

Alliance

MrBean: Aplicación Web para la Modelación de Ensayos de Campo

Sesión 3

Johan Aparicio & Daniel Ariza-Suarez

Asistentes de Investigación

j.aparicio@cigar.org d.ariza@cigar.org

Martes, Diciembre 08, 2020

TOC

- Chequeo instalación
- Introducción a MrBean
- Importando datos a MrBean (.csv, .txt, .excel)
- Visualización datos crudos y descriptivas
- Análisis de experimentos clásicos con MrBean
 - Diseño completamente al azar (DCA)
 - Diseño en bloques completos al azar (DBCA)
 - Diseño en bloques aumentados
 - Diseño alfa-lattice
- Análisis espacial (Single Trait)
 - Tendencia espacial
 - BLUPs/BLUEs
 - Datos atípicos

MrBean

Versión Web MrBean: https://beanteam.shinyapps.io/MrBean/ Página Web MrBean: https://mrpackages.netlify.app/mrbean.html Repositorio MrBean: https://apariciojohan.github.io/MrBeanApp/ Página del Curso: https://apariciojohan.github.io/Starting MrBean/

- Diseño completamente al azar (DCA)
- Diseño en bloques completos al azar (DBCA)
- Diseño en bloques aumentados
- Diseño alfa-lattice
- Diseño fila-columna (Espacial)

Diseño completamente al azar (DCA)

v1	v1	v3	v2	v3	v2
v2	v3	v4	v4	v 3	v2
v2	v3	v4	v1	v2	v4
v3	v1	v4	v1	v4	v1

Diseño completamente al azar (DCA)

Este considera datos publicados en Mead et al. (1993, p.52) de una prueba de rendimiento con melones. El ensayo contó con 4 variedades de melón (variety). Cada variedad fue probada en seis parcelas de campo (6 réplicas). La asignación de tratamientos (variedades) a unidades experimentales (parcelas) fue completamente aleatoria. Por lo tanto, el experimento se presentó como un diseño completamente aleatorio (DCA).

Diseño completamente al azar (DCA)

v1	v1	v3	v2	v3	v2
v2	v3	v4	v4	v 3	v2
v2	v3	v4	v1	v2	v4
v3	v1	v4	v1	v4	v1

variety	yield	row	col
v1	25.12	4	2
v1	17.25	1	6
v1	26.42	4	1
v1	16.08	1	4
v1	22.15	1	2
v1	15.92	2	4
v2	40.25	4	4
v2	35.25	3	1
v2	31.98	4	6
v2	36.52	2	1
v2	43.32	2	5
v2	37.1	3	6
v3	18.3	2	2
v3	22.6	4	3
v3	25.9	3	5
v3	15.05	1	1
v3	11.42	3	2
v3	23.68	4	5
v4	28.55	1	5
v4	28.05	1	3
v4	33.2	2	3
v4	31.68	3	4
v4	30.32	3	3
v4	27.58	2	6

En términos generales

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4$

- Respuesta: yield
- Variable Explicatoria: variety
- Objetivo: Diferencias en el rendimiento de las variedades.

$$y_{ij} = \mu + \mathbf{variety}_i + \varepsilon_{ij} \quad ; \quad \varepsilon \sim N(0, \sigma_e^2)$$

- Número de niveles en el factor variety = ?
- Número de repeticiones por nivel =?

Fijo o Aleatorio?

Five basic questions to consideration

Fixed vs. Random effect

http://www.biosci.global/customer-stories-en/faq-is-it-a-fixed-or-random-effect/?utm_source=linkedin&utm_medium=post&utm_campaign=genstat_teachnical&utm_content=is%20it%20a%20fixed%20or%20random%20effect

- Diseño completamente al azar (DCA)
- Diseño en bloques completos al azar (DBCA)
- Diseño en bloques aumentados
- Diseño alfa-lattice
- Diseño fila-columna (Espacial)

Diseño en bloques completos al azar (DBCA)

C4	C2	C4
C2	C3	C3
C1	C4	C1
C3	C1	C2

Diseño en bloques completos al azar (DBCA)

Este considera los datos publicados en Clewer y Scarisbrick (2001) de un ensayo de rendimiento (t/ha) presentado como un diseño de bloques completos al azar (3 bloques) con el cultivar (4 cultivares) como único factor de tratamiento. Así, tenemos un total de 12 parcelas.

