Medida e Integración

Práctica 8: Descomposición y diferenciación de medidas

Universidad Nacional de La Plata

2025

Ejercicio 1. Sea $\mathfrak X$ una σ -álgebra de conjuntos de X, ν una carga sobre $\mathfrak X$ y $E \in \mathfrak X$. Probar que:

- (a) $\nu^+(E) = \sup\{\nu(F) : F \subset E, F \in \mathfrak{X}\}\$
- (b) $\nu^{-}(E) = -\inf\{\nu(F) : F \subset E, F \in \mathfrak{X}\}\$
- (c) $|\nu|(E) = \sup \left\{ \sum_{j=1}^{N} |\nu(A_j)| : A_1, \dots, A_N \text{ es una partición finita de } E \right\}$

Demostración. (a) Sea $E \in \mathfrak{X}$, $\nu^+(E) = \nu(E \cap P)$, donde P es el de la descomposición de Hahn. Luego,

$$E \cap P \subseteq E \Rightarrow \nu(E \cap P) = \nu^+(E) \le \sup\{\nu(F) : F \subseteq E, F \in \mathfrak{X}\}\$$

Además, si $F \in \mathfrak{X}$, tal que $F \subseteq E$

$$\nu(F) = \nu(F \cap P) + \nu(F \cap N) < \nu(F \cap P) = \nu^{+}(F) < \nu^{+}(E).$$

Por lo tanto,

$$\nu^+(E) = \sup \{ \nu(F) : F \subset E, F \in \mathfrak{X} \}.$$

- (b) Similar al caso anterior, se tiene que $\nu^-(E) = -\inf\{\nu(F) : F \subset E, F \in \mathfrak{X}\}.$
- (c) Sea $E \in \mathfrak{X}$, entonces E es una partición finita de sí mismo, por lo que

$$|\nu|(E) \le \sup \left\{ \sum_{j=1}^N |\nu(A_j)| : A_1, \dots, A_N \text{ es una partición finita de } E \right\}$$

Además, como la partición es disjunta se tiene que

$$\sum_{i=1}^{N} |\nu|(A_i) = \sum_{i=1}^{N} \nu^+(A_i) + \nu^-(A_i) = |\nu|(E) \quad \forall E \in \mathfrak{X} \text{y toda partición finita}.$$

Por lo tanto,

$$|\nu|(E) = \sup \left\{ \sum_{j=1}^{N} |\nu(A_j)| : A_1, \dots, A_N \text{ es una partición finita de } E \right\}.$$

Ejercicio 2. Sean μ y ν medidas finitas sobre (X, \mathfrak{X}) . Probar que $\nu \ll \mu$ si y solo si para todo $\varepsilon > 0$ existe $\delta > 0$ tal que si $E \in \mathfrak{X}$ y $\mu(E) < \delta$, entonces $\nu(E) < \varepsilon$.

Probar también que la hipótesis de que ν sea finita no puede omitirse. Para ello, considerar $((0,1),\mathfrak{L}), \mu$ la medida de Lebesgue restringida y $\nu(E) := \int_E \frac{1}{t} d\mu$.

Demostración. Si $\forall \varepsilon > 0$ existe $\delta > 0$ tal que si $E \in \mathfrak{X}$ y $\mu(E) < \delta$, entonces $\nu(E) < \varepsilon$, si $\mu(E) = 0$, se sigue que $\nu(E) < \varepsilon$ para todo $\varepsilon > 0$. Luego, $\nu \ll \mu$.

Para la otra dirección, supongamos que existe un $\varepsilon > 0$ y una sucesión $(E_n)_{n \ge 1} \subseteq \mathfrak{X}$ tal que $\mu(E_n) < \frac{1}{2^n}$ y $\nu(E_n) \ge \varepsilon$ $\forall n \in \mathbb{N}$. Sea $F_n = \bigcup_{i \ge n} E_i$, entonces $\mu(F_n) < \mu(E_n) < \frac{1}{2^n}$ y $\nu(F_n) \ge \varepsilon$. Como $(F_n)_{n \ge 1}$ es una sucesión decreciente de conjuntos medibles tenemos que

$$\mu\left(\bigcap_{n\geq 1} F_n\right) = \lim_{n\to\infty} \mu(F_n) = 0$$

$$\nu\left(\bigcap_{n\geq 1} F_n\right) = \lim_{n\to\infty} \nu(F_n) \geq \varepsilon.$$

Por lo tanto ν no es absolutamente continua respecto a μ .

