

234/345

a-d, i, q-u (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 4.

j-m (independently selected) = 0 or 1.

n, v-y = 0; z = 0 or 1; R = polymer, toxin, radioisotope-complex, drug, glycoconjugate.

R' = H, sugar, glycoconjugate.

z

FIG. 51A

235/345

CHO, BHK, 293 cells, Vero or transgenic animal expressed Rituxan.

a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0; q, z = 1.

↓
 1. galactosyltransferase, UDP-Gal
 2. CMP-SA-toxin, ST3Gal3

a, c, i, j, l (independently selected) = 0 or 1;
e, g, r, t = 1;
f, h, k, m, n, s, u-y = 0; q, z = 1;
v-y (independently selected) = 1,
when j, l (independently selected) is 1;
R = toxin.

FIG. 51B

CHO, BHK, 293 cells, Vero or fungal expressed Rituxan.

a, c, e, g, i, r, t (independently selected) = 0 or 1;
b, d, f, h, j-m, n, s, u-y = 0; q, z = 1.

↓
 1. galactosyltransferase,
 UDP-Gal-drug

a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, j-m, n, s, u-y = 0; q, z = 1;
v-y (independently selected) = 1,
when a, c (independently selected) is 1;
R = toxin.

FIG. 51C

236/345

Fungi expressed Rituxan.
e, g, i, r, t (independently selected) = 0 or 1;
a-d, f, h, j-m, n, s, u-y = 0; q, z = 1.

↓

1. Endo-H
2. Galactosyltransferase, UDP-Gal
3. CMP-SA-radioisotope complex, ST3Gal3

a-m, r-z= 0; q, n = 1;
 $R' = -\text{Gal-Sia-radioisotope complex.}$

FIG. 51D

237/345

a-d, i, q-u (independently selected) = 0 or 1.

e-h (independently selected) = 0 to 4.

j-m (independently selected) = 0 or 1.

n, v-y = 0; z = 0 or 1;

R = polymer, toxin, radioisotope-complex, drug,
glycoconjugate, mannose, oligo-mannose.

R' = H, glycosyl residue, modifying group, glycoconjugate.

FIG. 51E

238/345

CHO, BHK, 293 cells, Vero or transgenic animal expressed Rituxan.

a, c, i (independently selected) = 0 or 1;
e, g, r, t = 1; b, d, f, h, j-m, n, s, u-y = 0;
q, z = 1.

↓
1. galactosyltransferase, UDP-Gal
2. CMP-SA-PEG, ST3Gal3

a, c, i, j, l (independently selected) = 0 or 1;
e, g, r, t = 1; f, h, k, m, n, s, u-y = 0;
q, z = 1; v-y (independently selected) = 1,
when j, l (independently selected) is 1;
R = PEG.

FIG. 51F

Fungi, yeast or CHO expressed Rituxan.

e, g, i, r, t, v, x (independently selected) = 0 or 1;
a-d, f, h, j-m, n, s, u, w, y = 0; q, z = 1;
R (independently selected) = mannose, oligomannose,
polymannose.

↓
1. mannosidases (alpha and beta)
2. GNT-I,II, UDP-GlcNAc
3. Galactosyltransferase, UDP-Gal-radioisotope

a-m, r-z= 0; q, n = 1;
R' = -Gal-radioisotope complex.

FIG. 51G

239/345

FIG. 52A

ACCCCCCTGGGCCCTGCCAGCTCCCTGCCAGAGCTTCCTGCTCAAT
GCTTAGAGCAAGTGAGGAAGATCCAGGGCGATGGCGCAGCGCTCCAG
GAGAAGCTGTGTGCCACCTACAAGCTGTGCCACCCGAGGGAGCTGGT
GCTGCTCGAACACTCTCTGGCATCCCTGGCTCCCTGAGCAGCTG
CCCCAGCCAGGCCCTGCAGCTGGCAGGCTGCTGAGCCAACCTCCATA
GCGGCCTTTCCTCTACCAGGGCTCCTGCAGGCCCTGGAAGGGATCT
CCCCCGAGTTGGGTCCCACCTGGACACACTGCAGCTGGACGTCGCCG
ACTTTGCCACCACCATCTGGCAGCAGATGGAAGAACTGGGAATGGCC
CCTGCCCTGCAGCCCACCCAGGGTGCATGCCGGCCTCGCCTTGCT
TTCCAGCGCCGGGCAGGAGGGTGCCTGGTGCCTCCATCTGCAGAG
CTTCCTGGAGGTGTCGTACCGCGTTCTACGCCACCTGCCAGCCCTG
A

FIG. 52B.

Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu Glu
Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu Cys Ala Thr
Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile Pro
Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser
Gln Leu His Ser Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile
Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe
Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln Pro
Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg Arg Ala Gly Gly Val
Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu Arg His
Leu Ala Gln Pro

240/345

FIG. 53A

GCGCCTTATGTACCCACAAAAATCTATTTCAAAAAAGTTGCTCTA
AGAATATAGTTATCAAGTTAAGTAAAATGTCAATAGCCTTTAATTAA
ATTTTAATTGTTTATCATTCTTGCAATAATAAAACATTAACTTTAT
ACTTTTAATTAAATGTATAGAATAGAGATATACATAGGATATGTAAA
TAGATACACAGTGTATATGTGATTAAAATATAATGGGAGATTCAATC
AGAAAAAAAGTTCTAAAAAAGGCTCTGGGTAAAAGAGGAAGGAAAC
AATAATGAAAAAAATGTGGTGAGAAAAACAGCTGAAAACCCATGTA
AAGAGTGTATAAAGAAAGCAAAAAGAGAAGTAGAAAGTAACACAGG
GGCATTTGGAAAATGTAAACGAGTATGTCCTATTAGGCTAGGC
ACAAAGCAAGGTCTTCAGAGAACCTGGAGCCTAAGGTTAGGCTCAC
CCATTCAACCAGTCTAGCAGCATCTGCAACATCTACAATGGCCTTGA
CCTTGCTTACTGGTGGGCCCTCTGGTGCTCAGCTGCAAGTCAAGCT
GCTCTGTGGGCTGTGATCTGCCTCAAACCCACAGCCTGGTAGCAGG
AGGACCTTGA TGCTCCTGGCACAGATGAGGAGAATCTCTTTCTCC
TGCTTGAAGGACAGACATGACTTGGATTCCCCAGGAGGAGTTGG
CAACCAGTCCA AAAAGGCTGAAACCATCCCTGTCCATGAGATGA
TCCAGCAGATCTTCAATCTCTCAGCACAAAGGACTCATGCTGCTT
GGGATGAGACCCCTCCTAGACAAATTCTACACTGAACCTACCAAGCAG
CTGAATGACCTGGAAAGCCTGTGATACAGGGGTGGGGTGACAGA
GAATCCCCTGATGAAGGAGGACTCCATTCTGGCTGTGAGGAAATACT
TCCAAGAACATCACTCTCATCTGAAAGAGAAGAAATACAGCCCTGT
GCCTGGAGGTTGTCAGAGCAGAAATCATGAGATCTTTCTTGTCA
ACAAACTTGCAAGAAAGTTAAGAAGTAAGGAATGAAAACGGTTCA
ACATGGAAATGATTTCATTGATTGTGATGCCAGCTCACCTTTATG
ATCTGCCATTCAAAGACTCATGTTCTGCTATGACCATGACACGATT
TAAATCTTCAAATGTTAGGAGTATTAATCAACATTGTATTCAG
CTCTTAAGGCAGTAGTCCCTACAGAGGACATGCTGACTGATCCATT
ATCTATTAAATATTTAAAATATTATTATTAACATTATAAAAC
AACTTATTGGTCAATTATGTGATGTGACCTTGACAGTGGTTA
ATGTAATAAAATGTGTTCTTGTATTGGTAAATTATTTGTGTT
CATTGAACCTTGCTATGGAACCTTGTACTGTTATTCTTAAAATG
AAATTCCAAGCCTAATTGTGCAACCTGATTACAGAATAACTGGTACA
CTTCATTGTCCATCAATATTATATTCAAGATATAAGTAAAATAAAC
TTCTGTAAACCAAGTTGTATGTTACTCAAGATAACAGGGTGAACC
TAACAAATACAATTCTGCTCTTGATTTGATTTGTATGAAAAA
AAACTAAAAATGGTAATCATACTTAATTATCAGTTATGGTAAATGGT
ATGAAGAGAAGAAGGAACG

241/345

FIG. 53B

Met Ala Leu Thr Phe Ala Leu Leu Val Ala Leu Leu Val Leu Ser Cys Lys Ser Ser Cys Ser Val Gly Cys Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Ile Gln Gly Val Gly Val Thr Glu Thr Pro Leu Met Lys Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu Gln Glu Ser Leu Arg Ser Lys Glu

242/345

FIG. 54A

ATGACCAACAAGTGTCTCCTCCAAATTGCTCTCCTGTTGCTTCTCC
 ACTACAGCTCTTCCATGAGCTACAACCTGCTGGATTCCCTACAAAGA
 AGCAGCAATTTCAGTGTCAAGAAGCTCCTGTGGCAATTGAATGGGAG
 GCTTGAATATTGCCTCAAGGACAGGATGAACTTGTACATCCCTGAGG
 AGATTAAGCAGCTGCAGCAGTCCAGAAGGAGGACGCCGCATTGACC
 ATCTATGAGATGCTCCAGAACATCTTGCTATTTCAGACAAGATTCA
 TCTAGCACTGGCTGGAATGAGACTATTGTTGAGAACCTCCTGGCTAA
 TGTCTATCATCAGATAAACCATCTGAAGACAGTCCTGGAAGAAAAAC
 TGGAGAAAGAAGATTACCAAGGGAAAACATCATGAGCAGTCTGCAC
 CTGAAAAGATAATTGGGAGGATTCTGCATTACCTGAAGGCCAAGGA
 GTACAGTCACTGTGCCTGGACCATAGTCAGAGTGGAAATCCTAAGGA
 ACTTTACTTCATTAACAGACTTACAGGTTACCTCCGAAACTGAAGAT
 CTCCTAGCCTGTCCCTCTGGACTGGACAATTGCTCAAGCATTCTC
 AACCAAGCAGATGCTTTAAGTGACTGATGGCTAATGTACTGCAAAT
 GAAAGGACACTAGAAGATTGAAATTAAATTATGAGTTATT
 TTTATTAT TTAAATTATTTGGAAAATAAATTATTTGGTGC

FIG. 54B

Met Thr Asn Lys Cys Leu Leu Gln Ile Ala Leu Leu Cys Phe Ser Thr Thr Ala
 Leu Ser Met Ser Tyr Asn Leu Leu Gly Phe Leu Gln Arg Ser Ser Asn Phe Gln
 Cys Gln Lys Leu Leu Trp Gln Leu Asn Gly ArgLeu Glu Tyr Cys Leu Lys Asp
 Arg Met Asn Phe Asp Ile Pro Glu Glu Ile Lys Gln Leu Gln Gln Phe Gln Lys Glu
 Asp Ala Ala Leu Thr Ile Tyr Glu Met Leu Gln Asn Ile Phe Ala Ile Phe Arg Gln
 Asp Ser Ser Ser Thr Gly Trp Asn Glu Thr Ile Val Glu Asn Leu Leu Ala Asn Val
 Tyr His Gln Ile Asn His Leu Lys Thr Val Leu Glu Glu Lys Leu Glu Lys Glu Asp
 Phe Thr Arg Gly Lys Leu Met Ser Ser Leu His Leu Lys Arg Tyr Tyr Gly Arg Ile
 Leu His Tyr Leu Lys Ala Lys Glu Tyr Ser His Cys Ala Trp Thr Ile Val Arg Val
 Glu Ile Leu Arg Asn Phe Tyr Phe Ile Asn Arg Leu Thr Gly Tyr Leu Arg Asn

243/345

FIG. 55A

ATGGTCTCCCAGGCCCTCAGGCTCCTCTGCCTCTGCTTGGGCTTCAG
GGCTGCCTGGCTGCAGTCTCGTAACCCAGGAGGAAGCCACGGCGT
CCTGCACCAGCGCCGGCGGCCAACCGTCTGGAGGAGCTGCAGC
CGGGCTCCCTGGAGAGGGAGTGCAAGGAGGAGCAGTGCTCCTTCGA
GGAGGCCCGGGAGATCTCAAGGACGCCGGAGAGGACGAAGCTGTT
TGGATTCTTACAGTGATGGGGACCAAGTGTGCCTCAAGTCCATGCCA
GAATGGGGGCTCCTGCAAGGACCAAGCTCCAGTCCTATATCTGCTTCT
GCCTCCCTGCCTCGAGGGCCGAACTGTGAGACGCACAAGGATGAC
CAGCTGATCTGTGTGAACGAGAACGGCGGCTGTGAGCAGTACTGCAG
TGACCACACGGGACCAAGCGCTCTGCGGTGCCACGAGGGGTACT
CTCTGCTGGCAGACGGGTGTGCACACCCACAGTTGAATATCCA
TGTGGAAAAATACCTATTCTAGAAAAAAGAAATGCCAGCAAACCCCA
AGGCCGAATTGTGGGGGCAAGGTGTGCCCAAAGGGAGTGTCCA
TGGCAGGTCCCTGTTGGTGAATGGAGCTCAGTTGTGTGGGGGAC
CCTGATCAACACCATCTGGGTGGTCTCCGCCGGCCACTGTTCGACAA
AATCAAGAACTGGAGGAACCTGATCGCGGTGCTGGCGAGCACGAC
CTCAGCGAGCACGACGGGATGAGCAGAGCCGGGGTGGCGCAGG
TCATCATCCCCAGCACGTACGTCCCCGGCACCAACGACATC
GCGCTGCTCCGCCTGCACCAGCCGTGGCTCCTCACTGACCATGTGGTG
CCCCCTGCCTGCCGAACGGACGTTCTCTGAGAGGACGCTGGCCTTC
GTGCGCTTCTCATTGGTCAGCGGCTGGGCCAGCTGCTGGACCGTGG
CGCCACGGCCCTGGAGCTCATGGTGCTCAACGTGCCCGGCTGATGA
CCCAGGACTGCCTGCAGCAGTCACGGAAGGTGGAGACTCCCCAAAT
ATCACGGAGTACATGTTCTGTGCCGGCTACTCGGATGGCAGCAAGGA
CTCCTGCAAGGGGGACAGTGGAGGCCACATGCCACCCACTACCGGG
GCACGTGGTACCTGACGGCATCGTCAGCTGGGCCAGGGCTGCGCA
ACCGTGGGCCACTTGGGGTGTACACCAGGGTCTCCCAGTACATCGA
GTGGCTGCAAAAGCTCATGCGCTCAGAGCCACGCCAGGAGTCCTCC
TGCGAGCCCCATTCCC

244/345

FIG. 55B

Met Val Ser Gln Ala Leu Arg Leu Leu Cys Leu Leu Leu Gly Leu Gln Gly Cys
Leu Ala Ala Val Phe Val Thr Gln Glu Glu Ala His Gly Val Leu His Arg Arg Arg
Arg Ala Asn Ala Phe Leu Glu Glu Leu Arg Pro Gly Ser Leu Glu Arg Glu Cys
Lys Glu Glu Gln Cys Ser Phe Glu Glu Ala Arg Glu Ile Phe Lys Asp Ala Glu Arg
Thr Lys Leu Phe Trp Ile Ser Tyr Ser Asp Gly Asp Gln Cys Ala Ser Ser Pro Cys
Gln Asn Gly Gly Ser Cys Lys Asp Gln Leu Gln Ser Tyr Ile Cys Phe Cys Leu Pro
Ala Phe Glu Gly Arg Asn Cys Glu Thr His Lys Asp Asp Gln Leu Ile Cys Val
Asn Glu Asn Gly Gly Cys Glu Gln Tyr Cys Ser Asp His Thr Gly Thr Lys Arg
Ser Cys Arg Cys His Glu Gly Tyr Ser Leu Leu Ala Asp Gly Val Ser Cys Thr Pro
Thr Val Glu Tyr Pro Cys Gly Lys Ile Pro Ile Leu Glu Lys Arg Asn Ala Ser Lys
Pro Gln Gly Arg Ile Val Gly Gly Lys Val Cys Pro Lys Gly Glu Cys Pro Trp Gln
Val Leu Leu Leu Val Asn Gly Ala Gln Leu Cys Gly Gly Thr Leu Ile Asn Thr Ile
Trp Val Val Ser Ala Ala His Cys Phe Asp Lys Ile Lys Asn Trp Arg Asn Leu Ile
Ala Val Leu Gly Glu His Asp Leu Ser Glu His Asp Gly Asp Glu Gln Ser Arg
Arg Val Ala Gln Val Ile Ile Pro Ser Thr Tyr Val Pro Gly Thr Thr Asn His Asp
Ile Ala Leu Leu Arg Leu His Gln Pro Val Val Leu Thr Asp His Val Val Pro Leu
Cys Leu Pro Glu Arg Thr Phe Ser Glu Arg Thr Leu Ala Phe Val Arg Phe Ser
Leu Val Ser Gly Trp Gly Gln Leu Leu Asp Arg Gly Ala Thr Ala Leu Glu Leu
Met Val Leu Asn Val Pro Arg Leu Met Thr Gln Asp Cys Leu Gln Gln Ser Arg
Lys Val Gly Asp Ser Pro Asn Ile Thr Glu Tyr Met Phe Cys Ala Gly Tyr Ser Asp
Gly Ser Lys Asp Ser Cys Lys Gly Asp Ser Gly Gly Pro His Ala Thr His Tyr Arg
Gly Thr Trp Tyr Leu Thr Gly Ile Val Ser Trp Gly Gln Gly Cys Ala Thr Val Gly
His Phe Gly Val Tyr Thr Arg Val Ser Gln Tyr Ile Glu Trp Leu Gln Lys Leu Met
Arg Ser Glu Pro Arg Pro Gly Val Leu Leu Arg Ala Pro Phe Pro

245/345

FIG. 56A

ATGCAGCGCGTGAACATGATCATGGCAGAACATCACCAAGCCTCATCAC
CATCTGCCTTTAGGATATCTACTCAGTGCTGAATGTACAGTTTCTT
GATCATGAAAACGCCAACAAAATTCTGAATCGGCCAAAGAGGTATAA
TTCAGGTAAATTGGAAGAGTTGTTCAAGGGAACCTTGAGAGAGAAT
GTATGGAAGAAAAGTGTAGTTGAAGAACACGAGAAGTTTGAA
AACACTGAAAAGACAACACTGAATTGGAAGCAGTATGTTGATGGAGA
TCAGTGTGAGTCCAATCCATGTTAAATGGCGGCAGTTGCAAGGATG
ACATTAATTCTATGAATGTTGGTGTCCCTTGGATTGAAGGAAAGA
ACTGTGAATTAGATGTAACATGTAACATTAAGAATGGCAGATGCGAG
CAGTTTGTAAAAATAGTGCTGATAACAAAGGTGGTTGCTCCTGTACT
GAGGGATATCGACTTGCAGAAAACCAGAAGTCCTGTGAACCAGCAGT
GCCATTCCATGTGGAAGAGTTCTGTTCACAAACTCTAACGCTCAC
CCGTGCTGAGGCTGTTCTGATGTGGACTATGTAATCCTACTGA
AGCTGAAACCATTGGATAACATCACTCAAGGCACCCAAATCTTAA
ATGACTTCACTCGGGTTGTTGGAGAAGATGCCAAACCAGGTCAA
TTCCCTGGCAGGTTGTTGAATGGTAAAGTTGATGCATTCTGTGGA
GGCTCTATCGTTAATGAAAAATGGATTGTAACTGCTGCCACTGTGTT
GAAACTGGTGTAAAATTACAGTTGTCGCAGGTGAACATAATTGA
GGAGACAGAACATACAGAGCAAAAGCGAAATGTGATTGAGCAATT
ATTCCCTACCACAACTACAATGCAGCTATTAATAAGTACAACCATGA
CATTGCCCTCTGGAACTGGACGAACCCCTAGTGCTAACAGCTACG
TTACACCTATTGCATTGCTGACAAGGAATACACGAACATCTCCTCA
AATTGGATCTGGCTATGTAAGTGGCTGGCAAGAGTCTTCCACAA
GGGAGATCAGCTTAGTTCTCAGTACCTAGAGTTCCACTGTTGAC
CGAGCCACATGTCTCGATCTACAAAGTCACCATCTATAACACAT
GTTCTGTGCTGGCTTCCATGAAGGAGGTAGAGATTGATGTCAAGGAG
ATAGTGGGGGACCCATGTTACTGAAGTGGAAAGGGACCAGTTCTTA
ACTGGAATTATTAGCTGGGGTGAAGAGTGTGCAATGAAAGGCAAATA
TGGAATATACCAAGGTATCCCGGTATGTCAACTGGATTAAGGAAA
AAACAAAGCTCACTTAATGAAAGATGGATTCCAAGGTTAATTCA
GGAATTGAAAATTAACAG

