Записки лекций С.А. Гайфуллина.

"Инвариант Макар-Лиманова и автоморфизмы аффинных алгебраических многообразий".

Лекция 1

1 Основные понятия

Если не оговорено противное, все кольца (алгебры) в данных лекциях будут предполагаться ассоциативными, коммутативными и с единицей. Пусть \mathbb{K} – алгебраически замкнутое поле нулевой характеристики. И пусть B – некоторая конечно порождённая \mathbb{K} -область целостности (конечно порождённая \mathbb{K} -алгебра без делителей нуля). Это эквивалентно тому, что B – алгебра $\mathbb{K}[X]$ регулярных функций на некотором неприводимом аффинном алгебраическом многообразии X.

Определение 1.1. Дифференцирование (или более точно \mathbb{K} -дифференцирование) алгебры B – это линейный оператор $\delta \colon B \to B$, удовлетворяющий тождеству Лейбница. $\delta(ab) = \delta(a)b + a\delta(b)$.

Примеры дифференцирований:

- B любая, $\delta \equiv 0$;
- $B = \mathbb{K}[x_1, \dots, x_n], \ \delta = \frac{\partial}{\partial x_1};$
- $B = \mathbb{K}[x_1, \dots, x_n], \ \delta = f_1 \frac{\partial}{\partial x_1} + f_2 \frac{\partial}{\partial x_2} + \dots + f_n \frac{\partial}{\partial x_n}, \ f_i \in B;$
- $B = \mathbb{K}[x, y, z]/(xz y^2), \ \delta = 2y \frac{\partial}{\partial x} + z \frac{\partial}{\partial y}.$

В последнем примере стоит отметить, что $\delta(xz-y^2)=\delta(x)z+x\delta(z)-2y\delta(y)=2yz+0-2yz=0$. Следовательно, если $g=f+(xz-y^2)h$, то $\delta(g)=\delta(f)+\delta(xz-y^2)h+(xz-y^2)\delta(h)=\delta(f)+(xz-y^2)\delta(h)$, что доказывает корректную определённость δ на смежных классах по идеалу $(xz-y^2)$.

Лемма 1.2. Дифференцирование достаточно задать на образующих алгебры.

Доказательство. Пусть $\{b_{\alpha} \mid \alpha \in S\}$ — образующие алгебры B. Тогда любой элемент есть $b = f(b_{\alpha_1}, \dots, b_{\alpha_k})$, где $f \in \mathbb{K}[y_1, \dots, y_k]$. Из линейности δ и правила Лейбница легко следует, что

$$\delta(b) = \sum_{j=1}^{k} \left(\frac{\partial f}{\partial y_j} (b_{\alpha_1}, \dots, b_{\alpha_k}) \cdot \delta(b_{\alpha_j}) \right).$$

Следствие 1.3. Любое дифференцирование алгебры $B = \mathbb{K}[x_1, \dots, x_n]$ имеет вид $\delta = f_1 \frac{\partial}{\partial x_1} + f_2 \frac{\partial}{\partial x_2} + \dots + f_n \frac{\partial}{\partial x_n}, f_i \in B.$

Упражнение 1.4. Пусть $B=\mathbb{K}[x_{\alpha}\mid \alpha\in S]/I$, где $I=(f_{\beta}\mid \beta\in\Omega)$. Пусть задано дифференцирование δ алгебры $\mathbb{K}[x_{\alpha}\mid \alpha\in S]$ такое, что $\delta(f_{\beta})\in I$ для любого $\beta\in\Omega$. Тогда δ индуцирует дифференцирование $\bar{\delta}$ алгебры B по правилу $\bar{\delta}(h+I)=\delta(h)+I$.

Упражнение 1.5. Любое дифференцирование алгебры $B = \mathbb{K}[x_{\alpha} \mid \alpha \in S]/I$ является дифференцированием $\overline{\delta}$ для некоторого дифференцирования δ алгебры $\mathbb{K}[x_{\alpha} \mid \alpha \in S]$ с условием $\delta(f_{\beta}) \in I$.

Упражнение 1.6. Докажите, что векторное пространство Der(B) с операцией $[\delta, \zeta] = \delta \circ \zeta - \zeta \circ \delta$ является алгеброй Ли.

Замечание 1.7. В предыдущих двух упражнениях можно заменить $\mathbb{K}[x_{\alpha} \mid \alpha \in S]$ на любую коммутативную алгебру.

Определение 1.8. Дифференцирование δ алгебры B называется локально нильпотентным (ЛНД), если для любого $b \in B$ найдётся натуральное число m такое, что $\delta^m(b) = 0$.

Примеры

- B любая, $\delta \equiv 0$;
- $B = \mathbb{K}[x_1, \dots, x_n], \ \delta = \frac{\partial}{\partial x_1};$
- $B=\mathbb{K}[x_1,\ldots,x_n],\,\delta=f_1\frac{\partial}{\partial x_1}+f_2\frac{\partial}{\partial x_2}+\ldots+f_n\frac{\partial}{\partial x_n},\,f_i\in\mathbb{K}[x_1,\ldots,x_{i-1}],$ в частности, $f_1\in\mathbb{K}$.

Дифференцирования из последнего примера называются треугольными.

Упражнение 1.9. Локальную нильпотентность можно проверять только для некоторой системы образующих нашей алгебры.

Легко видеть, что если дифференцирование δ в упражнении 1.4 локально нильпотентно, то и $\overline{\delta}$ также локально нильпотентно.

На множестве LND(B) локально нильпотентных дифференцирований данной алгебры B нет операций сложения или коммутирования: сумма двух ЛНД может быть не локально нильпотентной и коммутатор двух ЛНД может быть не локально нильпотентным. Также умножение ЛНД на фукнцию может быть не ЛНД.

Пример 1.10. Пусть $B = \mathbb{K}[x,y]$. Дифференцирования $\delta_1 = y \frac{\partial}{\partial x}$ и $\delta_2 = x \frac{\partial}{\partial y}$ являются ЛНД. Но их сумма $D = y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$ не локально нильпотентна. Действительно, $D^{2k+1}(x) = y$, $D^{2k}(x) = x$.

Коммутатор $P = [\delta_1, \delta_2]$ также не ЛНД: P(x) = -x, P(y) = y, то есть $P = -x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$.

Пусть $\delta = \frac{\partial}{\partial x}$. Тогда $x\delta$ – не ЛНД.

Есть лишь довольно бедные следующие операции.

Лемма 1.11. Пусть $\delta, \zeta \in LND(B)$, тогда

- а) если $f \in \operatorname{Ker} \delta$, то $f\delta \in LND(B)$ (ЛНД $f\delta$ называется репликой дифференцирования δ);
- б) если $[\delta, \zeta] = 0$, то $\delta + \zeta \in LND(B)$.
- в) пусть φ автоморфизм алгебры B (постоянный на \mathbb{K}). Тогда $\varphi \circ \delta \circ \varphi^{-1}$ также ЛНД.

