- List each major human endocrine gland and its function. I recommend making flashcards for this.
 - Pineal = circadian
 - Hypothalamus = tropic hormones
 - Pituitary = ADH, oxytocin- communicates with hypothalamus
 - Thyroid = metabolism and metabolic rate
 - Adrenal glands = stress, fight or flight
 - Pancreas = blood sugar
 - Ovaries/testes = reproduction
- Why do hormones have different effects on different cells?
 - The effect depends on the type of receptor that the hormone binds to in the particular cell
 - And/or the signalling pathway that is triggered
- Describe the different effect that adrenaline has on different cell types:
 - Adrenaline binds beta receptors in the liver, triggering one kind of intracellular protein change, to increase blood sugar
 - Adrenaline binds beta receptors in the smooth muscle, triggering another kind of intracellular protein change, to dilate capillaries
 - Adrenaline binds alpha receptors in the muscle surrounding intestinal capillaries to constrict capillaries
- Describe the steps of a simple hormonal pathway. Give an example.
 - Stimulus triggers hormone release from endocrine cell, hormone travels to target cells and causes a response, triggering a negative feedback loop
 - Example:
 - Low pH in the duodenum
 - Sensed by the S cells of the duodenum
 - Triggers release of secretin
 - Secretin stimulates pancreatic cells
 - Pancreas releases bicarbonate into the duodenum
- What kind of hormone is involved in a complex pathway? Define this term.
 - Tropic hormone: a hormone that targets other endocrine glands, causing release of more hormones
- Be able to list three complex endocrine axes.
 - Hypothalamus/pituitary/thyroid system
 - Hypothalamus/anterior pituitary/adrenal cortex
- What two endocrine organs are the master regulators of many different hormonal axes?
 - The hypothalamus and pituitary
- Describe the role of the hypothalamus. What does it do (two key functions)?
 - The hypothalamus is a master regulator that translates nervous system input to hormone signalling output
 - Neurosecretory cells secrete two posterior pituitary hormones: ADH and oxytocin
 - The hypothalamus also controls the activity of the anterior pituitary, causing it to release its own hormones

- Describe the anatomical connection between the hypothalamus and pituitary:
 - The neurohypophysis, or posterior pituitary, is actually just a projection of hypothalamic neurons.
- What is the neurohypophysis/posterior pituitary? What does it do?
 - It is a collection of neurons that are part of the hypothalamus
 - It produces simple hormonal signals:
 - It secretes ADH, which stimulates water reabsorption in the kidney
 - It secretes oxytocin
- Define tropic and nontropic hormone. What tissue/organ type does each type of hormone target?
 - Tropic: targets another endocrine tissue, causing it to release another hormone
 - Nontropic: has a direct physiological effect on a non-endocrine tissue
- What does the adenohypophysis do? How is it regulated?
 - Adenohypophysis releases both non-tropic and tropic hormones
 - Nontropic
 - Prolactin
 - Melanocyte stimulating hormone
 - Growth hormone
 - Tropic
 - Reproductive:
 - Follicle stimulating hormone
 - Luteinizing hormone
 - Thvroid
 - thyreoStimulin hormone
 - Adrenal
 - Adrenocorticotropic hormone
 - Regulated by releasing and inhibiting hormones from the hypothalamus
- Name three major hormonal axes that are controlled/initiated by the hypothalamus:
 - HPG axis, HPT axis, HPA axis
- When we say that a hormonal axis controls "growth", what physiological growth processes are we actually talking about (3)?
 - Protein synthesis and cell division
 - Energy expenditure (catabolism)
 - Levels of circulating metabolites
- What hormonal systems are involved in regulating growth, and what physiological process does each control (3)?
 - Growth hormone and insulin-like growth factor
 - Controls anabolism in cartilage and muscle, catabolism in fat tissue
 - The hypothalamus/pituitary/thyroid hormone axis
 - Modulates basal metabolism
 - Insulin/glucagon
 - Control levels of circulating blood glucose/glucose uptake by cells
- What stimulus causes release of growth hormone?

