(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出頭公開番号

特開平10-189252

(43)公開日 平成10年(1998) 7月21日

(51) IntCL*		識別記号	FI.			
H05B	33/26		H05B	33/26		
H01L	29/786			33/10		
	21/336		H01L	29/78	6 1 2 Z	
H05B	33/10					

審査請求 未請求 請求項の数 6 FD (全 19 頁)

(21)出頭番号	特顯平8-357028	(71) 出 度 人 000183646 出光興産株式会社
(22)出頭日	平成8年(1996)12月26日	東京都千代田区丸の内3丁目1番1号 (72)発明者 細川 地瀬
		千葉県袖ヶ浦市上泉1280番地 (74)代理人 弁理士 渡辺 喜平 (外1名)

(54) 【発明の名称】 有機アクティプE L 発光装置

(57)【要約】

[課題] 開口率が大きく、かつ画像欠陥の発生を有効 に防止して、高品質の画像表示が可能な有機アクティブ EL発光装置を提供する。

【解決手段】 基板1上に、複数の薄膜トランジスター (TFT) 2と、このTFTによって駆動される、TFTに対応して配設された複数の有機EL素子3とを有する有機アクティブEL発光装置において、TFT2と有機EL素子3の下部電極31との間に、平坦化された層間絶繰膜4を配設し、かつTFT2のドレイン端子と有機EL素子3の下部電極31とを、層間絶繰膜4に設けられたコンタクトホール41を介して電気的に接続する。

【特許請求の範囲】

【請求項1】 基板上に、複数の薄膜トランジスター (TFT) と、このTFTによって駆動される、TFT に対応して配設された複数の有機EL素子とを有する有機アクティブEL発光装置において、

TFTと有機EL素子の下部電極との間に、平坦化された層間絶縁膜が配設され、かつTFTの端子と有機EL素子の下部電極とが、層間絶縁膜に設けられたコンタクトホールを介して電気的に接続されてなることを特徴とする有機アクティブEL発光装置。

【請求項2】 前記有機EL素子の対向電極が、透明である請求項1記載の有機アクティブEL発光装置。

【請求項3】 その開口率(実際に発光する部分が画素中に占める割合)が、75%以上である請求項1または2記載の有機アクティブEL発光装置。

【請求項4】 基板上に、XYマトリックス状に配設さ れた複数の走査電極線および信号電極線と、この走査電 極線および信号電極線の近傍に配設された電気スイッチ とを有し、この電気スイッチが走査信号パルスおよび信 号パルスでスイッチ動作を行うことにより、この電気ス イッチに結合された単位画素中の有機EL素子が発光ま たは発光停止して画像表示を行う有機アクティブEL発 光装置において、電気スイッテが、発光画素を選択する 薄膜トランジスター(第一のトランジスター)、および 有機EL素子を駆動する薄膜トランジスター(第二のト ランジスター) のそれぞれ一つ以上から形成されてな り、かつ第一および第二のトランジスターと有機EL素 子の下部電極との間に、平坦化された層間絶縁膜が配設 され、さらに、第二のトランジスターのドレインと、有 機EL素子の下部電極とが電気的に接続されてなること を特徴とする有機アクティブEL発光装置。

【請求項5】 前記第一および第二のトランジスターの 活性層が、ポリシリコンから形成されてなる請求項4記 載の有機アクティブEL発光装置。

【請求項6】 前記有機EL素子の対向電極が、透明である請求項4または5記載の有機アクティブEL発光装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、有機アクティブE L発光装置に関する。さらに詳しくは、民生用、工業用 の表示機器、カラーディスプレイ等に好適に用いられる 有機アクティブE L 発光装置に関する。

[0002]

【従来の技術】従来、有機EL発光装置(ディスプレイ)においては、XYマトリックスにおいて単純駆動をさせ画像表示を行う技術が知られている(特開平2-37385号公報、特開平3-233891号公報など)。しかし、このような単純駆動では、線順次駆動を行うので、走査数が数百本と多い場合には、要求される

瞬間輝度が観察される輝度の数百倍となるため、下記問 題があった。

【0003】(1) 駆動電圧が高くなる。電圧は直流定常電圧下の場合の通常2~3倍以上となるため効率が低下する。従って消費電力が大きくなる。

- (2) 瞬間的に流れる電流量が数百倍となるため、有機 発光層が劣化しやすくなる。
- (3) (2) と同様に通電電流が非常に大きいため、電極配線の電圧降下が問題となる。

【0004】上記の(1)~(3)を解決する手法とし て、下記のアクティブマトリックス駆動が提案されてい る。すなわち、蛍光体として無機物であるZnSを用 い、さらにアクティブマトリックス駆動を行うディスプ 「レイが開示されている(米国特許第4143297 号)。しかし、この技術においては、無機蛍光体を用い るため駆動電圧が100V以上と高く問題となってい た。同様な技術は、IEEE Trans Elect ron Devices, 802 (1971) にも記載 されている。一方、有機蛍光体を用いアクティブマトリ ックス駆動を行うディスプレイも最近、多数開発されて いる(特開平7-122360号公報,特開平7-12 2361号公報,特開平7-153576号公報,特開 平8-54836号公報,特開平7-111341号公 報,特開平7-312290号公報.特開平8-109 370号公報,特開平8-129359号公報,特開平 8-241047号公報および特開平8-227276 号公報など)。上記の技術は、有機蛍光体を用いること により駆動電圧が10V以下と大幅に低電圧化し、高効 率な有機蛍光体を用いる場合には効率は3 lm/w~ 15 1m/wの範囲で極めて高効率であること、ま た、単純駆動に比べて高精細ディスプレイの駆動電圧が 1/2~1/3となり、消費電力が低減できること等の 極めて優れた特徴があったが、下記の点が問題となって いた。

【0005】(1)通常、透光性の基板上に、α-S i, ポリシリコンなどからなるTFT(thin fi lm transister)が、画素一つに対して少 なくとも一つまたは二つ設けられ、さらにTFTを選択 してONするために走査電極線および信号電極線が前記 基板上に多数設けられていた。TFT素子と有機EL素 子とを絶録するためにTFT上には、空化シリコンまた は酸化シリコンなどからなる絶縁膜が設けられている。 しかしながら、TFTの厚さは、ゲートおよびドレイ ン、ソース電極を含めり、2μm~1μmとなり凹凸が あるので、これを避けて下部のEL電極を形成する必要 があり、画素中に非発光部分が生ずるのを避けることが、 できなかった。透光性基板側より光を取り出す場合に は、さらに走査電極線および信号電極線も光を遮るた め、画素の開口率(実際に発光する部分が画素中に占め る割合)が小さかった。例えば特開平7-122362

号公報に示されたものでは開口率がわずか56%であり、非発光部分がめだち良好な画像が得られないという問題があった。同時に特開平8-241047号公報の図3に示されたものでは、高い輝度が得られにくいという問題もあった。

【0006】(2)また、特開平8-241047号公報の図3に示されたもののように、TFTを覆う絶縁膜の開口部に下部EL電極を形成する場合、絶縁膜のパターン端を良好にエッチングするのは技術的に困難であるため、エッチング残りなどの不具合が生じやすく、発光欠陥が発生し問題となっていた。

