Simulación Estocástica - Taller 2

Jesid Mauricio Mejía Castro

21 de abril de 2022

1. Deteniendo la simulación de datos

a) Dado que se requiere que $n \ge 100$ y $S/\sqrt{n} < 0.01$. Al despejar n de la desigualdad tendremos que:

$$100 \le n < 10000S^2.$$

Al tratarse de una variable aleatoria normal estándar, sabemos que S=1, por tanto se espera que el valor de n sea cercano a 10000.

- b) Con el código en R (véase el archivo
 ${\tt p1.R})$ se obtiene un valor de n=9897.
- c) La media de la muestra fue $\bar{X} = -0.01482648$.
- d) La varianza de la muestra fue $S^2 = 0.9974088$.
- e) Los resultados obtenido eran de esperarse pues estamos tratando con una variable aleatoria normal estándar, es decir, $\mu = 0$ y $\sigma^2 = 1$.

2. Intervalos de confianza

El código (p2.R) genera la siguiente salida para 15 pruebas y 100 variables U(-1,1):

Number of trials: 15

sample mean	lower bound	upper bound	contains mean?
-0.01774	-0.05520	+0.01971	1
-0.02129	-0.05874	+0.01617	1
-0.03336	-0.07081	+0.00410	1
+0.01779	-0.01966	+0.05525	1
-0.03178	-0.06924	+0.00567	1
-0.03436	-0.07181	+0.00310	1
-0.01445	-0.05191	+0.02300	1
+0.01570	-0.02176	+0.05315	1
-0.01503	-0.05249	+0.02242	1
-0.00332	-0.04077	+0.03414	1
+0.01621	-0.02124	+0.05366	1
-0.00902	-0.04648	+0.02843	1
+0.01184	-0.02561	+0.04929	1
+0.00867	-0.02879	+0.04612	1
+0.01459	-0.02286	+0.05205	1

100 per cent of CI's contain the mean.

3. Bootstrap

- a) La distribución de la desviación estándar puede verse en la Figura 1.
- b) E[S] = 0.4595913.
- c) $\hat{q}_{0,5} = 1,300492$.
- c) Var[S] = 0.2112242.

4. Simulación de dos dados

a) En el código fuente del archivo p4.R puede encontrarse la función que simula el lanzamiento de dos dados. La idea de la simulación es apro-

Figura 1: Distribución de las desviaciones estándar para y*.

ximar dos números aleatorios distribuidos con U(1,7) al menor entero más cercano (la función piso). Es decir:

$$x_i = |U(1,7)|$$
 para $i = 1, 2$.

De manera que $M = \min(x_1, x_2)$.

- b) Con $n=10^4$ simulaciones, se obtuvo que el valor esperado es E[M]=2,54490, la varianza V(M)=1,93897. Además, se obtuvo que la probabilidad $P(M\geq 3)=0,4471$.
- c) Con una confianza del $95\,\%$ se tiene que la media está contenida en el intervalo [2,53248,2,58812].
- d) La media y su intervalo de confianza al 95 % puede verse en la Figura 2. Se puede observar la estabilización alrededor el valor esperado.

Figura 2: Intervalo de 95 % para la media con 10^5 simulaciones de M.