Model Predictive Control

Lecture 2: Modeling and Simulation

John Bagterp Jørgensen

Technical University of Denmark
Department of Applied Mathematics and Computer Science

02619 Model Predictive Control

Learning Objectives

After this lecture you should be able to

- Apply conservation of mass to develop simple first-principle models
- Simulate systems described by ODEs using Matlab
- Compute steady-states and linearize a system around a steady state
- Discretize a linear continuous-time state space system
- Derive transfer functions for linear state-space systems
- O Do simulations of stochastic systems
- Discretize a continuous-time stochastic system

4-Tank System - Motivating Example

Conservation Principle

Physical models are based on conservation principles.

- Conservation of mass
- Conservation of energy
- Onservation of momentum (force)

The general derivation of the system equations have the form

$$\begin{array}{c} & = Generated \\ Accumulated = Influx - Outflux + Produced - Consumed \end{array}$$

For non-reactive systems the generation term is absent

$$Accumulated = Influx - Outflux$$

Example - Tank 1

Accumulated = In - Out

with

$$\begin{aligned} \text{Accumulated} &= m_1(t+\Delta t) - m_1(t) \\ &\ln = \rho q_{1,in}(t) \Delta t + \rho q_3(t) \Delta t \\ &\text{Out} &= \rho q_1(t) \Delta t \end{aligned}$$

$$\underbrace{m_1(t+\Delta t)-m_1(t)}_{\text{Accumulated}} = \underbrace{\rho q_{1,in}(t)\Delta t + \rho q_3(t)\Delta t}_{\text{In}} - \underbrace{\rho q_1(t)\Delta t}_{\text{Out}}$$

Example - Tank 1

Conservation of mass

$$\underbrace{m_1(t+\Delta t)-m_1(t)}_{\text{Accumulated}} = \underbrace{\rho q_{1,in}(t)\Delta t + \rho q_3(t)\Delta t}_{\text{In}} - \underbrace{\rho q_1(t)\Delta t}_{\text{Out}}$$

f 2 Divide by Δt

$$\frac{m_1(t + \Delta t) - m_1(t)}{\Delta t} = \rho q_{1,in}(t) + \rho q_3(t) - \rho q_1(t)$$

 \bullet Let $\Delta t \to 0$

$$\frac{dm_1(t)}{dt} = \rho q_{1,in}(t) + \rho q_3(t) - \rho q_1(t)$$

4-Tank System - Model

Mass balances

$$\frac{dm_1}{dt}(t) = \rho q_{1,in}(t) + \rho q_3(t) - \rho q_1(t) \qquad m_1(t_0) = m_{1,0}$$

$$\frac{dm_2}{dt}(t) = \rho q_{2,in}(t) + \rho q_4(t) - \rho q_2(t) \qquad m_2(t_0) = m_{2,0}$$

$$\frac{dm_3}{dt}(t) = \rho q_{3,in}(t) - \rho q_3(t) \qquad m_3(t_0) = m_{3,0}$$

$$\frac{dm_4}{dt}(t) = \rho q_{4,in}(t) - \rho q_4(t) \qquad m_4(t_0) = m_{4,0}$$

Inflows

$$\begin{aligned} q_{1,in}(t) &= \gamma_1 F_1(t) & q_{2,in}(t) &= \gamma_2 F_2(t) \\ q_{3,in}(t) &= (1 - \gamma_2) F_2(t) & q_{4,in}(t) &= (1 - \gamma_1) F_1(t) \end{aligned}$$

Outflows

$$q_i(t) = a_i \sqrt{2gh_i(t)}$$
 $h_i(t) = \frac{m_i(t)}{\rho A_i}$ $i \in \{1, 2, 3, 4\}$

4-Tank System - Model

System of ordinary differential equations

$$\dot{x}(t) = f(x(t), u(t)) \qquad x(t_0) = x_0$$

with the vectors defined as

$$x = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \end{bmatrix} \quad u = \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}$$

This is a non-stiff ODE system as all processes take place on the same time-scale

Generic Input-Output Model

$$\begin{aligned} \frac{dx(t)}{dt} &= f(x(t), u(t)) & x(t_0) &= x_0 & \text{Process model} \\ y(t) &= g(x(t)) & \text{Sensor function} \\ z(t) &= h(x(t)) & \text{Output function} \end{aligned}$$

Simulation in Matlab

The model

$$\dot{x}(t) = f(t, x, u, p) \qquad x(t_0) = x_0$$

may be implemented in Matlab as

. . .

and called using

```
[T,X] = ode15s(@ProcessModel,[t0 tf],x0,odeOptions,u,p)
```

Model for the 4-Tank System

```
function xdot = FourTankSvstem(t,x,u,p)
% FOURTANKSYSTEM Model dx/dt = f(t,x,u,p) for 4-tank System
% This function implements a differential equation model for the
% 4-tank system.
% Syntax: xdot = FourTankSystem(t,x,u,p)
% Unpack states, MVs, and parameters
                                 % Mass of liquid in each tank [g]
      = x;
                                 % Flow rates in pumps [cm3/s]
      = u:
     = p(1:4.1):
                                 % Pipe cross sectional areas [cm2]
     = p(5:8,1);
                                 % Tank cross sectional areas [cm2]
gamma = p(9:10,1);
                                 % Valve positions [-]
                                 % Acceleration of gravity [cm/s2]
     = p(11,1);
    = p(12,1);
                                 % Density of water [g/cm3]
rho
% Inflows
qin = zeros(4,1);
qin(1,1) = gamma(1)*F(1);
                                 % Inflow from valve 1 to tank 1 [cm3/s]
gin(2.1) = gamma(2)*F(2):
                                 % Inflow from valve 2 to tank 2 [cm3/s]
qin(3,1) = (1-gamma(2))*F(2);
                                 % Inflow from valve 2 to tank 3 [cm3/s]
qin(4,1) = (1-gamma(1))*F(1);
                                 % Inflow from valve 1 to tank 4 [cm3/s]
% Outflows
                                 % Liquid level in each tank [cm]
h = m./(rho*A);
qout = a.*sqrt(2*g*h);
                                 % Outflow from each tank [cm3/s]
% Differential equations
xdot = zeros(4.1):
xdot(1,1) = rho*(gin(1,1)+gout(3,1)-gout(1,1)): % Mass balance Tank 1
xdot(2,1) = rho*(qin(2,1)+qout(4,1)-qout(2,1)); % Mass balance Tank 2
xdot(3,1) = rho*(qin(3,1)-qout(3,1));
                                                 % Mass balance Tank 3
xdot(4,1) = rho*(qin(4,1)-qout(4,1));
                                                  % Mass balance Tank 4
```

