Примечание. Эти решения проверены только частично через lean, верность не гарантируется.

Упражнение (2.d). $\vdash A \& B \rightarrow B \& A$

Докажем, что $A \& B \vdash B \& A$, это эквивалентно искомому.

Упражнение (2.e). $\vdash A \rightarrow \neg \neg A$

Докажем, что $A \vdash \neg \neg A$, это эквивалентно искомому.

1.
$$A$$
 ($\in \Gamma$)
2. $A \to (\neg A \to A)$ (a. 1)
3. $\neg A \to A$ (M.P. 1, 2)
4. $\neg A \to \neg A$ (доказано ранее)
5. $(\neg A \to \neg A) \to (\neg A \to A) \to \neg \neg A$ (a. 9)
6. $(\neg A \to A) \to \neg \neg A$ (M.P. 4,5)
7. $\neg \neg A$ (M.P. 3,6)

Упражнение (2.f). $A \& \neg A \vdash B$

8.
$$\neg A \rightarrow (\neg B \rightarrow \neg A)$$
 (a. 1)

 9. $\neg B \rightarrow \neg A$
 (M.P. 5, 8)

 10. $(\neg B \rightarrow A) \rightarrow (\neg B \rightarrow \neg A) \rightarrow \neg \neg B$
 (a. 9)

 11. $(\neg B \rightarrow \neg A) \rightarrow \neg \neg B$
 (M.P. 7,10)

 12. $\neg \neg B$
 (M.P. 9,11)

 13. $\neg \neg B \rightarrow B$
 (a. 10)

 14. B
 (M.P. 12,13)

Упражнение (3.a). $\neg A, B \vdash \neg (A \& B)$

1.
$$A \& B \to A$$
 (a. 4)
2. $\neg A \to (A \& B) \to \neg A$ (a. 1)
3. $\neg A$ ($\in \Gamma$)
4. $A \& B \to \neg A$ (M.P. 2,3)
5. $(A \& B \to A) \to (A \& B \to \neg A) \to \neg (A \& B)$ (a. 9)
6. $(A \& B \to \neg A) \to \neg (A \& B)$ (M.P. 1, 5)
7. $\neg (A \& B)$ (M.P. 4,6)

Упражнение (3.b). $A, \neg B \vdash \neg (A \& B)$

1.
$$A \& B \to B$$
 (a. 4)
2. $\neg B \to (A \& B) \to \neg B$ (a. 1)
3. $\neg B$ ($\in \Gamma$)
4. $A \& B \to \neg B$ (M.P. 2,3)
5. $(A \& B \to B) \to (A \& B \to \neg B) \to \neg (A \& B)$ (a. 9)
6. $(A \& B \to \neg B) \to \neg (A \& B)$ (M.P. 1, 5)
7. $\neg (A \& B)$ (M.P. 4,6)

Упражнение (3.c). $\neg A$, $\neg B$ $\vdash \neg (A & B)$

1.
$$A \& B \rightarrow B$$
 (a. 4)

2.
$$\neg B \to (A \& B) \to \neg B$$
 (a. 1)
3. $\neg B$ ($\in \Gamma$)
4. $A \& B \to \neg B$ (M.P. 2,3)
5. $(A \& B \to B) \to (A \& B \to \neg B) \to \neg (A \& B)$ (a. 9)
6. $(A \& B \to \neg B) \to \neg (A \& B)$ (M.P. 1, 5)
7. $\neg (A \& B)$ (M.P. 4,6)

Упражнение (3.d). $\neg A, \neg B \vdash \neg (A \lor B)$

1.
$$(A \lor B \to A) \to (A \lor B \to \neg A) \to \neg (A \lor B)$$
 (a. 9)
2. $(A \to A) \to (B \to A) \to (A \lor B \to A)$ (a. 8)
3. $A \to A$ (доказано раннее)
4. $(B \to A) \to (A \lor B \to A)$ (M.P. 2,3)
5. $\neg A$ ($\in \Gamma$)
6. $\neg B$ ($\in \Gamma$)
7. $\neg A \to \neg B \to B \to A$ (3.g)
8. $\neg B \to B \to A$ (M.P. 5, 7)
9. $B \to A$ (M.P. 6, 8)
10. $A \lor B \to A$ (M.P. 4, 9)
11. $(A \lor B \to \neg A) \to \neg (A \lor B)$ (M.P. 1, 10)
12. $\neg A \to (A \lor B \to \neg A)$ (a. 1)
13. $A \lor B \to \neg A$ (M.P. 5,12)
14. $\neg (A \lor B)$ (M.P. 11,13)

Упражнение (3.е). $A, \neg B \vdash \neg (A \rightarrow B)$

Упражнение (3.f). $\neg A, B \vdash A \rightarrow B$

Докажем $\neg A, B, A \vdash B$, т.к. это эквивалентно по теореме об индукции.

