Discrete Mathematics Lecture 6

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

Summary of Lecture 5

Extended Euclidean Algorithm:

- **Input**: $a, b \ (a \ge b > 0)$
- Output: $d = \gcd(a, b)$, s, t such that d = as + bt

Linear congruence equation: $ax \equiv b \pmod{n}$

- **Solvable** if and only if gcd(a, n) | b
- **Solution**: $x \equiv \frac{b}{d}t \pmod{\frac{n}{d}}$, $t = \left(\frac{a}{d}\right)^{-1} \pmod{\frac{n}{d}}$

System of linear congruences:

$$\begin{cases} a_1 x \equiv b_1 \pmod{n_1} \\ a_2 x \equiv b_2 \pmod{n_2} \\ \vdots \\ a_k x \equiv b_k \pmod{n_k} \end{cases}$$

System of Linear Congruences

Sun-Tsu's Question: There are certain things whose number is unknown. When divided by 3, the remainder is 2; when divided by 5, the remainder is 3; and when divided by 7, the remainder is 2. What will be the number of things?

```
• x \equiv 2 \pmod{3}; x \equiv 3 \pmod{5}; x \equiv 2 \pmod{7}
```

DEFINITION: A **system of linear congruences** is a set of linear congruence equations of the form

$$\begin{cases} a_1 x \equiv b_1 \pmod{n_1} \\ a_2 x \equiv b_2 \pmod{n_2} \\ \vdots \\ a_k x \equiv b_k \pmod{n_k} \end{cases}$$

• $x \in \mathbb{Z}$ is a **solution** if it satisfies all k equations.

Chinese Remainder Theorem

THEROEM: Let $n_1, \ldots, n_k \in \mathbb{Z}^+$ be pairwise relatively prime and

let $n = n_1 \cdots n_k$. Then for any $b_1, \dots, b_k \in \mathbb{Z}$, then the system

$$\chi = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ \vdots \\ n_k \end{pmatrix}$$

$$\chi = \begin{pmatrix} b_1 \\ b_2 \\ b_k \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ \vdots \\ n_k \end{pmatrix} \begin{pmatrix} x \equiv b_1 \pmod{n_1} \\ x \equiv b_2 \pmod{n_2} \\ \vdots \\ x \equiv b_k \pmod{n_k} \end{pmatrix}$$

$$\begin{cases} x \equiv b_1 \pmod{n_1} \\ x \equiv b_2 \pmod{n_2} \\ \vdots \\ x \equiv b_k \pmod{n_k} \end{cases}$$

always has a solution. Furthermore, if $b \in \mathbb{Z}$ is a solution, then any solution x must satisfy $x \equiv b \pmod{n}$.

- Let $N_i = n/n_i$ for every $i \in [k]$.
- $\gcd(N_i, n_i) = 1 \text{ for every } i \in [k].$

 - $\exists s_i, t_i, N_i s_i + n_i t_i = 1.$ Let $b = b_1(N_1 s_1) + \dots + b_k(N_k s_k).$
 - Then $b \equiv b_i \pmod{n_i}$ for every $i \in [k]$.

- $x \equiv b_i \pmod{n_i}$ for all i
 - $\Rightarrow x \equiv b \pmod{n_i}$ for all i
 - $\Rightarrow n_i | (x b)$ for all i
- $\Rightarrow (n_1 n_2 \cdots n_k) | (x b)$
- $\Rightarrow x \equiv b \pmod{n}$

$$\chi = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_1 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_3 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_5 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_k \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_2 \\ n_2 \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_2 \\ n_2 \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_2 \\ n_2 \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_1 \\ n_2 \\ n_2 \\ n_2 \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mod \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\chi_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\chi_6 =$$

$$\begin{array}{c} \chi_{1} \equiv \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mod \begin{pmatrix} n_{1} \\ n_{2} \\ \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mod n_{1} \\ \chi_{2} \equiv 0 \mod n_{2} \\ \chi_{1} \equiv 0 \mod n_{2} \\ \chi_{1} \equiv 0 \mod n_{2} \\ \chi_{2} \equiv 0 \mod n_{2} \\ \chi_{3} \equiv 0 \mod n_{2} \\ \chi_{4} \equiv 0 \mod n_{2} \\ \chi_{5} \equiv 0 \mod n_{2}$$