Define Simulation Parameters

```
% Parameters
 a1 = 1.2272
                %[cm2] Area of outlet pipe 1
 a2 = 1.2272
                %[cm2] Area of outlet pipe 2
 a3 = 1.2272
                %[cm2] Area of outlet pipe 3
 a4 = 1.2272
                %[cm2] Area of outlet pipe 4
 A1 = 380.1327 %[cm2] Cross sectional area of tank 1
  A2 = 380.1327
                 %[cm2] Cross sectional area of tank 2
 A3 = 380.1327 %[cm2] Cross sectional area of tank 3
 A4 = 380.1327
                %[cm2] Cross sectional area of tank 4
 gamma1 = 0.45; % Flow distribution constant. Valve 1
 gamma2 = 0.40; % Flow distribution constant. Valve 2
 g = 981; %[cm/s2] The acceleration of gravity
 rho = 1.00; %[g/cm3] Density of water
 p = [a1; a2; a3; a4; A1; A2; A3; A4; gamma1; gamma2; g; rho];
```

Simulation Scenario and Simulation

```
¥ -----
% Simulation scenario
 t0 = 0.0; % [s] Initial time
 tf = 20*60; % [s] Final time
 m10 = 0.0; % [g] Liquid mass in tank 1 at time t0
 m20 = 0.0; % [g] Liquid mass in tank 2 at time t0
 m30 = 0.0;
                  % [g] Liquid mass in tank 3 at time t0
 m40 = 0.0:
                  % [g] Liquid mass in tank 4 at time t0
 F1 = 300:
                 % [cm3/s] Flow rate from pump 1
 F2 = 300:
                  % [cm3/s] Flow rate from pump 2
 x0 = \lceil m10: m20: m30: m40 \rceil:
 u = \lceil F1 : F2 \rceil
```

Simulate the system

Computation of additional variables

Compute additional variables for plotting

```
% help variables
[nT,nX] = size(X);
a = p(1:4,1);
A = p(5:8,1);
% Compute the measured variables
H = zeros(nT,nX);
for i=1:nT
    H(i.:) = X(i.:)./(rho*A):
end
% Compute the flows out of each tank
Qout = zeros(nT,nX);
for i=1:nT
    Qout(i,:) = a.*sqrt(2*g*H(i,:));
end
```

Masses in the Tanks

Levels in the Tanks

Outflow Rates

Discrete-Time Generic Input-Output Model

$$x_{k+1} = F(x_k, u_k)$$
$$y_k = g(x_k)$$

 $z_{k} = h(x_{k})$

Discrete-time process model

Sensor function

Output function

Zero-order-hold for MVs

$$u(t) = u_k \qquad t_k \le t < t_{k+1}$$

Continuous-time process model to discrete-time process model

$$F(x_k, u_k) = x_k + \int_{t_k}^{t_{k+1}} f(x(t), u_k) dt$$

Difference Equation

The difference equation

$$x_{k+1} = F(x_k, u_k)$$

with

$$F(x_k, u_k) = x_k + \int_{t_k}^{t_{k+1}} f(x(t), u_k) dt$$

can be computed by numerical solution of

$$\frac{dx}{dt}(t) = f(x(t), u_k) \qquad x(t_k) = x_k \qquad t_k \le t < t_{k+1}$$

such that

$$x_{k+1} = x(t_{k+1})$$

Discrete-Time Simulation using Matlab

The discrete-time model

$$x_{k+1} = F(x_k, u_k) \qquad F(x_k, u_k) = x_k + \int_{t_k}^{t_{k+1}} f(x(t), u_k) dt$$
$$y_k = g(x_k)$$
$$z_k = h(x_k)$$

may be simulated in Matlab using

```
for i=0:N
    k=i+1;
    y(:,k) = g(x(:,k));
    z(:,k) = h(x(:,k));
    [Tk,Xk] = ode15s(@f,[t(k) t(k+1)],x(:,k),odeOptions,u(:,k));
    x(:,k+1) = Xk(end,:)';
    T = [T; Tk];
    X = [X; Xk];
end
```

Example - 4-Tank System

y(:,k) = FourTankSystemSensor(x(:,k),p);
z(:,k) = FourTankSystemOutput(x(:,k),p);

end k = N:

Flow Rate Scenario

Quadruple Tank Process - States

Quadruple Tank Process - Inputs and Outputs

Quadruple Tank Process - Sensors

Stochastic Simulation

$$egin{aligned} m{x}_{k+1} &= F(m{x}_k, u_k, m{w}_k) & ext{Process model} \ m{y}_k &= g(m{x}_k) + m{v}_k & ext{Sensor function} \ m{z}_k &= h(m{x}_k) & ext{Output function} \end{aligned}$$

A Stochastic Realization

The stochastic variables

$$\mathbf{w}_k \sim N_{iid}(0, Q)$$
 $Q = LL'$
 $\mathbf{e}_k \sim N_{iid}(0, I)$

are related by

$$\boldsymbol{w}_k = L\boldsymbol{e}_k$$

As a normal distribution is completely characterized by its means and covariance, this relation can be proved by

$$E\{\boldsymbol{w}_k\} = E\{L\boldsymbol{e}_k\} = LE\{\boldsymbol{e}_k\} = 0$$

$$V\{\boldsymbol{w}_k\} = \langle \boldsymbol{w}_k, \boldsymbol{w}_k \rangle = \langle L\boldsymbol{e}_k, L\boldsymbol{e}_k \rangle = L\underbrace{\langle \boldsymbol{e}_k, \boldsymbol{e}_k \rangle}_{=I} L' = LL' = Q$$

Stochastic Realization in Matlab

Stochastic Process Noise

Process noise

$$\begin{bmatrix} \mathbf{F}_1 \\ \mathbf{F}_2 \end{bmatrix} = \begin{bmatrix} F_{1s} \\ F_{2s} \end{bmatrix} + \begin{bmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \end{bmatrix} \\
\begin{bmatrix} F_{1s} \\ F_{2s} \end{bmatrix} = \begin{bmatrix} 300 \\ 300 \end{bmatrix} \quad \begin{bmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \end{bmatrix} \sim N_{iid} \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 30^2 & 0 \\ 0 & 10^2 \end{bmatrix} \end{pmatrix}$$

