大学物理课程内容进度实施计划

下 学 期	
课次	教 学 内 容
1	库仑定律,电场强度及计算。
2	电场强度的计算(续),电通量。
3	高斯定理及其应用。
4	静电场的环路定理,电势,电势差。
5	场强和电势的关系,静电场中的导体。
6	电介质的极化,电介质中的高斯定理,电位移矢量。
7	电容, 电场能量。
8	电场习题课
9	磁感应强度, 毕一萨定理及应用。
10	毕一萨定理及应用(续),磁通量,磁场中高斯定理。
11	安培环路定律, 磁场对电流的作用。
12	磁场对电流的作用(续),磁力的功,霍耳效应。
13	磁介质, 磁介质中安环定理, 磁场强度, 铁磁质。
14	电动势的概念, 电磁感应的基本定律, 动生电动势。
15	感生电动势, 自感。
16 (网)	互感, 磁场能量。
17	电流密度,位移电流,麦克斯韦电磁场理论简介。
18	力学相对性原理,伽利略变换,狭义相对论基本假设。
19	狭义相对论的时空观。
20	狭义相对论质点动力学简介。
21	黑体辐射,普朗克假设,光电效应。光子理论。
22	康普顿效应, 光子理论解释。
23	氢原子光谱,波尔氢原子理论。
24	微观粒子波粒二象性,测不准关系,波函数。
25	一维定态薛定谔方程,一维势井。
26	电子自旋,四个量子数,原子的电子壳层结构。
27 (网)	激光知识自发辐射,受激辐射,受激吸收,激光器;固体的能带,导体,绝缘体,半导体,杂质半导体。