Solution to Sun-Tsu's Question

EXAMPLE: Solve the system
$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5}. \\ x \equiv 2 \pmod{7} \end{cases}$$

- $n_1 = 3, n_2 = 5, n_3 = 7; n = n_1 n_2 n_3 = 105; b_1 = 2, b_2 = 3, b_3 = 2$
 - $N_1 = n_2 n_3 = 35, N_2 = n_1 n_3 = 21, N_3 = n_1 n_2 = 15$
 - $12 n_1 N_1 = 1$; $-4n_2 + N_2 = 1$; $-2 n_2 + N_3 = 1$
 - $t_1 = 12, s_1 = -1; t_2 = -4, s_2 = 1; t_3 = -2, s_3 = 1$
- $b = b_1(N_1s_1) + b_2(N_2s_2) + b_3(N_3s_3)$ = 2(-35) + 3(21) + 2(15)= 23
- $x \in \mathbb{Z}$ is a solution of the system iff $x \equiv 23 \pmod{105}$
 - Solutions: [23]₁₀₅

THEOREM: Let $n_1, \ldots, n_k \in \mathbb{Z}^+$ and $gcd(n_i, n_i) = 1$ for all $i \neq j$.

Let $n = n_1 \cdots n_k$. The **CRT** map $\theta([x]_n) = ([x]_{n_1}, \dots, [x]_{n_k})$ is a well-defined bijection from \mathbb{Z}_n to $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$.

- θ is well-defined: show that $[x]_n = [y]_n \Rightarrow \theta([x]_n) = \theta([y]_n)$ $[x]_n = [y]_n$

 - $x \equiv y \pmod{n}$
 - $x \equiv y \pmod{n_i}$ for every $i \in [k]$;
 - $[x]_{n_i} = [y]_{n_i}$ for every $i \in [k]$
 - $\theta([x]_n) = ([x]_{n_1}, ..., [x]_{n_k})$ $= ([y]_{n_1}, ..., [y]_{n_k})$ $=\theta([y]_n)$

THEOREM: Let $n_1, ..., n_k \in \mathbb{Z}^+$ and $gcd(n_i, n_j) = 1$ for all $i \neq j$. Let $n = n_1 \cdots n_k$. The **CRT map** $\theta([x]_n) = ([x]_{n_1}, ..., [x]_{n_k})$ is a well-defined bijection from \mathbb{Z}_n to $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$.

- θ is bijective: it suffices to show that θ is injective //why?
 - $\theta([x]_n) = \theta([y]_n)$
 - $([x]_{n_1}, ..., [x]_{n_k}) = ([y]_{n_1}, ..., [y]_{n_k})$
 - $[x]_{n_i} = [y]_{n_i}$ for every $i \in [k]$
 - $n_i | (x y)$ for every $i \in [k]$
 - n|(x-y)
 - $[x]_n = [y]_n$

THEOREM: Let $n_1, ..., n_k \in \mathbb{Z}^+$ and $gcd(n_i, n_j) = 1$ for all $i \neq j$. Let $n = n_1 \cdots n_k$. The CRT map $\theta([x]_n) = ([x]_{n_1}, ..., [x]_{n_k})$ is a well-defined bijection from \mathbb{Z}_n^* to $\mathbb{Z}_{n_1}^* \times \cdots \times \mathbb{Z}_{n_k}^*$.

