CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the October/November 2012 series

9709 MATHEMATICS

9709/33 Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2012	9709	33

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.

When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.

For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2012	9709	33

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through "marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Pa		age 4	Mark Scheme	Syllabus	Paper		
			GCE A LEVEL – October/November 2012	9709	33		
1	Sta	te or imp	oly lne=1		B1		
		_	ast one logarithm law for product or quotient correctly		M1		
		(or exponential equivalent)					
	Ob	tain $x+3$	$5 = ex$ or equivalent and hence $\frac{5}{e-1}$		A1	[3]	
			• •				
2	(i)	State o	r imply $R=25$		B1		
			rrect trigonometric formula to find α		M1		
			16.26° with no errors seen		A1	[3]	
	(ii)	Evalua	te of $\sin^{-1} \frac{17}{R}$ (= 42.84°)		M1		
	(11)		N.			[0]	
		Obtain	answer 59.1°		A1	[2]	
3	(i)	Either	Use correct quotient rule or equivalent to obtain				
			dr = 4(2t+3) - 8t				
			$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{4(2t+3)-8t}{(2t+3)^2}$ or equivalent		B1		
			Obtain $\frac{dy}{dt} = \frac{4}{2t+3}$ or equivalent		B1		
			Use $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ or equivalent		M1		
			$\frac{dx}{dt} = \frac{dx}{dt}$ or equivalent		IVII		
			Obtain $\frac{1}{3}(2t+3)$ or similarly simplified equivalent		A1		
		<u>Or</u>	Express t in terms of x or y e.g. $t = \frac{3x}{4-2x}$		B1		
			Obtain Cartesian equation e.g. $y = 2\ln\left(\frac{6}{2-x}\right)$		B1		
			Differentiate and obtain $\frac{dy}{dx} = \frac{2}{2-x}$		M1		
			Obtain $\frac{1}{3}(2t+3)$ or similarly simplified equivalent		A1	[4]	
	(ii)	Obtain	$2t = 3 \text{ or } t = \frac{3}{2}$		B1		
			ute in expression for $\frac{dy}{dx}$ and obtain 2		D1	[2]	
		Substit	$\frac{1}{dx}$ and obtain 2		B1	[2]	

	Pa	ige 5	Mark Scheme	Syllabus	Paper	•
			GCE A LEVEL – October/November 2012	9709	33	
4			ables correctly and integrate one side or equivalent		M1 A1	
	Obt	tain=31n ((x^2+4) or equivalent		A1	
			instant or use $x = 0$, $y = 32$ as limits in a solution rms $a \ln y$ and $b \ln (x^2 + 4)$		M1	
	Obt	tain ln y =	$3\ln(x^2+4) + \ln 32 - 3\ln 4$ or equivalent		A1	
	Obi	$tain y = \frac{1}{2}$	(x^2+4) or equivalent		A1	[6]
5	(i)	<u>Either</u>	Use correct product rule		M1	
			Obtain $3e^{-2x} - 6xe^{-2x}$ or equivalent		A1	
			Substitute $-\frac{1}{2}$ and obtain 6e		A1	
		<u>Or</u>	Take In of both sides and use implicit differentiation correctly	/	M1	
			Obtain $\frac{dy}{dx} = y\left(\frac{1}{x} - 2\right)$ or equivalent		A1	
			Substitute $-\frac{1}{2}$ and obtain 6e		A1	[3]
	(ii)	Use integ	gration by parts to reach $kxe^{-2x} \pm \int ke^{-2x} dx$		M1	
			$-\frac{3}{2}xe^{-2x} + \int_{2}^{3}e^{-2x} dx \text{ or equivalent}$		A1	
		Obtain -	$-\frac{3}{2}xe^{-2x}-\frac{3}{4}e^{-2x}$ or equivalent		A1	
		Substitut	te correct limits correctly		DM1	
		Obtain -	$-\frac{3}{4}$ with no errors or inexact work seen		A1	[5]
6	(i)	Find y fo	for $x = -2$		M1	
		Obtain 0	and conclude that $\alpha = -2$		A1	[2]
	(ii)	<u>Either</u>	Find cubic factor by division or inspection or equivalent		M1	
			Obtain $x^3 + 2x - 8$		A1	
		0	Rearrange to confirm given equation $x = \sqrt[3]{8 - 2x}$	41 ()	A1	
		<u>Or</u>	Derive cubic factor from given equation and form product wi $(x+2)(x^3+2x-8)$	$\tan (x - \alpha)$	M1 A1	
			Obtain quartic $x^4 + 2x^3 + 2x^2 - 4x - 16 (= 0)$		A1	
		<u>Or</u>	Derive cubic factor from given equation and divide the quarti	c by the cubic	M1	
			$(x^4 + 2x^3 + 2x^2 - 4x - 16) \div (x^3 + 2x - 8)$ Obtain correct quotient and zero remainder		A1 A1	[3]
	(iii)	Use the o	given iterative formula correctly at least once		M1	
	(***)	Obtain fi	inal answer 1.67	_	A1	
			fficient iterations to at least 4 d.p. to justify answer 1.67 to 2 d. a change of sign in interval (1.665, 1.675)	p. or show	A1	[3]

