Final Project - Echo

April 23, 2024

```
[1]: import re
     import os
     import platform
     import sys
     # flag if notebook is running on Gradescope
     if re.search(r'amzn', platform.uname().release):
         GS = True
     else:
         GS = False
     # flag if notebook is running on Colaboratory
       import google.colab
      COLAB = True
     except:
       COLAB = False
     # flag if running on Linux lab machines.
     cname = platform.uname().node
     if re.search(r'(guardian|colossus|c28)', cname):
         LLM = True
     else:
         LLM = False
     print("System: GS - %s, COLAB - %s, LLM - %s" % (GS, COLAB, LLM))
     # Import standard DS packages
     import pandas as pd
     import numpy as np
     import matplotlib as mpl
     import matplotlib.pyplot as plt
     import seaborn as sns
     %matplotlib inline
```

System: GS - False, COLAB - False, LLM - True

1 1. Load the Liver Study Dataset

```
[2]: # Connect to Google Drive
     # Comment out in linux Environment
     # from google.colab import drive
     # drive.mount('/content/drive')
[3]: liverDF = pd.read_csv(filepath_or_buffer='Indian Liver Patient Dataset (ILPD).
      ⇔CSV¹,
                          header=0)
     print(liverDF.head())
       Age
            Gender
                      TB
                           DB
                               Alkphos Sgpt Sgot
                                                         ALB A/G Ratio Selector
                                                     TP
            Female
                     0.7 0.1
                                                                    0.90
                                                                                 1
    0
                                   187
                                          16
                                                18
                                                    6.8
                                                         3.3
        62
              Male 10.9
                                   699
                                          64
                                                    7.5
                                                                    0.74
    1
                          5.5
                                               100
                                                         3.2
                                                                                 1
    2
                     7.3 4.1
                                                         3.3
                                                                    0.89
        62
              Male
                                   490
                                          60
                                                68
                                                    7.0
                                                                                 1
    3
              Male
                     1.0 0.4
                                   182
                                                    6.8 3.4
                                                                    1.00
        58
                                          14
                                                20
                                                                                 1
                     3.9 2.0
                                                   7.3 2.4
    4
        72
              Male
                                   195
                                          27
                                                59
                                                                    0.40
                                                                                 1
        2. Conduct Exploratory Analysis
[4]: # number of rows, number of columns
     liverDF.shape
[4]: (583, 11)
[5]: # the data type of each attribute (column)
     liverDF.dtypes
[5]: Age
                    int64
     Gender
                   object
     TB
                  float64
    DB
                  float64
    Alkphos
                    int64
                    int64
     Sgpt
    Sgot
                    int64
    ΤP
                  float64
    AT.B
                  float64
    A/G Ratio
                  float64
     Selector
                    int64
     dtype: object
[6]: # Initial Summary Statistics
     liverDF.describe()
```

```
[6]:
                                              DB
                                                      Alkphos
                   Age
                                 TΒ
                                                                       Sgpt \
                                                   583.000000
     count
            583.000000
                        583.000000
                                     583.000000
                                                                 583.000000
             44.746141
                                                   290.576329
                                                                 80.713551
    mean
                           3.298799
                                       1.486106
     std
             16.189833
                           6.209522
                                       2.808498
                                                   242.937989
                                                                 182.620356
                                       0.100000
    min
              4.000000
                           0.400000
                                                    63.000000
                                                                  10.000000
     25%
             33.000000
                           0.800000
                                       0.200000
                                                   175.500000
                                                                  23.000000
     50%
             45.000000
                           1.000000
                                       0.300000
                                                   208.000000
                                                                  35.000000
     75%
             58.000000
                           2.600000
                                       1.300000
                                                   298.000000
                                                                  60.500000
             90.000000
                          75.000000
                                      19.700000
                                                  2110.000000
                                                               2000.000000
    max
                                                    A/G Ratio
                                  TP
                                              ALB
                                                                  Selector
                   Sgot
             583.000000
                          583.000000
                                      583.000000
                                                   579.000000
                                                               583.000000
     count
             109.910806
                            6.483190
                                        3.141852
                                                     0.947064
                                                                  1.286449
     mean
     std
                            1.085451
             288.918529
                                        0.795519
                                                     0.319592
                                                                  0.452490
    min
              10.000000
                            2.700000
                                        0.900000
                                                     0.300000
                                                                  1.000000
     25%
              25.000000
                            5.800000
                                        2.600000
                                                     0.700000
                                                                  1.000000
     50%
              42.000000
                            6.600000
                                        3.100000
                                                     0.930000
                                                                  1.000000
     75%
              87.000000
                            7.200000
                                                     1.100000
                                                                  2.000000
                                        3.800000
            4929.000000
                            9.600000
                                        5.500000
                                                     2.800000
                                                                  2.000000
     max
[7]: # Observe a potential imbalance between possible selectors
     plt.figure(figsize=(5, 5))
     ax = liverDF['Selector'].value_counts().plot(kind='bar',
                                                    figsize=(5, 5),
                                                    title="Class Distribution")
     plt.xticks((0, 1), ('Diseased', 'Healthy'), rotation='horizontal')
     ax.set_xlabel('Liver Status')
     ax.set_ylabel('Count')
     plt.show()
```



```
[8]: # Visualize the range and spread of the data fields using box plots liverDF.boxplot(column=['Alkphos','Sgpt'])
```

