Knowledge Representation Chapter 2. Propositional Representation and Reasoning

Pedro Cabalar

Dept. Computer Science University of Corunna, SPAIN

February 8, 2018

Propositional Logic: Syntax and Semantics

Propositional Reasoning

3 Default Negation: Stable Models

Propositional Logic: Syntax

- Def. Propositional Signature Σ : set of propositions or atoms. E.g. $\Sigma = \{happy, rain, weekend\}.$
- Def. Propositional language \mathcal{L}_{Σ} , set of well formed formulae (wff). Any of the expressions:

with $p \in \Sigma$ and $\alpha, \beta \in \mathcal{L}_{\Sigma}$. Precedence: $\equiv, \rightarrow, \lor, \land, \neg$ (left associative). Alternative notations: implication $\rightarrow, \supset, \Rightarrow$; equivalence $\equiv, =, \leftrightarrow, \Leftrightarrow$

- Def. literal: is an atom p or its negation $\neg p$.
- Def. theory: is a set of formulae $\Gamma \subseteq \mathcal{L}_{\Sigma}$.

3 / 55

- Def. interpretation is a function $\mathcal{I}: \Sigma \longrightarrow \{1, 0\}$ We can also use $\mathcal{I} \subseteq \Sigma$ so that, for instance, $I = \{happy, weekend\}$ means $\mathcal{I}(happy) = 1$, $\mathcal{I}(rain) = 0$, $\mathcal{I}(weekend) = 0$, etc.
- We extend its use $\mathcal{I}: \mathcal{L}_{\Sigma} \longrightarrow \{1, 0\}$. $\mathcal{I}(\alpha) = \text{replace each } \rho \in \Sigma \text{ in } \alpha \text{ by } \mathcal{I}(\rho) \text{ and apply:}$

$$\mathcal{I}(\top) = 1$$
 $\mathcal{I}(\bot) = 0$
 $\begin{array}{cccc} & & & & & \\ \hline & 1 & 0 \\ & & & 0 & 1 \end{array}$

		Λ	V	\rightarrow	\leftrightarrow
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

- Def. \mathcal{I} satisfies α , written $\mathcal{I} \models \alpha$, iff $\mathcal{I}(\alpha) = 1$.
 - i) $\mathcal{I} \models T$ and $\mathcal{I} \not\models F$.
 - ii) $\mathcal{I} \models \rho \text{ iff } \mathcal{I}(\rho) = 1.$
 - iii) $\mathcal{I} \models \neg \alpha \text{ iff } \mathcal{I} \not\models \alpha.$
 - iv) $\mathcal{I} \models \alpha \land \beta$ iff $\mathcal{I} \models \alpha$ and $\mathcal{I} \models \beta$.
 - v) $\mathcal{I} \models \alpha \vee \beta$ iff $\mathcal{I} \models \alpha$ or $\mathcal{I} \models \beta$ (or both).
 - vi) $\mathcal{I} \models \alpha \equiv \beta$ iff $(\mathcal{I} \models \alpha \text{ iff } \mathcal{I} \models \beta)$.
- \mathcal{I} is a *model* of Γ , written $\mathcal{I} \models \Gamma$, iff it satisfies all its formulae.
- Def. inconsistency or unsatisfiable formula: a formula that has no models.
 - Def. α is a tautology or is valid iff any interpretation is a model of α . Examples: \top , $p \lor \neg p$, $b \land c \land d \to (d \to b)$
- α is a logical consequence of or is entailed by Γ , written $\Gamma \models \alpha$, iff any model of Γ satisfies α . Therefore, when $\Gamma = \emptyset$, what does $\models \alpha$ mean?

• Alternative viewpoint: think about the set of models of a given formula α , call it $M(\alpha)$.

$$M(\bot) = \emptyset$$

 $M(\top) = S$ (all the possible ones)
 $M(a \lor b) = \{\{a,b\},\{a\},\{b\}\}$

We will usually identify α with $M(\alpha)$ and vice versa.

