Automatisierte Aufbereitung archäologischer Grabungsfotos mittels Computer Vision

Simon Metzger

Masterarbeit

zur Erlangung des akademischen Grades Master of Arts im Studiengang Digitale Methodik der Geistes- und Kulturwissenschaften

Johannes-Gutenberg-Universität Mainz und Hochschule Mainz

Zusammenfassung Im Format abstract

Inhaltsverzeichnis

1	Allgemeines 2			
	1.1	Unterpunkt	2	
2	Einleitung			
	2.1	Datenlage Archäologie	3	
	2.2	Grabung Kapitol	3	
		Datengrundlage und Vorhaben	3	
3	Tafeldetektierung			
	3.1	Die Tafeln und ihre Tücken	4	
	3.2	Detektierungsmöglichkeiten	4	
	3.3	Ergebnisse CNN	4	
	3.4	Ergebnisse Feature Detection	4	
	3.5	Ergebnisse Kantenerkennung /Contours	4	
4	Text	erkennung	5	
	4.1	Texterkennung allgemein	5	
	4.2	Das Ausgangsmaterial	5	
		Vorgehen	5	
5	SIF	Γ	6	
	5.1	SIFT allgemein	6	
	5.2	Ausgangsmaterial und Probleme	6	
	5.3	Vorgehen	6	

1 Allgemeines

Vom Allgemeinen

1.1 Unterpunkt

zum Speziellen [?]

2 Einleitung

2.1 Datenlage Archäologie

viele Grabungen, bei denen keine solide Datenbasis vorhanden ist (Quelle!) Digitalisierungsrückstand (Quelle!)

2.2 Grabung Kapitol

Grabungsverlauf bis 2014 (recherchieren) Übernahme durch DAI (recherchieren)

2.3 Datengrundlage und Vorhaben

Datensatz vorstellen

drei Schritte: Tafeln/ Objekte erkennen und ausschneiden, Textererkennung, SIFT

3 Tafeldetektierung

3.1 Die Tafeln und ihre Tücken

Problematiken aufzeigen: unterschiedliche Größe, Licht und Beleuchtung, Winkel, Verdeckung

evtl. Vergleiche zu Tafeln aus späterer Grabung als Positivbeispiel

evtl. Vergleiche zu Tafeln der Bodenkunde als Negativbeispiel

3.2 Detektierungsmöglichkeiten

Kurzvorstellung: Kantenerkennung CNN Feature Detection

3.3 Ergebnisse CNN

3.4 Ergebnisse Feature Detection

3.5 Ergebnisse Kantenerkennung /Contours

Detaillierte Beschreibung des Vorgehens Vor- und Nachteile aufzählen konkrete Probleme bennen

4 Texterkennung

4.1 Texterkennung allgemein

Tesseract: was kann es, wie funktioniert es

4.2 Das Ausgangsmaterial

Probleme bennenen wie: verwischte Kreide, das Karomuster der Tafeln, Handschrift per se, Licht und Beleuchtung

4.3 Vorgehen

Preprocessing normales Modell eigenes Modell Vergleich: Tafeln aus späterer Grabung (gesetzte Lettern) evtl. Vergleich Tafeln Bodenkunde

5 SIFT

- 5.1 SIFT allgemein
- 5.2 Ausgangsmaterial und Probleme
- 5.3 Vorgehen

Ausschneiden der anderen beweglichen Elemente (Zollstock, Nordungspfeil)

6 Fazit