Practical 5

NAME: Naveen Kumar

ROLL NO: 20211437

COURSE: BSc(hons)Computer

Science

SEMESTER: 4

GAUSS JACOBI METHOD

Question I:

```
GaussJacobi[A0_, b0_, x0_, maxiter_] :=
  Module \left[ \{A = N[A0], b = N[b0], xk = x0, xk1, i, j, k = 0, n, m, output details \}, \right]
   size = Dimensions[A];
   n = size[[1]];
   m = size[[2]];
   If [n \neq m]
    Print["Not a square matrix, cannot proceed with Gauss jacobi method"];
    Return[]];
   OutputDetails = {xk};
   xk1 = Table[0, {n}];
   While k < maxiter,
    For i = 1, i \le n, i++
     xk1[[i]] = 1 / A[[i, i]] \left[ b[[i]] - \sum_{i=1}^{i-1} A[[i, j]] * xk[[j]] - \sum_{j=i+1}^{n} A[[i, j]] * xk[[j]] \right];
    OutputDetails = Append[OutputDetails, xk1];
    xk = xk1; ;
   colHeading = Table[x[s], {s, 1, n}];
   Print[NumberForm[TableForm[OutputDetails,
       TableHeadings → {None, coldHeading}], 6]];
   Print["No. of iterations performed", maxiter]; |;
A = \{\{5, 1, 2\}, \{-3, 9, 4\}, \{1, 2, -7\}\};
b = \{10, -14, -33\};
x0 = \{0, 0, 0\};
GaussJacobi[A, b, x0, 15]
0
                        0
           -1.55556
                      4.71429
0.425397 -2.98413
                      4.55556
0.774603
            -3.43845
                        3.92245
1.11871
            -3.04067
                        3.84253
            -2.89044
1.07112
                       4.00534
          -2.97867
0.975953
                      4.04146
0.979148
         -3.02644
                      4.00266
1.00422
          -3.00813
                      3.98947
1.00584
            -2.99391
                        3.99828
0.99947
            -2.99729
                       4.00257
0.998428
            -3.00132
                       4.0007
0.999985
            -3.00083
                        3.9994
1.00041
            -2.99974
                        3.99976
1.00004
            -2.99976
                        4.00013
0.999898
            -3.00004
                        4.00008
No. of iterations performed15
```

Question 2:

```
GaussJacobi[A0_, b0_, x0_, maxiter_] :=
       Module A = N[A0], b = N[b0], xk = x0, xk1, i, j, k = 0, k =
          size = Dimensions[A];
          n = size[[1]];
          m = size[[2]];
          If [n \neq m]
              Print["Not a square matrix, cannot proceed with Gauss jacobi method"];
           OutputDetails = {xk};
           xk1 = Table[0, {n}];
          While k < maxiter,
              For [i = 1, i \le n, i++,
                xk1[[i]] = 1 / A[[i, i]] \left(b[[i]] - \sum_{j=1}^{i-1} A[[i, j]] * xk[[j]] - \sum_{j=i+1}^{n} A[[i, j]] * xk[[j]]\right); 
              k++;
              OutputDetails = Append[OutputDetails, xk1];
              xk = xk1;;
           colHeading = Table[x[s], {s, 1, n}];
           Print[NumberForm[TableForm[OutputDetails,
                     TableHeadings → {None, coldHeading}], 6]];
           Print["No. of iterations performed", maxiter]; |;
A = \{\{3, 1, 6\}, \{-3, 5, 1\}, \{-5, 2, -8\}\};
b = \{50, -14, -37\};
x0 = \{0, 0, 0\};
GaussJacobi[A, b, x0, 15]
```

0	0	0
16.6667	-2.8	4.625
8.35	6.275	-6.49167
27.5583	3.50833	0.975
13.5472	13.54	-11.7219
35.5971	7.67271	-0.457014
15.0231	18.6497	-15.705
41.8601	9.35487	-0.10204
13.7525	22.3365	-19.1989
47.6189	9.29124	1.61384
10.3419	25.4486	-22.814
53.8118	7.96795	4.52344
4.9638	28.5824	-27.0154
61.17	5.58136	8.66822
-2.53023	32.1683	-32.2109
70.3657	2.12404	14.2485

No. of iterations performed15

Question 3

```
GaussJacobi[A0_, b0_, x0_, maxiter_] :=
       Module A = N[A0], b = N[b0], xk = x0, xk1, i, j, k = 0, k =
          size = Dimensions[A];
          n = size[[1]];
          m = size[[2]];
          If [n \neq m]
              Print["Not a square matrix, cannot proceed with Gauss jacobi method"];
           OutputDetails = {xk};
           xk1 = Table[0, {n}];
          While k < maxiter,
              For [i = 1, i \le n, i++,
                xk1[[i]] = 1 / A[[i, i]] \left(b[[i]] - \sum_{j=1}^{i-1} A[[i, j]] * xk[[j]] - \sum_{j=i+1}^{n} A[[i, j]] * xk[[j]]\right); 
              k++;
              OutputDetails = Append[OutputDetails, xk1];
              xk = xk1;;
           colHeading = Table[x[s], {s, 1, n}];
           Print[NumberForm[TableForm[OutputDetails,
                     TableHeadings → {None, coldHeading}], 6]];
          Print["No. of iterations performed", maxiter];];
A = \{\{3, 1, 5\}, \{-6, 9, 4\}, \{6, 4, -6\}\};
b = \{-23, 14, -45\};
x0 = \{0, 0, 0\};
GaussJacobi[A, b, x0, 15]
```

0	0	0
-7.66667	1.55556	7.5
-20.6852	-6.88889	0.87037
-6.82099	-12.6214	-17.7778
26.1701	4.90947	-7.73525
3.58893	22.4402	36.9431
-76.7185	-12.471	26.0491
-46.9248	-61.1675	-77.5325
141.943	4.73126	-80.2031
124.428	131.83	152.597
-305.939	16.6865	219.815
-379.587	-300.099	-287.315
571.225	-123.807	-572.153
987.191	636.662	496.187
-1046.87	439.156	1419.13
-2519.27	-1327.08	-746.595

No. of iterations performed15