

THE INFINITE POWER OF INNOVATION

1.2 & 2.5 V MICROPOWER VOLTAGE REFERENCE

PRODUCTION DATA SHEET

DESCRIPTION

The LM385/385B Micropower Voltage References are two terminal bandgap reference diodes designed and optimized for accurate low power operation in portable and other power sensitive systems. Operating currents are guaranteed from as low as 15µA up to 20mA for the LM385/385B-1.2, and 20μA up to 20mA for the LM385/385B-2.5, giving designers a great deal of flexibility in optimizing power consumption, noise and ultimate application performance. As an added feature, the references output impedance is extraordinarily low over the entire operating range of quiescent currents. This enables an extremely wide dynamic load range with little effect on

the overall reference accuracy.

The LM385 family is available in fixed 1.2V and 2.5V reference values. Process and circuit design optimization provide for high accuracy with initial tolerance values of 1% for the LM385B-1.2, 2% for the LM385-1.2, 1.5% for the LM385B-2.5, and 3% for the LM385-2.5. Complementing their initial accuracy, the bandgap reference is temperature compensated to deliver 20ppm performance over the 0° to 70°C operating temperature range.

The LM385 family from Linfinity is a pin-for-pin replacement for the LM385/385B family of voltage references.

KEY FEATURES

- GUARANTEED 1% INITIAL ACCURACY (LM385B-1.2)
- GUARANTEED 2.5% INITIAL ACCURACY (LM385-1.2)
- GUARANTEED 1.5% INITIAL ACCURACY (LM385B-2.5)
- GUARANTEED 3% INITIAL ACCURACY (LM385-2.5)
- ☐ GUARANTEED 20µA OPERATING CURRENT
- LOW TEMPERATURE COEFFICIENT
- ☐ OPERATING CURRENT OF 20µA TO 20mA
- lacksquare Very Low Dynamic impedance . . . 1Ω

APPLICATIONS

- **PORTABLE METER REFERENCES**
- PORTABLE TEST INSTRUMENTS
- BATTERY OPERATED SYSTEMS
- CURRENT LOOP INSTRUMENTATION

PRODUCT HIGHLIGHT

1.2V REFERENCE

5V 38k 1.2V LM385-1.2V

MICROPOWER REFERENCE FROM 9V BATTERY

۱,	PACKAGE ORDER INFORMATION							
	T _A (°C)	Reference Initial Voltage Tolerance		DM Plastic SOIC 8-pin	LP Plastic TO-92 3-pin			
	0 to 70	1.00/	±30mV	LM385DM-1.2	LM385LP-1.2			
		1.2V	±12mV	LM385BDM-1.2	LM385BLP-1.2			
		2.5V	±75mV	LM385DM-2.5	LM385LP-2.5			
			±38mV	LM385BDM-2.5	LM385BLP-2.5			

Note: All surface-mount packages are available in Tape & Reel. Append the letter "T" to part number. (i.e. LM385DM-2.5T)

PRODUCTION DATA SHEET

THERMAL DATA

DM PACKAGE:

THERMAL RESISTANCE-JUNCTION TO AMBIENT, $\theta_{_{JA}}$	165°C/W						
LP PACKAGE:							
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ_{10}	165°C/W						

The $\theta_{_{JA}}$ numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

PACKAGE PIN OUTS

LP PACKAGE (Top View)

PRODUCTION DATA SHEET

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, these specifications apply to $T_A = 25^{\circ}$ C. Typ number represents $T_A = 25^{\circ}$ C value.)

