- 1. If x is m-bits long and y is n-bits long, the run time of the function is $O(m^*n)$. The function is called recursively n times (y/2 performs a right shift, so n bits requires n shifts to complete) and the addition operation x + 2z requires one operation for every bit in x. In summary, there are n recursive calls, each requiring m operations, for a total of $O(m^*n)$.
- 2. gcd(770,546)

Iteration	x', y' d	return value
eE(770,546)	7,-17,14	-17,24,14
eE(546,224)	-3,7,14	7,-17,14
eE(224,98)	1,-3,14	-3,7,14
eE(98,28)	0,1,14	1,-3,14
eE(28,14)	1,0,14	0,1,14
eF(14 0)		1 0 14

return y', x' - floor(a/b)*y', d

3. $7^{7293} \mod 342 \equiv (7^3)^{2431} \mod 342 \equiv (343)^{2431} \mod 342 \equiv 1^{2431} \mod 342 \equiv 1$