Results simulation study DelayedGSD

January 19, 2023

1 Rejection rate

Power by method (columns) and scenario (rows): (nominal level 0.8) N missing binding fixC ar method 1 method 2 method 3 scenario 1 10000 80.79 TRUE TRUE FALSE 10 81.00 80.45 3 10000 TRUE TRUE FALSE 5 80.60 80.45 80.21 5 10000 TRUE TRUE TRUE 10 79.81 80.41 80.39 7 10000 TRUE TRUE 5 TRUE 80.00 80.46 80.08 9 10000 TRUE FALSE TRUE 10 80.50 80.85 80.91 11 10000 TRUE FALSE TRUE 80.73 80.75 80.82 13 10000 TRUE FALSE FALSE 10 80.67 80.60 80.65 15 10000 TRUE FALSE FALSE 80.65 80.64 80.46 17 10000 **FALSE** TRUE FALSE 5 79.93 80.31 80.28

⚠ slightly too high power for some scenario

Type 1 error by method (columns) and scenario (rows): (nominal level 0.025)

```
scenario
             N missing binding fixC ar method 1 method 2 method 3
       2 10000
                   TRUE
                           TRUE FALSE 10
                                              2.46
                                                        2.53
                                                                 2.40
       4 10000
                   TRUE
                           TRUE FALSE 5
                                              2.42
                                                        2.41
                                                                 2.40
       6 10000
                   TRUE
                           TRUE
                                 TRUE 10
                                              2.25
                                                        2.25
                                                                 2.45
       8 10000
                   TRUE
                           TRUE
                                 TRUE 5
                                              2.42
                                                        2.39
                                                                 2.50
      10 10000
                          FALSE
                                 TRUE 10
                   TRUE
                                              2.09
                                                        2.09
                                                                 2.26
      12 10000
                   TRUE
                          FALSE
                                 TRUE
                                              2.30
                                                        2.28
                                                                 2.33
      14 10000
                                              2.29
                                                        2.28
                                                                 2.46
                   TRUE
                          FALSE FALSE 10
      16 10000
                   TRUE
                          FALSE FALSE
                                              2.38
                                                        2.37
                                                                 2.46
      18 10000
                 FALSE
                           TRUE FALSE 5
                                              2.46
                                                        2.44
                                                                 2.45
```

⚠ slightly too lower type 1 error for some scenario

2 Conclusion of the trial

Relative frequency of stopping for efficacy/futility at decision/final

\bullet Method 1

	N	missing	hypo	binding	fixC	ar	decision.eff	decision.fut	final.eff	final.fut
1:	10000	TRUE	power	TRUE	FALSE	10	37.82	6.050	43.18	13.0
2:	10000	TRUE	typeI	TRUE	FALSE	10	0.79	70.850	1.67	26.7
3:	10000	TRUE	power	TRUE	FALSE	5	35.60	6.020	45.00	13.4
4:	10000	TRUE	typeI	TRUE	FALSE	5	0.68	69.210	1.74	28.4
5:	10000	TRUE	power	TRUE	TRUE	10	36.45	6.530	43.36	13.7
6:	10000	TRUE	typeI	TRUE	TRUE	10	0.64	71.290	1.61	26.5
7:	10000	TRUE	power	TRUE	TRUE	5	34.68	5.860	45.32	14.1
8:	10000	TRUE	typeI	TRUE	TRUE	5	0.72	69.110	1.70	28.5
9:	10000	TRUE	power	FALSE	TRUE	10	37.57	6.630	42.93	12.9
10:	2870	TRUE	typeI	FALSE	TRUE	10	1.99	0.976	5.30	91.7
11:	10000	TRUE	power	FALSE	TRUE	5	36.02	6.280	44.71	13.0
12:	3043	TRUE	typeI	FALSE	TRUE	5	2.40	0.296	5.16	92.1
13:	10000	TRUE	power	FALSE	FALSE	10	38.32	5.870	42.35	13.5
14:	2874	TRUE	typeI	FALSE	FALSE	10	2.40	0.313	5.57	91.7
15:	10000	TRUE	power	FALSE	FALSE	5	36.75	5.700	43.90	13.6
16:	3080	TRUE	typeI	FALSE	FALSE	5	2.18	0.000	5.55	92.3
17:	10000	FALSE	power	TRUE	FALSE	5	33.98	5.330	46.33	14.4
18:	10000	FALSE	typeI	TRUE	FALSE	5	0.74	67.480	1.72	30.1

