

PEACH PIT LIBRARY Q2 2014

Copyright © 2014 Déjà vu Security, LLC. All rights reserved.
This document may not be distributed or used for commercial purposes without the explicit consent of the copyright holders.
Peach Fuzzer is a registered trademarks of Déjà vu Security, LLC
Peach Fuzzer contains Patent Pending technologies
While every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.
Déjà vu Security, LLC 1122 E Pike St Suite 1071
Seattle, WA 98112

Contents

	1.1	What i	s Peach Pit Library?	1
	1.2	Furthe	r Information	1
	1.3	Bug R	eporting Guidelines	1
		1.3.1	Peach Forums	1
		1.3.2	Support Tickets	1
2	Peac	ch Pit L	ibrary	3
3	Inst	allation		4
4	Quie	ckstart		5
5	Add	ress Re	solution Protocol (ARP)	6
	5.1	Specifi	ications	6
	5.2	Use Ca	ases	6
	5.3	Config	guration	6
		5.3.1	Target Configuration	6
		5.3.2	Required Pit Configuration Changes	6
		5.3.3	Optional Pit Configuration Changes	7
		5.3.4	Configure Additional Monitors	7
	5.4	Runnin	ng	7
		5.4.1	Single test debug run	7
		5.4.2	Full test run	7
	5.5	Examp	oles	7
6	Aud	io Vide	o Interleaved (AVI)	10
	6.1	Specifi	ications	10
	6.2	Config	guration	10
		6.2.1	Target Configuration	10
		6.2.2	Required Pit Configuration Changes	10
		6.2.3	Optional Pit Configuration Changes	10
		6.2.4	Configure Monitoring	10
	6.3	Runnin	ng	11
		6.3.1	Single test debug run	11
		6.3.2	Full test run	11
	6.4	Examp	oles	11

7	BM	P Image	e Format	12
	7.1	Specifi	ications	12
	7.2	Use Ca	ases	12
	7.3	Config	guration	12
		7.3.1	Target Configuration	12
		7.3.2	Required Pit Configuration Changes	12
		7.3.3	Optional Pit Configuration Changes	13
		7.3.4	Configure Monitoring	13
	7.4	Runnii	ng	13
		7.4.1	Single test debug run	13
		7.4.2	Full test run	13
	7.5	Examp	ples	13
8	Cisc	o Disco	very Protocol	15
	8.1	Specifi	ications	15
	8.2	Use Ca	ases	15
	8.3	Config	guration	15
		8.3.1	Target Configuration	15
		8.3.2	Required Pit Configuration Changes	15
		8.3.3	Optional Pit Configuration Changes	16
		8.3.4	Configure Monitoring	16
	8.4	Runnii	ng	16
		8.4.1	Single test debug run	16
		8.4.2	Full test run	16
	8.5	Examp	oles	16
9	Dyn	amic H	ost Configuration Protocol version 4 (DHCPv4)	19
	9.1	Specifi	ications	19
	9.2	_	ases	19
	9.3		guration	19
		9.3.1	Target Configuration	19
		9.3.2	Required Pit Configuration Changes	19
		9.3.3	Optional Pit Configuration Changes	20
		9.3.4	Configure Monitoring	20
	9.4		ng	20
		9.4.1	Single test debug run	20
		9.4.2	Full test run	20
	9.5		ble	20
				_

10	Dyna	amic Host Configuration Protocol version 6 (DHCPv6)	23
	10.1	Specifications	23
	10.2	Use Cases	23
	10.3	Configuration	24
		10.3.1 Target Configuration	24
		10.3.2 Required Pit Configuration Changes	24
		10.3.3 Optional Pit Configuration Changes	24
		10.3.4 Configure Monitoring	24
	10.4	Running	25
		10.4.1 Single test debug run	25
		10.4.2 Single test debug run	25
	10.5	Examples	25
11	Ethe	ernet	29
		Specifications	
		Use Cases	
	11.3	Configuration	29
		11.3.1 Target Configuration	
		11.3.2 Required Pit Configuration Changes	
		11.3.3 Optional Pit Configuration Changes	
		11.3.4 Configure Monitoring	
	11.4	Running	30
		11.4.1 Single test debug run	
		11.4.2 Full test run	30
	11.5	Examples	30
10	1721 - 1	The section Break and (EVED)	22
12		Transfer Protocol (FTP)	33
		•	33
		Use Cases	
	12.3	Configuration	
		12.3.1 Target Configuration	
		12.3.2 Required Pit Configuration Changes	
		12.3.3 Optional Pit Configuration Changes	
	12.4		34
	12.4		34
			34
	10.5		34
	12.5	Examples	35

13	GIF	Image Format	38
	13.1	Specifications	38
	13.2	Use Cases	38
	13.3	Configuration	38
		13.3.1 Target Configuration	38
		13.3.2 Required Pit Configuration Changes	38
		13.3.3 Optional Pit Configuration Changes	39
		13.3.4 Configure Monitoring	39
	13.4	Running	39
		13.4.1 Single test debug run	39
		13.4.2 Full test run	39
	13.5	Examples	39
14	Inter	rnet Control Message Protocol version 4 (ICMPv4)	41
	14.1	Specifications	41
	14.2	Use Cases	41
	14.3	Configuration	41
		14.3.1 Target Configuration	41
		14.3.2 Required Pit Configuration Changes	42
		14.3.3 Optional Pit Configuration Changes	42
		14.3.4 Configure Monitoring	42
	14.4	Running	42
		14.4.1 Single test debug run	42
		14.4.2 Full test run	42
	14.5	Examples	42
15	Inter	rnet Control Message Protocol version 6 (ICMPv6)	44
	15.1	Specifications	44
	15.2	Use Cases	44
	15.3	Configuration	45
		15.3.1 Target Configuration	45
		15.3.2 Required Pit Configuration Changes	45
		15.3.3 Optional Pit Configuration Changes	45
		15.3.4 Configure Monitoring	45
	15.4	Running	45
		15.4.1 Single test debug run	45
		15.4.2 Full test run	45
	15.5	Examples	45

16	ICO	Image Format	48
	16.1	Specifications	48
	16.2	Configuration	48
		16.2.1 Target Configuration	48
		16.2.2 Required Pit Configuration Changes	48
		16.2.3 Optional Pit Configuration Changes	48
		16.2.4 Configure Monitoring	48
	16.3	Running	49
		16.3.1 Single test debug run	49
		16.3.2 Full test run	49
	16.4	Examples	49
17	Turkon	west Cooper Management Brotseel (ICMB)	51
17		rnet Group Management Protocol (IGMP)	51
		Specifications	
		Use Cases	
	17.3	Configuration	
		17.3.1 Target Configuration	
		17.3.2 Required Pit Configuration Changes	
		17.3.3 Optional Pit Configuration Changes	52
		17.3.4 Configure Monitoring	52
	17.4	Running	52
		17.4.1 Single test debug run	52
		17.4.2 Full test run	52
	17.5	Examples	52
18	Inter	rnet Protocol Security	54
10		Specifications	
		Use Cases	
	10.3	Configuration	
		18.3.1 Target Configuration	
		18.3.2 Required Pit Configuration Changes	
		18.3.3 Optional Pit Configuration Changes	
		18.3.4 Configure Monitoring	
	18.4	Running	
		18.4.1 Single test debug run	56
		18.4.2 Full test run	56
	18.5	Examples	56

19	Inte	rnet Protocol version 4 (IPv4)	62
	19.1	Specifications	62
	19.2	Use Cases	62
	19.3	Configuration	62
		19.3.1 Target Configuration	62
		19.3.2 Required Pit Configuration Changes	62
		19.3.3 Optional Pit Configuration Changes	63
		19.3.4 Configure Monitoring	63
	19.4	Running	63
		19.4.1 Single test debug run	63
		19.4.2 Full test run	63
	19.5	Examples	63
20	Inte	rnet Protocol version 6 (IPv6)	65
	20.1	Specifications	65
	20.2	Use Cases	65
	20.3	Configuration	66
		20.3.1 Target Configuration	66
		20.3.2 Required Pit Configuration Changes	66
		20.3.3 Optional Pit Configuration Changes	66
		20.3.4 Configure Monitoring	66
	20.4	Running	66
		20.4.1 Single test debug run	66
		20.4.2 Full test run	66
	20.5	Examples	67
21	JPE	G2000 Image Format	69
	21.1	Specifications	69
	21.2	Use Cases	69
	21.3	Configuration	69
		21.3.1 Target Configuration	69
		21.3.2 Required Pit Configuration Changes	69
		21.3.3 Optional Pit Configuration Changes	70
		21.3.4 Configure Monitoring	70
	21.4	Running	70
		21.4.1 Single test debug run	70
		21.4.2 Full test run	70
	21.5	Examples	70

22	JPG	-JFIF Image Format	72
	22.1	Specifications	72
	22.2	Use Cases	72
	22.3	Configuration	72
		22.3.1 Target Configuration	72
		22.3.2 Required Pit Configuration Changes	72
		22.3.3 Optional Pit Configuration Changes	72
		22.3.4 Configure Monitoring	73
	22.4	Running	73
		22.4.1 Single test debug run	73
		22.4.2 Full test run	73
	22.5	Examples	73
23	Link	x Aggregation Control Protocol (LACP)	75
		Specifications	
		Use Cases	
		Configuration	
		23.3.1 Target Configuration	
		23.3.2 Required Pit Configuration Changes	
		23.3.3 Optional Pit Configuration Changes	
		23.3.4 Configure Monitoring	
	23.4	Running	
		23.4.1 Single test debug run	
		23.4.2 Full test run	76
	23.5	Examples	76
24			70
24		atweight Directory Access Protocol (LDAP)	79 70
		Specifications	79 70
		Use Cases	
	24.3	5	79 70
		24.3.1 Target Configuration	
			79
			80
	24.4	24.3.4 Configure Monitoring	
	24.4	Running	80
		24.4.1 Single test debug run	80
	24.5	24.4.2 Full test run	80
	24.5	Examples	80

25	Link	Layer Discovery Protocol	84
	25.1	Specifications	84
	25.2	Use Cases	84
	25.3	Configuration	84
		25.3.1 Target Configuration	84
		25.3.2 Required Pit Configuration Changes	84
		25.3.3 Optional Pit Configuration Changes	84
		25.3.4 Configure Monitoring	85
	25.4	Running	85
		25.4.1 Single test debug run	85
		25.4.2 Full test run	85
	25.5	Examples	85
26	Mult	ticast Listener Discovery Protocol (MLD)	87
	26.1	Specifications	87
	26.2	Use Cases	87
	26.3	Configuration	87
		26.3.1 Target Configuration	87
		26.3.2 Required Pit Configuration Changes	87
		26.3.3 Optional Pit Configuration Changes	87
		26.3.4 Configure Monitoring	88
	26.4	Running	88
		26.4.1 Single test debug run	88
		26.4.2 Full test run	88
	26.5	Examples	88
27	Mod	lbus (Modbus)	90
	27.1	Specifications	90
	27.2	Use Cases	90
			90
		27.3.1 Target Configuration	90
		27.3.2 Required Pit Configuration Changes	90
		27.3.3 Optional Pit Configuration Changes	91
		27.3.4 Configure Monitoring	91
	27.4	Running	91
		27.4.1 Single test debug run	91
		27.4.2 Full test run	91
	27.5	Examples	92

48	Netv	vork Time Protocol (NTP)	93
	28.1	Specifications	93
	28.2	Use Cases	93
	28.3	Configuration	93
		28.3.1 Target Configuration	93
		28.3.2 Required Pit Configuration Changes	93
		28.3.3 Optional Pit Configuration Changes	93
		28.3.4 Configure Monitoring	94
	28.4	Running	94
		28.4.1 Single test debug run	94
		28.4.2 Full test run	94
	28.5	Examples	94
29	PNG	Image Format	96
	29.1	Specifications	96
	29.2	Use Cases	96
	29.3	Configuration	96
		29.3.1 Target Configuration	96
		29.3.2 Required Pit Configuration Changes	97
		29.3.3 Optional Pit Configuration Changes	97
		29.3.4 Configure Monitoring	97
	29.4	Running	97
		29.4.1 Single test debug run	97
		29.4.2 Full test run	97
	29.5	Examples	97
30	Simp	ole Network Management Protocol Version 2c (SNMP)	99
	30.1	Specifications	99
	30.2	Use Cases	99
	30.3	Configuration	99
		30.3.1 Target Configuration	99
		30.3.2 Required Pit Configuration Changes	99
		30.3.3 Optional Pit Configuration Changes	100
		30.3.4 Configure Monitoring	100
	30.4	Running	100
		30.4.1 Single test debug run	100
		30.4.2 Full test run	100
	30.5	Examples	100

31	Tran	nsmission Control Protocol Version 4 (TCPv4)	103
	31.1	Specifications	103
	31.2	Use Cases	103
	31.3	Configuration	103
		31.3.1 Target Configuration	103
		31.3.2 Required Pit Configuration Changes	103
		31.3.3 Optional Pit Configuration Changes	104
		31.3.4 Configure Monitoring	104
	31.4	Running	104
		31.4.1 Single test debug run	104
		31.4.2 Full test run	104
	31.5	Examples	104
32	Tran	nsmission Control Protocol Version 6 (TCPv6)	106
	32.1	Specifications	106
		Use Cases	
	32.3	Configuration	106
		32.3.1 Target Configuration	106
		32.3.2 Required Pit Configuration Changes	106
		32.3.3 Optional Pit Configuration Changes	107
		32.3.4 Configure Monitoring	107
	32.4	Running	107
		32.4.1 Single test debug run	107
		32.4.2 Full test run	107
	32.5	Examples	107
33	Teln	net Control of the Co	109
	33.1	Specifications	109
	33.2	Use Cases	109
	33.3	Configuration	110
		33.3.1 Target Configuration	110
		33.3.2 Required Pit Configuration Changes	110
		33.3.3 Optional Pit Configuration Changes	110
		33.3.4 Configure Monitoring	110
	33.4	Running	110
		33.4.1 Single test debug run	110
		33.4.2 Full test run	111
	33.5	Examples	111

34	User	Datagram Protocol version 4 (UDPv4)	113
	34.1	Specifications	113
	34.2	Use Cases	113
	34.3	Configuration	113
		34.3.1 Target Configuration	113
		34.3.2 Required Pit Configuration Changes	113
		34.3.3 Optional Pit Configuration Changes	113
		34.3.4 Configure Monitoring	114
	34.4	Running	114
		34.4.1 Single test debug run	114
		34.4.2 Full test run	114
	34.5	Examples	114
35	User	Datagram Protocol version 6 (UDPv6)	116
	35.1	Specifications	116
	35.2	Use Cases	116
	35.3	Configuration	116
		35.3.1 Target Configuration	116
		35.3.2 Required Pit Configuration Changes	116
		35.3.3 Optional Pit Configuration Changes	116
		35.3.4 Configure Monitoring	117
	35.4	Running	117
		35.4.1 Single test debug run	117
		35.4.2 Full test run	117
	35.5	Examples	117
36	Virt	ual Local Area Network (VLAN)	119
	36.1	Specifications	119
	36.2	Use Cases	119
	36.3	Configuration	119
		36.3.1 Target Configuration	119
		36.3.2 Required Pit Configuration Changes	119
		36.3.3 Optional Pit Configuration Changes	120
		36.3.4 Configure Monitoring	120
	36.4	Running	120
		36.4.1 Single test debug run	120
		36.4.2 Full test run	120
	36.5	Examples	120

37	Virtu	ual Extensible Local Area Network (VXLAN)	123
	37.1	Specifications	123
	37.2	Use Cases	123
	37.3	Configuration	123
		37.3.1 Target Configuration	123
		37.3.2 Required Pit Configuration Changes	123
		37.3.3 Optional Pit Configuration Changes	124
		37.3.4 Configure Monitoring	124
	37.4	Running	124
		37.4.1 Single test debug run	124
		37.4.2 Full test run	124
	37.5	Examples	124
20	XX/*C	(002.11)	120
<i>3</i> 8		(129
		Specifications	
	38.2	Use Cases	129
	38.3	Supported Wireless Adapters	129
	38.4	Supported Operating Systems	130
	38.5	Tested Wireless Stacks	130
	38.6	Configuration	130
		38.6.1 Target Configuration	130
		38.6.2 Required Pit Configuration Changes	130
		38.6.3 Optional Pit Configuration Changes	131
		38.6.4 Configure Additional Monitors	131
	38.7	Running	131
		38.7.1 Single test debug run	131
		38.7.2 Full test run	131
	38.8	Examples	131

1 Preface

This book is the official documentation for the Peach Pit Library. It has been written by the Peach Fuzzer team and represents a concerted effort to fully document all of the Peach Pit Library features and configurations. Peach Fuzzer has been in active development through three major revisions since 2004. Documenting Peach is an on-going effort. The majority of effort has been placed in documenting the most common uses of Peach Pit Library.

1.1 What is Peach Pit Library?

Peach Pit Library is a collection of fuzzing definitions (pits) for the commercial versions of Peach Fuzzer. The collections of pits is updated quarterly with new definitions and update to existing definitions. The updates to the library coincide with updates to Peach Fuzzer and should be considered a matching pair.

1.2 Further Information

Further information about Peach can be found on our website and also the user forums.

1.3 Bug Reporting Guidelines

Support for Peach Pit Library is available in two ways:

- The Peach Forums site
- Using our ticketing system to open a support ticket

1.3.1 Peach Forums

There are two sets of forums for Peach, the community forums and the professional forums. Both forums are hosted at https://forums.peachfuzzer.com. Peach Pit Library users should access the private forums to receive much better response time. To access the professional forums, first create an account on the forums site then send an email to peach@dejavusecurity.com with your license email, and forum username. Your account will be granted access to the professional forums within 24 hours during the business week. Forums are monitored by the Deja vu Security team, but there is no guarantee of response time.

When posting please including the following information:

- Operating system(s) in use by Peach and any agents
- Exact version of Peach being used. This is available from the console output and in the status.txt log file.
- Version of Peach Pit Library in use. This version is "Q2 2014".
- Detailed description of the issue and expected behavior
- Console output using the --trace argument
- Configuration files and, if modified, the pit file.

1.3.2 Support Tickets

To open a support ticket send an email to *support@dejavusecurity.com*. You will receive an initial response within 24 business hours of opening the ticket. Peach support is available Monday through Friday. Peach support is not currently available on the weekends or holidays. When opening a ticket, please provide the following information in your email:

• Operating system(s) in use by Peach and any agents

- Exact version of Peach being used. This is available from the console output and in the *status.txt* log file.
- Detailed description of the issue and expected behavior
- Console output using the --trace argument
- (if possible) the full Pit file + configuration files

2 Peach Pit Library

The following sections provide usage guides for each pit included in the library.

The fuzzing definitions in this collection are complete definitions, however they will need to be configured for you target. Part of this configuration will be modifying the agent and monitor configuration to suite your target environment. The main Peach documentation includes sections on agents and monitors. A sample configuration is provided.

Agents and monitors are how Peach is able to detect a fault, collect interesting information, and also perform automation with the target environment. This can include attaching debuggers, restarting virtual machines, or running commands via SSH.

3 Installation

The Peach Pit Library is distributed as an archive containing all of the files required. The archive should be expanded into a folder called pits located in the same folder that Peach Professional has been installed to.

- 1. Unarchive the library to a folder named pits
- 2. Place the pits folder into the Peach Professional folder (contains Peach.exe)

4 Quickstart

After installing the Peach Pit Library, launch Peach.exe and browse to the indicated port number using a recent version of Chrome, Firefox, or IE. Through the Peach Web UI you can select a fuzzing definition (Pit), configure it and start fuzzing. The Pits can also be edited manually and run from the command line.

5 Address Resolution Protocol (ARP)

· Peach Pit: ARP

Direction: Broadcast, Listen Supported Platforms: Linux

The Address Resolution Protocol translates between hardware and protocol addresses. In Ethernet and Wireless networks, it usually translates between IPv4 and MAC addresses.

5.1 Specifications

Specification	Title
RFC826	An Ethernet Address Resolution ProtocolS

5.2 Use Cases

Messages	Specification
MSG 1	RFC826

Supported Features	Specification
Arp Request Packet Generation for IPv4 over Ether	RFC826
Arp Reply Packet Generation in response to a request for	RFC826
IPv4 over Ether	

5.3 Configuration

5.3.1 Target Configuration

This pit sends ARP packets; no extra applications are required.

5.3.2 Required Pit Configuration Changes

TargetIPv4

IPv4 address of the target host machine.

SourceIPv4

IPv4 address of the interface on the local machine.

SourceMAC

MAC address on local machine.

TargetMAC

MAC address of target machine.

Interface

Name of local interface (used for monitoring).

5.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

5.3.4 Configure Additional Monitors

Add monitors to agent as needed

5.4 Running

5.4.1 Single test debug run

Fuzzing ARP Request

```
peach -1 --debug ARP.xml
```

Fuzzing ARP Reply

```
peach -1 --debug ARP_Reply.xml
```

5.4.2 Full test run

Fuzzing ARP Request

```
peach ARP.xml
```

Fuzzing ARP Reply

```
peach ARP_Reply.xml
```

5.5 Examples

Example 5.1 Sample ARP Request Configuration File

Example configuration to broadcast arp packets.

```
key="SourceIPv4"
  <Ipv4
                                 value="127.0.0.1"
                                 name="Source IP Address"
                                 description="The IPv4 address of the machine running Peach \leftrightarrow
                                     Fuzzer. The IPv4 address can be found on Windows by \,\leftarrow\,
                                     running 'ipconfig' and looking for the 'IPv4 Address' \,\,\,\,\,\,\,\,\,\,\,\,\,\,
                                     field. For Linux run 'ifconfig' and look for 'inet addr' \hookleftarrow
                                      field. For OS X run 'ifconfig' and look for the 'inet' \,\,\,\,\,\,\,\,\,\,\,\,
                                     field."/>
  <Hwaddr
                        key="TargetMAC"
                                 value="00000000000"
                                 name="Target MAC Address"
                                 description="Hardware address of the network interface on \leftarrow
                                     target machine or device. To find the hardware address
                                     on Windows, run 'ipconfig /all' and look for the ' \leftarrow
                                     Physical Address' field. For Linux run 'ifconfig' and \leftrightarrow
                                     look for the 'HWaddr' field. For OS X run 'ifconfig' and \hookleftarrow
                                       look for the 'ether' field." />
  <Ipv4
                        key="TargetIPv4"
                                 value="127.0.0.2"
                                 name="Target IP Address"
                                 description="The IPv4 address of the target machine or \leftarrow
                                     device. The IPv4 address can be found on Windows by \leftarrow
                                     running 'ipconfig' and looking for the 'IPv4 Address' \leftrightarrow
                                     field. For Linux run 'ifconfig' and look for 'inet addr' \leftarrow
                                      field. For OS X run 'ifconfig' and look for the 'inet' \ \hookleftarrow
                                     field." />
                        key="LoggerPath"
      <String
                                 value="logs/arp/"
                                 name="Logger Path"
                                 description="The directory where Peach will save the log \leftrightarrow
                                     produced when fuzzing." />
  <Strategy
              key="Strategy"
                                 value="Random"
                                 name="Mutation Strategy"
                                 description="The mutation strategy to use when fuzzing." />
                        key="PitLibraryPath"
  <String
                                 value="."
                                 name="Pit Library Path"
                                 description="The path to the root of the pit library."/>
</All>
<Linux>
  <Iface
                        key="Interface"
                                 value="eth0"
                                 name="Network Interface"
                                 description="The network interface to transmit packets over \hookleftarrow
                                     . For Windows, the network interfaces can be shown by \ \hookleftarrow
                                     running 'ipconfig'. On Linux and OS X, the network \ \hookleftarrow
                                     interfaces can be shown by running the command 'ifconfig \leftarrow
                                     ' ."/>
</Linux>
 <!-- This can't run on OS X because it uses the RawEther publisher. -->
</OSX>
<Windows>
 <!-- This can't run on windows because it uses the RawEther publisher. -->
```

</Windows>
</PitDefines>

6 Audio Video Interleaved (AVI)

• Peach Pit: avi_divx

• Supported Platforms: Windows, Linux, OS X

Audio Video Interleaved, AVI, is a multimedia container format introduced by Microsoft part of its Video for Windows technology.

AVI files can contain both audio and video data in a file container that allows synchronous audio-with-video playback.

6.1 Specifications

Specification	Title
http://msdn.microsoft.com/en-us/library/windows/-	AVI RIFF File Reference
desktop/dd318189(v=vs.85).aspx	

6.2 Configuration

6.2.1 Target Configuration

A video player that supports the avi format is required. The program VLC can be used for this.

6.2.2 Required Pit Configuration Changes

Seed

Name of a valid avi file located in the SamplePath directory. An empty string indicates use all files in the directory.

SamplePath

Directory path to the directory which the Avi sample files are stored.

Target

The program that will open the fuzzed Avi files

6.2.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

Agent

Agent to run depending on the target OS. This value shouldn't be changed.

6.2.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

6.3 Running

6.3.1 Single test debug run

```
peach -1 --debug avi_divx.xml
```

6.3.2 Full test run

```
peach avi_divx.xml
```

6.4 Examples

Example 6.1 Sample avi_divx Configuration File

Example configuration using VLC player.

