Mr KHATORY

UNIVERSITE SIDI MOHAMMED BEN ABDELLAH

Ecole Supérieure de Technologie de Fès Filière Génie Industriel et Maintenance

INITIATION INFORMATIQUE I

(Système de numération) (1° GIM)

TABLE DES MATIÈRES

INTROD	DUCTION	1
I. SYS	TEME DE NUMERATION	1
1. sy	ystème décimal	1
2. Sy	ystème Binaire	1
-	ystème octal	
-	ystème hexadécimal	
5. Cl	hangement de base :	2
a.	conversion octal → binaire (binaire → octal)	2
b.	conversion hexadécimal → binaire (binaire → hexadécimal)	2
c.	conversion décimal → binaire , décimal → octal, ou décimal -	→
hex	،adécimal	3
d.	conversion d'une base X vers base Y	3
II. COI	DAGE	4
1. Co	odes numériques	4
a.	code binaire naturel	4
b.	code binaire réfléchi	4
c.	code décimaux	5
d.	complément à 2	6
e.	nombres fractionnaires	7
f.	représentation des nombres réels	9
2. Co	odes alphanumériques	
a.	codes ASCII	10
b.	code E.I.A	13
c.	code Unicode	13
d.	le Code Barre	13

INTRODUCTION

La création de la numération est un des faits les plus marquants de l'histoire de l'humanité. Si la plupart des civilisations ont adopté le système décimal, c'est qu'il a toujours été naturel de compter sur ses doigts. L'utilisation des phalanges et des articulations permit même d'améliorer ce simple procédé connu de tous.

I. SYSTEME DE NUMERATION

On utilise les " systèmes de numération" pour compter des objets et de les représenter par des nombres.

Trois notions interviennent dans un système:

- la **base B** du système, c'est un nombre entier quelconque.
- Les *digits* du système sont des caractères tous différents et représentent chacun un élément de la base; il y en a donc *B* au total
- Poids du digit selon son rang

Ecriture d'un nombre A dans la base B:

$$(A)_B = a_3 a_2 a_1 a_0 \qquad (4 \text{ chiffres})$$

$$a_i < B \ (\forall_i)$$

 $(A)_B = a_0 B^0 + a_1 B^1 + a_2 B^2 + a_3 B^3$; Poids $a_i = B^i$

1. système décimal

Dans la base 10 "système décimal", il y a *dix digits*: 0,1,2,3,4,5,6,7,8 et 9 appelés *chiffre*

$$(1234)_{10}$$
= $4x10^0 + 3x10^1 + 2x10^2 + 1x10^3$
=4 + 30 + 200 + 1000

B=10;

Poids:

- du premier digit est 10⁰=1 (Unité)
- du deuxième digit est 10¹=10 (Dizaine)
- du troisième digit est10²=100 (Centaine)
- du quatrième digit est 10³=1000 (Milliers)

2. Système Binaire

Dans ce système, la base B vaut 2, et il y a donc **2** digits 0 et 1 appelés dans ce cas "BIT" (Binary digIT).

Par exemple, le nombre 1011 exprimé en binaire signifie:

$$(1011)_2 = 1x2^0 + 1x2^1 + 0x2^2 + 1x2^3$$
$$= 1 + 2 + 8$$
$$= (11)_{10}$$

3. Système octal

Dans ce système, la base vaut 8 et il y a *8 digits*: 0,1,2,3,4,5,6 et 7. Il n'y a pas de chiffres 8 et 9.

Par exemple: le nombre 275 exprimé en octal:

$$(275)_8 = 5x8^0 + 7x8^1 + 2x8^2$$
$$= 5 + 56 + 128$$
$$= (189)_{10}$$

4. Système hexadécimal

Dans ce système, la base B vaut 16 et il y a **16 digits**: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E et F. Les dix premiers digits de 0 à 9 sont les chiffres du système décimal et les digits de 10 à 15 sont les premières lettres majuscules de l'alphabet.

Exemple, le nombre BAC exprimé en hexadécimal :

```
(BAC)_{16} = Cx16^{0} + Ax16^{1} + Bx16^{2}
= 12 + 10x16 + 11x256
= 12 + 160 + 2816
= (2988)_{10}
(3F9)_{16} = 9x16^{0} + 15x16^{1} + 3x16^{2}
= 9 + 240 + 768
= 1017
```

- 5. Changement de base :
- a. conversion octal → binaire (binaire → octal)

On peut remarquer que $8 = 2^3$;

On peut donc faire correspondre à chaque digit d'un nombre exprimé en octal un ensemble de 3 bits du même nombre exprimé en binaire. Par exemple:

```
(763)_8 = (111)(110)(011)
=(111110011)_2
```

La conversion inverse, binaire \rightarrow octal, se fait de la même façon, en décomposant le nombre binaire par ensembles de 3 bits à partir de la droite.

