import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler import io from google.colab import files uploaded=files.upload() Choose Files No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable. Saving hank.csv to hank.csv df=pd.read_csv(io.StringIO(uploaded['bank.csv'].decode('utf-8')))

df.head()

₹		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Esti
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	
	1													

df=df.drop(['RowNumber','CustomerId','Surname'],axis=1) df.head()

→		CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0	619	France	Female	42	2	0.00	1	1	1	101348.88	1
	1	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
	2	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
	3	699	France	Female	39	1	0.00	2	0	0	93826.63	0
	4	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0
	1											

df.isna().any() df.isna().sum()

→ CreditScore 0 Geography Gender Age 0 Tenure 0 Balance NumOfProducts 0 HasCrCard 0 IsActiveMember EstimatedSalary 0 Exited 0 dtype: int64

print(df.shape) df.info()

→ (10000, 11) <class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999 Data columns (total 11 columns):

Data	columns (total	II columns):	
#	Column	Non-Null Count	Dtype
0	CreditScore	10000 non-null	int64
1	Geography	10000 non-null	object
2	Gender	10000 non-null	object
3	Age	10000 non-null	int64
4	Tenure	10000 non-null	int64
5	Balance	10000 non-null	float64
6	NumOfProducts	10000 non-null	int64
7	HasCrCard	10000 non-null	int64
8	IsActiveMember	10000 non-null	int64

9 EstimatedSalary 10000 non-null float64 10 Exited 10000 non-null int64 dtypes: float64(2), int64(7), object(2) memory usage: 859.5+ KB

df.describe()

→ *		CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
	mean	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
	std	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
	min	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
	25%	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
	50%	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
	75%	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
	max	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

▼ Before performing Bivariate analysis, Lets bring all the features to the same range

```
scaler=StandardScaler()
## Extract only the Numerical Columns to perform Bivariate Analysis
subset=df.drop(['Geography','Gender','HasCrCard','IsActiveMember'],axis=1)
scaled=scaler.fit_transform(subset)
scaled_df=pd.DataFrame(scaled,columns=subset.columns)
sns.pairplot(scaled_df,diag_kind='kde')
```


Categorical Features vs Target Variable
sns.countplot(x='Geography',data=df,hue='Exited')

```
plt.show()
sns.countplot(x='Gender',data=df,hue='Exited')
plt.show()
sns.countplot(x='HasCrCard',data=df,hue='Exited')
plt.show()
sns.countplot(x='IsActiveMember',data=df,hue='Exited')
plt.show()
```


subset=subset.drop('Exited',axis=1)
for i in subset.columns:
 sns.boxplot(df['Exited'],df[i],hue=df['Gender'])
 plt.show()

/usr/local/lib/python3.6/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. FutureWarning

/usr/local/lib/python3.6/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. FutureWarning

/usr/local/lib/python3.6/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. FutureWarning

/usr/local/lib/python3.6/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. FutureWarning

Distinguish the Target and Feature Set and divide the dataset into Training and Test sets

```
X=df.drop('Exited',axis=1)
y=df.pop('Exited')
```

. | |

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.10,random_state=5)
X_train,X_val,y_train,y_val=train_test_split(X_train,y_train,test_size=0.10,random_state=5)
print("X_train size is {}".format(X_train.shape[0]))
print("X_val size is {}".format(X_val.shape[0]))
print("X_test size is {}".format(X_test.shape[0]))

```
X_train size is 8100
X_val size is 900
X_test size is 1000
```

 $from \ sklearn.preprocessing \ import \ StandardScaler \\ scaler=StandardScaler()$

```
num_cols=['CreditScore','Age','Tenure','Balance','NumOfProducts','EstimatedSalary']
num_subset=scaler.fit_transform(X_train[num_cols])
X_train_num_df=pd.DataFrame(num_subset,columns=num_cols)
X_train_num_df['Geography']=list(X_train['Geography'])
X_train_num_df['Gender']=list(X_train['Gender'])
X_train_num_df['HasCrCard']=list(X_train['HasCrCard'])
X_train_num_df['IsActiveMember']=list(X_train['IsActiveMember'])
X_train_num_df.head()
## Standardise the Validation data
num_subset=scaler.fit_transform(X_val[num_cols])
X_val_num_df=pd.DataFrame(num_subset,columns=num_cols)
X_val_num_df['Geography']=list(X_val['Geography'])
X_val_num_df['Gender']=list(X_val['Gender'])
X_val_num_df['HasCrCard']=list(X_val['HasCrCard'])
X_val_num_df['IsActiveMember']=list(X_val['IsActiveMember'])
## Standardise the Test data
num subset=scaler.fit transform(X test[num cols])
X_test_num_df=pd.DataFrame(num_subset,columns=num_cols)
X_test_num_df['Geography']=list(X_test['Geography'])
X_test_num_df['Gender']=list(X_test['Gender'])
X_test_num_df['HasCrCard']=list(X_test['HasCrCard'])
X_test_num_df['IsActiveMember']=list(X_test['IsActiveMember'])
## Convert the categorical features to numerical
X_train_num_df=pd.get_dummies(X_train_num_df,columns=['Geography','Gender'])
X_test_num_df=pd.get_dummies(X_test_num_df,columns=['Geography','Gender'])
X_val_num_df=pd.get_dummies(X_val_num_df,columns=['Geography','Gender'])
X_train_num_df.head()
\overline{2}
```

