

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/766,053	01/28/2004	Moritz Haupt	INTECH 3.0-104	2311
48154	7590	07/14/2006	EXAMINER	
SLATER & MATSIL LLP 17950 PRESTON ROAD SUITE 1000 DALLAS, TX 75252				TRAN, THANH Y
			ART UNIT	PAPER NUMBER
			2822	

DATE MAILED: 07/14/2006

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)	
	10/766,053	MORITZ HAUPT	
	Examiner	Art Unit	
	Thanh Y. Tran	2822	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 10 April 2006.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-27 is/are pending in the application.
 - 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-27 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 - a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- 1) Notice of References Cited (PTO-892)
- 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
- 3) Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08)
Paper No(s)/Mail Date 4/10/06.
- 4) Interview Summary (PTO-413)
Paper No(s)/Mail Date. _____.
- 5) Notice of Informal Patent Application (PTO-152)
- 6) Other: _____.

DETAILED ACTION

Claim Rejections - 35 USC § 102

1. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.

2. Claims 1-4, 7, 9, 14, and 16-17 are rejected under 35 U.S.C. 102(e) as being anticipated by Lee (U.S. 2003/0109140).

As to claim 1, Lee discloses in figures 6-7 a method of fabricating a semiconductor device in a substrate, the method comprising: forming a trench having sidewalls in the substrate (10); forming a silicon layer (“polysilicon” 60) along the sidewalls of the trench to continuously cover at least a portion of the sidewalls, the silicon layer (60) not having a continuous crystalline structure; and performing gas phase doping so that the silicon layer (60) is doped with a dopant having a concentration of at least 1E19 atoms/cm.^{sup.3} (see figures 6-7, paragraph [0027]).

As to claims 2-3, Lee discloses in figures 6-7 a method of fabricating a semiconductor device in a substrate, wherein the silicon layer comprises amorphous silicon or polysilicon (see paragraphs [0020] & [0027]).

As to claim 4, Lee discloses in figures 6-7 a method of fabricating a semiconductor device in a substrate, wherein the silicon layer is at least 8 nm thick (“about 5 and 30 nm”) ([0024]).

As to claims 7 and 9, Lee discloses in figures 6-7 a method of fabricating a semiconductor device in a substrate, wherein the dopant is arsenic or phosphorous (see paragraphs [0020] & [0027]).

As to claim 14, Lee discloses in figures 6-7 a method of fabricating a semiconductor device in a substrate, wherein forming the silicon layer and performing the gas phase doping comprise an in-situ process (see paragraph [0027]).

As to claim 16, Lee discloses in figures 4-7 a method of fabricating a semiconductor device in a substrate, further comprising: performing a wet clean (“wet process”) of the substrate before performing the gas phase doping, wherein the wet clean (“wet process”) removes a native oxide on the silicon layer (see figures 4-7, and [0022]).

As to claim 17, Lee discloses in figures 2-10 a method of fabricating a semiconductor device in a substrate, further comprising substantially filling the trench with a fill material (54) after performing the gas phase doping (“GPD”) (see figures 2-10, & paragraph [0019]).

Claim Rejections - 35 USC § 103

3. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

4. Claims 5-6, 8, 10-13 and 18-24, are rejected under 35 U.S.C. 103(a) as being unpatentable over Lee (U.S. 2003/0109140) in view of Chung et al (U.S. 6,734,106).

As to claims 5, 6, 8, 10, 11, 12, and 13, Lee does not disclose the gas phase doping is performed at a temperature between about 850-1000° C or a temperature between 850-950° C; the gas phase doping is performed at a pressure of between 1-100 Torr; the gas phase doping uses AsH₃ as a dopant precursor or dopant is arsenic formed by an AsH₃ precursor; the precursor is flowed at a rate of 100-300 sccm for between 5-120 minutes.

Chung et al discloses in col. 2, line 49 - col. 3, line 20, a method wherein the gas phase doping is performed at a temperature between about 850-1000° C (“about 900 to 1000° C”) or a temperature between 850-950 ° C (“about 900 to 1000° C”); the gas phase doping is performed at a pressure of between 1-100 Torr (“about 100 torr”); the gas phase doping uses AsH₃ (“AsH₃”) as a dopant precursor or dopant is arsenic formed by an AsH₃ (“AsH₃”) precursor; the precursor is flowed at a rate of 100-300 sccm (“about 200”) for between 5-120 minutes (“about 120 ... minutes”). Therefore, it would have been obvious to one having ordinary skill in the art at the time the invention was made to modify the method of Lee by having the gas phase doping which is performed at a temperature between about 850-1000° C or a temperature between 850-950 ° C; the gas phase doping is performed at a pressure of between 1-100 Torr; the gas phase doping uses AsH₃ as a dopant precursor or dopant is arsenic formed by an AsH₃ precursor; the precursor is flowed at a rate of 100-300 sccm for between 5-120 minutes as taught by Chung et al for protecting the upper surface of the substrate.

