PT 练习 4.3.3: 配置 VTP

拓扑图

学习目标

- 检查当前配置
- 将 S1 配置为 VTP 服务器
- 将 S2 和 S3 配置为 VTP 客户端
- 在 S1 上配置 VLAN
- 在 S1、S2 和 S3 上配置中继
- 检验 S1、S2 和 S3 上的 VTP 状态
- 将 VLAN 分配给 S2 和 S3 上的端口
- 检验 VLAN 实施情况并测试连通性

简介

在本练习中,您将练习配置 VTP。当首次打开 Packet Tracer 时,交换机已经包含部分配置。用户执行口令为 cisco,特权执行口令为 class。

任务 1: 检查当前配置

步骤 1. 检验交换机的当前运行配置。

交换机目前的配置包含哪些?

步骤 2. 显示每台交换机上的当前 VLAN。

是否存在任何 VLAN? 这些 VLAN 是用户创建的 VLAN 还是默认 VLAN?

S1# s	ow	vlan	brief
VLAN	Nan	ne	

VLAN	Name	Status	Ports
1	default	active	Fa0/1, Fa0/2, Fa0/3, Fa0/4 Fa0/5, Fa0/6, Fa0/7, Fa0/8 Fa0/9, Fa0/10, Fa0/11, Fa0/12 Fa0/13, Fa0/14, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24 Gig1/1, Gig1/2
1003	fddi-default token-ring-default fddinet-default trnet-default	active active active active	

此任务结束时,完成率应该是0%。

任务 2: 将 S1 配置为 VTP 服务器

步骤 1. 配置 VTP 模式命令。

S1 将成为 VTP 服务器。将 S1 设置为服务器模式。

S1(config) #vtp mode server

Device mode already VTP SERVER.

S1(config)#

请注意,该交换机默认便是服务器模式。但是,您必须明确配置此命令,以确保交换机确实配置为服务器模式。

步骤 2. 配置 VTP 域名。

将 S1 的 VTP 域名配置为 CCNA。请记住, VTP 域名区分大小写。

S1(config)#vtp domain CCNA Changing VTP domain name from NULL to CCNA S1(config)#

步骤 3. 配置 VTP 域口令。

将 S1 的 VTP 域口令配置为 cisco。请记住, VTP 域口令区分大小写。

S1(config) #vtp password cisco

Setting device VLAN database password to cisco S1(config)#

步骤 4. 确认配置更改。

在 S1 上使用 show vtp status 命令确认 VTP 模式和 VTP 域已正确配置。

S1#show vtp status

VTP Version : 2
Configuration Revision : 0
Maximum VLANs supported locally : 64
Number of existing VLANs : 5
VTP Operating Mode : Server
VTP Domain Name : CCNA
VTP Pruning Mode : Disabled
VTP V2 Mode : Disabled
VTP Traps Generation : Disabled

MD5 digest : 0x8C 0x29 0x40 0xDD 0x7F 0x7A 0x63

Configuration last modified by 0.0.0.0 at 0-0-00 00:00:00

要检查 VTP 口令,可使用 show vtp password 命令。

S1#show vtp password

VTP Password: cisco

S1#

步骤 5. 查看结果。

您现在的完成率应该为8%。若不是,则单击 Check Results(检查结果),了解哪些必需的部分尚未完成。

任务 3: 将 S2 和 S3 配置为 VTP 客户端

步骤 1. 配置 VTP 模式命令。

S2 和 S3 将成为 VTP 客户端。将这两台交换机设置为客户端模式。

步骤 2. 配置 VTP 域名。

必须将 S2 和 S3 设置到与 S1 相同的 VTP 域中, S2 和 S3 才能接受来自 S1 的通告。将 S2 和 S3 的 VTP 域名配置为 CCNA。请记住, VTP 域名区分大小写。

步骤 3. 配置 VTP 域口令。

S2 和 S3 也必须使用与 VTP 服务器相同的口令,这样它们才能接受来自 VTP 服务器的 VTP 通告。将 S2 和 S3 的 VTP 域口令配置为 **cisco**。请记住,VTP 域口令区分大小写。

步骤 4. 确认配置更改。

在每台交换机上使用 show vtp status 命令确认 VTP 模式和 VTP 域已正确配置。S3 的输出如下所示。

S3#show vtp status

VTP Version : 2
Configuration Revision : 0
Maximum VLANs supported locally : 64

Number of existing VLANs : 5
VTP Operating Mode : Client
VTP Domain Name : CCNA
VTP Pruning Mode : Disabled
VTP V2 Mode : Disabled
VTP Traps Generation : Disabled

MD5 digest : 0x8C 0x29 0x40 0xDD 0x7F 0x7A 0x63

Configuration last modified by 0.0.0.0 at 0-0-00 00:00:00

注意,这三台交换机上的配置修订版号都为 0。为什么?

