Supplementary material for Shamoun-Baranes et al, 2016, Flap or soar? How a flight generalist responds to its aerial environment, *Phil. Trans. R. Soc. B.* doi: 10.1098/rstb.2015.0395

## Electronic supplementary tables and figures for "Flap or soar? How a flight generalist responds to its aerial environment"

**Table S1**. Definition of 10 activity classes of Lesser black-backed gulls, used to annotate tri-axial acceleration data. A 2 second segment of 20Hz tri-axial data is presented, green represents heave (z-axis), red represents surge (x-axis), blue represents sway (y-axis), the x and y axis of all figures are on the same scale and range from -1.5 - 2.5 g.

| General<br>activity | Activity<br>label | Activity description                                                    | Accelerometer characteristic and 2) additional GPS information used to distinguish behaviour                                                | Example of typical tri-axial signal      | Number of annotations |
|---------------------|-------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------|
| Flight              | Flap              | Flapping flight with regular wing beat                                  | repeated and correlated oscillations, strongest in heave                                                                                    | 10:59:55                                 | 634                   |
|                     | Exflap            | Irregular and intense wing beat, during take-off or aerial interactions | 1) chaotic pattern with very high amplitude in all directions                                                                               | 1041.21<br>1041.21<br>1041.21<br>1041.21 | 38                    |
|                     | Soar              | Flight with no wing beat, includes climbing and gliding                 | 1) gradually changing pattern, 2) distinguished from float by either speed, GPS-fixes over land, or lack of typical float GPS patterns [1]. | 12:03:27 15:43:03                        | 501                   |
|                     | Mixed             | Mixed flap-gliding                                                      | 1) combination of flap and soar characteristics within 1 second                                                                             | 17:14:23                                 | 151                   |
| Float               | Float             | Floating with the currents at sea                                       | 1) smooth undulating patterns (caused by waves), 2) typical GPS patterns [1] at sea                                                         | 10:53:18 00:41:17                        | 558                   |

| Sit-Stand              | Stationary | Sitting or standing on land or static structure at sea | 1) constant value for all 3 axes, 2) speed is close to zero.                                                 | 06:05:34 11:37:45 | 894 |
|------------------------|------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------|-----|
|                        | Boat       | Sitting or standing on a boat                          | 1) constant value for all 3 axes, 2) GPS track at sea with constant direction and constant speed (9-11 km/h) | 11:01:30 09:32:08 | 176 |
| Terrestrial locomotion | Walk       | Walking                                                | 1) typical periodic pattern of the surge (x-axis)                                                            | 03:28:40 04:15:30 | 318 |
|                        | Peck       | Walk and peck.                                         | 1) irregular active pattern 2) low speed, on land                                                            | 04:17:19 03:58:11 | 209 |
| Other                  | Other      | Activity signal that doesn't fit in the above classes. |                                                                                                              | 01:42:11          | 25  |

**Table S2.** Features that were used to classify gull activity. To reduce the full set of 37 features and establish a robust set of predictors three rounds of decision tree model fitting were implemented (see methods for further explanation). The table includes the abbreviated name, a definition of the feature and the level of model development in which the feature was included (1- inclusion in initial round, 2- inclusion in second round, 3-inclusion in third round). This resulted in a set of 14 features (selection –S, highlighted in grey) that were used to build a random forest classifier.

