Mid-Sem (BT 202)

Date: 20th Sept 2022 (Tuesday)

Time: 9 AM - 11 AM

Venue: 3101, 3102, 3202

Application of Steam Table

Q1. Given P1 = 30 bar, $T1 = 320^{\circ}$ C. IN WHICH REGION THE STATE IS ??

WE USED STEAM TABLE (PRESSURE BASED)

Q1. Given P1 = 30 bar, T1 = 320° C. IN WHICH REGION THE STATE 1812

USING STEAM TABLE (TEMPERATURE BASED)

Conclusion: Since $p_1 < p_{sat1}$,

State 1 is Superheated vapor

Saturated water—Temperature table (Concluded)

			c volume, ¹³ /kg	In	<i>ternal en</i> kJ/kg	ergy,		Enthalp kJ/kg	y,		<i>Entropy,</i> kJ/kg·K	
Temp., T°C	Sat. press., P _{sat} kPa	Sat. liquid, v_f	Sat. vapor, v _g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
205 210 215 220 225	1724.3 1907.7 2105.9 2319.6 2549.7	0.001164 0.001173 0.001181 0.001190 0.001199	0.11508 0.10429 0.094680 0.086094 0.078405	872.86 895.38 918.02 940.79 963.70	1723.5 1702.9 1681.9 1660.5 1638.6	2596.4 2598.3 2599.9 2601.3 2602.3	897.61 920.50 943.55	1920.0 1899.7 1878.8 1857.4 1835.4	2794.8 2797.3 2799.3 2801.0 2802.2	2.3776 2.4245 2.4712 2.5176 2.5639	3.9318 3.8489 3.7664	6.3930 6.3563 6.3200 6.2840 6.2483
230 235 240 245 250	2797.1 3062.6 3347.0 3651.2 3976.2	0.001209 0.001219 0.001229 0.001240 0.001252	0.071505 0.065300 0.059707 0.054656 0.050085	986.76 1010.0 1033.4 1056.9 1080.7	1616.1 1593.2 1569.8 1545.7 1521.1	2602.9 2603.2 2603.1 2602.7 2601.8	990.14 1013.7 1037.5 1061.5 1085.7	1812.8 1789.5 1765.5 1740.8 1715.3	2802.9 2803.2 2803.0 2802.2 2801.0	2.6100 2.6560 2.7018 2.7476 2.7933	3.5216 3.4405 3.3596	6.2128 6.1775 6.1424 6.1072 6.0721
255 260 265 270 275	4322.9 4692.3 5085.3 5503.0 5946.4	0.001263 0.001276 0.001289 0.001303 0.001317	0.045941 0.042175 0.038748 0.035622 0.032767	1104.7 1128.8 1153.3 1177.9 1202.9	1495.8 1469.9 1443.2 1415.7 1387.4	2600.5 2598.7 2596.5 2593.7 2590.3	1110.1 1134.8 1159.8 1185.1 1210.7	1689.0 1661.8 1633.7 1604.6 1574.5	2799.1 2796.6 2793.5 2789.7 2785.2	2.8390 2.8847 2.9304 2.9762 3.0221	3.1169 3.0358 2.9542	6.0369 6.0017 5.9662 5.9305 5.8944
280 285 290 295 300	6416.6 6914.6 7441.8 7999.0 8587.9	0.001333 0.001349 0.001366 0.001384 0.001404	0.030153 0.027756 0.025554 0.023528 0.021659	1228.2 1253.7 1279.7 1306.0 1332.7	1358.2 1328.1 1296.9 1264.5 1230.9	2586.4 2581.8 2576.5 2570.5 2563.6	1236.7 1263.1 1289.8 1317.1 1344.8	1543.2 1510.7 1476.9 1441.6 1404.8	2779.9 2773.7 2766.7 2758.7 2749.6	3.0681 3.1144 3.1608 3.2076 3.2548	2.7066 2.6225 2.5374	5.8579 5.8210 5.7834 5.7450 5.7059
305 310 315	9209.4 9865.0 10,556	0.001425 0.001447 0.001472	0.019932 0.018333 0.016849	1360.0 1387.7 1416.1	1195.9 1159.3 1121.1	2555.8 2547.1 2537.2	1373.1 1402.0 1431.6	1366.3 1325.9 1283.4	2739.4 2727.9 2715.0	3.3024 3.3506 3.3994	2.2737 2.1821	5.6657 5.6243 5.5816
320 325	11,284 12,051	0.001499 0.001528	0.015470 0.014183	1445.1 1475.0	1080.9 1038.5	2526.0 2513.4	1462.0 1493.4	1238.5 1191.0	2700.6 2684.3	3.4491	2.0881 1.9911	5.5372 5.4908
330 335 340 345 350	12,858 13,707 14,601 15,541 16,529	0.001560 0.001597 0.001638 0.001685 0.001741	0.012979 0.011848 0.010783 0.009772 0.008806	1505.7 1537.5 1570.7 1605.5 1642.4	993.5 945.5 893.8 837.7 775.9	2499.2 2483.0 2464.5 2443.2 2418.3	1525.8 1559.4 1594.6 1631.7 1671.2	1140.3 1086.0 1027.4 963.4 892.7	2666.0 2645.4 2622.0 2595.1 2563.9	3.5516 3.6050 3.6602 3.7179 3.7788	1.8906 1.7857 1.6756 1.5585	5.4422 5.3907 5.3358 5.2765 5.2114
355 360 365 370 373.95	17,570 18,666 19,822 21,044 22,064	0.001808 0.001895 0.002015 0.002217 0.003106	0.007872 0.006950 0.006009 0.004953 0.003106	1682.2 1726.2 1777.2 1844.5 2015.7	706.4 625.7 526.4 385.6 0	2388.6 2351.9 2303.6 2230.1 2015.7	1714.0 1761.5 1817.2 1891.2 2084.3	812.9 720.1 605.5 443.1 0	2526.9 2481.6 2422.7 2334.3 2084.3	3.8442 3.9165 4.0004 4.1119 4.4070	1.1373 0.9489	5.1384 5.0537 4.9493 4.8009 4.4070

Source: Tables A-4 through A-8 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the highly accurate Steam LiArWs, which incorporates the 1995 Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, issued by The International Association for the Properties of Water and Steam (IAPWS). This formulation replaces the 1984 formulation of Haar, Gallagher, and Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), which is also available in EES as the routine STEAM. The new formulation is based on the correlations of Saul and Wagner (J. Phye. Chem. Ref. Data, 16, 893, 1987) with modifications to adjust to the International Temperature Scale of 1990. The modifications are described by Wagner and Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). The properties of ice are based on Hyland and Wesler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 k to 473.15 K," ASHRAE Trans., Part 2A, Paper 2793, 1983.

