Math 635 Lecture 36

Thomas Cohn

Recall from last time: Let M be a Riemannian manifold. We defined the differential operators ∇ (gradient) and div (divergence), and we have

$$C^{\infty}(M) \xleftarrow{\overset{\nabla}{\overset{\text{div}}{\longleftarrow}}} \mathfrak{X}(M)$$

$$\parallel \qquad \stackrel{\text{or}}{\overset{\text{or}}{\longrightarrow}} \qquad \parallel \wr \text{(metric dual)}$$

$$C^{\infty}(M) \xleftarrow{\overset{\delta}{\overset{-\delta}{\overset{\text{or}}{\text{or}}}}} \Omega^{1}(M)$$

" $\delta = -$ div on the differential form side"

We also defined the Laplacian on functions $\Delta: C^{\infty}(M) \to C^{\infty}(M)$ by $\Delta = \delta \circ d$ iff $\Delta f = -\operatorname{div}(\nabla f)$.

ℓ^2 Inner Products

Defn: Assume M is oriented. $\forall f, g \in C^{\infty}(M)$, we define the ℓ^2 inner product by

$$\langle f, g \rangle_{\ell^2} = \int_M fg \ d \text{Vol}$$

We can extend this to sections of real vector bundles over M, $\mathcal{E} \xrightarrow{\pi} M$. Put a Euclidean structure on the fibers of \mathcal{E} : $\forall p \in M$, $\langle \ , \ \rangle_p$ is a Euclidean inner product on $\mathcal{E}_p = \pi^{-1}(p)$, varying smoothly with p.

Defn: $\forall s, t \in \Gamma_0(\mathcal{E})$ (compactly supported sections). Then we define the ℓ^2 inner product by

$$\langle s, t \rangle_{\ell^2} = \int_{M} \underbrace{\langle s(p), t(p) \rangle_p}_{\text{function of } p} d \text{ Vol}$$

Consider the case $\mathcal{E} = \bigwedge^k (T^*M)$. Then the Euclidean structure on $\bigwedge^k (T^*M)$ is induced by the Riemannian metric. For k = 1, we simply have $T^*M \cong TM$ by the metric dual. For general k, $\forall p \in M$, let $V = T_p^*M$. We define an inner product on $\bigwedge^k V$:

$$(v_1 \wedge \cdots \wedge v_k, w_1 \wedge \cdots \wedge w_k) \stackrel{\text{def}}{=} \det (\langle v_i, w_j \rangle)_{ij}$$

Check: If (e_1, \ldots, e_n) is an orthonormal basis of V, then $\{e_{i_1} \wedge \cdots \wedge e_{i_k} \mid i_1 < \cdots < i_k\}$ is an orthonormal basis of $\bigwedge^k V$.

In this way, we get the notion of an ℓ^2 inner product of any two k-forms $\alpha, \beta \in \Omega^k(M)$ by

$$\langle \alpha, \beta \rangle_{\ell^2} = \int_{M} \langle \alpha_p, \beta_p \rangle_p d \text{ Vol}$$

Prop: $\forall f \in C^{\infty}(M), X \in \mathfrak{X}(M)$, one has

$$\langle \nabla f, X \rangle_{\ell^2} = -\langle f, \operatorname{div} X \rangle_{\ell^2}$$

That is, $\forall f \in \Omega^0(M), \alpha \in \Omega^1(M)$,

$$\langle df, \alpha \rangle_{\ell^2} = \langle f, \delta \alpha \rangle_{\ell^2}$$

That is, $\delta = d^*$, the adjoint of d, so $\Delta = d^*d$.

Proof: Start with $\mathcal{L}_{fX}(d \text{ Vol}) = f\mathcal{L}_X(d \text{ Vol}) + Xf$. Now integrate:

$$\int_{M} \mathcal{L}_{fX}(d \operatorname{Vol}) = \int_{M} \operatorname{div}(fX) d \operatorname{Vol} = 0$$

because $\partial M = \emptyset$. So we have

$$0 = \int_{M} f \operatorname{div}(X) d \operatorname{Vol} + \int_{M} \underbrace{\langle X, \nabla F \rangle}_{X(f) = df(X) = \langle \nabla f, X \rangle} d \operatorname{Vol}$$

So
$$0 = \langle f, \operatorname{div} X \rangle_{\ell^2} + \langle X, \nabla f \rangle_{\ell^2}$$
. \square

Cor: $\langle \Delta f, g \rangle_{\ell^2} = \langle f, \Delta g \rangle_{\ell^2}$.

Now, generalize to Ω^k . (The previous discussion was for k=0.)

$$\Omega^k \xrightarrow{\delta = d^* = ?} \Omega^{k+1}$$

Is there a δ ? What is it?

