Sberbank Russian Housing Market

The goal for this project is to predict housing price in Russia

Step 1: Collecting data

- I upload the housing data to my github account but the data can be found at Kaggle website.
- I modified the data from the original data because I couldn't apply algorithms to the whole data to run because there are over 300 features.

```
rm(list=ls())
house_raw <- read.csv("https://github.com/keosotra/Competition/raw/master/Dat
a/House.csv?raw=true", stringsAsFactors = FALSE)</pre>
```

• Removed the ID variable from the data set and inspect all the features.

```
house <- house raw[-1]
str(house)
## 'data.frame':
                   30471 obs. of 41 variables:
## $ price doc
                                              : int 5850000 6000000 570000
0 13100000 16331452 9100000 5500000 2000000 5300000 2000000 ...
## $ life_sq
                                              : int 27 19 29 50 77 46 14 4
4 27 21 ...
## $ floor
                                              : int 4 3 2 9 4 14 10 5 5 9
## $ max floor
                                              : int NA NA NA NA NA NA NA N
A NA NA ...
## $ build_year
                                              : int NA NA NA NA NA NA NA N
A NA NA ...
                                              : int NA NA NA NA NA NA NA N
## $ num_room
A NA NA ...
## $ product_type
                                              : chr "Investment" "OwnerOcc
upier" "Investment" "OwnerOccupier" ...
                                              : chr "Juzhnoe Butovo" "Pose
## $ sub_area
lenie Vnukovskoe" "Perovo" "Poselenie Voskresenskoe" ...
## $ raion_popul
                                              : int 155572 115352 101708 1
78473 108171 43795 57405 155572 96959 142462 ...
## $ children preschool
                                              : int 9576 6880 5879 13087 5
706 2418 2459 9576 6507 9347 ...
## $ school education centers raion
                                              : int 58710935568.
## $ healthcare_centers_raion
                                              : int 1111403140..
## $ sport objects raion
                                              : int 7 6 5 17 25 7 17 7 7 5
```

```
## $ shopping centers raion
                                              : int 16 3 0 11 10 6 6 16 0
3 ...
## $ office_raion
                                              : int 1 0 1 4 93 19 9 1 7 3
## $ big_market_raion
                                              : int 111111111...
## $ detention facility raion
                                             : int 1111112111..
## $ work all
                                              : int 98207 70194 63388 1203
81 68043 29660 35003 98207 59120 85551 ...
## $ build_count_before_1920
                                             : int 0 1 1 13 371 0 11 0 1
47 ...
                                             : int 0 1 0 24 114 5 38 0 9
## $ build count 1921 1945
88 ...
## $ build_count_1946_1970
                                             : int 0 143 246 40 146 152 9
0 0 290 413 ...
## $ build_count_1971_1995
                                              : int 206 84 63 130 62 25 58
206 39 94 ...
## $ build count after 1995
                                              : int 5 15 20 252 53 6 19 5
51 96 ...
                                              : num 13.58 7.62 17.35 11.57
## $ metro_min_walk
8.27 ...
## $ public_transport_station_km
                                             : num 0.27 0.07 0.33 0.13 0.
07 0.19 0.05 0.25 0.22 0.22 ...
## $ office count 500
                                              : int 00001553001.
                                              : int 05324872472.
## $ cafe count 500
## $ cafe_sum_500_min_price_avg
                                             : num NA 860 667 1000 702 ..
## $ oil urals
                                              : num 109 109 109 111 111 ...
## $ cpi
                                              : num 354 354 354 353 353 ...
## $ brent
                                              : num 109 109 111 114 110 ...
## $ average provision_of_build_contract_moscow: num 6.74 6.74 6.74 6.74 6.
74 6.74 6.74 6.74 6.74 6.74 ...
                                             : num 1.05 1.05 1.05 1.05 1.
## $ mortgage_growth
05 1.05 1.05 1.05 1.05 1.05 ...
                                              : num 11.8 11.8 11.8 11.9 11
## $ mortgage_rate
.9 ...
## $ income_per_cap
                                              : num 42689 42689 42689 4031
1 40311 ...
                                              : num 0.17 0.17 0.17 0.17 0.
## $ salary_growth
17 0.17 0.17 0.17 0.17 0.17 ...
## $ employment
                                              : num 0.71 0.71 0.71 0.71 0.
71 0.71 0.71 0.71 0.71 0.71 ...
## $ invest_fixed_capital_per_cap
                                              : num 73976 73976 7397
6 73976 ...
```

