Напоминание

Определение

Касательным расслоением гладкого многообразия M^n называется множество

$$T(M) = \bigsqcup_{p \in M} T_p(M).$$

Касательные пространства вида T_pM называются слоями касательного расслоения T(M).

Теорема

T(M) является гладким многообразием размерности 2n.

Док-во: Пусть (U, φ) – карта на M. Положим

$$T(U) = \bigsqcup_{p \in U} T_p(M).$$

Зададим отображение $\Phi_U \colon T(U) \to \mathbb{R}^{2n}$: Для $v \in T_pM$, где $p \in U$, определяем

$$\Phi_U(v) = (\varphi(p), v_{\varphi}) \in \mathbb{R}^n \times \mathbb{R}^n.$$

 Φ_U биективно отображает T(U) на открытое множество $\varphi(U) \times \mathbb{R}^n$ в \mathbb{R}^{2n} .

Лекция 4

Новое доказательство

TUNTU= T(unu)

Гладкий атлас на T(M) – это множество $\{(T(U), \Phi_U)\}$ по всем картам (U, φ) на M.

- ullet эти карты покрывают T(M).
- ullet Пусть $(T(U),\Phi_U)$ и $(T(V),\Phi_V)$ карты на T(M), порождаемые картами (U,arphi) и (V,ψ) на M. Тогда функция перехода имет вид

e(un) x/h"> y(un) x m"

$$\Phi_V \circ \Phi_U^{-1} = (\psi \circ \varphi^{-1}, d_{\varphi(\rho)}(\psi \circ \varphi^{-1})), \quad -$$

и согласованность карт в $\overline{T}(M)$ следует из согласованности карт в

TONONOSUR 49 TM) CTPOUM SAZY & (V;, di) - athac Ha M, (THE, Pui) -"xaptor" TM- $Q_{y_i}: Ty_i \rightarrow g_i(y_i) \times M^n$ Mee Py: Some romeon. Y: Z= {P';(A): A-ough & Q;(Ui) x M". 5 = UZ:

Новое доказательство

Ф ← № ← № ← № № № № № №
 Лекция 4

Напоминание

Определение

Пусть N^n — гладкое многообразие, $0 \le k \le n$. Множество $M \subset N$ называется k-мерным гладким подмногообразием, если:

для любой точки $x\in M$ существует карта (U,φ) многообразия N такая, что $x\in U$ и

$$\varphi(M\cap U)=\mathbb{R}^k\cap\varphi(U).$$

Здесь и далее считается, что $\mathbb{R}^k \subset \mathbb{R}^n$.

Такие карты будем называть выпрямляющими для M (это не общепринятый термин).

Лемма

Гладкое подмногообразие размерности k является гладким многообразием размерности k.

Пример

Пусть $V \subset \mathbb{R}^k$ открытое, $f \colon V \to \mathbb{R}^{n-k}$ гладкое. Тогда график f, то есть множество

$$\Gamma_f := \{(x, f(x))\} \subset \mathbb{R}^k \times \mathbb{R}^{n-k} \cong \mathbb{R}^n$$

является гладким подмногообразием \mathbb{R}^n размерности k.

4 / 17

Лекция 4 16 марта 2022 г

Локальность

Свойства

Определение подмногообразия локально:

- Открытое подмножество подмногообразия (в смысле индуцированной топологии) — подмногообразие той же размерности.
- ¶ Пусть N^n гладкое многообразие. Если $M \subset N$ множество, и у каждой точки $x \in M$ есть окрестность в M, являющаяся гладким k-мерным подмногообразием, то и всё M — гладкое подмногообразие.

K=VAM, V-OTRP & N & (KA (Uav))-1918 17 9 (21 (11) Ynp: gosena78 M-NOSMH A F ENNP KAPTE (U, 9)

M-ngmn N) 12 - cryloun. V= \$(W)

Локальность

Свойства

Определение подмногообразия локально:

- Открытое подмножество подмногообразия (в смысле индуцированной топологии) подмногообразие той же размерности.
- Пусть N^n гладкое многообразие. Если $M \subset N$ множество, и у каждой точки $x \in M$ есть окрестность в M, являющаяся гладким k-мерным подмногообразием, то и всё M гладкое подмногообразие.

Следствие

Если $M \subset \mathbb{R}^n$ таково, что у каждой точки $x \in M$ есть окрестность в M, представимая в виде k-мерного графика (при некотором выборе координат), то M = k-мерное гладкое подмногообразие.

Легко видеть, что это условие выполняется для сферы (и многих других примеров).

Пример

Открытые полусферы $S^{n-1} - (n-1)$ -мерные графики (каждая в своей системе координат).

 $\implies S^{n-1}$ — гладкое подмногообразие \mathbb{R}^n .

5 / 17

16 марта 2022 г.

Погружения и вложения

Пусть M^k , N^n — гладкие многообразия, $k \le n$.

Определение

(Гладкое) погружение — гладкое отображение $f: M \to N$ такое, что $d_p f$ инъективно (мономорфизм) для всех $p \in M$.

(Гладкое) вложение — гладкое погружение, которое является топологическим вложением (т.е. гомеоморфизмом на образ).

В случае, когда M и N — открытые области в \mathbb{R}^k и \mathbb{R}^n , это то же самое, что регулярные поверхности и простые регулярные поверхности.

Определение

Регулярная k-мерная поверхность в \mathbb{R}^n — такое гладкое отображение $f: U \to \mathbb{R}^n$, где $U \subset \mathbb{R}^k$ — открытое множество, что для любой точки $x \in U$ дифференциал $d_x f$ инъективен (условие регулярности).

