(₂)

EUROPÄISCHE PATENTANMELDUNG

(2) Anmeldenummer: 90112903.1

(9) Int. Cl.5: C07D 401/04, A01N 43/54, C07D 401/14

2 Anmeldetag: 06.07.90

Priorität: 11.07.89 DE 3922735

43 Veröffentlichungstag der Anmeldung: 16.01.91 Patentblatt 91/03

 Benannte Vertragsstaaten: AT CH DE ES FR GB GR IT LI

(7) Anmelder: HOECHST AKTIENGESELLSCHAFT Postfach 80 03 20 D-6230 Frankfurt am Main 80(DE)

Erfinder: Glencke, Wolfgang, Dr.

Am Steinberg 45

D-6238 Hofheim am Taunus(DE)

Erfinder: Sachse, Burkhard, Dr.

An der Ziegelei 30

D-6233 Kelkheim (Taunus)(DE)

Erfinder: Wicke, Heinrich, Dr.

Schillerstrasse 3

D-6239 Eppstein/Taunus(DE)

- Aminopyrimidin-Derivate, Verfahren zu ihrer Herstellung, sie enthaltende Mittel und ihre Verwendung als Fungizide.
- Verbindungen der Formel I

(1),

worin

R1 = H. Alkyl, Alkoxyalkyl, Alkylthioalkyl, Cycloalkyl, Alkenyl, Alkinyl, Cycloalkylalkyl, subst. Amino-alkyl Phenyl, Phenylalkyl, Phenoxyalkyl, Phenylmercaptoalkyl, Phenoxyphenoxyalkyl, wobei diese Reste im Phenylteil substituiert sein können,

R², R³, R⁴ = unabhängig voneinander H, Alkyl oder Phenyl, das substituiert sein kann,

R⁵ = H, Alkyl, Cycloalkyl, Cycloalkylalkyl, Haloalkyl, Alkoxy, Alkylthio, Alkoxyalkyl, einen Rest R⁷R⁸N-, Alkylthioalkyl, R7R8N-alkyl, Halogen, Alkenyl, Alkinyl, Phenyl, Phenoxy, Phenylalkyl, Phenoxyalkyl, Phenylmercaptoalkyl, Phenylmercapto, Phenylalkoxy oder Phenylalkylthio, wobei diese Reste im Phenylteil substituiert sein können:

R⁶ = H, Alkyl, Alkyloxy, Alkenyloxy, Alkinyloxy, Alkylthio, Halogen oder Phenyl, das substituiert sein kann, oder R5 und R6 bilden zusammen eine Polymethylenkette und

R7 und R8 = unabhängig voneinander H, Alkyl, Alkoxyalkyl, Hydroxyalkyl, Alkylthioalkyl, Alkenyl, substituiertes Aminoalkyl, Alkinyl, Cycloalkyla, Cycloalkylalkyl, welche im Cycloalkylteil substituiert sein können, Formyl, Phenyl oder Phenylalkyl, die im Phenylteil substituiert sein können, oder R7, R8 bilden zusammen mit dem Stickstoffatom einen unsubstituierten oder substituierten 5- bis 7-gliedrigen gesättigten oder ungesättigten Heterocyclus mit 1 bis 3 gleichen oder verschiedenen Heteratomen, bedeuten sowie deren Säureadditionssalze besitzen vorteilhafte fungizide Eigenschaften.

AMINOPYRIMIDIN-DERIVATE, VERFAHREN ZU IHRER HERSTELLUNG, SIE ENTHALTENDE MITTEL UND IHRE VERWENDUNG ALS FUNGIZIDE

Die vorliegende Erfindung betrifft neue Aminopyrimidin-Derivate, Verfahren zu ihrer Herstellung, sie enthaltende Mittel und ihre Verwendung als Fungizide.

Pyrimidin-Derivate sind bereits als wirksame Komponenten in fungiziden Mitteln bekannt (vgl. EP-A-270 362, EP-A-259 139, EP-A 234 104). Die Wirkung dieser Pyrimidin-Derivate ist jedoch insbesondere bei niedrigen Aufwandmengen nicht immer befriedigend.

Es wurden neue Pyrimidin-Derivate gefunden, die vorteilhafte Wirkungen bei der Bekämpfung eines breiten Spektrums phytopathogener Pilze insbesondere bei niedrigen Dosierungen aufweisen.

Gegenstand der vorliegenden Erfindung sind daher die Verbindungen der Formel I

10

15

worin

R¹ = Wasserstoff, (C₁-C₆)Alkyl, (C₁-C₄)Alkoxy-(C₁-C₄)alkyl, (C₁C₄)Alkylthio-(C₁-C₄)alkyl, (C₂-C₆)Alkenyl, (C₂C₆)Alkinyl,(C₃-Cȝ)Cycloalkyl-(C₁-C₄)alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch (C₁-C₄)Alkyl substituiert sein können, eine Gruppe R² R² N-(C₁-C₄)alkyl, Phenyl, Phenoxy-(C₁-C₄) alkyl, Phenylmercapto-(C₁-C₄)alkyl, Phenyl-(C₁-C₄)alkyl, Phenoxy-phenoxy-(C₁-C₄)alkyl, wobei die fünf letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)Alkyl, (C₁-C₄)Alkyl, (C₁-C₄)Alkyl, (C₁-C₄)Alkyl, (C₁-C₄)Alkyl, (C₁-C₄)Alkyl, (C₁-C₄)Alkyl, (C₁-C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein

 R^2 , R^3 , R^4 = unabhängig voneinander Wasserstoff, (C_1 - C_6)Alkyl, Phenyl, wobei der Phenylrest bis zu dreifach durch Halogen, Nitro, Cyano, (C_1 - C_4)Alkyl, (C_1 - C_4)Alkoxy, (C_1 - C_4)Alkylthio, (C_1 - C_4)Haloalkyl oder (C_1 - C_4)Haloalkoxy substituiert sein kann,

R⁵ = Wasserstoff, (C₁-C₆)Alkyl, (C₃-C₇)Cycloalkyl, (C₃-C['])Cycloalkyl-(C₁-C₄)alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch (C₁-C₄)Alkyl substituiert sein können, (C₁-C₄)-Haloalkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Alkoxy-(C₁-C₄)alkyl, eine Gruppe R⁷R⁸N-, (C₁-C₄)-Alkylthio-(C₁-C₄)alkyl, eine Gruppe R⁷R⁸N-(C₁-C₄)alkyl, Halogen, (C₂-C₆)Alkenyl, (C₂-C₆)Alkinyl, Phenyl, Phenoxy, Phenyl(C₁-C₄)alkyl, Phenoxy-(C₁-C₄)alkyl, Phenylmercapto-(C₁-C₄)alkyl, Phenylmercapto, Phenyl-(C₁-C₄)alkoxy oder Phenyl-(C₁-C₄)alkylthio, wobei die acht letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein können;

R⁶ = Wasserstoff, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₂-C₅)Alkenyloxy, (C₂-C₅)Alkinyloxy, (C₁-C₄)Alkylthio, Halogen, Phenyl, wobei der Phenylrest bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkylthio, (C₁-C₄)Haloglkyl oder (C₁-C₄)Haloglyl oder (C₁-C₄)Haloglkyl oder (C₁-C₄)Haloglyl oder (C₁-C₄)Halogly

Alkoxy, (C_1-C_4) Alkylthio, (C_1-C_4) Haloalkyl oder (C_1-C_4) Haloalkoxy substituiert sein kann, oder R^5 und R^6 bilden zusammen eine Polymethylenkette der Formel - $(CH_2)_m$ - mit m=3-4 und

 R^{2} und R^{2} bilden zusammen eine Polymetriyienkette der Former - (Cr_{2}/m^{2} mit $r_{1} = 3 - 4$ und R^{7} , R^{8} = unabhängig voneinander Wasserstoff, ($C_{1}-C_{6}$)Alkyl, ($C_{1}-C_{4}$)Alkoxy-($C_{1}-C_{6}$)-Alkyl, Hydroxy-($C_{1}-C_{6}$)-Alkyl, ($C_{3}-C_{6}$)Alkyl, ($C_{3}-C_{6}$)Cycloalkyl-($C_{1}-C_{4}$)alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach

durch (C₁-C₄)Alkyl substituiert sein können; Formyl, Phenyl, Phenyl-(C₁-C₄)alkyl, wobei die beiden letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein können;

oder beide Reste R⁷, R⁸ stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstituierten oder bis zu vierfach substituierten 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit 1 bis 3 gleichen oder verschiedenen Heteroatomen, vorzugsweise mit den Heteroatomen Stickstoff, Sauerstoff und/oder Schwefel und dem Substituenten (C₁-C₄)Alkyl;

 R^9 , R^{10} = unabhängig voneinander Wasserstoff, $(C_1-C_6)Alkyl$, $(C_3-C_6)Alkenyl$, $(C_3-C_6)Alkinyl$, $(C_3-C_7)-Cycloalkyl$, $(C_3-C_7)Cycloalkyl-(C_1-C_4)alkyl$, wobei die beiden letztgenannten Reste im. Cycloalkylteil bis zu

dreifach durch (C₁-C₄)Alkyl substituiert sein können; Formyl, Phenyl, Phenyl(C₁-C₄)alkyl, wobei die beiden letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)-Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein können;

oder beide Reste R⁹, R¹⁰ stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstituierten oder bis zu vierfach substituierten 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit 1 bis 3 gleichen oder verschiedenen Heteroatomen, vorzugsweise mit den Heteroatomen Stickstoff, Sauerstoff und/oder Schwefel und dem Substituenten (C₁-C₄)Alkyl; bedeuten, sowie deren Säureadditionssalze.

Dabei können die Alkyl-, Alkenyl- oder Alkinylreste sowohl geradkettig als auch verzweigt sein. Halogen bedeutet F, Cl, Br, J, bevorzugt F, Cl und Br. Die Vorsilbe "Halo" in der Bezeichnung eines Substituenten bedeutet hier und im folgenden, daß dieser Substituent einfach oder mehrfach bei gleicher oder verschiedener Bedeutung auftreten kann. Die Vorsilbe "Halo" belnhaltet Fluor, Chlor, Brom oder Jod, insbesondere Fluor, Chlor oder Brom. Als Beispiele für Halogenalkyl seien genannt: CF₃, CF₂CHF₂, CF₂CF₃, CCl₃, CCl₂F, CF₂CF₂CF₃, CF₂CHFCF₃ und (CF₂)₃CF₃. Beispiele für Haloalkoxy sind OCF₃, OCF₂CHF₂ oder OCF₂CF₂CF₃.

Bevorzugt unter den Verbindungen der Formel I sind solche, worin

 R^1 = Wasserstoff, (C₁-C₆)Alkyl, Phenyl, Phenyl-(C₁-C₂)alkyl, Phenoxy-phenoxy-(C₁-C₂) alkyl, Phenoxy-(C₁-C₂)alkyl, wobei die vier letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen oder (C₁-C₄)Alkyl substituiert sein können; (C₁-C₃)Alkoxy-(C₁-C₂)alkyl,

20 R², R³ = unabhängig voneinander Wasserstoff, (C₁-C₃)Alkyl, Phenyl, wobei der Phenylrest bis zu dreifach durch Halogen oder (C₁-C₄)Alkyl substituiert sein kann,

R4 = Wasserstoff,

 $R^s = Wasserstoff$, $(C_1-C_6)Alkyl$, $(C_3-C_6)Cycloalkyl$, $(C_5-C_6)Cycloalkyl-(C_1-C_3)alkyl$. Halogen, Phenyl-(C₁-C₂)alkyl, wobei die beiden letztgenannten Reste im Phenylteil unsubstituiert oder bis zu dreifach durch Halogen, $(C_1-C_4)Alkyl$ oder $(C_1-C_4)Alkoxy$ substituiert sein können,

R⁶ = Wasserstoff, (C₁-C₄)Alkyl, Halogen, Phenyl, (C₁-C₃)Alkoxy oder

R⁵ und R⁶ bilden zusammen eine Polymethylenkette der Formel -(CH₂)m- mit m = 3 - 4 und

R⁷ und R⁸ unabhängig voneinander Wasserstoff, (C₁-C₆)Alkyl, (C₁-C₄)Alkoxy-(C₁-C₆)-Alkyl, Hydroxy-(C₁-C₆)Alkyl, (C₁-C₄)Alkylthio-(C₁-C₆)Alkyl, R⁸R¹⁰N-(C₁-C₆)Alkyl, (C₃-C₄)Alkenyl, (C₃-C₄)Alkinyl, (C₃-C₆)-30 Cycloalkyl-(C₁-C₃)alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu zweifach durch (C₁-C₂)Alkyl substituiert sein können; Formyl, Phenyl-(C₁-C₂)alkyl, wobei die beiden letztgenannten Reste im Phenylteil bis zu zweifach durch Halogen, (C₁-C₃)Alkyl, (C₁-C₃)Alkoxy, Trifluormethyl oder Trichlormethyl substituiert sein können;

oder

beide Reste R⁷, R⁸ stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstituierten oder bis zu zweifach substituierten 5- bis 7-gliedrigen gesättigten oder ungesättigten Heterocyclus mit 1 oder 2 gleichen oder verschiedenen Heteroatomen, vorzugsweise mit den Heteroatomen Stickstoff und/oder Sauerstoff und dem Substituenten (C₁-C₃)Alkyl,

R³, R¹° = unabhängig voneinander Wasserstoff, (C₁-C₆)Alkyl, (C₃-C₆)Alkenyl, (C₃-C₆)Alkinyl, (C₃-Cȝ)-Cycloalkyl, (C₃-Cȝ)Cycloalkyl-(C₁-C₆)alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch (C₁-C₆)Alkyl substituiert sein können; Formyl, Phenyl, Phenyl(C₁-C₆)alkyl, wobei die beiden letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₆)Alkyl, (C₁-C₆)-Alkoxy, (C₁-C₆)Alkylthio, (C₁-C₆)Haloalkyl oder (C₁-C₆)Haloalkoxy substituiert sein können;

oder beide Reste R⁹, R¹⁰ stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstituierten oder bis zu vierfach substituierten 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit 1 bis 3 gleichen oder verschiedenen Heteroatomen, vorzugsweise mit den Heteroatomen Stickstoff, Sauerstoff und/oder Schwefel und dem Substituenten (C₁-C₄)Alkyl; bedeuten, sowie deren Säureadditionssalze.

Zur Herstellung der Säureadditionssalze der Verbindungen der Formel I kommen folgende Säuren in Frage: Halogenwasserstoffsäuren wie Chlorwasserstoffsäure oder Bromwasserstoffsäure, ferner Phosphorsäure, Salpetersäure, Schwefelsäure, mono- oder bifunktionelle Carbonsäuren und Hydroxycarbonsäuren wie Essigsäure, Maleinsäure, Bernsteinsäure, Fumarsäure, Weinsäure, Citronensäure, Salicylsäure, Sorbinsäure oder Milchsäure, sowie Sulfonsäuren wie p-Toluolsulfonsäure oder 1,5-Naphthalindisulfonsäure. Die Säureadditionssalze der Verbindungen der Formel I können in einfacher Weise nach üblichen Salzbildungsmethoden, z. B. durch Lösen einer Verbindung der Formel I in einem geeigneten organischen Lösemittel und Hinzufügen der Säure erhalten werden und in bekannter Weise, z. B. durch Abfiltrieren, isoliert und gegebenenfalls durch Waschen mit einem inerten organischen Lösemittel gereinigt werden.

Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur Herstellung der Verbindungen der

Formel I, dadurch gekennzeichnet, daß man eine Verbindung der Formel II in Gegenwart einer Base mit einer Verbindung der Formel III umsetzt.

5

10

50

Die Substituenten R¹ bis R³ haben dabei die Bedeutungen wie in der Formel I. X steht für Halogen. Halogen bedeutet Fluor, Chlor, Brom oder Jod, insbesondere Chlor oder Brom.

Die Umsetzung der Verbindungen II mit III erfolgt vorzugsweise in inerten aprotischen Lösungsmitteln wie z. B. Acetonitril, Dichlormethan, Toluol, Xylol, Tetrahydrofuran, Dioxan, Dialkylether wie Diethylenglykoldiethylether, oder DMF bei Temperaturen zwischen -10 °C und der Siedetemperatur des Lösungsmittels. Als Basen eignen sich die für diesen Reaktionstyp üblichen Basen wie beispielsweise Carbonate und Hydrogencarbonate von Alkali-und Erdalkalimetallen, Alkalihydroxide, Alkalialkoholate wie K-tert.-butylat, tert.-Amine, Pyridin oder substituierte Pyridinbasen (z. B. 4-Dimethylaminopyridin).

Auch ein zweites Äquivalent der Verbindungen der allgemeinen Formel III kann die Funktion der Base übernehmen.

Die Verbindungen der Formel II können nach bekannten Verfahren hergestellt werden (vgl. EP-A-234 104, EP-A-259 139, EP-A-270 362, J. Org. Chem. 32, 1591, (1967)). Die Verbindungen der Formel III sind bekannt und leicht zugänglich (Houben-Weyl, Methoden der Org. Chemie, Band XI/1).