Step 2: Exploring and preparing the data

- Using Amelia to make a graph to show the missing values in each features of the data set
- Build year and number of room features have the most missing values in them.

```
library(Amelia)

## Loading required package: Rcpp

## ##

## ## Amelia II: Multiple Imputation

## ## (Version 1.7.4, built: 2015-12-05)

## ## Copyright (C) 2005-2017 James Honaker, Gary King and Matthew Blackwell

## ## Refer to http://gking.harvard.edu/amelia/ for more information

## ##

missmap(house, main = "Missing values vs observed")
```

Missing values vs observed

• The mean house price is 7,123,000 Rubles and the median is 6,274,000 Rubles

```
summary(house$price_doc)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 100000 4740000 6274000 7123000 8300000 111100000
```

• We have a right skewed house price here. Most houses are 2 million Rubles or less. hist(house\$price_doc)

Histogram of house\$price_doc

- Here we make a scatter plot matrix of some of the key features here.
- life_sq (living area in square meters) doesn't have any correlation with house price. That's surprising.
- We see some correlation with raion_popul(Number of municipality population) and housing price
- Number of rooms also has some correlation with house prices

```
library(psych)
pairs.panels(house[c("price_doc", "life_sq", "floor", "office_raion", "num_ro
om", "raion_popul")])
```


 We want to look at the which district in Russia has the highest housing price on average. Begovoe district has the highest housing price in Russia which is 9,266,826 Rubles.

```
sub_area <- aggregate(data = house, price_doc ~ sub_area, FUN= mean, na.rm =</pre>
TRUE)
sub_area[order(-sub_area$price_doc),]
##
                              sub_area price_doc
## 9
                               Begovoe
                                          9266826
## 99
               Poselenie Rjazanovskoe
                                          8593104
                 Vostochnoe Izmajlovo
## 141
                                          8457061
## 121
                                Silino
                                          8328731
                  Poselenie Kokoshkino
## 91
                                          7998453
                               Koptevo
                                          7739712
## 46
                        Troickij okrug
## 133
                                          7704206
## 108
                           Presnenskoe
                                          7693557
## 106
              Poselenie Voskresenskoe
                                          7605872
## 23
                           Dmitrovskoe
                                          7448782
## 71
                    Nagatino-Sadovniki
                                          7430128
## 16
                             Butyrskoe
                                          7385972
## 1
                                          7385355
                        Zamoskvorech'e
                                          7376009
## 143
```

##	79	Obruchevskoe	7352763
	115	Severnoe	7280618
##	60	Losinoostrovskoe	7232661
##	38	Jaroslavskoe	7214119
##	145	Zjablikovo	7206004
##	47	Kosino-Uhtomskoe	7144493
##	6	Arbat	7107643
##	49	Krasnosel'skoe	7085829
##	76	Novo-Peredelkino	7079478
##	13	Birjulevo Zapadnoe	7059588
##	61	Mar'ina Roshha	7033991
##	62	Mar'ino	6936741
##	74	Nekrasovka	6920292
##	43	Juzhnoportovoe	6904985
##	93	Poselenie Marushkinskoe	6900000
##		Chertanovo Severnoe	6894724
	119	Severnoe Tushino	6852733
	134	Troparevo-Nikulino	6816179
	54	Kuz'minki	6794085
	132	Timirjazevskoe	6792249
	10	Beskudnikovskoe	6779177
	127	Strogino	6758100
	114	Savelovskoe	6737808
	26	Filevskij Park	6722437
	56	Levoberezhnoe	6708672
	116	Severnoe Butovo	6692311
	40	Juzhnoe Butovo	6681357
	20	Chertanovo Juzhnoe	6667818
	109	Prospekt Vernadskogo	6640178
	33	Horoshevskoe	6624657
	101	Poselenie Shhapovskoe	6602292
	135	Tverskoe	6586396
	39		6578843
		Jasenevo	
	102	Poselenie Shherbinka	6557359
	70 77	Mozhajskoe	6541518
	77	Novogireevo	6523794
	103	Poselenie Sosenskoe	6510300
	73	Nagornoe	6508392
	125	Solncevo	6497285
	128	Sviblovo	6495168
	111	Rjazanskij	6475872
	146	Zjuzino	6466473
	67	Mitino	6454794
##	105	Poselenie Voronovskoe	6450000
##	2	Ajeroport	6404689
##	87	Pokrovskoe Streshnevo	6387684
##	42	Juzhnoe Tushino	6374561
##	48	Kotlovka	6368208
##	112	Rostokino	6367314
##	59	Lomonosovskoe	6354255

