

Martin Lindquist

Department of Biostatistics
Johns Hopkins
Bloomberg School of Public Health

Tor Wager

Department of Psychology and Neuroscience and the Institute for Cognitive Science University of Colorado, Boulder

Dynamic Causal Modeling

Dynamic Causal Modeling

- DCM attempts to model latent neuronal interactions using hemodynamic time series.
 - Based on a neuronal model of interacting regions, supplemented with a forward model of how neuronal activity is transformed into the observed response.
- Effective connectivity is parameterized in terms of the coupling among unobserved neuronal activity in different regions.
 - We can estimate these parameters by perturbing the system and measuring the response.

Illustration

Neuronal Model

Define the neuronal states as:

$$z = (z_1, \dots z_N)^T$$

The effective connectivity model is described by:

$$\dot{z}_t = \left(A + \sum_{j=1}^J u_t(j)B^j\right) z_t + Cu_t$$

where z_t is the neuronal activity at time t (latent) and $u_t(j)$ is the j^{th} of J inputs at time t (known).

Interpretation

- The matrix A represents the first order connectivity among regions in the absence of input.
 - Specifies how regions are connected and whether these connections are uni- or bidirectional.
- The matrix C represents the extrinsic influence of inputs on neuronal activity.
 - Specifies how inputs are connected to regions.
- The matrices B_j represent the change in coupling induced by the jth input.
 - Specifies how connections are changed by inputs.

$$\dot{z}_t = \left(A + \sum_{j=1}^J u_t(j)B^j\right) z_t + Cu_t$$

Hemodynamic Model

- Neuronal activity causes changes in blood volume and deoxyhmoglobin that cause changes in the observed BOLD response.
- The hemodynamics are described using an extended Balloon model, which involves a set of hemodynamic state variables, state equations and hemodynamic parameters θ^h .

Extended Balloon Model

Activity-dependent signal:

$$\dot{s} = z - \kappa s - \gamma (f - 1)$$

Flow induction:

$$\dot{f} = s$$

Changes in volume:

$$\tau \dot{\mathcal{V}} = f - \mathcal{V}^{1/\alpha}$$

Changes in dHb:

$$\tau \dot{q} = f E(f, \rho) / \rho - v^{1/\alpha} q / v$$

Hemodynamic response

$$y = \lambda(v, q)$$

State Equations

Neuronal state:

Neuronal activity - z_t with parameters θ^c .

Hemodynamic states:

Vasodilatory signal - s_t
Inflow - f_t
Blood volume - v_t
Deoxygenation content - q_t

The observed data: $y_t = \lambda(q_t, v_t)$ with parameters θ^h .

Bayesian Analysis

• Combining the neuronal and hemodynamic states $x=\{z, s, f, v, q\}$ gives us the following state-space model:

$$\dot{x} = f(x, u, \theta)$$

$$y = \lambda(x, \theta)$$

- Analysis performed using Bayesian methods.
 - Normal priors are placed on θ .
 - The posterior density is used to make inferences about the connections.
 - Model comparison can be performed to determine whether the data favors one model over another.

Model Comparison

The model evidence is defined as

$$p(y|m) = \int p(y|\theta,m)p(\theta|m)d\theta$$

The Bayes factor for comparing model i to j:

$$B_{ij} = \frac{p(y \mid m = i)}{p(y \mid m = j)}$$

If B_{ij} is large than i more likely than j.

 Various approximations (e.g., negative free energy, AIC or BIC) exist.

Example

Use Bayes factors to compare three different candidate DCMs.

Table 6 Attention data—comparing modulatory connectivities

	B_{12}	B_{13}	B_{32}
AIC	3.56	2.81	1,27
BIC	3.56	19.62	0.18

Bayes factors provide consistent evidence in favor of the hypothesis embodied in model 1, that attention modulates (solely) the bottom-up connection from V1 to V5. Model 1 is preferred to models 2 and 3.

End of Module

