

Sistemas numéricos

Breve descripción:

Los sistemas numéricos representan valores en diversas bases, como decimal, binario, octal y hexadecimal, cada uno con aplicaciones específicas. El álgebra de Boole, clave en sistemas digitales, utiliza operaciones lógicas (suma, multiplicación y negación) para simplificar circuitos electrónicos. Propiedades como identidad, inversa y el teorema de Morgan optimizan procesos y facilitan el análisis de sistemas electrónicos y computacionales.

Tabla de contenido

Intro	oducción	1
1.	Sistemas numéricos	2
2.	Sistema binario	6
Sínte	esis	12
Mat	erial complementario	13
Glos	ario	14
Refe	rencias bibliográficas	15
Créc	litos	16

Introducción

Los sistemas numéricos son métodos que permiten representar valores numéricos de diversas formas, siendo el sistema decimal el más utilizado en la vida cotidiana debido a su base de 10 dígitos (0-9). Otros sistemas, como el binario, octal, hexadecimal y romano, son ampliamente empleados en diferentes contextos, desde sistemas electrónicos hasta representaciones históricas. Comprender estos sistemas facilita la conversión de números entre bases y su aplicación en diversos campos.

El álgebra de Boole es fundamental en el ámbito digital, ya que utiliza números binarios (0 y 1) para modelar operaciones lógicas. Este sistema algebraico permite trabajar con circuitos integrados, predecir el comportamiento de sistemas electrónicos y simplificar expresiones lógicas. A través de operaciones básicas como suma lógica (+), multiplicación lógica (·) y negación (¬), el álgebra de Boole optimiza el diseño de sistemas digitales y electrónicos.

Las propiedades del álgebra de Boole, como la identidad, inversa, conmutativa y el teorema de Morgan, proporcionan herramientas esenciales para simplificar y resolver expresiones lógicas complejas. Estas propiedades no solo facilitan el análisis y diseño de circuitos, sino que también son clave para optimizar procesos en la programación y el funcionamiento de sistemas electrónicos, consolidando su relevancia en la ingeniería y la informática.

1. Sistemas numéricos

Existen algunas formas de representar números, es decir, un mismo número se puede representar de varias formas. Por eso se habla de sistemas numéricos. El más común es el sistema decimal, que se utiliza en la vida cotidiana y que se representa con 10 números del 0 al 9 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9).

A continuación, se realiza un comparativo de los diferentes sistemas numéricos y en el estudio del material se explicará cómo conocer la equivalencia de un número en los diferentes sistemas.

Tabla 1. Sistemas numéricos

Binario	Octal	Decimal	Hexadecimal	Romano
0001	01	1	1	1
0101	05	5	5	V
1010	12	10	А	х
1111	17	15	F	XV

Sistema decimal

Se llama decimal porque utiliza diez dígitos (0, 1, 2...9) para representar cualquier número. El peso está dado en potencias de 10. La importancia de los dígitos está acorde a su ubicación: el dígito que esté más hacia la izquierda tiene mayor importancia.

A continuación, se presenta un ejemplo:

Ejemplo:

$$2158 = 2000 + 100 + 50 + 8$$

$$2158 = 210^3 + 110^2 + 510^1 + 8*10^0$$

Los cuatro dígitos se multiplican por una potencia de 10 y cuanto más a la izquierda se sitúe el dígito, mayor será la potencia de diez por la que se multiplica.

Sistema octal

Utiliza solo ocho dígitos (0, 1, 2...7) para representar cualquier número. El peso está dado en potencias de 8.

A continuación, se representa el número 4156 que está octal en decimal:

Ejemplo:

$$4156 = 48^3 + 18^2 + 58^1 + 68^0$$

= 2158 (decimal)

Para convertir de decimal a octal:

- 2158/8 = 269 y sobran 6
- 269/8 = 33 y sobran 5
- 33/8 = 4 y sobra 1
- 4/8 = No está, entonces el residuo es 4

Sistema hexadecimal

Se llama hexadecimal porque utiliza dieciséis dígitos (0, 1, 2...9, A, B, C, D, E, F).

El peso está dado en potencias de 16.

Ejemplo:

$$134/16 = 8 \text{ y sobran } 6$$

2158 en decimal es igual a 86E en hexadecimal

$$86C = 8*162 + 6*161 + E*160$$

$$= 8*(256) + 6*(16) + 14*(1)$$

Sistema numérico romano

Este sistema ya tiene establecida una tabla de conversión o equivalencias.

