Unit 7 Nonlinear System Solutions

Numerical Analysis

May 12, 2015

Numerical Analysis

Unit 7 Nonlinear System Solutions

May 12, 2015

1 / 25

Rootfinding of Nonlinear Equations

• Finding numerical solutions of nonlinear equations are needed in many applications. For example,

$$x - \log^2(x) = 0.9$$

For easy treatment, the equation is reformulated as

$$x - \log^2(x) - 0.9 = 0$$

Thus, we need to find the root of the nonlinear equation. In general, we write

$$f(x) = 0 \tag{7.1.1}$$

where f(x) is a nonlinear equation. It is also assumed that f(x) is continuous differentiable in our analysis.

Numerical Analysis (Nonlinear systems)

Unit 7 Nonlinear System Solutions

May 12, 2015

Iterative Approaches

- A general approach to solving a nonlinear equation is the iterative approach.
- The aim is to generate a sequence of $x^{(k)}$ such that

$$\lim_{k \to \infty} x^{(k)} = x^*, \tag{7.1.2}$$

with $f(x^*) = 0$.

Definition. 7.1.1.

A sequence $\{x^{(k)}\}$ generated by a numerical method is said to converge to x^* with order $p \ge 1$ if there are constants $k_0, C > 0$ such that

$$\frac{\left|x^{(k+1)} - x^*\right|}{\left|x^{(k)} - x^*\right|^p} \le C, \qquad k \ge k_0, \tag{7.1.3}$$

where k_0 is an integer. In this case, the method is said to be of order p. Note that if p=1, then in order for $x^{(k)}$ to converge to x^* it is necessary C<1, and C is called the convergence factor of the method.

• It is known that the convergence behavior of most iterative methods depend on the initial point x_0 . Thus, they are local convergent in contrast to globally convergent methods, in which convergence holds for any choice of $x^{(0)}$.

Numerical Analysis (Nonlinear systems)

Unit 7 Nonlinear System Solutions

May 12, 2015

3 / 25

Bisection Method

• A group of geometry based methods are based on the following theorem.

Theorem 7.1.2. Zeros for continuous functions.

Given a continuous function $f:[a,b]\to\mathbb{R}$ such that f(a)f(b)<0, the there is a $x^*\in(a,b)$ such that $f(x^*)=0$.

• The bisection method is then

Algorithm 7.1.3. Bisection Method.

```
Given a, b such that f(a)f(b)<0, and a small \epsilon>0, let a^{(0)}=a, b^{(0)}=b, x^{(0)}=(a^{(0)}+b^{(0)})/2, k=0, while (|x^{(k)}-a^{(k)}|>\epsilon) { if (f(x^{(k)})f(a^{(k)})\leq 0 then { a^{(k+1)}=a^{(k)}, b^{(k+1)}=x^{(k)}, } else { a^{(k+1)}=x^{(k)}, b^{(k+1)}=b^{(k)}, } k=k+1, } .
```

Bisection Method, II

Given the function

$$f(x) = x - \log^2(x) - 0.9$$

- The first few iterations of bisection method are shown below left.
- ullet The bisection method terminates after m iterations for which

$$|x^{(m)} - x^*| \le |b^{(m)} - a^{(m)}| \le \epsilon.$$
 (7.1.4)

• Let the absolute error at iteration k be

$$e^{(k)} = |x^{(k)} - x^*|. (7.1.5)$$

The convergence behavior of the bisection method is also plotted below.

Numerical Analysis (Nonlinear systems)

Unit 7 Nonlinear System Solutions

May 12, 2015

5 / 25

Bisection Method, III

• At iteration k, we have

$$|x^{(k)} - x^*| \le b^{(k)} - a^{(k)} = \frac{b^{(k-1)} - a^{(k-1)}}{2} = 2^{-k} \times (b^{(0)} - a^{(0)})$$
 (7.1.6)

Thus, as $k \to \infty$, $x^{(k)} \to x^*$.

- Bisection method is convergent.
 - It is convergent if $f(a)f(b) \le 0$, regardless of the value of a and b.
 - Bisection method converges globally.
- The bisection method terminates when

$$|x^{(m)} - x^*| \le a^{(m)} - b^{(m)} \le \epsilon.$$

From Eq (7.1.6), we have

$$\epsilon \le 2^{-m} \times (b^{(0)} - a^{(0)}),$$
 (7.1.7)

Or

$$m \ge \log_2\left(\frac{b-a}{\epsilon}\right). \tag{7.1.8}$$

Thus, it takes m iterations to reach the accuracy of ϵ regardless of what function we are solving.

- Bisection method is convergent with a fixed rate.
- Also note from the figure the absolute error is not monotonically decreasing.

Taylor Series Expansion

• It is assume that $f(x^*) = 0$. If x is near x^* then we can expand f(x) at x as

$$f(x^*) = 0 = f(x) + f'(\xi)(x^* - x), \tag{7.1.9}$$

with ξ between x and x^* . Or,

$$x^* = x - (f'(\xi))^{-1} f(x). \tag{7.1.10}$$

Thus, some iterative methods were developed based on the above equation

$$x^{(k+1)} = x^{(k)} - (f'(\xi))^{-1} f(x^{(k)}). \tag{7.1.11}$$

with proper approximation for $f'(\xi)$.

