

Análise da Estrutura da Crosta na Região da Faixa Ribeira (entre as Províncias do Cráton São Francisco e da Bacia do Paraná) usando Métodos Sismológicos

Diogo Luiz de Oliveira Coelho

Dissertação para obter o grau de Mestre em **Geofísica**

Orientador **Stéphane Gerard Martial Drouet**

> Rio de Janeiro 2015

Análise da Estrutura da Crosta na Região da Faixa Ribeira (entre as Províncias do Cráton São Francisco e da Bacia do Paraná) usando Métodos Sismológicos

Diogo Luiz de Oliveira Coelho

Dissertação apresentada ao corpo docente do Programa de Pós-graduação em Geofísica do Observatório Nacional como parte dos requisitos necessários para a obtenção do grau de Mestre em Geofísica.

Lista de Figuras

1	Mapa das estações sismográficas instaladas (triangulos vermelhos). Os ou-	
	tros triângulos são estações da Rede Sismográfica Brasileira	4
2	Sismograma mostrandos as três componentes do deslocamento do terreno	5
3	Mapa dos eventos (estrelas) registrados na estação STA08. O limite de 95	
	graus está indicada em vermelho. Estrelas azuls mostram os eventos com	
	dados de qualidade que são usadas no calculo das Funçoes do Receptor . .	6
4	Análise qualitativa do sinal atraves das Power Density Functions. McNa-	
	mara and Buland (2004)	7
5	Uma ilustração esquemática de como dois eventos sucessivos de fontes sís-	
	micas quase idênticas que podem ser explorados para revelar anomalias dos	
	tempo de chegada da onda P numa dada estação. (Gibbons, 2006)	8
6	Sismograma mostrando as componentes Radial e Transversal	9
7	Funções do Receptor em função do parâmetro do raio para o Modelo de	
	Velocidade Padrão do Sul da Califórnia, em Zhu and Kanamori (2000). A	
	fase Ps convertida em Moho e suas múltiplas PpPs, PpSs, e PsPs e seus	
	traços são ilustrados no topo da imagem. Outras reflexões não-rotuladas	
	são as conversões P-S em 5.5 km e 16 km, discontinuidades intracrustais	
	no modelo	10
8	Gráficos mostrando o funcionamento do water-level, segundo Ammon (1997).	11
9	Estimando a Função do Receptor utilizando pequenos períodos. Os sinais	
	originais são mostrados na parte superior esquerda, as funções do Receptor	
	calculadas utilizando water-level são comparadas com o método interativo	
	no painel inferior. Os sinais horizontais preditos são comparados com os	
	sinais horizontais observados no painel superior direito. (Ligorría and Am-	
	mon, 1999)	12
10	(a) $s(H,\kappa)$ do empilhamento das funções do receptor utilizando a equação	
	10 . Ela encontra o ponto máximo quando se usa uma espessura crustal	
	H e uma razão v_P/v_S coerentes. (b) Relações $H-\kappa$ para diferentes fases	
	convertidas em Moho. Cada curva representa a contribuição dessa fase	
	convertida ao empilhamento, segundo Zhu and Kanamori (2000)	14

Lista de Tabelas

 $1 \qquad {\rm Tabela\ com\ as\ coordenadas(Lat\ Long)\ e\ altitude\ (m)\ das\ Estações.} \qquad . \qquad . \qquad . \qquad 18$

Sumário

Lista de Figuras]
Lista de Tabelas	II
Sumário	III
Referências Bibliográficas	17

Dedicatória

Agradecimentos

Resumo

Abstract

Contexto Geológico

Metodologia

Função do Receptor

Aquisição de Dados

No âmbito do projeto SUBSAL, realizado conjuntamente entre o Observatório Nacional e a Petrobras, instalou-se 24 estações sismográficas temporárias banda larga (STS2 ou Reftek RT151-120s). A faixa de frequência registrada varia de 50 Hz até 100 segundos. As estações foram dispostas espacialmente em tres perfis em relação à costa, dois perpendiculares à costa, perfil 1 a oeste e perfil 2 a leste, e um paralelo, perfil 3, como observado na Figura 1. O perfil 1 estende-se da estação STA01, localizada próximo à costa, até a STA09. O perfil 2 vai da estação STA10, ao norte, até a STA16, próximo à costa. O perfil 3 é da estação STA17, oeste, até a STA24, leste. A distância entre as estações é aproximativamente de 20 km. As coordenadas das estações são dadas na Tabela 1.

