$N(1520) \ 3/2^-$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$
 Status: ***

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics **C38** 070001 (2014).

N(1520) POLE POSITION

REAL	PART
------	-------------

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1505 to 1515 (≈ 1510) OUR ESTI	MATE			
1507±2	SOKHOYAN	15A	DPWA	Multichannel
$1506 \pm 1 \pm 1$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
1515	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN
1510	HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
1510 ± 5	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •
1492	SHKLYAR	13	DPWA	Multichannel
1507 ± 3	ANISOVICH	12A	DPWA	Multichannel
1501	SHRESTHA	12A	DPWA	Multichannel
1506 ± 9	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$
1504	VRANA	00	DPWA	Multichannel
-2×IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
105 to 120 (≈ 110) OUR ESTIMA				
111± 3	SOKHOYAN	15A	DPWA	Multichannel
$115\pm \ 2\pm 1$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
113	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN
120	HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
114 ± 10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
94	SHKLYAR	13	DPWA	Multichannel
111± 5	ANISOVICH	12A	DPWA	Multichannel
112	SHRESTHA	12A	DPWA	Multichannel
122± 9	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$
112	VRANA	00	DPWA	Multichannel

N(1520) ELASTIC POLE RESIDUE

MODULUS |r|

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
35±3 OUR ESTIMATE				
36 ± 2	SOKHOYAN	15A	DPWA	Multichannel
$33 \!\pm\! 1 \!\pm\! 1$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
38	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
32	HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
35±2	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

27	SHKLYAR	13	DPWA Multichannel
36 ± 3	ANISOVICH	12A	DPWA Multichannel
35	BATINIC	10	DPWA $\pi N \rightarrow N\pi$. Nn

PHASE θ

FINASE 0				
VALUE (°)	DOCUMENT ID		TECN	COMMENT
-10 ± 5 OUR ESTIMATE				
-14 ± 3	SOKHOYAN	15A	DPWA	Multichannel
$-15 \pm 1 \pm 1$	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$
- 5	ARNDT	06	DPWA	$\pi N o \pi N, \eta N$
- 8	HOEHLER	93	ARGD	$\pi N \rightarrow \pi N$
$-12 \!\pm\! 5$	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following	ng data for average	s, fits,	limits, e	etc. • • •
-35	SHKLYAR	13	DPWA	Multichannel
-14 ± 3	ANISOVICH	12A	DPWA	Multichannel
- 7	BATINIC	10	DPWA	π N \rightarrow N π , N η

N(1520) INELASTIC POLE RESIDUE

The "normalized residue" is the residue divided by $\Gamma_{pole}/2.$

Normalized residue in $N\pi \to N(1520) \to \Delta \pi$, S-wave

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.33 ± 0.04	155 ± 15	SOKHOYAN 15	5A DPWA	Multichannel
\bullet \bullet We do not	use the following data	for averages, fits,	limits, etc.	• • •
0 33+0 05	150 ± 20	ANISOVICH 12	DPW/A	Multichannel

Normalized residue in $N\pi \to N(1520) \to \Delta\pi$, D-wave

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
$0.25\!\pm\!0.03$	105 ± 18	SOKHOYAN 15A	DPWA	Multichannel
• • • We do not	t use the following data	for averages, fits, lim	its, etc.	• • •
0.25 ± 0.03	100 ± 20	ANISOVICH 12A	DPWA	Multichannel

Normalized residue in $N\pi \to N(1520) \to N\sigma$

MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.08±0.03	-45 ± 25	SOKHOYAN 15A	DPWA	Multichannel

N(1520) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1510 to 1520 (≈ 1515) OUR EST	IMATE			
1516 ± 2	SOKHOYAN	15A	DPWA	Multichannel
1505 ± 4	SHKLYAR	13	DPWA	Multichannel
1514.5 ± 0.2	ARNDT	06	DPWA	π N $ ightarrow$ π N, η N
1525 ± 10	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1519 ± 4	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

$1517 \pm$	3	ANISOVICH	12A	DPWA Multichannel
$1512.6\pm$	0.5	SHRESTHA	12A	DPWA Multichannel
$1522 \ \pm$	8	BATINIC	10	DPWA $\pi N \to N \pi$, $N \eta$
1509 \pm	1	PENNER	02 C	DPWA Multichannel
1518 \pm	3	VRANA	00	DPWA Multichannel

