

• 1. Diseño

- FWBJ
- Acceso
- Tren de Aterrizaje
- Ala y Estabilizadores
- Cabina de Pilotaje y Distribución General

2. Aerodinámica

- Forma en Planta del ala.
- NACA 64-415
- Coeficientes de Sustentación y Momento en función de alfa
- Cl_Alfa Empírico.
- Teoría de la Superficie Sustentadora
- Cálculo de Cd min
- Cálculo de k con los valores obtenidos de diversos artículos
- Polar Parabólica
- Eficiencia Aerodinámica

• 3. Estabilidad.

- Trimado y Derivadas de Estabilidad
- Dinámica Longitudinal
- Dinámica Lateral Direccional

4. Estructuras.

- Pesos en Vacío
- Elección de materiales
- Reparto de pesos
- Cargas Aerodinámicas
- Divergencia Aeroelástica
- Cargas sobre el Tren de Aterrizaje

• 5. Propulsión y Actuaciones

- Elección y justificación de FJ-33-1
- Despegue
- Subida
- Crucero
- Aterrizaje
- Distancias despegue y aterrizaje
- Diagrama Pago-Alcance
- 6. ¿Por qué FWBJ?

Diseño

FWBJ

Cálculo de Aviones

Acceso

Con una anchura de 0,72m y una altura ampliada de 1,54 m (que conseguimos introduciendo un escalón en el piso del avión) cumple de sobra las exigencias para aeronaves de menos de 9 pasajeros y proporciona el espacio necesario para colocar ayudas como las barandillas que se muestran en la figura. El recorrido de la puerta cuando esta es abierta es de 135°. La entrada a la aeronave se ha diseñado por delante del ala ya que es zona más amplia y con menor curvatura lo que ofrece las mejores propiedades para acomodar el acceso.

Tren de Aterrizaje

Tren triciclo, en la imagen se muestra el sistema de apertura del tren delantero, los traseros se encuentran a 0,9 m del encastre del ala.

Cálculo de Aviones

Ala y Estabilizadores

Ataque 4° Diedro 5°

Flecha 15°

El perfil seleccionado para el diseño del ala fue NACA 64 415, el ala abarca una superficie de 9 m2, una envergadura de 8 m y una cuerda media de 1,25 m, las superficies de control (alerones) ocupan ¼ de la cuerda media. Para hacer frente a los requerimientos de torsión introducidos por la flecha inversa el encastre del ala se amplió y dado que el flujo de aire se dirige hacia el encastre el borde marginal es redondeado.

Para ambos se define una superficie de 1,8 m2, y al igual que ocurría en el ala las superficies de control abarcan ¼ de la cuerda media del estabilizador; los dos han sido diseñado a partir de perfiles simétricos, en el caso del estabilizador horizontal se optó por un perfil NACA 0012.

Cabina de Pilotaje y Distribución

General

A la hora de diseñar la cabina se ha tratado de mantener la máxima ergonomía posible en el mínimo espacio, las pantallas multifuncionales ayudan a reducir espacio.

Dispone de lavabo e inodoro así como múltiples cajones. Situado delante del la entrada al ser esta la zona más alta del avión.

La aeronave tiene capacidad para 6 pasajeros y cuenta con asientos reclinables y orientables, así como multitud de compartimentos guardabolsos y guardaequipajes, también cuenta con una nevera-minibar así como mesas plegables y salida de emergencia ubicada en el lado opuesto a la entrada de la aeronave.

Aerodinámica

Forma en Planta del Ala

Cálculo de Aviones

Perfil NACA 64-415

Aerodinámica

- Perfil Usado: NACA 64-415
- Cl_ALFA=6
- ALFA_ZEROLIFT=-4°
- Cm_ALFA<0 (Para casi todos los Alfas)

Coeficiente de Sustentación en función de Alfa

Coeficiente de Momentos en Función de Alfa

CL Alfa Empírico

$$C_{L\alpha} = \frac{2\pi A}{2 + \sqrt{4 + \frac{A^2 \beta^2}{\eta^2} \left(1 + \frac{\tan^2 \Lambda_{\max t}}{\beta^2}\right)}} \left(\frac{S_{\text{exposed}}}{S_{\text{ref}}}\right) (F)$$

