TIMUR KARAÇAY, HAYDAR EŞ,

ORHAN ÖZER, SERKAN ALI DÜZCE

KALKULÜS

Contents

	I Ön Bilgiler	13	
1	Ön Bilgiler (Pre Kalkulüs) 3		
	1.1 Ön KalKulus	15	
2	Analiz Öğretimi 3		
	2.1 İki Milenyum Süren Sorunlar	17	
	2.2 Mantık ve Matematik	21	
	2.2.1 Tümdengelim	22	
	2.2.2 Tümevarım	23	
	2.3 Matematik Dili	26	
3	Önermeler Cebiri 3		
	3.1 İki-değerli Mantık	27	
	3.2 Matematiksel Mantık		
	3.3 Boole Cebiri		
	3.4 Önermeler		
	3.4.1 Yalın Önermeler		
	3.4.2 Bileşik Önermeler		
	3.4.3 Denk Önermeler		
	3.5 Önermeler Cebiri		
	3.6 Operatörler		
	3.6.1 ^ Operatörü		
	3.6.2 ∨ Operatörü		
	3.7 Değilleme		
	3.7.1 Bir Önermenin Değili		
	3.7.2 İse Bağlacı		
	3.7.3 Koşullu Önerme Sonuçları		
	3.8 v Operatörünün Özelikleri	35	
	3.8.1 ∨'nin Eşgüçlülüğü	35	
	3.8.2 ∨' nin Yer Değişim Özeliği		
	3.8.3 ∨' nin Birleşimi		
	3.9 Dağılma		
	3.10 Bileşik Önermelerin Değillenmesi		
	3.10.1 De Morgan Kuralları		
	3 11 👄: Ancak ve Ancak Operatörii	37	

	3.12	Hepdoğru ve Hepyanlış	38
	3.12.	1 Karşıt Ters	41
	3.12.	2 Alıştırmalar	41
	3.12.	3 Alıştırmalar	46
4	Kümeler	Cebiri 4	
	4.1	Kümeler Cebiri	47
	4.1.1	Kapsama	47
	4.1.2	Evrensel Küme	48
	4.2	Venn Çizenekleri	48
	4.2.1	Tümleyen Küme	48
	4.2.2	Boş Küme	48
	4.2.3	Tek öğeli küme	48
	4.2.4	Eşit Kümeler	49
	4.2.5	Has Alt Küme	49
	4.2.6	Kuvvet Kümesi	49
	4.2.7	Simetrik Fark	49
	4.3	Bağıntılar	49
	4.3.1	Kartezyen Çarpım	50
	4.3.2	Gama Color C	50
	4.3.3	Kartezyen Çarpımın Özelikleri	51
	4.4	Analitik Düzlem	51
	4.5	Bağıntılar	51
	4.5.1		51
	4.5.2		52
	4.6	Bağıntı Türleri	52
	4.7	Denklik Bağıntıları	52
	4.7.1	3	52
	4.8	Denklik Bağıntısı Nedir?	53
	4.8.1		53
	4.9	Denklik Sınıfları	53
	4.10	Ters Bağıntı	54
	4.11	Simetrik Bağıntı	54
5	Sayılar	4	
	5.1	Sayıların Kuruluşu	57
	5.2	Sayıların Sıralanması	58
	5.3	Doğal Sayılar	59
	5.4	Doğal Sayıların Kuruluşu	59
	5.5	Peano Belitleri	59
	5.6	Sonlu Tüme Varım İlkesi	59
	5.7	Nicelik Sayıları	59
	5.8	Eşgüçlülük	60
	5.9	Sayılabilirlik	61
	5.10	Sayılamayan Sonsuz Kümeler	61
	5.11	Gerçel Sayıların Tamlığı	62
	5.12	Alıştırmalar	62

6 Rasyonel Üslü İfadeler 4 6.1 6.1.1 63 6.1.2 6.1.3 Benzer Üslü İfadeler 6.2 6.3 66 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 Kartezyen Çarpımın Genelleşmesi 6.14 6.15 ALIŞTIRMALAR **7** Denklemler 5 7.1 Doğru deklemleri 79 7.1.1 7.1.2 Bir noktası ve eğimi bilinen doğru Denklemi: 7.2 7.2.1 $ax^2 = 0$ Biçimindeki Denklemlerin Çözümü 7.2.2 81 7.3 $ax^2 + bx = 0$ Biçimindeki Denklemlerin Çözümü $ax^2 + c = 0$ Biçimindeki Denklemlerin Çözümü 7.3.1 7.3.2 $ax^2 + bx + c = 0$ Biçimindeki Denklemlerin Çözümü . . . 7.4 84 7.5 7.6 7.7 7.8 Köklerle Katsayılar Arasındaki Bağıntılar 7.8.1 7.8.2 7.8.3 7.9 İkinci Dereceden Denklemlerin İncelenmesi 7.10 7.11 7.12 7.13 7.14 7.15

7.16

	7.17	Alıştırmalar	97
	7.18	Eşitsizlik Sistemlerinin Grafikle Çözümü	97
	7.19	Örnekler:	97
	7.20	Doğrusal denklem sistemleri	99
8	Paramet	rik denklemeler 6	
	8.1	Eğrinin yönü	101
	8.2	kapalı Eğri	101
	8.3	Çember'in Parametrik Denklemleri	101
	8.4	Elips'in Parametrik Denklemleri	102
	8.5	Cycloid	103
9	Matrisle	r ve Determinantlar 6	
	9.1	Matrisler	105
	9.1.1	Satır ve Kolon	105
	9.2	Matrisin Bileşenleri	106
	9.3	Matris İşlemleri	106
	9.3.1	Matrislerin Toplamı	106
	9.3.2	Matrislerde Çıkarma	107
	9.3.3	Matrisin Sayı ile Çarpımı	107
	9.3.4	3 . 1	
	9.3.5	, 1	
	9.3.6	3 · · · · · · · · · · · · · · · · · · ·	
	9.3.7	8 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	9.4	Matrislerin Çarpımının Devriği	
	9.4.1		
	9.5	Matris Türleri	
	9.5.1		
	9.5.2		
	9.5.3	, 0	
	9.5.4		
	9.5.5		
	9.5.6		
	9.5.7		
	9.5.8		
	9.5.9	30	
		0 Matrisin İzi (trace)	
	9.6	Örnekler	
	9.7	Matrisin Uzunluğu (size)	
	9.8	Determinantlar	
	9.9	Determinant Nedir?	
	9.9.1		
	9.9.2		
	9.9.3		
	9.9.4		
	9.10	Başka Yöntemler	
	9.10.	,	
	9.11	Laplace Yöntemi	117

	9.11	.1 Minör
	9.12	Eşçarpan (cofactor)
	9.13	Determinant için Laplace Açılımı
	9.14	Determinantların Özelikleri
	9.14	.1 Sarrus Yöntemiyle Hesap:
		.2 Laplace Yöntemiyle Hesap:
		.3 Gauss Eleme Yöntemi
	9.15	Ters Matris
	9.16	Matrisler Üzerinde İlkel Satır işlemleri 123
	9.17	Gauss Eleme Yöntemi ile Ters Matrisi Bulma 124
	9.18	Ekli Matris
	9.19	Eşçarpan İle Matrisin tersini Bulma 126
	9.20	Doğrual Denklem Sistemleri
	9.21	Eşçarpan ve Determinant Kullanılarak Ters Matrisin Bulunuşu 130
	9.22	Ters Matris Kullanılarak Denklem Sisteminin Çözümü 132
	9.23	Doğrusal Denklem Sisteminin Cramer Yöntemiyle Çözümü 133
	9.24	Doğrual Denklem Sistemleri
	9.25	Eşçarpan ve Determinant Kullanılarak Ters Matrisin Bulunuşu 136
	9.26	Ters Matris Kullanılarak Denklem Sisteminin Çözümü 138
	9.27	Doğrusal Denklem Sisteminin Cramer Yöntemiyle Çözümü 139
10	Polinom	lar 7
	10.1	Bir Belirsizli Polinomlar
	10.2	Çok Belirsizli Polinomlar
	10.3	Terimleri Kuvvetlerine Göre Sıralama 144
	10.4	İki Polinomun Eşitliği
	10.5	Uygulamalar
	10.6	Polinomlar Kümesi Üzerinde İşlemler 146
	10.7	Toplama
	10.8	Uygulamalar
	10.9	Çıkarma
	10.10	Uygulamalar
	10.11	Çarpma
	10.12	Sayıl (skalerle) Çarpma
	10.13	Uygulamalar
	10.14	Başlıca Özdeşlikler
		4.1 İki Terim Toplamının Karesi
		4.2 İki Terimin Farkının Karesi
	10.1	4.3 İki Terimin Toplamı İle Farkının Çarpımı 155
		4.4 Üç Terim Toplamının Karesi
		4.5 İki Terim Toplamının Küpü
		4.6 İki Terim Farkının Küpü
		4.7 İki Küp Toplamı
		İki Terimlinin Kuvvetleri
		Alıştırmalar
		Polinomlarda Bölme
		Uygulamalar
	10.19	Bölme Algoritması

10.20	Çarpan Teoremi	. 1/1
10.21	Uygulamalar	. 173
10.22	Uygulamalar	. 174
10.23	Horner Yöntemi ile Bölme	. 175
10.24	Bir Polinomun $(x-a)(x-b)$ İle Bölünmesinden Elde Ediler	1
	Kalan	. 176
10.25	Uygulamalar	. 179
10.26	Alıştırmalar	. 181
10.27	Polinomların Çarpanlara Ayrılması	. 183
10.28	Karmaşıkları Basite İndirgemek!	. 183
	ebob, ekok	
	Cebirsel İfadeleri Çarpanlara	
10.30	0.1 Ortak Çarpan Parantezine Alma	. 187
	Uygulamalar	
	Uygulamalar	
	Özdeşlikler	
	Uygulamalar	
	Uygulamalar	
	Özdeşlikleri Kullanma	
	Uygulamalar	
	Uygulamalar	
	Uygulamalar	
	Alıştırmalar	
10.41	Başlıca Özdeşlikler	. 201
11 Fonksiyo	onlar 8	
11 Fonksiyo	o nlar 8 Foksiyonun Grafiği	. 204
•		
11.1	Foksiyonun Grafiği	. 205
11.1 11.2	Foksiyonun Grafiği	. 205 . 205
11.1 11.2 11.3 11.4	Foksiyonun Grafiği	. 205 . 205 . 207
11.1 11.2 11.3 11.4 11.4	Foksiyonun Grafiği	. 205 . 205 . 207 . 207
11.1 11.2 11.3 11.4 11.4	Foksiyonun Grafiği	. 205. 205. 207. 207. 207
11.1 11.2 11.3 11.4 11.4 11.4	Foksiyonun Grafiği	. 205 . 205 . 207 . 207 . 207 . 207
11.1 11.2 11.3 11.4 11.4 11.4	Foksiyonun Grafiği Tek Değerli Fonksiyonlar Alıştrmalar Fonksiyon Türleri .1 Eşit Foksiyonalar .2 İçine Fonksiyon .3 Örten Fonksiyon .4 Bire Bir Fonksiyon	. 205 . 207 . 207 . 207 . 207 . 208
11.1 11.2 11.3 11.4 11.4 11.4 11.4 11.4	Foksiyonun Grafiği	. 205 . 207 . 207 . 207 . 207 . 208 . 208
11.1 11.2 11.3 11.4 11.4 11.4 11.4 11.4	Foksiyonun Grafiği Tek Değerli Fonksiyonlar Alıştrmalar Fonksiyon Türleri .1 Eşit Foksiyonalar .2 İçine Fonksiyon .3 Örten Fonksiyon .4 Bire Bir Fonksiyon .5 Bire Bir İçine Fonksiyon .6 Bire Bir Örten Fonksiyon	. 205 . 207 . 207 . 207 . 207 . 208 . 208 . 208
11.1 11.2 11.3 11.4 11.4. 11.4. 11.4. 11.4. 11.4. 11.4.	Foksiyonun Grafiği	. 205 . 207 . 207 . 207 . 207 . 208 . 208 . 208 . 208
11.1 11.2 11.3 11.4 11.4 11.4 11.4 11.4 11.4 11.4	Foksiyonun Grafiği Tek Değerli Fonksiyonlar Alıştrmalar Fonksiyon Türleri .1 Eşit Foksiyonalar .2 İçine Fonksiyon .3 Örten Fonksiyon .4 Bire Bir Fonksiyon .5 Bire Bir İçine Fonksiyon .6 Bire Bir Örten Fonksiyon .7 Sabit Fonksiyon	. 205 . 207 . 207 . 207 . 207 . 208 . 208 . 208 . 208
11.1 11.2 11.3 11.4 11.4 11.4 11.4 11.4 11.4 11.4	Foksiyonun Grafiği Tek Değerli Fonksiyonlar Alıştrmalar Fonksiyon Türleri .1 Eşit Foksiyonalar .2 İçine Fonksiyon .3 Örten Fonksiyon .4 Bire Bir Fonksiyon .5 Bire Bir İçine Fonksiyon .6 Bire Bir Örten Fonksiyon .7 Sabit Fonksiyon .8 Sıfır Fonksiyon	. 205 . 207 . 207 . 207 . 207 . 208 . 208 . 208 . 208 . 208
11.1 11.2 11.3 11.4 11.4 11.4 11.4 11.4 11.4 11.4	Foksiyonun Grafiği Tek Değerli Fonksiyonlar Alıştrmalar Fonksiyon Türleri .1 Eşit Foksiyonalar .2 İçine Fonksiyon .3 Örten Fonksiyon .4 Bire Bir Fonksiyon .5 Bire Bir İçine Fonksiyon .6 Bire Bir Örten Fonksiyon .7 Sabit Fonksiyon .8 Sıfır Fonksiyon .9 Özdeşlik Fonksiyonu	. 205 . 207 . 207 . 207 . 207 . 208 . 208 . 208 . 208 . 208 . 208 . 208
11.1 11.2 11.3 11.4 11.4 11.4 11.4 11.4 11.4 11.4	Foksiyonun Grafiği Tek Değerli Fonksiyonlar Alıştrmalar Fonksiyon Türleri .1 Eşit Foksiyonalar .2 İçine Fonksiyon .3 Örten Fonksiyon .4 Bire Bir Fonksiyon .5 Bire Bir İçine Fonksiyon .6 Bire Bir Örten Fonksiyon .7 Sabit Fonksiyon .8 Sıfır Fonksiyon .9 Özdeşlik Fonksiyon .9 Özdeşlik Fonksiyon	. 205 . 207 . 207 . 207 . 207 . 208 . 208 . 208 . 208 . 208 . 208 . 208 . 209 . 209
11.1 11.2 11.3 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.5 11.6	Foksiyonun Grafiği Tek Değerli Fonksiyonlar Alıştrmalar Fonksiyon Türleri .1 Eşit Foksiyonalar .2 İçine Fonksiyon .3 Örten Fonksiyon .4 Bire Bir Fonksiyon .5 Bire Bir İçine Fonksiyon .6 Bire Bir Örten Fonksiyon .7 Sabit Fonksiyon .8 Sıfır Fonksiyon .9 Özdeşlik Fonksiyon Kapalı Fonksiyon Örnekler	. 205 . 207 . 207 . 207 . 207 . 208 . 208 . 208 . 208 . 208 . 208 . 209 . 209 . 210
11.1 11.2 11.3 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.5 11.6 11.7	Foksiyonun Grafiği Tek Değerli Fonksiyonlar Alıştrmalar Fonksiyon Türleri .1 Eşit Foksiyonalar .2 İçine Fonksiyon .3 Örten Fonksiyon .4 Bire Bir Fonksiyon .5 Bire Bir İçine Fonksiyon .6 Bire Bir Örten Fonksiyon .7 Sabit Fonksiyon .8 Sıfır Fonksiyon .9 Özdeşlik Fonksiyon Kapalı Fonksiyon Örnekler Alıştırmalar	. 205 . 207 . 207 . 207 . 207 . 208 . 208 . 208 . 208 . 208 . 209 . 209 . 210
11.1 11.2 11.3 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.5 11.6 11.7 11.8 11.9	Foksiyonun Grafiği Tek Değerli Fonksiyonlar Alıştrmalar Fonksiyon Türleri .1 Eşit Foksiyonalar .2 İçine Fonksiyon .3 Örten Fonksiyon .4 Bire Bir Fonksiyon .5 Bire Bir İçine Fonksiyon .6 Bire Bir Örten Fonksiyon .7 Sabit Fonksiyon .8 Sıfır Fonksiyon .9 Özdeşlik Fonksiyon .9 Özdeşlik Fonksiyon Örnekler Alıştırmalar Fonksiyonların Bileşkesi	. 205 . 207 . 207 . 207 . 208 . 208 . 208 . 208 . 208 . 209 . 209 . 210 . 211
11.1 11.2 11.3 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.5 11.6 11.7 11.8 11.9	Foksiyonun Grafiği Tek Değerli Fonksiyonlar Alıştrmalar Fonksiyon Türleri .1 Eşit Foksiyonalar .2 İçine Fonksiyon .3 Örten Fonksiyon .4 Bire Bir Fonksiyon .5 Bire Bir İçine Fonksiyon .6 Bire Bir Örten Fonksiyon .7 Sabit Fonksiyon .8 Sıfır Fonksiyon .9 Özdeşlik Fonksiyon Kapalı Fonksiyon Örnekler Alıştırmalar Fonksiyonların Bileşkesi Bileşke İşleminin Özelikleri	. 205 . 207 . 207 . 207 . 208 . 208 . 208 . 208 . 208 . 209 . 209 . 210 . 211 . 213
11.1 11.2 11.3 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.5 11.6 11.7 11.8 11.9 11.9	Foksiyonun Grafiği Tek Değerli Fonksiyonlar Alıştrmalar Fonksiyon Türleri .1 Eşit Foksiyonalar .2 İçine Fonksiyon .3 Örten Fonksiyon .4 Bire Bir Fonksiyon .5 Bire Bir İçine Fonksiyon .6 Bire Bir Örten Fonksiyon .7 Sabit Fonksiyon .8 Sıfır Fonksiyon .9 Özdeşlik Fonksiyon .9 Özdeşlik Fonksiyon Örnekler Alıştırmalar Fonksiyonların Bileşkesi Bileşke İşleminin Özelikleri .1 Yer Değişim Özeliği Yoktur	. 205 . 207 . 207 . 207 . 208 . 208 . 208 . 208 . 208 . 209 . 210 . 211 . 213 . 214 . 214

