A Roadmap to developing for Stan

Stan Con

January 11, 2018

Essential Links

Official website: mc-stan.org

Github repo: https://github.com/stan-dev

Forum: http://discourse.mc-stan.org/

Stan-dev wiki: https://github.com/stan-dev/stan/wiki/

Wiki page on Contributing new functions:

https://github.com/stan-dev/stan/wiki/Contributing-New-Functions-to-Stan

Recommended papers

The Stan Math Library: Reverse-Mode Automatic Differentiation in C++ - https://arxiv.org/abs/1509.07164

Automatic differentiation in machine learning: a survey – https://arxiv.org/abs/1502.05767

A Conceptual Introduction to Hamiltonian Monte Carlo – https://arxiv.org/abs/1701.02434

The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo – https://arxiv.org/abs/1111.4246

Automatic Differentiation: Example

$$\log[\operatorname{Normal}(y|\mu,\sigma)] = -\frac{1}{2} \left(\frac{y-\mu}{\sigma}\right)^2 - \log(\sigma) - \frac{1}{2} \log(2\pi)$$

	$\int fwd.$	$\mid fwd.$		
var	eval. trace	der. trace		
$\overline{v_1}$	y = 10	\dot{v}_1	$=\dot{y}_1$	= 1
v_2	$\mu = 5$	\dot{v}_2	$=\dot{\mu}$	=0
v_3	$\sigma = 2$	\dot{v}_3	$=\dot{\sigma}$	=0
v_4	$v_1 - v_2 = 5$	\dot{v}_4	= 1	= 1
v_5	$v_4/v_3 = 2.5$	\dot{v}_5	$=1/v_3 \times \dot{v}_4$	$=0.5\times1$
v_6	$v_5^2 = 6.25$	\dot{v}_6	$=2v_5\times\dot{v}_5$	$= 2 \times 2.5 \times 0.5$
v_7	$-0.5 \times v_6 = 3.125$	\dot{v}_7	$=-0.5 \times \dot{v}_6$	$= -0.5 \times 2.5$
v_8	$\log(\mu) = \log(2)$	\dot{v}_8	$=1/v_3 \times \dot{v}_3$	=0
v_9	$v_7 - v_8 = 3.125 - \log(2)$	\dot{v}_9	$=\dot{v}_{7}-\dot{v}_{8}$	=-1.25-0
v_{10}	$v_9 - 0.5\log(2\pi) = 3.125 - \log(4\pi)$	\dot{v}_{10}	$=\dot{v}_7$	=-1.25

Reverse		
$adjoint\ trace$		
\bar{v}_{10}	= 1	= 1
$ar{v}_9$	$=1\times \bar{v}_{10}$	=1
$ar{v}_8$	$=-1\times\bar{v}_9$	$= -1 \times 1 = -1$
$ar{v}_7$	$=1\times\bar{v}_9$	$=1\times1=1$
\bar{v}_6	$=-0.5 \times \bar{v}_7$	$=-0.5 \times 1 = -0.5$
\bar{v}_5	$=2\times v_5\times \bar{v}_6$	$= 2 \times 2.5 \times -0.5 = -2.5$
$ar{v}_4$	$=1/v_3\bar{v}_5$	=-1.25
\bar{v}_3	$=-v_4/v_3^2 \times \bar{v}_5 + 1/v_3 \times \bar{v}_8$	$= -5/2^2 \times (-2.5) + 1/2 \times -1 = 2.625$
$ar{v}_2$	$=-1 \times \tilde{v_4}$	$=-1 \times 1.25 = -1.25$
\bar{v}_1	$=1\times\bar{v}_4$	$= 1 \times 1.25 = 1.25$