Sistema de monitoramento com *gateway* LoRaWAN para o gerenciamento da iluminação em postes de iluminação pública

Fabiola A. D. Spredemann¹, Ramom G. G. da Silva¹

¹Departamento de Computação – Universidade Federal de Santa Catarina (UFSC) Araranguá – SC – Brasil

1. Introdução

A Internet das Coisas (IoT) representa uma nova abordagem na computação, onde dispositivos e objetos estão interconectados através de várias tecnologias de comunicação [SARR et al. 2019]. Uma área que vem se beneficiando com essa evolução é a iluminação pública. Na era da IoT, as cidades estão evoluindo para centros urbanos inteligentes. Estas cidades incorporam dispositivos conectados, como sistemas inteligentes de iluminação pública, para melhorar a sua infraestrutura urbana [Biundini et al. 2024]. A iluminação adequada oferece uma sensação de segurança aos pedestres e motoristas, permitindo que eles circulem pelas ruas com confiança e tranquilidade.

Aplicações de monitoramento ambiental empregam uma ampla gama de sensores, o que torna desafiador garantir a transmissão de dados em tempo real [Vinay et al. 2023]. Uma tecnologia de conectividade que vem se tornando mais popular nesses casos é o LoRa/LoRaWAN. Possui um baixo consumo de energia, baixo custo e uma rede de área ampla para conectar dispositivos IoT à nuvem da internet [Enriko et al. 2023]. Protocolos como o LoRaWan têm chamado a atenção significativa de pesquisadores devido ao seu potencial para enfrentar as complexidades associadas à transmissão de dados em tempo real dentro de redes de sensores diversas [Vinay et al. 2023].

Considerando o contexto apresentado, a proposta deste trabalho é aplicar a tecnologia LoRa/LoRaWan no desenvolvimento de um sistema de monitoramento para o gerenciamento da iluminação em postes de iluminação pública utilizando o *gateway* LoRaWan, visando melhorar a segurança, qualidade de vida nas cidades modernas e uma manutenção adequada.

Além desta seção introdutória, este relatório é constituído por outras quatro seções. A Seção 2 apresenta uma revisão da literatura, apresentando os trabalhos correlacionados a esse. A proposta da solução é descrita na Seção 3 detalhando cada uma das etapas que o constitui. Na Seção 4 são analisados os fatores de risco e, por fim, na Seção 5, são apresentadas as considerações finais.

2. Revisão da literatura

Foi realizada uma investigação na literatura científica para selecionar trabalhos voltados à identificação de métodos e abordagens usados no gerenciamento da iluminação em postes de iluminação pública com o *gateway* LoRaWAN. As bases investigadas foram: Scopus[®] e IEEE Xplore[®]. A *string* para a busca dos artigos relacionados foi definida a partir dos seguintes termos: ("lorawan gateway" OR "lorawan") AND "smart lighting" OR "dragino" AND "IoT". A Tabela 1 apresenta as bases de dados em que as pesquisas foram realizadas e as quantidades de trabalhos recuperados.

Base de dados	Trabalhos Recuperados							
Scopus®	12							
IEEE Xplore®	17							

Table 1: Resultados de Buscas por Artigos Relevantes

Após a leitura do título e resumo dos trabalhos recuperados, os 6 artigos mais relacionados ao presente trabalho foram selecionados. No Quadro 1 estão apresentados os estudos selecionados que possuem alguma conexão com o contexto desta pesquisa. Podemos observar que a maioria utiliza como recursos de rede o LoRaWan e recursos de hardware como o LoRa. O artigo que mais se encaixou com o presente trabalho foi o de [Vinay et al. 2023], no qual foram utilizados como recursos de software o LoRa e o Dragino *gateway*. Outro ponto também a se destacar é o uso do Arduino software, The Things Network (TTN) e o ThingSpeak. Todos sendo recursos utilizados no presente trabalho.

Referências Recursos de hardware		Recursos de software	Recursos de rede				
Kippke, Arboleya, e Dalla Costa (2023)	Dispositivos de medição inteligente	-	Redes mesh IEEE 802.15.4 6LoWPAN				
Vinay et al. (2023)	LoRa, Dragino gateway, DHT11, Arduino, LCD	Arduino software, TTN, ThingSpeak	LoRaWan				
Enriko et al. (2023)	Lora, gateway LoRaWan, sensor de voltagem, corrente e LDR	-	LoraWan				
Siagian, Fernando (2020)	LED, Raspberry, painel solar, sensor LDR	Python	LoraWan				
Candia et al. (2019)	Lora, Lora gateways,	Orbiwise	LoraWan				
Sarr et al. (2019)	LoRa	FloRa (framework)	LoraWan				

