COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2017

Recap

Discrete Log

Factoring

Discrete Log

Let **p** be a large integer (maybe prime)

Given $g \in \mathbb{Z}_p^*$, $a \in \mathbb{Z}$, easy to compute $g^a \mod p$. Time poly(log a, log p)

However, no known efficient ways to recover **a** from **g** and **g**^a **mod p**

Applications of Discrete Log

One-way functions

Collision resistance

- Key space = G^2 , G has prime order P
- Domain: \mathbb{Z}_{p}^{2}
- Range: **G**
- H((g,h), (x,y)) = $g^x h^y$

Blum-Micali PRG

Let
$$G=\mathbb{Z}_p^*$$

Let **g** be a generator of **G**

Let $h:G \to \{0,1\}$ be h(x) = 1 if 0 < x < (p-1)/2

Seed space: $\mathbb{Z}_{\mathbf{p}}^*$

Algorithm:

- Let \mathbf{x}_0 be seed
- For **i=0,...**
 - Let $x_{i+1} = g^{x_i} \mod p$
 - Output h(x_i)

Stronger Assumptions on Groups

Sometimes, the discrete log assumption is not enough

Instead, define stronger assumptions on groups

Computational Diffie-Hellman:

• Given (g,g^a,g^b) , compute g^{ab}

Decisional Diffie-Hellman:

• Distinguish (g,g^a,g^b,g^c) from (g,g^a,g^b,g^{ab})

Hard Problems on Groups

• Given (g,ga), compute a

CDH:

Increasing Difficulty

• Given (g,g^a,g^b) , compute g^{ab}

DDH:

• Distinguish (g,g^a,g^b,g^c) from (g,g^a,g^b,g^{ab})

Naor-Reingold PRF

Domain: **{0,1}**ⁿ

Key space: \mathbb{Z}_p^{n+1}

Range: **G**

$$F((a,b_1,b_2,...,b_n), x) = g^{ab_1^{x_1}b_2^{x_2}}...b_n^{x_n}$$

Theorem: If the discrete log assumption holds on **G**, then the Naor-Reingold PRF is secure

Integer Factorization

Given an integer **N**, factor **N** into its prime factors

Studied for centuries, presumed computationally difficult

- Grade school algorithm: O(N^{1/2})
- Much better algorithms:
 exp(C (log N)^{1/3} (log log N)^{2/3})
- However, all require super-polynomial time

One-way Functions From Factoring

$$P_{\lambda} = {\lambda-bit primes}$$

$$F: P_{\lambda}^{2} \rightarrow \{0,1\}^{2\lambda}$$

$$F(p,q) = p \times q$$

Trivial Theorem: If factoring assumption holds, then **F** is one-way

Another OWF

Fix a large integer N = pq

• Primes **p,q** random, unknown

$$F_N(x) = x^2 \mod N$$

Theorem: If the factoring assumption holds, then F is one-way: given y, computationally infeasible to compute an x such that $x^2 = y \mod N$

Chinese Remainder Theorem

Let N = pq for co-prime p,q

Let
$$\mathbf{x} \in \mathbb{Z}_{p'}$$
 $\mathbf{y} \in \mathbb{Z}_{q}$

Then there exists a unique integer $\mathbf{z} \subseteq \mathbb{Z}_{\mathbf{N}}$ such that

- $\cdot x = z \mod p$, and
- \cdot y = z mod q

Proof: $z = [py(p^{-1} \mod q) + qx(q^{-1} \mod p)] \mod N$

Chinese Remainder Theorem

Let N = pqr... for co-prime p,q,r

Let
$$\mathbf{x} \in \mathbb{Z}_{\mathbf{p'}}$$
 $\mathbf{y} \in \mathbb{Z}_{\mathbf{q'}}$ $\mathbf{w} \in \mathbb{Z}_{\mathbf{r}}$

Then there exists a unique integer $\mathbf{z} \in \mathbb{Z}_{\mathbf{N}}$ such that

- $\cdot x = z \mod p$
- \cdot y = z mod q
- \cdot w = z mod r

Proof:
$$z = [(pr...)y((pr...)^{-1} \mod q) + (qr...)x((qr...)^{-1} \mod p) + (pq...)w((pq...)^{-1} \mod r + ...] \mod N$$