【0007】 (3) 一方、基板側の反対側から光を取り出す場合には、開口率が大きくなり良好な画像を得られる可能性がある。しかしながら通常は、TFTを覆う層間絶縁膜が平坦化されていないため、TFTの凹凸により上部に形成される有機EL素子の欠陥が多発し問題となる。有機EL素子は、有機層が 0.05μ m $\sim0.2\mu$ mと薄層であるので下部の凹凸により容易に欠陥が生成される。このため、特開平8-54836号公報の図1および図2に示されたもののように、走査電極線、CFTが形成されている部分以外に有機EL素子を形成するのが通常であった。従って、従来のもの開口率は小さくならざるを得なかった。

【0008】従来の技術についてさらに具体的に説明する。図5は、従来技術における有機TFTELの回路図である。基板上にゲートライン(走査電極線)とソースライン(信号電極線)が複数形成されておりXYマトリックスをなしている。このゲートライン、ソースラインには一画素あたり2個のTFT21、22が図5に示すように連結しており、さらに、一画素中には第2のTFT22のゲートを定電位にホールドするためのコンデンサー23が形成されており、この第2のTFT22により、図において斜線で示される有機EL素子3が駆動される。

【0009】図中AーA、線における画素の断面図を図 6に示す。第2のTFT22は図7に示すようにポリシ リコンを活性層として形成されており、ポリシリコンア イランド71の厚さは200 nm. ゲートSiO2 の厚 さは100nm、ポリシリコンゲート73の厚さは30 Onm、ポリシリコンゲートを囲むSiO2 の厚さは5 00 nmである。図からわかるように、ポリシリコンア イランド71およびポリシリコンゲート73の厚さ分だ けTFT部分は凹凸を形成する。凸部は500~600 nmだけ突出する。従って、TFT上に有機EL素子を 形成する意図があったとしても、この凹凸により下部電 極、有機層および対向電極の断線が生じやすく良好な有 機ELの発光画素を形成することができない。また、こ の従来技術では、下部電極であるITO31から、すな わち基板!側から光を取り出すことになる。このためT FT、ゲートライン、ソースラインが光を遮るため画素

の開口率が小さくなるという問題があった。

【0010】また、他の従来の技術としては、図8に示すように、上部に対向電極である正孔注入電極81(通常は透明である)を致けた技術がある。しかしながら、この技術においてもTFT部分の凹凸があるため、この部分を避けて電子注入電極82が形成され、発光する画素が形成されている。また、ゲート電極83、ソース電極84およびドレイン電極85上の凹凸もこのままでは問題となるため、有機層32はこの箇所を避けて形成されている。

[0011]

【発明が解決しようとする課題】本発明は、上述の問題に鑑みなされたものであり、開口率が大きく、かつ画像 欠陥の発生を有効に防止して、高品質の画像表示が可能 な有機アクティブEL発光装置を提供することを目的と する。

[0012]

【課題を解決するための手段】上記目的を達成するため、本発明によれば、基板上に、複数の薄膜トランジスター(TFT)と、このTFTによって駆動される、TFTに対応して配設された複数の有機已し素子とを有機でクティブEL発光装置において、TFTと有機EL素子の下部電極との間に、平坦化された層間絶縁膜が配設され、かつTFTの端子と有機EL素子の下部電極とが、層間絶縁膜に設けられたコンタクトホールを介して電気的に接続されてなることを特徴とする有機アクティブEL発光装置が提供される。

【0013】また、その好ましい態様として、前記有機 EL素子の対向電極が、透明である有機アクティブEL 発光装置が提供される。

【0014】また、その好ましい態様として、その開口率(実際に発光する部分が画素中に占める割合)が、75%以上である有機アクティブEL発光装置が提供される。

【0015】また、基板上に、XYマトリックス状に配 設された複数の走査電極線および信号電極線と、この走 査電極線および信号電極線の近傍に配設された電気スイ ッチとを有し、この電気スイッチが走査信号パルスおよ び信号パルスでスイッチ動作を行うことにより、この電 気スイッチに結合された単位画素中の有機EL素子が発 光または発光停止して画像表示を行う有機アクティブ已 し発光装置において、電気スイッチが、発光画素を選択 する薄膜トランジスター(第一のトランジスター)、お よび有機EL素子を駆動する薄膜トランジスター(第二 のトランジスター)のそれぞれ一つ以上から形成されて なり、かつ第一および第二のトランジスターと有機EL 素子の下部電極との間に、平坦化された層間絶縁膜が配 設され、さらに、第二のトランジスターのドレインと、 有機EL素子の下部電極とが電気的に接続されてなるこ とを特徴とする有機アクティブEL発光装置が提供され

る.

【0016】さらに、その好ましい態様として、前記第一および第二のトランジスターの活性層が、ポリシリコンから形成されてなる有機アクティブEL発光装置が提供される。

[0017]

【発明の実施形態】以下、本発明の実施形態を、図面を参照しつつ具体的に説明する。図1は、本発明の有機アクティブEL発光装置の一実施形態を模式的に示す断面図で、図3におけるA-A 線断面図である。図2は、本発明に用いられる有機EL素子の駆動回路を示す説明図である。図3は、本発明の有機アクティブEL発光装置の一実施形態を模式的に示す平面図である。図4は、本発明に用いられる薄膜トランジスターのポリシリコン層をアイランドにバター化する過程を模式的に示す断面図である。

【0018】本発明の有機アクティブEL発光装置の一実施形態は、図1に示すように、基板1上に複数の薄膜トランジスター(TFT)2と、このTFT2によって駆動される、TFT2に対応して配設された複数の有機EL素子3とを有し、TFT2と有機EL素子3の下部電極31との間に、平坦化された層間絶縁膜4が配設され、かつTFT2のドレイン端子と有機EL素子3の下部電極31とが、層間絶縁膜4に設けられたコンタクトホール41を介して電気的に接続されている。

【0020】なお、第一のトランジスター(Trl)2 1は、発光画素を選択する。また、第二のトランジスター(Tr2)22は、有機EL素子を駆動する機能を有する。

【0021】また、前記層間絶縁膜4は、第一のトランジスター(Trl)21および第二のトランジスター(Tr2)22と、有機EL素子3の下部電極31との間に配設され、さらに、第二のトランジスター(Tr2)のドレイン端子と、有機EL素子の下部電極31とが電気的に接続されている。

【0022】以下、さらに具体的に説明する。本発明に 用いられる有機EL素子3は、図2に示すようにアクテ ィブマトリックス回路によって駆動される。走査電極線(ゲート線)($Y_j \sim Y_{j+n}$)を介して伝達されるパルスと信号電極線($X_i \sim X_{i+n}$)を介して伝達されるパルスによって所望の第一のトランジスター(T_{r1})21が選択され、共通電極線($C_i \sim C_{i+n}$)と第一のトランジスター(T_{r1})21のソースとの間に形成される。これにより、第二のトランジスター(T_{r2})22のゲートが一定電伏なり、第二のトランジスター(T_{r2})22はON状態は、次にゲートパルスが伝達される。このON状態は、次にゲートパルスが伝達されるまでホールドされ第二のトランジスター(T_{r2})22のドレイン端子に接続されている有機EL素子3の下部電極31に電流を供給しつづけることになる。

【0023】また、本発明においては、図1に示すように、薄膜のトランジスター2(第一のトランジスター(Tr1),第二のトランジスター(Tr2))、およびゲート線($Y_j \sim Y_{j+n}$),信号電極線($X_i \sim X_{j+n}$)上に層間絶縁膜4が設けられており、かつ、この層間絶縁膜4は平坦化されている。