	117	Severnoe Izmajlovo	6348972	
	58	Ljublino	6322262	
	97	Poselenie Novofedorovskoe	6320251	
	12	Birjulevo Vostochnoe	6300021	
	22	Danilovskoe	6296903	
	72	Nagatinskij Zaton	6282377	
	104	Poselenie Vnukovskoe	6267902	
##		Basmannoe	6247313	
	88	Poselenie Desjonovskoe	6218631	
	107	Preobrazhenskoe	6199333	
	129	Taganskoe	6171939	
	30	Golovinskoe	6163126	
	37	Jakimanka	6144016	
	120	Shhukino	6142038	
	31	Hamovniki	6139108	
	95	Poselenie Moskovskij	6138587	
	32	Horoshevo-Mnevniki	6136587	
	53	Kurkino	6122333	
	15	Brateevo	6118919	
	52	Kuncevo	6111526	
	64	Matushkino	6107787	
	130	Tekstil'shhiki	6105916	
	65	Meshhanskoe	6105259	
	123	Sokol'niki	6086076	
	27	Fili Davydkovo	6074200	
	11	Bibirevo	6071983	
##		Gol'janovo	6067371	
	144	Zapadnoe Degunino	6048557	
	138	Vojkovskoe	6043588	
	136	Veshnjaki	6019097	
	35	Ivanovskoe	6018833	
	36	Izmajlovo	6016048	
##	19	Chertanovo Central'noe	5989869	
##		Babushkinskoe	5987227	
##	82	Orehovo-Borisovo Severnoe	5986417	
##	41	Juzhnoe Medvedkovo	5979380	
##	50	Krjukovo	5959692	
##	139	Vostochnoe	5953399	
##	118	Severnoe Medvedkovo	5952239	
##	113	Savelki	5936176	
##	34	Hovrino	5909950	
##	84	Otradnoe	5900970	
##	25	Dorogomilovo	5846723	
##	44	Kapotnja	5837031	
##	24	Donskoe	5811014	
##	110	Ramenki	5806117	
##	96	Poselenie Mosrentgen	5800080	
##	90	Poselenie Kievskij	5800000	
	17	Caricyno	5774343	
	14	Bogorodskoe	5752054	

```
## 131
                           Teplyj Stan
                                          5728087
## 4
                          Alekseevskoe
                                          5722655
## 45
                              Kon'kovo
                                          5717005
## 57
                                          5708022
                             Lianozovo
## 55
                             Lefortovo
                                          5706464
## 80
                  Ochakovo-Matveevskoe
                                          5645195
## 98
               Poselenie Pervomajskoe
                                          5642599
                           Gagarinskoe
## 28
                                          5637420
## 137
                               Vnukovo
                                          5636153
## 81
             Orehovo-Borisovo Juzhnoe
                                          5598775
## 142
                      Vyhino-Zhulebino
                                          5592640
## 78
                            Novokosino
                                          5576342
## 83
                          Ostankinskoe
                                          5572387
## 63
                               Marfino
                                          5561406
## 3
                        Akademicheskoe
                                          5552574
## 85
                            Pechatniki
                                          5550180
## 69
                Moskvorech'e-Saburovo
                                          5541487
## 51
                            Krylatskoe
                                          5536540
## 86
                                Perovo
                                          5519374
                          Altuf'evskoe
                                          5506579
## 5
## 140
                  Vostochnoe Degunino
                                          5441596
                          Metrogorodok
## 66
                                          5429572
## 89
             Poselenie Filimonkovskoe
                                          5351575
## 124
                       Sokolinaja Gora
                                          5333290
## 122
                                  Sokol
                                          5285504
## 18
                           Cheremushki
                                          5017812
## 126
                       Staroe Krjukovo
                                          4792706
## 75
                        Nizhegorodskoe
                                          4500011
## 68
                       Molzhaninovskoe
                                          4000000
## 94
       Poselenie Mihajlovo-Jarcevskoe
                                          3700000
## 100
                   Poselenie Rogovskoe
                                          3545000
## 92
            Poselenie Krasnopahorskoe
                                          2200000
```