Quadro 1: Resumo dos recursos utilizados nos trabalhos

3. Proposta de solução

A Figura 1 apresenta o projeto do sistema de monintoramento com *gateway* LoRaWAN para o gerenciamento da iluminação em postes de iluminação pública, que consiste nos sensores (corrente e luminosidade) conectados aos postes de luz, enviarem ao LoraWan se a lâmpada do poste de luz está queimada. A partir disso, o LoraWan envia esses dados para o *gateway*, que encaminha para a nuvem IoT, assegurando uma transmissão eficiente e uma gestão centralizada dos dados de iluminação pública. Esses dados aparecerão em uma interface, onde o usuário poderá ver quais postes estão com a luz queimada.

3.1. Diagrama esquemático

A Figura 2 apresenta o diagrama esquemático do projeto, no qual são representados uma série de blocos interconectados que representam as diferentes etapas e funcionalidades do sistema.

3.2. Etapas a serem desenvolvidas

Nesta seção, estão delineadas as etapas a serem desenvolvidas durante o desenvolvimento e implementação do projeto, desde a análise de requisitos até a implementação prática.

Figure 1. Projeto do sistema de monitoramento da iluminação pública

Figure 2. Diagrama esquemático

3.2.1. Etapa 1: Planejamento e análise de requisitos

Requisitos Funcionais:

- Comunicação entre sensores, LoraWan e gateway: o sistema deve possuir a conexão entre os sensores, LoraWan e gateway para o dados serem coletados e enviados a nuvem IoT;
- Coleta de dados: o sistema deve coletar do poste de luz se a lâmpada está queimada;
- Transmissão dos dados para a nuvem IoT: o *gateway* deve ser capaz de enviar os dados coletados para a nuvem IoT;
- Monitoramento em tempo real: o sistema deve permitir o monitoramento em tempo real dos postes de luz.

Requisitos Não funcionais:

- **Disponibilidade:** o sistema deve estar disponível e operacional a maior parte do tempo possível;
- Escalabilidade: o sistema deve ser capaz de lidar com um grande número de dispositivos sensores distribuídos em uma área geográfica ampla;
- Confiabilidade: o sistema deve ser confiável e atender aos requisitos do usuário.

3.2.2. Etapa 2: Seleção dos dispositivos de hardware e software

Nesta etapa, foram selecionados os dispositivos de *hardware* e *software* que comporão o sistema de monitoramento e gerenciamento da iluminação pública inteligente. A seleção foi baseada nos requisitos funcionais e não funcionais do projeto e também nas pesquisas realizadas na literatura.

Foram escolhidos os seguintes dispositivos de hardware:

• *Gateway* LoRaWAN: responsável por coletar dados enviados pelo LoraWan e transmiti-los para a nuvem IoT. A Figura 3 mostra o modelo selecionado, fabricado pela empresa Dragino.

Figure 3. Gateway LoRaWAN modelo LPS8N

• Sensor de corrente não invasivo: Os sensores de corrente são responsáveis por medir os níveis de corrente dos postes de iluminação até 15A. A Figura 4 mostra o modelo de sensor selecionado, fabricado pela empresa YHDC.

Figure 4. Sensor de corrente modelo SCT013

- Sensor de luminosidade: Os sensores de luminosidade são responsáveis por medir os níveis de luminosidade dos postes de iluminação através da variação de sua resistência interna. A Figura 5 mostra o modelo de sensor selecionado.
- **LoRa:** responsável pela comunicação sem fio entre os sensores de corrente e luminosidade e o *gateway* através do recurso de rede LoRaWan. A Figura 6 mostra o modelo selecionado (WiFi LoRa 32(V3)) fabricado pela Heltec.

Foram selecionados os seguintes dispositivos de *software*:

• IDE do Arduino: ferramenta de desenvolvimento de software de código aberto amplamente utilizada para programar microcontroladores e dispositivos eletrônicos. A comunicação LoRaWAN pode ser implementada em dispositivos Arduino usando módulos LoRa. A Figura 7 mostra a IDE do Arduino.

Figure 5. Sensor de luminosidade modelo LDR

Figure 6. WiFi LoRa 32(V3) da Heltec

- **Nuvem IoT:** a nuvem IoT *The Things Network* (TTN) fornece uma infraestrutura de rede de código aberto baseada em LoRaWAN, que permite a instalação de gateways e construção de aplicativos IoT em cima dessa infraestrutura. A Figura 8 apresenta a nuvem utilizada.
- Interface de monitoramento: a plataforma de IoT ThingSpeak fornece serviços para coleta, visualização e análise de dados de sensores e dispositivos conectados à internet. A Figura 9 apresenta a interface de monitoramento utilizada.

