FaaSNet: Scalable and Fast Provisioning of Custom Serverless Container Runtimes at Alibaba Cloud Function Compute

Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran Yang, Huiba Li, Rui Du, Yue Cheng

Function-as-a-Service

- FaaS enables cloud tenants to launch short-lived tasks (i.e., Lambda functions) with *high elasticity* and *fine-grained* resource billing (1ms)
- Function: basic unit of deployment. Application consists of multiple serverless functions
- Popular use cases: Backend APIs, event/async processing...

FaaS providers normally limit tenants code package in tens of MB level

- FaaS provider enables cloud tenants to launch short-lived tasks (i.e., Lambda functions) with high elasticity and finegrained resource billing (1ms)
- Function: basic unit of deployment. Application consists of multiple serverless functions
- Popular use cases: Backend APIs, event/async processing...

FaaS and custom-container runtimes

FaaS and custom-container runtimes

FaaS + container unlocks new workload possibilities and makes serverless accessible to a broader audience

FaaS and custom-container runtimes

	Container	FaaS
Application transplant	Builds once, runs anywhere	Cloud vendor lock-in
Dev tools	open source ecosystems	Cloud vendor lock-in
CI/CD	open source ecosystems	Cloud vendor lock-in
Scalability	Second level	Millisecond level
Runtimes	Custom	Provided runtimes

FaaS + container unlocks new workload possibilities and makes serverless accessible to a broader audience

- Alibaba Cloud Function Compute 15-day-production log during May 2021
- Data centers: Beijing, Shanghai

FaaS workloads are **bursty** and **dynamic**

FaaS workloads are **bursty** and **dynamic**

- Image pull latency distribution
- Proportion of image pull in function cold start

- Image pull latency distribution
- Proportion of image pull in function cold start

Pull image in tens second level

> 57% image pulls larger than 45 seconds

- Image pull latency distribution
- Proportion of image pull in function cold start

Image pull dominates function startup time

A large fraction of startup time is spent on pulling images

- Image pull latency distribution
- To handle workload dynamicity -> Scalable and resilient provisioning of large numbers of function containers
- To reduce cold start latency -> Optimize the performance of container provisioning process

State-of-the-art solutions

Host VMs – limited resources: 2 CPUs, 4GB Mem, 1Gbps network

State-of-the-art solutions

Alibaba DADI [ATC '20]

Problems:

- Extra, dedicated, centralized components
- Limited VM resources
- VM's lifecycle is unpredictable
- Multi-Tenancy isolation under FaaS is not considered

FaaSNet: Scalable and Fast Provisioning of Custom Serverless Container Runtimes at Alibaba Cloud Function Compute

Agenda

- FaaSNet design
- Evaluation
- Conclusion

FaaSNet design

Function tree (FT)

- FT is perfect self-balanced binary tree in *Function* level
- Exposed 2 APIs
 - insert
 - delete

: Image data

: Data path

: Control path

: Image data

: Data path

: Control path

: Image data

: Data path

: Control path

Agenda

- FaaSNet design
- Evaluation
- Conclusion

Experimental setup

- Testbed is up to 1,000 VMs
- VM type: 2 CPUs, 4 GB memory, 1 Gbps network
 - Same as our production environment
- Example container image
 - 758 MB python-based function with ~2 sec duration

FaaSNet's performance

FaaSNet's performance

Kraken: Kraken dev cluster

Baseline: Original Alibaba Cloud 🖁 100

Function Compute (FC)

On-demand: FC + I/O efficient

format

DADI+P2P: FC + DADI

FaaSNet's performance

Kraken: Kraken dev cluster

Baseline: Original Alibaba Cloud 🖁 100

Function Compute (FC)

On-demand: FC + I/O efficient

format

DADI+P2P: FC + DADI

FaaSNet

Production workload

Scales thousands of containers in seconds

Production workload

Conclusion

- FaaSNet scales 13.4x faster than Alibaba Cloud's current FaaS platform

Thank you!

- Contact: Ao Wang awang24@gmu.edu
- FT prototype & Alibaba Cloud Function Compute cold start traces
 - https://github.com/mason-leap-lab/FaaSNet

Q&A

- Local disk full -> cache eviction -> performance degradation
- Bandwidth issues