생산운영관리-4주차

● 생성자때 재환 김Ⅲ 태그엔지니어링

총체적 품질 관리(TQM)와 품질 관리 시스템(QMS)

총체적 품질 관리(TQM)

- 고객 중심: 고객의 요구와 기대 충족이 핵심입니다.
- 리더십과 전략적 계획: 경영진의 적극적 참여와 명확한 전략이 필요합니다.
- 직원 책임과 협력: 모든 직원이 품질 개선에 책임을 지고 협력합니다.
- 지속적 개선: 품질 향상을 위한 끊임없는 노력이 필수적입니다.
- 통계적 방법과 교육: 데이터 기반 의사 결정과 직원 교육을 강조합니다.

품질 관리 시스템(QMS)

- 목표: 고객 만족을 위한 체계적 접근
- 기타 시스템과의 통합: 회사의 다른 시스템과 조화를 이뤄야 합니다.

TQM 원칙

- 1. 품질 관리 가능성: 품질은 관리 가능하며, 반드시 관리해야 합니다.
- 2. 고객 중심의 품질 정의: 고객의 요구가 품질을 결정합니다.
- 3. 경영진의 리더십: 경영진의 적극적 참여와 리더십이 필수적입니다.
- 4. 지속적 품질 개선: 전략적 목표로서 끊임없는 개선을 추구합니다.
- 5. 프로세스 중심의 문제 해결: 품질 문제는 주로 프로세스에서 발생합니다.
- 6. 무결점 기준: 품질 표준은 결함이 없어야 합니다.
- 7. 품질 측정의 중요성: 품질은 반드시 측정되어야 합니다.

TQM 원칙: 고객 중심의 이유

• 고객 만족의 중요성: 만족한 고객은 경쟁사로 이탈할 가능성이 낮습니다.

- 비용 효율성: 기존 고객 유지 비용은 신규 고객 유치 비용의 1/5-1/6에 불과합니다.
- 불만족 고객의 행동:
 - 94-96%의 불만족 고객은 불만을 제기하지 않으며, 91%는 재구매하지 않습니다.
 - 불만을 제기한 고객 중 54-70%는 문제 해결 시 재거래하며, 신속한 해결 시 이 비율은 95%로 증가합니다.
 - 불만족한 고객은 평균 8-10명에게 문제를 전파합니다.

• 긍정적 경험의 중요성:

○ 부정적 경험 하나를 상쇄하려면 12번의 긍정적 서비스 경험이 필요합니다.

TQM 원칙: 고객 중심의 중요성

고객 유지와 만족

- 재고 부족으로 인해 제품을 구매하지 못한 고객 중 약 5%만이 재구매를 시도합니다.
- 고객 이탈 원인: 68%는 공급자의 무관심, 14%는 제품 불만족, 9%는 경쟁사로 인해 거래를 중단합니다.
- 매우 만족한 고객은 단순히 만족한 고객보다 18개월 내 재구매 확률이 4-7배 높습니다.
- 고객 유지율이 5% 증가하면 이익이 80-100% 상승할 수 있습니다.

서비스 품질과 수익성

- 저품질 서비스 기업: 연간 매출의 1%만 수익으로 얻고 시장 점유율 감소
- 고품질 서비스 기업: 연간 매출의 12% 수익 달성, 시장 점유율 연 **6%** 증가

공급망에서의 품질 관리

공급업체와의 관계

- 고객 만족을 위해 공급업체의 지원이 필수적입니다.
- 공급업체 수를 줄이고, 상호 품질 기준에 기반한 파트너십을 구축합니다.

서비스 품질

서비스의 특성

• 서비스 결함은 결과물의 무형성으로 인해 측정이 어렵습니다.

• 서비스는 노동 집약적이며, 제조업과 유사한 투입을 가지나 다른 프로세스와 산출을 보입니다.

서비스 품질 관리

- TQM 원칙은 서비스업과 제조업 모두에 적용됩니다.
- 적시성은 서비스 제공 속도를 나타내는 중요한 품질 차원입니다.
- 벤치마크는 다른 회사들이 목표로 삼는 최고의 품질 수준을 의미합니다.

