

MEMS digital output touch force sensor

High sensitivity low power capacitance touch force sensor

Key Features

- High sensitivity with low noise level
- 0 to 10N Range with good linearity
- Supply voltage, 1.71V to 3.6V
- Small size 2x2x1.1 mm LGA-12 package
- Digital I2C/SPI output interface
- 14 bit resolution
- Low power consumption
- RoHS compliant
- 10000G high shock survivability

Applications

- Mobile / Smart phone
- Smart watch
- PC mouse pad/ Touchpads
- Video game controller
- Smart bottom
- Smart home application
- Robotic

Product view

The df220 is a low power high performance digital micro touch force sensor developed by MEMS (microelectromechanical system) technology. This highly sensitive force sensor consists of a MEMS element and an ASIC packaged in a 2x2x1.1mm land grid array (LGA). The sensing element is fabricated by single crystal silicon with DRIE process and is protected by hermetically sealed silicon cap from the environment. The device supports a wide range applications requiring accurate measurement of small force (0 to 10N) with data output rate from 1Hz to 1KHz. The sleep mode makes it good for handset power management. Standard I2C and SPI interface is used to communicate with the chip. With such small standard LGA-12 (2mmX2mmX1.1mm), df220 micro touch force sensor is good for applications with limited spacing, pick-and-place assembly and reflow soldering to PCB or flex substrate.

1/28

Content

1.	Pin Descript	tion	6			
	1.1. B	lock Diagram	6			
	1.2. P	in Description	6			
2.	Electrical S	Electrical Specifications				
	2.1. E	lectrical Characteristics	8			
	2.2. A	bsolute Maximum Ratings	9			
		Aechanical Characteristics				
3.	Communica	ation Interface	10			
	3.1. C	Communication Interface Electrical specification	10			
	3.1.1.	SPI Electrical Specification	10			
	3.1.2.	I2C Electrical Specification.	11			
	3.2. D	rigital Interface Operation	12			
	3.2.1.	SPI Operation	12			
	3.2.2.	I2C Operation	13			
4.	Functionali	ty	15			
	4.1. F	unctionality	15			
	4.1.1.	Power Mode	15			
	4.1.2.	Sensor Data	15			
	4.1.3.	Factory Calibration	15			
	4.1.4.	Smart Sensitivity Learning				
	4.2. Ir	nterrupt Controller	16			
	4.2.1.	General Features	16			
	4.2.2.	Mapping				
	4.2.3.	Electrical Behavior (INT1/INT2 to open-drive or push-pull)	17			
	4.2.4.	New Data Interrupt				
5.		ı Hints				
6.	•	apping				
7.		Description				
	7.1. S	PI_CONFIG (00H)	20			
	7.2. C	HIPID (01H)	20			
	7.3. F	orce_N_LSB (06H), Force_N _MSB (07H)	20			
	7.4. N	IEWDATA_FLAG (0AH)	21			
		ORCE_LSB_RANGE (0FH)				
		DR_FORCE (10H)				
		MODE_BW (11H)				
		NT_SET2 (17H)				
		NT_MAP2 (1AH)				
		NT_CONFIG (20H)				
		NT_LATCH (21H)				
8.	•	formation				
		Outline Dimensions				
	8.2. A	ssembly Considerations	26			

