# COVID-19 Data Analysis Project

May 7, 2020

Team Blue

Nicole Gee, Nicholas Richmond, Matthew Clark, Swati Kohli, Joseph Carozza

#### **Table of Contents**

| Introduction         | 1 |
|----------------------|---|
| Data Preparation     | 1 |
| Descriptive Analysis | 2 |
| Regression Analysis  | 3 |
| Challenges           | 5 |
| Recommendations      | 5 |
| Appendix             | 6 |

#### Introduction

In 2020 a coronavirus called SARS-CoV-2, also known as COVID-19, infected many people worldwide. The pandemic made a mark on history and left many wondering, how did this happen? In our project, we will attempt to analyze data in order to learn what factors influence a country's positive COVID-19 cases and deaths. First, we will collect, combine, and clean different data sources into one. Followed by exploratory data analysis to describe the data and look for interesting correlation and trends. Finally, we will use regression to further explore the data and interpret any significant correlations found in the model. We decided to take two different approaches to the regression analysis. In Part A, we will use linear regression to explore specific questions about the variable's impact on positive COVID-19 cases, and in Part B, we will use supervised Machine Learning techniques with LASSO and Multiple Linear Regression to narrow down a large list of variables to identify more significant factors related to deaths. These steps can be visualized in *Figure 1*.



Figure 1: Data Analysis Project Steps

#### **Data Preparation**

Right off the bat, we realized how hard it was to find the data we wanted to include in our analysis. Our strategy to approach the task was to first brainstorm different variables that may have an influence on COVID-19 including multiple health, finance, and travel factors for each country. We ended up finding only a small selection of the variables from various data sources like John Hopkins, Data Blogs, and Wikipedia. We acknowledge some challenges like the validity of data from sources like Wikipedia and the fact these data sources were all published at different times. For our project, we decide to move forward using the data knowing any insights we discovered will need to be researched further with better quality data before making strong claims. We downloaded all of the data we wanted to include in the analysis as separate .csv or .xlsx files. We read the separate data files into Rstudio and, using the John Hopkins data as the primary data set, combined additional variables from the other data files using simple left-join commands. This was done after cleaning variations of country names and labels so that the new data being added would match the primary John Hopkins data. A table of the variables collected and their data sources can be found in Appendix 1. Also, we noticed a number of missing values or special characters like '..' in certain variables that would affect the analysis. Therefore, we decided to remove these countries if the variable was being used in the regression.

#### **Descriptive Analysis**

After cleaning the COVID-19 data and adding fields from various data sources to serve as independent variables, we utilized a Python script to calculate summary statistics of each field, create histograms of the COVID-19 related data, and perform a correlation analysis between each independent and COVID-19 outcome variable. Before running the final dataset through the Python script, we also calculated rates of key COVID-19 fields to control for population (Appendix 3). Understanding raw counts of every infection and death is important since each instance of data represents millions of human lives; however, since each country differs vastly in population, analyzing raw counts alone can become misleading in understanding how a country is doing in response to the virus. The descriptive table (Appendix 3) helped our team begin to focus on more meaningful independent variables and understand the distribution of each field. We then used the script to generate histograms of the key COVID-19 raw totals and calculated rate fields (Appendix 3). The histograms revealed that the COVID-19 data generally has a skewed distribution for every field, underscoring the importance of identifying potential outliers that could impact our future regression models. On average, we observed 34,053 cases and 2,457 deaths per country; however given the distributions, we see that a majority of countries are clustered on the lower end of each graph and there are a few countries with significant outliers (mainly the US) (Appendix 4). Of the countries analyzed, the average infection rate by population (# of cases / total population) was 0.09%, but infection rates globally ranged from 0.000177% to .60%. As demonstrated by Appendix 4, several countries with high infection rates were likely skewing the average. On average, the death rate by population (# of deaths / total population) was 0.005%. However, the average death rate among positively identified cases (# of deaths / # of cases) was 4.10% on average. After this initial exploratory analysis and visualization, we created heatmaps using Python to determine one-on-one correlations between each "predictor" (non-COVID-19 fields) and "outcome" (COVID-19 fields) variable. We grouped the predictor variables into "financial" and "demographic" categories to better digest each matrix.

On the financial matrix, we observed that the infection rate (# of cases / total population) is [positively] correlated to GDP per capita at .77 (Appendix 5). This correlation may exist because developed countries are more likely to have interactions with the global economy and more opportunity for physical interactions due to high density in populated areas. We also observed that the test rate (# of tests / total population) is also [positively] correlated to GDP per capita by .63, indicating that countries with more resources can likely acquire the testing infrastructure to effectively test more of their population (Appendix 5). From the demographic matrix (Appendix 6), we observed a moderate correlation between both median age and the urban percentage of the population with both testing and infection rates (.45). Our main takeaway from this initial analysis was the interpretation that some of these fields could be potential influencers of COVID-19 data. We then decided to further investigate these relationships more holistically through multiple regression analyses.