Figura 1: Mapa das estações sismográficas instaladas (triângulos vermelhos). Os outros triângulos são estações da Rede Sismográfica Brasileira.

O período de operação das estações foi distinto para os perfis. Os dois perfis per-

pendiculares à costa foram instalados no meio do ano de 2012 e o perfil paralelo no final de 2012. As estações ficaram em fucionamento até o final do ano de 2013 registrando o movimento do terreno de maneira contínua.

O produto do deslocamento das partículas do meio registrado pelo sismógrafo, através de sensores verticais e horizontais em três componentes, pode ser visto na Figura 2. Esse registro da variação da amplitude em uma série temporal é chamado de sismograma.

Figura 2: Sismograma mostrandos as três componentes do deslocamento do terreno.

O sismograma é gerado pela perturbação do meio pelas ondas mecânicas que se propagam no interior da Terra. Essas ondas tem velocidades variando em função dos parâmetros elásticos do meio e da densidade. E estes variam pela mineralogia e condições de pressão e temperatura do meio atravessado. As ondas mecânicas são divididas em ondas de corpo e de superfície. As ondas de corpo estão categorizadas em dois tipos: as ondas P, longitudinal, e as ondas S, transversais. A onda P é mais rapida e que consegue se propagar em todos os meios, tem velocidade entre 4 e 7 km/s na crosta terrestre e em torno de 8 km/s no manto superior. As ondas S tem velocidade menor do que a onda P, em torno de 3 a 4 km/s na crosta.

Para produzir esta análise sobre a estrutura da região de estudo utilizou-se de um conjunto de dados com eventos sísmicos registrados. O número de eventos utilizados no processamento varia devido ao nível de sinal-ruído da forma da onda, pois há uma necessidade de visualização clara da chegada da onda P, como pode ser constatado na Figura 2 .

Pré-processamento

Para assegurar a confiabilidade do processamento é necessário um tratamento preliminar dos sinais brutos. Utilizou-se eventos catalogados na rede IRIS para uma identificação automática nestes sinais. Alguns pré-requisitos foram utilizados para a escolha dos eventos, como:

- 1. Distância Epicentral;
- 2. Magnitude;

Sismos próximos, com distância menor que 20 graus da estação estudada, geram ondas com incidência oblíqua e esse tipo de dado deve ser utilizado com cuidado. Em sismos com distâncias maiores que 95 graus as ondas P não chegam na estação devido a inversão

de velocidade no limite manto-núcleo, diminuição da velocidade da onda P entre o manto e o núcleo, e não é observada a onda P direta. Por isso a distância epicentral é tida como ideal entre 20 e 95 graus, como é observado na Figura 3. Devido grande parte dos sismos serem oriundos da Cordilheira dos Andes,como é visto na Figura 5, também utilizou-se dados como distância menor que 20 graus. A magnitude do sismo é importante para a propagação da onda, eventos com pequena magnitude não tem energia suficiente para gerar energia suficiente para gerar um sinal claro no sismograma.

Figura 3: Mapa dos eventos (estrelas) registrados na estação STA08. O limite de 95 graus está indicada em vermelho. Estrelas azuls mostram os eventos com dados de qualidade que são usadas no calculo das Funçoes do Receptor

Subsequentemente um janelamento do registro em 5 segundos antes e 10 segundos depois da chegada da onda P, esta é calculada pelo modelo de velocidade da Terra IASPEI91 (Kennet, 1991). Após a discriminação e o janelamento do sinal, examina-se visualmente cada registro para certificar que todos os eventos selecionados tem um nível de sinal-ruído bom, como na Figura 2 .