Solve simultaneous equations and find s and t $M1$ Obtain $s=2$ and $t=-1$ or equivalent in terms of p $A1$ Substitute in third equation to find $p=9$ State point of intersection is $(7,-1,2)$ $A1$ (ii) Either Use scalar product to obtain a relevant equation in a,b,c e.g. $a-b+3c=0$ or $2a+5b-4c=0$ $M1$ State two correct equations in a,b,c $A1$ Solve simultaneous equations to obtain at least one ratio $A1$ Obtain $a:b:c=-11:10:7$ or equivalent $A1$ Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients $A1$ Or 1 Calculate vector product of $A1$ Obtain two correct components of the product $A1$ Obtain correct $A1$ Obtain correct $A1$ Obtain equation $A1$ Obtain equation $A1$ Obtain $A1$				GCE A LEVEL – October/November 2012 9709	33	
Integration to obtain an integral of the form $k_1u'+k_2u', k_1, k_2 \neq 0$ M1 Use limits 0 and 1 or (if reverting to x) 0 and $\frac{1}{4}\pi$ correctly DM1 Obtain $\frac{1}{24}$, or equivalent A1 (ii) Use 40 and upper limit from part (i) in appropriate calculation Obtain $k = 10$ with no errors seen A1 8 (i) State or imply general point of either line has coordinates $(5 + s, 1 - s, -4 + 3s)$ or $(p + 2t, 4 + 5t, -2 - 4t)$ Solve simultaneous equations and find s and t Obtain $s = 2$ and $t = -1$ or equivalent in terms of p A1 Substitute in third equation to find $p = 9$ State point of intersection is $(7 - 1, 2)$ (ii) Either Use scalar product to obtain a relevant equation in a, b, c e.g. $a - b + 3c = 0$ or $2a + 5b - 4c = 0$ Solve simultaneous equations to obtain at least one ratio Obtain $a : b : c = -11 : 10 : 7$ or equivalent Obtain $a : b : c = -11 : 10 : 7$ or equivalent Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients Or 1 Calculate vector product of $\begin{bmatrix} -1 \\ -1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix}$ Obtain two correct components of the product A1 Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients A1 Obtain equation $-11x + 10y + 7z = -73$ or equivalent Obtain equation $-11x + 10y + 7z = -73$ or equivalent A1 Obtain equation $-11x + 10y + 7z = -73$ or equivalent A2 Obtain equation $-11x + 10y + 7z = -73$ or equivalent A3 Obtain equation $-11x + 10y + 7z = -73$ or equivalent A4 Obtain eq	7	(i)				
Integration to obtain an integral of the form $k_1u^4 + k_2u^6$, k_1 , $k_2 \neq 0$ M1 Use limits 0 and 1 or (if reverting to x) 0 and $\frac{1}{4}\pi$ correctly DM1 Obtain $\frac{1}{24}$, or equivalent A1 (ii) Use 40 and upper limit from part (i) in appropriate calculation Obtain $k = 10$ with no errors seen A1 8 (i) State or imply general point of either line has coordinates $(5 + s, 1 - s, -4 + 3s)$ or $(p + 2t, 4 + 5t, -2 - 4t)$ Solve simultaneous equations and find s and t Obtain $s = 2$ and $t = -1$ or equivalent in terms of p Sate point of intersection is $(7, -1, 2)$ A1 (ii) Either Use scalar product to obtain a relevant equation in a , b , c e.g. $a - b + 3c = 0$ or $2a + 5b - 4c = 0$ State two correct equations in a , b , c Obtain $a : b : c = -11 : 10 : 7$ or equivalent Obtain $a : b : c = -11 : 10 : 7$ or equivalent Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients O1 O2 Calculate vector product of $\begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 5 \\ -4 \end{bmatrix}$ Obtain correct $\begin{bmatrix} -11 \\ 10 \end{bmatrix}$ or equivalent Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients O2 Using relevant vectors, form correctly a two-parameter equation for the plane O5			Obtain	$\int \frac{1}{2}u^3(1-u^2) du$ or equivalent	A1	
