D. Zack Garza

Backgroun Generating Functions

Zeta Functio

Example:

Conjecture

Projective

п-ѕрасе

CRAG

The Weil Conjectures

D. Zack Garza

April 2020

CBAC

D. Zack Garza

Background Generating Functions

Zeta Functions

Example

The Weil

Projective

Grassmannian

Background: Generating Functions

Varieties

CRAG

D. Zack Garza

Background Generating Functions

Zeta Functi

Exampl

The Weil Conjectur

Projectiv

Grassmannia

Fix q a prime and $\mathbb{F} := \mathbb{F}_q$ the (unique) finite field with q elements, along with its (unique) degree n extensions

$$\mathbb{F}_{q^n} = \left\{ x \in \overline{\mathbb{F}}_q \ \middle| \ x^{q^n} - x = 0 \right\} \quad \forall \ n \in \mathbb{Z}^{\geq 2}$$

Definition (Projective Algebraic Varieties)

Let $J=\langle f_1,\cdots,f_M\rangle \leq k[x_0,\cdots,x_n]$ be an ideal, then a *projective algebraic* variety $X\subset \mathbb{P}^n_{\mathbb{F}}$ can be described as

$$X = V(J) = \left\{ \mathbf{x} \in \mathbb{P}_{\mathbb{F}}^{n} \mid f_{1}(\mathbf{x}) = \cdots = f_{M}(\mathbf{x}) = \mathbf{0} \right\}$$

where J is generated by homogeneous polynomials in n+1 variables, i.e. there is a fixed $d=\deg f_i\in\mathbb{Z}^{\geq 1}$ such that

$$f(\mathbf{x}) = \sum_{\substack{\mathbf{i} = (i_1, \cdots, i_n) \\ \sum_i i_j = d}} \alpha_{\mathbf{i}} \cdot x_0^{i_1} \cdots x_n^{i_n} \quad \text{ and } \quad f(\lambda \cdot \mathbf{x}) = \lambda^d f(\mathbf{x}), \lambda \in \mathbb{F}^{\times}.$$

2

- For a fixed variety X, we can consider its \mathbb{F} -points $X(\mathbb{F})$.
 - Note that $\#X(\mathbb{F})<\infty$ is an integer
- For any L/\mathbb{F} , we can also consider X(L)
 - In particular, we can consider $X(\mathbb{F}_{q^n})$ for any $n \geq 2$.
 - We again have $\#X(\mathbb{F}_{q^n})<\infty$ and are integers for every such n.
- So we can consider the sequence

$$[N_1, N_2, \cdots, N_n, \cdots] := [\#X(\mathbb{F}), \ \#X(\mathbb{F}_{q^2}), \cdots, \ \#X(\mathbb{F}_{q^n}), \cdots].$$

 Idea: associate some generating function (a formal power series) encoding sequence, e.g.

$$F(z) = \sum_{n=1}^{\infty} N_n z^n = N_1 z + N_2 z^2 + \cdots$$

Why Generating Functions?

CRAG

Garza

Background Generating Functions

Zeta Function

The Weil

Conjectur

m-space

Note that for such an ordinary generating functions, the coefficients are related to the real-analytic properties of F: we can easily recover the coefficients in the following way:

$$[z^n] \cdot F(z) = [z^n] \cdot T_{F,z=0}(z) = \frac{1}{n!} \left(\frac{\partial}{\partial z}\right)^n F(z) \bigg|_{z=0} = N_n.$$

They are also related to the complex analytic properties: using the Residue theorem,

$$[z^n] \cdot F(z) := \frac{1}{2\pi i} \oint_{\mathbb{S}^1} \frac{F(z)}{z^{n+1}} dz = \frac{1}{2\pi i} \oint_{\mathbb{S}^1} \frac{N_n}{z} dz = N_n.$$

The latter form is very amenable to computer calculation.

Why Generating Functions?

CRAG

D. Zack

Background Generating

Functions Zeta

Example

The Weil Conjecture

Projective

Crossmann

An OGF is an infinite series, which we can interpret as an analytic function $\mathbb{C} \longrightarrow \mathbb{C}$ – in nice situations, we can hope for a closed-form representation.

