Introduction to Hidden Markov Models (HMMs)

Dr. Vianey Leos Barajas -- University of Toronto
Sofia Ruiz Suarez -- INIBIOMA-CONICET/Universidad Nacional de Rosario

RIIAA

MEETING ON ARTIFICIAL INTELLIGENCE AND ITS APPLICATIONS

25-27 August 2021

Hidden Markov Models for Time Series

A **hidden Markov model (HMM)** is used to model data collected over time (or in sequence) where we can make two key assumptions:

- a set of N different patterns manifest in the data
- there is persistence in the pattern over time (or sequence)

Example:

Where have HMMs been used?

Finance

market regimes

Medicine

disease progression

Ecology

animal movement

capture recapture

General Pattern Recognition

speech recognition

human movement

Hidden Markov Models (HMMs)

HMMs: A doubly stochastic process composed of an

observation process: $X_{t=1}^T$ and a state process: $C_{t=1}^T$

where the state process $C_{t=1}^T$ is taken to be a Markov chain

Data Types: *Observations + States*

$X_{t=1}^T$ can be:

- univariate
- multivariate
- continuous
- discrete
- measured with error

C_{t-1}^T is taken to be:

- integer-valued (1, 2, 3,....)

Discrete-time HMM: $X_{t=1}^{T}$ is assumed to be observed regularly over time

Finite-state HMM: $C_{t=1}^T$ can take on a finite set of integer values

Components of an HMM

A basic (discrete-time, finite-state) HMM is fully specified by 4 components:

Mathematical Description:

Number of states:

 $N \in \mathbb{N}$

State-dependent distributions:

 $\{f(X_t|C_t=n)\}_{n=1}^N$

Transition probability matrix (t.p.m.):

 $\Gamma_{i,j} = ext{Pr}\left(C_t = j | C_{t-1} = i
ight) \quad ext{for } i,j \in \{1,\dots,N\}$

Initial state distribution:

 $\delta_i = \Pr(C_1 = i) \quad ext{for } i \in \{1, \dots, N\}$

Components of an HMM (cont.)

General Interpretation

Number of states

<u>Translation</u>: Number of patterns

State-dependent distributions:

<u>Translation</u>: Distribution of

observations within each pattern

Transition probability matrix

<u>Translation</u>: How the patterns evolve over time

Initial state distribution

<u>Translation</u>: What pattern occurred at the first time point?

State dwell time distribution

As the state process is taken to be a Markov chain, that means that there is an expected amount of time a state will 'last' until it switches to another state process over time.

$$d_n \sim Geometric(1-\Gamma_{nn})$$

The expected number of times that a state will be exhibited over time before there is a switch is $E(d_n) = 1/(1-\Gamma_{nn})$

State-dependent distributions:

$$f(X_t|C_t=n) \sim N(\mu_n,\sigma_n) \quad ext{for } n \in \{1,2,\ldots,N\} \ \{\mu_1=0,\sigma_1=0.3\} \{\mu_2=2,\sigma_2=1\} \{\mu_3=5,\sigma_3=2\}$$

Transition probability matrix:

$$\mathbf{\Gamma} = \begin{bmatrix} .8 & 0.1 & 0.1 \\ 0.2 & 0.7 & 0.1 \\ 0.05 & 0.35 & 0.6 \end{bmatrix}$$

Initial state distribution:

$$\delta = [1/3, 1/3, 1/3]$$

Histogram of the Simulated Data Set

How to simulate data from an N-state HMM

- 1. Sample C_1 from the initial state distribution $\boldsymbol{\delta}$
- 2. Given $C_1=i_1$, sample C_2 using Γ_i ,
- 3. Repeat step 2 for C_3, \ldots, C_T
- 4. Given $\{C_1=i_1,C_2=i_2,\ldots,C_T=i_T\}$, for $t=1,\ldots,T$ simulate from $f(X_t|C_t=i_t)$

Simulation in R