- From a set S of interpretations: How can we get a formula α s.t. $M(\alpha) = S$? Does this formula α always exist?
- How many theories (modulo equivalence) can we build with n atoms?

Definition (Weaker/stronger formula)

```
If \models \alpha \rightarrow \beta, that is, if M(\alpha) \subseteq M(\beta), then \alpha is stronger than \beta (or \beta is weaker \alpha).
```

- Which are the strongest and weakest possible formulae?
- Examples: for each pair, which is the strongest?

7 / 55

From human to formal language ...

A o B	A implies B A is a sufficient condition for B B is a necessary condition for A if A then B B if A A only if B no A unless B B given that A B provided that A
$A \leftrightarrow B$	A is equivalent to B
	A if and only if (iff) B
$A \lor B$	A or B (inclusive or)
$\neg (A \leftrightarrow B)$	A or B (exclusive or)

Del lenguaje humano al formal ...

A o B	A implica B A es suficiente para B B es necesario para A si A entonces B B si A A sólo si B no A a no ser que B no A a menos que B B siempre que A
$A \leftrightarrow B$	' '
$A \leftrightarrow B$	A equivale a B
	A si y sólo si B
$A \lor B$	A ó B (inclusivo)
$\neg (A \leftrightarrow B)$	A ó B (exclusivo)

Using propositional logic: an example

- From Lady or the Tiger? And Other Logic Puzzles Including a Mathematical Novel That Features Godel's Great Discovery (Raymond M. Smullyan)
- Behind each door we may have either a lady or a tiger. One sign tells the truth but the other one no. Which door shall we open?
 - 1. A lady is in this room and a tiger is in the other
- 2. There is a lady in one room and a tiger in the other

Another variation

• There are one lady and two tigers. At most, one sign tells the truth. Which door shall we open?

1. There is a tiger in this room

2. There is a lady in this room

3. There is a tiger in room 2

11 / 55

Propositional Logic: Syntax and Semantics

Propositional Reasoning

3 Default Negation: Stable Models

Reasoning: $\{P_1, \ldots, P_n\} \models C$ does conclusion C follow from premises $\{P_1, \ldots, P_n\} = KB$ (the Knowledge Base)?

13 / 55

Example: *KB* =

 P_1 : On weekends, I don't watch $tv (w \rightarrow \neg tv)$

 P_2 : I'm happy when it rains, excepting in the weekend $(r \land \neg w \rightarrow h)$

 P_3 : I'm watching tv but I'm not happy $(tv \land \neg h)$

Can I conclude this?

C: it is not raining $(\neg r)$

Definition (Entailment)

A theory KB entails conclusion C, written $KB \models C$, when all models of KB are models of C. If so, C is called a semantic consequence of KB.

• In propositional logic, $\{P_1, P_2, P_3\} \models C$ is the same as checking that the formula $P_1 \land P_2 \land P_3 \rightarrow C$ is a tautology or, equivalently, that its negation $P_1 \land P_2 \land P_3 \land \neg C$ is inconsistent

Definition (SAT decision problem)

Decision problem $SAT(\alpha) \in \{yes, no\}$ checks whether a formula α has some model. (Time) complexity: **NP**-complete problem.

In other words:

$$\{P_1, P_2, P_3\} \models C \text{ iff } SAT(P1 \land P2 \land P3 \land \neg C) = no.$$

- First naive method: check all interpretations (2⁴ = 16) one by one (truth table) to obtain a 0 in all cases.
- $\mathcal{I}(P_1 \wedge P_2 \wedge P_3 \wedge \neg C) = 0$ when some conjunct is 0.