1.
$$B$$
 $(\in \Gamma)$

Упражнение (3.g). $\neg A, \neg B \vdash A \rightarrow B$

Докажем $\neg A, \neg B, A \vdash B$, т.к. это эквивалентно по теореме об индукции.

1.
$$A$$
 ($\in \Gamma$)
2. $\neg A$ ($\in \Gamma$)
3. $A \to (\neg B \to A)$ (a. 1)
4. $\neg B \to A$ (M.P. 1, 3)
5. $\neg A \to (\neg B \to \neg A)$ (a. 1)
6. $\neg B \to \neg A$ (M.P. 2, 5)
7. $(\neg B \to A) \to (\neg B \to \neg A) \to \neg \neg B$ (a. 9)
8. $(\neg B \to \neg A) \to \neg \neg B$ (M.P. 4, 7)
9. $\neg \neg B$ (M.P. 6, 8)
10. $\neg \neg B \to B$ (a. 10)

Упражнение (3.h). $\vdash (A \to B) \to (B \to C) \to (A \to C)$

$$\vdash (A \to B) \to (B \to C) \to (A \to C)$$
$$(A \to B) \vdash (B \to C) \to (A \to C)$$
$$(A \to B), (B \to C) \vdash (A \to C)$$
$$(A \to B), (B \to C), A \vdash C$$

1.
$$A$$
 $(\in \Gamma)$

2.
$$A \to B$$
 $(\in \Gamma)$

4.
$$B \to C$$
 $(\in \Gamma)$

5.
$$C$$
 (M.P. 3,4)

Упражнение (3.i). $\vdash (A \to B) \to (B \to C) \to (C \to A)$

Это утверждение не тавтология, что проверяется подстановкой 0,0,1. В силу корректности исчисления высказываний из пустого множества можно вывести только тавтологии, таким образом это утверждение не выводится.

Упражнение (3.j). $\vdash (A \to B) \to (\neg B \to \neg A)$

$$\vdash (A \to B) \to (\neg B \to \neg A)$$
$$(A \to B) \vdash \neg B \to \neg A$$
$$(A \to B), \neg B \vdash \neg A$$

1.
$$A \to B$$
 $(\in \Gamma)$

2.
$$\neg B$$
 $(\in \Gamma)$

3.
$$\neg B \to A \to \neg B$$
 (a. 1)

4.
$$A \rightarrow \neg B$$
 (M.P. 2,3)

5.
$$(A \to B) \to (A \to \neg B) \to \neg A$$
 (a. 9)

6.
$$(A \rightarrow \neg B) \rightarrow \neg A$$
 (M.P. 1,5)

7.
$$\neg A$$
 (M.P. 4,6)

Упражнение (4.a). $\vdash A \lor \neg A$

1.
$$A \rightarrow A \lor \neg A$$
 (акс. 6)

 2. $\neg A \rightarrow A \lor \neg A$
 (акс. 7)

 3. $\neg \neg (A \lor \neg A) \rightarrow \neg A$
 (закон контрапозиции)

 4. $\neg (A \lor \neg A) \rightarrow \neg \neg A$
 (закон контрапозиции)

 5. $(\neg (A \lor \neg A) \rightarrow \neg \neg A) \rightarrow (\neg (A \lor \neg A) \rightarrow \neg \neg A) \rightarrow \neg \neg (A \lor \neg A)$
 (акс. 9)

 6. $(\neg (A \lor \neg A) \rightarrow \neg \neg A) \rightarrow \neg \neg (A \lor \neg A)$
 (M.P. 4,6)

 7. $\neg \neg (A \lor \neg A)$
 (M.P. 5,7)

 8. $\neg \neg (A \lor \neg A) \rightarrow A$
 (aкс. 10)

 9. $A \lor \neg A$
 (M.P. 8,9)

Упражнение (4.b). $\vdash A \& B \rightarrow \neg (\neg A \lor \neg B)$

1.
$$A\&B \vdash \neg(\neg A \lor \neg B)$$
 (т. о дедукции)

 2. $(\neg A \lor \neg B \to A) \to (\neg A \lor \neg B \to \neg A) \to \neg(\neg A \lor \neg B)$
 (акс. 9)

 3. $A\&B \to A$
 (акс. 4)

 4. $A\&B \to B$
 (aкс. 5)

 5. A
 (M.P. 3, 1)

 6. B
 (M.P. 4, 1)

 7. $A \to (\neg A \lor \neg B) \to A$
 (aкс. 1)

 8. $(\neg A \lor \neg B) \to A$
 (M.P. 7, 5)

 9. $(\neg A \lor \neg B) \to A$
 (M.P. 2, 8)

 10. $(\neg A \to \neg A) \to (\neg A \lor \neg B) \to \neg A$
 (akc. 8)

 11. $(\neg B \to \neg A) \to (\neg A \lor \neg B \to \neg A) \to (\neg A \lor \neg B \to \neg A)$
 (akc. 8)

