Financial Mathematics 33000

Lecture 6

Roger Lee

2022 November 9

Fundamental theorem in continuous time

Black-Scholes

Fundamental theorem for continuous time Itô processes

 \exists equivalent martingale measure $\mathbb{P} \Rightarrow \text{No arb}$

Proof:

 \triangleright Given: under \mathbb{P} , each member of the discounted asset prices

$$\frac{1}{B_t} \mathbf{X}_t := \left(\frac{X_t^1}{B_t}, \frac{X_t^2}{B_t}, \cdots, \frac{X_t^N}{B_t} \right)$$

is a martingale Itô process. Need to prove: No arbritrage

For any self-financing trading strategy Θ_t with value V_t , we'll show that V/B is a martingale, where $V_t := \Theta_t \cdot \mathbf{X}_t$. After we show this, we're done, by the familiar argument: If $V_0 = 0$, then $V_0/B_0 = 0$, hence $\mathbb{E}(V_T/B_T) = 0$.

If also $V_T \geq 0$, then $V_T/B_T \geq 0$, so $V_T/B_T = 0$, hence $V_T = 0$

Conclusion: Θ is not an arbitrage.

Fundamental theorem

▶ To see that V/B is a martingale, let $A_t := 1/B_t$. Then

$$d(V_t/B_t) = d(A_tV_t) = V_t dA_t + A_t dV_t + dA_t dV_t$$

$$= \mathbf{\Theta}_t \cdot \mathbf{X}_t dA_t + A_t (\mathbf{\Theta} \cdot d\mathbf{X}_t) + (dA_t)(\mathbf{\Theta}_t \cdot d\mathbf{X}_t)$$

$$= \mathbf{\Theta}_t \cdot (\mathbf{X}_t dA_t + A_t d\mathbf{X}_t + dA_t d\mathbf{X}_t)$$

$$= \mathbf{\Theta}_t \cdot d(A_t\mathbf{X}_t) = \sum_{n=1}^N \theta_t^n d(A_tX_t^n)$$

Since each $A_t X_t^n$ is a martingale, V/B is a martingale also.

▶ Idea: A martingale is the cumulative PnL from betting on zero-E games. Varying your bet size across games and across time still produces, collectively, a zero-expectation game. Can't risklessly make something from nothing by playing zero-expectation games.

Fundamental theorem

$$p(A) = PRICE of$$
 $contrad + Lat$
 $pays: 5 $ 1 $ f A$
 $contrad + Lat$
 $contrad + Lat$

No arb $\Rightarrow \exists$ equivalent martingale measure \mathbb{P} :

110 arb - 2 equivalent martingate measure

Intuition of proof: Same as in L2, L3.

Define \mathbb{P} by defining the \mathbb{P}_t -probability of an event to be the time-t price, in units of B, of an ("Arrow-Debreu") asset that

pays 1 unit of B at time T if the event occurs, else 0. (But what

- if the A-D asset does not exist and can't be replicated?)

 Martingale property holds because any asset X can be replicated
- by portfolio of $X_T(\omega_j)/B_T(\omega_j)$ units of the A-D asset for each ω_j . Value portfolio by summing quantity \times price.

$$\frac{X_0}{B_0} = \sum_{j=1}^{J} \frac{X_T(\omega_j)}{B_T(\omega_j)} \cdot \mathbb{P}(\omega_j) = \mathbb{E}\left(\frac{X_T}{B_T}\right)$$

Fundamental theorem: Comments

- \triangleright Idea: The \mathbb{P} probability of an event is simply the *price* (in units of B) of a asset that pays 1 unit of B iff that event occurs.
- Note: In this entire proof, we never assumed that B is the bank account, and never assumed that it is riskless. It is enough to assume that B is some asset with positive price process. In some applications, it may be easier to normalize using some such asset (some *numeraire*) that is *not* the bank account. By default, if we say risk-neutral or martingale measure without

specifying the numeraire, it is understood to be the bank account.

Option pricing

In L5, we did this by replication.

In L6, let's do it by martingale methods: Option price equals the expected discounted payoff, under a martingale measure \mathbb{P} . Why?

▶ By the Fundamental theorem.

How do we calculate \mathbb{P} -expectations (denoted by \mathbb{E})?

▶ In many cases, a model is already specified under risk-neutral measure. Then simply work directly under the given measure.

But what if the model is specified under physical measure?

We know how S behaves with respect to physical measure P. How does S behave wrt \mathbb{P} ? All risk driven by W. So let's see what changing measure does to W, then find what it does to S.