246/345

FIG. 56B

Met Gln Arg Val Asn Met Ile Met Ala Glu Ser Pro Ser Leu Ile Thr Ile Cys Leu
Leu Gly Tyr Leu Leu Ser Ala Glu Cys Thr Val Phe LeuAsp His Glu Asn Ala
Asn Lys Ile Leu Asn Arg Pro Lys Arg Tyr Asn Ser Gly Lys Leu Glu Glu Phe
Val Gln Gly Asn Leu Glu Arg Glu Cys Met Glu Glu Lys Cys Ser Phe Glu Glu
Pro Arg Glu Val Phe Glu Asn Thr Glu Lys Thr Thr Glu Phe Trp Lys Gln Tyr
Val Asp Gly Asp Gln Cys Glu Ser Asn Pro Cys Leu Asn Gly Gly Ser Cys Lys
Asp Asp Ile Asn Ser Tyr Glu Cys Trp Cys Pro Phe Gly Phe Glu Gly Lys Asn
Cys Glu Leu Asp Val Thr Cys Asn Ile Lys Asn Gly Arg Cys Glu Gln Phe Cys
Lys Asn Ser Ala Asp Asn Lys Val Val Cys Ser Cys Thr Glu Gly Tyr Arg Leu
Ala Glu Asn Gln Lys Ser Cys Glu Pro Ala Val Pro Phe Pro Cys Gly Arg Val Ser
Val Ser Gln Thr Ser Lys Leu Thr Arg Ala Glu Ala Val Phe Pro Asp Val Asp Tyr
Val Asn Pro Thr Glu Ala Glu Thr Ile Leu Asp Asn Ile Thr Gln Gly Thr Gln Ser
Phe Asn Asp Phe Thr Arg Val Val Gly Gly Glu Asp Ala Lys Pro Gly Gln Phe
Pro Trp Gln Val Val Leu Asn Gly Lys Val Asp Ala Phe Cys Gly Gly Ser Ile Val
Asn Glu Lys Trp Ile Val Thr Ala Ala His Cys Val Glu Thr Gly Val Lys Ile Thr
Val Val Ala Gly Glu His Asn Ile Glu Glu Thr Glu His Thr Glu Gln Lys Arg Asn
Val Ile Arg Ala Ile Ile Pro His His Asn Tyr Asn Ala Ala Ile Asn Lys Tyr Asn
His Asp Ile Ala Leu Leu Glu Leu Asp Glu Pro Leu Val Leu Asn Ser Tyr Val Thr
Pro Ile Cys Ile Ala Asp Lys Glu Tyr Thr Asn Ile Phe Leu Lys Phe Gly Ser Gly
Tyr Val Ser Gly Trp Ala Arg Val Phe His Lys Gly Arg Ser Ala Leu Val Leu Gln
Tyr Leu Arg Val Pro Leu Val Asp Arg Ala Thr Cys Leu Arg Ser Thr Lys Phe
Thr Ile Tyr Asn Asn Met Phe Cys Ala Gly Phe His Glu Gly Gly Arg Asp Ser
Cys Gln Gly Asp Ser Gly Gly Pro His Val Thr Glu Val Glu Gly Thr Ser Phe Leu
Thr Gly Ile Ile Ser Trp Gly Glu Glu Cys Ala Met Lys Gly Lys Tyr Gly Ile Tyr
Thr Lys Val Ser Arg Tyr Val Asn Trp Ile Lys Glu Lys Thr Lys Leu Thr

247/345

FIG. 57A

ATGGATTACTACAGAAAATATGCAGCTATCTTCTGGTCACATTGTCG
GTGTTCTGCATGTTCTCATTCCGCTCCTGATGTGCAGGATTGCCCA
GAATGCACGCTACAGGAAAACCCATTCTCTCCCAGCCGGGTGCCCA
AATACTTCAGTGCATGGGCTGCTCTAGAGCATATCCCACTCC
ACTAAGGTCCAAGAACGATGTTGGTCCAAAAGAACGTCACCTCAG
AGTCCACTTGCTGTGTAGCTAAATCATATAACAGGGTCACAGTAATG
GGGGGTTCAAAGTGGAGAACCACACGGCGTGCCACTGCAGTACTG
TTATTATCACAAATCTAAATGTTTACCAAGTGCTGTCTGATGACT
GCTGATTTCTGGAATGGAAAATTAAGTTGTTAGTGTATGGCTTT
GTGAGATAAAACTCTCCTTCTTACCATACCACCTTGACACGCTTC
AAGGATATACTGCAGCTTACTGCCTCCTCCTATCCTACAGTACAA
TCAGCAGTCTAGTTCTTCAATTGGAATGAATACAGCATTAAAGCTTG
TTCCACTGCAAATAAGCCTTTAAATCATC

FIG. 57B

Met Asp Tyr Tyr Arg Lys Tyr Ala Ala Ile Phe Leu Val Thr Leu Ser Val Phe Leu
His Val Leu His Ser Ala Pro Asp Val Gln Asp Cys Pro Glu Cys Thr Leu Gln Glu
Asn Pro Phe Phe Ser Gln Pro Gly Ala Pro Ile Leu Gln Cys Met Gly Cys Cys Phe
Ser Arg Ala Tyr Pro Thr Pro Leu Arg Ser Lys Lys Thr Met Leu Val Gln Lys Asn
Val Thr Ser Glu Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met
Gly Gly Phe Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr Tyr His
Lys Ser

248/345

FIG. 57C

ATGAAGACACTCCAGTTTCTTCCTTCTGTTGGAAAGCAATC
TGCTGCAATAGCTGTGAGCTGACCAACATCACCATTGCAATAGAGAA
AGAAGAACATGTCGTTCTGCATAAGCATCAACACCACTGGTGTGCTG
GCTACTGCTACACCAGGGATCTGGTGTATAAGGACCCAGGCCAGGCC
AAAATCCAGAAAACATGTACCTCAAGGAACGGTATATGAAACAGT
GAGAGTGCCGGCTGTGCTCACCATGCAGATTCTGTATACATACCC
AGTGGCCACCCAGTGTCACTGTGGCAAGTGTGACAGCGACAGCACTG
ATTGTACTGTGCAGGCCTGGGCCAGCTACTGCTCCTTGGTGAAA
TGAAAGAATAA

FIG. 57D

Met Lys Thr Leu Gln Phe Phe Leu Phe Cys Cys Trp Lys Ala Ile Cys Cys
Asn Ser Cys Glu Leu Thr Asn Ile Thr Ile Ala Ile Glu Lys Glu Glu Cys Arg Phe
Cys Ile Ser Ile Asn Thr Thr Trp Cys Ala Gly Tyr Cys Tyr Thr Arg Asp Leu Val
Tyr Lys Asp Pro Ala Arg Pro Lys Ile Gln Lys Thr Cys Thr Phe Lys Glu Leu Val
Tyr Glu Thr Val Arg Val Pro Gly Cys Ala His His Ala Asp Ser Leu Tyr Thr Tyr
Pro Val Ala Thr Gln Cys His Cys Gly Lys Cys Asp Ser Asp Ser Thr Asp Cys
Thr Val Arg Gly Leu Gly Pro Ser Tyr Cys Ser Phe Gly Glu Met Lys Glu

249/345

FIG. 58A

CCCGGAGCCGGACCGGGGCCACCGCGCCGCTCTGCTCCGACACCGC
GCCCGCTGGACAGCCGCCCTCTCCCTCCAGGCCGTGGGCTGCCCT
GCACCGCCGAGCTCCCAGGATGAGGGCCCCGGTGTGGTCACCCGG
CGCGCCCCAGGTGCTGAGGGACCCGGCCAGGCGCGAGATGGGG
GTGCACGAATGTCCCTGCCTGGCTGTGGCTTCCTGTCCTGCTGTGCG
CTCCCTCTGGGCCTCCCAGTCCTGGCGCCCCACCACGCCTCATCTGT
GACAGCCGAGTCCTGGAGAGGTACCTCTTGGAGGCCAAGGAGGCCG
AGAATATCACGACGGGCTGTGCTGAACACTGCAGCTGAATGAGAAT
ATCACTGTCCCAGACACCAAAGTTAATTCTATGCCTGGAAGAGGAT
GGAGGTCGGGCAGCAGGCCGTAGAACAGTCTGGCAGGGCCTGGCCTG
CTGTCGGAAGCTGCCTGCAGGCCCTGAGCTGCATGTGGATAAAGCCGTAGTGG
CAGCCGTGGGAGGCCCTGAGCTGCAGCTGCAGGCCAGAAGG
CCTTCGAGCCTCACCACTCTGCTTCGGCTCTGCGAGGCCAGAAGG
AAGCCATCTCCCCTCCAGATGCGGCCTCAGCTGCTCCACTCCGAACA
ATCACTGCTGACACTTCGCAAACACTCTCCGAGTCTACTCCAATTTC
CTCCGGGAAAGCTGAAGCTGTACACAGGGGAGGCCTGCAGGACAG
GGGACAGATGACCAGGTGTCCACCTGGCATATCCACCACTCC
TCACCAACATTGCTTGTGCCACACCCCTCCCCGCCACTCCTGAACCCC
GTCGAGGGCTCTCAGCTCAGGCCAGCCTGCCCAGTGGACACTCCA
GTGCCAGCAATGACATCTCAGGGGCCAGAGGAAGTCCAGAGAGC
AACTCTGAGATCTAAGGATGTACAGGGCAAACCTGAGGGCCCAGAG
CAGGAAGCATTAGCAGAGAGCAGCTTAAACTCAGGGACAGAGCCATG
CTGGGAAGACGCCCTGAGCTCACTCGGCACCTGCAAAATTGATGCC
AGGACACGCTTGGAGGCATTACCTGTTTCGCACCTACCATCAGG
GACAGGATGACCTGGAGAACTTAGGTGGCAAGCTGTGACTCTCCAG
GTCTCACGGGCATGGCACTCCCTGGTGGCAAGAGGCCCTTGACA
CCGGGGTGGTGGAACCATGAAGACAGGATGGGGCTGGCCTCTGG
CTCTCATGGGTCCAAGTTGTGTATTCTCAACCTCATTGACAAGA
ACTGAAACCACCAAAAAAAA

250/345

FIG. 58B

Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Ser Leu Leu Ser
Leu Pro Leu Gly Leu Pro Val Leu Gly Ala Pro Pro Arg Leu Ile Cys Asp Ser
Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Glu Asn Ile Thr Thr
Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys
Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val
Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu
Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser
Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Arg Ala Gln Lys Glu Ala Ile
Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe
Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr
Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg

251/345

FIG. 59A

ATGTGGCTGCAGAGCCTGCTGCTCTGGGACTGTGGCCTGCAGCAT
CTCTGCACCCGCCGCTCGCCCAGCCCCAGCACGCAGCCTGGGAGC
ATGTGAATGCCATCCAGGAGGCCGGCGTCTCCTGAACCTGAGTAGA
GACACTGCTGCTGAGATGAATGAAACAGTAGAAGTCATCTCAGAAAT
GTTGACCTCCAGGAGCCGACCTGCCTACAGACCCGCTGGAGCTGT
ACAAGCAGGGCCTGCGGGGCAGCCTCACCAAGCTCAAGGGCCCTTG
ACCATGATGGCCAGCCACTACAAGCAGCACTGCCCTCCAACCCCGA
AACTCCTGTGCAACCCAGATTATCACCTTGAAAGTTCAAAGAGA
ACCTGAAGGACTTCTGCTTGTCACTCCCTTGACTGCTGGAGCCAG
TCCAGGAGTGA

FIG. 59B

Met Trp Leu Gln Ser Leu Leu Leu Gly Thr Val Ala Cys Ser Ile Ser Ala Pro
Ala Arg Ser Pro Ser Pro Ser Thr Gln Pro Trp Glu His Val Asn Ala Ile Gln Glu
Ala Arg Arg Leu Leu Asn Leu Ser Arg Asp Thr Ala Ala Glu Met Asn Glu Thr
Val Glu Val Ile Ser Glu Met Phe Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg
Leu Glu Leu Tyr Lys Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly Pro
Leu Thr Met Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr Pro Glu Thr Ser
Cys Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn Leu Lys Asp Phe Leu
Leu Val Ile Pro Phe Asp Cys Trp Glu Pro Val Gln Glu

252/345

FIG. 60A

ATGAAATATAACAAGTTATCTGGCTTTCAGCTCTGCATCGTTTG
GGTTCTCTGGCTGTTACTGCCAGGACCCATATGTAAAAGAACAGA
AAACCTTAAGAAATATTTAATGCAGGTCATTAGATGTAGCGGATA
ATGGAACTCTTCTTAGGCATTGAAGAATTGGAAAGAGGGAGAGT
GACAGAAAAATAATGCAGAGCAAATTGTCTCCTTACTCAAAC
TTTAAAAACTTAAAGATGACCAGAGCATCCAAAAGAGTGTGGAGA
CCATCAAGGAAGACATGAATGTCAAGTTTCAATAGCAACAAAAG
AAACGAGATGACTTCGAAAAGCTGACTAATTATTGGTAAGTACT
GAATGTCCAACGCAAAGCAATACATGAACTCATCCAAGTGATGGCTG
AACTGTCGCCAGCAGCTAAAACAGGGAAAGCGAAAAAGGAGTCAGAT
GCTTTCGAGGTCGAAGAGCATCCCAGTAA

FIG. 60B

Met Lys Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Ile Val Leu Gly Ser Leu
Gly Cys Tyr Cys Gln Asp Pro Tyr Val Lys Glu Ala Glu Asn Leu Lys Lys Tyr
Phe Asn Ala Gly His Ser Asp Val Ala Asp Asn Gly Thr Leu Phe Leu Gly Ile
Leu Lys Asn Trp Lys Glu Glu Ser Asp Arg Lys Ile Met Gln Ser Gln Ile Val Ser
Phe Tyr Phe Lys Leu Phe Lys Asn Phe Lys Asp Asp Gln Ser Ile Gln Lys Ser Val
Glu Thr Ile Lys Glu Asp Met Asn Val Lys Phe Phe Asn Ser Asn Lys Lys
Arg Asp Asp Phe Glu Lys Leu Thr Asn Tyr Ser Val Thr Asp Leu Asn Val Gln
Arg Lys Ala Ile His Glu Leu Ile Gln Val Met Ala Glu Leu Ser Pro Ala Ala Lys
Thr Gly Lys Arg Lys Arg Ser Gln Met Leu Phe Arg Gly Arg Arg Ala Ser Gln

253/345

FIG. 61A

CTGGGACAGTGAATCGACAATGCCGTCTCTGTCTCGTGGGGCATCCT
CCTGCTGGCAGGCCTGTGCTGCTGGTCCCTGTCTCCCTGGCTGAGGA
TCCCCAGGGAGATGCTGCCAGAACAGACAGATACTCCCACCATGATC
AGGATCACCCAACCTCAACAAGATCACCCCCAACCTGGCTGAGTTC
GCCTTCAGCCTATACCGCCAGCTGGCACACCAGTCCAACAGCACCAA
TATCTTCTTCTCCCCAGTGAGCATCGCTACAGCCTTGCAATGCTCTC
CCTGGGGACCAAGGCTGACACTCACGATGAAATCCTGGAGGGCTGA
ATTCAACCTCACGGAGATTCCGGAGGGCTCAGATCCATGAAGGCTTC
CAGGAACCTCCTCCGTACCCCTCAACCAGCCAGACAGCCAGCTCCAGCT
GACCACCGGCAATGGCCTGTTCTCAGCGAGGGCTGAAGCTAGTGG
ATAAGTTTGGAGGATGTTAAAAAGTTGTACCACTCAGAACGCCTTC
ACTGTCAACTTCGGGGACACCGAACAGAGGCCAAGAACAGATCAACG
ATTACGTGGAGAAGGGTACTCAAGGGAAAATTGTGGATTGGTCAAG
GAGCTTGACAGAGACACAGTTTGCTCTGGTAATTACATCTTCTT
AAAGGCAAATGGGAGAGACCCCTTGAAGTCAAGGACACCGAGGAAG
AGGACTTCCACGTGGACCAGGTGACCACCGTGAAGGTGCCTATGATG
AAGCGTTAGGCATGTTAACATCCAGCACTGTAAGAACGCTGTCCAG
CTGGGTGCTGCTGATGAAATACCTGGCAATGCCACCGCCATCTTCT
TCCTGCCTGATGAGGGAAACTACAGCACCTGGAAAATGAACACTCACC
CACGATATCATCACCAAGTTCCCTGGAAAATGAAGAACAGAACGGTCTGC
CAGCTTACATTACCCAAACTGTCCATTACTGGAACCTATGATCTGAA
GAGCGTCCTGGGTCAACTGGGCATCACTAACGGTCTCAGCAATGGGG
CTGACCTCTCCGGGGTACAGAGGGAGGCACCCCTGAAGCTCTCCAAG
GCCGTGCATAAGGCTGTGCTGACCATCGACGAGAACAGGACTGAAGC
TGCTGGGGCCATGTTTAGAGGGCCATACCCATGTCTATCCCCCCCAG
GGTCAAGTCAACAAACCCCTTGTCTTAAATGATTGAACAAAATAC
CAAGTCTCCCCTTCAATGGAAAAGTGGTGAATCCCACCCAAAAAT
AACTGCCTCTCGCTCCTCAACCCCTCCCCTCCATCCCTGGCCCCCTCC
CTGGATGACATTAAAGAACGGGTTGAGCTGG

