GRAFOS

Aula 1 - Introdução

Exemplo de Aplicação - Cientista de Dados

Nome
Romero
João
Janice
Inês
Torquato
Arlindo
Juarez
Jeanete
Jerônimo
Markov

Lista de pares de amigos

(0,1)

(0,2)

(1,2)

(1,3)

(2,3)

(3,4)

(4,5)

(5,6)

(5,7)

(6,8)

(7,8)

(8,9)

Exemplo de Aplicação - Cientista de Dados

Registro	Nome
0	Romero
1	João
2	Janice
3	Inês
4	Torquato
5	Arlindo
6	Juarez
7	Jeanete
8	Jerônimo
9	Markov

Lista de pares de amigos

(0,1)

(0,2)

(1,2)

(1,3)

(2,3)

(3,4)

(4,5)

(5,6)

(5,7)

(6,8)

(7,8)

(8,9)

Vértice

Exemplo de Aplicação

Nome
Romero
João
Janice
Inês
Torquato
Arlindo
Juarez
Jeanete
Jerônimo
Markov

Lista de pares de amigos:

(0,1)

(0,2)

(1,2)

(1,3)

(2,3)

(3,4)

(4,5)

(5,6)

(5,7)

(6,8)

(7,8)

(8,9)

Tarefas

- 1. Criar lista de amigos para cada pessoa.
- 2. Encontrar o número total de conexões de amizade.
- 3. Quem são as pessoas mais conectadas?
- 4. Ordenar os usuários dos que tem mais amigos para os que tem menos amigos.
- 5. Listar amigos de amigos.
- 6. Listar amigos em comum para cada par de pessoas.

Exemplo de Aplicação

Registro	Nome
0	Romero
1	João
2	Janice
3	Inês
4	Torquato
5	Arlindo
6	Juarez
7	Jeanete
8	Jerônimo
9	Markov

(0,1) (0,2) (1,2) (1,3) (2,3) (3,4) (4,5) (5,6) (5,7) (6,8) (7,8) (8,9)	Lista de pares de amigos:
(1,2) (1,3) (2,3) (3,4) (4,5) (5,6) (5,7) (6,8) (7,8)	(0,1)
(1,3) (2,3) (3,4) (4,5) (5,6) (5,7) (6,8) (7,8)	(0,2)
(2,3) (3,4) (4,5) (5,6) (5,7) (6,8) (7,8)	(1,2)
(3,4) (4,5) (5,6) (5,7) (6,8) (7,8)	(1,3)
(4,5) (5,6) (5,7) (6,8) (7,8)	(2,3)
(5,6) (5,7) (6,8) (7,8)	(3,4)
(5,7) (6,8) (7,8)	(4,5)
(6,8) (7,8)	(5,6)
(7,8)	(5,7)
, , ,	(6,8)
(8,9)	(7,8)
	(8,9)

Lista de interesses:

- 0 Estrutura de dados, big data, complexidade de algoritmos, Java, biometria, bioinformática, web design
- 1 banco de dados, jogos, web design, complexidade de algoritmos, educação
- 2 Python, Interação homem-máquina, redes sociais, processamento gráfico, starcraft, métodos formais
- 3 R, Python, estatística, regressão, probabilidade
- 4 aprendizado de máquinas, regressão, árvores de decisão, compiladores
- 5 Python, R, Java, C++, teste de software, linguagens de programação
- 6 estatística, probabilidade, matemática, teoria
- 7 aprendizado de máquinas, interação homem-máquina, sistemas multiagentes, redes neurais
- 8 Big data, inteligência artificial, redes neurais, deep learning
- 9 estruturas de dados, Java, compiladores, big data

Exemplo de Aplicação

Registro	Nome
0	Romero
1	João
2	Janice
3	Inês
4	Torquato
5	Arlindo
6	Juarez
7	Jeanete
8	Jerônimo
9	Markov

Lista de pares de amigos: (0,1), (0,2), (1,2), (1,3) (2,3), (3,4), (4,5), (5,6) (5,7), (6,8), (7,8), (8,9)

Lista de interesses:

- 0 Estrutura de dados, big data, complexidade de algoritmos, Java, biometria, bioinformática, web design
- 1 banco de dados, jogos, web design, complexidade de algoritmos, educação
- 2 Python, Interação homem-máquina, redes sociais, processamento gráfico, starcraft, métodos formais
- 3 R, Python, estatística, regressão, probabilidade
- 4 aprendizado de máquinas, regressão, árvores de decisão, compiladores
- 5 Python, R, Java, C++, teste de software, linguagens de programação
- 6 estatística, probabilidade, matemática, teoria
- 7 aprendizado de máquinas, interação homem-máquina, sistemas multiagentes, redes neurais
- 8 Big data, inteligência artificial, redes neurais, deep learning
- 9 estruturas de dados, Java, compiladores, big data

Tarefas

- 7. Encontrar pessoas com interesses comuns.
- 8. Fazer indicações de amizade por interesse comum.
- 9. Quais são os tópicos que os usuários estão mais interessados?

