

|          |  |  |  | Sub | ject | Coc | ie: r | <b>L</b> CA | W45 | į |
|----------|--|--|--|-----|------|-----|-------|-------------|-----|---|
| Roll No: |  |  |  |     |      |     |       |             |     |   |

### MCA (SEM IV) THEORY EXAMINATION 2021-22 DISTRIBUTED DATABASE SYSTEMS

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

#### **SECTION A**

## 1. Attempt all questions in brief.

2\*10 = 20

Printed Page: 1 of 2

| Qno | Questions                                                                                                          | CO |
|-----|--------------------------------------------------------------------------------------------------------------------|----|
| (a) | Why distributed databases are essential?                                                                           | 1  |
| (b) | What is transaction log? What are its functions?                                                                   | 2  |
| (c) | Explain view serializability.                                                                                      | 2  |
| (d) | How does the concept of an object in object-oriented model differ from the concept of an entity in the ER diagram? | 5  |
| (e) | Define the concepts of recoverable, cascade less and strict schedules.                                             | 4  |
| (f) | Explain briefly in what way designing an object-oriented database is different from relational database.           | 3  |
| (g) | Define Moss Concurrency protocol?                                                                                  | 2  |
| (h) | Differentiate between Backward and Forward recovery.                                                               | 4  |
| (i) | Differentiate between 2PL and strict 2PL.                                                                          | 2  |
| (j) | What are the types of failures in distributed DBMS?                                                                | 4  |

#### **SECTION B**

# 2. Attempt any three of the following:

10\*3 = 30

| Qno | Questions                                                            | CO |
|-----|----------------------------------------------------------------------|----|
| (a) | Why is recovery in a distributed DBMS more complicated than in a     | 1  |
|     | centralized system?                                                  |    |
| (b) | Compare Distributed Deadlock prevention to Distributed Deadlock      | 2  |
|     | Avoidance. Explain one scheme of Distributed deadlock Detection and  |    |
|     | Recovery.                                                            |    |
| (c) | Discuss the motivation behind parallel and distributed databases.    | 5  |
| (d) | What is an object identifier? Explain with an example. What are its  | 3  |
|     | advantages and disadvantages?                                        |    |
| (e) | What problem can occur in a distributed system due to the failure of | 4  |
|     | link and partitioning of the network? What are the ways by which     |    |
|     | recovery can take place?                                             |    |

#### **SECTION C**

## 3. Attempt any *one* part of the following:

10\*1 = 10

| Qno | Questions                                                                                                             | CO |
|-----|-----------------------------------------------------------------------------------------------------------------------|----|
| (a) | What are homogenous and heterogeneous database. Give the architecture of heterogeneous database along with some query | 1  |
|     | processing issues.                                                                                                    |    |
| (b) | Explain briefly about Fragmentation with suitable examples.                                                           | 1  |



Roll No: Subject Code: KCA045

## MCA (SEM IV) THEORY EXAMINATION 2021-22 DISTRIBUTED DATABASE SYSTEMS

## 4. Attempt any *one* part of the following:

10 \*1 = 10

Printed Page: 2 of 2

| Qno | Questions                                                           | CO |
|-----|---------------------------------------------------------------------|----|
| (a) | Justify that three-phase commit (3PC) protocol is a non-blocking    | 2  |
|     | protocol.                                                           |    |
| (b) | Discuss the objectives of distributed query processing. Explain the | 2  |
|     | various phrases in distributed query processing in detail.          |    |

#### 5. Attempt any *one* part of the following:

10\*1 = 10

| Qno | Questions                                                          | CO |
|-----|--------------------------------------------------------------------|----|
| (a) | Discuss the issues to achieve atomicity in distributed transaction | 3  |
|     | management system.                                                 |    |
| (b) | Explain briefly about timestamp-based concurrency algorithms.      | 3  |

### 6. Attempt any *one* part of the following:

10\*1 = 10

| Qno | Questions                                                                              | CO |
|-----|----------------------------------------------------------------------------------------|----|
| (a) | Describe the followings (i) Consistent Checkpoints (ii) Voting protocols.              | 4  |
| (b) | Generate an algorithm for synchronous check pointing in a Distributed database system. | 4  |

# 7. Attempt any *one* part of the following:

10\*1 = 10

| Qno | Questions                                                               | CO |
|-----|-------------------------------------------------------------------------|----|
| (a) | What is the difference between persistent and transient objects? How is | 5  |
|     | persistence handled in OO database systems                              |    |
| (b) | Compare ORDBMS and OODBMS with respect to Data sharing, data            | 5  |
|     | modelling and data accessing.                                           |    |