| Abbreviation   | Selection | n Definition                                                                                                                             |
|----------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
| mean_x         | S         | The mean of the x (surge) value over the accelerometer points in the segment.                                                            |
| mean_y         | 2         | The mean of the y (sway) value over the accelerometer points in the segment.                                                             |
| mean_z         | 1         | The mean of the z (heave) value over the accelerometer points in the segment.                                                            |
| std_x          | S         | The standard deviation of the x value over the accelerometer points in the segment.                                                      |
| std_y          | 1         | The standard deviation of the y value over the accelerometer points in the segment.                                                      |
| std_z          | S         | The standard deviation of the z value over the accelerometer points in the segment.                                                      |
| mean_pitch     | S         | The mean value of the pitch over the accelerometer points in the segment. The pitch is defined as $\arctan(\frac{x}{\sqrt{y^2+z^2}})$ in |
|                |           | degrees.                                                                                                                                 |
| std_pitch      | 2         | The standard deviation of the pitch over the accelerometer points in the segment.                                                        |
|                | 1         | The mean value of the roll over the accelerometer points in                                                                              |
| mean_roll      |           | the segment. The roll is defined as $\arctan\left(\frac{y}{\sqrt{x^2+z^2}}\right)$ in degrees.                                           |
| std_roll       | 1         | The standard deviation of the roll over the accelerometer points in the segment.                                                         |
| correlation_xy | 1         | The Pearson's correlation between the signal of x and the signal of y.                                                                   |
| correlation_yz | 1         | The Pearson's correlation between the signal of y and the signal of z.                                                                   |
| correlation_xz | 1         | The Pearson's correlation between the signal of x and the signal of z.                                                                   |
| gps_speed      | S         | The speed measured by the GPS device [m/s].                                                                                              |
| meanabsder_x   | 3         | The mean of the absolute value of the derivative of x to time.                                                                           |
| meanabsder_y   | 3         | The mean of the absolute value of the derivative of y to time.                                                                           |
| meanabsder_z   | S         | The mean of the absolute value of the derivative of z to                                                                                 |

|                     |   | time.                                                                                                      |
|---------------------|---|------------------------------------------------------------------------------------------------------------|
| noise_x             | S | Measure of the noise in x signal.                                                                          |
| noise_y             | S | Measure of the noise in y signal.                                                                          |
| noise_z             | 3 | Measure of the noise in z signal.                                                                          |
| noise/absder_x      | 3 | Noise in signal of x divided by the mean of the absolute derivative of x.                                  |
| noise/absder_y      | S | Noise in signal of y divided by the mean of the absolute derivative of y.                                  |
| noise/absder_z      | S | Noise in signal of z divided by the mean of the absolute derivative of z.                                  |
| fundfreq_x          | 2 | Frequency of the highest peak in the frequency domain of the Fourier transform of x.                       |
| fundfreq_y          | 2 | Frequency of the highest peak in the frequency domain of the Fourier transform of y.                       |
| fundfreq_z          | S | Frequency of the highest peak in the frequency domain of the Fourier transform of z.                       |
| odba                | S | Overall dynamic body acceleration [2]                                                                      |
| vedba               | 3 | Vector of dynamic body acceleration [2]                                                                    |
| fundfreqcorr_x      | 1 | Pearson correlation of signal x with a generated sine with coefficients that show the highest correlation. |
| fundfreqcorr_y      | 1 | Pearson correlation of signal y with a generated sine with coefficients that show the highest correlation. |
| fundfreqcorr_z      | 1 | Pearson correlation of signal z with a generated sine with coefficients that show the highest correlation. |
| fundfreqmagnitude_x | S | The highest peak (spectral maximum) in the frequency domain of the Fourier transform of the x signal.      |
| fundfreqmagnitude_y | 2 | The highest peak (spectral maximum) in the frequency domain of the Fourier transform of the y signal.      |
| fundfreqmagnitude_z | S | The highest peak (spectral maximum) in the frequency domain of the Fourier transform of the z signal.      |
| first_x             | 1 | The first value of the x signal.                                                                           |
| first_y             | 1 | The first value of the y signal.                                                                           |
| first_z             | 1 | The first value of the z signal.                                                                           |

Table S3. Summary statistics of flight parameters per bird-year. n = the number of measurements of flight (flap, soar or mixed flight modes). Vg = ground speed (m s<sup>-1</sup>), Va = air speed (m s<sup>-1</sup>). CV = coefficient of variation.