Aug 2018 Rev 1.3	DS	df220

	8.3.	Tape and Reel Specification	.27
9.	Revision	History	2.8

List of tables

Table 1. Pin Description	7
Table 2. Electrical Characteristics	8
Table 3. Absolute Maximum Rating	9
Table 4. Mechanical Characteristics	9
Table 5. Electrical Specification of the SPI Interface Pins	10
Table 6. Electrical Specification of the I2C Interface Pins	11
Table 7. Mapping of the Interface Pins	12
Table 8. W1 and W0 Settings	13
Table 9. I2C Address	13
Table 10. SAD+Read/Write Patterns	13
Table 11. Transfer When Master is Writing One Byte to Slave	14
Table 12. Transfer When Master is Writing Multiple Bytes to Slave	14
Table 13. Transfer When Master is Receiving (reading) One Byte of Data From Slave	14
Table 14. Transfer When Master is Receiving (reading) Multiple Bytes of Data From Slave	14
Table 15. Interrupt Mode Selection	16
Table 16. Register Address Map	19
Table 17. SPI_CONFIG Register	20
Table 18. SPI_CONFIG Description	20
Table 19. CHIPID Register	20
Table 20. Force_N _LSB Register	20
Table 21. Force_N _MSB Register	20
Table 22. NEWDATA_FLAG Register	21
Table 23. NEWDATA_FLAG Register Description	21
Table 24.FORCE_LSB_RANGE register	21
Table 25.FORCE_LSB_RANGE register description	21
Table 26. ODR_FORCE Register	22
Table 27. ODR_FORCE Register Description	22
Table 28. MODE_BW Register	22
Table 29. MODE_BW Register Description	22
Table 30. INT_SET2 Register	23
Table 31. INT_SET2 Register Description	23
Table 32. INT_MAP2 Register	23
Table 33. INT_MAP2 Register Description	23
Table 34. INT_CONFIG Register	23
Table 35. INT_CONFIG Register Description	23
Table 36. INT_LATCH Register	24
Table 37. INT_LATCH Register Description	24
Table 38 Document Revision History	28

List of figures

Figure 1. Block Diagram	6
Figure 2. Pin Description Bottom View	6
Figure 3. SPI Slave Timing Diagram	10
Figure 4. I2C Slave Timing Diagram	11
Figure 5. Instruction Phase Bit Field	12
Figure 6. MSB First and LSB First Instruction and Data Phases	13
Figure 7. I2C Protocol	14
Figure 8. Power Mode	15
Figure 9. Interrupt Mode	17
Figure 10. df220 I2C Electrical Connect	18
Figure 11. df220 SPI Electrical Connect	18
Figure 12. 12Pin LGA Mechanical Data and Package Dimensions	25
Figure 13. Side View Force Load	26
Figure 14. Tape and Reel Dimension In mm	27

1. Pin Description

1.1. Block Diagram

Figure 1. Block Diagram

1.2. Pin Description

Top View

Figure 2. Pin Description Bottom View

Table 1. Pin Description

Pin#	Name	I/O Type	Function			
			SPI(4-wire mode) serial data output (SDO)			
	SDO	Digital out	I2C less significant bit of the device address (SA0)			
1	SA0	Digital out Digital in	When using the I2C communication:			
	SAU	Digital iii	SA0 connected to VDDIO or keep floating is for default I2C Addr 0x27			
			SA0 connected to GND is for I2C Addr 0x26			
	SDA		I2C serial data input/output(SDA)			
2	SDI	Digital in/out	SPI(4-wire mode) serial data input (SDI)			
	SDO		3-wire interface serial data input/output (SDO)			
3	VDD_IO	Supply	Power supply for I/O pins			
4	NC		NO internal connection			
5	INT1	Digital out	Interrupt pin1			
6	INT2	Digital out	Interrupt pin2			
7	VDD	Supply	Power supply			
8	GND_IO	Ground	Ground supply for I/O pins			
9	GND	Ground	Ground supply			
10	CCD	Di =:4=1 :=	Chip select for SPI			
10	CSB	Digital in	When using the I2C communication, CSB pin must be connected to VDDIO or floating			
11	NC		NO internal connection			
12	SCL	Digitalia	I2C serial clock (SCL)			
12	SCLK	Digital in	SPI serial clock (SCLK)			

