Instructions for replication of results

Nicholas Quek

May 25, 2020

1 Introduction

This document serves as an instruction manual for replicating the results found in the paper "Pairwise Relations Discriminator for Unsupervised Raven's Progressive Matrices".

2 Dependencies

The following is a list of dependencies which we require for the replication:

```
pip install torch
pip install torchvision
pip install scikit-image
```

3 Instructions

1. Download the RAVEN-10000 dataset [1].

We will be using this dataset of Raven's Progressive Matrices (RPM) for both training and testing of the model. The dataset can be found here 1

- 2. Unzip the RAVEN-10000 dataset This should produce a directory with seven subfolders, each for a specific configuration. Each subfolder should contain 10,000 RPM problems. Move the directory into the current working directory (cwd).
- 3. Run preprocess.py

```
python3 preprocess.py
```

This python script will preprocess the data in the RAVEN dataset into a format we can easily use. The script will produce a data directory as follows:

¹https://drive.google.com/file/d/111swnEzAY2NfZgeyAhVwQujMjRUfeyuY/view

The train directory will contain 42,000 files named 0 to 41,999. The files can be organised into 7 partitions of 6,000 files. Each partition will correspond to the configurations [Center, 2x2Grid, 3x3Grid, Out-InCenter, Out-InGrid, Left-Right, Up-Down] respectively. i.e. files 6,000 - 11,999 are RPM problems with 2x2Grid configurations; files 24,000 - 29,999 are RPM problems with Out-InGrid configurations.

The test and val directories will each contain 14,000 files named 0 to 1,999. Files are partitioned into blocks of 2,000 and follows the same matching as the partitions in train.

4. Run train.py

```
python3 train.py
```

This script trains the model. We can determine the dataset size by setting the *dataset_type* hyperparameter. Training will take 200 epochs. The model will take up 4.2 G.B of RAM. Do ensure that your CPU/GPU have sufficient memory.

5. Run validate.py with input of 150

```
python3 validate.py 150
```

This test the model on the validation data at an interval of 5 checkpoints, starting from checkpoint 150. Select the checkpoint that performs the best and modify its filename to *modelA*.

6. Run evaluate.py

```
python3 evaluate.py
```

This loads the model named model A and runs the inference process on the test dataset. The script evaluates the model on the different configurations.

Notes

Instead of train.py, we can use train_specific.py to train the model using data from only 1 configuration.

4 Results

Table 1: Testing Accuracy of each model on the RAVEN dataset.

		0	•						
Method		Avg	Center	2x2Grid	3x3Grid	L-R	U-D	O-IC	O-IG
Supervised	ResNet+DRT LEN + Teacher CoPINet	59.56 78.30 91.42	58.08 82.30 95.05	46.53 58.50 77.45	50.40 64.30 78.85	65.82 87.00 99.10	67.11 85.50 99.65	69.09 88.90 98.50	60.11 81.90 91.35
Unsupervised	Random MCPT PRD	12.50 28.50 50.74	12.50 35.90 74.55	12.50 25.95 38.70	12.50 27.15 34.90	12.50 29.30 60.80	12.50 27.40 60.30	12.50 33.10 62.50	12.50 20.70 23.40
Human		84.41	95.45	81.82	79.55	86.36	81.81	86.36	81.81

References

[1] Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. Raven: A dataset for relational and analogical visual reasoning, 2019.