МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Нижегородский государственный университет им. Н.И. Лобачевского

СБОРНИК ЗАДАЧ ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ

ЧАСТЬ 2

Практикум

Рекомендовано методической комиссией института информационных технологий, математики и механики для студентов ННГУ, обучающихся по направлениям подготовки 02.03.02 «Фундаментальная информатика и информационные технологии», 01.03.02 «Прикладная математика и информатика», 09.03.04 «Программная инженерия»

Нижний Новгород 2023 С-23 СБОРНИК ЗАДАЧ ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ. В 2-х ч. Часть 2. Авторы: Алексеев В.Е., Захарова Д.В., Мокеев Д.Б., Смирнова Т.Г.: практикум. — Нижний Новгород: Изд-во ННГУ, 2023. — 46 с. — Текст: электронный.

Рецензент: кандидат физ.-мат. наук, доцент Кузенков О.А.

В настоящем пособии содержится краткий теоретический материал и предлагаются задачи по основным разделам второй части курса «Дискретная математика»: логическим функциям и схемам из функциональных элементов, теории кодирования, теории автоматов.

Сборник задач предназначен для студентов ННГУ, обучающихся по направлениям подготовки 02.03.02 «Фундаментальная информатика и информационные технологии», 01.03.02 «Прикладная математика и информатика», 09.03.04 «Программная инженерия».

УДК 519.95 ББК 518

© Нижегородский государственный университет им. Н.И. Лобачевского, 2023

Оглавление

5. Логические функции	4
Задачи	7
6. Замкнутые и полные системы логических функций	13
Задачи	14
7. Оптимизация формул. Схемы из функциональных элементов	22
Задачи	24
8. Теория кодирования	
Задачи	
9. Конечные автоматы	37
Задачи	40
Ответы	42
Список литературы	45

5. Логические функции

Логическая функция (булева функция, функция алгебры логики) — это функция $f(x_1, ..., x_n)$, у которой каждая переменная принимает значения 0, 1 и сама функция принимает только такие значения. Символически это записывается в виде $f: \{0,1\}^n \to \{0,1\}$.

Логическую функцию можно задать таблицей, в которой для каждого из 2^n наборов значений переменных указывается значение функции на этом наборе. Наборы значений переменных в таблице принято располагать в лексикографическом порядке. Если выписать столбец значений функции из этой таблицы в виде горизонтальной строки, получается вектор значений функции. Вектор значений функции f обозначается через \tilde{f} .

Множество всех логических функций обозначается P_2 .

Переменная x_k функции $f(x_1, x_2, ..., x_n)$, $1 \le k \le n$, называется фиктивной (несущественной), если при любых значениях остальных переменных выполняется равенство

$$f(x_1,\ldots,x_{k-1},0,x_{k+1},\ldots,x_k)=f(x_1,\ldots,x_{k-1},1,x_{k+1},\ldots,x_k)\;.$$

Переменная, не являющаяся фиктивной, называется *существенной*. Фиктивную переменную можно удалить, получив функцию от меньшего числа переменных. Две функции *эквивалентны*, если после удаления всех фиктивных переменных получаются одинаковые функции.

Все четыре булевы функции от одной переменной показаны в таблице 1. В первом столбце выписаны значения переменной x. Остальные столбцы представляют функции: константы 0 и 1, тождественную функцию x и отрицание \overline{x} (читается «не x», иногда обозначается $\neg x$).

Таблица 1

х	0	1	х	$\overline{\chi}$
0	0	1	0	1
1	0	1	1	0

Элементарными называют все функции одной переменной, а также функции двух переменных, представленные в таблице 2.

Таблица 2

x	у	x & y	$x \lor y$	$x \oplus y$	$x \to y$	$x \sim y$	$x \mid y$	$x \downarrow y$
0	0	0	0	0	1	1	1	1
0	1	0	1	1	1	0	1	0
1	0	0	1	1	0	0	1	0
1	1	1	1	0	1	1	0	0

- x & y конъюнкция или логическое умножение, обозначается также $x \land y$, $x \cdot y$ или xy, читается $(x \lor y)$ или $(x \lor y)$ или $(x \lor y)$.
- $x \lor y \partial u$ зъюнкция или логическое сложение, читается «x или y».
- $x \oplus y$ сложение по модулю 2, читается «x плюс y».
- $x \to y uмпликация$, читается «из x следует y».
- $x \sim y$ эквиваленция или эквивалентность, читается «x эквивалентно y» (иногда пишут $x \leftrightarrow y, x \equiv y$).
- $x \mid y$ штрих Шеффера.
- $x \downarrow y$ стрелка Пирса.

Из операций, определяемых элементарными функциями, составляются формулы алгебры логики. Порядок действий указывается с помощью скобок, при этом некоторые скобки можно опускать. Во-первых, в некоторых скобках нет необходимости ввиду ассоциативности тех или иных операций. Во-вторых, конъюнкция считается более приоритетной операцией, чем все остальные (исключая отрицание), это означает, что она выполняется первой, если иной порядок не указан скобками.

Каждая формула задает некоторую логическую функцию. Формулы A и B эквивалентны, если эквивалентны представляемые ими функции (т.е. равенство A=B является тождеством).

Формулы, в которых используются только операции дизъюнкция, конъюнкция и отрицания (а также константы), называем формулами булевой алгебры или просто булевыми формулами.

Основные тождества булевой алгебры

1. *Коммутативные законы*:

$$x \cdot y = y \cdot x;$$
 $x \vee y = y \vee x.$

2. Ассоциативные законы:

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z;$$
 $x \vee (y \vee z) = (x \vee y) \vee z.$

3. Дистрибутивные законы:

$$x \cdot (y \lor z) = x \cdot y \lor x \cdot z; \quad x \lor y \cdot z = (x \lor y) \cdot (x \lor z).$$

4. Законы идемпотентности:

$$x \cdot x = x$$
; $x \lor x = x$.

5. Законы противоречия и исключённого третьего:

$$x \cdot \overline{x} = 0;$$
 $x \vee \overline{x} = 1.$

6. Закон двойного отрицания:

$$\overline{\overline{x}} = x$$
.

7. Свойства констант:

$$0 \cdot x = 0;$$
 $1 \cdot x = x;$ $0 \lor x = x;$ $1 \lor x = 1.$

8. Законы де Моргана:

$$\overline{x} = \overline{x} \vee \overline{y}; \qquad \overline{x \vee y} = \overline{x} \cdot \overline{y}.$$

9. Законы поглощения:

$$x \lor x \cdot y = x;$$
 $x \cdot (x \lor y) = x.$

10. Законы Блейка-Порецкого:

$$x \lor \overline{x} \cdot y = x \lor y;$$
 $x \cdot (\overline{x} \lor y) = x \cdot y.$

Другие элементарные функции можно выразить булевыми формулами:

- **11.** $x \oplus y = x \cdot \overline{y} \vee \overline{x} \cdot y$;
- 12. $x \rightarrow y = \overline{x} \vee y$;
- **13.** $x \sim y = x \cdot y \vee \overline{x} \cdot \overline{y}$;
- **14.** $x \mid y = \overline{x \cdot y}$;
- **15.** $x \downarrow y = \overline{x \lor y}$.

Операция

тоже обладает свойствами коммутативности и ассоциативности и связана дистрибутивным законом с конъюнкцией:

- **16.** $x \oplus y = y \oplus x$;
- **17.** $x \oplus (y \oplus z) = (x \oplus y) \oplus z$;
- **18.** $x \cdot (y \oplus z) = x \cdot y \oplus x \cdot z$.

Функция f^* называется двойственной к функции f, если

$$f^*(x_1, ..., x_n) = \overline{f(\overline{x}_1, ..., \overline{x}_n)}.$$

При нахождении двойственных функций для функций, представленных формулами, удобно воспользоваться *принципом двойственностии*. Согласно этому принципу, функция, двойственная суперпозиции некоторых функций, равносильна суперпозиции двойственных функций. Другими словами, пусть функция $F(x_1, ..., x_n)$ реализуется формулой над множеством функций $f_1, ..., f_m$, тогда, если в этой формуле всюду заменить вхождения f_i на f_i^* (i=1,...,m), получится формула, реализующая $F^*(x_1,...,x_n)$.

Дизъюнктивная нормальная форма (ДНФ) — булева формула, имеющая вид логической суммы логических произведений переменных и отрицаний переменных, причем каждая переменная в каждое слагаемое входит не более одного раза. ДНФ называется совершенной (СДНФ), если каждое слагаемое содержит все переменные, встречающиеся в формуле. Всякую функцию, отличную от константы 0, можно представить в виде СДНФ:

$$f(x_1, x_2, ..., x_n) = \bigvee_{f(\alpha_1, \alpha_2, ..., \alpha_n) = 1} x_1^{\alpha_1} \cdot x_2^{\alpha_2} \cdot ... \cdot x_n^{\alpha_n}.$$

Дизъюнкция берется по всем наборам значений переменных, на которых значение функции равно 1, а x^{α} обозначает x, если $\alpha = 1$, и \bar{x} , если $\alpha = 0$. СДНФ,

представляющая данную функцию, единственна (с точностью до перестановки сомножителей и слагаемых).

Функция, отличная от константы 1, может быть представлена в *совершенной* конъюнктивной нормальной форме ($CKH\Phi$):

$$f(x_1, x_2, ..., x_n) = \underbrace{\left(x_1^{\overline{\alpha}_1} \vee x_2^{\overline{\alpha}_2} \vee ... \vee x_n^{\overline{\alpha}_n}\right)}_{f(\alpha_1, \alpha_2, ..., \alpha_n) = 0}$$

Полином Жегалкина — формула, имеющая вид суммы по модулю 2, в которой каждое слагаемое (моном) есть конъюнкция некоторых переменных (переменная и 1 — тоже мономы). 0 считается полиномом, не содержащим мономов. Полином не содержит отрицаний.

Любую булеву формулу можно преобразовать в полином с помощью тождеств:

$$\overline{x} = x \oplus 1,$$

 $x \lor y = x \oplus y \oplus xy.$

Для преобразования СДНФ в полином Жегалкина достаточно заменить каждый знак V знаком \oplus и использовать тождество $\overline{x} = x \oplus 1$ для устранения отрицаний.

Полином по таблице функции можно построить методом неопределенных коэффициентов. Общий вид полинома от n переменных:

$$\bigoplus_{\{i_1,i_2,\dots,i_k\}\subseteq\{1,2,\dots,n\}} a_{i_1,i_2,\dots,i_k}\cdot x_{i_1}\cdot x_{i_2}\cdot \dots \cdot x_{i_k}.$$

Здесь коэффициент a_{i_1,i_2,\dots,i_k} равен 1, если конъюнкция $x_{i_1} \cdot x_{i_2} \cdot \dots \cdot x_{i_k}$ входит в полином, и равен 0 в противном случае. Придавая переменным различные значения и приравнивая это выражение к соответствующим значениям функции, получаем систему уравнений, из которой можно найти все коэффициенты.

Задачи

5.1. По описанию логической функции $f(x_1, x_2, x_3)$ постройте ее таблицу:

- 1) $f(x_1, x_2, x_3) = 1 \Leftrightarrow x_1 + x_2 = x_3;$
- 2) $f(x_1, x_2, x_3) = 1 \iff x_1 + x_2 + x_3 \equiv 1 \pmod{2}$;
- 3) $f(x_1, x_2, x_3) = 1 \Leftrightarrow x_1 = x_2$ или $x_1 = x_3$;
- 4) $f(x_1, x_2, x_3) = 1 \Leftrightarrow x_1 \le x_2 \text{ if } x_1 \le x_3;$
- 5) $f(x_1, x_2, x_3) = 1 \iff$ нечётное число переменных равно 0;
- 6) $f(x_1, x_2, x_3) = 1 \Leftrightarrow$ большинство переменных равно 1.

