Laboratoria: piatek, 8:00

Grupa: 13

Informatyka Wydział informatyki i telekomunikacji.

Algorytmy i Strukrury Danych Prowadzacy: Dominik Witczak

Sprawozdanie do

Projektu 3 Sortowanie topologiczne

Autor: Marcin Wrzaskowski nr indeksu: 160329

1 Uzasadnienie wyboru reprezentacji grafu (macierz sasiedztwa):

1.1 Prostota i przejrzystość:

Macierz sasiedztwa to dwuwymiarowa tablica, gdzie wiersze i kolumny odpowiadaja wierzchołkom, a komórki wskazuja na istnienie krawedzi. Jest to prosta i intuicyjna struktura.

1.2 Szybki dostep do krawedzi:

Sprawdzenie, czy istnieje krawedź miedzy dwoma wierzchołkami, jest operacja O(1), co zapewnia szybki dostęp do informacji o krawedziach.

1.3 Łatwość implementacji algorytmów:

Algorytmy grafowe, takie jak DFS, BFS czy algorytmy najkrótszej ścieżki, sa łatwe do zaimplementowania z macierza sasiedztwa, co poprawia efektywność czasowa.

1.4 Efektywność dla grafów gestych:

Macierz sasiedztwa jest szczególnie efektywna dla grafów gestych, gdzie liczba krawedzi jest bliska maksymalnej liczbie krawedzi $(O(V^2))$.

1.5 Latwe zarzadzanie wagami krawedzi:

Dla grafów ważonych, wartości w macierzy moga bezpośrednio reprezentować wagi krawedzi, co upraszcza zarzadzanie dodatkowymi informacjami.

- 2 Wykresy zależności: (dla grafów hamiltonowskich o nasyceniu 30) t=f(n)
- 2.1 Skala liniowa t(ms):

2.2 Skala logarytmiczna t(ms):

- 3 Wykresy zależności: (dla grafów nie hamiltonowskich o nasyceniu 50) t=f(n)
- 3.1 Skala liniowa t(ms):

3.2 Skala logarytmiczna t(ms):

4 Podsumowanie:

Nauczyłem sie

- 1. Generować grafy.
- 2. Implementowac algorytmy ktore operuja na tych strukturach.
- 3. O grafach jako strukturach danych.
- 4. Jak zaimplementować algorytmy BFS i DFS.
- 5. Jak znajdowac krawedzie w grafach.
- 6. Wypisywania na ekran.
- 7. Implementować algorytmy grafowe dla różnych reprezentacji maszynowych grafów.

Spis treści

1	$\mathbf{U}\mathbf{z}$ a	sadnienie wyboru reprezentacji grafu (macierz sasiedz-	
	twa):		2
	1.1	Prostota i przejrzystość:	2
	1.2	Szybki dostep do krawedzi:	2
	1.3	Latwość implementacji algorytmów:	2
	1.4	Efektywność dla grafów gestych:	2
	1.5		2
2	niu 2.1	kresy zależności: (dla grafów hamiltonowskich o nasyce-30) $t = f(n)$ Skala liniowa $t(ms)$:	
3	syce	kresy zależności: (dla grafów nie hamiltonowskich o naeniu 50) $t=f(n)$ Skala liniowa $t(ms)$:	
4	Pod	Isumowanie:	6