Доказательство. Упражнение.

Группу автоморфизмов (постоянных на \mathbb{K}) алгебры B будем обозначать $\mathrm{Aut}(B)$. Иногда будем отождествлять её с группой регулярных автоморфизмов соответствующего многообразия $\mathrm{Aut}(X)$.

П

Спецификой ЛНД является возможность брать экспоненты.

Определение 1.12. Пусть $\delta \in LND(B)$, тогда *экспонентой* дифференцирования δ называется следующее отображение:

$$\exp(\delta) \colon B \to B, \qquad \exp(\delta) = \mathrm{id} + \delta + \frac{\delta^2}{2!} + \frac{\delta^3}{3!} + \dots$$

Заметим, что хотя сумма в определении бесконечная, при применении к любому элементу $b \in B$ получим конечное число ненулевых слагаемых.

Лемма 1.13. а) Экспонента любого ЛНД является автоморфизмом алгебры.

б) Если δ и ζ – коммутирующие ЛНД, то $\exp(\delta + \zeta) = \exp(\delta) \circ \exp(\zeta)$.

Рассмотрим подгруппу

$$\mathcal{H}_{\delta} = \{ \exp(t\delta \mid t \in \mathbb{K}) \} \subseteq \operatorname{Aut}(B).$$

Легко видеть, что эта подгруппа изоморфна $(\mathbb{K},+)$ и соответствует алгебраическому действию алгебраической группы $(\mathbb{K},+)$ на многооброазии X. Такие подгруппы в $\mathrm{Aut}(X)$ будем называть \mathbb{G}_a – подгруппами.

Лемма 1.14. Любая \mathbb{G}_a – подгруппа в $\operatorname{Aut}(B)$ имеет вид \mathcal{H}_δ для некоторого $\delta \in LND(B)$.

Определение 1.15. Подгруппа в Aut(B), порождённая всеми \mathbb{G}_a -подгруппами называется noderpynnoй специальных автоморфизмов и обозначается SAut(B) (или SAut(X)).

Лемма 1.16. SAut(B) – нормальная подгруппа в Aut(B)

Доказательство. Пусть $\varphi \in \operatorname{Aut}(B)$. Из леммы 1.11(в) следует, что если δ – ЛНД, то и $\varphi \circ \delta \circ \varphi^{-1}$ – ЛНД. Непосредственной проверкой можно убедиться, что $\varphi \circ \exp(\delta) \circ \varphi^{-1} = \exp(\varphi \circ \delta \circ \varphi^{-1})$. Отсюда следует, что сопряжённая к \mathbb{G}_a -подгруппе также является \mathbb{G}_a -подгруппой.

Определение 1.17. Пусть δ – ЛНД алгебры B. Определим следующую степенную функцию ν_{δ} : $B \setminus \{0\} \to \mathbb{N} \cup \{0\}$. Если $\delta^k(b) \neq 0$ и $\delta^{k+1}(b) = 0$, то $\nu_{\delta}(b) = k$. Здесь $\delta^0(b) = b$.

Упражнение 1.18. Выполнены следующие свойства:

- 1) $\nu_{\delta}(a+b) \leq \max\{\nu_{\delta}(a), \nu_{\delta}(b)\};$
- 2) $\nu_{\delta}(ab) = \nu_{\delta}(a) + \nu_{\delta}(b)$.

Отсюда следует, что подмножества $U_k = \{b \mid \nu_{\delta}(b)\} \cap \{0\}, k \in \mathbb{N} \cup \{0\}$ – это пространства, задающие строгую (возрастающую) фильтрацию на B, то есть

- $U_i \subseteq U_{i+1}$;
- $\bullet \bigcup_{i\geq 0} U_i = B;$
- если $a \in U_i$, $b \in U_j$, то $ab \in U_{i+j}$;
- если $a \in U_i \setminus U_{i-1}$, $b \in U_j \setminus U_{j-1}$, то $ab \in U_{i+j} \setminus U_{i+j-1}$.

Упражнение 1.19. Докажите это.

3амечание 1.20. Часто спепенную функцию ν_{δ} обозначают через \deg_{δ} . Но мы выберем первое обозначение, чтобы не перегружать символ \deg . Также зачастую пологают $\nu_{\delta}(0) = -\infty$.

Лемма 1.21. Пусть δ – ЛНД алгебры B. И пусть $A = \operatorname{Ker} \delta$. Тогда

- A подалгебра (область целостности) с единицей в B;
- обратимые элементы B^{\times} содержатся в A;
- A факториально замкнутая подалгебра в B (то есть если для некоторых $x, y \in B$ выполнено $xy \in A$, то $x, y \in A$);
- A алгебраически замкнутая подалгебра (то есть если для некоторого $b \in B$ выполнено f(b) = 0 для некоторого $f \in A[x]$, то $b \in A$);
- $\operatorname{tr.deg}_{\mathbb{K}} A = \operatorname{tr.deg}_{\mathbb{K}} B 1$.

Упражнение 1.22. Докажите всё, кроме последнего пункта.

Замечание 1.23. Подалгебра A может быть не конечно порождённой. Даже в случае, когда $B = \mathbb{K}[x_1, \dots, x_n]$.

Лемма 1.24. Пусть δ – ЛНД алгебры B. Тогда $\ker \delta = B^{\mathcal{H}_{\delta}}$ (алгебра инвариантов при действии \mathcal{H}_{δ} на B).

Доказательство. Если $a \in \text{Ker } \delta$, то

$$\exp(t\delta)(a) = \mathrm{id}(a) + t\delta(a) + \frac{t^2\delta^2(a)}{2!} + \dots = a.$$

Напротив, пусть $\nu_{\delta}(a) = m$ и $a \in B^{\mathcal{H}_{\delta}}$. Тогда $\exp(t\delta)(a)$ – многочлен степени m от t с коэффициентами из B. Но этот многочлен для всех t принимает значение a. Так как поле \mathbb{K} бесконечно, получаем, что все коэффициенты, кроме свободного члена равны нулю, а это значит, что $a \in \operatorname{Ker} \delta$.

Определение 1.25. Инвариант Макар-Лиманова алгебры B – это пересечение всех ядер всех ЛНД алгебры B.

$$ML(B) = \bigcap_{\delta \in LND(B)} \operatorname{Ker} \delta.$$

Из леммы 1.24 следует, что $ML(X) = B^{\mathrm{SAut}(B)}$.

Предложение 1.26. ML(B) является Aut(B)-инвариантной подалгеброй.

Доказательство. То, что ML(B) — подалгебра следует из того, что по определению это пересечение подалгебр. В свою очередь HD(B) — по определению подалгебра.