- **5.2.** Подсчитайте число логических функций от переменных x_1, x_2, x_3 , удовлетворяющих условию:
 - 1) f(0,0,0) = 1;
 - 2) f принимает значение 0 на всех наборах веса 2, где вес набора число единиц в нем;
 - 3) f принимает значение 1 ровно на трех наборах;
 - 4) $f(x_1, x_2, x_3) = f(\overline{x}_1, \overline{x}_2, \overline{x}_3)$ тождество;
 - 5) $f(x_1, x_2, x_3) = f(x_2, x_1, x_3)$ тождество;
 - 6) для любой перестановки (p_1, p_2, p_3) выполняется тождество $f(x_1, x_2, x_3) = f(x_{p_1}, x_{p_2}, x_{p_3}).$
- **5.3.** Подсчитайте число логических функций от переменных $x_1, x_2, ..., x_n$, удовлетворяющих условию:
 - 1) f(0,0,...,0) = f(1,1,...,1);
 - f принимает значение 0 на всех наборах веса k;
 - 3) f принимает значение 1 ровно на k наборах;
 - 4) $f(x_1, x_2, ..., x_n) = \overline{f(\overline{x}_1, \overline{x}_2, ..., \overline{x}_n)}$ тождество;
 - 5) $f(x_1, x_2, x_3, ..., x_n) = f(x_2, x_1, x_3, ..., x_n)$ тождество;
 - 6) для любой перестановки $(p_1, p_2, ..., p_n)$ выполняется тождество $f(x_1, x_2, ..., x_n) = f(x_{p_1}, x_{p_2}, ..., x_{p_n}).$
- **5.4.** Функции f и g заданы векторами значений: $\tilde{f} = 1001, \ \tilde{g} = 0010.$ Найдите вектор значений функции h, выявите фиктивные переменные этой функции:
 - 1) $h(x_1, x_2) = f(x_1, g(x_1, x_2));$
 - 2) $h(x_1, x_2) = g(x_2, f(x_2, x_1));$
 - 3) $h(x_1, x_2, x_3) = f(f(x_1, x_1), g(x_2, x_3));$
 - 4) $h(x_1, x_2, x_3) = f(f(x_1, g(x_2, x_2)), x_3).$
- **5.5.** Найдите и удалите все фиктивные переменные функции f:
 - 1) $\tilde{f} = 10111011$;
 - 2) $\tilde{f} = 11000011$;
 - 3) $\tilde{f} = 10101010$;
 - 4) $\tilde{f} = 11110000$;
 - 5) $\tilde{f} = 01011111010111111$;
 - 6) $\tilde{f} = 0011001111001100$.
- **5.6.** Покажите, что x_1 фиктивная переменная у функции f, реализовав для этой цели функцию f формулой, не содержащей явно переменную x_1 :

- 1) $f(x_1, x_2) = (x_2 \rightarrow x_1) \cdot (x_2 \downarrow x_2);$
- 2) $f(x_1, x_2) = (x_1 \sim x_2) \vee (x_1 \mid x_2);$
- 3) $f(x_1, x_2, x_3) = ((x_1 \oplus x_2) \to x_3) \cdot \overline{(x_3 \to x_2)};$
- 4) $f(x_1, x_2, x_3) = ((x_1 \lor x_2 \overline{x}_3) \sim (\overline{x}_1 \to \overline{x}_2 x_3)) \cdot (x_2 \downarrow x_3);$
- 5) $f(x_1, x_2, x_3) = ((x_1 \lor x_2 \lor \overline{x_3}) \to (x_1 x_2 \mid x_3)) \oplus (x_2 \to x_1) \cdot x_3$.
- **5.7.** Сколько имеется функций от переменных x_1, x_2 , у которых обе переменные существенны?
- **5.8.** Найдите число функций от переменных x_1, x_2, x_3 , у которых
 - 1) переменная x_1 фиктивна;
 - 2) переменные x_1 и x_2 фиктивны;
 - 3) нет фиктивных переменных.
- **5.9.** Выясните, при каких n ($n \ge 2$) функция $f(x_1, x_2, ..., x_n)$ зависит существенно от всех своих переменных:
 - 1) $f(x_1, x_2, ..., x_n) = (x_1 \lor ... \lor x_n) \rightarrow ((x_1 \lor x_2) \cdot ... \cdot (x_{n-1} \lor x_n) \cdot (x_n \lor x_1));$
 - 2) $f(x_1, x_2, ..., x_n) = (x_1 x_2 \lor ... \lor x_{n-1} x_n \lor x_n x_1) \rightarrow (x_1 x_2 \oplus ... \oplus x_{n-1} x_n \oplus x_n x_1);$
 - 3) $f(x_1, x_2, ..., x_n) = ((x_1 \lor ... \lor x_n) \to x_1 \cdot ... \cdot x_n) \to (x_1 \oplus ... \oplus x_n \oplus 1);$
 - 4) $f(x_1, x_2, ..., x_n) = (x_1 | x_2) \oplus (x_2 | x_3) \oplus ... \oplus (x_{n-1} | x_n) \oplus (x_n | x_1);$
 - 5) $f(x_1, x_2, ..., x_n) = (x_1 \to (x_2 \to \cdots \to (x_{n-1} \to x_n) ...)) \to (x_1 \to x_n) \cdot ... \cdot (x_{n-1} \to x_n).$
- **5.10.** Проверьте с помощью таблиц, какие из следующих равенств являются тождествами:
 - 1) $x_1 \lor x_2 \lor x_3 = x_1 \oplus x_2 \oplus x_3$;
 - 2) $x_1x_2 \lor x_1x_3 \lor x_2x_3 = x_1x_2 \oplus x_1x_3 \oplus x_2x_3$;
 - 3) $x_1\overline{x}_2 \lor x_2\overline{x}_3 \lor x_3\overline{x}_1 = \overline{x}_1x_2 \lor \overline{x}_2x_3 \lor \overline{x}_3x_1$;
 - 4) $x_1\overline{x}_2 \lor x_2\overline{x}_3 \lor x_3\overline{x}_1 = (x_1 \lor x_2 \lor x_3) \cdot \overline{x_1x_2x_3};$
 - 5) $x_1 \to (x_2 \to x_3) = (x_1 \to x_2) \to x_3$;
 - 6) $x_1 \sim (x_2 \sim x_3) = (x_1 \sim x_2) \sim x_3$;
 - 7) $x_1 | (x_2 | x_3) = (x_1 | x_2) | x_3;$
 - 8) $x_1 \downarrow (x_2 \downarrow x_3) = (x_1 \downarrow x_2) \downarrow x_3$.
- **5.11.** Используя непосредственно определение двойственности логических функций, а также основные тождества, выясните, является ли функция f двойственной к функции g:

- 1) $f = x \oplus y$, $g = x \sim y$;
- 2) $f = x \mid y$, $g = x \downarrow y$;
- 3) $f = x \rightarrow y$, $g = \overline{x} \cdot y$;
- 4) $f = xy \rightarrow z$, $g = \overline{x} \cdot \overline{y} \cdot z$;
- 5) $f = (\overline{x} \to \overline{y}) \to (y \to x), g = (x \to y) \cdot (\overline{y} \to \overline{x});$
- 6) $f = xy \lor z$, $g = x \cdot (y \lor z)$.
- **5.12.** Используя принцип двойственности, постройте и упростите формулу, реализующую функцию, двойственную к функции f.
 - 1) $f = (x \lor y \lor z) \cdot (y \oplus z) \lor x \cdot y \cdot z$;
 - 2) $f = (x \lor (1 \to y)) \lor y \cdot \overline{z} \lor (\overline{x} \mid \overline{y \downarrow \overline{z}});$
 - 3) $f = (x \downarrow y) \oplus ((x \mid y) \downarrow (\overline{x} \sim y \cdot z));$
 - 4) $f = (\overline{x} \vee \overline{y} \vee (y \cdot \overline{z} \oplus 1)) \downarrow z$.
- 5.13. Преобразуйте данную формулу в ДНФ, в КНФ:
 - 1) $x_1 \to (x_2 | x_3)$;
 - 2) $(x_1 \sim x_2) \rightarrow (x_2 \sim x_3)$;
 - 3) $(x_1 \downarrow x_2) \mid \overline{(x_1 \oplus x_3)};$
 - $4)\;(x_1{\oplus}x_2)\to \overline{x}_3;$
 - 5) $\overline{(x_1 \downarrow x_2 x_3)} \sim (x_1 | x_2);$
 - 6) $\overline{(x_1 \sim x_2)} \oplus (x_1 \downarrow x_3)$.
- 5.14. Преобразуйте данную формулу в СДНФ:
 - 1) $x_1x_2 \vee x_1\overline{x}_3$;
 - $2) \overline{(x_1 \vee x_2 x_3)} \vee x_2;$
 - 3) $(x_1 \vee \overline{x}_2) \overline{(x_2 \vee \overline{x}_3)};$
 - 4) $\overline{x_1x_2} \vee \overline{x_2x_3} \vee \overline{x_1x_3}$.
- **5.15.** Постройте для функции f СДНФ и СКНФ:
 - 1) $\tilde{f} = 01110010$;
 - 2) $\tilde{f} = 11010011$;
 - 3) $\tilde{f} = 10101000$;
 - 4) $\tilde{f} = 01001011$.
- **5.16.** С помощью эквивалентных преобразований проверьте, какие из следующих равенств являются тождествами:

- 1) $x\overline{y} \lor \overline{x}y = (x \lor y)\overline{xy};$
- 2) $x\overline{y} \lor y = x \lor y$;
- 3) $\overline{x}z \vee \overline{y}z \vee xy = xy \vee z$;
- 4) $(x \lor y)(\overline{x} \lor \overline{y}) \lor x(y \lor z) = x \lor y;$
- 5) $x\overline{y} \lor y\overline{z} \lor z\overline{x} = \overline{x}y \lor \overline{y}z \lor \overline{z}x;$
- 6) $xy \vee \overline{x} \overline{z} \vee \overline{y}z = \overline{x} \overline{y} \vee xz \vee y\overline{z};$
- 7) $\overline{x} \, \overline{y} \vee x \overline{y} \vee \overline{x} y = \overline{(x \vee y \vee z)} \vee (\overline{x} \vee \overline{y}) z;$
- 8) $\overline{y} \lor yz \lor \overline{(x \lor \overline{y} \lor z)} = \overline{x} \lor xz \lor \overline{(\overline{x} \lor y \lor z)};$
- 9) $\overline{y} \lor yz = xz \lor x\overline{y} \overline{z} \lor \overline{x}yz$.
- **5.17.** Сколько фиктивных переменных может иметь функция от 6 переменных, у которой СДНФ состоит из
 - 1) 64 слагаемых?
 - 2) 63 слагаемых?
 - 3) 62 слагаемых?
- **5.18.** Сколько существует функций от переменных $x_1, x_2, ..., x_n$, у которых СДНФ состоит из
 - 1) одного слагаемого?
 - 2) двух слагаемых?
- 5.19. Найдите число слагаемых в СДНФ данной функции:
 - 1) $x_1 \vee x_2 \vee ... \vee x_n$;
 - 2) $(x_1 \lor x_2 \lor ... \lor x_n)(\overline{x}_1 \lor \overline{x}_2 \lor ... \lor \overline{x}_n);$
 - $3) \bigvee_{1 \le i < j \le n} x_i x_j$
 - 4) $x_1x_2 ... x_k \lor x_{k+1}x_{k+2} ... x_n$;
 - 5) $x_1x_2...x_k \oplus x_{k+1}x_{k+2}...x_n$;
 - 6) $x_1 \oplus x_2 \oplus ... \oplus x_n$.
- 5.20. Преобразуйте данную формулу в полином Жегалкина:
 - $1) (x_1 \sim x_2) \oplus x_3;$
 - 2) $(x_1 \lor x_2)(x_2 \lor \overline{x}_3)$;
 - 3) $x_1x_2 \lor x_1x_3 \lor x_2x_3$;
 - 4) $x_1\overline{x}_2 \vee x_2\overline{x}_3 \vee x_3\overline{x}_1$;
 - 5) $(x_1|x_2) \downarrow (x_3|x_4)$;
 - $6) \ \overline{x_1 x_2 \to \overline{(x_3 \sim x_4)}}.$

- **5.21.** Постройте для функции f полином Жегалкина:
 - 1) $\tilde{f} = 1011$;
 - 2) $\tilde{f} = 01001001$;
 - 3) $\tilde{f} = 11011000$;
 - 4) $\tilde{f} = 10011001$.
- **5.22.** Постройте для данной функции СДНФ и преобразуйте ее в полином Жегалкина:
 - 1) $\tilde{f} = 00011001$;
 - 2) $\tilde{f} = 01000100$.
- **5.23.** С помощью эквивалентных преобразований проверьте, какие из следующих равенств являются тождествами:
 - 1) $x_1 \to (x_2 \lor x_3) = (x_1 \to x_2) \lor (x_1 \to x_3);$
 - 2) $x_1 \lor (x_2 \to x_3) = (x_1 \lor x_2) \to (x_1 \lor x_3);$
 - 3) $x_1 \sim (x_2 \vee x_3) = (x_1 \sim x_2) \vee (x_1 \sim x_3);$
 - 4) $x_1 \lor (x_2 \sim x_3) = (x_1 \lor x_2) \sim (x_1 \lor x_3);$
 - 5) $x_1 \rightarrow x_2 x_3 = (x_1 \rightarrow x_2)(x_1 \rightarrow x_3);$
 - 6) $x_1(x_2 \rightarrow x_3) = x_1x_2 \rightarrow x_1x_3$;
 - 7) $x_1 \sim x_2 x_3 = (x_1 \sim x_2)(x_1 \sim x_3);$
 - 8) $x_1(x_2 \sim x_3) = x_1x_2 \sim x_1x_3$.
- **5.24.** Степенью полинома называется наибольшее число сомножителей в его слагаемых. Сколько существует полиномов от переменных $x_1, x_2, ..., x_n$
 - 1) степени не более 1?
 - 2) степени не более 2?
- **5.25.** Покажите, что x_k является существенной переменной функции f тогда и только тогда, когда x_k явно входит в полином Жегалкина этой функции.