[8]: <Axes: >


```
[9]: liverDF.boxplot(column=['Sgot'])
```

[9]: <Axes: >


```
[10]: liverDF.boxplot(column=['TB'])
```

[10]: <Axes: >


```
[11]: liverDF.boxplot(column=['DB'])
```

[11]: <Axes: >


```
[12]: liverDF.boxplot(column=['TP','ALB','A/G Ratio'])
```

[12]: <Axes: >


```
[13]: liverDF.boxplot(column=['Age'])
```

[13]: <Axes: >


```
[14]: from scipy.stats.mstats import winsorize
     print(liverDF[(liverDF['Sgpt']>=2000) | (liverDF['Sgot']>=2000) |
      ⇔(liverDF['Alkphos']>=1000)])
     print(liverDF.isna().sum())
     # Save all rows for further testing
     liverDFAll = liverDF
     # Preprocessing technique #1, Drop rows with extreme outliers
     ⇔(liverDF['Alkphos']>=1000)].index, inplace=True)
     # Winsorize to move the outliers closer to the 1-3 IQR
     winsorize(liverDF['Alkphos'], limits=(0, 0.075), inplace = True)
     winsorize(liverDF['Sgpt'], limits=(0, 0.075), inplace = True)
     winsorize(liverDF['Sgot'], limits=(0, 0.075), inplace = True)
     winsorize(liverDF['TB'], limits=(0, 0.075), inplace = True)
     winsorize(liverDF['DB'], limits=(0, 0.075), inplace = True)
     # Preprocessing technique #2, Drop NaN
     #liverDF.dropna(subset=['A/G Ratio'], inplace=True)
```

```
# or use an imputation to fill with median values based on like values by \Box
 \hookrightarrowSelector
# liverDF['A/G Ratio'].fillna(liverDF.groupby('Selector')['A/G Ratio'].
⇔transform('median'), inplace=True)
liverDF['A/G Ratio'].fillna(liverDF.groupby('Selector')['A/G Ratio'].
 ⇔transform('mean'), inplace=True)
# Fill NaN Values with median because of strong outliers
# Commented out section, current data does not have NaN values in these fields
'''liverDFScaled = liverDFScaled.fillna(liverDFScaled['TB'].median())
liverDFScaled = liverDFScaled.fillna(liverDFScaled['DB'].median())
liverDFScaled = liverDFScaled.fillna(liverDFScaled['Alkphos'].median())
liverDFScaled = liverDFScaled.fillna(liverDFScaled['Sqpt'].median())
liverDFScaled = liverDFScaled.fillna(liverDFScaled['TP'].median())
liverDFScaled = liverDFScaled.fillna(liverDFScaled['ALB'].median())
liverDFScaled = liverDFScaled.fillna(liverDFScaled['A/G Ratio'].median())'''
# number of rows, number of columns
print(liverDF.shape)
# Updated Summary Statistics
liverDF.describe()
```