Diseño en bloques completos al azar (DBCA)

C4	C2	C4
C2	C3	C3
C1	C4	C1
C3	C1	C2

block	cultivar	yield	row	col
B1	C1	7.4	2	1
B1	C2	9.8	3	1
B1	C3	7.3	1	1
B1	C4	9.5	4	1
B2	C1	6.5	1	2
B2	C2	6.8	4	2
B2	C3	6.1	3	2
B2	C4	8	2	2
В3	C1	5.6	2	3
В3	C2	6.2	1	3
В3	C3	6.4	3	3
В3	C4	7.4	4	3

Hipótesis de interés

Efectos fijos:

Ho: $\mu_1 = \mu_2 = ... = \mu_t$

H₁: $\mu_i \neq \mu_j$ for some i, j in the set 1 ... t

(i.e. hay un efecto significativo del tratamiento)

Test statistic: F or t

Efectos aleatorios:

Ho: $\sigma^2 g = 0$

H₁: $\sigma^2 g > 0$

(i.e. hay una variación significativa debido a los efectos aleatorios)

Test statistic: Chi-square (likelihood ratio test)

Goodness-of-fit statistics (Bondad de ajuste del modelo)

• AIC y el BIC pueden ser usados para ranquear o comparar modelos no anidados.

$$AIC = -2 \times logL + 2 \times t$$

$$BIC = -2 \times logL + log(n) \times t$$

t número de parametros estimados en el modelo

n número de observaciones

¿Qué sucede si no incorporo el efecto de bloque?

	term	$\stackrel{\triangle}{\triangledown}$	df∜	sumsq	meansq 🔷	statistic 🔷	p.value
1	Gen		3	6.63	2.21	1.45	0.3
2	Residuals		8	12.18	1.52		

Showing 1 to 2 of 2 entries

	term	₩	df ∜	sumsq	meansq 🏺	statistic 🗣	p.value 🛊
1	Gen		3	6.63	2.21	5.53	0.04
2	Replicate		2	9.78	4.89	12.23	0.01
3	Residuals		6	2.4	0.4		

Showing 1 to 3 of 3 entries

Showing 1 to 1 of 1 entries

	df ∜	logLik 🛊	AIC ≑	BIC ≑	deviance 🖣	df.residual ♦	nobs 🖣
1	5	-7.37	28.74	32.14	2.4	6	12
Showing	; 1 to 1 of 1 er	itries					

$$BIC = -2 \times logL + log(n) \times t$$

$$BIC = -2 \times (-7.37) + \log(12) \times (7)$$

Y si tómo el genotipo como aleatorio, ¿cuál es su significancia?

• LRT (Likelihood Ratio Test)

Valor-p = 0.07599 **?**

Valor-p corregido = $0.07599/2 \approx 0.04$

Heredabilidad

$$H^2 = \frac{\sigma_g^2}{\sigma_g^2 + \sigma_{res}^2/r} = \frac{0.6033}{0.6033 + 0.4000/3} = 0.819$$

Random effects:

Groups Name Variance Std.Dev.
Gen (Intercept) 0.6033 0.7767

Residual 0.4000 0.6325

Number of obs: 12, groups: Gen, 4

- Diseño completamente al azar (DCA)
- Diseño en bloques completos al azar (DBCA)
- Diseño en bloques aumentados
- Diseño alfa-lattice
- Diseño fila-columna (Espacial)

Diseño en bloques aumentados

23	16	19
11	08	12
20	10	wa
wa	ci	01
ci	wa	ci
06	21	07
09	02	29
st	st	st
13	24	wa
22	wa	05
wa	03	28
17	30	25
ci	15	ci
26	04	27
14	ci	18
st	st	st

Diseño en bloques aumentados

Este considera los datos publicados en Peterson (1994) de un ensayo de rendimiento presentado como un diseño aumentado. Los genotipos (gen) incluyen 3 estándares (st, ci, wa) y 30 nuevos cultivares de interés. El ensayo se dispuso en 6 bloques (block). Los 3 estándares se prueban en cada bloque, mientras que cada entrada se prueba en solo uno de los bloques. Por lo tanto, los bloques son "bloques incompletos".

