ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE	KATEDRA FYZIKY						
LABORATORNÍ CVIČENÍ Z FYZIKY							
Jméno		Datum měření					
Stud. rok 2018/2	2019 Ročník 2.	Datum odevzdání 4.12.2018					
Stud. skupina	Lab. skupina	Klasifikace					
Čís. úlohy Název	Název úlohy Měření charakteristik palivového článku						

1 Úkol měření

- 1. Proměřit voltampérovou charakteristiku elektrolyzéru, sestrojit graf a určit rozkladné napětí elektrolyzéru.
- 2. Proměřit zatěžovací voltampérovou charakteristiku palivového článku, sestrojit graf a odhadnout maximální výkon, který lze z článku odebírat.

2 Měřící přístroje

1. 4 digitální multimetry MY-65; nejistoty jsou uvedeny v príloze 1

3 Naměřené hodnoty a výpočty

3.1 Připrava měření

V našem případě v elektrolýzéru nebyla voda. Nejdříve jsme zkontrolovali, že palivový článek není zkratován a pracuje naprázdno. Do nádřky jsme nalili destilovanou vodu a nastavili jsme výstupní napětí na 5V, proud na 2A. Za několik minut plastový nástavec na vodíkové straně elektrolyzéru se naplnil do poloviny vodou, po té jsme nasadili hadičky.

3.2 Měření voltampérové charakteristiky

Na začátku měření proud I protékající elektrolyzérem je nastaven na 2A. Po dvou minutách jsme ho začli postupně snižovali až do minimální hodnoty. Pro

n	1	2	3	4	5	6	7	8
I[A]	2,0	1,83	1,5	1,23	0,99	0,816	0,558	0,305
U[V]	2,7	2,55	2,38	2,303	2,192	2,05	1,835	1,625

Tabulka 1: Hodnoty napětí a proudu

každou hodnotu proudu bylo vypočitáno napětí. Vysledné hodnoty jsou zapsáne v tabulce 1.

Obrázek 1: Voltampérová charakteristika elektrolyzéru

Aproximační funkce

$$y(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0$$
, $y(x) = A e^{kx}$, $y(x) = c x^m$

Průběh č. 1
$a_0 = 0.26099986307682$
$a_1 = -8.4285665455533$
$\sigma_{a0} = 0.0020024940895616$
$\sigma_{a1} = 0.071784671514502$
$\chi^2/\nu = 0.0001770631874392$
$(\chi^2/v)^{1/2} = 0.013306509213133$

Obrázek 2: Aproximační fukce pro graf závislosti I(U)

 ${\bf Z}$ obrázku 1 vidíme, že závislost napětí na proudu je lineární. Aproximační funkce

$$I = a_0 + a_1 U \tag{1}$$

má koeficienty

$$a_0 = -2,5000 \tag{2}$$

a

$$a_1 = 1,6561 \tag{3}$$

Vypočítáme rozkladné napětí U_r . To se určí jako průsečík aproximační funkce (1) s osou nezavislé proměnné (v našem případě napětí).

$$U_r = \frac{2,5000}{1,6561} = 1,5096 V \tag{4}$$

Nejistota měření

$$u_c = \sqrt{u_A^2 + u_B^2},\tag{5}$$

 u_B je nejistota pro MY-65, která je \pm 2,0% z údaje \pm 10 digitů pro rozsah 10 A. S nejistotou dostáváme

$$U_r = 1,5096 \pm 0,1048 \ V \tag{6}$$

3.3 Měření zatěžovací voltampérové charakteristiky palivového článku

Nastavili jsme proud tekoucí elektrolyzérem na 2 A. Po době pěti minut palivový článek byl ztížen rezistorem s odporem 2 Ω . Po jeho odpojení jsme změřili napětí naprázdno U_0 .

$$U_0 = 0,223 V (7)$$

Postupně jsme zatěžovali palivovy článek různými rezistory a zapojovali jsme je tak, aby celkový odpor v obvodu byl celočíselný. Výsledky měření napětí a proudů pro různé odpory jsou uvedeny v tabulce 2.