Die erfindungsgemäßen Verbindungen der Formel I zeichnen sich durch eine hervorragende fungizide Wirkung aus. Bereits in das pflanzliche Gewebe eingedrungene pilzliche Krankheitserreger lassen sich erfolgreich kurativ bekämpfen. Dies ist besonders wichtig und vorteilhaft bei solchen Pilzkrankheiten, die nach eingetretener Infektion mit den sonst üblichen Fungiziden nicht mehr wirksam bekämpft werden können. Das Wirkungsspektrum der beanspruchten Verbindungen erfaßt eine Vielzahl verschiedener wirtschaftlich bedeutender, phytopathogener Pilze, wie z.B. Piricularia oryzae, Venturia inaequalis, Cercospora beticola, Echte Mehltauarten, Fusariumarten, Plasmopora viticola, Pseudoperonospra cubensis, verschiedene Rostpilze und Pseudocercosporella herpotrichoides. Besonders gut werden Benzimidazol- und Dicarboximid-sensible und -resistente Boytritis cinerea-Stämme erfaßt.

Die erfindungsgemäßen Verbindungen eignen sich daneben auch für den Einsatz in technischen Bereichen, beispielsweise als Holzschutzmittel, als Konservierungsmittel in Anstrichfarben, in Kühlschmiermitteln für die Metallbearbeitung oder als Konservierungsmittel in Bohr-und Schneidölen.

Gegenstand der Erfindung sind auch Mittel, die die Verbindungen der Formel I neben geeigneten Formulierungshilfsmitteln enthalten.

Die erfindungsgemäßen Mittel enthalten die Wirkstoffe der Formel I im allgemeinen zu 1 bis 95 Gew.-%.

Sie können auf verschiedene Art formuliert werden, je nachdem wie es durch die biologischen und/oder chemischphysikalischen Parameter vorgegeben ist. Als Formulierungsmöglichkeiten kommen daher in Frage: Spritzpulver (WP), emulgierbare Konzentrate (EC), wäßrige Lösungen (SC), Emulsionen, versprühbare Lösungen, Dispersionen auf Öl- oder Wasserbasis (SC), Suspoemulsionen (SC), Stäubemittel (DP), Beizmittel, Granulate in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), ULV-Formulierungen, Mikrokapseln, Wachse oder Köder.

Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielswelse beschrieben n:

Winnacker-Küchler, "Chemische Technologie", Band 7, C-Hauser Verlag München, 4. Aufl. 1986; van Falkenberg, "Pesticides Formulations", Marcel Dekker N.Y., 2nd Ed. 1972-73; K. Martens, "Spray Drying Handbook", 3rd Ed. 1979, G. Goodwin Ltd. London.

Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J.; H.v.Olphen, "Introduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y.; Marschen, "Solvents Guide", 2nd Ed., Interscience, N.Y. 1950; McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley

and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1976; Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986.

Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix.

Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs-oder Inertstoff noch Netzmittel, z.B. polyoxethylierte Alkylphenole, polyoxethylierte Fettalkohole, Alkyl- oder Alkylphenol-sulfonate und Dispergiermittel, z.B. ligninsulfonsaures Natrium, 2.2 dinaphthylmethan-6,6 disulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleylmethyltaurinsaures Natrium enthalten. Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel, z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen unter Zusatz von einem oder mehreren Emulgatoren hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calzium-Salze wie Ca-dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid-Sorbitanfettsäureester, Polyoxyethylensorbitan-Fettsäureester oder Polyoxethylensorbitester.

Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen wie Kaolin, Bentonit, Poryphillit oder Diatomeenerde. Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.

In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen etwa 2 bis 20 Gew.-%. Bei Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden.

Daneben enthalten die genannten Wirkstofformulierugen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergler-, Emulgier-, Penetrations-, Lösungsmittel, Füll-oder Trägerstoffe.

Zur Anwendung werden die in handelsüblicher Form vorliegenden Konzentrate gegebenenfalls in Üblicher Weise verdünnt, z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und teilweise auch bei Mikrogranulaten mittels Wasser. Staubförmige und granulierte Zubereitungen sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.

Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit u.a. variiert die erforderliche Aufwandmenge. sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,005 und 10,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,01 und 5 kg/ha.

Die erfindungsgemäßen Wirkstoffe können in ihren handelsüblichen Formulierungen entweder allein oder in Kombination mit weiteren, literaturbekannten Fungiziden angewendet werden.

Als literaturbekannte Fungizide, die erfindungsgemäß mit den Verbindungen der Formel I kombiniert werden können, sind z.B. folgende Produkte zu nennen:

Imazalil, Prochloraz, Fenapanil, SSF 105, Triflumizol, PP 969, Flutriafol, BAY-MEB 6401, Propiconazol, Etaconazol, Diclobutrazol, Bitertanol, Triadimenol, Triadimenol, Fluotrimazol, Tridemorph, Dodemorph, Fenpropimorph, Falimorph, S-32165, Chlobenzthiazone, Parinol, Buthiobat, Fenpropidin, Triforine, Fenarimol, Nuarimol, Triarimol, Ethirimol, Dimethirimol,

Bupirimate, Rabenzazole, Tricyclazole, Fluobenzimine, Pyroxyfur, NK-483, PP-389, Pyroguilon, Hymexazole, Fenitropan, UHF-8227, Cymoxanil, Dichlorunanid, Captafol, Captan, Folpet, Tolylfluanid, Chlorothalonil, Etridiazol, Iprodione (Formel II), Procymidon, Vinclozolin, Metomeclan, Myclozolin, Dichlozolinate, Fluorimide, Drazoxolan, Chinomethionate, Nitrothalisopropyl, Dithianon, Dinocap, Binapacryl,

Fentinacetate, Fentinhydroxide, Carboxin, Oxycarboxin, Pyracarbolid, Methfuroxam, Fenfura, Furmecyclox, Benodanil, Mebenil, Mepronil, Flutalanil, Fuberidazole, Thiabendazole, Carbendazim, Benomyl, Thiofante, Thiofanatemethyl, CGD-94340 F, IKF-1216,

Mancozeb, Maneb, Zineb, Nabam, Thiram, Probineb, Prothiocarb, Propamocarb, Dodine, Guazatine, Dicloran, Quintozene, Chloroneb, Tecnazene, Biphenyl, Anilazine, 2-Phenylphenol, Kupferverbindungen wie Cuoxychlorid, Oxine-Cu, Cu-oxide, Schwefel, Fosetylaluminium, Natrium-dodecylbenzolsulfonat, Natrium-dodecylsulfat,

Natrium-C13/C15-alkoholethersulfonat, Natrium-cetostearylphosphatester, Dioctyl-natriumsulfosuccinat, Natrium-isopropylnaphthalinsulfonat,

Natrium-methylenbisnaphthalinsulfonat,

Cetyl-trimethyl-ammoniumchlorid,

10

20

30

40

45

Salze von langkettigen primären, sekundären oder tertiären Aminen, Alkyl-propylenamine, Lauryl-pyridinium-bromid, ethoxilierte quaternierte Fettamine, Alkyl-dimethyl-benzyl-ammoniumchlorid und 1 Hydroxyethyl-2-alkyl-imidazolin.

Die oben genannten Kombinationspartner stellen bekannte Wirkstoffe dar, die zum großen Teil in CH.R. Worthing, U.S.B. Walker, The Pesticide Manual, 7. Auflage (1983), British Crop Protection Council beschrieben sind.

Darüberhinaus können die erfindungsgemäßen Wirkstoffe, insbesondere die der aufgeführten Beispiele, in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Akariziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen oder Herbiziden vorliegen. Zu den Insektiziden zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, Formamidine, Zinnverbindungen, durch Mikroorganismen hergestellte Stoffe u.a.. Bevorzugte Mischungspartner sind:

1. aus der Gruppe der Phosphorsäureester

Azinphos-ethyl, Azinphos-methyl, 1-(4-Chiorphenyl)-4-(0-ethyl, S-propyl)phosphoryloxypyrazol (TIA-230), Chlorpyrifos, Coumaphos, Demeton, Demeton-S-methyl, Diazinon, Dichlorvos, Dimethoat, Ethoprophos, Etrimfos, Fenitrothion, Fenthion, Heptenophos, Parathion, Parathion-methyl, Phosalon, Pirimiphos-ethyl, Pirimiphos-methyl, Profenofos, Prothiofos, Sulprofos, Triazophos, Trichlorphon.

2. aus der Gruppe der Carbamate

Aldicarb, Bendiocarb, BPMC (2-(1-Methylpropyl)phenyl methylcarbamat), Butocarboxim, Butoxicarboxim, Carbaryl, Carbofuran, Carbosulfan, Cloethocarb, Isoprocarb, Methomyl, Oxamyl, Primicarb, Promecarb, Propoxur, Thiodicarb.

3. aus der Gruppe der Carbonsäureester

Allethrin, Alphamethrin, Bioallethrin, Bioresmethrin, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cypermethrin, Deltamethrin, 2,2-Dimethyl-3-(2-chlor-2-trifluormethylvinyl)cyclopropancarbonsäure-(alpha-cyano-3-phenyl-2-methyl-benzyl)ester (FMC 54800), Fenpropathrin, Fenfluthrin, Fenvalerat, Flucythrinate, Flumethrin, Fluvalinate, Permethrin, Resmethrin, Tralomethrin.

4. aus der Gruppe der Formamidine

Amitraz, Chlordimeform

aus der Gruppe der Zinnverbindungen Azocyclotin, Cyhexatin, Fenbutatinoxid

6. Sonstige

Abamektin, Bacillus thuringiensis, Bensultap, Binapacryl, Bromopropylate, Buprofecin, Camphechlor, Cartap, Chlorbenzialate, Chlorfluazuron, 2-(4-Chlorphenyl)-4,5-diphenylthiophen (UBI-T 930), Chlofentezine, Cyclopropancarbonsäure(2-naphthylmethyl)ester (Ro 12-0470), Cyromacin, DDT, Dicofol, N-(3,5-Dichlor-4-(1,1,2,2,-tetrafluoroethoxy)phenylamino)carbonyl)-2,6-difluorbenzamide (XRD 473), Diflubenzuron, N-(2,3-Dihydro-3-methyl-1,3-thiazol-2-ylidene)2,4-xylidine, Dinobuton, Dinocap, Endosulfan, Fenoxycarb, Fenthiocarb, Flubenzimine, Flufenoxuron, Gamma-HCH, Hexythiazox, Hydramethylnon (AC 217 300) Ivermectin, 2-Nitromethyl-4,5-dihydro-6H-thiazln (SD 52618), 2-Nitromethyl-3,4-dihydrothiazol (SD 35651), 2-Nitromethylene-1,3-thiazinan-3-yl-carbamaldehyde (WL 108 477), Propargite, Teflubenzuron, Tetradifon, Tetrasul, Thiocyclam, Triflumaron, Kempolyeder- und Granuloseviren.

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren, Die Wirkstoffkonznetration der Anwendungsformen kann von 0,0001 bis zu 100 Gew.-% Wirkstoff, vorzugsweise zwischen 0,001 und 1 Gew.-% liegen. Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weisen.

Nachfolgende Beispiele dienen zur Erläuterung der Erfindung.

A. Formulierungsbeispiele

- a) Ein Stäubemittel wird erhalten, indem man 10 Gew.-Teile Wirkstoff und 90 Gew.-Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert.
- b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gew.-Teile

Wirkstoff, 65 Gew.-Teile kaolinhaltigen Quarz als Inertstoff, 10 Gew.-Teile ligninsulfonsaures Kalium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.

- c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat stellt man her, indem man 40 Gew.-Teile Wirkstoff mit 7 Gew.-Teilen eines Sulfobernsteinsäurehalbesters, 2 Gew.-Teilen eines Ligninsulfonsäure-Natriumsalzes und 51 Gew.-Teilen Wasser mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.
- d) Ein emulgierbares Konzentrat läßt sich herstellen aus 15 Gew.-Teilen Wirkstoff, 75 Gew.-Teilen Cyclohexanon als Lösungsmittel und 10 Gew.-Teilen oxethyliertem Nonylphenol (10 AeO) als Emulgator.
- e) Ein Granulat läßt sich herstellen aus 2 bis 15 Gew.-Teilen Wirkstoff und einem inerten Granulatträgermaterial wie Attapulgit, Bimsgranulat und/oder Quarzsand. Zweckmäßigerweise verwendet man eine Suspension des Spritzpulvers aus Beispiel b) mit einem Feststoffanteil von 30 % und spritzt diese auf die Oberfläche eines Attapulgitgranulats, trocknet und vermischt innig. Dabei beträgt der Gewichtsanteil des Spritzpulvers ca. 5 % und der des inerten Trägermaterials ca. 95 % des fertigen Granulats.

B. Chemische Beispiele

10

15

20

30

40

45

4-Methyl-2-(2-methyl-pyridin-6-yl)-6-propylamino-pyrimidin (Bsp. Nr. 1.2)

Zu einer Lösung von 1,10 g (5 mmol) 4-Chlor-6-methyl-2-(2-methyl-pyridin-6-yl)-pyrimidin in 30 ml Acetonitril fügt man nacheinander 0,32 g (5,5 mmol) Propylamin, 0,83 g (6 mmol) K_2CO_3 und 10 mg Benzyltriethylammoniumchlorid hinzu. Die Reaktionsmischung wird 7 h am Rücklfuß gekocht. Danach saugt man alle unlöslichen Bestandteile ab. Das Filtrat wird eingeengt, in Methylenchlorid gelöst, anschließend mit Wasser gewaschen, über Na_2SO_4 getrocknet und im Vakuum eingedampft. Man erhält 1,15 g (95 %), der Titelverbindung als gelbliches ÖI.

4-Chlor-6-dlethylamino-2-(2-methyl-pyridin-6-yl)-pyrimidin (Bsp. 9.5)

Zu einer Lösung von 1,44 g (6 mmol) 4,6-Dichlor-2-(2-methyl-pyridin-6-yl)-pyrimidin in 30 ml Acetonitril fügt man nacheinander 0,48 g (6,6 mmol) Diethylamin, 0,97 g (7,0 mmol) K_2CO_3 und 10 mg Benzyltriethylammonlumchlorid. Die Reaktionsmischung wird 3 h bei Raumtemperatur gerührt.

Danach saugt man alle unlöslichen Bestandteile ab. Das Filtrat wird eingeengt, in Methylenchlorid gelöst, mit Wasser gewaschen, über Na₂SO₄ getrocknet und im Vakuum eingedampft. Man erhält 1,73 g (92 %) der Titelverbindung als grünliches Öl.

4-Phenyl-6-propylamino-2-(2-methylpyridin-6-yl)-pyrimidin Hydrochlorid (Bsp. Nr. 200.1)

In eine Lösung von 3,4 g (0,01 mol) 4-Phenyl-6-propylamino-2-(2-methylpyridin-6-yl)-pyrimidin leitet man über einen Zeitraum von 1 h HCl-Gas ein. Der ausgefallene Feststoff wird abgesaugt. Er zerfließt sofort zu einer sirupösen Masse.

Analog zu diesen Beispielen lassen sich die Verbindungen der Tabellen A und B herstellen.

Abkürzungen: Et = Ethyl

Me = Methyl Pr = Propyl

55

55 -	50	45		40	35	30	20	5 10 15
Tabelle	.e A			-				
	a a a a a a a a a a a a a a a a a a a	T Z Z Z	Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			2		
Nr.	R1	R2	ж 3	r4	ж ₅	ж 6	NR7R8	physikalische Eigenschaften
1.1	. сн3	Ħ	m m	ж	CH ₃	æ	NEt2	1H-NMR (CDCl ₃): d 8,16 t 7,66 d 7,20 s 6,21 q 3,57 s 2,69 d 2,48 t 1,19 [ppm]
1.2	CH3	· #	Ħ	ж	CH ₃	#	NH Propyl	1H-NMR (CDCl ₃): d 8,19 t 7,70 d 7,19 s 6,22 q 3,26 s 2,67 s 2,45 dq 1,57 t 0,99 [ppm]
1.3	CH3	.	æ	Ħ	CH3	#	NMe2	¹ H-NMR (CDCl ₃): d 8,17 t 7,54 d 7,22 s 3,16 s 2,69 s 2,49 [ppm]
1.4	СН3	Ħ	Ħ	H	снз	Ħ	NCH3C6H5	

5		haften								
10		Eigenso								
15		physikalische Eigenschaften							•	
20		ųd.					÷		ιΛ	4-c1
25		NR 7R8	NHMe		NHEt	$\left(\right)$) A SH	C170>1111	NCH 2C6H5	NHC6H4-4-C1
30		R6	Ï	٠	×	Ħ	п	=	#	æ
35		RS	CH ₃		CH3	CH3		·	СН3	снз
40		R4	ĸ			¤		:	#	×
	bu	R3	m		Ħ	#	. =		æ	æ
45	ctsetzu	R2	#		Ξ	æ			æ	#
50	Tabelle A Fortsetzung	R1	снз		CH3	CH ₃		£	СНЗ	. CH3
55	Tabel 1	Nr.	1.5		٦.6	1.7	c •	0 -	1.9	1.10

