Natural Selection

BIOL 1435

April 6, 2023

Overview

- 1. Drift (WF Model Review)
- 2. Single Locus Diploid Model
- 3. Selection's Impact on Allele Frequency Trajectories
- 4. Selection + Drift

Overview

- 1. Drift (WF Model Review)
- 2. Single Locus Diploid Model
- 3. Selection's Impact on Allele Frequency Trajectories
- 4. Selection + Drift

Modeling evolution

Q: Why do we need to model evolution?

Modeling evolution

A: To assess departures from neutrality.

Panmictic population

- Panmictic population
- Constant population size of N
- Total of 2N allele copies

- Panmictic population
- Constant population size of N
- Total of 2N allele copies
- Discrete time process with non-overlapping generations
- All mutations are neutral

WF population (N = 5)

Simulating under the WF model

Simulating Reproduction

Sample with replacement an allelic copy (i) in the current generation (t) with a probability of $\frac{1}{2N}$ to produce an offspring in the next generation (t+1), until there are 2N allelic copies in the next generation.

WF population (N = 5)

Definition

$$Pr(j) = {2N \choose j} \left(\frac{j}{2N}\right)^j \left(\frac{2N-j}{2N}\right)^{2N-j} \tag{1}$$

Where j represents the number of allelic copies of a particular allele.

Definition

$$Pr(j) = {2N \choose j} \left(\frac{j}{2N}\right)^j \left(\frac{2N-j}{2N}\right)^{2N-j} \tag{1}$$

Where *j* represents the number of allelic copies of a particular allele.

$$Pr(k) = {2N \choose k} p^k \left(1 - p\right)^{2N - k} \tag{2}$$

Where k represents the number of offspring with a specific allelic copy and is binomially distributed with $p = \frac{j}{2N}$.

$$p' \sim \frac{B(2N, p)}{2N}$$

$$\mathbb{E}(p') = \frac{2Np}{2N} = p$$

$$Var(p') = \frac{2Np(1-p)}{2N} = p(1-p)$$
(3a)
(3b)

Overview

1. Drift (WF Model Review)

2. Single Locus Diploid Model

3. Selection's Impact on Allele Frequency Trajectories

4. Selection + Drift

One-locus diploid model

Genotypes $A_1A_1 A_1A_2 A_2A_2$	Definition				
		Genotypes	A_1A_1	A_1A_2	A_2A_2

Definition				
	Genotypes	A_1A_1	A_1A_2	A_2A_2
	Frequency Before Selection	p^2	2pq	q^2

Definition				
	Genotypes	A_1A_1	A_1A_2	A_2A_2
	Frequency Before Selection	p^2	2pq	q^2
	Relative Fitness (Viability)	w_{11}	W_{12}	W_{22}

Definition				
	Genotypes	A_1A_1	A_1A_2	A_2A_2
	Frequency Before Selection	p^2	2pq	q^2
	Relative Fitness (Viability)	w_{11}	W_{12}	W ₂₂
	Frequency After Selection	$\frac{p^2 w_{11}}{\bar{w}}$	$\frac{2pqw_{12}}{\bar{w}}$	$\frac{q^2 w_{22}}{\bar{w}}$

Population Mean Fitness:
$$\bar{w} = p^2 w_{11} + 2pqw_{12} + q^2 w_{22}$$
 (4)

Population Mean Fitness:
$$\bar{w} = p^2 w_{11} + 2pqw_{12} + q^2 w_{22}$$
 (4)

Relative Frequencies of Genotypes After Selection:
$$1 = \frac{p^2 w_{11}}{\bar{w}} + \frac{2pqw_{12}}{\bar{w}} + \frac{q^2 w_{22}}{\bar{w}}$$
 (5)

Population Mean Fitness:
$$\bar{w} = p^2 w_{11} + 2pqw_{12} + q^2 w_{22}$$
 (4)

Relative Frequencies of Genotypes After Selection:
$$1 = \frac{p^2 w_{11}}{\bar{w}} + \frac{2pqw_{12}}{\bar{w}} + \frac{q^2 w_{22}}{\bar{w}}$$
 (5)

Frequency of the
$$A_1$$
 Allele After Selection: $p' = \frac{p^2 w_{11} + pqw_{12}}{\bar{w}}$ (6)

Change in Allele Frequencies due to Selection:
$$\Delta p = p' - p$$
 (7a)

$$\Delta p = pq \left(p \left(w_{11} - w_{12} \right) + q \left(w_{12} - w_{22} \right) \right) \times \frac{1}{\bar{w}}$$
 (7b)

Change in Allele Frequencies due to Selection:
$$\Delta p = p' - p$$
 (7a)

$$\Delta p = pq \left(p \left(w_{11} - w_{12} \right) + q \left(w_{12} - w_{22} \right) \right) \times \frac{1}{\bar{w}}$$
 (7b)

$$w_1 = pw_{11} + qw_{12} (8a)$$

$$w_2 = pw_{12} + qw_{23} (8b)$$

$$w_2 = pw_{12} + qw_{22} \tag{8b}$$

Change in Allele Frequencies due to Selection:
$$\Delta p = \frac{pq(w_1 - w_2)}{\bar{w}}$$
 (9)

Overview

- 1. Drift (WF Model Review)
- 2. Single Locus Diploid Model
- 3. Selection's Impact on Allele Frequency Trajectories
- 4. Selection + Drift

$p' \ for \ w_{11}=w_{12}=w_{22}$

p' for $w_{11} = w_{12} = w_{22}$

$p' \ \text{for} \ w_{11} = 1; w_{12} = 0.95; w_{22} = 0.9$

p' for $w_{11}=1$; $w_{12}=0.95$; $w_{22}=0.9$

Overview

- 1. Drift (WF Model Review)
- 2. Single Locus Diploid Model
- 3. Selection's Impact on Allele Frequency Trajectories
- 4. Selection + Drift

$\textbf{A}_1 \text{ Trajectories for } \textbf{w}_{11} = \textbf{w}_{12} = \textbf{w}_{22}$

A_1 Trajectories for $w_{11} = w_{12} = w_{22}$

A_1 Trajectories for $w_{11}=1; w_{12}=0.95; w_{22}=0.9$

A_1 Trajectories for $w_{11} = 1$; $w_{12} = 0.95$; $w_{22} = 0.9$

N's Impact on Drift & Selection

N's Impact on Drift & Selection

