1146 - Closest Distance

Two men are moving concurrently, one man is moving from **A** to **B** and other man is moving from **C** to **D**. Initially the first man is at **A**, and the second man is at **C**. They maintain constant velocities such that when the first man reaches **B**, at the same time the second man reaches **D**. You can assume that **A**, **B**, **C** and **D** are 2D Cartesian co-ordinates. You have to find the minimum Euclidean distance between them along their path.

Input

Input starts with an integer $T (\leq 1000)$, denoting the number of test cases.

Each case will contain eight integers: A_x , A_y , B_x , B_y , C_x , C_y , D_x , D_y . All the co-ordinates are between 0 and 100. $(A_x$, A_y) denotes A. $(B_x$, B_y) denotes B and so on.

Output

For each case, print the case number and the minimum distance between them along their path. Errors less than 10⁻⁶ will be ignored.

Sample Input	Output for Sample Input
3	Case 1: 0
0 0 5 0 5 5 5 0	Case 2: 1.4142135624
0 0 5 5 10 10 6 6	Case 3: 1
0 0 5 0 10 1 1 1	