第6章 STC单片机CPU指令系统

何宾 2018.03

数据传输指令

--内部数据传输指令

该类型数据传输指令是在任何两个内部RAM或者SFR间实现数据 传输。

■ 这些指令使用直接、间接、寄存器和立即数寻址。

MOV A,Rn

■该指令将寄存器R_n中的内容复制到累加器A中,且R_n的内容不 发生变化。

MOV A,Rn指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOV A, Rn	$(PC) \leftarrow (PC) + 1$ $(A) \leftarrow (Rn)$	N	11101rrr	1	1

注: rrr为寄存器的编号,因此机器码范围是E8H~EFH。

MOV A, direct

■ 该指令将直接寻址单元的内容复制到累加器A中,且直接寻址单元的内容不发生变化。

MOV A, direct指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOV A, direct	$(PC) \leftarrow (PC) + 2$ $(A) \leftarrow (direct)$	N	11100101	2	2

注: 在操作码后面跟着一个字节的直接地址。

MOV A,@Ri

■ 该指令将间接寻址单元中的内容复制到累加器A中,且间接寻址单元的内容不发生变化。

MOV A,@Ri指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOV A, @Ri	$(PC) \leftarrow (PC) + 1$ $(A) \leftarrow ((Ri))$	N	1110011i	1	2

注:i表示R0或者R1。当i=0时,表示R0寄存器;当i=1时,表示R1寄存器。

MOV A,#data

■ 该指令将立即数复制到累加器A中,且立即数的内容不发生变化。

MOV A,#data指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOV A, #data	$(PC) \leftarrow (PC) + 2$ $(A) \leftarrow data$	N	01110100	2	2

注: 在操作码后面跟着一个字节的立即数。

MOV Rn, A

■该指令将累加器A的内容复制到寄存器R_n中, 且累加器A的内容不发生变化。

MOV Rn,A指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOV Rn, A	$(PC) \leftarrow (PC) + 1$ $(Rn) \leftarrow (A)$	N	11111rrr	1	1

MOV Rn, direct

■该指令将直接寻址单元的内容复制到寄存器Rn中,且直接寻址 单元的内容不发生变化。

MOV Rn, direct指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOV Rn, direct	$(PC) \leftarrow (PC) + 2$ $(Rn) \leftarrow (direct)$	N	10101rrr	2	3

注: rrr为寄存器的编号,因此机器码范围是A8H~AFH。

MOV Rn, #data

■ 该指令将立即数复制到寄存器R_n中,且立即数的内容不发生变化。

MOV Rn,#data指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOV Rn, #data	$(PC) \leftarrow (PC) + 2$ $(Rn) \leftarrow data$	N	01111rrr	2	2

注: (1) rrr为寄存器的编号,因此机器码范围是78H~7FH。

(2) 在操作码后面跟着一个字节的立即数。

MOV direct, A

■ 该指令将累加器A的内容复制到直接寻址单元中,且累加器A的内容不发生变化。

MOV dirtect,A指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOV direct,A	$(PC) \leftarrow (PC) + 2$ $(direct) \leftarrow (A)$	N	11110101	2	2

注:

(1) 在操作码后面跟着一个字节的直接地址。

MOV direct, Rn

■ 该指令将寄存器Rn的内容复制到直接寻址单元中,且Rn的内容不发生变化。

MOV dirtect,Rn指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOV direct, Rn	$(PC) \leftarrow (PC) + 2$ $(direct) \leftarrow (Rn)$	N	10001rrr	2	2

注:

- (1) rrr为寄存器的编号,因此机器码范围是88H~8FH。
- (2) 在操作码后面跟着一个字节的直接地址。

MOV direct, direct

■ 该指令将直接寻址单元的内容复制到另一个直接寻址单元中, 且源直接寻址单元的内容不发生变化。

MOV direct,direct指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOV direct, direct	$(PC) \leftarrow (PC) + 3$ $(direct) \leftarrow (direct)$	N	10000101	3	3

注:在操作码后面跟着两个字节的直接地址,一个是源操作数地址,另一个是目的操作数地址。

MOV direct, @Ri

■ 该指令将间接寻址单元的内容复制到直接寻址单元中,且间接 寻址单元的内容不发生变化。

MOV direct,@Ri指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOV direct, @Ri	$(PC) \leftarrow (PC) + 2$ $(direct) \leftarrow ((Ri))$	N	1000011i	2	3