254/345

FIG. 61B

Met Pro Ser Ser Val Ser Trp Gly Ile Leu Leu Leu Ala Gly Leu Cys Cys Leu Val Pro Val Ser Leu Ala Glu Asp Pro Gln Gly Asp Ala Ala Gln Lys Thr Asp Thr Ser His His Asp Gln Asp His Pro Thr Phe Asn Lys Ile Thr Pro Asn Leu Ala Glu Phe Ala Phe Ser Leu Tyr Arg Gln Leu Ala His Gln Ser Asn Ser Thr Asn Ile Phe Phe Ser Pro Val Ser Ile Ala Thr Ala Phe Ala Met Leu Ser Leu Gly Thr Lys Ala Asp Thr His Asp Glu Ile Leu Glu Gly Leu Asn Phe Asn Leu Thr Glu Ile Pro Glu Ala Gln Ile His Glu Gly Phe Gln Glu Leu Leu Arg Thr Leu Asn Gln Pro Asp Ser Gln Leu Gln Leu Thr Thr Gly Asn Gly Leu Phe Leu Ser Glu Gly Leu Lys Leu Val Asp Lys Phe Leu Glu Asp Val Lys Lys Leu Tyr His Ser Glu Ala Phe Thr Val Asn Phe Gly Asp Thr Glu Glu Ala Lys Lys Gln Ile Asn Asp Tyr Val Glu Lys Gly Thr Gln Gly Lys Ile Val Asp Leu Val Lys Glu Leu Asp Arg Asp Thr Val Phe Ala Leu Val Asn Tyr Ile Phe Phe Lys Gly Lys Trp Glu Arg Pro Phe Glu Val Lys Asp Thr Glu Glu Asp Phe His Val Asp Gln Val Thr Thr Val Lys Val Pro Met Met Lys Arg Leu Gly Met Phe Asn Ile Gln His Cys Lys Lys Leu Ser Ser Trp Val Leu Leu Met Lys Tyr Leu Gly Asn Ala Thr Ala Ile Phe Phe Leu Pro Asp Glu Gly Lys Leu Gln His Leu Glu Asn Glu Leu Thr His Asp Ile Ile Thr Lys Phe Leu Glu Asn Glu Asp Arg Arg Ser Ala Ser Leu His Leu Pro Lys Leu Ser Ile Thr Gly Thr Tyr Asp Leu Lys Ser Val Leu Gly Gln Leu Gly Ile Thr Lys Val Phe Ser Asn Gly Ala Asp Leu Ser Gly Val Thr Glu Glu Ala Pro Leu Lys Leu Ser Lys Ala Val His Lys Ala Val Leu Thr Ile Asp Glu Lys Gly Thr Glu Ala Ala Gly Ala Met Phe Leu Glu Ala Ile Pro Met Ser Ile Pro Pro Glu Val Lys Phe Asn Lys Pro Phe Val Phe Leu Met Ile Glu Gln Asn Thr Lys Ser Pro Leu Phe Met Gly Lys Val Val Asn Pro Thr Gln Lys

255/345

FIG. 62A-1

GCTAACCTAGTGCCTATAGCTAAGGCAGGTACCTGCATCCTTGTTTT
GTTTAGTGGATCCTCTATCCTTCAGAGACTCTGGAACCCCTGTGGTCT
TCTCTTCACTTAATGACCCTGAGGGGATGGAGTTCAAGTCCTCCA
GAGAGGAATGTCCAAGCCTTGAGTAGGGTAAGCATCATGGCTGGC
AGCCTCACAGGTTGCTTCACTTCAGGCAGTGTGCGTGGCATCAGGT
GCCCGCCCCCTGCATCCCTAAAAGCTCGGCTACAGCTCGGTGGTGTGT
GTCTGCAATGCCACATACTGTGACTCCTTGACCCCCCGACCTTCCT
GCCCTGGTACCTCAGCCGCTATGAGAGTACACGCAGTGGCGACG
GATGGAGCTGAGTATGGGGCCCATTCCAGGCTAATCACACGGGCACAG
GCCTGCTACTGACCCCTGCAGCCAGAACAGAACAGAAGTCCAGAAAGTGAAG
GGATTGGAGGGGCCATGACAGATGCTGCTGCTCTCAACATCCTGCC
CTGTCACCCCTGCCAAAATTGCTACTTAAATCGTACTTCTTGAA
GAAGGAATCGGATATAACATCATCCGGTACCCATGGCCAGCTGTGA
CTTCTCCATCCGACCTACACCTATGCAGACACCCCTGATGATTCCA
GTTGCACAACCTCAGCCTCCAGAGGAAGATACCAAGCTCAAGATAAC
CCCTGATTCAACGAGCCCTGCAGTTGGCCAGCGTCCGTTCACTCC
TTGCCAGCCCCCTGGACATCACCACTTGGCTCAAGACCAATGGAGCG
GTGAATGGGAAGGGGTCACTCAAGGGACAGCCGGAGACATCTACC
ACCAGACCTGGGCCAGATACTTGTGAAGTTCCTGGATGCCTATGCTG
AGCACAAGTTACAGTCTGGCAGTGACAGCTGAAAATGAGCCTTCT
GCTGGGCTGTTGAGTGGATACCCCTCCAGTGCCTGGCTTCACCCCT
GAACATCAGCGAGACTTCATTGCCGTGACCTAGGTCTACCCCTGCC
AACAGTACTCACCACAATGTCCGCCTACTCATGCTGGATGACCAACGC
TTGCTGCTGCCCACTGGCAAAGGTGGTACTGACAGACCCAGAACG
AGCTAAATATGTTCATGGCATTGCTGTACATTGGTACCTGGACTTCT
GGCTCCAGCCAAAGCCACCCCTAGGGGAGACACACCGCCTGTTCCCCA
ACACCATGCTCTTGCCTCAGAGGCCGTGTGGCTCCAAGTTCTGGG
AGCAGAGTGTGCGGCTAGGCTCTGGATCGAGGGATGCACTACAGC
CACAGCATCATCAGAACCTCCTGTACCATGTGGTGGCTGGACCGAC
TGGAACCTGCCCTGAACCCGAAGGAGGACCCATTGGGTGCGTAA
CTTGTGACAGTCCCATTGTAGACATACCAAGGACACGTTTA
CAAACAGCCCATTGCTACACCTTGGCCACTTCAGCAAGTTCTATTCC
TGAGGGCTCCAGAGAGTGGGCTGGTGCCTAGTCAGAACAGACC
TGGACGCAGTGGCACTGATGCATCCGATGGCTCTGCTGTTGGTGT
TGCTAAACCGCTCCTCTAAGGATGTGCCTCTTACCATCAAGGATCCTG
CTGTGGGCTTCCCTGGAGACAACTCACCTGGCTACTCCATTACACCT
ACCTGTGGCATGCCAGTGATGGAGCAGATACTCAAGGAGGCAGTGG
GCTCAGCCTGGCATTAAAGGGACAGAGTCAGCTCACACGCTGTCTG
TGACTAAAGAGGGCACAGCAGGGCCAGTGTGAGCTACAGCGACGT

256/345

FIG. 62A-2

AAGCCCAGGGCAATGGTTGGGTGACTCACTTCCCTCTAGGTGGT
GCCAGGGCTGGAGGCCCTAGAAAAAGATCAGTAAGCCCCAGTGTC
CCCCCAGCCCCATGCTTATGTGAACATGCGCTGTGCTGCTTGCCTT
TGGAAACT

FIG. 62B

Met Glu Phe Ser Ser Pro Ser Arg Glu Glu Cys Pro Lys Pro Leu Ser Arg Val Ser
Ile Met Ala Gly Ser Leu Thr Gly Leu Leu Leu Gln Ala Val Ser Trp Ala Ser
Gly Ala Arg Pro Cys Ile Pro Lys Ser Phe Gly Tyr Ser Ser Val Val Cys Val Cys
Asn Ala Thr Tyr Cys Asp Ser Phe Asp Pro Pro Thr Phe Pro Ala Leu Gly Thr
Phe Ser Arg Tyr Glu Ser Thr Arg Ser Gly Arg Arg Met Glu Leu Ser Met Gly
Pro Ile Gln Ala Asn His Thr Gly Thr Gly Leu Leu Thr Leu Gln Pro Glu Gln
Lys Phe Gln Lys Val Lys Gly Phe Gly Gly Ala Met Thr Asp Ala Ala Leu
Asn Ile Leu Ala Leu Ser Pro Pro Ala Gln Asn Leu Leu Lys Ser Tyr Phe Ser
Glu Glu Gly Ile Gly Tyr Asn Ile Arg Val Pro Met Ala Ser Cys Asp Phe Ser
Ile Arg Thr Tyr Thr Tyr Ala Asp Thr Pro Asp Asp Phe Gln Leu His Asn Phe Ser
Leu Pro Glu Glu Asp Thr Lys Leu Lys Ile Pro Leu Ile His Arg Ala Leu Gln Leu
Ala Gln Arg Pro Val Ser Leu Leu Ala Ser Pro Trp Thr Ser Pro Thr Trp Leu Lys
Thr Asn Gly Ala Val Asn Gly Lys Gly Ser Leu Lys Gly Gln Pro Gly Asp Ile
Tyr His Gln Thr Trp Ala Arg Tyr Phe Val Lys Phe Leu Asp Ala Tyr Ala Glu
His Lys Leu Gln Phe Trp Ala Val Thr Ala Glu Asn Glu Pro Ser Ala Gly Leu
Leu Ser Gly Tyr Pro Phe Gln Cys Leu Gly Phe Thr Pro Glu His Gln Arg Asp
Phe Ile Ala Arg Asp Leu Gly Pro Thr Leu Ala Asn Ser Thr His His Asn Val Arg
Leu Leu Met Leu Asp Asp Gln Arg Leu Leu Leu Pro His Trp Ala Lys Val Val
Leu Thr Asp Pro Glu Ala Ala Lys Tyr Val His Gly Ile Ala Val His Trp Tyr Leu
Asp Phe Leu Ala Pro Ala Lys Ala Thr Leu Gly Glu Thr His Arg Leu Phe Pro
Asn Thr Met Leu Phe Ala Ser Glu Ala Cys Val Gly Ser Lys Phe Trp Glu Gln Ser
Val Arg Leu Gly Ser Trp Asp Arg Gly Met Gln Tyr Ser His Ser Ile Ile Thr Asn
Leu Leu Tyr His Val Val Gly Trp Thr Asp Trp Asn Leu Ala Leu Asn Pro Glu
Gly Gly Pro Asn Trp Val Arg Asn Phe Val Asp Ser Pro Ile Ile Val Asp Ile Thr
Lys Asp Thr Phe Tyr Lys Gln Pro Met Phe Tyr His Leu Gly His Phe Ser Lys
Phe Ile Pro Glu Gly Ser Gln Arg Val Gly Leu Val Ala Ser Gln Lys Asn Asp Leu
Asp Ala Val Ala Leu Met His Pro Asp Gly Ser Ala Val Val Val Leu Asn
Arg Ser Ser Lys Asp Val Pro Leu Thr Ile Lys Asp Pro Ala Val Gly Phe Leu Glu
Thr Ile Ser Pro Gly Tyr Ser Ile His Thr Tyr Leu Trp His Arg Gln

257/345

FIG. 63A

ATGGATGCAATGAAGAGAGGGCTCTGCTGTGCTGCTGCTGTGG
AGCAGTCTCGTTGCCAGCCAGGAAATCCATGCCGATTCAAGAA
GAGGAGCCAGATCTTACCAAGTGATCTGCAGAGATGAAAAAACGCA
GATGATAACCAGCAACATCAGTCATGGCTGCGCCCTGTGCTCAGAA
GCAACCGGGTCCAATATTGCTGGTGCAACAGTGGCAGGGCACAGTGC
CACTCAGTGCCTGTCAAAAGTTGCAGCGAGCCAAGGTGTTCAACGG
GGGCACCTGCCAGCAGGCCCTGTACTTCTCAGATTGCTGTGCCAGTG
CCCCGAAGGATTGCTGGAAAGTGCTGTGAAATAGATACCAGGGCCA
CGTGCCTACGAGGACCAGGGCATCAGCTACAGGGCACGTGGAGCAC
AGCGGAGAGTGGCGCCAGTGACCAACTGGAACACAGCAGCGCGTTG
GCCAGAAGCCCTACAGCGGGCGGAGGCCAGACGCCATCAGGCTGG
GCCTGGGAACCACAACACTACTGCAGAAACCCAGATCGAGACTCAA
GCCCTGGTGCTACGTCTTAAGGCGGGAAAGTACAGCTCAGAGTTCT
GCAGCACCCCTGCCTGCTCTGAGGGAAACAGTGACTGCTACTTGGG
AATGGGTCAGCCTACCGTGGCACGCACAGCCTACCGAGTCGGTGC
CTCCTGCCTCCCGTGGATTCCATGATCCTGATAGGCAAGGTTACAC
AGCACAGAACCCCAGTGCCAGGCACTGGGCCTGGCAAACATAATT
ACTGCCGAATCCTGATGGGATGCCAAGCCCTGGTGCACGTGCTG
AAGAACCGCAGGCTGACGTGGAGTACTGTGATGTGCCCTCCTGCTC
CACCTGCGGCCTGAGACAGTACAGCCAGCCTCAGTTCGCATCAAAG
GAGGGCTCTCGCCGACATGCCCTCCCACCCCTGGCAGGCTGCCATCT
TTGCCAAGCACAGGAGGTCGCCGGAGAGCGGTTCTGTGCGGGGGC
ATACTCATCAGCTCCTGCTGGATTCTCTGCCCCACTGCTTCCAG
GAGAGGTTCCGCCAACCACCTGACGGTGATCTGGCAGAACATA
CCGGGTGGTCCCTGGCGAGGAGGAGCAGAAATTGAAGTCGAAAAAA
TACATTGTCCATAAGGAATTGATGACACTTACGACAATGACAT
TGCCTGCTGCAGCTGAAATCGGATTGCTCCGCTGTGCCAGGAGA
GCAGCGTGGTCCGCACTGTGCTGCCCTCCCCGGCGGACCTGCAGCTG
CCGGACTGGACGGAGTGTGAGCTCTCCGGTACGGCAAGCATGAGGC
CTTGTCTCCTTCTATTGGAGCGGCTGAAGGAGGCTATGTCAGACT
GTACCCATCCAGCCGCTGCACATCACAACATTACTAACAGAACAG
TCACCGACAACATGCTGTGCTGGAGACACTCGGAGCGGGCGGGCCC
CAGGCAAACCTGCACGACGCCGCCAGGGCGATTGGGAGGCCCCCT
GGTGTCTGAACGATGGCCGCATGACTTGGTGGCATTGAGCT
GGGCCTGGCTGTGGACAGAAGGATGTCCGGGTGTACACCAAG
GTTACCAACTACCTAGACTGGATTGCTGACAACATGCGACCGTGACC
AGGAACACCCGACTCCTCAAAAGCAAATGAGATCC

258/345

FIG. 63B

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Cys Gly Ala Val Phe Val Ser Pro Ser Gln Glu Ile His Ala Arg Phe Arg Arg Gly Ala Arg Ser Tyr Gln Val Ile Cys Arg Asp Glu Lys Thr Gln Met Ile Tyr Gln Gln His Gln Ser Trp Leu Arg Pro Val Leu Arg Ser Asn Arg Val Glu Tyr Cys Trp Cys Asn Ser Gly Arg Ala Gln Cys His Ser Val Pro Val Lys Ser Cys Ser Glu Pro Arg Cys Phe Asn Gly Gly Thr Cys Gln Gln Ala Leu Tyr Phe Ser Asp Phe Val Cys Gln Cys Pro Glu Gly Phe Ala Gly Lys Cys Cys Glu Ile Asp Thr Arg Ala Thr Cys Tyr Glu Asp Gln Gly Ile Ser Tyr Arg Gly Thr Trp Ser Thr Ala Glu Ser Gly Ala Glu Cys Thr Asn Trp Asn Ser Ser Ala Leu Ala Gln Lys Pro Tyr Ser Gly Arg Arg Pro Asp Ala Ile Arg Leu Gly Leu Gly Asn His Asn Tyr Cys Arg Asn Pro Asp Arg Asp Ser Lys Pro Trp Cys Tyr Val Phe Lys Ala Gly Lys Tyr Ser Ser Glu Phe Cys Ser Thr Pro Ala Cys Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr Arg Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp Asn Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser Ala Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Gly Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr Trp Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln Tyr Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile Ala Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser Pro Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp Ile Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His Leu Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp Asp Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp Ser Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu Pro Pro Ala Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser Gly Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu Lys Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln His Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp Thr Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu Val Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro Gly Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn Met

259/345

FIG. 64A

ATCACTCTTTAACACTACACATTAAACCTCAACTCCTGCCACAA
 TGTACAGGATGCAACTCCTGTCTGCATTGCACTAATTCTGCACTTG
 TCACAAACAGTGCACCTACTTCAGTTCGACAAAGAAAACAAAGAAA
 ACACAGCTACAACGGAGCATTACTGCTGGATTACAGATGATTTG
 AATGGAATTATAATTACAAGAATCCCAAACTCACCAGGATGCTCAC
 ATTAAAGTTTACATGCCAAGAAGGCCACAGAACTGAAACAGCTTC
 AGTGTCTAGAAGAAGAACTCAAACCTCTGGAGGAAGTGCTGAATTAA
 GCTCAAAGCAAAACTTCACTTAAGACCCAGGGACTTAATCAGCAA
 TATCAACGTAATAGTTCTGGAACAAAGGGATCTGAAACAAACATTCA
 TGTGTGAATATGCAGATGAGACAGCAACCATTTCTGAAC
 AGATGGATTACCTTTGTCAAAGCATCATCTCAACACTAACTTGATAA
 TTAAGTGCTCCCACTTAAAACATATCAGGCCTCTATTATTATTAA
 AATATTAAATTATTTATTGTGAATGTATGGTTGCTACCTATTG
 TAACTATTATTCTTAATCTTAAAACATAAAATATGGATCTTTATGAT
 TCTTTTGTAAGCCCTAGGGGCTCTAAAATGGTTACCTTATTATCC
 CAAAAATATTATTATTATGTGAATGTTAAATAAGTATCTATGTAG
 ATTGGTTAGTAAAACATTAAATAATTGATAAAATAAAAAAAAAAA
 AAACAAAAAA

FIG. 64B

Met Tyr Arg Met Gln Leu Leu Ser Cys Ile Ala Leu Ile Leu Ala Leu Val Thr Asn
 Ser Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Lys Lys Thr Gln Leu Gln Leu Glu
 His Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys Asn
 Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys Lys Ala Thr
 Glu Leu Lys Gln Leu Gln Cys Leu Glu Glu Leu Lys Pro Leu Glu Glu Val
 Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser
 Asn Ile Asn Val Ile Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu
 Tyr Ala Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Cys
 Gln Ser Ile Ile Ser Thr Leu Thr