First, install VLC player; for this example we assume you are running on Ubuntu or Debian. For other platforms follow instructions on the VLC website:

```
sudo apt-get install vlc
```

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
         <All>
                  <String key="Seed"
                                   value="avi_divx_sample*.avi"
                                   name="Seed File"
                                   description="The name of the sample file to use when \ \ \leftarrow
                                       fuzzing." />
                  <Strategy key="Strategy"</pre>
                                     value="Random"
                                     name="Mutation Strategy"
                                      description="The mutation strategy to use when fuzzing." \leftarrow
                  <String key="LoggerPath"</pre>
                                   value="./logs/avi_divx/"
                                   name="Logger Path"
                                   description="The directory where Peach will save the log \ensuremath{\leftarrow}
                                       produced when fuzzing." />
                  <String key="SamplePath"
                                   value="./_Common/Samples/Video"
                                   name="Sample Path"
                                   description="The directory containing the samples to use \leftrightarrow
                                       when fuzzing." />
                  <String key="PitLibraryPath"</pre>
                                   value="."
                                   name="Pit Library Path"
                                   description="The path to the root of the pit library." />
         </All>
</PitDefines>
```

When running this you will see VLC player repeatedly open and close.

7 BMP Image Format

· Peach Pit: BMP

• Supported Platforms: Windows, Linux, OS X

Bitmap (BMP) is a Microsoft defined file format containing raster graphic images. Bitmap files contain fixed sized headers and a variable length pixel array.

The BMP header varies by a the version number; each subsequent version appends fields to end of the previous version. For example:

- The v2 header is the same header as the v1 header except that there are additional data fields appended to the v1 header
- The v3 is header is the same header as the v2 header except that there are additional data fields appended to the v2 header

The file format is closely tied to the DIB internal data structure in the Windows API.

7.1 Specifications

Specification	Title
http://msdn.microsoft.com/en-us/library/-	Bitmap Header Types
dd183386%28VS.85%29.aspx	

7.2 Use Cases

Supported Headers	Specification
BITMAPCOREHEADER	Bitmap Header Types
BITMAPINFOHEADER	Bitmap Header Types
BITMAPV4HEADER	Bitmap Header Types
BITMAPV5HEADER	Bitmap Header Types

7.3 Configuration

7.3.1 Target Configuration

The BMP file format can target any number of image viewing programs (such as "feh" on Linux and "mspaint.exe" on Windows) by setting the target program that you are fuzzing (such as feh or mspaint.exe) in the Bmp.xml.config pit file.

Normally you would set different target programs for different operating systems.

7.3.2 Required Pit Configuration Changes

Seed

Name of a valid BMP file located in the Samples directory. An empty string indicates use all files in the directory. Multiple files can be globbed together with an asterisk wildcard.

Target

The program that opens the fuzzed BMP files

7.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Directory path to folder where logs will be stored.

Agent

The agent that will be ran to open the target program. This is generally OS dependent.

Path

Path to the relative base directory where all pits are located.

SamplePath

Path to the directory in which the Bmp sample files are stored. Relative to Path.

7.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

7.4 Running

7.4.1 Single test debug run

```
peach -1 --debug Bmp.xml
```

7.4.2 Full test run

```
peach Bmp.xml
```

7.5 Examples

Example 7.1 Sample Bmp Configuration File

This example configuration uses feh on Linux. The configuration file also contains settings for mspaint on Windows and preview on OSX:

First, install feh; for this example we assume you are running on Ubuntu or Debian. For other platforms follow the platform specific installation instructions for feh.

```
#Installing feh on linux
sudo apt-get install feh
```

```
name="Seed File"
                                    description="The name of the sample file to use when \ensuremath{\leftarrow}
                                        fuzzing." />
                  <Strategy key="Strategy"</pre>
                                      value="Random"
                                      name="Mutation Strategy"
                                      description="The mutation strategy to use when fuzzing." \ \hookleftarrow
                  <String key="LoggerPath"</pre>
                                    value="##PitLibraryPath##/logs/bmp/"
                                    name="Logger Path"
                                    description="The directory where Peach will save the log \leftrightarrow
                                        produced when fuzzing." />
                  <String key="SamplePath"</pre>
                                    value="##PitLibraryPath##/_Common/Samples/Image"
                                    name="Sample Path"
                                    description="The directory containing the samples to use \ensuremath{\leftarrow}
                                        when fuzzing." />
                  <String key="PitLibraryPath"</pre>
                                    value="."
                                    name="Pit Library Path"
                                    description="The path to the root of the pit library." />
         </All>
</PitDefines>
```

When running this, feh will repeatedly open and close.

8 Cisco Discovery Protocol

• Peach Pit: CDP

• Direction: Announce

• Supported Platforms: Linux

The Cisco Discovery Protocol (CDP) is a proprietary Data Link Layer and Network Layer protocol developed by Cisco Systems. Cisco's multicast announce based protocol is used for neighbor device discovery. It is supported on numerous Cisco devices as well as many devices designed to inter-operate with Cisco hardware (primarily routers and switches).

This protocol provides similar functionality to vendor-neutral IEEE 802.1AB Link Layer Discovery Protocol designed to replace.

Cisco documentation (once found at http://www.cisco.com/univercd/cc/td/doc/product/lan/trsrb/frames.htm) was used to create this pit. This documentation has since been removed by Cisco; no official documentation is available for reference.

8.1 Specifications

Specification	Title
http://www.cisco.com/univercd/cc/td/doc/product/lan/-	CDP Packet Format
trsrb/frames.htm	

8.2 Use Cases

Messages	Specification
Announce	http://www.cisco.com/univered/cc/td/doc/product/lan/-
	trsrb/frames.htm

8.3 Configuration

8.3.1 Target Configuration

This pit broadcasts CDP packets; no extra applications are required.

8.3.2 Required Pit Configuration Changes

SourceIPv4

IPv4 address of the interface on the local machine.

SourceMAC

MAC address on local machine.

TargetMAC

MAC address of target machine.

Interface

Name of local interface.

Hostname

Hostname of the switch.

8.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

8.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

8.4 Running

8.4.1 Single test debug run

```
peach -1 -debug CDP.xml
```

8.4.2 Full test run

```
peach CDP.xml
```

8.5 Examples

Example 8.1 Sample CDP Configuration File

Example configuration to broadcast CDP packets.

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
        <All>
                 <String key="Hostname"
                                   value="foobar"
                                   name="Hostname"
                                   description="Hostname to provide via CDP protocol."/>
                 <String key="Domain"
                                   value="foobar"
                                   name="Domain"
                                   description="Domainname to provide via CDP protocol."/>
                 <hwaddr key="SourceMAC"
                                   value="000000000000"
                                   name="Source MAC Address"
                                   description="Hardware address of the network interface on \ \leftarrow
                                       machine running Peach Fuzzer. To find the hardware \ \leftarrow
                                       address on Windows, run 'ipconfig /all' and look for the \hookleftarrow
                                        'Physical Address' field. For Linux run 'ifconfig' and \leftrightarrow
                                       look for the 'HWaddr' field. For OS X run 'ifconfig' and \hookleftarrow
                                        look for the 'ether' field."/>
                 <Ipv4 key="SourceIPv4"</pre>
                            value="127.0.0.1"
```

```
name="Source IPv4 Address"
                    description="The IPv4 address of the machine running Peach Fuzzer \leftrightarrow
                         . The IPv4 address can be found on Windows by running ' \leftarrow
                        ipconfig' and looking for the 'IPv4 Address' field. For Linux \leftrightarrow
                        run 'ifconfig' and look for 'inet addr' field. For OS X run ' \leftrightarrow
                        ifconfig' and look for the 'inet' field."/>
         <Hwaddr key="TargetMAC"</pre>
                           value="000000000000"
                           name="Target MAC Address"
                           description="Hardware address of the network interface on \leftarrow
                               target machine or device. To find the hardware address \ \leftarrow
                               on Windows, run 'ipconfig /all' and look for the ' \leftarrow
                               Physical Address' field. For Linux run 'ifconfig' and \,\,\,\,\,\,\,\,
                               look for the 'HWaddr' field. For OS X run 'ifconfig' and \hookleftarrow
                                look for the 'ether' field." />
         <hwaddr key="SwitchMAC"
                           value="000000000000"
                           name="Target MAC Address"
                           description="Hardware address of the network interface on \leftarrow
                               target machine or device. To find the hardware address \leftrightarrow
                               on Windows, run 'ipconfig /all' and look for the ' \leftarrow
                               Physical Address' field. For Linux run 'ifconfig' and \leftrightarrow
                               look for the 'HWaddr' field. For OS X run 'ifconfig' and \hookleftarrow
                                look for the 'ether' field." />
         <String key="LoggerPath"</pre>
                           value="logs/cdp/"
                           name="Logger Path"
                           description="The directory where Peach will save the log \,\,\leftarrow\,\,
                               produced when fuzzing." />
         <Strategy key="Strategy"
                             value="Random"
                             name="Mutation Strategy"
                             description="The mutation strategy to use when fuzzing." \leftrightarrow
         <String key="PitLibraryPath"
                           value="."
                           name="Pit Library Path"
                           description="The path to the root of the pit library."/>
</All>
<Linux>
        <Iface key="Interface"</pre>
                     value="eth0"
                     name="Network Interface"
                     description="The network interface to transmit packets over. For \hookleftarrow
                          Windows, the network interfaces can be shown by running ^{\prime} \hookleftarrow
                         ipconfig'. On Linux and OS X, the network interfaces can be \ \ \hookleftarrow
                         shown by running the command 'ifconfig'."/>
</Linux>
<OSX>
         <Iface key="Interface"</pre>
                     value="en0"
                     name="Network Interface"
                     description="The network interface to transmit packets over. For \hookleftarrow
                           Windows, the network interfaces can be shown by running ' \hookleftarrow
                          ipconfig'. On Linux and OS X, the network interfaces can be \,\leftarrow\,
```

9 Dynamic Host Configuration Protocol version 4 (DHCPv4)

• Peach Pit: DHCPv4

• Direction: Client

• Supported Platforms: Linux

Dynamic Host Configuration Protocol Version 4 (DHCPv4) is the network configuration protocol over IPv4.

DHCP provides a way for devices on a network to request an available IP address from a central server. Requesting IP addresses with DHCP reduces the changes of address collisions and allows hosts to become addressable without needing the network configuration's previous details.

Requests are broadcasted over the layer-2 network to an entire network space and relayed on until received by a DHCP Server. The server responds back with an available IP address and a handshake is completed between the two systems.

9.1 Specifications

Specification	Title
RFC1531	Dynamic Host Configuration Protocol
RFC1541	Dynamic Host Configuration Protocol
RFC2131	Dynamic Host Configuration Protocol
RFC3396	Encoding Long Options in the Dynamic Host
	Configuration Protocol (DHCPv4)

9.2 Use Cases

Messages	Specification
DHCP Message	RFC2131 (Section 2)

Supported Features	Specification
DHCPREQUEST	RFC2131 (Section 4.3.2)
DHCPACK	RFC2131 (Section 4.4)

9.3 Configuration

9.3.1 Target Configuration

A target machine with DHCPv4 enabled. The software tool bind can be targeted in a Linux environment. A firewall must not block the DHCPv4 messages.

9.3.2 Required Pit Configuration Changes

TargetIPv4

IP address of the target host machine.

SourceIPv4

IP address of the interface on the local machine.

SourcePort

UDPv4 port number of the local machine.

SourceMAC

MAC Address of the local machine.

TargetMAC

MAC Address of the target host machine.

Interface

Name of local interface.

9.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

9.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

9.4 Running

9.4.1 Single test debug run

```
peach -1 --debug DHCPv4.xml
```

9.4.2 Full test run

peach DHCPv4.xml

9.5 Example

Example 9.1 Sample DHCPv4 Configuration File

Example configuration sending DHCPv4 packets.

For this example we assume you are running on Windows. For other platforms use the preferred way to configure the firewall. Windows Firewall Inbound Rules to enable on Target:

```
Core Networking - Dynamic Host Configuration Protocol (DHCP-In)
```

```
description="Hardware address of the network interface on \leftarrow
                               machine running Peach Fuzzer. To find the hardware \ensuremath{\leftarrow}
                               address on Windows, run 'ipconfig /all' and look for the \hookleftarrow
                                'Physical Address' field. For Linux run 'ifconfig' and \leftrightarrow
                               look for the 'HWaddr' field. For OS X run 'ifconfig' and \leftarrow
                                look for the 'ether' field."/>
         <Ipv4 key="SourceIPv4"</pre>
                    value="0.0.0.0"
                    name="Source IPv4 Address"
                    description="This is an advanced option and should be left as \leftrightarrow
                        default."/>
         <Range key="SourcePort"
                     value="1055"
                     min="0" max="65535"
                     name="Source Port"
                     description="The source port the network packet originates from. \leftarrow
         <hwaddr key="TargetMAC"
                           value="000000000000"
                           name="Target MAC Address"
                           description="Hardware address of the network interface on \ \leftarrow
                               target machine or device. To find the hardware address \ensuremath{\hookleftarrow}
                               on Windows, run 'ipconfig /all' and look for the ' \leftarrow
                               Physical Address' field. For Linux run 'ifconfig' and \leftrightarrow
                               look for the 'HWaddr' field. For OS X run 'ifconfig' and \hookleftarrow
                                look for the 'ether' field." />
         <Ipv4 key="TargetIPv4"</pre>
                    value="255.255.255.255"
                    name="Target IPv4 Address"
                    description="This is an advanced option and should be left as \leftrightarrow
                        default." />
         <Range key="TargetPort"
                     value="67"
                     min="0" max="65535"
                     name="Target Port"
                     description="The destination port the network packet is sent to. \hookleftarrow
                          "/>
         <String key="LoggerPath"
                           value="logs/dhcpv4/"
                           name="Logger Path"
                           description="The directory where Peach will save the log \ensuremath{\leftarrow}
                               produced when fuzzing." />
         <Strategy key="Strategy"</pre>
                             value="Random"
                             name="Mutation Strategy"
                             description="The mutation strategy to use when fuzzing." \leftrightarrow
         <String key="PitLibraryPath"</pre>
                           value="."
                           name="Pit Library Path"
                           description="The path to the root of the pit library."/>
</All>
<Linux>
```

```
<Iface key="Interface"</pre>
                              value="eth0"
                              name="Network Interface"
                              description="The network interface to transmit packets over. For \hookleftarrow
                                   Windows, the network interfaces can be shown by running ' \leftarrow
                                  ipconfig'. On Linux and OS X, the network interfaces can be \,\leftarrow\,
                                  shown by running the command 'ifconfig'."/> \,
         </Linux>
         <OSX>
                  <Iface key="Interface"</pre>
                              value="en0"
                              name="Network Interface"
                              description="The network interface to transmit packets over. For \hookleftarrow
                                   Windows, the network interfaces can be shown by running ' \leftarrow
                                   ipconfig'. On Linux and OS X, the network interfaces can be \,\,\,\,\,\,\,\,
                                   shown by running the command 'ifconfig'."/>
         </osx>
         <Windows>
                  <Iface key="Interface"</pre>
                              value="Local Area Connection"
                              name="Network Interface"
                              description="The network interface to transmit packets over. For \hookleftarrow
                                   Windows, the network interfaces can be shown by running ' \leftarrow
                                  ipconfig'. On Linux and OS X, the network interfaces can be \ \ \ \ \ \ \ \ 
                                  shown by running the command 'ifconfig'."/>
         </Windows>
</PitDefines>
```

10 Dynamic Host Configuration Protocol version 6 (DHCPv6)

• Peach Pit: DHCPv6

• Direction: Client, Server

• Supported Platforms: Windows, Linux, OS X

Dynamic Host Configuration Protocol Version 6 (DHCPv6) is a variation of the DHCPv4 protocol for the IPv6 address space.

- Like DHCPv4, DHCPv6 allocates addresses from a central server and requests are broadcast across the link layer.
- Unlike IPv4, hosts on an IPv6 network can automatically assign address without DHCP or a central server with stateless address auto-configuration.

Hosts may still use DHCPv6 even if they are not requesting an address to configure other network parameters (like DNS settings).

10.1 Specifications

Specification	Title
RFC3315	Dynamic Host Configuration Protocol for IPv6 (DHCPv6)
RFC3633	IPv6 Prefix Options for Dynamic Host Configuration
	Protocol (DHCP) version 6
RFC3736	Stateless Dynamic Host Configuration Protocol (DHCP)
	Service for IPv6
RFC6221	Lightweight DHCPv6 Relay Agent
RFC6422	Relay-Supplied DHCP Options
RFC6644	Rebind Capability in DHCPv6 Reconfigure Messages

10.2 Use Cases

Messages	Specification
DHCPv6 Message	RFC3315 (Section 6)
Relay Agent Message	RFC3315 (Section 7)

Supported Features	Specification
SOLICIT	RFC3315 (Section 5.3)
ADVERTISE	RFC3315 (Section 5.3)
REQUEST	RFC3315 (Section 5.3)
CONFIRM	RFC3315 (Section 5.3)
RENEW	RFC3315 (Section 5.3)
REBIND	RFC3315 (Section 5.3)
REPLY	RFC3315 (Section 5.3)
RELEASE	RFC3315 (Section 5.3)
DECLINE	RFC3315 (Section 5.3)
RECONFIGURE	RFC3315 (Section 5.3)
INFORMATION-REQUEST	RFC3315 (Section 5.3)
RELAY-FORW	RFC3315 (Section 5.3)
RELAY-REPL	RFC3315 (Section 5.3)

10.3 Configuration

10.3.1 Target Configuration

A target machine with DHCPv6 enabled. The software tool bind6 can be targeted in a Linux environment. A firewall must not be blocking DHCPv6 messages.

10.3.2 Required Pit Configuration Changes

TargetIPv6

IP address of the target host machine

SourceIPv6

IP address of the interface on the local machine

SourcePort

UDPv6 port number of the local machine

TargetPort

UDPv6 port number of the target host machine

SourceMAC

MAC Address of the local machine

TargetInterface

Network Interface to configure

MulticastDHCP

Multicast Address (fuzzed in DataModel)

TargetIPv6Lease

Target IPv6 Lease (fuzzed in DataModel)

MaxTries

Maximum number of packets to listen for before going to next iteration

Interface

Name of local interface (used for monitoring) (Must be set to ::1)

10.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing

LoggerPath

Path to folder where logs will be stored

Path

Path to the relative base directory where all pits are located.

10.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

10.4 Running

10.4.1 Single test debug run

Fuzzing DHCPv6 Server

```
peach -1 -debug DHCPv6_Server.xml
```

Fuzzing DHCPv6 Client

```
peach -1 -debug DHCPv6_Client.xml
```

10.4.2 Single test debug run

Fuzzing DHCPv6 Server

peach DHCPv6_Server.xml

Fuzzing DHCPv6 Client

```
peach DHCPv6_Client.xml
```

10.5 Examples

Example 10.1 Sample DHCPv6 Client Configuration File

Example configuration sending DHCPv6 packets.

For this example we assume you are running on Ubuntu or Debian Linux.

Install DHCPv6 Client

sudo apt-get install wide-dhcpv6-client

Running the client

```
dhcpv6c -f <interface>
```

 ${\tt NOTE:}$ The MAC addresses must be updated based on the environment.

```
description="Hardware address of the network interface on ←
                     machine running Peach Fuzzer. To find the hardware \ensuremath{\leftarrow}
                      address on Windows, run 'ipconfig /all' and look for the \hookleftarrow
                      'Physical Address' field. For Linux run 'ifconfig' and \leftrightarrow
                      look for the 'HWaddr' field. For OS X run 'ifconfig' and \leftarrow
                       look for the 'ether' field."/>
<Ipv6 key="SourceIPv6"</pre>
           value="::1"
           name="Source IPv6 Address"
           description="The IPv6 address of the machine running Peach Fuzzer ←
               . The IPv6 address can be found on Windows by running ' \hookleftarrow
               ipconfig' and looking for the 'IPv6 Address' field. For Linux
               run 'ifconfig' and look for 'inet6 addr' field. For OS X run ' \leftrightarrow
               ifconfig' and look for the 'inet6' field."/>
<Range key="SourcePort"
            value="547"
            min="0" max="65535"
            name="Source Port"
            description="The source port the network packet originates from. \hookleftarrow
<hwaddr key="TargetMAC"
                 value="000000000000"
                 name="Target MAC Address"
                 description="Hardware address of the network interface on \leftarrow
                     target machine or device. To find the hardware address \ \leftarrow
                      on Windows, run 'ipconfig /all' and look for the ' \leftarrow
                      Physical Address' field. For Linux run 'ifconfig' and \,\,\,\,\,\,\,\,
                      look for the 'HWaddr' field. For OS X run 'ifconfig' and \leftarrow
                       look for the 'ether' field." />
<Ipv6 key="TargetIPv6"</pre>
           value="::1"
           name="Target IPv6 Address"
           description="The IPv6 address of the target machine or device. \leftarrow
               The IPv6 address can be found on Windows by running 'ipconfig' ←
                and looking for the 'IPv6 Address' field. For Linux run ' \hookleftarrow
               ifconfig' and look for 'inet6 addr' field. For OS X run ' \leftrightarrow
               ifconfig' and look for the 'inet6' field."/>
<Range key="TargetPort"
            value="546"
            min="0"
            max="65535"
            name="Target Port"
            description="The target or destination port the network packet \leftrightarrow
                is sent to."/>
<String key="LoggerPath"
                 value="logs/dhcpv6_server/"
                 name="Logger Path"
                 description="The directory where Peach will save the log \ensuremath{\leftarrow}
                      produced when fuzzing." />
<Strategy key="Strategy"</pre>
                    value="Random"
                    name="Mutation Strategy"
                    description="The mutation strategy to use when fuzzing." \leftrightarrow
                        />
```

Example 10.2 Sample DHCPv6 Server Configuration File

Example configuration sending DHCPv6 packets.

For this example we assume you are running on Windows.

Windows Firewall Inbound Rules to enable on Target:

```
Core Networking - Dynamic Host Configuration Protocol for IPv6(DHCPV6-In)
```

NOTE: The MAC addresses must be updated based on the environment.

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
         < A 1 1 >
                  <String key="TargetIPv6Lease"</pre>
                                   value="fe80::908:7a38:6156:acce"
                                   name="Target IPv6 Lease"
                                   description="IPv6 address to assign."/>
                  <String key="MaxTries"
                                   value="20"
                                   name="Max Tries"
                                   description="Maximum number of tries to assign IP address \ \leftarrow
                                       per iteration."/>
                  <hwaddr key="SourceMAC"
                                   value="000000000000"
                                   name="Source MAC Address"
                                   description="Hardware address of the network interface on \leftarrow
                                       machine running Peach Fuzzer. To find the hardware \,\,\,\,\,\,\,\,\,\,\,
                                        address on Windows, run 'ipconfig /all' and look for the \leftarrow
                                         'Physical Address' field. For Linux run 'ifconfig' and \leftrightarrow
                                        look for the 'HWaddr' field. For OS X run 'ifconfig' and \hookleftarrow
                                        look for the 'ether' field."/>
                  <Ipv6 key="SourceIPv6"</pre>
                             value="::1"
                             name="Source IPv6 Address"
                             description="The IPv6 address of the machine running Peach Fuzzer ←
                                 . The IPv6 address can be found on Windows by running ' \leftarrow
                                 ipconfig' and looking for the 'IPv6 Address' field. For Linux \leftrightarrow
                                 run 'ifconfig' and look for 'inet6 addr' field. For OS X run ' \hookleftarrow
                                 ifconfig' and look for the 'inet6' field."/>
                  <Range key="SourcePort"
                              value="547"
                              min="0" max="65535"
                              name="Source Port"
                              description="The source port the network packet originates from. \hookleftarrow
                  <hwaddr key="TargetMAC"
                                   value="000000000000"
                                   name="Target MAC Address"
```

```
description = "Hardware address of the network interface on <math>\leftarrow
                                          target machine or device. To find the hardware address \,\,\,\,\,\,\,\,\,
                                          on Windows, run 'ipconfig /all' and look for the ' \leftarrow
                                          Physical Address' field. For Linux run 'ifconfig' and \leftarrow
                                          look for the 'HWaddr' field. For OS X run 'ifconfig' and \hookleftarrow
                                           look for the 'ether' field." />
                   <Ipv6 key="TargetIPv6"</pre>
                               value="::1"
                               name="Target IPv6 Address"
                               description="The IPv6 address of the target machine or device. \leftrightarrow
                                   The IPv6 address can be found on Windows by running 'ipconfig' \leftarrow
                                   and looking for the 'IPv6 Address' field. For Linux run ' \leftrightarrow ifconfig' and look for 'inet6 addr' field. For OS X run ' \leftrightarrow
                                   ifconfig' and look for the 'inet6' field."/>
                   <Range key="TargetPort"
                               value="546"
                               min="0"
                               max="65535"
                                name="Target Port"
                                description="The target or destination port the network packet \leftrightarrow
                                    is sent to."/>
                   <String key="LoggerPath"
                                      value="logs/dhcpv6_client/"
                                      name="Logger Path"
                                      description="The directory where Peach will save the log \ensuremath{\leftarrow}
                                          produced when fuzzing." />
                   <Strategy key="Strategy"</pre>
                                        value="Random"
                                        name="Mutation Strategy"
                                        description="The mutation strategy to use when fuzzing." \leftarrow
                   <String key="PitLibraryPath"</pre>
                                      value="."
                                      name="Pit Library Path"
                                      description="The path to the root of the pit library."/>
         </All>
</PitDefines>
```

11 Ethernet

• Peach Pit: Ethernet

· Direction: Broadcast

• Supported Platforms: Linux

An Ethernet Frame is a link layer data packet as described in IEEE 802.3. It encapsulates all the layers above it.

This is a simple protocol; this pit would not be used alone, but would likely be used to construct encapsulated protocol pits.

11.1 Specifications

Specification	Title
802.3	Ethernet
802.1Q	VLAN Tagging

11.2 Use Cases

Messages	Specification
Ethernet Frame	802.3 Section 3.1.1

Supported Features	Specification
Address Fields	802.3 Section 3.2.3
Length/Type Fields (Partial)	802.3 Section 3.2.6
MAC Client Data field	802.3 Section 3.2.7

11.3 Configuration

11.3.1 Target Configuration

This pit sends raw Ethernet frames; no extra applications are required.

11.3.2 Required Pit Configuration Changes

TargetIPv4

IPv4 address of the target host machine.

SourceIPv4

IPv4 address of the interface on the local machine.

SourceMAC

MAC address on local machine.

TargetMAC

MAC address of target machine.

Interface

Name of local interface.

11.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

11.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

11.4 Running

11.4.1 Single test debug run

```
peach -1 --debug Ethernet.xml
```

11.4.2 Full test run

peach Ethernet.xml

11.5 Examples

Example 11.1 Sample Ethernet Configuration File

Example configuration for sending raw ethernet packets.

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
         <All>
                  <hwaddr key="SourceMAC"
                                    value="000000000000"
                                    name="Source MAC Address"
                                    description="Hardware address of the network interface on \ensuremath{\hookleftarrow}
                                         machine running Peach Fuzzer. To find the hardware
                                         address on Windows, run 'ipconfig /all' and look for the \hookleftarrow
                                          'Physical Address' field. For Linux run 'ifconfig' and \ \hookleftarrow
                                        look for the 'HWaddr' field. For OS X run 'ifconfig' and \hookleftarrow
                                          look for the 'ether' field."/>
                  <Ipv4 key="SourceIPv4"</pre>
                              value="127.0.0.1"
                              name="Source IPv4 Address"
                              description = "The IPv4 address of the machine running Peach Fuzzer \hookleftarrow
                                  . The IPv4 address can be found on Windows by running ' \leftarrow
                                  ipconfig' and looking for the 'IPv4 Address' field. For Linux \ \hookleftarrow
                                  run 'ifconfig' and look for 'inet addr' field. For OS X run ' \hookleftarrow
                                  ifconfig' and look for the 'inet' field."/>
                  <Hwaddr key="TargetMAC"</pre>
                                    value="00000000000"
```

```
name="Target MAC Address"
                           description="Hardware address of the network interface on \leftarrow
                               target machine or device. To find the hardware address \ \leftarrow
                               on Windows, run 'ipconfig /all' and look for the ' \leftarrow
                               Physical Address' field. For Linux run 'ifconfig' and \ensuremath{\leftarrow}
                               look for the 'HWaddr' field. For OS X run 'ifconfig' and \leftarrow
                                look for the 'ether' field." />
         <Ipv4 key="TargetIPv4"</pre>
                    value="127.0.0.1"
                    name="Target IPv4 Address"
                    description="The IPv4 address of the target machine or device. \leftarrow
                         The IPv4 address can be found on Windows by running 'ipconfig' \leftarrow
                         and looking for the 'IPv4 Address' field. For Linux run ' \leftrightarrow
                         ifconfig' and look for 'inet addr' field. For OS X run ' \leftrightarrow
                         ifconfig' and look for the 'inet' field." />
         <String key="LoggerPath"</pre>
                           value="logs/ethernet/"
                           name="Logger Path"
                           description="The directory where Peach will save the log \,\leftarrow\,
                               produced when fuzzing." />
         <Strategy key="Strategy"</pre>
                             value="Random"
                             name="Mutation Strategy"
                             description="The mutation strategy to use when fuzzing." \leftrightarrow
                                  />
         <String key="PitLibraryPath"</pre>
                           value="."
                           name="Pit Library Path"
                           description="The path to the root of the pit library."/>
</All>
<Linux>
         <Iface key="Interface"</pre>
                     value="eth0"
                     name="Network Interface"
                     description="The network interface to transmit packets over. For \hookleftarrow
                          Windows, the network interfaces can be shown by running ' \hookleftarrow
                          ipconfig'. On Linux and OS X, the network interfaces can be \ensuremath{\leftarrow}
                          shown by running the command 'ifconfig'."/>
</Linux>
<OSX>
         <Iface key="Interface"</pre>
                     value="en0"
                     name="Network Interface"
                     description="The network interface to transmit packets over. For \hookleftarrow
                          Windows, the network interfaces can be shown by running ^{\prime} \hookleftarrow
                          ipconfig'. On Linux and OS X, the network interfaces can be \,\,\,\,\,\,\,\,\,
                          shown by running the command 'ifconfig'."/>
</osx>
<Windows>
         <Iface key="Interface"</pre>
                     value="Local Area Connection"
                     name="Network Interface"
                     description="The network interface to transmit packets over. For \hookleftarrow
                           Windows, the network interfaces can be shown by running ' \hookleftarrow
                          ipconfig'. On Linux and OS X, the network interfaces can be \,\leftarrow\,
```

shown by running the command 'ifconfig'."/>
</Windows>
</PitDefines>

12 File Transfer Protocol (FTP)

· Peach Pit: FTP

• Direction: Client, Server

• Supported Platforms: Windows, Linux, OS X

File Transfer Protocol (FTP) is a standard network protocol used to transfer files from one host to another host over a TCP-based network, such as the Internet.

