Chemistry Lecture #98: Acid-Base Titration Problems

If you have 10.0 L of 8.00 M HCI, how many moles of H^+ are in solution?

moles of $H^+ = M_A V_A$

where M_A = molarity of acid = 8.00 M or 8.00 moles/L V_A = volume of acid = 10.0 L

moles
$$H^+ = M_A V_A$$

$$\frac{8.00 \text{ moles}}{L} \times \frac{10.0 \text{ L}}{I}$$

= 80.0 moles

If you have 3.00 L of 4.00 M NaOH, how many moles of OH^- are in solution?

where
$$M_B$$
 = molarity of base = 4.00 moles/L V_B = volume of base = 3.00 L

moles
$$OH^{-} = M_BV_B$$

= $4.00 \text{ moles} \times 3.00 \text{ L}$
L

= 12.0 moles

When acids and bases neutralize each other,

moles of
$$H^+$$
 = moles OH^-
 M_AV_A = M_BV_B

We can use the above formula to calculate molarity when an acid of unknown concentration is titrated with a base of known concentration.

It takes 20.0 mL of 4.00 M NaOH to neutralize 5.00 mL of HCl solution. What is the concentration of the HCl solution?

Answer

$$HCI + NaOH \longrightarrow H_2O + NaCI$$

$$M_A = ?$$
 $M_B = 4.00 M$
 $V_A = 5.00 mL$ $V_B = 20.0 mL$

We can use any unit of volume we want as long as we use the same unit for both acid and base.

$$M_AV_A = M_BV_B$$

 $M_A (5.00) = (4.00)(20.0)$

$$M_A = (4.00)(20.0)$$
 (5.00)

$$M_A = 16.0 M$$

What if H₂SO₄ was being neutralized?

 $H_2SO_4 \longrightarrow 2 \text{ moles } H^+$.

There's a subscript "2" below the "H" in H_2SO_4 . We need to modify our formula to account for the fact that 1 mole of H_2SO_4 produces 2 moles of H^+ .

Let S_A = subscript of H in the acid. moles H⁺ = $M_AV_A \times 2$ or $M_AV_A S_A$

We use the above formula for polyprotic acids that produce more than one mole of H^+ .

What if Ca(OH)₂ was being neutralized?

 $Ca(OH)_2 \longrightarrow 2 \text{ moles } OH^-$

One mole of base produces two moles of OH-. Notice the subscript "2" below the "(OH)". Again, need to modify our formula to account for multiple hydroxides.

Let S_B = subscript of (OH) in the base. moles $OH^- = M_BV_B \times 2$ or $M_BV_B S_B$

The final titration formula is

 $M_AV_A S_A = M_BV_B S_B$

Sample acids & bases

Acid	SA	Base	SB
HCI	1	NaOH	1
H ₂ SO ₄	2	$Ca(OH)_2$	2
H3PO4	3		

If 60.0 mL of 0.400 M H_2SO_4 solution neutralize 15.0 mL of KOH solution, find the concentration of KOH solution.

Answer

$$H_2SO_4 + 2KOH \longrightarrow 2H_2O + K_2SO_4$$

$$M_A = 0.400 M$$
 $M_B = ?$

$$V_A = 60.0 \text{ mL}$$
 $V_B = 15.0 \text{ mL}$

$$S_A = 2$$
 $S_B = 1$

$$M_AV_A S_A = M_BV_B S_B$$

(0.400)(60.0)(2) = M_B (15.0)(1)

$$M_{B} = \frac{(0.400)(60.0)(2)}{(15.0)(1)}$$

$$M_{\rm B} = 3.20 \, {\rm M}$$

$$2H_3PO_4 + 3Ba(OH)_2 \longrightarrow GH_2O + Ba_3(PO_4)_2$$

If 25.0 mL of 0.823 M H_3PO_4 require 95.5 mL of Ba(OH)₂ for complete neutralization, what is the concentration of the Ba(OH)₂ solution?

Answer

$$M_A = 0.823 M$$
 $M_B = ?$

$$V_A = 25.0 \text{ mL}$$
 $V_B = 95.5 \text{ mL}$

$$S_A = 3$$
 $S_B = 2$

$$M_AV_A S_A = M_BV_B S_B$$

(0.823)(25.0)(3) = M_B (95.5)(2)

$$M_{B} = \frac{(0.823)(25.0)(3)}{(95.5)(2)}$$

$$M_B = 0.323 M$$