RBE 500 Homework #4

Arjan Gupta

Problem 4.6

Given $R = R_{x,\theta}R_{y,\phi}$, compute $\frac{\partial R}{\partial \phi}$. Evaluate $\frac{\partial R}{\partial \phi}$ at $\theta = \frac{\pi}{2}$, $\phi = \frac{\pi}{2}$. First parametrically compute, then evaluate by plugging the values in.

Solution

$$\frac{\partial}{\partial \phi} \left(R_{x,\theta} R_{y,\phi} \right) = R_{x,\theta} \frac{\partial}{\partial \phi} \left(R_{y,\phi} \right)$$

Using the the fact that $\frac{d}{d\theta}(R_{y,\theta}) = S(j)R_{y,\theta}$,

$$\begin{split} R_{x,\theta} \frac{\partial}{\partial \phi} \left(R_{y,\phi} \right) &= R_{x,\theta} S(j) R_{y,\phi} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \cos \phi & 0 & \sin \phi \\ 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \end{bmatrix} \\ &= \begin{bmatrix} -\sin \left(\phi \right) & 0 & \cos \left(\phi \right) \\ \cos \left(\phi \right) \sin \left(\theta \right) & 0 & \sin \left(\phi \right) \sin \left(\theta \right) \\ -\cos \left(\phi \right) \cos \left(\theta \right) & 0 & -\cos \left(\theta \right) \sin \left(\phi \right) \end{bmatrix} \end{split}$$

Now, plugging in the values $\theta = \frac{\pi}{2}$, $\phi = \frac{\pi}{2}$, we get

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

We performed the above computations using the following MATLAB code.

```
% Calculation code for problem 4.6 of the RBE500 textbook (HW 4)
   clear; close all; clc;
   syms theta phi
   % Define the matrices in our problem
  rotx_theta = [1 0 0; 0 cos(theta) -sin(theta); 0 sin(theta) cos(theta)];
  Sj = [0 \ 0 \ 1; \ 0 \ 0 \ 0; \ -1 \ 0 \ 0];
  roty_phi = [cos(phi) 0 sin(phi); 0 1 0; -sin(phi) 0 cos(phi)];
  % Multiply the matrices
12
   product = rotx_theta*Sj*roty_phi;
13
  % Get latex output
  latex(product)
  phi_val = pi/2;
  theta_val = pi/2;
21 % Now plug in values
22 product_val = [ -sin(phi_val), 0, cos(phi_val);
23 cos(phi_val)*sin(theta_val), 0, sin(phi_val)*sin(theta_val);
24 -cos(phi_val)*cos(theta_val), 0, -cos(theta_val)*sin(phi_val)]
```

Problem 4.10

Two frames $o_0x_0y_0z_0$ and $o_1x_1y_1z_1$ are related by the homogeneous transformation

$$H = \begin{bmatrix} 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

A particle has velocity $v_1(t) = (3, 1, 0)$ relative to frame $o_1x_1y_1z_1$. What is the velocity of the particle in frame $o_0x_0y_0z_0$?

Solution

Problem 4.15

Find the 6×3 Jacobian for the three links of the cylindrical manipulator of Figure 3.7. Find the singular configurations for this arm.