A useful example: by integrating a geometric series we can derive

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n \qquad (= 1+z+z^2+\cdots)$$

$$\implies \int \frac{1}{1-z} = \int \sum_{n=0}^{\infty} z^n$$

$$= \sum_{n=0}^{\infty} \int z^n \quad for|z| < 1 \quad \text{by uniform convergence}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n+1} z^{n+1}$$

$$\implies -\log(1-z) = \sum_{n=1}^{\infty} \frac{z^n}{n} \qquad \left(= z + \frac{z^2}{2} + \frac{z^3}{3} + \cdots\right).$$

For completeness, also recall that

$$\exp(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

CDAG

D. Zack Garza

Background: Benerating Functions

Zeta Function

Examples

The Weil

Projective

m-space Grassmannian Zeta Functions

Definition: Local Zeta Function

CRAG

D. Zack Garza

ackgroun enerating

Zeta Functions

Exampl

The Wei

Conjecti Projectiv

C

Problem: count points of a (smooth?) projective variety X/\mathbb{F} in all (finite) degree n extensions of \mathbb{F} .

Definition (Local Zeta Function)

The *local zeta function* of an algebraic variety X is the following formal power series:

$$Z_X(z) = \exp\left(\sum_{n=1}^{\infty} N_n \frac{z^n}{n}\right) \in \mathbb{Q}[[z]] \text{ where } N_n := \#X(\mathbb{F}_n).$$

Note that

$$z\left(\frac{\partial}{\partial z}\right)\log Z_X(z) = z\frac{\partial}{\partial z}\left(N_1z + N_2\frac{z^2}{2} + N_3\frac{z^3}{3} + \cdots\right)$$

$$= z\left(N_1 + N_2z + N_3z^2 + \cdots\right) \qquad \text{(unif. conv.)}$$

$$= N_1z + N_2z^2 + \cdots = \sum_{n=1}^{\infty} N_nz^n,$$

which is an *ordinary* generating function for the sequence (N_n) .

CBAC

D. Zack Garza

Background: Generating Functions

Zeta Functions

Examples

The Weil Conjecture

Projective

Grassmannian

Examples

Example: A Point

CRAG

D. Zack Garza

Generating Functions

Zeta Functio

Examples

The Weil Conjecture

Projective

m-space

Take $X = \{pt\} = V(\{f(x) = 0\})/\mathbb{F}$ a single point over \mathbb{F} , then $\#X(\mathbb{F}_a) := N_1 = 1$

$$\#X(\mathbb{F}_q) := N_1 = 1$$

 $\#X(\mathbb{F}_{q^2}) := N_2 = 1$

:

$$\#X(\mathbb{F}_{q^n}) := N_n = 1$$

Ξ.

and so

$$Z_{\{pt\}}(z) = \exp\left(1 \cdot z + 1 \cdot \frac{z^2}{2} + 1 \cdot \frac{z^3}{3} + \cdots\right)$$
$$= \exp\left(\sum_{n=1}^{\infty} \frac{z^n}{n}\right)$$
$$= \exp\left(-\log\left(1 - z\right)\right)$$
$$= \frac{1}{1 - z}.$$

Notice: Z admits a closed form and is a rational function.

Example: The Affine Line

CRAG

D. Zack Garza

Backgroun Generating

Zeta Functio

Examples

The Weil Conjecture

Projective

Take $X = \mathbb{A}^1/\mathbb{F}$ the affine line over \mathbb{F} , then We can write

$$\mathbb{A}^1(\mathbb{F}_{q^n}) = \left\{ \mathbf{x} = [x_1] \mid x_1 \in \mathbb{F}_{q^n} \right\}$$

as the set of one-component vectors with entries in \mathbb{F}_n , so

$$X(\mathbb{F}_q) = q$$
$$X(\mathbb{F}_{q^2}) = q^2$$

:

$$X(\mathbb{F}_{q^n})=q^n.$$

Then

$$Z_X(z) = \exp\left(\sum_{n=1}^{\infty} q^n \frac{z^n}{n}\right)$$

$$= \exp\left(\sum_{n=1}^{\infty} \frac{(qz)^n}{n}\right)$$

$$= \exp(-\log(1 - qz))$$

$$= \frac{1}{1 - qz}.$$

Example: Affine m-space

CRAG

D. Zack Garza

Background Generating

Zeta

Examples

Conjectur

Projectiv

Grassmann

Take $X = \mathbb{A}^m/\mathbb{F}$ the affine line over \mathbb{F} , then We can write

$$\mathbb{A}^{m}(\mathbb{F}_{q^{n}}) = \left\{ \mathbf{x} = [x_{1}, \cdots, x_{m}] \mid x_{i} \in \mathbb{F}_{q^{n}} \right\}$$

as the set of one-component vectors with entries in \mathbb{F}_n , so

$$X(\mathbb{F}_q) = q^m$$

$$X(\mathbb{F}_{q^2}) = (q^2)^m$$

$$\vdots$$

$$X(\mathbb{F}_{q^n}) = q^{nm}.$$

Figure:
$$\mathbb{A}^2/\mathbb{F}_3$$
 ($q = 3, m = 2, n = 1$)