<i>12</i>	Rasyonel İfadeler 8
	12.1 Alıştırmalar
	12.2 Rasyonel İfadelerin Toplamı 217
	12.3 Rasyonel İfadelerin Çarpımı
	12.4 Rasyonel İfadelerde Bölme
	12.5 Polinom Denklemler
	12.6 Birinci Dereceden Polinom Denklemlerin Çözümü 219
	12.7 Kombinason Ve Permütasyon
	12.7.1 Kombinasyon (Combination)
	12.7.2 Permütasyon (permutation)
	12.7.3 Permütasyon Türleri
	12.8 Kombinason Ve Permütasyon
	12.8.1 Kombinasyon (Combination)
	12.8.2 Permütasyon (permutation)
	12.8.3 Permütasyon Türleri
	12.9 İstatistik
13	Transandant Fonksiyonlar 9
10	Tunsunauni Fonksiyonai 9
11	
14	Ön Trigonometri 9
	14.1 Yönlü Açılar
	14.2 Yönlü yaylar
	14.3 Birim Çember
	14.4 Açı Ölçü Birimleri
	14.4.1 Derece
	14.4.2 Grad
	14.4.3 Radyan
	14.5 Ters Trigonometrik Fonksiyonlar
	14.5.1 Arcsinus Fonksiyonu
	14.5.2 ArcCosinus Fonksiyonu
	14.5.3 Arctanjant Fonksiyonu
	14.5.4 Arccotanjant Fonksiyonu
	14.6 Örnekler
	14.7 Trigonometrik Fonksiyonlar 230
	14.7.1 Simetrik Açılar
	14.7.2 Simetriler
	14.8 Trigonometrik Fonksiyonların Özelikleri
	14.9 Özel Açılar
	14.10 Trigonometrik Fonksiyonları Grafikleri
	14.10.1 Cosinus Grafiği
	14.10.2 Sinus grafiği
	14.10.3 Tanjant Grafiği
	14.11 Periyodik Fonksiyonlar
	14.12 Alıştırmalar
	14.13 Trigonometrik Fonksiyonların Limiti
	14.14 Limitler
	14.15 Ingululiettik fulksiyullalili Tülevleli

		Alıştırmalar
	14.17	Trigonometrik İntegraller
	14.18	Trigonometrik Değişken Değiştirimi
		sin, cos çarpımlarının integrali 248
		sin ve cos Fonksiyonlarının Kuvvetleri 250
	14.21	$tan^p x. \sec^q x dx$ Türlerinin İntegrali
		cot x ve csc Fonksiyonlarının Kuvvetleri
		Alıştırmalar
		$\int R(\sin x, \cos x)$ biçimindeki İntegraller
	14.25	Ters Trigonometrik Fonksiyonlan Türevleri 268
<i>15</i>	Logaritn	na Fonksiyonu 10
	15.1	Logaritma Fonksiyonu
	15.2	Logaritma Fonksiyonunun Grafiği 273
	15.3	Doğal Logaritma Fonksiyonu 273
	15.4	Taban Değiştirme Kuralı
	15.5	Logaritma Fonksiyonunun Değişimi 276
	15.6	Logaritma Fonksiyonunun Grafiği 277
	15.7	Logaritma Fonksiyonunun Türevi 278
	15.7.	$1 y = \ln x \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	15.8	$y = a^x \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	15.9	$y = \log_a x \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	15.10	Alıştırmalar
	15.11	Logaritmik integraller
	15.12	a>0 Tabanına Göre exp ve log 282
	15.13	Alıştırmalar
<i>16</i>	Rasyone	l Üslü İfadeler 10
	16.1	Tamsayı Üsler
	16.1.	1 Üslü İfadelerin Özelikleri:
	16.1.	2 Negatif Üsler
	16.1.	3 Benzer Üslü İfadeler
	16.2	Rasyonel Kuvvetler
	16.3	Üslü Denklemler
	16.4	Alıuştırmalar
	16.5	e Sayısı
	16.6	Üstel Fonksiyonun Türevi
17	Hyperbo	lik Fonksiyonlar 10
	17.0.	1 Öteki Hyperbolic Fonksiyonlar 294
	17.1	Karmaşık Sayılar İçin Hiperbolik Fonksiyonlar 294
	17.2	Hiperbolik Özdeşlikler 295
	17.3	AçılarınToplamı ve Farkı
	17.4	Ters Hiperbolik Fonksiyonlar
	17.5	Ters Hiperbolik Fonksyonların Logaritmik İfadesi 299
	17.6	Hiperbolik Fonksiyonların Türevleri
	17.7	Ters Hiperbolik Fonksiyonların Türevleri 304

	17.8	Hiperboplik İntegraller	 306
<i>18</i>	Türev Uy	gulamaları 11	
	18.1	Teğet	309
	18.2	Doğru deklemleri	
		1 Doğrunun Genel Denklemi	
		.2 Teğetin Denklemi	
	18.3	Problemler	
	18.4	Normal	
	18.5	Teğet Boyunca Yaklaşımdaki Hata	
	18.6	Doğrusal Yaklaşım	
	18.7	Maksimum be Minimum değerler	
		1 Mutlak Minimum ve Mutlak maksimum	
		.2 Yerel Ekstremum Değerleri	
	18.8	Kritik noktalar	
	18.9	Özet	
		Alıştrmalar	
		3	
19	Rolle teo	remi 11	
	19.1	Ortalama Değer Teoremi	 325
	19.1	.1 Geometrik Yorum	 327
	19.2	Alıştırmalar	 329
	19.3	Türev Testleri ve Bükeylik	 329
	19.4	Bükeylik	 332
	19.5	Alıştırmalar	 334
	19.6	Eğri Çizimleri	 335
	19.7	Asimptotlar	 335
	19.7	.1 Dikey Asimptotlar	 336
	19.7	.2 Yatay Asimptotlar	 337
	19.7	.3 Eğik Asimptotlar	 338
	19.7	.4 Eğrisel Asimptotlar	 339
	19.8	GrafikÇizimleri	
	19.9	Alıştırmalar	
		Optimizasyon Problemleri	
		İş ve Ekonomide Marjinal Analiz	
		Alıştırmalar	
		Bağlantılı Oranlar	
		Minimum ve Maksimum	
		Alıştırmalar	
		5.1 Çözülmüş Örnekler	
		Alıştırmalar	
		L'Hospital Kuralı	
		Limit Problemlerini Kolaylaştırma	
		1^{∞} , 0^{∞} , $(\infty)^0$ Belirsizlikleri	
		Çözülmüş Örnekler	
	19.21	Alıştırmalar	 364

20 Belirli İntegral 11 20.1 20.2 20.3 20.3.2 Calculus'un İkinci Temel Teoremi 371 20.4 20.5 20.5.2 Aralığın içinde fonksiyonun sınırsız olması durumu: . . 380 20.6 20.7 20.8 20.9 20.11 Rasyonel Fonksiyonların İntegralleri 394 20.11.3 Payda'da Gerçel Kökü Olmayan Çarpan Varsa 398 **21** Belirsiz İntegral 12 21.1 21.2 21.3 Ters Trigonometrik Konumlar 411 21.4 Rasyonel Fonksiyonların İntegralleri 418 21.5 21.5.1 Payda'nın Türevi Pay'a Eşitse 418 21.5.3 Payda'da Gerçel Kökü Olmayan Çarpan Varsa 422 21.6 21.7 21.8 21.9 21.10 sin, cos çarpımlarının integrali 440 sin ve cos Fonksiyonlarının Kuvvetleri 442 21.16 cot x ve csc Fonksiyonlarının Kuvvetleri 445 21.18 $\int R(\sin x, \cos x)$ biçimindeki İntegraller 453

	21.21	Düzlemsel Eğrilerin Uzunluğu
	21.22	Belirli İntegral Kuralları
	21.23	Dönel Cisimleri Hacimleri
	21.24	Silindirik Kabuklar Yöntemi 469
	21.25	Dilimleme Yöntemiyle Hacim Bulma 471
	21.26	Örnek Hacim Hesapları
22	Doğal Lo	ogaritma Fonksiyonu 13
	22.1	Doğal Logaritma Fonksiyonunun Tanımı 476
	22.2	Tanım bölgesini Genişletme 476
	22.3	Doğal Logaritma Fonksiyonunun Özelikleri 477
	22.4	Doğal Logaritma Fonksiyonunun Grafiği 478
	22.5	Logaritmik Türev
	22.6	Logaritmik Türevin İntrgrali 478
	22.7	Üstel Fonksiyon
	22.8	a tabanlı Üstel Fonksiyon
	22.9	a Tabanlı Üstel Fonksiyonun Davranışı 480
	22.10	a Tabanlı Üstel Fonksiyonun Türevi 481
		a Tabanlı Üstel Fonksiyonun İntegrali 481
		a Tabanına Göre Logaritma
		$log_a x$ fonksiyonunun özelikleri 481
		$log_a x$ fonksiyonunun Türevi 481
	22.15	Çözümlü Problemler

Index 13

<mark>23</mark> İntegral Alma Yöntemleri

23.1 Belirsiz İntegral

f(x) fonkiyonunun belirsiz integrali türevleri f(x) olan bütün fonkiyonlardır. Belirsiz integral

$$\int f(x) dx = F(x) + C \qquad (Csabit)$$
 (23.1)

simgesiyle gösterilir. Belirsiz denmesinin nedeni, F(x) fonksiyonunu türev kabul eden fonksiyonların sonsuz çoklukta oluşu ve hangisinden söz edildiğinin belli olmayışıdır. Sonsuz çoklukta olan belirsiz integraller birer sabit farkıyla birbirlerine eşittitler. Bu demektir ki, F(x) ile G(x) fonksiyonları f(x) fonksiyonun belirsiz integrali iseler

$$F(x) - G(x) = K \qquad (Ksabit)$$
 (23.2)

olur.

f(x) fonksiyonunun belirsiz integraline ilkel (primitive), $ters\ t\"urev$ gibi adlar da verilir. Yalınlığı nedeniyle ilkel terimini tercih ediyouz. Ama öteki terimleri de, konuya açıklık getirmek gerektiğinde, eş anlamlı olarak kullanacağız.

