Kapitel 4

Stetigkeit

4.1 Grenzwerte von Funktionen

Sei $\Omega \subset \mathbb{R}^d$ eine Teilmenge und $f: \Omega \to \mathbb{R}^n$ eine Abbildung.

Definition 4.1

f hat an der Stelle $x_0 \in \mathbb{R}^d$ den Grenzwert a, falls für jede Folge $(x_k)_{k \in \mathbb{N}}$ in Ω mit $x_k \to x_0$ $(k \to \infty)$ gilt $f(x_k) \to a$.

Wir schreiben: $\lim_{x\to x_0} f(x) = a$

Bemerkung: x_0 muss nicht im Definitionsbereich von f sein.

Definition 4.2

 $f:\Omega\to\mathbb{R}^d$ heisst stetigan der Stelle $x_0\in\Omega$ falls:

- 1. f an der Stelle x_0 definiert ist,
- 2. $\lim_{x\to x_0} f(x)$ existiert, und
- 3. $\lim_{x \to x_0} f(x) = f(x_0)$.

Definition 4.2'

Die Abbildung $f: \Omega \to \mathbb{R}^n$ ist im Punkt $x_0 \in \Omega$ stetig, falls für jede gegen x_0 konvergierende Folge $(x_n)_{n\geq 1}$ in Ω , die Folge $(f(x_n))_{n\geq 1}$ zum Grenzwert $f(x_0)$ konvergiert, d.h.

$$\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n)$$

Anders gesagt:

• Grenzwerte von Folgen werden von stetigen Funktionen nicht verändert.

• Stetige Funktionen erhalten Grenzwerte von Folgen.

Definition 4.2"

Die Abbildung $f: \Omega \to \mathbb{R}^n$ ist auf Ω stetig (oder einfach stetig, wenn der Kontex klar ist), falls f in jedem Punkt $x \in \Omega$ stetig ist.

Beispiele

Mittels Resultate aus dem dritten Kapitel haben wir wichtige Beispiele von stetigen Funktionen.

• Diese Funktion ist auf ganz $\mathbb{R} \times \mathbb{R}$ stetig:

$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

 $(a,b) \mapsto (a+b)$

(Seien $(a_n), (b_n)$ Folgen mit $a = \lim a_n, b = \lim b_n$. Dann ist die Folge $(a_n + b_n)$ konvergent, und $\lim a_n + b_n = a + b$, nach Satz 3.8)

 \bullet Diese Funktion ist auf ganz $\mathbb{R}\times\mathbb{R}$ stetig:

$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
$$(a,b) \mapsto ab$$

• Diese Funktion is auf $\mathbb{R} \times \mathbb{R}^x$ stetig:

$$f: \mathbb{R} \times \mathbb{R}^x \to \mathbb{R}$$
$$(a,b) \mapsto a/b$$

• Aus wiederholter Anwendung von 1. und 2. ergibt sich die *Polynomiale Funktion*:

heisst die wirklich so?

Sei
$$n > 0$$
, $a_0, \ldots, a_n \in \mathbb{R} : p(x) := a_0 + a_1 x + \cdots + a_n x^n$

Die Polynomiale Funktion ist stetig auf ganz \mathbb{R} .

• Die beiden folgenden Abbildungen sind stetig auf ihrem Definitionsbereich.

$$\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$$

$$(a,b) \mapsto (a+b)$$

$$\mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$$

$$(\lambda,a) \mapsto \lambda a$$

• Die folgenden Abbildungen sind stetig.

$$\mathbb{C} \to \mathbb{C} \qquad \qquad \mathbb{C} \times \mathbb{C} \to \mathbb{C} \qquad \qquad \mathbb{C} \times \mathbb{C}^x \to \mathbb{C}$$

$$z \mapsto \bar{z} \qquad \qquad (z, w) \mapsto z * w \qquad (z, w) \mapsto z/w$$

what goes there? p130 (week8sem1)

