Testing of Serializability

Serialization Graph is used to test the Serializability of a schedule.

Assume a schedule S. For S, we construct a graph known as precedence graph. This graph has a pair G = (V, E), where V consists a set of vertices, and E consists a set of edges. The set of vertices is used to contain all the transactions participating in the schedule. The set of edges is used to contain all edges Ti ->Tj for which one of the three conditions holds:

- 1. Create a node $Ti \rightarrow Tj$ if Ti executes write (Q) before Tj executes read (Q).
- 2. Create a node $Ti \rightarrow Tj$ if Ti executes read (Q) before Tj executes write (Q).
- 3. Create a node $Ti \rightarrow Tj$ if Ti executes write (Q) before Tj executes write (Q).

Precedence graph for Schedule S

- o If a precedence graph contains a single edge Ti → Tj, then all the instructions of Ti are executed before the first instruction of Tj is executed.
- If a precedence graph for schedule S contains a cycle, then S is non-serializable. If the precedence graph has no cycle, then S is known as serializable.

For example:

Tl	T2	T3
Read(A) $A := f_1(A)$ $Write(A)$ $Read(C)$ $C := f_5(C)$ $Write(C)$	Read(B) $B := f_2(B)$ Write(B) $Read(A)$ $A := f_4(A)$ Write(A)	Read(C) $C:=f_3(C)$ Write(C) $Read(B)$ $B:=f_6(B)$ Write(B)
	Read(A) $A := f_1(A)$ $Write(A)$ $Read(C)$ $C := f_5(C)$	$Read(A)$ $A:=f_1(A)$ $B:=f_2(B)$ $Write(B)$ $Write(B)$ $Read(A)$ $A:=f_4(A)$ $Read(C)$ $C:=f_5(C)$ $Write(A)$

Schedule S1

Explanation:

IJ

Read(A): In T1, no subsequent writes to A, so no new edges **Read(B):** In T2, no subsequent writes to B, so no new edges **Read(C):** In T3, no subsequent writes to C, so no new edges **Write(B):** B is subsequently read by T3, so add edge T2 \rightarrow T3 **Write(C):** C is subsequently read by T1, so add edge T3 \rightarrow T1 **Write(A):** A is subsequently read by T2, so add edge T1 \rightarrow T2

Write(A): In T2, no subsequent reads to A, so no new edges Write(C): In T1, no subsequent reads to C, so no new edges Write(B): In T3, no subsequent reads to B, so no new edges

Precedence graph for schedule S1:

The precedence graph for schedule S1 contains a cycle that's why Schedule S1 is non-serializable.

Schedule S2

Explanation:

Read(A): In T4,no subsequent writes to A, so no new edges

Read(C): In T4, no subsequent writes to C, so no new edges

Write(A): A is subsequently read by T5, so add edge T4 \rightarrow T5

Read(B): In T5,no subsequent writes to B, so no new edges

Write(C): C is subsequently read by T6, so add edge T4 \rightarrow T6

Write(B): A is subsequently read by T6, so add edge T5 \rightarrow T6

Write(C): In T6, no subsequent reads to C, so no new edges

Write(A): In T5, no subsequent reads to A, so no new edges

Write(B): In T6, no subsequent reads to B, so no new edges

Precedence graph for schedule S2:

The precedence graph for schedule S2 contains no cycle that's why ScheduleS2 is serializable.

