ЛАБОРАТОРНАЯ РАБОТА №4 ГИДРОСИСТЕМА РАБОЧИХ ОРГАНОВ. РАСЧЕТ КОЭФФИЦИЕНТА ЗАПАСА ГИДРОСИСТЕМЫ ПО ДАВЛЕНИЮ

1.1 Цель работы:

- изучить принцип работы гидросистемы рабочих органов;
 - изучить режимы работы гидросистемы;
- изучить основные элементы гидросистемы рабочих органов;
- произвести расчет коэффициента запаса гидросистемы по давлению и подачу гидронасосов.

Гидросистема рабочих органов предназначена для привода гидромоторов, которые в свою очередь приводят в действие различные транспортеры, шнеки, ременные передачи и другие элементы.

Основными элементами гидросистемы рабочих органов являются:

- гидронасос, обычно используется шестеренный гидронасос рабочим объемом от 16 до 50 см³ или аксиально-поршневой

гидронасос рабочим объемом от 32 до 75 см3;

- гидромоторы, с рабочим объемом от 8 до 800 см3.
- клапан предохранительный;
- гидроблок управления; манометры и датчики давления; бак масляный.

1.2 Экспериментальная часть.

При помощи стенда, собрать элементарную гидросхему управления гидромотором M, для чего необходимо соединить разъемы в следующей последовательности:

- разъем R1 с разъемом R6;
- разъем *R8* с разъемом *R10*;
- разъем *R9* с разъемом *R11*;
- разъем *R7* с разъемом *R14*.

					Пабораторида работа NoA				
Изм.	Лист	№ докум.	Подпись	Дата	Лабораторная работа №4				
Разраб.		Чирков А.В.			Гидросистема робочих	Лит.	Лист	Листов	
Провер.		Ποποθ Β.Б.			оргонов. Расчет коэффициента		1		
Реценз.					запаса гидросистемы по				
Н. Контр.					давлению	ГГТУ им.П.О.Сухого Гр. С-41			
3αβ.καφ.		Ποποθ Β.Б.			A.2				

требуемой последовательности Соединив все элементы В произведем включение стенда и определим давление разгрузки по показаниям манометра МН1.

При положении золотника распределителя P в нейтральном положении, рабочая жидкость поступает от гидронасоса H через распределитель P в маслобак – обеспечивается режим разгрузки. Давление в режиме разгрузки возможно контролировать по манометру $M\Pi I$, при этом, чем меньше давление, тем лучше, меньше затраты энергии на перекачивание жидкости по системе. Давление разгрузки будет зависеть от:

сопротивления по длине OT гидронасоса H

гидрораспределителя P;

- сопротивления по длине от гидрораспределителя Р до бака масляного E;
- сопротивления местные В гидроарматуре; сопротивление гидрораспределителя P.

При переключении распределителя P в одно из крайних положений, например в крайне левое, рабочая жидкость поступает от гидронасоса Hчерез распределитель P к гидромотору M1, происходит вращение вала гидромотора – рабочий режим. При вращении вала давления будет зависеть от:

сопротивления по длине OT гидронасоса H

гидрораспределителя P;

- сопротивления гидрораспределителя P (из P в A);
- сопротивления по длине от гидрораспределителя Р до гидромотора M1;
 - нагрузки на валу гидромотора M1;
 - сопротивление по OT длине гидромотора M1ДО

гидрораспределителя P;

- сопротивления гидрораспределителя P (из B в T);
- сопротивления по длине от гидрораспределителя P до бака масляного *Б*.

При этом суммарная нагрузка, выраженная в давлении, не должна превышать давление настройки предохранительного клапана $K\Pi 2$.

При номинальном режиме работы, вся жидкость нагнетаемая гидронасосом H будет поступать к гидромотору M1, обороты вращения вала которого будут зависеть от рабочего объема гидромотора и расхода жидкости подаваемого гидронасосом.

При увеличении нагрузки не вал, давление будет повышаться до давления настройки предохранительного клапан, при этом вал гидромотора будет остановлен, а весь расход рабочей жидкости будет поступать в маслобак через предохранительный клапан $K\Pi 2$.

Произведем включение стенда и определим давление, по показаниям манометра MH1, при вращении вала гидромотора, пример, см. рис. 4.1.

Рис. 4.1 График изменения давления при работе гидромотора.

1.3 Практическая часть.

Коэффициент запаса гидросистемы по давлению это отношение максимально возможного давления в гидросистеме (давление настройки предохранительного клапана) к номинальному давлению при работе гидросистемы, см. рис 4.2.

Рис. 4.2 Пример давления в гидросистеме.

Диапазон "A" — давление холостого хода, это затраты давления на привод рабочих органов, чем это давление меньше, тем меньше затраты энергии на привод рабочих органов.

Диапазон "E" — полезное давление, т.е. давление, которое необходимо для того, чтобы выполнить полезную работу, т.е. осуществить привод рабочих органов с нагрузкой.

Диапазон "B" — давление запаса, т.е. давление, которое может дополнительно развить гидросистема для преодоления нагрузки более номинальной.

Диапазон " Γ " — давление, которое может развить гидросистема сверх давления холостого хода, для преодоления меняющейся нагрузки в процессе выполнения технологического процесса, чем меньше давление холостого хода, тем диапазон " Γ " шире, значит большее усилие будет направлено на выполнение полезной работы.

Для гидросистем с переменной нагрузкой оптимальным является коэффициент запаса около 2. Если нагрузка в процессе работы не меняется или меняется незначительно, допускается снижение коэффициент запаса до 1,5, в случае, если нагрузка может меняться в разы, необходимо предусмотреть коэффициент запаса по давлению более 2.

Произведем расчет коэффициента запаса гидросистемы рабочих органов картофелеуборочного комбайна, см. гидросхему рис. 4.3 и рис. 4.4.

Рис. 4.3 Гидросхема рабочих органов картофелеуборочного комбайна.

Рис. 4.4 Гидросхема рабочих органов картофелеуборочного комбайна.

Исходные данные.

Таблица 4.1

Необходимый крутящий момент на валу гидромотора, Нм:

M1	M2	M3	M4	M5	M6	M7	M8
315	300	120	120	150	630	175	200

Рабочий объем гидромотора, см3:

Таблица 4.2

M1	M2	M3	M4	M5	M6	M7	M8
630	800	250	160	80	315	315	400

Таблица 4.3

Давление настройки клапана предохранительного, МПа (bar):

КП2.1	КП2.2		
16 (160)	18 (180)		

1. Перепад давления на каждом гидромоторе определяется по формуле:

 $P=M/(0,159\cdot V_0)$, (4.1) где:

Р – перепад давления на гидромоторе, Па;

М – крутящий момент на гидромоторе, Нм;

 V_0 – рабочий объем гидромотора, м³/об; или

Таблица 4.4

Перепад давления на каждом гидромоторе, bar:

P1	P2	P3	P4	P5	P6	P7	P8
31,4	23,5	30	47,1	117,9	125,7	34,9	31,4

2. Определим давление перед делителем регулятором потока $ДР\Pi2.1$, линия P2.9. Давление перед делителем регулятором потока $ДР\Pi2.1$ будет равно наибольшему давлению в одной из линий P2.12 или P2.10. Давление в линии P2.10 равно давлению на гидромоторе M2.1 и составляет 25,1 bar. Давление в линии P2.12 равно сумме давлений на гидромоторах M2.2 и M2.3.

$$P12 = P2 + P3 = 23,5 + 30 = 53,5 \text{ bar.}$$

Давление в линии P2.9 составляет 53,5 bar.

3. Определим давление в линии P2.8, оно равно сумме давлений в линии P2.9 и давлению P4 на гидромоторе M2.4.

$$P2.8 = P2.9 + P4 = 53.5 + 47.1 = 100.6$$
 bar.

- 4. Определим давление перед делителем регулятором потока $ДР\Pi 2.2$, линия P2.5. Давление перед делителем регулятором потока $ДР\Pi 2.2$ будет равно наибольшему давлению в одной из линий P2.7 или P2.8. Давление в линии P2.7 равно давлению на гидромоторе M2.5 и составляет 117,9 bar, давление в линии P2.8 равно 100,6 bar, следовательно давление в линии P2.5 составляет 100,6 bar.
- 5. Определим коэффициент запаса гидросистемы по давлению для гидронасоса H2.2 при отсутствии электросигнала на гидрораспределителе P2.1.

$$K2 = P \kappa \pi K \Pi 2.2 / P 2.5 = 180/100,6 = 1,78$$

6. Определим коэффициент запаса гидросистемы по давлению для гидронасоса H2.2 при подаче электросигнала на гидрораспределитель P2.1.

$$K3 = P \kappa \pi K \Pi 2.2 / P 2.6 = 180/125,7 = 1,43$$

7. Определим коэфициент запаса гидросистемы по давлению для гидронасоса H2.1. Давление в линии P2.2 равно сумме давления на гидромоторах M2.7 и M2.8.

$$P2.2 = P7 + P8 = 34,9 + 31,4 = 66,3$$
 bar $K1 = P \kappa \pi K \Pi 2.1 / P2.2 = 160/66,3 = 2,41$

Произведем расчет количества подаваемой РЖ гидронасосами. Исходные данные.

Рабочий объем гидронасоса $H2.1 - V_{0 H2.1} = 50 \cdot 10^{-6} \text{ м}^3 = 50 \text{ см}^3$;

Рабочий объем гидронасоса $H2.2 - V_{0 H2.2} = 100 \cdot 10^{-6} \, \text{м}^3 = 100 \, \text{см}^3$;

Обороты вращения входного вала гидронасоса — n = 1200 об/мин. Подача гидронасоса H2.1:

 $Q_{\text{H2.1}} = n \cdot V_{0 \text{ H2.1}} \cdot \eta = 1200 \cdot 50 \cdot 10^{-6} \cdot 0,9 = 0,054 \text{ м}^3/\text{мин} = 54 \text{ л/мин}$ $Q_{\text{H2.2}} = n \cdot V_{0 \text{ H2.2}} \cdot \eta = 1200 \cdot 100 \cdot 10^{-6} \cdot 0,9 = 0,108 \text{ м}^3/\text{мин} = 108 \text{ л/мин}$ Расход в сливной линии T2.1:

$$Q_{\text{T2.1}} {=} \; Q_{\text{H2.1}} {+} \; Q_{\text{H2.2}} \; {-} \; L {=} \; 54 {+} 108 {-} 7 {=} 155 \; \pi / \text{мин}$$

где: L – суммарная утечка жидкости в дренажное отверстие в гидромоторах, приблизительно в каждом гидромоторе в дренаж поступает около $1\,$ л/мин.

Вывод: изучил принцип работы гидросистемы рабочих органов; изучил режимы работы гидросистемы; изучил основные элементы гидросистемы рабочих органов; произвел расчет коэффициента запаса гидросистемы по давлению и подачу гидронасосов