6. Замкнутые и полные системы логических функций

Пусть $A \subseteq P_2$. Функция f является суперпозицией функций из множества A, если она может быть получена из них с помощью переименования переменных и подстановки функций вместо аргументов. Множество всех функций, эквивалентных суперпозициям функций из A, называется a и обозначается a.

Множество A называется *замкнутым классом*, если [A] = A.

Важнейшие замкнутые классы:

- T_0 класс функций, *сохраняющих константу* 0, то есть таких, что f(0,0,...,0) = 0.
- T_1 класс функций, *сохраняющих константу* 1, то есть таких, что f(1,1,...,1)=1.
- S класс camodeoйcmeehhbix функций. Функция f называется camodeoйcmeehhoй, если выполняется тождество

$$f(x_1, ..., x_n) = \overline{f(\overline{x}_1, ..., \overline{x}_n)}$$

(на противоположных наборах функция принимает противоположные значения).

- M класс монотонных функций. Функция $f(x_1, ..., x_n)$ называется монотонной, если $f(\alpha_1, ..., \alpha_n) \le f(\beta_1, ..., \beta_n)$ для любых наборов $(\alpha_1, ..., \alpha_n)$ и $(\beta_1, ..., \beta_n)$ таких, что $\alpha_i \le \beta_i$ для всех i = 1, ..., n. Для ускорения проверки монотонности полезен такой факт: если функция не монотонная, то существует пара соседних (различающихся в одной координате) наборов, на которых нарушается монотонность.
- L класс *линейных* функций. Функция называется *линейной*, если она может быть представлена формулой вида

$$f(x_1, \dots, x_n) = a_0 \oplus a_1 x_1 \oplus \dots \oplus a_n x_n,$$

то есть полином Жегалкина этой функции не содержит произведений переменных.

Множество A называется *полным* (*полной системой*), если $[A] = P_2$, то есть любая булева функция является суперпозицией функций из A.

Теорема сведения. Если A и B — два множества булевых функций, причём A полное и каждая функция из A является суперпозицией функций из B, то B тоже полное.

Лемма о несамодвойственной функции. Из всякой несамодвойственной функции $f(x_1, ..., x_n)$ с помощью подстановки вместо ее переменных функций x и \overline{x} можно получить константу.

Лемма о немонотонной функции. Из всякой немонотонной функции $f(x_1,...,x_n)$ с помощью подстановки вместо ее переменных функций 0, 1 и x можно получить \overline{x} .

Лемма о нелинейной функции. Из всякой нелинейной функции $f(x_1,...,x_n)$ с помощью подстановки вместо ее переменных констант 0, 1 и функций $x_1,x_2,\overline{x}_1,\overline{x}_2$ и, быть может, путём навешивания отрицания над всей функцией, можно получить конъюнкцию x_1x_2 .

Теорема Поста (критерий полноты). Множество функций является полной системой тогда и только тогда, когда оно не содержится ни в одном из классов T_0, T_1, S, M, L .

Полная система называется *базисом* в P_2 , если при удалении из нее любой функции она перестает быть полной.

Множество функций называется *предполным классом*, если оно не полное, но при добавлении любой новой функции становится полным. Имеется ровно пять предполных классов: T_0, T_1, S, M, L .

Задачи

- **6.1.** Найдите все функции, зависящие от переменных x_1, x_2 и принадлежащие замыканию данного множества функций:
 - 1) $\{\bar{x}\};$
 - 2) $\{0, \bar{x}\};$
 - 3) $\{x_1 \lor x_2\}$;
 - 4) $\{x_1 \oplus x_2\}$;
 - $5) \{1, x_1 \oplus x_2\};$
 - 6) $\{x_1 \sim x_2\};$
 - 7) $\{x_1 \rightarrow x_2\};$
 - 8) $\{x_1x_2, x_1 \oplus x_2\};$
 - 9) $\{x_1 \oplus x_2 \oplus x_3\}$.
- **6.2.** Покажите, что функция f принадлежит замыканию множества A:
 - 1) $f = \overline{x}$, $A = \{0, x \rightarrow y\}$;
 - 2) f = x, $A = \{x \oplus y\}$;
 - 3) f = xy, $A = x\overline{y}$;
 - 4) f = xy, $A = \{xy \oplus z\}$;
 - 5) $f = x \lor y \lor xy \lor xyz$, $A = \{xy, x \lor y\}$;
 - 6) $f = x \lor y$, $A = \{x \mid y\}$;
 - 7) f = xy, $A = \{x \mid y\}$;

- 8) $f = x \oplus y$, $A = \{0, x \to y\}$.
- **6.3.** Используя теорему сведения и тот факт, что $\{\overline{x}, x_1x_2\}$ полная система, докажите полноту следующих множеств:
 - 1) $\{\overline{x}, x_1 \lor x_2\};$
 - 2) $\{1, x_1 \oplus x_2, x_1 \lor x_2\};$
 - 3) $\{0, x_1 \sim x_2, x_1 \lor x_2\};$
 - 4) $\{x_1 \downarrow x_2\}$;
 - 5) $\{\overline{x}, x_1 \rightarrow x_2\};$
 - 6) $\{x_1 \oplus x_2, x_1 \to x_2\};$
 - 7) $\{x_1x_2 \oplus x_3, x_1 \sim x_2\};$
 - 8) $\{x_1x_2 \oplus x_3, \overline{x}\}.$
- **6.4.** Определите, принадлежит ли данная функция классам T_0 , T_1 :
 - 1) $((x_1 \to x_2) \to (x_3 \to x_4)) \to x_5;$
 - 2) $(x_1 \sim x_2) \oplus (x_3 \sim x_4) \oplus (x_5 \sim x_6) \oplus (x_7 \sim x_8)$;
 - 3) $\overline{(x_1 | x_2) \downarrow (x_3 | x_4)}$;
 - 4) $(x_1 \oplus x_2 \oplus \dots \oplus x_n) \to \overline{\overline{x_1} \oplus \overline{x_2} \oplus \dots \oplus \overline{x_n}}$.
- **6.5.** Найдите число функций от переменных $x_1, x_2, ..., x_n$ в множестве
 - 1) $T_0 \cap T_1$;
 - 2) $T_0 T_1$;
 - 3) $T_0 \otimes T_1$;
 - 4) $T_0 \cup T_1$.
- **6.6.** Выясните, является ли функция f самодвойственной:
 - 1) $\tilde{f} = 10010100$;
 - 2) $\tilde{f} = 11010100$;
 - 3) $\tilde{f} = 00101011$;
 - 4) $\tilde{f} = 0110010111011001$.
- **6.7.** Найдите все самодвойственные функции от переменных x_1, x_2 .
- **6.8.** Выясните, является ли данная функция самодвойственной, не прибегая к построению таблиц:
 - 1) $x_1 \oplus x_2 \oplus x_3$;
 - 2) $x_1 \oplus x_2 \oplus x_3 \oplus x_4$;
 - 3) $x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5$;
 - 4) $x_1 \lor x_2 \lor x_3$;

- 5) $x_1x_2 \oplus x_1x_3 \oplus x_2x_3$;
- 6) $x_1x_2 \vee x_1\overline{x}_3 \vee x_2\overline{x}_3$;
- 7) $x_1\overline{x}_2 \vee x_2\overline{x}_3 \vee x_3\overline{x}_1$;
- 8) $(x_1 \to x_2) \oplus (x_2 \to x_3) \oplus (x_3 \to x_1)$;
- 9) $x_1x_2 \oplus x_2x_3 \oplus x_3x_4 \oplus x_4x_1$;
- 10) $x_1x_2 \oplus x_2x_3 \oplus x_3x_4 \oplus x_4x_5 \oplus x_5x_1$.
- **6.9.** Найдите число самодвойственных функций от переменных $x_1, x_2, x_3,$ у которых
 - 1) переменная x_1 фиктивна;
 - 2) есть фиктивные переменные;
 - 3) нет фиктивных переменных.
- **6.10.** Выясните, при каких $n \ge 2$ функция является самодвойственной:
 - 1) $\bigvee_{1 \le i < j \le n} x_i x_j;$ 2) $\bigoplus_{1 \le i \le n} x_i x_j;$

 - 3) $x_1 \oplus x_2 \oplus ... \oplus x_n$;
 - 4) $(x_1 \lor x_2) \oplus (x_2 \lor x_3) \oplus ... \oplus (x_{n-1} \lor x_n) \oplus (x_n \lor x_1)$;
 - 5) $(x_1 \to x_2)(x_2 \to x_3) \dots (x_{n-1} \to x_n)(x_n \to x_1)$.
- **6.11.** Найдите число функций от переменных $x_1, x_2, ..., x_n$ в множестве
 - 1) $S \cap T_0$;
 - 2) $S \cap T_0 \cap T_1$;
 - 3) $S T_0$.
- **6.12.** Выясните, является ли функция f линейной:
 - 1) $\tilde{f} = 10010110$;
 - 2) $\tilde{f} = 10100110$;
 - 3) $\tilde{f} = 00001001$;
 - 4) $\tilde{f} = 11000011$.
 - 5) $\tilde{f} = 0110100101101001$;
 - 6) $\tilde{f} = 01111011111111100$.
- **6.13.** Найдите все линейные функции от переменных x_1, x_2 .
- 6.14. Выясните, является ли данная функция линейной:
 - 1) $(x_1 \sim x_2) \sim (x_3 \sim x_4)$;

- 2) $(x_1|\overline{x}_2)|(\overline{x}_1|x_2);$
- 3) $(x_1 \oplus x_2) \to (x_3 \oplus x_4)$;
- 4) $(x_1 \rightarrow x_2) \rightarrow (x_2 \rightarrow x_3)$;
- 5) $(x_1 \to x_2) \oplus (x_2 \to x_1)$;
- 6) $x_1x_2x_3 \vee \overline{x}_1\overline{x}_2\overline{x}_3$.
- **6.15.** Сколько существует линейных функций от переменных $x_1, x_2, ..., x_n$, у которых все эти переменные существенны?
- **6.16.** Найдите число функций от переменных $x_1, x_2, ..., x_n$ в множестве
 - 1) $L \cap T_0$;
 - 2) $L \cap T_1$;
 - 3) $L \cap S$;
 - 4) $L \cap T_0 \cap T_1$;
 - 5) $L \cup T_0 \cup T_1$.
- **6.17.** Выясните, является ли функция f монотонной:
 - 1) $\tilde{f} = 00011111$;
 - 2) $\tilde{f} = 00010011$;
 - 3) $\tilde{f} = 01010011$;
 - 4) $\tilde{f} = 00110001$.
- **6.18.** Найдите все монотонные функции от переменных x_1, x_2 .
- **6.19.** Докажите: если в булевой формуле нет отрицаний, то эта формула представляет монотонную функцию.
- 6.20. Выясните, является ли данная функция монотонной:
 - $1)\; x_1(x_2 \vee x_1x_3) \vee (x_1\overline{x}_2 \vee x_1x_3)x_2;$
 - 2) $x_1x_2 \oplus x_1x_3$;
 - 3) $x_1x_2 \oplus x_1x_3 \oplus x_2x_3$;
 - 4) $(x_1 \mid \overline{x}_2) \downarrow (\overline{x}_1 \mid x_2)$;
 - 5) $(x_1 \lor x_2 \lor x_3)(\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3)$;
 - 6) $(\overline{x}_1 \downarrow x_2) \mid (x_1 \downarrow \overline{x}_2)$.
- **6.21.** Выясните, при каких n данная функция монотонна:
 - 1) $x_1 \oplus x_2 \oplus \dots \oplus x_n$;
 - 2) $x_1 \vee x_2 \vee ... \vee x_n$;