 \triangle something is not quite right for non-binding scenarios under the null (N should be 10000).

Method 2:

	N	missing	hypo	${\tt binding}$	fixC	ar	decision.eff	${\tt decision.fut}$	final.eff	final.fut
1:	10000	TRUE	power	TRUE	FALSE	10	37.66	6.2200	43.13	13.0
2:	10000	TRUE	typeI	TRUE	FALSE	10	0.85	71.1800	1.68	26.3
3:	10000	TRUE	power	TRUE	FALSE	5	35.55	6.1000	44.90	13.5
4:	10000	TRUE	typeI	TRUE	FALSE	5	0.67	69.0500	1.74	28.5
5:	10000	TRUE	power	TRUE	TRUE	10	36.82	5.9400	43.59	13.6
6:	10000	TRUE	typeI	TRUE	TRUE	10	0.63	70.0200	1.62	27.7
7:	10000	TRUE	power	TRUE	TRUE	5	35.06	5.6300	45.40	13.9
8:	10000	TRUE	typeI	TRUE	TRUE	5	0.71	68.4600	1.68	29.1
9:	10000	TRUE	power	FALSE	TRUE	10	37.76	6.2100	43.09	12.9
10:	2956	TRUE	typeI	FALSE	TRUE	10	1.89	0.8796	5.18	92.1
11:	10000	TRUE	power	FALSE	TRUE	5	36.07	6.1000	44.75	13.1
12:	3093	TRUE	typeI	FALSE	TRUE	5	2.33	0.2263	5.04	92.4
13:	10000	TRUE	power	FALSE	FALSE	10	38.33	6.1100	42.27	13.3
14:	2820	TRUE	typeI	FALSE	FALSE	10	2.45	0.3191	5.64	91.6
15:	10000	TRUE	power	FALSE	FALSE	5	36.78	5.7200	43.86	13.6
16:	3075	TRUE	typeI	FALSE	FALSE	5	2.15	0.0325	5.56	92.3
17:	10000	FALSE	power	TRUE	FALSE	5	33.68	5.1700	46.60	14.5
18:	10000	FALSE	typeI	TRUE	FALSE	5	0.72	67.4200	1.72	30.1

 \triangle something is not quite right for non-binding scenarios under the null (N should be 10000).

Method 3:

	N	missing	hypo	binding	fixC	ar	decision.eff	decision.fut	final.eff	final.fut
1:	10000	TRUE	power	TRUE	FALSE	10	40.44	6.540	40.01	13.0
2:	10000	TRUE	typeI	TRUE	FALSE	10	0.74	68.770	1.66	28.8
3:	10000	TRUE	power	TRUE	FALSE	5	36.49	6.420	43.72	13.4
4:	10000	TRUE	typeI	TRUE	FALSE	5	0.68	68.370	1.72	29.2
5:	10000	TRUE	power	TRUE	TRUE	10	39.85	5.830	40.54	13.8
6:	10000	TRUE	typeI	TRUE	TRUE	10	0.73	68.890	1.72	28.7
7:	10000	TRUE	power	TRUE	TRUE	5	35.70	5.810	44.38	14.1
8:	10000	TRUE	typeI	TRUE	TRUE	5	0.78	68.260	1.72	29.2
9:	10000	TRUE	power	FALSE	TRUE	10	41.03	6.390	39.88	12.7
10:	3086	TRUE	typeI	FALSE	TRUE	10	2.33	1.231	4.99	91.4
11:	10000	TRUE	power	FALSE	TRUE	5	37.08	6.140	43.67	13.1
12:	3133	TRUE	typeI	FALSE	TRUE	5	2.36	0.447	5.08	92.1
13:	10000	TRUE	power	FALSE	FALSE	10	41.47	6.050	39.18	13.3
14:	3130	TRUE	typeI	FALSE	FALSE	10	2.59	0.990	5.27	91.2
15:	10000	TRUE	power	FALSE	FALSE	5	37.37	5.860	43.09	13.7
16:	3163	TRUE	typeI	FALSE	FALSE	5	2.37	0.253	5.41	92.0
17:	10000	FALSE	power	TRUE	FALSE	5	34.66	5.580	45.27	14.5
18:	10000	FALSE	typeI	TRUE	FALSE	5	0.68	66.540	1.77	31.0

