Universidad Central de Venezuela Facultad de Ingeniería Escuela de Ingeniería Eléctrica

Informe Nº 1: Amplificadores discretos

Emerson Warhman C.I. 25.795.480 6 de enero de 2025

Índice

1.	Introducción	2
2.	Resumen	2
3.	Presentación de resultados 3.1. Práctica 1 3.1.1. Puntos de operación 3.1.2. Modelo dinámico 3.1.3. Transistor clase C 3.2. Práctica 2 3.2.1. Puntos estáticos de operación etapa diferencial 3.2.2. Modelo dinámico etapa diferencial modo diferencial 3.2.3. modelo dinámico etapa diferencial modo común	3 4 4 4 4
	Análisis de resultados Conclusiones	8
6.	Anexos	8

- 1. Introducción
- 2. Resumen

3. Presentación de resultados

3.1. Práctica 1

3.1.1. Puntos de operación

En el cuadro 1 se muestran las mediciones DC de las transistores Q4, Q5 y Q6 necesarios para obtener los puntos de operación en la etapa de potencia.

Transistor	Vc()	Δ Vc()	Vb()	Δ Vb()	Ve()	Δ Ve()	Ve2	Δ Ve2	Re	Δ Re2
Q4	0.7	0.01	0	0.01	-0.6	0.004	5000	500	20	1
Q5	10	1	0.7	0.1	0.05	0.01	0.02	0.004	20	1
Q6	-10	1	-0.56	0.04	0.02	0.004	0.05	0.01	20	1

Cuadro 1: Mediciones DC etapa de potencia

Usando las mediciones del cuadro 1 se calculan los puntos de operación en la etapa de potencia representados en los cuadros 2 y 3.

Transistor	Teórico	Medición	Incertidumbre	Error Absoluto	Error Relativo
Q4	$302,36 \times 10^{-6}$	120×10^{-6}	$12,1918 \times 10^{-6}$	$182,36 \times 10^{-6}$	60 %
Q5	350×10^{-6}	$1,50 \times 10^{-3}$	$543,714 \times 10^{-6}$	$1,150 \times 10^{-3}$	329 %
Q6	350×10^{-6}	$-1,50 \times 10^{-3}$	$543,714 \times 10^{-6}$	$1,850 \times 10^{-3}$	529 %

Cuadro 2: Corrientes colector práctica 1

		Medición	Incertidumbre	Error Absoluto	Error Relativo
Q4 1.24 1.30000000000000		0.01077033	0.06000000	4.84 %	
Q5	9.99	9.95000000000000	1.000049999	0.04000000	0.40 %
Q6	-9.99	-10.0200000000000	1.000008	0.03000000	-0.30 %

Cuadro 3: Voltajes V_{ce} de la etapa de potencia

3.1.2. Modelo dinámico

El cuadro 4 muestra los datos para calcular la impedancia de entrada en la etapa de potencia.

Vg[V]	$\Delta Vg[V]$	Vi[V]	$\Delta Vi[V]$	$Rp[\Omega]$	$\Delta Rp[\Omega]$
0.52	0.04	0.26	0.02	10000	100

Cuadro 4: Mediciones para calcular impedancia de entrada en la etapa de potencia

El cuadro 5 muestra los datos para calcular la impedancia de salida en la etapa de potencia.

$Vo_{sc}[V]$	$\Delta Vo_{sc}[V]$	$Vo_{cc}[V]$	$\Delta Vo_{cc}[V]$	$Rp[\Omega]$	$\Delta Rp[\Omega]$
0.52	0.05	0.24	0.02	10	1

Cuadro 5: Mediciones para calcular la impedancia de salida en la etapa de potencia

El cuadro 6 muestra los datos de voltaje de entrada y salida en la etapa de potencia.

Vi[V]	$\Delta Vi[V]$	Vo[V]	$\Delta Vo[V]$
0.52	0.04	0.48	0.04

Cuadro 6: Datos de voltaje de entrada y salida etapa de potencia

Usando los datos medidos en los cuadros 6, 4 y 5 se calculan los valores de los parámetros del modelo dinámico de la etapa de potencia representados en el cuadro 7.

Parámetro	Valor Teórico	Medición	Incertidumbre	Error Absoluto	Error Relativo
$Z_i[O]$	10770	10000	2178.010058	770.00000000	7.15 %
$Z_o[O]$	132	11.66666667	2.993563053	120.33333333	91.16 %
A	0.96	0.923076923	0.104685243	0.03692308	3.85 %

Cuadro 7: Mediciones modelo dinámico etapa de potencia

3.1.3. Transistor clase C

En el cuadro 8 se muestran las mediciones DC de operación en la etapa de potencia conectado como amplificador clase C.

Transistor	Vc[V]	$\Delta V c[V]$	Vb[V]	$\Delta V b[V]$	Ve[V]	$\Delta Ve[V]$	$Re[\Omega]$	$\Delta Re[\Omega]$
Q4	0.7	0.01	0	0.01	-0.6	0.004	5000	500
Q5	10	1	0.4	0.0004	-0.04	0.02	20	1
Q6	-10	1	-0.34	0.02	-0.026	0.004	20	1

Cuadro 8: Mediciones DC etapa de potencia clase C

Con el cuadro 8 se muestran los puntos de operación en la etapa de potencia conectado como amplificador clase C de la figura 9.

