Geometric vs non-geometric rough paths

David Kelly Martin Hairer

Mathematics Institute University of Warwick Coventry UK CV4 7AL dtbkelly@gmail.com

November 5, 2012

Data Assimilation 2012, Oxford.

The problem

We are interested in equations of the form

$$d\mathbf{Y}_t = \sum_i f_i(\mathbf{Y}_t) dX_t^i ,$$

where $X : [0, T] \to V$ is path with *some* Hölder exponent $\gamma \in (0, 1)$, $Y : [0, T] \to U$ and $f_i : U \to U$ are smooth vector fields.

The theory of **rough paths** (Lyons) tells us that we should think of the equation as

$$d\mathbf{Y}_t = \sum_i f_i(\mathbf{Y}_t) d\mathbb{X}_t , \qquad (\dagger)$$

where \mathbb{X} is an object containing X as well as information about the iterated integrals of X. We call \mathbb{X} a **rough path** above X.

The problem

We are interested in equations of the form

$$d\mathbf{Y}_t = \sum_i f_i(\mathbf{Y}_t) dX_t^i ,$$

where $X : [0, T] \to V$ is path with *some* Hölder exponent $\gamma \in (0, 1)$, $Y : [0, T] \to U$ and $f_i : U \to U$ are smooth vector fields.

The theory of **rough paths** (Lyons) tells us that we should think of the equation as

$$d\mathbf{Y}_t = \sum_i f_i(\mathbf{Y}_t) d\mathbf{X}_t , \qquad (\dagger)$$

where \mathbb{X} is an object containing X as well as information about the iterated integrals of X. We call \mathbb{X} a **rough path** above X.

- \mathbb{X} lives in the tensor product space $\mathbb{X}: [0, T] \to V \oplus V^{\otimes 2} \oplus \cdots \oplus V^{\otimes N}$ where N is the largest integer such that $N\gamma \leq 1$.
- \mathbb{X} lives above X in that $\langle \mathbb{X}_t, e_i \rangle = X_t^i$.
- The tensor components encode the iterated integrals of X

$$\begin{split} \langle \mathbb{X}_t, e_{ij} \rangle \text{``} &= \text{''} \int_0^t \int_0^r dX_r^i dX_r^j \\ \text{and } \langle \mathbb{X}_t, e_{ijk} \rangle \text{``} &= \text{''} \int_0^t \int_0^r \int_0^u dX_v^i dX_u^j dX_r^k \end{split}$$

• X is usually assumed to be **geometric**, which means that the integrals obey the "usual laws of calculus".

- \mathbb{X} lives in the tensor product space $\mathbb{X}: [0, T] \to V \oplus V^{\otimes 2} \oplus \cdots \oplus V^{\otimes N}$ where N is the largest integer such that $N\gamma \leq 1$.
- \mathbb{X} lives above X in that $\langle \mathbb{X}_t, e_i \rangle = X_t^i$.
- The tensor components encode the iterated integrals of X

$$\langle \mathbb{X}_t, e_{ij} \rangle$$
 " = " $\int_0^t \int_0^r dX_r^i dX_r^j$ and $\langle \mathbb{X}_t, e_{ijk} \rangle$ " = " $\int_0^t \int_0^r \int_0^u dX_v^i dX_u^j dX_r^k$

 X is usually assumed to be geometric, which means that the integrals obey the "usual laws of calculus".

- \mathbb{X} lives in the tensor product space $\mathbb{X}: [0, T] \to V \oplus V^{\otimes 2} \oplus \cdots \oplus V^{\otimes N}$ where N is the largest integer such that $N\gamma \leq 1$.
- \mathbb{X} lives above X in that $\langle \mathbb{X}_t, e_i \rangle = X_t^i$.
- The tensor components encode the iterated integrals of X

$$\langle \mathbb{X}_t, e_{ij} \rangle$$
 " $=$ " $\int_0^t \int_0^r dX_r^i dX_r^j$
and $\langle \mathbb{X}_t, e_{ijk} \rangle$ " $=$ " $\int_0^t \int_0^r \int_0^u dX_v^i dX_u^j dX_r^k$

 X is usually assumed to be geometric, which means that the integrals obey the "usual laws of calculus".

- \mathbb{X} lives in the tensor product space $\mathbb{X}: [0, T] \to V \oplus V^{\otimes 2} \oplus \cdots \oplus V^{\otimes N}$ where N is the largest integer such that $N\gamma \leq 1$.
- \mathbb{X} lives above X in that $\langle \mathbb{X}_t, e_i \rangle = X_t^i$.
- The tensor components encode the iterated integrals of X

$$\begin{split} \langle \mathbb{X}_t, e_{ij} \rangle \text{``} &= \text{''} \int_0^t \int_0^r dX_r^i dX_r^j \\ \text{and} \quad \langle \mathbb{X}_t, e_{ijk} \rangle \text{``} &= \text{''} \int_0^t \int_0^r \int_0^u dX_v^i dX_u^j dX_r^k \end{split}$$

 X is usually assumed to be geometric, which means that the integrals obey the "usual laws of calculus".

What if the integrals in equations like (†) **don't** obey the usual laws of calculus?

Eg. Riemann-sum integrals for non-semimartingales (Burdzy, Swanson), Regularised integrals (Russo, Vallois).

This still fits into the framework of rough paths, but we need to add a few more **components** to \mathbb{X} .

What if the integrals in equations like (†) **don't** obey the usual laws of calculus?

Eg. Riemann-sum integrals for non-semimartingales (Burdzy, Swanson), Regularised integrals (Russo, Vallois).

This still fits into the framework of rough paths, but we need to add a few more **components** to X.

