Q1. Exploration of Dataset

1) DATATYPE OF TABLE-

1.customers table -

Query - SELECT column_name, data_type FROM information_schema.columns WHERE table_name = 'customers';

Output -

	COLUMN_NAME	DATA_TYPE	
•	customer_id	varchar	
-	customer_name	varchar	
	phone	varchar	
	address	varchar	
	city	varchar	
(state	varchar	
	postal_code	varchar	
(country	varchar	
	customer_id	text	
(customer_unique_id	text	
	customer_zip_cod	text	
(customer_city	text	
	customer_state	text	

2.geolocation table -

SELECT column_name, data_type FROM information_schema.columns WHERE table_name = 'geolocation';

3.order item table -

SELECT column_name, data_type FROM information_schema.columns WHERE table_name = 'order_items';

	COLUMN_NAME	DATA_TYPE	
•	order_id	text	
	order_item_id	int	
	product_id	text	
	seller_id	text	
	shipping_limit_date	text	
	price	double	
	freight_value	double	

4.order reviews table -

SELECT column_name, data_type FROM information_schema.columns WHERE table_name = 'order_reviews';

	COLUMN_NAME	DATA_TYPE
•	review_id	text
	order_id	text
	review_score	int
	review_comment_title	text
	review_creation_date	text
	review_answer_timestamp	text

5.orders table -

SELECT column_name, data_type FROM information_schema.columns WHERE table_name = 'orders';

	COLUMN_NAME	DATA_TYPE
▶	order_id	text
	customer_id	text
	order_status	text
	order_purchase_timestamp	text
	order_approved_at	text
	order_delivered_carrier_date	text
	order_delivered_customer_date	text
	order_estimated_delivery_date	text

6.payments table -

SELECT column_name, data_type FROM information_schema.columns WHERE table_name = 'payments';

	COLUMN_NAME	DATA_TYPE	
•	order_id	text	
	payment_sequential	int	
	payment_type	text	
	payment_installments	int	
	payment_value	double	

7.products table -

SELECT column_name, data_type FROM information_schema.columns WHERE table_name = 'products';

	COLUMN_NAME	DATA_TYPE
•	product_id	varchar
0	product_name	varchar
	product_description	varchar
0	product_code	varchar
	PRODUCT_LINE	varchar
0	price	float
	product_id	varchar
	product_name	varchar
	product_description	varchar
0	product_id	text
	product category	text
0	product_name_le	int
	product_descriptio	int
0	product_photos_qty	int
	product_weight_g	int
1	product_length_cm	int
	product_height_cm	int
	product_width_cm	int

8.sellers table -

SELECT column_name, data_type FROM information_schema.columns WHERE table_name = 'sellers';

	COLUMN_NAME	DATA_TYPE	
•	seller_id	text	
	seller_zip_code_prefix	text	
	seller_city	text	
	seller_state	text	

2) TIME PERIOD FOR WHICH DATA IS GIVEN -

Query - SELECT MIN(Year(order_purchase_timestamp)) as start_date, MAX(Year(order_delivered_customer_date)) as end_date from orders;

Output -

The time period for which the data is given is 2016 - 2018

3) CITIES AND STATES OF CUSTOMERS ORDERED DURING THIS PERIOD -

```
Query - SELECT customer_city, customer_state FROM customers
JOIN orders USING(customer_id)
WHERE order_purchase_timestamp BETWEEN
(
SELECT MIN(Year(order_purchase_timestamp)) FROM orders) AND
(SELECT MAX(Year(order_delivered_customer_date)) FROM orders
);
```

	customer_city	customer_state
•	sao paulo	SP
(sumare	SP
	sao jose dos pinhais	PR
(porto alegre	RS
	contagem	MG
-	guaruja	SP
	sao paulo	SP
	sao paulo	SP
	serrinha	BA
	rio de janeiro	RJ

Q2.In Depth Exploration

1) GROWING TREND OF E-COMMERCE

Query - SELECT YEAR(order_purchase_timestamp) as year,
MONTH(order_purchase_timestamp) as month, count(order_id) AS order_count,
row_number() over(order by count(order_id) desc) AS ranks
FROM orders
GROUP BY year, month
ORDER BY year, month;

Output -

	year	month	order_count	ranks	
•	2016	9	4	23	
	2016	10	324	21	
	2016	12	1	25	
	2017	1	800	20	
	2017	2	1780	19	
	2017	3	2682	17	
	2017	4	2404	18	
	2017	5	3700	15	
	2017	6	3245	16	
	2017	7	4026	14	

From the above table we can come to the conclusion that there is for sure a growing trend on e-commerce in Brazil over the years.

