NHZ3088-15-Consolidação e Métodos de Fenômenos Eletromagnéticos

Segundo quadrimestre de 2016

Apostila de problemas

Orientações gerais

Prezado aluno, esta apostila contém um conjunto de problemas para ser trabalhado em casa (isto é, fora da sala de aula). Para facilitar o seu planejamento, os problemas estão agrupados por semana de aula, com os temas destacados no campo "assunto". O campo "orientação" traz a recomendação mínima da leitura do livro-texto antes de resolvê-los. Embora tenhamos obtado por Serway para livro-texto, outros materiais, listados no Plano de Ensino, também podem ser utilizados. Nesta apostila, elencamos somente as referências bibliográficas onde os exercícios foram retirados, excetuando-se as cinco questões de vetores.

Conforme pode-se observar pelo cronograma, disponível no Plano de Ensino, esta disciplina tem uma sincronia Fenômenos Eletromagnéticos e a estrutura da mesma, sobretudo a monitoria presencial, poderá ser utilizada. Observe que os temas trabalhados em sala de aula estão defasados de uma semana da referida disciplina (excetuando-se a semana 1, que é uma revisão sobre vetores).

É <u>fortemente recomendado</u> que você tente resolver todos os problemas de um determinado assunto e tenha uma familiaridade com os conceitos físicos, <u>antes de entrar em sala de aula</u>. Isto é fundamental para o sucesso em uma **aprendizagem ativa**, onde o aluno deverá abandonar a postura passiva em apenas "absorver" o conhecimento "transmitido" pelo professor.

Aula 1

Assunto: vetores.

Orientação: trata-se de uma revisão sobre vetores, envolvendo a soma e a subtração, produto escalar e produto vetorial. O volume 1 (Mecânica) dos livros de física básica, como o Serway e o Hallyday possuem um capítulo dedicado ao assunto. A leitura de um desses materiais é o suficiente.

- 1. (a) O vetor $(\mathbf{i} + \mathbf{j} + \mathbf{k})$ é um vetor unitário? Justifique a sua resposta. (b) Um vetor unitário pode ter algum componente com módulo maior que a unidade? Pode ter algum componente negativo? Em cada caso, justifique sua resposta.
- 2. Os três vetores na Fig. ao lado possuem magnitudes $a=3{,}00$ m, $b=4{,}00$ m e $c=10{,}0$ m e um ângulo $\theta=30{,}0^{\circ}$. Escreva os vetores \vec{a},\vec{b} e \vec{c} em notação de vetores unitários. (b) Se $\vec{c}=p\vec{a}+q\vec{b}$, quais são os valores de p e q?

3. Dados três vetores,

$$\vec{A} = 2,00\; \hat{\imath} + 3,00\; \hat{\jmath} - 4,00\; \hat{k}; \quad \vec{B} = -3,00\; \hat{\imath} + 4,00\; \hat{\jmath} + 2,00\; \hat{k}; \quad \vec{C} = 7,00\; \hat{\imath} - 8,00\; \hat{\jmath}$$
obtenha $3\vec{C}\cdot(2\vec{A}\times\vec{B}).$

4. Um cubo é colocado de modo que um dos seus vértices esteja na origem e três arestas coincidam com os eixos x, y e z de um sistema de coordenadas (ver figura). Use vetores para calcular: (a) o ângulo entre a aresta ao longo do eixo z (linha ab) e a diagonal da origem até o vértice oposto (linha ad); (b) o ângulo entre a linha ac (a diagonal de uma das faces) e a linha ad.

5. Você está acampando com dois amigos, José e Carlos. Como os três gostam de privacidade, vocês não montam as barracas perto uma das outras. A barraca de José está a 21,0 m da sua, na direção 23,0° do leste para o sul. A de Carlos está a 32,0 m da sua, na direção 37,0° do leste para o norte. Qual é a distância entre a barraca de Carlos e a de José?

Aula 2

Assunto: Carga elétrica. Lei de Coulomb. Campo elétrico.