#### Regression Analysis

#### Part A

For our first regression, we approached the problem with the driving question: Why are richer countries seemingly more impacted? To evaluate a country's "richness" we used the following variables to evaluate: GDP per capita, household income, income per capita, and healthcare spending per capita. We took additional data cleaning steps to prepare for this analysis like correcting the size of cases from raw count to per million residents and removed countries if they had missing GDP, population, or testing information with left 106 countries. By quickly ranking of the countries with most COVID-19 cases and the highest GDP we can extrapolate the following insights, of the top 10 countries with most cases:

- 4 are within the top 10% of GDP/ capita
- 8 are within the top 20% of GDP/ capita
- All are within the top 30% of GDP/ capita

Of the 10 countries with the least cases:

- 6 are within the lowest 10% of GDP/ capita
- 8 are within the lowest 20% of GFP/ capita
- All are within the lowest 30% of GDP/ capita

This leaves the glaring question, are richer countries more infectious? First, we approached the question by using linear regression in excel with the dependent variable, cases per million, and the independent variable, GPD per capita, to see if there is a strong correlation between the two. Our model produced a 0.58 R² value (Appendix 8) which measures the variation in the dependent variable that can be attributed to the independent variable. While 0.58 is not a terrible score we wondered if this could be explained because richer countries had more testing so we ran another linear regression with the dependent variable, tests per million, and independent variable, GPD per capita, and found a 0.43 R² value (Appendix 9). While it's not as strong as the previous model there is some correlation. This led us to our next question, is testing the confounding variable? In our third linear regression, we assigned the dependent variable as case per test, and the independent variable, GDP per capita, we got an R² value of 0.002 (Appendix 10). From our analysis, we can assume richer countries aren't more infectious but that the original correlation we found may be due to the increased rate of testing in richer countries. Although we cannot determine the causation of these correlations, we assume that richer countries simply have the means to detect more cases.

#### Part B

Through the data it turns out that the average deaths out of total positive cases has been 7.2! Therefore, we dig deeper into this aspect. In our next regression, we take a different approach with a driving question: Which predictors in financial, demographic and mobility categories all put together potentially explain the deaths? The deaths have been considered as response variable taken with population in millions and Covid infections (# positive cases). For statistical analysis of deaths/million population, due to skewed response variable (to the right), (see histogram in Appendix 10), log transformation is applied to make it more normal or symmetric such that it moves the big countries closer together and space out the smaller

ones. This also helps meet the assumption of constant variance in the context of linear modeling.

The approach for this analysis is Supervised Machine Learning with a method called LASSO regression in Python to narrow down all of our variables of interest to learn which factors could bear some influence on Covid deaths. LASSO regression is a type of linear regression that shrinks the coefficients of less impactful variables which will be useful for our goal. Further, Multiple Linear Regression with hypothesis testing is employed to determine which predictors seem significant. Due to relatively smaller data for analysis and considering the volatility in the situation, we chose to increase the range of probability with level of significance at 10% (p-value as 0.01).

In order for the regression to work, we took some more data cleaning steps. We removed all countries where there were null values and standardized(and scaled) the data, being in different units for the ease of comparison after which we get 92 countries for analysis. Additionally, we make some assumptions for 5 countries which have significant cases and deaths to keep them in the analysis. They are:

| 1. China       | Total Tests=1000,000 (random assumption)                                                                                                                  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. South Korea | Female proportion= 50(assumed equal proportion of males and females)                                                                                      |
| 3. Switzerland | <ul> <li>Median Per Capita Income 37466/3.2 = 11708 (applied formula: median per<br/>capita Household income/ avg household size assuming 3.2)</li> </ul> |
| 4. Czechia     | <ul> <li>Female proportion 50 (equal proportion)</li> <li>smoking prevalence (% of adults) 21.6 (average across the world)</li> </ul>                     |
| 5. Ireland     | Median Per Capita Income 28234/3.2 = 8823 (applied formula: median per capita Household income/ avg household size assuming 3.2)                          |

