Handbuch Simulator

Handbuch zum Gebrauch des Programmes «Simulator». Die mathematischen Grundlagen sind im Dokument «Dynamische Systeme» beschrieben.

Version 4.0 - 01.04.2024 - Dr. Hermann Biner

Inhalt

1.	Einfi	ührung	2
2.	Hau	ptmenü	2
3.	Mer	nü Wachstumsmodelle (unimodale Funktionen)	4
	3.1.	Iterationen im reellen Intervall	4
	3.2.	Untersuchung der Sensitivität	10
	3.3.	Histogramme	13
	3.4.	Zweidimensionale Darstellung	14
	3.5.	Feigenbaum Diagramm	16
4.	Mer	nü Mechanik	20
	4.1.	Billard	20
	4.2.	Numerische Methoden	25
	4.3.	C-Diagramm	30
	4.4.	Gekoppelte Pendel	33

1. Einführung

Der «Simulator» ermöglicht die Simulation von einfachen dynamischen Systemen. Die mathematischen Grundlagen dazu und die Konzepte für die Implementierung sind im Dokument «Dynamische Systeme» beschrieben. In diesem Dokument finden sich auch Anregungen für Weiterentwicklungen oder mathematische Übungsaufgaben.

Der Code des Programmes ist in GitHub veröffentlicht und als Open Source zugänglich. Er ist in VB.NET verfasst und ausführlich (auf Englisch) kommentiert. Die Entwicklungsumgebung ist die Community Version von Microsoft Visual Studio 2022. Sie ist gratis verfügbar und einfach zu installieren.

Dieses Handbuch erklärt den Gebrauch des «Simulator» und erläutert Beispiele für dessen Einsatz.

2. Hauptmenü

Unter «Datei» ist die Sprache wählbar:

Der Bereich «Wachstumsmodelle» ermöglicht verschiedene Experimente, welche auf der Iteration von unimodalen Funktionen beruhen.

Implementiert sind folgende Funktionen:

- Zeltabbildung
- Logistisches Wachstum
- Iteration der Parabel

Die Untermenüs bieten verschiedene Funktionen, unter anderem auch die Untersuchung des chaotischen Falles. Sie werden in diesem Dokument später beschrieben.

Der Bereich «Mechanik» bietet verschiedene Systeme aus der Mechanik an, welche untersucht werden können.

In der Programmversion 4.0 stehen verschiedene Formen des Billards zur Verfügung:

- Elliptisches Billard
- Billard im Stadion
- Ovales Billard

Die Form des Billardtisches wird überall durch einen Parameter C definiert. Im Falle des elliptischen Billards ist C das Achsenverhältnis der Ellipse. Analog zum Feigenbaum-Diagramm im Falle der unimodalen Funktionen kann man hier ein C-Diagramm erstellen, welches das Verhalten der Iterationsparameter in Abhängigkeit von C darstellt.

Ferner kann man verschiedene numerische Methoden zum Lösen von gewöhnlichen Differentialgleichungen am Beispiel des Federpendels untersuchen:

- Euler explizit
- Euler implizit
- Mittelpunktregel
- Runge Kutta

Im Menüpunkt «Pendel» stehen verschiedene Versionen von gekoppelten Pendeln zur Untersuchung bereit:

- Doppelpendel
- Schwingendes Federpendel
- Horizontales Rüttelpendel

Der Menüpunkt «Dokumentation» bietet alle Informationen, welche für den Gebrauch des Programmes nötig sind.

Das Handbuch ist je nach gewählter Sprache auf Deutsch oder Englisch verfügbar. Die mathematische Dokumentation, welche auch die Grundlage für die Programmierung ist, ist ebenfalls auf Deutsch und Englisch verfügbar.

3. Menü Wachstumsmodelle (unimodale Funktionen)

3.1. Iterationen im reellen Intervall

Über den Menüpunkt «Wachstumsmodelle - Iteration» wird folgendes Fenster geöffnet:

Fenster für die Untersuchung von Iterationen im «Simulator»

1

Links oben wird die Art der Iteration ausgewählt. Zur Verfügung stehen:

- Zeltabbildung
- Logistisches Wachstum
- Iteration der Parabel

Die Iterationen sind wie folgt definiert:

Zeltabbildung:
$$f:[0,1] \to [0,1]; \ f(x) = \begin{cases} ax, x \in [0,0.5[\\ a(1-x), x \in [0.5,1] \end{cases}, a \in]0,2]$$

Logistisches Wachstum: $f: [0,1] \rightarrow [0,1], x \mapsto ax(1-x), a \in]0,4]$

Iteration der Parabel:
$$f: [-1,1] \rightarrow [-1,1], x \mapsto 1 - ax^2, a \in]0,2]$$

Der User kann weitere Arten von Iterationen programmieren. Dazu muss er lediglich ein Interface implementieren. Siehe mathematische Dokumentation oder Kommentare im Code.

2

Der Parameterwert a für jede Iteration kann hier eingegeben werden.

- Zeltabbildung: a muss im Bereich [0,2] sein
- Logistisches Wachstum: a muss im Bereich]0,4] sein
- Parabel: a muss im Bereich]0,2] sein

Hier wird die Iterationstiefe festgelegt. Sie bestimmt, wie oft die Iterationsfunktion f pro Iterationsschritt wiederholt wird. z.B. gilt für Iterationstiefe = 1: $x_{n+1} = f(x_n)$. Bei einer Iterationstiefe = 5 gilt: $x_{n+1} = f^5(x_n)$. Das ist für die Iteration selbst nicht unbedingt wichtig, wohl aber, wenn Zyklen höherer Ordnung anhand des Funktionsgraphen untersucht werden. Siehe nächster Punkt.

