МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра САПР

Лабораторна робота №1

з курсу "Комп'ютерна схемотехніка та архітектура комп'ютерів"

для студентів базового напрямку 6.08.04 "Комп'ютерні науки"

(заочна форма навчання)

Виконав студент гр. КНз-2

Чалий Михайло

Мета роботи

Вивчити елементарні логічні функції одного та двох аргументів та відповідні їм логічної операції. Набути практичних навиків складання логічних виразів для них на основі операції кон'юнкції, диз'юнкції, заперечення.

Короткі теоретичні відомості

Науку про людське мислення створив давньогрецький вчений Аристотель (384-322 г. до н. э.). Він назвав її логікою. Логіка переписувала загальні правила за якими людина мислить, робить висновки та знаходить істину. Німецький математик, Г.В. Лейбніц (1646-1716 рр.) підвів логіку до обчислень. У нього виникла думка створити нову науку — математичну логіку, в якій логічні поняття позначені математичними знаками. Тільки майже через 200 років англійський математик, Джордж Буль (1815-1864 рр.) частково реалізував ідеї Лейбніца. Він створив для логічних висловлень позначення в символах, оперуючи котрими можна виконувати логічні міркування за допомогою звичайних обчислень.

Функція $f(x_1,x_2,x_3,...,x_n)$ називається **логічною** (булевою), якщо вона, також як і її аргументи, може приймати тільки два значення - "істина" 1 та "не істина " 0.

Логічні функції одного та двох аргументів називають *елементарними* функціями, маючи на увазі, що логічні вирази цих функцій містять не більше однієї логічної операції.

Існують всього чотири функції одного аргументу (Табл.1).

Табл.1 Логічні функції одного аргументу

$x \setminus f$	$f_0(x)$	$f_I(x)$	$f_2(x)$	$f_3(x)$
0	0	0	1	1
1	0	1	0	1
Позначення операції	0	x	\overline{x}	1

Функції $f_0(x)$, $f_1(x)$, $f_3(x)$ є тривіальними:

$f_0(x=0)$ (константа 0), $f_1(x)=x$, $f_3(x)=1$ (константа 1).

Тому з функцій одного аргументу практичний значення має $f_2(x) = x'$ (для зручності друку замість риски вгорі використаємо штрих), що відповідає найелементарнішій логічній унарній (з одним аргументом) операції заперечення (інверсія, логічне HI).

Логічні функції двох аргументів подані в табл. 2, визначаються чотирма варіантами комбінацій (для n логічних змінних (аргументів) існує 2^n логічних комбінацій з 0 й 1) .

Табл.2

$x_1, x_2 \setminus f$	f o	f ₁	f ₂	f 3	f ₄	f 5	f 6	f 7
00	0	0	0	0	0	0	0	0
0 1	0	0	0	0	1	1	1	1
10	0	0	1	1	0	0	1	1
11	0	1	0	1	0	1	0	1
Позначенн	0	$X_1 \wedge$	$(x_1 \not\longrightarrow x_2)$	<i>X</i> ₁	(X1 4 /- X2)	X 2	$x_1 \oplus x_2$	$X_1 \vee X_2$
я операції		X 2						

$x_1, x_2 \setminus f$	f ₈	f 9	f ₁₀	f_{11}	f_{12}	f ₁₃	f ₁₄	f 15
0 0	1	1	1	1	1	1	1	1
0 1	0	0	0	0	1	1	1	1
10	0	0	1	1	0	0	1	1
11	0	1	0	1	0	1	0	1
Позначення	$x_1 \downarrow$	$x_1^{\sim} x_2$	\bar{x}_2	<i>X</i> 1← <i>X</i> 2	\overline{x}_1	$\chi_1 \rightarrow$	<i>x</i> ₁	1
операції	X2					X2	X2	

Елементарні логічні бінарні (з двома аргументами) операції позначаються і мають відповідні назви (табл.3).

Табл.3

Позначення	Назва
$(x_1 * x_2), (x_1 \& x_2), (x_1 \land x_2)$	кон'юнкція (логічне множення)
$(x_1 \oplus x_2)$	додавання по модулю 2 (виключне або)
$(X_1 \vee X_2), (X_1 + X_2),$	диз'юнкція (логічне додавання)
x ₁ ~x ₂	еквівалентності (рівнозначності)
$(x_1 \downarrow x_2)$	функція Пірса (функція Вебба)
$(x_1 \rightarrow x_2)$	ліва імплікація
$(x_1 \leftarrow x_2)$	права імплікація;
$(x_1 \mid x_2)$	функція Шеффера
$f_0(x_{1},x_2)=0$	константа 0
$f_{15}(x_{1},x_{2})=1$	константа 1
(x₁ → x₂)	ліва коімплікація
(X1 -/	права коімплікація
\overline{x}_1 , \overline{x}_2	заперечення, інверсія
f (x)=x	тривіальна

Табл. 4

Таблиця логічних операцій

Назва операції	Назва елемента	Вираз	Умовне граф згідно стандрту MIL/ANSI	річне зображення згідно з ГОСТ 2.743-91	Таблиця істиності
Повторення	Повторювач	Y(X)=X	-	<u>x</u> 1 <u>x</u>	X Y 0 0 1 1
Заперечення	НЕ	Y(X)=X	-	<u>x</u> 1 <u>x</u>	X Y 0 1 1 0
Диз'юнкія	чи	$Y(X_1,X_2)=X_1\lor X_2$		X_1 X_2 $X_1 \lor X_2$	$\begin{array}{c cccc} X_1 & X_2 & Y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$
Кон'юнкція	I	$Y(X_1,X_2)=X_1 X_2$		X_1 & X_1X_2	$\begin{array}{c cccc} X_1 & X_2 & Y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$

Табл.4.

