ECE4634 Digital Communications Fall 2007

Instructor: Dr. R. Michael Buehrer

Lecture #1: Course Overview

Announcements

Today's Handouts:

- Course Syllabus
- Course Notes for Lecture #1
 - Course Notes for futures classes will be posted on the class web site.

• First Homework:

- Fourier Transforms
- Available on the website
- Due Friday 8/31

Reading

Chapter 1

Course Mechanics

- Meeting Times and Location:
 - CRN 91876 MWF 10:10 11:00 am
 - Room RAND 331
- Instructor:
 - Dr. R. Michael Buehrer, Associate Professor
- Contact Information:
 - Office: 433 Durham Hall
 - Phone: 231-1898
 - e-mail: <u>buehrer@vt.edu</u>
- Grader:
 - Jesse Reed jesser@vt.edu

Office Hours

- Instructor Office Hours:
 - MW 11:15 12:15 pm, Thurs 9:30-11am
- If you need to see me outside regular office hours, please make an appointment via e-mail
- I check my e-mail several times a day, so e-mail may be the best way to answer many quick questions

About Your Instructor

- Education:
 - Undergraduate: University of Toledo, 1991
 - Ph.D.: Virginia Tech, 1996
- Research Experience
 - Dissertation: The application of Multiuser Detection to CDMA Cellular Systems (1996)
 - Bell Labs Lucent Technologies: Distinguished Member of Technical Staff in the Wireless Communications Lab (1996-2001)
 - Associate Prof. with MPRG Laboratory (since 2001)
- Personal
 - Five kids (11,9,7,5, & 2 yrs. old)
 - Hobbies: sports, hiking, star gazing, gardening
 - Practicing Christian
 - Deacon at Blacksburg Christian Fellowship
 - Teach Old Testament Survey, New Testament Survey, Church History, Christian Thought
 - Currently co-teaching a course on Church History
 - Occasionally preach

Research Interests

- Ultra-Wideband sensor and communication systems
- Position-Location Networks
- Advanced Signal Processing Techniques to improve communications
 - Space-Time Coding (MIMO systems)
 - Multiuser Detection
 - Adaptive Antennas
- Interaction between Physical Layer Algorithms and Radio Resource Control Algorithms
 - Multi-antenna scheduling
- Adaptive Modulation and Coding
- Simulation Techniques for Combined Physical Layer / RRC Layer Research
- Software Radio

DRS Graduate Fellowship

- DRS Signal Solutions Sponsors a Graduate
 Fellowship for US Citizens interested in obtaining a
 Master of Science in Electrical Engineering with a
 wireless communications specialty
- If you are interested in graduate school please feel free to stop by my office during office hours
- Current DRS Graduate Fellow will be giving a talk in September which will provide more info.
- DRS also currently hiring for intern and full-time positions

Course Web Site

- http://www.mprg.org/people/buehrer/4634/ecpe_4634.htm
- What will be available:
 - Lecture Notes (.pdf)

Psswd: ana_com

User: analog

- Homework Assignments & Solutions (.pdf)
- Useful resources for projects (Matlab files)
- Course Syllabus
- In order to read .pdf files you will need Adobe Acrobat Reader (available free - instructions on website)
- If you know of good links for inclusion in the course web site, e-mail me and I will add them

Required Course Materials

• Textbook:

- Haykin and Moher, <u>Introduction to Analog & Digital</u> <u>Communications</u>, Second Edition, Wiley, 2007.
- Access to Networked PC or Workstation
- Software:
 - Matlab for Windows
 - I have versions 6.0 (R12), 6.5 (R13) and 7.1. Other versions of Matlab are acceptable, but may not be 100% compatible with *.m files which we distribute. It is your decision whether you want to purchase a new version or use an old version. I can provide some (but not exhaustive) support.
 - Version 7.1 is available through student software (www.computing.vt.edu)

Course Components

- The course has six main components:
 - Lectures These are meant to introduce the key concepts in the course and provide you with fundamental understanding. This is the primary source of information in the class. I will provide you with lecture notes on the website typically the weekend before class (no guarantees though).
 - Book –This is meant to supplement the lectures and provide more detail that cannot be covered in a 50 minute lecture. (section numbers given in the syllabus).
 - Homework This is meant to (a) test your understanding of the class material and (b) provide a means for you to obtain a "deeper" understanding. Not every homework problem is a repetition of in-class examples. They are meant to help you learn, not to see if you can reproduce an in-class example.
 - Quizzes These are meant to simply motivate you to keep up with the material. They will consist of one simple, fundamental question. We will also have extra-credit quizzes during class fairly often.
 - Design projects These are meant to help you understand the "big picture" (how these topics fit into real-world applications).
 - Exams These are meant to show me how well you have grasped the material.