After implementing the LASSO algorithm we observed some variables were removed from the model which we can assume have no correlation to deaths. Also, coefficients in the log of response gives the percent increase (or decrease) in the response for every one-unit increase in the independent variable. Even though R square values are 0.82, 0.36 respectively(Appendix 11,12), indicating over and underfitting, the analysis can be used to understand the relations. Predictors of interest with relation direction through this technique on deaths are as follows:

| Y = Log(Deaths/ Million)                                                                                                               | Y = Deaths/ Positive Cases                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| <ul> <li>Cases/million (+)</li> <li>Pop. Proportion Female (+)</li> <li>Median Age (+)</li> <li>Import/Export (% of GDP)(-)</li> </ul> | <ul> <li>Per Capita Spending on Health (+)</li> <li>Intrnl Inbound Tourists(+)</li> </ul> |

From the analysis (and Appendix 13), it can be seen that population age structure has some relation with the vulnerability towards the death toll due to Covid-19. While 65 years or

older are not the only ones at maximum risk, the data analysis backs the current scenario as evidence that the disease is fatal as people testing positive and relatively older (together with underlying health conditions) have a significant relation to Covid-19 fatality rate. Since December, novel coronavirus has spread to numerous countries from the Chinese city of Wuhan. Logically, due to contagious nature of the disease, interactions play a role and mobility, i.e. transmission through active virus carriers through humans or surfaces imply increased effect on death rate due to risk in contracting the fatal infection (also evident through analysis result-International inbound tourists). Though, an inverse relation of Import/Export (% of GDP) with increasing deaths is an interesting insight because of low correlation (0.19) which can be explored further to understand the importance. Further, even though, as per the latest news, males appear to be dying at higher rates than women, the population proportion of females in analysis (predominantly ranging between 46-55%) might not be such an important variable but worth exploring with disaggregated data by sex to improve real-time targeted forecasting. Finally, nations spending more on healthcare does not mean more deaths due to Coronavirus but implies that through more testing more cases are detected some of which are not able to recover resulting in deaths.

In conclusion, our analysis pointed to some interesting insights, that with more time, could expand to more in-depth projects.

#### Challenges

Throughout the project, we noticed that obtaining the right data was the most challenging. We discovered the MICE (Multiple Imputation by Chained Equations) method that is effective in filing missing values. The technique involves running multiple regression models where each missing value is modeled conditionally depending on the observed (non-missing) values by taking the regression of the column. However, due to time constraints we could not apply this technique.

Modeling is not a perfectly determined prediction of the future, however, unlike weather conditions which we get accustomed to and incorporate into our day to day decisions, with pandemics we can actually influence the outcome through different techniques, measures and preventions.

#### Recommendations

In our analysis, we found some odd correlations - richer countries by GDP per capita have more cases per million and countries that spend more on healthcare per capita have higher death rates. Although we cannot find causation in this limited analysis, we assume the reason for these odd findings is due to these richer (by GDP and healthcare spending) countries simply having the means to test cases and detect deaths. Based on this assumption, we recommend international organizations provide funding and relief for countries unable to test at appropriate levels and for coalitions to support better healthcare. With better testing support and tracking, data can be better tracked worldwide and facilitate better learning about this disease's behavior.

### <u>Appendix</u>

#### Appendix 1:

#### Data & Source

| Variable                                                                | Published Date | Data Source                             | URL         |
|-------------------------------------------------------------------------|----------------|-----------------------------------------|-------------|
| Country                                                                 | 2020           | JHU                                     | <u>Link</u> |
| # Positive Covid 19 Cases                                               | Apr 29 2020    | JHU                                     | <u>Link</u> |
| # Deaths                                                                | Apr 29 2020    | JHU                                     | <u>Link</u> |
| Median Household Income                                                 | 2006 - 2012    | World Population Review                 | <u>Link</u> |
| Median Per Capita Income                                                | 2006 - 2012    | World Population Review                 | <u>Link</u> |
| Population                                                              | 2020           | World Bank                              | <u>Link</u> |
| % Female population                                                     | 2017           | Our World in Data                       | <u>Link</u> |
| Per Capita Spending on<br>Health                                        | 2015           | Wikipedia                               | <u>Link</u> |
| Total Testing                                                           | 2020           | World Info Meter                        | <u>Link</u> |
| US \$ GDP per Capita                                                    | 2019           | International Monetary<br>Fund          | <u>Link</u> |
| % Urban Population                                                      | 2018           | United Nations<br>Development Programme | <u>Link</u> |
| People 65 and Over<br>(Millions)                                        | 2018           | United Nations<br>Development Programme | <u>Link</u> |
| Median Age                                                              | 2018           | United Nations<br>Development Programme | <u>Link</u> |
| International Inbond<br>Tourists                                        | 2017           | United Nations<br>Development Programme | <u>Link</u> |
| Import/ Export % of GDP                                                 | 2018           | United Nations<br>Development Programme | <u>Link</u> |
| International Student<br>Mobilitty (% of total tertiary<br>enrollement) | 2010-2017      | United Nations<br>Development Programme | Link        |
| R&D Expenditure (% of GDP)                                              | 2010-2017      | United Nations<br>Development Programme | <u>Link</u> |
| Cigarettes per person per year                                          | 2016           | Wikipedia                               | <u>Link</u> |
| Smoking prevalence (% of auditis)                                       | 2016           | Our World in Data                       | <u>Link</u> |