• Obtenemos CL_ALFA=4.45

Teoría de la Superficie Sustentadora

Cálculo de Aviones

Teoría de la Superficie Sustentadora

CL_ALFA=4.5

ALFA_ZEROLIFT=-1.7°

Cálculo de Cd min

USAMOS PLACA PLANA EQUIVALENTE E INTERFERENCIAS

RÉGIMEN DE VUELO	CD_0
Despegue y aterrizaje (<u>flaps</u> 30° y	0.11
LG)	
Subida (flaps 15°)	0.035
Espera (flaps 10°)	0.0277
Crucero (configuración limpia)	0.0216

Cálculo de K con valores obtenidos de artículos

K = 0.04

Polar Parabólica

Eficiencia Aerodinámica

Estabilidad

Trimado y Derivadas de Estabilidad

Derivadas de Estabilidad

Trimado.

Valores del margen estático:

	x=0	x=+0,1	x=0,2	x=+0,3
V=50 m/s	8.95%	10.99%	13.01%	15.00%
100	2.53%	4.21%	6.54%	8.75%
150	1.96%	3.87%	6.08%	8.38%
200	1.65%	3.71%	6.02%	8.33%
250	1.38%	3.69%	6.01%	8.32%

$C_{L,a} = 4,0841$
$C_{m,a} = -0.7800$
$C_{L,w} = 0,600$
$C_{X,\alpha} = 0$
$C_{Z,\dot{\alpha}} = -2,4259$
$C_{m,\alpha} = -8,7334$
$C_{X,a} = 0,200$
$C_{Z,\alpha} = -4,1341$
$C_{Y,p}=0$
$C_{l,p} = -0.4339$
$C_{n,p} = -0.0400$
$C_{X_A} = 0$
$C_{Z_{\mathcal{A}}} = 0$
$C_{m,q} = -20,8501$
$C_{Y_F} = 0,7634$
$C_{l_r} = 0,1755$
$C_{\alpha,r} = -0.4294$

Dinámica Longitudinal

Los autovalores obtenidos son:

 $\Lambda 1 = -0.00437 + -0.0779i$

 $\Lambda 2 = -0.36096 + -1.3128i$

El primero de ellos corresponde al modo fugoide, que generalmente es lento y poco amortiguado, mientras que el segundo corresponde al modo de corto periodo, que es más rápido y más amortiguado. De hecho, de dichos autovalores se puede obtener la frecuencia natural y el amortiguamiento de sendos modos

Consultando la normativa, este amortiguamiento da un nivel de aceptabilidad 2, que corresponde a "cualidades adecuadas a la fase de la misión con un incremento de actividad del piloto o degradación de la misión" para misiones críticas (despegue y aterrizaje) y un nivel de aceptabilidad 1 ("cualidades de vuelo claramente óptimas") para el resto de maniobras. Para el fugoide, ese amortiguamiento corresponde a un nivel de aceptabilidad 1 para todas las maniobras (ξ >0.04)

	Fugoide	Corto Periodo
ω_{n}	0.078 rad/s	1.131 rad/s
ξ	0.056	0.31

Cálculo de Aviones

Dinámica Lateral - Direccional

Los autovalores obtenidos son:

 $\Lambda 1 = -0.0043 \text{ s-1}$ $\Lambda 2 = -0.3427 \text{ s-1}$ $\Lambda 3 = -0.028 + -0.7214 \text{ s-1}$

El **modo espiral** cumple todas las especificaciones al ser **estable**, ya que debemos aplicar la norma solo en caso de que fuese inestable.

El **modo de convergencia** en balance corresponde a un **nivel de aceptabilidad 3**, el peor de todos, ya que -1/ Λ 2>1.4 s, por tanto hay que tener cuidado con este modo o usar algún sistema de control automático.

En el modo de **balanceo holandés** se tiene un nivel óptimo (nivel 1) en todas las fases de vuelo, excepto en despegue y aterrizaje (nivel 2). El amortiguamiento corresponde al que da un nivel 2 para todas las fases de vuelo. Por tanto, para el balanceo holandés se tiene un **nivel de aceptabilidad 2**.

