Rozwiązywanie problemu początkowego z automatyczną kontrolą kroku czasowego *

16 marca 2014

Wskazówki do treści laboratorium

Ekstrapolacja Richardsona

W treści laboratorium użyto oznaczeń:

- y_1 wartość $y(t+2\Delta t)$ obliczona numerycznie w jednym, długim kroku czasowym $2\Delta t$;
- y_2 wartość $y(t+2\Delta t)$ obliczona numerycznie po dwóch, krótkich krokach czasowych Δt .

Aby móc uzyskać drugą z powyższych wielkości, należy obliczyć także wartość w chwili pośredniej, tj. po jednym, krótkim kroku Δt : $y(t+\Delta t)$. Na potrzeby niniejszego dokumentu oznaczmy ją symbolem $y_{12} = y(t+\Delta t)$.

0.1 Eliminacja błędu

Przy obliczeniach niezmienionym schematem RK2 w pliku wynikowym powinny pojawić się wartości co $\Delta t = 0.05$. Po wprowadzeniu eliminacji błędu przy pomocy ekstrapolacji Richardsona, wypisanych wartości będzie dwukrotnie mniej: w programie należy obliczyć: y_1 , y_{12} , y_2 . Tylko y_2 poprawiamy o oszacowany błąd obcięcia i akceptujemy jako wynik, dzięki czemu w rezultacie wypisujemy wartości co $2\Delta t = 0.1$.

0.2 Automatyczny dobór kroku czasowego

Zgodnie z instrukcją do laboratorium, szacowany błąd obcięcia dotyczy y_2 : błąd ten jest wykonywany w dwóch, krótkich krokach Δt . Według algorytmu automatycznego doboru kroku

^{*}Laboratorium z inżynierskich metod numerycznych, Wydział Fizyki i Informatyki Stosowanej AGH 2013/2014. Bartłomiej Szafran (bszafran@agh.edu.pl), Elżbieta Wach (Elzbieta.Wach@fis.agh.edu.pl), Dariusz Żebrowski (Dariusz.Zebrowski@fis.agh.edu.pl)

czasowego, jeśli wspomniany błąd E jest odpowiednio mały, akceptujemy "jakiś" wynik - nietrudno wywnioskować, że <u>musi</u> to być wynik y_2 , skoro jego właśnie dotyczy sprawdzany błąd obcięcia.

Instrukcja do laboratorium nie określa, jaką wartość początkową Δt należy przyjąć: jest to nieistotne, ponieważ ekstrapolacja Richardsona automatycznie spowoduje dobór odpowiedniego kroku niezależnie od jego początkowej wartości. Przyjęte początkowe Δt może co najwyżej minimalnie wpłynąć na wynikowe wykresy, szczególnie w okolicy t=0.