Class 9: Halloween Mini-Project

Aileen Andrade (PID A17033749)

2025-02-04

Table of contents

Importing candy data	1
Time to add some useful color)
Taking a look at pricepercent	2
5. Exploring the correlation structure	4
6. Principal Component Analysis	6

Today we will examine data from 538 on common Halloween candy. In particular, we will use ggplot, dplyr, and PCA to make sense of this multivariable dataset.

Importing candy data

```
candy <- read.csv("candy-data.csv", row.names=1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanut	tyalmondy	nouga	t crispe	dricewafer
100 Grand		1	0	1		0		0	1
3 Musketeers		1	0	0		0		1	0
One dime		0	0	0		0		0	0
One quarter		0	0	0		0		0	0
Air Heads		0	1	0		0		0	0
Almond Joy		1	0	0		1		0	0
	hard	bar j	pluribus	sugarpe	ercent	priceper	cent w	npercen	t
100 Grand	0	1	C)	0.732	0	.860	66.9717	3
3 Musketeers	0	1	C)	0.604	0	.511	67.6029	4
One dime	0	0	C)	0.011	0	.116	32.2610	9

One quarter	0	0	0	0.011	0.511	46.11650
Air Heads	0	0	0	0.906	0.511	52.34146
Almond Joy	0	1	0	0.465	0.767	50.34755

Q1. How many different candy types are in this dataset?

nrow(candy)

[1] 85

Q2. How many fruity candy types are in the dataset?

sum(candy\$fruity)

[1] 38

How many chocolate candy are there in the dataset?

sum(candy\$chocolate)

[1] 37

Q3. What is your favorite candy in the dataset and what is it's winpercent value?

candy["Nestle Crunch",]\$winpercent

[1] 66.47068

Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat",]$winpercent
```

[1] 76.7686

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bars",]$winpercent
```

[1] 49.6535

Skimr package

library(skimr)

skim(candy)

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency: numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcom	olete_ra	atmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

N.B The winpercent column is on a different scale than the others (0-100% rather than 0-1). I will need to scale this dataset before analysis like PCA.

Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}\$? It represents that it does not contain chocolate.

Q8. Plot a histogram of winpercent values

Q9. Is the distribution of winpercent values symmetrical?

No.

Q10. Is the center of the distribution above or below 50%?

summary(candy\$winpercent)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 22.45 39.14 47.83 50.32 59.86 84.18
```

Just below 50.

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

STEP 1: Find all "chocolate" candy STEP 2: Find their "winpercent" values STEP 3: Summarize these values

STEP 4: Find all "fruity" candy STEP 5: Find their "winpercent" values STEP 6: Summarize these values

STEP 7: Compare the two summary values

1. Find all chocolate candy

```
choc.inds <- candy$chocolate == 1</pre>
```

2. Find their winpercent values

```
choc.win <- candy[choc.inds,]$winpercent</pre>
```

3. Summarize these values

```
choc.mean <- mean(choc.win)</pre>
```

4. Find all fruity candy

```
fruit.inds <- candy$fruity == 1</pre>
```

5. Find their winpercent values

```
fruit.win <- candy[fruit.inds,]$winpercent</pre>
```

6. Summarize these values

```
fruit.mean <- mean(fruit.win)</pre>
```

7. Compare the two

Clearly chocolate has a higher mean winpercent than fruit candy

```
choc.mean
```

[1] 60.92153

fruit.mean

[1] 44.11974

Q12. Is this difference statistically significant?