-Seasonal time comes around months 5 - 8 (May - August) with good no of orders every year and a slight decline after that .

Peaks at specific months comes in **Month 8 (August)**, which has a high no of order every year.

Recommendation - It will be advised to increase the stock of products during these months (May - August).

2)TIME BRAZILIAN CUSTOMERS TEND TO BUY

```
WITH a AS (
SELECT CASE
WHEN hour(order_purchase_timestamp) BETWEEN 0 AND 6 THEN 'Dawn'
WHEN hour(order_purchase_timestamp) BETWEEN 6 AND 12 THEN 'Morning'
WHEN hour(order_purchase_timestamp) BETWEEN 12 AND 18 THEN 'Afternoon'
WHEN hour(order_purchase_timestamp) BETWEEN 18 AND 24 THEN 'Night'
END as time
FROM orders)
SELECT a.time, count(a.time) AS count
```

FROM a GROUP BY a.time ORDER BY count DESC;

Output -

Inference -

The time at which Brazilian customers tend to buy stuff are in the following order:

- 1.Afternoon
- 2.Night
- 3.Morning
- 4.Dawn

Afternoon is the time most Brazilian customers tend to buy stuff.

Recommendation - It can be advised to increase the number of staff during Afternoon. And reduce the staff during dawn.

Q3. Evolution of E-commerce orders

1) MONTH ON MONTH ORDERS BY STATES

Query -

SELECT Year(order_purchase_timestamp) AS year, Month(order_purchase_timestamp) AS month, customer_state, count(order_id) as order_count FROM orders o JOIN customers c USING(customer_id) GROUP BY year, month, customer_state ORDER BY year, month;

Output -

	year	month	customer_state	order_count
•	2016	9	RR	1
(2016	9	RS	1
	2016	9	SP	2
1	2016	10	AL	2
	2016	10	BA	4
	2016	10	CE	8
	2016	10	DF	6
	2016	10	ES	4
	2016	10	GO	9
1	2016	10	MA	4

Inference - Highest no of orders is in 11/2017 (November 2017) - Lowest no of orders is in 12/2016 (December 2016)

2) DISTRIBUTION OF CUSTOMERS ACROSS STATES IN BRAZIL

Query -

SELECT customer_state, count(customer_unique_id) as customer_count FROM customers GROUP BY customer_state;

Output -

	customer_state	customer_count
•	SP	41746
(sc	3637
	MG	11635
(PR	5045
	RJ	12852
(RS	5466
	PA	975
	GO	2020
	ES	2033
	BA	3380

Inference - Maximum no of customers is in state SP - Least no of customers are in state RR.

Q4. Impact on Economy

1) % INCREASE IN COST OF ORDERS

Query -

SELECT YEAR(order_purchase_timestamp) as year, MONTH(order_purchase_timestamp) as month, ROUND(SUM(payment_value)) as payment_value

FROM orders o

JOIN payments p using(order_id)

WILLEDE VEAD(audau muudaaa +

WHERE YEAR(order_purchase_timestamp) IN (2017,2018) AND

MONTH(order_purchase_timestamp) NOT IN (9,10,11,12)

GROUP BY year, month

ORDER BY year, month;

Output -

	year	month	payment_value	
•	2017	1	138488	
	2017	2	291908	
	2017	3	449864	
	2017	4	417788	
	2017	5	592919	
	2017	6	511276	
	2017	7	592383	
	2017	8	674396	
	2018	1	1115004	
	2018	2	992463	