식스 시그마 (Six Sigma)

개념

- 정의: 거의 완벽한 제품과 서비스를 개발하고 제공하는 프로세스
- 측정 기준: 프로세스의 완벽 대비 편차 측정
- 목표: 백만 기회당 3.4개의 결함(DPMO) 달성

DMAIC 프로세스

© 2014 John Wiley & Sons, Inc. - Russell and Taylor 8e

- 1. Define (정의): 문제를 명확히 식별
- 2. Measure (측정): 프로세스 측정 및 데이터 수집

- 3. Analyze (분석): 데이터를 통한 문제 원인 파악
- 4. Improve (개선): 문제 해결을 위한 솔루션 개발
- 5. Control (통제): 지속적인 개선 보장

품질 비용 (Cost of Quality)

품질 비용은 양질의 제품 생산 비용과 불량 품질로 인한 비용으로 구분됩니다. 이를 통해 기업은 품질 관리의 경제적 측면을 이해하고 최적의 품질 수준을 달성할 수 있습니다.

1. 양질의 제품 생산 비용

- 예방 비용 (Prevention Costs): 품질 문제를 사전에 방지하기 위한 비용
 - o 품질 계획 비용: 품질 관리 프로그램 개발 및 실행
 - o 제품 설계 비용: 품질 특성을 갖춘 제품 설계
 - **프로세스 비용**: 생산 프로세스의 품질 사양 충족 보장
 - o 교육 비용: 직원 및 경영진 대상 품질 교육 프로그램
 - 。 정보 비용: 품질 관련 데이터 관리 및 분석
- 평가 비용 (Appraisal Costs): 제품이나 서비스의 품질 평가 비용
 - o 검사 및 테스트 비용: 제품의 다단계 품질 검사
 - 。 **시험 장비 비용**: 품질 테스트 장비 유지
 - **운영자 비용**: 품질 테스트 관련 인력 및 시간 비용

2. 불량 품질의 비용

- 내부 실패 비용 (Internal Failure Costs): 출하 전 발견된 품질 문제 비용
 - 。 **스크랩 비용**: 저품질 제품 폐기로 인한 손실
 - o **재작업 비용**: 결함 제품의 품질 개선 비용
 - 。 **프로세스 실패 비용**: 저품질 원인 규명 비용
 - **프로세스 다운타임 비용**: 문제 해결을 위한 생산 중단 비용
 - 가격 인하 비용: 저품질 제품의 할인 판매 손실
- **외부 실패 비용 (External Failure Costs)**: 출하 후 발견된 품질 문제 비용
 - 。 고객 불만 처리 비용: 품질 문제로 인한 고객 대응 비용
 - o 제품 반품 처리 비용: 반품 제품 처리 및 교환 비용

○ **보증 청구 비용**: 제품 보증 이행 비용

o 제품 책임 소송 비용: 품질 관련 법적 분쟁 비용

○ **매출 손실 비용**: 품질 문제로 인한 고객 이탈 손실

체계적인 품질 비용 관리를 통해 기업은 품질 향상과 비용 절감을 동시에 달성할 수 있습니다. 예방과 평가 비용에 투자함으로써 실패 비용을 줄일 수 있어, 장기적으로 총 품질 비용을 감소시키고 기업의 경쟁력을 향상시킬 수 있습니다.

품질 비용 구성

Year				
	2009	2010	2011	2012
<u>Quality Costs</u>				
Prevention	27,000	41,500	74,600	112,300
Appraisal	155,000	122,500	113,400	107,000
Internal failure	386,400	469,200	347,800	219,100
External failure	242,000	196,000	103,500	106,000
Total	810,400	829,200	639,300	544,400
Accounting Measures				
Sales	4,360,000	4,450,000	5,050,000	5,190,000
Manufacturing costs	1,760,000	1,810,000	1,880,000	1,890,000

1. 예방 비용 (Prevention Costs)

2009년: \$27,000

2010년: \$41,500

2011년: \$74,600

2012년: \$112,300

2. 평가 비용 (Appraisal Costs)

• 2009년: \$155,000

2010년: \$122,500

2011년: \$113,400

2012년: \$107,000

3. 내부 실패 비용 (Internal Failure Costs)

2009년: \$386,400

• 2010년: \$469,200

2011년: \$347,800

2012년: \$219,100

4. 외부 실패 비용 (External Failure Costs)

• 2009년: \$242,000

• 2010년: \$196,000

2011년: \$103,500

• 2012년: \$106,000

총 품질 비용

	Quality	Quality Manufacturing
Year	Sales Index	Cost Index
2009	18.58	46.04
2010	18.63	45.18
2011	12.66	34.00
2012	10.49	28.80