4

Mit der Taste «Zeichne Funktionsgraph» kann der Graph der Funktion mit entsprechender Iterationstiefe gezeichnet werden. Zum Beispiel hat man bei der logistischen Abbildung für den Parameterwert a=3.55 einen attraktiven 4-Zyklus.

Attraktiver 4-Zyklus

Um das sichtbar zu machen, wählt man «Logistisches Wachstum» als Iteration. Als Parameterwert a=3.55 und als Iterationstiefe 4. Das heisst, man untersucht die vierfach iterierte Funktion f^4 . Lässt man ihren Graphen zeichnen, zeigt sich, dass sie die 45° Gerade an vier Stellen schneidet, an denen der Multiplikator (die Steigung der Tangente) kleiner 1 ist und dass somit dieser Zyklus attraktiv ist. Man sieht auch vier weitere Schnittstellen mit der 45° Geraden, welche zu einem repulsiven Zyklus gehören, denn die Tangentensteigung ist hier grösser als 1.

Eine detaillierte Beschreibung findet man in der mathematischen Dokumentation.

5

Hier werden die Folgenglieder (x_n) aufgelistet, welche durch die Iteration erzeugt werden.

6

In dieser Spalte wird das Protokoll erzeugt, und zwar zu jedem Iterationswert x_n in der linken Liste. Im Falle der Zeltabbildung und des logistischen Wachstums ist das Protokoll $p(x_n)$ definiert als:

$$p(x_n) = \begin{cases} 0, x_n \in [0, 0.5 [\\ 1, x_n \in [0.5, 1] \end{cases}$$

Im Falle der Iteration der Parabel ist es definiert als:

$$p(x_n) = \begin{cases} 0, falls \ x_n \in [-1,0] \\ 1, falls \ x_n \in]0,1] \end{cases}$$

7

Das ist der Bereich für alle grafische Darstellungen.

8

In diesem Feld wird der Startwert festgelegt. Er kann manuell vorgegeben werden oder wird durch das Programm vorgeschlagen. Beim logistischen Wachstum und der Zeltabbildung muss er im Intervall [0,1] liegen. Bei der Parabel liegt er im Intervall [-1,1].

9

Hier wird die Anzahl der Iterationsschritte angezeigt.

10, 11

Um die Iteration zu untersuchen, hat man zwei Darstellungsmöglichkeiten:

Darstellung im Funktionsgraph

Dieselbe Iteration auf der «Zeitachse»

Bei der Darstellung im Funktionsgraph pendelt man zwischen der 45° Geraden und dem Funktionsgraph hin und her. Die «Zeitachse» zeigt in horizontaler Richtung die Anzahl der Iterationsschritte und vertikal den jeweiligen Iterationswert.

12

Wenn die Darstellung «Zeitachse» gewählt wird, kann es sein, dass die Iteration nicht mehr auf der Zeitachse erkennbar ist, weil die Sprünge zu eng sind. Dann kann die Zeitachse, welche im Koordinatensystem auf der x-Achse dargestellt wird, gedehnt werden. Möglich ist ein Wert zwischen 1 und 10.

Ein Diagramm mit Dehnung 1

Dasselbe Diagramm mit Dehnung 5

Bei der Darstellung «Funktionsgraph» ist die Dehnung irrelevant und das Feld ist deaktiviert.

13

Die Taste «Nächster Schritt» ist sichtbar im Falle der Darstellung als Funktionsgraph. Sie führt den nächsten Iterationsschritt aus.

14

Bei der Darstellung «Funktionsgraph» werden bei der Taste «Nächste 10 Schritte» jeweils die nächsten 10 Iterationsschritte ausgeführt. Bei der Darstellung «Zeitachse» heisst die Taste «Nächstes Diagramm» und es werden so viele Iterationsschritte ausgeführt, bis das Diagramm in der ganzen

Breite gefüllt ist. Wird die Taste nochmals gedrückt, wird die Iteration fortgesetzt und ein neues Diagramm erstellt.

15

Hier kann im chaotischen Fall ein beliebiges Protokoll bestehend aus «0» und «1» vorgegeben werden. Wegen der Rechengenauigkeit des Computers sind Protokolle der Länge bis mindestens 50 möglich, je nach Art der Iteration. Der chaotische Fall liegt u.a. für folgende Parameterwerte vor:

- Zeltabbildung a = 2
- Logistisches Wachstum a = 4
- Iteration der Parabel a = 2

Wenn das Verhalten nicht chaotisch ist, kann ein vorgegebenes Protokoll nicht erzeugt werden.

Beispiel

Wir wählen das Logistische Wachstum mit Parameter a = 4, also den chaotischen Fall.

Nun geben wir als Zielprotokoll eine 42-stellige 0-1 Folge ein:

Anschliessend drücken wir die Taste: «Vorschlag Startwert für dieses Protokoll». Der «Simulator» schlägt dann als Startwert vor: $x_1 = 0.9546841790501590302556547942$.

Nun drücken wir einige Male die Taste «Nächste 10 Schritte». Im Log für das Protokoll können wir feststellen, dass das vorgegebene Protokoll tatsächlich erzeugt wurde.

Erzeugung eines vorgegebenen Protokolls

16

Beim Drücken der Taste «Vorschlag Startwert für dieses Protokoll» wird ein Startwert berechnet, welcher das vorgegebene Protokoll liefern soll. Dieser Startwert wird im Feld 8 eingetragen.

Anschliessend kann die Iteration gestartet und es kann kontrolliert werden, ob die Iteration das vorgegebene Protokoll liefert.

17

Wenn die Iteration chaotisch ist, kann auch die Transitivität untersucht werden. Dazu wird im Feld 8 ein Startwert und im Feld 17 ein Zielwert vorgegeben. Dann sagt die Theorie, dass es einen leicht geänderten Startwert gibt, so dass die Iteration dem Zielwert beliebig nahekommt.