Diseño en bloques aumentados

23	16	19
11	08	12
20	10	wa
wa	ci	01
ci	wa	ci
06	21	07
09	02	29
st	st	st
13	24	wa
22	wa	05
wa	03	28
17	30	25
ci	15	ci
26	04	27
14	ci	18
st	st	st

gen	yield	block	row	col
st	2972	1	1	1
14	2405	i	2	1
26	2855	i	3	1
ci	2592	i	4	1
17	2572	i	5	1
wa	2608	i i	6	1
22	2705	i i	7	1
13	2391	i	8	1
st	3122	i	1	2
ci	3023	"	2	2
4	3018		3	2
4 15		II		
	2477	II	4	2
30	2955	II	5	2
3	3055	II	6	2
wa	2477	II	7	2
24	2783	II	8	2
st	2260	Ш	1	3
18	2603	Ш	2	3
27	2857	III	3	3
ci	2918	III	4	3
25	2825	III	5	3
28	1903	III	6	3
5	2065	III	7	3
wa	3107	III	8	3
st	3348	IV	9	1
9	2268	IV	10	1
6	2148	IV	11	1
ci	2940	IV	12	1
wa	2850	IV	13	1
20	2670	IV	14	1
11	3380	IV	15	1
23	2770	IV	16	1
st	1315	V	9	2
2	1055	v	10	2
21	1688	V	11	2
wa	1625	V	12	2
ci	1398	V	13	2
10	1293	V	14	2
8	1253	V	15	2
6 16	1495	V	16	2
st	3538	VI	9	3
29	2915	VI	10	3
7	3265	VI	11	3
ci	3483	VI	12	3
1	3013	VI	13	3
wa	3400	VI	14	3
12	2385	VI	15	3
19	3643	VI	16	3

- Diseño completamente al azar (DCA)
- Diseño en bloques completos al azar (DBCA)
- Diseño en bloques aumentados
- Diseño alfa-lattice
- Diseño fila-columna (Espacial)

Diseño alfa-lattice

		Re	p1			Rep2					Rep3						
G11	G21	G23	G13	G17	G06	G08	G24	G12	G05	G02	G19	G11	G02	G17	G12	G21	G03
G04	G10	G14	G03	G15	G12	G20	G15	G11	G09	G18	G07	G01	G15	G18	G13	G22	G05
G05	G20	G16	G19	G07	G24	G14	G03	G21	G10	G13	G06	G14	G09	G04	G10	G16	G20
G22	G02	G18	G08	G01	G09	G04	G23	G17	G01	G22	G16	G19	G08	G06	G23	G24	G07

Diseño alfa-lattice

Este considera datos publicados en John y Williams (1995) de un ensayo de rendimiento (t/ha) presentado como un diseño alfa. El ensayo tenía 24 genotipos (gen), 3 réplicas completas (rep) y 6 bloques incompletos (inc.block) dentro de cada réplica. El tamaño del bloque era 4

Diseño alfa-lattice

	Rep1						Rep2					Rep3					
G11	G21	G23	G13	G17	G06	G08	G24	G12	G05	G02	G19	G11	G02	G17	G12	G21	G03
G04	G10	G14	G03	G15	G12	G20	G15	G11	G09	G18	G07	G01	G15	G18	G13	G22	G05
G05	G20	G16	G19	G07	G24	G14	G03	G21	G10	G13	G06	G14	G09	G04	G10	G16	G20
G22	G02	G18	G08	G01	G09	G04	G23	G17	G01	G22	G16	G19	G08	G06	G23	G24	G07

plot	rep	inc.block	gen	yield	row	col
1	Rep1	B1	G11	4.1172	4	1
2	Rep1	B1	G04	4.4461	3	1
3	Rep1	B1	G05	5.8757	2	1
4	Rep1	B1	G22	4.5784	1	1
5	Rep1	B2	G21	4.654	4	2
6	Rep1	B2	G10	4.1736	3	2
7	Rep1	B2	G20	4.0141	2	2
8	Rep1	B2	G02	4.335	1	2
9	Rep1	В3	G23	4.2323	4	3
10	Rep1	В3	G14	4.7572	3	3
11	Rep1	В3	G16	4.4906	2	3
12	Rep1	В3	G18	3.9737	1	3
13	Rep1	B4	G13	4.253	4	4
14	Rep1	B4	G03	3.342	3	4
i	:		÷	÷	÷	i
56	Rep3	B2	G08	3.9821	1	14
57	Rep3	В3	G17	4.3234	4	15
58	Rep3	В3	G18	4.2486	3	15
59	Rep3	В3	G04	4.396	2	15
60	Rep3	В3	G06	4.2474	1	15
61	Rep3	B4	G12	4.1746	4	16
62	Rep3	B4	G13	4.7512	3	16
63	Rep3	B4	G10	4.0875	2	16
64	Rep3	B4	G23	3.8721	1	16
65	Rep3	B5	G21	4.413	4	17
66	Rep3	B5	G22	4.2397	3	17
67	Rep3	B5	G16	4.3852	2	17
68	Rep3	B5	G24	3.5655	1	17
69	Rep3	В6	G03	2.8873	4	18
70	Rep3	В6	G05	4.1972	3	18
71	Rep3	В6	G20	3.7349	2	18
_72	Rep3	В6	G07	3.6096	1	18