FTP is built on a client-server architecture and uses separate control and data connections between the client and the server. FTP users may authenticate themselves using a clear-text sign-in protocol, normally in the form of a username and password, but can connect anonymously if the server is configured to allow it.

12.1 Specifications

Specification	Title
RFC 959 - File Transfer Protocol (FTP).	RFC 697 - CWD Command of FTP

12.2 Use Cases

Messages	Specification
FTP Protocol	RFC959
CWD Command	RFC 697
Directory Oriented Commands	RFC 775

12.3 Configuration

12.3.1 Target Configuration

An FTP server is required to test the client side of the FTP pit. On Linux, ftpd can be downloaded using apt-get.

12.3.2 Required Pit Configuration Changes

TargetIPv4

IP address of the target host machine.

SourceIPv4

IP address of the interface on the local machine.

SourcePort

ftp port number of the local machine.

TargetPort

ftp port number of the target host machine.

Interface

Name of local interface (used for monitoring).

FtpUser

Username of the remote ftp account.

FtpPass

Password for the associated ftp user account.

DataPort

The port used to listen for incoming data connections.

Program

The client program to test when fuzzing as the server.

12.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Agent

Agent to run depending on the target OS. Do not change this value.

Path

Path to the relative base directory where all pits are located.

12.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

12.4 Running

12.4.1 Single test debug run

Fuzzing an FTP client in active mode

```
peach -1 --debug FTP_Client.xml
```

Fuzzing an FTP client in passive mode

```
peach -1 --debug FTP_Client_Passive.xml
```

Fuzzing an FTP Server in active mode

```
peach -1 --debug FTP_Server.xml
```

Fuzzing an FTP Server in passive mode

```
peach -1 --debug FTP_Server.xml Passive
```

12.4.2 Full test run

Fuzzing an FTP client in active mode

peach FTP_Client.xml

Fuzzing an FTP client in passive mode

peach FTP_Client_Passive.xml

Fuzzing an FTP server in active mode

```
peach FTP_Server.xml
```

Fuzzing an FTP server in passive mode

```
peach FTP_Server_Passive.xml
```

12.5 Examples

Example 12.1 Sample FTP Client Configuration File

Example configuration targeting the ftpd server on Linux.

First we must install ftpd; for this example we assume you are running on Ubuntu or Debian. For other platforms follow the platform specific installation instructions for ftpd._

```
sudo apt-get install ftpd
```

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
        <All>
                 <Ipv4 key="SourceIPv4"</pre>
                            value="127.0.0.1"
                            name="Source IPv4 Address"
                            description="The IPv4 address of the machine running Peach Fuzzer \hookleftarrow
                                . The IPv4 address can be found on Windows by running ' \leftarrow
                                ipconfig' and looking for the 'IPv4 Address' field. For Linux ←
                                run 'ifconfig' and look for 'inet addr' field. For OS X run ' \hookleftarrow
                                ifconfig' and look for the 'inet' field."/>
                 <Range
                          key="CommandPort"
                          value="21"
                          min="0" max="65535"
                          name="FTP Command Port"
                          description="Port number for the main FTP communication. Typically \ \ \hookleftarrow
                              this is port 21." />
                 <Range
                          key="DataPort"
                          value="31337"
                          min="0" max="65535"
                          name="FTP Data Port"
                          description="Port number to use for data channel. This is a
                              secondary port used to transfer file data and should not be port \hookleftarrow
                               21." />
                 <Ipv4 key="TargetIPv4"</pre>
                            value="127.0.0.1"
                            name="Target IPv4 Address"
                            description="The IPv4 address of the target machine or device. \leftarrow
                                The IPv4 address can be found on Windows by running 'ipconfig' \leftarrow
                                 and looking for the 'IPv4 Address' field. For Linux run ' \leftarrow
                                 ifconfig' and look for 'inet addr' field. For OS X run ' \hookleftarrow
                                ifconfig' and look for the 'inet' field." />
                 <Range key="AcceptTimeout"</pre>
                                   value="5000"
                                   min="0" max="10000000"
                                   name="Timeout"
```

```
description="Timeout in milliseconds to wait for client \leftarrow
                                      connection. During fuzzing a timeout failure will cause
                                      the fuzzer to skip to the next iteration."/>
                 <Range key="Timeout"
                                  value="5000"
                                  min="0" max="1000000"
                                  name="Timeout"
                                  description="Timeout in milliseconds to wait for data to be \hookleftarrow
                                        send or received. During fuzzing a timeout failure will \hookleftarrow
                                       cause the fuzzer to skip to the next iteration."/>
                 <String key="LoggerPath"
                                  value="logs/ftp_server_passive/"
                                  name="Logger Path"
                                  description="The directory where Peach will save the log \ensuremath{\leftarrow}
                                      produced when fuzzing." />
                 <Strategy key="Strategy"</pre>
                                    value="Random"
                                    name="Mutation Strategy"
                                    description="The mutation strategy to use when fuzzing."
                 <String key="PitLibraryPath"</pre>
                                  value="."
                                  name="Pit Library Path"
                                  description="The path to the root of the pit library."/>
        </A11>
</PitDefines>
```

Example 12.2 Sample FTP Server Configuration File

Example configuration targeting the ftpd server on Linux.

First we must install ftpd; for this example we assume you are running on Ubuntu or Debian. For other platforms follow the platform specific installation instructions for ftpd._

sudo apt-get install ftpd

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
        <All>
                  <String key="FtpUser"
                                    value="ftpuser"
                                    name="FTP Username"
                                    description="FTP username used with the FTP Password to \ensuremath{\leftarrow}
                                       authenticate to the FTP server being tested."/>
                  <String key="FtpPass"
                                    value="ftpuser123"
                                    name="FTP Password"
                                    description="FTP password used with the FTP Username to \ensuremath{\leftarrow}
                                        authenticate to the FTP server being tested."/>
                  <Ipv4 key="SourceIPv4"</pre>
                             value="127.0.0.1"
                             name="Source IPv4 Address"
                             description="The IPv4 address of the machine running Peach Fuzzer \hookleftarrow
                                 . The IPv4 address can be found on Windows by running ' \hookleftarrow
                                 ipconfig' and looking for the 'IPv4 Address' field. For Linux
                                 run 'ifconfig' and look for 'inet addr' field. For OS X run ' \hookleftarrow
                                 ifconfig' and look for the 'inet' field."/>
```

```
<Ipv4 key="TargetIPv4"</pre>
                             value="127.0.0.1"
                             name="Target IPv4 Address"
                             description="The IPv4 address of the target machine or device. \leftrightarrow
                                 The IPv4 address can be found on Windows by running 'ipconfig' \leftrightarrow
                                  and looking for the 'IPv4 Address' field. For Linux run ' \leftarrow
                                 ifconfig' and look for 'inet addr' field. For OS X run' \leftarrow
                                 ifconfig' and look for the 'inet' field." />
                  <Range key="TargetPort"
                              value="21"
                              min="0"
                              max="65535"
                              name="Target Port"
                              description="The target or destination port the network packet \ \hookleftarrow
                                  is sent to."/>
                  <Range key="DataPort"
                              value="31337"
                              min="0" max="65535"
                              name="FTP Data Port"
                              description="Port number to use for data channel. This is a \leftrightarrow
                                  secondary port used to transfer file data and should not be \ensuremath{\hookleftarrow}
                                  port 21." />
                  <Range key="Timeout"</pre>
                                   value="5000"
                                   min="0" max="10000000"
                                    name="Timeout"
                                    description="Timeout in milliseconds to wait for data to be \hookleftarrow
                                         send or received. During fuzzing a timeout failure will \hookleftarrow
                                         cause the fuzzer to skip to the next iteration."/>
                  <String key="LoggerPath"</pre>
                                    value="logs/ftp_client/"
                                    name="Logger Path"
                                    description="The directory where Peach will save the log \,\,\leftarrow\,\,
                                        produced when fuzzing." />
                  <Strategy key="Strategy"</pre>
                                      value="Random"
                                      name="Mutation Strategy"
                                      description="The mutation strategy to use when fuzzing." \leftrightarrow
                                          />
                  <String key="PitLibraryPath"</pre>
                                    value="."
                                    name="Pit Library Path"
                                    description="The path to the root of the pit library."/>
        </All>
</PitDefines>
```

13 GIF Image Format

· Peach Pit: GIF

• Supported Platforms: Windows, Linux, OS X

Graphics Interchange Format (GIF) is an image format based on formerly patented compression techniques. It is commonly used for web images despite its licensing restraints.

GIF consists of a short header and collection of recursive, null-terminated blocks (which contain graphic settings, color tables, comments, and pixel data).

GIF uses LZW lossless encryption for packing and can support animated images.

13.1 Specifications

Specification	Title
http://www.w3.org/Graphics/GIF/spec-gif87.txt	Graphics Interchange Format Version
http://www.w3.org/Graphics/GIF/spec-gif89a.txt	Graphics Interchange Format Version 89a

13.2 Use Cases

Supported Versions	Specification
GIF87	Graphics Interchange Format Version
GIF89a	Graphics Interchange Format Version 89a

Supported Blocks	Specification
Header	Graphics Interchange Format Version 89a (17.0)
Logical Screen Descriptor	Graphics Interchange Format Version 89a (18.0)
Global Color Table	Graphics Interchange Format Version 89a (19.0)
Image Descriptor	Graphics Interchange Format Version 89a (20.0)
Local Color Table	Graphics Interchange Format Version 89a (21.0)
Table Based Image Data	Graphics Interchange Format Version 89a (22.0)
Graphic Control Extension	Graphics Interchange Format Version 89a (23.0)
Comment Extension	Graphics Interchange Format Version 89a (24.0)
Plain Text Extension	Graphics Interchange Format Version 89a (25.0)
Application Extension	Graphics Interchange Format Version 89a (26.0)
Trailer	Graphics Interchange Format Version 89a (27.0)

13.3 Configuration

13.3.1 Target Configuration

You can fuzz a variety of image viewing programs (such as "feh" on Linux and "mspaint.exe" on Windows) with the GIF file format.

In the Gif.xml.config pit file, you can set the target program that you are fuzzing, such as feh or mspaint.exe. Normally you would set different target programs for different operating systems.

13.3.2 Required Pit Configuration Changes

Seed

Name of a valid GIF file located in the Samples directory. An empty string indicates use all files in the directory. Multiple files can be globbed together with an asterisk wildcard.

Target

The program that will open the fuzzed GIF files

13.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Directory path to folder where logs will be stored.

Agent

The agent that will be ran to open the target program. This is generally OS dependent.

Path

Path to the relative base directory where all pits are located.

SamplePath

Path to the directory in which the GIF sample files are stored. Relative to Path.

13.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

13.4 Running

13.4.1 Single test debug run

```
peach -1 --debug Gif.xml
```

13.4.2 Full test run

peach Gif.xml

13.5 Examples

Example 13.1 Sample GIF Configuration File

Example configuration using feh on linux. The configuration file also contains settings for mspaint on Windows and preview on OSX:

First we must install feh; for this example we assume you are running on Ubuntu or Debian. For other platforms follow the platform specific installation instructions for feh.

```
#Installing feh on linux sudo apt-get install feh
```

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
         <All>
                  <String key="FuzzedFile"</pre>
                                   value="fuzzed.gif"
                                   name="Fuzzed Output File"
                                   description="File that is generated by Peach when fuzzing. \leftarrow
                                       This file will be consumed by the target application." / \leftarrow
                  <String key="Seed"
                                   value="*.gif"
                                   name="Seed File"
                                   description="The name of the sample file to use when \ \ \hookleftarrow
                                       fuzzing." />
                  <Strategy key="Strategy"</pre>
                                     value="Random"
                                     name="Mutation Strategy"
                                     description="The mutation strategy to use when fuzzing." \leftarrow
                  <String key="LoggerPath"
                                   value="./logs/gif/"
                                   name="Logger Path"
                                   description="The directory where Peach will save the log \,\,\leftarrow\,\,
                                       produced when fuzzing." />
                  <String key="SamplePath"</pre>
                                   value="##PitLibraryPath##/_Common/Samples/Image"
                                   name="Sample Path"
                                   description="The directory containing the samples to use \leftrightarrow
                                       when fuzzing." />
                  <String key="PitLibraryPath"</pre>
                                   value="."
                                   name="Pit Library Path"
                                   description="The path to the root of the pit library." />
         </All>
</PitDefines>
```

When running this you will see feh repeatedly open and close.

14 Internet Control Message Protocol version 4 (ICMPv4)

• Peach Pit: ICMPv4

• Direction: Client

• Supported Platforms: Windows, Linux, OS X

Internet Control Message Protocol version 4 (ICMPv4) is the implementation of a message relay protocol on top of IPv4. It provides error responses for the IPv4 protocol as well as simple data transmission. It is commonly used in the ping application for testing network response and connectivity.

14.1 Specifications

Specification	Title
RFC792	Internet Control Message Protocol
RFC1071	Computing the Internet Checksum
RFC1122	Requirements for Internet Hosts — Communication Layers
RFC1256	ICMP Router Discovery Messages
RFC6918	Formally Deprecating Some ICMPv4 Message Types
RFC6633	Deprecation of ICMP Source Quench Messages

14.2 Use Cases

Messages	Specification
8) Echo	RFC792
0) Echo Reply	RFC792
3) Destination Unreachable	RFC792
4) Source Quench	RFC792
5) Redirect	RFC792
11) Time Exceeded	RFC792
12) Parameter Problem	RFC792
13) Timestamp	RFC792
14) Timestamp Reply Problem	RFC792
15) Information Request	RFC792
16) Information Reply	RFC792
9) Router Advertisement	RFC1256 (Section 3)
10) Router Solicitation	RFC1256 (Section 3)

Supported Features	Specification
Internet Checksum	RFC1071

Supported Payloads	Specification
IPv4 in Error Responses	RFC1122

14.3 Configuration

14.3.1 Target Configuration

A target machine with ICMPv4 enabled. A firewall must not block ICMPv4 messages.

14.3.2 Required Pit Configuration Changes

TargetIPv4

IP address of the target host machine.

SourceIPv4

IP address of the interface on the local machine.

Interface

Name of local interface (used for monitoring).

14.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

14.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

14.4 Running

14.4.1 Single test debug run

```
peach -1 --debug ICMPv4.xml
```

14.4.2 Full test run

peach ICMPv4.xml

14.5 Examples

Example 14.1 Sample ICMPv4 Configuration File

Example configuration sending ICMPv4 packets.

For this example we assume you are running on Windows. For other platforms use the preferred way to configure the firewall. Windows Firewall Inbound Rules to enable on Target:

```
Core Networking - Destination Unreachable Fragmentation Needed (ICMPv4-In) File and Printer Sharing (Echo Request - ICMPv4-In)
```

```
description="The IPv4 address of the machine running Peach Fuzzer \leftrightarrow
                               . The IPv4 address can be found on Windows by running ' \hookleftarrow
                               ipconfig' and looking for the 'IPv4 Address' field. For Linux \ \ \ \ \ \ 
                               run 'ifconfig' and look for 'inet addr' field. For OS X run ' \leftrightarrow
                               ifconfig' and look for the 'inet' field."/>
                 <Ipv4 key="TargetIPv4"</pre>
                           value="127.0.0.1"
                           name="Target IPv4 Address"
                           description="The IPv4 address of the target machine or device. \leftrightarrow
                                The IPv4 address can be found on Windows by running 'ipconfig' \leftrightarrow
                                and looking for the 'IPv4 Address' field. For Linux run ' \hookleftarrow
                                ifconfig' and look for 'inet addr' field. For OS X run ' \hookleftarrow
                                ifconfig' and look for the 'inet' field." />
                 <String key="LoggerPath"</pre>
                                  value="logs/icmpv4/"
                                  name="Logger Path"
                                  produced when fuzzing." />
                 <Strategy key="Strategy"</pre>
                                    value="Random"
                                    name="Mutation Strategy"
                                    description="The mutation strategy to use when fuzzing." \leftrightarrow
                 <String key="PitLibraryPath"</pre>
                                  value="."
                                  name="Pit Library Path"
                                  description="The path to the root of the pit library."/>
        </All>
</PitDefines>
```

15 Internet Control Message Protocol version 6 (ICMPv6)

• Peach Pit: ICMPv6

• Direction: Client

• Supported Platforms: Windows, Linux, OS X

Internet Control Message Protocol version 6 (ICMPv6) is the implementation of the Internet Control Message Protocol (ICMP) for Internet Protocol version 6 (IPv6) defined in RFC 4443.

ICMPv6 is an integral part of IPv6 and performs error reporting, diagnostic functions (like ping), and a framework for extensions to implement future changes.

Several extensions have been published, defining new ICMPv6 message types as well as new options for existing ICMPv6 message types:

- Neighbor Discovery Protocol (NDP) is a node discovery protocol in IPv6 which replaces and enhances functions of ARP
- Secure Neighbor Discovery Protocol (SEND) is an extension of NDP with extra security
- Multicast Router Discovery (MRD) allows discovery of multicast routers

15.1 Specifications

Specification	Title
RFC4443	Internet Control Message Protocol (ICMPv6) for the
	Internet Protocol Version 6 (IPv6) Specification
RFC2460	Internet Protocol, Version 6 (IPv6) Specification
RFC2710	Multicast Listener Discovery (MLD) for IPv6
RFC4861	Neighbor Discovery for IP version 6 (IPv6)
RFC6275	Mobility Support in IPv6
RFC4620	IPv6 Node Information Queries
RFC3122	Extensions to IPv6 Neighbor Discovery for Inverse
	Discovery Specification
RFC3810	Multicast Listener Discovery Version 2 (MLDv2) for IPv6
RFC4286	Multicast Router Discovery
RFC4861	Neighbor Discovery
RFC5568	Mobile IPv6 Fast Handovers
RFC3971	SEcure Neighbor Discovery (SEND)
RFC6550	RPL: IPv6 Routing Protocol for Low-Power and Lossy
	Networks
RFC6743	ICMP Locator Update Message for the Identifier-Locator
	Network Protocol for IPv6 (ILNPv6)

15.2 Use Cases

Messages	Specification
Destination Unreachable	RFC4443 (Section 3.1)
Packet Too Big	RFC4443 (Section 3.2)
Time Exceeded	RFC4443 (Section 3.3)
Parameter Problem	RFC4443 (Section 3.4)
Echo Request	RFC4443 (Section 4.1)
Echo Reply	RFC4443 (Section 4.2)

15.3 Configuration

15.3.1 Target Configuration

A target machine with ICMPv6 enabled. A firewall must not block ICMPv6 messages.

15.3.2 Required Pit Configuration Changes

TargetIPv6

IP address of the target host machine.

SourceIPv6

IP address of the interface on the local machine.

15.3.3 Optional Pit Configuration Changes.

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

15.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

15.4 Running

15.4.1 Single test debug run

peach -1 --debug ICMPv6.xml

15.4.2 Full test run

peach ICMPv6.xml

15.5 Examples

Example 15.1 Sample ICMPv6 Configuration File

Example configuration sending ICMPv6 packets.

For this example we assume you are running on Windows. For other platforms use the preferred way to configure the firewall. Windows Firewall Inbound Rules to enable on Target:

```
Core Networking - Destination Unreachable (ICMPv6-In)

Core Networking - Multicast Listener Done (ICMPv6-In)

Core Networking - Multicast Listener Query (ICMPv6-In)

Core Networking - Multicast Listener Report (ICMPv6-In)

Core Networking - Multicast Listener Report v2 (ICMPv6-In)

Core Networking - Neighbor Discovery Advertisement (ICMPv6-In)

Core Networking - Neighbor Discovery Solicitation (ICMPv6-In)

Core Networking - Packet Too Big (ICMPv6-In)

Core Networking - Parameter Problem (ICMPv6-In)

Core Networking - Router Advertisement (ICMPv6-In)

Core Networking - Router Solicitation (ICMPv6-In)

Core Networking - Time Exceeded (ICMPv6-In)

File and Printer Sharing (Echo Request - ICMPv6-In)
```

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
         < A 1 1 >
                  <Hwaddr key="SourceMAC"</pre>
                                   value="00000000000"
                                   name="Source MAC Address"
                                   description="Hardware address of the network interface on \leftarrow
                                       machine running Peach Fuzzer. To find the hardware \leftarrow
                                        address on Windows, run 'ipconfig /all' and look for the \hookleftarrow
                                         'Physical Address' field. For Linux run 'ifconfig' and ←
                                        look for the 'HWaddr' field. For OS X run 'ifconfig' and \hookleftarrow
                                         look for the 'ether' field."/>
                  <Ipv6 key="SourceIPv6"</pre>
                             value="::1"
                             name="Source IPv6 Address"
                             description="The IPv6 address of the machine running Peach Fuzzer \leftrightarrow
                                 . The IPv6 address can be found on Windows by running ' \leftarrow
                                 ipconfig' and looking for the 'IPv6 Address' field. For Linux
                                 run 'ifconfig' and look for 'inet6 addr' field. For OS X run ' \leftrightarrow
                                 ifconfig' and look for the 'inet6' field."/>
                  <Ipv6 key="TargetIPv6"</pre>
                             value="::1"
                             name="Target IPv6 Address"
                             description="The IPv6 address of the target machine or device.
                                 The IPv6 address can be found on Windows by running 'ipconfig' \hookleftarrow
                                  and looking for the 'IPv6 Address' field. For Linux run ' \leftarrow
                                 ifconfig' and look for 'inet6 addr' field. For OS X run ' \leftrightarrow
                                 ifconfig' and look for the 'inet6' field."/>
                  <String key="LoggerPath"
                                   value="logs/icmpv6/"
                                   name="Logger Path"
                                   description="The directory where Peach will save the log \leftrightarrow
                                        produced when fuzzing." />
                  <Strategy key="Strategy"</pre>
                                      value="Random"
                                      name="Mutation Strategy"
                                      description="The mutation strategy to use when fuzzing." \leftarrow
```

16 ICO Image Format

· Peach Pit: ICO

• Supported Platorms: Windows, Linux, OS X

The ICO file format is an image file format for computer icons in Microsoft Windows. ICO files contain one or more small images at multiple sizes and color depths, such that they may be scaled appropriately.

16.1 Specifications

Specification	Title
http://msdn.microsoft.com/en-us/library/ms997538.aspx	Icons

16.2 Configuration

16.2.1 Target Configuration

Any number of image viewing programs may be targeted with the Ico file format. Example targets for fuzzing Ico are "feh" on Linux and "mspaint.exe" on Windows.