Today

More constructions from factoring

One-way permutations

Hardcore bits

Collision Resistance from Factoring

Let **N=pq**, **y** a QR mod **N** Suppose **-1** is not a **QR** mod **N**

Hashing key: (N,y)

```
Domain: \{1,...,(N-1)/2\} \times \{0,1\}
Range: \{1,...,(N-1)/2\}
H( (N,y), (x,b) ): Let z = y^b x^2 \mod N
• If z \in \{1,...,(N-1)/2\}, output z
• Else, output -z \mod N \in \{1,...,(N-1)/2\}
```

Theorem: If the factoring assumption holds, **H** is collision resistant

Proof:

- Collision means $(x_0,b_0) \neq (x_1,b_1)$ s.t. $y^{b0} x_0^2 = \pm y^{b1} x_1^2 \mod N$
- If $b_0=b_1$, then $x_0\neq x_1$, but $x_0^2=\pm x_1^2 \mod N$
 - $x_0^2 = \pm x_1^2 \mod N$ not possible. Why?
 - $x_0 \neq -x_1$ since $x_0, x_1 \in \{1, ..., (N-1)/2\}$
 - GCD(x₀-x₁,N) will give factor
- If $b_0 \neq b_1$, then $(x_0/x_1)^2 = \pm y^{\pm 1} \mod N$
 - (x_0/x_1) or (x_1/x_0) is a square root of $\pm y$
 - -y case not possible. Why?

Choosing N

How to choose **N** so that **-1** is not a QR?

By CRT, need to choose **p,q** such that -1 is not a QR mod **p** or mod **q**

Fact: if $\mathbf{p} = \mathbf{3} \mod 4$, then $-\mathbf{1}$ is not a QR mod \mathbf{p}

Fact: if $p = 1 \mod 4$, then -1 is a QR mod p

Is Composite N Necessary for SQ to be hard?

Let p be a prime, and suppose $p = 3 \mod 4$

Given a QR x mod p, how to compute square root?

Hint: recall Fermat: $x^{p-1}=1 \mod p$ for all $x\neq 0$

Hint: what is $\mathbf{x}^{(p+1)/2}$ mod \mathbf{p} ?

Solving Quadratic Equations

In general, solving quadratic equations is:

- Easy over prime moduli
- As hard as factoring over composite moduli

Other Powers?

What about $x \rightarrow x^4 \mod N$? $x \rightarrow x^6 \mod N$?

The function $x \rightarrow x^3 \mod N$ appears quite different

- Suppose 3 is relatively prime to p-1 and q-1
- Then $x \rightarrow x^3 \mod p$ is injective for $x \neq 0$
 - Let a be such that 3a = 1 mod p-1
 - $(x^3)^a = x^{1+k(p-1)} = x(x^{p-1})^k = x \mod p$
- By CRT, $x \rightarrow x^3 \mod N$ is injective for $x \in \mathbb{Z}_N^*$

x³ mod N

What does injectivity mean?

Cannot base of factoring:

Adapt alg for square roots:

- Choose a random z mod N
- Compute $y = z^3 \mod N$
- Run inverter on y to get a cube root x
- Let p = GCD(z-x, N), q = N/p

RSA Problem

Given

- $\cdot N = pq$
- e such that GCD(e,p-1)=GCD(e,q-1)=1,
- y=x^e mod N for a random x

Find x

Injectivity means cannot base hardness on factoring, but still conjectured to be hard

One-way permutations

A one-way function that is also a permutation

Examples:

- The RSA function $x \rightarrow x^e \mod N$
- Almost: discrete exponentiation: $x \rightarrow g^x$

Hardcore Bits

Let **F** be a one-way function with domain **x**, range **y**

Definition: A function $h:x \rightarrow \{0,1\}$ is a "hardcore bit" for **F** if the following two distributions are computationally indistinguishable:

- (F(x), h(x)) for a random x
- (F(x), b) for a random x, b

In other words, even given F(x), hard to guess h(x)

Application: PRGs

Let **F** be a one-way permutation with hardcore bit **h**

Theorem: If h is a hc bit for F and F is a OWP, then G(x) = (F(x), h(x)) is a secure PRG

Application: PRGs

Theorem: If h is a hc bit for F and F is a OWP, then G(x) = (h(x), h(F(x)), h(F(F(x)), ...) is a secure PRG