【0024】また、有機EL素子3の下部電極31が層間絶縁膜4上に設けられており、この層間絶縁膜4に形成されたコンタクトホール41を介して、第二のトランジスター(Tr2)のドレイン端子と下部電極31とが電気的に接続している。

【0025】 さらに、この下部電極は、図3に示すように第一のトランジスター(Trl)21、第二のトランジスター(Tr2)22、信号電極線、ゲート線46の上に設けられている。なお、図3中、一点鎖線で囲まれた部分が有機EL素子の下部電極31を示している。

【0026】以下、各構成要素について説明する。

1. 基板

本発明に用いられる基板は、絶縁性であり、水晶またはガラスのような透明材料であることが好ましい。ここで、透明とは、有機アクティブEL発光装置における実際的な使用に対して充分な光を透過する性質を有することを意味する。例えば、所望の周波数範囲で50%以上の光を透過するものは透明と考えられる。また、低温度ガラスとは、約600℃以上の温度で融解または歪むガラスをいう。

【0027】2. 薄膜トランジスター

ンは、アモルファスSiに比べ通電に対し充分な安定性を示す。

【0028】他の好ましい材料としては、有機半導体を 挙げることができる。チオフエンオリゴマー、ボリ(P ーフェニレンビニレン)などがある。

【0029】ポリシリコンは、各種CVD法により積層 しうるが、好ましくはプラズマCVD法により図4

(a) に示すように、 $\alpha - S$ i を積層する。

【0030】その後、図4(b)に示すように、KrF(248nn)レーザーなどのエキシマーレーザーによりアニール結晶化する(SID 96. Digest oftechnical papers P17~28)。 α -Siの好ましい膜厚は、40~200nmである。エキシマレーザーのアニーリングとしては、基板温度100~300mJ/cm²のエネルギー量をもつレーザー光でアニール化するのが好ましい。

【0031】また、ポリシリコン層は、図4(c)に示すように、フォトリソグラフィによりアイランドにパターン化される。用いられる基板は水晶のような結晶材料であるが、好ましくは低温度ガラスのようなより高価でない材料である。ガラス基板が用いられるときにはTFT-ELの製造全体がガラスの溶融または歪みを回避し、能動領域内にドーパントの外側拡散(out-difusion)を回避するために低プロセス温度で実施される。このようにしてガラス基板に対して全ての製造段階は1000℃以下、好ましくは600℃以下でなされなければならない。

【0032】次に、図4(d)に示すように、絶縁ゲート材料42がポリシリコンアイランド71上および絶縁基板1の表面にわたり積層される。絶縁材料は好ましくはブラズマ増強CVD(PECVD)または減圧CVD(LPCVD)のような化学蒸着(CVD)により積層される二酸化シリコンである。ゲート酸化物絶縁層の厚さは好ましくは約100~200nmである。基板温度としては250~400℃が好ましくさらに高品質の絶縁ゲート材料を得るためにはアニールを300~600℃で1~3hr程度施すのが好ましい。

【0033】次の段階では、図4(e)に示すように、 ゲート電極43を蒸着またはスパッタリングで成膜する。好ましい膜厚は $200\sim500$ nmである。

【0034】次に、図4(f)~(h)に示すように、ゲート電極43をパターンニングする。ただしここでA 1ゲートを使用するときは、絶縁するために陽極酸化を 2回にわたり行うのが好ましい。陽極酸化に関しては特 公平8-15120号公報に詳細に開示されている。

【0035】次に、図4(i)に示すように、イオンドーピングによりni またはPi の部位を形成する。別の方法としてはゲートとしてポリシリコンを用いる次の技術がある。この技術では図1に示すポリシリコンゲート

電極43はゲート絶縁層上に積層され、イオンインブラント後にソースとドレイン領域はボリシリコン領域内に形成されるようにボリシリコンアイランド上にフォートとにガリコンアイランド上にフォートでは大力である。ゲートでは近れる。ボリシリコンである。イオンインブラントは好まりである。ボリシリコンである。ボートで導電化とは野蛮である。ではより複雑でなく、ボートに対している。のとすることができる。図1に示すゲートに対している。ができる。図1に示すが、のように製造はより複雑でなく、ゲートバートでは絶縁層上で適用され、パターン化される。ゲートには発展上で適用され、パターン化される。が、のようには好ましくは珪素化タングステン(WSi)のよ流値が数のプロ以下にすることができるからである。

【0036】しかし、WSiなどの金属珪素化物に代えてAl合金、Al、Cr、W、Moなどの金属を用いても良い。このような場合、より低い面抵抗値が実現するメリットがある。また、ゲートとして、TaNを用いても良い。次の段階では、二酸化シリコン、チッ化シリコン、ポリイミドなどで構成される絶縁膜を全体にわたり適用する。

【0037】次に、信号電極線および走査電極線を形成する。Al合金、Al、Cr、W、Moなどの金属線をフォトリソグラフィにより形成するとともに、Trl、Tr2のドレイン、ソースなどのコンタクトは、上記絶縁膜を開口した箇所で行う。この絶縁膜は、図1052の符号で示される。上記の内、SiO $_2$ は、例えばTEOS(テトラエトキシシラン)をガスとして基板温度 $_2$ 50~ $_4$ 00℃の間に設定しPECVDにより得ることができる。またECR-CVDで基板温度を $_1$ 00℃としても得ることができる。

【0038】3. 層間絶縁膜

本発明に用いられる平坦化された層間絶縁膜は、下記

- (1) または(2)の方法で形成することができる。
- (1) ボリイミドコーティング膜のスピンコートによる 成膜

ボリイミドとしては市販のコーティング液を用いエッチングにより図1に示すコンタクトホール41を形成しドレイン接続部を開口する。さらに絶縁膜52、ゲート絶縁膜42をエッチングにて開口しドレインを露出させる。ボリイミドは平坦化された表面を与えるため好ましい一例である。

(2) ブラズマエッチングによるエッテバック法 各種CVD法、ブラズマCVD、PECVD (ブラズマ インハンスド CVD)、LPCVD (減圧CVD) 法などによりシリカを好ましくは1μm~3μm成膜す る。さらにポリマーコーティングを全面に行う。さらに 反応性イオンエッチング (RIE) によりガス種をCF 4と酸素の混合ガスとしエッチングを行う。エッチング 膜厚は好ましくは0.5μm~2μmである。この方法 により平坦化された層間絶縁膜(SiO_2)を得ることができる。この方法には、シリカの他、PSG, BSG (リンシリカガラス、ボロンシリカガラス)を用いることもできるし、 Si_3N_4 などチッ化シリコン系化合物を用いることがもできる。

[0039] 4. 有機EL素子

本発明に用いられる有機E L 素子においては、有機物層 (有機層)として、再結合領域および発光領域を少なく とも有するものが用いられる。この再結合領域および発 光領域は、通常発光層に存在するため、本発明において は、有機物層として発光層のみを用いてもよいが、必要 に応じ、発光層以外に、例えば正孔注入層、電子注入 層、有機半導体層、電子障壁層、付着改善層なども用い ることができる。

【0040】次に本発明に用いられる有機EL素子の代表的な構成例を示す。もちろん、これに限定されるものではない。

- ①透明電極 (陽極) / 発光層/電極 (陰極)
- ②透明電極(陽極)/正孔注入層/発光層/電極(陰 極)
- ③透明電極(陽極)/発光層/電子注入層/電極(陰極)
- ④透明電極(陽極)/正孔注入層/発光層/電子注入層/電極(陰極)
- ⑤陽極/有機半導体層/発光層/陰極
- ⑥陽極/有機半導体層/電子障壁層/発光層/陰極
- ⑦陽極/正孔注入層/発光層/付着改善層/陰極などの構造を挙げることができる。これらの中で、通常 ④の構成が好ましく用いられる。
- 【0041】(4)-1. 発光層

