§4.5 Indeterminate Forms and L'Hôpital's Rule

Theorem 6 (L'Hôpital's Rule). Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval I containing a, and that $g'(x) \neq 0$ on I if $x \neq a$. Then $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$, assuming that the limit on the right side of this equation exists.

Example 1. Find the limits: (a) $\lim_{x\to 0} \frac{3x - \sin x}{x}$ (b) $\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x}$ (c) $\lim_{x\to 0} \frac{x - \sin x}{x^3}$.

Example 2. Be careful to apply L'Hôpital's Rule correctly: $\lim_{x\to 0} \frac{1-\cos x}{x+x^2}$.

Example 3. Find (b) $\lim_{x\to 0^-} \frac{\sin x}{x^2}$.

Example 4. Find the limits of these ∞/∞ forms: (a) $\lim_{x\to(\pi/2)^-} \frac{\sec x}{1+\tan x}$ (c) $\lim_{x\to\infty} \frac{e^x}{x^2}$.

Example 5. Find the limits of these $\infty \cdot 0$ form: (b) $\lim_{x \to 0^+} \sqrt{x} \ln x$.

Example 6. Find the limit of this $\infty - \infty$ form: $\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$.

Example 7. Apply L'Hôpital's Rule to show that $\lim_{x\to 0^+} (1+x)^{1/x} = e$.

Example 8. Find $\lim_{x\to\infty} x^{1/x}$.

$\S4.6\ Applied\ Optimization$

Example 1. An open-top box is to be made by cutting small congruent squares from the corners of a 12-in.-by-12-in. sheet of tin and bending up the sides. How large should the squares cut from the corners be to make the box hold as much as possible?

Exercise 8. A 216 m² rectangular pea patch is to be enclosed by a fence and divided into two equal parts by another fence parallel to one of the sides. What dimensions for the outer rectangle will require the smallest total length of fence? How much fence will be needed?

$\S4.8\ Antiderivatives$

Definition. A function F is an **antiderivative** of f on an interval I if F'(x) = f(x) for all x in I.

Example 1. Find an antiderivative for: (a) f(x) = 2x (b) $g(x) = \cos x$.

Theorem 8. If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is F(x) + C, where C is an arbitrary constant.

Example 2. Find an antiderivative of $f(x) = 3x^2$ that satisfies F(1) = -1.

Example 3. Find the general antiderivatives:

(a)
$$f(x) = x^5$$
 (b) $g(x) = \frac{1}{\sqrt{x}}$ (c) $h(x) = \sin(2x)$ (e) $j(x) = e^{-3x}$

Antiderivative Linearity Rules.

	Function	General antiderivative
1. Constant Multiple Rule:	kf(x)	kF(x) + C, k a constant
2. Sum or Difference Rule:	$f(x) \pm g(x)$	$F(x) \pm G(x) + C$

Definition. The collection of all antiderivatives of f is called the **indefinite integral** of f with respect to x, and is denoted by $\int f(x)dx$. The symbol \int is an **integral sign**. The function f is the **integrand** of the integral, and x is the **variable of integration**.

Example 6. Evaluate
$$\int (x^2 - 2x + 5) dx$$
.

Exercise 88. Right or wrong?
$$\int \frac{x\cos(x^2) - \sin(x^2)}{x^2} dx = \frac{\sin(x^2)}{x} + C.$$