N(1520) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
100 to 125 (≈ 115) OUR ESTIMA	ATE			
113 ± 4	SOKHOYAN	15A	DPWA	Multichannel
100 ± 2	SHKLYAR	13	DPWA	Multichannel
103.6 ± 0.4	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN
120 ± 15	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
114 ± 7	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
• • • We do not use the following of	data for averages	s, fits,	limits, e	tc. • • •
114 ± 5	ANISOVICH	12A	DPWA	Multichannel
117 ± 1	SHRESTHA	12A	DPWA	Multichannel
132 ± 11	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$
100 ± 2	PENNER	0 2C	DPWA	Multichannel
124 ± 4	VRANA	00	DPWA	Multichannel

N(1520) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$N\pi$	55–65 %
Γ_2	$N\eta$	< 1 %
Γ_3	$N\pi\pi$	25–35 %
Γ_4	$\Delta(1232)\pi$	22–34 %
Γ_5	${\it \Delta}(1232)\pi$, $\it S$ -wave	15–23 %
Γ_6	${\it \Delta}(1232)\pi$, ${\it D}$ -wave	7–11 %
Γ_7	$N\sigma$	< 2 %
Γ ₈	$p\gamma$	0.31-0.52 %
Γ_9	$p\gamma$, helicity $=1/2$	0.01–0.02 %
Γ_{10}	$p\gamma$, helicity=3/2	0.30-0.50 %
Γ_{11}	$n\gamma$	0.30–0.53 %
Γ_{12}	$n\gamma$, helicity $=1/2$	0.04-0.10 %
Γ ₁₃	$n\gamma$, helicity=3/2	0.25–0.45 %

N(1520) BRANCHING RATIOS

$\Gamma(N\pi)/\Gamma_{total}$					Γ_1/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	-,
55 to 65 OUR ESTIMATE					
61 ± 2	SOKHOYAN	15A	DPWA	Multichannel	
57 ±2	SHKLYAR	13	DPWA	Multichannel	
63.2 ± 0.1	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN	
58 ±3	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
54 ±3	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • •	
62 ±3	ANISOVICH	12A	DPWA	Multichannel	
62.7 ± 0.5	SHRESTHA	12A	DPWA	Multichannel	
55 ±5	BATINIC	10	DPWA	$\pi N \rightarrow N \pi, N \eta$	
56 ±1	PENNER	02C	DPWA	Multichannel	
63 ±2	VRANA	00	DPWA	Multichannel	
$\Gamma(N\eta)/\Gamma_{\text{total}}$					Γ ₂ /Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	_,
0 ±1	SHKLYAR	13		Multichannel	
• • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •	
0.1 ± 0.1	BATINIC	10	DPWA	$\pi N \rightarrow N\pi, N\eta$	
0.2 ± 0.1	THOMA	08		Multichannel	
0.08 to 0.12	ARNDT	05	DPWA	Multichannel	
0.23 ± 0.04	PENNER	02C		Multichannel	
0 ±1	VRANA	00		Multichannel	
0.08 ± 0.01	TIATOR	99		$\gamma p \rightarrow p \eta$	
$\Gamma(\Delta(1232)\pi$, <i>S</i> -wave)/ $\Gamma_{ ext{total}}$					Г ₅ /Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
19 ±4	SOKHOYAN	15A	DPWA	Multichannel	
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •	
19 ±4	ANISOVICH	12A	DPWA	Multichannel	
9.3 ± 0.7	SHRESTHA	12A	DPWA	Multichannel	
15 ±2	VRANA	00	DPWA	Multichannel	
$\Gamma(\Delta(1232)\pi$, <i>D</i> -wave $)/\Gamma_{total}$					Г ₆ /Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	•
9 ±2	SOKHOYAN	15A	DPWA	Multichannel	
• • We do not use the following of		_			
9 ±2	ANISOVICH	12A		Multichannel	
6.3±0.5	SHRESTHA	12A		Multichannel	
11 ±2	VRANA	00		Multichannel	
_			•		

