AGGREGATION ROUTER V5 SECURITY AUDIT REPORT

November 10, 2022

TABLE OF CONTENTS

1. Introduction	2
1.1. Disclaimer	2
1.2. Security Assessment Methodology	3
1.3. Project Overview	6
1.4. Project Dashboard	6
2. Findings Report	8
2.1. Critical	8
2.2. High	8
2.3. Medium	8
2.4. Low	8
L-1 Extra Inheritance	8
L-2 Spelling Mistakes	9
L-3 Null Check	10
L-4 Reduce Gas Cost	11
3. About Mixbytes	12

1. INTRODUCTION

1.1 Disclaimer

The audit makes no statements or warranties about utility of the code, safety of the code, suitability of the business model, investment advice, endorsement of the platform or its products, regulatory regime for the business model, or any other statements about fitness of the contracts to purpose, or their bug free status. The audit documentation is for discussion purposes only. The information presented in this report is confidential and privileged. If you are reading this report, you agree to keep it confidential, not to copy, disclose or disseminate without the agreement of Customer. If you are not the intended recipient(s) of this document, please note that any disclosure, copying or dissemination of its content is strictly forbidden.

1.2 Security Assessment Methodology

A group of auditors are involved in the work on the audit. The security engineers check the provided source code independently of each other in accordance with the methodology described below:

1. Project architecture review:

- · Project documentation review.
- · General code review.
- · Reverse research and study of the project architecture on the source code alone.

Stage goals

- Build an independent view of the project's architecture.
- · Identifying logical flaws.

2. Checking the code in accordance with the vulnerabilities checklist:

- Manual code check for vulnerabilities listed on the Contractor's internal checklist. The Contractor's checklist is constantly updated based on the analysis of hacks, research, and audit of the cients' codes.
- Code check with the use of static analyzers (i.e Slither, Mythril, etc).

Stage goal

Eliminate typical vulnerabilities (e.g. reentrancy, gas limit, flash loan attacks etc.).

3. Checking the code for compliance with the desired security model:

- · Detailed study of the project documentation.
- · Examination of contracts tests.
- Examination of comments in code.
- Comparison of the desired model obtained during the study with the reversed view obtained during the blind audit
- Exploits PoC development with the use of such programs as Brownie and Hardhat.

Stage goal

Detect inconsistencies with the desired model.

4. Consolidation of the auditors' interim reports into one:

- Cross check: each auditor reviews the reports of the others.
- Discussion of the issues found by the auditors.
- · Issuance of an interim audit report.

Stage goals

- · Double-check all the found issues to make sure they are relevant and the determined threat level is correct.
- · Provide the Customer with an interim report.

5. Bug fixing & re-audit:

- The Customer either fixes the issues or provides comments on the issues found by the auditors.

 Feedback from the Customer must be received on every issue/bug so that the Contractor can assign them a status (either "fixed" or "acknowledged").
- Upon completion of the bug fixing, the auditors double-check each fix and assign it a specific status, providing a proof link to the fix.
- A re-audited report is issued.

Stage goals

- Verify the fixed code version with all the recommendations and its statuses.
- Provide the Customer with a re-audited report.

6. Final code verification and issuance of a public audit report:

- The Customer deploys the re-audited source code on the mainnet.
- The Contractor verifies the deployed code with the re-audited version and checks them for compliance.
- If the versions of the code match, the Contractor issues a public audit report.

Stage goals

- Verify the fixed code version with all the recommendations and its statuses.
- Provide the Customer with a re-audited report.

Finding Severity breakdown

All vulnerabilities discovered during the audit are classified based on their potential severity and have the following classification:

Severity	Description
Critical	Bugs leading to assets theft, fund access locking, or any other loss funds to be transferred to any party.
High	Bugs that can trigger a contract failure. Further recovery is possible only by manual modification of the contract state or replacement.
Medium	Bugs that can break the intended contract logic or expose it to DoS attacks, but do not cause direct loss funds.
Low	Other non-essential issues and recommendations reported to/ acknowledged by the team.

Based on the feedback received from the Customer regarding the list of findings discovered by the Contractor, they are assigned the following statuses:

Status	Description
Fixed	Recommended fixes have been made to the project code and no longer affect its security.
Acknowledged	The Customer is aware of the finding. Recommendations for the finding are planned to be resolved in the future.

1.3 Project Overview

1Inch is a DeFi aggregator and a decentralized exchange with smart routing. The core protocol connects a large number of decentralized and centralized platforms in order to minimize price slippage and find the optimal trade for the users.

