Instituto Politécnico do Porto, Instituto Superior de Engenharia

Licenciatura em Eng. Electrotécnica e de Computadores, Teoria dos Sistemas, 11-Julho-2013

Todas as perguntas devem ser respondidas unicamente na folha de respostas.

Seleccione apenas uma das 4 alternativas assinalando-a na matriz de respostas.

O teste é sem consulta. Duração da prova: 1:30

1. Considere o seguinte diagrama de blocos de um sistema de controlo representado na figura onde $a, b, c \in \mathbb{R}$. Sejam $s \in \mathcal{L}$, respectivamente a variável e o operador de Laplace e sejam $R(s) = \mathcal{L}[r(t)]$ e $Y(s) = \mathcal{L}[y(t)]$, respectivamente, as transformadas de Laplace do sinais de entrada e de saída. A função de transferência do sistema $\frac{Y(s)}{R(s)}$, resulta:

A)
$$\frac{Y(s)}{R(s)} = \frac{1}{s^2 + bs + c}$$

B)
$$\frac{Y(s)}{R(s)} = \frac{1}{s^2 + (a+b)s + c}$$

C)
$$\frac{Y(s)}{R(s)} = \frac{s+a}{s^2+hs+c}$$

2. Considere o sistema hidráulico representado na figura seguinte, onde $q_i(t)$ e $q_o(t)$ representam os caudais de entrada e de saída. Sejam $h_1(t)$, $h_2(t)$ e $h_3(t)$ as alturas de liquido nos reservatórios 1, 2 e 3, respectivamente, e sejam as suas áreas designadas por A_1 , A_2 e A_3 . As resistências hidráulicas são representadas por R_1 , R_2 , R_3 , R_4 e R_5 . Sejam s e \mathcal{L} , respectivamente a variável e o operador de Laplace. O modelo do sistema vem:

A)
$$Q_i = Q_2 + Q_3 + sA_1H_1$$
, $H_1 = R_3Q_3$, $H_1 = R_2Q_2$, $Q_3 = Q_1 + sA_3H_3$, $Q_2 = Q_4 + sA_2H_2$, $H_3 = R_1Q_1$, $H_2 = R_4Q_4$, $Q_1 + Q_4 = Q_0$

$$\begin{array}{l} R_1Q_1,\ H_2=R_4Q_4, Q_1-Q_4=Q_o\\ \text{C)}\ Q_i+Q_2+Q_3=sA_1H_1,\ H_1=R_3Q_3,\ H_1=R_2Q_2, Q_3+Q_1=sA_3H_3,\ Q_2+Q_4=sA_2H_2,\ H_3=R_1Q_1,\ H_2=R_4Q_4, Q_1+Q_4+Q_o=0 \end{array}$$

3. Considere a resposta temporal c(t) de um sistema de segunda ordem para um sinal de entrada u(t) em degrau unitário. Sejam $s \in \mathcal{L}$, respectivamente a variável e o operador de Laplace, sejam $U(s) = \mathcal{L}[u(t)]$, $C(s) = \mathcal{L}[c(t)]$, seja ζ o coeficiente de amorteciento, ω_n a frequência natural não amortecida, t_p o tempo de pico e $c(t_p)$ o valor do pico da resposta temporal. Para um sistema descrito pela função de transferência $\frac{C(s)}{U(s)} = \frac{10 \times 9}{s^2 + s + 9}$ tem-se:

A)
$$t_p = 1,588 \text{ seg}, c(t_p) = 15,62$$

B)
$$t_p = 0.588 \text{ seg}, c(t_p) = 10.62$$

C)
$$t_p = 1,062 \text{ seg}$$
, $c(t_p) = 15,88$

D) Outro resultado

4. Considere um sistema com função de transferência G(s) cujo lugar de raízes directo (LRD) se encontra representado na figura. A partir do gráfico (nota, o LRD situado no eixo real corresponde aos troços compreendidos entre s=-1 e s = 0 bem como entre s = -4 e s = -2) sabe-se que:

A)
$$G(s) = \frac{K(s+1)^2}{s(s+2)^2}$$

B)
$$G(s) = \frac{K(s+1)^3}{s(s+2)(s+4)}$$

A)
$$G(s) = \frac{K(s+1)^2}{s(s+2)^2}$$

B) $G(s) = \frac{K(s+1)^3}{s(s+2)(s+4)}$
C) $G(s) = \frac{K(s+1)}{s(s+2)(s+3)(s+4)}$
D) $G(s) = \frac{K(s+1)}{s^2(s+2)^2}$

D)
$$G(s) = \frac{K(s+1)}{s^2(s+2)^2}$$

- 5. Considere um sistema de cuja resposta em frequência (gráficos de Bode de amplitude e fase) se encontra representado na figura. A partir dos gráficos sabe-se

