REGLA DEL TRAPECIO

Métodos Numéricos

Priscila Cortés Diego Alonso Fernández Oscar Aaron Delgadillo Andrik Ivan Ortega Jorge Andrés García Luis Manuel Hernández

CONTENIDO

- Objetivo
- ¿Qué es la regla del trapecio?
- Tipos de regla del trapecio
- ¿Cómo usar cada una?
- Casos donde no es posible
- Ejemplo en Java
- Importancia

OBJETIVO

Explicar el método del trapecio, su fundamento matemático, aplicación y precisión en integración numérica.

¿QUÉ ES?

Es un método numérico utilizado para aproximar el valor de una integral definida. Consiste en dividir el área bajo la curva en uno o varios trapezoides y calcular la suma de sus áreas.

TIPOS DE REGLA DEL TRAPECIO

Regla del Trapecio Simple

Regla del Trapecio Compuesta

Este método se utiliza para aproximar una integral utilizando un solo trapezoide.

Aproximación: La función se evalúa únicamente en los extremos del intervalo y la curva se reemplaza por una línea recta que conecta estos puntos.

• Fórmula:

$$\int_a^b f(x) \, dx pprox rac{b-a}{2} \left[f(a) + f(b)
ight]$$

- Donde:
 - o a y b son los límites de integración.
 - f(a) y f(b) son los valores de la función evaluados en los extremos del intervalo.

Ventaja: Es muy sencilla y rápida de aplicar.

Desventaja: Puede ser poco precisa si la función es curva o no lineal.

En este caso, el intervalo de integración se divide en varios subintervalos, formando múltiples trapezoides.

Aproximación: La integral se calcula sumando las áreas de todos los trapezoides. Cuantos más subintervalos haya, mayor será la precisión.

• Fórmula:

$$\int_a^b f(x) \, dx pprox rac{h}{2} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n)
ight]$$

- Donde:
 - on es el número de subintervalos.
 - h es el ancho de cada subintervalo.
 - o a y b son los límites de integración.
 - x0 y x1 son los valores de la función evaluados en cada punto.

Ventaja: Mayor precisión al aumentar el número de subintervalos.

Desventaja: Puede ser más costoso computacionalmente en problemas complejos.

¿CÓMO USAR CADA UNA?

- Cuando se necesita una estimación rápida.
- Si la función es aproximadamente lineal.
- Para problemas sencillos con pocos cálculos.

- Cuando se requiere mayor precisión.
- Si la función tiene una forma compleja.
- Para cálculos en aplicaciones prácticas como física e ingeniería.

CASOS DONDE NO ES POSIBLE

Si una función tiene un punto donde tiende a infinito dentro del intervalo de integración, los métodos numéricos pueden divergir o dar errores grandes.

CASOS DONDE NO ES POSIBLE

Ejemplo:

$$f(x) = \frac{1}{x}$$

En el intervalo [0,1].

El problema es que en x=0, la función se vuelve infinita, lo que hace que cualquier intento de integración numérica falle.

EJEMPLO DE APLICACIÓN

Aproximemos la siguiente integral utilizando la regla del trapecio con n=4 subintervalos:

$$I = \int_{1}^{5} (x^2 + 2x) \, dx$$

Paso 1: Definir la función y los límites

Tenemos la función:

$$f(x) = x^2 + 2x$$

con los límites de integración:

$$a = 1, b = 5$$

y el número de subintervalos:

$$n=4$$

EJEMPLO DE APLICACIÓN

Paso 2: Calcular el tamaño del paso h

El tamaño del paso h se calcula con la fórmula:

$$h = \frac{b-a}{n} = \frac{5-1}{4} = 1$$

Paso 3: Calcular los puntos x_i

Dividimos el intervalo $\left[1,5\right]$ en 4 subintervalos:

$$x_0 = 1$$
, $x_1 = 2$, $x_2 = 3$, $x_3 = 4$, $x_4 = 5$

Paso 4: Evaluar la función en cada punto

Calculamos los valores de la función en cada x_i :

$$f(1) = 1^2 + 2(1) = 3$$

$$f(2) = 2^2 + 2(2) = 8$$

$$f(3) = 3^2 + 2(3) = 15$$

$$f(4) = 4^2 + 2(4) = 24$$

$$f(5) = 5^2 + 2(5) = 35$$

EJEMPLO DE APLICACIÓN

Paso 5: Aplicar la fórmula de la regla del trapecio

La regla del trapecio está dada por:

$$Ipprox rac{h}{2}\left[f(x_0)+2\sum_{i=1}^{n-1}f(x_i)+f(x_n)
ight]$$

Sustituyamos los valores:

$$I \approx \frac{1}{2} [3 + 2(8 + 15 + 24) + 35]$$

$$= \frac{1}{2} [3 + 2(47) + 35]$$

$$= \frac{1}{2} [3 + 94 + 35]$$

$$= \frac{1}{2} (132)$$

$$= 66$$

Paso 6: Resultado final

La aproximación de la integral utilizando la regla del trapecio con n=4 subintervalos es:

EJEMPLO JAVA

```
public class MetodoTrapecio {
    // Definir la función a integrar (Ejemplo: f(x) = e^x)
    public static double funcion(double x) {
       return Math.exp(x);
    // Implementación del método del trapecio
    public static double integrarTrapecio(double a, double b, int n) {
        double h = (b - a) / n; // Tamaño del subintervalo
       double suma = 0.5 * (funcion(a) + funcion(b)); // Extremos de la
suma
       for (int i = 1; i < n; i++) {
            double xi = a + i * h;
            suma += funcion(xi);
       return suma * h;
    public static void main(String[] args) {
       double a = 0; // Limite inferior
       double b = 1; // Limite superior
       int n = 10; // Número de subintervalos
        double resultado = integrarTrapecio(a, b, n);
        System.out.println("Aproximación de la integral: " + resultado);
```

CÓDIGO DE JAVA

- 1. Se define la función funcion(x) que representa $f(x)=e^x$.
- 2. Se implementa el método integrarTrapecio(a, b, n), que calcula la integral de f(x) usando el método del trapecio con n subdivisiones.
- 3. En main(), se establecen los límites y el número de trapecios, y se llama a la función de integración.

IMPORTANCIA

- Facilita el cálculo de áreas y volúmenes en casos donde la función es compleja o desconocida.
- Es esencial para ecuaciones diferenciales cuando no existen soluciones exactas.
- Se usa en modelos predictivos en ciencia de datos, finanzas y simulaciones físicas.
- Permite cálculos rápidos en entornos computacionales con recursos limitados.

REGLA DEL TRAPECIO

Métodos Numéricos