Obtain $\frac{1}{24}$, or equivalent (ii) Use 40 and upper limit from part (i) in appropriate calculation Obtain $k = 10$ with no errors seen 8 (i) State or imply general point of either line has coordinates $(5+s,1-s,-4+3s)$ or $(p+2t,4+5t,-2-4t)$ Solve simultaneous equations and find s and t Obtain $s = 2$ and $t = -1$ or equivalent in terms of p Al Substitute in third equation to find $p = 9$ State point of intersection is $(7,-1,2)$ Al State two correct equations in a,b,c e.g. $a-b+3c=0$ or $2a+5b-4c=0$ State two correct equations in a,b,c Al Solve simultaneous equations to obtain at least one ratio Obtain $a:b:c=-11:10:7$ or equivalent Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients Or 1 Calculate vector product of $\begin{pmatrix} 1\\ -1\\ 3 \end{pmatrix}$ and $\begin{pmatrix} 2\\ 5\\ -4 \end{pmatrix}$ Obtain correct $\begin{pmatrix} -11\\ 10\\ 7 \end{pmatrix}$ or equivalent Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients Or 2 Using relevant vectors, form correctly a two-parameter equation for the plane Obtain $r = \begin{pmatrix} 5\\ 1\\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1\\ -1\\ 1\\ 4 \end{pmatrix} + \mu \begin{pmatrix} 2\\ 5\\ -4 \end{pmatrix}$ or equivalent State three equations in x, y, z, λ, μ Al Eliminate λ and μ					M1	
Obtain $\frac{1}{24}$, or equivalent (ii) Use 40 and upper limit from part (i) in appropriate calculation Obtain $k = 10$ with no errors seen 8 (i) State or imply general point of either line has coordinates $(5+s,1-s,-4+3s)$ or $(p+2t,4+5t,-2-4t)$ Solve simultaneous equations and find s and t Obtain $s = 2$ and $t = -1$ or equivalent in terms of p Substitute in third equation to find $p = 9$ State point of intersection is $(7,-1,2)$ A1 (ii) Either Use scalar product to obtain a relevant equation in a,b,c e.g. $a-b+3c=0$ or $2a+5b-4c=0$ Solve simultaneous equations to obtain at least one ratio Obtain $a:b:c=-11:10:7$ or equivalent Obtain $a:b:c=-11:10:7$ or equivalent Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients Or 1 Calculate vector product of $\begin{bmatrix} 1\\ -1\\ 3 \end{bmatrix}$ and $\begin{bmatrix} 2\\ 5\\ -4\\ 4 \end{bmatrix}$ Obtain correct $\begin{bmatrix} -11\\ 10\\ 7 \end{bmatrix}$ or equivalent Substitute coordinates of a relevant point in $r.n=d$ to find d Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients Or 2 Using relevant vectors, form correctly a two-parameter equation for the plane Obtain $r = \begin{bmatrix} 5\\ 1\\ 4 \end{bmatrix} + \lambda \begin{bmatrix} 1\\ -1\\ 3 \end{bmatrix} + \mu \begin{bmatrix} 2\\ 5\\ -4 \end{bmatrix}$ or equivalent State three equations in x,y,z,λ,μ A1 Eliminate λ and μ DM1			Use lim	its 0 and 1 or (if reverting to x) 0 and $\frac{1}{4}\pi$ correctly	DM1	
8 (i) State or imply general point of either line has coordinates $(5+s,1-s,-4+3s)$ or $(p+2t,4+5t,-2-4t)$ Solve simultaneous equations and find s and t MI Obtain $s=2$ and $t=-1$ or equivalent in terms of p A1 Substitute in third equation to find $p=9$ A1 State point of intersection is $(7,-1,2)$ A1 (ii) Either Use scalar product to obtain a relevant equation in a,b,c e.g. $a-b+3c=0$ or $2a+5b-4c=0$ MI State two correct equations in a,b,c A1 Solve simultaneous equations to obtain at least one ratio Obtain $a:b:c=-11:10:7$ or equivalent Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients A1 Or 1 Calculate vector product of $\begin{bmatrix} 1\\ -1\\ 3 \end{bmatrix}$ and $\begin{bmatrix} 2\\ 5\\ -4 \end{bmatrix}$ M1 Obtain correct $\begin{bmatrix} -11\\ 10\\ 7 \end{bmatrix}$ or equivalent A1 Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients A1 Obtain correct $\begin{bmatrix} -11\\ 10\\ 7 \end{bmatrix}$ or equivalent A1 Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients A1 Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients A1 Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients A1 Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients A1 Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients A1 Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients A1 Obtain $-11x+10y+7z=-73$ or equivalent with integer coefficients A1 Obtain $-11x+10y+7z=-73$ or equivalent $-11x+10y+7z=-73$ or eq					A1	[6]