Transitivität: Vorgabe eines Zielwertes

Iteration mit einem leicht geänderten Startwert, den das Programm vorschlägt

Beispiel

Siehe obiges Bild. Dort ist der ursprüngliche Startwert in Feld 8: 0.314159. Dann wird der Zielwert 0.75 in Feld 17 vorgegeben. Siehe erstes Bild.

Durch Drücken der Taste 18 schlägt nun das Programm einen leicht abgeänderten Startwert vor, nämlich: 0.3141589739478905626903842638. Anschliessend wird die Iteration gestartet. Im Diagramm wird der Zielwert 0.75 durch die grüne horizontale Gerade gekennzeichnet. Bereits nach 24 Iterationsschritten wird sie recht gut getroffen durch den Iterationswert 0.75000075.... Siehe zweites Bild und die blau markierten Bereiche.

18

Beim Drücken dieser Taste wird der Startwert im Feld 8 neu berechnet und leicht abgeändert, damit die Iteration dem Zielwert nahekommt. Wenn man dann die Iteration startet, kann man in der Spalte 5 die Iterationswerte beobachten und kontrollieren, wie nahe sie dem Zielwert kommen.

19

Hier wird die Iteration zurückgesetzt und das Diagramm geleert.

3.2. Untersuchung der Sensitivität

Unter dem Menüpunkt «Wachstumsmodelle - Sensitivität» wird folgendes Fenster geöffnet:

Fenster zur Untersuchung der Sensitivität mit dem «Simulator»

1

Links oben wird die Art der Iteration ausgewählt. Zur Verfügung stehen:

- Zeltabbildung
- Logistisches Wachstum
- Parabel

2

Der Parameterwert für jede Iteration kann hier eingegeben werden.

- Zeltabbildung: a muss im Bereich]0,2] sein
- Logistisches Wachstum: a muss im Bereich]0,4] sein
- Parabel: a muss im Bereich]0,2] sein

Hier wird die Iterationstiefe festgelegt. Sie bestimmt, wie oft die Iterationsfunktion f pro Iterationsschritt wiederholt wird.

4

Hier werden die Folgenglieder der Iteration ausgehend vom ersten Startwert aufgelistet.

5

Hier werden die Folgenglieder der Iteration ausgehend vom zweiten Startwert aufgelistet.

6

Das ist der Bereich für grafische Darstellungen.

7,8

Hier können zwei Startwerte eingegeben werden. Diese können sehr nahe beieinanderliegen. Das Ziel ist dann zu zeigen, dass die erzeugten Folgenglieder bei der Iteration beliebig auseinanderlaufen.

Beispiel

Sensitivität: Zwei leicht verschiedene Startwerte

Die beiden Startwerte oben unterscheiden sich um 0.000000001. Wie man oben sieht, sind die Orbits am Anfang recht ähnlich, beginnen dann aber ab dem rot markierten Bereich allmählich auseinanderzulaufen. In der Grafik wird die Differenz der Orbits dargestellt. Die ist am Anfang fast Null, macht dann aber bald einmal deutliche Sprünge.

9

Anzeige der Anzahl Iterationsschritte.

Für die grafische Anzeige der Iteration stehen zwei Darstellungen zur Verfügung. Entweder wird die Differenz der erzeugten Folgenglieder ausgehend von Startwert eins bzw. zwei angezeigt. Man sieht, dass diese Differenz bereits nach wenigen Schritten innerhalb der Iterationsintervalls sehr gross werden kann.

Alternativ können auch die beiden erzeugten Folgen getrennt angezeigt werden.

In beiden Fällen erfolgt die Darstellung auf der Zeitachse und kann in x-Richtung gedehnt werden.

Sensitivität: Die Differenz der Orbits wird angezeigt

Sensitivität: Die Orbits werden einzeln angezeigt

In beiden Fällen sieht man, dass die Orbits am Anfang gleichlaufen, aber bald einmal deutlich auseinanderdriften. Zur bessern Sichtbarkeit wurde die Dehnung = 3 gesetzt.

11

Hier kann eine Dehnung in x-Richtung vorgegeben werden. Der Standard ist 2; möglich ist ein Wert zwischen 1 und 10.

Beim Drücken der Taste «Start Iteration» wird die Iteration gestartet.

13

Hier wird die Iteration zurückgesetzt und das Diagramm geleert.

3.3. Histogramme

Im chaotischen Fall kann die Verteilung der Iterationswerte in einem Histogramm untersucht werden (im nicht-chaotischen Fall ist dies nicht interessant). Im Menüpunkt «Wachstumsmodelle - Histogramm» wird folgendes Fenster geöffnet:

Fenster zum Erstellen von Histogrammen

In diesem Fenster wird der Wertebereich in kleine Intervalle aufgeteilt. Die Breite eines solchen Intervalls entspricht etwa der Pixelgrösse. Dann wird gezählt, wie oft ein Intervall im Laufe der Iteration von einem x-Wert «getroffen» wird. In der Mitte oder auch bei der Zeltabbildung ist die Häufigkeitsverteilung dann ziemlich gleichmässig. Beim logistischen Wachstum oder der Parabel sind die Bögen ganz links und ganz rechts erklärbar (siehe mathematische Dokumentation).

1

Hier wird das Histogramm angezeigt.

2

Hier wird die Iterationsfunktion ausgewählt. Zur Verfügung stehen wie immer:

- Zeltabbildung
- Logistisches Wachstum
- Parabel

3

Hier wird der Parameter der Iterationsfunktion eingegeben. Die Untersuchung des Histogramms ist nur im chaotischen Fall sinnvoll. Das ist je nach Iterationsfunktion:

- Zeltabbildung a = 2
- Logistisches Wachstum a = 4
- Iteration der Parabel a = 2

4

Hier kann man einen Startwert für die Iteration eingeben. Wenn der Startwert geändert wird, wird eine bestehende Iteration zurückgesetzt.