Diseño fila-columna (Espacial)

- Diseño completamente al azar (DCA)
- Diseño en bloques completos al azar (DBCA)
- Diseño en bloques aumentados
- Diseño alfa-lattice
- Diseño fila-columna (Espacial)

Diseño fila-columna (Espacial)

			Rep1				Rep2							
G17	G09	G03	G34	G13	G35	G01	G01	G27	G16	G29	G14	G28	G22	
G24	G25	G05	G32	G02	G27	G08	G33	G09	G17	G18	G32	G15	G02	
G22	G11	G19	G26	G29	G15	G23	G11	G07	G26	G05	G35	G10	G30	
G10	G14	G16	G21	G31	G06	G18	G24	G21	G12	G04	G23	G13	G03	
G20	G04	G33	G28	G07	G12	G30	G31	G19	G25	G34	G20	G08	G06	

Diseño fila-columna (Espacial)

Considera los datos publicados en Kempton y Fox (1997) de un ensayo de rendimiento presentado como un diseño de fila-columna resolvible. El ensayo tuvo 35 genotipos (gen), 2 réplicas completas (rep) con 5 filas (fila) y 7 columnas (col). Por tanto, una réplica completa se subdivide en filas y columnas incompletas.

Diseño fila-columna (Espacial)

			Rep1				Rep2						
G17	G09	G03	G34	G13	G35	G01	G01	G27	G16	G29	G14	G28	G22
G24	G25	G05	G32	G02	G27	G08	G33	G09	G17	G18	G32	G15	G02
G22	G11	G19	G26	G29	G15	G23	G11	G07	G26	G05	G35	G10	G30
G10	G14	G16	G21	G31	G06	G18	G24	G21	G12	G04	G23	G13	G03
G20	G04	G33	G28	G07	G12	G30	G31	G19	G25	G34	G20	G08	G06

rep	row	col	gen	yield
Rep1	1	1	G20	3.77
Rep1	1	2	G04	3.21
Rep1	1	3	G33	4.55
Rep1	1	4	G28	4.09
Rep1	1	5	G07	5.05
Rep1	1	6	G12	4.19
Rep1	1	7	G30	3.27
Rep1	2	1	G10	3.44
Rep1	2	2	G14	4.3
Rep1	2	3	G16	NA
Rep1	2	4	G21	3.86
Rep1	2	5	G31	3.26
Rep1	2	6	G06	4.3
Rep1	2	7	G18	3.72
i	i		÷	
Rep2	3	12	G35	4.83
Rep2	3	13	G10	4.7
Rep2	3	14	G30	4.23
Rep2	4	8	G33	5.71
Rep2	4	9	G09	6.13
Rep2	4	10	G17	4.63
Rep2	4	11	G18	5.48
Rep2	4	12	G32	5.47
Rep2	4	13	G15	NA
Rep2	4	14	G02	4.16
Rep2	5	8	G01	5.22
Rep2	5	9	G27	6.16
Rep2	5	10	G16	4.2
Rep2	5	11	G29	4.66
Rep2	5	12	G14	5.54
Rep2	5	13	G28	3.81
Rep2	5	14	G22	3.6

Diseño alfa-lattice (Espacial) a gran escala

Este ejemplo considera los datos de un ensayo experimental del equipo elite de fríjol (VEF) llevado a cabo en el 2016 bajo un diseño alfa-lattice. El ensayo tuvo 380 genotipos (line), 2 réplicas completas (rep) y 18 bloques incompletos (block) dentro de cada réplica. Este estuvo en un arreglo de 12 columnas (col) y 7 filas (row).