5	•	Eigenschaften	d 8,14 t 7,65 3,69 m 2,69 1,21 t 1,03	d 8,17 t 7,66 3,25 m 2,69 1,00 t 0,98	d 8,14 t 7,66 3,70 m 2,80 0,98 [ppm]	d 8,15 t 7,65 3,56 t 2,72 1,74 t 1,0	d 8,16 t 7,68 3,77 m 2,75 0,99 [ppm]	1H-NMR (DMSO-d ₆): 8,07 t 7,68 d 7,29 s 6,52 s 3,11 t 2,59 s 2,54 m 1,79 t 0,95 [ppm]
10			1H-NMR (CDCl3): d 8 d 7,19 s 6,22 g 3,6 s 2,65 dg 1,79 t 1	(CDCl3): d (s 6,17 q 3,3 m 1,68 t 1,0	DCl3): d 6,34 m 3, 1,64 t 0,	70 0 11	DCl3): d 6,84 m 3, 1,78 t 0,	1H-NMR (DMSO-d ₆): 8,07 t 7 d 7,29 s 6,52 s 3,11 t 2,5 s 2,54 m 1,79 t 0,95 [ppm]
15		physikalische	1H-NMR (Cd 7,19 s s 2,65 dc	[ppm] 1H-NMR ((d 7,16 s 2,64 m		1H-NMR (CDCl3): t 7,19 s 6,11 m s 2,69 m 2,00 m [ppm]	1H-NMR (Cd 7,20 s	1H-NMR (D d 7,29 s s 2,54 m
20		NR 7R8	NEt2	NH Propyl	<u> </u>		<u>^</u>	NMe2
25			4	Ż	<u>~</u>	Z	Z	A
30		я6	æ	Ħ	Ħ	Ħ	Ħ	н
		R5	C3H7	C3H7	C3H7	C3H7	C3H7	C3H7
35		R4	m		æ	Ħ	н	m
40	ng	ж3	#		# .	`## _. .	×	Ħ
45	Tabelle A Fortsetzung	R2	Ħ	Ħ	Ħ	#	Ħ	Ħ
	le A E	R1	СНЗ	снз	СНЗ	снз	CH ₃	CH3
50	Tabel	Nr.	2.1	2.	.3	5. 4.	Ω. Ω.	5.6

5		chaften	l6 t 7,67 d 2,94 t 0,97		102°C		113°C	
10		e Eigens	.3): d 8,16 .9 m 5,41 d .3 m 1,79 t	Smp.: 145°C	100 -		- 111	
15		physikalische Eigenschaften	1H-NMR (CDCl3): d 7,16 s 6,19 m t 2,66 s 2,63 m [ppm]		S. des		Smp.:	
20		ų́а	i d d H	<u>.</u>				
25		NR 7R8	NHile	NCH3C6H5	NHEt	NHCH ₂ C≡CH	NHCH2-CH=CH2	NH Heptyl
30		R6	H	#	н	#	Ħ	Ħ
35		RS	C3H7	C3H7	C3H7	C3H7	C3H7	C3H7
40		R4	ж	Ħ	Ħ	. #	Ħ	Ħ
	þ	В3	=	Ħ	¤ .	##	×	Ħ
45	tsetzur	R2	æ	x	Ħ ,	m	Ħ	Ħ
50	Tabelle A Fortsetzung	R1	СН3	CH3	CH ₃	CH ₃	сн3	CH3
55	Tabell	Nr.	2.7	2.8	6. 6.	2.10	2.11	2.12

							_		7	27	60	77	
5		ften					t 7,67	6,16	s 2,67	t 7,62	8 4,88	dq 1,77	
10		physikalische Eigenschaften	ວ,66	119°C	107°C	76°C	1-NMR (CDC13): d 8,19	d 7,16 s	d 4,55 t 2,69	lq 1,75 t 0,98 [ppm] 1H-NMR (CDCl3): d 8,13	d 7,15 g 6,30	2,72 8 2,69	7
15		physikalisc	Smp.:	Smp.: 119°C	Smp.:	Smp.: 76°C	1-NMR (CDC	m 7,36-7,21	t 5,63 d 4	dq 1,75 t 0,98 [ppm] 1H-NMR (CDCl3): d 8	8 7,27 d 7	s 3,11 t 2	t 0,98 [ppm]
20				۲٦	y.	-4	ч						
25	-	NR ⁷ R ⁸	NH Butyl	NH iso-Butyl	NH sec-Butyl	NH Pentyl	NH Benzyl			NMe Benzyl			
30		R6	æ	Ħ	Ħ	Ħ	Ħ			Ħ			
35		R5	C3H7	C3H7	C3H7	C3H7	C3H7			C3H7			
		R4	н		×	Ħ	Ħ			Ħ			
40		ж3			_		_			×			
	bun	~	Ħ	Ħ	耳	, 22	#			-			
45	rtsetz	R2	×	Ħ	Ħ	Ħ	. #		•	Ħ			
	Tabelle A Fortsetzung	R1	CH3	CH ₃	CH3	CH3	·CH3			CH3			
50	Tabell	Nr.	2.13	2.14	2.15	2.16	2.17			2.18			

	50	45		40	35	30	20	15	10	5	
rabelle A	e A For	Fortsetzung	ng								
Nr.	R1	R2	ж3	R4	R5	R6	NR ⁷ R ⁸	physikalische Eigenschaften	he Eigensch	laften	
.19	CH3	Ħ	Ħ	Ξ.	C3H7	=	NH iso-Propyl	Smp.	Smp.: 118 - 120	120°C	
2.20	CH3	#	Ħ	#	C3H7	Ħ	NH Cyclohexyl	Smp.	: 90 - 92°C	ပ	
2.21	CH3	Ħ	Ħ	æ	C3H7	# .	NH Cyclopentyl	Smp.	Smp.: 146°C		
2.22	CH3	¤	Ħ	Ħ	C3H7	Ħ	ин сен5				
2.23	CH3	##	Ħ	Ħ	C3H7	Ħ	NH (4-C1-C6H4)	Smp	103 -	105°C	
2.24	снз	, m	Ħ	#	C3H7	Ħ	NH (2,4 Cl ₂ - C ₆ H ₃)				

		ue					· · .	
5		physikalische Eigenschaften		٠				
10		ische Eig						
15		physikal	•				·	
20		R8	NH (4-CH3- C6H4)	NH (4-NO2- C6H4)	NH (3-CH3- C6H4)	NH-Cyclopropyl	NH-CH2CH= C(Me)2	NH-C6H4-4-0Me
25		NR 7R8	NH (4	NH (4	NH (3	NH-Cyc	NH-CH ₂ C C(Me) ₂	NH-C6
30		_R 6	Ħ	Ħ	Ħ	Ħ	=	Ħ
35		R5	C3H7	C3H7	C3H7	C3H7	C3H7	C3H7
40		R4	Ħ	#	щ	耳	Ħ	Ħ
	bur	R3	Ħ	.	# .	#	Ħ	ж
45	rtsetzı	R2	ж	Ħ	Ħ	Ħ	#	Ħ
50	Tabelle A Fortsetzung	R1	СНЗ	CH ₃	CH ₃	CH3	снз	CH3
55	Tabel1	Nr.	2.25	2.26	2.27	2.28	2.29	2.30

					•			
5		nschafter						
10		che Eige			Smp.: 151°C	.: 105°C		
15		physikalische Eigenschaften			GES.	S. des		
20			1 ==14			۲,	Ħ	уl
25		NR 7R8	NH-C6H4- 3CF3	NEt2	Ç	NH-Propyl	NH-Butyl	NH-Pentyl
30		R6	Ħ	ж	н	Ħ	×	Ħ
35		R.5	C3H7	сн(сн3)2	C3H7	СН(СН3)2	сн(снз)2	СН(СН3)2
40		R4	Ħ	=	Ħ	Ħ	Ħ	Ħ
	ש	R3	Ħ	Ħ	, #	Ħ	Ħ	Ħ
45	Tabelle A Fortsetzung	R ²	æ	#	¤	# .	ж	· #
50	e A Fo	R1	CH ₃	CH3 .	снз	CH3	снз	СНЗ
55	Tabel1	Nr.	2.31	2.32	2.33	2.34	2.35	2.36

5 10 15		physikalische Eigenschaften		Smp. 113°C		<pre>1H-NWR (CDCl3): d 8,16 t 7,66 d 7,19 s 6,36 t 3,76 t 2,73 s 2,71 t 2,50 s 2,36 dq 1,76 t 1,00 {ppm</pre>	1H-NMR (CDCl3): d 8,19 t 7,69 d 7,19 s 6,35 m 3,86-3,70 sep 3,0 s 2,69 d 1,31 [ppm]
25	٠	NR 7R8	\bigcirc		NCH3CH2- C6H5	- N-CH3	o Z
3 0		R6	#	ж	Ħ	Ħ	- #
35		R5	CH(CH3)2	C3H7	C3H7	C3H7	СН(СН3)2
40		R4	н	Ħ	#	Ή.	Ħ
_	ng	ж3	Ħ	Ħ	. ж	ж ·	ĸ
45	Fortsetzung	R2	皿.	. ж	Ħ	ж ж	Ħ
50	Le A For	R^{1}	CH3	CH3	CH3	CH3	CH3
55	Tabelle A	Nr.	2.37	2.38	2.39	2.40	2.41

		en						
5		Eigenschaften		129°C		143-144°C	n	102°C
10		ische Eig	Smp.: 105°C	Smp.: 128 -	Smp.: 180°C	Smp.: 143-1	Smp.: 162°C	- 66 : dwg
15		physikalische	E	E W	ຮົ	E O	Ω	S
20		′R8	N-CH ₃	NH- C ₆ H4- 4- Cl	, H	۲°٦	Y°Y:	NHCHCH3C2H5
25		NR7R8		O-HN			Z	NHC
30		Rб	н	#	Ħ	Ħ	Ħ	щ
35		R5	CH(CH3)2	сн(снз)2	C3H7	С5Н9	с549	С5Н9
40	bu	R4	Ħ	Ħ	ж	11	ж	Ħ
45	csetzu	в3	Ħ	æ	Ħ	Ħ	¤	Ħ
	Fort	R2	н	×	. #	# .	Ħ	Ħ
50	Tabelle A Fortsetzung	R^{1}	СН3	CH ₃	CH3	CH3	СН3	CH ₃
55	Tat	Nr.	2.42	2.43	2.44	2.45	2.46	2.47

d e	S & A	Fort	ts 6ts1	bur	40	35	30	25	20	15	10	
	. La	R2	R ³	R4	RS		R6	NR 7R8	physik	physikalische E	Eigenschaften	
	CH3	æ	Ħ	H	С5Н9		¤	NHCH2C6H5	S E	Smp.: 111°C		
	CH3	×	Ħ	Ħ	C5H9		Ħ	HN HN	S	Smp.: 124 -	126°C	
	СН3	Ħ	Ħ	, #	С5Н9		щ	NHCH2CH=CH2		Smp.: 133°C		٠
	СНЗ	×	#	Ħ	С5Н9	•	. m	-N-CH3	L A B B B B B B B B B B B B B B B B B B	(-NMR(CE 7,21 s' 2,69 t 1,52-1,	C13) d 8,15 t 7,66 6,36 t 3,77 m 2,90-2 2,50 s 2,31 m 1,90-1 ,20 t 0,85 [ppm]	66 90-2 90-1
	CH3	#	Ħ	Ħ	СН3		ij	္ရွိ	ซิ	Smp.: 72 -	74°C	
	. СН3	Ħ	· ш	Ħ	СНЗ		ដ	N N- CH3		Smp.: 80-83°C	3°C	-

5		physikalische Eigenschaften	5 - 97°C	$NHCH_2CH_2N(CH_3)_2$ 1H-NMR (CDCl3): d 8,19 t 7,66	16 s 2,69 m 1,78 t 0,99				- 3 -	1H-NMR (CDCl ₃): d 8,41 m 8,14 t 7,71 m 7,47 d 7,21 s 6,70 s 3,04 s 2,72 [ppm]
15		ohysikalisc	Smp.: 95	1H-NMR (CD	d 7,19 s 6,16		m	\wedge	8	1H-NWR (CDC13) t 7,71 m 7,47 s 3,04 s 2,72
20		NR ⁷ R ⁸ F	CH3 CH3	NHCH2CH2N(CH3)2	•	NHCH2CH2OH	NHCH2CH2OCH3	NCH2CH2N	NHCH2CH2SCH3	NFIMe
30		R6	c1	m		æ	ដ	Ħ	Br	Ħ
35			£	C3H7		13	13	(снз)2сн	С4Н9	С6Н5
40		R5	CH3	ပ်		CH3	CH3	9	S	ນຶ
	bun	R4	Ħ	Ħ		Ħ	Ħ	Ħ	Ħ	æ
45	tsetz	R3	Ħ	×		Ħ	Ħ	×	Ħ	×
	For F	R2	Ħ	×		Ħ	Ħ	Ħ	Ħ	· # _
50	Tabelle A Fortsetzung	R1	СНЗ	CH3		СНЗ	снз	снз	CH3	СНЗ
55	Tal	Nr.	2.54	2.55		2.56	2.57	2.58	2.59	3.1

55	50 ·		45		35 40	30	25	20	15	10	5
Tab	Tabelle A Fortsetzung	Fort	setzu	ng							
Nr.	R1	R2	В3	R4	R5	R6	NR7R8	рһув	kalische	physikalische Eigenschaften	ten
3.2	СН3	m .	Ħ	Ħ	C ₆ H ₅	H	NEt2	1H-NMR t 7,69 q 3,69	1H-NMR (CDCl3): d t 7,69 m 7,45 d 7, q 3,69 s 2,71 t 1,): d 8,26 m 8 d 7,20 s 6,7 t 1,27 [ppm]	8,26 m 8,10 20 s 6,75 27 [ppm]
á. 3	СН3	Ħ	=	Ħ	С6Н5	E	$\bigcap_{\mathbf{z}}$	Smp	Smp.: 120 - 122°C	22°C	
ა. 4.	СНЗ	Ħ	Ħ	H	C6H5	Ħ	NHBu	Smp	Smp.: 119 - 1	121°C	
3.5	CH ₃	H	H	H	C ₆ H ₅	Ħ	NHPr	Smp	: 127 -	129°C	
3.6	СН3	Ħ	æ	Ħ	C6H5	æ	NHiso- Propyl		Smp.: 105°C	υ	
3.7	CH3	- #	æ	Ħ	C6H5	#	$\langle z \rangle$. 02	Smp.: 134°C	บ	
3.8	CH3	Ħ	æ	m	С6Н5.	Ħ	$\binom{\circ}{z}$		Smp.: 131°C	U	
3.9	снз	Ħ	×	Ħ	4-CH3-C6H4	Ħ	NH-Propyl				
3.10	CH3	Ħ	E	Ħ	2,4-(CH3)2-C6H3	l3 Br	NH Butyl				
3.11	СНЗ	Ħ	#	#	2,6-(CH3)2-C6H3	l3 Br	NHEt				

55	50		45		35	30	20	15	10	5
Tab	Tabelle A Fortsetzung	Fort	setzu	рd						
Nr.	R1	R2	R ³	R4	R5	R6	NR7R8	physikalische		Eigenschaften
3.12	CH3	ж	Ħ	щ	3-Еt-С6Н4	Ħ	Ç	·		
3.13	снз	Ħ	Ħ	ж	3-с1-с6н4	×	NH Propyl			
3.14	СН3	ж	#	Ħ	2,4-Cl ₂ -C ₆ H ₃ -	ж	NH NG			
3.15	CH3	Ħ	Ħ	Ħ	4- OCII3- C6H4-	щ		·		•
4. L	СН3	, #	#	Ħ	Propy1	Br	NH Propyl			
4.2	CH3	=	×	Ħ	Propyl	Br	N Me2			

5		genschaften			٠	·			
10		Big							
15		physikalische Eigenschaften					,		
20		9					4		Yoby
25		NR 7R8	NEt2		NH Et	$\bigcirc_{\mathbf{z}}$	NH Butyl	NH Propyl	NH iso-Propyl
30		R6	Br		Br	B	Br	ប	ជ
30									
35			_		_	-	H	Ħ	-
40		R.5	Propyl	· ·	Propyl	Propyl	Propyl	Propy1	Propyl
	bui	R4	Ħ		#	I	Ħ	Ħ	Ħ
45	setzu	ж3	Ħ		#	. ¤	#	#	Ħ
	Fort	R2	Ħ		Д	Ħ	×	æ	Ħ
50	Tabelle A Fortsetzung	R^{1}	снз		СН3	CH ₃	CH ₃	СН3	. СН3
55	T as	Nr.	£.3		4.	4.	4.	4.7	4.8

5		haften						t 7,68 s 4,16 pm]
10		Eigensc			-	- 163°C		: d 8,17 t s 6,09 s 4 2,70 [ppm]
15		physikalische Eigenschaften		. •		Smp.: 161		HNMR(CDC13): 7,23 d 7,19 3,84-3,52 s
20								H # ₩
25		NR 7R8	NH Butyl		NMe2	$\binom{\circ}{\mathbf{z}}$	NH Pentyl	$\binom{\circ}{z}$
30		R6	Ħ	щ	¤	ж	щ	щ
35		R5	сн2с6н5	СН2С6Н5	сн2с6н5	CH ₂ C ₆ H ₅	CH ₂ C ₆ H ₅	CH ₂ C ₆ H ₅
40		-				_	_	Ū
	bun	R4	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ
45	setz	E24	Ħ	Ħ	×	×	24	Ħ
	Fort	R2	×	Ħ	×	Ħ	Ħ	m
50	Tabelle A Fortsetzung	R1	CH3	снз	CH3	GH ₃	СНЗ	CH3
	Tal	Nr:	ر. ت	გ	5.7	ت	9.9	5.10
55						•		•

10		physikalische Eigenschaften	1H-NMR(CDCl ₃): d 8,18 t 7,68 s 7,29 d 7,19 s 6,12 s 4,18 t 3,64 s 2,70 t 2,43 s 2,30 [ppm]	Smp.: 172 - 174°C	1H-NMR (CDCl ₃): d 8,21 t 7,71 m 7,24 m 6,98 s 6,60 s 5,23 q 3,59 s 2,72 t 1,19 [ppm]	Smp.: 122°C	Smp.: 134°C	1H-NMR (CDCl ₃): d 8,16 t 7,64 d 7,17 s 6,35 s 2,6 m 1,65 m 1,20 [ppm]
20				ដ				
25		NR 7R8	N-CH3	NHC6H4-4-C1	NHEt ₂	$\bigcup_{\mathbf{z}}$	NMe2	$\bigcirc_{\mathbf{z}}$
30		R6	à	#	Ħ	Ħ	=	Ħ
35		R5	сн2с6н5	CH ₂ C ₆ H ₅	CH ₂ OC ₆ H ₅	СН20С6Н5	CH2OC6H5	CH ₂ CH ₂ -Cyclo-
	קַ	R4	. ж	Ħ	Ħ	×	=	Ħ
4 5	Tabelle A Fortsetzung	R3	Ħ	m	Ħ	¤ .	#	ı
	For	R2	н	Ħ	Ħ	Ħ	Ħ	æ
50	elle A	\mathbb{R}^1	CH3	CH3	СНЗ	CH3	CH3	СНЗ
55	Tab	Nr.	5.11	5.12	6.1	6.2	6.3	4.

