Exercise List: Properties and examples of convexity and smoothness

Robert M. Gower.

October 3, 2017

Time to get familiarized with convexity, smoothness and a bit of strong convexity.

Notation: For every $x, y, \in \mathbb{R}^d$ let $\langle x, y \rangle \stackrel{\text{def}}{=} x^\top y$ and let $||x||_2 = \sqrt{\langle x, x \rangle}$. Let $\sigma_{\min}(A)$ and $\sigma_{\max}(A)$ be the smallest and largest singular values of A defined by

$$\sigma_{\min}(A) \stackrel{\text{def}}{=} \min_{x \in \mathbb{R}^d} \frac{\|Ax\|_2}{\|x\|_2} \quad \text{and} \quad \sigma_{\max}(A) \stackrel{\text{def}}{=} \max_{x \in \mathbb{R}^d} \frac{\|Ax\|_2}{\|x\|_2}. \tag{1}$$

Thus clearly

$$\frac{\|Ax\|_2^2}{\|x\|_2^2} \le \sigma_{\max}(A)^2, \quad \forall x \in \mathbb{R}^d.$$
 (2)

Let $||A||_F^2 \stackrel{\text{def}}{=} \operatorname{Tr}(A^{\top}A)$ denote the Frobenius norm of A. Finally, a result you will need, for every symmetric positive semi-definite matrix G the L2 induced matrix norm can be equivalently defined by

$$||G||_2 = \sigma_{\max}(G) = \sup_{x \in \mathbb{R}^d, \, x \neq 0} \frac{\langle Gx, x \rangle_2}{\|x\|_2^2} = \max_{x \in \mathbb{R}^d, \, x \neq 0} \frac{\|Gx\|_2}{\|x\|_2}.$$
 (3)

1 Convexity

We say that a twice differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \quad \forall x, y \in \mathbb{R}^d, \lambda \in [0, 1].$$
 (4)

or equivalently

$$v^{\top} \nabla^2 f(x) v \ge 0, \quad \forall x, v \in \mathbb{R}^d.$$
 (5)

We say that f is μ -strongly convex if

$$v^{\top} \nabla^2 f(x) v \ge \mu \|v\|_2^2, \quad \forall x, v \in \mathbb{R}^d.$$
 (6)

Ex. 1 — We say that $\|\cdot\| \to \mathbb{R}_+$ is a norm over \mathbb{R}^d if it satisfies the following three properties

- 1. Point separating: $||x|| = 0 \Leftrightarrow x = 0, \forall x \in \mathbb{R}^d$.
- 2. Subadditive: $||x+y|| \le ||x|| + ||y||, \forall x, y \in \mathbb{R}^d$
- 3. Homogeneous: $||ax|| = |a|||x||, \forall x \in \mathbb{R}^d, a \in \mathbb{R}$.

Part I

Prove that $x \mapsto ||x||$ is a convex function.

Part II

For every convex function $f: y \in \mathbb{R}^m \mapsto f(y)$, prove that $g: x \in \mathbb{R}^d \mapsto f(Ax - b)$ is a convex function, where $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$.

Part III

Let $f_i: \mathbb{R}^d \to \mathbb{R}$ be convex for i = 1, ..., m. Prove that $\sum_{i=1}^m f_i$ is convex.

Part IV

For given scalars $y_i \in \mathbb{R}$ and vectors $a_i \in \mathbb{R}^d$ for i = 1, ..., m prove that the logistic regression function $f(x) = \sum_{i=1}^m \ln(1 + e^{-y_i \langle x, a_i \rangle})$ is convex.

Part V

Let $A \in \mathbb{R}^{m \times d}$ have full column rank. Prove that $f(x) = \frac{1}{2} ||Ax - b||_2^2$ is $\sigma_{\min}^2(A)$ -strongly convex.

2 Smoothness

We say that a function $f: \mathbb{R}^d \to \mathbb{R}$ is L-smooth if

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\| \tag{9}$$

or equivalently if f is twice differentiable then

$$v^{\top} \nabla^2 f(x) v \le L \|v\|_2^2, \quad \forall x, v \in \mathbb{R}^d.$$
 (10)

Ex. 2 — Part I

Prove that $x \mapsto \frac{1}{2}||x||^2$ is 1–smooth.

Part II

Let $f: \mathbb{R}^d \to \mathbb{R}$ be twice differentiable and L-smooth. Show that

$$\sigma_{\max}(\nabla^2 f(x)) = \|\nabla^2 f(x)\|_2 \le L.$$

Part III

For every twice differentiable L-smooth function $f: y \in \mathbb{R}^m \mapsto f(y)$, prove that $g: x \in \mathbb{R}^d \mapsto f(Ax - b)$ is a smooth function, where $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$. Find the smoothness constant of g.

Part IV

Let $f_i: \mathbb{R}^d \to \mathbb{R}$ be a twice differentiable and L_i -smooth for $i = 1, \ldots, m$. Prove that $\frac{1}{n} \sum_{i=1}^{n} f_i$ is $\sum_{i=1}^{n} \frac{L_i}{n}$ -smooth.

Part V

For given scalars $y_i \in \mathbb{R}$ and vectors $a_i \in \mathbb{R}^d$ for i = 1, ..., m prove that the logistic regression function $f(x) = \frac{1}{m} \sum_{i=1}^m \ln(1 + e^{-y_i \langle x, a_i \rangle})$ is smooth. Find the smoothness constant!

 $Part\ VI$

Let $A \in \mathbb{R}^{m \times d}$ be any matrix. Prove that $||Ax - b||_2^2$ is $\sigma_{\max}^2(A)$ -smooth. *Hint 1:* ...