Lösungsvorschläge zu Blatt 5

Aufgabe 5.1. (Berechnung des Subdifferentials)

- (a) Berechnen Sie anhand der Definition des Subdifferentials in jedem Punkt $x \in \mathbb{R}$ die Subdifferentiale der Abbildungen aus Beispiel 4.2 der Vorlesung, bzw. der folgenden reellen Abbildungen:
 - (i) der Betragsfunktion abs : $\begin{cases} \mathbb{R} \to [0, +\infty[\, , \\ x \mapsto |x| \, , \end{cases}$
 - (ii) der Heaviside Stufen-Funktionen:

$$x \mapsto \begin{cases} 0, \text{ falls } x \le 0, \\ 1, \text{ falls } x > 0, \end{cases} \quad \text{und} \quad x \mapsto \begin{cases} 0, \text{ falls } x < 0, \\ 1, \text{ falls } x \ge 0. \end{cases}$$

(b) Berechnen Sie die Subdifferentiale folgender reeller Funktionen:

$$x \mapsto x^2$$
, $x \mapsto x^3$, $x \mapsto \sin(x)$, $x \mapsto \max(0, x^2 - 1)$.

(c) Sei V normierter Raum. Berechnen Sie die Subdifferentiale folgender Funktionen:

$$v \mapsto ||v||_V$$
, $v \mapsto \frac{1}{2}||v||_V^2$ $v \mapsto \max(0, ||v||_V^2 - 1)$.

- (d) (Stützfunktionen und Stützfunktionale von Mengen in normierten Räumen)
 - (i) Erklären Sie den Unterschied zwischen der Stützfunktion und einem Stützfunktional einer nichtleeren Teilmenge A eines normierten Raumes V.
 - (ii) Berechnen Sie das Subdifferential der Indikatorfunktion $I_A: V \to \{0, +\infty\}$ einer beliebigen nichtleeren Teilmenge eines normierten Raumes V.
 - (iii) Wie ist der Normalenkegel $N_C(c)$ einer nichtleeren konvexen Teilmenge $C \subset V$ in einem Punkt $c \in C$ definiert? Beschreiben Sie ihn mittels der Indikatorfunktion I_C und mittels der Stützfunktion I_C^* .
 - (iv) Berechnen Sie die Normalenkegel folgender Mengen in beliebigen Punkten:

die abgeschlossene Einheitskugel $\overline{\mathbb{B}}$ eines normierten Raumes V,

die abgeschlossene Einheitskugel $\overline{\mathbb{B}}$ eines Hilbertraumes H,

der positive Orthant $[0, +\infty]^n \subset \mathbb{R}^n$,

der Epigraph einer eigentlichen, konvexen, unterhalbstetigen Funktion $\varphi:V\to]-\infty,+\infty].$

(v) Wie lässt sich mittels Konjugation die abgeschlossene, konvexe Hülle einer beliebigen Teilmenge $A \subset V$ eines Vektorraumes beschreiben?

Lösungsvorschlag zu Aufgabe 5.1.

(a) Für reelle Funktionen $\varphi : \mathbb{R} \to]-\infty, +\infty]$ ist in jedem Punkt $x \in \mathbb{R}$ das Subdifferential gegeben mittels:

$$\partial \varphi(x) = \begin{cases} \{\alpha \in \mathbb{R} \, : \, \alpha \cdot (y-x) \leq \varphi(y) - \varphi(x) & \text{ für alle } y \in \mathbb{R} \} \,, \ \text{ falls } \ x \in D(\varphi) \,, \\ \emptyset \,, \ \text{falls } \ x \not \in D(\varphi) \,. \end{cases}$$

(i) Für die Betragsfunktion abs = $|\cdot|$: $\begin{cases} \mathbb{R} \to [0, +\infty[\,, \\ x \mapsto |x|\,, \end{cases}$ gilt in jedem Punkt $x \in \mathbb{R}$ damit:

$$\partial abs(x) = \{ \alpha \in \mathbb{R} : \alpha \cdot (y - x) \le |y| - |x| \text{ für alle } y \in \mathbb{R} \}.$$

Für x > 0 und $\alpha \in \mathbb{R}$ ist die Aussage $\alpha \in \partial abs(x)$ damit äquivalent zu:

$$\alpha \cdot (y - x) \le y - x$$
 und $\alpha \cdot (-y - x) \le y - x$ für alle $y \ge 0$,

was wiederum äquivalent ist zu:

$$(\alpha - 1) \cdot (y - x) \le 0$$
 und $(1 - \alpha) \cdot x \le (1 + \alpha) \cdot y$ für alle $y \ge 0$.

Einsetzen von y = x/2 und y = 2x in die erste Ungleichung ergibt insbesondere

$$(\alpha - 1) \cdot x = 0$$

woraus, da x strikt positiv ist, folgt

$$\alpha = 1$$
.

Die zweite Ungleichung ist für dieses α offenbar auch erfüllt. Daraus folgt also für positive x:

$$\partial abs(x) = \{1\}.$$

Auf analoge Weise ergibt sich für negative x, dass:

$$\partial abs(x) = \{-1\}.$$

Sei nun x = 0. Die Aussage $\alpha \in \partial abs(0)$ ist äquivalent zu:

$$\alpha \cdot y \leq y$$
 und $\alpha \cdot (-y) \leq y$ für alle $y \geq 0$,

was wiederum äquivalent ist zu:

$$(\alpha - 1) \cdot y \le 0$$
 und $(\alpha + 1) \cdot y \ge 0$ für alle $y \ge 0$.

Dies ist äquivalent zu

$$\alpha - 1 \le 0$$
 und $\alpha + 1 \ge 0$ bzw. $x \in [-1, 1]$.

Insgesamt gilt also:

$$\partial abs(x) = \begin{cases} 1, & \text{falls } x > 0, \\ [-1, 1], & \text{falls } x = 0 \text{ und} \\ -1, & \text{falls } x < 0. \end{cases}$$

Bemerkung: damit ist das Subdifferential der Betragsfunktion die maximal monotone Erweiterung der Vorzeichenfunktion sgn .

(ii) Sei nun $H_1 = \chi_{[0,+\infty[}$ die charakteristische Funktion des offenen Intervalls $]0,+\infty[$:

$$H_1(x) = \begin{cases} 1, & \text{falls } x > 0, \\ 0, & \text{falls } x \le 0. \end{cases}$$

Für alle x > 0 ist die Aussage $\alpha \in \partial H_1(x)$ dann äquivalent zu:

$$\alpha \cdot (y - x) \le H_1(y) - H_1(x) = \chi_{[0, +\infty[}(y) - 1,$$

was wiederum äquivalent ist zu:

$$\alpha \cdot (-y - x) \le 0 - 1 = -1$$
 und $\alpha \cdot (y - x) \le 1 - 1 = 0$ für alle $y > 0$,

sowie
$$-\alpha x = \alpha \cdot (0 - x) \le \chi_{]0, +\infty[}(0) - 1 = -1.$$

Während nun die letzte Ungleichung ergibt: $\alpha x \ge 1$, ergibt die zweite Ungleichung für y = 2x > 0:

$$\alpha x \leq 0$$
,

ein Widerspruch. Für alle $x \in]0, +\infty[$ gilt damit:

$$\partial H_1(x) = \emptyset$$
.

Sei nun x < 0. Die Aussage $\alpha \in \partial H_1(x)$ ist nun äquivalent zu:

$$\alpha \cdot (-y - x) \le 0$$
 und $\alpha \cdot (y - x) \le 1$ für alle $y > 0$,

sowie $-\alpha x = \alpha \cdot (0 - x) \le \chi_{[0, +\infty[}(0) - 0 = 0.$

Aus der letzten Ungleichung folgt, de x < 0, auch $\alpha \le 0$. Aus der ersten Ungleichung folgt z.B. für y = x/2 < 0, dass $\alpha \ge 0$ sein muss. Insgesamt also muss gelten $\alpha = 0$, was offenbar alle drei Ungleichungen erfüllt.

Im Punkt x = 0 hat die Subgradienten-Bedingung die Form:

$$\alpha \cdot y \leq H_1(y) - H_1(0) = H_1(y)$$
 für alle $y \in \mathbb{R}$,

was offenbar erfüllt ist gdw. $\alpha = 0$.

