10 Irréductibilité des polynômes cyclotomiques sur \mathbb{Z}

Leçons 102, 141(, 120, 121, 144)

Ref: [Perrin] III.4

On démontre ici l'irréductibilité des polynômes cyclotomiques sur \mathbb{Q} , et on en déduit celle sur \mathbb{Z} . Les arguments en gris peuvent suivant la leçon être à énoncer rapidement, ou bien demandent un peu plus d'attention et de détails.

On introduit le n-ième polynôme cyclotomique sur le corps \mathbb{K} , que l'on note $\Phi_{n,\mathbb{K}}$. Si $\mathbb{K} = \mathbb{Q}$, on notera simplement Φ_n . On note μ_n (resp. μ_n^*) l'ensemble des racines (resp. primitives) n-ième de l'unité.

Proposition 1 Φ_n est à coefficients dans \mathbb{Z} .

Démonstration. On procède par récurrence forte sur n. Comme $\Phi_1(X) = X - 1$, le résultat est vrai pour n = 1. Supposons maintenant qu'il l'est pour tout d < n, avec $n \ge 2$. On note $P = \prod_{\substack{d \mid n \ d \ne n}} \Phi_d$, qui

est un polynôme à coefficients dans \mathbb{Z} par hypothèse de récurrence. De plus, puisque tous les $\Phi_{k,\mathbb{K}}$ sont unitaires, quelquesoit l'entier k et le corps \mathbb{K} , P est unitaire. On peut donc effectuer la division euclidienne de X^n-1 par P dans $\mathbb{Z}[X]:X^n-1=PQ+R$ avec $Q,R\in\mathbb{Z}[X]$ et $\deg(R)<\deg(P)$. Or on sait que $X^n-1=\Phi_nP^1$, donc $R=P(\Phi_n-Q)$, et pour des raisons de degré, les deux membres de l'égalité sont nuls. Donc $\Phi_n=Q\in\mathbb{Z}[X]$.

Théorème 2 Φ_n est irréductible sur \mathbb{Z} .

Démonstration.

Étape 1. Polynômes minimaux des racines primitives de l'unité sur Q.

On se donne un corps de décomposition de Φ_n sur \mathbb{Q} , que l'on note \mathbb{K} , et une racine n-ième primitive de l'unité $\zeta \in \mathbb{K}$. On note μ le polynôme minimal de ζ sur \mathbb{Q} . Montrons que $\mu \in \mathbb{Z}[X]$ et μ divise Φ_n dans $\mathbb{Z}[X]$.

Comme $\mathbb{Z}[X]$ est factoriel, on écrit $\Phi_n = P_1..P_r$ la décomposition de Φ_n en produit d'irréductibles dans \mathbb{Z} . Puisque Φ_n est unitaire, on peut supposer (quitte à le multiplier par -1) que P_i est unitaire, pour tout $i \in [1, r]$. Mais comme ζ est racine de l'un des P_i , et que celui-ci est irréductible unitaire sur \mathbb{Z} , et donc sur \mathbb{Q} , on a $\mu = P_i$. Donc $\mu \in \mathbb{Z}[X]$ est μ divise Φ_n dans \mathbb{Z} .

Étape 2. Les puissances d'une même racine primitive ont le même polynôme minimal.

Soit maintenant $p \in \mathfrak{P}$ un nombre premier ne divisant pas n. Alors ζ^p est aussi une racine primitive n-ième de l'unité dans \mathbb{K} . On note ν son polynôme minimal. Montrons que $\mu = \nu$. Supposons par l'absurde que c'est faux. Alors μ et ν sont deux polynômes irréductibles distincts qui divisent Φ_n dans \mathbb{Z} , donc leur produit le divise aussi. De plus, comme $\nu(\zeta^p) = 0$, ζ est racine de $\nu(X^p) \in \mathbb{Z}[X]$. On en déduit que μ divise $\nu(X^p)$ dans $\mathbb{Q}[X]$. Montrons que c'est aussi vrai dans $\mathbb{Z}[X]$: on se donne $P \in \mathbb{Q}[X]$ tel que $\nu(X^p) = \mu(X)P(X)$. On se donne $P \in \mathbb{Q}[X]$ tel que P = Q et $Q \in \mathbb{Z}[X]$ soit primitif, et on applique le lemme de Gauß:

$$1 = c(\nu(X^p)) = qc(\mu)c(Q) = q,$$

car ν et μ sont unitaires, et Q primitif. Donc q=1, ce qui signifie que P est bien dans $\mathbb{Z}[X]$.

On projette alors cette égalité dans \mathbb{F}_p . On a $\overline{\nu}(X^p) = \overline{\nu}(X)^p$.

En effet, on note
$$\nu(X) = \sum_{i=0}^k a_i X^i$$
, et on a $\overline{\nu}(X^p) = \sum_{i=0}^k \overline{a_i} X^{pi} = \left(\sum_{i=0}^k \overline{a_i} X^i\right)^p = \overline{\nu}(X)^p$.

Ainsi, $\overline{\nu}^p = \overline{\mu}\overline{P}$. On se donne un facteur irréductible φ de $\overline{\mu}$ sur \mathbb{F}_p . D'après le lemme d'Euclide, comme φ divise $\overline{\nu}^p$, alors il divise $\overline{\nu}$. Or comme $\mu\nu$ divise Φ_n sur \mathbb{Z} , $\overline{\mu\nu}$ divise $\overline{\Phi}_n$ sur \mathbb{F}_p , mais $\overline{\Phi}_n$ est en fait Φ_{n,\mathbb{F}_p}^2 , donc $\overline{\mu\nu}$ divise Φ_{n,\mathbb{F}_p} sur \mathbb{F}_p . Donc φ^2 est un facteur carré de Φ_{n,\mathbb{F}_p} , ce qui est absurde.

En effet, la dérivée de $X^n - 1$ est nX^{n-1} , qui n'admet que 0 comme racine dans \mathbb{F}_p , car n et p sont premiers entre eux. Donc, comme 0 n'est pas racine de $X^n - 1$, celui-ci n'a que des racines simples. On en déduit que sur \mathbb{F}_p , les polynômes cyclotomiques n'ont pas de facteurs carrés.

- 1. Cela vient de l'égalité $\mu_n(\mathbb{K}) = \bigcup_{d \mid n} \mu_d^*(\mathbb{K}).$
- 2. Cela se montre par récurrence forte en utilisant un procédé similaire à celui de la proposition précédente.

Donc $\mu = \nu$.

Étape 3. Autres racines et conclusion.

Si ζ' est une racine primitive n-ième de l'unité, on peut écrire $\zeta' = \zeta^m$, avec m premier avec n, et donc décomposable en un produit $p_1..p_r$ de nombre premiers ne divisant pas n. Par récurrence sur r^3 , on montre alors en appliquant directement la seconde étape que ζ' et ζ ont le même polynôme minimal sur \mathbb{Q} , et que celui-ci est μ . Donc, comme μ admet les $\varphi(n)$ racines primitives de l'unité comme zéros, il est de degré au moins $\varphi(n)$. Or Φ_n est de degré $\varphi(n)$, divisible par μ , et les deux sont unitaires. Donc $\mu = \Phi_n$, et donc Φ_n est irréductible sur \mathbb{Q} . Comme il est unitaire et à coefficients dans \mathbb{Z} , il est primitif, et donc irréductible sur \mathbb{Z} .

^{3.} On applique l'étape 2 à $\widetilde{\zeta} := \zeta^{p_1 \cdots p_{r-1}}$ et $\widetilde{\zeta}^{p_r} = \zeta'$ pour montrer que leur polynôme minimal sur $\mathbb Q$ est le même.