注:

- (1) i表示R0或者R1。当i=0时,表示R0寄存器;当i=1时,表示R1寄存器。
- (2) 在操作码后面跟着一个字节的直接地址。

MOV direct, #data

■ 该指令将立即数复制到直接寻址单元中,且立即数的内容不发生变化。

MOV direct,#data指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOV direct ,#data	$(PC) \leftarrow (PC) + 3$ $(direct) \leftarrow data$	N	01110101	3	3

注: 在操作码后面跟着一个字节的直接地址和一个字节的立即数。

MOV @Ri, A

■该指令将累加器A的内容复制到间接寻址的单元中,且累加器A的内容不发生变化。

MOV @Ri,A指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOV @Ri ,A	$(PC) \leftarrow (PC) + 1$ $((Ri)) \leftarrow (A)$	N	1111011i	1	2

注:i表示R0或者R1。当i=0时,表示R0寄存器;当i=1时,表示R1寄存器。

MOV @Ri, direct

■ 该指令将直接寻址单元的内容复制到间接寻址的寄存器中,且 直接寻址寄存器内容不发生变化。

MOV @Ri,direct指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOV @Ri, direct	$(PC) \leftarrow (PC) + 2$ $((Ri)) \leftarrow (direct)$	N	1010011i	2	3

注:

- (1) i表示R0或者R1。当i=0时,表示R0寄存器;当i=1时,表示R1寄存器。
- (2) 在操作码后面跟着一个字节的直接地址。

MOV @Ri, #data

■ 该指令将立即数内容复制到间接寻址单元中,且立即数的内容 不发生变化。

MOV @Ri,#data指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOV @Ri, #data	$(PC) \leftarrow (PC) + 2$ $((Ri)) \leftarrow data$	N	0111011i	2	2

注:

- (1) i表示R0或者R1。当i=0时,表示R0寄存器; 当i=1时,表示R1寄存器。
- (2) 在操作码后面跟着一个字节的立即数。

MOV DPTR,#data 16

■ 该指令将一个16位的立即数复制到数据指针DPTR寄存器中, 且16位立即数的内容不发生变化。

MOV DPTR,#data16指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOV DPTR ,#data 16	$(PC) \leftarrow (PC) + 3$ $DPH \leftarrow data_{15-8}$ $DPL \leftarrow data_{7-0}$	N	10010000	3	3

注: 在操作码后面跟着两个字节(16位)的立即数。

【例】假设内部RAM地址为30H的单元的内容为40H,而40H单元的内容为10H。端口1的数据为CAH(11001010B)则执行指令:

MOV R0, #30H ; 将立即数30H送到寄存器R0, (R0) =30H

MOV A,@R0 ;将30H作为指向内部RAM的地址,内部RAM地址为30H

;单元的内容40H送到累加器A中

MOV R1, A ; 将累加器A的内容40H, 送到寄存器R1中, (R1) =40H

MOV B,@R1 ;将40H作为指向内部RAM的地址,内部RAM地址为40H

;单元的内容10H送到寄存器B中

MOV @R1, P1 ; 将P1端口的内容,送到R1寄存器所指向的内部RAM的

;地址单元中,即内部RAM地址为40H的单元的内容变为

; CAH.

MOV P2, P1 ; 将P1端口的内容送到P2端口中, P2端口的内容变为CAH。

该类型传输指令是在累加器和外部地址空间实现数据传输数据,这种传输只能使用MOVX指令。

MOVX A,@Ri

■ 该指令将外部数据存储区的一个字节的内容复制到累加器A中。 8位外部数据存储区地址由R0或R1确定,且外部数据存储器单 元的内容不发生变化。

MOVX A,@Ri指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOVX A,@Ri	$(PC) \leftarrow (PC) + 1$ $(A) \leftarrow ((Ri))$	N	1110001i	1	3

注:i表示R0或者R1。当i=0时,表示R0寄存器;当i=1时,表示R1寄存器。

【例】假设有一个时分复用地址/数据线的外部RAM存储器,容量为256B,该存储器连接到STC单片机的P0端口上,端口P3用于提供外部RAM所需要的控制信号。端口P1和P2用作通用输入/输出端口。R0和R1中的数据分别为12H和34H,外部RAM地址为34H的单元内容为56H,执行指令:

MOVX A, @R1; 将外部RAM地址为34H单元的内容56H送到累加器A

MOVX @R0,A ; 将累加器A的内容56, 送到外部RAM地址为12H的单元中。

MOVX A,@DPTR

■ 该指令将外部数据存储区的一个字节的内容复制到累加器A中。 16位外部数据存储区单元的地址由DPTR寄存器确定,且外部 数据存储器单元的内容不发生变化。

MOVX A,@DPTR指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOVX A, @DPTR	$(PC) \leftarrow (PC) + 1$ $(A) \leftarrow (DPTR)$	N	11100000	1	2

MOVX @Ri, A

■该指令将累加器A的内容复制到外部数据存储单元中。8位外部数据存储区地址由R0或R1确定,且累加器A中的内容不发生变化。

MOVX @Ri,A指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOVX @Ri, A	$(PC) \leftarrow (PC) + 1$ $((Ri)) \leftarrow (A)$	N	1111001i	1	4

注: i表示R0或者R1。当i=0时,表示R0寄存器; 当i=1时,表示R1寄存器。

MOVX @DPTR,A

■ 该指令将累加器A的内容复制到外部数据存储单元中。16位外部数据存储区单元的地址由DPTR寄存器确定,且累加器A中的内容不发生变化。

MOVX @DPTR,A指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOVX @DPTR, A	$(PC) \leftarrow (PC) + 1$ $(DPTR) \leftarrow (A)$	N	11110000	1	3

数据传输指令 --查找表传输指令

只在累加器和程序存储器之间实现数据传输,这种传输 只能使用MOVC指令。

MOVC A,@A+DPTR

■ 该指令将数据指针寄存器 DPTR和累加器 A的内容相加所得到的存储器地址单元的内容复制到累加器 A中。

MOVC A,@A+DPTR指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOV A,@A+DPTR	$(PC) \leftarrow (PC) + 1$ $(A) \leftarrow ((A) + (DPTR))$	N	10010011	1	5

【例】假设累加器A的值在0~4之间,下面的子程序将累加器 A中的值转换为用DB伪指令定义的4个值之一

REL_PC: INC A

MOVC A,@A+PC

RET

DB 66H

DB 77H

DB 88H

DB 99H

数据传输指令 --查找表传输指令

■ 该指令将程序计数器PC和累加器A的内容相加所得到的存储器 地址单元的内容复制到累加器A中。

MOVC A,@A+PC指令的内容

助记符	操作	标志	操作码	字节数	周期数
MOVC A,@A+PC	$(PC) \leftarrow (PC) + 1$ $(A) \leftarrow ((A) + (PC))$	N	10000011	1	4

POP direct

■ 该指令将堆栈指针SP所指向栈顶的内容保存到直接寻址单元中,然后执行 (SP)-1->(SP)的操作,此操作不影响标志位。

POP direct 指令的内容

助记符	操作	标志	操作码	字节数	周期数
POP direct	$(PC) \leftarrow (PC) + 2$ $(direct) \leftarrow ((SP))$	N	11010000	2	2
	(SP) ← (SP) − 1		1101000		

【例】假设堆栈指针的初值为32H,内部RAM地址30H~32H单元的数据分别为20H、23H和01H,则执行指令:

POP DPH

POP DPL

结果:

堆栈指针的值变成30H, (DPH)=01H, (DPL)=23H。

如果继续执行指令:

POP SP

则在这种特殊情况下,在写入出栈数据20H之前,栈指针减小到2FH,然后再随着20H的写入,(SP)=20H。

数据传输指令--堆栈操作指令

■ 该指令将指针执行后堆栈指针(SP)+1指向栈顶单元,将直接寻址单元的内容送入SP所指向的堆栈空间,此操作不影响标志位。

PUSH direc指令的内容

助记符	操作	标志	操作码	字节数	周期数
PUSH direc	$(PC) \leftarrow (PC) + 2$ $(SP) \leftarrow (SP) + 1$	N	11000000	2	3
	$((SP)) \leftarrow (direct)$	11	1100000	2	3

数据传输指令--堆栈操作指令

【例】假设在进入中断服务程序之前堆栈指针的值为09H,数据指针DPTR的值为0123H,则执行下面的指令:

PUSH DPL

PUSH DPH

结果:

堆栈指针变成0BH,并把数据23H和01H分别保存到内部RAM的0AH和0BH的存储单元中。