Análise de Speedup em Execução Paralela - Merge Sort

Grupo: Fernanda Ferreira de Mello, Gaya Isabel Pizoli, Vitor Lamas Esposito

Visão Geral

Este relatório contém a análise de desempenho de um algoritmo de Merge-Sort paralelo executado com diferentes números de processadores, tamanhos de problema, e divisões de granularidades mínimas diferentes.

Objetivo

Analisar a eficiência da paralelização através de gráficos de speedup.

Dados Experimentais

Configurações Testadas

• Tamanhos de problema: 50000, 100000, 500000, 1000000 números

• **Processadores**: 1, 2, 4 cores

• Métrica: Tempo de execução em segundos

Tempos de Execução Coletados

Execução do programa sequencial

Tamanho	Tempo
50000	0.006930s
100000	0.016867s
500000	0.071829s
1000000	0.140054s

Granularidade mínima igual a 1

Tamanho	1 proc	2 proc	4 proc
50000	0.116638s	0.068143s	0.045884s
100000	0.215335s	0.164258s	0.085965s
500000	1.239434s	0.605324s	0.376127s
1000000	2.395317s	1.319387s	0.847059s

Granularidade mínima igual a 500

Tamanho	1 proc	2 proc	4 proc
50000	0.008533s	0.005924s	0.003907s
100000	0.017033s	0.009607s	0.007124s
500000	0.086655s	0.058231s	0.034174s
1000000	0.195443s	0.125859s	0.066597s

Granularidade mínima igual a 1000

Tamanho	1 proc	2 proc	4 proc
50000	0.008000s	0.004514s	0.003774s
100000	0.020448s	0.010387s	0.008529s
500000	0.094249s	0.049631s	0.033649s
1000000	0.190690s	0.092126s	0.054412s

Granularidade mínima igual a 5000

Tamanho	1 proc	2 proc	4 proc
50000	0.008762s	0.005330s	0.004470s
100000	0.019760s	0.010317s	0.006780s
500000	0.094068s	0.055543s	0.028345s
1000000	0.181873s	0.107390s	0.068355s

Resultados Principais

Características dos Gráficos

• Linha sólida: Speedup real obtido

• Linha tracejada: Speedup ideal (linear)

• Anotações: Valores exatos de speedup em cada ponto

• Cores: Verde (50000), Azul (100000), Vermelho (500000), Roxo (1000000)

Speedup Máximo por Caso

Granularidade mínima igual a 1

• **50000 números**: 2.54x (4 processadores)

• **100000 números**: 2.50x (4 processadores)

• **500000 números**: 3.30x (4 processadores)

• **1000000 números**: 2.83x (4 processadores)

Granularidade mínima igual a 500

• 50000 números: 2.18x (4 processadores)

• 100000 números: 2.39x (4 processadores)

• **500000 números**: 2.54x (4 processadores)

• **1000000 números**: 2.93x (4 processadores)

Granularidade mínima igual a 1000

• 50000 números: 2.12x (4 processadores)

• **100000 números**: 2.40x (4 processadores)

• **500000 números**: 2.80x (4 processadores)

• **1000000 números**: 3.50x (4 processadores)

Granularidade mínima igual a 5000

50000 números: 1.96x (4 processadores)
100000 números: 2.91x (4 processadores)
500000 números: 3.32x (4 processadores)
1000000 números: 2.66x (4 processadores)

Eficiência de Paralelização

É possível concluir que em alguns casos a paralelização do algoritmo foi bem eficiente, chegando próxima a aceleração máxima do programa paralelo. Um dos principais casos onde se percebeu este compotamento foi durante o teste com granularidade 1000, tamanho 1000000 e 2 processadores.

Principais Observações

- 1. Escalabilidade positiva: Problemas de tamanhos maiores apresentam melhor speedup
- 2. Overhead significativo: Nenhum caso alcançou speedup linear ideal
- 3. **Tendência crescente**: Speedup melhora consistentemente com o tamanho do problema, ainda que a dimensão desta melhora varie dependendo dos parâmetros

Especificação máquina

CPU: 8th Gen Intel Core i7-8665U

• GRAPHICS: Intel UHD Graphics 620 (128 MB)

SSD: 477 GBMEM: 32 GB

• Arquitetura: x86_64

• Modo(s) operacional da CPU: 64-bit

Ordem dos bytes: Little Endian
Número de núcleos de CPU: 4

• Thread(s) por núcleo: 2

• Frequência máxima do processador (GHz): 4.80 GHz

• Frequência base do processador (GHz): 1.90 GHz

Conclusões

Ao analisar estes resultados, concluiu-se que a escolha dos parâmetros de granularidade e tamanho do problema, especialmente o tamanho, tem uma grande influência no ganho de desempenho que se obtém ao paralelizar a solução do Merge Sort. Assim como foi identificado durante os testes da solução do algoritmo Insert Sort, entende-se que para problemas pequenos, o overhead pode superar os benefícios, enquanto problemas maiores podem se beneficiar mais da paralelização da solução.