2) MEAN & SUM OF PRICE AND FREIGHT VALUES BY CUSTOMER STATE

Query -

SELECT c.customer_state, ROUND(avg(oi.price)) AS mean_price , ROUND(avg(oi.freight_value)) AS mean_freight_value, ROUND(sum(oi.price)) AS sum_price, ROUND(sum(oi.freight_value)) AS sum_freight_value
FROM customers c
JOIN orders o using(customer_id)
JOIN order_items oi using(order_id)
GROUP BY c.customer_state;

	customer_state	mean_price	mean_freight_value	sum_price	sum_freight_value
•	SP	110	15	5202955	718723
	RS	120	22	750304	135523
	AP	164	34	13474	2788
	SC	125	21	520553	89660
	BA	135	26	511350	100157
	MS	143	23	116813	19144
	RJ	125	21	1824093	305589
	PI	160	39	86914	21218
	MG	121	21	1585308	270853
	ES	122	22	275037	49765

Q5. Analysis on Sales, Freight and Delivery Time

1) DAYS BETWEEN PURCHASING, DELIVERING AND ESTIMATED DELIVERY

Query -

SELECT

DATEDIFF(order_delivered_customer_date,order_purchase_timestamp) AS purchase_to_delivery,

DATEDIFF(order_estimated_delivery_date,order_delivered_customer_date) AS delivery_to_estimated_delivery

FROM orders;

Output -

	purchase_to_delivery	delivery_to_estimated_delivery	
•	8	8	
	14	6	
	9	18	
	14	13	
	3	10	
	17	6	
	NULL	HULL	
	10	12	
	10	32	
	18	7	

2) FIND time_to_delivery and diff_estimated_delivery

Query -

SELECT

DATEDIFF(order_delivered_customer_date,order_purchase_timestamp) AS time_to_delivery,

DATEDIFF(order_estimated_delivery_date, order_delivered_customer_date) AS diff_estimated_delivery

FROM orders;

	time_to_delivery	diff_estimated_delivery
•	8	8
	14	6
	9	18
	14	13
	3	10
	17	6
	NULL	HULL
	10	12
	10	32
	18	7

3) GROUP DATA BY STATE, TAKE MEAN OF FRIEGHT VALUE, time_to_delivery AND diff_estimated_delivery

Query -

```
WITH a AS (
SELECT order_id, DATEDIFF(order_delivered_customer_date,order_purchase_timestamp)
AS time_to_delivery,
DATEDIFF(order_estimated_delivery_date, order_delivered_customer_date) AS
diff_estimated_delivery
FROM orders),

b as (
SELECT c.customer_state, oi.order_id,SUM(oi.freight_value) AS freight_value
FROM order_items oi
JOIN orders o using(order_id)
JOIN customers c using(customer_id)
GROUP BY oi.order_id, c.customer_state)

SELECT b.customer state,ROUND(AVG(b.freight_value)) AS mean_freight_value,
```

SELECT b.customer_state,ROUND(AVG(b.freight_value)) AS mean_freight_value, ROUND(AVG(a.time_to_delivery)) as avg_time_to_delivery, ROUND(AVG(a.diff_estimated_delivery)) as avg_estimated_time FROM b JOIN a using(order_id) GROUP BY b.customer_state;

	customer_state	mean_freight_value	avg_time_to_deliv	avg_estimated_ti	
•	GO	26	16	12	
	MG	23	12	13	
	SP	17	9	11	
	MS	27	16	11	
	RJ	24	15	12	
	MA	43	22	10	
	BA	30	19	11	
	RS	25	15	14	
	PR	24	12	13	
	SC	25	15	12	

4),5) A.TOP 5 STATES WITH HIGHEST AVERAGE FREIGHT VALUE

Query -

```
WITH a AS (
      SELECT order_id, DATEDIFF(order_delivered_customer_date,order_purchase_timestamp)
      AS time to delivery,
      DATEDIFF(order_estimated_delivery_date, order_delivered_customer_date) AS
      diff_estimated_delivery
      FROM orders),
      SELECT c.customer_state, oi.order_id,SUM(oi.freight_value) AS freight_value
      FROM order_items oi
      JOIN orders o using(order id)
      JOIN customers c using(customer_id)
      GROUP BY oi.order_id, c.customer_state)
SELECT b.customer_state,ROUND(AVG(b.freight_value)) AS mean_freight_value,
ROUND(AVG(a.time_to_delivery)) as avg_time_to_delivery,
ROUND(AVG(a.diff_estimated_delivery)) as avg_diff_estimated_delivery
FROM b
JOIN a using(order_id)
GROUP BY b.customer_state
ORDER BY mean freight value DESC
LIMIT 5:
```

