BOOTCAMP
BIG DATA &
MACHINE
LEARNING

TALLER DATA 101

Rico Abilowo Hardjono Hartini

Data 101

Contenido

PARTE 1	2
Estudio del schema STAGE	2
A. CLIENTES	3
Análisis	4
B. PRODUCTOS	5
Análisis	6
C. FACTURAS	7
Análisis	8
D. LLAMADAS	9
Análisis	10
E. ORDENES	11
Análisis	12
Valores por defecto	13
Otros resultados:	14
Creación de los modelos de datos	15
A. PRODUCTOS	15
B. FACTURAS	15
C. LLAMADAS	15
PARTE 2	16
Diagrama completo del schema ODS	16
Cuestión de diseño	17
Cuestión de diseño Opcional	
PARTE 3	19
Data Management	19
Cuestión Opcional#1	20
Cuestión Opcional#2	20
PARTE 4	
Data Warehouse - Arquitectura	
PARTE 5	
Data Warehouse - Mandamientos	
PARTE 6	
ANEXOS	
Scripts PARTE1 - STAGE	
Scripts PARTE1 - ODS	25
Scripts PARTE2	25

Estudio del schema STAGE

El estudio y análisis de la base de datos origen con toda la información de los operacionales y que se han importado al schema STAGE como parte de una primera fase en el proceso de creación del Data Warehouse (consultar <u>Scripts PARTE1 - STAGE</u>), son las tareas previas para definir el modelo de datos. Del mismo modo, disponer del conocimiento sobre las líneas de negocio repercute destacadamente a la hora de interpretar los datos de forma más precisa y disponer así de un modelo de datos más real.

Sin embargo, en esta práctica realizada se ha tomado la decisión de seguir el modelo propuesto. A continuación, se describen los criterios generales que se han tomado para la definición del modelo de datos:

Seleccionar los campos que van a ser Primary Key (PK) verificando que todos sus valores son distintos y no existe ningún valor nulo o vacío.

Comprobar que los campos están rellenos:

- Si un campo está completamente vació se puede considerar excluirlo del modelo de datos.
- Si un campo tiene parcialmente valores a nulo o vacío se les asignará posteriormente un valor por defecto según el tipo del campo.
- Si el número de valores distintos del campo es considerablemente menor que el número total de elementos o registros de la tabla entonces se propone la creación de una tabla de dimensión para dicho campo.

A. CLIENTES

mysql> DESCRIBE ST	G_CLIENTES_CR	M;	
Field	Type	Null Key	Default Extra
CUSTOMER_ID	varchar(512)	NO	NULL
FIRST_NAME	varchar(512)	YES	NULL
LAST_NAME	varchar(512)	YES	NULL
IDENTIFIED_DOC	varchar(512)	YES	NULL
GENDER	varchar(512)	YES	NULL
CITY	varchar(512)	YES	NULL
ADDRESS	varchar(512)	YES	NULL
POSTAL_CODE	varchar(512)	YES	NULL
STATE	varchar(512)	YES	NULL
COUNTRY	varchar(512)	YES	NULL
PHONE	varchar(512)	YES MUL	NULL
EMAIL	varchar(512)	YES	NULL
BIRTHDAY	varchar(512)	YES	NULL
PROFESION	varchar(512)	YES	NULL
COMPANY	varchar(512)	YES	NULL
15 rows in set (0,00 s	sec)		

TOTAL_REGISTROS				
17558				
TOTAL_CUSTOMER_ID	TOTAL_DISTINTOS_CUSTOMER_ID			
17558	17558			
TOTAL_FIRST_NAME	TOTAL_DISTINTOS_FIRST_NAME			
17558	7314			
TOTAL_LAST_NAME	TOTAL_DISTINTOS_LAST_NAME			
17497	14577			
TOTAL_IDENTIFIED_DOC	TOTAL_DISTINTOS_IDENTIFIED_DOC			
17497	17498			
TOTAL_GENDER	TOTAL_DISTINTOS_GENDER			
17497	3			
TOTAL_CITY	TOTAL_DISTINTOS_CITY			
17497	82			
TOTAL_ADDRESS	TOTAL_DISTINTOS_ADDRESS			
17497	17439			
TOTAL_POSTAL_CODE	TOTAL_DISTINTOS_POSTAL_CODE			
17497	274			
TOTAL_STATE	TOTAL_DISTINTOS_STATE			
17497	4			
TOTAL_COUNTRY	TOTAL_DISTINTOS_COUNTRY			
17497	2			
TOTAL_PHONE	TOTAL_DISTINTOS_PHONE			
17497	17498			
TOTAL_EMAIL	TOTAL_DISTINTOS_EMAIL			
17497	17498			
TOTAL_BIRTHDAY	TOTAL_DISTINTOS_BIRTHDAY			
17497	10753			
TOTAL_PROFESION	TOTAL_DISTINTOS_PROFESION			
17497	196			
TOTAL_COMPANY	TOTAL_DISTINTOS_COMPANY			
17451	384			