• Die folgenden Funktionen sind auf [...] stetig:

 $\bullet\,$ Die charakteristische Funktion von $\mathbb{Q}:$

Sei
$$f(x) = \mathcal{X}_{\mathbb{Q}} = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Sei $x \in \mathbb{R} \setminus \mathbb{Q}$ fest mit $(x_k) \in \mathbb{Q}, x_k \to x$. Dann ist $f(x_k) = \mathcal{X}(x_k) = 1 \to 0 = \mathcal{X}(x)$. (Zu $x \in \mathbb{R} \setminus \mathbb{Q}$, sei x_k die an der k-ten Nachkommastelle abgebrochene Dezimaldarstellung von x. Dann gilt $x_k \in \mathbb{Q} \ \forall k \in \mathbb{N} \ \text{und} \ x_k \to x_1$.)

• Sei $f: \begin{cases} x & x < 1 \\ x & x > 1 \end{cases}$

f ist in x=1 nicht stetig, weil f an der Stelle x=1 nicht definiert ist. In diesem Beispiel ist die Funktion f nicht stetig, aber sie ist eigentlich eine "gute" Funktion.

Does that really say gute?

no ozlem number..

Definition (Struwe 4.1.3 (ii))

 $\Omega \subset \mathbb{R}^d, f: \Omega \to \mathbb{R}^n, x_0 \in \mathbb{R}^d \setminus \mathbb{Q} \text{ so dass } \exists (x_k) \in \Omega \text{ mit } \lim x_k = x_0.$

Dann ist f an der Stelle x_0 stetig ergänzbar falls $a=\lim f(x_k)$ existiert. In diesem Fall setzen wir

$$f(x_0 = a$$

Die durch $f(x_0) = a$ ergänzte Funktion f ist offenbar stetig an der Stelle x_0 .

offenbar \rightarrow offensichtlich?

• Diese stückweise konstante Funktion ist stetig an jeder Stelle $x_0 \neq 0$. Sie ist jedoch für $a \neq b$ an der Stelle $x_0 = 0$ nicht stetig ergänzbar. (Struwe Beispiel 4.1.3 (vii))

$$f: \mathbb{R}^x \to \mathbb{R}$$

$$f(x) = \begin{cases} a & \text{falls } x < 0 \\ b & \text{falls } x > 0 \end{cases}$$

• Sei $f:(a,b)\to\mathbb{R}$ monoton wachsend, d.h. $\forall x,y\in(a,b)$ mit $x\leq y$ folgt $f(x) \leq f(y)$. Sei ausserdem $x_0 \in (a,b)$. Dann existieren die links- und rechtsseitigen Grenzwerte

$$f(x_0^+) := \lim_{\substack{x \to x_0 \\ x > x_0 \\ x \downarrow x_0}} f(x), \qquad f(x_0^-) := \lim_{\substack{x \to x_0 \\ x < x_0 \\ x \uparrow x_0}} f(x)$$

und f ist stetig an der Stelle x_0 genau dann, wenn $f(x_0^-) = f(x_0^+) = f(x_0)$.

Beweis

Wir behaupten, dass für jede Folge $(y_n)_{n\geq 1}$ mit $\{y_n: n\geq 1\}\subset (a,x_0)$ und $\lim y_n = x_0$ die Folge $(f(y_n))_{n>1}$ kovergent und der linksseitige Limes $l_-(x_0)$ unabhängig von der Wahl der Folge ist.

Wir betrachten zuächst die "spezielle" Folge $x_n = (x_0 - \frac{1}{n})_{n \geq r}$. Hier ist r so

gewählt, dass $x_0 - \frac{1}{r} \ge a$.
Dann ist $(f(x_0 - \frac{1}{n}))_{n \ge r}$ monoton wachsend $(x_0 - \frac{1}{n+1} > x_0 - \frac{1}{n} \text{ und } f \text{ monoton wachsend})$ und $(f(x_0 - \frac{1}{n}))_{n \ge r}$ beschränkt (f(a) < [...] < f(b)).

