In Class Example: Quick and Dirty Gradient Descent and Newton rhapson tutorial

April 16, 2019

Sinusoid Composite Hypothesis Examples

- Section 7.6 in Kay's detection theory
- $\bullet \ H_0: \boldsymbol{x}[n] = \boldsymbol{w}[n]$
- $H_1: \mathbf{x}[n] = A\cos(2\pi f_0(n n_0) + \phi) + \mathbf{w}[n]$
- We want to form the hypothesis test when:
 - A is unknown
 - ightharpoonup A and ϕ are unknown
 - A, ϕ , and f_0 are unknown
 - ► All parameters unknown

Unknown Amplitude

The generalized likelihood ratio test for the unknown amplitude is:

$$\frac{\exp(\frac{-1}{2\sigma^2}\sum_{n=0}^{N-1}(x[n]^2 - 2x[n]\hat{A}\cos(2\pi f_0(n-n_0) + \phi) + \hat{A}^2\cos(2\pi f_0(n-n_0) + \phi)^2)}{\exp(\frac{-1}{2\sigma^2}\sum_{n=0}^{N-1}x[n]^2)}$$

• \hat{A} is the maximum likelihood estimate of A based on x:

$$\hat{A} = \underset{A}{\arg\max} \sum_{n=0}^{N-1} (x[n]^2 - x[n]A\cos(2\pi f_0(n - n_0) + \phi) + A^2\cos(2\pi f_0(n - n_0) + \phi)^2))$$

Take the derivative with respect to A:

$$\sum_{n=0}^{N-1} -2x[n]\cos(2\pi f_0(n-n_0)+\phi) + 2A\cos(2\pi f_0(n-n_0)+\phi) = 0$$

 $\text{ This means that } \hat{A} = \frac{\Sigma_{n=0}^{N-1} x[n] \cos(2\pi f_0(n-n_0) + \phi)}{\Sigma_{n=0}^{N-1} \cos(2\pi f_0(n-n_0) + \phi)^2}$

Unknown Amlitude Cont.

• Using the fact that $\Sigma_{n=0}^{N-1}x[n]\cos(2\pi f_0(n-n_0)+\phi)=\hat{A}\Sigma_{n=0}^{N-1}\cos(2\pi f_0(n-n_0)+\phi)^2 \text{ we can rewrite the likelihood ratio:}$

$$-\sum_{n=0}^{N-1} -2\hat{A}^2 \cos(2\pi f_0(n-n_0) + \phi)^2 + \hat{A}^2 \cos(2\pi f_0(n-n_0) + \phi)^2 \underset{H_0}{\gtrless} \log \lambda'$$

$$\hat{A}^2 \underset{H_0}{\overset{H_1}{\gtrless}} \frac{\lambda'}{\sum_{n=0}^{N-1} \cos(2\pi f_0(n-n_0) + \phi)^2}$$

This means that our final test statistic is:

$$(\sum_{n=0}^{N-1} x[n] \cos(2\pi f_0(n-n_0) + \phi))^2 \gtrsim \lambda'$$

Performance of Only Amplitude Detector

Figure 1: Block Diagram of Detector when Only amplitude is unknown

Figure 2: Performance of Detector when Only amplitude is unknown

Amplitude and Phase Unknown

- When Amplitude and Phase are unknown, we have to reduce to the case where either A>0 or A<0, otherwise shifting the phase by π means we have two functions that can produce the same signal.
- Assume A>0, then find \hat{A} and $\hat{\phi}$ from:

$$\underset{A,\phi}{\arg\max} \sum_{n=0}^{N-1} (x[n]^2 - x[n]A\cos(2\pi f_0(n-n_0) + \phi) + A^2\cos(2\pi f_0(n-n_0) + \phi)^2))$$

• Now we have to set the gradient equal to $(0,0)^T$:

$$\nabla \log(p(x; A, \phi)) =$$

$$\begin{bmatrix} \sum_{n=0}^{N-1} -2x[n]\cos(2\pi f_0(n-n_0)+\phi) + 2A\cos(2\pi f_0(n-n_0)+\phi) \\ \sum_{n=0}^{N-1} 2x[n]A\sin(2\pi f_0(n-n_0)+\phi) - A^2\sin(2\pi f_0(n-n_0)+\phi) \end{bmatrix}$$

Using some trig identities we can approximate the solutions with :

$$\hat{A} = \sqrt{\left(\frac{2}{N}\sum_{n=0}^{N-1} x[n]\cos(2\pi f_0 n)\right)^2 + \left(\frac{2}{N}\sum_{n=0}^{N-1} x[n]\sin(2\pi f_0 n)\right)^2}$$

$$\hat{\phi} = \arctan\left(\frac{\frac{2}{N}\sum_{n=0}^{N-1} x[n]\cos(2\pi f_0 n)}{\frac{2}{N}\sum_{n=0}^{N-1} x[n]\sin(2\pi f_0 n)}\right)$$

Amlitude and Phase Unknown

Now the Likelihood ratio is:

$$-1/2\sigma^2 \sum_{n=0}^{N-1} -2\hat{A}^2 \cos(2\pi f_0(n-n_0) + \hat{\phi})^2 + \hat{A}^2 \cos(2\pi f_0(n-n_0) + \hat{\phi})^2 \underset{H_0}{\gtrless} \log \lambda$$

• Using the substitution $\hat{\alpha_1} = \hat{A}\cos(\hat{\phi})$ and $\hat{\alpha_2} = -\hat{A}sin(\hat{\phi})$ and some more trigonometry we can simplify this expression into:

$$\frac{N}{4\sigma^2}(\hat{\alpha}_1^2 + \hat{\alpha}_2^2) \underset{H_0}{\gtrless} \log \lambda$$

