ЗАДАНИЕ ПО КОМПЛЕКСУ ПРЕДМЕТОВ ФИЗИКА, ИНФОРМАТИКА, МАТЕМАТИКА

ВАРИАНТ 47101 для 10 класса

Истребитель воздушных шариков Белладуй имеет рабочий объем легких W=1 л, и после каждого вздоха он вдувает весь этот объем в шарик. Сделав пятьдесят вздохов, истребитель должен отдыхать. Редко бывает, чтобы шарик не лопнул за это время. Однако, некоторым везет: отдохнув, истребитель всегда берется за новый шарик.

Попробуем смоделировать такой процесс.

Пусть в начальном (ненапряженном) состоянии оболочка надувного шарика имеет форму сферы радиуса $r_0=5$ см. Будучи равномерно растянутой до сферы радиуса r, оболочка шарика создает дополнительное давление $Q=\gamma P_A\bigg(1-\bigg(\frac{r_0}{r}\bigg)^3\bigg)$ на содержащийся внутри воздух, а напряжение деформации оболочки равно $\sigma=20\gamma P_A\bigg(\bigg(\frac{r}{r_0}\bigg)^2-\frac{r_0}{r}\bigg)$.

В обеих формулах P_A – атмосферное давление, γ – эмпирически подобранный коэффициент. Будем рассматривать шарик, изготовленный из материала, для которого $\gamma = 0,1$. Если напряжение оболочки σ превышает критическую величину $30P_A$, то она разрывается.

Будем считать весь процесс изотермическим, проходящим при температуре $T=22^{\circ}\mathrm{C}$.

- 1. Найдите радиус шарика после первого выдоха истребителя, а также после второго (ответы округлите до миллиметров).
- 2. Определите общее количество выдохов, которые необходимо сделать, чтобы шарик лопнул. Исходя из этого, сделайте вывод: уцелеет ли шарик.
- 3. Изменится ли вывод в предыдущем вопросе, если рабочий объем W легких Белладуя станет вдвое меньше? Изменяя величину W, определите с точностью до 1 мм максимально возможный диаметр воздушного шарика.

Ниже приведены отрывки из Справочника по физике для истребителей, которые могут оказаться полезными при решении задачи.

ускорение свободного падения $g=9,8\,\frac{\text{M}}{\text{c}^2},$ атмосферное давление $P_A=101\,\text{к}\Pi a,$ плотность воздуха $\rho_A=1,2\,\frac{\text{кг}}{\text{м}^3},$ молярная масса воздуха $\mu_A=29\,\frac{\text{г}}{\text{моль}},$ уравнение Менделеева-Клапейрона: $PV=\frac{m}{\mu}RT,\,$ где $R=8,3\,\frac{\text{Дж}}{\text{моль}\cdot\text{K}},$ объем шара: $V_{\text{III}}=\frac{4}{3}\pi r^3.$