260/345
FIG. 65A-1

ATGCAAATAGAGCTCTCACCTGCTCTTCTGTGCCTTGCGATTCT
GCTTAGTGCACCAGAACAGATACTACCTGGGTGCAGTGGAACTGTCA
TGGGACTATATGCAAAGTGATCTCGGTGAGCTGCCTGTGGACGCAAG
ATTCCTCCTAGAGTGCCAAAATCTTCCATTCAACACCTCAGTCGT
GTACAAAAAGACTCTGTTGAGAATTACGGATCACCTTTCAACAT
CGCTAAGCCAAGGCCACCCCTGGATGGGTCTGCTAGGTCTACCATCC
AGGCTGAGGTTATGATAACAGTGGTCATTACACTAAGAACATGGCT
TCCCCTCCTGTCAGTCTCATGCTGTTGGTATCCTACTGGAAAGCT
TCTGAGGGAGCTGAATATGATGATCAGACCAACTCAAAGGGAGAAAG
AAGATGATAAAAGCTCCCTGGAGGCCATACATACTGCTGGCAG
GTCCTGAAAGAGAACATGGTCCAATGGCCTCTGACCCACTGTGCCTTAC
CTACTCATATCTTCTCATGTGGACCTGGTAAAAGACTTGAATTCAAGG
CCTCATTGGAGCCCTACTAGTATGTAGAGAACGGAGTCTGGCCAAGG
AAAAGACACAGACCTTGCACAAATTATACTACTTTGCTGTATTG
ATGAAGGGAAAAGTTGGCACTCAGAAACAAAGAACCTTGTATGCA
GGATAGGGATGCTGCATCTGCTCGGGCCTGGCTAAAATGCACACAG
TCAATGGTTATGTAACACAGGTCTGTGACAGTGGATGCCACA
GGAAATCAGTCTATTGGCATGTGATTGGAATGGCACCACCTGAA
GTGCACTCAATATTCCCTCGAACGGTCACACATTCTTGAGGAACCAC
CGCCAGGCGTCCTGGAAATCTGCCAATAACTTCTTACTGCTCAA
ACACTCTGATGGACCTGGACAGTTCTACTGTTGTATCTTCT
CCCACCAACATGATGGCATGGAAGCTTATGTCACAGACTGCTGT
CCAGAGGAACCCAACTACGAATGAAAAATAATGAAGAACCGGAAG
ACTATGATGATGATCTTACTGATTCTGAAATGGATGTGGTCAGGTTG
ATGATGACAACCTCCTTATCCAAATTGCTCAGTGCTGAAGAGGGAGGAC
TGGGACTATGCTCCCTAGTCCTCGCCCCGATGACAGAACAGTTAAAA
AGTCAATATTGAACAATGGCCCTCAGCGGATTGGTAGGAAGTACAA
AAAAGTCCGATTATGGCATACACAGATGAAACCTTAAGACTCGTG
AAGCTATTCACTGGCATGAATCAGGAATCTGGGACCTTACTTTATGGGG
AAGTTGGAGACACACTGTTGATTATTTAAGAACATCAAGCAAGCAGA
CCATATAACATCTACCCCTCACGGAATCACTGATGTCCGTCCTTGTAT
TCAAGGAGATTACCAAAAGGTGTAAAACATTGAAGGATTTCGAAT
TCTGCCAGGAGAAATATTCAAATATAATGGACAGTGAAGTAGAAG
ATGGGCCAACTAAATCAGATCCTCGGTGCCTGACCCGCTATTACTCTA
GTTCGTTAATATGGAGAGAGATCTAGCTTCAGGACTCATTGGCCCTC
TCCTCATCTGCTACAAAGAACATCTGTAGATCAAAGAGGAAACCA
ATGTCAGACAAGAGGAATGTCATCCTGTTCTGTATTGATGAGAAC
CGAAGCTGGTACCTCACAGAGAACATACAACGCTTCTCCCCAATCCA
GCTGGAGTGCAGCTGAGGATCCAGAGTCCAAAGCCTCCAACATCAT
GCACAGCATCAATGGCTATGTTGATAGTTGCAGTTGTCAGTTG
TTTGCATGAGGTGGCATACTGGTACATTCTAAGCATTGGAGCACAGA
CTGACTTCCTTCTGTCTTCTGGATACCTCAAACACACAAAT

261/345

FIG. 65A-2

GGTCTATGAAGACACACTCACCCATTCCCATTCTCAGGAGAAACTGT
CTTCATGTCGATGGAAAACCCAGGTCTATGGATTCTGGGGTGCACACA
ACTCAGACTTCGGAACAGAGGCATGACCGCCTTAUTGAAGGTTCT
AGTTGTGACAAGAACACTGGTGATTATTACGAGGACAGTTATGAAGA
TATTCAGCATACTGCTGAGTAAAAACAATGCCATTGAACCAAGAA
GCTTCTCCCAGAATTCAAGACACCGTAGCAGTAGGCAAAAGCAATT
AATGCCACCACAATTCCAGAAAATGACATAGAGAAGACTGACCCTG
GTTTGCACACAGAACACCTATGCCCTAAAATACAAAATGTCTCCTCTA
GTGATTGTTGATGCTCTGCGACAGAGTCCTACTCCACATGGGCTAT
CCTTATCTGATCTCCAAGAAGCCAAATATGAGACTTTCTGATGATC
CATCACCTGGAGCAATAGACAGTAATAAACAGCCTGTGAAATGACA
CACTTCAGGCCACAGCTCCATCACAGTGGGACATGGTATTACCCC
TGAGTCAGGCCTCCAATTAGATTAAGGAAACTGGGGACAACGT
CAGCAACAGAGTTGAAGAAAATTGAGCTAAAGTTCTAGTACATCA
AATAATCTGATTCAACAATTCCATCAGACAATTGGCAGCAGGTACT
GATAATACAAGTCCTTAGGACCCCCAAGTATGCCAGTCATTATGAT
AGTCAATTAGATACCACTCTATTGGCAAAAAGTCATCTCCCTTAUT
GAGTCTGGTGGACCTCTGAGCTTGAGTGAAGAAAATAATGATTCAA
GTTGTTAGAATCAGGTTAATGAATAGCCAAGAAAGTTCATGGGAA
AAAATGTATCGTCAACAGAGAGTGGTAGGTTATTAAAGGGAAAAGA
GCTCATGGACCTGCTTGTGACTAAAGATAATGCCATTCAAAAGTT
AGCATCTCTTGTAAAGACAAACAAAATTCCAATAATTCAACT
AATAGAAAAGACTCACATTGATGGCCATCATTATTAATTGAGAATAG
TCCATCAGTCTGGCAAAATATATTAGAAAGTGACACTGAGTTAAA
AAGTGACACCTTGATTGATGACAGAAATGCTATGGACAAAAATGCT
ACAGCTTGAGGCTAAATCATATGTCAAATAAAACTACTTCATCAAA
AAACATGGAAATGGCCAACAGAAAAAGAGGGCCCCATTCCACCA
GATGCACAAAATCCAGATATGTCGTTTAAGATGCTATTCTGCCA
GAATCAGCAAGGTGGATACAAAGGACTCATGGAAAGAAACTCTTGAA
CTCTGGGCAAGGCCAGTCCAAAGCAATTAGTATCCTTAGGACCAG
AAAAATCTGTGGAAGGTAGAATTCTGTCTGAGAAAAACAAAGTG
GTAGTAGGAAAGGGTGAATTACAAAGGACGTAGGACTCAAAGAGA
TGGTTTTCCAAGCAGCAGAAACCTATTCTTACTAACTTGGATAATT
TACATGAAAATAATACACACAAATCAAGAAAAAAATTCAAGGAAGA
AATAGAAAAGAAGGAAACATTAATCCAAGAGAAATGTAGTTGCCTC
AGATAACATACAGTGACTGGCACTAAGAATTTCATGAAGAACCTTTC
TTACTGAGCACTAGGCAAAATGTAGAAGGTTCATATGACGGGGCATA
TGCTCCAGTACTTCAAGATTCTAGGTATTAAATGATTCAACAAATAG
AACAAAGAAACACACAGCTCATTCTCAAAAAAGGGGAGGAAGAA
AACTTGGAAAGGCTGGAAATCAAACCAAGCAAATTGTAGAGAAATAT
GCATGCACCACAAGGAATATCTCCTAATACAAGCCAGCAGAATTG
TCACGCAACGTAGTAAGAGAGCTTGAACAAATTCAAGACTCCACTA

262/345

FIG. 65A-3

GAAGAAACAGAACTGAAAAAAGGATAATTGTGGATGACACACTCAAC
CCAGTGGTCCAAAACATGAAACATTTGACCCCGAGCACCCTCACAC
AGATAGACTACAATGAGAAGGAGAAAGGGGCCATTACTCAGTCTCCC
TTATCAGATTGCCTTACGAGGAGTCATAGCATCCCTCAAGCAAATAGA
TCTCCATTACCCATTGCAAAGGTATCATCATTTCCATCTATTAGACCTA
TATATCTGACCAGGGCCTATTCCAAGACAACCTCTCATCTTCCAG
CAGCATCTTAGAAAGAAAGATTCTGGGTCCAAGAAAGCAGTCAT
TTCTTACAAGGAGCCAAAAAAATAACCTTCTTAGCCATTCTAACCC
TGCCACAAATTCAAGTCACATACAAGAAAGTTGAGAACACTGTTCTCCC
GAAACCAGACTTGCCAAAACATCTGGCAAAGTTGAATTGCTTCCAA
AAGTCACATTATCAGAAGGACCTATTCCCTACGGAAACTAGCAATG
GGTCTCCTGGCCATCTGGATCTCGTGGAAAGGGAGCCTCTCAGGGAA
CAGAGGGAGCGATTAAGTGGATGAAGCAAACAGACACTGGAAAAGT
TCCCTTCTGAGAGTAGCAACAGAAAGCTCTGCAAAGACTCCCTCCAA
GCTATTGGATCCTCTTGCTTGGATAACCACTATGGTACTCAGATAAC
AAAAGAAGAGTGGAAATCCAAGAGAAGTCACCAGAAAAACAGCT
TTAAGAAAAAGGATACCATTGTCCCTGAACGCTGTGAAAGCAAT
CATGCAATAGCAGCAATAATGAGGGACAAAATAAGCCCATAAG
AAGTCACCTGGCAAAGCAAGGTAGGACTGAAAGGCTGTGCTCTCAA
AACCCACCAGTCTGAAACGCCATCAACGGGAAATAACTCGTACTAC
TCTCAGTCAGATCAAGAGGAAATTGACTATGATGATACCATATCAGT
TGAAATGAAGAAGGAAGATTGACATTATGATGAGGATGAAAATC
AGAGCCCCCGCAGCTTCAAAAGAAAACACGACACTATTATTGCTG
CAGTGGAGAGGCTCTGGATTATGGATGAGTAGCTCCCCACATGTT
CTAAGAAACAGGGCTCAGAGTGGCAGTGTCCCTCAGTTCAAGAAAGT
TGTTTCCAGGAATTACTGATGGCTCTTACTCAGCCCTATACCGT
GGAGAACTAAATGAACATTGGACTCCTGGGCCATATATAAGAGC
AGAAGTTGAAGATAATATCATGGTAACCTTCAGAAATCAGGCCTCTC
GTCCCTATTCTTCTATTCTAGCCTTATTCTTACTGAGGAAGATCAGAG
GCAAGGGAGCAGAACCTAGAAAAACTTGTCAAGCCTAATGAAACCA
AAACTTACTTTGGAAAGTGCACATCATATGGCACCCACTAAAGAT
GAGTTGACTGCAAAGCCTGGCTTATTCTCTGATGTTGACCTGGAA
AAAGATGTGCACTCAGGCTGATTGGACCCCTCTGGCTGCCACACT
AACACACTGAACCCCTGCTCATGGAGACAAGTGACAGTACAGGAATT
TGCTCTGTTTCAACATTTGATGAGACCAAAAGCTGGTACTTCAC
GAAAATATGGAAAGAAACTGCAGGGCTCCCTGCAATATCCAGATGGA
AGATCCCACTTAAAGAGAATTATCGCTTCCATGCAATCAATGGCTA
CATATGGATACACTACCTGGCTTAGTAATGGCTCAGGATCAAAGGA
TTCGATGGTATCTGCTCAGCATGGCAGCAATGAAAACATCCATTCT
ATTCAATTCAAGTGGACATGTGTTCACTGTACGAAAAAAAGAGGAGTA
TAAAATGGCACTGTACAATCTCTATCCAGGTGTTTGAGACAGTGGA

263/345

FIG. 65A-4

AATGTTACCATCCAAAGCTGGAATTGGCGGGTGGAAATGCCATTG
CGAGCATCTACATGCTGGATGAGCACACTTTCTGGTACAGCAA
TAAGTGTCAAGACTCCCCTGGGAATGGCTCTGGACACATTAGAGATT
TCAGATTACAGCTTCAGGACAATATGGACAGTGGGCCAAAGCTGG
CCAGACTTCATTATTCCGGATCAATCAATGCCTGGAGCACCAGGAG
CCCTTTCTGGATCAAGGTGGATCTGGCACCAATGATTATTAC
GGCATCAAGACCCAGGGTCCCCGTAGAACGTTCTCCAGCCTCTACAT
CTCTCAGTTATCATCATGTATAGTCTTGATGGAAAGAAGTGGCAGA
CTTATCGAGGAAATTCCACTGGAACCTTAATGGTCTTGGCAATG
TGGATTCATCTGGATAAAACACAATATTAAACCCCTCCAATTATTG
CTCGATACATCCGTTGCACCCAACTCATTATAGCATTGCGAGCACTC
TTCGCATGGAGTTGATGGGCTGTGATTAAATAGTGCAGCATGCCAT
TGGGAATGGAGAGTAAAGCAATATCAGATGCACAGATTACTGCTTC
TCCTACTTACCAATATGTTGCCACCTGGTCTCCTCAAAAGCTCGA
CTTCACCTCCAAGGGAGGAGTAATGCCTGGAGACCTCAGGTGAATAA
TCCAAAAGAGTGGCTGCAAGTGGACTTCCAGAACAGAACATGAAAGTCA
CAGGAGTAACTACTCAGGGAGTAAAATCTCTGCTTACCAAGCATGTAT
GTGAAGGAGTTCCATCTCCAGTCAGTCAAGATGCCATCAGTGGAC
TCTCTTTTCAGAATGGCAAAGTAAAGGTTTCAGGGAAATCAAGA
CTCCTTCACACCTGTGGTGAACCTCTAGACCCACCGTTACTGACTCG
CTACCTTCGAATTCACCCCCAGAGTTGGGTGCACAGATTGCCCTGAG
GATGGAGGTTCTGGCTGCGAGGCACAGGACCTCTACTGAGGGTGGC
CACTGCAGCACCTGCCACTGCCGTACCTCTCCCTCAGCTCCAGG
GCAGTGTCCCTCCCTGGCTGCCTCTACCTTGTGCTAAATCCTAGC
AGACACTGCCTGAAGCCTCTGAATTAACTATCATCAGTCCTGCATT
TCTTGGTGGGGGCCAGGAGGGTGCATCCAATTAACTTAACCTTAACT
CCTATTTCAGCTGCTCCCAGATTACTCCTCCTCCAATATAACT
AGGCAAAAAGAAGTGAGGAGAACCTGCATGAAAGCATTCTCCCTG
AAAAGTTAGGCCTCTCAGAGTCACCACCTCCTCTGTAGAAAAACT
ATGTGATGAAACTTGAAGGAGATATTATGATGTTAACATTCAAGGT
TAAGCCTCATACGTTAAAATAAAACTCTCAGTTGTTATTATCCTGA
TCAAGCATGGAACAAAGCATGTTCAGGATCAGATCAATACAATCTT
GGAGTCAAAAGGCAAATCATTGGACAATCTGCAAAATGGAGAGAA
TACAATAACTACAGTAAAGTCTGTTCTGCTTACACATAGA
TATAATTATGTTATTAGTCATTATGAGGGGCACATTCTATCTCAA
AACTAGCATTCTTAAACTGAGAATTATAGATGGGGTCAAGAACCCC
TAAGTCCCCTGAAATTATATAAGGCATTCTGTATAAAATGCAAATGTGC
ATTTCAGCAGTGTCCATAGATATAAGCCATTGGTCTTAATTCT
GACCAATAAAAAATAAGTCAGGAGGATGCAATTGTTGAAAGCTTG
AAATAAAAATAACAATGTCTTGTGAAATTGATGGCCAAGAAAGA
AAATGATGA

264/345
FIG. 65B-1

Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val Tyr Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile Ala Lys Pro Arg Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser Tyr Leu Ser His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile Gly Ala Leu Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr Gln Thr Leu His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly Lys Ser Trp His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp Ala Ala Ser Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr Val Asn Arg Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val Tyr Trp His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile Phe Leu Glu Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser Leu Glu Ile Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met Asp Leu Gly Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His Asp Gly Met Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro Gln Leu Arg Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Leu Thr Asp Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser Pro Ser Phe Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr Trp Val His Tyr Ile Ala Ala Glu Glu Asp Trp Asp Tyr Ala Pro Leu Val Leu Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn Asn Gly Pro Gln Arg Ile Gly Arg Lys Tyr Lys Val Arg Phe Met Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu Ser Gly Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu Leu Ile Ile Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro His Gly Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Ser Arg His Arg Ser Thr Arg Gln Lys Gln Phe Asn Ala Thr Thr Ile Pro Glu Asn Asp Ile Glu Lys Thr Asp Pro Trp

265/345

FIG. 65B-2

Phe Ala His Arg Thr Pro Met Pro Lys Ile Gln Asn Val Ser Ser Ser Asp Leu Leu
Met Leu Leu Arg Gln Ser Pro Thr Pro His Gly Leu Ser Leu Ser Asp Leu Gln Glu
Ala Lys Tyr Glu Thr Phe Ser Asp Asp Pro Ser Pro Gly Ala Ile Asp Ser Asn Asn
Ser Leu Ser Glu Met Thr His Phe Arg Pro Gln Leu His His Ser Gly Asp Met Val
Phe Thr Pro Glu Ser Gly Leu Gln Leu Arg Leu Asn Glu Lys Leu Gly Thr Thr
Ala Ala Thr Glu Leu Lys Lys Leu Asp Phe Lys Val Ser Ser Thr Ser Asn Asn Leu
Ile Ser Thr Ile Pro Ser Asp Asn Leu Ala Ala Gly Thr Asp Asn Thr Ser Ser Leu
Gly Pro Pro Ser Met Pro Val His Tyr Asp Ser Gln Leu Asp Thr Thr Leu Phe Gly
Lys Lys Ser Ser Pro Leu Thr Glu Ser Gly Gly Pro Leu Ser Leu Ser Glu Glu Asn
Asn Asp Ser Lys Leu Leu Glu Ser Gly Leu Met Asn Ser Gln Glu Ser Ser Trp Gly
Lys Asn Val Ser Ser Thr Glu Ser Gly Arg Leu Phe Lys Gly Lys Arg Ala His Gly
Pro Ala Leu Leu Thr Lys Asp Asn Ala Leu Phe Lys Val Ser Ile Ser Leu Leu
Lys Thr Asn Lys Thr Ser Asn Asn Ser Ala Thr Asn Arg Lys Thr His Ile Asp
Gly Pro Ser Leu Leu Ile Glu Asn Ser Pro Ser Val Trp Gln Asn Ile Leu Glu Ser
Asp Thr Glu Phe Lys Lys Val Thr Pro Leu Ile His Asp Arg Met Leu Met Asp
Lys Asn Ala Thr Ala Leu Arg Leu Asn His Met Ser Asn Lys Thr Thr Ser Ser
Lys Asn Met Glu Met Val Gln Gln Lys Lys Glu Gly Pro Ile Pro Pro Asp Ala
Gln Asn Pro Asp Met Ser Phe Phe Lys Met Leu Phe Leu Pro Glu Ser Ala Arg
Trp Ile Gln Arg Thr His Gly Lys Asn Ser Leu Asn Ser Gly Gln Gly Pro Ser Pro
Lys Gln Leu Val Ser Leu Gly Pro Glu Lys Ser Val Glu Gly Gln Asn Phe Leu
Ser Glu Lys Asn Lys Val Val Val Gly Lys Gly Glu Phe Thr Lys Asp Val Gly
Leu Lys Glu Met Val Phe Pro Ser Ser Arg Asn Leu Phe Leu Thr Asn Leu Asp
Asn Leu His Glu Asn Asn Thr His Asn Gln Glu Lys Lys Ile Gln Glu Glu Ile
Glu Lys Lys Glu Thr Leu Ile Gln Glu Asn Val Val Leu Pro Gln Ile His Thr
Val Thr Gly Thr Lys Asn Phe Met Lys Asn Leu Phe Leu Leu Ser Thr Arg Gln
Asn Val Glu Gly Ser Tyr Asp Gly Ala Tyr Ala Pro Val Leu Gln Asp Phe Arg
Ser Leu Asn Asp Ser Thr Asn Arg Thr Lys Lys His Thr Ala His Phe Ser Lys
Lys Gly Glu Glu Asn Leu Glu Gly Leu Gly Asn Gln Thr Lys Gln Ile Val
Glu Lys Tyr Ala Cys Thr Thr Arg Ile Ser Pro Asn Thr Ser Gln Gln Asn Phe
Val Thr Gln Arg Ser Lys Arg Ala Leu Lys Gln Phe Arg Leu Pro Leu Glu Glu
Thr Glu Leu Glu Lys Arg Ile Ile Val Asp Asp Thr Ser Thr Gln Trp Ser Lys Asn
Met Lys His Leu Thr Pro Ser Thr Leu Thr Gln Ile Asp Tyr Asn Glu Lys Glu
Lys Gly Ala Ile Thr Gln Ser Pro Leu Ser Asp Cys Leu Thr Arg Ser His Ser Ile
Pro Gln Ala Asn Arg Ser Pro Leu Pro Ile Ala Lys Val Ser Ser Phe Pro Ser Ile
Arg Pro Ile Tyr Leu Thr Arg Val Leu Phe Gln Asp Asn Ser Ser His Leu Pro
Ala Ala Ser Tyr Arg Lys Lys Asp Ser Gly Val Gln Glu Ser Ser His Phe Leu
Gln Gly Ala Lys Lys Asn Asn Leu Ser Leu Ala Ile Leu Thr Leu Glu Met Thr
Gly Asp Gln Arg Glu Val Gly Ser Leu Gly Thr Ser Ala Thr Asn Ser Val Thr
Tyr Lys Lys Val Glu Asn Thr Val Leu Pro Lys Pro Asp Leu Pro Lys Thr Ser
Gly Lys Val Glu Leu Leu Pro Lys Val His Ile Tyr Gln Lys Asp Leu Phe Pro
Thr Glu Thr Ser Asn Gly Ser Pro Gly His Leu Asp Leu Val Glu Gly Ser Leu