1 kPa = 0.01 bar

Q2. Given P2 = 25 bar, $T2 = 100^{\circ}$ C. IN WHICH REGION THE STATE IS ??

WE USED STEAM TABLE (PRESSURE BASED)

Q2. Given P = 25 bar, $T = 100^{\circ}$ C. IN WHICH REGION THE STATE IS ??

STEAM TABLE (TEMPERATURE BASED)

Conclusion: Since *P*₂ > *P*_{sat2}, •State 2 is **Compressed liquid**

TABLE	A-4											
Saturat	ed water—	Temperatu	re table									
			fic volume, m³/kg	ı	<i>nternal e</i> kJ/kg			Enthalp kJ/kg	y,		Entropy, kJ/kg·K	
Temp., <i>T</i> °C	Sat. press., P _{sat} kPa	Sat. liquid, v_f	Sat. vapor, v _g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
0.01 5 10 15 20	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	9.1556 8.9487 8.7488 8.5559 8.3696	8.8999 8.7803
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	7.8466 7.6832	8.4520
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.2218 7.0769 6.9360	8.0748 7.9898 7.9082 7.8296 7.7540
75 80 85 90 95	38.597 47.416 57.868 70.183 84.609	0.001026 0.001029 0.001032 0.001036 0.001040	4.1291 3.4053 2.8261 2.3593 1.9808	313.99 334.97 355.96 376.97 398.00	2161.3 2146.6 2131.9 2117.0 2102.0	2475.3 2481.6 2487.8 2494.0 2500.1	314.03 335.02 356.02 377.04 398.09	2320.6 2308.0 2295.3 2282.5 2269.6	2634.6 2643.0 2651.4 2659.6 2667.6	1.0158 1.0756 1.1346 1.1929 1.2504	6.5355 6.4089 6.2853	7.6812 7.6111 7.5435 7.4782 7.4151
100 105 110 115 120	101.42 120.90 143.38 169.18 198.67	0.001043 0.001047 0.001052 0.001056 0.001060	1.6720 1.4186 1.2094 1.0360 0.89133	419.06 440.15 461.27 482.42 503.60	2087.0 2071.8 2056.4 2040.9 2025.3	2506.0 2511.9 2517.7 2523.3 2528.9	419.17 440.28 461.42 482.59 503.81	2256.4 2243.1 2229.7 2216.0 2202.1	2675.6 2683.4 2691.1 2698.6 2706.0	1.3072 1.3634 1.4188 1.4737 1.5279	5.8193 5.7092	7.3542 7.2952 7.2382 7.1829 7.1292
125 130 135 140 145	232.23 270.28 313.22 361.53 415.68	0.001065 0.001070 0.001075 0.001080 0.001085	0.77012 0.66808 0.58179 0.50850 0.44600	524.83 546.10 567.41 588.77 610.19	2009.5 1993.4 1977.3 1960.9 1944.2	2534.3 2539.5 2544.7 2549.6 2554.4	525.07 546.38 567.75 589.16 610.64	2188.1 2173.7 2159.1 2144.3 2129.2	2713.1 2720.1 2726.9 2733.5 2739.8	1.5816 1.6346 1.6872 1.7392 1.7908	5.3919 5.2901	7.0771 7.0265 6.9773 6.9294 6.8827
150 155 160 165 170	476.16 543.49 618.23 700.93 792.18	0.001091 0.001096 0.001102 0.001108 0.001114	0.39248 0.34648 0.30680 0.27244 0.24260	631.66 653.19 674.79 696.46 718.20	1927.4 1910.3 1893.0 1875.4 1857.5	2559.1 2563.5 2567.8 2571.9 2575.7	632.18 653.79 675.47 697.24 719.08	2113.8 2098.0 2082.0 2065.6 2048.8	2745.9 2751.8 2757.5 2762.8 2767.9	1.8418 1.8924 1.9426 1.9923 2.0417	4.7143	
175 180 185 190 195 200	892.60 1002.8 1123.5 1255.2 1398.8 1554.9	0.001121 0.001127 0.001134 0.001141 0.001149 0.001157	0.21659 0.19384 0.17390 0.15636 0.14089 0.12721	740.02 761.92 783.91 806.00 828.18 850.46	1839.4 1820.9 1802.1 1783.0 1763.6 1743.7	2579.4 2582.8 2586.0 2589.0 2591.7 2594.2	741.02 763.05 785.19 807.43 829.78 852.26	2031.7 2014.2 1996.2 1977.9 1959.0 1939.8	2772.7 2777.2 2781.4 2785.3 2788.8 2792.0	2.0906 2.1392 2.1875 2.2355 2.2831 2.3305	4.4448 4.3572 4.2705 4.1847	

Q3. Given P3 = 5 bar, T2 = 151.9°C. IN WHICH REGION THE STATE IS ??