 $(\ref{eq:continuous})$ ifadesinde C sabiti sayısal her değeri alabilir. Dolayısıyla F(x) fonksiyonunun sonsuz çoklukta belirsiz integrali vardır. Gerçel fonksiyonların $(\ref{eq:continuous})$ belirsiz integralleri bütün düzlemi doldurur. Yani düzlemin her noktasından geçen bir ve yalnızca bir tane belirsiz integral vardır. Aynı fonksiyonun belirsiz integralleri kesişmezler.

23.2 İlkel Fonksiyon Biliniyorsa

Bir fonksiyonun integralini almak demek, o fonsiyonu türev kabul eden fonksiyonları bulmak demektir. Öyleyse, işin esası (f,f') (fonksiyontürevi) eşleşmesidir. Bir fonksiyonun sonsuz çokluktaki belirsiz integralleri (ilkelleri) birer sabit farkıyla birbirlerine eşit olduğuna göre, sabiti ihmal ederek(f,f') eşleşmesini bire bir imiş gibi görebiliriz. Bunun tam matematiksel yöntemi, türevi aynı olan fonksiyonları bir denklik sınıfı içine almaktır. Ancak, sözkonusu basit kavramı açıklmak için o kadar derine gitmeye gerek yoktur.

Kalkulus'ta türev alma kuralları integral alma kurallarından daha yeteneklidir. Türevi olan her fonksiyonun türevini bulmamızı sağlar. Ama bu kesimde göreceğimiz gibi, integral alma kurallarımız çok yetenekli değildir. Bir fonksiyonun integralinin varlığını biliyor olsak bile, bazen o integrali bulamayabiliriz. Bunun tipik örneği $\int e^{x^2} dx$ integralidir.

İntegrand (ntegrali alınacak fonksiyon) sürekli olduğu için, integralin varlığını biliyoruz, ama e^{x^2} fonksiyonunu türev olarak kabul eden fonksiyonu bilmiyoruz.

İntegral alma eyleminde genel sayılacak tek kural, integrandı türev kabul eden fonksiyonun bulunması eylemidir. Bu eylem sonuç olarak (f,f') eşleşmesine indirgenir. Bütün integral alma yöntemleri sonunda (f,f') eşleşmesini kullanır. O nedenle ne kadar çok fonksiyonun türevini biliyorsak, ters işlemi, yani türevden ilkel fonksiyonu bulma eylemini de o kadar biliyor oluruz. Bunun için türev alma kuralları bize çok bilgi veriyor. Sabitler, polinomlar, rasyonel fonksiyonlar, trigonometrik fonksiyonlar, ters fonksiyonlar gibi bir sınıflandırmayla pratikte çok kullanılan fonksiyonların türevlerini listeleyebiliyoruz. Oradan ters dönüşüm yaparak (f,f') eşleşmesine dönebiliriz.

Genel geçerliği olan yöntem olmadığı için, fonksiyonları alt sınflara ayırıp, her sınıf için geçerli olan integral alma yöntemlerini ortaya koyacağız. Yukarıda da söylediğimiz gibi, alt sınıflara bölme sorunu tam çözmüyor. Ama oldukça iyi sonuçlar veriyor. Bilmemiz gereken şey, hangi alt sınıfta hangi yöntemi kullanıyorsak kullanalım, sonuçta (f,f') eşleşmesini kurabilirsek integrali çözmüş oluyoruz.

Doğal olarak, alt sınıflarda integral alırken bazı kurallar ortaya çıkıyor. Onları birer alet (fomül) olarak kullanıyoruz. Aletler çok işimize yarar.

Alt sınıflara bölme eylemi için de genel geçerliği olan yöntemden söz edilemez. Ama tarih boyunca sınama-yanılma yöntemiyle ortaya çıkarılan bazı sınıflar oldukça standart sayılır. Bu kesimde onları ele alacağız. Yine de ele aldığımız alt sınıfların tam bir liste oluşturmadığını bilmeliyiz.

23.3 Sürekli Fonksiyonların İntegrali

Sürekli fonksiyonların ilkelleri vardır. Bunu bir teoremle ifade edebiliriz:

Teorem 23.1. I aralığında f(x) sürekli ve her $a \in I$ noktsında, değişken x değeri için

$$F(x) = \int_{a}^{x} f(t) dt$$
 (23.3)

ise F(x) fonksiyonu I aralığında f(x) fonksiyonunun ilkelidir. Başka bir deyişle, her $x \in I$ noktasınad F'(x) = f(x) olur.

İspat:

x ile $x + \Delta x$ noktaları I aralığında iseler;

$$F(x + \Delta x) = \int_{a}^{x + \Delta x} f(t) dt$$
$$= \int_{a}^{x} f(t) dt + \int_{x}^{x + \Delta x} f(t) dt$$

olur. Buradan

$$F(x + \Delta x) - F(x) = \int_{x}^{x + \Delta x} f(t) dt$$

yazılabilir. Sağ yandaki ifdeye integralin ortalama değer teoremini uygularsak,

$$F(x + \Delta x) - F(x) = (x + \Delta x - x)f(c) = f(c)\Delta x$$

bağıntısını sağlayan ve Δx sayısının pozitif ya da negatif oluşuna bağlı olarak değişmek üzere

 $(x \le c \le x + \Delta x), \qquad (x + \Delta x \le x \le x)$ aralıklarının birinde olan olan bir c noktasının varlığını söyleyebiliriz. c noktası Δx değerine bağlıdır: $\Delta x \to 0 \Rightarrow c \to x$ olur. f sürekli olduğundan $\Delta x \to 0$ iken $f(c) \to f(x)$ olacaktır. Buradan türev tanımına geçersek,

$$F'(x) = \lim_{\Delta x \to 0} \frac{F(x + \Delta x)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{f(c) \cdot \Delta x}{\Delta x}$$
$$= \lim_{\Delta x \to 0} f(c)$$
$$= f(x)$$

olur ki bu istenen sonuçtur.

23.4 Değişken Değiştirme

Belirsiz integral alırken, genellikle ilkel fonksiyonu hemen göremeyiz O durumlarda, uygun bir değişken değiştirme (yerine koyma) ile integrali bilinen bir biçeme sokarız. Bunu yaptıran kural şudur.

Teorem 23.2. f(u) süreki ve u(x) sürekli türevi var olan bir fonksiyon ise

$$\int f(u(x)u'(x)) dx = \int f(u) du \bigg|_{u=u(x)}$$
(23.4)

Sağ yandaki terimin anlamı açıktır. $\int f(u)du$ integrali bulunduktan sunra u = u(x) konularak asıl x değişkenine dönülür.

Kanıt:

F(x) fonksionu f(x fonksiyonunun ilkeli olsun. F nin varlığı f nin sürekliliği ile garanti edilir. Zincir kuralı gereğnce,

$$\frac{d}{dx}F'(u(x)) = F'(u(x))u'(x)$$

yazabiliriz. Öyleyse,

$$\int f(u(x))u'(x) dx = \int F'(u(x))u'(x) dx$$
$$= f(u(x)) + C \quad (C \text{ sabit })$$

Son iki ifadeden, aranan (??) eşitliği çıkar.

Değişken değiştirmede, integrand'daki asıl değişkenin yerine hangi değişkenin konulacağını söyleyen genel bir yöntem yoktur. Bu eylem integrali alanın deneyimine bağlı bir tür sınama-yanılma sürecidir. İntegral kavramı ortaya çıktığından beri çok sayıda sınama-yanılma yapılmış ve başarılı olanlar öne çıkmıştır. Aslında bütün integral alma eylemleri öyledir. Genel yöntem ortaya konamayınca, problem alt sınıflara bölünür ve her bir alt sınıfta geçerli olan çözüm yolları ortaya konulur.

Örnek 23.3. $\int sin^3 x.cosx dx$

integralini hesaplayınız.

Çözüm:

 $u = sinx \longrightarrow du = cosxdx$ konumuyla,

$$\int \sin^3 x \cdot \cos x \, dx = \int u^3 du$$
$$= \frac{1}{4}u^4 + C$$
$$= \frac{1}{4}\sin^4 x + C$$

bulunur.

Örnek 23.4. $\int \sin^3 x \, dx$

integralini hsaplayınız.

Çözüm: Burada ilk örnekteki değişken değiştirme, integrandın ilkelini bulmaya yarayacak iyi bir sonuç vermez. Trigonometrik formülleri kullanarak biraz işlem yaparsak, $u = cosx \rightarrow du = -sinx$ konumunun daha iyi sonuç vereceği görülebilir:

$$\int \sin^3 x \, dx = \int (\sin^2 x) \sin x \, dx$$

$$= \int (1 - \cos^2 x) \sin x \, dx$$

$$= \int \sin x \, dx - \int \cos^2 x \sin x \, dx$$

$$= -\cos x + \int u^2 \, du$$

$$= -\cos x + \frac{1}{3} \cos^3 x + C$$

$$= \frac{1}{12} (\cos 3x - 9 \cos x) + C$$

bulunur.

Örnek 23.5.
$$I = \int (1-2x)^9 dx$$

integralini hesaplayınız.

Çözüm:

Bu integrali hesaplamak için akla ilk gelen yol, integrandı binom formülüne göre açmak, sonra çıkan polinomu terim terime integre etmektir. O yöntem doğru ama uzun bir yöntemdir. Onun yerine u = 1 - 2x, du = -2dx konumu işlemleri çok kısaltacaktır:

$$\int (1-2x)^9 x \, dx = -\frac{1}{2} \int (1-2x)^9 (-2dx)$$
$$= -\frac{1}{2} \int u^9 du$$
$$= -\frac{1}{20} u^{10} + C$$
$$= -\frac{1}{20} (1-2x)^{10} + C$$

çıkar.

Örnek 23.6.

$$I = \int_{3}^{2\sqrt{3}} \frac{dx}{\sqrt{x^2 - 9}}$$

integralini hesaplayınız.

Çözüm:

İntegrali alınacak ifadeyi karekökten kurtarmak için

$$x = \frac{3}{\cos t}$$
, $dx = 3\frac{\sin t}{\cos^2 t}dt$ ve sınırlar için $2\sqrt{3} = \frac{3}{\cos t} \Rightarrow t = \frac{\pi}{6}$; $+3 = \frac{3}{\cos t} \Rightarrow T = 0$ konumu yapılırsa,

$$I = \int_0^{\frac{\pi}{6}} \frac{1}{\sqrt{\frac{9}{\cos^2 t} - 9}} \cdot \frac{3\sin t}{\cos^2 t} dt$$

$$= \int_0^{\frac{\pi}{6}} \frac{\cos t}{3\sin t} \cdot \frac{3\sin t}{\cos^2 t} dt$$

$$= \int_0^{\frac{\pi}{6}} \frac{dt}{\cos t}$$

$$= \int_0^{\pi} \sec t dt$$

$$= \ln|\sec t + \tan t|_0^{\frac{\pi}{6}}$$

$$= \ln\left|\frac{1}{\frac{\sqrt{3}}{2}} + \frac{1}{\sqrt{3}}\right| - \ln|1 + 0|$$

$$= \ln\sqrt{3}$$

Örnek 23.7.
$$I = \int \frac{\sqrt{x}}{\sqrt[3]{x}-1} dx$$

integralini hesaplayınız.

Çözüm:

Karekök ile küp kökü yoketmek için 2 ile 3 sayılarının ek küçük ortak katını (ekok) alalım. $x=t^6$, $\sqrt{x}=t^3$, $\sqrt[3]{x}=t^2$, $dx=6t^5dt$ konumuyla

$$I = 6 \int \frac{t^8}{t^2 - 1} dt$$

$$\frac{t^8}{t^2 - 1} = t^6 + t^4 + t^2 + 1 + \frac{1}{t^2 - 1}$$

$$I = 6 \int \left(t^6 + t^4 + t^2 + 1 + \frac{1}{t^2 - 1} \right) dt$$

$$= 6 \left(\frac{t^7}{7} + \frac{t^5}{5} + \frac{t^3}{3} + t + \frac{1}{2} \left| \frac{t - 1}{t + 1} \right| \right) + C$$

$$= 6 \left(\frac{x^{7/6}}{7} + \frac{x^{5/6}}{5} + \frac{\sqrt{x}}{3} + x^{1/6} + \frac{1}{2} \left| \frac{x^{1/6} - 1}{x^{1/6} + 1} \right| \right) + C$$

Örnek 23.8. $I = \int \frac{x^4}{x^2 + 1} dx$

integralini hesaplayınız.

Çözüm: payın drecesi paydanın derecesnden küçük olmadığı için, önce payı paydaya bölmeliyiz.

$$I = \int \left(1 - x^2 + \frac{1}{x^2 + 1}\right) dx$$

= $\int dx - \int x^2 dx + \int \frac{1}{1 + x^2}$
= $x - \frac{x^3}{3} + \tan^{-1} x + C$

Örnek 23.9.
$$I = \int \frac{dx}{x^2 + 1} dx$$

integralini hesaplayınız.