Insgesamt haben wir damit:

$$\partial H_1(x) = \begin{cases} \emptyset, & \text{falls } x > 0, \\ \{0\}, & \text{falls } x \le 0. \end{cases}$$

Sei nun $H_2 = \chi_{[0,+\infty[}$ die charakteristische Funktion des abgeschlossenen Intervalls $[0,+\infty[$:

$$H_2(x) = \begin{cases} 1, & \text{falls } x \ge 0, \\ 0, & \text{falls } x < 0. \end{cases}$$

Analoge Ausführung wie für H_1 ergibt, dass für alle Punkte aus dem abgeschlossenen Intervall $[0, +\infty[$ das Subdifferential leer sein muss, für negative Zahlen ergibt sich wie bisher das Subdifferential $\{0\}$. Insgesamt gilt also in diesem Fall:

$$\partial H_2(x) = \begin{cases} \emptyset, & \text{falls } x \ge 0, \\ \{0\}, & \text{falls } x < 0. \end{cases}$$

(b) Sei $\varphi(x) = x^2$. Für beliebige $x \in \mathbb{R}$ ist die Aussage $\alpha \in \partial \varphi(x)$ äquivalent zu:

$$\alpha \cdot (y - x) < \varphi(y) - \varphi(x) = y^2 - x^2$$
 für alle $y \in \mathbb{R}$,

was wiederum äquivalent ist zu:

$$(y-x)\cdot(y+x-\alpha)>0$$
 für alle $y\in\mathbb{R}$.

Dies ist äquivalent zu zwei Bedingungen:

$$y + x - \alpha \ge 0$$
 für alle $y > x$ und $y + x - \alpha \le 0$ für alle $y < x$.

Im Grenzübergang $y \to x + 0$ ergibt die erste Ungleichung:

$$2x - \alpha \ge 0.$$

Im Grenzübergang $y \to x - 0$ ergibt die zweite Ungleichung:

$$2x - \alpha < 0$$
.

Insgesamt muss also gelten: $\alpha = 2x$. Da andererseits für alle $x, y \in \mathbb{R}$ gilt:

$$2x \cdot (y-x) = 2xy - 2x^2 \le x^2 + y^2 - x^2 = y^2 - x^2$$
.

so folgt letztens für alle $x \in \mathbb{R}$:

$$\partial \varphi(x) = \{2x\}.$$

Sei nun $\varphi(x) = x^3$. Für beliebige $x \in \mathbb{R}$ ist die Aussage $\alpha \in \partial \varphi(x)$ äquivalent zu:

$$\alpha \cdot (y - x) \le \varphi(y) - \varphi(x) = y^3 - x^3$$
 für alle $y \in \mathbb{R}$,

Da allgemein gilt:

$$y^3 - x^3 = (y - x) \cdot (y^2 + xy + x^2),$$

so ist die obere Bedingung dieses mal äquivalent zu:

$$(y-x)\cdot(y^2+xy+x^2-\alpha)\geq 0$$
 für alle $y\in\mathbb{R}$.

Die Fallunterscheidung von y > x und y < x und die anschließenden einseitigen Grenzwerte ergeben nun, dass der einzige Kandidat für einen Subgradienten die Zahl $\alpha = 3x^2$ ist.

In der Tat gilt $\partial \varphi(x) = \emptyset$ für alle $x \in \mathbb{R}$. Ist x = 0, so ist $\alpha = 0$ der einzige mögliche Kandidat für den Subgradienten. Für beliebige y < 0 gilt aber:

$$0 = 0 \cdot (y - 0) \nleq \varphi(y) - \varphi(0) = y^3 < 0.$$

Sei nun $x \neq 0$. Der einzige Kandidat für den Subgradienten ist $\alpha = 3x^2$. Einsetzen dieses Kandidaten in die Subgradientenungleichung ergibt, dass für alle $y \in \mathbb{R}$ gelten soll:

$$3x^2 \cdot (y-x) \le y^3 - x^3$$
 bzw. $0 \le y^3 - 3x^2y + 2x^3$.

Einsetzen z.B. von y = -3|x| < 0 ergibt aber:

$$-27|x|^3 + 9|x|^3 + 2x^3 \le (-27 + 9 + 2) \cdot |x|^3 = -16|x|^3 < 0.$$

Damit gilt also für alle $x \in \mathbb{R}$:

$$\partial \varphi(x) = \emptyset.$$

Sei nun $\varphi(x) = \sin(x)$. Für beliebige $x \in \mathbb{R}$ ist die Aussage $\alpha \in \partial \varphi(x)$ äquivalent zu:

$$\alpha \cdot (y - x) < \varphi(y) - \varphi(x) = \sin(y) - \sin(x)$$
 für alle $y \in \mathbb{R}$,

Die Annahme $\alpha > 0$ führt für hinreichend große $y \in \mathbb{R}$ zum Widerspruch, da die linke Seite der Ungleichung beliebig groß gemacht werden kann, die rechte Seite dagegen höchstens $1 - \sin(x) \leq 2$ beträgt.

Analog dazu führt auch die Annahme $\alpha < 0$ zum Widerspruch, da für negative y mit hinreichend großem Betragswert die linke Seite der Ungleichung beliebig groß gemacht werden kann, die rechte Seite dagegen wieder beschränkt ist.

Die Möglichkeit $\alpha = 0$ ergibt als Subgradientenungleichung die Minimumsbedingung:

$$0 \le \varphi(y) - \varphi(x)$$
 für alle $y \in \mathbb{R}$.

Diese ist erfüllt in Minimalstellen der Sinus-Funktion, bzw. in allen Punkten aus der Menge

$$M_{\sin} = -\frac{\pi}{2} + 2\pi \cdot \mathbb{Z} \,.$$

Daraus folgt also:

$$\partial \sin(x) = \begin{cases} \{0\}, & \text{falls } x \in M_{\sin}, \\ \emptyset, & \text{sonst} \end{cases}$$

Sei $\varphi(x) = \max(0, x^2 - 1)$, bzw. gelte:

$$\varphi(x) = \begin{cases} 0, & \text{falls } |x| \le 1, \\ x^2 - 1, & \text{falls } |x| \ge 1. \end{cases}$$

Die Abbildung ist wohldefiniert, konvex und stetig in ganz \mathbb{R} , und auch glatt in allen Punkten außer den Punkten 1 und -1.

Auf alle Punkte der Menge $\mathbb{R} \setminus \{-1,1\}$ lässt sich damit der Satz 4.6. der Vorlesung, über differenzierbare Stellen einer konvexen Funktion, anwenden und liefert:

$$x \in \mathbb{R} \setminus \{-1, 1\} \Rightarrow \partial \varphi(x) = \{\varphi'(x)\} = \begin{cases} \{2x\}, & \text{falls } |x| > 1, \\ \{0\}, & \text{falls } |x| < 1. \end{cases}$$

Sei nun x=1. Die Subgradientenbedingung liefert die Äquivalenz der Aussage $\alpha\in\partial\varphi(1)$ zu:

$$\alpha \cdot (x-1) \le \varphi(x) - \varphi(1) = \begin{cases} 0, & \text{falls } |x| \le 1, \\ x^2 - 1, & \text{falls } |x| \ge 1. \end{cases}$$

Dies ist weiter äquivalent zu den beiden Ungleichungen:

$$\alpha \ge 0$$
 und $(\alpha - (x+1)) \cdot (x-1) \le 0$ für alle $x \in]-\infty, -1] \cup [1, +\infty[$.

Für beliebige t > 0 ergibt das insbesondere mit x = 1 + t > 1:

$$(\alpha - (2+t)) \cdot t \le 0$$
 bzw. $\alpha \le 2 + t$.

Da t > 0 beliebig ist, ergibt das im Grenzübergang $t \to 0^+$ auch

$$\alpha < 2$$
.

Die zweite Ungleichung ist für alle $\alpha \geq 0$ und alle $x \leq -1$ erfüllt und ergibt keine weitere Information. Damit gilt:

$$\partial \varphi(1) = [0, 2]$$
.

Analog dazu ergibt sich im Punkt x = -1:

$$\begin{split} \alpha \in \partial \varphi(-1) &\Leftrightarrow \alpha \cdot (x-(-1)) = \alpha \cdot (x+1) \leq \begin{cases} 0 \,, & \text{falls } |x| \leq 1 \,, \\ x^2-1 \,, & \text{falls } |x| \geq 1 \,, \end{cases} \\ &\Leftrightarrow \alpha \leq 0 \quad \text{und} \quad (\alpha-(x-1)) \cdot (x+1) \leq 0 \quad \text{für alle } x \in]-\infty, -1] \cup [1, +\infty[\Leftrightarrow \alpha \leq 0 \quad \text{und} \quad \alpha-(x-1) \geq 0 \quad \text{für alle } x \in]-\infty, -1] \Leftrightarrow \\ &\Leftrightarrow \alpha \leq 0 \quad \text{und} \quad \alpha \geq -2 \,. \end{split}$$

Damit gilt nun:

$$\partial \varphi(-1) = [-2, 0],$$

insgesamt haben wir also:

$$\partial \varphi(x) = \begin{cases} 2x \,, & \text{falls } |x| > 1 \,, \\ 0 \,, & \text{falls } |x| < 0 \,, \\ [-2, 0] \,, & \text{für } x = -2 \quad \text{und} \\ [0, 2] \,, & \text{für } x = 2 \,. \end{cases}$$

(c) Im allgemeinen normierten Raum V sind Subgradienten von Abbildungen $\varphi:V\to]-\infty,+\infty]$ angesiedelt im Dualraum V^* . In diesem Fall lautet die Subgradientenbedingung an der Stelle $v\in V$ für das Funktional $v^*\in V^*$:

$$\langle v^*, u - v \rangle_{V^*, V} \le \varphi(u) - \varphi(v)$$
, für alle $u \in V$.