Para el ejemplo, consideremos $((0,1),\mathfrak{L})$, $\mu=\lambda$ la medida de Lebesgue restringida y $\nu(E):=\int_E \frac{1}{t} d\lambda$. Notemos que $\nu\ll\lambda$, ya que si $E\in\mathfrak{L}$ y $\lambda(E)=0$, entonces $\nu(E)=\int_E \frac{1}{t} d\lambda=0$.

Sea $\varepsilon > 0$, no vale que $\exists \delta > 0$ tal que si $E \in \mathfrak{L}$ y $\lambda(E) < \delta$, entonces $\nu(E) < \varepsilon$. En efecto, si tomamos $E = (0, \delta - 1/n)$, entonces $\lambda(E) = \delta - 1/n < \delta$, pero $\int_{[0, \delta - 1/n]} \frac{1}{t} d\lambda = +\infty$ para todo $\delta > 0$, luego no vale la proposición.

Ejercicio 3. Mostrar que un conjunto M es nulo para una carga λ si y sólo si $|\lambda|(M) = 0$.

Demostración. Si M es nulo para una carga λ , entonces $\lambda(M \cap E) = 0 \quad \forall E \in \mathfrak{X}$. En particular, para P, $N \in \mathfrak{X}$ de la descomposición de Hahn, entonces $|\lambda(M)| = \lambda^+(M) + \lambda^-(M) = \lambda(M \cap P) + \lambda(M \cap N) = 0 + 0 = 0$. Por lo tanto, $|\lambda|(M) = 0$.

Para la otra dirección, si $|\lambda|(M) = 0$, entonces $\lambda^+(M) = \lambda^-(M)$, por lo que $\lambda^+(M) = \lambda^-(M) = 0$ y debe ser $\lambda(M \cap P) = 0 = \lambda(M \cap N)$. Luego,

$$\lambda(M\cap E) = \lambda(M\cap E\cap P) + \lambda(M\cap E\cap N) = 0 + 0 = 0 \quad \forall E\in\mathfrak{X}$$

Ejercicio 4. Sean μ_1, μ_2 y μ_3 medidas en (X, \mathfrak{X}) . Probar que:

- (a) $\mu_1 \ll \mu_1$
- (b) $\mu_1 \ll \mu_2$ y $\mu_2 \ll \mu_3$ implican que $\mu_1 \ll \mu_3$
- (c) Dar un ejemplo de que $\mu_1 \ll \mu_2$ no implica $\mu_2 \ll \mu_1$.

Demostración. (a) Sea $E \in \mathfrak{X}$ tal que $\mu_1(E) = 0$. Entonces $\mu_1(E) = 0$, luego $\mu_1 \ll \mu_1$.

- (b) Sea $E \in \mathfrak{X}$ tal que $\mu_3(E) = 0$, entonces $\mu_2(E) = 0$ por la hipótesis $\mu_2 \ll \mu_3$. Luego, como $\mu_1 \ll \mu_2$, se tiene que $\mu_1(E) = 0$. Por lo tanto, $\mu_1 \ll \mu_3$.
- (c) Cualquier medida con la medida nula es un ejemplo.

Ejercicio 5. Sea μ una medida finita, $\lambda \ll \mu$, y sean P_n, N_n una descomposición de Hahn para $\lambda - n\mu$. Si

$$P = \bigcap_{n \in \mathbb{N}} P_n, \quad N = \bigcup_{n \in \mathbb{N}} N_n,$$

mostrar que N es σ -finito para λ y que si $E \subset P$, $E \in \mathfrak{X}$, entonces o bien $\lambda(E) = 0$ o $\lambda(E) = \infty$.

Demostración.

$$(\lambda - n \cdot \mu)(X \cap N_n) \le 0$$

$$\lambda(N_n) - n \cdot \mu(N_n) \le 0$$

$$\lambda(N_n) \le n \cdot \mu(N_n) < n \cdot \mu(X) < +\infty \quad \forall n \in \mathbb{N}$$

y $N = \bigcup_{n \geq 1} N_n$, podemos asumir disjuntos, luego N es σ -finito para λ . Sea $E \subseteq P$, $E \in \mathfrak{X}$. Entonces $E \subseteq P_n \quad \forall n \in \mathbb{N}$, por lo que

$$(\lambda - n \cdot \mu)(E) = \lambda(E) - n \cdot \mu(E) \ge 0 \quad \forall n \in \mathbb{N}$$
$$\lambda(E) \ge n \cdot \mu(E) \quad \forall n \in \mathbb{N}$$

Entonces, si $n \to +\infty$ se tiene que $\lambda(E) = +\infty$ o, si $\mu(E) = 0$, entonces $\lambda(E) = 0$ por ser absolutamente continua con respecto a μ .