Instead of tensors, the components of $\ensuremath{\mathbb{X}}$ are indexed by labelled trees

$$\bullet_i$$
, \bullet_j^i , \bullet_k^i , \bullet_k^j , ...

with the same labels used to index the basis of V.

Instead of tensors, the components of $\mathbb X$ are indexed by labelled ${\bf trees}$

$$\bullet_i$$
, \bullet_j^i , \bullet_k^i , \bullet_k^j , ...

with the same labels used to index the basis of V. And we have

$$\begin{split} \langle \mathbb{X}_t, \bullet_i \rangle &= X_t^i \ , \qquad \langle \mathbb{X}_t, \clubsuit_j^i \rangle = \int_0^t \int_0^r dX_u^i dX_r^j \\ \langle \mathbb{X}_t, \clubsuit_k^i \rangle &= \int_0^t \int_0^r \int_0^u dX_v^i dX_u^j dX_r^k \ , \quad \langle \mathbb{X}_t, \clubsuit_k^i \rangle = \int_0^t X_r^i X_r^j dX_r^k \end{split}$$

The object X is known as a **branched rough path** (Gubinelli).

Theorem (MH,DK)

Every branched rough path can be encoded in a geometric rough path.

ie

 $\begin{array}{cccc}
\mathbb{X} & & & & & \bar{\mathbb{X}} \\
\uparrow & & & & \uparrow \\
\downarrow & & & & \uparrow \\
X & & & & \bar{X}
\end{array}$

For some *X* with a **branched** rough path *X* above it. There exists a path

$$\bar{X} = (X, \dots)$$

with a **geometric** rough path X above it, satisfying

$$\langle \mathbb{X}_t, \tau \rangle = \langle \overline{\mathbb{X}}_t, \psi(\tau) \rangle$$
.

for every tree au

The components of $\bar{\mathbb{X}}$ above X can be **any** geometric rough path.

Theorem (MH,DK)

Every branched rough path can be encoded in a geometric rough path.

ie.

For some *X* with a **branched** rough path **X** above it. There exists a path

$$\bar{X} = (X, \dots)$$

with a **geometric** rough path \mathbb{X} above it, satisfying

$$\langle X_t, \tau \rangle = \langle \bar{X}_t, \psi(\tau) \rangle$$
.

for every tree au

The components of $\bar{\mathbb{X}}$ above X can be **any** geometric rough path.

Theorem (MH,DK)

Every branched rough path can be encoded in a geometric rough path.

ie.

For some *X* with a **branched** rough path *X* above it. There exists a path

$$\bar{X} = (X, \dots)$$

with a **geometric** rough path $\bar{\mathbb{X}}$ above it, satisfying

$$X_t, \tau \rangle = \langle \bar{X}_t, \psi(\tau) \rangle$$
.

for every tree au

The components of $\bar{\mathbb{X}}$ above X can be **any** geometric rough path.

Theorem (MH,DK)

Every branched rough path can be encoded in a geometric rough path.

ie.

For some X with a **branched** rough path X above it. There exists a path

$$\bar{X} = (X, \dots)$$

with a **geometric** rough path $\bar{\mathbb{X}}$ above it, satisfying

$$\langle \mathbb{X}_t, \tau \rangle = \langle \overline{\mathbb{X}}_t, \psi(\tau) \rangle$$
.

for every tree τ .

The components of $\mathbb X$ above X can be ${\sf any}$ geometric rough path.

Theorem (MH,DK)

Every branched rough path can be encoded in a geometric rough path.

ie.

For some X with a **branched** rough path X above it. There exists a path

$$\bar{X} = (X, \dots)$$

with a $\boldsymbol{geometric}$ rough path $\bar{\mathbb{X}}$ above it, satisfying

$$\langle \mathbb{X}_t, \tau \rangle = \langle \overline{\mathbb{X}}_t, \psi(\tau) \rangle$$
.

for every tree au.

The components of \overline{X} above X can be **any** geometric rough path.

Consequences for rough DEs

Corollary (generalised Itô-Stratonovich correction formula)

Y is a solution to

$$d\mathbf{Y}_t = \sum_i f_i(\mathbf{Y}_t) dX_t^i$$
 (driven by \mathbb{X})

if and only if Y is a solution to the rough DE

$$d\frac{\mathbf{Y}}{} = \sum_{i} f_{i}(\frac{\mathbf{Y}}{}) \circ dX_{t}^{i} + \sum_{\tau} \bar{f}_{\tau}(\frac{\mathbf{Y}}{}_{t}) \circ d\bar{X}_{t}^{\tau} \quad (driven \ by \ \bar{\mathbb{X}}) \ ,$$

where \bar{X} is the geometric rough path derived above.

nb. Should really be called *any non-geometric integral - any geometric integral* correction formula.

Consequences for rough DEs

Corollary (generalised Itô-Stratonovich correction formula)

Y is a solution to

$$d\mathbf{Y}_t = \sum_i f_i(\mathbf{Y}_t) dX_t^i$$
 (driven by \mathbb{X})

if and only if Y is a solution to the rough DE

$$d\frac{\mathbf{Y}}{} = \sum_{i} f_{i}(\frac{\mathbf{Y}}{}) \circ dX_{t}^{i} + \sum_{\tau} \bar{f}_{\tau}(\frac{\mathbf{Y}}{}_{t}) \circ d\bar{X}_{t}^{\tau} \quad (driven \ by \ \bar{\mathbb{X}}) \ ,$$

where $\bar{\mathbb{X}}$ is the geometric rough path derived above.

nb. Should really be called *any non-geometric integral - any geometric integral* correction formula.