Sei $\varphi(v) = ||v||_V$ für $v \in V$.

Die Subgradientenbedingung lautet nun in beliebigem $v \in V$:

$$\langle v^*, u - v \rangle_{V^* V} < ||u||_V - ||v||_V$$
, für alle $u \in V$.

Sei zuerst $v \neq 0$ und $v^* \in \partial \varphi(v)$ beliebig. Für beliebige $w \in V$ ergibt das Einsetzen von u = v + w in die Subgradientenungleichung:

$$\langle v^* w \rangle \le ||v + w|| - ||v|| \le ||v|| + ||w|| - ||v|| = ||w||,$$

was bedeutet, dass

$$||v^*||_{V^*} < 1$$

gelten muss. Einsetzen von u = 2v und u = v/2 ergibt, dass

$$\langle v^*, v \rangle = ||v||$$

gelten muss. Insbesondere muss gelten:

$$||v^*||_{V^*} = 1$$
.

Gelten umgekehrt für ein Funktional $v^* \in V^*$ die beiden Bedingungen

$$||v^*||_{V^*} = 1$$
 und $\langle v^*, v \rangle = ||v||_V$,

so gilt für beliebige $u \in V$:

$$\langle v^*, u - v \rangle = \langle v^*, u \rangle - \langle v^*, v \rangle = \langle v^*, u \rangle - \|v\|_V \le \|v^*\|_{V^*} \|u\|_V - \|v\|_V = \|u\|_V - \|v\|_V,$$

bzw. $v^* \in \partial \varphi(v)$. Insgesamt gilt für alle $v \in V \setminus \{0\}$:

$$\partial \varphi(v) = \{ v^* \in V^* : ||v^*||_{V^*} = 1 \text{ und } \langle v^*, v \rangle = ||v||_V \}.$$

Dies ist aber genau die Menge $\frac{1}{\|v\|_V}J(v)$, wobei $J:V\rightrightarrows V^*$ die Dualitätsabbildung bezeichnet (siehe Definition 4.16 aus Vorlesung), bzw. die Abbildung, die für beliebige $v\in V$ gegeben ist mittels:

$$J(v) = \{v^* \in V^* : \|v^*\|_{V^*} = \|v\|_V \quad \text{und} \quad \langle v^*, v \rangle = \|v\|_V^2 \}.$$

Nach Folgerungen des Satzes von Hahn-Banach, ist die obere Menge in jedem normierten Raum V für beliebige $v \in V$ nichtleer.

Für v=0 lautet die Subgradientenungleichung für $v^* \in V^*$:

$$\langle v^*, u \rangle \leq ||u||_V$$
 für alle $u \in V$,

was bedeutet, dass

$$\partial \varphi(0) = \{ v^* \in V^* : \|v^*\|_{V^*} \le 1 \} = \operatorname{cl}(\mathbb{B}_{V^*}).$$

Insgesamt gilt also:

$$\partial \|v\|_V = \begin{cases} \operatorname{cl}\left(\mathbb{B}_{V^*}\right), & \text{für } v = 0, \\ \{v^* \in V^* : \|v^*\|_{V^*} = 1 & \text{und} & \langle v^*, v \rangle = \|v\|_V, \} = \frac{1}{\|v\|_V} J(v), & \text{falls } v \neq 0. \end{cases}$$

Sei nun $\varphi(v) = \frac{1}{2} \|v\|_V^2$ für $v \in V$.

Für beliebige $v \in V$ ist die Aussage $v^* \in \partial \varphi(v)$ in diesem Fall äquivalent zu:

$$\langle v^*, u-v\rangle \leq \frac{\|u\|_V^2}{2} - \frac{\|v\|_V^2}{2} \quad \text{für alle } u \in V \,.$$

Insbesondere gilt für t > 0 beliebig und $u = (1 \pm t) \cdot v$:

$$\langle v^*, (1+t) v - v \rangle = t \langle v^*, v \rangle \le \frac{(1+t)^2 - 1}{2} \|v\|_V^2 = t \left(1 + \frac{t}{2}\right) \|v\|_V^2$$

und

$$\langle v^*, (1-t)v - v \rangle = -t \langle v^*, v \rangle \le \frac{(1-t)^2 - 1}{2} \|v\|_V^2 = -t \left(1 - \frac{t}{2}\right) \|v\|_V^2.$$

Teilen durch t > 0 ergibt damit:

$$\left(1 - \frac{t}{2}\right) \|v\|_V^2 \le \langle v^*, v \rangle \le \left(1 + \frac{t}{2}\right) \|v\|_V^2 \quad \text{für alle } t > 0.$$

Grenzübergang $t \to 0^+$ ergibt damit, dass für jedes Funktional $v^* \in \partial \varphi(v)$ gelten muss:

$$\langle v^*, v \rangle = ||v||_V^2$$
.

Setze nun für beliebige $w \in V$ als Testvektor u in der Subgradientenungleichung den Vektor u = v + tw für beliebige t > 0. Dies ergibt

$$\langle v^*, (v+tw) - v \rangle = t \, \langle v^*, w \rangle \le \frac{\underbrace{(\|v\|_V + \|tw\|_V)^2}{\|v+tw\|_V^2}}{2} - \frac{\|v\|_V^2}{2} \le t \|v\|_V \|w\|_V + \frac{t^2}{2} \|w\|_V^2.$$

Teilen durch t > 0 und der Grenzübergang $t \to 0^+$ ergibt damit für beliebige $v^* \in \partial \varphi(v)$:

$$\langle v^*, w \rangle \le ||v||_V ||w||_V$$
 für alle $w \in V$,

bzw. es gilt

$$||v^*||_{V^*} \le ||v||_V$$
 und wegen $\langle v^*, v \rangle = ||v||_V^2$ auch $||v^*||_{V^*} = ||v||_V$.

Dies bedeutet aber, dass für beliebige $v \in V$ gilt:

$$\partial \varphi(v) \subset J(v)$$
,

wobei $J:V \rightrightarrows V^*$ die Dualitätsabbildung bezeichnet (siehe Definition 4.16 aus Vorlesung).

Sei nun umgekehrt $v^* \in J(v)$ beliebig, bzw. gelte:

$$v^* \in V^*$$
, mit $\langle v^*, v \rangle = ||v||_V^2$ und $||v^*||_{V^*} = ||v||_V$.

Dann gilt für beliebige $u \in V$:

$$\begin{split} \langle v^*, u - v \rangle &= \langle v^*, u \rangle - \|v\|_V^2 \le \|v^*\|_{V^*} \cdot \|u\|_V - \|v\|_V^2 = \\ &= \|v\|_V \cdot \|u\|_V - \|v\|_V^2 \le \frac{\|v\|_V^2 + \|u\|_V^2}{2} - \|v\|_V^2 = \frac{\|u\|_V^2}{2} - \frac{\|v\|_V^2}{2} = \\ &= \varphi(u) - \varphi(v) \,, \end{split}$$

was aber bedeutet, dass

$$v^* \in \partial \varphi(v)$$
 bzw. auch $J(v) \subset \partial \varphi(v)$.

Damit ist beweisen, dass für alle $v \in V$ gilt:

$$\partial \left(\frac{1}{2} \|v\|_V^2\right) = J(v),$$

wobei $J:V \rightrightarrows V^*$ die Dualitätsabbildung bezeichnet.

Sei nun $\varphi(v) = \max(0, ||v||_V^2 - 1)$ für $v \in V$.

Sei zunächst $v \in \mathbb{B}_V$, bzw. gelte

$$||v||_V < 1$$
.

Die Subgradientenungleichung hat in diesem Fall, wegen $\varphi(v) = 0$, die Form:

$$\langle v^*, u - v \rangle \le \varphi(u)$$
 für beliebige $u \in V$.

