# THE MOTIVIC ADAMS SPECTRAL SEQUENCE

## ISAIAH DAILEY

#### Contents

| 1. Introduction                                          | 1  |
|----------------------------------------------------------|----|
| 2. The Adams spectral sequence                           | 1  |
| 2.1. Setup                                               | 1  |
| 2.2. Monoid objects in SH                                | 4  |
| 2.3. Construction of the Adams spectral sequence         | 5  |
| 2.4. The $E_1$ page                                      | 6  |
| 2.5. The $E_2$ page                                      | 6  |
| 2.6. Convergence                                         | 6  |
| 3. The classical Adams spectral sequence                 | 6  |
| 4. The motivic Adams spectral sequence                   | 6  |
| Appendix A. Triangulated categories                      | 6  |
| Appendix B. Spectral sequences                           | 9  |
| Appendix C. (Co)algebra                                  | 9  |
| C.1. Grading                                             | 9  |
| Appendix D. Monoid objects in a stable homotopy category | 13 |
| References                                               | 21 |

test

## 1. Introduction

# 2. The Adams spectral sequence

2.1. **Setup.** In order to construct an abstract version of the Adams spectral sequence, we need to work in some axiomatic version of a stable homotopy category  $\mathcal{SH}$  which acts like the familiar classical stable homotopy category  $\mathbf{hoSp}$  (Section 3) or the motivic stable homotopy category  $\mathbf{SH}_{\mathscr{S}}$  over some base scheme  $\mathscr{S}$  (Section 4). As it turns out, practically all the data we need is the following:

# **Definition 2.1.** A stable homotopy category is the following data:

- A closed tensor triangulated category  $(\mathcal{SH}, \otimes, S, \Sigma, \Omega)$  with arbitrary small (co)products.
- A pointed abelian group  $(A, \mathbf{1})$  and a homomorphism  $h : (A, \mathbf{1}) \to (\text{Pic}(\mathcal{SH}), \Sigma S)$  of pointed groups (i.e.,  $\mathbf{1}$  is sent to the isomorphism class of  $\Sigma S$ ), where  $\text{Pic}(\mathcal{SH})$  is the group of isomorphism classes of invertible objects in  $\mathcal{SH}^1$ .
- For each  $a \in A$ , a chosen object  $S^a$  in the isomorphism class h(a).

Date: August 4, 2023.

<sup>&</sup>lt;sup>1</sup>Recall an object X in a symmetric monoidal category is *invertible* if there exists some object Y in  $S\mathcal{H}$  and an isomorphism  $S \cong Y \otimes X$ . To see  $\Sigma S$  is invertible, note that we have isomorphisms

Given an abstract stable homotopy category as above, we will always assume without loss of generality that  $S^0 = S$  and  $\Sigma = S^1 \otimes -$  (by Proposition A.7). we establish the following conventions:

• Given objects  $X_1, \ldots, X_n$  in SH, we write  $X_1 \otimes \cdots \otimes X_n$  to denote the object

$$X_1 \otimes (X_2 \otimes \cdots (X_{n-1} \otimes X_n)).$$

In particular, given an object X and a natural number n > 0, we write

$$X^n := \overbrace{X \otimes \cdots \otimes X}^{n \text{ times}}$$
 and  $X^0 := S$ .

• We denote the associator, symmetry, left unitor, and right unitor isomorphisms in SH by

$$\alpha_{X,Y,Z}: (X \otimes Y) \otimes Z \xrightarrow{\cong} X \otimes (Y \otimes Z) \qquad \tau_{X,Y}: X \otimes Y \xrightarrow{\cong} Y \otimes X$$
$$\lambda_X: S \otimes X \xrightarrow{\cong} X \qquad \rho_X: X \otimes S \xrightarrow{\cong} X.$$

Often we will suppress these isomorphisms from the notation (particularly the associators), choosing instead to denote them without their subscripts or simply with the symbol  $\simeq$ 

- Given some  $a \in A$ , we define the functor  $\Sigma^a := S^a \otimes -$ , so that in particular  $\Sigma^1 = \Sigma$ .
- Given two objects X and Y, we denote the hom-abelian group of morphisms from X to Y in  $S\mathcal{H}$  by [X,Y], and we denote the internal hom object by F(X,Y). We will often refer to morphisms in  $S\mathcal{H}$  as *classes*, as we will think of them as representing homotopy classes of maps.
- Given two objects X and Y in  $\mathcal{SH}$ , we may extend the abelian group [X,Y] to an A-graded abelian group  $[X,Y]_*$  defined by

$$[X,Y]_a := [\Sigma^a X, Y] = [S^a \otimes X, Y].$$

(See Appendix C for a review of the theory of A-graded abelian groups, rings, modules, etc.)

• Given an object X in SH and some  $a \in A$ , define the abelian group

$$\pi_a(X) := [S^a, X],$$

and write  $\pi_*(X)$  for the associated A-graded abelian group  $\bigoplus_{a\in A} \pi_a(X)$ . We call  $\pi_a(X)$  the  $a^{th}$  stable homotopy group of X.

• Given two objects E and X in SH, we define the A-graded abelian groups  $E_*(X)$  and  $E^*(X)$  by

$$E_a(X) := \pi_a(E \otimes X) = [S^a, E \otimes X]$$
 and  $E^a(X) := [X, S^a \otimes E].$ 

We refer to the functor  $E_*(-)$  as the homology theory represented by E, or just E-homology, and we refer to  $E^*(-)$  as the cohomology theory represented by E, or just E-cohomology.

From now on, we fix the data of a stable homotopy category  $\mathcal{SH}$  given above once and for all. Observe that for all  $a,b\in A$ , the objects  $S^{a+b}$  and  $S^a\otimes S^b$  are isomorphic, since  $h:A\to \operatorname{Pic}(\mathcal{SH})$  is a group homomorphism. Hence given a monoid object  $(E,\mu,e)$  in  $\mathcal{SH}$  (Definition D.1), supposing we had fixed isomorphisms  $S^{a+b}\cong S^a\otimes S^b$  for all  $a,b\in A$ , we get a multiplication map  $\pi_*(E)\times\pi_*(E)\to\pi_*(E)$  which sends classes  $x:S^a\to E$  and  $y:S^b\to E$  to the product

$$S^{a+b} \cong S^a \otimes S^b \xrightarrow{x \otimes y} E \otimes E \xrightarrow{\mu} E.$$

where the first isomorphism is axiom TT1 for a tensor triangulated category (Definition A.5), the second isomorphism is given by the symmetry in  $\mathcal{SH}$ , the third isomorphism is again axiom TT1, the fourth isomorphism is the fact that  $\Sigma$  and  $\Omega$  for an adjoint equivalence, and finally the last isomorphism follows by the fact that S is the monoidal unit in SH.

Naturally, we would like this product to make  $\pi_*(E)$  into an A-graded ring (with unit  $e \in \pi_0(E) = [S, E]$ ), rather than just an A-graded abelian group. This is essentially the entire discussion of Dugger's paper [1], and as it turns out,  $\pi_*(E)$  is in fact a graded ring provided we can choose these morphisms to be *coherent*, in the following sense:

**Definition 2.2.** Suppose we have a family of isomorphisms

$$\phi_{a,b}: S^{a+b} \xrightarrow{\cong} S^a \otimes S^b$$

for all  $a, b \in A$ . We say this family is *coherent* if:

- (1) For all  $a \in A$ , we have equalities  $\phi_{a,0} = \rho_{S^a}^{-1} : S^a \to S^a \otimes S$  and  $\phi_{0,a} = \lambda_{S^a}^{-1} : S^a \to S \otimes S^a$ .
- (2) For all  $a, b, c \in A$ , the following diagram commutes:

$$S^{a+b} \otimes S^{c} \xleftarrow{\phi_{a+b,c}} S^{a+b+c} \xrightarrow{\phi_{a,b+c}} S^{a} \otimes S^{b+c}$$

$$\downarrow S^{a} \otimes \phi_{b,c}$$

$$(S^{a} \otimes S^{b}) \otimes S^{c} \xrightarrow{\cong} S^{a} \otimes (S^{b} \otimes S^{c})$$

Furthermore, Dugger gaurantees that we can always find such a coherent family:

**Theorem 2.3** ([1, Proposition 7.1]). There exists a coherent family of isomorphisms

$$\phi_{a,b}: S^{a+b} \xrightarrow{\cong} S^a \otimes S^b$$

in the sense of Definition 2.2, and in particular, the set of such coherent families is in bijective correspondence with the set of normalized 2-cocycles  $Z^2(A; \operatorname{Aut}(S))_{norm}$ , i.e., the set of functions  $\alpha: A \times A \to \operatorname{Aut}(S)$  such that  $\alpha(0,0) = \operatorname{id}_S$  and for all  $a,b,c \in A$ ,  $\alpha(a+b,c) \cdot \alpha(a,b) = \alpha(b,c) \cdot \alpha(a,b+c)$ .