 \triangle something is not quite right for non-binding scenarios under the null (N should be 10000).

3 Bias

True effect: 0.6 Bias per estimator and method:

	hypo	${\tt missing}$	binding	fixC	ar	${\tt biasMLE1}$	${\tt biasMLE2}$	${\tt biasMLE3}$	${\tt bias MUE1}$	${\tt bias MUE2}$	biasMUE3
1:	power	TRUE	TRUE	FALSE	10	0.0130	0.0131	0.0141	-0.0023	-0.0017	-0.0042
2:	typeI	TRUE	TRUE	FALSE	10	-0.0184	-0.0184	-0.0185	0.0002	-0.0013	0.0001
3:	power	TRUE	TRUE	FALSE	5	0.0224	0.0222	0.0234	-0.0030	-0.0016	-0.0018
4:	typeI	TRUE	TRUE	FALSE	5	-0.0304	-0.0308	-0.0306	0.0000	-0.0002	0.0001
5:	power	TRUE	TRUE	TRUE	10	0.0116	0.0121	0.0130	-0.0053	-0.0061	-0.0080
6:	typeI	TRUE	TRUE	TRUE	10	-0.0221	-0.0223	-0.0223	-0.0113	-0.0079	-0.0099
7:	power	TRUE	TRUE	TRUE	5	0.0216	0.0220	0.0227	-0.0073	-0.0075	-0.0075
8:	typeI	TRUE	TRUE	TRUE	5	-0.0339	-0.0344	-0.0341	-0.0105	-0.0081	-0.0105
9:	power	TRUE	FALSE	TRUE	10	0.0150	0.0151	0.0163	-0.0025	-0.0044	-0.0036
10:	typeI	TRUE	FALSE	TRUE	10	0.1776	0.1740	0.1713	0.3606	0.3562	0.3487
11:	power	TRUE	FALSE	TRUE	5	0.0242	0.0242	0.0252	-0.0014	-0.0012	-0.0026
12:	typeI	TRUE	FALSE	TRUE	5	0.1722	0.1701	0.1700	0.3413	0.3432	0.3382
13:	power	TRUE	FALSE	FALSE	10	0.0144	0.0141	0.0157	-0.0033	-0.0036	0.0012
14:	typeI	TRUE	FALSE	FALSE	10	0.1803	0.1821	0.1736	0.3612	0.3628	0.3508
15:	power	TRUE	FALSE	FALSE	5	0.0234	0.0233	0.0243	-0.0010	-0.0010	-0.0028
16:	typeI	TRUE	FALSE	FALSE	5	0.1721	0.1720	0.1705	0.3455	0.3452	0.3416
17:	power	FALSE	TRUE	FALSE	5	0.0228	0.0228	0.0238	-0.0026	-0.0008	-0.0038
18:	typeI	FALSE	TRUE	FALSE	5	-0.0295	-0.0297	-0.0299	0.0044	0.0031	0.0035

 \triangle clear bias for non-binding scenarios under the null

4 Distribution of the estimates

Distribution of the estimates:

Figure 1: Naive and Median unbiased estimate distribution over all simulations. Each row correspond to a different scenario

Figure 2: Same but specific to scenario 1

Distribution of the median unbiased estimate conditional to the stage:

Figure 3: Median unbiased estimate distribution conditional to the stage. Each row correspond to a different scenario.