Step 3 Training a model on the data

 Here we will apply multiple regressions model. We will use all the features in the data set.

```
set.seed(2)
```

ins model <- lm(price doc ~ life sq+ max floor+ build_year+ num_r floor+ oom+ raion popul+ children_preschool+ school_education_centers_raion+ he althcare_centers_raion+ sport_objects_raion+ shopping_centers_raion+ off big market raion+ ice raion+ detention facility raion+ work all+ buil build count 1921 1945+ build count 1946 1970+ d count before 1920+ _count_1971_1995+ build_count_after_1995+ metro_min_walk+ public_transport_s cafe count 500+ cafe sum 500 min price avg+ tation km+ office count 500+ brent+ average_provision_of_build_contract_moscow+ mortg oil urals+ cpi+ age_growth+ mortgage_rate+ income_per_cap+ salary_growth, data = house)

Step 4 Evaluating model performance

- With our multiple regressions model, our p-value is significant but our adjusted R-squared is 0.4135991 which is quite low.
- I didn't include here, but I did try removing the insignificant features out and the result still didn't improve much.
- In the next step, I will use Random Forests and Neural Network to apply to this data sets to see if there is any improvement.

```
summary(ins model)
##
## Call:
## lm(formula = price doc ~ life sq + floor + max floor + build year +
       num room + raion popul + children preschool + school education centers
raion +
##
       healthcare centers raion + sport objects raion + shopping centers raio
n +
       office raion + big market raion + detention facility raion +
##
       work all + build count before 1920 + build count 1921 1945 +
##
##
       build count 1946 1970 + build count 1971 1995 + build count after 1995
+
##
       metro min walk + public transport station km + office count 500 +
##
       cafe count 500 + cafe sum 500 min price avg + oil urals +
       cpi + brent + average provision of build contract moscow +
##
##
       mortgage growth + mortgage rate + income per cap + salary growth,
##
       data = house)
##
## Residuals:
##
                          Median
        Min
                    1Q
                                        3Q
                                                 Max
## -64162559 -1451545
                          222824
                                   1531969 62565480
##
## Coefficients:
                                                Estimate Std. Error t value
##
## (Intercept)
                                              -2.173e+06 5.684e+06 -0.382
## life sq
                                                                     30.540
                                               9.596e+04 3.142e+03
## floor
                                               4.499e+04 1.074e+04
                                                                     4.191
## max floor
                                               1.645e+05 9.159e+03
                                                                     17.959
## build_year
                                               2.273e-01 2.180e-01
                                                                      1.043
## num room
                                               1.681e+06 6.496e+04 25.873
## raion_popul
                                               1.028e+02 1.245e+01
                                                                      8.263
## children preschool
                                              -2.502e+02 5.081e+01 -4.925
## school education centers raion
                                                                      5.814
                                               1.488e+05 2.559e+04
## healthcare centers raion
                                                                      4.925
                                               1.706e+05 3.463e+04
## sport_objects_raion
                                               1.125e+05 1.329e+04
                                                                      8.468
## shopping_centers_raion
                                                                     -4.498
                                              -7.228e+04 1.607e+04
## office raion
                                              -1.281e+04
                                                          5.445e+03
                                                                     -2.353
## big_market_raion
                                                                     -0.421
                                              -1.024e+05 2.434e+05
## detention facility raion
                                              -7.260e+05 1.533e+05
                                                                     -4.736
## work all
                                              -1.395e+02 1.638e+01
                                                                     -8.517
```

```
3.759e+03
                                                          1.769e+03
## build count before 1920
                                                                      2.125
## build count 1921 1945
                                              -8.028e+02 1.793e+03 -0.448
## build_count_1946_1970
                                              -3.623e+03 6.174e+02 -5.868
## build_count_1971_1995
                                              -1.380e+04 1.910e+03 -7.221
