

Tipos de Memórias

- Memórias do tipo RAM Random-access memory
 - Voláteis a informação perde-se quando se deixa de fornecer energia eléctrica
 - Utilizadas para leitura e escrita da informação
- Memórias do tipo ROM Read-only memory
 - Não-voláteis a informação continua armazenada quando se deixa de fornecer energia eléctrica
 - Inicialmente utilizadas apenas para leitura da informação quardada
 - Atualmente existem memórias derivadas da ROM que são programáveis, algumas delas utilizadas tanto para leitura como para escrita

3

Tipos de RAM

- DRAM (Dynamic RAM)
 - Construída com capacitores
 - Carga dos capacitores deve ser renovada periodicamente (refresh)
 - Lenta
- SRAM (Static RAM)
 - Construída com transistores
 - Rápida e Cara
 - Embora volátil, só perde o conteúdo quando desligada

Tipos de ROM

- ROM
 - Gravada durante a fabricação
 - Baixo custo para grandes volumes
- PROM (Programmable ROM)
 - Programável após a fabricação (uma vez)
 - EPROM (*Erasable* PROM)
 - Gravado e Apagado com ultravioleta
 - EEPROM (Electrically Erasable PROM)
 - Apagável Elétricamente
 - Custo alto

5

Memórias RAM

- Estáticas SRAM (Static RAM)
 - Células de memória:
 - Latches / flip-flops
 - Rápidas tempos de acesso baixos para leitura e para escrita
 - Utilizadas tipicamente como memórias cache (associadas ao processador)
 - Cache memória muito rápida, tipicamente incluída no processador.

Memórias RAM

- Dinâmicas DRAM (*Dynamic* RAM)
 - Células de memória:
 - Pares transistor-capacitor, que conseguem manter o nível lógico armazenado durante curtos espaços de tempo
 - Necessitam por isso de ciclos de refrescamento periódicos para reposição dos níveis lógicos nos capacitores
 - Mais lentas que as SRAMs
 - Maior capacidade de armazenamento a menor custo

Memórias RAM

- Alguns tipos de DRAM
 - SDRAM (Synchronous DRAM)
 - Síncronas com o relógio de sistema
 - DDR-SDRAM (Double Data Rate SDRAM)
 - Reagem a ambos os transição do sinal de relógio
 - Muito utilizadas em PCs
 - Evolução: DDR (2000) DDR-2 (2003) DDR-3 (2007)

Memórias RAM

- Organização da memória
 - É possível projetar memórias com maior capacidade associando vários blocos de memória.
 - Exemplo a partir de RAMs 64K x 8 projetar:
 - RAM 64K x 16
 - RAM 256K x 8

Memórias ROM

ROM

Read-only memory

- Construídas pelo fabricante, mediante especificação fornecida pelo cliente.
- Sem flexibilidade para alteração do conteúdo só permite leitura da informação armazenada.
- Utilização
 - Guardar informação necessária ao arranque de sistemas
 - Tabelas de conversão de códigos (e.g. binário natural -> BCD)
 - Tabelas de operações aritméticas (e.g. logaritmos, divisões)
 - Etc.

Memória MROM

- ROM programada por máscara.
 - Escritas pelo fabricante;
 - Uma máscara é usada para especificar as conexões elétricas do chip;
 - Podem ser programadas uma vez.

Exemplo

As MROMs podem ser usadas para armazenar tabelas de funções matemáticas. Mostre como a MROM na Fig. 11-9 pode ser usada para armazenar a função $y = x^2 + 3$, onde as entradas de endereço fornecem o valor para x e o dado de saída fornece o valor para y.

