» Machine Learning Workflow

» Models

- * Model: $\hat{y} = h_{\theta}(x)$
 - $* \hat{y}$ is prediction
 - * x are input features
 - * $h_{\theta}(x)$ is the model \rightarrow a model; is a *function* mapping from input features x to a prediction.
 - * Input features x is a vector of real numbers
 - * Prediction $h_{\theta}(x)$ is a real number (regression) or an integer (classification)
 - $* \theta$ are model parameters
- * So far we've looked at linear models
 - * $\hat{\mathbf{y}} = \theta^T \mathbf{x}$ (regression)
 - * $\hat{y} = sign(\theta^T x)$ (classification)
- * ... but other sorts of model are possible.

» Linear and Logistic Regression Summary

When first looking at a machine learning task linear and logistic regression should generally be your first port of call:

- * Use linear models
- Add nonlinearity via feature engineering
- st Easy and fast to train o cost function is convex in parameters.
- * Scale well, can be used with pretty big data.
- * Interpretable, sort of:
 - * Magnitude of parameter θ_j tells how important the j'th input feature is (if θ_j v small maybe can delete j'th feature)
 - * Sign of θ_j tells whether prediction tends to increase/decrease with j'th feature.
 - * ... this assumes j'th feature itself has a reasonable interpretation
- SVMs and logistic regression generally perform much the same

We can directly use the training data to make predictions:

- * Training data $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$, $i = 1, 2, \dots, m$
- * Given feature vector x:
 - 1. For each training data point *i* calculate the distance $d(x^{(i)}, x)$ between feature vector $x^{(i)}$ and x
 - 2. Select the k training data points that are closest to x i.e. for which $d(x^{(i)}, x)$ is smallest
 - * ... the *k* nearest neighbours
 - 3. Predict output y using the outputs $y^{(i)}$ for these k closest training points.
 - * In a classification problem e.g. take majority vote (if k=3 and two closest training points have label +1 and other has label -1 then predict +1).
 - * İn a regression problem e.g. calculate the average of the $y^{(i)}$ for the k closest training points and use that as prediction
- *~kNN makes predictions based directly on the training data ightarrow an example of an *instance-based* model

A kNN model needs four things to be specified:

- 1. A distance metric. Typically Euclidean: $d(x^{(i)},x) = \sqrt{\sum_{j=1}^n (x_j^{(i)} x_j)^2}$
- 2. Number ${\it k}$ of neighbours to use. E.g. ${\it k}=5$ (select this using cross-validation)
- 3. Weighting of neighbour points. E.g. $uniform\ w^{(i)}=1$ or $Gaussian\ w^{(i)}=e^{-\gamma d(x^{(i)},x)^2}$ (attach less weight to training points that are further away from query point x).

- 4. Method for aggregating the k neighbour points N_k
 - * Classification: $sign(\frac{\sum_{i \in N_k} w^{(i)} y^{(i)}}{\sum_{i \in N_k} w^{(i)}})$ (majority vote when $w^{(i)} = 1$)
 - * Regression: weighted mean $\hat{y} = \frac{\sum_{i \in N_k} w^{(i)} y^{(i)}}{\sum_{i \in N_k} w^{(i)}}$

» Recall *k*NN Model

Impact of weighting:

- * Suppose input is x=1 (just a scalar). Three nearest neighbours are $x^{(1)}=0.5$, $x^{(2)}=0.75$, $x^{(1)}=3$
- * Distances are $d(x^{(1)}, x) = \sqrt{(0.5 1)^2} = 0.5$, $d(x^{(2)}, x) = \sqrt{(0.75 1)^2} = 0.25$, $d(x^{(3)}, x) = \sqrt{(3 1)^2} = 2$
- Uniform weights

