(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 29. März 2001 (29.03.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/21582 A1

- (51) Internationale Patentklassifikation⁷: C07C 257/18, 279/22, A61K 31/155, A61P 13/12, 7/02, 9/10, 25/02
- (21) Internationales Aktenzeichen:

PCT/EP00/08616

(22) Internationales Anmeldedatum:

4. September 2000 (04.09.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 199 45 302.0 22. September 1999 (22.09.1999) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): MERCK PATENT GMBH [DE/DE]; Frankfurter Strasse 250, 64293 Darmstadt (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): DORSCH, Dieter [DE/DE]; Königsberger Strasse 17A, 64372 Ober-Ramstadt (DE). RADDATZ, Peter [DE/DE]; Im Kirschensand 27, 64665 Alsbach (DE). BEIER, Norbert [DE/DE]; Maximilian-Kolbe-Strasse 1, 64354 Reinheim (DE). WILM, Claudia [DE/DE]; Dahlienweg 24, 64291 Darmstadt (DE).

- (74) Gemeinsamer Vertreter: MERCK PATENT GMBH; Frankfurter Strasse 250, 64293 Darmstadt (DE).
- (81) Bestimmungsstaaten (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- Mit internationalem Recherchenbericht.
- Vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: BIPHENYL DERIVATIVES USED AS NHE-3 INHIBITORS
- (54) Bezeichnung: BIPHENYLDERIVATE ALS NHE-3-INHIBITOREN

- (57) Abstract: The invention relates to compounds of the formula (I), wherein X, R^1 , R^2 , R^3 , R^4 and R^5 have the meaning indicated in claim 1. The inventive compounds represent inhibitors of the subtype 3 sodium/proton exchanger (NHE-3).
- (57) Zusammenfassung: Verbindungen der Formel (I), worin X, R¹, R², R³, R⁴ und R⁵ die in Patentanspruch 1 angegebene Bedeutung haben, sind Inhibitoren des Natrium/Protonen-Austauschers Subtyp 3 (NHE-3).

WO 01/21582 PCT/EP00/08616

Biphenylderivate als NHE-3-Inhibitoren

Die Erfindung betrifft Verbindungen der Formel I

5

$$R^1$$
 R^2
 R^3
 R^4

10

worin

 R^1 , R^4

jeweils unabhängig voneinander -C(=NH)-NH₂, das auch einfach durch -COA, -CO-[C(\mathbb{R}^6)₂]_n-Ar, -COOA,

1

15

-OH oder durch eine konventionelle Aminoschutzgruppe substituiert sein kann,

 $NH-C(=NH)-NH_2$, $-CO-N=C(NH_2)_2$,

20

$$\{ \begin{array}{c} N \\ N \\ O \end{array} \text{ oder } \begin{array}{c} N \\ N \\ CH_3 \end{array}$$

 R^{2}, R^{3}, R^{5}

jeweils unabhängig voneinander H, A, OR^6 , $N(R^6)_2$, NO_2 , CN, Hal, NHCOA, NHCOAr, NHSO₂A, NHSO₂Ar, COOR⁶, CON(R⁶)₂, CONHAr, COR⁶, COAr, S(O)_nA, S(O)_nAr, -O-[C(R⁶)₂]_m-COOR⁶, -[C(R⁶)₂]_p-COOR⁶, -O-[C(R⁶)₂]_m-CON(R⁶)₂, -[C(R⁶)₂]_p-CON(R⁶)₂, -O-[C(R⁶)₂]_m-CONHAr, oder -[C(R⁶)₂]_p-CONHAr,

25

30 $X -[C(R^6)_2]_{n^-}, -CR^6 = CR^6 -, -[C(R^6)_2]_{n^-}O^-, -O^-[C(R^6)_2]_{n^-}, \\ -COO_+, -OOC_+, -CONR^6 - oder -NR^6CO_+,$

R⁶ H, A oder Benzyl,

PCT/EP00/08616

	A	Alkyl mit 1-20 C-Atomen, worin eine oder zwei CH ₂ -Gruppen durch O- oder S-Atome oder durch -CR ⁶ =CR ⁶ -Gruppen und/oder 1-7 H-Atome durch F ersetzt sein können,		
10	Ar	unsubstituiertes oder ein-, zwei- oder dreifach durch A, Ar', OR ⁶ , OAr', N(R ⁶) ₂ , NO ₂ , CN, Hal, NHCOA, NHCOAr', NHSO ₂ A, NHSO ₂ Ar', COOR ⁶ , CON(R ⁶) ₂ , CONHAr', COR ⁶ , COAr', S(O) _n A oder S(O) _n Ar' substituiertes Phenyl oder Naphthyl,		
15	Ar'	unsubstituiertes oder ein-, zwei- oder dreifach durch A, OR^6 , $N(R^6)_2$, NO_2 , CN, Hal, NHCOA, COOR 6 , CON($R^6)_2$, COR 6 oder $S(O)_nA$ substituiertes Phenyl oder Naphthyl,		
	Hal	F, Cl, Br oder I,		
20	n	0, 1 oder 2,		
	m	1 oder 2,		
25	р	1 oder 2 bedeutet,		
25	sowie deren Salze und Solvate als NHE-3-Inhibitoren.			
30		oitoren des Natrium/Protonen-Austauschers Subtyp 3 sind z.B. 325 178 beschrieben.		
35	Der Erfindung lag die Aufgabe zugrunde, neue Verbindungen mit wer len Eigenschaften aufzufinden, insbesondere solche, die zur Herstellt von Arzneimitteln verwendet werden können.			

In der DE 19819548 ist beschrieben, daß die Verbindungen der Formel I und ihre Salze Faktor Xa inhibierende Eigenschaften aufweisen und daher zur Bekämpfung und Verhütung von thromboembolischen Erkrankungen wie Thrombose, myocardialem Infarkt, Arteriosklerose, Entzündungen, Apoplexie, Angina pectoris, Restenose nach Angioplastie und Claudicatio intermittens eingesetzt werden können.

5

10

15

20

25

30

35

Überraschenderweise wurde gefunden, daß die Verbindungen der Formel und ihre Salze bei guter Verträglichkeit den Natrium/Protonen-Austauscher Subtyp 3 inhibieren.

Die Verbindungen der Formel I können als Arzneimittelwirkstoffe in der Human- und Veterinärmedizin eingesetzt werden.

Es ist bekannt, daß der Na⁺/H⁺-Austauscher eine Familie mit mindestens 6 unterschiedlichen Isoformen darstellt (NHE-1 bis NHE-6), die nun alle kloniert sind. Während der Subtyp NHE-1 ubiquitär im ganzen Körper in allen Geweben verteilt ist, werden die übrigen NHE-Subtypen selektiv in spezifischen Organen wie in der Niere oder in der Lumenwand und Kontraluminalwand des Dünndarms exprimiert. Diese Verteilung spiegelt die spezifischen Funktionen wider, denen die verschiedenen Isoformen dienen, nämlich einerseits die Regulation des intrazellulären pH-Werts und des Zellvolumens durch den Subtyp NHE-1 und andererseits die Na⁺-Aufnahme und -Wiederaufnahme in Darm und Niere durch die Isoformen NHE-2 bzw. NHE-3. Die Isoform NHE-4 wurde hauptsächlich im Magen gefunden. Die Expression von NHE-5 beschränkt sich auf Gehirn und Neuronengewebe. NHE-6 stellt diejenige Isoform dar, die den Natriumprotonenaustauscher in den Mitochondrien bildet.

Die Isoform NHE-3 wird insbesondere in der Apicalmembran der proximalen Nierentubuli exprimiert; ein NHE-3-Hemmstoff übt daher u.a. eine Nierenschutzwirkung aus.

Die therapeutische Verwendung eines selektiven Hemmstoffs für NHE-3-Isoformen ist vielseitig. NHE-3-Hemmstoffe hemmen oder verringern Gewebeschäden und Zellnekrosen nach pathophysiologischen hypoxischen und ischemischen Ereignissen, die zu einer Aktivierung der NHE-Aktivität führen, wie dies während Nierenischämie oder während der Entfernung, des Transports und der Reperfusion einer Niere bei der Nierenverpflanzung der Fall ist.

Die Verbindungen der Formel I wirken blutdrucksenkend und eignen sich als Arzneimittelwirkstoffe zur Behandlung der Hypertonie. Weiterhin eignen sie sich als Diuretika.

10

- Die Verbindungen der Formel I wirken alleine oder in Verbindung mit NHE-Inhibitoren anderer Subtypspezifität antiischämisch und können verwendet werden bei Thrombosen, Atherosklerose, Gefäßspasmen, zum Schutz von Organen, z.B. Niere und Leber, vor und während Operationen, sowie bei chronischem oder akutem Nierenversagen.
- Weiterhin können sie verwendet werden zur Behandlung von Schlaganfall, des Hirnödems, Ischämien des Nervensystems, verschiedenen Formen
- des Schocks sowie zur Verbesserung des Atemantriebs bei beispielsweise folgenden Zuständen: zentrale Schlafapnoen, plötzlicher Kindstod, postoperative Hypoxie und anderen Atemstörungen.
 - Durch die Kombination mit einem Carboanhydrase-Hemmer kann die Atmungstätigkeit weiter verbessert werden.
- Die Verbindungen der Formel I wirken inhibierend auf die Proliferationen von Zellen, beispielsweise der Fibroblasten-Zellproliferation und der Proliferation der glatten Gefäßmuskelzellen und können daher zur Behandlung von Krankheiten verwendet werden, bei denen die Zellproliferation eine primäre oder sekundäre Ursache darstellt.
- Die Verbindungen der Formel I können verwendet werden gegen diabetische Spätkomplikationen, Krebserkrankungen, fibrotische Erkrankungen, endotheliale Disfunktion, Organhypertrophien und -hyperplasien, insbesondere bei Prostatahyperplasie bzw. Prostatahypertrophie.
- Ferner eignen sie sich als Diagnostika zur Bestimmung und Unterscheidung bestimmter Formen der Hypertonie, der Atherosklerose, des Diabetes und proliferativer Erkrankungen.
 - Da die Verbindungen der Formel I auch den Spiegel der Serumlipoproteine vorteilhaft beeinflussen, können sie zur Behandlung eines erhöhten Blutfettspiegels alleine oder in Kombination mit anderen Arzneimitteln eingesetzt werden.

WO 01/21582 PCT/EP00/08616 - 5 -

5

25

30

35

Gegenstand der Erfindung ist die Verwendung von Verbindungen der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen Salze und/oder Solvate zur Herstellung eines Arzneimittels zur Behandlung von Thrombosen, ischämischen Zuständen des Herzens, des peripheren und zentralen Nervensystems und des Schlaganfalls, ischämischen Zuständen peripherer Organe und Gliedmaßen und zur Behandlung von Schockzuständen.

Gegenstand der Erfindung ist weiter die Verwendung von Verbindungen der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen Salze und/oder Solvate zur Herstellung eines Arzneimittels zum Einsatz bei chirurgischen Operationen und Organtransplantationen und zur Konservierung und Lagerung von Transplantaten für chirurgische Maßnahmen.

