COL215P: ASSIGNMENT 3

Gunjan Kumar - 2019CS10353

T Abishek - 2019CS10407

Objective:

- We have designed a combination circuit that takes a decimal/hexadecimal digit encoded using 4 bits and produces 7-bit output for seven-segment displays of the BASYS3 FPGA board.
- This is extension of Assignment 2 from a single digit display to a multi-digit display by introducing proper timing and refreshing signals by using on-board clock.

Implementation Overview:

- We have used 7 segment display code of assignment 2 to generate output of one digit corresponding to the respective 4-bit input.
- We have used a 4:1 multiplexer for selecting the one of the 4 7-segment display.
- The 2 bit select input of the multiplexer is the last two bit of 19 bit counter which is incremented on every rising edge of the clock.
- Thus, the refresh rate of the display is 10⁸/2¹⁷, which is 6.8 * 10² Hz which is greater than the persistence of vision.

Simulation:

Here, we can see that the clk_mux variable varies from 0 to 3
which is the select variable for the mux. The display_anode
variable changes according to the clk_mux and display_cathode
changes according to the input given from the switches
corresponding to different digits.

Resource Utilisation:

Resource	Utilisation(Count)	Utilisation (%)
Slice LUTS	49	< 1
Slice Registers	19	< 1
F7 Muxes	14	< 1
F8 Muxes	7	< 1
Bonded IOBS	28	26
BUFGCTRL	1	< 1

Schematic:

FPGA Observation:

