

KKT Optimality Condition.

Actually Beyond: F=1 G= d

Necessary => Modification of FJ

Need more requirement

Red more requirement

Red more requirement

Second-order Sutticient & Necessary Condition

0 Lagrangian f^{Σ} $\phi(x,u,v) = f(x) + \sum ui g_{\overline{i}}(x) + \sum Vi h_{\overline{i}}(x)$ $\int f(x) + \sum ui g_{\overline{i}}(x) + \sum Vi h_{\overline{i}}(x)$ $\int f(x) + \sum ui g_{\overline{i}}(x) + \sum vi h_{\overline{i}}(x)$ $\int f(x) + \sum ui g_{\overline{i}}(x) + \sum vi h_{\overline{i}}(x)$ $\int f(x) + \sum ui g_{\overline{i}}(x) + \sum vi h_{\overline{i}}(x)$ $\int f(x) + \sum ui g_{\overline{i}}(x) + \sum vi h_{\overline{i}}(x)$ $\int f(x) + \sum ui g_{\overline{i}}(x) + \sum vi h_{\overline{i}}(x)$ $\int f(x) + \sum ui g_{\overline{i}}(x) + \sum vi h_{\overline{i}}(x)$ $\int f(x) + \sum ui g_{\overline{i}}(x) + \sum vi h_{\overline{i}}(x)$ $\int f(x) + \sum ui g_{\overline{i}}(x)$ $\int f(x) + \sum u$

2) Sufficient Condition (second-order) $\sqrt{x} \rightarrow KkT$ Point $d \in \mathbb{Z}$ Strict (ocal optimum) $C = \{d \neq 0: \nabla g_i(\bar{x})^T d = 0, i \in \mathbb{Z}^+ \}$ $\nabla h_i(\bar{x})^T d = 0, \bar{x} \in \mathbb{Z}_0,$

3 Necessary Condition (Second-order)

\[\overline{\pi} \] is local minimum & qualification constraint [LICQ)

d7 P2L(x) d 30	for all	d & C