In the Ico.xml.config pit file, you can set the target program that you are fuzzing, such as feh or mspaint.exe. Normally you would set different target programs for different operating systems.

16.2.2 Required Pit Configuration Changes

Seed

Name of a valid Ico file located in the Samples directory. An empty string indicates use all files in the directory. Multiple files can be globbed together with an asterisk wildcard.

Target

The program that will open the fuzzed Ico files

16.2.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Directory path to folder where logs will be stored.

Agent

The agent that will be ran to open the target program. This is generally OS dependent.

Path

Path to the relative base directory where all pits are located.

SamplePath

Path to the directory in which the ICO sample files are stored. Relative to Path.

16.2.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

16.3 Running

16.3.1 Single test debug run

```
peach -1 --debug Ico.xml
```

16.3.2 Full test run

```
peach Ico.xml
```

16.4 Examples

Example 16.1 Sample ICO Configuration File

Example configuration using feh on linux. The configuration file also contains settings for mspaint on Windows and preview on OSX:

First we must install feh; for this example we assume you are running on Ubuntu or Debian. For other platforms follow the platform specific installation instructions for feh.

```
#Installing feh on linux sudo apt-get install feh
```

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
        <All>
                  <String key="FuzzedFile"
                                   value="fuzzed.ico"
                                   name="Fuzzed Output File"
                                   description="File that is generated by Peach when fuzzing.
                                       This file will be consumed by the target application." / \hookleftarrow
                  <String key="Seed"
                                   value="*.ico"
                                   name="Seed File"
                                   description="The name of the sample file to use when \ensuremath{\leftarrow}
                                        fuzzing." />
                  <Strategy key="Strategy"</pre>
                                     value="Random"
                                     name="Mutation Strategy"
                                      description="The mutation strategy to use when fuzzing." \leftrightarrow
                  <String key="LoggerPath"</pre>
                                   value="./logs/ico/"
                                   name="Logger Path"
                                   description="The directory where Peach will save the log \,\,\leftarrow\,\,
                                        produced when fuzzing." />
                  <String key="SamplePath"
                                   value="##PitLibraryPath##/_Common/Samples/Image"
                                   name="Sample Path"
                                   description="The directory containing the samples to use \ \leftarrow
                                        when fuzzing." />
                  <String key="PitLibraryPath"</pre>
```

```
value="."
name="Pit Library Path"
description="The path to the root of the pit library." />
</All>
</PitDefines>
```

When running this you will see feh repeatedly open and close.

17 Internet Group Management Protocol (IGMP)

• Peach Pit: IGMPv4

• Direction: Client

• Supported Platforms: Windows, Linux

Internet Group Management Protocol (IGMP) is used to declare and manage group membership for multicast addresses in IPv6.

Multicast IP Addresses allow machines to subscribe to IP address groups. Packets addressed to a group IP Address are distributed among all members.

IGMP is the protocol over IPv4 that allows machines to manage their group subscriptions.

17.1 Specifications

Specification	Title
RFC3376	Internet Group Management Protocol, Version 3
RFC4604	Using Internet Group Management Protocol Version 3 and
	Multicast Listener Discovery Protocol Version 2 for
	Source-Specific Multicast
RFC2236	Internet Group Management Protocol, Version 2
RFC1112	Host Extensions for IP Multicasting

17.2 Use Cases

Messages	Specification
Membership Query	RFC3376 (Section 4.0)
Version 3 Membership Report	RFC3376 (Section 4.0)

Supported Features	Specification
General Query	RFC3376 (Section 4.1.11)
Group-Specific Query	RFC3376 (Section 4.1.11)
Group-and-Source-Specific Query	RFC3376 (Section 4.1.11)

17.3 Configuration

17.3.1 Target Configuration

A target machine with IGMP enabled. A firewall must not block IGMP messages.

17.3.2 Required Pit Configuration Changes

TargetIPv4

IP address of the target host machine

SourceIPv4

IP address of the interface on the local machine

17.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing

LoggerPath

Path to folder where logs will be stored

Path

Path to the relative base directory where all pits are located.

17.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

17.4 Running

17.4.1 Single test debug run

```
peach -1 --debug IGMP.xml
```

17.4.2 Full test run

```
peach IGMP.xml
```

17.5 Examples

Example 17.1 Sample IGMP Configuration File

Example configuration sending IGMP packets.

For this example we assume you are running on Windows. For other platforms use the preferred way to configure the firewall. Windows Firewall Inbound Rules to enable on Target:

```
Core Networking - Internet Group Management Protocol (IGMP-In)
```

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
         <A11>
                  <Ipv4 key="SourceIPv4"</pre>
                             value="127.0.0.1"
                             name="Source IPv4 Address"
                             description="The IPv4 address of the machine running Peach Fuzzer \leftrightarrow
                                  . The IPv4 address can be found on Windows by running ^{\prime} \leftarrow
                                  ipconfig' and looking for the 'IPv4 Address' field. For Linux \leftrightarrow
                                  run 'ifconfig' and look for 'inet addr' field. For OS X run ' \leftrightarrow
                                  ifconfig' and look for the 'inet' field."/>
                  <Ipv4 key="TargetIPv4"</pre>
                             value="127.0.0.1"
                             name="Target IPv4 Address"
                             description="The IPv4 address of the target machine or device. \leftarrow
                                  The IPv4 address can be found on Windows by running 'ipconfig' \leftrightarrow
                                  and looking for the 'IPv4 Address' field. For Linux run ' \leftarrow
                                  ifconfig' and look for 'inet addr' field. For OS X run ' \leftarrow
                                  ifconfig' and look for the 'inet' field." />
```

18 Internet Protocol Security

Peach Pit: IPsecDirection: Client

• Supported Platforms: Windows, Linux

Internet Protocol Security (IPsec) is a protocol suite for securing Internet Protocol (IP) communications by authenticating and encrypting each IP packet of a communication session.

IPsec includes protocols for establishing mutual authentication between agents at the beginning of the session and cryptographic key negotiations during the session. The protocol can be used to protect data flows between:

- a pair of hosts (host-to-host)
- a pair of security gateways (network-to-network)
- a security gateway and a host (network-to-host)

18.1 Specifications

Specification	Title
RFC2403	The Use of HMAC-MD5-96 within ESP and AH
RFC2404	The Use of HMAC-SHA-1-96 within ESP and AH
RFC2405	The ESP DES-CBC Cipher Algorithm With Explicit IV
RFC2410	The NULL Encryption Algorithm and Its Use With IPsec
RFC2451	The ESP CBC-Mode Cipher Algorithms
RFC2857	The Use of HMAC-RIPEMD-160-96 within ESP and AH
RFC4302	IP Authentication Header
RFC4303	IP Encapsulating Security Payload

18.2 Use Cases

Messages	Specification
Encapsulating Security Payload Packet Format	RFC4303 2
Authentication Header (AH)	RFC4302
Transport Mode Processing	RFC4303 3.1.1
Tunnel Mode Processing	RFC4303 3.1.2
Separate Confidentiality and Integrity Algorithms	RFC4303 3.4.4.1
ICV HMAC-MD5-96	RFC2403
ICV HMAC-SHA-1-96	RFC2404
ICV HMAC-RIPEMD-160-96	RFC2857
3DES-CBC Cipher Encryption	RFC2405, RFC2451
Null Encryption	RFC2410

18.3 Configuration

18.3.1 Target Configuration

An IPsec target configured for manual keying using the keys defined in the configuration file is required. IP-tools on Linux can be used.

Both a UDP and an TCP listener are required to run all the tests. The networking tool socat can be used as a listener.

18.3.2 Required Pit Configuration Changes

TargetIPv6

IPv6 address of the target host machine.

SourceIPv6

IPv6 address of the interface on the local machine.

TargetIPv4

IPv4 address of the target host machine (used for encapsulating IPv4 in IPv6).

SourceIPv4

IPv4 address of the interface on the local machine (used for encapsulating IPv4 in IPv6).

SourceMAC

MAC address on local machine.

TargetMAC

MAC address of target machine.

Mode

Processing mode for IPsec can either be Tunnel or Transport.

EncryptionAlg

Encryption algorithm used when encrypting packets.

CryptoKey

Shared key used to encrypt packets.

HashAlg

Hashing algorithm used to provide data integrity.

AuthKey

Shared key used for HMAC hashing.

IV

Initialization vector used with the encryption algorithm.

SPI

Security parameter index used assigned to the local machine.

SourcePort

UDPv6 and/or TCPv6 port number of the local machine.

TargetPort

UDPv6 and/or TCPv6 port number of the target host machine.

18.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

18.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

18.4 Running

18.4.1 Single test debug run

Fuzzing IPSECv6 ESP

```
peach -1 --debug IPSECv6_ESP.xml
```

Fuzzing IPSECv6 AH

```
peach -1 --debug IPSECv6_AH.xml
```

18.4.2 Full test run

Fuzzing IPSECv6 ESP

```
peach IPSECv6_ESP.xml
```

Fuzzing IPSECv6 AH

```
peach IPSECv6_AH.xml
```

18.5 Examples

Example 18.1 Sample IPsec AH Configuration File

Example configuration using ipsec-tools on Linux.

First we must install ipsec-tools; for this example we assume you are running on Ubuntu or Debian. For other platforms follow the platform specific installation instructions for ipsec-tools.

```
#This will enable to the target machine to both send and receive IPsec traffic from the
  specified IP addresses
sudo apt-get install ipsec-tools
#Create the following ipsec.config file changing the encryption keys, algorithms and IP \leftrightarrow
  address to match the pit config
## Start ipsec.config ##
flush;
spdflush;
spdadd 10.0.1.2 10.0.1.2 any -P out ipsec
   ah/transport//require;
spdadd 10.0.1.1 10.0.1.2 any -P in ipsec
   ah/transport//require;
## End ipsec.config ##
#Run setkey to enable changes
sudo setkey -f ipsec.config
#Setting up socat listener for UDP
```

```
sudo socat STDIO udp-listen:12345
#Setting up socat listener for TCP
sudo socat STDIO tcp-listen:12345
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
        <All>
                 <Enum key="Mode"
                            value="Transport"
                            enumType="Peach.Enterprise.Pits.IpSecv6_Mode"
                            name="IPSEC Mode"
                            description="IPSEC mode of operation."/>
                 <Enum key="HashAlg"
                            value="HMACMD5"
                            enumType="Peach.Enterprise.Pits.IpSecv6_HMAC"
                            name="HMAC Hash Algorithm"
                            description="The HMAC hash algorithm to use."/>
                 <String key="AuthKey"
                                   name="HMAC Key"
                                   description="HMAC authentication key. Length of this key is \leftarrow
                                        dependent on the HMAC algorithm selected."/>
                 <String key="SPI"
                                   value="201"
                                   name="Security Parameters Index (SPI)"
                                   description="The SPI is an arbitrary 32-bit value that, in \leftrightarrow
                                       combination with the destination IP address and security \leftarrow
                                        protocol (AH), uniquely identifies the Security \leftarrow
                                       Association for this datagram."/>
                 <Hwaddr key="SourceMAC"</pre>
                                   value="000000000000"
                                   name="Source MAC Address"
                                   description="Hardware address of the network interface on \ensuremath{\leftarrow}
                                       machine running Peach Fuzzer. To find the hardware \ensuremath{\leftarrow}
                                       address on Windows, run 'ipconfig /all' and look for the \hookleftarrow
                                        'Physical Address' field. For Linux run 'ifconfig' and \leftrightarrow
                                       look for the 'HWaddr' field. For OS X run 'ifconfig' and \hookleftarrow
                                        look for the 'ether' field."/>
                 <Ipv4 key="SourceIPv4"</pre>
                            value="127.0.0.1"
                            name="Source IPv4 Address"
                            description="The IPv4 address of the machine running Peach Fuzzer \leftarrow
                                 . The IPv4 address can be found on Windows by running ^{\prime} \leftarrow
                                ipconfig' and looking for the 'IPv4 Address' field. For Linux \leftrightarrow
                                run 'ifconfig' and look for 'inet addr' field. For OS X run ' \leftrightarrow
                                ifconfig' and look for the 'inet' field."/>
                 <Ipv6 key="SourceIPv6"</pre>
                            value="::1"
                            name="Source IPv6 Address"
                            {\tt description="The IPv6 address of the machine running Peach Fuzzer} \; \hookleftarrow
                                . The IPv6 address can be found on Windows by running ' \hookleftarrow
                                ipconfig' and looking for the 'IPv6 Address' field. For Linux \ \hookleftarrow
                                run 'ifconfig' and look for 'inet6 addr' field. For OS X run ' \hookleftarrow
                                ifconfig' and look for the 'inet6' field."/>
```

```
<Range key="SourcePort"
                              value="1234"
                              min="0" max="65535"
                              name="Source Port"
                              description="The source port the network packet originates from. \hookleftarrow
                 <hwaddr key="TargetMAC"
                                   value="000000000000"
                                   name="Target MAC Address"
                                   description="Hardware address of the network interface on \leftarrow
                                        target machine or device. To find the hardware address \ \leftarrow
                                        on Windows, run 'ipconfig /all' and look for the ' \leftarrow
                                        Physical Address' field. For Linux run 'ifconfig' and \,\,\,\,\,\,\,\,
                                        look for the 'HWaddr' field. For OS X run 'ifconfig' and \leftarrow
                                         look for the 'ether' field." />
                 <Ipv4 key="TargetIPv4"</pre>
                             value="127.0.0.1"
                             name="Target IPv4 Address"
                             description="The IPv4 address of the target machine or device. \leftarrow
                                 The IPv4 address can be found on Windows by running 'ipconfig' ←
                                  and looking for the 'IPv4 Address' field. For Linux run ' \leftrightarrow
                                 ifconfig' and look for 'inet addr' field. For OS X run' \leftarrow
                                 ifconfig' and look for the 'inet' field." />
                 <Ipv6 key="TargetIPv6"</pre>
                             value="::1"
                             name="Target IPv6 Address"
                             description="The IPv6 address of the target machine or device. \hookleftarrow
                                 The IPv6 address can be found on Windows by running 'ipconfig' \leftarrow
                                  and looking for the 'IPv6 Address' field. For Linux run ' \hookleftarrow
                                 ifconfig' and look for 'inet6 addr' field. For OS X run ' \leftarrow
                                 ifconfig' and look for the 'inet6' field."/>
                 <Range key="TargetPort"</pre>
                              value="1234"
                              min="0"
                              max="65535"
                              name="Target Port"
                              description="The target or destination port the network packet \,\,\,\,\,\,\,\,\,\,\,\,\,\,
                                  is sent to."/>
                 <String key="LoggerPath"
                                   value="logs/ipsecv6_ah/"
                                   name="Logger Path"
                                   description="The directory where Peach will save the log \ensuremath{\leftarrow}
                                        produced when fuzzing." />
                 <Strategy key="Strategy"</pre>
                                      value="Random"
                                      name="Mutation Strategy"
                                      description="The mutation strategy to use when fuzzing." \leftrightarrow
                 <String key="PitLibraryPath"</pre>
                                   value="."
                                   name="Pit Library Path"
                                   description="The path to the root of the pit library."/>
        </All>
</PitDefines>
```

Example 18.2 Sample IPsec ESP Configuration File

Example configuration using ipsec-tools on Linux.

First we must install ipsec-tools; for this example we assume you are running on Ubuntu or Debian. For other platforms follow the platform specific installation instructions for ipsec-tools.

```
#This will enable to the target machine to both send and receive IPsec traffic from the \ \leftrightarrow
   specified IP addresses
sudo apt-get install ipsec-tools
#Create the following ipsec.config file changing the encryption keys, algorithms and IP \leftrightarrow
   address to match the pit config
## Start ipsec.config ##
flush;
spdflush;
add 10.0.1.1 10.0.1.2 esp 201 -E 3des-cbc "aeaeaeaeaeaeaeae";
add 10.0.1.2 10.0.1.1 esp 301 -E 3des-cbc "aeaeaeaeaeaeaeae";
spdadd 10.0.1.2 10.0.1.2 any -P out ipsec
   esp/transport//require
   ah/transport//require;
spdadd 10.0.1.1 10.0.1.2 any -P in ipsec
   esp/transport//require
   ah/transport//require;
## End ipsec.config ##
#Run setkey to enable changes
sudo setkey -f ipsec.config
#Setting up socat listener for UDP
sudo socat STDIO udp-listen:12345
#Setting up socat listener for TCP
sudo socat STDIO tcp-listen:12345
```

```
value="4141414141414141414141414141414141"
                 name="Encryption Key"
                 description="Encryption key in HEX. For AES the key must be \leftrightarrow
                      16 bytes long. For 3DES it must be 8 bytes long."/>
<String key="IV"
                 value="baae9ef59ff1ee56211769bd91da50ed"
                 name="Initialization Vector (IV)"
                 description="Initialization vector (IV) in HEX. For AES the \hookleftarrow
                      IV must be 16 bytes long. For 3DES is must be 8 bytes \,\leftarrow\,
                     long."/>
<Enum key="HashAlg"
           value="HMACMD5"
           enumType="Peach.Enterprise.Pits.IpSecv6_HMAC"
           name="HMAC Hash Algorithm"
           description="The HMAC hash algorithm to use."/>
<String key="AuthKey"
                 name="HMAC Key"
                 description="HMAC authentication key. Length of this key is \leftrightarrow
                      dependent on the HMAC algorithm selected."/>
<String key="SPI"
                 value="201"
                 name="Security Parameters Index (SPI)"
                 description="The SPI is an arbitrary 32-bit value that, in \leftrightarrow
                     combination with the destination IP address and security \hookleftarrow
                      protocol (AH), uniquely identifies the Security \leftarrow
                     Association for this datagram."/>
<hwaddr key="SourceMAC"
                 value="00000000000"
                 name="Source MAC Address"
                 description="Hardware address of the network interface on \leftrightarrow
                     machine running Peach Fuzzer. To find the hardware \ensuremath{\leftarrow}
                     address on Windows, run 'ipconfig /all' and look for the \hookleftarrow
                      'Physical Address' field. For Linux run 'ifconfig' and \leftrightarrow
                     look for the 'HWaddr' field. For OS X run 'ifconfig' and \hookleftarrow
                      look for the 'ether' field."/>
<Ipv4 key="SourceIPv4"</pre>
          value="127.0.0.1"
          name="Source IPv4 Address"
           description="The IPv4 address of the machine running Peach Fuzzer \leftrightarrow
               . The IPv4 address can be found on Windows by running ' \hookleftarrow
               ipconfig' and looking for the 'IPv4 Address' field. For Linux \leftrightarrow
               run 'ifconfig' and look for 'inet addr' field. For OS X run ' \leftrightarrow
               ifconfig' and look for the 'inet' field."/>
<Ipv6 key="SourceIPv6"</pre>
          value="::1"
           name="Source IPv6 Address"
           description="The IPv6 address of the machine running Peach Fuzzer \leftrightarrow
               . The IPv6 address can be found on Windows by running ' \leftarrow
               ipconfig' and looking for the 'IPv6 Address' field. For Linux
               run 'ifconfig' and look for 'inet6 addr' field. For OS X run ' \hookleftarrow
               ifconfig' and look for the 'inet6' field."/>
<Range key="SourcePort"
            value="1234"
            min="0" max="65535"
            name="Source Port"
```

```
description="The source port the network packet originates from. \leftarrow
                  <Hwaddr key="TargetMAC"</pre>
                                    value="000000000000"
                                    name="Target MAC Address"
                                    description="Hardware address of the network interface on \ \leftarrow
                                        target machine or device. To find the hardware address \ \leftarrow
                                        on Windows, run 'ipconfig /all' and look for the ' \leftarrow
                                        Physical Address' field. For Linux run 'ifconfig' and \,\,\,\,\,\,\,\,
                                        look for the 'HWaddr' field. For OS X run 'ifconfig' and \hookleftarrow
                                          look for the 'ether' field." />
                  <Ipv4 key="TargetIPv4"</pre>
                             value="127.0.0.1"
                             name="Target IPv4 Address"
                             description="The IPv4 address of the target machine or device. \leftrightarrow
                                 The IPv4 address can be found on Windows by running 'ipconfig' \leftrightarrow
                                  and looking for the 'IPv4 Address' field. For Linux run ' \leftrightarrow
                                  ifconfig' and look for 'inet addr' field. For OS X run ' \leftrightarrow
                                 ifconfig' and look for the 'inet' field." />
                  <Ipv6 key="TargetIPv6"</pre>
                             value="::1"
                             name="Target IPv6 Address"
                             description="The IPv6 address of the target machine or device. \leftrightarrow
                                 The IPv6 address can be found on Windows by running 'ipconfig' \leftrightarrow
                                  and looking for the 'IPv6 Address' field. For Linux run ' \hookleftarrow
                                  ifconfig' and look for 'inet6 addr' field. For OS X run ' \hookleftarrow
                                  ifconfig' and look for the 'inet6' field."/>
                  <Range key="TargetPort"
                              value="1234"
                              min="0"
                              max="65535"
                              name="Target Port"
                              <code>description="The target or destination port the network packet \ \leftarrow </code>
                                   is sent to."/>
                  <String key="LoggerPath"</pre>
                                    value="logs/ipsecv6_esp/"
                                    name="Logger Path"
                                    description="The directory where Peach will save the log \ \leftarrow
                                        produced when fuzzing." />
                  <Strategy key="Strategy"</pre>
                                      value="Random"
                                      name="Mutation Strategy"
                                      description="The mutation strategy to use when fuzzing." \leftrightarrow
                  <String key="PitLibraryPath"</pre>
                                    value="."
                                    name="Pit Library Path"
                                    description="The path to the root of the pit library."/>
        </All>
</PitDefines>
```

19 Internet Protocol version 4 (IPv4)

• Peach Pit: IPv4

• Direction: Client

• Supported Platforms: Windows, Linux, OS X

Internet Protocol Version 4 (IPv4) is the Layer 3 Backbone of the internet. It is built on top of Ethernet and offers configurable addressing and routing capabilities to computer networks.

IPv4 is an inherently unreliable protocol because packets may not reach their destination. Layer 4 protocols like TCP are designed to provide reliable and ordered transmission of data over an IP network.

19.1 Specifications

Specification	Title
RFC791	INTERNET PROTOCOL DARPA INTERNET
	PROGRAM PROTOCOL SPECIFICATION
RFC760	DOD STANDARD INTERNET PROTOCOL
RFC1071	Computing the Internet Checksum
RFC2474	Definition of the Differentiated Services Field (DS Field)
	in the IPv4 and IPv6 Headers
RFC3168	The Addition of Explicit Congestion Notification (ECN) to
	IP

19.2 Use Cases

Messages	Specification
Packet	RFC791

Supported Features	Specification
Internet Checksum	RFC1071
Padding	RFC791 (Section 3.1)
Option Blocks	RFC791 (Section 3.1)
Explicit Congestion Notification	RFC3168

Supported Payloads	Specification
ICMPv4 Echo Request	RFC792

19.3 Configuration

19.3.1 Target Configuration

A target machine with ICMPv4 enabled. A firewall must not block ICMPv4 messages.

19.3.2 Required Pit Configuration Changes

TargetIPv4

IP address of the target host machine.

SourceIPv4

IP address of the interface on the local machine.

Interface

Name of local interface.

19.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

19.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

19.4 Running

19.4.1 Single test debug run

```
peach -1 --debug IPv4.xml
```

19.4.2 Full test run

peach IPv4.xml

19.5 Examples

Example 19.1 Sample IPv4 Configuration File

Example configuration sending IPv4 packets.

For this example we assume you are running on Windows. For other platforms use the preferred way to configure the firewall. Windows Firewall Inbound Rules to enable on Target:

```
File and Printer Sharing (Echo Request - ICMPv4-In)
```

```
value="127.0.0.1"
                             name="Target IPv4 Address"
                             description="The IPv4 address of the target machine or device. \leftrightarrow
                                 The IPv4 address can be found on Windows by running 'ipconfig' \leftrightarrow
                                 and looking for the 'IPv4 Address' field. For Linux run ' \leftarrow
                                 ifconfig' and look for 'inet addr' field. For OS X run ' \leftarrow
                                 ifconfig' and look for the 'inet' field." />
                  <String key="LoggerPath"</pre>
                                    value="logs/ipv4/"
                                    name="Logger Path"
                                    description="The directory where Peach will save the log \ \leftarrow
                                        produced when fuzzing." />
                  <Strategy key="Strategy"</pre>
                                      value="Random"
                                      name="Mutation Strategy"
                                      description="The mutation strategy to use when fuzzing." \ensuremath{\leftarrow}
                 <String key="PitLibraryPath"</pre>
                                   value="."
                                    name="Pit Library Path"
                                    description="The path to the root of the pit library."/>
        </All>
</PitDefines>
```

20 Internet Protocol version 6 (IPv6)

Peach Pit: IPv6Direction: Client

• Supported Platforms: Linux

Internet Protocol version 6 (IPv6) is the communications protocol that provides an identification and location system for computers on networks and routes traffic across the Internet.

IPv6 was developed to deal with the long-anticipated problem of IPv4 address exhaustion and eventually will replace IPv4.

20.1 Specifications

Specification	Title
RFC2460	Internet Protocol, Version 6 (IPv6) Specification
RFC2675	IPv6 Jumbograms
RFC3775	Mobility Support in IPv6

20.2 Use Cases

Messages	Specification
IPv6 Header	RFC2460 3
IPv6 Mobility Header	RFC3775 6.1.1
IPv6 Mobility Binding Refresh Request Message	RFC 3775 6.1.2
IPv6 Mobility Home Test Init Message	RFC 3775 6.1.3
IPv6 Mobility Care-of Test Init Message	RFC 3775 6.1.4
IPv6 Mobility Home Test Message	RFC 3775 6.1.5
IPv6 Mobility Care-of Test Message	RFC 3775 6.1.6
IPv6 Mobility Binding Update Message	RFC 3775 6.1.7
IPv6 Mobility Binding Acknowledgment Message	RFC 3775 6.1.8
IPv6 Mobility Binding Error Message	RFC 3775 6.1.9
IPv6 Mobility Routing Type 2 Header	RFC 3775 6.4.1
IPv6 Mobility ICMP Home Agent Address Discovery	RFC 3775 6.5
Request Message	
IPv6 Mobility ICMP Home Agent Address Discovery	RFC 3775 6.6
Reply Message	
IPv6 Mobility ICMP Mobile Prefix Solicitation Message	RFC 3775 6.7
Format	
IPv6 Mobility ICMP Mobile Prefix Advertisement	RFC 3775 6.8
Message Format	
IPv6 Header Hop-by-Hop Options	RFC2460 4.3
IPv6 Header Routing Options	RFC2460 4.4
IPv6 Header Fragment Options	RFC2460 4.5
IPv6 Header Destination Options	RFC2460 4.6
IPv6 Header Jumbo Payload Option	RFC2675 2
IPv6 Mobility Binding Refresh Advice Option	RFC3775 6.2.4
IPv6 Mobility Alternate Care-of Address Option	RFC3775 6.2.5
IPv6 Mobility Nonce Indices Option	RFC3775 6.2.6
IPv6 Mobility Home Address Option	RFC3775 6.3

20.3 Configuration

20.3.1 Target Configuration

IPv6 and UDPv6 listeners are required to run all tests. The network tool socat can be used as a listener.