Thus, from now on we will suppose once and for all we have fixed a coherent family  $\{\phi_{a,b}\}_{a,b\in A}$ . Such a coherent family has very nice properties, in particular:

**Remark 2.4.** Note that by induction the coherence conditions say that given any  $a_1, \ldots, a_n \in A$  and  $b_1, \ldots, b_m \in A$  such that  $a_1 + \cdots + a_n = b_1 + \cdots + b_m$  and any fixed parenthesizations of  $X = S^{a_1} \otimes \cdots \otimes S^{a_b}$  and  $Y = S^{b_1} \otimes \cdots \otimes S^{b_m}$ , there is a *unique* isomorphism  $X \to Y$  that can be obtained by forming formal compositions of tensor products of  $\phi_{a,b}$ , associators, and their inverses.

Of course, we get our desired result:  $\pi_*(E)$  is indeed an A-graded ring if E is a monoid object.

**Proposition 2.5.** Let  $(E, \mu, e)$  be a commutative monoid object in SH, and consider the multiplication map  $\pi_*(E) \times \pi_*(E) \to \pi_*(E)$  which sends classes  $x: S^a \to E$  and  $y: S^b \to E$  to the composition

$$S^{a+b} \xrightarrow{\phi_{a,b}} S^a \otimes S^b \xrightarrow{x \otimes y} E \otimes E \xrightarrow{\mu} E.$$

Then this endows  $\pi_*(E)$  with the structure of an A-graded ring with unit  $e \in \pi_0(E) = [S, E]$ .

Furthermore, it turns out that if E is a *commutative* monoid object in  $S\mathcal{H}$ , then  $\pi_*(E)$  is "A-graded commutative," in the following sense:

**Proposition 2.6.** For all  $a, b \in A$  there exists an element  $\theta_{a,b} \in \pi_0(S) = [S, S]$  (determined by choice of coherent family  $\{\phi_{a,b}\}$ ) such that given any commutative monoid object  $(E, \mu, e)$  in SH, the A-graded ring structure on  $\pi_*(E)$  (Proposition 2.5) has a commutativity formula given by

$$x \cdot y = y \cdot x \cdot (e \circ \theta_{a,b})$$

for all  $x \in \pi_a(E)$  and  $y \in \pi_b(E)$ .

Furthermore,  $\theta_{0,a} = \theta_{a,0} = \mathrm{id}_S$  for all  $a \in A$ , so that if either x or y has degree 0,  $x \cdot y = y \cdot x$ .

*Proof.* See Proposition D.4 and Proposition D.5.

We also have the following result:

**Proposition 2.7.** Given some  $a \in A$ , the functors  $\Sigma^a$  and  $\Sigma^{-a}$  canonically form an adjoint equivalence of SH.

In particular, note that this tells us that given objects E and X in  $S\mathcal{H}$ , we have isomorphisms

$$E^*(X) = [X, S^* \otimes X] \cong [S^{-*} \otimes X, E] \cong [S^{-*}, F(X, E)] = \pi_{-*}(F(X, E)).$$

Similarly, given any objects X and Y in  $S\mathcal{H}$ , we have isomorphisms of A-graded abelian groups

$$[X,\Sigma Y]_* = [S^* \otimes X, S^1 \otimes Y] \cong [S^{-1} \otimes S^* \otimes X, Y] \cong [S^{*-1} \otimes X, Y] = [X,Y]_{*-1},$$

where the first isomorphism is the adjunction specified by the above proposition, and the second isomorphism is induced by the isomorphism

$$S^{*-1} \otimes X \xrightarrow{\phi_{-1,*} \otimes X} S^{-1} \otimes S^* \otimes X.$$

The last ingredient in order to develop the Adams spectral sequence abstractly is a notion of cellularity in  $S\mathcal{H}$ :

**Definition 2.8.** Define the class of *cellular* objects in SH to be the smallest class of objects such that:

- (1) For all  $a \in A$ ,  $S^a$  is cellular.
- (2) If we have a distinguished triangle

$$X \to Y \to Z \to \Sigma X (= S^1 \otimes X)$$

such that two of the three objects X, Y, and Z are cellular, than the third object is also cellular.

- (3) Given a collection of cellular objects  $X_i$  indexed by some small set  $I, \bigoplus_{i \in I} X_i$  is cellular.
- 2.2. Monoid objects in SH. We have constructed an Adams spectral sequence, but as it currently stands we do not yet know why it is useful. To start with, we'd like to provide a characterization of its  $E_1$  and  $E_2$  pages in terms of something more algebraic. To start, we first need to develop some theory of the algebra of monoid objects in SH. Much of this work is entirely straightforward although tedious to verify, so we relegate most of the proofs in this section to Appendix D.

**Proposition 2.9.** Let  $(E, \mu, e)$  be a monoid object in SH. Then for any object X in SH,  $E_*(X)$  canonically inherits the structure of a left A-graded module over  $\pi_*(E)$  (which recall is an A-graded ring by Proposition 2.5) via the map

$$\pi_*(E) \times E_*(X) \to E_*(X)$$

which given  $a, b \in A$ , sends  $x: S^a \to E$  and  $y: S^b \to E$  to the composition

$$x\cdot y:S^{a+b}\cong S^a\otimes S^b\xrightarrow{x\otimes y}E\otimes (E\otimes X)\cong (E\otimes E)\otimes X\xrightarrow{\mu\otimes X}E\otimes X.$$

Similarly,  $X_*(E)$  canonically inherits the structure of a right graded  $\pi_*(E)$ -module via the map

$$X_*(E) \times \pi_*(E) \to X_*(E)$$

which given  $a, b \in A$ , sends  $x : S^a \to X \otimes E$  and  $y : S^b \to E$  to the composition

$$x\cdot y:S^{a+b}\cong S^a\otimes S^b\xrightarrow{x\otimes y}(X\otimes E)\otimes E\cong X\otimes (E\otimes E)\xrightarrow{X\otimes \mu}X\otimes E.$$

Proof. See Proposition D.8.

**Definition 2.10.** Given a monoid object E in  $S\mathcal{H}$ , we say E is *flat* if the canonical right  $\pi_*(E)$ -module structure on  $E_*(E)$  (see the above proposition) is that of a flat module.

2.3. Construction of the Adams spectral sequence. In what follows, let E be a commutative monoid object in SH.

**Definition 2.11.** Let  $\overline{E}$  be the fiber of the unit map  $e: S \to E$  (Proposition A.3), and for  $s \ge 0$  define

$$Y_s := \overline{E}^s \otimes Y, \qquad W_s = E \otimes Y_s = E \otimes (\overline{E}^s \otimes Y),$$

where recall for s > 0,  $\overline{E}^s$  denotes the s-fold product parenthesized as  $\overline{E} \otimes (\overline{E} \otimes \cdots (\overline{E} \otimes \overline{E}))$ , and  $\overline{E}^0 := S$ . Then we get fiber sequences

$$Y_{s+1} \xrightarrow{i_s} Y_s \xrightarrow{j_s} W_s \xrightarrow{k_s} \Sigma Y_{s+1} (= S^1 \otimes Y_{s+1})$$

obtained by applying  $-\otimes Y_s$  to the sequence

$$\overline{E} \to S \xrightarrow{e} E \to \Sigma \overline{E}$$

(and applying the necessary associator isomorphisms). These sequences can be spliced together to form the (canonical) Adams filtration of Y:

where the diagonal dashed arrows are of degree -1 (note these triangles do NOT commute in any sense). Now we may apply the functor  $[X, -]_*$ , and by Proposition A.4 we obtain an exact couple of  $\mathbb{N} \times A$ -graded abelian groups:

$$[X, Y_*]_* \xrightarrow{i_{**}} [X, Y_*]_*$$

$$\downarrow^{j_{**}}$$

$$[X, W_*]_*$$

where  $i_{**}$ ,  $j_{**}$ , and  $k_{**}$  have  $\mathbb{Z} \times A$ -degree (-1,0), (0,0), and (1,-1), respectively<sup>2</sup>. The standard argument yields a  $\mathbb{N} \times A$ -graded spectral sequence called from this exact couple (cf. Section 5.9 of [6]) with  $E_1$  page given by

$$E_1^{s,a} = [X, W_s]_a$$

and  $r^{\text{th}}$  differential of  $\mathbb{Z} \times A$ -degree (r, -1):

$$d_r: E_r^{s,a} \to E_r^{s+r,a-1}.$$

A priori, this is all  $\mathbb{N} \times A$ -graded, but we regard it as being  $\mathbb{Z} \times A$ -graded by setting  $E_r^{s,a} := 0$  for s < 0 and trivially extending the definition of the differentials to these zero groups. This spectral sequence is called the E-Adams spectral sequence for the computation of  $[X,Y]_*$ . The index s is called the Adams filtration and a is the stem.

<sup>&</sup>lt;sup>2</sup>Explicitly, the map  $k_{s,a}: [X,W_s]_a \to [X,Y_{s+1}]_{a-1}$  sends a map  $f: S^a \otimes X \to W_s$  to the map  $S^{a-1} \otimes X \to Y_{s+1}$  corresponding under the isomorphism  $[X,\Sigma Y_{s+1}]_* \cong [X,Y_{s+1}]_{*-1}$  to the composition  $k_s \circ f: S^a \otimes X \to \Sigma Y_{s+1}$ .

