

FACULTAD DE MATEMÁTICAS

Diseños experimentales

Licenciatura en Actuaria -Especialización en Estadística.

UNIDAD II. DISEÑOS CON UN FACTOR Y COMPARACIONES MÚLTIPLES.

1. ANOVA de una vía (efectos fijos).

Equipo 8

Integrantes:

- -Samantha Álvarez Herrera
- -Abigail Ciau Puga
- -Samantha Sobrino Bermejo

M. en C. Salvador Medina Peralta

ANOVA de una vía: Análisis de varianza para el diseño completamente aleatorio de un factor con efectos fijos.

Ejemplo obtenido del Montgomery:

Se someten a estudio tres marcas de batería. Se sospecha que las vidas (en semanas) de las tres marcas son diferentes. Se lleva a cabo un experimento completamente aleatorizado donde se prueban cinco baterías de cada marca con los resultados siguientes:

Semanas de vida				
Marca 1	Marca 2	Marca 3		
100	76	108		
96	80	100		
92	75	96		
96	84	98		
92	82	100		

¿Las vidas de estas tres marcas son diferentes? Utilice un nivel de significación del 5%.

Supuestos:

- Modelo completamente aleatorizado.
- $\varepsilon_{ij} \sim NI(0, \sigma^2)$
- Los a tratamientos son seleccionados específicamente por el experimentador.

Solución:

Se trata de un ejemplo de un experimento con un solo factor, con a=3 niveles del factor y n=5 réplicas.

Hipótesis.

Sea μ_j la media poblacional en el j-ésimo tratamiento, (j = 1,2,3)

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3$

vs

 H_1 : $\mu_i \neq \mu_j$ para al menos un par (i, j) con $i \neq j$

Otra forma:

Sea τ_i el efecto del i-ésimo tratamiento, (i = 1,2,3)

$$H_0$$
: $\tau_i = 0 \ \forall i$

125

 H_1 : $\tau_i \neq 0$ para al menos una i, (i = 1,2,3)

Coloquialmente

 H_0 : El tiempo promedio de vida en semanas de las 3 marcas de baterías es idéntico. (Los tratamientos tienen efecto idéntico).

 H_1 : Al menos una de las marcas de baterías tiende a tener tiempos de vida mayores que al menos otra marca.

Estadística de prueba

Si H_0 es verdadera el estadístico de prueba es:

$$F = \frac{CM_{Trat}}{CM_E} \sim F_{a-1,N-a} = F_{2,12}$$

Donde

a = 3 es el número de niveles del factor (en este caso número de marcas de baterías).

N = n * a = 5 * 3 = 15 es el número de observaciones (baterías).

 $CM_{Trat} = \frac{SC_{Trat}}{a-1}$ es el cuadrado medio correspondiente al tratamiento y la $E(CM_{Trat}) = \sigma^2 + \frac{n\sum_{i=1}^a \tau_i^2}{a-1}$.

 $CM_E = \frac{SC_E}{N-a}$ es el cuadrado medio correspondiente del error que cumple la $E(CM_E) = \sigma^2$.

Región de Rechazo.

Si H_0 es falsa, la $\mathrm{E}(\mathit{CM}_E) > \sigma^2$, por tanto, si H_1 es verdadera el valor esperado del numerador del estadístico de prueba es mayor que el valor esperado del denominador, y rechazaríamos H_0 si el valor del estadístico de prueba es demasiado grande. Esto implica una región crítica unilateral de cola superior:

Rechace H_0 con un nivel de significancia α si $F_0 > F_{\alpha; a-1,N-a}$ donde la constante $F_{\alpha; a-1,N-a}$ satisface $P(F_\alpha > F_{\alpha; a-1,N-a}) = \alpha$ y F_0 es el valor de la estadística de prueba.

Valor-P.

$$valor - P = \mathbb{P}(F_{a-1,N-a} \ge F_0) = \mathbb{P}(F_{2,12} \ge F_0)$$

Cálculo del estadístico de prueba.

Resultados con el paquete estadístico Statgraphics:

Variable dependiente: semanas de vida

Factor: marca

Número de observaciones: 15 Número de niveles: 3

Tabla ANOVA para semanas de vida por marca

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
Entre tratamientos	1196.13	2	598.067	38.34	< 0.0001
Error (dentro de tratamiento)	187.2	12	15.6		
Total (Corr.)	1383.33	14			

NOTA: Para poder interpretar la tabla ANOVA, es necesario comprobar los supuestos del modelo correspondientes al error.

Verificación de Supuestos del modelo:

El residuo (estimación del error) para la observación y_{ij} es:

$$e_{ij} = y_{ij} - \bar{y}_{i\bullet}$$

Normalidad:

Hipótesis:

 H_0 : La muestra aleatoria se ajusta a una distribución normal.

vs

 H_1 : La muestra aleatoria no se ajusta a una distribución normal

Resultados obtenidos con el paquete estadístico:

Pruebas de Normalidad para RESIDUOS

Tracous de l'ormanada para resse e os				
Prueba	Estadístico	Valor-P		
Estadístico W de Shapiro-Wilk	0.928424	0.255353		

D de Kolmogorov-Smirnov Modificada

	Normal
D	0.146743
Forma Modificada	0.590111
Valor-P	>=0.10

Decisión:

Los errores se ajustan a una distribución normal con un nivel de significancia de $\alpha = 0.05$ (*Shapiro – Wilks*: W = 0.9284, $P = 0.2553 > 0.05 = \alpha$; *Kolmogorov – Smirnov modificada*: D = 0.5901, P > 0.10).

Igualdad de varianzas:

Método gráfico: Grafica de residuos vs. valores ajustados

Gráfico de Residuos para semanas de vida

Se tiene homogeneidad de varianzas: los puntos se hallan confinados en una banda horizontal, y presenta variación homogénea dentro de la banda.

