What does a Data Science project look like?

\sim			
(1		NΙT	г.
	ᇿ	IVI	١.

My Flower Shop

Ask:

Need to send out a catalog. Would like to know who to send it to.

ONE TRANSLATION:

Can we classify people according to whether they're likely to reorder?

Notebook Setup

In [1]:

```
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import train_test_split
sns.set_theme()

%matplotlib inline
```

Read in Data

```
In [2]:
datafile_name = '../data/flowershop_data.csv'
In [3]:
# print out the first few lines of the datafile, looks like standard csv with a header and dates
!head -5 {datafile_name}
#!more flowershop_data.csv P 5

lastname, purchase_date, stars, price, favorite_flower

PERKINS, 2017-04-08, 5, 19.599885954165785, iris
```

ROBINSON, 2017-01-01, 5, 37.98390361682093,

WILLIAMSON, 2017-03-20, 4, 19.339137911467354, carnation

ROBINSON, 2017-04-12, 5, 18.140615754070392, lilac

In [4]:

```
# read in data, note the number of rows and columns
df = pd.read_csv('../data/flowershop_data.csv', header=0, parse_dates=True)
print('{:d} rows, {:d} columns'.format(*df.shape))
```

1000 rows, 5 columns

In [5]:

use head to make sure the data was read correctly
df.head()

Out[5]:

	lastname	purchase_date	price	favorite_flower		
0	PERKINS	2017-04-08	5	19.599886	iris	
1	ROBINSON	2017-01-01	5	37.983904	NaN	
2	WILLIAMSON	2017-03-20	4	19.339138	carnation	
3	ROBINSON	2017-04-12	5	18.140616	lilac	
4	RHODES	2017-03-24	1	22.179522	carnation	

Evaluate and Clean Variables

```
In [6]:
```

```
# use info to evaluate missing values and datatypes
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 5 columns):
    Column
#
                    Non-Null Count
                                   Dtype
                    1000 non-null
                                   object
0 lastname
  purchase_date
                                   object
                    1000 non-null
                    1000 non-null int64
  stars
3 price
                    978 non-null float64
    favorite flower 822 non-null
                                   object
dtypes: float64(1), int64(1), object(3)
memory usage: 39.2+ KB
```

Evaluate and Clean: Stars

In [7]:

```
# plot histogram for stars
sns.catplot(x='stars',kind='count',data=df);
plt.title('Distribution of Stars Variable');
```


In [8]:

```
# an awful Lot of 5s
# get highest name counts
df[df.stars == 5].lastname.value_counts().head()
```

Out[8]:

ROBINSON	135
DANIELS	9
CALDWELL	8
JOHNSTON	6
JACOBS	6

Name: lastname, dtype: int64

In [9]:

```
# get differences in mean stars by name
robinson_mean = df[df.lastname == 'ROBINSON'].stars.mean()
other_mean = df[df.lastname != 'ROBINSON'].stars.mean()
robinson_mean_diff = robinson_mean - other_mean
print('robinson mean stars: {}'.format(robinson_mean))
print('other mean stars : {}'.format(other_mean))
print('difference in mean : {}'.format(robinson_mean_diff))
```

In [10]:

```
# get counts for names
n_robinson = len(df[df.lastname == 'ROBINSON'])
n_other = len(df) - n_robinson
print('n_robinson: {}'.format(n_robinson))
print('n_other : {}'.format(n_other))
```

n_robinson: 208
n other : 792

In [11]:

```
# do a permutation test to test for significance of difference

stars = df.stars.values
mean_diffs = []

for i in range(10000):
    perm = np.random.permutation(stars)
    mean_1 = np.mean(perm[:n_robinson])
    mean_2 = np.mean(perm[n_robinson:])
    mean_diffs.append(mean_1-mean_2)

plt.hist(mean_diffs);
plt.vlines(x=robinson_mean_diff, ymin = 0, ymax = 3000);
plt.xlabel('mean differences');
plt.ylabel('count');
plt.title('Distribution of Differences In Means');
```