20.3.2 Required Pit Configuration Changes

TargetIPv6

IP address of the target host machine.

SourceIPv6

IP address of the interface on the local machine.

SourceMAC

MAC address on local machine.

TargetMAC

MAC address of target machine.

Interface

Name of local interface (used for monitoring).

SourcePort

UDPv6 port number of the local machine.

TargetPort

UDPv6 port number of the target host machine.

20.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

20.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

20.4 Running

20.4.1 Single test debug run

peach -1 --debug IPv6.xml

20.4.2 Full test run

peach IPv6.xml

20.5 Examples

#Install socat

Example 20.1 Sample IPv6 Configuration File

Example configuration using socat on Linux.

First we must install and run socat; for this example we assume you are running Linux. For other platforms follow the platform specific installation instructions for socat.

```
sudo apt-get install socat
# Used to listen for ipv6 traffic
socat STDIO ip-recv:ipv6
#Used to listen for UDPv6
socat STDIO udp6-listen:12345
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
        <All>
                 <hwaddr key="SourceMAC"
                                   value="00000000000"
                                   name="Source MAC Address"
                                   description="Hardware address of the network interface on \ \leftarrow
                                       machine running Peach Fuzzer. To find the hardware \ensuremath{\leftarrow}
                                       address on Windows, run 'ipconfig /all' and look for the \hookleftarrow
                                        'Physical Address' field. For Linux run 'ifconfig' and \leftrightarrow
                                       look for the 'HWaddr' field. For OS X run 'ifconfig' and \hookleftarrow
                                        look for the 'ether' field."/>
                 <Ipv6 key="SourceIPv6"</pre>
                            value="::1"
                            name="Source IPv6 Address"
                            description="The IPv6 address of the machine running Peach Fuzzer ←
                                 . The IPv6 address can be found on Windows by running ' \leftarrow
                                ipconfig' and looking for the 'IPv6 Address' field. For Linux
                                run 'ifconfig' and look for 'inet6 addr' field. For OS X run ' \hookleftarrow
                                ifconfig' and look for the 'inet6' field."/>
                 <Range key="SourcePort"
                             value="12345"
                             min="0" max="65535"
                              name="Source Port"
                              description="The source port the network packet originates from. ←
                 <hwaddr key="TargetMAC"
                                   value="00000000000"
                                   name="Target MAC Address"
                                   description="Hardware address of the network interface on \leftarrow
                                       target machine or device. To find the hardware address \leftrightarrow
                                       on Windows, run 'ipconfig /all' and look for the ' \hookleftarrow
                                       Physical Address' field. For Linux run 'ifconfig' and \leftarrow
                                       look for the 'HWaddr' field. For OS X run 'ifconfig' and \leftrightarrow
                                        look for the 'ether' field." />
                 <Ipv6 key="TargetIPv6"</pre>
                            value="::1"
                            name="Target IPv6 Address"
                            description="The IPv6 address of the target machine or device. \leftarrow
                                The IPv6 address can be found on Windows by running 'ipconfig' ←
                                  and looking for the 'IPv6 Address' field. For Linux run ' \leftarrow
```

```
ifconfig' and look for 'inet6 addr' field. For OS X run ' \leftrightarrow
                                  ifconfig' and look for the 'inet6' field."/>
                  <Range key="TargetPort"
                              value="12345"
                              min="0"
                              max="65535"
                              name="Target Port"
                              description="The target or destination port the network packet \ \leftrightarrow
                                   is sent to."/>
                  <String key="LoggerPath"
                                    value="logs/vlan/"
                                    name="Logger Path"
                                    description="The directory where Peach will save the log \ensuremath{\leftarrow}
                                         produced when fuzzing." />
                  <Strategy key="Strategy"</pre>
                                      value="Random"
                                       name="Mutation Strategy"
                                       description="The mutation strategy to use when fuzzing." \ \hookleftarrow
                  <String key="PitLibraryPath"</pre>
                                    value="."
                                    name="Pit Library Path"
                                    description="The path to the root of the pit library."/>
         </All>
         <Ti nux>
                  <Iface key="Interface"</pre>
                              value="eth0"
                              name="Network Interface"
                              description="The network interface to transmit packets over. For \hookleftarrow
                                    Windows, the network interfaces can be shown by running ' \leftrightarrow
                                   ipconfig'. On Linux and OS X, the network interfaces can be \ensuremath{\hookleftarrow}
                                   shown by running the command 'ifconfig'."/>
         </Linux>
         <OSX>
                  <Iface key="Interface"</pre>
                              value="en0"
                              name="Network Interface"
                              description="The network interface to transmit packets over. For \hookleftarrow
                                    Windows, the network interfaces can be shown by running ' \leftarrow
                                   ipconfig'. On Linux and OS X, the network interfaces can be \ensuremath{\hookleftarrow}
                                   shown by running the command 'ifconfig'."/>
         </osx>
         <Windows>
                  <Iface key="Interface"</pre>
                              value="Local Area Connection"
                              name="Network Interface"
                               description="The network interface to transmit packets over. For \hookleftarrow
                                    Windows, the network interfaces can be shown by running ' \leftrightarrow
                                   ipconfig'. On Linux and OS X, the network interfaces can be \,\leftarrow\,
                                   shown by running the command 'ifconfig'."/>
         </Windows>
</PitDefines>
```

21 JPEG2000 Image Format

• Peach Pit: JPEG2000

• Supported Platorms: Windows, Linux, OS X

JPEG 2000 is an Image File Format developed as the next evolution of the JPEG standard from 1992. The format supports bother lossless and lossy compression, multiple resolution representations, and better compression and error resilience than the previous standard. The file is structured as recursive "boxes" containing metadata and pixel streaming.

21.1 Specifications

Specification	Title
ISO 15444	JPEG 2000 image coding system

21.2 Use Cases

Supported Features	Specification
JPEG 2000 Signature Box	ISO 15444 (I.5.1)
File Type Box	ISO 15444 (I.5.2)
JP2 Header Box	ISO 15444 (I.5.3)
Image Header Box	ISO 15444 (I.5.3.1)
Bits Per Component Box	ISO 15444 (I.5.3.2)
Colour Specification Box	ISO 15444 (I.5.3.3)
Palette Box	ISO 15444 (I.5.3.4)
Component Mapping Box	ISO 15444 (I.5.3.5)
Channel Definition Box	ISO 15444 (I.5.3.6)
Resolution Box	ISO 15444 (I.5.3.7)
Capture Resolution Box	ISO 15444 (I.5.3.7.1)
Default Display Resolution Box	ISO 15444 (I.5.3.7.2)
Contiguous Codestream Box	ISO 15444 (I.5.4)
Intellectual Property Box	ISO 15444 (I.6)
XML Box	ISO 15444 (I.7.1)
UUID Box	ISO 15444 (I.7.2)
UUID Info Box	ISO 15444 (I.7.3)
UUID List Box	ISO 15444 (I.7.3.1)
URL Box	ISO 15444 (I.7.3.2)

21.3 Configuration

21.3.1 Target Configuration

Any number of image viewing programs (like GIMP 2.8 on Linux and Windows) may be targeted with the JPEG2000 file format. In the JPEG2000.xml.config pit file, you can set the target program (such as GIMP 2.8) that you are fuzzing. If available, you

can set different target programs for different operating systems.

21.3.2 Required Pit Configuration Changes

Seed

Name of a valid JPEG2000 file located in the Samples directory. An empty string indicates use all files in the directory. Multiple files can be globbed together with an asterisk wildcard.

Target

The program that will open the fuzzed JPEG2000 files

21.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Directory path to folder where logs will be stored.

Agent

The agent that will be ran to open the target program. This is generally OS dependent.

Path

Path to the relative base directory where all pits are located.

SamplePath

Path to the directory in which the JPEG2000 sample files are stored. Relative to Path.

21.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

21.4 Running

21.4.1 Single test debug run

```
peach -1 --debug JPEG2000.xml
```

21.4.2 Full test run

```
peach JPEG2000.xml
```

21.5 Examples

Example 21.1 Sample JPEG2000 Configuration File

Example configuration using feh on Linux. The configuration file also contains settings for gimp on Windows and preview on OSX:

First we must install feh; for this example we assume you are running on Ubuntu or Debian. For other platforms follow the platform specific installation instructions for feh.

```
#Installing feh on linux
sudo apt-get install feh
```

```
description="File that is generated by Peach when fuzzing. \leftrightarrow
                                       This file will be consumed by the target application." / \hookleftarrow
                  <String key="Seed"
                                   value="*.jp2"
                                    name="Seed File"
                                    description="The name of the sample file to use when \ \leftarrow
                                        fuzzing." />
                  <Strategy key="Strategy"</pre>
                                      value="Random"
                                      name="Mutation Strategy"
                                      description="The mutation strategy to use when fuzzing." \leftrightarrow
                  <String key="LoggerPath"</pre>
                                    value="./logs/JPEG2000/"
                                    name="Logger Path"
                                    description="The directory where Peach will save the log \ \ \leftarrow
                                        produced when fuzzing." />
                  <String key="SamplePath"
                                    value="##PitLibraryPath##/_Common/Samples/Image"
                                    name="Sample Path"
                                    description="The directory containing the samples to use \ensuremath{\leftarrow}
                                        when fuzzing." />
                 <String key="PitLibraryPath"</pre>
                                    value="."
                                    name="Pit Library Path"
                                    description="The path to the root of the pit library." />
        </All>
</PitDefines>
```

When running this you will see feh repeatedly open and close.

22 JPG-JFIF Image Format

• Peach Pit: JPG-JFIF

• Supported Platorms: Windows, Linux, OS X

JPEG File Interchange Format (JFIF) is an image format built on a TLV segment structure. It is built to be an extensible format and supports a variety of compressions and encodings.

Even though its structure is very similar to the EXIF standard, these two formats are incompatible. Many programs ignore these differences in requirements.

22.1 Specifications

Specification	Title
http://www.w3.org/Graphics/JPEG/jfif3.pdf	JPEG File Interchange Format
http://www.w3.org/Graphics/JPEG/itu-t81.pdf	Information Technology - Digital Compression and Coding
	of Continuous-Tone Still Images - Requirements and
	Guidelines

22.2 Use Cases

Supported Features	Specification
Quantization	Digital Compression (B.2.4.1)
Huffman	Digital Compression (B.2.4.2)
Arithmetic Conditioning	Digital Compression (B.2.4.3)
Restart Interval	Digital Compression (B.2.4.4)
Comment	Digital Compression (B.2.4.5)
Application Data	Digital Compression (B.2.4.6)

22.3 Configuration

22.3.1 Target Configuration

Any number of image viewing programs may be targeted with the JPG-JFIF file format. Example targets for fuzzing JPG-JFIF are "feh" on Linux and "mspaint.exe" on Windows.

In the jpg-jfif.xml.config pit file, you can set the target program that you are fuzzing, such as feh or mspaint.exe. Normally you would set different target programs for different operating systems.

22.3.2 Required Pit Configuration Changes

Seed

Name of a valid JPG-JFIF file located in the Samples directory. An empty string indicates use all files in the directory. Multiple files can be globbed together with an asterisk wildcard.

Target

The program that will open the fuzzed JPG-JFIF files

22.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Directory path to folder where logs will be stored.

Agent

The agent that will be ran to open the target program. This is generally OS dependent.

Path

Path to the relative base directory where all pits are located.

SamplePath

Path to the directory in which the JPG-JFIF sample files are stored. Relative to Path.

22.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

22.4 Running

22.4.1 Single test debug run

```
peach -1 --debug jpg-jfif.xml
```

22.4.2 Full test run

```
peach jpg-jfif.xml
```

22.5 Examples

Example 22.1 Sample JPG-JFIF Configuration File

Example configuration using feh on Linux. The configuration file also contains settings for mspaint on Windows and preview on OSX:

First we must install feh; for this example we assume you are running on Ubuntu or Debian. For other platforms follow the platform specific installation instructions for feh.

```
#Installing feh on Linux
sudo apt-get install feh
```

```
<Strategy key="Strategy"</pre>
                                    value="Random"
                                    name="Mutation Strategy"
                                     description="The mutation strategy to use when fuzzing." \leftarrow
                                        />
                 <String key="LoggerPath"</pre>
                                  value="./logs/jpg-jfif/"
                                  name="Logger Path"
                                  description="The directory where Peach will save the log \ \leftarrow
                                      produced when fuzzing." />
                 <String key="SamplePath"
                                  value="##PitLibraryPath##/_Common/Samples/Image"
                                  name="Sample Path"
                                  description="The directory containing the samples to use \ \leftarrow
                                      when fuzzing." />
                 <String key="PitLibraryPath"</pre>
                                  value="."
                                  name="Pit Library Path"
                                  description="The path to the root of the pit library." />
        </All>
</PitDefines>
```

When running this you will see feh repeatedly open and close.

23 Link Aggregation Control Protocol (LACP)

• Peach Pit: LACP

• Direction: Client

• Supported Platforms: Linux

Link aggregation is a computer networking term to describe various methods of combining (aggregating) multiple network connections in parallel to increase throughput beyond what a single connection could sustain, and to provide redundancy in case one of the links fail.

23.1 Specifications

Specification	Title
IEEE 802.1AX	Link Aggregation (5.2)

23.2 Use Cases

Messages	Specification
Link Aggregation	IEE 802.1AX

23.3 Configuration

23.3.1 Target Configuration

No extra applications are required for pit tests but we recommend a LACP enabled switch.

23.3.2 Required Pit Configuration Changes

SourceMAC

MAC address on local machine.

TargetMAC

MAC address of target machine.

Interface

Name of local interface.

ActorPort

Port number of the local machine.

PartnerPort

Port number of the target host machine.

23.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

23.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

23.4 Running

23.4.1 Single test debug run

```
peach -1 -debug LACP.xml
```

23.4.2 Full test run

```
peach LACP.xml
```

23.5 Examples

Example 23.1 Sample LACP Configuration File

Example configuration for sending LACP packets.

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
        <All>
                 <hwaddr key="ActorMAC"
                                  value="0004961f506a"
                                  name="Actor System ID"
                                  description="The Actor's System ID, encoded as a MAC \leftarrow
                                      address."/>
                 <hwaddr key="PartnerMAC"
                                  value="00000000000"
                                  name="Partner System ID"
                                  description="The Partner's System ID, encoded as a MAC \,\leftarrow\,
                                      address."/>
                 <Range key="ActorPort"
                            value="18"
                            min="0" max="65535"
                             name="LACP Actor Port"
                            description="The port number assigned to the port by the Actor ( \hookleftarrow
                                the System sending the PDU)."/>
                 <Range key="PartnerPort"
                            value="0"
                            min="0" max="65535"
                             name="LACP Partner Port"
                             description="The port number associated with this link assigned \leftrightarrow
                                to the port by the Partner."/>
                 <hwaddr key="SourceMAC"
                                  value="00000000000"
                                  name="Source MAC Address"
```

```
description="Hardware address of the network interface on \leftarrow
                               machine running Peach Fuzzer. To find the hardware \ensuremath{\leftarrow}
                               address on Windows, run 'ipconfig /all' and look for the \hookleftarrow
                                'Physical Address' field. For Linux run 'ifconfig' and \leftrightarrow
                               look for the 'HWaddr' field. For OS X run 'ifconfig' and \hookleftarrow
                                look for the 'ether' field."/>
         <Hwaddr key="TargetMAC"</pre>
                           value="000000000000"
                           name="Target MAC Address"
                           description="Hardware address of the network interface on \leftarrow
                               target machine or device. To find the hardware address \ \leftarrow
                               on Windows, run 'ipconfig /all' and look for the ' \leftarrow
                               Physical Address' field. For Linux run 'ifconfig' and \,\,\,\,\,\,\,\,
                               look for the 'HWaddr' field. For OS X run 'ifconfig' and \hookleftarrow
                                 look for the 'ether' field." />
         <String key="LoggerPath"
                           value="logs/lacp/"
                           name="Logger Path"
                           description="The directory where Peach will save the log \,\leftarrow\,
                               produced when fuzzing." />
         <Strategy key="Strategy"</pre>
                             value="Random"
                             name="Mutation Strategy"
                             description="The mutation strategy to use when fuzzing." \leftrightarrow
                                  />
         <String key="PitLibraryPath"</pre>
                           value="."
                           name="Pit Library Path"
                           description="The path to the root of the pit library."/>
</All>
<Linux>
         <Iface key="Interface"</pre>
                     value="eth0"
                     name="Network Interface"
                     description="The network interface to transmit packets over. For \hookleftarrow
                          Windows, the network interfaces can be shown by running ' \hookleftarrow
                          ipconfig'. On Linux and OS X, the network interfaces can be \ensuremath{\leftarrow}
                          shown by running the command 'ifconfig'."/>
</Linux>
<OSX>
         <Iface key="Interface"</pre>
                     value="en0"
                     name="Network Interface"
                     description="The network interface to transmit packets over. For \hookleftarrow
                          Windows, the network interfaces can be shown by running ' \leftarrow
                          ipconfig'. On Linux and OS X, the network interfaces can be \,\,\,\,\,\,\,\,\,
                          shown by running the command 'ifconfig'."/>
</osx>
<Windows>
         <Iface key="Interface"</pre>
                     value="Local Area Connection"
                     name="Network Interface"
                     description="The network interface to transmit packets over. For \hookleftarrow
                           Windows, the network interfaces can be shown by running ' \hookleftarrow
                          ipconfig'. On Linux and OS X, the network interfaces can be \,\leftarrow\,
```

shown by running the command 'ifconfig'."/>
</Windows>
</PitDefines>

24 Lightweight Directory Access Protocol (LDAP)

• Peach Pit: LDAP

• Direction: Client, Server

• Supported Platforms: Windows, Linux, OS X

Use the Lightweight Directory Access Protocol (LDAP) application protocol to access and maintain distributed directory information services over an Internet Protocol (IP) network.

24.1 Specifications

Specification	Title
RFC4511	Lightweight Directory Access Protocol (LDAP): The
	Protocol

24.2 Use Cases

Messages	Specification
Bind Operation	RFC4511 4.2
Unbind Operation	RFC4511 4.3
Search Operation	RFC4511 4.5
Add Operation	RFC4511 4.7
Delete Operation	RFC4511 4.8
Compare Opeartion	RFC4511 4.10
Extended Operation	RFC4511 4.12

24.3 Configuration

24.3.1 Target Configuration

A configured LDAP server with an account that is defined in the configuration file is required.

OpenLDAP can be used on Linux.

24.3.2 Required Pit Configuration Changes

TargetIPv4

IP address of the target host machine

SourceIPv4

IP address of the interface on the local machine

TargetPort

LDAP port number of the target host machine

Username

Username used to login to the LDAP service

Password

Password for the user logging into the LDAP service

24.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing

LoggerPath

Path to folder where logs will be stored

Path

Path to the relative base directory where all pits are located.

24.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

24.4 Running

24.4.1 Single test debug run

Fuzzing an LDAP Client

```
peach -1 --debug LDAP_Client.xml
```

Fuzzing an LDAP Server

```
peach -1 --debug LDAP_Server.xml
```

24.4.2 Full test run

Fuzzing an LDAP Client

```
peach LDAP_Client.xml
```

Fuzzing an LDAP Server

```
peach LDAP_Server.xml
```

24.5 Examples

Example 24.1 Sample LDAP Client Configuration File

Example configuration using OpenLdap on Linux.

First we must install OpenLDAP; for this example we assume you are running on Ubuntu or Debian. For other platforms follow the platform specific installation instructions for OpenLDAP.

```
# Install OpenLdap client tools
sudo apt-get install ldap-utils
```

```
description="Credentials to use when binding to LDAP server \leftarrow
                                       . Example: cn=admin, dc=peach, dc=local."/>
                 <String key="Password"
                                  value="password"
                                  name="LDAP Password"
                                  description="Password to use for authenticating to LDAP \ensuremath{\leftarrow}
                                       server."/>
                 <Ipv4 key="SourceIPv4"</pre>
                            value="127.0.0.1"
                            name="Source IPv4 Address"
                            description="The IPv4 address of the machine running Peach Fuzzer ←
                                . The IPv4 address can be found on Windows by running ^{\prime} \leftarrow
                                ipconfig' and looking for the 'IPv4 Address' field. For Linux
                                run 'ifconfig' and look for 'inet addr' field. For OS X run ' \leftarrow
                                ifconfig' and look for the 'inet' field."/>
                 <Range key="SourcePort"
                             value="389"
                             min="0" max="65535"
                             name="Source Port"
                             description="The source port the network packet originates from. ←
                 <Range key="Timeout"</pre>
                                  value="5000"
                                  min="0" max="10000000"
                                  name="Timeout"
                                  description="Timeout in milliseconds to wait for data to be \hookleftarrow
                                        send or received. During fuzzing a timeout failure will \leftrightarrow
                                        cause the fuzzer to skip to the next iteration."/>
                 <String key="LoggerPath"
                                  value="logs/vlan/"
                                  name="Logger Path"
                                  description="The directory where Peach will save the log \leftrightarrow
                                       produced when fuzzing." />
                 <Strategy key="Strategy"</pre>
                                    value="Random"
                                    name="Mutation Strategy"
                                     description="The mutation strategy to use when fuzzing."
                                         />
                 <String key="PitLibraryPath"</pre>
                                  value="."
                                  name="Pit Library Path"
                                  description="The path to the root of the pit library."/>
        </A11>
</PitDefines>
```

Example 24.2 Sample LDAP Server Configuration File

Example configuration using OpenLdap on Linux.

First we must install OpenLDAP; for this example we assume you are running on Ubuntu or Debian. For other platforms follow the platform specific installation instructions for OpenLDAP.

