1. 群の復習, 剰余類と剰余群, 準同型写像と準同型定理

問題 1.1. 集合 G とその内部演算・が次さえ満たせば (G,\cdot) は群になることを示せ. ()

- (i) (結合律) 任意の $a,b,c \in G$ について $(a \cdot b) \cdot c = a \cdot (b \cdot c)$,
- (ii) (右単位元) ある $e \in G$ が存在して、任意の $g \in G$ に対し $g \cdot e = g$,
- (iii) (右逆元) 任意の $g \in G$ に対してある $g' \in G$ が存在して $g \cdot g' = e$.

問題 1.2. 空でない集合 G と結合律を満たす内部演算・が次さえ満たせば (G,\cdot) は群になることを示せ. (

任意の $g,h \in G$ に対し、ある $x,y \in G$ が存在して $g \cdot x = h, y \cdot g = h$.

問題 1.3. $G = \{ \varphi : \mathbb{R} \to \mathbb{R} \mid \varphi(x) = ax + b, \ 0 \neq a \in \mathbb{R}, \ b \in \mathbb{R} \}$ は写像の合成に関して群をなすことを示せ. ()

問題 1.4. G を群, e を G の単位元, $x,y,z \in G$ とする. 次を示せ.

- (1) $xy = xz \Rightarrow y = z$. ()
- (2) $xy = zy \Rightarrow x = z$. ()
- (3) $x^2 = x \Rightarrow x = e$. ()

問題 1.5. G を群, e を G の単位元とする. 次を示せ.

- (i) 任意の $g \in G$ に対し $g^2 = e$ が成り立つならば, G はアーベル群である. (
- (ii) 任意の $g,h\in G$ に対し $(gh)^2=g^2h^2$ が成り立つならば, G はアーベル群である. (

問題 1.6. $C = \{\cos \theta + i \sin \theta \in \mathbb{C} \mid \theta \in \mathbb{R}\}$ (ただし $i = \sqrt{-1}$) とおく.

- (1) C は \mathbb{C}^{\times} の部分群であることを示せ. (
- (2) C の有限部分群はすべて巡回群であることを示せ. ()

問題 1.7. G を群, H を G の部分群, g を G の任意の元とする.

- (1) gHg^{-1} も G の部分群であることを示せ. ()
- (2) G が有限群のとき, G における H の指数 [G:H] と gHg^{-1} の指数 $[G:gHg^{-1}]$ は等しいことを示せ. (

<u>剰余群.</u> G を群, H を G の部分群とする. H が次を満たすとき G の正規部分群であるといい, $G \triangleright H$ または $H \triangleleft H$ と表す:

任意の $g \in G$ に対し $gHg^{-1} = H$ (\Leftrightarrow 任意の $g \in G$ に対し $gHg^{-1} \subset H$).

H が G の正規部分群であるとき, G の H による右剰余類と左剰余類は一致する (任意の $g\in G$ に対し gH=Hg). そして H による剰余類全体の集合 $G/H=\{gH\mid g\in G\}$ は積 $(g_1H)(g_2H)=g_1g_2H$ により群をなす. これを H による G の剰余群という.

準同型写像. G_1,G_2 を群とするとき、写像 $\varphi:G_1\to G_2$ が準同型写像であるとは、任意の $g,h\in G_1$ について $\varphi(gh)=\varphi(g)\varphi(h)$ が成り立つことをいう。全単射な準同型写像を同型写像と呼ぶ。もし G_1 から G_2 への同型写像が存在するなら G_1 と G_2 は同型であるといい、 $G_1\cong G_2$ (または $G_1\simeq G_2$) と書く、

問題 1.8. G_1,G_2 を群とし、単位元はどちらも e で表すことにする. また, $\varphi:G_1\to G_2$ を準同型写像とする.

- (1) $\operatorname{Im} \varphi = \varphi(G_1)$ は G_2 の部分群であることを示せ. ()
- (2) $\operatorname{Ker} \varphi = \{g \in G_1 \mid \varphi(g) = e\}$ は G_1 の正規部分群であることを示せ. ()
- (3) Ker $\varphi = \{e\} \Leftrightarrow \varphi$ は単射、を示せ. ()
- (4) (準同型定理) $G_1/\operatorname{Ker} \varphi \cong \operatorname{Im} \varphi$ を示せ. ()

問題 1.9. G を群とし, H_1, H_2 を G の正規部分群とする.

- (1) 写像 $\varphi:G\to G/H_1\times G/H_2$ を $\varphi(g)=(gH_1,gH_2)$ により定める. このとき φ が準同型写像になることを示し、 $\operatorname{Ker}\varphi$ を求めよ. ()
- (2) G/H_1 と G/H_2 が共にアーベル群ならば $G/(H_1\cap H_2)$ もアーベル群になることを示せ. (

問題 1.10. G を群とし、H を G の部分群とする. このとき G の H による左剰余類全体の集合 $G/H=\{gH\mid g\in G\}$ から右剰余類全体の集合 $H\backslash G=\{Hg\mid g\in G\}$ への全単射が存在することを示せ. (

問題 1.11, G を群, H を G の部分群, K を G の正規部分群とする.

- (1) $H \cap K$ は H の正規部分群であることを示せ. ()
- (2) $HK = \{hk \mid h \in H, k \in K\}$ が G の部分群になることを示せ. ()
- (3) 同型 $HK/K \cong H/(H \cap K)$ を示せ. ()

問題 1.12. G を群とするとき, G のすべての元と可換な元全体 $Z(G)=\{s\in G\mid gs=sg\ (\forall g\in G)\}$ を G の中心という.

- (1) Z(G) は G の正規部分群になることを示せ. (
- (2) G/Z(G) が巡回群ならば G はアーベル群であることを示せ. (