Transistor	Parámetro	Valor Teórico	Medición	Incertidumbre	Error Absoluto	Error Relativo
Q4	Ic[A]	3.02E-04	0.00012	1.21918E-05	0.00018236	60.31 %
Q5	Ic[A]	3.50E-04	-0.0007	0.001020404	0.00105000	300.00 %
Q6	Ic[A]	3.50E-04	0.0007	0.001020404	0.00035000	100.00 %
Q4	Vce[V]	1.24	1.3	0.01077033	0.06000000	4.84 %
Q5	Vce[V]	9.99	10.04	1.00019998	0.05000000	0.50 %
Q6	Vce[V]	-9.99	-9.974	1.000008	0.01600000	-0.16 %

Cuadro 9: Voltajes V_{ce} de la etapa de potencia

En la figura 1 se muestra el efecto crossover del amplificador clase C de la etapa de potencia.

3.2. Práctica 2

3.2.1. Puntos estáticos de operación etapa diferencial

El cuadro 10 muestra las mediciones de voltaje DC de los transistores Q_1 y Q_2 de la etapa diferencial de la práctica 2.

Transistor	Vc[V]	$\Delta V c[V]$	Vb[V]	$\Delta V b[V]$	Ve[V]	$\Delta Ve[V]$	$Rc[\Omega]$	$\Delta Rc[\Omega]$
Q1	7.2	0.2	-0.016	0.002	-0.6	0.04	4700	235
Q2	7.2	0.2	-0.052	0.004	-0.6	0.04	4700	235

Cuadro 10: Mediciones voltaje DC etapa diferencial

Utilizando los datos en el cuadro 10, se hayaron las mediciones indirectas de los puntos de reposo de la etapa diferencial, los cuales se muestran en el cuadro 11.

Parámetro	Transistor	Valor Teórico	Medición	Incertidumbre	Error Absoluto	Error Relativo
I_c	I_c Q1 0.00062		0.000595745	0.000219015	0.00002426	3.91 %
I_c	<i>I_c</i> Q2 0.00062		0.000595745	0.000219015	0.00002426	3.91 %
V_{ce}	Q1	7.79	7.8	0.203960781	0.01000000	0.13 %
V_{ce}	Q2	7.79	7.8	0.203960781	0.01000000	0.13 %

Cuadro 11: Mediciones puntos de reposo etapa diferencial

3.2.2. Modelo dinámico etapa diferencial modo diferencial

La máxima excursión de la etapa diferencial se alcanza cuando se pasa el límite de $3\pm0.2V$ en el voltaje de salida V_o en el cuando el voltaje de entrada es $V_i=1\pm0.1V$.

Figura 1: Efecto crossover amplificador clase C de la etapa de potencia

Vg[V]	$\Delta Vg[V]$	Vi[V]	$\Delta Vi[V]$	$Rp[\Omega]$	$\Delta Rp[\Omega]$
1.04	0.04	0.48	0.02	48000	4800

Cuadro 12: Impedancia de entrada etapa diferencial modo diferencial

$Vo_{sc}[V]$	$\Delta Vo_{sc}[V]$	$Vo_{cc}[V]$	$\Delta Vo_{cc}[V]$	$Rp[\Omega]$	$\Delta Rp[\Omega]$
3.2	0.1	1.6	0.04	4700	470

Cuadro 13: Impedancia de entrada etapa diferencial

Vi[V]	$\Delta Vi[V]$	Vo[V]	$\Delta Vo[V]$
1	0.1	3.2	0.1

Cuadro 14: Voltajes de entrada y de salida etapa diferencial modo diferencial

Parámetro	Valor	Medición	Incertidumbre	Error Absoluto	Error Relativo
[Z]i	43990	41142.85714	5974.907966	2847.142857	6.47 %
[Z]o	4700	4700	602.0083575	0	0.00 %
[A]	-2.96	-3.2	0.335261092	0.24	8.11 %

Cuadro 15: Modelo dinámico etapa diferencial modo diferencial

3.2.3. modelo dinámico etapa diferencial modo común

Vg[V]	$\Delta Vg[V]$	Vi[V]	$\Delta Vi[V]$	$Rp[\Omega]$	$\Delta Rp[\Omega]$
1.04	0.04	0.31	0.015	48000	4800

Cuadro 16: Impedancia de entrada etapa diferencial modo común

Figura 2: Ganancia etapa diferencial modo diferencial

	Vi[V]	$\Delta Vi[V]$	Vo[V]	$\Delta Vo[V]$
ĺ	1	0.04	0.3	0.01

Cuadro 17: Voltajes de entrada y salida etapa diferencial modo común

Parámetro	Valor	Medición	Incertidumbre	Error Absoluto	Error Relativo
$Z_i[\Omega]$	24500	20383.56164	2716.026753	4116.438356	16.80 %
$Z_o[\Omega]$	4700	4700	602.0083575	0	0.00 %
A	0.31	0.3	0.015620499	0.01	3.23 %

Cuadro 18: Modelo dinámico etapa diferencial modo común

Figura 3: Ganancia etapa diferencial modo común

Figura 4: Máxima excursión etapa diferencial modo diferencial

- 4. Análisis de resultados
- 5. Conclusiones
- 6. Anexos