5 Special cases

Reason for stopping (first 4) or continuing the trial (last):

		scenario	1	2	3	4	5	6	7	8
reason	method									
decreasing information	1		0	0	1	1	0	0	0	0
	2		0	0	1	1	0	0	0	0
	3		0	0	1	1	0	0	0	0
efficacy	1		3740	77	3559	67	3696	82	3502	82
	2		3729	82	3554	68	3732	82	3546	83
	3		4137	107	3712	83	4071	110	3632	92
futility	1		646	7086	603	6922	600	7109	552	6901
	2		658	7120	611	6904	542	6981	523	6834
	3		560	6843	579	6822	495	6850	519	6812
Imax reached	1		1	1	0	0	2	2	0	0
	2		1	1	0	0	2	2	0	0
	3		1	1	0	0	2	2	0	0
no boundary crossed	1		5613	2836	5838	3011	5702	2807	5946	3017
	2		5612	2797	5835	3028	5724	2935	5931	3083
	3		5302	3049	5709	3095	5432	3038	5849	3096
		sconorio	۵	10	11	10	12	1/	15	16
roagon	mothod	scenario	9	10	11	12	13	14	15	16
reason	method	scenario								
reason decreasing information	1	scenario	0	0	1	0	0	0	0	0
	1 2	scenario	0	0	1	0	0	0	0	0
decreasing information	1 2 3	scenario	0 0	0 0	1 1 1	0 0	0 0	0 0	0 0	0 0 0
	1 2 3 1	scenario	0 0 0 3805	0 0 0 84	1 1 1 3634	0 0 0 82	0 0 0 3815	0 0 0 78	0 0 0 3674	0 0 0 67
decreasing information	1 2 3 1 2	scenario	0 0 0 3805 3824	0 0 0 84 81	1 1 1 3634 3646	0 0 0 82 79	0 0 0 3815 3816	0 0 0 78 78	0 0 0 3674 3677	0 0 0 67 67
decreasing information efficacy	1 2 3 1 2 3	scenario	0 0 0 3805 3824 4206	0 0 0 84 81 109	1 1 3634 3646 3761	0 0 0 82 79 88	0 0 0 3815 3816 4238	0 0 0 78 78 112	0 0 0 3674 3677 3788	0 0 0 67 67 83
decreasing information	1 2 3 1 2 3 1	scenario	0 0 0 3805 3824 4206 614	0 0 0 84 81 109 7130	1 1 3634 3646 3761 596	0 0 0 82 79 88 6957	0 0 0 3815 3816 4238 604	0 0 0 78 78 112 7126	0 0 0 3674 3677 3788 571	0 0 0 67 67 83 6920
decreasing information efficacy	1 2 3 1 2 3 1 2	scenario	0 0 0 3805 3824 4206 614 572	0 0 0 84 81 109 7130 7044	1 1 3634 3646 3761 596 571	0 0 0 82 79 88 6957 6907	0 0 0 3815 3816 4238 604 628	0 0 78 78 112 7126 7180	0 0 0 3674 3677 3788 571 573	0 0 0 67 67 83 6920
decreasing information efficacy futility	1 2 3 1 2 3 1 2 3 1 2	scenario	0 0 3805 3824 4206 614 572 535	0 0 0 84 81 109 7130 7044 6914	1 1 3634 3646 3761 596 571 561	0 0 0 82 79 88 6957 6907 6867	0 0 0 3815 3816 4238 604 628 514	0 0 78 78 112 7126 7180 6870	0 0 0 3674 3677 3788 571 573 535	0 0 0 67 67 83 6920 6925 6837