266/345

FIG. 65B-3

Leu Gln Gly Thr Glu Gly Ala Ile Lys Trp Asn Glu Ala Asn Arg Pro Gly Lys Val Pro Phe Leu Arg Val Ala Thr Glu Ser Ser Ala Lys Thr Pro Ser Lys Leu Leu Asp Pro Leu Ala Trp Asp Asn His Tyr Gly Thr Gln Ile Pro Lys Glu Glu Trp Lys Ser Gln Glu Lys Ser Pro Glu Lys Thr Ala Phe Lys Lys Lys Asp Thr Ile Leu Ser Leu Asn Ala Cys Glu Ser Asn His Ala Ile Ala Ala Ile Asn Glu Gly Gln Asn Lys Pro Glu Ile Glu Val Thr Trp Ala Lys Gln Gly Arg Thr Glu Arg Leu Cys Ser Gln Asn Pro Pro Val Leu Lys Arg His Gln Arg Glu Ile Thr Arg Thr Thr Leu Gln Ser Asp Gln Glu Glu Ile Asp Tyr Asp Asp Thr Ile Ser Val Glu Met Lys Lys Glu Asp Phe Asp Ile Tyr Asp Glu Asp Glu Asn Gln Ser Pro Arg Ser Phe Gln Lys Lys Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp Asp Tyr Gly Met Ser Ser Ser Pro His Val Leu Arg Asn Arg Ala Gln Ser Gly Ser Val Pro Gln Phe Lys Lys Val Val Phe Gln Glu Phe Thr Asp Gly Ser Phe Thr Gln Pro Leu Tyr Arg Gly Glu Leu Asn Glu His Leu Gly Leu Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu Asp Asn Ile Met Val Thr Phe Arg Asn Gln Ala Ser Arg Pro Tyr Ser Phe Tyr Ser Ser Leu Ile Ser Tyr Glu Glu Asp Gln Arg Gln Gly Ala Glu Pro Arg Lys Asn Phe Val Lys Pro Asn Glu Thr Lys Thr Tyr Phe Trp Lys Val Gln His His Met Ala Pro Thr Lys Asp Glu Phe Asp Cys Lys Ala Trp Ala Tyr Phe Ser Asp Val Asp Leu Glu Lys Asp Val His Ser Gly Leu Ile Gly Pro Leu Leu Val Cys His Thr Asn Thr Leu Asn Pro Ala His Gly Arg Gln Val Thr Val Gln Glu Phe Ala Leu Phe Phe Thr Ile Phe Asp Glu Thr Lys Ser Trp Tyr Phe Thr Glu Asn Met Glu Arg Asn Cys Arg Ala Pro Cys Asn Ile Gln Met Glu Asp Pro Thr Phe Lys Glu Asn Tyr Arg Phe His Ala Ile Asn Gly Tyr Ile Met Asp Thr Leu Pro Gly Leu Val Met Ala Gln Asp Gln Arg Ile Arg Trp Tyr Leu Leu Ser Met Gly Ser Asn Glu Asn Ile His Ser Ile His Phe Ser Gly His Val Phe Thr Val Arg Lys Lys Glu Glu Tyr Lys Met Ala Leu Tyr Asn Leu Tyr Pro Gly Val Phe Glu Thr Val Glu Met Leu Pro Ser Lys Ala Gly Ile Trp Arg Val Glu Cys Leu Ile Gly Glu His Leu His Ala Gly Met Ser Thr Leu Phe Leu Val Tyr Ser Asn Lys Cys Gln Thr Pro Leu Gly Met Ala Ser Gly His Ile Arg Asp Phe Gln Ile Thr Ala Ser Gly Gln Tyr Gly Gln Trp Ala Pro Lys Leu Ala Arg Leu His Tyr Ser Gly Ser Ile Asn Ala Trp Ser Thr Lys Glu Pro Phe Ser Trp Ile Lys Val Asp Leu Leu Ala Pro Met Ile Ile His Gly Ile Lys Thr Gln Gly Ala Arg Gln Lys Phe Ser Ser Leu Tyr Ile Ser Gln Phe Ile Ile Met Tyr Ser Leu Asp Gly Lys Lys Trp Gln Thr Tyr Arg Gly Asn Ser Thr Gly Thr Leu Met Val Phe Phe Gly Asn Val Asp Ser Ser Gly Ile Lys His Asn Ile Phe Asn Pro Pro Ile Ile Ala Arg Tyr Ile Arg Leu His Pro Thr His Tyr Ser Ile Arg Ser Thr Leu Arg Met Glu Leu Met Gly Cys Asp Leu Asn Ser Cys Ser Met Pro Leu Gly Met Glu Ser Lys Ala Ile Ser Asp Ala Gln Ile Thr Ala Ser Ser Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser Pro Ser Lys Ala Arg Leu His Leu Gln Gly Arg Ser Asn Ala Trp Arg Pro Gln Val Asn Asn Pro Lys Glu Trp Leu Gln Val Asp Phe Gln Lys Thr Met Lys Val Thr Gly Val Thr Thr Gln Gly Val Lys Ser Leu Leu Thr Ser Met Tyr Val Lys Glu Phe Leu Ile Ser Ser Ser Gln Asp Gly His Gln Trp Thr Leu Phe Phe Gln Asn Gly Lys Val Lys Val Phe Gln Gly Asn Gln Asp Ser Phe Thr Pro Val Val Asn Ser Leu Asp Pro Pro Leu Leu Thr Arg Tyr Leu Arg Ile His

267/345
FIG.65B-4

Pro Gln Ser Trp Val His Gln Ile Ala Leu Arg Met Glu Val Leu Gly Cys Glu
Ala Gln Asp Leu Tyr

268/345

FIG. 66A

TCCACCTGTCCCCCAGCGCCGGCTCGGCCCTGCCGCAGCCACC
GAGCCGCCGTCTAGCGCCCCGACCTCGCCACCATGAGAGGCCCTGCTG
GCGCGCCTGCTCTCGCTGGTCGTGAGCGACTCCAAAGGCAGC
AATGAACATTCAAGTCCATCGAACTGTGACTGTCTAAATGGAGGA
ACATGTGTGTCACAAGTACTTCTCCAACATTCACTGGTGCAACTGC
CCAAAGAAATTGGAGGGCAGCACTGTGAAATAGATAAGTCAAAAAC
CTGCTATGAGGGGAATGGTCACTTTACCGAGGAAAGGCCAGCACTG
ACACCATGGGCCGGCCCTGCCTGCCCTGGAACCTGCCACTGTCCTTC
AGCAAACGTACCATGCCACAGATCTGATGCTCTCAGCTGGGCTGG
GGAAACATAATTACTGCAGGAACCCAGACAACCGGAGGGCACCTGG
TGCTATGTGCAGGTGGGCTAAAGCCGCTGTCCAAGAGTGCATGGT
GCATGACTGCGCAGATGGAAAAAGCCCTCCTCCCTCCAGAAGAAT
TAAAATTCAGTGTGGCAAAAGACTCTGAGGCCCGCTTAAGATTAA
TTGGGGGAGAATTCAACCACATCGAGAACCAAGCCCTGGTTGCGGCC
ATCTACAGGAGGCACCGGGGGGCTCTGTACCTACGTGTGTGGAGG
CAGCCTCATGCCCTGCTGGTGATCAGGCCACACACTGCTTCAT
TGATTACCCAAAGAAGGAGGACTACATCGTCTACCTGGTCGCTCAA
GGCTTAACTCCAACACGCAAGGGAGATGAAGTTGAGGTGGAAAAC
CTCATCCTACACAAGGACTACAGCGCTGACACGCTGCTCACCACAAAC
GACATTGCCTTGCTGAAGATCCGTTCCAAGGAGGGCAGGTGTGCGCA
GCCATCCCAGACTATACAGACCATCTGCCCTCGATGTATAACGA
TCCCCAGTTGGCACAAGCTGTGAGATCACTGGCTTGGAAAAGAGA
ATTCTACCGACTATCTCTATCCGGAGCAGCTGAAGATGACTGTTGTGA
AGCTGATTCCCACCGGGAGTGTCAAGCAGCCCCACTACTACGGCTCTG
AAGTCACCACCAAAATGCTGTGCTGCTGACCCACAGTGGAAAACA
GATTGCCAGGGAGACTCAGGGGACCCCTCGTCTGTTCCCTCCAA
GGCCGCATGACTTTGACTGGAATTGTGAGCTGGGCCGTGGATGTGC
CCTGAAGGACAAGCCAGGCAGTCAACACGAGAGTCTCACACTTCTAC
CCTGGATCCGCAGTCACACCAAGGAAGAGAAATGGCCTGCCCTCTGA
GGGTCCCCAGGGAGGAAACGGGCACCACCCGCTTCTGCTGGTTGTC
ATTTTGCACTAGAGTCATCTCCATCAGCTGTAAGAAGAGACTGGGA
AGAT

269/345

FIG. 66B

Met Arg Ala Leu Leu Ala Arg Leu Leu Leu Cys Val Leu Val Val Ser Asp Ser Lys Gly Ser Asn Glu Leu His Gln Val Pro Ser Asn Cys Asp Cys Leu Asn Gly Gly Thr Cys Val Ser Asn Lys Tyr Phe Ser Asn Ile His Trp Cys Asn Cys Pro Lys Lys Phe Gly Gly Gln His Cys Glu Ile Asp Lys Ser Lys Thr Cys Tyr Glu Gly Asn Gly His Phe Tyr Arg Gly Lys Ala Ser Thr Asp Thr Met Gly Arg Pro Cys Leu Pro Trp Asn Ser Ala Thr Val Leu Gln Gln Thr Tyr His Ala His Arg Ser Asp Ala Leu Gln Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Asn Arg Arg Arg Pro Trp Cys Tyr Val Gln Val Gly Leu Lys Pro Leu Val Gln Glu Cys Met Val His Asp Cys Ala Asp Gly Lys Lys Pro Ser Ser Pro Pro Glu Glu Leu Lys Phe Gln Cys Gly Gln Lys Thr Leu Arg Pro Arg Phe Lys Ile Ile Gly Gly Glu Phe Thr Thr Ile Glu Asn Gln Pro Trp Phe Ala Ala Ile Tyr Arg Arg His Arg Gly Gly Ser Val Thr Tyr Val Cys Gly Gly Ser Leu Ile Ser Pro Cys Trp Val Ile Ser Ala Thr His Cys Phe Ile Asp Tyr Pro Lys Lys Glu Asp Tyr Ile Val Tyr Leu Gly Arg Ser Arg Leu Asn Ser Asn Thr Gln Gly Glu Met Lys Phe Glu Val Glu Asn Leu Ile Leu His Lys Asp Tyr Ser Ala Asp Thr Leu Ala His His Asn Asp Ile Ala Leu Leu Lys Ile Arg Ser Lys Glu Gly Arg Cys Ala Gln Pro Ser Arg Thr Ile Gln Thr Ile Cys Leu Pro Ser Met Tyr Asn Asp Pro Gln Phe Gly Thr Ser Cys Glu Ile Thr Gly Phe Gly Lys Glu Asn Ser Thr Asp Tyr Leu Tyr Pro Glu Gln Leu Lys Met Thr Val Val Lys Leu Ile Ser His Arg Glu Cys Gln Gln Pro His Tyr Tyr Gly Ser Glu Val Thr Thr Lys Met Leu Cys Ala Ala Asp Pro Gln Trp Lys Thr Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Ser Leu Gln Gly Arg Met Thr Leu Thr Gly Ile Val Ser Trp Gly Arg Gly Cys Ala Leu Lys Asp Lys Pro Gly Val Tyr Thr Arg Val Ser His Phe Leu Pro Trp Ile Arg Ser His Thr Lys Glu Glu Asn Gly Leu Ala Leu

270/345

FIG.67A

TCCTGCACAGGCAGTGCCTTGAAGTGCTTCTCAGAGACCTTCTCA
TAGACTACTTTTTCTTAAGCAGCAAAAGGAGAAAATTGTCATCA
AGGATATTCCAGATTCTGACAGCATTCTCGTATCTCTGAGGACATC
ACCATCATCTCAGGATGAGGGCATGAAGCTGCTGGGGCGCTGCTG
GCACTGGCGGCCCTACTGCAGGGGCCGTGCTGAAGATCGCAGC
CTTCAACATCCAGACATTGGGGAGACCAAGATGTCCAATGCCACCC
CGTCAGCTACATTGTGCAGATCCTGAGCCGCTATGACATGCCCTGG
CCAGGAGGTCAAGAGACAGCCACCTGACTGCCGTGGGAAGCTGCTGG
ACAACCTCAAATCAGGATGCACCAGACACCTATCACTACGTGGTCAGT
GAGCCACTGGACCGAACAGCTATAAGGAGCGTACCTGTTCGTGA
CAGGCCTGACCAGGTGTGCGGTGGACAGCTACTACTACGATGATG
GCTGCGAGCCCTGCGGGAACGACACCTCAACCAGAGAGGCCAGCCATT
GTCAGGTTCTCTCCCAGGTACAGAGGTCAAGGAGTTGCCATTGTT
CCCCTGCATGCGGCCCCGGGACGCAGTAGCCGAGATCGACGCTCT
CTATGACGTCTACCTGGATGTCCAAGAGAAATGGGGCTGGAGGACG
TCATGTTGATGGCGACTTCAATGCGGGCTGCAGCTATGTGAGACCCT
CCCAGTGGTCATCCATCCGCCTGTGGACAAAGCCCCACCTCCAGTGGC
TGATCCCCGACAGCGCTGACACCACAGCTACACCCACGCACGTGCCT
ATGACAGGATCGGGTGCAGGGATGCTGCTCCGAGGCGCCGTTGTT
CCGACTCGGCTCTCCCTTAACCCAGGCTGCCTATGGCCTGAGTG
ACCAACTGGCCCAAGCCATCACTGACCACTATCCAGTGGAGGTGATG
CTGAAGTGAGCAGCCCACACCAGTTGAACGTGCAG

271/345

FIG. 67B

Met Arg Gly Met Lys Leu Leu Gly Ala Leu Leu Ala Leu Ala Leu Leu Gln
Gly Ala Val Ser Leu Lys Ile Ala Ala Phe Asn Ile Gln Thr Phe Gly Glu Thr Lys
Met Ser Asn Ala Thr Leu Val Ser Tyr Ile Val Gln Ile Leu Ser Arg Tyr Asp Ile
Ala Leu Val Gln Glu Val Arg Asp Ser His Leu Thr Ala Val Gly Lys Leu Leu
Asp Asn Leu Asn Gln Asp Ala Pro Asp Thr Tyr His Tyr Val Val Ser Glu Pro
Leu Gly Arg Asn Ser Tyr Lys Glu Arg Tyr Leu Phe Val Tyr Arg Pro Asp Gln
Val Ser Ala Val Asp Ser Tyr Tyr Asp Asp Gly Cys Glu Pro Cys Gly Asn
Asp Thr Phe Asn Arg Glu Pro Ala Ile Val Arg Phe Phe Ser Arg Phe Thr Glu Val
Arg Glu Phe Ala Ile Val Pro Leu His Ala Ala Pro Gly Asp Ala Val Ala Glu Ile
Asp Ala Leu Tyr Asp Val Tyr Leu Asp Val Gln Glu Lys Trp Gly Leu Glu Asp
Val Met Leu Met Gly Asp Phe Asn Ala Gly Cys Ser Tyr Val Arg Pro Ser Gln
Trp Ser Ser Ile Arg Leu Trp Thr Ser Pro Thr Phe Gln Trp Leu Ile Pro Asp Ser
Ala Asp Thr Thr Ala Thr Pro Thr His Cys Ala Tyr Asp Arg Ile Val Val Ala Gly
Met Leu Leu Arg Gly Ala Val Val Pro Asp Ser Ala Leu Pro Phe Asn Phe Gln
Ala Ala Tyr Gly Leu Ser Asp Gln Leu Ala Gln Ala Ile Ser Asp His Tyr Pro Val
Glu Val Met Leu Lys

272/345

FIG. 68A

GCTGCATCAGAAGAGGCCATCAAGCACATCACTGTCCTCTGCCATGG
CCCTGTGGATGCGCCTCCTGCCCTGCTGGCGCTGCTGCCCTCTGGG
GACCTGACCCAGCCGCAGCCTTGTGAACCAAACACCTGTGCGGCTCAC
ACCTGGTCCAAGCTCTACCTAGTGTGCGGGAACGAGGCTTCTTCT
ACACACCCAAGACCCGCCGGAGGCAGAGGACCTGCAGGTGGGCA
GGTGGAGCTGGCGGGGGCCCTGGTGCAGGCAGCCTGCAGCCCTTGG
CCCTGGAGGGGTCCCTGCAGAACGCTGGCATTGTGGAACAATGCTGT
ACCAGCATCTGCTCCCTCTACCAGCTGGAGAACTACTGCAACTAGACG
CAGCCCGCAGGCAGCCCCCACCCGCCCTGCACCGAGAGAGA
TGGAATAAAGCCCTGAACCAGC

FIG. 68B

Met Ala Leu Trp Met Arg Leu Leu Pro Leu Leu Ala Leu Leu Ala Leu Trp Gly
Pro Asp Pro Ala Ala Ala Phe Val Asn Gln His Leu Cys Gly Ser His Leu Val
Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe Phe Tyr Thr Pro Lys Thr
Arg Arg Glu Ala Glu Asp Leu Gln Val Gly Gln Val Glu Leu Gly Gly Pro
Gly Ala Gly Ser Leu Gln Pro Leu Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly Ile
Val Glu Gln Cys Cys Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn

273/345

FIG. 69A

ATGGGAGGTTGGTCTTCCAAACCTCGACAAGGCATGGGGACGAATCT
TTCTGTTCCAATCCTCTGGGATTCTTCCCGATCACCAAGTGGACCCCT
GCGTCGGAGCCAACCTCAAACAATCCAGATTGGGACTTCAACCCCAA
CAAGGATCACTGCCAGAGGAATCAAGGTAGGAGCGGGAGACTTC
GGGCCAGGGTTCACCCCCACCACACGGCGGTCTTGGGGTGGAGGCC
TCAGGCTCAGGGCATATTGACAACAGTGCCAGCAGGCCCTCCTCCTG
TTTCCACCAATCGGCAGTCAGGAAGACAGCCTACTCCCATCTCTCCAC
CTCTAACAGAGACAGTCATCCTCAGGCCATGCAGTGGAACTCCACAACA
TTCCACCAAGCTCTGCTAGATCCCAGAGTGAGGGGCCTATATTTCCT
GCTGGTGGCTCCAGTTCCGGAACAGTAAACCCCTGTTCCGACTACTGTC
TCACCCATATCGTCAATCTTCTCGAGGACTGGGGACCCCTGCACCGAAC
ATGGAGAGCACAACATCAGGATTCTCTAGGACCCCTGCTCGTGTACA
GGCAGGGTTTTCTTGTGACAAGAACCTCACAATACCACAGAGTCT
AGACTCGTGGTGGACTTCTCTCAATTCTAGGGGGAGCACCCACGTG
TCCTGGCCAAAATTCGCAGTCCCCAACCTCCAATCACTCACCAACCTC
TTGTCTCCAATTGTCTGGTTATCGCTGGATGTGTCTGGCGTTT
ATCATATTCTCTCATCCTGCTGCTATGCCTCATCTTCTTGTGGTTC
TTCTGGACTACCAAGGTATGTTGCCGTTGTCCTACTTCCAGGAA
CATCAACTACCAGCACGGGACCATGCAAGACCTGCACGATTCCGCT
CAAGGAACCTCTATGTTCCCTTGTGCTGTACAAAACCTTCGGAC
GGAAACTGCACTTGTATTCCCATCCATCCTGGCTTCTGCAAGA
TTCCTATGGGAGTGGGCCTCAGTCCGTTCTCCTGGCTCAGTTACTA
GTGCCATTGTTCACTGGGTTCGCAGGGCTTCCCCACTGTTGGCTTT
CAGTTATATGGATGATGTGGTATTGGGGGCAAGTCTGTACAACATCT
TGAGTCCCTTTACCTCTATTACCAATTCTTGTCTTGGGTATAC
ATTGAA

274/345

FIG. 69B

Met Gly Gly Trp Ser Ser Lys Pro Arg Gln Gly Met Gly Thr Asn Leu Ser Val Pro Asn Pro Leu Gly Phe Phe Pro Asp His Gln Leu Asp Pro Ala Phe Gly Ala Asn Ser Asn Asn Pro Asp Trp Asp Phe Asn Pro Asn Lys Asp His Trp Pro Glu Ala Ile Lys Val Gly Ala Gly Asp Phe Gly Pro Gly Phe Thr Pro Pro His Gly Gly Leu Leu Gly Trp Ser Pro Gln Ala Gln Gly Ile Leu Thr Thr Val Pro Ala Ala Pro Pro Pro Val Ser Thr Asn Arg Gln Ser Gly Arg Gln Pro Thr Pro Ile Ser Pro Pro Leu Arg Asp Ser His Pro Gln Ala Met Gln Trp Asn Ser Thr Thr Phe His Gln Ala Leu Leu Asp Pro Arg Val Arg Gly Leu Tyr Phe Pro Ala Gly Gly Ser Ser Ser Gly Thr Val Asn Pro Val Pro Thr Thr Val Ser Pro Ile Ser Ser Ile Phe Ser Arg Thr Gly Asp Pro Ala Pro Asn Met Glu Ser Thr Thr Ser Gly Phe Leu Gly Pro Leu Leu Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Ala Pro Thr Cys Pro Gly Gln Asn Ser Gln Ser Pro Thr Ser Asn His Ser Pro Thr Ser Cys Pro Pro Ile Cys Pro Gly Tyr Arg Trp Met Cys Leu Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Cys Leu Ile Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu Leu Pro Gly Thr Ser Thr Ser Thr Gly Pro Cys Lys Thr Cys Thr Ile Pro Ala Gln Gly Thr Ser Met Phe Pro Ser Cys Cys Cys Thr Lys Pro Ser Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala Phe Ala Arg Phe Leu Trp Glu Trp Ala Ser Val Arg Phe Ser Trp Leu Ser Leu Leu Val Pro Phe Val Gln Trp Phe Ala Gly Leu Ser Pro Thr Val Trp Leu Ser Val Ile Trp Met Met Trp Tyr Trp Gly Pro Ser Leu Tyr Asn Ile Leu Ser Pro Phe Leu Pro Leu Leu Pro Ile Phe Phe Cys Leu Trp Val Tyr Ile

275/345

FIG. 70A

CGAACCACTCAGGGCCTGTGGACAGCTCACCTAGCTGCAATGGCTA
CAGGCTCCGGACGTCCCTGCTCCTGGCTTTGGCCTGCTCTGCCTGC
CCTGGCTTCAAGAGGGCAGTGCCTCCACCATTCCCTATCCAGGC
CTTTGACAACGCTATGCTCCGCCATCGTCTGCACCAGCTGGCCT
TTGACACCTACCAGGAGTTGAAGAACGCCTATATCCAAAGGAACAG
AAGTATTCACTCCTGCAGAACCCCCAGACCTCCCTGTTCAGAG
TCTATTCCGACACCCCTCCAACAGGGAGGAAACACAACAGAAATCCAA
CCTAGAGCTGCTCCGCATCTCCCTGCTGCTCATCCAGTCGTGGCTGGA
GCCCGTGCAGTCCTCAGGAGTGTCTCGCCAACAGCCTGGTGTACGG
CGCCTCTGACAGCAACGTCTATGACCTCTAAAGGACCTAGAGGAAG
GCATCCAAACGCTGATGGGGAGGCTGGAAGATGGCAGCCCCCGGACT
GGGCAGATCTTCAAGCAGACCTACAGCAAGTTCGACACAAACTCACA
CAACGATGACGCACTACTCAAGAACTACGGGCTGCTACTGCTTCAG
GAAGGACATGGCAAGGTCGAGACATTCCCTGCGCATCGTCAGTGCCG
CTCTGTGGAGGGCAGCTGTGGCTCTAGCTGCCGGTGGCATCCCTG
TGACCCCTCCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGT
GCCACCAGCCTGCTTAATAAAATTAAAGTTGCATC

FIG. 70B

Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu Cys Leu
Pro Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu Ser Arg Pro Phe Asp
Asn Ala Met Leu Arg Ala His Arg Leu His Gln Leu Ala Phe Asp Thr Tyr Gln
Glu Phe Glu Glu Ala Tyr Ile Pro Lys Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro
Gln Thr Ser Leu Cys Phe Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Glu Thr
Gln Gln Lys Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Ile Gln Ser Trp
Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val Tyr Gly Ala
Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu Glu Gly Ile Gln Thr Leu
Met Gly Arg Leu Glu Asp Gly Ser Pro Arg Thr Gly Gln Ile Phe Lys Gln Thr Tyr
Ser Lys Phe Asp Thr Asn Ser His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly
Leu Leu Tyr Cys Phe Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile
Val Gln CysArg Ser Val Glu Gly Ser Cys Gly Phe

276/345

FIG. 71A

ATGGCGCCCGTCGCCGTCTGGGCCGCGCTGGCCGTCGGACTGGAGCT
CTGGGCTGCGGCCACGCCCTGCCGCCAGGTGGCATTACACCCCTA
CGCCCCGGAGCCCGGGAGCACATGCCGGCTCAGAGAAATACTATGACC
AGACAGCTCAGATGTGCTGCAGCAAATGCTGCCGGCAACATGCA
AAAGTCTTCTGTACCAAGACCTCGGACACCGTGTGACTCCTGTGAG
GACAGCACATACACCCAGCTCTGGAACTGGGTTCCCGAGTGCTTGAG
CTGTGGCTCCGCTGTAGCTCTGACCAGGTGGAAACTCAAGCCTGCAC
TCGGGAACAGAACCGCATCTGCACCTGCAGGCCGGCTGGTACTGCG
CGCTGAGCAAGCAGGAGGGTGCCGGCTGTGCGCGCCGCTGCAG
TGCCGCCCGGGCTCGGCGTGGCCAGACCAGGAACATGAAACATCAGA
CGTGGTGTGCAAGCCCTGTGCCCCGGGACGTTCTCCAACACGACTTC
ATCCACGGATATTGCAGGCCCAACCAGATCTGTAACGTGGTGGCCAT
CCCTGGGAATGCAAGCATGGATGCAGTCTGCACGTCCACGTCCCCCA
CCC GGAGTATGGCCCCAGGGGAGTACACTTACCCAGCCAGTGTCC
ACACGATCCAACACACCGCAGCCAACCTCCAGAACCCAGCACTGCTCC
AAGCACCTCCTCCTGCTCCCAATGGGCCAGCCCCCAGCTGAAGG
GAGCACTGGCGACTTCGCTCTCCAGTTGGACTGATTGTGGGTGTGAC
AGCCTGGGTCTACTAATAATAGGAGTGGTGAACGTGTATCATGAC
CCAGGTAAAAAGAACGCCCTGTGCCTGCAGAGAGAACCCAAGGTGC
CTCACTGCCCTGCCGATAAGGCCCGGGTACACAGGGCCCCGAGCAG
CAGCACCTGCTGATCACAGGCCAGCTCCAGCAGCAGCTCCCTGGA
GAGCTGCCAGTGCCTGGACAGAACGGCGCCACTCGGAACCAGC
CACAGGCACCAGGCCTGGAGGCCAGTGGGCCGGGAGGCCGG
CAGCACCGGGAGCTCAGATTCTCCCTGGTGGCCATGGGACCCAGG
TCAAATGTCACCTGCATCGTAACGTCTGTAGCAGCTCTGACCACAGCT
CACAGTGCTGCTCCCAAGCCAGCTCCACAATGGGAGACACAGATTCC
AGCCCTCGGAGTCCCCGAAGGACGAGCAGGTCCCTCTCCAAGGA
GGAATGTGCCCTTCGGTCACAGCTGGAGACGCCAGAGAACCCCTGCTGG
GGAGCACCGAAGAGAACGCCCTGCCCTGGAGTGCTGATGCTGGG
ATGAAGCCCAGTTAACCAAGGCCGGTGTGGCTGTGCTGAGCCAAGG
TGGGCTGAGCCCTGGCAGGATGACCCCTGCGAAGGGGCCCTGGTCCTT
CCAGGC

277/345

FIG. 71B

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu Trp Ala Ala
Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr Ala Pro Glu Pro Gly Ser
Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys Ser Lys
Cys Ser Pro Gly Gln His Ala Lys Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys
Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys
Leu Ser Cys Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg
Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln
Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg Pro Gly Phe Gly Val
Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro Gly Thr
Phe Ser Asn Thr Thr Ser Ser Thr Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val
Val Ala Ile Pro Gly Asn Ala Ser Met Asp Ala Val Cys Thr Ser Thr Ser Pro Thr
Arg Ser Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln
His Thr Gln Pro Thr Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser Phe Leu Leu Pro
Met Gly Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly Asp Phe Ala Leu Pro Val Gly
Leu Ile Val Gly Val Thr Ala Leu Gly Leu Leu Ile Gly Val Val Asn Cys Val
Ile Met Thr Gln Val Lys Lys Pro Leu Cys Leu Gln Arg Glu Ala Lys Val Pro
His Leu Pro Ala Asp Lys Ala Arg Gly Thr Gln Gly Pro Glu Gln Gln His Leu Leu
Ile Thr Ala Pro Ser Ser Ser Ser Leu Glu Ser Ser Ala Ser Ala Leu Asp Arg
Arg Ala Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly Val Glu Ala Ser Gly Ala Gly
Glu Ala Arg Ala Ser Thr Gly Ser Ser Asp Ser Pro Gly Gly His Gly Thr Gln
Val Asn Val Thr Cys Ile Val Asn Val Cys Ser Ser Ser Asp His Ser Ser Gln Cys
Ser Ser Gln Ala Ser Ser Thr Met Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro
Lys Asp Glu Gln Val Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser Gln Leu Glu
Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro Leu Pro Leu Gly Val Pro
Asp Ala Gly Met Lys Pro Ser

278/345

FIG. 72A

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val
Thr Ile Thr Cys Arg Ala Ser Gln Asp Val Asn Thr Ala Val Ala Trp Tyr Gln Gln
Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ser Ala Ser Phe Leu Tyr Ser Gly
Val Pro Ser Arg Phe Ser Gly Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser
Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln His Tyr Thr Thr Pro
Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys

FIG. 72B

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg
Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile Lys Asp Thr Tyr Ile His Trp Val Arg
Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Arg Ile Tyr Pro Thr Asn Gly Tyr
Thr Arg Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys
Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr
Tyr Cys Ser Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr Trp Gly Gln
Gly Thr Leu Val Thr Val Ser Ser

279/345

FIG. 73A

Gln Val Thr Leu Arg Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln Thr Leu Thr
Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser Gly Met Ser Val Gly Trp
Ile Arg Gln Pro Ser Gly Lys Ala Leu Glu Trp Leu Ala Asp Ile Trp Trp Asp Asp
Lys Lys Asp Tyr Asn Pro Ser Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser
Lys Asn Gln Val Val Leu Lys Val Thr Asn Met Asp Pro Ala Asp Thr Ala Thr
Tyr Tyr Cys Ala Arg Ser Met Ile Thr Asn Trp Tyr Phe Asp Val Trp Gly Ala Gly
Thr Thr Val Thr Val Ser Ser

FIG. 73B

Asp Ile Gln Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly Asp Arg Val
Thr Ile Thr Cys Lys Cys Gln Leu Ser Val Gly Tyr Met His Trp Tyr Gln Gln Lys
Pro Gly Lys Ala Pro Lys Leu Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val
Pro Ser Arg Phe Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser
Leu Gln Pro Asp Asp Phe Ala Thr Tyr Tyr Cys Phe Gln Gly Ser Gly Tyr Pro Phe
Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys

280/345

FIG. 74A

GACATCTGCTGACTCAGTCTCCAGCCATCCTGTCTGTGAGTCCAGGA
GAAAGAGTCAGTTCTCCTGCAGGGCCAGTCAGTCGTTGGCTCAAGC
ATCCACTGGTATCAGCAAAGAACAAATGGTCTCCAAGGCTCTCATA
AAGTATGCTCTGAGTCTATGTCTGGATCCCTCCAGGTTAGTGGC
AGTGGATCAGGGACAGATTACTCTAGCATCACACTGTGGAGTCT
GAAGATATTGCAGATTACTGTCAACAAAGTCATAGCTGGCCATT
ACGTCGGCTCGGGGACAAATTGGAAGTAAAAGAAGTGAAGCTTGA
GGAGTCTGGAGGAGGCTTGGTGCAACCTGGAGGATCCATGAAACTCT
CCTGTGTTGCCTCTGGATTCACTTCAGTAACCACTGGATGAACGG
TCCGCCAGTCTCCAGAGAAGGGCTTGAGTGGGTTGCTGAAATTAGA
TCAAAATCTATTAATTCTGCAACACATTATGCGGAGTCTGTGAAAGGG
AGGTTCACCATCTCAAGAGATGATTCCAAAAGTGTCTACCTGCAA
ATGACCGACTTAAGAACTGAAGACACTGGCGTTATTACTGTTCCAGG
AATTACTACGGTAGTACCTACGACTACTGGGGCCAAGGCACCACTCTC
ACAGTCTCC

FIG. 74B

Asp Ile Leu Leu Thr Gln Ser Pro Ala Ile Leu Ser Val Ser Pro Gly Glu Arg Val
Ser Phe Ser Cys Arg Ala Ser Gln Phe Val Gly Ser Ser Ile His Trp Tyr Gln Gln
Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile Lys Tyr Ala Ser Glu Ser Met Ser Gly
Ile Pro Ser Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn
Thr Val Glu Ser Glu Asp Ile Ala Asp Tyr Tyr Cys Gln Gln Ser His Ser Trp Pro
Phe Thr Phe Gly Ser Gly Thr Asn Leu Glu Val Lys Glu Val Lys Leu Glu Ser
Gly Gly Leu Val Gln Pro Gly Gly Ser Met Lys Leu Ser Cys Val Ala Ser Gly
Phe Ile Phe Ser Asn His Trp Met Asn Trp Val Arg Gln Ser Pro Glu Lys Gly Leu
Glu Trp Val Ala Glu Ile Arg Ser Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Glu
Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ala Val Tyr
Leu Gln Met Thr Asp Leu Arg Thr Glu Asp Thr Gly Val Tyr Tyr Cys Ser Arg
Asn Tyr Tyr Gly Ser Thr Tyr Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val Ser

281/345

FIG. 75A

ATGGAGACAGACACACTCCTGTTATGGGTGCTGCTGCTCTGGGTTCCA
GGTTCACACTGGTGACGTCAGGCGAGGGCCCCGGAGCCTGCAGGGCAG
GGACGCGCCAGCCCCACGCCCTGCGTCCCGGCCAGTGCTTCGACC
TGCTGGTCCGCCACTGCGTGGCCTGCGGGCTCCTGCGCACGCCCGGC
CGAAACCGGCCGGGGCCAGCAGCCCTGCGGCCAGGACGGCGCTGCAG
CCGCAGGAGTCGGTGGCGCGGGGCCGGCGAGGCAGGCGCTGACA
AAACTCACACATGCCAACCGTGCCAGCACCTGAACCTGGGGGGGA
CCGTCAGTCTCCTCTCCCCAAAACCCAAGGACACCCTCATGATC
TCCCAGGACCCCTGAGGTACATGCGTGGTGGACGTGAGCCACGA
AGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGC
ATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACACAGCACGTA
CCGTGTGGTCAGCGTCCTCACCGTCCGCACCAAGGACTGGCTGAATGG
CAAGGAGTACAAGTGCAAGGTCTCAAACAAAGCCCTCCCAGCCCCA
TCGAGAAAACCATCTCCAAAGCCAAGGGCAGCCCCGAGAACCCACAG
GTGTACACCCTGCCCATCCGGATGAGCTGACCAAGAACCAAGGT
CAGCCTGACCTGCCGTGGCAAAGGCTTCTATCCCAGCGACATGCCGT
GGAGTGGGAGAGCAATGGGCAGCCGGAGAACAAACTACAAGACCACG
CCTCCCGTGTGGACTCCGACGGCTCTTCTTCTACAGCAAGCTC
ACCGTGGACAAGAGCAGGTGGCAGCAGGGAACGTCTCTCATGCTC
CGTATGACATGAGGCTCTGCACAAACCACTACACGCAGAAGAGCCTCT
CCCTGTCTCCGGAAATGA

282/345

FIG. 75B

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro Gly Ser
Thr Gly Asp Val Arg Arg Gly Pro Arg Ser Leu Arg Gly Arg Asp Ala Pro Ala
Pro Thr Pro Cys Val Pro Ala Glu Cys Phe Asp Leu Leu Val Arg His Cys Val Ala
Cys Gly Leu Leu Arg Thr Pro Arg Pro Lys Pro Ala Gly Ala Ser Ser Pro Ala Pro
Arg Thr Ala Leu Gln Pro Gln Glu Ser Val Gly Ala Gly Glu Ala Ala Val
Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser
Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu
Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp
Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr
Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn
Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys
Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro
Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly
Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn
Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys
Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Pro Gly Lys

283/345

FIG. 76

Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu Ser Ala Ser Leu Gly Asp Arg Val
Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr Leu Asn Trp Tyr Gln Gln
Lys Pro Asp Gly Ile Val Lys Leu Leu Ile Tyr Tyr Thr Ser Thr Leu His Ser Gly
Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser
Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro
Trp Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys

284/345

FIG. 77

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Gly Pro Gly Thr Ser Val Arg
Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr Leu Ile Glu Trp Val Lys
Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Val Ile Tyr Pro Gly Ser Gly Gly
Thr Asn Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser
Thr Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Asp Asp Ser Ala Val Tyr Phe
Cys Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Arg Gly Thr
Leu Val Thr Val Ser Ala

285/345

FIG. 78

Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly Asp Arg Val
Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr Leu Asn Trp Tyr Gln Gln
Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Tyr Thr Ser Thr Leu His Ser Gly
Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser
Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu
Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys

286/345

FIG. 79

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser Ser Val Lys
Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr Leu Ile Glu Trp Val Arg
Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile Gly Val Ile Tyr Pro Gly Ser Gly Gly
Thr Asn Tyr Asn Glu Lys Phe Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser
Thr Asn Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr
Phe Cys Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly
Thr Leu Val Thr Val Ser Ser

287/345

FIG. 80

Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly Asp Arg Val
Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr Leu Asn Trp Tyr Gln Gln
Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Tyr Thr Ser Thr Leu His Ser Gly
Val Pro Ser Arg Phe Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser
Ser Leu Gln Pro Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu
Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys Arg Thr Val Ala Ala Pro
Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val
Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val
Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys
Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys
His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys
Ser Phe Asn Arg Gly Glu Cys

288/345

FIG. 81

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser Ser Val Lys
Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr Leu Ile Glu Trp Val Arg
Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile Gly Val Ile Tyr Pro Gly Ser Gly Gly
Thr Asn Tyr Asn Glu Lys Phe Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser
Thr Asn Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr
Phe Cys Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly
Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala
Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp
Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val
His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val
Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys
Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His
Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe
Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly
Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr
Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu
Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp
Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser
Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr
Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp
Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu
His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly

289/345

FIG. 82A

ATGGATTTCAGGTGCAGATTATCAGCTCCTGCTAATCAGTGCTTCA
GTCATAATGTCCAGAGGGCAAATTGTTCTCTCCCAGTCTCCAGCAATC
CTGTCTGCATCTCCAGGGGAGAAGGTACAATGACTGCAGGGCCAG
CTCAAGTGTAAAGTTACATCCACTGGTCCAGCAGAAGCCAGGATCCTC
CCCCAAACCTGGATTATGCCACATCCAACCTGGCTTCTGGAGTCCC
TGTCGCTTCAGTGGCAGTGGCTGGACTTACTCTCTCACAAAT
CAGCAGAGTGGAGGCTGAAGATGCTGCCACTTATTACTGCCAGCAGT
GGACTAGTAACCCACCCACGTTCGGAGGGGGACCAAGCTGGAAATC
AAA

FIG. 82B

Met Asp Phe Gln Val Gln Ile Ile Ser Phe Leu Leu Ile Ser Ala Ser Val Ile Met Ser
Arg Gly Gln Ile Val Leu Ser Gln Ser Pro Ala Ile Leu Ser Ala Ser Pro Gly Glu
Lys Val Thr Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Ile His Trp Phe Gln
Gln Lys Pro Gly Ser Ser Pro Lys Pro Trp Ile Tyr Ala Thr Ser Asn Leu Ala Ser
Gly Val Pro Val Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile
Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Thr Ser Asn
Pro Pro Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys

290/345

FIG. 83A

ATGGGTTGGAGCCTCATCTTGCTCTCCTGTCGCTGTTGCTACCGTG
TCCTGTCCCAGGTACAACACTGCAGCAGCCTGGGGCTGAGCTGGTGAAG
CCTGGGGCCTCAGTGAAGATGTCCTGCAAGGCTCTGGCTACACATT
ACCAGTTACAATA TGCACTGGTAAAACAGACACCTGGTCGGGCCT
GGAATGGATTGGAGCTATTATCCCGGAAATGGTGATACTTCCTACAA
TCAGAACAGTTCAAAGGCAAGGCCACATTGACTGCAGACAAATCCTCCA
GCACAGCCTACATGCAGCTCAGCAGCCTGACATCTGAGGACTCTGCG
GTCTATTACTGTGCAAGATCGACTTACACGGCGGTGACTGGTACTTC
AATGTCTGGGGCGCAGGGACCACGGTCACCGTCTCTGCA

FIG. 83B

Met Gly Trp Ser Leu Ile Leu Leu Phe Leu Val Ala Val Ala Thr Arg Val Leu Ser
Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys Pro Gly Ala Ser Val Lys
Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr Asn Met His Trp Val Lys
Gln Thr Pro Gly Arg Gly Leu Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp
Thr Ser Tyr Asn Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser
Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr
Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn Val Trp Gly Ala Gly
Thr Thr Val Thr Val Ser Ala

291/345

FIG. 84A

CAAAATCAACGGGACTTCCAAAATGTCGTAAACAACCTCCGCCATTG
ACGCAAATGGCGGTAGGCGTGTACGGTGGGAGGTCTATAAGCAG
AGCTGGGTACGTCCACATTCACTAGTGTACGCACAGAACACAGACCC
GTCGACATGGGTTGGAGCCTCATCTTGCTCTCCCTGTCGCTGGCTA
CGCGTGTGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCC
CCTCCAAGAGCACCTCTGGGGCACAGCGGCCCTGGGCTGCCTGGTC
AAGGACTACTCCCCGAACCGGTGACGGTGTGGAACTCAGGCGC
CCTGACCAGCGGCGTGCACACCTCCGGCTGTCCTACAGTCCTCAGG
ACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTGGG
CACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCA
AGGTGGACAAGAAAGCAGAGCCAAATCTTGTGACAAAACACACACA
TGCCCACCGTCCCCAGCACCTGAACCTGGGGGACCGTCAGTCTTC
CTCTTCCCCCAAAACCAAGGACACCCATGATCTCCGGACCC
GAGGTACATGCGTGGTGGACGTGAGCCACGAAGACCCCTGAGGT
CAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGA
CAAAGCCGGGGAGGAGCAGTACAACACAGCACGTACCGTGTGGTCAGC
GTCCTCACCGTCTGCACCAGGACTGGCTGAATGGCAAGGACTACAA
GTGCAAGGTCTCCAACAAAGCCCTCCAGCCCCATCGAGAAAACCA
TCTCCAAAGCCAAAGGGCAGCCCCGAGAACCCACAGGTGTACACCTG
CCCCCATCCGGGATGAGCTGACCAGGAACCAGGTCAACCTGACCTG
CCTGGTCAAAGGCTCTATCCCAGCGACATGCCGTGGAGTGGAGA
GCAATGGGAGCCGGAGAACAAACTACAAGACCACGCCCTCCGTGCTG
GAECTCGACGGCTCCTCTTCTACAGCAAGCTCACCGTGGACAAG
AGCAGGTGGCAGCAGGGAACGTCTCTCATGCTCCGTATGCATGA
GGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGG
TAAATGAGGATCCGTTAACGGTTACCAACTACCTAGACTGGATTCTG
ACAACATGCGGCCGTGATATCTACGTATGATCAGCCTGACTGTGCT
TCTAGTTGCCAGCCATCTGTTGCTTGCCTCCCGTGCCTCCTGA
CCCTGGAAAGGTGCCACTCCACTGTCCTTCTTAATAAAATGAGGAAA
TTGCATCGCATTGTCGTGAGTAGGTGTCAATTCTATTCTGGGGGTGGGG
TGGGGCAGGACAGCAAGGGGAGGATTGGGAAGACAATAGCAGGCA
TGCTGGGATGCGGTGGCTATGGAACCAAGCTGGGGCTCGACAGC
GCTGGATCTCCGATCCCCAGCTTGCTTCAATTCTATTGCATA
ATGAGAAAAAAAGGAAAATTAAATTAAACACCAATTCACTAGTAGTTGAT
TGAGCAAATGCGTTGCCAAAAGGATGCTTAGAGACAGTGTCT
GCACAGATAAGGACAAACATTATTCAAGAGGGAGTACCCAGAGCTGAG
ACTCCTAACGCCAGTGAGTGGCACAGCATTCTAGGGAGAAATATGCTT
GTCATCACCGAAGCCTGATTCCGTAGAGGCCACACCTGGTAAGGGCC
AATCTGCTCACACAGGATAGAGAGGGCAGGAGCCAGGGCAGAGCAT
ATAAGGTGAGGTAGGATCAGTGCTCCTCACATTGCTCTGACATAG
TTGTGTTGGAGCTGGATAGCTGGACAGCTCAGG

292/345

FIG. 84B

CAAAATCAACGGGACTTCCAAAATGTCGTAACAACACTCCGCCATTG
ACGCAAATGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAG
AGCTGGGTACGTCCACATTCACTGATCAGCACTGAACACAGACCC
GTCGACATGGGTTGGAGCCTCATCTTGCTCTCCTGCGCTGTTGCTA
CGCGTGTGCTAGCACCAAGGGCCATCGGTCTTCCCCCTGGCACCCCT
CCTCCAAGAGCACCTCTGGGGCACAGCGGCCCTGGCTGCCTGGTC
AAGGACTACTCCCCGAACCGGTGACGGTGTGGAACTCAGGCGC
CCTGACCAGCGCGTGCACACCTCCGGCTGCTACAGTCCTCAGG
ACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCTCCAGCAGCTGGG
CACCCAGACCTACATCTGCAACGTGAATACAAGCCCAGAACACCA
AGGTGGACAAGAAAGCAGAGCCAAATCTTGTGACAAAACACACACA
TGCCCACCGTGCCAGCACCTGAACACTCCTGGGGGACCGTCAGTCTC
CTCTCCCCCCTAAACCCAAGGACACCCCTCATGATCTCCGGACCCCT
GAGGTACATGCGTGGTGGACGTGAGCCACGAAGACCCCTGAGGT
CAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCTAATGCCAAGA
CAAAGCCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC
GTCCTCACCGTCCCTGCACCAGGACTGGCTGAATGGCAAGGACTACAA
GTGCAAGGTCTCCAACAAAGCCCTCCAGCCCCATCGAGAAAACCA
TCTCCAAGCCAAAGGGCAGCCCCGAGAACCAACAGGTGTACACCCCTG
CCCCCATCCCCGGATGAGCTGACCAGGAACCAGGTCAAGCTGACCTG
CCTGGTCAAAGGCTCTATCCCAGCGACATGCCGTGGAGTGGAGA
GCAATGGGCAGCCGGAGAACAAACTACAAGACCACGCCTCCGTGCTG
GAATCCGACGGCTCCTCTTACAGCAAGCTCACCGTGGACAAG
AGCAGGTGGCAGCAGGGAACGTCTCTCATGCTCCGTGATGCATGA
GGCTCTGCACAACCAACTACACGCAGAACAGGCCTCCCTGTCTCCGGG
TAAATGAGGATCCGTTAACGGTTACCAACTACCTAGACTGGATTG
ACAACATGCGGCCGTGATATCTACGTATGATCAGCCTCGACTGTGCCT
TCTAGTTGCCAGCCATCTGTTGCTTCCCCCTCCCCGTGCCTCCTGA
CCCTGGAAAGGTGCCACTCCCAGCTGCTTCTTAATAAAATGAGGAAA
TTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGTGGGG
TGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCA
TGCTGGGATGCGGTGGCTATGGAACCAGCTGGGCTCGACAGC
GCTGGATCTCCGATCCCCAGCTTGCCTCTCAATTCTATTGCATA
ATGAGAAAAAAAGGAAAATTAATTAAACACCAATTCACTAGTAGTTGAT
TGAGCAAATGCGTTGCCAAAAAGGATGCTTAGAGACAGTGTCTCT
GCACAGATAAGGACAAACATTATTCACTAGAGGGAGTACCCAGAGCTGAG
ACTCCTAACGCCAGTGAGTGGCACAGCATTCTAGGGAGAAATATGCTT
GTCATCACCGAAGCCTGATTCCGTAGAGCCACACCTGGTAAGGGCC
AATCTGCTCACACAGGATAGAGAGGGCAGGAGCCAGGGCAGAGCAT
ATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTGCTTCTGACATAG
TTGTGTTGGGAGCTGGATAGCTGGACAGCTCAGG

293/345

FIG. 84C

GCTGCGATTCGCGCCAAACTGACGGCAATCCTAGCGTGAAGGCTG
TAGGATTATCCCCGCTGCCATCATGGTCGACCATTGAACGTGCAT
CGTCGCCGTGCCCCAAAATAGGGGATTGGCAAGAACGGAGACCTAC
CCTGGCCTCCGCTCAGGAACGAGTTCAAGTACTTCAAAGAATGACC
ACAACCTCTCAGTGGAAAGGTAAACAGAACATCTGGTGATTATGGGTAG
AAAAACCTGGTCTCCATTCTGAGAACAAATCGACCTTAAAGGACA
GAATTAAATATAGTTCTCAGTAGAGAACACTCAAAGAACCCACGAGGA
GCTCATTCTGCCAAAAGTTGGATGATGCCTAAGACTTATTGAA
CAACCGGAATTGGCAAGTAAAGTAGACATGGTTGGATAGTCGGAGG
CAGTTCTGTTACCAGGAAGCCATGAATCAACCAGGCCACCTAGACT
CTTGTGACAAGGATCATGCAGGAATTGAAAGTGACACGTTTCCC
AGAAATTGATTGGGAAATATAAAACTTCTCCCAGAACATCCCAGGCG
TCCTCTCTGAGGTCCAGGAGGAAAAAGGCATCAAGTATAAGTTGAA
GTCTACGAGAAGAAAGACTAACAGGAAGATGCTTCAAGTTCTGC
TCCCCTCTAAAGTCATGCATTTTATAAGACCATGGACTTTGCTG
GCTTAGATCAGCCTGACTGTGCCCTCTAGTTGCCAGCCATCTGTTG
TTGCCCTCCCCGTGCCCTCCTGACCCCTGGAAGGTGCCACTCCCAC
TGTCTTCTTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAG
GTGTCATTCTATTCTGGGGGTGGGTGGGCAGGACAGCAAGGGGG
AGGATTGGGAAGACAATAGCAGGCATGCTGGGATGCCGGTGGCTCT
ATGGAACCAGCTGGGCTCGAGCTACTAGCTTCTCAATTCTT
ATTGCTATAATGAGAAAAAAAGGAAAATTAAATTAAACACCAATTCA
GTAGTTGATTGAGCAAATGCGTGCCAAAAGGATGCTTCAAGAGACA
GTGTTCTCTGCACAGATAAGGACAAACATTATTAGAGGGAGTACCC
AGAGCTGAGACTCCTAACGCCAGTGAGTGGCACAGCATTCTAGGGAGA
AATATGCTTGTCACTACCGAACGCCCTGATTCCGTAGAGGCCACACCTGG
TAAGGCCAATCTGCTCACACAGGATAGAGAGGGCAGGAGCCAGGG
CAGAGCATATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTGCTC
TGACATAGTTGTGGAGCTGGATCGATCCTCTATGGTGAAACAA
GATGGATTGCACGCAGGTTCTCCGGCCGTTGGGAGAGGCTATT
GGCTATGACTGGGACAAACAGACAATCGGCTGCTGTGATGCCGCCGT
GTTCCGGCTGTCAGCGCAGGGCGCCGGTTCTTGTCAAGACCGA
CCTGTCCGGTGCCTGAATGAACGACTGCAGGACGAGGCAGCGGGCTAT
CGTGGCTGCCACGACGGCGTTCTGCGCAGCTGTGCTCGACGTTG
TCACTGAAGCGGGAAAGGGACTGGCTGCTATTGGCGAAGTGCCTGGG
CAGGATCTCCTGTCATCTCACCTGCTCCTGCCAGAACAGTATCCATC
ATGGCTGATGCAATGCGGGCTGCAACGCTGATCCGGCTACCTGC
CCATTGACCAACCAAGCGAAACATCGCAGCGAGCAGCAGTACTCG
GATGGAAGCCGGTCTGTCGATCAGGATGATCTGGACGAAGAGCAGC
AGGGGCTCGGCCAGCCGAACGTTCGCCAGGCTCAAGGCGCGCATG
CCCGACGGCGAGGATCTCGTGCACCATGGCGATGCCCTGCTGCCG

294/345

FIG. 84D

AATATCATGGTGGAAAATGGCCGCTTCGGATTCACTGACTGTGGC
CGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTGGCTACCCG
TGATATTGCTGAAGAGCTGGCGCGAATGGGCTGACCGCTTCCTCGT
GCTTACGGTATGCCGCTTCCCATTGCAGCGCATGCCCTCTATC
GCCTTCTGACGAGTTCTCTGAGCGGGACTCTGGGGTCGAAATGAC
CGACCAAGCGACGCCAACCTGCCATCACGAGATTGCGATTCCACCG
CCGCCTCTATGAAAGGTTGGGCTCGGAATCGTTCCGGACGCCG
GCTGGATGATCCTCCAGCGGGGATCTCATGCTGGAGTTCTCGCCC
ACCCCAACTTGTATTGCAGCTATAATGGTACAAATAAGCAATA
GCATCACAAATTCAAAATAAGCATTTTCACTGCATTCTAGTT
GTGGTTGTCAAACATCAATCTATCTTATCATGTCGGATCGCGG
CCGCGATCCCGTCGAGAGCTGGCGTAATCATGGTCATAGCTGTTCC
TGTGTGAAATTGTTATCCGCTCACAAATTCCACACAACATACGAGGCCG
AGCATAAAAGTGTAAAGCCTGGGGTCCTAATGAGTGAGCTAACTCAC
ATTAATTGCGTTGCGCTCACTGCCGCTTCCAGTCGGAAACCTGTC
GTGCCAGCTGCATTAATGAATCGGCCAACGCGGGGAGAGGCCGTT
TGCCTATTGGCGCTTCCGCTTCGCTCACTGACTCGCTGCGCTC
GGTCGTTGGCTGCGCGAGCGGTATCAGCTCACTCAAAGGCCGTTAA
TACGGTTATCCACAGAATCAGGGATAACGCAGGAAAGAACATGTGA
GCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGTTGC
TGGCGTTTCCATAGGCTCCGCCCTGACGAGCATCACAAAAATC
GACGCTCAAGTCAGAGGTGGCGAAACCGACAGGACTATAAGATAAC
CAGCGTTCCCCCTGGAAGCTCCCTCGTGCCTCTCGTCCGACC
CTGCCGCTTACCGGATACCTGTCCGCCTTCTCCCTCGGAAGCGTG
GCGCTTCTCAATGCTCACGCTGTAGGTATCTCAGTCGGTGTAGGTC
GTCGCTCCAAGCTGGCTGTGCACGAACCCCCGTTAGCCGAC
CGCTGCGCCTTATCCGTAACATCGTCTGAGTCCAACCCGGTAAGA
CACGACTTATGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAG
AGCGAGGTATGTAGGCGGTGCTACAGAGTTCTGAAGTGGTGGCCTA
ACTACGGCTACACTAGAAGGACAGTATTGGTATCTCGCTCTGCTGA
AGCCAGTTACCTCGGAAAAAGAGTTGGTAGCTCTGATCCGGAAA
CAAACCACCGCTGGTAGCGGTGGTTTTGTTGCAAGCAGCAGATT
ACGCGCAGAAAAAGGATCTCAAGAAGATCCTTGATCTTCTAC
GGGGCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTGG
TCATGAGATTATCAAAAAGGATCTCACCTAGATCCTTAAATTAAA
AATGAAGTTAAATCAAATCTAAAGTATATGAGTAAACTGGTCTG
ACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTC
TATTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTAGATAACTAC
GATACGGGAGGGCTTACCATCTGGCCCCAGTGCCTGCAATGATAACCGC
GAGACCCACGCTCACCGGCTCCAGATTATCAGCAATAACCGCCA
GCCGGAAGGGCCGAGCGCAGAAGTGGCCTGCAACTTATCCGCCTC
CATCCAGTCTATTAAATTGTTGCCGGAGCTAGAGTAAGTAGTTCGC