Hybrid 0:

Hybrid 1:

Hybrid 1:

Hybrid 2:

Hybrid 2:

Hybrid 2:

Examples of Hardcore Bits

Define **lsb(x)** as the least significant bit of **x**

For $x \in Z_N$, define Half(x) as 1 iff $0 \le x < N/2$

Theorem: Let **p** be a prime, and $F: \mathbb{Z}_p^* \to \mathbb{Z}_p^*$ be $F(x) = g^x \mod p$, for some generator **g**

Half is a hardcore bit for **F** (assume **F** is one-way)

Proof Sketch

Need to show: if there is a PPT adversary that can predict **Half(x)** given **F(x)** with non-negligible advantage, then there is a PPT adversary that can compute **x** given **F(x)** with non-negligible probability

Will instead show: if there is a PPT adversary that can predict Half(x) given F(x) with certanty, then there is a PPT adversary that can compute x given F(x) with certainty

Inverter

```
Let \mathbb{R} be an adversary that predicts Half(x):

Pr[\mathbb{R}(F(x)) = Half(x)] = 1
```

Given y=F(x), do the following:

- Let $\mathbf{x'} = \mathbf{0}$
- Run $\mathbf{b}_1 \leftarrow \mathbb{R}(\mathbf{y})$
- If $\mathbf{b}_1 = \mathbf{1}$, (meaning \mathbf{x} is odd)
 - $\cdot x' += p/2,$
 - $y_1 \leftarrow (y/g^{p/2})^2 = g^{2(x-p/2)} (so x_1 \leftarrow 2(x-p/2))$
- Else (meaning x is even)
 - $y_1 \leftarrow y^2 = g^{2x} (so x_1 \leftarrow 2x)$
- Run $\mathbf{b}_2 \leftarrow \mathbb{R}(\mathbf{y}_1)$
- •

Extending to Non-perfect Adversary

Couple problems with low-advantage adversaries:

- Distribution of x_1 , ... not random, adversary not guaranteed to work on these
 - \mathbf{X}_1 is even
 - x₂ is divisible by 4
 - ...
- Extremely unlikely all **b**_i are correct
 - If any **b**_i is wrong, get completely wrong answer

Boosting Advantage?

Idea 1: run adversary multiple times

Random Self Reduction

Suppose given Dlog instance **y=g***

Have adversary that works for random Dlog instances

May not work for my particular instance

Nonetheless, want to use adversary to solve my instance

Random Self Reduction

Goal: randomize procedure that takes $y \rightarrow y'$

- From solution to y', can compute solution to y
- y' is uniformly random

Dlog random self reduction:

- Choose random Z
- Let $y' \leftarrow y \times g^z$
- Run adversary on y' to get Dlog x'
- $\cdot x = ?$

Boosting Dlog advantage

Theorem: Let \mathbb{R} be a PPT Dlog adversary with nonnegligible advantage $\mathbf{\varepsilon}$.

Then there is a PPT Dlog adversary that, for any instance **y**, outputs the Dlog with probability 1-negl

Proof

If
$$g^{x_1-z_1} = y$$
,
Output x_1-z_1

$$y = g^x$$

$$y_2 = y \times g^{z_2}$$

If
$$g^{x^2-z^2} = y$$
,
Output x_2-z_2

$$y_3 = y \times g^{z_3}$$

If
$$g^{x3-z3} = y$$
,
Output x_3-z_3

Analysis

In iteration **i**, probability \hbar outputs Dlog of **y**_i: ε

- If so, then $y \times g^{zi} = y_i = g^{xi}$, so $y = g^{xi-zi}$
- Therefore, $Pr[\mathcal{L}]$ succeeds in iter $i] = \varepsilon$

Pr[
$$\sim$$
 succeeds] = 1 - Pr[\sim fails]
= 1 - (Pr[\sim fails in iter i])[†]
= 1 - (1- ϵ)[†]

By setting
$$t = (1/\epsilon) \times \lambda$$
, success prob is $\approx 1 - e^{-\lambda} = 1$ -negl

Random Self Reduction RSA Func?

$$F(x) = x^e \mod N$$

Theorem: Let N be a product of two large primes p,q, and $F:Z_N^* \rightarrow Z_N^*$ be $F(x) = x^e \mod N$ for some e relatively prime to (p-1)(q-1)

Lsb and Half are hardcore bits for **F** (assuming RSA)

Theorem: Let N be a product of two large primes p,q, and $F:Z_N^* \rightarrow Z_N^*$ be $F(x) = x^2 \mod N$

Lsb and Half are hardcore bits for **F** (assuming factoring)

Is Half Hardcore for any OWF?