Conclusion: Since $T_3 = T_{\text{sat3}}$,

•State 3 is Two-phase liquid-vapor mixture

Sunarh	A-6 eated wate	r										
т Т	V Water	и	h	s	V	и	h	s	V	и	h	s
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg		kJ/kg·K
			Pa (45.81	Ü		0.05 MP				0.10 MF		
Sat.†	14.670		2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941	2505.6	2675.0	
50	14.867		2592.0	8.1741	0.2.100	L 1001L	20.0.2	7.0501	1.05.11	2000.0	20,0.0	,.000
100	17.196	2515.5	2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959	2506.2	2675.8	7.361
150	19.513	2587.9		8.6893	3.8897	2585.7	2780.2	7.9413	1.9367		2776.6	7.614
200	21.826	2661.4	2879.6	8.9049	4.3562	2660.0	2877.8	8.1592	2.1724	2658.2	2875.5	7.835
250	24.136		2977.5	9.1015	4.8206	2735.1	2976.2	8.3568		2733.9	2974.5	
300	26.446	2812.3	3076.7	9.2827	5.2841	2811.6	3075.8	8.5387	2.6389	2810.7	3074.5	8.217
400	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	3279.3	8.8659	3.1027		3278.6	
500	35.680	3132.9	3489.7	9.8998	7.1338	3132.6	3489.3	9.1566	3.5655	3132.2	3488.7	8.836
600	40.296	3303.3	3706.3	10.1631	8.0577	3303.1	3706.0	9.4201	4.0279	3302.8	3705.6	9.099
700	44.911	3480.8	3929.9	10.4056	8.9813	3480.6	3929.7	9.6626	4.4900	3480.4	3929.4	9.342
800	49.527	3665.4	4160.6	10.6312	9.9047	3665.2	4160.4	9.8883	4.9519	3665.0	4160.2	9.568
900	54.143	3856.9	4398.3	10.8429	10.8280	3856.8	4398.2	10.1000	5.4137	3856.7	4398.0	9.780
1000	58.758	4055.3	4642.8	11.0429	11.7513	4055.2	4642.7	10.3000	5.8755	4055.0	4642.6	9.980
1100	63.373	4260.0	4893.8	11.2326	12.6745	4259.9	4893.7	10.4897	6.3372	4259.8	4893.6	10.169
1200	67.989	4470.9	5150.8	11.4132	13.5977	4470.8		10.6704	6.7988	4470.7	5150.6	
1300	72.604	4687.4	5413.4	11.5857	14.5209	4687.3	5413.3	10.8429	7.2605	4687.2	5413.3	10.522
	P =	0.20 MF	a (120.2)	L°C)	P =	0.30 MPa	(133.52	°C)	P =	0.40 MPa	a (143.6)	l°C)
Sat.	0.88578			7.1270	0.60582	2543.2	2724.9	6.9917	0.46242	2553.1	2738.1	6.895
150	0.95986	2577.1	2769.1	7.2810	0.63402	2571.0	2761.2	7.0792	0.47088	3 2564.4	2752.8	6.930
200	1.08049	2654.6		7.5081	0.71643		2865.9	7.3132		2647.2	2860.9	
250		2731.4		7.7100	0.79645		2967.9	7.5180		2726.4	2964.5	7.380
300	1.31623	2808.8	3072.1	7.8941	0.87535		3069.6	7.7037		2805.1	3067.1	7.567
400	1.54934	2967.2	3277.0	8.2236	1.03155	2966.0	3275.5	8.0347		2964.9	3273.9	7.900
500	1.78142	3131.4	3487.7	8.5153	1.18672	3130.6	3486.6	8.3271	0.88936	3129.8	3485.5	8.193
600	2.01302	3302.2	3704.8	8.7793	1.34139	3301.6	3704.0	8.5915	1.00558	3301.0	3703.3	8.458
700	2.24434	3479.9	3928.8	9.0221	1.49580	3479.5	3928.2	8.8345	1.12152	3479.0	3927.6	8.70
800	2.47550	3664.7	4159.8	9.2479	1.65004	3664.3	4159.3	9.0605	1.23730	3663.9	4158.9	8.927
900	2.70656	3856.3	4397.7	9.4598	1.80417	3856.0	4397.3	9.2725	1.35298	3855.7	4396.9	9.139
1000	2.93755	4054.8	4642.3	9.6599	1.95824	4054.5	4642.0	9.4726	1.46859	4054.3	4641.7	9.339
1100	3.16848	4259.6	4893.3	9.8497	2.11226	4259.4	4893.1	9.6624	1.58414	4259.2	4892.9	9.529
1200	3.39938	4470.5	5150.4	10.0304	2.26624	4470.3	5150.2	9.8431	1.69966	4470.2	5150.0	
1300	3.63026	4687.1	5413.1	10.2029	2.42019	4686.9	5413.0	10.0157	1.81516	4686.7	5412.8	9.882
			a (151.8			0.60 MPa				0.80 MPa		
Sat.	0.37483			6.8207	0.31560		2756.2	6.7593		2576.0	2768.3	
200	0.42503	2643.3	2855.8	7.0610	0.35212		2850.6	6.9683		3 2631.1	2839.8	
250		2723.8		7.2725	0.39390		2957.6	7.1833		2715.9	2950.4	
300	0.52261			7.4614	0.43442		3062.0	7.3740		2797.5	3056.9	
350	0.57015		3168.1	7.6346	0.47428		3166.1	7.5481		2878.6	3162.2	
400	0.61731			7.7956	0.51374		3270.8	7.7097		2960.2	3267.7	
500	0.71095	3129.0	3484.5	8.0893	0.59200		3483.4	8.0041	0.44332	3126.6	3481.3	7.869
600	0.80409	3300.4		8.3544	0.66976		3701.7	8.2695		3298.7	3700.1	
700	0.89696		3927.0	8.5978	0.74725		3926.4	8.5132		3477.2	3925.3	
800	0.98966		4158.4	8.8240	0.82457		4157.9	8.7395		3662.5	4157.0	
900	1.08227	3855.4		9.0362	0.90179		4396.2	8.9518		3854.5	4395.5	
1000	1.17480	4054.0	4641.4	9.2364	0.97893		4641.1	9.1521		4053.3	4640.5	9.018
1100	1.26728	4259.0	4892.6	9.4263	1.05603		4892.4	9.3420		4258.3	4891.9	9.209
1200	1.35972	4470.0	5149.8	9.6071	1.13309	4469.8	5149.6	9.5229	0.84980	4469.4	5149.3	9.389
1300	1.45214	4686.6		9.7797	1.21012		5412.5	9.6955		4686.1	5412.2	9.562

^{*}The temperature in parentheses is the saturation temperature at the specified pressure.

