

## **Feature Engineering**

NYDSSG Demo By: Susan Sun February 1, 2016 @Dstillery

## Feature Engineering vs. Feature Selection



## What is Feature Engineering?

Feature engineering is the process of using domain knowledge of the data to create features that make machine learning algorithms work.

## Why Talk about Feature Engineering?

Feature engineering is fundamental to the application of machine learning. It is manual, it is slow, it requires a lot of human brain power, and it makes a big difference, especially in competitive machine learning.

Let's Feature Engineer a Model for the Question...

Should I have another cup of tea?

## **Numerical Data**

Person B

| Person   | Date & Time | e Amount of Caffeine in         | My System (in mg) |
|----------|-------------|---------------------------------|-------------------|
| Susan    | Day 1       | 400                             |                   |
|          | Day 2       | 600                             |                   |
|          | Day 3       | 400                             |                   |
|          | Day 4       | 2400                            |                   |
| ***      | Day 5       | 400                             |                   |
| Person B | Day 1       | 600                             |                   |
|          | Day 2       | 400                             |                   |
|          |             |                                 |                   |
|          | Person      | Average Caffeine Amount (in mg) |                   |
|          | Susan       | 840                             |                   |

500

#### **Numerical Data**

Instead of just the AVERAGE, also consider:

Descriptive Statistics Min, Max, Median, Mode, Variance

**Transformations** Square, Cube, Log, Inverse

**Standardizations** Capping, Binning, Normalization, Ratio

## Numerical Data – Food for Thought

- 1. Instead of transforming each numerical variable with every transformation methodology, it helps to stop and think which transformations make sense.
- 2. Mean and variance are the 1<sup>st</sup> and 2<sup>nd</sup> "moments" in descriptive statistics. Transformations and standardizations are used for controlling skewness, which is the 3<sup>rd</sup> "moment."



## **Categorical Data**

| Person   | Date & Time | Allergic to Caffeine? | Was it Decaf? | What Kind of Tea? |  |
|----------|-------------|-----------------------|---------------|-------------------|--|
| Susan    | Day 1       | No                    | No            | Earl Grey         |  |
| •••      | Day 2       | No                    | No            | Green             |  |
| •••      | Day 3       | No                    | No            | Chamomile         |  |
| •••      | Day 4       | No                    | No            | Earl Grey         |  |
| •••      | Day 5       | No                    | No            | Earl Grey         |  |
| Person B | Day 1       | Yes                   | Yes           | Chamomile         |  |
| •••      | Day 2       | Yes                   | Yes           | Chamomile         |  |
| Person C | Day 1       | Yes                   | Yes           | Chamomile         |  |
|          | Day 2       | Yes                   | No            | Earl Grey         |  |

Notice the interaction of the variables here. Should someone allergic to caffeine be drinking caffeinated tea?



| Person   | Tea_EarlGrey | Tea_Green | Tea_Chamomile | Flag_Allergic | Flag_DrankDecaf | Flag_Allergic_DrankDecaf |
|----------|--------------|-----------|---------------|---------------|-----------------|--------------------------|
| Susan    | 3            | 1         | 0             | 0             | 0               | 0                        |
| Person B | 0            | 0         | 3             | 0             | 1               | 0                        |
| Person C | 1            | 0         | 1             | 1             | 1               | 1                        |

### **Categorical Data Summary**

**Tea\_\*** Example of aggregation of categories

Flag\_\* Example of dummy variables

Allergic\_DrankDecaf Example of interaction variables

## **Categorical Data – Food for Thought**

- 1.If the data is ordinal instead of nominal, find some way to preserve the order information.
- 2. Missing data can also be transformed into binary variables.
- 3. Always do a check of how many distinct values the categorical variable has, before performing interactions with other categorical variables, to prevent variable explosion.



# Machine Learning: The Art and Science of Algorithms that Make Sense of Data by Peter Flach

10. Features

10.1 Kinds of feature



#### Table 10.1: Kinds of feature

| Kind                                   | Order       | Scale       | Tendency               | Dispersion                                                                           | Shape                            |
|----------------------------------------|-------------|-------------|------------------------|--------------------------------------------------------------------------------------|----------------------------------|
| Categorical<br>Ordinal<br>Quantitative | ×<br>√<br>√ | ×<br>×<br>√ | mode<br>median<br>mean | n/a<br>quantiles<br>range, interquartile range,<br>variance, standard devia-<br>tion | n/a<br>n/a<br>skewness, kurtosis |

Kinds of feature, their properties and allowable statistics. Each kind inherits the statistics from the kinds above it in the table. For instance, the mode is a statistic of central tendency that can be computed for any kind of feature.

