Introduction to Machine Learning

Chap I: Basic concepts

Julien Donini LPC/Université Clermont Auvergne

Foreword

Since about 10 years a new era started for Machine Learning

- ML librairies became much accessible
- Fast execution of code (Graphics Processing Units)
- High performance computing: data centers, clusters
- New ideas and algorithms: VAE (2013), GAN (2104), ADAM (2014)...
- Complexity is not an issue: Deep Learning, ...
- Extremely large area of applications: industry, science, ...

Objective of this lecture

Demistification of "Artificial Intelligence"

Basic **understanding** = stats and maths

Knowledge of some common algorithms

Motivate you to go further and practice ML

Outline of the ML course

Lectures

Chap I: Basic concepts on ML

Chap II: Regression

Chap III: Classification

Practice sessions

Introduction to Machine Learning

Code on Git: (7)

https://github.com/judonini/MLcourses

Sections marked with (*) are more advanced \rightarrow non examinable for DU students

This week

Introduction

Buzzwords

Machine Learning: statistics + computing + "learn" parameters from data

Big Data: same as above + techniques to handle lots of data

Artificial intelligence: same as above but sounds smarter

Data Science: same as above but sounds more scientific

Differentiable programming:

OK, Deep Learning has outlived its usefulness as a buzz-phrase. Deep Learning est mort. Vive Differentiable Programming!

- Speech and handwriting recognition
- Language processing
- Image recognition
- Fraud detection
- Financial market analysis
- Search engines
- Spam and virus detection
- Medical diagnosis
- Robotic control
- Automation (self-driving cars)
- Advertising
- Physical science
- ...

```
384031

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

95636

9
```

MNIST database

60,000 training images 10,000 testing images.

Human error rate ~ 2%

Best ML error rate: 0.2%

- Speech and handwriting recognition
- Language processing
- Image recognition
- Fraud detection
- Financial market analysis
- Search engines
- Spam and virus detection
- Medical diagnosis
- Robotic control
- Automation (self-driving cars)
- Advertising
- Physical science
- ...

Deep learning translator https://www.deepl.com

- Speech and handwriting recognition
- Language processing
- Image recognition
- Fraud detection
- Financial market analysis
- Search engines
- Spam and virus detection
- Medical diagnosis
- Robotic control
- Automation (self-driving cars)
- Advertising
- Physical science

• ...

- Speech and handwriting recognition
- Language processing
- Image recognition generation!
- Fraud detection
- Financial market analysis
- Search engines
- Spam and virus detection
- Medical diagnosis
- Robotic control
- Automation (self-driving cars)
- Advertising
- Physical science
- •

(Arjovsky et al, 2017)

Warm up

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		ω			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

What is Machine Learning

What is Machine Learning

Output
$$y(x,w) = t$$
 Target

Examples

- **X** = {age, year, education, ...} → **t**: income
- **X** = {image pixel values} → **t**: face recognition
- **X** = {list of words} → **t**: spam detection
- **X** = {E, p, ...} → **t**: particle detection

...

Classification

Dog

```
[[[ 7.4280e-02, 1.4022e-01, -2.2258e-02, ..., -2.0172e-01, 1.6240e-01, 5.5748e-02], [-1.1771e-02, -1.1327e-01, 3.0360e-01, ..., 4.6299e-01, 3.4765e-02, 2.2633e-02], [ 2.2252e-02, 2.1568e-01, -3.5726e-01, ..., -7.4589e-02, 7.0776e-02, 1.3573e-01], ..., [ 1.1035e-01, -2.4609e-01, 1.9962e-01, ..., 2.4133e-01, -2.1069e-01, 1.9942e-01], [ 2.9337e-02, 2.4997e-01, 1.0341e-02, ..., -3.1368e-01, -1.6878e-01, -1.4741e-02], [ 4.4006e-02, 5.1292e-02, 5.0462e-02, ..., -8.1194e-02, 1.6043e-01, -5.7106e-03]]],
```


Example: Neural Networks

Example: Neural Networks

$$\mathbf{W} \to \mathbf{W} - \eta \sum_{N} \frac{\partial \ell(\mathbf{y}, \mathbf{t})}{\partial \mathbf{W}}$$

Common type of learning

Supervised (labels are known)

Unsupervised (no labels)

Semi-supervised (few labels)

- labels of class 1
- labels of class 2
- unknown class
- decision boundary

Unsupervised learning

Unsupervised learning = no labels

Semi-supervised learning

Semi-supervised learning = unlabelled data + few labels

Example of the influence of unlabelled data in semisupervised learning.