- 3) $\bigvee_{1 \le i < j \le n} x_i x_j;$ 4) $\bigoplus_{1 \le i < j \le n} x_i x_j;$
- 5) $x_1x_2 \dots x_n \rightarrow (x_1 \oplus x_2 \oplus \dots \oplus x_n);$
- 6) $\neg (x_1 x_2 \dots x_n \rightarrow (x_1 \oplus x_2 \oplus \dots \oplus x_n)).$
- **6.22.** Найдите функцию f(x, y, z), удовлетворяющую условиям:
 - 1) $f \in (S L) \cap T_0$, f(0,0,1) = 1, f(1,0,1) = 0;
 - 2) $f \in (S M) \cap T_1$, f(0,0,1) = 0;
 - 3) $f \in S \cap M$, f(0,0,1) = 0, f не имеет фиктивных переменных;
 - 4) $f \in M$, f(0,1,0) = 1, f(1,0,0) = 0, f не имеет фиктивных переменных;
 - 5) $f \in L$, f(1,0,0) = 0, f не имеет фиктивных переменных.
- **6.23.** Найдите такие функции $f(x_1, x_2, x_3)$ и $g(x_1, x_2, x_3)$, у которых все переменные существенны, $f \in L, g \in M$ и справедливо тождество
 - 1) $f \mid g = 1$;
 - 2) $g \to f = 1$;
 - 3) $f \downarrow g = 0$.
- **6.24.** Найдите число функций от переменных $x_1, x_2, ..., x_n$ в множестве
 - 1) $L \cap M$;
 - 2) L M;
 - 3) $L \cap M \cap S$;
 - 4) $(L \cap M) S$.
- 6.25. Определите, какие из следующих функций принадлежат множеству $[\{x_1x_2, x_1 \oplus x_2 \oplus 1\}]:$
 - 1) 1;
 - 2) \overline{x} ;
 - 3) $x_1 \mid x_2$;
 - 4) $x_1x_2x_3x_4 \oplus x_1x_2x_3 \oplus 1$;
 - 5) $x_1 \oplus x_2 \oplus x_3$.
- 6.26. Определите, какие из следующих функций принадлежат множеству $[\{0, 1, x_1 \lor x_2x_3\}]$:
 - 1) \overline{x} ;
 - 2) $x_1 \to x_2$;

- 3) $x_1 | x_2$;
- 4) $x_1x_2x_3$;
- 5) $x_1 \vee x_2 \vee x_3$.
- 6.27. Определите, какие из следующих функций принадлежат множеству

$$[\{0,x_1\oplus x_2\oplus x_3\oplus 1\}]:$$

- 1) \overline{x} ;
- 2) $x_1 \sim x_2$;
- 3) $x_1 \to x_2$;
- 4) $x_1 \oplus x_2$;
- 5) $x_1 \oplus x_2 \oplus x_3 \oplus x_4$.
- 6.28. Выясните, является ли полным множество функций:
 - 1) $\{\overline{x}, x_1\overline{x}_2\};$
 - 2) $\{x_1x_2, x_1 \lor x_2, \overline{x_1 \oplus x_2 \oplus x_3}\};$
 - 3) $\{\overline{x}, x_1 \oplus x_2, (x_1 \sim x_2) \sim (x_3 \sim x_4), 0\};$
 - 4) $\{1, \ \overline{x}, \ x_1(x_2 \oplus x_3) \oplus x_2 x_3\};$
 - 5) $\{1, x_1 \sim x_2, x_1 \rightarrow x_2, x_1 \lor \overline{x_2 x_3 x_4} \};$
 - 6) {0, 1, $x_1(x_2 \lor x_3x_4)$, $x_1x_2 \oplus x_1x_3 \oplus x_2x_3$ };
 - 7) $\{0, \ \overline{x}, \ x_1 \oplus x_2 \oplus x_3, \ (x_1 \lor x_2)(x_1 \lor x_3)(x_2 \lor x_3)\};$
 - 8) $\{x_1 \oplus x_2, x_1 \sim x_2, x_1 x_2 \lor x_3\};$
 - 9) $\{0, x_1x_2x_3, \overline{x_1 \to (x_2 \to x_3)}, (x_1 \sim x_2) \sim x_3\};$
 - 10) $\{\overline{x}, (x_1 \sim x_2) \oplus x_3, x_1(x_2 \sim x_3) \oplus x_2 \overline{x}_3\};$
 - 11) $\{1, x_1 \rightarrow x_2, x_1 \oplus x_2 \oplus x_3 \oplus x_4\}.$
- 6.29. Найдите все базисы, содержащиеся в данном множестве функций:
 - 1) $\{f_1 = 0, f_2 = 1, f_3 = \overline{x}, f_4 = \overline{x}(y \oplus z) \oplus yz\};$
 - 2) $\{f_1 = 0, f_2 = x \oplus y, f_3 = x \to y, f_4 = xy \sim xz\};$
 - 3) $\{f_1 = 0, f_2 = 1, f_3 = x \oplus y \oplus z, f_4 = xy \lor xz \lor yz, f_5 = xy \oplus z, f_6 = x \lor y\};$
 - 4) $\{f_1 = xy, f_2 = x \lor y, f_3 = xy \lor z, f_4 = x \oplus y, f_5 = x \to y\};$
 - 5) $\{f_1 = x \oplus y, f_2 = x \sim y, f_3 = x \oplus y \oplus z, f_4 = xy, f_5 = x \rightarrow y\};$
 - 6) $\{f_1 = 0, f_2 = \overline{x}, f_3 = x \to y, f_4 = xy \lor \overline{z}, f_5 = x \oplus xy\}.$
- **6.30.** Определите, существует ли функция, существенно зависящая от двух переменных и образующая базис вместе с данной функцией:
 - 1) $\overline{(\overline{x} \mid y)(x \to y)}$;
 - 2) $\overline{x}(y \to z) \vee \overline{(z \to y)}$;
 - 3) $\overline{x} \rightarrow \overline{(x \mid y)}$;

- 4) $(x \rightarrow y)(y \rightarrow x) \sim z$;
- 5) $\overline{x \lor y \lor z}$.
- **6.31.** Определите, каким из предполных классов принадлежит данная функция $(n \ge 2)$:
 - 1) $x_1(x_1 \to x_2)(x_2 \to x_3) \dots (x_{n-1} \to x_n) \vee \\ \vee x_1(x_1 \sim x_2)(x_2 \sim x_3) \dots (x_{n-1} \sim x_n) \overline{x}_n;$
 - $2) \ (\overline{x}_2 \to x_1) \lor (\overline{x}_3 \to x_1 x_2) \lor \dots \lor (\overline{x}_n \to x_1 x_2 \dots x_{n-1});$
 - 3) $\overline{(x_1 \sim x_2)}(x_1 | x_2) \oplus \overline{(x_3 \sim x_4)}(x_3 | x_4) \oplus ... \oplus \overline{(x_{2n-1} \sim x_{2n})}(x_{2n-1} | x_{2n});$
 - 4) $\overline{x}_1 \oplus (x_2 | x_3)(\overline{x}_2 \to x_3) \oplus (x_4 | x_5)(\overline{x}_4 \to x_5) \oplus \dots$ $\dots \oplus (x_{2n} | x_{2n+1})(\overline{x}_{2n} \to x_{2n+1}).$
- **6.32.** Сколько имеется функций от переменных $x_1, ..., x_n$, принадлежащих всем предполным классам?
- **6.33.** Функция f называется $me\phi\phi eposoй$, если $\{f\}$ полная система. Определите, какие из следующих функций шефферовы:
 - 1) $\overline{x_1x_2x_3} \vee \overline{x_4x_5x_6}$;
 - 2) $\overline{x_1x_2x_3} \oplus \overline{x_4x_5x_6}$;
 - 3) $\overline{x_1x_2x_3} \cdot \overline{x_4x_5x_6}$;
 - 4) $\overline{(x_1 \lor x_2 \lor x_3)} \lor \overline{x_4 x_5 x_6}$;
 - 5) $\overline{(x_1 \oplus x_2 \oplus x_3)} \vee \overline{x_4 x_5 x_6};$
 - $6)\overline{(x_1 \oplus x_2 \oplus x_3)} \oplus (x_4 \vee x_5 \vee x_6)(\overline{x}_4 \vee \overline{x}_5 \vee \overline{x}_6).$
- **6.34.** Перечислите все различные базисы, содержащие только функции, существенно зависящие от двух переменных.
- 6.35. Найдите все шефферовы функции от двух переменных.
- **6.36.** Докажите, что если $f \notin T_0 \cup T_1 \cup S$, то f шефферова функция.
- **6.37.** Сколько существует шефферовых функций от n переменных?
- **6.38.** Выясните, полно ли множество функций A? В случае положительного ответа, приведите пример полной системы функций из A.
 - 1) $A = P_2 (T_0 \cup T_1 \cup S \cup M \cup L);$
 - 2) $A = (M T_0) \cup (L S);$
 - $3) A = (S \cap M) \cup (L M);$
 - 4) $A = (L \cap T_0 \cap T_1) \cup (S (T_0 \cup T_1));$

- 5) $A = (L \cap T_1) \cup (S \cap M)$;
- 6) $A = (L \cap T_1) \cup (S T_0);$
- 7) $A = (M T_0) \cup (S L)$.
- **6.39.** Пусть f, g, h попарно различные функции, существенно зависящие от двух переменных. Будет ли полным множество функций $\{\overline{x}, f, g, h\}$?
- **6.40.** Проверьте, что если $U = P_2$, то на диаграмме Венна для системы замкнутых классов T_0 , T_1 , S, M, L пустыми будут в точности те клетки, которые в табл. 3 помечены символом \emptyset .

Таблица 3

	T_0				\overline{T}_0				
	T_1 \overline{T}_1		, 1	T_1			1		
L		Ø	Ø		Ø		Ø	Ø	M
Ь		Ø	Ø		Ø			Ø	\overline{M}
$\overline{\overline{L}}$			Ø	Ø	Ø	Ø	Ø	Ø	M
L			Ø		Ø				\overline{M}
	S	S	S	S	S	S	S	S	

- **6.41.** Докажите, что если для некоторой функции f выполняется $\{0,1\}\subseteq [\{f\}]$, то f шефферова функция.
- **6.42.** Функция $maj_n(x_1, x_2, ..., x_n)$, где $n \ge 0$, принимает значение 1 тогда и только тогда, когда 1 принимают большинство её аргументов. Каким классам принадлежит функция maj_n в зависимости от n?
- **6.43.** Функция $evn_n(x_1,x_2,...,x_n)$, где $n \ge 0$, принимает значение 1 тогда и только тогда, когда 1 чётное число её аргументов. Каким классам принадлежит функция evn_n в зависимости от n?
- **6.44.** Функция if(x,y,z) принимает значение, равное y, при x=1 и значение? равное z при x=0. Докажите, что $[\{if\}]=T_0\cap T_1$.

7. Оптимизация формул. Схемы из функциональных элементов

Uндексом простоты формулы R (в частности, ДНФ) будем называть число вхождений переменных, встречающихся в её записи и записывать L(R).

Говорят, что функция f *имплицирует* функцию g или функция g *поглощает* функцию f, если на любом наборе значений $\tilde{\alpha}$, где $f(\tilde{\alpha}) = 1$ также выполняется $g(\tilde{\alpha}) = 1$.

Эквивалентные утверждения:

- $f \rightarrow g = 1$
- $f \wedge g = f$
- $f \lor g = g$
- $f(\tilde{\alpha}) \leq g(\tilde{\alpha})$ для любого набора значений $\tilde{\alpha}$.

Импликанта функции f — это элементарная конъюнкция K, которая имплицирует f, то есть $K \to f = 1$. Иными словами, если на некотором наборе K принимает значение 1, то и f принимает на этом наборе значение 1. Импликантой функции f является любая элементарная конъюнкция любой её $\mathcal{I}H\Phi$.

Импликанта функции называется *простой*, если при исключении из неё любого множителя она перестаёт быть импликантой данной функции.

Система импликант $K_1, K_2, ..., K_m$ функции f называется *полной*, если $f = K_1 \vee K_2 \vee ... \vee K_m$.

Сокращённая ДНФ (СокрДНФ) функции f — это дизьюнкция всех её простых импликант.

Свойство склейки: Пусть A – некоторая элементарная конъюнкция, причём Ax и $A\bar{x}$ – импликанты функции f. Тогда A – тоже импликанта этой функции. Иными словами, $Ax \lor A\bar{x} = A$.

Метод Квайна:

Получение СокрДНФ возможно упрощением СДНФ с помощью свойства склейки и законов поглощения.

Начиная с СДНФ, следует на каждом шаге склеивать все возможные пары соседних импликант до тех пор, пока такое склеивание возможно. Каждая импликанта может участвовать в склейке несколько раз.