|      |      |      |       |        |        |       | %<br>flight | %     | %     |        |        |        |        |       |         |       |       |       |        |       |       |
|------|------|------|-------|--------|--------|-------|-------------|-------|-------|--------|--------|--------|--------|-------|---------|-------|-------|-------|--------|-------|-------|
|      |      |      | %     |        |        | %     | •           |       |       | % flap | % flan | % soar | % soar | ٧ø    |         | Vg    | Vg    | Va    |        | Va    | Va    |
| bird | year | n    | • -   | % flap | % soar | • -   |             | land  | sea   | land   | -      |        | sea    | _     | Vg flap | •     | •     |       | Va fla |       | mixed |
| 533  | 2012 | 285  | 21.32 | 13.16  | 5.46   | 2.69  | 25.61       | 17.80 | 3.52  | 10.99  | 2.17   | 4.49   | 0.97   | 9.11  | 9.36    | 8.45  | 9.20  | 11.32 | 11.56  | 10.32 | 12.12 |
| 534  | 2012 | 927  | 15.48 | 9.32   | 4.77   | 1.39  | 30.85       | 10.00 | 5.48  | 5.19   | 4.12   | 3.59   | 1.19   | 8.04  | 8.61    | 7.35  | 6.61  | 10.52 | 10.99  | 9.60  | 10.51 |
| 537  | 2012 | 1483 | 42.86 | 27.23  | 11.24  | 4.39  | 26.23       | 11.24 | 31.62 | 4.74   | 22.49  | 4.54   | 6.71   | 8.77  | 9.17    | 8.21  | 7.65  | 10.74 | 10.79  | 10.27 | 11.61 |
| 541  | 2012 | 1443 | 28.45 | 16.90  | 8.34   | 3.21  | 29.31       | 11.75 | 16.70 | 5.66   | 11.24  | 3.94   | 4.40   | 8.36  | 9.14    | 6.69  | 8.56  | 10.88 | 11.36  | 9.48  | 11.99 |
| 604  | 2012 | 154  | 24.76 | 15.27  | 3.38   | 6.11  | 13.64       | 19.77 | 4.98  | 10.93  | 4.34   | 3.05   | 0.32   | 8.51  | 8.56    | 8.13  | 8.57  | 12.90 | 12.86  | 10.99 | 14.07 |
| 606  | 2012 | 290  | 35.41 | 19.41  | 11.97  | 4.03  | 33.79       | 6.59  | 28.82 | 2.56   | 16.85  | 2.08   | 9.89   | 6.62  | 7.61    | 5.51  | 5.17  | 10.11 | 10.69  | 9.04  | 10.52 |
| 608  | 2012 | 386  | 33.30 | 22.69  | 7.68   | 2.93  | 23.06       | 4.40  | 28.90 | 2.16   | 20.53  | 0.86   | 6.82   | 8.08  | 7.56    | 9.70  | 7.87  | 11.34 | 11.48  | 10.40 | 12.71 |
| 752  | 2012 | 215  | 21.96 | 9.70   | 6.84   | 5.41  | 31.16       | 14.81 | 7.15  | 6.23   | 3.47   | 4.49   | 2.35   | 7.82  | 8.88    | 8.86  | 4.61  | 10.43 | 10.96  | 10.51 | 9.38  |
| 754  | 2012 | 515  | 33.95 | 17.21  | 12.33  | 4.42  | 36.31       | 10.48 | 23.47 | 3.96   | 13.25  | 4.09   | 8.24   | 8.55  | 8.71    | 8.57  | 7.91  | 11.21 | 11.14  | 10.82 | 12.64 |
| 757  | 2012 | 538  | 50.05 | 33.40  | 12.93  | 3.72  | 25.84       | 1.12  | 48.93 | 0.47   | 32.93  | 0.28   | 12.65  | 8.23  | 8.88    | 6.74  | 7.52  | 10.64 | 11.48  | 8.72  | 9.77  |
