DUSt3R: Geometric 3D Vision Made Easy

Shuzhe Wang*, Vincent Leroy[†], Yohann Cabon[†], Boris Chidlovskii[†] and Jerome Revaud[†]
*Aalto University

†Naver Labs Europe

Camera Pose, Correspondence, and 3D Shape are Unknown

Solution: Learn to map each pixel to a 3D location among two views.

Correspondence emerges from the 3D location of every pixel!

Problem Statement of DUSt3R

- Multi-View Stereo Reconstruction
 - Traditional MVS
 - Requires intrinsic and extrinsic parameters
 - Sensitive to feature matching
 - Optimizes with Bundle Adjustment
 - DUSt3R
 - No need for intrinsic and extrinsic parameters
 - Works with arbitrary image collections
 - Utilizes a Transformer-based architecture

DUSt3R: Dense and Unconstrained Stereo 3D Reconstruction

Network Architecture

Pipeline

Shared ViT Encoder (CroCo)

- CroCo Pretraining: Enabling Cross-View 3D Understanding
 - 從一張圖預測另一視角的遮蔽部分
 - geometric consistency
 - object-aware spatial layout
 - cross-view mapping
- Why use CroCo in DUSt3R?
 - 譲 DUSt3R 不需 fine-tune 就能做 3D matching
 - 對遮蔽區域也能建立有效的幾何推論

Decoder & Head

- 1. ViT decoder token layers(多層輸出)
- 2. 抽出多層 token(如 layer 4/8/12/16)
- 3. 轉為空間格式 → reshape [B, N, C] → [B, C, H, W]
- 4. 經過 UNet-style Refinement(RefineNet4 \rightarrow 3 \rightarrow 2 \rightarrow 1)
- 5. 最後才進入 Output Head(1x1 conv → 輸出 XYZ+conf)

Training Objective

•
$$\mathcal{L}_{\text{conf}} = \sum_{v \in \{1,2\}} \sum_{i \in \mathcal{D}^v} C_i^{v,1} \ell_{\text{regr}}(v,i) - \alpha \log C_i^{v,1}$$

$$ullet \ell_{ ext{regr}}(v,i) = \left\|rac{1}{z}X_i^{v,1} - rac{1}{ar{z}}ar{X}_i^{v,1}
ight\|$$

$$\bullet \quad \operatorname{norm}(X^1, X^2) = \frac{1}{|\mathcal{D}^1| + |\mathcal{D}^2|} \sum_{v \in \{1, 2\}} \sum_{i \in \mathcal{D}^v} \|X_i^v\|$$

•
$$C_i^{v,1} = 1 + \exp \widetilde{C_i^{v,1}} > 1$$

Global Alignment

- Pairwise graph
 - 每張image為一個vertices(v)
 - 每個edge(e) 代表2張image間有相同的visual content

- Global optimization
 - Recover globally aligned point maps

$$\chi^* = \operatorname*{arg\,min}_{\chi,P,\sigma} \sum_{e \in \mathcal{E}} \sum_{v \in e} \sum_{i=1}^{H_W} C_i^{v,e} \| \chi_i^v - \sigma_e P_e X_i^{v,e} \|$$

Downstream Application

Camera calibration Monocular Depth estimation Multi-View Pixel correspondences Pairwise (relative) Camera pose estimation Multi-View Dense 3D reconstruction Visual Localization

Experiments with DUSt3R

- Training Data: Habitat, MegaDepth, ARK- itScenes, MegaDepth, Static Scenes 3D, Blended MVS, ScanNet++ , CO3D-v2, Waymo
 - 8.5M image pairs