decreasing information efficacy	1 2 3 1 2 3 1 2 3 1	scenario	0 0 3805 3824 4206 614 572 535	0 0 84 81 109 7130 7044 6914	1 1 3634 3646 3761 596 571 561	0 0 82 79 88 6957 6907 6867 0	0 0 3815 3816 4238 604 628 514 0	0 0 78 78 112 7126 7180 6870 0	0 0 0 3674 3677 3788 571 573 535 0	0 0 67 67 83 6920 6925 6837 0
decreasing information efficacy futility	1 2 3 1 2 3 1 2 3 1 2 3	scenario	0 0 3805 3824 4206 614 572 535 1	0 0 84 81 109 7130 7044 6914 1	1 1 3634 3646 3761 596 571 561 0	0 0 82 79 88 6957 6907 6867 0	0 0 3815 3816 4238 604 628 514 0	0 0 78 78 112 7126 7180 6870 0	0 0 3674 3677 3788 571 573 535 0	0 0 67 67 83 6920 6925 6837 0
decreasing information efficacy futility Imax reached	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3	scenario	0 0 3805 3824 4206 614 572 535 1 1	0 0 84 81 109 7130 7044 6914 1	1 1 3634 3646 3761 596 571 561 0 0	0 0 82 79 88 6957 6907 6867 0 0	0 0 3815 3816 4238 604 628 514 0 0	0 0 78 78 112 7126 7180 6870 0 0	0 0 3674 3677 3788 571 573 535 0 0	0 0 67 67 83 6920 6925 6837 0 0
decreasing information efficacy futility	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3	scenario	0 0 3805 3824 4206 614 572 535 1 1 1	0 0 84 81 109 7130 7044 6914 1 1 2785	1 1 3634 3646 3761 596 571 561 0 0 5770	0 0 0 82 79 88 6957 6907 6867 0 0	0 0 3815 3816 4238 604 628 514 0 0 0	0 0 78 78 112 7126 7180 6870 0 0 2796	0 0 0 3674 3677 3788 571 573 535 0 0 0 5755	0 0 0 67 67 83 6920 6925 6837 0 0 0
decreasing information efficacy futility Imax reached	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3	scenario	0 0 3805 3824 4206 614 572 535 1 1 5580 5603	0 0 84 81 109 7130 7044 6914 1 1 2785 2874	1 1 3634 3646 3761 596 571 561 0 0 5770 5783	0 0 82 79 88 6957 6907 6867 0 0 2961 3014	0 0 0 3815 3816 4238 604 628 514 0 0 5581 5556	0 0 78 78 112 7126 7180 6870 0 0 2796 2742	0 0 3674 3677 3788 571 573 535 0 0	0 0 0 67 67 83 6920 6925 6837 0 0 3013 3008