Then

$$Z_X(z) = \exp\left(\sum_{n=1}^{\infty} q^{nm} \frac{z^n}{n}\right) = \exp\left(\sum_{n=1}^{\infty} \frac{(q^m z)^n}{n}\right)$$
$$= \exp(-\log(1 - q^m z))$$
$$= \frac{1}{1 - q^m z}.$$

Example: Projective Line

Examples

Take $X = \mathbb{P}^1/\mathbb{F}$, we can still count by enumerating coordinates:

$$\mathbb{P}^{1}(\mathbb{F}_{q^{n}}) = \left\{ [x_{1} : x_{2}] \mid x_{1}, x_{2} \neq 0 \in \mathbb{F}_{q^{n}} \right\} / \sim = \left\{ [x_{1} : 1] \mid x_{1} \in \mathbb{F}_{q^{n}} \right\} \coprod \left\{ [1 : 0] \right\}.$$

Thus

$$X(\mathbb{F}_q) = q+1$$

$$X(\mathbb{F}_{q^2}) = q^2 + 1$$

$$\vdots$$

$$X(\mathbb{F}_{q^n}) = q^n + 1.$$

Figure: $\mathbb{P}^1/\mathbb{F}_3$ (a=3, n=1)

Thus

$$Z_X(z) = \exp\left(\sum_{n=1}^{\infty} (q^n + 1) \frac{z^n}{n}\right)$$
$$= \exp\left(\sum_{n=1}^{\infty} q^n \frac{z^n}{n} + \sum_{n=1}^{\infty} 1 \cdot \frac{z^n}{n}\right)$$
$$= \frac{1}{(1 - qz)(1 - z)}.$$

D. Zack Garza

Background: Generating Functions

Zeta

Examples

The Weil Conjecture

Projective

Grassmannia

The Weil Conjectures

D. Zack Garza

Generating Functions

Exampl

The Weil Conjectures

m-space

(Weil 1949)

Let X be a smooth projective variety of dimension N over \mathbb{F}_q for q a prime, let $Z_X(z)$ be its zeta function, and define $\zeta_X(s) = Z_X(q^{-s})$.

(Rationality) $Z_X(z)$ is a rational function:

$$Z_X(z) = \frac{p_1(z) \cdot p_3(z) \cdots p_{2N-1}(z)}{p_0(z) \cdot p_2(z) \cdots p_{2N}(z)} \in \mathbb{Q}(z), \quad \text{i.e.} \quad p_i(z) \in \mathbb{Z}[z]$$

$$P_0(z) = 1 - z$$

$$P_{2N}(z) = 1 - q^N z$$

$$P_j(z) = \prod_{j=1}^{\beta_i} (1 - a_{j,k}z)$$
 for some reciprocal roots $a_{j,k} \in \mathbb{C}$

In particular, this implies the existence of a meromorphic continuation of the associated function $\zeta_X(s)$, which a priori only converges for $\Re(s)\gg 0$. This also implies that for n large enough, N_n satisfies a linear recurrence relation.

where we've factored each P_i using its reciprocal roots a_{ii} .

[2] (Functional Equation and Poincare Duality) Let $\chi(X)$ be the Euler characteristic of X, i.e. the self-intersection number of the diagonal embedding $\Delta \hookrightarrow X \times X$; then $Z_X(z)$ satisfies the following functional equation:

$$Z_X\left(\frac{1}{q^Nz}\right) = \pm \left(q^{\frac{N}{2}}z\right)^{\chi(X)} Z_X(z).$$

Equivalently,

$$\zeta_X(N-s) = \pm \left(q^{\frac{N}{2}-s}\right)^{\chi(X)} \zeta_X(s)$$

Note that when N=1, e.g. for a curve, this relates $\zeta_X(s)$ to $\zeta_X(1-s)$.

Equivalently, there is an involutive map on the (reciprocal) roots

$$z \iff \frac{q^N}{z}$$

$$\alpha_{j,k} \iff \alpha_{2N-j,k}$$

which sends roots of p_j to roots of p_{2N-j} .