| 781  | 2012 | 132  | 38.26 | 23.19  | 11.30  | 3.77  | 29.55       | 3.48  | 34.78 | 1.74   | 21.45  | 0.58   | 10.72  | 8.31  | 8.88    | 8.10  | 5.39  | 11.17 | 11.92  | 10.01 | 10.02 |
| 782  | 2012 | 270  | 64.13 | 42.99  | 17.81  | 3.33  | 27.78       | 8.79  | 55.34 | 3.80   | 39.19  | 3.09   | 14.73  | 8.76  | 8.81    | 8.49  | 9.49  | 10.57 | 10.90  | 9.40  | 12.67 |
| 784  | 2012 | 533  | 59.09 | 42.02  | 12.20  | 4.88  | 20.64       | 5.43  | 53.66 | 2.00   | 40.02  | 1.55   | 10.64  | 8.76  | 9.07    | 8.49  | 6.80  | 11.40 | 11.76  | 9.69  | 12.67 |
| 533  | 2013 | 402  | 15.37 | 8.98   | 3.67   | 2.71  | 23.88       | 8.10  | 7.26  | 3.90   | 5.08   | 2.14   | 1.53   | 7.64  | 7.37    | 8.30  | 7.66  | 10.85 | 10.65  | 10.71 | 11.73 |
| 534  | 2013 | 870  | 13.94 | 7.63   | 4.12   | 2.20  | 29.54       | 10.96 | 2.98  | 5.24   | 2.39   | 3.73   | 0.38   | 8.19  | 8.66    | 7.84  | 7.22  | 10.95 | 11.12  | 10.47 | 11.25 |
| 537  | 2013 | 1526 | 39.35 | 24.52  | 10.75  | 4.07  | 27.33       | 17.59 | 21.76 | 6.91   | 17.61  |        | 2.63   |       |         | 10.10 |       | 12.00 | 12.08  | 11.75 | 12.11 |
| 606  | 2013 | 766  | 19.06 | 8.88   | 7.56   | 2.61  |             | 11.40 |       | 4.03   | 4.85   | 5.30   | 2.26   | 7.52  | 8.75    | 6.13  | 7.36  | 10.07 | 10.75  | 9.02  | 10.81 |
| 608  | 2013 | 768  | 24.30 | 16.14  | 4.84   | 3.32  | 19.92       |       | 16.17 | 4.27   |        | 1.99   | 2.85   | 8.12  | 8.38    | 8.14  | 6.79  | 11.12 | 11.25  | 10.58 | 11.30 |
| 754  | 2013 | 378  | 20.16 | 9.65   | 7.68   | 2.83  |             | 18.61 |       | 8.69   | 0.96   | 7.20   | 0.48   | 9.04  | 8.85    | 9.33  | 8.87  | 12.20 | 12.69  | 11.40 | 12.68 |
| 757  | 2013 | 438  | 37.24 | 22.62  | 10.71  | 3.91  | 28.77       |       | 28.49 | 1.87   | 20.75  |        | 5.78   | 8.51  | 9.45    | 6.97  | 7.27  |       |        | 10.10 |       |
| 781  | 2013 | 221  |       | 12.47  |        | 2.31  |             |       | 5.38  | 8.28   | 4.18   | 3.07   | 1.02   | 9.66  |         | 9.38  | 5.70  |       |        | 11.88 |       |
| 782  | 2013 | 747  |       | 35.31  |        | 3.60  | 17.54       |       | 43.71 |        | 33.54  |        | 7.26   | 8.53  | 9.34    | 5.20  | 8.27  | 11.88 | 12.22  | 10.64 | 11.43 |
| 805  | 2013 | 174  | 57.43 | 27.06  | 15.84  | 14.52 | 27.59       | 37.62 | 19.80 | 14.85  | 12.21  | 10.89  | 4.95   | 10.39 | 10.91   | 8.74  | 11.21 | 14.19 | 14.48  | 12.33 | 15.68 |

