

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ, ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ

Μάθημα: "Ρομποτική ΙΙ: Ευφυή Ρομποτικά Συστήματα" (8° εξάμηνο, Ακαδ. Έτος: 2018-19)

Διδάσκων: Κων/νος Τζαφέστας

1η Σειρά Αναλυτικών Ασκήσεων

Επιδέξια Ρομποτική Λαβή (στατική ανάλυση: μητρώο λαβής, κλειστότητα δύναμης, Ιακωβιανή χεριού) (Dexterous Robot Grasping: grasp matrix, force-closure, hand Jacobian)

Άσκηση 1

Έστω η επίπεδη ρομποτική λαβή που εικονίζεται στο Σχήμα 1, με 2 (δύο) σημειακές επαφές με τριβή (point contacts with friction).

Θεωρούμε το πρόβλημα στατικής ανάλυσης στο επίπεδο του Σχήματος.

- α) Να προσδιορισθεί η μήτρα ρομποτικής λαβής \mathbf{G} καθώς και τα σύνολα FC_{ci} («κώνοι τριβής» Friction cones, για i=1,2), θεωρώντας τα τοπικά πλαίσια αναφοράς στις επαφές όπως εικονίζονται στο Σχήμα 1.
- β) Θεωρώντας συντελεστή τριβής Coulomb ίσο με μ, να μελετηθεί η «κλειστότητα ως προς δύναμη» (force-closure) της εν λόγω λαβής, εφαρμόζοντας τη συνθήκη κυρτότητας.

Σχήμα 1: Επίπεδη (planar) ρομποτική λαβή με 2 επαφές σημείου με τριβή.

Άσκηση 2

Έστω η ρομποτική λαβή που εικονίζεται στο ακόλουθο Σχήμα 2. Υποθέτουμε ότι οι επαφές C_2 και C_3 είναι επαφές σημείου χωρίς τριβή, ενώ η επαφή C_1 είναι επαφή σημείου με τριβή (με συντελεστή τριβής Coulomb ίσο με μ). Τα γεωμετρικά μήκη d και L, καθώς και η ακτίνα R του ημικυκλίου θεωρούνται γνωστά.

(α) Εφαρμόζοντας τις γενικές σχέσεις μετασχηματισμού δυνάμεων/ροπών επαφής, να γραφεί η μήτρα ρομποτικής λαβής (grasp matrix) **G**, με πλαίσια αναφοράς στις επαφές της επιλογής σας, και να εκφρασθεί ο κώνος τριβής.

Για τη συνέχεια, θεωρούμε το πρόβλημα της ρομποτικής λαβής στο επίπεδο του Σχήματος και υποθέτουμε συντελεστή τριβής Coulomb μ =1.

- (β) Εφαρμόζοντας τη συνθήκη κυρτότητας, να προσδιορισθεί μια αναγκαία σχέση που πρέπει να ικανοποιεί η γωνία φ∈[-π/2,π/2] ώστε η ρομποτική αυτή λαβή να είναι «κλειστή ως προς δύναμη» (force-closure) στο επίπεδο του Σχήματος.
- (γ) Θεωρώντας γνωστά τα μήκη l_1 έως l_4 , να προσδιορισθεί η συνολική Ιακωβιανή (J_{hand}) του ρομποτικού χεριού, για δεδομένη κινηματική διάταξη [q_1 , ..., q_6] των ρομποτικών δαχτύλων και δεδομένη διάταξη λαβής (υποθέτοντας ευθυγραμμισμένα πλαίσια αντικειμένου και ρομποτικού χεριού), όπως εικονίζεται στο Σχήμα.

Σχήμα 2: Επιδέξια ρομποτική λαβή με τρία ρομποτικά δάκτυλα και τρεις επαφές σημείου.

Ρομποτική ΙΙ (2018-19): 1η Σειρά Αναλυτικών Ασκήσεων