Divide and Conquer

Selection

Selection Problem

- Input: A set S of n integers $x_1, x_2, ..., x_n$ and an integer k
- Output: The k-th smallest integer x^* among $x_1, x_2, ..., x_n$

One-by-one Selection

- Input: A set S of n integers $x_1, x_2, ..., x_n$ and an integer k
- Output: The k-th smallest integer x^* among $x_1, x_2, ..., x_n$
- Plan 1
 - Select the smallest integer. O(n)
 - Select the 2nd smallest integer. O(n-1)
 - - ...
 - Select the k-th smallest integer. O(n k + 1)
 - Total running time O(nk)

Sorting

- Input: A set S of n integers $x_1, x_2, ..., x_n$ and an integer k
- Output: The k-th smallest integer x^* among
- Plan 2
 - $x_1, x_2, ..., x_n$ Sort the integers in ascending order.
 - Output the k-th integer.
 - Total running time

 $O(n \log n)$

O(1)

 $O(n \log n)$

Ok! Let's move to divide and conquer!

Divide and Conquer

- Input: A set S of n integers $x_1, x_2, ..., x_n$ and an integer k
- Output: The k-th smallest integer x^* among $x_1, x_2, ..., x_n$
- Plan 2: Divide and Conquer
 - Divide:
 - Pick an arbitrary value v among x_1, x_2, x_3, \dots
 - Divide x₁, x₂, x₃, ... into three subsets:
 - $-L:x<\overline{v}$
 - M : x = v
 - -R:x>v
 - Recurse: find x^* in the subset contains x^* .
 - Combine: we already have x^* !

Divide

• Choose v = 3.

• What is L, M, and R?

- **1** 2 1 0
- M: 3
- R: 5 4

Divide

Recurse

Roughly sorted list

- How to find x^* in L,M,R?
 - Recall x^* is the k-th smallest integer in S.
- 1 2 1 0
 - x^* is the k-th integer in L
- **-** M: 3
 - $-x^*=3$
- R: 5 4
 - x^* is the (k |L| |M|)-th integer in R

Formalize

Function Select(*S***,***k***)**

Divide:

- Pick an arbitrary value v among x_1, x_2, x_3, \dots
- Divide $x_1, x_2, x_3, ...$ into three subsets:
 - L: x < v,
 - M: x = v,
 - R: x > v.

- Recurse the subset contains x^* .
 - If $k \leq |L|$, output Select(L,k);
 - If $|L| < k \le |L| + |M|$, output v;
 - If |L| + |M| < k, output Select(R, k |L| |M|).

Running Time

We want to know T(n)

Function Select(S,k)

T(|L|)

0(1)

Divide:

- Pick an arbitrary value v among x_1, x_2, x_3, \dots
- Divide $x_1, x_2, x_3, ...$ into three subsets:
 - L: x < v,
 - M: x = v,
 - $R: x > \overline{v}$.

Recurse:

- Recurse the subset contains x^* .
 - If $k \leq |L|$, output Select(L,k);
 - If $|L| < k \le |L| + |M|$, output v;
 - If |L| + |M| < k, output Select(R, k |L| |M|).

Divide: O(n)

T(R)

Running Time

■
$$T(n) \le O(n) + \max\{T(|L|), T(|R|)\}$$

$$\le O(n) + T(n-1)$$

$$\le O(n) + O(n-1) + T(n-2) \le \cdots$$

$$= O(n) + O(n-1) + O(n-2) + \cdots + O(1) = O(n^2)$$
Fact
$$|L| + |M| + |R| = |S| = n$$

$$|L|, |R| \le n-1$$

Very Bad!

- One-by-one: O(nk)
- Sorting: $O(n \log n)$

Is it really that bad?

