PMR3406 - Microprocessadores - Aula de 22/06/20 Gustavo Marangoni Rubo - 4584080

• Cálculo dos resistores:

Resistor vermelho: Vf = 2V (Typ) If = 5mA R = (Vss - Vf)/If = $(5 - 2)/0,005 = 600\Omega$

• Cálculo da interrupção do timer 0 (cada 5ms):

Fosc = 20MHz, Tosc = 50ns, Tosc*4 = 0,2 μ s Prescaler 1:128 \Rightarrow 0,2*128 = 25,6 μ s 5000/25,6 = 195,3125 **195**

• Circuito desligado:

• Código do MPLAB (arquivo main.c):

```
#pragma config MCLRE = ON // RE3/MCLR pin function select bit (RE3/MCLR pin function is MCLR)
                          // Code Protection bit (Program memory code protection is disabled)
#pragma config CP = OFF
#pragma config CPD = OFF
                             // Data Code Protection bit (Data memory code protection is
disabled)
#pragma config BOREN = ON
                             // Brown Out Reset Selection bits (BOR enabled)
                             // Internal External Switchover bit (Internal/External Switchover
#pragma config IESO = ON
mode is enabled)
                             // Fail-Safe Clock Monitor Enabled bit (Fail-Safe Clock Monitor is
#pragma config FCMEN = ON
enabled)
#pragma config LVP = OFF
                             // Low Voltage Programming Enable bit (RB3 pin has digital I/O, HV
on MCLR must be used for programming)
// CONFIG2
#pragma config BOR4V = BOR40V // Brown-out Reset Selection bit (Brown-out Reset set to 4.0V)
#pragma config WRT = OFF
                            // Flash Program Memory Self Write Enable bits (Write protection
off)
// #pragma config statements should precede project file includes.
// Use project enums instead of #define for ON and OFF.
#include <xc.h>
#include <stdio.h>
#include "always.h"
#include "delay.h"
#include "io.h"
//#include "lcd.h"
//#include "adc.h"
//#include "debug.h"
// Variáveis globais
int valorPot;
char caracteres[0];
// função exponente
int pow (int num, int exp) {
       int res =1;
       for (int i = 0; i < exp; i ++) res *= num;
       return res;
}
// Função para tratamento de interrupções
void interrupt is(rvoid) {
  // Tratamento da interrupção do Timer 0
  if (T0IE && T0IF) {
       // Executar a cada 5ms
       delay_msℓ);
       GO_DONE = 1;
       while(GO_DONE);
       valorPot = (ADRESH <♣) + ADRESL;</pre>
       delay_ms(2);
       TMR0 = 255 - 195; //interrupções a cada 5ms
       TOIF = 0; //reseta a interrupt flag
 }
// Inicialização do Timer 0
void t0_initvoid) {
       TOCS = 0; //usar timer0
```

```
PSA = 0;//prescaler usa timer0
       //define prescaler em 256:
       OPTION REGbits.PS = 0b110
       TMR0 = 255 - 195; //interrupções a 5ms
       TOIE = 1; //habilita interrupções do timerO
}
// Inicialização do PortA aqui
void portA_init(void) {
       TRISAO =1; // configura como entrada
       ANSO = 1; // configura como analógica
       ADCONObits.ADCS = 0b10// divisor: Fosc/32
       ADCONObits.CHS =0b0000; // seleciona o canal a ser convertido
       VCFGO = 0 // Vdd = 5V
       VCFG1 = 0 // Vss = 0V
       ADFM = 1; // justificar à direita
       ADON = 1; //ligar o modo conversor
}
// Inicialização do PortB aqui
void portB init(void) {
       //configurar todas as portas B como saídas
       TRISB = 0b000000000;
}
// Inicialização do PortC aqui
void portC init(void) {
       //configurar como saídas as portas 4 a 7
       TRISC &= 0b00001111;
}
void vetor_caracteres_in(toid){
  for (int i = \emptyset i < 10; i++)
       caracteres[i] = EEPROM_READ(i);
  caracteres[0] =0b011111110
}
// Programa Principal
void mair(void) {
  /* Escrevendo dados na EEPROM
  * (só é necessário rodar uma vez)
  EEPROM_WRITE(0, 0b01111110);
  EEPROM_WRITE(1, 0b00110000);
  EEPROM_WRITE(2, 0b01101101);
  EEPROM_WRITE(3, 0b01111001);
  EEPROM_WRITE(4, 0b00110011);
  EEPROM_WRITE(5, 0b01011011);
  EEPROM_WRITE(6, 0b01011111);
  EEPROM_WRITE(7, 0b01110000);
  EEPROM_WRITE(8, 0b01111111);
 EEPROM_WRITE(9, 0b01110011);*/
  // Inicializações
                      // inicializa Timer 0
  t0_init();
  portA_init();
                      // inicializa portB
  portB_init();
                      // inicializa portB
  portC_init();
  vetor_caracteres_init();
                       // macro do XC8, equivale a GIE = 1, habilita interrupções
  ei();
```

```
// Loop principal (infinito))
while(1) {
    //escrever os quatro números, da casa menos significantes para mais
    for (int i = 0; i < 4; i++) {
        int num = (int)((valorPot % pdw( i+1)) / pow(10, i));
        PORTB = caracteres[num];
        PORTC = ( << (i + 4)) |0b000000000;
        delay_ms(0); // espera de 10 ms -> refresh de 25Hz pro display inteiro
        }
}
```

• Circuito em funcionamento:

Obs1: o valor dos resistores foi calculado em 600Ω , mas o com esses valores, os LEDs ficam pouco visíveis no simulIDE. Por isso os valores foram mudados para 10, o que está errado e possivelmente danificaria os LEDs na realidade.

