SENT BY: MORGAN & FINNEGAN

PATENT DOCKET NO.: 2026-4253US3

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s):

Cieplak, W.

Group Art Unit: 1814

Serial No.

08/483,326

Examiner: Bugaisky, G.

Filed

June 7, 1995

For

PERTUSSIS TOXIN GENE: CLONING AND EXPRESSION

DECLARATION UNDER 37 C.F.R. §1.131

COMMISSIONER OF PATENTS AND TRADEMARKS Washington, D.C. 20231

Sir:

- I, Witold Cieplak, Jr., am named as the inventor in the above indicated patent application, and I state as follows:
- 1. In a Declaration dated March 24, 1997, I stated that prior to July 1, 1988, the claimed invention was conceived and reduced to practice. In fact, the invention was conceived and reduced to practice even before September 1, 1987. The results of these first experiments showing the invention are described below.
- 2. The cloned gene and its expression product have the laboratory designation mutant 4-1. Mutant 4-1 possesses and exhibits the characteristics disclosed in Patent applications 07/311,612 and its continuation 07/542,149.
- 3. Exhibit pages 1-3 include laboratory notebook pages which demonstrate ADP-ribosyltransferase assays involving various pertussis toxin mutants, including a demonstration of substantially reduced enzyme activity associated with mutant 4-

455126_1

DOCKET NO.: 2026-4253US3

1. On the bottom of page 1, a brief outline of the ADP-ribosyltransferase assay is provided. The samples were incubated in the presence of the acceptor G protein transducin [adenylate-³²P]NAD⁺ for 30 minutes at 37°C. The ADP-ribosyltransferase activity was measured as the extent of transfer of ³²P from the radiolabeled NAD⁺ to transducin. The amount of ³²P incorporation into transducin was determined in two ways. First, the reaction samples were incubated with trichloroacetic acid (TCA) after the addition of bovine serum albumin to precipitate the proteins. The resultant TCA pellets were air dried after an ether wash and the amount of radioactivity in each pellet was determined by Cerenkov spectrometry to provide a quantitative estimate of ADP-ribosyltransferase activity. This assay revealed the lack of detectable transferase activity in the 4-1 mutant sample (labelled 4-1 on right side of table, labelled SAM #24 on left) compared to the other mutants and the positive control (labelled "PTX" on right side of table, labelled SAM #2 on left side). Second, the TCA precipitated proteins were solubilized in electrophoresis sample buffer and separated by sodium dodecylsulfate polyacrylamide gel electrophoresis. The gel was dried on filter paper and exposed to X-ray film. Page three is a copy of the resultant autoradiograph, showing that the reaction mixture containing the 4-1 mutant (fourth lane from the left) contained little or no detectable radiolabelled transducin (as evidenced by the lack of a band corresponding to 39 kDa) when compared to reaction mixtures containing other mutants or 6A-4, a wild type version of the S1 subunit. This assay confirmed the results of the quantitative analysis described above and demonstrates that mutant 4-1 has substantially reduced ADPribososyltransferase activity when compared to either pertussis toxin or other mutants.

DOCKET NO.: 2026-4253US3

- 4. Exhibit pages 4-5 show a stained protein gel and three Western blots which demonstrate the reactivity of mutant 4-1 with a monoclonal antibody called "SATO" (also known as 1B7). The protein gel (bottom half of page 4) shows the presence of protein in all of the samples, while the Western blots demonstrate the selective recognition of the antibodies used. The blots labelled "RαPTX" represent the protein samples seen in the protein gel, as reacted with a rabbit anti-pertussis antibody, called "RαPTX". This antibody was a polyclonal antibody which reacted with both PTX (control) and the 4-1 mutant (compare right-most lane and left-most lane). Similarly, the protein samples were reacted with the SATO monoclonal antibody, as seen in the blot labelled "SATO" on the top half of page 5. In these samples, the antibody reacted with both PTX (control) and the 4-1 mutant (compare right-most lane and left-most lane). These pages provided the first data demonstrating reactivity of the 4-1 mutant with a protective monoclonal antibody.
- 5. The actual dates on laboratory notebook pages described in section 2-4 above have been blocked out. I state that each laboratory notebook page in section 2-4 above was dated prior to September 1, 1987.
- 6. The work corresponding to section 2-4 above was carried out by me or a technician working under my direction in the United States.

I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the

SENT BY: MORGAN & FINNEGAN

4-21-99 ;11:13AM

MURGAN & FINNEGAN-AATOUD44140030301234+4

DOCKET NO.: 2026-4253US3

United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Date: 4-21-99

By:

Dr. Witold Ci

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Attorney Docket No. 40399/177/NIHD

In re patent application of

Jerry M. Keith

Serial No. 07/542,149

Group Art Unit: 1814

Filed: June 22, 1990

Examiner: G. Bugaisky

For:

PERTUSSIS TOXIN GENE: CLONING AND EXPRESSION

DECLARATION OF WITOLD CIEPLAK, JR.

The Honorable Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:

- I, Witold Cieplak, Jr. hereby declare that:
- (1) I have read the declaration of Dr. Jerry Keith attached hereto as Appendix 1.
- (2) The copies of notebook pages attached to that declaration are copies of pages from my own notebook, as I was the one who carried out the work recorded on those pages.
- (3) I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further, that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent resulting therefrom.

3/29/93

itold ci plak, Jr.

