CS60003: High Performance Computer Architecture

Introduction and Current Trends in Computer Architecture

Instructor:

Prof. Rajat Subhra Chakraborty

Professor

Dept. of Computer Science and Engineering

Indian Institute of Technology Kharagpur

Kharagpur, West Bengal, India 721302

E-mail: rschakraborty@cse.iitkgp.ac.in

What is a Digital Computer?

 (Modern) Definition: a programmable electronic device capable of storing and processing (digitized) information

However, computers were not always "programmable", nor "electronic", nor "digital"!

https://unsplash.com/s/photos/desktop-computer

Indian Institute of Technology Kharagpur

Computers Since Ancient Age

- Abacus (China, ~3000 BC), still in use
- Pascaline (France, 1642), still usable

https://supermaths.co.uk/abacus-tool/

https://commons.wikimedia.org/wiki/File:Pascaline-CnAM_823-1-IMG_1506-black.jpg

Jacquard's Loom (Jacquard, France, 1801)

Analytical Engine (Babbage, Britain, 1837)

https://addiator.blogspot.com/2011/10/jacquards-loom-and-stored-programme.html

Indian Institute of Technology Kharagpur https://commons.wikimedia.org/wiki/File:Babbages_Analytical_Engine,_1834-1871._(9660574685).jpg

Computing in the 21st Century

Computers come in a bewildering variety....

- The traditional role of a computer as an accelerator for "mathematical computations" is limited nowadays
- A vast majority of computers are used nowadays to access information on the information, multimedia and entertainment
- The exponential growth on the Internet and fast pace of VLSI development has helped

Computer Technology

- Performance improvements caused by:
 - Improvements in semiconductor technology
 - Transistor size decrease, clock speed increase,
- Improvements in Computer Architecture
 - Enabled by platform-independent OSes (e.g. UNIX, Linux,)
 - Adoption of RISC architectures (explicit/implicit, e.g. x86)
- Together have enabled:
 - Lightweight computers
 - Productivity-based managed/interpreted programming languages

Improvement to Single Processor Performance

For SPEC integer benchmarks

Factor of 10,000 improvement over 40 years (1978-2018)!

However, rate of improvement is decreasing in recent past!

Clock speed has almost stagnated!

H&P CA:A QA (6th. Ed.)

Parallelism

- Parallelism in Computer Architecture
 - Instruction-Level Parallelism (ILP)
 - exploited by almost all modern processors
 - Thread-Level Parallelism
 - exploited by multi-core processors
 - Data-level Parallelism
 - exploited by Vector architectures, Graphic Processor Units (GPUs), multimedia extensions of instruction sets
 - Request-Level Parallelism
 - exploited by clusters and warehouse-scale computers
- We will cover the first two types of parallelism in class
- For data-level parallelism: CS60104 (High Perf. Para. Prog.)

Flynn's Taxonomy (1966)

- Single instruction stream, single data stream (SISD)
 - Basic approach till ~2004
 - Exploited by almost all modern processors
 - Uses ILP techniques for high performance
- Single instruction stream, multiple data streams (SIMD)
 - Vector architectures
 - Multimedia extensions
 - Graphics processor units
- Multiple instruction streams, single data stream (MISD)
 - No commercial implementation
- Multiple instruction streams, multiple data streams (MIMD)
 - Tightly-coupled MIMD (e.g. multi-core processors)
 - Loosely-coupled MIMD

RISC-V Instruction Set Architecture (ISA)

- RISC-V introduced at UC Berkeley (Prof. Patterson and his team)
 - Classic RISC design
 - Load-Store design
 - Plenty of general-purpose registers
 - Novelty: extensible for advanced features
- RISC-V Registers (32 g.p., 32 f.p.)

