Database technology TDDD37

Lab 3: Normalization

Question 1

Considering **R(A,B,C,D,E,F)** with the following FDs:

FD1: **A→BC** FD2: **C→AD** FD3: **DE→F**

Use the Armstrong rules to derive the following FD: C→B

FD4: $C \rightarrow A$ (decomposition of FD2) FD5: $A \rightarrow B$ (decomposition of FD1) FD6: $C \rightarrow B$ (transitivity of FD4 and FD5)

Use the Armstrong rules to derive the following FD: **AE**→**F**

FD4: $\mathbf{A} \rightarrow \mathbf{C}$ (decomposition of FD1) FD5: $\mathbf{C} \rightarrow \mathbf{D}$ (decomposition of FD2) FD6: $\mathbf{A} \rightarrow \mathbf{D}$ (transitivity of FD4 and FD5) FD7: $\mathbf{AE} \rightarrow \mathbf{DE}$ (augmentation of FD6 with E) FD7: $\mathbf{AE} \rightarrow \mathbf{F}$ (transitivity of FD7 and FD3)

Question 2

Considering **R(A,B,C,D,E,F)** with the following FDs:

FD1: **A→BC** FD2: **C→AD** FD3: **DE→F**

Compute the attribute closure of $X = \{A\}$

Initially $X^+ = \{A\}$ By using FD1: $X^+ = \{A,B,C\}$ By using FD2: $X^+ = \{A,B,C,D\}$

Compute the attribute closure of $X = \{C, E\}$

Initially $X^+ = \{C,E\}$ By using FD2: $X^+ = \{A,C,D,E\}$ By using FD1: $X^+ = \{A,B,C,D,E\}$ By using FD3: $X^+ = \{A,B,C,D,E,F\}$

Question 3

Considering **R(A,B,C,D,E,F)** with the following FDs:

FD1: **AB**→**CDEF**

FD2: **E→F** FD3: **D→B**

Candidate keys for R are {A,B} and {A,D}.

FD2 and FD3 violate the BCNF condition.

Let's decompose R based on FD2:

Relation	FDs	Candidate key(s)
R1(E,F)	FD2	{E}
R2(A,B,C,D,E)	FD3 and FD4: AB → CDE	{AB},{AD}

R1 is in BCNF but R2 isn't. Let's decompose R2 based on FD3:

Relation	FDs	Candidate key(s)
R3(D,B)	FD3	{D}
R4(A,C,D,E)	FD5: AD → CDE Explanation: FD3: D→B by augmentation with A: AD→AB FD4: AB→CDE by transitivity: AD→CDE	{AD}

R3 and R4 are in BCNF.

The decomposition of R into a set of BCNF relations is: {R1, R3, R4}.

Question 4

Considering **R(A,B,C,D,E)** with the following FDs:

FD1: **ABC**→**DE** FD2: **BCD**→**AE** FD3: **C**→**D**

The candidate key for R is **{B,C}**.

FD3 violate the BCNF condition.

Let's decompose R based on FD3:

Relation	FDs	Candidate key(s)
R1(C,D)	FD3	{C}
R2(A,B,C,E)	FD4: ABC → E FD5: BC → AE	{BC}

R1 and R2 are in BCNF.

The decomposition of R into a set of BCNF relations is: {R1, R2}.