SENT BY:

-17-91 : 2:31PM :

32-

301 402 0395;# 4

EXHIBIT PAGE#2

همهي ديد ري در در دو دو دن دي جميايه

Amgen Mutant SI potenio

SENT BY:

NIDR/LME

-17-91 ; 2:32PM :

32-

301 402 0396;# 5

EXHIBIT PAGE #3

Dartin Unton 1 Blank Blank PRI State (End) 10 ml saic East Date STY (F. () . 5 119 PTV (2.500) GA Kul 3-1 Same EVALLET ALLE 1020 1-1 8-1 10 7-2 10-1 63-2 P 200 18

NIDR/LME

32-

Ø 006 301 402 C385:# 5

EXHIBIT PAGE #4

	-10ue	<u> </u>	Dug / 20	Len 18 2	renemia	<u>. </u>
		<u> </u>	ei Gug	(ea)	(Sent	in boolers?
			0			7
						
	News	t time	Cut dew	n on 1-1 a	pit in	motourigel;
	·····				0	V
						
						رين وهد شور رهسيس
	-4					
					<u> </u>	

	·				· · · · · · · · · · · · · · · · · · ·	±
			~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
·				1 - ve	DW Y	
					·~	-
						·
						•
			\ a .			
	4+3	4 4	245	225	37	,
	44.3	4 3	345	47 27 2	32	
	AL JE	4 4	245	クググ	32.7V	
	Att J	4 3	23/2	クペン	32	
	41. J	4 3	232	かない	252	
	ALT J	4 3	23/2	かから	32	
	41. J	4 3	331	かかい	2 ²	
	ALT J	4 3	23/2		3,7	
	41. J	4 3			3 ²	
	ALT J	4 3	1 2 2 2 2 2 A		32	
	AL JA	4 3				
	ALT. J	4 3				
	AL J	4 3				
	ALT J	4 3				
	AL J.					

NIDR: LME

2301 402 0396 NID

EXHIBIT PAGE #5

2007

32-

For western B(w) new monaclose) and Protection

	FOR 200	uk of Im	اع إعالا لمد لم	acmenti
07 x (1419)	Sample	28	X.	. Need.
on C18	52.2	52.2	95.5	78.4 78.4
	28.5	20.6	442	-remole
HSP8	33.1	33.7	132.5	too low
hus 9	39.6	39.6	120.7	
N/2 9	51.5	51.5	96.9	actualt
alu 9	<u> </u>	(8.1	83.7	036
Del 9	<u> </u>	866	26.8	
Nic 8:9	48.0	<u>48 0</u>	103.8	
<u>lo58</u>	44.5	44.5	1109	
Ceta 41	33.1	33.1	133.7	
SQ 41	27.2	27.2	145.5	1 de que accesso + 9** 1 1, fore + co
Del 41_	33.3	33.3	133.3	
Mlane deoul 4 Konded (20ul =	20 ug.) ento es	at Ing	Inl m	Larrade -
Marie 2000 y Konded (2011 = 1 stein 1 blot,	amples of End 20 ug.) ento es	at Ing	Iml m e og gel	Loireale
1 strin	amples of Es	at Ing	Iml m e og gel	Bornale
1 strin	20 ug.) ento es	at Ing	Ind w	Larente
Latin Del = Del = Del = Del Del	20 mg.) ento es	ralles	e of gel	Land
South (2011 = 1 string 2011 = 1 string 2011 2	20 ug.) unto es 8unde 28.43	2x 78.43	101 gel	
Latin Del = Del = Del = Del Del	20 ug.) unto es 8unde 28.43	2x 78.43	101 gel	Lamente

NIDR/LME

32-

			<u>-</u>	
	,		16333	
	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33333	300	
	-	12 6 Q 3		
		The State of	er og green at the second	
(1B7)	- 12 (12 hard)		经 现代 (15.50)	
		The second	Er.	
		هوالنسخ المستحدد والمستحدد		
			1.3.4	
	The Property of the State of th		and the second	
		make the first the contract of		
	18 20 18 18	وعطيها والمعادة الماسية الماسية والمسادة		
			李明第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	
		and the state of the state of	and the owner, and	
	State of the same of	Water A. A. T.		
	3 · 3 · · ·			<u> </u>
2FI2K				***************************************
	•		•	
	•			
. u Q 2 (20 (20) 00 (1)	•			
	•	_ = = ==	• •	
	_			
	•	•		
		•		
- 0 and 1 50 510 to each				
`			شيبيية الأفادات والمساور في المساورات والأقادة منا 8	
			<u> </u>	

LEXHIBIT PAGE #7

•	and ilac	1 = inclose He	(5(42)) - (12)	, da . : :
	and SI	3 mutarts	scy - angeris sil	ucia (glycerd)
•				
			FOR Supland	12 ther
	<u></u>	Stock (sq)		
	Committed SI	400	12.5	987.5
1000	6A	225	22.2	971.8
10	7-1.	218	22.9	977,1
\ J	2-2	239	209	979.1
j	3-1	267	18.7	981.3
	4-1	: 247	20.2	979.8
	5-1	156	32.0	96%
$\overline{}$	6-1	126	39.7	960.3
	7-2	183	27.3	972.7
	8-1	135	37.0	963.
	20-A	230(tolos)	NAT 30:0	910
	51/1-4	199	२५.।	975
	suc	1.34	0.373	0.127
···········	0 12	2.55	0.196	0 30 W
>	120c lev 58	4.49	0.111	0:389
, jui	New 8.9	4.16	0.120	0.380
	1119	2.314	0.216	0:284
	hin 9	3.88	0.128	0.372
	0/09	3.44	0.145	0.355
	WWW-j			
			7	•
		•		·
		05mid la	150 Incl	
		3	Ú'	
	······································		HILL TO THE TOTAL THE TOTA	
	05 m	37°C		
*	11-20-21-5 1200	and home town	1110- traco decido	-madenal
	of the		U	
				· · · · · · · · · · · · · · · · · · ·
				