Метод Нельсона:

Получение СокрДНФ возможно также из СКНФ – нужно раскрыть скобки по дистрибутивному закону и воспользоваться законами идемпотентности, противоречия и поглощения.

Схема из функциональных элементов (СФЭ) — это графический объект, который описывает порядок выполнения операций для вычисления значений некоторой логической функции. Схемы составляются из функциональных элементов (гейтов), вычисляющих некоторые «простейшие» функции и соединяемых по определенным правилам.

Мы будем рассматривать схемы, состоящие из функциональных элементов трех типов: *конъюнкторов*, *дизъюнкторов* и *инверторов*. Они вычисляют соответственно конъюнкцию, дизъюнкцию и отрицание. Назовём эти три функциональных элемента *стандартным базисом*.

Входящие стрелки изображают входы элемента, на входы подаются значения аргументов — нули и единицы. Выходящая стрелка — выход элемента, на выходе появляется значение вычисляемой элементом функции. Выходящих стрелок может быть несколько, так как результат вычисления может использоваться несколько раз в дальнейших вычислениях.

Количество функциональных элементов в схеме S называется *сложностью схемы* и обозначается через L(S).

Кроме гейтов, на схеме присутствуют также *входы* схемы, представляющие аргументы вычисляемой данной схемой функции. Их будем изображать кружками, каждому из которых приписан символ соответствующей переменной. Некоторые элементы помечаются как *выходные* — значение, появившееся на выходе такого элемента, считается значением некоторой функции, вычисляемой схемой. Выходных элементов может быть несколько, т.е. схема может вычислять одновременно несколько функций.

Схемной сложностью функции f называется наименьшая сложность схемы, вычисляющей функцию f, обозначается через L(f). Схема, на которой достигается значение L(f), называется минимальной (таких схем может быть несколько).

Наибольшая схемная сложность функций от n переменных обозначается через L(n).

Задачи

7.1. По схемам, изображённым на рис. 1, найдите функции, реализуемые ими.

Рис. 1

- **7.2.** Постройте для функции f СокрДНФ:
 - 1) $\tilde{f} = 01001011$;
 - 2) $\tilde{f} = 10010111;$
 - 3) $\tilde{f} = 01011000$;
 - 4) $\tilde{f} = 10010110$;
 - 5) $\tilde{f} = 1010001000100011$;

- 6) $\tilde{f} = 11100010101111110$;
- 7) $\tilde{f} = 00011111010111111$;
- 8) $\tilde{f} = 1111010100110111$;
- 9) $\tilde{f} = 1111000001010101;$
- 10) $\tilde{f} = 0011101101110111$.
- **7.3.** Для функции f(x, y, z) постройте СФЭ в стандартном базисе сложности, не превосходящей m:
 - 1) $f(x, y, z) = xy \lor xz \lor yz$, m = 4;
 - 2) $f(x, y, z) = x\overline{z} \lor y\overline{z} \lor \overline{x}y \lor \overline{x}z$, m = 6;
 - 3) $f(x, y, z) = xy \lor x\overline{z} \lor x\overline{y} \overline{z} \lor \overline{x} \overline{y} \lor \overline{x} \overline{z}$, m = 6;
 - 4) $f(x, y, z) = 1 \oplus xz \oplus yz$, m = 5;
 - 5) $f(x, y, z) = x \sim y \sim z$, m = 8;
 - 6) $\tilde{f} = 01010111$, m = 2;
 - 7) $\tilde{f} = 11001000$, m = 3;
 - 8) $\tilde{f} = 10011100$, m = 6.
- 7.4. Реализуйте функцию СФЭ в стандартном базисе
 - (а) по методу, основанному на нормальных формах,
 - (б) по методу, основанному на разложении по переменной:
 - 1) $\tilde{f} = 01000110$;
 - 2) $\tilde{f} = 00010111;$
 - 3) $\tilde{f} = 00011111;$
 - 4) $\tilde{f} = 01111110$;
 - 5) $f(x, y, z) = 1 \oplus x \oplus yz$;
 - 6) $f(x, y, z) = x \oplus y \oplus z$.

8. Теория кодирования

Под кодированием понимается преобразование слов в некотором алфавите $B = \{b_1, b_2, ..., b_m\}$ в слова в другом алфавите $A = \{a_1, a_2, ..., a_q\}$. При алфавитном или побуквенном кодировании каждая буква алфавита B заменяется словом в алфавите A. Схема кодирования f указывает для каждой буквы слово, которым она заменяется:

$$\begin{cases} b_1 \rightarrow v_1, \\ b_2 \rightarrow v_2, \\ \vdots \\ b_m \rightarrow v_m. \end{cases}$$

Здесь $v_1, v_2, ..., v_m$ — слова в алфавите A. Слово $\alpha = b_{i_1}b_{i_2} ... b_{i_n}$ (сообщение) в результате кодирования преобразуется в слово $f(\alpha) = v_{i_1}v_{i_2} ... v_{i_n}$ (код сообщения). Упорядоченный набор слов $V = (v_1, v_2, ..., v_m)$ называется кодом, а его элементы — кодовыми словами или элементарными кодами. Набор $(|v_1|, |v_2|, ..., |v_m|)$, в котором $|v_i|$ — длина слова v_i , называется спектром кода $V = (v_1, v_2, ..., v_m)$.

Если буква b_i входит n_i раз в сообщение α длины n, то величина $p_i = \frac{n_i}{n}$ — частота (вероятность) появления буквы b_i в сообщении α . Если задан набор частот (распределение вероятностей) $P = (p_1, p_2, ..., p_m)$ букв алфавита B, то стоимость кодирования кода $V = (v_1, v_2, ..., v_m)$ равна

$$C(P,V) = \sum_{i=1}^{m} p_i |v_i|.$$

Код $V = (v_1, v_2, ..., v_m)$ называется разделимым (взаимно-однозначным), если равенство

$$v_{i_1}v_{i_2}\dots v_{i_n}=v_{j_1}v_{j_2}\dots v_{j_k}$$

имеет место тогда и только тогда, когда $(i_1, i_2, ..., i_n) = (j_1, j_2, ..., j_k)$. Свойство разделимости означает, что каждый код сообщения можно единственным способом разбить на элементарные коды и, значит, однозначно декодировать.

Алгоритм распознавания однозначности декодирования был предложен Ал.А. Марковым в 1963 г. Для кода $V = (v_1, v_2, ..., v_m)$ определим S_1 — множество слов β , обладающих следующим свойством: слово β является собственным префиксом некоторого элементарного кода v_i и одновременно собственным суффиксом некоторого v_j , и, кроме того, не является кодовым словом кода V. Положим $S = S_1 \cup \{\lambda\}$ (λ — пустое слово). Сопоставим коду V ориентированный граф G, вершинами которого являются элементы множества S и в котором из вершины α в вершину β проводим ориентированное ребро (α, β) ,

если существует элементарный код v_i и последовательность элементарных кодов $P=v_{i_1}v_{i_2}\dots v_{i_k}$, такие, что $v_i=\alpha v_{i_1}v_{i_2}\dots v_{i_k}\beta$. При этом P может быть пустой, если ни одна из вершин α , β не совпадает с λ . Ребру (α,β) припишем последовательность $v_{i_1}v_{i_2}\dots v_{i_k}$. Петли вида (α,α) рассматривать не будем, за исключением случая $\alpha=\lambda$. Петля (λ,λ) присутствует в графе тогда и только тогда, когда существует элементарный код v_i и последовательность элементарных кодов $P=v_{i_1}v_{i_2}\dots v_{i_k}$ $(k\geq 2)$, такие, что $v_i=v_{i_1}v_{i_2}\dots v_{i_k}$.

Теорема (Ал.А. Марков). Алфавитный код V является разделимым тогда и только тогда, когда в графе G отсутствуют ориентированные циклы, проходящие через вершину λ .

Задача оптимального кодирования. Даны алфавиты $B=\{b_1,b_2,\dots,b_m\}$ и $A=\{a_1,a_2,\dots,a_q\}$ и набор частот $P=(p_1,p_2,\dots,p_m)$ букв алфавита B. Требуется найти разделимый код $V^*=(v_1^*,v_2^*,\dots,v_m^*)$ с наименьшей стоимостью кодирования $C^*(P)=C(P,V^*)=\min_V C(P,V)$.

Код называется *префиксным*, если ни одно из кодовых слов не является префиксом (начальным отрезком) другого кодового слова. Всякий префиксный код является разделимым.

Теорема 1 (неравенство Макмиллана). Если $V = (v_1, v_2, ..., v_m)$ – разделимый код в алфавите из q букв, то выполняется неравенство

$$\sum_{i=1}^{m} q^{-|v_i|} \le 1.$$

Теорема 2. Пусть $l_1, l_2, ..., l_m$ — натуральные числа, удовлетворяющие неравенству

$$\sum_{i=1}^{m} q^{-l_i} \le 1.$$

Тогда существует префиксный код $V=(v_1,v_2,\dots,v_m)$ в алфавите из q букв, в котором $|v_i|=l_i,\ i=1,\dots,m.$

Теоремы 1 и 2 позволяют свести задачу оптимального кодирования к задаче построения оптимального префиксного кода.

Двоичный префиксный код, т.е. код в алфавите $A = \{0,1\}$, можно представить графически с помощью *бинарного дерева*. Это корневое дерево, в котором из каждой вершины выходят не более чем два ребра, одно считается левым, другое правым. Каждому левому ребру приписан символ 0, каждому правому — символ 1. Каждой вершине дерева сопоставляется слово, составленное из букв, приписанных ребрам, при движении вдоль пути из корня в данную

вершину. Дерево, представляющее префиксный код, состоит из вершин, соответствующих кодовым словам, и их предков.

Задача построения оптимального префиксного кода может быть сформулирована как задача построения для данного набора чисел $P=(p_1,p_2,...,p_m)$ бинарного дерева с m листьями $v_1,v_2...,v_m$ и минимальным значением величины

$$\sum_{i=1}^{m} p_i l_i,$$

где l_i – расстояние от вершины v_i до корня. Оно называется деревом Хаффмана.

Алгоритм Хаффмана (построение дерева Хаффмана, двоичный случай).

Частичным решением на каждом шаге алгоритма является корневой лес (лес, состоящей из корневых деревьев). Каждой вершине x этого леса приписан вес p(x). Вначале лес состоит из k изолированных вершин, им приписаны буквы $b_1, b_2, ..., b_m$ алфавита B и веса $p(b_i) = p_i$. На очередном шаге выбираются два корня x и y с наименьшими весами, вводится новая вершина z и добавляются ребра (z, x) – левое и (z, y) – правое. В результате два дерева объединяются в одно, его корнем становится вершина z, ей приписывается вес p(z) = p(x) + p(y). Такие действия продолжаются до тех пор, пока все деревья не сольются в одно, оно и будет деревом Хаффмана.

В общем случае, когда |A|=q, код представляется q-ичным деревом — из вершины может выходить q (или меньше) ребер, которые помечены различными буквами алфавита A. При построении дерева Хаффмана на каждом шаге алгоритма выбираются q корней с наименьшими весами и эти q деревьев объединяются в одно, как в двоичном случае. Для корректной работы алгоритма необходимо еще добавить к алфавиту B несколько фиктивных букв с нулевыми весами. Их число равно наименьшему целому s, при котором m-1+s делится без остатка на q-1.

Двоичной энтропией распределения вероятностей Р называется величина

$$H(P) = -\sum_{i=1}^{k} p_i \log_2 p_i = \sum_{i=1}^{k} p_i \log_2 \frac{1}{p_i}.$$

Справедливо соотношение $H(P) \le C^*(P) < H(P) + 1$.

Дополнительные возможности для сжатия может дать так называемое блочное кодирование. Разобьем сообщение на блоки фиксированной длины N. Эти блоки будем рассматривать как буквы нового алфавита B_N с новым распределением вероятностей P_N , которое порождается распределением P на B: $p_{i_1 i_2 \dots i_N} = p \big(b_{i_1} b_{i_2} \dots b_{i_N} \big) = p_{i_1} \cdot p_{i_2} \cdot \dots \cdot p_{i_N}$. Код, построенный алгоритмом

Хаффмана для алфавита B_N и распределения вероятностей P_N назовём блочным равномерным кодом.

Обозначим $C_N(P) = \frac{C^*(P_N)}{N}$ среднюю длину кода одной буквы, то есть $C_N(P)$ можно называть *стоимостью кодирования на одну букву сообщения*. Справедливо соотношение $H(P) \leq C_N(P) < H(P) + 1/N$.

