Logique Mathématique Contrôle Intermédiaire - Durée 2h -

Tout document interdit

Exercice 1 (3- (4-2) points) Partie A

Vérifier à l'aide d'un arbre sémantique la proposition suivante :

$$|= (P \rightarrow R \lor Q) \rightarrow ((P \rightarrow R) \lor (1Q \rightarrow 1P))$$

Solution:

|=
$$(P \rightarrow R \lor Q) \rightarrow ((P \rightarrow R) \lor (1Q \rightarrow 1P))$$
 ssi
 $1((P \rightarrow R \lor Q) \rightarrow ((P \rightarrow R) \lor (1Q \rightarrow 1P)))$ non satisfiable ssi
 $(P \rightarrow R \lor Q) \land 1((P \rightarrow R) \lor (1Q \rightarrow 1P)))$ non satisfiable ssi
 $(P \rightarrow R \lor Q) \land 1(P \rightarrow R) \land 1(1Q \rightarrow 1P)$ non satisfiable ssi
 $(1P \lor R \lor Q) \land 1(P \rightarrow R) \land 1(1Q \rightarrow 1P)$ non satisfiable
 $(1P \lor R \lor Q) \land (P \land 1R) \land (1Q \land P)$ non satisfiable
 $Sc = \{1P \lor R \lor Q, P, 1R, 1Q\}$ non satisfiable (l'ensemble de clauses1)
 $C1 : 1P \lor R \lor Q$

(AS:1)

C2: P

C3:1R

C4:1Q

On a <u>un arbre sémantique clos</u> => Sc est non satisfiable =>(0.5)

$$1((P \to R \lor Q) \to ((P \to R) \lor (1Q \to 1P))) \text{ non satisfiable } =>$$

$$|= (P \to R \lor Q) \to ((P \to R) \lor (1Q \to 1P))$$

RQ:

- Un arbre sémantique avec des formules qui ne sont pas des clauses
- Un arbre sémantique sans mentionner les clauses qui falsifie les branches 0
- Si plus d'une clause est mal placée sur l'arbre alors 0

Partie B

1. Montrer en utilisant la résolution que :

$$P \land Q \rightarrow R \land S$$
, $Q \leftrightarrow R \land S$, $P \lor R \models R \land (S \rightarrow Q)$

Solution:

$$\begin{split} &P \wedge Q \to R \wedge S, \ lQ \leftrightarrow R \wedge S, \ P \vee R \models R \wedge (S \to lQ) ssi \\ &S = \{\ P \wedge Q \to R \wedge S, \ lQ \leftrightarrow R \wedge S, \ P \vee R \ , l(\ R \wedge (S \to lQ)) \ \} \ non \ satisfiable \ (0.5) \\ &S = \{P \wedge Q \to R \wedge S, \ lQ \leftrightarrow R \wedge S, \ P \vee R \ , lR \vee l(S \to lQ))\} \ non \ satisfiable \\ &S_c = \{\ lP \vee lQ \vee R \ , \ lP \vee lQ \vee S, \ Q \vee R, \ Q \vee S, \ lQ \vee lS \vee lR, \ P \vee R, \ S \vee lR, \ Q \vee lR \ \} \ (1.5) \end{split}$$

C1: $1P \lor 1Q \lor R$	C9: $1R \lor 1Q$ res (C7,C5)
C2: 1P\1Q\S	C10: TR res (C8,C9)
C3: , Q∨R	C11: $Q \lor R \operatorname{res}(C1,C6)$
C4:Q\s	C12: R res(C11,C3)
C5:1Q\lands1S\lands1R	C13 :□ res (C12,C10)
$C6:P \vee R$	
C7: S∨lR	
C8: Q∨lR	

La resolution(1)

$$S_c \longrightarrow \square => S_c inconsistent (0.25)$$

=> S inconsistent (0.25)

=> S non statisfiablepar la proprièté de consistance (0.5) D'où $P \land Q \rightarrow R \land S$, $P \lor R \models R \land S \rightarrow Q$