			·-	
				

[EXHIBIT PAGE # 8]

<u></u>	gaid.	<u>-</u>		-	
	7 130 39 39 39 39 39 39 39 39 39 39 39 39 39 3	5592.00 1.70	207 02 . 40 . 10 . 00 . 00 . 00 . 00 . 00 . 00	75-1 1000-1000-1000-1000-1000-1000-1000-1	
•					
-					
				· 1/ÿ	
					

EXHIBIT PAGE #9

			1
	Compuet (100.	ng) cpm tso *	ugar lima
 -		0	The state of the s
	6A	25450 ± 950	26400
		7393 ± 1367	<u> </u>
	2-2	22319 ± 2096	24415
	3-1	13549 ± 1596	70415145
	4-1	754 ± 7	761
	5-1	26361 ± 1321	27682.
	6-1	764 ± 124	8 68
	7-2	753 ± 30	783
1_ ,	8-1	926 ± 205	1131
irst	20A	839 ± 68	9071
	r51/1-4	952 ± 9	961
		· · · · · · · · · · · · · · · · · · ·	The second second second second
	*		
	* S.A. of	32 p. NAO may have bus a	little on the best apple
	\mathcal{O}	•	and the contraction of the contr

	* -				 	·	Lin
	F S.A. 0	1 32 P-NAO	may have	bus a	little on	the k	e) and
(1-	(<u> </u>	0.00		• • • • •	SWYTE A	A CONTRACTOR
<u></u>			j i			***	100
·							
-						i e di en e	The state of
	:						A CARLES AND A
					·		
							
-							
				· · · · · · · · · · · · · · · · · · ·			
							
							
(i)							
<i>(</i>)						114	
					 	4 ′ y	
							

ADP-Ribosyltransferase Activity

EXHIBIT PAGE #11 ADP-ribox L bunsperase cultured 2CA, GA, 4-1 and 81/1-4 50 mm Tris HCI, pH8.0 juiteuri assoy: 6A (225 ug/ml <u> 50 w</u> <u>50ul</u> 95.le w 40w 50ul 50ul 50 m 1.25 0.50 50 ul ((*ਮਹ*ਰ ਘੇ 80 20 ug/ml 40 in 40 ul assay; assay 30' at 37°C w/4 ug 0.350, 0.625, 1.25, 2.5, 5 10, 20, 40 Reaction muxtures & 20 m dilud nrin (HOOnd Ing Zoje dring N.B. 20A delute

1. M

IN. . TPAGE # 12

PUBLIFECTAYS) IN 5 k A (1950) 5 k A (1950) 5 k A (1951) 1 k A (1951) 1 k A (1958) 0.00 L34: 0.00 L34: 0.00 L35: 846 2019: 846 2016: 846 2016: JF141 TIME 72.43 22.1 150.00 150.00 160.00 160.00 160.00 160.00 160.00 170.00 170.00 170.00 170.00 170.00 170.00 170.00 170.00 170.00 170.00 170.00 374.00 358.00 47197.00 45333.00 38958.00 Star Blank (U6) 28.00 ji.00 14.000 1553.00 1553.00 1553.00 1553.00 1553.00 1553.00 1553.00 6A 200ng 45649 39883 100 ng 38958.00 42031.00 35608.00 40786.00 21631.00 37581 50no/ 26686 25ng 10mg 13464 14666.00 2114.00 13494.00 9214.00 7195.00 5ng 7588 168.00 1974.00 1863.00 195.00 6646.00 646.00 7138.00 7139.00 710.00 20A 1.6 mg . 39 151.00 190.00 102.5) 0.4 mg 149.5 219 am >4-1 1.6 mg > 11 0.8 mg 0.000 49.000 1.000 62.5 0.4 ug 2 చే >S1/1-4 1.644 406.5 0,444, 312

4-1 max = 0.01 % = > 0.000 - 18 decresses,

	Linal	X	Net	
Sample_	[ug me]	CPM.	Com	
Q.W.Y.op-w.				
Buffer	b=140 -	<u>مارها</u>	7589	
&A	0.125	8205	13464	*
	0.250	27301	26685	
11	0.625	38 197	37581	
	1.25	42150	41534	
	2.5	46265	45649	
	5:0	<u> </u>		
	1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	73.487_	239)	,
_20A	10.€ equi 20.0 eq	708 X=	100	78cpm rut.
<u> </u>	40 equi	655	300	10
				red factor
4-1	10	679	-39	> 5000 8 48
1(20	835	127	
	40	765	11.0	>10,00
		020	210	256
51/1-4	10_}	enza 918	315	3419
. 4	20.	WAR 1023	929	231
10	NO])	948 1584		
	V	and moderni Ca	rtent	
	there where to brace	ioside protein co		
			1	
		·		

EXHIBIT PAGE # 14

Series 4:22:47 PM

DP-Ribosylation of Tr.