Gegenstand der Erfindung ist auch die Verwendung von Verbindungen der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen Salze und/oder Solvate zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, bei denen die Zellproliferation eine primäre oder sekundäre Ursache darstellt, zur Behandlung oder Prophylaxe von Störungen des Fettstoffwechsels oder gestörtem Atemantrieb.

Gegenstand der Erfindung ist ferner die Verwendung von Verbindungen der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen Salze und/oder Solvate zur Herstellung eines Arzneimittels zur Behandlung von ischämischer Niere, ischämischen Darmerkrankungen oder zur Prophylaxe von akutem oder chronischen Nierenerkrankungen.

Methoden zur Identifizierung von Substanzen, die den Natrium/Protonen-Austauscher Substyp 3 inhibieren, sind z.B. in US 5,871,919 beschrieben.

Für alle Reste in den Verbindungen der Formel I, die mehrfach auftreten, wie z.B. R⁶, gilt, daß deren Bedeutungen unabhängig voneinander sind.

Unter Hydraten und Solvaten versteht man z.B. die Hemi-, Mono- oder Dihydrate, unter Solvaten z.B. Alkoholadditionsverbindungen wie z.B. mit Methanol oder Ethanol.

35

In den vorstehenden Formeln bedeutet A Alkyl, ist linear oder verzweigt, und hat 1 bis 20, vorzugsweise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 oder 12 C-Atome. A bedeutet vorzugsweise Methyl, weiterhin Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek.-Butyl oder tert.-Butyl, ferner auch Pentyl, 1-, 2-oder 3-Methylbutyl, 1,1-, 1,2- oder 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1-, 2-, 3- oder 4-Methylpentyl, 1,1-, 1,2-, 1,3-, 2,2-, 2,3- oder 3,3-Dimethylbutyl, 1- oder 2-Ethylbutyl, 1-Ethyl-1-methylpropyl, 1-Ethyl-2-methylpropyl, 1,1,2- oder 1,2,2-Trimethylpropyl, Heptyl, Octyl, Nonyl oder Decyl.

A bedeutet weiterhin z.B. Trifluormethyl, Pentafluorethyl, Allyl oder Crotyl.

COR⁶ ist Acyl und bedeutet vorzugsweise Formyl, Acetyl, Propionyl, ferner auch Butyryl, Pentanoyl oder Hexanoyl.

15 COOR⁶ bedeutet vorzugsweise Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl oder Butoxycarbonyl.

Hal bedeutet vorzugsweise F, Cl oder Br, aber auch I.

- 20 R², R³ und R⁵ bedeuten, jeweils unabhängig voneinander, vorzugsweise H, Fluor, Chlor, Brom, Iod, Hydroxy, Methoxy, Ethoxy, Propoxy, Nitro, Amino, Methylamino, Dimethylamino, Ethylamino, Diethylamino, Acetamido, Sulfonamido, Methylsulfonamido, Phenylsulfonamido, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl, Ethylsulfonyl, Phenylsulfinyl,
- 25 Phenylsulfonyl, Cyan, Carboxy, Methoxycarbonyl, Ethoxycarbonyl, Carboxymethoxy, Methoxycarbonylmethoxy, Carboxymethyl, Methoxycarbonylmethyl, Aminocarbonylmethoxy, Aminocarbonylmethyl, N-Phenylaminocarbonylmethyl, ferner auch Acyloder Benzoyl.
- 30 Insbesondere bedeuten R², R⁵ H.
 R³ bedeutet insbesondere z.B. H, COOA oder -OCH₂COOR⁶, wobei R⁶ H
 oder Alkyl mit 1-4 C-Atomen bedeutet.

R⁶ bedeutet H, A oder Benzyl, insbesondere jedoch H oder Alkyl mit 1-4 C-Atomen.

 $X\ bedeutet\ vorzugsweise\ z.B.\ -CH_{2}\text{--},\ -CH=CH\text{--},\ -CH_{2}\text{O}\text{--},\ -O\text{--}CH_{2}\text{--},\ -COO\text{--},$

PCT/EP00/08616

20

25

30

35

-OOC-, -CONH- oder -NHCO-; ganz besonders bevorzugt ist -CH $_2$ O-, -O-CH $_2$ - oder -CH $_2$ -CH $_2$ -.

Ar bedeutet vorzugsweise unsubstituiertes Phenyl oder Naphthyl, weiterhin 5 vorzugsweise z.B. durch A, Fluor, Chlor, Brom, Iod, Hydroxy, Methoxy, Ethoxy, Propoxy, Butoxy, Pentyloxy, Hexyloxy, Benzyloxy, Phenethyloxy, Methylthio, Ethylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl, Ethylsulfonyl, Phenylsulfinyl, Phenylsulfonyl, Nitro, Amino, Methylamino, Ethylamino, Dimethylamino, Diethylamino, Formamido, Acetamido, Propionyl-10 amino, Butyrylamino, Methylsulfonamido, Ethylsulfonamido, Propylsulfonamido, Butylsulfonamido, Phenylsulfonamido, (4-Methylphenyl)-sulfonamido, Carboxymethoxy, Carboxyethoxy, Methoxycarbonylmethoxy, Methoxycarbonylethoxy, Hydroxymethoxy, Hydroxyethoxy, Methoxyethoxy, Carboxy, Methoxycarbonyl, Ethoxycarbonyl, Cyan, Phenylaminocarbonyl, 15 Acyl oder Benzoyl mono-, di- oder trisubstituiertes Phenyl oder Naphthyl, ferner auch Biphenyl.

Ar bedeutet daher bevorzugt z.B. o-, m- oder p-Tolyl, o-, m- oder p-Ethylphenyl, o-, m- oder p-Propylphenyl, o-, m- oder p-Isopropylphenyl, o-, moder p-tert.-Butylphenyl, o-, m- oder p-Hydroxyphenyl, o-, m- oder p-Nitrophenyl, o-, m- oder p-Aminophenyl, o-, m- oder p-(N-Methylamino)-phenyl, o-, m- oder p-Acetamidophenyl, o-, m- oder p-Methoxyphenyl, o-, m- oder p-Ethoxyphenyl, o-, m- oder p-Carboxyphenyl, o-, m- oder p-Methoxycarbonylphenyl, o-, m- oder p-(N,N-Dimethylamino)-phenyl, o-, m- oder p-(N-Ethylamino)-phenyl, o-, m- oder p-(N,N-Diethylamino)-phenyl, o-, m- oder p-Acetylphenyl, o-, m- oder p-Formylphenyl, o-, m- oder p-Fluorphenyl, o-, m- oder p-Bromphenyl, o-, m- oder p- Chlorphenyl, o-, m- oder p-Methylsulfonylphenyl, o-, m- oder p-(Phenylsulfonamido)-phenyl, o-, m- oder p-(Methylsulfonamido)-phenyl, o-, m- oder p-Methylthiophenyl, weiter bevorzugt 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Difluorphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dichlorphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dibromphenyl, 2,4- oder 2,5-Dinitrophenyl, 2,5- oder 3,4-Dimethoxyphenyl, 3-Nitro-4-chlorphenyl, 3-Amino-4-chlor-, 2-Amino-3-chlor-, 2-Amino-4-chlor-, 2-Amino-5-chlor- oder 2-Amino-6-chlorphenyl, 2-Nitro-4-N,N-dimethylamino- oder 3-Nitro-4-N, N-dimethylaminophenyl, 2,3-Diaminophenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,6- oder 3,4,5-Trichlorphenyl, 2,4,6-Trimethoxy5

10

15

20

25

35

phenyl, 2-Hydroxy-3,5-dichlorphenyl, p-lodphenyl, 3,6-Dichlor-4-aminophenyl, 4-Fluor-3-chlorphenyl, 2-Fluor-4-bromphenyl, 2,5-Difluor-4-bromphenyl, 3-Brom-6-methoxyphenyl, 3-Chlor-6-methoxyphenyl, 3-Chlor-4-acetamidophenyl, 3-Fluor-4-methoxyphenyl, 3-Amino-6-methylphenyl, 3-Chlor-4-acetamidophenyl oder 2,5-Dimethyl-4-chlorphenyl.

Ar' bedeutet insbesondere z.B. Phenyl oder Naphthyl, ferner bevorzugt z.B. o-, m- oder p-Tolyl, o-, m- oder p-Ethylphenyl, o-, m- oder p-Propylphenyl, o-, m- oder p-Isopropylphenyl, o-, m- oder p-tert.-Butylphenyl, o-, m- oder p-Hydroxyphenyl, o-, m- oder p-Nitrophenyl, o-, m- oder p-Aminophenyl, o-, m- oder p-(N-Methylamino)-phenyl, o-, m- oder p-Acetamidophenyl, o-, m- oder p-Methoxyphenyl, o-, m- oder p-Ethoxyphenyl, o-, m- oder p-Carboxyphenyl, o-, m- oder p-Methoxycarbonylphenyl, o-, m- oder p-(N,N-Dimethylamino)-phenyl, o-, m- oder p-(N-Ethylamino)-phenyl, o-, m- oder p-Formylphenyl, o-, m- oder p-Acetylphenyl, o-, m- oder p-Formylphenyl, o-, m- oder p-Bromphenyl, o-, m- oder p-Chlorphenyl oder o-, m- oder p-Methylsulfonylphenyl.

Dementsprechend ist Gegenstand der Erfindung insbesondere die Verwendung derjenigen Verbindungen der Formel I, in denen mindestens einer der genannten Reste eine der vorstehend angegebenen bevorzugten Bedeutungen hat. Einige bevorzugte Gruppen von Verbindungen können durch die folgenden Teilformeln Ia bis Ii ausgedrückt werden, die der Formel I entsprechen und worin die nicht näher bezeichneten Reste die bei der Formel I angegebene Bedeutung haben, worin jedoch

in Ia R^1 , R^4 jeweils unabhängig voneinander -C(=NH)-NH₂, das auch einfach durch OH substituiert sein kann oder -CO-N=C(NH₂)₂

30 bedeuten;

in Ib R^2 , R^5 H bedeuten;

in Ic R¹, R⁴ jeweils unabhängig voneinander -C(=NH)-NH₂, das auch einfach durch OH substituiert sein kann oder -CO-N=C(NH₂)₂,

		R ² , R ⁵ R ³ bedeuten;	H und H oder COOR ⁶ ,
5	in ld	R ¹ , R ⁴	jeweils unabhängig voneinander -C(=NH)-NH $_2$, das auch einfach durch OH substituiert sein kann oder -CO-N=C(NH $_2$) $_2$,
		R^2 , R^5	H und
		R^3	H, COOR ⁶ oder -O-(CH ₂)COOR ⁶ ,
10		bedeuten;	
	in le	X	-CH ₂ -O- oder -O-CH ₂ -
		bedeuten;	
	in If	R^1 , R^4	jeweils unabhängig voneinander -C(=NH)-NH ₂ , das
15			auch einfach durch OH substituiert sein kann oder
			$-CO-N=C(NH_2)_2,$
		R^2 , R^5	H,
		R^3	H oder COOR ⁶ und
20		X	-CH ₂ -O- oder -O-CH ₂ -
20		bedeuten;	
	in Ig	R ¹ , R ⁴	jeweils unabhängig voneinander -C(=NH)-NH ₂ , das auch einfach durch OH substituiert sein kann oder -CO-N=C(NH ₂) ₂ ,
25		R^2 , R^5	H,
		R^3	H, COOR ⁶ oder -O-(CH ₂)COOR ⁶ ,und
		Χ	-CH ₂ -O-, -O-CH ₂ - oder -CH ₂ -CH ₂ -
		bedeuten;	
30	in Ih	R ¹ , R ⁴	jeweils unabhängig voneinander -C(=NH)-NH $_2$, das auch einfach durch OH substituiert sein kann oder -CO-N=C(NH $_2$) $_2$,
		R^2 , R^5	H,
35		R ³	H, $COOR^6$, $-O-CH_2-COOR^6$, CH_2-COOR^6 , $-O-CH_2-CON(R^6)_2$, $CH_2-CON(R^6)_2$, $-O-CH_2-CONHAr$ oder $CH_2-CONHAr$,

bedeuten.