2. Peut-on déduire de la question 1 que l'ensemble Γ ci-dessous est non satisfiable pour toutes formules α et β ?

$$\Gamma = \{P \land \exists \beta \rightarrow \alpha \land S, \beta \leftrightarrow \alpha \land S, P \lor \alpha, \exists \alpha \lor (S \land \exists \beta)\}$$

Solution:

 $\begin{array}{l} P \wedge Q \to R \wedge S, \ lQ \leftrightarrow R \wedge S, \ P \vee R \models R \wedge (S \to lQ) \ alors \\ |= P \wedge Q \to R \wedge S \ \to \ ((lQ \leftrightarrow R \wedge S \ \to (P \vee R \to (R \wedge (S \to lQ))) \ (0.25) \\ \text{On substitute } \alpha \ \grave{a} \ R \ et \ l\beta \ \grave{a} \ Q. \ Le \ résultat \ est \ une \ tautologie \ d'après \ le \ théorème \ de \ substitution : \\ |= P \wedge l\beta \to \alpha \wedge S \ \to \ ((ll\beta \leftrightarrow \alpha \wedge S \ \to (P \vee \alpha \to (\alpha \wedge (S \to ll\beta))) \ (0.75) \\ \text{On remplace } \ ll\beta \ par \ \beta \ (théorème \ de \ remplacement) \\ |= P \wedge l\beta \to \alpha \wedge S \ \to \ ((\beta \leftrightarrow \alpha \wedge S \ \to (P \vee \alpha \to (\alpha \wedge (S \to \beta)))) \end{array}$

$$(P \land \exists \beta \to \alpha \land S) \ \land \ (\beta \leftrightarrow \alpha \land S) \land (P \lor \alpha) \land (\exists \alpha \lor (S \land \exists \beta) \ (0.25)$$

Alors S= {
$$(P \land l\beta \to \alpha \land S)$$
, $(\beta \leftrightarrow \alpha \land S)$, $(P \lor \alpha)$, $(l\alpha \lor (S \land l\beta))$ non satisfiable (0.25)

Exercice 2 (2 points)

Soit $S = \{c_1, c_2, c_3, ..., c_n\}$ un ensemble de clausescontenant une clause c_i et une clause c_j telles que : c_i est une sous clause de c_j (tous les littéraux de c_i apparaissent dans c_j).

Question. Montrer que S et S' = $S - \{c_i\}$ sont équisatisfiables (S satsifiablessi S' est satisfiable).

Solution:

- =>) Si S est satisfiable alors S' est satisfiable car S' \subseteq S et tout sous ensemble d'un ensemble satisfiable est satisfiable
- <=) Si S'est satisfiable alors S est satisfiable

Si S'est satisfiable alors il existe une valuation v_0 qui satisfait toutes les clauses de S'. Donc $v_0|=c_i$, donc $v_0|=c_j$ puisque $c_j=c_i$ v c'.Par conséquent $v_0|=S$. S est donc satisfiable.

Exercice 3 : (4 points)

Nous voulons vérifier la possibilité d'utiliser **3 couleurs** pour colorier la carte cidessous toute en garantissant les deux contraintessuivantes :

- C1. Chaque région est coloriée avec une et une seule couleur.
- C2. Deux régions adjacentes (i-e qui ont une frontière commune) ne peuvent pas être coloriées avec la même couleur.

Question. Ecrire les contraintes C1 et C2 dans le langage des propositions.

N.B. Ne pas mettre les formules obtenues sous forme clausale.

Solution:

On définit les variables propositionnelles:

 A_i : la région A est coloriée par la couleur i $i \in \{1, 2, 3\}$

 B_i : la région B est coloriée par la couleur i $i \in \{1, 2, 3\}$

 C_i : la région C est coloriée par la couleur i $i \in \{1, 2, 3\}$

 D_i : la région D est coloriée par la couleur i $i \in \{1, 2, 3\}$

La contrainte 1:

Chaque région est coloriée avec une et une seule couleur.