Solve simultaneous equations and find s and t Obtain $s=2$ and $t=-1$ or equivalent in terms of p Al Substitute in third equation to find $p=9$ State point of intersection is $(7,-1,2)$ Al (ii) Either Use scalar product to obtain a relevant equation in a,b,c e.g. $a-b+3c=0$ or $2a+5b-4c=0$ State two correct equations in a,b,c Solve simultaneous equations to obtain at least one ratio Obtain $a:b:c=-11:10:7$ or equivalent Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients Or 1 Calculate vector product of $\begin{pmatrix} 1\\-1\\3 \end{pmatrix}$ and $\begin{pmatrix} 2\\5\\-4 \end{pmatrix}$ Obtain two correct components of the product Al Obtain correct $\begin{pmatrix} -11\\10\\7 \end{pmatrix}$ or equivalent Substitute coordinates of a relevant point in $\mathbf{r}.\mathbf{n}=d$ to find d Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients Or 2 Using relevant vectors, form correctly a two-parameter equation for the plane Obtain $\mathbf{r} = \begin{pmatrix} 5\\1\\-4\\4 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\-4\\4 \end{pmatrix} + \mu \begin{pmatrix} 2\\5\\-4 \end{pmatrix}$ or equivalent Al State three equations in x,y,z,λ,μ Al Eliminate λ and μ		(ii)				[2]
Solve simultaneous equations and find s and t Obtain $s = 2$ and $t = -1$ or equivalent in terms of p A1 Substitute in third equation to find $p = 9$ A1 State point of intersection is $(7, -1, 2)$ A1 (ii) Either Use scalar product to obtain a relevant equation in a, b, c e.g. $a - b + 3c = 0$ or $2a + 5b - 4c = 0$ M1 State two correct equations in a, b, c Solve simultaneous equations to obtain at least one ratio Obtain $a:b:c=-11:10:7$ or equivalent Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients Obtain two correct components of the product Obtain correct $\begin{pmatrix} -1\\1\\0\\7 \end{pmatrix}$ or equivalent Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients Obtain correct $\begin{pmatrix} -1\\1\\0\\7 \end{pmatrix}$ or equivalent Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients Obtain $\mathbf{r} = \begin{pmatrix} -1\\1\\-1\\-4 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\3 \end{pmatrix} + \mu \begin{pmatrix} 2\\5\\-4 \end{pmatrix}$ or equivalent Obtain $\mathbf{r} = \begin{pmatrix} 5\\1\\-4 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\3 \end{pmatrix} + \mu \begin{pmatrix} 2\\5\\-4 \end{pmatrix}$ or equivalent A1 State three equations in x, y, z, λ, μ A1 Eliminate λ and μ	8	(i)			B1	
Substitute in third equation to find $p = 9$ State point of intersection is $(7, -1, 2)$ (ii) Either Use scalar product to obtain a relevant equation in a, b, c e.g. $a - b + 3c = 0$ or $2a + 5b - 4c = 0$ State two correct equations in a, b, c Solve simultaneous equations to obtain at least one ratio DM1 Obtain $a: b: c = -11: 10: 7$ or equivalent Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients A1 Or 1 Calculate vector product of $\begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix}$ Obtain two correct components of the product A1 Obtain correct $\begin{bmatrix} -11 \\ 10 \\ 7 \end{bmatrix}$ or equivalent Substitute coordinates of a relevant point in $\mathbf{r}.\mathbf{n} = d$ to find d Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients A1 Or 2 Using relevant vectors, form correctly a two-parameter equation for the plane Obtain $\mathbf{r} = \begin{bmatrix} 5 \\ 1 \\ -4 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} + \mu \begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix}$ or equivalent State three equations in x, y, z, λ, μ A1 Eliminate λ and μ DM1			Solve si	multaneous equations and find s and t		
State point of intersection is $(7, -1, 2)$ (ii) Either Use scalar product to obtain a relevant equation in a, b, c e.g. $a - b + 3c = 0$ or $2a + 5b - 4c = 0$ State two correct equations in a, b, c Al Solve simultaneous equations to obtain at least one ratio DM1 Obtain $a:b:c=-11:10:7$ or equivalent Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients A1 Or 1 Calculate vector product of $\begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix}$ Obtain two correct components of the product A1 Obtain correct $\begin{bmatrix} -11 \\ 10 \\ 7 \end{bmatrix}$ or equivalent Substitute coordinates of a relevant point in $\mathbf{r}.\mathbf{n} = d$ to find d DM1 Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients A1 Or 2 Using relevant vectors, form correctly a two-parameter equation for the plane M1 Obtain $\mathbf{r} = \begin{bmatrix} 5 \\ 1 \\ -4 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} + \mu \begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix}$ or equivalent State three equations in x, y, z, λ, μ A1 Eliminate λ and μ DM1						
