Lecture 25: Conjugate Priors

Reading: Section 8.3

GU4241/GR5241 Statistical Machine Learning

Linxi Liu April 20, 2017

The defining assumption of **Bayesian statistics** is that the distribution P which models the data is a random quantity and itself has a distribution Q. The generative model for data X_1, X_2, \ldots is

$$\begin{array}{ccc} P & \sim & Q \\ X_1, X_2, \dots & \stackrel{\text{i.i.d.}}{\sim} & P \end{array}$$

The defining assumption of **Bayesian statistics** is that the distribution P which models the data is a random quantity and itself has a distribution Q. The generative model for data X_1, X_2, \ldots is

$$\begin{array}{ccc} P & \sim & Q \\ X_1, X_2, \dots & \stackrel{\text{i.i.d.}}{\sim} & P \end{array}$$

The rational behind the approach is:

▶ In any statistical approach (Bayesian or frequentist), the distribution *P* is unknown.

The defining assumption of **Bayesian statistics** is that the distribution P which models the data is a random quantity and itself has a distribution Q. The generative model for data X_1, X_2, \ldots is

$$\begin{array}{ccc} P & \sim & Q \\ X_1, X_2, \dots & \stackrel{\text{i.i.d.}}{\sim} & P \end{array}$$

The rational behind the approach is:

- In any statistical approach (Bayesian or frequentist), the distribution P is unknown.
- ▶ Bayesian statistics argues that any form of uncertainty should be expressed by probability distributions.

The defining assumption of **Bayesian statistics** is that the distribution P which models the data is a random quantity and itself has a distribution Q. The generative model for data X_1, X_2, \ldots is

$$\begin{array}{ccc} P & \sim & Q \\ X_1, X_2, \dots & \stackrel{\text{i.i.d.}}{\sim} & P \end{array}$$

The rational behind the approach is:

- In any statistical approach (Bayesian or frequentist), the distribution P is unknown.
- ► Bayesian statistics argues that any form of uncertainty should be expressed by probability distributions.
- ▶ We can think of the randomness in Q as a model of the statistician's lack of knowledge regarding P.

Prior and posterior

The distribution Q of P is called the **a priori distribution** (or the **prior** for short). We use q to denote its density if it exists.

Prior and posterior

The distribution Q of P is called the **a priori distribution** (or the **prior** for short). We use q to denote its density if it exists.

Our objective is to determine the conditional probability of P given observed data

$$Pr(P|x_1,\ldots,x_n).$$

Prior and posterior

The distribution Q of P is called the **a priori distribution** (or the **prior** for short). We use q to denote its density if it exists.

Our objective is to determine the conditional probability of ${\cal P}$ given observed data

$$Pr(P|x_1,\ldots,x_n).$$

The distribution is called the **a posteriori distribution** or **posterior**.

Parametric Case

We can impose the modeling assumption that P is an element of a parametric model, e.g. that the density p of P is in a family $\mathcal{P}=\{p(x|\theta)|\theta\in\mathcal{T}\}$. If so, the prior and posterior can be expressed as distributions on \mathcal{T} . We write

$$q(\theta)$$
 and $\Pr(\theta|x_1,\ldots,x_n)$

for the prior and posterior density, respectively.

Remark

The posterior $\Pr[P|x_1,\ldots,x_n]$ is an abstract object, which can be rigorously defined using the tools of probability theory, but is in general (even theoretically) impossible to compute. However: In the parametric case, the posterior can be obtained using the Bayes equation.

Bayes' Theorem

Parametric modeling assumption

Suppose $\mathcal{P}=\{p(x|\theta)|\theta\in\mathcal{T}\}$ is a model and q a prior distribution on $\mathcal{T}.$ Our sampling model then has the form:

$$\begin{array}{ccc}
\theta & \sim & q \\
X_1, X_2, \dots & \stackrel{\text{i.i.d.}}{\sim} & p(\,.\,|\theta)
\end{array}$$

Note that the data is *conditionally i.i.d.* given $\Theta = \theta$.