# Machine Learning: The Art and Science of Algorithms that Make Sense of Data by Peter Flach

10. Features

10.2 Feature transformations



#### Table 10.2: Feature transformations

| $\downarrow$ to, from $\rightarrow$ | Quantitative   | Ordinal      | Categorical  | Boolean              |
|-------------------------------------|----------------|--------------|--------------|----------------------|
| Quantitative                        | normalisation  | calibration  | calibration  | calibration ordering |
| Ordinal                             | discretisation | ordering     | ordering     |                      |
| Categorical                         | discretisation | unordering   | grouping     |                      |
| Boolean                             | thresholding   | thresholding | binarisation |                      |

An overview of possible feature transformations. **Normalisation and calibration** adapt the scale of quantitative features, or add a scale to features that don't have one. **Ordering** adds or adapts the order of feature values without reference to a scale. The other operations abstract away from unnecessary detail, either in a deductive way (unordering, binarisation) or by introducing new information (thresholding, discretisation).

## **Date and Time**

| Person | Date & Time of Caffeination | Year | Month | Day | Season | Time        | Sunset? |
|--------|-----------------------------|------|-------|-----|--------|-------------|---------|
| Susan  | 2015-12-20 02:00:00 EST     | 2015 | 12    | 20  | Winter | 2:00 AM EST | Yes     |
|        | 2015-12-20 03:30:00 EST     | 2015 | 12    | 20  | Winter | 3:30 AM EST | Yes     |
|        | 2016-01-01 04:15:00 EST     | 2016 | 1     | 1   | Winter | 4:15 AM EST | Yes     |
|        | 2016-01-27 01:00:00 EST     | 2016 | 1     | 27  | Winter | 1:00 AM EST | Yes     |
|        | 2016-01-28 02:00:00 EST     | 2016 | 1     | 28  | Winter | 2:00 AM EST | Yes     |



Person Metric 1 Metric 2 Metric 3 ...

Susan

#### **Date and Time**

#### "Duration since last action"

e.g. How many days / hours / seconds since last action [tea]

#### "Gap measure"

e.g. How many days / hours / seconds between two actions?

#### "Seasonality"

e.g. Does the time of day / time of month / time of year affect how frequently the action takes place?

## **Date and Time – Food for Thought**

Be conscious of how the interaction of geography and timestamps will affect your calculations. (e.g. February in South America is NOT the same season as February in North America)

#### **Text**

#### Recorded Conversation

Man, I really want some caffeine right now.

I want some tea. Do you want some tea? Let me get you some tea.

Ugh! No more tea, I'm so caffeinated I'm vibrating.

I'm going to die if I don't have some caffeine. Who the hell broke into my tea stash?!!



Person Count # of Times "Tea" was Mentioned Count # of Times "Caffeine" was Mentioned

Susan ...

#### **Text**

#### Recorded Conversation

Man, I really want some caffeine right now.

I want some tea. Do you want some tea? Let me get you some tea.

Ugh! No more tea, I'm so caffeinated I'm vibrating.

I'm going to die if I don't have some caffeine. Who the hell broke into my tea stash?!!

TEAAAAAAA!!!!!!!!!!!



Stemming & Lemmatization
"Caffeine"

Variations on the Same Word caffeine, caffeination, caffeinated

#### **Text**

#### Recorded Conversation

Man, I really want some caffeine right now.

I want some tea. Do you want some tea? Let me get you some tea.

Ugh! No more tea, I'm so caffeinated I'm vibrating.

I'm going to die if I don't have some caffeine. Who the hell broke into my tea stash?!!

TEAAAAAAA!!!!!!!!!!!



#### N-grams

1-gram

2-gram

3-gram

#### Count # of Times [x] was Mentioned

"tea"

"more tea", "some tea"

"no more tea"

## Text – Food for Thought

- How to handle typos or deliberate misspellings? (Damerau-Levenshtein distance for typos, Double Metaphone for spelling)
- Instead of manually picking keywords, off-the-shelf packages for tokenization can also produce passable results (Python's NLKT package).

### **Other Types of Data**

Categorical data with too many levels

- a.Convert to numerical whenever possible (Zip code: use Google Geocoding API or Yahoo! PlaceFinder)
- b. Aggregate to higher levels (Zip code: aggregate to province by taking first few numbers)

## **Other Types of Data**

Use model outputs for your model's input

a.Image processing

b.Including trend analysis as an input

### What is **Good** Feature Engineering?

A well-behaved feature should be...

**Reusable**: You should be able to reuse features in different models, applications, and teams.

**Transformable**: Besides directly reusing a feature, it should be easy to use a transformation of it (e.g. log(f), max(f))

**Interpretable**: In order to do any of the previous, you need to be able to understand the meaning of features and interpret their values.

**Reliable**: It should be easy to monitor and detect bugs/issues in features

## And Finally...

Feature engineering is an art form, not a science. (aka: Don't torture your data!)



#### **Thank You!**



@susanweisun



https://www.linkedin.com/in/susanwsun