

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International Advanced Level In Statistics S3 (WST03) Paper 01

Question		Scheme	Marks			
Number 1 (a)	You would assign an average rank between the tied ranks					
1 (u)	100 WOU	id dssign an average rank between the fied ranks	B1 (1)			
(b)	Rank for total tournaments 1 3 4 6 8 9 2 5 10 7					
	$\sum d^2 =$	0+1+1+4+9+9+25+9+1+9 [= 68]	M1			
	$r_s = 1 - \frac{6 \times '68'}{10(10^2 - 1)}$					
	= 0.5878 awrt 0.588					
			(4)			
(c)	$H_0: \rho =$	$0, H_1: \rho > 0$	B1			
	Critical V	Value = 0.5636 or CR 0.5636	B1			
	Reject Ho	or significant or lies in the critical region	dM1			
	There is s	sufficient evidence of a positive correlation between rank and total tournaments won	A1			
(1)	2.50/	0.6405 GD 0.6405	(4)			
(d)	2.5% and	$r_s = 0.6485$ or CR 0.6485	B1			
			(1)			
		Notes	(1) Total 10			
(a)	B1	for an appropriate explanation of how to deal with tied ranks. Ignore any comments PMCC Do not allow add 0.5 to both ranks				
(b)	M1	attempt to rank total tournaments (at least four correct) Condone reversed ranks				
(-)		finding the difference between players rank and each of their total tournaments rank	s and			
	evaluating $\sum d^2$ May be implied by 68					
	dM1	dependent on 1 st M1. Using $1 - \frac{6\sum d^2}{10(99)}$ with their $\sum d^2$ (you will need to check the	eir $\sum d^2$ if			
		no value shown)				
	A1	awrt $0.588 \text{ Allow} \frac{97}{165}$				
(c)	both hypotheses correct. Must be in terms of ρ . Must be attached to H ₀ and H ₁ If r_s is negative					
(0)	in part (b) then allow $H_1: \rho < 0$					
	B1	critical value of 0.5636 If r_s is negative in part (b) then allow -0.5636				
	dependent on 2 nd B1. A correct statement ft their part (b) and their CV– no context needed but not allow contradicting non contextual comments. This may be implied by a correct contextual conclusion.					
	A1	correct conclusion which is rejecting H ₀ , which must mention rank and total tourn hypotheses is A0.				
		NB If they have used H_1 : $\rho < 0$ then the maximum they can score is B1B1dM1A0)			
(d)	B 1	for 2.5% and a correct critical value of 0.6485				

Question		Scheme	Marks			
Number	Γ760		17441113			
2 (a)	$\overline{x} = \left[\frac{7690}{100}\right] = 76.9$					
	$s_x^2 = \frac{669.24}{99} = 6.76$					
			(3)			
(b)	$\mathbf{H}_0: \boldsymbol{\mu}_x =$	$= \mu_{y} \qquad \qquad \mathrm{H}_{1}: \mu_{x} \neq \mu_{y}$	B1			
	$Z = \frac{"76}{\sqrt{\frac{"6}{1}}}$	$\frac{5.9"-75.9}{00" + \frac{2.2^2}{80}} = 2.793$ awrt ± 2.79	M1 M1 A1			
	2 tailed cr	itical value $z = \pm 2.5758$	B1			
		/Significant/In the critical region	M1			
		ufficient evidence to suggest that the mean <u>water temperature</u> after 4 hours for different to brand <u>B</u>	A1ft			
(c)	(It is roose	onable) since both samples are (reasonably) large	(7) B1			
(C)	(It is reaso	bilable) since both samples are (reasonably) large	(1)			
		Notes	Total 11			
(a)	B1	for 76.9				
	M1	for use of $\frac{1}{n-1}\sum (x-\overline{x})^2$ oe				
	A1	for 6.76				
(b)	B1	B1 for both hypotheses correct. Must be attached to H ₀ and H ₁ Allow equivalent hypotheses. Must be in terms of μ Allow any letter for the subscripts				
	M1	for a correct method to find the standard error. Follow through their values from (a)				
	M1 an attempt at $\pm \frac{a-b}{\sqrt{\frac{c}{100} + \frac{d^2}{80}}}$ with at least 3 of a, b, c or d correct.					
	A1 awrt ± 2.79					
	B1 $z = \operatorname{awrt} \pm 2.5758 \operatorname{seen}$ (Allow $z = \operatorname{awrt} \pm 2.3263 \operatorname{if}$ a one tailed test is used)					
	M1	a correct statement consistent with their CV and Z value – need not be contextual but do not allow contradicting non contextual comments. This may be implied by a correct contextual conclusion.				
	A1ft	This mark is dependent on the 2 nd M mark being awarded. A correct contextual statement ft their				
(c)	B1	a correct explanation, which makes reference to both samples. e.g. Do not allow the large enough	sample is			