Measurement noise

$$\boldsymbol{y} = \begin{bmatrix} \boldsymbol{y}_1 \\ \boldsymbol{y}_2 \\ \boldsymbol{y}_3 \\ \boldsymbol{y}_4 \end{bmatrix} = \begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \end{bmatrix} + \begin{bmatrix} \boldsymbol{v}_1 \\ \boldsymbol{v}_2 \\ \boldsymbol{v}_3 \\ \boldsymbol{v}_4 \end{bmatrix} \quad \boldsymbol{v} = \begin{bmatrix} \boldsymbol{v}_1 \\ \boldsymbol{v}_2 \\ \boldsymbol{v}_3 \\ \boldsymbol{v}_4 \end{bmatrix} \sim N \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1^2 & 0 & 0 & 0 \\ 0 & 1^2 & 0 & 0 \\ 0 & 0 & 1^2 & 0 \\ 0 & 0 & 0 & 1^2 \end{bmatrix} \end{pmatrix}$$

Outputs

$$oldsymbol{z} = egin{bmatrix} oldsymbol{z}_1 \ oldsymbol{z}_2 \end{bmatrix} = egin{bmatrix} h_1 \ h_2 \end{bmatrix}$$

Stochastic Simulation - Definition of Simulation Scenario

```
t0 = 0.0; % [s] Initial time
tf = 20*60; % [s] Final time
Ts = 10; % [s] Sample Time
t = \lceil t0:Ts:tf\rceil':
                 % [s] Sample instants
N = length(t);
m10 = 0:
                 % [g] Liquid mass in tank 1 at time t0
                 % [g] Liquid mass in tank 2 at time t0
m20 = 0;
                 % [g] Liquid mass in tank 3 at time t0
m30 = 0;
                 % [g] Liquid mass in tank 4 at time t0
m40 = 0:
F1 = 300;
                   % [cm3/s] Flow rate from pump 1
                   % [cm3/s] Flow rate from pump 2
F2 = 300:
x0 = [m10; m20; m30; m40];
u = [repmat(F1,1,N); repmat(F2,1,N)];
% Process Noise
Q = [20^2 \ 0; 0 \ 40^2];
La = chol(Q,'lower'):
w = Lq*randn(2,N);
% Measurement Noise
R = eye(4);
Lr = chol(R, 'lower');
v = Lr*randn(4.N):
```

Stochastic Simulation - Matlab Script

```
nx = 4; nu = 2; ny = 4; nz = 2;
x = zeros(nx,N);
y = zeros(ny,N);
z = zeros(nz,N);
X = zeros(0.nx):
T = zeros(0,1);
x(:,1) = x0;
for k = 1:N-1
    y(:,k) = FourTankSystemSensor(x(:,k),p)+v(:,k); % Sensor function
    z(:,k) = FourTankSystemOutput(x(:,k),p);
                                             % Output function
    [Tk, Xk] = ode15s(@FourTankSystem, [t(k) t(k+1)], x(:,k), [],...
                        u(:,k)+w(:,k),p);
    x(:.k+1) = Xk(end.:)':
    T = [T; Tk];
    X = [X: Xk]:
end
k = N:
    y(:,k) = FourTankSystemSensor(x(:,k),p)+v(:,k); % Sensor function
    z(:,k) = FourTankSystemOutput(x(:,k),p);
                                                     % Output function
```

Stochastic Process Simulation - Input-Output

Stochastic Process Simulation - Measurements

Steady-State (Equilibrium Point)

$$\dot{x}(t)=f(x(t),u(t)) \qquad x(t_0)=x_0$$
 Steady state (equilibrium point) (x_s,u_s) . Given $u(t)=u_s$ solve
$$0=f(x_s,u_s)$$

fsolve in Matlab

with

```
function xdot = FourTankSystemWrap(x,u,p)
xdot = FourTankSystem(0,x,u,p);
```

Lineariztion of Continuous-Time Model

$$\dot{x}(t) = f(x(t), u(t)) \qquad x(t_0) = x_0$$

Steady state (equilibrium point) (x_s, u_s) . Given $u(t) = u_s$ solve

$$0 = f(x_s, u_s)$$

Taylor expansion

$$f(x(t), u(t)) \approx \overbrace{f(x_s, u_s)}^{=0} + \overbrace{\left(\frac{\partial f}{\partial x}(x_s, u_s)\right)}^{=X(t)} \underbrace{(x(t) - x_s)}^{=X(t)} + \overbrace{\left(\frac{\partial f}{\partial u}(x_s, u_s)\right)}^{=U(t)} \underbrace{(u(t) - u_s)}^{=U(t)}$$

$$= AX(t) + BU(t)$$

$$\dot{X}(t) = \frac{d}{dt}(x(t) - x_s) = \frac{dx(t)}{dt} - \frac{dx_s}{dt} = \frac{dx(t)}{dt} - 0 = \dot{x}(t)$$

Then

$$\dot{X}(t) = AX(t) + BU(t)$$
 $X(t_0) = X_0 = x_0 - x_s$

$$\dot{x}(t) = f(x(t), u(t)) \qquad x(t_0) = x_0$$

$$y(t) = g(x(t))$$

$$z(t) = h(x(t))$$

Steady-state (x_s, u_s, y_s, z_s)

$$0 = f(x_s, u_s) \qquad y_s = g(x_s) \qquad z_s = h(x_s)$$

Deviation variables

$$X(t) = x(t) - x_s$$
 $X_0 = x_0 - x_s$
 $U(t) = u(t) - u_s$ $Y(t) = y(t) - y_s$ $Z(t) = z(t) - z_s$

Linear system

$$\dot{X}(t) = AX(t) + BU(t) \quad X(t_0) = X_0 \qquad A = \frac{\partial f}{\partial x}(x_s, u_s) \quad B = \frac{\partial f}{\partial u}(x_s, u_s)
Y(t) = CX(t) \qquad C_z = \frac{\partial f}{\partial x}(x_s, u_s) \quad C_z = \frac{\partial h}{\partial x}(x_s, u_s)$$

$$\dot{x}(t) = f(x(t), u(t)) \qquad x(t_0) = x_0$$

$$y(t) = g(x(t), u(t))$$

Steady-state (x_s, u_s, y_s)

$$0 = f(x_s, u_s) \qquad y_s = g(x_s, u_s)$$

Deviation variables

$$X(t) = x(t) - x_s X_0 = x_0 - x_s$$

$$U(t) = u(t) - u_s$$

$$Y(t) = u(t) - u_s$$

Linear system

$$\dot{X}(t) = AX(t) + BU(t) \quad X(t_0) = X_0 \qquad A = \frac{\partial f}{\partial x}(x_s, u_s) \quad B = \frac{\partial f}{\partial u}(x_s, u_s)$$

$$Y(t) = CX(t) + DU(t) \qquad C = \frac{\partial g}{\partial x}(x_s, u_s) \quad D = \frac{\partial g}{\partial u}(x_s, u_s)$$