- θ is well-defined:
 - show that $\theta([x]_n) \in \mathbb{Z}_{n_1}^* \times \cdots \times \mathbb{Z}_{n_k}^*$ for every $[x]_n \in \mathbb{Z}_n^*$
 - $[x]_n \in \mathbb{Z}_n^*$
 - gcd(x, n) = 1
 - $gcd(x, n_i) = 1$ for every $i \in [k]$
 - $[x]_{n_i} \in \mathbb{Z}_{n_i}^*$ for every $i \in [k]$
 - show that $[x]_n = [y]_n \Rightarrow \theta([x]_n) = \theta([y]_n)$
 - see the previous theorem
- θ is injective: see the previous theorem

THEOREM: Let $n_1, \ldots, n_k \in \mathbb{Z}^+$ and $gcd(n_i, n_i) = 1$ for all $i \neq j$. Let $n = n_1 \cdots n_k$. The CRT map $\theta([x]_n) = ([x]_{n_1}, \dots, [x]_{n_k})$ is a well-defined bijection from \mathbb{Z}_n^* to $\mathbb{Z}_{n_1}^* \times \cdots \times \mathbb{Z}_{n_k}^*$.

• θ is surjective: Let $([b_1]_{n_1}, \dots, [b_k]_{n_k}) \in \mathbb{Z}_{n_1}^* \times \cdots \times \mathbb{Z}_{n_k}^*$. Preimage?

- - Solve the system $x \equiv b_i \pmod{n_i}$, $1 \le i \le k$
 - Due to CRT, there is a solution *b*
 - $b \equiv b_i \pmod{n_i}$ for all $i \in [k]$
 - $gcd(b, n_i) = 1$ for all $i \in [k]$
 - Otherwise, $gcd(b_i, n_i) > 1$, contradiction.
 - $gcd(b, n_1 n_2 \cdots n_k) = 1$
 - $\theta([b]_n) = ([b]_{n_1}, ..., [b]_{n_k})$ $=([b_1]_{n_1},...,[b_k]_{n_k})$
 - $[b]_n$ is a preimage of $([b_1]_{n_1}, ..., [b_k]_{n_k})$

Euler's Phi Function

THEOREM: Let $n_1, ..., n_k \in \mathbb{Z}^+$ be pairwise relatively prime.

Let $n = n_1 \cdots n_k$. Then $\phi(n) = \phi(n_1) \cdots \phi(n_k)$.

- $\theta \colon \mathbb{Z}_n^* \to \mathbb{Z}_{n_1}^* \times \cdots \times \mathbb{Z}_{n_k}^*$ is bijective
- $\phi(n) = \phi(n_1) \times \cdots \times \phi(n_k)$

COROLLARY: If $n = p_1^{e_1} \cdots p_k^{e_k}$ for distinct primes p_1, \dots, p_k and integers $e_1, \dots, e_k \ge 1$, then $\phi(n) = n(1 - p_1^{-1}) \cdots (1 - p_k^{-1})$.

• $\phi(n) = \phi(p_1^{e_1}) \cdots \phi(p_k^{e_k})$ = $n(1 - p_1^{-1}) \cdots (1 - p_k^{-1})$

EXAMPLE: $\phi(10) = \phi(2)\phi(5) = 4$; n = 10; $n_1 = 2$, $n_2 = 5$

- $\theta \colon \mathbb{Z}_n^* \to \mathbb{Z}_{n_1}^* \times \mathbb{Z}_{n_2}^*$
 - $1 \mapsto (1,1); 3 \mapsto (1,3); 7 \mapsto (1,2); 9 \mapsto (1,4)$

Group

DEFINITION: Let \star be a binary operation on G. The pair (G,\star) is

called an **group** if the following are satisfied:

Elivery Closure: $\forall a, b \in G, a \star b \in G$

Associative: $\forall a, b, c \in G, a \star (b \star c) = (a \star b) \star c$

Identity: $\exists e \in G, \forall a \in G, a \star e = e \star a = a$

Inverse: $\forall a \in \mathbb{G}, \exists b \in G, a \star b = b \star a = e$

DEFINITION: A group is said to be an **Abelian group** if it additionally satisfies the following property:

Commutative: $\forall a, b \in G, a \star b = b \star a$

An Abelian group is also called a commutative group.