	Age	Gender	TB	DB	Alkphos	Sgpt	Sgot	TP	ALB	A/G Ratio	\
77	68	Female	0.6	0.1	1620	95	127	4.6	2.1	0.80	
115	50	Male	7.3	3.6	1580	88	64	5.6	2.3	0.60	
116	48	Male	0.7	0.1	1630	74	149	5.3	2.0	0.60	
117	32	Male	12.7	6.2	194	2000	2946	5.7	3.3	1.30	
128	58	Female	1.7	0.8	1896	61	83	8.0	3.9	0.95	
135	66	Male	11.3	5.6	1110	1250	4929	7.0	2.4	0.50	
161	60	Male	11.5	5.0	1050	99	187	6.2	2.8	0.80	
177	75	Male	14.8	9.0	1020	71	42	5.3	2.2	0.70	
195	60	Male	2.4	1.0	1124	30	54	5.2	1.9	0.50	
199	7	Female	27.2	11.8	1420	790	1050	6.1	2.0	0.40	
233	33	Male	2.0	1.4	2110	48	89	6.2	3.0	0.90	
419	55	Female	8.2	3.9	1350	52	65	6.7	2.9	0.70	
420	55	Female	10.9	5.1	1350	48	57	6.4	2.3	0.50	
429	73	Male	1.9	0.7	1750	102	141	5.5	2.0	0.50	
447	45	Female	23.3	12.8	1550	425	511	7.7	3.5	0.80	
452	58	Male	0.9	0.2	1100	25	36	7.1	3.5	0.90	

Selector 77 1 115 2 116 1 117 1 128 1 135 1

```
1
161
177
            1
195
            1
            1
199
233
            1
419
            1
420
            1
429
            1
447
            1
452
            1
Age
             0
Gender
             0
             0
TB
DB
             0
Alkphos
             0
             0
Sgpt
Sgot
             0
ΤP
             0
ALB
             0
A/G Ratio
             4
Selector
             0
dtype: int64
(583, 11)
```

[14]:		Age	TB	DB	Alkphos	Sgpt	Sgot	\
	count	583.000000	583.000000	583.000000	583.000000	583.000000	583.000000	
	mean	44.746141	2.536707	1.173242	261.531732	53.777015	71.236707	
	std	16.189833	3.133067	1.709827	132.971467	47.049419	68.765643	
	min	4.000000	0.400000	0.100000	63.000000	10.000000	10.000000	
	25%	33.000000	0.800000	0.200000	175.500000	23.000000	25.000000	
	50%	45.000000	1.000000	0.300000	208.000000	35.000000	42.000000	
	75%	58.000000	2.600000	1.300000	298.000000	60.500000	87.000000	
	max	90.000000	11.300000	6.000000	592.000000	178.000000	248.000000	
		TP	ALB	A/G Ratio	Selector			
	count	583.000000	583.000000	583.000000	583.000000			
	mean	6.483190	3.141852	0.947234	1.286449			
	std	1.085451	0.795519	0.318534	0.452490			
	min	2.700000	0.900000	0.300000	1.000000			
	25%	5.800000	2.600000	0.700000	1.000000			
	50%	6.600000	3.100000	0.930000	1.000000			
	75%	7.200000	3.800000	1.100000	2.000000			
	max	9.600000	5.500000	2.800000	2.000000			

2.1 2.1 Due to extreme variability across fields, scale the numerical attributes.

```
[15]: # Preprocessing technique #3, Scale the data
     from sklearn.preprocessing import StandardScaler
     from sklearn.preprocessing import MinMaxScaler
     scaler = StandardScaler()
      #scaler = MinMaxScaler()
     liverDFScaled = liverDF
     scaledColumns = ['TB','DB','Alkphos','Sgpt','Sgot','TP','ALB','A/G Ratio']
     liverDFScaled[scaledColumns] = scaler.

¬fit_transform(liverDFScaled[scaledColumns])
     liverDFScaled.head()
[15]:
        Age Gender
                                         Alkphos
                           TΒ
                                     DΒ
                                                      Sgpt
                                                                Sgot
                                                                            TP \
         65 Female -0.586736 -0.628229 -0.560991 -0.803612 -0.774841 0.292120
     1
         62
               Male 2.671656 2.532696 2.487391 0.217468 0.418639 0.937566
     2
         62
               Male 1.521635 1.713197 1.719651 0.132378 -0.047109 0.476533
     3
         58
               Male -0.490901 -0.452622 -0.598625 -0.846157 -0.745731 0.292120
               Male 0.435504 0.483948 -0.500776 -0.569614 -0.178101 0.753153
         72
             ALB A/G Ratio Selector
     0 0.198969 -0.148413
     1 0.073157 -0.651145
                                    1
     2 0.198969 -0.179834
     3 0.324781 0.165794
                                    1
     4 -0.933340 -1.719450
```