EXHIBIT PAGE # 10

## 40 ug ml in 100 ul (A 225 17.7 82.2 35A 69 57.9 42.1 39A 88 45.4 54.5 33B 113 35.3 64.7 2B 125 32.0 68.0 3B 157 25.4 74.6 1-1 75 53.3 46.6 2-2 75 3-1 75 4-4 75 6-1 75 6-1 75 8-1 76 6-1 75 8-1 76 Assayd Standard Joshin in Explicate; 30°C Joshin Company Control of Co					
35A 69 57.9 42.1 39A 88 45.4 54.5 33B 113 35.3 64.7 2B 125 32.0 68.0 3B 157 25.4 74.6 1-1 75 53.3 46.6 2-2 75 3-1 75 4-4 75 6-1 75 7-2 75 80 A 753 Assayed Standard Joshim in Explicate; 30°C of			4 40 ug/ml in	Robul.	
39A 88 45.4 54.5 33B 113 35.3 64.7 2B 125 32.0 68.0 3B 157 25.4 74.6 1-1 75 53.3 46.6 2-2 75 3-1 75 4-4 75 6-1 75 7-2 75 80A 757 Assayed Standard fostion in tophicate; 30°C of 500000000000000000000000000000000000	6A	225	17.7	82.2	
33B 113 35.3 64.7 2B 125 32.0 68.0 3B 157 25.4 74.6 1-1 75 53.3 46.6 2-2 75 3-1 75 4-d 75 6-1 75 7-2 75 80 A 757 Assayed Standard fostion in Explicate; 30°C of 5000	<u>35A</u>	69	57.9	42.1	
2B 125 32.0 68.0 3B 157 25.4 74.6 1-1 75 53.3 46.6 2-2 75 3-1 75 4-4 75 6-1 75 7-2 75 80 A 757 Assayed Standard Joshin in Explicate; 30°C of Song		88	45.4	54.5	
3B 157 25.4 74.6 1-1 75 53.3 46.6 2-2 75 3-1 75 4-4 75 -6-1 76 6-1 75 7-2 75 80A 757 Assayed Standard fooling in beplicate; 30°C of 5000	<u> 33B</u>	13	<u> 35.3</u>	64.7	
1-1 75 53.3 46.6 2-2 75 3-1 75 4-4 75 6-1 75 7-2 75 80 A 753 Assayed Standard fooling in typicate; 30°C of some standard fooling in typicate; 30°C of some standard fooling in typicate.	<u> 2B</u>				
2-2 75 3-1 75 4-4 75 -6-1 75 7-2 75 8-1 76 20 A 753 Assazed Standard Joshin in Explicate; 30°C Joseph Stone 3pmile	3B	157	25.4		
3-1 75 4-d 75 5-1 76 6-1 75 7-2 75 8-1 77 20 A 757 Assazed Standard fooling in Explicate; 30°C fooling 50mg	1-1	75	<u> 53, 3</u>	46.6	
4-9 75 -6-1 75 7-2 75 8-1 75 20 A 753 Assayed Standard fostion in Explicate; 30°C of		<u> </u>			
6-1 75 7-2 75 8-1 71 20 A 753 Assayed Standard fostion in Explicate; 30°C of 5000		. 75			
6-1 75 7-2 75 8-1 75 20 A 753 Assayed Standard fooling in hybridate; 30°C for Stong				· .	
7-2 75 8-1 75 20 A 753 Assayed Standard fooling in typicate; 30°C for 5000					
8-1 75 20 A 753 Assayed Standard Joshim in Explicate; 30°C of 5000					
Assaged Standard fostion in Explicate; 30°C of					
Assaged Standard footin in Explicate; 30°C fo					
30mole 3pmole	80 A	754	<u>V</u>	<u>V</u>	· · · · · · · · · · · · · · · · · · ·
30mole 3pmole	Assa	ed Standas	d fortion in b	eplicate; 30	oc fi
Cpm x1.5 x1.5 ÷ 120 ÷ 76.9					30mg
Cpm x1.5 x1.5 ÷ 120 ÷ 76.9				Lamote	
		COM VIC VII	= - 120 = 71 Q'		

(=XHBIT PAGE # 11)

	NAD G	Mycchydrilion + e	- used	20A 94,0] 'UD[_CM]	tref
-(F	<u>-</u>				allat	Luciana
		% control + s	5.D. (+utul)			
	6A	100				
	35 A	105.7 + 7.6				
	39 A	35,3 ± 2,3				
	33B	3.9±0.8				
	23	1.6 + 1.5				
	3 B	1.5 ± 1.2			 -	***************************************
		*		 		
	1-1:	6.1 ±0.98				
	a - 2	47.4 + 3.1				
	3-1	9.1 ± 2.0				· · · · · · · · · · · · · · · · · · ·
	4-1	2.2 ± 0.4		<u> </u>		
	5-1	132,1 ± 7.4				
-	6-1		•	•		
		1.7 + 0.4				
	7-2	$\frac{2.2 \pm 0.6}{1}$				
(((,	8-1	2.6 = 0.4			·	
		· · · · · · · · · · · · · · · · · · ·				·
. —	·		 			
					· · · · · · · · · · · · · · · · · · ·	
			•			
\					•	
·\	· · · - · · · · · · · · · · · · · · · ·	***************************************				
- / \						
	\				······	
	\\		·····			
/						
111						
" L						
		······			·	
n		<u> </u>				
	_ // ·	• • • • • • • • • • • • • • • • • • • •				

lely

EXHIBIT PHOE #18

20A (glymol)	805 <u>±</u> 12	Net cpm	emolo rellmining
6A	17,310 = 701	16505	4.02
354	18,257 ± 1023	17452	4.25
3917	6645 ± 304	5840	1.42
333	1452 ± 136	647	0.15
28/	1072 = 247	267	0.065
33/	1062 = 184	257	0.662
20 4/(Trib)	US\$9/\$278/	<u> </u>	
4 7-1/	1814 ± 156	1009	0.24
a-2/	8670 ± 399	7865	1.9
3-1	2303 ±329	1498	6,36
4-1/	1475 = 67	372	0.09
5-1-	22,615 ± 796	21,810	5.3
6-1/	1685 ± 70	280	0.068
7-2	1169 ± 102	364	0.088
8-1	1233 + 59	428	0.10
	•	· · · · · · · · · · · · · · · · · · ·	
		-	
			_

