# Introducing Microbiome Bioinformatics

Part 3.

### Recap: Aims

- Overview of types of microbiome analysis
  - with particular regard to sequence informatics concepts
- "Top down" putting analysis tools and resources in context
- No highly detailed technicalities
  - No instructions on how to run particular programs
- Why you are using the bioinformatics approaches you use; pros, cons; alternatives

### Series of talks

- At least 3 sessions to cover what I would like
- Beyond that if there is demand
  - can progress to more technical talks
  - especially about 16S analysis (probably)
  - increasingly metagenomics in GHFS research
- Informal and flexible
  - Please interrupt and ask questions
  - Suggestions for topics for further focus

### Series of talks

- Part 1: 27/1/2017
  - "Biological and Experimental Stuff that a microbiome bioinformatician needs to know"
  - Overview of marker gene sequencing for community analysis
- Part 2: 10/2/2017
  - Overview of whole-metagenome sequencing
- Slideshows
  - http://ghfs1.ifr.ac.uk/ghfs/
  - (see posts of the above dates)
- Part 3: 24/2/2017
  - Focus on metatranscriptomics

## Topics, top-down

Aims of Variety of Types of studies: Introduction microbiomes, environments and domains "Communities" studied of Life **Functions** "barcoding"-"shotgun" Aims of DNA/ use of marker metagenomics metatranscriptomics RNA sequencing genes approaches aims of whole-Other 16S rRNA metagenome markers sequencing Dealing with the 16S rRNA data: "shotgun" meta-'omics **Informatics** Later: Communities concepts more technical in detail details

## Metatranscriptomics informatics

There's more than one way to do it

## Why Metatranscriptomics?

- Sample and sequence the RNA
  - To determine what is actually being expressed
- There may be metatranscriptome differences between subjects/disease states etc which have similar metagenomes
  - This has been demonstrated in some studies including in the human gut
- Discovery of new genes, thus far missed by metagenomics
  - How likely this is, depends on the microbiome
  - Amply demonstrated in some older ocean studies
  - ~ 90% of inferred ORFs Gilbert et al.(2008) PLoS ONE 3 (8) e3042
  - Less likely for the human gut prokaryote community
  - What about the gut virome? Gut eukaryotes?....Discuss.

## Metatranscriptomics – the basics

- Might be done on its own, or applied alongside metagenomics
- Substantial quantities of RNA may be present
  - helps to inform metagenomics
- But skewed: >80% of total RNA is rRNA
- Around 15% is tRNA
- Usually no more than 5% is mRNA; may be considerably less
- e.g. Westermann et al. (2012) Nat. Rev. Microbiol. 10 618-30.
- Whether this matters depends on the aims
  - E.g. may need to enrich for mRNA
- As in normal transcriptomics, mRNA is itself skewed
  - Implications for sampling depth

### Metatranscriptomics

- Comparison of two or more samples/environments:
  - 1. Biodiversity (taxa)
  - 2. Giant RNA-seq-type experiment (genes)
  - usually requires mRNA-enrichment
  - which is usually done experimentally
  - nowadays, best methods remove 95-99% of rRNA
    - E.g. Pérez-Pantoja & Tamames (2015) Prokaryotic Metatranscriptomics in Hydrocarbon and Lipid Microbiology pp69-98, Springer
    - Doing the sums implies that > 15% of the total remaining RNA could be rRNA
  - with in silico post-filtering to remove non-mRNA sequences which remain

### Metatranscriptomics and databases

- Identifying (1) taxa and (2) genes
  - As with metagenomics, both aims rely on databases and reference sequences
  - To identify both genes and organisms of origin
- As with shotgun metagenomics:
  - genomic sequence databases
  - smaller, marker-gene databases
  - function-centric databases/protein sequence databases
  - possibly assemblies created from metagenomics
- Identified genes may be associated with pathways
  - E.g. KEGG pathways database