- Image size
 - \circ 224 x 224 \rightarrow 512 x 512

Result - Absolute camera pose

Methods			7Sce	nes (Inc	door) [114]	Cambridge (Outdoor) [49]						
	Chess	Fire	Heads	Office	Pumpkin	Kitchen	Stairs	S. Facade	O. Hospital	K. College	St.Mary's	G. Court	
≥ AS [103] HLoc [101]	4/1.96	3/1.53	2/1.45	9/3.61	8/3.10	7/3.37	3/2.22	4 /0.21	20/0.36	13/0.22	8/0.25	24/0.13	
HLoc [101]	2/0.79	2/0.87	2/0.92	3/0.91	5/1.12	4/1.25	6/1.62	4/0.2	15/0.3	12/0.20	7/0.21	11 /0.16	
DSAC* [11]	2 /1.10	2 /1.24	1/1.82	3 /1.15	4 /1.34	4/1.68	3 /1.16	5 /0.3	15/0.3	15/0.3	13/0.4	49/0.3	
HSCNet [55]	2/0.7	2 /0.9	1/0.9	3/0.8	4/1.0	4/1.2	3/0.8	6/0.3	19/ 0.3	18/0.3	9/0.3	28/0.2	
PixLoc [102]	2 /0/80	2/0.73	1/0.82	3 /0.82	4 /1.21	3/1.20	5/1.30	5/0.23	16/0.32	14/0.24	10/0.34	30/0.14	
E SC-wLS [152]	3/0.76	5/1.09	3/1.92	6/0.86	8/1.27	9/1.43	12/2.80	11/0.7	42/1.7	14/0.6	39/1.3	164/0.9	
NeuMaps [125]	2 /0.81	3/1.11	2/1.17	3 /0.98	4 /1.11	4/1.33	4/1.12	6/0.25	19/0.36	14/0.19	17/0.53	6/ 0.10	
DUSt3R 224-NoCroCo	5/1.76	6/2.02	3/1.75	5/1.54	9/2.35	6/1.82	34/7.81	24/1.33	79/1.17	69/1.15	46/1.51	143/1.32	
DUSt3R 224	3/0.96	3/1.02	1 /1.00	4/1.04	5/1.26	4/1.36	21/4.08	9/0.38	26/0.46	20/0.32	11/0.38	36/0.24	
DUSt3R 512	3/0.97	3/0.95	2/1.37	3 /1.01	4 /1.14	4/1.34	11/2.84	6/0.26	17/0.33	11/0.20	7/0.24	38/0.16	

Table 1. Absolute camera pose on 7Scenes [114] and Cambridge-Landmarks [49] datasets. We report the median translation and rotation errors $(cm/^{\circ})$ to feature matching (FM) based and end-to-end (E2E) learning-base methods. The best results at each category are in **bold**.

Result - Monocular depth estimation & Multi-view pose regression

			Out	door								
Methods	Train	DDAD[41]		KITTI [35]		BONN [80]		NYUD-v2 [115]		TUM [119]		Methods
		Rel↓	$\delta_{1.25}\uparrow$	Rel↓	$\delta_{1.25}\uparrow$	Rel↓	$\delta_{1.25}\uparrow$	Rel↓	$\delta_{1.25}\uparrow$	Rel↓	$\delta_{1.25}\uparrow$	
DPT-BEiT[91]	D	10.70	84.63	9.45	89.27	-	-	5.40	96.54	10.45	89.68	RelPose [177]
NeWCRFs[174]	D	9.59	82.92	5.43	91.54	50 .5 0	9 .5 0	6.22	95.58	14.63	82.95	Keirose [1//]
Monodepth2 [37]	SS	23.91	75.22	11.42	86.90	56.49	35.18	16.19	74.50	31.20	47.42	Colmap+SPSG
SC-SfM-Learners [6]	SS	16.92	77.28	11.83	86.61	21.11	71.40	13.79	79.57	22.29	64.30	Div C f M [50]
SC-DepthV3 [121]	SS	14.20	81.27	11.79	86.39	12.58	88.92	12.34	84.80	16.28	79.67	PixSfM [59]
MonoViT[182]	SS	-	-	09.92	90.01		(=)	-	-	-		PosReg [140]
RobustMIX [92]	T	1-1	-	18.25	76.95	-	-	11.77	90.45	15.65	86.59	PoseDiffusion
SlowTv [117]	T	12.63	79.34	(6.84)	(56.17)	_	_	11.59	87.23	15.02	80.86	roseDillusion
DUSt3R 224-NoCroCo	T	19.63	70.03	20.10	71.21	14.44	86.00	14.51	81.06	22.14	66.26	DUSt3R 512 (v
DUSt3R 224	T	16.32	77.58	16.97	77.89	11.05	89.95	10.28	88.92	17.61	75.44	DUC42D 512 (**
DUSt3R 512	T	13.88	81.17	10.74	86.60	8.08	93.56	6.50	94.09	14.17	79.89	DUSt3R 512 (v
												-

