Sistemas Operativos II Junio 2013. Modelo 1

Puntuación: 0'5 si correcta y -0'167 si incorrecta

- **1.** El tamaño lógico del fichero que almacenamos en el inodo (y se devuelve con el mi stat()):
 - a) Indica la posición del último byte escrito
 - b) Indica la cantidad de bytes escritos en el fichero
 - c) Indica el nº de bloques ocupados
 - d) Indica el nº de bloques asignados multiplicado por el tamaño en bytes de cada bloque
- 2. En un sistema de ficheros que utiliza el sistema de inodos (con 15 índices en total, los últimos 3 son indirectos), con un tamaño de bloque de 4.096 bytes, ¿cuántos accesos a disco se harán para leer un byte que está en la posición 80.000 del fichero? (el i-nodo principal se considera leído, debe contabilizarse la lectura del bloque de datos)
 - a) 1
 - b) 2
 - c) 3
 - d) Más de 3
- **3.** Indica el tamaño máximo de un fichero en UNIX en bytes (3 directos y 3 indirectos, de niveles 0, 1 y 2), si cada dirección de bloque requiere 32 bits y el tamaño de bloque es de 16 bytes
 - a) 87
 - b) 1392
 - c) 17
 - d) 272
- **4.** Si disponemos de un sistema de ficheros de 500.000 bloques de 1024 bytes cada uno, indicar cuántos bloques necesitamos para el mapa de bits
 - a) 500.000
 - b) 489
 - c) 61
 - d) 62
- **5.** En un sistema de ficheros de bloques de 512 bytes y en el que las entradas de directorio ocupan 64 bytes, si tenemos el directorio / con 6 entradas, un directorio /bin con 16 entradas y un directorio /lib con 2 entradas, cuántos bloques de la zona de datos necesitamos en total para almacenar tales entradas de directorios
 - a) 4
 - b) 1536
 - c) 24
 - d) 3
- **6.** Cuántos i-nodos hay que leer en total (incluyendo la raíz y el destino) para obtener el "stat" (o mi_stat()) de /simul/proceso 15/prueba.dat
 - a) 2
 - b) 3
 - c) 4
 - d) 5

- 7. Si en la práctica se tiene una única sección crítica (de exclusión mutua). ¿Dónde se debería acceder a dicha sección crítica en la función *mi creat()*?
 - a) Al principio de la función en ficheros.c
 - b) Al principio de la función en directorio.c
 - c) No hace falta exclusión mutua en el mi_creat(), se puede hacer en las aplicaciones.
 - d) Sólo en el caso que deban reservarse bloques del fichero.
- **8.** ¿Dónde se almacena el nombre de un fichero o directorio en un sistema de ficheros tipo UNIX?
 - a) En el superbloque
 - b) En el inodo del fichero o directorio
 - c) En la raíz de directorios
 - d) En la entrada del directorio padre
- **9.** Dado un disco con 100 cilindros, numerados del 0 a 99, situado inicialmente sobre el cilindro 50, determinar cuántos cilindros se recorrerán para servir las siguientes peticiones: 81, 23, 95, 70, 48 utilizando SSTF
 - a) 208
 - b) 117
 - c) 121
 - d) 99
- **10.** Para la planificación de un disco el parámetro más importante a minimizar es
 - a) El tiempo necesario para activar la cabeza adecuada
 - b) El tiempo de latencia de giro
 - c) El tiempo de transferencia
 - d) El tiempo de búsqueda
- **11.** En la lectura de un archivo, el acceso secuencial se diferencia del acceso aleatorio en que se puede suponer que:
 - a) Una vez leída la primera pista, en las restantes el tiempo de búsqueda es despreciable.
 - b) Una vez leída la primera pista, en las restantes el retardo rotacional es despreciable.
 - c) Una vez leída la primera pista, en las restantes el tiempo de transferencia es despreciable.
 - d) No existe diferencia alguna debido al tipo de acceso.
- **12.** En un sistema con gestión de memoria de particiones fijas de tamaño 500KB si se aloja un proceso de 450KB:
 - a) Se produce una fragmentación externa de 50KB
 - b) Se produce una fragmentación interna de 50KB
 - c) Se crea una nueva partición libre de 50KB
 - d) Se crea una nueva partición libre de 550KB, al unirse el resto de 50KB con la adyacente libre de 500KB