e.g. $a-b+3c=0$ or $2a+5b-4c=0$ M1 State two correct equations in a,b,c A1 Solve simultaneous equations to obtain at least one ratio DM1 Obtain $a:b:c=-11:10:7$ or equivalent A1 Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients A1 Or 1 Calculate vector product of $\begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix}$ M1 Obtain two correct components of the product A1 Obtain correct $\begin{bmatrix} -11 \\ 10 \\ 7 \end{bmatrix}$ or equivalent A1 Substitute coordinates of a relevant point in $\mathbf{r}.\mathbf{n}=d$ to find d DM1 Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients A1 Or 2 Using relevant vectors, form correctly a two-parameter equation for the plane M1 Obtain $\mathbf{r} = \begin{bmatrix} 5 \\ 1 \\ -4 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} + \mu \begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix}$ or equivalent A1 State three equations in x,y,z,λ,μ A1 Eliminate λ and μ DM1						[5]
State two correct equations in a, b, c Solve simultaneous equations to obtain at least one ratio DM1 Obtain $a:b:c=-11:10:7$ or equivalent Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients A1 Or 1 Calculate vector product of $\begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix}$ Obtain two correct components of the product A1 Obtain correct $\begin{bmatrix} -11 \\ 10 \\ 7 \end{bmatrix}$ or equivalent Substitute coordinates of a relevant point in $\mathbf{r}.\mathbf{n} = d$ to find d Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients A1 Or 2 Using relevant vectors, form correctly a two-parameter equation for the plane M1 Obtain $\mathbf{r} = \begin{bmatrix} 5 \\ 1 \\ -4 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} + \mu \begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix}$ or equivalent State three equations in x, y, z, λ, μ A1 Eliminate λ and μ DM1		(ii)	Either	Use scalar product to obtain a relevant equation in a, b, c		
Solve simultaneous equations to obtain at least one ratio $DM1$ Obtain $a:b:c=-11:10:7$ or equivalent Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients Or 1 Calculate vector product of $\begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix}$ Obtain two correct components of the product A1 Obtain correct $\begin{bmatrix} -11 \\ 10 \\ 7 \end{bmatrix}$ or equivalent Substitute coordinates of a relevant point in $\mathbf{r}.\mathbf{n}=d$ to find d Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients A1 Or 2 Using relevant vectors, form correctly a two-parameter equation for the plane Obtain $\mathbf{r} = \begin{bmatrix} 5 \\ 1 \\ -4 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} + \mu \begin{bmatrix} 2 \\ 5 \\ -4 \end{bmatrix}$ or equivalent State three equations in x, y, z, λ, μ A1 Eliminate λ and μ DM1				•		
Obtain $a:b:c=-11:10:7$ or equivalent Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients A1 Or 1 Calculate vector product of $\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 5 \\ -4 \end{pmatrix}$ Obtain two correct components of the product A1 Obtain correct $\begin{pmatrix} -11 \\ 10 \\ 7 \end{pmatrix}$ or equivalent Substitute coordinates of a relevant point in $\mathbf{r}.\mathbf{n}=d$ to find d Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients A1 Or 2 Using relevant vectors, form correctly a two-parameter equation for the plane M1 Obtain $\mathbf{r} = \begin{pmatrix} 5 \\ 1 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 5 \\ -4 \end{pmatrix}$ or equivalent State three equations in x, y, z, λ, μ A1 Eliminate λ and μ DM1				-		
Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients A1 Or 1 Calculate vector product of $\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 5 \\ -4 \end{pmatrix}$ M1 Obtain two correct components of the product A1 Obtain correct $\begin{pmatrix} -11 \\ 10 \\ 7 \end{pmatrix}$ or equivalent A1 Substitute coordinates of a relevant point in $\mathbf{r}.\mathbf{n} = d$ to find d DM1 Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients A1 Or 2 Using relevant vectors, form correctly a two-parameter equation for the plane M1 Obtain $\mathbf{r} = \begin{pmatrix} 5 \\ 1 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 5 \\ -4 \end{pmatrix}$ or equivalent A1 State three equations in x, y, z, λ, μ A1 Eliminate λ and μ DM1						
Obtain two correct components of the product Obtain correct $\begin{pmatrix} -11\\10\\7 \end{pmatrix}$ or equivalent Substitute coordinates of a relevant point in $\mathbf{r}.\mathbf{n}=d$ to find d Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients Or 2 Using relevant vectors, form correctly a two-parameter equation for the plane Obtain $\mathbf{r} = \begin{pmatrix} 5\\1\\-4 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\3 \end{pmatrix} + \mu \begin{pmatrix} 2\\5\\-4 \end{pmatrix}$ or equivalent State three equations in x, y, z, λ, μ All Eliminate λ and μ Ohman				Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients		
Obtain correct $\begin{pmatrix} -11\\10\\7 \end{pmatrix}$ or equivalent A1 Substitute coordinates of a relevant point in $\mathbf{r}.\mathbf{n}=d$ to find d DM1 Obtain equation $-11x+10y+7z=-73$ or equivalent with integer coefficients A1 Or 2 Using relevant vectors, form correctly a two-parameter equation for the plane M1 Obtain $\mathbf{r} = \begin{pmatrix} 5\\1\\-4 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\3 \end{pmatrix} + \mu \begin{pmatrix} 2\\5\\-4 \end{pmatrix}$ or equivalent A1 State three equations in x, y, z, λ, μ A1 Eliminate λ and μ DM1			<u>Or 1</u>	Calculate vector product of $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 5 \\ -4 \end{bmatrix}$	M1	
Substitute coordinates of a relevant point in $\mathbf{r}.\mathbf{n} = d$ to find d DM1 Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients A1 Or 2 Using relevant vectors, form correctly a two-parameter equation for the plane M1 Obtain $\mathbf{r} = \begin{pmatrix} 5 \\ 1 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 5 \\ -4 \end{pmatrix}$ or equivalent A1 State three equations in x, y, z, λ, μ A1 Eliminate λ and μ DM1					A1	
Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients A1 Or 2 Using relevant vectors, form correctly a two-parameter equation for the plane M1 Obtain $\mathbf{r} = \begin{pmatrix} 5 \\ 1 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 5 \\ -4 \end{pmatrix}$ or equivalent A1 State three equations in x, y, z, λ, μ Eliminate λ and μ DM1				Obtain correct $\begin{bmatrix} 10 \\ 7 \end{bmatrix}$ or equivalent	A1	
Using relevant vectors, form correctly a two-parameter equation for the plane M1 Obtain $\mathbf{r} = \begin{pmatrix} 5 \\ 1 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 5 \\ -4 \end{pmatrix}$ or equivalent A1 State three equations in x, y, z, λ, μ Eliminate λ and μ DM1				Substitute coordinates of a relevant point in $\mathbf{r}.\mathbf{n} = d$ to find d	DM1	
Obtain $\mathbf{r} = \begin{pmatrix} 5 \\ 1 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 5 \\ -4 \end{pmatrix}$ or equivalent State three equations in x, y, z, λ, μ Eliminate λ and μ A1 DM1				Obtain equation $-11x + 10y + 7z = -73$ or equivalent with integer coefficients	A1	
State three equations in x, y, z, λ , μ A1 Eliminate λ and μ DM1			<u>Or 2</u>		M1	
Eliminate λ and μ DM1				Obtain $\mathbf{r} = \begin{bmatrix} 1 \\ -4 \end{bmatrix} + \lambda \begin{bmatrix} -1 \\ 3 \end{bmatrix} + \mu \begin{bmatrix} 5 \\ -4 \end{bmatrix}$ or equivalent	A1	
·				State three equations in x, y, z, λ , μ	A1	
Obtain $11x - 10y - 7z = 73$ or equivalent with integer coefficients				Eliminate λ and μ	DM1	
				Obtain $11x - 10y - 7z = 73$ or equivalent with integer coefficients	A1	[5]

