

Algoritmos

Data Science

- → Algoritmos de Ordenamiento y Búsqueda
- → Grafos
- → Algoritmo de Dijkstra
- → Matriz de adyacencia

OBJETIVOS DE LA CLASE

Al finalizar esta lecture estarás en la capacidad de...

- → Conocer los Algoritmos de Ordenamiento y Búsqueda más importantes
- → Comprender la teoría de Grafos
- → Resolver el problema de la distancia más corta entr<mark>e Nodos</mark> del Grafo
- → Identificar la Matríz de adyacencia
- → Analizar el Algoritmo de Dijkstra

Algoritmos de ordenamiento

Quicksort

- → Elegir Pivote
- → Dividir en menores y mayores
- → Volver a elegir pivote en cada subdivisión
- → Usa recursividad

- → Divide el conjunto en dos grupos iguales y los ordena recursivamente
- → Junta los grupos ordenados.

Se recorre todo el conjunto, examinando cada elemento hasta encontrar el buscado o recorrer todo el conjunto.

Es de complejidad O(N).

Binaria

Se recorre un árbol binario Complejidad de O(log(N)).

¿Qué es?

Es un tipo abstracto de datos (TAD), que consiste en un conjunto de nodos (también llamados vértices) y un conjunto de arcos (aristas) que establecen relaciones entre los nodos.

La relación entre los nodos puede ser unidireccional o bidireccional.

Comúnmente los grafos son <mark>utilizados para el modelado de</mark> problemas.

Notación

- → V: Set de nodos (También llamados vértices).
- → E: Enlaces, aristas o "edges".
- → G = (V, E): Grafo = (Vértices, Enlaces)

El grado de un vértice es el número de enlaces o aristas que tienen a ese vértice como extremo.

Un bucle cerrado contribuye en 2 unidades al grado de un vértice.

Ejemplos

Redes sociales

Sistemas de navegación

Problema de la Distancia más corta

El algoritmo de Dijkstra es utilizado para encontrar la distancia más corta posible desde un vértice de origen a cualquier otro vértice posible que exista en un gráfico ponderado, siempre que el vértice sea accesible desde el vértice de origen.

¿Cómo?

- 1. Dados un par de vértices no visitados, seleccione el vértice con la menor distancia desde la fuente y visitelo.
- 2. A continuación, se actualiza la distancia de cada vecino. Lo mismo se hace para el vértice visitado, que tiene una distancia actual mayorque la suma y el peso del borde dado entre ellos.
- 3. Los pasos 1 y 2 deben repetirse hasta que no queden vértices no visitados.

Matriz de Adyacencia

- → Se utiliza para representar un grafo.
- → Es simétrica.
- → Si un vértice es aislado entonces la correspondiente fila (columna) está compuesta sólo por ceros.
- → Si el grafo es simple entonces la matriz de adyacencia contiene sólo ceros y unos (matriz binaria) y la diagonal está compuesta sólo por ceros.
- → La suma de las filas de cada vértice es el total de grados que tiene el vértice.

Ejemplo