Girsanov's theorem

Theorem: If W is a Brownian motion under P, and if \mathbb{P} is a probability measure on \mathcal{F}_T^W that is equivalent to P, then there exists an adapted process λ such that for all $t \in [0, T]$,

$$\tilde{W}_t := W_t + \int_0^t \lambda_s \mathrm{d}s$$

is Brownian motion under \mathbb{P} . Therefore:

- ▶ $d\tilde{W}_t = dW_t + \lambda_t dt$, and \tilde{W} is BM under \mathbb{P} but not under P
- ▶ $dW_t = d\tilde{W}_t \lambda_t dt$, and W is BM under P but not under P

Girsanov: an analogy

No proof, but here is an analogy on a sample space $\Omega = \{\omega_1, \dots, \omega_6\}$.

Let
$$X(\omega_1) = X(\omega_2) = X(\omega_3) = 10$$
, $X(\omega_4) = X(\omega_5) = X(\omega_6) = 25$.

- ▶ Let $P(\omega) = 1/6$ for each ω . Then $X \sim \text{Uniform}\{10, 25\}$ under P.
- ▶ But if \mathbb{P} assigns probability 1/12 to each of $\omega_1, \omega_2, \omega_3$, and 1/4 to each of $\omega_4, \omega_5, \omega_6$, then X is not Uniform $\{10, 25\}$ under \mathbb{P} .
- ▶ However, $\tilde{X} := X + \lambda$ is Uniform{10, 25} under \mathbb{P} , where $\lambda(\omega_4) := 15$ and $\lambda(\omega) := 0$ for $\omega \neq \omega_4$.

X under \mathbb{P} does not have the same distribution as X under P .

But X plus drift under \mathbb{P} has the same distribution as X under \mathbb{P} .

Girsanov: some intuition

No proof, but here is some *intuition*:

▶ W is BM under P. After changing measure to \mathbb{P} , the W may not still be BM, but it is plausible that it is a martingale plus drift:

$$dW_t = \lambda_t dt + \sigma_t dB_t$$

where B is a BM under \mathbb{P} , and σ_t is some adapted process. So

$$(\mathrm{d}W_t)^2 = (\lambda_t \mathrm{d}t + \sigma_t \mathrm{d}B_t)^2$$

hence $dt = \sigma_t^2 dt$, so $\sigma_t = \pm 1$. Define \tilde{W} by $d\tilde{W}_t = \sigma_t dB_t$.

▶ Then W can be shown to be \mathbb{P} -BM. And, as claimed,

$$dW_t = \lambda_t dt + d\tilde{W}_t.$$

Fundamental theorem in continuous time

Black-Scholes

Black-Scholes via martingale approach

Black-Scholes dynamics

$$dB_t = rB_t dt \qquad B_0 = 1$$

$$dS_t = \mu S_t dt + \sigma S_t dW_t \qquad S_0 > 0$$

where W is BM under physical measure P, and $\sigma > 0$.

No arb implies that $\exists \mathbb{P}$, equivalent to \mathbb{P} , such that S/B is a \mathbb{P} -MG.

Hence by Girsanov, $\exists \lambda$ such that $\tilde{W}_t := W_t + \int_0^t \lambda_s ds$ is \mathbb{P} -BM.

Substitute $d\tilde{W}_t = dW_t + \lambda_t dt$ into the SDE of S:

$$dS_t = \mu S_t dt + \sigma S_t (d\tilde{W}_t - \lambda_t dt)$$
$$= (\mu - \lambda_t \sigma) S_t dt + \sigma S_t d\tilde{W}_t$$

But can we say anything about $\mu - \lambda_t \sigma$?

Under \mathbb{P} , every tradeable asset X has drift rX

This page does not assume that X is a GBM.

Assume only that X is an Itô process.

- ▶ Under \mathbb{P} , the discounted price X/B is a MG, hence has zero drift.
- ightharpoonup By Itô's rule, X/B has dynamics

$$d(X_t/B_t) = d(e^{-rt}X_t) = e^{-rt}dX_t - re^{-rt}X_tdt + d(e^{-rt})dX_t$$
$$= e^{-rt}(dX_t - rX_tdt),$$

so $dX_t - rX_t dt$ has no drift term.

▶ Therefore the drift term of dX_t must be rX_tdt .

Under \mathbb{P} , the GBM S is still GBM, but with drift r

▶ Applying this to S, we have $(\mu - \lambda_t \sigma)S_t = rS_t$, and

$$dS_t = rS_t dt + \sigma S_t d\tilde{W}_t$$

where \tilde{W} is \mathbb{P} -BM.

Rate of growth changes from μ to r. Volatility stays the same.

