Day 1 - 1/17/2024

Vectors in \mathbb{R}^2

Defined as a directed segment, \overrightarrow{AB} . Similar vectors that are the same when translated onto each other are denoted to be equivalent with \equiv .

Vectors with initial point P and terminal point Q are standardized by moving P to the origin and keeing Q relative to P.

For
$$P=(0,0)$$
 and $Q=(3,3)$, we define $\overrightarrow{AB}=\langle 3,3\rangle$, therefore $\overrightarrow{AB}=\langle x_B-x_A,y_B-y_A\rangle$

For any 2 vectors \overrightarrow{AB} and \overrightarrow{CD} , we can find that $\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{CD} + \overrightarrow{AB}$.

Any vector \overrightarrow{AA} is defined to be directionless and without length.

Vector Multiplication

Scalars - A number.

We define a scalar multiplication with the scalar k to be $2AB = \langle k \cdot (x_B - x_A), k \cdot (y_B - y_A) \rangle$.

Notibly, a scalar multiplication with the scalar k will adjust the length of a vector v to be $k \cdot v$.

kv has length |k| ||v||.

Scalars can be negative, reversing a vector \overrightarrow{AB} to be \overrightarrow{BA} , inverting its *direction*.

Vector Subtraction

Defined as v - u = v + (-1)u

Incredible. Just awesome. Nobody is passing this class.

Example

Define v - u.

$$P(1,2)$$

$$Q(2,1)$$

$$A(0,2)$$

$$B(2,2)$$

$$\vec{v} = \overrightarrow{PQ}, \quad \vec{w} = \overrightarrow{AB}$$

$$\vec{u} = 2\vec{v} - \vec{w}$$

$$\vec{v} = \langle 2 - 1, 1 - 2 \rangle = \langle 1, -1 \rangle$$

$$\vec{w} = \langle 2 - 0, 2 - 2 \rangle = \langle 2, 0 \rangle$$

$$\vec{u} = 2\langle 1, -1 \rangle + -1\langle 2, 0 \rangle$$

$$\vec{u} = \langle 2, -2 \rangle + \langle -2, 0 \rangle$$

$$\vec{u} = \langle 0, -2 \rangle$$

Vector Magnitude

$$\vec{v} = \langle a, b \rangle$$

How do we find the magnitude/normal/length of \vec{v} ?

Magnitude of \vec{v} : $\|\vec{v}\| = \sqrt{a^2 + b^2}$.

Unit Circle

We define \vec{i} to be $\langle 1, 0 \rangle$ and \vec{j} to be $\langle 0, 1 \rangle$.