5

Anzeige der Schrittzahl während der Iteration.

6

Beim Drücken der Schaltfläche «Nächste 100 Schritte» werden die nächsten 100 Iterationsschritte ausgeführt und das Histogramm angepasst.

7

Die Iteration wird zurückgesetzt.

3.4. Zweidimensionale Darstellung

Beim Menüpunkt «Wachstumsmodelle - Zweidimensionale Darstellung» wird folgendes Fenster geöffnet:

Fenster für die zweidimensionale Darstellung

Bevor wir die Bedeutung dieses Experimentes erläutern, zuerst die Funktion der einzelnen Felder im obigen Fenster.

1

Hier wird die Iterationsfunktion ausgewählt. Zur Verfügung stehen wie immer:

- Zeltabbildung
- Logistisches Wachstum
- Parabel

2

Hier wird der Parameter der Iterationsfunktion eingegeben. Die Untersuchung ist nur im chaotischen Fall sinnvoll. Das ist je nach Iterationsfunktion:

- Zeltabbildung a = 2
- Logistisches Wachstum a = 4
- Iteration der Parabel a = 2

3 und 4

Hier werden zwei Startwerte x_1 und y_1 eingetragen. Das liefert einen Startpunkt $P(x_1, y_1)$. Dieser wird links im Diagramm als Punkt eingetragen.

5

Der Experimentator kann nun mit verschiedenen Startpunkten bis zu fünf verschiedene Experimente durchführen. Die entsprechenden Orbits werden mit unterschiedlichen Farben im Diagramm dargestellt. Im Feld 5 kann der Experimentator jedem Experiment eine Nummer zwischen 1 bis 5 zuordnen.

Wir nehmen nun an, dass der Experimentator eine beschränkte Messgenauigkeit hat, welche im Diagramm durch das hellblaue Raster dargestellt wird. Die Rastergrösse beträgt hier 5x5 Pixel, was etwa einem mathematischen Raster von 0.00825 x 0.00825 Einheiten entspricht.

Der Experimentator hat nun im der oben dargestellten Diagramm 5 Experimente gestartet mit den Startpunkten

$$P_1(0.414, 0.407), P_2(0.415, 0.408), P_3(0.416, 0.409), P_4(0.417, 0.410), P_5(0.418, 0.411)$$

Alle Startpunkte liegen aber im selben Messquadrat des Experimentators. Das heisst, für ihn ist der Startpunkt immer derselbe. Im Diagramm ist dieser durch einen violetten Kreis markiert.

Nun lässt er jedes Experiment laufen. Wegen der Sensitivität laufen die Orbits schon nach wenigen Schritten auseinander. Für den Experimentator sieht es also so aus, wie wenn derselbe Startpunkt bei der Iteration zu ganz unterschiedlichen Orbits führt. Das Verhalten des Systems scheint zufällig.

Iteriert wird dabei eine der zur Verfügung stehenden Iterationsfunktionen, und zwar in beiden Komponenten x und y dieselbe.

6

Es wird ein Einzelschritt der Iteration durchgeführt und der neue Punkt im Diagramm mit dem vorhergehenden verbunden.

7

Hier werden die nächsten 10 Schritte der Iteration durchgeführt und im Diagramm nachgetragen.

8

Hier kann die Iteration zurückgesetzt werden.

3.5. Feigenbaum Diagramm

Mit dem Simulator kann man das bekannte Feigenbaum-Diagramm und die Periodenverdoppelung untersuchen. Dies wird in der mathematischen Dokumentation näher beschrieben.

Im Menüpunkt «Wachstumsmodelle - Feigenbaum» wird das entsprechende Fenster angezeigt.

Fenster zur Untersuchung des Feigenbaum Diagrammes

Das Diagramm zeigt in horizontaler Richtung Werte des Parameters a, welcher in dieser Richtung linear wächst. Für jeden Parameterwert wird die Iteration zuerst eine Weile lang laufen gelassen in der Hoffnung, dass sie sich bis dann auf einen attraktiven Fixpunkt oder einen attraktiven Zyklus eingependelt hat, wenn es überhaupt einen solchen gibt. Anschliessend wird der Orbit ins Diagramm in vertikaler Richtung eingetragen.

Im obigen Fenster startet die Untersuchung bei a = 2. Bis zum ersten Splitpunkt (die erste rote vertikale Linie) hat man einen attraktiven Fixpunkt und die Iteration zeichnet für jedes a in diesem Bereich den Fixpunkt, zu welchem die Iteration konvergiert. Nach dem ersten Splitpunkt hat man einen 2-er Zyklus bis zum zweiten Splitpunkt, dann einen 4-er Zyklus und so weiter, bis das Verhalten chaotisch wird. Weiter rechts sind mehrheitlich keine Zyklen mehr zu erkennen ausser in einzelnen kleinen Fenstern.

Nun zuerst zur Bedeutung der einzelnen Felder.

1

Hier kann man die Art der Iteration auswählen. Zur Verfügung stehen:

Zeltabbildung

- Logistisches Wachstum
- Parabel

2, 3, 4

Hier wird der zu untersuchende Parameterbereich für den Parameter a festgelegt. In 2 wird das minimale a und in 3 das maximale a festgelegt. Untersucht wird das Parameterintervall [aMin, aMax]. In 4 wird die Breite dieses Bereiches angezeigt.

