교과서 변형문제 기본

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일: 2020-03-10

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

개념check /

[삼각함수의 최대, 최소와 주기]

삼각함수	최댓값	최솟값	주기
$y = a \sin bx + c$	a +c	- a +c	2π
$y = a \cos bx + c$			b
y = a tan bx + c	없다.	없다.	$\frac{\pi}{ b }$

[삼각함수를 포함한 식의 최대, 최소]

- ① 각을 통일: 삼각함수의 각이 $2\pi \pm x$, $\pi \pm x$, $\frac{\pi}{2} \pm x$ 등과 같이 여러 가지로 표현되어 있으면 각을 x로 통일한다.
- ② 한 종류의 삼각함수로 통일
- ③ 삼각함수를 t로 치환 (이때 t의 값의 범위에 주의)
- ④ t에 대한 함수의 그래프를 그려서 최댓값과 최솟값을 구한다.

기본문제

[예제]

- **1.** 함수 $y=3\sin\frac{\pi}{2}x$ 의 그래프를 x축의 방향으로 $\frac{1}{4}\pi$ 만큼, y축의 방향으로 -2만큼 평행이동한 그래
 - 프의 식을 y = f(x)의 주기는 a, 최댓값은 b이다. a+b의 값은?
 - \bigcirc 2

② 3

- 3 4
- **4**) 5

⑤ 6

- **2.** 다음 함수 중에서 함수 $y = \sin \frac{4\pi}{3} x$ 와 동일한 주 기와 치역을 갖는 것은?

①
$$y = 2\cos\left(-\frac{4\pi}{3}x\right)$$
 ② $y = \left|\sin\left(\frac{2\pi}{3}x\right)\right|$

(3)
$$y = 2 \left| \cos \left(\frac{2\pi}{3} x \right) \right| - 1$$
 (4) $y = \tan \frac{2\pi}{3} x$

$$y = \tan \frac{2\pi}{3} x$$

[문제]

3. 함수 $f(x) = 3\sin 2\pi x + 1$ 에 대하여 주기와 치역을 각각 순서대로 알맞게 나열한 것은?

① 1, $\{y \mid -1 \le y \le 3\}$ ② 1, $\{y \mid -2 \le y \le 4\}$

2-2-2.삼각함수의 주기 및 최대, 최소_천재(류희찬)

 $31, \{y|1 \le y \le 3\}$ $2, \{y|-2 \le y \le 4\}$

(5) 2, $\{y \mid -1 \le y \le 3\}$

4. 다음 〈보기〉 중 함수 $y = 2\cos 3x + 2$ 에 대한 설 명으로 옳은 것을 있는 대로 고른 것은?

<보기>

- \neg . 주기가 3π 인 주기함수이다.
- ㄴ. 최솟값은 0이다.
- ㄷ. 그래프는 원점에 대하여 대칭이다.

③ ¬, ⊏

④ ∟, ⊏

⑤ 7, ∟, ⊏

[문제]

5. 다음 중 $y = 3\sin(2x-4) + 1$ 와 비교했을 때, 주기와 최댓값이 모두 같은 함수는?

① $y = \cos(x-2) + 3$

② $y = 2\sin(x-2) + 2$

 $y = \tan(x-2) + 4$

 $y = 2\cos 2x + 2$

(5) $y = -2\sin 2x + 6$

6. 함수 $y = a_{\sin \pi} \left(x - \frac{1}{3} \right) - b$ 의 그래프가 아래 그림 과 같을 때, 상수 a, b, c에 대하여 abc의 값은? (단, a > 0)

① 1

② 2

3 3

(4) 4

(5) 5

- [예제]
- 7. 함수 $y = \tan(ax b)$ 의 그래프가 다음 그림과 같 을 때, 상수 a, b에 대하여 a+b의 값은? (단, a > 0, $0 < b < \pi$)