20

25

30

35

Χ -CH₂-O-, -O-CH₂- oder -CH₂-CH₂-. R^6 H oder A. Α Alkyl mit 1-4 C-Atomen, bedeuten; 5 R^1 , R^4 jeweils unabhängig voneinander -C(=NH)-NH₂, das in li auch einfach durch OH substituiert sein kann oder -CO-N=C(NH₂)₂, R^2 . R^5 Η, R^3 H, COOR⁶, -O-CH₂-COOR⁶, CH₂-COOR⁶, -O-CH₂-10 CON(R⁶)₂, oder CH₂-CON(R⁶)₂, -CH₂-O-, -O-CH₂- oder -CH₂-CH₂-, Χ R^6 H oder A. Α Alkyl mit 1-4 C-Atomen. 15

Die Verbindungen der Formel I und auch die Ausgangsstoffe zu ihrer Herstellung werden im übrigen nach an sich bekannten Methoden hergestellt, wie sie in der Literatur (z.B. in den Standardwerken wie Houben-Weyl, Methoden der organischen Chemie, Georg-Thieme-Verlag, Stuttgart) beschrieben sind, und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen.

Die Ausgangsstoffe können, falls erwünscht, auch in situ gebildet werden, so daß man sie aus dem Reaktionsgemisch nicht isoliert, sondern sofort weiter zu den Verbindungen der Formel I umsetzt.

Verbindungen der Formel I können vorzugsweise erhalten werden, indem man Verbindungen der Formel I aus einem ihrer funktionellen Derivate durch Behandeln mit einem solvolysierenden oder hydrogenolysierenden Mittel in Freiheit setzt.

Bevorzugte Ausgangsstoffe für die Solvolyse bzw. Hydrogenolyse sind solche, die sonst der Formel I entsprechen, aber anstelle einer oder mehrerer freier Amino- und/oder Hydroxygruppen entsprechende geschützte Amino- und/oder Hydroxygruppen enthalten, vorzugsweise solche, die anstelle eines H-Atoms, das mit einem N-Atom verbunden ist, eine Aminoschutzgruppe tragen, insbesondere solche, die anstelle einer HN-Gruppe eine R'-N-Gruppe tragen, worin R' eine Aminoschutzgruppe bedeutet, und/oder solche, die anstelle des H-Atoms einer Hydroxygruppe eine Hydroxyschutzgruppe tragen, z.B. solche, die der Formel I entsprechen, jedoch anstelle einer Gruppe -COOH eine Gruppe -COOR" tragen, worin R" eine Hydroxyschutzgruppe bedeutet.

Bevorzugte Ausgangsstoffe sind auch die Oxadiazolderivate, die in die entsprechenden Amidinoverbindungen überführt werden können.

5

- Die Einführung der Oxadiazolgruppe gelingt z.B. durch Umsetzung der Cyanverbindungen mit Hydroxylamin und Reaktion mit Phosgen, Dialkylcarbonat, Chlorameisensäureester, N,N'-Carbonyldiimidazol oder Acetanhydrid.
- Es können auch mehrere gleiche oder verschiedene geschützte Aminound/oder Hydroxygruppen im Molekül des Ausgangsstoffes vorhanden sein. Falls die vorhandenen Schutzgruppen voneinander verschieden sind, können sie in vielen Fällen selektiv abgespalten werden.
- Der Ausdruck "Aminoschutzgruppe" ist allgemein bekannt und bezieht sich auf Gruppen, die geeignet sind, eine Aminogruppe vor chemischen Umsetzungen zu schützen (zu blockieren), die aber leicht entfernbar sind, nachdem die gewünschte chemische Reaktion an anderen Stellen des Moleküls durchgeführt worden ist. Typisch für solche Gruppen sind insbesondere unsubstituierte oder substituierte Acyl-, Aryl-, Aralkoxymethyloder Aralkylgruppen. Da die Aminoschutzgruppen nach der gewünschten Reaktion (oder Reaktionsfolge) entfernt werden, ist ihre Art und Größe im übrigen nicht kritisch; bevorzugt werden jedoch solche mit 1-20, insbesondere 1-8 C-Atomen. Der Ausdruck "Acylgruppe" ist im Zusammenhang mit dem vorliegenden Verfahren in weitestem Sinne aufzufassen. Er umschließt von aliphatischen, araliphatischen, aromatischen oder hetero-

cyclischen Carbonsäuren oder Sulfonsäuren abgeleitete Acylgruppen sowie insbesondere Alkoxycarbonyl-, Aryloxycarbonyl- und vor allem Aral-koxycarbonylgruppen. Beispiele für derartige Acylgruppen sind Alkanoyl wie Acetyl, Propionyl, Butyryl; Aralkanoyl wie Phenylacetyl; Aroyl wie Benzoyl oder Toluyl; Aryloxyalkanoyl wie POA; Alkoxycarbonyl wie Methoxycarbonyl, Ethoxycarbonyl, 2,2,2-Trichlorethoxycarbonyl, BOC (tert.-Butyloxycarbonyl), 2-lodethoxycarbonyl; Aralkyloxycarbonyl wie CBZ ("Carbobenzoxy"), 4-Methoxybenzyloxycarbonyl, FMOC; Arylsulfonyl wie Mtr. Bevorzugte Aminoschutzgruppen sind BOC und Mtr, ferner CBZ, Fmoc, Benzyl und Acetyl.

5

10

15

20

Der Ausdruck "Hydroxyschutzgruppe" ist ebenfalls allgemein bekannt und bezieht sich auf Gruppen, die geeignet sind, eine Hydroxygruppe vor chemischen Umsetzungen zu schützen, die aber leicht entfernbar sind, nachdem die gewünschte chemische Reaktion an anderen Stellen des Moleküls durchgeführt worden ist. Typisch für solche Gruppen sind die oben genannten unsubstituierten oder substituierten Aryl-, Aralkyl- oder Acylgruppen, ferner auch Alkylgruppen. Die Natur und Größe der Hydroxyschutzgruppen ist nicht kritisch, da sie nach der gewünschten chemischen Reaktion oder Reaktionsfolge wieder entfernt werden; bevorzugt sind Gruppen mit 1-20, insbesondere 1-10 C-Atomen. Beispiele für Hydroxyschutzgruppen sind u.a. Benzyl, p-Nitrobenzoyl, p-Toluolsulfonyl, tert.-Butyl und Acetyl, wobei Benzyl und tert.-Butyl besonders bevorzugt sind.

Das In-Freiheit-Setzen der Verbindungen der Formel I aus ihren funktionellen Derivaten gelingt - je nach der benutzten Schutzgruppe - z. B. mit starken Säuren, zweckmäßig mit TFA oder Perchlorsäure, aber auch mit anderen starken anorganischen Säuren wie Salzsäure oder Schwefelsäure, starken organischen Carbonsäuren wie Trichloressigsäure oder Sulfonsäuren wie Benzol- oder p-Toluolsulfonsäure. Die Anwesenheit eines zusätzlichen inerten Lösungsmittels ist möglich, aber nicht immer erforderlich. Als inerte Lösungsmittel eignen sich vorzugsweise organische, beispielsweise Carbonsäuren wie Essigsäure, Ether wie Tetrahydrofuran oder Dioxan, Amide wie DMF, halogenierte Kohlenwasserstoffe wie Dichlormethan, ferner auch Alkohole wie Methanol, Ethanol oder Isopropanol, sowie Wasser. Ferner kommen Gemische der vorgenannten Lösungsmittel in Frage. TFA

wird vorzugsweise im Überschuß ohne Zusatz eines weiteren Lösungsmittels verwendet, Perchlorsäure in Form eines Gemisches aus Essigsäure und 70 %iger Perchlorsäure im Verhältnis 9:1. Die Reaktionstemperaturen für die Spaltung liegen zweckmäßig zwischen etwa 0 und etwa 50°, vorzugsweise arbeitet man zwischen 15 und 30° (Raumtemperatur).

Die Gruppen BOC, OBut und Mtr können z. B. bevorzugt mit TFA in Dichlormethan oder mit etwa 3 bis 5n HCl in Dioxan bei 15-30° abgespalten werden, die FMOC-Gruppe mit einer etwa 5- bis 50 %igen Lösung von Dimethylamin, Diethylamin oder Piperidin in DMF bei 15-30°.

Hydrogenolytisch entfernbare Schutzgruppen (z. B. CBZ, Benzyl oder die Freisetzung der Amidinogruppe aus ihrem Oxadiazolderivat) können z. B. durch Behandeln mit Wasserstoff in Gegenwart eines Katalysators (z. B. eines Edelmetallkatalysators wie Palladium, zweckmäßig auf einem Träger wie Kohle oder wie feuchtes Raney-Nickel unter Zusatz von z.B. Essigsäure) abgespalten werden. Als Lösungsmittel eignen sich dabei die oben angegebenen, insbesondere z. B. Alkohole wie Methanol oder Ethanol oder Amide wie DMF. Die Hydrogenolyse wird in der Regel bei Temperaturen zwischen etwa 0 und 100° und Drucken zwischen etwa 1 und 200 bar, bevorzugt bei 20-30° und 1-10 bar durchgeführt. Eine Hydrogenolyse der CBZ-Gruppe gelingt z. B. gut an 5 bis 10 %igem Pd/C in Methanol oder mit Ammoniumformiat (anstelle von Wasserstoff) an Pd/C in Methanol/DMF bei 20-30°.

25

30

35

20

5

10

15

Verbindungen der Formel I, worin R¹ und R⁴ -C(=NH)-NH₂ bedeuten, können vorzugsweise aus der entsprechenden Cyanverbindung erhalten werden.