TABELA 11-1

<i>x</i>			$y = x^2 + 3$				
A_1	A_0	D_3	D_2	D_1	D_0		
0	0	0	0	1	1		
0	1	0	1	0	0		
1	0	0	1	1	1		
1	1	1	1	0	0		

Memórias ROM

PROM

Programmable read-only memory

- Permite uma única programação
 - Permite que o utilizador especifique o conteúdo da ROM
 - Pouca flexibilidade uma única programação
- A programação é geralmente feita através do rompimento de fusíveis nas ligações entre as linhas de endereços descodificados e as linhas de saída
 - Uma vez rebentados os fusíveis, as ligações são quebradas permanentemente

25

Aplicações das ROM's

- Firmware: armazenamento dos microprogramas de computador.
- Boot: programas que são executados após o computador ter sido ligado: inicialização do sistema, que transfere o sistema operacional armazenado em memória de massa para a memória principal.
- Conversores de dados: recebe um dado expresso em um tipo de código e produz uma saída em um outro tipo de código.
- Geradores de caracteres: armazena os códigos dos caracteres em um endereço que corresponde ao código ASCII do caractere.

Memórias ROM

EPROM

Erasable programmable read-only memory

- Permite múltiplas programações
- A reprogramação é feita através de impulsos elétricos
- Para apagar o conteúdo armazenado, a EPROM tem que ser submetida a radiação ultra-violeta.
- Custo mais elevado que uma ROM, mas maior flexibilidade
- Pouco usadas, uma vez que atualmente há alternativas melhores

27

Memórias ROM

EEPROM

Electrically erasable programmable read-only memory

- Utilização idêntica à EPROM, mas consegue-se apagar o conteúdo através de impulsos elétricos
- Maior flexibilidade por reunir as funcionalidade de uma RAM e uma ROM simultaneamente
- Comparando com uma RAM:
 - Operações de escrita muito mais lentas (devido às operações de apagar e reprogramar)
 - As operações de leitura podem ser da mesma ordem de grandeza

Memória EEPROM

- PROM apagável eletricamente:
 - Programada e apagada eletricamente;
 - É possível o apagamento e reprogramação de palavras individuais;
 - Não há a necessário removê-la do circuito;
 - Apagamento e a reprogramação são efetuadas por controle da UCP.
 - Apagamento e programação rápidos.

29

Memórias ROM

FLASH EEPROM

- Variantes de memórias EEPROM, habitualmente utilizadas em eletronica de consumo
 - Exemplos: cartões de memória e pen-drive
- Incluem toda a lógica necessária para reprogramação, e esta é muito mais rápida do que numa EEPROM convencional
 - No entanto, as operações de escrita continuam a ser muito mais lentas do que as de leitura
- O tempo de vida dos dados armazenados é superior a 10 anos, e pode ser reprogramada milhões de vezes
 - O que é suficiente para as aplicações a que se destinam

Representação de Dados na Memória

- Unidades de Armazenamento da Memória Principal e Auxiliar
 - BIT (Binary digiT)
 - BYTE -8 bits

- K, KB Quilobyte
 - Mil
 - 1024 (2¹⁰ bytes)
- M, MB Megabyte
 - Milhão
 - 1.048.576 (2²⁰ bytes)
- G, GB Gigabyte
 - Bilhão
 - 1.073.741.824 (2³⁰ bytes)
- T, TB Terabyte
 - Trilhão

Registradores

- Em seguida a este armazenamento da instrução, o processador deverá buscar dados da memória para serem manipulados pela ULA. Esses dados são armazenados em pequenas unidades de memória, denominadas registradores.
- O registrador é, portanto, o elemento superior da pirâmide de memória, por possuir a maior velocidade de transferência dentro do sistema (menor tempo de acesso), menor capacidade de armazenamento e maior custo.

33

Memória Auxiliar

Esta memória, denominada também de memória secundária ou memória de massa, tem por objetivo garantir um armazenamento mais permanente a toda a estrutura de dados e programas do usuário, razão por que deve naturalmente possuir maior capacidade que a memória principal.