- ① $\frac{1}{6}\pi$
- $3\frac{1}{2}\pi$

- **8.** 다음 중 함수 $y = \cos(3\theta 2) + 2$ 와 주기가 같은 함수는?
 - ① $y = \sin\theta + 3$
- ② $y = -|\cos 3\theta| + 2$
- (3) $y = \tan\left(\frac{3}{2}\theta + \frac{3}{2}\right)$ (4) $y = -\sin 2\theta + 3\pi$
- ⑤ $y = \tan(3\theta 2) + 2$

평가문제

[스스로 확인하기]

- 9. 다음 중 $y = \tan \pi x$ 에 대한 설명으로 옳은 것을 있는대로 고른 것은?
- ㄱ. 정의역은 실수 전체의 집합이다.
- ㄴ. 원점에 대하여 대칭이다.
- ㄷ. 주기는 1이다.

- 2 L
- ③ ¬, ⊏
- ④ ∟, ⊏
- ⑤ ᄀ, ㄴ, ㄷ

[스스로 확인하기]

- **10.** 삼각함수 $y = \frac{2}{3}\sin(\frac{2}{3}\pi x 2) + \frac{1}{3}$ 의 주기가 p, 치역이 $\{y|q\leq y\leq r\}$ 일 때, p imes(r-q)의 값은?
 - 1 1
- ② 2

- 3 3
- 4

⑤ 5

[스스로 확인하기]

- **11.** 함수 $y = a \cos bx + 1$ 의 최댓값이 5이고 주기가 3π 일 때, 양수 a, b에 대하여 $\frac{a}{b}$ 의 값은?
 - 1) 6

- 2 7
- 3 8

- **4** 9
- (5) 10

[스스로 마무리하기]

12. 다음 그림은 함수 $f(x) = a\cos b \left(x - \frac{\pi}{4}\right)$ 의 그래프 이다. a+b의 값은? (단, $a>0,\ b>0$)

1 4

2 5

3 6

4 7

⑤ 8

[스스로 마무리하기]

- **13.** $0 \le x < 2\pi$ 에서 함수 $y = 3\cos^2 x + 2\sin x + 1$ 의 최댓값과 최솟값의 합은?
 - ① $\frac{7}{3}$

- 3 3
- $4 \frac{10}{3}$

4

정답 및 해설

1) [정답] ④

[해설] $y=3\sin\frac{\pi}{2}x$ 의 그래프를 x축의 방향으로 $\frac{\pi}{4}$ 만 큼, y축의 방향으로 -2만큼 평행이동한 그래프 의 식은

$$y = 3\sin\left\{\frac{\pi}{2}\left(x - \frac{\pi}{4}\right)\right\} - 2$$
이므로

주기
$$a = \frac{2\pi}{\frac{\pi}{2}} = 4$$
이고

최댓값 b=3-2=1이므로 a+b=5

2) [정답] ③

[해설] 함수
$$y = \sin \frac{4\pi}{3} x$$
의 주기는 $\frac{2\pi}{\frac{4\pi}{3}} = \frac{3}{2}$,

치역은
$$\{y \mid -1 \le y \le 1\}$$
이다.

①
$$y = 2\cos\left(-\frac{4\pi}{3}x\right)$$
의 주기는 $\frac{2\pi}{\frac{4\pi}{3}} = \frac{3}{2}$,

치역은
$$\{y|-2 \le y \le 2\}$$
이다.

②
$$y = \left| \sin\left(\frac{2\pi}{3}x\right) \right|$$
의 주기는 $\frac{1}{2} \times \frac{2\pi}{\frac{2\pi}{3}} = \frac{3}{2}$,

치역은 $\{y|0 \le y \le 1\}$ 이다.

③
$$y=2\left|\cos\left(\frac{2\pi}{3}x\right)\right|-1$$
의 주기는 $\frac{1}{2}\times\frac{2\pi}{\frac{2\pi}{3}}=\frac{3}{2}$,

치역은
$$\{y | -1 \le y \le 1\}$$
이다.

