Time Series Model in Frequency Domain

林昕宏1 徐捷耀2

¹Department of Quantitative Finance ²Department of Computational and Modeling Science

June 16, 2023

Table of Contents

- ① Data
- 2 Transform to Frequency Domain
- 3 ADF test
- Model Building
 - part1 model
 - part2 model
 - part2 model
 - part3 model
- 5 Predict Result

Table of Contents

- Data
- 2 Transform to Frequency Domain
- 3 ADF test
- 4 Model Building
 - part1 model
 - part2 model
 - part2 model
 - part3 model
- 5 Predict Result

Dataset

Figure: TWII close price from 2012 to 2022

Table of Contents

- Data
- 2 Transform to Frequency Domain
- 3 ADF test
- 4 Model Building
 - part1 model
 - part2 model
 - part2 model
 - part3 model
- 5 Predict Result

Discrete Fourier transform

If a set of sequences can be expressed as $x[n], n = 0, 1, 2, \cdots, N-1$, its discrete Fourier transform (DFT) pair can be expressed as :

$$X(k) = \sum_{n=0}^{N-1} x[n] e^{-i\frac{2\pi}{N}nk},$$
(1)

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{i\frac{2\pi}{N}nk}.$$
 (2)

X(k): Fourier Coefficient (傅立葉係數)

(ロト 4년) + 4분 + 4분 + 1분 - 9Q(C)

Discrete Fourier transform

If a set of sequences can be expressed as $x[n], n = 0, 1, 2, \dots, N-1$, its discrete Fourier transform (DFT) pair can be expressed as :

$$X(k) = \sum_{n=0}^{N-1} x[n]e^{-i\frac{2\pi}{N}nk},$$
(1)

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{i\frac{2\pi}{N}nk}.$$
 (2)

X(k): Fourier Coefficient (傅立葉係數) So that DFT(1) can transform the x[n] from 1-dimension to N-dimension.

Data DFT

For a given length m (usually choose the length of a week, half month, or a month), do DFT for every m data.

Figure: Data DFT for every m period

Transformed Data

We choose m=20 and do DFT for data(length = 2441) every 20. Finally, the dimension of transformed data X_k is (122×20) .

0		1	2	2		19
0	146840+0j	690+2851j	-757+1074j		-757-1074j	690-2851j
1	159344+0j	-420+650j	-116-330j		-116+330j	-420-650j
120	351091+0j	-2281+170j	169-373j		169 + 373j	-2281-170j
121	356792+0j	1100+934j	-450+946j		-450-946j	1100-934j

Table: The part of transformed data X_k

Since X_k is conjugate symmetry, we only keep half of the data as X_k^* e.g. X_k^* is selected from the 1st to 11th column of X_k . The dimension of X_k^* is (122×11)

Transformed Data divide

Since the value in transformed data are complex numbers, they should be divided into real part and imaginary part.

Divide the X_k^* into the real part and imaginary part, and both of them have the same dimension (122×11) .

Table of Contents

- Data
- 2 Transform to Frequency Domain
- 3 ADF test
- 4 Model Building
 - part1 model
 - part2 model
 - part2 model
 - part3 model
- 5 Predict Result

ADF test

	real	imag
idx_0	1.202	nan
idx_1	-5.942	-6.663
idx_2	-5.967	-10.61
idx_3	-10.805	-13.578
idx_4	-4.768	-2.351
idx_5	-7.189	-11.287
idx_6	-12.27	-9.409
idx_7	-13.422	-13.598
idx_8	-10.696	-6.263
idx_9	-9.965	-11.691
idx_10	-7.232	-11.012

	Critical Values				
10%	-2.58				
5%	-2.89				
1%	-3.49				

We find that the first column of real part is not stationary.

The test-statistic of every column of real part and imaginary part

Table of Contents

- Data
- 2 Transform to Frequency Domain
- 3 ADF test
- Model Building
 - part1 model
 - part2 model
 - part2 model
 - part3 model
- 5 Predict Result

The pattern of first column in real part

The first column in real part

TWII close price from 2012 to 2022

Model Building

Since the first column of X_k^* has different properties to others, we divide X_k^* into three parts for three different models.

- part1: The first column of the real part in X_k^* .
- part2: The remaining columns of the real part in X_k^* .
- part3: The imaginary part except for the first column in X_k^* .