Memória Auxiliar

- Em relação à memória principal
 - Mais lenta
 - Custo menor
 - Não volátil
 - Maior capacidade
- Acesso Seqüencial ou Aleatório
- Armazenamento de informações e programas

35

Memória Auxiliar

- Tipos de Memória Auxiliar
 - Cartão e fita de papel perfurado
 - Disco Flexível (Magnético)
 - 8" (430/1.2 KB); 5.25" (360/1.2 KB); 3.5" (720/1.44 KB) ZIP (100/250 MB); JAZZ (1/2)
 - Disco Rígido (HD)
 - Fitas
 - Carretel (±40 MB), cartucho, cassete
 - DAT Digital Audio Tape

Memória Auxiliar

- Tipos de Memória Auxiliar
 - Óticas
 - CD-ROM (até 800 MB), CD-R (Recordable)/WORM (Write-Once Read Many);
 DVD (Digital Video Disk)
 - Cartão de Memória
 - PCMCIA Personal Computer Memory Card International Association (±200MB)
 - Compact Flash

37

Comparativo

 Em função de características como tempo de acesso, capacidade de armazenamento, custo etc., podemos estabelecer uma hierarquia de dispositivos de armazenamento em computadores.

Tipo	Capacidade	Velocidade	Custo	Localização	Volatilidade
Registrador	Bytes	muito alta	muito alto	UCP	Volátil
Memória Cache	Kbytes	alta	alto	UCP/placa	Volátil
Memória Principal	Mbytes	média	médio	Placa	Volátil
Memória Auxiliar	Gbytes	baixa	baixo	Externa	Não Voláti

1

Unidade de Armazenamento

- Consiste no número de bits que é identificado e localizado por um endereço.
- A MP é organizada em unidade de armazenamento, denominadas células.
- Célula é a menor unidade da memória que pode ser endereçada (não é possível buscar uma "parte" da célula) e tem um tamanho fixo (para cada máquina).
- As memórias são compostas de um determinado número de células ou posições. Cada célula é composta de um determinado número de bits.

30

Unidade de Armazenamento

- Cada célula é identificada por um endereço único, pela qual é referenciada pelo sistema e pelos programas.
 As células são numeradas seqüencialmente, uma a uma, de 0 a (N-1), chamado o endereço da célula.
- Endereço é o localizador da célula, que permite identificar univocamente uma célula. Assim, cada célula pode ser identificada pelo seu endereço.

Unidade de Armazenamento

- Uma célula não significa o mesmo que uma palavra; uma célula não necessariamente contém uma palavra.
- Palavra é a unidade de processamento da UCP. Uma palavra deve representar um dado ou uma instrução, que poderia ser processada, armazenada ou transferida em uma única operação.
- No entanto, em geral não é assim que acontece e os computadores comerciais não seguem um padrão único para a organização da UCP e MP. Computadores comerciais (tais como os baseados nos processadores Intel 486) podem ter o tamanho da palavra definido como de 32 bits, porém sua estrutura de memória tem células de 8 bits.

Capacidade

- Capacidade de memória é a quantidade de informações que nela podem ser armazenadas em um instante de tempo.
- A unidade básica de representação de informação é o bit. Ex: 16384 bits.

43

Capacidade

- Para simplificar podemos escrever da seguinte forma:
 16 Kbits = 16 x 2¹⁰ bits.
- Essa, entretanto, não é a melhor maneira de quantificar a capacidade de memória. Para tal usamos a quantidade de células para representar essa capacidade. A maioria dos computadores possui uma célula de memória no tamanho de 8 bits = 1 byte.

Cálculos com a Capacidade de Memória

- Como 1 bit representa apenas um entre dois valores (base binária), então podemos concluir que:
 - Pode-se armazenar em cada célula um valor entre 0 e (2^M 1), porém um de cada vez. São 2^M combinações possíveis.
 - Por exemplo, se M = 8 bits, temos $2^8 = 256$.
 - Seriam armazenados valores entre:
 - 00000000 (0₁₀ ou 0₁₆) e 11111111 (255₁₀ ou FF₁₆).

45

Cálculos com a Capacidade de Memória

- A memória tem N endereços:
 - N = 2^E, sendo
 - E = quantidade de bits dos números que representam cada um dos N endereços.
 - Por exemplo,
 - se N=512 (512 células),
 - então, 512 = 2^E,
 - E=9, pois 2⁹=512.