Análisis

A partir de la tabla anterior se indican las siguientes conclusiones:

El campo CUSTOMER_ID es el PK de la tabla STG_CLIENTES_CRM. No incluye valores nulos y no es autoincremental (se insertan los propios identificadores de cliente que son todos distintos puesto que TOTAL_DISTINTOS_CUSTOMER_ID coincide con TOTAL_REGISTROS)

Se crean tablas dimensión para los campos: **GENDER**, **COUNTRY**, **PROFESION** y **COMPANY** puesto que el número de elementos distintos en cada campo es destacadamente inferior que **TOTAL_REGISTROS**.

Para el caso del campo **POSTAL_CODE** no se ha definido una tabla dimensión a pesar de cumplir los requisitos para ello porque no se ha considerado parte de la jerarquía de información asociada a una dirección.

No se ha creado tabla dimensión conjunta para los campos CITY y STATE. Esta decisión se explicará con mayor detalle en el apartado PARTE2 - Cuestión de diseño.

Con respecto a las tablas dimensión, cabe destacar que la existencia de tablas maestras hubiera facilitado la creación y mantenimiento de las mismas.

Para los campos FIRST_NAME, LAST_NAME, BIRTHDAY y ADDRESS se asume que los clientes pueden compartir entre sí un mismo nombre, apellido o fecha de nacimiento e incluso un mismo domicilio y no tendría sentido crear tablas dimensión para estos campos.

Los campos IDENTIFIED_DOC, PHONE, EMAIL se importarán directamente sin ninguna modificación.

Hay que señalar que el número total de elementos que en la mayoría de los campos es de 17497 es inferior al **TOTAL_REGISTROS** que es 17558. Esto se interpreta en que la diferencia entre dichos valores corresponde al número de elementos que son nulos o vacíos. Como se ha indicado anteriormente, estos valores nulos o vacíos serán modificados en la importación por un valor por defecto.

Finalmente, a partir de los datos de los campos **ADDRESS**, **POSTAL_CODE**, **CITY**, **STATE**, y **COUNTRY** se define una entidad propia para la información de las direcciones.

^[*] Para los siquientes modelos tablas ya muestran en una columna el número de elementos nulos o vacíos.

B. PRODUCTOS

mysql> describe STG_PRODU	JCTOS_CRM;		
Field	Type	Null Key	Default Extra
PRODUCT_ID	varchar(512)	NO	NULL
CUSTOMER_ID	varchar(512)	YES MUL	NULL
PRODUCT_NAME	varchar(512)	YES	NULL
ACCESS_POINT	varchar(512)	YES	NULL
CHANNEL	varchar(512)	YES	NULL
AGENT_CODE	varchar(512)	YES	NULL
START_DATE	varchar(512)	YES	NULL
INSTALL_DATE	varchar(512)	YES	NULL
END_DATE	varchar(512)	YES	NULL
PRODUCT_CITY	varchar(512)	YES	NULL
PRODUCT_ADDRESS	varchar(512)	YES MUL	NULL
PRODUCT_POSTAL_CODE	varchar(512)	YES MUL	NULL
PRODUCT_STATE	varchar(512)	YES	NULL
PRODUCT_COUNTRY	varchar(512)	YES	NULL
14 rows in set (0,00 sec)			