Nun gilt für $\varepsilon = 1 - ||v||_V > 0$, dass

$$v + \varepsilon \mathbb{B}_V \subset \mathbb{B}_V$$
,

da für alle $w \in \mathbb{B}_V$ gilt:

$$||v + \varepsilon w||_V < ||v||_V + \varepsilon ||w||_V < ||v||_V + \varepsilon \cdot 1 = ||v||_V + 1 - ||v||_V = 1$$
.

Sei nun $u \in V$ beliebig und t > 0 hinreichend klein, so dass $v + tu \in \mathbb{B}_V$ gilt. Dann ergibt die Subgradientenungleichung, dass für alle $v^* \in \partial \varphi(v)$ gelten muss:

$$\langle v^*, (v+tu) - v \rangle = t \langle v^*, u \rangle \le \varphi(v+tu) = 0.$$

Teilen durch t = t(u) > 0 ergibt, dass für alle $u \in V$ gelten muss:

$$\langle v^*, u \rangle \le 0$$
 bzw. $v^* = 0$,

bzw. für alle $v \in \mathbb{B}_V$ gilt die Implikation:

$$v^* \in \partial \varphi(v) \Rightarrow v^* = 0$$
.

Das Nullfunktional erfüllt andererseits die Subgradientenungleichung in allen Punkten v mit $\varphi(v) = 0$, da die Abbildung φ nichtnegativ ist. Damit gilt insgesamt:

$$||v||_V < 1 \Rightarrow \partial \varphi(v) = \{0\}.$$

Sei nun $||v||_V > 1$, bzw. gelte $v \in V \setminus \operatorname{cl}(\mathbb{B}_V)$. Die Subgradientenungleichung für beliebige $v^* \in \partial \varphi(v)$ lautet dieses mal:

$$\langle v^*, u - v \rangle \le \varphi(u) - \varphi(v) = \langle v^*, u - v \rangle \le \varphi(u) - (\|v\|_V^2 - 1).$$

Nun gilt für $\varepsilon = ||v||_V - 1 > 0$ in diesem Fall auch:

$$v + \varepsilon \mathbb{B}_V \subset V \setminus \operatorname{cl}(\mathbb{B}_V)$$
,

da für beliebige $w \in \mathbb{B}_V$ nun gilt:

$$||v + \varepsilon w||_V > ||v||_V - ||\varepsilon w||_V = ||v||_V - \varepsilon ||w||_V > ||v||_V - \varepsilon = 1$$
.

Für beliebige $u \in V$ gibt es also wieder ein t = t(u) > 0 mit $v + t \cdot u \in V \setminus \operatorname{cl}(\mathbb{B}_V)$ und überdies auch

$$v + [0, t] \cdot u = \{v + \tau \cdot u : \tau \in [0, t]\} \subset V \setminus \operatorname{cl}(\mathbb{B}_V).$$

Die Subgradientenungleichung liefert damit für beliebige $v^* \in \partial \varphi(v)$:

$$\langle v^*, (v + \tau \cdot u) - v \rangle = \tau \langle v^*, u \rangle \le \varphi(v + \tau \cdot u) - (\|v\|_V^2 - 1) = \|v + \tau \cdot u\|_V^2 - \|v\|_V^2 \le \tau \cdot (2\|v\|_V \|u\|_V + \tau \|u\|_V^2),$$

wobei $u \in V$ und $0 < \tau \in]0, t(u)]$ beliebig sind. Teilen durch $\tau > 0$ und der Grenzübergang $\tau \to 0^+ <$ liefern damit für beliebige $u \in V$:

$$\langle v^*, u \rangle \le 2||v||_V ||u||_V,$$

bzw. für alle $v^* \in \partial \varphi(v)$ gilt nun:

$$||v^*||_{V^*} \le 2||v||_V$$
.

Aus $v + \varepsilon \mathbb{B}_V \subset V \setminus \operatorname{cl}(\mathbb{B}_V)$ folgt insbesondere nun auch

$$v + \frac{\varepsilon}{\|v\|_V}] - 1, 1 [\subset V \setminus \operatorname{cl}(\mathbb{B}_V) ,$$

woraus für alle $t \in \mathbb{R}$ mit $|t| < \frac{\varepsilon}{\|v\|_V}$ die Subgradientenungleichung liefert:

$$\langle v^*, (1+t)v - v \rangle = t \langle v^*, v \rangle \le \varphi((1+t)v) - \varphi(v) = ((1+t)^2 - 1) \|v\|_V^2 = (2t+1) \|v\|_V^2.$$

Teilen durch $t \leq 0$ und der beidseitige Grenzübergang $t \to \pm 0$ ergeben damit insgesamt:

$$\langle v^*, v \rangle = 2 ||v||_V^2 .$$

Das ergibt die Mengeninklusion:

$$\partial \varphi(v) \subset 2J(v)$$
.

Andererseits gilt für alle $v^* \in 2J(v)$ und beliebige $u \in V$:

$$\langle v^*, u - v \rangle = \langle v^*, u \rangle - \langle v^*, v \rangle = \langle v^*, u - 2 ||v||_V^2.$$

Mit

$$|\langle v^*, u \rangle| \le ||v^*||_{V^*} ||u||_V = 2||v||_V ||u||_V \le ||v||_V^2 + ||u||_V^2$$

ergibt das die Ungleichung:

$$\langle v^*, u - v \rangle \le ||u||_V^2 - ||v||_V^2$$
.

Ist nun $||u||_V \le 1$, so gilt $\varphi(u) = 0$ und die obere Ungleichung ergibt:

$$\langle v^*, u - v \rangle \le 1 - ||v||_V^2 = -\varphi(v) = \varphi(u) - \varphi(v).$$

Ist andererseits $||u||_V > 1$, so gilt $\varphi(u) = ||u||_V^2 - 1$ und die obere Ungleichung ergibt:

$$\langle v^*, u - v \rangle \le ||u||_V^2 - 1 + 1 - ||v||_V^2 = ||u||_V^2 - 1 - (||v||_V^2 - 1) = \varphi(u) - \varphi(v).$$

Dies bedeutet, dass die Subgradientenungleichung erfüllt ist für alle $v^* \in 2J(v)$ und alle $u \in V$, bzw. es gilt auch $2J(v) \subset \partial \varphi(v)$, insgesamt gilt also die Implikation:

$$||v||_V > 1 \Rightarrow \partial \varphi(v) = 2J(v)$$
.

Gelte nun letztendlich $||v||_V = 1$. In Analogie zur Teilaufgabe (b)(iv) erwarten wir dass folgende Aussage gilt:

$$\partial \varphi(v) = [0, 2] \cdot J(v) = \{t \cdot v^* : v^* \in J(v) \text{ und } t \in [0, 2] \}.$$

Da für alle v mit $||v||_V = 1$ gilt:

$$J(v) = \{v^* \in V^* : \|v^*\|_V^* = \langle v^*, v \rangle = 1 \},\,$$

erwarten wir hier also:

$$\partial \varphi(v) = \{ v^* \in V^* \, : \, \|v^*\|_V^* = \langle v^*, v \rangle \in [0, 2] \, \} \, .$$

Sei $v^* \in \partial \varphi(v)$ beliebig. Mit $\varphi(v) = 0$ ergibt die Subgradientenungleichung für alle $u \in V$ nun:

$$\langle v^*, u - v \rangle \le \varphi(u)$$
.

Für t > 0 ergibt das mit $||(1+t)\cdot v||_V = 1+t > 1$ insbesondere:

$$\langle v^*, (1+t)v - v \rangle = t \langle v^*, v \rangle \le \varphi((1+t)v) = ||(1+t)v||_V^2 - 1 = 2t + t^2.$$

Teilen durch t > 0 und der Grenzübergang $t \to 0^+$ ergeben damit:

$$\langle v^*, v \rangle \leq 2$$
.

Andererseits gilt für alle $t \in]0,2[$ mit $1-t \in]-1,1[$ auch

$$||(1-t)\cdot v||_V = |1-t|\cdot ||v||_V < 1$$
 woraus folgt $\varphi((1-t)\cdot v) = 0$.

Dies ergibt also für jeden Subgradienten $v^* \in \partial \varphi(v)$:

$$\langle v^*, (1-t) \cdot v - v \rangle = -t \langle v^*, v \rangle \le \varphi((1-t) \cdot v) - \varphi(v) = 0 - 0 = 0,$$

und damit, da $t \in]0,2[$ positiv wählbar,

$$\langle v^*, v \rangle \ge 0$$
.

Dies liefert die Implikation:

$$v^* \in \partial \varphi(v) \Rightarrow 0 \le \langle v^*, v \rangle \le 2$$
.

