Value Iteration

Computing the optimal value function

$$V_H^*(s) = 0$$

$$V_t^*(s) = \max_{a \in \mathcal{A}} \left(\overline{R}_{t,a}(s) + \sum_{s' \in \mathcal{S}} P_{t,a}(s'|s) V_{t+1}^*(s') \right)$$

Computing an optimal policy

$$\mu_t(s) \in \arg\max_{a \in \mathcal{A}} \left(\overline{R}_{t,a}(s) + \sum_{s' \in \mathcal{S}} P_{t,a}(s'|s) V_{t+1}^*(s') \right)$$

Computing optimal state-action values

$$Q_{H-1}^*(s,a) = \overline{R}_{t,a}(s)$$

$$Q_{t}^{*}(s, a) = \overline{R}_{t,a}(s) + \sum_{s' \in \mathcal{S}} P_{t,a}(s'|s) \max_{a' \in \mathcal{A}} Q_{t+1}^{*}(s', a')$$

Infinite-Horizon Problems

- Discounted reward MDP $(S, A, R, P, \alpha, \rho)$
 - Time-homogeneous
 - Discount factor $\alpha \in (0,1)$
 - Policy $\mu = (\mu_0, \mu_1, ...)$
 - Objective

$$\max_{\mu} \mathbb{E} \left[\sum_{t=0}^{\infty} \alpha^t r_t \mid a_t = \mu_t(s_t) \right]$$

- Average reward MDP (S, A, R, P, ρ)
 - Objective

$$\max_{\mu} \liminf_{H \to \infty} \frac{1}{H} \mathbb{E} \left[\sum_{t=0}^{H-1} r_t \mid a_t = \mu_t(s_t) \right]$$

Episodic Learning

- Reinforcement learning algorithm
 - Given observations through episode $\ell 1$
 - Select policy $\mu^{\ell} = (\mu_0^{\ell}, \dots, \mu_{H-1}^{\ell})$
 - Apply actions $a_t^{\ell} = \mu_t^{\ell}(s_t^{\ell})$
- Cumulative reward over L episodes

$$\sum_{\ell=1}^{L} \sum_{t=0}^{H-1} r_t^{\ell}$$

- Simple framework for designing algorithms and generating insight
 - Ideas extend more broadly
 - Overlapping episodes
 - Infinite horizon formulations

Episodic RL Example: Recommendation

Consider recommending movies

- N movies
- Sequence of H recommendations for each customer
- Customer accepts/rejects each
- Goal: high acceptance rate

MDP formulation

• state: $s_t \in \{0, 1, ?\}^N$ • action: $a_t \in \{1, \dots, N\}$ • reward: $r_t \in \{0, 1\}$

Episodic learning

- Customer = episode
- Learn from customers how to deal with other customers
- Episodes run in parallel
- Important to update policy using data from incomplete episodes
- Netflix challenge: generalization
- Is exploration important?
- Are delayed consequences important?

Tabula Rasa Learning

- Model learning
 - Learn transition probabil<u>ities</u> $P_{t,a}(s'|s)$
 - Learn expected rewards $\overline{R}_{t,a}(s)$
- Value function learning
 - Learn $Q_t^*(s,a)$
- Policy learning
 - Learn $\mu_t^*(s)$
- Tabula rasa learning
 - No generalization across state-action pairs
 - Data requirements grow with # states-action pairs
- Need for generalization
 - Curse of dimensionality
- Begin with tabula rasa learning
 - Study exploration with delayed consequences

Asynchronous Value Iteration

- Start with some Q^0
- For k = 0, 1, 2, ...
 - Select (t^k, s^k, a^k)
 - Obtain Q^{k+1} from Q^k
 - Apply value iteration update at (t^k, s^k, a^k)
- Note that
 - Q^{k+1} only differ at Q^k
 - For an appropriately selected sequence of updates, this is the same as regular value iteration
- Theorem: if the sequence samples each triple infinitely often then $Q^k \to Q^*$

Real-Time Value Iteration

- Asynchronous value iteration for a particular sequence of updates
- Episodic "learning"
 - Updates require knowledge of
- Start with some Q^0
- For $\ell = 0, 1, 2$
 - For t = 0, 1, ..., H
 - Select "greedy" action $a_t^\ell \in \arg\min_{a \in \mathcal{A}} Q_t^\ell(s_t^\ell, a)$
 - Update value at $(t, s_t^{\ell}, a_t^{\ell})$
 - Sample next state $s_{t+1}^{\ell} \sim P_{t,a_t^{\ell}}(\cdot|s_t^{\ell})$
- "greedy policy"
 - Does not necessarily sample all triples
- Theorem: if $Q^0 \ge Q^*$ then actions are optimal after some (random) finite time

DP Operators

DP operators

$$(T_H V_{t+1})(s) = \max_{a \in \mathcal{A}} \left(\overline{R}_{t,a}(s) + \sum_{s' \in \mathcal{S}} P_{t,a}(s'|s) V_{t+1}(s') \right)$$

$$(F_t Q_{t+1})(s, a) = \overline{R}_{t,a}(s) + \sum_{s' \in \mathcal{S}} P_{t,a}(s'|s) \max_{a' \in \mathcal{A}} Q_{t+1}(s', a')$$

Value iteration

$$V_t^* = T_t V_{t+1}^*$$

$$Q_t^* = F_t Q_{t+1}^*$$

Monotonicity

$$V_{t+1} \ge V'_{t+1} \qquad \Longrightarrow \qquad T_t V_{t+1} \ge T_t V'_{t+1}$$

$$Q_{t+1} \ge Q'_{t+1} \qquad \Longrightarrow \qquad F_t Q_{t+1} \ge F_t Q'_{t+1}$$