3.2.3. Etapa 3: Configuração e testes do LoraWan e o gateway

Nesta etapa, estão sendo realizadas as configurações iniciais e os testes do LoRaWAN e do *gateway* para garantir sua operacionalidade. O *gateway* LoRaWAN foi configurado para se conectar à rede TTN por meio da configuração dos parâmetros de conexão na própria nuvem, como as chaves de acesso. Estão sendo realizados testes de conectividade para verificar a comunicação entre os dispositivos LoRaWAN e o gateway, bem como a conexão do gateway com a rede TTN. Os testes dos dispositivos LoraWan e o gateway estão sendo feitos a partir de códigos prontos da própria biblioteca no Arduino.

3.2.4. Etapa 4: Integração dos sensores com o LoRa

Nesta etapa, os sensores de corrente e luminosidade serão integrados ao LoRa para permitir a coleta e transmissão de dados para o *gateway*.

Figure 7. IDE do Arduino

Figure 8. Nuvem IoT TTN

3.2.5. Etapa 5: Validação da capacidade de transmissão conforme a distância

Nesta etapa, serão realizados testes do desempenho do sistema LoRa/LoRaWAN em diferentes distâncias para determinar seu alcance efetivo e identificar possíveis limitações.

3.2.6. Etapa 6: Desenvolvimento de código de recebimento dos dados

Nesta etapa, será desenvolvido o código na IDE do Arduino que fará o recebimento dos dados enviados do LoRa para o *gateway* e o envio dos mesmos para a nuvem IoT. Inicialmente, o ambiente de desenvolvimento Arduino já foi parcialmente configurado para o projeto, incluindo a instalação de algumas bibliotecas necessárias, como a da Heltec para poder trabalhar com *gateway*.

Figure 9. Interface de monitoramento ThingSpeak

3.2.7. Etapa 7: Implementação da Nuvem IoT

Nesta etapa, a implementação da nuvem IoT envolve a integração da TTN como parte da infraestrutura de comunicação do sistema, no qual os dados recebidos pelo *gateway* serão enviados para uma interface com o usuário.

3.2.8. Etapa 8: Criação da interface com o usuário

Nesta etapa, será desenvolvida a interface com o usuário (UI) para facilitar o monitoramento e controle da iluminação pública inteligente. Utilizada para visualização e gerenciamento dos dados coletados através de gráficos.

3.2.9. Etapa 9: Ajustes finais

Nesta etapa, serão realizados os ajustes finais do sistema, como a revisão final do códigofonte para correção de eventuais problemas e eventuais testes.

3.3. Cronograma

O cronograma do projeto foi elaborado com base nas atividades planejadas nas etapas discutidas na Seção 3.2. A Figura 10 apresenta uma visão geral dos prazos por semana para cada atividade. É possível observar não apenas a sequência das atividades, mas também os pontos de dependência entre elas.

4. Fatores de risco

Nesta seção, serão abordados os principais riscos que podem afetar o desenvolvimento e a implementação do projeto. A partir da matriz de riscos presente na Figura 11 foram avaliados aspectos como severidade, probabilidade e a magnitude.

• Interferência e alcance limitado do LoraWan: a tecnologia do LoraWan é suscetível a interferências e pode ter alcance limitado, especialmente em ambientes urbanos densos, o que pode resultar em perda de dados ou latência;

Severidade: 5Probabilidade: 2Magnitude: 10

ATIVIDADE	MARÇO		ABRIL				MAIO				ониис			
	12-19	19-26	26-02	02-09	09-16	16-23	23-30	30-07	07-14	14-21	21-28	28-04	04-11	11-25
Planejamento e análise de requisitos														
Seleção dos dispositivos de hardware e software														
Configuração e testes do LoraWan e gateway														
Integração dos sensores com o LoraWan														
Validação da capacidade de transmissão conforme a distância														
Desenvolvimento de código														
Implementação da Nuvem IoT														
Criação da interface com o usuário														
Ajustes finais														

Figure 10. Cronograma previsto para o desenvolvimento do projeto

Figure 11. Matriz de risco

- Atenuação: Realizar testes de validação da capacidade de transmissão conforme a distância.
- Fahas de hardware: os dispositivos de hardware sensores, LoRa e gateway
 podem sofrer falhas técnicas, o que poderia ocasionar interrupção na coleta e transmissão dos dados;

Severidade: 5Probabilidade: 2Magnitude: 10

- Atenuação: Montar cuidadosamente o circuito e realizar manutenção preventivas.
- **Compatibilidade:** a integração entre os dispositivos pode sofrer problemas de compatibilidade, levando a problemas de configuração;

Severidade: 5Probabilidade: 2Magnitude: 10

- Atenuação: Realizar pesquisas sobre a compatibilidade dos dispositivos e testes.
- **Bugs** e falhas de software: podem acontecer *bugs* e falhas durante o desenvolvimento do software ou após a implantação;

- Severidade: 5

Probabilidade: 2Magnitude: 10

- Atenuação: Realizar testes no código e manutenção preventiva.