No

Proof?

- Given hardcore bit h
- Start with any OWF F, construct a OWF F' such that
 h is not hardcore for F

General HC Bits

Given any OWF **F**, can construct another OWF **F**' that has a HC bit

Yao's Method

Let **F** be a OWF with domain **{0,1}**ⁿ

Claim: $\exists i$ such that $\forall PPT A$ $Pr[A(F(x)) = x_i] < 1 - 1/2n$

Proof: otherwise, $\forall i$, $\exists A_i$ s.t. $Pr[A_i(F(x)) = x_i] \ge 1 - 1/2n$

Adversary $A(y) = A_1(y)||A_2(y)||...$ $Pr[A(F(x)) = x] \ge 1/2$

Yao's Method

Let **F** be a OWF with domain **{0,1}**ⁿ

Claim: $\exists i$ such that $\forall PPT A$ $Pr[A(F(x)) = x_i] < 1 - 1/2n$

Let
$$F'(x^{(1)},...,x^{(t)}) = (F(x^{(1)}),...,F(x^{(t)})$$

 $h(x^{(1)},...,x^{(t)}) = x^{(1)}, \oplus x^{(2)}, \oplus ... \oplus x^{(t)},$

Yao's XOR lemma \Rightarrow **h** is hardcore for **F'**

Goldreich Levin

Let **F** be a OWF with domain **{0,1}**ⁿ and range **Y**

Let
$$F':\{0,1\}^{2n} \to \{0,1\}^n \times Y$$
 be:
 $F'(r,x) = r,F(x)$

Define $h(r,x) = \langle r,x \rangle = \sum_i r_i x_i \mod 2$

Theorem (Goldreich-Levin): If **F** is one-way, then **h** is a hc bit for **F**'

Theorem (Goldreich-Levin): If **F** is one-way, then **h** is a hc bit for **F**'

Proof Sketch:

First attempt: suppose predicts <x,r> given r,F(x) with certainty

Let $e_i = 0^{i-1}10^{n-i}$

Algorithm: $x_i \leftarrow \mathbb{R} (e_i, F(x))$

Theorem (Goldreich-Levin): If **F** is one-way, then **h** is a hc bit for **F**'

Second attempt: suppose \mathbb{T} predicts $\langle x,r \rangle$ given r,F(x) with prob $3/4 + \varepsilon$

Claim: For an $\varepsilon/2$ fraction of x, \mathcal{F} predicts $\langle x,r \rangle$ given r,F(x) for a random r with prob $3/4 + \varepsilon/2$

Call such **x** "good"

For rest of proof, assume we are given a "good" x

For "good" x, \mathcal{F} predicts $\langle x,r \rangle$ given r,F(x) for a random r with prob $3/4 + \epsilon/2$

Want to perform $x_i \leftarrow \mathbb{R}(e_i, F(x))$ attack like before

• Problem: The might not work on ei

Solution: Random Self Reduction

- Choose random r
- $b_0 \leftarrow \mathbb{R}(r, F(x))$
- $b_1 \leftarrow (r \oplus e_i, F(x))$
- $Pr[x=b_0\oplus b_1] = 1/2 + \varepsilon$
- Can increase accuracy by repeating multiple times

Theorem (Goldreich-Levin): If **F** is one-way, then **h** is a hc bit for **F**'

Second attempt: suppose \mathbb{R} predicts $\langle x,r \rangle$ given r,F(x) with prob $1/2 + \varepsilon$

Can similarly define "good" x

Additional ideas required to get inverter

Summary

A hc bit for any OWF

Implies PRG from any OWP

- PRG from Dlog (Blum-Micali)
- PRG from Factoring
- PRG from RSA

Actually, can construct PRG from any OWF

Proof beyond scope of course

Next Time

OWF imply most crypto we've seen so far

• Namely, PRG → PRFs

But not everything

No collision resistance