• A simple approximation of $f'(\xi)$ is simply

$$f'(\xi)) = \frac{f(b) - f(a)}{b - a}. (7.1.12)$$

This is the Chord method.

Numerical Analysis (Nonlinear systems)

Unit 7 Nonlinear System Solutions

May 12, 2015

7 / 25

Chord Method

Algorithm 7.1.4. Chord Method.

Given a, b such that f(a)f(b) < 0, and a small $\epsilon > 0$, let $g = \frac{f(b) - f(a)}{b - a}, \ x^{(0)} = b, \ k = 0 \ , \ err^{(0)} = 1 + \epsilon,$ while $(err^{(k)} > \epsilon)$ { $x^{(k+1)} = x^{(k)} - f(x^{(k)})/g, \qquad k = k+1, \\ err^{(k)} = |f(x^{(k)})|,$ } .

- $f'(\xi)$ is assumed to be constant for the chord method.
- Once $f'(\xi)$ is found, each iteration is rather quick
 - It is usually more efficient to use $1/f'(\xi)$ in the iterations.
- Overall convergence rate is slower, but the convergent behavior is smoother.

Chord Method, II

Regula Falsi Method

- The chord method was observed to have slow convergence rate with a constant approximation on $f'(\xi)$.
- ullet The regula falsi, or false position, method recalculates $f'(\xi)$ every iteration.
- But it needs to enforce the condition $f(a)f(b) \leq 0$.
- Once the new point, x, is located the range, [a, b], is updated and iteration carried out with new a and b.
- Smooth convergent with the regula falsi method.
- Note that for concave or convex functions $\{x_k\}$ approaches to x^* from one side.

Regula Falsi Method, II

Algorithm 7.1.5. Regula Falsi Method.

```
Given a, b such that f(a)f(b) < 0, and a small \epsilon > 0, let a^{(0)} = a, b^{(0)} = b, k = 0, err^{(0)} = 1 + \epsilon, while (err^{(k)} > \epsilon) {  x^{(k+1)} = a^{(k)} - f(a^{(k)}) \frac{b^{(k)} - a^{(k)}}{f(b^{(k)}) - f(a^{(k)})} \text{ ,}  if (f(x^{(k+1)})f(a^{(k)}) \leq 0 then {  a^{(k+1)} = a^{(k)}, \ b^{(k+1)} = x^{(k+1)},  } else {  a^{(k+1)} = x^{(k+1)}, \ b^{(k+1)} = b^{(k)},  }  k = k + 1,   err^{(k)} = |f(x^{(k)})|,  } .
```

Numerical Analysis (Nonlinear systems)

Unit 7 Nonlinear System Solutions

May 12, 2015

11 / 25

Regula Falsi Method, III

- The sequence generated by the regula falsi method falls in the interval [a, b], thus, the regula falsi method is globally convergent if $f(a) \cdot f(b) < 0$.
- The regula falsi method is convergent with order 1 (linear convergent).

Secant Method

- The regula falsi method was observed to converge from one side.
 - $f'(\xi)$ is not approaching $f'(x^*)$.
- The secant method calculates $f'(\xi)$ using the last two points, $x^{(k-1)}$ and $x^{(k-2)}$.
 - It dose not maintain the region [a, b];
 - $f(x^{(k-1)})f(x^{(k-2)}) \le 0$ is not required
- Faster convergence if initial guess is close to x^* .

Numerical Analysis (Nonlinear systems)

Unit 7 Nonlinear System Solutions

May 12, 2015

13 / 25

Secant Method, II

Algorithm 7.1.6. Secant Method.

Given $x^{(-1)}$, $x^{(0)}$ and a small $\epsilon>0$, let k=0 , $err^{(0)}=1+\epsilon$, while $(err^{(k)}>\epsilon)$ { $x^{(k+1)}=x^{(k)}-f(x^{(k)})\frac{x^{(k)}-x^{(k-1)}}{f(x^{(k)})-f(x^{(k-1)})} \text{ , }$ k=k+1, $err^{(k)}=|f(x^{(k)})|$, } .

- It is not required $f(x^{(k-1)})f(x^{(k)})<0$, it is possible that $|x^{(k)}|\gg 1$ and the iteration diverges
- Secant method is not global convergent
 - Local convergent only
 - Initial guesses, $x^{(-1)}$ and $x^{(0)}$, need to be close to x^* to ensure a converged solution
- ullet Note also that the rate of convergence improves as $x^{(k)}$ is getting closer to x^*

Secant Method, III

Theorem 7.1.7.

If $f(x) \in C^2$ for $x \in [a,b]$ and $f(x^*) = 0$ with $f'(x^*) \neq 0$, then if $x^{(-1)}$ and $x^{(0)}$ are sufficiently close to x^* , the sequence generated by secant method converges to x^* with the order $p = (1 + \sqrt{5})/2 \approx 1.63$.