2.1.1 2.2.1 Replot the data and distributions.

```
[16]: # Note that with the data fields scaled it's easier to make observations from and single chart

# More exploration is required for TB, DB, Alkphos, Sgpt, and Sgot due to extreme skewness

#plt.figure(figsize=(8, 6))

ax = liverDFScaled.boxplot(scaledColumns)

ax.set_title('Boxplots of Scaled Data')

ax.set_xlabel('Predictor variables')

ax.set_ylabel('Scaled Values')

#ax.grid(False)

plt.show()
```

```
# Testing to rescale fields of greater importance according to medical
documentation
# Provided little impact to training and testing - commented out for exploration
# in future work.
'''weighted_scaler = 10
# Increase range for heavily weighted features
liverDFScaled['ALB'] = liverDFScaled['ALB'] * weighted_scaler
liverDFScaled['A/G Ratio'] = liverDFScaled['A/G Ratio'] * weighted_scaler
# Reduce range for lesser weighted features
liverDFScaled['Alkphos'] = liverDFScaled['Alkphos'] / weighted_scaler
liverDFScaled['Sgpt'] = liverDFScaled['Sgpt'] / weighted_scaler
liverDFScaled['Sgot'] = liverDFScaled['Sgot'] / weighted_scaler'''
```



```
[16]: "weighted_scaler = 10\n# Increase range for heavily weighted
    features\nliverDFScaled['ALB'] = liverDFScaled['ALB'] *
    weighted_scaler\nliverDFScaled['A/G Ratio'] = liverDFScaled['A/G Ratio'] *
    weighted_scaler\n\n# Reduce range for lesser weighted
    features\nliverDFScaled['Alkphos'] = liverDFScaled['Alkphos'] /
```

```
weighted_scaler\nliverDFScaled['Sgpt'] = liverDFScaled['Sgpt'] /
weighted_scaler\nliverDFScaled['Sgot'] = liverDFScaled['Sgot'] /
weighted_scaler"
```

```
[17]: # Observe the distribution of fields with a large range and outliers liverDFScaled['Alkphos'].plot(kind='hist', bins=20, title='Alkphos') plt.gca().spines[['top', 'right',]].set_visible(False)
```



```
[18]: # Observe the distribution of fields with a large range and outliers liverDFScaled['Sgpt'].plot(kind='hist', bins=20, title='Sgpt') plt.gca().spines[['top', 'right',]].set_visible(False)
```



```
[19]: # Observe the distribution of fields with a large range and outliers liverDFScaled['Sgot'].plot(kind='hist', bins=20, title='Sgot') plt.gca().spines[['top', 'right',]].set_visible(False)
```



```
[20]: # Observe the relationships between various fields: Gender vs Age
figsize = (12, 1.2 * len(liverDFScaled['Gender'].unique()))
plt.figure(figsize=figsize)
sns.violinplot(liverDFScaled, x='Age', y='Gender', inner='box', palette='Dark2')
sns.despine(top=True, right=True, bottom=True, left=True)
```



```
[21]: # Gender vs TB
figsize = (12, 1.2 * len(liverDFScaled['Gender'].unique()))
plt.figure(figsize=figsize)
sns.violinplot(liverDFScaled, x='TB', y='Gender', inner='box', palette='Dark2')
```

sns.despine(top=True, right=True, bottom=True, left=True)

[23]: # Observing potential correlation between specific fields: TB vs DB
liverDFScaled.plot(kind='scatter', x='TB', y='DB', s=32, alpha=.8)
plt.gca().spines[['top', 'right',]].set_visible(False)

2.1.2 2.2.2 Final Pre-processing, mapping Gender and Selector to binary values, 0 and 1.

```
# Column List ['Age', 'Gender', 'TB', 'DB', 'Alkphos', 'Sgpt', 'Sgot', 'TP', 'ALB', 'A/
G Ratio']
# Ingore the following fields: Age, Gender, TB, and A/G Ratio
# Future runs will incorporate testing only male or female records to check bias
X_Columns = ['TB', 'Alkphos', 'Sgpt', 'Sgot', 'TP', 'ALB']
```