Sei nun $u \in \mathbb{B}_V$ beliebig. Mit $\varphi(u) = 0$ folgt aus der Subgradientenungleichung dann:

$$\langle v^*, u - v \rangle \le 0$$
 bzw. $\langle v^*, u \rangle \le \langle v^*, v \rangle$,

was bedeutet, dass gelten muss:

$$||v^*||_{V^*} = \sup_{u \in \mathbb{B}_V} \langle v^*, u \rangle \le \langle v^*, v \rangle.$$

Mit $||v||_V = 1$ ergibt das aber auch:

$$||v^*||_{V^*} = \sup_{u \in \operatorname{cl}(\mathbb{B}_V)} \langle v^*, u \rangle \ge \langle v^*, v \rangle,$$

also insgesamt gilt für alle $v \in V$ mit $||v||_V = 1$:

$$v^* \in \partial \varphi(v) \Rightarrow ||v^*||_{V^*} = \langle v^*, v \rangle \in [0, 2],$$

bzw. es gilt die Mengeninklusion:

$$\partial \varphi(v) \subset [0,2] \cdot J(v)$$
.

Ist umgekehrt $v^* \in [0,2] \cdot J(v) = \{v^* \in V^* : \|v^*\|_V^* = \langle v^*, v \rangle \in [0,2] \}$, so gilt für beliebige $u \in V$:

$$\langle v^*, u - v \rangle = \langle v^*, u \rangle - \langle v^*, v \rangle < \|v^*\|_{V^*} \cdot \|u\|_V - \langle v^*, v \rangle.$$

Ist nun $||u||_V \leq 1$, so gilt damit:

$$\langle v^*, u - v \rangle \le ||v^*||_{V^*} \cdot 1 - \langle v^*, v \rangle = 0 = \varphi(u) - \varphi(v),$$

bzw. die Subgradientenungleichung ist erfüllt.

Gilt dagegen $||u||_V > 1$, so ergibt die obere Ungleichung:

$$\begin{split} \langle v^*, u - v \rangle & \leq \|v^*\|_{V^*} \cdot \|u\|_V - \langle v^*, v \rangle = \|v^*\|_{V^*} \cdot \|u\|_V - \|v^*\|_{V^*} = \\ & = \|v^*\|_{V^*} \cdot (\|u\|_V - 1) \leq 2 \cdot (\|u\|_V - 1) \leq 2 \cdot \left(\frac{\|u\|_V^2 + 1}{2} - 1\right) = \\ & \leq 2 \cdot \frac{\|u\|_V^2 - 1}{2} = \|u\|_V^2 - 1 = \varphi(u) = \\ & = \varphi(u) - \varphi(v) \,. \end{split}$$

Die Subgradientenungleichung gilt damit auch für alle Vektoren $u \in V \setminus \operatorname{cl}(\mathbb{B}_V)$, bzw. es gilt auch die Mengeninklusion:

$$[0,2] \cdot J(v) \subset \partial \varphi(v)$$
.

Insgesamt gilt also in diesem Fall für die Abbildung φ :

$$\partial \varphi(v) = \begin{cases} \{0\} \subset V^*, & \text{falls } v \in \mathbb{B}_V, \\ [0,2] \cdot J(v) = \{v^* \in V^* : \|v^*\|_V^* = \langle v^*, v \rangle \in [0,2] \}, & \text{falls } \|v\|_V = 1 & \text{und} \\ 2 \cdot J(v) = \{v^* \in V^* : \|v^*\|_V^* = 2\|v\|_V & \text{und} & \langle v^*, v \rangle = 2\|v\|_V^2 \}, & \text{sonst } . \end{cases}$$

(d) (i) Sei $A \subset V$ eine nichtleere Teilmenge eines normierten Raumes V. Die Stützfunktion der Menge A ist die konjugierte Abbildung der Indikatorfunktion $I_A: V \to \{0, +\infty\}$, bzw. die Abbildung $I_A^*: V^* \to]-\infty, +\infty]$ die gegeben ist mittels:

$$I_A^*(v^*) = \sup_{v \in V} \langle v^*, v \rangle - I_A(v) = \sup_{a \in A} \langle v^*, a \rangle.$$

Die Stützfunktion ist also eine Abbildung, deren Definitionsbereich der Dualraum V^* des Raumes V ist.

Ein Stützfunktional dagegen ist ein singuläres duales Funktional v^* , dass gebunden ist an einen ausgezeichneten Punkt $a \in A$. Ein Element $v^* \in V^*$ heißt Stützfunktional der Menge A im Punkt $a \in A$, falls gilt:

$$\langle v^*, a \rangle = \sup_{b \in A} \langle v^*, b \rangle.$$

Zwischen Stützfunktion und Stützfunktional besteht also folgender Bezug:

$$S(A, a) = \{v^* \in V^* : I_A^*(v^*) = \langle v^*, a \rangle \},$$

wobei $\mathcal{S}(A,a)$ die Menge aller Stützfunktionale auf die Menge A im Punkt $a \in A$ bezeichnet.

(ii) Sei wieder $A \subset V$ eine beliebige nichtleere Teilmenge eines normierten Raumes V. Ist $v \in V \setminus A$ beliebig, so gilt mit $I_A(v) = +\infty$, für alle $v^* \in V^*$ und beliebige $a \in A \neq \emptyset$:

$$\mathbb{R} \ni \langle v^*, a - v \rangle \not\leq I_A(a) - I_A(v) = 0 - \infty = -\infty$$

woraus für alle $v \in V \setminus A$ folgt:

$$\partial I_A(v) = \emptyset$$
.

Ist dagegen $a \in A$ beliebig, so ist die Bedingung $v^* \in \partial I_A(a)$ äquivalent zu

$$\langle v^*, v - a \rangle \leq I_A(v) - I_A(a) = I_A(v)$$
 für alle $v \in V$.

Insbesondere muss für alle $b \in A$ gelten:

$$\langle v^*, b - a \rangle \le I_A(b) = 0$$
 bzw. $\langle v^*, b \rangle \le \langle v^*, a \rangle$.

Dies bedeutet, dass jeder Subgradient der Indikatorfunktion I_A im Punkt $a \in A$ auch ein Stützfunktional an die Menge A im Punkt $a \in A$ sein muss, bzw. es gilt die Mengeninklusion:

$$\partial I_A(a) \subset \mathcal{S}(A,a)$$
.

Sei umgekehrt $v^* \in \mathcal{S}(A, a)$ ein beliebiges Stützfunktional der Menge A im Punkt $a \in A$. Aus

$$\langle v^*, a \rangle = \sup_{b \in A} \langle v^*, b \rangle$$

folgt damit für alle $b \in A$:

$$\langle v^*, b - a \rangle \leq 0 = I_A(b) - I_A(a)$$
.

Ist dagegen $v \in V \setminus A$ so beträgt mit $I_A(v) = +\infty$ und $I_A(a) = 0$ die rechte Seite der Subgradientenungleichung immer $+\infty$, bzw. die Subgradientenungleichung ist erfüllt. Daraus folgt auch die Mengeninklusion $\mathcal{S}(A, a) \subset \partial I_A(a)$. Insgesamt gilt also:

$$\partial I_A(v) = \begin{cases} \mathcal{S}(A, v), & \text{falls } v \in A, \\ \emptyset, & \text{falls } v \in V \setminus A. \end{cases}$$

(iii) Der Normalenkegel $N_C(c)$ einer nichtleeren konvexen Teilmenge $C \subset V$ ist in einem Punkt $c \in C$ ist die Menge aller Stützfunktionale der Menge C im Punkt $c \in C$, bzw. ist definiert mittels:

$$N_C(c) = \{v^* \in V^* : \langle v^*, d - c \rangle \le 0 \text{ für alle } d \in C \}.$$

Damit ist die Aussage $v^* \in N_C(c)$ äquivalent zu

$$\langle v^*, c \rangle = \max_{d \in C} \langle v^*, d \rangle$$

was weiter äquivalent ist zu

$$v^* \in \partial I_C(c)$$
.

Damit gilt:

$$N_C(c) = \partial I_C(c)$$
.

Mittels der Stützfunktion I_C^* lässt sich der Normalenkegel $N_C(c)$ charakterisieren durch:

$$N_C(c) = \{v^* \in V^* : I_C^*(v^*) = \langle v^*, c \rangle \}.$$

(iv) Berechnung von Normalenkegeln:

Für die abgeschlossene Einheitskugel $\overline{\mathbb{B}}$ eines normierten Raumes V, beliebigen Vektor $v \in \overline{\mathbb{B}}$ und beliebiges Funktional $v^* \in V^*$ gilt:

$$v^* \in N_{\overline{\mathbb{R}}}(v) \Leftrightarrow \langle v^*, w - v \rangle \le 0$$
 für alle $w \in \overline{\mathbb{B}}$.

