

Model Optimization and Tuning Phase

Template

Date	11 July 2024
Team ID	SWTID1720162737
Project Title	Predicting Compressive Strength Of Concrete Using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Linear Regression		acc=r2_score(y_test,pred) print('accuracy of linear regression Regression: ',acc*100) accuracy of linear regression Regression: 58.61758560675364
Ridge Regression		acc=r2_score(y_test,pred) print('accuracy of Ridge regression Regression:',acc*100) accuracy of Ridge regression Regression: 58.61760529691513
Lasso Regression		acc=r2_score(y_test,pred) print('accuracy of lasso regression Regression:',acc*100) accuracy of lasso regression Regression: 58.78727632129104


```
# Initialize the RandomForestRegressor
rfr = RandomForestRegressor()
                                         param_grid = {
                                              Random
                                                                                                                                           print(f'Optimal Hyperparameters:{best_params}')
                                                                                                                                           acc=r2_score(y_test,pred)
                                                                                                                                           print('accuracy of RandomForestRegression:',acc*100)
Forest
                                                                                                                                           Optimal Hyperparameters:{'bootstrap': True, 'max_depth': None, 'min_samples_leaf': \underline{\mathbf{1}}, 'min_
                                                                                                                                           samples_split': 2, 'n_estimators': 200}
                                         Regression
                                                                                                                                           accuracy of RandomForestRegression: 93.22882639139073
                                        # Fit the model
grid_search.fit(x_train, y_train)
                                       GridSearchCV got the higher accuracy.
Decision Tree
                                                                                                                                           acc=r2_score(y_test,pred)
                                                                                                                                           print('accuracy of Decision Tree Regression:',acc*100)
                                                                                                                                            accuracy of Decision Tree Regression: 88.49267192424941
Regression
Gradient
                                                                                                                                           print(f'Optimal Hyperparameters:{best_params}')
acc=r2_score(y_test,pred)
print('accuracy of Gradient Boosting Regressor:',acc*100)
                                                                                                                                           Optimal Hyperparameters:('learning_rate': 0.15116629677573892, 'max_depth': 9, 'max_feature
s': 'sqrt', 'min_samples_leaf': 12, 'min_samples_split': 18, 'n_estimators': 352, 'subsampl
e': 0.935392305505594)
Boosting
regression
                                                ing and building XGBoost Regression using RandomizedSearchCV
                                                                                                                                           print(f'Optimal Hyperparameters:{best_params}')
                                                                                                                                           acc=r2_score(y_test,pred)
                                                                                                                                           print('accuracy of XGBoost Regression:',acc*100)
XGBoost
                                                                                                                                          Optimal Hyperparameters:{'colsample bytree': 0.954660201039391, 'learning_rate': 0.06175599 6320003385, 'max_depth': 6, 'min_child_weight': 2, 'n_estimators': 489, 'subsample': 0.6039
                                        # Initialize RandomizedSearchCV
random_search = RandomizedSearchCV(estimator=og, param_distributions=param,
n_iter=100, ev=5, verbose=2, random_state=42, n_jobs=-1)
Regression
                                                                                                                                           accuracy of XGBoost Regression: 94.18826209575943
                                       RandomizedSearchCV got the higher accuracy.
```

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric

Linear Regression	<pre>print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MAE:', metrics.mean_absolute_error(y_test,pred)) print('RMSE:' ,np.sqrt(metrics.mean_squared_error(y_test,pred))) MSE: 110.18594180669501 MAE: 8.261594213211119 RMSE: 10.49694916662432</pre>
Ridge Regression	<pre>print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MAE:', metrics.mean_absolute_error(y_test,pred)) print('RMSE:' ,np.sqrt(metrics.mean_squared_error(y_test,pred))) MSE: 110.18588937913565 MAE: 8.261589878127149 RMSE: 10.49694666934798</pre>
Lasso Regression	<pre>print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MAE:', metrics.mean_absolute_error(y_test,pred)) print('RMSE:' ,np.sqrt(metrics.mean_squared_error(y_test,pred))) MSE: 109.73411869605009 MAE: 8.244898906700172 RMSE: 10.475405419173526</pre>
Random Forest Regression	<pre>print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MAE:', metrics.mean_absolute_error(y_test,pred)) print('RMSE:' ,np.sqrt(metrics.mean_squared_error(y_test,pred))) MSE: 23.587089288556324 MAE: 3.514265078126178 RMSE: 4.856654124863775</pre>
Decision Tree Regression	<pre>print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MAE:', metrics.mean_absolute_error(y_test,pred)) print('RMSE:' ,np.sqrt(metrics.mean_squared_error(y_test,pred))) MSE: 30.63972463414634 MAE: 3.6327804878048777 RMSE: 5.5353161277515435</pre>
Gradient Boosting regression	<pre>print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MAE:', metrics.mean_absolute_error(y_test,pred)) print('RMSE:' ,np.sqrt(metrics.mean_squared_error(y_test,pred))) MSE: 25.861465265637968 MAE: 3.6224784271501735 RMSE: 5.085416921515675</pre>

print('MSE:', metrics.mean_squared_error(y_test,pred))
print('MAE:', metrics.mean_absolute_error(y_test,pred))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test,pred)))
XGBoost Regression

MSE: 15 474491372763513

MSE: 15.474491372763513 MAE: 2.4343691059205588 RMSE: 3.933763004142918

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Gradient Boosting	'Gradient Boosting Regression' the best performance and generalizability on
Regression.	unseen data, considering factors beyond just raw accuracy.