Cálculos com a Capacidade de Memória

- O total de bits que podem ser armazenados na referida memória é T, sendo:
 - \blacksquare T = N x M ou T = 2^E x M
 - Do exemplo anterior temos:
 - N = 512 células,
 - M = 8 bits.
 - E = 9 bits,
 - T = 4096 bits
 - $N = 2^{E}$, $512 = 2^{9}$
 - $T = N \times M = 2^{E} \times M = 4096 \text{ bits} = 4K \text{ bits}$

47

Exemplo 1

- Uma memória RAM tem um espaço máximo de endereçamento de 2K. Cada célula pode armazenar 16 bits. Qual o valor total de bits que podem ser armazenados nesta memória e qual o tamanho de cada endereço?
 - Se o espaço máximo endereçável é 2K, então N = 2K
 - 1 célula = 16 bits. Então: M = 16 bits
 - $N = 2^E$, $N = 2K = 2 \times 1024 = 2^1 \cdot 2^{10} = 2^{11}$
 - Se N = 2^E e 2^{11} , então: $2^E = 2^{11}$ e E = 11
 - E = quantidade de bits de cada número que expressa um endereçamento, ou seja: os endereços de cada célula são números que têm 11 bits.
 - T = N x M = 2¹¹ x 16 = 2¹⁵ = 32Kbits

Exemplo 2

- Uma memória RAM é fabricada com a possibilidade de armazenar um máximo de 256kbits. Cada célula pode armazenar 8 bits. Qual é o tamanho de cada endereço e qual é o total de células que podem ser utilizadas na RAM?
 - Total de bits = $T = 256K = 2^8 \cdot 2^{10} = 2^{18}$
 - 1 célula = 8 bits = M = 23
 - Sendo T = N x M, então: N = T/M = 2¹⁸/2³ = 2¹⁵
 - Se N = 2^{E} , então: $2^{15} = 2^{E}$, E = 15
 - N = 2^{15} = $2^5 \cdot 2^{10}$ = 32k

40

Exercícios

Um computador possui uma memória com capacidade para armazenar palavras de 16 bits em cada uma de suas N células. O barramento de endereços tem 12 bits de tamanho. Quantos bytes poderão ser armazenados nessa memória?

Exercícios

- Qual é a diferença, em termos de endereço, conteúdo e total de bits, entre as seguintes organizações de MP?
 - Memória A 32K células de 8 bits cada;
 - Memória B 16K células de 16 bits cada;
 - Memória C 16K células de 8 bits cada:
- Considere uma célula de memória cujo endereço é, em hexadecimal, 2C81 e que tem armazenado em seu conteúdo um valor igual a, em hexadecimal, F5A. Pergunta-se:
 - Qual deve ser a máxima quantidade de bits que podem ser implementados nessa memória?

51

Organização memória CPU

- 1) Uma memória RAM de 4K possui quantas linhas de Endereço?
- 2) Como combinar vários chips de maneira a aumentar a capacidade total de memória?
- Por exemplo, combinar 4 chips com capacidade de 1Kx8 cada um para obter 4Kx8 total
- 3) Como utilizar as linhas de endereçamento?
- 12 linhas de endereçamento, mas cada chip tem apenas 10 linhas de endereçamento
- Precisamos de um circuito auxiliar: um decodificador

Exercícios

- Um certo chip de memória semicondutora é especificado como 2K × 8. Quantas palavras podem ser armazenadas neste chip? Qual é o tamanho da palavra? Quantos bits este chip pode armazenar no total?
- 2) Qual das memórias armazena mais bits: uma memória de 5M × 8 ou uma memória que armazena 1M palavras com um tamanho de palavra de 16 bits?

53

Exercícios

- 3) Em relação a memoria RAM 32x4, responda:
- a) Descreva as condições de cada entrada e saída quando o conteúdo da posição cujo endereço é 00100 deve ser lido.
- b) Descreva as condições de cada entrada e saída quando a palavra 1110 deve ser escrita na posição de endereço 01101.

4)

Uma determinada memória tem uma capacidade de 4K \times 8.

- (a) Quantas linhas de entrada de dados e saída de dados ela tem?
- (b) Quantas linhas de endereço ela tem?
- (c) Qual é a sua capacidade em bytes?