1.4 Project Dashboard

Project Summary

Title	Description
Client	1Inch
Project name	Aggregation Router V5
Timeline	18-07-2022 - 27-09-2022
Number of Auditors	4

Project Log

Main repository (1inch-contract)

Date	Commit Hash	Note
18-07-2022	8aa5ec4b4871b1d63bb045ddb78aaf7c5dc84dfa	Initial commit
26-07-2022	5e682c5227d9428b395041c93db0fb657b741afc	Final commit
22-09-2022	bc00c75f2c99d62e1a206aa2f81c408caba4b370	Pre-release commit

1st dependent repository (limit-order-protocol)

Date	Commit Hash	Note
18-07-2022	d8437885744543e3f057e84e1b0a05c4c211c553	Initial commit
26-07-2022	fdc93648cb665a3bfac469584fd6e1d1d8f07d05	Final commit
21-09-2022	171c5d7bbb280d9f754404828051f2a47fb726df	Pre-release commit

2nd dependent repository (solidity-utils)

Date	Commit Hash	Note
18-07-2022	eec6b523860af5215a8dd196fe3aff3a4d252fc9	Initial commit
26-07-2022	71d6fe457cc420eeba55f612e902e66920faa64c	Final commit
20-09-2022	c35dc32fd91ee01f961df13ab7c30faf40be8b89	Pre-release commit

Project Scope

The audit covered the following files:

File name	Link
AggregationRouterV5.sol	AggregationRouterV5.sol
ClipperRouter.sol	ClipperRouter.sol
GenericRouter.sol	GenericRouter.sol
UnoswapRouter.sol	UnoswapRouter.sol
UnoswapV3Router.sol	UnoswapV3Router.sol
IClipperExchangeInterface.sol	IClipperExchangeInterface.sol
IAggregationExecutor.sol	AggregationExecutor.sol
IUniswapV3Pool.sol	IUniswapV3Pool.sol
IUniswapV3SwapCallback.sol	IUniswapV3SwapCallback.sol
Errors.sol	Errors.sol
OrderMixin.sol	OrderMixin.sol
OrderRFQMixin.sol	OrderRFQMixin.sol
OrderLib.sol	OrderLib.sol
OrderRFQLib.sol	OrderRFQLib.sol
AmountCalculator.sol	AmountCalculator.sol
NonceManager.sol	NonceManager.sol
PredicateHelper.sol	PredicateHelper.sol
IOrderMixin.sol	IOrderMixin.sol

File name	Link
NotificationReceiver.sol	NotificationReceiver.sol
ArgumentsDecoder.sol	ArgumentsDecoder.sol
Callib.sol	Callib.sol
Errors.sol	Errors.sol
EthReceiver.sol	EthReceiver.sol
StringUtil.sol	StringUtil.sol
UniERC20.sol	UniERC20.sol
SafeERC20.sol	SafeERC20.sol
ECDSA.sol	ECDSA.sol
RevertReasonForwarder.sol	RevertReasonForwarder.sol
IWETH.sol	IWETH.sol
IDaiLikePermit.sol	IDaiLikePermit.sol

1.5 Summary of findings

Severity	# of Findings
Critical	0
High	0
Medium	0
Low	4

ID	Name	Severity	Status
L-1	Extra inheritance	Low	Fixed
L-2	Spelling mistakes	Low	Fixed
L-3	Null check	Low	Fixed
L-4	Reduce gas cost	Low	Fixed

1.6 Conclusion

During the audit process, 4 low severity issues have been found and fixed by the Client.

File name	Contract deployed on mainnet
AggregationRouterV5	0x1111111254EEB25477B68fb85Ed929f73A960582

2.FINDINGS REPORT

2.1 Critical

Not Found

2.2 High

Not Found

2.3 Medium

Not Found

2.4 Low

L-1	Extra inheritance
File	
Severity	Low
Status	Fixed in 340fff3d

Description

The OrderMixin contract inherits the NonceManager contract, and the PredicateHelper contract inherits the NonceManager contract. You can remove the NonceManager contract from the OrderMixin inheritance chain because the OrderMixin contract inherits PredicateHelper and does not use the NonceManager contract code.

Recommendation

We recommend removing the NonceManager contract from inheritance for the OrderMixin contract.

L-2	Spelling mistakes
Files	UniERC20.sol#L62 OrderRFQMixin.sol#L98
Severity	Low
Status	Fixed in afdd1394, 2d8931d4

Description

Some texts have spelling mistakes:

- 1. SYBMOL -> SYMBOL (bad input param)
 UniERC20.sol#L62
- 2. signuture -> signature
 OrderRFQMixin.sol#L98

Recommendation

We recommend correcting them.

L-3	Null check
File	AggregationRouterV5.sol#L22
Severity	Low
Status	Fixed in 5e682c52

Description

Some parameters have no null checks:

AggregationRouterV5.sol#L22

Recommendation

We recommend adding a null check for clipperExchange.

L-4	Reduce gas cost
File	UniERC20.sol#L99
Severity	Low
Status	Fixed in c3b06194

Description

Reduce gas cost for some functions:

UniERC20.sol#L99

Recommendation

We recommend adding unchecked block for len++.

2.5 Appendix

1 Monitoring Recommendation

The project contains smart contracts that require active monitoring. For these purposes, it is recommended to proceed with developing new monitoring events based on Forta (https://forta.org) with which you can track the following exemplary incidents:

- · Anomalies of AggregationRouter's components;
- Call destroy() and other privileged methods;
- Unexpected addresses in routers.

3. ABOUT MIXBYTES

MixBytes is a team of blockchain developers, auditors and analysts keen on decentralized systems. We build opensource solutions, smart contracts and blockchain protocols, perform security audits, work on benchmarking and software testing solutions, do research and tech consultancy.

Contacts

https://github.com/mixbytes/audits_public

https://mixbytes.io/

hello@mixbytes.io

https://twitter.com/mixbytes