## Appendix 2:

#### Original Dataset: Screenshot

| Country.<br>Region | Cases | Deaths |       | medianPe<br>rCapitalno<br>ome |          | Pop.<br>Proportio<br>n Female | Per<br>Capita<br>Spending<br>on Health | Total<br>Tests | US\$<br>GDP/Capi<br>ta | % Urban<br>Pop. | People 65<br>and Over<br>(Millions) | Median<br>Age | Internation<br>al Inbound<br>Tourists(th<br>ousands) | Import/Ex<br>port (% of<br>GDP) | R&D<br>Expenditu<br>re (% of<br>GDP) | smoking<br>prevalence<br>(% of<br>adults) |
|--------------------|-------|--------|-------|-------------------------------|----------|-------------------------------|----------------------------------------|----------------|------------------------|-----------------|-------------------------------------|---------------|------------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------------------|
| Luxembou           | 3769  | 89     | 52493 | 18418                         | 625.978  | 49.74325                      | 6236                                   | 42643          | 113196                 | 91              | 8.57E-02                            | 39.729        | 1046                                                 | 415.4753                        | 1.24366                              | 23.5                                      |
| Singapore          | 15641 | 14     | 32360 | 7345                          | 5850.342 | 50.59025                      | 2280                                   | 143919         | 63987                  | 100             | 0.660004                            | 42.226        | 13903                                                | 326.1947                        | 2.15996                              | 16.5                                      |
| Malta              | 463   | 4      | 21141 | 6869                          | 441.543  | 49.77706                      | 2304                                   | 32989          | 30650                  | 94.6            | 8.94E-02                            | 42.596        | 2274                                                 | 267.7761                        | 0.59697                              | 25.5                                      |
| Ireland            | 20253 | 1190   | 28234 | 8823                          | 4937.786 | 50.40446                      | 4757                                   | 153954         | 77771                  | 63.2            | 0.66815                             | 38.246        | 10338                                                | 209.8109                        | 1.17681                              | 24.3                                      |
| Slovakia           | 1391  | 22     | 17415 | 5455                          | 5459.642 | 51.38578                      | 1108                                   | 85922          | 19547                  | 53.7            | 0.852265                            | 41.249        | 2162                                                 | 192.3459                        | 0.78965                              | 30.1                                      |
| Belgium            | 47859 | 7501   | 26703 | 10189                         | 11589.62 | 50.68928                      | 4228                                   | 237963         | 45175                  | 98              | 2.157357                            | 41.928        | 8385                                                 | 175.6481                        | 2.48835                              | 28.2                                      |
| Hungary            | 2727  | 300    | 12445 | 4493                          | 9660.351 | 52.43025                      | 894                                    | 72951          | 17463                  | 71.4            | 1.859736                            | 43.336        | 5650                                                 | 168.2775                        | 1.20606                              | 30.6                                      |
| Lithuania          | 1375  | 45     | 12375 | 4719                          | 2722.289 | 53.92806                      | 923                                    | 125555         | 19266                  | 67.7            | 0.55199                             | 45.051        | 2523                                                 | 161.9537                        | 0.84724                              | 28.8                                      |
| Slovenia           | 1418  | 89     | 25969 | 8656                          | 2078.938 | 50.34443                      | 1772                                   | 52948          | 26170                  | 54.5            | 0.407399                            | 44.539        | 3586                                                 | 160.9377                        | 2.00202                              | 22.5                                      |
| Bahrain            | 2921  | 8      | 24693 | 4778                          | 1701.575 | 37.27093                      | 1190                                   | 129694         | 25273                  | 89.3            | 3.81E-02                            | 32.456        | 11370                                                | 159.1855                        | 0.10116                              | 26.4                                      |
| Netherland         | 38998 | 4727   | 38584 | 14450                         | 17134.87 | 50.24478                      | 4746                                   | 219744         | 52367                  | 91.5            | 3.274786                            | 43.314        | 17924                                                | 155.3479                        | 2.03247                              | 25.8                                      |
| Czechia            | 7579  | 227    | 22913 | 7821                          | 10708.98 | 50                            | 1322                                   | 242088         | 23078                  | 73.8            | 2.071368                            | 43.203        | 10160                                                | 151.4511                        | 1.6783                               | 21.6                                      |
