Logistic Regression

TOTAL POINTS 5

- 1. Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x) = 1$ point 0.7. This means (check all that apply):
 - \checkmark Our estimate for $P(y=1|x;\theta)$ is 0.7.
 - ightharpoonup Our estimate for $P(y=0|x;\theta)$ is 0.3.
 - Our estimate for $P(y=1|x;\theta)$ is 0.3.
 - Our estimate for $P(y=0|x;\theta)$ is 0.7.
- 2. Suppose you have the following training set, and fit a logistic regression classifier $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$.

1 point

x_1	x_2	у
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

- Adding polynomial features (e.g., instead using $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1 x_2 + \theta_5 x_2^2)$) could increase how well we can fit the training data.
- igwedge At the optimal value of heta (e.g., found by fminunc), we will have $J(heta) \geq 0$.
- Adding polynomial features (e.g., instead using $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1 x_2 + \theta_5 x_2^2)$) would increase $J(\theta)$ because we are now summing over more terms.
- If we train gradient descent for enough iterations, for some examples $x^{(i)}$ in the training set it is possible to obtain $h_{\theta}(x^{(i)}) > 1$.

- For logistic regression, the gradient is given by $\frac{\partial}{\partial \theta_j}J(\theta)=\frac{1}{m}\sum_{i=1}^m \left(h_{\theta}(x^{(i)})-y^{(i)}\right)x_j^{(i)}$. Which of these is a correct of point gradient descent update for logistic regression with a learning rate of α ? Check all that apply.
 - $m{arphi}$ $heta_j := heta_j lpha rac{1}{m} \sum_{i=1}^m \left(h_{ heta}(x^{(i)}) y^{(i)}
 ight) x_j^{(i)}$ (simultaneously update for all j).
 - $m{arphi}$ $heta_j := heta_j lpha rac{1}{m} \sum_{i=1}^m \left(rac{1}{1+e^{- heta^T x^{(i)}}} y^{(i)}
 ight) x_j^{(i)}$ (simultaneously update for all j).
 - $\theta_j := \theta_j \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) y^{(i)}) x^{(i)}$ (simultaneously update for all j).
- Which of the following statements are true? Check all that apply.

1 point

- The one-vs-all technique allows you to use logistic regression for problems in which each $y^{(i)}$ comes from a fixed, discrete set of values.
- The cost function $J(\theta)$ for logistic regression trained with $m \geq 1$ examples is always greater than or equal to zero.
- For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).
- Since we train one classifier when there are two classes, we train two classifiers when there are three classes (and we do one-vs-all classification).
- 5. Suppose you train a logistic classifier $h_{ heta}(x)=g(heta_0+ heta_1x_1+ heta_2x_2)$. Suppose $heta_0=-6, heta_1=1, heta_2=0$. Which of the t=0following figures represents the decision boundary found by your classifier?

O Figure:

Figure:

Figure:

O Figure:

