Class 7: Anomaly Detection

Andrew Parnell andrew.parnell@mu.ie

PRESS RECORD

Introduction to Anomaly Detection (AD)

- Anomaly detection refers to the process of identifying data points, observations, or patterns that deviate significantly from the norm or standard in a dataset. These might be critical incidents, such as errors, fraud, or system failures
- ▶ What you do with an anomaly will depend on the application; you might remove it, stop the whole experiment, or just ignore and note it down for later evaluation
- ► We will explore lots of different methods in R for performing anomaly detection with examples for all of them

Anomaly Detection in R

- ▶ We will use 3 main packages for performing AD, and discuss some other popular methods
 - anomalize: Implements a tidy AD algorithm that works well with dplyr and tidyr pipelines. Pretty user friendly (https://www.youtube.com/watch?v=Gk_HwjhlQJs)
 - 2. tsoutliers: Use for detecting outliers in time-series data. Integrates well with ARIMA modeling and other time-series forecasting methods, though pretty slow
 - 3. stray: Designed for AD in high-dimensional data. More aligned with machine learning techniques as it uses projection and clustering
- We mostly focus on finding anomalies in time series but AD can be used on any type of data

A simple example: CRAN downloads from anomalize

```
library(anomalize)
tidyverse_cran_downloads %>%
    filter(package == "dplyr") %>%
    ungroup() %>%
    time_decompose(count, method = "stl") %>%
    anomalize(remainder, method = "iqr") %>%
    time_recompose() %>%
    plot_anomalies(time_recomposed = TRUE)
```

A simple example: CRAN downloads from anomalize - plot

Types of Anomalies

- ▶ Point Anomalies. A single 'anomalous' data point. But beware, a sudden spike in e.g. energy usage on a hot day might be normal, but the same spike on a mild day could be anomalous.
- ► Collective Anomalies. A collection of 'anomalous' data points occurring together.
- ► Seasonal Anomalies. Anomalies that occur in a seasonal pattern within time-series data.
- Network Anomalies. Anomalies that occur in multiple time series simultaneously that might not be visible in a single series.

Anomaly Detection Methods

Often a time series model is fitted first and the anomaly detection routine is run on the leftover data (residuals).

- Basic methods: Z-scores, Inter-Quartile Range, Grubbs test, Control charts
- Statistical methods: Generalised-Extreme Studentised Deviate Test (GESD),
 Seasonal Hybrid ESD approach (Twitter / SH-ESD), Extreme value approaches
- Machine learning approaches. Dimension reduction approaches (stray), RNNs (followed by statistical methods)
- ▶ Hybrid methods. Using combinations of the above

Decomposition and Anomaly Detection

Common to perform Seasonal Trend and irregular decomposition using Loess (STL) and running AD on the components:

8 / 20

Basic Methods: G-ESD

- ▶ Iteratively tests for and removes the most extreme value as an outlier, allowing detection of multiple outliers in a dataset, as opposed to Grubbs test
- Uses a studentised range statistic, supposedly a robust method for identifying outliers in normally distributed data
- Effective for both small and large data sets, with an upper limit on the number of outliers found

Can be applied to a data set directly, but more commonly applied to the residuals. Provides a list of potential values up to the maximum number of anomalies allowed

Seasonal Hybrid ESD approach

- ► SH-ESD is an extension of the GESD test specifically for seasonal data by performing a seasonal decomposition and windowing of the data before running the GESD test
- ► The decomposition allows for the detection of seasonal anomalies, which are extreme relative to a particular season or time frame but might not be extreme in the overall dataset
- Not treated as a particular anomaly detection method but rather a decomposition method in anomalize

(Recently extended to work on streaming data rather than just windows)

Time Series Anomaly Detection with tsoutliers

Perhaps the most basic time series AD package is tsoutliers

- Package works by fitting ARIMA models to the data and then looking at different types of outliers
- ▶ Produces predictions and also potential adjustments to the data that would remove the outliers and make the data set 'cleaner'
- ▶ Allows for ARIMAX type data (e.g. time series data with extra regressors)

Types of outlier identified by tsoutliers

- Additive Outliers (AO), Innovational Outliers (IO), Level Shifts (LS), Temporary Changes (TC), and Seasonal Level Shifts (SLS).
- ▶ AO are sudden, abnormal spikes or drops in the time series that are not part of the usual pattern or trend.
- ▶ IO are irregularities that introduce a shock to the system, affecting the time series values both at the occurrence and subsequent periods.
- ► LS are sudden, lasting change in the level of the time series, reflecting a structural change in the process.
- ► TC are short-term anomalies where the time series deviates from its usual pattern for a brief period before returning to normal.
- ▶ SLS are similar to LS but occur in a seasonal pattern, indicating a permanent change in the seasonal component of the time series.

AO, IO and LS are the defaults looked for

Revision: ARIMA models

- Combination of AR and MA: ARIMA models blend AutoRegressive (AR) and Moving Average (MA) approaches, where AR models leverage past values and MA models use past forecast errors for prediction
- Integration for Non-Stationarity: The 'l' in ARIMA stands for 'Integrated' and involves differencing the data to achieve stationarity, essential for time series forecasting
- ► Parameter Specification: Characterized by three parameters (p, d, q) 'p' for the order of the AR part, 'd' for the degree of differencing, and 'q' for the order of the MA part
- Flexibility and Adaptability: Suitable for a wide range of time series data, capable of modeling various patterns and structures in both stationary and non-stationary data

Can also have seasonal ARIMA models

Example of using tsoutliers

```
library(tsoutliers)
data(hicp) # Mulivariate time series
tso(v = log(hicp$^011300^))
## Series: log(hicp$`011300`)
## Regression with ARIMA(0,1,0)(1,0,0)[12] errors
##
## Coefficients:
##
           sar1
                   A015
                            TC38
                                    A0120
                                           TC162
                                                    LS171
         0.8268 -0.0109 -0.0142
                                  -0.0092
                                          0.0136
                                                   -0.0137
## s.e. 0.0365
                 0.0026
                          0.0033
                                   0.0026 0.0033
                                                   0.0036
##
## sigma^2 = 2.257e-05: log likelihood = 888.79
## AIC=-1763.58 AICc=-1763.07
                               BIC=-1739.6
##
## Outliers:
                time coefhat tstat
    type ind
## 1 AO 15 1996:03 -0.01093 -4.286
## 2
      TC 38 1998:02 -0.01423 -4.283
      AO 120 2004:12 -0.00921 -3.611
## 3
## 4
      TC 162 2008:06 0.01365 4.109
## 5
      LS 171 2009:03 -0.01373 -3.808
```

Example of anomalize package

```
library(anomalize)
tidyverse_cran_downloads %>%
    filter(package == "dplyr") %>%
    ungroup() %>%
    time_decompose(count, method = "stl") %>%
    anomalize(remainder, method = "iqr") %>%
    time_recompose() %>%
    plot_anomalies(time_recomposed = TRUE)
```

Output of anomalize

Machine Learning Methods: stray approach

- stray = STReam AnomalY. Ideal for high dimensional data
- ▶ Uses *k*-nearest neighbours to find the distances between the observations in a high dimensional space
- ▶ Uses ideas from Extreme value theory (EVT) to define a threshold and identify the gaps between the observations
- Enables the method to capture both 'in-liers' and outliers
- Produces both a list of outliers and an outlier score for further analysis

Example of using the stray package

Very fast and pretty good

Other machine learning approaches

Lots of other unsupervised approaches are used before running an AD algorithm

- K-means and mixture models (covered yesterday) commonly used
- ▶ DBSCAN is a spatial clustering algorithm that differentiates between core points (inside a cluster), border points (on the edge of a cluster), and noise points (isolated, outlier points)
- Isolation Forests is a version of random forests that spots data points that are commonly split at the top of a tree and are therefore likely to be outliers (R package isotree)

Summary

- ▶ Lots of different AD techniques; most based on quite traditional statistical methods
- Usually perfrom a time series analysis, which can be quite simple or very complex, before running the AD algorithm
- Lots of different types of anomaly which may or may not be appropriate to different data problems
- ▶ See the examples in the script folder for more details on what these packages can do