In local coordinates, δ is also a differential operator of degree 1. Try integrating by parts!

Preliminary linear algebra: the Hodge star operator. Let V be an n-dimensional vector space, oriented, with an inner product. We claim that $\forall k$, there exists $\star : \bigwedge^k V \to \bigwedge^{n-k} V$ linear such that for any positive oriented basis (e_1, \ldots, e_n) of V, $\star (e_1 \wedge \cdots \wedge e_k) = e_{k+1} \wedge \cdots \wedge e_n.$

Ex: For $V = \mathbb{R}^3$ with the standard orientation,

$$\begin{array}{c}
\star : \bigwedge^2 V \to \bigwedge^1 V \\
dx^1 \wedge dx^2 \mapsto dx^3
\end{array}$$

(Now do it cyclically.)

Note: $\dim \bigwedge^k = \binom{n}{k} = \binom{n}{n-k} = \dim \bigwedge^{n-k}$.

Observe: On \mathbb{R}^3 in the calc 3 context, for $X \in \mathfrak{X}(\mathbb{R}^3)$, we define

$$\operatorname{curl} X = \nabla \times X \in \mathfrak{X}(M)$$

What is this object? Well,

$$\mathfrak{X}(\mathbb{R}^3) \cong \Omega^1(\mathbb{R}^3) \xrightarrow{d} \Omega^2(\mathbb{R}^3) \xrightarrow{\star} \Omega^1(\mathbb{R}^3) \cong \mathfrak{X}(\mathbb{R}^3)$$

Note that this only works for $\dim = 3$.

Some properties of \star :

1. We have

$$\bigwedge^{k} \xrightarrow{} \bigwedge^{n-k} \xrightarrow{} \bigwedge^{k}$$

$$(-1)^{k(n-k)} \operatorname{Id}$$

because

$$e_1 \wedge \cdots \wedge e_k \stackrel{\star}{\mapsto} e_{k+1} \wedge \cdots \wedge e_n \stackrel{\star}{\mapsto} (-1)^{\sigma} e_1 \wedge \cdots \wedge e_k$$

- "n-k signs, k times". 2. $\star: \bigwedge^n V \to \bigwedge^0 V = \mathbb{R}$ has $\star(\text{Vol}) = 1$.
- 3. $\forall \alpha, \beta \in \bigwedge^k V, \langle \alpha, \beta \rangle = \star (\alpha \wedge (\star \beta)) \in \mathbb{R}.$

Cor: Apply/extend \star to forms on a compact, oriented, Riemannian manifold M (with dim M=n), $\Omega^k(M)$, by acting pointwise: $\star: \Omega^k(M) \to \Omega^{n-k}(M)$. Note: $\forall \alpha, \beta \in \Omega^k(M), \langle \alpha, \beta \rangle_{\ell^2} = \int_M \alpha \wedge (\star \beta)$.

Back to our main question:

Prop: The adjoint δ of $d: \Omega^k \to \Omega^{k+1}$ is $\delta = (-1)^{nk+1} \star d\star$.

Note: If $\beta \in \Omega^{k+1}$, $\star \beta \in \Omega^{n-k-1}$, so $d \star \beta \in \Omega^{n-k}$, so $\star d \star \beta \in \Omega^k$. Superficially, $\delta = \star d \star : \Omega^{k+1} \to \Omega^k$. Now, we prove it:

Proof: Let $\alpha \in \Omega^k$, $\beta \in \Omega^{k+1}$. We want to show $\langle d\alpha, \beta \rangle_{\ell^2} = \langle \alpha, \delta\beta \rangle_{\ell^2}$. We'll use integration by parts. Starting with the fact that $0 = \int_M d(\alpha \wedge \star \beta)$, because $\alpha \wedge \star \beta$ is a n-1 form, so $d(\alpha \wedge \star \beta)$ is a top-degree form. By Stokes' theorem, since we have an empty boundary, this integral is 0. Well,

$$0 = \int_{M} d(\alpha \wedge \star \beta) = \int_{\underbrace{M}} d\alpha \wedge \star \beta + (-1)^{k} \int_{M} \alpha \wedge (d \star \beta)$$

So

$$\langle d\alpha,\beta\rangle_{\ell^2} = (-1)^? \int\limits_{M} \alpha \wedge (d\star\beta) = (-1)^? \int\limits_{M} \alpha \wedge (\star\star) d\star\beta = (-1)^? \langle \alpha,\star d\star\beta\rangle_{\ell^2} = (-1)^? \langle \alpha,\delta\beta\rangle$$

(We didn't do the sign computations, but they do work out.) \Box

Defn: The Laplacian on forms $\Delta : \Omega^k(M) \to \Omega^k(M)$ is $\Delta = \delta d + d\delta$.