Пусть δ – ЛНД алгебры B, а φ – автоморфизм B. Докажем, что $\varphi(\operatorname{Ker} \delta) = \operatorname{Ker} (\varphi \circ \delta \circ \varphi^{-1})$. В самом деле, если $b \in \operatorname{Ker} \delta$, то $\varphi \circ \delta \circ \varphi^{-1}(\varphi(b)) = \varphi \circ \delta(b) = 0$, значит, $\varphi(b) \in \operatorname{Ker} (\varphi \circ \delta \circ \varphi^{-1})$, что означает, что

$$\varphi(\operatorname{Ker} \delta) \subseteq \operatorname{Ker} (\varphi \circ \delta \circ \varphi^{-1}).$$

Применив это же утверждение к $\psi = \varphi^{-1}$ и $\zeta = \varphi \circ \delta \circ \varphi^{-1}$, получим

$$\varphi^{-1}(\varphi \circ \delta \circ \varphi^{-1}) = \psi(\operatorname{Ker} \zeta) \subseteq \operatorname{Ker} (\psi \circ \zeta \circ \psi^{-1}) = \operatorname{Ker} \delta.$$

Применяя к обоим частям φ , получаем включение, противоположное ранее доказанному. Следовательно, доказано, что $\varphi(\operatorname{Ker} \delta) = \operatorname{Ker} (\varphi \circ \delta \circ \varphi^{-1})$

Теперь $ML(B) = \bigcap_{\delta \in LND(B)} \operatorname{Ker} \delta$. Значит,

$$\varphi(ML(B)) = \bigcap_{\delta \in LND(B)} \varphi(\operatorname{Ker} \delta) = \bigcap_{\delta \in LND(B)} \operatorname{Ker}(\varphi \circ \delta \circ \varphi^{-1}) = \bigcap_{\varphi \circ \delta \circ \varphi^{-1} \in LND(B)} \operatorname{Ker}(\varphi \circ \delta \circ \varphi^{-1}) = ML(B).$$

Упражнение 1.27. Пусть B и C – две алгебры. И пусть $\psi \colon B \to C$ – изоморфизм этих алгебр. Тогда $\psi(ML(B)) = ML(C)$. **Лемма 1.28.** Подалгебра ML(X)

- \bullet содержит подалгебру $\mathbb{K}[B^{\times}]$, порождённую всеми обратимыми элементами;
- является факториально замкнутой;
- является алгебраически замкнутой.

Доказательство. Следует из леммы 1.21

Пример 1.29. •
$$ML(\mathbb{K}[x_1,\ldots,x_n])=\mathbb{K}$$
. Дествительно, $\bigcap_{i=1}^n \operatorname{Ker} \frac{\partial}{\partial x_i}=\mathbb{K}$.

- $ML(\mathbb{K}[x_1,x_1^{-1},x_2,x_2^{-1},\ldots,x_n,x_n^{-1}])=\mathbb{K}[x_1,x_1^{-1},x_2,x_2^{-1},\ldots,x_n,x_n^{-1}].$ В самом деле, эта алгебра порождена обратимыми функциями.
- $ML(\mathbb{K}[x_1,x_1^{-1},x_2,x_2^{-1},\ldots,x_k,x_k^{-1},x_{k+1},\ldots,x_n])=\mathbb{K}[x_1,x_1^{-1},x_2,x_2^{-1},\ldots,x_k,x_k^{-1}].$ (Упражнение.)

2 Вычисление ML(B)

В этом разделе будут собраны некоторые методы (не полный список) и примеры вычисления ML(B). Начнём с совсем простых методов.

1. Явное выписывание некоторых дифференцирований.

Для того, чтобы вычислить ML(B) необходимо доказать, что он не меньше и не больше, чем предполагаемый ответ. Для того, чтобы получить предполагаемый ответ и для того, чтобы доказать, что ML(B) не больше, чаще всего стоит выписать некоторое количество ЛНД, пересечь их ядра и (если больше не получается уменьшить путём пересечения с ядрами других ЛНД) попытаться доказать, что ML(X) не меньше.

Пример 2.1. Пусть $B = \mathbb{K}[x, y, z]/(xz - y^2)$. Докажем, что $ML(B) = \mathbb{K}$. Для этого рассмотрим два ЛНД:

$$\delta_1: \begin{cases} x \mapsto 2y; \\ y \mapsto z; \\ z \mapsto 0; \end{cases} \qquad \delta_2: \begin{cases} x \mapsto 0; \\ y \mapsto x; \\ z \mapsto 2y. \end{cases}$$

Легко видеть, что $\operatorname{Ker} \delta_1 = \mathbb{K}[z]$, $\operatorname{Ker} \delta_2 = \mathbb{K}[x]$, и следовательно, $ML(B) = \mathbb{K}$.

3амечание 2.2. Аналогичным образом (рассматривая ЛНД, соответствующие корням Демазюра) можно показать, что инвариант Макар-Лиманова любого нормального невырожденного торического многообразия равен \mathbb{K} .

2. Использование обратимых функций и свойств ML(B).

Как уже было упомянуто, ML(B) содержит $\mathbb{K}[B^{\times}]$. Можно использовать это вкупе со свойствами ML(B).

Пример 2.3. Пусть

$$B = \mathbb{K}[x, y, z, u, v] / ((x^4 + y^5 + z^6)(x^4 + y^5 - z^6)(x^4 - y^5 + z^6) - 1, x^{17} + y^{19} + u^{23}).$$

Тогда $x^4+y^5+z^6, x^4+y^5-z^6, x^4-y^5+z^6\in B^\times\subseteq ML(B)$. Так как ML(B) – подпространство, имеем $x^4,y^5,z^6\in ML(X)$. В силу факториальной замкнутости $x,y,z\in ML(B)$. В силу алгебраической замкнутости $u\in ML(B)$. С другой стороны, $\frac{\partial}{\partial v}$ – ЛНД, и его ядро – это алгебра порождённая x,y,z,u. Итак,

$$ML(B) = \mathbb{K}[x, y, z, u]/((x^4 + y^4 + z^4)(x^4 + y^4 - z^4)(x^4 - y^4 + z^4) - 1, x^{17} + y^{19} + u^{23}).$$

На следующей лекции будут рассмотрены другие методы вычисления ML(B). Далее мы перейдём к применениям ML(B) и к модификациям этого инварианта.

Лекция 2

Продолжим перечислять идеи, помогающие при вычислении инварианта Макар-Лиманова.

3. Использование инвариантных подалгебр/идеалов.