Objetivos

- -Aprender a modelar problemas reais através de grafos
- -Aprender a desenvolver algoritmos que solucionem problemas em grafos
- Aprender a desenvolver algoritmos para problemas reais modelados como problemas em grafos

GRAFO

Um grafo G = (N,M) é formado por um conjunto de vértices (N) e um conjunto de pares ordenados (M), arestas.

Exemplo:

$$N = \{1, 2, 3, 4, 5, 6, 7\}$$

 $M = \{ (1,2), (2,3), (3,1), (3,4), (6,7) \}$

Exemplo

Um grafo G = (N,M) é uma dupla de conjuntos finitos N e M, tal que cada elemento de M define uma relação entre exatamente dois elementos distintos de N e não existem dois elementos distintos de M tais que definam a mesma relação entre o mesmo par de elementos de N.

Qual é a ordem deste grafo? Qual é o tamanho deste grafo?

Qual é a ordem deste grafo? Qual é o tamanho deste grafo?

Grafo rotulado em vértices

Um grafo é *Rotulado* se existem rótulos (identificação) associados às suas arestas ou vértices (rótulos numéricos ou alfabéticos).

- Grafo Nulo

- Grafo Vazio

- Grafo Trivial

Pseudografo

Laço é uma aresta cujas extremidades incidem sobre o mesmo vértice. Um grafo que contém *no mínimo um laço* é um *Pseudografo*.

Multigrafo

Um grafo é dito um *Multigrafo* quando possui *arestas paralelas* (ou múltiplas) entre seus pares de vértices

Hipergrafo

Uma hiperaresta é uma conexão entre dois ou mais vértices.

Um grafo G = (N,M), onde M é um conjunto de hiperarestas é dito Hipergrafo.

Hipergrafo

Outra definição:

Uma coleção de subconjuntos de um conjunto finito de vértices

Hipergrafo

Algumas Aplicações

- Redes Sociais
- Arquitetura orientada a serviço (por exemplo, Cloud Computing)
- Sistemas de informação na Web
- Aprendizado de máquina
- Segmentação de imagens

Referência:

MOLNÁR, Bálint. Applications of hypergraphs in informatics: a survey and opportunities for research. Ann. Univ. Sci. Budapest. Sect. Comput, v. 42, p. 261-282, 2014. https://www.researchgate.net/publication/274733081

Grafo Direcionado

Registro	Nome
0	Romero
1	João
2	Janice
3	Inês
4	Torquato

Arcos

(0,1)

(0,2)

(3,2)

(3,4)

Parentesco

Romero é pai de João e Janice Inês é mãe de Janice e Torquato

Grafo Direcionado

Um grafo é dito *Direcionado* ou *Orientado* quando o sentido das ligações entre os vértices é importante.

Nesse caso as arestas possuem um sentido marcado por uma seta e recebem o nome de *Arcos*.

Grafo Direcionado

O *Grafo Subjacente* é o grafo resultante de *G* quando a orientação dos arcos de *G* é ignorada.

Grafo Ponderado

Representando as distâncias entre cidades

ID	Cidade
0	São Luís
1	Teresina
2	Fortleza
3	Natal
4	João Pessoa
5	Recife
6	Maceió
7	Aracaju
8	Salvador

Grafo Ponderado

Um grafo G = (N,M) é *Ponderado* se existem pesos associados a suas arestas ou vértices.

Adjacência em Vértices

Dois vértices distintos são adjacentes se são vértices terminais de uma mesma aresta.

Vértice	Vértices Adjacentes
1	3
2	5
3	1, 4 e 5
4	3 e 5
5	2 3 4 /

Adjacência

Lista de vértices adjacentes ao vértice x: $\Gamma(x)$

$$\Gamma(1) = \{3\} \qquad \Gamma(2) = \{5\}$$

$$\Gamma(3) = \{1,4,5\} \qquad 5$$

$$\Gamma(4) = \{3,5\} \qquad \Gamma(5) = \{2,3,4\}$$

Adjacência em Arestas

Duas arestas são adjacentes se possuem um vértice terminal em comum.

Sucessor e Antecessor

Em um grafo direcionado, um vértice x é Sucessor de y se existe pelo menos um arco (x,y)

Um vértice y é *Antecessor* de x se existe pelo menos um arco (y,x)

Grau (ou valência) de um vértice v_i , $d(v_i)$, em um grafo não direcionado é igual ao número de arestas incidentes no vértice (cardinalidade do conjunto

de adjacentes)

Grau interno e externo de um Vértice

No caso do grafo ser direcionado o grau de um vértice x_i é composto por um *valor interno* e um *externo*.

Teorema

A soma dos graus dos vértices de um grafo G é igual a 2m, onde m = |E|.

Prova: Exercício

Corolário

O número de vértices de grau ímpar de um grafo é sempre par.

Prova:

Exercício em aula - 5 minutos

Corolário

O número de vértices de grau ímpar de um grafo é sempre par.