				P_1	P_2	P_3	$\neg C$
h	tv	W	r	(w o eg tv)	$(r \wedge \neg w \rightarrow h)$	$tv \wedge \neg h$	r
0	0	0	0	1	1	0	0
		÷		:	<u>:</u>	÷	÷
0	1	0	0	1	1	1	0
0	1	0	1	1	0	1	1
0	1	1	0	0	1	1	0
0	1	1	1	0	1	1	1
		:					

15 / 55

• The satisfaction relation $I \models F$ as sat (I, F) in Prolog:

```
:- op(210, yfx, \&).
:- op(220, yfx, v).
:- op(1060, yfx, <->).
sat(I, false) :-!, fail.
sat( I, true) :- !.
sat(I, P) := atom(P),!,member(P,I),!.
sat(I, -A) := \ \ sat(I, A).
sat(I, A \& B) := sat(I, A), sat(I, B).
sat(I, A \vee B) := sat(I, A), ! ; sat(I, B).
sat(I, A \rightarrow B) := sat(I, -A \lor B).
sat(I, A <-> B) :- sat(I, (A -> B) & (B -> A)).
```

• Testing whether a formula F for signature S is inconsistent:

```
inconsistent(S, F) :- \+ (subset(S,I), sat(I,F)).

subset([],[]) :- !.

subset([X | Xs],S) :- subset(Xs,S).

subset([X | Xs],[X | S]) :- subset(Xs,S).
```

• Generation of interpretations (subset) = exponential blow up

- Computational cost is exponential = 2^n with $n = |\Sigma|$ number of atoms. Can we perform better?
- Not much hope for the worst case: NP-complete!
- However, enumeration of interpretations always forces worst case.
 We can do better in particular cases.
- In our example: formulas $tv \land \neg h$ and r fix the truth of 3 atoms: $\mathcal{I}(h) = 0$, $\mathcal{I}(tv) = 1$ and $\mathcal{I}(r) = 1$.

$$(w
ightharpoonup \neg tv) \wedge (r \wedge \neg w
ightharpoonup h)$$

 $(w
ightharpoonup \neg \top) \wedge (\neg \wedge \neg w
ightharpoonup \bot)$
 $(w
ightharpoonup \bot) \wedge (\neg w
ightharpoonup \bot)$
 $\neg w \wedge w \text{ inconsistent!}$

- Note that $P_1:(w \to \neg tv)$ is equivalent to $\neg w \lor \neg tv$ that, together with tv from P_3 allows us to conclude $\neg w$.
- Trying to generalize: represent the KB as disjunctions of literals (clauses). This is called Conjunctive Normal Form (CNF) = conjunction of (disjunctive) clauses.
- Example:

$$(w \rightarrow \neg tv) \qquad \land \qquad P_2 \qquad \land \qquad P_3 \qquad \land \qquad P_4 \qquad \land \qquad P_5 \qquad \land \qquad P_5 \qquad \land \qquad P_7 \qquad \qquad P_7 \qquad \land \qquad P_7 \qquad \land \qquad P_7 \qquad \land \qquad P_7 \qquad \land \qquad P_7 \qquad \qquad$$

19 / 55

we get five clauses: C_3 , C_4 , C_5 are unit clauses.

- Any formula can be transformed into CNF:
 - replace $\alpha \to \beta$ by $\neg \alpha \lor \beta$ replace $\alpha \leftrightarrow \beta$ by $(\alpha \land \beta) \lor (\neg \alpha \land \neg \beta)$
 - 2 move negation until only applied to atoms using De Morgan laws (Negation Normal Form, NNF)
 - apply distributivity ∧, ∨
- Warning: transformation into CNF may have an exponential cost.. Example $(a \land b) \lor (c \land d) \lor (e \land f) \lor (h \land i)$
- Some techniques [Tseitin68] allow generating a CNF in polynomial time but introducing new auxiliary atoms.
- If KB is a set of facts and implications involving literals, it is already in CNF!