Logo após removeu-se a média e tendência linear dos dados. Aplicou-se um filtro passa-alta com freqüência de corte de 0.1 Hz para eventos com distância entre 20 e 95 graus e de 2 Hz para eventos próximos (<20). Os dados originais com amostragens a cada 0,01 segundos (100 Hz) são interpolados para gerar dados com amostragens cada 0,025 segundas (40 Hz), porque a informação de alta freqüência não é relevante nesse tipo de análise.

Processamento

A caracterização prévia das informações contidas no sinal é imprescindível para o processamento. A avaliação da performance e da qualidade dos dados da estações sismográficas foram feitas no software livre PQLX. A metodologia do PQLX é baseada no trabalho de McNamara and Buland (2004). Esse procedimento é bastante usado para se obter a informação espectral sísmica.

No programa PQLX a série temporal é segmentada em intervalos de uma hora, com 50% de superposição do sinal. Cada janela de hora está separada em 13 intervalos com 75% de superposição para calcular a "Power Spectral Density". As médias obtidas para

cada um dos 13 intervalos são usadas para estimar a "Probability Density Functions", calculados a partir das médias pelo número total de segmentos de hora em hora.

Essa metodologia de McNamara and Buland (2004) difere dos métodos habitualmente utilizados, porque não é necessário a visualização de todo conjunto de dados para uma estima qualitativa do sinal, observado na Figura 4.

Figura 4: Análise qualitativa do sinal atraves das *Power Density Functions*. McNamara and Buland (2004)

A garantia da fiabilidade do tempo de chegada da onda P é fundamental para o processamento gerar resultados consistentes. Portanto testes com o tempo de chegada da onda P forão feitos. Gibbons (2006) mostra que fazendo a correlação de dois eventos distantes em uma estação sismográfica consegue-se caracterizar esse tempo de chegada, como é visto na Figura 5. Gibbons (2006) assume que se não há alterações mensuráveis na velocidade da estrutura entre a fonte e os receptores, ondas sísmicas de dois eventos co-localizados terá a mesma duração de tempo para chegar a um determinado sensor. A função de correlação cruzada para um dado sinal a uma dada estação mede que a semelhança entre a porção posterior do sismograma é a do modelo de forma de onda. O tempo de separação entre o início do modelo e o valor máximo da função de correlação cruzada deve ser igual ao tempo que separa os dois tempos de origem dos eventos para todas as estações. Qualquer discrepância nos tempos de separação medido em duas estações diferentes, o que não é atribuível a diferença entre fontes ou uma SNR baixa, deve ser o resultado de uma anomalia em sincronismo um, ou ambos, dos instrumentos.

Nesste trabalho utilizamos uma metodologia semelhante a de Gibbons (2006). Utilizouse um sismo distante de um par de estações sismográficas próximas. Com os sinais registrados fez-se a correlação cruzada dos dados. Como a fonte está distante das estações

a correlação dos sinais deve ser próxima de zero. Este teste do tempo de chegada da onda P é para garantir a confiabilidade dos dados das estações temporárias. Portanto em cada par de estações correlacionadas sempre tinha uma estação permanente, estação com dados confiáveis.

Figura 5: Uma ilustração esquemática de como dois eventos sucessivos de fontes sísmicas quase idênticas que podem ser explorados para revelar anomalias dos tempo de chegada da onda P numa dada estação. (Gibbons, 2006)

No ínicio desse trabalho somente os dados de eventos incluídos no catálogo do IRIS (Incorporated Research Institutions for Seismology) com magnitude maior que 5,5 entre maio de 2011 e maio de 2012 foram utilizados. Porém agora utiliza-se dados coletados na rede Sismográfica, mostrada na 1, até o fim do segundo semestre de 2013. A Figura 3 mostra eventos sísmicos registrados na estação STA08 mostrando a delimitação dos eventos pela distância epicentral, além de mostrar sismos com magnitude maior que 5.5 mb.