[†] Properties of saturated vapor at the specified pressure.

Q4. Given P4 = 15.549 bar, $T4 = 200^{\circ}$ C. IN WHICH REGION THE STATE IS ??

 $@T4 = 200^{\circ}C, P_{sat4} = 1.5549 \text{ MPa}$

Conclusion: Since $p_4 = p_{\text{sat4}}$,

•State 4 is Two-phase liquid-vapor mixture

			fic volume, n³/kg	1	<i>nternal e</i> kJ/kg			Enthalp kJ/kg	y,		Entropy, kJ/kg·K	
Temp., T°C	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s _f	Evap., s_{fg}	Sat. vapor, s _g
0.01 5 10 15 20	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	9.1556 8.9487 8.7488 8.5559 8.3696	9.024 8.899 8.780
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.1895 8.0152 7.8466 7.6832 7.5247	8.452 8.351 8.255
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.3710 7.2218 7.0769 6.9360 6.7989	7.989 7.908 7.829
75 80 85 90 95	38.597 47.416 57.868 70.183 84.609	0.001026 0.001029 0.001032 0.001036 0.001040	4.1291 3.4053 2.8261 2.3593 1.9808	313.99 334.97 355.96 376.97 398.00	2161.3 2146.6 2131.9 2117.0 2102.0	2475.3 2481.6 2487.8 2494.0 2500.1	314.03 335.02 356.02 377.04 398.09	2320.6 2308.0 2295.3 2282.5 2269.6	2634.6 2643.0 2651.4 2659.6 2667.6	1.0158 1.0756 1.1346 1.1929 1.2504	6.6655 6.5355 6.4089 6.2853 6.1647	7.611 7.543 7.478
100 105 110 115 120	101.42 120.90 143.38 169.18 198.67	0.001043 0.001047 0.001052 0.001056 0.001060	1.6720 1.4186 1.2094 1.0360 0.89133	419.06 440.15 461.27 482.42 503.60	2087.0 2071.8 2056.4 2040.9 2025.3	2506.0 2511.9 2517.7 2523.3 2528.9	419.17 440.28 461.42 482.59 503.81	2256.4 2243.1 2229.7 2216.0 2202.1	2675.6 2683.4 2691.1 2698.6 2706.0	1.3072 1.3634 1.4188 1.4737 1.5279	6.0470 5.9319 5.8193 5.7092 5.6013	7.295 7.238 7.182
125 130 135 140 145	232.23 270.28 313.22 361.53 415.68	0.001065 0.001070 0.001075 0.001080 0.001085	0.77012 0.66808 0.58179 0.50850 0.44600	524.83 546.10 567.41 588.77 610.19	2009.5 1993.4 1977.3 1960.9 1944.2	2534.3 2539.5 2544.7 2549.6 2554.4	525.07 546.38 567.75 589.16 610.64	2188.1 2173.7 2159.1 2144.3 2129.2	2713.1 2720.1 2726.9 2733.5 2739.8	1.5816 1.6346 1.6872 1.7392 1.7908	5.4956 5.3919 5.2901 5.1901 5.0919	7.026 6.977 6.929
150 155 160 165 170	476.16 543.49 618.23 700.93 792.18	0.001091 0.001096 0.001102 0.001108 0.001114	0.39248 0.34648 0.30680 0.27244 0.24260	631.66 653.19 674.79 696.46 718.20	1927.4 1910.3 1893.0 1875.4 1857.5	2559.1 2563.5 2567.8 2571.9 2575.7	632.18 653.79 675.47 697.24 719.08	2113.8 2098.0 2082.0 2065.6 2048.8	2745.9 2751.8 2757.5 2762.8 2767.9	1.8418 1.8924 1.9426 1.9923 2.0417	4.9953 4.9002 4.8066 4.7143 4.6233	6.792 6.749 6.706 6.665
185 190 195	892.60 1002.8 1123.5 1255.2 1398.8 1554.9	0.001121 0.001127 0.001134 0.001141 0.001149 0.001157	0.21659 0.19384 0.17390 0.15636 0.14089 0.12721	740.02 761.92 783.91 806.00 828.18 850.46	1839.4 1820.9 1802.1 1783.0 1763.6 1743.7	2579.4 2582.8 2586.0 2589.0 2591.7 2594.2	741.02 763.05 785.19 807.43 829.78 852.26	2031.7 2014.2 1996.2 1977.9 1959.0 1939.8	2772.7 2777.2 2781.4 2785.3 2788.8 2792.0	2.0906 2.1392 2.1875 2.2355 2.2831 2.3305	4.5335 4.4448 4.3572 4.2705 4.1847 4.0997	6.584 6.544 6.505 6.467

Q5. Given $T5 = 80^{\circ}$ C, v5 = 0.0010200 m3/kg

$T5 = 80^{\circ}C$ $@T5 = 80^{\circ}C,$ vf5 = 0.001029 m3/kgvg5 = 3.4053 m3/kg T^{\prime} $T_5 = 80$ °C $v \, (\mathrm{m}^3/\mathrm{kg})$ $v_5 = 0.0010200$ $v_{\rm g5} = 3.407$ $v_{\rm f5} = 0.0010291$

