A symbolic execution semantics for TopHat

Appendices

Nico Naus
Information and Computing Sciences
Utrecht University
Utrecht, The Netherlands
n.naus@uu.nl

Tim Steenvoorden
Software Science
Radboud University
Nijmegen, The Netherlands
tim@cs.ru.nl

Markus Klinik Software Science Radboud University Nijmegen, The Netherlands m.klinik@cs.ru.nl

ACM Reference Format:

A COMPLETE SYMBOLIC SEMANTICS

A.1 Symbolic evaluation rules

$$\frac{\text{SE-App}}{\tilde{e}_{1},\tilde{\sigma}~ \lozenge ~ \frac{\lambda x:\tau.\tilde{e}_{1}',\tilde{\sigma}',~\phi_{1}}{\lambda x:\tau.\tilde{e}_{1}',\tilde{\sigma}',~\phi_{1}} \quad \tilde{e}_{2},\tilde{\sigma}'~ \lozenge ~ \frac{\tilde{v}_{2},\tilde{\sigma}'',~\phi_{2}}{\tilde{v}_{2},\tilde{\sigma}'',~\phi_{2}}\tilde{e}_{1}'[x\mapsto \tilde{v}_{2}],\tilde{\sigma}''~ \lozenge ~ \frac{\tilde{v}_{1},\tilde{\sigma}''',\phi_{3}}{\tilde{v}_{1},\tilde{\sigma}''',~\phi_{1}\wedge\phi_{2}\wedge\phi_{3}}$$

$$\frac{\text{SE-OR}}{\tilde{e}_{1},\tilde{\sigma}~\circlearrowleft~\tilde{t}_{1},\tilde{\sigma}',~\varphi_{1}} \qquad \tilde{e}_{2},\tilde{\sigma}'~\circlearrowleft~\tilde{t}_{2},\tilde{\sigma}'',~\varphi_{2}}{\tilde{e}_{1} \blacklozenge \tilde{e}_{2},\tilde{\sigma}~\circlearrowleft~\tilde{t}_{1} \blacklozenge \tilde{t}_{2},\tilde{\sigma}'',~\varphi_{1} \land \varphi_{2}} \qquad \frac{\text{SE-Fail}}{\not \downarrow,\tilde{\sigma}~\circlearrowleft~\tilde{t}_{1} \blacklozenge \tilde{t}_{2},\tilde{\sigma}'',~\varphi_{1} \land \varphi_{2}}$$

A.2 Symbolic striding rules

A.3 Symbolic normalisation rules

$$\tilde{e}, \tilde{\sigma} \not \& \overline{\tilde{t}, \tilde{\sigma}', \varphi}$$

A.4 Symbolic handling rules

A.5 Symbolic driving rules

B FOR SEMANTICS

B.1 Typing rules

B.2 Evaluation rules

$e, \sigma \downarrow v, \sigma'$

B.3 Striding rules

B.4 Normalisation rules

B.5 Handling rules

B.6 Driving rules

$$\begin{array}{c|c} t, \sigma \stackrel{i}{\Rightarrow} t', \sigma' \end{array}$$
 I-Handle
$$\underbrace{t, \sigma \stackrel{i}{\Rightarrow} t', \sigma' \quad t', \sigma' \downarrow t'', \sigma''}_{t, \sigma \stackrel{i}{\Rightarrow} t'', \sigma''}$$

C SOUNDNESS PROOFS

C.1 Proof of soundness of symbolic evaluation semantics

PROOF. We prove Lemma ?? by induction over the derivation of the symbolic evaluation $e, \sigma \downarrow \overline{\tilde{e}, \tilde{\sigma}, \varphi}$.

Case SE-VALUE

Since this case does not generate constraints, any M will do. Since neither the state, nor the expression is altered by the evaluation rule E-Value, this case holds trivially.

Case SE-FAIL

Since this case does not generate constraints, any M will do. Since neither the state, nor the expression $\frac{1}{2}$ is altered by the evaluation rule E-FAIL, this case holds trivially.

Case SE-Pair

For all mappings M such that $M(\varphi_1 \wedge \varphi_2)$, we need to demonstrate that

 $\langle e_1, e_2 \rangle, \sigma \downarrow \langle v_1, v_2 \rangle, \sigma''$ with $M\langle \tilde{v}_1, \tilde{v}_2 \rangle \equiv \langle v_1, v_2 \rangle$ and $M\tilde{\sigma}'' \equiv \sigma''$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.\tilde{e}_1,\tilde{\sigma} \ \ \ \ \overline{\tilde{v}_1,\tilde{\sigma}',\varphi_1} \land M_1\varphi_1 \supset e_1,\sigma \ \ \downarrow \ v_1,\sigma' \land M_1\tilde{v}_1 \equiv v_1 \land M_1\tilde{\sigma}' \equiv \sigma'$ and

 $\forall M_2.M_2\varphi_2\supset e_2,\sigma'\ \downarrow\ \upsilon_2,\sigma''\wedge M_2\tilde{\upsilon}_2\equiv \upsilon_2\wedge M_2\tilde{\sigma}''\equiv\sigma''.$

Note that we have omitted from the second application of the induction hypothesis, the requirement that the symbolic step exists. The fact that this step exists is obtained from SE-pair and omitted to increase readability of this and any following proofs.

Since M satisfies both φ_1 and φ_2 , we obtain from E-PAIR and the induction steps above that $\langle e_1, e_2 \rangle$, $\sigma \downarrow \langle v_1, v_2 \rangle$, σ'' , $M\langle \tilde{v}_1, \tilde{v}_2 \rangle \equiv \langle v_1, v_2 \rangle$ and $M\tilde{\sigma}'' \equiv \sigma''$.

Case SE-First

For all mappings M such that $M\varphi$, we need to show that fst $e, \sigma \downarrow v_1, \sigma'$ with $M\tilde{v}_1 \equiv v_1$ and $M\tilde{\sigma}' \equiv \sigma'$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi \supset e,\sigma \ \downarrow \ \langle v_1,v_2\rangle,\sigma' \wedge M_1\langle \tilde{v}_1,\tilde{v}_2\rangle \equiv \langle v_1,v_2\rangle \wedge M_1\tilde{\sigma}' \equiv \sigma'$

Since M satisfies φ , we obtain from E-First and the induction step above that fst e, $\sigma \downarrow v_1, \sigma'$ with $M\tilde{v}_1 \equiv v_1 s$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SE-Second

For all mappings M such that $M\varphi$, we need to show that snd e, $\sigma \downarrow v_2$, σ' with $M\tilde{v}_2 \equiv v_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi \supset e, \sigma \downarrow \langle v_1, v_2 \rangle, \sigma' \land M_1 \langle \tilde{v}_1, \tilde{v}_2 \rangle \equiv \langle v_1, v_2 \rangle \land M_1\tilde{\sigma}' \equiv \sigma'$