• **2009년**: \$810,400

• **2010년**: \$829,200

• **2011년**: \$639,300

• **2012년**: \$544,400

품질 지수와 제조 비용 지수

품질 지수 (Quality Index)

계산 방법: (총 품질 비용 ÷ 기준 품질 비용) × 100

• **2009년**: 100.00

• **2010년**: 102.32

• **2011년**: 78.89

• **2012년**: 67.18

제조 비용 지수 (Manufacturing Cost Index)

계산 방법: (제조 비용 ÷ 기준 매출) × 100

• **2009년**: 40.37

• **2010년**: 41.51

• **2011년**: 43.12

• **2012년**: 43.35

품질과 비용의 관계

• 잘못된 작업의 비용은 매출의 20~35%를 차지할 수 있습니다.

• 올바른 작업의 비용은 매출의 3~4%입니다.

통계적 공정 관리 (SPC)

개념

• 목적: 생산 공정을 모니터링하여 불량품을 감지하고 예방합니다.

• 도구: 통계적 기법을 활용하여 공정의 변동성을 이해하고 관리합니다.

구성 요소

• 표본 추출 (Sampling)

• 검사를 위해 생산품의 일부를 선별합니다.

• 관리도 (Control Charts)

- 。 공정이 통계적 관리 한계 내에 있는지 확인합니다.
- 상한 관리선(UCL)과 하한 관리선(LCL)을 설정하여 변동성을 시각적으로 모니터링합니다.

공정 변동성

우연 변동 (Random Variation)

- 특징: 공정에 내재된 자연적인 변동입니다.
- 원인: 장비, 기계, 작업자, 측정 시스템 등에서 발생합니다.
- 관리 가능성: 예측 가능하고 통제 가능한 범위 내에 존재합니다.

이상 변동 (Assignable Variation)

- 특징: 특정 원인으로 인한 예상치 못한 변동입니다.
- 원인: 장비 고장, 불량 원자재, 작업자 실수 등이 해당됩니다.
- 관리 가능성: 식별하고 수정할 수 있습니다.

품질 측정 방법

계수형 데이터 (Attribute Data)

• 특징: 이산적인 응답으로 평가합니다.

• 예시: 양호/불량, 예/아니오, 합격/불합격

계량형 데이터 (Variable Data)

• 특징: 연속적으로 측정 가능한 특성입니다.

• 예시: 무게, 길이, 전압, 부피

관리도 (Control Charts) 설명

속성 차트 (Attributes Chart)

• p-차트: 불량품의 비율을 추적합니다.

• c-차트: 단위당 결함 수를 모니터링합니다.

변수 차트 (Variables Chart)

• **x-차트 (Mean Chart)**: 샘플 평균을 통해 프로세스의 중심 경향을 관찰합니다.

• R-차트 (Range Chart): 샘플 간 범위로 프로세스 변동성을 파악합니다.

프로세스 관리도

구성 요소

- 상한선 (UCL)과 하한선 (LCL): 프로세스의 통제 상태를 판단하는 기준선입니다.
- 프로세스 평균: 중앙선으로 프로세스의 평균을 나타냅니다.

통제 상태

- 데이터 포인트가 UCL과 LCL 사이에 있으면 프로세스가 통제 상태입니다.
- 포인트가 이 범위를 벗어나면 "통제 불능" 상태로, 원인 분석이 필요합니다.

관리도 패턴 식별

패턴 인식 기준

- 중심선 한쪽에 8개의 연속된 점
- 8개의 연속된 점이 상승 또는 하강
- 14개의 점이 교대로 상승 및 하강
- 영역 A에서 3개 연속 점 중 2개
- 영역 A 또는 B에서 5개 연속 점 중 4개

패턴 예시

• 샘플 관측치가 지속적으로 중심선 위나 아래에 있으면 비정상적 변동을 나타낼 수 있습니다.

관리도 패턴 설명

- 증가 패턴: 샘플 관측치가 지속적으로 증가하는 경우
- 감소 패턴: 샘플 관측치가 지속적으로 감소하는 경우

이러한 패턴은 프로세스에 비정상적인 변동이 있음을 시사합니다. 지속적인 증가나 감소는 프로세스의 변화 또는 문제를 나타낼 수 있습니다.