Die Umwandlung einer Cyangruppe in eine Amidinogruppe erfolgt durch Umsetzung mit z.B. Hydroxylamin und anschließender Reduktion des N-Hydroxylamin mit Wasserstoff in Anwesenheit eines Katalysators wie z.B. Pd/C oder Raney-Nickel.

Zur Herstellung eines Amidins der Formel I ($R^1 = -C(=NH)-NH_2$) kann man an ein Nitril der Formel I ($R^1 = CN$) auch Ammoniak anlagern. Die Anlagerung erfolgt bevorzugt mehrstufig, indem man in an sich bekannter Weise a) das Nitril mit H_2S in ein Thioamid umwandelt, das mit einem Alkylie-

rungsmittel, z.B. CH₃I, in den entsprechenden S-Alkyl-imidothioester übergeführt wird, welcher seinerseits mit NH₃ zum Amidin reagiert, b) das Nitril mit einem Alkohol, z.B. Ethanol in Gegenwart von HCI in den entsprechenden Imidoester umwandelt und diesen mit Ammoniak behandelt, oder c) das Nitril mit Lithium-bis-(trimethylsilyl)-amid umsetzt und das Produkt anschließend hydrolysiert.

Herstellung der Cyanverbindungen erfolgt nach an sich bekannten Methoden.

10

25

30

35

5

Verbindungen der Formel I, worin R¹ und R⁴ -CON(=NH)-NH₂ bedeuten, können vorzugsweise aus den entsprechenden Alkoxycarbonylverbindungen erhalten werden, indem man mit Guanidin umsetzt.

Es ist ferner möglich, eine Verbindung der Formel I in eine andere Verbindung der Formel I umzuwandeln, indem man einen oder mehrere Rest(e), R¹, R², R³, R⁴ und/oder R⁵ in einen oder mehrere Rest(e) R¹, R², R³, R⁴ und/oder R⁵ umwandelt, z.B. indem man eine Aminogruppe acyliert oder Nitrogruppen (beispielsweise durch Hydrierung an Raney-Nickel oder Pd-Kohle in einem inerten Lösungsmittel wie Methanol oder Ethanol) zu Aminogruppen reduziert.

Ester können z.B. mit Essigsäure oder mit NaOH oder KOH in Wasser, Wasser-THF oder Wasser-Dioxan bei Temperaturen zwischen 0 und 100° verseift werden.

Ferner kann man freie Aminogruppen in üblicher Weise mit einem Säurechlorid oder -anhydrid acylieren oder mit einem unsubstituierten oder substituierten Alkylhalogenid alkylieren, zweckmäßig in einem inerten Lösungsmittel wie Dichlormethan oder THF und /oder in Gegenwart einer Base wie Triethylamin oder Pyridin bei Temperaturen zwischen -60 und +30°.

Die Umsetzung erfolgt in der Regel in einem inerten Lösungsmittel, in Gegenwart eines säurebindenden Mittels vorzugsweise eines Alkali- oder Erdalkalimetall-hydroxids, -carbonats oder -bicarbonats oder eines anderen

Salzes einer schwachen Säure der Alkali- oder Erdalkalimetalle, vorzugsweise des Kaliums, Natriums, Calciums oder Cäsiums. Auch der Zusatz einer organischen Base wie Triethylamin, Dimethylanilin, Pyridin oder Chinolin oder eines Überschusses der Aminkomponente der Formel II bzw. des Alkylierungsderivates der Formel III kann günstig sein. Die Reaktionszeit liegt je nach den angewendeten Bedingungen zwischen einigen Minuten und 14 Tagen, die Reaktionstemperatur zwischen etwa 0° und 150°, normalerweise zwischen 20° und 130°.

5

25

30

35

10 Als inerte Lösungsmittel eignen sich z.B. Kohlenwasserstoffe wie Hexan, Petrolether, Benzol, Toluol oder Xylol; chlorierte Kohlenwasserstoffe wie Trichlorethylen, 1,2-Dichlorethan, Tetrachlorkohlenstoff, Chloroform oder Dichlormethan; Alkohole wie Methanol, Ethanol, Isopropanol, n-Propanol, n-Butanol oder tert.-Butanol; Ether wie Diethylether, Diisopropylether, Te-15 trahydrofuran (THF) oder Dioxan; Glykolether wie Ethylenglykolmonomethyl- oder -monoethylether (Methylglykol oder Ethylglykol), Ethylenglykoldimethylether (Diglyme); Ketone wie Aceton oder Butanon; Amide wie Acetamid, Dimethylacetamid, N-Methylpyrrolidon (NMP) oder Dimethylformamid (DMF); Nitrile wie Acetonitril; Sulfoxide wie Dimethylsulfoxid 20 (DMSO); Schwefelkohlenstoff; Carbonsäuren wie Ameisensäure oder Essigsäure; Nitroverbindungen wie Nitromethan oder Nitrobenzol; Ester wie Ethylacetat oder Gemische der genannten Lösungsmittel.

Eine Base der Formel I kann mit einer Säure in das zugehörige Säureadditionssalz übergeführt werden, beispielsweise durch Umsetzung äquivalenter Mengen der Base und der Säure in einem inerten Lösungsmittel
wie Ethanol und anschließendes Eindampfen. Für diese Umsetzung kommen insbesondere Säuren in Frage, die physiologisch unbedenkliche Salze liefern. So können anorganische Säuren verwendet werden, z.B.
Schwefelsäure, Salpetersäure, Halogenwasserstoffsäuren wie Chlorwasserstoffsäure oder Bromwasserstoffsäure, Phosphorsäuren wie Orthophosphorsäure, Sulfaminsäure, ferner organische Säuren, insbesondere
aliphatische, alicyclische, araliphatische, aromatische oder heterocyclische
ein- oder mehrbasige Carbon-, Sulfon- oder Schwefelsäuren, z.B. Ameisensäure, Essigsäure, Propionsäure, Pivalinsäure, Diethylessigsäure,
Malonsäure, Bernsteinsäure, Pimelinsäure, Fumarsäure, Maleinsäure,

Milchsäure, Weinsäure, Äpfelsäure, Citronensäure, Gluconsäure, Ascorbinsäure, Nicotinsäure, Isonicotinsäure, Methan- oder Ethansulfonsäure, Ethandisulfonsäure, 2-Hydroxyethansulfonsäure, Benzolsulfonsäure, p-Toluolsulfonsäure, Naphthalin-mono- und -disulfonsäuren, Laurylschwefelsäure. Salze mit physiologisch nicht unbedenklichen Säuren, z.B. Pikrate, können zur Isolierung und /oder Aufreinigung der Verbindungen der Formel I verwendet werden.

Andererseits können Verbindungen der Formel I mit Basen (z.B. Natriumoder Kaliumhydroxid oder -carbonat) in die entsprechenden Metall-, insbesondere Alkalimetall- oder Erdalkalimetall-, oder in die entsprechenden
Ammoniumsalze umgewandelt werden.

Auch physiologisch unbedenkliche organische Basen, wie z.B. Ethanolamin können verwendet werden.

15

20

25

30

35

10

5

Gegenstand der Erfindung ist ferner die Verwendung der Verbindungen der Formel I als NHE-3-Inhibitoren und/oder ihrer physiologisch unbedenklichen Salze zur Herstellung pharmazeutischer Zubereitungen, insbesondere auf nicht-chemischem Wege. Hierbei können sie zusammen mit mindestens einem festen, flüssigen und/oder halbflüssigen Träger- oder Hilfsstoff und gegebenenfalls in Kombination mit einem oder mehreren weiteren Wirkstoffen in eine geeignete Dosierungsform gebracht werden.

Gegenstand der Erfindung sind ferner pharmazeutische Zubereitungen, enthaltend mindestens einen NHE-3-Inhibitor der Formel I und/oder eines seiner physiologisch unbedenklichen Salze und Solvate.

Diese Zubereitungen können als Arzneimittel in der Human- oder Veterinärmedizin verwendet werden. Als Trägerstoffe kommen organische oder anorganische Substanzen in Frage, die sich für die enterale (z.B. orale), parenterale oder topische Applikation eignen und mit den neuen Verbindungen nicht reagieren, beispielsweise Wasser, pflanzliche Öle, Benzylalkohole, Alkylenglykole, Polyethylenglykole, Glycerintriacetat, Gelatine, Kohlehydrate wie Lactose oder Stärke, Magnesiumstearat, Talk, Vaseline. Zur oralen Anwendung dienen insbesondere Tabletten, Pillen, Dragees, Kapseln, Pulver, Granulate, Sirupe, Säfte oder Tropfen, zur rektalen An-

WO 01/21582 PCT/EP00/08616

wendung Suppositorien, zur parenteralen Anwendung Lösungen, vorzugsweise ölige oder wässrige Lösungen, ferner Suspensionen, Emulsionen oder Implantate, für die topische Anwendung Salben, Cremes oder Puder, oder transdermal in Patches.

5 Die neuen Verbindungen können auch lyophilisiert und die erhaltenen Lyophilisate z.B. zur Herstellung von Injektionspräparaten verwendet werden. Die angegebenen Zubereitungen können sterilisiert sein und/oder Hilfsstoffe wie Gleit-, Konservierungs-, Stabilisierungs- und/oder Netzmittel, Emulgatoren, Salze zur Beeinflussung des osmotischen Druckes, Puffer-10 substanzen, Farb-, Geschmacks- und /oder mehrere weitere Wirkstoffe enthalten, z.B. ein oder mehrere Vitamine. Als pharmazeutische Zubereitung für die Verabreichung in Form von Aero-

solen oder Sprays sind geeignet z.B. Lösungen, Suspensionen oder Emulsionen des Wirkstoffs der Formel I in einem pharmazeutisch unbedenklichen Lösungsmittel.

15

Die Verbindungen der Formel I und ihre physiologisch unbedenklichen Salze und Solvate können zur Behandlung und/oder Prophylaxe der oben beschrieben Krankheiten oder Krankheitszuständen verwendet werden.

20

25

30

35

Dabei werden die erfindungsgemäßen Substanzen in der Regel vorzugsweise in Dosierungen zwischen etwa 0,1 und 100 mg, insbesondere zwischen 1 und 10 mg pro Dosierungseinheit verabreicht. Die tägliche Dosierung liegt vorzugsweise zwischen etwa 0,001 und 10 mg/kg Körpergewicht. Die spezielle Dosis für jeden Patienten hängt jedoch von den verschiedensten Faktoren ab, beispielsweise von der Wirksamkeit der eingesetzten speziellen Verbindung, vom Alter, Körpergewicht, allgemeinen Gesundheitszustand, Geschlecht, von der Kost, vom Verabreichungszeitpunkt und -weg, von der Ausscheidungsgeschwindigkeit, Arzneistoffkombination und Schwere der jeweiligen Erkrankung, welcher die Therapie gilt. Die orale Applikation ist bevorzugt.

