# Wine Quality: To Booze or not to Booze

A Study By LeRoy, Rob, and Uche

## Why we chose wine

Our group wanted to look at data that would lead to clear differences and conclusions in questions that are not always easy to answer. For this task we decided to study the effect of different variables like acidity and alcohol content on people's perception of wine quality.





#### **Data Source**

Wine Quality dataset is public available for research in the University of California, Irvine Machine Learning repository created by Paulo Cortez (Univ. Minho), Antonio Cerdeira, Fernando Almeida, Telmo Matos and Jose Reis (CVRVV) in 2009. This repository has two datasets of red and white wine samples which consists of inputs includes objective tests (e.g. PH values) and the output is based on sensory data (median of at least 3 evaluations made by wine experts). Each expert graded the wine quality between 0 (very bad) and 10 (very excellent).



### **Questions**

- → Is it possible to predict the quality of a wine before we taste it?
- → Can we use pH to predict quality?
- → What other variables might have an effect on quality?

## Data

|   | fixed acidity | volatile acidity | citric acid | residual sugar | chlorides | free sulfur dioxide | total sulfur dioxide | density | рН   | sulphates | alcohol | quality |
|---|---------------|------------------|-------------|----------------|-----------|---------------------|----------------------|---------|------|-----------|---------|---------|
| 0 | 7.4           | 0.70             | 0.00        | 1.9            | 0.076     | 11.0                | 34.0                 | 0.9978  | 3.51 | 0.56      | 9.4     | 5       |
| 1 | 7.8           | 0.88             | 0.00        | 2.6            | 0.098     | 25.0                | 67.0                 | 0.9968  | 3.20 | 0.68      | 9.8     | 5       |
| 2 | 7.8           | 0.76             | 0.04        | 2.3            | 0.092     | 15.0                | 54.0                 | 0.9970  | 3.26 | 0.65      | 9.8     | 5       |
| 3 | 11.2          | 0.28             | 0.56        | 1.9            | 0.075     | 17.0                | 60.0                 | 0.9980  | 3.16 | 0.58      | 9.8     | 6       |
| 4 | 7.4           | 0.70             | 0.00        | 1.9            | 0.076     | 11.0                | 34.0                 | 0.9978  | 3.51 | 0.56      | 9.4     | 5       |
|   |               |                  |             |                |           |                     |                      |         |      |           |         |         |

The Red wine dataset has 1599 number of observations and 12 variables

## Heat Map

| fixed acidity -        | 1.00           | -0.26           | 0.67          | 0.11          | 0.09        | -0.15          | -0.11          | 0.67      | -0.68 | 0.18        | -0.06     | 0.12      |
|------------------------|----------------|-----------------|---------------|---------------|-------------|----------------|----------------|-----------|-------|-------------|-----------|-----------|
| volatile acidity -     | -0.26          | 1.00            | -0.55         | 0.00          | 0.06        | -0.01          | 0.08           | 0.02      | 0.23  | -0.26       | -0.20     | -0.39     |
| citric acid -          | 0.67           | -0.55           | 1.00          | 0.14          | 0.20        | -0.06          | 0.04           | 0.36      | -0.54 | 0.31        | 0.11      | 0.23      |
| residual sugar -       | 0.11           | 0.00            | 0.14          | 1.00          | 0.06        | 0.19           | 0.20           | 0.36      | -0.09 | 0.01        | 0.04      | 0.01      |
| chlorides -            | 0.09           | 0.06            | 0.20          | 0.06          | 1.00        | 0.01           | 0.05           | 0.20      | -0.27 | 0.37        | -0.22     | -0.13     |
| free sulfur dioxide -  | -0.15          | -0.01           | -0.06         | 0.19          | 0.01        | 1.00           | 0.67           | -0.02     | 0.07  | 0.05        | -0.07     | -0.05     |
| total sulfur dioxide - | -0.11          | 0.08            | 0.04          | 0.20          | 0.05        | 0.67           | 1.00           | 0.07      | -0.07 | 0.04        | -0.21     | -0.19     |
| density -              | 0.67           | 0.02            | 0.36          | 0.36          | 0.20        | -0.02          | 0.07           | 1.00      | -0.34 | 0.15        | -0.50     | -0.17     |
| pH -                   | -0.68          | 0.23            | -0.54         | -0.09         | -0.27       | 0.07           | -0.07          | -0.34     | 1.00  | -0.20       | 0.21      | -0.06     |
| sulphates -            | 0.18           | -0.26           | 0.31          | 0.01          | 0.37        | 0.05           | 0.04           | 0.15      | -0.20 | 1.00        | 0.09      | 0.25      |
| alcohol -              | -0.06          | -0.20           | 0.11          | 0.04          | -0.22       | -0.07          | -0.21          | -0.50     | 0.21  | 0.09        | 1.00      | 0.48      |
| quality -              | 0.12           | -0.39           | 0.23          | 0.01          | -0.13       | -0.05          | -0.19          | -0.17     | -0.06 | 0.25        | 0.48      | 1.00      |
|                        | ixed acidity - | atile acidity - | citric acid - | idual sugar – | chlorides - | lfur dioxide - | lfur dioxide - | density - | 표     | sulphates - | alcohol - | quality - |

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

- -0.6

## pH Against Quality



## Box Plot



#### Histogram of the Red wine Predictors





#### Red wine predictors before Boxcox



#### Red wine predictors after Boxcox





#### **Results**

- → Through testing we found that certain variables can help predict quality.
- → pH can be used to predict quality in that there is an inverse relationship.
- → Best variable to measure quality with and why its sulfur dioxide.



## Recommendations and Regrets