```
#Install OpenLdap server
sudo apt-get install slapd ldap-utils migrationtools
```

```
#Configure slapd
dpkg-reconfigure slapd
  *Omit OpenLDAP server configuration? No
  *DNS domain name: peach.local
  *Name of your organization: Peach 3.0
  *Admin Password: password
  *Confirm Password: password
  *Database backend to use: BDB
  *Do you want your database to be removed when slapd is purged? No
  *Move old database? Yes
  *Allow LDAPv2 Protocol? No
#Edit migration tools common and edit the following parameters
pico /etc/migrate_comon.ph
  $DEFAULT_MAIL_DOMAIN = "peach.local";
  $DEFAULT_BASE = "dc=peach.local";
#Press ctrl+x to save
#Create a group and people ldif file
pico ~/grouppeople.ldif
 dn: ou=People, dc=peach, dc=local
 ou: People
 objectclass: organizationalUnit
#Press ctrl+x to save
#Use migration tools to export users on your system to ldif files
/usr/share/migrationtools/migrate_group.pl /etc/group ~/group.ldif
/usr/share/migrationtools/migrate_passwd.pl /etc/passwd ~/password.ldif
#Add the the created files to Ldap, the admin password is required after each of the \,\leftrightarrow
   following commands
cd ~
ldapadd -x -W -D "cn=admin,dc=peach,dc=local" -f grouppeople.ldif
ldapadd -x -W -D "cn=admin,dc=peach,dc=local" -f group.ldif
ldapadd -x -W -D "cn=admin,dc=peach,dc=local" -f password.ldif
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
        <A11>
                 <String key="UserName"
                                  value="cn=admin,dc=peach,dc=local"
                                  name="LDAP Username"
                                  description="Credentials to use when binding to LDAP server \hookleftarrow
                                      . Example: cn=admin, dc=peach, dc=local."/>
                 <String key="Password"</pre>
                                  value="password"
                                  name="LDAP Password"
                                  description="Password to use for authenticating to LDAP \ensuremath{\leftarrow}
                 <Ipv4 key="TargetIPv4"</pre>
                            value="127.0.0.1"
                            name="Target IPv4 Address"
                            description="The IPv4 address of the target machine or device. \leftrightarrow
                                The IPv4 address can be found on Windows by running 'ipconfig' \hookleftarrow
                                and looking for the 'IPv4 Address' field. For Linux run ' \hookleftarrow
                                ifconfig' and look for 'inet addr' field. For OS X run ' \hookleftarrow
                                ifconfig' and look for the 'inet' field." />
                 <Range key="TargetPort"
```

```
value="389"
                          min="0"
                          max="65535"
                          name="Target Port"
                           is sent to."/>
                <Range key="Timeout"
                               value="5000"
                                min="0" max="10000000"
                                name="Timeout"
                                description="Timeout in milliseconds to wait for data to be \hookleftarrow
                                    send or received. During fuzzing a timeout failure will \leftarrow
                                    cause the fuzzer to skip to the next iteration."/>
                <String key="LoggerPath"</pre>
                                value="logs/ldap/"
                                name="Logger Path"
                                description="The directory where Peach will save the log \ \leftarrow
                                   produced when fuzzing." />
                <Strategy key="Strategy"</pre>
                                 value="Random"
                                 name="Mutation Strategy"
                                 description="The mutation strategy to use when fuzzing." \leftrightarrow
                <String key="PitLibraryPath"</pre>
                                value="."
                                name="Pit Library Path"
                                description="The path to the root of the pit library."/>
        </All>
</PitDefines>
```

25 Link Layer Discovery Protocol

• Peach Pit: LLDP

• Direction: Announce

• Supported Platforms: Linux

The Link Layer Discovery Protocol (LLDP) is a vendor-neutral protocol designed to allow advertisement of information about network infrastructure hardware by said hardware.

It is formally described in IEEE 802.1AB as *Station and Media Access Control Connectivity Discovery* and replaces proprietary protocols such as EDP, CDP, LLTD, and SONMP.

25.1 Specifications

Specification	Title
IEEE 802.1AB	Station and Media Access Control Connectivity Discovery

25.2 Use Cases

Messages	Specification
LLDP Announce	IEE 802.1AB

25.3 Configuration

25.3.1 Target Configuration

This pit broadcasts LLDP packets; no extra applications are required.

25.3.2 Required Pit Configuration Changes

SourceMAC

MAC address on local machine.

TargetMAC

MAC address of target machine.

Interface

Name of local interface.

Hostname

Host name of the switch.

25.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

25.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

25.4 Running

25.4.1 Single test debug run

```
peach -1 --debug LLDP.xml
```

25.4.2 Full test run

```
peach LLDP.xml
```

25.5 Examples

Example 25.1 Sample LLDP Configuration File

Example configuration for sending LLDP packets.

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
         <All>
                  <String key="Hostname"
                                    value="foobar"
                                    name="Switch Hostname"
                                    description="Hostname of the switch."/>
                  <hwaddr key="SourceMAC"
                                    value="000000000000"
                                    name="Source MAC Address"
                                    description="Hardware address of the network interface on \ensuremath{\leftarrow}
                                        machine running Peach Fuzzer. To find the hardware \ \ \hookleftarrow
                                        address on Windows, run 'ipconfig /all' and look for the \hookleftarrow
                                          'Physical Address' field. For Linux run 'ifconfig' and
                                        look for the 'HWaddr' field. For OS X run 'ifconfig' and \hookleftarrow
                                          look for the 'ether' field."/>
                  <hackline <hre><Hwaddr key="TargetMAC"</hr>
                                    value="00000000000"
                                    name="Target MAC Address"
                                    \texttt{description="Hardware address of the network interface on} \ \ \leftarrow
                                        target machine or device. To find the hardware address
                                        on Windows, run 'ipconfig /all' and look for the ' \leftarrow
                                        Physical Address' field. For Linux run 'ifconfig' and \leftrightarrow
                                        look for the 'HWaddr' field. For OS X run 'ifconfig' and \leftarrow
                                          look for the 'ether' field." />
                  <String key="LoggerPath"</pre>
                                    value="logs/lldp/"
                                    name="Logger Path"
                                    description="The directory where Peach will save the log \ \leftarrow
                                        produced when fuzzing." />
                  <Strategy key="Strategy"</pre>
                                       value="Random"
                                       name="Mutation Strategy"
```

```
description="The mutation strategy to use when fuzzing." \leftrightarrow
                  <String key="PitLibraryPath"</pre>
                                    value="."
                                    name="Pit Library Path"
                                    description="The path to the root of the pit library."/>
         </All>
         <Ti nux>
                  <Iface key="Interface"</pre>
                              value="eth0"
                               name="Network Interface"
                               description="The network interface to transmit packets over. For \hookleftarrow
                                    Windows, the network interfaces can be shown by running ' \leftarrow
                                   ipconfig'. On Linux and OS X, the network interfaces can be \ensuremath{\hookleftarrow}
                                   shown by running the command 'ifconfig'."/>
         </Linux>
         <OSX>
                  <Iface key="Interface"</pre>
                              value="en0"
                               name="Network Interface"
                               description="The network interface to transmit packets over. For \hookleftarrow
                                    Windows, the network interfaces can be shown by running ' \leftarrow
                                   ipconfig'. On Linux and OS X, the network interfaces can be \ensuremath{\hookleftarrow}
                                   shown by running the command 'ifconfig'."/> \,
         </osx>
         <Windows>
                  <Iface key="Interface"</pre>
                              value="Local Area Connection"
                               name="Network Interface"
                               description="The network interface to transmit packets over. For \hookleftarrow
                                    Windows, the network interfaces can be shown by running ' \leftrightarrow
                                   ipconfig'. On Linux and OS X, the network interfaces can be \ \ \ \ \ \ \ 
                                   shown by running the command 'ifconfig'."/>
         </Windows>
</PitDefines>
```

26 Multicast Listener Discovery Protocol (MLD)

• Peach Pit: MLD

• Direction: Client

• Supported Platforms: Windows, Linux, OS X

Multicast Listener Discovery Protocol (MLD) is used to declare and manage group membership for multicast addresses in IPv6.

The protocol is contained within IPv6 and its structure is similar to ICMPv6. It contains similar functionality to the Internet Group Management Protocol for IPv4.

Commands include adding and removing IP's from a group and querying servers for current group membership.

26.1 Specifications

Specification	Title
RFC3810	Multicast Listener Discovery Version 2 (MLDv2) for IPv6
RFC4604	Using Internet Group Management Protocol Version 3 and
	Multicast Listener Discovery Protocol Version 2 for
	Source-Specific Multicast
RFC2710	Multicast Listener Discovery (MLD) for IPv6

26.2 Use Cases

Messages	Specification
Multicast Listener Query Message	RFC3810 (Section 5.1)
Version 2 Multicast Listener Report Message	RFC3810 (Section 5.2)

Supported Features	Specification
General Query	RFC3810 (Section 5.1.13)
Multicast Address Specific Query	RFC3810 (Section 5.1.13)
Multicast Address and Source Specific Query	RFC3810 (Section 5.1.13)

26.3 Configuration

26.3.1 Target Configuration

A target machine with MLD enabled. A firewall must not block MLD messages.

26.3.2 Required Pit Configuration Changes

TargetIPv6

IP address of the target host machine.

SourceIPv6

IP address of the interface on the local machine.

26.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

26.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

26.4 Running

26.4.1 Single test debug run

```
peach -1 --debug MLD.xml
```

26.4.2 Full test run

```
peach MLD.xml
```

26.5 Examples

Example 26.1 Sample MLD Configuration File

Example configuration sending MLD packets.

For this example we assume you are running on Windows. For other platforms use the preferred way to configure the firewall. Windows Firewall Inbound Rules to enable on Target:

```
Core Networking - Multicast Listener Done (ICMPv6-In)
Core Networking - Multicast Listener Query (ICMPv6-In)
Core Networking - Multicast Listener Report (ICMPv6-In)
Core Networking - Multicast Listener Report v2 (ICMPv6-In)
```

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
        <A11>
                  <Ipv6 key="SourceIPv6"</pre>
                             value="::1"
                             name="Source IPv6 Address"
                             \texttt{description="The IPv6 address of the machine running Peach Fuzzer} \; \hookleftarrow
                                 . The IPv6 address can be found on Windows by running ' \leftarrow
                                 ipconfig' and looking for the 'IPv6 Address' field. For Linux
                                 run 'ifconfig' and look for 'inet6 addr' field. For OS X run ' \leftarrow
                                 ifconfig' and look for the 'inet6' field."/>
                  <Ipv6 key="TargetIPv6"</pre>
                             value="::1"
                             name="Target IPv6 Address"
                             description="The IPv6 address of the target machine or device. \hookleftarrow
                                 The IPv6 address can be found on Windows by running 'ipconfig' \leftarrow
                                  and looking for the 'IPv6 Address' field. For Linux run ' \leftarrow
                                 ifconfig' and look for 'inet6 addr' field. For OS X run ' \leftarrow
                                 ifconfig' and look for the 'inet6' field."/>
```

27 Modbus (Modbus)

Peach Pit: ModbusDirection: Client

• Supported Platforms: Windows, Linux, OS X

Modbus Protocol is a messaging structure developed by Modicon in 1979. It is used to establish master-slave/client-server communication between intelligent devices.

It is a de facto standard, truly open and the most widely used network protocol in the industrial manufacturing environment.

27.1 Specifications

Specification	Title
http://www.modbus.org/docs/-	MODBUS APPLICATION PROTOCOL
Modbus_Application_Protocol_V1_1b.pdf	SPECIFICATION V1.1b
http://www.modbus.org/docs/-	MODBUS over serial line specification and
Modbus_over_serial_line_V1.pdf	implementation guide V1.0

27.2 Use Cases

Messages	Specification
Modbus over TCP	http://www.modbus.org/docs/-
	Modbus_Application_Protocol_V1_1b.pdf
RTU Transmission Mode	http://www.modbus.org/docs/-
	Modbus_over_serial_line_V1.pdf
	(2.5.1)
ASCII Transmission Mode	http://www.modbus.org/docs/-
	Modbus_over_serial_line_V1.pdf
	(2.5.2)

27.3 Configuration

27.3.1 Target Configuration

A Modbus server listening on the Modbus port defined in configuration file is required. The network tool socat can be used as the listener.

27.3.2 Required Pit Configuration Changes

TargetIPv4

IP address of the target host machine.

TargetPort

Modbus port number of the target host machine.

SerialPort

The serial port of the local machine when using Modbus over serial.

Baudrate

The baud rate for the current serial port.

Parity

The parity bit value used for the current serial port.

DataBits

The number of data bits in each character for the current serial port.

StopBits

Number of bits sent at the end of every character for the current serial port.

Handshake

The current handshake protocol used by the current serial port.

27.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Timeout

How long to wait for incoming data.

Path

Path to the relative base directory where all pits are located.

27.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

27.4 Running

27.4.1 Single test debug run

Fuzzing modbus via TCP

peach modbus_tcp.xml

Fuzzing modbus via ASCII Serial

peach modbus_ascii_serial.xml

Fuzzing modbus via RTU Serial

peach modbus_rtu_serial.xml

27.4.2 Full test run

Fuzzing modbus via TCP

peach modbus_tcp.xml

Fuzzing modbus via ASCII Serial

peach modbus_ascii_serial.xml

Fuzzing modbus via RTU Serial

peach modbus_rtu_serial.xml

27.5 Examples

Example 27.1 Sample Modbus TCP Configuration File

Example configuration using socat on Linux.

First we must install and run socat; for this example we assume you are running Linux. For other platforms follow the platform specific installation instructions for socat.

```
sudo apt-get install socat
socat tcp-1:502,fork exec:'/bin/cat'
```

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
        <A11>
                <Ipv4 key="TargetIPv4"</pre>
                           value="127.0.0.1"
                           name="Target IPv4 Address"
                           description="The IPv4 address of the target machine or device. \leftarrow
                              The IPv4 address can be found on Windows by running 'ipconfig' \leftrightarrow
                               and looking for the 'IPv4 Address' field. For Linux run ' \leftrightarrow
                               ifconfig' and look for 'inet addr' field. For OS X run ' \leftarrow
                               ifconfig' and look for the 'inet' field." />
                <Range key="TargetPort"
                           value="502"
                            min="0"
                            max="65535"
                            name="Target Port"
                            is sent to."/>
                <Range key="Timeout"
                                 value="5000"
                                 min="0" max="10000000"
                                 name="Timeout"
                                 description="Timeout in milliseconds to wait for data to be \leftarrow
                                      send or received. During fuzzing a timeout failure will \leftrightarrow
                                      cause the fuzzer to skip to the next iteration."/>
                <String key="LoggerPath"</pre>
                                 value="logs/modbus_tcp/"
                                 name="Logger Path"
                                 description="The directory where Peach will save the log \ \leftarrow
                                     produced when fuzzing." />
                <Strategy key="Strategy"</pre>
                                   value="Random"
                                   name="Mutation Strategy"
                                   description="The mutation strategy to use when fuzzing." \leftarrow
                <String key="PitLibraryPath"</pre>
                                 value="."
                                 name="Pit Library Path"
                                 description="The path to the root of the pit library."/>
        </All>
</PitDefines>
```

28 Network Time Protocol (NTP)

• Peach Pit: NTP

• Direction: Client

• Supported Platforms: Windows, Linux, OS X

Network Time Protocol (NTP) is a networking protocol for clock synchronization between computer systems over packet-switched, variable-latency data networks.

28.1 Specifications

Specification	Title
RFC5905	Network Time Protocol Version 4: Protocol and
	Algorithms Specification

28.2 Use Cases

Messages	Specification
List Peers	RFC5905
Read List	RFC5905
Monlist	RFC5905

28.3 Configuration

28.3.1 Target Configuration

A UDP listener listening on the UDPv4 port defined in configuration file is required. The network tool socat can be used as the listener.

28.3.2 Required Pit Configuration Changes

TargetIPv4

IPv4 address of the target host machine.

SourcePort

UDPv4 and/or TCPv4 port number of the local machine.

TargetPort

UDPv4 and/or TCPv4 port number of the target host machine.

28.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

28.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

28.4 Running

28.4.1 Single test debug run

```
peach -1 --debug NTP.xml
```

28.4.2 Full test run

```
peach NTP.xml
```

28.5 Examples

Example 28.1 Sample NTP Configuration File

Example configuration using socat on Linux.

First we must install and run socat; for this example we assume you are running Linux. For other platforms follow the platform specific installation instructions for socat.

```
sudo apt-get install socat
socat STDIO udp4-listen:123
```

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
         <All>
                  <Range key="SourcePort"
                              value="123"
                              min="0" max="65535"
                              name="Source Port"
                              description="The source port the network packet originates from. \hookleftarrow
                  <Ipv4 key="TargetIPv4"</pre>
                             value="127.0.0.1"
                             name="Target IPv4 Address"
                             description="The IPv4 address of the target machine or device. \leftarrow
                                 The IPv4 address can be found on Windows by running 'ipconfig' \leftrightarrow
                                  and looking for the 'IPv4 Address' field. For Linux run ' \leftarrow
                                 ifconfig' and look for 'inet addr' field. For OS X run ' \leftarrow
                                 ifconfig' and look for the 'inet' field." />
                  <Range key="TargetPort"</pre>
                              value="123"
                              min="0"
                              max = "65535"
                              name="Target Port"
                              \texttt{description="The target or destination port the network packet} \ \ \leftarrow
                                  is sent to."/>
                  <String key="LoggerPath"</pre>
```

29 PNG Image Format

· Peach Pit: PNG

• Supported Platorms: Windows, Linux, OS X

The Portable Network Graphics (PNG) file format was defined to be a non-patented lossless image compression format for images in network communications. It supports RGB palettes, grayscale, and non-palette-bases RGB[A] images.

The file is composed of a magic number and a series of TLV chunks. Each chunk contains a type, length, data, and a checksum at the end.

29.1 Specifications

Specification	Title
http://www.libpng.org/pub/png/spec/1.2/PNG-	PNG (Portable Network Graphics) Specification, Version
Contents.html	1.2

29.2 Use Cases

Supported Chunks	Specification
IHDR	PNG Spec v1.2 (4.1.1)
PLTE	PNG Spec v1.2 (4.1.2)
IDAT	PNG Spec v1.2 (4.1.3)
IEND	PNG Spec v1.2 (4.1.4)
tRNS	PNG Spec v1.2 (4.2.1.1)
gAMA	PNG Spec v1.2 (4.2.2.1)
cHRM	PNG Spec v1.2 (4.2.2.2)
sRGB	PNG Spec v1.2 (4.2.2.3)
iCCP	PNG Spec v1.2 (4.2.2.4)
tEXt	PNG Spec v1.2 (4.2.3.1)
zTXt	PNG Spec v1.2 (4.2.3.2)
iTXt	PNG Spec v1.2 (4.2.3.3)
bKGD	PNG Spec v1.2 (4.2.4.1)
pHYs	PNG Spec v1.2 (4.2.4.2)
sBIT	PNG Spec v1.2 (4.2.4.3)
sPLT	PNG Spec v1.2 (4.2.4.4)
hIST	PNG Spec v1.2 (4.2.4.5)
tIME	PNG Spec v1.2 (4.2.4.6)
oFFs	Unknown
cpIp	Unknown

29.3 Configuration

29.3.1 Target Configuration

Any number of image viewing programs may be targeted with the PNG file format. Example targets for fuzzing PNG are "feh" on Linux and "mspaint.exe" on Windows.

In the Png.xml.config pit file, you can set the target program that you are fuzzing, such as feh or mspaint.exe. Normally you would set different target programs for different operating systems.

29.3.2 Required Pit Configuration Changes

Seed

Name of a valid PNG file located in the Samples directory. An empty string indicates use all files in the directory. Multiple files can be globbed together with an asterisk wildcard.

Target

The program that will open the fuzzed PNG files.

29.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Directory path to folder where logs will be stored.

Agent

The agent that will be ran to open the target program. This is generally OS dependent.

Path

Path to the relative base directory where all pits are located.

SamplePath

Path to the directory in which the PNG sample files are stored. Relative to Path.

29.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

29.4 Running

29.4.1 Single test debug run

```
peach -1 --debug Png.xml
```

29.4.2 Full test run

peach Png.xml

29.5 Examples

Example 29.1 Sample Png Configuration File

Example configuration using feh on Linux. The configuration file also contains settings for mspaint on Windows and preview on OSX:

First we must install feh; for this example we assume you are running on Ubuntu or Debian. For other platforms follow the platform specific installation instructions for feh.

```
#Installing feh on linux sudo apt-get install feh
```

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
         <All>
                  <String key="FuzzedFile"</pre>
                                   value="fuzzed.png"
                                   name="Fuzzed Output File"
                                   description="File that is generated by Peach when fuzzing. \leftarrow
                                       This file will be consumed by the target application." / \leftarrow
                  <String key="Seed"
                                   value="*.PNG"
                                   name="Seed File"
                                   description="The name of the sample file to use when \ \ \hookleftarrow
                                       fuzzing." />
                  <Strategy key="Strategy"</pre>
                                     value="Random"
                                     name="Mutation Strategy"
                                     description="The mutation strategy to use when fuzzing." \leftrightarrow
                  <String key="LoggerPath"
                                   value="./logs/png/"
                                   name="Logger Path"
                                   description="The directory where Peach will save the log \,\leftarrow\,
                                       produced when fuzzing." />
                  <String key="SamplePath"</pre>
                                   value="##PitLibraryPath##/_Common/Samples/Image"
                                   name="Sample Path"
                                   description="The directory containing the samples to use \leftrightarrow
                                       when fuzzing." />
                  <String key="PitLibraryPath"</pre>
                                   value="."
                                   name="Pit Library Path"
                                   description="The path to the root of the pit library." />
         </All>
</PitDefines>
```

When running this you will see feh repeatedly open and close.

30 Simple Network Management Protocol Version 2c (SNMP)

· Peach Pit: SNMP

• Direction: Client, Server

• Supported Platforms: Windows, Linux, OS X

Simple Network Management Protocol (SNMP) is a protocol for network management. It is used for collecting information from, and configuring, network devices (such as servers, printers, hubs, switches, and routers) on an Internet Protocol (IP) network.

30.1 Specifications

Specification	Title
RFC1901	Introduction to Community-based SNMPv2
RFC1907	Management Information Base for Version 2 of the Simple
	Network Management Protocol (SNMPv2)

30.2 Use Cases

Messages	Specification
GetRequest	RFC1907
GetNextRequest	RFC1907
GetBulkRequest	RFC1907
GetResponse	RFC1907

30.3 Configuration

30.3.1 Target Configuration

A UDP listener listening on the SNMP port defined in configuration file is required. The SNMP server snmpd on Linux can be used.

30.3.2 Required Pit Configuration Changes

TargetIPv4

IP address of the target host machine.

SourceIPv4

IP address of the interface on the local machine.

SourcePort

SNMP port number of the local machine.

TargetPort

SNMP port number of the target host machine.

CommString

Community string used for by the SNMP server.

Program

The client program to test when fuzzing as the server.

30.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Agent

Agent to run depending on the target OS. Do not change this value.

Path

Path to the relative base directory where all pits are located.

30.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

30.4 Running

30.4.1 Single test debug run

Fuzzing SNMP Client

```
peach -1 --debug SNMP_Client.xml
```

Fuzzing SNMP Server

```
peach -1 --debug SNMP_Server.xml
```

30.4.2 Full test run

Fuzzing SNMP Client

```
peach SNMP_Client.xml
```

Fuzzing SNMP Server

```
peach SNMP_Server.xml
```

30.5 Examples

Example 30.1 Sample SNMP Client Configuration File

Example configuration using snmp on Linux.

Install SNMP client

```
sudo apt-get install snmp
```

```
description="The SNMP community string to expect and \leftarrow
                                       respond to."/>
                 <Ipv4 key="SourceIPv4"</pre>
                            value="127.0.0.1"
                            name="Source IPv4 Address"
                            description="The IPv4 address of the machine running Peach Fuzzer \hookleftarrow
                                . The IPv4 address can be found on Windows by running ' \leftarrow
                                ipconfig' and looking for the 'IPv4 Address' field. For Linux
                                run 'ifconfig' and look for 'inet addr' field. For OS X run ' \hookleftarrow
                                ifconfig' and look for the 'inet' field."/>
                 <Range key="SourcePort"
                             value="162"
                             min="0" max="65535"
                             name="Source Port"
                             description="Port number to listen for incoming packets on."/>
                 <String key="LoggerPath"
                                   value="logs/snmp_server/"
                                   name="Logger Path"
                                   description="The directory where Peach will save the log \ensuremath{\leftarrow}
                                       produced when fuzzing." />
                 <Strategy key="Strategy"</pre>
                                     value="Random"
                                     name="Mutation Strategy"
                                     description="The mutation strategy to use when fuzzing." \leftrightarrow
                 <String key="PitLibraryPath"</pre>
                                   value="."
                                   name="Pit Library Path"
                                   description="The path to the root of the pit library."/>
        </All>
</PitDefines>
```

Example 30.2 Sample SNMP Server Configuration File

Example configuration using snmpd on Linux.

First we must install snmpd; for this example we assume you are running on Ubuntu or Debian. For other platforms follow the platform specific installation instructions for snmpd.

```
# Install SNMP daemon
sudo apt-get install snmpd

# Add the IP address you want snmpd to listen on into the configuration file
sudo pico /etc/default/snmpd
    #Add the IP address of the interface the service will be listening on to the end of this \( \to \)
    line
SNMPDOPTS='-Lsd -Lf /dev/null -u snmp -g snmp -I -smux,mteTrigger,mteTriggerConf -p /var/ \( \to \)
    run/snmpd.pid'
#IP address has been added to the end of the line
SNMPDOPTS='-Lsd -Lf /dev/null -u snmp -g snmp -I -smux,mteTrigger,mteTriggerConf -p /var/ \( \to \)
    run/snmpd.pid 192.168.222.130'
#Save and exit

# Restart snmpd
sudo /etc/init.d/snmpd restart
```

```
<?xml version="1.0" encoding="utf-8"?>
```

```
<PitDefines>
        <All>
                  <String key="CommString"
                                   value="public"
                                    name="SNMP Community String"
                                    description="SNNP community string to use in requests. The \ \hookleftarrow
                                        target SNMP server must be configured to respond to this \leftarrow
                                         community string."/>
                  <Range key="SourcePort"
                              value="161"
                              min="0" max="65535"
                              name="Source Port"
                              description="The source port the network packet originates from. \hookleftarrow
                  <Ipv4 key="TargetIPv4"</pre>
                             value="127.0.0.1"
                             name="Target IPv4 Address"
                             description="The IPv4 address of the target machine or device. \hookleftarrow
                                 The IPv4 address can be found on Windows by running 'ipconfig' \leftrightarrow
                                  and looking for the 'IPv4 Address' field. For Linux run ' \leftrightarrow
                                 ifconfig' and look for 'inet addr' field. For OS X run ' \leftrightarrow
                                 ifconfig' and look for the 'inet' field." />
                  <Range key="TargetPort"</pre>
                              value="162"
                              min="0"
                              max="65535"
                              name="Target Port"
                              description="The target or destination port the network packet \ \ \hookleftarrow
                                  is sent to."/>
                  <String key="LoggerPath"
                                    value="logs/snmp_client/"
                                    name="Logger Path"
                                    description="The directory where Peach will save the log \,\,\leftarrow\,\,
                                        produced when fuzzing." />
                  <Strategy key="Strategy"</pre>
                                      value="Random"
                                      name="Mutation Strategy"
                                      description="The mutation strategy to use when fuzzing." \leftarrow
                                          />
                  <String key="PitLibraryPath"</pre>
                                    value="."
                                    name="Pit Library Path"
                                    description="The path to the root of the pit library."/>
        </All>
</PitDefines>
```

31 Transmission Control Protocol Version 4 (TCPv4)

Peach Pit: TCPv4Direction: Client

• Supported Platforms: Windows, Linux, OS X

The Transmission Control Protocol (TCP) is one of the core protocols of the Internet protocol suite (IP), and is so common that the entire suite is often called TCP/IP.

TCP provides reliable, ordered, error-checked delivery of a stream of octets between programs running on computers connected to a local area network, Intranet or the public Internet.

31.1 Specifications

Specification	Title
RFC793	Transmission Control Protocol

31.2 Use Cases

Messages	Specification
MaximumSegmentSize	RFC793 Section 3.1 page 17

Supported Features	Specification
Establishing a connection (Async, Client)	RFC793 Section 3.4
Closing a Connection (Async)	RFC793 Section 3.5 Case 2
Data Communication	RFC793 Section 3.7

31.3 Configuration

31.3.1 Target Configuration

A TCP listener listening on the TCPv4 port defined in configuration file is required. The network tool socat can be used as the listener.

To use this pit, disable outgoing RST packets; Peach manages TCP states outside of the kernel context.

31.3.2 Required Pit Configuration Changes

TargetIPv4

IP address of the target host machine.

SourceIPv4

IP address of the interface on the local machine.

TargetIPBytes

IP address of the target host machine in hexadecimal.

SourceIPRvtes

IP address of the interface on the local machine in hexadecimal.

SourcePort

TCPv4 port number of the local machine.

TargetPort

TCPv4 port number of the target host machine.

31.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

31.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

31.4 Running

31.4.1 Single test debug run

```
peach -1 --debug TCPv4.xml
```

31.4.2 Full test run

peach TCPv4.xml

31.5 Examples

Example 31.1 Sample TCPv4 Configuration File

Example configuration using socat on Linux.