Перефомулировки: rank $d_x f = k$, ker $d_x f = \{0\}$.

Простая регулярная поверхность – регулярная поверхность, которая является топологическим вложением.

Регулярные поверхности и подмногообразия в \mathbb{R}^n

Теорема

Пусть $f:U\subset\mathbb{R}^k o\mathbb{R}^n$ — регулярная поверхность.

- **①** Локально f вложение. T.е. y любой $p \in U$ существует окрестность V $(p \in V \subset U)$ такая, что $f|_V$ — вложение.
- ② Если f вложение, то f(U) гладкое подмногообразие. При этом f^{-1} карта этого подмногообразия.

Доказательство

1. Вложим \mathbb{R}^k в $\mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^{n-k}$ стандартным образом. Продолжим f до $F: U \times \mathbb{R}^{n-k}$:

$$F(x,y) = f(x) + L(y),$$

где $L \colon \mathbb{R}^{n-k} \to \mathbb{R}^n$ — инъективное линейное отображение, образ которого — дополнительное подпространство к образу $d_p f$.

 $d_{p}F$ невырожден \Longrightarrow применима теорема об обратной функции \Longrightarrow существует окрестность $W \subset \mathbb{R}^n$ точки p, т.ч. $F|_W$ имеет гладкое обратное $\varphi \colon F(W) \to W$.

Доказательство

1. Вложим \mathbb{R}^k в $\mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^{n-k}$ стандартным образом. Продолжим f до $F: U \times \mathbb{R}^{n-k}$:

$$F(x,y) = f(x) + L(y),$$

где $L \colon \mathbb{R}^{n-k} \to \mathbb{R}^n$ — инъективное линейное отображение, образ которого — дополнительное подпространство к образу $d_p f$.

 d_pF невырожден \Longrightarrow применима теорема об обратной функции \Longrightarrow существует окрестность $W\subset \mathbb{R}^n$ точки p, т.ч. $F|_W$ имеет гладкое обратное $\varphi\colon F(W)\to W$.

Пусть $V = W \cap \mathbb{R}^k$. Тогда $f|_V$ — вложение, и φ — выпрямляющая карта для f(V).

(CI (MARC))

f(U) - magkor mgny.

Доказательство

1. Вложим \mathbb{R}^k в $\mathbb{R}^n=\mathbb{R}^k\times\mathbb{R}^{n-k}$ стандартным образом. Продолжим f до $F\colon U\times\mathbb{R}^{n-k}$:

$$F(x,y) = f(x) + L(y),$$

где $L \colon \mathbb{R}^{n-k} \to \mathbb{R}^n$ — инъективное линейное отображение, образ которого — дополнительное подпространство к образу $d_p f$.

 d_pF невырожден \Longrightarrow применима теорема об обратной функции \Longrightarrow существует окрестность $W\subset \mathbb{R}^n$ точки p, т.ч. $F|_W$ имеет гладкое обратное $\varphi\colon F(W)\to W$.

Пусть $V = W \cap \mathbb{R}^k$. Тогда $f|_V$ — вложение, и φ — выпрямляющая карта для f(V).

Мы доказали всё, кроме последнего утверждения теоремы $(f^{-1}$ — карта для f(U)). Оно доказано для V вместо U. Общий случай следует из локальности свойства гладкой согласованности карт.

Характеризация подмногообразий \mathbb{R}^n

Теорема

Для множества $M \subset \mathbb{R}^n$ два свойства эквивалентны:

- ② У каждой точки $x \in M$ есть окрестность $U \subset M$, которая является образом простой регулярной k-мерной поверхности.

Определение

Если образ простой регулярной поверхности f является открытым подмножеством M, то f называется локальной параметризацией многообразия M.

Замечание

Локальные параметризации — это в точности отображения, обратные к картам (локальным координатам).

Доказательство теоремы

 $2 \implies 1$: из предыдущей теоремы и второго свойства локальности.

 $1 \implies 2$: Пусть $\varphi \colon W \to \mathbb{R}^n$ — выпрямляющая карта для M, где W — окрестность x в \mathbb{R}^n .

Возьмём $U=W\cap M$. Тогда $(\varphi^{-1})|_{\varphi(W)\cap \mathbb{R}^k}$ — искомая регулярная поверхность

A u 21- su opge han orghunun nepexoso Memsy rapo (W, 4) u (R, 5d)

Свойства погружений и вложений

Теорема

Пусть M, N – гладкие многообразия.

① Любое погружение $f: M \to N$ локально является вложением. То есть: у любой точки $p \in M$ есть такая окрестность U, что $f|_U$ — вложение.

② Если $f: M \to N$ — вложение, то его образ f(M) — подмногообразие в N.
При этом f — диффеоморфизм между M и f(M).

f-norp =>
of - rangede
odf He borpoms GOK. amaros

Свойства погружений и вложений

Теорема

Пусть M, N – гладкие многообразия.

- ① Любое погружение $f: M \to N$ локально является вложением. То есть: у любой точки $p \in M$ есть такая окрестность U, что $f|_{U}$ вложение.
- ② Если $f: M \to N$ вложение, то его образ f(M) подмногообразие в N.
 При этом f диффеоморфизм между M и f(M).

Доказательство.

Для областей в \mathbb{R}^n это уже было. Общий случай сводится к разобранному переходом в карты.

1. GORAJATE CAM-MB.

14 OHEY Y NORYUN