RW778: Implementation and Application of Automata, 2006 Week 6 Lecture 1

L. van Zijl

Department of Computer Science University of Stellenbosch

2006

References:

- 1. Chaudhuri, Design of CA-based Cipher System, Chapter 7 (and earlier chapters for terminology clarification)
- 2. Cryptanalysis, Chapter 42.
- 3. Van Zijl, ⊕-NFAs as Block Cipher Systems. Course notes.

- What is cryptology?
 - Plain text, encoding text, decoding text, key
- ▶ How good is a cipher? Cryptanalysis: study of breaking ciphers (read up on Turing's Enigma work).
- Stream-based vs block-based cipher systems.
- ▶ Relationship between unary ⊕-NFA and null-boundary XNOR CA

▶ Definition of \oplus -NFAs: $\delta(A,b) = \oplus_{q \in A} \delta(q,b)$

▶ Definition of \oplus -NFAs: $\delta(A,b) = \oplus_{q \in A} \delta(q,b)$

Example:	0 1 2	{0} {0,1} {1,2} {2,3}

 $\delta \mid a$

▶ Definition of \oplus -NFAs: $\delta(A,b) = \oplus_{q \in A} \delta(q,b)$

	δ	а
Example:	0 1 2 3	{0} {0,1} {1,2} {2,3}

$$\begin{array}{l} 0 \rightarrow \overline{0} = 123 \rightarrow \overline{\{03\}} = 12 \rightarrow \overline{\{02\}} = 13 \\ \rightarrow \overline{\{0123\}} = \emptyset \rightarrow \overline{\emptyset} = 0123 \\ \rightarrow \overline{\{3\}} = 012 \rightarrow \overline{\{2\}} = 013 \rightarrow \overline{\{123\}} = 0 \end{array}$$

IAA2006-W6L1 - (6)

Cryptology with \oplus -NFAs

► Good rules:

- Good rules:
 - $\delta(q_i, a) = \overline{\{q_i\}}, \text{ for } 0 \le i \le n 1.$

- Good rules:
 - $\delta(q_i, a) = \overline{\{q_i\}}, \text{ for } 0 \le i \le n-1.$
 - ▶ $\delta(q_i, a) = \overline{\{q_i, q_{i+1}\}}$, for $0 \le i \le n 2$ and $\delta(q_{n-1}, a) = \overline{\{q_{n-1}\}}$.

- Good rules:
 - $\delta(q_i, a) = \overline{\{q_i\}}$, for $0 \le i \le n 1$.
 - ▶ $\delta(q_i, a) = \{q_i, q_{i+1}\}$, for $0 \le i \le n 2$ and $\delta(q_{n-1}, a) = \{q_{n-1}\}$.
 - $\delta(q_i, a) = \overline{\{q_{i-1}, q_i\}}$, for $1 \le i \le n-2$ and $\delta(q_0, a) = \overline{\{q_0\}}$.

IAA2006-W6L1 - (10)

- ► Good rules:
 - $\delta(q_i, a) = \overline{\{q_i\}}, \text{ for } 0 \le i \le n-1.$
 - ▶ $\delta(q_i, a) = \overline{\{q_i, q_{i+1}\}}$, for $0 \le i \le n 2$ and $\delta(q_{n-1}, a) = \overline{\{q_{n-1}\}}$.
 - $\delta(q_i,a) = \overline{\{q_{i-1},q_i\}}, \text{ for } 1 \leq i \leq n-2 \text{ and } \delta(q_0,a) = \overline{\{q_0\}}.$
- All cycles same and even length (permutation groups).

- Good rules:
 - $\delta(q_i, a) = \overline{\{q_i\}}$, for $0 \le i \le n 1$.
 - ▶ $\delta(q_i, a) = \overline{\{q_i, q_{i+1}\}}$, for $0 \le i \le n 2$ and $\delta(q_{n-1}, a) = \overline{\{q_{n-1}\}}$.
 - $\delta(q_i,a) = \overline{\{q_{i-1},q_i\}}, \text{ for } 1 \leq i \leq n-2 \text{ and } \delta(q_0,a) = \overline{\{q_0\}}.$
- All cycles same and even length (permutation groups).
- ▶ Each cycle forms permutation π of length 2r.

- Good rules:
 - $\delta(q_i, a) = \overline{\{q_i\}}$, for $0 \le i \le n 1$.
 - ▶ $\delta(q_i, a) = \overline{\{q_i, q_{i+1}\}}$, for $0 \le i \le n 2$ and $\delta(q_{n-1}, a) = \overline{\{q_{n-1}\}}$.
 - $\delta(q_i, a) = \overline{\{q_{i-1}, q_i\}}$, for $1 \le i \le n-2$ and $\delta(q_0, a) = \overline{\{q_0\}}$.
- All cycles same and even length (permutation groups).
- ▶ Each cycle forms permutation π of length 2r.
- ▶ Therefore, π^r gives mapping.

▶ Take $k \oplus$ -NFAs M_i with 'good' rules, and such that all cycles same and even length.

- ▶ Take $k \oplus$ -NFAs M_i with 'good' rules, and such that all cycles same and even length.
- ▶ Use M_i to construct permutations p_1, p_2, \ldots, p_k .

- ▶ Take $k \oplus$ -NFAs M_i with 'good' rules, and such that all cycles same and even length.
- ▶ Use M_i to construct permutations p_1, p_2, \ldots, p_k .
- ▶ For all permutations p_i , calculate $p_i^{r_i}$.

- ▶ Take $k \oplus$ -NFAs M_i with 'good' rules, and such that all cycles same and even length.
- ▶ Use M_i to construct permutations p_1, p_2, \ldots, p_k .
- ▶ For all permutations p_i , calculate $p_i^{r_i}$.
- Divide plaintext into blocks B_j.

- ▶ Take $k \oplus$ -NFAs M_i with 'good' rules, and such that all cycles same and even length.
- ▶ Use M_i to construct permutations p_1, p_2, \ldots, p_k .
- ▶ For all permutations p_i , calculate $p_i^{r_i}$.
- ▶ Divide plaintext into blocks *B_i*.
- ▶ Apply function $p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ to each message block.

- ▶ Take $k \oplus$ -NFAs M_i with 'good' rules, and such that all cycles same and even length.
- ▶ Use M_i to construct permutations p_1, p_2, \ldots, p_k .
- ▶ For all permutations p_i , calculate $p_i^{r_i}$.
- ▶ Divide plaintext into blocks *B_i*.
- ▶ Apply function $p_1^{r_1} p_2^{r_2} \dots p_{\nu}^{r_k}$ to each message block.
- ▶ To decode, calculate $(p_1^{r_1}p_2^{r_2}\dots p_{\nu}^{r_k})^{-1}$ for each message block.

Example continued

Let k = 1, and let the message blocks be 1111, 1010 and 0011.

Cryptology with \oplus -NFAs Example continued

- Let k = 1, and let the message blocks be 1111, 1010 and 0011.
- ▶ Then the encoded message is 1110, 0001 and 1010.

Cryptology with \oplus -NFAs

Homework: Implement a system to encode and decode text using a block cipher based on \oplus -NFAs.