Conclusion: Since $v_5 < v_{f5}$,

•State 5 is Compressed liquid

		_/

			fic volume, m³/kg		<i>nternal e</i> kJ/kg			Enthalp kJ/kg	y,		Entropy, kJ/kg·K	
Temp., T°C	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, u _f	Evap.,	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s_f	Evap.,	Sat. vapor, s_g
0.01 5 10 15 20	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	8.9487 8.7488 8.5559	9.1556 9.0249 8.8999 8.7803 8.6661
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.0152 7.8466 7.6832	8.5567 8.4520 8.3517 8.2556 8.1633
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.2218 7.0769 6.9360	8.0748 7.9898 7.9082 7.8296 7.7540
75 80	38.597 47.416	0.001026 0.001029	4.1291 3.4053	313.99 334.97	2161.3 2146.6	2475.3 2481.6	314.03 335.02	2320.6	2634.6 2643.0	1.0158	6.6655	
85 90 95 100 105 110	57.868 70.183 84.609 101.42 120.90 143.38	0.001032 0.001036 0.001040 0.001043 0.001047 0.001052	2.8261 2.3593 1.9808 1.6720 1.4186 1.2094	355.96 376.97 398.00 419.06 440.15 461.27	2131.9 2117.0 2102.0 2087.0 2071.8 2056.4	2487.8 2494.0 2500.1 2506.0 2511.9 2517.7	356.02 377.04 398.09 419.17 440.28 461.42	2295.3 2282.5 2269.6 2256.4 2243.1 2229.7	2651.4 2659.6 2667.6 2675.6 2683.4 2691.1	1.1346 1.1929 1.2504 1.3072 1.3634 1.4188	6.4089 6.2853 6.1647 6.0470 5.9319 5.8193	7.5435 7.4782 7.4151 7.3542 7.2952 7.2382
115 120 125	169.18 198.67 232.23	0.001056 0.001060 0.001065	1.0360 0.89133 0.77012	482.42 503.60 524.83	2040.9 2025.3 2009.5	2523.3 2528.9 2534.3	482.59 503.81 525.07	2216.0 2202.1 2188.1	2698.6 2706.0 2713.1	1.4737 1.5279 1.5816	5.6013	7.1829 7.1292 7.077
130 135 140 145	270.28 313.22 361.53 415.68	0.001070 0.001075 0.001080 0.001085	0.66808 0.58179 0.50850 0.44600	546.10 567.41 588.77 610.19	1993.4 1977.3 1960.9 1944.2	2539.5 2544.7 2549.6 2554.4	546.38 567.75 589.16 610.64	2173.7 2159.1 2144.3 2129.2	2720.1 2726.9 2733.5 2739.8	1.6346 1.6872 1.7392 1.7908	5.3919 5.2901 5.1901 5.0919	6.9773 6.9294 6.8823
150 155 160 165 170	476.16 543.49 618.23 700.93 792.18	0.001091 0.001096 0.001102 0.001108 0.001114	0.39248 0.34648 0.30680 0.27244 0.24260	631.66 653.19 674.79 696.46 718.20	1927.4 1910.3 1893.0 1875.4 1857.5	2559.1 2563.5 2567.8 2571.9 2575.7	632.18 653.79 675.47 697.24 719.08	2113.8 2098.0 2082.0 2065.6 2048.8	2745.9 2751.8 2757.5 2762.8 2767.9	1.8418 1.8924 1.9426 1.9923 2.0417	4.9953 4.9002 4.8066 4.7143 4.6233	6.792 6.749 6.706
175 180 185 190 195 200	892.60 1002.8 1123.5 1255.2 1398.8 1554.9	0.001121 0.001127 0.001134 0.001141 0.001149 0.001157	0.21659 0.19384 0.17390 0.15636 0.14089 0.12721	740.02 761.92 783.91 806.00 828.18 850.46	1839.4 1820.9 1802.1 1783.0 1763.6 1743.7	2579.4 2582.8 2586.0 2589.0 2591.7 2594.2	741.02 763.05 785.19 807.43 829.78 852.26	2031.7 2014.2 1996.2 1977.9 1959.0 1939.8	2772.7 2777.2 2781.4 2785.3 2788.8 2792.0	2.0906 2.1392 2.1875 2.2355 2.2831 2.3305	4.5335 4.4448 4.3572 4.2705 4.1847 4.0997	6.584 6.544 6.505 6.467

Q6. Given $T6 = 80^{\circ}$ C, v6 = 1.2 m3/kg

$T6 = 80^{\circ}\text{C}$ $T6 = 80^{\circ}\text{C}$, $T6 = 80^{\circ}\text{C}$ $T6 = 80^{\circ}\text{C}$