Obs2: por algum bug do simulIDE, o display tem três números amarelos. Porém, nas propriedades dele, a cor é vermelha.

• Escolha de MOSFET:

Escolhemos um display de catodo comum, portanto devemos usar ${\sf MOSFETs}$ tipo ${\sf N}.$

Requisitos:

Id > 45mA

Vgs > 5V

Vds > 5V

Vgs(th) < 2,4V

MOSFET escolhido: **DMN601VK**

DMN601VK

DUAL N-CHANNEL ENHANCEMENT MODE FIELD EFFECT TRANSISTOR

Features

- Dual N-Channel MOSFET
- Low On-Resistance
- Low Gate Threshold Voltage
- Low Input Capacitance
- Fast Switching Speed
- Low Input/Output Leakage
- Ultra-Small Surface Mount Package
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- An Automotive-Compliant Part is Available Under Separate Datasheet (<u>DMN601VKQ</u>)

Mechanical Data

- Case: SOT563
- Case Material: Molded Plastic, "Green" Molding Compound;
 UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminal Connections: See Diagram
- Terminals: Finish Matte Tin Annealed over Copper Leadframe. Solderable per MIL-STD-202, Method 208 (3)
- Weight: 0.006 grams (Approximate)

SOT563

Internal Schematic

Ordering Information (Note 4)

Part Number	Case	Packaging
DMN601VK-7	SOT563	3,000/Tape & Reel

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- 2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at http://www.diodes.com/products/packages.html.

Marking Information

SOT563

K7K = Marking Code YM = Date Code Marking Y = Year (ex: D = 2016) M = Month (ex: 9 = September)

Date Code Key

Month	2005		2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
Code	S		С	D	Е	F	G	Н	ı	J	K	L
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

Maximum Ratings (@T_A = +25°C, unless otherwise specified.)

Characteri	stic	Symbol	Value	Unit
Drain-Source Voltage		V _{DSS}	60	V
Gate-Source Voltage		V _{GSS}	±20	V
Drain Current (Note 5)	Continuous Pulsed (Note 6)	I _D	305 800	mA

Thermal Characteristics (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Total Power Dissipation (Note 5)	P _D	250	mW
Thermal Resistance, Junction to Ambient	$R_{ heta JA}$	500	°C/W
Operating and Storage Temperature Range	T _J , T _{STG}	-65 to +150	°C

Electrical Characteristics (@T_A = +25°C unless otherwise specified.)

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
OFF CHARACTERISTICS (Note 7)	-			•	•	
Drain-Source Breakdown Voltage	BV _{DSS}	60	_	_	V	$V_{GS} = 0V, I_{D} = 10\mu A$
Zero Gate Voltage Drain Current	I _{DSS}	_	_	250	nA	$V_{DS} = 50V, V_{GS} = 0V$
Cata Cauraa Laakaga	•	_	_	±500	nA	$V_{GS} = \pm 10V, V_{DS} = 0V$
Gate-Source Leakage	I _{GSS}	_	_	±100	IIA	$V_{GS} = \pm 5V$, $V_{DS} = 0V$
ON CHARACTERISTICS (Note 7)				•	•	
Gate Threshold Voltage	V _{GS(th)}	1.0	1.6	2.5	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
Static Drain-Source On-Resistance		_	_	2.0	Ω	$V_{GS} = 10V, I_D = 0.5A$
Static Drain-Source On-Resistance	R _{DS(ON)}	_	_	3.0	\$2	$V_{GS} = 4.5V, I_D = 200mA$
Forward Transfer Admittance	Y _{fs}	_	284	_	ms	V _{DS} =10V, I _D = 0.2A
Diode Forward Voltage (Note 7)	V _{SD}	0.5	_	1.4	V	$V_{GS} = 0V, I_{S} = 115mA$
DYNAMIC CHARACTERISTICS						
Input Capacitance	C _{iss}	_	_	50	pF	05)/)/
Output Capacitance	C _{oss}	_	_	25	pF	$V_{DS} = 25V, V_{GS} = 0V$
Reverse Transfer Capacitance	C _{rss}	_	_	5.0	pF	f = 1.0MHz

- Notes: 5. Device mounted on FR-4 PCB.

 - 6. Pulse width ≤10μs, Duty Cycle ≤1%.
 7. Short duration pulse test used to minimize self-heating effect.