| 806 | 2013 | 187  | 33.16 | 20.04 | 6.91  | 6.21  | 20.86 | 29.96 | 3.19  | 17.20 | 2.84  | 6.56 | 0.35  | 10.00 | 10.65 | 9.48  | 8.49  | 13.05 | 13.29 | 12.26 | 13.16 |
|-----|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 868 | 2013 | 135  | 36.10 | 16.31 | 12.57 | 7.22  | 34.81 | 6.15  | 29.95 | 3.21  | 13.10 | 1.07 | 11.50 | 6.04  | 8.08  | 2.95  | 6.80  | 12.65 | 13.96 | 10.90 | 12.75 |
| 870 | 2013 | 115  | 50.00 | 22.61 | 10.00 | 17.39 | 20.00 | 40.00 | 10.00 | 17.39 | 5.22  | 8.70 | 1.30  | 12.17 | 12.67 | 10.02 | 12.77 | 15.79 | 16.50 | 13.34 | 16.28 |
| 871 | 2013 | 169  | 53.31 | 28.39 | 16.40 | 8.52  | 30.77 | 10.41 | 42.90 | 1.26  | 27.13 | 5.99 | 10.41 | 8.66  | 8.31  | 8.00  | 11.06 | 13.13 | 13.74 | 12.13 | 13.01 |
| 606 | 2014 | 550  | 10.79 | 6.73  | 3.37  | 0.69  | 31.27 | 9.77  | 1.02  | 5.87  | 0.86  | 3.24 | 0.14  | 8.61  | 8.98  | 7.99  | 7.94  | 9.90  | 10.26 | 9.24  | 9.62  |
| 608 | 2014 | 138  | 10.35 | 8.78  | 0.53  | 1.05  | 5.07  | 8.78  | 1.58  | 7.35  | 1.43  | 0.45 | 0.08  | 9.80  | 10.00 | 11.99 | 7.06  | 11.32 | 11.45 | 11.29 | 10.29 |
| 754 | 2014 | 290  | 7.58  | 4.57  | 2.40  | 0.60  | 31.72 | 6.45  | 1.12  | 3.68  | 0.89  | 2.22 | 0.18  | 9.30  | 9.96  | 8.67  | 6.75  | 10.70 | 11.23 | 9.89  | 9.90  |
| 757 | 2014 | 1578 | 28.62 | 22.36 | 4.62  | 1.63  | 16.16 | 6.96  | 21.65 | 3.94  | 18.43 | 2.16 | 2.47  | 9.87  | 10.60 | 7.37  | 7.03  | 10.88 | 11.31 | 9.08  | 10.09 |
| 782 | 2014 | 1289 | 26.90 | 19.01 | 6.26  | 1.63  | 23.27 | 9.68  | 17.22 | 5.09  | 13.92 | 3.72 | 2.55  | 8.84  | 9.15  | 8.35  | 7.12  | 10.96 | 11.26 | 10.28 | 10.05 |
| 805 | 2014 | 1107 | 21.09 | 12.23 | 7.01  | 1.85  | 33.24 | 17.85 | 3.24  | 9.58  | 2.65  | 6.55 | 0.46  | 10.31 | 10.96 | 9.62  | 8.58  | 11.73 | 12.27 | 11.00 | 10.98 |
| 806 | 2014 | 818  | 10.24 | 5.76  | 3.83  | 0.65  | 37.41 | 9.05  | 1.19  | 4.88  | 0.88  | 3.57 | 0.26  | 8.95  | 9.51  | 8.23  | 8.21  | 10.05 | 10.51 | 9.43  | 9.62  |
| 871 | 2014 | 995  | 20.96 | 13.21 | 5.96  | 1.79  | 28.44 | 15.78 | 5.18  | 8.80  | 4.40  | 5.39 | 0.57  | 9.79  | 10.44 | 9.19  | 7.08  | 10.88 | 11.28 | 10.54 | 9.07  |
|     |      | mean | 30.60 | 18.45 | 8.11  | 4.05  | 26.88 | 12.42 | 18.18 | 5.96  | 12.49 | 3.85 | 4.26  | 8.80  | 9.29  | 8.15  | 7.81  | 11.47 | 11.86 | 10.50 | 11.56 |
|     |      | SD   | 15.26 | 9.88  | 4.24  | 3.51  | 7.38  | 8.68  | 16.49 | 4.24  | 11.53 | 2.49 | 4.36  | 1.12  | 1.10  | 1.61  | 1.65  | 1.23  | 1.30  | 1.08  | 1.68  |
|     |      | CV   | 0.50  | 0.54  | 0.52  | 0.87  | 0.27  | 0.70  | 0.91  | 0.71  | 0.92  | 0.65 | 1.02  | 0.13  | 0.12  | 0.20  | 0.21  | 0.11  | 0.11  | 0.10  | 0.15  |

