Detecção de objetos

Fernando Pujaico Rivera

1 Obtendo uma linha em 3D a partir de imagens em 2D

Nesta seção é mostrado como a partir de duas imagens binarias, uma referente a um objeto iluminado com luz estruturada, e outra da mesma luz iluminando um plano de referencia; podemos obter uma curva em 3D que representa a altura de um objeto em estudo em relação ao plano de referencia. Podemos

Figure 1: Obtendo uma linha em 3D.

ver todo este processo resumido na Figura 1a, onde são extraídos M pontos p_m (em 2D) das imagens binarias e são convertidos em pontos P_m (em 3D), mediante a função $func_3d()$

$$P \leftarrow func_3d(p; \mathbf{K}), \tag{1}$$

$$p = (c_0, d_0, b_0) \xrightarrow{func_3d} P = (x, y, z),$$
 (2)

$$p = (c_0, d_0, b_0) \xrightarrow{func_3d} P = (x, y, z),$$

$$p_m = (c_{0m}, d_{0m}, b_{0m}) \xrightarrow{func_3d} P_m = (x_m, y_m, z_m).$$

$$(2)$$

Os pontos p_m são extraídos um por cada coluna das imagens binarias, e estão referenciados ao centro da imagem, é dizer os valores em p_m podem ser positivos ou negativos. A Figura 1b mostra como são selecionados os valores (c_0, d_0, b_0) para um ponto p, que está ressaltado com um circulo vermelho na imagem. O centro da imagem está representado com um circulo azul. O valor d_0 representa a distancia vertical de um ponto da linha de referencia ao centro da imagem, o valor c_0 representa a distancia vertical de um ponto da linha do objeto à linha de referencia, e o valor b_0 representa a distancia horizontal de um ponto da linha do objeto ao centro da imagem.

Os parâmetros do sistema $\mathbf{K} \equiv \{h_0, D, \theta, f, g\}$ são agrupado num vetor K, e estos valores são extraídos da geometria do sistema; por este motivo estes valores não mudam para todos os pontos p_m , $\forall 1 \leq m \leq M$. A Figura 2 mostra uma vista sagital da disposição do sistema, onde as variáveis h_0 , $D, \theta, f \in g$ são obtidas. Dado que a vista é sagital somente são mostradas aqui os valores y e z de um ponto P = (x, y, z); onde z representa altura do objeto e y a distancia vertical da base do objeto em estudo ao ponto no plano de referencia a onde aponta a câmera; este ponto é considerada a posição (0,0,0) em 3D.

Figure 2: Vista sagital do sistema.

A função $func_3d()$ calcula a altura z de um ponto mediante as Equações

$$z = \frac{D \ tg(\theta) \left[1 + ctg\left(\theta + atg\left(\frac{h_0}{d_0 + c_0}\right)\right) ctg\left(\theta - atg\left(\frac{d_0}{h_0}\right)\right) \right]}{\left[1 + ctg\left(\theta + atg\left(\frac{h_0}{d_0 + c_0}\right)\right) ctg(\alpha) \right]}, \tag{4}$$

$$ctg(\alpha) = \frac{D \ tg(\theta)ctg\left(\theta - atg\left(\frac{d_0}{h_0}\right)\right) - f}{g}.$$
 (5)

O valor y de um ponto analisado pode ser calculado mediante as Equações (6) e (5),

$$y = D \ tg(\theta)ctg\left(\theta - atg\left(\frac{d_0}{h_0}\right)\right) - D - z \ ctg(\alpha). \tag{6}$$

Para obter o valor x são criadas as variáveis temporais γ e β , como mostra a Figura 3a. Se geramos um plano com um angulo γ obtemos uma vista onde a variável x está evidente, como mostra a Figura 3b. Destas figuras

Figure 3: Detecção de cores.

concluímos que a variável x pode ser obtida das Equações (7), (8) e (9)

$$x = b_0 \left(\frac{D \ tg(\theta) - z}{h_0} \right) \left(\frac{\csc(\gamma)}{\sec(\beta)} \right), \tag{7}$$

$$\gamma = \theta - \beta, \tag{8}$$

$$\beta = atg\left(\frac{c_0 + d_0}{h_0}\right). \tag{9}$$