Prof.Ing. Fabián Zamora Ramírez.

CE-4301 Arquitectura de Computadores I Área de Ingeniería en Computadores Instituto Tecnológico de Costa Rica Contenido

- Formas Básicas de Organización
  - Arquitectura Von Neumann
  - Arquitectura Harvard
  - Arquitectura Harvard Modificada
- 2 Arquitecturas CISC
- Arquitecturas RISC
- CISC vs RISC

# Arquitectura Von Neumann

En 1946 John Von Neumann (Matemático - consultor en ENIAC) ideó un computador basado en programas almacenados (store-program computer): IAS



Referencias



Referencias

Arquitectura Von Neumann

### ¿Cómo acceder a memoria?



### Unidad de procesamiento



Referencias

# Dispositivos E/S



Arquitectura Von Neumann

Contenido

### Características

- La información se representa por medio de direcciones
- Memoria unificada: una única memoria para datos y programa.
- Las instrucciones almacenadas y ejecutadas secuencialmente: Program counter debe actualizarse (PC=PC+1) para obtener siguiente instrucción.

### Ciclo de Instrucción



Aplicación Von Nuemann

http://vnsimulator.altervista.org/en/

### Cuello de botella de Von Neumann

Formas Básicas de Organización

000000000000000





### Arquitectura Harvard

La evolución en los computadores y la necesidad de rapidez y paralelismo generaron cambios en la organización de los computadores.

La memoria unificada de acceso secuencial representa un obstáculo (cuello de botella).

**Solución**: Separar la memoria - Memoria para instrucciones (I) y memoria para datos (D)



Arquitectura Harvard

Contenido

### Arquitectura Harvard - Características

- Memoria de datos y memoria de programa están físicamente separadas
- Acceso a memoria de datos e instrucciones puede ser simultáneo
- Ventaja: mayor rendimiento (paralelismo)
- La mayoría DSP poseen una arquitectura tipo Harvard.



Arquitectura Harvard

# Arquitectura Harvard



Contenido

### Arquitectura Harvard Modificada

La arquitectura Harvard presenta ciertas limitaciones:

- El espacio de direccionamiento separado implica 2 memorias físicas diferentes: mayor espacio, consumo de potencia.
- Rutas diferentes (mayor ancho de banda) generan mayor consumo de potencia dinámica.



Referencias

# Arquitectura Harvard Modificada

#### Arquitectura Harvard Modificada:

- Disminuye el impacto de la separación de memoria
- Rutas separadas para I y D, pero único espacio de direccionamiento
- Provee instrucciones para acceso para acceder a los contenidos de la memoria de instrucciones como si fueran datos.

Contenido

Referencias

Contenido

### Arquitectura Harvard Modificada - Implementación

- Utiliza memoria caché de CPU para la separación de datos e instrucciones
- Una única memoria principal.
- Desde el punto de vista macro se comporta como una arquitectura Von Neumann, pero internamente separa I y D.

La mayoría de las arquitecturas modernas Harvard son en realidad Harvard Modificada.



# Ejemplo: ARM Cortex A8

0000000000000000



# Formas de Organización - Comparación

- Arquitectura Von Neumann: un único espacio de direccionamiento, y única ruta de acceso al CPU.
- Arquitectura Harvard: memoria de datos y memoria de instrucciones tienen rutas de hardware diferentes hacia el CPU, además de espacios de direccionamiento separados.
- Arquitectura Harvard Modificada: rutas de hardware diferentes para el CPU Cache, y un espacio de direccionamiento unico.

Rutas separadas hacia el CPU permiten que instrucciones y datos sean accedidos al mismo tiempo, mejorando el throughput.