Prova:

Suponha um grafo com n vértices, dos quais r possuem grau par.

$$\sum_{i=1}^{n} d(x_i) = \sum_{i=1}^{r} d(x_i) + \sum_{i=r+1}^{n} d(x_i)$$

$$\sum_{i=1}^{n} d(x_i) = \sum_{i=1}^{r} d(x_i) + \sum_{i=r+1}^{n} d(x_i)$$

$$par = 2m par$$

Logo,
$$\sum_{i=r+1}^{n} d(x_i)$$
 é par

Mas cada um dos *n-r* vértices tem grau ímpar. Portanto, o número desses vértices é par.

Grafo Completo

Um grafo G = (N,M) é dito *Completo* se existir ao menos uma ligação associada a cada par de vértices. No caso não orientado isso significa exatamente uma ligação.

Notação: K_n

Quantas arestas tem o K_n ?

Grafo Completo

O número de arestas em um grafo completo é n(n-1)/2, onde n = |N|.

Prova:

$$\binom{n}{2} = \frac{n!}{2!(n-2)!} = \frac{n(n-1)(n-2)!}{2(n-2)!} = \frac{n(n-1)}{2}$$

Obs. Grafo denso tem tamanho em O(n²) Grafo esparso tem tamanho em O(n)

Grafo Conexo

Um grafo **G** é dito **Conexo** se **existe**, **pelo menos**, **um caminho entre cada par de vértices** de **G**.

Conexidade

G é Conexo se para todo par de vértices de *G* existe pelo menos um caminho entre eles.

Se **G** é um *grafo direcionado*, então é considerado *conexo quando o seu grafo subjacente* (não direcionado) *é conexo*.

Grafo Conexo

Grafo Não Conexo

Complemento

 $G_s = (N, M_c)$ é o complemento de G = (N, M) se a aresta $(x_i, x_j) \in M_c$ se e somente se $(x_i, x_i) \notin M$

Grafo Bipartido

Um grafo G = (N,M) é dito *Bipartido* quando seu conjunto de vértices pode ser dividido em dois conjuntos N_1 e N_2 tais que

$$N_1 \cap N_2 = \emptyset$$
 e $N_1 \cup N_2 = N$

e somente existem arestas em G ligando vértices de N_1 a vértices de N_2 e vice-versa.

Grafo Bipartido

Grafo Bipartido Completo

O grafo abaixo é bipartido?

Grafo Bipartido Completo

Um grafo G Bipartido é dito Completo se todos os vértices do conjunto N_1 são adjacentes aos vértices do conjunto N_2 e vice versa.

Isomorfismo

Dois grafos $G_1=(N_1,M_1)$ e $G_2=(N_2,M_2)$ são *isomorfos* se existe correspondência entre os seus vértices e arestas de tal maneira que existe uma função unívoca $f:N_1 \to N_2$ tal que (i,j) é elemento de M_1 se e somente se (f(i),f(j)) é elemento de M_2 .

Exercício

- 1. Desenhe todos os grafos (não rotulados) com 4 vértices e seus complementos.
- 2. Considere grafos rotulados em vértices. A lista de todos os grafos com 4 vértices seria a mesma do item "a"? Se a sua resposta for não, mostre uma diferença.
- 3. Desenhe um grafo completo com 5 vértices e seu complemento. Qual o número de arestas do K_5 ? Qual o número de arestas do K_n ?
- 4. Seja X o conjunto $\{1,2,3,4,5\}$. Considere V o conjunto de todos os subconjuntos de X com 2 elementos. Dois elementos, v e w, de V se relacionam se $v \cap w = \emptyset$. Essa relação de adjacência sobre V define um grafo especial chamado *grafo de Petersen*. Desenhe o grafo de Petersen. Quantos vértices e arestas possui o grafo de Petersen?
- 5. Seja V o conjunto de todos os pares ordenados (i,j) tais que $i \in \{1,2,...,p\}$ e $j \in \{1,2,...,q\}$ (p e q são inteiros). Dois elementos (i,j) e (i',j') são adjacentes se i = i' e |j-j'| = 1, ou, j = j' e |i-i'| = 1. Essa relação de adjacência sobre V define um grafo conhecido como *grade pxq*. Quantas arestas possui a grade pxq? Desenhe uma grade 4x5.

Exercícios

- 6. Para qualquer inteiro positivo k, um cubo de dimensão k (ou k-cubo) é um grafo definido como a seguir. Os vértices do k-cubo são todas as sequências de k bits. Dois vértices são adjacentes se e somente se diferem exatamente em uma posição. Por exemplo, um 3-cubo possui vértices relativos às sequências binárias de 3 posições. O vértice 000 é adjacente somente aos vértices 001, 010, e 100. Desenhe o 1-cubo, 2-cubo e o 3-cubo. Quantos vértices possui um k-cubo? Quantas arestas possui um k-cubo?
- 7. Provar que: A soma dos graus dos vértices de um grafo simples com n vértices e m arestas é igual a 2m.
- 8. Provar que: O número de vértices de grau ímpar em um grafo é par.