3 3. Generate the Model

3.0.1 3.1.1 Training the Model.

```
[25]: # Split Features and Targets
      liverDFScaled_X = liverDFScaled[X_Columns]
      liverDFScaled_y = liverDFScaled['Selector']
      # Split Data
      train_X, test_X, train_y, test_y = train_test_split(liverDFScaled_X,
            liverDFScaled_y, test_size = .2, shuffle = True,
            stratify = liverDFScaled_y, random_state = 42)
      # Create Graph for Accuracy
      fig, (ax1, ax2) = plt.subplots(2, 1)
      fig.tight_layout(pad = 3)
      # K-Nearest Neighbor
      k_range = range(1, 21)
      acc = \Pi
      maxKnnAcc = 0
      bestKnn = 0
      for k in k_range:
        knn = KNeighborsClassifier(n_neighbors = k)
        knn.fit(train_X, train_y)
        yhat = knn.predict(test_X)
        accuracy = accuracy score(test y, yhat)
        # Retain the best found accuracy and related nearest neighbor value
        if accuracy > maxKnnAcc :
          maxKnnAcc = accuracy
          bestKnn = k
        acc.append(accuracy)
      # Put KNN Accuracy in Axes
      ax1.plot(k_range, acc)
      ax1.set(xlabel = 'K Neighbors', ylabel = 'Accuracy')
      ax1.set_title('K-Nearest Neighbor Model')
```

```
# KNN Confusion Matrix
knn_con = KNeighborsClassifier(n_neighbors = bestKnn)
knn_con.fit(train_X, train_y)
yhat = knn_con.predict(test_X)
conf_mat = confusion_matrix(test_y, yhat)
conf_knn_disp = ConfusionMatrixDisplay(conf_mat, display_labels = ['Diseased',_
conf_knn_disp.plot()
conf_knn_disp.ax_.set_title('K-Nearest Neighbor Confusion Matrix')
# Print Primary Scores of Consideration
print('KNN Model Results, K=',bestKnn)
print(f"Accuracy = {accuracy_score(test_y, yhat)}")
print(f"Recall = {recall_score(test_y, yhat)}")
print(f"Precision = {precision_score(test_y, yhat)}")
print('')
# Logistic Regression
c range = [.0001, .001, .01, .1, 1, 5, 10, 20, 50, 100]
acc = []
maxLogAcc = 0
bestC = 0
for c in c_range:
 lg = LogisticRegression(C = c)
 lg.fit(train_X, train_y)
 yhat = lg.predict(test_X)
 accuracy = accuracy_score(test_y, yhat)
  # Retain the best found accuracy and related C value
 if accuracy > maxLogAcc :
   maxLogAcc = accuracy
   bestC = c
 acc.append(accuracy)
# Put LG Accuracy in Axes
ax2.plot(c_range, acc)
ax2.set(xlabel = 'Regularization Strength', ylabel = 'Accuracy')
ax2.set_title('Logistic Regression Model')
# Log. Regression Confusion Matrix
lg = LogisticRegression(C = bestC)
lg.fit(train_X, train_y)
yhat = lg.predict(test_X)
conf_mat = confusion_matrix(test_y, yhat)
conf_lg_disp = ConfusionMatrixDisplay(conf_mat, display_labels = ['Diseased', __
 conf_lg_disp.plot()
```

```
conf_lg_disp.ax_.set_title('Logistic Regression Confusion Matrix')
# Print Primary Scores of Consideration
print('Logistic Regression Model Results, C=', bestC)
print(f"Accuracy = {accuracy_score(test_y, yhat)}")
print(f"Recall = {recall_score(test_y, yhat)}")
print(f"Precision = {precision_score(test_y, yhat)}")
print('')
# Plot Model Results
plt.show()
KNN Model Results, K= 20
Accuracy = 0.7008547008547008
Recall = 0.17647058823529413
Precision = 0.46153846153846156
Logistic Regression Model Results, C= 0.0001
Accuracy = 0.7094017094017094
Recall = 0.0
Precision = 0.0
/home/campus05/psweiss/.conda/envs/cs5831/lib/python3.10/site-
packages/sklearn/metrics/_classification.py:1469: UndefinedMetricWarning:
Precision is ill-defined and being set to 0.0 due to no predicted samples. Use
`zero_division` parameter to control this behavior.
```

