

Gestión de Investigación de Operaciones - ICS010 Ayudantía N°1 - Segundo Semestre 2018

Profesor: Humberto Villalobos Torres Ayudantes: Alexandra Gallardo Silva - Matías Schiaffino Tyrer

Ejercicio 1: Problema de la Dieta

Ozark Farms consume diariamente un mínimo de $800 \ [lb]$ de un alimento especial, el cual es una mezcla de maíz y soya con las siguientes composiciones:

	lb por lb de forraje		
Forraje	Proteína	Fibra	Costo $(\$/lb)$
Maíz	.09	.02	.30
Soya	.60	.06	.90

Las necesidades dietéticas del alimento especial son un mínimo de 30% de proteína y un máximo de 5% de fibra. El objetivo es determinar la mezcla diaria de alimento a un costo mínimo.

- a) Plantee un Problema de Programación Lineal, resuélvalo utilizando el Método Gráfico y clasifique las restricciones como activas, inactivas o redundantes.
- b) ¿Cuánto pueden variar los costos del maíz y la soya de tal forma que se conserve la solución óptima actual?

Ejercicio 2: Problema de Inversión

Una persona tiene \$15.000 para invertir en dos tipos de acciones, A y B. El tipo A tiene una rentabilidad de $9\,\%$ anual, mientras que la de tipo B tiene $5\,\%$ anual. Esta persona decide invertir como máximo \$9.000 en acciones tipo A y un mínimo de \$3.000 en las tipo B. Además, le interesa invertir en A tanto o más que en B.

- a) Plantee un Problema de Programación Lineal que permita maximizar la rentabilidad del inversionista y resuélvalo a través del Método Gráfico.
- b) Si es posible, determine el incremento en la rentabilidad anual por cada unidad monetaria adicional de presupuesto de tal forma que se conserve el contexto actual del problema.

2018-S2