| Estonia            | 1666  | 50     | 12577 | 5031                          | 1326.535 | 53.14547                      | 1112                                   | 52741          | 23523                  | 68.9            | 0.259641                            | 42.424        | 3245                                                 | 146.9634                        | 1.28129                              | 31.3                                      |
| Belarus            | 13181 | 84     | 15085 | 5236                          | 9449.323 | 53.46625                      | 352                                    | 176625         | 6603                   | 78.6            | 1.403255                            | 40.335        | 11060.2                                              | 139.3435                        | 0.58716                              | 26.7                                      |
| Malaysia           | 5945  | 100    | 11207 | 2267                          | 32366    | 48.37675                      | 386                                    | 160296         | 11136                  | 76              | 2.103473                            | 30.262        | 25948                                                | 132.2554                        | 1.30069                              | 21.5                                      |
| Cyprus             | 843   | 15     | 18242 | 4932                          | 1207.359 | 49.94015                      | 1563                                   | 58109          | 27719                  | 66.8            | 0.163156                            | 37.25         | 3652                                                 | 130.2879                        | 0.50167                              | 36.4                                      |
| Bulgaria           | 1447  | 64     | 8487  | 2829                          | 6948.445 | 51.3888                       | 572                                    | 45208          | 9518                   | 75              | 1.482383                            | 44.596        | 8883                                                 | 128.1416                        | 0.78006                              | 37                                        |
| Cambodia           | 122   | 0      | 2308  | 451                           | 16718.97 | 51.20651                      | 70                                     | 11975          | 1620                   | 23.4            | 0.742401                            | 25.631        | 5602                                                 | 124.8986                        | 0.11823                              | 17.2                                      |
| Mongolia           | 38    | 0      | 5922  | 1440                          | 3278.29  | 50.53249                      | 152                                    | 7455           | 4132                   | 68.4            | 0.129457                            | 28.181        | 469                                                  | 123.8266                        | 0.13412                              | 25.6                                      |
| Thailand           | 2947  | 54     | 7029  | 1795                          | 69799.98 | 51.2368                       | 217                                    | 178083         | 7791                   | 49.9            | 8.262606                            | 40.102        | 35592                                                | 123.3069                        | 0.78133                              | 19.9                                      |
| Georgia            | 517   | 6      | 2591  | 734                           | 3989.167 | 52.25486                      | 281                                    | 14718          | 4289                   | 58.6            | 0.595057                            | 38.268        | 6483                                                 | 121.7427                        | 0.30104                              | 28.8                                      |
| Switzerlan         | 29407 | 1716   | 37466 | 11708                         | 8654.622 | 50.4543                       | 9818                                   | 266200         | 83716                  | 73.8            | 1.587743                            | 43.053        | 9889                                                 | 118.8316                        | 3.3743                               | 25.7                                      |
| Latvia             | 849   | 15     | 10461 | 4000                          | 1886.198 | 54.0734                       | 784                                    | 57886          | 18171                  | 68.1            | 0.386533                            | 43.941        | 1949                                                 | 118.3695                        | 0.44292                              | 37                                        |
| Monteneg           | 322   | 7      | 11519 | 3123                          | 628.066  | 50.66308                      | 382                                    | 6864           | 8703                   | 66.8            | 9.40E-02                            | 38.8          | 1877                                                 | 110.5984                        |                                      | 45.9                                      |
|                    | 6630  | 125    | 8921  | 3020                          | 8737.371 | 51.13594                      | 491                                    | 85645          | 7397                   | 56.1            | 1.614935                            | 41.575        | 1497                                                 | 110.1912                        | 0.93022                              | 38.9                                      |