Example - Linearization of 4-Tank System

$$\dot{X}(t) = AX(t) + BU(t) \qquad X(t_0) = X_0$$

$$Y(t) = CX(t)$$

$$Z(t) = C_z X(t)$$

$$X(t) = x(t) - x_s$$
 $U(t) = u(t) - u_s$
 $Y(t) = y(t) - y_s$ $Z(t) = z(t) - z_s$

$$u_{s} = \begin{bmatrix} F_{1s} \\ F_{2s} \end{bmatrix} = \begin{bmatrix} 300 \text{ cm}^{3}/\text{s} \\ 300 \text{ cm}^{3}/\text{s} \end{bmatrix} \qquad z_{s} = \begin{bmatrix} h_{1s} \\ h_{2s} \end{bmatrix} = \begin{bmatrix} 33.6 \text{ cm} \\ 27.5 \text{ cm} \end{bmatrix}$$

$$x_{s} = \begin{bmatrix} m_{1s} \\ m_{2s} \\ m_{3s} \\ m_{4s} \end{bmatrix} = \begin{bmatrix} 12765 \text{ g} \\ 10449 \text{ g} \\ 4168 \text{ g} \\ 3502 \text{ g} \end{bmatrix} \qquad y_{s} = \begin{bmatrix} h_{1s} \\ h_{2s} \\ h_{3s} \\ h_{4s} \end{bmatrix} = \begin{bmatrix} 33.6 \text{ cm} \\ 27.5 \text{ cm} \\ 11.0 \text{ cm} \\ 9.2 \text{ cm} \end{bmatrix}$$

Example - Linearization of 4-Tank System

$$\dot{X}(t) = AX(t) + BU(t) \qquad X(t_0) = X_0$$

$$Y(t) = CX(t)$$

$$Z(t) = C_z X(t)$$

with the matrices

$$A = \begin{bmatrix} -\frac{1}{T_1} & 0 & \frac{1}{T_3} & 0\\ 0 & -\frac{1}{T_2} & 0 & \frac{1}{T_4}\\ 0 & 0 & -\frac{1}{T_3} & 0\\ 0 & 0 & 0 & -\frac{1}{T_4} \end{bmatrix} \qquad B = \begin{bmatrix} \rho\gamma_1 & 0\\ 0 & \rho\gamma_2\\ 0 & \rho(1-\gamma_2)\\ \rho(1-\gamma_1) & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} \frac{1}{\rho A_1} & 0 & 0 & 0\\ 0 & \frac{1}{\rho A_2} & 0 & 0\\ 0 & 0 & \frac{1}{\rho A_3} & 0\\ 0 & 0 & 0 & \frac{1}{2 A_4} \end{bmatrix} \qquad C_z = \begin{bmatrix} \frac{1}{\rho A_1} & 0 & 0 & 0\\ 0 & \frac{1}{\rho A_2} & 0 & 0\\ 0 & \frac{1}{\rho A_2} & 0 & 0 \end{bmatrix}$$

and time constants defined by

$$T_i = \frac{A_i \sqrt{2gh_{i,s}}}{a_i g} = \frac{A_i}{a_i} \sqrt{\frac{2h_{i,s}}{g}} \qquad i = \{1, 2, 3, 4\}$$

Example - Linearization 4-Tank System

```
% Parameters
ap = [a1; a2; a3; a4]; % [cm2] Pipe cross sectional areas
At = [A1; A2; A3; A4]; % [cm2] Tank cross sectional areas
gam = [gamma1; gamma2]; % [-] Valve constants
g = 981:
                     %[cm/s2] The acceleration of gravity
rho = 1.00;
                   %[g/cm3] Density of water
p = [ap: At: gamma: g: rho];
% Steady State
9 -----
us = [300: 300]
                            % [cm3/s] Flow rates
xs0 = [5000: 5000: 5000: 5000] % [g] Initial guess on xs
xs = fsolve(@FourTankSystemWrap,xs0,[],us,p)
vs = FourTankSvstemSensor(xs.p)
zs = FourTankSystemOutput(xs,p)
% Linearization
% -----
hs = ys;
T = (At./ap).*sgrt(2*hs/g)
A = [-1/T(1) \ 0 \ 1/T(3) \ 0:0 \ -1/T(2) \ 0 \ 1/T(4):0 \ 0 \ -1/T(3) \ 0:0 \ 0 \ -1/T(4)]
B=[rho*gam(1) 0;0 rho*gam(2); 0 rho*(1-gam(2)); rho*(1-gam(1)) 0]
C=diag(1./(rho*At))
Cz=C(1:2,:)
```

Example - Linearization 4-Tank System

A =			
-0.012338	0	0.021592	0
0	-0.013637	0	0.023555
0	0	-0.021592	0
0	0	0	-0.023555
B =			
0.45	0		
0	0.4		
0	0.6		
0.55	0		
C =			
0.0026307	0	0	0
0	0.0026307	0	0
0	0	0.0026307	0
0	0	0	0.0026307
Cz =			
0.0026307	0	0	0
0	0.0026307	0	0

Continuous-Time Transfer Function

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad x(0) = x_0$$

$$y(t) = Cx(t) + Du(t)$$

Define the LaPlace transform

$$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t)dt$$

such that

$$\mathcal{L}\{x(t)\} = X(s) \qquad \mathcal{L}\{u(t)\} = U(s) \qquad \mathcal{L}\{y(t)\} = Y(s)$$

$$\mathcal{L}\{\dot{x}(t)\} = sX(s) - x_0$$

Then

$$sX(s) - x_0 = AX(s) + BU(s) \Leftrightarrow X(s) = (sI - A)^{-1}x_0 + (sI - A)^{-1}BU(s)$$

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad x(0) = x_0$$
$$y(t) = Cx(t) + Du(t)$$