Diese Werte kann man manuell ändern, sie müssen aber im erlaubten Parameterbereich der Iteration liegen:

- Zeltabbildung: a muss im Bereich [0,2] sein
- Logistisches Wachstum: a muss im Bereich]0,4] sein
- Parabel: a muss im Bereich]0,2] sein

5, 6, 7

Vielleicht möchte man nur einen Ausschnitt des Wertebereichs untersuchen. Dieser Ausschnitt wird hier festgelegt: In 5 den minimalen Wert von x und in 6 den maximalen Wert. Untersucht wird der Wertebereich [Xmin, Xmax]. Die Breite des untersuchten Werteintervalls wird in 7 dargestellt.

8

Insbesondere wenn man kleine Ausschnitte aus dem Diagramm anzeigen lassen will, lohnt es sich allenfalls, die Präzision beim Erstellen des Ausschnittes zu erhöhen. Im Schieberegister kann dies festgelegt werden. Die Präzision gibt an, wie oft die Iteration im «Dunkelmodus» (d.h. ohne die iterierten Werte anzuzeigen) durchgeführt wird. Anschliessend hofft man, dass sich die Iteration auf eventuelle Zyklen eingependelt hat. In weiteren genügend vielen Schritten wird dann ein allfälliger Zyklus gezeichnet. Der Standard für die Präzision sind 25'000 Schritte und das genügt meistens. Die Präzision kann aber auf 100'000 Schritte im Dunkelmodus erhöht werden.

9

Die vertikalen Geraden im Diagramm zeigen die ersten Splitpunkte der ersten Periodenverdoppelung ab $a \approx 3.5$. Diese Anzeige kann ein- oder ausgeblendet werden.

10

Das Diagramm kann ein- oder zweifarbig dargestellt werden. Diese Option kann hier ausgewählt werden. Wer gerne mit weiteren Farben experimentiert, kann den Programmcode bzw. die Funktion *SetColor* im Code der *FrmFeigenbaum* selbst entsprechend anpassen.

11

Hier wird die Iteration gestartet ...

12

.. und hier wird sie zurückgesetzt.

Auswahl von kleinen Ausschnitten im Diagramm

Der Benutzer hat nun die Möglichkeit, einen Ausschnitt, den er genauer untersuchen will, mit Hilfe eines Auswahl-Rechteckes auszuwählen. Das geschieht mit gedrückter linker Maustaste. Dabei wird

rechts in den Feldern 2-4 der Parameterbereich und in den Feldern 5-7 der Wertebereich automatisch entsprechend nachgefahren.

Wahl eines kleinen Ausschnittes im Diagramm - siehe rotes Rechteck

Oben möchte der Benutzer die Umgebung eines 3-zyklischen Punktes genauer untersuchen. Dazu hat er mit gedrückter linker Maustaste ein entsprechendes Rechteck gezeichnet. Auf der rechten Seite wurden Parameterbereich und Wertebereich entsprechend angepasst. Wird die Iteration nun gestartet, dann wird dieses Bereich angezeigt.

Anzeige der ausgewählten Umgebung des 3-zyklischen Punktes

Man sieht hier, wie aus dem Chaos ein 3-er Zyklus entsteht. Wegen dem reduzierten Wertebereich sieht man hier nur einen Punkt dieses Zyklus. Über eine erneute Periodenverdoppelung geht dann das Diagramm wieder ins Chaos über.

Mit diesem Auswahlverfahren lässt sich auch untersuchen, für welche Parameterwerte von a man bestimmte Zyklen erwarten kann. Durch die Platzierung des Auswahlrechtecks werden nämlich auf der rechten Seite die entsprechenden Intervalle [aMin, aMax] angezeigt.

Mit folgendes Auswahldreieck kann man das Auftreten des 3-er Zyklus eingrenzen. Hier kann man ablesen: $a \in [3.810, 3.865]$

Platzierung des Auswahldreiecks zum Bestimmen eines Parameterintervalls

Wenn wir nun die Iteration in diesem Bereich von a wieder starten, können wir der 3-Zyklus weiter eingrenzen:

Der 3-er Zyklus tritt für $a \in [3.8279, 3.8288]$ auf

4. Menü Mechanik

4.1. Billard

Der «Simulator» ermöglicht es, verschiedene Formen des Billards zu untersuchen. Implementiert sind folgende Arten von Billards:

- Elliptisches Billard
- Billard im Stadion
- Ovales Billard

In allen Fällen wird die Form des Billardtisches durch einen Parameter C > 0 definiert. Dabei ist:

- C ist das Verhältnis Nebenachse zu Hauptachse beim elliptischen Billard
- C ist das Verhältnis von Kreisdurchmesser zu Rechteckbreite beim Billard im Stadion
- C ist das Verhältnis von Kreisradius (rechter Teil) zu Ellipsenhauptachse (linker Teil)

Da der Code öffentlich ist, kann der User weitere Formen des Billards programmieren. Er muss dazu lediglich ein Interface implementieren. Siehe mathematische Dokumentation oder Kommentare im Code.

Es wird angenommen, dass sich der Billardball reibungsfrei bewegt und bei den Stössen am Rand des Billardtisches keine Energie verloren geht. Es können beliebig viele Billardkugeln auf dem Tisch platziert werden. Diese stossen sich aber nicht gegenseitig. Die dienen dazu, verschiedene Orbits in Abhängigkeit von den Startparametern sichtbar zu machen.

Startparameter sind zuerst immer ein Punkt auf den Rand des Billardtisches, welcher gemäss mathematischer Dokumentation durch einen Parameter t beschrieben wird. Als zweiter Parameter dient der Reflexionswinkel α (im Bogenmass) zwischen Kugelbahn und Tangente im Stosspunkt des Billardtisches.

Bei allen Arten des Billards ist das Vorgehen zu deren Untersuchung dasselbe. Im Menü «Mechanik – Billard» wird folgendes Fenster geöffnet:

Fenster zur Untersuchung der verschiedenen Billards

Das ist die Zeichenfläche für den Billardtisch und die Kugelbahnen.