Vor- und nachstehend sind alle Temperaturen in °C angegeben. In den nachfolgenden Beispielen bedeutet "übliche Aufarbeitung": Man gibt, falls erforderlich. Wasser hinzu, stellt, falls erforderlich, je nach Konstitution des Endprodukts auf pH-Werte zwischen 2 und 10 ein, extrahiert mit Ethylacetat oder Dichlormethan, trennt ab, trocknet die organische Phase über Natriumsulfat, dampft ein und reinigt durch Chromatographie an Kieselgel und /oder durch Kristallisation.

Massenspektrometrie (MS): EI (Elektronenstoß-Ionisation) M⁺
FAB (Fast Atom Bombardment) (M+H)⁺

Beispiel 1

5

10

35

Eine Lösung von 2,06 g 3-Brombenzonitril und 1,50 g 3-Tolylboronsäure in 50 ml Dimethoxyethan wird mit 247 mg Palladium(II)acetat, 335 mg Tri-otolyl-phosphin, 20 ml Wasser und 954 mg wasserfreiem Natriumcarbonat versetzt und unter Rühren 18 Stunden bei 100° C erhitzt. Man arbeitet wie üblich auf, chromatographiert den Rückstand an einer Kieselgelsäule mit Petrolether/Ethylacetat 9:1 und erhält 3'-Methylbiphenyl-3-carbonitril als farblosen Feststoff ("A"), El 193.

- Eine Lösung von 1,17 g "A" in 10 ml Tetrachlorkohlenstoff wird mit 1,09 g N-Bromsuccinimid (NBS) und 60 mg Azobisisobutyronitril versetzt und 18 Stunden bei 70° C erhitzt. Man arbeitet wie üblich auf, chromatographiert den Rückstand an einer Kieselgelsäule mit Petrolether/Ethylacetat 9:1 und erhält 3'-Brommethylbiphenyl-3-carbonitril als farblosen Feststoff ("B").
- Eine Lösung von 500 mg "B" und 238 mg 3-Hydroxybenzonitril in 10 ml Acetonitril wird mit 652 mg Cäsiumcarbonat versetzt und 40 Stunden bei Raumtemperatur gerührt. Nachüblicher Aufarbeitung wird der Rückstand an einer reversed-phase-Säule mit Acetonitril/Wasser 65:35 chromatographiert. Man erhält als farblosen Feststoff 3'-(3-Cyanphenoxymethyl)-biphenyl-3-carbonitril ("C"), FAB 311.
- Eine Lösung von 90 mg "C" und 125 mg Hydroxylammoniumchlorid in 10 ml Ethanol wird mit 1,2 g polymergebundenem Dimethylaminopyridin (DMAP) versetzt und 18 Stunden bei Raumtemperatur gerührt. Man filtriert ab, entfernt das Lösungsmittel und erhält N-Hydroxy-3'-[3-(N-hydroxy-carbamimidoyl)-phenoxymethyl]-biphenyl-3-carboxamidin ("D") als farblo-

sen Feststoff, FAB 377.

Eine Lösung von 76 mg "D" in 10 ml Methanol wird mit 100 mg wasserfeuchtem Raney-Nickel und 30 mg Essigsäure versetzt und 18 Stunden bei Raumtemperatur und Normaldruck hydriert. Man filtriert ab, entfernt das Lösungsmittel und erhält 3'-(3-Carbamimidoyl-phenoxymethyl)-biphenyl-3-carboxamidin, Acetat, El 327 (M⁺ - NH₃), 310 (M⁺ - 2 NH₃)

Analog erhält man die Verbindungen

3'-(3-Carbamimidoyl-phenoxymethyl)-biphenyl-4-carboxamidin, Diacetat, FAB 345;

3'-(4-Carbamimidoyl-phenoxymethyl)-biphenyl-4-carboxamidin, Diacetat, FAB 345;

3'-(4-Carbamimidoyl-phenoxymethyl)-biphenyl-3-carboxamidin, Diacetat, FAB 345;

4'-(4-Carbamimidoyl-phenoxymethyl)-biphenyl-4-carboxamidin,

4'-(4-Carbamimidoyl-phenoxymethyl)-biphenyl-3-carboxamidin,

4'-(3-Carbamimidoyl-phenoxymethyl)-biphenyl-3-carboxamidin und

4'-(3-Carbamimidoyl-phenoxymethyl)-biphenyl-4-carboxamidin.

Beispiel 2

5

10

15

20

25

30

35

Analog Beispiel 1 erhält man durch Umsetzung von 3-Brombenzonitril mit 3-Methoxyphenylboronsäure die Verbindung 3'-Methoxybiphenyl-3-carbonitril.

Durch anschließende Etherspaltung mit Aluminiumtriiodid in Acetonitril und Umsetzung mit 3-Brommethyl-benzonitril erhält man 3'-(3-Cyanbenzyloxy)-biphenyl-3-carbonitril.

Durch Umsetzung mit Hydroxylamin und Reduktion mit Wasserstoff unter Ra-Ni-Katalyse erhält man 3'-(3-Carbamimidoyl-benzyloxy)-biphenyl-3-carboxamidin

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

Analog erhält man

4'-(4-Carbamimidoyl-benzyloxy)-biphenyl-4-carboxamidin, Diacetat, FAB 345;

4'-(3-Carbamimidoyl-benzyloxy)-biphenyl-4-carboxamidin, Diacetat, FAB 345.

5

Beispiel 3

Analog Beispiel 1 erhält man durch Umsetzung von 3-Cyanphenylboronsäure mit 3-Brom-5-methyl-benzoesäuremethylester die Verbindung 3'
Cyan-5-methyl-biphenyl-3-carbonsäuremethylester. Durch Bromierung mit NBS und Umsetzung mit 3-Hydroxybenzonitril erhält man 3'-Cyan-5-(3-Cyan-phenoxymethyl)-biphenyl-3-carbonsäuremethylester.

Reaktion mit Hydroxylamin und Reduktion mit H₂/Ra-Ni ergibt die Verbindung 3'-Carbamimidoyl-5-(3-carbamimidoyl-phenoxymethyl)-biphenyl-3-carbonsäuremethylester.

Durch Verseifung des Esters mit wässriger NaOH erhält man daraus 3'-

Durch Verseifung des Esters mit wässriger NaOH erhält man daraus 3'-Carbamimidoyl-5-(3-carbamimidoyl-phenoxymethyl)-biphenyl-3carbonsäure.

20

25

Durch Chromatographie an reversed-phase-Säule mit Acetoni-tril/Wasser/TFA-Gemisch erhält man 3'-Carbamimidoyl-5-(3-carbamimidoyl-phenoxymethyl)-biphenyl-3-carbonsäure, Bistrifluoracetat.

30

Analog erhält man die Verbindungen 4'-Carbamimidoyl-4-(4-carbamimidoyl-phenoxymethyl)-biphenyl-3-carbonsäuremethylester, FAB 403;

35

4'-Carbamimidoyl-4-(3-carbamimidoyl-phenoxymethyl)-biphenyl-2-carbonsäuremethylester, FAB 403;

- 3'-Carbamimidoyl-4-(4-carbamimidoyl-phenoxymethyl)-biphenyl-2-carbonsäuremethylester, FAB 403;
- 5 3'-Carbamimidoyl-4-(3-carbamimidoyl-phenoxymethyl)-biphenyl-2-carbonsäuremethylester, FAB 403;
 - 4'-Carbamimidoyl-5-(3-carbamimidoyl-phenoxymethyl)-biphenyl-4-carbonsäuremethylester, FAB 403;
 - 3'-Carbamimidoyl-5-(3-carbamimidoyl-phenoxymethyl)-biphenyl-4-carbonsäuremethylester, FAB 403.

Beispiel 4

15

10

Analog Beispiel 1 erhält man durch Umsetzung von 3-Brombenzoesäuremethylester mit 3-Tolylboronsäure 3'-Methylbiphenyl-3-carbonsäuremethylester. Durch Bromierung mit NBS und Umsetzung mit 3-Hydroxybenzoesäuremethylester erhält man daraus 3'-(3-Methoxycarbonyl-phenoxymethyl)-biphenyl-3-carbonsäuremethylester. Durch Umsetzung mit Guanidinhydrochlorid in methanolischer Natriummethanolatlösung erhält man daraus N-[3'-(3-Guanidinocarbonyl-phenoxymethyl)-biphenyl-3-carbonyl]-guanidin

25

20

$$\begin{array}{c|c}
O & & & & \\
H_2N & & & & \\
NH_2
\end{array}$$

$$\begin{array}{c|c}
N & & NH_2\\
O & & NH_2
\end{array}$$

30

35

Analog erhält man die Verbindung N-[4'-(4-Guanidinocarbonyl-phenoxymethyl)-biphenyl-4-carbonyl]-guanidin.

Beispiel 5

Eine Lösung von 7,0 g 3-Brom-5-methylphenol und 5,97 g Bromessigsäuremethylester sowie 13 g Cäsiumcarbonat in 100 ml Acetonitril wird bei 5 Raumtemperatur über Nacht gerührt. Nach üblicher Aufarbeitung erhält man 9,70 g (3-Brom-5-methylphenoxy)-essigsäuremethylester ("AB"). Eine Suspension von 2,0 g "AB", 100 mg Tetrakis(triphenylphosphin)-Palladium und 0,85 g Natriumcarbonat in 50 ml Toluol wird zum Sieden erhitzt. Dann wird eine Lösung von 2,94 g 3-Cyanphenylboronsäure in 30 10 ml Methanol zugetropft und 14 Stunden unter Rückfluß erhitzt. Man arbeitet wie üblich auf und erhält 2,17 g (3'-Cyan-5-methyl-biphenyl-3-yloxy)essigsäuremethylester ("AC"). Eine Lösung von 1,2 g "AC" und 0,765 g NBS in 50 ml Tetrachlorkohlenstoff wird bei Raumtemperatur mit UV-Licht bestrahlt. Nach üblicher Aufar-15 beitung erhält man 1,54 g (3'-Cyan-5-brommethyl-biphenyl-3-yloxy)essigsäuremethylester ("AD"). Eine Lösung von 185 mg "AD", 63,1 mg 4-Hydroxybenzonitril und 172,7 mg Cäsiumcarbonat in 10 ml Acetonitril wird bei Raumtemperatur 4 Tage gerührt. Nach üblicher Aufarbeitung erhält man [3'-Cyan-5-(4-20 cyanphenoxymethyl)-biphenyl-3-yloxy]-essigsäuremethylester ("AE"). Eine Lösung von 60 mg "AE", 69,5 mg Hydroxylammoniumchlorid und 101 mg Triethylamin in 10 ml Methanol wird 14 Stunden unter Rückfluß erhitzt. Nach Entfernen des Lösungsmittels wird in Wasser aufgenommen. Man trennt ab und erhält 70 mg [3'-N-Hydroxyamidino-5-(4-N-hydroxyamidino-25 phenoxymethyl)-biphenyl-3-yloxy]-essigsäuremethylester ("AF"). Durch Reduktion mit H₂/Raney-Nickel erhält man daraus [3'-Amidino-5-(4-

amidinophenoxymethyl)-biphenyl-3-yloxy]-essigsäuremethylester, FAB 433

Analog erhält man die Verbindungen

15

[4'-Amidino-5-(4-amidinophenoxymethyl)-biphenyl-3-yloxy]-essigsäuremethylester, FAB 433

[3'-Amidino-5-(3-amidinophenoxymethyl)-biphenyl-3-yloxy]-20 essigsäuremethylester, FAB 433

[4'-Amidino-5-(3-amidinophenoxymethyl)-biphenyl-3-yloxy]-essigsäuremethylester, FAB 433.