Пусть $\alpha = \alpha_1 \alpha_2 \dots \alpha_n$, $\beta = \beta_1 \beta_2 \dots \beta_n$ — двоичные слова длины n. Расстоянием Хэмминга между α и β называется число

$$\rho(\alpha,\beta) = \sum_{i=1}^{n} (\alpha_i \oplus \beta_i),$$

равное числу позиций, в которых слова α и β различаются. Слова α и β будем называть *соседними*, если $\rho(\alpha,\beta)=1$.

Пусть V — множество слов длины n в алфавите $\{0,1\}$. V называется $\kappa o \partial o M c$ расстоянием d, если $\min_{\alpha,\beta\in V} \rho(\alpha,\beta) = d$. Число d называется $\kappa o \partial o B M c$ расстоянием множества V и обозначается d(V).

Пусть существует некий источник помех, который в словах может выдавать ошибки не более чем в t разрядах. Одиночная ошибка состоит в том, что один из символов слова инвертируется (0 заменяется на 1, и наоборот). Таким образом, если в слове сделано t ошибок, расстояние между правильным и ошибочным словом равно в точности t.

Код V обнаруживает t ошибок, если любое слово, которое можно получить из произвольного кодового слова $\alpha \in V$ в результате не более t ошибок, отлично от любого другого кодового слова. Код V обнаруживает t ошибок тогда и только тогда, когда $d(V) \ge t+1$.

Код V исправляет t ошибок, если любое слово, которое можно получить из произвольного кодового слова $\alpha \in V$ в результате не более t ошибок, имеет расстояние Хэмминга до любого другого кодового слова строго больше, чем до α . Код V исправляет t ошибок тогда и только тогда, когда $d(V) \geq 2t + 1$.

Задача исправления одной ошибки решена Хэммингом в 1950 г.

Построение кода Хэмминга, исправляющего одну ошибку.

Сообщения $\alpha_1\alpha_2\dots\alpha_n$, кодируются наборами $\beta_1\beta_2\dots\beta_l$, где l>n. Представим l как l=n+k. То есть к исходной длине добавили k разрядов. Чтобы код исправлял одну ошибку, необходимо, чтобы выполнялось условие: $2^k \geq l+1$, или $2^n \leq \frac{2^l}{l+1}$. Таким образом, выберем l как наименьшее целое число, удовлетворяющее неравенству $2^n \leq \frac{2^l}{l+1}$.

Пусть $a_{k-1}a_{k-2}\dots a_1a_0$ – двоичная запись числа a, где $1\leq a\leq l$.

По отрезку натуральных чисел 1,2,...,l построим k последовательностей следующим образом.

- $M_0 = \{1, 3, 5, 7, 9, ...\}$ содержит все такие числа a, что $a_0 = 1$.
- $M_1 = \{2, 3, 6, 7, 10, ...\}$ содержит все такие числа a, что $a_1 = 1$.
- $M_2 = \{4, 5, 6, 7, 12, ...\}$ содержит все такие числа a, что $a_2 = 1$.
- $M_{k-1} = \{2^{k-1}, 2^{k-1} + 1, \dots, 2^k 1, \dots\}$ содержит все такие числа a, что $a_{k-1} = 1$.

Разряды β_i набора $\beta_1\beta_2...\beta_l$, у которых номер $i \in \{2^s | 0 \le s \le k-1\}$, называются *проверочными*, остальные — *информационными*. Количество информационных и проверочных разрядов равно, соответственно, n и k.

Правила построения набора $\beta_1\beta_2 \dots \beta_l$ по набору $\alpha_1\alpha_2 \dots \alpha_n$: для информационных разрядов $\beta_i = \alpha_{i-\lceil \log_2 i \rceil};$ для проверочных разрядов:

$$\beta_{1} = \beta_{3} \oplus \beta_{5} \oplus \beta_{7} \oplus \dots = \bigoplus_{i \in M_{0} - \{\beta_{1}\}} \beta_{i};$$

$$\beta_{2} = \beta_{3} \oplus \beta_{6} \oplus \beta_{7} \oplus \dots = \bigoplus_{i \in M_{1} - \{\beta_{2}\}} \beta_{i};$$

...

$$\beta_{2^{k-1}} = \beta_{2^{k-1}+1} \oplus \beta_{2^{k-1}+2} \oplus \beta_{2^{k-1}+3} \oplus \dots = \bigoplus_{i \in M_{k-1} - \{2^{k-1}\}} \beta_{i}$$

Обнаружение ошибки в коде Хэмминга и декодирование

Пусть $\beta_1\beta_2...\beta_l$ — построенный набор и при передаче произошла ошибка в s-м разряде, в результате которой мы получили последовательность $\beta_1'\beta_2'...\beta_l'$.

Обозначим

$$\begin{split} s_0 &= \beta_1' \oplus \beta_3' \oplus \beta_5' \oplus \beta_7' \oplus \ldots = \bigoplus_{i \in M_0} \beta_i'; \\ s_1 &= \beta_2' \oplus \beta_3' \oplus \beta_6' \oplus \beta_7' \oplus \ldots = \bigoplus_{i \in M_1} \beta_i'; \end{split}$$

...

$$s_{k-1} = \beta'_{2^{k-1}} \oplus \beta'_{2^{k-1}+1} \oplus \beta'_{2^{k-1}+2} \oplus \beta'_{2^{k-1}+3} \oplus \dots = \bigoplus_{i \in M_{k-1}} \beta'_i.$$

Номер разряда s, в котором произошла ошибка, определяется по формуле

$$s = s_0 + s_1 \cdot 2 + \dots + s_{k-1} \cdot 2^{k-1} = \sum_{i=0}^{k-1} s_i \cdot 2^i.$$

Если s = 0, значит ошибки не произошло.

После исправления ошибки в *s*-м разряде (если она произошла) для декодирования достаточно оставить информационные разряды.

Задачи

8.1. Выясните, является ли данное слово кодом сообщения, закодированного по схеме

$$\begin{cases} a_1 \to aa, \\ a_2 \to ab, \\ a_3 \to cc, \\ a_4 \to cca, \\ a_5 \to bcca, \end{cases}$$

и если да, то однозначно ли оно декодируется:

- 1) ccabccabccabcc;
- 2) bccaccabccabccacabcca;
- 3) *abbccaccabccaabab*.
- **8.2.** Выясните, является ли данное слово кодом сообщения, закодированного с помощью алфавитного кодирования V = (10, 12, 012, 101, 2100), и если да, то однозначно ли оно декодируется:
 - 1) 10120121012100;
 - 2) 0121001210201;
 - 3) 1012101201210012;
 - 4) 1010122100;
 - 5) 10101210012;
 - 6) 1010012100101.
- 8.3. Выясните, является ли код со схемой алфавитного кодирования

$$\begin{cases} a \to 111, \\ s \to 10101 \\ c \to 010, \\ n \to 001, \\ o \to 000, \\ c \to 110 \end{cases}$$

префиксным. Справедливо ли неравенство Макмиллана для спектра длин заданного кода? С помощью кода, задаваемого схемой,

- 1) закодируйте слово слава;
- 2) закодируйте слово голова;
- 3) декодируйте слово 110001000010;

- 4) декодируйте слово 00000100010101000;
- 5) декодируйте слово 010000001000110111.
- **8.4.** Выясните, является ли код V взаимно-однозначным. Если код не взаимнооднозначный, укажите пару слов, которые кодируются одинаково:

```
1) V = \{1, 100, 0001, 010, 0010\};
```

- 2) $V = \{01, 100, 010, 1001\};$
- 3) $V = \{10, 01, 100, 0100, 0000\};$
- 4) $V = \{01, 201, 112, 122, 0112\};$
- 5) $V = \{001, 021, 102, 201, 001121, 01012101\};$
- 6) $V = \{01,011,100,2100,101210,001210\};$
- 7) $V = \{01, 12, 021, 0102, 10112\};$
- 8) $V = \{01, 011, 100, 2100, 10110, 00112\}.$
- **8.5.** Выясните, является ли код V префиксным:
 - 1) $V = \{0, 10, 11, 1110\};$
 - 2) $V = \{01, 11, 10, 001\};$
 - 3) $V = \{1001, 000, 001, 0110, 010, 1000, 0111\};$
 - 4) $V = \{110, 011, 1011, 0100, 11011\};$
 - 5) $V = \{02, 2, 11, 012, 102, 011, 0121\};$
 - 6) $V = \{12, 22, 0011, 101, 0100, 20, 2100\};$

 - 7) $V = \{0, 10, \dots, \underbrace{1 \dots 1}_{n} 0, \dots\};$ 8) $V = \{0, 10, \dots, \underbrace{1 \dots 0}_{n}, \dots\}.$
- **8.6.** Выберите максимальное по числу элементов подмножество B множества Aс условием, что двоичные разложения наименьшей длины чисел из Bпредставляют собой префиксный код:
 - 1) $A = \{1, 5, 6, 7, 12, 13, 17\};$
 - 2) $A = \{1, 3, 6, 8, 10, 13, 19, 33, 37\};$
 - 3) $A = \{2, 6, 7, 9, 12, 15, 18, 35, 36, 37\};$
 - 4) $A = \{2, 3, 7, 8, 11, 12, 13, 14\};$
 - 5) $A = \{1, 2, 5, 8, 9, 10, 13, 15\};$
 - 6) $A = \{3, 5, 6, 9, 10, 13, 17\}.$

- **8.7.** Постройте двоичный префиксный код с заданной последовательностью L длин элементарных кодов или, с помощью неравенства Макмиллана, покажите, что это невозможно:
 - 1) $L = \{1, 2, 2, 3\};$
 - 2) $L = \{2, 2, 3, 4, 4\};$
 - 3) $L = \{1, 2, 4, 4, 4, 4\};$
 - 4) $L = \{2, 2, 2, 4, 4, 4\};$
 - 5) $L = \{2, 3, 3, 3, 3, 4, 4\};$
 - 6) $L = \{1, 3, 3, 4, 4, 4, 4, 4\};$
 - 7) $L = \{2, 2, 2, 4, 4, 5\};$
 - 8) $L = \{2, 2, 3, 3, 4, 4, 4, 4\};$
 - 9) $L = \{1, 2, 3, 4, 5, 5, 6\};$
 - 10) $L = \{2, 3, 4, 5, 5, 5, 5\}.$
- **8.8.** С помощью алгоритма Хаффмана постройте двоичный код, обеспечивающий наименьшую стоимость кодирования сообщения α , вычислите его стоимость:
 - 1) $\alpha = bacbbfdefbcbaedbbfbc$;
 - 2) $\alpha = apoзaynaлaнaлanyaзopa;$
 - 3) $\alpha = карлукларыукралкораллы;$
 - 4) $\alpha = \kappa a p л y \kappa n a p ы y к p a л к o p a л л ы a к л a p a y к a p л a y к p a л a к л a p н e m .$
- **8.9.** Для заданного распределения вероятностей P с помощью алгоритма Хаффмана постройте оптимальный двоичный код, вычислите стоимость кодирования:
 - 1) P = (0.2, 0.4, 0.2, 0.2);
 - 2) P = (0.1, 0.1, 0.7, 0.1);
 - 3) P = (0.2, 0.2, 0.2, 0.2, 0.2);
 - 4) P = (0.08, 0.03, 0.09, 0.1, 0.5, 0.2);
 - 5) P = (0.3, 0.4, 0.06, 0.08, 0.04, 0.04, 0.04, 0.04);
 - 6) P = (0.3, 0.3, 0.03, 0.03, 0.03, 0.03, 0.03, 0.01, 0.2, 0.04);
 - 7) P = (0.06, 0.06, 0.06, 0.06, 0.06, 0.3, 0.2, 0.1, 0.1);
 - 8) P = (0.1, 0.2, 0.4, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05);
 - 9) P = (0.25, 0.15, 0.05, 0.1, 0.3, 0.1, 0.05);
 - 10) P = (0.11, 0.08, 0.01, 0.15, 0.25, 0.21, 0.09, 0.1).
- **8.10.** Выясните, является ли код оптимальным для распределения вероятностей P = (0.15, 0.25, 0.05, 0.01, 0.09, 0.25, 0.15, 0.05):

```
1) V = (001,010,10,11,101,011,0110,00);

2) V = (0000,001,1001,10010,0111,111,0010,1110);

3) V = (000,001,010,011,100,101,110,111);

4) V = (100,00,11110,11111,1110,01,101,110);

5) V = (000,01,1110,11111,110,10,001,11110);

6) V = (000,10,0111,01111,011,01,100,11111);

7) V = (01,02,10,12,20,21,22,00).
```