Çözüm: x = tant, $dx = sec^2 t dt$ konumuyla,

$$I = \int \frac{\sec^2 t}{(\tan^2 t + 1)}$$
$$= \int \frac{\cos^2 t}{\cos^2 t} dt$$
$$= \int dt$$
$$= t + C$$
$$= \tan^{-1} x + C$$

23.5 $\tan \frac{\theta}{2}$ Konumu

Bazı integrallerde değişken değiştirimi işi kolaylaştırır. Bu durumda,

$$x = \tan \frac{\theta}{2}$$

$$\cos \theta = \frac{1 - x^2}{1 + x^2}$$

$$\sin \theta = \frac{2x}{1 + x^2}$$

$$d\theta = \frac{2dx}{1 + x^2}$$

$$\theta = 12 \arctan x$$

$$x = a \sin \theta \Leftrightarrow \theta = \arcsin \frac{x}{a}$$

$$x = a \tan \theta \Leftrightarrow \theta = \arctan \frac{x}{a}$$

$$x = a \sec \theta \Leftrightarrow \theta = arc\sec \frac{x}{a} = \arccos \frac{x}{a}$$

değişken değiştirimleri kullanılabilir.

Örnek 23.10.

$$I = \int_0^{\pi/2} \frac{d\theta}{1 + \cos\theta + \sin\theta} \, d\theta$$

integralini hesaplayınız. *Çözüm:*

$$x = \tan \frac{\theta}{2}, \cos \theta = \frac{1 - x^2}{1 + x^2}, \sin \theta = \frac{2x}{1 + x^2}, d\theta = \frac{2dx}{1 + x^2}$$

konumuyla,

$$I = \int \frac{\frac{2x}{1+x^2}}{1 + \frac{1-x^2}{1+x^2} + \frac{2x}{1+x^2}}$$

$$= \int \frac{2dx}{2x+2}$$

$$= \int \frac{dx}{x+1}$$

$$= \ln|x+1|$$

$$= \ln\left|\tan\frac{\theta}{2} + 1\right|_0^{\pi/2}$$

$$= \ln 2 - \ln 1$$

$$= \ln 2$$

bulunur.

Örnek 23.11.

$$I = \int \frac{1}{\sqrt{1 - 4x^2}} \, dx$$

 $integral ini\ he saplayınız.$

Çözüm:

$$x = \frac{1}{2}\sin t, dx = \frac{1}{2}\cos t\,dt, 1 - 4x^2 = 1 - 4\frac{1}{4}\sin^2 t = 1 - \sin^2 t = \cos^2 t, 2x = \sin t, t = \arcsin(2x)$$

konumu yapılırsa,

$$I = \int \frac{1}{\sqrt{1 - 4x^2}} dx$$

$$= \frac{1}{2} \int \frac{1}{\cos t} \cos t dt$$

$$= \frac{1}{2} \int dt$$

$$= \frac{1}{2} t + C$$

$$= \frac{1}{2} \sin -1(2x) + C$$

bulunur.

Örnek 23.12.

$$I = \int \frac{x^2}{\sqrt{1 - 4x^2}} \, dx$$

integralini hesaplayınız.

Çözüm:

$$2x = \sin t, dx = \frac{1}{2}\cos t dt$$

konumuyla,

$$I = \int \frac{x^2}{\sqrt{1 - 4x^2}} dx$$

$$= \int \frac{9\sin^2 t}{3\cos t} 3\cos t dt$$

$$= 9 \int \frac{1 - \cos 2t}{2} dt$$

$$= \frac{9}{2} \left(t - \frac{\sin 2t}{2} \right) + C$$

$$= \frac{9}{2} (t - \sin t \cos t) + C$$

$$= \frac{1}{16} \left(\sin^{-1}(2x) - 2x\sqrt{1 - 4x^2} \right) + C$$

bulunur.

Örnek 23.13.

$$I = \int \frac{x^2}{\sqrt{9 - x^2}} \, dx$$

integralini hesaplayınız.

Çözüm:

$$x = 3 \sin t, dx = 3 \cos t dt, 9 - x^2 = 9 \cos^2 t$$

konumuyla,

$$I = \int \frac{x^2}{\sqrt{9 - x^2}} dx$$

$$= \int \frac{9\cos^2 t}{3\cos t} 3\cos t \, dt$$

$$= 9 \int \frac{1 - \cos(2t)}{2} dt$$

$$= \frac{9}{2} \left(t - \frac{\sin(2t)}{2} \right) + C$$

$$= \frac{9}{2} (t - \sin t \cos t) + C$$

$$= \frac{1}{2} \left(9\sin^{-1} \frac{x}{3} - x\sqrt{9 - x^2} \right) + C$$

bulunur.

Örnek 23.14.

$$I = \int \frac{1}{x\sqrt{1 - 4x^2}} \, dx$$

integralini hesaplayınız.

Çözüm:

$$x = \frac{1}{2}\sin t, dx = \frac{1}{2}\cos t \, dt, 1 - 4x^2 = \cos^2 t$$

konumuyla,

$$I = \int \frac{1}{x\sqrt{1 - 4x^2}} dx$$

$$= \int \frac{\frac{1}{2}\cos t}{\frac{1}{2}\sin t \cdot \cos t} dt$$

$$= \int \frac{dt}{\sin t}$$

$$= \int \csc t dt$$

$$= \ln|\csc t + \cot t| + C$$

$$x = \frac{1}{2}\sin t \Rightarrow 2x = \sin t \Rightarrow \csc t = \frac{1}{2x}$$
, $\cot t = \frac{\sqrt{1 - 4x^2}}{2x}$

konumuyla,

$$I = \ln\left|\frac{1}{2x} + \frac{\sqrt{1 - 4x^2}}{2x}\right| + C$$

bulunur.

Örnek 23.15.

$$I = \int \frac{\sin^5 x}{\sqrt{\cos x}} \, dx$$

integralini hesaplayınız.

Çözüm:

$$u = \cos x$$
, $du = -\sin x \, dx$

konumuyla,

$$I = \int \frac{\sin^5 x}{\sqrt{\cos x}} dx$$

$$= \int \frac{\sin^4 x \cdot \sin x}{\sqrt{\cos x}} dx$$

$$= \int \frac{(1 - u^2)^2}{\sqrt{u}} du$$

$$= \frac{2}{45} \sqrt{u} (5u^4 - 18u^2 + 45) + C = \frac{2}{45} \sqrt{\cos x} (5\cos^4 x - 18\cos^2 x + 45) + C$$

23.6 Kısmi

İntegrali alınacak fonksiyonun ilkeli hemen görülemiyor, değişken değiştirimi için uygun bir değişken bulunamıyor ise kısmi integrasyon denilen yöntem bazen çözüm için uygun yol olabilir. Bu yöntem aslında iki fonksiyonun çarpımının türevine dayalıdır:

$$\int u \, dv \tag{23.5}$$

integralini arıyor olalım. uv çarpımının diferensiyeli olan

$$d(uv) = udv + vdu$$

eşitiğinin iki yanının integralleri de eşit olmalıdır:

$$uv = \int u \, dv + \int v \, du$$

Buradan

$$\int u \, dv = uv - \int v \, du \tag{23.6}$$

bağıntısı çıkar. Bu aradığımız **(**)** integralidir. Bundan böyle **(**)** eşitliğini bir formül olarak kullanacağız. Bu yöntem öncelikle integrali alınacak fonksiyonun $u\,d\,v$ biçiminde yazılabilmesini ve bir ya da ardışık kısmi integrasyon uygulamalarından u çarpanının yok olmasını gerektirir. Aşağıdaki örnekler, kısmi integrasyon yönteminin nasıl çalıştığını gösterecektir.

Örnek 23.16.

$$\int x e^x dx \tag{23.7}$$

integralini hesaplayınız.

Çözüm:

İntegrandı iki (fonksyonun çarpımı biçine getirelim: u = x, $dv = e^x dx$ konumuyla,

$$\int xe^x dx = xe^x - \int e^x dx$$
$$= xe^x - e^x + C$$

Uyarı: Yukarıdaki değiken değiştirme eyleminde $u = e^x$, dv = x dx alınmış olsaydı

$$\int xe^{x} dx = \frac{1}{2}x^{2}e^{x} - \frac{1}{2}\int x^{2}e^{x} dx$$

gibi çözümü aslından daha zor olan bir integral ortaya çıkardı. O nedenle, kısmi integrasyon kullanılırken, işlem sonunda çarpanlardan birisinin yok olması önem kazanır.

Örnek 23.17.

$$\int e^{-x} \cos x \, dx \tag{23.8}$$

integralini hesaplayınız.

Çözüm:

Türev ve integral işlemlerinde e^{-x} yok olmayacağına göre fonksiyonu yok olması gereken fonksiyon olarak karşımıza çıkar. Tabii, bu fonksiyon da bir kez türev ya da integral olarak yok edilemez. Ama iki defa türev alınca, kendisine eşit olacağından, bir aritmetik işlemle istenen integrali elde edebiliriz:

$$\int e^{-x} \cos x \, dx = e^{-x} \sin x + \int e^{-x} \sin x \, dx$$

Sondaki integrale tekrar kısmi integral uygularsak,

$$\int \frac{\sin x}{e^{-x}} dx = -e^{-x} \cos x - \int e^{-x} \cos x \, dx$$

çıkar. Son iki ifadeyi bir araya getirisek,

$$\int \cos x e^{-x} \, dx = \sin x e^{-x} - \cos x e^{-x} - \int \cos x e^{-x} \, dx \tag{23.9}$$

Dikkat edersek, son ifadedeki iki integral aynıdır. Dolayısyla, eşitliği

$$\int \cos x e^{-x} dx = \frac{1}{2} e^{-x} (\sin x - \cos x) + C$$
 (23.10)

biçiminde yazabiliriz.

Örnek 23.18.

$$\int (3x+5)\cos\frac{x}{4}\,dx\tag{23.11}$$

integralini hesaplayınız.

Çözüm:

Kısmi integrasyon uygularken polinom biçimindeki fonkiyonların ilk adımda ya da ardışık adı da yok olacağını düşünerek, $u=3x+5,\,dv=\cos\frac{x}{4},\,du=3dx,\,v=4sin\frac{x}{4}$

$$u = 3x + 5$$
, $dv = \cos \frac{x}{4}$, $du = 3dx$, $v = 4\sin \frac{x}{4}$

konumlarını yapabiliriz. Buradan

$$\int (3x+5)\cos\frac{x}{4} dx = 4(3x+5)\sin\frac{x}{4} - 12\int \sin\frac{x}{4} dx$$
$$= 4(3x+5)\sin\frac{x}{4} + 48\cos\frac{x}{4} + C$$

olur.

Örnek 23.19.

$$\int x^2 \sin(10x) \, dx \tag{23.12}$$

integralini hesaplayınız.

$$u = x^2$$
, $dv = \sin(10x)dx$, $du = 2xdx$, $v = -\frac{1}{10}\cos(10x)$

konumu yapılırsa,kısmi integrasyon formülünden

$$\int x^2 \sin(10x) dx = -\frac{x^2}{10} \cos(10x) + \frac{1}{5} \int x \cos(10x) dx$$

yazılabilir. Sağdaki integral için bir kez daha kısmi integrasyon uygulan-

ilir:
$$u = x, dv = \cos(10x), du = dx, v = \frac{1}{10}\sin(10x)$$
konumuyla,

$$\int x^2 \sin(10x) \, dx = -\frac{x^2}{10} \cos(10x) + \frac{1}{5} \left(\frac{x}{10} \sin(10x) - \frac{1}{10} \int \sin(10x) \, dx \right)$$

$$= -\frac{x^2}{10} \cos(10x) + \frac{1}{5} \left(\frac{x}{10} \sin(10x) + \frac{1}{100} \cos(10x) \right) + C$$

$$= -\frac{x^2}{10} \cos(10x) + \frac{10x}{100} \sin(10x) + \frac{1}{500} \cos(10x) + C$$

bulunur.

Örnek 23.20.

$$I = \int_0^1 \arctan x \, dx,\tag{23.13}$$

interalini bulunuz.

Çözüm: Kısmi integrasyon formülünden,

$$I = \int \arctan x \, dx$$

$$= x \arctan x \Big|_0^1 - \int_0^1 \frac{x}{x^2 + 1} \, dx$$

$$= \arctan 1 - \frac{1}{2} \ln(x^2 + 1) \Big|_0^1$$

$$= \frac{\pi}{4} - \frac{1}{2} \ln 2$$

Örnek 23.21.

$$I = \int e^{ax} \cos bx \, dx, \qquad (ab \neq 0) \tag{23.14}$$

<mark>interalini</mark> bulunuz.

Çözüm:

$$u = e^{ax}$$
, $du = ae^{ax}dx$, $dv = \cos bx dx$, $v = \frac{1}{b}\sin bx$

konumuyla kısmi integrasyon formülünden,

$$I = \int e^{ax} \cos bx \, dx$$

$$= \frac{1}{b} e^{ax} \sin bx - \frac{a}{b} \int e^{ax} \sin bx \, dx$$

$$= \frac{1}{b} e^{ax} \sin bx - \frac{a}{b^2} e^{ax} \cos bx - \frac{a^2}{b^2} I + C$$

Buradan

bulunur.

Benzer olarak

$$I = \int e^{ax} \sin bx \, dx, = \frac{1}{a^2 + b^2} e^{ax} (a \sin bx - b \cos bx) + C$$

eşitliği elde edilebilir.

Şekil 23.1: Hermann Schubert (1848-1911)

Polinomların Çarpanlara Ayrılması

Polinomların kökleri uygulamada önemli rol oynar. O nedenle polinomlar işlenirken bu konuya ağırlık verilir. Benzetmek gerekirse, bir polinomun çarpanlarına ayrılması bir sayının asal çarpanlarına ayrılması gibidir. Tabii, sayılarda var olan bütün özelikler polinomlarda olmaz.

Polinomları çarpanlarına ayırma konusu ilk kez 1793 yılında Hermann Schubert tarafından ortaya konulmuş 1882 yılında Leopold Kronecker bulduğu bir algoritma ile konuyu genelleştirmiştir. Bu gün polinomu çarpanlara ayırma eylemi bilgisayar cebirinin temel taşlarından birisidir.