Orientação: estudar o Cap. 19 do Serway, até a seção 19.7. Requer uma revisão de cinemática das partículas e da força centrípeta, assuntos abordados em Fenômenos Mecânicos.

- 6. Na teoria de Bohr do átomo de hidrogênio, um elétron descreve uma órbita circular ao redor de um próton, sendo o raio da órbita de 5,29 × 10⁻¹¹ m. (a) Encontre a força elétrica entre os dois. (b) Se esta força causa a aceleração centrípeta do elétron, qual é a velocidade do elétron?
- 7. Duas esferas pequenas de massa m estão suspensas por fios de comprimento l, que são conectados em um ponto comum. Uma esfera tem carga Q e outra tem carga 2Q. Suponha que são pequenos os ângulos θ_1 e θ_2 que os fios fazem com a vertical. (a) Como se relacionam θ_1 e θ_2 ? (b) Mostre que a distância r entre as esferas é dada por

$$r \approx \left(\frac{4k_e Q^2 l}{mg}\right)^{1/3}.$$

8. Na Fig. ao lado, a partícula 2 e 4, de carga -e, estão fixas sobre o eixo y, nas posições y₂ = -10,0 cm e y₄ = 5,00 cm. Partículas 1 e 3, de carga -e, podem se mover ao longo do eixo x. Partícula 5, de carga +e, está fixa na origem. Inicialmente a partícula 1 está em x₁ = -10,0 cm e a partícula 3 está em x₃ = 10,0 cm.
(a) Para qual valor x a partícula 1 deve ser movida para girar a direção do força líquida F_{liq} sobre a partícula 5 por 30° no senti-

do antihorário? (b) Com a partícula 1 fixa na sua nova posição, para qual valor x você deveria

mover a partícula 3 para girar \vec{F}_{liq} de volta à sua direção original?

9. Na Fig. ao lado, as quatro partículas formam um quadrado de lado $a=5{,}00~{\rm cm}$ e possuem cargas $q_1=+10{,}0~{\rm nC},~q_2=-20{,}0~{\rm nC},$ $q_3=+20{,}0~{\rm nC}$ e $q_4=-10{,}0~{\rm nC}$. Em notação de vetor unitário, qual o campo elétrico resultante as partículas produzem no centro do quadrado?

10. Na Fig. ao lado, uma haste fina de vidro possui a forma de um semicírculo de raio $R=5{,}00$ cm. A carga é distribuída uniformemente ao longo da haste, sendo que $+q=4{,}50$ pC na metade superior e $-q=-4{,}50$ pC na metade inferior. Quais são a magnitude, direção e sentido do campo elétrico em P, o centro do semicírculo?

11. Na Fig. abaixo, uma haste não condutora de comprimento L=8,15 cm possui uma carga -q=-4,23 fC uniformemente distribuída ao longo do seu comprimento. (a) Qual é a densidade linear da haste? (b) Qual é o campo elétrico (módulo, direção e sentido) produzido no ponto P, a uma distância a=12,0 cm da haste? (c) Obtenha a expressão literal do módulo do campo elétrico se $a\gg L$. Que objeto carregado produz um campo elétrico dado por essa expressão?

12. Em algum instante as componentes da velocidade de um elétron se movendo entre duas placas paralelas carregadas são $v_x = 1.5 \times 10^5 \text{ m/s}$ e $v_y = 3.0 \times 10^3 \text{ m/s}$. Suponha que o campo elétrico entre as placas seja dado por $\vec{E} = (120 \text{ N/C} \, \hat{\jmath})$. Em notação de vetor unitário, quais são (a) a aceleração do elétron nesse campo e (b) a velocidade do elétron quando a sua coordenada x muda de 2,0 cm?

Aula 3

Assunto: Lei de Gauss. Aplicações da lei de Gauss.

Orientação: estudar o Cap. 19 do Serway, da seção 19.8 até 19.11.

