

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра автоматизации систем вычислительных комплексов

Отчет по заданию практикума **Генетический алгоритм**

Выполнил:

Бритенков Егор Сергеевич, 421 группа

Содержание

1	Введение		2	
2	Исследование реализации			
	2.1	Стабильность	3	
	2.2	Качество	4	
	2.3	Вычислительные затраты	5	
3	Выі	воды	5	

1 Введение

С помощью генетического алгоритма решить задачу:

Найти начальную конфигурацию «Game of Life» поля размером 50х50, минимизирую требуемый критерий.

Критерий: количество заполненных клеток после 100 шагов клеточного автомата (т.е. в 101-й конфигурации, в нумерации с 1).

Ограничение: конфигурация, возникающая после 100 шагов клеточного автомата, не является стационарной. То есть её потомок (результат следующего шага клеточного автомата) не совпадает с ней.

Детализация алгоритма:

- Функция выживаемости: значение оптимизируемого критерия + возможный штраф.
- Решение битовый вектор
- Размер популяции 100
- Для селекции использовался бинарный турнирный алгоритм
- Использовалось одноточечное скрещивание
- Вероятность скрещивания 0.8
- Начальная популяция: полностью случайно генерируется, вероятность того, что в клетке 1 равна 0.5.
- Критерий останова: 50 итераций ГА (т.е. 50 смен популяций) подряд без улучшения значения оптимизируемого критерия на лучшем из найденных решений.
- Решения, не удовлетворяющие ограничению, штрафуются.
- Операция мутации стандартная, вероятность мутации перебирается в ходе исследования.

2 Исследование реализации

Задание: необходимо исследовать зависимость характеристик работы алгоритма от интенсивности мутации, т.е. от значения P_{mut} . Начальное значение P_{mut} : $P_{mut_init} = \frac{1}{50*50} = 0.0004$, т.е. в среднем в каждом решении мутирует 1 бит.

Изменять P_{mut} в ходе исследования следует по формуле: $P_{mut}(i) = P_{mut_init} * 1.5^i, i = 0, \ldots, 9; i$ – номер серии экспериментов, т.е. нужно провести 10 серий экспериментов, каждая со своим фиксированным значением P_{mut} . Например, в серии 3 $P_{mut} = P_{mut}(3) = 0.0004 * (1.5^3) = 0.00135$.

Для каждого значения і необходимо провести серию из 10 запусков ГА с соответствующим значением $P_{mut} = P_{mut}(i)$ и определить:

- Стабильность алгоритма (разброс значений критерия на решении-результате, т.е. разность между значениями критерия на худшем и на лучшем прогоне)
- Качество работы алгоритма (значение критерия на лучшем прогоне)
- Вычислительные затраты на выполнение алгоритма (количество процессорного времени, затраченного на прогон; брать максимум по 10 прогонам)

2.1 Стабильность

Стабильность в целом увеличивается (т.е. разница между лучшим и худшим решениями уменьшается) с увеличением вероятности мутации. Оптимальным является значение на серии 5. На графике значение разности между значениями лучшего найденного решения и худшего.

2.2 Качество

Качество с увеличением вероятности мутации падает (т.е. значение наилучшего полученного критерия увеличивается). Наилучшее решение также получено на серии 5.

2.3 Вычислительные затраты

Судя по полученному графику, время поиска решения не вполне зависит от вероятности мутации.

3 Выводы

Судя по полученным графикам, с увеличением вероятности мутации алгоритм приходит к более случайным решениям, из-за этого получая худшие и более близкие по значению критерия решения. При небольших же значениях вероятности мутации алгоритм сходится более «планомерно» при удачных входных данных и менее при неудачных.