Sei
$$l_- := \lim_{n \to \infty} f(x_0 - \frac{1}{n})$$

Wir möchten zeigen, dass für jede $(y_n) \subset (a,x_0)$ mit $\lim y_n = x_0 \lim f(y_n)$ existiert und $\lim f(y_n) = l_-$.

Da es für jedes $x < x_0$ ein n gibt, mit $x \le x_0 - \frac{1}{n}$ folgt

$$f(x) \le f(x_0 - \frac{1}{n} \le l_-$$

IV-4

missing in source material p134week8sem1

 l_{-} oder = l.?

KAPITEL 4. STETIGKEIT

eadable p134 mid

Sei nun $(y_n)_{n\geq 1}$ beliebig in $(?a?,x_0)$ mit $\lim y_n=x_0$. Sei $\varepsilon>0$, $(y_n< x_0)$ und $n_0(\varepsilon)$ mit

$$l_{-} - \varepsilon < f(x_0 - \frac{1}{n}) \le l_{-} \quad \forall n > n_0(\varepsilon)$$

Insbesondere

$$l_{-} - \varepsilon < f(x_0 - \frac{1}{n_0(\varepsilon)}) \le l_{-}$$

Sei jetzt $n_1(\varepsilon) = n_1(n_0(\varepsilon)) > 0$ so dass

$$x_{n_0(\varepsilon)} = x_0 - \frac{1}{n_0(\varepsilon)} < y_n < x_0 = \lim_{n \to \infty} x_n \quad \forall n \ge n_1(\varepsilon)$$

$$((y_n) < (a, x_0), \lim y_n = x_0)$$

Da f monoton ist, folgt

$$l_{-} - \varepsilon < f(x_0 - \frac{1}{n_0(\varepsilon)}) \le f(y_n) \le l_{-} = \lim f(x_n)$$

Insbesondere $\lim f(y_n) = l_-$.

Der Beweis für L_+ verläuft ganz analog.

Nun zur Stetigkeit: Es gilt immer

$$l_{-}(x_0) \le f(x_0) \le l_{+}(x_0)$$

Falls $l_{-}(x_0) < l_{+}(x_0)$ sei $(t_n)_{n>1}$ wie folgt definiert:

$$t_n = \begin{cases} x_0 - \frac{1}{n} & n \text{ gerade} \\ x_0 + \frac{1}{n} & n \text{ ungerade} \end{cases}$$

Dann gilt $\lim t_n = x_0$. Aber $f(t_{2n+1}) - f(t_n) \ge l_+(x_0) - l_+(x_0) > 0$, woraus folgt dest $(f(t_n))_{n>1}$ nicht konvergent. Falls $l_{-}(x_0) = l_{+}(x_0)$ folgt die Stetigkeit sofort.

dest? p 135 bottom

Satz 4.3

Sei $f:(a,b)\to\mathbb{R}$ monoton wachsend. Dann ist die Menge der Unstetigkeitspunkte von f entweder endlich oder abzählbar.

Beweis

Sei $U(f) = \{x \in (a,b) : f \text{ ist nicht stetig an } x\}$. Dann ist $\forall x \in U(f), \quad l_{-}(x) < f$ $l_+(x)$ und wir wählen ein $g(x) \in ??n(l_-(x), l_+(x))$. Falls $x_1 < x_2$ in U(f) folgt unreadable.. p136 mid $l_+(x_1) < l_-(x_2)$ und somit $g(x_1) < g(x_2)$. Damit ist $g: U(f) \rightarrow ??$ injektiv. Stetigkeit verhält sich gut mit den üblichen Operationen auf Funktionen.

same unreadable character

verträgt?

Satz 4.4

Seien $f, g: \Omega \to \mathbb{R}^n$ und $x_0 \in \Omega$. Falls f und g in x_0 stetig sind, so sind es auch f + g und αf , $\alpha \in \mathbb{R}$.