Since M satisfies φ , we obtain from E-Second and the induction step above that snd $e, \sigma \downarrow v_2, \sigma'$ with $M\tilde{v}_2 \equiv v_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SE-Cons

For all mappings M such that $M\varphi$, we need to demonstrate that $e_1 :: e_2, \sigma \downarrow v_1 :: v_2, \sigma''$ with $M\tilde{v}_1 :: \tilde{v}_2 \equiv v_1 :: v_2$ and $M\tilde{\sigma}'' \equiv \sigma''$. From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi_1 \supset e_1, \sigma \downarrow v_1, \sigma' \land M_1\tilde{v}_1 \equiv v_1 \land M_1\tilde{\sigma}' \equiv \sigma'$ and

 $\forall M_2.M_2\varphi_2\supset e_2,\sigma'\ \downarrow\ v_2,\sigma''\wedge M_2\tilde{v}_2\equiv v_2\wedge M_2\tilde{\sigma}''\equiv\sigma''$

Since M satisfies both φ_1 and φ_2 , we obtain from E-Cons and the induction steps above that $e_1 :: e_2, \sigma \downarrow v_1 :: v_2, \sigma''$ with $M(\tilde{v}_1 :: \tilde{v}_2) \equiv v_1 :: v_2$ and $M\tilde{\sigma}'' \equiv \sigma''$.

Case SE-HEAD

For all mappings M such that $M\varphi$, we need to show that head $e, \sigma \downarrow v_1, \sigma'$ with $M\tilde{v}_1 \equiv v_1$ and $M\tilde{\sigma}' \equiv \sigma'$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1 \varphi \supset e, \sigma \downarrow v_1 :: v_2, \sigma' \land M_1(\tilde{v}_1 :: \tilde{v}_2) \equiv v_1 :: v_2 \land M_1\tilde{\sigma}' \equiv \sigma'$

Since M satisfies φ , we obtain from E-Head and the induction step above that head $e, \sigma \downarrow v_1, \sigma'$ with $M\tilde{v}_1 \equiv v_1$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SE-TAIL

For all mappings M such that $M\varphi$, we need to show that tail $e, \sigma \downarrow v_2, \sigma'$ with $M\tilde{v}_2 \equiv v_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi\supset e,\sigma\ \downarrow\ v_1::v_2,\sigma'\wedge M_1(\tilde{v}_1::\tilde{v}_2)\equiv v_1::v_2\wedge M_1\tilde{\sigma}'\equiv\sigma'$

Since M satisfies φ , we obtain from E-TAIL and the induction step above that tail $e, \sigma \downarrow v_2, \sigma'$ with $M\tilde{v}_2 \equiv v_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SE-App

For all mappings M such that $M(\varphi_1 \wedge \varphi_2 \wedge \varphi_3)$, we need to demonstrate that e_1e_2 , $\sigma \downarrow v_1$, σ''' with $M\tilde{v}_1 \equiv v_1$ and $M\tilde{\sigma}''' \equiv \sigma'''$. From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi_1\supset e_1,\sigma\downarrow\lambda x:\tau.e_1',\sigma'\wedge M_1\lambda x:\tau.\tilde{e}_1'\equiv\lambda x:\tau.e_1'\wedge M_1\tilde{\sigma}'\equiv\sigma'$

and $\forall M_2.M_2\varphi_2 \supset e_2, \sigma' \downarrow \upsilon_2, \sigma'' \land M_2\tilde{\upsilon}_2 \equiv \upsilon_2 \land M_2\tilde{\sigma}'' \equiv \sigma''$

and $\forall M_3.M_3\varphi_3 \supset e_1'[x \mapsto v_2], \sigma'' \downarrow v_1, \sigma''' \land M_3\tilde{v}_1 \equiv v_1 \land M_3\tilde{\sigma}''' \equiv \sigma'''.$

Since M satisfies φ_1 , φ_2 and φ_3 , we obtain from E-APP and the induction steps above that e_1e_2 , $\sigma \downarrow v_1$, σ''' with $M\tilde{v}_1 \equiv v_1$ and $M\tilde{\sigma}''' \equiv \sigma'''$.

Case SE-IF

For all mappings M such that $M(\varphi_1 \wedge \varphi_2 \wedge \tilde{v}_1)$, we need to demonstrate that **if** e_1 **then** e_2 **else** e_3 , $\sigma \downarrow v_2$, σ'' with $M\tilde{v}_2 = v_2$ and $M\tilde{\sigma}'' = \sigma''$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi_1 \supset e_1, \sigma \downarrow v_1, \sigma' \land M_1\tilde{v}_1 \equiv v_1 \land M_1\tilde{\sigma}' \equiv \sigma'$ and

 $\forall M_2.M_2\varphi_2\supset e_2,\sigma'\ \downarrow\ \upsilon_2,\sigma''\wedge M_2\tilde{\upsilon}_2\equiv \upsilon_2\wedge M_2\tilde{\sigma}''\equiv\sigma''.$

Since *M* satisfies φ_1 , φ_2 and \tilde{v}_1 , we know that v_1 = True.

From E-IFTRUE and the induction steps above, we obtain that

if e_1 **then** e_2 **else** e_3 , $\sigma \downarrow v_2$, σ'' with $M\tilde{v}_2 = v_2$ and $M\tilde{\sigma}'' = \sigma''$.

For all mappings M such that $M(\varphi_1 \wedge \varphi_3 \wedge \neg \tilde{v}_1)$, we need to demonstrate that **if** e_1 **then** e_2 **else** e_3 , $\sigma \downarrow v_3$, σ'' with $M\tilde{v}_3 = v_3$ and $M\tilde{\sigma}'' = \sigma''$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi_1 \supset e_1, \sigma \downarrow v_1, \sigma' \land M_1\tilde{v}_1 \equiv v_1 \land M_1\tilde{\sigma}' \equiv \sigma'$ and

 $\forall M_3.M_3\varphi_3\supset e_3,\sigma'\downarrow v_3,\sigma''\wedge M_3\tilde{v}_3\equiv v_3\wedge M_3\tilde{\sigma}''\equiv\sigma''.$

Since M satisfies φ_1 , φ_3 and $\neg \tilde{v}_1$, we know that v_1 = False.

From E-IFFALSE and the induction steps above, we obtain that

if e_1 **then** e_2 **else** e_3 , $\sigma \downarrow v_3$, σ'' with $M\tilde{v}_3 = v_3$ and $M\tilde{\sigma}'' = \sigma''$.

Case SE-Ref

For all mappings M such that $M\varphi$, we need to demonstrate that

ref $e, \sigma \downarrow l, \sigma'[l \mapsto v]$ with $Ml \equiv l$ and $M\tilde{\sigma}'[l \mapsto \tilde{v}] \equiv \sigma'[l \mapsto v]$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi \supset e, \sigma \downarrow \upsilon, \sigma' \land M_1\tilde{\upsilon} \equiv \upsilon \land M_1\tilde{\sigma}' \equiv \sigma'.$

Since M satisfies φ , we obtain from E-Ref and the induction steps above that **ref** $e, \sigma \downarrow l, \sigma'[l \mapsto v]$.