	TOTAL_REGISTROS	
	78495	
TOTAL_PRODUCT_ID	TOTAL_NULOSVACIOS_PRODUCT_ID	TOTAL_DISTINTOS_PRODUCT_ID
78495	0	78495
TOTAL_CUSTOMER_ID	TOTAL_NULOSVACIOS_CUSTOMER_ID	TOTAL_DISTINTOS_CUSTOMER_ID
78495	0	8001
TOTAL_PRODUCT_NAME	TOTAL_NULOSVACIOS_PRODUCT_NAME	TOTAL_DISTINTOS_PRODUCT_NAME
78495	0	6
TOTAL_ACCESS_POINT	TOTAL_NULOSVACIOS_ACCESS_POINT	TOTAL_DISTINTOS_ACCESS_POINT
78274	221	78275
TOTAL_CHANNEL	TOTAL_NULOSVACIOS_CHANNEL	TOTAL_DISTINTOS_CHANNEL
78274	221	5
TOTAL_AGENT_CODE	TOTAL_NULOSVACIOS_AGENT_CODE	TOTAL_DISTINTOS_AGENT_CODE
42630	35865	701
TOTAL_START_DATE	TOTAL_NULOSVACIOS_START_DATE	TOTAL_DISTINTOS_START_DATE
78495	0	8035
TOTAL_INSTALL_DATE	TOTAL_NULOSVACIOS_INSTALL_DATE	TOTAL_DISTINTOS_INSTALL_DATE
75363	3132	75360
TOTAL_END_DATE	TOTAL_NULOSVACIOS_END_DATE	TOTAL_DISTINTOS_END_DATE
46684	31811	46683
TOTAL_PRODUCT_CITY	TOTAL_NULOSVACIOS_PRODUCT_CITY	TOTAL_DISTINTOS_PRODUCT_CITY
78274	221	83
TOTAL_PRODUCT_ADDRESS	TOTAL_NULOSVACIOS_PRODUCT_ADDRESS	TOTAL_DISTINTOS_PRODUCT_ADDRESS
78274	221	77037
TOTAL_PRODUCT_POSTAL_CODE	TOTAL_NULOSVACIOS_PRODUCT_POSTAL_CODE	TOTAL_DISTINTOS_PRODUCT_POSTAL_CODE
78274	221	274
TOTAL_PRODUCT_STATE	TOTAL_NULOSVACIOS_PRODUCT_STATE	TOTAL_DISTINTOS_PRODUCT_STATE
78090	405	5
TOTAL_PRODUCT_COUNTRY	TOTAL_NULOSVACIOS_PRODUCT_COUNTRY	TOTAL_DISTINTOS_PRODUCT_COUNTRY
78274	221	3

Análisis

A partir de la tabla anterior se indican las siguientes conclusiones:

El campo PRODUCT_ID es el PK de la tabla STG_PRODUCTOS_CRM. No incluye valores nulos y no es autoincremental.

El campo CUSTOMER_ID es el Foreign Key (FK) de la tabla STG_CLIENTES_CRM

Se crean tablas dimensión para los campos PRODUCT_NAME y CHANNEL.

Los campos ACCESS_POINT, AGENT_CODE, START_DATE, INSTALL_DATE y END_DATE se importarán directamente sin ninguna modificación. Si el campo AGENT_CODE no fuera numérico se puede plantear crear una tabla dimensión para él.

Los campos PRODUCT_ADDRESS, PRODUCT_POSTAL_CODE, PRODUCT_CITY, PRODUCT_STATE, y PRODUCT_COUNTRY definen la información de la dirección de la instalación de un servicio o producto, pero para nuestro modelo se considera la misma que la dirección de cliente y por tanto se agregará a la misma entidad de direcciones.

C. FACTURAS

mysql> describe STG	_FACTURAS_FC	Т;	
Field	Type	Null Key	Default Extra
BILL_REF_NO	varchar(512)	NO	NULL
CUSTOMER_ID	varchar(512)	YES	NULL
START_DATE	varchar(512)	YES	NULL
END_DATE	varchar(512)	YES	NULL
STATEMENT_DATE	varchar(512)	YES	NULL
PAYMENT_DATE	varchar(512)	YES	NULL
BILL_CYCLE	varchar(512)	YES	NULL
AMOUNT	varchar(512)	YES	NULL
BILL_METHOD	varchar(512)	YES	NULL
9 rows in set (0,00 se	ec)		

	TOTAL_REGISTROS	
	420000	
TOTAL_BILL_REF_NO	TOTAL_NULOSVACIOS_BILL_REF_NO	TOTAL_DISTINTOS_BILL_REF_NO
420000	0	420000
TOTAL_CUSTOMER_ID	TOTAL_NULOSVACIOS_CUSTOMER_ID	TOTAL_DISTINTOS_CUSTOMER_ID
420000	0	20000
TOTAL_START_DATE	TOTAL_NULOSVACIOS_START_DATE	TOTAL_DISTINTOS_START_DATE
420000	0	40
TOTAL_END_DATE	TOTAL_NULOSVACIOS_END_DATE	TOTAL_DISTINTOS_END_DATE
420000	0	20
TOTAL_STATEMENT_DATE	TOTAL_NULOSVACIOS_STATEMENT_DATE	TOTAL_DISTINTOS_STATEMENT_DATE
420000	0	40
TOTAL_PAYMENT_DATE	TOTAL_NULOSVACIOS_PAYMENT_DATE	TOTAL_DISTINTOS_PAYMENT_DATE
420000	0	400
TOTAL_BILL_CYCLE	TOTAL_NULOSVACIOS_BILL_CYCLE	TOTAL_DISTINTOS_BILL_CYCLE
420000	0	2
TOTAL_AMOUNT	TOTAL_NULOSVACIOS_AMOUNT	TOTAL_DISTINTOS_AMOUNT
420000	0	5604
TOTAL_BILL_METHOD	TOTAL_NULOSVACIOS_BILL_METHOD	TOTAL_DISTINTOS_BILL_METHOD
420000	0	3

Análisis

A partir de la tabla anterior se indican las siguientes conclusiones:

El campo BILL_REF_NO es el PK de la tabla STG_FACTURAS_FCT. No incluye valores nulos y no es autoincremental.