要检查 VTP 口令,可使用 show vtp password 命令。

S3**#show vtp password**

VTP Password: cisco

S3#

步骤 5. 查看结果。

您现在的完成率应该为31%。若不是,则单击 Check Results(检查结果),了解哪些必需的部分尚未完成。

任务 4: 在 S1 上配置 VLAN

可以在 VTP 服务器上创建 VLAN, 然后将这些 VLAN 分发给 VTP 域中的其它交换机。在本任务中, 您将在 VTP 服务器 S1 上创建 4 个新的 VLAN。然后这些 VLAN 会通过 VTP 分发给 S2 和 S3。

步骤 1. 创建 VLAN。

为了便于 Packet Tracer 评分, VLAN 名称要区分大小写。

- VLAN 10 命名为 Faculty/Staff
- VLAN 20 命名为 Students
- VLAN 30 命名为 Guest(Default)
- VLAN 99 命名为 Management&Native

步骤 2. 检查 VLAN。

使用 show vlan brief 命令检查 VLAN 及其名称。

S1#show vlan brief

VLAN Name	Status	Ports
1 default	active	Fa0/1, Fa0/2, Fa0/3, Fa0/4 Fa0/5, Fa0/6, Fa0/7, Fa0/8 Fa0/9, Fa0/10, Fa0/11, Fa0/12 Fa0/13, Fa0/14, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24 Gig1/1, Gig1/2

10	Faculty/Staff	active
20	Students	active
30	Guest(Default)	active
99	Management&Native	active
1002	fddi-default	active
1003	token-ring-default	active
1004	fddinet-default	active
1005	trnet-default	active

如果在 S2 和 S3 上输入相同的命令,您会发现这些 VLAN 不在 S2 和 S3 的 VLAN 数据库中,原因是什么?

步骤 3. 查看结果。

您现在的完成率应该为46%。若不是,则单击 Check Results(检查结果),了解哪些必需的部分尚未完成。

任务 5: 在 S1、S2 和 S3 上配置中继

使用 switchport mode trunk 命令将每条中继链路设置中继模式。使用 switchport trunk native vlan 99 命令将 VLAN 99 设置为本征 VLAN。

步骤 1. 将 S1 上的 FastEthernet 0/1 和 FastEthernet 0/3 配置为中继。

输入相应的命令来配置中继并将 VLAN 99 设置为本征 VLAN。

配置完成后,动态中继协议 (DTP) 将启动中继链路。要确认 S2 和 S3 是否已处于中继模式,可以在 S2 上输入 show interface fa0/1 switchport 命令,在 S3 上输入 show interface fa0/3 switchport 命令。

如果您等待几分钟让 Packet Tracer 模拟所有的过程,您会发现 S1 将 VLAN 配置通告给 S2 和 S3。可以在 S2 或 S3 上通过 show vlan brief 命令和 show vtp status 命令来确认这一点。

但是,最佳做法是将中继链路的两端都配置为 on (开启)模式。

步骤 2. 将 S2 上 Fast Ethernet 0/1 配置为中继。

输入相应的命令来配置中继并将 VLAN 99 设置为本征 VLAN。

步骤 3. 将 S3 上 Fast Ethernet 0/3 配置为中继。

输入相应的命令来配置中继并将 VLAN 99 设置为本征 VLAN。

步骤 4. 查看结果。

您现在的完成率应该为77%。若不是,则单击 Check Results(检查结果),了解哪些必需的部分尚未完成。

任务 6: 检验 VTP 状态

使用 show vtp status 和 show vlan brief 命令确认以下内容。

- S1 显示为服务器状态
- S2 和 S3 显示为客户端状态
- S2 和 S3 具有 S1 中的 VLAN

注意:每隔五分钟或者每当发生 VLAN 配置变更时, VTP 通告就会泛洪到整个管理域。为了加速这一过程, 您可以在 Realtime (实时)模式和 Simulation (模拟)模式之间切换, 直至下一轮更新开始。但是, 您可能需要执行多次切换, 因为此操作每次只能让 Packet Tracer 快进 10 秒。或者, 您也可以将某一台客户端交换机更改为透明模式, 然后再改回客户端模式。

配置修订版号是多少?	
为什么配置修订版号大于您创建的 VLAN 数?	
当前存在多少个 VLAN?	
为什么现有的 VLAN 比您创建的四个 VLAN 数量多?	

此任务结束时,完成率应该仍然是 77%。

任务 7: 为 VLAN 分配端口

使用 switchport mode access 命令对每条接入链路设置接入模式。使用 switchport access vlan vlan-id 命令将 VLAN 分配给接入端口。

步骤 1. 将 VLAN 分配给 S2 上的端口。

- 将 VLAN 10 分配给 Fa0/11
- 将 VLAN 20 分配给 Fa0/18
- 将 VLAN 30 分配给 Fa0/6

步骤 2. 将 VLAN 分配给 S3 上的端口。

- 将 VLAN 10 分配给 Fa0/11
- 将 VLAN 20 分配给 Fa0/18
- 将 VLAN 30 分配给 Fa0/6

步骤 3. 查看结果。

您现在的完成率应该为 100%。若不是,则单击 Check Results(检查结果),了解哪些必需的部分尚未完成。

任务 8: 检验 VLAN 实施情况并测试连通性

步骤 1. 检验 VLAN 配置以及端口分配情况。

使用 show vlan brief 命令检查每台交换机上的 VLAN 配置和端口分配情况。将您的输出结果与拓扑图比较。

步骤 2. 测试 PC 之间的连通性。

同一 VLAN 上的 PC 之间应该能 ping 通,而不同 VLAN 上的 PC 之间应该无法 ping 通。

从 PC1 ping PC4。

从 PC2 ping PC5。

从 PC3 ping PC6。