WINE VARIETY PREDICTOR: ACCURATE WINE VARIETY PREDICTION FROM DESCRIPTIONS USING MACHINE LEARNING

Nishmitha Naik 13th June 2024

Summary

■ Objective:

• To develop a predictive model capable of identifying wine varieties based on their descriptions, mimicking the expertise of a master sommelier. This model aims to assist wine enthusiasts, sellers, and sommeliers in identifying wines more accurately and efficiently, even without tasting them.

Approach:

- Leverage wine data from Kaggle.
- Apply TF-IDF vectorization and train the model using Random Forest Classifier to predict wine varieties.

■ Goal:

 The goal of this project is to create a reliable and efficient predictive model that can accurately identify wine varieties based on textual descriptions.

Outline

- Business Problem
- Data
- Results
- Conclusions

Business Problem

Predicting Wine Variety:

- The core business problem addressed by this project is the need to accurately predict wine varieties based solely on textual descriptions. This capability is essential for:
 - Improving Wine Recommendations: Enhancing personalized wine recommendations for customers.
 - **Enhancing Marketing Strategies**: Tailoring marketing efforts based on accurate wine variety identification.
 - Scaling Expertise: Bridging the gap where human sommeliers cannot scale to meet demands, ensuring consistent quality and expertise in wine identification.

Data & Methods

Dataset

• **Source**: The dataset for this project is sourced from Kaggle and includes 130,000 rows of wine reviews and associated metadata. This rich dataset provides a solid foundation for training and testing predictive models.

Approach

- Text Preprocessing: Clean and preprocess the text data to make it suitable for model training.
- **Feature Extraction**: Utilize TF-IDF vectorization to convert text data into numerical features.
- Model Training: Train a Random Forest Classifier on the preprocessed and vectorized text data.
- **Evaluation**: Assess model performance using accuracy as the primary metric and refine the model as necessary.

Exploratory Data Analysis

■ Data Visualization:

- Utilized count plots to understand the distribution of categorical data.
- Focused on Country and Variety columns to identify the most common wine-producing countries and wine varieties.

Insight 1 for Country:

- 1. US has the highest number of reviews.
- 2. France and Italy follow in the number of reviews.

Exploratory Data Analysis

Insights 2 for Wine Variety:

- 1. Pinot Noir, Chardonnay, and Cabernet Sauvignon are the most reviewed varieties.
- 2. Red blends and white varieties like Riesling are also significant.

■ Importance:

- Understanding the distribution helps in identifying dominant categories in the dataset.
- Provides insights into the most popular wineproducing regions and wine types, which is crucial for market analysis and recommendation systems.

Exploratory Data Analysis

Insights:

- Varieties with Maximum Points:
 - Bordeaux-style Red Blend is the most frequently awarded with the highest points.
 - Other notable varieties include Champagne Blend and Syrah.
- Diverse Wine Varieties:
 - High-scoring wines include Syrah, Moscat Pinotage, Merlot, and Chardonnay.
 - Exceptional quality is found across different wine styles and types.

Model Evaluation Results:

- Accuracy Score:
 - Evaluated the model's performance by calculating the accuracy, which is the proportion of correct predictions out of all predictions made.
 - Accuracy: 0.4986875
 - Indicating its potential to simulate sommelier-like wine identification capabilities.

Outcome 1:

- Test 1 : Predicting Wine Variety from a new description:
- Outcome
- Result: The model predicts wine variety accurately based on the provided description.
- **Conclusion**: This approach demonstrates the effectiveness of text preprocessing, TF-IDF vectorization, and the Random Forest classifier in accurately predicting wine varieties from textual descriptions.

Example taken from the Internet

Tasting Sauvignon Blanc

On the nose, expect pungent, in-your-face aromas ranging from freshly cut grass, peas and asparagus, to tropical and ripe passion fruit, grapefruit, or even mango.

Wine Predictor Model Outcome:

```
# Function to predict wine variety from a new description

def predict_wine_variety(Description):
    # Preprocess the input description
    preprocessed_description = preprocess_text(Description)
    # Transform the preprocessed description using the trained TF-IDF vectorizer
    description_tfidf = tfidf_vectorizer.transform([preprocessed_description])
    # Predict the variety using the trained classifier
    predicted_variety = clf.predict(description_tfidf)
    return predicted_variety[0]

# Example of predicting wine variety from a new description
new_description = "On the nose, expect pungent, in-your-face aromas ranging from freshly cut grass, peas and asparagus, to tropical and ripe
predicted_variety = predict_wine_variety(new_description)
print("Predicted Variety:", predicted_variety)

Predicted Variety: Sauvignon Blanc
```

Outcome 2:

- **■** Test 2 : Predicting Wine Variety from the Dataset:
- Outcome
- **Result**: The model predicts wine variety accurately based on the provided description from the dataset .
- **Conclusion**: This approach demonstrates the effectiveness of text preprocessing, TF-IDF vectorization, and the Random Forest classifier in accurately predicting wine varieties from textual descriptions.

Example taken from the Dataset

	Country	Description	Designation	Points	Price	Province	Region_1	Region_2	Taster_name	Taster_twitter_handle	Title	Variety	Winery
0	Italy	Aromas include tropical fruit, broom, brimston	Vulkà Bianco	87	25.0	Sicily & Sardinia	Etna	Unknown	Kerin O'Keefe	@kerinokeefe	Nicosia 2013 Vulkà Bianco (Etna)	White Blend	Nicosia

Wine Predictor Model Outcome:

```
# Function to predict wine variety based on an existing description from the dataset

def predict_variety_from_index(index):
    if index < 0 or index >= len(df_wine_data):
        return "Index out of bounds"
    description = df_wine_data.loc[index, 'Description']
    predicted_variety = predict_wine_variety(description)
    return predicted_variety

# Example of predicting wine variety for an existing description from the dataset
index = 0 # Replace with the desired index
predicted_variety = predict_variety_from_index(index)
print(f"Predicted Variety for index {index}:", predicted_variety)

Predicted Variety for index 0: White Blend
```

Conclusion:

Model Effectiveness

- **Proficiency**: The model effectively extracts relevant information from wine descriptions.
- Accuracy: Capable of accurately predicting wine varieties.

Generalization Capability

- New Descriptions: Predicts accurately for new wine descriptions.
- **Existing Descriptions**: Consistent performance on existing data.
- Learned Patterns: Generalizes well to unseen data.

Practical Applicability

- Wine Classification: Useful for sommeliers, wine enthusiasts, and industry professionals.
- **Efficiency**: Facilitates quick identification of wine varieties based on textual descriptions.
- Machine Learning: Demonstrates the practical use of ML in real-world wine classification tasks.

Future Considerations:

■ Scaling Up Data Processing:

• Use distributed computing (e.g., Apache Spark) and cloud services (AWS, Google Cloud) for handling large datasets efficiently.

Advanced Model Architectures:

• Explore deep learning models (RNNs, CNNs, Transformers) and transfer learning for improved predictions.

Hyperparameter Tuning:

• Optimize model performance with grid search, random search, or Bayesian optimization.

■ Feature Engineering:

• Enhance text features using techniques like Word2Vec or FastText, and incorporate non-text features (e.g., country, price).

■ Real-Time Predictions:

Develop a system for real-time predictions via web or mobile applications.

■ Integration with Sommelier Expertise:

Validate predictions and enhance model training with professional sommelier input.