Math 323 HW14

Minh Bui

June 9, 2017

Problem 9.1: True or false

- (a) $\emptyset \in \emptyset$. False.
- (b) $\emptyset \subseteq \emptyset$. True.
- (c) $\emptyset = \emptyset$. True.
- (d) $\emptyset \in {\{\emptyset\}}$. True.
- (e) $\emptyset \subseteq \{\emptyset\}$. True.
- (f) $\emptyset = {\emptyset}$. False.
- (g) $\{\emptyset\} \in \emptyset$. False.
- (h) $\{\emptyset\} \subseteq \emptyset$. False.
- (i) $\{\emptyset\} = \emptyset$. False.
- (j) As a subset of \mathbb{R} : \emptyset has a minimum. False
- (k) As a subset of \mathbb{R} : \emptyset has a lower bound. True.
- (1) As a subset of \mathbb{R} : \emptyset has an infimum. False.
- (m) In the integers, $(1,5) = \{2,3,4\}$. True.
- (n) $(1,5) \cap \mathbb{Z} = \{2,3,4\}$. True.
- (o) (-3,3] has an upper bound. True.
- (p) (-3,3] has an infimum. True.
- (q) $\infty \in [-3, \infty]$. False.
- (r) $(0,4) \subseteq \mathbb{Q}$. False.
- (s) $(0,\infty) \cap \mathbb{Z} \subseteq \mathbb{Q}$. True.
- (t) $(0, \infty) \cup \mathbb{Z} \subseteq \mathbb{Q}$. False.
- (u) $(0,10) \setminus \mathbb{Z} \subseteq \mathbb{Q}$. False.
- (v) $\mathbb{Z} \setminus (0, 10) \subseteq \mathbb{Q}$. True.

Problem 9.3c: Prove that for all sets A and B: $A \cap B = B$ if and only if $B \subseteq A$.

Proof. Let A and B be sets. We need to prove two statements.

1. If $A \cap B = B$, then $B \subseteq A$.

Assume $A \cap B = B$. So $B \subseteq A \cap B$. So if $a \in B$, then $a \in A \cap B$. Assume $a \in B$, then $a \in A$ and $a \in B$. So if $a \in B$, then $a \in A$. This means $B \subseteq A$.

2. If $B \subseteq A$, then $A \cap B = B$.

Assume $B \subseteq A$. We need to prove 2 claims.

i. $A \cap B \subseteq B$.

Assume $a \in (A \cap B)$. So $a \in A$ and $a \in B$. So $A \cap B \subseteq B$.

ii. $B \subseteq A \cap B$.

Assume $a \in B$. Since $B \subseteq A$, $a \in A$. So $a \in B \cap A$. So $B \subseteq (A \cap B)$.

Thus if $B \subseteq A$, then $A \cap B = B$.

So we have proved that for all sets A and B: $A \cap B = B$ if and only if $B \subseteq A$.

- Problem 9.4: An interval is supposed to be a subset of \mathbb{R} with no gaps and no holes. Thus all the following sets are intervals:
 - \emptyset and \mathbb{R} .
 - for $a \in \mathbb{R}$, $\{a\}$, (a, ∞) , $[a, \infty)$, $(-\infty, a)$ and $(-\infty, a]$;
 - and for a < b, (a, b), (a, b], [a, b), and [a, b].
 - (a) Give a definition of "interval" based on the fact that an interval must contain all the real numbers that lie between any 2 numbers in the interval.

Definition 1. Let $a, b \in \mathbb{R}$ so that $a \leq b$. We say the set of all real numbers between a and b is an *interval*. The inclusion of a or b or both depends on the notation of interval.

(b) Use the definition to prove, if $A \subseteq \mathbb{R}$ is a nonempty interval with a upper and lower bounds, then $\exists a, b \in \mathbb{R}$ s.t $(a, b) \subseteq A \subseteq [a, b]$.

Proof. Assume $A \subseteq \mathbb{R}$ is a nonempty interval with a upper bound and lower bound. We want to prove $\exists a,b \in \mathbb{R}$ s.t $(a,b) \subseteq A \subseteq [a,b]$. Since $A \in \mathbb{R}$, $A \neq \emptyset$, and A has an upper bound, by the Completeness Axiom, A has a least upper bound. Let it be b. We also know A has a lower bound, by the Completeness Axiom, A has a greatest lower bound. Let it be a. Let $r \in A$. We know $a \leq r \leq b$. So $r \in [a,b]$. So $A \subseteq [a,b]$.

Let $q \in (a, b)$. This means a < q < b, so $q \in A$. So $(a, b) \subseteq A$. Thus $(a, b) \subseteq A \subseteq [a, b]$ where a and b are the greatest lower bound and the least upper bound of the set A.

(c) Use the definition to prove, if $A \subseteq \mathbb{R}$ is a nonempty interval with a upper bound and no lower bound, then $\exists b \in \mathbb{R} \text{ s.t } (-\infty, b) \subseteq A \subseteq (-\infty, b]$.