We assume that the assignment of location references happens in a deterministic manner, and that we can therefore conclude that exactly the same l is used in both cases. Since l cannot contain any symbols, $Ml \equiv l$ holds trivially.

This, together with $M\tilde{\sigma}' \equiv \sigma'$ obtained from the induction hypothesis, we can conclude that $M\tilde{\sigma}'[l \mapsto \tilde{v}] \equiv \sigma'[l \mapsto v]$.

Case SE-Deres

For all mappings M such that $M\varphi$, we need to demonstrate that $!e, \sigma \downarrow \sigma'(l), \sigma'$ with $M\tilde{\sigma}'(l) \equiv \sigma'(l)$ and $M\tilde{\sigma}' \equiv \sigma'$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi\supset e,\sigma\downarrow l,\sigma'\wedge M_1l\equiv l\wedge M_1\tilde{\sigma}'\equiv\sigma'.$

Since M satisfies φ , we obtain from E-Deref and the induction step above that $!e, \sigma \downarrow \sigma'(l), \sigma'$ with $M\tilde{\sigma}'(l) \equiv \sigma'(l)$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SE-Assign

For all mappings M such that $M(\varphi_1 \wedge \varphi_2)$, we need to demonstrate that

 $e_1 := e_2, \sigma \downarrow \langle \rangle, \sigma''[l \mapsto v_2]$ with $M\langle \rangle \equiv \langle \rangle$, which holds true trivially, and $M\tilde{\sigma}''[l \mapsto \tilde{v}_2] \equiv \sigma''[l \mapsto v_2]$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi_1 \supset e_1, \sigma \downarrow l, \sigma' \land M_1l \equiv l \land M_1\tilde{\sigma}' \equiv \sigma'$ and

 $\forall M_2.M_2\varphi_2\supset e_2,\sigma'\downarrow \upsilon_2,\sigma''\wedge M_2\tilde{\upsilon}_2\equiv \upsilon_2\wedge M_2\tilde{\sigma}''\equiv \sigma''$

Since M satisfies both φ_1 and φ_2 , we obtain from E-Assign and the induction steps above that $e_1 := e_2, \sigma \downarrow \langle \rangle, \sigma''[l \mapsto v_2]$ with $M\tilde{\sigma}''[l \mapsto \tilde{v}_2] \equiv \sigma''[l \mapsto v_2]$.

Case SE-EDIT

For all mappings M such that $M\varphi$, we need to demonstrate that $\Box e, \sigma \downarrow \Box v, \sigma'$ with $M \Box \tilde{v} \equiv \Box v$ and $M\tilde{\sigma}' \equiv \sigma'$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi \supset e, \sigma \downarrow \upsilon, \sigma' \land M_1\tilde{\upsilon} \equiv \upsilon \land M_1\tilde{\sigma}' \equiv \sigma'.$

Since M satisfies φ , we obtain from E-EDIT and the induction step above that $\Box e, \sigma \downarrow \Box v, \sigma'$ with $M \Box \tilde{v} \equiv \Box v$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SE-Update

For all mappings M such that $M\varphi$, we need to demonstrate that $\blacksquare e, \sigma \downarrow \blacksquare l, \sigma'$ with $M \blacksquare l \equiv \blacksquare l$ and $M\tilde{\sigma}' \equiv \sigma'$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi \supset e, \sigma \downarrow l, \sigma' \land M_1l \equiv l \land M_1\tilde{\sigma}' \equiv \sigma'.$

Since M satisfies φ , we obtain from E-UPDATE and the induction step above that $\blacksquare e, \sigma \downarrow \blacksquare l, \sigma'$ with $M \blacksquare l \equiv \blacksquare l$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SE-THEN

For all mappings M such that $M\varphi$, we need to demonstrate that

 $e_1 \triangleright e_2, \sigma \downarrow t_1 \triangleright e_2, \sigma'$ with $M\tilde{t}_1 \triangleright \tilde{e}_2 \equiv t_1 \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi\supset e,\sigma\downarrow t_1,\sigma'\wedge M_1\tilde{t}_1\equiv t_1\wedge M_1\tilde{\sigma}'\equiv\sigma'.$

Since M satisfies φ , we obtain from E-Then and the induction step above that $e_1 \triangleright e_2$, $\sigma \downarrow t_1 \triangleright e_2$, σ' with $M\tilde{t}_1 \triangleright \tilde{e}_2 \equiv t_1 \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SE-Next

For all mappings M such that $M\varphi$, we need to demonstrate that

 $e_1 \triangleright e_2, \sigma \downarrow t_1 \triangleright e_2, \sigma'$ with $M\tilde{t}_1 \triangleright e_2 \equiv t_1 \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi \supset e, \sigma \downarrow t_1, \sigma' \land M_1\tilde{t}_1 \equiv t_1 \land M_1\tilde{\sigma}' \equiv \sigma'.$

Since M satisfies φ , we obtain from E-NexT and the induction step above that $e_1 \triangleright e_2$, $\sigma \downarrow t_1 \triangleright e_2$, σ' with $M\tilde{t}_1 \triangleright e_2 \equiv t_1 \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SE-OR

For all mappings M such that $M(\varphi_1 \wedge \varphi_2)$, we need to demonstrate that

 $e_1 \blacklozenge e_2, \sigma \downarrow t_1 \blacklozenge t_2, \sigma''$ with $M\tilde{t}_1 \blacklozenge \tilde{t}_2 \equiv t_1 \blacklozenge t_2$ and $M\tilde{\sigma}'' \equiv \sigma''$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi_1 \supset e_1, \sigma \downarrow t_1, \sigma' \land M_1\tilde{t}_1 \equiv t_1 \land M_1\tilde{\sigma}' \equiv \sigma'$ and

 $\forall M_2.M_2\varphi_2\supset e_2,\sigma'\downarrow t_2,\sigma''\wedge M_2\tilde{t}_2\equiv t_2\wedge M_2\tilde{\sigma}''\equiv\sigma''$

Since M satisfies both φ_1 and φ_2 , we obtain from E-OR and the induction steps above that $e_1 \blacklozenge e_2, \sigma \downarrow t_1 \blacklozenge t_2, \sigma''$ with $M\tilde{t}_1 \blacklozenge \tilde{t}_2 \equiv t_1 \blacklozenge t_2$ and $M\tilde{\sigma}'' \equiv \sigma''$.