O sismômetro registra pequenas variações horizontais e verticais de amplitude das partículas do terreno na escala microscópica ao longo das direções Vertical (Z), Norte-Sul (N) e Leste-Oeste (E), chamado sistema ZNE, como observado na Figura 2. No entanto, o sinal bruto nas direções ZNE não está alinhado aos eixos de propagação das ondas geradas pelo sismo, logo a resposta em cada componente mostra uma sobreposição de vários tipos de ondas. Com a finalidade de isolar a contribuição de cada onda registrada nos dados, o sistema de coordenadas dos registros são rotacionadas, através do SAC (Seismic Analysis Code), para se alinharem com os eixos de propagação das ondas através da seguinte matriz de rotação:

$$\begin{bmatrix} R \\ T \\ Z \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} E \\ N \\ Z \end{bmatrix}$$
 (1)

O resultado da equação 1 discrimina claramente a contribuição de cada componente no sismograma. A componente N (norte-sul) transforma-se na componente T (transversal) e guarda os registro da componente horizontal da onda S, chamada de onda SH. A resposta da onda SV é resgistrada na componente radial do sismograma, chamada R, como pode ser visualizada na Figura 6.

Figura 6: Sismograma mostrando as componentes Radial e Transversal.

Para o cálculo a espessura crustal na região utilizou-se o método da Função do Receptor, que foi desenvolvido por Langston (1977). O programa SAC (Seismic Analysis Code) foi usado para fazer o processamento e o cálculo das Funções Receptores. Tal método faz uso do sinal de tele-sismos, geradores de ondas planas de incidência quase-vertical embaixo de uma dada estação. A onda P incide na discontinuidade de Mohorovicic e se decompõe em uma onda P transmitida e uma onda S convertida. A diferença do tempo de chegada das duas ondas, onda S tem velocidade inferior a onda P, e de outras reflexões permite inferir a profundidade da discontinuidade de Mohorovicic, também chamada de Moho, como mostrado na Figura 7.

Para uma estimativa precisa das Funções do Receptor é essencial que o tempo de chegada da onda P seja determinado com baixa incerteza. Então os dados foram examinados visualmente para registrar o tempo de chegada da onda P direta.

As Funções do Receptor são calculadas com uma deconvolução componente radial (R) pela componente vertical (Z), como é mostrado por Clayton and Wiggins (1976), Langston (1977), Ammon (1991), Cassidy (1992), Zhu and Kanamori (2000). Essa operação remove efetivamente a resposta instrumental, a assinatura da fonte e a propagação da fonte até Moho. E o sinal resultante é a assinatura da propagação próxima à estação. Então a Função do Receptor é sensível na delimitação da estruturação superficial da crosta embaixo da estação.

Computar as Funções do Receptor é um problema de deconvolução, Ligorría and Ammon (1999). Langston (1979) descreve a resposta do deslocamento teórico para uma onda plana P incidindo sobre uma empilhamento de interfaces horizontais ou inclinadas no domínio do tempo pode ser dada por:

$$D_{V}(t) = I(t) * S(t) * E_{V}(t)$$

$$D_{R}(t) = I(t) * S(t) * E_{R}(t)$$

$$D_{T}(t) = I(t) * S(t) * E_{T}(t)$$
(2)

Onde S(t) é a resposta efetiva da fonte em função do tempo de uma onda incidente, I(t) é a resposta do impulso instrumental e $E_V(t)$, $E_R(t)$ e $E_T(t)$ são as respostas do impulso

Figura 7: Funções do Receptor em função do parâmetro do raio para o Modelo de Velocidade Padrão do Sul da Califórnia, em Zhu and Kanamori (2000). A fase Ps convertida em Moho e suas múltiplas PpPs, PpSs, e PsPs e seus traços são ilustrados no topo da imagem. Outras reflexões não-rotuladas são as conversões P-S em 5.5 km e 16 km, discontinuidades intracrustais no modelo.

da estruturua vertical, radial e tangencial, respectivamente. A componente S(t) pode ser muito complicada de ser computada, pois ela é relacionada a história do deslocamento no tempo e reverberações na area da fonte.