- 13. Calcule o fluxo elétrico através de um hemisfério de raio a, imerso num campo elétrico uniforme de módulo E.
- 14. Determine o campo elétrico em todo o espaço, devido a uma carga Q > 0, distribuída uniformemente sobre uma casca esférica de raio R. Esboce as linhas de campo.
- 15. Determine o campo elétrico em todo o espaço, devido a uma carga elétrica Q > 0, distribuída uniformemente no volume de uma esfera maciça de raio R. Esboce as linhas de campo.

- 16. Considere um fio um fio retilíneo de raio desprezível carregado positivamente, com densidade linear de carga λ constante. Determine o módulo do campo elétrico à uma distância r do fio.
- 17. Uma placa fina muito grande está uniformemente carregada com uma carga positiva. Se a densidade de carga sobre a placa é σ , obtenha o módulo do campo elétrico acima dela, à uma distância r, longe da borda da mesma.

Aula 4

Assunto: Potencial elétrico.

Orientação: estudar o Cap. 20 do Serway, até a seção 20.6.

18. Na Fig. ao lado, o ponto P está a uma distância d₁ = 4,00 m da partícula 1 (q₁ = -2e) e distância d₂ = 2,00 m (q₂ = +2e), com ambas as partículas fixas nos seus lugares. Com V = 0 no infinito, qual o valor de V em P? Se trouxermos uma partícula de carga q₃ = +2e do infinito até P, (b) quanto de trabalho realizamos e (c) qual é a energia potencial do sistema com as três partículas?

- 19. Determine o potencial elétrico devido a uma carga elétrica Q > 0, distribuída uniformemente ao longo de um aro circular de raio a, no ponto P a uma altura z do plano do aro, sobre a reta que passa pelo seu centro (o eixo de simetria do aro).
- 20. Determine o potencial elétrico devido a uma carga elétrica Q > 0, distribuída uniformemente sobre um disco circular de raio a, no ponto P a uma altura z do plano do disco, sobre a reta que passa pelo seu centro (o eixo de simetria do disco).
- 21. O campo elétrico em uma região do espaço possui componentes $E_y=E_z=0$ e $E_x=(4,00\ {\rm N/C})x$. O ponto A está sobre o eixo y em y=3,00 m e o ponto B está sobre o eixo x em x=4,00 m. Qual é a diferença de potencial V_B-V_A ?
- 22. Uma casca esférica de raios a e b > a está carregada com uma carga Q > 0 distribuída uniformemente por todo o seu volume. Tomando V = 0 no infinito, obtenha V(r) por toda a região do espaço, onde r é a distância até o centro da casca esférica. As soluções concordam uns com outros em r = a e r = b?

Aula 5

Assunto: Capacitância.

Orientação: estudar o Cap. 20 do Serway, da seção 20.7 até 20.10.

23. Um capacitor cilíndrico é constituído de um condutor cilíndrico sólido de raio a e carga Q, que é coaxial a uma casca cilndrica de espessura desprezível, de raio b > a, e carga -Q. Encontre a capacitância desse capacitor cilíndrico se o seu comprimento for ℓ . Considere $\ell \gg b$, de forma que os efeitos de borda possam ser desprezados.

- 24. Um capacitor esférico consiste de uma casca esférica condutora de raio b e carga -Q, concêntrica a uma esfera condutora menor de raio a e carga Q. (a) Encontre a capacitância desse dispositivo. (b) Qual a expressão aproximada da capacitância se $b \gg a$ (aproximação de uma esfera isolada).
- 25. Na Fig. ao lado, dois capacitores de placas paralelas (com ar entre as placas) estão conectados a uma bateria. A área da placa do capacitor 1 é de 1,5 cm² e o campo elétrico (entre as placas) possui magnitude de 2000 V/m. Já o capacitor 2 possui uma placa com área 0,70 cm² e um campo elétrico de magnitude 1500 V/m. Qual é a carga total armazenada nos dois capacitores?

26. Na Fig. ao lado, $C_1=10.0~\mu\text{F}, C_2=20.0~\mu\text{F}$ e $C_1=25.0~\mu\text{F}.$ Se nenhum capacitor capacitor suporta uma tensão maior do que 100 V sem falhar, quais são (a) a magnitude da máxima tensão que possa haver entre os ponto A e B e (b) a máxima energia que pode ser armazenada nesse arranjo com os três capacitores?