Question Number		Scheme	Marks	
3 (a)	$\left[\frac{26.624 + 28.976}{2} \right] = 27.8$			
	L		(1)	
(b)	$28.976 - 26.624 = 2 \times 1.96 \times \frac{\sigma}{\sqrt{25}} \text{or} 26.624 = '27.8' - 1.96 \times \frac{\sigma}{\sqrt{25}}$ or $28.976 = '27.8' + 1.96 \times \frac{\sigma}{\sqrt{25}}$			
	$\sigma = 3*$	V-20	A1* cso	
			(3)	
(c)	$2 \times z \times \sqrt{}$	$\frac{3}{25} = 2.1$ So $z = 1.75$	M1 A1	
	P(Z > '1.	P(Z < -1.75') = P(Z < -1.75') = 1 - 0.9599' = 0.0401'	M1 A1ft	
	Confidence	ce level = $100 \times (1 - 2 \times '0.0401') = 91.98\%$	M1 A1	
			(6)	
(d)	2×1.96×	$\frac{3}{\sqrt{n}} < 1.5$ $\frac{1.96}{1.5}$	M1	
			dM1	
	$\sqrt{n} > awi$	rt 7.84 So $n = 62$	A1 A1	
			(4)	
		Notes	Total 14	
(a)	B1	for 27.8		
(b)	M1	M1 for $28.976 - 26.624 = 2 \times z$ value $\times \frac{\sigma}{\sqrt{25}}$ or $26.624 = '27.8' - z$ value $\times \frac{\sigma}{\sqrt{25}}$ or $28.976 = '27.8' - z$ value $\times \frac{\sigma}{\sqrt{25}}$ where $1.5 < z < 2.4$		
	B1	awrt 1.96		
	A1* cso	answer is given so no incorrect working must be seen		
(c)	M1 for $2 \times z \times \frac{3}{\sqrt{25}} = 2.1$			
	A1	for $z = 1.75$		
	M1	for $1 - p$, where p is a probability		
	A1ft	for 0.0401 or ft their z value (Allow 0.04)		
	M1	for $100 \times (1 - 2 \times 0.0401)$ ft their P(Z < -1.75)		
	A1	awrt 92.0 (allow 92)		
(d)	M1	for $2 \times z$ value $\times \frac{3}{\sqrt{n}} < 1.5$ oe z value must either be correct or consistent with p	art (b)	
	dM1	Allow \leq or = Condone > or \geq Dependent on previous M mark. Correct rearrangement to get $\sqrt{n} >$ or $n >$ or Allow \geq or = Condone $<$ or \leq	;	
	A1	awrt 7.84 may be implied by awrt 61.5		
	A1	for $n = 62$		
	111	101 11 02		

