2/2

2/2

2/2

2/2

2/2

2/2

-1/2

2/2

2/2

2/2

2/2

THLR Contrôle (35 questions), Septembre 2016

Nom et prénom, lisibles :	Identifiant (de haut en bas):	
MAAYOUFI		
Amine		
	□0 ■1 □2 □3 □4 □5 □6 □7 □8 □9	
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0.		
Q.2 Que ne traite pas la théorie des langages?		
■ la voix □ Java □	l'ADN l'écrit HTML	
Q.3 Pour $L_1 = \{a, b\}^*, L_2 = \{a\}^* \{b\}^*$:		
$\Box L_1 = L_2 \qquad \blacksquare L_1 \supseteq L_2$	$\square L_1 \subseteq L_2 \qquad \qquad \square L_1 \stackrel{\not\subseteq}{\not\supseteq} L_2$	
Q.4 Que vaut $\emptyset \cdot L$?		
■ 0 □ ε	\square $\{\varepsilon\}$ \square L	
Q.5 Que vaut Fact({ab, c}) (l'ensemble des facteurs	s):	
	\square \emptyset \square $\{\varepsilon\}$ \blacksquare $\{ab,a,b,c,\varepsilon\}$	
Q.6 Que vaut $Fact(\{a\}\{b\}^*)$ (l'ensemble des facteur	rs)	
	the management of country	
	a a a a a a a a a a	
	$a\}^* \qquad \blacksquare \qquad \{a\}\{b\}^* \cup \{b\}^* \qquad \qquad \square \qquad \{a\}\{b\}^*\{a\}$	
Q.7 Pour toutes expressions rationnelles e, f, g , or	b $\{a\}^* \cup \{b\}^*$	
	$b\{a\}^* \cup \{b\}^*$ $ext{n a } e(f+g) \equiv ef + eg \text{ et } (e+f)g \equiv eg + fg.$	
Q.7 Pour toutes expressions rationnelles e, f, g , or	$b\{a\}^* \cup \{b\}^*$ $a \ e(f+g) \equiv ef + eg \ \text{et} \ (e+f)g \equiv eg + fg.$ $faux$	
Q.7 Pour toutes expressions rationnelles <i>e</i> , <i>f</i> , <i>g</i> , or ⊠ vrai	$b\{a\}^* \cup \{b\}^*$ $ext{n a } e(f+g) \equiv ef + eg \text{ et } (e+f)g \equiv eg + fg.$ $faux$ $ext{n } (e+f)^* \equiv e^*(e+f)^*.$	
 Q.7 Pour toutes expressions rationnelles <i>e</i>, <i>f</i>, <i>g</i>, or ☑ vrai Q.8 Pour toutes expressions rationnelles <i>e</i>, <i>f</i>, on a 	$b\{a\}^* \cup \{b\}^*$ $ext{n a } e(f+g) \equiv ef + eg \text{ et } (e+f)g \equiv eg + fg.$ $faux$ $ext{n } (e+f)^* \equiv e^*(e+f)^*.$	