- Yes, the unluckiest case:
 - k = 1
 - Each time, v is the largest integer.

$$- T(n) = O(n) + T(n-1) = O(n) + O(n-1) + T(n-2) = \dots = O(n^2)$$

- What if we are super lucky?
 - Each time, v is in the middle.

$$-T(n) = T\left(\frac{n}{2}\right) + O(n) = T\left(\frac{n}{4}\right) + O\left(\frac{n}{2}\right) + O(n) = \dots = O(n).$$

- What if we are lucky?
 - Each time, v is in the middle range $\left[\frac{1}{3}n, \frac{2}{3}n\right]$.

$$- T(n) = T(\frac{2}{3}n) + O(n) = T(\frac{4}{9}n) + O(\frac{2}{3}n) + O(n) = \dots = O(n).$$

Idea: to make us reasonably lucky in average by randomness.

What is the next?

- Improving the running time with randomness.
- Improving the running time without randomness.

Using Randomness!

Function Select(S,k)

Divide:

- Pick an arbitrary value v among x_1, x_2, x_3, \dots
- Divide x_1, x_2, x_3, \dots into three subsets:
 - L: x < v,
 - M: x = v,
 - R: x > v.

- Recurse the subset contains x^* .
 - If $k \leq |L|$, output Select(L,k);
 - If $|L| < k \le |L| + |M|$, output v;
 - If |L| + |M| < k, output Select(R, k |L| |M|).

Using Randomness!

Function Select(S,k)

Divide:

- Pick an arbitrary value v among x_1, x_2, x_3, \dots
- Divide x_1, x_2, x_3, \dots into three subsets:
 - L: x < v,
 - M: x = v,
 - R: x > v.

- Recurse the subset contains x^* .
 - If $k \leq |L|$, output Select(L,k);
 - If $|L| < k \le |L| + |M|$, output v;
 - If |L| + |M| < k, output Select(R, k |L| |M|).

Quick Selection

Function Select(S,k)

Divide:

- Pick a **random** value v among x_1, x_2, x_3, \dots
- Divide $x_1, x_2, x_3, ...$ into three subsets:
 - L:x < v,
 - M: x = v,
 - R: x > v.

- Recurse the subset contains x^* .
 - If $k \leq |L|$, output Select(L,k);
 - If $|L| < k \le |L| + |M|$, output v;
 - If |L| + |M| < k, output Select(R, k |L| |M|).

When we are lucky

- Lucky pivot area
- : Bad pivot area
- Fact 1: With $\frac{1}{2}$ probability, we are lucky!
- Fact 2: If we are always lucky, $T(n) = T\left(\frac{3n}{4}\right) + O(n) = O(n)$

Analysis

- $\tau(n)$: Time we reduce n to $\frac{3n}{4}$
- $T(n) = \tau(n) + T(\frac{3n}{4})$
- $E[\tau(n)]$: The expected time we reduce n to $\frac{3n}{4}$

•
$$E[T(n)] = E\left[\tau(n) + T\left(\frac{3n}{4}\right)\right]$$

= $E[\tau(n)] + E\left[T\left(\frac{3n}{4}\right)\right]$

- $E[\tau(n)] = O(n)$
- $E[T(n)] = O(n) + E\left[T\left(\frac{3n}{4}\right)\right] = O(n)$

Fact

Since we are lucy with probably $\frac{1}{2}$, so the expected number of rounds it takes to become lucky is 2.

Evaluate Random Algorithm by Expected Running Time!

Other Viewpoints

- Worst Case Running Time
 - $O(n^2)$
- The Probability it runs in O(n)?

What if we do not want randomness?

Throw Randomness!

Function Select(S,k)

Divide:

- Pick a **random** value v among x_1, x_2, x_3, \dots
- Divide $x_1, x_2, x_3, ...$ into three subsets:
 - L: x < v,
 - $M: x = \overline{v}$
 - R: x > v.

- Recurse the subset contains x^* .
 - If $k \leq |L|$, output Select(L,k);
 - If $|L| < k \le |L| + |M|$, output v;
 - If |L| + |M| < k, output Select(R, k |L| |M|).

Throw Randomness!