$$(A_1 \lor A_2 \lor A_3) \land (A_1 \rightarrow \exists A_2 \land \exists A_3) \land (A_2 \rightarrow \exists A_1 \land \exists A_3) \land (A_3 \rightarrow \exists A_1 \land \exists A_2)$$

$$(B_1 \vee B_2 \vee B_3) \wedge (B_1 \rightarrow \exists B_2 \wedge \exists B_3) \wedge (B_2 \rightarrow \exists B_1 \wedge \exists B_3) \wedge (B_3 \rightarrow \exists B_1 \wedge \exists B_2)$$

$$(C_1 \lor C_2 \lor C_3) \land (C_1 \rightarrow C_2 \land C_3) \land (C_2 \rightarrow C_1 \land C_3) \land (C_3 \rightarrow C_1 \land C_2)$$

$$(D_1 \lor D_2 \lor D_3) \land (D_1 \rightarrow lD_2 \land lD_3) \land (D_2 \rightarrow lD_1 \land lD_3) \land (D_3 \rightarrow lD_1 \land lD_2)$$

La contrainte 2 :

Deux régions adjacentes (i-e qui ont une frontière commune) ne peuvent pas être coloriées avec la même couleur.

$$(A_1 \rightarrow lB_1 \land lC_1 \land lD_1) \land (A_2 \rightarrow lB_2 \land lC_2 \land lD_2) \land (A_3 \rightarrow lB_3 \land lC_3 \land lD_3)$$

$$(B_1 \rightarrow lA_1 \land lC_1 \land lD_1) \land (B_2 \rightarrow lA_2 \land lC_2 \land lD_2) \land (B_3 \rightarrow lA_3 \land lC_3 \land lD_3)$$

$$(C_1 \rightarrow lA_1 \land lB_1 \land lD_1) \land (C_2 \rightarrow lA_2 \land lB_2 \land lD_2) \land (C_3 \rightarrow lA_3 \land lB_3 \land lD_3)$$

$$(D_1 \rightarrow lA_1 \land lB_1 \land lC_1) \land (D_2 \rightarrow lA_2 \land lB_2 \land lC_2) \land (D_3 \rightarrow lA_3 \land lB_3 \land lC_3)$$

Nom: Prénom: Groupe:

Exercice 4 : (3 points)

Modéliser dans le langage des prédicats les énoncés suivants :

α1 : La somme de deux nombres premiers différents de 2 est un nombre pair.

Prédicats:

N(x): x est un nombre P(x): x est premier D(x,y): x est différent de y

R(x): x est pair

Fonction: f(x,y) = x+y Constante:

a=2

 $\alpha 1: \forall x \forall y (N(x) \land N(y) \land P(x) \land P(y) \land D(x, a) \land D(y, a) \rightarrow R(f(x,y)))$

α2 : Entre deux réels distincts, il y'a un autre réel.

Prédicats:

R(x): x est un réel E(x,y): x est égal à y

S(x,y): x < y

 $\alpha 2: \forall x \forall y (R(x) \land R(y) \land S(x,y) \rightarrow \exists z (R(z) \land S(x,z) \land S(z,y))$

$\alpha 3$: Un enfant aime tous les amis de son père.

Prédicats:

E(x): x est un enfant F(x,y): x est ami de y A(x,y): x aime yP(x,y): x est père de y

 $\alpha 3: \forall x \forall y \forall z (E(x) \land P(y,x) \land F(z,y) \rightarrow A(x,z))$

Exercice 5 : (2 points)

Soit la formule suivante :

$$\alpha: (\exists x \mathrm{P}(x,a)) \wedge (\exists x \mathsf{P}(f(x),y))$$

- 1. Donner une interprétation et une valuation, si elles existent, telles que : $I|=\alpha_{\nu}$.
- 2. Donner une interprétation et une valuation, si elles existent, telles que : $I|\neq\alpha_{\nu}$.

$I =\alpha_{v}$	
$D_I=N$	V(y)=10
I(P):">"	
I(a) = 0 $I(f) = succ(x)$	
$I \neq \alpha_{\nu}.$	·
$D_I=N$	V(y)=10
I(P) :"<"	
I(a) = 0	
I(f) = succ(x)	