The unlabelled data (grey dots) influence the separation of the two classes (decision surface)

Representation learning

Representation is how we present the information (data) to solve a problem

Example: what is the best number representation to perform this division?

Decimal 121:11

Roman CXXI / XI

Binary 1111001: 1011

Hex 79: B

ASCII y: VT

Representation learning

Representation is how we present the information (data) to solve a problem

Example: what are the best coordinates to separate this data?

Representation learning

Representation is how we present the information (data) to solve a problem

For ML a good representation is one that makes the **learning task easier**

ML algorithms can also learn best representation: representation learning

→ Central to deep learning : learn complex representation from simpler ones

Class of **ML algorithms** (in general artificial neural networks) that use **multiple layer** to **extract higher level features** from raw data

[wikipedia]

Class of **ML algorithms** (in general artificial neural networks) that use **multiple layer** to **extract higher level features** from raw data

Adding layers can help uncovering specific data patterns [Montufar, 1402.1869]:

The absolute value activation function $g(x_1,x_2) \rightarrow |x_1|,|x_2|$ folds a 2D space twice.

Each hidden layer of a deep neural network can be associated to a folding operator.

The folding can **identify symmetries** in the boundaries that the NN can represent.

Shallow Neural Networks

(1 or 2 hidden layers)

Deep Neural Network

(more layers)

https://medium.com/analytics-vidhya/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5

Neural Networks today

Deep Residual Network (DRN)

Neuromorphic computing

http://www.asimovinstitute.org/neural-network-zoo/

Kohonen Network (KN) Support Vector Machine (SVM)

Neural Turing Machine (NTM)

Deep learning algorithms are very efficient in many domains (in particular image recognition), but they require **a lot of data to train** because of large number of **dimensions** and high number of **hyperparameters**.

Illustration: the "curse of dimensionality

Simple example: classify each region depending on majority of labels

As dimensions grows, dimensions space increases exponentially. Classification ok for ~2 variables, but fails at higher dimensions!

Deep learning algorithms are very efficient in many domains (in particular image recognition), but they require **a lot of data to train** because of large number of **dimensions** and high number of **hyperparameters**.

Illustration: the "curse of dimensionality

In a hypercube of length 1 and dimension \mathbf{p} a fraction \mathbf{r} of the volume corresponds to an edge length $\mathbf{e}_{n}(\mathbf{r}) = \mathbf{r}^{1/p}$

- p=10 and r=1%: $e_{10}(0.01)=0.63$
- p=10 and r=10%: $e_{10}(0.1)=0.80$

To contain 1% or 10% of the volume we must cover 63% or 80%, respectively, of the range of each input variable!

Algorithms get so complex that it is difficult to interpret what they really do!

Also their complexity can become a weakness/threat:

School bus

Bird (partridge)

Temple

[arxiv:1312.6199]

Algorithms get so complex that it is difficult to interpret what they really do!

Also their complexity can become a **weakness/threat**:

Bird (partridge)

Temple

Ostrich!

Ostrich!

Ostrich!

[arxiv:1312.6199]

Julien Donini

Perturbation

Algorithms get so complex that it is difficult to interpret what they really do!

Also their complexity can become a weakness/threat:

 $+.007 \times$

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode"
8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"
99.3 % confidence

[arxiv:1412.6572]

References

References (non exhaustive!) & credits

Classical Machine Learning textbooks

- Elements of statistical learning (ESL), Hastie et al., Springer
- An Introduction to Statistical Learning (ISLR), Hastie et al. Springer
 - Both books available online: http://web.stanford.edu/~hastie/pub.htm
- Pattern Recognition and Machine Learning, Bishop, Springer
- Deep learning book, I. Goodfellow et al, http://www.deeplearningbook.org/

