Übungsblatt 22 zur Homologischen Algebra II

Aufgabe 1. Von einem Erzeuger aufgespannte Unterkategorie

Sei X ein Objekt einer abelschen Kategorie \mathcal{A} . Sei $\langle X \rangle \subseteq \mathcal{A}$ die volle Unterkategorie aller direkten Summen direkter Summanden von X. Diese Unterkategorie wird additiv.

- a) Sei $\operatorname{Ext}_{\mathcal{A}}^i(X,X)=0$ für alle i>0. Zeige, dass der kanonische Funktor $K^b(\langle X\rangle)\to D^b(\mathcal{A})$ volltreu ist.
- b) Gelte außerdem, dass jedes Objekt aus \mathcal{A} eine endliche Auflösung durch Objekte aus $\langle X \rangle$ besitzt. Zeige, dass der Funktor aus a) dann sogar eine Äquivalenz ist.

Aufgabe 2. Auflösungen unbeschränkter Komplexe

Eine projektive Linksauflösung eines Komplexes K^{\bullet} ist ein Komplex P^{\bullet} aus Projektiven zusammen mit einem Quasiisomorphismus $P^{\bullet} \to K^{\bullet}$. Zeige, dass unbeschränkte Komplexe auch bis auf Homotopieäquivalenz nicht unbedingt eindeutige projektive (ihrerseits unbeschränkte) Linksauflösungen besitzen müssen.

Tipp: Zeige, dass der Komplex $P^{\bullet}: \cdots \xrightarrow{2} \mathbb{Z}/(4) \xrightarrow{2} \cdots$ abelscher Gruppen eine projektive Linksauflösung des Nullkomplexes ist, aber nicht homotopieäquivalent zum Nullkomplex ist.

Aufgabe 3. Kategorielle Charakterisierung von Endlichkeitseigenschaften

a) Zeige, dass ein A-Modul M genau dann endlich erzeugt ist, wenn der Funktor $\operatorname{Hom}(M,_):\operatorname{Mod}(A)\to\operatorname{Set}$ mit filtrierten Kolimiten von Monomorphismen vertauscht, wenn also für jedes filtrierte Diagramm $(V_i)_i$, in der die Übergangsabbildungen $V_i\to V_j$ alle injektiv sind, folgende kanonische Abbildung bijektiv ist.

$$\operatorname{colim}_i \operatorname{Hom}(M, V_i) \longrightarrow \operatorname{Hom}(M, \operatorname{colim}_i V_i)$$

b) Zeige, dass ein A-Modul M genau dann endlich präsentiert ist, wenn der Funktor $\text{Hom}(M,_)$ mit beliebigen filtrierten Kolimiten vertauscht.

Aufgabe 4. Interpretation der zweiten Ext-Gruppen

a) Seien Objekte $X \hookrightarrow Y \hookrightarrow Z$ in einer abelschen Kategorie gegeben. Dann gibt es die kanonische exakte Sequenz

$$\gamma: 0 \longrightarrow X \longrightarrow Y \longrightarrow Z/X \longrightarrow Z/Y \longrightarrow 0.$$

Zeige, dass $\gamma = \gamma_1 \gamma_2 \in \operatorname{Ext}^2(Z/Y, X)$, wobei $\gamma_1 \in \operatorname{Ext}^1(Y/X, X)$ und $\gamma_2 \in \operatorname{Ext}^1(Z/Y, Y/X)$ zu folgenden kurzen exakten Sequenzen gehören.

$$\gamma_1: 0 \to X \to Y \to Y/X \to 0$$
 $\gamma_2: 0 \to Y/X \to Z/X \to Z/Y \to 0$

- b) Zeige weiter, dass $\gamma = 0 \in \text{Ext}^2(Z/Y, X)$.
- c) Zeige die Umkehrung: Gilt für Elemente $\gamma_1 \in \operatorname{Ext}^1(B,C)$ und $\gamma_2 \in \operatorname{Ext}^1(A,B)$ dass $\gamma_1 \gamma_2 = 0 \in \operatorname{Ext}^1(A,C)$, so gibt es ein Objekt Z und Unterobjekte $X \hookrightarrow Y \hookrightarrow Z$, sodass $A \cong Z/Y$, $B \cong Y/X$, $C \cong X$ und sodass unter diesen Isomorphismen γ_1 und γ_2 von der Form wie in a) sind.

 ${\bf Aufgabe}~{\bf 5.}~Noch~eine~weitere~Aufgabe$

XXX