Ejercicio 6. Sean X := [0,1] y \mathfrak{X} la σ -álgebra de Borel. Mostrar que si μ es la medida de conteo sobre \mathfrak{X} y λ es la medida de Lebesgue sobre \mathfrak{X} , entonces λ es finita y $\lambda \ll \mu$, pero no vale la conclusión del Teorema de Radon–Nikodym.

Demostración. Claramente, $\lambda([0, 1]) = 1 < +\infty$ y $\mu(E) = 0 \iff E = \emptyset \Rightarrow \lambda(E) = \lambda(\emptyset) = 0 \Rightarrow \lambda \ll \mu$. Supongamos que vale el TRN, entonces existe una función $f \in M^+(X, \mathfrak{X})$ tal que

$$\int_{E} f \, d\mu = \lambda(E) \quad \forall E \in \mathfrak{X}.$$

Sea $x \in [0, 1]$, entonces $E = \{x\} \in \mathcal{B}$. Tenemos que

$$\int_{\{x\}} f \, d\mu = \lambda(\{x\}) = \int f \chi_{\{x\}} \, d\mu$$
$$= f(x)\mu(\{x\}) = f(x) = 0 \quad \forall x \in [0, 1].$$

Por lo tanto, $f(x) = 0 \quad \forall x \in [0, 1]$, pero $(0, 1) \in \mathcal{B}$, $\lambda((0, 1)) = 1 \neq \int_{(0, 1)} 0 \, d\mu = 0$.

Ejercicio 7. Sean μ y ν medidas σ -finitas definidas en (X, \mathfrak{X}) y sea f la derivada de Radon–Nikodym de ν con respecto a μ . Probar que para toda función $g \in \mathfrak{M}^+(X, \mathfrak{X})$ se tiene que:

$$\int g \, d\nu = \int g f \, d\mu.$$

Demostración. Sea $\phi = \sum_{i=1}^{n} a_i \chi_{E_i}$ una función simple con $a_i \geq 0$, entonces

$$\int \phi \, d\nu = \sum_{i=1}^{n} a_i \nu(E_i) = \sum_{i=1}^{n} a_i \int_{E_i} f \, d\mu$$
$$\sum_{i=1}^{n} a_i \int \chi_{E_i} f \, d\mu = \int \sum_{i=1}^{n} a_i \chi_{E_i} f \, d\mu = \int \phi f \, d\mu$$

Sea $(\phi_n)_{n\geq 1}$ una sucesión de funciones simples crecientes, no negativas, que converge puntualmente a g. Entonces $(\phi_n \cdot f)_{n\geq 1}$ es una sucesión de funciones no negativas que convergen puntualmente a $g \cdot f$. Aplicando TCM dos veces se obtiene:

$$\int g \, d\nu = \lim \int \phi_n \, d\nu = \lim \int \phi_n f \, d\mu = \int g f \, d\mu.$$

Ejercicio 8. Todas las medidas consideradas a continuación sobre (X, \mathfrak{X}) son σ -finitas. Probar que:

(a) Si $\alpha \ll \beta$ y $\beta \ll \mu$, entonces $\alpha \ll \mu$ y

$$\frac{d\alpha}{d\mu} = \frac{d\alpha}{d\beta} \cdot \frac{d\beta}{d\mu}$$
 μ -c.t.p.

