ESTRUTURA DE DADOS

Prof.^a Priscilla Abreu

priscilla.braz@rj.senac.br

Roteiro de Aula

- Objetivo da aula
- Árvores

Objetivo da aula

Identificar situações em que são necessárias o uso de estruturas dinâmicas e encadeadas e compreender a manipulação dessas estruturas.

REVISANDO...

LISTA LINEAR

Estrutura que permite representar um conjunto de dados de forma a preservar a relação de ordem existente entre eles.

Uma lista é um exemplo de uma estrutura de dados linear, pois cada elemento tem:

- um predecessor único, exceto o primeiro elemento da lista;
- um sucessor único, exceto o último elemento.

As pilhas e filas são outros exemplos.

LISTA LINEAR

Listas lineares

Listas lineares gerais SEM restrição de inserção e remoção de elementos

Listas particulares COM restrição de inserção e remoção de elementos

LISTAS NÃO LINEARES

Em uma estrutura de dados não linear, os elementos, designados por nós, podem ter mais de um predecessor ou mais de um sucessor.

Grafos e árvores

LISTAS NÃO LINEARES - ÁRVORES

Um estrutura de dados do tipo árvore permite que dados sejam organizados de forma hierárquica.

2021.2

LISTAS NÃO LINEARES – ÁRVORES

Filhos de $A \rightarrow B$ C E

- Cada elemento de uma árvore é denominado nó;
- D) (F) (G)
- Toda árvore tem um elemento inicial que chamamos de raiz da árvore;

Folhas

Raiz

- Cada elemento da árvore pode ou não possuir nós abaixo dele hierarquicamente, denominados filhos.
- Os nós que não possuem filhos são denominados folha ou nó externo.
- Grau de um nó: número de filhos que ele possui.
- Grau da árvore: definido pelo nó de maior grau da árvore.

ÁRVORES – CONCEITOS

- Subárvore: conjunto de nós formado a partir de um determinado nó.
- Ancestral: nó que antecede um determinado nó.
- Descendente: nó que sucede um determinado nó.
- Floresta: o conjunto de árvores disjuntas.

ÁRVORES – CONCEITOS

- Caminho: sequência de vértices tal que de cada um dos vértices existe uma aresta para o vértice seguinte.
- Profundidade: distancia de um nó até a raiz.
- Nível: conjunto de nós com a mesma profundidade.
 O nó raiz possui nível 0.
- Altura: comprimento do caminho mais longo da raiz até uma de suas folhas.

ÁRVORES - CONCEITOS

ÁRVORES – REPRESENTAÇÃO

Hierárquica

ÁRVORES - REPRESENTAÇÃO

Diagrama de Venn

ÁRVORES - REPRESENTAÇÃO

Gráfico de Barras

ÁRVORES – REPRESENTAÇÃO

Expressão com parênteses

(A(B(D()E()))(C(F())))

ÁRVORE BINÁRIA

Estrutura de dados que é constituída por um conjunto finito de nós, em que cada nó pode ter no máximo dois filhos, ou sub-árvores: a sub-árvore da direita (sad) e a sub-árvore da esquerda (sae).

ÁRVORE X ÁRVORE BINÁRIA

ÁRVORE ESTRITAMENTE BINÁRIA

Árvore binária em que cada nó tem 0 ou 2 filhos.

ÁRVORE BINÁRIA CHEIA

Árvore estritamente binária em que se um nó tem alguma subárvore vazia então ele está no último nível.

ÁRVORE BINÁRIA COMPLETA

Árvore binária completa: árvore em que se n é um nó com algumas de suas subárvores vazias, então n se localiza no penúltimo ou no último nível. Portanto, toda árvore cheia é completa e estritamente binária.

ÁRVORE BINÁRIA – PERCURSO

- PRÉ ORDEM
- EM ORDEM
- PÓS ORDEM

ÁRVORE BINÁRIA – PERCURSO

PRÉ ORDEM

No percurso em pré-ordem, primeiramente a raiz é visitada; depois, a sub-árvore esquerda; e finalmente, a sub-árvore direita.

No exemplo, o percurso seria feito na seguinte ordem: 2, 7, 2, 6, 5, 11, 5, 9 e 4.

Análise e Desenvolvimento de Sistemas 2021.2

ÁRVORE BINÁRIA – PERCURSO

EM ORDEM (SIMÉTRICO)

No percurso simétrico (em ordem), primeiro é visitada a subárvore esquerda; logo após, a raiz; por final, a sub-árvore direita.

No exemplo, o percurso seria feito na seguinte ordem: 2, 7, 5, 6, 11, 2, 5, 4 e 9.

2 7 5 6 9 5 11 4

ÁRVORE BINÁRIA – PERCURSO

PÓS ORDEM

O percurso em pós-ordem inicia-se visitando a sub-árvore esquerda; em seguida, a sub-árvore direita; encerrando, a raiz é visitada.

No exemplo, o percurso seria feito na seguinte ordem: 2, 5, 11, 6, 7, 4, 9, 5 e 2.

Análise e Desenvolvimento de Sistemas 2021.2

ÁRVORE BINÁRIA – PERCURSO

Exercício: Qual a ordem do percurso da árvore abaixo se utilizarmos o percurso simétrico?

ÁRVORE BINÁRIA DE BUSCA

Árvore binária baseada em nós, onde todos os nós da subárvore esquerda possuem um valor numérico inferior ao nó raiz e todos os nós da subárvore direita possuem um valor superior ao nó raiz.

Análise e Desenvolvimento de Sistemas 2021.2

ÁRVORE BINÁRIA DE BUSCA

INSERÇÃO

ÁRVORE BINÁRIA DE BUSCA

INSERÇÃO

ÁRVORE BINÁRIA DE BUSCA

INSERÇÃO

ÁRVORE BINÁRIA DE BUSCA

INSERÇÃO

ÁRVORE BINÁRIA DE BUSCA

INSERÇÃO

ÁRVORE BINÁRIA DE BUSCA

INSERÇÃO

ÁRVORE BINÁRIA DE BUSCA

INSERÇÃO

DÚVIDAS???