Korollar 4.5

Falls f, g auf Ω stetig sind, so sind es f + g und αf .

Definition 4.6

$$C(\Omega,\mathbb{R})$$

bezeichnet die Menge der stetigen Abbildungen $f:\Omega\to\mathbb{R}$. Nach Korollar 4.5 ist es ein Vektorraum.

Satz 4.7

Seien $f: \Omega \to \mathbb{R}^n$, $\Omega \subset \mathbb{R}^d$ und $g: \Gamma \to \mathbb{R}^n$ mit $f(\Omega) \subset \Gamma$ und $x_0 \in \Omega$, $y_0 = f(x_0) \subset \Gamma$. Falls f in x_0 und g in y_0 stetig sind, folgt, dass $g \circ f: \Omega \to \mathbb{R}^n$ in x_0 stetig ist.

Beweis

Sei $(t_n)_{n\geq 1}$ in Ω mit $\lim t_n = x_0$. Da f stetig ist, $\lim f(t_n) = f(x_0) = y_0$, und aus der Stetigkeit von g folgt, dass

$$\lim_{n \to \infty} g(f(t_n)) = g(y_0) = (g \circ f)(x_0)$$

Korollar 4.8

Falls $f: \Omega \to \mathbb{R}^d$, $f(\Omega) \subset \Gamma$ und $g: \Gamma \to \mathbb{R}^m$, auf Ω bzw auf Γ stetig sind, so folgt, dass $g \circ f: \Omega \to \mathbb{R}^m$ auf Ω stetig ist.

4.2 Stetige Funktionen

In diesem Abschnitt behandeln wir die erste der fundamentalen Eigenschaften von stetigen Funktionen, nämlich das eine auf einem endlichen Intervall [a,b] (Endpunkte eingeschlossen) stetige Funktion immer ein Max und Min besitzt. Dies veralgemeinern wir dann auf Abbildungen von $\Omega \subseteq \mathbb{R}^d$ nach $\mathbb{R}n$ wobei Ω eine spezielle Eigenschaft haben muss (Kompaktheit).

Satz 4.9

Seien $-\infty < a \le b < \infty$ und $f:[a,b] \to \mathbb{R}$ stetig. Dann ist f([a,b]) in \mathbb{R} beschränkt und es gibt $c_-,c_+\in[a,b]$ mit

$$f(c_{+}) = \sup \{f(x) : x \in [a, b]\}\$$

$$f(c_{-}) = \inf \{f(x) : x \in [a, b]\}\$$

d.h. Supremum und Infimum werden angenommen.

KAPITEL 4. STETIGKEIT

Beweis

1. f([a,b]) ist nach oben beschränkt (Indirekter Beweis)

Falls nicht, so gibt es $\forall n \in \mathbb{N}$ ein $t_t \in [a, b]$ mit $f(t_n) \geq n$.

 $(t_n)_{n\geq 1}$ ist beschränkt, nach Bolzano-Weierstrass. Sei $(t_{l(n)})$ eine konvergente Teilfolge mit $\lim t_{l(n)}=x$.

Dann ist $x \in [a, b]$, da $a \le t_n \le b$

(Satz: $(a_n), (b_n)$ konvergente Folgen mit $\lim a_n = a, \lim b_n = b$. Falls $a_n \leq b_n$, folgt $a \leq b$.)

Aus der Stetigkeit von f folgt: $\lim_{n\to\infty} f(t_n) = f(x)$. Insbesondere ist $f(t_{l(n)})$ beschränkt, was im Widerspruch mit $f(t_{l(n)}) \ge l(n)$ steht.

 $\implies f$ ist nach oben beschränkt.

