

Capítulo 3

Probabilidades

AMG, JFO (v8 – 2017) adaptado de: *Estatística*, Rui Campos Guimarães, José A. Sarsfield Cabral

Conteúdo

3.1	Experiênc	ias aleatórias, espaços amostrais e acontecimentos 3-1	
	3.1.1 Ex	periências aleatórias e espaços amostrais	
	3.1.2 Ac	ontecimentos	
	3.1.3 Ru	dimentos sobre teoria de conjuntos	
3.2	Probabilio	ade	
	3.2.1 De	finição clássica	
	3.2.2 De	finição geométrica	
	3.2.3 De	finição frequencista	
	3.2.4 De	finição subjectiva	
	3.2.5 De	finição axiomática	
3.3	Probabilio	ade condicional	
3.4	Acontecin	entos independentes	
3.5	Teorema d	e Bayes	
3.6	Desafios .	3-8	
3.7	Exercícios	3-9	
3.8	Anexo	3-11	
	3.8.1 An	álise Combinatória	

Resultados de aprendizagem

- Recordar as definições de experiência aleatória, espaço amostral e acontecimento
- Recordar e utilizar os principais conceitos da teoria de conjuntos e da lógica, designadamente o de partição, as operações sobre conjuntos e os operadores lógicos
- Recordar e aplicar correctamente as diferentes definições de probabilidade
- Identificar e calcular probabilidades condicionais
- Distinguir os conceitos de probabilidade a priori e a posteriori
- Distinguir acontecimentos independentes e acontecimentos mutuamente exclusivos
- Reconhecer as situações de utilização do teorema de Bayes e aplicá-lo correctamente

Slide 3.-1

Slide 3.0

3.1 Experiências aleatórias, espaços amostrais e acontecimentos

3.1.1 Experiências aleatórias e espaços amostrais

Teoria da probabilidade

- Modelizar fenómenos ou processos onde interfere o acaso
- Alicerce fundamental da inferência estatística

Experiência aleatória — Situação à qual estão associados, de forma não controlada, dois ou mais resultados possíveis: o acaso interfere na ocorrência dos resultados

Espaço amostral (ou espaço de resultados) – Conjunto de todos os resultados possíveis de uma experiência aleatória. Pode ser Discreto (finito ou infinito) ou Contínuo

Nota

- à mesma experiência aleatória podem estar associados vários espaços amostrais
 - ----- dependendo da forma como a experiência é avaliada

Slide 3.2

Exemplos

Experiência aleatória: Lançamento de uma moeda E-C ao ar uma vez **Espaço amostral:** {E, C}, discreto finito («Escudo» (E) ou «Cara» (C))

Experiência aleatória: Lançamento de uma moeda E-C ao ar tantas vezes quantas as necessárias até sair E.

Espaço amostral: $\{1,2,3,\ldots\}$, discreto infinito

Experiência aleatória: Atraso de um comboio (nota: o comboio nunca chega antes da hora)

Espaço amostral: $[0, +\infty[$, contínuo

Experiência aleatória: Lançamento de uma moeda E-C ao ar três vezes

Espaço amostral: $\{0,1,2,3\}$, avaliado pelo nº de E's ou

{EEE, EEC, ECE, ECC, CEE, CEC, CCE, CCC}, avaliado pela sequência de E's e C's

Slide 3.3

Representação de espaços amostrais

• Árvore de resultados ou diagramas de Venn

Exemplo

Sequência de E's e C's no lançamento de uma moeda E-C ao ar três vezes

3.1.2 Acontecimentos

Acontecimento – Conjunto de resultados possíveis, associados à realização de uma experiência aleatória (sub-conjunto do espaço amostral)

- Simples um só resultado (A₂)
- Composto mais que um resultado (A_1)
- Certo coincide com todo o espaço (S)
- Impossível nenhum elemento do espaço (ϕ)

Slide 3.5

3.1.3 Rudimentos sobre teoria de conjuntos

Conjunto: colecção de elementos sem nenhuma ordem particular $(A, \{1,2,3\}, \{x : p(x)\})$

- Universo (S)
- Conjunto vazio (φ)
- Subconjunto $(A \subset S)$

Complementar: colecção de todos os objectos do universo que não pertencem ao conjunto original (\bar{A}, A^c)