2.4. **The**  $E_1$  **page.** The goal of this subsection is to provide the following characterization for the  $E_1$  page of the Adams spectral sequence:

**Theorem 2.12.** Let E be a flat commutative monoid object in SH, and let X and Y be two objects in SH such that  $E_*(X)$  is a projective module over  $\pi_*(E)$ . Then for all  $s \ge 0$  and  $a \in A$ , we have isomorphisms in the associated E-Adams spectral sequence

$$E_1^{s,a} \cong \text{Hom}_{E_*(E)}^a(E_*(X), E_*(W_s))$$

Furthermore, under these isomorphisms, the differential  $d_1: E_1^{s,a} \to E_1^{s+1,a-1}$  corresponds to the map

$$\operatorname{Hom}_{E_*(E)}^a(E_*(X), E_*(W_s)) \to \operatorname{Hom}_{E_*(E)}^{a-1}(E_*(X), E_*(X \otimes W_{s+1}))$$

which sends a map  $f: E_*(X) \to E_{*+a}(W_s)$  to the composition

$$E_*(X) \xrightarrow{f} E_{*+a}(W_s) \xrightarrow{(X \otimes h_s)_*} E_{*+a-1}(X \otimes Y_{s+1}) \xrightarrow{(X \otimes j_{s+1})_*} E_{*+a-1}(X \otimes W_{s+1}).$$

*Proof.* By Lemma D.10, for all  $s \geq 0$  and  $t, w \in \mathbb{Z}$ , we have isomorphisms

$$[X, E \otimes Y_s]_{t,w} \cong \operatorname{Hom}_{E_*(E)}^{t,w}(E_*(X), E_*(E \otimes Y_s)).$$

since  $W_s = E \otimes Y_s$ , we have that

$$E_1^{s,(t,w)} = [X, W_s]_{t,w} \cong \operatorname{Hom}_{E_*(E)}^{t,w}(E_*(X), E_*(W_s)),$$

as desired.

**Definition 2.13.** Let  $(E, \mu, e)$  be a monoid object in SH. We say E is *flat* if the canonical right  $\pi_*(E)$ -module structure on  $E_*(E)$  is that of a flat module.

- 2.5. The  $E_2$  page.
- 2.6. Convergence, convergence of spectral sequences
  - 3. The classical Adams spectral sequence
  - 4. The motivic Adams spectral sequence

APPENDIX A. TRIANGULATED CATEGORIES

We assume the reader is familiar with additive categories and (closed, symmetric) monoidal categories.

**Definition A.1.** A triangulated category is a tuple  $(\mathcal{C}, \Sigma, \Omega, \mathcal{D})$  such that

- (1) C is an additive category.
- (2)  $\Sigma, \Omega: \mathcal{C} \to \mathcal{C}$  form an adjoint equivalence of  $\mathcal{C}$  with itself. ( $\Sigma$  is calld the *shift functor*.)
- (3) D is a collection of distinguished triangles, where a triangle is a diagram of the form

$$X \to Y \to Z \to \Sigma X$$
.

These are also sometimes called *cofiber sequences* or *fiber sequences*.

These data must satisfy the following axioms:

TR0 Given a commutative diagram

where the vertical arrows are isomorphisms, if the top row is distinguished then so is the bottom.

**TR1** For any object X in  $\mathcal{C}$ , the diagram

$$X \xrightarrow{\mathrm{id}_X} X \to 0 \to \Sigma X$$

is a distinguished triangle.

**TR2** For all  $f: X \to Y$  there exists an object  $C_f$  (also sometimes denoted Y/X) called the *cofiber of f* and a distinguished triangle

$$X \xrightarrow{f} Y \to C_f \to \Sigma X.$$

TR3 Given a solid diagram with both rows commutative

such that the leftmost square commutes and both rows are distinguished, there exists a dashed arrow  $Z \to Z'$  which makes the remaining two squares commute.

TR4 A triangle

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{\Sigma} X$$

is distinguished if and only if

$$Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X \xrightarrow{-\Sigma f} \Sigma Y$$

is distinguished.

TR5 (Octahedral axiom) Given three distinguished triangles

$$X \xrightarrow{f} Y \xrightarrow{h} Y/X \to \Sigma X$$

$$Y \xrightarrow{g} \xrightarrow{k} Z/Y \to \Sigma Y$$

$$X \xrightarrow{g \circ f} Z \xrightarrow{l} Z/X \to \Sigma X$$

there exists a distinguished triangle

$$Y/X \xrightarrow{u} Z/X \xrightarrow{v} Z/Y \xrightarrow{w} \Sigma(Y/X)$$

such that the following diagram commutes



It turns out that the above definition is actually redundant; TR3 and TR4 follow from the remaining axioms (see Lemmas 2.2 and 2.4 in [2]).

We now recall several important propositions for triangulated categories:

**Proposition A.2.** Given a map  $f: X \to Y$  in a triangulated category  $(\mathfrak{C}, \Sigma, \Omega, \mathfrak{D})$ , the cofiber sequence of f is unique up to isomorphism, in the sense that given any two distinguished triangles

$$X \xrightarrow{f} Y \to Z \to \Sigma X$$
 and  $X \xrightarrow{f} Y \to Z' \to \Sigma X$ ,

there exists an isomorphism  $Z \to Z'$  which makes the following diagram commute:

$$\begin{array}{cccc} X & \xrightarrow{f} & Y & \longrightarrow & Z & \longrightarrow & \Sigma X \\ \parallel & & \parallel & & \downarrow_k & & \parallel \\ X & \xrightarrow{f} & Y & \longrightarrow & Z' & \longrightarrow & \Sigma X \end{array}$$

**Proposition A.3.** Given an arrow  $f: X \to Y$  in a triangulated category  $(\mathfrak{C}, \Sigma, \Omega, \mathfrak{D})$ , there exists an object  $F_f$  called the fiber of f, and a distinguished triangle

$$F_f \to X \xrightarrow{f} Y \to \Sigma F_f (\cong C_f).$$

**Proposition A.4.** Let  $(\mathcal{C}, \Sigma, \Omega, \mathcal{D})$  be a triangulated category. Given a distinguished triangle

$$X \xrightarrow{f} Y \xrightarrow{g} \xrightarrow{h} \Sigma X$$

and any object A in C, there is a long exact sequence of abelian groups

$$\cdots \to [\Sigma^{n+1}A, Z] \xrightarrow{h_*} [\Sigma^n X, X] \xrightarrow{f_*} [\Sigma^n A, Y] \xrightarrow{g_*} [\Sigma^n A, Z] \xrightarrow{h_*} [\Sigma^{n-1}A, X] \to \cdots$$

extending infinitely in either direction, where for n < 0 we define  $\Sigma^{-n} := \Omega^n$ .

Also important for our work is the concept of a *tensor triangulated category*, that is, a triangulated symmetric monoidal category in which the triangulated structures are compatible, in the following sense:

**Definition A.5.** A tensor triangulated category is a triangulated symmetric monoidal category  $(\mathcal{C}, \otimes, S, \Sigma, \Omega, \mathcal{D})$  such that:

**TT1** For all objects X and Y in  $\mathcal{C}$ , there are natural isomorphisms

$$e_{X,Y}: (\Sigma X) \otimes Y \xrightarrow{\cong} \Sigma(X \otimes Y).$$

**TT2** For each object X in  $\mathcal{C}$ , the functor  $X \otimes (-) \cong (-) \otimes X$  is an additive functor.

**TT3** For each object X in  $\mathcal{C}$ , the functor  $X \otimes (-) \cong (-) \otimes X$  preserves distinguished triangles, in that given a distinguished triangle/(co)fiber sequence

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{\Sigma} A$$
.

then also

$$X \otimes A \xrightarrow{X \otimes f} X \otimes B \xrightarrow{X \otimes g} X \otimes C \xrightarrow{\Sigma(X \otimes h)} \Sigma(X \otimes A)$$

and

$$A \otimes X \xrightarrow{f \otimes X} B \otimes X \xrightarrow{g \otimes X} C \otimes X \xrightarrow{\Sigma(h \otimes X)} \Sigma(A \otimes X)$$

are distinguished triangles.

Usually, most tensor triangulated categories that arise in nature will satisfy additional coherence axioms (see axioms TC1–TC5 in [2]), but the above definition will suffice for our purposes. To avoid the awkwardness of saying "a tensor triangulated category which is also a closed symmetric monoidal category," we introduce the following (nonstandard) terminology:

**Definition A.6.** We say a tensor triangulated category  $(\mathcal{C}, \otimes, S, \Sigma, \Omega)$  is *closed* if  $\mathcal{C}$  is a closed symmetric monoidal category, in the sense that for each object  $X \in \mathcal{C}$ , the functor  $-\otimes X$  has a right adjoint F(X, -).