_warn_prf(average, modifier, msg_start, len(result))

4 4. Test for Gender Bias

```
fig.tight_layout(pad = 3)
# K-Nearest Neighbor
k_range = range(1, 21)
acc = []
maxKnnAcc = 0
bestKnn = 0
for k in k range:
 knn = KNeighborsClassifier(n_neighbors = k)
 knn.fit(train X, train y)
 yhat = knn.predict(test_X)
 accuracy = accuracy_score(test_y, yhat)
  # Retain the best found accuracy and related nearest neighbor value
 if accuracy > maxKnnAcc :
   maxKnnAcc = accuracy
   bestKnn = k
 acc.append(accuracy)
# Put KNN Accuracy in Axes
ax1.plot(k_range, acc)
ax1.set(xlabel = 'K Neighbors', ylabel = 'Accuracy')
ax1.set_title('K-Nearest Neighbor Model')
# KNN Confusion Matrix
knn con = KNeighborsClassifier(n neighbors = bestKnn)
knn_con.fit(train_X, train_y)
yhat = knn_con.predict(test_X)
conf_mat = confusion_matrix(test_y, yhat)
conf_knn_disp = ConfusionMatrixDisplay(conf_mat, display_labels = ['Diseased', __
conf knn disp.plot()
conf_knn_disp.ax_.set_title('K-Nearest Neighbor Confusion Matrix')
# Print Primary Scores of Consideration
print('KNN Model Results, K=',bestKnn)
print(f"Accuracy = {accuracy_score(test_y, yhat)}")
print(f"Recall = {recall_score(test_y, yhat)}")
print(f"Precision = {precision_score(test_y, yhat)}")
print('')
# Logistic Regression
c_range = [.0001, .001, .01, .1, 1, 5, 10, 20, 50, 100]
acc = []
maxLogAcc = 0
bestC = 0
```

```
for c in c_range:
  lg = LogisticRegression(C = c)
  lg.fit(train_X, train_y)
  yhat = lg.predict(test_X)
  accuracy = accuracy_score(test_y, yhat)
  # Retain the best found accuracy and related C value
  if accuracy > maxLogAcc :
    maxLogAcc = accuracy
    bestC = c
  acc.append(accuracy)
# Put LG Accuracy in Axes
ax2.plot(c_range, acc)
ax2.set(xlabel = 'Regularization Strength', ylabel = 'Accuracy')
ax2.set_title('Logistic Regression Model')
# Log. Regression Confusion Matrix
lg = LogisticRegression(C = bestC)
lg.fit(train_X, train_y)
yhat = lg.predict(test_X)
conf_mat = confusion_matrix(test_y, yhat)
conf_lg_disp = ConfusionMatrixDisplay(conf_mat, display_labels = ['Diseased',_
 conf_lg_disp.plot()
conf_lg_disp.ax_.set_title('Logistic Regression Confusion Matrix')
# Print Primary Scores of Consideration
print('Logistic Regression Model Results, C=', bestC)
print(f"Accuracy = {accuracy_score(test_y, yhat)}")
print(f"Recall = {recall_score(test_y, yhat)}")
print(f"Precision = {precision_score(test_y, yhat)}")
print('')
# Plot Model Results
plt.show()
KNN Model Results, K= 3
Accuracy = 0.7640449438202247
Precision = 0.5789473684210527
Logistic Regression Model Results, C= 0.0001
Accuracy = 0.7303370786516854
Recall = 0.0
Precision = 0.0
```

