Programme n°1

Notions d'analyse dimensionnelle (Cours et exercices)

- · Grandeurs et dimensions fondamentales
 - Dimension et unités
 - Les unités de bases et système international
 - Recherche d'unités, équation aux dimensions
- Analyse dimensionnelle
 - Homogénéité d'une expression
 - Application

Oscillateur harmonique (Cours et exercices)

- Rappels de terminale et compléments
 - Référentiels et repères
- $\rightarrow \text{Espace physique}$
- \rightarrow Le temps physique
- → Référentiel
- Cinématique → Vecteur position (cas à une dimension)
 - → Vecteur vitesse (présentation simple, cas à une dimension)
 - → Vecteur accélération (présentation simple, cas à une dimension)
- La deuxième loi de Newton
- L'oscillateur harmonique
 - Mise en évidence de la force
 - Mise en équation et solution (on admet la forme de la solution et on vérifie qu'elle convient)
 - Caractéristique du mouvement
- → Période (relation avec k et m)
- → Amplitude, phase à l'origine exemple de conditions initiales
- → Pulsation (relation avec k et m) et fréquence
- · Cohérence avec la conservation de l'énergie
 - Energie cinétique
 - Energie potentielle (kx²/2 admis)
 - Energie mécanique

Notions et contenus	Capacités exigibles
1. Oscillateur harmonique	
Mouvement horizontal sans frottement d'une masse accrochée à un ressort linéaire sans masse. Position d'équilibre.	Établir et reconnaître l'équation différentielle qui caractérise un oscillateur harmonique. La résoudre compte tenu des conditions initiales.
	Caractériser le mouvement en utilisant les notions d'amplitude, de phase, de période, de fréquence, de pulsation.
	Contrôler la cohérence de la solution obtenue avec la conservation de l'énergie mécanique, l'expression de l'énergie potentielle élastique étant ici affirmée.

PROPAGATION D'UN SIGNAL

P1 . Propagation d'un signal, ondes progressives (Cours et exercices)

- Quelques exemples
- Définitions
 - Définition d'une onde
 - Onde transversale
 - Onde longitudinale
 - Direction de propagation
- Caractéristiques d'une onde simple
 - Période temporelle et amplitude
 - Fréquence
 - Longueur d'onde
 - Célérité de l'onde
- Cas d'une onde complexe analyse temporelle
 - Représentation fréquentielle d'un signal simple
 - Représentation fréquentielle d'un signal réel

Spectre d'un signal périodique : Décomposition en série de Fourier (présentation et interprétation sans calcul)

- Cas d'une onde progressive
 - Définition
 - Propagation du signal : exemple
 - Généralisation
- Onde plane progressive plane
 - Présentation
 - Double périodicité → F
- → Périodicité temporelle→ Périodicité spatiale
 - Déphasage
 - Exemples

2. Propagation d'un signal	· ·
Exemples de signaux, spectre.	Identifier les grandeurs physiques correspondant à des signaux acoustiques, électriques, électromagnétiques.
	Réaliser l'analyse spectrale d'un signal ou sa synthèse.
	Citer quelques ordres de grandeur de fréquences dans les domaines acoustiques et électromagnétiques.
Onde progressive dans le cas d'une propagation unidimensionnelle linéaire non dispersive. Célérité, retard temporel.	Écrire les signaux sous la forme f(x-ct) ou g(x+ct). Écrire les signaux sous la forme f(t-x/c) ou g(t+x/c). Prévoir dans le cas d'une onde progressive pure l'évolution temporelle à position fixée, et prévoir la forme à différents instants.
Onde progressive sinusoïdale : déphasage, double périodicité spatiale et temporelle.	Établir la relation entre la fréquence, la longueur d'onde et la célérité.
	Mesurer la célérité, la longueur d'onde et le déphasage dû à la propagation d'un phénomène ondulatoire.

P2. Les interférences mécaniques ou acoustiques (Cours uniquement)

- Observations
 - Etude expérimentale d'une onde mécanique : cuve à ondes
 - Exemple d'ondes sonores
- Interférences mécaniques
 - Définitions, Condition d'interférences
 - Superposition des petits mouvements
- Cas de deux ondes sinusoïdales
 - Somme de deux grandeurs sinusoïdales
 - Interférences constructives, interférences destructives
 - Etude théorique (par le calcul, par la représentation de Fresnel)
 - Conclusion
 - Construction de la figure d'interférence
- Calcul de l'interfrange

Interférences entre deux ondes acoustiques ou mécaniques de même fréquence.	Mettre en œuvre un dispositif expérimental pour visualiser le phénomène d'interférences de deux ondes.
	Utiliser la représentation de Fresnel pour déterminer l'amplitude de l'onde résultante en un point en fonction du déphasage.
	Exprimer les conditions d'interférences constructives ou destructives.

TP

Emission et réception d'ultrason

Caractéristique d'un signal sinusoïdal, déphasage entre deux signaux, visualisation d'une onde sonore à l'aide d'un oscilloscope, réception d'un signal ultrasonore.