Langston (1979) assume que eventos profundos observados em dados telessísmicos, na componente vertical do movimento do terreno $(D_V(t))$, se comportam como um pulso em função do tempo convoluído com a resposta instrumental e com chegadas tardias menores. Cálculos teóricos para estruturas crustais mostram que reverberações crustais e fases convertidas na componente vertical de ondas P são menores. Então se aproxima:

$$I(t) * S(t) \simeq D_V(t) \tag{3}$$

Langston (1979) faz uma suposição implícita que $D_V(t)$ comporta-se como uma função delta de Dirac, como pode ser observado na equação 3. Assumindo que a resposta instrumental é compensada entre as componentes, $E_R(t)$ e $E_T(t)$ podem ser encontrados passando para o domínio da frequência a equação 2 e fazendo as seguintes deconvoluções:

$$E_R(\omega) = \frac{D_R(\omega)}{I(\omega)S(\omega)} \simeq \frac{D_R(\omega)}{D_V(\omega)}$$

$$E_T(\omega) = \frac{D_T(\omega)}{I(\omega)S(\omega)} \simeq \frac{D_T(\omega)}{D_V(\omega)}$$
(4)

 $E_R(t)$ e $E_T(t)$ são retransformadas para o domínio do tempo, importante lembrar que nessa técnica a informação da fase é conservada. Langston (1979) resalta que o resultado da série temporal pode ser interpretado diretamente com um sismograma, permitindo que tempo e amplitude de chegadas possam ser examinadas de uma maneira inequívoca.

Clayton and Wiggins (1976), Langston (1979), Ligorría and Ammon (1999) mostram que o processo de deconvolução possui um instabilidade numérica devido a vários fatores, como o ruído aleatório contido nos dados e a limitação da banda de frequência. Para acabar com os problemas gerados na deconvolução, Clayton and Wiggins (1976) introduz um nível de amplitude mínimo permitido da fonte, nomeado de water-level, como pode ser visto na Figura Figura 8. Faz-se isso para reduzir componentes de ruídos espúrios e efeitos de pequenos erros na estimação da fonte. Na deconvolução water-level a maneira de se evitar a divisão por números pequenos é substituir esses valores pequenos no denominador por uma fração do valor máximo do denominador (para todas as frequências), tal fração é chamada de parâmetro de water-level, segundo Ammon (1997). water-level pode agir, em alguns casos, como um filtro "passa-baixa", "passa-alta"e "não-passa", como mostrado na Figura 8.

Figura 8: Gráficos mostrando o funcionamento do water-level, segundo Ammon (1997).

No processamento dos dados a deconvolução no domínio do tempo feita é de acordo com a teoria criada por Ligorría and Ammon (1999), esta é nomeada de deconvolução interativa. Tal método segue a ideia de Kikuchi and Kanamori (1982), que é usado para estimar funções do tempo de fontes de grandes terremotos. A deconvolução interativa de Ligorría and Ammon (1999) minimiza através do método dos mínimos quadrados a diferença entre o sismograma horizontal observado e um sinal predito pela convolução de um conjunto de picos atualizados interativamente com a componente vertical do sismograma.

Figura 9: Estimando a Função do Receptor utilizando pequenos períodos. Os sinais originais são mostrados na parte superior esquerda, as funções do Receptor calculadas utilizando water-level são comparadas com o método interativo no painel inferior. Os sinais horizontais preditos são comparados com os sinais horizontais observados no painel superior direito. (Ligorría and Ammon, 1999).

Pós-processamento

Após gerar sismogramas pela deconvolução Interativa, as séries temporais passaram por um processo de triagem para qualificar as que obtveram melhor resultado. Tal seleção foi feita sob um critério visual observando as funções do receptor que respeitam o formato determinado por (Langston, 1979).

