

Introduction to machine learning II

Associated notebook: https://github.com/keeeto/reading-ml-chemistry/blob/master/01_classification_decision_tree.ipynb

Overview Today(ish)

- Decision trees
- Optimisation
- Evaluation
- Overfitting
- Cross-validation
- Ensemble models

Setting up a notebook

- You will need a Google account to do this
- Go to https://colab.research.google.com/
- Search for https://github.com/keeeto/reading-ml-chemistry

A working definition

ML = Representation + Evaluation + Optimisation

Tapping into the "folk knowledge" needed to advance machine learning applications.

BY PEDRO DOMINGOS

A Few Useful Things to Know About Machine Learning

Decision trees

Decision trees

$$Q_{left}(\theta) = (x, y)|x_f \le t_j$$

$$Q_{right}(\theta) = Q \setminus Q_{left}(\theta)$$

Data is split according to a threshold value tj.

$$C(Q,\theta) = \frac{n_{left}}{N_j} H(Q_{left}(\theta)) + \frac{n_{right}}{N_j} H(Q_{right}(\theta))$$

The cost of the split is calculated based on some impurity function H() e.g. RMSD of the data.

$$\theta^* = \underset{\theta}{\operatorname{argmin}} C(Q, \theta)$$

The splitting parameters are chosen to minimise C at each split.

Go to notebook

Optimisation/Evaluation

- Evaluation
 - Objective function or scoring function.
 - Distinguish good from bad models.
- Objective function = loss function = cost function
 - Must faithfully represent the "goodness" of a model in a single number

Evaluation metrics

- Mean squared error
- Used in regression
- Square endures a single minimum
- Avoids local minima trapping
- Easy to calculate

$$MSE = \frac{1}{N} \sum (f_i - y_i)^2$$

- Mean Absolute Error
- Similar to MSE
- No quadric term
- More robust to outliers
- MSE penalises large differences much more than MAE
- Large gradients close to zero slow to optimise

$$MAE = \frac{1}{N} \sum |f_i - y_i|$$

- Huber loss
- Quadratic close to the minimum
- Linear far from the minimum
- Overcomes problems of MSE and MAE
- More expensive to calculate

$$L_\delta(y,f(x)) = egin{cases} rac{1}{2}(y-f(x))^2 & ext{for}|y-f(x)| \leq \delta, \ \delta\,|y-f(x)| - rac{1}{2}\delta^2 & ext{otherwise.} \end{cases}$$

- Cross entropy
- Used for classification problems
- Tells us how similar our model distribution is to the true distribution
- Penalises all errors, but especially those that are most inaccurate

	Ü	Ü	1	U	
True distribution	0.15	0.25	0.5	0.1	
H(p,q) =	$-\sum_{i}$	$p_i \log_2$	(q_i)		,
Model) -				
distribution	on				
2.5	5 -	_			
2.0	0 -				
1.5	5 -				
1.0	0 -				
0.5	5 -				
0.0	0 -				
	0.0	0.2	0.4	0.6	0.8 1.0

- Hinge loss
- Used for classification
- Does not seek to reproduce the distribution of data
- 0 as long as the classification is correct

Evaluation: Table of confusion

		CONDITION determined by "Gold Standard"			
	TOTAL POPULATION	CONDITION POS	CONDITION NEG	PREVALENCE CONDITION POS TOTAL POPULATION	
TEST OUT- COME	TEST POS	True Pos TP	Type I Error False Pos FP	Precision Pos Predictive Value PPV = TP TEST P	False Discovery Rate FDR = FP TEST P
	TEST NEG	Type II Error False Neg FN	True Neg TN	False Omission Rate FOR = FN TEST N	Neg Predictive Value NPV = <u>TN</u> TEST N
	ACCURACY ACC ACC = <u>TP+TN</u> TOT POP	Sensitivity (SN), Recall Total Pos Rate TPR TPR = TP CONDITION POS Miss Rate False Neg Rate	Fall-Out False Pos Rate FPR FPR = FP CONDITION NEG Specificity (SPC) True Neg Rate	Pos Likelihood Ratio LR + LR + = TPR FPR Neg Likelihood Ratio	Diagnostic Odds Ratio DOR DOR = <u>LR+</u> LR -
		FNR FNR = FN CONDITION POS	TNR = TN CONDITION NEG	LR - LR - = <u>TNR</u> FNR	

Over/under fitting

Test and validation sets

- The model must always be validated on data not used for testing
- Often something like 20% of data is used for validation
- Make sure that validation and training distributions are the same

- n-fold cross validation
 - Ensure training/test splits

Final Accuracy = Average(Round 1, Round 2, ...)

Building block Cross Validation

```
from sklearn.model_selection import
cross_val_score
clf = svm.SVC(kernel='linear', C=1)
scores = cross_val_score(clf, X, y, cv=5)
```


Go To Notebook

Boosting + Bagging

- To overcome the limitations of a weak learner we can use booting or bagging.
- Both methods use an ensemble of weak learners to build a strong learner
- Boosting choose next learner based on the errors of the last learner (gradient boosted decision trees)
- Bagging stochastically choose next learners (random forests)

Boosted Decision Trees

Number of trees

Building block: Boosted decision tree

```
from sklearn import ensemble

gbr = ensemble.GradientBoostingRegressor(loss='lad', max_depth
= 10, learning_rate = 0.015, min_samples_split = 50,
min_samples_leaf = 1, max_features = len(cols), subsample =
0.9, n_estimators = 300)

gbr.fit(X, y)
```


Go To Notebook

Concept checklist

- Supervised/unsupervised machine learning
- Classical machine learning/deep learning
- Parameters/hyperparameters
- Features and feature engineering
- Decision trees
- Overfitting
- Evaluation/metrics
- Test/train split, cross-validation
- Bagging and boosting

Thank you

Facebook: Science and Technology Facilities Council

Twitter: @STFC_matters

YouTube: Science and

Technology Facilities Council