# Odwrotna Notacja Polska

#### Wprowadzenie teoretyczne do tematu

Odwrotna notacja polska¹ (ONP, ang. Reverse Polish Notation, RPN) – jest sposobem zapisu wyrażeń arytmetycznych, w którym znak wykonywanej operacji umieszczony jest po operandach (zapis postfiksowy), a nie pomiędzy nimi jak w konwencjonalnym zapisie algebraicznym (zapis infiksowy) lub przed operandami jak w zwykłej notacji polskiej (zapis prefiksowy). Zapis ten pozwala na całkowitą rezygnację z użycia nawiasów w wyrażeniach, jako że jednoznacznie określa kolejność wykonywanych działań.

Poniższa tabelka przedstawia kilka wyrażeń arytmetycznych w zapisie tradycyjnym oraz w Odwróconej Notacji Polskiej. Przy zapisie tradycyjnym korzystanie z nawiasów jest konieczne w celu określenia kolejności wykonywania działań. W ONP nie używa się nawiasów.

| Zapis infiksowy (tradycyjny)` | Zapis postfiksowy (ONP)                                         |
|-------------------------------|-----------------------------------------------------------------|
| a + b                         | a b +                                                           |
| a + b + c                     | a b + c + (ab+ stanowi pierwszy argument<br>drugiego dodawania) |
| (a + b) * c                   | a b + c *                                                       |
| c * (a + b)                   | c a b + *                                                       |
| (a + b) * c + d               | a b + c * d +                                                   |
| (a + b) * c + d * a           | a b + c * d a * +                                               |
| (a + b) * c + d * (a + c)     | a b + c * d a c + * +                                           |
| (a + b) * c + (a + c) * d     | a b + c * a c + d * +                                           |

### Drzewa wyrażeń arytmetycznych

Jedno z zastosowań drzew binarnych to reprezentacja wyrażeń arytmetycznych. Wyrażenia arytmetyczne można reprezentować jako drzewa, gdzie w liściach pamiętane są liczby, a w węzłach symbole operacji arytmetycznych. W zależności od wybranego sposobu poruszania się po takim drzewie można uzyskać tradycyjny zapis (inorder), Notację Polską (preorder) lub Odwróconą Notację Polską (postorder).

\_

<sup>&</sup>lt;sup>1</sup> http://pl.wikipedia.org/wiki/Odwrotna\_notacja\_polska



Wyrażenie zapisane na powyższym drzewie można zapisać zatem na trzy sposoby:

- 1. Zapis tradycyjny (infiksowy): ((a-b)\*c)+(d/e)
- 2. Notacja Polska (prefiksowa): +\*-abc/de
- 3. Odwrotna Notacja Polska (postfiksowa): ab-c\*de/+

Możliwe jest również tworzenie drzew wyrażeń arytmetycznych na podstawie zapisu wyrażenia w dowolnej notacji. Przykładowo dla zapisu w tradycyjnej notacji drzewo wyrażenia będzie wyglądało następująco: (e%f)/((c\*(a+b))-d).



To samo wyrażenie w notacji postfiksowej (ef%cab+\*d-/) i prefiksowej (/%ef-\*c+abd).

Przy tworzeniu drzewa wyrażenia arytmetycznego ma znaczenie, po której stronie znajdzie się węzeł. Nie jest to dowolne.

Tworzenie drzewa dla notacji postfksowej jest nieco trudniejsza gdyż zaczynamy od liści i kończymy na korzeniu. Z kolei dla notacji prefiksowej jest to łatwiejsze z uwagi na to, iż rozpoczynamy od korzenia i zmierzamy do liści.

## Konwersja z notacji algebraicznej do ONP



Powyższy schemat blokowy przedstawia algorytm konwersji wyrażenia z notacji algebraicznej do notacji ONP. Poniżej znajduje się operacja konwersji przykładowego wyrażenia krok po kroku według tegoż algorytmu.

Wyrażenie: (e-f)+(a\*b+c/d)

| Numer kroku | Wejście          | Stos | Wyjście     |
|-------------|------------------|------|-------------|
| 1           | (                | (    |             |
| 2           | e                | (    | e           |
| 3           | -                | (-   | e           |
| 4           | f                | -    | ef          |
| 5           | )                |      | ef-         |
| 6           | +                | +    | ef-         |
| 7           | (                | +(   | ef-         |
| 8           | a                | +(   | ef-a        |
| 9           | *                | +(*  | ef-a        |
| 10          | b                | +(*  | ef-ab       |
| 11          | +                | +(+  | ef-ab*      |
| 12          | c                | +(+  | ef-ab*c     |
| 13          | 1                | +(+/ | ef-ab*c     |
| 14          | d                | +(+/ | ef-ab*cd    |
| 15          | )                | +(+  | ef-ab*cd/+  |
| 16          | Koniec wyrażenia |      | ef-ab*cd/++ |

# Konwersja z notacji ONP do algebraicznej



Powyższy schemat blokowy przedstawia algorytm konwersji wyrażenia z notacji ONP do notacji algebraicznej. Poniżej znajduje się operacja konwersji przykładowego wyrażenia krok po kroku według tegoż algorytmu.

Wyrażenie: ef-ab\*cd/++

| Numer kroku | Wejście          | Stos                | Wyjście             |
|-------------|------------------|---------------------|---------------------|
| 1           | e                | е                   |                     |
| 2           | f                | ef                  |                     |
| 3           | -                | (e-f)               |                     |
| 4           | a                | (e-f)a              |                     |
| 5           | b                | (e-f)ab             |                     |
| 6           | *                | (e-f)(a*b)          |                     |
| 7           | c                | (e-f)(a*b)c         |                     |
| 8           | d                | (e-f)(a*b)cd        |                     |
| 9           | 1                | (e-f)(a*b)(c/d)     |                     |
| 10          | +                | (e-f)((a*b)+(c/d))  |                     |
| 11          | +                | (e-f)+((a*b)+(c/d)) |                     |
| 12          | Koniec wyrażenia |                     | (e-f)+((a*b)+(c/d)) |

Można zauważyć, iż pomimo, że po ponownej konwersji zostały dołożone nawiasy, kolejność działań nie uległa zmianie.

# Obliczanie wartości wyrażeń zapisanych przy pomocy ONP



Powyższy schemat blokowy przedstawia obliczania wartości wyrażenia zapisanego w ONP. Poniżej znajduje się operacja obliczania wartości przykładowego wyrażenia krok po kroku według tegoż algorytmu.

Wyrażenie: 12 3 - 4 18 \* 21 7 / + +

| Numer kroku | Wejście          | Stos      | Wyjście |
|-------------|------------------|-----------|---------|
| 1           | 12               | 12        |         |
| 2           | 3                | 12 3      |         |
| 3           | -                | 9         |         |
| 4           | 4                | 9 4       |         |
| 5           | 18               | 9 4 18    |         |
| 6           | *                | 9 72      |         |
| 7           | 21               | 9 72 21   |         |
| 8           | 7                | 9 72 21 7 |         |
| 9           | 1                | 9 72 3    |         |
| 10          | +                | 9 75      |         |
| 11          | +                | 84        |         |
| 12          | Koniec wyrażenia |           | 84      |



Powyższe drzewo obrazuje przykładowe wyrażenia, którego wartość została obliczona.