/ EXHIBIT INV = #19

00 0 0000 : 03.0 0000 : 04.0 0000 : 0000 0000 : 0.00 J.A 0.00 J.B 0.00 J.BR - + 1 J-142 18577.01 11380.00 11974.00 7110.00 15462.00 15462.00 1521.00 1521.00 15575.00 15575.00 15575.00 15776.00 15776.00 15776.00 15776.00 15776.00 15776.00 333 00/13.00 413.00 403.00 578.00 548.00 6746.30 2746.30 2027.45.33 2027.4 20A(Tris): 1353 = 2 >20A (glyeud)

Need ADP-ribosultranslinas

EXHIBIT PAG = -

	oce Activity -	(!	LEXESSE PHONE
·		·	Tris but
21:15,30°C, 30			
	<i>CPM</i>	CTOTAL)	
Mowtruct	0 25.	^ <i>5</i>	
	0.25 2.9	0.5 49	.1.0. 114
purified SI from PTX	6,340 (1.54)	12,980.5 (3.16)	_
20A	128		-23(5)
6A	1480,5 (0.36)	3.074 (0.75)	
1-1	- 73,5 (0.02)) 486.5(0.12)
2.2	562.5 (0.14)	1340 (0.33)	
3-1		419 (0.10)	882.5 (0.21)
4-1	31.5(0.00)	-11(0)(0)	34.5 (0.00
5-1	1369 (0.33)	3011(0.73)	6204 (1.51)
6-1	-5 0	-420	-30,50
7-2	-59 0	15 0	-58 O
8-1	-5.5 0	-40	204 (0.05
81/1-4	-60 <i>O</i>	-99.5 D	-64 0
· · · · · · · · · · · · · · · · · · ·	ol soies		
. 3 . 7	. (1)		
, ,	15 x 13 =100	- 120 - 100	
Cpm x 1.5 X	15 x 13 -100	- 120 - ng	
Opm x 1.5 x	1.5 x 1.3 -100		V min.
Opm x 1.5 x	15 x 1.3 ÷100		/min.
Opm x 1.5 x	15 x 1.3 ÷100		y/min.
Opm x 1.5 x	15 x 1.3 ÷100		Ymin.
Opm x 1.5 x	15 x 1.3 ÷100		2/ min
Opm x 1.5 x	15 x 1.3 ÷100		/min.
Opm x 1.5 x	15 x 1.3 ÷100		/min.
Opm x 1.5 x	15 x 1.3 ÷100		/min
Opm x 1.5 x	15 x 1.3 ÷100		2/min.
Opm x 1.5 x	15 x 1.3 ÷100		/min
CPm x 1.5 x	15 x 1.3 ÷100		2/min.
Opm x 1.5 x	15 x 1.3 ÷100		·//

EXHIBIT PAGE XI]

		- 17678 ALFER HE ROMEN DEL: 400 201 DEL: 4000 201 UNKNOWN REPL H	100 100 100 100 100 100 100 100 100 100	(전) 무슨 (현건 1명 ·)	1.00080 8kG 1916: 8kG 1916:	0.00 LEF: 0.00 LER: 0.00 LER:
Smit .	⊝RM1	-	CPM3	7万代 <u>日</u>		
:3	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	1.00	11;	

EXHIBIT FIGE
1195 glycohydiolase Activit Augus mutaits, Comment
at 250, 500 and 1000 mg 21 Em 30°C
051 (410 mph) chlicte to 40 mph is 1:10 med 50 ms for (cm) pt; 15 ml + 135 ml (1000) (500) (250)
Nutnits: at 15 ug/ml
106.bul + 93.3 ml buff
(1000) (500) (250)
•
-()

EXHIBIT TAGE -

	○ 四個	-	
177 40 10 10 10 10 10 10 10 10 10 10 10 10 10	0 582.00 0 582.00 0 592.00 0 679.00	146 146 146 146 146 146 146 146 146 146	1.30
255.0	10		

A mot in some recording to the property of the control of the cont

: - -

[EXHIBIT PAGE 77 24]

· —					
		0.25	0.5	1, C	To carhol
		0.36	0.75	1.57	100
	1-1	0.02	0.06	0.12	7.6
	<u> </u>	0.14	0.33	0.66	42.0
	3-1	0.03	0,10	0.21	13.3
	4-1	0.008	0.0	0.008	0,51
	5-1	0.33	0.73	1.51	96.7
·	6-1		O	<u> </u>	0
	7-2			0.05	3.1
	8-1		0	0	O
	·				
					
					
			· · · · · · · · · · · · · · · · · · ·		
					
					•
					*
-((
	·				

EXHIBIT PAGE # 25

IN SHE INTERES PATRICT AND TRADERARK OFFICE

Attorney Docket N . 40399/177/NIRD

_ ____

In re patent application of

Jarry M. Reith

Serial No. 07/842,149

Group Art Unit: 1814

Filed: June 22, 1990

Examiner: G. Bugaisky

For:

PERTUSSIS TOXIN CENE: CLONING AND EXPRESSION

DECLARATION OF WITCHD CIEPLAK. JR.