Bu kitapta polinomu çarpanlarına ayırma eylemi rasyonel fonksiyonların integralini bulmak için kullanılacaktır. O nedenle, bu kesimde bir q(x) polinomunun çarpanlarına ayrılışını bize gerektiği kadarıyla ele alacağız. Önce iyi bilinen temel bilgileri anımsayalım:

Gerçel katsayılı her Q(x) polinomu doğrusal ve quadratic çarpan-

$$p(x) = a_0 + a_1 x + a_2 x^2 4 a_3 x^3 + \dots + a_{n-1} x^{m-1} + a_n x^n$$
 (23.15)

polinomu için

$$(x-c)^k S(x) \tag{23.16}$$

eşiliğini sağlayan bir S(x) polinomu varsa c sayısı q(x) polinomunun k-katlı bir köküdür.

Şekil 23.2: leopold Koronocker (1823-

k=1 ise c sayısı tek katlı kök olur. n-inci dereceden bir polinomum n tane kökü vardır. Burada c sayısı q(x) polinomunun k-katlı kökü ise geri kalan köklerin sayısı n-k tanedir ve onlar S(x) polinomunun kökleri olur. Kökler gerçel ya da karmaşık sayı olabilirler.

Teorem 23.23. Özdeş iki polinomun aynı dereceli terimlerinin katsayıları birbirlerine eşittir.

Kanıt:

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_{n-1} x^{m-1} + a_n x^n$$

$$q(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + \dots + b_{n-1} x^{m-1} + b_m x^m$$

polinomları özdeş olsunlar. O zaman farkları 0'a özdeş olmalıdır: n > m ise

$$0 \equiv p(x) - q(x)$$

$$0 \equiv (a_0 - b_0) + (a - 1 - b_1)x + \dots + (a_m - b_m)x^m + a_{m+1}x + \dots + a_nx^n$$

olmalıdır. Bunun olabilmesi için

$$a_0 = b_0, a_1 = b_1, \dots, a_m = b_m, a_{m+1} = 0, \dots a_n = 0$$

olmalıdır. n < m ise benzer düşünce geçerlidir.

Teorem 23.24. $q(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + ... + b_m x^{m-1} + b_m x^m$ polinomunun $(x - c) q_1(x)$ biçiminde çarpanlara ayrılması için gerekli ve yeterli koşul c nin bir kök olması; yani q(c) = 0 olmasıdır.

Kanıt:

q(x) polinomu x - c ile tam bölünebiliyorsa q(c) = 0 olacağından,

$$q(x) = q(x) - q(c)$$

$$= b_0 + b_1 x + b_2 x^2 4 p_3 x^3 + \dots + b_{n-1} x^{m-1} + b_m x^m - (b_0 + b_1 c + b_2 c^2 4 p_3 c^3 + \dots + b_{n-1} c^{m-1} + b_m c^m)$$

$$= b_1 (x - c) + b_2 (x^2 - c^2) + b_3 (x^3 - c^3) + \dots + b_m (x^m - c^n 23.17)$$

yazılabilir. Öte yandan

$$x^{n} - c^{n} = (x - c)(x^{n-1} + x^{n-2} + \dots + c^{n-1}), \quad (n = 1, 2, \dots, m)$$
(23.18)

dir. (19.1) ve (20.53) bağıntılarından istenen çıkar.

Polinomun bazı kökleri tamsayı olabilir.

Örnek 23.25.

$$q(x) = x^3 - 2x^2 - x + 2 (23.19)$$

polinomunu çarpanlarına ayırınız.

baş katsayısı 1 olan bir polinomun tam sayı kökü varsa kabit teriminin bir çarpanıdır. Burada sabit terim 2'dir. 2'nin çarpanları ± 1 , ± 2 olmak üzere dört tanedir. Bunlar arasında $c_1 = 2$ sayısı $q(c_1) = 0$ eşitliğini sağlar. O halde,

$$q(x) = 8x - 2)q_1(x) = (x - 2)(x^2 - 1)$$
 (23.20)

yazılabilir. Tekrar $q_1(x)$ polinomunun köklerini bulmamız gerekiyor. Bu polinom ikinci dereceden olduğu için köklerini formülden bulabiliriz: $c_2=-1$ $c_3=+1$ olur. q(x) polinomunun üç kökünü de bulduğumuza göre onu

$$q(x) = (x-2)(x+1)(x-1)$$
 (23.21)

biçiminde çarpanlarına ayırabiliriz.

Polinomum bazı kökleri irrasyonel sayı olabilir.

Örnek 23.26.

$$q(x) = x^3 - 3x^2 - 2x + 6 (23.22)$$

polinomunu çarpanlarına ayırınız.

Bilindiği gibi başkatsayısı 1 olan polinomun tamsayı kökleri sabit teriminin çarpanıdır. \blacksquare sayısını çarpanları $\pm 1, \pm 2, \pm 3, \pm 6$ sayılarıdır. Bunlar arasında p(c)=0 yapan tek sayı $c_1=3$ sayısıdır. O halde

$$q(x) = x^3 - 3x^2 - 2x + 6 = (x - 3)q_1(x)(x - 3)(x^2 - 2)$$
 (23.23)

olur. Geriye kalan $q_1(x)=(x^2-2)$ polinomu ikinci dereceden bir polinomdur. Kökleri $\pm \sqrt{2}$ dir. O halde,

$$q(x) = x^3 - 3x^2 - 2x + 6 = (x - 3)(x + \sqrt{2})(x - \sqrt{2})$$
(23.24)

biçiminde çarpanlarına ayrılabilir.

Örnek 23.27.

$$q(x) = x^4 - 4x^3 + 8x (23.25)$$

polinomunu çarpanlarına ayırınız.

Bu polinomunda xdğişkeninin her terimde olduğu apaçık görünüyor. Öyleyse,

$$q(x) = x(x^3 - 4x^2 + 8) = xq_1(x)$$

yazabiliriz. Parantez içindeki polinomun tansayı köklei varsa 8 sabitinin çrpanları olacağından, $\pm 1, \pm 2, \pm 4, \pm 8$ sarılarının kök olup olmadıklarını denemelizi c=2 sayısı için $q_1(2)=0$ olduğu; yani $c_2=2$ sayısının bir kök olduğu görülür. Buradan

$$q(x) = x^4 - 4x^3 + 8x = x(x-2)q_2(x) = x(x-2)(x^2 - 2x - 4)$$
 (23.26)

yazılabilir. Burada geriye kalan $q_2(x) = x^2 - 2x - 4$ ikinci dereceden bir polinomdur. Bildiğimiz yöntemle bunun köklerini bulabiliriz. Ohalde, q(x) polinomu

$$q(x) = x(x-2)(x-14\sqrt{5})(x-1-\sqrt{5})$$
 (23.27)

biçiminde çarpanlarına ayrılabilir.

Polinomum bazı kökleri karmaşık sayı olabilir.

Örnek 23.28.

$$q(x) = x^5 + x^4 + 4x^3 + 4x^2 + 4x + 4$$
 (23.28)

polinomunu çarpanlarına ayırınız.

Çözüm: Beşinci dereceden olduğu için bu polinomum beş tane kökü olduğu biliniyor. Ancak üçüncü dereceden büyükler için kökü bulmamızı sağlayan bir formül yoktur. Sabit terimin pm1, ± 2 , ± 4 saqyılarından +1 sayısının kök olduğu denenerek görülebilir. $q(x) = x + 1 y_1(x)$ yazarsak $q_1(x) = (x^2 + 2)^2$ olduğu ve $q_1(x)$ polinomunun gerçel kökünün olmadığı görülür. Geri kalan dört kökün dördü de karmaşık sayıdır.

$$q(x) = (x+1)(x^2+2)^2. (23.29)$$

Örnek 23.29.

$$q(x) = 8x^4 - 4x^3 + 10x^2 (23.30)$$

polinomunu çarpanlarına ayırınız.

Çözüm: Dördüncü dereceden olan bu polinomun 4 tane kökü vardır. $2x^2$ çarpanı ortak olduğu için polinomu,

$$q(x) = x^2 (8x^2 - 4x + 10)$$
 (23.31)

biçiminde çarpanlara ayırısak, $(4x^2 - 2x + 5)$ çarpanının ikinci dereceden ve gerçel kökü olmadığı görülür. Öyleyse,

$$q(x) = \frac{1}{4}x^{2} \left(\left[-4ix + \sqrt{19} \right] \cdot \left[4ix + \sqrt{19} \right] \right)$$
 (23.32)

olur.

23.8 Basit Kesirlere Ayırma

İki polinomun oranı biçiminde yazılan fonksiyonlara rasyonel fonlsiyon denilir. $\frac{P(x)}{Q(x)}$ ifadesinde P(x) polinomunun derecesi Q(x) polinomunun derecesinden daha küçükse, rasyonelfonksiyona basit, değilse bileşik kesir denilir.

Q(x) paydasının $(x-a_k)^m$ bir çarpan ve $(x^2+px+q)^r$ bir quadratik crpan ise rasyonel fonksiyon

$$\frac{P(x)}{Q(x)} = E(x) + \sum_{k=1}^{m} \frac{A_k}{(x - a_k)^k} + \sum_{r=1}^{R} \frac{b_m x + C_m}{(x^2 + px + q)^r}$$

biçiminde basit kesirlerine ayrılır. Sonra her basit kesir için kendi<mark>sınıfna</mark> ait integral yöntemi <mark>uygulanaır.</mark>

23.9 Rasyonel Fonksiyonların İntegrallenmesi

Şimdi en basit halden başlayarak rasyonel fonksiyonların integrallenmesini inceleyeceğiz.

$$I = \int \frac{1}{1 - x^2} \, dx \tag{23.33}$$

integralini bulunuz.

Çözüm:

$$\frac{1}{1-x^2} = \frac{1}{(1-x)(1+x)}$$

$$= \frac{A}{1-x} + \frac{B}{1+x}$$

$$\Rightarrow \frac{1}{1-x^2} \equiv \frac{A}{1-x} + \frac{B}{1+x}$$

$$\Rightarrow \frac{1}{1-x^2} \equiv \frac{A(1+x) + B(1-x)}{1-x^2}$$

$$\Rightarrow \frac{1}{1-x^2} \equiv \frac{A(1+x) + B(1-x)}{1-x^2}$$

$$\Rightarrow \frac{1}{1-x^2} \equiv \frac{A(1+x) + B(1-x)}{1-x^2}$$

$$\Rightarrow \frac{1}{1-x^2} \equiv \frac{A(1+x) + B(1-x)}{1-x^2}$$

$$\Rightarrow \frac{1}{1-x^2} \equiv \frac{A(1+x) + B(1-x)}{1-x^2}$$

$$\Rightarrow \frac{1}{1-x^2} = \frac{1}{2} \left(\frac{1}{(1+x)} - \frac{1}{(1-x)} \right)$$

Artık sağ taraftaki basit kesirlerin integralleri alınabilir:

$$I = \int \frac{1}{1 - x^2} dx$$

$$= \frac{1}{2} \int \left(\frac{1}{(1 + x)} - \frac{1}{(1 - x)} \right) dx$$

$$= \frac{1}{2} \int \ln(1 + x) - \ln(1 - x) + \ln C$$

$$= \frac{1}{2} \ln |C \frac{(1 + x)}{(1 - x)}|$$

$$I = \int \frac{x^5 + 2}{x^2 - 1} dx$$
(23.34)

integralini bulunuz.

Çözüm:

İntegrali alınacak fonksiyonun payının derecesi paydanın derecesinden büyük olduğu için önce payı paydaya bölelim:

$$\frac{x^{5}+1}{x^{2}-1} = x^{3} + x + \frac{x+2}{x^{2}-1}$$

$$\frac{x+2}{x^{2}-1} = \frac{x+2}{(x-1)(x+1)} \Rightarrow$$

$$\frac{x+2}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1} \Rightarrow$$

$$= \frac{A(x+1)}{x-1} + \frac{B(x+1)}{x-1} \Rightarrow$$

$$= \frac{(A+B)x + (A-B)}{x^{2}-1}$$

$$\Rightarrow A = 3/2, B = -\frac{1}{2}$$
(23.35)

Bulduğumuz budeperleri (??) eşitliğinde kullanırsak,

$$\frac{x^5 + 2}{x^2 - 1} = x^3 + x - \frac{1}{2} \frac{1}{x + 1} + \frac{3}{2} \frac{1}{x - 1}$$
 (23.36)

olur. Sağ yandaki terimler integrallenebilir olduğundan

$$I = \int \frac{x^5 + 2}{x^2 - 1} dx$$

$$= \int x^3 dx + \int x dx - \frac{1}{2} \int \frac{1}{x + 1} dx + \frac{3}{2} \int \frac{1}{x - 1} dx$$

$$= \frac{1}{4} x^4 + \frac{1}{2} x^2 - \frac{1}{2} \ln |x + 1| + \frac{3}{2} \ln |x - 1| + C$$

Örnek 23.30.

$$I = \int \frac{3x^2 + x + 4}{x(x^2 + 2)^2} \, dx$$

integralini hesaplayınız.

Çözüm: Kısmi kesirlererine ayırıp integrale geçilirse,

$$\begin{split} I &= \int \frac{dx}{x} - \int \frac{dx}{x^2 + 2} + \int \frac{xdx}{(x^2 + 2)^2} + \int \frac{dx}{(x^2 + 2)^2} dx \\ &= \ln|x| - \frac{1}{2} \int \frac{d(x^2)}{(x^2 + 2)} + \frac{1}{2} \int \frac{d(x^2)}{(x^2 + 2)^2} + \int \frac{dx}{(x^2 + 2)^2} \\ &= \ln|x| - \frac{1}{2} \ln(x^2 + 2) - \frac{1}{2} \frac{1}{(x^2 + 2)} + \frac{1}{4} \frac{x}{x^2 + 2} + \frac{1}{4\sqrt{2}} \arctan \frac{x}{\sqrt{2}} + C \end{split}$$

Örnek 23.31.

$$I = \int \frac{6x^3 + 5x^2 + 21x + 12}{x(x+1)(x^2+4)} dx$$

integralini hesaplayınız.

