Dimensione Cognitiva

1. Introduzione all'Intelligenza Artificiale

Dalle origini ai paradigmi moderni

Giovanni Della Lunga giovanni.dellalunga@unibo.it

A lezione di Intelligenza Artificiale

Siena - Giugno 2025

Indice

- ① Che cos'è l'Intelligenza Artificiale?
- Storia dell'Intelligenza Artificiale
- I due paradigmi dell'Al
- Applicazioni e Futuro

Che cos'è l'Intelligenza Artificiale?

Definizione di Intelligenza Artificiale

Definizione generale

L'Intelligenza Artificiale (IA o AI) è la disciplina che studia e sviluppa sistemi informatici capaci di eseguire compiti che normalmente richiederebbero intelligenza umana.

Ragionamento logico

Apprendimento dall'esperienza

Riconoscimento di pattern

Comprensione del linguaggio naturale

Risoluzione di problemi complessi

Percezione e interpretazione dell'ambiente

L'Al nella vita quotidiana

Esempi concreti:

Assistenti vocali (Siri, Alexa)

Raccomandazioni Netflix/Spotify

Navigatori GPS

Filtri antispam

Traduttori automatici

Fotocamere con riconoscimento

facciale

ChatGPT. Gemini. Claude ...

Storia dell'Intelligenza Artificiale

Le origini: dai miti alla scienza

Radici antiche

L'idea di creare esseri artificiali intelligenti ha radici antiche:

Mitologia greca: Talos (gigante di bronzo), Pandora

Medioevo: automi meccanici nelle corti europee

1600-1700: automi di Vaucanson, il "Turco meccanico"

1800: Ada Lovelace e le prime idee di programmazione

Punto di svolta

Il XX secolo porta le basi scientifiche: logica matematica, teoria della computazione, cibernetica

1950-1960: La nascita dell'Al moderna

1950 - Alan Turing

Test di Turing: "Una macchina può pensare?"

1950-1960. La nascita dell'Al moderna

1956 - Conferenza di Dartmouth

Nascita ufficiale dell'Al come disciplina scientifica

John McCarthy conia il termine "Artificial Intelligence"

Partecipanti: Marvin Minsky, Herbert Simon, Allen Newell

Obiettivo ambizioso: simulare ogni aspetto dell'intelligenza

Primi successi:

Logic Theorist (1956) - dimostra teoremi matematici

General Problem Solver (1957) - risolve problemi generici

1950-1960: La nascita dell'Al moderna

1950-1960: La nascita dell'Al moderna

1956 Dartmouth Conference: The Founding Fathers of AI

John MacCarthy

Marvin Minsky

Claude Shannon

Ray Solomonoff

Alan Newell

Herbert Simon

Arthur Samuel

Oliver Selfridge

Nathaniel Rochester

Trenchard More

Anni '60-'70: Ottimismo e prime difficoltà

Grandi aspettative:

Previsioni di Al completa entro 20 anni Investimenti governativi massicci Sviluppo dei primi linguaggi AI (LISP)

Prime difficoltà:

Problemi più complessi del previsto Limitazioni computazionali

"Esplosione combinatoriale"

Timeline

Anni '70-'80: Il primo "inverno dell'Al"

Crisi di fiducia (1974-1980)

Riduzione drastica dei finanziamenti

Critiche ai limiti dei sistemi esistenti

Report Lighthill (UK) molto critico

Rinascita con i Sistemi Esperti (1980-1987)

Idea: catturare la conoscenza degli esperti umani

DENDRAL (analisi chimica)

MYCIN (diagnosi mediche)

R1/XCON (configurazione computer)

Mercato da miliardi di dollari

Gli "Inverni" dell'Al

Top-down kowledge representation: Symbolic Al

Bottom-up kowledge representation: Connectivism

14/31

Anni '90-2000: Approcci più realistici

Cambiamento di paradigma:

Dai sistemi generali a quelli specializzati

Focus su problemi specifici e misurabili

Approcci statistici e probabilistici

Successi notevoli:

1997: Deep Blue batte Kasparov a scacchi

Sviluppo del machine learning

Nascita del web e dei big data

Algoritmi di ricerca e raccomandazione

Fattori abilitanti

Maggiore potenza computazionale + Grandi quantità di dati + Algoritmi migliorati

2000-oggi: L'era del deep learning

Rivoluzioni recenti:

2006: Hinton e il deep learning

2012: AlexNet rivoluziona la computer vision

2016: AlphaGo batte Lee Sedol al Go

2017: Transformer e l'NLP moderno

2022: ChatGPT porta l'Al al grande pubblico

Fattori chiave del successo attuale

GPU e calcolo parallelo massivo

Internet e big data

Algoritmi di apprendimento profondo

Investimenti miliardari

16 / 31

I due paradigmi dell'Al

Al Simbolica vs Al Subsimbolica

L'Al non è solo Machine Learning!