Darien 2016 Alto fósforo

		R	1			R2					
DAB_919	DAB_396	AMADEUS	DAB_380	ACC_014	SER_118	LPA_566	SAB_576	DAN_015	ACC_031	CMB_095	DAB_932
DAB_621	DAA_151	TIO_CANELA_75	ACC_030	ACC_031	LPA_512	SAB_712	DAB_622	DAB_295	DAB_902	DAN_002	NUA_520
DAB_614	ACC_007	DAB_910	LPA_775	DAB_622	DAB_583	ACC_002	DAN_009	DAA_015	CAL_096	DAA_021	DAB_594
DAA_011	CMB_025	DAN_009	DAB_916	DAA_154	DAA_114	ACC_014	AFR_298	DAA_005	DAA_062	DAB_295	DOR_364
DAA_001	CMB_010	DAN_014	DAA_008	DAN_006	CMB_050		_CANADIAN_WON		SEQ_1003	DAB_583	DAA_024
DAA_060 LPA 778	LPA_774 DAB 106	DAN_022 DAB 905	DAB_597 DAB_579	DAB_906 DAB_277	DAZ 004	DAB_052 LPA 643	DAB_633 LPA 164	DAA_121 DAA_125	NUA_035 DAB 575	DAA_124 ACC 030	DAB_600 DAB_920
DAN_023	DAA_115	LPA_546	CMB_103	LPA_164	DAZ_004 DAA_094	DAB_617	DAB_905	CMB_057	SEQ_1027	DAB_569	ACC_009
DAB_578	ICA CALIMA	SAB_659	DAB_617	DAB 187	BRB_198	DAN 024	SAA_020	DAB_231	DAN_003	DAB_612	LPA_777
LPA 146	DAB 610	NUA 291	DRK 149	SAB 686	DAB 932	DAB 607	DAB 525	DAB 615	DAB 065	CMB 014	RAA 021
DAB 914	DAA 119	RMA 072	ACC 010	DAB 398	DAB 904	SEQ_1003	AFR 298	CMB 073	DAA 051	DRK 149	DAA_003
DAN 001	SEQ 1027	DAB 592	DAN 016	DAB 594	DAA 166	SER 118	TIO CANELA 75		CAL_143	LPA 770	DAA_008
DAA 029	DOR 364	LPA_467	ACC 023	AFR_619	DAB 525	ACC 003	MAZ 021	DAB 572	SAB_259	DAN 031	SAP_001-16
LPA_530	SUG_131	DAB_494	DAB_295	LPA_732	ACC_011	SAB_659	DOR_390	CMB_004	PVA_773	DAN_010	DAB_571
DAB_573	DAB_541	DAA_010	SEQ_1004	CMB_018	ACC_026	DAB_610	DAN_027	DAB_366	DAA_120	SUG_131	DAB_938
CAL_096	NUA_398	DAB_049	DAB_619	BRB_264	DAN_059	DAN_019	DAB_589	DAB_914	ACC_026	DAA_016	DAB_919
DAB_940	LPA_777	DAN_019	DAB_602	DAA_012	DAB_584	CMB_018	DAA_113	ACC_017	DAA_041	DAA_044	KAT_B9
SAA_015	G4523	CMB_043	DAA_096	DAN_029	DAB_402	DAN_033	DAA_014	TIO_CANELA_75		DAB_940	AFR_722
DAB_344	DAA_006	DAB_374	DAB_923	ACC_012	DAA_113	DAZ_005	DAB_244	DAB_925	AMADEUS	SEF_060	DAB_402
SAB_576	DAB_624	DAA_153	DAB_494	DAB_614	DAB_937	DAD_036	SEQ_1006	LPA_573	SAB_516	DAB_109	ACC_010
DAB_545	DAA_086	DAA_124	DAB_441	DAB_251	LPA_426	LPA_773	LPA_406	DAN_012	DAB_614	SAA_017	DAZ_004
LPA_071	DAB_256	DAA_018	LPA_111	NUA_035	LPA_568	DAA_091	DAB_555	DAB_587	SAB_711	DAA_011	DAA_117
DAB_555	DAA_027 SAB 686	DAB_570 LPA_122	LPA_573 LPA_773	DAB_903 SAB_711	DAB_586 DAB_062	BRB_191 DAB_534	LPA_111 CMB_010	DAB_520 DAB_258	DAB_489 DAA_018	DAA_086 DAN_021	DAB_939 DAB_585
SAB_516 DAB 090		DAB_574		DAB 514	DAB_062 DAB 605	DAB_534 DAB 924					