Note that given a tensor triangulated category, we have the following characterization of the shift functor:

**Proposition A.7.** Given a tensor triangulated category  $(\mathfrak{C}, \otimes, S, \Sigma, \Omega)$ , there is a canonical natural isomorphism  $\Sigma S \otimes - \cong \Sigma$ .

*Proof.* Given an object X in  $\mathcal{C}$ , we have natural isomorphisms

$$\Sigma S \otimes X \xrightarrow{e_{S,X}} \Sigma(S \otimes X) \xrightarrow{\Sigma \lambda_X} \Sigma X,$$

where  $\lambda_X$  is the left unitor specified by the monoidal structure on  $\mathcal{C}$ .

#### APPENDIX B. SPECTRAL SEQUENCES

In what follows, we fix an abelian group A. We will freely use the theory and results of ??

**Definition B.1.** An A-graded spectral sequence is the data of a collection of A-graded abelian groups  $\{E_r^*\}_{r\geq r_0}$  along with homomorphisms of A-graded abelian groups (possibly of nonzero degree)  $d_r: E_r \to E_r$  such that  $d_r \circ d_r = 0$  and  $E_{r+1} = \ker d_r / \operatorname{im} d_r$ .

C.1. **Grading.** First, we develop the theory of things graded by an abelian group. In what follows, we fix an abelian group A.

**Definition C.1.** An A-graded abelian group is an abelian group B along with a subgroup  $B_a \leq B$  for each  $a \in A$  such that the canonical map

$$\bigoplus_{a \in A} B_a \to B$$

sending  $(x_a)_{a\in A}$  to  $\sum_{a\in A} x_a$  is an isomorphism. Given two A-graded abelian groups B and C, a homomorphism  $f: B \to C$  is a homomorphism of A-graded abelian groups if it preserves the grading, i.e., if it restricts to a map  $B_a \to C_a$  for all  $a \in A$ .

**Definition C.2.** More generally, given two A-graded abelian groups B and C and some  $d \in A$ , a group homomorphism  $f: B \to C$  is an A-graded homomorphism of degree d if it restricts to a map  $B_a \to C_{a+d}$  for all  $a \in A$ .

Unless stated otherwise, an "A-graded homomorphism" will always refer to an A-graded homomorphism of degree 0. It is easy to see that an A-graded abelian group B is generated by its homogeneous elements, that is, nonzero elements  $x \in B$  such that there exists some  $a \in A$  with  $x \in B_a$ .

**Remark C.3.** Clearly the condition that the canonical map  $\bigoplus_{a \in A} B_a \to B$  is an isomorphism requires that  $B_a \cap B_b = 0$  if  $a \neq b$ . In particular, given a homogeneous element  $x \in B$ , there exists precisely one  $a \in A$  such that  $x \in B_a$ . We call this a the degree of x, and we write |x| = a.

**Lemma C.4.** Given two A-graded abelian groups B and C, their product  $B \oplus C$  is naturally an A-graded abelian group by defining

$$(B \oplus C)_a := \bigoplus_{b+c=a} B_b \oplus C_c.$$

*Proof.* This is entirely straightforward, as

$$B \otimes C \cong \left(\bigoplus_{b \in A} B_b\right) \oplus \left(\bigoplus_{c \in A} C_c\right) \cong \bigoplus_{b,c \in A} B_b \oplus C_c$$

**Definition C.5.** An A-graded ring R is the data of a ring R such that:

(1) The underlying abelian group of R is A-graded;

(2) For all  $a, b \in A$ , the multiplication map  $R \times R \to R$  restricts to a map

$$R_a \times R_b \to R_{a+b}$$
,

i.e., 
$$|x \cdot y| = |x| + |y|$$
 for all nonzero  $x, y \in R$ .

For example, given some field k, the ring R = k[x, y] is  $\mathbb{Z}^2$ -graded, where given  $(n, m) \in \mathbb{Z}^2$ ,  $R_{n,m}$  is the subgroup of those monomials of the form  $ax^ny^m$  for some  $a \in k$ . Oftentimes we constructing A-graded rings, we do so only by defining the product of homogeneous elements, like so:

**Proposition C.6.** Given an A-graded abelian group R, a distinguished element  $1 \in R_0$ , and  $\mathbb{Z}$ -bilinear maps  $m_{a,b}: R_a \times R_b \to R_{a+b}$  for all  $a,b \in A$  such that given  $x \in R_a$ ,  $y \in R_b$ , and  $z \in R_c$ ,

$$m_{a+b,c}(m_{a,b}(x,y),z) = m_{a,b+c}(x,m_{b,c}(y,z))$$
 and  $m_{a,0}(x,1) = m_{0,a}(1,x) = x$ 

there exists a unique multiplication map  $m: R \times R \to R$  which endows R with the structure of an A-graded ring and restricts to  $m_{a,b}$  for all  $a, b \in A$ .

*Proof.* Given  $r, s \in R$ , since  $R \cong \bigoplus_{a \in A} R_a$ , we may uniquely decompose r and s into homogeneous elements as  $r = \sum_{a \in A} r_a$  and  $s = \sum_{a \in A} s_a$  with each  $r_a, s_a \in R_a$  such that only finitely many of the  $r_a$ 's and  $s_a$ 's are nonzero. Then in order to define a distributive product  $R \times R \to R$  which restricts to  $m_{a,b}: R_a \times R_b \to R_{a+b}$ , note we must define

$$r \cdot = \left(\sum_{a \in A} r_a\right) \cdot \left(\sum_{b \in A} s_b\right) = \sum_{a,b \in A} r_a \cdot s_b = \sum_{a,b \in A} m_{a,b}(r_a, s_b).$$

Thus, we have shown uniqueness. It remains to show this product actually gives R the structure of a ring. First we claim that the sum on the right is actually finite. Note there exists only finitely many nonzero  $r_a$ 's and  $s_b$ 's, and if  $s_b = 0$  then

$$m_{a,b}(r_a,0) = m_{a,b}(r_a,0+0) \stackrel{(*)}{=} m_{a,b}(r_a,0) + m_{a,b}(r_a,0) \implies m_{a,b}(r_a,0) = 0,$$

where (\*) follows from bilinearity of  $m_{a,b}$ . A similar argument yields that  $m_{a,b}(0,r_b)=0$  for all  $a,b \in A$ . Hence indeed  $m_{a,b}(r_a,s_b)$  is zero for all but finitely many pairs  $(a,b) \in A^2$ , as desired. Observe that in particular

$$(r \cdot s)_a = \sum_{b+c=a} m_{b,c}(r_b, s_c) = \sum_{b \in A} m_{b,a-b}(r_b, s_{a-b}) = \sum_{c \in A} m_{a-c,c}(r_{a-c}, s_c).$$

Now we claim this multiplication is associative. Given  $t = \sum_{a \in A} t_a \in R$ , we have

$$\begin{split} (r \cdot s) \cdot t &= \sum_{a,b \in A} m_{a,b} ((r \cdot s)_a, t_b) \\ &= \sum_{a,b \in A} m_{a,b} \left( \sum_{c \in A} m_{a-c,c} (r_{a-c}, s_c), t_b \right) \\ &\stackrel{(1)}{=} \sum_{a,b,c \in A} m_{a,b} (m_{a-c,c} (r_{a-c}, s_c), t_b) \\ &\stackrel{(2)}{=} \sum_{a,b,c \in A} m_{c,a+b-c} (r_c, m_{a-c,b} (s_{a-c}, t_b)) \\ &\stackrel{(3)}{=} \sum_{a,b,c \in A} m_{a,c} (r_a, m_{b,c-b} (s_b, t_{c-b})) \\ &\stackrel{(1)}{=} \sum_{a,c \in A} m_{a,c} \left( r_a, \sum_{b \in A} m_{b,c-b} (s_b, t_{c-b}) \right) \\ &= \sum_{a,c \in A} m_{a,c} (r_a, (s \cdot t)_c) = r \cdot (s \cdot t), \end{split}$$

where each occurrence of (1) follows by bilinearity of the  $m_{a,b}$ 's, each occurrence of (2) is associativity of the  $m_{a,b}$ 's, and (3) is obtained by re-indexing by re-defining a := c, b := a - c, and c := a + b - c. Next, we wish to show that the distinguished element  $1 \in R_0$  is a unit with respect to this multiplication. Indeed, we have

$$1 \cdot r \stackrel{(1)}{=} \sum_{a \in A} m_{0,a}(1, r_a) \stackrel{(2)}{=} \sum_{a \in A} r_a = r$$

and

$$r \cdot 1 \stackrel{(1)}{=} \sum_{a \in A} m_{a,0}(r_a, 1) \stackrel{(2)}{=} \sum_{a \in A} r_a = r,$$

where (1) follows by the fact that  $m_{a,b}(0,-) = m_{a,b}(-,0) = 0$ , which we have shown above, and (2) follows by unitality of the  $m_{0,a}$ 's and  $m_{0,a}$ 's, respectively. Finally, we wish to show that this product is distributive. Indeed, we have

$$\begin{split} r\cdot(s+t) &= \sum_{a,b\in A} m_{a,b}(r_a,(s+t)_b) \\ &= \sum_{a,b\in A} m_{a,b}(r_a,s_b+t_b) \\ &\stackrel{(*)}{=} \sum_{a,b\in A} m_{a,b}(r_a,s_b) + \sum_{a,b\in A} m_{a,b}(r_a,t_b) = (r\cdot s) + (r\cdot t), \end{split}$$

where (\*) follows by bilinearity of  $m_{a,b}$ . An entirely analogous argument yields that  $(r+s) \cdot t = (r \cdot t) + (s \cdot t)$ .

