Math 281A HW6

December 4, 2017

Problem 1. Show complete sufficiency implies minimal sufficiency.

Proof. Denote T as the complete sufficient statistic and S as the minimal sufficient statistic. Consider statistic E(T|S). First notice that E(E(T|S) - T) = 0 always holds for any parameter. and since S is minimal sufficient, there is a measurable function g satisfying g(T) = S therefore E(T|S) = E(T|g(T)) which is a function of T. Now E(E(T|S) - T) = 0 implies E(T|S) = T almost surely, and this shows that T is a function of S, which means T is minimal sufficient as well.

Problem 2. Denote the loss function $L(\Delta p) = \mathbb{1}(|\Delta - p| > 1/4)$. Show the loss function for estimator Δ where $\Delta|_{X=0} \sim U(-1/2, 1/2)$ and $\Delta|_{X=1} \sim U(1/2, 3/2)$, where 1/4 .

Solution. Consider the case where X=1. The loss will be the portion of interval (1/2,3/2) outside of the ball centered at p with radius 1/4, which will be 3/2 - (p+1/4) = 5/4 - p. Similarly when X=0, the loss will be p-1/4-(-1/2)=p+1/4. Therefore the aggregate loss will be $p(5/4-p)+(1-p)(p+1/4)=-2p^2-2p+1/4$.

Problem 3. Show that any unbiased estimator $\hat{\theta}$ of θ can be improved by multiplying a constant c < 1.

Solution. The original MSE is $var(\hat{\theta})$, while the shrinkage estimator has MSE as $c^2var(\hat{\theta}) + (1-c)^2\theta^2$. In order to have the latter less than the former, we need

$$var(\hat{\theta}) > c^2[var(\hat{\theta}) + \theta^2] - 2c\theta^2 + \theta^2.$$

The minimal is achieved with $c = \theta^2/[\theta^2 + var(\hat{\theta})]$, which is associated with θ .