DAB_090 DAA 004	DAA_117 DAN 004	DAB_574 DAA 002	DAA_118 NUA 537	SAB 659	DAB_605 DAN 025	DAB_924 DAB 942	DAB_233 DAA 175	DAB_353 DAA 006	ACC_029 DAN 023	DAA_010 DAB 574	DAB_256 DAB_494
DAA_065	DAN_625	DAB_938	DAA_049	DAA_175	DAB_934	DAB_928	DAA_175	DAB_937	NUA_291	COS_016	DAB_494
DAB_053	ACC 025	DAA 145	DAB_928	DAB_598	LYAMUNGO 85	DAB_605	CMB 043	ACC_023	ACC 022	DAA_166	ICA_CALIMA
DAA 059	CMB 080	DAZ 005	DAN 013	DAB 615	DAB 604	DAB 624	LPA 714	DAN 006	SAB 568	AFR 735	DAB 494
DAA_044	SAB_568	LPA 643	DAB 150	DAB_921	DAB_571	DAN_029	DAB 344	DAA_153	DAA_153	SAB_560	ACC_018
DAN 033	DAB 902	DAB 932	DAA 164	LPA_771	DAB 572	DAA 001	DAB 630	CMB 036	NUA_184	ACC 012	DAB_930
LPA 610	DAB_630	DAB 596	KAT_B9	DAB 915	SAB_712	DAN 054	LPA_771	DAA_094	CMB_045	SAB_626	KAT_B1
DAB_569	AFR_722	DAB_900	DAB_568	MAZ_032	DAB_577	DAB_606	DAB_066	LPA_071	LPA_426	NDZ_012	BRB_198
NDZ_008	DAB_606	DAB_295	DAB_244	DAB_588	DAB_936	DAB_441	DAA_045	DAB_584	DAB_187	LPA_146	MAZ_032
DAB_353	DAA_041	DAN_020	DAN_054	DAB_929	DAA_142	DAN_032	DAB_900	ACC_004	RAA_030	DAB_936	CMB_012
DAB_489	DAB_589	TIO_CANELA_75	DAA_116	CMB_016	DAA_045	DAB_929	DAB_150	DAB_581	DAA_078	ACC_028	DAB_933
CAL_096	DAB_302	DAA_120	DOR_390	DAN_015	DAB_924	DAN_028	DAA_012	LPA_122	DAB_576	DAA_116	DAB_906
DAA_125	NUA_430	DAA_112	ACC_029	DAB_912	DAB_576	LPA_736	DAB_236	DAA_096	DAN_013	DAB_302	DAB_545
DAB_236	ACC_002	DAB_939	DAB_534	DAA_013	DAB_591	RAA_034	DAB_926	DAA_112	DAB_616	AFR_708	DAB_053
DAB_052	SAA_021	DAB_575 DAB_066	DAA_123	AFR_708 BRB 215	ACC_027 LPA_736	SAB_560	DAB_541 DAB_619	DAA_013	SAA_015	DAB_602	DAB_604
DAA_024 DAN 002	DAA_005 DAB_317	DAB_000	DAB_528 DAN 011	DAB 593	DAB 603	ACC_025 LPA 778	DAB_619 DAB_927	DAA_173 MAZ 048	CMB_025 DAB 621	DAB_603 LPA 776	LPA_499 DAN 005
DAN_502	NUA_365	SAB_259	DAA_159	ACC_008	CMB_095	DAA_049	DAA_004	NUA_368	ACC_005	DAB_586	DAA_151
DAN 010	ACC 005	DAD 036	CMB 036	DAB_252	SAP 001-16	DAA 098	DAN 011	DAA_126	ACC 008	DAB_267	CMB 050
DAN 027	DAN 012	DAB 612	PVA 773	DAB 901	CMB 045	DAB 577	DAB 252	DAB 913	DAB 580	LPA 546	DAA_060
DAB_231	LPA_770	DAB_927	COS_016	LPA_406	RAA_034	DAA_159	CMB_006	DAA_111	DAB_568	G4523	SEN_056
NDZ_002	CMB_004	DAB_251	DAA 052	DAN_031	DAB 600	SAB 659	DAN 025	DAB_277	DAN 014	DAB 909	DAN_037
DAB_587	DAB_065	SEQ_1003	NDZ_012	DAN_037	CMB_006	CMB_016	DAA_007	DAA_115	NATAL_SUGAR	DAB_596	NUA_430
DAA_007	DAB_920	CMB_057	DAB_933	DAB_109	DAB_366	DAB_591	BRB_215	DAA_164	DAA_027	DAB_251	DAB_374