(b) Si $\nu_1 \ll \mu$ y $\nu_2 \ll \mu$, entonces

$$\frac{d(\nu_1 + \nu_2)}{d\mu} = \frac{d\nu_1}{d\mu} + \frac{d\nu_2}{d\mu} \quad \mu\text{-c.t.p.}$$

(c) Si $\nu \ll \mu$ y $\mu \ll \nu$, entonces

$$\frac{d\nu}{d\mu} = \left(\frac{d\mu}{d\nu}\right)^{-1} \mu\text{-c.t.p y }\nu\text{-c.t.p.}$$

Demostración. (a) La primera parte ya la vimos (ejercicio 4.c), para la segunda: Notemos que, por TRN,

$$\alpha(E) = \int_E h \, d\mu, \quad \alpha(E) = \int_E f \, d\beta \quad \text{y} \quad \beta(E) = \int_E g \, d\mu$$

Con $h,\,f,\,g$ las derivadas de Radon-Nikodym. Además, aplicando el ejercicio 7 en * tenemos que:

$$\int_{E} h \, d\mu = \int_{E} f \, d\beta = ^{*} \int_{E} f g \, d\mu$$

$$\iff \int_{E} h - f g d\mu = 0 \quad \forall E \in \mathfrak{X}$$

$$\iff h = f g \quad \mu\text{-c.t.p.}$$

(b) Por TRN, $\nu_1(E) = \int_E f_1 d\mu$ y $\nu_2(E) = \int_E f_2 d\mu$, donde f_1 , f_2 son las derivadas de Radon–Nikodym. Entonces,

$$(\nu_1 + \nu_2)(E) = \int_E f_1 d\mu + \int_E f_2 d\mu = \int_E (f_1 + f_2) d\mu.$$

Además, por TRN sobre $\nu_1 + \nu_2$, existe f tal que

$$(\nu_1 + \nu_2)(E) = \int_E f \, d\mu \quad \forall E \in \mathfrak{X}$$
$$= \int_E (f_1 + f_2) \, d\mu.$$

Por lo tanto, $f = f_1 + f_2 \mu$ -c.t.p. y $\frac{d(\nu_1 + \nu_2)}{d\mu} = \frac{d\nu_1}{d\mu} + \frac{d\nu_2}{d\mu} \mu$ -c.t.p.

(c) Por TRN

$$\mu(A) = \int_{A} \frac{d\mu}{d\nu} d\nu \quad \forall A \in \mathfrak{X}$$
$$\nu(A) = \int_{A} \frac{d\nu}{d\mu} d\mu \quad \forall A \in \mathfrak{X}$$

Luego, aplicando el ejercicio 7 en * obtenemos:

$$\mu(A) = \int_{A} 1 \, d\mu = \int_{A} \frac{d\mu}{d\nu} \, d\nu = \int_{A} \frac{d\mu}{d\nu} \cdot \frac{d\nu}{d\mu} \, d\mu \quad \forall A \in \mathfrak{X}$$

$$\iff \frac{d\mu}{d\nu} \cdot \frac{d\nu}{d\mu} = 1 \quad \mu\text{-c.t.p.} \iff \frac{d\nu}{d\mu} = \left(\frac{d\mu}{d\nu}\right)^{-1} \quad \mu\text{-c.t.p.}$$

Ejercicio 9. Probar que si λ y μ son medidas, con $\lambda \ll \mu$ y $\lambda \perp \mu$ entonces $\lambda = 0$.

Demostración. Por hipótesis, existen $A, B \subseteq X$ tales que $X = A \cup B, A \cap B = \emptyset, \lambda(A) = \mu(B) = 0$. Luego, como $\lambda \ll \mu$ se tiene que $\lambda(B) = 0$. Por lo tanto $\lambda(X) = \lambda(A) + \lambda(B) = 0 + 0 = 0$. Así que $\lambda(A) = 0 \quad \forall A \in \mathfrak{X}$.

Ejercicio 10. Considere las siguientes funciones $g_i : [a, b] \to \mathbb{R}$ y sus correspondientes medidas de Borel-Stieltjes (halladas en el ejercicio 13 de la práctica 3):

$$g_1(x) := 2x$$

$$g_2(x) := \arctan(x)$$

$$g_3(x) := \begin{cases} 0 & \text{si } x < 0 \\ 1 & \text{si } x \ge 0 \end{cases}$$

$$g_4(x) := \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \ge 0 \end{cases}$$

- (a) ¿Cuáles de esas medidas son absolutamente continuas con respecto a la medida de Borel?
- (b) Hallar sus derivadas de Radon-Nikodym.
- (c) ¿Cuáles de esas medidas son singulares con respecto a la medida de Borel?
- (d) ¿Cuáles son finitas?
- (e) ¿Con respecto a cuáles de estas medidas es absolutamente continua la medida de Borel?

