1. As a function of wavelength $(4 < \lambda [\mu m] < 25)$ plot the transmissivity of the atmosphere for water vapor, carbon dioxide, and the combined transmissivity on separate graphs.

The three plots corresponding to water, carbon, and combined, are shown below.

2. Compute the blackbody spectrum (both B_{v} and B_{λ}) for terrestrial radiation assuming an average earth temperature of 288 K. Make two plots that show the blackbody envelope and the transmitted radiation through the atmosphere, *i.e.*, the combined effect from the previous problem.

The two plots are shown below.

3. Compute the carbon dioxide transmissivity for a pre-industrial concentration of 287 ppm. Plot the two spectra on the same axes as above. On a separate plot using the same abscissa, plot the difference in the combined transmissivity between 415 and 287 ppm of carbon dioxide.

The two plots are shown below.

4. Integrate the result from part 2 over wavelength (or frequency) to find the total emission from the surface and the total transmission through the atmosphere [W/m²]. Calculate an average absorptivity of the outgoing radiation through the troposphere.

>> proj2_q4

Total emisson from surface [W/m^2]: 317.8064

Total transmission thru atmosphere [W/m^2]: 93.6504

Absorbance value: 0.70532

5. For a range of carbon dioxide concentration ranging from 100 to 900 ppm, plot the transmitted radiation [W/m2] vs. carbon dioxide concentration. On a different plot with the same abscissa and using 287 ppm (the pre-industrial level) as the baseline, plot the radiation forcing.

The two plots are shown below.