Пример 2.4. Рассмотрим $B = \mathbb{K}[u,v,x]/(u^2-v^3)$. У соответствующей алгебры есть ЛНД $\frac{\partial}{\partial x}$. Его ядро – это подалгебра $\mathbb{K}[u,v]/(u^2-v^3)$. Докажем, что $ML(B) = \mathbb{K}[u,v]/(u^2-v^3)$. Воспользуемся тем, что у соответствующего B многообразия множество особых точек имеет вид $\{(0,0,x)\}$. Идеал элементов B, равных нулю на этом множестве равен $I=(u,v)\triangleleft B$. Этот идеал инвариантен относительно автоморфизмов. Пусть δ – некоторое ЛНД B. Идеал I инвариантен относительно $\exp(t\delta)$ для любого t. Отсюда легко вывести (упражнение), что I инвариантен относительно δ . Отсюда идеал I^2 также δ -инвариантен. Так как δ локально нильпотентно, существует элемент из I^2 , лежащий в ядре δ . Этот элемент имеет вид vh. Значит, $v \in \operatorname{Ker} \delta$. Отсюда, так как $\operatorname{Ker} \delta$ алгебраически замкнуто, $u \in \operatorname{Ker} \delta$. Так как это верно для любого ЛНД δ , получаем $ML(B) \supseteq \mathbb{K}[u,v]/(u^2-v^3)$.

4. Изучение однородных ЛНД и их степеней.

Тут нам понадобятся ещё некоторые сведения об $\Pi H \Pi$ в случае градуированного кольца. Пусть G – абелева группа. На всякий случай напомним, что такое градуированная алгебра.

Определение 2.5. G-градуировка алгебры B – это набор подпространств $B_q, g \in G$ таких, что

- 1) $B = \bigoplus_{g \in G} B_g$,
- 2) если $a \in B_a$ и $b \in B_h$, то $ab \in B_{a+h}$.

При этом B_g называются однородными компонентами алгебры B. Если $b \neq 0 \in B_g$, то говорят, что $\deg b = g$, такие элементы называются однородными. Произвольный элемент не является однородным, а выполнено разложение элемента на его однородные компоненты $b = \sum_{g \in G} b_g, g \in G$.

Замечание 2.6. Если мы хотим ввести такую градуировку на алгебре $\mathbb{K}[x_1,\ldots,x_n]/(f_1,\ldots,f_k)$), чтобы все образующие x_i были однородны, то можно просто указать их степени и проверить, что для каждого f_j все мономы в нём имеют одинаковую степень. Но безусловно могут существовать и градуировки, для которых образующие не являются однородными.

Определение 2.7. Пусть на алгебре B задана G-градуировка. Скажем, что дифференцирование δ является $o\partial$ норо ∂ ным, если образ каждого однородного элемента однороден.

Упражнение 2.8. Пусть δ – однородное дифференцирование G-градуированной алгебры B (без делителей нуля). Тогда существует элемент $g_0 \in G$ такой, что для любого однородного $f \in B_q$ его степень сдвигается на g_0 , то есть $\delta(f) \in B_{q+q_0}$.

Элемент g_0 из предыдущего упражнения называется cmeneneo однородного дифференцирования δ .

Упражнение 2.9. Пусть B – (конечно порождённая, без делителей нуля) G-градуированная алгебра и пусть δ – некоторое ненулевое дифференцирование на B. Тогда δ однозначно раскладывается в сумму *однородных компонент* $\delta = \sum_{g \in G} \delta_g$, где δ_g – однородное степени g.

Заметим, что разложение на однородные компоненты есть именно для дифференцирований, а не для ЛНД. То есть если изначальное дифференцирование δ локально нильпотентно, то однородные компоненты δ_q могут не быть ЛНД.

Пример 2.10. Пусть $B = \mathbb{K}[x,y]$, $G = \mathbb{Z}_2$. Пусть $B_0 = \mathbb{K}[x^2,y]$, $B_1 = xB_0$. (То есть мы положили $\deg x = 1$, $\deg y = 0$.) Легко видеть, что это задаёт \mathbb{Z}_2 -градуировку на B. Заметим, что B = B[u,v], где u = x + y, v = x - y. Рассмотрим ЛНД $\delta = 2v\frac{\partial}{\partial u}$. Перепишем его в изначальных координатах: $\delta(x) = \delta(y) = x - y$, то есть

$$\delta = (x - y)\frac{\partial}{\partial x} + (x - y)\frac{\partial}{\partial y} = \left(x\frac{\partial}{\partial x} - y\frac{\partial}{\partial y}\right) + \left(-y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y}\right).$$

Легко видеть, что дифференцирование $x\frac{\partial}{\partial x}-y\frac{\partial}{\partial y}$ однородное степени 0, а дифференцирование $-y\frac{\partial}{\partial x}+x\frac{\partial}{\partial y}$ однородное степени 1. Однако оба они не являются локально нильпотентными.

Однако в случае градуировки свободной абелевой группой можно утверждать, что если δ локально нильпотентно, то крайние компоненты разложения будут также ЛНД.

Теорема 2.11. (Зайденберг-Фленер) Пусть на B задана \mathbb{Z} -градуировка и пусть δ – локально нильпотентное дифференцирование. Пусть $\delta = \sum_{i=1}^k \delta_i$ – разложение на однородные компоненты. Тогда δ_l и δ_k – LND.

Доказательство. Упражнение. Указание: рассматривать старший (младший) член.

Следствие 2.12. Пусть на B задана \mathbb{Z}^n -градуировка и пусть δ – локально нильпотентное дифференцирование. Пусть $\delta = \sum_{\alpha \in \mathbb{Z}^n} \delta_i$ – разложение на однородные компоненты. Рассмотрим выпуклую оболочку P всех таких α , что $\delta_{\alpha} \neq 0$. Пусть β – вершина многогранника P. Тогда δ_{β} – ЛНД.

Определение 2.13. Если алгебра B не допускает ненулевых ЛНД, то она называется \mathcal{H} естикой.

То, что B жёсткая эквивалентно тому, что ML(B) = B.

Следствие 2.14. Если на B не существует ненулевых однородных ЛНД, то алгебра B жёсткая.

Вернёмся к вычислению инварианта Макар-Лиманова. Если B допускает градуировку свободной группой, то зачастую исследование однородных ЛНД проще, чем всех. В принципе не верно, что для подсчёта ML(B) достаточно рассмотреть только однородные дифференцирования, но особо удачно бывает, когда удаётся доказать для некоторой \mathbb{Z} -градуировки, что степени всех однородных ЛНД имеют один знак.

Пример 2.15. Рассмотрим поверхности Данилевского $S_{n,P} = \{x^n y = P(z)\}$, где $P \in \mathbb{K}[z]$, $\deg P \geq 2$. Алгебра регулярных функций на такой поверхности имеет вид $\mathbb{K}[x,y,z]/(x^n y - P(z))$. Данная алгебра допускает следующую градуировку $\deg x = 1$, $\deg y = -n$, $\deg z = 0$. Заметим, что на B существует следующее ЛНД ζ (однородное степени n):

$$\begin{cases} x \mapsto 0; \\ y \mapsto P'(z); \\ z \mapsto x^n. \end{cases}$$

При этом $\operatorname{Ker} \zeta = \mathbb{K}[x]$. Есть два принципиально разных случая.