NOTE: NC- NO internal connection

2. Electrical Specifications

2.1. Electrical Characteristics

Vdd = 2.5 V,T = 25 °C unless otherwise noted

Table 2. Electrical Characteristics

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
VDD	Supply voltage		1.62	2.5	3.6	V
VDD_IO	I/O Pins supply voltage		1.62		VDD	V
IDD	symmetrical in normal mode	Top=25°C,		95		uA
וטט	current consumption in normal mode	ODR=125Hz		93		uА
IDD_SM current consumption in suspend mode		Top=25°C		1		uA
TVDD	VDD&VDDIO power up time				100	ms
VIH	Digital high level input voltage	SPI&I2C	0.7*Vdd_IO			V
VIL	Digital low level input voltage	SPI&I2C			0.3*Vdd_IO	V
VOH	high level output voltage		0.9*Vdd_IO			V
VOL	Low level output voltage				0.1*Vdd_IO	V
BW	System bandwidth		100		500	Hz
ODR	Output data rate		1		1000	Hz
TWU	Wake-up time	From stand-by		1		ms
TSU	Start-up time	From power off		3		ms
PSRR	Power Supply Rejection Rate	Top=25°C			20	mg/V

2.2. Absolute Maximum Ratings

Stresses below those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 3. Absolute Maximum Rating

Item	Symbol	Test conditions	Min	Тур.	Max	Unit
C	VDD		-0.3		4.25	V
Supply Voltage	VDDIO		-0.3		4.25	V
Max Force Range	Pr			х3		FS
Temperature Range	Tr		-40		85	$^{\circ}$
Analog pin voltage	Va		-0.3		VDD+0.3	V
Digital output voltage	V_{DO}		-0.3		VDDIO+0.3	V
	HBM			2000		V
ESD Susceptibility	CDM			500		V
	MM			200		V
Storage temperature			-40		85	°C

Note: Supply voltage on any pin should never exceed 4.25V

This is a mechanical shock sensitive device, improper handling can cause permanent damages to the part.

This is an ESD sensitive device, improper handling can cause permanent damages to the part.

2.3. Mechanical Characteristics

Vdd = 2.5 V, T = 25 °C unless otherwise noted

a. The product is factory calibrated at 2.5 V. The operational power supply range is from 1.71V to 3.6 V.

Table 4. Mechanical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
Measurement range(N)	FS	0		10	N
Measurement range(LSB)	FS	-3500		3500	LSB
Sensitivity (T=25 °C)	So		700		lsb/N
noise density (Normal mode 31.25Hz)	Fn		70		uN/sqrt(Hz)
FSTDEA noise (Normal mode 31.25Hz)	Fnoise		0.4		mN
Operation temperature range	Тор	-40		85	$\mathcal C$

Note:

Calibrated measurement range is from 0N to 10N, the accuracy of measurement over 10N is not guaranteed.

3. Communication Interface

3.1. Communication Interface Electrical specification

3.1.1.SPI Electrical Specification

Table 5. Electrical Specification of the SPI Interface Pins

Symbol	Parameter	Condition	Min	Max	Unit
fsclk	Clock frequency	Max load on SDIO or SDO = 25pF		10	MHz
tsckl	SLCK low pulse		20		
tsckh	SLCK high pulse		20		
tsdi_setup	SDI setup time		20		ns
tsDI_hold	SDI hold time		20		ns
tsdo_od	CDO/CDItt-l-l	Load = 25pF		30	ns
	SDO/SDI output delay	Load = 250pF		40	ns
tcsb_setup	CSB setup time		20		ns
tcsb_hold	CSB hold time		40		ns

The figure below shows the definition of the SPI timing given in the above table:

Figure 3. SPI Slave Timing Diagram

3.1.2.I2C Electrical Specification

Table 6. Electrical Specification of the I2C Interface Pins

Symbol	Parameter	Min	Max	Unit
fscl	Clock frequency		400	kHz
tLow	SCL low pulse			us
thigh SCL high pulse		0.6		us
t _{SUDAT}	SDA setup time	0.1		us
thddat	thddat SDA hold time			us
tsusta	Setup Time for a repeated start condition	0.6		us
thdsta	Hold time for a start condition	0.6		us
tsusto	tsusto Setup Time for a stop condition			us
tBUF	t _{BUF} Time before a new transmission can start			us