▶ By L4, therefore, under \mathbb{P} , conditional on \mathcal{F}_t^W

$$\log S_T \sim \text{Normal}(\log S_t + (r - \sigma^2/2)(T - t), \ \sigma^2(T - t))$$

Compare: under P, conditional on \mathcal{F}_t^W ,

$$\log S_T \sim \text{Normal}(\log S_t + (\mu - \sigma^2/2)(T - t), \ \sigma^2(T - t))$$

Lognormal distribution

Here's a more general calculation, allowing different rates for growth and discounting, on an underlying X, not necessarily a stock price.

- ▶ Let t < T. Let R_{arow} and r be constants.
- Assume that (conditional on the time-t information \mathcal{F}_t) the random variable X_T has lognormal \mathbb{P} -distribution

$$\log X_T \sim \text{Normal}(\log X_t + (R_{grow} - \sigma^2/2)(T - t), \ \sigma^2(T - t))$$

where $X_t > 0$, and $\sigma > 0$ is a constant.

▶ One way that this distribution could arise is from the dynamics

$$dX_t = R_{arow} X_t dt + \sigma X_t dW_t \qquad X_0 > 0$$

where W is \mathbb{P} -BM.

Conclusion: the Black-Scholes call price formula

Then, letting \mathbb{E} denote expectation wrt \mathbb{P} ,

$$e^{-r(T-t)}\mathbb{E}_t(X_T - K)^+ = C^{BS}(X_t, t, K, T, R_{grow}, r, \sigma)$$

where the function C^{BS} is defined for $X > 0, K > 0, \sigma > 0, t < T$ by

$$C^{BS}(X,t,K,T,R_{grow},r,\sigma) := e^{-r(T-t)} \big[FN(d_1) - KN(d_2) \big],$$

and

$$F := Xe^{R_{grow}(T-t)} = \mathbb{E}_t X_T$$

and

$$d_{1,2} := d_{+,-} := \frac{\log(F/K)}{\sigma\sqrt{T-t}} \pm \frac{\sigma\sqrt{T-t}}{2}.$$

Proof of formula: decompose $(X_T - K)^+$ $1_A = \begin{cases} 1 & \text{if } A \\ 6 & \text{if } \text{out } A \end{cases}$

Proof: Using the fact that $x^+ = x \mathbf{1}_{x>0}$ for all x,

$$\begin{split} \mathbb{E}_t(X_T - K)^+ &= \mathbb{E}_t(X_T - K) \mathbf{1}_{X_T > K} \\ &= \mathbb{E}_t(X_T \mathbf{1}_{X_T > K}) - K \mathbb{E}_t \mathbf{1}_{X_T > K} \\ &= F_t \mathbb{E}_t((X_T / F_t) \mathbf{1}_{X_T > K}) - K \mathbb{P}_t(X_T > K), \\ &\text{will see this is N(d_t)} \end{split}$$

where

$$F_t := X_t e^{R_{grow}(T-t)} = \mathbb{E}_t X_T.$$

To proceed, first note that the event $X_T > K$ is equivalent to $\log(X_T/F_t) > \log(K/F_t)$, and that (conditional on time-t information)

$$\log(X_T/F_t) \sim \text{Normal}(-(\sigma^2/2)(T-t), \ \sigma^2(T-t)).$$

Proof of formula: Second term of decomposition

Now consider separately each term in the decomposition.

For the second term,

$$\mathbb{P}_{t}(X_{T} > K) = \mathbb{P}_{t}\left(\log(X_{T}/F_{t}) > \log(K/F_{t})\right)$$

$$= \mathbb{P}_{t}\left(\frac{\log(X_{T}/F_{t}) + (\sigma^{2}/2)(T - t)}{\sigma\sqrt{T - t}}\right)$$

$$> \frac{\log(K/F_{t}) + (\sigma^{2}/2)(T - t)}{\sigma\sqrt{T - t}}$$

$$= N\left(-\frac{\log(K/F_{t}) + (\sigma^{2}/2)(T - t)}{\sigma\sqrt{T - t}}\right)$$

$$= N(d_{2})\Big|_{X = X_{t}}$$

Proof of formula: First term of decomposition

In the first term, we have $\mathbb{E}_t((X_T/F_t)\mathbf{1}_{X_T>K})$

$$\begin{split} &= \mathbb{E}_{t}[e^{\log(X_{T}/F_{t})}\mathbf{1}_{\log(X_{T}/F_{t})>\log(K/F_{t})}] \\ &= \int_{\log(K/F_{t})}^{\infty} e^{y} \frac{1}{\sqrt{2\pi\sigma^{2}(T-t)}} \exp\left(-\frac{(y+(\sigma^{2}/2)(T-t))^{2}}{2\sigma^{2}(T-t)}\right) \mathrm{d}y \\ &= \int_{\log(K/F_{t})}^{\infty} \frac{1}{\sqrt{2\pi\sigma^{2}(T-t)}} \exp\left(-\frac{(y-(\sigma^{2}/2)(T-t))^{2}}{2\sigma^{2}(T-t)}\right) \mathrm{d}y \\ &= \int_{\frac{\log(K/F_{t})-(\sigma^{2}/2)(T-t)}{\sigma\sqrt{T-t}}}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^{2}}{2}\right) \mathrm{d}z \\ &= N\left(-\frac{\log(K/F_{t})-(\sigma^{2}/2)(T-t)}{\sigma\sqrt{T-t}}\right) = N(d_{1})\Big|_{X=X_{t}}, \end{split}$$