Case SE-AND

For all mappings M such that $M(\varphi_1 \wedge \varphi_2)$, we need to demonstrate that

 $e_1 \bowtie e_2, \sigma \downarrow t_1 \bowtie t_2, \sigma''$ with $M\tilde{t}_1 \bowtie \tilde{t}_2 \equiv t_1 \bowtie t_2$ and $M\tilde{\sigma}'' \equiv \sigma''$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi_1 \supset e_1, \sigma \downarrow t_1, \sigma' \land M_1\tilde{t}_1 \equiv t_1 \land M_1\tilde{\sigma}' \equiv \sigma'$ and

 $\forall M_2.M_2\varphi_2\supset e_2,\sigma'\downarrow t_2,\sigma''\wedge M_2\tilde{t}_2\equiv t_2\wedge M_2\tilde{\sigma}''\equiv\sigma''$

Since M satisfies both φ_1 and φ_2 , we obtain from E-AND and the induction steps above that $e_1 \bowtie e_2, \sigma \downarrow t_1 \bowtie t_2, \sigma''$ with $M\tilde{t}_1 \bowtie \tilde{t}_2 \equiv t_1 \bowtie t_2$ and $M\tilde{\sigma}'' \equiv \sigma''$.

C.2 Proof of soundness of symbolic striding semantics

PROOF. We prove ?? by induction over the derivation $t, \sigma \mapsto \overline{\tilde{t}, \tilde{\sigma}, \varphi}$.

Case SS-THENSTAY.SS-THENFAIL

For all mappings M such that $M\varphi$ we need to demonstrate that

 $t_1 \triangleright e_2, \sigma \mapsto t_1' \triangleright e_2, \sigma' \text{ with } M\tilde{t}_1' \triangleright e_2 \equiv t_1' \triangleright e_2 \text{ and } M\tilde{\sigma}' \equiv \sigma'.$

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi\supset t_1,\sigma\mapsto t_1',\sigma'\wedge M_1\tilde{t}_1'\equiv t_1'\wedge M_1\tilde{\sigma}'\equiv\sigma'.$

Since M satisfies φ , we obtain from S-ThenStay and S-ThenFail respectively, and the induction step above that $t_1 \triangleright e_2$, $\sigma \mapsto t_1' \triangleright e_2$, σ' with $M\tilde{t}_1' \triangleright e_2 \equiv t_1' \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SS-THENCONT

For all mappings M such that $M\varphi_1 \wedge M\varphi_2$ we need to demonstrate that $t_1 \triangleright e_2$, $\sigma \mapsto t_2$, σ'' with $M\tilde{t}_2 \equiv t_2$ and $M\tilde{\sigma}'' \equiv \sigma''$.

From the induction hypothesis, we obtain the following.

 $\forall M_1.M_1\varphi_1\supset t_1, \sigma\mapsto t_1', \sigma'\supset M_1\tilde{t}_1'\equiv t_1'\wedge M_1\tilde{\sigma}'\equiv\sigma'.$

From Lemma ?? we know that

 $\forall M_2.M_2\varphi_2\supset e_2\upsilon_1,\sigma'\downarrow t_2,\sigma'' \qquad M_2\tilde{t}_2\equiv t_2\wedge M_2\tilde{\sigma}''\equiv\sigma''.$

Since M satisfies both φ_1 and φ_2 , we obtain from S-ThenCont, the induction step and application of Lemma ?? above that $t_1 \triangleright e_2$, $\sigma \mapsto t_2$, σ'' with $M\tilde{t}_2 \equiv t_2$ and $M\tilde{\sigma}'' \equiv \sigma''$.

Case SS-OrLeft

For all mappings M such that $M\varphi$ we have to demonstrate that

$$t_1 \blacklozenge t_2, \sigma \mapsto t'_1, \sigma'$$
 with $M\tilde{t}'_1 \equiv t'_1$ and $M\tilde{\sigma}' \equiv \sigma'$.

From the induction hypothesis, we obtain the following.

$$\forall M_1.M_1\varphi\supset t_1,\sigma\mapsto t_1',\sigma' \qquad M_1\tilde{t}_1'\equiv t_1'\wedge M_1\tilde{\sigma}'\equiv\sigma'.$$

Since M satisfies φ , we obtain from S-OrLeft and the induction step above that $t_1 \blacklozenge t_2, \sigma \mapsto t_1', \sigma'$ with $M\tilde{t}_1' \equiv t_1'$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SS-OrRight

For all mappings M such that $M(\varphi_1 \wedge \varphi_2)$ we need to demonstrate that $t_1 \blacklozenge t_2, \sigma \mapsto t_2', \sigma''$ with $M\tilde{t}_2' \equiv t_2'$ and $M\tilde{\sigma}'' \equiv \sigma''$.

From the induction hypothesis, we obtain the following.

$$\forall M_1.M_1\varphi_1\supset t_1, \sigma\mapsto t_1', \sigma'\wedge M_1\tilde{t}_1'\equiv t_1'\wedge M_1\tilde{\sigma}'\equiv\sigma'$$
 and

$$\forall M_2.M_2\varphi_2\supset t_2,\sigma'\mapsto t_2',\sigma''\wedge M_2\tilde{t}_2'\equiv t_2'\wedge M_2\tilde{\sigma}''\equiv \sigma''.$$

Since M satisfies both φ_1 and φ_2 , and from the premise we have that $\mathcal{V}\left(\tilde{t}',\tilde{\sigma}'\right)=\bot$, we obtain from S-Orright and the induction steps above that $t_1 \blacklozenge t_2, \sigma \mapsto t_2', \sigma''$ with $M\tilde{t}_2' \equiv t_2'$ and $M\tilde{\sigma}'' \equiv \sigma''$.

Case SS-OrNone

For all mappings M such that $M(\varphi_1 \wedge \varphi_2)$ we need to demonstrate that $t_1 \diamond t_2, \sigma \mapsto t_1' \diamond t_2', \sigma''$ with $M\tilde{t}_1' \diamond \tilde{t}_2' \equiv t_1' \diamond t_2'$ and $M\tilde{\sigma}'' \equiv \sigma''$. From the induction hypothesis, we obtain the following.

$$\forall M_1.M_1\varphi_1 \supset t_1, \sigma \mapsto t_1', \sigma' \land M_1\tilde{t}_1' \equiv t_1' \land M_1\tilde{\sigma}' \equiv \sigma'$$
 and

$$\forall M_2.M_2\varphi_2\supset t_2,\sigma'\mapsto t_2',\sigma''\wedge M_2\tilde{t}_2'\equiv t_2'\wedge M_2\tilde{\sigma}''\equiv\sigma''.$$

Since M satisfies both φ_1 and φ_2 , we obtain from S-Ornone and the induction steps above that $t_1 \blacklozenge t_2, \sigma \mapsto t_1' \blacklozenge t_2', \sigma''$ with $M\tilde{t}_1' \blacklozenge \tilde{t}_2' \equiv t_1' \blacklozenge t_2'$ and $M\tilde{\sigma}'' \equiv \sigma''$.