10		physikalische Eigenschaften	1H-NMR (CDCl3): d 8,15 t 7,62 d 7,16 s 6,16 t 3,26 s 2,63 m 1,71 t 0,97 [ppm]	iH-NMR (CDCl3): d 8,19 t 7,69 d 1,9 s 6,19 q 5,60 d 2,94 s 2,66 m 1,69 [ppm]	1H-NMR (CDCl3): d 8,14 t 7,64 m 7,26 d 7,16 s 6,31 s 4,89 s 3,13 s 2,70 m 1,62 [ppm]	Smp.: 152 - 153°C	Smp.: 98 - 100°C	Smp.: 142°C
20			H 70 E	·H 70 W				
25		NR7R8	NH Propyl	NHMe	исн ₃ сн ₂ с ₆ н ₅	NH Propyl	(°)	NEt2
30		Rб	ĸ	Ħ	出	Ħ	77 H	. #
35		R5	CH2CH2-Cyclo- pentyl	CH2CH2-Cyclo- pentyl	CH2CH2-Cyclo- pentyl	сн20с6н5	CH2CH2Cyclopentyl	CH2OC6H5
40		İ	• -				ប៊	
	nng	R4	III.	Ħ	Ħ	Ħ		Ħ
45	tsetz	к3	#	Ħ	H	Ħ	# .	Ħ
	For	R2	Ħ	# .	.	Œ	æ	Ħ
50	Tabelle A Fortsetzung	R1	. СН3	CH3 .	СНЗ	CH3	СНЗ	снз
55	Tab	Nr.	ه. ت	9.	6.7	8.	6.	6.10

10		physikalische Eigenschaften	.Smp.: 122 - 123°C	Smp.: 134 - 136°C	Smp.: 125°C	Smp.: 109°C	1H-NMR (CDCl3): d 8,11 t 7,66 d 7,18 q 3,69 s 2,70 s 2,66 t 1,33 [ppm]	¹ H-NMR (CDCl ₃): d 8,16 t 7,68 d 7,19 q 3,26 s 2,70 s 2,64 [ppm]
20								
25		NR ⁷ R ⁸		N(CH3)2	$\binom{\circ}{z}$	NCH3C6H5	NEt2	NMe2
30		R6	II	ж	Ħ	Ħ	ប	น
35		R5	сн2ос6н5	CH2OC6H5	сн20С6Н5	сн20С6Н5	CH ₃	СН3
40	ש	R4	Ħ	#	Ħ	Ħ	=	#
45	etzun	В3	Ħ	· #	Ħ	ж	#	Ħ
	Forts	R2	Ħ	#	# .	Ħ	Ħ	æ
50	Tabelle A Fortsetzung	R1	CH3	CH3	CH3	CH3	CH3	CH3
55	Tabe	Nr.	6.11	6.12	6.13	6.14	7.1	7.2

5 10 15		physikalische Eigenschaften	Smp.: 106 -107				1H-NMR (CDCl3): d 8,14 t 7,64 d 7,16 s 4,56 s 3,81 s 3,46 s 2,64 [ppm]
20							
25		NR 7R8	NH Propyl	NH Propyl	NH Butyl		OCH3 NHC3H7
30		R6	<u>ភ</u>	異	щ	оснз	оснз
35		R5	СН3	CF3	CF3	MeOCH ₂	MeOCH ₂
40		1					
	bun	R4	Ħ	Ħ	Ħ	II	I
45	setz	В3	Ħ	. #	Ħ	Ħ	, H
	1 Fort	R2	æ	Ħ	##	#	Ħ
50	Tabelle A Fortsetzung	\mathbb{R}^1	CH3	CH3	CH3	CH3	CH3
55	Tab	Nr.	7.3	7.4	7.5		7.7

5		schaften	08 t 7,64 7 s 3,49		·	121°C		
10		he Eigen	-NMR(CDCi3): d 8,08 t 7,16 s 4,59 q 3,67 s 2,66 t 1,24 [ppm]		Smp.: 102°C	120 -	: 129°C	Smp.: 77°C
15		physikalische Eigenschaften	1H-NMR(CDCi3): d 8,08 t d 7,16 s 4,59 q 3,67 s 3 s 2,66 t 1,24 [ppm]	· ·	Smp.	S. dws	e dus	·dws
20						_		
25	•	NR 7R8	NEt2	инсен5	NHC2H5	NHCH2C6H5	\bigcirc	NHC3H7
30		R6	оснз	оснз	OCH3	OCH3	OCH3	Вг
35					03	8	8	
40		28.5	MeOCH ₂	MeOCH ₂	н3сосн2	н3сосн2	н3сосн2	C3H7
	ng	R4	Ħ	=	¤	Ħ	Ħ	Ħ
45	setzu	R3	Ħ	Ħ	×	Ħ	*	Ħ
	Fort	R2	Ħ	Ħ	ı.	# .	Ħ	Ħ
50	Tabelle A Fortsetzung	R^{1}	CH3	CH3	СН3	СН3	CH3	СН3
55	Tab	Nr.	7.8	7.9	7.10	7.11	7.12	7.13

		,						
5		haften	·				,	
10		Eigenschaften	ပ	 ပ	ບ	·	- 74°C	- 83°C
15		physikalische	Smp.: 95°C	Smp.: 89°C	Smp.: 103°C	•	Smp.: 72	Smp.: 80
20	*	physi						
25		NR 7R8	N(C2H5)2	· (°)	N(CH3)2	N N-CH ₃	°)	N N-CH3
30		R6	Br	B	Br	Ħ		ជ
35					-			
40		R5	C3H7	C3H7	С3Н7	C3H7	СНЗ	СНЗ
	pu	4 _R	Ħ	æ	#	#	Ħ	æ
45	setzu	В3	æ	æ	.	×	H	Ħ
	Fort	R2	, #	×	# .	Ħ	Ħ	. #
50	Tabelle A Fortsetzung	R1	CH3	CH3	CH3	СН3	сн3	СН3
55	Tab	Nr.	7.14	7.15	7.16	7.17	7.18	7.19

				_				
5		nschaften	ပ	1H-NMR (CDCl ₃): d 8,21 t 7,66 d 7,17 s 3,14 m 2,91 s 2,66 m 2,35 m 1,84 [ppm]	1H-NMR (CDCl3): d 8,14 t 7,68 d 7,17 m 3,85 m 3,47 m 3,05 s 2,68 m 2,59 m 1,86 [ppm]	<pre>1H-NMR (CDCl3): d 8,16 t 7,64 d 7,15 m 3,71 t 2,97 t 2,78 s 2,66 m 1,86 [ppm]</pre>	172°C	154°C
10		physikalische Eigenschaften	.: 95 - 97°C	1H-NMR (CDCl3): d 8,2 d 7,17 s 3,14 m 2,91 m 2,35 m 1,84 [ppm]	1H-NMR (CDCl3): d 8,14 t 7, d 7,17 m 3,85 m 3,47 m 3,05 s 2,68 m 2,59 m 1,86 [ppm]	1H-NMR (CDCl3): d 8,16 t 7, d 7,15 m 3,71 t 2,97 t 2,78 s 2,66 m 1,86 [ppm]	Smp.: 170 - 1'	Smp.: 153 - 19
15		physikal	Smp.:	1H-NMR (d 7,17 gm 2,35 m	1H-NMR (d 7,17 ns 2,68 ns	1H-NMR (d 7,15 ms 2,66 ms	dwg	Smp
20							-	
25		NR 7R8	e e e e e e e e e e e e e e e e e e e	инсн ₃	(°)		NH Propyl	NEt2
30		Rб	ย	- (CH2)4-	-(CH ₂)4-	-(CH2)4-	- (CH ₂)4-	-{CH ₂ }4-
35								
		R5	СНЗ					
40	ğ	R4	×	æ	Ħ	Ħ	Ħ	Ħ
45	Fortsetzung	к3	æ	Ħ	#		Ħ	×
		R2	æ	Ħ	Ħ	×	Ħ	Ħ
50	Tabelle A	R1	снз	СН3	СНЗ	CH3	СНЗ	СН3
	Tal	Nr.	7.20	8.1	8.2	8. .3	4.	

5		haften						
10		e Elgensc	- 144°C					
15		physikalische Eigenschaften	Smp.: 141		·			
20			-		ம			
25		NR7R8	ري .	NHCH2C≡C-H	NCH3CH2C6H5	NH Propyl		NH Butyl
30		Rб	.) 4-	- 4-	-5(:	OCH3	OCH ₃	Ħ
35			- (CH ₂)4-	-(CH2)4-	-(CH2)4-			A
40		_R 5				Ħ	æ	Ħ
	þ	R4	Ħ	Ħ	Ħ	Ħ	×	.· H
45	csetzur	к3	×	Ħ	Ħ	##	#	Ħ
	Fort	R ²	Ħ	Ħ	Ħ	Ħ	m	Ħ
50	Tabelle A Fortsetzung	R1	CH3	CH ₃	СНЗ	СНЗ	CH ₃	CH3
55	Tat	Nr.	8 9.	. 7.	& &	9.1	6.5	e.

5		chaften		d 8,14 t 7,54 3,58 s 2,68				
10		physikalische Eigenschaften)Cl3): d 8, 5,38 q 3,58	Tuc.	٠.		
15		physikalis		1H-NWR (CDCl3):	t 1,23 [ppm]			
20								
25		NR ⁷ R ⁸	NH Propyl	\mathtt{NEt}_2	$\bigcirc_{\mathbf{z}}$	NH Pentyl	NH Propyl	NH Propyl
30		R6	Ħ	ж	ж	оснз	æ	莊
3 5							NH Propyl	E t
40		R5	Ħ	CI	CI	ដ	H	NH Et
	bur	R4	H	æ	×	Ħ	Ħ	Ħ
45	csetzı	R3	E	#	#	Ħ	. · #	Ħ
	For	R2	# -	Ħ	Ħ	Ħ	Ħ	Ħ
50	Tabelle A Fortsetzung	R1	СНЗ	СН3	CH3	CH3	. CH3	CH3
55	Tak	Nr.	4.6	و. بې	9.	9.7	<u>ق</u> ھ	6.

55	50		45		35 40	30	25	20	15	10	5
Tab	Tabelle A Fortsetzung	Fort	setzui	bu							
Nr.	R1	R2	я3	R4	R5	R6	NR 7R8	kyd	physikalische Eigenschaften	Eigensch	naften
9.10	снз	Ħ	Ħ	æ	ос4н ₉	出	NH Et				
9.11	CH ₃	.	Ħ	Ħ	оснз	# ,	NEt2				
. 12	снз	Ħ	Ħ	#	SMe	æ	NHMe .		•		
9.13	СН3	Ħ	Ħ	Ħ	S-C ₆ H4-4-Cl	CH3	NH Butyl			-	
9.14	СНЗ	Ħ	Ħ	#	æ	百	NH Propyl				
9.15	CH3	Ħ	Ħ	Ħ	ж	СН3	NH Propyl				

5 10 15		physikalische Eigenschaften	Smp.: 79 - 81°C	1H-NMR(CDCl ₃): d 8,14 t 7,68 d 7,21 s 6,37 q 3,56 s 2,67 t 1,20 [ppm]	Smp.: 159°C	Smp.: 135°C	1H-NMR (CDC13): dd 8,36 s 6,30 s 3,22 s 2,51 [ppm]
					0	47	
25		NR 7R8	NEt2	NEt 2	Ç	NHC3H7	NMe2
30		R6	Ħ	Ħ	Ħ	Ħ	Ħ
35							
40		R5	NHC3H7	ฮ	បី	OC2H5	CH3
40	би	R4	Ħ	æ	Ħ	Ħ	Ħ
45	setzu	к3	Ħ	Ħ	Ħ	. щ	#
	/ Fort	R2	æ	- s	m	Ħ	Ħ
50	Tabelle A Fortsetzung	R1	CH3	CH ₃	CH3	CH ₃	C6H5
55	Tab	Nr.	9.16	9.17	9.18	9.19	10.1

	50		45	40		35	30	25	15	5
Tal	Tabelle A	For.	Fortsetzung	bun						
Nr.	R1	R2	R3	R4	RS		R6	NR7R8	physikalisc	physikalische Eigenschaften
10.2	C6HS	Ħ	Ħ	Ħ	СНЗ		#	NEt2	1H-NMR (CDC q 3,62 s 2,	1H-NMR (CDCl3): dd 8,32 s 6,26 q 3,62 s 2,51 t 1,23 [ppm]
10.3	C6H5	Ħ	Ħ	æ	CH ₃		Ħ	NH Propyl	1H-NMR (CDC t 3,24 s 2, [ppm]	1H-NMR (CDCl ₃): dd 8,33 s 6,19 t 3,24 s 2,47 m 1,65 t 0,98 [ppm]
10.4	C6H5	æ	Ħ	#	. СН3		Ħ	NH iso-Propyl	¹ H-NMR (CDCl ₃): dd sept 3,92 s 2,50 d	113): dd 8,39 s 6,17 3 2,50 d 1,28 [ppm]
10.5	C6H5	æ	Ħ	Ħ	CH ₃		СНЗ	NH-(3,5-C1 ₂ -C ₆ H ₃)		
11.1	C6H5	æ		#	C3H7		Ħ	NEt2	1H-NMR (CDC1 q 3,61 t 2,7 t 1,02 [ppm]	1H-NMR (CDCl3): dd 8,28 s 6,21 q 3,61 t 2,73 m 1,80 t 1,24 t 1,02 [ppm]
11.2	C6H5		Ħ	Ħ	C3H7		н	NH Propyl	1H-NMR (CDC t 5,28 m 3, t 1,01 t 1,	1H-NMR (CDCl ₃): dd 8,31 s 6,15 t 5,28 m 3,27 t 2,70 m 1,72 t 1,01 t 1,03 [ppm]

5		Eigenschaften	8,33 s 6,26 82 t 1,00				U	d 8,81 d 8,49 7,41 s 6,73 pm]
10			1H-NMR (CDCl3): dd 8,33 s 6 s 3,20 t 2,76 m 1,82 t 1,00 [ppm]				155 - 156°C	1H-NMR (CDC13): d E m 8,10 t 7,81 m 7,4 q 3,69 t 1,26 [ppm]
15		physikalische	1H-NMR (s 3,20 t [ppm]				Smpkt.:	1H-NMR (m 8,10 t
20				CH=CH ₂	NHCH2-CH=CH-CH3 E-Isomeres	NHCH2-CH=CH-CH3 Z-Isomeres		
25		NR7R8	NMe2	NH-CH2-CH=CH2	NHCH ₂ -CH=C E-Isomeres	NHCH ₂ -CH=C Z-Isomeres	NEt ₂	\bigcirc
30		ж	.	Ħ	Ħ	СНЗ	æ	ж
35		R5	C3H7	C3H7	C3H7	C3H7	C6H5	C ₆ H ₅
40	bur	R4	Ħ	Ħ	æ	×	Ħ	Ħ
	tsetzı	В3	Ħ	Ħ	ĸ	#	×	×
45	For	R2	x	Ħ	Ħ	Ħ	Ħ	×
	Tabelle A Fortsetzung	R1 .	C6H5	C6H5	С6И5	C6H5	æ	æ
50	Tab	Nr.	11.3	11,4	11.5	11.6	20.1	20.2

		en						
5		genschaft	120°C					. 190°C
10		physikalische Eigenschaften	Smp.: 118 -					Smp.: 189 -
15		physike	ซี					į,
20			pyl	NH iso-Propyl		. a M		
25		NR 7R8	NH Propyl	NH isc	NHMé	(z)	NMe2	$\binom{\circ}{z}$
		R6	Ħ	ж	×	Ħ	=	Ħ
30	•							
		RS	C ₆ H ₅	C6H5	C6H5	C6H5	C6H5	C6H5
35		R4	Ħ	Ħ	Ħ	æ	Ħ	Ħ
	ng	ж3	Ħ	-III	#	#	Ħ	Ħ
40	Tabelle A Fortsetzung	R2	Ħ	m	Ħ		Ħ	Ħ
	A Fort							•
45	elle i	R1	, m	Œ	Ħ	H	щ	. #
50	Tab	Nr.	20.3	20.4	20.5		20.7	20.8