When working with A-graded abelian groups, we will freely use the above proposition without comment. Given an A-graded ring R, we may talk about A-graded R-modules:

**Definition C.7.** Let R be an A-graded ring. A left A-graded R-module M is a left R-module M such that M is an A-graded abelian group, and for all  $a, b \in A$ , the action map  $R \times M \to M$  restricts to a map  $R_a \times M_b \to M_{a+b}$ .

Right A-graded R-modules are defined similarly. Finally, an A-graded R-bimodule is an A-graded abelian group M along with action maps

$$R \times M \to M$$
 and  $M \times R \to M$ 

which endow M with the structure of a left and right A-graded R-module, respectively, such that given  $r, s \in R$  and  $m \in M$ ,  $r \cdot (m \cdot s) = (r \cdot m) \cdot s$ .

**Proposition C.8.** Let R be an A-graded ring, and suppose we have a right A-graded R-module M and a left A-graded R-module N. Then the tensor product

$$M \otimes_R N$$

is naturally an A-graded abelian group by defining  $(M \otimes_R N)_a$  to be the subgroup generated by homogeneous pure tensors  $m \otimes n$  with  $m \in M_b$  and  $n \in N_c$  such that b+c=a. Furthermore, if either M (resp. N) is an A-graded bimodule, then  $M \otimes_R N$  is naturally a left (resp. right) A-graded R-module

*Proof.* By definition, since M and N are A-graded abelian groups, they are generated (as abelian groups) by their homogeneous elements. Thus it follows that  $M \otimes_R N$  is generated by *homogeneous pure tensors*, that is, elements of the form  $m \otimes n$  with  $m \in M$  and  $n \in N$  homogeneous. Now, given a homogeneous pure tensor  $m \otimes n$ , we define its *degree* by the formula  $|m \otimes n| := |m| + |n|$ . It follows this formula is well-defined by checking that given homogeneous elements  $m \in M$ ,  $n \in N$ , and  $r \in R$  that

$$|(m \cdot r) \otimes n| = |m \cdot r| + |n| = |m| + |r| + |n| = |m| + |r \cdot n| = |m \otimes (r \cdot n)|.$$

Thus, we may define  $(M \otimes_R N)_a$  to be the subgroup of  $M \otimes_R N$  generated by those pure homogeneous tensors of degree a. Now, we construct a map

$$\Phi: M \times N \to \bigoplus_{a \in A} (M \otimes_R N)_a$$

which takes a pair  $(m,n) = \sum_{a \in A} (m_a, n_a)$  to the element  $\Phi(m,n)$  whose  $a^{\text{th}}$  component is

$$(\Phi(m,n))_a := \sum_{b+c=a} m_a \otimes n_a.$$

It is straightforward to see that this map is R-linear in both arguments. Thus by the universal property of  $M \otimes_R N$ , we get a lift  $\widetilde{\Phi} : M \otimes_R N \to \bigoplus_{a \in A} (M \otimes_R N)_a$ . Now, also consider the canonical map

$$\Psi: \bigoplus_{a\in A} (M\otimes_R N)_a \to M\otimes_R N.$$

We would like to show  $\Phi$  and  $\Psi$  are inverses of eah other. It suffices to show this on generators. Let  $m \otimes n$  be a pure homogeneous tensor with  $m = m_a \in M_a$  and  $n = n_a \in N_b$ . Then we have

$$\Psi(\widetilde{\Phi}(m\otimes n)) = \Psi\left(\bigoplus_{c\in A} \sum_{b+c=a} m_b \otimes n_c\right) \stackrel{(*)}{=} \Psi(m\otimes n) = m\otimes n,$$

and

$$\widetilde{\Phi}(\Psi(m\otimes n)) = \widetilde{\Phi}(m\otimes n) = \bigoplus_{a\in A} \sum_{b+c=a} m_b \otimes n_c \stackrel{(*)}{=} m\otimes n,$$

where both occurrences of (\*) follow by the fact that  $m_b \otimes n_c = 0$  unless b = c = a, in which case  $m_a \otimes n_a = m \otimes n$ . Thus since  $\Psi$  is an isomorphism,  $M \otimes_R N$  is indeed an A-graded abelian group, as desired.

Now, suppose that M is an A-graded R-bimodule, so there exists a left and right action of R on M such that given  $r, s \in R$  and  $m \in M$  we have  $r \cdot (m \cdot s) = (r \cdot m) \cdot s$ . Then we would

like to show that given a left A-graded R-module N that  $M \otimes_R N$  is canonically a left A-graded R-module. Indeed, define the action of R on  $M \otimes_R N$  on pure tensors by the formula

$$r \cdot (m \otimes n) = (r \cdot m) \otimes n.$$

First of all, clearly this map is A-graded, as if  $r \in R_a$ ,  $m \in M_b$ , and  $n \in N_c$  then  $(r \cdot m) \otimes n$ , by definition, has degree  $|r \cdot m| + |n| = |r| + |m| + |n|$  (the last equality follows since the left action of R on M is A-graded). In order to show the above map defines a left module structure, it suffices to show that given pure tensors  $m \otimes n$ ,  $m' \otimes n' \in M \otimes_R N$  and elements  $r, r' \in R$  that

- $(1) r \cdot (m \otimes n + m' \otimes n') = r \cdot (m \otimes n) + r \cdot (m' \otimes n'),$
- $(2) (r+r') \cdot (m \otimes n) = r \cdot (m \otimes n) + r' \cdot (m' \otimes n'),$
- (3)  $(rr') \cdot (m \otimes n) = r \cdot (r' \cdot (m \otimes n))$ , and
- $(4) 1 \cdot (m \otimes n) = m \otimes n.$

Axiom (1) holds by definition. To see (2), note that by the fact that R acts on M on the left that

$$(r+r')\cdot (m\otimes n)=((r+r')\cdot m)\otimes n=(r\cdot m+r'\cdot m)\otimes n=r\cdot m\otimes n+r'\cdot m\otimes n.$$

That (3) and (4) hold follows similarly by the fact that  $(rr') \cdot m = r \cdot (r' \cdot m)$  and  $1 \cdot m = m$ . Conversely, if N is an A-graded R-bimodule, then showing  $M \otimes_R N$  is canonically a right A-graded R-module via the rule

$$(m \otimes n) \cdot r = m \otimes (n \cdot r)$$

is entirely analogous.

**Lemma C.9.** Let R be an A-graded ring, and suppose we have a right A-graded R-module M and a left A-graded R-module N. Then given an A-graded abelian group B and an A-graded R-bilinear map

$$\varphi: M \times N \to B$$

(here  $M \times N$  is regarded as an A-graded abelian group by ??), the lift

$$\widetilde{\varphi}: M \otimes_R N \to B$$

determined by the universal property of  $M \otimes_R N$  is an A-graded map.

#### APPENDIX D. MONOID OBJECTS IN A STABLE HOMOTOPY CATEGORY

**Definition D.1.** Let  $(\mathfrak{C}, \otimes, S)$  be a symmetric monoidal category with left unitor, right unitor, and associator, and symmetry isomorphism  $\lambda$ ,  $\rho$ ,  $\alpha$ , and  $\tau$ , respectively. Then a monoid object  $(E, \mu, e)$  is an object E in  $\mathfrak{C}$  along with a multiplication map  $\mu : E \otimes E \to E$  and a unit map  $e : S \to E$  such that the following diagram commutes:

$$E \otimes S \xrightarrow{E \otimes e} E \otimes E \xleftarrow{e \otimes E} S \otimes E \qquad (E \otimes E) \otimes E \xrightarrow{\mu \otimes E} E \otimes E$$

$$\downarrow^{\mu} \qquad \qquad \downarrow^{\mu} \qquad \qquad \downarrow^{\mu}$$

The first diagram expresses unitality, while the second expressed associativity. If in addition the following diagram commutes,



then we say  $(E, \mu, e)$  is a *commutative* monoid object.

**Proposition D.2.** Let  $(E_1, \mu_1, e_1)$  and  $(E_2, \mu_2, e_2)$  be monoid objects in a symmetric monoidal category  $(\mathfrak{C}, \otimes, S)$ . Then  $E_1 \otimes E_2$  is canonically a ring spectrum via the maps

$$\mu: E_1 \otimes E_2 \otimes E_1 \otimes E_2 \xrightarrow{E_1 \otimes \tau \otimes E_2} E_1 \otimes E_1 \otimes E_2 \otimes E_2 \xrightarrow{\mu_1 \otimes \mu_2} E_1 \otimes E_2$$

and

$$e: S \cong S \otimes S \xrightarrow{e_1 \otimes e_2} E_1 \otimes E_2.$$

 $\Box$  Proof.

