RWorksheet_Tiad#4a

James Cedrick Tiad

2024-10-14

##		Shoe_size	Height	Gender
##	1	6.5	66.0	F
##	2	9.0	68.0	F
##	3	8.5	64.5	F
##	4	8.5	65.0	F
##	5	10.5	70.0	M
##	6	7.0	64.0	F
##	7	9.5	70.0	F
##	8	9.0	71.0	F
##	9	13.0	72.0	M
##	10	7.5	64.0	F
##	11	10.5	74.5	M
##	12	8.5	67.0	F
##	13	12.0	71.0	M
##	14	10.5	71.0	M
##	15	13.0	77.0	M
##	16	11.5	72.0	M
##	17	8.5	59.0	F
##	18	5.0	62.0	F
##	19	10.0	72.0	M
##	20	6.5	66.0	F
##	21	7.5	64.0	F
##	22	8.5	67.0	M
##	23	10.5	73.0	M
##	24	8.5	69.0	F
##	25	10.5	72.0	M
##	26	11.0	70.0	M
##	27	9.0	69.0	M
##	28	13.0	70.0	M

```
Male_Shoesizes <- subset(Shoe_Table, Gender == "M", select = c(Shoe_size, Height, Gender))
 Male_Shoesizes
##
     Shoe_size Height Gender
## 5
          10.5
                 70.0
## 9
          13.0
                72.0
                           М
## 11
          10.5
                 74.5
                           Μ
## 13
          12.0
                 71.0
                           Μ
## 14
          10.5
                 71.0
                           Μ
## 15
          13.0
                 77.0
                           Μ
## 16
          11.5
                 72.0
                           Μ
          10.0
## 19
                72.0
                           Μ
## 22
           8.5
                 67.0
                          M
                 73.0
## 23
          10.5
                          M
## 25
          10.5
                 72.0
                           М
                           Μ
## 26
          11.0
                70.0
## 27
           9.0
                 69.0
                           М
## 28
          13.0
                 70.0
                           М
Female_Shoesizes <- subset(Shoe_Table, Gender == "F", select = c(Shoe_size, Height, Gender))
Female_Shoesizes
##
     Shoe_size Height Gender
## 1
           6.5
                 66.0
## 2
           9.0
                 68.0
                           F
## 3
           8.5
                 64.5
                           F
## 4
           8.5
                 65.0
                           F
                          F
## 6
           7.0
                 64.0
## 7
           9.5
                 70.0
                          F
                          F
## 8
           9.0
                 71.0
## 10
           7.5
                 64.0
                         F
## 12
           8.5
                 67.0
                          F
                59.0
                          F
## 17
           8.5
## 18
           5.0
                 62.0
                           F
                          F
## 20
           6.5
                 66.0
## 21
           7.5
                 64.0
                           F
## 24
           8.5
                 69.0
                           F
#c.mean of Shoes sizes
 mean_sizes <- mean(Shoe_size)</pre>
 mean_sizes
## [1] 9.410714
 #mean of Height
 mean_height <- mean(Height)</pre>
 mean_height
```

[1] 68.57143

```
#d. Yes I think there is a relationship between Shoe sizes and height. Because

#2.
months <- c("March", "April", "January", "November", "January", "September", "October", "September",</pre>
```

```
[1] March
                 April
                            January
                                     November
                                               January
                                                          September October
  [8] September November
                           August
                                                         November February
                                      January
                                               November
## [15] May
                 August
                            July
                                     December August
                                                          August
                                                                   September
## [22] November February April
## 11 Levels: April August December February January July March May ... September
```

```
assign("factor_months_vector", factor_months)
factor_months_vector
```

```
## [1] March
                 April
                            January
                                     November
                                                January
                                                          September October
                            August
## [8] September November
                                      January
                                                November
                                                         November
                                                                    February
## [15] May
                 August
                            July
                                     December August
                                                          August
                                                                    September
## [22] November February
                            April
## 11 Levels: April August December February January July March May ... September
```

```
#3.
summary(months)
```

```
## Length Class Mode
## 24 character character
```

factor_months <- factor(months)</pre>

factor_months

```
summary(factor months vector)
```

```
August December February
##
       April
                                               January
                                                             July
                                                                      March
                                                                                  May
##
           2
                      4
                                                     3
##
    November
               October September
           5
##
                      1
```

```
#4.
Direction <- c("East", "West", "North")
frequency <- c(1,4,3)
difre_df <- data.frame(Direction, frequency)
difre_df</pre>
```

```
## Direction frequency
## 1 East 1
## 2 West 4
## 3 North 3
```

```
new_order_data <- factor(Direction, levels = c("East", "West", "North"))
new_order_data</pre>
```

```
## [1] East West North
## Levels: East West North
```

##		${\tt Students}$	Strategy.1	Strategy.2	Strategy.3
##	1	Male	8	10	8
##	2		4	8	6
##	3		0	6	4
##	4	Female	14	4	15
##	5		10	2	12
##	6		6	0	9