6 Reversal probability

Percentage of time we observe a reversal:

	N	hypo	missing	ar	binding	fixC	fu2eff_1	fu2eff_2	fu2eff_3	eff2fu_1	eff2fu_2	eff2fu_3
1:	10000	power	FALSE	5	TRUE	FALSE	0.06	0.07	0.01	0.04	0.04	0.63
2:	10000	power	TRUE	5	FALSE	FALSE	0.04	0.04	0.00	0.03	0.03	0.51
3:	10000	power	TRUE	5	FALSE	TRUE	0.04	0.03	0.03	0.36	0.42	0.56
4:	10000	power	TRUE	5	TRUE	FALSE	0.06	0.08	0.02	0.05	0.07	0.65
5:	10000	power	TRUE	5	TRUE	TRUE	0.02	0.02	0.01	0.36	0.42	0.63
6:	10000	power	TRUE	10	FALSE	FALSE	0.35	0.38	0.05	0.18	0.21	0.96
7:	10000	power	TRUE	10	FALSE	TRUE	0.15	0.13	0.10	0.63	0.61	1.13
8:	10000	power	TRUE	10	TRUE	FALSE	0.57	0.57	0.13	0.15	0.20	1.06
9:	10000	power	TRUE	10	TRUE	TRUE	0.17	0.16	0.11	0.70	0.68	0.99
10:	10000	typeI	FALSE	5	TRUE	FALSE	0.01	0.03	0.00	0.01	0.03	0.12
11:	10000	typeI	TRUE	5	FALSE	FALSE	0.00	0.00	0.00	0.00	0.01	0.08
12:	10000	typeI	TRUE	5	FALSE	TRUE	0.00	0.00	0.00	0.09	0.07	0.14
13:	10000	typeI	TRUE	5	TRUE	FALSE	0.02	0.02	0.00	0.01	0.03	0.15
14:	10000	typeI	TRUE	5	TRUE	TRUE	0.00	0.00	0.00	0.10	0.12	0.14
15:	10000	typeI	TRUE	10	FALSE	FALSE	0.00	0.00	0.00	0.09	0.09	0.31
16:	10000	typeI	TRUE	10	FALSE	TRUE	0.00	0.00	0.00	0.27	0.25	0.37
17:	10000	typeI	TRUE	10	TRUE	FALSE	0.11	0.11	0.03	0.09	0.08	0.36
18:	10000	typeI	TRUE	10	TRUE	TRUE	0.02	0.00	0.00	0.22	0.21	0.39

7 Frequency mismatch p-value / boundaries

When concluding for futility:

```
hypo missing ar binding fixC
                                    method 1
                                               method 2
                                                          method 3
 1: power
           FALSE 5
                       TRUE FALSE 0.00000000 0.00000000 0.39860488
2: power
            TRUE 5
                      FALSE FALSE 0.41343669 0.41322314 0.46059365
3: power
            TRUE 5
                      FALSE TRUE 1.92008303 2.29405631 0.41558442
4: power
            TRUE 5
                       TRUE FALSE 0.00000000 0.00000000 0.45477514
5: power
            TRUE 5
                       TRUE TRUE 1.65000000 1.99590583 0.40160643
6: power
            TRUE 10
                      FALSE FALSE 2.43145370 2.47422680 0.93023256
7: power
            TRUE 10
                      FALSE TRUE 5.23076923 4.75195822 1.15243583
8: power
            TRUE 10
                       TRUE FALSE 0.00000000 0.00000000 1.22762148
9: power
            TRUE 10
                       TRUE TRUE 4.11094601 3.57325166 1.12187659
10: typeI
           FALSE 5
                       TRUE FALSE 0.00000000 0.00000000 0.00000000
                      FALSE FALSE 0.07037298 0.07047216 0.03428180
11: typeI
            TRUE 5
12: typeI
                      FALSE TRUE 0.31994312 0.24432810 0.03448276
            TRUE 5
                       TRUE FALSE 0.00000000 0.00000000 0.02049180
13: typeI
            TRUE 5
                       TRUE TRUE 0.08198401 0.10244852 0.03076923
14: typeI
            TRUE 5
15: typeI
            TRUE 10
                      FALSE FALSE 0.52930057 0.54012346 0.13869626
16: typeI
            TRUE 10
                      FALSE TRUE 0.75159714 0.69166363 0.00000000
            TRUE 10
                       TRUE FALSE 0.00000000 0.00000000 0.04098361
17: typeI
                       TRUE TRUE 0.17391304 0.15345269 0.08200923
18: typeI
            TRUE 10
```

