CLAIMS

1. A torsional vibration suppressing control method in an electric motor speed control system constituted by a mechanism for transmitting a driving torque from an electric motor to a load through a driving shaft which is provided on the load side of the electric motor and has a low torsional rigidity, and a control device for feeding back an electric motor mean speed NMANG obtained by a calculation for a mean value every constant cycle for an electric motor speed detection signal detected by a speed detector for a speed command NREF and calculating a deviation signal, and controlling a current of the electric motor in order to have an electric motor torque in accordance with a torque command signal TREFA obtained by amplifying the deviation signal by means of a speed controller having a proportional gain and an integrator or only the proportional gain.

wherein a signal obtained by multiplying a signal acquired by differentiating the electric motor mean speed signal N_{MAVO} by an inertia time constant τ_{M} of the electric motor portion is input as an electric motor acceleration torque signal T_{MAFB} to an inertia controller with respect to the torque command signal T_{RFA} output from the speed controller, and

the inertia controller multiplies the electric motor acceleration torque T_{MAFB} by the proportional gain and then outputs a value thus obtained as an inertia control signal T_{MAFB} through a second-order or first-order low-pass filter and a second-order or first-order high-pass filter, feeds back the electric motor acceleration torque signal T_{MAFB} to an electric motor acceleration torque command T_{RFAX} obtained by decreasing the inertia control signal T_{MAFB} from the torque command signal T_{RFA} output from the speed controller, and controls a current of the electric motor in order to have an electric motor torque in accordance with a signal T_{RFM} obtained by adding, to the acceleration torque command T_{RFAX} , a torque compensation signal T_{RFAI} acquired by amplifying a signal of a deviation thereof by

means of an electric motor acceleration torque controller constituted by the proportional gain and the integrator, thereby carrying out a control in order to cancel an electric motor load torque in response to the torque compensation signal T_{RFL} calculated and output in such a manner that the torque command signal T_{RFA} output from the speed controller and the electric motor acceleration torque feedback signal T_{MAFB} are coincident with each other and equivalently enlarging and controlling an inertia of the electric motor portion.

- 2. The torsional vibration suppressing method in an electric motor speed control system according to claim 1, wherein a proportional gain of the inertia controller is set to have a negative value of 0 to -1, thereby equivalently reducing and controlling the inertia of the electric motor portion.
- An electric motor control apparatus constituted by speed 3. detecting means for detecting an electric motor speed, a mechanism for transmitting a driving torque from an electric motor to a load through a driving shaft which is provided on the load side of the electric motor and has a low torsional rigidity, and a control device for feeding back an electric motor mean speed $N_{\mbox{\scriptsize MAVG}}$ obtained by a calculation for a mean value every constant cycle for an electric motor speed detection signal detected by a speed detector for a speed command N_{REF} and calculating a deviation signal, and controlling a current of the electric motor in order to have an electric motor torque in accordance with a torque command signal $T_{\text{\tiny RFA}}$ obtained by amplifying the deviation signal by speed control means having a proportional gain and an integrator or only the proportional gain, comprising:

inertia control means for calculating and outputting an inertia control signal $T_{\rm MJC}$ by an inertia controller from an electric motor acceleration torque signal $T_{\rm MAFB}$ obtained by multiplying a signal acquired by differentiating the electric motor mean speed signal $N_{\rm MAVG}$ by an inertia time constant $\tau_{\,\rm M}$ of the electric motor portion;

electric motor acceleration torque control means having

electric motor acceleration torque control means having a proportional gain and an integrator for calculating a torque command compensation signal T_{RFL} from a deviation signal of a signal T_{RFAX} obtained by decreasing the electric motor inertia control signal T_{MAC} from the torque command signal T_{RFA} to be an output signal of the speed control means and the electric motor acceleration torque signal T_{MAFB} ; and

electric motor torque control means for controlling a current of the electric motor in order to obtain an electric motor torque in accordance with a torque command T_{RM} to be a sum of the torque command signal T_{RFA} to be an output signal of the speed control means and the torque command compensation signal T_{RFL} to be an output signal of the electric motor acceleration torque control means.