The Weil Conjectures

(Riemann Hypothesis) The reciprocal roots $a_{i,k}$ are algebraic integers (roots of some monic $p \in \mathbb{Z}[x]$) which satisfy

$$|a_{j,k}|_{\mathbb{C}} = q^{\frac{j}{2}}, \qquad 1 \le j \le 2N - 1, \ \forall k.$$

(Betti Numbers) If X is a "good reduction mod q" of a nonsingular projective variety \tilde{X} in characteristic zero, then the $\beta_i = \deg p_i(z)$ are the Betti numbers of the topological space $\tilde{X}(\mathbb{C})$.

Why is (3) called the "Riemann Hypothesis"?

CRAG

D. Zacl Garza

Backgroun Generating Functions

Funct

The Weil Conjectures

Projective

Suppose it holds. We can use the facts that

- $|\exp(z)| = \exp(\Re(z))$ and
- $b. a^z := \exp(z \operatorname{Log}(a)),$

and to replace the polynomials P_i with

$$L_j(s) := P_j(q^{-s}) = \prod_{k=1}^{\beta_j} (1 - \alpha_{j,k} q^{-s}).$$

Relation to Riemann Hypothesis

CRAG

D. Zack Garza

Now consider the roots of $L_j(s)$: we have $L_j(s_0) = 0$

Generating Functions

Function

The Weil

Conjectures

Projective

Grassmanni

 $L_{j}(s_{0}) = 0$ $\iff q^{-s_{0}} = \frac{1}{\alpha_{j,k}} \quad \text{for some} \quad k$ $\iff |q^{-s_{0}}| = \left|\frac{1}{\alpha_{j,k}}\right| \qquad \stackrel{\text{by assumption}}{=} q^{-\frac{j}{2}}$ $\iff q^{-\frac{j}{2}} \stackrel{\text{(a)}}{=} \exp\left(-\frac{j}{2} \cdot \operatorname{Log}(q)\right) = |\exp\left(-s_{0} \cdot \operatorname{Log}(q)\right)|$ $\stackrel{\text{(b)}}{=} |\exp\left(-(\Re(s_{0}) + i \cdot \Im(s_{0})) \cdot \operatorname{Log}(q)\right)|$ $\stackrel{\text{(a)}}{=} \exp\left(-(\Re(s_{0})) \cdot \operatorname{Log}(q)\right)$

 $\implies \Re(s_0) = \frac{j}{2}$.

 $\implies -\frac{J}{2} \cdot \text{Log}(q) = -\Re(s_0) \cdot \text{Log}(q)$ by injectivity

Relation to Riemann Hypothesis

CBAC

D. Zack Garza

ackgroun enerating

Functions

The Weil Conjectures

Projective

Grassmannia

Roughly speaking, realizing that we would need to apply a logarithm (a conformal map) to send the $\alpha_{j,k}$ to zeros of the L_j , this says that the zeros all must lie on the "critical lines" $\frac{j}{2}$.

In particular, the zeros of L_1 have real part $\frac{1}{2}$, analogous to the classical Riemann hypothesis.

D. Zack Garza

Background Generating Functions

Zeta Function

Examples

Conjectur

Projective m-space

Grassmannian

Projective m-space

Setup

CRAG

D. Zack Garza

Backgroun Generating Functions

Zeta Function

Exampl

Conjectur

Projective m-space

Grassmannia

Take $X = \mathbb{P}^m/\mathbb{F}$ We can write

$$\mathbb{P}^{m}(\mathbb{F}_{q^{n}}) = \mathbb{A}^{m+1}(\mathbb{F}_{q^{n}}) \setminus \{\mathbf{0}\} / \sim = \left\{\mathbf{x} = [x_{0}, \cdots, x_{m}] \mid x_{i} \in \mathbb{F}_{q^{n}}\right\} / \sim$$

But how many points are actually in this space?

Figure: Points and Lines in $\mathbb{P}^2/\mathbb{F}_3$

A nontrivial combinatorial problem!

g-Analogs and Grassmannians

as the space of lines in $\mathbb{A}^{m+1}_{\mathbb{R}}$.

Projective m-space

Theorem

The number of k-dimensional subspaces of $\mathbb{A}_{\mathbb{F}_a}^N$ is the q-analog of the binomial coefficient:

$$\begin{bmatrix} N \\ k \end{bmatrix}_q := \frac{(q^N - 1)(q^{N-1} - 1) \cdots (q^{N-(k-1)} - 1)}{(q^k - 1)(q^{k-1} - 1) \cdots (q - 1)}.$$

To illustrate, this can be done combinatorially: identify $\mathbb{P}_{\mathbb{F}}^m = \operatorname{Gr}_{\mathbb{F}}(1, m+1)$

Remark: Note $\lim_{q \to 1} {N \brack k}_q = {N \choose k}$, the usual binomial coefficient.