ACF

Figure: ACF of first-order difference

Figure: ACF of third order difference

Part1 model: ARIMA (AIC base)

```
Dep. Variable:
                              No. Observations: 122
    Model:
               SARIMAX(2, 3, 3) Log Likelihood
                                               -4039.661
               Thu. 08 Jun 2023
                                    AIC
     Date:
                                               8093.322
     Time:
               08:18:21
                                     BIC
                                               8112.950
    Sample:
                                    HOIC
                                               8101.294
               - 122
Covariance Type: opg
           coef
                  std err
                             Z
                                 P>|z| [0.025
                                                0.9751
intercept -405.8270 1432.492 -0.283 0.777 -3213.460 2401.806
  ar.L1
        -1.6154 0.029
                          -55.997 0.000 -1.672
                                               -1.559
 ar.L2 -0.8159 0.028 -29.223 0.000 -0.871
                                               -0.761
 ma.L1 1.0697 0.066 16.259 0.000 0.941 1.199
 ma.L2 -0.4546 0.105 -4.330 0.000 -0.660
                                               -0.249
 ma.L3 -0.7705 0.075
                          -10.258 0.000 -0.918
                                               -0.623
sigma2 2.273e+08 0.114
                          2e+09 0.000 2.27e+08 2.27e+08
 Ljung-Box (L1) (Q): 1.25 Jarque-Bera (JB): 65842.49
      Prob(Q):
                     0.26
                            Prob(JB):
                                        0.00
Heteroskedasticity (H): 0.01
                              Skew:
                                        10.54
 Prob(H) (two-sided): 0.00
                            Kurtosis:
                                        114.84
```

ARIMA(2,3,3): Residual

Figure: Residual for ARIMA model

ARIMA(2,3,3): Ljung-box test

ARIMA(2,3,3): Ljung-box test

Ljung-box test p-value of $\mathsf{ARIMA}(2,3,3)$ Ljung-box test p-value of $\mathsf{GARCH}(1,1)$

According to the ljung-box test, we find that we reject the null hypothesis under the 95% significance level. Thus, we build a GARCH model with order (1,1) to modify the correlation of the residual.

ARIMA(2,3,3): prediction

Figure: ARIMA(2,3,3) prediction and boundary

part1 model: SARIMA

```
No. Observations: 122
 Dep. Variable:
    Model:
               SARIMAX(0, 1, 1)x(0, 0, 1, 4) Log Likelihood -1238.728
                                               AIC
     Date:
               Thu, 08 Jun 2023
                                                         2485.457
     Time:
               08:59:53
                                               BIC
                                                         2496,640
   Sample:
               0
                                              HQIC
                                                         2489.999
               - 122
Covariance Type: opg
           coef
                  std err
                             Z
                                 P > |z| [0.025]
                                                 0.9751
intercept 1449.9972 671.475 2.159
                                  0.031 133.930
                                                2766.065
 ma.L1 0.1181
                  0.045 2.626 0.009 0.030
                                                0.206
ma.S.L4 -0.0737 0.072 -1.027 0.305 -0.214
                                                0.067
sigma2 4.644e+07 0.008 5.59e+09 0.000 4.64e+07 4.64e+07
 Ljung-Box (L1) (Q): 2.07 Jarque-Bera (JB): 14.83
      Prob(Q):
                     0.15
                             Prob(JB):
                                         0.00
Heteroskedasticity (H): 7.25
                              Skew:
                                         0.06
Prob(H) (two-sided): 0.00
                                         4.71
                             Kurtosis:
```

SARIMA(0,1,1): Residual

SARIMA(0,1,1): Residual

SARIMA(0,1,1): Residual

According to the ljung-box test, we find that we do not reject the null hypothesis under the 95% significance level.

SARIMA(0,1,1): prediction

Granger causality test: real part

	0	1	2	3	4	5	6	7	8	9
0	NaN	NaN	NaN	0.0014	NaN	NaN	NaN	NaN	NaN	0.0055
1	0.0029	NaN	0.0028	0.0046	NaN	0.0076	0.0034	0.0117	NaN	0.0003
2	0.0065	NaN	NaN	NaN	NaN	0.0065	0.0032	0.0027	NaN	0.0006
3	0.0000	0.0182	0.0017	NaN	NaN	0.0115	0.0001	0.0002	0.0006	0.0000
4	0.0001	NaN	0.0071	0.0010	NaN	NaN	0.0402	0.0055	NaN	0.0448
5	0.0010	0.0230	0.0033	0.0000	NaN	NaN	0.0065	0.0331	0.0004	0.0002
6	NaN	NaN	NaN	0.0000	0.0094	0.0053	NaN	NaN	0.0114	0.0000
7	0.0000	0.0338	0.0000	0.0000	0.0008	0.0011	0.0437	NaN	0.0089	0.0000
8	0.0048	0.0469	0.0079	0.0000	0.0205	0.0009	0.0100	NaN	NaN	0.0008
9	0.0053	0.0002	NaN	0.0000	NaN	0.0047	0.0002	0.0001	0.0089	NaN