Par exemple: $(10111011101)_2 = (2735)_8$

b. conversion hexadécimal → binaire (binaire → hexadécimal)

De la même manière, on peut remarquer que 16=2⁴

On fera donc correspondre à chaque digit d'un nombre hexadécimal 4 bits du nombre binaire correspondant.

Par exemple: $(A28)_{16} = (101000101000)_2$

La conversion inverse, binaire hexadécimal, se fait en décomposant le nombre binaire par ensembles de 4 bits à partir de la droite.

Par exemple:
$$(101110011101001)_2 = (0101)(1100)(1110)(1001)$$

= $(5CE9)_{16}$

L'expression hexadécimal d'un nombre binaire est très utilisée pour interpréter des résultats fournis par un "microprocesseur".

c. conversion décimal → binaire , décimal → octal, ou décimal → hexadécimal

La conversion de l'expression décimale d'un nombre en son expression binaire, octale ou hexadécimale repose sur la recherche des multiples des puissances successives de la base (2,8 ou 16 selon le cas) que contient ce nombre. La méthode pratique consiste à effectuer des divisions successives: du nombre par la base, puis du quotient obtenu par la base, puis du nouveau quotient par la base,... jusqu'à ce que le quotient devienne nul. L'expression cherchée est constituée par l'ensemble des restes successifs des divisions, lu à l'envers.

 $(11100101)_2 = (229)_{10}$

la même méthode serait applicable pour les conversions :

- décimal → octal (des divisions successives par 8)
- décimal → hexadécimal(des divisions successives par 16).

d. conversion d'une base X vers base Y

si $X = B^m$ et $Y = B^n$

Alors convertir le nombre de la base X (B^m) vers B puis de la base B vers la base Y (Bⁿ) **Sinon** Convertir de la base X vers la base **10** puis de la base **10** vers la base Y

II. CODAGE

On distingue deux catégories de codes: les "codes numériques" qui permettent seulement le codage des nombres, et les "codes alphanumériques" qui permettent le codage d'une information quelconque (ensembles de lettres, de chiffres et de symboles).

1. Codes numériques

a. code binaire naturel

Le code binaire naturel est le code dans lequel on exprime un nombre selon le système de numération binaire.

Quelques notions:

• un quartet : c'est un mot de 4 bits (0-15)

• un octet : c'est un mot de 8 bits (0-255)

• un "kilo" : unité de capacité de traitement numérique (10 bits: 0-1023)

Inconvénients du code binaire naturel:

- nécessite une grande quantité de bits pour exprimer un nombre
- peut introduire des erreurs lors du codage de grandeurs variant de façon ordonnée. Entre deux codes successifs, plusieurs bits pourront alors être amenés à changer simultanément:

$$01 \rightarrow 10$$
 $(01 \rightarrow 11 \rightarrow 10 \text{ ou } 01 \rightarrow 00 \rightarrow 10)$

b. code binaire réfléchi

Dans ce code, appelé code GRAY, un seul bit change de valeur entre deux codages successifs. Il est construit de proche en proche, de telle sorte que chaque fois que l'on ajoute au code un bit sur sa gauche, on recopie au dessous de combinaisons existantes les mêmes combinaisons, mais en les écrivant dans l'ordre opposé.

Code binaire NaturelCode binaire réfléchi
Sur 3 bits 000
001
010
011
100
101111
110101
111100

	Code binaire NaturelCode binaire réfléchi
	Sur 4 bits
0	0000
1	0001 0001
2	0010
3	0011
4	0100
5	01010111
6	0110
7	0111
8	1000
9	1001
10	1010
11	10111110
12	1100
13	1101
14	1110
15	1111

<u>Méthode</u>

La *valeur numérique* d'un nombre binaire réfléchi s'obtient en donnant aux chiffres successifs pris de droite à gauche les poids 1,3,7,15,...2ⁿ⁺¹ –1 et en effectuant la somme des produits non nuls, de signes alternés.

Exemple:

•
$$1011 \rightarrow +15$$
 -3 +1 = 13
• $0100 \rightarrow +7$ =7
• $1001 \rightarrow +15$ -1 = 14
• $1110 \rightarrow +15$ -7 +3 = 11
• $0111 \rightarrow \dots = 5$

Autre méthode:

Pour trouver l'expression d'un nombre binaire dans le code réfléchi, on l'additionne sans effectuer la retenue, avec le nombre obtenu en le décalant vers la gauche d'un rang et on abandonne le chiffre du plus petit poids.

