CSE 431/531: Algorithm Analysis and Design (Fall 2024) Divide-and-Conquer

Lecturer: Kelin Luo

Department of Computer Science and Engineering University at Buffalo

Outline

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- 6 Computing *n*-th Fibonacci Number
- 7 Other Classic Algorithms using Divide-and-Conquer

• T(n) = running time for sorting n numbers,then

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \ge 2 \end{cases}$$

• T(n) = running time for sorting n numbers,then

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \ge 2 \end{cases}$$

With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ \frac{2T(n/2)}{} + O(n) & \text{if } n \ge 2 \end{cases}$$

• T(n) = running time for sorting n numbers,then

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2 \end{cases}$$

• With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ \frac{2T(n/2) + O(n)}{2T(n/2) + O(n)} & \text{if } n \ge 2 \end{cases}$$

• Even simpler: T(n) = 2T(n/2) + O(n). (Implicit assumption: T(n) = O(1) if n is at most some constant.)

• T(n) = running time for sorting n numbers,then

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2 \end{cases}$$

• With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ \frac{2T(n/2) + O(n)}{2T(n/2) + O(n)} & \text{if } n \ge 2 \end{cases}$$

- Even simpler: T(n) = 2T(n/2) + O(n). (Implicit assumption: T(n) = O(1) if n is at most some constant.)
- Solving this recurrence, we have $T(n) = O(n \lg n)$ (we shall show how later)

Outline

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- 6 Computing *n*-th Fibonacci Number
- 7 Other Classic Algorithms using Divide-and-Conquer

Counting Inversions

Input: a sequence A of n numbers

Output: number of inversions in A

Counting Inversions

Input: a sequence A of n numbers

Output: number of inversions in A

Example:

10 8 15 9 12

Counting Inversions

Input: a sequence A of n numbers

Output: number of inversions in A

Example:

10 8 15 9 12

8 9 10 12 15

Counting Inversions

Input: a sequence A of n numbers

Output: number of inversions in A

Counting Inversions

Input: a sequence A of n numbers

Output: number of inversions in A

Example:

• 4 inversions (for convenience, using numbers, not indices): (10,8),(10,9),(15,9),(15,12)

Naive Algorithm for Counting Inversions

count-inversions(A, n)

```
1: c \leftarrow 0
```

2: **for** every $i \leftarrow 1$ to n-1 **do**

3: **for** every $j \leftarrow i + 1$ to n **do**

4: if A[i] > A[j] then $c \leftarrow c + 1$

5: return c

Divide-and-Conquer

$$A: \qquad B \qquad C$$

•
$$p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n]$$

$$\#\mathsf{invs}(A) = \#\mathsf{invs}(B) + \#\mathsf{invs}(C) + m$$

$$m = \left| \left\{ (i,j) : B[i] > C[j] \right\} \right|$$

Q: How fast can we compute m, via trivial algorithm?

A: $O(n^2)$

• Can not improve the $O(n^2)$ time for counting inversions.

Divide-and-Conquer

- $\bullet \ p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n]$
- $\#\mathsf{invs}(A) = \#\mathsf{invs}(B) + \#\mathsf{invs}(C) + m$ $m = \left| \left\{ (i,j) : B[i] > C[j] \right\} \right|$

Lemma If both B and C are sorted, then we can compute m in O(n) time!

$$B: \ \boxed{3} \ \ 8 \ \ \boxed{12} \ \boxed{20} \ \ \boxed{32} \ \ \boxed{48}$$

$$total = 0$$

$$C$$
: 5 7 9 25 29

ullet Procedure that merges B and C and counts inversions between B and C at the same time

```
merge-and-count(B, C, n_1, n_2)
 1: count \leftarrow 0:
 2: A \leftarrow \text{array of size } n_1 + n_2; i \leftarrow 1; j \leftarrow 1
 3: while i < n_1 or j < n_2 do
         if j > n_2 or (i < n_1 \text{ and } B[i] < C[j]) then
 4:
              A[i+j-1] \leftarrow B[i]: i \leftarrow i+1
 5:
              count \leftarrow count + (j-1)
 6:
         else
 7:
              A[i+j-1] \leftarrow C[j]; j \leftarrow j+1
 8:
 9: return (A, count)
```