有機EL素子の発光材料は主に有機化合物であり、具体的には所望の色調により次のような化合物が挙げられる。まず、紫外域から紫色の発光を得る場合には、下記の一般式であらわされる化合物が挙げられる。

[0042]

[(E 1]

【0043】この一般式において、Xは下配化合物を示す。

[0044]

[化2]

【0045】ここでnは、2.3.4または5である。 また、Yは下記化合物を示す。

[0046]

[(£3]

【0047】上記化合物のフェニル基、フェニレン基、ナフチル基に炭素数1~4のアルキル基、アルコキシ基、水酸基、スルホニル基、カルボニル基、アミノ基、ジメチルアミノ基またはジフェニルアミノ基等が単独または複数置換したものであってもよい。また、これらは互いに結合し、飽和5員環、6員環を形成してもよ。また、フェニル基、フェニレン基、ナフチル基にバラ位で結合したものが、結合性がよく平滑な蒸着膜の形成のために好ましい。具体的には以下の化合物である。特に、p-クォーターフェニル誘導体、p-クィンクフェニル誘導体が好ましい。

[0048]

[化4]

(1)

(2)

(3)

(4)

3. 5. 3 ·····. 5 ····· ーテトラー t ープチルーセキシフェニル (TBS)

(5)

[0049] [(£5]

,**5**7

(6)

[0050] [(6]

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

[0051]

[化7]

(15)

$$\overset{H}{\longrightarrow} \text{N-O} - \bigcirc - \bigcirc - \bigcirc - \text{N-} \overset{H}{\longleftarrow}$$

(17)

3, 5, 3…, 5…._{ーテトラー t} ープチルー p ークィンクフェニル (T B Q)

【0052】次に、青色から緑色の発光を得るためには、例えば、ベンゾチアゾール系、ベンゾイミダゾール系、ベンゾオキサゾール系等の蛍光増白剤、金属キレート化オキシノイド化合物、スチリルベンゼン系化合物を挙げることができる。

【0053】具体的に化合物名を示せば、例えば、特開 昭59-194393号公報に開示されているものを挙 げることができる。その代表例としては2.5-ビス (5, 7-ジーtーペンチルー2ーベンゾオキサゾリ ル) -1, 3, 4-チアジアゾール、4, 4'ーピス (5. 7-1-ペンチルー2-ペンゾオキサゾリル)ス チルベン、4、4°-ピス[5、7-ジー(2-メチル -2-ブチル) -2-ペンゾオキサゾリル] スチルベ ン、2. 5ーピス(5, 7ージーtーペンチルー2ーペ ンソオキサソリル)チオフェン、2,5-ピス〔5α, α-ジメチルベンジル-2-ベンゾオキサゾリル] チオフェン、2、5ーピス〔5、7ージー(2ーメチル -2-ブチル)-2-ベンソオキサゾリル]-3,4ジ オフェニルチオフェン、2.5-ピス(5-メチルー2 -ペンゾオキサゾリル)チオフェン、4、4゜-ピス (2-ペンゾオキサゾリル)ピフェニル、5-メチルー 2-[2-[4-(5-メチル-2-ベンゾオキサゾリ

ル)フェニル] ビニル] ベンソオキサゾール、 $2-[2-(4-\rho \Box \Box z = 1)]$ ビニル] ナフト [1,2-d] オキサゾール等のベンゾオキサゾール系、2-2 -(p-フェニレンジビニレン) - ビスベンゾチアゾール等のベンゾチアゾール系、<math>2-[2-[4-(2-ベンゾイミダゾリル)] ブェニル] ビニル] ベンゾイミダゾール等のベンゾイミダゾール系等のヴェニル) ビニル] ベンゾイミダゾール等のベンゾイミダゾール系等の単光 増白剤を挙げることができる。さらに、他の有用な化合物は、ケミストリー・オブ・シンセティック・ダイズ1971,628~637頁および640頁に列挙されている。

【0054】前記キレート化オキシノイド化合物としては、例えば特開昭63-295695号公報に開示されているものを用いることができる。その代表例としては、トリス(8-+ノリノール)マグネシウム、ビス(ペンゾ [f] -8-+ノリノール)亜鉛、ビス(2-メデルー8-+ノリノール)アルミニウムオキシド、トリス(8-+ノリノール)アルミニウムオキシド、トリス(8-+ノリノール)アルミニウム、8-+ノリノールリテウム、トリス(5-ノロロー8-+ノリノール)ガ

リウム、ピス(5 - クロロ-8 - キノリノール)カルシウム、ボリ [亜鉛(II) - ピス(8 - ヒドロキシ-5 - キノリノニル)メタン] 等の8 - ヒドロキシキノリン系 金属錯体やジリチウムエピントリジオン等を挙げることができる。

【0055】また、前記スチリルベンゼン系化合物としては、例えば欧州特許第0319881号明細書や欧州特許第0373582号明細書に開示されているものを用いることができる。その代表例としては、1、4ーピス(2ーメチルスチリル)ベンゼン、1、4ーピス(4ーメチルスチリル)ベンゼン、1、4ーピス(4ーメチルスチリル)ベンゼン、1、4ーピス(3ーエチルスチリル)ベンゼン、1、4ーピス(3ーエチルスチリル)ベンゼン、1、4ーピス(2ーメチルスチリル)ー2ーメチルベンゼン、1、4ーピス(2ーメチルスチリル)ー2ーエチルベンゼン等を挙げることができる。

【0056】また、特開平2-252793号公報に開示されているジスチリルピラジン誘導体も発光層の材料として用いることができる。その代表例としては、2、5-ピス(4-エチルスチリル)ピラジン、2、5-ピス[2-(1-ナフチル))ピニル]ピラジン、2、5-ピス[2-(4-ピフェニル)ピニル]ピラジン、2、5-ピス[2-(4-ピフェニル)ピニル]ピラジン、2、5-ピス[2-(1-ピレニル)ピニル]ピラジン等を挙げることができる。その他のものとして、例えば欧州特許第0387715号明細書に開示されているボリフェニル系化合物も発光層の材料として用いることもできる。

【0057】さらに、上述した蛍光増白剤、金属キレー ト化オキシノイド化合物、およびスチリルペンゼン系化 合物等以外に、例えば12-フタロペリノン(J. Appl. Phys., 第27巻, L713 (1988年))、1,4 ージフェニルー1、3ープタジエン、1、1、4、4-テトラフェニルー1、3ブタジエン(以上Appl. Phys. Lett., 第56巻, L799(1990年))、ナフタル イミド誘導体(特開平2-305886号公報)、ペリ レン誘導体(特開平2-189890号公報)、オキサ ジアゾール誘導体(特開平2-216791号公報、ま たは第38回応用物理学関係連合講演会で浜田らによっ て開示されたオキサジアゾール誘導体)、アルダジン誘 導体(特開平2-220393号公報)、ピラジリン誘 導体(特開平2-220394号公報)、シクロペンタ ジエン誘導体(特開平2-239675号公報)、ピロ ロピロール誘導体(特開平2-296891号公報)、 スチリルアミン誘導体 (Appl. Phys. Lett., 第56巻, L799(1990年))、クマリン系化合物(特開平 2-191694号公報), 国際公開公報WO90/1 3 1 4 8 PAppl. Phys. Lett., vol 58, 18, P1982 (1991) に記載されているような高分子化合物等も、発光層の材