# Appendix 3: Descriptive Statistical Table (count, mean, std, min, .25, .50, .75, max of each field) (Including new calculated rate columns: see table below) (Including new calculated rate columns: people(5andOverMillions | People(5andOverMillions |

|                                     | Cases                                 | Deaths     | medianHouseholdIncor                   | ne medianPerCap                        | pitalncome | pop2020                                    | pop2020Total     | PopProportionFema                             | e PerCapitaSpend                                   | dingonHealth | TotalTests                                  | USGDPCapita   | UrbanPop&                                   | People65andOverMillions                            | People65andOverTotal                               |
|-------------------------------------|---------------------------------------|------------|----------------------------------------|----------------------------------------|------------|--------------------------------------------|------------------|-----------------------------------------------|----------------------------------------------------|--------------|---------------------------------------------|---------------|---------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| count                               | 92                                    | 92         |                                        | 92                                     | 92         | 92                                         | 92               | !                                             | 2                                                  | 92           | 92                                          | 92            | 92                                          | 92                                                 | 92                                                 |
| mean                                | 34,053                                | 2,457      | 16,341.9                               | 16                                     | 5,192.01   | 68,865.58                                  | 68,865,577       | 50.1                                          | 5                                                  | 1,614.59     | 339,003                                     | 21,508.98     | 68.54                                       | 6.666701                                           | 6,666,701                                          |
| std                                 | 115,563                               | 8,142      | 13,954.0                               | 14                                     | 5,177.52   | 209,961.79                                 | 209,961,787      | 3.4                                           | 3                                                  | 2,105.23     | 822,455                                     | 23,023.89     | 18.53                                       | 19.285874                                          | 19,285,874                                         |
| min                                 | 23                                    | -          | 571.0                                  | 10                                     | 47.00      | 441.54                                     | 441,543          | 24.9                                          | 3                                                  | 36.00        | 3,643                                       | 671.00        | 18.50                                       | 0.038100                                           | 38,100                                             |
| 0.25                                | 1,387                                 | 18         | 5,745.7                                | 5                                      | 1,273.25   | 5,339.46                                   | 5,339,460        | 50.0                                          | )                                                  | 277.25       | 32,201                                      | 4,257.50      | 57.05                                       | 0.505595                                           | 505,595                                            |
| 0.50                                | 5,309                                 | 132        | 11,326.5                               | 0                                      | 3,067.50   | 11,704.12                                  | 11,704,121       | 50.4                                          | 9                                                  | 676.00       | 108,003                                     | 11,149.00     | 69.40                                       | 1.442819                                           | 1,442,819                                          |
| 0.75                                | 16,325                                | 716        | 25,227.2                               | 5                                      | 7,380.50   | 47,786.81                                  | 47,786,806       | 51.1                                          | 3                                                  | 2,092.50     | 238,994                                     | 30,845.00     | 81.68                                       | 5.081079                                           | 5,081,079                                          |
| max                                 | 1,039,909                             | 60,967     | 52,493.0                               | 10                                     | 19,308.00  | 1,439,323.78                               | 1,439,323,776    | 54.0                                          | 7                                                  | 9,818.00     | 6,335,505                                   | 113,196.00    | 100.00                                      | 155.911750                                         | 155,911,750                                        |
|                                     |                                       |            |                                        |                                        |            |                                            |                  |                                               |                                                    |              |                                             |               |                                             |                                                    |                                                    |
|                                     | MedianAge                             | Internatio | nalInboundTourists Imp                 | ortExport%ofGDP                        | R&DExpend  | diture%ofGDP                               | SmokingPrevalenc | e%ofAdults Infection                          | nRateByPopulation                                  | DeathRateB   | yPopulation                                 | DeathRateByPo | ositiveCases                                | PositiveCasesPerTestsGiven                         | TestRatePerPopulation                              |
| count                               |                                       | Internatio | nalInboundTourists Imp                 | ortExport%ofGDP<br>92                  | R&DExpend  | diture%ofGDP                               | SmokingPrevalenc | e%ofAdults Infection 92                       | nRateByPopulation<br>92                            |              | yPopulation<br>92                           | DeathRateByPo | ositiveCases<br>92                          | Positive Cases Per Tests Given<br>92               |                                                    |
|                                     |                                       | Internatio |                                        |                                        | R&DExpend  |                                            | SmokingPrevalenc |                                               |                                                    |              |                                             | DeathRateByPo |                                             |                                                    |                                                    |
| count                               | 92                                    | Internatio | 92                                     | 92                                     | R&DExpend  | 92                                         | SmokingPrevalenc | 92                                            | 92                                                 |              | 92                                          | DeathRateByPo | 92                                          | 92                                                 | 92                                                 |
| count                               | 92<br>35.22                           | Internatio | 92<br>12,606                           | 92<br>94.30                            | R&DExpend  | 92<br>1.02                                 | SmokingPrevalenc | 92<br>22.32                                   | 92<br>0.093646                                     |              | 92<br>0.005348                              | DeathRateByPo | 92<br>4.102905                              | 92<br>8.271121                                     | 92<br>1.453742                                     |
| count<br>mean<br>std                | 92<br>35.22<br>8.00                   | Internatio | 92<br>12,606<br>17,633                 | 92<br>94.30<br>61.02                   | R&DExpend  | 92<br>1.02<br>0.99                         | SmokingPrevalenc | 92<br>22.32<br>9.37                           | 92<br>0.093646<br>0.125284                         |              | 92<br>0.005348                              | DeathRateByPo | 92<br>4.102905<br>3.648165                  | 92<br>8.271121<br>8.944926                         | 92<br>1.453742<br>1.680026                         |
| count<br>mean<br>std<br>min         | 92<br>35.22<br>8.00<br>16.73          | Internatio | 92<br>12,606<br>17,633<br>145          | 92<br>94.30<br>61.02<br>26.35          | R&DExpend  | 92<br>1.02<br>0.99<br>0.02<br>0.28<br>0.67 | SmokingPrevalenc | 92<br>22.32<br>9.37<br>2.00<br>15.60<br>22.60 | 92<br>0.093646<br>0.125284<br>0.000177             |              | 92<br>0.005348<br>0.011787                  | DeathRateByPo | 92<br>4.102905<br>3.648165                  | 92<br>8.271121<br>8.944926<br>0.276649             | 92<br>1.453742<br>1.680026<br>0.006641             |
| count<br>mean<br>std<br>min<br>0.25 | 92<br>35.22<br>8.00<br>16.73<br>29.64 | Internatio | 92<br>12,606<br>17,633<br>145<br>2,151 | 92<br>94.30<br>61.02<br>26.35<br>57.35 | R&DExpend  | 92<br>1.02<br>0.99<br>0.02<br>0.28         | SmokingPrevalenc | 92<br>22.32<br>9.37<br>2.00<br>15.60          | 92<br>0.093646<br>0.125284<br>0.000177<br>0.008959 |              | 92<br>0.005348<br>0.011787<br>-<br>0.000275 | DeathRateByPo | 92<br>4.102905<br>3.648165<br>-<br>1.527378 | 92<br>8.271121<br>8.944926<br>0.276649<br>2.459079 | 92<br>1.453742<br>1.680026<br>0.006641<br>0.192401 |