Intersecção: colecção de elementos comuns aos dois conjuntos originais $(A \cap B, AB)$

União: colecção de elementos que pertencem pelo menos a um dos conjuntos $(A \cup B, A + B)$

Mutuamente exclusivos (ou disjuntos): conjuntos cuja intersecção é o conjunto vazio

Cobertura: colecção de conjuntos $\{A1,A2,A3,...\}$ que cobrem todo o conjunto original A $(A1 \cup A2 \cup ... = A$ e pelo menos um $A_i \cap A_j \neq \phi$, com $i \neq j$)

Partição: colecção de conjuntos $\{A1,A2,A3,...\}$ disjuntos que cobrem todo o conjunto original A $(A1 \cup A2 \cup ... = A$ e com todos os $A_i \cap A_j = \phi$, com $i \neq j$)

Slide 3.6

Operações sobre conjuntos e operações lógicas

Operadores lógicos

NOT (negação): NOT(F) = T; NOT(T) = F

OR (ou): (T OR T) = T; (T OR F) = T; (F OR T) = T; (F OR F) = F

AND (e): (T AND T) = T; (T AND F) = F; (F AND T) = F; (F AND F) = F

XOR (ou exclusivo): (T XOR T) = F; (T XOR F) = T; (F XOR T) = T; (F XOR F) = F

 \Rightarrow (implicação): $(T \Rightarrow T) = T$; $(T \Rightarrow F) = F$; $(F \Rightarrow T) = T$; $(F \Rightarrow F) = T$

 \Leftrightarrow (se e só se): $(T \Leftrightarrow T) = T$; $(T \Leftrightarrow F) = F$; $(F \Leftrightarrow T) = F$; $(F \Leftrightarrow F) = T$

3.2 **Probabilidade**

3.2.1 Definição clássica

• N resultados mutuamente exclusivos e igualmente prováveis

Definição clássica

Se um acontecimento A contiver N_A desses resultados ($N_A \le N$), então:

$$P(A) = \frac{N_A}{N}$$
 $\left(\frac{\text{número de casos favoráveis}}{\text{número de casos possíveis}}\right)$

Exemplo

• Probabilidade de se obter um resultado não inferior a 3 no lançamento de um dado:

$$P(A) = \frac{4}{6} = 0.667$$

• Probabilidade de uma carta retirada ao acaso de um baralho ser uma espada:

$$P(A) = \frac{13}{52} = 0.25$$

Slide 3.8

3.2.2 Definição geométrica

• ...e se o número de acontecimentos possíveis não for finito?

Definição geométrica

Recorre-se a uma medida (med) da dimensão (comprimento, área, volume) da região A:

$$P(A) = \frac{med(A)}{med(S)}$$

Exemplo

Probabilidade de que um ponto seleccionado ao acaso a partir de um quadrado (Q) se localize no interior do círculo (C) nele inscrito: admitindo que o círculo tem raio r e que, portanto, o quadrado tem lado 2r, a probabilidade é dada por

$$\frac{\operatorname{área}(C)}{\operatorname{área}(Q)} = \frac{\pi r^2}{(2r)^2} = \frac{\pi}{4}$$

Slide 3.9

3.2.3 Definição frequencista

• ...e se os acontecimentos não forem igualmente prováveis?

Definição frequencista

No decurso de N repetições de uma experiência aleatória um acontecimento A ocorre N_A vezes $(0 \le N_A \le$ N). A frequência relativa desse acontecimento é:

$$f_A = \frac{N_A}{N}$$

 $f_A = \frac{N_A}{N}$ Define-se probabilidade de A como o limite de f_A quando o número de repetições tende para infinito: $P(A) = \lim_{n \to \infty} f_A = \lim_{n \to \infty} \frac{N_A}{N}$

$$P(A) = \lim_{n \to \infty} f_A = \lim_{n \to \infty} \frac{N_A}{N}$$

Exemplo

- No lançamento de uma moeda E-C ao ar que, por ter sido deformada, se sabe que se encontra desequilibrada, qual a probabilidade de sair E?
- Qual a probabilidade de um português de 18 anos viver pelo menos até aos 70 anos?

