Parameterized and Runtime-tunable Snapshot Isolation in Distributed Transactional Key-value Stores

Hengfeng Wei, Yu Huang, Jian Lu

Nanjing University, China

September 17, 2017

Parameterized and Runtime-tunable Snapshot Isolation

RVSI: Relaxed Version Snapshot Isolation

Definition of RVSI

Parameterized and Runtime-tunable Snapshot Isolation

RVSI: Relaxed Version Snapshot Isolation

Definition of RVSI

Transaction T_i :

- ightharpoonup begins with a start operation s_i
- contains a sequence of read or write operations
- ightharpoonup ends with a commit operation c_i or an abort operation a_i

Transaction T_i :

- ightharpoonup begins with a start operation s_i
- contains a sequence of read or write operations
- lacktriangle ends with a commit operation c_i or an abort operation a_i

History: modelling an execution of a transactional key-value store

- $w_i(x_i)$: transaction T_i writing version i of data item x
- lacksquare $r_i(x_j)$: transaction T_i reading version j of data item x written by T_j
- ▶ time-precedes partial order \prec_h over operations
- ▶ T_i and T_j are concurrent:

$$s_i \prec_h c_i \land s_i \prec_h c_i$$

Snapshot isolation requires that:

Snapshot Read: Each transaction read data from the "lastest" snapshot as of the time the transaction started.

Snapshot Write: No write-conflicting concurrent transactions

A history h is in snapshot isolation if and only if it satisfies [Adya@Thesis'99]

Snapshot Read: All reads of transaction T_i occur at T_i 's start time.

$$\forall r_i(x_{j\neq i}), w_{k\neq j}(x_k), c_k \in h:$$

$$(c_j \in h \land c_j \prec_h s_i) \land (s_i \prec_h c_k \lor c_k \prec_h c_j).$$

Snapshot Write: No concurrent committed transactions may write the same data item.

$$\forall w_i(x_i), w_{i \neq i}(x_j) \in h \implies (c_i \prec_h s_i \lor c_j \prec_h s_i).$$

September 17, 2017

▶ Parameters (k_1, k_2, k_3) to control the severity of the anomalies w.r.t SI

- ▶ Parameters (k_1, k_2, k_3) to control the severity of the anomalies w.r.t SI
- ▶ RC 1 ⊃ RVSI (k_1, k_2, k_3) ⊃ SI
- $ightharpoonup \mathsf{RVSI}(\infty,\infty,\infty) = \mathsf{RC} \qquad \mathsf{RVSI}(1,0,*) = \mathsf{SI}$

. . .

- "Snapshot Read" property of SI

1. "stale" data versions

. . .

- "Snapshot Read" property of SI

- 1. "stale" data versions
- 2. "concurrent" data versions

. . .

- "Snapshot Read" property of SI

- 1. "stale" data versions
- 2. "concurrent" data versions
- 3. "non-snapshot" data versions

. . .

- "Snapshot Read" property of SI

1. "stale" data versions

bounded staleness

- 2. "concurrent" data versions
- 3. "non-snapshot" data versions

. . .

- "Snapshot Read" property of SI

1. "stale" data versions

bounded staleness

2. "concurrent" data versions

bounded concurrency level

3. "non-snapshot" data versions

. . .

- "Snapshot Read" property of SI

- 1. "stale" data versions
- "concurrent" data versions
- 3. "non-snapshot" data versions

bounded staleness

bounded concurrency level

bounded distance

7 B C 7 B C

Illustration of RVSI

Definition of RVSI

$$\forall r_i(x_j), w_k(x_k), c_k \in h : \left(c_j \in h \land \bigwedge_{k=1}^m (s_i \prec_h c_k \prec_h c_j)\right) \Rightarrow m \leq k_2,$$

$$(k_3-SV)$$

$$\forall r_i(x_j), r_i(y_l), w_k(x_k), c_k \in h : \left(\bigwedge_{k=1}^m \left(c_j \prec_h c_k \prec_h c_l \right) \right) \Rightarrow m \leq k_3.$$

Definition of RVSI

$$h \in \mathsf{RVSI} \iff h \in k_1\text{-BV} \cap k_2\text{-FV} \cap k_3\text{-SV} \cap \mathsf{WCF}.$$

Theorem

$$\mathsf{RVSI}(1,0,*) = \mathsf{SI}.$$

