Reg. No.

B.Tech. DEGREE EXAMINATION, DECEMBER 2023

Sixth Semester

18CSE451T - WIRELESS SENSOR NETWORKS

(For the candidates admitted from the academic year 2020-2021 & 2021-2022)

WY			
N	0	14	2 4
TA	v	u	-

(i) **Part - A** should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

(ii)	Par	rt - B & Part -	· C should be	e answered	in ans	wer booklet.				
Γime: 3 hours				Max. Marks: 100						
$PART - A (20 \times 1 = 20 Marks)$					Marks	BL	со	PO		
. 1		commercial Zig bee Wi-Fi		er ALL Q f IEEE 802	2.15.4 (B)		1	1	1	1
2	inte	adio transceiv rnally? Wire Antenna	ver in wirel	less sensor	(B) (D)	vorks contains which component Electrode Battery	its ¹	1	1	1
3	(A)	Z node archit Power man Communica	agement su	bsystem	(B)	subsystem that is attached with Sensing subsystem Interfacing subsystem	1 1	3	1	2
4	(A)	vireless senso Energy effic Minimum c	cient route	the netwo	(B)	ver is responsible for finding Shortest route Maximum cost	1	3	2	2
5	velo	ich of the fol ocities? One way – TDOA		oroach use	(B) (D)	signals that travel with different Two way – TOA Angel of arrival	nt ¹	1	2	1
6		at is the full f Standard po Spatial posi	sitioning s	ervice	(B) (D)	Satellite positioning service Station positioning service	1	1	1	1
7	(A)	ALOHA, MACAW	MA, CDM	A	(B)	t in contention based protocol? Polling, token passing reservation based FDMA, TDMA, CDMA CASMA	g,	1	1	2
8.	lister (A)	main goal oning, collision IEEE 802.11 Message pa	n, over hea 5.4 standar	ring and c	ontro (B)	ce energy waste caused by idle l overhead S-MAC protocol Slotted ALOHA	le ¹	2	4	1

9.	The distance between sensors node and	the	light source can be expressed as	. 1	1	2	1
			$d = 2\sin^{\alpha}/2/b$				
	$(C) d = 2\cos^{\alpha}/2/b$	(D)	$d = b / 2\sin^{\alpha}/2$				
10.	In pattern MAC, the pattern of 0001 and (A) A node planned to awake (during 3 rd and 7 th slot of the period (C) A node planned to awake (during 3 rd and 8 th slot of the period	(B) (D)	A node planned to awake during 4 th and 7 th slot of the period A node planned to awake	1	3	2	1
11.	` '	ier si (B)	-	1	2	2	1
12.	What is the node sequence of event 1 in	n the	figure?	1	3	2	1
	Event 2 2 Anchor Anchor Anchor Anchor T Event Event						
	` '	` '	4-5-B-3-A-2-1 B-2-3-1-4-A-5				
13.		(B)	nt of routing function? Robustness Stability	1	2	3	3
14.	· ·	(B)	equires no network information Variable routing Random routing	1	2	3	1
15.	The objective of wireless sensor network (A) Maximize energy consumption		outing path selection is to Maximize the life time of the networks	1	1	3	1
	(C) Minimize the lifetime of the network	(D)	Minimize the overall number of sensors in the WSN				
16.	The SPIN belongs to the category of (A) Flat based routing protocol	(B)	Hierarchical based routing	1	1	3	2
	(C) I ocation based routing protocol	(D)	protocol Hybrid routing protocol				

17	 7. The sensor applications data model describes (A) The flow of information (B) The flow of information between the sensor nodes and between sensors nodes the data sink (C) The flow of information (D) The flow of information between data sinks 		2	4	1
18	3. WSN middleware is a software infrastructure that glues together the following		1	4	2
	 (A) Software package and operating (B) Network hardware, OS, stacks systems and applications (C) Hardware infrastructures (D) Stacks and applications 				
19	 The important operating system challenges in WSN (A) Cross layer design (B) Energy consumption (C) Bandwidth demand (D) QoS 	1	2	4	1
20.	. In WSN, is a network security system that monitors and control incoming and outgoing network traffic based on predetermined security rules	1	1	1	2
	(A) Spyware (B) Cookie (C) Spam (D) Firewall				
	DADE DATE		*		
	$PART - B (5 \times 4 = 20 Marks)$ Answer ANY FIVE Questions	Marks	BL	CO	PO
21.		Marks 4	BL 4	1	PO 1
	Answer ANY FIVE Questions			77.2.00	
22.	Answer ANY FIVE Questions Differentiate sensors and actuators.	4	4	1	1
22. 23.	Answer ANY FIVE Questions Differentiate sensors and actuators. Brief about path loss in wireless transmission.	4	4	1 2	1 2
22.23.24.	Answer ANY FIVE Questions Differentiate sensors and actuators. Brief about path loss in wireless transmission. Write a note on Bluetooth standard.	4 4	2	1 2 2	1 2 1
22.23.24.25.	Answer ANY FIVE Questions Differentiate sensors and actuators. Brief about path loss in wireless transmission. Write a note on Bluetooth standard. List out the data service middleware components and explain them shortly.	4 4 4	4 2 4	1 2 2	1 2 1
22.23.24.25.26.	Answer ANY FIVE Questions Differentiate sensors and actuators. Brief about path loss in wireless transmission. Write a note on Bluetooth standard. List out the data service middleware components and explain them shortly. Write short note on S-MAC protocol. Brief on security challenges and security attacks in wireless sensors	4 4 4	4 2 4	1 2 2 4	1 2 1 1
22.23.24.25.26.	Answer ANY FIVE Questions Differentiate sensors and actuators. Brief about path loss in wireless transmission. Write a note on Bluetooth standard. List out the data service middleware components and explain them shortly. Write short note on S-MAC protocol. Brief on security challenges and security attacks in wireless sensors networks.	4 4 4 4	4 2 4 1 4	1 2 2 4 2 4	1 2 1 2 2

(OR)

) ,	wireless sensor node.	12	4	1	1
29. a	. Elaborate the concept of time synchronization with respect to sensor chocks.	12	3	2	1
b	(OR) Explain the hardware Telosb and Micaz motes.	12	3	1	1
	Describe the overview of wireless MAC protocols and their characteristics.	12	4	2	1
	(OR)				
b	. Describe the contention based MAC protocols and contention free MAC protocols in wireless sensor networks.	12	4	2	1
31. a	. Discuss about the design issues in WSN routing, data dissemination and gathering.	12	4	3	2
	(OR)			(4)	
b	Discuss about any two hierarchical routing protocols designed for wireless sensor networks.	12	3	3	3
32. a	. Describe the WSN middleware principles with middleware architecture.	12	3	4	3
	(OR)				
b	Give the details on the security protocols used for wireless sensor networks.	12	3	4	3

* * * * *