Prueba de Bartlett

Hipótesis:

$$H_0$$
: $\sigma_1^2 = \sigma_2^2 = \sigma_3^2$

 H_1 : Lo anterior no es cierto al menos para una σ_i^2 , i=1,2,3

Estadístico de prueba:

$$X^2 = 2.3026 \frac{r}{s} \sim \chi_{a-1}^2$$

donde:

$$r = (N - a)log_{10}s_p^2 - \sum_{i=1}^{a} (n_i - 1)log_{10}s_i^2$$

$$s = 1 + \frac{1}{3(a-1)} \left(\sum_{i=1}^{a} \frac{1}{(n_i - 1)} - \frac{1}{(N-a)} \right)$$

$$s_p^2 = \frac{\sum_{i=1}^a (n_i - 1)s_i^2}{N - a}$$

Región de rechazo:

Rechace H_0 con un nivel de significancia α si $X^2 > \chi^2_{\alpha; \alpha-1}$.

Resultados obtenidos con Statgraphics:

Verificación de Varianza

	Prueba	Valor-P
de Bartlett	1.03263	0.840823

Decisión:

- i. Del gráfico semanas de vida predichas contra residuos, observamos que los puntos quedan comprendidos dentro de dos bandas horizontales por lo que podemos decir que el supuesto de igualdad de varianzas se cumple. Es decir, los residuos de cada tratamiento proceden de una distribución que tienen la misma varianza σ^2 .
- ii. De la prueba de Bartlett para probar la igual de varianzas obtenemos que $P = 0.8408 > 0.05 = \alpha$, es decir, no se rechaza la hipotesis de igualdad de varianzas de los tratamientos.

Independencia:

Gráfico de tiempo contra residuos

Los puntos (t, e_{ij}) aparecen en forma azarosa, sin un patrón definido, por lo que se cumple el supuesto de independencia de los errores aleatorios.

Gráfico de Residuos para semanas de vida

Una vez comprobados los supuestos ya podemos dar la decisión.

Tabla ANOVA para semanas de vida por marca

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
Entre tratamientos	1196.13	2	598.067	38.34	< 0.0001
Error (dentro de tratamiento)	187.2	12	15.6		
Total (Corr.)	1383.33	14			

Decisión estadística (ANOVA de 1 vía) con $\alpha = 0.05$

Como $P < 0.0001 < 0.05 = \alpha$ se rechaza H_0 y se decide por H_1 : Al menos una de las marcas de baterías tiende a tener tiempos de vida mayores que al menos otra marca.; es decir, los niveles de vida de las marcas de baterías difieren significativamente ($F_{2,12} = 38.34, P < 0.0001 < 0.05$). O bien, la marca afecta significativamente los tiempos de vida de la batería.

Debido a que el ANOVA determinó diferencias estadísticas significativas, procederemos a efectuar <u>comparaciones múltiples</u> para determinar qué pares de marcas de baterías difieren en los niveles de tiempos de vida (en semanas).

Comparaciones múltiples por el método LSD:

Hipótesis

Para i, j=1,2,3

 H_0 : $\mu_i = \mu_i$ para toda $i \neq j$ vs H_1 : $\mu_i \neq \mu_i$ para algun i, j con $i \neq j$

Procedimiento

Utilizando Statsgraphics:

Pruebas de Múltiple Rangos para semanas de vida por marca

Método: 95.0 porcentaie LSD

	T *	1	1
marca	Casos	Media	Grupos Homogéneos
2	5	79.4	X
1	5	95.2	X
3	5	100.4	X

Contraste	Sig.	Diferencia	+/- Límites
1 - 2	*	15.8	5.44268
1 - 3		-5.2	5.44268
2 - 3	*	-21.0	5.44268

^{*} indica una diferencia significativa.

Podemos observar que el método de *comparación múltiple* muestra que los grupos que presentan diferencia significativa son la marca 2 con las marcas 1 y 3, puesto que $\left|t_{2j}\right| > t_{15-2,\frac{0.05}{6}}$, para j = 1,3, es decir, los tiempos de vida de las baterías de la marca 2 *difiere significativamente* de los de las marcas 1 y 3.

Mientras que para el par 1,3 no *existen diferencias significativas*, en palabras coloquiales, las medias de las vidas de las baterías de las marcas 1 y 3 son iguales.

Decisión estadística con $\alpha = 0.05$

Del *ANOVA* se tiene que se rechaza la hipótesis nula y se decide por la alternativa, es decir, los tiempos de vida en semanas de las marcas de baterías difieren significativamente ($F_{3,15} = 38.34, P < 0.0001 < 0.05$).

De la prueba de comparaciones múltiples la marca 2 difiere significativamente en localización de las marcas 1 y 3 $\left(\left|t_{2,1}\right|=15.8,\left|t_{2,3}\right|=21;\;t_{12,\frac{0.05}{6}}=5.4428\right)$. Más aún, el tiempo de vida de las baterías marca 1 y 3, fueron significativamente mayores al de la marca 2. Por otro lado, para el par 1,3 no existen diferencias significativas 3 $\left(\left|t_{3,1}\right|=5.2,;\;t_{12;0.05/6}=5.4428\right)$, en palabras coloquiales, las medias de las vidas de las baterías de las marcas 1 y 3 son iguales

Referencias

Montgomery, D.C. (2004). Diseño y análisis de experimentos. 2ª Ed. Limusa Wiley, México, D.F.

Montgomery, D.C. (2004b). Experimentos con un sólo factor: el análisis de varianza. En: Diseño y análisis de experimentos. 2ª Ed. Limusa Wiley, México, D.F. pp. 60-125.