

Weight

X4-Class **Power MOSFET™**

IXTA86N20X4

200V 86A $13m\Omega$ ≤

N-Channel Enhancement Mode Avalanche Rated

TO-263 (IXTA)	G
	s †
	D (Tab)

Symbol	Test Conditions	Maximum Ra	tings
V _{DSS} V _{DGR}	$T_{J} = 25^{\circ}\text{C to } 175^{\circ}\text{C}$ $T_{J} = 25^{\circ}\text{C to } 175^{\circ}\text{C}, R_{GS} = 1M\Omega$	200 200	V
V _{GS} V _{GSM}	Continuous Transient	±20 ±30	V
I _{D25}	$T_{c} = 25$ °C $T_{c} = 25$ °C, Pulse Width Limited by T_{JM}	86 160	A A
I _A E _{AS}	T _c = 25°C T _c = 25°C	43 500	A mJ
dv/dt	$I_{_{\mathrm{S}}} \leq I_{_{\mathrm{DM}}}, V_{_{\mathrm{DD}}} \leq V_{_{\mathrm{DSS}}}, T_{_{\mathrm{J}}} \leq 150^{\circ}\mathrm{C}$	50	V/ns
$\overline{\mathbf{P}_{D}}$	T _c = 25°C	300	W
T _J T _{JM} T _{stg}		-55 +175 175 -55 +175	°C °C °C
T _{SOLD}	Plastic Body for 10s	260	°C
F.	Mounting Force	1065 / 2.214.6	N/lb

G = Gate	D = Drai	n
S = Source	Tab = Dra	ir

Features

- International Standard Package
- Low $R_{DS(ON)}$ and Q_G Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

		acteristic Values Typ. Max.			
BV _{DSS}	$V_{GS} = 0V, I_{D} = 250 \mu A$	200			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 150^{\circ}C$			5 300	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$		11	13	mΩ

DS101005B(12/20) © 2020 Littelfuse, Inc.

2.5

Symbol (T _J = 25°C,	Test Conditions Unless Otherwise Specified)	Char Min.	acteristic Typ.	c Values Max.
g _{fs}	V _{DS} = 10V, I _D = 0.5 • I _{D25} , Note 1	50	82	S
R_{Gi}	Gate Input Resistance		4.75	Ω
C _{iss}			2250	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		660	pF
C _{rss}			185	pF
t _{d(on)}	Deciative Contabine Times		27	ns
t _r	Resistive Switching Times $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		38	ns
t _{d(off)}	$V_{GS} = 10V$, $V_{DS} = 0.3 \cdot V_{DSS}$, $I_D = 0.3 \cdot I_{D25}$ $R_C = 10\Omega$ (External)		76	ns
t,	N _G = 1032 (External)		35	ns
$Q_{g(on)}$			70	nC
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		20	nC
Q_{gd}			38	nC
R _{thJC}				0.50 °C/W

Source-Drain Diode

Symbol Test Conditions (T ₁ = 25°C, Unless Otherwise Specified)		Characteristic Values Min. Typ. Max.			
I_s	V _{GS} = 0V		.,,,,,	86	A
I _{sm}	Repetitive, Pulse Width Limited by T _{JM}			344	Α
V _{SD}	I _F = I _S , V _{GS} = 0V, Note 1			1.4	V
$\left\{egin{array}{c} \mathbf{t}_{rr} \\ \mathbf{l}_{RM} \\ \mathbf{Q}_{RM} \end{array}\right\}$	$I_F = 43A$, -di/dt = 100A/ μ s, $V_R = 100V$		110 0.5 9.4		ns A µC

Note 1: Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2 \%$

Fig. 1. Output Characteristics @ $T_J = 25$ °C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ $T_J = 150$ °C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 43A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 43A Value vs. Drain Current

Fig. 6. Normalized Breakdown & Threshold Voltages vs. Junction Temperature

IXTA86N20X4

Fig. 9. Transconductance $V_{DS} = \overline{10V}$ -T_J = - 40°C g fs - Siemens -150°C I_D - Amperes

Littelfuse reserves the right to change limits, test conditions and dimensions.

V_{DS} - Volts

Fig. 13. Output Capacitance Stored Energy

8
7
6
9
9
9
1
1
1
0

Fig. 14. Forward-Bias Safe Operating Area

Fig. 15. Maximum Transient Thermal Impedance

© 2020 Littelfuse, Inc.

SYM	INCH	HES	MILLI	LIMETER		
SIM	MIN	MAX	MIN	MAX		
Α	.170	.185	4.30	4.70		
A1	.000	.008	0.00	0.20		
A2	.091	.098	2.30	2.50		
ь	.028	.035	0.70	0.90		
b2	.046	.060	1.18	1.52		
С	.018	.024	0.45	0.60		
C2	.049	.060	1.25	1.52		
D	.340	.370	8.63	9.40		
D1	.300	.327	7.62	8.30		
E	.380	.410	9.65	10.41		
E1	.270	.330	6.86	8.38		
е	.100	.100 BSC		BSC		
H	.580	.620	14.73	15.75		
L	.075	.105	1.91	2.67		
L1	.039	.060	1.00	1.52		
L2	-	.070	_	1.77		
L3	.010	BSC	0.254	0.254 BSC		

- NOTE:

 1. This drawing meets all dimensions requirement of JEDEC outlines T0-263AB.

 2. All metal surface are matte pure tin plated except trimmed area.

 3. L3 is Gauge plane to measure L.

 4. These dimension do not include mold flash and they will not exceed 0.005[0.13] per side.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.