2. f ist nach unten beschränkt (analog)

Sei M:= Sup $\{f(x):x\in [a,b]\}$, welches als Folge von 1. existiert. Sei für jedes $n\geq 1$ $x_n\in [a,b]$ mit

$$M - \frac{1}{n} < f(x) \le M \qquad (*)$$

 $(M - \frac{1}{n} \text{ ist kein Supremum} \implies \exists x_n \text{ mit } M - \frac{1}{n} < f(x_n))$

3. $(x_n) \subset [a,b]$ beschränkt.

Sei nach Bolzano-Weierstrass $(x_{l(n)})_{n\geq 1}$ eine konvergente Teilfolge mit Limes c_+ . Aus der Stetigkeit von f folgt:

$$f(c_{+}) = \lim_{n \to \infty} f(x_{l(n)})$$

Aus (*) folgt

$$\lim_{n \to \infty} f(x_{l(n)}) = M$$

d.h. $\exists c_+ \in [a, b]$ mit

$$f(c_+) = \lim f(x_{l(n)}) = M$$

4. Infimum ist ähnlich.

Bemerkung

Satz 4.9 kann man als eine Eigenschaft des Intervalls [a, b] auffassen. Sie gilt zum Beispiel nicht für (0, 1] wie das Beispiel der auf (0, 1] stetigen Funktion $f(x) = \frac{1}{x}$ zeigt.

Die grundlegende Eigenschaft ist Kompaktheit.

Definition 4.10

Eine Teilmenge $K \subset \mathbb{R}^d$ heisst kompakt, falls jede Folge $(x_n)_{n \geq 1}$ von Punkten aus K einen Häufungspunkt $in\ K$ besitzt, d.h. falls jede Folge in K eine $in\ K$ konvergierende Teilfolge hat.

Beispiel

- 1. (0,1] ist nicht kompakt: $(\frac{1}{n})_{n\geq 1}\subset (0,1]$ konvergiert gegen $0\notin (0,1]$.
- 2. [a, b] ist kompakt. Sei $(t_n)_{n\geq 1}$ eine Folge mit $a\leq t_n\leq b$. (t_n) ist beschränkt, nach Bolzano-Weierstrass sei $(t_{l(n)})$ eine konvergente Teilfolge mit Limes l. Dann folgt aus $a\leq t_n\leq b$. $(t_{l(n)})$ $\forall n\geq 1$, dass

$$a \leq \lim t_{l(n)} \leq b$$

D.h. $l \in [a, b]$.

Lemma 4.11

Falls $K \subset \mathbb{R}^d$ kompakt ist, ist es beschränkt und besitzt zudem ein Minimum und Maximum.

Beweis

Sonst gibt es zu jedem $n \ge 1, n \in \mathbb{N}$ ein $x_n \in K$ mit $||x_n|| \ge n$. Dann kann aber $(x_n)_{n\ge 1}$ keine konvergente Teilfolge besitzen: $(|x_{l(n)}| > l(n))$. $\implies K$ ist beschränkt.

Sei s := Sup K. Dann gibt es $\forall n \geq 1, k_n \in K$ mit

$$s - \frac{1}{n} < k_n \le s$$

Insbesondere gilt $\lim k_n = s$. Da K kompakt ist, hat k_n eine in K konvergierende Teilfolge. Daraus folgt, dass $s \in K$.

Beispiel

 $S^d := \{x \in \mathbb{R}^{d+1} : ||x|| = 1\}, \text{ die d-dimensionale Sphäre, ist kompakt.}$

Beweis

Sei $(x_n)_{n\geq 1}\subset S^d$, dann ist diese Folge offensichtlich beschränkt, besitzt sie (nach Bolzano-Weierstrass) eine konvergente Teilfolge $(x_{l(n)})_{n\geq 1}$. Sei $p\in\mathbb{R}^{d+1}$ deren Limes. Da die Funktion f(x) := ||x|| stetig ist, folgt

$$||p|| = f(p) \stackrel{\text{defn}}{=} f(\lim x_{l(n)}) \stackrel{f \text{ stetig}}{=} \lim f(x_{l(n)}) = 1$$