3.2.4 Definição subjectiva

• ...e se a experiência não puder ser repetida?

Definição subjectiva

Cada pessoa pode atribuir um grau de credibilidade à ocorrência dos acontecimentos em causa.

Exemplo

- Qual a probabilidade de o actual governo se manter inalterado nos próximos 6 meses?
- E a probabilidade de um determinado índice de uma Bolsa de Valores (por exemplo, o PSI 20) duplicar nos próximos 10 anos?

Slide 3.11

3.2.5 Definição axiomática

- Definições anteriores apresentam debilidades (p.e., incluem o definido nas próprias definições)
- ⇒ Definir probabilidade apenas com base num conjunto de regras (axiomas)
- Abordagem simplificada: 3 axiomas que resultam das definições anteriores

Definição axiomática

$$P(A) \ge 0$$

$$P(S) = 1$$

$$P(A \cup B) = P(A) + P(B)^{*}$$

*se *A* e *B* forem acontecimentos mutuamente exclusivos $(A \cap B = \phi)$

Slide 3.12

Probabilidade - Definição axiomática (cont.)

- Axiomas são consistentes (não originam resultados contraditórios) e pragmáticos
- Permitem representar de forma útil fenómenos ou processos reais

Propriedades

- 1. Se $A \subset B$ então $P(A) \leq P(B)$
- 2. $P(\phi) = 0$
- 3. $0 \le P(A) \le 1$
- 4. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 5. $P(A) + P(\bar{A}) = 1$

Slide 3.13

3.3 Probabilidade condicional

Probabilidade condicional

Probabilidade de ocorrência de um acontecimento A quando se admite que ocorreu um acontecimento B:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \qquad (\operatorname{com} P(B) > 0)$$

ou

$$P(A \cap B) = P(A|B) \cdot P(B)$$
$$P(A \cap B) = P(B|A) \cdot P(A)$$

Nota: a probabilidade condicional (P(A|B)) também é conhecida como probabilidade *a posteriori*, a probabilidade *a priori* é dada por P(A)

Slide 3.15

De um lote constituído por 1 peça boa e 3 peças defeituosas, retiraram-se duas peças ao acaso, em sequência e sem reposição da primeira. Sabendo que esta é defeituosa (acontecimento B), qual a probabilidade de a segunda ser também defeituosa (acontecimento A)?

• Probabilidade incondicional:

$$P(A) = \frac{3}{4}$$

• Probabilidade condicional:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{6/12}{9/12} = \frac{6}{9} = \frac{2}{3}$$

3 lâmpadas defeituosas foram misturadas com 6 lâmpadas boas. Escolhidas 2 lâmpadas ao acaso, calcule-se a probabilidade de serem ambas boas.

- A₁: a primeira lâmpada é boa
- A2: a segunda lâmpada é boa

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2|A_1) = \frac{6}{9} \cdot \frac{5}{8} = \frac{30}{72} = \frac{5}{12}$$

3.4 Acontecimentos independentes

- Dois acontecimentos dizem-se independentes quando a ocorrência de um não afecta a ocorrência do outro
- Ou seja:

$$P(A|B) = P(A) \qquad (\operatorname{com} P(B) > 0)$$

ou

$$P(B|A) = P(B) \qquad (\operatorname{com} P(A) > 0)$$

e logo:

$$P(A \cap B) = P(A) \cdot P(B) \qquad (\operatorname{com} P(A) > 0 \text{ e } P(B) > 0)$$

Acontecimentos mutuamente exclusivos \neq acontecimentos independentes

- Acontecimentos mutuamente exclusivos $n\tilde{a}o$ podem ocorrer em simultâneo: $P(A \cap B) = 0$, $P(A \cup B) = P(A) + P(B)$
- Acontecimentos independentes *podem* ocorrer em simultâneo: $P(A \cap B) = P(A) \cdot P(B)$, $P(A \cup B) < P(A) + P(B)$

Nota: exceptuando o caso de um dos acontecimentos ter probabilidade nula

Acontecimentos independentes - Exemplo

No lançamento sucessivo de dois dados, considerem-se os seguintes acontecimentos:

A : a pontuação é impar

B: o resultado obtido no primeiro dado é 6

C: a pontuação total é 7

Verifique se os diferentes acontecimentos são independentes?