 12. $B, A \vdash \neg B \to \neg A$ равносильно $B, A, \neg B \vdash \neg A$
 (т. о дедукции)

 13. $(A \to B) \to (A \to \neg B) \to \neg A$
 (дважды аксиома 1 из B и $\neg B$)

 15. $\neg B \to \neg A$
 (доказали по дедукции)

 16. $(\neg A \lor \neg B \to \neg A)$
 (M.P. 11, 15)

 17. $\neg(\neg A \lor \neg B)$
 (M.P. 9, 16)

Упражнение (4.c). $\vdash \neg (\neg A \& \neg B) \rightarrow A \lor B$

1.
$$\vdash A \to (A \lor B)$$
 (akg. 6)

2.
$$\vdash \neg (A \lor B) \to \neg A$$
 (контрапозиция)

3.
$$\vdash B \rightarrow (A \lor B)$$

4.
$$\vdash \neg (A \lor B) \to \neg B$$

5.
$$\neg (A \lor B) \vdash \neg A$$

6.
$$\neg (A \lor B) \vdash \neg B$$

7.
$$\neg (A \lor B) \vdash \neg A \to \neg B \to \neg A \& \neg B$$

8.
$$\neg (A \lor B) \vdash \neg B \to \neg A \& \neg B$$

9.
$$\neg (A \lor B) \vdash \neg A \& \neg B$$

10.
$$\vdash \neg (A \lor B) \to \neg A \& \neg B$$

11.
$$\vdash \neg(\neg A \& \neg B) \rightarrow \neg \neg(A \lor B)$$

12.
$$\neg(\neg A \& \neg B) \vdash \neg \neg(A \lor B)$$

13.
$$\neg(\neg A \& \neg B) \vdash \neg \neg(A \lor B) \to A \lor B$$

14.
$$\neg(\neg A \& \neg B) \vdash A \lor B$$

15.
$$\vdash \neg(\neg A \& \neg B) \rightarrow A \lor B$$

Упражнение (4.d). $\vdash A \& \neg A \rightarrow A \lor B$

$$\vdash A \And \neg A \to A \lor B$$

$$A \And \neg A \vdash A \lor B$$

1.
$$A \& \neg A$$
 $(\in \Gamma)$

2.
$$A \& \neg A \rightarrow A$$
 (a. 4)

4.
$$A \rightarrow A \lor B$$
 (a. 6)

5.
$$A \vee B$$
 (M.P. 3,4)

Упражнение (4.e). $\vdash ((A \rightarrow B) \rightarrow A) \rightarrow A$

Идея решения — рассмотрим три случая : $A \in \Gamma$; $\neg A, B \in \Gamma$; $\neg A, \neg B \in \Gamma$

Упражнение (5). Даны высказывания α и β , причём $\vdash \alpha \to \beta$ и $\alpha \not\equiv \beta$. Укажите способ построения высказывания γ , такого, что $\vdash \alpha \to \gamma$ и $\vdash \gamma \to \beta$, причём $\alpha \not\equiv \gamma$ и $\beta \not\equiv \gamma$.

Решение, рассказанное на паре $\gamma:=\alpha$ & β , неверное, т.к. при тавтологии β выполняется $\alpha\equiv\gamma.$

Верное решение: пусть множество подстановок, на которых α выполняется — \mathcal{A} , для β — \mathcal{B} . Несложно заметить, что $\mathcal{A} \subset \mathcal{B}$, при этом $|\mathcal{A}| < |\mathcal{B}|$. Если $|\mathcal{A}| < |\mathcal{B}| - 1$, то можно найти множество между ними, т.е. $\mathcal{A} \subset \mathcal{C} \subset \mathcal{B}$. Если $|\mathcal{A}| = |\mathcal{B}| - 1$, то нужно ввести новую переменную, чтобы разница стала больше.

Упражнение (6). $\alpha \vdash \beta, \neg \alpha \vdash \beta \Rightarrow \vdash \beta$

1.	α	$(\in \Gamma)$
2.	$\alpha \to (\neg \beta \to \alpha)$	(a. 1)
3.	$\neg \beta \to \alpha$	(M.P. 1,2)
4.	$\neg \alpha$	$(\in \Gamma)$
5.	$\neg \alpha \to (\neg \beta \to \neg \alpha)$	(a. 1)
6.	$\neg \beta \rightarrow \neg \alpha$	(M.P. 4,5)
7.	$(\neg \beta \to \alpha) \to (\neg \beta \to \neg \alpha) \to \neg \neg \beta$	(a. 9)
8.	$(\neg \beta \to \neg \alpha) \to \neg \neg \beta$	(M.P. 3,7)
9.	$\neg \neg \beta$	(M.P. 6,8)
10.	$\neg\neg\beta\to\beta$	(a. 10)
11.	eta	(M.P. 9,10)