295/345

FIG. 84E

CAGTTAATAGTTGCGAACGTTGCCATTGCTACAGGCATCGTGG
TGTCACGCTCGTCTGGTATGGCTTCATTCACTCCGGTCCCAAC
GATCAAGGCGAGTTACATGATCCCCATGTTGTGCAAAAAAGCGGTT
AGCTCCTTCGGTCCTCCGATCGTTGTCAAGTAAGTGGCCGCAGTG
TTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCA
CATCCGTAAGATGCTTTCTGTGACTGGTGAGTACTCAACCAAGTCAT
TCTGAGAATAGTGTATGCCGGCACATAGCAGAACTTTAAAAGTGCTCATC
TACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATC
ATTGGAAAACGTTCTCGGGGCGAAAACCTCTCAAGGATCTTACCGCTG
TTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACGTGATCTTCA
GCATCTTTACTTCACCAGCGTTCTGGGTGAGCAAAACAGGAAGG
CAAAATGCCGAAAAAAAGGGATAAGGGCGACACGGAAATGTTGAA
TACTCATACTCTCCTTTCAATATTATTGAAGCATTATCAGGGTTA
TTGTCTCATGAGCGGATACATATTGAATGTATTAGAAAAATAAAC
AATAGGGGTTCCGCGCACATTCCCCGAAAAGTGCACCT

296/345

FIG. 85A

GACGTCGGCCGCTCTAGGCCTCCAAAAAGCCTCCTCACTACTTCT
GGAATAGCTCAGAGGCCGAGGCCGCTCGGCCTCTGCATAAATAAAA
AAAATTAGTCAGCCATGCATGGGGCGGAGAATGGGCGGAACGGCG
GAGTTAGGGCGGGATGGCGGAGTTAGGGCGGGACTATGGTTGCT
GACTAATTGAGATGCATGCTTGCTACTTCTGCCTGCTGGGGAGCCT
GGGGACTTCCACACCTGGTTGCTGACTAATTGAGATGCATGCTTGCT
ATACTCTGCCTGCTGGGGAGCCTGGGGACTTCCACACCCTAACTGA
CACACATTCCACAGAATTAAATTCCCCTAGTTATTAAATAGTAATCAATT
ACGGGGTCATTAGTCATAGCCCATAATGGAGTTCCCGCGTTACATAA
CTTACGGTAAATGGCCCGCCTGGCTGACCGCCAACGACCCCCGCC
ATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGA
CTTCCATTGACGTCAATGGGTGGACTATTACGGTAAACTGCCACT
TGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCTATTGACG
TCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAAGTACATGACCT
TATGGACTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTA
TTACCATGGTGATGGGTTTGGCAGTACATCAATGGCGTGGATACC
GGTTGACTCACGCCATTGACGCAAATGGCGGTAGGCGTGTACGGTGG
GGAGTTGTTGGCACAAAATCAACGGGACTTCAAAATGTCGTA
ACAACCTCCGCCATTGACGCAAATGGCGGTAGGCGTGTACGGTGG
GAGGTCTATAAGCAGAGCTGGTACGTGAACCGTCAGATGCC
GAGACGCCATCACAGATCTCACTATGGATTTCAGGTGCAGATTAT
CAGCTCCTGCTAATCAGTGCTTCAGTCATAATGTCCAGAGGACAAAT
TGTCTCTCCAGTCTCCAGCAATCCTGTCTGCATCTCCAGGGAGAA
GGTCACAATGACTTGCAGGGCCAGCTCAAGTGTAAAGTTACATCCACT
GGTTCCAGCAGAAGCCAGGATCCTCCCCAAACCCCTGGATTATGCCA
CATCCAACCTGGCTTCTGGAGTCCCTGTCGCTCAGTGGCAGTGG
CTGGGACTTCTTACTCTCACAATCAGCAGAGTGGAGGCTGAAGATG
CTGCCACTTATTACTGCCAGCAGTGGACTAGTAACCCACCGTTCG
GAGGGGGACCAAGCTGGAAATCAAACGTACGGTGGCTGCACCAC
GTCTTCATCTCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCC
TCTGTTGTTGCTGAATAACTCTATCCCAGAGAGGCCAAAGTA
CAGTGGAAAGGTGGATAACGCCCTCCAATCGGGTAACCCAGGAGAG
TGTACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCA
CCCTGACGCTGAGCAAAGCAGACTACGGAGAAACACAAAGTCTACGCC
TGCAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTT
CAACAGGGAGAGTGTGAATTCAAGATCCGTTAACGGTTACCAACTA
CCTAGACTGGATTCTGTGACAACATGCCAGGCTGATATCTACGTATGAT
CAGCCTCGACTGTGCCTTAGTTGCCAGCCATCTGTTGCCCCCTC
CCCCGTGCCTTCCTGACCCCTGGAAGGTGCCACTCCACTGTCCTTCC

297/345

FIG. 85B

TAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCT
ATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGG
AAGACAATAGCAGGCATGCTGGGGATGCGGTGGCTCATGGAACCA
GCTGGGGCTCGACAGCTATGCCAAGTACGCCCTATTGACGTCAATG
ACGGTAAATGGCCCGCCTGGCATTATGCCAGTACATGACCTATGGG
ACTTTCCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCAT
GGTGTGCGGTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTG
ACTCACGGGAATTCCAAGTCTCCACCCATTGACGTCAATGGGAGTT
TGTGTTGGCACCAAAATCAACGGGACTTCAAAATGTGTAACAAC
CCGCCCTATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTC
TATATAAGCAGAGCTGGTACGTCCACATTAGTGTACAGCACTGA
ACACAGACCCGTCGACATGGGTTGGAGCCTCATCTGCTCTCCTTGT
CGCTGTTGCTACGCGTGTCCCTGCCCAGGTACAACACTGCAGCAGCCTGG
GGCTGAGCTGGTGAAGCCTGGGCGCTCAGTGAAGATGTGCTGCAAGG
CTTCTGGCTACACATTACAGTTACAATATGCACTGGTAAAACAGA
CACCTGGTCGGGCCTGGAATGGATTGGAGCTATTATCCCGGAAAT
GGTGATACTCCTACAATCAGAAGTCAAAGGCAAGGCCACATTGAC
TGCAGACAAATCCTCCAGCACGCCATGCAGCTCAGCAGCCTGA
CATCTGAGGACTCTGCGGTCTATTACTGTGCAAGATCGACTTACAG
GCGGTGACTGGTACTTCAATGTCTGGGCGCAGGGACCACGGTCACC
GTCTCTGCAGCTAGCACCAAGGGCCATCGGTCTCCCCCTGGCACCC
TCCTCCAAGAGCACCTCTGGGGCACAGCGGCCCTGGCTGCCTGGT
CAAGGACTACTCCCCGAACCGGTGACGGTGTGGAACTCAGGCG
CCCTGACCAGCGCGTGCACACCTCCGGCTGCTTACAGTCCTCAG
GAACCTACTCCCTCAGCAGCGTGGTGACCGTGCCTCCAGCAGCTTGG
GCACCCAGACCTACATCTGCAACGTGAATACAAGCCCAGCAACACC
AAGGTGGACAAGAAAGCAGAGGCCAAATCTTGTGACAAAACACAC
ATGCCCACCGTCCCAGCACCTGAACCTCCTGGGGGACCGTCAGTCTT
CCTCTCCCCCAAAACCCAAAGGACACCCTCATGATCTCCGGACCC
TGAGGTACATGCGTGGTGGTGACGTGAGCCACGAAGACCCCTGAGG
TCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAG
ACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAG
CGTCCTCACCGTCCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACA
AGTGAAGGTCTCCAACAAAGCCCTCCAGCCCCATCGAGAAAACC
ATCTCCAAAGCCAAGGGCAGCCCCGAGAACCAACAGGTGTACACCCT
GCCCTGGTCAAAGGCTCTATCCCAGCGACATCGCCGTGGAGTGGAG
AGCAATGGCAGCCGGAGAACAAACTACAAGACCACGCCCTCCCGTGCT
GGACTCCGACGGCTCTTCTCCTACAGCAAGCTCACCGTGGACAA
GAGCAGGTGGCAGCAGGGAACGTCTTCTCATGCTCCGTGATGCATG
AGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGG
GTAAATGAGGATCCGTTAACGGTTACCAACTACCTAGACTGGATTG

298/345

FIG. 85C

GACAAACATGCGGCCGTGATATCTACGTATGATCAGCCTCGACTGTGCC
TTCTAGTTGCCAGCCATCTGTTGCCCTCCCCGTGCCTTCCTTG
ACCCTGGAAAGGTGCCACTCCACTGTCCTTCCTAATAAAAATGAGGAA
ATTGCATCGCATTGTCAGTAGGTGTCATTCTATTCTGGGGGGTGGG
GTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGC
ATGCTGGGATGCGGTGGGCTCATGGAACCAGCTGGGCTGACAG
CGCTGGATCTCCGATCCCCAGCTTGCTCTCAATTCTTATTGCAT
AATGAGAAAAAAAAGGAAAATTAAATTAAACACCAATTCAAGTAGTTGA
TTGAGCAAATGCGTTGCCAAAAAGGATGCTTAGAGACAGTGTCTCT
GCACAGATAAGGACAAACATTATTCAAGAGGGAGTACCCAGAGCTGAG
ACTCCTAACGCCAGTGAGTGGCACAGCATTCTAGGGAGAAATATGCTT
GTCATCACCGAACGCTGATTCCGTAGAGGCCACACCTGGTAAGGGCC
AATCTGCTCACACAGGATAGAGAGGGCAGGAGCCAGGGCAGAGCAT
ATAAGGTGAGGTAGGATCAGTTGCTCCTCACATTGCTTGTACATAG
TTGTGTGGGAGCTTGGATAGCTTGGACAGCTCAGGGCTGCGATTTCG
CGCCAAACTGACGGCAATCCTAGCGTGAAGGCTGGTAGGATTATC
CCCGCTGCCATCATGGTTCGACCATTGAACACTGCATCGTCGCCGTGTC
CAAAATATGGGATTGGCAAGAACGGAGACCTACCCCTGGCCTCCGCT
CAGGAACGAGTTCAAGTACTCCAAAGAATGACCACAAACCTCTCAG
TGGAAAGGTAAACAGAATCTGGTATTATGGTAGGAAAACCTGGTTC
TCCATTCTGAGAAGAACGACCTTAAAGGACAGAATTAAATATAGTT
CTCAGTAGAGAACTCAAAGAACCAACCACGAGGAGCTATTCTTGC
CAAAAGTTGGATGATGCCTTAAGACTATTGAACAAACCGGAATTGG
CAAGTAAAGTAGACATGGTTGGATAGTCGGAGGCAGTTCTTAC
AGGAAGCCATGAATCAACCAGGCCACCTAGACTCTTGTGACAAGG
ATCATGCAGGAATTGAAAGTGACACGTTTCCCAGAAATTGATTG
GGGAAATATAAACTCTCCAGAATACCCAGGCCTCTCTGA
GGTCCAGGAGGAAAAAGGCATCAAGTATAAGTTGAAGTCTACGAGA
AGAAAGACTAACAGGAAGATGCTTCAAGTTCTGCTCCCTCTAA
AGCTATGCATTAAAGACCATGGACTTTGCTGGCTTAGATCA
GCCTCGACTGTGCCTCTAGTTGCCAGCCATCTGTTGCTTGCCTTCTA
CCGTGCCCTCTGACCCCTGGAAGGTGCCACTCCACTGTCCTTCTA
ATAAAATGAGGAAATTGCATCGCATTGTCAGTAGGTGTCATTCTAT
TCTGGGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAA
GACAATAGCAGGCATGCTGGGATGCGGTGGGCTATGGAACCAGC
TGGGGCTCGAGCTACTAGCTTGCTCTCAATTCTTATTGCATAATG
AGAAAAAAAAGGAAAATTAAATTAAACACCAATTCAAGTAGTTGATTGA
GCAAATGCGTTGCCAAAAAGGATGCTTAGAGACAGTGTCTCTGCA
CAGATAAGGACAAACATTATTCAAGAGGGAGTACCCAGAGCTGAGACT
CCTAACGCCAGTGAGTGGCACAGCATTCTAGGGAGAAATATGCTTGT
ATCACCGAACGCTGATTCCGTAGAGGCCACACCTGGTAAGGGCCAAT
CTGCTCACACAGGATAGAGAGGGCAGGAGCCAGGGCAGAGCATATA
AGGTGAGGTAGGATCAGTTGCTCCTCACATTGCTTGTACATAGTTG

299/345

FIG. 85D

TGTTGGGAGCTGGATCGATCCTCTATGGTTGAACAAAGATGGATTGCA,
CGCAGGTTCTCCGGCCGCTGGGTGGAGAGGGCTATTGGCTATGACTG
GGCACAAACAGACAATCGGCTGCTCTGATGCCGCCGTGTCGGCTGTC
AGCGCAGGGCGCCCGTTCTTGTCAAGACCGACCTGTCCGGTGC
CCTGAATGAACTGCAGGACGAGGCAGCGCGCTATCGTGGCTGGCCA
CGACGGCGTTCCTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGG
GAAGGGACTGGCTGCTATTGGCGAAGTGCCGGGCAGGAATCTCCTG
TCATCTCACCTGCTCCTGCCGAGAAAAGTATCCATCATGGCTGATGCA
ATGCGGCGGCTGCATACGCTTGATCCGGTACCTGCCATTGACAC
CAAGCGAAACATCGCATCGAGCGAGCACGTACTGGATGGAAGGCCGG
TCTTGTGATCAGGATGATCTGGACGAAGAGCATCAGGGCTCGCGC
CAGCCGAACTGTTGCCAGGCTCAAGGCGCGATGCCGACGGCGAG
GATCTCGTGTGACCCATGGCGATGCCCTGCTTGCCGAATATCATGGTG
AAAAATGGCCGCTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTG
GCGGACCGCTATCAGGACATAGCGTTGGCTACCGTGATATTGCTGA
AGAGCTGGCGGCGAATGGGCTGACCGCTTCCTCGTGTCTTACGGTAT
GCCCGCTCCCGATTGCGAGCGCATGCCCTCTATGCCCTTGACGA
GTTCTTCTGAGCGGGACTCTGGGTTGAAATGACCGACCAAGCGAC
GCCCAACCTGCCATACGAGATTGCTGATCCACCGCCGCTCTATGA
AAGGTTGGGCTTCGGAATCGTTCCGGACGCCGGCTGGATGATCCT
CCAGCGCGGGATCTCATGCTGGAGTTCTGCCAACCCAACTTGT
TATTGCAAGCTATAATGGTTACAAATAAGCAATAGCATACAAATT
CACAAATAAGCATTTCACTGCATTCTAGTTGTGGTTGTCAA
ACTCATCAATCTATCTATCATGCTGGATGCCGGCGATCCCGTC
GAGAGCTGGCGTAATCATGGTCAAGCTGTTCTGTGTGAAATTGT
TATCCGCTACAATTCCACACAACATACGAGCGGAAGCATAAAAGTG
TAAAGCCTGGGGTGCCTAATGAGTGAGCTAACATCACATTAAATTGCGTT
GCGCTCACTGCCGCTTCCAGTCGGAAACCTGTCGTGCCAGCTGCA
TTAATGAATCGGCCAACGCGCGGGAGAGGGCGTTGCGTATTGGGC
GCTCTCCGCTTCCTCGCTCACTGACTCGCTGCCGCTGGTGTGCT
GCGCGAGCGGTATCAGCTCACTCAAAGGCGTAATACGGTTATCCA
CAGAACATCAGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCA
GCAAAAGGCCAGGAACCGTAAAAAGGCCGTTGCTGGCGTTTCC
ATAGGCTCCGCCCTGACGAGCATCACAAATCGACGCTCAAGT
CAGAGGTGGCGAAACCGACAGGACTATAAGATACCAGGCCTTCC
CCCTGGAAAGCTCCCTCGTGCCTCCTGTTCCGACCCCTGCCGCTTAC
CGGATACCTGTCCGCCCTCTCCCTCGGAAGCGTGGCGCTTCTCA
ATGCTCACGCTGTAGGTATCTCAGTTGGTGTAGGTGTTGCTCCAA
GCTGGCTGTGACGAACCCCGTTCAGCCCACCGCTGCGCCTT
ATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATC

300/345

FIG. 85E

GCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATG
TAGGCCTGCTACAGAGTTCTGAAGTGGTGGCCTAACTACGGCTAC
ACTAGAAGGACAGTATTGGTATCTGCGCTTGCTGAAGCCAGTTACC
TTCGGAAAAAGAGTTGGTAGCTCTGATCCGGCAAACAAACCACCGC
TGGTAGCGGTGGTTTTGTTGCAAGCAGCAGATTACGCGCAGAAA
AAAAGGATCTCAAGAAGATCCTTGATCTTCTACGGGGTCTGACGC
TCAGTGGAACGAAAACACGTTAACGGATTGGTCATGAGATTATC
AAAAAGGATCTCACCTAGATCCTTAAATTAAAAATGAAGTTAA
ATCAATCTAAAGTATATGAGTAAACTGGTCTGACAGTTACCAATG
CTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTGTTCATCC
ATAGTTGCCTGACTCCCCCGTGTAGATAACTACGATACGGGAGGG
CTTACCATCTGGCCCCAGTGCTGCAATGATAACCGCGAGACCCACGCTC
ACCGGCTCCAGATTATCAGCAATAAACAGCCAGCCGGAAAGGCCG
AGCGCAGAAGTGGCCTGCAACTTATCCGCCTCCATCCAGTCTATT
ATTGTTGCCGGGAAGCTAGAGTAAGTAGTTGCCAGTTAATAGTTGC
GCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTACGCTCGT
TTGGTATGGCTTCATTCAAGCTCCGGTCCACGATCAAGGCGAGTTA
CATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTCGGTCTC
CGATCGTTGTCAGAAGTAAGTTGGCCAGTGTATCACTCATGGTTA
TGGCAGCACTGCATAATTCTCTACTGTCATGCCATCCGTAAGATGCT
TTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGT
TGCAGCGACCGAGTTGCTCTGCCCGCGTCAATACGGGATAATACC
GCGCCACATAGCAGAACCTTAAAAGTGCATCATTGGAAAACGTTCT
TCGGGGCGAAAACCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCG
ATGTAACCCACTCGTCACCCAACGTATCTCAGCATCTTACTTCA
CCAGCGTTCTGGGTGAGCAAAAACAGGAAGGCAAATGCCGAAAAA
AAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTCCT
TTTCAATATTATTGAAGCATTATCAGGGTTATTGTCTCATGAGCGG
ATACATATTGAATGTATTAGAAAAATAACAAATAGGGGTTCCGC
GCACATTCCCCGAAAAGTGCACCT

301/345

FIG. 86

302/345

FIG. 87

303/345

FIG. 88

304/345

FIG. 89

Pre +SA +F TP20

305/345

FIG. 90

306/345

FIG. 91

307/345

FIG. 92A

308/345

FIG. 92B

309/345

FIG. 93

310/345

FIG. 94A

311/345

FIG. 94B

312/345

FIG. 95

313/345

FIG. 96

314/345

FIG. 97

315/345

FIG. 98

316/345

FIG. 99A

317/345

FIG. 99B

318/345

FIG. 100

319/345

FIG. 101

320/345

FIG. 102A

321/345

FIG. 102B

322/345

FIG. 103

323/345

FIG. 104

324/345

FIG. 105

325/345

FIG. 106

326/345

FIG. 107

327/345

FIG. 108

328/345

FIG. 109

329/345

FIG. 110