Case SS-Edit

For all mappings M, we need to demonstrate that $\Box v$, $\sigma \mapsto \Box v$, σ with $M \Box v \equiv \Box v$ and $M\sigma \equiv \sigma$. This follows trivially from S-EDIT.

Case SS-FILL

For all mappings M, we need to demonstrate that $\boxtimes \beta$, $\sigma \mapsto \boxtimes \beta$, σ with $M \boxtimes \beta \equiv \boxtimes \beta$ and $M\sigma \equiv \sigma$. This follows trivially from S-Fill.

For all mappings M, we need to demonstrate that $\blacksquare l, \sigma \mapsto \blacksquare l, \sigma$ with $M \blacksquare l \equiv \blacksquare l$ and $M\sigma \equiv \sigma$. This follows trivially from S-Update.

Case SS-FAIL

For all mappings M, we need to demonstrate that $\frac{1}{2}$, $\sigma \mapsto \frac{1}{2}$, σ with $M \notin \Xi \notin A$ and $M\sigma \equiv \sigma$. This follows trivially from S-FAIL.

Case SS-Xor

For all mappings M, we need to demonstrate that $e_1 \lozenge e_2$, $\sigma \mapsto e_1 \lozenge e_2$, $\sigma \text{ with } Me_1 \lozenge e_2 \equiv e_1 \lozenge e_2$ and $M\tilde{\sigma} \equiv \sigma$. This follows trivially from S-Xor.

Case SS-Next

For all mappings M such that $M\varphi$, we need to demonstrate that

$$t_1 \triangleright e_2, \sigma \mapsto t_1' \triangleright e_2, \sigma' \text{ with } M\tilde{t}_1' \triangleright e_2 \equiv t_1' \triangleright e_2 \text{ and } M\tilde{\sigma}' \equiv \sigma'.$$

From the induction hypothesis, we obtain the following.

$$\forall M_1.M_1\varphi\supset t_1,\sigma\mapsto t_1',\sigma'\wedge M_1\tilde{t}_1'\equiv t_1'\wedge M_1\tilde{\sigma}'\equiv\sigma'.$$

Since M satisfies φ , we obtain from S-Next and the induction step above that $t_1 \triangleright e_2, \sigma \mapsto t_1' \triangleright e_2, \sigma'$ with $M\tilde{t}_1' \triangleright e_2 \equiv t_1' \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SS-AND

For all mappings M such that $M(\varphi_1 \land \varphi_2)$ we need to demonstrate that $t_1 \bowtie t_2, \sigma \mapsto t_1' \bowtie t_2', \sigma''$ with $M\tilde{t}_1' \bowtie \tilde{t}_2' \equiv t_1' \bowtie t_2'$ and $M\tilde{\sigma}'' \equiv \sigma''$. From the induction hypothesis, we obtain the following.

$$\forall M_1.M_1\varphi_1 \supset t_1, \sigma \mapsto t_1', \sigma' \qquad M_1\tilde{t}_1' \equiv t_1' \land M_1\tilde{\sigma}' \equiv \sigma' \text{ and }$$

$$\forall M_2.M_2\varphi_2 \supset t_2, \sigma' \mapsto t_2', \sigma'' \qquad M_2\tilde{t}_2' \equiv t_2' \land M_2\tilde{\sigma}'' \equiv \sigma''.$$

$$\forall M_2.M_2\varphi_2\supset t_2,\sigma'\mapsto t_2',\sigma''\qquad M_2\tilde{t}_2'\equiv t_2'\wedge M_2\tilde{\sigma}''\equiv \sigma''$$

Since M satisfies both φ_1 and φ_2 , we obtain from S-AND and the induction steps above that $t_1 \bowtie t_2, \sigma \mapsto t_1' \bowtie t_2', \sigma''$ with $M\tilde{t}_1' \bowtie \tilde{t}_2' \equiv$ $t_1' \bowtie t_2'$ and $M\tilde{\sigma}^{"} \equiv \sigma^{"}$.

C.3 Proof of soundness of symbolic normalisation semantics

PROOF. We prove Lemma ?? by induction over the derivation $e, \sigma \not \& \tilde{t}, \tilde{\sigma}, \varphi$.

The base case is when the SN-Done rule applies. Provided that $M(\varphi_1 \land \varphi_2)$, we need to demonstrate that $e, \sigma \Downarrow t, \sigma'$ with $M\tilde{t} \equiv t$ and $M\tilde{\sigma}' \equiv \sigma'$.

By Lemma ?? and ??, we know that

 $\forall M_1.M_1\varphi_1 \supset e, \sigma \downarrow t, \sigma' \land M_1\tilde{t} \equiv t \land M_1\tilde{\sigma}' \equiv \sigma'$ and

 $\forall M_2.M_2\varphi_2\supset t,\sigma'\mapsto t',\sigma''\wedge M_2\tilde{t}'\equiv t'\wedge M_2\tilde{\sigma}''\equiv\sigma''.$

Since M satisfies both φ_1 and φ_2 , we have $e, \sigma \downarrow t, \sigma'$ with $M\tilde{\sigma}' \equiv \sigma'$.

The induction step is when SN-Repeat applies. In this case, for all mappings M such that $M(\varphi_1 \wedge \varphi_2 \wedge \varphi_3)$, we need to demonstrate that $e, \sigma \downarrow t'', \sigma'''$ with $M\tilde{t}'' \equiv t''$ and $M\tilde{\sigma}''' \equiv \sigma'''$.

Again by Lemma ?? and ??, we know that

 $\forall M_1.M_1\varphi_1 \supset e, \sigma \downarrow t, \sigma' \land M_1\tilde{t} \equiv t \land M_1\tilde{\sigma}' \equiv \sigma'$ and

 $\forall M_2.M_2\varphi_2\supset t,\sigma'\mapsto t',\sigma''\wedge M_2\tilde{t}'\equiv t'\wedge M_2\tilde{\sigma}''\equiv \sigma''.$

Furthermore, we know by applying the induction hypothesis that

 $\forall M_3.M_3\varphi_3\supset t',\sigma''\downarrow t'',\sigma'''\land M_3\tilde{t}''\equiv t''\land M_3\tilde{\sigma}'''\equiv\sigma'''.$

Since M satisfies φ_1, φ_2 and φ_3 , we obtain from N-Repeat, the application of lemmas and the induction step above that $e, \sigma \parallel t'', \sigma'''$ with $M\tilde{t}^{"}\equiv t^{"}$ and $M\tilde{\sigma}^{"}\equiv \sigma^{"}$.

C.4 Proof of soundness of symbolic handling semantics

PROOF. We prove Lemma ?? by induction over the derivation $t, \sigma \rightsquigarrow \tilde{t}, \tilde{\sigma}, \tilde{i}, \varphi$.

Case SH-CHANGE

For all mappings M, we need to demonstrate that $\Box v, \sigma \xrightarrow{Ms} \Box Ms, \sigma$ with $M \Box s \equiv \Box Ms$ and $M\sigma \equiv \sigma$. This follows trivially from H-Change.