Grading

Homework	10%

Quizzes 10%

In-class midterm I20%

In-class midterm II
 20%

Design Projects 20%

• Final Exam 20%

 Final grade scale will be based on overall class performance.

- "Minimum Guaranteed" grade scale
 - 94-100 A

• 90-93	
---------	--

Α-

• 87-89

B+

• 83-86

В

• 80-82

B-

• 77-79

C+

• 73-76

C

• 70-72

C-

• 67-69

D+

• 63-66

D

• 60-62

D-

< 60

F

Grading "Curve":
Typically, the actual
grading scale is a little
lower. For example,
last year a ~5 point
curve was applied.

Homework

- 8 homework assignments
 - Schedule is posted on the web
 - Assignments will be posted at least one week in advance of the due date
 - It is your responsibility to check the website!
- Will consist of short problems which let you practice basic concepts, as well as more complicated problems to help you learn the material.
- Problems will be graded on a simple scale to allow quick feedback. Each part of a problem will be worth 2 points:
 - 2/2 correct answer (solutions will be posted)
 - 1/2 wrong answer but meaningful attempt
 - 0/2 no meaningful attempt of problem

- Late Assignments: All assignments are due by the end of class on the due date.
 - If you will be out of town, you must make arrangements to get me the assignment before the due date.
 - Any assignment turned in within 24 hours of the end of class on the date due, will be accepted with a ½ credit penalty.
 - After 24 hours homework will NOT be accepted.
- Lowest homework grade will be dropped.
 - This allows you some margin for error in the above policy.
- We will have homework assignments that are a blend of book problems (intended for deeper understanding) and my own homework problems that will be similar to the lectures (intended to reinforce concepts from class).

Tests and Exams

- Two In-Class Midterm Exams 20% each
- Final Exam 20%
 - Wednesday, December 13 7:45am 9:45am
 - Please double check time/date of final
- Closed book but notes are allowed
 - 1 page for midterm exams, 2 pages for final
- We will have a help session to work sample problems before the final exam
- Missed Exams: If you miss an exam, you must obtain a note from the Dean's Office excusing your absence in order to take a make-up exam.

- We will have weekly quizzes
 - Every Friday unless an exam is scheduled
- Quiz will consist of single, simple question (5-10 minutes)
- No studying necessary provided that you review your class notes for the week
- Purpose is to keep you engaged with the material on a regular basis
- Lowest quiz grade will be dropped
 - Allows you to miss one quiz without penalty

Design Projects

- We will have a series of design projects, designing a digital cellular telephone link.
- The projects will consist of:
 - Three open ended design problems, each asking you to design a portion of the system using *Matlab* modules to help you evaluate design choices.
 - Each project will require a concise written report detailing your design choices. Note that written reports provide you an opportunity to develop your communication skills. These skills are a necessity to any engineer. Your ideas (and your career) are limited by you ability to communicate.

- Every year a few students come to me at the end of the semester asking for extra credit
- The time to think about extra credit is now.
- On days we don't have a quiz, there will typically be an inclass drill problem given. The first student to finish the problem and properly explain the solution to the rest of the class will be awarded 5 points extra credit on their quiz grade.
 - Quiz grade can exceed 100%
- Additional Note on Grading: I really am on your side! I want you to succeed in this class!
- Yet another additional Note on Grading: If you absolutely positively need a minimum grade to graduate or stay in school, plan NOW. Please don't tell me this at the end of the semester.

- An unfortunate part of my job is travel. Every semester I must travel a least a little. I do everything in my power to insure that it doesn't impact class. However, it is inevitable that I will miss some class.
- Guest lecturer will present class material
- Current travel
 - November 26-30 GlobeCom communications conference. I will miss 1-2 lectures.
- At the moment I do not have any other travel scheduled

Course Objectives

- After completing this course you should be able to:
 - Design a scalar quantizer for a given source with a required fidelity and determine the resulting data rate;
 - Determine the auto-correlation function of a line code and determine its power spectral density;
 - Determine the power spectral density of bandpass digital modulation formats.
 - Design digital communication systems, given constraints on data rate, bandwidth, power, fidelity, and complexity;
 - Analyze the performance of a digital communication link when additive noise is present in terms of the signal-tonoise ratio and bit error rate;
 - Compute the power and bandwidth requirements of modern communication systems, including those employing ASK, PSK, FSK, and QAM modulation formats;

Prerequisites

- Coming into this class you should already have a knowledge of
 - Signals and Linear Systems
 - Fourier Transforms
 - Input/Output relationships in a linear time invariant system
 - Basic Probability
 - probability density functions
 - random variables, mean, expectation
- May be satisfied by completion of ECE3614 AND STAT4714

Great Course to also Take

- 4664 Analog and Digital Communications Laboratory
 - Will closely follow this course in terms of content
 - All lab work done in class No lengthy report to write afterwards
 - Prep work minimal if you are taking 4634
 - Great hands-on experience to compliment this course

Communications

 Definition: Communications is the transfer of information at one time or location to another time or location

 Communication systems can be analyzed using standard signal and system theory

A Communications System

- Information Source
 - Information may take many forms: data, image, voice, video
 - Information can be either analog or digital
 - Analog information can also be 'digitized'
 - Information is defined as the amount of "surprise" at the rx.