El campo CUSTOMER_ID es FK de la tabla STG_CLIENTES_CRM.

Se crean tablas dimensión para los campos BILL_CYCLE y BILL_METHOD.

El resto de los campos se importarán directamente sin ninguna modificación. Cabe destacar que los campos de tipo fecha (START_DATE, END_DATE, STATEMENT_DATE y PAYMENT_DATE) tienen un número de valores distintos muy bajo (20) lo que sugiere que los periodos de facturación se establecen en fechas fijas. Así tenemos que la fecha de inicio de facturación se fija el día 1 o 15 de cada mes, la fecha de finalización de facturación se fija el día 1 de cada mes y que la fecha de declaración de la factura se realiza dos días después de la fecha de inicio, es decir, los 3 o 17 de cada mes.

Esto se verifica mediante las siguientes consultas:

SELECT start_date, COUNT(*) total FROM STAGE.STG_FACTURAS_FCT GROUP BY start_date;
SELECT end_date, COUNT(*) total FROM STAGE.STG_FACTURAS_FCT GROUP BY end_date;
SELECT statement_date, COUNT(*) total FROM STAGE.STG_FACTURAS_FCT GROUP BY statement_date;

D. LLAMADAS

mysql> describe STG	_CONTACTOS_I	VR;	
Field	Type	Null Key	Default Extra
ID	varchar(512)	NO	NULL
PHONE_NUMBER	varchar(512)	YES MUL	NULL
START_DATETIME	varchar(512)	YES	NULL
END_DATETIME	varchar(512)	YES	NULL
SERVICE	varchar(512)	YES	NULL
FLG_TRANSFER	varchar(512)	YES	NULL
AGENT	varchar(512)	YES	NULL
7 rows in set (0,00 se	ec)		

# TOTAL_REGISTROS				
	202717			
TOTAL_ID	TOTAL_NULOSVACIOS_ID	TOTAL_DISTINTOS_ID		
202717	0	150000		
TOTAL_PHONE_NUMBER	TOTAL_NULOSVACIOS_PHONE_NUMBER	TOTAL_DISTINTOS_PHONE_NUMBER		
185018	17699	18226		
TOTAL_START_DATETIME	TOTAL_NULOSVACIOS_START_DATETIME	TOTAL_DISTINTOS_START_DATETIME		
202717	0	201098		
TOTAL_END_DATETIME	TOTAL_NULOSVACIOS_END_DATETIME	TOTAL_DISTINTOS_END_DATETIME		
186535	16182	183678		
TOTAL_SERVICE	TOTAL_NULOSVACIOS_SERVICE	TOTAL_DISTINTOS_SERVICE		
202502	215	7		
TOTAL_FLG_TRANSFER	TOTAL_NULOSVACIOS_FLG_TRANSFER	TOTAL_DISTINTOS_FLG_TRANSFER		
202717	0	2		
TOTAL_AGENT	TOTAL_NULOSVACIOS_AGENT	TOTAL_DISTINTOS_AGENT		
194739	7978	594		

Análisis

A partir de la tabla anterior se indican las siguientes conclusiones:

El campo ID no puede ser utilizado como PK de la tabla STG_CONTACTOS_IVR. Puesto que a pesar de no tener valores nulos sí que tiene valores repetidos. Por este motivo, se precisa definir un campo identificador para la tabla ODS_HC_LLAMADAS que sea autoincremental.

Se crean tablas dimensión para los campos SERVICE y AGENT.

Los campos PHONE_NUMBER, START_DATE, END _DATE y FLG_TRANSFER se importarán directamente sin ninguna modificación. El campo FLG_ TRANSFER es similar al campo GENDER de Clientes, tiene dos valores posibles (True y False) pero en este caso no se crea una tabla dimensión por ser de tipo booleano, aunque se podría aplicar una transformación a 1 y 0.

E. ORDENES

mysql> describ	oe STG_ORDERS_	CRM;		
Field	Type	Null	Key	Default Extra
ID	varchar(512)	NO	1	NULL
ORDER	varchar(512)	YES	1	NULL
PHASE	varchar(512)	YES	1	NULL
AGENT	varchar(512)	YES	1	NULL
START_DT	varchar(512)	YES	1	NULL
END_DT	varchar(512)	YES	T	NULL
6 rows in set (0	0,00 sec)			

	TOTAL_REGISTROS	
	360067	
TOTAL_ID	TOTAL_NULOSVACIOS_ID	TOTAL_DISTINTOS_ID
360067	0	324081
TOTAL_ORDER	TOTAL_NULOSVACIOS_ORDER	TOTAL_DISTINTOS_ORDER
360067	0	78000
TOTAL_PHASE	TOTAL_NULOSVACIOS_PHASE	TOTAL_DISTINTOS_PHASE
360067	0	7
TOTAL_AGENT	TOTAL_NULOSVACIOS_AGENT	TOTAL_DISTINTOS_AGENT
360032	35	101
TOTAL_START_DT	TOTAL_NULOSVACIOS_START_DT	TOTAL_DISTINTOS_START_DT
360067	0	342069
TOTAL_END_DT	TOTAL_NULOSVACIOS_END_DT	TOTAL_DISTINTOS_END_DT
282067	78000	270383

Análisis

A partir de la tabla anterior se indican las siguientes conclusiones:

El campo ID no puede ser utilizado como PK de la tabla **STG_ORDERS_CRM**. Puesto que a pesar de no tener valores nulos sí que tiene valores repetidos. Por este motivo, se precisa definir un campo identificador para la tabla **ODS_HC_PROVISION** que sea autoincremental.

Se crean tabla dimensión para el campo PHASE y ORDERS.

Los campos **START_DT** y **END** _**DATE** se importarán directamente sin ninguna modificación y el campo **AGENT** se agregará a la tabla dimensión de AGENT definida anteriormente.

Valores por defecto

Para cargar los datos desde la capa STAGE a la capa ODS de la arquitectura Data Warehouse (<u>Data Warehouse - Arquitectura</u>) planteada, se realiza un proceso ETL basada en queries y CTAS cuyo resultado es la creación de una base de datos normalizada en el que se definen las tablas de Dimensiones y de Hechos.

Durante este proceso ETL no se ha dispuesto de tablas de equivalencia o maestras que permitiesen evitar inconsistencia y duplicidad de los datos. Por otro lado, para obtener la normalización de la base de datos se ha cargado un conjunto de registros por defecto para asegurar que no hubiese atributos o campos con valores nulos. Estos registros son los siguientes:

TABLAS DIMENSIONES

DIMENSION GENDER/SEXOS

(ID, DESCRIPCION) 99, 'DESCONOCIDO' 98, 'NO APLICA'

DIMENSION PROFESION/PROFESIONES

(ID, DESCRIPCION) 999, 'DESCONOCIDO' 998, 'NO APLICA'

DIMENSION COMPANY/COMPANYAS

(ID, DESCRIPCION) 999, 'DESCONOCIDO' 998, 'NO APLICA'

DIMENSION COUNTRY/PAISES

(ID, DESCRIPCION) 99, 'DESCONOCIDO' 98, 'NO APLICA'

DIMENSION CITY STATE/CIUDADES ESTADOS

(ID_CIUDAD_ESTADO, DESCRIPCION_CIUDAD, DESCRIPCION_ESTADO, ID_PAIS) 999, 'DESCONOCIDO', 'DESCONOCIDO', '99 998, 'NO APLICA', 'NO APLICA', 98

DIMENSION CHANNEL/CANALES

(ID, DESCRIPCION) 999, 'DESCONOCIDO' 998, 'NO APLICA'

DIMENSION PRODUCT/PRODUCTOS

(ID, DESCRIPCION) 999, 'DESCONOCIDO' 998, 'NO APLICA'

DIMENSION BILL_METHOD/METODOS_PAGO

(ID, DESCRIPCION) 999, 'DESCONOCIDO' 998, 'NO APLICA'

DIMENSION BILL_CYCLE/CICLOS_FACTURACION

(ID, DESCRIPCION) 999, 'DESCONOCIDO' 998, 'NO APLICA'

DIMENSION AGENT/AGENTES_CC

(ID, DESCRIPCION) 99999, 'DESCONOCIDO' 99998, 'NO APLICA'

DIMENSION SERVICE/DEPARTAMENTOS_CC

(ID, DESCRIPCION) 999, 'DESCONOCIDO' 998, 'NO APLICA'

TABLAS HECHOS

HECHO DIRECCIONES

(ID_DIRECCION, DESCRIPCION_DIRECCION, DESCRIPCION_CODIGO_POSTAL, ID_CIUDAD_ESTADO) 999999, 'DESCONOCIDO', 99999, 999 999998, 'NO APLICA', 99998, 998

HECHO CLIENTES

(ID_CLIENTE, DESCRIPCION_NOMBRE, DESCRIPCION_APELLIDO, DESCRIPCION_NUMDOC, ID_SEXO, ID_DIRECCION, DESCRIPCION_TELEFONO, DESCRIPCION_EMAIL, DESCRIPCION_FECHA_NACIMIENTO, ID_PROESION, ID_COMPANYA)
999999999, 'DESCONOCIDO', 'DESCONOCIDO', '99-999-9999', 99, 9999999999, 'DESCONOCIDO', STR_TO_DATE('31/12/9999', '%d/%m/%Y %T'), 999, 999

Otros resultados:

HECHO DIRECCIONES

Existen varias direcciones en común entre las tablas STG_CLIENTES_CRM y STG_PRODUCTOS_CRM por lo que es importante evitar que se generen registros duplicados en la tabla ODS_HC_DIRECCIONES al agregar las direcciones de Productos sobre las direcciones de clientes.

