Date: 23-01-2023 **Name:** Ashvath S.P **Reg No**: 2162014

COA LAB

Experiment -3

Problem Statement: Write an assembly language program to compute factorial for a given number.

Algorithm:

Step 1: Define the Base Register Address value during the creation of the program

Step 2: Move the operand to Register R1 for which you need to find out the factorial

Step 3: Move the Register R1 value to the R0

Step 4: Move the value 1 to Register R2

Step 5: Create a label named 'factorial'

Step 6: Multiply Register R1 with register R2 and store result in R2 register

Step 7: Decrement Register R1 value

Step 8: Compare Register R1 with value 1

Step 9: If the Register R1 is greater than 1, jump to the 'factorial' label

Step 10: If the Register R1 is lower than or equal to 1, store the resultant factorial value in the memory location

Step 11: Halt the simulator

Assembly Language code:

MOV #5, R01 //Store value of 5 in register R01

MOV R01, R00 //Move register R01 value to R00.

MOV #1, R02 //Store value of 1 in register R02

factorial: //Label for factorial

MUL R01, RO2 //Multiply registers RO1 to R02 and store the resultant value in register R02

DEC R01 // Decrement register R01 value by 1

CMP #1, R01 //Compare register R01 value by 1

JGT \$factorial // If register R01 value is greater than 1, jump to the 'factorial' label

STB R02, 0 // Store register R02 value in memory location 0

JLT 35 // If register R01 value is less than or equal to 1, jump to the statement of Padd 35

HLT //Stop the simulator

Date: 23-01-2023 **Name:** Ashvath S.P **Reg No**: 2162014

Result:

Fig. 1: CPU Simulator Window

Fig. 2: Data Memory Window