Случай 1: n=1. В этом случае есть симметричное (относительно перестановки $x \leftrightarrow y$) ЛНД с ядром $\mathbb{K}[y]$. Значит, $ML(B) = \mathbb{K}$.

Случай 2: n>1. Пусть δ – некоторое \mathbb{Z} -однородное ЛНД допустим, что $\deg\delta\leq 0$. Тогда

$$\deg(\delta(y)) = \deg y + \deg \delta \le \deg y = -n < 0.$$

Однако из того, что $\deg(\delta(y))$ следует, что $y \mid \delta(y)$.

Лемма 2.16. Если $\delta \in LND(B)$ и $b \mid \delta(b)$, то $\delta(b) = 0$.

Доказательство. Пусть $\delta(b) = bs \neq 0$. Тогда $\nu_{\delta}(\delta(b)) = \nu_{\delta}(b) + \nu_{\delta}(s) \geq \nu_{\delta}(b)$. С другой стороны из определения следует, что $\nu_{\delta}(\delta(b)) = \nu_{\delta}(b) - 1$. Противоречие. Значит, $\delta(b) = 0$.

Из этой леммы следует, что $\delta(y)=0$. Применим ещё одну важную идею. **Присоединение элементов из ядра к полю.** Раз $\delta(y)=0$, то данное ЛНД индуцирует (ненулевое в случае, когда δ не нулевое) ЛНД $\mathbb{K}(y)[x,z]/(x^ny-P(z))$. Мы обещали, что поле будет алгебраически замкнутым (что сейчас совершенно не важно), тогда рассмотрим не $\mathbb{K}(y)$, а его алгебраическое замыкание $\mathbb{L}=\overline{\mathbb{K}(y)}$. Получается, что существует ненулевое ЛНД алгебры

$$C = \mathbb{L}[x, z]/(x^n y - P(z)) \cong \mathbb{L}[x, z]/(x^n - P(z)).$$

Замечание 2.17. Тут можно было поступить по-другому. После того, как мы сказали, что $\delta(y) = 0$, можно было добавить к идеалу многочлен y - 1 и получить ЛНД на $\mathbb{K}[x, y, z]/(x^n y - P(z), y - 1) \cong \mathbb{K}[x, z]/(x^n - P(z))$.

Заметим, что алгебра C может иметь делители нуля, но это не важно в нашем случае.

Лемма 2.18. Алгебра со степенью трансцендентности 1 над $\mathbb K$ допускает ненулевое ЛНД тогда и только тогда, когда она изоморфна $\mathbb K[t]$.

Однако, $C \ncong \mathbb{K}[t]$ (упражнение). Значит, не существует ненулевых ЛНД на C, а значит, не сущетсвует ненулевых ЛНД неположительной степени на B.

Пусть теперь δ – произвольное (не обязательно однородное) ЛНД алгебры B. Тогда $\delta = \sum_{i=l}^k \delta_i$. При этом δ_l – однородное ЛНД. Значит, l>0. Таким образом

$$\delta(x) = \sum_{i=l}^k \delta_i(x)$$
, где $\deg(\delta_i(x)) = i+1 > 1$.

Значит, $x \mid \delta_i(x)$. Отсюда $x \mid \delta(x)$, то есть $\delta(x) = 0$. Следовательно, $x \in ML(B)$, то есть $ML(B) = \mathbb{K}[x]$.

Следствие 2.19. Алгебры $B_1 = \mathbb{K}[x,y,z]/(xy-z^2+1)$ и $B_2 = \mathbb{K}[x,y,z]/(x^2y-z^2+1)$ не изоморфны.

Доказательство. Имеем $ML(B_1) = \mathbb{K} \ncong \mathbb{K}[x] = ML(B_2)$.

3амечание 2.20. Можно (например, установив явный изоморфизм) показать, что $B_1[t] \cong B_2[t]$. Этот пример даёт отрицательное решение обобщённой проблемы сокращения Зарисского.

3амечание 2.21. Аналогичным образом можно доказать, что $ML(\mathbb{K}[x_1,\ldots,x_k,y,z](x_1^{n_1}\ldots x_m^{n_m}y-P(z)))=\mathbb{K}[x_1,\ldots,x_k].$

Задача 2.22. (На лекции не было, но задачу дать хочется побыстрее. То, что я пока-что не умею считать.) Найти $ML(\mathbb{K}[x,y_1,y_2,z]/(x^2y_1y_2-z^2+1)$.

С этой задачей такая проблема: моё предположение, что ML этой алгебры равен $\mathbb{K}[x]$. Легко написать 2 ЛНД таких, что пересечение их ядер – это $\mathbb{K}[x]$. Можно ввести следующую \mathbb{Z} -градуировку: $\deg x=1$, $\deg y_1=-2$, $\deg y_2=\deg z=0$. Она достраивается до \mathbb{Z}^2 -градуировки (можно рассмотреть симметричную \mathbb{Z} -градуировку). И есть 2 базовых \mathbb{Z}^2 -однородных ЛНД (все остальные – это их реплики). Эти ЛНД имеют вид

$$\delta_1 : \begin{cases} x \mapsto 0; \\ y_1 \mapsto 2z; \\ y_2 \mapsto 0; \\ z \mapsto x^2 y_2. \end{cases} \quad \text{if} \quad \delta_2 : \begin{cases} x \mapsto 0; \\ y_1 \mapsto 0; \\ y_2 \mapsto 2z; \\ z \mapsto x^2 y_1. \end{cases}$$

И вроде как оба имеют неотрицательную степень по первой градуировке (и значит, $\delta_i(x)=0$), а именно, $\deg \delta_1=2$, $\deg \delta_2=0$. Однако, если мы возьмём реплику второго ЛНД, то степень может стать отрицательной. Например, $\deg y_1\delta_2=-2$. Это не даёт возможноть так же, как и раньше доказать, что $x\in ML(B)$.

5. Переход к присоединённой градуированной алгебре.

Как мы видели, бывает удобно разбираться с однородными ЛНД, если есть градуировка. Что же делать, когда её нет? Можно перейти к присоединённой градуированной алгебре, рассмотрев некоторую фильтрацию. Напомним нужные определения.

Определение 2.23. Пусть фиксированы линейные подпространства $U_i \subseteq B$ такие, что

- $U_i \subseteq U_{i+1}$;
- $\bullet \bigcup_{i\geq 0} U_i = B;$
- $\bigcap_{i\geq 0} U_i = 0$ (на самом деле мы будем рассматривать только фильтрации с нулевыми просртранствами U_i для отрицательных i);
- если $a \in U_i$, $b \in U_j$, то $ab \in U_{i+j}$;

Тогда будем говорить, что на В задана фильтрация.

