רגרסיה ומודלים סטטיסטיים- תרגיל 2 תשפייה

שאלה 1- אלגברה לינארית:

 $tr(A)\coloneqq \sum_{i=1}^n A_{ii}:$ א. יהיו $A,B\in R^{n\times n}$ א. יהיו או הפריכו את התכונות הבאות הפריכו או הפריכו את התכונות הבאות

$$.(AB)^T = B^T A^T$$
(1

$$(A+B)^T = A^T + B^T$$
(2)

$$tr(AB) = tr(A)tr(B)$$
 (3

$$tr(AB) = tr(BA)$$
 (4

$$tr(A+B) = tr(A) + tr(B)$$
 (5)

: אם A,B הפיכות

$$(AB)^{-1} = B^{-1}A^{-1}$$
 (6

$$(A+B)^{-1} = A^{-1} + B^{-1}$$
 (7)

ב. הוכיחו כי $Ker(A)=\{v|v\in R^n, \exists v\in R^n|\ Av=w\}$ ו- $Ker(A)=\{v|v\in R^n, Av=0\}$ הם תתי מרחבים לינאריים.

 $A \in R^{n \times p}$ ג. עבור $A \in R^{n \times p}$ הוכיחו כי

שאלה 2- מטריצת הטלה:

 $A=A^2$ מטריצה איידמפוטנטית היא מטריצה $A\in R^{n imes n}$ שדרגתה איידמפוטנטית מטריצה

מטריצה סימטרית ואיידמפוטנטית נקראת מטריצת הטלה אורתוגונלית.

- א. הוכיחו כי העייע של מטריצת הטלה הם 1, בריבוי כדרגת המטריצה, ו-0 בריבוי השווה למימד של גרעין המטריצה.
- ב. תהי P_X מטריצה מדרגה מלאה ונגדיר $X \in R^{n \times p}$. הראו כי $X \in R^{n \times p}$ היא מטריצת מטריצה למרחב הנפרש על ידי העמודות של X. כלומר :

 $P_X v \in IM(X): v \in \mathbb{R}^n$ סימטרית, איידמפוטנטית ומתקיים שלכל P_X

 $.trace(P_X)$ ג. מצאו את

שאלה 3- יישומים של ליכסון אורתוגונלי:

<u>חלק 1</u>

.תהי לשהי מטריצה $A \in \mathbb{R}^{n \times p}$

א. הראו של- A^TA ול- A^TA יש את אותם העיע. (תזכורת בתרגיל הקודם הוכחתם שהם גם אי שליליים).

ב. השתמשו בכך כדי להראות שניתן לכתוב כל מטריצה $A=USV^T$ עבור עבור U ו-V מטריצות ריבועיות מהממדים ב. השתמשו בכך כדי להראות שניתן לכתוב כל של- $S_{ij}=S_{ji}=0$ וכן $S_{ii}=S_{ji}=0$ פירוק זה נקראה פירוק ה- $S_{ij}=S_{ij}=0$ של $S_{ij}=S_{ij}=0$

: הדרכה

- אי. מדוע היא המתאימה. איז הערים, בחרו היא פי הפירוק הזה? כעת לפי הפירוק הזה? מדוע את המדע מדוע מדוע מדוע היא הפירוק הזה? כעת אורתוגונלית?
 - במונחי איברי S במונחי אלו איברי $U\Lambda U^T=USV^T(USV^T)^T$ כדי לקבל בכך וכתבו $I=V^TV$ מי אלו איברי $I=V^TV$ מי אלו איברי Λ אי שליליים.
- AV=AVבאמצעות העמודה ה-S ואיברי A , V של iה העמודה של Uשל iה העמודה ה-עמודה איך ניתן לבטא מין ואיברי A . A את הפירוק של US

אם אתם משתמשים בהדרכה עליכם לענות על השאלות בדרך.

חלק 2

: נגדיר מטריצה $X \in R^{n \times p}$ נגדיר

הגדרה ראשונה:¹

$$PC_{1}^{var} = \underset{||w||=1}{\operatorname{argmax}} \sum_{i=1}^{n} |w^{T}x_{i}|^{2} = \underset{||w||=1}{\operatorname{argmax}} ||Xw||^{2} = \underset{w \in R^{p}}{\operatorname{argmax}} w^{T}X^{T}Xw$$

הגדרה שניה - שגיאת ריבועים פחותים מינימאלית

$$PC_1^{LS} = \underset{\substack{w \in \mathbb{R}^p \\ \|w\|_2 = 1}}{\operatorname{arg \, min}} \sum_{i=1}^n \operatorname{dist}(x_i, w)^2,$$

כאשר

$$dist(x_i, w) = ||x_i - P_w(x_i)||_2$$

w ו על ידי הוקטור על ידי המרחב המרחב על על x על הנק' של האורתוגונלי של האורתוגונלי של הנק' א

מהפירוק של מהפירוק הראשונה ע
וUש- של ש- אין פאשר פאטר באשר ע- אין ש- אין ש- אין מהפירוק מהפירוק מהפירוק מהפירוק מהפירוק אין אין מהפירוק מהפירוק מהפירוק אין אין מהפירוק מהפירו

מתקיים $\|w\|_2=1$ א כך שw=1 מתקיים ביר כל וקטור ש

$$\sum_{i=1}^{n} \operatorname{dist}(x_i, w)^2 = ||X||_{F}^2 - \sum_{i=1}^{n} |w^T x_i|^2.$$

והסיקו כי $PC_1^{var} = PC_1^{LS}$. (הוא נקרא "המרכיב הראשי הראשון" של A, והתהליך למציאתו נקרא PCA עליו תרחיבו בהמשך התואר).

 $^{^{1}}$ בהמשך נראה שתחת הנחות מסויימות, מדובר בוקטור המנורמל ששונותו היא הגבוהה ביותר מבין כל הוקטורים המכפילים מימין את מטריצת הנתונים.

הערה בירוק ה-SVD שימושי מאוד בסטטיסטיקה, עיבוד תמונה ולמידת מכונה, ואף בבעיות רגרסיה כאשר עמודות X תלויות לינארית.

תוכלו לקרוא על חלק מהשימושים <u>כאן</u> ו-<u>כאן</u>.

שאלה 4- הקדמה למודל הלינארי

יהי Y משתנה מקרי כלשהו עם תוחלת ושונות סופיים.

- $M(a) = \mathrm{E}[(\mathrm{Y-a})^2]$ א. נגדיר את הפונקציה $\widehat{a} = \mathrm{E}[\mathrm{Y}]$ מקבלת מינימום בערך $\widehat{a} = \mathrm{E}[\mathrm{Y}]$
- גגדיר f הם משתנים מקריים בעלי תוחלות ושונויות סופיות. לכל פונקציה Y גגדיר MSE הטיק ש-MSE היעזרו בסעיף אי כדי להסיק ש- $\widehat{\mathrm{MSE}}=\mathrm{E}[(\mathrm{Y-f}(\mathrm{x}))^2]$. $\widehat{\mathrm{f(x)}}=\mathrm{E}[\mathrm{Y}|\mathrm{X}=\mathrm{x}]$

<u>: הדרכה</u>

– כאשר מתקיים MSE = $\mathrm{E}[\mathrm{g}(\mathrm{x})]$ – השתמשו בנוסחת התוחלת השלמה וכתבו $\mathrm{g}(\mathrm{x})=\mathrm{E}[(\mathrm{Y}\text{-}\mathrm{f}(\mathrm{x}))^2|\mathrm{X}=\mathrm{x}]$ והפעילו את סעיף א' על Y בהינתן $X=\mathrm{x}$