

ENHANCING E-COMMERCE EFFICIENCY WITH MACHINE LEARNING

NEURAL NET NINJAS

AILEEN ALVAREZ, JENNIFER ALVAREZ, JESSICA ANDRAS, VICKY LASOTA

TABLE OF CONTENTS

DATA VISUALIZATIONS

EXPLORATORY ANALYSIS

MACHINE LEARNING MODELS

PREDICTING SALES, LATE DELIVERY RISK, & FRAUD

BACKGROUND

DATA OVERVIEW & RESEARCH QUESTIONS

KEY TAKEAWAYS

DATA LIMITATIONS & ADDRESSING MODEL COMPLEXITIES

BACKGROUND

DATA OVERVIEW & RESEARCH QUESTIONS

DATA OVERVIEW

This dataset contains **structured data** related to orders, including payment information, shipping details, and product information.

- Total of 53 columns and 180,519 rows of data.
- Geographical Scope -
 - Customers Based in the contiguous United States and Puerto Rico.
 - Orders shipped out to 164 different countries across the globe.
- Time -
 - Dataset released in 2019, has not been updated since.

DATA OVERVIEW (Contd.)

Data at a glance:

• **180,519 orders** in the dataset.

elivery Status		Count of Or	der Id
dvance shipping	41,592		
ate delivery	98,977	7,754	98,977
hipping canceled	7,754		
shipping on time	32,196		

- Top 5 cities where Customers are based:
 - o Caguas, PR
 - o Chicago, IL
 - Los Angeles, CA
 - o Brooklyn, NY
 - New York, NY

- Top 5 countries receiving **Orders**:
 - United States
 - France
 - Mexico
 - Germany
 - Australia

RESEARCH QUESTIONS

What are the predicted sales based on order volume?

What is the risk of a delivery being late?

How many orders can we anticipate to be fraudulent?

DATA **VISUALIZATIONS**

EXPLORATORY ANALYSIS

MAP OF CUSTOMER LOCATION BY LATITUDE & LONGITUDE

CUSTOMER PREFERENCES

Most Popular Products by Order Count

Most Popular Categories by Order Count

Number of Orders of Different Customer Segments

Sales Predictions

Multiple Linear Regression Model

Prediction based on the combination of:

- item sales volume
- average product price & discount

Applications:

- revenue & volume benchmarking
- setting optimal discount rates
- item pricing

R-squared: 0.94

RMSE: 741.45

MAE: 575.72

Late Delivery Risk


```
True Negatives (TN): Model correctly predicts a delivery as 'Not Late'.

False Positives (FP): Predicted as 'Late', but are actually 'Not Late'.

False Negatives (FN): Predicted as 'Not Late', but are actually 'Late'.

True Positives (TP): Model correctly predicts a delivery as 'Late'.

TN: n= 15027 (41.62%)

FP: n= 1280 (3.55%)

FN: n= 3932 (10.89%)

TP: n= 15865 (43.94%)
```

- Using a RandomForestClassifier to predict the risk of late deliveries based on input features from the dataset.
- After training the model and making predictions on a test set, it evaluates the model's performance and visualizes the results using a confusion matrix and a classification report.

Accuracy and Cla Key: (0) = Not I				
Accuracy: 0.8556	5392643474	408		
Classification F				
рі	recision	recall	f1-score	support
50				aate.
0	0.79	0.92	0.85	16307
1	0.93	0.80	0.86	19797
accuracy			0.86	36104
macro avg	0.86	0.86	0.86	36104
weighted avg	0.87	0.86	0.86	36104
26 (20)				

Fraud Predictions Model

Random Forest Model & Extreme Gradient Boosting

			743
	Legitemate [0]	Fraud	[1]
Legitemate [0]	12616	5 3	142
Fraud [1]	61		278
Accuracy Scor	e : 0.80101882	3383239	2
Classificatio	n Report		
	precision	recall	f1-
0	1.00	0.80	
1	0.08	0.82	
accuracy			
macro avg	0.54	0.81	
weighted avg	0.98	0.80	

Struggling with applicability of the model due to accuracy/recall/precision trade off.

Initial very high Accuracy of 98% resulted in 0 recall for fraud delivery due to imbalanced data.

Improved fraud recall by applying multiple strategies to a random forest model:

- scaling [no impact],
- SMOTE & RandomUnderSampler [minor impact],
- adjusting classifier to balance class_weight [minor impact],

Applied XBoost which improved recall BUT at a price of overall accuracy & misclassification of legitimate transactions

KEY TAKEAWAYS

DATA LIMITATIONS & ADDRESSING MODEL COMPLEXITIES

DATA LIMITATIONS

 The data is synthetic, meaning it may not fully capture the complexity and nuances of real data

 High-dimensional data can make it challenging for the model to identify relevant features and may lead to overfitting

 Further analysis could include the utilization of the Principal Cost Analysis, reducing the number of features

MODEL COMPLEXITIES

 SMOTE and RandomUnderSampler can address class imbalance but also may introduce noise or reduce the amount of training data

 Understanding of the business context is critical when balancing the trade-offs between recall and overall accuracy

DATA REFERENCE:

Constante, Fabian; Silva, Fernando; Pereira, António (2019), "DataCo SMART SUPPLY CHAIN FOR BIG DATA ANALYSIS", Mendeley Data, V5, doi: 10.17632/8gx2fvg2k6.5

THANKS!

ANY QUESTIONS?

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