DAB_629	DAB_258	SAA_017	LPA_435	DAB_926	LPA_714	DAB_549	DAB_384	DAB_049		DIACOL_CALIMA	
CMB_012	DIACOL_CALIMA		ACC_024	DAB_581	DAN_028	DAB_932	DAN_047	DAB_105	RMA_072	SAA_021	DAB_528
MAZ_021	DAA_078	DAA_003	DAA_121	DAN_047	DAA_148	NUA_230	DAA_123	ACC_011	SEQ_1004	CAL_096	AFR_722
DAN_024	DAB_633	SAB_626	DAB_616	LPA_499	DAN_017	DAB_570	DAB_609	DAB_090	AFR_619	DAB_934	DAB_904
CMB_105	MAZ_048	DAB_233	DAB_607	BRB_191	DAB_628	DAA_009	DAA_118	RMX_020	DAB_579	RMX_019	BRB_264
CANADIAN WO	KAT_B1	DAA_091 DAB_917	DAB_084 ACC 017	DAN_030 DAB 064	DAN_032 SEQ 1006	DAA_065 LPA 568	SAB_686 DAB 106	LPA_512 DAB_597	NUA_398 DAA_142	DAB_917 DAN 008	DAN_018 DAB 912
DAN 008	AFR 298	DAB_917 DAA_111	ACC_017 AFR_298	NUA_230	DAA_021	DAB 514	DAB_108 DAN_020	DAB_597 DAA 029	DAA_142 DAA_002	CMB 080	ACC_024
ACC 018	DAA 015	RAA_034	NUA 184	RMX 020	DAA_051	LPA_435	DAB_578	DAB 625	LPA_774	DAA_148	DAB_251
SAB 560	SEF 060	ACC 003	DAB 520	DAN 007	DAA_051	DAN 022	DAB_378 DAA_119	SAB 686	RAA 034	DAA_148 DAB 915	DAN 004
DAB 909	DAN 018	CMB 073	SAA_020	CMB 014	DAB_930	DAB_317	DAN_007	DAB 062	DAN 001	LPA_467	DAB_573
DAN 003	SAB 560	DAB 384	ACC 009	DAA 098	ACC 022	DAB 064	LPA 530	DAB 923	LPA 732	DAB 396	DAB 628
DAB_267	NUA_520	DAA_062	LPA_566	AFR_722	DAB_925	DAB_629	DAN_017	CMB_105	LPA_772	LPA_775	DAB_598
ACC_004	DAB_549	NUA_368	DAA_014	DAN_005	SEQ_1003	DAA_052	CMB 103	DAN_030	LYAMUNGO_85	NUA_537	DAB_592
CAL_143	DAB_942	LPA_776	DAB_585	DAA_100	DAA_126	DAB_921	DAA_059	ACC_007	DAB_380	DAN_059	DAB_084
RAA_021	DAA_016	DAB_580	CAL_143	RMX_019	DAN_021	DAN_016	NDZ_008	ACC_027	DAA_100	DAA_122	DAA_154
DAB 913	DAB 609	DAA 122	AFR 735	RAA 030	SEN 056	DAB 593	NUA 365	CAL 143	NDZ 002	DAA 145	DAB 614

BLUPs vs BLUEs

BLUPs vs BLUEs

- El rango del **YdHa** cuando el genotipo es aleatorio es más pequeño que cuando el genotipo es fijo debido al Shrinkage.
- El shrinkage existe en los efectos aleatorios debido a que ellos están restringidos a los definidos por una distribución normal.
- Esto "empuja" los valores extremos hacia la media.
- Para efectos fijos, todos los valores son posibles (no supuestos acerca de los posibles valores)
- En algunos casos las clasificaciones pueden diferir entre BLUE y BLUP. Se ha demostrado (Searle et al., 1992) que BLUP maximiza la probabilidad de identificar la clasificación real de **G.**

Comparación BLUP-BLUE

Thank you!

Johan Aparicio & Daniel Ariza-Suárez
Asistentes de Investigación

j.aparicio@cigar.org d.ariza@cigar.org