| Rate Field                 | Calculation Method              |
|----------------------------|---------------------------------|
| InfectionRateByPopulation  | Total Cases / Total Population  |
| DeathRateByPopulation      | Total Deaths / Total Population |
| DeathRateByPositiveCases   | Total Deaths / Total Cases      |
| PositiveCasesPerTestsGiven | Total Cases / Total Tests       |
| TestRatePerPopulation      | Total Tests / Total Population  |

## Appendix 4: Histograms of raw totals (Cases, Deaths, Tests, Population)



Histogram of rates (Death Rate of Population, Death Rate of Positive Cases, Infection Rate of Population, Positive Case Rate Per Tests Given, Test Rate of Population)











Appendix 5: Heatmap of 1:1 Correlations (Financial Independent Variables: Median Household Income, Median Income Per Capita, GDP Per Capita, Healthcare Spending Per Capita, R&D Expenditure % Of GDP, Import/Export % Of GDP)



Appendix 6: Heatmap of 1:1 Correlations (Demographic Independent Variables: Median Age, People Over 65, Urban Population %, Female Population %, Smoking Prevalence)



#### Appendix 7:

#### Independent Variable: GDP per Capita; Dependent: Cases/Million



0.00

#### Appendix 8:

#### Independent Variable: GDP per Capita; Dependent: Tests/Million



#### Appendix 9:

#### Independent Variable: GDP per Capita; Dependent: Cases/Test



#### Appendix 10:

Histogram plot of response variable: Death/million population and Log(Death/million population)