 $v_{\rm g6}=3.407$

 $v \, (m^3/kg)$

Conclusion: Since $v_{\rm f6} < v_{\rm 6} < v_{\rm g6}$,

 $v_{\rm f6} = 0.0010291$

mixture

 $v_6 = 1.2$

•State 6 is Two-phase liquid-vapor mixture

		-4

			fic volume, m³/kg		I <i>nternal e</i> kJ/kg			Enthalp kJ/kg	y,		Entropy, kJ/kg·K	
Temp.,	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, u _f	Evap.,	Sat. vapor, u_g	Sat. liquid, h _f	Evap.,	Sat. vapor, h _g	Sat. liquid, s _f	Evap., s_{fg}	Sat. vapor, s_g
0.01 5 10 15 20		0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	9.1556 8.9487	9.1556 9.0249 8.8999 8.7803
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.0152 7.8466	8.3517 8.2556
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.3710 7.2218 7.0769 6.9360 6.7989	7.9898 7.9082 7.8298
75 80	38.597 47.416	0.001026 0.001029	4.1291 3.4053	313.99 334.97	2161.3	2475.3 2481.6	314.03 335.02	2320.6	2634.6 2643.0	1.0158	6.6655	
85 90 95 100 105 110 115	57.868 70.183 84.609 101.42 120.90 143.38 169.18	0.001032 0.001036 0.001040 0.001043 0.001047 0.001052 0.001056	2.8261 2.3593 1.9808 1.6720 1.4186 1.2094 1.0360	355.96 376.97 398.00 419.06 440.15 461.27 482.42	2131.9 2117.0 2102.0 2087.0 2071.8 2056.4 2040.9	2487.8 2494.0 2500.1 2506.0 2511.9 2517.7 2523.3	356.02 377.04 398.09 419.17 440.28 461.42 482.59	2295.3 2282.5 2269.6 2256.4 2243.1 2229.7 2216.0	2651.4 2659.6 2667.6 2675.6 2683.4 2691.1 2698.6	1.1346 1.1929 1.2504 1.3072 1.3634 1.4188 1.4737	6.4089 6.2853 6.1647 6.0470 5.9319 5.8193	7.5435 7.4782
120 125 130 135 140 145	198.67 232.23 270.28 313.22 361.53 415.68	0.001060 0.001065 0.001070 0.001075 0.001080 0.001085	0.89133 0.77012 0.66808 0.58179 0.50850 0.44600	503.60 524.83 546.10 567.41 588.77 610.19	2025.3 2009.5 1993.4 1977.3 1960.9 1944.2	2528.9 2534.3 2539.5 2544.7 2549.6 2554.4	503.81 525.07 546.38 567.75 589.16 610.64	2202.1 2188.1 2173.7 2159.1 2144.3 2129.2	2706.0 2713.1 2720.1 2726.9 2733.5 2739.8	1.5279 1.5816 1.6346 1.6872 1.7392 1.7908		6.9773 6.9294
150 155 160 165 170	476.16 543.49 618.23 700.93 792.18	0.001091 0.001096 0.001102 0.001108 0.001114	0.39248 0.34648 0.30680 0.27244 0.24260	631.66 653.19 674.79 696.46 718.20	1927.4 1910.3 1893.0 1875.4 1857.5	2559.1 2563.5 2567.8 2571.9 2575.7	632.18 653.79 675.47 697.24 719.08	2113.8 2098.0 2082.0 2065.6 2048.8	2745.9 2751.8 2757.5 2762.8 2767.9	1.8418 1.8924 1.9426 1.9923 2.0417	4.9953 4.9002 4.8066 4.7143 4.6233	6.792 6.749 6.706 6.6650
175 180 185 190 195 200	892.60 1002.8 1123.5 1255.2 1398.8 1554.9	0.001121 0.001127 0.001134 0.001141 0.001149 0.001157	0.21659 0.19384 0.17390 0.15636 0.14089 0.12721	740.02 761.92 783.91 806.00 828.18 850.46	1839.4 1820.9 1802.1 1783.0 1763.6 1743.7	2579.4 2582.8 2586.0 2589.0 2591.7 2594.2	741.02 763.05 785.19 807.43 829.78 852.26	2031.7 2014.2 1996.2 1977.9 1959.0 1939.8	2772.7 2777.2 2781.4 2785.3 2788.8 2792.0	2.0906 2.1392 2.1875 2.2355 2.2831 2.3305	4.5335 4.4448 4.3572 4.2705 4.1847 4.0997	6.5842 6.5447 6.5059 6.4678

Q7. Given $T7 = 80^{\circ}C$, v7 = 4.625 m3/kg

$$@T7 = 80^{\circ}C,$$

$$vf7 = 0.001029 \text{ m}3/\text{kg}$$

 $vg7 = 3.4053 \text{ m}3/\text{kg}$

Conclusion: Since $v_7 > v_{g7}$,

•State 7 is **Superheated vapor**

TABLE A-4

Saturated	water—	Temperature	table
-----------	--------	-------------	-------

			fic volume, m³/kg		nternal e kJ/kg			Enthalp kJ/kg	o <i>y,</i>		<i>Entropy,</i> kJ/kg·K	
Temp., <i>T</i> °C	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s _f	Evap.,	Sat. vapor, s_g
0.01 5 10 15 20	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	8.9487 8.7488 8.5559	9.1556 9.0249 8.8999 8.7803 8.6661
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.0152 7.8466 7.6832	8.5567 8.4520 8.3517 8.2556 8.1633
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.2218 7.0769 6.9360	8.0748 7.9898 7.9082 7.8296 7.7540
75 80 85 90 95	38.597 47.416 57.868 70.183 84.609	0.001026 0.001029 0.001032 0.001036 0.001040	4.1291 3.4053 2.8261 2.3593 1.9808	313.99 334.97 355.96 376.97 398.00	2161.3 2146.6 2131.9 2117.0 2102.0	2475.3 2481.6 2487.8 2494.0 2500.1	314.03 335.02 356.02 377.04 398.09	2320.6 2308.0 2295.3 2282.5 2269.6	2634.6 2643.0 2651.4 2659.6 2667.6	1.0158 1.0756 1.1346 1.1929 1.2504	6.5355 6.4089 6.2853	7.6812 7.6111 7.5435 7.4782 7.4151
100 105 110 115 120	101.42 120.90 143.38 169.18 198.67	0.001043 0.001047 0.001052 0.001056 0.001060	1.6720 1.4186 1.2094 1.0360 0.89133	419.06 440.15 461.27 482.42 503.60	2087.0 2071.8 2056.4 2040.9 2025.3	2506.0 2511.9 2517.7 2523.3 2528.9	419.17 440.28 461.42 482.59 503.81	2256.4 2243.1 2229.7 2216.0 2202.1	2675.6 2683.4 2691.1 2698.6 2706.0	1.3072 1.3634 1.4188 1.4737 1.5279	5.9319 5.8193 5.7092	7.3542 7.2952 7.2382 7.1829 7.1292
125 130 135 140 145	232.23 270.28 313.22 361.53 415.68	0.001065 0.001070 0.001075 0.001080 0.001085	0.77012 0.66808 0.58179 0.50850 0.44600	524.83 546.10 567.41 588.77 610.19	2009.5 1993.4 1977.3 1960.9 1944.2	2534.3 2539.5 2544.7 2549.6 2554.4	525.07 546.38 567.75 589.16 610.64	2188.1 2173.7 2159.1 2144.3 2129.2	2713.1 2720.1 2726.9 2733.5 2739.8	1.5816 1.6346 1.6872 1.7392 1.7908	5.3919 5.2901 5.1901	7.0771 7.0265 6.9773 6.9294 6.8827
150 155 160 165 170	476.16 543.49 618.23 700.93 792.18	0.001091 0.001096 0.001102 0.001108 0.001114	0.39248 0.34648 0.30680 0.27244 0.24260	631.66 653.19 674.79 696.46 718.20	1927.4 1910.3 1893.0 1875.4 1857.5	2559.1 2563.5 2567.8 2571.9 2575.7	632.18 653.79 675.47 697.24 719.08	2113.8 2098.0 2082.0 2065.6 2048.8	2745.9 2751.8 2757.5 2762.8 2767.9	1.8418 1.8924 1.9426 1.9923 2.0417	4.9002 4.8066 4.7143	6.8371 6.7927 6.7492 6.7067 6.6650
175 180 185 190 195 200	892.60 1002.8 1123.5 1255.2 1398.8 1554.9	0.001121 0.001127 0.001134 0.001141 0.001149 0.001157	0.21659 0.19384 0.17390 0.15636 0.14089 0.12721	740.02 761.92 783.91 806.00 828.18 850.46	1839.4 1820.9 1802.1 1783.0 1763.6 1743.7	2579.4 2582.8 2586.0 2589.0 2591.7 2594.2	741.02 763.05 785.19 807.43 829.78 852.26	2031.7 2014.2 1996.2 1977.9 1959.0 1939.8	2772.7 2777.2 2781.4 2785.3 2788.8 2792.0	2.0906 2.1392 2.1875 2.2355 2.2831 2.3305	4.4448 4.3572 4.2705 4.1847	6.6242 6.5841 6.5447 6.5059 6.4678 6.4302