Q.7 Pour toutes expressions rationnelles e , f , g , or x vrai Q.8 Pour toutes expressions rationnelles e , f , on a faux Q.9 Pour $e = (a + b)^* + \varepsilon$, $f = (a^*b^*)^*$:	$b\{a\}^* \cup \{b\}^*$ $n \ a \ e(f+g) \equiv ef + eg \ et \ (e+f)g \equiv eg + fg.$ $n \ a \ (e+f)^* \equiv e^*(e+f)^*.$ $n \ a \ e(f+g) \equiv ef + eg \ et \ (e+f)^*.$ $n \ a \ e(f+g) \equiv ef + eg \ et \ (e+f)^*.$ $n \ a \ e(f+g) \equiv ef + eg \ et \ (e+f)^*.$	
Q.7 Pour toutes expressions rationnelles e , f , g , or x vrai Q.8 Pour toutes expressions rationnelles e , f , on a faux Q.9 Pour $e = (a + b)^* + \varepsilon$, $f = (a^*b^*)^*$:	$b\{a\}^* \cup \{b\}^*$ $ext{n a } e(f+g) \equiv ef + eg \text{ et } (e+f)g \equiv eg + fg.$ $faux$ $ext{n } (e+f)^* \equiv e^*(e+f)^*.$	
Q.7 Pour toutes expressions rationnelles e , f , g , or x vrai Q.8 Pour toutes expressions rationnelles e , f , on a faux Q.9 Pour $e = (a + b)^* + \varepsilon$, $f = (a^*b^*)^*$:	$b\}\{a\}^* \cup \{b\}^*$ $\text{n a } e(f+g) \equiv ef + eg \text{ et } (e+f)g \equiv eg + fg.$ faux $\text{n } (e+f)^* \equiv e^*(e+f)^*.$ vrai $L(e) \subseteq L(f) \qquad \Box L(e) \supseteq L(f)$	
Q.7 Pour toutes expressions rationnelles e, f, g, on Q.8 Pour toutes expressions rationnelles $e, f, on e$ \Box faux Q.9 Pour $e = (a + b)^* + \varepsilon, f = (a^*b^*)^*$: \Box $L(e) \nsubseteq L(f)$ \Box $L(e) = L(f)$	$b\}\{a\}^* \cup \{b\}^*$ $n \text{ a } e(f+g) \equiv ef + eg \text{ et } (e+f)g \equiv eg + fg.$ faux $a(e+f)^* \equiv e^*(e+f)^*.$ vrai $L(e) \subseteq L(f) \qquad \qquad L(e) \supseteq L(f)$ $\Sigma^*, n > 1, \text{ on a } L_1^n = L_2^n \implies L_1 = L_2.$	
Q.7 Pour toutes expressions rationnelles e, f, g, on Q.8 Pour toutes expressions rationnelles $e, f, on a$ \Box faux Q.9 Pour $e = (a + b)^* + \varepsilon, f = (a^*b^*)^*$: \Box $L(e) \nsubseteq L(f)$ \Box $L(e) = L(f)$ Q.10 Soit Σ un alphabet. Pour tout $a \in \Sigma, L_1, L_2 \subseteq C$	$b\}\{a\}^* \cup \{b\}^*$ $n \text{ a } e(f+g) \equiv ef + eg \text{ et } (e+f)g \equiv eg + fg.$ $ \text{ faux} $ $n (e+f)^* \equiv e^*(e+f)^*.$ $ \text{ wrai} $ $L(e) \subseteq L(f) \qquad \square \qquad L(e) \supseteq L(f)$ $\Sigma^*, n > 1, \text{ on a } L_1^n = L_2^n \implies L_1 = L_2.$ $\square \qquad \text{ vrai}$	

