Genomic information and inbreeding

AABSC

Inbreeding- revision

- Mating of relatives
- Consequences
 - Many are bad, but not all.....
- Management restricting mating of relatives
 - Optimal contribution selection

- How does Genomics change this?
 - If performing truncation selection....
 - If performing optimal contribution selection...

Truncation selection

TBLUP or Pedigree BLUP

Vs

Genomic breeding value (GBLUP)

Variation in BV among selection candidates

$$Va = \frac{1}{4} sire + \frac{1}{4} dam + \frac{1}{2} MS$$

What information is used in BVs

Va= ¼ sire + ¼ dam + ½ MS

Table 2- The proportion of variation in breeding value explained by between family (Sire and Dam) and within family (MS) information.

LIC				ADHIS					
BV	Sire	Dam	MS+e	Prop. of PT	BV	Sire	Dam	MS+e	Prop. of PT
PA EBV	0.56	0.44	0.001	0.001	PA EBV	0.44	0.52	0.04	0.05
GEBV	0.43	0.26	0.31	0.56	GEBV	0.33	0.37	0.30	0.36
PT	0.21	0.31	0.48	1.0	PT	0.16	0.32	0.52	1.0

Correlation of breeding values and co-selection of relatives

Breeding value type	Half sib correlation	Full Sib correlation	Accuracy
PA EBV	0.55	1.0	0.45
GEBV	0.50	0.85	0.57
TBV	0.26	0.53	1.0

- share the same Parent average BV (½ sire ½ dam)
 - no longer the case with genomics
 - Share different PA breeding values
 - Small advantage of using G to restrict inbreeding

Sonesson et al 2013

Truncation selection on breeding values estimated using TBLUP or GBLUP

Genetic gain			Inbreeding		
Breeding value estimation	ΔG (se)	ΔF _{ped} (se)	ΔF _{IBD} (se)		
TBLUP	2.49 (0.035)	0.0156 (0.0001)	0.0235 (0.0009)		
GBLUP	2.77 (0.026)	0.0053 (0.0002)	0.0209 (0.0005)		

Genomics and Optimal contributions

- Measures of genetic merit (ḡ)
 - Pedigree vs genomic
 Pedigree based BLUP --- Genomic BLUP

- Measures of inbreeding
 - Pedigree vs genomic (A or G)

NRM (Pedigree) --- GRM (genomic)

$$\mathbf{Max} = \mathbf{c}_{t}^{'} \bar{\mathbf{g}}_{t} - \lambda \mathbf{c}_{t}^{'} \mathbf{A}_{t} \mathbf{c}_{t}$$

Measuring inbreeding

- Pedigree
 - The probability that animals share alleles IBD.

- Genomics
 - GRM (IBS) or what is shared.
 - others

Genomic Inbreeding estimates

- Estimates of the number of homozygotes
 - Sharing of markers (IBS)
 - Long runs of homozygotes (more IBD)

- Genomic relationships (IBS)
 - Various methods
 - Choice of allele frequencies

Example GRM

- Z=M-2(pi-0.5)
- ZZ'/2* sum pi(qi) (more weighting to rare alleles)

- Choice of allele frequencies
 - Forni 2012
 - Sets base population
 - Although this is relative and is more important when combining data (Single step)

management

Optimal contribution

- Pedigree or genomic
 - Pedigree expected based on IBD prob.
 - Genomic observed (although an estimate)

Ntest	ΔF_d	ΔG (se)	ΔF_{ped} (se)	ΔF_{IBD} (se)
		ΔF _A constraint – GBLU	JP	
3000	0.005	3.08 (0.035)	0.0050 (0.0001)	0.0211 (0.0004)
6000	0.005	3.10 (0.035)	0.0048 (0.0001)	0.0226 (0.0004)
6000	0.010	3.31 (0.037)	0.0098 (0.0003)	0.0422 (0.0008)
		ΔF _G constraint – GBLU	JP	
3000	0.005	1.91 (0.026)	0.0041 (0.0001)	0.0051 (0.0001)
6000	0.005	1.95 (0.024)	0.0039 (0.0001)	0.0053 (0.0001)
6000	0.010	2.41 (0.028)	0.0071 (0.0002)	0.0102 (0.0002)
		ΔF _A constraint – TBLU	P	
3000	0.005	2.26 (0.003)	0.0050 (0.0001)	0.0068 (0.0001)
6000	0.005	2.50 (0.003)	0.0049 (0.0001)	0.0074 (0.0001)
6000	0.010	2.63 (0.003)	0.0102 (0.0002)	0.0151 (0.0003)
		ΔF _G constraint – TBLU	P	
3000	0.005	1.41 (0.041)	0.0193 (0.0004)	0.0121 (0.0002)
6000	0.005	1.44 (0.039)	0.0185 (0.0004)	0.0122 (0.0002)
6000	0.010	1.48 (0.046)	0.0300 (0.0008)	0.0183 (0.0003)

Genetic gain (ΔG), rate of inbreeding based on pedigree (ΔF_{ped}) and on genomic IBD (ΔF_{IBD}) relationship matrices at generation G10 when the constraint on relationship was either pedigree-based (ΔF_A) or marker-based (ΔF_G) with TBLUP or GBLUP breeding value estimates^a.

and the standard of test sibs; $\Delta F_d = \text{desired rates of inbreeding; number of selection candidates} = 3000$.

IBD profiles with OC selection

Entire frontier

Genomic information helps to manage inbreeding

- In two ways:
- 1. Using genomic relationships helps to restrict genomic inbreeding.

 2. GEBV's utilize more Mendelian sampling variance.