2

Hier wird die Art des Billardtisches gewählt. Siehe Liste am Anfang.

3

Hier kann die Form des Billardtisches durch einen Parameter C definiert werden gemäss früherer Erläuterung. Dieses Verhältnis muss eine positive Zahl sein. Für den Wert C = 1 erhält man im Falle des elliptischen oder ovalen Billards einen kreisförmigen Billardtisch.

4

Mit dieser Taste kann man den Billardtisch zeichnen lassen. Hier zwei Beispiele:

Elliptischer Billardtisch

Stadionförmiger Billardtisch

Die Kugel ist so programmiert, dass beliebig viele Instanzen (also Kugeln) generiert werden können. Damit diese unterschieden werden, kann je eine von fünf Farben für die nächste generierte Kugel festgelegt werden.

6

Diese Schaltfläche generiert eine neue Kugel. Diese wird standardmässig platziert, je nach Art des Billardtisches. Anschliessend die Kugel mit gedrückter linker Maustaste an ihrem Startpunkt platziert werden. Wird die Maustaste losgelassen, gilt der Startpunkt t als gesetzt. Wird die Maustaste zum zweiten Mal gedrückt, kann jetzt die Richtung des ersten Bahnabschnittes gesetzt werden. Wird die Maus wieder losgelassen, gilt auch der erste Bahnwinkel α als gesetzt.

Ovaler Billardtisch mit gesetzter Kugel inklusive erstem Bahnabschnitt

Wenn die Kugel und ihr erster Bahnabschnitt auf diese Art manuell platziert wird, dann werden rechts im Bereich «Startparameter» die Parameter t (Position des Startpunktes auf dem Rand) und α (erster Winkel zwischen Bahnabschnitt und Tangente am Billardtisch) angezeigt. In gewissen Fällen ist es auch nützlich, diese Parameter manuell einzugeben und sie dann als Startparameter zu übernehmen.

7,8

Hier werden die Startparameter t, α angezeigt. Diese Werte können auch manuell gesetzt werden. Das ist nötig, wenn man durch ein Näherungsverfahren bestimmte Bahnen erreichen will. Nach einer solchen manuellen Definition der Startparameter können diese durch die Taste

9

übernommen werden. Der Ball wird dann entsprechend platziert. Da die Parameter t modulo 2π oder modulo dem Umfang U des Billardtisches und α modulo π gerechnet werden, sind alle reellen Startparameter erlaubt. Damit ist $t \in [0, 2\pi[\ oder\ t \in [0, U[\ und\ \alpha \in]0, \pi[.$

10

Hier kann man die Geschwindigkeit aller Kugeln für die nächsten Stösse gleichzeitig regeln.

Hier wird ein einzelner Stoss durchgeführt, und zwar von allen beteiligten Kugeln.

12

Hier wird die Anzahl der Schritte angezeigt.

13

Hier führen alle Kugeln Stösse durch bis der Vorgang durch

14

gestoppt wird.

15

Hier werden viele Billardkugeln erzeugt und über den Tisch verteilt, damit anschliessend durch «Start» das Phasenportrait erzeugt werden kann.

16

Durch diese Taste wird die gesamte Iteration zurückgesetzt.

Beispiel

Elliptisches Billard mit zwei Kugeln

Im obigen Beispiel wurden zwei Kugeln platziert. Die rote Bahn läuft zwischen den Brennpunkten der Ellipse und die grüne ausserhalb davon. In der mathematischen Dokumentation werden die auftretenden Kaustiken hergeleitet.

17

Hier wird das «Phasenportrait» der Bewegung skizziert: In horizontaler Richtung wird der Parameter t und in vertikaler Richtung der Parameter α eingetragen. Man sieht im obigen Beispiel, dass im grünen Fall t alle mögliche Werte durchläuft, während α auf einen gewissen Bereich eingeschränkt ist. Im roten Fall sind sowohl t wie auch α eingeschränkt.

Hier werden die Parameterpaare (t_n, α_n) aufgelistet, und zwar unterschieden nach der Kugelfarbe. Beispiele

Eine Kugel im stadionförmigen Billard

Rechts im Phasenportrait erscheint keine Struktur mehr. Die Parameterpaare scheinen zufällig verstreut.

Zwei Kugeln im ovalen Billard

Auch hier erscheint keine Struktur mehr im Phasenportrait.

Ein weiters Beispiel zeigt die Möglichkeit, Zyklen durch Intervallschachtelung näherungsweise zu bestimmen.

Angenommen, wir suchen einen 3-periodischen Zyklus im Falle des elliptischen Billards. Wir wählen als Startpunkt für den Zyklus jeweils den Parameter t=0, also den Startpunkt (a,0). Dann sehen wir mit etwas experimentieren, dass der Startwinkel $\alpha=1.2$ eine erste sehr grobe Näherung liefert. Wir

tragen diese Werte manuell als Startparameter ein, übernehmen die Startparameter (dadurch wird die Kugel platziert) und führen die ersten drei Stösse durch:

Suche nach dem 3-Zyklus: Der Wert $\alpha=1.2$ ist etwas zu klein

Das sieht man hier noch optisch. Es ist aber besser, dass Protokoll rechts zu kontrollieren und man sieht, dass t=6.215489 ... nicht ganz 2π beträgt.