Bayes' Theorem

Parametric modeling assumption

Suppose $\mathcal{P} = \{p(x|\theta)|\theta \in \mathcal{T}\}$ is a model and q a prior distribution on \mathcal{T} . Our sampling model then has the form:

$$\begin{array}{ccc} \theta & \sim & q \\ X_1, X_2, \dots & \stackrel{\mathsf{i.i.d.}}{\sim} & p(\,.\,|\theta) \end{array}$$

Note that the data is conditionally i.i.d. given $\Theta = \theta$.

Given data X_1, \ldots, X_n , we can compute the posterior by

$$\Pr(\theta|x_1,\ldots,x_n) = \frac{(\prod_{i=1}^n p(x_i|\theta))q(\theta)}{p(x_1,\ldots,x_n)} = \frac{(\prod_{i=1}^n p(x_i|\theta))q(\theta)}{\int (\prod_{i=1}^n p(x_i|\theta))q(\theta)}.$$
this is very difficult to calculate

The individual terms have names: We only know the posterior distribution

$$posterior = \frac{likelihood \times prior}{evidence}$$

Example: unknown Gaussian mean

Model

We assume that the data is generated from a Gaussian with fixed variance $\sigma^2.$ The mean μ is unknown. The model likelihood is $p(x|\mu,\sigma)=g(x|\mu,\sigma)$ (where g is the Gaussian density on the line).

Example: unknown Gaussian mean

Model

We assume that the data is generated from a Gaussian with fixed variance σ^2 . The mean μ is unknown. The model likelihood is $p(x|\mu,\sigma)=g(x|\mu,\sigma)$ (where g is the Gaussian density on the line).

Bayesian model

We choose a Gaussian prior on μ ,

$$q(\mu) := g(\mu|\mu_0, \sigma_0) .$$

In the figure, $\mu_0=2$ and $\sigma_0=5$. Hence, we assume that $\mu_0=2$ is the most probable value of μ , and that $\mu\in[-3,7]$ with a probability ~0.68 .

Example: Unknown Gaussian mean

Application of Bayes' formula to the Gaussian-Gaussian model shows the posterior distribution is

$$\Pr(\mu|x_{1:n}) = g(\mu|\mu_n, \sigma_n),$$

where
$$\mu_n:=rac{\sigma^2\mu_0+\sigma_0^2\sum_{i=1}^nx_i}{\sigma^2+n\sigma_0^2}$$
 and $\sigma_n^2:=rac{\sigma^2\sigma_0^2}{\sigma^2+n\sigma_0^2}$.

Example: Unknown Gaussian mean

Application of Bayes' formula to the Gaussian-Gaussian model shows the posterior distribution is

$$Pr(\mu|x_{1:n}) = g(\mu|\mu_n, \sigma_n),$$

where
$$\mu_n:=\frac{\sigma^2\mu_0+\sigma_0^2\sum_{i=1}^nx_i}{\sigma^2+n\sigma_0^2}$$
 and $\sigma_n^2:=\frac{\sigma^2\sigma_0^2}{\sigma^2+n\sigma_0^2}$.

Example: Unknown Gaussian mean

Application of Bayes' formula to the Gaussian-Gaussian model shows the posterior distribution is

$$Pr(\mu|x_{1:n}) = g(\mu|\mu_n, \sigma_n),$$

where
$$\mu_n:=rac{\sigma^2\mu_0+\sigma_0^2\sum_{i=1}^nx_i}{\sigma^2+n\sigma_0^2}$$
 and $\sigma_n^2:=rac{\sigma^2\sigma_0^2}{\sigma^2+n\sigma_0^2}$.

Exponential Family Distributions

Definition

We consider a model \mathcal{P} for data in a sample space \mathbf{X} with parameter space $\mathcal{T} \subset \mathbb{R}^m$. Each distribution in \mathcal{P} has density $p(x|\theta)$ for some $\theta \in \mathcal{T}$.

The model is called an **exponential family model** (EFM) if p can be written as

$$p(x|\theta) = \frac{h(x)}{Z(\theta)} e^{\langle S(x), \theta \rangle}$$

where:

- ▶ S is a function $S: \mathbf{X} \to \mathbb{R}^m$. This function is called the **sufficient statistic** of \mathcal{P} .
- ▶ h is a function $h: \mathbf{X} \to \mathbb{R}_+$.
- ightharpoonup Z is a function $Z: \mathcal{T} \to \mathbb{R}_+$, called the **partition function**.