The LaPlace transforms of this system are

$$X(s) = (sI - A)^{-1}x_0 + (sI - A)^{-1}BU(s)$$

$$Y(s) = CX(s) + DU(s)$$

$$= C(sI - A)^{-1}x_0 + C(sI - A)^{-1}B + DU(s)$$

$$= C(sI - A)^{-1}x_0 + C(sU(s))$$

Let $x_0 = 0$. Then

$$Y(s) = G(s)U(s) \qquad G(s) = C(sI - A)^{-1}B + D$$

G(s) is the transfer function of the system

Continuous-Time Transfer Function

The continuous-time linear time-invariant system

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad x(0) = 0$$

$$y(t) = Cx(t) + Du(t)$$

can be represented as the input-output function in the LaPlace domain

$$Y(s) = G(s)U(s)$$

with the transfer function

$$G(s) = C(sI - A)^{-1}B + D$$

$$U(s)$$

$$G(s)$$

$$Y(s)$$

Poles-Zero Representation - SISO system

$$G(s) = C(sI - A)^{-1}B + D$$

$$= K_{zp} \frac{(s - z_1)(s - z_2) \dots (s - z_{n_z})}{(s - p_1)(s - p_2) \dots (s - p_n)} = K_{zp} \frac{\prod (s - z_i)}{\prod (s - p_i)}$$

- The poles are computed as the eigenvalues of A: p = eig(A)
- The zeros are computed as the generalized eigenvalues of

$$\overbrace{\begin{bmatrix} A & B \\ C & D \end{bmatrix}}^{=M} \begin{bmatrix} x \\ u \end{bmatrix} = z \overbrace{\begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}}^{=N} \begin{bmatrix} x \\ u \end{bmatrix}$$

$$z = eig(M,N) (|z| < \infty)$$

• The constant K_{zp} is computed by

$$K_{zp} = G(s) \frac{\prod (s - p_i)}{\prod (s - z_i)}$$
 $s \neq p_i, z_i$

Example

$$G(s) = 2\frac{(s-3)}{(s-0)(s+4)(s+(2+3i))(s+(2-3i))}$$

Constant: $K_{zp}=2$

Zero: z=3

Poles: $p_1 = 0$, $p_2 = -4$, $p_3 = -2 \pm 3i$

This is equivalent with

$$G(s) = 2\frac{(s-3)}{s(s+4)(s^2+4s+13)} = K\frac{(\beta s+1)}{s(\tau_1 s+1)(\tau^2 s^2 + 2\zeta \tau s + 1)}$$
$$\beta = -1/3$$
$$\tau_1 = 1/4$$
$$\tau = \frac{1}{\sqrt{13}} \quad \zeta = \frac{4/13}{2\sqrt{13}} = \frac{2}{13\sqrt{13}}$$

 $K = 2(-3)/(4 \cdot 13) = -3/26$

47 / 74

Some Elementary Continuous-Time Transfer Functions

$$Y(s) = G(s)U(s)$$

$$G(s) = \frac{1}{s}$$

$$G(s) = \frac{K}{\tau s + 1}$$

$$G(s) = \frac{K}{\tau s + 1}$$

$$G(s) = \frac{K}{(\tau_1 s + 1)(\tau_2 s + 1)}$$

$$G(s) = \frac{K}{(\tau s + 1)^n}$$

$$G(s) = \frac{K}{\tau^2 s^2 + 2\tau \zeta s + 1}$$

$$G(s) = \frac{K(\beta s + 1)}{(\tau_1 s + 1)(\tau_2 s + 1)}$$

Integrator

First order system

Second order system - damped

n'th order system

Second order system - underdamped

Second order system with zero

4-Tank System - Model

$$\begin{bmatrix} Z_1(s) \\ Z_2(s) \end{bmatrix} = \begin{bmatrix} \frac{K_{11}}{T_1s+1} & \frac{K_{12}}{(T_3s+1)(T_1s+1)} \\ \frac{K_{21}}{(T_4s+1)(T_2s+1)} & \frac{K_{22}}{T_2s+1} \end{bmatrix} \begin{bmatrix} U_1(s) \\ U_2(s) \end{bmatrix} \qquad \qquad K_{12} = 0.1279 \, \text{s/cm}^2 \\ K_{22} = 0.0772 \, \text{s/cm}^2$$

$$\begin{bmatrix} \frac{K_{12}}{(T_3s+1)(T_1s+1)} \\ \frac{K_{22}}{T_2s+1} \end{bmatrix} \begin{bmatrix} \\ \\ \end{bmatrix}$$

$$\begin{split} T_1 &= \frac{A_1}{a_1} \sqrt{\frac{2h_{1,s}}{g}} = 81.0 \, \mathrm{s} = 1.35 \, \mathrm{min} \\ T_2 &= \frac{A_2}{a_2} \sqrt{\frac{2h_{2,s}}{g}} = 73.3 \, \mathrm{s} = 1.22 \, \mathrm{min} \\ T_3 &= \frac{A_3}{a_3} \sqrt{\frac{2h_{3,s}}{g}} = 46.3 \, \mathrm{s} = 0.77 \, \mathrm{min} \\ T_4 &= \frac{A_4}{a_4} \sqrt{\frac{2h_{4,s}}{g}} = 42.5 \, \mathrm{s} = 0.71 \, \mathrm{min} \\ K &= G(0) = -C_z A^{-1} B \end{split}$$

$$\begin{split} K_{11} &= 0.0959\,\mathrm{s/cm^2} \\ K_{21} &= 0.1061\,\mathrm{s/cm^2} \\ K_{12} &= 0.1279\,\mathrm{s/cm^2} \\ K_{22} &= 0.0772\,\mathrm{s/cm^2} \end{split}$$

Linear System of First-Order Differential Equations

The linear system of first order differential equations

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad x(t_0) = x_0$$

has the solution

$$x(t) = e^{A(t-t_0)}x_0 + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau$$

You can convince yourself about this solution by reviewing the solution of

$$\frac{dp(t)}{dt} + ap(t) = q(t)$$

This equation is known from calculus.

Discretization

Discrete time

$$t_k = t_0 + kT_s$$
 $k = 0, 1, 2 \dots$

States at discrete times

$$x_k = x(t_k)$$

Zero-order-hold of the inputs

$$u(t) = u_k \qquad t_k \le t < t_{k+1}$$

Consider the linear differential equation

$$\dot{x}(t) = Ax(t) + Bu(t)$$
 $x(t_k) = x_k$

Then

$$x_{k+1} = x(t_{k+1}) = e^{A(t_{k+1} - t_k)} x_k + \int_{t_k}^{t_{k+1}} e^{A(t_{k+1} - \tau)} Bu(\tau) d\tau$$
$$= \left[e^{AT_s} \right] x_k + \left[\int_0^{T_s} e^{A\eta} B d\eta \right] u_k$$