The Honorable Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:

I, Witold Cieplak, Jr. hereby declare that:

- 1. I previously executed a declaration for this application. In my previous declaration, I stated that I carried out the experiments recorded on notabook pages attached to a declaration by Dr. Jerry Kaith. A copy of that declaration by Dr. Keith was attached to my previous declaration as Appendix 1. With the exception of the notations on the top of each page regarding exhibit page numbers, the handwriting on all of those notebook pages is my handwriting.
- 2. At the time I performed those experiments, it was my practice to record my notes in a looseleaf notebook. Hence, there is no notebook cover bearing my name or table of contents page reflecting those experiments.
- J. During the course of my research at Rocky Mountain Laboratories, NTAID (Hamilton, Montana), I conceived that a mutation at the arginine 9 position of the smino acid sequence of the SI subunit of Bordotella pertussis toxin could yield a substantially detoxified mutant comprising an epitope that contributes to

immunoprotection against Bordetella pertussis toxicity. I subsequently discovered that such a mutation at the arginine 9 position in fact yielded a substantially detoxified mutant comprising an epitope that contributes to immunoprotection against Bordetella pertussis toxicity.

I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further, that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardise the validity of the application or any patent resulting therefrom.

12/11/93

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Attorney Docket No. 40399/177/NIHD

In re patent application of

Jerry M. Keith

Serial No. 07/542,149 Group Art Unit: 1814

Filed: June 22, 1990 Examiner: G. Bugaisky

For: PERTUSSIS TOXIN GENE:

CLONING AND EXPRESSION

DECLARATION OF JERRY M. KEITH

The Honorable Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:

- I, Jerry M. Keith, hereby declare that:
- 1. I have reviewed the Declaration of Dr. Cieplak attached hereto. I believe all statements in that declaration to be correct.

I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further, that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent resulting therefrom.

Vecember 21, 1993

Δ

Jerry M. Keith

-2-

Art Unit: 1814

Claims 11, 13 and 15-16 are allowable. Prosecution is now closed.

The amendment to the specification is entered, as it is clear that an inadvertent error in sequencing of the deposited parental strain occurred. The amendment does not constitute new matter.

The change in inventorship is permissible. It does not appear necessary to revive parent application 07/311,612 in order to grant priority (MPEP § 201.3 re continuing applications). There is, however, now no continuity between this application and 06/843,727 (Patent No. 4,883,761).

All claims are allowable. However, due to a potential interference, ex parte prosecution is SUSPENDED FOR A PERIOD OF 3 MONTHS FROM THE DATE OF THIS LETTER.

Upon expiration of the period of suspension, applicant should make an inquiry as to the status of the application.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Gabriele E. Bugaisky, Ph.D. whose telephone number is (703) 308-4201.

Papers related to this application may be submitted to Group 180 by facsimile transmission. Papers should be faxed to Group 180 via the PTO Fax Center located in Crystal Mall 1. The faxing of such papers must conform with the notice published in the Official Gazette, 1096 OG 30 (November 15, 1989). The CM-1 Fax Center numbers are (703) 308-4227 and (703) 305-3014.

Any inquiry of a general nature or relating to the status of this application should be directed to the Group receptionist whose telephone number is (703) 308-0196.

ROBERT A. WAX SUPERVISORY PATENT EXAMINER GROUP 180

April 27, 1994

25

5

10

15

Cuinker counts of The pullts.

```
USER: 2 ID: SURVEY CAREPE

AMPLE REPEAT TO CYCLE REPE

H#: 0 AQC: N ODE (NYRCM: NEW)

HANNEL A-11: E ON TO CHEMPE
 HANNEL A-LL: 00L; 400 251 CMA: 200 BKG SUB: 000 BKG 251G: CHANNEL 2-LL: 0 DL: 670 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG SUB: 0 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 00 BKG 251G: CHANNEL 3-LL: 0 UL: 1000 251 GMA: 2 
 HALFALIFE (DAYS):N
                                                                                                           62.00 62.00 1.00 Buffur 4089.00 4089.00 1.00 prx(0.1mg)

347.00 347.00 1.00 513
                                                                  51.00 -
                                                    3968.00
                                    803.00. 1.00 8-1
                                             Assay: 10 Ml HX ADDR cockford
20 Ml test sample (100 mg/me)
10 Ml Transdum (70.7 mg)
Stock
                                                                                                                                                  Tui 20 mg/mg BSA (nevolue OVA & 500l is 100l of 1-5 Amg/mg)
                                                                                                                                           V 6.N. 40
1me 59. TCA ×2
```

APP-nibosyl transpuose
APP-nbosyl timsperase 2nd gil-
Lane
1 Borne
3 1 Bro-Rad
3 2 1-1 /
4/3 2-2
b y 3-1
65 4-1
7 6 5-1
876-1.
4 8 6A-2
10 9 7-2
11 10 81
211 GA-4#2
1312 GA-4#4
1413 6A-446
14 6A-4 # 8