Methods	C	RealEstate10K		
Wellious	RRA@15	RTA@15	mAA(30)	mAA(30)
RelPose [177]	57.1	-	1-	-
Colmap+SPSG [26, 100]	36.1	27.3	25.3	45.2
PixSfM [59]	33.7	32.9	30.1	49.4
PosReg [140]	53.2	49.1	45.0	-
PoseDiffusion [140]	80.5	79.8	66.5	48.0
DUSt3R 512 (w/ PnP)	94.3	88.4	77.2	61.2
DUSt3R 512 (w/ GA)	96.2	86.8	76.7	67.7

Table 2. **Left**: Monocular depth estimation on multiple benchmarks. D-Supervised, SS-Self-supervised, T-transfer (zero-shot). (Parentheses) refers to training on the same set. **Right:** Multi-view pose regression on the CO3Dv2 [94] and RealEst10K [186] with 10 random frames.

Result - Multi-view depth evaluation

Methods	GT	GT	GT	Align	KITTI		Sca	ScanNet		H3D	DT	DTU		T&T		Average	
		Range	Intrinsics		rel↓	$\tau \uparrow$	rel↓	$ au\uparrow$	rel↓	$ au\uparrow$	rel ↓	$\tau \uparrow$	rel↓	$\tau\uparrow$	rel↓	$\tau \uparrow$	time (s)↓
(a) COLMAP [106, 107]	✓	×	✓	×	12.0	58.2	14.6	34.2	16.4	55.1	0.7	96.5	2.7	95.0	9.3	67.8	$\approx 3 \text{ min}$
(a) COLMAP Dense [106, 107]	✓	×	✓	×	26.9	52.7	38.0	22.5	89.8	23.2	20.8	69.3	25.7	76.4	40.2	48.8	$\approx 3 \; min$
MVSNet [161]	✓	✓	✓	×	22.7	36.1	24.6	20.4	35.4	31.4	(1.8)	(86.0)	8.3	73.0	18.6	49.4	0.07
MVSNet Inv. Depth [161]	✓	✓	✓	×	18.6	30.7	22.7	20.9	21.6	35.6	(1.8)	(86.7)	6.5	74.6	14.2	49.7	0.32
(b) Vis-MVSSNet [176]	✓	✓	✓	×	9.5	55.4	8.9	33.5	10.8	43.3	(1.8)	(87.4)	4.1	87.2	7.0	61.4	0.70
MVS2D ScanNet [160]	✓	✓	✓	×	21.2	8.7	(27.2)	(5.3)	27.4	4.8	17.2	9.8	29.2	4.4	24.4	6.6	0.04
MVS2D DTU [160]	1	✓	✓	×	226.6	0.7	32.3	11.1	99.0	11.6	(3.6)	(64.2)	25.8	28.0	77.5	23.1	0.05
DeMon [136]	✓	×	✓	×	16.7	13.4	75.0	0.0	19.0	16.2	23.7	11.5	17.6	18.3	30.4	11.9	0.08
DeepV2D KITTI [131]	✓	×	\checkmark	×	(20.4)	(16.3)	25.8	8.1	30.1	9.4	24.6	8.2	38.5	9.6	27.9	10.3	1.43
DeepV2D ScanNet [131]	1	×	✓	×	61.9	5.2	(3.8)	(60.2)	18.7	28.7	9.2	27.4	33.5	38.0	25.4	31.9	2.15
MVSNet [161]	1	×	✓	×	14.0	35.8	1568.0	5.7	507.7	8.3	(4429.1)	(0.1)	118.2	50.7	1327.4	20.1	0.15
(c) MVSNet Inv. Depth [161]	✓	×	✓	×	29.6	8.1	65.2	28.5	60.3	5.8	(28.7)	(48.9)	51.4	14.6	47.0	21.2	0.28
Vis-MVSNet [176]	✓	×	\checkmark	×	10.3	54.4	84.9	15.6	51.5	17.4	(374.2)	(1.7)	21.1	65.6	108.4	31.0	0.82
