2022-2023 MP2I

DM 16, corrigé

PROBLÈME MATRICES SEMBLABLES À LEUR INVERSE

Partie I.

Soient $n \in \mathbb{N}^*$ et A, B deux matrices dans $\mathcal{M}_n(\mathbb{R})$. On rappelle que A est semblable à B si et seulement si :

$$\exists P \in \mathrm{GL}_n(\mathbb{R}) \ / \ A = P^{-1}BP.$$

- 1) Il faut vérifier la réflexivité (on a A semblable à A en prenant $P = I_n$), la symétrie (si $A = P^{-1}BP$, alors $B = PAP^{-1} = (P^{-1})^{-1}AP^{-1}$, ce qui prouve que B est semblable à A puisque P^{-1} est inversible) et la transitivté (si $A = P^{-1}BP$ et $B = Q^{-1}CQ$, alors $A = P^{-1}Q^{-1}CQP = (QP)^{-1}CQP$ (QP est bien inversible car c'est un produit de matrices inversibles). Ceci entraine que A et C sont semblables).
- 2) Soit A semblable à I_n . Alors, il existe P inversible telle que $A = P^{-1}I_nP = I_n$. On en déduit que $A = I_n$. D'après la question précédente, I_n est semblable à elle-même. On en déduit que I_n est la seule matrice semblable à I_n .
- 3) Supposons que A soit semblable à B. Il existe donc P inversible telle que $A = P^{-1}BP$. On en déduit alors que :

$$P^{-1}(I_n + B)P = P^{-1}(P + BP) = I_n + P^{-1}BP = I_n + A.$$

Ceci entraine que $I_n + A$ est semblable à $I_n + B$.

4) Supposons A est semblable à B et B inversible. On a alors que $A = P^{-1}BP$ avec P inversible. A s'écrit donc comme un produit de matrices inversibles et est donc inversible. On a de plus :

$$\begin{array}{rcl} A^{-1} & = & (P^{-1}BP)^{-1} \\ & = & P^{-1}B^{-1}(P^{-1})^{-1} \\ & = & P^{-1}B^{-1}P. \end{array}$$

On en déduit que A^{-1} est semblable à B^{-1} .

5) Supposons A est semblable à B. On a alors $A = P^{-1}BP$ avec P inversible. On a alors:

$$\begin{array}{rcl} \operatorname{tr}(A) & = & \operatorname{tr}((P^{-1}B)P) \\ & = & \operatorname{tr}(P(P^{-1}B)) \\ & = & \operatorname{tr}(B). \end{array}$$

La réciproque est fausse. Par exemple, $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ ont la même trace mais ne sont pas semblables (d'après la question 2).

Partie II.

- 6) Soient i et j deux entiers naturels.
 - a) Remarquons tout d'abord que $\ker(u^{i+j})$ est bien un espace vectoriel et est donc stable par combinaisons linéaires. Si on fixe $\lambda, \mu \in \mathbb{R}$ et $x, y \in \ker(u^{i+j})$, alors :

$$\begin{array}{rcl} w(\lambda x + \mu y) & = & u^j(\lambda x + \mu y) & (\operatorname{car} \lambda x + \mu y \in \ker(u^{i+j})) \\ & = & \lambda u^j(x) + \mu u^j(y) \\ & = & \lambda w(x) + \mu w(y). \end{array}$$

w est donc une application linéaire.

Soit $y \in \text{Im}(w)$. Il existe alors $x \in \text{ker}(u^{i+j})$ tel que y = w(x). On a alors $y = u^j(x)$. Ceci entraine que $u^i(y) = u^{i+j}(x) = 0$. On a donc bien $y \in \text{ker}(u^i)$, ce qui prouve l'inclusion demandée.

b) On va utiliser le théorème du rang appliqué à w pour montrer ceci (tous les espaces sont de dimensions finies car inclus dans E de dimension 3 donc on peut l'utiliser). On en déduit que :

$$\dim(\ker(u^{i+j})) = \dim(\ker(w)) + \operatorname{rg}(w).$$

Or, on a $\operatorname{Im}(w) \subset \ker(u^i)$ donc $\operatorname{rg}(w) \leq \dim(\ker(u^i))$. De plus, on a $\ker(w) \subset \ker(u^j)$. En effet, si $x \in \ker(w)$, on a w(x) = 0 et puisque $w(x) = u^j(x)$, on a bien $x \in \ker(u^j)$. On en déduit que $\dim(\ker(w)) \leq \dim(\ker(u^j))$. En combinant les deux inégalités, on obtient $\dim(\ker(u^{i+j})) \leq \dim(\ker(u^i)) + \dim(\ker(u^j))$.

- 7) On suppose dans cette question que $u^3 = 0_{\mathcal{L}(E)}$ et que $\operatorname{rg}(u) = 2$.
 - a) On peut appliquer le résultat de la question précédente en i=j=1. On obtient alors $\dim(\ker u^2) \leq 2\dim(\ker(u))$. Or, puisque $\operatorname{rg}(u)=2$ et $\dim(E)=3$, alors d'après le théorème du rang, on a $\dim(\ker(u))=1$. Ceci entraine que $\dim(\ker(u^2))\leq 2$.

En utilisant à présent ce résultat en i = 1 et j = 2, on a $\dim(\ker(u^3)) \leq \dim(\ker(u^2)) + \dim(\ker(u))$. On a $\ker(u^3) = E$ (car $u^3 = 0_{\mathcal{L}(E)}$), ce qui entraine $\dim(\ker(u^3)) = \dim(E) = 3$. On a toujours $\dim(\ker(u)) = 1$, ce qui prouve que $2 \leq \dim(\ker(u^2))$. On a donc montré l'égalité demandée.

b) Puisque dim(ker(u^2)) = 2, on a donc ker(u^2) $\neq E$. Ceci entraine qu'il existe $e \in E$ tel que $e \notin \ker(u^2)$, c'est à dire tel que $u^2(e) \neq 0_E$. Pour montrer que la famille $(e, u(e), u^2(e))$ est une base de E, il suffit de montrer qu'elle est libre (car elle est formée par 3 vecteurs dans un espace vectoriel de dimension 3). Considérons alors $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tels que $\lambda_1 e + \lambda_2 u(e) + \lambda_3 u^2(e) = 0$. En appliquant alors la fonction u^2 , on en déduit, en utilisant la linéarité de u^2 et le fait que $u^3 = 0_{\mathcal{L}(E)}$, on obtient :

$$u^{2}(\lambda_{1}e + \lambda_{2}u(e) + \lambda_{3}u^{2}(e)) = u^{2}(0)$$

$$\Leftrightarrow \lambda_{1}u^{2}(e) + \lambda_{2}u^{3}(e) + \lambda_{3}u^{4}(e) = 0$$

$$\Leftrightarrow \lambda_{1}u^{2}(e) = 0.$$

Puisque $u^2(e) \neq 0$, on en déduit que $\lambda_1 = 0$. En reprenant l'expression de départ, on a alors $\lambda_2 e + \lambda_3 u^2(e) = 0$. En reprenant la même méthode et en appliquant u, on obtient $\lambda_2 = 0$, puis en reprenant l'expression de départ (et toujours le fait que $u^2(e) \neq 0$), on obtient $\lambda_3 = 0$. Ceci entraine que la famille est libre avec 3 vecteurs dans E de dimension 3. C'est donc une base de E.

c) On a $u(e)=u(e), u(u(e))=u^2(e)$ et $u(u^2(e))=0$. On en déduit que :

$$\operatorname{Mat}_{e,u(e),u^2(e)}(u) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Puisque A représente la matrice de u dans la base canonique et que $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ représente la matrice

de u dans une autre base, on a que A est semblable à cette matrice (et on a $A = P \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} P^{-1}$

où P est la matrice de passage de la base canonique à la base $(e, u(e), u^2(e))$).

- 8) On suppose dans cette question que $u^2 = 0_{\mathcal{L}(E)}$ et que $\operatorname{rg}(u) = 1$.
 - a) On a $u \neq 0_{\mathcal{L}(e)}$ donc il existe $e \in E$ tel que u(e) Ø. De plus, d'après le théorème du rang, on a dim $(\ker(u)) = 2$. On en déduit que u(e) ne suffit pas à engendrer $\ker(u)$, ce qui implique qu'il existe un vecteur $f \in \ker(u)$ libre avec u(e).

Comme à la question précédente, pour montrer que (e, u(e), f) est une base de E, il suffit de montrer qu'il s'agit d'une famille libre. Supposons $\lambda_1 e + \lambda_2 u(e) + \lambda_3 f = 0$. Alors puisque $u^2 = 0_{\mathcal{L}(E)}$ et que $f \in \ker(u)$, on en déduit en appliquant u que $\lambda_1 u(e) = 0$. Puisque $u(e) \neq 0$, on en déduit que $\lambda_1 = 0$. On a alors $\lambda_2 u(e) + \lambda_3 f = 0$, ce qui, puisque la famille (u(e), f) est libre, on en déduit que $\lambda_2 = \lambda_3 = 0$. La famille (e, u(e), f) est donc libre dans E de dimension 3, c'est donc une base de E.

b) On a u(e) = u(e), u(u(e)) = 0 et u(f) = 0. On en déduit que :

$$\operatorname{Mat}_{(e,u(e),f)}(u) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Puisque A et cette matrice représente la même application linéaire dans des bases différentes, ces deux matrices sont semblables.

Partie III.

9) On calcule
$$N = \begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & \gamma \\ 0 & 0 & 0 \end{pmatrix}$$
. On a alors $N^2 = \begin{pmatrix} 0 & 0 & \alpha \gamma \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ et $N^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. On en déduit alors que :

$$M = N^2 - N = \begin{pmatrix} 0 & -\alpha & \alpha \gamma - \beta \\ 0 & 0 & -\gamma \\ 0 & 0 & 0 \end{pmatrix}.$$

On a alors
$$M^2 = \begin{pmatrix} 0 & 0 & \alpha \gamma \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 et $M^3 = 0_{\mathcal{M}_3(\mathbb{R})}$.