In what follows, fix a stable homotopy category SH (Definition 2.1) along with the additional data therewithin, and adopt the conventions outlined in Section 2.1. Further suppose we have fixed a coherent family of isomorphisms

$$\phi_{a,b}: S^{a+b} \xrightarrow{\cong} S^a \otimes S^b,$$

in the sense of Definition 2.2 (the existence of such a coherent family is guaranteed by Theorem 2.3).

**Proposition D.3.** Let  $(E, \mu, e)$  be a commutative monoid object in SH, and consider the multiplication map  $\pi_*(E) \times \pi_*(E) \to \pi_*(E)$  which sends classes  $x: S^a \to E$  and  $y: S^b \to E$  to the composition

$$S^{a+b} \xrightarrow{\phi_{a,b}} S^a \otimes S^b \xrightarrow{x \otimes y} E \otimes E \xrightarrow{\mu} E.$$

Then this endows  $\pi_*(E)$  with the structure of an A-graded ring with unit  $e \in \pi_0(E) = [S, E]$ .

*Proof.* First we show this map is associative: Given classes x, y, and z in  $\pi_a(E)$ ,  $\pi_b(E)$ , and  $\pi_c(E)$ , respectively, consider the following diagram:

$$S^{a+b+c} \xrightarrow{\phi_{a+b,c}} S^{a+b} \otimes S^{c} \xrightarrow{\phi_{a,b} \otimes S^{c}} (S^{a} \otimes S^{b}) \otimes S^{c} \xrightarrow{(x \otimes y) \otimes z} (E \otimes E) \otimes E \xrightarrow{\mu \otimes E} E \otimes E$$

$$\downarrow^{\phi_{a,b+c}} \downarrow$$

$$S^{a} \otimes S^{b+c} \xrightarrow{S^{a} \otimes \phi_{b,c}} S^{a} \otimes (S^{b} \otimes S^{c}) \xrightarrow{x \otimes (y \otimes z)} E \otimes (E \otimes E) \xrightarrow{E \otimes \mu} E \otimes E \xrightarrow{\mu} E$$

Commutativity of the left pentagon is the coherence condition for the  $\phi_{a,b}$ 's. Commutativity of the middle parallelogram is naturality of the associator isomorphisms. Commutativity of the right pentagon is associativity of  $\mu$ . The fact that the two outside compositions equal  $(x \cdot y) \cdot z$  and  $x \cdot (y \cdot z)$ , respectively, follows by functoriality of  $-\otimes -$ .

Next we claim the map  $e: S \to E$  is a unit for this multiplication. Given  $x \in \pi_a(E)$ , consider the following diagram:



Commutativity of the top two large triangles is naturality of the unitor isomorphisms. Commutativity of the right and leftmost triangles is functoriality of  $-\otimes$ —. Commutativity of the bottom triangles is unitality of  $\mu$ . Hence, we have that  $e \cdot x = x = x \cdot e$ .

This product is also bilinear (distributive). Given  $x, x' \in \pi_a(E)$  and  $y, y' \in \pi_b(E)$ , consider the following diagrams:

$$S^{a+b} \xrightarrow{\phi_{a,b}} S^{a} \otimes S^{b} \xrightarrow{\Delta \otimes S^{b}} (S^{a} \oplus S^{a}) \otimes S^{b} \xrightarrow{(x \oplus x') \otimes y} (E \oplus E) \otimes E$$

$$\Delta \downarrow \qquad \qquad \downarrow \Delta \qquad \qquad \qquad \downarrow \nabla \otimes E$$

$$S^{a+b} \oplus S^{a+b} \xrightarrow{\phi_{a,b} \oplus \phi_{a,b}} (S^{a} \otimes S^{b}) \oplus (S^{a} \otimes S^{b}) \xrightarrow{(x \otimes y) \oplus (x' \otimes y)} (E \otimes E) \oplus (E \otimes E) \xrightarrow{\nabla} E \otimes E \xrightarrow{\mu} E$$

$$S^{a+b} \xrightarrow{\phi_{a,b}} S^{a} \otimes S^{b} \xrightarrow{S^{a} \otimes \Delta} S^{b} \otimes (S^{b} \oplus S^{b}) \xrightarrow{x \otimes (y \oplus y')} E \otimes (E \oplus E)$$

$$\Delta \downarrow \qquad \qquad \downarrow \Delta \qquad \qquad \downarrow E \otimes \nabla$$

$$S^{a+b} \oplus S^{a+b} \xrightarrow{\phi_{a,b} \oplus \phi_{a,b}} (S^{a} \otimes S^{b}) \oplus (S^{a} \otimes S^{b}) \xrightarrow{(x \otimes y) \oplus (x \otimes y)} (E \otimes E) \oplus (E \otimes E) \xrightarrow{\nabla} E \otimes E \xrightarrow{\mu} E$$

The unlabeled isomorphisms are those given by the fact that  $-\otimes$  – is additive in each variable (since  $\mathcal{SH}$  is tensor triangulated). Commutativity of the left squares is naturality of  $\Delta: X \to X \oplus X$  in an additive category. Commutativity of the rest of the diagram follows again from the fact that  $-\otimes$  – is an additive functor in each variable. Hence, by functoriality of  $-\otimes$  –, these diagrams tell us that  $(x + x') \cdot y = x \cdot y + x' \cdot y$  and  $x \cdot (y + y') = x \cdot y + x \cdot y'$ , respectively.  $\square$ 

**Proposition D.4.** For all  $a, b \in A$  there exists an element  $\theta_{a,b} \in \pi_0(S) = [S, S]$  (determined by choice of coherent family  $\{\phi_{a,b}\}$ ) such that given any commutative monoid object  $(E, \mu, e)$  in SH, the A-graded ring structure on  $\pi_*(E)$  (Proposition 2.5) has a commutativity formula given by

$$x \cdot y = y \cdot x \cdot (e \circ \theta_{a,b})$$

for all  $x \in \pi_a(E)$  and  $y \in \pi_b(E)$ . In particular,  $\theta_{a,b} \in \text{Aut}(S)$  is the composition

$$S \xrightarrow{\cong} S^{-a-b} \otimes S^a \otimes S^b \xrightarrow{S^{-a-b} \otimes \tau} S^{-a-b} \otimes S^b \otimes S^a \xrightarrow{\cong} S,$$

where the outermost maps are the unique maps specified by Remark 2.4.

*Proof.* Let  $\phi_{a,b}$ , E, x, and y as in the statement of the proposition. Now consider the following diagram

The left square commutes by definition. The middle square commutes by naturality of the symmetry isomorphism. Finally, the right square commutes by commutativity of E. Unravelling definitions, we have shown that under the product on  $\pi_*(E)$  induced by the  $\phi_{a,b}$ 's,

$$x \cdot y = (y \cdot x) \circ (\phi_{b,a}^{-1} \circ \tau \circ \phi_{a,b}).$$

Thus, in order to show the desired result it further suffices to show that

$$(y \cdot x) \circ (\phi_{b,a}^{-1} \circ \tau \circ \phi_{a,b}) = y \cdot x \cdot (e \circ \theta_{a,b}).$$

Consider the following diagram:



Here we are suppressing associators from the notation, and any map simply labelled  $\cong$  is an appropriate composition of copies of  $\phi_{a,b}$ 's, associators, and their inverses, so that each of these maps are necessarily unique by Remark 2.4. The top triangle commutes by coherence for the  $\phi_{a,b}$ 's. The parallelogram commutes by naturality of  $\tau$  and coherence of the of  $\phi_{a,b}$ 's. The trapezoid commutes again by coherence for the  $\phi_{a,b}$ 's. The middle right large triangle commutes by naturality of the unitors (and the fact that  $S^b \otimes \phi_{a,0}$  coincides with the unitor  $S^b \otimes S^a \otimes S^b \otimes S^b \otimes S^a$ ). The middle left triangle commutes by functoriality of  $S^b \otimes S^b \otimes S^b$ 

**Proposition D.5.** Given  $a \in A$ , we have  $\theta_{0,a} = \theta_{a,0} = id_S$ .

*Proof.* Recall  $\theta_{a,0}$  is the composition

$$S \xrightarrow{\phi_{-a,a}} S^{-a} \otimes S^a \xrightarrow{S^{-a} \otimes \phi_{a,0}} S^{-a} \otimes (S^a \otimes S) \xrightarrow{S^{-a} \otimes \tau} S^{-a} \otimes (S \otimes S^a) \xrightarrow{S^{-a} \otimes \phi_{0,a}^{-1}} S^{-a} \otimes S^a \xrightarrow{\phi_{-a,a}^{-1}} S^a \otimes S^a$$

By the coherence theorem for symmetric monoidal categories and the fact that  $\phi_{a,0}$  and  $\phi_{0,a}$  coincide with the unitors, we have that the composition

$$S^a \xrightarrow{\phi_{a,0} = \rho_{S^a}^{-1}} S^a \otimes S \xrightarrow{\tau} S \otimes S^a \xrightarrow{\phi_{0,a}^{-1} = \lambda_{S^a}} S^a$$

is precisely the identity map, so by functoriality of  $-\otimes -$ , we have that  $\theta_{a,0}$  is the composition

$$S \xrightarrow{\phi_{-a,a}} S^{-a} \otimes S^a \xrightarrow{=} S^{-a} \otimes S^a \xrightarrow{\phi_{-a,a}^{-1}} S,$$

so  $\theta_{a,0} = \mathrm{id}_S$ , meaning

$$x \cdot y = y \cdot x \cdot (e \circ \theta_{a,0}) = y \cdot x \cdot e = y \cdot x,$$

where the last equality follows by the fact that e is the unit for the multiplication on  $\pi_*(E)$ . An entirely analogous argument yields that  $\theta_{0,a} = \mathrm{id}_S$ .