Ersetzt man in der ersten Stufe Bromessigsäuremethylester durch Bromessigsäure-tert.-butylester sö können die in der letzten Stufe erhaltenen tert.-Butylester mit Trifluoressigsäure gespalten werden und man erhält die entsprechenden Carbonsäuren

[3'-Amidino-5-(4-amidinophenoxymethyl)-biphenyl-3-yloxy]-essigsäure, Bistrifluoracetat, FAB 419;

[4'-Amidino-5-(4-amidinophenoxymethyl)-biphenyl-3-yloxy]-essigsäure;

35

[3'-Amidino-5-(3-amidinophenoxymethyl)-biphenyl-3-yloxy]-essigsäure;

[4'-Amidino-5-(3-amidinophenoxymethyl)-biphenyl-3-yloxy]-essigsäure.

Beispiel 6

5

25

35

Eine Lösung von 5,0 g 3'-Brommethyl-biphenyl-3-carbonitril und 5 ml Tri-10 ethylphosphit werden zusammengegeben und langsam auf 150° erhitzt. Man rührt 6 h bei 150° nach und erhält nach üblicher Aufarbeitung 6,05 g (3'-Cyan-biphenyl-3-ylmethyl)-phosphonsäurediethylester ("BA"). Zu einer Lösung von 1,0 g "BA" und 3-Cyanbenzaldehyd in 20 ml Ethylenglycoldimethylether gibt man unter Eiskühlung und Stickstoff 150 mg 15 Natriumhydrid. Man rührt 4 Stunden nach, arbeitet wie üblichauf und erhält 0,93 g 3'-[2-(3-Cyanphenyl)-vinyl]-biphenyl-3-carbonitril ("BB"). Nach Hydrierung von 360 mg "BB" mit Pd-C-5 % in Methanol erhält man 360 mg 3'-[2-(3-Cyanphenyl)-ethyl]-biphenyl-3-carbonitril ("BC"). Nach Umsetzung mit Hydroxylammmoniumchlorid und Hydrierung mit Raney-20 Nickel erhält man analog Beispiel 1 die Verbindung 3'-[2-(3-Amidinophenyl)-ethyl]-biphenyl-3-carboxamidin, FAB 343

Analog erhält man die Verbindung 3'-[2-(4-Amidinophenyl)-ethyl]-biphenyl-3-carboxamidin, FAB 343.

10

20

25

30

35

Die Verbindung N-[3'-(4-Guanidinocarbonyl-benzyloxy)-biphenyl-3carbonyl]-guanidin, Dihydrochlorid, FAB 431

$$O$$
 NH_2
 NH_2
 NH_2
 NH_2

erhält man z.B. gemäß nachstehendem Reaktionsschema:

5 All₃/Acetonitril 1. MeOH/HCI `OH 2. H₂O

10 0 Cs₂CO₃/Acetonitril

NaOH/MeOH

20

1-Chlor-1-methylpyridiniumiodid N-Methylpyrrolidon 25 N-Ethyldiisopropylamin (Mukaiyama)

WO 01/21582 PCT/EP00/08616

Analog erhält man nachstehende Verbindungen

N-[3'-(3-Guanidinocarbonyl-benzyloxy)-biphenyl-3-carbonyl]-guanidin, Dihydrochlorid, FAB 431;

N-[3'-(4-Guanidinocarbonyl-benzyloxy)-biphenyl-4-carbonyl]-guanidin, Dihydrochlorid, FAB 431;

N-[3'-(3-Guanidinocarbonyl-benzyloxy)-biphenyl-4-carbonyl]-guanidin, Dihydrochlorid, FAB 431.

Pharmakologische Tests

15

5

Im folgenden ist die Methodik dargestellt, die zur Charakterisierung der Verbindungen der Formel I als NHE-3-Inhibitoren verwendet wurde.

Die Verbindungen der Formel I wurden in bezug auf ihre Selektivität gegenüber den Isoformen NHE-1 bis NHE-3 charakterisiert. Die drei Isoformen wurden in Maus-Fibroblastenzellinien stabil exprimiert. Die Hemmwirkung der Verbindungen wurde durch Bestimmung der EIPA-empfindlichen ²²Na⁺-Aufnahme in die Zellen nach intrazellulärer Acidose beurteilt.

Zur Charakterisierung der Na⁺/H⁺-Austauschhemmstoffe in bezug auf ihre

Isoformselektivität untersuchten wir die Verbindungen auf ihre Hemmung der NHE-Isoformen NHE-1, -2 und -3, die in einer Maus-Fibroblastenzellinie stabil exprimiert wurden (siehe Verfahrensteil), dadurch, daß die EIPA-empfindliche ²²Na⁺-Aufnahme in die Zellen nach intrazellulärer Acidose bestimmt wurde.

30

25

Material und Methoden

LAP1-Zellinien, die die unterschiedlichen NHE-Isoformen exprimieren

Die LAP1-Zellinien, die die Isoformen NHE-1, -2 und -3 exprimieren (eine Maus-Fibroblastenzellinie), wurden von Prof. J. Pouysségur (Nice, Frank-

reich) erhalten. Die Transfektionen wurden nach dem Verfahren von Franchi et al. (1986) durchgeführt. Die Zellen wurden in Dulbeccos modifiziertem Eagle-Medium (DMEM) mit 10% inaktiviertem fötalem Kälberserum (FKS) kultiviert. Zur Selektion der NHE-exprimierenden Zellen wurde das sogenannte "Säureabtötungsverfahren" von Sardet et al. (1989) verwendet. Die Zellen wurden zuerst 30 Minuten in einem NH₄Cl-haltigen bicarbonat- und natriumfreien Puffer durch Waschen mit einem bicarbonat-, NH₄Cl- und natriumfreien Puffer entfernt und es wurde mit einem bicarbonatfreien NaCl-haltigen Puffer inkubiert. Nur diejenigen zellen, die NHE funktionell exprimieren, konnten in der intrazellulären Ansäuerung, der sie ausgesetzt wurden, überleben.

Charakterisierung von NHE-Hemmstoffen in bezug auf ihre Isoformselektivität

15

20

25

30

35

10

5

Mit den obengenannten Maus-Fibroblastenzellinien, die die Isoformen NHE-1, NHE-2 und NHE-3 exprimieren, wurden Verbindungen nach der von Counillon et al. (1993) und Scholz et al. (1995) beschriebenen Vorgehensweise auf Selektivität gegnüber den Isoformen geprüft. Die Zellen wurden intrazellulär nach dem NH₄Cl-Prepulse-Verfahren und anschließend durch Inkubation in einem bicarbonatfreien ²²Na⁺-haltigen Puffer angesäuert. Aufgrund der intrazellulären Ansäuerung wurde NHE aktiviert und Natrium wurde in die zellen aufgenommen. Die Auswirkung der Prüfverbindung wurde als Hemmung der EIPA (Ethyl-isopropylamilorid)empfindlichen ²²Na⁺-Aufnahme ausgedrückt. Die Zellen, die NHE-1, NHE-2 und NHE-3 exprimierten, wurden in einer Dichte von 5-7.5 x 10⁴ Zellen/Näpfchen in Mikrotiterplatten mit 24 Näpfchen überimpft und 24 bis 48 Stunden bis zur Konfluenz gezüchtet. Das Medium wurde abgesaugt und die Zellen wurden 60 Minuten bei 37° C im NH₄Cl-Puffer (50 mM NH₄Cl, 70 mM Cholinchlorid, 15 mM MOPS, pH 7.0) inkubiert. Anschließend wurde der Puffer entfernt und die Zellen wurden rasch zweimal mit dem Cholinchlorid-Waschpuffer (120 mM Cholinchlorid, 15 mM PIPES/Tris, 0,1 mM Ouabain, 1 mM MgCl₂, 2 mM CaCl₂, pH 7,4) überschichtet; in diesem Puffer wurden die Zellen 6 Minuten inkubiert.

Nach Ablaufen der Inkubationszeit wurde der Inkubationspuffer abgesaugt. Zwecks Entfernung extrazellulärer Radioaktivität wurden die Zellen viermal

- 29 -

PCT/EP00/08616

rasch mit eiskalter phosphatgepufferter Kochsalzlösung (PBS) gewaschen. Danach wurden die Zellen durch Zusatz von 0,3 ml 0,1 N NaOH pro Näpfchen solubilisiert. Die zellfragmenthaltigen Lösungen wurden in Szintillationsröhrchen überführt. Jedes Näpfchen wurde noch zweimal mit 0,3 ml 0,1 N NaOH gewaschen und die Waschlösungen wurden ebenfalls in die entsprechenden Szintillationsröhrchen gegeben. Die das Zellysat enthaltenden Röhrchen wurden mit Szintillationscocktail versetzt und die in die Zellen aufgenommene Radioaktivität wurde durch Bestimmung der β -Strahlung bestimmt.

10

15

5

Hemmung der ²²Na⁺-Aufnahme in Kaninchen-Erythrozyten

Die Na⁺/H⁺-Austauschaktivität wurde auch durch Beobachtung der Aufnahme von ²²Na⁺-Ionen in sauergestellte Kaninchen-Erythrozyten bestimmt. Kaninchen-Erythrozyten haben bei Untersuchungen zur Na⁺/H⁺-Austauschaktivität breite Anwendung gefunden (Escobales & Fugueroa, 1991; Morgan & Canessa, 1990). Der EIPA-empfindliche Anteil der ²²Na⁺-Aufnahme in sauergestellte Erythrozyten wurde als Na⁺/H⁺-abhängige ²²Na⁺-Aufnahme angesehen.

20

25

30

35

Zellpräparation

Die Präparation der roten Blutkörperchen sowie die interne Ansäuerung der roten Blutkörperchen wurden in starker Anlehnung an die Verfahren von Morgan und Canessa (1990) durchgeführt.

Das Blut wurde von Kaninchen erhalten (z.B. New Zealand White). Es wurde in 50-ml-Falcon-Zentrifugenröhrchen aufgefangen, die 5 ml Natriumheparinlösung (250 U/ml) enthielten. Das Blut und die Heparinlösung wurden gut vermischt. Die roten Blutkörperchen wurden durch Zentrifugation bei 2000 x g bei 4° C gewonnen; Plasma und Leukozytenmanschette wurden entfernt. Die verbleibende Lösung wurde durch 200-μm-Gaze filtriert. Das Filtrat wurde mit Waschpuffer wieder auf das ursprüngliche Volumen suspendiert (140 mM KCl, 0,15 mM MgCl₂, 10 mM TRIS/MOPS, pH 7,4). Die roten Blutkörperchen wurden wiederum durch Zentrifugation gewonnen (2000 x g, 4° C). Der Waschvorgang wurde zweimal wiederholt.