Example: we first describe how to get the NNF

```
:- op(210, yfx, &).
:- op(220, yfx, v).

nnf(-(A & B), NA v NB):- !, nnf(-A, NA), nnf(-B, NB).
nnf(-(A v B), NA & NB):- !, nnf(-A, NA), nnf(-B, NB).
nnf(-(A -> B), A1 & NB):- !, nnf(A, A1), nnf(-B, NB).
nnf(-A, A1):-!, nnf(A, A1).
nnf(A, A).
```

... and then the CNF

• The resolution rule [Davis & Putnam 1960] is defined as:

$$\frac{(\alpha \vee \mathbf{p}) \qquad (\neg \mathbf{p} \vee \beta)}{(\alpha \vee \beta)}$$

The resulting clause $\alpha \vee \beta$ is called the resolvent. An empty disjunction (or empty clause) corresponds to \bot .

• Main result [Robinson65]: α is unsatisfiable iff there exists a derivation of \bot from $CNF[\alpha]$ applying resolution.

In our example

- Another example: prove that $\alpha: (\neg p \to q) \land (q \to r) \to (\neg r \to p)$ is valid.
- We first negate the formula and get its CNF

25 / 55

Resolution

A possible application of resolution . . .

26 / 55

- Problem: generating all possible resolvents is unfeasible. Important: heuristics to explore only a part of the search tree.
- SAT solvers: nowadays, SAT is an outstanding state-of-the-art research area for search algorithms. There exist many efficient tools and commercial applications. See www.satlive.com
- SAT keypoint: instead of designing an ad hoc search algorithm, encode the problem into propositional logic and use SAT as a backend.

- DIMACS: standard input for SAT solvers
- Line starting with p counts number of atoms (4) and clauses (5)
- 0 denotes end of clause. Minus=negation.
- Example: atoms 1 = h, 2 = r, 3 = tv, 4 = w

```
c happy.cnf
c This is a comment line
p cnf 4 5
-4 -3 0
-2 4 1 0
3 0
-1 0
4 0
```

 Download clasp solver and execute clasp happy.cnf https://potassco.org/clasp/

An exercise

Example (8-queens problem)

- \bullet Arrange 8 queens in a 8 \times 8 chessboard so they do not attack one each other.
- Encode the problem as a propositional theory and use clasp to find a solution.

Lamp example revisited

Exercise: use clasp to check that the theory

$$\begin{array}{ll} toggle(x) \wedge up(x)_0 \rightarrow \neg up(x)_1 & toggle(x) \wedge light_0 \rightarrow \neg light_1 \\ toggle(x) \wedge \neg up(x) \rightarrow up(x)_1 & toggle(x) \wedge \neg light_0 \rightarrow light_1 \\ up(1)_0 \wedge up(2)_0 \wedge up(3)_0 \wedge light_0 \wedge toggle(1) \end{array}$$

for $x \in \{1,2,3\}$, allows concluding $\neg light_1 \land \neg up(1)_1$ but not concluding $up(2)_1 \land up(3)_1$. Frame problem!

Lamp example revisited

We require adding frame axioms:

$$toggle(x) \land up(y)_0 \rightarrow up(y)_1 \\ toggle(x) \land \neg up(y)_0 \rightarrow \neg up(y)_1$$

for any pair $x \in \{1, 2, 3\}$ and $y \in \{1, 2, 3\}$ with $x \neq y$.

Resolution: Horn clauses

- Horn clause: it contains at most one positive literal.
- It's the basis for Prolog and Logic Programming. We can see each Horn clause as a rule:

$$p \lor \neg q_1 \lor \neg q_2 \lor \neg q_3$$

$$\equiv p \leftarrow q_1 \land q_2 \land q_3$$

$$\equiv p := q_1, q_2, q_3. \text{ (a rule)}$$

$$p \text{ (a fact)}$$

$$\neg q_1 \lor \neg q_2 \lor \neg q_3$$

$$\equiv \bot \leftarrow q_1 \land q_2 \land q_3 \text{ (a constraint)}$$

$$\equiv ?-q_1, q_2, q_3. \text{ (or the goal in Prolog)}$$

Resolution: Horn clauses

• If $CNF(\alpha)$ exclusively contains Horn clauses, deciding its satisfiability (HORNSAT) is **P**-complete.