The figure below shows the definition of the I2C timing given in the above table:

Figure 4. I2C Slave Timing Diagram

3.2. Digital Interface Operation

The df220 supports two serial digital interface protocols for communications as slave with a host device: SPI and I2C. The active interface is selected by the state of the pin CS, 0 selects SPI and 1 selects I2C. By default, SPI operates in 3-wire mode and it can be re-configured by writing 1 to bit 'SDO_active' to work in 4-wire mode. Both interfaces share the same pins. The mapping for each interface is given in the following table:

Table 7.	. Mapping	of the	Interface	Pins
----------	-----------	--------	-----------	------

PIN name	I2C	SPI
SCL/SCLK	Serial clock	Serial clock
SDA/SDI	Serial Data	Data input (4-wire mode).
		Data input/output (3-wire mode)
SA0/SDO	Used to set LSB of I2C address	Data output (4-wire mode)
CSB	Unused	Chip select

3.2.1.SPI Operation

The falling edge of CSB, in conjunction with the rising edge of SCLK, determines the start of framing. Once the beginning of the frame has been determined, timing is straightforward. The first phase of the transfer is the instruction phase, which consists of 16 bits followed by data that can be of variable lengths in multiples of 8 bits. If the device is configured with CSB tied low, framing begins with the first rising edge of SCLK.

The instruction phase is the first 16 bits transmitted. As shown in the following figure, the instruction phase is divided into a number of bit fields.

Figure 5. Instruction Phase Bit Field

The first bit in the stream is the read/write indicator bit (R/W). When this bit is high, a read is being requested, otherwise indicates it is a write operation.

W1 and W0 represent the number of data bytes to transfer for either read or write as shown in the following table(W1 and W0 setting table). If the number of bytes to transfer is three or less (00, 01, or 10), CSB can stall high on byte boundaries. Stalling on a non-byte boundary terminates the communications cycle. If these bits are 11, data can be transferred until CSB transitions high. CSB is not allowed to stall during the streaming process.

The remaining 13 bits represent the starting address of the data sent. If more than one word is being sent, sequential addressing is used, starting with the one specified, and it either increments (LSB first) or decrements (MSB first) based on the mode setting.

Table 8. W1 and W0 Settings

W1:W0	Action	CSB stalling
00	1 byte of data can be transferred.	Optional
01	2 bytes of data can be transferred.	Optional
10	3 bytes of data can be transferred.	Optional
11	4 or more bytes of data can be transferred. CSB must be held low for	No
	entire sequence; otherwise, the cycle is terminated.	

Data follows the instruction phase. The amount of data sent is determined by the word length (Bit W0 and Bit W1). This can be one or more bytes of data. All data is composed of 8-bit words.

Data can be sent in either MSB-first mode or LSB-first mode (by setting 'LSB_first' bit). On power up, MSB-first mode is the default. This can be changed by programming the configuration register. In MSB-first mode, the serial exchange starts with the highest-order bit and ends with the LSB. In LSB-first mode, the order is reversed. The detail is shown in the below figure.

Figure 6. MSB First and LSB First Instruction and Data Phases

Register bit 'SDO_active' is responsible for activating SDO on devices. If this bit is cleared, then SDO is inactive and read data is routed to the SDI pin. If this bit is set, read data is placed on the SDO pin. The default for this bit is low, making SDO inactive.

3.2.2.I2C Operation

I2C bus uses SCL and SDA as signal lines. Both lines are connected to VDDIO externally via pull-up resistors so that they are pulled high when the bus is free. The I2C device address of da213 is shown below. The LSB bit of the 7bits device address is configured via SA0 pin.