料として用いることができる。

【0058】本発明では、特に発光層の材料として、芳香族ジメチリディン系化合物(欧州特許第0388768号明細書や特開平3-231970号公報に開示のもの)を用いることが好ましい。具体例としては、1、4ーフェニレンジメチリディン、4、4ーフェニレンジメチリディン、2、6ーナフチレンジメチリディン、1、4ーピフェニレンジメチリディン、1、4ーピフェニレンジメチリディン、1、4ーピフェニレンジメチリディン、9、10-アントラセンジイルジルメチリディン、4、4ーピス(2、2ージーtーブチルフェニルピニル)ピフェニル(以下、DTBPBBiと略記する)、4、4ーピス(2、2ージフェニルピニル)ピフェニル(以下DPVBiと略記する)等、およびそれらの誘導体を挙げることができる。

【0059】さらに、特開平5-258862号公報等に記載されている一般式($R_2-Q_3-AL-O-L$ であらわされる化合物も挙げられる。)

(上記式中、しはフェニル部分を不運でなる炭素原子 6) ~24個の炭化水素であり、〇-Lはフェニラート配位 子であり、Qは置換8-キノリノラート配位子を表し、 R₂ はアルミニウム原子に置換8-キノリノラート配位 子が2個上回り結合するのを立体的に妨害するように選 ばれた8-キノリノラート環置換基を表す) 具体的に は、ピス(2-メチル-8-キノリノラート) (パラー フェニルフェノラート) アルミニウム (III) (以下P C-7)、ビス(2-メチル-8-キノリノラート) (1ーナフトラート) アルミニウム(III) (以下PC - 17) 等が挙げられる。その他、特開平6-9953 号公報等によるドーピングを用いた高効率の青色と緑色 の混合発光を得る方法が挙げられる。この場合、ホスト としては上記に記載した発光材料、ドーパントとして は、青色から緑色にまでの強い蛍光色素、例えばクマリ ン系あるいは上記記載のホストとして用いられているも のと同様な蛍光色素を挙げることができる。具体的に は、ホストとしてジステリルアリーレン骨格の発光材 料、特に好ましくは例えばDPVBi、ドーパントとし てはジフェニルアミノビニルアリーレン、特に好ましく は例えばN、Nージフェニルアミノビニルベンゼン(D PAVB)を挙げることができる。

【0060】白色の発光を得る発光層としては、特に制限はないが下記のものを挙げることができる。

①有機EL積層構造体の各層のエネルギー準位を規定 し、トンネル注入を利用して発光させるもの(ヨーロッ パ公開特許第0390551号公報)

②①と同じくトンネル注入を利用する素子で実施例として白色発光素子が記載されているもの(特開平3-23 0584号公報)

③二層構造の発光層が記載されているもの(特開平2-220390号公報および特開平2-216790号公

報)

④発光層を複数に分割してそれぞれ発光波長の異なる材料で構成されたもの(特開平4-51491号公報) ⑤育色発光体(蛍光ピーク380nm~480nm)と 緑色発光体(480nm~580nm)とを積層させ、 さらに赤色蛍光体を含有させた構成のもの(特開平6-207170号公報)

⑥青色発光層が青色蛍光色素を含有し、緑色発光層が赤色蛍光色素を含有した領域を有し、さらに緑色蛍光体を含有する構成のもの(特開平7-142169号公報)中でも、⑤の構成のものが好ましく用いられる。また、赤色の発光を得る赤色蛍光体の例を[化8]に示す。

[0061]

[(£8]

(ルモゲンFレッド)

(ジシア/メチャンピラン)

(フェノキサゾン)

(ルプレン)

【0062】前記材料を用いて、発光層を形成する方法としては、例えば蒸着法、スピンコート法、LB法等の公知の方法を適用することができる。発光層は、特に分子堆積膜であることが好ましい。ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、溶液状態または液相状態の材料化合物から固体化され形成された膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構

造、高次構造の相違や、それに起因する機能的な相違に より区分することができる。また、特開昭57-517 81号公報に開示されているように、樹脂等の結着剤と 材料化合物とを溶剤に溶かして溶液とした後、これをス ピンコート法等により薄膜化することによっても、発光 層を形成することができる。このようにして、形成され る発光層の膜厚については特に制限はなく、状況に応じ て適宜選択することができるた、通常5nm~5μmの 範囲が好ましい。有機EL素子の発光層は以下の機能を 併せ持つものである。すなわち、①注入機能:電界印加 時に陽極または正孔注入層より正孔を注入することがで き、陰極または電子注入層より電子を注入することがで きる機能、②輸送機能;注入した電荷(電子と正孔)を 電界の力で移動させる機能、③発光機能;電子と正孔の 再結合の場を提供し、これを発光につなげる機能、があ る。但し、正孔の注入されやすさと電子の注入されやす さに違いがあってもよく、また正孔と電子の移動度であ らわされる輸送能に大小があてもよいが、どちらか一方 の電荷を移動することが好ましい。

【0063】(4)-2. 正孔注入層

次に、正孔注入層は、必ずしも本発明に用いられる素子に必要なものではないが、発光性能の向上のために用いた方が好ましいものである。この正孔注入層は発光層であって、正孔移動度が大きさい、イオン化エネルギーが、通常 5.6 e V以下と小されるアンルでは、より低い電界でと小される子を発光層に輸送する材料が好ましく、さらに正孔の移動度が、例えば $10^4 \sim 10^6$ V/c mの電界印加時に、いなくとも 10^{-6} c m² 10^{-6}

【0064】具体例としては、例えばトリアゾール誘導 体(米国特許 3、 1 1 2、 1 9 7 号明細書等参照)、オ キサジアゾール誘導体(米国特許3、189、447号 明細書等参照)、イミダゾール誘導体(特公昭37-1 6096号公報等参照)、ポリアリールアルカン誘導体 (米国特許3, 615, 402号明細書、同第3, 82 0,989号明細書、同第3.542.544号明細 書、特公昭45-555号公報、同51-10983号 公報、特開昭51-93224号公報、同55-171 05号公報、同56-4148号公報、同55-108 667号公報、同55-156953号公報、同56-36656号公報等参照)、ピラゾリン誘導体およびピ ラソロン誘導体(米国特許第3,180,729号明細 書、同第4.278,746号明細書、特開昭55-8 8064号公報、同55-88065号公報、同49-105537号公報、同55-51036号公報、同5

...