In [12]:

```
# calculate the p-value
p = sum(np.abs(mean_diffs) >= np.abs(robinson_mean_diff)) / len(mean_diffs)
print(p)
```

0.0

NOTE: Getting rid of the records with lastname ROBINSON as the count of 5 stars from them seems suspiciously high relative to the rest of the sample.

```
In [13]:
```

```
# drop rows with Lastname ROBINSON
df = df[df.lastname != 'ROBINSON']
```

In [14]:

```
# plot again and notice the change in distiribution
sns.catplot(x='stars', kind='count', data=df);
plt.title('Distribution of Stars Variable');
```


In [15]:

Reprinting .info(), note we still have missing values
df.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 792 entries, 0 to 998
Data columns (total 5 columns):
    Column
                    Non-Null Count Dtype
#
                                    object
    lastname
                    792 non-null
0
                    792 non-null
                                    object
  purchase_date
                    792 non-null
2 stars
                                    int64
 3
  price
                    772 non-null
                                    float64
    favorite flower 654 non-null object
dtypes: float64(1), int64(1), object(3)
memory usage: 69.4+ KB
```

Evaluate and Clean Price

In [16]:

```
print(f'proportion of rows with missing price: {sum(df.price.isna()) / len(df):0.3f}')
```

proportion of rows with missing price: 0.025

In [17]:

```
# before dealing with missing prices, check distribution
df.price.describe()
```

Out[17]:

count	772.000000	
mean	23.720669	
std	11.154642	
min	7.621566	
25%	18.596314	
50%	20.226653	
75%	38.837663	
max	42.996317	
Name:	price, dtvpe:	float64

In [18]:

```
sns.boxplot(df.price);
plt.title('Box Plot of Price Variable');
```


In [19]:

```
# create new column encoding missing price
df['price_missing'] = df.price.isna()
print(f'proportion of price missing: {sum(df.price_missing)/len(df):0.3f}')
```

proportion of price missing: 0.025

In [20]:

```
# impute missing values with the mean
df.price.fillna(df.price.mean(),inplace=True)
```

In [21]:

```
# check to make sure we're no Longer missing data
assert sum(df.price.isna()) == 0
```

In [22]:

```
# plot distribution of price, noting clusters. Depending on model, may want to bin?
sns.distplot(df.price, hist=False, rug=True);
plt.title('Distribution of Price Variable');
```


Evaluate and Clean Favorite_Flower Variable

In [23]:

```
# print out first few values for favorite_flower, noting that it is a categorical variable
df.favorite_flower.head()
```

Out[23]:

```
0 iris
2 carnation
4 carnation
5 gerbera
7 gerbera
Name: favorite_flower, dtype: object
```

In [24]:

```
# print number of observations of each value
df.favorite_flower.value_counts()
```

Out[24]:

rose	106
daffodil	79
carnation	70
gardenia	61
tulip	59
gerbera	44
lilac	44
sunflower	42
orchid	42
jasmine	42
daisy	34
iris	31
Namas favor	oita fla

Name: favorite_flower, dtype: int64

Engineer New Features

```
In [25]:
```

```
# create new dataframe for engineered features
dfe = pd.DataFrame()
```

NOTE: our prediction is by family, need to collapse observations

```
In [26]:
```

```
# collapse rows
g = df.groupby('lastname')
```

Create Mean Price

In [27]:

```
# get mean price per family
mean_prices = g.price.mean()
mean_prices.head()
```

Out[27]:

lastname

ADAMS 38.617753

ALEXANDER 30.106511

ALLEN 26.657993

ALVAREZ 20.676235

ANDERSON 14.653257

Name: price, dtype: float64

In [28]:

```
dfe['mean_price'] = mean_prices
```

In [29]:

dfe.head()

Out[29]:

	mean_price
lastname	
ADAMS	38.617753
ALEXANDER	30.106511
ALLEN	26.657993
ALVAREZ	20.676235
ANDERSON	14.653257

