6.S091: Problem Set 3

Suyeol Yun syyun@mit.edu

February 1, 2023

Problem 1: Constructing Minimal I-MAPs [5 points]

* Code is available at https://github.com/syyunn/6.S091/blob/main/pset3/pb1.py

(a)

1. Draw \mathcal{G}_{π_a}

2. Draw \mathcal{G}_{π_b}

3. Draw \mathcal{G}_{π_c}

(b)

We can transform \mathcal{G}_{π_a} into \mathcal{G}_{π_c} by the Chickering sequence (Add 5 \rightarrow 4, Reverse 1 \rightarrow 5, then Reverse 1 \rightarrow 4).

Problem 2

(a)

Let γ_m be an arbitrary node of the d-connecting path γ . Since γ is d-connected, γ_m is unblocked over the path from $A \in \mathbf{A}$ to $B \in \mathbf{B_1}$ given $\mathbf{S} \cup \mathbf{B_2}$. Since γ_m is unblocked, γ_m is either a non-collider or a collider. First, if γ_m is a non-collider, $\gamma_m \notin \mathbf{S} \cup \mathbf{B_2}$ and it implies $\gamma_m \notin \mathbf{S}$, which implies that γ_m is unblocked over the path from $A \in \mathbf{A}$ to $B \in \mathbf{B}$ given \mathbf{S} because $B \in \mathbf{B_1} \subset \mathbf{B}$. Second, if γ_m is a collider, then $\overline{\deg}(\gamma_m) \cap (\mathbf{S} \cup \mathbf{B_2}) \neq \emptyset$. Let $\zeta_m \in \overline{\deg}(\gamma_m)$ be the closest node to γ_m among the nodes in $\overline{\deg}(\gamma_m) \cap (\mathbf{S} \cup \mathbf{B_2})$. Then ζ_m is either in \mathbf{S} or in $\mathbf{B_2} \setminus \mathbf{S}$. If $\zeta_m \in \mathbf{S}$, γ_m is unblocked over the path from $A \in \mathbf{A}$ to $B \in \mathbf{B}$ given \mathbf{S} because $\overline{\deg}(\gamma_m) \cap \mathbf{S} \neq \emptyset$. If $\zeta_m \in \mathbf{B_2} \setminus \mathbf{S}$, any nodes over the decendent path between γ_m to ζ_m are not in \mathbf{S} thus they are unblocked over the path from $A \in \mathbf{A}$ to $\zeta_m \in \mathbf{B_2} \subset \mathbf{B}$ given \mathbf{S} because they are non-colliders and they are not in \mathbf{S} . Therefore, we can always find a d-connecting path γ' between $A \in \mathbf{A}$ and $B' \in \mathbf{B}$ given \mathbf{S} .

(b)

B can be either in $\mathbf{B_1}$ or $\mathbf{B_2}$. If $B \in \mathbf{B_2}$, then the path γ can be a d-connecting path γ' from $A \in \mathbf{A}$ to $B' \in \mathbf{B_2}$ given \mathbf{S} . Otherwise, if $B \in \mathbf{B_1}$, let γ_m be an arbitrary node of the d-connecting path γ . Then γ_m is either non-collider or collider. If γ_m is a collider, $\overline{\deg}(\gamma_m) \cap \mathbf{S} \neq \emptyset$ which implies $\overline{\deg}(\gamma_m) \cap (\mathbf{S} \cup \mathbf{B_2}) \neq \emptyset$ which implies γ_m is unblocked over the path from $A \in \mathbf{A}$ to $B \in \mathbf{B_1}$ given $\mathbf{S} \cup \mathbf{B_2}$. If γ_m is non-collider, $\gamma_m \notin \mathbf{S}$. If γ_m is also not in $\mathbf{B_2}$, then γ_m is unblocked over the path from $A \in \mathbf{A}$ to $B \in \mathbf{B_1}$ given $\mathbf{S} \cup \mathbf{B_2}$. If γ_m is not in \mathbf{S} but in $\mathbf{B_2}$, we can shorten the path γ by removing the trailing nodes of γ_m from γ . This shortened path is d-connecting path γ' from $A \in \mathbf{A}$ to $B' \in \mathbf{B_2}$ given \mathbf{S} . Therefore, we can always find a d-connecting path of either one of the given two types.

Problem 3

* Code is available at https://github.com/syyunn/6.S091/blob/main/pset3/search_mec.py

(a)

starting_dag2 and 3 both have 4 neighbors.

(b)

- 1. starting_dag2 has the shortest path of length 1.
- 2. starting_dag3 has the shortest path of length 3.