## build_count_after_1995
                                              1.532e+03 8.336e+02
                                                                     1.838
## metro_min_walk
                                              -1.296e+04 1.274e+03 -10.169
## public_transport_station_km
                                              -1.652e+06
                                                          5.143e+05 -3.212
## office_count_500
                                               2.739e+05
                                                          2.882e+04
                                                                      9.503
## cafe_count_500
                                              -3.331e+04 7.517e+03
                                                                     -4.432
## cafe_sum_500_min_price_avg
                                              4.810e+02 1.392e+02
                                                                      3.455
## oil_urals
                                              -1.182e+04 1.905e+04 -0.620
## cpi
                                               1.793e+04 8.741e+03
                                                                     2.052
## brent
                                               5.581e+02 1.844e+04
                                                                      0.030
## average_provision_of_build_contract_moscow -7.489e+05 3.311e+05 -2.262
## mortgage_growth
                                               7.456e+05
                                                          5.412e+05
                                                                      1.378
## mortgage_rate
                                               3.125e+04 1.945e+05
                                                                      0.161
## income_per_cap
                                               1.790e+00 5.848e+00
                                                                      0.306
## salary growth
                                               3.914e+06 6.407e+06
                                                                      0.611
##
                                              Pr(>|t|)
## (Intercept)
                                              0.702213
## life sq
                                               < 2e-16 ***
                                              2.80e-05 ***
## floor
                                               < 2e-16 ***
## max_floor
## build year
                                              0.297132
                                              < 2e-16 ***
## num_room
## raion_popul
                                               < 2e-16 ***
                                              8.59e-07 ***
## children_preschool
                                              6.28e-09 ***
## school_education_centers_raion
## healthcare_centers_raion
                                              8.57e-07 ***
                                              < 2e-16 ***
## sport_objects_raion
## shopping_centers_raion
                                              6.92e-06 ***
## office_raion
                                              0.018647 *
## big_market_raion
                                              0.673976
                                              2.21e-06 ***
## detention_facility_raion
                                               < 2e-16 ***
## work all
## build count before 1920
                                              0.033571 *
## build_count_1921_1945
                                              0.654443
## build_count_1946_1970
                                              4.54e-09 ***
## build_count_1971_1995
                                              5.53e-13 ***
## build_count_after_1995
                                              0.066156 .
## metro_min_walk
                                               < 2e-16 ***
## public_transport_station_km
                                              0.001322 **
                                              < 2e-16 ***
## office_count_500
## cafe_count_500
                                              9.44e-06 ***
                                              0.000552 ***
## cafe_sum_500_min_price_avg
## oil urals
                                              0.535079
## cpi
                                              0.040233 *
## brent
                                              0.975852
## average_provision_of_build_contract_moscow 0.023718 *
## mortgage_growth
```

Step 5 Improving model performance

Improve the prediction with Random Forests

- For Random Forests to work I have to address the missing value in the data set.
- I chose the easy to way to handle the missing values by removing them from the data set and set 80% to training and 20% to testing.

```
house1 <- na.omit(house)
set.seed(12)
samp <- sample(nrow(house1), 0.8 * nrow(house1))
train <- house1[samp, ]
test <- house1[-samp, ]</pre>
```

• Now I'll apply the Random Forests to the data set. The model seems to do better without including the factor features sub_area and product_type.

```
library(randomForest)
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:psych':
##
## outlier
set.seed(12)
model <- randomForest(price_doc ~. -sub_area -product_type, data = train, ntree=2000, mtry=30)</pre>
```

