1+ tan 0 = 1+ 8m20 = as 0+81n S cosig do = tano + c. ASIDE: To see this, differentiate RHS: d (tamo+c) = d (tamo) = d (Sino) product de (Sino) tosse + sino de (coso) $= cos \theta + sin \theta - \frac{1}{cos^2 \theta} \cdot (-sin \theta)$ $= 1 + \frac{8 \text{m}^2 0}{\cos^2 0} = \frac{1}{\cos^2 0}$ Thus 9+ tan9+ C.

 $= \left[\frac{x}{11} + \frac{10^{x}}{2010} \right]$ $= \left[\frac{1}{11} + \frac{10!}{eni0}\right] - \left[\frac{0!}{11} + \frac{10!}{eni0}\right]$ $\frac{1}{11} + \frac{10}{ento} = \frac{1}{11} + \frac{9}{ento}$ Compute: $\sqrt{3}|^2$ $I = \int \frac{dy}{\sqrt{1-y^2}}$ $\int \frac{dy}{\sqrt{1-y^2}} = \arcsin(y) + c.$ See this, compute (y) = arcsin(y) $cos\theta \cdot \frac{d\theta}{dy} = 1 = \frac{d\theta}{dy} = \frac{1}{cos\theta}$ 3 But: 8n0= y => dy arcsin(y) = 1 $= \frac{1}{\sqrt{1-y^2}} = \frac{1}{2} \operatorname{arcsin}(y) + C$ the "c" needn't be induded because it drops out = arcsin(13/2) - arcsin(0) - 3 - 0 Sin (T/3) = (3/2 Sin (0) = 0.

 $\int F'(x)dx = F(b) - F(a)$ Ftc2 18 sometimes called the net-change theorem' because F'(x) 18 the rate F(b) F(a) 18 the net change in F between x=a and x=b. Q A particle moves along a line with velocity

(t) = 3t - 5

Evid the displacement of the object. -5米

ä	when v<0 the particle moves to the
	left.
	1eft.
	When voo, it moves night-word:
118	, ,
	V20
	Let's track the position, SLT), of the particle a various times, t:
	partide a vanous times, t:
	VKO
	to >5
	3(0)
	V=0.
	t=13 -(10)) >S
	SL(43)
	t=3
	5(3)
	ret 1
	displacement :
	= S(3) - S(0).
1	ETC2:=)
81	S(3) -S(0) =) S'(H)at
	D D D D D D D D D D D D D D D D D D D

But: s'(t) = v(t) Thus $S(3)-S(0) = \int_{0}^{3} (3t-5) dt$ [3+2-5+]3 $=\frac{27}{2}-15=\frac{27-30}{}=$ Find the distance travelled. A Recal! the first time interval, the particle mores in the re direction, e. v. co. Thus the distance travelled $S(0) - S(1\frac{2}{3}) = - [S(1\frac{2}{3}) - S(0)]$

$$= \int (5-3t)dt$$

$$= \left[5t - 3\frac{t^2}{2}\right]_0^{14/3}$$

$$= 5\frac{5}{3} - \frac{3}{2} \left(\frac{5}{3}\right)^2$$

In the second time interval (13->3)

the particle moves in the tre direction ie. v >0. Thus distance travelled

during this time internal is:

$$= \int_{12/3}^{3} (3t-5) dt$$

= you can nork it out!