VGG

Very Deep Convolutional Networks for Large-Scale Image Recognition

서울과학기술대학교 국방인공지능응용학과 이찬호

Introduction

- VGGNet 등장 이전에 AlexNet이 등장하면서 이미지 분류에 서 CNN 모델의 인기가 상승
- 그당시 Deep layer라고는 8 layers였지만 ILSVRC 2014에 VGG(2위)와 GoogleNet(1위)이 등장하면서 더욱 깊은 layer(19, 22 layers)의 효과를 발표
- Very Deep Convolutional Networks for Large-Scale Image Recognition은 VGGNet을 발표해 CNN 구조 설계에 있어 네트워크의 depth가 정확도에 미치는 영향에 대해 실험함
- Depth를 늘리면서 vanishing/exploding gradient 문제 등다양한 문제를 어떻게 해결했는지에 대해 설명함

ARCHITECTURE

- Input Image
 - 224 x 224 RGB
 - 전처리는 RGB 평균 값을 빼주는 것만 적용
- Conv layer
 - 3x3Conv filter:3x3사이즈가이미지요소의 상하좌우 등을 파악할 수 있는 최소한의 receptive field*이기 때문
 - 1 x 1 Conv filter : 차원을 줄이고 non-linearity를 증가를 위함
 - Stride: 1, Padding: 1
- Pooling layer
 - Conv layer 다음에 적용되며 총 5개의 max pooling layer
 - 2x2사이즈, Stride:2
- FC layer
 - 처음 두 FC layer는 4096 채널
 - 마지막 FC layer는 1000 채널
 - 모든 layer에 ReLU*를 사용, 마지막 layer에 Softmax 적용

CONFIGURATIONS

- Depth에 따라 모델 구조가 조금씩 변형
- 11 depth인 A 구조부터 19 depth인 E 구조까지 있음*
- Conv layer의 폭은 64부터 시작해서 max pooling layer를 통과 할 때마다 2의 제곱만큼 커져 최대 512까지 커짐
- Depth가 늘어남에도 더 큰 Conv layer를 사용한 얕은 신경망 보다 오히려 파라미터 수가 줄어듦
- Conv3:3x3Convlayer
- Conv1:1x1Convlayer
- LRN: Local Response Normalization의 약자이며 AlexNet에 처음 도입된 기법으로 인접 화소들을 억제 시키며 특징을 부각시키기 위한 방법

Comp. No. 4 Com. Com. of the										
ConvNet Configuration										
A	A-LRN	В	С	D	Е					
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight					
layers	layers	layers	layers	layers	layers					
input (224×224 RGB image)										
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64					
	LRN	conv3-64	conv3-64	conv3-64	conv3-64					
maxpool										
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128					
		conv3-128	conv3-128	conv3-128	conv3-128					
maxpool										
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256					
			conv1-256	conv3-256	conv3-256					
					conv3-256					
maxpool										
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
			conv1-512	conv3-512	conv3-512					
					conv3-512					
			pool							
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512					
			conv1-512	conv3-512	conv3-512					
					conv3-512					
maxpool										
FC-4096										
FC-4096										
FC-1000										
soft-max										

Table 2: **Number of parameters** (in millions).

Network	A,A-LRN	В	С	D	Е
Number of parameters	133	133	134	138	144

DISCUSSION

- VGGNet 이전 모델들은 비교적 큰 Receptive Field를 갖는 11 x
 11 filter나 7 x 7 filter를 사용
- VGGNet은 오직 3 x 3 filter만 사용해 성능 개선
- 3x3 filter 2개가 5x5 filter 1개의 성능을 내고 3x3 filter 3개가 7x7 filter 1개의 성능을 냄
- 3×3 filter 3개사용시 $3 \times 3^2 \times C^2 = 27 \times C^2$ 인반면 7×7 filter 1개사용시 $1 \times 7^2 \times C^2 = 49 \times C^2$ 으로 7×7 filter 1개만사용했음에도 3×3 filter 3개사용한 것보다 파라이터 수가 많고 수치적으로 보면 81%가 많음
- 3x3filter 3개가 7x7filter 1개보다 파라미터 수가 줄어 들어 마 치 7x7에 일반화를 적용한 것과 같아 오버 피팅을 줄이는 효과 도 있음

TRAINING – Hyper Parameter

- Cost function
 - Multinomial logistic regression objective(Cross Entropy)
- Mini batch
 - 256 Size
- Optimizer
 - Momentum = 0.9
- Regularization
 - $L2 = 5.10^{-4}$, Dropout = 0.5
- Learning Rate
 - 10^{-2} (valid signal to the signal of the signal to the signal of the signal of
- Pre-initialization
 - A구조를 먼저 학습하고 다음 구조를 학습 할 때 A 구조에 학습된 layer를 사용해 최적의 초기값을 설정

TRAINING – Image Size(S 값)

- 이미지의 가로, 세로 중 더 작은 쪽을 224로 원사이즈의 비율을 지키며 rescaling
- Rescale 된 이미지에서 랜덤으로 224x 224사이즈로 crop해서 input 사이즈를 맞춤
- 두가지의 S 값 설정 방식이 있음
 - Single-scale training: S를 256 또는 384((256+512) / 2)로고정, S가 384인 경우 학습 속도를 높이기 위해 S를 256으로 설정해 학습시킨 가중치 값들을 기반으로 S를 384로 설정해 다시 학습
 - Multi-scale training: S를 고정하지 않고, 256~512 값 중 랜 덤하게 값을 설정, 이미지가 모두 같은 사이즈가 아니므로 랜덤하게 multi-scale로 학습하면 효과가 더 좋음 (속도 상의 이유로 S=384로 Pre-trained된 single-scale을 모델로 fine-tuning함)

