Isaque

28 de janeiro de 2025

Conteúdo

1	Introdução	5
	1.1 O que é Física?	Ę
	1.2 Para que serve o estudo da Física?	Ę
	1.3 Grandezas físicas e unidades	(
	1.4 Notação científica	(
	1.5 Medidas de intervalo de tempo	(
	1.6 Medidas de comprimento	,
2	Cinemática	ę
	2.1 Movimento Retilíneo Uniforme (MRU)	į.
	2.1.1 Exemplo	(
3	Dinâmica	1
4	Energia e Trabalho	13
5	Conclusão	15

Introdução

1.1 O que é Física?

A Física é a ciência que estuda os **fenômenos naturais** e as leis que regem o comportamento da **matéria** e da **energia** no universo. Seu objetivo principal é compreender e descrever como o mundo funciona.

- Exemplos de estudos da Física:
 - Por que objetos caem (gravidade).
 - Como a luz se comporta.
 - O funcionamento de motores e dispositivos elétricos.

A Física é essencial para o avanço de várias áreas, como a Química, a Biologia e a Engenharia.

1.2 Para que serve o estudo da Física?

O estudo da Física permite entender o mundo e desenvolver soluções práticas para problemas do dia a dia. Além disso, ela contribui para o desenvolvimento de tecnologias e metodologias científicas.

Aplicações da Física

- 1. **Tecnologia**: Como celulares, computadores e motores.
- 2. Saúde: Raios X e ressonância magnética.
- 3. Engenharia: Construção de pontes e sistemas de transporte.
- 4. **Astronomia**: Exploração do espaço e estudo dos astros.

Além disso, aprender Física desenvolve o pensamento lógico e crítico.

1.3 Grandezas físicas e unidades

Grandezas físicas

Grandezas físicas são características que podem ser medidas, como massa, tempo e velocidade.

Sistema Internacional de Unidades (SI)

As grandezas físicas são medidas utilizando unidades padronizadas. As principais no SI são:

- Comprimento: metro (m).
- Massa: quilograma (kg).
- **Tempo**: segundo (s).
- Temperatura: kelvin (K).

1.4 Notação científica

A **notação científica** é usada para simplificar números muito grandes ou muito pequenos, utilizando potências de 10.

Exemplos

$$300000000 = 3 \times 10^8$$
 (velocidade da luz)
 $0,00045 = 4,5 \times 10^{-4}$

Essa técnica é amplamente utilizada na Física para expressar grandezas astronômicas ou microscópicas.

1.5 Medidas de intervalo de tempo

O tempo é uma grandeza física fundamental. Ele pode ser medido em diferentes escalas:

- **Segundo** (s): Unidade básica do SI.
- Minuto (min): 1 minuto = 60 segundos.
- Hora (h): 1 hora = 60 minutos.

Exemplos práticos

- O tempo que a luz do Sol demora para chegar à Terra: 8 minutos.
- O tempo médio de uma batida do coração humano: 1 segundo.

1.6 Medidas de comprimento

O comprimento mede a distância entre dois pontos. É uma das grandezas mais importantes na Física.

Unidades de comprimento no SI

- Metro (m): Unidade padrão.
- Quilômetro (km): 1 km = 1000 metros.
- Centímetro (cm): 1 cm = 0.01 metros.
- Milímetro (mm): 1 mm = 0,001 metros.

Unidades usadas em Astronomia

- Ano-luz: Distância que a luz percorre em um ano $(9,46 \times 10^{12} \, km)$.
- Angstrom (): Medida para átomos $(1 = 10^{-10} m)$.

Exemplos práticos

- Altura de uma pessoa: cerca de 1,7m.
- Raio da Terra: aproximadamente 6.371 km.
- Distância da Terra à Lua: cerca de 384.400 km.

Cinemática

2.1 Movimento Retilíneo Uniforme (MRU)

O movimento retilíneo uniforme é caracterizado por uma velocidade constante ao longo de uma trajetória reta. A equação básica é:

$$v = \frac{\Delta s}{\Delta t} \tag{2.1}$$

2.1.1 Exemplo

Um carro percorre 100 m em 5 s. Qual é a sua velocidade? Solução:

$$v = \frac{\Delta s}{\Delta t} = \frac{100 \,\mathrm{m}}{5 \,\mathrm{s}} = 20 \,\mathrm{m} \,\mathrm{s}^{-1}$$

Dinâmica

Capítulo 4 Energia e Trabalho

Conclusão