Visual Explanations for Deep Neural Networks

Siddhant Midha SIDDHANTM@IITB.AC.IN

PRATEEKGARG@EE.IITB.AC.IN

Sophomore
Electrical Engineering
Indian Institute of Technology, Bombay

Prateek Garg

Sophomore
Electrical Engineering
Indian Institute of Technology, Bombay

Mentor: Akkapaka Saikiran

Abstract

With the evolution of Machine Learning and Deep Learning, we have come up with more and more complex networks which perform very well on various tasks. Through this development, one caveat remains. Increasing complexity of the network leads to decreasing interpretability. In this report, we review few such methods and implement them.

Keywords: CNN, Saliency, Grad-CAM, Deconvolution

1. Introduction

Probabilistic inference has become a core technology in AI, largely due to developments in graph-theoretic methods for the representation and manipulation of complex probability distributions (?). Whether in their guise as directed graphs (Bayesian networks) or as undirected graphs (Markov random fields), probabilistic graphical models have a number of virtues as representations of uncertainty and as inference engines. Graphical models allow a separation between qualitative, structural aspects of uncertain knowledge and the quantitative, parametric aspects of uncertainty...

Remainder omitted in this sample. See http://www.jmlr.org/papers/ for full paper.

Acknowledgments

We would like to acknowledge support for this project from the National Science Foundation (NSF grant IIS-9988642) and the Multidisciplinary Research Program of the Department of Defense (MURI N00014-00-1-0637).

Appendix A.

In this appendix we prove the following theorem from Section 6.2:

Theorem Let u, v, w be discrete variables such that v, w do not co-occur with u (i.e., $u \neq 0 \Rightarrow v = w = 0$ in a given dataset \mathcal{D}). Let N_{v0}, N_{w0} be the number of data points for which v = 0, w = 0 respectively, and let I_{uv}, I_{uw} be the respective empirical mutual information values based on the sample \mathcal{D} . Then

$$N_{v0} > N_{w0} \Rightarrow I_{uv} \leq I_{uw}$$

with equality only if u is identically 0.

Proof. We use the notation:

$$P_v(i) = \frac{N_v^i}{N}, \quad i \neq 0; \quad P_{v0} \equiv P_v(0) = 1 - \sum_{i \neq 0} P_v(i).$$

These values represent the (empirical) probabilities of v taking value $i \neq 0$ and 0 respectively. Entropies will be denoted by H. We aim to show that $\frac{\partial I_{uv}}{\partial P_{v0}} < 0...$

Remainder omitted in this sample. See http://www.jmlr.org/papers/ for full paper.

References

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufman Publishers, San Mateo, CA, 1988.