复旦大学数学科学学院

2013~2014 学年第二学期期末考试

高数 A(下) A 卷参考答案

$$-1$$
, $\sin(x+y) + x\cos(x+y)$, $\cos(x+y) - x\sin(x+y)$.

$$2x + y + z = \sqrt{3}$$
.

$$3, \frac{1}{48}.$$

4、收敛半径为R=2,收敛域(-2,2).

5、通解为
$$y = \frac{1}{2}x^3 + Cx$$
.

6.
$$f(x) \sim \sum_{n=1}^{\infty} b_n \sin nx = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin(2n-1)x$$
.

$$7, \pi$$

8.
$$f'(r)\frac{\vec{r}}{r}$$
, $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$.

- 二、(1) 驻点(0,0), f(0,0)=2.
 - (2) 在椭圆域边界椭圆上,最大值为 3 (x=1,-1,y=0 时),最小值为-2 (x=0,y=2,-2 时)。

综上,最大值3,最小值-2.

$$\equiv$$
, $\frac{7\pi}{12}$.

四、
$$S(x) = \frac{3-x}{(1-x)^3}.$$

$$\pm \int_{n=1}^{\infty} f(x) = 1 + 2 \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{4n^2 - 1} x^{2n}$$

$$f^{(0)}(0) = 1$$
, $f^{(2k-1)}(0) = 0$, $f^{(2k)}(0) = \frac{2(-1)^{k-1}}{4k^2 - 1}(2k)!$ $(k = 1, 2, \dots,)$.

$$\overrightarrow{\partial}_{x}^{2} = e^{x} \cos y f'(e^{x} \cos y) + e^{2x} \cos^{2} y f''(e^{x} \cos y) ,$$

$$\frac{\partial^{2} z}{\partial y^{2}} = -e^{x} \cos y f'(e^{x} \cos y) + e^{2x} \sin^{2} y f''(e^{x} \cos y) ;$$

(2)
$$f(u) = \frac{1}{2}e^{2u} - \frac{1}{2}e^{-2u} - 2u$$
.

七、证明

(1) 由 Lagrange 中值定理, $\exists \xi \in (0, \frac{\pi}{2})$, 使得 $\cos a_m - a_m - (\cos a_n - a_n) = (-\sin \xi - 1)(a_m - a_n)$,

于是 $|\cos b_m - \cos b_n| \ge |a_m - a_n|$, $|a_m - a_n| \le |b_m - b_n|$,

由于 $\sum_{n=1}^{\infty}b_n$ 收敛,可知 $b_n\to 0$ $(n\to\infty)$,根据 Cauchy 收敛原理, $\{a_n\}$ 收敛,记 $a_n\to a$ $(n\to\infty)$, $a\in[0,\frac{\pi}{2}]$

在 $\cos a_n - a_n = \cos b_n$ 中令 $n \to \infty$,得 $\cos a - a = 1$,则 a = 0。

另证: 记函数 $F(x,y) = \cos y - y - \cos x$,则 $F_y' = -\sin y - 1 \neq 0$, $y \in [0,\frac{\pi}{2}]$,由 隐函数存在定理,方程 $F(x,y) = \cos y - y - \cos x = 0$ 可在 $[0,\delta]$ 确定一个隐函数 y = f(x),它在 $[0,\delta]$ 上连续,于是在 $\cos a_n - a_n = \cos b_n$ 中令 $n \to \infty$,得 $\cos f(0) - f(0) = 1$,则 f(0) = 0,即 $a_n \to 0$ $(n \to \infty)$ 。

(2) 由
$$\frac{1-\cos a_n}{a_n} + 1 = \frac{1-\cos b_n}{a_n}$$
,及 $a_n \to 0 (n \to \infty)$,可得 $\lim_{n \to \infty} \frac{1-\cos b_n}{a_n} = 1$,

即
$$\lim_{n\to\infty} \frac{b_n^2}{2a_n} = 1$$
,或 $\lim_{n\to\infty} \frac{\frac{a_n}{b_n}}{b_n} = \frac{1}{2}$,由比较判别法, $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 收敛。