Çözüm:

$$\frac{6x^3 + 5x^2 + 21x + 12}{x(x+1)(x^2+4)} = \frac{A}{x} + \frac{B}{x+1} + \frac{Cx+D}{x^2+4}$$

$$6x^3 + 5x^2 + 21x + 12 \equiv A(x+1)(x^2+4) + Bx(x^2+4) + (Cx+D)x(x+1)$$

$$\equiv (A+B+C)x^3 + (A+D+C)x^2 + (4A+4B+D)x + 4A$$

$$\Rightarrow A+B+C=6$$

$$A+C+D=5$$

$$4A+4B+D=21$$

$$4A=12$$

$$\Rightarrow A=3, B=2, C=1, D=1$$

Bunları yerlerine koyarsak, integral

$$I = \int \frac{3}{x} dx + \int \frac{2}{x+1} \int \frac{x+1}{x^2+4} dx$$

$$= 3\ln|x| + 2\ln|x+1| + \frac{1}{2}\ln|x^2+4| + \frac{1}{2}\arctan\frac{x}{2} + C$$

$$= \ln|x^3(x+1)|^2 \sqrt{x^2+4} + \frac{1}{2}\arctan\frac{x}{2} + C$$

Örnek 23.32.

$$I = \int \frac{x^5 - x^4 - 3x + 5}{x^4 - 2x^3 + 2x^2 - 2x + 1} dx$$

integralini hesaplayınız.

Çözüm:

$$\frac{x^5 - x^4 - 3x + 5}{x^4 - 2x^3 + 2x^2 - 2x + 1} = (x+1) + \frac{-2x + 4}{x^4 - 2x^3 + 2x^2 - 2x + 1}$$

$$= (x+1) + \frac{-2x + 4}{(x^2 + 1)(x - 1)^2}$$

$$= (x+1) + \frac{2x + 1}{x^2 + 1} - \frac{2}{x - 1} + \frac{1}{(x - 1)^2}$$

$$I = \int \left((x+1) + \frac{2x + 1}{x^2 + 1} - \frac{2}{x - 1} + \frac{1}{(x - 1)^2} \right) dx$$

$$= \frac{1}{2}x^2 + x + \ln(x^2 + 1) + \tan^{-1}x - 2\ln|x - 1| - \frac{1}{x - 1} + C$$

Örnek 23.33.

$$I = \int \frac{(x+1)}{\sqrt{2x^2 - 6x + 4}} \, dx$$

integralini hesaplayınız.

Çözüm:

$$2x^{2} - 6x + 4 = 2(x^{2} - 3x) + 4$$

$$= 2\left(x^{2} - 3x + \frac{9}{4} + 4 - \frac{9}{2}\right)$$

$$= 2(u^{2} - a^{2}) \qquad \Rightarrow u = x - \frac{3}{2}, \quad a = \frac{1}{2}, \quad du = dx$$

$$x + 1 = u + \frac{5}{2}$$

konumu yapılırsa,

$$I = \int \frac{u + \frac{5}{2}}{\sqrt{2(u^2 - a^2)}} du$$
$$= \frac{1}{\sqrt{2}} \int \frac{u du}{\sqrt{u^2 - a^2}} + \frac{5}{2\sqrt{2}} \int \frac{du}{\sqrt{u^2 - a^2}}$$

$$I_{1} = \frac{1}{\sqrt{2}} \int \frac{u du}{\sqrt{u^{2} - a^{2}}} = \frac{1}{2\sqrt{2}} \int \frac{dz}{\sqrt{z}}$$

$$= \frac{1}{2\sqrt{2}} \sqrt{z} + C_{1}$$

$$= \sqrt{\frac{u^{2} - a^{2}}{2}} + C_{1}$$

$$I_2 = \frac{5}{2\sqrt{2}} \ln \left| u + \sqrt{u^2 - a^2} \right| + C_2$$

O halde,

$$I_1 + I_2 = \sqrt{\frac{u^2 - a^2}{2} + \frac{5}{2\sqrt{2}} \ln\left|u + \sqrt{u^2 - a^2}\right| + C}$$
$$= \sqrt{\frac{x^2 - 3x + 2}{2} + \frac{5}{2\sqrt{2}} \ln\left|(x - \frac{3}{2}) + \sqrt{x^2 - 3x + 2}\right| + C}$$

çıkar.

Örnek 23.34.

$$I = \int \frac{1}{4x^2 + 4x + 2} \, dx$$

integralini hesaplayınız.

Çözüm:

$$\begin{split} I &= \int \frac{dx}{4(x^2 + x) + 2} \\ &= \int \frac{dx}{4(x^2 + x + \frac{1}{4}) + (2 - \frac{4}{4})} \\ &= \int \frac{du}{4(u^2 + 1)}, \quad (u = x + \frac{1}{2}) \} \\ &= \frac{1}{4} \int \frac{du}{u^2 + (\frac{1}{2})^2} \\ &= \frac{1}{4} \left(\frac{1}{1/2} arctan \frac{u}{\frac{1}{2}} \right) + C \\ &= \frac{1}{2} arctan(2x + 1) + C \end{split}$$

23.10 Rasyonel Fonksiyonların Kesirlere Ayrılması

Rasyonel fonksiyon iki polinomun bölümü biçiminde olan <mark>fonkiyon-</mark>

$$r(x) = \frac{p(x)}{q(x)} = \frac{a_0 + a_1 x + a_2 x^2 4 a_3 x^3 + \dots + a_n x^n}{b_0 + b_1 x + b_2 x^2 4 b_3 x^3 + \dots + b_n x^m}$$
(23.37)

bu ifadede $n \ge m$ ise rasyonel fonksiyona bileşik kesir, m < n ise basit kesir denilir. Başka bir deyişle, paydanın derecesi payın derecesinden küçükse rasyonel fonksiyona bileşik kesir, değilse basit kesir denilir. Bu sınıflandırma sayılardaki bileşik ve basit kesir tanımı gibidir.

Bileşik kesir halinde olan rasyonel fonksiyonlar basit kesirlerine ayrılabilir. Bunun için paydaki polinomun paydadaki polinoma bölünmesi yeterlidir. Bu bölme işlemi sonunda,

$$r(x) = p_1(x) + r_1(x) \tag{23.38}$$

gibi bir ifade çıkar. Burada, der polinomum derecesini göstermek üzere, $p_1(x)$ bir polinomdur ve derecesi n-m dir. $r_1(x)$;yani

$$r_1(x) = \frac{p_2(x)}{q(x)} \qquad (der\{p_2\} < der\{q\})$$
 (23.39)

biçiminde rasyonel bir fonsiyondur ve payın derecesi paydanın derecesinden kesinlikle küçüktür.

Bu türlerin integrali için parçalı kesirlere ayırma (partial fraction) yöntemi kullanılı, İntegrallenen rasyonel fonksiyon parçalı kesirlerine ayrılınca her terim bilinen yöntemlerle integrallenebilir hale gelir.

(??) biçiminde bir fonksiyonun integrali isteniyorsa, sırasıyla şu eylemler yapılır:

1. p(x) polinomumun derecesi q(x) polinomunun derecesinden daha büyükse, önce

$$r(x) = \frac{p(x)}{q(x)} = p_1(x) + r_1(x)$$
 (23.40)

bölme işlemi yapılır.

- 2. Bölme işleminin verdiği $p_1(x)$ polinomu terim terime integrallenebilir.
- 3. Rasyonel $r_1(x)$ fonksiyonunun q(x) paydası çarpanlarına ayrılır.
- 4. Her çarpana karşılık gelen basit kesirler bulunur.
- 5. Bulunan kesirlerin tek tek integralleri alınır.

Rasyonel fonksiyonun parçalı kesirlere ayrılması eylemi polinomların bir konusudur. Ama rasyonel fonksiyonların integralinde sık sık karşılaşacağımız basit kesirlere ayırma eyleminin esaslarını anlatmalıyız.

n-inci dereceden bir polinomun n tane kökü olduğunu biliyoruz. Önceki kesimde her köke karşılık polinomun bir çarpanı olduğunu söylemiştik.

Teorem 23.35. $q(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + ... + b_{n-1} x^{m-1} + b_m x^m$ polinomunun $(x - c)q_1(x)$ biçiminde çarpanlara ayrılması için gerekli ve yeterli koşul c nin bir kök olması; yani q(c) = 0 olmasıdır.

Rasyonel fonksiyonların bait kesirlere ayrılışını gösteren aşağıdaki teoremin Kanıtı, bu kitapta olmayan bazı teknik bilgilere dayanır. O nedenle teoremi Kanıtsız olarak ifade edeceğiz:

Teorem 23.36. Basit kesir biçimindeki rasyonel q(x) fonksiyonun paydası

$$q(x) = a(x - c_1)^{r_1} \dots (x - c_k)^{r_k} \left((x^2 + b_1 x + d_1)^{s_1} \dots (x^2 + b_m x + d_m)^{s_m} \right)$$
(23.41)

biçiminde ve bu gösterimdeki iki doğrusal ya da quadratik çarpan aynı değil ve indirgenemez ise q(x) rasyonel fonksiyonu,

$$q(x) = B_{lin} + B_{auad} \tag{23.42}$$

biçiminde iki<mark>blokun</mark> toplamına eşittir. Bu bloklar için aşağıdaki kurallar geçerlidir: Her farklı (x – c_i) doğrusal çarpanı için, c_i k katlı kök ise,

$$B_{lin} = \frac{A_1}{(x - c_i)} + \frac{A_2}{(x - c_i)^2} + \dots + \frac{A_{r_i}}{(x - c_i)^{r_i}}$$
(23.43)

biçimindeki k terimli bir blok oluşur.

 $(x^2 + b_i x + d_i)$ quadratik çarpanı m-katlı bir çarpan ise

$$B_{quad} = \frac{B_1 x + C_1}{(x^2 + b_i x + d_i)} + \frac{B_2 x + C_2}{(x^2 + b_i x + d_i)^2} + \dots + \frac{B_{s_i} x + C_{s_i}}{(x^2 + b_i x + d_i)^{s_i}} \tag{23.44}$$

biçimindeki m öğeli bir blok oluşur.

Bloklardaki A_h , B_s , C_t sabit katsayıları q(x) polinomuna bağlı olarak tek olarak belirlenebilirler.

(??) ve **(??)** ifadelerinde terim sayıları ilgili kökün kaçıncı dereceden katlı kök olduğuna bağlıdır. Örneğin, $r_k=1$ ise c_1 tek katlı kök olur. Dolayısıyla, B_{lin} blokunun tek öğesi var olur. $\frac{A_1}{(x-c_1)}$ terimi **(??)** blokunun biricik terimi olur. Benzer şekilde, $s_m=1$ ise **(??)** blokunun biricik terimi $\frac{B_1x+C_1}{(x^2+b_1x+d_1)}$ olur.

Kanıt:

q(x) polinomu x - c ile tam bölünebiliyorsa q(c) = 0 olacağından,

$$q(x) = q(x) - q(c)$$

$$= b_0 + b_1 x + b_2 x^2 4 b_3 x^3 + \dots + b_{n-1} x^{m-1} + b_m x^m - (b_0 + b_1 c + b_2 c^2 4 b_3 c^3 + \dots + b_{n-1} c^{m-1} + b_m c^m)$$

$$= b_1 (x - c) + b_2 (x^2 - c^2) + b_3 (x^3 - c^3) + \dots + b_m (x^m - c^m)$$
(23.45)

yazılabilir. Öte yandan

$$x^{n} - c^{n} = (x - c)(x^{n-1} + x^{n-2} + \dots + c^{n-1}), \quad (n = 1, 2, \dots, m)$$
 (23.46)

dir. (19.1) ve (20.53) bağıntılarından istenen çıkar.

Örnek 23.37.

$$q(x) = x^3 - 3x^2 - 2x + 6 (23.47)$$

(E

polinomunu çarpanlarına ayırınız.

Bilindiği gibi başkatsayısı 1 olan polinomun tamsayı kökleri sabit teriminin çarpanıdır. 4sayısını çarpanları $\pm 1, \pm 2, \pm 3, \pm 6$ sayılarıdır. Bunlar arasında p(c) = 0 yapan tek sayı $c_1 = 3$ sayısıdır. O halde

$$q(x) = x^3 - 3x^2 - 2x + 6 = (x - 3)q_1(x)(x - 3)(x^2 - 2)$$
 (23.48)

olur. Geriye kalan $q_1(x) = (x^2 - 2)$ polinomu ikinci dereceden bir polinomdur. Kökleri $\pm \sqrt{2}$ dir. O halde,

$$q(x) = x^3 - 3x^2 - 2x + 6 = (x - 3)(x + \sqrt{2})(x - \sqrt{2})$$
(23.49)

biçiminde çarpanlarına ayrılabilir.

Örnek 23.38.

$$q(x) = x^4 - 4x^3 + 8x (23.50)$$

polinomunu çarpanlarına ayırınız.

Bu polinomunda x dğişkeninin her terimde olduğu apaçık görünüyor. Öyleyse,

$$q(x) = x(x^3 - 4x^2 + 8) = xq_1(x)$$

yazabiliriz.Parantez içindeki polinomun tansayı) kökleri varsa 8 sabitinin çarpanları olacağından, $\pm 1, \pm 2, \pm 4, \pm 8$ sarılarının kök olup olmadıklarını denemeliz. c=2 sayısı için $q_1(2)=0$ olduğu; yani $c_2=2$ sayısının bir kök olduğu görülür. Buradan

$$q(x) = x^4 - 4x^3 + 8x = x(x-2)q_2(x) = x(x-2)(x^2 - 2x - 4)$$
 (23.51)

yazılabilir. Burada geriye kalan $q_2(x) = x^2 - 2x - 4$ ikinci dereceden bir polinomdur. Bildiğimiz yöntemle bunun köklerini bulabiliriz. Ohalde, q(x) polinomu

$$q(x) = x(x-2)(x+1+\sqrt{5})(x-1-\sqrt{5})$$
 (23.52)

biçiminde çarpanlarına ayrılabilir.

