SEUPD@CLEF: DARDS LongEval

Tools and components involved

CONTENTS

Strategies we applied and resulting systems

Results: performance and highlights of our systems

What we've learned and how could this evolve

OUR PATH TO LONGEVAL'S GOALS

1

A starting point

Build a baseline, simple IR system with good performance

2 Continuous improvement

Analysis and ideas turned into experiments, be they good or bad!

3

End of the journey?

Where we've managed to come, results and opportunities

Development of long-term stable IR systems!

FIGHT AGAINST

SPAM

EXPECTED BEHAVIOUR

stopwords & articles

DOCS EXAMPLE

"Panneaux d'indication du <u>code de la route</u>
Panneaux de signalisation du <u>code de la route</u> Vous pourrez trouver sur cette page, les images et définitions des différents signaux et panneaux de signalisation du <u>code de la route Code de la route 100%</u> gratuit! Créez votre compte en 2 min et testez vos connaissances du <u>code de la route</u> Je m'inscris! <u>Code de la route</u> 2022.

© Copyright 2010-2022."

ACTUAL BEHAVIOUR

INPUT'S STRUCTURE

Trec format

ID

ANALYZER & FILTERS

Tokenizer: StandardTokenizer (in all systems)

SHARED

LowerCaseFilter
StopFilter
SynonymGraphFilter
NumberFilter

FRENCH SYSTEMS

ElisionFilter

ASCIIFoldingFilter

FrenchLightStemFilter

ENGLISH SYSTEMS

NGramFilter
ShingleFilter
PorterStemFilter
KStemFilter

NumberFilter: deletes all the number tokens (based on the TypeAttribute token attribute)

Stoplists: custom based on stoplists found online and on index words

ElisionFilter: removes articles, prepositions and conjunctions usually connected by an apostrophe or hyphen (J'aime)

ASCIIFoldingFilter: converts unicode characters in the first 127 ASCII characters (due to accents and diacritical marks in French)

Indexer

Almost standard indexer:

Parses documents (Trec format) and create index

BODY is saved (rerank)

Processing to delete

English documents

(when using French)

SEARCHER & BOOSTING

Without boost

TokenQuery(ies) >>> BoostQuery(ies) >>> BooleanQuery

SEARCH

HashMap (term-weight)

$$\begin{array}{l} \text{TF-IDF} \\ \text{like} \\ \text{STATISTIC} \end{array} w_i = \left(\frac{ttf_i}{\sum_j ttf_j}\right)^{0.2} \cdot \left(1 + \log\frac{N+1}{n_i+1}\right) \end{array}$$

RERANK

RERANK by REINDEXING: we tried to change the index statistics to push relevant documents

We reranked the TOP-100 documents, why?

RECALL@100	66.67%
RECALL@200	72.29%
RECALL@500	79.75%
RECALL@1000	84.37%

Since the majority of relevant retrieved documents was in the first 100 documets we kept the number of documents reranked low to try to avoid to index a lot of NOT relevant documents.

SIMILARITY

- Similarity functions compute documents' scores based on different statistics.
- MultiSimilarity combines
 evidence from multiple similarity
 functions.

System	MAP
BM25Similarity	0.1424
DFRSimilarity	0.1423
AxiomaticF2LOG	0.1358
AxiomaticF2EXP	0.1346
LMJelinekMercerSimilarity	0.1255
LMDirichletSimilarity	0.1204
ClassicSimilarity	0.0740
IndriDirichletSimilarity	0.0137
BooleanSimilarity	0.0121

Values refer to an initial system that performed the search on the English corpus.

QUERY EXPANSION

- Expands queries using synonyms
- Sometimes combined with reranking
- Query Drift
- Contextualized synonyms (overfitting)

search_synonyms.py

- parses french queries
- makes request to dictionary.reverso.net
- writes synonyms.txt to be used with SynonymGraphFilter

System	Filters	NDCG	TIME
BM25FRENCHBOOSTURL	ElisionFilter, LowerCaseFilter, StopFilter, ASCIIFoldingFilter, FrenchLightStemFilter	0.3815	MEDIUM
BM25FRENCHBASE	same as BM25FRENCHBOOSTURL	0.3812	FAST
BM25FRENCHRERANK100	same as BM25FRENCHBOOSTURL	0.3657	MEDIUM
BM25FRENCHDOCEXPANSION	ElisionFilter, LowerCaseFilter, StopFilter, SynonymGraphFilter, FlattenGraphFilter, ASCIIFoldingFilter, FrenchLightStemFilter, RemoveDuplicatesTokenFilter	0.3650	MEDIUM
BM25FRENCHSPAM	same as BM25FRENCHBOOSTURL	0.3623	SLOW
BM25FRENCHQUERYEXPANSION	ElisionFilter, LowerCaseFilter, StopFilter, SynonymGraphFilter, ASCIIFoldingFilter, FrenchLightStemFilter	0.3567	FAST
BM25TRANSLATEDQUERIES	LowerCaseFilter, StopFilter, KStemFilter	0.3037	MEDIUM

WHAT WE'VE ACHIEVED

System	NDCG WT	NDCG ST	NDCG LT	MAP	Recall @1000
BM25FRENCHBOOSTURL	0.3859	0.3866	0.3495	0.2152	0.8421
BM25FRENCHBASE	0.3843	0.3924	0.3916	0.2146	0.8451
BM25FRENCHRERANK100	0.3755	0.3756	0.3758	0.1960	0.8437
BM25FRENCHSPAM	0.3605	0.3680	0.3643	0.2067	0.7648
BM25TRANSLATEDQUERIES	0.3072	0.3051	0.3189	0.1523	0.7437

MAIN PROBLEMS WE HAVE FACED

Time sustainability

Advanced algorithms could not be implemented (e.g. RAKE, NLP)

Translation difficulties

Translation induced noise and its interference with IR

Ground truth quality

Is the Oracle really always right?

Non-uniform translation example

Item ID	French	English
q0622311	bourse de l'emploi public	Public Employment Exchange
doc062200210641	"Sélectionnée par Emploi Public"	"Selected by Public servant"

ENGLISH-BASED SYSTEMS

Query translation error example

The translation of the queries is performed in the searcher, after parsing and before tokenization. **Developed tool:** Google App Script platform based, deployed as a web application. It is used as a **REST resource.**

CONCLUSIONS

Understanding of possible future evolutions of the system

Main achievements:

0.382

nDCG and recall good results (BM25FRENCHBOOSTURL)

Multiple techniques tested - no overfitting on the training data

Development of a translation tool to improve effectiveness

Development of a Python algorithm to target SPAM

Ideas for future development and understanding of possible evolutions of the system

FUTURE WORK

Improve translation

Execute the documents BODY field translation in a computationally acceptable runtime

Systems combination

Perform multilingual search

Learn To Rank (LTR)

Implementation of LTR techniques

ML techniques implementation

e.g. threshold/ weights optimisation or SPAM detection improvement:

doc. length, word freq. distribution, variance, sentence, language

STRENGTHS

- Good results in terms of nDCGs and recall
- French- based systems development

OPPORTUNITIES

- SPAM detection improvement
- ML implementation
- LTR techniques implementation
- Systems combination

WEAKNESSES

- SPAM recognition
- Translation errors and mismatch

THREATS

Computational time