10) Dans la matrice M on effectue $C_3 \leftarrow C_3 + \gamma C_2$. On a alors :

$$\operatorname{rg}(M) = \operatorname{rg}\begin{pmatrix} 0 & -\alpha & -\beta \\ 0 & 0 & -\gamma \\ 0 & 0 & 0 \end{pmatrix} = \operatorname{rg}(-N) = \operatorname{rg}(N).$$

Le dernier point est également justifiable en effectuant les opérations $L_1 \leftarrow -L_1$ et $L_2 \leftarrow -L_2$.

11) Si $\alpha \neq 0$ et $\gamma \neq 0$, alors $\operatorname{rg}(N) = 2$ (les deux dernières colonnes sont libres). Si $\alpha = 0$, alors N ne contient qu'une colonne non nulle donc $\operatorname{rg}(N) \leq 1$ et si $\gamma = 0$, alors N ne contient qu'une ligne non nulle donc $\operatorname{rg}(N) \leq 1$. On a donc bien $\operatorname{rg}(N) = 2 \Leftrightarrow \alpha \neq 0$ et $\gamma \neq 0$.

Pour les autres cas, on voit que N=0 si et seulement si $\alpha=\beta=\gamma=0$ et donc le rang est nul si et seulement si tous les coefficients sont nuls. Dans tous les autres cas, le rang de N vaut 1. On a donc $\operatorname{rg}(N)=1$ si et seulement si $(\alpha=0$ et $(\beta\neq0$ ou $\gamma\neq0))$ ou $(\gamma=0$ et $(\beta\neq0$ ou $\alpha\neq0))$.

- 12) N et M sont semblables.
 - a) On suppose que rg(N) = 2.
 - i) Notons u l'endomorphisme canoniquement associé à N et v l'endomorphisme canoniquement associé à M. D'après la question précédente, on a alors $u^3 = 0_{\mathcal{L}(E)}$ où $E = \mathbb{R}^3$ et $\operatorname{rg}(u) = 2$. D'après la question II.8, il existe une base \mathcal{B} de E telle que $\operatorname{Mat}_{\mathcal{B}}(u) = 0$

$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
. D'après la question 6, on a donc que N est semblable à la matrice
$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

(puisque c'est la matrice de la même application linéaire dans deux bases différentes).

- ii) Puisque v vérifie les mêmes hypothèses, on en déduit que M est aussi semblable à cette matrice. Puisque le fait d'être semblable est une relation d'équivalence (partie I), on en déduit que N et M sont semblables.
- b) On a montré à la question III.1 que N et M ne peuvent être que de rang 0, 1 ou 2. Si $\operatorname{rg}(N)=0$, alors N est la matrice nulle et $\operatorname{rg}(M)=0$ (car N et M sont de même rang) donc M est aussi la matrice nulle. Les deux matrices sont donc égales, donc semblables. Si $\operatorname{rg}(N)=\operatorname{rg}(M)=1$, alors en raisonnant de la même manière que ci-dessus, on prouve d'après la

question II.9 que N est semblable à $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ et que M est aussi semblable à cette matrice.

On a donc encore N semblable à M.

13) On a (en utilisant le fait que $N^3 = 0_{\mathcal{M}_3(\mathbb{R})}$):

$$T(I_3 + M) = (I_3 + N)(I_3 + N^2 - N)$$

= $I_3 + N^2 - N + N + N^3 - N^2$
= I_3 .

Ceci prouve que T est inversible à droite. Elle est donc inversible et son inverse est $T^{-1} = I_3 + M$. On a alors $T = I_3 + N$ et $T^{-1} = I_3 + M$. D'après la question I.3, puisque N est semblable à M, alors T est semblable à T^{-1} .

- 14) La matrice T est inversible et A est semblable à T donc A est inversible d'après la question I.4. On a de plus, toujours d'après cette question, A^{-1} semblable à $T^{-1} = I_3 + M$. On a donc A^{-1} semblable à T^{-1} qui est semblable à T et T et T semblable à T et T et T en T et T en T et T en T et T et T en T et T et T en T en T en T et T en T et T en T
- 15) La réciproque est fausse. Considérons par exemple la matrice $-I_n$. Alors elle est semblable à son inverse (car elle est son propre inverse). Elle n'est par contre pas semblable à une matrice de la forme T car $-I_n$ n'est semblable qu'à elle-même (même preuve que pour le I.2). On peut également trouver d'autres contre-exemples, par exemple en prenant une matrice de transposition (elles sont leur propre inverse et ne sont pas semblables à une matrice de la forme T car elles ont une trace égale à n-2 alors que les matrices de la forme de T ont une trace égale à n (en dimension n).