National University of Computer and Emerging Sciences, Lahore Campus

Course Name:	Operating Systems	Course Code:	CS2006
Degree Program:	BSCS	Semester:	Spring 2023
Exam Duration:	60 Minutes	Total Marks:	55
Paper Date:	28-Feb-2023	Weight	15%
Section:	ALL Sections except Section 6A	Page(s):	3
Exam Type:	Mid 1 Exam		

Student : Name: Roll No. Section:

Instruction/Notes: Attempt all questions on the given answer sheet. Clearly mention your attempted question no. with the answers on the answer sheet. Avoid unnecessarily explanation.

CLOs	CLO-2	CLO-2	CLO-2	CLO-3	
Questions	Q-1	Q-2	Q-3	Q-4	Total
Total Marks	20	10	10	15	55
Marks Obtained					

Question 01: (20 points)

A) What output will be at Line X and Line Y? (10 points)

```
#include <sys/types.h>
#include<iostream>
#include<unistd.h>
using namespace std;
#define SIZE=5
int nums[SIZE] = \{0,1,2,3,4\};
int main() {
      int i;
      pid_t pid;
      pid = fork();
      if (pid == 0)
```

```
for(i=0; i<SIZE; i++) {
    nums[i]*=-i;
    cout<< "CHILD: "<<nums[i]<<endl; // LINE X
    }
} else if (pid > 0) {
    wait(NULL);
    for(i=0; i<SIZE; i++)
    cout<< "Parent: "<<nums[i]<<endl; // LINE Y
    }
return 0;
}</pre>
```

B) Consider the following code: (5+5 = 10 points)

How many times "Hello World" will be printed on the screen? Also draw the *Process Tree* of the given program.

Question 02: (10 points)

What is the context-switch? Explain it with the help of a diagram. Why is context-switch considered as overhead?

Question 03: (10 points)

- **A)** Write a C program that forks a child process that ultimately becomes a zombie process. This zombie process must remain in the system for at least 10 seconds. (4 points)
- **B)** Why do we need **init** process? (2 points)
- C) Answer YES/NO and provide a brief explanation. (4 points)

- (a) Can two processes be concurrently executing the same program executable?
- (b) Can two running processes share the complete process image in physical memory (not just parts of it)?

Question 04: (15 points)

The following processes are being scheduled using a **Preemptive**, **Round-Robin** scheduling algorithm.

Process	Arrival	Burst	Priority
P1	0	20	40
P2	25	25	30
P3	30	25	30
P4	60	15	35
P5 100		10	5
P6	105	10	10

Each process is assigned a numerical priority, with a higher number indicating a higher relative priority. In addition to the processes listed below, the system also has an idle task (which consumes no CPU resources and is identified as P_{idle}). This task has priority 0 and is scheduled whenever the system has no other available processes to run. The length of a time quantum is 20 units. If a process is preempted by a higher priority process, the preempted process is placed at the end of the queue.

- 1. Show the scheduling order of the processes using a Gantt chart.
- 2. What is the **Turnaround time** for each process?
- **3.** What is the **Waiting time** for each process?