Table 15.1 Some Common Link Functions and Their Inverses

Link	$\eta_i = g(\mu_i)$	$\mu_i = g^{-1}(\eta_i)$
Identity	μ_i	η_i
Log	$\log_{\mathrm{e}}\mu_{i}$	$e^{\eta_{m{i}}}$
Inverse	$\log_e \mu_i \ \mu_i^{-1}$	η_i^{-1}
Inverse-square	μ_i^{-2}	η_i^{-1} $\eta_i^{-1/2}$
Square-root	$\sqrt{\mu_i}$	η_i^2
Logit	$\log_e \frac{\mu_i}{1-\mu_i}$	$\frac{1}{1+e^{-\eta_i}}$
Probit	$\Phi^{-1}(\mu_i)$	$\Phi(\eta_i)$
Log-log	$-\log_{e}[-\log_{e}(\mu_{i})]$	$\exp[-\exp(-\eta_i)]$
Complementary log-log	$\log_{e}[-\log_{e}(1-\mu_{i})]$	$1-\exp[-\exp(\eta_i)]$

NOTE: μ_i is the expected value of the response; η_i is the linear predictor; and $\Phi(\cdot)$ is the cumulative distribution function of the standard-normal distribution.