Positive Logic Programs

A positive logic program is a set of implications of the form

$$\underbrace{p}_{\text{head}} \leftarrow \underbrace{q_1, \dots, q_n}_{\text{body}}$$

or, written in text format

$$p := q1, ..., qn.$$

with $n \ge 0$, where p, q_1, \dots, q_n are atoms. Commas in the body represent conjunctions.

- Note: these are non-negative Horn clauses. Unlike Prolog, ordering among rules or in the body is irrelevant.
- When n = 0, the rule is called a fact, and we usually omit the \leftarrow .

Positive Logic Programs

- Positive programs can be easily computed by "rule application" (deductive closure).
- Given a program P, and a propositional interpretation \mathcal{I} we define the direct consequences [van Endem & Kowalski 76] operator $T_P(\mathcal{I})$ as:

$$T_P(\mathcal{I}) := \{H \mid (H \leftarrow B) \in P \text{ and } \mathcal{I} \models B\}$$

That is, pick those rule heads H with body B satisfied by \mathcal{I}

• Example: given P below, $T_P(\{b, p, s\}) = \{p, q, r, a\}$

Positive Logic Programs

- Exercise: prove that T_P is \subseteq -monotonic, i.e., if $\mathcal{I} \subseteq J$, then $T_P(\mathcal{I}) \subseteq T_P(J)$.
- By Knaster & Tarski's theorem, T_P has a \subseteq -least fix point $\mathcal{I} = T_P(\mathcal{I})$.
- Moreover, T_P is continuous and the l.f.p. can be computed by iteration of T_P on $\mathcal{I}_0 = \emptyset$ until reaching a point $\mathcal{I}_{i+1} = T_P(\mathcal{I}_i) = \mathcal{I}_i$.
- Back to the example

$$T_P(\emptyset) = \{p, q\}, T_P(\{p, q\}) = \{p, q, s\}, T_P(\{p, q, s\}) = \{p, q, s, r\}, T_P(\{p, q, s, r\}) = \{p, q, s, r\} \text{ fixpoint.}$$

- Main result by [van Endem & Kowalski 76]: P has a least propositional model LM(P) that coincides with T_P least fixpoint.
- In our example:

the models of *P* are $\{p, q, r, s\}$, $\{p, q, r, s, a, b\}$, $\{p, q, r, s, a, b, c\}$.

37 / 55

• Exercise: prove it.

Propositional Logic: Syntax and Semantics

Propositional Reasoning

3 Default Negation: Stable Models

Default Negation

• A normal logic program is a set of rules of the form:

$$\underbrace{p}_{\text{head}} \leftarrow \underbrace{q_1, \dots, q_m, not \ q_{m+1}, \dots, not \ q_n}_{\text{body}}. \tag{1}$$

39 / 55

with n > m > 0.

- Again, the ordering among rules or body literals is irrelevant.
- Note that when m = n (no negations) we have a positive rule.
- Default negation: not q_i = "there is no way to derive atom q_i ."
- Ex.: we serve meat, unless we know that the client is vegetarian.

 $meat \leftarrow not \ veg$

- Minimal truth doesn't work! we may have several minimal models.
 Some of them are undesired.
- The formula $\neg veg \rightarrow meat$ is equivalent to the formulas:

$$meat \lor veg$$
 $\neg meat \to veg$

and has 2 minimal models $\mathcal{I}_1 = \{meat\}$ and $\{veg\}$.