$$P(A) = 18/36 = 1/2$$

$$P(B) = 6/36 = 1/6$$

$$P(C) = 6/36 = 1/6$$

A e B : $P(A \cap B) = \frac{3}{36} = \frac{1}{12} = P(A) \cdot P(B) \Rightarrow A \in B$ são independentes

A e C : $P(A \cap C) = \frac{6}{36} = \frac{1}{6} \neq P(A) \cdot P(C) \implies A$ e C não são independentes

B e C : $P(B \cap C) = \frac{1}{36} = P(B) \cdot P(C) \implies B$ e C são independentes

Independência entre 3 acontecimentos $(A_1, A_2 e A_3)$

Três acontecimentos dizem-se independentes se e só se se verificarem as seguintes relações:

- $P(A_1 \cap A_2) = P(A_1) \cdot P(A_2)$
- $P(A_1 \cap A_3) = P(A_1) \cdot P(A_3)$
- $P(A_2 \cap A_3) = P(A_2) \cdot P(A_3)$
- $P(A_1 \cap A_2 \cap A_3) = P(A_1) \cdot P(A_2) \cdot P(A_3)$

Independência entre N acontecimentos $(A_1, A_2, ... A_N)$

N acontecimentos dizem-se independentes se e só se se verificarem as seguintes relações:

$$P(A_i \cap A_j) = P(A_i) \cdot P(A_j)$$

para $i \neq j$

•
$$P(A_i \cap A_j \cap A_k) = P(A_i) \cdot P(A_j) \cdot P(A_j)$$

para $i \neq j$, $i \neq k$ e $j \neq k$

• ...

$$\bullet \ P\left(\cap_{n=1}^N A_n\right) = \prod_{n=1}^N P(A_n)$$

Slide 3.18

3.5 Teorema de Bayes

- É uma consequência imediata do conceito de probabilidade condicional
- A probabilidade *a posteriori* de cada um dos acontecimentos A_i é dada por:

$$P(A_i|B) = \frac{P(B|A_i) \cdot P(A_i)}{\sum_{i=1}^{n} P(B|A_i) \cdot P(A_i)}$$

• Em que A_1, A_2, \dots, A_n é uma partição do espaço amostral S, isto é: $\bigcup_{i=1}^n A_i = S$ e $A_i \cap A_j = \phi$, $\forall_{i \neq j}$

Slide 3.19

Exemplo

Admita-se que, num determinado país, 1% da população tem tuberculose e, ainda, que:

- para uma pessoa que tenha, de facto, contraído a doença, a microrradiografia tem um resultado positivo em 95% dos casos e
- para uma pessoa não tuberculosa, esta pecertagem é de apenas 0.5%

Pretende-se saber qual a probabilidade de uma pessoa a quem a microrradiografia tenha dado resultado positivo estar tuberculosa.

Acontecimentos:

- T: a pessoa está tuberculosa
- P: a microrradiografia é positiva

Dados do problema:

- P(T) = 0.01
- P(P|T) = 0.95
- $P(P|\bar{T}) = 0.005$

Pretende-se saber: P(T|P)

Acontecimentos complementares aos dados do problema:

•
$$P(\bar{T}) = 1 - P(T) = 1 - 0.01 = 0.99$$

•
$$P(\bar{P}|T) = 1 - P(P|T) = 1 - 0.95 = 0.05$$

•
$$P(\bar{P}|\bar{T}) = 1 - P(P|\bar{T}) = 1 - 0.005 = 0.995$$

Resolução:

Trata-se de uma aplicação directa do Teorema de Bayes: pretende-se obter a probabilidade condicional P(T|P) a partir das probabilidades condicionais "inversas", P(P|T) e P(P|T).

$$\begin{split} P(T|P) &= \frac{P(P \cap T)}{P(P)} = \frac{P(P|T) \cdot P(T)}{P(P|T) \cdot P(T) + P(P|\bar{T}) \cdot P(\bar{T})} \\ &= \frac{0.95 \times 0.01}{0.95 \times 0.01 + 0.005 \times 0.99} = 65.75\% \end{split}$$

A título ilustrativo calculam-se também as seguintes probabilidades:

• não ser tuberculosa sabendo que microrradiografia deu resultado positivo (falso positivo)

$$P(\bar{T}|P) = \frac{P(P \cap \bar{T})}{P(P)} = \frac{P(P|\bar{T}) \cdot P(\bar{T})}{P(P|\bar{T}) \cdot P(\bar{T}) + P(P|T) \cdot P(T)} = 34.25\%$$

Nota: obviamente que $P(\bar{T}|P) = 1 - P(T|P)$

• ser tuberculosa sabendo que microrradiografia deu resultado negativo (falso negativo)

$$P(T|\bar{P}) = \frac{P(\bar{P}\cap T)}{P(\bar{P})} = \frac{P(\bar{P}|T)\cdot P(T)}{P(\bar{P}|T)\cdot P(T) + P(\bar{P}|\bar{T})\cdot P(\bar{T})} = 0.05\%$$

• não ser tuberculosa sabendo que microrradiografia deu resultado negativo (resultado correcto)

$$P(\bar{T}|\bar{P}) = \frac{P(\bar{P}\cap\bar{T})}{P(\bar{P})} = \frac{P(\bar{P}|\bar{T})\cdot P(\bar{T})}{P(\bar{P}|\bar{T})\cdot P(\bar{T}) + P(\bar{P}|T)\cdot P(T)} = 99.95\%$$

• microrradiografia dar resultado positivo (teorema da probabilidade total)

$$P(P) = P(P \cap T) + P(P \cap \bar{T}) = P(P|T) \cdot P(T) + P(P|\bar{T}) \cdot P(\bar{T}) = 1.45\%$$

Representação tabular (células representam probabilidades conjuntas)

	P	$ar{P}$	Σ
T		$P(T\cap \bar{P})$	P(T)
\bar{T}	$P(\bar{T}\cap P)$	$P(\bar{T}\cap\bar{P})$	$P(ar{T})$
Σ	P(P)	$P(\bar{P})$	1

	P	$ar{P}$	Σ
T	0.00950	0.00050	0.01
\bar{T}	0.00495	0.98505	0.99
$\overline{\Sigma}$	0.01445	0.98555	1

Representação em árvore

Slide 3.23

Slide 3.21

3.6 Desafios

Falácia do jogador

• Se lançarmos uma moeda ao ar 1000 vezes muito provavelmente obteremos entre 498 e 502 H:

◆Verdadeiro◆ Falso

- Uma moeda foi lançada ao ar 20 vezes, tendo saído 17 H. A probabilidade de no próximo lançamento sair H é: _____
- Uma moeda é lançada ao ar N vezes (com N par). A probabilidade de ter o mesmo número de H e T·
 - diminui com N
- aumenta com N
- não depende de N
- Uma moeda é lançada ao ar 50000 vezes:
 - \Box é provável que a proporção de Hs esteja entre 0.495 e 0.505
 - \Box é provável que o número de Hs esteja entre ± 50 do número de Ts
 - $\Box\;$ é quase garantido que o nº de Hs esteja entre ± 150 do nº de Ts
 - \square é quase garantido que a proporção de Hs esteja entre 0.49 e 0.51

(mais detalles em http://onlinestatbook.com/chapter5/gambler.html)

Slide 3.24

Aniversários

Se houver 25 pessoas numa sala, qual é a probabilidade de pelo menos duas pessoas fazerem anos no mesmo dia?

- a) 25/365 = 0.068
- b) cerca de 0.068
- c) muito menos do que 0.068
- d) muito mais do que 0.068

(http://onlinestatbook.com/chapter5/birthday_demo.html)

Resolução:

A: probabilidade de pelo menos duas pessoas fazerem anos no mesmo dia

$$P(\bar{A}) = \frac{365}{365} \times \frac{364}{365} \times \frac{363}{365} \times \dots \times \frac{341}{365} = 0.431 = 43.1\%$$

$$P(A) = 1 - P(\bar{A}) = 1 - 0.431 = 0.569 = 56.9\%$$

(Simulação em Excel (aniv.xls) http://mat.absolutamente.net/rp_excel.html)

Slide 3.25

Let's Make a Deal - Monty Hall

- Suppose you're on a game show, and you're given the choice of three doors:
 - Behind one door is a car;
 - Behind the others, goats.
- You pick a door, say No. 1 (but the door is not opened), and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat.
- He then says to you:

"Do you want to pick door No. 2?".