Remember,
functions tend to
be more conserved
than phylotypes

## Metatranscriptomics: amplification

- As with metagenomics, amplification may be necessary
  - In metatranscriptomics, often to enrich for mRNA
- By various methods
- RNA linear amplification
  - First step, polyadenylate the RNA;  $\rightarrow$  1-stranded cDNA  $\rightarrow$  2-stranded
  - Get (cDNA sequences of) transcript and reverse complement, indistinguishably
- MDA (multiple displacement amplification; see part 2)
  - May be biased in favour of low GC-content genomes, but is partly dependent on protocol
  - (also produces cDNA of course)
- Strand-specific methods: uses dUTP markers to distinguish the first cDNA strand from the second
  - sequence-database matching methods perform matches equally capable with forward- or reverse-complement sequences
  - but knowing which is the forward strand potentially aids in resolving whether some poorer matches are 'real' or not
  - But this is also another source of bias

- Strand-specific cDNA synthesis by DUTP marking
  - "this procedure has been known to introduce 1-2% Escherichia coli genomic DNA into the final cDNA library (a result of E. coliderived DNA polymerase I and ligase being used in the cDNA generation steps). Including versus excluding E. coli sequences in downstream bioinformatic analyses did not affect the conclusions of this work."
  - (my emphases)
  - Franzosa et al. (2014), Relating the metatranscriptome and metagenome of the human gut, Proc. Natl. Acad. Sci. U. S. A. 111 E2329-38

## Metatranscriptomics: "assembly"?

- Rescuing of complete, single-species transcripts ("assembly") may be very challenging
  - And unnecessary
- As with metagenomics, <u>clustering</u> of very <u>similar</u> sequences (in this case transcript fragments) would be the general case
- As with metagenomics, attempts at "assembly" (clustering) may not be necessary
  - Depends on the approach; some are read-by-read
  - But longer sequences improve database matching
  - Functional annotation rate increased up to 6-fold, depending on assembly length (Celaj et al. (2014) Microbiome 2: 39
  - Collapsing multiple → single sequences: frequency issues
- Some very useful informatics methods are completely identical whether applied to metagenomics or metatranscriptomics



### Metatranscriptomics: mapping reads?



- Some fundamental differences compared to real RNA-seq:
  - The transcripts arise from (possibly very many) different genomes
  - You may not have reference genomes for all of these
  - Even if you do, it may not always be possible to determine exactly which one is 'correct'
    - This may not matter, depending on the aims
    - Especially for **functional identification**, "chimaeric" mappings may not matter
  - The more rigorous approaches to quantification in RNA-seq, involving a single known reference genome, cannot be necessarily be assumed to be appropriate for your metatranscriptomics data
    - Some genomes' transcripts may have been only very sparsely sampled

# Metatranscriptomics and metagenomics in tandem

#### **Metagenomic reads**

- Assemble reads into longer "scaffolds"
- Likely to be chimaeric



 Identify possible coding regions

#### **Metatranscriptomic reads**

Align to scaffolds



 e.g. Durbán et al. (2013) Instability of the faecal microbiota in diarrhoeapredominant irritable bowel syndrome FEMS Microbiol. Ecol. 86 581-9

### Which approaches are actually used?

- Review of 27 metatranscriptomics studies published between 2013-2015
  - only 4 are human microbiome studies, of which 2 concern GIT
- More than half involved no assembly or mapping; 4 studies employed both
- Pérez-Pantoja & Tamames (2015) Prokaryotic Metatranscriptomics in Hydrocarbon and Lipid Microbiology pp69-98, Springer

# Metatranscriptomics and 16S sequences

- If you sample/sequence "all" the metatranscriptome
  - you get mostly rRNA
  - cells make loads of ribosomes!
- In principle, this is ideal for community analysis
  - In a very similar manner to 16S amplicons
  - But assays "who is transcribing" more than "who is there"
- The (relatively small) amount of mRNA can be used simultaneously for functional studies
- In practice, a metatranscriptomics study is likely to target a particular aspect such as expression of protein-coding genes
  - So would be experimentally enriched for mRNA
  - Taxonomic/phylotypic identification (community analysis) might be done in a parallel sequencing experiment (e.g. by 16S amplicons)

# Example: metatranscriptomics alone for community analysis

- Turner et al. (2009) soil/rhizosphere environment
  - Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants ISME J. 7 2248-58
- RNA: mostly ribosomal

for Fig 3a from this paper, please see original at <a href="http://www.nature.com/ismej/journal/v7/n12/fig">http://www.nature.com/ismej/journal/v7/n12/fig</a> ta <a href="block">b/ismej2013119f3.html#figure-title</a>