Ra ptx

- this is the band

TABLE 2

Complete Nucleotide Sequence of Pertussis Toxin Gene

EARTY OF TEGEOR CONTROL OF THE PROPERTY OF TH ATCGTCCTGCTCAACCGCCACATCAACGAGGCGCTGCAGTCCAAGGCGGTCGTCGAGGCC TTTGCCGCCCAAGGCGCCACGCCGGTCATCGCCACGCCGGATCAGACCCGCGGCTTCATC GCAGACGAGATCCAGCGCTGGGCCGGCGTCGTGCGCGAAACCGGCGCCAAGCTGAAGTAG CAGCGCAGCCCTCCAACGCGCCATCCCCGTCCGGCCGGCACCATCCCGCATACGTGTTGG CAACCECCAACGCGCATGCGTGCAGATTCGTCGTACAAAACCCTCGATTCTTCCGTACAT CCCGCTACTGCAATCCAACACGGCATGAACGCTCCTTCGGCGCAAAGTCGCGCGATGGTA CCGGTCACCGTCCGGACCGTGTGACCCCCTGCCATGGTGTGATCCGTAAAAYAGGCAC 500 <u>EAT</u>CAAAACGCAGAGGGGAAGACGGGATGCGTTGCACTCGGGCAATTCGCCAAACCGCAA TH'R C T R A I'R O 600 GAACAGGCTGGCTGACGTGGCTGGCGATTCTTGCCGTCACGGCGCCCGTGACTTCGCCGG R-T G W L T W L A I L A V T A P V T S P CATGGGCCGACGATCCTCCCGCCACCGTATACCGCTATGACTCCCGCCGCCGGAGGACG A W A *D D P P A T V Y R Y D S R P P E D 700 TTTTCCAGAACGGATTCACGGCGTGGGGAAACAACGACAATGTGCTCGACCATCTGACCG V F Q N G F T A W G N N D N V L D H L T GACGTTCCTGCCAGGTCGGCAGCAGCAGCAGCGCTTTCGTCTCCACCAGCAGCAGCCGGC G R S C Q V G S S N S A F V S T S S S R 100 **GCTATACCGAGGTCTATCTCGAACATCGCATGCAGGAAGCGGTCGAGGCCGAACGCGCCG** RYTEVYLEHRHQEAVEAE GCAGGGGCACCTCATCGCCTACÁTCTACGAAGTCCGCGCCGACAACAATTTCT RGTGHFIGYIYEVRADNNF G A A S S Y F E Y V D T Y G D N A G R TCCTCGCCGGCGCGCTGGCCACCTACCAGAGCGAATATCTGGCACACCGGCGCATTCCGC LAGALATYQSEYLAHRRIP CCGAAAACATCCGCAGGGTAACGCGGGTCTATCACAACGGCATCACCGGCGAGACCACGA PENIRRY TRY THE STRETT CCACGGAGTATTCCAACGCTCGCTACGTCAGCAGCAGACTCGCGCCAATCCCAACCCCT TEYSNARY V S Q Q T R A N P N P 1200 **ACACATCGCGAAGGTCCGTAGCGTCGATCGTCGGCACATTGGTGCGCATGGCGCCGGTGATAG** Y T S R R S V A S I V G T L V R M A P V I

TABLE 2 Complete Nucleotide Sequence of Pertussis Toxin Gene

GCGCTTGCATGGCGCGGCAGGCCGAAAGCTCCGAGGCCATGGCAGCCTGGTCCGAACGCG SACHARQAESSEAHAAWSER CCGGCGAGGCGATGGTTCTCGTGTACTACGAAAGCATCGCGTATTCGTTCTAGACCTGGC AGEAHVLVYY CCAGCCCGCCCAACTCCGGTAATTGAACAGCÄTGCCGATCGACCGCAAGACGCTCTGCC 1400 ATCTCCTGTCCGTTCTGCCGTTGGCCCTCCTCGGATCTCACGTGGCGCGGGCCTCCACGC H L L S V L P L A L L G S H V A R A * S T CAGGCATCGTCATTCCGCCGCAGGAACAGÁTTACCCAGCÁTGGCAGCCCCTATGGACGCT GIVIPPQEQITQH6SP GCGCGAACAAGACCCGTGCCCTGACCGTGCCGGAATTGCGCCGCAGCGGCGATCTGCAGG C A N K T R A L T V A E L R G S G D L Q AGTACCTGCGTCATGTGACGCGCGGCTGGTCAATATTTGCGCTCTACGATGGCACCTATC YLRHVTRGUSIFALYDG TCGGCGGCGAATATGGCGGCGTGATCAAGGACGCAACACCCGGCGGCGCATTCGACCTGA 1700 AAACGACGTTCTGCATCATGACCACGCGCAATACGGGTCAACCCGCAACGGATCACTACT TFCINTTRNTGQPATD ACAGCAACGTCACCGCCACTCGCCTGCTCTCCAGCACCAACAGCAGGCTATGCGCGGTCT Y S N V T A T R L L S S T N S R L C A V TCGTCAGAAGCGGCAACCGGTCATTGGCGCCTGCACCAGCCCGTATGACGGCAAGTACT GGAGCATGTÁCAGCCGGCTÁCGGAAAATGCTTTACCTÁATCTACGTGGCCGGCATCTCCG W S H Y S R L R K H L Y L I Y V A G I S TACGCGTCCATGTCAGCAAGGAAGAACAGTATTACGACTATGAGGACGCAACGTTCGAGA V R V H V S K E E Q Y Y D Y E D A T F E CTTACGCCCTTACCGGCATCTCCATCTGCAATCCTGGATCATCCTTATGCTGAGACGCTT CCCACTCGAACCACCGCCCGGGACAGGGGGGCGCCCGGGGGGTCGCGCGTGCGCGCCCT GGCGTGGTTGCTGGCATCCGGCGCGATGACGCATCTTTCCCCCGCCCTGGCCGACGTTCC A W L L A S G A H T H L S 2200 TTATGTGCTGGTGAAGACCAATATGGTGGTCACCAGCGTAGCCATGAAGCCGTATGAAGT Y V L V K I N M V V I S V A M K P Y E V