Proof: To choose a k-dimensional subspace,

- Choose a nonzero vector $\mathbf{v}_1 \in \mathbb{A}^n_{\mathbb{R}}$ in $q^N 1$ ways.
 - For next step, note that $\#\mathrm{span}\,\{\mathsf{v}_1\}=\#\left\{\lambda\mathsf{v}_1\ \middle|\ \lambda\in\mathbb{F}_q\right\}=\#\mathbb{F}_q=q.$
- Choose a nonzero vector \mathbf{v}_2 not in the span of \mathbf{v}_1 in q^N-q ways.
 - Now note $\#\operatorname{span}\{\mathsf{v}_1,\mathsf{v}_2\} = \#\left\{\lambda_1\mathsf{v}_1 + \lambda_2\mathsf{v}_2 \mid \lambda_i \in \mathbb{F}\right\} = q \cdot q = q^2.$

- Choose a nonzero vector \mathbf{v}_3 not in the span of \mathbf{v}_1 , \mathbf{v}_2 in a^N-a^2 ways.

 $-\cdots$ until \mathbf{v}_k is chosen in

$$(q^N-1)(q^N-q)\cdots(q^N-q^{k-1})$$
 ways

- This yields a k-tuple of linearly independent vectors spanning a k-dimensional subspace V_k
- This overcounts because many linearly independent sets span V_k , we need to divide out by the number of ways to choose a basis inside of V_k .
- By the same argument, this is given by

$$(q^{k}-1)(q^{k}-q)\cdots(q^{k}-q^{k-1})$$

Thus

#subspaces =
$$\frac{(q^N - 1)(q^N - q)(q^N - q^2) \cdots (q^N - q^{k-1})}{(q^k - 1)(q^k - q)(q^k - q^2) \cdots (q^k - q^{k-1})}$$

$$= \frac{q^{N} - 1}{q^{k} - 1} \cdot \left(\frac{q}{q}\right) \frac{q^{N-1} - 1}{q^{k-1} - 1} \cdot \left(\frac{q^{2}}{q^{2}}\right) \frac{q^{N-2} - 1}{q^{k-2} - 1} \cdots \left(\frac{q^{k-1}}{q^{k-1}}\right) \frac{q^{N-(k-1)} - 1}{q^{k-(k-1)-1}}$$

$$= \frac{(q^{N} - 1)(q^{N-1} - 1) \cdots (q^{N-(k-1)} - 1)}{(q^{k} - 1)(q^{k-1} - 1) \cdots (q - 1)}.$$

Counting Points

CRAG

D. Zack Garza

Backgroun Generating

Functions Zeta

Example

The Weil

Projective m-space

Grassmani

Note that we've actually computed the number of points in any Grassmannian.

Identify $\mathbb{P}^m_{\mathbb{F}} = Gr_{\mathbb{F}}(1, m+1)$ as the space of lines in $\mathbb{A}^{m+1}_{\mathbb{F}}$.

We obtain a nice simplification for the number of lines corresponding to setting k=1:

$$\begin{bmatrix} m+1 \\ 1 \end{bmatrix}_q = \frac{q^{m+1}-1}{q-1} = q^m + q^{m-1} + \dots + q + 1 = \sum_{j=0}^m q^j.$$

Thus

$$X(\mathbb{F}_q) = \sum_{j=0}^m q^j$$

$$X(\mathbb{F}_{q^2}) = \sum_{j=0}^m (q^2)^j$$

$$\vdots$$

$$X(\mathbb{F}_{q^n}) = \sum_{j=0}^m (q^n)^j.$$

Computing the Zeta Function

CRAG

So

D. Zack Garza

Backgroun Generating Functions

Zeta Eunctio

Exampl

Conjectur

Projective m-space

Cuanamannia

$$Z_X(z) = \exp\left(\sum_{n=1}^{\infty} \sum_{j=0}^{m} (q^n)^j \frac{z^n}{n}\right)$$

$$= \exp\left(\sum_{n=1}^{\infty} \sum_{j=0}^{m} \frac{(q^j z)^n}{n}\right)$$

$$= \exp\left(\sum_{j=0}^{m} \sum_{n=1}^{\infty} \frac{(q^j z)^n}{n}\right)$$

$$= \exp\left(\sum_{j=0}^{m-1} -\log(1 - q^j z)\right)$$

$$= \prod_{j=0}^{m} \left(1 - q^j z\right)^{-1}$$

$$= \left(\frac{1}{1 - z}\right) \left(\frac{1}{1 - qz}\right) \left(\frac{1}{1 - q^2 z}\right) \cdots \left(\frac{1}{1 - q^m z}\right),$$

Miraculously, still a rational function!