5		Eigenschaften	•			ပ	8,34 t 7,85 92 s 6,32	8,30 t 7,81 92 s 6,25 52 t 1,23
10		ische Eigen	.: 146°C	Smp.: 123°C	 83°C	Smp.: 115 -117°C	מ ס	7 O B
15		physikalische	Smp.:	Q EIS	Smp.:	дшS	¹ H-NMR (CDCl ₃): d 7,56 d 7,23 d	1H-NWR (CDCl3): d 7,53 d 7,22 d s 5,39 q 3,62 s [ppm]
20				(CH3)2		H3)2		
25		NR7R8	NHC3H7	NHCH2CH(CH3)2	Ç	NHCH(CH3)2	NWe2	NEt2
30		R6	Ħ	Ħ	Ħ	щ	Ħ	Ħ
35		R5	CH ₃	СНЗ	СН3	СНЗ	СНЗ	CK3
		R4	#	E	Ħ	Ħ	Ħ	æ
40	ng	ж3	×	æ	æ	# .	z	Ħ
	setzu	R2	# .	×	Ħ	Ħ	#	¤
45	Tabelle A Fortsetzung	R1	æ	m	. #	æ	4-C1-C6H4- OCH2	4-C1-C6H4- OCH2
50	Tab	Nr.	20.9	20.10	20.11	20.12	30.1	30.2

5		physikalische Eigenschaften				1H-NMR (CDCl3): d 8,29 t 7,81 d 7,54 d 7,24 d 6,93 s 6,24 s 5,36 q 3,6 t 2,74 m 1,81	
15		physik				1H-NMR d 7,54 s 5,36	1H-NMR d 7,54 s 5,34 t 1,01
20							
25		NR 7R8	NH Propyl	NHE¢		NEt2	MMe ₂
30		R6	Ħ	Ħ	Ħ	Ħ	Ħ
35		R5	снз	CH ₃	CH ₃	Propyl	Propyl
		R4	Ħ	#	Ħ	Ħ	Ħ
40			-	_	-		
	p	R3	Ħ	Ħ	æ	. #	Ħ
45	setzun	R2	Ħ	# -	Ħ	#	Ħ
50	Tabelle A Fortsetzung	R1	4-с1-с ₆ н ₄ - осн ₂	с6н5-осн2	2,6-(Me)2- C6H3	4-с1-с ₆ н ₄ - осн ₂	4-с1-с ₆ н ₄ - осн ₂
55	Tab	Nr.	30.3	30.4	30.5	31.1	31.2

55	50	45		40	35	30	25	20	15	10	5
Tab	Tabelle A Fortsetzung	etzui	ng								
Nr.	R1	R2	R3	R4	R5	R6	NR7R8	phys	ikalisch	physikalische Eigenschaften	chaften
31.3	4-c1-c6H4- ocH2	Ħ	Ħ	Ħ	Propyl	Ħ	NH Propyl	1H-N d 7, s 5, t 1,	1H-NMR (CDCl3): d d 7,55 d 7,24 d 6, s 5,34 m 3,26 t 2, t 1,01 [ppm]	1H-NMR (CDCl3): d 8,31 d 7,55 d 7,24 d 6,91 d s 5,34 m 3,26 t 2,71 m t 1,01 [ppm]	31 t 7,82 d 6,18 m 1,70
31.4	4-C1-C ₆ H4- OCH2	Ħ	Ħ	#	Propyl	#	исн3с6н5	Smp	Smp.: 139 -	140°C	
40.1	4-Cl-C6H4- O-C6H4-OCH2	Ħ	Ħ	Ħ	снз	m.	NEt2	1H-NMR d 7,58 s 6,51 t 1,14	1H-NMR (DMSO- d 7,58 d 7,37 s 6,51 s 5,28 t 1,14 [ppm]	1H-NMR (DMSO-d ₆): d 8,21 t 7 d 7,58 d 7,37 dd 7,09 d 6,94 s 6,51 s 5,28 q 3,58 s 2,35 t 1,14 [ppm]	1H-NMR (DMSO-d ₆): d 8,21 t 7,92 d 7,58 d 7,37 dd 7,09 d 6,94 s 6,51 s 5,28 q 3,58 s 2,35 t 1,14 [ppm]
41.1	4-C1-C ₆ H4- 0-C ₆ H4-OCH ₂	# ·	Ħ	Ħ	Propyl	Ħ	NEt2	1H-N d 7, s 6, m 1,	I-NMR (DMSC 7,60 d 7,3 6,50 s 5,2 1,71 t 1,1	1H-NMR (DMSO-d ₆): d 8,21 t 7 d 7,60 d 7,39 dd 7,09 d 6,94 s 6,50 s 5,23 q 3,59 t 2,63 m 1,71 t 1,15 t 0,96 [ppm]	<pre>1H-NMR (DMSO-d₆): d 8,21 t 7,94 d 7,60 d 7,39 dd 7,09 d 6,94 s 6,50 s 5,23 q 3,59 t 2,63 m 1,71 t 1,15 t 0,96 [ppm]</pre>
50.1	сен5сн2	Ħ	Ħ	Ħ	Propyl	Ħ	мс6н5		c dws	Smp.: 116°C	
50.2	C ₆ H ₅ CH ₂	Ħ	Ħ	æ	Propyl	Ħ	NCH3C6H5				

5 10 15		physikalische Eigenschaften			· .	-		
20		<u> </u>						
25		NR7R8	NH Propyl	NH Pentyl		NH Propyl	NEt2	
30		R6	æ	耳.	#	#	#	#
35		R5	Propyl	Propyl	Propyl	iso-Propyl	iso-Propyl	iso-Propyl
40		R4	Ħ	#	Ħ	Ħ	. #	Ħ
	Ją	ж3	Ħ	Ħ	Ħ	Ħ	×	Ħ
45	tsetzu	R2	Ħ	pa ,	=	. =	, ¤ .	Ħ
50	Tabelle A Fortsetzung	R1	C6H5CH2	сен5сн2	C6H5CH2	C6H5CH2	с6н5сн2	C6H5CH2
55	Tab	Ňr.	50.3	50.4	50 5	50.6	50.7	50.8

		1							
5		Eigenschaften					117°C	163°C	
10			ı	೨, 86	127°C	154°C	115 - 11	162 -	Smp.: 164°C
15		physikalische		Smp	Smp.:	Smp.:	: · dws	Smp.	Sms
20						-			
25		NR 7 RB		N(C2H5)2	NHC3H7	N(CH3)2	\bigcirc	o	G G G
30		R6	ш	Ħ	Ħ	Ħ	æ	Ħ	æ
35		R5	iso-Propyl	C3H7 .	C3H7	C3H7	C3H7	C3H7	C3H7
40		R4	# .	#	æ	Ħ	Ħ	Ħ	Ħ
	вu	R ³	#	#	Ħ	Ħ	Ľ	Ħ	Ħ
45	setzu	R2	н	Ħ	Ħ	#	# .	, m	æ
50	Tabelle A Fortsetzung	Rl	сен5сн2	C ₆ H ₅ CH ₂	C6H5CH2	С6Н5СН2	C6H5CH2	С6Н5СН2	С6 Н5 СН2
55	Tabe	Nr.	ο.	50.10	50.11	50.12	50.13	50.14	50.15

_		en								
5		physikalische Eigenschaften			148°C		101°C			ູນ
10		Eigen	134°C	170°C	t	119°C	•	139°C	147°C	121-123°C
		lische	Smp.: 13	Smp.: 17	Smp.: 147	Smp.: 11	99 : . gm	Smp.: 13	Smp.: 14	Smp.: 12
15		hysika	w S	S	S.		S E	Ω̈́	S.	ES
20		à				-				
			ģ				·			-CH2
25		NR7R8	-x-cH ₃	E	NHC3H7	N(C2H5)2	(°)	$^{\circ}$	NHC3H7	NHCH2CH=CH2
		Į		Z	Ë	ž	z	Z	ä	Ä
30		R6	Ħ	· ====================================	Ħ	Ħ	Ħ	щ	Ħ	Ħ
35	•	R5	C3H7	C3H7	C ₆ H5	C6H5	C6H5	С5Н9	сғнә	С5Н9
		R4 1								
40			Ħ	Ħ	Ħ	Ħ	#	.	# ·	
	bu	к3	Ħ	Ħ	Ħ	Ħ	Ħ	æ	#	Ħ
45	tsetzu	R2	Ħ	Ħ	H .	Ħ	Ħ	· #	Ħ	æ
50	Tabelle A Fortsetzung	R1	С6Н5СН2	С6Н5СН2	C ₆ H ₅ CH ₂	C6H5CH2	C ₆ H ₅ CH ₂	C6H5CH2	С6Н5СН2	C6H5CH2
55	Tabe	Nr.	16	50.17	51.1	51.2	51.3	52.1	52.2	52.3
00										

		u		64	1,15					
5		Eigenschaften		1H-NMR(CDCl3): d 8,16 t 7,64 m 7,37-7,18 d 8,01 s 6,38	4,35 t 3,78 m 2,90-2,74 2,52 m 1,91-1,60 m 1,50-1,19 1,02-0,76 [ppm]			116°C	133°C	
10			Smp.: 133°C	1H-NMR(CDCl3): d 8,16 t 7 m 7,37-7,18 d 8,01 s 6,38	4,35 t 3,78 m 2 2,52 m 1,91-1,6 1,02-0,76 [ppm]	Smp.: 149°C	Smp.: 162°C	Smp.: 114 -	Smp.: 130 -	Smp.: 145°C
15		physikalische	Sm	1H-NMR((m 7,37-	s 4,35 t 2,52 m 1,02-	S	Ω E	S	R.	Sa
20										
25	·	NR 7R8	NHC5H9	N-CH3		NHC3H7	инснсн3с245	$\binom{\circ}{z}$	NHCH2CH=CH2	NHCH2C6H5
30		R6	×	Ħ		Ħ	Ħ	Ħ	×	Ħ
35		R5	с5Н9	С5Н9		с645сн2	сен5сн2	с ₆ н5сн2	с ₆ н ₅ сн ₂	C6H5CH2
40		R4	×	Ħ		Ħ	Ħ	Ħ	¤ :	I
70	p	к3	Ħ	Ħ	•	Ħ	Ħ	Ħ	Ħ	Ħ
45	tsetzun	R2	×	æ		¤	Ħ	Ħ	·Ħ	·¤
50	Tabelle A Fortsetzung	R1	C6H5CH2	C6H5CH2		С6Н5СН2	C6H5CH2	С6Н5СН2	C6H5CH2	C6H5CH2
55	Tat	Nr.	52.4	52.5		53.1	53.2	53.3	53.4	53.5

55	50	45		40	35	30	25	20	15	10	5
H.	Tabelle A Fortsetzun	setzu	มช								
Nr.	R1	R2	В3	R4	R5	Rб	NR 7R8	hd	ysikalisch	physikalische Eigenschaften	ften
71.1	н3сосн2	æ	Ħ	Ħ	Propyl	æ	\bigcirc	Н д Н Н ,	1H-NMR (CDC1 d 7,49 s 6,3 t 2,71 m 1,6	1H-NMR (CDCl ₃): d 8,24 t 7,80 d 7,49 s 6,35 s 4,76 m 3,69 t 2,71 m 1,65 t 0,97 [ppm]	t 7,80 3,69 pm]
71.2	н ₃ сосн ₂	Ħ	Ħ	Ħ	Propyl	Ħ	NH Propyl				
71.3	. н3сосн2	Ħ	Ħ.,,	Ħ	iso-Propyl H	Ħ	NH Propyl			·	,
71.4	CH30CH2	m	Ħ	Ħ	Propyl	ж	NCH2C6H5				
71.5	сн3осн2	` ш	д	д	Propyl	Ħ	° c		Smp.: 1	Smp.: 116 -117°C	
72.1	н3сосн2	, m	Ħ	Ħ	C6H5	#4 .	NH Propyl		1H-NMR (CDC1 t 7,85 m 7,4 s 3,49 m 3,3 [ppm]	1H-NMR (CDCl3): d 8,50 m 8,13 t 7,85 m 7,49 s 6,71 s 4,79 s 3,49 m 3,36 m 1,72 t 1,04 [ppm]	m 8,13 4,79 1,04

5 10 15		physikalische Eigenschaften	1H-NMR (CDCl3): d 8,35 m 8,11 t 7,82 m 7,46 s 6,74 s 4,78 q 3,68 s 3,49 t 1,24 [ppm]	Smp.: 147 - 148°C	yl			t	·y1
25		NR7R8	NEt2	$\binom{\circ}{z}$	NH Propyl	$\bigcup_{\mathbf{z}}$	NMe2	NH Butyl	NH Propyl
30		R6	щ	Ħ	Ħ	##	æ	3)2 H	3)2 H
35		R5	C6H5	С6Н5	C3H7	C3H7	C3H7	СН(СН3)2	СН(СН3)2 Н
40		R4	æ	Ħ	Ħ	#	ш	Ħ	Ħ
	ng	R3	#	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ
45	tsetzu	R2	æ	Ħ	Ħ	Ħ	Ħ	"	H
50	Tabelle A Fortsetzung	R1	н3сосн2	н3сосн2	C3H7	C3H7	C3H7	C3H7	C3H7
55	Tab	Nr.	72.2	72.3	80.1	80.2	80.3	80.4	80.5

							-	
5		chaften	•		- -			•
10		the Eigens	-		. •			
15		physikalische Elgenschaften					÷	
20								
25		NR7R8	NHEt	NH Butyl	NH Propyl	NHE¢	NMe2	$\bigcirc_{\mathbf{z}}$
30		R6	#	Ħ	æ	Ħ	#	Ħ
35		R5	СН(СН3)2	C6H5	Propyl	Propyl	Propyl	iso-Propyl H
40		₽4 4	Ħ	Ħ	Ħ	Ħ	æ	Ħ
40	ng G	ж3	Ħ	Ħ	CH ₃	СНЗ	СНЗ	CH3
45	tsetzu	R2	¤	Ħ	Ħ		· ##	z .
50	Tabelle A Fortsetzung	R1	C3H7	C3H7	CH ₃	снз	CH ₃	CH ₃
55	Ta	Nr.	80.6	80.7	90.1	90.2	90.3	90.4

		1						
5		physikalische Eigenschaften						-
10		lische E		-	-			
15		physika			-			
20			п		ropyl			
25		NR 7R8	NH Propyl	\bigcirc	NH-1so-Propyl	NHEt	NEt2	NMe ₂
30		R6	Ħ	æ	Ħ	Ħ	Ħ	Ħ
35		R5	Propyl	Propyl	Propyl	C6H5	C6H5	C6H5
		R4	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ
40	þ	R3	政	B t	既	편	西 九	既
45	Tabelle A Fortsetzung	R ²	ж	. ##	Ħ	#	#1	Ħ
50	elle A	R1	æ	æ	m	Ħ	æ	ж
55	Tab	Nr.	100.1	100.2	100.3	100.4	100.5	100.6

		1						
5		chaften						
10		e Eigense			r)	128°C	ပ္	
15		physikalische Eigenschaften			Smp.: 108°C	Smp.: 127 -	Smp.: 133°C	Smp: 125°C
20		P.						
25		NR 7R8	NH Propyl	NWe ₂	NH Propyl	инже	CH3 CH3	Ç
30		R6	1 н	H H	ж	Ħ	.	æ
35		ж 2	iso-Propyl H	iso-Propyl H	Propyl	Propyl	C3H7	C3H7
		R4	æ	#	H	æ	- #	Ħ
40	ש	ж3	E T	H +	æ	æ	Ħ	×
	setzun	R2	Ħ	æ	СН3	СН3	СН3	СНЗ
45	Fort							
50 ·	Tabelle A Fortsetzung	R1	iii	#	СНЗ	СНЗ	СНЗ	CH3
•	Tet	Nr.	100.7	100.8	101.1	101.2	101.3	101.4

		1		-					
5		schaften							
10		physikalische Elgenschaften	87°C	ວຸ 95	Smp.: 111°C	Smp.: 127°C	80°C	155°C	ე,88 - 98
15		physikali	Smp: 8	Smp.:	Smp.:	Smp.:	Smp	Smp.:	Smp.: 86
20									
25		NR 7R8	N-CH ₃	$\binom{z}{z}$	NHC5H11	Ç	NHC3H7	N N-CH ₃	-(CH2)4- NHC5H11
30		R6	Ħ	N	N	8	-(CH2)4-	- (CH ₂)4-	(CH ₂)4-
-		R5	C3H7	С6Н5СН2	С6Н5СН2	C6H5CH2	•	•	
35		₽ ^R	Ħ	"	Ħ	æ	×	Ħ	Ħ
	ש	R3	m	Ħ	Ħ	Ħ	Ħ	æ	Ħ
40	etzun	R2	CH3	CH3	СНЗ	CH3	CH3	CH3	CH3
45	Tabelle A Fortsetzung								
	elle	R1	CH3	CH3	снз	CH3	СНЗ	CH3	CH3
50	Tab	Nr.	101.5	101.6	101.7	101.8	101.9	101.10	101.11

		1		•		•		
5		Eigenschaften		v			ប្	
10			೨, 96	112 - 113°C	139°C	185°C	135 - 136°C	112°C
15		physikalische	Smb.	Smp.:	Sap	Smp.:	Smp.:	Smp.
20								,
25		NR7R8	NEt2	NHEt	NHC3H7	$\binom{\circ}{z}$	N NCH3	NHC5H11
30		ж6	C6H5		. ±	Ħ	Ħ	Ħ
35		RS	H	æ	C6H5CH2	сен2сн2	С6Н5СН2	С6Н5СН2
		R4	ĸ	Ħ	Ħ	#	m	Ħ
40	ng	я3	æ	Ħ	Ħ	Ħ	Ħ	πį
45	rtsetzu	R2	Ħ	æ	Ħ	Ħ	#	Ħ
50	Tabelle A Fortsetzung	R1	Propyl	Propyl	C3H7	C3H7	C3H7	C3H7
55	Ta	Nr.	102.1	102.2	102.3	102.4	102.5	102.6