• But it turns out that $\hat{\alpha}_1^2 + \hat{\alpha}_2^2 = \frac{2^2}{N^2\sigma^2}((\Sigma_{n=0}^{N-1}x[n]\cos(2\pi f_0n)^2 + (\Sigma_{n=0}^{N-1}x[n]\sin(2\pi f_0n)^2)$, so the test becomes:

$$\frac{1}{N\sigma^2}((\Sigma_{n=0}^{N-1}x[n]\cos(2\pi f_0n)^2 + (\Sigma_{n=0}^{N-1}x[n]\sin(2\pi f_0n)^2) = \frac{I(f_0)}{\sigma^2} \underset{H_0}{\gtrless} \log \lambda$$

• This is either the sum of two correlators similar to the unknown amplitude case, or something called the periodogram, which estimates $|X(f)|^2$, where X(f) is the fourier transform of x[n].

Amplitude and Phase Unknown

Figure 3: Block Diagram of Detector when Amplitude and Phase are unknown, this is sometimes called an incoherent detector or quadrature matched filter.

Figure 4: Performance of Detector when Amplitude and Phase are unknown

Performance Comparison

Figure 5: Performance of Detector when Only amplitude is unknown

Figure 6: Performance of Detector when Amplitude and Phase are unknown - note that the PD is generally worse than the corresponding points in the first graph.

Amplitude, Phase, and Frequency Unknown

 When the Amplitude, Phase, and Frequency are unknown we need to find the maximum of:

$$\underset{A,\phi}{\arg\max} \sum_{n=0}^{N-1} (x[n]^2 - x[n]A\cos(2\pi f_0(n - n_0) + \phi) + A^2\cos(2\pi f_0(n - n_0) + \phi)^2))$$

across three variables.

- To do this, define $I(f_0)=\frac{2}{N}((\Sigma_{n=0}^{N-1}x[n]\cos(2\pi f_0n)^2+(\Sigma_{n=0}^{N-1}x[n]\sin(2\pi f_0n)^2)$ as the periodogram of x[n] as a function of f_0 .
- To perform the maximization, note that if we know the best \hat{f}_0 we can compute \hat{A} and $\hat{\phi}$ the same way as the previous case this is an example of concentrated likelihood.
- Also, The likelihood under H_0 is not a function of any of the variables so:

$$\begin{split} \max_{A,f_0,\phi} p(x;A,f_0,\phi) &= \frac{\max_{A,f_0,\phi} p(x;A,f_0,\phi)}{p(x;H_0)} = \max_{f_0} \frac{p(x;\hat{A},\hat{\phi},f_0)}{p(x;H_0)} = \\ \max_{f_0} \log \frac{p(x;\hat{A},\hat{\phi},f_0)}{p(x;H_0)} &= \max_{f_0} \frac{I(f_0)}{\sigma_2} \end{split}$$

Amplitude, Phase, and Frequency Unknown cont.

So the likelihood ratio test becomes:

$$\max_{f_0} \frac{I(f_0)}{\sigma_2} \underset{H_0}{\gtrless} \log \lambda$$

- This is the same as finding the maximum of the FFT output in matlab and comparing it to your threshold
- In general the performance gets worse as the frequency inreases.

Figure 7: Block Diagram of Detector when Amplitude, Phase, and Frequency are unknown

Figure 8: Performance of Detector when Amplitude, Phase, and Frequency are unknown

Unknown Amplitude, Phase, Frequency, and Arrival Time

- The parameter n_0 is the delay of the signal, also called the "Arrival Time". Assume we have a "long" set of data.
- Estimating the arrival time is finding the exact time window $[n_0, n_0 + N 1]$ steps that the signal is active.
- First, we have to modify our \hat{A} and $\hat{\phi}$ expressions from the previous cases
- Let $\hat{\alpha}_1 = \frac{2}{N} \sum_{n=n_0}^{n_0+N-1} x[n] \cos(2\pi \hat{f}_0(n-n_0))$ and $\hat{\alpha}_2 = \frac{2}{N} \sum_{n=n_0}^{n_0+N-1} x[n] \sin(2\pi \hat{f}_0(n-n_0))$
- Then, given a frequency and arrival time:

$$\hat{A} = \sqrt{\hat{\alpha}_1^2 + \hat{\alpha}_2^2}$$

$$\hat{\phi} = \arctan(\frac{-\hat{\alpha_1}}{\hat{\alpha_2}})$$

• Our likelihood ratio is still the periodogram, but for a window $[n_0, n_0 + N - 1]$

Unkown Amplitude, Phase, Frequency, and Arrival Time

- If we know the arrival time, we can use the same maximum as in the three paramter case.
- So, starting at $n_0=0$ we have to perform a frequency analysis and find the maximum frequency. Then set $n_0=1$ and find the same thing. Plot this for every n_0 and find the maximum frequency. This is called the short time periodogram (or short time FFT).
- This can be computed with the spectogram command in matlab, and is widely used.

Figure 9: Example of signal and its short term FFT

Comments

- The generalized likelihood ratio test is a combination of MLE and the NP test for simple hypotheses.
- As more parameters are unknown, our detection performance generally goes down - same thing happened in estimation.
- As more parameters are unknown our MLE is more complicated.
- This example featured concentrated likelihood i.e. we could express \hat{A} and $\hat{\phi}$ in terms of \hat{f}_0 and \hat{n}_0 .
- The Short Time Fourier Transform is commonly used in signal processing, and particularly in audio engineering.