Определение 2.24. Присоединённой градуированной алгеброй (соответствующей данной фильтрованной алгебре) называется алгебра

$$\operatorname{Gr} B = \bigoplus_{i \in \mathbb{Z}} U_i / U_{i-1}$$

с умножением $f \in U_i/U_{i-1}, g \in U_j/U_{j-1},$ тогда $f \cdot g = fg \in U_{i+j}/U_{i+j-1}.$

Алгебра $C = \operatorname{Gr} B$ обладает \mathbb{Z} -градуировкой с однородными пространствами $C_i = U_i/U_{i-1}$.

3аме $^{\prime}$ ание $^{\prime}$ 2.25. Алгебра $^{\prime}$ Gr $^{\prime}$ В может быть с делителями нуля. При неудачно выбранной фильтрации она может быть даже с нулевым умножением.

Замечание 2.26. Если алгебрв B была \mathbb{Z} -градуированной (с нулевыми отрицательными компонентами) и мы взяли следующую соответствующую фильтрацию: $U_i = \bigoplus_{i < i} B_i$, то $\operatorname{Gr} B \cong B$.

Пусть $B = \mathbb{K}[x_1, \dots, x_n]/I$. Рассмотрим некоторую градуировку на $\mathbb{K}[x_1, \dots, x_n]$, $\deg x_i \geq 0$, и рассмотрим соответствующую фильтрацию: $V_i = \langle x_1^{a_1} \dots x_n^{a_n} \mid \sum (a_j \deg x_j) \leq i \rangle$. Положим $U_i = \pi(V_i)$, где $\pi \colon \mathbb{K}[x_1, \dots, x_n] \to B$ – канонический гомоморфизм. Тогда U_i задают фильтрацию на B.

Упражнение 2.27. Если I=(f), то $\operatorname{Gr} B\cong \mathbb{K}[y_1,\ldots,y_n]/(\overline{f})$, где \overline{f} , где \overline{f} – максимальная однородная компонента f (в смысле нашей градуировки).

Замечание 2.28. Этот факт обобщается на большее количество образующих. Но там нельзя сказать, что всегда нужно взять в качестве образующих идеала I. Нужно взять верную систему образующих. Например, базщис Грёбнера относительно обнородно-лексикографического порядка, где однородность понимается в смысле нашей градуировки.

Упражнение 2.29. Пусть для некоторого ЛНД δ алгебры B существует такое k, что $\delta(U_m) \subseteq U_{m+k}$ для всех m. Тогда формула $\widetilde{\delta}(b+B_{i-1})=\delta(b)+B_{i+k-1}$ при $b\in B_i$ задаёт ЛНД на Gr B. И если k минимально с таким свойством, то $\widetilde{\delta}$ ненулевое степени k.

Разберём пример вычисления инварианта Макар-Лиманова с помощью этой идеи.

Пример 2.30. Пусть $B = \mathbb{K}[x,y,z]/(x^ny - P(x,z))$, где $P(x,z) = z^d + a_{d-1}(x)z^{d-1} + \ldots + a_0(x)$ и n,d>1. Докажем, что $ML(B) = \mathbb{K}[x]$. Для этого рассмотрим следующую градуировку на $\mathbb{K}[x,y,z]$: $\deg x = 0$, $\deg y = d$, $\deg z = 1$. Тогда $\operatorname{Gr} B \cong \mathbb{K}[u,v,w]/(u^nv-w^d)$ – градуированная алгебра, $\deg u = 0$, $\deg v = d$, $\deg w = 1$. Как мы знаем, $ML(\operatorname{Gr}(B)) = \mathbb{K}[u]$. Пусть ζ – некоторое ЛНД $\operatorname{Gr}(B)$. Тогда $\zeta(u) = 0$ и, присоединяя u к полю, получаем дифференцирование $\mathbb{L}[v,w]/(u^nv-w^d) \cong \mathbb{L}[v,w]/(v-w^d) \cong \mathbb{L}[w]$. На этой алгебре все ЛНД имеют вид $c\frac{\partial}{\partial w}$. Отсюда следует, что любое ЛНД на $\mathbb{K}[u,v,w]/(u^nv-w^d)$ имеет вид $f(x)\zeta_0$, где ζ_0 имеет вид

$$\zeta_0 \colon \begin{cases} u \mapsto 0; \\ v \mapsto dw^{d-1}; \\ w \mapsto u^n. \end{cases}$$

Легко видеть, что все эти ЛНД имеют степень -1 по градуировке $\deg u = 0$, $\deg v = d$, $\deg w = 1$.

Лемма 2.31. Пусть $\delta \in LND(B)$. Существует такое $k \in \mathbb{Z}$, что $\delta(U_i) \subseteq U_{i+k}$ для всех i.

Выберем минимальное такое k. По упражнению 2.29 существует ненулевое однородное ЛНД степени k на Gr B. Значит, k = -1. Тогда $x \in \delta(U_0) \subseteq U_{-1} = \{0\}$. Это показывает, что $x \in ML(B)$.

С другой стороны, можно выписать следующее ЛНД:

$$\begin{cases} x \mapsto 0; \\ y \mapsto \frac{\partial P(x,z)}{\partial z}; \\ z \mapsto x^n. \end{cases}$$

Его ядро – это $\mathbb{K}[x]$. Таким образом, $ML(B) = \mathbb{K}[x]$.

Лекция 3

6 Утверждения типа АВ-теоремы и АВС-теоремы

Бывает полезно использовать следующие утверждения. В них b_1 и b_2 называются взаимно простыми, если выполнено равенство идеалов

$$(b_1) \cap (b_2) = (b_1b_2).$$

Теорема 2.32. (АВ-Теорема.) Пусть $a, b \in \mathbb{N}, u, v \in B$ взаимно посты. Тогда $u^a + v^b = 0$ влечёт $u, v \in ML(X)$.

Теорема 2.33. (ABC-Теорема.) Пусть $a,b,c \geq 2$ и $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \leq 1$, а также $u,v,w \in B$ попарно взаимно посты. Тогда $u^a + v^b + w^c = 0$ влечёт $u,v,w \in ML(X)$.

Эти теоремы основаны на том, что ЛНД δ с ядром A задаёт вложение B в $\mathrm{Quot}(A)[t]$, причём степень по t образа b при вложении совпадает с $\nu_{\delta}(b)$.

3 Применения ML(B)

3.1 Доказательство неизоморфности алгебр (многообразий).

Как уже упоминалось, если $B \cong C$, то $ML(B) \cong ML(C)$.

Например, это позволяет доказать неизоморфность поверхностей Данилевского $xy=z^2-1$ и $xy^2=z^2-1$. (Используется в контр-примере к обобщённой проблеме сокращения.) Также можно доказать, что кубика Кораса-Расселла $x+x^2y+z^2+t^3=0$ не изоморфна \mathbb{K}^3 , так как $ML(\mathbb{K}[x,y,z,t]/(x+x^2y+z^2+t^3)=\mathbb{K}[x])$. (Используется для доказательства линеаризуемости \mathbb{K}^\times действия на \mathbb{K}^3 .)