27. Um certo capacitor de placas paralelas está preenchido com um dielétrico para o qual $\kappa = 5,5$. A área de cada placa é $0,034~\text{m}^2$ e as placas estão separadas por uma distância de 2,0~mm. O capacitor irá falhar (entrar em curto-circuito e queimar) se o campo elétrico entre as placas exceder o valor de 200~kN/C. Qual a máxima energia que poderá ser armazenada no capacitor?

Aula 6

Assunto: Corrente elétrica. Circuitos. Leis de Kirchhoff.

Orientação: estudar o Cap. 21 do Serway até a seção 21.8, exceto a seção 21.3.

- 28. A história de que Benjamin Franklin empinou uma pipa enquanto uma tempestade se aproximava é somente uma lenda ele não era nem ignorante e nem suicida. Suponha o fio da pipa de raio 2,00 se estendendo diretamente para cima por 0,800 km e coberto com uma camada de 0,500 mm de água possuindo resistividade 150 $\Omega \cdot$ m. Se a diferença de potencial entre as duas estremidades do fio for de 160 MV, qual a corrente através da camada de água? O perigo não é esta corrente, mas a possibilidade do fio atrair um relâmpago, que pode possuir uma corrente tão grande quanto 500000 A (muito além de ser apenas letal).
- 29. Suponha que você deseja fabricar um fio uniforme à partir de 1,00 g de cobre. Se o fio deve ter uma resistência $R = 0,500 \Omega$ e se todo o cobre deve ser usado, qual o comprimento e o diâmetro desse fio?
- 30. Quando três lâmpadas A, B e C de potências 60 W, 75 W e 100 W, todas de 110 V, são ligadas em série, a lâmpada A brilha mais do que a B, que brilha mais do que a C. Por que as os brilhos aparecem nessa maneira? Qual a lâmpada tem maior resistência? Como seriam seus brilhos

relativos se elas estivessem conectadas em paralelo?

31. Uma bateria ideal de 6,00 V fornece corrente ao circuito mostrado na Fig. ao lado. Quando a chave S está aberta, situação mostrada na Fig. a corrente na bateria é de 1,00 mA. Quando a chave estiver fechada na posição 1, a corrente na bateria é de 1,20 mA. Quando a chave está fechada na posição 2, a corrente na bateria é de 2,00 mA. Encontre as resistências R_1, R_2 e R_3 .

32. Calcule (a) a potência dissipada em cada um dos resistores mostrados na Fig. abaixo e (b) a potência fornecida por cada uma das baterias.

Aula 7

Assunto: todos os temas até a semana 6.

Orientação: trazer as dúvidas que ficaram em relação aos problemas trabalhados e/ou propostos até a semana 7.

Aula 8

Assunto: comentários e discussões da Prova 1 de Fenômenos Eletromagnéticos.

Aula 9

Assunto: Força magnética. Campo magnético.

Orientação: estudar o Cap. 22 do Serway até a seção 22.6.

- 33. Um elétron percorre uma região com campo magnético uniforme dado por $\vec{B} = B_x \hat{\imath} + (3,0B_x) \hat{\jmath}$. Em um dado instante, o elétron possui velocidade $\vec{v} = (2,0 \hat{\imath} + 4,0 \hat{\jmath})$ m/s e a força magnética agindo sobre ele é $(6,4 \times 10^{-19} \text{ N}) \hat{k}$. Encontre (a) B_x e (b) o ângulo que o vetor velocidade faz com \vec{B} nesse instante.
- 34. Um elétron é acelerado do repouso através de uma diferença de potencial de $V_1 = 1,0$ kV e entra na lacuna entre duas placas paralelas separadas por uma distância d = 20,0 mm e mantidas a uma diferença de potencial $V_2 = 100$ V (veja Fig. abaixo). A placa inferior está a um potencial menor. Desprezando-se os efeitos de borda, qual deve ser o campo magnético uniforme (em notação com vetor unitário) que permitirá que o elétron percorra a região entre as placas em linha reta?

