Math 2554 Exam 2: Sections 3.9-4.5 Fri 7 Nov 2014

Name: SOLUTIONS

Calculus I Exam 2

Please provide the following data:	
Drill Instructor:	
Drill Time:	
Student ID or clicker #:	
Exam Instructions: Sit in every other chair. You have 50 minutes to complete this exam Instructions: Sit in every other chair. You have 50 minutes to complete this examined a second second control of the property of the approved calculators. No programmable calculators are less than 5 minutes of class leprevent disruption, if you finish with less than 5 minutes of class remaining then please second quiet.	culators. uters. etc eft. To
Your signature below indicates that you have read this page and agree to follow the Aca Honesty Policies of the University of Arkansas.	demic
Signature: (1 pt)	

1. Write down the following derivatives:

(a)
$$\frac{d}{dx} \arcsin(x) = \frac{1}{\sqrt{1-x^2}}$$

(b)
$$\frac{d}{dx} \arccos(x) = \frac{-1}{\sqrt{1-\chi^2}}$$

(c)
$$\frac{d}{dx} \arctan(x) = \frac{1}{1 + x^2}$$

(d)
$$\frac{d}{dx} \operatorname{arccsc}(x) = \frac{-1}{\left| \chi \left| \sqrt{\chi^2 - 1} \right|}$$

(e)
$$\frac{d}{dx}\operatorname{arcsec}(x) = \frac{1}{|x|\sqrt{x^2-1}}$$

(f)
$$\frac{d}{dx} \operatorname{arccot}(x) = \frac{- | - |}{| + \chi^2|}$$

- 2. Let $f(x) = \frac{x^2}{x-2}$. Go through the following Graphing Guidelines to produce a well-labelled graph of f:
 - (a) Identify the domain or interval of interest.

(b) Is f even, odd, or neither?

$$f(-x) = \frac{x^2}{-x-2} \neq -f(x), f(-x)$$
 \Rightarrow neither

(c) Find the first and second derivatives.

$$f'(x) = (x-2)^2 \times -x^2(1) = 2x^2 - 4x - x^2 = x^2 - 4x$$

(d) Find critical points and possible inflection points.

$$f'(x) = x^2 - 4x = 0 = x(x - 4)$$

 $f''(x) = (x - 2)(2x - 4) - 2(x^2 - 4x) = 0$
 $(x - 2)^3$
 $= 2x^2 - 4x - 4x + 8 - 2x^2 + 8x = 8 \neq 0$
 f', f'' are both defined
on the domain $(x \neq 2)$

(e) Find intervals on which the function is increasing/decreasing and concave up/down.

(h) Find the intercepts.

f(x)=0=
$$\frac{x^2}{x-2}$$
 => x=0
f(0)= $\frac{6^2}{6-2}$ =0 => y=0

So the only intercept is the origin.

(i) Use the information from (a)-(h) to draw a well-labelled graph of s.

3. Suppose f is differentiable on an interval I containing the point a. The linear approximation to f at a is the linear function

$$L(x) = f(\alpha) + f'(\alpha)(x-\alpha) \qquad \text{for } \underline{\times} \text{ in } \underline{\top}$$

- 4. Let $f(x) = \frac{x}{x+1}$ and a = 1.
 - (a) Write the equation of the line that represents the linear approximation to f(x) at the

given point a.

$$f'(x) = (x+1)(1) - x(1)$$

$$= (x+1)^{2}$$

$$= (x+1)^{2}$$

$$f'(x) = \frac{1}{2} + \frac{1}{4}(x-1)$$
(b) Use the linear approximation to estimate the value $f(1.1)$.

$$f(1.1) \approx L(1.1) = \frac{1}{2} + \frac{1}{4}(1.1-1)$$

$$= \frac{20}{40} + \frac{1}{40} = \boxed{\frac{21}{40}}$$

(c) Compute the percent error in your approximation.

Calculator:
$$f(1.1) \approx 0.524$$

$$\left| \frac{L(1.1) - f(1.1)}{f(1.1)} \right| \approx 0.00227$$

$$= 0.227 = 0.227 = 0.227$$

5. A rectangular bathtub that is 3 ft wide and 6 ft long is being filled with water.

Volume=
$$V = 18h$$
 ft³

$$\frac{dV}{dt} = 18 \frac{dh}{dt} = 0.7 \text{ ft}^3/\text{min}$$

$$\frac{1}{3t} = \frac{0.7}{18} \approx 0.0389 \text{ ft/min}$$

(b) At what rate is water pouring into the tub if the water level rises at a rate of 0.8 ft/min?

$$\frac{dh}{dt} = 0.8 \text{ ft lmin}$$

$$\Rightarrow \frac{dt}{dV} = 18\left(\frac{dt}{dh}\right) = 18(0.8) = 14.4 \text{ ft}^3/\text{min}$$

6. Suppose you are standing on the shore of a circular pond with radius 1 mile and you want to get to a point on the shore directly opposite your position (on the other end of a diameter). You plan to swim at 2 miles per hour from your current position to another point P on the shore and then walk at 3 miles per hour along the shore to the terminal point. How should you choose P to minimize the total time for the trip?

Fact: For a circle of radius r and a chord on the circle with central angle θ , the length of the chord is given by $2r\sin\frac{\theta}{2}$. Given an arc with central angle ϕ , the arc length is $r\phi$.

$$\frac{\partial \rho + imize}{dT} = \frac{1}{2}\cos\frac{\theta}{2} - \frac{1}{3} = 0$$

$$x = 2r\sin{\frac{\theta}{2}}$$
 $y = rep$
= $2\sin{\frac{\theta}{2}}$ miles $y = TT - \theta$ miles

$$\Rightarrow \cos \frac{\theta}{2} = \frac{2}{3} \Rightarrow \frac{(\text{calculator})}{\theta \approx 1.68}$$