An Easier Proof

Projective m-space

Quick recap:

$$Z_{\{pt\}} = \frac{1}{1-z}$$
 $Z_{\mathbb{P}^1}(z) = \frac{1}{1-qz}$ $Z_{\mathbb{A}^1}(z) = \frac{1}{(1-z)(1-qz)}$.

Note that $\mathbb{P}^1 = \mathbb{A}^1 \prod \{\infty\}$ and correspondingly $Z_{\mathbb{P}^1}(z) = Z_{\mathbb{A}^1}(z) \cdot Z_{\{\mathsf{pt}\}}(z)$. This works in general:

Lemma (Excision)

If $Y/\mathbb{F}_a \subset X/\mathbb{F}_a$ is a closed subvariety, for $U = X \setminus Y$, $Z_X(z) = Z_Y(z) \cdot Z_U(z)$.

Proof: Let $N_n = \#Y(\mathbb{F}_{q^n})$ and $M_n = \#U(\mathbb{F}_{q^n})$, then

$$\zeta_X(z) = \exp\left(\sum_{n=1}^{\infty} (N_n + M_n) \frac{z^n}{n}\right)$$

$$= \exp\left(\sum_{n=1}^{\infty} N_n \cdot \frac{z^n}{n} + \sum_{n=1}^{\infty} M_n \cdot \frac{z^n}{n}\right)$$

$$= \exp\left(\sum_{n=1}^{\infty} N_n \cdot \frac{z^n}{n}\right) \cdot \exp\left(\sum_{n=1}^{\infty} M_n \cdot \frac{z^n}{n}\right) = \zeta_Y(z) \cdot \zeta_U(z).$$

A Easier Proof

CRAG

Garza

ackground enerating unctions

Zeta Functi

Example

The Weil Conjectur Note that geometry can help us here: we have a stratification $\mathbb{P}^n=\mathbb{P}^{n-1}\coprod\mathbb{A}^n$, and so inductively

$$\mathbb{P}^m = \coprod\nolimits_{j=0}^m \mathbb{A}^j = \mathbb{A}^0 \coprod \mathbb{A}^1 \coprod \cdots \coprod \mathbb{A}^m,$$

and recalling that

$$Z_{X\coprod Y}(z)=Z_X(z)\cdot Z_Y(z)$$

and $Z_{\mathbb{A}^j}(z) = \frac{1}{1-q^j z}$ we have

$$Z_{\mathbb{P}^m}(z) = \prod_{j=0}^m Z_{\mathbb{A}^j}(z) = \prod_{j=0}^m \frac{1}{1 - q^j z}.$$

Notice that the highest degree is exactly m, and there is exactly one factor for each $j \leq m$. Note that PP^m/\mathbb{F}_q can be though of as a mod q reduction of \mathbb{RP}^m or \mathbb{CP}^m , and somehow Z "sees" its dimension.

D. Zack Garza

Background: Generating Functions

Zeta

Example

The Weil Conjecture

Projective

Grassmanniar

Grassmannian

Garza

Backgroun Generating Functions

Functio

The We

Conject

m-space

Grassmannia

Consider now $X = Gr(k, m)/\mathbb{F}$ – by the previous computation, we know

$$X(\mathbb{F}_{q^n}) = egin{bmatrix} m \ k \end{bmatrix}_{q^n} \coloneqq rac{(q^{nm}-1)(q^{nm-1}-1)\cdots(q^{nm-n(k-1)}-1)}{(q^{nk}-1)(q^{n(k-1)}-1)\cdots(q^n-1)}$$

but the corresponding Zeta function is much more complicated than the previous examples:

$$Z_X(z) = \exp\left(\sum_{n=1}^{\infty} {m \brack k}_{q^n} \frac{z^n}{n}\right) = \cdots?.$$

Note that $\dim_{\mathbb{R}} \operatorname{Gr}_{\mathbb{R}}(k, m) = k(m - k)$ as a real manifold, so