Lee in view of Chung does not disclose the step of forming the silicon layer is performed at a temperature less than the gas phase doping; and the gas phase doping is performed at a pressure of between 15-30 Torr. However, the temperature range for the silicon layer; and the pressure range for the gas phase doping would have been obvious to an ordinary artisan

Art Unit: 2822

practicing the invention because, absent evidence of disclosure of criticality for the range giving unexpected results, it is not inventive to discover optimal or workable ranges by routine experimentation. In re Aller, 220 F.2d 454, 105 USPQ 233, 235 (CCPA 1955). Furthermore, the specification contains no disclosure of either the critical nature of the claimed dimensions of any unexpected results arising therefrom. Where patentability is aid to be based upon particular chosen dimensions or upon another variable recited in a claim, the Applicant must show that the chosen dimensions are critical. See In re Woodruff, 919 F.2d 1575, 1578, 16 USPQ2d 1934, 1936 (Fed. Cir. 1990).

Lee in view of Chung does not disclose the precursor is flowed in the presence of H₂ or He. However, it would have been obvious to one having ordinary skill in the art at the time the invention was made to modify the method of Lee in view of Chung by using H₂ or He material for flowing the precursor for controlling the rate and processing time of the precursor, since it has been held to be within the general skill of a worker in the art to select a known material on the basis of its suitability for the intended used as a matter of obvious design choice. In re Leshin, 125 USPQ 416.

As to claim 18, Lee discloses in figures 6-7 a method of fabricating a semiconductor device in a substrate, the method comprising: forming a trench having sidewalls in the substrate (10); lining the sidewalls with a node dielectric (“silicon layer” 54); depositing a silicon layer (“polysilicon layer” 60) to continuously cover at least a portion of the node dielectric (54), the silicon layer (60) not having a continuous crystalline structure; wherein the gas phase doping results in the silicon layer being doped with a dopant having a concentration of at least 1E19 atoms/cm.sup.3 (see figures 6-7, paragraph [0027]).

Lee does not disclose a method comprising: performing gas phase doping in a reaction chamber by: flowing a dopant precursor gas in the reaction chamber at a rate of between 100-300 sccm, heating the reaction chamber to a temperature of between 850-1000 degree C, and pressurizing the reaction chamber to a pressure of between 1-100 Torr.

Chung et al discloses in col. 2, line 49 - col. 3, line 20, a method comprising: performing gas phase doping in a reaction chamber by: flowing a dopant precursor gas in the reaction chamber at a rate of between 100-300 sccm ("about 200"), heating the reaction chamber to a temperature of between 850-1000 degree C ("about 900 to 1000° C"), and pressurizing the reaction chamber to a pressure of between 1-100 Torr ("about 100 torr") for protecting the upper surface of the substrate. Therefore, it would have been obvious to one having ordinary skill in the art at the time the invention was made to modify the method of Lee by having the step of performing gas phase doping in a reaction chamber by: flowing a dopant precursor gas in the reaction chamber at a rate of between 100-300 sccm, heating the reaction chamber to a temperature of between 850-1000 degree C, and pressurizing the reaction chamber to a pressure of between 1-100 Torr as taught by Chung et al for protecting the upper surface of the substrate.

As to claim 19, Lee discloses in figures 2-10 a method of fabricating a semiconductor device in a substrate, further comprising substantially filling the trench with a fill material (54) after performing the gas phase doping ("GPD") (see figures 2-10, & paragraph [0019]).

As to claims 20-21, Lee discloses in figures 6-7 a method of fabricating a semiconductor device in a substrate, wherein the silicon layer comprises amorphous silicon or polysilicon (see paragraphs [0020] & [0027]).

As to claim 22, Lee discloses in figures 6-7 a method of fabricating a semiconductor device in a substrate, wherein the silicon layer is at least 8 nm thick ("about 5 and 30 nm") ([0024]).

As to claim 23, Lee discloses in figures 6-7 a method of fabricating a semiconductor device in a substrate, wherein the dopant is arsenic or phosphorous (see paragraphs [0020] & [0027]).