Demostración. (a) Sea $g:[a,b] \to \mathbb{R}$. Decimos que g es **absolutamente continua** si $\forall (\varepsilon > 0) \ (\exists \delta > 0)$ tal que $\forall (a_i,b_i)_{i=1}^n$ colección de intervalos contenida en [a,b] $\sum_{i=1}^n |b_i - a_i| < \delta \Rightarrow \sum_{i=1}^n |g(b_i) - g(a_i)| < \varepsilon$

Por el **Teorema 6.3.6** de An introduction to measure and integration - Rana, también vale que g es absolutamente continua si

$$g(x) = \int_{a}^{x} f(t) d\lambda(t) \quad \forall x \in [a, b] \text{ y } f \in \mathcal{L}_{1}([a, b])$$

O equivalentemente si g es diferenciable en casi todo punto de [a, b], su derivada es integrable y

$$g(x) = \int_{a}^{x} g'(t) d\lambda(t) \quad \forall x \in [a, b]$$

El **Teorema 9.1.5** del Rana nos dice que si $F: \mathbb{R} \to \mathbb{R}$ es una función monótona creciente y absolutamente continua, entonces la medida de Lebesgue-Stieltjes inducida por F es absolutamente continua con la medida de Lebesgue si y solo si F es continua en cada intervalo acotado.

- (i) g_1 es absolutamente continua tomando $\delta = \varepsilon/2$ en la definición, monótona creciente y continua en \mathbb{R} , por el **Teorema 9.1.5** del Rana se sigue que $\mu_{g_1} \ll \lambda$.
- (ii) g_2 es absolutamente continua, ya que su derivada es $f(x) = \frac{1}{x^2+1}$ que es integrable en [a, b], luego por el **Teorema 9.1.5** del Rana $\mu_{g_2} \ll \lambda$.
- (iii) Como la continuidad absoluta implica la continuidad ordinaria, se sigue que g_3 no es absolutamente continua, pues no es continua en el origen, luego existe un intervalo acotado e.g [-1, 1] tal que g_3 no es continua y entonces por el **Teorema 9.1.5** del Rana se sigue que μ_{g_3} no es absolutamente continua con respecto a λ .
- (iv) g_4 es absolutamente continua, pues es diferenciable en $[a, b] \setminus \{0\}$, su derivada es

$$g_4'(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 & \text{si } x > 0 \end{cases}$$

y además, supongamos a < 0,

$$g_4(x) = \int_a^0 g_4'(t) \, d\lambda(t) + \int_0^x g_4'(t) \, d\lambda(t)$$

$$= \int_a^0 0 \, d\lambda(t) + \int_0^x 1 \, d\lambda(t) = x \quad \forall x > 0$$

$$= \int_a^x g_4'(t) \, d\lambda(t) = \int_a^x 0 \, d\lambda(t) = 0 \quad \forall x \le 0$$

Análogamente, de la continuidad y la monotonía deducimos que $\mu_{g_4} \ll \lambda$.

(b) Por el ejemplo 9.1.17, también del Rana, se tiene que si $F : \mathbb{R} \to \mathbb{R}$ es una función monótonamente creciente y absolutamente continua y μ_F la medida de Lebesgue-Stieltjes inducida por F en $(\mathbb{R}, \mathcal{B})$, entonces $\mu_F \ll \lambda$ y

$$\frac{d\mu_F}{d\lambda}(x) = F'(x)$$
 λ -c.t.p.

- (i) g_1 es monótonamente creciente y absolutamente continua, por lo que $\frac{d\mu_{g_1}}{d\lambda}(x) = 2$ λ -c.t.p.
- (ii) g_2 es monótonamente creciente y absolutamente continua, por lo que $\frac{d\mu_{g_2}}{d\lambda}(x) = \frac{1}{x^2+1}$ λ -c.t.p.

(iii) Notemos que

$$\mu_{g_3}((a, b]) = g_3(b) - g_3(a) = \begin{cases} 0 & \text{si } a < b < 0 \\ 1 & \text{si } a \le 0 < b \\ 0 & \text{si } a > 0 \end{cases}$$

Luego,

$$\lambda\left(\bigcap_{n\geq 1}(-\frac{1}{n},\,\frac{1}{n}]\right)=\lim_{n\to +\infty}\lambda((-\frac{1}{n},\,\frac{1}{n}])=\lim_{n\to +\infty}\frac{2}{n}=0$$

pero

$$\mu_{g_3}\left(\bigcap_{n>1}(-\frac{1}{n},\frac{1}{n}]\right) = \lim_{n\to+\infty}\mu_{g_3}((-\frac{1}{n},\frac{1}{n}]) = 1$$

 $\therefore \mu_{g_3}$ no es absolutamente continua con respecto a λ y no tiene derivada de Radon–Nikodym.