Discrete-Time Linear Model

The continuous linear time-invariant model

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad x(t_0) = x_0$$
$$y(t) = Cx(t) + Du(t)$$

is equivalent with the discrete linear time-invariant model

$$x_{k+1} = A_d x_k + B_d u_k$$
$$y_k = C_d x_k + D_d u_k$$

with

$$A_d = e^{AT_s}$$
 $B_d = \int_0^{T_s} e^{A\tau} B d\tau$ $C_d = C$ $D_d = D$

 (A_d, B_d) can be computed by

$$\begin{bmatrix} A_d & B_d \\ 0 & I \end{bmatrix} = \exp\left(\begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix} T_s \right)$$

ZOH Discretization of Linear System

$$\begin{bmatrix} A_d & B_d \\ 0 & I \end{bmatrix} = \exp\left(\begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix} T_s \right)$$

Matlab implementation

```
function [Abar,Bbar]=c2dzoh(A,B,Ts)

[nx,nu]=size(B);
M = [A B; zeros(nu,nx) zeros(nu,nu)];
Phi = expm(M*Ts);
Abar = Phi(1:nx,1:nx);
Bbar = Phi(1:nx,nx+1:nx+nu);
```

4.9002

Discrete-Time Transfer Function

$$x_{k+1} = Ax_k + Bu_k$$
$$y_k = Cx_k + Du_k$$

Z-transform (unilateral)

$$F(z) = \mathcal{Z}\{f_k\} = \sum_{k=0}^{\infty} z^{-k} f_k$$

$$X(z) = \mathcal{Z}\{x_k\} \quad U(z) = \mathcal{Z}\{u_k\} \quad Y(z) = \mathcal{Z}\{y_k\}$$

$$\mathcal{Z}\{x_{k+1}\} = zX(z) - zx_0$$

$$zX(z) - zx_0 = AX(z) + BU(z) \Leftrightarrow$$

$$X(z) = (zI - A)^{-1}zx_0 + (zI - A)^{-1}BU(z)$$

$$x_{k+1} = Ax_k + Bu_k$$
$$y_k = Cx_k + Du_k$$

$$X(z) = (zI - A)^{-1}zx_0 + (zI - A)^{-1}BU(z)$$

$$Y(z) = CX(z) + DU(z)$$

$$= C(zI - A)^{-1}zx_0 + \underbrace{\left[C(zI - A)^{-1}B + D\right]}_{= C(zI - A)^{-1}zx_0 + G(z)U(z)}$$

Let $x_0 = 0$. Then

$$Y(z) = G(z)U(z) \qquad G(z) = C(zI - A)^{-1}B + D$$

Discrete-Time Transfer Function

The discrete-time linear time-invariant system

$$x_{k+1} = Ax_k + Bu_k \qquad x_0 = 0$$
$$y_k = Cx_k + Du_k$$

can be represented as the input-output function in the Z-domain

$$Y(z) = G(z)U(z)$$

with the transfer function

$$G(z) = C(zI - A)^{-1}B + D$$

$$G(z)$$

$$G(z)$$

Poles-Zero Representation - SISO system

$$G(z) = C(zI - A)^{-1}B + D$$

$$= K_{zp} \frac{(z - z_1)(z - z_2) \dots (z - z_{n_z})}{(z - p_1)(z - p_2) \dots (z - p_n)} = K_{zp} \frac{\prod (z - z_i)}{\prod (z - p_i)}$$

- The poles are computed as the eigenvalues of A: p = eig(A)
- The zeros are computed as the generalized eigenvalues of

$$\overbrace{\begin{bmatrix} A & B \\ C & D \end{bmatrix}}^{=M} \begin{bmatrix} x \\ u \end{bmatrix} = z \overbrace{\begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}}^{=N} \begin{bmatrix} x \\ u \end{bmatrix}$$

$$z = eig(M,N) (|z| < \infty)$$

• The constant K_{zp} is computed by

$$K_{zp} = G(z) \frac{\prod (z - p_i)}{\prod (z - z_i)}$$
 $z \neq p_i, z_i$

Stochastic Systems

- Physical systems evolve in continuous time
- Some of the phenomena occurring are stochastic
- Question: How to convert a continuous-time stochastic model to a discrete time stochastic model

In particular, we cannot extend a system of ODEs

$$\frac{dx}{dt}(t) = f(x(t), u(t)) \qquad x(t_0) = x_0$$

to a system of stochastic differential equations in the following form

$$\frac{d\boldsymbol{x}}{dt}(t) = f(\boldsymbol{x}(t), u(t)) + \sigma(\boldsymbol{x}(t), u(t)) \boldsymbol{w}(t) \qquad \text{Not well-defined}$$

as the last expression is not well-defined mathematically

Stochastic Systems

Hence, the following is not well-defined

$$\frac{d\boldsymbol{x}}{dt}(t) = f(\boldsymbol{x}(t), u(t), \boldsymbol{w}(t)) \qquad x(t_0) = x_0 \qquad \text{Not well-defined}$$

for continuous stochastic disturbances w(t).

We can assume that

$$w(t) = w_k$$
 $t_k \le t < t_{k+1}$ $t_{k+1} = t_k + T_s$

Then a specific realization $\{w_k\}$ leads to

$$\frac{dx}{dt}(t) = f(x(t), u(t), w_k) \qquad t_k \le t < t_{k+1} \qquad x(t_k) = x_k$$

from which x(t) is computed. The problem with this construct is that the stochastic properties depends on T_s and does not have the correct properties in the limit $T_s \to 0$.

Stochastic Differential Equation - with Ito interpretation

The approximation of deterministic differential equation

$$x(t + \delta t) - x(t) = f(x(t), u(t))\delta t + o(\delta t)$$

is extended to the stochastic case

$$\boldsymbol{x}(t+\delta t) - \boldsymbol{x}(t) = f(\boldsymbol{x}(t), u(t)) \delta t + \sigma(\boldsymbol{x}(t), u(t)) \left[\boldsymbol{w}(t+\delta t) - \boldsymbol{w}(t) \right] + o(\delta t)$$

using increments $\Delta oldsymbol{w}(t)$ that are independent and normally distributed

$$\Delta \boldsymbol{w}(t) = \left[\boldsymbol{w}(t+\delta t) - \boldsymbol{w}(t)\right] \sim N_{iid}(0, I\delta t) = \sqrt{\delta t} N_{iid}(0, I)$$

In the limit $\delta t \rightarrow 0$

$$d\mathbf{x}(t) = f(\mathbf{x}(t), u(t))dt + \sigma(\mathbf{x}(t), u(t))d\mathbf{w}(t)$$

Stochastic Differential Equation - with Ito interpretation

$$d\mathbf{x}(t) = f(\mathbf{x}(t), u(t))dt + \sigma(\mathbf{x}(t), u(t))d\mathbf{w}(t)$$

with $\{ oldsymbol{w}(t) \}$ being a standard Wiener Process (Brownian motion)

- $oldsymbol{w}(t)$ is normally distributed
- **2** $\boldsymbol{w}(t)$ is independent of $\boldsymbol{w}(s)$ for all $s \neq t$
- **3** $E\{w(t)\} = 0$

The integral equation corresponding to the Stochastic Differential Equation (SDE) is

$$\boldsymbol{x}(t) = \boldsymbol{x}(t_0) + \int_{t_0}^t f(\boldsymbol{x}(s), u(s)) ds + \int_{t_0}^t \sigma(\boldsymbol{x}(s), u(s)) d\boldsymbol{w}(s)$$

with the integrals interpreted as Ito integrals (forward Euler integrals).