Wie man ebenso feststellt, ist $\alpha_2=1.25$ etwas zu gross. Wir geben diese Werte jeweils manuell im Parameterbereich ein und lassen die Kugel die Parameterwerte übernehmen. Wir kontrollieren den Parameter t nach jeweils drei Stössen. Wenn t>0 ist, dann war α etwas zu gross. Wenn t knapp unter 2π liegt, dann war α etwas zu klein. Je nachdem korrigieren wir das durch Halbieren des Intervalls aus. Das ergibt folgende Intervallschachtelung für den gesuchten Startwert α :

α_n	α_{n+1}
1.2	1.25
1.2	1.225
1.2125	1.225
1.21875	1.225
1.221875	1.225
1.221875	1.2234375
1.22265625	1.2234375

Der gesuchte 3-er Zyklus startet im Bereich $t=0, \alpha \in [1.2226, 1.2235]$

Das Verfahren konvergiert sehr langsam. Auf Grund von Stetigkeitsargumenten kann man aber mindestens auf die Existenz eines 3-er Zyklus schliessen. Siehe mathematische Dokumentation.

4.2. Numerische Methoden

Grundlage für diese Experimente ist das klassische Federpendel, welches hier in einer Cosinus Schwingung schwingt. Seine Schwingung kann nun verglichen werden mit Federpendeln, welche nicht gemäss Cosinus schwingen, sondern bei denen deren Differentialgleichung durch numerische Methoden angenähert sind. Es handelt sich dabei um einfache Methoden, welche elementar zugänglich sind (ausser vielleicht das Runge Kutta Verfahren). Zur Verfügung stehen:

- Euler Implizit
- Euler Explizit
- Implizite Mittelpunktsregel
- Runge Kutta Verfahren Stufe 4

Diese Methoden werden in der mathematischen Dokumentation im Detail beschrieben.

Zur Untersuchung öffnet man durch das Menü folgende Form:

Form zur Untersuchung der Federpendel

Im linken Bereich werden die Schwingungen der Pendel angezeigt. Grün: Das «echte» Federpendel mit der geschlossenen Lösung seiner Differentialgleichung, welches hier in einer Cosinus-Schwingung schwingt. Rot: Das Federpendel mit einer numerischen Lösung der entsprechenden Differentialgleichung.

Die Pendel sind in der Null-Position. Wenn man die Simulation hier startet, schwingen die Pendel nicht. Sie müssen mit gedrückter linker Maustaste in Ausgangsposition gebracht werden.

Waagrecht: Man sieht die Zeitachse und die Null-Position der Pendel. In y-Richtung ist die Pendelposition im Intervall [-1, 1].

1

Hier wird das numerische Verfahren für das rote Pendel ausgewählt. Als Kontrolle kann auch das rote Pendel als «reales Federpendel» gewählt werden.

2

Das reale, grüne Pendel inkrementiert die Zeitvariable in jedem Schritt um 0.1. Das rote Pendel kann dieses Intervall weiter unterteilen entsprechend der in 2 gewählten Schrittweite. Wenn diese z.B. 0.02 beträgt wie oben im Bild, dann führt das rote Pendel 5 Iterationsschritte mit der Schrittweite 0.02 durch, bevor seine Position im Bild angezeigt wird. Das grüne Pendel wird dann gleichzeitig mit der Schrittweite 0.1 angezeigt. Das führt dazu, dass die Pendel synchron sind.

3

Wenn man die Option «gestreckte Darstellung» aktiviert, dann schwingen beide Pendel mit derselben Schrittweite für den Zeitparameter, also z.B. beide Pendel mit der Schrittweite 0.02. Das

führt zu einer gestreckten Darstellung für beide Pendel und man sieht die Abweichungen zwischen grünem und rotem Pendel besser.

4

Hier werden die Pendel gestartet. Wird die Schwingung unterbrochen, kann sie mit dieser Taste fortgesetzt werden.

5

Hier wird die Anzahl der Schritte des grünen Pendels auf der Zeitachse angezeigt.

6

Hier wird die Schwingung der Pendel unterbrochen.

7

Hier wird die Iteration zurückgesetzt und die Pendel wieder in die Null-Ausgangsposition gebracht.

8

Hier wird die Differenz der y-Positionen des grünen und roten Pendels protokolliert.

Nachfolgend einige Beispiele.

Das rote Pendel schwingt ebenfalls wie ein reales Pendel. Die Differenz rechts ist Null.

Das rote Pendel wird durch die «Euler Explizit» Methode angenähert (siehe math. Dok.)

Dieselbe Situation, aber mit einer kleineren Schrittweite für das rote Pendel: Es dauert länger, bis die Bahnen voneinander abweichen

Dieselbe Situation mit gestreckter Anzeige: Beide Pendel schwingen mit Schrittweite 0.002

Hier schwingt das rote Pendel angenähert mit der «Euler Implizit» Methode

Die «implizite Mittelpunktregel» liefert eine gute Annäherung für das rote Pendel. Man sieht aber rechts, dass die Differenz der Positionen nicht Null ist

Am besten schneidet das «Runge Kutta» Verfahren 4. Ordnung ab. Siehe die kleinen Differenzen rechts.

4.3. C-Diagramm

Im Falle der unimodalen Funktionen zeigt das Feigenbaum-Diagramm das Verhalten der Iteration in Abhängigkeit des Parameters a. Beim Billard spielt diese Rolle der Parameter C.

Für die Darstellung des C-Diagrammes wird folgendes Fenster geöffnet:

Fenster zum Untersuchen des C-Diagrammes

1

Hier wird die Grafik angezeigt.

2

Hier wird die Form des Billardtisches ausgewählt.

3, 4, 5

Hier kann festgelegt werden, welches Intervall von C untersucht wird. Es gilt: $C \in [Cmin, Cmax]$. Die Breite des untersuchten Intervalls wird in 5 angezeigt.

6

Die Bewegung der Kugel wird durch zwei Werteparameter beschrieben. Hier wird der Werteparameter ausgewählt, dessen Abhängigkeit von C dargestellt werden soll.