The MATLAB code for each question is pasted below. All functions are at the very end.

```
QUESTION 1:
clear all
close all
clc
%% organizing data
load("HitranSpectra f23 (1).mat")
H20 = H20 * 1e-4;
CO2 = CO2 * 1e-4;
                      % convert wave number to wavelength [μm]
lam = nu.^{(-1)*10^4};
k nu table = [lam; H2O; CO2]; % matrix w/ k nu for H2O and CO2 for given lambda
%% isolating desired wavelengths in data
lower lam = 4;
upper_lam = 25;
condition = (lam >= lower_lam) & (lam <= upper_lam);</pre>
[row indices, col indices] = find(condition);
col start = col indices(1);
col end = col indices(21000);
% k nu table column numbers we're interested in: 2421 -> 23420
wavelength indices = 2421:23420;
lambda_4_25 = lam(wavelength_indices);
% create arrays to hold new wavelength data
chi water = zeros(size(wavelength indices));
transmission water = zeros(size(wavelength indices));
chi carbon = zeros(size(wavelength indices));
transmission carbon = zeros(size(wavelength indices));
%% loop through chi integration and transmission conversion for each wavelength
totalTimeStart = tic;
for i = 1:length(wavelength_indices)
    k nu value water = k nu table(2, wavelength indices(i));
    k_nu_value_carbon = k_nu_table(3, wavelength_indices(i));
    integrand_water = @(z) k_nu_value_water * density_water(z);
    integrand carbon = \Theta(z) k nu value carbon * density carbon(z);
    chi_water(i) = integral(integrand_water, 0, 20, 'ArrayValued', true);
    chi_carbon(i) = integral(integrand_carbon, 0, 20, 'ArrayValued', true);
    transmission water(i) = exp(-chi water(i));
    transmission carbon(i) = exp(-chi carbon(i));
    transmission_total(i) = transmission_water(i) * transmission_carbon(i);
%#ok<SAGROW>
end
totalTimeElapsed = toc(totalTimeStart);
fprintf('Total elapsed time: %.2f seconds\n', totalTimeElapsed);
figure;
transmission_water_filt = TransFilter(1e4./lam,transmission_water,5);
plot(lam(col_start:col_end), transmission_water_filt);
xlabel('Wavelength (\mum)');
ylabel('Transmission');
title('Transmission of Water Vapor vs. Wavelength');
```

```
figure:
transmission carbon filt = TransFilter(1e4./lam,transmission carbon,5);
plot(lam(col_start:col_end), transmission_carbon_filt);
xlabel('Wavelength (\mum)');
ylabel('Transmission');
title('Transmission of Carbon vs. Wavelength');
figure;
transmission total filt = TransFilter(1e4./lam,transmission total,5);
plot(lam(col_start:col_end), transmission_total_filt);
xlabel('Wavelength (\mum)');
ylabel('Transmission');
title('Transmission of Carbon and Water vs. Wavelength');
QUESTION 2:
h = 6.626e-34; % joule's constant [J*s]
c = 3.0e8;
            % [m/s]
k = 1.38e-23; % boltzmann constant [J/K]
              % temp [K]
T = 288;
% wavelength range in meters
lambda = linspace(4e-6, 25e-6, length(wavelength_indices));
lambda_um = lambda * 1e6;
nu = c ./ lambda;
% BB spectra
B nu = 2 * h * nu.^3 ./ (c^2.*(exp((h .* nu) ./ (k * T)) - 1));
B_{lam} = (2 * h * c^2) ./ (lambda.^5 .* (exp((h * c) ./ (lambda * k .* T)) - 1));
transmission_B_nu = B_nu .* transmission_total;
transmission B lam = B lam .* transmission total;
% plot1:
figure;
plot(nu, B_nu, 'y', 'LineWidth', 2);
hold on
x_shade_1 = [nu, fliplr(nu)];
y shade 1 = [B nu, zeros(size(B nu))];
y_shade_2 = [transmission_B_nu, zeros(size(transmission_B_nu))];
fill(x_shade_1, y_shade_1, 'b', 'FaceAlpha', 0.3);
fill(x_shade_1, y_shade_2, 'y', 'FaceAlpha', 0.3);
xlabel('Frequency (\mu hz)');
ylabel('Spectral Radiance (W/m^2/sr/hz)');
title('Blackbody Spectrum (B_{\nu})');
legend('B_{\nu}', 'Envelope','Transmitted radiation thru atmosphere');
hold off;
% plot2:
figure;
plot(lambda_um, B_lam, 'y', 'LineWidth', 2);
hold on
x_shade_2 = [lambda_um, fliplr(lambda_um)];
```

```
y shade2 1 = [B lam, zeros(size(B lam))];
y_shade2_2 = [transmission_B_lam, zeros(size(transmission_B_lam))];
fill(x_shade_2, y_shade2_1, 'b', 'FaceAlpha', 0.3);
fill(x_shade_2, y_shade2_2, 'y', 'FaceAlpha', 0.3);
xlabel('Wavelength (\mu m)');
ylabel('Spectral Radiance (W/m^2/sr/\mum)');
title('Blackbody Spectrum (B_{\lambda})');
legend('B_{\lambda}', 'Envelope','Transmitted radiation thru atmosphere');
hold off;
QUESTION 3:
R = 8.314;
carbon_concentration_PI = 287;
chi carbon PI = zeros(size(wavelength indices));
transmission carbon PI = zeros(size(wavelength indices));
transmission total PI = zeros(size(wavelength indices));
transmission difference = zeros(size(wavelength indices));
for i = 1:length(wavelength_indices)
    k_nu_value_carbon = k_nu_table(3, wavelength_indices(i));
    carbon_function_287 = @(z) k_nu_value_carbon * density_carbon(z,
carbon concentration PI);
    chi_carbon_PI(i) = integral(carbon_function_287, 0, 20, 'ArrayValued', true);
    transmission_carbon_PI(i) = exp(-chi_carbon_PI(i));
    transmission total PI(i) = transmission water(i) * transmission carbon PI(i);
    transmission_difference(i) = abs(transmission_total(i) -
transmission total PI(i));
end
figure;
d = TransFilter(1e4./lam,transmission_carbon_PI,5)
plot(lambda_um, d, 'r', 'DisplayName', '415 ppm');
hold on;
plot(lambda_um, transmission_carbon_filt, 'b', 'DisplayName', '287 ppm');
xlabel('Wavelength (\mum)');
ylabel('Transmission');
title('Transmission of Carbon Dioxide vs. Wavelength');
legend;
figure;
e = TransFilter(1e4./lam, transmission difference, 5);
plot(lambda_um, e, 'g');
xlabel('Wavelength (\mum)');
ylabel('Difference in Transmissivity');
title('Difference in Combined Transmissivity (415 ppm - 287 ppm CO2)');
QUESTION 4:
B lam = \Omega(\text{lambda}) (2 * h * (c*10^6)^2) ./ (lambda.^5 .* (exp((h * (c*10^6)) ./
(lambda * k .* T)) - 1));
E_b = pi .* integral(B_lam, 4, 25)/(10^{-6})^2;
E_b_atmosphere = E_b * mean(transmission_total);
```

```
absorptivity = 1 - mean(transmission total);
disp(['Total emisson from surface [W/m^2]: ', num2str(E_b)]);
disp(['Total transmission thru atmosphere [W/m^2]: ', num2str(E_b_atmosphere)]);
disp(['Absorbance value: ', num2str(absorptivity)]);
QUESTION 5:
ppm_range = 100:50:900;
chi_carbon_range = zeros(length(ppm_range),length(wavelength_indices));
transmission carbon range = zeros(length(ppm range),length(wavelength indices));
transmission total range = zeros(length(ppm range),length(wavelength indices));
for i=1:length(ppm_range)
    for j = 1:length(wavelength indices)
        k_nu_carbon_value = k_nu_table(3, wavelength_indices(j));
        chi_carbon_range(i, j) = integral(@(z) k_nu_carbon_value * density_carbon(z,
ppm_range(i)), 0, 20, 'ArrayValued', true);
        transmission_carbon_range(i, j) = exp(-chi_carbon_range(i, j));
        transmission total range(i, j) = transmission water(j) *
transmission_carbon_range(i, j);
    end
end
E_b_atmosphere_287 = E_b * mean(transmission_total_PI);
mean transmission total = mean(transmission total range,2);
E b atmosphere = E b * mean transmission total;
forcing = E b atmosphere 287 - E b atmosphere;
figure;
plot(ppm_range, E_b_atmosphere);
xlabel('carbon dioxide concentration [ppm]');
ylabel('transmitted radiation [W/m2]');
title('Transmitted Radiation vs. Carbon Dioxide Concentration');
grid on;
figure;
plot(ppm_range, forcing);
xlabel('carbon dioxide concentration [ppm]');
ylabel('radiation forcing [W/m2]');
title('Radiation Forcing vs. Carbon Dioxide Concentration');
grid on;
```