13. Dado un sistema de gestión de memoria de paginación por demanda con las siguientes características:

tamaño de página 4K, dirección física: 2²⁴ bytes dirección lógica: 2³² bytes tamaño TLB: 2⁶ bytes

determinar cuantas entradas tiene la TLB si cada una contiene el nº de página y el nº de marco para realizar la traducción de la dirección lógica a la física

- a) 64
- b) 16
- c) 32
- d) 2
- **14.** Considera un programa que genera una secuencia de referencias a direcciones virtuales que corresponde a la siguiente secuencia de referencias de páginas:

Indicar cuántos fallos de página (contando la carga inicial) se producen con el algoritmo FIFO y el LRU, utilizando 3 marcos

- a) FIFO: 10, LRU: 10
- b) FIFO: 8, LRU: 9
- c) FIFO: 9, LRU: 8
- d) FIFO: 10, LRU: 9
- 15. Indica cuál de las siguientes afirmaciones es falsa:
 - a) Los fallos de TLB son más frecuentes que los fallos de paginas
 - b) La tabla de páginas se utiliza para traducir una dirección lógica a física
 - c) El uso de la TLB evita el acceso a la tabla de páginas en memoria en una buena parte de las referencias a direcciones
 - d) Se puede mejorar la tasa de aciertos del TLB disminuyendo el tamaño de página
- 16. Sea un sistema con doble nivel de paginación donde las direcciones lógicas tienen 15 bits, el tamaño de página es de 1KB y cada tabla de primer nivel puede contener 4 descriptores de tablas de segundo nivel. La memoria física dispone de 4 marcos asignables a los procesos. Determinar los bits de cada campo de la estructura de la dirección lógica (DL) y de la física (DF), siendo: P nº de página, M nº de marco, D desplazamiento, PNI: página de nivel 1, PN2: página de nivel 2, y los rangos de números indican las posiciones de los bits):
 - a) DL: 0-9 D, 10-14 P; DF: 0-9 D, 10-11 M
 - b) DL: 0-9 D, 10-12 PN1, 13-14 PN2; DF: 0-9 D, 10-11 M
 - c) DL: 0-9 D, 10-12 PN2, 13-14 PN1; DF: 0-9 D, 10-11 M
 - d) DL: 14-5 D, 4-2 PN2, 1-0 PN1; DF: 11-2 D, 1-0 M

17. Dado el sistema anterior, y estando los marcos inicialmente vacíos, supongamos que se emite la siguiente secuencia de páginas para un proceso:

y que esta secuencia se repite indefinidamente. Indicar qué página ocupará cada marco de memoria suponiendo que el algoritmo de reemplazo de páginas es el óptimo y utilizando la siguiente notación: (i,j) siendo i la página cuyo descriptor de primer nivel es el i y cuyo descriptor de segundo nivel es el i.

- a) 0:(0,7), 1:(3,2), 2:(0,5); 3:(1,4)
- b) 0:(0,5), 1:(1,4), 2:(3,2); 3:(2,0)
- c) 0:(0,7), 1:(0,26), 2:(0,5); 3:(0,12)
- d) 0:(0,7), 1:(2,6), 2:(0,5); 3:(1,2)

18. El tamaño del TLB:

- a) Es proporcional al tamaño de páginas
- b) Es proporcional a la cantidad de procesos activos
- c) Es de tamaño variable, dependiendo de la cantidad de RAM
- d) Depende del procesador
- **19.** Dada la siguiente lista de referencias emitida por cierto proceso: ... 5 5 8 6 2 2 3 2 3 5 8 2 9 7 (instante 1) 7 9 2 2 9 10 9 10 9 10 9 10 10 2 (instante 2) ... si se utiliza el modelo del área activa con Δ =10, indicar cual de las siguientes afirmaciones es verdadera
 - a) El tamaño del conjunto de trabajo en el instante 1 es 10, y en el instante 2 también.
 - b) El conjunto de trabajo en el instante 2 está formado por los marcos {2, 9, 10}
 - c) El conjunto de trabajo en el instante 1 está formado por los marcos {2, 3, 5, 6, 7, 8, 9}
 - d) El tamaño del conjunto de trabajo en el instante 2
- **20.** La estrategia de gestión de memoria basada en la tasa de fallos de página
 - a) Es de asignación fija del nº de marcos y reemplazo de ámbito local
 - b) Es de asignación variable del nº de marcos y reemplazo de ámbito local
 - c) Es de asignación fija del nº de marcos y reemplazo de ámbito global
 - d) Es de asignación variable del nº de marcos y reemplazo de ámbito global