Q7. p8 = 80 bar and u8 = 1200 KJ/kg

Conclusion: Since $u_8 < u_{f8}$,

•State 8 is Compressed liquid

APPEN

	d water—											
			volume, ³ /kg	In	ternal en kJ/kg	ergy,		Enthalpy kJ/kg	ʻ, 		Entropy, kJ/kg·K	
Press., P kPa	Sat. temp.,	Sat. liquid,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,
	T _{sat} °C	V _f	Vg	U_f	U_{fg}	Иg	h _f	h _{fg}	hg	S_f	S_{fg}	S_g
800 850 900 950 1000	170.41 172.94 175.35 177.66 179.88	0.001115 0.001118 0.001121 0.001124 0.001127	0.24035 0.22690 0.21489 0.20411 0.19436	731.00 741.55 751.67	1856.1 1846.9 1838.1 1829.6 1821.4	2576.0 2577.9 2579.6 2581.3 2582.8	720.87 731.95 742.56 752.74 762.51	2047.5 2038.8 2030.5 2022.4 2014.6	2770.8 2773.0 2775.2	2.0941	4.6160 4.5705 4.5273 4.4862 4.4470	6.621
1100 1200 1300 1400 1500	184.06 187.96 191.60 195.04 198.29	0.001133 0.001138 0.001144 0.001149 0.001154	0.17745 0.16326 0.15119 0.14078 0.13171	796.96 813.10	1805.7 1790.9 1776.8 1763.4 1750.6	2585.5 2587.8 2589.9 2591.8 2593.4	781.03 798.33 814.59 829.96 844.55	1999.6 1985.4 1971.9 1958.9 1946.4	2783.8 2786.5 2788.9	2.2159 2.2508	4.3735 4.3058 4.2428 4.1840 4.1287	6.52
1750 2000 2250 2500 3000	205.72 212.38 218.41 223.95 233.85	0.001166 0.001177 0.001187 0.001197 0.001217	0.11344 0.099587 0.088717 0.079952 0.066667	906.12 933.54	1720.6 1693.0 1667.3 1643.2 1598.5	2596.7 2599.1 2600.9 2602.1 2603.2	878.16 908.47 936.21 961.87 1008.3	1917.1 1889.8 1864.3 1840.1 1794.9	2798.3 2800.5 2801.9	2.4467 2.5029	3.7926 3.7016	6.339 6.299 6.259
3500 4000 5000 6000 7000	242.56 250.35 263.94 275.59 285.83	0.001235 0.001252 0.001286 0.001319 0.001352	0.057061 0.049779 0.039448 0.032449 0.027378	1148.1	1557.6 1519.3 1448.9 1384.1 1323.0		1213.8	1753.0 1713.5 1639.7 1570.9 1505.2	2800.8 2794.2 2784.6	2.9207	3.3991 3.2731 3.0530 2.8627 2.6927	6.069 5.973
8000	295.01	0.001384	0.023525	1306.0	1264.5		1317.1	1441.6	2758.7	3.2077	2.5373	5.745
10,000 11,000 12,000	311.00 318.08 324.68	0.001418 0.001452 0.001488 0.001526	0.020489 0.018028 0.015988 0.014264	1433.9	1207.6 1151.8 1096.6 1041.3	2545.2 2530.4 2514.3	1407.8 1450.2	1317.6 1256.1 1194.1	2706.3	3.4299	2.2556 2.1245 1.9975	
13,000 14,000 15,000 16,000 17,000	330.85 336.67 342.16 347.36 352.29	0.001566 0.001610 0.001657 0.001710 0.001770	0.012781 0.011487 0.010341 0.009312 0.008374	1548.4 1585.5 1622.6	985.5 928.7 870.3 809.4 745.1	2496.6 2477.1 2455.7 2432.0 2405.4	1610.3 1649.9	1131.3 1067.0 1000.5 931.1 857.4	2610.8 2581.0	3.6232 3.6848 3.7461	1.8730 1.7497 1.6261 1.5005 1.3709	5.372 5.310 5.246
18,000 19,000 20,000 21,000 22,000 22,064	356.99 361.47 365.75 369.83 373.71 373.95	0.001840 0.001926 0.002038 0.002207 0.002703 0.003106	0.007504 0.006677 0.005862 0.004994 0.003644 0.003106	1740.3 1785.8 1841.6 1951.7	675.9 598.9 509.0 391.9 140.8 0	2375.0 2339.2 2294.8 2233.5 2092.4 2015.7	1776.8 1826.6 1888.0 2011.1	777.8 689.2 585.5 450.4 161.5	2466.0 2412.1 2338.4 2172.6	3.9396 4.0146 4.1071	1.2343 1.0860 0.9164 0.7005 0.2496	5.025 4.93 4.80

