Complexidade de Algoritmos (parte 1)

Prof. Jefferson T. Oliva

Algoritmos e Estrutura de Dados 2 (AE43CP) Engenharia de Computação Departamento Acadêmico de Informática (Dainf) Universidade Tecnológica Federal do Paraná (UTFPR) Campus Pato Branco

Sumário

- Análise Assintótica
 - Conceitos matemáticos
 - Notações
- Taxas de Crescimento

Introdução

- Por que estudar a complexidade de algoritmos?
 - Qual a diferença entre programa e algoritmo?

Introdução

• Programa vs. Algoritmo

Programa	Algoritmo	
Linguagem concreta	Linguagem abstrata	
(C, Java, Python)	(pseudo-código)	
Dependente de	Independente de	
sistema operacional	sistema operacional	
Dependente de	Independente de	
hardware	hardware	
Avaliação em tempo real Avaliação por estimat		
(empírica)	(assintótica)	

4

Introdução

- O algoritmo deve resolver o problema corretamente e rapidamente (nem sempre isso é possível)
- Algoritmos eficientes
 - Problemas determinísticos (P) vs. não-determinístico (NP)
- Existem problemas para os quais não são conhecidos algoritmos eficientes para resolvê-los
 - Chamados de NP-completos

Definições de algoritmo

• Afinal, como mensurar a eficiência de um algoritmo?

Definições de algoritmo

- Afinal, como mensurar a eficiência de um algoritmo?
 - Na disciplina "Algoritmos e Estrutura de Dados 1" tivemos uma introdução à análise de complexidade de algoritmos, na qual vimos é importante determinar os recursos necessários para a execução de cada algoritmo:
 - Tempo
 - Espaço

Análise de Algoritmos

Lembram do conto abaixo?

"Desenvolvi um novo algoritmo chamado TripleX que leva 14,2 segundos para processar 1.000 números, enquanto o método SimpleX leva 42,1 segundos."

 Você trocaria o SimpleX que roda em sua empresa pelo TripleX?

Análise de Algoritmos

- A afirmação tem que ser examinada, pois há diversos fatores envolvidos, como características da máquina, linguagem de programação, etc
- É desejável a comparação de algoritmos e não programas
- Análise/complexidade de algoritmos: comparações entre algoritmos de forma independente de
 - Hardware
 - Sistema operacional
 - Linguagem de programação
- A análise/complexidade de algoritmos também tem o objetivo de determinar se o algoritmo analisado é ótimo

Eficiência de Algoritmos

- Sabe-se que:
 - Processar 100.000 números leva mais tempo do que 10.000 números
 - Cadastrar 20 itens em um sistema de vendas leva mais tempo do que cadastrar 10
 - Etc
- Na introdução à análise de complexidade em "Algoritmos e Estrutura de Dados I" vimos que podemos estimar a eficiência de um algoritmo em função do tamanho do problema (número de elementos processados):
 - ullet Geralmente, é assumido que n é o tamanho do problema
 - É calculado o número de operações realizadas sobre os n elementos (e.g. comparações, somas, subtrações, incrementos, etc)

Eficiência de Algoritmos

- Exemplo: TripleX vs. SimpleX
 - TripleX: para uma entrada de tamanho n, o algoritmo realiza $n^2 + n$ operações:
 - $f(n) = n^2 + n$
 - SimpleX: para uma entrada de tamanho n, o algoritmo realiza 1.000n operações:
 - g(n) = 1.000n

Tamanho da Entrada	1	10	100	1.000	10.000
$f(n)=n^2+n$	2	110	10.100	1.001.000	100.010.000
g(n) = 1.000n	1.000	10.000	100.000	1.000.000	10.000.000

- partir de n = 1.000, f(n) mantém-se maior e cada vez mais distante de g(n)
 - Diz-se que f(n) cresce mais rápido do que g(n)

10

Sumário

Análise Assintótica

- Devemos nos preocupar com a eficiência de algoritmos quando o tamanho de n for grande
- A análise assintótica de um algoritmo descreve a sua eficiência relativa quando n torna-se grande
- Comparação de algoritmos: o algoritmo com menor taxa de crescimento rodará mais rápido quando o tamanho do problema for grande
- Também se pode aplicar os conceitos de análise assintótica para a quantidade de memória usada por um algoritmo

Conceitos matemáticos

- Expoentes:
 - $x^a x^b = x^{a+b}$
 - $x^a/x^b = x^{a-b}$
 - $(x^a)^b = x^{ab}$
 - $x^n + x^n = 2x^n$
 - $2^n + 2^n = 2^{n+1}$

Conceitos matemáticos

- Logaritmos (usaremos a base 2, a menos que seja dito o contrário)
 - $x^a = b \Rightarrow \log_x b = a$
 - $\log_a b = \log_c b / \log_c a$, se c > 0
 - $\log ab = \log a + \log b$
 - $\log a/b = \log a \log b$
 - $\log a^b = b \log a$

Conceitos matemáticos

Séries

$$\sum_{i=1}^{n} 2^{i} = 2^{n+1} - 1$$

$$\sum_{i=1}^{n} a^{i} = \frac{a^{n+1}-1}{a-1}$$

•
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Análise Assintótica Notações

- Notações de Knuth:
 - *Big-oh*: *O*(*n*)
 - Ômega: $\Omega(n)$
 - Teta: $\Theta(n)$

Notações: big-oh

- Limite assintótico superior
- Dada duas funções, f(n) e g(n)
 - Uma função f(n) é da ordem de (big-oh) g(n) ou função f(n) é O(g(n)) se existirem existem duas constantes positivas c e n_0 tais que $f(n) \le cg(n)$, para todo $n \ge n_0$