3.2 Использование для описания Aut(B)

Определение 3.1. Если алгебра B не допускает ненулевых ЛНД, то она называется \mathcal{H} естикой.

То, что B жёсткая эквивалентно тому, что ML(B) = B.

Определение 3.2. Если ядра всех ненулевых ЛНД алгебры В совпадают (и они есть), то В называется полужёсткой.

Лемма 3.3. Если $\operatorname{tr.deg} B \ge 2$ и $\operatorname{Aut}(B)$ – алгебраическая группа (достаточно потребовать того, что связная компонента единицы $\operatorname{Aut}(B)^0$ группы автоморфизмов алгебраическая, но как ввести связную компоненту единицы сейчас обсуждать не будем), тогда B – жёсткая алгебра.

Доказательство. Пусть δ – ненулевое ЛНД алгебры B. Обозначим $A=\operatorname{Ker}\delta$. Тогда в $\operatorname{Aut}(B)^0$ лежит

$$U(\delta) = \{ \exp(a\delta) \mid a \in A \} \cong (A, +).$$

А эта группа содержит n-мерную группу (\mathbb{K}^n , +) для каждого n, так как $\operatorname{tr.deg} A = \operatorname{tr.deg} B - 1 \ge 1$.

Определение 3.4. Назовём следующую группу

$$\mathcal{U}(\delta) = \{ \exp \zeta \mid \operatorname{Ker} \zeta = \operatorname{Ker} \delta \}$$

большой унипотентной группой, соответствующей ЛНД δ .

Замечание 3.5. Иногда бывает так, что существует δ_0 с условием $\operatorname{Ker} \delta_0 = \operatorname{Ker} \delta$ такое, что для любого ζ , удовлетворяющего $\operatorname{Ker} \zeta = \operatorname{Ker} \delta$ выполнено $\zeta = a\delta_0$, $a \in A$. Тогда $\mathcal{U}(\delta) = \mathcal{U}(\delta_0)$. Однако это не всегда так. В общем случае из того, что $\operatorname{Ker} \delta = \operatorname{Ker} \zeta$ следует существование таких $a,b \in A$, что $a\delta = b\zeta$. В любом случае отсюда следует, что группа $\mathcal{U}(\delta)$ коммутативна.

3.2.1 Жёсткие алгебры

Гипотеза 3.6. (Зайденберг-Перепечко) Если B жёсткая, то $\mathrm{Aut}(B)^0$ – алгебраическая группа.

Для некоторых частных случаев удалось доказать верность этой гипотезы и более того, явно описать группу автоморфизмов. Основным инструментом тут является следующая теорема.

Теорема 3.7. (Аржанцев-Гайфуллин) В группе автоморфизмов жёсткой алгебры есть единственный максимальный алгебраический тор.

Идея доказательства (Зайденберг-Фленер). Одномерной алгебраической подгруппе, изоморфной \mathbb{K}^{\times} соответствует полупростое (т.е. диагональное в некотором базисе B) дифференцирование ξ . Если задана \mathbb{Z} -градуировка на B, то ξ можно разложить на сумму однородных компонент $\xi = \sum_{i=l}^k \xi_i$. При этом если $l \neq 0$, то ξ_l – ЛНД, а если $k \neq 0$, то ξ_k – ЛНД (упражнение). Если есть 2 некоммутирующих одномерных подтора в $\mathrm{Aut}(B)$, то можно рассмотреть полупростое ЛНД ξ , соответствующее одному из них и \mathbb{Z} -градуировку, соответствующее другому. Из-за того, что торы не коммутируют, разложение ξ на однородные компоненты состоит не из одного слагаемого. И мы получаем ненулевое ЛНД на B.

Следствие 3.8. Максимальный алгебраический тор в группе Aut(B) является нормальной подгруппой.

Определение 3.9. Скажем, что действие тора T на алгебре B *острое*, если конус весов не содержит подпространств и алгебра T инвариантов равна $B^T = \mathbb{K}$.

Следствие 3.10. Если действие максимального тора на B острое, то группа $\mathrm{Aut}(X)$ алгебраическая.

Идея доказательства. Так как T — нормальная подгруппа, действие $\operatorname{Aut}(B)$ переставляет весовые компоненты T. Так как B конечно порождена и действие T острое, конус весов конечно порождён и весовые компоненты конечномерны. Рассмотрим те весовые компоненты, которые соответствуют базису Гильберта полугруппы весов. Тогда можно показать, что $\operatorname{Aut}(B)$ вкладывается в $\operatorname{GL}(V)$, где V есть сумма весовых компонент, соответствующих базису Гильберта полугруппы весов.

Пример применения этой теоремы

Теорема 3.11. (Аржанцев-Гайфуллин) Если B – жёсткая триномиальная алгебра, то есть алгебра вида

$$\mathbb{K}[x_1,\ldots,x_l,y_1,\ldots,y_m,z_1,\ldots,z_n](x_1^{a_1}\ldots x_l^{a_l}+y_1^{b_1}\ldots y_m^{b_m}+z_1^{c_1}\ldots z_n^{c_n}),$$

то группа автоморфизмов B изоморфна $P(f) \wedge \mathbb{H}$, где P(f) – стабилизатор многочлена f, по которому факторизуем, при перестановке переменных, а \mathbb{H} – стабилизатор $\langle f \rangle$ при умножении переменных на ненулевые константы.

3амечание 3.12. Какие из таких (триномиальных) алгебр являются жёсткими известно, а именно, не жёсткие те, для которых f имеет переменную со степенью 1 или f имеет вид

$$x_1^2 x_2^{2p_2} \dots x_l^{2p_l} + y_1^2 y_2^{2q_2} \dots y_m^{2q_m} + z_1^{c_1} \dots z_n^{c_n}.$$

3.2.2 Полужёсткие алгебры

Аналогично вычислению ML(B), бывают полезны \mathbb{Z} -градуировки. Рассмотрим алгебру $B=\mathbb{K}[x_1,\ldots,x_k,y,z](x_1^{n_1}\ldots x_m^{n_m}y-P(z)))$. Рассматривая \mathbb{Z} -градуировки $\deg x_i=1$, $\deg x_j=0$ при $j\neq i$, $\deg y=-n_i$, $\deg z=0$, можно показать (индукцией по m), что не существует ЛНД неположительной степени. Из этого следует, что $ML(B)==\mathbb{K}[x_1,\ldots,x_k]$. Однако, это не всё, что можно извлечь из этого факта. Рассмотрим произвольное алгебраическое действие \mathbb{K}^\times на B. Ему соответствует полупростое дифференцирование ξ . Разложим его на однородные составляющие в соответствии c нашей градуировкой. c0, то c0, т

$$\operatorname{Aut}(B) \cong S(f) \rightthreetimes (\mathbb{T} \rightthreetimes U(\delta)),$$

и ненулевых коэффициентов μ_i . Далее можно разобраться, что если P(z) не представляется в виде $z^u Q(z^v)$, где v > 1,

где S(f) – группа, переставляющая x_i и сохраняющая многочлен и

$$\delta = \begin{cases} x_i \mapsto 0; \\ y \mapsto P'(z); \\ z \mapsto x_1^{n_1} \dots x_m^{n_m}. \end{cases}$$

Если P(z) имеет специфический вид, то в полупрямое призведение добавится ещё множитель.

