

WHAT IS CLAIMED IS:

KO)	2
· 1	

1

1. A method for treatment of a heart comprising the steps of: forming a penetration through a muscular wall of the heart into an interior chamber thereof;

positioning a distal end of an elongated ablating device having an elongated ablating surface through the penetration; and

contacting the elongated ablating surface of the ablating device with a first selected portion of an interior surface of the muscular wall for transmural ablation thereof.

1 2

3

4

6

2. The method of claim 1 further including the step of:

manipulating the device through said penetration to strategically contact the elongated ablating surface with a second selected portion of the interior surface of the muscular wall for transmural ablation thereof.

1 2

3. The method of claim 1 further including the steps of: repeating the forming, positioning and contacting steps to form a plurality of strategically positioned lesions.

3

1

2

4. The method of claim 3 wherein,

3

the lesions are formed to create a predetermined conduction pathway in the muscular wall.

1

2

2

3

5. The method of claim 1 wherein, the interior chamber is selected from a right atrium and a left atrium.

1

6. The method of claim 1 wherein,

the ablating surface is disposed at an angle of at most about 90 degrees relative to the longitudinal axis of the shaft.

1

7. The method of claim 1 further including the step of:

forming a hemostatic seal between the device and the penetration to inhibit blood loss through the penetration.

. 1	8. The meth	od of claim 7 wherein:	
2	the seal forming step is carried out by placing a purse-string suture in the		
3	muscular wall of the hea	art around the penetration.	
1	9. The meth	nod of claim 1 wherein,	
2	the heart	remains beating throughout the forming, positioning, and	
3	contacting steps.		
1	10. The meth	nod of claim 1 further including the step of:	
2	arresting	the patient's heart.	
1	11. The meth	nod of claim/10 wherein,	
2	the arresting step is performed by endovascularly occluding the ascending		
3	aorta.		
1	12. The meth	nod of claim 1 wherein,	
2	the ablating devi	ce is a radiofrequency probe.	
1	13. The meth	od of claim 1 wherein,	
2	the ablating devi	ce is a laser probe.	
1	14. The meth	nod of claim 1 wherein,	
2	the ablating devi	ce is a microwave probe.	
1	15. The meth	nod of claim 1 wherein,	
2	the ablating devi	ce is a fluid delivery probe.	
1	16. A method	d for ablating medically refractory atrial fibrillation of the	
2	heart comprising the ste	ps of:	
3	forming a penetration through a wall of the heart;		
4	positioning a distal end of an ablating device having an elongated ablating		
5	surface through the pene	etration;	
6	forming a hemostatic seal between the ablating device and the penetration t		
7	inhibit blood loss therethrough;		

contacting the elongated ablating surface with at least one selected portion of an interior surface of the heart for transmural ablation thereof to form at least one elongated transmural lesion.

- 17. The method of claim 16, further comprising the step of:
- repeating the forming, positioning, and contacting steps to form a plurality of lesions, the plurality of lesions cooperating to generally form a conduction pathway between the sinoatrial node and the atrioventricular node.
- 1 18. The method of claim 16 wherein,
 2 the interior chamber is selected from a right atrium and a left atrium.
 - 19. The method of claim 16, wherein at least one hemostatic seal is formed by tightening a purse-string suture in the heart wall around the respective penetration.
 - 20. A system for transmurally ablating heart tissue in a body cavity surrounded by a chest wall comprising:

a probe having an elongated shaft positionable through the chest wall and into a penetration extending through a wall of the patient's heart, said shaft having a substantially elongated ablating surface proximate a distal end thereof for manipulative contact with at least one selected surface of the wall of the heart for transmural ablation thereof; and

a sealing device fixable to the heart tissue around said penetration for forming a hemostatic seal around the shaft and the transmural penetration to inhibit blood loss therebetween.

add Bi