	20 20 45 45	45	ţ	40	35	30	25	20	15	10	5
R1	0.10	R2	μ _α	R4	R5	R6	NR ⁷ R ⁸	tųa	physikalische	e Eigenschaften	ften
C3H7		Ħ	Ħ	Ħ	с6н5сн2	Ħ	инсн ₂ с ₆ н ₅		Smp.: 156	56 - 159°C	
C3H7		Ħ	Ħ	×	(CH ₂)2- H Cyclopentyl	yl Yl	NHC3H7		Smp.: 1	112 - 114°C	
C3H7		Ħ	Ħ	Ħ	(CH ₂) ₂ - H Cyclopentyl	я	\bigcirc		Smp.: 1	174°C	٠
С3Н7	,	.	æ	Ħ	(CH ₂)2- H Cyclopentyl	y)			Smp.: 1	170°C	
C3H7		#	Ħ	Ħ	(CH2)2- H Cyclopentyl	yı Yı	NHCH2CH=CH2		Sap.: 1	141 - 143°C	
C3H7		×	Ħ	Ħ	(CH2)2- H Cyclopentyl	н 3у1	N NCH3		Smp.: 158 -	.58 - 160°C	

		ı			•			
5		naften						
10		ne Elgenschaften	၁ 68 -	135°C	l - 122°C	ღ	161°C	၁့င
15		physikalische	Smp.: 87	Smp.: 139	Smp.: 121	ე ₀ 66 : .dws	Smp.: 161	Smp.: 128°C
20		Q						
25		NR 7R8	NHC3H7	$\mathring{\mathbb{Q}}$	N- CH ₃	NHC3H7		NHCH2CH=CH2
30		Rб	оснз	оснз	оснз	ច	ซ	ជ
35		R5	сн3осн2	снзосн2	сн3осн2	CH ₃	снз	СНЗ
40		R4	Ħ	Ħ	#	Ħ		Ħ
	ng	R3	# .	±	#	ш	Ħ	Ħ
45	setzu	R2	Ħ	Ħ	Ħ	Ħ	· #	Ħ
	Fort							
50	Tabelle A Fortsetzung	R1	C3H7	C3H7	С3Н7	C3H7	C3H7	C3H7
55	Tab	Nr.	102.13	102.14	102.15	102.16	102.17	102.18 C3H7

		ten						
5		nschaft		<u>.</u> .				71
10		physikalische Eigenschaften	Smp.: 112°C	.: 61 - 63°C	.: 75°C	ე 86 - 89°C	.: 75°C	⊃°89 - 99 :•
15		physika	Smb.	s. dmS	SmS	Smp.:	· dwg	Smp.:
20								
25		NR 7R8	NHC5H11		NHC5H11	NHC3H7	$\binom{\circ}{z}$	۲°٦
30		R6	i	z ,	Ħ	Ħ	, #	Ħ
35		R5	CH3	C3H7	C3H7	C3H7	C3H7	C3H7
		R4	Ħ	Ħ	Ħ	. #	×	Ħ
40	рı	R3	Ħ	Ħ	Ħ	· #	Ħ	æ
45	Tabelle A Fortsetzung	R2	Ħ	#	æ	×	` m	Ħ
50	lle A	R1	C3H7	C3H7	C3H7	C3H7	C3H7	C3H7
55	Tabé	Nr.	102.19	102.20	102.21	102.22	102.23	102.24 C3H7

		en						
5		schaft			n			n
10		Eigen	100°C		. 110°C		. 137°C	. 130°C
		lische	1 86 1	85°C	109 -	. 94°C	135 -	Smp.: 128 -
15		physikalische Eigenschaften	Smp.:	Smp.	: · ɗws	Smp.	: · dws	Smp
20							-	
25		NR 7R8	NHCH (CH3)2	N-0H3		инсн2с6н5	NHС3H7	NHC5H11
30		R6	z	z	ııı	н	- (СН2) 4-	-(CH2)4-
35		R5	C3H7	С3Н7	C3H7	C3H7	-	-
40		R4	Ħ	#	¤	z i.	II	Ħ
	bu	R3	Ħ	# .	Ħ	æ	Ħ	Ħ
45	tsetzu	R2	耳.	m	m	III.	#	¤
50	Tabelle A Fortsetzung	R1	C3H7	C3H7	С3H7	C3H7	С3Н7	C3H7
55	Tab	Nr.	102.25	102.26	102.27	102.28	102.29	102.30

		en						
5		physikalische Eigenschaften	126°C	113°C	•			
10		lische Ei	125 -					
15		physike	Smp.:	S. · qmS				
20								y
25		NR7R8		$\binom{\circ}{z}$	NHC5H11	NHMe	NMe2	NH Propyl
30		R6	- (CH2)4-	- (CH ₂)4-	E H	у1 н	у1 н	ул
35		# R5			OC2H5	Propyl	Propy1	Propyl
40		R4	H	Ħ	Ħ	с6н5 н	сен5 н	с6н5 н
	5un;	R3	æ	#	Ħ			•
45	Tabelle A Fortsetzung	R2	뽀	. H	Ħ	Ħ	H	Ħ
50	elle A	я 1	C3H7	C3H7	C3H7	#	# .	Ħ
55	Tal	Nr.	102.31	102.32	102.33	110.1	110.2	110.3

55	50		45	40	35		30	25	20	15	10	5
Tat	elle A	Fort	Tabelle A Fortsetzung									
Nr.	R1	R2	R3	R4	R5 I	R6	NR7R8		physik	alische E	physikalische Elgenschaften	ten
110.4	Ħ	æ	C6H5	Ħ	Propyl	æ	NH-Cyclohexyl	lohexyl				
110.5	Ħ	Ħ	C6 ^H 5	Ħ	Propyl I	Ħ	$\bigcirc_{\mathbf{z}}$					
110.6	×	Ħ		m	iso-Propyl i	æ	NH Propyl	y1				•
110.7	Ħ	ш	C6H5	iii.	iso-Propyl I	Ħ	NHEt					
110.8	Ħ	m	C6H5	Ħ	iso-Propyl 1	Ħ	NH-Cyc1	NH-Cyclopropyl				
110.9	#	Ħ	C6H5	Ħ	iso-Propyl B	Ħ	Ž	N-CH ₃				

5		ten						
10		physikalische Eigenschaften			·	Ŋ	- 119°C	- 126°C
15		ysikalische				Smp.: 107°C	Şmp.: 117	Smp.: 125
20		ta						
25		NR7R8	NH Proypl	NHEt	NH iso-Propyl	NHC5H11	(°)	\bigcirc
30		i	Z	Z	Z	Z	`Z	`Z'
		, R6	Ħ	æ	Ħ	Ħ	Ħ	Ħ
35		_R 5	Phenyl	Phenyl	Phenyl	С3Н7	C3H7	C3H7
40		R4	æ	Ħ	Ħ	Ħ	Ħ	Ħ
45	Tabelle A Fortsetzung	к 3	C6H5	C6H5	c ₆ H ₅	C6 ^H 5	C6H5	C6H5
	A Fort	R2	Ħ	# -	Ħ	#4	Ħ	#
50	lle !	R1	Ħ	¤	· b :	æ	Ħ	.
55	Tabe	Nr.	110.10	110.11	110.12	110.13	110.14	110.15

5		naften					-				s s(br) 8,64 4,19 t 3,71	٠	
10		Eigensch	ט	-	ט		U	. •	- 150°C		d 8,86	[mdd]	บ
15		physikalische Eigenschaften	Smp.: 132°C	· •	Smp.:.139°C		Smp.: 140°C		Smp.: 148		1H-NMR(CDC13): m 7,78-7,26 s 6	Z,43 s 2,29	Smp.: 155°C
20		kyd									1 _H -	t 2	
25 30		NR 7R8	NHCH2C6H5		NHC3H7	1	(<u>°</u>)		E C	E Y	N-CH3		$\mathring{\mathbb{Q}}$
		ж ₆	Ħ		Ħ		Ħ		×		Ħ		Ħ
35		R5	C3H7		C ₆ H ₅ CH ₂		С6Н5СН2		C6H5CH2		C6H5CH2		C3H7
40		R4	Ħ		Ħ		×		æ		¤		×
45	Tabelle A Fortsetzung	я3	C6H5		C6H5		C6H5		C6H5		C6H5		СН3
	A For	R2	Ħ		耳 -		#		Ħ		æ		×
50 ·	elle	R1	¤		н	-	Ħ		Ħ		Ħ		CH3
	Tab	Nr.	110.16		110.17		110.18		110.19		110.20		120.1

5 10 15		physikalische Eigenschaften	Smp.: 169 - 170°C	<pre>1H-NMR(CDCl3): s(br) 7,96 s(br) 7,03 s 6,38 t 3,71 t 2,74 s 2,64 t 2,53 s 2,36 dq 1,79 t 0,99 [ppm]</pre>	Smp.: 86 - 88°C	Smp.: 112°C	Smp.: 131°C	Smp.: 148°C
25			CH ₃	1- CH3				
30		NR 7R8	ڮؙ		NHC3H7	$\left(\begin{array}{c} \\ \\ \end{array}\right)$	NH	\bigcirc
-		R6	æ	æ	æ	m ·	Ħ	Ħ
35		R5	C3H7	C3H7	C3H7	С3Н7	C3H7	C6H5CH2
40		R4	Ħ	Ħ	æ	×	H .	ır
45	Tabelle A Fortsetzung	R3	снз	СН3	СНЗ	CH3	сн3	СНЗ
	A For	R2	×	Ħ	Ħ	#	Ħ	Ħ
50	elle	R1	CH ₃	CH3	CH3	CH3	СНЗ	СН3
55	Tab	Nr.	120.2	120.3	120.4	120.5	120.6	120.7

5	-			
10				
15				
20				
25				~
30				80700
35				t A
40				4 2
45			setzung	, ¢.
50			Tabelle A Fortsetzung	t 24
			Tabel]	Ē

	physikalische Eigenschaften	1H-NMR(CDCl ₃): s(br) 7,99 s(br) 7,05 s 6,11 s 4,18 t 3,65 s 2,63 t 2,45 s 2,38 s 2,31 [ppm]
	NR ⁷ R ⁸	N N-CH ₃
	R6	Ħ
	ж5	с ₆ н ₅ сн ₂ н
	R4 R5	Ħ
•	В3	CH3
	R2	Ħ
	R1	з сн3
	Nr.	120.8

5			physikalische Eigenschaften	farblos			
10 15			kalische E	semikristallin,			
20		ionssalze)	physi			yl	
25		(Säureadditionssalze)	NR 7R8	NH Propyl	NH Et	NH Propyl	NH Butyl
30		હ	R6	#	Ħ	អ្ន	Ħ
. 35			RS	С6И5	C3H7	C3H7	СНЗ
		-	R4	Ħ	#	æ	æ
40			R3	æ	щ	Ħ	#
45	•		R2	Ħ	#	, #	Ħ
50	le B		R1	CH3	СН3	CH3	C6H5
	Tabelle B	•	Nr.	200.1	200.2	200.3	200.4

		d		
5		physikalische Eigenschaften		
10		ische Eig		
15		physikal		
20				
25		NR 7R8	NHEt	
30		R6	Ħ	yl
35		R5	CH2CH2-	Cyclopentyl
40		R4	Ħ	
	চ	. R3	×	
45	tsetzun	R2	Ħ	
50	Tabelle B Fortsetzung	R1	C3H7	
55	Tabel1	Nr.	200.5	

C. Biologische Beispiele

Filterpapierscheibchen von 6 mm Durchmesser werden mit je 20 μl der in Tabelle 1 angegebenen Wirkstoffe gleichmäßig benetzt und auf ein, je nach Pilzart, unterschiedliches Agar-Medium aufgelegt. Dem Agar werden zuvor in noch flüssigem Zustand je Petrischale 0,5 ml Suspensionskultur des Testorganismus (im vorliegenden Fall Botrytis cinerea, BCM- und Iprodion resistenter Stamm, ca. 10⁵ - 10⁶ Konidien) zugegeben und die so behandelten Agarplatten anschließend bei ca. 22 °C bebrütet. Nach 3 - 4 tägiger Inkubation wird die Inhibitionszone als Maß der Pilzhemmung gemessen und in mm angegeben.

Tabelle 1

20

25

30

35

5

	gegenüber Botrytis cinerea - BCM- und odion-resistaneter Stamm.
Verbindung gemäß Beispiel	Hemmzonen in mm Durchmesse bei 1000 ppm Wirkstoff und 20 µl pro Filterscheibchen
1.1	28
1.2	26
1.3	30
1.4	24
2.7	32
2.1	12
2.38	12
2.2	44
7.1	14
7.3	40
10.2	14
11.1	22
11.2	20
11.3	22
31.4	16
unbehandelte Kontrolle	0

40

Beispiel 2

Filterpapierscheibchen von 6 mm Durchmesser werden mit je 20 µI der in Tabelle 2 angegebenen Wirkstoffe gleichmäßig benetzt und auf ein, je nach Pilzart, unterschiedliches Agar-Medium aufgelegt. Dem Agar werden zuvor in noch flüssigem Zustand je Petrischale 0,5 ml Suspensionskultur des Testorganismus (im vorliegenden Fall Alternaria mali) zugegeben und die so behandelten Agarplatten anschließend bei ca. 22°C bebrütet. Nach 3 - 4 tägiger Inkubation wird die Inhibitionszone als Maß der Pilzhemmung gemessen und in mm angegeben.

50

Tabelle 2

Fungizide W	irkung gegenüber Alternaria mali .
Verbindung gemäß Beispiel	Hemmzonen in mm Durchmesse bei 1000 ppm Wirkstoff und 20 µl pro Filterscheibchen
2.2	20
7.1	36
7.3	36
10.1	14
10.2	14
10.4	26
11.1	30
11.2	30
11.3	30
31.3	16
unbehandelte Kontrolle	0

Beispiel 3

5

10

15

20

25

35

40

45

50

Filterpapierscheibchen von 6 mm Durchmesser werden mit je 20 µl der in Tabelle 3 angegebenen Wirkstoffe gleichmäßig benetzt und auf ein, je nach Pilzart, unterschiedliches Agar-Medium aufgelegt. Dem Agar werden zuvor in noch flüssigem Zustand je Petrischale 0,5 ml Suspensionskultur des Testorganismus (im vorliegenden Fall Sclerotinia sclerotiorum, Hyphenstücke des Pilzes) zugegeben und die so behandelten Agarplatten anschließend bei ca. 22 °C bebrütet. Nach 3 - 4 tägiger Inkubation wird die Inhibitionszone als Maß der Pilzhemmung gemessen und in mm angegeben.

Tabelle 3

Fungizide Wirku	ng gegenüber Sclerotinia sclerotiorum
Verbindung gemäß Beispiel	Hemmzonen in mm Durchmesse bei 1000 ppm Wirkstoff und 20 µl pro Filterscheibchen
2.2	14
7.1	40
7.3	50
10.2	14
10.4	20
30.1	12
31.2	20
unbehandelte Kontrolle	0

Beispiel 4

Gerstenpflanzen wurden im 2-Blattstadium mit Konidien des Gerstenmehltaus (Erysiphe graminis hordel) stark inokuliert und in einem Gewächshaus bei 20°C und einer relativen Luftfeuchte von ca. 50 % weiterkultiviert. 1 Tag nach Inokulation wurden die Pflanzen mit den in Tabelle 4 aufgeführten Verbindungen in den angegebenen Wirkstoffkonzentrationen gleichmäßig benetzt. Nach einer Inkubationszeit von 7 - 9 Tagen wurden die Pflanzen auf Befall mit Gerstenmehltau untersucht. Der Wirkungsgrad der Prüfsubstan-

zen wurde prozentual zur unbehandelten, infizierten Kontrolle bonitiert und ist in Tabelle 4 wiedergegeben.

Tabelle 4

Verbindung gemäß Beispiel

9.17

2.49

7.8

7.12 8.2

8.5

7.14

7.15

7.16 2.8

2.11

6.9

102.11

102.21

102.16

102.17

102.33 unbehandelte, infizierte Pflanzen

101.1

Wirkungsgrad in % bei mg

Wirkstoff/Liter Spritzbrühe
500
100

100

100 90

90 100

100 100

100

90

100

100

90

100 100

100

100

100

0

10

15

20

25

30

Beispiel 5

Ca. 14 Tage alte Ackerbohnen der Sorten "Harz Freya" oder "Frank's Ackerperle" wurden mit wässrigen Suspensionen der beanspruchten Verbindungen tropfnaß behandelt.

Nach Antrocknen des Spritzbelages wurden die Pflanzen mit einer Sporensuspension (1,5 Mio Sporen/ml) von Botrytis einerea inokuliert. Die Pflanzen wurden in einer Klimakammer bei 20 - 22 °C und ca. 99 % rel. Luftfeuchte weiterkultiviert. Die Infektion der Pflanzen äußert sich in der Bildung schwarzer Flecken auf Blättern und Stengeln. Die Auswertung der Versuche erfolgte ca. 1 Woche nach Inokulation.

