Mechanism design for selling a single indivisible object Motivation: simplest yet elegant results Setup: type set of agent  $i : T_i \subseteq \mathbb{R}$ t; ET; dentes The value of agent i if she wins the object An allocation a is a vector of length n that represents The probability of winning the object by The respective agent. Hence, Set of allocations:  $\Delta A = \{ a \in [0,1]^m : \sum_{i=1}^n a_i = 1 \}$ Allocation rule: f: T, ×T2×···×Tn → AA Valuation:  $v_i(a,t_i) = a_i \cdot t_i$  (product from) - expected valuation Hence,  $f(t_i, t_i)$  is the probability of winning the object for agent i When the type profile is  $(t_i, t_i)$ . Recall: Vickrey/Second-price auction: type is vi. define  $t_{i}^{(2)} = \max \{v_{j}\}$ agent i wins if vi > ti2), loses if vi < ti2) a tie-breaking rule decider if equality.

since, payment is  $\pm_{i}^{(2)}$  if i is the winner. The utility is zero in case of a tie.

ui = { 0 } vi < + (2)  $\left\{v_{i}-\pm_{i}^{(2)}: \psi v_{i}>\pm_{i}^{(2)}\right\}$ 





Observations

- (1) utility is convex, derivative is zero if  $v_i < \frac{t_i^{(2)}}{t_i^{(2)}}$  and 1 if  $v_i > \frac{t_i^{(2)}}{t_i^{(2)}}$  not differentiable at  $v_i = \frac{t_i^{(2)}}{t_i^{(2)}}$ .
- (2) Whenever differentiable, it coincides with the allocation probability.

Known facts from convex analysis (see, e.g., Rockafeller (1980))

Fact 1: Convex functions are continuous in the interior of its domain.

Jumps can occur only at the boundaries.

Fact 2: Convex functions are differentiable "almost everywhere".

The points where The function is not differentiable form a countable set (see the example before) - has measure zero.

Recall: A function  $g:I \to \mathbb{R}$  (where I is an interval) is convex if for every  $z,y \in I$  and  $\lambda \in [0, ]$ 

$$\lambda g(x) + (-\lambda)g(y) \geqslant g(\lambda x + (-\lambda)y)$$
.

If g is differentiable at  $z \in I$ , we denote the derivative by g'(z). The following definition extends the idea of gradient

Defn. For any  $z \in I$ ,  $z^*$  is a subgradient of g at z if  $g(z) > g(z) + z^*(z-z) + z \in I$ .



Few standard results (proofs: any standard text on convex analysis) Lemma 1: Let  $g: I \to \mathbb{R}$  be a convex function. Suppose z is in the interior of I and g is differentiable at z. Then g'(z) is the unique subgradient of g.

Lemma 2: Let  $g:I \to IR$  be a convex function. Then for every  $x \in I$  a subgradient of g at z exists.

Fact 3: Let  $I'\subseteq I$  be the set of points where g is differentiable. The set  $I\setminus I'$  is of measure zero. The set of subgradients at a point forms a convex set.

Define 
$$g'(x) = \lim_{z \to x} g'(z)$$
,  $g'(x) = \lim_{z \to x} g'(z)$   
 $g \in I', z > z$   
 $g \in I', z > z$ 

Fact 4: The set of subgradients at x \in I \( I \) is \[ g'(x), g'(x) \]

We will denote the set of subgradients of g at  $x \in I$  as  $\partial g(x)$ 

Lemma | says  $\partial g(x) = \{g'(x)\} + x \in I'$ 

Lemma 2 says that  $\partial g(x) \neq \emptyset \forall x \in I$ .

Lemma 3: Let  $g: I \to \mathbb{R}$  be a convex function. Let  $\phi: I \to \mathbb{R}$  be a subgradient function, i.e.,  $\phi(z) \in g(z) \; \forall z \in I$ . Then for all  $x,y \in I$  s.t. x > y, we have  $\phi(z) > \phi(y)$ .

 $\phi(z)$  picks one value at every z (even if subgradients can be many)

This result says that subgradient functions are monotone non-decreasing.

Lemma 4: Let  $g: I \to \mathbb{R}$  be a convex function. Then for any  $z, y \in I$ ,  $g(z) = g(y) + \int_{y}^{z} \varphi(z) dz$ ,

where  $\phi: I \to \mathbb{R}$  is a.t.  $\phi(3) \in \&g(3)$ ,  $\forall 3 \in I$ .