PRINCIPIOS DE REGULACIÓN FUENTE REGULADA

PARÁMETROS DE LAS FUENTES DE VOLTAJE DC REGULADAS

Regulación de Carga

Es una medida de la capacidad de la Fuente de Voltaje DC de mantener constante su voltaje de salida ante las variaciones de la carga conectada a ella, es decir, ante las variaciones de la cantidad de corriente que debe proporcionarle al circuito que está alimentando.

$$R_C = \frac{Vo_{\text{Im }ax} - Vo_{SC}}{Vo_{\text{Im }ax}} x 100\%$$

Vo_{Imax} = Voltaje de salida a plena carga (corriente máxima) con voltaje de entrada máximo

Vo_{SC} = Voltaje de salida sin carga (corriente cero) con voltaje de entrada máximo

Cuanto mejor es la calidad del regulador de la Fuente de Voltaje, menor es la Regulación de Carga.

Regulación de Línea

Es una medida de la capacidad de la Fuente de Voltaje DC de mantener constante su voltaje de salida cuando varía el valor del voltaje AC aplicado a la entrada del rectificador.

$$R_L = \frac{Vo_{V_{\text{Im}ax}} - Vo_{V_{\text{Im}in}}}{Vo_{V_{\text{Im}ax}}} x 100\%$$

Vo_{Vimax} = Voltaje de salida a plena carga cuando el voltaje de entrada AC es máximo

Vo_{Vimin} = Voltaje de salida salida a plena carga cuando el voltaje de entrada AC es mínimo

Cuanto mejor es la calidad del regulador de la Fuente de Voltaje, menor es la Regulación de Línea.

EL DIODO ZENER

PARAMETROS DEL DIODO ZENER

Vzo: Fuente de voltaje en el modelo del zener.

- V_{ZK} I_{ZK}: El fabricante especifica un valor de voltaje del zener identificado como el voltaje de rodilla para una corriente dada.
- V_Z I_{ZT} : El fabricante especifica un voltaje de zener donde el dispositivo ya está operativo en la región de zener para una corriente dada I_{ZT} . Los valores V_Z I_{ZT} definen el punto Q en la gráfica.
- r_z : Resistencia dinámica o resistencia incremental del zener en el punto de operación Q. Se cumple que $\Delta V = r_z \Delta I$
- Pz max : El fabricante especifica la potencia máxima que determina la corriente máxima que puede circular por el dispositivo.

Si V_{Z0} es el punto en el cual la línea recta definida por $1/r_Z$ intersecta el eje horizontal, el zener se puede modelar con una fuente de voltaje V_{Z0} en serie con una resistencia r_Z . $V_Z = V_{Z0} + r_Z I_Z$.

REGULACIÓN CON EL DIODO ZENER

FUENTE DE VOLTAJE DC REGULADA CON DIODO ZENER

EJERCICIO 1

Se tiene una fuente regulada en la que el voltaje en el condensador varía entre $Vc_{max} = 15,57V$ y $Vc_{min} = 13,46V$.

Resistencia R1: 27Ω . Resistencia de carga: 240Ω I_{carga}= 50 mA

Parámetros zener: $V_z=12V$; $r_z=2\Omega$; $I_z=2mA$; $I_{zmin}=0.5mA$: $P_z=2W$

De los datos: $I_L = 12V / 240\Omega = 50 \text{mA}$

Determine si el zener está siempre en su región de regulación y dentro del rango de potencia que puede disipar.

La corriente por el zener es mínima cuando el voltaje de entrada es mínimo y la corriente por la carga es máxima.

Del circuito: Vmin = 27Ω (i_Z+50mA) + 12V

$$i_Z = \frac{V_{\min} - 12V}{0.027k\Omega} - 50mA = \frac{13.46V - 12V}{0.027k\Omega} - 50mA = 4.07mA$$

Dado que la corriente mínima es 0,5mA, el zener permanece en su región de conducción.

El zener disipa la mayor potencia cuando se desconecta la carga y el voltaje en el condensador es máximo (Vc_{max}).

Para calcular la corriente máxima es necesario utilizar el modelo del zener.

$$V_{Z} = V_{Z0} + r_{Z}I_{Z} \qquad V_{Z0} = V_{Z} - r_{Z}I_{Z} = 12V - 2mAx2\Omega = 11,996V$$

$$i_{Z \max} = \frac{V_{\max} - V_{zo}}{R1 + r_{Z}} = \frac{15,57V - 11,996V}{27\Omega + 2\Omega} = 123,24mA$$

$$V_{Z \max} = 12V + i_{Z \max}r_{Z} = 12V + 123,24mAx2\Omega = 12,24V$$

$$P_{Z \max} = V_{Z \max}i_{Z \max} = 12,24Vx123,24mA = 1,5W$$

Dado que el zener es de 2W, por lo tanto está dentro el rango de potencia que puede disipar.

Para el mismo circuito determine el factor de rizado en el zener y en el condensador.

Cuando el voltaje de entrada es Vmin y la corriente de carga es 50mA, consideramos que el voltaje del zener es 12V (fórmula inicial).

Cuando el zener está alimentando la carga de forma que por ella circule 50~mA, por la resistencia de 27Ω está circulando la corriente de zener mas la corriente de carga de 50mA

$$V_{\text{max}} = R_1(i_Z + 50mA) + 2\Omega x i_Z + 11,996V$$

$$i_Z = \frac{V_{\text{max}} - 11,996V - 27\Omega x 50mA}{27\Omega + 2\Omega} = 76,69mA$$

$$V_Z = 76,69mAx2\Omega + 11.996 = 12,15V \qquad FR_{zener} = \frac{12,15V - 12V}{12,15V}x100\% = 1,23\%$$

$$FR_{condensador} = \frac{15,57V - 13,46V}{15,57V} x 100\% = 13,55\%$$

CIRCUITO DOBLADOR DE VOLTAJE

Semiciclo positivo: Conduce D1, se carga C1

Semiciclo negativo: Conduce D2, se carga C2

Voltaje de salida: El doble que el voltaje pico de entrada

Puede usarse como fuente doble si se conecta tierra en el punto común de los condensadores.

Pero al conectar cargas, se produce rizado.

CIRCUITOS LIMITADORES CON DIODOS

 $(V_{Z2} + 0.7)$

PROBLEMA: FUNCIÓN DE TRANSFERENCIA CON DIODOS

Considerar diodos ideales

Semiciclo positivo: Circuito formado por $v_{\rm i},\,10k\Omega,\,D2,\,5V\,y\,10k\Omega$

El diodo D2 no puede conducir hasta que Vi no alcance los 5V. A partir de ese voltaje:

$$I^{+} = \frac{V_i - 5V}{20k\Omega}$$

$$V_o = 5V + 10k\Omega \frac{Vi - 5V}{20k\Omega} = 5V + 0.5V_i - 2.5V = 0.5V_i + 2.5V$$

Semiciclo negativo: Circuito formado por v_i , $10k\Omega$, D1, 5V y $10k\Omega$ El diodo D1 no puede conducir hasta que Vi no alcance los -5V. A partir de ese voltaje:

$$I^{-} = \frac{V_i - 5V}{20k\Omega}$$

$$V_o = -5V - 10k\Omega \frac{V_i - 5V}{20k\Omega} = -5V - 0.5V_i + 2.5V = -0.5V_i - 2.5V$$

CIRCUITOS CAMBIADORES DE NIVEL