• Is it to your advantage to switch your choice?

(mais detalhes em http://en.wikipedia.org/wiki/Monty_Hall_problem)

3.7 Exercícios

- 1. A box contains three balls one red, one blue, and one yellow. Consider an experiment that consists of withdrawing a ball from the box, replacing it, and withdrawing a second ball.
 - a) What is the sample space of this experiment?
 - b) What is the event that the first ball drawn is yellow?
 - c) What is the event that the same ball is drawn twice?

Respostas:

- a) $S = \{(R,R),(R,B),(R,Y),(B,R),(B,B),(B,Y),(Y,R),(Y,B),(Y,Y)\}$
- b) $\{(Y,R),(Y,B),(Y,Y)\};$
- c) $\{(R,R),(B,B),(Y,Y)\}$
- 2. Repeat Prob. 1 when the second ball is drawn without replacement of the first ball.
- 3. Demonstre as propriedades da probabilidade (slide 3-15)
- 4. Considere os acontecimentos A, B e C. Sabe-se que:

$$P(A) = P(B) = P(C) = 1/4$$

 $P(A \cap B) = P(B \cap C) = 0$

$$P(A \cap C) = 1/8$$

Calcule a probabilidade de ocorrer pelo menos um dos acontecimentos.

(Resposta:
$$P(A \cup B \cup C) = 5/8$$
)

5. Uma fábrica de enlatados tem três linhas de produção de latas de pêssego (I, II e III) em calda nas quais passam respectivamente 50%, 30% e 20% das latas produzidas.

Sabe-se que 2% das latas produzidas na linha III são seladas deficientemente e que as percentagens correspondentes para as linhas II e I são de 1.5% e 1% respectivamente.

Calcule a probabilidade de uma lata que foi encontrada com defeito ter sido produzida na linha I.

(Resposta:
$$P(I|D) = 37\%$$
)

6. The inspector in charge of a criminal investigation is 60% certain of the guilt of a certain suspect. A new piece of evidence proving that the criminal was left-handed has just been discovered. Whereas the inspector knows that 18% of the population is left-handed, she is waiting to find out whether the suspect is left-handed. If the suspect turns out to be left-handed, what is the probability that the suspect is guilty?

(Resposta: 0.893)

- 7. Para o exame da disciplina de estatística, o professor resolveu preparar exames de quatro tipos, nas quantidades seguintes:
 - Muito Fácil:10
 - Fácil:10
 - Difícil: 10
 - Muito Difícil: 10

Os exames foram cuidadosamente misturados e colocados num monte com a frente voltada para baixo.

- a) Num grupo de 10 alunos em que cada aluno recolhe um exame, qual a probabilidade serem recolhidos 3 exames fáceis e 3 difíceis?
- b) No mesmo grupo de alunos, qual a probabilidade de serem recolhidos 4 exames de um tipo e 6 de outro tipo?

(Respostas: a) 8.2%; b) 0.06%)

Slide 3.29

Slide 3.27

- 8. Suponha que o professor de Estatística resolveu testar um novo método de distribuição dos exames. Para tal, foram preparados exames de dois tipos, os exames do tipo fácil e os exames do tipo difícil, sendo os exames distribuídos por duas caixas iguais da seguinte forma: 5 exames fáceis e 5 difíceis na caixa *A* e 7 exames fáceis e 3 difíceis na caixa *B*.
 - a) Calcule a probabilidade de o 1º aluno retirar um exame do tipo fácil.
 - b) Sabendo que o 1º aluno retirou um exame fácil calcule a probabilidade de o 2º aluno também retirar um exame fácil.
 - c) Se antes de ser retirado qualquer exame o professor retirar ao acaso dois exames da caixa A e os colocar na caixa B, calcule a probabilidade de o 1^o aluno retirar um exame fácil da caixa B.