④
$$y = \tan \frac{2\pi}{3} x$$
의 주기는 $\frac{\pi}{\frac{2\pi}{3}} = \frac{3}{2}$,

치역은 $\{y|y$ 는모든실수 $\}$ 이다.

⑤
$$y = \cos\left(\frac{2\pi}{3}x\right)$$
의 주기는 $\frac{2\pi}{2\pi} = 3$,

치역은 $\{y \mid -1 \le y \le 1\}$ 이다.

3) [정답] ②

[해설] 함수 $f(x) = 3\sin 2\pi x + 1$ 에 대하여

주기는
$$\frac{2\pi}{|2\pi|}=1$$
, 치역은 $-|3|+1 \le y \le |3|+1$ 이 므로 $\{y|-2 \le y \le 4\}$ 이다.

4) [정답] ②

[해설] ㄱ. $y = a\cos bx$ 에서 주기는 $\frac{2\pi}{|b|}$ 이므로

$$y = 2\cos 3x + 2$$
의 주기는 $\frac{2}{3}\pi$ 이다. (거짓)

ㄴ. $y = a_{COS}bx + c$ 에서 최솟값은 -|a| + c이므로 $y = 2_{COS}3x + 2$ 의 최솟값은 0이다. (참)

 \Box . 그래프는 y축에 대하여 대칭이다. (거짓)

이상에서 옳은 것은 ㄴ이다.

5) [정답] ④

[해설] $y = 3\sin(2x-4) + 1$ 의 주기는 $\frac{2\pi}{2} = \pi$, 최댓값 은 3+1=4이다.

①
$$y = \cos(x-2) + 3$$
의 주기는 $\frac{2\pi}{1} = 2\pi$, 최댓값

②
$$y = 2\sin(x-2) + 2$$
의 주기는 $\frac{2\pi}{1} = 2\pi$, 최댓값

③
$$y = \tan(x-2) + 4$$
의 주기는 $\frac{\pi}{1} = \pi$, 최댓값은

없다.

④
$$y = 2\cos 2x + 2$$
의 주기는 $\frac{2\pi}{2} = \pi$, 최댓값은 $2+2=4$ 이다.

⑤
$$y=-2\sin 2x+6$$
의 주기는 $\frac{2\pi}{2}=\pi$, 최댓값은 $|-2|+6=8$ 이다.

6) [정답] ⑤

[해설] 주어진 함수의 최댓값이 1, 최솟값이 -5이고 a>0이므로

$$a-b=1$$
, $-a-b=-5$

위의 두 식을 연립하여 풀면 a=3, b=2

따라서 주어진 함수의 식은 $y=3\sin\pi\left(x-\frac{1}{3}\right)-2$

이고 그래프의 주기가
$$2 \times \left(c + \frac{1}{6}\right)$$
이므로

$$\frac{2\pi}{\pi} = 2\left(c + \frac{1}{6}\right) = 2$$
, $c = \frac{5}{6}$

$$\therefore abc = 3 \times 2 \times \frac{5}{6} = 5$$

7) [정답] ④

[해설] 주어진 그래프의 주기가 3이고 a > 0이므로

$$\frac{\pi}{a} = 3$$
, $a = \frac{1}{3}\pi$

따라서 주어진 함수는 $y = \tan\left(\frac{1}{3}\pi x - b\right)$ 이고, 이

함수의 그래프가 점 (1, 0)을 지나므로

$$\tan\left(\frac{1}{3}\pi - b\right) = 0$$
, $b = \frac{1}{3}\pi$

$$\therefore a+b=\frac{2}{3}\pi$$

8) [정답] ③

[해설] $y = \cos(3\theta - 2) + 2$ 의 주기는 $\frac{2}{3}\pi$ 이다.

①
$$y = \sin\theta + 3$$
의 주기는 2π 이다

②
$$y = -|\cos 3\theta| + 2$$
의 주기는 $\frac{1}{2} \times \frac{2\pi}{3} = \frac{1}{3}\pi$ 이

다

③
$$y = \tan\left(\frac{3}{2}\theta + \frac{3}{2}\right)$$
의 주기는 $\frac{\pi}{\frac{3}{2}} = \frac{2}{3}\pi$ 이다.