Stochastic Systems - Discrete Time

$$egin{aligned} oldsymbol{x}_{k+1} &= F(oldsymbol{x}_k, u_k, oldsymbol{w}_k) & oldsymbol{x}_0 \sim N(ar{x}_0, P_0) & oldsymbol{w}_k \sim N(0, Q) \ oldsymbol{y}_k &= g(oldsymbol{x}_k) + oldsymbol{v}_k & oldsymbol{v}_k \sim N(0, R) \ oldsymbol{z}_k &= h(oldsymbol{x}_k) \end{aligned}$$

Stochastic Systems - Discrete Time

$$egin{aligned} oldsymbol{x}_{k+1} &= F(oldsymbol{x}_k, u_k, oldsymbol{w}_k) & oldsymbol{x}_0 \sim N(ar{x}_0, P_0) & oldsymbol{w}_k \sim N(0, Q) \ oldsymbol{y}_k &= g(oldsymbol{x}_k) + oldsymbol{v}_k & oldsymbol{v}_k \sim N(0, R) \ oldsymbol{z}_k &= h(oldsymbol{x}_k) \end{aligned}$$

Steady-state (equilibrium point): Given $u_s = 0$ and $w_s = 0$, compute

$$x_s = F(x_s, u_s, 0)$$
 $R(x_s) = x_s - F(x_s, u_s, 0) = 0$

and

$$y_s = g(x_s)$$
$$z_s = h(x_s)$$

Deviation variables

$$X(t) = x(t) - x_s$$
 $U(t) = u(t) - u_s$
 $Y(t) = y(t) - y_s$ $Z(t) = z(t) - z_s$

Stochastic Systems - Discrete Time

$$egin{aligned} oldsymbol{x}_{k+1} &= F(oldsymbol{x}_k, u_k, oldsymbol{w}_k) & oldsymbol{x}_0 \sim N(ar{x}_0, P_0) & oldsymbol{w}_k \sim N(0, Q) \ oldsymbol{y}_k &= g(oldsymbol{x}_k) + oldsymbol{v}_k & oldsymbol{v}_k \sim N(0, R) \ oldsymbol{z}_k &= h(oldsymbol{x}_k) \end{aligned}$$

can be approximated by the linear discrete-time stochastic system

$$egin{aligned} oldsymbol{X}_{k+1} &= A oldsymbol{X}_k + B U_k + G oldsymbol{w}_k & oldsymbol{X}_0 \sim N(X_0, P_0), \ oldsymbol{w}_k \sim N(0, Q) \ oldsymbol{Y}_k &= C oldsymbol{X}_k + oldsymbol{v}_k & oldsymbol{v}_k \sim N(0, R) \ oldsymbol{Z}_k &= C_z oldsymbol{X}_k \end{aligned}$$

around the steady-state (x_s,u_s,y_s,z_s) . The matrices (A,B,G,C,C_z) are defined by

$$A = \frac{\partial F}{\partial x}(x_s, u_s, 0) \quad B = \frac{\partial F}{\partial u}(x_s, u_s, 0) \quad G = \frac{\partial F}{\partial w}(x_s, u_s, 0)$$
$$C = \frac{\partial g}{\partial x}(x_s) \qquad C_z = \frac{\partial h}{\partial x}(x_s)$$

$$d\boldsymbol{x}(t) = A\boldsymbol{x}(t)dt + Gd\boldsymbol{w}(t)$$

Let $x(t_0) \sim N(\bar{x}_0, P_0)$ and let $\{w(t)\}$ be a standard Wiener process. The solution to this system is

$$\boldsymbol{x}(t) = e^{A(t-t_0)}\boldsymbol{x}(t_0) + \int_{t_0}^t e^{A(t-s)}Gd\boldsymbol{w}(s)$$

and has the distribution

$$\boldsymbol{x}(t) \sim N(\bar{x}(t), P(t))$$

$$\bar{x}(t) = E\{x(t)\} = e^{A(t-t_0)}\bar{x}(t_0)$$

$$P(t) = V\{x(t)\} = e^{A(t-t_0)}P(t_0)e^{A'(t-t_0)} + \int_{t_0}^t e^{A(t-s)}GG'e^{A'(t-s)}ds$$

Mean

$$\begin{split} \bar{x}(t) &= E\left\{ \pmb{x}(t) \right\} \\ &= E\left\{ e^{A(t-t_0)} \pmb{x}(t_0) + \int_{t_0}^t e^{A(t-s)} G d\pmb{w}(s) \right\} \\ &= e^{A(t-t_0)} E\left\{ \pmb{x}(t_0) \right\} + E\left\{ \int_{t_0}^t e^{A(t-s)} G d\pmb{w}(s) \right\} \\ &= e^{A(t-t_0)} \bar{x}(t_0) \end{split}$$

Covariance

$$\begin{split} P(t) &= E\left\{ (\boldsymbol{x}(t) - \bar{x}(t))(\boldsymbol{x}(t) - \bar{x}(t))'\right\} \\ &= e^{A(t-t_0)} E\left\{ (\boldsymbol{x}(t_0) - \bar{x}(t_0))(\boldsymbol{x}(t_0) - \bar{x}(t_0))'\right\} e^{A'(t-t_0)} \\ &+ e^{A(t-t_0)} E\left\{ (\boldsymbol{x}(t_0) - \bar{x}(t_0)) \left(\int_{t_0}^t e^{A(t-s)} G d\boldsymbol{w}(s) \right)'\right\} \\ &+ E\left\{ \left(\int_{t_0}^t e^{A(t-s)} G d\boldsymbol{w}(s) \right) (\boldsymbol{x}(t_0) - \bar{x}(t_0))'\right\} e^{A'(t-t_0)} \\ &+ E\left\{ \left(\int_{t_0}^t e^{A(t-s)} G d\boldsymbol{w}(s) \right) \left(\int_{t_0}^t e^{A(t-s)} G d\boldsymbol{w}(s) \right)'\right\} \\ &= e^{A(t-t_0)} P(t_0) e^{A'(t-t_0)} + \int_{t_0}^t e^{A(t-s)} G G' e^{A'(t-s)} ds \end{split}$$