Intrazelluläre Ansäuerung

Zur intrazellulären Ansäuerung wurden 5 ml der abgesetzten gesammelten roten Blutkörperchen wiederum mit 45 ml Ansäuerungspuffer suspendiert (170 mM KCl, 0,15 mM MgCl₂, 0,1 mM Ouabain, 10 mM Glucose, 10 mM Saccharose, 20 mM Tris/Mes, pH 6,2). Die Suspension der roten Blutkörperchen wurde 10 Minuten bei 37° C inkubiert (unter gelegentlichem Mischen). Um den internen pH zu fixieren, versetzt man mit bis zu 200 μ M und 1mM DIDS bzw. DIAMOX (acetazolamid). Man inkubierte noch 30 Minuten bei 37° C.

Die roten Blutkörperchen wurden anschließend durch Zentrifugation gewonnen (4 Minuten bei 2000 x g, 4° C); sie wurden wiederum mit eiskalter ungepufferter Waschlösung (170 mM KCl, 40 mM Saccharose, 0,15 mM MgCl₂) suspendiert und damit viermal gewaschen.

15

20

25

30

35

10

5

Inkubation sowie Messung der ²²Na⁺-Aufnahme

Die Inkubation wurde in Macrowell-Tube-Streifen in einem Format von 8 x 12 durchgeführt. Mit der Inkubation wurde dadurch begonnen, daß man 200 μl Inkubationspuffer (160 mM KCl, ²²NaCl (37 MBq/Näpfchen), 10 mM NaCl, 0,15 mM MgCl₂, 0,1 mM Ouabain, 10 mM Glucose, 40 mM Saccharose, 10 mM Tris/MOPS, ph 8,0, 0,5 mM Diamox, 1% DMSO) mit 20 μl der (vorgewärmten) angesäuerten Lösung der roten Blutkörperchen versetzte. Die Prüfsubstanzen wurden zuerst mit 100% DMSO gelöst und die Lösung wurde anschließend mit Inkubationspuffer auf die entsprechenden Konzentrationen verdünnt. Man inkubierte 5 Minuten bei 37° C. (In Vorversuchen wurde gezeigt, daß unter diesen Inkubationsbedingungen die ²²Na-Aufnahmerate während der 5-minütigen Inkubationsdauer linear war). Die Inkubation wurd edurch Zugabe von 800 ul eiskalter Stopplösung (112 mM MgCl₂, 0,1 mM Ouabain) gestoppt. Die Röhrchen wurden kurzfristig auf Eis aufbewahrt. Anschließend wurden die Röhrchen mit Parafilm abgedeckt und die roten Blutkörperchen wurden durch 7-minütige Zentrifugation bei 2000 x g und 4° C gewonnen. Der Überstand wurde mit einem selbstgemachten Absaugegerät abgesaugt, mit dem man 4 nebeneinanderliegende Röhrchen gleichzeitig absaugen konnte; Abstandhalterringe an den weiteren Enden der Spitzen verhinderten, daß die Spitzen zu tief in die Röhrchen eintauchten und man das Pellet der roten Blutkörperchen absaugte. Alle ²²Na-haltigen Überstände sowie Waschlösungen wurden aufbewahrt und als radioaktiver Abfall entsorgt.

Die roten Blutkörperchen wurden dreimal mit 900 µl eiskalter Stopplösung gewaschen, und zwar dadurch, daß man den oben beschriebenen Suspendierungs-/Zentrifugationsschritt wiederholte. Nach dem letzten Waschen wurde das Pellet der roten Blutkörperchen mit 200 µl Wasser versetzt. Anschließend wurden die Röhrchen 2 x 30 Minuten mit Ultraschall behandelt. Anschließend wurden die Macrowell-Tube-Streifen auseinandergenommen und jedes Röhrchen wurde kopfüber in ein eigenes Szintillationsröhrchen gegeben; durch leichtes Schütteln entleerte sich die hämolysierte Lösung der roten Blutkörperchen in das Szintillationsgläschen. Jedes Gläschen wurde mit 3 ml der Szintillationsflüssigkeit Aquasafe 300 PS versetzt, und die Gläschen wurden mit Verschlüssen versehen und gut gemischt.

Die in die roten Blutkörperchen aufgenommene Radioaktivität wurde in einem Szintillationszähler durch Verfolgen des β -Zerfalls bestimmt. Pro Substanzkonzentration wurde die bestimmung in dreifacher Wiederholung durchgeführt. Von jedem Wert wurde das Mittel der Zählungsbestimmung in gegenwart von 10 μ M EIPA subtrahiert, um die nicht-Na $^+$ /H $^+$ -abhängige 22 Na $^+$ -Aufnahme in die Erythrozyten einzubeziehen. Das Mittel der verbleibenden Zählungen in Abwesenheit einer Substanz wurde als 100-%-Kontrolle verwendet; die Mittelwerte in Gegenwart der Prüfverbindungen wurden als Prozentsatz dieses Kontrollwerts ausgedrückt. Die prozentmäßigen Aufnahmedaten wurden semilogarithmisch aufgetragen; IC50-Werte wurden dadurch erzielt, daß man unter Verwendung der Gleichung $f(x) = 100/(1 + (IC50/x)^{**}n)$ die Werte an eine nichtlineare Kurve an-

30 Literatur:

passte.

5

10

15

20

25

35

Counillon et al. (1993) Mol. Pharmacol. 44: 1041-1045 Escobales und Figueroa (1991) J. Membrane Biol. 120, 41-49 Franchi et al. (1986) Proc. Natl. Acad. Sci. USA 83: 9388-9392 Morgan und Canessa (1990) J. Membrane Biol. 118, 193-214 Sardet et al. (1989) Cell 56: 271-280

Scholz et al. (1995) Cardiovasc. Res. 29: 260-268

<u>Testergebnisse</u>

1.

5

Code EMD 221960

10

IC50 (NHE-3) = 1-2 μ M

2.

15

Diacetat;

20

Code EMD 221963 IC50 (NHE-3) = 1 μ M

3. 25

Diacetat;

35

30

Code EMD 246326 IC50 (NHE-3) = $3 \mu M$ 4.

Diacetat;

10

5

Code EMD 246327 IC50 (NHE-3) = 3-4 μ M.

15

20

25

30

PCT/EP00/08616

- 34 -

Die nachfolgenden Beispiele betreffen pharmazeutische Zubereitungen:

Beispiel A: Injektionsgläser

Eine Lösung von 100 g eines NHE-3-Inhibitors der Formel I und 5 g Dinatriumhydrogenphosphat wird in 3 I zweifach destilliertem Wasser mit 2 n Salzsäure auf pH 6,5 eingestellt, steril filtriert, in Injektionsgläser abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jedes Injektionsglas enthält 5 mg Wirkstoff.

10

15

35

Beispiel B: Suppositorien

Man schmilzt ein Gemisch von 20 g eines NHE-3-Inhibitors der Formel I mit 100 g Sojalecithin und 1400 g Kakaobutter, gießt in Formen und läßt erkalten. Jedes Suppositorium enthält 20 mg Wirkstoff.

Beispiel C: Lösung

Man bereitet eine Lösung aus 1 g eines NHE-3-Inhibitors der Formel I,
9,38 g NaH₂PO₄ · 2 H₂O, 28,48 g Na₂HPO₄ · 12 H₂O und 0,1 g Benzalkoniumchlorid in 940 ml zweifach destilliertem Wasser. Man stellt auf pH 6,8
ein, füllt auf 1 l auf und sterilisiert durch Bestrahlung. Diese Lösung kann in
Form von Augentropfen verwendet werden.

25 Beispiel D: Salbe

Man mischt 500 mg eines NHE-3-Inhibitors der Formel I mit 99,5 g Vaseline unter aseptischen Bedingungen.

30 Beispiel E: Tabletten

Ein Gemisch von 1 kg eines NHE-3-Inhibitors der Formel I, 4 kg Lactose, 1,2 kg Kartoffelstärke, 0,2 kg Talk und 0,1 kg Magnesiumstearat wird in üblicher Weise zu Tabletten verpreßt, derart, daß jede Tablette 10 mg Wirkstoff enthält.

- 35 -

Beispiel F: Dragees

Analog Beispiel E werden Tabletten gepreßt, die anschließend in üblicher Weise mit einem Überzug aus Saccharose, Kartoffelstärke, Talk, Tragant und Farbstoff überzogen werden.

PCT/EP00/08616

Beispiel G: Kapseln

2 kg eines NHE-3-Inhibitors der Formel I werden in üblicher Weise in Hart-10 gelatinekapseln gefüllt, so daß jede Kapsel 20 mg des Wirkstoffs enthält.

Beispiel H: Ampullen

Eine Lösung von 1 kg NHE-3-Inhibitor der Formel I in 60 I zweifach destilliertem Wasser wird steril filtriert, in Ampullen abgefüllt, unter sterilen Be-15 dingungen lyophilisiert und steril verschlossen. Jede Ampulle enthält 10 mg Wirkstoff.

20

5

25

30

Patentansprüche

1. Verbindungen der Formel I

worin

15

R¹, R⁴ jeweils unabhängig voneinander -C(=NH)-NH₂, das auch einfach durch -COA, -CO-[C(R⁶)₂]_n-Ar, -COOA, -OH oder durch eine konventionelle Aminoschutzgruppe substituiert sein kann,

 $NH-C(=NH)-NH_2$, $-CO-N=C(NH_2)_2$,

 $R^2,\,R^3,\,R^5 \qquad \text{jeweils unabhängig voneinander H, A, OR}^6,\,N(R^6)_2,\\ NO_2,\,CN,\,Hal,\,NHCOA,\,NHCOAr,\,NHSO_2A,\,NHSO_2Ar,\\ COOR^6,\,CON(R^6)_2,\,CONHAr,\,COR^6,\,COAr,\,S(O)_nA\\ S(O)_nAr,\,-O-[C(R^6)_2]_m-COOR^6,\,-[C(R^6)_2]_p-COOR^6,\\ -O-[C(R^6)_2]_m-CON(R^6)_2,\,-[C(R^6)_2]_p-CON(R^6)_2,\\ -O-[C(R^6)_2]_m-CONHAr\\ oder\,-[C(R^6)_2]_p-CONHAr,\\ \end{cases}$