TABLE 2

Complete Nucleotide Sequence of Pertussis Toxin Gene CACCCGACGCGCATGCTGGTCTGCGGCATCGCCGCCAAACTGGGCGCCGCGGCCAGCAG TPTRMLVCGIAAKLGAAAS S 2300 CCCGGACGCGCACGTGCCGTTCTGCTTCGGCAAGGATCTCAAGCGTCCCGGCAGCAGTCC DAHVPFCFGKDLKRPGSSP CATGGAAGTCATGTTGCGCGCCGTCTTCATGCAACAACGGCCGCTGCGCATGTTTCTGGG HEVMLRAVFHQQRPLRMFL TCCCAAGCAACTCACTTTCGAAGGCAAGCCCGCGCTCGAACTGATCCGGATGGTCGAATG PKQLTFEGKPA<u>L</u>ELIRMVEC FM H T I A S I L SGKQDCPU TTGTCCGTGCTCGGCATATACAGCCCGGCTGACGTCGCCGGCTTGCCGACCCATCTGTAC LSVLGIYSPADV*AGLPTHLY 2600 AAGAACTTCACTGTCCAGGAGCTGGCCTTGAAACTGAAGGGCAAGAATCAGGAGTTCTGC KNFTVQELALKLKGKNQEF CTGACCGCCTTCATGTCGGGCAGAAGCCTGGTCCGGGCGTGCCTGTCCGACGCGGGACAC LTAFMSGRSLVRACLSDAGH GAGCACGACACGTGGTTCGACACCATGCTTGGCTTTGCCATATCCGCGTATGCGCTCAAG EHDTWFDTMLGFAISAYAL 2800 AGCCGGATCGCGCTGACGGTGGAAGACTCGCCGTATCCGGGCACTCCCGGCGATCTGCTC SRIALTVEDSPYPGTPGDLL GAACTGCAGATCTGCCCGCTCAACGGATATTGCGAATGAACCCTTCCGGAGGTTTCGACG ELQICPLNGYCEU TTTCCGCGCAATCCGCTTGAGACGATCTTCCGCCCTGGTTCCATTCCGGGAACACCCGCAA CATGCTGATCAACAACAAGAAGCTGCTTCATCACATTCTGCCCATCCTGGTGCTCGCCCT FM L I N N K K L L H H I L P I L V L A L GCTGGGCATGCGCACGGCCCAGGCCGTTGCGCCAGGCATCGTCATCCCGCCGAAGGCACT L G M R T A Q A RV A P G I V I P P K A L 3100 GTTCACCCAACAGGCGGCGCCTATGGACGCTGCCCGAACGGAACCCGCGCCTTGACCGT FTQQGGAYGRCPNGTRALTV GGCCGAACTGCGCGGCAACGCCGAATTGCAGACGTATTTGCGCCAGATAACGCCCGGCTG A E L R G N A E L Q T Y L R Q I T P G W 3200 GTCCATATACGGTCTCTATGACGGTACGTACCTGGGCCAGGCGTACGGCGGCATCATCAA SIYGLYDGTYLGQAYGGIIK 3300 GGACGCGCCAGGCGCGGGGTTCATTTATCGCGAAACTTTCTGCATCACGACCATATA DAPPGAGFIYRETFCITTIY

TABLE 2

Complete Nucleotide Sequence of Pertussis Toxin Gene CAAGACCGGGCAACCGGCTGCGGATCACTACTACAGCAAGGTCACGGCCACGCGCCTGCT K T G Q P A A D H Y Y S K V T A T R L L 3400 CGCCAGCACCAACAGCAGGCTGTGCGCGGTATTCGTCAGGGACGGGCAATCGGTCATCGG ASTN SRLCAV FVRDGQSV IG AGCCTGCGCCAGCCCGTATGAAGGCAGGTACAGAGACATGTACGACGCGCTGCGGCGCCT A C A S P Y E G R Y R D M Y D A L R R L 3500 GCTGTACATGATCTATATGTCCGGCCTTGCCGTACGCGTCCACGTCAGCAAGGAAGAGCA LYMIYMSGLAVRVHVSKEEQ GTATTACGACTACGAGGACGCCACATTCCAGACCTATGCCCTCACCGGCATTTCCCTCTG YYDYEDATFQTYALTGISLC CAACCCGGCAGCGTCGATATGCTGAGCCGCCGGCTCGGATCTGTTCGCCTGTCCATGTTT NPAASICU 3700 TTCCTTGACGGATACCGCGAATGAATCCCTTGAAAGACTTGAGAGCATCGCTACCGCGCC TEGCCTTCATEGCAGCCTGCACCCTGTTGTCCGCCACGCTGCCCGACCTCGCCCAGGCCG GCGGCGGGCTGCAGCGCTGTCAACCACTTCATGGCGAGCATCGTGGTCGTACTGCCGCGG CACGCCGATGTGCTGGACGTGGTGCTGGTGGTGCTGGGGGAGCTGCTGATCGGCGCATC GGCCGAAATCGCTCGTTATCTGCTGACCTGAATCCTGGACGTATCGAACATGCGTGATCC GCTTTTCAAGGCTGCACCCGGCGCGCGCGATGCTGATGGCGTACCCGCCACGGCAGGCCG TGTGCAGCCGGCACCATTCCCTGCTGGGCCATCTCGGTTCAGCATCCGCTTTCTGGCCTT GTTTCCCGTGGCATTGCTGGCGATGCGGATCATGATCCGGCGCGATGACCAGCAGTTCCG Sau3A CCTGATC

The deduced amino acid sequences of the individual subunits are shown in the single letter code below the nucleotide sequence. The proposed signal peptide cleavage sites are indicated by asterisks. The start of the protein coding region for each subunit is indicated by the box and arrow over the initiation codon. Putative ribosomal binding sites are underlined. The promotor-like sequence is shown in the -35 and -10 boxes. Proposed transcriptional start site is indicated by the arrow in the CAT box. Inv rted repeats are indicated by the arrows in the flanking r gions.

This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.