$\Gamma(N\sigma)/\Gamma_{\text{total}}$					Γ_7/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
<2	SOKHOYAN	15A	DPWA	Multichannel	
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •	
<1	SHRESTHA	12A	DPWA	Multichannel	
<4	THOMA	80	DPWA	Multichannel	
1 ± 1	VRANA	00	DPWA	Multichannel	

N(1520) PHOTON DECAY AMPLITUDES AT THE POLE

$N(1520) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

$MODULUS~(GeV^{-1/2})$	PHASE (°)	DOCUMENT ID		TECN	COMMENT
$-0.023\!\pm\!0.004$	-6 ± 5	SOKHOYAN	15A	DPWA	Multichannel
$-0.024 ^{+0.008}_{-0.003}$	-17^{+16}_{-6}	ROENCHEN	14	DPWA	

$N(1520) \rightarrow p\gamma$, helicity-3/2 amplitude A_{3/2}

$MODULUS$ ($GeV^{-1/2}$)	PHASE (°)	DOCUMENT ID		TECN	COMMENT
0.131 ± 0.006	4 ± 4	SOKHOYAN	15A	DPWA	Multichannel
$0.117 ^{igoplus 0.006}_{-0.010}$	26 ± 2	ROENCHEN	14	DPWA	

N(1520) BREIT-WIGNER PHOTON DECAY AMPLITUDES

$N(1520) ightarrow ho \gamma$, helicity-1/2 amplitude $A_{1/2}$

$VALUE (GeV^{-1/2})$	DOCUMENT ID		TECN	COMMENT
-0.020 ± 0.005 OUR ESTIMATE				
-0.024 ± 0.004	SOKHOYAN	15A	DPWA	Multichannel
-0.019 ± 0.002	WORKMAN	12A	DPWA	$\gamma N \rightarrow N \pi$
-0.028 ± 0.002	DUGGER	07	DPWA	$\gamma N \rightarrow \pi N$
-0.038 ± 0.003	AHRENS	02	DPWA	$\gamma N \rightarrow \pi N$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
$-0.015\!\pm\!0.001$	SHKLYAR	13	DPWA	Multichannel
-0.022 ± 0.004	ANISOVICH	12A	DPWA	Multichannel
-0.034 ± 0.001	SHRESTHA	12A	DPWA	Multichannel
-0.027	DRECHSEL	07	DPWA	$\gamma N \rightarrow \pi N$
-0.003	PENNER		DPWA	Multichannel
$-0.052\pm0.010\pm0.007$	² MUKHOPAD	. 98		$\gamma p \rightarrow \eta p$

$N(1520) \rightarrow p\gamma$, helicity-3/2 amplitude A_{3/2}

$VALUE$ (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
0.140±0.010 OUR ESTIMATE				
0.130 ± 0.006	SOKHOYAN	15A	DPWA	Multichannel
0.141 ± 0.002	WORKMAN	12A	DPWA	$\gamma N \rightarrow N \pi$
0.143 ± 0.002	DUGGER	07	DPWA	$\gamma N \rightarrow \pi N$
0.147 ± 0.010	AHRENS	02	DPWA	$\gamma N \rightarrow \pi N$

• • We do not use the following data for averages, fits, limits, etc.

0.146 ± 0.001	SHKLYAR	13	DPWA	Multichannel
0.131 ± 0.010	ANISOVICH	12A	DPWA	Multichannel
0.127 ± 0.003	SHRESTHA	12A	DPWA	Multichannel
0.161	DRECHSEL	07	DPWA	$\gamma N \rightarrow \pi N$
0.151	PENNER	02 D	DPWA	Multichannel
$0.130 \pm 0.020 \pm 0.015$	² MUKHOPAD	. 98		$\gamma p \rightarrow n p$

$N(1520) \rightarrow n\gamma$, helicity-1/2 amplitude A $_{1/2}$

$VALUE$ (GeV $^{-1/2}$)	DOCUMENT ID		TECN COMMENT
-0.050 ± 0.010 OUR ESTIMATE			
-0.049 ± 0.008	ANISOVICH	13 B	DPWA Multichannel
-0.046 ± 0.006	CHEN	12A	DPWA $\gamma N \rightarrow \pi N$
• • • We do not use the following	data for average	s, fits,	limits, etc. • • •
$-0.038\!\pm\!0.003$	SHRESTHA	12A	DPWA Multichannel
-0.077	DRECHSEL	07	DPWA $\gamma N \rightarrow \pi N$
-0.084	PENNER	02 D	DPWA Multichannel