Sort and Count Inversions in A

 A procedure that returns the sorted array of A and counts the number of inversions in A:

```
sort-and-count(A, n)
  1: if n = 1 then
      return (A,0)
  3: else
             (B, m_1) \leftarrow \mathsf{sort}\text{-}\mathsf{and}\text{-}\mathsf{count}\Big(A\big[1..\lfloor n/2\rfloor\big], \lfloor n/2\rfloor\Big)
  4:
             (C, m_2) \leftarrow \mathsf{sort}\text{-and-count}\Big(A\big[\lfloor n/2 \rfloor + 1..n\big], \lceil n/2 \rceil\Big)
  5:
             (A, m_3) \leftarrow \mathsf{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)
  6:
             return (A, m_1 + m_2 + m_3)
  7:
```

Sort and Count Inversions in A

• A procedure that returns the sorted array of *A* and counts the number of inversions in *A*:

```
    Divide: trivial

sort-and-count(A, n)
                                                             Conquer: 4, 5
  1: if n = 1 then

    Combine: 6, 7

      return (A,0)
  3: else
             (B, m_1) \leftarrow \mathsf{sort}\text{-}\mathsf{and}\text{-}\mathsf{count}\Big(A\big[1..\lfloor n/2\rfloor\big], \lfloor n/2\rfloor\Big)
  4:
             (C, m_2) \leftarrow \mathsf{sort}\text{-}\mathsf{and}\text{-}\mathsf{count}\Big(A\big[\lfloor n/2\rfloor + 1..n\big], \lceil n/2\rceil\Big)
  5:
             (A, m_3) \leftarrow \mathsf{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)
  6:
             return (A, m_1 + m_2 + m_3)
  7:
```

sort-and-count(A, n)

```
1: if n=1 then
2: return (A,0)
3: else
4: (B,m_1) \leftarrow \text{sort-and-count}\left(A\big[1..\lfloor n/2\rfloor\big],\lfloor n/2\rfloor\right)
5: (C,m_2) \leftarrow \text{sort-and-count}\left(A\big[\lfloor n/2\rfloor+1..n\big],\lceil n/2\rceil\right)
6: (A,m_3) \leftarrow \text{merge-and-count}(B,C,\lfloor n/2\rfloor,\lceil n/2\rceil)
7: return (A,m_1+m_2+m_3)
```

• Recurrence for the running time: T(n) = 2T(n/2) + O(n)

sort-and-count(A, n)

```
1: if n=1 then
2: return (A,0)
3: else
4: (B,m_1) \leftarrow \text{sort-and-count}\left(A\big[1..\lfloor n/2\rfloor\big],\lfloor n/2\rfloor\right)
5: (C,m_2) \leftarrow \text{sort-and-count}\left(A\big[\lfloor n/2\rfloor+1..n\big],\lceil n/2\rceil\right)
6: (A,m_3) \leftarrow \text{merge-and-count}(B,C,\lfloor n/2\rfloor,\lceil n/2\rceil)
7: return (A,m_1+m_2+m_3)
```

- Recurrence for the running time: T(n) = 2T(n/2) + O(n)
- Running time = $O(n \lg n)$

Outline

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- 6 Computing *n*-th Fibonacci Number
- 7 Other Classic Algorithms using Divide-and-Conquer

Outline

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- 6 Computing *n*-th Fibonacci Number
- 7 Other Classic Algorithms using Divide-and-Conquer

Quicksort vs Merge-Sort

	Merge Sort	Quicksort
Divide	Trivial	Separate small and big numbers
Conquer	Recurse	Recurse
Combine	Merge 2 sorted arrays	Trivial

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
29	38	45	25	15	37	17	64	82	75	94	92	69	76	85

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
29	38	45	25	15	37	17	64	82	75	94	92	69	76	85

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85
29	38	45	25	15	37	17	64	82	75	94	92	69	76	85
25	15	17	29	38	45	37	64	82	75	94	92	69	76	85