35. Na Fig. ao lado, uma partícula carregada entra numa região com campo magnético uniforme B, descreve um semicírculo e então abandona a região, após permanecer nela por 130 ns. (a) De acordo com o sentido do campo magnético e a trajetória, qual o sinal da carga elétrica da partícula? (b) Qual é a magnitude de B? (c) Se a partícula é enviada de

volta à região com o campo magnético (ao longo do mesmo caminho inicial), mas com duas vezes a energia cinética anterior, quanto tempo ela irá permanecer nessa região?

- 36. Um fio estendido ao longo de um eixo x, de x=0 até x=1,00 m, conduz uma corrente de 3,00 A no sentido positivo de x. O fio é imerso em uma região com um campo magnético não-uniforme dado por $\vec{B}=(4,00 \text{ T/m}^2)x^2 \hat{\imath}+(0,600 \text{ T/m}^2)x^2 \hat{\jmath}$. Em notação de vetores unitários, qual é a força magnética sobre o fio?
- 37. A Fig. ao mostra uma bobina formada por 20 espiras retangulares, de dimensões 10 cm por 5,0 cm. Ela conduz uma corrente de 0,10 A e é articula ao longo de um dos lados. Ela está posicionada no plano xy fazendo um ângulo $\theta=30^\circ$ à direção de um campo magnético uniforme de magnitude 0,50 T. (a) Em notação de vetores unitários, qual é o torque agindo sobre a bobina com respeito à linha da articulação? (b) Olhando a bobina de cima, qual o sentido da rotação em torno da articulação?

Aula 10

Assunto: Lei de Àmpere. Lei de Biot-Savart.

Orientação: estudar o Cap. 22 do Serway, da seção 22.7 até 22.10.

38. Na Fig. ao lado, parte de um fio longo encapado com material isolante e conduzindo uma corrente i=5,78 mA é encurvado para formar uma seção circular de raio R=1,89 cm. Em notação de vetor unitário, qual é o campo magnético no centro da curvatura C se a seção circular (a) repousa no plano da página como mostrado e (b) é perpendicular ao plano da página após ser girado de 90° no sentido antihorário, conforme indicado?

39. Na Fig. ao lado, um longo fio reto conduz uma corrente $i_1=30,0$ A e uma espira retangular conduz uma corrente $i_2=20,0$ A. Tem-se que a=1,00 cm, b=8,00 cm e L=30,0 cm. Em notação de vetor unitário, qual é a força resultante sobre a espira devido a i_1 ?

40. A Fig. ao lado mostra dois caminhos fechados envoltos em dois circuitos conduzindo correntes $i_1 = 5,0$ A e $i_2 = 3,0$ A. Qual é o valor da integral $\oint \vec{B} \cdot d\vec{s}$ para (a) caminho 1 e (b) caminho 2?

41. Na Fig. ao lado, um tubo circular longo com raio externo R=2,6 cm conduz uma corrente uniformemente distribuida i=8,00 mA, para dentro da página. Um fio corre em paralelo ao tubo a uma distância de 3,00R de centro a centro. Encontre a magnitude e o sentido da corrente no fio tal que o campo magnético líquido no ponto P possua a mesma magnitude do campo magnético líquido no centro do tubo, porém em sentidos contrários.

42. Um solenoide longo possui 100 voltas/cm e conduz uma corrente i. Um elétron se move dentro do solenóide em um círculo de raio 2,30 cm, perpendicular ao eixo do solenóide. A velocidade do elétron é 0,0460c (c é a velocidade da luz). Encontre a corrente i no solenóide.

Aula 11

Assunto: Lei de Faraday. Auto-indutância.

Orientação: estudar o Cap. 22 do Serway até a seção 23.5.

43. Se deslocarmos um imã permanente na direção de um solenóide, como indica a figura (a), o ponteiro de um galvanômetro ligado ao circuito se moverá no sentido indicado. (a) Como se explica o movimento do ponteiro do galvanômetro associado ao solenóide? (b) Indique, nas situações das figuras (b), (c) e (d), o que acontece com o ponteiro do galvanômetro e o sentido da corrente no fio do solenóide.