```
In [30]:
```

```
# depending on our model, may want to normalize features

dfe['mean_price_normed'] = (dfe.mean_price.values - dfe.mean_price.mean()) / dfe.mean_price.std()
dfe.mean_price_normed.agg(['mean','std']).round(2)
```

Out[30]:

mean 0.0

std 1.0

Name: mean_price_normed, dtype: float64

In [31]:

dfe.head()

Out[31]:

	mean_price	mean_price_normed
lastname		
ADAMS	38.617753	1.848446
ALEXANDER	30.106511	0.823597
ALLEN	26.657993	0.408357
ALVAREZ	20.676235	-0.311913
ANDERSON	14.653257	-1.037147

In [32]:

```
# drop the unnormalized variable
dfe.drop('mean_price',axis=1,inplace=True)
```

Create Median Stars

NOTE: Using median to be robust against extreme high or low values

```
In [33]:
g.stars.median().head()
Out[33]:
 lastname
                 2.5
ADAMS
                 4.5
ALEXANDER
                 4.0
ALLEN
                 3.0
ALVAREZ
ANDERSON
            2.0
Name: stars, dtype: float64
In [34]:
dfe['median_stars'] = g.stars.median()
```

In [35]:

dfe.head()

Out[35]:

	mean_price_normed	median_stars
lastname		
ADAMS	1.848446	2.5
ALEXANDER	0.823597	4.5
ALLEN	0.408357	4.0
ALVAREZ	-0.311913	3.0
ANDERSON	-1.037147	2.0

In [36]:

```
# again, depending on model, may or may not need to normalize
dfe['median_stars_normed'] = (dfe.median_stars.values / dfe.median_stars.mean()) / dfe.median_stars.std()
dfe.drop('median_stars',axis=1,inplace=True)
```

In [37]:

dfe.head()

Out[37]:

	mean_price_normed	$median_stars_normed$
lastname		
ADAMS	1.848446	0.723909
ALEXANDER	0.823597	1.303037
ALLEN	0.408357	1.158255
ALVAREZ	-0.311913	0.868691
ANDERSON	-1.037147	0.579128

Create Favorite Flower Dummies

In [38]:

```
# transform favorite_flower into One Hot Encoding
flower_dummies = pd.get_dummies(df.favorite_flower, prefix='ff')
flower_dummies.head()
```

Out[38]:

	ff_carnation	ff_daffodil	ff_daisy	ff_gardenia	ff_gerbera	ff_iris	ff_jasmine	ff_lilac	ff_orchid	ff_rose	ff_sunflower	ff_tulip
0	0	0	0	0	0	1	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0	0	0
4	1	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
7	0	0	0	0	1	0	0	0	0	0	0	0

In [39]:

```
# add the last name column using index
flower_dummies = df[['lastname']].join(flower_dummies)
flower_dummies.head()
```

Out[39]:

		lastname	ff_carnation	$ff_daffodil$	ff_daisy	ff_gardenia	ff_gerbera	ff_iris	ff_jasmine	ff_lilac	ff_orchid	ff_rose	$ff_sunflower$	ff_tulip
	0	PERKINS	0	0	0	0	0	1	0	0	0	0	0	0
	2	WILLIAMSON	1	0	0	0	0	0	0	0	0	0	0	0
_	4	RHODES	1	0	0	0	0	0	0	0	0	0	0	0
	5	NGUYEN	0	0	0	0	1	0	0	0	0	0	0	0
	7	GRAVES	0	0	0	0	1	0	0	0	0	0	0	0

```
In [40]:
# group the flower columns by last name, aggregating by sum
flower_dummies = flower_dummies.groupby('lastname').sum()

In [41]:
# simplify by transforming count of flower into 0,1
flower_dummies = flower_dummies.applymap(lambda x: int(x > 0))

