Mały Projekt nr 5.

Temat: Kody Hamminga

Powstające w trakcie transmisji błędy mogą drogo kosztować i dlatego ważne są starania o to, aby błędy te były jak najmniej prawdopodobne. Zastosowanie kodowania w procesie przesyłania informacji umożliwia zwiększenie niezawodności przekazu. Kody korekcyjne są jedyną metodą poprawienia wierności transmisji tam, gdzie retransmisja błędnego sygnału jest niemożliwa, np. w łączności satelitarnej. Za ich pomocą można również zabezpieczać dane przechowywane na nośnikach elektronicznych, które z czasem ulegają degradacji. Okazuje się, że można je także z powodzeniem wykorzystywać do tworzenia skutecznych systemów kryptograficznych.

Zasadnicza idea korekcyjnego kodowania nadmiarowego polega na przesyłaniu wraz z oryginalną wiadomością pewnej informacji "nadmiarowej", nie wnoszącej nic do treści samej wiadomości. Odebrana, wydłużona w ten sposób wiadomość, odwzorowywana jest za pomocą przekształcenia dekodującego na ciąg pierwotnej długości.

FIGURE 1. Schemat procesu kodowania

Funkcje kodująca i dekodująca powinny być tak określone, aby prawdopodobieństwo odczytania wiadomości z błędem było minimalne. W procesie dekodowania należy błędy wykryć, zlokalizować a następnie poprawić. Analiza informacji zawartych w dodatkowo przesyłanych znakach powinna umożliwić bezbłędne odtworzenie wysłanego słowa, jeśli w czasie transmisji wystąpiło stosunkowo mało błędów.

Powszechnie stosowanymi w praktyce są kody blokowe, których słowa kodowe tworzą (dla ustalonego $n \in \mathbb{N}$) niepusty podzbiór \mathcal{C} n-wymiarowej przestrzeni wektorowej nad ciałem GF(q). Mówimy wówczas, że kod \mathcal{C} jest długości n nad ciałem GF(q).

Załóżmy, że przesyłaną informację dzielimy na skończone ciągi zawierające ustaloną liczbę $k \in \mathbb{N}$ tzw. **symboli informacji**, które mogą być kodowane i dekodowane niezależnie od innych ciągów. W tym przypadku kod \mathcal{C} jest obrazem pewnego różnowartościowego przekształcenia

$$\xi: GF(q)^k \to GF(q)^n,$$

zwanego **funkcją kodującą** (algorytmem kodowania). Odwzorowanie ξ każdemu wektorowi $\mathbf{u} \in GF(q)^k$ długości k, w jednoznaczny sposób przyporządkowuje słowo kodowe $\mathbf{c} \in \mathcal{C} = \xi(GF(q)^k)$, w którym pewne n-k symboli dodatkowych to tzw. **symbole sprawdzające**.

Przekształcenie

$$\eta: GF(q)^n \to GF(q)^k$$

takie, że dla każdego $\boldsymbol{u} \in GF(q)^k$, $\eta(\xi(\boldsymbol{u})) = \boldsymbol{u}$, nazywamy $\boldsymbol{funkcjq}$ $\boldsymbol{dekodującq}$ (algorytmem dekodowania).

W przypadku, gdy wysłanym wektorem jest słowo kodowe $\mathbf{c} \in \mathcal{C}$, zaś odebranym po transmisji jest wektor $\mathbf{f} \in GF(q)^n$, to wektor $\mathbf{e} := \mathbf{f} - \mathbf{c} \in GF(q)^n$ nazywamy **wektorem błędu**.

Niech \mathcal{C} będzie kodem blokowym długości n nad ciałem GF(q). Jeśli q=2, to \mathcal{C} jest kodem binarnym.

² Jeżeli funkcja kodująca jest liniowa to kod C nazywamy (n,k)-kodem liniowym nad ciałem GF(q), Wówczas C jest k-wymiarowa podprzestrzenią n-wymiarowej przestrzeni $GF(q)^n$.

Przykład 1. Kod powtórzeniowy długości n nad ciałem GF(q) powstaje przez (n-1)-krotne powtórzenie pojedynczego symbolu $c \in GF(q)$. Funkcja kodująca $\xi : GF(q) \to GF(q)^n$ ma postać: $c \mapsto c \dots c$.

Przykład 2. Kod kontroli parzystości długości n nad ciałem GF(q) powstaje przez dodanie na końcu każdej wysyłanej wiadomości $c_1 \dots c_{n-1} \in GF(q)^{n-1}$, elementu przeciwnego do sumy $\sum_{i=1}^{n-1} c_i$.

Funkcja kodująca $\xi: GF(q)^{n-1} \to GF(q)^n$ jest wtedy postaci:

$$c_1 \dots c_{n-1} \mapsto c_1 \dots c_{n-1} - \sum_{i=1}^{n-1} c_i.$$

Algorytm kodowania. Dla (n, k)-kodów liniowych warunki na symbole nadmiarowe w słowach kodowych można określić za pomocą odpowiedniego układu równań liniowych.

Macierz $H \in \mathfrak{M}^n_{n-k}(GF(q))$, dla której $\boldsymbol{c} \in \mathcal{C}$ wtedy i tylko wtedy, gdy spełniony jest następujący warunek:

$$H\mathbf{c}^T = \mathbf{0}_{n-k}^T$$

będziemy nazywać macierzą kontroli parzystości (sprawdzającą) kodu C. Układ n-k równości (1) nosi nazwę równości kontroli parzystości.

Kody Hamminga. Niech $m\in\mathbb{N}$ i niech $H_m\in\mathfrak{M}_m^{2^m-1}(Z_2)$ będzie macierzą, której każda i-ta kolumna jest binarną reprezentacją liczby $1\leq i\leq 2^m-1$ zapisaną "z dołu do góry".

Definicja 3. Binarnym kodem Hamminga \mathcal{H}_m rzędu m nazywamy $(2^m - 1, 2^m - m - 1)$ -kod liniowy, dla którego H_m jest macierzą kontroli parzystości.

Zadania do wykonania:

- (a) Skonstruować macierz kontroli parzystości dla kodu \mathcal{H}_3 . Zakodować wiadomość $\boldsymbol{u}=1010$. Zakładając, że w trakcie transmisji został popełniony jeden błąd odkodować słowo $\boldsymbol{f}=0011111$.
- (b) Skonstruować macierz kontroli parzystości dla kodu \mathcal{H}_4 . Zakodować wiadomość $\boldsymbol{u}=11101110000$. Zakładając, że w trakcie transmisji został popełniony jeden błąd odkodować słowo $\boldsymbol{f}=111010100000000$.