Exponential Family Distributions

Exponential families are important because:

- 1. The special form of p gives them many nice properties.
- 2. Most important parametric models (e.g. Gaussians) are EFMs.
- Many algorithms and methods can be formulated generically for all EFMs.

Alternative Form

The choice of p looks perhaps less arbitrary if we write

$$p(x|\theta) = \exp(\langle S(x), \theta \rangle - \phi(x) - \psi(\theta))$$

which is obtained by defining

$$\phi(x) := -\log(h(x))$$
 and $\psi(\theta) := \log(Z(\theta))$

A first interpretation

Exponential family models are models in which:

▶ The data and the parameter interact only through the linear term $\langle S(x), \theta \rangle$ in the exponent.

Alternative Form

The choice of p looks perhaps less arbitrary if we write

$$p(x|\theta) = \exp(\langle S(x), \theta \rangle - \phi(x) - \psi(\theta))$$

which is obtained by defining

$$\phi(x) := -\log(h(x))$$
 and $\psi(\theta) := \log(Z(\theta))$

A first interpretation

Exponential family models are models in which:

- ▶ The data and the parameter interact only through the linear term $\langle S(x), \theta \rangle$ in the exponent.
- ▶ The logarithm of p can be non-linear in both S(x) and θ , but there is no *joint* nonlinear function of $(S(x), \theta)$.

The Partition Function

Normalization constraint

Since p is a probability density, we know

$$\int_{\mathbf{X}} \frac{h(x)}{Z(\theta)} e^{\langle S(x), \theta \rangle} dx = 1.$$

Partition function

The only term we can pull out of the integral is the partition function $Z(\theta)$, hence

$$Z(\theta) = \int_{\mathbf{X}} h(x)e^{\langle S(x), \theta \rangle} dx$$

Note: This implies that an exponential family is completely determined by choice of the spaces X and T and of the functions S and h.

Example: Gaussian

In 1 dimension

We can rewrite the exponent of the Gaussian as

$$\begin{split} \frac{1}{\sqrt{2\pi}\sigma} \exp\Bigl(-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\Bigr) &= \frac{1}{\sqrt{2\pi}\sigma} \exp\Bigl(-\frac{1}{2}\frac{x^2}{\sigma^2} + \frac{2x\mu}{2\sigma^2}\Bigr) \exp\Bigl(-\frac{1}{2}\frac{\mu^2}{\sigma^2}\Bigr) \\ &= \underbrace{c(\mu,\sigma)}_{\text{some function of }\mu \text{ and }\sigma} \exp\Bigl(x^2 \cdot \frac{-1}{2\sigma^2} + x \cdot \frac{\mu}{\sigma^2}\Bigr) \end{split}$$

This shows the Gaussian is an exponential family, since we can choose:

$$S(x):=\left(x^2,x\right) \text{ and } \theta:=\left(\tfrac{-1}{2\sigma^2},\tfrac{\mu}{\sigma^2}\right) \text{ and } h(x)=1 \text{ and } Z(\theta)=c(\mu,\sigma)^{-1} \ .$$

In d dimensions

$$S(\mathbf{x}) = \left(\mathbf{x}\mathbf{x}^t, \mathbf{x}\right) \qquad \text{ and } \qquad \theta := \left(-\frac{1}{2}\Sigma^{-1}, \Sigma^{-1}\mu\right)$$

Back to Bayesian Models: Parametric Prior Families

Families of priors

The prior has to be expressed by a specific distribution. In parametric Bayesian models, we typically choose q as an element of a standard parametric family (e.g. the Gaussian in the previous example).

Hyperparameters

If we choose q as an element of a parametric family

$$Q = \{q(\theta|\phi)|\phi \in \mathcal{H}\}$$

 Φ is the parameter of the prior

on \mathcal{T} , selecting the prior comes down to choosing ϕ . Hence, ϕ becomes a tuning parameter of the model. $\frac{q(\theta|\lambda,y) = \exp(\theta,y) - \lambda Z(\theta)}{\operatorname{posterior:} \exp(\langle \Theta, S(x) | +y \rangle - (\lambda + n)\log Z(\theta))}$

Parameter of the prior familiy are called **hyperparameters** of the Bayesian model.

