ВЕЖБЕ 6

-Рекурентне релације-

1. Наћи општа решења рекурентних релација

a)
$$f_{n+2} - 7f_{n+1} + 12f_n = 0$$

$$b) \ f_n + 3f_{n-1} - 10f_{n-2} = 0$$

c)
$$f_{n+2} - 4f_{n+1} + 13f_n = 0$$

$$d) \ f_{n+2} + 6f_{n+1} + 9f_n = 0$$

e)
$$f_{n+3} + 3f_{n+2} + 3f_{n+1} + f_n = 0$$

$$f) f_{n+4} + 4f_n = 0$$

2. Решити рекурентне релације

a)
$$f_n = 5f_{n-1} - 6f_{n-2}$$
, $f_0 = 1$, $f_1 = 1$

b)
$$f_n = 6f_{n-1} - 9f_{n-2}, f_0 = f_1 = 2$$

c)
$$f_n = 5f_{n-1} - 6f_{n-2} - 4f_{n-3} + 8f_{n-4}, f_0 = 1, f_1 = 8, f_2 = 12, f_3 = 38$$

$$d) \ f_{n+3} = 4f_{n+2} - f_{n+1} - 6f_n, \ f_0 = 1, f_1 = 2, f_2 = 4 \ (домаћи)$$

3. Решити систем

$$f_{n+1} = 2f_n - g_n$$
$$g_{n+1} = f_n + 4g_n$$

уз почетне услове $f_0 = 2, g_0 = 1.$

- 4. Наћи опште решење једначине $a_{n+2}^2 = 5a_{n+1}^2 4a_n^2$.
- 5. Ако се зна да су сви чланови низа a_n почев од a_2 различити решити

a)
$$a_{n+2} = \frac{a_{n+1}^3}{a_n^2}$$
, $a_0 = 1$, $a_1 = 2$

b)
$$a_n = a_{n-1}a_{n-2}^2$$
, $a_0 = a_1 = 2$ (домаћи)

- 6. Наћи општу формулу за следећи низ $a_{n+2}-4a_{n+1}+4a_n=2^n,\ a_0=a_1=0.$
- 7. Правоугаоник величине $2 \times n$ издељен је на 2n једнаких квадрата. На располагању имамо домине правоугаоног облика 2×1 и 2×2 . На колико начина се цео правоугаоник $2 \times n$ може прекрити са овим доминама?
- 8. Колико има речи дужине n над азбуком $A = \{1, 2, 3\}$ у којима се не појављује подреч 11?
- 9. Колико има речи дужине n над азбуком $\{0,1,2\}$ које садрже паран број нула? (домаћи!)