

Homework #2

David McNeary COMP 310 Section 16578-FA2022 12/12/2022

CFGs

1.
$$\{a^ib^jc^k:i+j=2k\}$$

$$S o aScc \mid A \mid \lambda$$

$$A o bAcc \mid \lambda$$

2.
$$\{w \in \{a,b\}^*: w \text{ contains } abaab\}$$

$$S \to AabaabA$$

$$A \to aA \mid bA \mid \lambda$$

3.
$$\{a^ib^j: 2i < j+2 < 3i\}$$
 $S o aaAbbb$ $A o aAbb \mid aAbbb \mid \lambda$

NPDAs

4.
$$\{a^ib^jc^kd^l: 3i+2k>j-l-3\}$$

5.
$$\{w \in \{a,b,c\}^* : 2n_a + 3n_b = n_c + 2\}$$

Reductions

6. Useless (unreachable or non-terminating) productions are crossed out:

$$S
ightarrow CaBF \mid AA \mid EAB$$
 $A
ightarrow CaE \mid CabE \mid aB$
 $B
ightarrow DbDb \mid aA \mid aS \mid a$
 $C
ightarrow \overline{AaA} \mid BbB \mid a \mid b$
 $D
ightarrow AA \mid SS \mid a$
 $E
ightarrow \overline{EE} \mid Fa \mid AaBF$
 $F
ightarrow \overline{Ea} \mid Fa \mid EF$

Because productions E and F do not include any terminating variables and mostly recurse either between or upon themselves, any production which uses E and F variables is non-terminating and can be eliminated.

7.

$$egin{aligned} S &
ightarrow Aa \mid aA \mid Bb \mid bB \mid a \mid b \ A &
ightarrow Sa \mid B \mid aS \ B &
ightarrow B \mid Ba \mid aB \mid Ca \mid a \ C &
ightarrow A \mid AA \mid B \mid AB \mid BA \mid a \end{aligned}$$

8.

$$S
ightarrow SS \mid Aa \mid aAA \mid Sa \mid AaS \mid ab \ A
ightarrow AA \mid bA \mid b$$

Chomsky Normal Form

9.

$$C
ightarrow BB|AF|NE$$
 $S
ightarrow BB|AF|NE$
 $A
ightarrow BI|AJ|OG$
 $B
ightarrow OO|O|OM$
 $D
ightarrow NO$
 $E
ightarrow SD$
 $F
ightarrow OO$
 $G
ightarrow ND$
 $H
ightarrow BB$
 $I
ightarrow AH$
 $J
ightarrow NA$
 $K
ightarrow BN$
 $L
ightarrow NK$
 $M
ightarrow AL$
 $N
ightarrow a$

O o b

CYK Algorithm

abaaba:

а	b	а	а	b	а
S, A	B, C	S, A	S, A	B, C	S, A
null	B, E	S, A, D, E	null	B, E	
D	S, B, E	null	D		
S, A, C, D	A, C	C, D			
S, B, D, E	S, A, B, C, E				
S, A, B, C, D, E, C					

aaba:

а	а	b	а
S, A	S, A	B, C	S, A
S, A, D, E	null	B, E	
null	D		
C, D			

baab:

b	а	а	b
B, C	S, A	S, A	B, C
B, E	S, A, D, E	null	
S, B, E	null		
A, C			

Proofs of non-CF

11.
$$\{w \in \{a^i, b^j, c^k\}^* : i = 2j = 3k\}$$

Let $w=a^pb^{p/2}c^{p/3}$ be a string in the language of length at least p. We can write w=xyz where $x=a^p$, $y=b^{p/2}$, and $z=c^{p/3}$.

Now let's consider the string $xy^2z=a^p(b^{p/2})^2c^{p/3}$. This string is not in the language because it violates the condition i=2j=3k. Therefore, the language is not context-free by the pumping lemma.

12.
$$\{a^{n!}\}$$

Let $w=a^{p!}$ be a string in the language of length at least p. We can write w=xyz where $x=a^k$, $y=a^l$, and $z=a^{p!-k-l}$ for some k,l such that $0\leq k,l\leq p$ and $k+l\leq p$.

Now let's consider the string $xy^2z=a^k(a^l)^2a^{p!-k-l}$. This string is not in the language because it has fewer than p! a's. Therefore, the language is not context-free by the pumping lemma.