TESTING

- Valid Set을 이용해 평가와 학습을 동시에 함
- 테스트시에도 rescale함
- Q(테스트이미지 scale 파라미터)가 S와 같을 필요는 없음
- Training 할 때의 구조와 Valid을 할 때 구조가 다름
- Valid 수행시 FC layer를 Conv layer로 변경한뒤 Uncropped 이미지에 적용 (첫 FC layer를 7 x 7 conv layer로, 마지막 두 FC layer를 1 x 1 Conv layer로 변경)*
- Uncropped 이미지 사용시 input 사이즈에 따라 output 사이즈가 달라지는데 1 x 1사이즈가 아닌 output feature map을 class score map이라 하며, class score map에 sum-pooled를 적용하며 이후, softmax를 거쳐 flipped 이미지와 original 이미지의 평균값을 통해 최종 score를 출력함

Part 2 VGG 구현

Part 2 VGG-16 & VGG-19

```
def made_VGG16():
                                       <VGG-16 구현>
model = Sequential()
model.add(Conv2D(filters = 64, kernel_size = (3,3), padding = "same", activation="relu", input_shape = (224, 224, 3)))
model.add(Conv2D(filters = 64, kernel size = (3,3), padding = "same", activation = "relu"))
model.add(MaxPooling2D(2))
model.add(Conv2D(filters = 128, kernel_size = (3,3), activation = "relu", padding = "same"))
model.add(Conv2D(filters = 128, kernel size = (3,3), activation = "relu", padding = "same"))
model.add(MaxPooling2D(2))
model.add(Conv2D(filters = 256, kernel_size = (3,3), activation = "relu", padding = "same"))
model.add(Conv2D(filters = 256, kernel size = (3,3), activation = "relu", padding = "same"))
model.add(Conv2D(filters = 256, kernel size = (3,3), activation = "relu", padding = "same"))
model.add(MaxPooling2D(2))
model.add(Conv2D(filters = 512, kernel size = (3,3), activation = "relu", padding = "same"))
model.add(Conv2D(filters = 512, kernel size = (3,3), activation = "relu", padding = "same"))
model.add(Conv2D(filters = 512, kernel size = (3,3), activation = "relu", padding = "same"))
model.add(MaxPooling2D(2))
model.add(Conv2D(filters = 512, kernel size = (3,3), activation = "relu", padding = "same"))
model.add(Conv2D(filters = 512, kernel size = (3,3), activation = "relu", padding = "same"))
model.add(Conv2D(filters = 512, kernel size = (3,3), activation = "relu", padding = "same"))
model.add(MaxPooling2D(2))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(4096, activation = "relu"))
model.add(Dense(4096, activation = "relu"))
model.add(Dense(1000, activation = "relu"))
model.add(Dense(2, activation = "softmax")
```

```
def made VGG19():
                                       <VGG-19 구현>
 model = Sequential()
model.add(Conv2D(filters = 64, kernel size = (3,3), padding = "same", activation="relu", input shape = (224, 224, 3)))
 model.add(Conv2D(filters = 64, kernel size = (3,3), padding = "same", activation = "relu", ))
 model.add(MaxPooling2D(2))
 model.add(Conv2D(filters = 128, kernel size = (3,3), activation = "relu", padding = "same" ))
 model.add(Conv2D(filters = 128, kernel size = (3,3), activation = "relu", padding = "same" ))
 model.add(MaxPooling2D(2))
 model.add(Conv2D(filters = 256, kernel_size = (3,3), activation = "relu", padding = "same" ))
model.add(Conv2D(filters = 256, kernel size = (3,3), activation = "relu", padding = "same" ))
 model add(Conv2D(filters = 256 kernel size = (3.3) activation = "relu" nadding = "same" ))
 model.add(Conv2D(filters = 256, kernel_size = (3,3), activation = "relu", padding = "same" ))
model.add(MaxPooling2D(2))
 model.add(Conv2D(filters = 512, kernel size = (3,3), activation = "relu", padding = "same" ))
 model.add(Conv2D(filters = 512, kernel size = (3,3), activation = "relu", padding = "same" ))
  odel add(Conv2D(filtens = 512 kennel size = (3.3) activation = "nelu" nadding = "same" ))
 model.add(Conv2D(filters = 512, kernel size = (3,3), activation = "relu", padding = "same" ))
 model.add(MaxPooling2D(2))
model.add(Conv2D(filters = 512, kernel size = (3,3), activation = "relu", padding = "same" ))
model.add(Conv2D(filters = 512, kernel size = (3,3), activation = "relu", padding = "same" ))
model.add(Conv2D(filters = 512, kernel size = (3,3), activation = "relu", padding = "same"))
 model.add(Conv2D(filters = 512, kernel_size = (3,3), activation = "relu", padding = "same" ))
 model.adu(Maxroollingzb(Z))
model.add(Flatten())
model.add(Dropout(0.5))
 model.add(bense(4090, activacion = reid ))
 model.add(Dense(4096, activation = "relu"))
model.add(Dense(1000, activation = "relu"))
model.add(Dense(2, activation = "softmax"))
```