- However, the rule should be directional: we can derive meat from not veg but not vice versa. The only expected model is {meat}:
 - No rule can derive veg (it is not in any head)
 - So, veg is false by default, and the rule yields meat

Default Negation

 When the program has no cyclic dependences (stratified) through negation, it is easy to proceed.

Layer 1
$$\begin{cases} a \\ b \leftarrow a \end{cases}$$
 $\{a,b\}$
Layer 2 $\begin{cases} c \leftarrow not \ a \ not \ a \end{cases}$ $\{a,b\}$
Layer 3 $\begin{cases} d \leftarrow b, not \ c \ not \ c \end{cases}$ $\{a,b,d\}$

• But how can we deal with negative cycles?

$$meat \leftarrow \neg veg$$
 $veg \leftarrow \neg meat$

Adding negation: stable models

 Gelfond, M., and Lifschitz, V. 1988. The stable model semantics for logic programming. In ICLP'88, 1070-1080.

Definition (program reduct)

We define the reduct of a program P with respect to an interpretation (set of atoms) \mathcal{I} , written $P^{\mathcal{I}}$, as the set of rules:

$$P^{\mathcal{I}} \stackrel{\text{def}}{=} \{ (p \leftarrow q_1, \dots, q_m) \ | (p \leftarrow q_1, \dots, q_m, not \ q_{m+1}, \dots, not \ q_n) \in P \ and \ q_j \notin \mathcal{I}, for \ all \ j = m+1, \dots, n \}$$

Stable models

• Observation: $P^{\mathcal{I}}$ is a positive program (it contains no negations), so it has a least model, call it $\Gamma_P(\mathcal{I}) \stackrel{\text{def}}{=} LM(P^{\mathcal{I}})$.

Definition (stable model)

An interpretation \mathcal{I} is a stable model of a program P iff

$$\mathcal{I} = \Gamma_P(\mathcal{I}) = LM(P^{\mathcal{I}}).$$

Stable models: some properties

Proposition (Stable models are models)

If \mathcal{I} is a stable model of P then $\mathcal{I} \models P$.

Proposition (Stable models are minimal models)

If \mathcal{I} is a stable model of P then there is no $J \subset \mathcal{I}$ such that $J \models P$.

Exercise: prove the above theorems.

Stable models

• Example 1: "Birds normally fly"

flies ← bird, not ab

bird

• This program has these three models:

${\cal I}$	$ extcolor{black}{m{\mathcal{P}}^{\mathcal{I}}}$	$LM(P^{\mathcal{I}})$
{bird, ab}	bird	$\{bird\} eq \mathcal{I}$
{bird, ab}	DIIU	not stable
{bird, ab, flies}	bird	$\{bird\} \neq \mathcal{I}$
{bird, ab, illes}	Dila	not stable
{bird, flies}	flies ← bird	{bird, flies}
	bird	stable!

Stable models

Example 2: we add "Penguins are exceptions"

Just two (classical) models now:

${\cal I}$		$oldsymbol{\mathcal{P}}^{\mathcal{I}}$	$LM(P^{\mathcal{I}})$
{bird, penguin, ab}	bird ab penguin	← bird, penguin	{bird, penguin, ab} stable!
{bird, penguin, ab, flies}	bird ab penguin	← bird, penguin	{bird, penguin, ab} ≠ I notstable

46 / 55

Stable models: non-monotonicity

Observation: the example shows non-monotonic reasoning!

- Example 1: "Birds normally fly", stable model {bird, flies} allowed us to conclude flies
- Example 2: adding new formulas "Penguins are exceptions" stable model {bird, penguin, ab} retracts previous conclusion (flies is not true any more)

Stable models: some properties

• A program may have several stable models. For instance, P_1 :

$$meat \leftarrow not \ veg \qquad veg \leftarrow not \ meat$$
 (2)

has two $\{meat\}$ and $\{veg\}$.

Definition (SM(P))

We denote the set of stable models of program P as SM(P).