Tabla 2. Sistema de numeración romano

Decimal	Romano
1	I
10	X
50	L
100	С

Decimal	Romano
500	D
1000	M

Ejemplo:

= MM C L VII

= MMCLVIII (romano).

2158 en decimal es igual a MMCLVII en Romano

2. Sistema binario

El sistema binario utiliza solo dos dígitos (0 y 1) para representar cualquier número. Es el sistema que se utiliza como lenguaje para los sistemas electrónicos, gracias a los dos estados o niveles lógicos que se encuentran en los circuitos integrados: abierto o cerrado (1 o 0 lógico).

VCC
5.0
3.5

No Definido
0.8
0. Lógico

Figura 1. Niveles de voltaje en lógica digital

En la electrónica tradicional se usan 5 voltios para el dígito '1' y 0 voltios para el dígito '0'.

Ejemplo. Representar 2158 (decimal) en binario

Figura 2. Conversión de un número decimal a binario

El procedimiento para convertir un número decimal a binario utilizando divisiones sucesivas por 2 es el siguiente:

- a) Se divide el número decimal entre 2, obteniendo el cociente y el resto. El resto será uno de los dígitos del número binario.
- b) Si el resto es 0, se registra un 0 como dígito binario; si el resto es 1, se registra un 1.
- c) El cociente de la división se toma como el nuevo número decimal.
- d) Se repite el proceso dividiendo nuevamente por 2, registrando los restos como los dígitos binarios.
- e) El procedimiento finaliza cuando el cociente alcanza el valor de 0. Los restos obtenidos se leen de abajo hacia arriba para formar el número binario.

- a) Divida el número decimal por 2.
- b) Si hay resto, escriba 1; si no, 0.
- c) Continúe hasta que no quede número decimal.

Álgebra de Boole

El álgebra de Boole se utiliza para programar circuitos integrados a través de números binarios y realizar operaciones binarias. Esto permite predecir el comportamiento en la entrada y salida del circuito.

Incluye tres operaciones fundamentales:

Tabla 3. Operaciones lógicas básicas

Operación +	Operación · o *	Operación de Negación
(Es el mismo símbolo de la suma que usualmente usamos, pero no es la misma operación)	(Es el mismo símbolo del producto o multiplicación que usualmente usamos, pero no es la misma operación)	(Permite invertir o negar el estado lógico, bit o dígito así)
Entradas Salida	Entradas Salida	Entradas Salida
A + B = C	A · B = C	A = A
0 + 0 = 0	0 · 0 = 0	0 = 1
0 + 1 = 1	0 · 1 = 0	1 = 0
1 + 0 = 1	1 · 0 = 0	
1 + 1 = 1	1 · 1 = 1	

Dato importante

La negación se expresa con una línea arriba del nombre asignado a la entrada o a la salida o con una comilla, así: A = A'

Función lógica

Es la expresión algebraica formada por variables binarias que se relacionan mediante las operaciones básicas del álgebra de Boole.

Ejemplo:

F = a + b (la función sería "a + b" que equivale a la operación booleana "+" o de suma).

Donde a y b son las variables binarias.

Tabla de verdad

Es una representación gráfica de todos los valores que puede tomar la función lógica para cada una de las posibles combinaciones de las variables de entrada.

El número de combinaciones posibles es 2ⁿ, siendo n el número de variables.

Ejemplo: la tabla para la función lógica $F = (A + B) \cdot C$ sería:

n = 3 (porque las variables son A, B y C).

23 = 8 (número de posibles combinaciones y filas que debe tener la tabla).

El álgebra de Boole se basa en un conjunto de propiedades y reglas fundamentales que permiten simplificar y analizar expresiones lógicas. Estas reglas son esenciales para optimizar circuitos y resolver problemas lógicos de manera estructurada. A continuación, se presentan las principales propiedades y ejemplos asociados:

Tabla 4. Las 8 posibles combinaciones

Variables o Entrada	Función lógica o Salida
АВС	F = (A + B) · C
0 0 0	0
0 0 1	0
0 1 0	0
0 1 1	1
100	0
101	1
110	0
111	1

El álgebra de Boole se basa en un conjunto de propiedades y reglas fundamentales que permiten simplificar y analizar expresiones lógicas. Estas reglas son esenciales para optimizar circuitos y resolver problemas lógicos de manera estructurada. A continuación, se presentan las principales propiedades y ejemplos asociados.