Function Select(S,k)

Divide:

- Pick a **random** value v among x_1, x_2, x_3, \dots
- Divide x_1, x_2, x_3, \dots into three subsets:
 - L: x < v,
 - $M: x = \overline{v}$
 - R: x > v.

- Recurse the subset contains x^* .
 - If $k \leq |L|$, output Select(L,k);
 - If $|L| < k \le |L| + |M|$, output v;
 - If |L| + |M| < k, output Select(R, k |L| |M|).

Median of medians (1973)

Blum, M.; Floyd, R. W.; Pratt, V. R.; Rivest, R. L.; Tarjan, R. E.

Function Select(S,k)

Divide:

- Pick a **good pivot** value v among x_1, x_2, x_3, \dots
- Divide x_1, x_2, x_3, \dots into three subsets:
 - L: x < v,
 - $M: x = \overline{v}$
 - R: x > v.

- Recurse the subset contains x^* .
 - If $k \leq |L|$, output Select(L,k);
 - If $|L| < k \le |L| + |M|$, output v;
 - If |L| + |M| < k, output Select(R, k |L| |M|).

Trade-off

- The time of finding a good pivot.
- The quality of the pivot.
- We can find the median by sorting the array, but it takes too much time.
- We can find an arbitrary pivot in O(1) but it may be too bad.
- Look at the recursive running time: $T(n) = T(c \cdot n) + O(n)$.

- Find the medians of them: v_1, v_2, v_3
 - 53, 32, 13

- Find the medians of them: v_1, v_2, v_3 53, 32, 13
- Fix v to be the median of v_1, v_2, v_3

$$- v = 32$$

How long it takes?

Partition S into subsets with size 5.

• Find the medians of them: v_1, v_2, v_3 - 53, 32, 13

O(n)

T(n/5)

• Fix v to be the median of v_1, v_2, v_3 - v = 32

Why it is good?

- It should be in the middle range
- Why? Two questions
 - How many integers should be no greater than v?
 - How many integers should be no less than v?

Answer them step by step

Partition S into subsets

- Answer
 - We have $\frac{n}{5}$ groups, so $\frac{n}{5}$ medians.
 - v is no greater than n/10 medians, no less than n/10 medians.
 - Each median is no greater than 2 integers, no less than 2 integers.
 - v is no greater than $\frac{3n}{10}$ integers, no less than 3n/10 integers.

The running time

Function Select(S,k)

Divide:

- Pick a **good pivot** value v among x_1, x_2, x_3, \dots
- Divide $x_1, x_2, x_3, ...$ into three subsets:

• L:
$$x < v$$
,

- $M: x = \overline{v}$
- R: x > v.

Recurse:

- Recurse the subset contains x^* .

• If
$$k \leq |L|$$
, output Select (L,k) ;

- If $|L| < k \le |L| + |M|$, output v;
- If |L| + |M| < k, output Select(R, k |L| |M|).

$$T(\frac{n}{5}) + O(n)$$

$$T(|L|) \leq T(n - \frac{3}{10}n)$$

O(n)

$$T(|R|) \leq T(n - \frac{3}{10}n)$$

Guess time!

T(n)=T(0.2n)+T(0.7n)+O(n)

Observation: Comparing to Master Theorem

Make a guess

$$T(n) = T(0.2n) + T(0.7n) + O(n)$$

- Guess: $T(n) \leq Bn!$
- Try to prove it inductively
 - Basic step: $T(1) = 1 \le Bn$
 - Inductive step:

$$T(n) \le T(0.2n) + (0.7n) + Cn$$

 $\le 0.9Bn + Cn$
 $\le Bn$

• We have $T(n) \le 10Cn = O(n)$

It holds when $B \ge 10C$

One more Question

What if we group them by 2,3,4,5,...?

Today's goal

- Learn the quick selection algorithm
- Learn to make it polynomial by randomness (in expectation) analytically
- Learn to make it polynomial by median of medians analytically
- Remember to try to group by 2,3,4,5,6...