Register	Name	Use	Saver
х0	zero	constant 0	n/a
x1	ra	return addr	caller
x2	sp	stack ptr	callee
х3	gp	gbl ptr	
x4	tp	thread ptr	
x5-x7	t0-t2	temporaries	caller
x8	s0/fp	saved/ frame ptr	callee

Register	Name	Use	Saver
x9	s1	saved	callee
x10-x17	a0-a7	arguments	caller
x18-x27	s2-s11	saved	callee
x28-x31	t3-t6	temporaries	caller
f0-f7	ft0-ft7	FP temps	caller
f8-f9	fs0-fs1	FP saved	callee
f10-f17	fa0-fa7	FP arguments	callee
f18-f27	fs2-fs21	FP saved	callee
f28-f31	ft8-ft11	FP temps	caller

Indian Institute of Technology Kharagpur

H&P CA:A QA (6th. Ed.)

Trends in Technology

- Integrated circuit technology (Moore's Law)
 - Transistor density: 35%/year
 - Die size: 10-20%/year
 - Integration overall: 40-55%/year
- DRAM capacity: 25-40%/year (slowing)
 - 8 Gb (2014), 16 Gb (2019), possibly no 32 Gb
- Flash capacity: 50-60%/year (most promising!)
 - 8-10X cheaper/bit than DRAM
- Magnetic disk capacity: recently slowed to less than 5%/year
 - 8-10X cheaper/bit then Flash
 - 200-300X cheaper/bit than DRAM

Bandwidth and Latency

- "Bandwidth"/"Throughput"
 - Total work done in a given time
 - 32,000-40,000X improvement for processors
 - 300-1200X improvement for memory and disks
- "Latency"/"Response Time"
 - Time between start and completion of an event
 - 50-90X improvement for processors
 - 6-8X improvement for memory and disks

Dynamic Energy and Power

- Dynamic energy
 - Transistor switch from $0 \rightarrow 1$ or $1 \rightarrow 0$
 - ½ x Capacitive load x Voltage²
- Dynamic power
 - ½ x Capacitive load x Voltage² x Frequency switched
- Reducing clock rate reduces power, not energy

- Intel 80386 consumed ~2 W
- 3.3 GHz Intel Core i7 consumes 130 W
- Heat must be dissipated from 1.5 x 1.5 cm chip
- This is the limit of what can be cooled by air

Static Power

- Static power consumption
 - 25-50% of total power
 - Current_{static} x Voltage
 - Scales with number of transistors
 - To reduce: power gating

Reducing Power

- Techniques for reducing power:
 - Do nothing well
 - Dynamic Voltage-Frequency Scaling
 - Low power state for DRAM, disks
 - Overclocking, turning off cores

H&P CA:A QA (6th. Ed.)

CPU Clock Frequency Trends (dictated by Power)

- Intel 80386 consumed ~2 W
- 3.3 GHz Intel Core i7 consumes~130 W
- Heat must be dissipated from 1.5 x
 1.5 cm chip
- This is the limit of what can be cooled by air

H&P CA:A QA (6th. Ed.)

What will We Learn in This Course?

- Principles and techniques of high-level design ("architecture") and some low-level hardware details ("microarchitecture") of modern CPUs
- This is PG level course that assumes you have already been exposed to basics of digital logic, computer organization, Instruction Set, etc.
 - e.g. you understand what is a register, an ALU, assembly language programs, etc.
- Quantitative analysis would be emphasized throughout the course
 - Always keep a calculator handy ©
- Analysis would be primarily based on experimental/simulation data
- Focus on understanding how processor design has evolved to improve performance

Course Logistics

- 4 hours of lecture every week
- Each major topic will be followed by a class-test during regular class hour
 - Class-test would be announced 7-10 days in advance
- Programming assignments: 1-2 weeks deadline
 - gem5 simulator (possibly)
- Teacher's assessment: 30 marks
 - Class-tests, programming assignments, class participation, etc.
- Mid-semester Exam: 30 marks (after scaling down)
- End-semester Exam: 40 marks (after scaling down)
 - End-semester exam will cover entire syllabus

Textbook and Pre-requisite

Required Textbook:

Computer Architecture: A Quantitative Approach (6th ed.) [Indian edition]

by John L. Hennessy and David A. Patterson

Publisher: Morgan Kaufman

Example Architecture: RISC-V

- Other study materials:
 - Class notes
 - Handouts
 - Online resources for simulators, etc.
- Pre-requisite: Appendix-A to Appendix-C of the textbook
- Don't worry if you do not have all the pre-requisite knowledge, we will cover the background as needed!