EXAMPLE: $(\mathbb{Z}, +), (n\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{Q}^*, \times), (\{\pm 1\}, \times)$

实效单的乘法限群

Group \mathbb{Z}_n Znh \mathbb{Z}_n

THEOREM: \mathbb{Z}_n is an Abelian group for any $n \in \mathbb{Z}^+$.

- Closure: $[a]_n + [b]_n \in \mathbb{Z}_n$
 - $[a]_n + [b]_n = [a+b]_n \in \mathbb{Z}_n$
- Associative: $([a]_n + [b]_n) + [c]_n = [a]_n + ([b]_n + [c]_n)$

•
$$([a]_n + [b]_n) + [c]_n = [a+b]_n + [c]_n = [(a+b)+c]_n$$

 $= [a+(b+c)]_n = [a]_n + [b+c]_n$
 $= [a]_n + ([b]_n + [c]_n)$

•
$$[a]_n + [0]_n = [a+0]_n = [0+a]_n = [0]_n + [a]_n$$

- Inverse: $[a]_n + [-a]_n = [-a]_n + [a]_n = [0]_n$
 - $[a]_n + [-a]_n = [a + (-a)]_n = [0]_n$
- **Commutative**: $[a]_n + [b]_n = [b]_n + [a]_n$

•
$$[a]_n + [b]_n = [a+b]_n = [b+a]_n = [b]_n + [a]_n$$

可见了是

Group \mathbb{Z}_n^*

- **THEOREM:** \mathbb{Z}_n^* is an Abelian group for any integer n > 1.

 Closure: $\forall [a]_n, [b]_n \in \mathbb{Z}_n^*, [a]_n \cdot [b]_n = [ab]_n \in \mathbb{Z}_n^*$ $gcd(a_n) = 1$ $gcd(a_n) = 1$
 - **Associative**: $\forall [a]_n, [b]_n, [c]_n \in \mathbb{Z}_n^*, [a]_n \cdot ([b]_n \cdot [c]_n) = [abc]_n = ([a]_n \cdot [b]_n) \cdot [c]_n$
 - **Identity element:** $\exists [1]_n \in \mathbb{Z}_n^*, \forall [a]_n \in \mathbb{Z}_n^*, [a]_n \cdot [1]_n = [1]_n \cdot [a]_n = [a]_n$
 - **Inverse**: $\forall [a]_n \in \mathbb{Z}_n^*, \exists [s]_n \in \mathbb{Z}_n^* \text{ such that } [a]_n \cdot [s]_n = [s]_n \cdot [a]_n = [1]_n$
 - **Commutative:** $\forall [a]_n, [b]_n \in \mathbb{Z}_n^*, [a]_n \cdot [b]_n = [ab]_n = [ba]_n = [b]_n \cdot [a]_n$

REMARK: we are interested in two types of Abelian groups

- **Additive Group:** binary operation +; identity 0
 - Example: $(\mathbb{Z}, +), (n\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{Z}_n, +)$
- **Multiplicative Group**: binary operation \cdot ; identity $1/(\mathbb{Z}_n^*,\cdot)$
 - Example: (\mathbb{Q}^*,\times) , $(\{\pm 1\},\times)$, (\mathbb{Z}_n^*,\cdot)

2载多族群 加强 巴西

Order

DEFINITION: The **order** of a group G is the cardinality of G.

- $|\mathbb{Z}_n| = n, |\mathbb{Z}_p^*| = p 1, |\mathbb{Z}| = \infty$
- **DEFINITION:** when $|G| < \infty$, $\forall a \in G$, the **order** of a is defined as the least integer l > 0 s.t. $a^l = 1$ (la = 0 for additive group)

EXAMPLE: Determine the orders of all elements of \mathbb{Z}_7^*

- $\mathbb{Z}_7^* = \{1,2,3,4,5,6\}$
- o(1) = 1, o(2) = 3, o(3) = 6, o(4) = 3, o(5) = 6, o(6) = 2

