Corey Kipp kippc@uci.edu CS 143A

Homework 8

1) Hardware support

A. Give an example use for hardware interrupts.

Pressing a key on the keyboard or moving the mouse triggers hardware interrupts that cause the processor to read the keystroke or mouse position.

B. Give an example of what may generate a hardware trap.

Division by zero or invalid access to memory would generate a hardware trap.

2) OS

- A. What are the responsibilities of an operating system?
 - Hiding the complexities of hardware from the user
 - Managing between the hardware's resources which include the processors, memory, data storage and I/O devices
 - Handling "interrupts" generated by the I/O controllers
 - Sharing of I/O between many programs using the CPU
- B. Which POSIX system call creates a new process?
- C. Which POSIX system call runs a new binary program over the current process. **exec()**
- D. What does SYSGEN do for Linux?

Configures the OS for a specific platform

3) Threads

A. What is the minimal number of threads in a traditional, heavyweight process?

1

- B. Provide four benefits of multithreadded programming.
 - Resource sharing
 - Program structure simplification
 - Minimized system resource usage
 - Improved throughput
- C. List three common ways of mapping user threads to kernal threads.
 - Many-to-one
 - One-to-one
 - Many-to-many
- D. What is the PThread API for creating a thread?

int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void
*(*start_routine) (void *), void *arg)

- E. What is the PThread API for terminating a thread?
 - void pthread_exit(void *retval)
- F. What are the five states a thread may be in?
 - New
 - Ready
 - Running
 - Waiting
 - Terminated

4) Synchronization

A. What is the term for describing the situation where shared data may be manipulated concurrently and the outcome of the execution depends on the order of access?

Race condition

B. What term describes the segment of code where shared data is accessed and possibly modified?

Critical section

- C. What are the three requirements for a solution to the critical-section problem?
 - Mutual exclusion
 - Bounded waiting
 - Progress
- D. What are the two English operations on mutex locks?
 - acquire()
 - release()
- E. What are the two single letter Dutch operations on a semaphore and give their longer English names?
 - P() --- wait
 - V() --- signal
- F. Name one modern programming language that incorporates monitors.

Java

5) CPU Scheduling

A. What type of job had a pattern of many short CPU bursts?

I/O bound

B. What type of job has a pattern of a few long CPU bursts?

CPU bound

- C. List three different criteria for designing a CPU scheduling algorithm.
 - CPU utilization
 - Throughput
 - Turnaround time
- D. What scheduling algorithm assigns CPU to the process with the highest urgency?

Priority scheduling

- E. What scheduling algorithm assigns CPU to the process that first requests it? First Come First Serve (FCFS)
- F. What scheduling algorithm assigns CPU to the process for a time slice or quantum and treats the ready queue as a circular queue?

Round Robin (RR)

- G. What scheduling algorithm assigns CPU to the process with the shortest burst? **Shortest Job First (SJF)**
- H. In a multilevel feedback queue scheduling algorithm, what may happen if a process uses too much CPU time or if it waits too long in a low-priority queue?

Migrate to a different queue

I. If a thread on Solaris exhausts its time quantum without blocking, will its priority go up or down?

Down

6) Deadlocks

- A. What are the four conditions that must hold to allow deadlock?
 - Mutual Exclusion
 - Hold and Wait
 - No Preemption
 - Circular Wait
- B. Other than ignoring deadlocks, name three approaches to handling deadlocks.
 - Prevention
 - Avoidance
 - Detection & Recovery
- C. What is the name of Dijkstra's classic deadlock avoidance algorithm?

Banker's Algorithm

- D. Name two methods for recovering from deadlock.
 - Abort all deadlocked processes
 - Abort one process at a time until deadlock cycle is eliminated

7) Mass Storage Structure

A. True or False? Magnetic disks provide the bulk of secondary storage for modern computer systems.

True

- B. True or False? Solid state disks have the same characteristics as traditional hard disks.
- C. What is the term for the smallest unit of transfer between a disk?

Logical block

- D. What are the two ways a computer can access disk storage?
 - Host-attached
 - Network-attached

- E. List the three general disk scheduling algorithms.
 - First Come First Serve (FCFS)
 - Shortest Seek Time First (SSTF)
- F. What disk scheduling algorithm is typically used with solid state disks?

First Come First Serve (FCFS)

G. What must be done to a disk before it can be used for storage?

Physical formatting

H. Where does the Windows system place its boot code?

Master Boot Record

I. True or False? Most modern systems swap entire processes to swap space.

False

- J. What are the two main improvements of using RAID?
 - Improved Performance
 - Reliability
- K. What are the three possible outcomes when writing to disk?
 - Successful completion
 - Partial failure
 - Total failure

8) File System Interface

- A. List at least five attributes of a file.
 - Name
 - Location
 - Size
 - Protection
 - Last modification date
- B. List five common operations that may be performed on a file.
 - Read
 - Write
 - Create
 - Delete
 - Truncate
- C. What are the two fundamental ways of accessing a file?
 - Sequential Access
 - Direct Access
- D. What is a volume?

An entity containing a file system

E. What is the most common way of structuring directories?

Tree structured

F. True or False? UNIX systems allow acylic-graph directories.

True

G. If a mount point is /home and the device jane/programs is mounted on the mount point, what is the complete path name to access the programs directory?

/home/jane/programs

H. Name one type of remote file system.

Distributed file system

I. Name one example of a distributed information system.

Domain Name System (DNS)

- J. What are the three general classifications of users in connection with each file in Linux?
 - Owner
 - Group
 - Everyone

9) Consider the following page reference string:

e, c, b, e, a, g, d, c, e, g, d, a

With 4 frames, how many page faults would occur with the following page replacement algorithms? Fill in the tables accordingly.

RS: reference strings; F0: frame 0, F1: frame 1, etc.

Hint: all frames are initially empty, so your first unique pages will all cost one fault each.

1) Optimal

Time	1	2	3	4	5	6	7	8	9	10	11	12
RS	е	С	b	е	а	g	d	С	е	g	d	а
F0	е	е	е	е	е	е	е	е	е	е	е	а
F1		С	С	С	С	С	С	С	С	С	С	С
F2			b	b	b	g	g	g	g	g	g	g
F3					а	а	d	d	d	d	d	d
Page fault?	Y	Y	Y	N	Y	Y	Y	N	N	N	N	Y

Total page fault:

2) LRU

Time	1	2	3	4	5	6	7	8	9	10	11	12
RS	е	С	b	е	а	g	d	С	е	g	d	а
F0	е	е	е	е	е	е	е	С	С	С	С	а

F1		С	С	С	С	g	g	g	g	g	g	g
F2			b	b	b	b	d	d	d	d	d	d
F3					а	а	а	а	е	е	е	е
Page fault?	Y	Y	Y	N	Y	Y	N	Y	N	N	N	Y

Total page fault:

10) Paging and TLB

A computer keeps its space tables in memory. The overhead required for reading a word from the page table is 3 microseconds. To reduce this overhead, the computer has TLB, which holds pairs (virtual page, physical page frame), and can do a lookup in 500 nanoseconds. What hit rate is needed to reduce the mean overhead to 1500 nanoseconds for reading a word from page table?

```
Units = nanoseconds, h = hit-rate

500h + 3000(1-h) = 1500

500h + 3000 - 3000h = 1500

-2500h = -1500

h = 0.6 nanoseconds
```