- both small and large subunits
- both prokaryote and eukaryote
- used for community analysis
- a small proportion was mRNA

# Metatranscriptomics and some examples of the "compar-ome"



# Example: metatranscriptomics in tandem with 16S sequencing

- Poretsky et al. (2009) ocean environment
  - Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre Environ. Microbiol. 11 (6) 1358-75
- RNA: applied two rounds of mRNA-enrichment/rRNAdepletion using different methods
  - 37% of remaining RNA was identified as rRNA, by comparison with RDP database
- 16S amplicons: very long used Sanger sequencing
- Also performed cell counts for some organisms

### Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre

[ Figure 3 of Poretsky *et al.* (2009) *Environmental Microbiology* 11:1358-1375 (see link below) ]

# Example: metatranscriptomics in tandem with metagenomics

- Franzosa et al. (2014) Relating the metatranscriptome and metagenome of the human gut Proc. Natl. Acad. Sci. U. S. A. 111 E2329-38
- Three informatics aspects to focus on here:
  - Compare transcript abundance to abundance of their corresponding genes
  - Compare variation between subjects of transcript abundances to gene abundances
  - 3. Granularity of mapped pathways

# Example: metatranscriptomics in tandem with metagenomics

- Compare transcript abundance to abundance of their corresponding genes [ Franzosa et al. (2014) ]
- About 40% of the transcripts with a small or no foldchange c.f. gene abundance
- About 20% have a fold-change of > 10 (up or down)
- Functional families (and taxonomic groups) can be associated with these
  - E.g. most of the most strongly 'overexpressed' genes encode ribosomal proteins

### Functional diversity at the transcriptional level suggests a pattern of subject-specific metagenome regulation.

[Fig. 5 from Franzosa *et al.* (2014) : see below for reference <a href="http://www.pnas.org/content/111/22/E2329">http://www.pnas.org/content/111/22/E2329</a>

Eric A. Franzosa et al. PNAS 2014;111:E2329-E2338

- Granularity of mapped pathways [ Franzosa et al. (2014) ]
- One pathway with 'overexpressed' genes: TCA cycle
- But only one part of it
- (high-level aerobic metabolism unlikely)
- http://www.genome.jp/kegg/path way/map/map00020.html

# Example: metatranscriptomics in tandem with metagenomics (ii)

- A further consideration:
- 4. How well conserved is apparent *function* between samples
  - Compared to conservation of taxonomic groups?
- Example:
  - Durbán et al. (2013) Instability of the faecal microbiota in diarrhoea-predominant irritable bowel syndrome FEMS Microbiol. Ecol. 86 581-9

[ for Fig 2 of Durbán *et al.* (2013), Refer to URL below ]

> [ for Fig 3 of Durbán *et al.* (2013), Refer to URL below ]

From Durbán *et al.* (2013)

FEMS Microbiol. Ecol. **86** 581-9

<a href="http://dx.doi.org/10.1111/1574-6941.12184">http://dx.doi.org/10.1111/1574-6941.12184</a>

## What sequence-based meta-'omics do

| 'Omics                                                                                                                                             | Community analysis? (who is in there?) | Functional analysis? (what are they doing?) | Assembly of whole or partial genomes ? |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------|----------------------------------------|
| 16S/18S amplicon sequencing  Targeted amplicons, usually segments of:  16S rRNA genes (prokaryotes)  18S rRNA or genes ITS (eukaryotes esp. fungi) | yes                                    | No (not directly)                           | no                                     |
| Shotgun<br>Metagenomics                                                                                                                            | yes                                    | yes                                         | yes (to some extent)                   |
| Metatranscriptomics<br>(community RNA-Seq)                                                                                                         | yes                                    | yes                                         | no                                     |

## Topics, top-down

Aims of Variety of Types of studies: Introduction microbiomes, environments and domains "Communities" studied of Life **Functions** "barcoding"-"shotgun" Aims of DNA/ use of marker metagenomics metatranscriptomics RNA sequencing genes approaches aims of whole-Other 16S rRNA metagenome markers sequencing Dealing with the 16S rRNA data: "shotgun" meta-'omics **Informatics** Later: Communities concepts more technical in detail details