6-80051号公報、同56-88141号公報、同 57-45545号公報、同54-112637号公 報、同55-74546号公報等参照)、フェニレンジ アミン誘導体(米国特許第3.615.404号明細 書、特公昭51-10105号公報、同46-3712 号公報、同47-25336号公報、特開昭54-53 435号公報、同54-110536号公報、同54-119925号公報等参照)、アリールアミン誘導体 (米国特許第3, 567, 450 号明細書、同第3, 1 80,703号明細書、同第3,240,597号明細・ 書、同第3.658.520号明細書、同第4.23 2, 103号明細書、同第4, 175, 961号明細 書、同第4,012,376号明細書、特公昭49-3 5702号公報、同39-27577号公報、特開昭5 5-144250号公報、同56-119132号公 報、同56-22437号公報、西独特許第1.11 0.518号明細書等参照)、アミノ置換カルコン誘導 体(米国特許第3,526.501号明細書等参照)、 オキサゾール誘導体(米国特許第3, 257, 203号 明細書等に開示のもの)、スチリルアントラセン誘導体 (特開昭56-46234号公報等参照)、フルオレノ ン誘導体(特開昭54-110837号公報等参照)、 ヒドラゾン誘導体(米国特許第3,717,462号明 細書、特開昭54-59143号公報、同55-520 63号公報、同55-52064号公報、同55-46 760号公報、同55-85495号公報、同57-1 1350号公報、同57-148749号公報、特開平 2-311591号公報等参照)、スチルベン誘導体 (特開昭61-210363号公報、同61-2284 51号公報、同61-14642号公報、同61-72 255号公報、同62-47646号公報、同62-3 6674号公報、同62-10652号公報、同62-30255号公報、同60-93445号公報、同60 -94462号公報、同60-174749号公報、同 60-175052号公報等参照)、シラザン誘導体 (米国特許第4.950.950号明細書)、ポリシラ ン系(特開平2-204996号公報)、アニリン系共 重合体(特開平2-282263号公報)、特開平1-211399号公報に開示されている導電性高分子オリ ゴマー(特にチオフェンオリゴマー)等を挙げることが できる。正孔注入層の材料としては上記のものを使用す ることができるが、ボルフィリン化合物(特開昭63-2956965号公報等に開示のもの)、芳香族第三級 アミン化合物およびステリルアミン化合物(米国特許第 4. 127. 412号明細書、特開昭53-27033 号公報、同54-58445号公報、同54-1496 - 3 4 号公報、同 5 4 - 6 4 2 9 9 号公報、同 5 5 - 7 9 450号公報、同55-144250号公報、同56-119132号公報、同61-295558号公報、同 61-98353号公報、同63-295695号公報

等参照)、特に芳香族第三級アミン化合物を用いること が好ましい。上記ポルフィリン化合物の代表例として は、ポルフィン、1、10、15、20-テトラフェニ ルー21H、23H-ボルフィン銅(II)、1,10. 15.20-テトラフェニル-21H.23H-ポルフ ィン亜鉛(II)、5、10、15、20ーテトラキス (ペンタフルオロフェニル) -21H, 23H-ボルフ ィン、シリコンフタロシアニンオキシド、アルミニウム フタロシアニンクロリド、フタロシアニン(無金属)、 ジリチウムフタロシアニン、銅テトラメチルフタロシア ニン、銅フタロシアニン、クロムフタロシアニン、亜鉛 フタロシアニン、鉛フタロシアニン、チタニウムフタロ シアニンオキシド、Mgフタロシアニン、銅オクタメテ ルフタロシアニン等を挙げることができる。また、前記 芳香族第三級アミン化合物およびスチリルアミン化合物 の代表例としては、N, N, N', N'ーテトラフェニ ルー4、4'ージアミノフェニル、N、N'ージフェニ N-N, N'-EX-(3-xFNJzzn)-[1]1'-ピフェニル]-4,4'-ジアミン(以下TPD と略記する)、2,2-ビス(4-ジーp-トリルアミ ノフェニル) プロパン、1、1-ビス(4-ジーロート リルアミノフェニル) シクロヘキサン、N, N, N', N' - \mathcal{F} - $\mathcal{F$ ル、1、1-ピス(4-ジーロートリルアミノフェニ ル) -4-フェニルシクロヘキサン、ピス(4-ジメチ ルアミノー2ーメチルフェニル)フェニルメタン、ピス (4-ジ-p-トリルアミノフェニル)フェニルメタ ン、N,N'-ジフェニル-N,N'-ジ(4-メトキ シフェニル) -4, 4' -ジアミノピフェニル、N, N, N', N'-テトラフェニル-4, 4'-ジアミノ フェニルエーテル、4、4、-ピス(ジフェニルアミ ノ) クオードリフェニル、N. N. N-トリ(p-トリ ル) アミン、4 - (ジーp-トリルアミノ) - 4' -**[4(ジーロートリルアミノ)スチリル]ステルペン、** 4-N, N-ジフェニルアミノー(2-ジフェニルビニ ル) ペンゼン、3 - メトキシー4 ¹ - N. N - ジフェニ ルアミノスチルベンゼン、N-フェニルカルパゾール、 米国特許第5.061,569号に記載されている2個 の縮合芳香族環を分子内に有する、例えば、4,4 --ピス[N-(1-ナフチル)-N-フェニルアミノ]ビ フェニル(以下NPDと略記する)、また、特開平4-308688号公報で記載されているトリフェニルアミ ンユニットが3つスターパースト型に運結された4. 4', 4''-トリス [N-(3-メチルフェニル)-N ーフェニルアミノ]トリフェニルアミン(以下MTDA TAと略記する)等を挙げることができる。また、発光 層の材料として示した前述の芳香族ジメデリディン系化 合物の他、p型-Si,p型SiC等の無機化合物も正 孔注入層の材料として使用することができる。正孔注入

層は、上述した化合物を、例えば真空蒸着法、スピンコ

ート法、キャスト法、LB法等の公知の方法により薄膜 化することにより形成することができる。正孔注入層と しての膜厚は、特に制限はないが、通常は5 nm~5 μ mである。この正孔注入層は、上述した材料の一種また は二種以上からなる一層で構成されていてもよいし、ま たは、前記正孔注入層とは別種の化合物からなる正孔注 入層を積層したものであってもよい。また、有機半導体 層は、発光層への正孔注入または電子注入を助ける層で あって、 10^{-10} S/c m以上の導電率を有するものが 好適である。このような有機半導体層の材料としては、 含チオフェンオリゴマーや含アリールアミンオリゴマー などの導電性オリゴマー、含アリールアミンデンドリマ 一などの導電性デンドリマーなどを用いることができ

【0065】(4)-3電子注入層

一方電子注入層は、発光層への電子の注入を助ける層で

[0067] (式中Ar¹⁰~Ar¹³はそれぞれ置換また は無置換のアリール基を示し、Ar10とAr11およびA г12とAг13はそれぞれにおいて互いに同一であっても 異なっていてもよく、 Ar^{14} 置換または無置換のアリレ ーン基を示す。) で表わされる電子伝達化合物が挙げら れる。ここで、アリール基としてはフェニル基、ピフェ ニル基、アントラニル基、ベリレニル基、ピレニル基な どが挙げられ、アリレーン基としてはフェニレン基。ナ フチレン基、ピフェニレン基、アントラセニレン基、ペ

あって、電子移動度が大きく、また付着改善層は、この 電子注入層の中で、特に陰極との付着が良い材料からな る層である。電子注入層に用いられる材料としては、例 えば8-ヒドロキシキノリンまたはその誘導体の金属錯 体、あるいはオキサジアゾール誘導体が好ましく挙げら れる。また、付着改善層に用いられる材料としては、特 に8-ヒドロキシキノリンまたはその誘導体の金属錯体 が好適である。上記8-ヒドロキシキノリンまたはその 誘導体の金属錯体の具体例としては、オキシン(一般に 8-キノリノールまたは8-ヒドロキシキノリン)のキ レートを含む金属キレートオキシノイド化合物が挙げる れる。一方、オキサジアソール誘導体としては、一般式 (II); (III) および(IV) [0066]

[化9]