$$\implies p \in S^d$$

Die Verallgemeinerung von Satz 4.9 ist

Satz 4.12

- 1. Sei $K \subset \mathbb{R}^d$ kompakt und $f: K \to \mathbb{R}^n$ eine stetige Abbildung. Dann ist $f(K) \subseteq \mathbb{R}^n$ eine kompakte Teilmenge.
- 2. f nimmt ihr Supremum und Infimum an, d.h. es gibt $c_-, c_+ \in K$ mit

$$f(x_{-}) \le f(x) \le f(x_{+}) \quad \forall x \in K$$

Beweis

1. Sei $(y_n)_{n\geq 1}$ eine beliebige Folge in f(K). Wir müssen zeigen, dass es eine konvergente Teilfolge mit Limes in f(K) gibt. Sei $(x_n) \in K$ mit

$$f(x_n) = y_n, n \ge 1$$

Dann ist $(x_n)_{n\geq 1}$ eine Folge in K. Da K kompakt ist, gibt es $p\in K$ und $(x_{l(n)})$, eine konvergente Teilfolge mit $\lim x_{l(n)} = p$. Aus der Stetigkeit von f folgt

$$f(p) = f(\lim x_n) \stackrel{f \text{ stetig}}{=} \lim f(x_{l(n)}) = \lim y_{l(n)}$$

D.h. $y_{l(n)}$ ist eine Teilfolge von y_n mit Limes $f(p) \in K$. $\implies f(K)$ ist kompakt.

2. Da f(K) kompakt ist, (nach 1.), ist f(K) beschränkt, und besitzt zudem ein Minimum und Maximum (nach Lemma 4.11).

$$\exists y_+, y_- \in f(K), \text{ mit } y_+ = \text{Sup } f(K)$$

$$y_- = \text{Inf } f(K)$$

$$\exists c_+, c_- \in K, \text{ mit } y_+ = f(c_+)$$

$$y_- = f(c_-)$$

Norm auf \mathbb{R}^d 4.3

Der Distanzbegriff auf \mathbb{R}^d kommt von einem Skalarprodukt. Es gibt interessante, In the source notes, this andere Arten einen Distanzbegriff einzuführen, nämlich mit dem Begriff der is 4.4, but there is no Norm.

4.3 that I can find...

Definition 4.13

Eine Norm auf \mathbb{R}^d ist eine Abbildung

$$\|.\|: \mathbb{R}^d \to \mathbb{R}$$

mit den folgenden Eigenschaften:

- 1. Definiertheit: $||x|| \ge 0$ mit Gleichheit genau dann wenn x = 0.
- 2. Positive Homogenität: $\|\alpha x\| = |\alpha| \|x\| \quad \forall \alpha \in \mathbb{R}, \forall x \in \mathbb{R}^d$
- 3. Dreiecks-Ungleichung: $||x+y|| \le ||x|| + ||y|| \quad \forall x,y \in \mathbb{R}^d$

Beispiel 4.14

1.

$$||x||_2 = \left(\sum_{i=1}^d |x_i|\right)^{\frac{1}{2}} \qquad x = (x_1, \dots, x_d)$$

kommt vom Skalarprodukt.

2. Für $1 \le p < \infty$ sei

$$||x||_p := \Big(\sum_{i=1}^d |x_i^p|\Big)^{\frac{1}{p}}$$

und $\|x\|_{\infty}=\max{\{|x_i|:1\leq i\leq d\}},$ dann sind $\|.\|_p,1\leq p\leq\infty$ Normen auf $\mathbb{R}^d.$

Zwischen diesen verschiedenen Normen haben wir die folgenden Verhältnisse:

$$||x||_{\infty} = \max |x_i| \le ||x||_p = \sqrt[d]{\sum_{i=1}^d |x_i|^p} \le d||x||_{\infty}$$
 (*)

Bild von $||x||_1 = \sum_{i=1}^d |x_i| \le 1$

$$c_1 ||x||^{(1)} \le ||x||^{(2)} \le c_2 ||x||^{(1)} \quad \forall x \in \mathbb{R}^d$$

Bemerkung: Sei $C = \max\{C_2, \frac{1}{C_1}\}$, dann gilt $(\frac{1}{C})||x||^{(1)} \le ||x||^{(2)} \le C||x||^{(1)}$

Beispiel

Die Normen $\left\|.\right\|_p \quad 1 \leq p \leq \infty$ sind wegen (*) äquivalent.