#### Appendix 11:

#### Y =Log (Deaths per Million)

|                                         | OLS Regres       | sion Resul | ts        |       |         |        |
|-----------------------------------------|------------------|------------|-----------|-------|---------|--------|
| Dep. Variable: L                        | ogDeaths per mil | R-square   | d:        |       | 0.820   |        |
| Model:                                  | OLS              | Adj. R-s   |           |       | 0.807   |        |
| Method:                                 | Least Squares    |            |           |       | 61.10   |        |
| Date:                                   | Wed, 06 May 2020 |            |           | 1     | .27e-23 |        |
| Time:                                   |                  | Log-Like   |           |       | -78.732 |        |
| No. Observations:                       | 73               | AIC:       |           |       | 169.5   |        |
| Df Residuals:                           | 67               | BIC:       |           |       | 183.2   |        |
| Df Model:                               | 5                |            |           |       |         |        |
| Covariance Type:                        | nonrobust        |            |           |       |         |        |
|                                         |                  |            |           |       |         |        |
|                                         | coef             | std err    | t         | P> t  | [0.025  | 0.975] |
| const                                   | 2.4331           | 0.087      | 27.992    | 0.000 | 2.260   | 2.607  |
| medianPerCapitaIncome                   | 0.1477           | 0.123      | 1.201     | 0.234 | -0.098  | 0.393  |
| Pop. Proportion Femal                   | e 0.4810         | 0.096      | 5.026     | 0.000 | 0.290   | 0.672  |
| Median Age                              | 0.4681           | 0.130      | 3.606     | 0.001 | 0.209   | 0.727  |
| Import/Export (% of G                   | DP) -0.3756      | 0.096      | -3.916    | 0.000 | -0.567  | -0.184 |
| cases per million                       | 1.2358           |            | 11.179    | 0.000 | 1.015   | 1.456  |
|                                         |                  |            |           |       |         |        |
| Omnibus:                                | 0.165            | Durbin-W   | atson:    |       | 1.564   |        |
| Prob(Omnibus):                          | 0.921            | Jarque-B   | era (JB): |       | 0.256   |        |
| Skew:                                   | -0.107           | Prob(JB)   | :         |       | 0.880   |        |
| Kurtosis:                               | 2.804            | Cond. No   |           |       | 2.80    |        |
| *************************************** |                  | *******    |           |       |         |        |

Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. MSE on test set 1.0288700552388288

#### Appendix 12:

#### Y = Deaths per million Cases

#### OLS Regression Results

| Dep. Variable:      | dpc                  | R-squared: 0.360 |          |          |        |           |          |
|---------------------|----------------------|------------------|----------|----------|--------|-----------|----------|
| Model:              | OLS                  | Adj. R-square    | 0.269    |          |        |           |          |
| Method:             | Least Squares        | F-statistic:     |          | 3.944    |        |           |          |
| Date:               | Wed, 06 May 2020     | Prob (F-stati    | stic):   | 0.000505 |        |           |          |
| Time:               | 17:01:54             | Log-Likelihoo    | d:       | -849.77  |        |           |          |
| No. Observations:   | 73                   | AIC:             |          | 1720.    |        |           |          |
| Df Residuals:       | 63                   | BIC:             |          | 1742.    |        |           |          |
| Df Model:           | 9                    |                  |          |          |        |           |          |
| Covariance Type:    | nonrobust            |                  |          |          |        |           |          |
|                     |                      |                  |          |          | ====== |           |          |
|                     |                      | coef             | std err  |          | P> t   | [0.025    | 0.975]   |
|                     |                      |                  |          |          |        |           | 4 60 04  |
| const               |                      | 3.941e+04        |          |          |        | 3.25e+04  |          |
| medianHouseholdInco |                      | -1.238e+04       |          | -1.489   |        | -2.9e+04  |          |
| Pop. Proportion Fem |                      | 795.4424         |          | 0.194    |        | -7389.506 |          |
| Per Capita Spending | on Health            | 1.364e+04        |          | 1.969    |        | -201.168  | 2.75e+04 |
| % Urban Pop.        |                      | -383.0642        |          |          | 0.936  | -9918.793 | 9152.665 |
| People 65 and Over  | (Millions)           | -5697.6957       | 4200.034 | -1.357   | 0.180  | -1.41e+04 | 2695.403 |
| Median Age          |                      | 4103.3472        | 5845.859 | 0.702    | 0.485  | -7578.669 | 1.58e+04 |
| International Inbou | nd Tourists(thousand | ds) 1.823e+04    | 4611.038 | 3.954    | 0.000  | 9017.166  | 2.74e+04 |
| Import/Export (% of | GDP)                 | -1898.9889       | 4436.769 | -0.428   | 0.670  | -1.08e+04 | 6967.186 |
| tests per million   |                      | -3214.9875       | 5248.827 | -0.613   | 0.542  | -1.37e+04 | 7273.957 |
|                     |                      |                  |          |          |        |           |          |
| Omnibus:            | 32.455               | Durbin-Watson    | :        | 2.129    |        |           |          |
| Prob(Omnibus):      | 0.000                | Jarque-Bera (    | JB):     | 72.366   |        |           |          |
| Skew:               | 1.505                | Prob(JB):        |          | 1.93e-16 |        |           |          |
| Kurtosis:           | 6.837                | Cond. No.        |          | 5.71     |        |           |          |
|                     |                      |                  |          |          |        |           |          |
|                     |                      |                  |          |          |        |           |          |

Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. MSE on test set 1837162570.3024642

Appendix 13:

Individual Scatter Plots - Deaths per Million Case vs significant predictors



#### Individual Scatter Plots - Log(Deaths per Million) vs significant predictors

