UNIVERSITY NAME

DOCTORAL THESIS

Mathematical expressions

Author:
Doctor WHO

Supervisor: Bruce DICKINSON

"Help, I'm being oppressed. Come and see the violence inherent in the system. " $\;$

Dennis

"I don't think you trust in, my, self righteous suicide I, cry, when angels deserve to die "

Serj Tankian

Contents

1	nun	nerical		1
	1.1	Govern	ning equations	1
		1.1.1	Derivation of	1
		1.1.2	Derivation of	1
	1.2	RANS		
		1.2.1	Derivation of RANS	
	1.3	LES .		-
		1.3.1	Folders	1
		1.3.2	Files	
	1.4	Picture	es	-

List of Figures

1.1 Resolving eddies in different kinds of CFD analyses		
---	--	--

List of Abbreviations

LAH List Abbreviations HereWSF What (it) Stands For

Physical Constants

Speed of Light $c_0 = 2.99792458 \times 10^8 \,\mathrm{m\,s^{-1}}$ (exact)

List of Symbols

a distance

P power $W(J s^{-1})$

 ω angular frequency rad

Chapter 1

numerical

1.1 Governing equations

Continuity equation:

$$\frac{\partial \rho}{\partial t} + \nabla(\rho U) = 0 \tag{1.1}$$

Momentum equation:

$$\frac{dU}{dt} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 U \tag{1.2}$$

1.1.1 Derivation of ...

continuity

1.1.2 Derivation of ...

momentum

1.2 RANS

RANS

1.2.1 Derivation of RANS

rans

- 1.3 LES
- 1.3.1 Folders
- 1.3.2 Files
- 1.4 Pictures

FIGURE 1.1: Pickle Rick.