Bemerkung 4.16

Äquivalente Normen definieren dieselben "offenen Mengen" via Distanzfunktion.

Beweis

Für die Normkugeln

marked as skip? p152 week 9 sem1

$$B_r^{(1)}(x_0) := \{x : ||x - x_0||^{(1)} < r\}$$

gilt mit $c_1 ||x||^1 \le ||x||^2 \le c_2 ||x||^1$

$$B_{rc_1}^{(1)}(x_0) \subset B_r^{(2)}(x_0) \subset B_{c_2r}(x_0)$$

 $\Longrightarrow x_0\in\Omega$ innerer Punkt von Ω bezüglich $\|.\|^2\iff x_0\in\Omega$ innerer Punkt von Ω bezüglich $\|.\|^1$

Auf \mathbb{R}^d haben wir

Satz 4.17

Je zwei Normen auf \mathbb{R}^d sind äquivalent.

Beweis

Es genügt zu zeigen, dass eine beliebige Norm $\|.\|$ zu $\|.\|_2$ äquivalent ist. Seien $x=\sum x_ie_i,\ y=\sum y_ie_i$. Dann ist

$$||x - y|| = \left\| \sum_{i=1}^{d} (x_i - y_i)e_i \right\| \le \sum_{i=1}^{d} |x_i - y_i| ||e_i|| \le ||x - y|| \sum_{i=1}^{d} ||e_i||$$

$$\le C' ||x - y||_2$$

Layout imperfect, but hard to make better.. p153 week9 sem1

Also folgt, dass
$$\mathbb{R}^d \to \mathbb{R}$$

 $x \mapsto ||x||$ stetig ist.

Da $S^{d-1} = \{x \in \mathbb{R}^d : \|x\|_2 = 1\}$ kompakt ist, folgt dass es $c_+, c_- \in S^{d-1}$ gibt, mit $k_- := \|c_-\| \le \|x\| \le \|c_+\| := k_+ \ \forall x \in S^{d-1}$. Da $c_0 \ne 0$ folgt $k_- > 0$. Sei $x \ne 0$ allgemein $(C_- \in S^{d-1})$, dann ist $y := \frac{x}{\|x\|_2} \in S^{d-1}$ also $k_- \le \left\|\frac{x}{\|x\|_2}\right\| < k_+$, woraus

$$k_{-}||x||_{2} \le ||x|| \le k_{+}||x||_{2}$$

folgt.

4.4 $\varepsilon - \delta$ Kriterium für Stetigkeit

4.5 in source notes. what to do?

Wir haben das folgende Kriterium für Stetigkeit an der Stelle x_0 :

Satz 4.18

Sei $f:\Omega\to\mathbb{R}^n,\,\Omega\subset\mathbb{R}^d$ eine Abbildung, $x_0\in\Omega.$ Folgende Eigenschaften sind äquivalent:

- 1. f ist stetig an der Stelle x_0 . D.h. für jede gegen x_0 konvergierende Folge $(x_n) \subset \Omega$ konvergiert die Folge $f(x_n)$ gegen $f(x_0)$.
- 2. Für jedes $\varepsilon > 0$ gibt es $\delta > 0$ so dass für alle $x \in \Omega$ mit $|x x_0| < \delta$ gilt:

$$|\delta(x) - \delta(x_0)| < \varepsilon$$

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in \Omega, ||x - x_0|| < \delta \implies ||\delta(x) - \delta(x_0)|| < \varepsilon$$

Beweis 4.18