Radiation of a non relativistic charge accelelerated free or bound (electron in the classical description with oscillators)

$$\vec{E_{rad}} \propto \vec{n} \times (\vec{n} \times \vec{a})$$
 (1)

Electron accelerated by a force due to the electric field of polarized radiation (Thomson scattering)

 $\vec{x}, \vec{y}, \vec{n}, \vec{x'}$ same plane

- Anisotropic radiation creates a net dipole moment in scattering atoms or molecules (Rayleigh scattering)
- shorter wavelengths more scattered

Incident unpolarized light, cartesian oscillators

Incident unpolarized light, circular oscillators

oscillators

coherence between circular

Magnetic field, circular oscillators ciclotron radiation

Unpolarized incident light and magnetic field, circular oscillators

Figure 1: Incoherence in the circular oscillators - Hanle effect

Quantic representation (bound electron)

Figure 2: Emission/Absorption

Quantic representation (bound electron)

- Correspondence between atomic transitions and radiation components
 - $\Delta M = 1$, $\sigma_+ (\nu + \nu_L)$, clockwise oscillator
 - $\Delta M = 0, \pi (\nu), \text{ x oscillator}$
 - $\Delta M = -1$, σ_{-} $(\nu \nu_{L})$, anticlockwise oscillator
- similar mechanism(Fig 2 b) for absorption lines (experimetally done by observing same line in filaments: absorption and in prominences: emission)
- Anisotropic radiation populates/depopulates twice M=0 sublevel
- Magnetic field:
 - splitting of energy level J into 2J+1 sublevels (Zeeman effect)
 - creates incoherence between population of levels corresponding to σ components which leads to incoherence in the 2 circular oscillators (Hanle effect)

Second specter of the sun

With the same geometry: Q represents linear polarization parallel to the closest limb

Fig. 1. Examples of the different characters of the ordinary intensity spectrum (Stokes I, top diagram), the linearly polarized spectrum (Stokes Q/I, here called the "second solar spectrum"), and the circularly polarized spectrum (Stokes V/I, bottom diagram). While the circular polarization shows Zeeman-effect signatures due to magnetic enoppies at the supergranulation size scale, the linear polarization is dominated by the signature of coherent scattering, which here unex-

Second specter of the sun

Unknown I 0 level

Eliminating Q signal generated by other mechanisms

- atmospheric seeing and CCD noise: resolved by modulating the signal at high frequency: 2 modulators one at 42 kHz and 84 kHz
- position near the (geographic) north/south pole where influence of the magnetic field is smaller
- cross talk Stokes V generated by the magnetic field recognized (sign reversed with spatial period = the size of a granulation) which confirms the existence of the magnetic field oriented along line of sight (horrizontal)
- polarization by reflection

Polarization by reflection

Polarization by reflection

$$\begin{pmatrix} E_{\parallel}^{(r)} \\ E_{\perp}^{(r)} \end{pmatrix} = \begin{pmatrix} r_{\parallel} & 0 \\ 0 & r_{\perp} \end{pmatrix} \begin{pmatrix} E_{\parallel}^{(i)} \\ E_{\perp}^{(i)} \end{pmatrix} \qquad \begin{pmatrix} E_{\parallel}^{(t)} \\ E_{\perp}^{(t)} \end{pmatrix} = \begin{pmatrix} t_{\parallel} & 0 \\ 0 & t_{\perp} \end{pmatrix} \begin{pmatrix} E_{\parallel}^{(i)} \\ E_{\perp}^{(i)} \end{pmatrix}$$

$$r_{\parallel} = \frac{n_2 \cos \theta_1 - n_1 \cos \theta_2}{n_2 \cos \theta_1 + n_1 \cos \theta_2}$$

$$r_{\perp} = \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_1 \cos \theta_1 + n_2 \cos \theta_2}$$

$$\begin{pmatrix} E_{\parallel}^{(t)} \\ E_{\perp}^{(t)} \end{pmatrix} = \begin{pmatrix} t_{\parallel} & 0 \\ 0 & t_{\perp} \end{pmatrix} \begin{pmatrix} E_{\parallel}^{(i)} \\ E_{\perp}^{(i)} \end{pmatrix}$$

$$t_{\parallel} = \frac{2n_1 \cos \theta_1}{n_2 \cos \theta_1 + n_1 \cos \theta_2}$$

$$t_{\perp} = \frac{2n_1 \cos \theta_1}{n_1 \cos \theta_1 + n_2 \cos \theta_2}$$

$$\begin{array}{l} n_1=1 < n_2, cos\theta_1 < cos\theta_2 \implies (n_2 cos\theta_1 = cos\theta_2 \implies r_{\parallel} = 0) \\ sin\theta_1 = n_2 sin\theta_2 \implies 1 - (cos\theta_1)^2 = n_2^2 (1 - n_2^2 (cos\theta_1)^2) \\ \theta_1 = arccos(\sqrt{\frac{n_2^2-1}{n_2^4-1}}) \implies \text{reflected light polarized along } r_{\perp} \end{array}$$

Observation details

- instrument: ZIMPOL, the Zurich Imaging Stokes Polarimeter
- telescope: McMath-Pierce(National Solar Observatory (Kitt Peak, USA).)
- accuracy: 10^{-5}
- April 1995, slit positioned 5 seconds of arc inside the north polar limb (where the cosine μ of the heliocentric angle is 0.1)