Table 9. I2C Address

SAD6	SAD5	SAD4	SAD3	SAD2	SAD1	SAD0	W/R
0	1	0	0	1	1	SAO	0/1

Table 10. SAD+Read/Write Patterns

Command	SAD[6:1]	SAD[0]=SA0	R/W	SAD+R/W
Read	010011	0	1	01001101(4dh)
Write	010011	0	0	01001100(4ch)
Read	010011	1	1	01001111(4fh)
Write	010011	1	0	01001110(4eh)

The I2C interface protocol has special bus signal conditions. Start (S), stop (P) and binary data conditions are shown below. At start condition, SCL is high and SDA has a falling edge. Then the slave address is sent. After the 7 address bits, the direction control bit R/W selects the read or write operation. When a slave device recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL (ACK) cycle.

At stop condition, SCL is also high, but SDA has a rising edge. Data must be held stable at SDA when SCL is high. Data can change value at SDA only when SCL is low.

Figure 7. I2C Protocol

Table 11. Transfer When Master is Writing One Byte to Slave

Master	S	SAD+W		SUB		DATA		P
Slave			SAK		SAK		SAK	

Table 12. Transfer When Master is Writing Multiple Bytes to Slave

Master	S	SAD+W		SUB		DATA		DATA		P
Slave			SAK		SAK		SAK		SAK	

Table 13. Transfer When Master is Receiving (reading) One Byte of Data From Slave

Master	S	SAD+W		SUB		SR	SAD+R			NMASK	P
Slave			SAK		SAK			SAK	DATA		

Table 14. Transfer When Master is Receiving (reading) Multiple Bytes of Data From Slave

Master	S	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMASK	P
Slave			SAK		SAK			SAK	DATA		DATA		DATA		

Note:

Symbol	Symbol explain	Symbol	Symbol explain
SAD	slave address	SAK	slave acknowledge
W	write	MAK	master acknowledge
R	read	NMASK	no master acknowledge
S	start	SUB	Sub-address(register address)
P	stop	DATA	Read or write data
SR	start		

4. Functionality

4.1. Functionality

4.1.1.Power Mode

The df220 has three different power modes. Besides normal mode, which represents the fully operational state of the device, there are two special energy saving modes: low-power mode and suspend mode.

Figure 8. Power Mode

In the normal mode, the device is periodically switching between a sleep phase and a wake-up phase. The wake-up phase essentially corresponding to operation in measure state with complete power-up of the circuitry at the current setting ODR when "autosleep_en" bit of "MODE_BW" (11H) register is set to 0, but "autosleep_en" bit is set to 1, the measure state works at 12.5hz in inactive state and auto switched to operation mode during active state. During the sleep phase the analog part except the oscillator is powered down.

During the wake-up phase, if an enabled interrupt is detected, the device stays in the wake-up phase as long as the interrupt condition endures (non-latched interrupt), or until the latch time expires (temporary latched interrupt), or until the interrupt is reset (latched interrupt). If no interrupt detected, the device enters the sleep phase.

Suspend mode: power-down mode, which is only support I2C and SPI interface.

4.1.2.Sensor Data

The width of acceleration data is 14bits given in two's complement representation. The 14bits for touch force data are split into an MSB part (one byte containing bits 13 to 6) and an LSB lower part (one byte containing bits 5 to 0)

4.1.3. Factory Calibration

The IC is factory calibrated for offset and sensitivity. The trimming values are stored inside the chip's nonvolatile memory. The trimming parameters are loaded to registers while df220 reset (POR or software reset). This allows using the device without further calibration.

4.1.4.Smart Sensitivity Learning

This function can be applied to the stylus, so that the user can re-calibrate the sensor sensitivity according to the actual pressure value to obtain a better user experience.

4.2. Interrupt Controller

Interrupt engines are integrated in the df220. Each interrupt can be independently enabled and configured. If the condition of an enabled interrupt is fulfilled, the corresponding status bit is set to 1 and the selected interrupt pin is activated. There are two interrupt pins, INT1 and INT2; interrupts can be freely mapped to any of these two pins. The pin state is a logic 'or' combination of all mapped interrupts.

