Lecture 13 Shortest Paths Exercises ANS

Department of Computer Science Hofstra University

Exam question: Given this directed graph, run Dijkstra's Algo to find shortest paths starting from source node A. Give the node visit order, and fill in this table of SN (Shortest Distance) and PN (Previous Node), crossing out old SD and PN as you find a shortcut path with smaller SD

Node	SD	PN
Α		
В		
С		
D		
E		
F		
G		

Visit Order

Node	SD	PN
Α	∞	
В	∞	
С	∞	
D	∞	
E	∞	
F	∞	
G	∞	

<u>Visit Order</u> A

Node	SD	PN
Α	0	/
В	∞	
С	2	A
D	1	Α
E	∞	
F	∞	
G	∞	

<u>Visit Order</u> A, D

We can choose to visit either C or E next, since they have equal smallest SD of 2 among all unvisited nodes. Let's visit C in alphabetical order

Node	SD	PN
Α	0	/
В	6	D
С	2	Α
D	1	Α
Е	2	D
F	7	D
G	6	D

Visit Order A, D, C

Node	SD	PN
Α	0	/
В	6	D
С	2	Α
D	1	Α
E	2	D
F	74	D C
G	6	D

Visit Order A, D, C, E

Node	SD	PN
Α	O	1
В	€3	ÐE
С	2	Α
D	1	Α
E	2	D
F	74	ÐC
G	6	D

Visit Order A, D, C, E, B

Node	SD	PN
Α	0	1
В	6 3	ÐE
С	2	Α
D	1	Α
Е	2	D
F	74	ÐC
G	6	D

Visit Order
A, D, C, E, B, F

Node	SD	PN
Α	Ο	1
В	6 3	ÐE
С	2	Α
D	1	Α
E	2	D
F	74	ÐC
G	6	D

Q. Dijkstra's Algorithm Final Answer

Visit Order
A, D, C, E, B, F, G

Node	SD	PN
Α	Ο	/
В	6 3	ÐE
С	2	Α
D	1	Α
E	2	D
F	74	ÐC
G	6	D

Q. Dijkstra's Algorithm (Source Node S)

ANS

Node	SD	PN
S	0	/
А		
В		

ANS

Node	SD	PN
S	0	/
А		
В		

ANS

Node	SD	PN
S	0	/
А		
В		

ANS

Node	SD	PN
S	0	1
А		
В		

Q. Dijkstra's Algorithm (Source Node S) Final Answer

ANS

Node	SD	PN
S	0	/
Α	2	S
В	4 3	\$ A

ANS

Node	SD	PN
S	0	/
А	2	S
В	4	S

ANS

Node	SD	PN
S	0	/
А	2	S
В	4	S

ANS

Node	SD	PN
S	0	/
А	5	В
В	4	S

Q. Dijkstra's Algorithm (Source Node A, Undirected Graph)

<u>Visit Order</u>

Node	SD	PN
Α		
В		
С		
D		
Е		

Initialize

Visit Order

Node	SD	PN
Α	0	/
В	∞	
С	∞	
D	∞	
Е	∞	

Visit Node A

Node	SD	PN
Α	0	/
В	3	Α
С	1	Α
D	∞	
E	∞	

Visit Node C

Visit Order A, C

Node	SD	PN
Α	0	/
В	3 2	AC
С	1	Α
D	∞	
E	5	С

Visit Node B

Visit Order A, C, B

Node	SD	PN
Α	0	/
В	3 2	A C
С	1	Α
D	5	В
E	5 3	€B

Visit Node E

Visit Order A, C, B, E

Node	SD	PN
Α	0	/
В	3 2	A C
С	1	А
D	5	В
E	5 3	€B

Nothing changes

Visit Node D

Visit Order A, C, B, E, D

Node	SD	PN
Α	О	/
В	3 2	A C
С	1	Α
D	5	В
E	5 3	€B

Nothing changes

Q. Dijkstra's Algorithm (Source Node P, Directed Graph)

Q. Dijkstra's Algorithm (Source Node P, Directed Graph) Final Answer

Visit order: P, Q, R, U, S, T

Node	SD	PN
Р	0	
Q	1	Р
R	2	Q
S	6 5 4	₽QR
Т	7	Р
U	3	R

Q. Topological Sort

Consider this DAG, use Topological Sort to find Shortest Paths in DAG, considering all possible topological orders

Visit Order

0, 1, 4, 7, 5, 2, 3, 6

Node	SD	PN
Α	0	/
В		
С		
D		
E		

Q. Topological Sort Final Answer

Consider this DAG, use Topological Sort to find Shortest Paths in DAG, considering all possible topological orders

Visit Order
A, B, C, D, E

Visit Order A, C, B, D, E

Node	SD	PN
Α	0	
В	10	Α
С	1	Α
D	-10	В
E	-9	D

Node	SD	PN
Α	0	
В	10	Α
С	1	Α
D	2 -10	€B
E	-9	D