MVS2D ScanNet [160]	1	×	✓	×	73.4	0.0	(4.5)	(54.1)	30.7	14.4	5.0	57.9	56.4	11.1	34.0	27.5	0.05
MVS2D DTU [160]	1	×	✓	×	93.3	0.0	51.5	1.6	78.0	0.0	(1.6)	(92.3)	87.5	0.0	62.4	18.8	0.06
Robust MVD Baseline [110]	✓	×	\checkmark	×	7.1	41.9	7.4	38.4	9.0	42.6	2.7	82.0	5.0	75.1	6.3	56.0	0.06
DeMoN [136]	×	×	✓	$\ \mathbf{t}\ $	15.5	15.2	12.0	21.0	17.4	15.4	21.8	16.6	13.0	23.2	16.0	18.3	0.08
DeepV2D KITTI [131]	×	×	✓	med	(3.1)	(74.9)	23.7	11.1	27.1	10.1	24.8	8.1	34.1	9.1	22.6	22.7	2.07
DeepV2D ScanNet [131]	×	×	✓	med	10.0	36.2	(4.4)	(54.8)	11.8	29.3	7.7	33.0	8.9	46.4	8.6	39.9	3.57
(d) DUSt3R 224-NoCroCo	×	×	×	med	15.14	21.16	7.54	40.00	9.51	40.07	3.56	62.83	11.12	37.90	9.37	40.39	0.05
DUSt3R 224	×	×	×	med	15.39	26.69	(5.86)	(50.84)	4.71	61.74	2.76	77.32	5.54	56.38	6.85	54.59	0.05
DUSt3R 512	×	×	×	med	9.11	39.49	(4.93)	(60.20)	2.91	76.91	3.52	69.33	3.17	76.68	4.73	64.52	0.13

absolute scale evaluation with poses, without depth range and alignment; d) without poses and depth range, but with alignment. (Parentheses) denote training on data from the same domain. The best results for each setting are in **bold**.

Conclusion

- Generalization without Assumptions
 - No geometric priors: DUSt3R does not rely on camera poses, depth range, epipolar geometry, or any hand-crafted geometric constraints.
 - 模型能夠直接應用在各種不同場景中, zero-shot 運作依然穩定。
- Pretrained, Not Fine-tuned
 - Single pretrained model on diverse data (CroCo-style)
 - O Monocular depth estimation, Multi-view stereo, Pose regression,
- Trustworthy Confidence
 - 信心調整 loss function, 讓模型自己學會忽略難以預測的點

Extended Applications of DUSt3R – DynaDUSt3R

Figure 6. **DynaDUSt3R architecture.** Given two images $(\mathbf{I}_0, \mathbf{I}_1)$ of a dynamic scene and a desired target time t_q , the images are passed through a ViT encoder and transformer decoder. The resulting features are processed by (1) a pointmap head that predicts 3D points in the coordinate frame of \mathbf{I}_0 , and (2) a 3D motion head that predicts the motion of all points to the target time t_q . A double outline indicates a new component compared to DUSt3R.

MonST3R