A *lot* of courses, lectures and tutorial on the web

- Online courses: DataCamp, Coursera, Andrew Ng (http://cs229.stanford.edu/)
- CERN lectures (ex: Kagan https://indico.cern.ch/event/619370)
- 2 recommended lectures:
 - François Fleuret (EPFL) https://fleuret.org/ee559/
 - Gilles Louppe (University Liège)https://github.com/glouppe/info8010-deep-learning

ML cheatsheet: https://ml-cheatsheet.readthedocs.io/en/latest/index.html

ML in practice

Python resources

- A Crash Course in Python for Scientists: http://nbviewer.jupyter.org/gist/rpmuller/5920182
- Introduction to scientific computing with Python: http://github.com/jrjohansson/scientific-python-lectures
- Python Tutorial: https://www.codecademy.com/tracks/python

Notebooks basics

- Installation (recommended): https://www.anaconda.com/download
- Jupyter Notebook documentation: https://jupyter-notebook.readthedocs.io/en/stable/
- Interactive notebooks: https://mybinder.org/
- Introduction with video tutorial: https://www.youtube.com/watch?v=Duicsycntdo

Git

- Git documentation: https://book.git-scm.com/
- Github: https://github.com/
- GitLab (CERN) basics: https://gitlab.cern.ch/help/gitlab-basics/start-using-git.md
- Tutorial (in FR): https://github.com/clr-info/tuto-git
 https://openclassrooms.com/en/courses/1233741-gerez-vos-codes-source-avec-git

ML software and interfaces

Popular tools

- Data format: text, csv, images, HDF5, ...
- ML libraries: Keras+TensorFlow, Pytorch, scikit-learn (no DL), ...
- All kinds of popular algorithms: CNN, GAN, RNN, LSTM, AE, VAE ...

Tools specific for physicist (HEP)

- ROOT framework for data storage and processing
- Multivariate Analysis: TMVA for mostly BDT and (deep) NN
- PyMVA: Interface TMVA and Keras
- Several middleware file format conversion solutions:

arxiv:1807.02876

PyROOT	Python extension module that allows the user to interact with ROOT data/classes. [69]					
root_numpy	The interface between ROOT and NumPy supported by the Scikit-HEP community. 65					
root_pandas	The interface between ROOT and Pandas dataframes supported by the DIANA/HEP project. 70					
uproot	A high throughput I/O interface between ROOT and NumPy. [71]					
c2numpy	Pure C-based code to convert ROOT data into Numpy arrays					
	which can be used in C/C++ frameworks. [72]					
root4j	The hep.io.root package contains a simple Java interface for reading ROOT files.					
	This tool has been developed based on freehep-rootio. [73]					
root2npy	The go-hep package contains a reading ROOT files.					
	This tool has been developed based on freehep-rootio. [73]					
root2hdf5	Converts ROOT files containing TTrees into HDF5 files containing HDF5 tables. 74					

Scikit-learn (scikit-learn.org)

Home Ins

ıllation Documentation

Examples

Google Custom Search

Search

scikit-learn

Machine Learning in Python

- Simple and efficient tools for data mining and data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.

Algorithms: SVM, nearest neighbors, random forest, ... — Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. **Algorithms**: SVR, ridge regression, Lasso,

Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering,

mean-shift, ... — Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Algorithms: PCA, feature selection, nonnegative matrix factorization. — Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning

Modules: grid search, cross validation,
metrics.
— Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. **Modules:** preprocessing, feature extraction.

- Examples

News

On-going development: What's new (Changelog)

Community

About us See authors and contributing

More Machine Learning Find related projects

Who uses scikit-learn?

Deep Learning libraries

www.tensorflow.org

Pytorch.org

Keras.io

You have just found Keras.

Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result

Notebooks

Jupyter notebooks: jupyter.org

Google colab

https://colab.research.google.com/notebooks/intro.ipynb#recent=true

Resources

Lectures and exercices on ENT

https://ent.uca.fr/moodle/course/view.php?id=22704

Git hub

https://github.com/judonini/MLcourses

Practice sessions on local Linux computer cluster

Setup ML environment: conda activate mlearning

Summary

Machine Learning is based on statistics and computing (and lots of data!)

Not new ('40s) but field in **exponential evolution** since ~10 years

Today: huge amount of resources and tools on the web

However real **understanding** of ML requires some efforts

Worth it because ML is evermore present in our work and life