ニレニレン基、ピレニレン基などが挙げられる。また、 置換基としては炭素数1~10のアルキル基、炭素数1 ~10のアルコキシ基またはシアノ基などが挙げられ る。この電子伝達化合物は、薄膜形成性のものが好まし い。上記電子伝達化合物の具体例としては、下記のもの を挙げることができる。

[0068] 【化10】

【0069】(4)-4. 下部電極

有機EL素子の下部電極として陽極または陰極が設けられる。陽極としては高仕事関数の金属または透明電極が好ましい。好ましい例としては、ITO, In-Zn-O, SnO_2 : Sb, ZnO: Al などの透明酸化物電極が挙げられる。他の好ましい例としては、Pt. Au, Ni 等が挙げられるが、Pt. Au 等は付着が弱いのでAu/高融点金属の組み合わせを用いることが好ましい。ここで高融点金属の好適例としては、Mo, W, Ct, Ta などを挙げることができる。Au/Al, Pt/Al, An/Al 合金,Pt/Al 合金なども好適例として挙げることができる。

【0070】陰極としては、ホウ化金属(LaB6など)、希土類金属のケイ素化物、TiNなどの低仕事金属化合物が好適例として挙げることができる。Mg:Ag,Al:Liなど従来用いられてきた金属合金は耐食性に劣り下部電極として用いるのは必ずしも適切ではない。

【0071】(4)-5. 対向電極

本発明の特徴、すなわち高閉口率を実現するには、図1に示すように対向電極33から光を取り出すのが好ましい。このためには、透明性好ましくは光線透過率が30%以上の透明電極である必要がある。対向電極で陽極である場合にはITO(In-Sn-O), In-Zn-O. $SnO_2:Sb$, ZnO:Al などを好ましく用いることができる。

【0072】陽極ではなく陰極の場合は、アルカリ金属またはアルカリ土類金属を0.1~5モル%で含有する合金膜であって膜厚が15nm以下のものは光線透過率を持つため好ましく用いることができる。合金の母体と

しては、A1、In、Zn. Pb. Bi などを好ましく 用いることができる。さらに上記合金薄膜上に透明電極であるITO, In-Zn-O. SnO_2 : S. ZnO: A 1 などを積層するならば面抵抗値が 20Ω /口以下となり比較的低抵抗となって好ましい。また、上記透明電は、非晶質、例えばIn-Zn-Oであることが好ましい。なぜなら、非晶質は結晶粒界がないため、防温を使れ、陰極と有機層の界面にある活性なアルカリ金属ではアルカリ土類金属が酸化することを防止するからでは非晶質導電性酸化物膜は室温基板にて 20Ω /口以下の面抵抗値が得られる。結晶性であるITOは室温では高抵抗であり 100Ω /口程度である。

【0073】透明電極が積層されている場合には、上記合金膜は層をなして連続膜でなくても良く、島状の不連続膜であっても、電極全体に導電するため用いることができる。

【0074】(4) -6. 有機EL素子の作製(例)以上例示した材料および方法により発光層、透明電極(陽極)、必要に応じて正孔注入層、および必要に応じて電子注入層を形成し、さらに電極(陰極)を形成することにより、有機EL素子を作製することができる。また、電極から透明電極へ、前記と逆の順序で有機EL素子を作製することもできる。

【0075】以下に支持基板上に透明電極/正孔注入層/発光層/電子注入層/電極が順次設けられた構成の有機EL素子の作製例を記載する。まず、適当な基板上に、透明電極材料からなる薄膜を1μm以下、好ましくは10~200nmの範囲の膜厚になるように蒸着やスパッタリング等の方法により形成して、透明電極を作製する。次に、この透明電極上に正孔注入層を設ける。正

孔注入層の形成は、前述したように真空蒸着法. スピン コート法、キャスト法、LB法等の方法により行なうこ とができるが、均質な膜が得られやすく、かつピンホー ルが発生しにくい等の点から、真空蒸着法により形成す ることが好ましい。真空蒸着法により正孔注入層を形成 する場合、その蒸着条件は、使用する化合物(正孔注入 層の材料)、目的とする正孔注入層の結晶構造や再結合 構造等により異なるが、一般に蒸着源温度50~450、 ℃、真空度 10⁻⁷~10⁻³torr、蒸着速度 0.01 ~50 n m/s e c、基板温度-50~300℃、膜厚 5 nm~5 umの範囲で適宜選択することが好ましい。 【0076】次に正孔注入層上に発光層を設ける発光層 の形成も、所望の有機発光材料を用いて、真空蒸着法。 スパッタリング、スピンコート法、キャスト法等の方法 により有機発光材料を薄膜化することにより形成できる が、均質な膜が得られやすく、かつピンホールが生成し にくい等の点から、真空蒸着法により形成することが好 ましい、真空蒸着法により発光層を形成する場合、その 蒸着条件は、使用する化合物により異なるが、一般的に 正孔注入層と同じ様な条件範囲の中から選択することが できる。

【0077】次に、この発光層上に電子注入層を設ける。正孔注入層、発光層と同様、均質な膜を得る必要から真空蒸着法により形成することが好ましい。蒸着条件は、正孔注入層、発光層と同様条件範囲から選択することができる。

【0078】最後に、電極を積層して有機EL素子を得ることができる。電極は、金属から構成されるもので、蒸着法、スパッタリングを用いることができる。しかし、下地の有機物層を成膜時の損傷から守るためには、真空蒸着法が好ましい。

【0079】これまで記載してきた有機EL素子の作製は、一回の真空引きで一貫して透明電極から電極まで作製することが好ましい。

【0080】なお、有機EL素子に直流電圧を印加する 場合、透明電極を十、電極を一の極性にして、5~40 Vの電圧を印加すると、発光が観測できる。また、逆の 極性で電圧を印加しても電流は流れず、発光は全く生じ ない。さらに交流電圧を印加した場合には、透明電極が +、電極が一の極性になったときのみ均一な発光が観測 される。印加する交流の波形は任意でよい。ここで、平 面的に分離配置して発光する有機EL素子を作製するに は、ストライブ状の透明電極および電極を交差させ、そ れぞれの電極に直流電圧を印加し、交差部分を発光させ るX-Yドットマトリックス方式と透明電極または電極 のいずれかをドット状に形成し、TFT(Thin Film Tr ansister) のようなスイッチング素子にて特定のドット 部分だけに直流電圧を印加して発光させるアクティブマ トリックス方式が挙げられる。例えば、ストライプ状の 透明電極および電極はフォトリソグラフィー法にてエッ

チングするかリフトオフするか、またはマスキング蒸着 等の方法にて形成することができる。

【00.81】 [実施例]以下、本発明を実施例によってさらに具体的に説明する。

[実施例1]