23.11 Rasyonelleştirme

İntegrali alınacak fonksiyon köklü ifadeler içeriyor, ya da integrali bilinen bir tipten değilse, uygun bir değişken değiştirimi ile rasyonel fonksiyon haline getirilir ve ona rasyonel fonksiyon için bilinen integral alma yöntemleri uygulanır.

Örnek 23.39.

$$\int \frac{\sqrt{x}}{1+\sqrt[3]{x}} \tag{23.53}$$

integralini hesaplayınız.

Çözüm: İntegrali alınacak fonsiyon bir kare kök, bir de küp kök içeriyor. her iki köklü ifadeden kurtulmak için $u = \sqrt[3]{x}$, $x = u^6$, $6u^5 du = dx$ konumuyla,

$$\int \frac{\sqrt{x}}{1+\sqrt[3]{x}} dx = \int \frac{u^3}{1+u^2} 6u^5 du$$

$$= 6 \int \frac{u^8}{1+u^2} du$$

$$= \int (6u^6 - 6u^4 + 6u^2 - 6 + \frac{1}{1+u^2}) \text{ (payr paydaya böl)}$$

$$= \frac{6}{7}u^7 - \frac{6}{5}u^5 + 2u^3 - 6u + \tan^{-1}u + C$$

$$= \frac{6}{7}x^{\frac{7}{6}} - \frac{6}{5}x^{\frac{5}{6}} + 2x^{\frac{1}{2}} - 6x^{\frac{1}{6}} + \tan^{-1}x^{\frac{1}{6}} + C$$

bulunur.

Örnek 23.40.

$$\int \frac{1}{1+e^x} \, dx \tag{23.54}$$

integralini hesaplayınız.

Çözüm:

 $u = 1 + e^x$, ln(u - 1) = x, $\frac{1}{u - 1} du = dx$ konumuyla,

$$\int \frac{1}{1+e^x} dx = \int \left(\frac{1}{u} \frac{1}{u-1}\right) du$$

$$= \int \left(\frac{1}{u-1} - \frac{1}{u}\right) du$$

$$= \ln|u-1| - \ln|u| + \ln C$$

$$= \ln\left|\frac{u-1}{u}\right| + C$$

$$= \ln\left|\frac{e^x}{1+e^x}\right| + C$$

$$= \ln\left(\frac{e^x}{1+e^x}\right) + C$$

23.12 Köklü İfadelerin İntegrali

Köklü ifadelerin integrali için kullanılan geçerli yöntem, <mark>integradı</mark> kökten kurtaracak uygun bir dğişken değiştirimi yapmaktır. Dolayısıyla bu kesimi () kesimi içinde görmek daha doğrudur. Bir kaç örnek söylediğimiz kanıtlayacaktır.

Örnek 23.41.

$$\int \frac{1}{\sqrt{\pi + 2x}} dx$$
 (23.55)

integralini hesaplayınız.

Çözüm:

Burada zorluğu yaratan terim kareköklü terimdir. (Karkökten) kurtulmak için uygun bir değişken değiştirimi bulmalıyız. Deneyerek

 $u = \pi + 2x$, $2udu = 2dx \Rightarrow dx = udu$ konumunun işe yaradığını görebiliriz:

$$\int \frac{1}{\sqrt{\pi + 2x}} dx = \int \frac{u du}{\sqrt{u^2}}$$

$$= \int \frac{u du}{u}$$

$$= \int du$$

$$= u + C$$

$$= \sqrt{\pi + 2x} + C$$

Örnek 23.42.

$$\int \frac{x}{\sqrt{3x-1}} \, dx \tag{23.56}$$

integralini hesaplayınız.

Çözüm:

Karekökten kurtulmak için, $u^2 = 3x - 1$, $x = \frac{1}{3}(u^2 + 1)$, 2udu = 3dx, $dx = \frac{2}{3}udu$ konumuyla,

$$\int \frac{x}{\sqrt{3x-1}} dx = \frac{2}{9} \int \frac{(u^2+1)}{u^2} u du$$

$$= \frac{2}{9} \int u du + \frac{2}{9} \int \frac{du}{u}$$

$$= \frac{1}{9} u^2 + \frac{2}{9} \ln|u| + C$$

$$= \frac{1}{9} (3x-1) + \frac{2}{9} \ln|\sqrt{3x-1}| + C$$

Örnek 23.43.

$$\int \left(x^2 - 4x + 4\right)^{-\frac{5}{3}} dx \tag{23.57}$$

integralini hesaplayınız.

Çözüm:

Uygun bir değişkn değiştirimi ile küp kökten kurtulmalıyız. Bunun için küp köklü ifadenin içinin $x^2 - 4x + 4 = (x - 2)^2$ olduğunu biliyoruz. Sonra

$$u^3 = (x-2), 3u^2 du = dx, (x^2 - 4x + 4)^{-\frac{5}{3}} = (x-2)^{-\frac{10}{3}}$$
 konumuyla,

$$\int (x^2 - 4x + 4)^{-\frac{5}{3}} dx = \int \frac{1}{(\sqrt[3]{x^2 - 4x + 4})^5} dx$$

$$= \int \frac{3u^2}{u^{10}} du$$

$$= 3 \int u^{-8} du$$

$$= -\frac{3}{7} u^{-7} + C$$

$$= -\frac{3}{7} \frac{1}{\sqrt[3]{(x - 2)^7}} + C$$

Örnek 23.44.

$$\int \frac{1}{\sqrt{x(1-x)}} dx \tag{23.58}$$

integralini hesaplayınız.

Çözüm:

 $u^2 = x$, 2udu = dx konumuyla,

$$\int \frac{1}{\sqrt{x(1-x)}} dx = \int \frac{2u}{u\sqrt{1-u^2}} du$$
$$= 2\int \frac{1}{\sqrt{1-u^2}} du$$
$$= \frac{2Arcsinu}{\sqrt{x} + C}$$

olur.

Örnek 23.45.

$$I = \int \frac{(x+1)}{\sqrt{2x^2 - 6x + 4}} \, dx$$

 $integral ini\ he saplayınız.$

Çözüm:

$$2x^{2} - 6x + 4 = 2(x^{2} - 3x) + 4 = 20x^{2} - 3x + \frac{9}{4} + 4 - \frac{9}{2}$$

$$= 2(u^{2} - a^{2})$$

$$u = x - \frac{3}{2}$$

$$a = \frac{1}{2}$$

$$du = dx$$

$$x + 1 = u + \frac{5}{2}$$

$$I = \frac{(u + \frac{5}{2})du}{\sqrt{2(u^2 - a^2)}}$$

$$= \frac{1}{\sqrt{2}} \int \frac{udu}{\sqrt{u^2 - a^2}} + \frac{5}{2\sqrt{2}} \int \frac{du}{\sqrt{u^2 - a^2}}$$

$$\begin{split} I_1 \frac{1}{2\sqrt{2}} \int \frac{dz}{\sqrt{z}} + \frac{1}{2\sqrt{2}} \int z^{-1/2} dz &= \frac{1}{2\sqrt{2}} \frac{1}{2} z^{1/2} + C_1 \\ &= \sqrt{\frac{u^2 - a^2}{2}} + C_1 \end{split}$$

$$I_2 = \frac{5}{2\sqrt{2}} \ln \left| u + \sqrt{u^2 - a^2} \right| + C_2$$

$$I = I_1 + I_2$$

$$= \sqrt{\frac{x^2 - 3x + 2}{2}} + \frac{5}{2\sqrt{2}} \ln \left| x - \frac{3}{2} + \sqrt{x^2 - 3x + 2} \right| + C$$

Örnek 23.46.

$$I = \int \frac{1}{\sqrt{(x-a)(b-x)}} \, dx$$

integralini hesaplayınız.

Çözüm:

$$x = a \cos^{u} + b \sin^{2} u$$

$$dx = (-2a \cos u \cdot \sin u + 2b \sin u \cos u) du$$

$$= (b - a) \sin 2u du, \quad (x - a) = a(\cos^{2} u - 1) + b \sin^{2} u = (b - a) \sin^{2} u$$

$$(b - x) = b \left(1 - \sin^{2} u\right) - a \cos^{2} u = (b - a) \cos^{2} u$$

$$\sqrt{(x - a)(b - x)} = (b - a) \sin u \cos u$$

konumuyla,

$$I = \int \frac{1}{\sqrt{(x-a)(b-x)}} dx$$

$$= \int \frac{(b-a)\sin 2u}{(b-a)\sin u\cos u} du$$

$$= 2\int du$$

$$= 2u + C$$

olur. Öte yandan

$$\frac{x-a}{b-x} = \frac{b-a}{b-a} \tan^2 u \Rightarrow u = \arctan \sqrt{\frac{x-a}{b-x}}$$

değeri kullanılarak

$$I = 2\arctan\sqrt{\frac{x-a}{b-x}} + C$$

bulunur.

Örnek 23.47.

$$I = \int_{0}^{2} \frac{1}{\sqrt{x^2 + 4}} \, dx$$

integralini hesaplayınız.

Çözüm:

$$x = 2 \tan t$$
, $dx = 2(\sec^2 t) dt$

konumuyla,

$$I = \int_{0}^{(\pi/2)} \frac{1}{\sqrt{4(1 + \tan^{2} t)}} (1 + \tan^{2} t) 2 dt$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{1}{2\sqrt{\frac{1}{\cos^{2} t}}} \frac{2}{\cos^{2} t} dt$$

$$= \int_{0}^{\frac{\pi}{2}} \sec t \frac{1}{\sec t + \tan t} dt$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{\sec t \sec t + \tan t}{(\sec t + \tan t)} dt$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{\sec t \tan t + \sec^{2} t}{\sec t + \tan t} dt$$

$$= \ln \frac{\sec t + \tan t}{2} + C$$

$$= \ln(\sqrt{2} + 1)$$

Örnek 23.48.

$$I = \int \frac{1}{x^2 \sqrt{x^2 + 3}} dx$$

integralini hesaplayınız.

Çözüm:

$$x = \sqrt{3} \tan t$$
, $dx = \sqrt{3} \sec^2 t dt$

konumuyla,

$$I = \int \frac{1}{x^2 \sqrt{x^2 + 3}} dx$$

$$= \int \frac{\sqrt{3} \sec^2 t}{3 \tan^2 t \sqrt{3} \sec t} dt$$

$$= \frac{1}{3} \int \frac{\cos t}{\sin^2 t} dt$$

$$= \frac{1}{3} \int (\sin^2 t) \frac{d(\sin t)}{\sin^2 t}$$

$$= -\frac{1}{3} \frac{1}{\sin t} + C$$

$$= -\frac{\sqrt{x^2 + 3}}{3x} + C$$

Örnek 23.49.

$$I = \int \frac{1}{r\sqrt{r^2 - 4}} dx$$

integralini hesaplayınız.

Çözüm:

$$x = \frac{2}{\cos t}$$

konumuyla,

$$I = \int \frac{1}{x\sqrt{x^2 - 4}} dx$$

$$= \int \frac{\frac{2\sin t}{\cos^2 t}}{\frac{2\cos t}{\cos t}} dt$$

$$= \frac{1}{2} \int dt$$

$$= \frac{1}{3} t + C$$

$$= \frac{1}{3} \arccos(\frac{2}{x}) + C$$

$$I = \int \frac{1}{\sqrt{\pi + 2x}} dx$$

$$= \int \frac{u du}{\sqrt{u^2}}$$

$$= \int \frac{u du}{u} \qquad (u^2 = \pi + 2x, 2u du = 2dx, dx = u du)$$

$$= u + C$$

$$= \sqrt{\pi + 2x} + C$$

$$\int (1-2x)^9 dx = -\frac{1}{2} \int (1-2x)^9 (-2dx) = -\frac{1}{20} (1-2x)^{10} + C$$

$$I = \int \frac{x}{\sqrt{3x - 1}} dx$$

$$= \frac{2}{9} \int \frac{(u^2 + 1)}{u^2} du \qquad (u^2 = 3x - 1)$$

$$= \frac{2}{3} \int u du + \frac{2}{9} \int \frac{du}{u}$$

$$= \frac{1}{3} (3x - 1) + \ln \sqrt{3x - 1} + C$$

Örnek 23.50.

$$I = \int (x^2 - 4x + 4)^{-\frac{5}{3}} dx$$

integralini hesaplayınız.

Çözüm:

$$(x^2 - 4x + 4) = (x - 2)^2$$
, $u^3 = x - 2$, $3u^2 du = dx$, $(x^2 - 4x + 4)^{-\frac{5}{3}} = (x - 2)^{\frac{-10}{3}}$

konumuyla,

$$I = \int (x^2 - 4x + 4)^{-\frac{5}{3}} dx$$
$$= \int \frac{3u^2}{u^{10}} du$$
$$= -\frac{3}{7}u^{-7}$$
$$= -\frac{3}{7}\frac{1}{\sqrt[3]{(x-2)^7}} + C$$

Örnek 23.51.

$$I = \int \frac{1}{\sqrt{x}\sqrt{1-x}} \, dx$$

integralini hesaplayınız.

Çözüm: $u^2 = x$ konumuyla,

$$I = \int \frac{1}{\sqrt{x}\sqrt{1-x}} dx$$
$$= \int \frac{du}{\sqrt{1-u^2}}$$
$$= \int \arcsin u + C$$
$$= 2\arcsin \sqrt{x} + C$$

23.13 Alıştırmalar

Aşağıdaki integral eşitliklerini sağlayınız.