7, 8, 9

Für den ausgewählten Werteparameter wird hier festgelegt, welches Intervall näher untersucht werden soll. Der Werteparameter ist dann im Intervall [Vmin, Vmax]. Die Breite dieses Intervalls wird in 9 angezeigt.

Der erste Werteparameter beim Billard beschreibt die Position des Stosspunktes auf dem Rand des Billardtisches. Der zweite Werteparameter den Reflexionswinkel beim Stoss.

Der Werteparameter, welcher in 6 *nicht* ausgewählt ist, das heisst, der nicht genauer untersucht wird, wird standardmässig auf 1/3 seines Werteintervalls gesetzt. Also zum Beispiel $t=\frac{2\pi}{3}$ im Falle des elliptischen Billards.

Für den Werteparameter, der untersucht werden soll, kann die Ausgangsposition zwischen 1/12 bis 11/12 seines Werteintervalls variieren. Also zum Beispiel $\alpha={}^{7\pi}/_{12}$ bei der Einstellung, welche bei 10 im obigen Fenster sichtbar ist.

11

Wie beim Feigenbaum-Diagramm kann hier die Präzision der Iteration festgelegt werden.

12

Hier wird die Iteration gestartet ...

13

... und hier zurückgesetzt.

Auswahl von kleinen Ausschnitten im Diagramm

Wir starten das C-Diagramm für das ovale Billard mit den Standardparametern.

Untersuchung von α beim ovalen Billard mit Benutzerauswahl – siehe rotes Rechteck

Oben wurde das ovale Billard für den Parameterbereich $\mathcal{C} \in [0.5, 2]$ untersucht, und zwar der Reflexionswinkel α . Die rote senkrechte Linie markiert den Parameterwert $\mathcal{C}=1$. Für diesen Wert ist der Billardtisch ein Kreis und α ist konstant, d.h. man hat einen Punkt im Diagramm.

Der Benutzer hat nun wie beim Feigenbaum-Diagramm die Möglichkeit, einen Ausschnitt, den er genauer untersuchen will, mit Hilfe eines Auswahl-Rechteckes auszuwählen. Das geschieht mit gedrückter linker Maustaste. Dabei wird rechts in den Feldern 2-4 der Parameterbereich und in den Feldern 5-7 der Wertebereich automatisch entsprechend nachgefahren.

Im oberen Bild hat der User mit gedrückter linker Maustaste den rot markierten Ausschnitt gewählt. Dabei werden rechts die Intervalle [Cmin, Cmax] und [Vmin, Vmax] nachgefahren, wie beim Feigenbaum-Diagramm.

Wird nun die Iteration nochmals gestartet, erhält man folgendes Bild:

Ausschnitt aus dem C-Diagramm für das ovale Billard

Bemerkung für weitere Experimente

Meist ist die Untersuchung des Reflexionswinkels α aussagekräftiger als der Parameter t, welcher den Stosspunkt festlegt. Beim Kreis oder bei einem Orbit ausserhalb der Ellipsenbrennpunkte liegt der Orbit von t dicht im zulässigen Intervall, ausser man hat gerade einen periodischen Orbit erwischt. Hingegen ist α beim Kreis konstant oder oszilliert bei der Ellipse in einem Teilintervall von $[0,\pi[$. Bevor man mit einer Untersuchung beginnt, kann man zudem mit der Position des Startwertes

experimentieren, um interessante Bilder zu erhalten. Deren vertiefte mathematische Interpretation dürfte aber schwierig sein.

4.4. Gekoppelte Pendel

Hier werden folgende gekoppelte Pendel zur Untersuchung angeboten:

- Doppelpendel
- Schwingendes Federpendel
- Horizontales Rüttelpendel

Durch das Menü «Mechanik – Pendel» wird folgendes Fenster geöffnet:

Fenster zur Untersuchung gekoppelter Pendel

1

Hier wird die Bewegung des gekoppelten Pendels aufgezeigt.

2

Auswahl des Pendels.

3

Anzeige der Gesamtenergie beim Start.

4

Je nach Pendel kann hier ein weiterer Parameter festgelegt werden.

5-8

Hier werden die spezifischen Startparameter angezeigt oder können eingegeben werden. Je nach Pendel können das bis zu 6 verschiedene Parameter sein.

9

Durch diesen Knopf können eingegebene Startparameter dem Pendel übergeben werden.

Schrittweite des Runge Kutta Verfahrens.

11

Auswahl des Typs des Phasenportraits. Zur Auswahl stehen:

- Beide Pendel unabhängig voneinander
- Torus oder Zylinder (je nach Pendel)
- Poincaré Schnitt

12

Anzeige der Anzahl Schritte der Iteration.

13

Start der Iteration.

14

Stop der Iteration.

15

Hier wird die Iteration zurückgesetzt.

16

Anzeige des Phasenportraits.

17

Protokoll der relevanten Parameter und Anzeige der aktuellen Energie relativ zur Gesamtenergie am Start.

Das Runge Kutta Verfahren (und auch bessere Verfahren) zeigen die «echte» Bewegung des gekoppelten Pendels nur über wenige Schritte. Anschliessend reagiert das Pendel zu sensitiv auf die Ungenauigkeiten der Iteration. Deshalb wird durch die Anzeige der aktuellen Energie darauf hingewiesen, wenn diese von der Gesamtenergie am Start mehr als ±10% abweicht. Liegt die Abweichung unter diesem Wert, erscheint der entsprechende Balken der Energieanzeige grün. Ist die aktuelle Energie zu tief, dann erscheint der Balken violett. Ist sie zu hoch, erscheint er rot.

Bewegung des Doppelpendels

Poincaré Schnitt beim Doppelpendel

Darstellung der Bewegung auf dem Torus

Bewegung des schwingenden Federpendels

Rüttelpendel