**Proposition D.6.** Given some  $a \in A$ , the functors  $\Sigma^a$  and  $\Sigma^{-a}$  canonically form an adjoint equivalence of SH.

*Proof.* Let  $X, Y \in \mathcal{SH}$ . By [3, Lemma 3.2], in order to show  $\Sigma^a$  and  $\Sigma^{-a}$  are adjoint equivalences, it suffices to construct natural isomorphisms  $\eta : \mathrm{Id}_{\mathcal{SH}} \Rightarrow \Sigma^{-a} \circ \Sigma^a$  and  $\varepsilon : \Sigma^a \circ \Sigma^{-a} \Rightarrow \mathrm{Id}_{\mathcal{SH}}$  such that for all X in  $\mathcal{SH}$ , the following diagram commutes:

(1) 
$$\Sigma^{a} X \xrightarrow{(\Sigma^{a} \eta)_{X}} \Sigma^{a} \Sigma^{-a} \Sigma^{a} X$$

$$\downarrow_{(\varepsilon \Sigma^{a})_{X}}$$

$$\Sigma^{a} X$$

Given an object X in  $\mathcal{SH}$ , define  $\eta_X: X \to \Sigma^{-a} \Sigma^a X = S^{-a} \otimes S^a \otimes X$  to be the composition

$$X \xrightarrow{\lambda_X^{-1}} S \otimes X \xrightarrow{\phi_{-a,a} \otimes X} S^{-a} \otimes S^a \otimes X.$$

Clearly this is an isomorphism. To see this is natural, let  $f: X \to Y$  in SH. Then consider the following diagram:

$$\begin{array}{ccc} X & \xrightarrow{\lambda_X^{-1}} & S \otimes X^{\phi_{-a,a} \otimes X} S^{-a} \otimes S^a \otimes X \\ f \downarrow & & \downarrow S \otimes f & \downarrow S^{-a} \otimes S^a \otimes f \\ Y & \xrightarrow{\lambda_Y^{-1}} & S \otimes Y_{\phi_{-a,a} \otimes Y} S^{-a} \otimes S^a \otimes Y \end{array}$$

The left square commutes by naturality of  $\lambda$ . The right square commutes by functoriality of  $-\otimes -$ . Hence  $\eta$  is indeed a natural isomorphism.

On the other hand, given an object X in SH, define  $\varepsilon_X : \Sigma^a \Sigma^{-a} X = S^a \otimes S^{-a} \otimes X \to X$  to be the composition

$$S^a \otimes S^{-a} \otimes X \xrightarrow{\phi_{a,-a}^{-1}} S \otimes X \xrightarrow{\lambda_X} X.$$

Clearly this is an isomorphism. To see it is natural, let  $f: X \to Y$  in  $\mathcal{SH}$ . Then consider the following diagram:

$$S^{a} \otimes S^{-a} \otimes X \xrightarrow{\phi_{a,-a}^{-1} \otimes X} S \otimes X \xrightarrow{\lambda_{X}} X$$

$$S^{a} \otimes S^{-a} \otimes f \downarrow \qquad \qquad \downarrow f$$

$$S^{a} \otimes S^{-a} \otimes Y \xrightarrow{\phi_{a,-a}^{-1} \otimes Y} S \otimes Y \xrightarrow{\lambda_{Y}} Y$$

The left square commutes by functoriality of  $-\otimes -$ . The right square commutes by naturality of  $\lambda$ . Hence,  $\varepsilon$  is natural.

Finally, let X be an object in SH. Unravelling definitions, by functoriality of  $-\otimes -$ , in order to show that diagram (1) commutes, it suffices to show the following diagram commutes:



First, note that by the coherence theorem for monoidal categories,  $\lambda_{S^a \otimes X} = \lambda_{S^a} \otimes X^3$ . And furthermore, recall  $\lambda_{S^a} = \phi_{0,a}^{-1}$ . Hence, the right triangle is precisely the diagram obtained by applying  $-\otimes X$  to the coherence diagram for the  $\phi_{a,b}$ 's, so it commutes. Commutativity of the left triangle follows by the coherence theorem for monoidal categories and the fact that  $\phi_{a,0} = \lambda_{S^a}^{-1}$ . Hence, the diagram commutes, so  $(\Sigma^a, \Sigma^{-a})$  forms an adjoint equivalence of  $\mathcal{SH}$ .

**Proposition D.7.** Let X and Y be objects in SH. Then the pairing

$$\pi_*(X) \times \pi_*(Y) \to \pi_*(X \otimes Y)$$

sending  $x: S^a \to X$  and  $y: S^b \to Y$  to the composition

$$S^{a+b} \xrightarrow{\phi_{a,b}} S^a \otimes S^b \xrightarrow{x \otimes y} X \otimes Y$$

is bilinear.

*Proof.* Let  $a, b \in A$ , and let  $x_1, x_2 : S^a \to X$  and  $y : S^b \to Y$ . Then consider the following diagram

$$S^{a+b} \xrightarrow{\cong} S^{a} \otimes S^{b} \xrightarrow{\Delta \otimes S^{b}} (S^{a} \oplus S^{a}) \otimes S^{b}$$

$$\downarrow (x_{1} \oplus x_{2}) \otimes y$$

$$(S^{a} \otimes S^{b}) \oplus (S^{a} \otimes S^{b}) \qquad (X \oplus X) \otimes Y$$

$$(x_{1} \otimes y) \oplus (x_{2} \otimes y) \downarrow \qquad \qquad \downarrow \nabla \otimes Y$$

$$(X \otimes Y) \oplus (X \otimes Y) \xrightarrow{\nabla} X \otimes Y$$

The isomorphisms are given by the fact that  $-\otimes$  – is additive in each variable. Both triangles and the parallelogram commute since  $-\otimes$  – is additive. By functoriality of  $-\otimes$  –, the top composition is  $(x_1 + x_2) \cdot y$  and the bottom composition is  $x_1 \cdot y + x_2 \cdot y$ , so they are equal, as desired. An entirely analogous argument yields that  $x \cdot (y_1 + y_2) = x \cdot y_1 + x \cdot y_2$  for  $x \in \pi_*(X)$  and  $y_1, y_2 \in \pi_*(Y)$ .

**Proposition D.8** ([4, Proposition 5.11]). Let  $(E, \mu, e)$  be a monoid object in SH. Then for any object X in SH,  $E_*(X)$  canonically inherits the structure of a left A-graded  $\pi_*(E)$ -module via the map

$$\pi_*(E) \times E_*(X) \to E_*(X)$$

which given  $a, b \in A$ , sends  $x : S^a \to E$  and  $y : S^b \to E \otimes X$  to the composition

$$x \cdot y : S^{a+b} \cong S^a \otimes S^b \xrightarrow{x \otimes y} E \otimes (E \otimes X) \cong (E \otimes E) \otimes X \xrightarrow{\mu \otimes X} E \otimes X.$$

Similarly  $X_*(E)$  canonically inherits the structure of a right A-graded  $\pi_*(E)$ -module via the map

$$X_*(E) \times \pi_*(E) \to X_*(E)$$

which given  $a, b \in A$ , sends  $x : S^a \to X \otimes E$  and  $y : S^b \to E$  to the composition

$$x \cdot y : S^{a+b} \cong S^a \otimes S^b \xrightarrow{x \otimes y} (X \otimes E) \otimes E \cong X \otimes (E \otimes E) \xrightarrow{X \otimes \mu} X \otimes E.$$

In particular,  $E_*(E)$  is a  $\pi_*(E)$ -bimodule, in the sense that the left and right actions of  $\pi_*(E)$  are compatible, so that given  $y, z \in \pi_*(E)$  and  $x \in E_*(E)$ ,  $y \cdot (x \cdot z) = (y \cdot x) \cdot z$ .