(iv) g_4 es monótonamente creciente y absolutamente continua, por lo que

$$\frac{d\mu_{g_4}}{d\lambda}(x) = \begin{cases} 0 & \text{si } x < 0\\ 1 & \text{si } x > 0 \end{cases} \quad \lambda\text{-c.t.p.}$$

- (c) (i) Como $\mu_{g_1} \ll \lambda$ se sigue que no es singular con respecto a λ .
 - (ii) Como $\mu_{g_2} \ll \lambda$ se sigue que no es singular con respecto a λ .
 - (iii) Consideremos $\{0\}$ y $\mathbb{R} \setminus \{0\} \in \mathcal{B}$ tales que $\lambda(\{0\}) = 0 = \mu_{g_3}(\mathbb{R} \setminus \{0\}) \Rightarrow \lambda \perp \mu_{g_3}$. En efecto,

$$\mu_{g_3}((-\infty, 0)) = \mu_{g_3} \left(\bigcup_{n \ge 1} (-\infty, -1/n] \right) \le \sum_{n \ge 1} \mu_{g_3}((-n, -1/n])$$

$$= \sum_{n \ge 1} (g_3(-1/n) - \lim_{a \to -\infty} g_3(a)) = \sum_{n \ge 1} (0 - 0) = 0$$

$$\Rightarrow \mu_{g_3}((-\infty, 0)) = 0$$

Además,

$$\mu_{g_3}((0, +\infty)) = \lim_{b \to +\infty} \mu_{g_3}((0, b]) = \lim_{b \to +\infty} (g_3(b) - g_3(0)) = \lim_{b \to +\infty} (1 - 1) = 0$$

$$\therefore \mu_{g_3}(\mathbb{R} \setminus \{0\}) = \mu_{g_3}((-\infty, 0)) + \mu_{g_3}((0, +\infty)) = 0 + 0 = 0$$

- (iv) Análogo a (ii).
- (d) (i) $\mu_{g_1}(\mathbb{R}) = \int_{\mathbb{R}} 2 d\lambda = 2 \cdot \lambda(\mathbb{R}) = +\infty$, por lo que no es finita.
 - (ii) $\mu_{g_2}(\mathbb{R}) = \int_{\mathbb{R}} \frac{1}{x^2+1} d\lambda = \int_{-\infty}^{+\infty} \frac{1}{x^2+1} dx = \pi < +\infty$, por lo que es finita.
 - (iii) $\mu_{g_3}(\mathbb{R}) \leq \mu_{g_3}(\bigcup_{n\geq 1}(-n, n]) = \lim_{n\to +\infty} \mu_{g_3}((-n, n]) = \lim_{n\to +\infty} 1 = 1 < +\infty$, por lo que es finita.
 - (iv) $\mu_{g_4}(\mathbb{R}) = \int_{\mathbb{R}} g_4'(x) d\lambda(x) = \int_{-\infty}^{+\infty} g_4'(x) dx = \int_0^{+\infty} 1 dx = +\infty$, por lo que no es finita, notemos debido a la igualdad λ -c.t.p podemos definir g_4' en x = 0 como $g_4'(0) = 0$.

- (e) Sea X un conjunto medible Borel tal que $\mu_{g_i}(X)=0$ para $i=1,\,\cdots,\,4$ y μ la medida de Borel. Entonces:
 - (i) $0 = \mu_{g_1}(X) = \int_X 2 \, d\lambda = 2 \cdot \lambda(X) \Rightarrow \lambda(X) = 0 \Rightarrow \mu(X) = 0 \Rightarrow \mu \ll \mu_{g_1}$.
 - (ii) Por contrarrecíproco, sea X un conjunto medible Borel tal que $\lambda(A) > 0$, como

$$1 \ge \frac{1}{x^2 + 1} > 0 \quad \forall x \in \mathbb{R} \Rightarrow$$

$$\int_A 1 \, d\lambda = \lambda(A) = \mu(A) \ge \mu_{g_2}(A) = \int_A \frac{1}{x^2 + 1} \, d\lambda > 0$$

Luego, como $\lambda(A) > 0$, se sigue que $\mu(A) > 0$, por lo que $\mu \ll \mu_{g_2}$.