Gilt nun $v \in \mathbb{B}_V$, bzw. ist v ein innerer Punkt der Einheitskugel, so gibt es ein $\varepsilon > 0$ mit $v + \varepsilon \mathbb{B}_V \subset \mathbb{B}_V \subset \overline{\mathbb{B}_V}$. Für beliebige Vektoren $w \in \mathbb{B}_V$ gilt damit:

$$v + \varepsilon w \in \mathbb{B}_V \Rightarrow \varepsilon \langle v^*, w \rangle = \langle v^*, (v + \varepsilon w) - v \rangle \leq 0.$$

Dies ist erfüllt nur für das Nullfunktional, dass andererseits immer ein Stützfunktional ist. Damit gilt:

$$v \in \mathbb{B}_V \Rightarrow N_{\overline{\mathbb{R}}}(v) = \{0\} \subset V^*$$
.

Ist nun $v \in \partial \mathbb{B}$ ein Randpunkt der Einheitskugel, bzw. ein Einheitsvektor, so lautet die Stützfunktional-Bedingung:

$$\langle v^*, w \rangle \le \langle v^*, v \rangle$$
 für alle $w \in \overline{\mathbb{B}_V}$,

woraus folgt:

$$0 \le ||v^*||_{V^*} = \langle v^*, v \rangle$$
.

Dies ergibt aber, dass entweder $\langle v^*,v\rangle=0$, oder $\langle v^*,v\rangle>0$ und $\frac{1}{\langle v^*,v\rangle}\,v^*\in J(v)$ gelten muss, wobei $J:V\rightrightarrows V^*$ wieder die Dualitätsabbildung bezeichnet. Andererseits gilt für jedes Funktional $v^*\in J(v)$ und jede Konstante $\alpha\geq 0$:

$$\alpha = \alpha \langle v^*, v \rangle = \alpha \|v^*\|_{V^*} = \|\alpha v^*\|_{V^*} = \sup_{w \in \mathbb{B}_V} \langle \alpha v^*, w \rangle,$$

bzw. für alle $w \in \overline{\mathbb{B}_V}$ gilt:

$$\langle \alpha v^*, v - w \rangle \le 0$$
 und damit $\alpha v^* \in N_{\overline{\mathbb{R}}}(v)$.

Insgesamt gilt also:

$$N_{\overline{\mathbb{B}}}(v) = \begin{cases} \{0\} \subset V^*, & \text{falls } v \in \mathbb{B} = \operatorname{int}(\overline{\mathbb{B}}), \\ [0, +\infty[\cdot J(v), & \text{falls } v \in \partial \mathbb{B}_V. \end{cases}$$

Sei nun H Hilbertraum und $\overline{\mathbb{B}_H} \subset H$ die abgeschlossene Einheitskugel im Hilbertraum H. Da im Hilbertraum die Dualitätsabbildung die Identität ist:

$$J(v) = \{ w \in H : ||w||_H^2 = (w, v)_H = ||v||_H^2 \} = \{ v \},\$$

was daraus folgt, dass die Cauchy-Schwarz-Ungleichung mit Gleichheit gilt genau dann, wenn die in ihr vorkommenden Vektoren linear abhängig sind, so folgt in diesem Fall anhand der vorherigen Teilaufgabe:

$$N_{\overline{\mathbb{B}_H}}(v) = \begin{cases} \{0\} \subset H, & \text{falls } v \in \mathbb{B}_H = \operatorname{int}(\overline{\mathbb{B}_H}), \\ [0, +\infty[\cdot \{v\}, & \text{falls } v \in \partial \mathbb{B}_H = \{v \in H : ||v||_H = 1\}. \end{cases}$$

Im \mathbb{R}^n ist der Dualraum identisch zum Raum selbst, die Stützfunktionale sind also identifizierbar mit Vektoren aus \mathbb{R}^n und die allgemeine Normalen-Bedingung für einen beliebigen Punkt $a \in A \subset \mathbb{R}^n$ ist:

$$N_A(a) = \{ \alpha \in \mathbb{R}^n : (\alpha, b - a)_{\mathbb{R}^n} < 0 \quad \text{ für alle } b \in A \}.$$

Betrachte nun den positiven Orthant $O^+ = [0, +\infty[^n \subset \mathbb{R}^n]$. Er besteht aus n-Tupeln von nichtnegativen reellen Zahlen. Sein Inneres besteht aus n-Tupeln von strikt positiven reellen Zahlen.

Sei $x = (x_1, ..., x_n) \in]0, +\infty[^n$ ein solches n-Tupel. Für jedes $k \in \{1, ..., n\}$ gilt in diesem Fall:

$$y_{k,-} = x - \frac{x_k}{2} e_k \in O^+$$
 und $y_{k,+} = x + \frac{x_k}{2} e_k \in O^+$.

Testen der Normale $\alpha = (\alpha_1, \dots, \alpha_n) \in N_{O^+}(x)$ mit diesen Vektoren liefert:

$$-\frac{x_k}{2} \cdot \alpha_k \le 0$$
 und $\frac{x_k}{2} \cdot \alpha_k \le 0$,

woraus, da alle Einträge x_k von x strikt positiv sind, folgen muss, dass $\alpha = 0$. Da andererseits der Nullvektor immer die Normalen-Bedingung erfüllt, folgt daraus:

$$x \in]0, +\infty[^n = \text{int}(O^+) \Rightarrow N_{O^+}(x) = \{0\}.$$

Sei nun x ein Randpunkt von O^+ , bzw. habe $x = (x_1, \ldots, x_n)$ auch Null-Einträge und sei $\alpha \in N_{O^+}(x)$ eine Normale auf O^+ in x.

Ist für ein $k \in \{1, ..., n\}$ erfüllt, dass $x_k > 0$, so folgt wie bisher durch testen mit den Vektoren $y_{k,+} \in O^+$ und $y_{k,-} \in O^+$, dass $\alpha_k = 0$ gelten muss.

Ist dagegen $x_k = 0$, so gilt mit $x + e_k \in O^+$

$$\alpha_k = (\alpha, e_k)_{\mathbb{R}^n} = (\alpha, (x + e_k) - x)_{\mathbb{R}^n} < 0.$$

Insgesamt lässt sich in diesem Fall zusammenfassend für alle Normalen $\alpha \in N_{O^+}(x)$ schließen:

$$\alpha \in -O^+$$
 und $\alpha_k \cdot x_k = 0$ für alle $k \in \{1, \dots, n\}$ bzw. $(\alpha, x)_{\mathbb{R}^n} = 0$.

Erfülle umgekehrt ein $\alpha \in \mathbb{R}^n$ die Bedingungen:

$$\alpha \in -O^+$$
 und $(\alpha, x)_{\mathbb{R}^n} = 0$,

so gilt für alle $y \in O^+$:

$$(\alpha, y - x)_{\mathbb{R}^n} = (\alpha, y)_{\mathbb{R}^n} - \underbrace{(\alpha, x)_{\mathbb{R}^n}}_{=0} = \sum_{k=1}^n \underbrace{\alpha_k}_{\leq 0} \cdot \underbrace{y_k}_{>0} \leq 0,$$

bzw. α erfüllt die Normalenbedingung an O^+ im Punkt x. Insgesamt gilt in beiden Fällen, sowohl wenn x innerer Punkt von O^+ ist, als auch wenn x ein Randpunkt ist, damit:

$$N_{O^+}(x) = \{ \alpha \in \mathbb{R}^n : \alpha \in -O^+ \text{ und } (\alpha, x)_{\mathbb{R}^n} = 0 \}.$$

Bedingungen dieser Art kommen in der Optimierungstheorie vor und heißen Komplementaritätsbedingungen.

Sei nun $C=\operatorname{epi}(\varphi)\subset V\times\mathbb{R}$ der Epigraph einer eigentlichen, konvexen, unterhalbstetigen Funktion $\varphi:V\to]-\infty,+\infty]$. Stützfunktionale der Menge $\operatorname{epi}(\varphi)$ befinden sich im Produktraum $V^*\times\mathbb{R}$.