Exemple:

$$\begin{array}{c} 1011\\ + 1011\\ \hline \hline 11104 \end{array} \rightarrow \textbf{1110} \text{ en code réfléchi correspond à (11)}_{10}$$

c. code décimaux

On code chaque chiffre (0-9) en binaire sur 4 bits ($2^3 < 10 \le 2^4$). Ce code est appelé **DCB**: (**D**écimal **C**odé en **B**inaire) en anglais **BCD**: **B**inary **C**oded **D**ecimal

$$(1297)_{10} = (0001\ 0010\ 1001\ 0111)_{BCD}$$

d. complément à 2

Question :comment représenter un nombre négatif en représentation binaire?

"NON"

0

1

Complément ā

1

0

• arithmétique binaire

somme avec retenue

а	b	S	R
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

S=a⊕b

Produit

а	b	P
0	0	0
0	1	0
1	0	0
1	1	1

R=a•b

• représentation en complément à 2 soit A = $a_{n-1} a_{n-2} a_0$ un nombre binaire à n bits.

 $A+C+1 = 2^n$, or on travaille sur n bits, et 2^n est représenté par n zéro, on a alors une représentation unique de 0.

 $B=2^n - A$ est appelé le *complément à 2* du nombre A.

A +B s'écrit 0 sur n bits.

 $B=2^{n} -A =C+1$

Conclusion:

Pour avoir la représentation d'un nombre négatif en complément à 2, on complémente tous les bits et on ajoute 1

Exemple: code binaire signé sur 4 bits.

	Positif	négatif		Formule: Complément à 1 +1
0	0000	0000 !!!		1111 + 1= 1(0000)
1	0001	1111	-1	1110 +1 =1111
2	0010	1110	-2	1101 +1 =1110
3	0011	1101	-3	1100 +1 =1101
4	0100	1100	-4	1011 +1 =1100
5	0101	1011	-5	1010 +1 =1011
6	0110	1010	-6	1001 +1 =1010
7	0111	1001	-7	1000 +1 =1001
	Pas de 8 !!	1000	-8	(-8)

Idem sur n bits: $A = a_{n-1}a_n ...a_0$ on complémente à 1 A puis on additionne 1.

e. nombres fractionnaires

Rappel:

Soit une base b associée à b symboles $\{S_0, S_1, S_2, ..., S_{b-1}\}$ Un nombre positif N dans un système de base b s'écrit sous la forme polynomiale:

$$N = a_{n-1} \cdot b^{n-1} + a_{n-2} \cdot b^{n-2} + \dots + a_1 \cdot b^1 + a_0 \cdot b^0 + a_{-1} \cdot b^{-1} + a_{-2} \cdot b^{-2} + \dots + a_{-m+1} \cdot b^{-m+1} + a_{-m} \cdot b^{-m}$$

La représentation simple de position est la suivante:

$$(a_{n-1}a_{n-2}a_1a_0, a_{-1}a_{-2}a_{-m+1}a_{-m})$$

 a_i est le chiffre de rang i (a_i appartient à un ensemble de b symboles)

 a_{n-1} est le chiffre le plus significatif

 a_{-m} est le chiffre le moins significatif

 $(a_{n-1}a_{n-2}...a_0)$ partie entière

 $(a_{-1}a_{-2}...a_{-m})$ partie fractionnaire (<1)

Méthode:

On multiplie la partie fractionnaire par la base en répétant l'opération sur la partie fractionnaire du produit jusqu'a ce qu'elle soit nulle (ou que la précision voulue soit atteinte).

Pour la partie entière, on procède par divisions comme pour un entier.

Exemple: conversion de $(54,25)_{10}$ en base 2

Partie entière: $(54)_{10} = (110110)_2$ par divisions.

Partie fractionnaire:

$$0.25 \times 2 = 0.50 \Rightarrow a_{-1} = 0$$

$$0.50 \times 2 = 1.00 \rightarrow a_{-2} = 1$$

$$0.00 \times 2 = 0.00 \rightarrow a_{-3} = 0$$

 $(54,25)_{10} = (110110,01)_2$

Autre exemple : $(0,45)_{10}$ en base 2 ?