8.11. Постройте оптимальный префиксный код для заданного распределения вероятностей P в алфавите A:

```
1) P = (0.2, 0.3, 0.2, 0.1, 0.2), A = \{0,1,2\};

2) P = (0.2, 0.1, 0.4, 0.1, 0.1, 0.1), A = \{0,1,2\};

3) P = (0.2, 0.1, 0.3, 0.1, 0.05, 0.1, 0.05, 0.1), A = \{0,1,2\};

4) P = (0.2, 0.1, 0.3, 0.1, 0.05, 0.1, 0.05, 0.1), A = \{0,1,2,3\};

5) P = (0.21, 0.17, 0.2, 0.12, 0.08, 0.16, 0.02, 0.04), A = \{0,1,2,3\};

6) P = (0.02, 0.08, 0.05, 0.15, 0.04, 0.16, 0.2, 0.13, 0.17), A = \{0,1,2,3\}.
```

- **8.12.** Докажите, что стоимость кодирования, построенного алгоритмом Хаффмана, равна сумме весов всех узлов полученного дерева, не являющихся листьями.
- **8.13.** Для распределения вероятностей P постройте код по алгоритму Хаффмана и блочный равномерный код с длиной блока N=2, сравните их стоимость, найдите двоичную энтропию распределения P:

```
1) P = (0.3, 0.2, 0.5);

2) P = (0.3, 0.4, 0.3);

3) P = (0.4, 0.2, 0.4);

4) P = (0.2, 0.25, 0.55);

5) P = (0.15, 0.15, 0.7);

6) P = (0.25, 0.25, 0.5);

7) P = (0.25, 0.45, 0.3);

8) P = (0.25, 0.35, 0.4).
```

8.14. Для распределения вероятностей P найдите двоичную энтропию распределения P, постройте блочные равномерные коды с длиной блока N=1, N=2 и N=3, сравните их стоимость:

1)
$$P = (0.2, 0.8);$$

2)
$$P = (0.9, 0.1);$$

- 3) P = (0.75, 0.25);
- 4) P = (0.4, 0.6);
- 5) $P = \left(\frac{8}{11}, \frac{3}{11}\right);$
- 6) $P = \left(\frac{1}{9}, \frac{8}{9}\right)$.
- **8.15.** Для данного множества V найдите кодовое расстояние, число ошибок, которые код обнаруживает, число ошибок, которые код исправляет:
 - 1) $V = \{11000, 10101, 01110\};$
 - 2) $V = \{1111100, 110011, 001111\};$
 - 3) $V = \{101010, 010110, 000001\};$
 - 4) $V = \{01101010, 11000110, 00011001, 10101100\}.$
- **8.16.** Постройте по методу Хэмминга кодовое слово для сообщения α :
 - 1) $\alpha = 010$;
 - 2) $\alpha = 011$;
 - 3) $\alpha = 0101$;
 - 4) $\alpha = 1110$;
 - 5) $\alpha = 10101010$;
 - 6) $\alpha = 1110011111$;
 - 7) $\alpha = 01101001011$;
 - 8) $\alpha = 01000000001$.
- **8.17.** По каналу связи передавалось кодовое слово, построенное по методу Хэмминга для сообщения α . После передачи по каналу связи, искажающему слово не более чем в одном разряде, было получено слово β . Восстановите исходное сообщение:
 - 1) $\beta = 110$;
 - 2) $\beta = 101110$;
 - 3) $\beta = 011110$;
 - 4) $\beta = 1001011$;
 - 5) $\beta = 1011101$;
 - 6) $\beta = 11011100110$;
 - 7) $\beta = 101001011011101$;
 - 8) $\beta = 01000000010000$;
 - 9) $\beta = 001011110111111$.

- **8.18.** Закодируйте сообщение α , последовательно кодируя по методу Хэмминга блоки длины n:
 - 1) $\alpha = 000011011010$, n = 3;
 - 2) $\alpha = 001010101111$, n = 4;
 - 3) $\alpha = 0110101001111111$, n = 3;
 - 4) $\alpha = 0110101001111111$, n = 5.

9. Конечные автоматы

Конечный автомат с выходом (автомат Мили) — набор объектов $\langle A, B, Q, \varphi, \psi \rangle$, где A, B, Q — конечные множества:

- A входной алфавит,
- B выходной алфавит,
- Q множество состояний,
- $\varphi: A \times Q \to Q$ функция перехода,
- ψ : $A \times Q \to B$ функция выхода.

Если задано начальное состояние $q_0 \in Q$, то автомат называется инициальным.

Работа такого автомата описывается каноническими уравнениями:

$$\begin{cases} z(t) = \varphi\left(x(t), z(t-1)\right) \\ y(t) = \psi\left(x(t), z(t-1)\right) \end{cases}$$

в момент t (t = 1,2,...):

- x(t) вход
- y(t) выход
- z(t) состояние

Для инициального автомата задается также $z(0) = q_0$.

Конечный автомат можно представить графически с помощью диаграммы переходов (диаграммы Мура). Диаграмма Мура — ориентированный мультиграф с петлями с множеством вершин Q и рёбрами, определяемыми следующим образом: для каждой вершины $q \in Q$ и каждой буквы $a \in A$ в граф включается ребро $(q, \varphi(a, q))$, этому ребру приписываются буквы а и $\psi(a, q)$. Вершина q_0 (при наличии) отмечается как начальная.

В общем случае инициальный автомат, на вход которого подано слово $x \in A^*$, перерабатывает его в выходное слово $y \in B^*$. Иначе говоря, такой автомат вычисляет некоторую словарную функцию y = f(x).

Функция f такова, что для любых слов $\alpha, \beta \in A^*$ существует такое слово $\gamma \in B^*$, что $f(\alpha\beta) = f(\alpha)\gamma$. Обозначим $\gamma = f_{\alpha}(\beta)$. Тогда:

$$f(\alpha\beta) = f(\alpha)f_{\alpha}(\beta).$$

 $f_{\alpha}(x)$ называется oстаточной функцией функции f по слову α .

Остаточная функция f_{α} определена для любого слова $\alpha \in A^*$. Причём

$$f(\alpha_1 \alpha_2 \dots \alpha_n) = f(\alpha_1) f_{\alpha_1}(\alpha_2) f_{\alpha_1 \alpha_2}(\alpha_3) \dots f_{\alpha_1 \alpha_2 \dots \alpha_{n-1}}(\alpha_n).$$

Отметим, что $f_{\lambda} = f$.

Словарная функция называется конечно-автоматной функцией, если существует вычисляющий ее конечный автомат.

Определим отношение $\sim \in A^* \times A^*$: $\alpha \sim \beta \leftrightarrow f_\alpha = f_\beta$. Очевидно, это отношение эквивалентности.

Если $\alpha \sim \beta$, то для любого слова γ имеет место $\alpha \gamma \sim \beta \gamma$.

Мощность фактор-множества A^*/\sim называют весом функции f.

Теорема. Функция является конечно-автоматной тогда и только тогда, когда она имеет конечный вес.

Для описания конечных автоматов-преобразователей можно применять аппарат логических функций. Для этого нужно закодировать буквы алфавитов и состояния двоичными наборами (векторами) и рассматривать автоматы с несколькими входами и выходами. Допустим, $A = \{0,1\}^n$, $B = \{0,1\}^m$, $Q = \{0,1\}^k$. Тогда элементы входной последовательности — это векторы $x(t) = (x_1(t), \dots, x_n(t))$, элементы выходной — векторы $y(t) = (y_1(t), \dots y_m(t))$, состояния — векторы $z(t) = (z_1(t), \dots, z_k(t))$. Автомат, выполняющий преобразование входных последовательностей в выходные, имеет n входов, m выходов и описывается каноническими уравнениями

$$\begin{cases} z_1(t) = \varphi_1(x_1(t), \dots, x_n(t), z_1(t-1), \dots, z_k(t-1)), \\ \vdots \\ z_k(t) = \varphi_k(x_1(t), \dots, x_n(t), z_1(t-1), \dots, z_k(t-1)), \\ y_1(t) = \psi_1(x_1(t), \dots, x_n(t), z_1(t-1), \dots, z_k(t-1)), \\ \vdots \\ y_m(t) = \psi_m(x_1(t), \dots, x_n(t), z_1(t-1), \dots, z_k(t-1)). \end{cases}$$

Здесь $\varphi_1, \dots, \varphi_k, \psi_1, \dots, \psi_m$ – булевы функции, они могут быть представлены формулами.

Эти функции могут получиться не всюду определенными. В этом случае нужно их доопределять, чтобы можно было использовать формулы для записи канонических уравнений. Доопределение можно выбирать произвольно и имеет смысл делать так, чтобы получились простые формулы.

Можно построить схему из функциональных элементов, вычисляющую правые части всех канонических уравнений. Пусть S — такая схема, изобразим ее условно в виде прямоугольника, отметив только входы и выходы:

Переменные $z_1(t), ..., z_k(t)$, определяющие состояние автомата, зависят от переменных $z_1(t-1), ..., z_k(t-1)$ через функции $\varphi_1, ..., \varphi_k$. Но есть и зависимость «в обратном направлении» – значение переменной $z_1(t-1)$ – это значение $z_1(t)$, задержанное на один такт. Иначе говоря, если на вход автомата единичной задержки подать $z_1(t)$, то на выходе получим $z_1(t-1)$. Добавим к функциональным элементам элемент единичной задержки. Этот элемент будем изображать в виде прямоугольника:

$$x(t) \rightarrow \longrightarrow x(t-1)$$

Тогда автомат общего вида можно представить схемой:

Входами этой схемы являются только входы автомата $x_1(t), ..., x_n(t)$, а выходами — выходы автомата $y_1(t), ..., y_m(t)$. Значения переменных, определяющих состояние, передаются с выхода на вход схемы.

Задачи

9.1. Конечный автомат задан диаграммой Мура (рис.2). Постройте все остальные способы задания автомата (канонические уравнения, таблица, схема с задержкой).

Рис. 2

9.2. Конечный автомат задан системой канонических уравнений:

$$\begin{cases} y(t) = x(t) \downarrow z(t-1), \\ z(t) = x(t) \oplus z(t-1), \\ z(0) = 0. \end{cases}$$

Постройте все остальные способы задания автомата (канонические уравнения, таблица, схема с задержкой).

9.3. Конечный автомат задан таблично:

x(t)	z(t-1)	z(t)	<i>y</i> (<i>t</i>)
а	q_0	q_1	1
а	q_1	q_1	0
b	q_0	q_0	0
b	q_1	q_0	1

Постройте все остальные способы задания автомата (диаграмма Мура, канонические уравнения, схема с задержкой).

9.4. Постройте конечный автомат, вычисляющий словарную функцию y(x):

1)
$$\begin{cases} y(1) = 0, \\ y(i) = x(i) \land x(i-1), i \ge 2; \end{cases}$$
2)
$$\begin{cases} y(1) = x(1), \\ y(2) = x(2) \oplus x(1), \\ y(i) = x(i-1) \oplus x(i-2), i \ge 3; \end{cases}$$

3)
$$\begin{cases} y(1) = 1, \\ y(2) = x(1), \\ y(i) = x(i) \lor x(i-1) \lor x(i-2), i \ge 3. \end{cases}$$

9.5. По схеме, изображённой на рис. 3, напишите канонические уравнения, постройте диаграмму переходов.