Case SH-FILL

For all mappings M, we need to demonstrate that $\boxtimes \beta, \sigma \xrightarrow{Ms} \Box Ms, \sigma$ with $M \Box s \equiv \Box Ms$ and $M\sigma \equiv \sigma$. This follows trivially from H-Fill.

Case SH-UPDATE

For all mappings M, we need to demonstrate that

- $\blacksquare l, \sigma \xrightarrow{Ms} \blacksquare l, \sigma[l \mapsto Ms] \text{ with } M \blacksquare l \equiv \blacksquare l \text{ and } M\sigma[l \mapsto s] \equiv \sigma[l \mapsto Ms].$
- $\blacksquare l, \sigma \xrightarrow{Ms} \blacksquare l, \sigma[l \mapsto Ms]$ follows trivially from H-UPDATE. $M \blacksquare l \equiv \blacksquare l$ follows trivially, since locations cannot contain symbols. $M\sigma[l \mapsto s] \equiv \sigma[l \mapsto Ms]$ follows trivially.

Case SH-Next

For all mappings M such that $M\varphi_1$, we need to demonstrate that

 $t_1 \triangleright e_2, \sigma \xrightarrow{M\tilde{\imath}} t_1' \triangleright e_2, \sigma'$ with $M\tilde{t}_1' \triangleright e_2 \equiv t_1' \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$. By the induction hypothesis we obtain the following.

$$\forall M_1.M_1\varphi_1\supset t_1,\sigma\xrightarrow{\tilde{M_1\tilde{t}}}t_1',\sigma'\wedge M_1\tilde{t}_1'\equiv t_1'\wedge M_1\tilde{\sigma}'\equiv\sigma'$$

Since M satisfies φ_1 , we obtain from H-PASSNEXT and the induction step above that $t_1 \triangleright e_2$, $\sigma \stackrel{M\tilde{t}}{\longrightarrow} t_1' \triangleright e_2$, σ' with $M\tilde{t}_1' \triangleright e_2 \equiv t_1' \triangleright e_2$ and

For all mappings M such that $M\varphi_2$, we need to demonstrate that

$$t_1 \triangleright e_2, \sigma \xrightarrow{C} t_2, \sigma'$$
 with $M\tilde{t}_2 \equiv t_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

From Lemma ?? we obtain that $\forall M_1.M_1\varphi \supset e_2v_1, \sigma \downarrow t_2, \sigma' \land M\tilde{t}_2 \equiv t_2 \land M\tilde{\sigma}' \equiv \sigma'.$

This together with H-Next gives us exactly what we need to prove this case.

Case SH-PassNext

For all mappings M such that $M\varphi$, we need to demonstrate that

$$\begin{array}{ccc} t_1\rhd e_2,\sigma&\xrightarrow{M\tilde{\imath}}&t_1'\rhd e_2,\sigma' \text{ with } M\tilde{t}_1'\rhd e_2\equiv t_1'\rhd e_2 \text{ and } M\tilde{\sigma}'\equiv\sigma'. \\ \text{By the induction hypothesis we obtain the following.} \end{array}$$

$$\forall M_1.M_1\varphi_1\supset t_1,\sigma\xrightarrow{M_1\tilde{t}}t_1',\sigma'\wedge M_1\tilde{t}_1'\equiv t_1'\wedge M_1\tilde{\sigma}'\equiv\sigma'$$

Since M satisfies φ , we obtain from H-PassNexT and the induction step above that $t_1 \triangleright e_2$, $\sigma \xrightarrow{M\tilde{t}} t_1' \triangleright e_2$, σ' with $M\tilde{t}_1' \triangleright e_2 \equiv t_1' \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SH-PASSNEXTFAIL

For all mappings M such that $M\varphi$, we need to demonstrate that

$$t_1 \triangleright e_2, \sigma \xrightarrow{\tilde{M}\tilde{\iota}} t_1' \triangleright e_2, \sigma'$$
 with $M\tilde{\iota}_1' \triangleright e_2 \equiv t_1' \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$. By the induction hypothesis we obtain the following.

$$\forall M_1.M_1\varphi_1\supset t_1,\sigma\xrightarrow{M_1\tilde{\iota}}t_1',\sigma'\wedge M_1\tilde{\iota}_1'\equiv t_1'\wedge M_1\tilde{\sigma}'\equiv\sigma'.$$

 $\forall M_1.M_1\varphi_1\supset t_1,\sigma\xrightarrow{M_1\tilde{\iota}}t_1',\sigma'\wedge M_1\tilde{\iota}_1'\equiv t_1'\wedge M_1\tilde{\sigma}'\equiv\sigma'.$ Since M satisfies φ and from the premise of SH-PassNextFail we have \mathcal{F} ($\tilde{\iota}_2,\tilde{\sigma}''$), we obtain from H-PassNextFail and the induction step above that $t_1 \rhd e_2, \sigma \xrightarrow{M\tilde{t}} t_1' \rhd e_2, \sigma'$ with $M\tilde{t}_1' \rhd e_2 \equiv t_1' \rhd e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SH-PassThen

For all mappings M such that $M\varphi$, we need to demonstrate that

$$t_1 \triangleright e_2, \sigma \xrightarrow{M\tilde{i}} t_1' \triangleright e_2, \sigma'$$
 with $M\tilde{t}_1' \triangleright e_2 \equiv t_1' \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$. By the induction hypothesis we obtain the following.

$$\forall M_1.M_1\varphi_1\supset t_1,\sigma\xrightarrow{M_1\tilde{t}}t_1',\sigma'\wedge M_1\tilde{t}_1'\equiv t_1'\wedge M_1\tilde{\sigma}'\equiv\sigma'$$

Since M satisfies φ , we obtain from H-PassThen and the induction step above that $t_1 \triangleright e_2$, $\sigma \xrightarrow{M\tilde{\iota}} t_1' \triangleright e_2$, σ' with $M\tilde{\iota}_1' \triangleright e_2 \equiv t_1' \triangleright e_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SH-Pick

We have that $M\varphi_1$ and/or $M\varphi_2$. In the first case, the proof is identical to the SH-PickLeft rule. In the second case, the proof is identical to the SH-PickRight rule.

Case SH-PICKLEFT

For all mappings M such that $M\varphi_1$, we need to demonstrate that

$$e_1 \diamond e_2, \sigma \xrightarrow{\mathsf{L}} t_1, \sigma' \text{ with } M\tilde{t}_1 \equiv t_1 \text{ and } M\tilde{\sigma}' \equiv \sigma'.$$

 $e_1 \diamond e_2, \sigma \xrightarrow{\mathsf{L}} t_1, \sigma'$ with $M\tilde{t}_1 \equiv t_1$ and $M\tilde{\sigma}' \equiv \sigma'$. From Lemma ?? we obtain that $\forall M_1.M_1 \varphi \supset e_1, \sigma \Downarrow t_1, \sigma' \land M\tilde{t}_1 \equiv t_1 \land M\tilde{\sigma}' \equiv \sigma'$.