- A) $G(s) = \frac{1}{s^2}$ B) $G(s) = \frac{e^{-2s}}{s}$ C) $G(s) = \frac{s}{s(s+1)}$ D) $G(s) = \frac{(s+1)}{s^2(s+2)}$
- **6.** Considere um sistema $G(s)=\frac{C(s)}{R(s)}=\frac{\omega_n^2}{s^2+2\zeta\omega_n s+\omega_n^2}$ cuja resposta em frequência (gráficos de Bode de amplitude e fase) está representada na figura, onde o ganho se encontra em décibeis e a fase em graus. A partir do gráfico sabe-se que:

- gain o se encontra e A) $G(s) = \frac{10 \times 9}{s^2 + s + 9}$ B) $G(s) = \frac{10 \times 9}{s^2 + 6s + 9}$ C) $G(s) = \frac{9}{s^2 + 6s + 9}$ D) $G(s) = \frac{9}{s^2 + s + 9}$
- 7. Considere um sistema cuja função de transferência em malha aberta é dada por $G(s) = \frac{1}{(s+1)^4}$. Pretende-se sintonizar um controlador PID (Proporcional, Integral e Diferencial) pelo método de Ziegler-Nichols em malha fechada. Assim, os parâmetros K (ganho proporcional), T_i (constante de tempo integral) e T_d (constante de tempo diferencial) vêm dadas por:
- A) $K = 1.800, T_i = 1.948, T_d = 0.573$
- B) $K = 2.100, T_i = 2.623, T_d = 0.697$
- C) $K = 2.400, T_i = 3.142, T_d = 0.785$
- D) Outro resultado

Formulário:

Resposta temporal de um sistema de segunda ordem com função de tranferência $G\left(s\right)=\frac{C(s)}{R(s)}=\frac{\omega_n^2}{s^2+2\zeta\omega_ns+\omega_n^2}$ a um degrau unitário

$$t_p = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}}, c(t_p) = 1 + e^{-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}}$$

Resposta em frequência de um sistema de segunda ordem com função de tranferência $G(s) = \frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ $\omega_r = \omega_n \sqrt{1 - 2\zeta^2}, \ M_r = \frac{1}{2\zeta\sqrt{1 - \zeta^2}}$ $\frac{\text{Turma}_{---} \text{Aluno N}^0:_{----} .$

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2}, M_r = \frac{1}{2\zeta\sqrt{1 - \zeta^2}}$$

Respostas

riesposias								
	A	В	С	D				
1.					1.			
2.					2.			
3.					3.			
4.					4.			
5.					5.			
6.					6.			
7.					7.			

Formulae for controller tuning							
Controller	Setting	Ziegler–Nichols (closed-loop)		Ziegler–Nichols (open-loop)	Cohen–Coon		
P	K	0.5 K _u	0.5 K _u	$\frac{1}{T R_{\rm r}}$	$\frac{\tau}{TK_{p}}\left(1+0.33\frac{T}{\tau}\right)$		
PI	K	0.45 K _u	0.5 K _u	$\frac{0.9}{T R_r}$	$\frac{\tau}{TK_p} \left(0.9 + 0.082 \frac{T}{\tau} \right)$		
	$T_{\rm i}$	$0.833 P_{\rm u}$	$0.43~P_{\mathrm{u}}$	3.33 T	$T\left(\frac{3.33 + 0.3T/\tau}{1 + 2.2T/\tau}\right)$		
PID	K	0.6 K _u	0.5 K _u	$\frac{1.2}{T R_r}$	$\frac{\tau}{TK_{\rm p}}\left(1.35+0.27\frac{T}{\tau}\right)$		
	$T_{\rm i}$	0.5 P _u	0.34 P _u	2 T	$T\left(\frac{2.5 + 0.5T/\tau}{I + 0.6T/\tau}\right)$		
	$T_{\rm d}$	0.125 P _u	0.08 P _u	0.5 T	$T\left(\frac{0.37}{1+0.2T/\tau}\right)$		

Teoria dos Sistemas, 11-9-1ho-2013 10 \$0-0 | 5(\$+6) = 5(\$+6) 1- (\$(\$+6) | 5(\$+6) | 5(\$+6) 5 (S+4) 52+65+C 5 (545) 52+657C 2)
A1
1991
3483 1582
493 9° = A, hu + 92+93 h1 = 93 R3 h, = 92 Rz 93 = Azhz+91 B37 #3 | A2 | 3 Bc 92 = Achi +94 li3 = 9, R1 42 = 94 Ru 9, +94=90 = 10.9 3) degrav unitin's ((s) = 10 K=10 K=10 $W_{m}^{2}=9$ $W_{m}=3$ $W_{m}=1$ S=1/6tp= "" | tp= 1,062 Atp)=10 (1+e-1,588

20 = 1 - 2415= 1 - coop 5 = 4 co 12 = 1/4 1 = 1

PIEN S