*Proof.* First we show that the map  $\pi_*(E) \times E_*(X) \to E_*(X)$  endows  $E_*(X)$  with the structure of a left  $\pi_*(E)$ -module. Let  $a, b, c \in A$  and  $x, x' : S^a \to E \otimes X$ ,  $y : S^b \to E$ , and  $z, z' \in S^c \to E$ . Then we wish to show that:

$$(1) y \cdot (x + x') = y \cdot x + y \cdot x',$$

$$(2) (z+z') \cdot x = z \cdot x + z' \cdot x,$$

 $<sup>^{3}</sup>$ Technically, this equality only holds up to composition with an associator, but we are ignoring such issues.

$$(3) (zy) \cdot x = z \cdot (y \cdot x),$$

$$(4) e \cdot x = x.$$

Axioms (1) and (2) follow by the fact that  $E_*(X) = \pi_*(E \otimes X)$  and Proposition D.7. To see (3), consider the diagram:

The top square commutes by coherence of the isomorphisms  $S^{a+b} \cong S^a \otimes S^b$  (Definition 2.2). The second square from the top on the left commutes by naturality of the associators. The square below that commutes by the coherence axiom for the associators in a monoidal category. The bottom left square commutes again by naturality of the associator isomorphisms. The bottom right square commutes by associativity for  $\mu$  and functorially of  $-\otimes X$ . Finally, the square above that commutes again by naturality of the associator isomorphism. By functoriality of  $-\otimes -$ , the two outside compositions equal  $(z \cdot y) \cdot x$  on the top and  $z \cdot (y \cdot x)$  on the bottom. Hence, they are equal, as desired.

Next, to see (4), consider the following diagram:



Commutativity of the top trapezoid is naturality of the unitor. Commutativity of the left triangle is functoriality of  $-\otimes$ . Commutativity of the bottom triangle is naturality of the associator isomorphisms. Commutativity of the right triangle is unitality of  $\mu$  and functoriality of  $-\otimes$  X. Finally, commutativity of the remaining crooked triangle follows by coherence for monoidal categories. The two outer compositions  $S^a \to E \otimes X$  are x and x and x and x and by commutativity they are necessarily equal.

finish or cite

Thus, we have shown that the indicated map does indeed endow  $E_*(X)$  with the structure of a left  $\pi_*(E)$ -module. Showing that  $X_*(E)$  has the structure of a right  $\pi_*(E)$ -module is entirely analogous.

It remains to show that  $E_*(E)$  is a bimodule. Let  $x: S^a \to E, y: S^b \to E \otimes E$ , and  $z: S^c \to E$ , and consider the following diagram:

We are suppressing the associators here. Commutativity follows by functoriality of  $-\otimes -$ , which also tells us that the two outside compositions are  $(x \cdot y) \cdot z$  (on top) and  $x \cdot (y \cdot z)$  (on bottom). Hence they are equal, as desired.

**Proposition D.9** ([5, Proposition 2.2]). Let  $(E, \mu, e)$  be a commutative monoid object in SH and let X be any spectrum. Then the assignment

$$E_*(E) \times E_*(X) \to E_*(E \otimes X)$$

which sends  $x: S^a \to E \otimes E$  and  $y: S^{c,d} \to E \otimes X$  to the composition

$$x\cdot y:S^{a+c,b+d}\cong S^{a,b}\otimes S^{c,d}\xrightarrow{x\otimes y}E\otimes E\otimes E\otimes X\xrightarrow{E\otimes \mu\otimes X}E\otimes E\otimes X$$

induces a homomorphism of bigraded abelian groups

$$E_*(E) \otimes_{\pi_*(E)} E_*(X) \to E_*(E \otimes X)$$

(where here  $E_*(E)$  has a right  $\pi_*(E)$ -module structure and  $E_*(X)$  has a left  $\pi_*(E)$ -module structure as specified by Proposition D.8). Furthermore, if X is cellular and E is a cellular flat commutative ring spectrum (Definition 2.8, Definition 2.10), then this map is an isomorphism.

*Proof.* First we show that this map is  $\pi_*(E)$ -bilinear. By the identifications  $E_*(E) = \pi_*(E \otimes E)$   $E_*(X) = \pi_*(E \otimes X)$ , and  $E_*(E \otimes X) = \pi_*(E \otimes E \otimes X)$ , we know this map commutes with addition of maps in each argument by Proposition D.7. Now, let  $a, b, c \in \mathbb{Z}^2$ ,  $x : S^a \to E \otimes E$ ,  $y : S^b \to E \otimes X$ , and  $z : S^c \to E$ . Then we wish to show  $xz \cdot y = x \cdot zy$ . Consider the following diagram

$$S^{a+b+c} \xrightarrow{\cong} S^a \otimes S^b \otimes S^c \xrightarrow{x \otimes y \otimes z} E \otimes E \otimes E \otimes E \otimes X \xrightarrow{E \otimes \mu \otimes X} E \otimes E \otimes X$$

$$E \otimes E \otimes E \otimes E \otimes X \xrightarrow{E \otimes \mu \otimes X} E \otimes E \otimes X$$

$$E \otimes E \otimes E \otimes E \otimes X$$

$$E \otimes E \otimes E \otimes X$$

(we have suppressed the associators from the notation). The top left triangle commutes by coherence for the isomorphisms  $S^{a+b} \cong S^a \otimes S^b$ . The middle parallelogram commutes by naturality of the associators. Finally, the bottom right triangle is obtained by applying  $E \otimes - \otimes X$  to the associativity diagram for  $\mu$ , so by functoriality it commutes. Again by functoriality of  $- \otimes -$ , the bottom composition is given by  $(x \cdot z) \cdot y$  and the top composition is  $x \cdot (zy)$ , so we have the desired equality.

It remains to show that if X is cellular and E is cellular flat commutative, then this map is an isomorphism.

REFERENCES 21

In the following definition, let  $\varepsilon: E_*(E) \to \pi_*(E)$  be the map which sends some  $\alpha: S^a \to E \otimes E$  to the composition

$$S^a \xrightarrow{\alpha} E \otimes E \xrightarrow{\mu} E$$
.

Also define  $\Psi: E_*(E) \to E_*(E) \otimes_{\pi_*(E)} E_*(E)$  to be the map which factors as

$$E_*(E) \to E_*(E \otimes E) \xrightarrow{\cong} E_*(E) \otimes_{\pi_*(E)} E_*(E)$$

where the second arrow is the isomorphism prescribed by Proposition D.9, and the first arrow sends a class  $\alpha: S^a \to E \otimes E$  to the composition

$$S^a \xrightarrow{\alpha} E \otimes E \cong E \otimes S \otimes E \xrightarrow{E \otimes e \otimes E} E \otimes E \otimes E.$$

**Lemma D.10** ([5, Proposition 2.30, 2.33]). Let E be a flat commutative ring spectrum, and let X and Y be spectra such that  $E_{**}(X)$  is a projective module over  $\pi_{**}(E)$ . Then for all  $s \geq 0$  and  $t, w \in \mathbb{Z}$ , there is an isomorphism

$$\Phi: [X, E \wedge Y]_{t,w} \to \operatorname{Hom}_{E_{**}(E)}^{t,w}(E_{**}(X), E_{**}(E \wedge Y)),$$

obtained by sending a class  $f: S^{t,w} \wedge X \to E \wedge Y$  in  $[X, E \wedge Y]_{t,w}$  to the map

$$\Phi_f: E_{*,*}(X) \to E_{*+t,*+w}(X \wedge Y)$$

sending

$$[S^{a,b} \xrightarrow{g} E \wedge X] \mapsto [S^{a+t,b+w} \cong S^{a,b} \wedge S^{t,w} \xrightarrow{g \wedge S^{t,w}} E \wedge X \wedge S^{t,w} \cong E \wedge S^{t,w} \wedge X \xrightarrow{E \wedge f} E \wedge E \wedge Y].$$

*Proof.* Let  $f: S^{t,w} \wedge X \to E \wedge Y$ . First we want to show that  $\Phi_f$  is actually an  $E_{**}(E)$ -comodule homomorphism.

## □ finish

#### References

- [1] Daniel Dugger. "Coherence for invertible objects and multigraded homotopy rings". In: Algebraic & Geometric Topology 14.2 (Mar. 2014), pp. 1055-1106. DOI: 10.2140/agt.2014. 14.1055. URL: https://doi.org/10.2140%2Fagt.2014.14.1055.
- [2] J.P. May. "The Additivity of Traces in Triangulated Categories". In: Advances in Mathematics 163.1 (2001), pp. 34-73. ISSN: 0001-8708. DOI: https://doi.org/10.1006/aima.2001.1995. URL: https://www.sciencedirect.com/science/article/pii/S0001870801919954.
- [3] nLab authors. adjoint equivalence. https://ncatlab.org/nlab/show/adjoint+equivalence. Revision 17. July 2023.
- [4] nLab authors. Introduction to Stable homotopy theory 1-2. https://ncatlab.org/nlab/show/Introduction+to+Stable+homotopy+theory+--+1-2. Revision 77. July 2023.
- [5] nLab authors. Introduction to the Adams Spectral Sequence. https://ncatlab.org/nlab/show/Introduction+to+the+Adams+Spectral+Sequence. Revision 62. July 2023.
- [6] Charles A. Weibel. An Introduction to Homological Algebra. Cambridge University Press, 1994.