Question		C. J	Marks			
Number	Scheme					
4 (a)	[Continuous] uniform on the interval [0, 7]					
(b)	mean = 3.5					
(0)						
	standard deviation = $\sqrt{\frac{(7-0)^2}{12}}$					
	standard deviation $=\sqrt{-12}$					
	$=\frac{7}{\sqrt{12}}=2.0207$ awrt 2.02					
		$\sqrt{12}$	A1			
			(3)			
(c)	By the CI	LT $\bar{T} \square N\left(3.5, \frac{49}{552}\right)$	M1			
(-)		(552)				
		$\overline{T} < 3.6$ = P $\left(\frac{3.4 - "3.5"}{ "\sqrt{\frac{49}{552}} "} < Z < \frac{3.6 - "3.5"}{ "\sqrt{\frac{49}{552}} "} \right) = \left[P(-0.34 < Z < 0.34) \right]$				
	D(3.1 -	$\bar{T} < 3.6 - P \begin{vmatrix} 3.4 - 3.5 \\ 7 < 3.6 - 3.5 \end{vmatrix} = \left[P(-0.34 < 7 < 0.34) \right]$	M1 A1			
	1 (3.4 <	(1 < 3.0) = 1 $(-0.34 < 2 < 0.34)$	WII AI			
		$\sqrt{552}$ $\sqrt{552}$				
		-(1-0.6331) (Calculator gives 0.6314)	M1			
	= 0.2662 (Calculator gives 0.2628) awrt 0.263 to 0.266					
(d)	I orga/in/	dependent/ random sample allows use of CLT	B1 (5)			
(u)	Large/ IIIC	dependent/ random sample anows use of CL1	(1)			
	Notes Total 1					
		For the correct distribution stated (need uniform and correct interval) Allow U[0, 7] A	fully			
(0)	B1	$\begin{bmatrix} \frac{1}{2} & 0 & x & 7 \end{bmatrix}$				
(a)	DI	correct pdf implies B1 e.g. $f(x) = \begin{cases} \frac{1}{7} & 0, x, 7 \\ 0 & \text{otherwise} \end{cases}$				
		0 otherwise				
(b)	B1	For 3.5				
	M1	For a correct method for finding the standard deviation				
	A1 awrt 2.02 (Allow $\frac{7}{\sqrt{12}}$ or $\frac{7\sqrt{3}}{6}$ oe)					
		$y(2, 5, 49)$ $y(2, 5, 2.02^2)$	105 (5)			
		For writing or using $N\left(3.5, \frac{49}{552}\right)$ oe Allow $N\left(3.5, \frac{2.02^2}{46}\right)$ or ft from part (b) e.	g. if Po(7)			
(c)	M1					
		given in part (a) allow $N\left(7, \frac{7}{46}\right)$				
	M1	For standardising using either 3.4 or 3.6 and their mean and standard deviation				
	A1	For a fully correct expression for either 3.4 or 3.6. May be implied by \pm awrt 0.34				
	M1 For $p - (1-p)$ or $2(p-0.5)$ oe					
(1)	A1 awrt 0.263 to 0.266					
(d)	B1	Any suitable assumption				

Question Number	Scheme Marks					
5 (a)	It is not a	It is not a statistic as it involves <u>unknown</u> [population parameters] B1				
(b)	An estimator for μ is unbiased if its <u>expected</u> value is equal to μ B1					
		1	(1)			
(c)	$E(U_1) = 3E(X_1) - 2E(X_2)$ or $E(U_2) = \frac{1}{4}(E(X_1) + 3E(X_2))$					
	$E(U_1) =$	$3\mu - 2\mu = \mu$ (therefore unbiased)	A1cso			
	$E(U_2) =$	$\frac{1}{4}(\mu + 3\mu) = \mu \text{ (therefore unbiased)}$	Alcso			
		1 0	(3)			
(d)	$Var(U_1)$	$= 9Var(X_1) + 4Var(X_2) \text{ or } Var(U_2) = \frac{1}{16}Var(X_1) + \frac{9}{16}Var(X_2)$	M1			
	$\left[\operatorname{Var}(U_1) \right]$	$=$ $\left[13\sigma^2\right]$	A1			
			A1			
	$\left[\operatorname{Var}(U_2) = \right] \frac{5}{8}\sigma^2$					
	As Var(l	U_1) > Var(U_2) U_2 is the most efficient estimator for μ	A1			
			(4)			
		Notes	Total 9			
(a)	B1	for a correct explanation, must include unknown				
(b)	B1	for a correct explanation that refers to expected X. Allow $\mu - E(X) = 0$, but bias = 0 is B0				
(c)	M1	for use of $aE(X_1) + bE(X_2)$ May be implied by $3\mu - 2\mu$ or $\frac{1}{4}(\mu + 3\mu)$				
		for a correct solution for $E(U_1)$ with no incorrect working Condone missing notation	. Condone			
	A1cso	missing subscripts	-			
	for a correct solution for $F(U)$ with no incorrect working seen Condon		missing notation.			
	A1cso Condone missing subscripts					
(d)	M1	for use of $a^2 \text{Var}(X_1) + b^2 \text{Var}(X_2)$				
	A1	Allow $9\sigma^2 + 4\sigma^2$				
	A1	Allow $\frac{1}{16}\sigma^2 + \frac{9}{16}\sigma^2$ or $\frac{5}{8}\sigma^2$ oe				
	A1	for U_2 with a correct reason				
		NB It is possible to score M1 A0 A0 A1 if $Var(U_1)$ and $Var(U_2)$ are correct				
		1 1/ 1/				