④
$$y = -\sin 2\theta + 3\pi$$
의 주기는 $\frac{2\pi}{2} = \pi$ 이다.

⑤
$$y = \tan(3\theta - 2) + 2$$
의 주기는 $\frac{\pi}{3}$ 이다.

9) [정답] ④

[해설] ㄱ. 정의역은
$$x=\frac{1}{2}(2n+1)$$
 $(n$ 은 정수)을 제외한 모든 실수이다. (거짓)
 ㄴ. $y=\tan\pi x$ 의 그래프는 원점에 대하여 대칭이다. (참)

ㄷ.
$$y = \tan \pi x$$
의 주기는 $\frac{\pi}{\pi} = 1$ 이다. (참)

10) [정답] ④

[해설]
$$y = a \sin(bx+c) + d$$
에서 주기는 $\frac{2\pi}{|b|}$, 치역은 $\{y|-|a|+d \le y \le |a|+d\}$ 이므로 $y = \frac{2}{3} \sin\left(\frac{2}{3}\pi x - 2\right) + \frac{1}{3}$ 의 주기는 $\frac{2\pi}{\frac{2}{3}\pi} = 3$ 이고 치역은 $\left\{y\left|-\frac{2}{3} + \frac{1}{3} \le y \le \frac{2}{3} + \frac{1}{3}\right.\right\}$, 즉 $\left\{y\left|-\frac{1}{3} \le y \le 1\right.\right\}$ 이다. 따라서 $p = 3$, $q = -\frac{1}{3}$, $r = 1$ 이므로 $p \times (r-q) = 3 \times \left\{1 - \left(-\frac{1}{3}\right)\right\} = 4$

11) [정답] ①

[해설]
$$f(x) = a\cos bx + 1$$
 이라 하면 주기는 $\frac{2\pi}{|b|}$ 이다.
$$\begin{array}{l} \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2}{3} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2}{3} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2}{3} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2}{3} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{3} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{3} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{3} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{3} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{3} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{3} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{3} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{3} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{3} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{3} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{3} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{3} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{3} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{3} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{3} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{3} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} \\ \\ \displaystyle \stackrel{\textstyle \sim}{=} \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} = 3\pi, \ b = \frac{2\pi}{b} = 3\pi, \ b = 3\pi, \ b = 3\pi, \ b = 3\pi, \ b =$$

12) [정답] ②

[해설] 주어진 그림에서 함수
$$y=f(x)$$
의 최댓값이 2, 최솟값이 -2 이므로 $a=2$
$$\frac{5}{12}\pi - \left(-\frac{1}{4}\pi\right) = \frac{2}{3}\pi$$
이므로 함수 $y=f(x)$ 의 주기는 $\frac{2}{3}\pi$ 이다.
$$\frac{2\pi}{b} = \frac{2\pi}{3}$$
에서 $b=3$ 따라서 $a+b=5$

13) [정답] ④

[해설]	$y = 3\cos^2 x + 2\sin x + 1 \text{ only}$	$\cos^2 x = 1 - \sin^2 x$
0]_	므로 $y = -3\sin^2 x + 2\sin x + 4$	
sin	$x = t$ 로 놓으면 $-1 \le t \le 1$	
주여	거진 함수는	
y =	$=-3t^2+2t+4$	
f(t)	t) =-3t²+2t+4로 놓으면	
f(t)	$t) = -3\left(t - \frac{1}{3}\right)^2 + \frac{13}{3}$	
-1	$1 \le t \le 1$ 에서 함수 $y = f(t)$ 는	<u>-</u> -
t =	$\frac{1}{3}$ 일 때 최댓값 $\frac{13}{3}$,	
t =	·-1일 때 최솟값 -1을 갖는	다.
따급	라서 최댓값과 최솟값의 합은	
$\frac{13}{3}$	$-+(-1)=\frac{10}{3}$	