3.3 Орбиты SAut(X)

следует, что

Пусть $B = \mathbb{K}[X]$. Как мы уже говорили, $ML(X) = B^{\mathrm{SAut}(X)}$. Поэтому, если $ML(X) \neq \mathbb{K}$, то нет открытой $\mathrm{SAut}(X)$ -орбиты. Обратное не верно, существует многообразие с $ML(X) = \mathbb{K}$, но без открытой орбиты $\mathrm{SAut}(X)$. Более правильным тут является рассмотрение полевого инварианта Макар-Лиманова:

Определение 3.13. Пусть $\delta \colon B \to B$ – ЛНД, тогда оно однозначно продолжается до дифференцирования $\widetilde{\delta} \colon \operatorname{Quot}(B) \to \operatorname{Quot}(B)$. Полевой инвариант Макар-Лиманова – это

$$FML(B) = \bigcap_{\delta \in LND(B)} Ker \, \widetilde{\delta}.$$

Упражнение 3.14. $FML(B) = Quot(B)^{SAut(X)}$.

Теорема 3.15. SAut(X) имеет открытую орбиту в X тогда и только тогда, когда $FML(X) = \mathbb{K}$.

Приведём пример использования того, что $\mathrm{SAut}(X)$ не имеет открытой орбиты. Напомним следующее определение.

Определение 3.16. Действие группы G на множестве Y называется m-транзитивным, если для любых двух наборов (y_1,\ldots,y_m) и (z_1,\ldots,z_m) таких, что $y_i\neq y_j$ при $i\neq j$ и $z_i\neq z_j$ при $i\neq j$. Тогда существует $g\in G$ такое, что $g\cdot y_j=z_j$ для всех $1\leq j\leq m$.

В работе Аржанцева-Зайденберга-Калимана-Кучебауха-Фленера введён класс так называемых гибких многообразий, для которых действие $\operatorname{Aut}(X)$ на гладких точках X^{reg} является. m-транзитивным для любого m.

Предложение 3.17. Если $SAut(X) \neq id$ и SAut(X) не имеет плотной орбиты в X, то Aut(X) не действует 2-транзитивно на открытом множестве.

Идея доказательства. Две точки из одной SAut(X)-орбиты не возможно перевести автоморфизмом в две точки из разных SAut(X)-орбит, так как SAut(X) – нормальная подгруппа в группе автоморфизмов.

4 Аналогичные инварианты и обобщения

Определение 4.1. Инвариант Дерксена алгебры B – это алгебра, порождённая ядрами всех ненулевых ЛНД алгебры B.

$$HD(B) = \mathbb{K}[\operatorname{Ker} \delta \mid \delta \in LND(B)].$$

Этот инвариант также может быть использован для того, чтобы различать алгебры. Например, (теорема Дерксена)

$$HD(\mathbb{K}[x, y, z, t]/(x + x^2y + z^2 + t^3)) = \mathbb{K}[x, z, t].$$

С другой стороны легко видеть, что $HD(\mathbb{K}[x_1,x_2,x_3]) = \mathbb{K}[x_1,x_2,x_3]$, так как $\ker \frac{\partial}{\partial x_j} = \mathbb{K}[x_i \mid i \neq j]$. Это ещё раз доказывает неизоморфность кубики Кораса-Расселла и аффинного трёхмерного пространства. Существуют примеры алгебр с тривиальным одним из инвариантов ML и HD и нетривиальным другим (то есть ни один не является "более сильным чем другой).

В определениях инвариантов Макар-Лиманова и Дерксена используются ядра всех ЛНД. Можно использовать ядра только некоторого подмножества $P \subset LND(B)$. Для того, чтобы соответствующий инвариант был инвариантом (то есть не менялся при автоморфизмах), нам нужно, чтобы множество P было инвариантно относительно сопряжений автоморфизмами. Это достигается, если в качестве P мы берём те ЛНД, которые удовлетворяют некоторому свойству, которое не меняется при автоморфизмах. В качестве возможного такого свойства предлагается взять свойство иметь слайс. Напомним определение.

Определение 4.2. Элемент $s \in B$ называется *слайсом* локально нильпотентного дифференцирования δ , если $\delta(s) = 1$.

Замечание 4.3. Не все ЛНД имеют слайс. Например, $\frac{\partial}{\partial x}$ – ЛНД со слайсом алгебры $\mathbb{K}[x,y]$, а $y\frac{\partial}{\partial x}$ – ЛНД без слайса алгебры $\mathbb{K}[x,y]$.

Обозначим множество ЛНД алгебры B, имеющих слайсы, через $LND^*(B)$. Определим модификации инвариантов Макар-Лиманова и Дерксена.

$$ML^*(B) = \bigcap_{\delta \in LND^*(B)} \operatorname{Ker} \delta, \qquad HD^*(B) = \mathbb{K}[\operatorname{Ker} \delta \mid \delta \in LND^*(B)].$$

В работе Дасгупты и Гупты (2019) получен следующие результаты.

Теорема 4.4. Пусть $\operatorname{tr.deg} B = 2$. Тогда следующие условия эквивалентны

- 1) $B \cong \mathbb{K}[x, y];$
- 2) $ML^*(B) = \mathbb{K};$
- 3) $ML(B) = \mathbb{K}$ и $ML^*(B) \neq B$.

Теорема 4.5. Пусть $\operatorname{tr.deg} B = 3$ и B факториально. Тогда следующие условия эквивалентны

- 1) $B \cong \mathbb{K}[x, y, z];$
- 2) $ML^*(B) = \mathbb{K};$
- 3) $ML(B) = \mathbb{K}$ и $ML^*(B) \neq B$.

Таким образом, инвариант $ML^*(B)$ помогает в характеризации алгебры многочленов с помощью группы автоморфизмов. С другой стороны, для всех имеющихся примеров либо $ML^*(B) = \mathbb{K}$, либо $ML^*(B) = ML(B)$. В недавней работе Гайфуллина и Шафаревича (2022) доказано, что это общий факт.

Теорема 4.6. Пусть B допускает хотя бы одно ЛНД со слайсом. Тогда $ML^*(B) = ML(B)$.

То есть инвариант ML^* не даёт новых инвариантных подалгебр. С другой стороны инвариант $HD^*(B)$ даёт новые инвариантные подалгебры. А именню, в той же работе построен пример алгебры B такой, что $ML(B) = ML * (B) = \mathbb{K}$, HD(B) = B, но $\mathbb{K} \subsetneq HD^*(B) \subsetneq B$.