First we must configure the firewall then install and run socat; for this example we assume you are running Linux. For other platforms follow the platform specific installation instructions for socat and firewall configuration.

```
#Disable outgoing RST on the node running Peach
sudo iptables -A OUTPUT -p tcp -m tcp --tcp-flags RST RST -j DROP

#Install socat
sudo apt-get install socat

#Set up TCPv4 listener
socat tcp4-1:12345, fork, reuseaddr STDIO
```

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
         <All>
                  <Ipv4 key="SourceIPv4"</pre>
                             value="127.0.0.1"
                             name="Source IPv4 Address"
                             description="The IPv4 address of the machine running Peach Fuzzer \hookleftarrow
                                 . The IPv4 address can be found on Windows by running ' \leftarrow
                                 ipconfig' and looking for the 'IPv4 Address' field. For Linux \leftrightarrow
                                 run 'ifconfig' and look for 'inet addr' field. For OS X run ' \leftrightarrow
                                 ifconfig' and look for the 'inet' field."/>
                  <Range key="SourcePort"
                              value="1234"
                              min="0" max="65535"
                              name="Source Port"
                              description="The source port the network packet originates from. \hookleftarrow
                  <Ipv4 key="TargetIPv4"</pre>
                             value="127.0.0.1"
                             name="Target IPv4 Address"
                             description="The IPv4 address of the target machine or device.
                                 The IPv4 address can be found on Windows by running 'ipconfig' \leftrightarrow
                                  and looking for the 'IPv4 Address' field. For Linux run ' \leftrightarrow
                                 ifconfig' and look for 'inet addr' field. For OS X run ' \leftrightarrow
                                 ifconfig' and look for the 'inet' field." />
                  <Range key="TargetPort"</pre>
                              value="12345"
                              min="0"
                              max="65535"
                              name="Target Port"
                              description="The target or destination port the network packet \ \hookleftarrow
                                  is sent to."/>
                  <String key="LoggerPath"</pre>
                                    value="logs/tcpv4/"
                                    name="Logger Path"
                                    description="The directory where Peach will save the log \ \leftarrow
                                        produced when fuzzing." />
                  <Strategy key="Strategy"</pre>
                                      value="Random"
                                      name="Mutation Strategy"
                                      description="The mutation strategy to use when fuzzing." \ensuremath{\leftarrow}
                  <String key="PitLibraryPath"</pre>
                                    value="."
                                    name="Pit Library Path"
                                    description="The path to the root of the pit library."/>
         </All>
</PitDefines>
```

32 Transmission Control Protocol Version 6 (TCPv6)

Peach Pit: TCPv6Direction: Client

• Supported Platforms: Windows, Linux, OS X

The Transmission Control Protocol (TCP) is one of the core protocols of the Internet protocol suite (IP), and is so common that the entire suite is often called TCP/IP. TCP provides reliable, ordered, error-checked delivery of a stream of octets between programs running on computers connected to a local area network, Intranet or the public Internet.

32.1 Specifications

Specification	Title
RFC793	Transmission Control Protocol

32.2 Use Cases

Messages	Specification
MaximumSegmentSize	RFC793 Section 3.1 page 17

Supported Features	Specification
Establishing a connection (Async, Client)	RFC793 Section 3.4
Closing a Connection (Async)	RFC793 Section 3.5 Case 2
Data Communication	RFC793 Section 3.7

32.3 Configuration

32.3.1 Target Configuration

An application must be listening on the TCP port defined in the configuration file. The network tool socat can be used as the listener.

Disable outgoing RST packets when using this pit because Peach manages TCP state outside of the kernel context.

32.3.2 Required Pit Configuration Changes

TargetIPv6

IP address of the target host machine.

SourceIPv6

IP address of the interface on the local machine.

SourcePort

TCPv6 port number of the local machine.

TargetPort

TCPv6 port number of the target host machine.

32.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

32.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

32.4 Running

32.4.1 Single test debug run

```
peach -1 --debug TCPv6.xml
```

32.4.2 Full test run

```
peach TCPv6.xml
```

32.5 Examples

Example 32.1 Sample TCPv6 Configuration File

Example configuration using socat on Linux.

First we must configure the firewall then install and run socat; for this example we assume you are running Linux. For other platforms follow the platform specific installation instructions for socat and firewall configuration.

```
# Disable outgoing RST on the node running Peach
ip6tables -A OUTPUT -p tcp -m tcp --tcp-flags RST RST -j DROP

# Add a local IPv6 interface, this becomes your source ip
ip addr add ::2 dev lo

# Install socat

sudo apt-get install socat

# Set up TCPv6 listener
socat tcp6-l:4321, fork, reuseaddr STDIO
```

```
description="The IPv6 address of the machine running Peach Fuzzer ←
                        . The IPv6 address can be found on Windows by running ^{\prime} \leftrightarrow
                        ipconfig' and looking for the 'IPv6 Address' field. For Linux \ \ \ \ \ \ 
                        run 'ifconfig' and look for 'inet6 addr' field. For OS X run ' \leftrightarrow
                        ifconfig' and look for the 'inet6' field."/>
         <Range key="SourcePort"</pre>
                     value="1234"
                     min="0" max="65535"
                     name="Source Port"
                     description="The source port the network packet originates from. \hookleftarrow
         <Ipv6 key="TargetIPv6"</pre>
                    value="::1"
                    name="Target IPv6 Address"
                    description="The IPv6 address of the target machine or device. \ensuremath{\hookleftarrow}
                        The IPv6 address can be found on Windows by running 'ipconfig' \leftrightarrow
                         and looking for the 'IPv6 Address' field. For Linux run ' \leftrightarrow
                        ifconfig' and look for 'inet6 addr' field. For OS X run ' \leftrightarrow
                        ifconfig' and look for the 'inet6' field."/>
         <Range key="TargetPort"
                     value="4321"
                     min="0"
                     max="65535"
                     name="Target Port"
                     description="The target or destination port the network packet \ \hookleftarrow
                         is sent to."/>
         <String key="LoggerPath"</pre>
                           value="logs/tcpv6/"
                           name="Logger Path"
                           description="The directory where Peach will save the log \ \leftarrow
                               produced when fuzzing." />
         <Strategy key="Strategy"
                             value="Random"
                             name="Mutation Strategy"
                             description="The mutation strategy to use when fuzzing." \leftarrow
         <String key="PitLibraryPath"</pre>
                           value="."
                           name="Pit Library Path"
                           description="The path to the root of the pit library."/>
</All>
```

33 Telnet

• Peach Pit: Telnet

• Direction: Client, Server

• Supported Platforms: Windows, Linux, OS X

Telnet is a network protocol used on the Internet or on local area networks to provide a bidirectional interactive text-oriented communication facility using a virtual terminal connection. User data is interspersed in-band with Telnet control information in an 8-bit byte oriented data connection over the Transmission Control Protocol (TCP).

33.1 Specifications

Specification	Title
RFC137	Telnet protocol specification
RFC139	Telnet protocol specification
RFC854	Telnet protocol specification
RFC855	Telnet option specifications
RFC857	Telnet echo option
RFC858	Telnet suppress go ahead option
RFC859	Telnet status option
RFC860	Telnet timing mark option
RFC885	Telnet end of record option
RFC1041	Telnet 3270 regime option
RFC1073	Telnet window size option
RFC1079	Telnet terminal speed option
RFC1091	Telnet terminal-type option
RFC1096	Telnet X display location option
RFC1116	Telnet Linemode option
RFC1184	Telnet Linemode option
RFC1372	Telnet remote flow control option
RFC1572	Telnet environment option

33.2 Use Cases

Messages	Specification
Telnet Protocol	RFC137
Sub Options	RFC855
Echo Option	RFC 857
SGA Option	RFC858
Status Option	RFC859
Timing Mark Option	RFC860
End of Record Option	RFC885
Window Size Option	RFC1073
Terminal Speed Option	RFC1079
Terminal-type option	RFC1091
X Display Option	RFC1096
Linemode Option	RFC1116
Remote Flow Control Option	RFC1372
Environment Option	RFC1572

33.3 Configuration

33.3.1 Target Configuration

A Telnet server is required to test the client side of the Telnet pit. On Linux, telnetd can be downloaded using apt-get.

33.3.2 Required Pit Configuration Changes

TargetIPv4

IP address of the target host machine.

SourceIPv4

IP address of the interface on the local machine.

SourcePort

Telnet port number of the local machine.

TargetPort

Telnet port number of the target host machine.

Interface

Name of local interface (used for monitoring).

Username

User name of the remote Telnet account.

Password

Password for the associated Telnet user account.

Program

The client program to test when fuzzing as the server.

33.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

33.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

33.4 Running

33.4.1 Single test debug run

Fuzzing a telnet client

```
peach -1 --debug TELNET_Client.xml
```

Fuzzing a telnet server

```
peach -1 --debug TELNET_Server.xml
```

33.4.2 Full test run

Fuzzing a telnet client

```
peach TELNET_Client.xml
```

Fuzzing a telnet server

```
peach TELNET_Server.xml
```

33.5 Examples

Example 33.1 Sample Telnet Server Configuration File

Example configuration using telnetd on Linux.

First we must install the telnet server telnetd; for this example we assume you are running on Ubuntu or Debian. A test user account must also be created.

```
# Install telnet server on Linux
sudo apt-get install telnetd

# Add a test user account with password telnetuserp455
sudo adduser telnetuser
```

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
        <All>
                <String key="Username"
                                 value="telnetuser"
                                 name="Username"
                                 description="Username to use when logging into telnet \,\,\,\,\,\,\,\,
                                     server."/>
                <String key="Password"
                                 value="telnetuserp455"
                                 name="Password"
                                 description="Password to use when logging into telnet \ensuremath{\leftarrow}
                                     server."/>
                <Ipv4 key="TargetIPv4"</pre>
                           value="127.0.0.1"
                           name="Target IPv4 Address"
                           description="The IPv4 address of the target machine or device.
                               The IPv4 address can be found on Windows by running 'ipconfig' \leftrightarrow
                                and looking for the 'IPv4 Address' field. For Linux run ' \leftarrow
                               ifconfig' and look for 'inet addr' field. For OS X run ' \hookleftarrow
                               ifconfig' and look for the 'inet' field." />
                <Range key="TargetPort"
                            value="23"
                            min="0"
                            max="65535"
                            name="Target Port"
                            is sent to."/>
                <String key="LoggerPath"</pre>
                                 value="logs/telnet_client/"
                                 name="Logger Path"
                                 description="The directory where Peach will save the log \ensuremath{\leftarrow}
                                     produced when fuzzing." />
```

Example 33.2 Sample Telnet Client Configuration File

The Telnet Client Pit file will simulate a telnet server to perform fuzzing of a telnet client application. This example configuration assumes the user is running on Ubuntu Server LTS.

Install telnet on Linux

sudo apt-get install telnet

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
         <All>
                  <Ipv4 key="SourceIPv4"</pre>
                              value="127.0.0.1"
                             name="Source IPv4 Address"
                              {\tt description="The~IPv4~address~of~the~machine~running~Peach~Fuzzer} \; \hookleftarrow
                                  . The IPv4 address can be found on Windows by running ' \hookleftarrow
                                  ipconfig' and looking for the 'IPv4 Address' field. For Linux \ \ \ \ \ 
                                  run 'ifconfig' and look for 'inet addr' field. For OS X run ' \leftrightarrow
                                  ifconfig' and look for the 'inet' field."/>
                  <Range key="SourcePort"
                              value="23"
                              min="0" max="65535"
                              name="Source Port"
                              \texttt{description="The source port the network packet originates from.} \; \hookleftarrow
                  <String key="LoggerPath"</pre>
                                    value="logs/telnet_server/"
                                    name="Logger Path"
                                    description="The directory where Peach will save the log \,\,\leftarrow\,\,
                                        produced when fuzzing." />
                  <Strategy key="Strategy"</pre>
                                       value="Random"
                                       name="Mutation Strategy"
                                       description="The mutation strategy to use when fuzzing." \leftrightarrow
                  <String key="PitLibraryPath"</pre>
                                    value="."
                                    name="Pit Library Path"
                                    description="The path to the root of the pit library."/>
         </All>
</PitDefines>
```

34 User Datagram Protocol version 4 (UDPv4)

Peach Pit: UDPv4Direction: Client

• Supported Platforms: Windows, Linux, OS X

The User Datagram Protocol (UDP) is one of the core members of the Internet protocol suite. It allows applications to send messages (called datagrams) to other hosts on an Internet Protocol (IP) network. Messages are stateless and can be sent without prior communications to set up special transmission channels or data paths.

UDP uses a simple transmission model with a minimum of protocol mechanism. It has no handshaking dialogues, and thus exposes any underlying network protocol unreliability to the user's program. As this is normally IP over unreliable media, there is no guarantee of delivery, ordering, or duplicate protection.

34.1 Specifications

Specification	Title
RFC768	User Datagram Protocol

34.2 Use Cases

Messages	Specification
UDP Header	RFC768

34.3 Configuration

34.3.1 Target Configuration

A UDP listener listening on the UDPv4 port defined in configuration file is required. The network tool socat can be used as the listener.

34.3.2 Required Pit Configuration Changes

TargetIPv4

IP address of the target host machine.

SourceIPv4

IP address of the interface on the local machine.

SourcePort

UDPv4 port number of the local machine.

TargetPort

UDPv4 port number of the target host machine.

34.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

34.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

34.4 Running

34.4.1 Single test debug run

```
peach -1 --debug UDPv4.xml
```

34.4.2 Full test run

```
peach UDPv4.xml
```

34.5 Examples

Example 34.1 Sample UDPv4 Configuration File

Example configuration using socat on Linux.

First we must install socat and configure socat to listen for packets; for this example we assume you are running Linux. For other platforms follow the platform specific installation instructions for socat.

```
sudo apt-get install socat
socat STDIO udp4-listen:12345
```

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
        < A11>
                 <Ipv4 key="SourceIPv4"</pre>
                            value="127.0.0.1"
                            name="Source IPv4 Address"
                            description="The IPv4 address of the machine running Peach Fuzzer ←
                                 . The IPv4 address can be found on Windows by running ^{\prime} \hookleftarrow
                                ipconfig' and looking for the 'IPv4 Address' field. For Linux
                                run 'ifconfig' and look for 'inet addr' field. For OS X run ' \hookleftarrow
                                ifconfig' and look for the 'inet' field."/>
                 <Range key="SourcePort"
                             value="1234"
                             min="0" max="65535"
                             name="Source Port"
                             description="The source port the network packet originates from. \hookleftarrow
                 <Ipv4 key="TargetIPv4"</pre>
                            value="127.0.0.1"
                            name="Target IPv4 Address"
```

```
description="The IPv4 address of the target machine or device. \leftarrow
                           The IPv4 address can be found on Windows by running 'ipconfig' \leftrightarrow
                            and looking for the 'IPv4 Address' field. For Linux run ' \leftrightarrow
                            ifconfig' and look for 'inet addr' field. For OS X run' \leftarrow
                           ifconfig' and look for the 'inet' field." />
               <Range key="TargetPort"</pre>
                         value="12345"
                         min="0"
                         max="65535"
                         name="Target Port"
                         is sent to."/>
               <String key="LoggerPath"</pre>
                              value="logs/udpv4/"
                              name="Logger Path"
                              produced when fuzzing." />
               <Strategy key="Strategy"</pre>
                                value="Random"
                                name="Mutation Strategy"
                                description="The mutation strategy to use when fuzzing." \leftrightarrow
               <String key="PitLibraryPath"</pre>
                              value="."
                              name="Pit Library Path"
                              description="The path to the root of the pit library."/>
       </All>
</PitDefines>
```

35 User Datagram Protocol version 6 (UDPv6)

Peach Pit: UDPv6Direction: Client

• Supported Platforms: Windows, Linux, OS X

The User Datagram Protocol (UDP) is one of the core members of the Internet protocol suite, which allows computer applications to send messages (which may be referred to as datagrams) to other hosts on an Internet Protocol (IP) network without prior communications in order to set up special transmission channels or data paths.

UDP uses a simple transmission model with a minimum of protocol mechanism. UDP is a protocol over IP; it does not add any complexity to verify that its messages got to where they were supposed to go.

UDP has no handshaking dialogs; the user's program is exposed to any underlying network protocol unreliability. This means that there is no guarantee of delivery, ordering, or duplicate protection.

35.1 Specifications

Specification	Title
RFC768	User Datagram Protocol

35.2 Use Cases

Messages	Specification
UDP Header	RFC768

35.3 Configuration

35.3.1 Target Configuration

A UDP listener listening on the UDPv6 port defined in configuration file is required. The network tool socat can be used as the listener.

35.3.2 Required Pit Configuration Changes

TargetIPv6

IP address of the target host machine.

SourceIPv6

IP address of the interface on the local machine.

SourcePort

UDPv6 port number of the local machine.

TargetPort

UDPv6 port number of the target host machine.

35.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

35.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

35.4 Running

35.4.1 Single test debug run

```
peach -1 --debug UDPv6.xml
```

35.4.2 Full test run

```
peach UDPv6.xml
```

35.5 Examples

Example 35.1 Sample UDPv6 Configuration File

Example configuration using socat on Linux.

First we must install socat and configure socat to listen for packets; for this example we assume you are running Linux. For other platforms follow the platform specific installation instructions for socat.

```
sudo apt-get install socat
socat STDIO udp6-listen:12345
```

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
  <All>
           <Ipv6 key="SourceIPv6"</pre>
                          value="::1"
                          name="Source IPv6 Address"
                          description="The IPv6 address of the machine running Peach Fuzzer.
                              The IPv6 address can be found on Windows by running 'ipconfig'
                              and looking for the 'IPv6 Address' field. For Linux run ' \leftrightarrow
                              ifconfig' and look for 'inet6 addr' field. For OS X run ' \leftrightarrow
                              ifconfig' and look for the 'inet6' field."/>
           <Range key="SourcePort"</pre>
                           value="1234"
                           min="0" max="65535"
                           name="Source Port"
                           description="The source port the network packet originates from."/ \leftrightarrow
           <Ipv6 key="TargetIPv6"</pre>
                          value="::1"
                          name="Target IPv6 Address"
```

```
description="The IPv6 address of the target machine or device. The \leftrightarrow
                        IPv6 address can be found on Windows by running 'ipconfig' and \leftrightarrow
                        looking for the 'IPv6 Address' field. For Linux run 'ifconfig' \leftrightarrow
                         and look for 'inet6 addr' field. For OS X run 'ifconfig' and \leftrightarrow
                        look for the 'inet6' field."/>
         <Range key="TargetPort"</pre>
                      value="12345"
                      min="0"
                      max="65535"
                      name="Target Port"
                      sent to."/>
         <String
                key="LoggerPath"
                value="logs/udpv6/"
                name="Logger Path"
                fuzzing." />
         <Strategy
               key="Strategy"
                value="Random"
                name="Mutation Strategy"
                description="The mutation strategy to use when fuzzing." />
         <String
                key="PitLibraryPath"
                value="."
                name="Pit Library Path"
                description="The path to the root of the pit library."/>
 </All>
</PitDefines>
```

36 Virtual Local Area Network (VLAN)

Peach Pit: VLANDirection: Client

• Supported Platforms: Linux

In computer networking, a single layer-2 network may be partitioned to create multiple, mutually isolated, distinct broadcast domains, so that packets can only pass between them via one or more routers. Such a domain is referred to as a virtual local area network, virtual LAN or VLAN.

36.1 Specifications

Specification	Title
IEEE 802.1Q	Media Access Control Bridges and Virtual Bridge Local
	Area Networks
IEEE 802.1ad	Virtual Bridged Local Area Networks Amendment 4:
	Provider Bridges

36.2 Use Cases

Messages	Specification
VLAN Header	IEEE 802.1Q
VLAN Double Tagging	IEEE 802.1ad

36.3 Configuration

36.3.1 Target Configuration

A VLAN interface or VLAN enabled switch or other device is required.

In order to run all tests both a UDP and TCP listener are required. The networking tool socat can be used as the listener.

36.3.2 Required Pit Configuration Changes

TargetIPv6

IPv6 address of the target host machine.

SourceIPv6

IPv6 address of the interface on the local machine.

TargetIPv4

IPv4 address of the target host machine.

SourceIPv4

IPv4 address of the interface on the local machine.

SourceMAC

MAC address on local machine.

TargetMAC

MAC address of target machine.

Tag

VLAN identifier specifying the VLAN to which the frames belong.

SourcePort

UDPv6 and/or TCPv6 port number of the local machine.

TargetPort

UDPv6 and/or TCPv6 port number of the target host machine.

36.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

36.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

36.4 Running

36.4.1 Single test debug run

```
peach -1 --debug VLAN.xml
```

36.4.2 Full test run

peach VLAN.xml

36.5 Examples

Example 36.1 Sample VLAN Configuration File

In this example, a Linux machine is configured with vlan support. We recommend using the current release of Ubuntu Server LTS. In order to replicate this example, first install the vlan package and configure. Then, set up socat in different terminals to listen for incoming packets.

 $\hbox{{\tt NOTE:}} \ \ \hbox{{\tt The TargetMAC}} \ \ \hbox{{\tt configuration parameter must be correctly configured.}}$

```
# Install vlan
sudo apt-get install vlan

# Add a new vlan interface with the tag of 1
sudo vconfig add eth0 1

# Config the vlan interface
sudo ifconfig eth0.1 192.168.1.1 netmask 255.255.255.0 broadcast 192.168.1.255 up

# Install socat
```

```
sudo apt-get install socat
# Setting up socat listener for UDP
sudo socat STDIO udp-listen:12345
# Setting up socat listener for TCP
sudo socat STDIO tcp-listen:12345
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
        <!-- NOTE: This pit is only supported on Linux or OS X. -->
        <All>
                 <Iface key="Interface"</pre>
                             value="eth0"
                             name="Network Interface"
                             Linux and OS X, the network interfaces can be shown by \,\leftarrow\,
                                  running the command 'ifconfig'."/>
                 <hwaddr key="SourceMAC"
                                   value="000000000000"
                                   name="Source MAC Address"
                                   description="Hardware address of the network interface on \ \leftarrow
                                       machine running Peach Fuzzer. To find the hardware \ \leftarrow
                                       address on Windows, run 'ipconfig /all' and look for the \leftarrow
                                        'Physical Address' field. For Linux run 'ifconfig' and \leftrightarrow
                                       look for the 'HWaddr' field. For OS X run 'ifconfig' and \leftarrow
                                        look for the 'ether' field."/>
                 <Ipv4 key="SourceIPv4"</pre>
                            value="192.168.1.2"
                            name="Source IPv4 Address"
                            description="The IPv4 address of the machine running Peach Fuzzer \hookleftarrow
                                . The IPv4 address can be found on Windows by running ^{\prime} \leftrightarrow
                                ipconfig' and looking for the 'IPv4 Address' field. For Linux \ \ \hookleftarrow
                                run 'ifconfig' and look for 'inet addr' field. For OS X run ' \hookleftarrow
                                ifconfig' and look for the 'inet' field."/>
                 <Ipv6 key="SourceIPv6"</pre>
                            value="::1"
                            name="Source IPv6 Address"
                            description="The IPv6 address of the machine running Peach Fuzzer \leftrightarrow
                                 . The IPv6 address can be found on Windows by running ^{\prime} \leftrightarrow
                                ipconfig' and looking for the 'IPv6 Address' field. For Linux
                                run 'ifconfig' and look for 'inet6 addr' field. For OS X run ' \hookleftarrow
                                ifconfig' and look for the 'inet6' field."/>
                 <Range key="SourcePort"
                             value="1234"
                             min="0" max="65535"
                             name="Source Port"
                             description="The source port the network packet originates from. \hookleftarrow
                                  "/>
                 <Hwaddr key="TargetMAC"</pre>
                                   value="000000000000"
                                   name="Target MAC Address"
                                   description="Hardware address of the network interface on \ \leftarrow
                                       target machine or device. To find the hardware address \ \leftarrow
                                       on Windows, run 'ipconfig /all' and look for the ' \hookleftarrow
                                       Physical Address' field. For Linux run 'ifconfig' and \leftarrow
                                       look for the 'HWaddr' field. For OS X run 'ifconfig' and \hookleftarrow
                                        look for the 'ether' field." />
```

```
<Ipv4 key="TargetIPv4"</pre>
                            value="192.168.1.1"
                            name="Target IPv4 Address"
                            description="The IPv4 address of the target machine or device. \leftrightarrow
                                The IPv4 address can be found on Windows by running 'ipconfig' ←
                                 and looking for the 'IPv4 Address' field. For Linux run ' \leftrightarrow
                                ifconfig' and look for 'inet addr' field. For OS X run ' \leftarrow
                                ifconfig' and look for the 'inet' field." />
                 <Ipv6 key="TargetIPv6"</pre>
                            value="::1"
                            name="Target IPv6 Address"
                            description="The IPv6 address of the target machine or device. \leftrightarrow
                                The IPv6 address can be found on Windows by running 'ipconfig' \leftrightarrow
                                 and looking for the 'IPv6 Address' field. For Linux run ' \leftarrow
                                ifconfig' and look for 'inet6 addr' field. For OS X run' \leftarrow
                                ifconfig' and look for the 'inet6' field."/>
                 <Range key="TargetPort"
                             value="12345"
                             min="0"
                             max="65535"
                             name="Target Port"
                             description="The target or destination port the network packet \leftrightarrow
                                 is sent to."/>
                 <Range key="Tag"
                             value="1"
                             min="0" max="4095"
                             name="VLAN identifier"
                             description="A 12-bit field specifying the VLAN to which the
                                 frame belongs. The hexadecimal values of 0x000 and 0xFFF are
                                 reserved. All other values may be used as VLAN identifiers, \leftrightarrow
                                 allowing up to 4,094 VLANs. The reserved value 0x000 \leftrightarrow
                                 indicates that the frame does not belong to any VLAN; in this \hookleftarrow
                                  case, the 802.1Q tag specifies only a priority and is \leftarrow
                                 referred to as a priority tag. On bridges, VLAN 1 (the
                                 default VLAN ID) is often reserved for a management VLAN; \ \hookleftarrow
                                 this is vendor-specific." />
                 <String
                          key="LoggerPath"
                          value="logs/vlan/"
                          name="Logger Path"
                          description="The directory where Peach will save the log produced \leftrightarrow
                              when fuzzing." />
                 <Strategy
                          key="Strategy"
                          value="Random"
                          name="Mutation Strategy"
                          description="The mutation strategy to use when fuzzing." />
                 <String
                          key="PitLibraryPath"
                          value="."
                          name="Pit Library Path"
                          description="The path to the root of the pit library."/>
        </All>
</PitDefines>
```

37 Virtual Extensible Local Area Network (VXLAN)

• Peach Pit: VXLAN

• Direction: Client

• Supported Platforms: Linux

VXLAN (Virtual eXtensible Local Area Network) runs over the existing networking infrastructure and provides a means to "stretch" a Layer 2 network.

VXLAN is a Layer 2 overlay scheme over a Layer 3 network. Each overlay is termed a VXLAN segment.

Only VMs within the same VXLAN segment can communicate with each other.

Each VXLAN segment is scoped through a 24 bit segment ID [the VXLAN Network Identifier (VNI)]. This allows up to 16M VXLAN segments to coexist within the same administrative domain.

37.1 Specifications

Specification	Title
http://tools.ietf.org/id/draft-mahalingam-dutt-dcops-vxlan-	VXLAN: A Framework for Overlaying Virtualized Layer 2
06.txt	Networks over Layer 3 Networks

37.2 Use Cases

Messages	Specification
VXLAN Frame	http://tools.ietf.org/id/draft-mahalingam-dutt-dcops-vxlan-
	06.txt

37.3 Configuration

37.3.1 Target Configuration

Setting up VXLAN is a multi-step process. In order to simplify the setup, please refer to to VMware's official VLXAN deployment guide here.

The target must also have listeners configured for TCP and UDP reachable via IPv4 and IPv6.

37.3.2 Required Pit Configuration Changes

TargetIPv6

IPv6 address of the target host machine.

SourceIPv6

IPv6 address of the interface on the local machine.

TargetIPv4

IPv4 address of the target host machine.

SourceIPv4

IPv4 address of the interface on the local machine.

SourceMAC

MAC address on local machine.

TargetMAC

MAC address of target machine.

OuterTargetIPv4

IPv4 address of the target host machine.

OuterSourceIPv4

IPv4 address of the interface on the local machine.

OuterSourceMAC

MAC address on local machine.

OuterTargetMAC

MAC address of target machine.

Tag

VXLAN identifier specifying the VXLAN to which the frames belong.

Interface

Name of local interface (used for monitoring).

SourcePort

UDPv4 and/or TCPv4 port number of the local machine.

TargetPort

UDPv4 and/or TCPv4 port number of the target host machine.

37.3.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

37.3.4 Configure Monitoring

Monitoring must be configured to provide fault detection, data collection, and automation as needed.

37.4 Running

37.4.1 Single test debug run

peach -1 --debug VXLAN.xml

37.4.2 Full test run

peach VXLAN.xml

37.5 Examples

Example 37.1 Sample VXLAN Configuration File

Example configuration for sending vxlan packets.

