Roll No	Name	Group No	Faculty
Artificial Intelligence (UCS411)	Time: 20 mins	MM:15	Date:25/02/2025

Note: Each Ques carries 1 mark except Q14 which is of 2 marks. Fill the answers in the space provided below. Answers will only be evaluated if written in below space. Over-written answers will not be evaluated.

Q 1	Q 2	Q 3	Q 4	Q 5	Q 6	Q 7	Q 8	Q 9	Q 10	Q 11	Q 12	Q 13	Q 14
A	В	C	В	A	В	A,C	D	D	В	C	DEABCF, 186	C	2, ih

A	В		В	A	В	A,C	ע	ש	В	C	DEABCE, 180	C	2, In
Q. No.	Ques	stion											
1			with Itera rect order								from node A . Which	ch of the f	ollowing
	SHOWS	a)	Depth 1:		u avei sai	at uniter	ен аери	115 : (ASSI	ume dept	11 Starts 1 /	10111 0)		
		u)	Depth 2:		E. C. F					\langle	A		
			Depth 3:			, F, H, I							
		b)	Depth 1:							(B)	(c)		
			Depth 2:							\nearrow			
		-)	Depth 3:		G, E, C	, F, H, I					\searrow		
		C)	Depth 1: Depth 2:		BDE				(D) (E) (F)	
			Depth 3:			D. G. E				`			
		d)	Depth 1:		-,, - ,	_, _,_			G				
		ŕ	Depth 2:		B, E, D						Н		
			Depth 3:										
2) algorithm for find	ding the o	ptimal
		,	te: C* is th							- 1) O (1 A 1 O O O)		
	a)	O	(b^50)	b) O(b^10	JO)	(c) O(b^5	00)	d) O(b^1000)		
3											heuristic function		urrent
											15, D=17, E=10, F		
			state has f (the proba			lomly sel	ected su	ccessor will be acc	epted?	
	a)	1/2		b) 2/3	•		C)	2/6			d) 4/6		
4	Consid	er a kn	owledge b	ase (KB) consist	ing of the	e follow	ing axior	ns:				
	1.	All b	irds have	wings.		C		C					
	2.		oirds fly, ex		nguins.								
	3.		ety is a bir					•					
	4. 5.		ety is a per ety lives in			live in a	cold reg	gion.					
			following			xioms pr	ove that	'Tweety	v cannot	flv'?			
	a)	1,3,4	_	Comoma		ixioms pr	ove mai	1 week	, cannot				
	/												
	c)	1,2,3	,5										
5			est path o			algorithi	n for the	e given g	raph?				
			E with pa								_ (0)		
	b		E with pa								3		
	C,		F and G v	_						Œ	F G	١	
	d) O->	F and G v	vith path	cost 7					(_		,	
										h=2			
6			_			_		_			r has an initial $\alpha = \frac{1}{2}$		
			$\beta = +\infty$. If	f Beta (β) at the	right MI	N node i	is 5, wha	t is the m	aximun	n possible value of	"?" befor	re pruning
	occurs												
		a) 2b) 4								MAX			
		c) 6								/ \			
		d) 3							M	IN MIN			
		,							3	8 ? 5			
7	Consid	er an	optimizatio	on probl	em whe	re the of	piective	function	exhibits	multipl	e local optima. A	researche	er applies
,											ng statements is/are		
			ice and bel										<i>U</i>
						_							

a) If the cooling rate is too high, the algorithm may get trapped in local optima, reducing the probability of finding

the global optimum.

	 b) In a highly rugged search space with a large number of local optima, decreasing the probability of accepting worse solutions in early iterations can improve exploration. c) A dynamically adaptive temperature adjustment can help the algorithm escape local optima more effectively compared to a fixed exponential cooling schedule, improving the chances of global convergence. 							
8	d) None of the above In the Water Jug Problem, what are the minimum number of steps required	d to measure exactly 4 liters using a 5-liter jug						
	and a 3-liter jug? a) 3 b) 4 c) 2	d) 6						
9	'Rescue Robots' in disaster areas is an example of type of a) stochastic and static b) deterministic and static c) deterministic and dynamic d) stochastic and dynamic	f environment						
10	In the Missionaries and Cannibals problem, where 3 missionaries and 3 ca carry at most 2 people, what is the branching factor of the state-space grap a) 2, since the boat can only go forward or backward. b) 5, since there are 5 legal moves at most in any given state. c) 6, since we can choose any 1 or 2 people from the 3 missionaries d) 10, since all combinations of moving 0, 1, or 2 people must be considered.	oh in the worst case? and 3 cannibals.						
	Consider two jugs of 2 liters and 5 liters. The goal is to measure exactly 4 heuristic h(n)="max (jug1_value - 4 , jug2_value - 4)" (i.e. maximum of state will be expanded first if the currently explored state is (0,0), and state (Note: h(n) is a minimizer function) a) (2,0) b) (0,5) c) (2,1) d) (0,2)	liters. Using Best-First Search with the absolute difference of 4 from both jugs), which						
12	The tour generated by Greedy Heuristic for a Travelling Salesperson Problem (TSP) with six cities is and total cost incurred is The cost to travel from each city to every other city is given in the adjacency matrix. Salesman will start from city D. (Note: Write down order of list of cities traversed separated by comma).	3 10 0 31 21 51 41 C 20 31 0 12 59 100 D 30 21 12 0 5 8 E 40 51 59 5 0 69						
	In a graph where nodes represent locations and edges represent paths betwee to find the shortest path from a start node S to a goal node G. Given the for 1. The edge costs between nodes are non-negative. 2. The heuristic h(n) is admissible (i.e., it never overestimates the true cost 3. The heuristic is consistent (i.e., for any node n and any neighbor n', h(n) moving from n to n'. Which of the following statements about the A* algorithm is correct? a) A* can sometimes fail to find the optimal path if the heuristic is compared by a will always explore nodes with the smallest heuristic value h(n) them. c) If two nodes have the same f(n) = g(n) + h(n), A* will explore the list. d) A* does not guarantee optimality if the heuristic function is not considered.	Illowing conditions: It to reach the goal). $(1) <= c(n, n') + h(n')$, where $c(n, n')$ is the cost of consistent but not admissible. In first, regardless of the cost so far to reach the order they were inserted into the open						
14	The minimum value of beam width (β) required to find the complete solution in the given graph using beam search algorithm is and nodes in the Open list at step 3 are? (Note: 'a' is the start node and 'g' is the goal node, consider step numbering starts from 1)	a 10 9 b						