Лабораторная работа 2.4 Закон Моззли

Нехаев Александр, гр. 654

31 октября 2018 г.

Содержание

1.	Теоретическое введение	1
2.	Ход работы	1
	2.1. Измерение спектров	1
	2.2. Обработка данных	1

Цель работы: измерить спектры характеристического излучения атомов для набора химических элементов. Определить рентгеновские термы измеренных спектральных пиков излучения. Проверить закон Мозли. Определить рентгеновские термы измеренных спектральных пиков излучения. Проверить закон Мозли. Определить элементный состав контрольного образца.

В работе используются: рентгеновский спектрометр «Спектроскан Макс-G», включающий в себя рентгеновский источник излучения, специально вогнутый кристалл LiF, гониометр, газовый детектор рентгеновских квантов и компьютер, а также образцы чистых химических элементов.

1. Теоретическое введение

2. Ход работы

2.1. Измерение спектров

В лабораторной работе предлагается определить длины волн характеристического излучения следующих элементов: 22 Ti, 23 V, 24 Cr, 25 Mn, 26 Fe, 28 Ni, 29 Cu, 41 Nb, 42 Mo, 47 Ag. Работать будем с наиболее яркими спектральными линиями: $K_{\alpha_{1,2}}$, $K_{\beta_{1,3}}$, L_{α_1} , L_{β_1} .

2.2. Обработка данных

1) На основе измеренных данных составим таблицу:

Таблица 1: Экспериментальные данные

Элемент	Z	$\lambda_{K_{lpha}}$	λ_{K_eta}	$E_{K_{\alpha}}$	$E_{K_{\beta}}$	$\sqrt{\frac{E_{K_{\alpha}}}{\mathrm{Ry}}}$	$\sqrt{\frac{E_{K_{\beta}}}{\mathrm{Ry}}}$
Ti	22	2749.9 mÅ	2514.9 mÅ	4508.53 eV	4929.82 eV	18.2036	19.0351
V	23	$2505~\mathrm{m\AA}$	$2285~\mathrm{m\AA}$	4949.3 eV	5425.82 eV	19.0727	19.9697
Cr	24	2291.1 mÅ	$2086~\mathrm{m\AA}$	5411.37 eV	5943.43 eV	19.9431	20.9006
Mn	25	$2104~\mathrm{m\AA}$	$1911.~\mathrm{mÅ}$	5892.59 eV	6487.7 eV	20.811	21.8366
Fe	26	$1937~\mathrm{m\AA}$	$1757~\mathrm{m\AA}$	6400.62 eV	7056.35 eV	21.6896	22.7735
Ni	28	$1658~\mathrm{m\AA}$	$1500.1~\mathrm{m\AA}$	7477.68 eV	8264.78 eV	23.4435	24.6465
Cu	29	$1540~\mathrm{m\AA}$	$1390~\mathrm{m\AA}$	8050.65 eV	8919.42 eV	24.3251	25.604
Ag	47	$560~\mathrm{m\AA}$	$500~\mathrm{m\AA}$	22139.3 eV	24796.eV	40.3387	42.6904
Mo	42	$711~\mathrm{m\AA}$	$632~\mathrm{m\AA}$	17437.4 eV	19617.1 eV	35.7998	37.9714
Nb	41	$748~\mathrm{m\AA}$	$666~\mathrm{mÅ}$	16574.9 eV	18615.6 eV	34.9032	36.9895

2) Для всех спектральных линий построим на одном графике зависимости величины $\sqrt{\frac{E}{Ry}}$ от атомного номера Z.

