Graph Optimization Lab session 5

Exercize 1. Consider the following problem. A set of items $I = 1 \dots n$ is given. For each item $i \in I$ profit p_i , weight w_i , volume q_i and cost c_i are given. Two different capacities, a maximum weight B_1 and a maximum volume B_2 , are given together with a budget B_3 . A subset of items must be selected such that their total profit is maximum and the three capacity constraints, limiting total weight, total volume and total cost, are satisfied.

- 1. Write in AMPL a procedure to compute the Lagrangian relaxation obtained relaxing all the three capacity constraints with multipliers μ :
 - use the normalized subgradient $\left(\mu^{k+1} = \max\left\{0, \mu^k t_k \frac{g^k}{||g^k||}\right\}\right)$;
 - the step at iteration k t_k is equal to $0.995t_{k-1}$;
 - stop the procedure after 10 iterations;
 - save the best upper bound obtained as UB_{LR} ;
 - use the feasible solutions found by the Lagrangian relaxation as lower bounds LB_{LR} of the problem;
 - apply the Lagrangian relaxation procedure to instances exTest12.dat and exTest123.dat and fill the Table 1.

instance	LB_{LR}	UB_{LR}	time	LB_{SR}	UB_{SR}	time
exTest12						
exTest123						

Table 1: Relaxation comparison

- 2. Write in AMPL a procedure to compute the surrogate relaxation obtained combining the three capacity constraints with multipliers m:
 - update multipliers m as follows: $(m^{k+1} = \max\{0, m^k t_k g^k\});$
 - the step at iteration $k t_k$ is equal to $0.995t_{k-1}$;
 - stop the procedure after 10 iterations;
 - save the best upper bound obtained as UB_{SR} ;
 - use the feasible solutions found by the surrogate relaxation as lower bounds LB_{SR} of the problem;
 - apply the surrogate relaxation to instances exTest12.dat and exTest123.dat and fill the table.
- 3. Write in AMPL a greedy procedure for the problem, apply it to instances exTest12.dat and exTest123.dat and fill the table.
- 4. Write in AMPL a k-opt neighborhood procedure for the problem, apply it to instances exTest12.dat and exTest123.dat and fill the Table 1.

in	stance	greedy	$_{ m time}$	k- opt	time	iterations
ex	Test12					
ex'	Test123					

Table 2: Heuristic comparison