As to claim 24, Lee discloses in figures 6-7 a method of fabricating a semiconductor device in a substrate, wherein forming the silicon layer and performing the gas phase doping comprise an in-situ process (see paragraph [0027]).

5. Claim 15 is rejected under 35 U.S.C. 103(a) as being unpatentable over Lee (U.S. 2003/0109140) in view of Cheong (U.S. 2003/0186533).

As to claim 15, Lee does not disclose a method wherein forming the silicon layer and performing the gas phase doping comprise an ex-situ process.

Cheong discloses in paragraphs [0005] and [0029] a method, wherein forming the silicon layer ("silicon thin film") and performing the gas phase doping comprise an ex-situ process. Therefore, it would have been obvious to a person having ordinary skill in the art at the time the invention was made to modify the method of Lee by having the steps of forming the silicon layer and performing the gas phase doping comprise an ex-situ process as taught by Cheong for removing contaminants which are produced by such contaminator as carbon and oxides (see paragraph [0029] in Cheong).

Art Unit: 2822

6. Claims 25-27 are rejected under 35 U.S.C. 103(a) as being unpatentable over Lee (U.S. 2003/0109140) in view of Chung et al (U.S. 6,734,106) as applied to claim 18 above, and further in view of Cheong (U.S. 2003/0186533).

As to claim 25, Lee in view of Chung does not disclose a method wherein forming the silicon layer and performing the gas phase doping comprise an ex-situ process.

Cheong discloses in paragraphs [0005] and [0029] a method, wherein forming the silicon layer ("silicon thin film") and performing the gas phase doping comprise an ex-situ process. Therefore, it would have been obvious to a person having ordinary skill in the art at the time the invention was made to modify the method of Lee in view Chung by having the steps of forming the silicon layer and performing the gas phase doping comprise an ex-situ process as taught by Cheong for removing contaminants which are produced by such contaminator as carbon and oxides (see paragraph [0029] in Cheong).

As to claim 26, Lee discloses in figures 4-7 a method of fabricating a semiconductor device in a substrate, further comprising: performing a wet clean ("wet process") of the substrate before performing the gas phase doping, wherein the wet clean ("wet process") removes a native oxide on the silicon layer (see figures 4-7, and [0022]).

As to claim 27, Lee does not disclose a method wherein the dopant has a concentration of at least 5×10^{19} atoms/cm.³.

Cheong discloses in col. 4, lines 57-59 a method, wherein the dopant has a concentration of at least 5×10^{19} atoms/cm.³ ("about 1×10^{19} atoms/cm.³ to about 2×10^{20} atoms/cm.³"). Applicant should note that: 5×10^{19} atoms/cm.³ falls

in the range of “about 1×10^{19} atoms/cm.³ to about 21×10^{20} atoms/cm.³” (see paragraphs [0016] & [0017]). Therefore, it would have been obvious to a person having ordinary skill in the art at the time the invention was made to modify the method of Lee by having the dopant which has a concentration of at least 5×10^{19} atoms/cm.³ as taught by Cheong for preventing outdiffusing phosphorus doped on junction area through a thermal budget according to a subsequent thermal process (see paragraph [0035] in Cheong).

Response to Arguments

7. Applicant's arguments filed 4/10/06 have been fully considered but they are not persuasive.

Applicant argued that Lee does not disclose a silicon layer is formed on the sidewalls.

In response, the examiner disagrees with applicant's argument because Lee clearly discloses in figure 6 a silicon layer (“polysilicon” 60) is formed on upper sidewalls of a deep trench.

Applicant further argued that the combination of Lee and Cheong (claim 15) or over the combination of Lee, Chung and Cheong (claims 25-27) does not provide the elements of the claims.

In response to applicant's argument that the proposed combination of references does not provide the elements of the claims, the examiner recognizes that obviousness can only be established by combining or modifying the teachings of the prior art to produce the elements of the claims of the claimed invention where there is some teaching, suggestion, or motivation to do so found either in the references themselves or in the knowledge generally available to one of

ordinary skill in the art. See *In re Fine*, 837 F.2d 1071, 5 USPQ2d 1596 (Fed. Cir. 1988) and *In re Jones*, 958 F.2d 347, 21 USPQ2d 1941 (Fed. Cir. 1992).

Conclusion

8. **THIS ACTION IS MADE FINAL.** Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Contact Information

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Thanh Y. Tran whose telephone number is (571) 272-2110. The examiner can normally be reached on M-F (9-6:30pm).

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Zandra Smith, can be reached on 571-272-2429. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

TYT

Zandra V. Smith
Zandra V. Smith
Supervisory Patent Examiner
7 June 2006