HECHO CLIENTES

Se ha creado este registro que corresponde a un usuario que no tienen ninguno de sus campos informados, es decir, tienen los valores por defecto. De este modo, cuando se agregue a la tabla ODS_HC_CLIENTES un nuevo cliente que cumpla estas condiciones no se generará un nuevo identificador, sino que se referenciará a este cliente desconocido con identificador 9999999999.

Esta situación se produce con la tabla STG_PRODUCTOS_CRM donde hay productos que referencian a clientes que no existen o que fueron eliminados por algún motivo de la tabla de STG_CLIENTES_CRM sin indicar que fueron dados de baja

HECHO LLAMADAS

En el proceso de transformación entre la fase STAGE y la fase ODS se ha verificado que no existe relación entre los números de teléfono registrados en las llamadas (tablas STG_CONTACTOS_IVR) y los números de teléfono de los clientes (tabla STC_CLIENTES_CRM). Por este motivo, todas las llamadas se han asignado al cliente por defecto/desconocido.

Tampoco es posible establecer una relación entre los números de teléfono registrados en las llamadas y el producto contratado por el cliente.

Creación de los modelos de datos

A. PRODUCTOS

Consultar Scripts PARTE1 - ODS.

B. FACTURAS

Consultar Scripts PARTE1 - ODS.

C. **LLAMADAS**

Consultar <u>Scripts PARTE1 - ODS</u>.

Diagrama completo del schema ODS

Cuestión de diseño

¿Por qué en el modelo de DIRECCIONES dejo en la misma tabla las CIUDADES y los ESTADOS y no los separo en dos tablas distintas para ser más estricta con la jerarquía: PAIS \rightarrow ESTADOS \rightarrow CIUDADES \rightarrow DIRECCIONES

Para establecer en el modelo de Direcciones (ODS_HC_DIRECCIONES) una relación de jerarquía: PAIS --> ESTADO --> CIUDAD --> DIRECCION debe existir una relación 1 a 1 entre la entidad hijo con respecto a la entidad padre, por ejemplo, debe suceder que una Ciudad pertenezca a un solo Estado y que un Estado pertenezca a su vez a un solo País.

Sin embargo, tras analizar los campos City y State de la tabla STAGE.STG_CLIENTES_CRM se ha observado la existencia de una Ciudad que pertenece a dos Estados diferentes. De este modo si consultásemos o filtrásemos por dicha ciudad obtendríamos dos valores de Estados distintos.

No se puede establecer una relación de jerarquía entre Estado y Ciudad porque no hay una relación 1 a 1 entre la entidad hija con respecto a la entidad padre, en concreto existe una Ciudad que pertenece a dos Estados diferentes.

Esto lo podemos comprobar con la siguiente consulta que devuelve el número de estados al que pertenece una ciudad:

SELECT DISTINCT CITY, COUNT(*) TOTAL_STATES FROM (

SELECT DISTINCT CITY, STATE FROM STAGE.STG_CLIENTES_CRM GROUP BY CITY, STATE HAVING

CITY<>" OR STATE<>") CITIES_STATES

GROUP BY CITY

ORDER BY TOTAL_STATES DESC;

CITY, TOTAL_STATES

Glendale, 2

Henderson, 1

Oakland, 1

Sacramento, 1

Simi Valley, 1

Brea, 1

Huntington Beach, 1

Oceanside, 1

Salinas, 1

South Lake Tahoe, 1

Para el modelo de Direcciones se ha planteado una tabla auxiliar (ODS_DM_CIUDADES_ESTADOS) que relaciona la Ciudad y el Estado generando un nuevo campo identificador/clave.

Esto sería equivalente a crear las tablas de dimensiones de Ciudad y Estado y luego definir una tabla intermedia de Ciudades_Estados pero esto se puede considerar menos óptimo o eficiente pues habría que mantener 3 tablas.

Otras conclusiones:

Puede ser una opción de diseño alternativa, crear las dimensiones para País, Estado, Ciudad y Código Postal de forma independiente para luego a partir de ellas crear el modelo de Direcciones definiendo como identificador una PK compuesta por dichos campos o como una PK autoincremental.