LM385/385B-1.2

Parameter	Parameter		Test Conditions	LM3	Units		
Faranieter		Symbol		Min.	Тур.	Max.	Onits
Reverse Breakdown Voltage	LM385	V _z	$I_{MIN} \le I_R \le I_{MAX}$	1.205	1.235	1.260	٧
	LM385B	7	$I_{MIN} \le I_R \le I_{MAX}$	1.223	1.235	1.247	٧
Average Temperature Coefficient		ΔV_{z}	I _R = 100μA		20		ppm/°C
		∆Temp					
Minimum Operating Current		I _{MIN}			8	15	μA
Reverse Breakdown Voltage Chang		е	ΔV_{Z} $I_{MIN} \leq I_{R} \leq 1 \text{mA}$			1.5	m۷
with Current		ΔI_R	$1mA \le I_R \le 20mA$			20	m۷
Reverse Dynamic Impedance		r _z	I _R = 100μA		1		Ω
Wide Band Noise (RMS)		e _n	$I_R = 100 \mu A$, $10 Hz \le f \le 10 kHz$		60		μV
Long Term Stability		ΔV_{z}	$I_R = 100\mu A$, $T_A = 25^{\circ}C \pm 0.1^{\circ}C$		20		ppm/kHr
		ΔTime					

LM385/385B-2.5

Parameter	Symbol	Test Conditions	LM3	Units		
raiailletei	Syllicol		Min.	Тур.	Max.	Onits
Reverse Breakdown Voltage LM385	V _z	$I_{MIN} \le I_R \le I_{MAX}$	2.425	2.500	2.575	٧
LM385B		$I_{MIN} \le I_R \le I_{MAX}$	2.462	2.500	2.538	٧
Average Temperature Coefficient	ΔV_z	$I_R = 100 \mu A$		20		ppm/°C
	ΔTemp					
Minimum Operating Current	I _{MIN}			13	20	μA
Reverse Breakdown Voltage Chang	е	ΔV_{z} $I_{MIN} \leq I_{R} \leq 1 \text{mA}$			2	m۷
with Current	ΔI_R	$1mA \le I_R \le 20mA$			20	m۷
Reverse Dynamic Impedance	r _z	$I_R = 100 \mu A, f = 20 Hz$		1		Ω
Wide Band Noise (RMS)	e _n	$I_R = 100 \mu A$, $10 Hz \le f \le 10 kHz$		120		μV
Long Term Stability	ΔV_z	$I_R = 100\mu A, T_A = 25^{\circ}C \pm 0.1^{\circ}C$		20		ppm/kHr
	ΔTime					

GRAPH / CURVE INDEX

Characteristic Curves LM385/385B-1.2

FIGURE

- 1. RESPONSE TIME
- 2. REVERSE CHARACTERISTICS
- 3. FORWARD CHARACTERISTICS
- 4. TEMPERATURE DRIFT
- 5. REVERSE VOLTAGE CHANGE
- 6. REVERSE DYNAMIC IMPEDANCE
- 7. NOISE VOLTAGE

Characteristic Curves LM385/385B-2.5

FIGURE

- 8. RESPONSE TIME
- 9. REVERSE CHARACTERISTICS
- 10. FORWARD CHARACTERISTICS
- 11. TEMPERATURE DRIFT
- 12. REVERSE DYNAMIC IMPEDANCE
- 13. NOISE VOLTAGE

PRODUCTION DATA SHEET

CHARACTERISTIC CURVES - LM385/385B-1.2V

FIGURE 1. — RESPONSE TIME

FIGURE 2. — REVERSE CHARACTERISTICS

FIGURE 3. — FORWARD CHARACTERISTICS

FIGURE 4. — TEMPERATURE DRIFT

PRODUCTION DATA SHEET

CHARACTERISTIC CURVES — LM385/385B-1.2V

FIGURE 5. — REVERSE VOLTAGE CHANGE

FIGURE 6. — REVERSE DYNAMIC IMPEDANCE

FIGURE 7. — NOISE VOLTAGE

PRODUCTION DATA SHEET

CHARACTERISTIC CURVES — LM385/385B-2.5V

FIGURE 8. — RESPONSE TIME

FIGURE 9. — REVERSE CHARACTERISTICS

FIGURE 10. — FORWARD CHARACTERISTICS

FIGURE 11. — TEMPERATURE DRIFT

PRODUCTION DATA SHEET

CHARACTERISTIC CURVES — LM385/385B-2.5V

FIGURE 12. — REVERSE DYNAMIC IMPEDANCE

FIGURE 13. — NOISE VOLTAGE