Proof. Assume $A \subseteq \mathbb{R}$ is a nonempty with an upper bound and no lower bound. By the Completeness Axiom, A has a least upper bound. Let it be b. Let $r \in A$. We know $-\infty < r \le b$, so $A \subseteq (-\infty, b]$. Let $q \in (-\infty, b)$. This means $-\infty < q < b$. But then that also means $q \in A$. So $(-\infty, b) \subseteq A$.

(d) Use the definition to prove, if $A \in \mathbb{R}$ is a nonempty interval with a lower bound and no upper bound, then $\exists a \in \mathbb{R}$ such that $(a, \infty) \subseteq A \subseteq [a, \infty)$.

Proof. Assume $A \subseteq \mathbb{R}$ is a nonempty with a lower bound and no upper bound. By the Completeness Axiom, A has a greatest lower bound. Let it be a. Let $r \in A$. We know $a \le r < \infty$, so $A \subseteq [a, \infty)$. Let $q \in (a, \infty)$. This means $a < q < \infty$. But then that also means $q \in A$. So $(a, \infty) \subseteq A$.

(e) Use the definition to prove, if $A \subseteq \mathbb{R}$ is a nonempty interval with no lower bound and no upper bound, then $A = \mathbb{R}$.

Proof. Assume A is a nonempty interval with no lower bound and no upper bound. We will need prove 2 claims.

1. $A \subseteq \mathbb{R}$.

Assume $a \in A$. Since A has no lower bound and no upper bound, $A = (-\infty, \infty)$. So $-\infty < a < \infty$. But then that means $a \in \mathbb{R}$. So $A \subseteq \mathbb{R}$.

2. $\mathbb{R} \subseteq A$. Assume $r \in \mathbb{R}$. So $-\infty < r < \infty$. Since A has no lower bound and no upper bound, $A = (-\infty, \infty)$. So $r \in A$. Thus $\mathbb{R} \subseteq A$.

(f) Use the definition to prove, if $A \subseteq \mathbb{R}$ is an interval, then A has one of the forms

$$\emptyset, \{a\}, (a, b), (a, b], [a, b), [a, b]$$

 $(a, \infty), [a, \infty), (-\infty, b), (-\infty, b] \text{ or } \mathbb{R}$

Proof. By Trichotomy and (b), (c), (d), and (e), A has to be one of the form: $(a,b),(a,b],[a,b),[a,b],(a,\infty),[a,\infty),(-\infty,b),(-\infty,b]$ or \mathbb{R} . By the definition of interval, assume $a,b\in\mathbb{R}$ so that a=b, then by Trichotomy and interval notation, we have 2 cases:

1. If $r \in A$, then a < r < a. Assume $r \in A$, a < r < a. There's no r satisfy that condition. So $A = \emptyset$.

2. If $r \in A$, then $a \le r \le a$. Assume $r \in A$, $a \le r \le a$. By Trichotomy, r = a. So $A = \{a\}$.

Problem 9.5a: Let A, B, and C be sets, prove that: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof. Let A, B, and C be sets. We need to prove 2 claims.

1. $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. Assume $a \in A \cap (B \cup C)$. So $a \in A$ and $a \in (B \cup C)$. Consider $a \in B \cup C$. We have two cases.

Case 1: $a \in B$. We also know $a \in A$. So $a \in A$ and $a \in B$. This means $a \in A \cap B$. Thus $a \in (A \cap B) \cup (A \cap C)$.

Case 2: $a \in C$. We also know $a \in A$. So $a \in A$ and $a \in C$. This means $a \in A \cap C$. Thus $a \in (A \cap B) \cup (A \cap C)$.

So $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

2. $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. Assume $a \in (A \cap B) \cup (A \cap C)$. We have 2 cases.

Case 1: $a \in A \cap B$. So $a \in A$ and $a \in B$. So $a \in B \cup C$. Since $a \in A$, $a \in A \cap (B \cup C)$.

Case 2: $a \in A \cap C$. So $a \in A$ and $a \in C$. So $a \in B \cup C$. Since $a \in A$, $a \in A \cap (B \cup C)$.

Thus $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.

So
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
.

Problem 9.7: Define a family of sets by: for $n \in \mathbb{Z}$, $S_n = \{0, \pm n\}$.

- (a) n = m implies $S_n = S_m$. True
- (b) $S_n = S_m$ implies n = m. False. Take $S_{-1} = S_1$ but $1 \neq -1$.
- (c) $n \neq m$ implies $S_n \neq S_m$. False. If $1 \neq -1$, then $S_1 \neq S_{-1}$. But $S_1 = S_{-1}$.
- (d) $S_n \neq S_m$ implies $n \neq m$. True.
- (e) Every set in the family has three elements. False. $S_0 = \{0\}$.
- (f) If $S_n \subseteq S_m$, then m = n. False. $S_0 \subseteq S_1$ but $0 \neq 1$.
- (g) $\forall n, m \in \mathbb{Z}, S_n \cap S_m = \{0\}$. True
- (h) $\forall n, m \in \mathbb{Z}, S_n \cap S_m = \emptyset$. False.