	Lecture 2 Linear Regression and Gradient Descent
1.	Training Dota Set
	features Learning Algorithm estimates.
	hypothesis
	hypothesis in linear regression represents as: $h(x) = \theta_0 + \theta_1 x_1 + \cdots$ equals: $h(x) = \sum_{j=0}^{N} \theta_j x_j$, where $x_0 = 0$
	Notations:
	m: # training example n: # features X(i): the ith training example
	X": the in training example

2. Choose 0 st. hix) & y for training examples equals: unimize = (ho(x")-y") = J(d) = cost function use gradient descent: D start with some θ (say $\theta = \overline{D}$) Batch Gradient Pescent (use the whole data set) 3 keep changing & to reduce JID) 1 Disadvantage: Computational Expensive $\theta_j := \theta_j - \alpha \cdot \frac{1}{2\theta_j} J(\theta), j = 0, 1, 2 \cdots$ > learning rate = $(h_{\theta}(x)-y)\cdot\frac{\partial}{\partial \theta}(h_{\theta}(x)-y)=(h_{\theta}(x)-y)\cdot x_j$ → Repeat until convergence $\theta := \theta + \alpha \sum_{i=1}^{m} (y^{i} - \log(x^{i})) \times^{(1)}$

3. Stochastic Gradient Descent (more computational efficient)
Repeat &
For $j=1$ to $m \leq 0$ $0 := 0 - \alpha(ho(x^{(i)} - y^{(i)}) \times (i)$
}
a slightly noisier and more random path will never quite converge, oscillating around the minimum
will never quite converge, oscillating around the minimum
4. Normal Equation
No tation: $\nabla_A f(A) = \begin{bmatrix} \frac{\partial f}{\partial A_{ii}} & \frac{\partial f}{\partial A_{id}} \end{bmatrix}$ for a $f: \mathbb{R}^{n \times d} \to \mathbb{R}$
OAN OAN OAN
of of
And And