```
<?xml version="1.0" encoding="utf-8"?>
<PitDefines>
  <A11>
                           key="OuterSourceMAC"
    <Hwaddr
                                    value="5254005335d3"
                                    name="Source MAC Address"
                                    description="Hardware address of the network interface on \leftrightarrow
                                         machine running Peach Fuzzer. To find the hardware \ensuremath{\leftarrow}
                                         address on Windows, run 'ipconfig /all' and look for the \hookleftarrow
                                          'Physical Address' field. For Linux run 'ifconfig' and \ensuremath{\hookleftarrow}
                                         look for the 'HWaddr' field. For OS X run 'ifconfig' and \hookleftarrow
                                          look for the 'ether' field."/>
    <Ipv4
                           key="OuterSourceIPv4"
                                    value="10.6.66.51"
                                    name="Source IP Address"
                                    description="The IPv4 address of the machine running Peach \leftrightarrow
                                         Fuzzer. The IPv4 address can be found on Windows by \leftrightarrow
                                         running 'ipconfig' and looking for the 'IPv4 Address' \,\,\,\,\,\,\,\,\,\,\,\,\,
                                         field. For Linux run 'ifconfig' and look for 'inet addr' \leftarrow
                                          field. For OS X run 'ifconfig' and look for the 'inet'
                                         field."/>
    <Hwaddr
                           kev="OuterTargetMAC"
                                    value="00000000000"
                                    name="Target MAC Address"
                                    description="Hardware address of the network interface on \ \leftarrow
                                         target machine or device. To find the hardware address \ \leftarrow
                                         on Windows, run 'ipconfig /all' and look for the ' \hookleftarrow
                                         Physical Address' field. For Linux run 'ifconfig' and \leftarrow
                                         look for the 'HWaddr' field. For OS X run 'ifconfig' and \leftarrow
                                          look for the 'ether' field." />
           <Ipv4
                           kev="OuterTargetIPv4"
                                    value="10.6.66.52"
                                    name="Target IP Address"
                                     description="The IPv4 address of the target machine or ←
                                         device. The IPv4 address can be found on Windows by
                                         running 'ipconfig' and looking for the 'IPv4 Address' \ensuremath{\leftarrow}
                                         field. For Linux run 'ifconfig' and look for 'inet addr' \hookleftarrow
                                          field. For OS X run 'ifconfig' and look for the 'inet' \leftrightarrow
                                         field." />
    <Hwaddr
                           kev="SourceMAC"
                                    value="6805ca0589fe"
                                    name="Source MAC Address"
                                     description="Hardware address of the network interface \leftarrow
                                         represented inside of the VXLAN encapsulation being sent \hookleftarrow
                                          from Peach Fuzzer. This address must not match \,\leftarrow\,
                                         OuterSourceMAC. To find the hardware address on Windows, \leftarrow
                                         run 'ipconfig /all' and look for the 'Physical Address' \hookleftarrow
                                          field. For Linux run 'ifconfig' and look for the ' \leftarrow
                                         HWaddr' field. For OS X run 'ifconfig' and look for the \ensuremath{\leftarrow}
                                         'ether' field."/>
         <Ipv4
                           key="SourceIPv4"
                                    value="127.0.0.1"
                                    name="Source IPv4 Address"
```

```
description="The IPv4 address of the machine running Peach \leftrightarrow
                                    Fuzzer. The IPv4 address can be found on Windows by \,\leftarrow\,
                                    running 'ipconfig' and looking for the 'IPv4 Address' \leftrightarrow
                                    field. For Linux run 'ifconfig' and look for 'inet addr' \leftarrow
                                     field. For OS X run 'ifconfig' and look for the 'inet' \leftrightarrow
                                    field."/>
    <Ipv6
                      key="SourceIPv6"
                                value="::1"
                                name="Source IPv6 Address"
                                description="The IPv6 address of the machine running Peach \leftrightarrow
                                    Fuzzer. The IPv6 address can be found on Windows by \leftarrow
                                    running 'ipconfig' and looking for the 'IPv6 Address' \,\,\,\,\,\,\,\,\,\,\,\,\,
                                    field. For Linux run 'ifconfig' and look for 'inet6 addr \leftarrow
                                    ' field. For OS X run 'ifconfig' and look for the 'inet6 \leftarrow
                                    ' field."/>
                      key="SourcePort"
    <Range
                                value="1234"
                                min="0" max="65535"
                                name="Source Port"
                                description="The source port the network packet originates \leftrightarrow
                                    from."/>
    <Hwaddr
                       key="TargetMAC"
                                value="2233ca00ff0f"
                                name="Target MAC Address"
                                description="Hardware address of the network interface \ensuremath{\leftarrow}
                                    represented inside of the VXLAN encapsulation being sent \hookleftarrow
                                     to a target. This address must not match OuterTargetMAC \leftarrow
                                    . To find the hardware address on Windows, run 'ipconfig \hookleftarrow
                                     /all' and look for the 'Physical Address' field. For \,\leftarrow\,
                                    Linux run 'ifconfig' and look for the 'HWaddr' field.
                                    For OS X run 'ifconfig' and look for the 'ether' field." ←
                      key="TargetIPv4"
<Ipv4
                                value="127.0.0.1"
                                name="Target IPv4 Address"
                                description="The IPv4 address of the target machine or \ \leftarrow
                                    device. The IPv4 address can be found on Windows by \,\leftarrow\,
                                    running 'ipconfig' and looking for the 'IPv4 Address' ←
                                    field. For Linux run 'ifconfig' and look for 'inet addr' ←
                                     field. For OS X run 'ifconfig' and look for the 'inet' \ensuremath{\hookleftarrow}
                                    field." />
    <Ipv6
                      key="TargetIPv6"
                                value="::1"
                                name="Target IPv6 Address"
                                description="The IPv6 address of the target machine or \leftarrow
                                    device. The IPv6 address can be found on Windows by \, \leftarrow \,
                                    running 'ipconfig' and looking for the 'IPv6 Address' \,\,\,\,\,\,\,\,\,\,\,\,\,\,
                                    field. For Linux run 'ifconfig' and look for 'inet6 addr \hookleftarrow
                                    ^{\prime} field. For OS X run 'ifconfig' and look for the 'inet6 \hookleftarrow
                                     ' field."/>
<Range
                       key="TargetPort"
                                value="1234"
                                min="0" max="65535"
                                name="Target Port"
                                description="The target or destination port the network \ \leftarrow
                                    packet is sent to."/>
```

```
key="Vni"
      <Range
                                 value="42"
                                 min="0" max="16777215"
                                 name="VXLAN Network Identifier"
                                 description="VXLAN Segment ID/VXLAN Network (VNI) - this is \leftrightarrow
                                      a 24 bit value used to designate the individual VXLAN \,\leftarrow\,
                                     overlay network on which the communicating VMs are \ensuremath{\leftarrow}
                                     situated. VMs in different VXLAN overlay networks \,\,\,\,\,\,\,\,\,\,\,
                                     cannot communicate with each other."/>
                        key="Tag"
      <Range
                                 value="2"
                                 min="0"
                                 max="4095"
                                 name="VLAN identifier"
                                 description="A 12-bit field specifying the VLAN to which \leftrightarrow
                                     the frame belongs. The hexadecimal values of 0x000 and 0 \leftarrow
                                     xFFF are reserved. All other values may be used as VLAN \,\,\,\,\,\,\,\,\,
                                     identifiers, allowing up to 4,094 VLANs. The reserved \leftarrow
                                     value 0x000 indicates that the frame does not belong to \leftrightarrow
                                     any VLAN; in this case, the 802.1Q tag specifies only a \leftrightarrow
                                     priority and is referred to as a priority tag. On \leftarrow
                                     bridges, VLAN 1 (the default VLAN ID) is often reserved \leftrightarrow
                                     for a management VLAN; this is vendor-specific." />
                        key="LoggerPath"
      <String
                                 value="logs/vxlan/"
                                 name="Logger Path"
                                 description="The directory where Peach will save the log \ \leftarrow
                                     produced when fuzzing." />
                        key="Strategy"
      <Strategy
                                 value="Random"
                                 name="Mutation Strategy"
                                 description="The mutation strategy to use when fuzzing." />
      <String
                        key="PitLibraryPath"
                                 value="."
                                 name="Pit Library Path"
                                 description="The path to the root of the pit library."/>
</All>
<Ti nux>
  <Iface
                        key="Interface"
                                 value="eth0"
                                 name="Network Interface"
                                 description="The network interface to transmit packets over \leftarrow
                                     . For Windows, the network interfaces can be shown by \leftarrow
                                     running 'ipconfig'. On Linux and OS X, the network \ensuremath{\leftarrow}
                                     interfaces can be shown by running the command 'ifconfig \leftarrow
                                     ' ."/>
</Linux>
   <!-- This can't run on OS X because it uses the RawEther publisher. -->
</osx>
<Windows>
 <!-- This can't run on windows because it uses the RawEther publisher. -->
</Windows>
```

</PitDefines>

38 Wifi (802.11)

· Peach Pit: Wifi

• Direction: Client

• Supported Platforms: Linux (Ubuntu Server 14.04 LTS)

• Supported Wireless Chipsets: RaLink Chipset

IEEE 802.11 is a set of media access control (MAC) and physical layer (PHY) specifications for implementing wireless local area network (WLAN) computer communication in the 2.4, 3.6, 5 and 60 GHz frequency bands.

38.1 Specifications

Specification	Title
IEEE 802.11-2012	IEEE 802.11-2012 - Part 11: Wireless LAN Medium
	Access Control (MAC) and Physical Layer (PHY)

38.2 Use Cases

Messages	Specification
Probe Response	IEEE 802.11-2012
Authentication	IEEE 802.11-2012
Association Response	IEEE 802.11-2012
Reassociation Response	IEEE 802.11-2012
Deauthentication	IEEE 802.11-2012
Disassociation	IEEE 802.11-2012
Data Frame	IEEE 802.11-2012
Acknowledgement (ACK)	IEEE 802.11-2012
Ready-To-Send (RTS)	IEEE 802.11-2012
Clear-To-Send (CTS)	IEEE 802.11-2012
Action Frame	IEEE 802.11-2012

Supported Security Modes	Specification
Plain (No Security)	IEEE 802.11-2012

38.3 Supported Wireless Adapters

The Wifi Pit supports USB Wireless devices based on the RaLink chipsets. At the time of writing the following devices are known to use the RaLink chipsets and work with the Wifi Pits:

- Panda Wireless PAU03
- Protronix 802.11N/G Wireless USB Adapter
 - Supports external antenna

Both wireless adapters are available from Amazon and other retailers.

Chipsets Known Not to Work:

All other chipsets tested failed to work. This included Atheros and Realtek chipsets. The most common issues identified were related to wireless packet injection.

38.4 Supported Operating Systems

Deja vu Security recommends using Ubuntu Server 14.04 LTS on a physical machine, NOT a virtual machine, to perform Wifi fuzzing. During testing stability issues were identified when running with older Linux kernels or in a virtualized environment.

38.5 Tested Wireless Stacks

During testing of the Wifi Pit the following devices/stacks were tested for compatibility:

- Windows 8.1
- Linux (Ubuntu Server 14.04 LTS)
- Android (Multiple versions)
- iPhone 5S
- iPhone 5

It was found during testing that occasional timing issues would prevent association from working on the first try. This was most prevalent with Windows 8.1. In the case that the first iteration does not complete, re-running the test typically worked. If association is still failing after five attempts, contact Peach support for assistance.

38.6 Configuration

38.6.1 Target Configuration

A method for triggering the target to start the Wifi association is needed. The Wifi Pit must then be configured to trigger the association.

38.6.2 Required Pit Configuration Changes

Interface

Name of local wireless interface

TargetMAC

MAC address of target machine

SourceMAC

MAC address on local machine

Ssid

SSID for Wireless network

Channel

Channel number between 1 and 14. ChannelFrequency must match the selected channel.

ChannelFrequency

Channel frequency. Must match the Channel parameter using the following table.

Channel	Frequency
1	2412
2	2417
3	2422
4	2427
5	2432
6	2437

Channel	Frequency
7	2442
8	2447
9	2452
10	2457
11	2462
12	2467
13	2472
14	2484

38.6.3 Optional Pit Configuration Changes

Strategy

Fuzzing strategy Peach will use for testing.

LoggerPath

Path to folder where logs will be stored.

Path

Path to the relative base directory where all pits are located.

38.6.4 Configure Additional Monitors

Add monitors to agent as needed

38.7 Running

38.7.1 Single test debug run

Fuzzing Wifi Client Association

peach -1 --debug Wifi_Client.xml

38.7.2 Full test run

Fuzzing Wifi Client Association

peach Wifi_Client.xml

38.8 Examples

Example 38.1 Wifi Client Association Fuzzing, Linux

This example will show a working configuration using two Ubuntu Server 14.04 LTS machines. One will host our fuzzer and will be referred to as the "fuzzer" or "fuzzing" machine. The second machine is the "target" machine.

Fuzzing Machine Configuration

The fuzzing machine is configured with the latest version of Peach Professional and a supported wireless device. It must also have IP connectivity to the target machine.

Install wireless-tools package:

sudo apt-get install wireless-tools

Target Machine Configuration

The target machine is configured with the latest version of Peach Professional, the wireless tools package, and a Linux supported wireless device.

Install wireless-tools package:

```
sudo apt-get install wireless-tools
```

Configure Wireless Interface:

A wireless network interface must be configured in /etc/network/interfaces. The following is an example configuration that assumes the wireless device is wlan0. This configuration should be appended to the /etc/network/interfaces file.

```
iface wlan0 inet dhcp
    wireless-essid PeachWifi
```

Configure Wifi Pit

Wifi_Client.xml

To configure the Wifi Pit we will need to add a remote agent that will trigger our Ubuntu Server target to start a Wifi association. This is done using the <code>ifup</code> command. We will also need to stop the association at the end of the iteration. For Ubuntu Server 14.04 LTS this is done by killing the DHCP client process (dhclient) and then calling the <code>ifdown</code> command.

The interface name we will allow to be configurable by adding a *TargetInterface* configuration value. An entry in the configuration file will be needed for it.

```
<Agent name="TargetAgent" location="tcp://10.0.1.71:9001">
 <Monitor class="RunCommand">
   <Param name="Command" value="/usr/bin/killall" />
    <Param name="Arguments" value="dhclient" />
   <Param name="StartOnCall" value="Cleanup" />
 </Monitor>
 <Monitor class="RunCommand">
   <Param name="Command" value="/sbin/ifdown" />
   <Param name="Arguments" value="##TargetInterface##" />
   <Param name="StartOnCall" value="Cleanup" />
 </Monitor>
 <!-- Connect -->
 <Monitor class="Process">
   <Param name="Executable" value="/sbin/ifup" />
   <Param name="Arguments" value="##TargetInterface##" />
   <Param name="StartOnCall" value="Connect" />
   <Param name="NoCpuKill" value="true" />
   <Param name="WaitForExitTimeout" value="0" />
 </Monitor>
</Agent>
```

The agent must be added to the *Test* element using this line:

```
<Agent ref="TargetAgent" />
```

Here is the completed *Wifi_Client.xml* file:

```
<?xml version="1.0" encoding="utf-8"?>
<Peach xmlns="http://peachfuzzer.com/2012/Peach" xmlns:xsi="http://www.w3.org/2001/ \( \to \) XMLSchema-instance"
    xsi:schemaLocation="http://peachfuzzer.com/2012/Peach peach.xsd">
    <Include ns="Wifi" src="file:../_Common/Models/Net/Wifi_State.xml"/>
    <Agent name="Local">
    <!-- Startup -->
```

```
<Monitor class="RunCommand">
   <Param name="Command" value="/sbin/ifconfig" />
   <Param name="Arguments" value="##Interface## down" />
   <Param name="StartOnCall" value="Init" />
 </Monitor>
 <Monitor class="RunCommand">
   <Param name="Command" value="/sbin/iwconfig" />
   <Param name="Arguments" value="##Interface## mode ad-hoc" />
   <Param name="StartOnCall" value="Init" />
 </Monitor>
 <Monitor class="RunCommand">
    <Param name="Command" value="/sbin/ifconfig" />
    <Param name="Arguments" value="##Interface## up" />
   <Param name="StartOnCall" value="Init" />
 </Monitor>
 <Monitor class="RunCommand">
   <Param name="Command" value="/sbin/ifconfig" />
   <Param name="Arguments" value="##Interface## down" />
   <Param name="StartOnCall" value="Init" />
 </Monitor>
 <Monitor class="RunCommand">
   <Param name="Command" value="/sbin/iwconfig" />
   <Param name="Arguments" value="##Interface## mode monitor" />
   <Param name="StartOnCall" value="Init" />
 </Monitor>
 <Monitor class="RunCommand">
   <Param name="Command" value="/sbin/ifconfig" />
   <Param name="Arguments" value="##Interface## up" />
   <Param name="StartOnCall" value="Init" />
 </Monitor>
 <Monitor class="RunCommand">
   <Param name="Command" value="/sbin/iwconfig" />
   <Param name="Arguments" value="##Interface## chan ##Channel##" />
    <Param name="StartOnCall" value="Init" />
 </Monitor>
 <!-- Shutdown -->
 <Monitor class="RunCommand">
   <Param name="Command" value="/sbin/ifconfig" />
   <Param name="Arguments" value="##Interface## down" />
   <Param name="When" value="OnEnd" />
 </Monitor>
</Agent>
<Agent name="TargetAgent" location="tcp://##TargetAgentIp##:9001">
 <Monitor class="RunCommand">
   <Param name="Command" value="/usr/bin/killall" />
   <Param name="Arguments" value="dhclient" />
   <Param name="StartOnCall" value="Cleanup" />
 </Monitor>
 <Monitor class="RunCommand">
   <Param name="Command" value="/sbin/ifdown" />
    <Param name="Arguments" value="##TargetInterface##" />
   <Param name="StartOnCall" value="Cleanup" />
 </Monitor>
 <!-- Connect -->
 <Monitor class="Process">
```

```
<Param name="Executable" value="/sbin/ifup" />
     <Param name="Arguments" value="##TargetInterface##" />
     <Param name="StartOnCall" value="Connect" />
     <Param name="NoCpuKill" value="true" />
     <Param name="WaitForExitTimeout" value="0" />
   </Monitor>
 </Agent>
 <Test name="Default">
   <Exclude xpath="//Radiotap"/>
   <Exclude xpath="//ReceiverAddress"/>
   <StateModel ref="Wifi:AP"/>
   <Agent ref="Local" />
   <Agent ref="TargetAgent" />
   <Publisher class="Wifi">
       <Param name="Interface" value="##Interface##" />
     <Param name="TargetMac" value="##TargetMAC##"/>
     <Param name="SourceMac" value="##SourceMAC##"/>
     <Param name="Timeout" value="10000"/>
     <Param name="ApAuthTimeout" value="10000" />
   </Publisher>
       <Strategy class="##Strategy##" />
   <Logger class="File">
     <Param name="Path" value="##LoggerPath##"/>
   </Logger>
 </Test>
</Peach>
```

Wifi_Client.xml.config

For the Wifi configuration file, the only parameters that must be updated are:

TargetInterface

The targets wireless interface name. This configuration value was added with our Agent configuration performed during this example. This configuration option does not ship with the Wifi pit.

Interface

Local wireless interface. This must be a supported wireless device.

TargetMAC

The hardware address of the targets wireless interface. Peach will only respond to this MAC address.

SourceMAC

The hardware address of the local wireless interface.

Here is an example, completed configuration file:

```
<hwaddr key="TargetMAC"
       value="7cdd9047b053"
       name="Target MAC Address"
       description="MAC address of target wireless device."/>
<Hwaddr key="SourceMAC"</pre>
       value="7cdd906146f5"
       name="Source MAC Address"
       description="MAC address of local wireless device."/>
<!--
Channel Frequency Map
          NA JP World
   Freq
                        YesD
1
          Yes
   2412
                  Yes
   2417
          Yes
                 Yes
                        YesD
3
   2422
          Yes
                 Yes
                        YesD
4
   2427
         Yes
                 Yes
                        YesD
5
  2432
         Yes
                 Yes
                        Yes
6
  2437
         Yes
                 Yes
                        Yes
                        Yes
7
  2442
         Yes
                 Yes
8
  2447
         Yes
                 Yes
                        Yes
9
  2452
         Yes
                 Yes
                        Yes
10 2457
         Yes
                 Yes
                         Yes
11 2462
         Yes
                 Yes
                         Yes
         No
12 2467
                 Yes
                         Yes
13 2472
        No
                  Yes
                         Yes
14 2484 No 11b No
<Range key="Channel"
      value="2"
      min="1" max="14"
      name="Wireless Channel"
      description="The wireless channel to broadcast on."/>
<Range key="ChannelFrequency"</pre>
     value="2417"
      min="2412" max="2484"
      name="Wireless Channel Frequency"
      number. Map: 1 - 2412; 2 - 2417; 3 - 2422; 4 - 2427; 5 - 2432; 6 - 2437; 7 -
         2442; 8 - 2447; 9 - 2452; 10 - 2457; 11 - 2462; 12 - 2467; 13 - 2472; 14 - \leftrightarrow
         2484." />
<String key="Ssid"
       value="PeachWifi"
       name="Wireless SSID"
       description="The wireless station identifier."/>
<String key="LoggerPath"</pre>
       value="logs/wifi_client/"
       name="Logger Path"
       description="The directory where Peach will save the log produced when fuzzing. \hookleftarrow
<Strategy key="Strategy"</pre>
         value="Random"
         name="Mutation Strategy"
```

```
description="The mutation strategy to use when fuzzing." />
    <String key="PitLibraryPath"</pre>
            value="."
             name="Pit Library Path"
             description="The path to the root of the pit library."/>
    <!-- Do not modify values below this line -->
    <Ipv4 key="TargetIPv4" value="255.255.255.255" name="Target IP" description="Advanced \leftrightarrow
       option, do not modify."/>
    <Range key="TargetPort" value="68" min="0" max="65535" name="Target Port" description=" \leftrightarrow
       Advanced option, do not modify."/>
    <Ipv4 key="SourceIPv4" value="192.168.1.1" name="Source IP" description="Advanced \leftrightarrow
       option, do not modify."/>
    <Range key="SourcePort" value="67" min="0" max="65535" name="Source Port" description=" \leftrightarrow
       Advanced option, do not modify."/>
    <Ipv4 key="AssignedIPv4" value="192.168.1.55" name="Assigned IP" description="Advanced \leftrightarrow
       option, do not modify."/>
    <Ipv4 key="RouterIP" value="192.168.1.1" name="Router IP" description="Advanced option, ←</pre>
        do not modify."/>
    <Ipv4 key="BroadcastIP" value="192.168.1.255" name="Broadcast IP" description="Advanced ←</pre>
         option, do not modify."/>
    <Ipv4 key="DHCPServerIP" value="192.168.1.1" name="DHCP Server IP" description=" \leftarrow
       Advanced option, do not modify."/>
    <Ipv4 key="SubnetMask" value="255.255.255.0" name="Subnet Mask" description="Advanced \leftrightarrow
       option, do not modify."/>
    <String key="DomainName" value="localdomain" name="Domain Name" description="Advanced \ensuremath{\longleftrightarrow}
       option, do not modify."/>
    <Ipv4 key="DNS" value="192.168.1.2" name="DNS" description="Advanced option, do not \leftrightarrow
       modify."/>
    <Ipv4 key="NetBios" value="192.168.1.2" name="NetBios" description="Advanced option, do \leftrightarrow
        not modify."/>
  </All>
</PitDefines>
```