Für einen beliebigen Punkt $(v,\mu) \in \text{epi}(\varphi)$ ist die Normalen-Bedingung $(v^*,\alpha) \in N_{\text{epi}(\varphi)}(v,\mu)$ äquivalent zu:

$$0 > \langle (v^*, \alpha), (w, \nu) - (v, \mu) \rangle_{V^* \times \mathbb{R}} |_{V \times \mathbb{R}} = \langle v^*, w - v \rangle_{V^*} |_{V} + \alpha \cdot (\nu - \mu) \text{ für alle } (w, \nu) \in \text{epi}(\varphi).$$

Ist $\mu > \varphi(v)$, so liefert das Testen des Stützfunktionals $(v^*, \alpha) \in N_{\operatorname{epi}(\varphi)}(v, \mu)$ mit Testpunkten $(v, \varphi(v)) \in \operatorname{epi}(\varphi)$ und $(v, 2\mu - \varphi(v)) \in \operatorname{epi}(\varphi)$

$$\alpha = 0$$
 und $\langle v^*, w - v \rangle_{V^*, V} \leq 0$ für alle $w \in D(\varphi)$,

wobei $D(\varphi) = \varphi^{-1}(\mathbb{R})$ den effizienten Definitionsbereich von φ bezeichnet. Sei umgekehrt für einen Punkt $(v, \mu) \in \operatorname{epi}(\varphi)$ mit $\mu > \varphi(v)$ erfüllt, dass $v^* \in N_{D(\varphi)}(v)$ gilt. Dann erfüllt dass Funktional $(v^*, 0) \in V^* \times \mathbb{R}$ die Normalenbedingung an $\operatorname{epi}(\varphi)$ im Punkt (v, μ) , da für alle $(w, \nu) \in \operatorname{epi}(\varphi)$ gilt:

$$\langle (v^*,0),(w,\nu)-(v,\mu)\rangle_{V^*\times\mathbb{R},V\times\mathbb{R}} = \underbrace{\langle v^*,w-v\rangle_{V^*,V}}_{\leq 0 \text{ da } v^*\in N_{D(\varphi)}(v)} + 0 \cdot (\nu-\mu) \leq 0.$$

Damit gilt für alle $v \in D(\varphi)$ und alle $\mu > \varphi(v)$:

$$N_{\operatorname{epi}(\varphi)}(v,\mu) = N_{D(\varphi)}(v) \times \{0\}_{\mathbb{R}}$$
.

Sei nun $v \in D(\varphi)$ beliebig und betrachten wir den Punkt $(v, \varphi(v)) \in \operatorname{epi}(\varphi)$. In diesem Punkt ist die Normalenbedingung $(v^*, \alpha) \in N_{\operatorname{epi}(\varphi)}(v, \varphi(v))$ äquivalent zu:

$$0 \geq \langle (v^*, \alpha), (w, \nu) - (v, \mu) \rangle_{V^* \times \mathbb{R}, V \times \mathbb{R}} = \langle v^*, w - v \rangle_{V^*, V} + \alpha \cdot (\nu - \varphi(v)) \quad \text{für alle } (w, \nu) \in \text{epi}(\varphi) \,.$$

Testen mit $(v, \varphi(v) + 1) \in \text{epi}(\varphi)$ ergibt $\alpha \leq 0$. Ist $\alpha = 0$, so gilt wie vorhin die Äquivalenz

$$(v^*,0) \in N_{\operatorname{epi}(\varphi)}(v,\varphi(v)) \Leftrightarrow v^* \in N_{D(\varphi)}(v)$$

also gilt auch hier

$$N_{D(\varphi)}(v) \times \{0\}_{\mathbb{R}} \subset N_{\mathrm{epi}(\varphi)}(v, \varphi(v))$$
.

Sei nun $(v^*, \alpha) \in N_{\operatorname{epi}(\varphi)}(v, \varphi(v))$ und $\alpha < 0$. Dann liefert die Normalenbedingung für alle $(w, \nu) \in \operatorname{epi}(\varphi)$:

$$\langle v^*, w - v \rangle_{V^*, V} \le -\alpha \cdot (\nu - \varphi(v)) = |\alpha| \cdot (\nu - \varphi(v)),$$

und damit insbesondere für alle $w \in D(\varphi)$:

$$\langle v^*, w - v \rangle_{V^*, V} \le |\alpha| \cdot (\varphi(w) - \varphi(v)) \to \left\langle \frac{v^*}{|\alpha|}, w - v \right\rangle_{V^*, V} \le \varphi(w) - \varphi(v).$$

Dies bedeutet, dass das Funktional $\frac{v^*}{|\alpha|}$ die Subgradienten-Bedingung für φ im Punkt $v \in D(\varphi)$ erfüllt, bzw. es gilt die Implikation:

$$((v^*, \alpha) \in N_{\operatorname{epi}(\varphi)}(v, \varphi(v)) \text{ und } \alpha < 0) \Rightarrow \frac{v^*}{|\alpha|} \in \partial \varphi(v).$$

Sei letztens umgekehrt $v^* \in \partial \varphi(v)$ und $\alpha < 0$ beliebig. Dann gilt für beliebige $w \in D(\varphi)$ und beliebige $\nu \geq \varphi(w)$:

$$\langle v^*, w - v \rangle_{V^*, V} \le \varphi(w) - \varphi(v) \le \nu - \varphi(v) \Rightarrow \langle |\alpha| \cdot v^*, w - v \rangle_{V^*, V} - |\alpha| \cdot (\nu - \varphi(v)) \le 0,$$

was bedeutet, dass $(|\alpha| \cdot v^*, -|\alpha|)$ die Normalen-Bedingung an die Menge epi (φ) im Punkt $(v, \varphi(v))$ erfüllt, bzw. für alle $v^* \in \partial \varphi(v)$ und alle $\alpha < 0$ gilt:

$$(|\alpha| \cdot v^*, -|\alpha|) = (|\alpha| \cdot v^*, \alpha) \in N_{\operatorname{epi}(\varphi)}(v, \varphi(v)),$$

zusammenfassend also:

$$]0, +\infty[\cdot(\partial\varphi(v)\times\{-1\}_{\mathbb{R}})\subset N_{\mathrm{epi}(\varphi)}(v,\varphi(v)),$$

und vielmehr

$$]0, +\infty[\cdot (\partial \varphi(v) \times \{-1\}_{\mathbb{R}}) = N_{\mathrm{epi}(\varphi)}(v, \varphi(v)) \cap (V^* \times] - \infty, 0[) .$$

Damit gilt insgesamt:

$$N_{\mathrm{epi}(\varphi)}(v,\mu) = \begin{cases} N_{D(\varphi)}(v) \times \{0\}_{\mathbb{R}} \,, & \text{falls } v \in D(\varphi) \text{ und } \mu > \varphi(v) \,, \\ N_{D(\varphi)}(v) \times \{0\}_{\mathbb{R}} \, \cup \,]0, +\infty[\cdot \left(\partial \varphi(v) \times \{-1\}_{\mathbb{R}}\right) \,, \\ & \text{falls } v \in D(\varphi) \text{ und } \mu = \varphi(v) \text{ und } \\ \emptyset \,, & \text{falls } v \not \in D(\varphi) \,. \end{cases}$$

(v) Sei $\emptyset \neq A \subset V$ eine beliebige nichtleere Teilmenge eines normierten Raumes V und gelte $D\left(I_A^*\right) \neq \emptyset$, sei also die Stützfunktion I_A^* eigentlich, bzw. gelte für mindestens ein Funktional $v^* \in V^*$:

$$I_A^*(v^*) = \sup_{a \in A} \langle v^*, a \rangle < +\infty$$

Wir wollen folgende Identität zeigen:

$$I_{\operatorname{cl}(\operatorname{co}(A))} = (I_A)^{**}.$$

Laut Satz 3.7 aus Vorlesung, gilt:

$$(I_A)^{**} = \sup \{ g : V \to \mathbb{R} : g \text{ affin und stetig }, g \leq I_A \}.$$

Außerdem ist $(I_A)^{**}: V \to]-\infty, +\infty]$ eine eigentliche, konvexe, unterhalbstetige Funktion mit $(I_A)^{**} \leq I_A$.

Laut Folgerung 3.8 aus Vorlesung, gilt überdies auch:

$$\left(I_A\right)^{**} = \sup\left\{\,g:V\to\right] - \infty, +\infty]\,:\,g\ \text{ konvex und unterhalbstetig}\ ,\,g\leq I_A\,\right\}.$$

Nun ist die Abbildung $I_{\mathrm{cl}(\mathrm{co}(A))}:V\to\{0,+\infty\}$ eigentlich, konvex und unterhalbstetig, da für ihren effizienten Definitionsbereich gilt:

$$D\left(I_{\operatorname{cl}(\operatorname{co}(A))}\right) = \operatorname{cl}(\operatorname{co}(A)) \supset A \neq \emptyset$$
 ist nichtleer, abgeschlossen und konvex.