- Here we use 2000 trees and 30 splits.
- Type of random forest is regression.
- According to the graph, it seems like we won't reduce any more error as we increase the trees over 2000 tress.

```
plot(model)
```

model


```
model
##
## Call:
    randomForest(formula = price_doc ~ . - sub_area - product_type,
                                                                           data
= train, ntree = 2000, mtry = 30)
                  Type of random forest: regression
##
##
                        Number of trees: 2000
## No. of variables tried at each split: 30
##
##
             Mean of squared residuals: 1.330471e+13
                       % Var explained: 56.82
##
```

- Now let's see the correlation with our model to the test data set.
- Our accuracy here is 0.7713 which is not bad and certainly better than the multiple regressions model.

```
pred <- predict(model, newdata = test)

cor(pred, test$price_doc)
## [1] 0.771367</pre>
```

Improve the model with Neural Network

Now we will apply Neural Network on this data set

• First, we need to normalize our data set. In here we exclude the factor features out because we can't normalize the data set with these features in the data set.

```
house2 <- house[-7:-8]
house2 <- as.data.frame(lapply(house2, scale))</pre>
```

• To validate that the data set is scaled properly

```
summary(house2$price_doc)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.4690 -0.4985 -0.1775 0.0000 0.2462 21.7500
```

• Again, we remove all the missing value from the data set and then randomize the data set and then set 80% to training and 20% to testing.

```
set.seed(10)
house2 <- na.omit(house2)
samp <- sample(nrow(house2), 0.8 * nrow(house2))
train2 <- house2[samp, ]
test2 <- house2[-samp, ]</pre>
```

- Now we are ready to apply the Neural Network algorithm to the data set with logistic activation function.
- We use all the features here except the ones we excluded above.

```
library(neuralnet)
set.seed(5)
model <- neuralnet(formula = price doc ~</pre>
            floor+ max_floor+ build_year+ num room+
                                                        raion popul+
                                                                        child
ren preschool+ school education centers raion+ healthcare centers raion+
ort objects raion+
                     shopping centers raion+ office raion+
                                                              big market raio
     detention facility raion+
                                work all+
                                             build count before 1920+
d_count_1921_1945+ build_count_1946_1970+ build_count_1971_1995+ build_cou
nt after 1995+ metro min walk+ public transport station km+
                                                               office count 5
      cafe_count_500+ cafe_sum_500_min_price_avg+ oil_urals+ cpi+
                                                                      brent+
average provision of build contract moscow+ mortgage growth+
                                                                mortgage rate
+ income per cap+ salary growth+ employment+ invest fixed capital per cap+
                       pop_migration+ childbirth, data = train2, hidden=1,
pop natural increase+
threshold = 0.01, stepmax = 1e+05, act.fct = "logistic")
```

- Now we apply the model to the test data set and look at the correlation to see how well our model perform.
- The accuracy is about 69% which is not bad but the Random Forests did better

```
model_results <- compute(model, test2[2:39])
predicted_strength <- model_results$net.result

cor(predicted_strength, test2$price_doc)

## [,1]
## [1,] 0.6949942337</pre>
```

What have I learned?

- I would like to see my accuracy to be above 85%. The best I got was 77.13% from Random Forests. I'm still surprised by how well the Random Forests and Neural Network algorithm perform. They do much better than the traditional multiple regressions models.
- I learned that there are many parameters that we can tweak in the package for Random Forests and Neural Networks. I could spend all day tweaking it around and probably improve my accuracy 3-5% more, I hope.
- I also learned that these algorithms require tremendous processing power. I tried to set hidden node on the Neural Network to 5 and left it overnight and when I woke up, it's still running so I gave up. It only works when I set the hidden node to 1 because more than that would gave me error or take a long time to process. What I can do in the future is reduce my features down and/or maybe learn how to use Amazon computing cloud to process this.
- The hardest parts about this is preparing the data set for it to work with the algorithms and understand which parameters to tweak to improve the model.