4.2.1.General Features

An interrupt is cleared depending on the selected interrupt mode, which is common to all interrupts. There are three different interrupt modes: non-latched, latched and temporary. The mode is selected by the 'latch_int' bits according to the following table.

Table 15. Interrupt Mode Selection

latch_int1/2	Interrupt mode
0000	non-latched
0001	temporary latched 250ms
0010	temporary latched 500ms
0011	temporary latched 1s
0100	temporary latched 2s
0101	temporary latched 4s
0110	temporary latched 8s
0111	latched
1000	non-latched
1001	temporary latched 1ms
1010	temporary latched 1ms
1011	temporary latched 2ms
1100	temporary latched 25ms
1101	temporary latched 50ms
1110	temporary latched 100ms
1111	latched

An interrupt is generated if its activation condition is met. It can't be cleared as long as the activation condition is fulfilled. In the non-latched mode the interrupt status bit and the selected pin (INT1 or INT2) are cleared as soon as the activation condition is no more valid. Exceptions to this behavior are the new data and orientation, which are automatically reset after a fixed time.

In the latched mode an asserted interrupt status and the selected pin are cleared by writing 1 to (0x20) 'reset_int' bit. If the activation condition still holds when it is cleared, the interrupt status is asserted again with the next change of the acceleration registers.

In the temporary mode an asserted interrupt and selected pin are cleared after a defined period of time. The behavior of the different interrupt

modes is shown in the following figure.

Figure 9. Interrupt Mode

4.2.2. Mapping

The mapping of interrupts to the interrupt pins is done by registers 'INT_MAP' (0x19 0x1a and 0x1b), setting *int1_inttype* (e.g. int1_freefall) to 1 can map this type of interrupt to INT1 pin and setting int2_inttype to 1 can map this type interrupt to INT2 pin.

4.2.3. Electrical Behavior (INT1/INT2 to open-drive or push-pull)

Both interrupt pins can be configured to show desired electrical behavior. The active level for each pin is set by register bit int1_lvl (int2_lvl), if int1_lvl (int2_lvl) = 0 (1), then the pin INT1 (INT2) is 1 (0) active.

Also the electric type of the interrupt pin can be selected. By setting int1_od (int2_od) = 1 (0), the interrupt pin output type can be set to be open-drive (push-pull).

4.2.4.New Data Interrupt

This interrupt serves for synchronous reading of force data. It is generated after a force data was calculated. The interrupt is cleared automatically before the next force data is ready.

5. Application Hints

Figure 10. df220 I2C Electrical Connect

Figure 11. df220 SPI Electrical Connect

The device core is supplied through VDD line while the I/O pads are supplied through VDD_IO line. Power supply decoupling capacitors (100 nF ceramic) should be placed as near as possible to the pin 7 and pin 3 of the device (common design practice).

The functionality of the device and the measured acceleration data is selectable and accessible through the I2C or SPI interfaces. When using the I2C, CS must be tied high or keep NC (not connect). The functions, the threshold and the timing of the two interrupt pins (INT1 and INT2) can be completely programmed by the user through the I2C/SPI interface.

6. Register Mapping

The table given below provides a listing of the 8 bit registers embedded in the device and the related addresses:

Table 16. Register Address Map

Name	Туре	Register address	Default	Soft Reset
SPI_CONFIG	RW	0x00	81H	NO
CHIP_ID	R	0x01	13H	NO
Force_N_LSB	R	0x06	00H	YES
Force_N_MSB	R	0x07	00H	YES
NEWDATA_FLAG	R	0x0A	00H	YES
ODR_AXIS	RW	0x10	0FH	YES
MODE_BW	RW	0x11	9EH	YES
INT_SET2	RW	0x17	00H	YES
INT_MAP2	RW	0x1A	00H	YES
INT_CONFIG	RW	0x20	00H	YES
INT_LATCH	RW	0x21	00H	YES