Q.12 Quelle est l'écriture la plus raisonnable?

- machine à état fini
- machine à états finiemachine à états finis
- machine à état finis

Q.13

2/2

-1/2

Cet automate est...

- \square ε -déterministe
- nondéterministe à transitions spontanées
- déterministe à transitions spontanées
- \square ε -minimal

Q.14

Quel est le résultat d'une élimination arrière des transitions spontanées?

2/2

Q.15

Quel est le résultat d'une élimination arrière des transitions spontanées?

2/2

Q.16 & Parmi les 3 automates suivants, lesquels sont équivalents?

2/2

☐ Aucune de ces réponses n'est correcte.

Q.17 Le langage $\{ \mathbb{Z}^n \mathbb{Z}^n \mid \forall n \in \mathbb{N} \}$ est

2/2

2/2

rationnel

٠.	*	
	ĦŦ	١.

- □ vide
- non reconnaissable par automate fini

Q.18 Un langage quelconque

- peut avoir une intersection non vide avec son complémentaire
- peut n'être inclus dans aucun langage dénoté par une expression rationnelle
- n'est pas nécessairement dénombrable
- est toujours inclus (⊆) dans un langage rationnel

	Q.19 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a + b)^*a(a + b)^{n-1}$):
2/2	\square $n+1$ \square \square n' existe pas. \square 2^n \square $\frac{n(n+1)}{2}$
2/2	Q.20 Quelle séquence d'algorithmes teste l'appartenance d'un mot au langage d'une expression rationnelle ? ☐ Thompson, déterminisation, Brzozowski-McCluskey. ☐ Thompson, élimination des transitions spontanées, déterminisation, minimisation, évaluation. ☐ Thompson, déterminisation, élimination des transitions spontanées, évaluation. ☐ Thompson, déterminimisation, évaluation.
	Q.21 Déterminiser cet automate : $\xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b}$
2/2	$ \Box \xrightarrow{b} \xrightarrow{a} \xrightarrow{b} \xrightarrow{a,b} $ $ \Box \xrightarrow{b} \xrightarrow{a,b} \xrightarrow{a,b} $ $ \Box \xrightarrow{b} \xrightarrow{a} \xrightarrow{b} \xrightarrow{a} \xrightarrow{b} \xrightarrow{a} \xrightarrow{b} $
	Q.22 Soit <i>Rec</i> l'ensemble des langages reconnaissables par DFA, et <i>Rat</i> l'ensemble des langages définissables par expressions rationnelles.
0/2	\square $Rec \subseteq Rat$ \square $Rec \supseteq Rat$ \square $Rec \not\supseteq$ Rat \boxtimes $Rec = Rat$
	Q.23 Duelle(s) opération(s) préserve(nt) la rationnalité?
0/2	 ☑ Union ☑ Complémentaire ☑ Intersection ☑ Différence ☑ Aucune de ces réponses n'est correcte.
	Q.24 & Quelle(s) opération(s) préserve(nt) la rationnalité?
0/2	 ☑ Transpose ☑ Pref ☑ Sous – mot ☑ Fact ☑ Suff ☑ Aucune de ces réponses n'est correcte.
	Q.25 En soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais sans en regarder la structure (test boîte noire), on peut savoir s'il
2/2	 accepte le mot vide est déterministe a des transitions spontanées accepte un langage infini
	Q.26 Si L_1 , L_2 sont rationnels, alors :
2/2	$ (L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) \text{ aussi } $
	Q.27 On peut tester si un automate nondéterministe reconnaît un langage non vide.
2/2	☐ rarement oui, toujours ☐ jamais ☐ souvent
	Q.28 Si L et L' sont rationnels, quel langage ne l'est pas nécessairement?
2/2	

2/2

	Q.29 Il est possible de déterminer si une expression rationnelle et un automate correspondent au même langage.
2/2	□ vrai en temps constant□ faux en temps infini■ vrai en temps fini□ faux en temps fini
	Q.30 Combien d'états a l'automate minimal qui accepte le langage $\{a,b\}^+$?
2/2	■ 2 □ 3 □ 1 □ Il en existe plusieurs!
	Q.31
	Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :
2/2	$\blacksquare a^*b^*c^* \qquad \Box (a+b+c)^* \qquad \Box a^*+b^*+c^* \qquad \Box (abc)^*$
	Q.32 Considérons \mathcal{P} l'ensemble des <i>palindromes</i> (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.
0/2	□ Il existe un ε-NFA qui reconnaisse P $□$ Il existe un NFA qui reconnaisse P $□$ Il existe un DFA qui reconnaisse P
	Q.33 & Quels états peuvent être fusionnés sans changer le langage reconnu.
2/2	$ \begin{array}{c c} & 1 \text{ avec } 3 \\ & 2 \text{ avec } 4 \\ & 0 \text{ avec } 1 \text{ et avec } 2 \\ & 1 \text{ avec } 2 \\ & 3 \text{ avec } 4 \\ & Aucune de ces réponses n'est correcte.} \end{array} $
	Quality Company (s. 1) and antile annual for antique de la company (s. 1).
	Q.34 Sur $\{a,b\}$, quel est le complémentaire de ?
2/2	
	b .
	Q.35 b
0/2	Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0?
	<i>a, b</i>
	Q.36 Sur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de \xrightarrow{a} ?

•

2/2

Fin de l'épreuve.

165

+157/6/7+

_