Lab 3B

Problem 1: Course Offerings

There are N types of courses offered by Sheldon's college and a student is allowed to take only M courses out of them. Missy wonders how many different combinations of courses can be chosen. Sheldon solved this problem with ease. Could you help Missy in doing the same.

Input Format:

 A single line containing 2 integers N and M, where N is number of courses offered and M is number of courses that a student can take.

Constraints:

- 1≤ n ≤ 20
- $0 \le m \le n$

Output Format:

• A single integer 'ans' (the number of possible combinations).

Note: For computations, we advise you to use variables of long long data type.

Example:

```
Input:
3 2
Output:
3
Explanation:
Lets say courses are C1,C2 and C3. We could choose C1,C2 or C2,C3 or C1,C3.

Input:
16 5
Output:
4368
```

Problem 2: Beautiful Permutation

Sam, a researcher at IIIT, has discovered an intriguing class of permutations he calls "Beautiful Permutation" A permutation of integers is considered "beautiful" if it satisfies following specific conditions:

- 0. **Distinct Numbers Condition:** Firstly a permutation of n contains n distinct integers from 0 to n-1.
- 1. **Adjacent Difference Condition:** There are no two adjacent elements in the permutation whose absolute difference is exactly 1.
- 2. **Sum Condition:** For every *i-th* element from the start and the i-th element from the end of the permutation, their sum must be less than a given number K.

Your task is to write a function that checks if a given permutation meets these conditions and determines whether it is a "beautiful" number or not

Input Format:

- The first line contains two integers N and K:
- N is the number of integers in the permutation.
 - K is the maximum allowable sum for the i-th element from the start and the i-th element from the end.
- he second line contains N integers, which represent the permutation of numbers.

Output Format:

- Output "YES" if the permutation is beautiful according to the conditions.
- Output "NO" if the permutation is not beautiful according to the conditions.

Constraints:

- The permutation will contain exactly N integers, and each integer will be distinct.
- N is non-negative, meaning the permutation may be empty
- each element is in the range (0 1e5)

Example:

```
Input:
    5 10
    3 0 2 4 1

Output:
    YES
```

Explanation:

1. Adjacent Difference Condition : Check adjacent pairs:

```
|3 - 0| = 3
|0 - 2| = 2
|2 - 4| = 2
|4 - 1| = 3
```

None of these differences are 1, so the condition is satisfied.

2. **Sum Condition:** Check pairs of elements from the start and end:

```
    3 (first) + 1 (last) = 4 < 10</li>
    0 (second) + 5=4 (fourth) = 4 < 10</li>
```

2 (middle element) does not have a pair
 All sums are less than K, so this condition is satisfied.

Thus, the permutation meets both conditions, so the output is "YES".

```
Input:
5 10
4 1 3 5 100
Output:
NO
```

Problem 3: Finding Leaders

A leader is an element that is greater than all the elements to its right side. The rightmost

element is always a leader.

Now given an array, Bob wants to list down all the leaders of the array. Please help him do so.

Input Format:

First line contains a single integer n, the number of elements in the array. Second line contains n space seperated integers

Output Format:

Output a single line containing the leaders of the array. Please do so in left to right order.

Constraints:

- 1 <= n <= 100
- 1 \leftarrow a_i \leftarrow 100 for i in range from 1 to n

Examples:

```
6
Input: 16 17 4 3 5 2
Output: 17 5 2

Copy

Input: 1 2 3 4 5
Output: 5
```

Submission Guidelines

• Do not rename any files given in the handout. Only write the code in the specified C files in the respective directories.