Transducive Systems

EECS 20
Lecture 6 (January 29, 2001)
Tom Henzinger

Continuous-Time Signals

sound position

Discrete-Time Signals

sampledSound movie

Continuous Time =
$$\{x \in \text{Reals} \mid x \ge 0\}$$

Discrete Time = $\{0, 1, 2, 3, 4, ...\}$

continuous Time Signal: Continuous Time → Values

discreteTimeSignal: DiscreteTime → Values

continuousTimeSignal = evolution of values
discreteTimeSignal = stream of values

More Discrete-Time Signals

text: DiscreteTime → Chars

file: DiscreteTime → Bins

vendingMachine: DiscreteTime → Events

```
Chars = { a, b, c, ... }

Bins = { 0, 1 }

Events = { dropQuarter, requestCoke, deliverCoke, ... }
```

Transducive or Combinational System

transduciveSystem: Values → Values

Transducive or Combinational System

 \neg : Bools \rightarrow Bools

Transducive or Combinational System

 $f: Frames \rightarrow Frames$

reactiveSystem: [Time \rightarrow Values] \rightarrow [Time \rightarrow Values]

 $F: [Time \rightarrow Frames] \rightarrow [Time \rightarrow Frames]$

F: [Continuous Time \rightarrow Pressure] \rightarrow [Discrete Time \rightarrow Chars]

G: [DiscreteTime \rightarrow Chars] \rightarrow [ContinuousTime \rightarrow Pressure]

Identity?

Identity?

Reactive Systems

- 1 Memory-free systems
- 2 Delays
- 3 Causality
- 4 Finite-memory systems
- 5 Infinite-memory systems

Every transducive system is a reactive system

 $f: Values \rightarrow Values$ $F: [Time \rightarrow Values] \rightarrow [Time \rightarrow Values]$ such that $\forall x \in [\text{Time} \rightarrow \text{Values}], \forall y \in \text{Time},$ (F(x))(y) = f(x(y))

Every transducive system is a reactive system

 $f: Values \rightarrow Values$ $F: [Time \rightarrow Values] \times Time \rightarrow Values$ such that $\forall x \in [\text{Time} \rightarrow \text{Values}], \forall y \in \text{Time},$ F(x,y) = f(x(y))

Every transducive system is a continuous-time reactive system

 $F: [ContTime \rightarrow Values] \rightarrow [ContTime \rightarrow Values]$

such that
$$\forall x \in [ContTime \rightarrow Values], \forall y \in ContTime,$$

 $(F(x))(y) = f(x(y))$

normalize: Reals \rightarrow Reals

such that $\forall x \in \text{Reals}$, normalize (x) = x - 50

Normalize: $[Reals_{+} \rightarrow Reals_{-}] \rightarrow [Reals_{+} \rightarrow Reals_{-}]$ such that $\forall x \in [Reals_{+} \rightarrow Reals_{-}]$, $\forall y \in Reals_{+}$, (Normalize (x)) (y) = normalize (x (y)) = x (y) - 50 Normalize (sin): Reals₊ \rightarrow Reals such that \forall y \in Reals₊, Normalize (sin) (y) = sin (y) - 50.

Normalize (id): Reals $_+ \to \text{Reals}$ such that $\forall y \in \text{Reals}_+$, Normalize (id) (y) = y - 50.

Normalize (53): Reals $_+$ \rightarrow Reals such that \forall y \in Reals $_+$, Normalize (53) (y) = 3.

Normalize (sin): Reals₊ \rightarrow Reals such that \forall y \in Reals₊, Normalize (sin) (y) = sin (y) - 50.

Normalize (id): Reals $_+ \rightarrow$ Reals such that $\forall y \in \text{Reals}_+$, Normalize (id) (y) = y - 50.

Normalize (53): Reals₊ \rightarrow Reals such that Normalize (53) = 3.

trunc: Reals
$$\rightarrow$$
 Reals such that $\forall x \in \text{Reals}$, trunc (x) =
$$\begin{cases} 256 & \text{if } x > 256 \\ x & \text{if } -256 \le x \le 256 \\ -256 & \text{if } x < -256 \end{cases}$$

Trunc: [Reals₊
$$\rightarrow$$
 Reals] \rightarrow [Reals₊ \rightarrow Reals] such that $\forall x \in$ [Reals₊ \rightarrow Reals], $\forall y \in$ Reals₊, (Trunc(x))(y) = trunc(x(y))

Trunc (sin): Reals $_+ \rightarrow$ Reals such that $\forall y \in \text{Reals}_+$, Trunc (sin) (y) = sin (y).

Trunc (id): Reals $_+$ \rightarrow Reals such that \forall y \in Reals $_+$, Trunc (id) (y) = $\left\{\begin{array}{cc} y & \text{if } y < 256 \\ 256 & \text{if } y \geq 256 \end{array}\right.$

Trunc (500): Reals $_{+} \rightarrow$ Reals such that Trunc (500) = 256.

Every transducive system is a discrete-time reactive system

 $f: Values \rightarrow Values$

(F(x))(y) = f(x(y))

 $F: [\ \, \text{DiscTime} \to \ \, \text{Values} \,] \to [\ \, \text{DiscTime} \to \ \, \text{Values} \,]$ such that $\forall \ x \in [\ \, \text{DiscTime} \to \ \, \text{Values} \,]$, $\forall \ y \in \ \, \text{DiscTime}$,

quantize: Reals \rightarrow ComputerInts

such that
$$\forall x \in \text{Reals}$$
, quantize $(x) = \text{trunc}(\lfloor x \rfloor)$

Quantize: [Nats₀ \rightarrow Reals] \rightarrow [Nats₀ \rightarrow ComputerInts]

such that $\forall x \in [\text{Nats}_0 \to \text{Reals}], \forall y \in \text{Nats}_0$, (Quantize(x))(y) = quantize(x(y))= trunc([x(y)])

```
Quantize (squareroot): Nats<sub>0</sub> \rightarrow ComputerInts
such that Quantize (squareroot) =
\{(0,0),(1,1),(2,1),(3,1),(4,2),(5,2),...,(1000000,256),...\}
Quantize (id): Nats<sub>0</sub> \rightarrow ComputerInts
such that Quantize (id) =
 \{(0,0),(1,1),(2,2),(3,3),...,(256,256),(257,256),...\}
 Quantize (pi): Nats<sub>0</sub> \rightarrow ComputerInts
 such that Quantize (pi) = 3.
```

$negate: Bools \rightarrow Bools$

such that $\forall x \in Bools$, negate $(x) = \neg x$

Negate: $[Nats_0 \rightarrow Bools] \rightarrow [Nats_0 \rightarrow Bools]$ such that $\forall x \in [Nats_0 \rightarrow Bools]$, $\forall y \in Nats_0$, (Negate(x))(y) = negate(x(y)) $= \neg x(y)$

```
alt: Nats<sub>0</sub> \rightarrow Bools such that \forall y \in \text{Nats}_0, alt (y) = \begin{cases} \text{true} & \text{if } y \text{ odd} \\ \text{false} & \text{if } y \text{ even} \end{cases}
```

```
Negate (alt): Nats<sub>0</sub> \rightarrow Bools such that Negate (alt) = \{ (0,true), (1,false), (2,true), (3,false), (4,true), ... \}.
```

Negate (true): Nats₀ \rightarrow Bools such that Negate (true) = false.

A reactive system

$$\forall x \in [\text{Time} \rightarrow \text{Values}], \forall y \in \text{Time},$$

$$(F(x))(y) = f(x(y)).$$