Output -

	customer_state	mean_freight_value	avg_time_to_delivery	avg_diff_estimated_delivery
•	RR	49	29	17
(PB	48	20	13
	AC	46	21	21
-	RO	46	19	20
	MA	43	22	10

5) B.TOP 5 STATES WITH LOWEST AVERAGE FREIGHT VALUE -

```
WITH a AS (
SELECT order_id, DATEDIFF(order_delivered_customer_date,order_purchase_timestamp)
AS time_to_delivery,
DATEDIFF(order_estimated_delivery_date, order_delivered_customer_date) AS
diff_estimated_delivery
FROM orders),

b as (
SELECT c.customer_state, oi.order_id,SUM(oi.freight_value) AS freight_value
FROM order_items oi
JOIN orders o using(order_id)
JOIN customers c using(customer_id)
```

GROUP BY oi.order id, c.customer state)

```
SELECT b.customer_state,ROUND(AVG(b.freight_value)) AS mean_freight_value, ROUND(AVG(a.time_to_delivery)) as avg_time_to_delivery, ROUND(AVG(a.diff_estimated_delivery)) as avg_diff_estimated_delivery FROM b
JOIN a using(order_id)
GROUP BY b.customer_state
ORDER BY mean_freight_value ASC
LIMIT 5;
```

	customer_state	mean_freight_value	avg_time_to_delivery	avg_diff_estimated_delivery
•	SP	17	9	11
1	MG	23	12	13
	RJ	24	15	12
(DF	24	13	12
	PR	24	12	13

6) A.TOP 5 STATES WITH HIGHEST AVERAGE TIME TO DELIVERY

```
WITH a AS (
      SELECT order id, DATEDIFF(order delivered customer date, order purchase timestamp)
      AS time to delivery,
      DATEDIFF(order estimated delivery date, order delivered customer date) AS
      diff estimated delivery
      FROM orders),
    b as (
      SELECT c.customer_state, oi.order_id,SUM(oi.freight_value) AS freight_value
      FROM order_items oi
      JOIN orders o using(order_id)
      JOIN customers c using(customer id)
      GROUP BY oi.order_id, c.customer_state)
SELECT b.customer state, ROUND(AVG(b.freight value)) AS mean freight value,
ROUND(AVG(a.time_to_delivery)) as avg_time_to_delivery,
ROUND(AVG(a.diff_estimated_delivery)) as avg_diff_estimated_delivery
FROM b
JOIN a using(order_id)
GROUP BY b.customer_state
ORDER BY avg_time_to_delivery DESC
LIMIT 5;
```

Output -

customer_state	mean_freight_value	avg_time_to_delivery	avg_diff_estimated_delivery
RR	49	29	17
AP	41	27	20
AM	37	26	20
AL	39	25	9
PA	40	24	14

6) A.TOP 5 STATES WITH LOWEST AVERAGE TIME TO DELIVERY

Query -

```
WITH a AS (
      SELECT order id, DATEDIFF(order delivered customer date, order purchase timestamp)
      AS time to delivery,
      DATEDIFF(order estimated delivery date, order delivered customer date) AS
      diff_estimated_delivery
      FROM orders),
    b as (
      SELECT c.customer_state, oi.order_id,SUM(oi.freight_value) AS freight_value
      FROM order_items oi
      JOIN orders o using(order_id)
      JOIN customers c using(customer_id)
      GROUP BY oi.order_id, c.customer_state)
SELECT b.customer_state,ROUND(AVG(b.freight_value)) AS mean_freight_value,
ROUND(AVG(a.time_to_delivery)) as avg_time_to_delivery,
ROUND(AVG(a.diff_estimated_delivery)) as avg_diff_estimated_delivery
FROM b
JOIN a using(order_id)
GROUP BY b.customer_state
ORDER BY avg_time_to_delivery ASC
LIMIT 5;
```

		customer_state	mean_freight_value	avg_time_to_delivery	avg_diff_estimated_delivery
	•	SP	17	9	11
-		PR	24	12	13
		MG	23	12	13
		DF	24	13	12
		RJ	24	15	12
- 6					

