Karan Shah

🛪 Stony Brook, NY 11790 | 🛘 (+1) 631-438-6950 | 🗷 karan.shah@stonybrook.edu | 🛪 the-karanshah.github.io | 🖸 the-karanshah | 🛅 the-karanshah

Education

Stony Brook University

Stony Brook, NY

MS IN COMPUTER SCIENCE | GPA: 3.68/4

Aug. 2019 - Exp. Dec. 2020

Coursework: Machine Learning, Computer Vision, Data Science, Probability and Statistics, Big Data Analytics, Theory of Database Systems

Gujarat Technological University

Ahmedabad, India

B.E. IN COMPUTER ENGINEERING | GPA: 8.03/10

Aug. 2014 - May. 2018

Coursework: Aritificial Intelligence, Compiler Design, Data Structures, Algorithms, Software Engineering, Distributed Operating System

Work Experience

Software Developer Intern

Sept. 2020 - Current

QUANTIPHI

Marlborough, MA

- Building software tools in Python and React.js with Machine Learning Engineers to accelerate production-grade Conversational AI use cases in Docker Container over GCP cluster
- · Using Flask based routing methods with multiprocessing to trigger underlying capabilities of NVIDIA's end-to-end ML framework and Socket+GRPC for live audio transcription

Software Engineer June 2018 - April 2019

SIMFORM Ahmedabad, India

- · Developed an end to end Video Streaming system; allows user to upload and scan the content on the cloud, stream on cross-platform desktop application over globally separated clients; using AWS services (Lambda, S3, Cloudfront, MQTT), Electron.js, and React.js
- · Built a software system to semi-automate Company's marketing work with Chrome Extension and REST API Web backend using Python and Node.js, efficient in reducing ~ 40 % of Marketing team's manual work
- Designed and automated ETL jobs to process a huge realtime data using AWS services (Glue, Lambda, S3) and Spark

Research Intern, Machine Learning

July 2017 - May 2018

ISRO - Indian Space Research Organization

Ahmedabad, India

- Designed generalized CNN architecture to handle multimodal and/or multispectral imagery along with adaptability to varying application requirements; trained on Potsdam benchmark dataset producing State of the art results to **Semantic Segmentation**
- Built software tools in Python for preprocessing of geographic remote sensing data, visualization, real-time performance evaluation, postprocessing and output generation as a semi-automation approach
- · Manipulated raster GIS data as a part of the pre-processing task using Python and QGIS application

Skills

Programming Python, Matlab, Javascript, JAVA, C/C++

Cloud/Big Data AWS, Google Cloud Platform, MapReduce, Spark Tools/Technologies Docker, Kubernetes, Git, REST, GRPC, SQL, NoSQL

Frameworks/Libraries PyTorch, Tensorflow, Keras, OpenCV, Node.js, Django, Flask, React.js

Publication

Band-wise Independent Pansharpening Using Neural Networks with Shared Weights

PANKAJ BODANI, KARAN SHAH, SHASHIKANT SHARMA (ISRO)

SUBMITTED TO GEOCARTO INTERNATIONAL JOURNAL

Projects

Pansharpening Using Convolutional Neural Networks (Python, Keras)

Jan. 2019 - July 2019

- · Fine-tuned a Convolutional Neural Network to super-resolve Multispectral Satelite Imagery to Panchromatic Resolution
- Delivered high performance in terms of reduced resolution quantitative assessment and visual inspection
- · Achieved 1-20% better results on various metrics compared to popular methods used for this purpose in the industry

Image Denoising using Deep Neural Networks (Python, Keras)

Oct. 2018 - Dec. 2018

- Designed a Deep Neural Network for Image Denoising and trained-performed on Overhead Images having Gaussian Noise
- Achieved computational efficiency and ability to generalize well despite limited training data
- Used Worldview Imagery samples provided by DigitalGlobe, achieving 90% accuracy

Video Action Classification - Recognition (Python, PyTorch, Matlab)

Nov. 2019 - Dec. 2019

- · Trained CNN for human action recognition task on the UCF101 data
- Achieved 86% (1st in class) on image test data, and 84% (2nd in class) on video frames test data
- Trained LSTM in RNN to actions <u>classification</u> on data collected by Kinect v2
- Used Transfer Learning to compute features for 60000 video frames with limited compute resources.

TV Series Scene Classification (Matlab)

Oct. 2019 - Nov. 2019

• Trained SVMs with different kernels and used them to classify scenes of a TV series, achieved 84.5% categorization accuracy on test data

• Used Bag-of-Word representation, LibSVM, and implemented K-means clustering

Ultrasound Nerve Segmentation (Python, Tensorflow, Keras)

Nov. 2017 - Jan. 2018

- Designed and trained CNN based on U-net to segment a collection of Nerves in Ultrasound Images taken from a Kaggle competition
- Used pre-trained weights of VGG model in the Encoder of the network (transfer learning), gained 68 % Test Accuracy (Top 100)