Yes.

```
t.test(choc.win, fruit.win)
    Welch Two Sample t-test
data: choc.win and fruit.win
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 11.44563 22.15795
sample estimates:
mean of x mean of y
 60.92153 44.11974
     Q13. What are the five least liked candy types in this set?
# Not that useful - It just sorts the values
sort( candy$winpercent )
 [1] 22.44534 23.41782 24.52499 27.30386 28.12744 29.70369 32.23100 32.26109
 [9] 33.43755 34.15896 34.51768 34.57899 34.72200 35.29076 36.01763 37.34852
[17] 37.72234 37.88719 38.01096 38.97504 39.01190 39.14106 39.18550 39.44680
[25] 39.46056 41.26551 41.38956 41.90431 42.17877 42.27208 42.84914 43.06890
[33] 43.08892 44.37552 45.46628 45.73675 45.99583 46.11650 46.29660 46.41172
[41] 46.78335 47.17323 47.82975 48.98265 49.52411 49.65350 50.34755 51.41243
[49] 52.34146 52.82595 52.91139 54.52645 54.86111 55.06407 55.10370 55.35405
[57] 55.37545 56.49050 56.91455 57.11974 57.21925 59.23612 59.52925 59.86400
[65] 60.80070 62.28448 63.08514 64.35334 65.71629 66.47068 66.57458 66.97173
[73] 67.03763 67.60294 69.48379 70.73564 71.46505 72.88790 73.09956 73.43499
[81] 76.67378 76.76860 81.64291 81.86626 84.18029
x \leftarrow c(10, 1, 100)
order(x)
```

[1] 2 1 3

x [order(x)]

[1] 1 10 100

The order() function tells us how to arrange the elements of the input to make them sorted - i.e. how to order them

We can determine the order of winpercent to make them sorted and use that order to arrange the whole dataset.

```
ord.inds <- order(candy$winpercent)
head(candy[ord.inds,])</pre>
```

	chocolate	fruity	cara	nel j	peanutyaln	nondy n	ougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
Root Beer Barrels	0	0		0		0	0	
	crispedric	ewafer	hard	bar	pluribus	sugarp	ercent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans		0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116
Jawbusters		0	1	0	1		0.093	0.511
Root Beer Barrels		0	1	0	1		0.732	0.069
	winpercent							
Nik L Nip	22.44534	:						
Boston Baked Beans	23.41782							
Chiclets	24.52499)						
Super Bubble	27.30386	;						
Jawbusters	28.12744	:						
Root Beer Barrels	29.70369)						

Q14. What are the top 5 all time favorite candy types out of this set?

```
tail(candy[ord.inds,])
```

	chocolate	fruity	caran	nel]	peanutyalr	nondy	nougat
Reese's pieces	1	0		0		1	0
Snickers	1	0		1		1	1
Kit Kat	1	0		0		0	0
Twix	1	0		1		0	0
Reese's Miniatures	1	0		0		1	0
Reese's Peanut Butter cup	1	0		0		1	0
	crispedri	cewafer	${\tt hard}$	bar	pluribus	sugai	rpercent
Reese's pieces		0	0	0	1		0.406
Snickers		0	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Twix		1	0	1	0		0.546
Reese's Miniatures		0	0	0	0		0.034
Reese's Peanut Butter cup		0	0	0	0		0.720
	priceperce	ent win	percer	nt			
Reese's pieces	0.6	351 73	3.4349	99			
Snickers	0.6	351 76	6.6737	78			
Kit Kat	0.9	511 76	6.7686	30			
Twix	0.9	906 8:	1.6429	91			
Reese's Miniatures	0.2	279 8:	1.8662	26			
Reese's Peanut Butter cup	0.6	351 8 ⁴	4.1802	29			

top.ord.inds <- order(candy\$winpercent, decreasing = T)
head(candy[top.ord.inds,])</pre>

		£		7			
	chocolate	iruity	caran	іет	peanutyarn	nonay	nougat
Reese's Peanut Butter cup	1	0		0		1	0
Reese's Miniatures	1	0		0		1	0
Twix	1	0		1		0	0
Kit Kat	1	0		0		0	0
Snickers	1	0		1		1	1
Reese's pieces	1	0		0		1	0
	crispedrio	cewafer	hard	bar	pluribus	sugai	rpercent
Reese's Peanut Butter cup		0	0	0	0		0.720
Reese's Miniatures		0	0	0	0		0.034
Twix		1	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Snickers		0	0	1	0		0.546
Reese's pieces		0	0	0	1		0.406
	priceperce	ent winp	percer	nt			
Reese's Peanut Butter cup	0.6	351 84	1.1802	29			
Reese's Miniatures	0.2	279 81	1.8662	26			