Natural Conjugate Priors

Exponential family likelihood

We now assume the parametric model $\mathcal{P}=\{p(x|\theta)|\theta\in\mathcal{T}\}$ is an exponential family model, i.e.

$$p(x|\theta) = \frac{h(x)}{Z(\theta)} e^{\langle S(x)|\theta\rangle}$$
.

Natural conjugate prior

We define a prior distribution using the density

$$q(\theta|\lambda, y) = \frac{1}{K(\lambda, y)} \exp(\langle \theta|y \rangle - \lambda \cdot \log Z(\theta))$$

- ▶ Hyperparameters: $\lambda \in \mathbb{R}_+$ and $y \in \mathcal{T}$.
- Note that the choice of P enters through Z.
- K is a normalization function.

Clearly, this is itself an exponential family (on \mathcal{T}), with $h \equiv Z^{-\lambda}$ and $Z \equiv K$.

Ugly Computation

Substitution into Bayes' equation gives

$$\Pr(\theta|x_1,\dots,x_n) = \frac{\prod_{i=1}^n p(x_i|\theta)}{p(x_1,\dots,x_n)} \cdot q(\theta)$$

$$= \frac{\frac{\prod_{i=1}^n h(x_i)}{Z(\theta)^n} \exp\left\langle \sum_i S(x_i)|\theta\right\rangle}{p(x_1,\dots,x_n)} \cdot \frac{\exp\left(\langle \theta|y\rangle - \lambda \log Z(\theta)\right)}{K(\lambda,y)}$$

If we neglect all terms which do not depend on θ , we have

$$\Pr(\theta|x_1,\ldots,x_n) \propto = \frac{\exp\left\langle \sum_i S(x_i)|\theta\right\rangle}{Z(\theta)^n} \exp\left(\langle \theta|y\rangle - \lambda \log Z(\theta)\right) = \frac{\exp\left(\langle y + \sum_i S(x_i)|\theta\rangle\right)}{Z(\theta)^{\lambda+n}}$$

Up to normalization, this is precisely the form of an element of Q:

$$\dots = \exp\left(\left\langle y + \sum_{i} S(x_i) | \theta \right\rangle - (\lambda + n) \log Z(\theta)\right) \propto q(\theta | \lambda + n, y + \sum_{i=1}^{n} S(x_i))$$

Posteriors of Conjugate Priors

Conclusion

If \mathcal{P} is an exponential family model with sufficient statistic S, and if $q(\theta|\lambda,y)$ is a natural conjugate prior for \mathcal{P} , the posterior under observations x_1,\ldots,x_n is

$$Pr(\theta|x_1,\ldots,x_n) = q(\theta|\lambda+n,y+\sum_{i=1}^n S(x_i))$$

Remark

The form of the posterior above means that we can *compute the posterior by updating the hyperparameters*. This property motivates the next definition.

Definition

Assume that $\mathcal P$ is a parametric family and $\mathcal Q$ a family of priors. Suppose, for each sample size $n\in\mathbb N$, there is a function $T_n:\mathbf X^n\times\mathcal H\to\mathcal H$ such that

$$\Pr(\theta|x_1,\ldots,x_n) = q(\theta|\hat{\phi})$$
 with $\hat{\phi} := T_n(x_1,\ldots,x_n,\phi)$.

Then \mathcal{P} and \mathcal{Q} are called **conjugate**.

Conjugate Priors

Closure under sampling

If the posterior is an element of the prior family, i.e. if

$$\Pr(\theta|x_1,\ldots,x_n)=q(\theta|\tilde{\phi})$$

for some $\tilde{\phi},$ the model is called **closed under sampling**. Clearly, every conjugate model is closed under sampling.

Remark

Closure under sampling is a weaker property than conjugacy; for example, any Bayesian model with

$$Q = \{$$
 all probability distributions on $\mathcal{T}\}$

is trivially closed under sampling, but not conjugate.

Warning: Many Bayesian texts use conjugacy and closure under sampling equivalently.

Which models are conjugate?

It can be shown that, up a few "borderline" cases, the only paramteric models which admit conjugate priors are exponential family models.