$$\mathbf{x}_{k+1} = \mathbf{x}(t_{k+1}) = e^{A(t_{k+1} - t_k)} \mathbf{x}(t_k) + \int_{t_k}^{t_{k+1}} e^{A(t_{k+1} - s)} G d\mathbf{w}(s)$$

$$= e^{AT_s} \mathbf{x}_k + \int_{t_k}^{t_{k+1}} e^{A(t_{k+1} - s)} G d\mathbf{w}(s)$$

$$= e^{AT_s} \mathbf{x}_k + \mathbf{w}_k$$

with

$$\boldsymbol{w}_k = \int_{t_k}^{t_{k+1}} e^{A(t_{k+1} - s)} Gd\boldsymbol{w}(s)$$

$$\boldsymbol{w}_k \sim N_{iid}(0, \bar{Q})$$

$$\bar{Q} = E\left\{ \mathbf{w}_{k} \mathbf{w}_{k}' \right\} = E\left\{ \left(\int_{t_{k}}^{t_{k+1}} e^{A(t_{k+1}-s)} G d\mathbf{w}(s) \right) \left(\int_{t_{k}}^{t_{k+1}} e^{A(t_{k+1}-s)} G d\mathbf{w}(s) \right)' \right\}
= \int_{t_{k}}^{t_{k+1}} e^{A(t_{k+1}-s)} G G' e^{A'(t_{k+1}-s)} ds = \int_{0}^{T_{s}} e^{A\tau} G G' e^{A'\tau} d\tau$$

$$d\mathbf{x}(t) = A\mathbf{x}(t)dt + Gd\mathbf{w}(t)$$

is equivalent to

$$x_{k+1} = \bar{A}x_k + w_k$$
 $x_0 \sim N(\bar{x}_0, P_0), \ w_k \sim N_{iid}(0, \bar{Q})$

with

$$\bar{A} = e^{AT_s}$$

$$\bar{Q} = \int_0^{T_s} e^{A\tau} GG' e^{A'\tau} d\tau$$

The matrices (\bar{A}, \bar{Q}) can be computed by

$$\begin{bmatrix} \Phi_{11} & \Phi_{12} \\ 0 & \Phi_{22} \end{bmatrix} = \exp\left(\begin{bmatrix} -A & GG' \\ 0 & A' \end{bmatrix} T_s \right)$$
$$\bar{A} = \Phi'_{22}$$
$$\bar{Q} = \Phi'_{22}\Phi_{12}$$

The continuous-discrete stochastic system with ZOH input u(t)

$$egin{aligned} dm{x}(t) &= (Am{x}(t) + Bu(t))\,dt + Gdm{w}(t) & m{x}_0 \sim N(ar{x}_0, P_0) \ m{y}(t_k) &= Cm{x}(t_k) + m{v}(t_k) & \{m{w}(t)\} & ext{standard Wiener process} \ m{z}(t_k) &= C_zm{x}(t_k) & m{v}(t_k) = m{v}_k \sim N_{iid}(0, R) \end{aligned}$$

is equivalent to the discrete-time stochastic system

$$egin{aligned} oldsymbol{x}_{k+1} &= ar{A} oldsymbol{x}_k + ar{B} u_k + ar{G} oldsymbol{w}_k & oldsymbol{x}_0 \sim N(ar{x}_0, P_0) & oldsymbol{w}_k \sim N_{iid}(0, ar{Q}) \ oldsymbol{y}_k &= C oldsymbol{x}_k + oldsymbol{v}_k & oldsymbol{v}_k \sim N(0, R) \ oldsymbol{z}_k &= C_z oldsymbol{x}_k \end{aligned}$$

$$\bar{A} = e^{AT_s} \quad \bar{B} = \int_0^{T_s} e^{A\tau} d\tau B$$

$$\bar{G} = I \qquad \bar{Q} = \int_0^{T_s} e^{A\tau} GG' e^{A'\tau} d\tau$$

$$\begin{bmatrix} \bar{A} & \bar{B} \\ 0 & I \end{bmatrix} = \exp\left(\begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix} T_s\right)$$
$$\begin{bmatrix} \Phi_{11} & \Phi_{12} \\ 0 & \Phi_{22} \end{bmatrix} = \exp\left(\begin{bmatrix} -A & GG' \\ 0 & A' \end{bmatrix} T_s\right)$$
$$\bar{Q} = \Phi'_{22} \Phi_{12}$$

Learning Objectives

After this lecture you should be able to

- Apply conservation of mass to develop simple first-principle models
- Simulate systems described by ODEs using Matlab
- Compute steady-states and linearize a system around a steady state
- Discretize a linear continuous-time state space system
- Oberive transfer functions for linear state-space systems
- O Do simulations of stochastic systems
- O Discretize a continuous-time stochastic system

Exercise 1

Consider the 4-tank system with the parameters given in p. 12. Let $F_{1s}=250~{\rm cm^3/s}$ and $F_{2s}=325~{\rm cm^3/s}$.

- Compute the steady-state of this system
- ② Simulate the response for a 5, 10, and 25% step increase in F_1 , respectively.
- Linearize the model at steady state. What is (A,B,C,D) for the continuous-time system?
- ① Discretize the system using a sample time of $T_s=4$ seconds. What is (A,B,C,D) for the discrete time system.
- **3** Simulate step responses for a 5, 10, and 25% step increase in F_1 , respectively using the linear model. Compare these responses to the responses of the nonlinear model.
- Compute the continuous-time and discrete-time transfer functions for this 4-tank system. What are the gain, poles and zeros for these systems?

Exercise 2

Consider the continuous-time system

$$dx(t) = Ax(t)dt + B(u(t)dt + \sigma dw(t))$$
$$= (Ax(t) + Bu(t)) dt + B\sigma dw(t)$$

with σ being 10% of the mean value (steady state value) of u(t). Consider the above model applied for the 4-tank system (see Exercise 1).

- Discretize this system (for the 4-tank system example)
- Simulate the discrete time stochastic system. Make time series plot and histograms of the outputs.

Questions and Comments

John Bagterp Jørgensen jbjo@dtu.dk

Technical University of Denmark Department of Applied Mathematics and Computer Science