Aus $A \subset cl(co(A))$ folgt überdies:

$$I_{\operatorname{cl}(\operatorname{co}(A))} \leq I_A \Rightarrow I_{\operatorname{cl}(\operatorname{co}(A))} \in \{g: V \to]-\infty, +\infty]: g \text{ konvex und unterhalbstetig }, g \leq I_A\}.$$

Daraus folgt die Ungleichung:

$$I_{\operatorname{cl}(\operatorname{co}(A))} \leq (I_A)^{**} = \sup \left\{ \, g : V \to \left] - \infty, + \infty \right] \, : \, g \ \, \text{konvex und unterhalbstetig} \ \, , \, \, g \leq I_A \, \right\}.$$

Nun sollen wir noch zeigen, dass $(I_A)^{**} \leq I_{\operatorname{cl}(\operatorname{co}(A))}$ gilt. Dazu genügt es, aufgrund der vorangegangenen Ungleichung, zu zeigen, dass für alle Punkte $x \in \operatorname{cl}(\operatorname{co}(A))$ gilt:

$$(I_A)^{**}(x) = \sup_{v^* \in D(I_A^*)} (\langle v^*, x \rangle - I_A^*(v^*)) \le 0.$$

Sei dazu $v^* \in D(I_A^*)$ beliebig. Dann gilt

$$I_A^*(v^*) = \sup_{a \in A} \langle v^*, a \rangle$$
,

woraus die Ungleichung folgt:

$$\langle v^*, a \rangle \leq I_A^*(v^*)$$
 für alle $a \in A$.

Anhand der Linearität und Stetigkeit von v^* lässt sich diese Ungleichung erweitern auch auf alle Punkte aus den Mengen co(A) (mittels Linearität von v^*) und cl(co(A)) (mittels Stetigkeit von v^*). Damit gilt also auch für alle Punkte $x \in cl(co(A))$:

$$\langle v^*, x \rangle \le I_A^*(v^*)$$
 bzw. $\langle v^*, x \rangle - I_A^*(v^*) \le 0$.

Daraus folgt weiter, da $v^* \in D(I_A^*)$ beliebig war, für beliebige Punkte $x \in \operatorname{cl}(\operatorname{co}(A))$:

$$(I_A)^{**}(x) = \sup_{v^* \in D(I_A^*)} \underbrace{(\langle v^*, x \rangle - I_A^*(v^*))}_{\leq 0} \leq 0.$$

Bemerkung: Ist die Zusatzvoraussetzung $D(I_A^*) \neq \emptyset$ nicht erfüllt, was z.B. zutrifft für alle Mengen $A \subset V$ die überall dicht sind in V, so gilt für alle stetigen linearen Funktionale $v^* \in V^*$ dann

$$\sup_{a \in A} \langle v^*, a \rangle = +\infty \,,$$

und damit $I_A^* = \text{const.} = +\infty$, sowie auch $(I_A)^{**} = \text{const.} = +\infty$. Dann gilt die obere Charakterisierung der Menge cl(co(A)) mittels der Bikonjugierten der Indikatorfunktion I_A nicht. Dies ist auch das einfachste Beispiel dafür, dass die Voraussetzung $D(\varphi^*) \neq \emptyset$ in Satz 3.7 und Folgerungen 3.8 und 3.9 aus der Vorlesung unverzichtbar ist.

Aufgabe 4.3. (Zusammenhang zwischen Subdifferential und Konjugation)

Lösungsvorschlag zur Aufgabe 4.3: siehe Lösungsvorschläge zu Übungsblatt 4.

Aufgabe 5.2. (Eigenschaften des Subdifferentials)

(a) (Definitionsbereich des Subdifferentials)

Sei V normierter Raum und $\varphi:V\to]-\infty,+\infty]$ konvex. Laut Satz 4.11 aus Vorlesung ist das Subdifferential von φ in jedem Stetigkeitspunkt von φ nichtleer. Wiederholen Sie den Beweis dieses Satzes, beweisen Sie insbesondere, dass $\operatorname{epi}(\varphi)$ nichtleeres Inneres besitzen muss falls φ in mindestens einem Punkt stetig ist.

Zeigen Sie über die Aussage des Satzes 4.11 hinaus, dass, falls u Stetigkeitspunkt von φ ist, ein $\varepsilon > 0$ existiert, so dass die Menge:

$$\partial \varphi (u + \varepsilon \mathbb{B}_V) = \bigcup_{v \in \mathbb{B}_V} \partial \varphi (u + \varepsilon v)$$
 beschränkt ist .

- (b) (Topologische Eigenschaften des Subdifferentials)
 - Sei V normierter Raum und $\varphi:V\to]-\infty,+\infty]$ konvex, unterhalbstetig und eigentlich. Zeigen Sie dass das Subdifferential $\partial\varphi(v)\subset V^*$ in jedem Punkt $v\in V$ abgeschlossen und konvex ist.
- (c) (Folgen der Beschränktheit des Subdifferentials im endlichdimensionalen Fall) Sei $\varphi: \mathbb{R}^n \to \mathbb{R}$ konvex. Folgern Sie anhand der Teilaufgaben (a) und (b) dass das Subdifferential von φ in jedem Punkt $x \in \mathbb{R}^n$ nichtleer, konvex und kompakt ist. Zeigen Sie weiter: ist $X \subset \mathbb{R}^n$ eine beliebige beschränkte Menge, so ist die Menge

$$\bigcup_{x \in X} \partial \varphi(x) \quad \text{ebenfalls beschränkt} \ .$$

Konvergiert die Folge $(x_k)_{k\in\mathbb{N}}\subset\mathbb{R}^n$ gegen einen Grenzwert $x\in\mathbb{R}^n$ und gilt

$$d_k \in \partial \varphi(x_k)$$
 für alle $k \in \mathbb{N}$,

so ist die Folge $(d_k)_{k\in\mathbb{N}}\subset\mathbb{R}^n$ beschränkt und für jeden Häufungspunkt d dieser Folge gilt:

$$d \in \partial \varphi(x)$$
.

Folgern Sie nun, dass φ auf jeder beschränkten Menge $X \subset \mathbb{R}^n$ Lipschitz-stetig ist, bzw. das ein $L_X > 0$ existiert, so dass

$$|\varphi(x) - \varphi(y)| \le L_X ||x - y||_{\mathbb{R}^n}$$
 gilt für alle $x, y \in X$.

Überdies gilt für alle $x \in X$ und beliebige Richtungen $h \in \mathbb{R}^n$:

$$|\varphi'(x;h)| \leq L||x||_{\mathbb{R}^n}$$
.

(d) (Zusammenhang des Subdifferentials und der Richtungsableitungen) Sei V normierter Raum und $\varphi:V\to]-\infty,+\infty]$ konvex, unterhalbstetig und eigentlich. Dann gilt:

$$\partial \varphi(v) = \left\{ v^* \in V^* \, : \, \varphi'(v; h) \ge \langle v^*, h \rangle \text{ für alle } h \in V \right\}.$$

Ist φ stetig im Punkt $v \in V$, so gilt für alle Richtungen $h \in V$:

$$\varphi'(v,h) = \sup \{ \langle v^*, h \rangle : v^* \in \partial \varphi(v) \}.$$

Lösungsvorschlag zu Aufgabe 5.2. folgt noch.

Aufgabe 5.3. (Rechenregeln für das Subdifferential)

(a) Sei V normierter Raum und $\varphi: V \to]-\infty, +\infty]$ konvex. Zeigen Sie dass für alle $u, v \in V$ und alle $\lambda \in [0,1]$ gilt:

$$\partial \varphi(u) \cap \partial \varphi(v) \subset \partial \varphi(\lambda u + (1 - \lambda)v)$$
.

(b) (Additionsformel für Subdifferentiale)

Beweisen Sie den Satz 4.13 aus Vorlesung:

sei V normierter Raum und $\varphi_1, \varphi_2 : V \to]-\infty, +\infty]$ konvex und eigentlich. Gibt es wenigstens einen Punkt $u_0 \in D(\varphi_1) \cap D(\varphi_2)$ in dem mindestens eine der Abbildungen φ_1, φ_2 stetig ist, so gilt:

$$\partial(\varphi_1 + \varphi_2)(u) = \partial\varphi_1(u) + \partial\varphi_2(u)$$
 für alle $u \in V$.

(c) (Kettenregel für das Subdifferential)

Beweisen Sie den Satz 4.14 aus Vorlesung:

seien V, W Banachräume, $A \in L(V, W), \varphi : W \to]-\infty, +\infty]$ konvex. Gibt es mindestens einen Punkt $u_0 \in V$ so dass φ stetig ist im Punkt Au_0 , so gilt:

$$\partial(\varphi \circ A)(u) = (A^*\partial\varphi)(Au)$$
 für alle $u \in V$.

Lösungsvorschlag zu Aufgabe 5.3. folgt noch.