Homework 3

1 Problem 1

 $50_{10} = 11\ 0010_2, 9_{10} = 00\ 1001_2$

The procedure is as below (from top to bottom):

Iter	Step	Product	Multiplicand (Mand)	Multiplier (Mer)
1	initial values	0000 0000 0000	0000 0011 0010	00 1001
2	Mer's LSB = $1 \rightarrow pro = pro + Mand$	0000 0011 0010	0000 0011 0010	00 1001
	Mand shift left and Mer shift right	0000 0011 0010	0000 0110 0100	00 0100
3	$Mer's LSB = 0 \rightarrow pro = pro$	0000 0011 0010	0000 0110 0100	00 0100
	Mand shift left and Mer shift right	0000 0011 0010	0000 1100 1000	00 0010
4	$Mer's LSB = 0 \rightarrow pro = pro$	0000 0011 0010	0000 1100 1000	00 0010
	Mand shift left and Mer shift right	0000 0011 0010	0001 1001 0000	00 0001
5	Mer's LSB = $1 \rightarrow pro = pro + Mand$	0001 1100 0010	0001 1001 0000	00 0001
	Mand shift left and Mer shift right	0001 1100 0010	0011 0010 0000	00 0000
6	Mer's LSB = $0 \rightarrow pro = pro$	0001 1100 0010	0011 0010 0000	00 0000
	Mand shift left and Mer shift right	0001 1100 0010	0110 0100 0000	00 0000
7	$Mer's LSB = 0 \rightarrow pro = pro$	0001 1100 0010	0110 0100 0000	00 0000
	Mand shift left and Mer shift right	0001 1100 0010	1100 1000 0000	00 0000

Finally, the result is $0001\ 1100\ 0010_2 = 450_{10}$.

2 Problem 2

 $98_{10} = 0110\ 0010_2, 17_{10} = 0001\ 0001_2$

The procedure is as below (from top to bottom):

Iter	Step	Product Multiplier (P M)	Multiplicand (Mand)	
1	initial values	0000 0000 0001 0001	0110 0010	
2	$P \mid M's LSB = 1 \rightarrow P \mid M's most left 8-bit += Mand$	0110 0010 0001 0001	0110 0010	
	P M shift right	0011 0001 0 000 1000		
3	$P \mid M's LSB = 0 \rightarrow \text{no change of } P \mid M$	0011 0001 0 000 1000	0110 0010	
	P M shift right	0001 1000 10 00 0100	0110 0010	
4	$P \mid M's LSB = 0 \rightarrow \text{no change of } P \mid M$	0001 1000 10 00 0100	0110 0010	
	P M shift right	0000 1100 010 0 0010	0110 0010	
5	$P \mid M's LSB = 0 \rightarrow \text{no change of } P \mid M$	0000 1100 010 0 0010	0110 0010	
	P M shift right	0000 0110 0010 0001		
6	$P \mid M's LSB = 1 \rightarrow P \mid M's most left 8-bit += Mand$	0110 1000 0010 0001	0110 0010	
	P M shift right	0011 0100 0001 0 000	0110 0010	
7	$P \mid M's LSB = 0 \rightarrow \text{no change of } P \mid M$	0011 0100 0001 0 000	0110 0010	
	P M shift right	0001 1010 0000 10 00	0110 0010	
8	$P \mid M's LSB = 0 \rightarrow \text{no change of } P \mid M$	0001 1010 0000 10 00	0110 0010	
	P M shift right	0000 1101 0000 010 0	0110 0010	
9	$P \mid M's LSB = 0 \rightarrow \text{no change of } P \mid M$	0000 1101 0000 010 0	0110 0010	
	P M shift right	0000 0110 1000 0010	0110 0010	

Finally, the result is $0000\ 0110\ 1000\ 0010_2 = 1666_{10}$.

