<u>UMONS</u>

Automates

Étudiant : Benjamin André **Directrice :** Véronique Bruyère

23 avril 2020

Table des matières

1	Automates utilisés	2
	Bases théoriques	3
	2.1 DFA	. 3
	2.2 Théorème de Myhill-Nerode	. 3
	2.3 Table Filling Algorithm	
3	Velleda	Ţ

1 Automates utilisés

FIGURE 1: Automate A_B , exemple personnel

FIGURE 2: Automate A_H , exemple d'un livre de référence[1]

FIGURE 3: Automate A_N , exemple d'une thèse[2]

2 Bases théoriques

2.1 **DFA**

Soit un ensemble de symboles Σ . Soient $\Sigma^* = \{a_1a_2a_3...a_n|a_1,a_2,a_3,...,a_n \in \Sigma\}$, l'ensemble des mots de taille arbitraire qu'il est possible de former à partir de Σ et $|w|, w \in \Sigma$ la longueur de w, le nombre de symboles utilisés. Si |w| = 0, on note $w = \epsilon$.

Un automate est défini par $A = (Q, \Sigma, q_0, \delta, F)$ où

- Q est un ensemble d'états, différenciés par leur indice $q_1, q_2, ..., q_n$ ou n = |Q|.
- Σ est un ensemble de symboles
- $q_0 \in Q$ est l'état initial
- $\delta: Qx\Sigma \to Q$ est la fonction de transition. A partir d'un état de Q, en fonction d'un symbole, elle retourne un nouvel état faisant partie de Q.
- $F \subseteq Q$ est un ensemble d'état finaux.

A définir

- Accepter un langage
- Congruence à droite

2.2 Théorème de Myhill-Nerode

Théorème 2.1 Les 3 énoncés suivants sont équivalents :

- 1. Un langage $L \subseteq \Sigma^*$ est accepté par un DFA
- 2. L'est l'union de certaines classes d'équivalence d'index fini respectant une relation d'équivalence et de congruence à droite
- 3. Soit la relation d'équivalence $R_L: xR_Ly \Leftrightarrow \forall z \in \Sigma^*, xz \in L \Leftrightarrow yz \in L$. R_L est d'index fini.

Preuve 2.1.1 La preuve d'équivalence se fait en prouvant chaque implication de façon cyclique :

 $(1) \rightarrow (2)$ Soit un langage $L \subseteq \Sigma^*$ qui est accepté par un automate déterministe fini (ADF) A. Soit la relation $R_A: xR_Ay \Leftrightarrow \delta(q_0,x) = \delta(q_0,y)$ qui détermine si deux mots, une fois parcourus dans l'automates, finissent sur le même état.

C'est une relation d'équivalence (réflexive, transitive et symétrique), et congruente à droite :

- **Réflexivité**: Soit le mot $x \in \Sigma^*$. Alors, par définition, $xR_Mx \Leftrightarrow \delta(q_0, x) = \delta(q_0, x)$.
- Transitivité : Soient les mots $x, y, z \in \Sigma^*$ tels que xR_My et yR_Mz . Alors, $\delta(q_0, x) = \delta(q_0, y) = \delta(q_0, z)$ par la transitivité de l'égalité. Dès lors, xR_Mz
- Symétrie : Soient les mots $x, y \in \Sigma^*$ tels que xR_My . Comme $\delta(q_0, x) = \delta(q_0, y)$, $\delta(q_0, y) = \delta(q_0, x)$. Donc, yR_Mx .
- Congruence à droite: Soient les mots $x, y \in \Sigma^*$ tels que xR_My . Soit un mot $w \in \Sigma^*$. $\delta(q_0, xw) = \delta(\delta(q_0, x), w) = \delta(\delta(q_0, y), w) = \delta(q_0, yw)$.

Il peut au plus y avoir une classe d'équivalence par état (valeurs possibles retournées par δ). Ce nombre d'état étant fini dans M, R_M est donc d'index fini. Le langage L correspond aux mots menant à un état appartenant à F, et F peut être écrit comme une union d'état, qui correspondent à une classe d'équivalence de R_M qui est bien d'index fini et respectant la congruence à droite.

- $(2) \rightarrow (3)$ toute relation E de 2 est un refinement de RL du coup chaque c.eq est completement contenue dans une c.Eq de RL. on part de xRMy, cong droite
 - $(3) \rightarrow (1)$ Mq RL cong droite xRLy, utiliser définitions

Corrolaire 2.1.1 *Possibilité de créer l'automate canonique...*

2.3 Table Filling Algorithm

FIGURE 4: Automate A_1

L'état q_q n'est pas atteignable : il peut être simplement supprimé.

FIGURE 5: Automate A_2

Par l'algorithme de minimisation, on obtient A_3 . De cet automate, on peut déduire une écriture de L sous forme d'expression régulière : $(1|01)1^*0(0|1)^*$

FIGURE 6: Table filling pour A_2 , décelant des équivalences d'états

FIGURE 7: Automate A_3

3 Velleda

Complexité 4.4.2, bad pair pq, rs q et q' vont sur un meme p Attention a bien comprendre le cas de base, utilisation du mot témoin w qui différencie. La contradiction est sur la table pas sur w le plus petit (c'est un élemenet qu'on a introduit, ça nous avance à rien de le contredire)

Fig 4.13 + Exemple + exemple preuve éq minimaux

A rédiger, DFA/Notations, Rédiger, Avec des exemples persos

Prouver Reflexif, transitif, symetrique

Lire 4.23

Important : la notion de congruence à droite

Angluin : créer un contre-exemple

4.24.3 tout état d'une classe S a une transition vers un état de la classe T par construction de la table

Références

- [1] J. E. HOPCROFT AND J. D. ULLMAN, *Introduction to automata theory, languages and computation. adison-wesley*, Reading, Mass, (1979).
- [2] D. NEIDER, Applications of automata learning in verification and synthesis, PhD thesis, Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2014.