Tabla 5. Propiedades o reglas del álgebra de Boole

Propiedad o Regla	Ejemplo
Simplificación de negación	A = A
Simplificación de igualdad	A + A = A
	$A \cdot A = A$

Propiedad o Regla	Ejemplo
Inversa	A + A = 1
	A · A = 0
Identidad	A + 0 = A
	A · 1 = A
	A + 1 = 1
	A · 0 = 0
Conmutativa	A + B = B + A
	$A \cdot B = B \cdot A$
Asociativa	A + (B + C) = (A + B) + C
	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$
Distributiva	$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$
	$(A + B) \cdot C = (A \cdot C) + (B \cdot C)$
Más reglas de simplificación o leyes de absorción	$A + A \cdot B = A$
	$A \cdot (A + B) = A$
Teorema de Morgan	$(A \cdot B) = A' + B'$
	$(A \cdot B) = A' \cdot B'$

Síntesis

A continuación, se presenta una síntesis de la temática estudiada en el componente formativo.

Material complementario

Tema	Referencia	Tipo de material	Enlace del recurso
Sistemas numéricos	Electrónica FP. (2018). Sistemas numéricos: Binario, Decimal y Hexadecimal.	Video	https://www.youtube.com /watch?v=g9-MRBBcvdg
Sistema binario	Matemáticas profe Alex. (2023). Números Binarios Introducción	Video	https://www.youtube.com/watch?v=F1xB6oxmMWQ &t=52s
Sistema binario	EDteam. (2023). ¿Qué es el sistema binario y como funciona?	Video	https://www.youtube.com/watch?v=-V4AbHyR x4

Glosario

Álgebra de Boole: rama del álgebra que trabaja con operaciones lógicas sobre valores binarios (0 y 1).

Circuitos digitales: sistemas electrónicos que procesan información mediante niveles lógicos (0 y 1).

Multiplicación lógica: operación booleana que devuelve 1 solo si todas las entradas son 1.

Negación: operación booleana que invierte el estado lógico, cambiando 0 a 1 y viceversa.

Sistema binario: sistema numérico de base 2 que utiliza los dígitos 0 y 1, empleado en sistemas electrónicos.

Sistema decimal: sistema numérico de base 10 que utiliza los dígitos del 0 al 9.

Sistemas numéricos: métodos de representación de números en diferentes bases como decimal, binario, octal y hexadecimal.

Suma lógica (+): operación booleana que devuelve 1 si al menos una entrada es 1.

Tabla de verdad: representación de todas las posibles combinaciones de entrada y salida de una función lógica.

Teorema de Morgan: regla del álgebra de Boole que simplifica la negación de expresiones lógicas compuestas.

Referencias bibliográficas

Carlospes, (s.f), Sistema de numeración romano. (s.f.). En Sitio web de Carlos Pes. https://www.carlospes.com/curso representacion datos/02 01 sistema de numeracion romano.php

Cidead, (s.f), material interactivo sobre Lógica Binaria.

Junta de Extremadura consejería de educación y empleo, (s.f), Laboratorio virtual de Lógica Binaria.

Lloris, A. (2006). Capítulo 1: Introducción a los Sistemas digitales. En Sistemas Digitales 2 Ed. McGraw Hill.

Créditos

Nombre	Cargo	Centro de Formación y Regional
Milady Tatiana Villamil Castellanos	Responsable del ecosistema	Dirección General
Olga Constanza Bermúdez Jaimes	Responsable de línea de producción	Centro de Servicios de Salud - Regional Antioquia
Magda Melissa Rodríguez Celis	Experto temático	Centro de Desarrollo Agroempresarial - Regional Cundinamarca
Paola Alexandra Moya Peralta	Evaluadora instruccional	Centro de Servicios de Salud - Regional Antioquia
Juan Daniel Polanco Muñoz	Diseñador de contenidos digitales	Centro de Servicios de Salud - Regional Antioquia
Edgar Mauricio Cortés García	Desarrollador full stack	Centro de Servicios de Salud - Regional Antioquia
Jaime Hernán Tejada Llano	Validador de recursos educativos digitales	Centro de Servicios de Salud - Regional Antioquia
Margarita Marcela Medrano Gómez	Evaluador para contenidos inclusivos y accesibles	Centro de Servicios de Salud - Regional Antioquia
Daniel Ricardo Mutis Gómez	Evaluador para contenidos inclusivos y accesibles	Centro de Servicios de Salud - Regional Antioquia