	Espiral	Conv. balance	Bal. holandés
ω			0.72 rad/s
ξ			0.039
t _{1/2}	164 s	2.063	

Estructuras

Pesos En vacío

- W0=29420 N (MTOW)
- W1=28831 N (Despegue)
- W2=28255 N (Subida)
- W3=24636 N (Crucero)
- W4=24116 N (Espera)
- W5=21463 N (Aterrizaje)
- W6=20827 N (Taxi)

We=159000 N

•Alas: En el caso de la flecha invertida, y, debido al fenómeno de divergencia aeroelástica no existe posibilidad alguna que difiera de la construcción con materiales compuestos que induzcan el acoplamiento torsión-flexión y hagan posible el vuelo a alta velocidades (análisis más detallado posteriormente).

•Superficies hipersustentadoras y bordes de ataque:

Debido a la posibilidad de impacto en los mismo con la consecuente pérdida de control, la sustitución de materiales compuestos es necesaria (fenómeno de delaminación) y se colocará en su lugar aleación Al-Li, que mantiene las propiedades de ligereza y resistencia conjuntamente a la resistencia a impacto.

- •Aleación Alumino: Se utilizará en varias partes del avión donde la exigencia de resistencia no sea especial y sí la de adaptabilidad y moldeabilidad, con el objetivo principal de la reducción de costes.
- •Acero: Para el tren de aterrizaje, encastre en alas (bulones) y en las que la resistencia es la exigencia primordial.

Elección De Materiales

Reparto De Pesos

Estructura	Kg
Ala	475
Cola	55
Fuselaje	420
Tren Aterrizaje	45
Gondolas	30
Sist.Eléctrico + Avionica	50
Propulsión	275
Equipamiento	250
Total	1625

Ala 475 Kg Est. Vertical + Motores Horizontal 55 kg Gondola 305 Kg Avionica 50 Kg Fuselaje 475 Kg Tren At. 45 Kg Equipamiento 275 Kg Cálculo de Aviones

Centro de Masas= 4.5m

Cargas Aerodinámicas

- •El análisis de las cargas aerodinámicas sobre el ala efectuado anteriormente permite reducir las fuerzas sobre el ala como una carga sobre el borde de ataque vertical, horizontal y un momento flector y torsor. La fuerza horizontal no será analizada por no provocar problemas excesivos en el encastre, prestándose especial atención a la fuerza vertical y momentos flector y torsor.
- •Según el capítulo 23 de la FAR el factor de seguridad tomado será de 1.5 sobre las cargas límite.
- •Fuerza Vertical: Se toma como factor de carga máximo en valor de 3, que con el factor de seguridad queda en 4.5.La fuerz 132390 N.

•Momento Torsor: T= 18617 Nm

•Momento Flector: M=132390 Nm

Divergencia Aeroelástica

La divergencia es un fenómeno en el que la torsión y flexión se acoplan, produciendo una deformación infinita que acaba rompiendo el ala. Los materiales compuestos, por ser anisótropos, poseen un acoplamiento torsión-flexión que, utilizado adecuadamente, pueden compensar ambas componentes de la deformación provocada por los momentos aerodinámicas (torsor y flector), aumentando la velocidad de divergencia.

Figure 3.24 Normalized divergence dynamic pressure for an elastically coupled, swept wing with GJ/EI = 0.2 and $e/\ell = 0.02$; $\kappa = -0.4$ (dots and dashes), $\kappa = 0$ (solid lines), $\kappa = 0.4$ (dashed lines)

Cargas sobre el Tren de Aterrizaje

- Por conservación de energía, la energía cinética se disipará mediante la deformación del tren.
- E=200MPa
- A=0.314m2
- L=0.9m
- M=24463/9.8=2500Kg
- VDescenso=1.5·10=15m/s (Factor de seguridad)
- La energía cinética provocará una deformación:
- $E \cdot A \cdot v2/2L = 281250$
- v=0.09m
- La fuerza sobre el tren trasero será (A repartir entre ambos trenes)