$N(1520) \rightarrow n\gamma$, helicity-3/2 amplitude A_{3/2}

$VALUE$ (GeV $^{-1/2}$)	DOCUMENT ID		TECN	COMMENT
-0.115 ± 0.010 OUR ESTIMATE				
-0.113 ± 0.012	ANISOVICH	13 B	DPWA	Multichannel
-0.115 ± 0.005	CHEN	12A	DPWA	$\gamma {\sf N} ightarrow \pi {\sf N}$
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •
-0.101 ± 0.004	SHRESTHA	12A	DPWA	Multichannel
-0.154	DRECHSEL	07	DPWA	$\gamma N \rightarrow \pi N$
-0.159	PENNER	02 D	DPWA	Multichannel

N(1520) FOOTNOTES

N(1520) REFERENCES

For early references, see Physics Letters 111B 1 (1982). For very early references, see Reviews of Modern Physics 37 633 (1965).

SOKHOYAN PDG	15A 14	EPJ A51 95 CP C38 070001	V. Sokhoyan <i>et al.</i> K. Olive <i>et al.</i>	(CBELSA/TAPS Collab.) (PDG Collab.)
ROENCHEN	14	EP.J A50 101	D. Roenchen et al.	(1 DG Collab.)
Also		EPJ A51 63 (errat.)	D. Roenchen et al.	
SVARC	14	PR C89 045205	A. Svarc et al.	
ANISOVICH	13B	EPJ A49 67	A.V. Anisovich et al.	
SHKLYAR	13	PR C87 015201	V. Shklyar, H. Lenske, U. Mos	sel (GIES)
ANISOVICH	12A	EPJ A48 15	A.V. Anisovich et al.	(BONN, PNPI)
CHEN	12A	PR C86 015206	W. Chen et al. (I	DUKE, GWU, MSST, ITEP+)
SHRESTHA	12A	PR C86 055203	M. Shrestha, D.M. Manley	(KSÚ)
WORKMAN	12A	PR C86 015202	R. Workman et al.	(ĠWU)
BATINIC	10	PR C82 038203	M. Batinic et al.	(ZAGR)
THOMA	80	PL B659 87	U. Thoma et al.	(CB-ELSA Collab.)
DRECHSEL	07	EPJ A34 69	D. Drechsel, S.S. Kamalov, L.	Tiator (MAINZ, JINR)

HTTP://PDG.LBL.GOV

Page 6

 $^{^1}$ Fit to the amplitudes of HOEHLER 79. 2 MUKHOPADHYAY 98 uses an effective Lagrangian approach to analyze η photoproduction. tion data. The ratio of the $A_{3/2}$ and $A_{1/2}$ amplitudes is determined, with less model dependence than the amplitudes themselves, to be $A_{3/2}/A_{1/2}=-2.5\pm0.5\pm0.4$.

DUGGER ARNDT ARNDT	07 06 05	PR C76 025211 PR C74 045205 PR C72 045202	M. Dugger <i>et al.</i> R.A. Arndt <i>et al.</i> R.A. Arndt <i>et al.</i>	(JLab CLAS Collab.) (GWU) (GWU, PNPI)
AHRENS	02	PRL 88 232002	J. Ahrens <i>et al.</i>	(Mainz MAMI GDH/A2 Collab.)
PENNER	02C	PR C66 055211	G. Penner, U. Mosel	(GIES)
PENNER	02D	PR C66 055212	G. Penner, U. Mosel	(GIES)
VRANA	00	PRPL 328 181	T.P. Vrana, S.A. Dytman,	, TS.H. Lee (PITT, ANL)
TIATOR	99	PR C60 035210	L. Tiator et al.	
MUKHOPAD	98	PL B444 7	N.C. Mukhopadhyay, N. N	Mathur
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMÚ, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler et al.	(KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP
				· · · ·