Notações: big-oh

- Exemplos:
 - Seja $f(n) = (n+1)^2$. Logo, $f(n) \in O(n^2)$, quando $n_0 = 1$ e c = 4, pois $(n+1)^2 \le 4n^2$ para $n \ge n_0$
 - Seja $f(n)=2n^3+n^2+3n+1$. Logo, para provar que f(n) é $O(n^3)$, basta provar que $2n^3+n^2+3n+1\leq 6n^3$ para $n\geq n_0$
- Notação O é a mais utilizada para a análise de complexidade de algoritmos
- Ao dizer que f(n) = O(g(n)), tem-se que g(n) é o limite superior de f(n)
- Exemplo: algoritmo de ordenação quicksort
 - O pior cenário é quando o pivô é escolhido de forma que divisão do sub-arranjo fique desbalanceada: $O(n^2)$

Notações: ômega

- Limite assintótico inferior
- Dada duas funções, f(n) e g(n)
 - Uma função f(n) é da ordem de ômega g(n) ou função f(n) é $\Omega(g(n))$ se existirem existem duas constantes positivas $c \in n_0$ tais que $f(n) \ge cg(n)$, para todo $n \ge n_0$

Notações: ômega

- Exemplo: para mostrar que $f(n) = 3n^3 + 2n^2$ é $\Omega(n^3)$, basta fazer c = 1 e $n_0 = 0$, e então $3n^3 + 2n^2 \ge n^3$ para todo $n \ge n_0$
- Ao dizer que $f(n) = \Omega(g(n))$, tem-se que g(n) é o limite inferior de f(n)
- Exemplo: a quantidade mínima ("o melhor que pode fazer")
 de operações que o quicksort realiza é na ordem de n log n
- Essa notação é pouca utilizada

Notações: teta

- Limite assintótico firme
- Dada duas funções, f(n) e g(n)
 - Uma função f(n) é da ordem de teta g(n) ou função f(n) é $\theta(g(n))$ se existirem constantes positivas c_1 , c_2 e n_0 tais que $c_1g(n) \leq f(n) \leq c_2g(n)$ para todo $n \geq n_0$

Notações: teta

- Exemplo: para mostrar que $f(n) = \frac{n^3}{3}$ é $\Theta(n^3)$, podemos fazer $c_1 = \frac{1}{6}$ e $c_2 = \frac{2}{3}$ para $n \ge 0$
- Quando $f(n) = \Theta(g(n))$, isso significa que f(n) é O(g(n)) e $\Omega(g(n))$
- Exemplo: algoritmo de ordenação heapsort, onde o custo mínimo e máximo é $n \log n$, ou seja, $\Theta(n \log n)$

Notações

- O uso das notações permite comparar a taxa de crescimento das funções correspondentes aos algoritmos
- Exemplo: Para 2 algoritmos quaisquer, considere as funções de eficiência correspondentes f(n) = 1.000n e $g(n) = n^2$
 - A primeira cresce mais rapidamente para valores pequenos de n
 - A segunda cresce mais rapidamente e finalmente será uma função maior, sendo que o ponto de mudança é n=1.000
 - Em uma comparação entre ambas funções, podemos dizer que f(n) = O(g(n)) e $g(n) = \Omega(f(n))$

Notações

- Na análise de algoritmos, algumas vezes, apenas uma função referente à quantidade de instruções é obtida
 - Exemplo: para uma função que executa $2n^3+4n^2+3n+5$ instruções em seu "pior cenário", dizemos que a sua complexidade é de $O(n^3)$

Não faz sentido comparar pontos isolados das funções, pois é n^3 que representa a gradeza da função

• O cálculo de instruções será abordado na próxima aula

Sumário

Taxas de Crescimento

• Funções e taxas de crescimento mais comuns:

С	constante	
log n	logarítmica	
n	linear	
n log n	linear	
n^2	quadrática	
n ³	cúbica	
2 ⁿ	exponencial	
a ⁿ	exponencial	

• Crescimentos de algumas funções

- Se a função T(x) é um polinômio de grau n, então $T(x) = \Theta(x^n)$
- Comparação de funções para $T_1(n) = O(f(n))$ e $T_2(n) = O(g(n))$
 - $T_1(n) + T_2(n) = max(O(f(n)), O(g(n)))$
 - $T_1(n) * T_2(n) = O(f(n) * g(n))$
 - $f(n) = \Theta(g(n))$ se e somente se $g(n) = \Theta(f(n))$
 - f(n) = O(g(n)) se e somente se $g(n) = \Omega(f(n))$
- Não se diz que $T(n) = O(10n^3)$ ou que $T(n) = O(10n^3 + 5n^2 + n)$
 - Diz-se apenas $T(n) = O(n^3)$

- Apesar de às vezes ser importante, não é comum incluir constantes ou termos de menor ordem em taxas de crescimento:
 - Queremos medir a taxa de crescimento da função, o que torna os "termos menores" irrelevantes
 - As constantes também dependem do tempo exato de cada operação
 - como ignoramos os custos reais das operações, ignoramos também as constantes

Referências I

- Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Clifford, S. *Algoritmos: teoria e prática*. Elsevier, 2012.
- Horowitz, E., Sahni, S. Rajasekaran, S. Computer Algorithms.
 Computer Science Press, 1998.
- Szwarcfiter, J.; Markenzon, L. Estruturas de Dados e Seus Algoritmos. LTC, 2010.
 - Ziviani, M. Projetos de Algoritmos: com implementações em Pascal e C. Thomson, 2004.