# Algoritmi in podatkovne strukture – 2 Pisni izpit 30. rožnik 2015 (2014/15)

Pisni izpit morate pisati posamič. Pri reševanju je literatura dovoljena. Pri odgovarjanju bodi natančni in: (i) odgovarjajte *na zastavljena* vprašanja; in (ii) odgovorite na *vsa* zastavljena vprašanja.

Čas pisanja izpita je 90 minut.

Veliko uspeha!

| NALOGA T | OČK OD | TOČK NALOGA | TOČK | OD TOČK |
|----------|--------|-------------|------|---------|
| 1        |        | 3           |      |         |
|          |        |             |      |         |

| IME IN PRIIMEK:      |  |
|----------------------|--|
|                      |  |
| ŠTUDENTSKA ŠTEVILKA: |  |
|                      |  |
| DATUM:               |  |
| Podpis:              |  |

## 1. naloga:

VPRAŠANJA:

- A) Koliko elementov najmanj je v AVL drevesu višine<sup>1</sup> 6? Utemeljite odgovor.
- B) Ali je lahko drevo na sliki sl. 1 AVL drevo? Utemeljite odgovor.



Slika 1: Primer drevesa.

- C) Imamo *n* elementov, ki jih najprej vstavimo v AVL drevo in nato še v rdečečrno drevo. Katero od dreves je lahko višje? Odgovor utemeljite.
- **2. naloga:** Definirajmo najprej osnovni, statični problem, kjer imamo cela števila  $a_j, j = 0, \ldots, n-1$ . Nad števili a definiramo predponske vsote  $s_k = \sum_{j=0}^k a_j$  ter funkcijo Sestej (k), ki vrne  $s_k$ . Poleg tega definirajmo razširjeni, dinamični problem, kjer imamo še operaciji vstavljanja in brisanja elementa  $a_k$ . Tako funkcija Vstavi (x, k) na k-to mesto vstavi vrednost x, medtem ko vse elemente za njim premakne za eno mesto naprej:  $a_k = x$ ,  $a_{k+1}$  postane prejšnji  $a_k$  in tako naprej ter dolžina polja se poveča za ena. Po drugi strani Izloci (k) izloči  $a_k$  ter vse kasnejše a-je v polju prestavi za eno mesto nazaj ter posledično zmanjša dolžino polja za 1.

<sup>&</sup>lt;sup>1</sup>Drevo s samo enim elementom ima višino 0.

#### VPRAŠANJA:

A) Naj V x k pomeni klic funkcije Vstavi (x, k), I k pomeni klic funkcije Izloci (k) in S k klic funkcije Sestej (k). Če začnemo s praznim poljem a in izvedemo naslednje operacije V 7 0 V 5 0 V 12 0 S 1, dobimo kot odgovor 17, saj je polje a po vseh treh vstavljanjih 12 5 7. Kaj vrne naslednje zaporedje operacij, ki prične s praznim poljem a

V 7 0 V 5 0 V 12 0 S 1 V 20 2 I 0 S 2 V 15 2 S 3

- B) Predlagajte in opišite podatkovno strukturo, ki bo učinkovito podpirala vse tri operacije ter ocenite njihove časovne zahtevnosti. Pri opisu je smiselno, da si pomagate s sliko.
- C) Vrnimo se k osnovnemu, statičnemu problemu. Recimo, da imamo vse  $s_i$  naračunane. Ali lahko na podlagi le-teh najdemo podzaporedje števil  $a_l...a_r$ , katerih vsota je 0? Začrtajte algoritem in utemeljite njegovo pravilnost ter časovno zahtevnost.
- **3. naloga:** Grafi. Na predavanjih smo spoznali problem najkrajše poti od enega izvora do vseh ostalih rešitev. Za rešitev problema smo spoznali Dijkstrov algoritem, vendar smo opozorili, da ne deluje vedno. V nalogi predpostavimo, da imamo graf G(V, E), kjer |V| = n in |E| = m.

### VPRAŠANJA:

A) V katerem primeru Dijkstrov algoritem ne deluje? Odgovor utemeljite.

NAMIG: Najlažje je pokazati primer grafa, kjer Dijkstrov algoritem ne deluje.

B) Kateri algoritem uporabimo v tem primeru in zakaj deluje?

NAMIG: Opišite algoritem.

- C) Vračamo se k Dijkstrovemu algoritmu. Recimo, da tokrat vemo, da so uteži na povezavah grafa iz končne množice celih števil  $\{1, \ldots, W\}$ . Kako lahko izkoristimo to dejstvo? Utemeljite odgovor.
- **4. naloga:** Imamo množico neurejenih števil  $S = \{a_1, a_2, \dots, a_n\}$  in število t. Definirajmo odločitveni problem *vsota podmnožice*:

Ali obstaja v S podmnožica števil, katerih vsota je t?

Za ta problem vemo, da je NP-poln.

#### VPRAŠANJA:

- A) Pokažite, da je definirani problem nedeterministično polinomski (NP).
- B) Ali postane problem bistveno lažji, če so števila S urejena? Utemeljite odgovor!
- C) (i.) Definirajte optimizacijsko inačico odločitvenega problema *vsota pod-množice* in utemeljite svojo definicijo. (ii.) Opišite genetski algoritem za reševanje optimizacijskega problema.

NAMIG: Za genetski algoritem definirajte ocenitveno *fitness* funkcijo, kaj predstavlja gen in kakšne so tri osnovne operacije genetskega algoritma.