Der Wirkungsgrad der Prüfsubstanzen wurde prozentual zur unbehandelten, infizierten Kontrolle bonitiert und ist in Tabelle 5 wiedergegeben.

Tabelle5

50

EP 0 407 899 A2

	Verbindungen gemäß Beispiel	Wirkungsgrad in % bei mg Wirkstoff/ Liter Spritzbrühe
5	2.15	100
	5.8	90
	2.33	90
10	2.9	. 100
	5.11	100
	72.3	. 100
15	101.1	100
	110.20	90
	101.5	100
	101.10	100
20	101.11	100
	120.3	100
	5.12	90
25	6.9	90
	102.7	90
	102.11	100
30	102.21	90
-	102.22	90
	102.8	100
	102.3	100
35	102.17	100
	102.4	100
	102.5	100
40	102.13	90
	102.26	90
	102.15	100
45	102.14	100
	102.32	100

Fortsetzung Tabelle 5

gem	6.13 6.8 9.16 9.18 2.34	Liter Spritzbrühe 500 100 100 90	
	6.8 9.16 9.18	100 100 90 90	
	6.8 9.16 9.18	100 90 90	
	9.16 9.18	90 90	•
	9.18	90	
	2.34		
		90	
	2.41	100	
	2.40	100	
	2.42	90	
	2.45	90	
	2.48	90	
	7.18	100	
	2.49	100	
	2.51	90	
	7.19	100	
	7.8 -	100	
	52.4	90	
	52.3	100	
	8.1	90	
•	8.2	100	
	8.5	90	
	7.13	90	
	7.14	. 90	
	7.15	90	
	2.8	90	
	3.7	90 .	
	2.11	100	
	2.13	100	
	3.8	90	
	2.16	100	

Fortsetzung Tabelle 5

5	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
ð	gemäß Beispiel	Liter Spritzbrühe
		500
	102.29	100
10	102.30	100
	1.1	100
	1.2	100
15	1.4	100
	2.8	100
	2.1	100
	2.2	100
20	2.3	100
	2.4	100
	2.5	100
25	2.7	100
	7.3	100
	10.1	100
30	10.2	100
00	10.3	100
	10.4	100
	11.2	100
35	30.1	100
	31.2	100
	2.6	100
40	unbehandelte,	
	infizierte Pflanzer	n 0

45 Belspiel 6

Etwa 5 Wochen alte Reispflanzen der Sorte "Ballila" wurden nach Vorspritzen mit 0,05 %iger Gelatinelösung mit den unten angegebenen Konzentrationen der beanspruchten Verbindungen behandelt. Nach Antrocknen des Spritzbelages wurden die Pflanzen mit einer Sporensuspension von Piricularia oryzae gleichmäßig inokuliert und 48 h in eine dunkel gehaltene Klimakammer mit einer Temperatur von 25°C und 100 % rel. Luftfeuchte gestellt. Danach wurden die Reispflanzen in einem Gewächshaus bei einer Temperatur von 25°C und 80 % rel. Luftfeuchte weiterkultiviert. Nach 5 Tagen erfolgte die Befallsauswertung. Der Wirkungsgrad der Prüfsubstanzen wurde prozentual zur unbehandelten, infizierten Kontrolle bonitiert und ist in Tabelle 6 wiedergegeben.

Tabelle 6

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
	gemäß Beispiel	Liter Spritzbrühe
		500
	9.17	100
)	2.34	100
	2.41	100
	2.43	100
;	2.45	100
,	2.46	100
	2.48	100
	2.47	100
)	2.49	100
	7.18	100
	2.51	90
j	7.20	90
	7.8	100
	7.7	90 .
	7.10	90
•	7.11	100
	7.12	100
	8.2	100
;	8.5	100

Fortsetzung Tabelle 6

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
5	gemäß Beispiel	Liter Spritzbrühe
		500
	7.13	100
10	7.14	100
,,	7.15	100
	7.16	100
	2.19	100
15	3.6	90
	2.11	100
	2.21	100
20	3.4	90
	2.14	90
	3.8	100
05	2.33	90
25	2.9	100
	120.1	90
	120.6	90
30	6.9	100
	102.11	100
	102.21	100
35	102.16	100
	102.22	· 100
	102.17	100
40	102.23	100
40	102.18	. 100
	102.13	90
	102.32	100
45	102.29	100
	1.1	100
	1.2	100
50	2.1	100

Fortsetzung Tabelle 6

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
5	gemäß Beispiel	Liter Spritzbrühe
		500
	2.2	100
10	7.1	100
	7.3	100
	unbehandelte,	
	infizierte Pflanzen	0
15		

Beispiel 7

20

Weizen der Sorte "Jubilar" wurde im 2-Blattstadium mit wäßrigen Suspensionen der beanspruchten Verbindungen tropfnaß behandelt.

Nach dem Antrocknen des Spritzbelages wurden die Pflanzen mit wäßrigen Sporensuspensionen von Puccinia recondita inokuliert. Die Pflanzen wurden für ca. 16 Stunden tropfnaß in eine Klimakammer 20°C und ca. 100 % rel. Luftfeuchte gestellt. Anschließend wurden die infizierten Pflanzen in einem Gewächshaus bei einer Temperatur von 22 - 25°C und 50 - 70 % rel. Luftfeuchte weiterkultiviert.

Nach einer Inkubationszeit von ca. 2 Wochen sporuliert der Pilz auf der gesamten Blattoberfläche der nicht behandelten Kontrollpflanzen, so daß eine Befallsauswertung der Versuchspflanzen vorgenommen werden kann. Der Wirkungsgrad der Prüfsubstanzen wurde prozentual zur unbehandelten, infizierten Kontrolle bonitiert und ist in Tabelle 7 wiedergegeben.

35

40

45

50

Tabelle 7

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
5	gemäß Beispiel	Liter Spritzbrühe
		500
	9.16	:90
10	9.17	100
10	9.18	100
	2.45	90
	2.49	90
15	7.8	100
	7.11	90
	7.12	. 100
20	8.5	100
	7.14	100
	7.15	100
	7.16	100
25	2.8	100
	2.19	100
	3.6	100
30	2.11	100
	2.21	90
	2.14	90
35	2.16	90
	5.8	100
	2.9	100
	3.5	90
40	120.5	90
	6.9	90
	102.11	100
45	102.17	100
	102.10	100
	102.33	100

50

Fortsetzung Tabelle 7

Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
gemäß Beispiel	Liter Spritzbrühe
	500
1.1	100
1.2	100
2.7	100
2.1	100
2.2	100
7.1	100
31.3	100
7.3	100
unbehandelte,	
infizierte Pflanzen	0

²⁵ Belspiel 8

Weinsämlinge der Sorten "Riesling/Ehrenfelder" wurden ca. 6 Wochen nach der Aussaat mit wäßrigen Suspensionen der beanspruchten Verbindung tropfnaß behandelt.

Nach dem Antrocknen des Spritzbelages wurden die Pflanzen mit einer Zoosporangiensuspension von Plasmopara viticola inokuliert und tropfnaß in eine Klimakammer mit 23°C und 80 - 90 % rel. Luftfeuchte gestellt.

Nach einer Inkubationszeit von 7 Tagen wurden die Pflanzen über Nacht in die Klimakammer gestellt, um die Sporulation des Pilzes anzuregen. Anschließend erfolgte die Befallsauswertung. Der Wirkungsgrad der Prüfsubstanzen wurde prozentual zur unbehandelten, infizierten Kontrolle bonitiert und ist in Tabelle 8 wiedergegeben.

75

55

40

45

Tabelle 8

Verbindung gemäß Beispiel	Wirkungagrad in % bei mg Wirkstoff/Liter Spritzbrühe	
-	500	
2.51	90	
52.5	100	
7.14	90	
2.8	100	
101.1	90	
101.11	90	
120.5	90	
102.11	90	
102.27	100	
102.5	100	
102.31	100	
102.10	90	
102.20	90	
2.7	100	
unbehandelte, infizierte Pflanzen	0	

25

Beispiel 9

Weizenpflanzen der Sorte "Jubilar" wurden im 2-Blattstadium mit wäßrigen Suspensionen der in Tabelle 9 angegeben Präparate tropfnaß behandelt.

Nach dem Antrocknen des Spritzbelages wurden die Pflanzen mit einer wäßrigen Pyknosporen-Suspension von Leptosphaeria nodorum inokuliert und mehrere Stunden bei 100 % rel. Luftfeuchte in einer Klimakammer inkubiert. Bis zur Symptomausprägung wurden die Pflanzen im Gewächshaus bei ca. 90 % rel. Luftfeuchte weiterkultiviert.

Der Wirkungsgrad ist prozentual zur unbehandelten, infizierten Kontrolle ausgedrückt und wird in Tabelle 9 wiedergegeben.

Tabelle 9

50

45

Tabelle 9

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
5	gemäß Beispiel	Liter Spritzbrühe
		500
	6.11	100
10	6.12	100
	6.13	100
	6.8	100
	9.17	100
15	9.18	100
	2.34	100
	2.40	100
20	2.41	100
	2.42	100
	2.43	100
25	2.45	100
20	2.46	100
	2.47	100
	2.48	100
30	2.50	100
	2.49	100
	7.18	100
35	2.51	100
	7.19	100
	7.20	100
40	7.8	100
70	7.10	100 .
	7.7	90
	20.8	100
45	52.4	90

50

Fortsetzung Tabelle 9

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
5	gemäß Beispiel	Liter Spritzbrühe
		500
	51.1	90
10	52.5	90
U	51.3	90
	53.1	100
	52.1	100
5	53.2	100
	52.2·	100
	52.3	100
0	53.4	100
	7.12	100
	8.1	100
5	8.2	100
3	8.3	100
	8.4	100
	8.5	100
0	7.13	100 .
	7.15	100
	7.14	100
5	7.16	100
	8.6	. 90
	2.8	100
_	2.19	100
0	3.6	100
	2.11	100
	2.14	100
5	3.7	100
	2.13	100
	2.21	100
,	. 3.4	100

Fortsetzung Tabelle 9

Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
gemäß Beispiel	Liter Spritzbrühe
	500
2.14	100
2.16	100
3.8	100
2.17	100
2.15	100
2.18	100
2.33	100
5.8	100
2.9	100
3.5	100
5.11	100
72.3	100
110.15	100
101.3	100
101.9	100
120.2	90
120.3	90
101.1	90
120.6	100
5.12	100
6.9	100
6.10	100
120.7	100
102.11	100
102.21	100
102.8	100
102.16	100
102.22	100
102.17	100

Fortsetzung Tabelle 9

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
5	gemäß Beispiel	Liter Spritzbrühe
		500
	102.23	100
10	102.4	90
,,	102.18	100
	102.3	100
	102.19	100
15	102.5	90
	102.6	100
	102.31	100
20	102.9	100
	102.14	100
	102.32	100
25	102.33	100
20	102.29	100
	102.30	100
	1.1	100
30	1.2	100
	1.3	100
	1.4	100
35	2.7	100
	2.1	100
	2.38	100
40	2.2	100
40	7.1	100
	7.3	100
	10.3	100
45	10.2	100
	10.4	100
	11.1	100
50 ·	11.2	100

Fortsetzung Tabelle 9

	Verbindungen	Wirkungsgrad in % bei mg Wirksto	ff/
5	gemäß Beispiel	Liter Spritzbrühe	
•		500	
	11.3	100	
	31.2	100	
10	unbehandelte,	•	
	infizierte Pflanzen	. 0	

Beispiel 10

15

20

30

35

40

50

55

Gerstenpflanzen der Sorte "Igri" wurden im 2-Blattstadium mit einer wäßrigen Suspension der beanspruchten Verbindungen tropfnaß behandelt.

Nach dem Antrocknen des Spritzbelages wurden die Pflanzen mit wäßrigen Sporensuspensionen von Pyrenophora teres inokuliert und für 16 h in einer Klimakammer bei 100 % rel. Luftfeuchte inkubiert. Anschließend wurden die infizierten Pflanzen im Gewächshaus bei 25°C und 80 % rel. Luftfeuchte weiterkultiviert.

Ca. 1 Woche nach Inokulation wurde der Befall ausgewertet. Der Wirkungsgrad der Prüfsubstanzen wurde prozentual zur unbehandelten, infizierten Kontrolle bonitiert und ist in Tabelle 10 wiedergegeben.

Tabelle 10

6.11 90 6.12 100 6.13 100 9.17 90 9.18 100 2.34 100 2.40 100 2.41 90 2.42 90 2.43 90 2.48 100 2.49 100 7.18 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100 2.8 100 2.8 100 2.8 100 2.8 100 2.8 100 2.8 100 2.8 100 2.8 100 2.8 100 2.8 100 2.8 100	Verbindungen gemäß Beispiel	Wirkungsgrad in % bei mg Wirkstoff/ Liter Spritzbrühe 500
6.12 100 6.13 100 9.17 90 9.18 100 2.34 100 2.40 100 2.41 90 2.42 90 2.43 90 2.46 100 2.49 100 7.18 100 2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	6.11	
6.13 100 9.17 90 9.18 100 2.34 100 2.40 100 2.41 90 2.42 90 2.43 90 2.46 100 2.49 100 7.18 100 2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100		·
9.17 90 9.18 100 2.34 100 2.40 100 2.41 90 2.42 90 2.43 90 2.46 100 2.48 100 2.49 100 7.18 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100		
9.18 100 2.34 100 2.40 100 2.41 90 2.42 90 2.43 90 2.46 100 2.48 100 2.49 100 7.18 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100		
2.34 100 2.41 90 2.42 90 2.43 90 2.46 100 2.48 100 2.49 100 7.18 100 2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100		
2.40 100 2.41 90 2.42 90 2.43 90 2.46 100 2.49 100 7.18 100 2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100		
2.41 90 2.42 90 2.43 90 2.46 100 2.48 100 2.49 100 7.18 100 2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100		
2.42 90 2.43 90 2.46 100 2.48 100 2.49 100 7.18 100 2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100		-
2.43 90 2.46 100 2.48 100 2.49 100 7.18 100 2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100		
2.46 100 2.48 100 2.49 100 7.18 100 2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100		
2.49 100 7.18 100 2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	2.46	100
7.18 100 2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	2.48	100
2.51 100 7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	2.49	100
7.19 100 7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	7.18	100
7.11 90 52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	2.51	100
52.5 100 51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	7.19	100
51.3 100 7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	7.11	90
7.12 90 8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	52.5	100
8.1 90 8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	51.3	100
8.2 100 8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	7.12	. 90
8.3 90 7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	8.1	90
7.13 100 7.15 90 7.14 100 7.16 90 2.8 100	8.2	100
7.15 90 7.14 100 7.16 90 2.8 100	8.3	90
7.14 100 7.16 90 2.8 100	7.13	100
7.16 90 2.8 100	7.15	90
2.8 100	7.14	100
	7.16	90
2.19 100	2.8	100
	2.19	100

EP 0 407 899 A2

Fortsetzung Tabelle 10

Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
gemäß Beispiel	Liter Spritzbrühe
	500
3.6 ·	.90
2.11	90
2.14	100
2.13	100
2.21	100
3.4	100
2.14	100
3.8	100
2.16	90
2.15	100
2.18	100
2.33	100
5.11	100
2.9	90
101.1	100
101.3	100
101.5	100
101.4	90
120.2	100
120.3	100
120.4	100
6.10	100
6.14	100
5.12	90 .
102.21	100
102.22	100
102.3	100
102.23	100
120.8	90

Fortsetzung Tabelle 10

	Verbindungen	Wirkungsgrad in % bei mg Wirkstoff/
5	gemäß Beispiel	Liter Spritzbrühe
		500
	102.19	100
10	102.27	· 100
	102.6	90
	102.15	100
15	102.31	100
15	102.9	100
	102.32	100
	102.29	100
20	102.30	100
	2.7	100
	7.1	100
25	10.3	100
	10.2	100
	11.2	100
••	11.3	. 100
30	unbehandelte,	
	infizierte Pflanz	zen 0

Beispiel 11

Tomatenpflanzen der Sorte "Rheinlands Ruhm" wurden im 3 - 4 Blattstadium mit wäßrigen Suspensionen der beanspruchten Verbindungen gleichmäßig tropfnaß benetzt.

Nach dem Antrocknen wurden die Pflanzen mit einer Zoosporangien-Suspension von Phytophthora infestans inokuliert und für 2 Tage unter optimalen Infektionsbedingungen in einer Klimakammer gehalten. Danach wurden die Pflanzen bis zur Symptomausprägung im Gewächshaus weiterkultiviert.

Die Befallsbonitur erfolgte ca. 1 Woche nach Inokulation. Der Wirkungsgrad der Prüfsubstanzen wurde prozentual zur unbehandelten, infizierten Kontrolle bonitiert und ist in Tabelle 11 wiedergegeben.

