Statistics

Week 10: Regression (Chapter 10 & 11)

ESD, SUTD

Term 5, 2017

Established in collaboration with MIT

Outline

1 Variable selection

Variable/model selection

If we can reject $H_0: \beta_1=\beta_2=\cdots=\beta_k=0$, then it remains to determine which subset of the predictor variables gives the best model. As mentioned, r^2 is no longer a good measure.

A basic approach is to look at the confidence interval for each β_i , and check if it contains 0 (alternatively, compare the p-value to α).

Example: do this for the US economy spreadsheet.

"Essentially, all models are wrong, but some are useful."

George Box

Standardized regression coefficients

Another approach is to compare the effects of each predictor variable on y.

Suppose we have a regression $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$. To compare x_1 and x_2 in terms of their effects on y, we cannot compare the sizes $\hat{\beta}_i$ directly, since they may be in different units.

One method is to standardize the data:

$$y'_{i} = \frac{y_{i} - \bar{y}}{s_{y}}, \qquad x'_{ij} = \frac{x_{ij} - \bar{x}_{j}}{s_{x_{i}}},$$

then perform the multiple regression.

(In simple linear regression, the new regression line is $\hat{y}' = rx'$.)

Exercise

For the spreadsheet *sales2*, show that x_1 has the larger effect.

Adjusted r^2

Given a subset of size p of the predictor variables x_i 's, define the adjusted r^2 as

$$r_{adj}^2 := 1 - \frac{n-1}{n-1-p}(1-r^2).$$

Then the subset of the x_i 's which gives the highest adjusted r^2 can be considered the 'best' model.

This definition is motivated by the observation that a good model should fit the data well using few predictor variables, hence there is a penalty on the number of predictors used.

Exercise

Compute the adjusted r^2 for each of the 3 models for the spreadsheet *sales2*.

More information

The Akaike information criterion (AIC) is also commonly used for model selection; it measures the quality of each model relative to the others.

The total number of subsets grows quickly with k, so it is impractical to test for all subsets. *Stepwise regression* (textbook Section 11.7) uses a heuristic for finding a good subset quickly.

AIC and stepwise regression are implemented in R.