Algebraic Number Theory

Rahul Dintyala

Introduction

Algebraic Number Theory

Rahul Dintyala

May 9, 2024

Algebraic Number Theory

Rahul Dintyala

Introduction

Theorem

Let H be a discrete subgroup of \mathbb{R}^n . Then H is generated (as a \mathbb{Z} -module) by r vectors which are linearly independent over \mathbb{R} (so $r \leq n$).

Algebraic Number Theory

Rahu Dintya

Introduction

Theorem

Let G be a group and \mathbb{K} a field. Then, distinct characters are linearly independent over \mathbb{K} .

Proof. Suppose

$$a_1\chi_1+\ldots+a_n\chi_n=0 \qquad (\star)$$

with $a_i \in \mathbb{K}$ not all zero and n minimal with this property. Then of course $n \geq 2$ and $a_i \neq 0$ for all i. Since χ_1 and χ_2 are distinct, there exists $h \in G$ such that $\chi_1(h) \neq \chi_2(h)$. Then, for any $g \in G$,

$$0 = a_1\chi_1(hg) + \cdots + a_n\chi_n(hg) = a_1\chi_1(h)\chi_1(g) + \cdots + a_n\chi_n(h)\chi_n(g)$$

which means that $a_1\chi_1(h)\chi_1 + \cdots + a_n\chi_n(h)\chi_n = 0$. Dividing this last expression by $\chi_1(h)$ and subtracting it from (\star) we get :

$$\left(a_2-a_2\frac{\chi_2(h)}{\chi_1(h)}\right)\chi_2+\cdots+\left(a_n-a_n\frac{\chi_n(h)}{\chi_1(h)}\right)\chi_n=0$$

contradicting the minimality of n. Thus, any collection of distinct characters must be linearly independent.

Introduction

Corollary

Suppose that L/\mathbb{K} is a finite normal extension of fields and σ_1,\ldots,σ_n be the distinct automorphisms of L. Then these are linearly independent over L.

Proof. Follows from previous theorem by viewing the automorphisms as homomorphisms from $L^* \to L^*$.

Corollary

Let L/\mathbb{K} be a finite Galois extension of fields of degree n. Suppose that x_1, \ldots, x_n is a basis of L over \mathbb{K} and let $\sigma_1, \ldots, \sigma_n$ be the distinct \mathbb{K} -automorphisms of L. Then, $\det(\sigma_j(x_i)) \neq 0$.

Proof. Suppose that this determinant is actually zero. Then, there exist a_1,\ldots,a_n not all zero such that $\sum_j a_j\sigma_j(x_i)=0$ for all $1\leq i\leq n$. Now, since x_1,\ldots,x_n make a basis of L, for any $l\in L$, $\sum_j a_j\sigma_j(l)=0$. Thus, $\sigma_ja_j\sigma_j=0$ contradicting the previous corrolary.