Quicksort

```
quicksort(A, n)
```

```
1: if n \leq 1 then return A
2: x \leftarrow lower median of A
3: A_L \leftarrow array of elements in A that are less than x \\ Divide
4: A_R \leftarrow array of elements in A that are greater than x \\ Divide
5: B_L \leftarrow quicksort(A_L, length of A_L) \\ Conquer
6: B_R \leftarrow quicksort(A_R, length of A_R) \\ Conquer
7: t \leftarrow number of times x appear A
8: return concatenation of B_L, t copies of x, and B_R
```

Quicksort

```
quicksort(A, n)
```

```
1: if n \leq 1 then return A
2: x \leftarrow lower median of A
3: A_L \leftarrow array of elements in A that are less than x \\ Divide
4: A_R \leftarrow array of elements in A that are greater than x \\ Divide
5: B_L \leftarrow quicksort(A_L, length of A_L) \\ Conquer
6: B_R \leftarrow quicksort(A_R, length of A_R) \\ Conquer
7: t \leftarrow number of times x appear A
8: return concatenation of B_L, t copies of x, and B_R
```

• Recurrence $T(n) \le 2T(n/2) + O(n)$

Quicksort

```
quicksort(A, n)
```

```
1: if n \leq 1 then return A
2: x \leftarrow lower median of A
3: A_L \leftarrow array of elements in A that are less than x \\ Divide
4: A_R \leftarrow array of elements in A that are greater than x \\ Divide
5: B_L \leftarrow quicksort(A_L, \text{length of } A_L) \\ Conquer
6: B_R \leftarrow quicksort(A_R, \text{length of } A_R) \\ Conquer
7: t \leftarrow number of times x appear A
8: return concatenation of B_L, t copies of x, and B_R
```

- Recurrence $T(n) \le 2T(n/2) + O(n)$
- Running time = $O(n \lg n)$

Assumption We can choose median of an array of size n in O(n) time.

Q: How to remove this assumption?

Assumption We can choose median of an array of size n in O(n) time.

Q: How to remove this assumption?

A:

① There is an algorithm to find median in O(n) time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)

Assumption We can choose median of an array of size n in O(n) time.

Q: How to remove this assumption?

A:

- ① There is an algorithm to find median in O(n) time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
- Choose a pivot randomly and pretend it is the median (it is practical)

Quicksort Using A Random Pivot

```
\begin{array}{lll} \operatorname{quicksort}(A,n) \\ & \text{1: if } n \leq 1 \text{ then return } A \\ & \text{2: } x \leftarrow \text{a random element of } A \text{ } (x \text{ is called a pivot}) \\ & \text{3: } A_L \leftarrow \text{array of elements in } A \text{ that are less than } x & & & & \\ & \text{4: } A_R \leftarrow \text{array of elements in } A \text{ that are greater than } x & & & & \\ & \text{5: } B_L \leftarrow \text{quicksort}(A_L, \text{length of } A_L) & & & & \\ & \text{6: } B_R \leftarrow \text{quicksort}(A_R, \text{length of } A_R) & & & & \\ & \text{7: } t \leftarrow \text{number of times } x \text{ appear } A \\ & \text{8: } \mathbf{return concatenation of } B_L, t \text{ copies of } x, \text{ and } B_R \end{array}
```

Assumption There is a procedure to produce a random real number in $\left[0,1\right]$.

Q: Can computers really produce random numbers?

Assumption There is a procedure to produce a random real number in $\left[0,1\right]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

Assumption There is a procedure to produce a random real number in $\left[0,1\right].$

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

 In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that "look like" random

Assumption There is a procedure to produce a random real number in $\left[0,1\right]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that "look like" random
- In theory: assume they can.

Quicksort Using A Random Pivot

```
quicksort(A, n)

1: if n \le 1 then return A

2: x \leftarrow a random element of A (x is called a pivot)

3: A_L \leftarrow array of elements in A that are less than x \\ Divide

4: A_R \leftarrow array of elements in A that are greater than x \\ Divide

5: B_L \leftarrow quicksort(A_L, \text{length of } A_L) \\ Conquer

6: B_R \leftarrow quicksort(A_R, \text{length of } A_R) \\ Conquer

7: t \leftarrow number of times x appear A

8: return concatenation of B_L, t copies of x, and B_R
```

Lemma The expected running time of the algorithm is $O(n \lg n)$.

Quicksort Can Be Implemented as an "In-Place" Sorting Algorithm

• In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.