19.58	1	0.6050	8.375	93.9	2.1620	5	403	14.7	388.45	3.32	50.0
3	205	0.02009	95	2.68	0	0.4161	8.034	31.9	5.1180	4	224	14.7	390.55	2.88	50.0
4	225	0.31533	0	6.20	0	0.5040	8.266	78.3	2.8944	8	307	17.4	385.05	4.14	44.8
5	226	0.52693	0	6.20	0	0.5040	8.725	83.0	2.8944	8	307	17.4	382.00	4.63	50.0
6	227	0.38214	0	6.20	0	0.5040	8.040	86.5	3.2157	8	307	17.4	387.38	3.13	37.6
7	233	0.57529	0	6.20	0	0.5070	8.337	73.3	3.8384	8	307	17.4	385.91	2.47	41.7
8	234	0.33147	0	6.20	0	0.5070	8.247	70.4	3.6519	8	307	17.4	378.95	3.95	48.3
9	254	0.36894	22	5.86	0	0.4310	8.259	8.4	8.9067	7	330	19.1	396.90	3.54	42.8
10	258	0.61154	20	3.97	0	0.6470	8.704	86.9	1.8010	5	264	13.0	389.70	5.12	50.0
11	263	0.52014	20	3.97	0	0.6470	8.398	91.5	2.2885	5	264	13.0	386.86	5.91	48.8
12	268	0.57834	20	3.97	0	0.5750	8.297	67.0	2.4216	5	264	13.0	384.54	7.44	50.0
13	365	3.47428	0	18.10	1	0.7180	8.780	82.9	1.9047	24	666	20.2	354.55	5.29	21.9

These towns all have very low crime rates and have lower values for lstat. They generally have medv values towards the higher end of the range.

Problem 4: Yale Faces B

Part a

The CroppedYale/yaleB01/yaleB01_P00A-005E+10.pgm image is of class pixmapGrey (part of the pixmap package). The original image is made up of 32,256 pixels (192 x 168).

hw01_01a: the first face

Part b

A pixel value in a pixmapGrey-classed pgm image ranges from 0 to 1. A value of 0 corresponds to a black pixel, and a value of 1 corresponds to a white pixel.

In faces_matrix, which combines images 1 and 2, the pixel values range from 0.007843137 to 1.000000000.

Part c

dir_list_1 lists all of the directories stored in the CroppedYale/ directory. It has 38 elements, a sample of which is shown below.

```
> dir_list_1
  [1] "yaleB01" "yaleB02" "yaleB03" "yaleB04" "yaleB05" "yaleB06" "yaleB07"
...
[36] "yaleB37" "yaleB38" "yaleB39"
```

dir_list_2 lists all of the individual files stored in the CroppedYale/ directory, showing the full file path of each file stored in the directory. It has 2,547 elements, a sample of which is shown below.

```
> head(dir_list_2, 10)
[1] "yaleB01/DEADJOE" "yaleB01/WS_FTP.LOG"
[3] "yaleB01/yaleB01_P00_Ambient.pgm" "yaleB01/yaleB01_P00.info"
[5] "yaleB01/yaleB01_P00A-005E-10.pgm" "yaleB01/yaleB01_P00A-005E+10.pgm"
[7] "yaleB01/yaleB01_P00A-010E-20.pgm" "yaleB01/yaleB01_P00A-010E+00.pgm"
[9] "yaleB01/yaleB01_P00A-015E+20.pgm" "yaleB01/yaleB01_P00A-020E-10.pgm"
> tail(dir_list_2, 10)
[1] "yaleB39/yaleB39_P00A+070E+45.pgm" "yaleB39/yaleB39_P00A+085E-20.pgm"
[3] "yaleB39/yaleB39_P00A+085E+20.pgm" "yaleB39/yaleB39_P00A+095E+00.pgm"
[5] "yaleB39/yaleB39_P00A+110E-20.pgm" "yaleB39/yaleB39_P00A+110E+15.pgm"
```

- [7] "yaleB39/yaleB39_P00A+110E+40.pgm" "yaleB39/yaleB39_P00A+110E+65.pgm"
- [9] "yaleB39/yaleB39_P00A+120E+00.pgm" "yaleB39/yaleB39_P00A+130E+20.pgm"

Part d