Tendo como objetivo a análise da estrutura da crosta, buscou-se inicialmente o cálculo da profundidade de Moho, um importante parâmetro porque é relacionada à geologia e a evolução tectônica da região. Zhu and Kanamori (2000) propõe um método robusto utilizando a análise das Funções do Receptor para calcular a profundidade de Moho.

Com um modelo da estrutura da Terra, neste caso o IASPEI 91 em Kennet (1991), utiliza as velocidades medianas na crosta para calcular as diferenças de tempo teórica entre a onda P direta e a onda P convertida em S, bem como os tempos das outras reverberações na crosta. De posse de uma dada velocidade v_P , os tempos de chegada podem ser calculados usando a profundidade de Moho (H), a razão v_P/v_S e o parâmetro do raio (p), dependente da localização do evento e da profundidade, do modelo.

Zhu and Kanamori (2000) mostra que os tempos teóricos entre P_S e P podem ser utilizados para estimar a espessura crustal, dado uma velocidade crustal média:

$$H = \frac{t_{P_s}}{\sqrt{\frac{1}{V_s^2} - p^2} - \sqrt{\frac{1}{V_p^2} - p^2}}$$
 (5)

E o erro pode ser dado por:

$$\Delta H = \frac{\partial H}{\partial V_p} \Delta V_p \tag{6}$$

Porém a dependência de t_{Ps} em relação a V_p não é tão forte quanto a V_s , especificamente à razão V_p/V_s , κ . Logo o erro e quantificado:

$$\Delta H = \frac{\partial H}{\partial \kappa} \Delta \kappa \tag{7}$$

Zhu and Kanamori (2000) demonstra que uma variação de 0.1 na razão v_P/v_S pode acarretar erros de aproximadamente 4 km na espessura crustal. Essa ambiguidade pode ser reduzida utilizando as outras fases, reverberações, da onda P. Tais fases provém informações adicionais, como mostrado nas equações abaixo:

$$H = \frac{t_{P_p P_s}}{\sqrt{\frac{1}{V_s^2} - p^2} + \sqrt{\frac{1}{V_p^2} - p^2}}$$
 (8)

$$H = \frac{t_{P_p P_s + P_s P_s}}{2\sqrt{\frac{1}{V_s^2} - p^2}} \tag{9}$$

Em situações reais, identificar a P_s em Moho e as múltiplas e medir seus tempos de chegada em um único traço da função do receptor pode ser muito difícil devido ao ruído de fundo, espalhamento devido a heterogeneidades crustais e conversões P para S de outras discontinuidades de velocidades.

Para aumentar a razão sinal/ruído empilha-se as funções do receptor de multiplos eventos. Esse empilhamento é feito no domínio do tempo para um aglomerado de eventos. Zhu and Kanamori (2000) define um empilhamento H- κ como:

$$s(H,\kappa) = \omega_1 r(t_1) + \omega_2 r(t_2) + \omega_3 r(t_3)$$
(10)

onde r(t) é a função do receptor radial, t_1 , t_2 e t_3 são os tempos de chegada preditos t_s , $t_{P_pP_s}$ e $t_{P_pP_s+P_sP_s}$ correspondente a uma espessura crustal H e a uma razão V_p/V_s e ω_i são os pesos dos fatores, e $\sum \omega_i = 1$.

Ao invés de tentar ajustar toda a função, o método faz uma pesquisa, grid search, da espessura crustal e da razão v_P/v_S para calcular o tempo de chegada teórico das ondas P convertidas em S e das múltiplas para cada registro. A melhor combinação da espessura crustal e da razão v_P/v_S , κ , é aquela que maximiza o valor das amplitudes reais das funções receptor, como pode ser visualizado na Figura 10 .