Ответы

- **5.2.** 1) 128; 2) 32: 3) 56; 4) 16; 5) 64; 6) 16.
- **5.3.** 1) $2^{2^{n}-1}$; 2) $2^{2^{n}-\binom{n}{k}}$; 3) $\binom{2^{n}}{k}$; 4) $2^{2^{n-1}}$; 5) $2^{3\cdot 2^{n-2}}$; 6) 2^{n+1} .
- **5.4.** 1) 1110; 2) 0100; 3) 00100010, фиктивная переменная x_1 ; 4) 01011010, фиктивная переменная x_2 .
- **5.7.** 10.
- **5.8.** 1) 16; 2) 4; 3) $2^8 3 \cdot 2^4 + 3 \cdot 2^2 2 = 218$.
- **5.9.** 1) $n \ge 3$; 2) $n \ne 3$; 3) n = 2k + 1 ($k \ge 1$); 4) $n \ge 3$; 5) $n \ge 3$.
- **5.10.** 2), 3), 4), 6) тождества, остальные нет.
- **5.11.** 1) -4) Является, 5) не является, 6) не является.
- **5.12.** 1) $xy \vee \overline{x} \overline{y}z$; 2) xyz; 3) $x\overline{y} \vee \overline{x}y \vee \overline{y}z$; 4) $x \vee y \vee \overline{z}$.
- **5.16.** 1), 2), 3), 4), 5), 6) тождества, остальные нет.
- 5.17. а) Все переменные фиктивные, это константа 1; б) ни одной.
- **5.18.** a) 2^n ; б) $2^{n-1}(2^n 1)$.
- **5.19.** 1) $2^n 1$; 2) $2^n 2$; 3) $2^n n 1$; 4) $2^k + 2^{n-k} 1$; 5) $2^k + 2^{n-k} 2$; 6) 2^{n-1} .
- **5.20.** 1) $1 \oplus x_1 \oplus x_2 \oplus x_3$; 2) $x_1 \oplus x_2 \oplus x_1 x_2 \oplus x_1 x_3 \oplus x_1 x_2 x_3$;
 - 3) $x_1x_2 \oplus x_1x_3 \oplus x_2x_3$; 4) $x_1 \oplus x_2 \oplus x_3 \oplus x_1x_2 \oplus x_1x_3 \oplus x_2x_3$;
 - 5) $x_1x_2x_3x_4$; 6) $x_1x_2 \oplus x_1x_2x_3 \oplus x_1x_2x_4$.
- **5.21.** 1) $1 \oplus x_2 \oplus x_1 x_2$; 2) $x_1 \oplus x_3 \oplus x_1 x_2 \oplus x_2 x_3 \oplus x_1 x_2 x_3$;
 - 3) $1 \oplus x_2 \oplus x_1x_3 \oplus x_2x_3$; 4) $1 \oplus x_2 \oplus x_3$.
- **5.22.** 1) $x_1 \oplus x_1 x_2 \oplus x_1 x_3 \oplus x_2 x_3 \oplus x_1 x_2 x_3$; 2) $x_3 \oplus x_2 x_3$.
- **5.23.** 1), 2), 4), 5) тождества, остальные нет.
- **5.24.** a) 2^{n+1} ; 6) $2^{\binom{n}{2}+n+1}$.
- **6.1.** 1) x_1 , x_2 , \overline{x}_1 , \overline{x}_2 ; 2) 0, 1, x_1 , x_2 , \overline{x}_1 , \overline{x}_2 ; 3) x_1 , x_2 , $x_1 \vee x_2$;
 - 4) 0, x_1 , x_2 , $x_1 \oplus x_2$; 5) 0, 1, x_1 , x_2 , \overline{x}_1 , \overline{x}_2 , $x_1 \oplus x_2$, $x_1 \sim x_2$;
 - 6) 1, $x_1, x_2, x_1 \sim x_2$; 7) 1, $x_1, x_2, x_1 \rightarrow x_2, x_2 \rightarrow x_1, x_1 \lor x_2$;
 - 8) 0, x_1 , x_2 , x_1x_2 , $x_1 \oplus x_2$, $x_1\overline{x}_2$, \overline{x}_1x_2 , $x_1 \vee x_2$; 9) x_1 , x_2 .
- **6.2.** 1) $\overline{x} = x \to 0$; 2) $x = (x \oplus y) \oplus y$; 3) $xy = x\overline{xy}$; 4) $xy = xy \oplus (xx \oplus x)$; 5) $x \lor y \lor xy \lor xyz = x \lor (y \lor (xy \lor (xy)z))$; 6) $x \lor y = (x|x)|(y|y)$;
 - 7) $xy = (x|y)|(x|y); 8) x \oplus y = (x \to y) \to ((y \to x) \to 0)$.
- **6.4.** 1) Принадлежит обоим; 2) только T_0 ; 3) ни одному; 4) только T_1 .
- **6.5.** 1) $2^{2^{n}-2}$; 2) $2^{2^{n}-2}$; 3) $2^{2^{n}-1}$; 4) $\frac{3}{4}2^{2^{n}}$.
- **6.6.** Самодвойственные 2) и 3).
- **6.7.** $x_1, x_2, \overline{x}_1, \overline{x}_2$.

- **6.8.** Самодвойственные 1), 3), 5), 6), 10).
- **6.9.** 1) 4; 2) 6; 3) 10.
- **6.10.** 1) n=3; 2) n=4k+3 ($k\geq 0$); 3) n=2k+1 ($k\geq 0$); 4) n=2k+1 ($k\geq 0$); 5) при любых n.
- **6.11.** 1) $2^{2^{n-1}-1}$; 2) $2^{2^{n-1}-1}$; 3) $2^{2^{n-1}-1}$.
- **6.12.** Линейные 1), 4) и 5).
- **6.13.** 0, 1, x_1 , $x_2\overline{x}_1$, \overline{x}_2 , $x_1 \oplus x_2$, $x_1 \sim x_2$.
- **6.14.** Линейные 1), 2), 5).
- **6.15.** Две при любом n.
- **6.16.** 1) 2^n ; 2) 2^n ; 3) 2^n ; 4) 2^{n-1} ; 5) $3 \cdot 2^{2^{n-2}} + 2^{n-1}$.
- **6.17.** Монотонные 1) и 2).
- **6.18.** 0, 1, x_1 , x_2 , x_1x_2 , $x_1 \vee x_2$.
- **6.20.** Mонотонные 1), 3), 4), 6).
- **6.21.** 1) Только при $n=1;\ 2)$ при любых $n;\ 3)$ при любых $n;\ 4)$ только при $n=2,3;\ 5)$ при нечетных $n;\ 6)$ при любых n.
- **6.22.** 1) $\tilde{f} = 01110001$; 2) $\tilde{f} = 00101011$; 3) $\tilde{f} = 00010111$; 4) $\tilde{f} = 00110111$; 5) $\tilde{f} = 10010110$.
- **6.23.** 1) $f = 1 \oplus x_1 \oplus x_2 \oplus x_3$, $g = x_1 x_2 x_3$; 2) $f = x_1 \oplus x_2 \oplus x_3$, $g = x_1 x_2 x_3$; 3) $f = 1 \oplus x_1 \oplus x_2 \oplus x_3$, $g = x_1 \vee x_2 \vee x_3$.
- **6.24.** 1) n + 2; 2) $2^{n+1} n 2$; 3) n; 4) 2.
- **6.25.** 1), 4), 5).
- **6.26.** 4) и 5).
- **6.27.** 1), 2), 4), 5).
- **6.28.** Полные: 1), 2), 4), 7), 8), 11).
- **6.29.** 1) $\{f_1, f_2, f_4\}$, $\{f_1, f_3, f_4\}$, $\{f_2, f_3, f_4\}$; 2) $\{f_1, f_3\}$, $\{f_1, f_4\}$, $\{f_2, f_3\}$, $\{f_2, f_4\}$; 3) $\{f_1, f_2, f_3, f_4\}$, $\{f_1, f_2, f_3, f_6\}$, $\{f_2, f_5\}$; 4) $\{f_4, f_5\}$; 5) $\{f_1, f_2, f_4\}$, $\{f_1, f_5\}$; 6) $\{f_1, f_3\}$, $\{f_1, f_4\}$, $\{f_2, f_3\}$, $\{f_2, f_4\}$, $\{f_2, f_5\}$, $\{f_3, f_5\}$, $\{f_4, f_5\}$.
- **6.30.** 1) Таких функций две; $x \to y$ и $y \to x$; 2) любая функция, существенно зависящая от двух переменных; 3) не существует; 4) не существует; 5) не существует.
- **6.31.** 1) T_0 , T_1 , M; 2) T_0 , T_1 , M; 3) T_0 , L; 4) S, L.
- **6.32.** *n*.
- **6.33.** Шефферовские: 1), 3), 4), 5).
- **6.37.** $2^{2^{n}-2}-2^{2^{n-1}-1}$.
- **7.1.** 1) $x_1 \sim x_2$; 2) $(\overline{x}_1 \vee \overline{x}_2)\overline{x}_3 \vee x_1x_2x_3$; 3) $f_1 = \overline{x}_1\overline{x}_2 \vee \overline{x}_3$; $f_2 = (x_1 \vee \overline{x}_2)\overline{x}_3$.
- 8.1. 1) Является кодом одного сообщения; 2) не является кодом сообщения;
 - 3) является кодом более чем одного сообщения.

- **8.2.** 1), 3) Является кодом одного сообщения; 2), 6) не является кодом сообщения; 4), 5) является кодом более чем одного сообщения.
- **8.3.** Является. Да. 1) 11000111110101111; 2) 01000000100010101111; 3) слог; 4) олово; 5) голоса.
- 8.4. 1) Не является разделимым, 10010010 неоднозначно декодируемое слово; 2) не является разделимым, 0101001 неоднозначно декодируемое слово; 3) не является разделимым, 100100 неоднозначно декодируемое слово; 4) не является разделимым, 0112201 неоднозначно декодируемое слово; 5) разделимый; 6) разделимый; 7) не является разделимым, 010210112 неоднозначно декодируемое слово; 8) не является разделимым, 01101100112100 неоднозначно декодируемое слово.
- **8.5.** Префиксный -2), 3), 6), 7), остальные нет.
- **8.8.** 1) 2.1; 2) 1.90; 3) 2.27; 4) 2.17.
- **8.9.** 1) 2; 2) 1.5; 3) 2.4; 4) 2.1; 5) 2.36; 6) 2.56; 7) 2.9; 8) 2.7; 9) 2.55; 10) 2.81.
- **8.10.** Оптимальный: 5).
- **8.11.** 1) 1.5; 2) 1.6; 3) 1.8; 4) 1.5; 5) 1.48; 6) 1.58.
- **8.13.** 1) 1.5, 1.5, 1.49; 2) 1.6, 1.59, 1.57; 3) 1.6, 1.56, 1.52; 4) 1.45, 1.45, 1.44.
- **8.14.** При N = 1 $C^*(P) = 1$ 1) 1.5, 1.5, 1.49; 2) 1.6, 1.59, 1.57; 3) 1.6, 1.56, 1.52; 4) 0.971; 1, 0.981.
- **8.15.** 1) 3, 2, 1; 2) 4, 3, 1; 3) 4, 3, 1; 4) 4, 3, 1.
- **8.16.** 1) 100110; 2) 110011; 3) 0100101; 4) 0010110; 5) 111101001010; 6) 0010110001111; 7) 110111001001011; 8) 01001001001000001.
- **8.17.** 1) 1; 2) 110; 3) 110; 4) 0011; 5) 1101; 6) 0111110; 7) 10101011101; 8) 00001010000; 9) 11110111101.
- **8.18.** 1) 000000110011110011100110; 2) 01010101011011111111;
 - 3) 110011100110111000001011001011; 4) 01001101100011001101111111.

Список литературы

- 1. Алексеев В.Е. Дискретная математика [Электронный ресурс]: учебное пособие. Нижний Новгород, ННГУ, 2017. 139 с. Режим доступа: http://www.unn.ru/books/resources.html, рег. номер 1688.17.06.
- 2. Алексеев В.Е, Захарова Д.В. Теория графов. Учебное пособие. Нижний Новгород, ННГУ, 2018. 118 с.
- 3. Алексеев В.Е., Киселева Л.Г., Смирнова Т.Г. Сборник задач по дискретной математике [Электронный ресурс]. Нижний Новгород: ННГУ, 2012. 80 с. Режим доступа: http://www.unn.ru/books/resources.html, рег. номер 487.12.08.
- 4. Андерсон Д.А. Дискретная математика и комбинаторика. Пер. с англ. Издательский дом «Вильямс», 2004. 960 с.
- 5. Виленкин Н.Я, Виленкин А.Н., Виленкин П.А. Комбинаторика. М.: ФИМА, МЦНМО, 2010. 400 с.
- 6. Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2009. 416 с. Режим доступа: http://www.studentlibrary.ru/book/ISBN9785922104777.html.
- 7. Жильцова Л.П., Смирнова Т.Г. Основы теории графов и теории кодирования в примерах и задачах [Электронный ресурс]: учебное пособие. Нижний Новгород: ННГУ, 2008. 64 с. Режим доступа: http://www.unn.ru/books/resources.html, рег. номер 1437.17.06.
- 8. Редькин Н.П. Дискретная математика.—М.: Физматлит, 2009.— 264 с. Режим доступа: http://www.studentlibrary.ru/book/ISBN9785922110938.html.
- 9. Яблонский С.В. Введение в дискретную математику.— М.: Наука, 2000. 384 с.

Владимир Евгеньевич Алексеев

Дарья Владимировна **Захарова** Дмитрий Борисович **Мокеев** Татьяна Геннадьевна **Смирнова**

СБОРНИК ЗАДАЧ ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ Часть 2

Практикум

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» 603950, Нижний Новгород, пр. Гагарина, 23.