NOTE (STEAM TABLE): GAS PHASE HAS LARGER U, H

Q9. $p_9 = 80$ bar and $u_9 = 1600 \text{ kJ/kg}$

(a)
$$p_9 = 80$$
 bar

 $u_{f9} = 1308.6 \text{ kJ/kg}$ and $u_{g9} = 2569.8 \text{ kJ/kg}$

Conclusion: Since $u_{19} < u_{9} < u_{g9}$,

•State 9 is Two-phase liquid-vapor mixture

Determine x9???

USE:
$$u = u_f + x (u_g - u_f)$$

Q10. $p_{10} = 80$ bar and $u_{10} = 3102.7$ kJ/kg

 $a p_{10} = 80 \text{ bar}$

 $u_{\rm f10} = 1308.6 \text{ kJ/kg}$ and $u_{\rm g10} = 2569.8 \text{ kJ/kg}$ $p_{\rm 10} = 80 \text{ bar}$

Conclusion: Since $u_{10} > u_{g10}$,

•State 10 is **Superheated vapor**

Q11. $T_{11} = 80^{\circ}$ C and $x_{11} = 0.6$, FIND v11 ???

(a)
$$T_{11} = 80^{\circ}$$
C

 $v_{\rm f11} = 0.0010291 \text{ m}_{\rm 3}/\text{kg}$ and $v_{\rm g11} = 3.407 \text{ m}_{\rm 3}/\text{kg}$

$$v_{11} = v_{f11} + x_{11}(v_{g11} - v_{f11})$$

 $v_{11} = 2.045 \text{ m}^3/\text{kg}$

Conclusion:

- •State 12 is Two-phase liquid-vapor mixture
- •Use quality calculations with saturated liquid (f) and
- •saturated vapor (g) values from Steam table

B) SATURATED STEAM HATER (
$$S_A = S_B$$
)

 $0.1 \text{ bar} = 10 \text{ KPer}$
 $X = \frac{S_B - S_F}{S_Q - S_F} = 0.82$

Now $h = h_f + x(h_Q - h_f) = 2154 \text{ KJ/Kg}$

Suppose the data is not there in the steam Table.

e.g, P1 = 30 bar, $T1 = 300^{\circ}$ C, Find V1?

p = 30.0 bar = 3.0 MPa (T_{sat} = 233.90°C)

USE Inter	rpolation.
	xb, yb
xa, ya	, ,
ла, уа	

Equate slope:

$$\frac{y_1 - ya}{x_1 - xa} = \frac{y_b - ya}{x_b - xa}$$

	$(T_{\rm sat} = 233.90^{\circ}\text{C})$				
	Sat.	0.0667	2604.1	2804.2	6.1869
	240	0.0682	2619.7	2824.3	6.2265
I	280	0.0771	2709.9	2941.3	6.4462
	320	0.0850	2788.4	3043.4	6.6245
l	360	0.0923	2861.7	3138.7	6.7801
	400	0.0994	2932.8	3230.9	6.9212
	440	0.1062	3002.9	3321.5	7.0520
	500	0.1162	3108.0	3456.5	7.2338
	540	0.1227	3178.4	3546.6	7.3474
	600	0.1324	3285.0	3682.3	7.5085
	640	0.1388	3357.0	3773-5	7.6106
	700	0.1484	3466.5	3911.7	7.7571

- i) Start with superheated vapor table A-4
- ii) Interpolate between 280 and 320 deg C.

$$v_{1} = v_{a} + \frac{v_{b} - v_{a}}{T_{b} - T_{a}} (T_{1} - T_{a})$$

$$v_{1} = 0.0771 + \frac{(0.0850 - 0.0771)}{(320 - 280)} (300 - 280)$$

$$v_{1} = 0.0811 \, m^{3} / kg$$

Q13. P= 4.2 MPa and T = 365° C , FIND = V ?

Page-1	1 Mpa = 1000Kpa 1 bar = 100 Kpa Page No.:
P= T=	4.2 MPa) = ? 365°C)
Jas Jas Jahan	$P=4.2MPa=4200 KPas$ rated mater-Pressure +Ula V_{pol} V_{p
Joseph Al Alon	7 $V(4:2) = V(4) + 0.5 \times (0.05842 - 0.0667)$ 2 $V(4:2) = 0.0 6647 + 0.2 \times ()$ 3 $V(4:2) = 0.064856 \cdot 0.63242$

Page-2	What we have done
	(At Pressure = 4.2 MPa)
	TO PROPERTY OF THE A
No also	7, 350°C 0.06325 40°C 6.06997
~~~	The potation 365.
	V(26°c) - V(350) = 250
07343	Q(A50°) - Q(350)
7	(365C, 4-2MPa) (0.06997-0.06325)
	$= 0.06325 + (365-350) \times (0.06997 - 0.06325)$ $= (400-350)$
	- 0.06527

# How to do interpolation using steam tables

https://www.youtube.com/watch?v=y6KB1OXZIF4



Thermodynamics of rubber band