Mark Scheme

Syllabus

Paper

Page 6

Pa	ige 7	Mark Scheme	Syllabus	Pape	r
		GCE A LEVEL – October/November 2012	9709	33	
9 (i)	State or	imply form $\frac{A}{3-x} + \frac{Bx + C}{1+x^2}$		B1	
	Use rele	vant method to determine a constant		M1	
	Obtain A	1 = 6		A1	
	Obtain <i>I</i>	B = -2		A 1	
	Obtain (C=1		A1	[5]
(ii)	<u>Either</u>	Use correct method to obtain first two terms of expansion			
		of $(3-x)^{-1}$ or $\left(1-\frac{1}{3}x\right)^{-1}$ or $\left(1+x^2\right)^{-1}$		M1	
		Obtain $\frac{A}{3} \left(1 + \frac{1}{3}x + \frac{1}{9}x^2 + \frac{1}{27}x^3 \right)$		A1	
		Obtain $(Bx + C)(1 - x^2)$ Obtain sufficient terms of the product $(Bx + C)(1 - x^2)$, B, C	$z \neq 0$ and add the	A1	
		two expansions		M1	
		Obtain final answer $3 - \frac{4}{3}x - \frac{7}{9}x^2 + \frac{56}{27}x^3$		A1	
	<u>Or</u>	Use correct method to obtain first two terms of expansion			
		of $(3-x)^{-1}$ or $\left(1-\frac{1}{3}x\right)^{-1}$ or $\left(1+x^2\right)^{-1}$		M1	
		Obtain $\frac{1}{3} \left(1 + \frac{1}{3}x + \frac{1}{9}x^2 + \frac{1}{27}x^3 \right)$		A1	
		Obtain $(1-x^2)$		A1	
		Obtain sufficient terms of the product of the three factors		M1	
		Obtain final answer $3 - \frac{4}{3}x - \frac{7}{9}x^2 + \frac{56}{27}x^3$		A1	[5]

- 10 (a) Expand and simplify as far as $iw^2 = -8i$ or equivalent B1

 Obtain first answer $i\sqrt{8}$, or equivalent B1

 Obtain second answer $-i\sqrt{8}$, or equivalent and no others B1 [3]
 - (b) (i) Draw circle with centre in first quadrant
 Draw correct circle with interior shaded or indicated

 M1
 A1 [2]
 - (ii) Identify ends of diameter corresponding to line through origin and centre Obtain p=3.66 and q=7.66 A1 Show tangents from origin to circle M1 Evaluate $\sin^{-1}\left(\frac{1}{4}\sqrt{2}\right)$ M1

 Obtain $\alpha = \frac{1}{4}\pi \sin^{-1}\left(\frac{1}{4}\sqrt{2}\right)$ or equivalent and hence 0.424 A1

Obtain
$$\beta = \frac{1}{4}\pi + \sin^{-1}\left(\frac{1}{4}\sqrt{2}\right)$$
 or equivalent and hence 1.15 A1 [6]