1、实验名称及目的

分析实验: (1) 调节 PID 控制器相关参数以改善控制性能并记录超调量和调节时间,得到一组恰当参数; (2) 使用调试后的参数,对系统进行扫频以绘制 Bode 图,观察系统幅频响应.相频响应曲线,分析其稳定裕度。

2、实验原理

PID 控制器参数对 PID 控制器的影响。1、比例(Proportional)控制: 比例控制是 PID 控制器的基本组成部分。它通过测量目标值(期望姿态)与实际值(传感器测量的当前姿态)之间的误差,乘以一个比例增益参数(Kp),得到一个补偿量。该补偿量与误差成正比,用于修正飞行器的输出,使其朝着期望姿态调整。比例控制可以实现快速响应,但可能导致超调和稳态误差。

- 2、积分(Integral)控制:积分控制主要用于消除比例控制中的稳态误差。积分控制器根据姿态误差的累积值,乘以一个积分增益参数(Ki),得到一个补偿量。这个补偿量用于纠正由于比例控制导致的稳态误差。积分控制可以使系统追踪期望姿态更准确,但如果参数不恰当,可能会导致系统过度抖动或震荡。
- 3、微分(Derivative)控制:微分控制主要用于减小系统的超调和抑制振荡。微分控制器根据姿态误差的变化率(导数),乘以一个微分增益参数(Kd),得到一个补偿量。这个补偿量用于预测系统未来的状态变化趋势,并减小响应的快速变化。微分控制可以提高系统的稳定性和响应速度,但过大的微分增益可能引入噪声或引发不稳定性。

详细内容请参考上层路径文献**错误!未找到引用源。**第 09 讲_实验五_姿态控制器设计实验.pptx,文献**错误!未找到引用源。**第 11 讲_底层飞行控制 V2.pptx。

3、实验效果

实现基于欧拉角的姿态 PID 控制软件仿真。

4、文件目录

文件夹/文件名称		说明	
	Init.m	模型初始化参数文件。	
	pixhawk.png	Pixhawk 硬件图片。	
icon	SupportedVehicleTypes.pdf	机架类型修改说明文件。	
	FlightGear.png		
	F450.png	F450飞机模型图片。	
Init_control.m		控制器初始化参数文件。	
AttitudeControl_tune.slx		控制模型文件。	

5、运行环境

序号	软件要求	硬件要求

		名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版		
3	MATLAB 2017B 及以上		

①: 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html

6、实验步骤

Step 1:

打开 MATLAB 软件,在 MATLAB 中打开 Init_control.m 文件,调节如下俯仰角的 PID 参数。

```
ModelInitPosE=[0,0,-100];

ModelInitVelB=[0,0,0];

ModelInitAngEuler=[0,0,0];

ModelInitRateB=[0,0,0];

ModelInitRPM=557.1420;
```

Step 2:

运行 Init_control.m 文件, "e5-AttitudeCtrl\e5.2\AttitudeControl_tune.slx"文件自动打开。

在 "AttitudeControl_tune.slx" 中找到 AttitudeControl_tune/Control System/AttitudeControl 子模块。将期望角速度换成阶跃输入,并将"q"信号线(对应角速度)和阶跃信号线设置 为"Enable Data Logging"来得到阶跃响应曲线。

图 1 角速度环调试模型

修改文件"Init control.m"中角速度控制环的 PID 参数。首先将积分项和微分项参数设置为 0。调整比例项参数("Kp_PITCH_AngleRate"),并每次修改后运行文件"Init contro l.m"。

设定合适的仿真时间后点击 Simulink 的"Run"按钮,在"Simulaion Data Inspector"中查看输入和输出(如下图)。调试过程中逐渐增大比例项参数,这对应于文件"Init control.m"中的"Kp PITCH AngleRate"变量增加。

调整"Init control.m"文件中的积分项和微分项参数,即"Ki_PITCH_AngleRate"和"Kd_PITCH_AngleRate"变量。最后,微调比例项参数。得到 一组令人满意的参数(如下)。其阶跃响应如下图。

```
Kp_RP_AgngleRate = 0.10;
Ki_RP_AgngleRate = 0.02;
Kd_RP_AgngleRate = 0.001;
```


Step 3:

采用上一步所得到的角速度环参数, 调节角度环比例项系数。将期望俯仰角换成阶跃输入,并将阶跃输入和期望角实际输出设置为"Enable Data Logging"。

图 2 角度环调试模型

由小增大外环比例项参数,在"Simulation Data Inspector"中观察阶跃响应。

再进一步微调比例项参数得到最终的响应曲线。

Kp_RP_ANGLE =16;

Step 4:

设定信号输入输出点。将期望俯仰角输入线设为"Open-loop Input",俯仰角的实际输出设置为"Open-loop Output"。扫频得到 Bode 图。

7、参考文献

- [1]. 全权,杜光勋,赵峙尧,戴训华,任锦瑞,邓恒译.多旋翼飞行器设计与控制[M],电子工业出版 社, 2018.
- [2]. 全权,戴训华,王帅.多旋翼飞行器设计与控制实践[M],电子工业出版社, 2020.
- [3]. 第 09 讲_实验五_姿态控制器设计实验.pptx.
- [4]. 第 11 讲_底层飞行控制 V2.pptx.

8、常见问题

Q1: 无

A1: 无