as claimed. The substitution was $z = \frac{y - (\sigma^2/2)(T-t)}{\sigma \sqrt{T-t}}$ so $dz = \frac{1}{\sigma \sqrt{T-t}} dy$

Probabilistic interpretation of $N(d_1)$ and $N(d_2)$

In summary,

$$C_t = e^{-r(T-t)} \left(F_t \mathbb{E}_t \left[\frac{X_T}{F_t} \mathbf{1}_{S_T > K} \right] - K \mathbb{P}_t (S_T > K) \right)$$
$$= e^{-r(T-t)} \left(F_t N(d_1) - K N(d_2) \right)$$

The $N(d_2)$ is the \mathbb{P}_t that the call option expires in the money. (So $e^{-r(T-t)}N(d_2) = \text{time-}t$ price of K-strike T-expiry binary call.) The $N(d_1)$ is the "share measure" \mathbb{P}_t^S that the call expires ITM.

And time-t price of asset-or-nothing call paying $X_T \mathbf{1}_{X_T > K}$ is $e^{-r(T-t)} F_t N(d_1)$. If X = S is a no-dividend stock, this is $S_t N(d_1)$

Probabilistic analysis of effect of r

Increasing r, while keeping everything else fixed, has what effect on time-0 call prices?

Martingale methods make the answer clear:

$$C_{0} = e^{-rT} \mathbb{E}C_{T}$$

$$= e^{-rT} \mathbb{E}(S_{T} - K)^{+}$$

$$= e^{-rT} \mathbb{E}(S_{0}e^{(r-\sigma^{2}/2)T + \sigma \tilde{W}_{T}} - K)^{+}$$

$$= \mathbb{E}(S_{0}e^{(-\sigma^{2}/2)T + \sigma \tilde{W}_{T}} - Ke^{-rT})^{+}$$

If rT then Cof

Probabilistic intuition about impact of σ

The vega, at time-t, of an asset or portfolio with value $C_t = C(S_t, t; \sigma)$ is $\frac{\partial C}{\partial \sigma}(S_t, t; \sigma)$. For a call or put in the B-S model,

$$ext{vega} := rac{\partial C^{BS}}{\partial \sigma} = S\sqrt{T-t}N'(d_1) > 0$$
 fine 0 value.

Why positive? Let's take r = 0.

- For a linear payout $a + bS_T$, the time-0 value is $a + bS_0$ regardless of σ . So vega for a linear payout is zero.
- For a **Common** payout $f(S_T)$, such as a call, the payout dominates the linear tangent to f at S_0 . So the contract's time-0 value is bigger than $f(S_0)$. By how much? Depends on σ . The larger the σ , the larger the Convergence contract's time-0 value, because the larger the

chance that S goes to where f > linear. Large $\sigma \Rightarrow \text{more}$ converges reachable.

Vega of a call

Vega of a call, plotted against S_t , for T - t = 1, and T - t = 0.25.

Under B-S dynamics, vega of a call is positive.

Probabilistic analysis of joint effect of σ and T

Halving σ and quadrupling T, while keeping everything else fixed, has what effect on time-0 call prices?

$$|O_{4} \stackrel{\leq}{\stackrel{\sim}{\sim}} N \text{ Normal} \left((r - \frac{\sigma^{2}}{2}) T, \sigma^{2} T \right)$$

$$\sigma \rightarrow \frac{\sigma}{2}$$

$$T \rightarrow 4T$$

$$\left(r - \frac{(\sigma/2)^{2}}{2}\right) 4T$$

$$= (4r - \frac{\sigma^{2}}{2}) T$$

$$Equivalent to r \rightarrow 4r. ||Fr>0$$

Appendix

On an interval I a function $f: I \to \mathbb{R}$ is said to be *convex* if its graph lies on or below all of its chords: for all $x, y \in I$, all $\alpha \in [0, 1]$,

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

Properties:

- ▶ A twice differentiable function f is convex iff $f'' \ge 0$ everywhere.
- ▶ A convex function's graph lies on or above all of its tangents.

If f is convex on I and X is an integrable random variable taking values in I then $\mathbb{E}f(X) \geq f(\mathbb{E}X)$. Johan Jensen (1859-1925)