0,45 * 2 = 0,90	0
0,90 * 2 = 1,8	1
0,8 * 2 = 1,6	1
0,6 * 2 = 1,2	1
0,2 * 2 = 0,4	0
0,4 * 2 = 0,8	0
0,8 * 2 = 1,6	1
0,6 * 2 = 1,2	

$(0,45)_{10} = (0,0111001...)_2 !!!$

NB: Une longueur finie en base 10 peut être infinie en base B On conserve la précision relative 10⁻³ est approximée par 2⁻¹⁰

f. représentation des nombres réels

Le codage en complément à deux sur n bits ne permet de représenter qu'un intervalle de 2^n valeurs. Pour un grand nombre d'applications, cet intervalle de valeurs est trop restreint. La représentation à virgule flottante (floating-point) a été introduite pour répondre à ce besoin. Pour des mots de 32 bits,:

- la représentation en *complément à deux* permet de coder un intervalle de 2³² valeurs
- > tandis que la représentation à *virgule flottante* permet de coder un intervalle d'environ 2²⁵⁵ *valeurs*.

La représentation en virgule flottante a été normalisée (norme IEEE 754

Figure 1. Représentation des nombres à virgule flottante dans la norme IEEE 754

Signe	Exposant	Fraction			
S	е	f			

Nombre de bits	Taille de s	Taille de f	Taille de <i>e</i>	Emin	Emax
32(simple précision)	1	23	8	- 126	127
64 (double précision)	1	52	11	-1022	1023

Dans cette représentation, la valeur d'un nombre sur 32 bits est donnée par l'expression

$$(-1)^{s} \times \left(1 + \sum_{i=1}^{23} f_{i} 2^{-i}\right) \times 2^{e-E_{ma}}$$

où fi correspond au ième bit de la fraction f.

Exemple: n=32 bits:

S= 1 (-), e=132-127=5, f= 2⁻²+2⁻⁴=0,25+0,0625=0,3125

 $A = -1,3125x2^5$

2. Codes alphanumériques

Les codes "alphanumériques" sont des codes destinés à la transmission d'informations quelconques; ils ont donc à représenter au moins 36 caractères (10 chiffres plus 26 lettres). Comme 36 est compris entre 2⁵ et 2⁶, ils devront comporter au moins 6 bits. En fait, ils sont souvent à 8 bits, d'une part pour avoir une certaine souplesse d'utilisation (codes de commande réservés), d'autre part pour permettre la détection des erreurs (avec un bit de parité).

a. codes ASCII

Le code ASCII (American Standard Code for Information Interchange) comporte 7 bits d'informations et 1 bit de parité. Il est utilisé en particulier pour l'échange d'informations entre une unité centrale et des périphériques en informatique (clavier, imprimante,..) Exemple:

Caractère	

Bit de parité 🕇

Plusieurs points importants à propos du code ASCII:

- Les codes compris entre 0 et 31 ne représentent pas des caractères, ils ne sont pas affichables. Ces codes, souvent nommés caractères de contrôles sont utilisés pour indiquer des actions comme passer à la ligne (CR, LF), émettre un bip sonore (BEL), etc.
- Les lettres se suivent dans l'ordre alphabétique (codes 65 à 90 pour les majuscules,
 97 à 122 pour les minuscules), ce qui simplifie les comparaisons.
- On passe des majuscules aux minuscules en modifiant le 5ième bit, ce qui revient à ajouter 32=2⁵ au code ASCII décimal.
- Les chiffres sont rangés dans l'ordre croissant (codes 48 à 57), et les 4 bits de poids faibles définissent la valeur en binaire du chiffre.

Décimal	Hexa	Binaire	Caractère	Décimal	Hexa	Binaire	Caractère
0	0	X0000000	NUL	32	20	X 0100000	ESPACE
1	1	X0000001		33	21	X 0100001	!
2	2	X 0000010	STX	34	22	X 0100010	II
3	3	X 0000011	ETX	35	23	X 0100011	#
4	4	X 0000100	EOT	36	24	X 0100100	\$
5	5	X 0000101		37	25	X 0100101	%
6	6	X 0000110	ACK	38	26	X 0100110	&
7	7	X 0000111	BEL	39	27	X 0100111	1
8	8	X 0001000		40	28	X 0101000	(
9	9	X 0001001		41	29	X 0101001)
10	Α	X 0001010	LF	42	2A	X 0101010	*
11	В	X 0001011		43	2B	X 0101011	+
12	С	X 0001100		44	2C	X 0101100	,
13	D	X 0001101	CR	45	2D	X 0101101	-
14	Ε	X 0001110		46	2 E	X 0101110	•
15	F	X 0001111		47	2F	X 0101111	/
16	10	X 0010000		48	30	X 0110000	0
17	11	X 0010001		49	31	X 0110001	1
18	12	X 0010010		50	32	X 0110010	2
19	13	X 0010011		51	33	X 0110011	3
20	14	X 0010100	NAK	52	34	X 0110100	4
21	15	X 0010101		53	35	X 0110101	5
22	16	X 0010110		54	36	X 0110110	6
23	17	X 0010111		55	37	X 0110111	7
24	18	X 0011000		56	38	X 0111000	8
25	19	X 0011001		57	39	X 0111001	9
26	1A	X 0011010		58	3A	X 0111010	:
27	1B	X 0011011		59	3B	X 0111011	;
28	1C	X 0011100		60	3C	X 0111100	<
29	1D	X 0011101		61	3D	X 0111101	=
30	1E	X 0011110		62	3E	X 0111110	>
31	1F	X 0011111		63	3F	X 0111111	?

