Лабораторная работа № 5

- 1. Тема: решение дифференциальных уравнений 2-ого порядка. Метод Рунге-Кутта.
- 2. Постановка задачи:

Решить дифференциальное уравнение вида:

$$y'' + \frac{y'}{x} + y = 0$$

на интервале [1; 1,5] с начальными условиями:

3. Мат. модель:

Пусть z = y', тогда

$$\begin{cases} z = y' \\ z' + \frac{z}{x} + y = 0 \end{cases}$$

 $y_{i+1} = y_i + F_i$, где F_i — усредненная производная

$$x_{i+1} = x_i + h_x$$

$$F_i = \frac{k_{1i} + 2k_{2i} + 2k_{3i} + k_{4i}}{6}$$

$$k_{1i} = h * f(x_i, y_i)$$

$$k_{2i} = h * f(x_i + \frac{h}{2}, y_i + \frac{k_{1i}}{2})$$

$$k_{3i} = h * f(x_i + \frac{h}{2}, y_i + \frac{k_{2i}}{2})$$

$$k_{4i} = h * f(x_i + h, y_i + k_{3i})$$

4. Список идентификаторов: (в скобках указаны функции, в которых находится переменная)

Имя	Тип	Смысл
a	const	Левая граница интервала

b	const	Правая граница интервала
y1	const	Начальное значение у(1)
z1	const	Начальное значение у'(1)
h	const	Шаг
xf, yf, zf	double	х, у, z в функции f соответственно
xz, yz, zz	double	х, у, z в функции zf соответственно
h1, h2, h4	double	Шаг в функциях для вычисления коэффициентов усредненной производной
M1, M2, M4	double	Функции в функциях для вычисления коэффициентов усредненной производной
xk, yk, zk	double	х, у, z в функциях для вычисления коэффициентов усредненной производной
dp, lp	double	Предыдущие коэффициенты в функциях для вычисления
		коэффициентов усредненной производной
a1	double	Левая граница в функции
b1	double	Правая граница в функции
у	double	Значение функции у
X	double	Аргумент функций
Z	double	Значение функции z
Fi, Ji	double	Усредненные производные z и у соответственно
k1, j1	double	Коэффициент для вычисления усредненной производной
k2, j2	double	Коэффициент для вычисления усредненной производной
k3, j3	double	Коэффициент для вычисления усредненной производной
k4, j4	double	Коэффициент для вычисления усредненной производной

5. Код программы:

```
#include <iostream>
#include <stdlib.h>
#include <math.h>
#define a 1
#define b 1.5
#define y1 0.77
#define z1 -0.44
#define h 0.1

using namespace std;

double f(double xf, double yf, double zf){
   return -zf/xf - yf;
}

double zf(double xz, double yz, double zz){
```

```
return zz;
double fk1(double h1, double (*M1)(double, double, double), double xk,
double yk, double zk){
  return h1*M1(xk, yk, zk);
}
double fk2(double h2, double (*M2)(double, double, double), double xk,
double yk, double zk, double dp, double lp){
  return h2*M2(xk + h2/2, yk + dp/2, zk + lp/2);
}
double fk4(double h4, double (*M4)(double, double, double), double xk,
double yk, double zk, double dp, double lp){
  return h4*M4(xk + h4, yk + dp, zk + lp);
}
double RungeKuttaMethod(double a1, double b1){
  double y = y1, x = a, z = z1;
  double k1, k2, k3, k4, Fi;
  double j1, j2, j3, j4, Ji;
  while (x < b1)
    k1 = fk1(h, zf, x, y, z);
    j1 = fk1(h, f, x, y, z);
    k2 = fk2(h, zf, x, y, z, k1, j1);
    j2 = fk2(h, f, x, y, z, k1, j1);
    k3 = fk2(h, zf, x, y, z, k2, j2);
    j3 = fk2(h, f, x, y, z, k2, j2);
    k4 = fk4(h, zf, x, y, z, k3, j3);
    i4 = fk4(h, f, x, y, z, k3, i3);
    Fi = (k1 + 2*k2 + 2*k3 + k4)/6;
    Ji = (j1 + 2*j2 + 2*j3 + j4)/6;
     y += Fi;
     z += Ji;
     x += h:
    cout << "x = " << x << " y = " << y << " z = " << z << endl;
```

6. Результаты:

```
■ "C:\Users\svmar\Desktop\Study\2year\<sub>Т</sub>√ўшёышЄх
x y z
x = 1.1 y = 0.724406 z = -0.471314
x = 1.2 y = 0.675854 z = -0.499122
x = 1.3 y = 0.624704 z = -0.523242
x = 1.4 y = 0.571334 z = -0.543518
x = 1.5 y = 0.516133 z = -0.559827
```