Transmitter

- Processes information and puts it into a form suitable for transmission
- This typically means transforming into an electromagnetic signal
 - Can be either 'baseband' or 'bandpass'

Channel

Relays information between locations (without perfect fidelity)

Receiver

 Must reconstruct transmitted information from the corrupted received waveform as accurately as possible

Key Inventions in the History of Communications

- ~3000 B.C. Written Language
- 1440 Printed Type (Gutenberg)
- 1844 Telegraph (Morse)
- 1876 Telephone (Bell)
- 1897 Wireless Telegraph (Marconi)
- 1918 Practical AM receiver (Armstrong)
- 1920 First Radio Broadcasts
- 1928 Television (Farnsworth)
- 1933 FM Radio (Armstrong)
- 1936 BBC begins first TV broadcasts

- 1948 Information Theory (Shannon)
- 1950 Digital Long Distance Telephone Lines (Bell Labs)
- 1962 Telstar I communication satellite (Bell Labs)
- 1979 First commercial cellular telephone (Motorola/AT&T)
- 1990 Second Generation (Digital) cellular systems (TDMA)
- 1992 The Internet takes off
- 1993 CDMA Cellular systems
- 2002 Third Generation Cellular Systems

What Makes a Good Communication System?

- Good Received Signal Fidelity
 - Analog System: high Signal-to-Noise Ratio (SNR)
 - Digital System: low Bit Error Rate (BER)
- Low Transmit Signal Power
- A large amount of information is transmitted
- Signal occupies a small bandwidth
- System has a low cost (complexity?)
 - Complex digital operations have steadily grown cheaper
- Communications engineers must trade off all of these

Examples of Tradeoffs in Communications Designs

- Satellite and Deep Space Communications
 - Power is expensive to generate in space and transmission distances are enormous - Must be very energy efficient
- Microwave Relay Towers
 - Power is cheap, but available bandwidth is restricted by regulation - Must be very bandwidth efficient
- Cellular Phones
 - Power is costly (impacts battery life and size) but bandwidth is also limited - Must be both bandwidth and power efficient

Bandpass vs. Baseband

- The **information** signal or message signal m(t) is a base band signal, that is it contains energy about D.C. (f = 0)
- The **transmitted** signal may be at baseband or may be a bandpass signal, that is it contains energy about $f = f_c$ where $f_c >> 0$.
- Wireless signals are (almost) always bandpass due to FCC regulations and physical antenna limitations whereas wireline signals could be either bandpass or baseband.
- Each wireless application is assigned a specific frequency band in which it can radiate energy. This is one reason why Fourier Transforms (spectral information) are so important in communications.

Digital vs. Analog Communications

- Digital Communications System
 - transmit a finite number of signals
 - text and data are naturally digital information sources
- Analog Communications
 - transmit a continuous (uncountably infinite) range of signals
 - voice and video are natural analog information sources
- An analog information source can be converted into a digital source by
 - Sampling the signal in time
 - Quantizing the signal amplitude to a finite number of levels
- This course will deal almost exclusively with digital communications, but much of analog system analysis applies directly to digital systems

Digital Communications is Nearly Ubiquitous

- Complex digital operations can now be implemented inexpensively on a single integrated circuit
- Many good processing techniques are available for digital signals:
 - encryption (not 'coding'), data compression (source coding), error correction (channel coding), channel equalization
 - Warning! The word 'coding' is terribly overused in communications
- Easy to mix different signals and data
- Digital receivers can be made tolerant to noise
 - Need only distinguish between a fixed number of symbols
- Even traditional analog systems such as broadcast radio and television are beginning the transformation to digital

Closing Thoughts ...

Analog and Digital Communications

- Boston Newspaper Editorial, 1879
 - "All educated individuals must realize that the transmission of the human voice on a wire is impossible, and even if it were, would be of no practical value whatsoever."
 - Alexander Graham Bell invented the telephone in 1876
- Guglielmo Marconi "It's dangerous to put limits on wireless." 1897 (invented the wireless telegraph)
- Today's Goal: Universal Ubiquitous High Speed Personal Communications
 - Today, we are confident of what we have not yet built.
 - The people in this room (YOU) will help make this possible!