• A program may have no stable model at all, $SM(P) = \emptyset$. Example:

$$p \leftarrow not p$$
 (3)

48 / 55

- Typical use: even cycles (2) generate multiple solutions; odd cycles (3) prune undesired models (odd cycles like P₂).
- Constraints: to avoid a model where p holds but q doesn't:

Stable models: some properties

Proposition

Deciding whether a program P has a stable model, $SM(P) \stackrel{?}{=} \emptyset$, is an **NP**-complete problem.

• That is, same complexity class as SAT.

- Download clingo from: http://potassco.org/
- Create the following program in a text file bird.txt:

```
flies :- bird, not ab.
ab :- bird, penguin.
{bird}.
{penguin}.
```

- {...} is a non-deterministic choice: you can choose to include the fact, or not.
- To compute all the stable models, type clingo -n 0 bird.txt
- The guide can be downloaded from: https: //sourceforge.net/projects/potassco/files/guide/

General programs: a rule has the form

$$H_1, \ldots, H_n \leftarrow B_1, \ldots, B_m$$

where $n \ge 0$, $m \ge 0$ and H_i and B_j are literals. Commas in the head correspond to disjunctions \lor . When m = 0 (empty body) we omit the arrow \leftarrow .

• Example: when not busy, I go to the cinema or watch tv

$$c, tv \leftarrow not b$$

Sometimes I'm busy, sometimes no

b, not b

Definition (program reduct)

We define the reduct of a program P with respect to an interpretation (set of atoms) \mathcal{I} , written $P^{\mathcal{I}}$, as the set of rules:

$$P^{\mathcal{I}} \stackrel{\text{def}}{=} \{(p_1, \dots, p_n \leftarrow q_1, \dots, q_m) \mid (p_1, \dots, p_n, \text{not } a_1, \dots, \text{not } a_k \leftarrow q_1, \dots, q_m, \text{not } b_1, \dots, \text{not } b_h) \in P \text{ and all } a_i \in \mathcal{I} \text{ and all } b_j \notin \mathcal{I} \}$$

Definition (stable model)

 \mathcal{I} is a stable model of P iff it is a minimal model of $P^{\mathcal{I}}$.

Proposition

Stable models of general programs are classical models. For any general program $P: SM(P) \subseteq M(P)$.

Example

 $c, tv \leftarrow not b$ b, not b

Classical model $\mathcal I$	$T_P(\mathcal{I})$	minimal models
{b}	b	{b} stable
{ <i>c</i> }	(c, tv)	$\{c\}\{tv\}$ stable
{ <i>tv</i> }	(c, tv)	$\{c\}\{tv\}$ stable
{ <i>b</i> , <i>c</i> }	b	{b}
{ <i>b</i> , <i>tv</i> }	b	{ <i>b</i> }
$\{c, tv\}$	(c, tv)	$\{c\}\{tv\}$
$\{b,c,tv\}$	b	{b}

53 / 55

Stable models of general programs may not be minimal any more

has two stable models \emptyset and $\{b\}$.

• This is can be abbreviated as a cardinality constraint:

$$0\{b\}1$$
 or simply $\{b\}$

54 / 55

Proposition

Deciding $SM(P) \stackrel{?}{=} \emptyset$ for a general program P is a NP^{NP} -complete (a.k.a. Σ_2^P -complete) problem.

NP^{NP}: means **NP** on a Turing machine with an **NP** oracle. This is (conjectured) harder than **NP**.

Cardinalitity constraints: try these examples in clingo

```
% pick from 2 to 4 extra ingredients
2 {tuna; pepper; cheese; olives; ham} 4.
```

```
% I can choose group or not
{group}.
% If group, I pick at least 2 seats
2 {s1;s2;s3;s4} :- group.
% If not group, I pick at most 3 seats
{s1;s2;s3;s4} 3 :- not group.
% if I picked 4 then full
full :- 4 {s1;s2;s3;s4} 4.
```