Granger causality test: imaginary part

	0	1	2	3	4	5	6	7	8	9
0	NaN	0.0023	NaN	0.0014	NaN	0.0007	NaN	NaN	0.0024	NaN
1	0.0006	NaN	0.0324	0.0051	NaN	0.0056	0.0184	NaN	0.0027	NaN
2	0.0004	0.0075	NaN	0.0032	0.0105	0.0000	0.0006	NaN	0.0155	NaN
3	0.0001	0.0009	NaN	NaN	NaN	0.0000	0.0000	NaN	0.0263	NaN
4	0.0008	NaN	0.0050	0.0070	NaN	0.0006	NaN	0.0013	0.0007	NaN
5	0.0024	0.0025	0.0000	0.0029	NaN	NaN	0.0001	0.0099	NaN	NaN
6	0.0280	0.0011	0.0025	0.0002	0.0468	0.0326	NaN	0.0386	0.0077	NaN
7	0.0000	0.0089	0.0000	NaN	NaN	NaN	0.0014	NaN	NaN	NaN
8	0.0012	0.0065	0.0255	NaN	0.0013	NaN	0.0206	0.0000	NaN	NaN
9	0.0036	NaN	0.0227	0.0237	NaN	NaN	NaN	NaN	NaN	NaN

We exclude the ninth variable, which is close to zero and represents the symmetric axis, and include the rest in the VAR model for estimation.

4 D > 4 B > 4 E > 4 E > 9 Q C

part2 model: Estimation of VAR

VAR(p) model for d-dimensional vector Y_t is given by:

$$Y_{t} = \alpha + \delta t + \Theta_{1} Y_{t-1} + \dots + \Theta_{p} T_{t-p} + \epsilon_{t}, \tag{3}$$

where $\alpha, \delta \in \mathbb{R}$, Θ_j is a $d \times d$ matrix and ϵ_t is white noise term belongs to \mathbb{R} .

(Time Series Final report)

part2 model: Forecasting of VAR

If we determine there do not exist the autocorrelation and cross-correlation in residuals of fitted model, then we can forecast the data as follows:

$$Y_{t+1} = \alpha + \delta(t+1) + \Theta_1 Y_t + \dots + \Theta_p Y_{t-p+1}, \tag{4}$$

where $\alpha, \delta \in \mathbb{R}$ is a estimated vectors, Θ_j is a estimated $d \times d$ matrix and we ignore the white noise terms.

part2 model: VAR

Summary of Regression Results Model: VAR Method: 0LS Date: Thu, 08, Jun, 2023 Time: 11:00:26 BIC: 121.942 No. of Equations: 10.0000 107, 374 Nobs: 112.000 HQIC: 2, 23386e+47 Log likelihood: -6035, 12 FPE: 97.4270 Det(Omega mle): ATC: 3.60944e+44

After fitting VAR models, we get the max lag 10.

part3 model: VAR

Summary of Regression Results

Model:			VAR		
Method:			OLS		
Date: Thu	, 08,	Jun,	2023		
Time:		11:0	05:18		
No. of Equations:		10.0	0000	BIC:	43. 9991
Nobs:		121.	000	HQIC:	42. 4897
Log likelihood:		-4115	5. 09	FPE:	1.01605e+18
AIC:		41.4	1574	Det(Omega_mle):	4. 25629e+17

After fitting VAR models, we get the max lag 10.

Durbin-Watson test for part 2 & part 3

After fitting VAR model, we determine the correlation among different time series data.

```
0: 1.84115
                             0: 1.87956
1: 2.16601
                             1: 2.23116
2:1.82301
                             2:1.92861
3: 2.10483
                             3: 2.09822
4: 1.81346
                             4: 2,22694
5: 1.51105
                             5 : 2.02425
6: 2.06541
                             6: 2.07579
7: 1.54137
                             7:1.93667
8: 2,23077
                             8: 1.99370
9: 2.01135
                             9: 2.42938
```

If the quantity is between 1.5 and 2.5, we claim that there is no significant auto-correlation among the residuals.

Table of Contents

- Data
- 2 Transform to Frequency Domain
- 3 ADF test
- 4 Model Building
 - part1 model
 - part2 model
 - part2 model
 - part3 model
- 5 Predict Result

Predictiton: ARIMA + VAR

Figure: 1-month prediction result

Figure: 2-month prediction result

Predictiton: ARIMA-GARCH(1,1) + VAR

Figure: 1-month prediction result

Figure: 2-month prediction result

Q & A

Q : What information in the time domain corresponds to image part in the frequency domain?

Q & A

A : In terms of algebraic representation in the discrete Fourier transform, we observe that each element of the frequency domain data is influenced by $x_1,...,x_n$ in the time domain. The imaginary part of the frequency domain data originates from certain x_i values. Therefore, determining the corresponding relationship can be relatively complex. We assume that the relationship is a continuous function. Then, we speculate that a neural network can be used to attempt to discover this correspondence.

Q & A

Specifically, let neural network N_s .

output \hat{P} : randomly sampling multiple sets of time series data.

 ${f input}\ X$: the imaginary part of the data obtained after Fourier

transforming these samples in the frequency domain.

structure : full connected layers. **loss function** : $||\hat{P} - N_s(X)||$.

If the neural network converges during training, the trained network will represent the desired corresponding relationship we are seeking.