50

35

Tabelle 11

5	Verbindung gemäß Beispiel	Wirkungsgrad in % bei mg Wirkstoff/Liter Spritzbrühe
8		500
	2.34	90
	2.40	100
	2.41	100
10	2.49	100
	7.18	100
	7.8	90
15	7.11	90
	8.1	100
	7.12	90
	8.2	100
	2.19	90
	2.13	100
20	2.21	100
	2,16	90
	2.18	90
	2.9	100
	101.1	90
25	101.5	90
	102.5	90
	102.33	90
	10.3	100
	10.2	100
	10.4	100
30	unbehandelte, infizierte Pflanzen	0

Ansprüche

35

40

45

50

1. Verbindungen der Formel I

worin

 R^1 = Wasserstoff, $(C_1-C_6)Alkyl$, $(C_1-C_4)Alkoxy-(C_1-C_4)alkyl$, $(C_1-C_4)Alkylthio-(C_1-C_4)alkyl$, $(C_2-C_6)Alkenyl$, $(C_2-C_6)Alkinyl$, $(C_3-C_7)Cycloalkyl$, $(C_3-C_7)Cycloalkyl-(C_1-C_4)alkyl$, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch $(C_1-C_4)Alkyl$ substituiert sein können, eine Gruppe $R^7R^8N-(C_1-C_4)alkyl$, Phenyl, Phenoxy- $(C_1-C_4)alkyl$, Phenyl- $(C_1-C_4)alkyl$, Phenoxy-phenoxy- $(C_1-C_4)alkyl$, wobei die fünf letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, $(C_1-C_4)Alkyl$, $(C_1-C_4)A$

R², R³, R⁴ = unabhängig voneinander Wasserstoff, (C₁-C₆)Alkyl, Phenyl, wobei der Phenylrest bis zu

- dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyi, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein kann,
- R^5 = Wasserstoff, $(C_1-C_5)Alkyl$, $(C_3-C_7)Cycloalkyl$, $(C_3-C_7)Cycloalkyl$ - $(C_1-C_4)alkyl$, wobei die beiden letzt-genannten Reste im Cycloalkylteil bis zu dreifach durch $(C_1-C_4)Alkyl$ substituiert sein können, (C_1-C_4) -
- Haloalkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Alkoxy-(C₁-C₄)alkyl, eine Gruppe R⁷R⁸N-, (C₁-C₄)Alkylthio-(C₁-C₄)alkyl, eine Gruppe R⁷R⁸N-(C₁-C₄)alkyl, Halogen, (C₂-C₅)Alkenyl, (C₂-C₆)Alkinyl, Phenyl, Phenoxy, Phenyl(C₁-C₄)alkyl, Phenoxy-(C₁-C₄)alkyl, Phenylmercapto-(C₁-C₄)alkyl, Phenylmercapto, Phenyl-(C₁-C₄) alkoxy oder Phenyl-(C₁-C₄)alkylthio, wobei die acht letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein können;
- R⁶ = Wasserstoff, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₂-C₆)Alkenyloxy, (C₂-C₆)Alkinyloxy, (C₁-C₄)Alkylthio, Halogen, Phenyl, wobei der Phenylrest bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)-Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein kann, oder R⁵ und R⁶ bilden zusammen eine Polymethylenkette der Formel -(CH₂)_m- mit m = 3 4
- 5 und
 - R⁷, R⁸ = unabhängig voneinander Wasserstoff, (C₁-C₆)Alkyl, (C₁-C₄)Alkoxy-(C₁-C₆)-Alkyl, Hydroxy-(C₁-C₆)-Alkyl, (C₁-C₄)Alkylthio-(C₁-C₆)Alkyl, R⁹R¹⁰N-(C₁-C₆)Alkyl, (C₃-C₆)Alkenyl, (C₃-C₆)Alkinyl, (C₃-C₇)Cycloalkyl-(C₁-C₄)alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch (C₁-C₄)Alkyl substituiert sein können; Formyl, Phenyl, Phenyl-(C₁-C₄)alkyl, wobei die beiden letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkyl, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkyl, (C₁-C₄)Alkyl, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkyl, (C₁-C
- nannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein können;
 - oder beide Reste R⁷, R⁸ stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstituierten oder bis zu vierfach substituierten 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit 1 bis 3 gleichen oder verschiedenen Heteroatomen, vorzugsweise mit denHeteroatomen Stickstoff, Sauerstoff und/oder Schwefel und dem Substituenten (C₁-C₄)Alkyl;
 - R⁸, R¹⁰ = unabhängig voneinander Wasserstoff, (C₁-C₆)Alkyl, (C₃-C₆)Alkenyl, (C₃-C₆)Alkinyl, (C₃-C₇)-Cycloalkyl, (C₃-C₇)Cycloalkyl-(C₁-C₄)alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch (C₁-C₄)Alkyl substituiert sein können; Formyl, Phenyl, Phenyl(C₁-C₄)alkyl, wobei die beiden letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)-Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein können;
 - oder beide Reste R³, R¹o stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstituierten oder bis zu vierfach substituierten 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit 1 bis 3 gleichen oder verschiedenen Heteroatomen, vorzugsweise mit den Heteroatomen Stickstoff, Sauerstoff und/oder Schwefel und dem Substituenten (C¹-C₄)Alkyl; bedeuten, sowie deren Säureadditionssalze.
 - 2. Verbindungen der Formel I von Anspruch 1, worin
 - R¹ = Wasserstoff, (C₁-C₆)Alkyl, Phenyl, Phenyl-(C₁-C₂)alkyl, Phenoxy-phenoxy-(C₁-C₂)alkyl, Phenoxy-(C₁-C₂)alkyl, wobei die vier letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen oder (C₁-C₄)Alkyl substitujert sein können; (C₁-C₃)Alkoxy-(C₁-C₂)alkyl,
- 40 R², R³ = unabhängig voneinander Wasserstoff, (C₁-C₃)Alkyl, Phenyl, wobei der Phenylrest bis zu dreifach durch -Halogen oder (C₁-C₄)Alkyl substituiert sein kann,
 - R4 = Wasserstoff,
 - R^5 = Wasserstoff, (C_1-C_6) Alkyl, (C_3-C_6) Cycloalkyl, (C_5-C_6) Cycloalkyl - (C_1-C_3) alkyl, Halogen, Phenyl, Phenyl- (C_1-C_2) alkyl, wobei die beiden letztgenannten Reste im Phenylteil unsubstituiert oder bis zu dreifach durch Halogen, (C_1-C_4) Alkyl oder (C_1-C_4) Alkoxy substituiert sein können,
 - R⁶ = Wasserstoff, (C₁-C₄)Alkyl, Halogen, Phenyl, (C₁-C₃)Alkoxy oder
 - R⁵ und R⁶ bilden zusammen eine Polymethylenkette der Formel (CH₂)_m- mit m = 3 4 und
 - R^7 und R^8 unabhängig voneinander Wasserstoff, $(C_1-C_6)Alkyl$, $(C_1-C_4)Alkoxy(C_1-C_6)Alkyl$, $Hydroxy(C_1-C_6)Alkyl$, $Hydrox(C_1-C_6)Alkyl$, $Hydrox(C_1-C_6)Alkyl$, $Hydrox(C_1-C_6)Alkyl$, $Hydrox(C_1-C_6)Alky$
- (C₃-C₆)Cycloalkyl-(C₁-C₃)alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu zweifach durch (C₁-C₂)Alkyl substituiert sein k\u00f6nnen; Formyl, Phenyl, Phenyl-(C₁-C₂)alkyl, wobei die beiden letztgenannten Reste im Phenylteil bis zu zweifach durch Halogen, (C₁-C₃)Alkyl, (C₁-C₃)Alkoxy, Trifluormethyl oder Trichlormethyl substituiert sein k\u00f6nnen; oder
- beide Reste R⁷, R⁸ stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstituierten oder bis zu zweifach substituierten 5- bis 7-gliedrigen gesättigten oder ungesättigten Heterocyclus mit 1 oder 2 gleichen oder verschiedenen Heteroatomen, vorzugsweise mit den Heteroatomen Stickstoff und/oder Sauerstoff und dem Substituenten (C₁-C₃)Alkyl.
 - R⁹, R¹⁰ = unabhängig voneinander Wasserstoff, (C₁-C₆)Alkyl, (C₃-C₆)Alkenyl, (C₃-C₆)Alkinyl, (C₃-C₇)-

Cycloalkyl, (C_3-C_7) Cycloalkyl- (C_1-C_4) alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch (C_1-C_4) Alkyl substituiert sein können; Formyl, Phenyl, Phenyl (C_1-C_4) alkyl, wobei die beiden letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C_1-C_4) Alkyl, (C_1-C_4) Alkyl, (C_1-C_4) Alkyl, (C_1-C_4) Alkyl, (C_1-C_4) Alkylthio, (C_1-C_4) Alaoalkyl oder (C_1-C_4) Alaoalkyl substituiert sein können;

- oder beide Reste R⁹, R¹⁰ stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstituierten oder bis zu vierfach substituierten 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit 1 bis 3 gleichen oder verschiedenen Heteroatomen, vorzugsweise mit den Heteroatomen Stickstoff, Sauerstoff und/oder Schwefel und dem Substituenten (C₁-C₄)Alkyl; bedeuten, sowie deren Säureadditionssalze.
- 10 3. Verfahren zur Herstellung von Verbindungen der Formel I gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß man eine Verbindung der Formel II

worin R^1 - R^5 die Bedeutungen wie in Formel I besitzen und X für Halogen steht, in Gegenwart einer Base mit einer Verbindung der Formel III

$$H - N = \frac{R^8}{R^7}$$
 (III),

- worin R7 und R8 die Bedeutungen wie in Formel I besitzen, umsetzt.
- Fungizide Mittel, dadurch gekennzeichnet, daß sie eine wirksame Menge einer Verbindung der Formel I gemäß Anspruch 1 oder 2 enthalten.
- 5. Verwendung von Verbindungen der Formel I gemäß Anspruch 1 oder 2 zur Bekämpfung von Schadpilzen.
- 6. Verfahren zur Bekämpfung von Schadpilzen, dadurch gekennzeichnet, daß man auf die von ihnen befallenen Pflanzen, Flächen oder Substrate eine wirksame Menge einer Verbindung der Formel I gemäß Anspruch 1 oder 2 appliziert.
- 40 Patentansprüche für folgenden Vertragsstaat: ES
 - 1.Verfahren zur Bekämpfung von Schadpilzen, dadurch gekennzeichnet, daß man auf die von ihnen befallenen Pflanzen, Flächen oder Substrate eine wirksame Menge einer Verbindung der Formel I

worin

15

20

25

30

45

50

 R^1 = Wasserstoff, $(C_1-C_6)Alkyl$, $(C_1-C_4)Alkoxy-(C_1-C_4)alkyl$, $(C_1-C_4)Alkyl$, $(C_1-C_4)Alkyl$, $(C_2-C_6)Alkinyl$, $(C_2-C_6)Alkinyl$, $(C_3-C_7)Cycloalkyl-(C_1-C_4)alkyl$, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch $(C_1-C_4)Alkyl$ substituiert sein können, eine Gruppe $R^7R^8N-(C_1-C_4)alkyl$, Phenoxy- $(C_1-C_4)alkyl$, Phenoxy- $(C_1-C_4)alkyl$, Phenoxy-phenoxy- $(C_1-C_4)alkyl$

- Ca)alkyl, wobei die fünf letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)Alkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein
- R², R³, R⁴ = unabhängig voneinander Wasserstoff, (C₁-C₅)Alkyl, Phenyl, wobei der Phenylrest bis zu dreifach durch Halogen, Nitro, Cyano, (C1-C4)Alkyl, (C1-C4)Alkoxy, (C1-C4)Alkylthio, (C1-C4)Haloalkyl oder (C1-C4)Haloalkoxy substituiert sein kann,
 - R⁵ = Wasserstoff, (C₁-C₅)Alkyl, (C₃-C₇)Cycloalkyl, (C₃-C₇)Cycloalkyl-(C₁-C₄)alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch (C1-C4)Alkyl substituiert sein können, (C1-C4)-Haloalkyl, $(C_1-C_4)Alkoxy$, $(C_1-C_4)Alkylthio$, $(C_1-C_4)Alkoxy$ - $(C_1-C_4)alkyl$, eine Gruppe R^7R^8N -, (C_1-C_4) -
- Alkylthio-(C₁-C₄)alkyl, eine Gruppe R⁷R⁸N-(C₁-C₄)alkyl, Halogen, (C₂-C₅)Alkenyl, (C₂-C₅)Alkinyl, Phenyl, Phenoxy, Phenyl(C₁-C₄)alkyl, Phenoxy-(C₁-C₄)alkyl, Phenylmercapto-(C₁-C₄)alkyl, Phenylmercapto, Phenyl-(C1-C4)alkoxy oder Phenyl-(C1-C4)alkylthio, wobei die acht letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C1-C4)Alkyl, (C1-C4)Alkoxy, (C1-C4)Alkylthio, (C1-C4)Haloalkyl oder (C₁-C₄)Haloalkoxy substituiert sein können;
- 15 R^6 = Wasserstoff, $(C_1-C_4)Alkyl$, $(C_1-C_4)Alkoxy$, $(C_2-C_6)Alkenyloxy$, $(C_2-C_6)Alkinyloxy$, $(C_1-C_4)Alkyl$ thio, Halogen, Phenyl, wobei der Phenylrest bis zu dreifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl, (C₁-C₄)-Alkoxy, (C1-C4)Alkylthio, (C1-C4)Haloalkyl oder (C1-C4)Haloalkoxy substituiert sein kann, oder R5 und R6 bilden zusammen eine Polymethylenkette der Formel -(CH2)m- mit m = 3 - 4
- R⁷, R⁸ = unabhängig voneinander Wasserstoff, (C₁-C₆)Alkyl, (C₃-C₆)Alkenyl, (C₃-C₆)Alkinyl, (C₃-C₇)-Cycloalkyl, (C3-C7)Cycloalkyl-(C1-C4)alkyl, wobei die beiden letztgenannten Reste im Cycloalkylteil bis zu dreifach durch (C1-C4)Alkyl substituiert sein können; Formyl, Phenyl-(C1-C4)Alkyl, wobei die beiden letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen, Nitro, Cyano, (C1-C4)Alkyl, (C1-C4)-Alkoxy, (C1-C4)Alkylthio, (C1-C4)Haloalkyl oder (C1-C4)Haloalkoxy substituiert sein können:
- oder beide Reste R7, R8 stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstituierten oder bis zu vierfach substituierten 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit 1 bis 3 gleichen oder verschiedenen Heteroatomen, vorzugsweise mit den Heteroatomen Stickstoff, Sauerstoff und/oder Schwefel und dem Substituenten (C1-C4)Alkyl; bedeuten, sowie deren Säureadditionssalze, appliziert.
- 2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß in Formel I R1 = Wasserstoff, (C₁-C₆)Alkyl, Phenyl, Phenyl-(C₁-C₂)alkyl, Phenoxy-(C₁-C₂)alkyl, P
 - C2)alkyl, wobei die vier letztgenannten Reste im Phenylteil bis zu dreifach durch Halogen oder (C1-C4)Alkyl substituiert sein können; (C1-C3)Alkoxy-(C1-C2)alkyl,
- R2, R3 = unabhängig voneinander Wasserstoff, (C1-C3)Alkyl, Phenyl, wobei der Phenylrest bis zu dreifach durch Halogen oder (C1-C4)Alkyl substituiert sein kann,
 - R4 = Wasserstoff,
 - R⁵ = Wasserstoff, (C₁-C₆)Alkyl, (C₃-C₆)Cycloalkyl, (C₅-C₆)Cycloalkyl-(C₁-C₃)alkyl, Halogen, Phenyl, Phenyl-(C1-C2)alkyl, wobei die beiden letztgenannten Reste im Phenylteil unsubstituiert oder bis zu dreifach durch Halogen, (C1-C4)Alkyl oder (C1-C4)Alkoxy substituiert sein können,
- 40 R⁶ = Wasserstoff, (C₁-C₄)Alkyl, Halogen, Phenyl, (C₁-C₃)Alkoxy oder R5 und R6 bilden zusammen eine Polymethylenkette der Formel -(CH2)m- mit m = 3 · 4 und

 - R7 und R8 unabhängig voneinander Wasserstoff, (C₁-C6)Alkyl, (C₃-C4)Alkenyl, (C₃-C4)Alkinyl, (C₃-C6)-Cycloalkyi, (C3-C6)Cycloalkyi-(C1-C3)alkyi, wobei die beiden letztgenannten Reste im Cycloalkyiteil bis zu zweifach durch (C1-C2)Alkyl substituiert sein können; Formyl, Phenyl, Phenyl-(C1-C2)Alkyl, wobei die beiden
- letztgenannten Reste im Phenylteil bis zu zweifach durch Halogen, (C1-C3)Alkyl, (C1-C3)Alkoxy, Trifluormethyl oder Trichlormethyl substituiert sein können; oder
 - beide Reste R7, R8 stehen zusammen mit dem Stickstoffatom, an das sie gebunden sind, für einen unsubstitulerten oder bis zu zweifach substitulerten 5- bis 7-gliedrigen gesättigten oder ungesättigten Heterocyclus mit 1 oder 2 gleichen oder verschiedenen Heteroatomen, vorzugsweise mit den Heteroatomen Stickstoff und/oder Sauerstoff und dem Substituenten (C1-C3)Alkyl, bedeuten, sowie deren Säureadditions-
 - 3. Verfahren zur Herstellung von Verbindungen der Formel I gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß man eine Verbindung der Formel II

worin R¹ - R⁶ die Bedeutungen wie in Formel I besitzen und X für Halogen steht, in Gegenwart einer Base mit einer Verbindung der Formel III

$$H - N = R^8$$
(III),

worin $\ensuremath{\mathsf{R}}^7$ und $\ensuremath{\mathsf{R}}^8$ die Bedeutungen wie in Formel I besitzen, umsetzt.

4. Verwendung von Verbindungen der Formel I gemäß Anspruch 1 oder 2 zur Bekämpfung von Schadpil-