*
$$\mathbf{w}^{(1)} = 1$$
, $\mathbf{w}^{(2)} = 1$, $\mathbf{w}^{(3)} = 1$
* $\frac{\sum_{i \in N_k} \mathbf{w}^{(i)} \mathbf{y}^{(i)}}{\sum_{i \in N_k} \mathbf{w}^{(i)}} = \frac{\mathbf{y}^{(1)} + \mathbf{y}^{(2)} + \mathbf{y}^{(3)}}{3} = \frac{1+1-1}{3} = 0.66$. Predict $+1$

st Gaussian weights. Suppose $\gamma=1.$

*
$$\textit{w}^{(1)} = \textit{e}^{-0.5^2} = 0.78, \, \textit{w}^{(2)} = \textit{e}^{-0.25^2} = 0.94, \, \textit{w}^{(1)} = \textit{e}^{-2^2} = 0.02 \rightarrow \text{higher weight on training points close to } \textit{x}.$$
* $\frac{\sum_{i \in N_k} \textit{w}^{(i)} \textit{y}^{(i)}}{\sum_{i \in N_k} \textit{w}^{(i)}} = \frac{0.78 \times 1 + 0.94 \times 1 + 0.02 \times (-1)}{1.74} = 0.98. \, \text{Predict} + 1$

Classification example:

- * 1) Euclidean distance, 2) (i) k=3 and (ii) k=7, 3) uniform weights, 4) majority vote
- st Note: even though it's based on the training data, the kNN model is still just a function from input features x to prediction +1 or -1
- st Increasing k will tend to smooth out the function, decreasing k to make it more complex
 - Increasing k tends to cause under-fitting, decreasing k to cause over-fitting. Choose k by cross-validation.

Regression example:

- * 1) Euclidean distance, 2) (i) k=3 and (ii) k=7, 3) uniform weights, 4) weighted average
- Increasing k will tend to smooth out the function, decreasing k to make it track the training data points more closely (i.e. fit the "noise").

- * 1) Euclidean distance, 2) k=7, 3) Gaussian weights $e^{-\gamma d(x^{(i)},x)^2}$, 4) weighted average
- * Decreasing σ tends to smooth out the function, increasing γ to make it rougher. Choose γ and k using cross-validation.

» *k*-Nearest Neighbour (*k*NN) Classifier Code

```
plt.xlabel("input x"); plt.ylabel("output y")
plt.legend(["predict","train"])
plt.xlabel("input x"); plt.ylabel("output y")
plt.legend(["predict","train"])
```

» *k*-Nearest Neighbour (*k*NN) Regression Code

```
plt.rc('font', size=18); plt.rcParams['figure.constrained layout.use'] = True
plt.xlabel("input x"); plt.ylabel("output y"); plt.legend(["predict", "train"])
plt.xlabel("input x"); plt.ylabel("output y"); plt.legend(["predict", "train"])
```

» k-Nearest Neighbour (kNN) Regression Code (cont)

```
def gaussian kernel10000(distances):
model3 = KNeighborsRegressor(n neighbors=7.weights=agussian kernel1000).fit(Xtrain, vtrain)
plt.xlabel("input x"); plt.ylabel("output y")
plt.legend(["k=7.sigma=100","k=7.sigma=1000","k=7.sigma=10000","train"])
```

» *k*NN Summary

- * Easy to use \rightarrow only parameter is k.
- Need to choose distance function and any weighting with distance, but standard choices (Euclidean distance, uniform or Gaussian weighting) often work well
- * Small data only \rightarrow each prediction requires a search over training data to find k nearest neighbours, this becomes expensive/slow when there is a lot of training data

» Decision Tree Classfiers

- st Model uses if-then rules e.g. if X>0.771 then predict class +1
- st Constructs tree of rules, leaves of tree are the +1 or -1 predictions.

Example:

st Note: even though it's based on if-then rules model is still just a function from input features st to prediction +1 or -1

» Decision Tree Classfiers

- st Control complexity of model by limiting tree depth e.g. if depth restricted to be 1 then will get a single transition between +1 and -1
- * ightarrow choose tree depth using cross-validation

- Easy to understand when tree is small, but quickly becomes hard as tree gets large (as it usually does).
- Learning tree rules is NP-hard in general, special-purpose algorithms are used (not gradient decent)
- Decision trees often used as an ensemble (a "forest") since hard to control complexity using just tree depth.

» Decision Tree Code

```
from sklearn, tree import export text
print(export text(model))
from sklearn.tree import plot tree
plot tree(model, fontsize=4, impurity=False, class_names=['-1','+1'])
plt.xlabel("input x"); plt.ylabel("output y")
plt.legend(["predict","train"])
plot tree(model, fontsize=4, impurity=False, class names=['-1','+1'])
plt.xlabel("input x"); plt.ylabel("output y")
plt.legend(["predict","train"])
```