6) A.TOP 5 STATES WHERE DELIVERY IS REALLY FAST

Query -

```
WITH a AS (
      SELECT order_id, DATEDIFF(order_delivered_customer_date,order_purchase_timestamp)
      AS time to delivery,
      DATEDIFF(order estimated delivery date, order delivered customer date) AS
       diff estimated delivery
      FROM orders),
    b as (
       SELECT c.customer state, oi.order id,SUM(oi.freight value) AS freight value
      FROM order items oi
      JOIN orders o using(order id)
       JOIN customers c using(customer_id)
      GROUP BY oi.order_id, c.customer_state)
SELECT b.customer state, ROUND(AVG(b.freight value)) AS mean freight value,
ROUND(AVG(a.time_to_delivery)) as avg_time_to_delivery,
ROUND(AVG(a.diff estimated delivery)) as avg diff estimated delivery
FROM b
JOIN a using(order_id)
GROUP BY b.customer_state
ORDER BY avg_diff_estimated_delivery ASC
LIMIT 5;
```

Output -

	customer_state	mean_freight_value	avg_time_to_delivery	avg_diff_estimated_delivery
•	AL	39	25	9
	ES	25	16	10
	SE	41	21	10
	MA	43	22	10
	CE	36	21	11

6) B.TOP 5 STATES WHERE DELIVERY IS NOT SO FAST

```
WITH a AS (
SELECT order_id, DATEDIFF(order_delivered_customer_date,order_purchase_timestamp)
AS time_to_delivery,
DATEDIFF(order_estimated_delivery_date, order_delivered_customer_date) AS
diff_estimated_delivery
FROM orders),

b as (
SELECT c.customer_state, oi.order_id,SUM(oi.freight_value) AS freight_value
FROM order_items oi
JOIN orders o using(order_id)
JOIN customers c using(customer_id)
GROUP BY oi.order_id, c.customer_state)
```

SELECT b.customer_state,ROUND(AVG(b.freight_value)) AS mean_freight_value, ROUND(AVG(a.time_to_delivery)) as avg_time_to_delivery, ROUND(AVG(a.diff_estimated_delivery)) as avg_diff_estimated_delivery FROM b JOIN a using(order_id) GROUP BY b.customer_state ORDER BY avg_diff_estimated_delivery DESC LIMIT 5;

Output -

		customer_state	mean_freight_value	avg_time_to_delivery	avg_diff_estimated_delivery
	•	AC	46	21	21
0		RO	46	19	20
		AM	37	26	20
0		AP	41	27	20
		RR	49	29	17
6					

Q6. Payment Type Analysis

1) MONTH OVER MONTH COUNT OF ORDERS FOR DIFFERENT PAYMENT TYPES

Query -

SELECT YEAR(order_purchase_timestamp) AS year, MONTH(order_purchase_timestamp) AS month, payment_type, count(payment_type) AS order_count FROM orders o JOIN payments p using(order_id) GROUP BY year, month, payment_type ORDER BY year, month;

		year	month	payment_type	order_count
	•	2016	9	credit_card	3
6		2016	10	credit_card	254
		2016	10	debit_card	2
6		2016	10	UPI	63
		2016	10	voucher	23
8		2016	12	credit_card	1
		2017	1	credit_card	583
6		2017	1	debit_card	9
		2017	1	UPI	197
		2017	1	voucher	61

2) COUNT OF ORDERS BASED ON THE NO. OF PAYMENT INSTALLMENTS

Query -

SELECT payment_installments, count(order_id) AS order_count FROM payments GROUP BY payment_installments;

Output -

	payment_installments	order_count
▶	8	4268
	1	52546
	2	12413
	3	10461
62.0	6	3920
	5	5239
	4	7098
	10	5328
	7	1626
	12	133

Inference - Most people prefer to pay in a single installment