Julia et al. (2008) mostra uma dependência azimutal das funções do receptor. Para isso ele mostra que separando as funções do receptor de acordo com o backazimute e o parâmetro do raio pode-se checar a variação lateral das estruturas. Os dados são separados em 4 grupos, segundo o azimute entre o sismo e a estação.

Figura 10: (a) $s(H,\kappa)$ do empilhamento das funções do receptor utilizando a equação 10. Ela encontra o ponto máximo quando se usa uma espessura crustal H e uma razão v_P/v_S coerentes. (b) Relações $H-\kappa$ para diferentes fases convertidas em Moho. Cada curva representa a contribuição dessa fase convertida ao empilhamento, segundo Zhu and Kanamori (2000).

Dispersão de Ondas de Superfície

Dados Geofísicos

Fundamentos Teóricos

Resultados e Discussões

Funções do Receptor

Dispersão de Ondas de Superfície

Conclusões

Referências Bibliográficas

- Ammon, C. J., 1991, The isolation of receiver effects from teleseismic p waveforms: **81**, 2504–2510.
- —, 1997, Receiver function source equalization: Website.
- Cassidy, J. F., 1992, Numerical experiments in broadband receiver function analysis: 82, 1453–1474.
- Clayton, R. W., and R. A. Wiggins, 1976, Source shape estimation and deconvolution of teleseismic bodywaves: 47, 151–177.
- Gibbons, S. J., 2006, On the identification and documentation of timing errors: An example at the KBS station, spitsbergen: **77**, 559–571.
- Julia, J., M. Assumpcao, and M. P. Rocha, 2008, Deep crustal structure of the parana basin from receiver functions and rayleigh-wave dispersion: Evidence for a fragmented cratonic root: **113**, no. B8.
- Kennet, B. L. N., 1991, Iaspei 1991 seismological tables: 3, 122–122.
- Kikuchi, M., and H. Kanamori, 1982, Inversion of complex body waves: 72, 491–506.
- Langston, C. A., 1977, The effect of planar dipping structure on source and receiver responses for constant ray parameter: Bulletin of the Seismological Society of America, 67, 1029–1050.
- ——, 1979, Structure under mount rainier, washington, inferred from teleseismic body waves: 84, no. B9, 4749–4762.
- Ligorría, J. P., and C. J. Ammon, 1999, Iterative deconvolution and receiver-function estimation: 89, 1395–1400.
- McNamara, D. E., and R. Buland, 2004, Ambient noise levels in the continental united states: Bulletin of the Seismological Society of America, **94**, 1517–1527.
- Zhu, L., and H. Kanamori, 2000, Moho depth variation in southern california from teleseismic receiver functions: Journal of Geophysical Research, **105**, 2969–2980.

Anexo 1

Tabela 1: Tabela com as coordenadas (Lat Long) e altitude (m) das Estações.

Nome	Latitude	Longitude	\mid Elevaç $ ilde{ m a}{ m o}({ m m})\mid$
STA01	-23.049408	-45.016808	950
STA02	-22.977707	-45.072017	886
STA03	-22.840839	-45.194141	576
STA04	-22.673525	-45.323162	902
STA05	-22.5325	-45.432383	1100
STA06	-22.386261	-45.549086	931
STA07	-22.241667	-45.647361	988
STA08	-22.050056	-45.781374	884
STA09	-21.903929	-45.946331	1045
STA10	-21.98335	-46.29471	1135
STA11	-22.12999	-46.20536	1455
STA12	-22.32379	-46.01047	890
STA13	-22.52571	-45.86029	918
STA14	-22.67147	-45.77467	974
STA15	-23.10378	-45.39983	895
STA16	-23.2387	-45.25919	906
STA17	-23.0337	-46.62914	776
STA18	-22.84539	-46.52033	957
STA19	-22.71192	-46.27943	1413
STA20	-22.56621	-45.96951	908
STA21	-22.39548	-45.75364	957
STA22	-22.21361	-45.53215	1052
STA23	-22.06692	-45.33267	993
STA24	-21.83834	-44.89324	995