EDA HOTEL RESERVATIONS

By: Asmaa Ibrahim

Content

Dataset Overview

Data Preprocessing

Data Visualization

Train the model

>>>> Dataset <<<< >>>>> Overview

Dataset contains 36,285 records and 17 columns related to hotel booking details, such as:

GUEST DETAILS

Number of adults, children, meal plan, special requests.

BOOKING INFORMATION

Lead time, room type, market segment, booking status.

STAY DETAILS

Weekend and weekday nights, car parking, repeated guests.

FINANCIAL ASPECT

Average price.

>>>> Preprocessing """

O1 CHECK FOR DUPLICATES DATA

- 02 Check for Missing Values
- O3 Convert date columns to datetime format
 - 04 Extract new features
- 05 Encode Categorical Features
- (06) Handle Outliers using IQR Method
- 07 Drop Unnecessary Columns

>>>> Visualization '***

There are more non-canceled bookings than canceled ones.

Understanding what factors influence cancellations can help improve hotel retention.

Most bookings happen with a short lead time, but there are still a few long lead-time reservations.

The average price per booking around \$103, with some variation.

Online bookings are the highest among all market segments, but they also have a high cancellation rate.

Online bookings have a high risk of cancellation, so strategies such as prepayment incentives or flexible pricing could be useful.


```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 36285 entries, 0 to 36284
Data columns (total 16 columns):
     Column
                               Non-Null Count Dtype
    number of adults
                               36285 non-null int64
 0
     number of children
                               36285 non-null
                                              int64
    number of weekend nights
                               36285 non-null
                                              int64
    number of week nights
                               36285 non-null int64
    type of meal
                               36285 non-null
                                              int64
     car parking space
                               36285 non-null
                                               int64
     room type
                               36285 non-null int64
    lead time
                               36285 non-null
                                              float64
    market segment type
                               36285 non-null
                                               int64
     repeated
                               36285 non-null int64
                               36285 non-null
    average price
                                               float64
     special requests
                               36285 non-null
                                              int64
12
     booking status
                               36285 non-null
                                              int64
     reservation month
                               36285 non-null float64
    reservation weekday
                               36285 non-null
                                              float64
     lead_time_category
                               36285 non-null int64
dtypes: float64(4), int64(12)
memory usage: 4.4 MB
None
```

NOW Data is Ready

>>>> Train The Model ««« using KNN

KNN (K-NEAREST NEIGHBORS)

It classifies data points based on their 'nearest neighbors' in feature space.-Nearest Neighbors) is a classification algorithm.

Step 1

Feature Selection & Data Splitting

- FEATURES (X) ARE SELECTED BY REMOVING THE TARGET COLUMN.
- THE TARGET VARIABLE (Y) REPRESENTS THE CLASS WE WANT TO PREDICT.
- DATA IS SPLIT INTO TRAINING (80%) AND TESTING (20%) USING TRAIN_TEST_SPLIT().

```
#Split Features & Target Variable
X = data.drop(columns=['booking status'])
y = data['booking status']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42
```

Step 2

Training the KNN Model

- A KNN CLASSIFIER IS INITIALIZED WITH K=7.
- THE FIT() FUNCTION LEARNS PATTERNS FROM THE TRAINING SET.

Step 3

Evaluating Accuracy

- ACCURACY IS MEASURED USING ACCURACY_SCORE().
- THE MODEL ACHIEVED 81.18% ACCURACY, INDICATING STRONG PERFORMANCE.
- TUNING THE "K" VALUE CAN FURTHER IMPROVE PERFORMANCE.

```
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)

print(f"Accuracy: {accuracy * 100:.2f}%")

Accuracy: 81.18%
```

Conclusion

Machine learning can significantly improve hotel management and customer retention strategies.

This provides a data-driven approach to predicting cancellations, helping businesses optimize operations.

THANK YOU

ASMAA IBRAHIM