ALL FUNCTIONS USED:

```
%% temperature as function of z
function T = temp(z)
    if z<=11
        T = (292 - 6.5 * z);
    elseif (11<z) & (z<=20) %#ok<AND2>
        T = 216.5;
    elseif z>20
        T = (216.5 + 1) * (z - 20);
    end
end
%% carbon density as function of z and ppm
function rho c ppm = density carbon(z, ppm)
    R = 8.314;
    T = temp(z);
    rho_c_ppm = (ppm * 6.022e23) / (R * T);
end
%% water number density as function of z
function rho w = density water(z)
    T = temp(z);
    RH = 0.5;
    R = 8.314;
    if T >= 0
        P_sat = 0.61121 * exp((18.678 - (T/234.5))*(T / (257.14 + T)));
    else
        P_{\text{sat}} = 0.61115 * exp((23.036 - (T/333.7))*(T / (279.82 + T)));
    end
    P_vap = RH * P_sat;
    rho_w_mol = P_vap / (R * (T+273.15));
    rho_w = rho_w_mol * 6.022e26;
end
%% carbon number density as function of z
function rho_c = density_carbon(z)
    carbon concentration = 415;
    R = 8.314;
    T = temp(z);
    rho_c = (carbon_concentration * 6.022e23) / (R * T);
end
```