Obrázek 3: Graf závislosti U(I)

Pro naměřené hodnoty napětí a proudu jsme vypočítali výkon $P[\mathbf{W}]$ pomocí vzorce

$$P = UI \tag{8}$$

Výsledek je uveden v tabulce 2, kde největší spočítaný výkon je v tabulce označen tučně. Vidíme, že maximální výkon odpovídá maximalnímu napětí a minimálnímu proudu (resp. maximálnímu odporu).

Aproximační funkce

$$y(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0$$
, $y(x) = A e^{kx}$, $y(x) = c x^m$

Průběh č. 1							
$a_0 = 0.24955624680064$							
$a_1 = -8.0538323410142$							
$\sigma_{a0} = 0.00022094918545277$							
$\sigma_{a1} = 0.0095625368348214$							
$\chi^2/\nu = 34.909102386416$							
$(\chi^2/\nu)^{1/2} = 5.9083925382811$							

Obrázek 4: Aproximační fukce pro graf závislosti U(I)

Vypočítáme nejistotu $u_{c(I)}$ pro proud pomocí vzorce

$$u_{c(I)} = \sqrt{u_{A(I)}^2 + u_{B(I)}^2},\tag{9}$$

kde $u_{b(I)}$ je \pm 0,8% z údaje \pm 10 digitů pro rozsah 20mA.

$$u_{b(I)} = (0,014 \cdot \frac{0.8}{100} + \frac{10}{100}) \cdot \frac{1}{\sqrt{3}} = 0,0044456 \ mA$$
 (10)

Požitím výsledku ze vyorce (10) a obrázku (4) dostáváme

$$u_{c(I)} = 0.0011 A \tag{11}$$

Nejistotu $u_{c(I)}$ pro napětí vypočítáme obdobně. $u_{b(U)}$ je \pm 0,5% z údaje \pm 10 digitů pro rozsah 2V.

$$u_{c(U)} = \sqrt{u_{A(U)}^2 + u_{B(U)}^2} = 0,0129 V$$
 (12)

$R[\Omega]$	1	2	3	4	5	6	7	8	9	10
I[A]	0,028	0,025	0,022	0,019	0,018	0,017	0,016	0,015	0,014	0,014
U[V]	0,025	0,047	0,078	0,08	0,092	0,103	0,111	0,121	0,137	0,143
P[W]	0,0007	0,0012	0,0017	0,0015	0,0017	0,0018	0,0018	0,0018	0,0019	0,002

Tabulka 2: Hodnoty odporu, napětí, proudu a výkonu

Výkon je násobkem dvou veličin s nejistotami. Abychom z
jistili nejistotu výkonu $u_{c(P)}$ musíme použit vzorec

$$Z = XY = u^{2}(Z) = \overline{y}^{2}u^{2}(X) + \overline{x}^{2}u^{2}(Y)$$
 (13)

Dosazením hodnot ze vzorců (11) a (12) dostáváme

$$u_{c(P)} = 0,00015623 W (14)$$

Potom

$$P = (2, 0 \pm 0, 2) \ mW \tag{15}$$

považujeme za odhad maximálního výkonu, který lze odebírat z měřeného palivového článku.

4 Závěr

První podúlohou bylo měření voltampérové charakteristiky palivového článku. Naměřené hodnoty jsme proložili polynomem prvního stupně. Pomocí parametru aproximační funkce bylo vypočitáno razkladné napětí elektrolyzéru Ur.

$$U_r = (1, 5 \pm 0, 1) V \tag{16}$$

Druhá podúloha bylo měření zatěžovací voltampérové charakteristiky palivového článku. Pomocí naměřených hodnot jsme odhadli maximální výkon, který lze z měřeného článku odebrat.

$$P = (2, 0 \pm 0, 2) \ mW \tag{17}$$

5 Literatura

- 1. herodes.feld.cvut.cz/mereni/
- 2. https://en.wikipedia.org/wiki/Electric power
- $3. \ http://herodes.feld.cvut.cz/mereni/downloads/manualy/my65.pdf$

6 Příloha 1: Použité nejistoty digitálního multimetru MY-65

- $1.~\pm~2,\!0\%$ z údaje $\pm~10$ digitů pro rozsah10 A střídavého proudu.
- 2. $\pm~0.8\%$ z údaje $\pm~10$ digitů pro rozsah 20mA střídavého proudu.
- 3. $\pm~0.5\%$ z údaje $\pm~10$ digitů pro rozsah 2V střídavého napětí.