¿Qué haríamos si en un futuro tuviésemos un mismo estado en diferentes países?. Aunque hay que tener un conocimiento del modelo de negocio para saber qué datos existen o se van a utilizar, en principio con el modelo de Dirección actual se necesitaría realizar modificaciones.

Cuestión de diseño Opcional

¿Serías capaz de separar el campo DE_DIRECCION de la tabla de direcciones en dos campos NOMBRE_VIA y NUM_VIA?

Para realizar esta operación hemos comprobado que el campo DE_DIRECCION tiene un formato común consistente en: [numero_via(espacio)nombre_via]

Se utiliza la función SUBSTRING_INDEX() para extraer las dos partes que componen la dirección.

SELECT

SUBSTRING_INDEX(DE_DIRECCION, ' ', -1) NOMBRE_VIA, SUBSTRING_INDEX(DE_DIRECCION, ' ', 1) NUM_VIA FROM ODS.ODS_HC_DIRECCIONES WHERE ID_DIRECCION NOT IN (999999, 999998) ORDER BY NOMBRE_VIA;

Consultar Scripts PARTE2.

Data Management

La realidad es que si hubiésemos aplicado el "Data Management", muchas de las acciones que hemos tenido que realizar nos las hubiésemos evitado porque deberían estar controladas de otra forma. Explica qué habrías hecho diferente centrándote en las "patas":

Data Quality

Data Quality es la disciplina dentro del Data Management encargada de definir, controlar y mejorar la calidad de los datos. Se persigue que los datos sean consistentes, precisos y completos y que tengan una correcta interrelación con todas las fuentes.

No tenemos una perspectiva general del negocio para poder evaluar de forma completa a priori si todos los datos disponibles en Operacional o en STAGE tienen una buena calidad. Sin embargo, tras estudiar los resultados de varios análisis realizados a los datos podemos comentar algunos aspectos a tener en cuenta para poder mejorar la calidad de los datos:

Diversos atributos o campos no están completamente rellenos, es decir, tienen valores vacíos o nulos. Hay que determinar si es debido a fallos en la toma del dato o es la propia naturaleza del campo.

Los datos de teléfono recogidos en la tabla de Llamadas no se han podido vincular a Clientes o Productos, por lo que la información que nos pueda dar no tendría suficiente valor o pudiera ser prescindible.

Master Data

El Master Data Management (MDM) tiene como objetivo definir y crear una estructura de los datos maestros de la empresa que permita conseguir una visión consistente, confiable y compartida de los datos. Comprende el conjunto de procesos y herramientas para agregar, unificar y asegurar la consistencia y calidad de los datos, evitando que la información quede obsoleta, incompleta o duplicada.

Si esto se traslada al desarrollo realizado en la práctica, se observa que es necesario la existencia de una BBDD confiable donde se gestionase de forma unificada todos los datos de las Dimensiones. Esta BBDD sería utilizada por las distintas áreas operacionales de CRM, FACTURADOR e IVR y se resolverían de esta forma posibles inconsistencias o redundancias como así ha sucedido con la Dimensión de País dónde varios valores ("US" y "United States") supuestamente hacían referencia a un mismo país.

Data Modeling & Design

Esta parte es la encargada del diseño y el modelado de las bases de datos especificando la estructura y la organización de los datos. Bajo mi punto de vista los datos origen de los operacionales presentan en ciertos casos un diseño del modelo incompleto. Un claro error es la de no incluir los datos del número de teléfono que están asociados al producto que contrata un cliente. Dado que es una empresa de telecomunicaciones es fundamental conocer para los servicios que se ofertan (telefonía fija, telefonía móvil, internet, etc.) qué números están vinculados a los mismos. Esta información proporcionaría a su vez la posibilidad de identificar si las llamadas realizadas al call-center pertenecen a un cliente o no.

Nota: Además de las obvias que nos han salido al crear ODS que hay que describirlas, ¿se te ocurre alguna otra normalización?

En el schema ODS se ha realizado la normalización en la tercera forma normal (3FN) por la cual:

Cumple la primera forma normal (1FN):

- Todos los atributos son atómicos
- No hay registros duplicados.
- La tabla contiene una clave primaria única sin valores nulos.

Cumple la segunda forma normal (2FN):

• Cada columna de la tabla depende de forma completa de la clave principal.

Además cumple:

• Ninguna columna depende de otra columna que no sea clave principal.

Cuestión Opcional#1

¿Aconsejarías algún cambio en los sistemas origen extra teniendo en cuenta el resto de disciplinas del Data Governance?