F=EAv/L=6.28MN

Propulsión y Actuaciones

Primera estimación

FJ33-4-17M

Datos estadísticos del ratio empuje peso para Jet Transport Condición de despegue con un solo motor Exceso de empuje al despegue: $T - D = 13 \, \text{kN}$ Exceso de empuje a la velocidad de crucero: 3.6 kN

Selección final: FJ33-1

Empuje en banco: 1200 lbf → 5.3 kN

Specific Fuel Comsuption: 0,486 (lb/h/lbf)

Peso seco: 300 lb

Diámetro de fan: 17,3 in

Longitud: 47,9 in

Cálculo de Aviones

Selección final: FJ33-1

Exceso de empuje en despegue: 8.5 kN Exceso de empuje en crucero M=0.85: 1.7 kN Cumple requisito de despegue con un solo motor

Actuaciones:

Crucero

Subida

Despegue

Aterrizaje

Vuelo de crucero

$$T = D = qS(C_{D_0} + KC_L^2)$$

$$L = W = qSC_L$$

Velocidad de vuelo para el Empuje mínimo: 152.88 m/s

$$V = V_R = \sqrt{\frac{2W}{\rho S} \cdot \sqrt{\frac{k}{c_{D0}}}}$$

Empuje mínimo necesario para el vuelo de crucero: 1.74 kN

$$\frac{\partial (T/W)}{\partial V} = \frac{\rho V C_{D_0}}{W/S} - \frac{W}{S} \frac{2K}{\frac{1}{2}\rho V^3} = 0$$

Alcance máximo y autonomía (volando con ángulo de ataque constante, sin variación de la altura)

$$-\frac{dX}{dW} = \frac{V}{c_E D(h, V, W)}$$
$$-\frac{dt}{dW} = \frac{1}{c_E D(h, V, W)}$$
$$\alpha = cte$$

$$c_E = c_E^* \left(\frac{\rho}{\rho^*}\right)^{0.2}$$

$$D = \frac{1}{2} \rho V^2 S c_{D0} + k \frac{2W^2}{\rho V^2 S}$$

$$-\frac{dX}{dW} = \frac{V}{c_E D(h, V, W)} \qquad X_{máx} = \frac{E_{máx}}{c_E} \sqrt{\frac{2W_i}{\rho S}} \left(\frac{k}{c_{D0}}\right)^{\frac{1}{4}} \cdot 3^{\frac{3}{4}} \left(1 - \sqrt{1 - \frac{W_F}{W_i}}\right) = 5148km$$

$$-\frac{dt}{dW} = \frac{1}{c_E D(h, V, W)}$$

$$\alpha = cte$$

$$t_{máx} = \frac{E_{máx}}{c_E} \frac{2(V/V_R)^2}{1 + (V/V_R)^4} \cdot \ln \left(\frac{1}{1 - W_F/W_i}\right) = 7h \text{ y 30 minutos}$$

Mach de crucero: 0.67

Altura de crucero: 10000 m Techo del avión: 16.36 km

Interés en minimizar el tiempo de vuelo

Aumento a Mach de crucero: 0.85

Pequeña Reducción de las características

Alcance: 4802 km

Autonomía: 5 h y 35 minutos

Subida

Fastest Climb para un menor tiempo de subida

$$T(h,V,\pi) - D(h,V,\pi) - Wsen\gamma = 0$$

$$L - W\cos\gamma = 0$$

$$\begin{split} V_{a_{MAX}} &= V_{R} \frac{1}{E_{m\acute{a}x}} \sqrt{\frac{z + \sqrt{z^{2} + 3}}{3}} \cdot \frac{2}{3} \cdot \left(2z - \sqrt{z^{2} + 3}\right) = 39.26m/s \\ z &= \frac{T}{W} \cdot E_{m\acute{a}x} \\ V(V_{a_{MAX}}) &= \frac{W/S}{3\rho c_{D0}} \left[\frac{T}{W} + \sqrt{\left(\frac{T}{W}\right)^{2} + 12kc_{D0}} \right] = 167.63m/s \\ \gamma &= asen \left(\frac{V_{a_{MAX}}}{V(V_{a_{MAX}})} \right) = 13.2^{\circ} \end{split}$$

tiempo de subida hasta altura de crucero: 4 minutos y 15 segundos

Distancia de despegue

Se distinguen las siguientes fases:

- ·Rodadura nivelada
- ·Rotación
- ·Transición hasta llegar al ángulo de ascenso
- ·Ascensión

Altura del aeropuerto (m)	Distancia de despegue (m)
0	808.7
500	875.8
1000	944
1500	1020
2000	1100
2500	1200
3000	1306

Distancia de aterrizaje

Se distinguen las siguientes fases:

- ·Aproximación
- ·Transición
- ·Rotación
- ·Rodadura en tierra

Altura del aeropuerto (m)	Distancia de aterrizaje (m)
0	770
500	798
1000	827.8
1500	895.4
2000	893.1
2500	983
3000	967

Fig. 17.18 Landing analysis.

Diagrama carga de pago-alcance

MTOW=30122.9N

M=0.85

MPL = 5880N

h=10000 m

OEW=17830N

RF = 837.9N

MFW=6717.9*N*

Punto	Alcance (km)	
A	4823	
В	5035	
С	7950	

¿Por qué FWBJ?

Modelos en el Mercado

CESSNA CITATION MUSTANG

ECLIPSE 500

ADAM A700

Comparativa I

	FWBJ	ECLIPSE 500	CESSNA CITATION MUSTANG	ADAM A700
Planta Motora:				
Número/Modelo	2/ Williams FJ33-4-17M	2/Pratt & Whitney PW610P	2/Pratt & Whitney PW615P	2Willians FJ33-4A
Potencia unitaria	755 Kg (1700 Lbf)	408Kg	662Kg	612 kg
Combustible utilizado	Jet A1	Jet A1	Jet A1	Jet A1
Cabina:				
Nº de plazas 1 /puertas	6/1	5-6/1	6/1	6-7-8/1
Longitud/Anchura/Altura	5/2,3/1,8 m	3,76/1,42/1,27 m	4,42/1,40/1,37m	4,9/1,37/1,31 m

Cálculo de Aviones

No incluye número de pilotos (2)

Comparativa II

Dimensiones:	FWBJ	ECLIPSE 500	CESSNA CITATION MUSTANG	ADAM A700
Longitud/Envergadura/Al tura	9/8/3 m	10,3/11,6/3,4m	12,4/13,2/4,1m	12,4/13,4/2,9 m
Tren de aterrizaje	Triciclo retráctil	Triciclo Retráctil	Triciclo Retráctil	Triciclo Retráctil
Pesos:				
En vacío/Máximo al despegue	1620kg/2999kg	1.610/2699 kg	2.427/3.960 Kg	2.717/3.901 Kg
Carga útil	1000 kg	1089 kg	1.533 Kg	1.384 Kg
Carga útil con combustible máximo	808 kg	324 Kg	363 Kg	329 kg
Thrust To Weight Ratio[1]	3,1 Kg/Kg	6.49kg/kg	3 kg/kg	6,40 kg/kg

Cálculo de Aviones

Tras carrera de despegue

Comparativa III

	FWBJ	AD AM A700	CESSNA CITATION MUSTANG	ECLIPSE 500
Prestaciones:	1000000 NASON - 1		y the source control control	
V elocidad de crucero	495 kt (254 m/s)	340 kt (190 m/s)	340 kt (175m/s)	370 kt (190 m/s)
Autonomía	7h 30min	No disponible	No disponible	No disponible
Alcance	51 48 km	No disponible	2130 km	2400 km
Distancia de despegue	809 m	899m	948m	700 m
Distancia de aterrizaje	770 m	768 m	729 m	622 m
Operatividad ⁷	Hasta 1000m	Desconocido	Desconocido	Desconocido
Techo de servicio	53600 ft	41.000 ft	41000 ft	41 000 ft
Régimen de ascenso máximo	4.920 ft/min (25 m/s)	2.550 ft/min	No disponible	3.314 ft/min
Tiempo de ascenso a 35000 ft	4min 15s	21 minutos	No disponible	19 minutos
V elocidad de pérdida con flaps	81 KIAS (55m/s)	73 KIAS (46m/s)	69 KIAS (46m/s)	69 KIAS (46 m/s)

Altitud de Aeropuertos. Distancia de despegue menor de 1000m.