Twix	0.906	81.64291
Kit Kat	0.511	76.76860
Snickers	0.651	76.67378
Reese's pieces	0.651	73.43499

Q15. Make a first barplot of candy ranking based on winpercent values.

```
ggplot(candy, aes(winpercent, rownames(candy))) +
  geom_col()
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col()
```


Time to add some useful color

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent), fill=chocolate) +
  geom_col()
```


We need to make our own separate color vector where we can spell out what candy is colored a particular color.

```
mycols <- rep("gray", nrow(candy))
mycols[candy$chocolate == 1] <- "chocolate"
mycols[candy$bar ==1] <- "brown"
mycols[candy$fruity ==1] <- "pink"</pre>
```

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col(fill=mycols)
```


Q17. What is the worst ranked chocolate candy?

Sixlets

Q18. What is the best ranked fruity candy?

Starburst

Taking a look at pricepercent

Make a plot of winpercent (x-axis) vs. pricepercent (y-axis)

```
ggplot(candy) +
  aes(winpercent, pricepercent, label=rownames(candy)) +
  geom_point(col=mycols) +
  geom_text()
```


To avoid the overplotting of the text labels, we can use the add on package **ggrepel**

```
ggplot(candy) +
  aes(winpercent, pricepercent, label=rownames(candy)) +
  geom_point(col=mycols) +
  geom_text_repel(max.overlaps=6) +
  theme_bw()
```

Warning: ggrepel: 69 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

Reese's Miniatures.

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

- 1. Nik L Nip (Most expensive and the least popular)
- 2. Nestle Smarties
- 3. Ring pop
- 4. Mr. Good Bar
- 5. Hershey's Milk Chocolate

5. Exploring the correlation structure

Now that we have explored the dataset a little, we will see how the variables interact with one another.

First we will use correlation and view the results with the **corrplot** package to plot a correlation matrix

cij <- cor(candy)</pre>

library(corrplot)

corrplot 0.95 loaded

corrplot(cij)

Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Fruity with chocolate, caramel, peanut/almondy, nougat, crisped rice wafer, bar, pricep ercent, and winpercent Chocolate with fruity, hard, and pluribus

Q23. Similarly, what two variables are most positively correlated?

Chocolate with caramel, peanut/almondy, nougat, crisped rice wafer, bar, price percent, and winpercent Fruity with hard, and pluribus

6. Principal Component Analysis

Let's apply PCA using the prcom() function to our candy dataset remembering to set the scale=TRUE argument.

```
pca <- prcomp(candy, scale=T)
summary(pca)</pre>
```

Importance of components:

```
PC2
                                                                       PC7
                          PC1
                                        PC3
                                                PC4
                                                       PC5
                                                               PC6
Standard deviation
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion 0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                           PC8
                                   PC9
                                          PC10
                                                  PC11
                                                          PC12
Standard deviation
                       0.74530 0.67824 0.62349 0.43974 0.39760
Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317
Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
```

```
attributes(pca)
```

```
$names
[1] "sdev"          "rotation" "center"          "scale"          "x"
$class
[1] "prcomp"
```

Let's plot our main results as our PCA "score plot"

```
ggplot(pca$x) +
aes(PC1, PC2, label=rownames(pca$x)) +
geom_point(col=mycols) +
geom_text_repel(max.overlaps=6, col=mycols)
```

Warning: ggrepel: 67 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Finally, lets look at how the original variables contribute to the PCs, starting with PC1

```
ggplot(pca$rotation) +
  aes(PC1, reorder(rownames(pca$rotation), PC1)) +
  geom_col()
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

Fruity, pluribus, and hard are contributing PC1 in the positive direction strongly. This makes sense because those attributes are all correlated with each other and are together in the positive sidee of the PCA1 axis.