• **Disponibilidade e confiabilidade:** o serviço da nuvem IoT pode estar sujeita a interrupções de serviço, falhas de rede ou manutenções não programadas, o que pode resultar em perda de dados e tempo de inatividade;

Severidade: 5Probabilidade: 3Magnitude: 15

Atenuação: Verificar possível atualização/manutenção do sistema.

• Custos operacionais: falta de planejamento pode causar custos imprevistos e na obsolescência prematura do sistema;

Severidade: 5Probabilidade: 1Magnitude: 5

- Atenuação: Realizar pesquisas de custo dos dispositivos.

• Manutenção inadequada: a falta de manutenção regular dos dispositivos e infraestrutura do sistema pode levar a redução da vida útil dos componentes, resultando em custos adicionais de reparo;

Severidade: 5Probabilidade: 1Magnitude: 5

- Atenuação: Realizar a manutenção dos dispositivos e utilizar um sistema de monitoramento remoto.
- **Disponibilidade de energia:** dependendo da localização do poste de luz, pode haver problema para fornecer energia suficiente aos sensores;

Severidade: 5Probabilidade: 3Magnitude: 15

- Atenuação: Verificar a localização dos postes/sensores e uso de baterias reserva.
- Condições ambientais diversas: os postes de luz estão sujeitos a uma variedade de condições climáticas e ambientais e elas podem afetar a integridade e o desempenho dos sensores, levando a falhas operacionais;

Severidade: 5Probabilidade: 3Magnitude: 15

- Atenuação: Utilizar uma proteção física para os dispositivos e manutenção regular.
- Fatores externos: eventos imprevistos como desastres naturais, podem afetar negativamente o sistema de monitoramento;

Severidade: 5Probabilidade: 2Magnitude: 10

 Atenuação: Utilizar uma proteção física e diversificação de localização dos dispositivos.

- **Desconhecimento da tecnologia:** se a equipe não estiver familiarizada com as tecnologias que serão usadas, pode haver dificuldades na configuração e resolução de problemas técnicos, levando a atrasos no projeto.
 - Severidade: 4Probabilidade: 3Magnitude: 12
 - Atenuação: Realizar estudos sobre as tecnologias.

5. Considerações finais

A partir da revisão da literatura, podemos perceber que a IoT desempenha um papel muito importante na iluminação pública, permitindo uma gestão mais eficiente e adaptável dos recursos energéticos. Os sistemas inteligentes não somente trazem maior segurança, como também uma manutenção muito mais rápida e prática. A escolha da tecnologia LoRa/LoRaWAN como base para o sistema de monitoramento demonstrou ser uma solução viável e eficaz.

Ao analisar os fatores de risco associados ao desenvolvimento e implementação do sistema, identificamos alguns desafios, como problemas de hardware e software, desconhecimento das tecnologias. No entanto, por meio de estratégias de mitigação adequadas, como testes e estudos dos dispositivos, esses desafios podem ser superados com sucesso.

References

- Biundini, I. Z., Pinto, M. F., Honório, L. M., Capretz, M. A. M., Timotheo, A. O., Dantas, M. A. R., and Villela, P. C. (2024). Loracell-driven iot smart lighting systems: Sustainability in urban infrastructure. *Sensors*, 24(2).
- Enriko, I. K. A., Gustiyana, F. N., Kurnianingsih, and Sari, E. L. I. P. (2023). Lorawan for smart street lighting solution in pangandaran regency. *International Journal on Informatics Visualization*, 7(4):2452 2459.
- SARR, Y., GUEYE, B., and SARR, C. (2019). Performance analysis of a smart street lighting application using lora wan. In 2019 International Conference on Advanced Communication Technologies and Networking (CommNet), pages 1–6.
- Vinay, P., Sanjaybhargav, A., Sakhitha, U., and Ramtej, K. S. (2023). Lorawan based environmental monitoring for smart campus. In 2023 9th International Conference on Signal Processing and Communication (ICSC), pages 120–124.