Numerical Analysis (Nonlinear systems)

Unit 7 Nonlinear System Solutions

May 12, 2015

15 / 25

Newton's Method

- \bullet The chord, regula falsi and secant methods approximate $f'(\xi)$ with different formulas to get converged solution
- As $x^{(k)} \to x^*$ and $f'(\xi) \to f'(x^*)$ the convergence rate improves in secant method
- Newton's method calculates $f'(x^{(k)})$ in the place of $f'(\xi)$
- Faster convergence rate is thus obtained

Newton's Method, II

Algorithm 7.1.8. Newton's Method.

```
Given x^{(0)} and a small \epsilon > 0, let k = 0, err^{(0)} = 1 + \epsilon, while (err^{(k)} > \epsilon) {  x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}   k = k+1,   err^{(k)} = |f(x^{(k)})|,  } .
```

- In Newton's method, the derivative need to be evaluated at each iteration
- \bullet $f'(x^{(k)})$ may be expensive to evaluate
- But with explicit $f'(x^{(k)})$ the convergence rate improves
- Only one initial guess is needed, $x^{(0)}$.
- ullet The initial guess needs to be close to x^* , otherwise Newton's iteration may diverge
 - Newton's method is local convergent only
 - ullet with initial guess $x^{(0)}=2.5$ Newton's method may not converge at all

Numerical Analysis (Nonlinear systems)

Unit 7 Nonlinear System Solutions

May 12, 2015

17 / 25

Newton's Method, III

Newton's Method, IV

• To find the convergence order of Newton's method, we need to compare $|x^{(k+1)}-x^*|$ and $|x^{(k)}-x^*|$.

$$x^{(k+1)} - x^* = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})} - x^*$$
(7.1.13)

Note that by Taylor series expansion

$$f(x^*) = f(x^{(k)}) + (x^* - x^{(k)})f'(x^{(k)}) + \frac{(x^* - x^{(k)})^2}{2}f''(\xi_k) = 0$$
 (7.1.14)

Thus

$$\frac{f(x^{(k)})}{f'(x^{(k)})} = x^{(k)} - x^* - \frac{(x^* - x^{(k)})^2}{2} \cdot \frac{f''(\xi_k)}{f'(x^{(k)})}$$
(7.1.15)

And

$$x^{(k+1)} - x^* = \frac{(x^* - x^{(k)})^2}{2} \cdot \frac{f''(\xi_k)}{f'(x^{(k)})}$$
(7.1.16)

$$\frac{x^{(k+1)} - x^*}{(x^{(k)} - x^*)^2} = \frac{f''(\xi_k)}{2f'(x^{(k)})}$$
(7.1.17)

If $f'(x^*)$ and $f''(x^*)$ both are finite and nonzero, then Newton's method has the order 2 convergence.

Numerical Analysis (Nonlinear systems)

Unit 7 Nonlinear System Solutions

May 12, 2015

19 / 25

Newton's Method, V

Newton's Method, VI

- ullet If initial guess is far away from x^* then Newton's method may not convergent
- Step limiting can help in some cases

Algorithm 7.1.9. Newton's Method with Step Limiting.

```
Given x^{(0)}, S_{limit} and a small \epsilon>0, let k=0, err^{(0)}=1+\epsilon, while (err^{(k)}>\epsilon) {  x^{(k+1)}=x^{(k)}-\frac{f(x^{(k)})}{f'(x^{(k)})} \text{ ,}  if (x^{(k+1)}>x^{(k)}+S_{limit}) then x^{(k+1)}=x^{(k)}+S_{limit} , else if (x^{(k+1)}< x^{(k)}-S_{limit}) then x^{(k+1)}=x^{(k)}-S_{limit} , k=k+1, err^{(k)}=|f(x^{(k))}|, } .
```

Numerical Analysis (Nonlinear systems)

Unit 7 Nonlinear System Solutions

May 12, 2015

21 / 25

Newton's Method, VII

- Newton's method is not guaranteed to converge
 - Oscillation of solution point
- Newton's method is convergent only if $x^{(0)}$ is close to x^* .

Algorithms for Solving Nonlinear Equations

- Bisection method
- Chord method
- Regula falsi method
 - Global convergent
 - Need a and b with $f(a) \cdot f(b) < 0$
- Secant method
 - $\bullet \ \ \mathsf{Need} \ x^{(-1)} \ \ \mathsf{and} \ x^{(0)} \\$
 - Local convergent
- Newton's method
 - Need $x^{(0)}$
 - Need $f'(x^{(k)})$
 - Local convergent

Numerical Analysis (Nonlinear systems)

Unit 7 Nonlinear System Solutions

May 12, 2015

23 / 25

Comparisons

- Newton's method has the best convergence rate
 - May need more function evaluation due to $f'(x^{(k)})$
- Secant has also good convergence rate
- Chord method appears to have the slowest convergence rate

Summary

- Nonlinear equation solutions
- Iterative methods
- Bisection method
- Chord method
- Regula falsi method
- Secant method
- Newton's method
 - Newton's method with step limiting
 - Oscillation problem

Numerical Analysis (Nonlinear systems)

Unit 7 Nonlinear System Solutions

May 12, 2015

25 / 25