(アクティブマトリックス基板の作製) ガラス基板 (白 板ガラス)上にSi2 H6 をガスとしてLPCVDを用 いて膜厚 50 n mの α - S i 膜を成膜した。基板温度は 450℃であった。次に、XeClエキシマレーザーを 走掃しアニーリングを行なった。第一段目に188mJ / c m^2 の照射エネルギーで、第二段目を290 m J / $c m^2$ の照射エネルギーで行なった。これにより $\alpha - S$ iをポリシリコンに変化させた。次に、ポリSi島を所 定のパターンで設けた。エッチングはCFIをガス種と して行なった。次に、ゲート絶縁膜であるSiO2 を5 CR-CVDで基板温度200℃で膜厚100nm成膜 した。次に、ゲート電極としてTaN(60μΩ·cm の比抵抗値)をスパッタリングにより成膜し、パターン ニングした。同時にゲートバスもパターン加工した。ま た、コンデンサーの下部電極を加工した。次に、イオン 住入によりドレインとソース領域に4×10¹⁵ イオン $/cm^2$ 、エネルギー80keVのPイオンを注入した。 次に、基板を不活性N2の中で300℃、3時間熱し、 イオンを活性化し、ドーピングが有効に行なわれるよう にした。ポリシリコンのイオン注入された組成は $2k\Omega$ ノ□の面抵抗値となり活性化された。次に、絶縁層とし て、ECRCVDでSiO2を成膜した。膜厚は300 nmであった。次に、ソースパス(信号ライン)を製膜 した、AIをスパッタリングし膜厚200nm設けてあ り、同時に図2で示された共通電極線、コンデンサーの 上部電極、Tr2 のソースと共通電極ラインの連結、T rlのソースと信号ラインの連結もパターン加工した。 なお、必要なコンタクトホールはあらかじめSiO2 に 開口させておいた。次に、SiO2をECRCVD法に よって600mmの膜厚で積層した。次に、フォトレジ ストを3μmの膜厚で全面上にスピンコートし覆った。 次に、RIEにてガス種をCF₄/O₂ としてエッチバ ック法にて最上部の SiO_2 を平坦化した。次に、Tr2 のドレイン部を開口し、さらにAL:Si(Si1重 量%)の合金を膜厚50nm成膜し、さらに[TO(S n10重量%)を膜厚50nm製膜した。このときの基 板温度は200℃であった。触針膜厚計にてAl:Si およびIT〇の成膜前のSi〇2の平坦度を調べたとこ ろ0. 15 m以下であった。これにより、Al:Si およびITOは断線することなく、ポリSi、Trl、 Tr2 の上に設けることができた。これは、本発明の顕 著な効果である。なお、本実施例の画素の大きさは25 0μm×100μmであり、これに対しITOの大きさ は有効な発光画素の大きさを与えるが240μm×90 μmであった。Τ r l 、Τ r 2 、 ゲート、ソースおよび

共通電極線上に有機ELの下部電極を備えているので極めて大きな86%の開口率が得られた。

【0082】(有機EL層および対向電極の作製)上記 で得られたアクティブマトリックス基板をイソプロピル アルコール中で超音波洗浄を1分間行なった。次に、こ の基板上に膜厚80nmの4, 4′-ビス[N, N-ジ (3-メテルフェニル) アミノ] ー4" ーフェニルート リフェニルアミン膜(以下「TPD74膜」と略記す。 る。)を製膜した。このTPD74膜は、第1の正孔注 入層として機能する。このTPD74膜の成膜に続け て、このTPD74膜上に膜厚20nmの4、4′ーピ ス [N-(1-ナフチル)-N-フェニルアミノ] ピフ ェニル膜(以下「NPD膜」と略記する。) を成膜し た。このNPD膜は、第2の正孔注入層(正孔輸送層) として機能する。さらに、NPD膜の成膜に続けて、こ のNPD膜上に膜厚40nmの4,41-ピス(2,2 ージフェニルビニル)ピフェニル膜(以下「DPVBi 膜」と略記する。)を成膜した。このDPVBi膜は、 青色発光層として機能する。そして、DPVBi膜の成 膜に続けて、このDPVBi膜上に膜厚20mmのトリ ス(8-キノリノール)アルミニウム膜(以下「Ala 膜」と略記する。)を成膜した。このAlα膜は、電子 注入層として機能する。次に、MgとAgの合金膜を蒸 着した。2元蒸着方法を用い蒸着レートを1.4nm: 0.1 nmに設定し膜厚10 nm蒸着した。次に、スパ ッタリングにてIa - Za - O膜を200nm成膜し た。[n-Zn-O膜は非晶質酸化物膜であり、<math>[n/Zn](In + Zn) = 0.83であるIn - Zn 〇系スパッ タリングターゲットを用い、Ar:O2の混合ガスを雰 囲気として真空 0.2Pa.スパッタリング出力2w /c $\,\mathrm{m}^2$ の条件で行なった。 $\mathrm{Mg}:\mathrm{Ag}/\mathrm{In}-\mathrm{Zn}\,\mathrm{O}$ 積層膜は陰極として機能し、その透過率は65%であっ た。

【0083】(作動テスト)上記で得られた発光装置の作動テストを行なった。テストパターンが100cd/ m^2 の輝度で青色にて出力されているのを確認した。平坦化した絶縁膜上に下部電極を備えているので、開口率が大きく画像表示において画素のドットの境界が目立つことなく自然な表示がされ、また画素欠陥が少なく全画素数(320×240)のうち1%以下であった。

【0084】 [比較例1] 実施例1において、最上部の SiO_2 は平坦化せずにA1:Si/ITOの下部電極を成膜したこと以外は実施例1と同様にして有機EL発光装置を作製した。ただし、この発光装置を試験したところ画素欠陥は10%を越えていた。欠陥のある画素を詳細に観察したところTrI, Tr2 が設けられているところで短絡が生じているかまたは電極の断線により発光していないことが観察された。従って本発明の平坦化した下部電極下の絶縁膜は、有効であることが判明し

た。

【0085】 [比較例2] 実施例1において、A1:Si/ITOの下部電極を、Tr1, Tr2 の部分、ゲートパスの部分およびソースパスの部分を避けるようにしてパターン加工したこと以外は実施例1と同様にした。試験を行なったところ開口率は67%に低下しており、画素表示において画素ドットの境界が目立ち良好な表示が得られなかった。

[0086]

【発明の効果】以上説明したように本発明によって、開口率が大きく、かつ画像欠陥の発生を有効に防止して、 高品質の画像表示が可能な有機アクティブEL発光装置 を提供することができる。

【図面の簡単な説明】

【図1】本発明の有機アクティブEL発光装置の一実施 形態を模式的に示す、図3のA-A線断面図である。

【図2】本発明に用いられる有機EL素子の駆動回路を示す説明図である。

【図3】本発明の有機アクティブEL発光措置の一実施 形態を模式的に示す平面図である。

【図4】本発明に用いられる薄膜トランジスターのボリシリコン層をアイランドにパター化する過程を模式的に示す断面図である。

【図 5】 従来技術の有機TFTELにおける回路図である。

【図6】図5におけるA-A、線の断面図である。

【図7】従来技術の有機TFTELの他の例を示す断面 図である

【図8】従来技術の有機TFTELの他の例を示す断面図である。

【符号の説明】

- 1 基板
- 2 薄膜トランジスター (TFT)
- 21 第一のトランジスター (Trl)
- 22 第二のトランジスター (Tr2)
- 23 コンデンサー
- 3 有機EL素子
- 31 下部電極
- 32 有機層
- 33 対向電極
- 4 層間絶操膜
- 41 コンタクトホール
- 42 ゲート絶縁層
- 43 ゲート電極
- 44 シリコン活性層
- 4.6 ゲート線
- 5 2 絶縁膜
- 54 コンタクトホール
- 62 ソース
- 70 ポリシリコン層
- 71 ポリシリコンアイランド

72 ゲート絶録層

73 ポリシリコンゲート電極

81 正孔注入電極

82 電子注入電極

83 ゲート電極

84 ソース電極

【図1】

[図5]

[図4]

[図7]

[図8]