**Table S4**. Best models during calibration (measurements in 2012 and 2013), based on AUC. Only models within the 25 percentile of the AUC are shown. Models meeting the AUC selection criterion and including only significant predictors are highlighted in grey. Also the AUC values for the validation data (measurements in 2014) are shown. All models include individual birds as a random effect for the intercept. The number of non-significant predictors is provided in n-sig, if all predictors are significant n-sig = 0.

| Model | Function                                                                  | AUC-calib. | AUC-valid. | n-sig |
|-------|---------------------------------------------------------------------------|------------|------------|-------|
| 16    | classR ~ hourR+blh+V <sub>w</sub>                                         | 0.6773     | 0.6834     | 0     |
| 26    | classR $\sim$ hourR+blh+V <sub>w</sub> + $\Delta$ V <sub>w</sub>          | 0.6771     | 0.6833     | 1     |
| 27    | classR ~ hourR+blh+V <sub>w</sub> +w*                                     | 0.6769     | 0.6837     | 1     |
| 31    | classR $\sim$ hourR+blh+V <sub>w</sub> +d $\Delta$ V <sub>w</sub> + $w$ * | 0.6768     | 0.6836     | 2     |
| 6     | classR ~ hourR+blh                                                        | 0.6766     | 0.6838     | 0     |
| 18    | classR ~ hourR+blh+w*                                                     | 0.6764     | 0.6837     | 1     |
| 17    | classR $\sim$ hourR+blh+ $\Delta V_w$                                     | 0.6764     | 0.6837     | 1     |
| 28    | classR $\sim$ hourR+blh+ $\Delta V_w$ + $w^*$                             | 0.6762     | 0.6838     | 2     |

**Figure S1**: Percentage of time spent flapping (red) or soaring(blue) in relation to (A) boundary layer height (m) and (B) time of day (UTC).



**Figure S2**. Distribution of instantaneous ground speeds (A) and air speeds (B) across all bird-years and shown separately for flapping (red), soaring (blue) and mixed (green) flight modes. Ground speeds and air speeds are provided in ms<sup>-1</sup>.



**Figure S3.** Distribution of weather variables for flapping (red) and soaring (blue) flight for all bird-years combined. (A) boundary layer height (m), (B) wind speed at 10 m (ms<sup>-1</sup>), (C) wind gradient (ms<sup>-1</sup> m<sup>-1</sup>), (D)  $w^*$ .



## **References**

[1] Shamoun-Baranes, J., Bouten, W., Camphuysen, C.J. & Baaij, E. 2011 Riding the tide: intriguing observations of gulls resting at sea during breeding. *Ibis* **153**, 411-415. (doi:10.1111/j.1474-919X.2010.01096.x).

[2] Qasem, L., Cardew, A., Wilson, A., Griffiths, I., Halsey, L.G., Shepard, E.L.C., Gleiss, A.C. & Wilson, R. 2012 Tri-Axial Dynamic Acceleration as a Proxy for Animal Energy Expenditure; Should We Be Summing Values or Calculating the Vector? *PLoS ONE* **7**, e31187.