7. Registers Description

7.1. SPI_CONFIG (00H)

Table 17. SPI_CONFIG Register

Default data: 0x81 Type: RW

SDO Active LSB First Soft Reset Unused Soft Reset LSB First SDO Active
--

Table 18. SPI_CONFIG Description

SDO Active	0:3-wire SPI
SDO Active	1:4-wire SPI
LCD E:	0:MSB First
LSB First	1:LSB First
Soft Reset	1: soft reset

7.2. CHIPID (01H)

Table 19. CHIPID Register

Default data: 0x13 Type: R

0	0	0	1	0	0	1	1
U	U	U	1	U	U	1	1

7.3. Force_N_LSB (06H), Force_N _MSB (07H)

Force data, the value is expressed in two complement byte and are left justified.

Table 20. Force_N _LSB Register

Default data: 0x00 Type: R

D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	Unused	Unused

Table 21. Force_N _MSB Register

Default data: 0x00 Type: R

[13]	D[12]	וווןע	D[10]	D[9]	رهاط	[/]	رماط
D[13]	D[12]	D[11]	D[10]	D[9]	D[8]	D[7]	D[6]

7.4. NEWDATA_FLAG (0AH)

Table 22. NEWDATA_FLAG Register

Default data: 0x00 Type: R

unused unused unused unused unused unused unused new	w_data_int
--	------------

Table 23. NEWDATA_FLAG Register Description

-	
novy data int	0: no new_data interrupt
new_data_int	1: new_data interrupt has occurred

7.5. FORCE_LSB_RANGE (0FH)

Table 24.FORCE_LSB_RANGE register

Default data: 0x40 Type: RW

Unused	Unused	Unused	Unused	Unused	Unused	FS[1]	FS[0]
						L. J	L . J

Table 25.FORCE LSB RANGE register description

Tuble 2011 OfficeDDDTuff(GD Teglister description				
	LSB Range			
FS[1:0]	00: disable LSB output			
r3[1.0]	10: enable normal LSB output			
	11: enable high range LSB output			

7.6. ODR_FORCE (10H)

Table 26. ODR_FORCE Register

Default data: 0x0F Type: RW

unused	unused	Force data_disable	unused	ODR[3]	ODR[2]	ODR[1]	ODR[0]	ı

Table 27. ODR FORCE Register Description

Table 27. ODK_TOKCE Register Description					
Force data_disable	0: enable force data				
Force data_disable	1: disable force data				
	0000: 1Hz				
	0001: 1.95Hz				
	0010: 3.9Hz				
	0011: 7.81Hz				
	0100: 15.63Hz				
ODR[3:0]	0101: 31.25Hz				
	0110: 62.5Hz				
	0111: 125Hz				
	1000: 250Hz				
	1001: 500Hz				
	1100-1111: 1000Hz				

7.7. MODE_BW (11H)

Table 28. MODE_BW Register

Default data: 0x9E Type: RW

PWR.	_OFF	unused	unused	unused	unused	BW[1]	BW[0]	autosleep_en
------	------	--------	--------	--------	--------	-------	-------	--------------

Table 29. MODE_BW Register Description

PWR_OFF	0: normal mode					
rwk_orr	1: suspend mode					
	Bandwidth					
DW(1.01	00/11: 500hz					
BW[1:0]	01: 250hz					
	10: 100hz					
Autosloop on	0: working the current ODR state all the way					
Autosleep_en	1: working at 12.5hz in inactive state, automatic switched to normal mode during active state					

7.8. INT_SET2 (17H)

Table 30. INT_SET2 Register

Default data: 0x00 Type: RW

Table 31. INT_SET2 Register Description

	<u> </u>
new_data_int_en	0: disable the new data interrupt.
	1: enable the new data interrupt.

