Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа РЗ115	К работе допущен				
Студент Конаныхина А.А.	Работа выполнена				
Преподаватель Боярский К.К.	Отчет принят				
Рабочий протокол и отчет по лабораторной работе №3.07					
«Изучение сво	йств ферромагнетика»				

Цель работы:

- 1. Измерение зависимости магнитной индукции в ферромагнетике от напряженности магнитного поля B=B(H);
- 2. Определение по предельной петле гистерезиса индукции насыщения, остаточной индукции и коэрцитивной силы;
- 3. Получение зависимости магнитной проницаемости от напряженности магнитного поля $\mu = \mu(H)$ и оценка максимального значения величины магнитной проницаемости;
- 4. Расчет мощности потерь энергии в ферромагнетике в процессе его перемагничивания.

Схема установки:

Измерительные приборы:

Nº п/п	Наименование	Используемый диапазон	Погрешность прибора		
1	Осциллограф	Настраиваемый	Настраиваемый		

Исходные данные:

Параметры установки:

Площадь сечения ферромагнетика:

 $S = 6.4*10^{-5} \text{ M}^2$

Средняя длина ферромагнетика:

L = 0.078 M

Количество витков намагничивающей обмотки І:

 $N_1 = 1665$ вит

Количество витков намагничивающей обмотки II:

 $N_2 = 970$ вит

Номиналы резисторов:

 $R_1 = 680 \text{ Om}$

 $R_2 = 470 \text{ kOm}$

Ёмкость эталонного конденсатора:

 $C_1 = 0.47 \text{ MK}\Phi$

Подаваемая частота:

$$f = 30 \Gamma \mu$$

Результаты прямых измерений:

Расположим петлю гистерезиса в центре координат. По данному графику получим координаты X_c и Y_r (пересечения петли гистерезиса с осями координат), занесём в Таблицу 1:

Хс = 0,4 дел

 $Y_r = 0.6$ дел

Далее сделаем замеры координат концов петли гистерезиса при разных напряжениях с шагом $\Delta U = 1$ В и заполним 1, 2, 3, 5 и 6 столбцы таблицы 3.

Расчет результатов косвенных измерений:

1) Используя формулу ниже, найдём коэрцитивную силу:

 $H_c = \frac{N_1}{lR_1} * X_c * K_{\chi}$, где K_{χ} – цена деления горизонтальной шкалы осциллографа.

$$H_c = \frac{1665}{0.078 * 680} * 0.4 * 0.2 = 2.51 \,\text{A/m}$$

Найдём остаточную индукцию по формуле:

 $B_r = rac{R_2 C_1}{N_2 S} * Y_r * K_y$, где K_y - цена деления вертикальной шкалы осциллографа.

$$B_r = \frac{470000 * 0,00000047}{970 * 0,000064} * 0,6 * 0,1 = 0,21 Тл$$

Также найдем для этих значений коэффициенты α и β по формулам:

$$\alpha = \frac{N_1}{lR_1} = \frac{1665}{0,078 * 680} = 31,4$$

$$\beta = \frac{R_2C_1}{N_2S} = \frac{470000 * 0,00000047}{970 * 0,000064} = 3,57$$

Таблица 1					
Хс, дел	Yr, дел	Нс, А/м	Br, Тл		
0,40	0,60	2,51	0,21		

2) Зная координаты конца петли и используя те же самые формулы, найдем напряженность поля:

$$H_m = \frac{N_1}{lR_1} * X_m * K_x = \frac{1665}{0,078*680} * 1,8*0,2 = 11,3 \text{ A/m}$$

Найдём магнитную индукцию:

$$B_m = \frac{R_2 C_1}{N_2 S} * Y_m * K_y = \frac{470000 * 0,00000047}{970 * 0,000064} * 1,4 * 0,1 = 0,5 Тл$$

Найдём магнитную проницаемость по формуле:

$$\mu = \frac{B}{\mu_0 H} = \frac{2,49}{1,2566 * 10^{-6} * 56,5} = 35080$$

Таблица 2					
Xm, дел	Ym, дел	Hm, A/м	Bm, Тл	μm	
1,80	1,40	11,30	0,50	35080	

3) Для заполнения оставшихся столбцов Таблицы 3 для каждого шага ΔU воспользуемся следующими формулами:

Формула для нахождения напряжённости:

$$H = \frac{N_1}{lR_1} * X * K_x$$

Формула для нахождения индукции:

$$B = \frac{R_2 C_1}{N_2 S} * Y * K_y$$

Формула для нахождения магнитной проницаемости:

$$\mu = \frac{B}{\mu_0 H}$$

Таблица 3							
U, B	Х, дел	Кх, В/дел	Н, А/м	Ү, дел	Ку, В/дел	В, Тл	μ
20,00	1,80	0,20	11,30	1,40	0,10	0,50	35080
19,00	1,70	0,20	10,67	1,30	0,10	0,46	34491
18,00	1,40	0,20	8,79	1,20	0,10	0,43	38660
17,00	1,40	0,20	8,79	1,20	0,10	0,43	38660
16,00	1,30	0,20	8,16	1,20	0,10	0,43	41634
15,00	1,20	0,20	7,53	1,00	0,10	0,36	37586
14,00	2,10	0,10	6,59	2,00	0,05	0,36	42955
13,00	1,90	0,10	5,96	1,80	0,05	0,32	42729
12,00	1,70	0,10	5,34	1,60	0,05	0,28	42450
11,00	1,50	0,10	4,71	1,60	0,05	0,28	48110
10,00	1,40	0,10	4,39	1,40	0,05	0,25	45103
9,00	2,50	0,05	3,92	1,40	0,05	0,25	50515
8,00	2,20	0,05	3,45	1,20	0,05	0,21	49203
7,00	2,00	0,05	3,14	1,00	0,05	0,18	45103
6,00	1,80	0,05	2,83	0,80	0,05	0,14	40092
5,00	1,50	0,05	2,35	2,00	0,02	0,14	48110

4) Для нахождения средней мощности P, расходуемой внешним источником тока при циклическом перемагничивании ферромагнитного образца, найдём коэффициент χ по формуле:

$$\chi = K_x K_y \frac{N_1 R_2 C_1}{N_2 R_1} f = 0.2 * 0.1 \frac{1665 * 470000 * 0.00000047}{970 * 680} * 40 = 0.000446$$

По графику петли оценим численно площадь петли гистерезиса: $S_{\pi r} = 2~{\rm де} \pi^2$

Используя полученные значения, найдём среднюю мощность по формуле: $P=\chi*S_{\pi\Gamma}=0.000892~B_{\mathrm{T}}$

Расчет погрешностей:

Рассчитаем погрешность Р, для этого раскроем Р как:

$$P = K_x K_y \frac{N_1 R_2 C_1}{N_2 R_1} f S_{\text{II}}$$

Погрешность S_{nr} площади петли можно найти из того, что это сумма погрешности прибора и погрешности наблюдателя; погрешность прибора 0,5 дел 2 , погрешность наблюдателя 0,5 дел 2 , значит

 $S_{nr} = 2 \pm 1$ дел².

Найдём саму погрешность:

$$\Delta P = \begin{pmatrix} \left(K_{y} \frac{N_{1}R_{2}C_{1}}{N_{2}R_{1}} f S_{\Pi\Gamma} * \Delta K_{x}\right)^{2} + \left(K_{x} \frac{N_{1}R_{2}C_{1}}{N_{2}R_{1}} f S_{\Pi\Gamma} * \Delta K_{y}\right)^{2} + \left(K_{x} K_{y} \frac{R_{2}C_{1}}{N_{2}R_{1}} f S_{\Pi\Gamma} * \Delta N_{1}\right)^{2} + \left(K_{x} K_{y} \frac{N_{1}C_{1}}{N_{2}R_{1}} f S_{\Pi\Gamma} * \Delta R_{2}\right)^{2} + \left(K_{x} K_{y} \frac{N_{1}R_{2}}{N_{2}R_{1}} f S_{\Pi\Gamma} * \Delta C_{1}\right)^{2} + \left(K_{x} K_{y} \frac{N_{1}R_{2}C_{1}}{N_{2}R_{1}} S_{\Pi\Gamma} * \Delta f\right)^{2} + \left(K_{x} K_{y} \frac{N_{1}R_{2}C_{1}}{N_{2}R_{1}} f * \Delta S_{\Pi\Gamma}\right)^{2} + \left(-K_{x} K_{y} \frac{N_{1}R_{2}C_{1}}{N_{2}^{2}R_{1}} f S_{\Pi\Gamma} * \Delta N_{2}\right)^{2} + \left(-K_{x} K_{y} \frac{N_{1}R_{2}C_{1}}{N_{2}R_{1}^{2}} f S_{\Pi\Gamma} * \Delta R_{1}\right)^{2} = 0.0006BT$$

Таким образом, $P = (9 \pm 6)*10^{-4} BT$

Графики:

В ходе обработки результатов получились следующие графики:

По второму графику можно найти максимальную электрическую проницаемость. Она достигается при напряженности поля H = 3,92 A/м и равна μ_{max} = 50515.

Результаты:

В ходе выполнения лабораторной работы были получены следующие значения:

Коэрцитивная сила:

 $H_c = 2,51 \text{ A/M}$

Остаточная индукция:

 $B_r = 0,21 \ Tл$

Магнитная проницаемость в состоянии насыщения:

 $\mu_{\rm m} = 35080$

Максимальное значение проницаемости:

 $\mu_{max} = 50515$

Напряжённость поля, при которой наблюдается максимальное значение проницаемости:

H = 3.92 A/m

Мощность потерь на перемагничивание ферромагнетика:

 $P = (9 \pm 6)*10^{-4} BT$

Вывод:

В ходе лабораторной работы были изучены свойства ферромагнетиков в переменном электрическом поле, исследованы механизмы перемагничивания под действием внешнего электрического поля. Было найдено, что индукция линейно растет с ростом напряженности поля, в то время как проницаемость меняется нелинейно.