/home/campus05/psweiss/.conda/envs/cs5831/lib/python3.10/site-

packages/sklearn/metrics/_classification.py:1469: UndefinedMetricWarning:
Precision is ill-defined and being set to 0.0 due to no predicted samples. Use
`zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, msg_start, len(result))


```
[27]: # Split Features and Targets
      # Column List ['Age', 'Gender', 'TB', 'DB', 'Alkphos', 'Sgpt', 'Sgot', 'TP', 'ALB', 'A/
       \hookrightarrow G \ Ratio'
      # Ingore the following fields: Age, Gender, TB, and A/G Ratio
      # Future runs will incorporate testing only male or female records to check bias
      liverDFScaledMale_X = liverDFScaled[X_Columns].loc[liverDFScaled['Gender'] == 1]
      liverDFScaledMale_y = liverDFScaled['Selector'].loc[liverDFScaled['Gender'] ==___
       ⇔1]
      # Split Data
      train_X, test_X, train_y, test_y = train_test_split(liverDFScaledMale_X,
            liverDFScaledMale_y, test_size = .2, shuffle = True,
            stratify = liverDFScaledMale_y, random_state = 42)
      # Create Graph for Accuracy
      fig, (ax1, ax2) = plt.subplots(2, 1)
      fig.tight_layout(pad = 3)
      # K-Nearest Neighbor
      k_range = range(1, 21)
```

```
acc = []
maxKnnAcc = 0
bestKnn = 0
for k in k_range:
 knn = KNeighborsClassifier(n_neighbors = k)
 knn.fit(train_X, train_y)
 yhat = knn.predict(test_X)
 accuracy = accuracy_score(test_y, yhat)
  # Retain the best found accuracy and related nearest neighbor value
 if accuracy > maxKnnAcc :
   maxKnnAcc = accuracy
   bestKnn = k
 acc.append(accuracy)
# Put KNN Accuracy in Axes
ax1.plot(k_range, acc)
ax1.set(xlabel = 'K Neighbors', ylabel = 'Accuracy')
ax1.set_title('K-Nearest Neighbor Model')
# KNN Confusion Matrix
knn_con = KNeighborsClassifier(n_neighbors = bestKnn)
knn_con.fit(train_X, train_y)
yhat = knn_con.predict(test_X)
conf_mat = confusion_matrix(test_y, yhat)
conf_knn_disp = ConfusionMatrixDisplay(conf_mat, display_labels = ['Diseased',_
conf_knn_disp.plot()
conf_knn_disp.ax_.set_title('K-Nearest Neighbor Confusion Matrix')
# Print Primary Scores of Consideration
print('KNN Model Results, K=',bestKnn)
print(f"Accuracy = {accuracy_score(test_y, yhat)}")
print(f"Recall = {recall_score(test_y, yhat)}")
print(f"Precision = {precision_score(test_y, yhat)}")
print('')
# Logistic Regression
c_range = [.0001, .001, .01, .1, 1, 5, 10, 20, 50, 100]
acc = []
maxLogAcc = 0
bestC = 0
for c in c_range:
 lg = LogisticRegression(C = c)
 lg.fit(train_X, train_y)
 yhat = lg.predict(test_X)
```

```
accuracy = accuracy_score(test_y, yhat)
  # Retain the best found accuracy and related C value
  if accuracy > maxLogAcc :
    maxLogAcc = accuracy
    bestC = c
  acc.append(accuracy)
# Put LG Accuracy in Axes
ax2.plot(c range, acc)
ax2.set(xlabel = 'Regularization Strength', ylabel = 'Accuracy')
ax2.set title('Logistic Regression Model')
# Log. Regression Confusion Matrix
lg = LogisticRegression(C = bestC)
lg.fit(train_X, train_y)
yhat = lg.predict(test_X)
conf_mat = confusion_matrix(test_y, yhat)
conf_lg_disp = ConfusionMatrixDisplay(conf_mat, display_labels = ['Diseased', __
 conf_lg_disp.plot()
conf_lg_disp.ax_.set_title('Logistic Regression Confusion Matrix')
# Print Primary Scores of Consideration
print('Logistic Regression Model Results, C=', bestC)
print(f"Accuracy = {accuracy_score(test_y, yhat)}")
print(f"Recall = {recall_score(test_y, yhat)}")
print(f"Precision = {precision_score(test_y, yhat)}")
print('')
# Plot Model Results
plt.show()
KNN Model Results, K= 4
Accuracy = 0.5517241379310345
Recall = 0.1
Precision = 0.2
Logistic Regression Model Results, C= 0.0001
Accuracy = 0.6551724137931034
Recall = 0.0
Precision = 0.0
/home/campus05/psweiss/.conda/envs/cs5831/lib/python3.10/site-
packages/sklearn/metrics/_classification.py:1469: UndefinedMetricWarning:
Precision is ill-defined and being set to 0.0 due to no predicted samples. Use
`zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
```


[]: