

ST2MPG – Modélisation 3D pour la Réalité Mixte Introduction

Faten Chaieb-Chakchouk <u>faten.chakchouk@efrei.fr</u>

A.U 2023 - 2024

Majeure Image Réalité Virtuelle

1

Présentation du module

5CM + 3 TP : Représentation numérique d'un objet 3D Définition de maillages Propriétés /traitement de maillage

3CM + 3 TP : Modélisation 3D avec Blender - connaître les bases de la modelisation - Box Modeling

Pr. Faten Chakchouk

Arnaud Sauzedde

Dr. Junfeng Peng, R&D Decathlon

6 CM + 8 TP
Fondamentaux en modélisation 3D du corps humain.
3D body scanning, processing and body measurements extraction
Rigging et animation du corps humain
Recalage/ajustement d'un modèle de maillage à un scan 3D du corps humain
Animation de personnages à l'aide du skinning
Cas d'utilisation de l'animation d'avatar

Langage /librairie: Python, Blender, Meshlab

Evaluation: DE: 50% TP: 50%

Présentation du module

	Date	Répartition	Volume	Mode	Intervenant
1	06/05 PM	3 CM + 1 TP	4H	Présentiel	Pr. Faten Chakchouk
2	07/05/2024 AM	CM	3H	Présentiel	Arnaud Sauzedde
3	07/05/2024 PM	TP	3H	Présentiel	Arnaud Sauzedde
4	21/05/2024 AM	2 CM + 2 TP	4 H	Présentiel	Pr. Faten Chakchouk
5	11/06/2024 PM	2H CM + 1H TP	3H	Présentiel	Dr. Junfeng Peng
6	14/06/2024 PM	1H CM + 3H TP	4H	Visio	Dr. Junfeng Peng
7	05/07/2024 PM	CM	3H	Visio	Dr. Junfeng Peng
8	08/07/2024 PM	TP	4H	Présentiel	Dr. Junfeng Peng

3

Contexte - Applications XR

Explorez des modèles 3D en réalité virtuelle https://www.youtube.com/watch?v=nR5NWFw5nyg

Pourquoi les maillages triangulaires sont les plus utilisées ?

- Simplicité
- Un triangle = Le plus petit élément de surface
- Facilité de description
- Données de base pour les logiciels/matériels de rendu (Pour le rendu un maillage polygonal sera transformé en maillage triangulaire)
- Pris en charge dans plusieurs outils de simulation et/ou analyse.
- Plusieurs outils et techniques d'acquisition fournissent des maillages triangulaires

16

Maillage Polygonal

Un maillage triangulaire West représenté par :

Géométrie

Ensemble des sommets $V = \{v_1, v_2, ..., v_N\}$ avec

- N: nombre de sommets
- $v_i(x_i, y_i, z_i) \in \mathbb{R}^3$, $\forall i \in$ {1, ..., N}

Topologie/connectivité

 $E = \{e_1, e_2, ..., e_p\}$ et/ou $F = \{f_1, f_2, ..., f_M\}$ avec

- P: nombre d'arêtes
- M: nombre de facettes
- f_i: facette i
- e_i: arête i

17

17

Maillage Polygonal

Un maillage triangulaire *M* peut représenté par un **Graphe G** plongé dans \mathbb{R}^3 : G = (V, E)

G (V,E)

- $E=\{e_1, e_2, ..., e_p\}$: Ensemble des arêtes
- $V_{ind} = \{I_{V_1}, I_{V_2}, ..., I_{V_N}\}$: Ensemble des indices des sommets

 $V_{ind} = \{1, 2, 3, 4, 5\}$ $E = \{(1,2); (1,5); \{(1,3); (1,4); \}$ $(5,2);(2,3);\{(2,4);(3,5);(3,4);(4,5)\}$

18

Maillage Polygonal

<u></u>eFrei

Un maillage triangulaire \mathcal{M} peut représenté par un **Graphe G** plongé dans \mathbb{R}^3 :

On associe à chaque sommet de V_{ind} , une position géométrique dans \mathbb{R}^3

Réalisation géométrique

 $V = \{(x1,y1,z1),(x2,y2,z2); (x3,y3,z3),(x4,y4,z4);(x5,y5,z5)\}$

 $V_{ind} = \{1,2,3,4,5\}$ $E = \{(1,2); (1,5); \{(1,3); (1,4); (5,2); (2,3); \{(2,4); (3,5); (3,4); (4,5)\}\}$

19

19

Maillage Polygonal

Un maillage triangulaire \mathcal{M} peut représenté par un **Graphe G** plongé dans \mathbb{R}^3 :

Connectivité/Topologie : G= (V,E,F)

 $0D : V=\{0,1, ..., n\} / i \in \mathbb{N} : sommets$

1D : E={e₀,e₁,..., e_m} / e_i \in (V×V) : arêtes

2D : F= $\{f_0, f_1, ..., f_k\} / f_i \in (V \times V \times V)$: facette = triangle

Réalisation géométrique : $\mathcal{M} = (V, \mathcal{E}, \mathcal{F})$

Position des sommets $V=\{p_0, p_1,..., p_n\} p_i \in \mathbb{R}^3$

20

Maillage Polygonal

Outre la géométrie et la connectivité :

Attributs associés aux facettes:

- Vecteur normal
- Une coordonnée de texture
- Couleur
- Propriétés des matériaux
- Etc.

21

21

Maillage Polygonal

Outre la géométrie (position), un sommet est caractérisé par :

Attributs

- Vecteur normal
- Une coordonnée de texture
- Couleur
- Propriétés des matériaux
- Etc.

Tout point M de la facette, interpole linéairement ces attributs (sauf parfois la normale)

22

Maillage Polygonal Propriétés – Maillage Manifold

Sommet régulier : Un sommet est dit régulier si et seulement si l'ensemble de ses voisins peut être réordonné pour définir un unique chemin.

Arête régulière : Une arête est dite régulière si et seulement si elle est adjacente à exactement deux triangles.

Arête singulière : Une arête est dite singulière si et seulement si elle est adjacente à plus que deux triangles.

Un maillage triangulaire est manifold si et seulement si tous ses sommets et ses arêtes sont réguliers.

27

27

Maillage Polygonal

Propriétés - Maillage Manifold

Un maillage triangulaire est manifold si et seulement si tous ses sommets et ses arêtes sont réguliers.

Maillage Manifold

Maillages Non-Manifold

28

Maillage Polygonal Propriétés

Un maillage fermé / Avec bord

Arête de bord : Si une arête appartient exactement à un seul triangle

Arête interne : Adjacente à deux triangles différents.

Bord d'un maillage : La réunion de l'ensemble des arêtes de bord.

Sommet de bord : Appartient à une arrête de bord sinon il est dit sommet interne.

Triangle de bord, si et seulement si il contient au moins une arête de bord.

Maillage fermé : Aucune arête de bord.

Maillage avec bord

29

29

Maillage Polygonal

Un maillage orienté / non orienté

Un maillage est dit orienté si et seulement si tout couple de triangles voisins a des vecteurs normaux de même orientation.

Maillage Nonorienté

Maillage orienté

30

Relation d'Euler-Poincarré

Soit M un maillage manifold, orienté composé de F triangles, E arêtes et V sommets. Soit G le genre de M. On a :

$$V - E + F = 2C - 2G + B$$

Avec:

C : nombre de composantes connexes

B : nombre de bords (un ou plusieurs cycles disjoints d'arêtes

incidentes à une seule facette)

Cas maillage sans bord: V - E + F = 2C - 2G

35

35

Définition

La réparation de modèles consiste à supprimer les artefacts d'un modèle géométrique afin de produire un modèle de sortie adapté à un traitement ultérieur par des applications nécessitant certaines exigences de qualité pour leurs données d'entrée.

40