### Complex Instruction Set Computer - CISC

### Set de instrucciones Complejo:

- Enfoque inicial de arquitectura
- El ISA contiene gran variedad de instrucciones: instrucciones poderosas y complicadas
- Facilidad de programación
- El compilador no realiza traducciones complejas: instrucciones son similares a lenguajes de alto nivel

Ejemplo clásico: Arquitectura Intel 80x86



### Complex Instruction Set Computer

#### Características típicas del set:

- Múltiples modos de direccionamiento (formas de acceder a datos en memoria)
- Tamaño y formato de instrucciones variable
- Tiempo de duración de instrucciones variable
- Bajo número de registros de propósito general. En 80x86: AX,BX,CX,DX
- Las instrucciones son capaces de ejecutar tareas complejas
- Decodificación de instrucciones es complicado: Hardware es complicado



### Ventajas y desventajas

### Ventajas

- Facilidad de programación: Tareas complejas se realizan en menos tiempo
- Múltiples modos de direccionamiento simplifican las tareas
- Tamaño de código pequeño

#### Desventajas

- Instrucciones de tamaño variable: diferente tiempo de búsqueda y ejecución hacen muy complicado tener sistemas determinísticos. Hardware es complicado (área, \$).
- Muchas de las instrucciones especializadas no son utilizadas con frecuencia: El 98% de las instrucciones en un programa típico corresponden al 20 % de las instrucciones del set.



### Reduced Instruction Set Computers - RISC

#### Set de Instrucciones reducido:

- Enfoque moderno (con aplicación moderna): DSPs, CPUs para sistemas embebidos
- El set está compuesto por pocas instrucciones con funcionalidad simple.
- La dificultad está en el programador (bajo nivel) o el compilador.

Ejemplos: MIPS, ARM

Contenido

### Reduced Instruction Set Computers

#### Características típicas del set

- Pocos método de direccionamiento (1-4)
- Las instrucciones tiene un tamaño fijo.
- El tiempo de ejecución de cada instrucción es el mismo.
- Alto número de registros de propósito general (16,+32)
- Decodificación de instrucciones simple.
- Funcionalidades complejas suelen ser implementadas por Hardware.

# Ventajas y desventajas

### Ventajas

- Instrucciones de tiempo y tamaño fijo: simplifica hardware y brinda determinismo
- Mejor aprovechamiento del Hardware
- Permite Pipeline

#### Desventajas

- Tamaño de código mayor
- Carga pesada para el software (programador de bajo nivel o compilador)

CISC vs RISC

### CISC vs RISC

| Characteristic                          | Complex Instruction Set<br>(CISC) Computer |               |                | Reduced Instruction<br>Set (RISC) Computer |               |
|-----------------------------------------|--------------------------------------------|---------------|----------------|--------------------------------------------|---------------|
|                                         | IBM<br>370/168                             | VAX<br>11/780 | Intel<br>80486 | SPARC                                      | MIPS<br>R4000 |
| Year developed                          | 1973                                       | 1978          | 1989           | 1987                                       | 1991          |
| Number of instructions                  | 208                                        | 303           | 235            | 69                                         | 94            |
| Instruction size (bytes)                | 2–6                                        | 2–57          | 1–11           | 4                                          | 4             |
| Addressing modes                        | 4                                          | 22            | 11             | 1                                          | 1             |
| Number of general-<br>purpose registers | 16                                         | 16            | 8              | 40-520                                     | 32            |
| Control memory<br>size (Kbits)          | 420                                        | 480           | 246            | -                                          | -             |
| Cache size (KBytes)                     | 64                                         | 64            | 8              | 32                                         | 128           |



CISC vs RISC

# CISC vs RISC: Ejemplo

Se desea multiplicar 2 números en las direcciones 2:3 y 5:2 y almacenar el resultado en la dirección 2:3





### CISC vs RISC: Ejemplo

#### Enfoque CISC:

- Tener la menor cantidad de líneas posibles de ensamblador
- Operar directamente desde memoria

MUL 2:3, 5:2

#### **Enfoque RISC:**

- Ejecutar instrucciones simples
- Una instrucción por ciclo

LOAD A, 2:3 LOAD B, 5:2 PROD A,B STORE 2:3. A





Introduction to computing systems [Cap 4]

- Andrew S. Tanenbaum (2000)

  Organización de computadoras Un enfoque estructurado. [Cap 2]
- Jeferson González G. (2017)

  Material de clase: Arquitectura de computadores I.

### Sitios web recomendados

- Arquitectura Harvard https://en.wikipedia.org/wiki/Harvard\_architecture
- Arquitectura Harvard Modificada https://en.wikipedia.org/wiki/Modified\_Harvard\_architecture