- Secretion of GH-releasing hormone from anterior pituitary
- Explain the three effects of growth hormone. Classify each effect as tropic or nontropic. Explain how its three effects are interrelated.
 - Promotes catabolism (breakdown of macromolecules) in storage tissues (liver, fat). Nontropic.
 - Promotes protein anabolism (construction of new proteins). Nontropic.
 - Stimulates release of insulin-like growth factor. Tropic.
 - This makes cells divide and grow, causing tissues like muscle to grow
 - Interrelated:
 - Catabolism mobilizes energy and macromolecule building blocks, fuelling overall growth in target tissues via anabolism and the effects of IGF1
- What will happen with too much growth hormone? Not enough growth hormone?
 - Gigantism/dwarfism
- How does the body regulate growth hormone levels (negative feedback loop)?
 - Higher levels of growth hormone and insulin-like growth factor 1 inhibit the release of growth-hormone releasing hormone, thus reducing the production of growth hormone and IGF1
- Describe the steps of the hypothalamus-pituitary-thyroid axis (could be a good place for a flow chart). What does the final hormone do to the body?
 - Hypothalamus releases thyrotropin releasing hormone.
 - Thyrotropin releasing hormone triggers the anterior pituitary to release thyreostimulin hormone.
 - Thyreostimulin causes the thyroid to release triiodothyronine and thyroxine (T3 and T4).
 - T3 is the active form, and it basically speeds everything up: higher basal metabolism, more lipid and glycogen breakdown, more fat and glucose uptake by cells, more cell growth
- How does the body regulate thyroid hormone levels (negative feedback loop)?
 - Higher levels of T3/T4 inhibit the release of more thyrotropin hormone and thyreostimulin hormone, preventing production of more T3/T4.
- What happens with too little thyroid hormone? Too much thyroid hormone?
 - Hypothyroidism (sluggish, cold, weight gain)/ hyperthyroidism (high body temperature, weight loss, sweating)
- What two hormones regulate blood sugar levels?
 - Insulin and glucagon
- Where are they produced?
 - In the pancreas
 - Beta cells produce insulin
 - Alpha cells produce glucagon
- What physiological effect does each hormone have, and what is the mechanism for this effect? What stimulus causes each hormone to be released?

- Insulin: storage hormone. When circulating glucose is high, insulin is released, which triggers your cells to uptake and store glucose (fat, glycogen). This lowers your blood sugar.
 - Too little insulin, or lack of response to insulin from cells, causes diabetes (either type I or II)
- Glucagon: released when blood sugar is low. Causes tissues that store sugar to release it into the blood (ex glycogen breakdown).
- Describe insulin/glucagon and blood sugar cycling after you eat a meal. Again, potentially a good place to draw a flowchart for studying purposes.
 - Eat a meal and your blood sugar goes up
 - Insulin is released so that your cells start taking up the blood sugar
 - Time goes by and you use up the blood sugar
 - Low blood sugar levels cause release of glucagon
 - Glucagon causes the liver to breakdown glycogen into glucose and release it back into the bloodstream
 - Blood sugar levels go back to normal
- Explain how the renin-angiotensin-aldosterone axis works. What is the trigger for this
 hormonal axis? What happens when the axis is triggered? Again, potentially a good
 place to draw a flowchart for studying purposes.
 - Low perfusion (low amounts of blood flowing through the circulatory system, so low blood pressure/low blood volume), or low levels of salt in primary urine filtrate, or high levels of potassium, trigger the kidney to secrete renin
 - Renin converts angiotensinogen into angiotensin I
 - Angiotensinogen is constantly circulating and is produced by the liver
 - Angiotensin-converting enzyme is released from the lungs and converts angiotensin I into angiotensin II
 - Angiotensin II causes the adrenal gland to produce aldosterone
 - Aldosterone stimulates the kidneys to:
 - Reabsorb salt
 - Reabsorb water
 - This helps bring blood volume and solute concentrations back up to normal
- Describe how the RAA axis and the ADH system are activated in response to a) hyperosmolarity and b) hypovolemia, in order to bring salt and water balance back to normal.
 - Hyperosmolarity:
 - Aka too much salt and too little water
 - Triggers ADH release, causing water to be reabsorbed, diluting the salt and increasing the water
 - Blocks aldosterone release, so that salt is not reabsorbed in the kidneys
 - Hypovolemia
 - Aka too little salt and too little water
 - Triggers ADH *and* aldosterone release, causing water and salt to be reabsorbed by the kidneys