		R^6	H, A oder Benzyl,
5		Α	Alkyl mit 1-20 C-Atomen, worin eine oder zwei CH ₂ -Gruppen durch O- oder S-Atome oder durch -CR ⁶ =CR ⁶ -Gruppen und/oder 1-7 H-Atome durch F ersetzt sein können,
10		Ar	unsubstituiertes oder ein-, zwei- oder dreifach durch A, Ar', OR ⁶ , OAr', N(R ⁶) ₂ , NO ₂ , CN, Hal, NHCOA, NHCOAr', NHSO ₂ A, NHSO ₂ Ar', COOR ⁶ , CON(R ⁶) ₂ , CONHAr', COR ⁶ , COAr', S(O) _n A oder S(O) _n Ar' substituiertes Phenyl oder Naphthyl,
15		Ar'	unsubstituiertes oder ein-, zwei- oder dreifach durch A, OR^6 , $N(R^6)_2$, NO_2 , CN, Hal, NHCOA, COOR 6 , CON(R^6) $_2$, COR 6 oder S(O) $_n$ A substituiertes Phenyl oder Naphthyl,
20		Hal	F, CI, Br oder I,
		n	0, 1 oder 2,
25		m	1 oder 2,
		р	1 oder 2 bedeutet,
30		sowie d	eren Salze und Solvate als NHE-3-Inhibitoren.
	2.	Verbino	dungen gemäß Anspruch 1
35		a)	3'-(3-Carbamimidoyl-phenoxymethyl)-biphenyl-3-carboxamidin;
		b)	3'-(3-Carbamimidoyl-benzyloxy)-biphenyl-3-carboxamidin;

WO 01/21582 PCT/EP00/08616

- c) 3'-Carbamimidoyl-5-(3-carbamimidoyl-phenoxymethyl)-biphenyl-3-carbonsäure;
- d) N-[3'-(3-Guanidinocarbonyl-phenoxymethyl)-biphenyl-3-carbonyll-guanidin;
- e) [3'-Amidino-5-(4-amidinophenoxymethyl)-biphenyl-3-yloxy]- essigsäuremethylester;
- f) [3'-Amidino-5-(4-amidinophenoxymethyl)-biphenyl-3-yloxy]- essigsäure
- sowie deren Salze und Solvate als NHE-3-Inhibitoren.

5

25

30

- Verwendung von Verbindungen der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen Salze und/oder Solvate zur Herstellung eines Arzneimittels zur Behandlung von Thrombosen, ischämischen Zuständen des Herzens, des peripheren und zentralen Nervensystems und des Schlaganfalls, ischämischen Zuständen peripherer Organe und Gliedmaßen und zur Behandlung von Schockzuständen.
- Verwendung von Verbindungen der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen Salze und/oder Solvate zur Herstellung eines Arzneimittels zum Einsatz bei chirurgischen Operationen und Organtransplantationen und zur Konservierung und Lagerung von Transplantaten für chirurgische Maßnahmen.
 - 5. Verwendung von Verbindungen der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen Salze und/oder Solvate zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, bei denen die Zellproliferation eine primäre oder sekundäre Ursache darstellt, zur Behandlung oder Prophylaxe von Störungen des Fettstoffwechsels oder gestörtem Atemantrieb.
 - Verwendung von Verbindungen der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen Salze und/oder Solvate zur Herstellung eines Arzneimittels zur Behandlung von ischämischer Niere,

ischämischen Darmerkrankungen oder zur Prophylaxe von akutem oder chronischen Nierenerkrankungen.

7. Pharmazeutische Zubereitung, gekennzeichnet durch einen Gehalt mindestens eines NHE-3-Inhibitors nach Anspruch 1 und/oder einem shrer physiologisch unbedenklichen Salze und/oder Solvate.

10

15

20

25

30

INTERNATIONAL SEARCH REPORT

itional Application No PCT/EP 00/08616

a. classification of subject matter IPC 7 C07C257/18 C07C279/22

A61P9/10

A61P25/02

A61K31/155

A61P13/12

A61P7/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

CHEM ABS Data, EPO-Internal

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	VON DER SAAL, WOLFGANG ET AL: "Syntheses and selective inhibitory activities of terphenyl-bisamidines for serine proteases" ARCH. PHARM. (WEINHEIM, GER.), vol. 329, no. 2, 1996, pages 73-82, XP000981547 page 74 -page 76	1
Α	EP 0 937 464 A (HOECHST MARION ROUSSEL DE GMBH) 25 August 1999 (1999-08-25) page 90, line 25 page 126 -page 247; claims 1-16	1,3-7
A	DE 196 22 222 A (HOECHST AG) 4 December 1997 (1997-12-04) page 4 -page 5; claims 1-15	1,3-7

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.		
 Special categories of cited documents : A document defining the general state of the art which is not 	*T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the		
considered to be of particular relevance *E* earlier document but published on or after the international	invention		
filing date	 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the 		
 L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 			
O* document referring to an oral disclosure, use, exhibition or other means	document is combined with one or more other such docu- ments, such combination being obvious to a person skilled		
P document published prior to the international filing date but later than the priority date claimed	in the art. *&* document member of the same patent family		
Date of the actual completion of the international search	Date of mailing of the international search report		
6 February 2001	14/02/2001		
Name and mailing address of the ISA	Authorized officer		
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bader, K		

INTERNATIONAL SEARCH REPORT

In ational Application No
PCT/EP 00/08616

A WO 97 24113 A (HOECHST AG ; WIRTH KLAUS (DE); SCHOLZ WOLFGANG (DE); JANSEN HANS WI) 10 July 1997 (1997-07-10) page 182 -page 187 page 189 -page 190 page 191 -page 379; claims 1-10	3-7
(DE); SCHOLZ WOLFGANG (DE); JANSEN HANS WI) 10 July 1997 (1997-07-10) page 182 -page 187 page 189 -page 190 page 191 -page 379; claims 1-10 P,X WO 99 57096 A (BERNOTAT DANIELOWSKI SABINE :MERCK PATENT GMBH (DE); DORSCH DIETER)	3–7
:MERCK PATENT GMBH (DE); DORSCH DIETER)	
cited in the application page 28 -page 29; claim 2 page 30 -page 31; claims 4-9	3,7

INTERNATIONAL SEARCH REPORT

In ational Application No
PCT/EP 00/08616

		101/21	00,00010
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0937464 A	25-08-1999	DE 19737224 A AU 8190898 A BR 9803233 A CA 2245776 A CN 1209316 A CZ 9802709 A HR 980464 A HU 9801924 A JP 11139990 A NO 983926 A PL 328251 A SK 116798 A ZA 9807723 A	18-03-1999 11-03-1999 02-05-2000 27-02-1999 03-03-1999 17-03-1999 28-02-2000 25-05-1999 01-03-1999 01-03-1999 01-03-1999
DE 19622222 A	04-12-1997	AU 722166 B AU 2957697 A BR 9709516 A CA 2257299 A CN 1221339 A WO 9746226 A EP 0918515 A JP 2000506906 T NO 985480 A PL 330412 A SK 165898 A	20-07-2000 05-01-1998 10-08-1999 11-12-1997 30-06-1999 11-12-1997 02-06-1999 06-06-2000 28-01-1999 10-05-1999 07-05-1999
WO 9724113 A	10-07-1997	DE 19548812 A AU 717247 B AU 1372097 A CA 2241531 A CN 1207676 A CZ 9802021 A EP 0869779 A HU 9900807 A NO 982989 A PL 327693 A SK 88398 A	03-07-1997 23-03-2000 28-07-1997 10-07-1997 10-02-1999 11-11-1998 14-10-1998 28-07-1999 06-08-1998 21-12-1998 10-03-1999
WO 9957096 A	11-11-1999	DE 19819548 A AU 3815499 A NO 20005435 A	04-11-1999 23-11-1999 27-10-2000

INTERNATIONALER RECHERCHENBERICHT

ationales Aktenzeichen

PCT/EP 00/08616 a. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C07C257/18 C07C279/22 A61P13/12 A61P7/02 A61K31/155 A61P9/10 A61P25/02 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C07C A61K A61P Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) CHEM ABS Data, EPO-Internal C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Kategorie® VON DER SAAL, WOLFGANG ET AL: "Syntheses Χ 1 and selective inhibitory activities of terphenyl-bisamidines for serine proteases" ARCH. PHARM. (WEINHEIM, GER.), Bd. 329, Nr. 2, 1996, Seiten 73-82, XP000981547 Seite 74 -Seite 76 EP 0 937 464 A (HOECHST MARION ROUSSEL DE 1,3-7Α GMBH) 25. August 1999 (1999-08-25) Seite 90, Zeile 25 Seite 126 -Seite 247; Ansprüche 1-16 1,3-7DE 196 22 222 A (HOECHST AG) Α 4. Dezember 1997 (1997-12-04) Seite 4 -Seite 5; Ansprüche 1-15 Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie entnehmen *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der ° Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 6. Februar 2001 14/02/2001 Bevollmächtigter Bediensteter Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Bader, K

INTERNATIONALER RECHERCHENBERICHT

In: itionales Aktenzeichen PCT/EP 00/08616

C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
А	WO 97 24113 A (HOECHST AG ;WIRTH KLAUS (DE); SCHOLZ WOLFGANG (DE); JANSEN HANS WI) 10. Juli 1997 (1997-07-10) Seite 182 -Seite 187 Seite 189 -Seite 190 Seite 191 -Seite 379; Ansprüche 1-10	1,3-7
P,X	Seite 191 -Seite 379; Ansprüche 1-10 WO 99 57096 A (BERNOTAT DANIELOWSKI SABINE; MERCK PATENT GMBH (DE); DORSCH DIETER) 11. November 1999 (1999-11-11) in der Anmeldung erwähnt Seite 28 -Seite 29; Anspruch 2 Seite 30 -Seite 31; Ansprüche 4-9	1-3,7

INTERNATIONALER RECHERCHENBERICHT

Int lionales Aktenzeichen
PCT/EP 00/08616

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0937464 A	25-08-1999	DE 19737224 A AU 8190898 A BR 9803233 A CA 2245776 A CN 1209316 A CZ 9802709 A HR 980464 A HU 9801924 A JP 11139990 A NO 983926 A PL 328251 A SK 116798 A ZA 9807723 A	18-03-1999 11-03-1999 02-05-2000 27-02-1999 03-03-1999 17-03-1999 30-06-1999 28-02-2000 25-05-1999 01-03-1999 10-03-1999 01-03-1999
DE 19622222 A	04-12-1997	AU 722166 B AU 2957697 A BR 9709516 A CA 2257299 A CN 1221339 A WO 9746226 A EP 0918515 A JP 2000506906 T NO 985480 A PL 330412 A SK 165898 A	20-07-2000 05-01-1998 10-08-1999 11-12-1997 30-06-1999 11-12-1997 02-06-1999 06-06-2000 28-01-1999 10-05-1999 07-05-1999
WO 9724113 A	10-07-1997	DE 19548812 A AU 717247 B AU 1372097 A CA 2241531 A CN 1207676 A CZ 9802021 A EP 0869779 A HU 9900807 A NO 982989 A PL 327693 A SK 88398 A	03-07-1997 23-03-2000 28-07-1997 10-07-1997 10-02-1999 11-11-1998 14-10-1998 28-07-1999 06-08-1998 21-12-1998 10-03-1999
WO 9957096 A	11-11-1999	DE 19819548 A AU 3815499 A NO 20005435 A	04-11-1999 23-11-1999 27-10-2000