Décimal	Hexa	Binaire	Caractère	Décimal	Hexa	Binaire	Caractère
64	40	X 1000000	@	96	60	X 1100000	`
65	41	X 1000001	Α	97	61	X 1100001	а
66	42	X 1000010	В	98	62	X 1100010	b
67	43	X 1000011	С	99	63	X 1100011	С
68	44	X 1000100	D	100	64	X 1100100	d
69	45	X 1000101	Е	101	65	X 1100101	e
70	46	X 1000110	F	102	66	X 1100110	f
71	47	X 1000111	G	103	67	X 1100111	g
72	48	X 1001000	Н	104	68	X 1101000	h
73	49	X 1001001	I	105	69	X 1101001	i
74	4A	X 1001010	J	106	6A	X 1101010	j
75	4B	X 1001011	K	107	6B	X 1101011	k
76	4C	X 1001100	L	108	6C	X 1101100	l
77	4D	X 1001101	M	109	6D	X 1101101	m
78	4E	X 1001110	N	110	6E	X 1101110	n
79	4F	X 1001111	0	111	6F	X 1101111	0
80	50	X 1010000	Р	112	70	X 1110000	p
81	51	X 1010001	Q	113	71	X 1110001	q
82	52	X 1010010	R	114	72	X 1110010	r
83	53	X 1010011	S	115	73	X 1110011	S
84	54	X 1010100	T	116	74	X 1110100	t
85	55	X 1010101	U	117	75	X 1110101	u
86	56	X 1010110	V	118	76	X 1110110	V
87	57	X 1010111	W	119	77	X 1110111	W
88	58	X 1011000	Χ	120	78	X 1111000	Х
89	59	X 1011001	Υ	121	79	X 1111001	У
90	5A	X 1011010	Z	122	7A	X 1111010	Z
91	5B	X 1011011	[123	7B	X 1111011	
92	5C	X 1011100	\	124	7C	X 1111100	1
93	5D	X 1011101]	125	7D	X 1111101	
94	5E	X 1011110	٨	126	7E	X 1111110	~
95	5F	X1011111	_	127	7F	X1111111	

NB: X est le bit de parité

b. code E.I.A

Le code **EIA** (**E**lectronic **I**ndustries **A**ssociation) comporte également 7 bits d'informations et 1 bit de parité. Il est plus particulièrement utilisé dans la commande numérique-outils.

Exemple:

c. code Unicode

Au lieu d'utiliser seulement les codes 0 à 127, il utilise des codes de valeurs bien plus grandes.

Le code UNICODE permet de représenter tous les caractères spécifiques aux différentes langues. De nouveaux codes sont régulièrement attribués pour de nouveaux caractères: caractères latins (accentués ou non), grecs, cyrillics, arméniens, arabe, hébreux,...

Caractéristiques du code(mis au point en 1991):

- 16 bits pour représenter 65 536 caractères (0 a 65 535)
- Compatible avec ASCII
- Code la plupart des alphabets : Arabe, Chinois,
- On en a défini environ 50 000 caractères pour l'instant..

d. le Code Barre

Ce principe de codage, apparu dans les années 80, est largement utilisé sur les produits de grande consommation, car il facilite la gestion des produits.

Le marquage comporte un certain nombre de barres verticales ainsi que 13 chiffres :

- Le 1er chiffre désigne le pays d'origine : 3 = France, 4 = Allemagne, 0 = U.S.A, Canada etc. ...
- Les cing suivants sont ceux du code « fabricant »,
- Les six autres sont ceux du code de l'article.
- Le dernier étant une clé de contrôle
- Les barres représentent le codage de ces chiffres sur 7 bits, à chaque chiffre est attribué un ensemble de 7 espaces blancs ou noirs.

Site Mr. KHATORY: http://e-khatory.com