

Faculty of Engineering Technology Semester End Examination Question Paper-B.Tech

Department : Computer Science and Engineering

Programme : B.Tech
Semester / Batch : 6th / 2018
Date of Examination : 12/07/2021
Course Code : 19CSC312A

Course Title : Artificial Intelligence

Semester End Examination-Theory

INSTRUCTIONS TO STUDENTS:

- 1. Answer Q.No.1 and Q.No. 2
- 2. Answer any 2 from Q.No.3, Q.No.Q4 and Q.No.Q5
- 3. Use only SI units
- 4. Use of non-programmable scientific calculator is permitted
- 5. Use of data handbook permitted wherever applicable
- 6. Missing data may be appropriately assumed
- 7. Notations used have usual meaning
- 8. Send the scanned answer script to XXXXXX@msruas.ac.in/upload to ERP within the prescribed time
- 9. Retain the original answer scripts and submit it to department without fail

Total Duration: 2 Hours Maximum Marks: 50

IMPORTANT:

You may retain the question paper for future reference

For the sub-questions 1.1 -1.10, multiple choices are indicated as possible answers. You are supposed to pick and write any one of the choices as your answer in the answer booklet. (Each sub-question carries ½ (half) mark)

Q.	Question	Marks
No.		
1	1.1 Al Systems	05
	(a) Think like humans	
	(b) Act like humans	
	(c) Think like humans rationally	
	(d) Think and act like humans rationally.	
	1.2 In essence, an AI Agent is a function from perception of to (a) Present, Actions (b) Past, actions (c) Histories, actions (d) Percepts, Actions.	
	1.3 PEAS stands for:	
	(a) Practical Measure, Environment, Actions, Sensors	
	(b) Performance, Environment, Actions, Sensors	

19CSC312A Page **1** of **3**

	(d) Performance Measure, Environment, Actuators, Sensors	
	1.4 maximises expected performance of an Agent.	
	(a) Rationality (b) Environment	
	(c) Efficient mechanism (d) Harsh environment	
	1.5 An Agent which knows the actual outcome of its actions and acts accordingly is called a/an	
	(a) Intelligent Agent (b) Clairvoyant Agent (c) Omniscient Agent (d) Interactive Agent	
	1.6 Task Environments of a Taxi Driving on a road are:	
	(a) Partially Observable, Single Agent, Deterministic, Sequential, Dynamic, Continuous	
	(b) Partially Observable, Multi Agent, Stochastic, Sequential, Dynamic, Continuous	
	(c) Partially Observable, Multi Agent, Deterministic, Sequential, Dynamic, Continuous	
	(d) Partially Observable, Single Agent, Stochastic, Sequential, Dynamic, Continuous	
	1.7 In Tree Search, a Frontier / Open List is the set of leaf nodes which are	
	(a) Available for expansion (b) Already expanded (c) Not yet generated (d)Not available for expansion	
	1.8 Breadth First Search is not optimal when	
	(a) Step costs are same	
	(b) Step costs are different	
	(c) More than 50% step costs are same	
	(d) More than 50% step costs are different	
	1.9 Uniform Cost Search continues till	
	(a) A goal is found (b) Optimal path to a goal is found	
	(c) A pre-determined depth is reached	
	(d) A pre-determined depth is reached	
	(4)	
	1.10 The value of heuristic function h(n) in Informed Search Algorithms is, where n is the Goal Node.	
	(a) 0 (b) 1 (c) -1 (d) ∞	
2	(a) Discuss the causes of uncertainty in the Real World and the need for	03+02
	Probabilistic Reasoning.	
	(b) State and explain the general expression of Baye's Rule .	
3	(a) Discuss PEAS of an Internet Shopping Agent.	05+05+10
	(b) Explain the components of Problem Formulation.	
	(c) Discuss the details of an Expert System with two examples.	

19CSC312A Page **2** of **3**

4	(a) State and explain the General Tree Search Algorithm. Discuss the	07+03+10
	parameters of Space and Time complexity of a Search Strategy / Tree Search.	
	(b) State and Explain a Knowledge Based Agent Algorithm.	
	(c) Solve the following graph using Alpha-beta pruning algorithm. Mention step	
	wise diagrams (stating Alpha, State and Beta values in each state).	
	MAX	
	B C D MIN	
	2 3 5 9 0 7 4 2 1 5 6	
5	(a) State and explain Hill Climbing Search Algorithm. Discuss the problems associated with it.	10+06+04
	(b) Compare supervised, unsupervised and reinforcement learning algorithm with examples.	
	(c) Compare classification and clustering with examples.	

0000000

19CSC312A Page **3** of **3**