Caminho Mínimo

Considere um tabuleiro com 3 × 4 quadrículas. Cada quadrícula contém um número:

0	4	3	6
7	8	6	8
2	3	1	8

O objectivo do jogo consiste em deslocar um peão desde o canto superior esquerdo até ao canto inferior direito, através de uma sequência de movimentos para a direita ou para baixo, de forma a minimizar o somatório dos pontos correspondentes às quadrículas por onde se passou.

(a) Formule este jogo como um problema de caminho mínimo.

Programação Linear Inteira

Para um bar funcionar 24 horas a distribuição dos empregados segue as necessidades abaixo (Número de funcionários no período:

Hora do dia	Nº mínimo de empregados
2 - 6	4
6 – 10	8
10 - 14	10
14 - 18	7
18 – 22	12
22 – 2	4

Por excesso de esforço e preparação dos equipamentos os empregados que entrarem às 06:00 trabalham 4 horas consecutivas, nos demais turnos cada empregado deverá trabalhar 8 horas consecutivas por dia. O acordo trabalhista prevê o custo de R\$ 20,00 a hora, exceto os funcionários que trabalham das 22:00 às 06:00 que tem a sua hora acrescida em 50%. O objetivo é achar o menor número necessário de empregados de modo que a o custo e a necessidade mínima acima seja obedecida. Formule o problema como um modelo de Programação Linear.

Apresente o Modelo Matemático do problema acima. (Função Objetivo e Restrições)

Em uma linha de montagem existem 8 tarefas que podem ser realizadas como indicado abaixo:

Tarefa	Tempo Requerido	Tarefas Predecessoras	
1	7 min.	j e n	
2	6 min.	C .	
3	8 min.	-	
4	8 min.	1,2	
5	1 min.	2,3	
6	6 min.	4,5	
7	7 min.	5	
8	8 min.	6,7	

Considere que um trabalhador é posicionado em cada estação de trabalho e pode realizar um certo número de tarefas em sua estação. Considere, ainda, que a cada 15 minutos uma unidade do produto deve sair da linha de produção. Formule um modelo de programação matemática que determine quantas estações de trabalho devem ser utilizadas, e quais as tarefas que deve ser alocadas a cada estação.