Asignar privilegios específicos sobre los datos a los usuarios en función de roles predeterminados de modo que se puede controlar quien puede acceder a los datos y para qué fin. En la práctica se ha podido descubrir que hay productos que están relacionados con clientes cuyos identificadores no están en la tabla de Clientes. Esta situación puede haberse debido a que dichos clientes se han eliminado de manera manual. Con el mecanismo anteriormente indicado y bajo un consenso de todas las áreas implicadas se podría garantizar que solo el departamento de bajas pudiera realizar la baja del cliente y siguiendo unos procedimientos específicos (por ejemplo realizar bajas lógicas de clientes, en lugar de eliminar el registro del cliente completamente de la base de datos)

Cuestión Opcional#2

Utilizando alguna herramienta del mercado o inventándote un modelo en BBDD genera la trazabilidad de la información (Data Governance).

Por ejemplo para la capa STAGE se puede definir la siguiente tabla para controlar y gestionar la trazabilidad de los datos que son cargados desde los operacionales:

MONITORIZACION_STAGE
Tabla_Cargada
Fecha_Carga
Total_Registros
Total_Registros_Campo1
Total_RegistrosNulos_Campo1
Total_RegistrosDistintos_Campo1
Total_Registros_CampoN
Total_RegistrosNulos_CampoN
Total_RegistrosDistintos_CampoN

Data Warehouse - Arquitectura

Después de todo lo visto nuestro ecosistema quedaría así:

En el área de STAGE se almacena toda la información en bruto (en esta fase no se considera la realización de transformaciones en los datos, aunque sí es posible realizar aplicar filtros relacionados al negocio) tanto de las bases de datos de operación de la empresa como de otras fuentes externas. Es en definitiva una copia temporal de los sistemas orígenes.

Estos datos se actualizan generalmente en cargas mensual en procesos batch que se llevan a cabo fuera del horario laboral y cuando menos repercuta en el uso normal de la fuente de datos.

En la capa ODS (*operational data store*) se cargan los datos en un modelo relacional y normalizado. Se integran los datos de las distintas fuentes mediante transformaciones que incluyen la limpieza de datos y el control de integridad referencial así como la creación de las tablas de Dimensiones y Hechos. Los datos almacenados son la versión más reciente del Master Data, es decir, del momento actual y no se actualiza con los cambios de las fuentes origen hasta que finaliza la carga correspondiente.

Finalmente, en la capa DDS (dimensional data store) los datos que pueden estar desnormalizados, se orientan a la explotación analítica de la información por los usuarios o aplicaciones finales.

¿Lo dejarías así o plantearías otro diseño mejorado?

Los Datamart son un subconjunto de los datos del Data Warehouse (DDS) con la información resumida ajustada a los requerimientos de un determinado departamento.

MDB (Multidimensional Data Base) es un tipo de base de datos donde los datos se almacenan en celdas conformando estructuras de 'cubos'. y la posición de cada celda se define mediante una serie de dimensiones. Cada celda representa un evento de negocios, y el valor de las dimensiones muestra cuándo y dónde sucedió este evento. A partir del MDB se pueden realizar tareas de Data Mining, Reporting u otras aplicaciones Business Intelligence.

Metadata es un repositorio de los metadatos asociados al Data Warehouse. Estos metadatos pueden incluir información de diferentes tipos como la definición de la estructura del Data Warehouse, la propiedad de los datos o la trazabilidad de los datos desde que son cargados, transformados y finalmente utilizados por los usuarios finales (Data Lineage)

Según el flujo de datos la arquitectura del Data Warehouse puede presentar varios tipos:

- Single DDS
- NDS+DDS
- ODS+DDS (este sería la arquitectura planteada en la práctica)

Data Warehouse - Mandamientos

Escribe tus propias reglas o mandamientos de un Data Warehouse

Tener un conocimiento completo del modelo de negocio y tener claro qué objetivos y resultados se persiguen, ya que es la base para poder definir los procesos ETL que permiten dar valor a la carga de los datos en el Data Warehouse.

Tener una estrategia corporativa común de todas las áreas funcionales de la empresa hacia la implantación y desarrollo de Data Management. Como hemos podido comprobar en esta práctica el haber tenido un buen diseño de los modelos así como una buena calidad de datos hubiesen facilitado la creación del Data Warehouse.

Nivel SQL

¿Nivel de SQL antes y después?

	ANTES	DESPUES
Estoy más perdido que un muelle en las escaleras de Hogwarts		
Dejad que las queries se acerquen a mí	X	X
Todo lo que quiso saber sobre SQL y no se atrevió a preguntar		
TRUNCATE TABLE "sql_problems"		

ANEXOS

Scripts PARTE1 - STAGE

https://github.com/rhardjono/BootcampBDML/tree/master/Modulo01%20-%20Data101/02 STG

Scripts PARTE1 - ODS

https://github.com/rhardjono/BootcampBDML/tree/master/Modulo01%20-%20Data101/03 ODS

Scripts PARTE2

https://github.com/rhardjono/BootcampBDML/tree/master/Modulo01%20-%20Data101/scripts_extra