(Respostas: a)
$$P(F)=0.6$$
; b) $P(2^{o}F) = 0.5787$; c) $P(F) = 0.67$)

- 9. Numa certa universidade um professor faz exames orais que são um autêntico pesadelo para os alunos. Se o professor se encontra de bom humor, o que acontece em cada 3 situações, o aluno só precisa de responder certo a uma de cinco perguntas para passar. Se o professor está de mau humor, então o aluno só passa se responder certo a pelo menos 4 perguntas (de entre as 5).
 - a) Qual a probabilidade de o Zezinho, que responde certo a cada pergunta com uma probabilidade de 1/3, passar num exame oral com aquele professor?
 - a) O Zezinho, ao acabar de reprovar no último exame oral, desculpou-se com o mau humor do professor nesse dia. Qual a probabilidade de o Zezinho estar a dizer a verdade?

10. Considere um jogo em que, de 2 sacos com bolas pretas e brancas, se retiram sequencialmente 4 bolas sem reposição, da maneira que se quiser. O objectivo do jogo é retirar o maior número possível de bolas pretas. Sabe-se que um dos sacos (A) contém 3 bolas brancas e 6 pretas e que o outro saco (B) contém 3 bolas pretas e 6 brancas, mas não se sabe à priori qual deles é o A ou o B.

Sabendo que a primeira bola foi retirada do saco da esquerda e saiu preta:

- a) Qual é a probabilidade de o saco A estar do lado esquerdo?
- b) Qual é a probabilidade de a bola seguinte sair preta se for retirada do saco da esquerda? E se for retirada do saco da direita? Qual dos sacos escolhia para retirar a segunda bola?
- c) Supondo que a segunda bola foi retirada do saco da esquerda e saiu preta, qual dos sacos escolhia para retirar a terceira bola?
- d) Construa um diagrama completo de todas as possibilidades e das decisões mais acertadas a tomar. Retire conclusões.

11. A máquina mais importante de uma determinada linha de montagem possui vários níveis de redundância de forma a evitar a paragem da linha. A redundância é assegurada por cinco componentes (*A*, *B*, *C*, *D* e *E*) montados de acordo com o esquema apresentado (o componente *C* é capaz de assegurar a ligação nos dois sentidos). Para a máquina funcionar basta que exista ligação entre a entrada (*IN*) e a saída (*OUT*) da montagem. Por exemplo se os componentes *A*, *C* e *E* estiverem a funcionar a linha de produção não pára. Os cinco componentes têm um funcionamento autónomo e independente. De seguida apresentam-se as probabilidade de avaria de cada componente:

$$p(A) = 0.10$$

 $p(B) = 0.15$
 $p(C) = 0.40$
 $p(D) = 0.20$

p(E) = 0.15

Calcule a probabilidade de a linha de produção ter de parar devido a uma avaria na máquina (Sugestão: analise duas situações mutuamente exclusivas, o componente C avariar ou não).

(Resposta: 0.05531)

Slide 3.30

Slide 3.31

3.8 Anexo

3.8.1 Análise Combinatória

Permutações

- Sequências distintas possíveis de formar por *n* elementos distintos
- Número de permutações: $P_n = n! = n \cdot (n-1) \cdot \dots \cdot 3 \cdot 2 \cdot 1$

Arranjos

- Sequências distintas de k elementos possíveis de formar a partir de n elementos distintos em que a ordem na sequência interessa
- Número de arranjos: $A_k^n = \frac{n!}{(n-k)!} = n \cdot (n-1) \cdot \ldots \cdot (n-k+1)$

Combinações

- Sequências distintas de k elementos possíveis de formar a partir de n elementos distintos em que a ordem na sequência não interessa
- Número de combinações:

$$C_k^n = \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot (n-1) \cdot \ldots \cdot (n-k+1)}{k \cdot (k-1) \cdot \ldots \cdot 1}$$

Slide 3.34

Análise Combinatória - Exemplo

Elementos: A, B e C (n = 3)

• Permutações de 3 elementos:

$$P_3 = 3! = 6$$

• Arranjos de 3 elementos 2 a 2:

$$A_2^3 = \frac{3!}{(3-2)!} = 3 \cdot 2 = 6$$

• Combinações de 3 elementos 2 a 2:

$$C_2^3 = {3 \choose 2} = \frac{3!}{2! \cdot (3-2)!} = \frac{3 \cdot 2}{2 \cdot 1} = \frac{6}{2} = 3$$