Question Number		Scheme	Marks		
Nullibei	$M \square N(80,100)$ $W \square N(69,25)$				
6 (a)	$X = M_1 + M_2 + M_3 + M_4 + M_5 + M_6 + W_1 + W_2 + W_3$				
	$X \square N(687,675)$			M1 A1	
	$P(X > 700) = P\left(Z > \frac{700 - 687}{\sqrt{675}}\right) = P(Z > 0.500)$			M1	
		(=1-0.6915) = 0.3085 (Ca)	lculator gives 0.3084)	A1	
4.				(4)	
(b)	Let $Y = \mathbb{N}$	Number of men in the lift	N(80x 100x)	M1	
	$P(Y > 700) = P\left(Z > \frac{700 - 80x}{10\sqrt{x}}\right) < 0.025$			M1	
	$\frac{700 - 80x}{10\sqrt{x}} > 1.96$			В1	
	80x + 19	$9.6\sqrt{x} - 700[< 0]$	$6400x^2 - 112384.16x + 490000[>0]$	M1	
	Solving 1	leading to $\sqrt{x} < 2.838$	Solving leading to $x < 8.05$	M1	
	So $c = 8$ (people)			A1	
	Notes			(6)	
(a)	B1	for setting up normal distributio		Total 10	
(u)	B1				
	M1	for a correct variance (675) or for standard deviation (15 $\sqrt{3}$) for standardising with 700, 687 and their standard deviation			
	A1	for answer between $0.308 - 0.309$			
(b)	M1		on with mean $80x$ and variance $100x$ (may be imp	olied by use of	
	M1	for standardising with 700, their mean and their standard deviation (if not stated then these must be correct)			
	B1	for an equation or inequality set = to 1.96 (Allow -1.96)			
	M1	for a correct 3TQ ft their mean and standard deviation			
	for an attempt to solve their 3TQ with either $\sqrt{x} <$ or $x <$ Allow = instead of < or > If the answer is incorrect then we must see use of the quadratic formula/completi square (Allow one error)				
	A1	cao			

Question Number	Scheme				Marks	
	H_0 : The	observed distribution ca	an be modelled by a c	liscrete uniform distribution	B1	
7 (a)	H_1 : The	observed distribution ca	nnot be modelled by	a discrete uniform distribution	(1)	
	Observ	ved Expected	$(O-E)^2$	$\frac{O^2}{E}$		
	Observ	Expected	E			
	x + 6	$\int \int $	<u>36</u>	$\frac{(x+6)^2}{}$		
			x	x		
	x-8	$3 \qquad \qquad x$	<u>64</u>	$\frac{(x-8)^2}{}$		
			64	$(x+8)^2$		
	x + 8	x	$\frac{64}{x}$	$\frac{(x+6)}{x}$		
(bi)		_	25	$\frac{(x-5)^2}{}$	B1 M1	
	x-5	\mathcal{S} x	$\frac{}{x}$			
	x + 4	1 x	16	$\frac{x}{\left(x+4\right)^2}$		
	X + -	τ λ	x	x		
	x-5	$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$	<u>25</u>	$\frac{\left(x-5\right)^2}{}$		
			X	x		
	Total =	Total = 6x	$Total = \frac{230}{x}$	$Total = \frac{6x^2 + 230}{x}$		
	$X^2 = \sum$	$\frac{(O-E)^2}{F}$ or $\sum \frac{O^2}{F}$	$-6x$; $\frac{230}{}$	or $\frac{6x^2 + 230}{x^2 - 6x}$	M1 ; A1	
		$=5$; $c_{5}^{2}(0.05) =$	Λ	Α	B1; B1	
		H_0 if $\frac{230}{r}$, '11.070			M1	
	x 20.7	7768 So $x = 21$			A1 (8)	
(bii)	Hence the	die was rolled "21" \times 6	= 126 times		M1 A1	
			Notes		(2) Total 11	
(a)	B1	for both hypotheses co	rrect Allow H ₀ :	the die is not biased H_1 : the G		
(bi)	B1	for expected frequency	y = x			
	M1	M1 for one correct $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ ft their expected frequency				
	M1 for an attempt at X^2 ft their values (At least 4 of these need to be seen and added)					
	A1	A1 for either $\frac{230}{x}$ or $\frac{6x^2 + 230}{x} - 6x$				
	B1 for $v = 6 - 1 = 5$ May be implied by a correct critical value					
	B1 for a correct critical value ft their DOF (NB common error is $v = 4$ so $c_4^2(0.05) = 9.488$)					
	M1 for either $\frac{230}{x}$, their CV or $\frac{6x^2 + 230}{x} - 6x$, their CV Allow < rather than ,					
	A1	A1 for $x = 21$ provided the previous M mark has been awarded				
(bii)	M1					
	A1	cao				