Since M satisfies φ_1 , we obtain from H-PickLeft and the application of Lemma ?? above that $e_1 \diamond e_2, \sigma \xrightarrow{L} t_1, \sigma'$ with $M\tilde{t}_1 \equiv t_1$ and $M\tilde{\sigma}' \equiv \sigma'$.

Case SH-PICKRIGHT

For all mappings M such that $M\varphi_2$, we need to demonstrate that

$$e_1 \diamond e_2, \sigma \xrightarrow{\mathsf{R}} t_2, \sigma' \text{ with } M\tilde{t}_2 \equiv t_2 \text{ and } M\tilde{\sigma}_2 \equiv \sigma'.$$

From Lemma ?? we obtain that $\forall M_1.M_1\varphi \supset e_2, \sigma \downarrow t_2, \sigma' \land M\tilde{t}_2 \equiv t_2 \land M\tilde{\sigma}' \equiv \sigma'$.

Since M satisfies φ_2 , we obtain from H-PickRight and the application of Lemma ?? above that $e_1 \diamond e_2$, $\sigma \xrightarrow{R} t_2$, σ' with $M\tilde{t}_2 \equiv t_2$ and $M\tilde{\sigma}_2 \equiv \sigma'$.

Case SH-AND

For all mappings M such that $M\varphi_1$, we need to demonstrate that

$$t_1\bowtie t_2,\sigma\xrightarrow{\tilde{M}\,\mathsf{F}\,\tilde{\imath}} t_1'\bowtie t_2,\sigma'$$
 with $M\tilde{t}_1'\bowtie t_2\equiv t_1'\bowtie t_2$ and $M\tilde{\sigma}'\equiv\sigma'$. By the induction hypothesis we obtain the following.

$$\forall M_1.M_1\varphi_1\supset t_1,\sigma\xrightarrow{M_1\tilde{t}} t_1',\sigma'\wedge M_1\tilde{t}_1'\equiv t_1'\wedge M_1\tilde{\sigma}'\equiv\sigma'.$$

Since M satisfies φ_1 , we obtain from H-FIRSTAND and the induction step above that $t_1 \bowtie t_2$, $\sigma \xrightarrow{M \vdash \tilde{t}} t_1' \bowtie t_2$, σ' with $M\tilde{t}_1' \bowtie t_2 \equiv t_1' \bowtie t_2$ and $M\tilde{\sigma}' \equiv \sigma'$.

For all mappings M such that $M\varphi_2$, we need to demonstrate that $t_1\bowtie t_2,\sigma\xrightarrow{M\,S\,\tilde\iota} t_1\bowtie t_2',\sigma'$ with $Mt_1\bowtie \tilde t_2'\equiv t_1\bowtie t_2'$ and $M\tilde\sigma'\equiv\sigma'$. By the induction hypothesis we obtain the following.

$$\forall M_1.M_1\varphi_1\supset t_2,\tilde{\sigma}\xrightarrow{M_1\tilde{t}}t_2',\sigma'\wedge M_1\tilde{t}_2'\equiv t_2'\wedge M_1\tilde{\sigma}'\equiv\sigma'$$

Since M satisfies φ_2 , we obtain from H-SecondAnd and the induction step above that $t_1 \bowtie t_2$, $\sigma \xrightarrow{MS\tilde{\iota}} t_1 \bowtie t_2'$, σ' with $Mt_1 \bowtie \tilde{\iota}_2' \equiv t_1 \bowtie t_2'$ and $M\tilde{\sigma}' \equiv \sigma'$.

П

Case SH-OR

This case is proven in the same way as SH-AND.

C.5 Proof of soundness of symbolic interacting semantics

Proof. We prove Lemma ?? by induction on $\tilde{t}, \tilde{\sigma} \approx \overline{\tilde{t}', \tilde{\sigma}', \tilde{\iota}, \varphi}$. There is only one rule that applies, namely SI-HANDLE.

Provided that $M(\varphi_1 \wedge \varphi_2)$, we need to demonstrate that $t, \sigma \stackrel{M\tilde{t}}{\Longrightarrow} t'', \sigma''$ with $M\tilde{t}'' \equiv t''$ and $M\tilde{\sigma}'' \equiv \sigma''$.

Lemma ?? and Lemma ?? respectively give us that

$$\forall M_1.M_1\varphi_1\supset t,\sigma\xrightarrow{M_1\tilde{\iota}}t',\sigma'\wedge M_1\tilde{\iota}'\equiv t'\wedge M_1\tilde{\sigma}'\equiv\sigma' \text{ and } \\ \forall M_2.M_2\varphi_2\supset t',\sigma'\downarrow t'',\sigma''\wedge M_2\tilde{\iota}''\equiv t''\wedge M_2\tilde{\sigma}''\equiv\sigma''.$$

Since M satisfies both φ_1 and φ_2 , we obtain exactly what we need to prove, namely $t, \sigma \stackrel{\tilde{\iota}}{\Rightarrow} t'', \sigma'' M \tilde{\iota}'' \equiv t''$ and $M \tilde{\sigma}'' \equiv \sigma''$.

D COMPLETENESS PROOFS

D.1 Proof of completeness of the symbolic handling semantics

PROOF. We prove Lemma ?? by induction over the derivation $t, \sigma \xrightarrow{i} t', \sigma'$.

Case H-Change

By the SH-Change rule, we have $\Box v, \sigma \leadsto \Box s, \tilde{\sigma}, s$, True, and $s \sim v'$ holds by definition of input simulation.

Case H-FILI

By the SH-Fill rule, we have $\boxtimes \beta, \sigma \implies \Box s, \tilde{\sigma}, s$, True, and $s \sim v$ holds by definition of input simulation.

Case H-UPDATE

By the SH-Update rule, we have $\blacksquare l, \sigma \leadsto \blacksquare l, \tilde{\sigma}[l \mapsto s], s, \text{True}, \text{ and } s \sim v \text{ holds by definition of input simulation.}$

Case H-Next

By the SH-Next rule, we have $t_1 \triangleright e_2$, $\sigma \rightsquigarrow \overline{\tilde{t}_1' \triangleright e_2, \tilde{\sigma}_1, \tilde{\iota}, \varphi_1} \cup \overline{t_2, \tilde{\sigma}_2, C, \varphi_2}$, and $C \sim C$ holds by definition of input simulation.

Case H-PASSNEXT

By application of the induction hypothesis, we obtain the following.

For all t_1, σ, i such that $t_1, \sigma \xrightarrow{i} t'_1, \sigma'$ there exists an $\tilde{\imath} \sim i$ such that $t_1, \sigma \leadsto \overline{\tilde{t}_1, \tilde{\sigma}, \tilde{\imath}, \varphi}$. From this we can conclude that there exists a symbolic execution $t_1 \triangleright e_2, \sigma \leadsto \overline{\tilde{t}_1} \triangleright e_2, \tilde{\sigma}, \tilde{\imath}, \varphi$, and that $\tilde{\imath} \sim i$.