3 Problem 3

 $60_{10} = 11\ 1100_2$, $18_{10} = 01\ 0010_2$ The procedure is as below:

Iter	Step	Quotient	Divisor	Remainder
0	initial values	000000	0100 1000 0000	0000 0011 1100
1	Rem = Rem - Div	000000	0100 1000 0000	1011 1011 1100
	Rem $< 0 \rightarrow +$ Div, shift 0 into Quo	000000	0100 1000 0000	0000 0011 1100
	shift Div right	000000	0010 0100 0000	0000 0011 1100
2	Rem = Rem - Div	000000	0010 0100 0000	1101 1111 1100
	Rem $< 0 \rightarrow +$ Div, shift 0 into Quo	000000	0010 0100 0000	0000 0011 1100
	shift Div right	000000	0001 0010 0000	0000 0011 1100
3	Rem = Rem - Div	000000	0001 0010 0000	1111 0001 1100
	Rem $< 0 \rightarrow +$ Div, shift 0 into Quo	000000	0001 0010 0000	0000 0011 1100
	shift Div right	000000	0000 1001 0000	0000 0011 1100
	Rem = Rem - Div	000000	0000 1001 0000	1111 1010 1100
4	Rem $< 0 \rightarrow +$ Div, shift 0 into Quo	000000	0000 1001 0000	0000 0011 1100
	shift Div right	000000	0000 0100 1000	0000 0011 1100
5	Rem = Rem - Div	000000	0000 0100 1000	1111 1111 0100
	Rem $< 0 \rightarrow +$ Div, shift 0 into Quo	000000	0000 0100 1000	0000 0011 1100
	shift Div right	000000	0000 0010 0100	0000 0011 1100
6	Rem = Rem - Div	000000	0000 0010 0100	0000 0001 1000
	Rem $\geq 0 \rightarrow \text{shift 1 into Quo}$	000001	0000 0010 0100	0000 0001 1000
	shift Div right	000001	0000 0001 0010	0000 0001 1000
7	Rem = Rem - Div	000001	0000 0001 0010	0000 0000 0110
	Rem $\geq 0 \rightarrow \text{shift 1 into Quo}$	000011	0000 0001 0010	0000 0000 0110
	shift Div right	000011	0000 0000 1001	0000 0000 0110

After (n+1) = 6+1 = 7 steps (where n indicates the bits representing the numbers), the result is $00\ 0011_2 = 3_{10}$.

4 Problem 4

- Since $-0.9375_{10} = -0.1111_2 = (-1)^1 \times 1.111_2 \times 2^{-1}$, the fraction is 11 1000 0000₂ and the exponent is $-1 + bias = 14_{10} = 0$ 1110₂. Thus, the bit pattern to represent -0.9375_{10} is 1 01110 11 1000 0000.
- For the smallest value, the exponent is 00001_2 (actually = 1-15=-14) and the fraction is 00000000000_2 (significand = 1.0). Thus, the smallest value is $\pm 1.0 \times 2^{-14}$. For the largest value, the exponent is 11110_2 (actually = 30-15=15) and the fraction is 1111111111_2 (significand = $1.9990234375 \approx 2.0$). Thus, the largest value is $\pm 2.0 \times 2^{15}$. Therefore, the range is $(-2.0 \times 2^{15}, -1.0 \times 2^{-14}] \cup [1.0 \times 2^{-14}, 2.0 \times 2^{15})$.
- The relative accuracy is 2^{-10} . Solution is shown as below:

$$\frac{\Delta A}{|A|} = \frac{2^{-10} \times 2^y}{|1.xxx \times 2^y|}$$

$$\leq \frac{2^{-10} \times 2^y}{|1 \times 2^y|}$$

$$= 2^{-10}$$

5 Problem 5

The decimal digits of precision of 16-bit half precision number is $10 \times \log_{10} 2 \approx 3$. Step 1: compare and align with guard, round and sticky bit.

$$26.125_{10} = 2.61250_{10} \times 10^{1}$$
$$0.2900390625_{10} = 0.02901_{10} \times 10^{1}$$

Step 2: add

$$2.61250_{10} + 0.02901_{10}(\times 10^1) = 2.64151(\times 10^1)$$

Step 3: round

With {guard bit, round bit, sticky bit} = 151, we have

$$2.64151 \times 10^1 \approx 2.64 \times 10^1$$

So the final result is 2.64×10^{1} .