Таблиця логічних операцій (продовження)

Назва операції	Назва елемента	Вираз	Умовне граф згідно стандрту MIL/ANSI	річне зображення згідно з ГОСТ 2.743-91	Таблиця істиності	
Заперечення диз'юнкції	не чи	$Y(X_1,X_2)=\overline{X_1}\vee\overline{X_2}$	1	X_1 X_2 $X_1 \lor X_2$	$\begin{array}{c cccc} X_1 & X_2 & Y \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$	
Заперечення кон'юнкції	не і	$Y(X_1, X_2) = \overline{X_1 X_2}$		X_1 & X_2	$\begin{array}{ c c c c c c }\hline X_1 & X_2 & Y \\\hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\hline \end{array}$	
Заперечення еквівалентності	Виключне ЧИ	$Y(X_1, X_2) = X_1 \bigoplus X_2$		$\begin{array}{c c} X_1 \\ \hline X_2 \end{array} = 1 \qquad X_1 \oplus X_2$	$\begin{array}{c cccc} X_1 & X_2 & Y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$	

Завдання

Синтез найпростіших логічних операцій

$$y(A,B,C,D) = D + ABD'C + AC'$$

Рішення

Функція задана у форму ДНф

D + ABD'C + AC'

Для того щоб отримати ДДНФ, потрібно застосувати операції розгортання

D=(A + A') (B + B') (C + C')D=(A + A') (B + B') (CD + C`D)= (A + A') (BCD + B'CD + BC'D + B'C'D)= ABCD + AB'CD + ABC'D + AB'C'D + A'BCD + A'B'CD + A'BC'D + A'B'C'D

AC' = (B + B')(D + D') AC' = (B + B')(DAC' + D'AC') = BDAC' + BD'AC' + B'DAC' + B'D'AC'

Отже ДДНФ

D + ABD'C + AC' = ABCD + AB'CD + ABC'D + AB'C'D + A'BCD + A'B'CD + A'BC'D + A'B'C'D + A'BCD' + ABC'D' + ABC'D' + AB'C'D'

Зклеювання і поглинання

ABCD + AB'CD = ACD

ABCD + ABC'D = ABD

ABCD + A'BCD = BCD

ABCD + ABCD' = ABC

AB'CD + AB'C'D = AB'D

AB'CD + A'B'CD = B'CD

ABC'D + AB'C'D = AC'D

ABC'D + A'BC'D = BC'DABC'D + ABC'D' = ABC'

AB'C'D + A'B'C'D = B'C'D

AB'C'D + AB'C'D' = AB'C'

ABCD' + ABC'D' = ABD'

ABC'D' + AB'C'D' = AC'D'

Отже

D + ABD'C + AC' = ACD + ABD + BCD + ABC + AB'D + B'CD + AC'D + BC'D + ABC' + B'C'D + AB'C' + ABD' + AC'D'

ACD + AC'D = AD

ABD + AB'D = AD

ABD + ABD' = AB

BCD + B'CD = CD

BCD + BC'D = BD

ABC + ABC' = AB

B'CD + B'C'D = B'D

AC'D + AC'D' = AC'

BC'D + B'C'D = C'D

ABC' + AB'C' = AC'

Отже

$$D + ABD'C + AC' = AD + AB + CD + BD + C'D + B'D + AC'$$

$$CD + C'D = D$$

BD + B'D = D

$$D + ABD'C + AC' = AD + AB + AC' + D$$

Отже СДНФ

$$D + ABD'C + AC' = AD + AB + AC' + D$$

Табл 1 Імплікантна матриця

Прості		Члени ДДНФ									
імпліканти	ABCD	AB'CD	ABC'D	AB'C'D	A'BCD	A'B'CD	A'BC'D	A'B'C'D	ABCD'	ABC'D'	AB'C'D'
(мінтерми)	1	2	3	4	5	6	7	8	9	10	11
AD	Χ	Χ	Χ	Χ	Χ	Χ					
AB	Χ		Χ						Х	Χ	
AC'			Χ	Χ						Χ	Х
D	Χ	Χ	Χ	Χ	Х	Х	Χ	Х			

Отже МДНФ D + ABD'C + AC' = AC' + AB + D

Таблиця істиності функції AC' + AB + D

Α	В	С	D	C'	AC'	AB	AC' +
							AB + D
0	0	0	0	1	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	1	0	0	0
0	0	1	1	0	0	0	1
0	1	0	0	1	1	0	1
0	1	0	1	0	0	0	1
0	1	1	0	1	1	1	1
0	1	1	1	0	0	1	1
1	0	0	0	1	0	0	0
1	0	0	1	0	0	0	1
1	0	1	0	1	0	0	0
1	0	1	1	0	0	0	1
1	1	0	0	1	1	0	1
1	1	0	1	0	0	0	1
1	1	1	0	1	1	1	1
1	1	1	1	0	0	1	1

Для порівняння, таблиця істиності функції y(A,B,C,D) = D + ABD'C + AC', згенерована за допомогою Multisim

Мінімізовано за допомогою Multisim

Схему згенеровано за допомогою Mutisim

Аналіз результатів та висновки

При виконанні даної роботи було детально ознайомлено з синтезом простих логічних операцій.

Список використаної літератури

- 1. Карлащук В. И. Электронная лаборатория на IBM PC. Программа Electronics Workbench.— М.: Солон-Р, 2000.- 504с.
- 2. Барри Уилкинсон. Основы проектирования цифровых схем.: Пер. с англ.- М.: Издательский дом «Вильямс», 2004, 320с.
- 3. Карлащук В. И. Обучающие программы. М.: Солон-Р, 2001. 528с.