Задача 9.2 Предохранитель

Плавкий предохранитель представляет собой резистор некоторой длины l и радиуса a = 0.10 мм, изготовленный из

материала

плотностью $\gamma = 8.9 \cdot 10^3 \frac{\text{кг}}{\text{м}^3}$, удельной

теплоемкостью $c = 0.38 \frac{\kappa Дж}{\kappa r \cdot {}^{\circ}C}$, с удельным сопротивлением

$$\rho$$
=1,5·10⁻⁸ Ом·м и температурой плавления t_{nn} = 2,3·10² °C.

Примем, что теплообмен предохранителя с окружающей средой происходит в основном через его боковую поверхность, а количество теплоты ΔQ , отдаваемое за промежуток времени теплообмена и разности температур Δau , пропорционально площади Sпредохранителя t и окружающей среды t_0 ($t_0 = 0.0$ °C):

$$\frac{\Delta Q}{\Delta \tau} = oS(t - t_0),$$

где $\alpha = 8.5 \cdot 10^2 \frac{\text{Bt}}{\text{M}^2 \cdot ^{\circ}\text{C}}$ — постоянный коэффициент теплоотдачи. Изменением сопротивления предохранителя при увеличении температуры пренебречь.

Часть 1. Один предохранитель.

При включении предохранителя в цепь его температура начинает увеличиваться со временем по некоторой зависимости, достигая предельного значения t_{\max} . Поскольку описать зависимость $t(\tau)$ достаточно сложно, то примем упрощенную модель данной функции — будем считать, что температура t растет с постоянной скоростью, равной скорости роста в начальный момент времени (отрезок ABрисунке), достигает

максимального значения $t=t_{\max}$ и температура предохранителя остается постоянной (участок BC на рисунке). Промежуток времени τ назовем временем разогрева предохранителя до максимальной температуры t_{\max} .

- **1.1** До какой предельной температуры $t_{\rm max}$ нагреется предохранитель при прохождении по нему электрического тока силой $I_1 = 10 \text{ A}$? Найдите время разогрева τ предохранителя, за которое он нагреется до температуры t_1 .
- **1.2** При какой силе тока $I_{\max 1}$ предохранитель перегорит? При какой силе тока $I_{\max 2}$ перегорит предохранитель, если его радиус увеличить в два раза?

Часть 2. Два предохранителя.

2.1 Два предохранителя одинаковой длины и радиусами $a_1 = a$ и $a_2 = 2a$ включены в цепь

Традиционные обозначения физических величин «перекрываются», поэтому мы вынуждены использовать свои «не традиционные»: ho - удельное электрическое сопротивление, χ - плотность; t - температура, au - время, R - сопротивление, \mathcal{Q} - радиус.

последовательно.

Силу тока в цепи медленно (по сравнению со временем разогрева) увеличивают. При какой тока в цепи $I_{\max 3}$ перегорит такой составной предохранитель?

Определите, какой из резисторов перегорит первым при условии, что в цепи мгновенно устанавливается ток силой $5I_{\mathrm{max}3}$.

2.2 Два предохранителя одинаковой длины радиусами $a_1 = a$ и $a_2 = 2a$ включены в цепь параллельно.

Силу тока в цепи медленно (по сравнению со временем разогрева) увеличивают. При какой силе тока $I_{\max 4}$ перегорит такой составной предохранитель?

Определите, какой из предохранителей перегорит первым условии, что

в цепи мгновенно устанавливается ток, сила которого равна $5I_{{
m max}\,4}$.

2.3 В ходе ремонта составного предохранителя, описанного в п.2.2, длину проволоки первого (более тонкого) предохранителя укоротили на 10%. Определите, какой из предохранителей перегорит первым, при условии, что в цепи мгновенно устанавливается ток силой $I_0 = 100 A$.