EXAMPLE: Determine the orders of all elements of \mathbb{Z}_6

- $\mathbb{Z}_6 = \{0,1,2,3,4,5\}$
- o(0) = 1, o(1) = o(5) = 6, o(2) = o(4) = 3, o(3) = 2

Order of $a \in \mathbb{Z}_{11}^*$

а	a^1	a^2	a^3	a^4	a^5	a ⁶	a^7	<i>a</i> ⁸	<i>a</i> ⁹	a ¹⁰	o(a)
1	1	1	1	1	1	1	1	1	1	1	1
2	2	4	8	5	10	9	7	3	6	1	10
3	3	9	5	4	1	3	9	5	4	1	5
4	4	5	9	3	1	4	5	9	3	1	5
5	5	3	4	9	1	5	3	4	9	1	5
6	6	3	7	9	10	5	8	4	2	1	10
7	7	5	2	3	10	4	6	9	8	1	10
8	8	9	6	4	10	3	2	5	7	1	10
9	9	4	3	5	1	9	4	3	5	1	5
10	10	1	10	1	10	1	10	1	10	1	2

• $a^{10} = 1$ for every $a \in \mathbb{Z}_{11}^*$; o(a)|10 for every $a \in \mathbb{Z}_{11}^*$

Euler's Theorem

THEOREM: Let G be a multiplicative Abelian group of order m. Then for any $a \in G$, $a^m = 1$.

- $G = \{a_1, ..., a_m\}$
 - If $i \neq j$, then $aa_i \neq aa_j$.
 - $aa_1 \cdot aa_2 \cdots aa_m = a_1 a_2 \cdots a_m \Rightarrow a^m = 1$

Euler's Theorem: Let n > 1 and $\alpha \in \mathbb{Z}_n^*$. Then $\alpha^{\phi(n)} = 1$.

- $\alpha^{\phi(n)}$, 1 are both residue classes modulo n
- Proof: a corollary of the previous theorem for $G = \mathbb{Z}_n^*$

Fermat's Little Theorem: If p is a prime and $\alpha \in \mathbb{Z}_p$.

Then $\alpha^p = \alpha$.

Subgroup

- **DEFINITION:** Let (G,\star) be an Abelian group. A subset $H \subseteq G$ is called a **subgroup** of G if (H,\star) is also a group. $(H \leq G)$
 - Multiplicative: $G = \mathbb{Z}_6^* = \{1,5\}, H = \{1\}$
 - Additive: $G = \mathbb{Z}_6 = \{0,1,2,3,4,5\}; H = \{0,2,4\}$
- **THEOREM:** Let (G,\cdot) be an Abelian group. Let $\langle g \rangle = \{g^k : k \in \mathbb{Z}\}$ be a subset of G, where $g \in G$. Then $\langle g \rangle \leq G$.
 - Closure: $g^a \cdot g^b = g^{a+b} \in \langle g \rangle$
 - Associative: $g^a \cdot (g^b \cdot g^c) = g^{a+b+c} = (g^a \cdot g^b) \cdot g^c$
 - Identity element: $g^0 \cdot g^a = g^a \cdot g^0 = g^a$
 - Inverse: $g^a \cdot g^{-a} = g^{-a} \cdot g^a = g^0$
 - Communicative: $g^a \cdot g^b = g^{a+b} = g^{b+a} = g^b \cdot g^a$

Cyclic Group

- **DEFINITION**: Let (G,\cdot) be an Abelian group. G is said to be **cyclic** if there exists $g \in G$ such that $G = \langle g \rangle$.
 - g is called a **generator** of G.

EXAMPLE:
$$\mathbb{Z}_{10}^* = \{[1]_{10}, [3]_{10}, [7]_{10}, [9]_{10}\} = \langle [3]_{10} \rangle$$

- $g = [3]_{10}$
- $g^0 = [1]_{10}, g^1 = [3]_{10}, g^2 = [9]_{10}, g^3 = [27]_{10} = [7]_{10}$

REMARK: Let *G* be a finite group and let $g \in G$. Then $\langle g \rangle$ can be computed as $\{g^1, g^2, ...\}$

Cyclic Group

EXAMPLE: \mathbb{Z}_p^* is a cyclic group and $G = \langle g \rangle$ is a cyclic subgroup.