Al Simbolica: Il ragionamento logico

Principi base

Rappresentazione esplicita della conoscenza

Uso di simboli e regole logiche

Ragionamento deduttivo

Trasparenza e spiegabilità

Esempi concreti:

Sistemi esperti: MYCIN per diagnosi mediche

Pianificazione: robot che pianifica movimenti

Dimostrazione di teoremi: assistenti matematici

Elaborazione del linguaggio: grammatiche formali

Al Simbolica: Il ragionamento logico

Principi base

Rappresentazione esplicita della conoscenza

Uso di simboli e regole logiche

Ragionamento deduttivo

Trasparenza e spiegabilità

Esempio: Regola medica

SE (febbre \geq 38°C) E (mal di gola) E (linfonodi gonfi)

ALLORA probabilità streptococco = alta

Al Simbolica: Vantaggi e Limiti

Vantaggi:

Trasparenza totale

Facilità di debug

Incorpora conoscenza esperta

Ragionamento preciso

Non servono grandi dataset

Limiti:

Difficile acquisire conoscenza

Rigidità nelle regole

Non gestisce incertezza

Costosa da mantenere

Non si adatta automaticamente

Il problema della "bottiglia della conoscenza"

Come trasferire la conoscenza dell'esperto umano nel sistema?

Al Subsimbolica: L'apprendimento dai dati

Principi base

Apprendimento automatico da esempi

Rappresentazioni distribuite (neuroni, pesi)

Adattamento statistico

Pattern recognition

Categorie principali:

Machine Learning classico: SVM, Decision Trees. k-means

Reti neurali artificiali: Perceptron, MLP

Deep Learning: CNN, RNN, Transformer

Apprendimento per rinforzo: AlphaGo, giochi

Al Subsimbolica: L'apprendimento dai dati

Principi base

Apprendimento automatico da esempi

Rappresentazioni distribuite (neuroni, pesi)

Adattamento statistico

Pattern recognition

Esempio: Riconoscimento immagini

Sistema impara a riconoscere gatti analizzando migliaia di foto etichettate

Al Subsimbolica: Vantaggi e Limiti

Vantaggi:

Apprende automaticamente

Gestisce dati rumorosi

Adattabile e flessibile

Eccelle in pattern recognition

Migliora con più dati

Limiti:

"Scatola nera"

Servono molti dati

Computazionalmente costoso

Può overfittare

Difficile da debuggare

Il problema della spiegabilità

Come sapere perché il sistema ha preso una certa decisione?

Confronto diretto: Simbolica vs Subsimbolica

Caratteristica	Simbolica	Subsimbolica
Trasparenza	Alta	Bassa
Dati richiesti	Pochi	Molti
Adattabilità	Bassa	Alta
Gestione rumore	Difficile	Buona
Conoscenza esperta	Incorporabile	Difficile
Scalabilità	Limitata	Buona
Costo computazionale	Basso	Alto

Conclusione

Nessun approccio è superiore in assoluto: dipende dal problema e dal contesto!

Applicazioni e Futuro

Applicazioni moderne: Approcci ibridi

La tendenza attuale: combinare simbolica e subsimbolica

Esempi di sistemi ibridi

Diagnosi medica: Deep learning per analisi immagini + regole cliniche

Veicoli autonomi: CNN per percezione + pianificazione simbolica

Assistenti virtuali: NLP neurale + knowledge base strutturati

Giochi: reti neurali + ricerca ad albero (AlphaGo)

Vantaggi dell'approccio ibrido:

Combina il meglio di entrambi i mondi

Maggiore robustezza e affidabilità

Spiegabilità dove necessaria

Adattabilità dove richiesta

Sfide attuali dell'Al

Sfide tecniche

Spiegabilità: rendere l'Al più trasparente

Robustezza: sistemi che funzionano in contesti diversi

Efficienza: ridurre i costi computazionali

Generalizzazione: Al che funziona oltre i dati di training

Sfide etiche e sociali

Bias algoritmici: pregiudizi nei dati e nei modelli

Privacy: protezione dei dati personali

Lavoro: impatto sull'occupazione

Sicurezza: Al affidabile e controllabile

Implicazioni per l'educazione

Come l'Al sta cambiando l'educazione:

Personalizzazione: sistemi di tutoring adattivi

Assistenza: strumenti per correzione automatica

Accessibilità: traduzione e trascrizione automatica

Nuove competenze: necessità di alfabetizzazione digitale

Ruolo cruciale dell'insegnante

L'Al non sostituisce l'insegnante, ma può potenziarne l'efficacia:

Liberare tempo dalle attività ripetitive

Focus su creatività, pensiero critico, relazioni umane

Interpretazione e contestualizzazione delle informazioni

Conclusioni

Punti chiave da ricordare

L'Al ha radici antiche ma sviluppo recente accelerato

Non è solo machine learning: esistono approcci diversi

Simbolica e subsimbolica hanno vantaggi e limiti complementari

Gli approcci ibridi rappresentano il futuro

L'Al pone sfide tecniche, etiche e sociali importanti

L'intelligenza artificiale è uno strumento potente che richiede comprensione, uso consapevole e considerazione etica

Bibliografia e Approfondimenti

Testi introduttivi:

Russell, S., Norvig, P. "Artificial Intelligence: A Modern Approach" Flach, P. "Machine Learning: The Art and Science of Algorithms" Nilsson, N. "The Quest for Artificial Intelligence"

Risorse online:

Coursera: "Machine Learning" (Andrew Ng) MIT OpenCourseWare: "Introduction to AI" Elements of AI (University of Helsinki)

Per rimanere aggiornati:

IEEE Spectrum AI MIT Technology Review Nature Machine Intelligence

31/31