Dr. Steven R. Goldman

Observatory Scientist, Stratospheric Observatory for Infrared Astronomy (SOFIA) NASA Ames Building N-232, Mountain View, CA 94043 Steven.R.Goldman@NASA.gov

PROFESSIONAL PREPARATION

SOFIA/USRA, USA Scientist	November 2021 - present
Space Telescope Science Institute, USA Postdoctoral fellow	October 2017 - November 2021
Keele University, UK PhD in Astrophysics	October 2013 - December 2017

St. Lawrence University, USA

September 2009 - July 2013

B. S. in Physics

RESEARCH ACHIEVEMENTS

(ADS Library)

Research Interests: The effects of metallicity on the dust production, wind dynamics, mass-loss mechanism, and evolution of Asymptotic Giant Branch stars and Red Supergiants.

- 6 first-author publications:
 - Goldman S. R. et al., 2022, ApJS, accepted

A Census of Thermally-Pulsing AGB stars in the Andromeda Galaxy and a First Estimate of their Contribution to the Global Dust Budget

- * An exhaustive study of the AGB population in M31 and its impact on the galaxy.
- * Presents the most-complete sample of AGB stars (and their photometry) in a metal-rich galaxy, complementing the metal-poor samples in the Magellanic Cloud galaxies.
- Goldman S. R., 2020, JOSS, 5(54), 2554

The Dusty Evolved Star Kit (DESK): A Python package for fitting the Spectral Energy Distribution of Evolved Stars. Journal of Open Source Software

- * First open-source package of its kind; includes all commonly used models and options.
- * Standardizes a common but complex and nuanced practice within evolved star science.
- * Makes SED-fitting available for reproducibility, and accessible to newcomers.
- Goldman S. R. et al., 2019, ApJ, 884, 152 AGB Stars in the Nearby Galaxy: Leo P

citations: 3

- * Discovered the most metal-poor dusty AGB stars currently known.
- * Provides the most compelling evidence that AGB stars produce dust at high redshift.
- Goldman S. R. et al., 2019, ApJ, 877, 49 citations: 17 An Infrared Census Of Dust In Nearby Galaxies With Spitzer (DUSTiNGS): V. The Periodluminosity Relation For Dusty Metal-poor AGB Stars

- * The first study of the Mira period-luminosity (PL) relation in the mid-infrared (IR).
- * Provides evidence of dust production in galaxies with primitive metal abundances, similar to those of ancient galaxies.
- * Shows that the Mira PL relation is seemingly unaffected by metallicity in the IR, supporting its use as a new avenue for determining distances.

- Goldman S. R. et al., 2018, MNRAS, 473, 3835

citations: 13

A dearth of OH/IR stars in the Small Magellanic Cloud

- * Discovered a not-yet-understood lack of maser emission in the SMC.
- * Provides critical constraints on metal-poor circumstellar environments using maser nondetections.

- Goldman S. R. et al., 2017, MNRAS, 465, 403

citations: 82

The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity

- * Provides the most compelling evidence that AGB wind speed is affected by metallicity.
- * Through new maser discoveries, increased the number of reliably-measured evolved star wind speeds outside of the galaxies from 5 to 13.
- * Developed relations and prescriptions for wind speed and mass loss rates.
- 10 co-authored publications: small international collaborations involving 25+ countries. Focused on probing evolved stellar populations spanning the UV to the radio, on short-term variability and across cosmic time.
- 15 international science talks & 5 poster presentations: including colloquia, conference contributions, and journal clubs. Awarded "Best Talk" awards at both domestic and international conferences.

AWARDED PROPOSALS (PRINCIPAL INVESTIGATOR)

2021 Hubble Space Telescope, PID: 16492 (\$65 k) 2021 SOFIA, DDT, PID: 75 0057 (\$40 k)	4 primary orbits 4 hours
2017 Very Large Telescope VISIR, PID: 099.D-0907	1 night
2017 Very Large Telescope VISIR, PID: 098.D-0272	0.5 hours
2017 Australia Telescope Compact Array Telescope, PID: C2996	92 hours
2016 Very Large Telescope XSHOOTER, PID: 097.D-0605	1.5 hours
2015 Westerbork Synthesis Radio Telescope, PID: $R14/010$	30 hours
2014 Southern African Large Telescope	5.5 hours

RECENT AWARDED PROPOSALS (CO-INVESTIGATOR)

James Webb Space Telescope (2 programs)	60 primary / 2 parallel orbits
Hubble Space Telescope (6 programs)	102 primary / 520 parallel orbits
SOFIA (2 programs)	20.25 hours
ACA (NESS)	750 hours
Astrophysics Data Analysis Program (18-ADA	P18-142) \$335 k
ALMA	5 hours

OBSERVING EXPERIENCE

SOFIA	2 nights
James Clerk Maxwell Telescope	70 hours
Very Large Telescope	1 night
Australia Telescope Compact Array	92 hours
Parkes Radio Telescope	36 hours
Arecibo L-band (ALFALFA)	20 hours

OUTREACH

Virtual Community Outreach, 2018 – Present, (USA, Canada, & Mexico)

- $* \ Skype-a-Scientist$
- * NASA's Universe of Learning
- * Independently organized

Earth and Space Observatory volunteer, 2013-2017, (Keele University, UK)

AWARDED FELLOWSHIPS

2015 E. A. Milne Traveling fellowship (£2500)

2012 National Science Foundation Summer REU fellowship

CODE DEVELOPMENT (PYTHON)

(Github Profile)

The Dusty-Evolved-Star-Kit (DESK) Asymptotic Giant Branch Spectral Energy Distribution fitting tool	2017 - present
The Baysian Extinction and Stellar Tool (BEAST) Fits photometric SEDs of stars to extract stellar and dust extinction parameters	2017 - present

ACADEMIC SERVICE AND TRAINING

STScI postdoctoral representative	2020 - present
Bystander Intervention Workshop	March 2021
DELVE conference SOC	February 2021
Hubble Space Telescope TAC Panel Support	October 2018
Low-Density Universe Lunch Organizer	2018-2019
Referee: Astrophysical Journal; Astronomy & Astrophysics	

PROFESSIONAL AFFILIATIONS

DUSTINGS: DUST In Nearby Galaxies with Spitzer

NESS: Nearby Evolved Star Survey

BEAST: The Baysian Extinction and Stellar Tool **GASKAP**: Galactic Australian SKA Pathfinder Survey

SCYLLA: A multi-headed attack on dust evolution and star formation