- p = 17976931348623159077293051907890247336179769789423065727343008115773 26758055009631327084773224075360211201138798713933576587897688144166224 92847430639474124377767893424865485276302219601246094119453082952085005 76883815068234246288147391311054082723716335051068458629823994724593847 9716304835356329624227998859
 - p is a prime; $\mathbb{Z}_p^* = \langle 2 \rangle$ is a cyclic group of order p-1
- q = 89884656743115795386465259539451236680898848947115328636715040578866 33790275048156635423866120376801056005693993569667882939488440720831124 64237153197370621888839467124327426381511098006230470597265414760425028 84419075341171231440736956555270413618581675255342293149119973622969239 858152417678164812113999429
 - q = (p 1)/2 is a prime
 - g = 3
 - $G = \langle g \rangle$ is a subgroup of \mathbb{Z}_p^* of order q

DLOG and CDH

DEFINITION: Let $G = \langle g \rangle$ be a cyclic group of order q with generator g. For every $h \in G$, there exists $x \in \{0,1,...,q-1\}$ such that $h = g^x$. The integer x is called the **discrete** logarithm of h with respect to g.

• $x = \log_g h$

DLOG Problem: $G = \langle g \rangle$ is a cyclic group of order q

- **Input**: *G* and $h = g^x$ for $x \leftarrow \{0, 1, ..., q 1\}$
- **Output**: $f_{\text{DLOG}}(q, G, g; h) = \log_g h$

CDH Problem: computational Diffie-Hellman

- **Input**: $G = \langle g \rangle$ of order q and $A = g^a$, $B = g^b$ for $a, b \leftarrow \{0, 1, ..., q 1\}$
- **Output**: $f_{CDH}(q, G, g; A, B) = g^{ab}$

Diffie-Hellman Key Exchange

The Scheme: $G = \langle g \rangle$ is a cyclic group of prime order q

- Alice: $a \leftarrow \mathbb{Z}_q$, $A = g^a$; send (q, G, g, A) to Bob
- Bob: $b \leftarrow \mathbb{Z}_q$, $B = g^b$; send B to Alice; output $k = A^b$
- Alice: output $k = B^a$

Whitfield Diffie, Martin E. Hellman: New directions in Cryptography, IEEE Trans. Info. Theory, 1976 **Turing Award 2015**

Correctness: $A^b = g^{ab} = B^a$

Wiretapper: view = (q, G, g, A, B)

Security: view $\Rightarrow g^{ab}$

Diffie-Hellman Key Exchange

EXAMPLE: p = 23; $\mathbb{Z}_p^* = \langle 5 \rangle$; $G = \langle 2 \rangle$, q = |G| = 11, g = 2

Adversary: q = 11, p = 23, g = 2, A = 8, B = 4, k = ?

Security

Algorithms for DLOG, CDH: solving the DLOG problem first

- G: the group \mathbb{Z}_p^* of order q = p 1
 - The best known algorithm runs in $\exp \left(O(\sqrt{\ln q \ln \ln q})\right)$
 - $|G| = 2^{1024}$ has been used for many years; now not very safe
 - $|G| = 2^{2048}$ is recommended for today's application
- G: an order q subgroup of \mathbb{Z}_p^* , where p = 2q + 1 is a safe prime
 - The best known algorithm runs in $\exp \left(O(\sqrt{\ln q \ln \ln q})\right)$
- For specific group G of order q, the best known algorithm runs in
 - $\exp\left(O\left(\sqrt{(\ln q)^{1/3}(\ln \ln q)^{2/3}}\right)\right)$ //multiplicative group $\mathbb{F}_{p^k}^*$
- For specific group *G* of order *q*, the best algorithm runs in
 - $O(\sqrt{q})$ // elliptic curves