In [42]:
# join to our engineered values on lastname
dfe = dfe.join(flower_dummies)
```

In [43]:

dfe.head()

Out[43]:

	mean_price_normed	median_stars_normed	ff_carnation	ff_daffodil	ff_daisy	ff_gardenia	ff_gerbera	ff_iris	ff_jasmine	ff_lilac	ff_orchid	ff_rose	ff_sunflower	ff_tulip
lastname														
ADAMS	1.848446	0.723909	0	0	0	0	0	0	0	0	1	0	0	0
ALEXANDER	0.823597	1.303037	0	0	0	0	0	0	0	0	0	0	1	0
ALLEN	0.408357	1.158255	0	0	0	0	0	0	0	0	0	1	0	0
ALVAREZ	-0.311913	0.868691	0	0	0	0	0	0	0	0	1	0	0	0
ANDERSON	-1.037147	0.579128	0	0	1	0	0	0	0	0	0	0	0	0

Create Labels

In [46]:

```
# join labels to engineered features
labels.name = 'reorder_label'

dfe = dfe.join(labels)

dfe.head()
```

Out[46]:

	mean_price_normed	median_stars_normed	ff_carnation	ff_daffodil	ff_daisy	ff_gardenia	ff_gerbera	ff_iris	ff_jasmine	ff_lilac	ff_orchid	ff_rose	ff_sunflower	ff_tulip	reorder_labe
lastname															
ADAMS	1.848446	0.723909	0	0	0	0	0	0	0	0	1	0	0	0	1
ALEXANDER	0.823597	1.303037	0	0	0	0	0	0	0	0	0	0	1	0	1
ALLEN	0.408357	1.158255	0	0	0	0	0	0	0	0	0	1	0	0	1
ALVAREZ	-0.311913	0.868691	0	0	0	0	0	0	0	0	1	0	0	0	0
ANDERSON	-1.037147	0.579128	0	0	1	0	0	0	0	0	0	0	0	0	1

Train Classifier and Evaluate

```
In [47]:
# get data and label column names
data cols = dfe.columns[:-1]
label col = dfe.columns[-1]
In [48]:
data cols
Out[48]:
 Index(['mean_price_normed', 'median_stars_normed', 'ff_ca
rnation',
          'ff_daffodil', 'ff_daisy', 'ff_gardenia', 'ff_gerb
era', 'ff_iris',
          'ff_jasmine', 'ff_lilac', 'ff_orchid', 'ff_rose',
 'ff_sunflower',
          'ff tulip'],
        dtype='object')
In [49]:
label col
Out[49]:
 'reorder label'
```

In [50]:

```
# importing here for demonstration
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import train_test_split
```

In [51]:

```
X_train.shape = (201, 14), y_train.shape = (201,)
X_test.shape = (51, 14), y_train.shape = (51,)
```

```
In [52]:
# perform cross validation to tune parameters (not done here)
rf = RandomForestClassifier()
cv_scores = cross_val_score(rf, X_train, y_train, cv=3)
cv_scores
Out[52]:
array([0.79104478, 0.74626866, 0.70149254])
```

```
In [53]:
```

```
print(f'mean cv accuracy: {np.mean(cv_scores):0.2f} +- {np.std(cv_scores)*2:0.2f}')
```

```
mean cv accuracy: 0.75 +- 0.07
```

```
In [54]:
```

```
# fit on training data and score on test
rf.fit(X_train,y_train)
print('test set accuracy: {:0.3f}'.format(rf.score(X_test,y_test)))
```

test set accuracy: 0.824

Which Features are Most Important?

In [55]:

```
for col,fi in sorted(list(zip(data_cols,rf.feature_importances_)),key=lambda x:x[1])[::-1]:
    print(f'{col:20s} : {fi:0.3f}')
```

```
mean price normed
                  : 0.616
median_stars_normed : 0.197
ff lilac
                      : 0.021
ff rose
                     : 0.018
ff gardenia
                     : 0.017
ff gerbera
                      : 0.017
ff carnation
                      : 0.017
ff daisy
                      : 0.016
ff sunflower
                      : 0.015
ff daffodil
                      : 0.015
ff tulip
                      : 0.014
ff iris
                      : 0.013
ff orchid
                      : 0.012
ff jasmine
                      : 0.012
```

How well could we do just by guessing 1 for everyone?

```
In [56]:
   ((dfe.loc[:,label_col] == 1).sum() / len(dfe)).round(3)
Out[56]:
```

0.71