*		CreditScore	Age	Tenure	Balance	NumOfProducts	EstimatedSalary	HasCrCard	IsActiveMember	Geography_France	Geography_Ger
	0	-1.178587	-1.041960	-1.732257	0.198686	0.820905	1.560315	1	1	1	
	1	-0.380169	-1.326982	1.730718	-0.022020	-0.907991	-0.713592	1	0	0	
	2	-0.349062	1.808258	-0.693364	0.681178	0.820905	-1.126515	1	0	0	
	3	0.625629	2.378302	-0.347067	-1.229191	0.820905	-1.682740	1	1	1	
	4	-0.203895	-1.136967	1.730718	0.924256	-0.907991	1.332535	1	1	0	
	4										>

Initialise and build the Model

```
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense
model=Sequential()
model.add(Dense(7,activation='relu'))
model.add(Dense(10,activation='relu'))
model.add(Dense(1,activation='sigmoid'))
import tensorflow as tf
optimizer=tf.keras.optimizers.Adam(0.01)
model.compile(loss='binary_crossentropy',optimizer=optimizer,metrics=['accuracy'])
model.fit(X_train_num_df,y_train,epochs=100,batch_size=10,verbose=1)
→ Epoch 1/100
  Enoch 2/100
  810/810 [=====
         Epoch 3/100
  Enoch 4/100
          Epoch 5/100
  Epoch 6/100
  Epoch 7/100
  Epoch 8/100
```

```
Enoch 9/100
Epoch 10/100
Epoch 11/100
810/810 [=====
    Epoch 12/100
Epoch 13/100
Epoch 14/100
810/810 [============= ] - 1s 1ms/step - loss: 0.3342 - accuracy: 0.8667
Epoch 15/100
810/810 [=====
   Epoch 16/100
Epoch 17/100
Epoch 18/100
810/810 [=====
    Epoch 19/100
Epoch 20/100
810/810 [=====
    Epoch 21/100
Epoch 22/100
Epoch 23/100
Epoch 24/100
Epoch 25/100
Epoch 26/100
810/810 [============ ] - 1s 1ms/step - loss: 0.3361 - accuracy: 0.8622
Epoch 27/100
Epoch 28/100
Epoch 29/100
```

```
y_pred_val=model.predict(X_val_num_df)
y_pred_val[y_pred_val>0.5]=1
y_pred_val[y_pred_val <0.5]=0</pre>
```

```
y_pred_val=y_pred_val.tolist()
X_compare_val=X_val.copy()
X_compare_val['y_actual']=y_val
X_compare_val['y_pred']=y_pred_val
X_compare_val.head(10)
```

₹		CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	y_actual	y_pred
	340	642	Germany	Female	40	6	129502.49	2	0	1	86099.23	1	[0.0]
	8622	706	Germany	Male	36	9	58571.18	2	1	0	40774.01	0	[0.0]
	8401	535	Spain	Male	58	1	0.00	2	1	1	11779.98	1	[0.0]
	4338	714	Spain	Male	25	2	0.00	1	1	1	132979.43	0	[0.0]
	8915	606	France	Male	36	1	155655.46	1	1	1	192387.51	1	[0.0]
	2624	605	Spain	Female	29	3	116805.82	1	0	0	4092.75	0	[0.0]
	2234	720	France	Female	38	10	0.00	2	1	1	56229.72	1	[0.0]
	349	582	France	Male	39	5	0.00	2	1	1	129892.93	0	[0.0]
	3719	850	France	Female	62	1	124678.35	1	1	0	70916.00	1	[1.0]
	2171	526	Germanv	Male	58	9	190298.89	2	1	1	191263.76	0	10.01

from sklearn.metrics import confusion_matrix cm_val=confusion_matrix(y_val,y_pred_val) cm_val

```
→ array([[694, 22],
          [ 96, 88]])
```

Accuracy=782/900 print("Accuracy of the Model on the Validation Data set is 86.89%")

→ Accuracy of the Model on the Validation Data set is 86.89%

loss1,accuracy1=model.evaluate(X_train_num_df,y_train,verbose=False)
loss2,accuracy2=model.evaluate(X_val_num_df,y_val,verbose=False)
print("Train Loss {}".format(loss1))
print("Train Accuracy {}".format(accuracy1))
print("Val Loss {}".format(loss2))