7.9.INT_MAP2 (1AH)

Table 32. INT_MAP2 Register

Default data: 0x00 Type: RW

int2_new_data	unused	int1_new_data						
---------------	--------	--------	--------	--------	--------	--------	--------	---------------

Table 33. INT_MAP2 Register Description

int2_new_data	0: doesn't mapping new data interrupt to INT2
	1: mapping new data interrupt to INT2
int1_new_data	0: doesn't mapping new data interrupt to INT1
	1: mapping new data interrupt to INT1

7.10. INT_CONFIG (20H)

Table 34. INT_CONFIG Register

Default data: 0x00 Type: RW

Reset_int	unused	unused	unused	int2_od	int2_lvl	int1_od	int1_lvl
-----------	--------	--------	--------	---------	----------	---------	----------

Table 35. INT_CONFIG Register Description

Reset_int	Write'1'to reset all latched int.		
Int2_od	0: select push-pull output for INT2		
	1: selects OD output for INT2		
Int2_lvl	0: selects active level high for pin INT2		
	1: selects active level low for pin INT2		
Int1_od	0: select push-pull output for INT1		
	1: selects OD output for INT1		
Int1_lvl	0: selects active level high for pin INT1		
	1: selects active level low for pin INT1		

7.11. INT_LATCH (21H)

Table 36. INT_LATCH Register

Default data: 0x00 Type: RW

Table 37. INT LATCH Register Description

Table 37. INT_LATCH Register Description			
	0000: non-latched		
	0001: temporary latched 250ms		
	0010: temporary latched 500ms		
	0011: temporary latched 1s		
	0100: temporary latched 2s		
	0101: temporary latched 4s		
	0110: temporary latched 8s		
latch_int2[3:0]	0111: latched		
laten_int2[3.0]	1000: non-latched		
	1001: temporary latched 1ms		
	1010: temporary latched 1ms		
	1011: temporary latched 2ms		
	1100: temporary latched 25ms		
	1101: temporary latched 50ms		
	1110: temporary latched 100ms		
	1111: latched		
	0000: non-latched		
	0001: temporary latched 250ms		
	0010: temporary latched 500ms		
	0011: temporary latched 1s		
	0100: temporary latched 2s		
	0101: temporary latched 4s		
	0110: temporary latched 8s		
latch_int1[3:0]	0111: latched		
laten_int1[5.0]	1000: non-latched		
	1001: temporary latched 1ms		
	1010: temporary latched 1ms		
	1011: temporary latched 2ms		
	1100: temporary latched 25ms		
	1101: temporary latched 50ms		
	1110: temporary latched 100ms		
	1111: latched		

8. Package Information

8.1. Outline Dimensions

The sensor housing is a standard LGA package. Its dimensions are the following.

COMMON DIMENSIONS(um)			
PKG		NA	
REF	MIN	NOM	MAX
A	820	900	980
A1		200 REF	
D	1900	2000	2100
Е	1900	2000	2100
F		800	
G		800	
Н		200	

Figure 12. 12Pin LGA Mechanical Data and Package Dimensions

8.2. Assembly Considerations

The df220 sensor is configured to accept a normal load force applied directly to the top of the sensor. The styles or actuator assembly contact area must larger than touch force sensor top contact area (0.8x0.8mm) with the consideration of assembly tolerance.

Figure 13. Side View Force Load

8.3. Tape and Reel Specification

The df220 is shipped in a standard pizza box

The box dimension for 1 reel is: $L \times W \times H = 35 \text{cm} \times 35 \text{cm} \times 5 \text{cm}$

df220 quantity: 5000pcs per reel, please handle with care.

Figure 14. Tape and Reel Dimension In mm

9. Revision History

Table 38. Document Revision History

Date	Revision	Changes
19-Dec2017	1.0	Initial release
01-May2018	1.1	Modify the thickness of metal plate and register nots
21-Jun2018	1.2	Modify the Sensitivity to 700lsb/N
08-Aug2018	1.3	Modify the height of the chip to 1.1mm
		Add Measurement range(LSB) -3500 to +3500
		Add Force_lsb_range register(0x0F)