Case H-PassThen

By application of the induction hypothesis, we obtain the following.

For all t_1, σ, i such that $t_1, \sigma \xrightarrow{i} t'_1, \sigma'$ there exists an $\tilde{\imath} \sim i$ such that $t_1, \sigma \leadsto \overline{\tilde{t}_1, \tilde{\sigma}, \tilde{\imath}, \varphi}$. From this we can conclude that there exists a symbolic execution $t_1 \triangleright e_2, \sigma \leadsto \overline{\tilde{t}_1 \triangleright e_2, \tilde{\sigma}, \tilde{\imath}, \varphi}$, and $\tilde{\imath} \sim i$.

Case H-PICKLEFT

Lemma ?? gives us the following.

There exists a symbolic execution $e_1, \sigma \not \& \overline{\tilde{t}_1, \tilde{\sigma}, \varphi_1}$.

There exists a symbolic execution e_2 , $\tilde{\sigma}$ $\langle \langle \rangle$ $\overline{\tilde{t}_2, \tilde{\sigma}', \varphi_2}$.

We can now conclude that a symbolic execution exists. Either by the SH-PickLeft rule, in case $\mathcal{F}(\tilde{t}_2, \tilde{\sigma}')$, or by the SH-Pick rule in case $\neg \mathcal{F}(\tilde{t}_2, \tilde{\sigma}')$. We have that $L \sim L$ holds by definition.

Case H-Ріск Rібнт

Lemma ?? gives us the following.

There exists a symbolic execution e_1 , σ (x) $\overline{t_1, \tilde{\sigma}, \varphi_1}$.

There exists a symbolic execution e_2 , $\tilde{\sigma}$ \gtrsim $\overline{t_2, \tilde{\sigma}', \varphi_2}$.

We can now conclude that a symbolic execution exists. Either by the SH-PICKRIGHT rule, in case $\mathcal{F}(\tilde{t}_1, \tilde{\sigma})$, or by the SH-PICK rule in case $\neg \mathcal{F}(t_1, \tilde{\sigma})$.

We have that $R \sim R$ holds by definition.

Case H-FirstOr

By application of the induction hypothesis, we obtain the following. For all t_1, σ, i such that $t_1, \sigma \xrightarrow{i} t'_1, \sigma'$ there exists an $\tilde{i} \sim i$ such that $t_1, \sigma \rightsquigarrow \tilde{t}_1, \tilde{\sigma}, \tilde{\iota}, \varphi.$

From SH-OR, and the conclusion of the induction hypothesis, we can conclude that there exists a symbolic input, namely F ĩ, such that $t_1 \blacklozenge t_2, \sigma \rightsquigarrow \tilde{t}_1' \blacklozenge t_2, \tilde{\sigma}, F\tilde{\imath}, \varphi$. From $\tilde{\imath} \sim i$ and by definition of input simulation, we can conclude that $F\tilde{\imath} \sim Fi$.

Case H-SecondOr

By application of the induction hypothesis, we obtain the following. For all t_2, σ, i such that $t_2, \sigma \xrightarrow{i} t'_2, \sigma'$ there exists an $\tilde{i} \sim i$ such that $t_2, \sigma \rightsquigarrow \tilde{t}_2, \tilde{\sigma}, \tilde{\imath}, \varphi.$

From SH-OR, and the induction step above, we can conclude that there exists a symbolic input such that $t_1 \oint t_2$, $\sigma \leftrightarrow \tilde{t}_1 \oint t_2'$, $\tilde{\sigma}'$, $S\tilde{\iota}, \varphi$, namely S \tilde{i} . From $\tilde{i} \sim i$ and by definition of input simulation, we can conclude that S $\tilde{i} \sim S i$.

Case H-FirstAnd

By application of the induction hypothesis, we obtain the following. For all t_1, σ, i such that $t_1, \sigma \xrightarrow{i} t'_1, \sigma'$ there exists an $\tilde{i} \sim i$ such that $t_1, \sigma \rightsquigarrow \tilde{t}_1, \tilde{\sigma}, \tilde{\iota}, \varphi.$

From SH-AND, and the conclusion of the induction step above, we can conclude that there exists a symbolic input, namely F \tilde{i} such that $t_1 \bowtie t_2, \sigma \rightsquigarrow \tilde{t}_1' \bowtie t_2, \tilde{\sigma}, \tilde{F}_i, \varphi$. From $\tilde{i} \sim i$ and by definition of input simulation, we can conclude that $\tilde{F}_i \sim \tilde{F}_i$.

Case H-SecondAnd

By application of the induction hypothesis, we obtain the following. For all t_2, σ, i such that $t_2, \sigma \xrightarrow{i} t'_2, \sigma'$ there exists an $\tilde{i} \sim i$ such that $t_2, \sigma \rightsquigarrow \tilde{t}_2, \tilde{\sigma}, \tilde{\imath}, \varphi.$

From SH-AND, and the conclusion of the induction step above, we can conclude that there exists a symbolic input, namely $S\tilde{i}$ such that $t_1 \bowtie t_2, \sigma \iff t_1 \bowtie \tilde{t}_2, \tilde{\sigma}, S \tilde{\imath}, \varphi$. From $\tilde{\imath} \sim i$ and by definition of input simulation, we can conclude that $S \tilde{\imath} \sim S i$.

D.2 Proof of completeness of the symbolic interaction semantics

PROOF. The proof of ?? consists of one case, since the interacting semantics consists of one rule, namely I-HANDLE

$$\begin{array}{ccc} \underline{t,\sigma\overset{i}{\rightarrow}t',\sigma' & t',\sigma' \downarrow t'',\sigma''} \\ t,\sigma\overset{i}{\Rightarrow}t'',\sigma'' \\ \text{By Lemma ?? we obtain the following.} \end{array}$$

$$t, \sigma \stackrel{i}{\Rightarrow} t^{\prime\prime}, \sigma^{\prime\prime}$$

$$t, \sigma \xrightarrow{i} t', \sigma' \supset \exists \tilde{\imath}.t, \sigma \rightsquigarrow \tilde{t}, \tilde{\sigma}, \tilde{\imath}, \varphi \wedge \tilde{\imath} \sim i$$

Then by Lemma ?? we obtain the following.

$$t', \sigma' \Downarrow t'', \sigma'' \supset t', \sigma' \underset{\sim}{\otimes} \tilde{t}', \tilde{\sigma}', \varphi'$$

From the above, together with the SI-Handle rule, we can conclude that there exists a symbolic execution $t, \sigma \approx \tilde{t}'', \tilde{\sigma}'', \tilde{i}, \varphi \wedge \tilde{i} \sim i$.