1.
$$\int \frac{dx}{x(\ln x)^2} = -\frac{1}{\ln x} + C$$
2.
$$\int \frac{\sqrt{1 + \ln x}}{x} dx = u^{\frac{3}{2}} = \frac{2}{3} (1 + \ln x)^{\frac{3}{2}} + C$$
3.
$$\int \frac{e^{3x}}{e^{-3x} - 1} dx = \frac{1}{3} \ln|e^{3x} - 1| + C$$
4.
$$\int \frac{e^{3x}}{\sqrt{x}(1 + e^{-\sqrt{x}})} dx = 2 \int \frac{du}{1 + e^{-u}} = 2 \int \frac{e\hat{u}du}{1 + e^{u}} = \ln(e\hat{u} + 1) + C$$
5.
$$\int \frac{2^{x}}{4^{x} + 1} dx = \int \frac{1}{\ln 2} \int \frac{u}{\sqrt{u^{2} + 1}} du = \frac{\sinh^{-1}(2^{x})}{\ln 2} = \frac{\ln(2^{x} + \sqrt{4^{x} + 1})}{\ln 2} + C$$
6.
$$\int \frac{\sinh \sqrt{x} \cdot \cosh \sqrt{x}}{\sqrt{x}} dx = \sinh^{2} \sqrt{x} + C$$

23.14 İndirgenme Yöntemleri

Intgral eylemindeki Indigeme formülleri yinelge (recurrence) formüllerinin özel halidir. Yinelge, bir eylemin art arda tekrarlanarak en yalın (çözülebilir) biçimine dönüştürülmesidir. Bunu integral için bir örnekle açıklayabiliriz. Örneğin,

Örnek 23.52.

$$\int \cos^n x \, dx \tag{23.59}$$

integralini düşünelim. Bu integrali doğrudan hesaplayamıyoruz. O durumda kuvveti düşürmek için art arda kısmi integrasyonu uyguluyoruz.

$$I_n = \int (\cos x)^n dx$$
$$= \int (\cos x)^{n-1} \cdot \cos x dx$$
$$= \int (\cos x)^{n-1} \cdot d(\sin x)$$

Kısmi integrasyon işlemleriyle,

$$\int \cos^{n} x \, dx = (\cos x)^{n-1} \cdot \sin x - \int \sin x \cdot d \left((\cos x)^{n-1} \right)$$

$$= (\cos x)^{n-1} \cdot \sin x - (n-1) \int \sin x \cdot (\cos x)^{n-2} \cdot \sin x \, dx$$

$$= (\cos x)^{n-1} \cdot \sin x - (n-1) \int (\cos x)^{n-2} \cdot (\sin x)^{2} \, dx$$

$$= (\cos x)^{n-1} \cdot \sin x - (n-1) \int (\cos x)^{n-2} \cdot (1 - (\cos x)^{2} \, dx$$

$$= (\cos x)^{n-1} \cdot \sin x - (n-1) \int (\cos x)^{n-2} \cdot dx - (n-1) \int (\cos x)^{n} \, dx$$

$$= (\cos x)^{n-1} \cdot \sin x - (n-1) I_{n-2} - (n-1) I_{n}$$

çıkar. Buradan I_n çözülürse

$$I_n + (n-1)I_n = (\cos x)^{n-1} \cdot \sin x + (n-1)I_{(n-2)}$$

$$nI_n = (\cos x)^{n-1} \cdot \sin x + (n-1)I_{(n-2)}$$

$$I_n = \frac{1}{n}(\cos x)^{n-1} \cdot \sin x + \frac{n-1}{n}I_{(n-2)}$$

bulunur. Buradan

$$\int (\cos x)^n dx = \frac{1}{n} (\cos x)^{n-1} \cdot \sin x + \frac{n-1}{n} \int (\cos x)^{n-2} dx$$
 (23.60)

indirgeme fomülü bulunur. Benzer şekilde,

$$\int (\sin x)^n dx = -\frac{1}{n} (\sin x)^{n-1} \cdot \cos x + \frac{n-1}{n} \int (\sin x)^{n-2} dx$$

Örnek 23.53.

$$\int \cos^5 x \, dx$$

integralini bulmak isteyelim. n = 5 olduğundan

$$n = 5 \Longrightarrow I_5 = \int (\cos x)^5 dx = \frac{1}{5} \cos^4 x \sin x + \frac{4}{5} I_3$$

$$n = 3 \Longrightarrow I_3 = \frac{1}{3} (\cos x)^2 \cdot \sin x + \frac{2}{3} I_1$$

$$n = 1 \Longrightarrow I_1 = \int \cos x dx = \sin x + C_1$$

Şimdi yürünülen yola geri dönülürse,

$$I_{1} = \int \cos x \, dx = \sin x + C_{1}$$

$$I_{3} = \frac{1}{3} (\cos x)^{2} \cdot \sin x + \frac{2}{3} \sin x + C_{2} \qquad (C_{2} = \frac{2}{3} C_{1})$$

$$I_{5} = \frac{1}{5} (\cos x)^{4} \cdot \sin x + \frac{4}{5} \left(\frac{1}{3} (\cos x)^{2} \cdot \sin x + \frac{2}{3} \sin x \right) + C$$

Örnek 23.54.

$$I_n = \int x^n e^{\alpha x} dx \tag{23.62}$$

integralini düşünelim. Bu integrali doğrudan hesaplayamıyoruz. x^n çarpanının kuvvetini düşürmek için art arda kısmi integrasyonu uyguluyoruz.

$$I_n = \int x^n e^{\alpha x} dx$$

$$= \frac{1}{n+1} \int e^{\alpha x} d(x^{n+1}), \qquad \left(x^n dx = \frac{d(x^{n+1})}{n+1} \right)$$

$$\int e^{\alpha x} d(x^{n+1}) = x^{n+1} e^{\alpha x} - \int x^{n+1} d(e^{\alpha x})$$
$$= x^{n+1} e^{\alpha x} - \alpha \int x^{n+1} e^{\alpha x} dx$$

$$(n+1)I_n = x^{n+1}e^{\alpha x} - \alpha I_{n-1}$$
$$I_n = \frac{1}{\alpha} \left(x^n e^{\alpha x} - n I_{n-1} \right)$$

çıkar. Buradan

$$\int x^n e^{\alpha x} dx = \frac{1}{\alpha} \left(x^n e^{\alpha x} - n \int x^{n-1} e^{\alpha x} \right)$$
 (23.63)

indirgeme formülü bulunur.

23.15 Bazı İndirgeme Formülleri

$$I_{n} = \int \frac{x^{n}}{\sqrt{ax+b}} dx$$

$$\Rightarrow I_{n} = \frac{2x^{n}\sqrt{ax+b}}{a(2n+1)} - \frac{2nb}{a(2n+1)} I_{n-1}$$

$$I_{n} = \int \frac{1}{x^{n}\sqrt{(ax+b)}} dx$$

$$\Rightarrow I_{n} = -\frac{\sqrt{(n-1)bx^{n-1}}}{(n-1)bx^{n-1}} - \frac{a(2n-3)}{2b(n-1)} I_{n-1}$$

$$I_{n}, m = \int \frac{dx}{x^{m}(a^{2}-x^{2})^{n}}$$

$$\Rightarrow a^{2}I_{n}, m = a^{2}I_{m}, n+I_{m-2}, n$$

$$I_{n} = \int x^{n}\sin(ax) dx$$

$$\Rightarrow a^{2}I_{n} = -ax^{n}\cos(ax) + nx^{n-1}\sin(ax) - n(n-1)I_{n-2}$$

$$J_{n} = \int x^{n}\cos(ax) dx$$

$$\Rightarrow a^{2}J_{n} = ax^{n}\sin(ax) + nx^{n-1}\cos(ax) - n(n-1)J_{n-2}$$

$$I_{n} = \int \frac{dx}{(x^{2}+a^{2})^{n+1}}$$

$$\Rightarrow I_{n} = \frac{1}{2na^{2}} \frac{x}{(x^{2}+a^{2})^{n}} + \frac{2n-1}{2na^{2}} \int \frac{dx}{(x^{2}+a^{2})^{n}}$$

Örnek 23.55. $a \neq -1$ ve n > 0 olduğunda

$$I_n = \int x^a (\ln x)^n \, dx = \frac{1}{a+1} x^{a+1} (\ln x)^n - \frac{n}{a+1} \int x^a (\ln x)^{n-1} \, dx \quad (23.64)$$

indirgemr formülünü ispatlayınız.

$$u = (\ln x)^n$$
, $du = n(\ln x)^{n-1} \frac{1}{x} dx$, $dv = x^a dx$, $v = \frac{1}{a+1} x^{a+1}$

konumuyla,

$$I_n = \frac{1}{a+1} x^{a+1} - \frac{n}{a+1} \int x^{a+1} (\ln x)^{n-1} dx$$

Örnek 23.56. $a \neq -1$ ve n > 0 olduğunda

$$I_n = \int x^{-1} (\ln x)^n dx = \int (\ln x)^n d(\ln x) = \frac{1}{n+1} (\ln x)^{n+1} + C$$
 (23.65)

dir.

$$I_n = \int \sin^n(ax)\cos(ax) \, dx = \frac{\sin^{n+1}(ax)}{(n+1)a} + C \tag{23.66}$$

dir.

$$I_n = \int \cot(ax) \, dx = \ln|\sin(ax)| + C$$
 (23.67)

dir.

$$I = \int \tan^n x dx = \int \tan^{n-2} x (\sec^2 x - 1) dx$$
$$= \int \tan^2 x \cdot \sec^2 x d - \int \tan^{n-2} x dx$$
$$= \frac{1}{n-1} \tan^{n-1} x - \int \tan^{n-2} x dx$$

dir.

$$I = \int \tan(x) \, dx = \int \frac{\sin(x)}{\cos x} \, dx$$
$$= -\int \frac{d(\cos x)}{\cos x}$$
$$= -\ln|\cos x| + C$$

dir.

$$I = \int \sec(x) \, dx = \ln|\sec(x) + \tan x| + C$$

dir.

$$I = \int \cos(ax) \, dx = \frac{1}{a} \int \cos(ax) \, d(ax) = \frac{1}{a} \sin(ax) + C$$

dir.

Bağlantılı Oranlar

- 1. Bir parçacık 2 = x + 2y doğrusu boyunca pozitif yönde gidiyor.
 - (a) *x* koordinatının değişimi saniyede 4 birim ise *y* koordinatını değişimi nedir?
 - (b) *y* koordinatının değişimi saniyede -2 birim ise *x* koordinatını değişimi nedir?

Çözüm:

(a):

$$x + 2y = 2 \Rightarrow x' + 2y' = 0 \Rightarrow 4 + 2y' = 0 \Rightarrow y' = -2 \text{ br/sn}$$

olur. (b):

$$x + 2y = 2 \Rightarrow x' + 2(-2) = 0 \Rightarrow x' - 4 = 0 \Rightarrow x' = 4 \text{ br/sn}$$

2. Bir parçacık $x^2 + y^2 = 25$ eğrisi boyunca hareket ediyor. (3,4) noktasından geçerken y koordinatı saniyede 2 birim azalıyor. x koordinatının değişimi nedir?

Çözüm: x = 3 iken y = 4 dür.

$$2xx' + 2yy' = 0 \Rightarrow 3x' + 4(-2) = 0 \Rightarrow x' = \frac{8}{3}$$

olur. Demek ki x koordinatının değişimi $\frac{8}{3}$ br/sn dir.

3. Bir kamera bir eşkener üçgenin oranlarını koruyarak küçültüyor. Belirli bir anda bir kenarın küçülmesi k cm/sn dir. Üçgenin alanının değişim oranı nedir?

Çözüm:

Alan formülünü yazalım. Eşkenar üçgenin bir kenarının uzunluğu x ise yüksekliği $h=\sqrt{x^2-\frac{x^2}{4}}=\frac{\sqrt{3}4}{x}$ olacaktır. Öyleyse alan

$$A = \frac{1}{2}hx = \frac{\sqrt{3}}{4}x^{2}$$

$$A' = \frac{\sqrt{3}}{4}2xx' = \frac{\sqrt{3}}{2}xk \ cm^{2}/dk$$

olur.

4. Özel Görelilik kuramına dingin haldeyken kütlesi m olan bir cismin hızı v ise, ışık hızı c olmak ğüzere, cismin uzaydaki hızı

$$m\left(1-\frac{v^2}{c^2}\right)$$

dir. Cismin hızı ışık hızının yarısına eşit olduğunda, hızının değişimi saniyede 0.01c ise kütlesinin değişimi nedir? [Görelilik kuramına göre cismin kütlesi hızına bağlı olarak değişir.]

Çözüm: Cismin hareket halindeki kütlesine M diyelim.

$$M = m\left(1 - \frac{v^2}{c^2}\right)$$
$$M' = m\frac{vv'}{c^2}\left(1 - \frac{v^2}{c^2}\right)^{-\frac{3}{2}}$$

olur.

5. Kenar uzunlukları x ve y olan dikdörtgenin kenarları, sırasıyla, u ve v oranında değişiyor. Dikdörtgenin alanının değişim oranını bulunuz.

Çözüm:

Dikdörtgenin alanı A = xy dir. t anındaki değişim

$$\frac{dA}{dt} = x'y + xy' = uy + vx$$

olur.

6. İki bisiklet yarışçısından birisi (G) güneyden kuzeye doğru bitim noktasına (finish F), ötekisi (D) doğudan batıya doğru aynı bitim noktasına (F) doğru yol alıyorlar. G yarışçısının hızı 13 km/saat'dir. İki yarışçının bitim noktasına uzaklıkları eşit olduğu anda, aralarındaki uzaklık 16 km.dir. Aralarındaki uzaklık 17km/saat hızla azalıyor. Yarışı hangisi kazanacaktır?

Çözüm: G yarışçısının bitim noktasına uzaklığı x, D yarışçısının y olsun. Aralarındaki uzaklık bir dik üçgenin hipotenüsüdür ve $d^2 = x^2 + y^2$ dir. Uzaklığın türevini alırsak, dd' = xx' + yy' dür. x = y olduğunda d = 16 veriliyor. O anda uzaklık formülünden $x = y = \frac{16}{\sqrt{2}}$ ve türev formülünden $y' = 13 - 17\sqrt{2} \approx -11km/saat$ bulunur. y' < x' olur. O halde G yarışçısı daha hızlıdır ve yarışı kazanacaktır.

Index

 e^{x} , 479

üstel fonksiyon, 479

a tabanlı logaritma, 481