sp|P21796|VDAC1_HUMAN Voltage-dependent anion-selective channel protein 1 OS=Homo sapiens OX=9606 GN=VDAC1 PE=1 SV=2

Amino acid sequence: human mitochondrial β barrel membrane protein VDAC

MAVPPTYADLGKSARDVFTKGYGFGLIKLDLKTKSENGLEFTSSGSANTETTKVTGSLET KYRWTEYGLTFTEKWNTDNTLGTEITVEDQLARGLKLTFDSSFSPNTGKKNAKIKTGYKR EHINLGCDMDFDIAGPSIRGALVLGYEGWLAGYQMNFETAKSRVTQSNFAVGYKTDEFQL HTNVNDGTEFGGSIYQKVNKKLETAVNLAWTAGNSNTRFGIAAKYQIDPDACFSAKVNNS SLIGLGYTQTLKPGIKLTLSALLDGKNVNAGGHKLGLGLEFQA

Procedure: Visited the Uniprot website and searched for "human mitochondrial β barrel membrane protein VDAC" in search box. Then open the <u>search result</u>:.

There were three vdac proteins namely, vdac1, vdac2 and vdac3. The above sequence is for vdac1.

Functions of VDAC1

- It forms a channel through the mitochondrial outer membrane along with the plasma membrane. The channel at the outer mitochondrial membrane allows diffusion of small hydrophilic molecules; on the other hand in the plasma membrane it is involved in cell volume regulation and apoptosis. (PubMed:11845315, PubMed:18755977)
- It adopts an open conformation at low or zero membrane potential and a closed conformation at potentials above 30-40 mV. The open state has a weak anion selectivity whereas the closed state is cation-selective.(PubMed:20230784, PubMed:8420959).
- Binds various signaling molecules, including the sphingolipid ceramide, the phospholipid phosphatidylcholine, and the sterol cholesterol (PubMed:31015432).

- In depolarized mitochondria, acts downstream of PRKN and PINK1 to promote mitophagy or prevent apoptosis.
- polyubiquitination by PRKN promotes mitophagy, while monoubiquitination by PRKN decreases mitochondrial calcium influx which ultimately inhibits apoptosis (PubMed:32047033).
- The VDAC1 may participate in the formation of the permeability transition pore complex (PTPC) which is responsible for the release of mitochondrial products that triggers apoptosis (PubMed:15033708, PubMed:25296756).
- It may also mediate ATP export from cells (PubMed:30061676).

The Number of Transmembrane segments present in the VDAC1 protein: 19

Гороlоду					
Feature key	Position(s)	Description		Actions	Length
Transmembrane ⁱ	26 – 35	Beta stranded	₱ 2 Publications ▼		10
Transmembrane i	39 – 47	Beta stranded	₱ 2 Publications ▼		9
Transmembrane i	54 - 64	Beta stranded	₱ 2 Publications ▼	奋 Add 🔧 BLAST	11
Transmembrane i	69 – 76	Beta stranded	₱ 2 Publications ▼		8
Transmembrane i	80 – 89	Beta stranded	₱ 2 Publications ▼		10
Transmembrane i	95 – 104	Beta stranded	₱ 2 Publications ▼		10
Transmembrane i	111 – 120	Beta stranded	₱ 2 Publications ▼		10
Transmembrane i	123 – 130	Beta stranded	₱ 2 Publications ▼		8
Transmembrane i	137 – 145	Beta stranded	₱ 2 Publications ▼		9
Transmembrane i	150 – 158	Beta stranded	₱ 2 Publications ▼		9
Transmembrane i	163 – 175	Beta stranded	₱ 2 Publications ▼	🖮 Add 🔧 BLAST	13
Transmembrane i	178 – 185	Beta stranded	₱ 2 Publications ▼		8
Transmembrane i	189 – 198	Beta stranded	₱ 2 Publications ▼		10
Transmembrane i	202 – 211	Beta stranded	② 2 Publications ▼		10
Transmembrane i	218 – 227	Beta stranded	₱ 2 Publications ▼		10
Transmembrane i	231 – 238	Beta stranded	₱ 2 Publications ▼		8
Transmembrane i	242 – 251	Beta stranded	₱ 2 Publications ▼		10
Transmembrane i	254 – 263	Beta stranded	₱ 2 Publications ▼		10
Transmembrane i	273 – 282	Beta stranded	₱ 2 Publications ▼		10

2. There are **116,664** sequences for "transcriptional factors" in uniprot. Out of which there are **18,085** identity clusters of 50%.

Source: <u>uniprot.org/uniref/?query=uniprot:("transcription+factors")+identity:0.5</u>

I searched for "transcription factors" in uniprot and then selected the cluster percentage from the left side filter menu.

3. There are **203,810** protein sequences from Homo sapiens at identity cutoff of 100%, 90% and 50%.

On searching for "homo sapiens" in uniprot, and then selecting the organism from left side menu. We got total sequences for homo sapiens. Then i selected the cluster %.

Sequence Identity	Number of sequences				
50 %	68,589				
90%	91,947				
100%	152,368				

4. Search term used: reviewed:yes AND organism:"Mus musculus (Mouse) [10090]" Search results give us 17,090 results as manually annotated protein sequences for mouse (Mus musculus).

Search term used for 3d structures: database:(type:pdb) AND reviewed:yes AND organism:"Mus musculus (Mouse) [10090]"

There are 2062 results for manually annotated protein sequences associated with PDB (3D structures).

5.

Results

1,957 out of 2,062 identifiers from UniProtKB AC/ID were successfully mapped to 1,957 STRING IDs. Click here to download unmapped identifier(s)

- 1. Search in UniProt with search query -
- 2. database:(type:pdb) AND reviewed:yes AND organism:"Mus musculus (Mouse) [10090]"
- 3. Select only the entry column and download the identifiers as a list.
- 4. In Retrieve/ID Mapping, paste these identifiers.
- 5. Under select options:
 - a. From UniProtKB
 - b. To STRING.... And submit.
- 6. a) Inference: O According to Swiss-Prot:
 - The average sequence length is 360 aa.
 - According toTrEMBL:
 - The average sequence length is 348 aa.

The majority of sequences are between 200 and 400 amino acids long. It's also clear that sequences of longer length have a lower frequency.

Swiss-Prot

TrEMBL

b)

As per given in **TrEMBL**:

The shortest sequence in UniProtKB = **7 AAs**, with sequence ID = A0A1Y7VI41

The longest sequence in UniProtKB = **45,354 AA**s with sequence ID = A0A5A9P0L4

As per given in Swiss_Prot:

The shortest sequence in UniProtKB = 2 AAs, which sequence ID = P0DPR3

The longest sequence in UniProtKB = 35,213 AAs with sequence ID = A2ASS6

C) in TrEMBL

In Swiss-prot

6.1 Composition in percent for the complete database

Ala	(A)	8.25	Gln	(Q)	3.93	Leu	(L)	9.65	Ser	(5)	6.64
Arg	(R)	5.53	Glu	(E)	6.72	Lys	(K)	5.80	Thr	(T)	5.35
Asn	(N)	4.06	Gly	(G)	7.07	Met	(M)	2.41	Trp	(W)	1.10
Asp	(D)	5.46	His	(H)	2.27	Phe	(F)	3.86	Tyr	(Y)	2.92
Cvs	(c)	1.38	Ile	(I)	5.91	Pro	(P)	4.74	Val	(V)	6.86

Asx (B) 0.000 Glx (Z) 0.000 Xaa (X) 0.00

