1. Is (U,\subseteq) a lattice?

A **lattice** is a partially ordered set in which every pair of elements has both a **least upper bound** (join) and a **greatest lower bound** (meet). In the context of sets ordered by inclusion, the join is the **union** and the meet is the **intersection**.

Let $A,B\in U$. There are three cases to consider:

- 1. Both A and B are finite.
 - Union: $A \cup B$ is finite.
 - Intersection: $A \cap B$ is finite.
 - Conclusion: Both $A \cup B$ and $A \cap B$ belong to U .
- 2. One is finite and the other is co-finite.
 - Without loss of generality, suppose A is finite and $B=\mathbb{N}\setminus F$ is co-finite (with F finite).
 - Union: $A \cup B = (\mathbb{N} \setminus F) \cup A$. Since A is finite, adding it to a co-finite set still gives a co-finite set.
 - Intersection: $A \cap B$ is a subset of A (hence finite).
 - Conclusion: Both $A \cup B$ and $A \cap B$ are in U.
- 3. Both A and B are co-finite.
 - Write $A=\mathbb{N}\setminus F$ and $B=\mathbb{N}\setminus G$ for finite sets F and G.
 - Intersection:

$$A\cap B=(\mathbb{N}\setminus F)\cap (\mathbb{N}\setminus G)=\mathbb{N}\setminus (F\cup G),$$

and since $F \cup G$ is finite, $A \cap B$ is co-finite.

Union:

$$A \cup B = (\mathbb{N} \setminus F) \cup (\mathbb{N} \setminus G) = \mathbb{N} \setminus (F \cap G),$$

and $F\cap G$ is finite, so $A\cup B$ is co-finite.

• Conclusion: Both $A \cup B$ and $A \cap B$ belong to U.

Since in every case the union and intersection of any two elements in U remain in U, every pair of elements in U has a join and a meet. Therefore, (U,\subseteq) is a lattice.

2. Is (U,\subseteq) bounded?

A poset is **bounded** if it has both a least element (often denoted \bot) and a greatest element (often denoted \top).

- Least Element: The empty set arnothing is finite. Thus, $arnothing \in U$ and for every $X \in U$, we have $arnothing \subseteq X$.
- Greatest Element: The whole set $\mathbb N$ is co-finite because

$$\mathbb{N} = \mathbb{N} \setminus \emptyset$$
,

and arnothing is finite. Thus, $\mathbb{N}\in U$ and for every $X\in U$, we have $X\subseteq \mathbb{N}$.

Since both arnothing and $\mathbb N$ are in U and serve as the minimum and maximum elements respectively, (U,\subseteq) is bounded.

3. Is (U,\subseteq) complete?

A poset is **complete** if every subset (not just every pair of elements) has a supremum (least upper bound) and an infimum (greatest lower bound) within the poset.

While we have shown that every pair of elements in U has a join and meet, completeness is a much stronger property. Let's examine a counterexample.

Counterexample: Consider the collection

$$\mathcal{S}=ig\{\{2n\}\mid n\in\mathbb{N}ig\},$$

i.e. the collection of all singleton sets containing even numbers. Note that each $\{2n\}$ is finite, so $\{2n\}\in U$ for every n.

Supremum (Union):

$$igcup_{n\in\mathbb{N}}\{2n\}=\{2,4,6,\dots\},$$

which is the set of all even numbers.

Analysis of the union:

- The set of even numbers is infinite.
- Its complement, the set of odd numbers, is also infinite.
- Therefore, the set of even numbers is neither finite nor co-finite.

Since the union $\{2,4,6,\dots\}$ does **not** belong to U, the supremum of ${\mathcal S}$ does not exist in U.

Because we have found a subset of U that does not have a supremum (and a similar issue could arise for the infimum of other subsets), (U,\subseteq) is not complete.

A **co-finite set** (in a given universal set, say $\mathbb N$ in our context) is a set whose complement is finite. In other words, if $A\subseteq \mathbb N$ is co-finite, then the set $\mathbb N\setminus A$ contains only finitely many elements.

For example:

- In $\mathbb N$, the set $\mathbb N\setminus\{1,2,3\}$ is co-finite because its complement $\{1,2,3\}$ is finite.
- Conversely, a set like the set of even numbers is not co-finite in $\mathbb N$ because its complement (the set of odd numbers) is infinite.