When concluding for efficacy:

	hypo	${\tt missing}$	ar	${\tt binding}$	fixC	${\tt method}$	1	${\tt method}$	2	${\tt method}$	3
1:	power	FALSE	5	TRUE	FALSE		0		0		0
2:	power	TRUE	5	FALSE	FALSE		0		0		0
3:	power	TRUE	5	FALSE	TRUE		0		0		0
4:	power	TRUE	5	TRUE	FALSE		0		0		0
5:	power	TRUE	5	TRUE	TRUE		0		0		0
6:	power	TRUE	10	FALSE	FALSE		0		0		0
7:	power	TRUE	10	FALSE	TRUE		0		0		0
8:	power	TRUE	10	TRUE	FALSE		0		0		0
9:	power	TRUE	10	TRUE	TRUE		0		0		0
10:	typeI	FALSE	5	TRUE	FALSE		0		0		0
11:	typeI	TRUE	5	FALSE	FALSE		0		0		0
12:	typeI	TRUE	5	FALSE	TRUE		0		0		0
13:	typeI	TRUE	5	TRUE	FALSE		0		0		0
14:	typeI	TRUE	5	TRUE	TRUE		0		0		0
15:	typeI	TRUE	10	FALSE	FALSE		0		0		0
16:	typeI	TRUE	10	FALSE	TRUE		0		0		0
17:	typeI	TRUE	10	TRUE	FALSE		0		0		0
18:	typeI	TRUE	10	TRUE	TRUE		0		0		0

8 Percentage of missing values

Here only for method 1 - values are very similar between different methods:

- pc.all percentage of observations with full data
- pc.missing3 percentage of observations missing the final outcome but with intermediate outcome value and baseline.
- pc.missing23 percentage of observations with only baseline value

```
method missing ar hypo fixC binding
                                               N
                                                   pc.all pc.missing3 pc.missing23
 1:
         1
              TRUE 5 power FALSE
                                      TRUE 10000 79.53472
                                                              9.562374
                                                                           10.902910
 2:
         1
              TRUE 5 typeI FALSE
                                      TRUE 10000 79.53472
                                                              9.562374
                                                                           10.902910
 3:
         1
              TRUE 5 power
                              TRUE
                                      TRUE 10000 79.44022
                                                                           11.028558
                                                              9.531225
4:
         1
              TRUE
                    5 typeI
                              TRUE
                                      TRUE 10000 79.44022
                                                              9.531225
                                                                           11.028558
         1
              TRUE 5 power
                                     FALSE 10000 79.71917
 5:
                              TRUE
                                                              9.427430
                                                                           10.853396
                                     FALSE 10000 79.71917
 6:
         1
              TRUE
                    5 typeI
                             TRUE
                                                              9.427430
                                                                           10.853396
7:
         1
              TRUE 5 power FALSE
                                     FALSE 10000 79.64196
                                                              9.449136
                                                                           10.908902
         1
              TRUE 5 typeI FALSE
                                     FALSE 10000 79.64196
                                                              9.449136
                                                                           10.908902
8:
9:
         1
             FALSE 5 power FALSE
                                      TRUE 10000 87.78863
                                                              6.090240
                                                                            6.121126
         1
             FALSE 5 typeI FALSE
                                      TRUE 10000 87.78863
10:
                                                              6.090240
                                                                            6.121126
         1
              TRUE 10 power FALSE
                                      TRUE 10000 71.60971
                                                                           15.062319
11:
                                                             13.327969
         1
              TRUE 10 typeI FALSE
                                      TRUE 10000 71.60971
12:
                                                             13.327969
                                                                           15.062319
         1
              TRUE 10 power
                                      TRUE 10000 71.52189
13:
                              TRUE
                                                             13.282615
                                                                           15.195496
                                                                           15.195496
14:
         1
              TRUE 10 typeI
                              TRUE
                                      TRUE 10000 71.52189
                                                             13.282615
15:
         1
              TRUE 10 power
                              TRUE
                                     FALSE 10000 71.85935
                                                                           14.996166
                                                             13.144488
16:
         1
              TRUE 10 typeI
                             TRUE
                                     FALSE 10000 71.85935
                                                             13.144488
                                                                           14.996166
17:
         1
              TRUE 10 power FALSE
                                     FALSE 10000 71.79364
                                                             13.168843
                                                                           15.037522
                                     FALSE 10000 71.79364
18:
         1
              TRUE 10 typeI FALSE
                                                             13.168843
                                                                           15.037522
```