- (iii) Consideremos X=[1,2] medible Borel, luego, vimos que $\mu_{g_3}([1,2])=0$, pero claramente $\mu([1,2])=1\neq 0$, por lo que μ no es absolutamente continua respecto a μ_{g_3} .
- (iv) Consideremos X = [-2, -1] medible Borel, luego, vimos que $\mu_{g_4}([-2, -1]) = 0$, pero claramente $\mu([-2, -1]) = 1 \neq 0$, por lo que μ no es absolutamente continua respecto a μ_{g_4} .

Ejercicio 11. Sean λ_1 y λ_2 las medidas de Lebesgue sobre los borelianos de \mathbb{R} y \mathbb{R}^2 respectivamente. Identificando el conjunto $\{(x,y) \in \mathbb{R}^2 : y=0\}$ con \mathbb{R} , definamos las siguientes medidas sobre los borelianos de \mathbb{R}^2 :

$$\mu_1(A) = \lambda(A \cap \{(x, y) \in \mathbb{R}^2 : y = 0\}) + \int_A e^{-(x^2 + y^2)} d\lambda_2(x, y)$$
$$\mu_2(A) = \lambda_2(A \cap \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\})$$

Calcular la descomposición de Lebesgue de μ_1 respecto a μ_2 .

Demostración. Consideremos los espacios de medida $(\mathbb{R}, \mathcal{B}, \lambda|_{\mathcal{B}})$ y $(\mathbb{R}^2, \mathcal{B}_2, \lambda|_{\mathcal{B}_2})$. Sean

$$B = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$

$$C = \{(x, y) \in \mathbb{R}^2 : y = 0\}$$

Dado $A \in \mathcal{B}_2$ definimos

$$\mu_1(A) = \lambda(A \cap C) + \int_A e^{-(x^2 + y^2)} d\lambda_2(x, y)$$

$$\mu_2(A) = \lambda_2(A \cap B)$$

Queremos hallar la descomposición de Lebesgue de μ_1 respecto a μ_2 . Notemos que

$$\mu_2(A) = \lambda_2(A \cap B) \le \lambda_2(B) = 0 \quad \forall A \in \mathcal{B}_2$$

 $\mu_2(A) = 0 \quad \forall A \in \mathcal{B}_2$
 $\Rightarrow \mu_2 \text{ es } \sigma\text{-finita.}$

Para ver que μ_1 es σ -finita, consideremos

$$E_n = \{(x, y) \in \mathbb{R}^2 : ||(x, y)|| \le n\}$$

$$\bigcup_{n \ge 1} E_n = \mathbb{R}^2$$

$$\mu_1(E_n) = \lambda(E_n \cap C) + \int_{E_n} e^{-(x^2 + y^2)} d\lambda_2(x, y)$$

$$=^* \lambda([-n, n]) + \int_{E_n} e^{-(x^2 + y^2)} d\lambda_2(x, y)$$

$$\le 2 \cdot n + \pi < +\infty \quad \forall n \in \mathbb{N}$$

* Pues si

$$E_n \cap C = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le n^2 \text{ e } y = 0\}$$

= $\{(x, 0) \in \mathbb{R}^2 : x \in [-n, n]\}$
que lo identificamos con $[-n, n] \subset \mathbb{R}$

Luego, μ_1 es σ -finita. Por lo tanto, existe una única descomposición de Lebesgue de μ_1 respecto a μ_2 . Con

$$\mu_1 = \alpha + \beta$$

$$\alpha \ll \mu_2 \text{ y } \beta \perp \mu_2$$
donde $\alpha = 0 \text{ y } \beta = \mu_1$

En efecto, si $A \in \mathcal{B}_2$ tal que $\mu_1(A) = 0$, entonces $\mu_2(A^c) = 0$. Como $\mathbb{R}^2 = A \cup A^c$ y $\mu_1(A) = \mu_2(A^c) = 0$, se sigue que $\mu_1 \perp \alpha = \mu_2$. Además, $\mu_1 \ll \mu_1 = \beta$ y $\mu_1 = \alpha + \beta = 0 + \mu_1 = \mu_1$ y la descomposición de Lebesgue es única, por lo que $\alpha = 0$ y $\beta = \mu_1$.