Problème : Ouverts de R

L'objectif de ce problème est l'étude des ouverts de \mathbb{R} . Afin de respecter la logique de l'énoncé, vous ne pouvez pas utiliser la notion d'intervalle ouvert introduite en cours, mais vous pouvez utiliser la caractérisation des intervalles comme convexes de \mathbb{R} . Faites attention à bien distinguer inégalités larges et strictes dans le cadre de ce problème.

Soit A une partie de \mathbb{R} . On dit que A est ouverte (un ouvert, ou une partie ouverte), lorsqu'elle vérifie la propriété

$$\forall a \in A, \exists \varepsilon > 0,]a - \varepsilon, a + \varepsilon[\subset A$$

Soit X une partie de \mathbb{R} . On dit que X est dénombrable lorsqu'il existe une bijection de X dans \mathbb{N} . On dit que X est au plus dénombrable lorsqu'il existe un injection de X dans \mathbb{N} , ce qui équivaut à (on l'admet) X fini ou dénombrable. On admet que \mathbb{Q} est dénombrable.

- 1. Exemples de parties ouvertes et non ouvertes.
 - (a) Soit $(\alpha, \beta) \in \mathbb{R}^2$ tel que $\alpha < \beta$. Montrer que l'intervalle $]\alpha, \beta[$ est une partie ouverte.
 - (b) Soit $b \in \mathbb{R}$. Montrer que l'intervalle $[b, +\infty[$ n'est pas ouvert.
 - (c) Montrer que l'ensemble des rationnels $\mathbb Q$ n'est pas ouvert.
- 2. Soit A_1 et A_2 deux parties ouvertes de \mathbb{R} .
 - (a) Montrer que $A_1 \cup A_2$ est ouvert.
 - (b) Montrer qu'une union quelconque d'ouverts est ouvert.
 - (c) Montrer que $A_1 \cap A_2$ est ouvert.
 - (d) Montrer qu'une intersection finie d'ouverts est ouvert.
 - (e) Montrer que $\bigcap_{n \in \mathbb{N}^*} \left] \frac{1}{n}, \frac{1}{n} \right[$ n'est pas ouvert.
- 3. Soit *A* une partie ouverte, non vide et bornée de \mathbb{R} .
 - (a) Rappeler la définition de la borne supérieure de A.
 - (b) On suppose que $\sup(A) \in A$. Montrer qu'alors A possède un élément strictement plus grand que $\sup(A)$.
 - (c) En déduire que $\sup(A) \notin A$.
 - (d) Que dire de inf(A)?
- 4. Soit I un intervalle ouvert de $\mathbb R$ au sens de la définition donnée dans ce problème. Montrer que I est de l'une des formes suivantes :

$$\emptyset$$
, $]\alpha, \beta[$, $]\alpha, +\infty[$, $]-\infty, \beta[$, \mathbb{R}

- 5. Donner un exemple de partie ouverte et dense dans $\mathbb R$ différente de $\mathbb R$.
- 6. Soit A une partie ouverte non vide de \mathbb{R} . On définit la relation binaire \mathcal{R} suivante sur A:

$$\forall (a_1, a_2) \in A^2, a_1 \mathcal{R} a_2 \iff [\min(a_1, a_2), \max(a_1, a_2)] \subset A$$

- (a) Montrer que la relation \mathcal{R} est une relation d'équivalence.
- (b) Soit $a \in A$. Montrer que la classe d'équivalence de a pour la relation \mathcal{R} , notée C(a), est un intervalle.
- (c) Soit $a \in A$. Montrer que la classe d'équivalence de a pour la relation \mathcal{R} , notée C(a), est ouverte.
- (d) En déduire que A est une réunion disjointes au plus dénombrable d'intervalles ouverts non vides, i.e qu'il existe un ensemble fini ou en bijection avec \mathbb{N} d'indices K, et une famille d'intervalles ouverts non vides $(I_k)_{k\in K}$ disjoints tels que $A=\bigcup_{k\in K}I_k$.
- 7. On considère une famille dénombrable $(V_n)_{n\in\mathbb{N}}$ de parties ouvertes et denses dans \mathbb{R} et on note $B=\bigcap_{n\in\mathbb{N}}V_n$.

- (a) Soit I un intervalle ouvert non vide de \mathbb{R} . Construire deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ de réels vérifiant les critères suivants :
 - i. $[u_0, v_0] \subset I \cap V_0$
 - ii. $\forall n \in \mathbb{N}, u_n < v_n$
 - iii. $\forall n \in \mathbb{N}, [u_{n+1}, v_{n+1}] \subset]u_n, v_n[\cap V_{n+1}.$
- (b) Démontrer que $I \cap B$ est non vide.
- (c) En déduire que B est dense dans \mathbb{R} .
- (d) Que dire de B privé d'une partie au plus dénombrable?

Le résultat 7.c) s'appelle le théorème de Baire, valable dans des espaces bien plus abstraits. On dit que B est un ensemble gras.