Semestre 2 2019/2020 Module: Calcul Stochastique

Devoir

Partie 1

 $\mathbf{A}/$ Soit deux variables aléatoires X_1 et X_1 de carré intégrable sur un espace de probabilité (Ω, \mathcal{F}, P) et \mathcal{A} une sous-tribu de \mathcal{F} . On définit

$$Cov(X_1, X_2 \mid \mathcal{A}) = E(X_1 X_2 \mid \mathcal{A}) - E(X_1 \mid \mathcal{A}) E(X_2 \mid \mathcal{A}).$$

Montrer que

$$Cov (X_1, X_2 \mid \mathcal{A}) = E [(X_1 - E (X_1 \mid \mathcal{A})) X_2 \mid \mathcal{A}].$$

 $\mathbf{B}/$ Soit $\{W_t\}_{t\geq 0}$ un mouvement brownien standard sur un espace de probabilité (Ω, \mathcal{F}, P) et $\{\mathcal{F}_t\}_{t\geq 0}$ sa filtration naturelle.

- 1/ Calculer pour tout couple (s,t) les quantités $E(W_sW_t^2)$, $E(W_t \mid \mathcal{F}_s)$, $E(W_s^2W_t^2)$ et $E(W_t \mid W_s)$.
- 2/ Quelle est la loi de $W_t + W_s$?
- 3/ Soit ϕ_s une variable aléatoire bornée \mathcal{F}_t -mesurable. Calculer pour $t \geq s$, $E(\phi_s(W_t W_s))$ et $E[\phi_s(W_t W_s)^2]$.
- 4/ Soit $a \in \mathbb{R}$. Calculer $E\left(\mathbf{1}_{\{W_t \leq a\}}\right)$ et $E\left(W_t \mathbf{1}_{\{W_t \leq a\}}\right)$.

Partie 2

Soit $\mathbf{r}(t)$ le taux d'intérêt instantané. On suppose qu'il peut y avoir un changement, dans un intervalle de temps infinitésimal Δt , positif d'une unité ou négatif d'une unité, ou bien aucun changement.

Changement $\triangle \mathbf{r}$	Probabilité
-1	$[\sigma^2/2 - \alpha(r_e - \mathbf{r})/2] \triangle t$
+1	$[\sigma^2/2 + \alpha(r_e - \mathbf{r})/2] \triangle t$
0	$1 - \sigma^2 \triangle t$

Le terme $\sigma^2/2$ représente le changement aléatoire du taux de plus ou moins l'unité. Le terme $\mp \alpha (r_e - \mathbf{r})/2$ modélise la tendance du taux d'intérêt vers un taux d'équilibre r_e . En mathématique financière on parle de retour à la moyenne (mean reversion).

- 1/ Calculer $E[\Delta \mathbf{r}(t) \mid \mathbf{r}(t) = \mathbf{r}]$ et $E[(\Delta \mathbf{r}(t))^2 \mid \mathbf{r}(t) = \mathbf{r}]$.
- 2/ Déduire l'EDS de $\mathbf{r}(t)$ (modèle de Vasicek).
- 3/ Calculer la moyenne $\mathrm{E}[\mathbf{r}(t)]$ et la variance $\mathrm{V}[\mathbf{r}(t)]$ en utilisant la formule d'Itô.
- 4/Résoudre cette équation différentielle stochastique. Considérer en premier que $\sigma=0,$ puis généraliser.