44. Um solenóide vertical que tem comprimento de 120 cm e diâmetro de 2,50 cm consiste em 1400 espiras por fio de cobre que conduzem uma corrente de 2.00 A no sentido anti-horário como no item (a) da figura. (a) Encontre o campo magnético no vácuo dentro do solenóide. (b) Encontre a densidade de energia do campo magnético. (Observe que as unidades J/m³ da densidade de energia são as mesmas que as unidades N/m2 = Pa de pressão). (c) Uma barra supercondutora de 2,20 cm de diâmetro é introduzida parcialmente no solenóide. Sua extremidade superior está bem fora do solenóide, onde o campo magnético é desprezível. A extremidade inferior da barra está bem dentro do solenóide. O campo criado pelas supercorrentes está esquematizado no

item (b) da figura e o campo total esquematizado no item (c) na figura. Identifique a direção necessária para a corrente na superfície curva da barra, de modo que o campo magnético total seja nulo dentro da barra. (d) O campo do solenóide exerce uma força sobre a corrente no supercondutor. Identifique a direção da força sobre a barra. (e) Calcule a magnitude da força multiplicando a densidade de energia do campo do solenóide pela área da extremidade inferior da barra supercondutora.

45. Um transformador é usado para transferir potência de um circuito elétrico de corrente alternada para outro, mudando a corrente e a voltagem ao fazer isto. Um transformador particular consiste em uma bobina de 15 voltas com raio de 10,0 cm que cercam um solenóide longo com raio de 2,00 cm e 1,00 \times 10³ espiras/m (veja Fig. ao lado). Se a corrente no solenóide variar como $I=(5,00~{\rm A}){\rm sen}(120t)$, encontre a fem induzida na bobina de 15 espiras em função do tempo.

46. A Fig. ao lado mostra duas espiras de fio em forma de anel, que tem o mesmo eixo. O anel menor está acima do maior, a uma distância x, que é grande em comparação com o raio R, do anel maior. Em consequência, com a passagem da corrente i pelo anel maior, o campo magnético correspondente é aproximadamente constante através da área plana πr^2 , limitada pelo anel menor. Suponha agora que a distância x não seja fixa, mas que varie à razão constante dx/dt = v. (a) Determine o fluxo magnético através da área limitada pelo anel menor. (b) Calcule a fem gerada no anel menor.

(c) Determine o sentido da corrente induzida no anel menor.

47. A corrente em um indutor de 90,0 mH varia com o tempo como $I = t^2 - 6,00t$ (em unidades SI). Encontre a magnitude da fem induzida (a) em t = 1,00 s e (b) t = 4,00 s. (c) Em que instante a fem é zero?

Aula 12

Assunto: temas das semanas 9 até 11.

Orientação: trazer as dúvidas que ficaram em relação aos problemas trabalhados e/ou propostos da semana 9 até a semana 11.

Referências

- 1. SERWAY, Raymond A.; JEWETT, John W. Princípios de física: eletromagnetismo. 3 ed. São Paulo: Cengage learning, 2006. v.3.
- 2. HALLIDAY, David; RESNICK, Robert; WALKER, Jearl. Fundamentos de física: eletromagnetismo. 6 ed. Rio de Janeiro; LTC, 2003. v.3, 281 p.
- 3. YOUNG, Hugh D.; FREDMAN, Roger A. Sears e Zemansky Física III: eletromagnetismo. 12^a ed. São Paulo: Editora: Addison-Wesley. v.3, 402 p.

Respostas

- 1. (a) Não, pois $|\mathbf{i} + \mathbf{j} + \mathbf{k}| = \sqrt{3}$; (b) Não; (c)Sim. Para justificar as respostas (b) e (c), observe que $|\mathbf{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}$.
- 2. (a) $\vec{a} = (3,00 \text{ m})\hat{i}, \vec{b} = (3,46 \text{ m})\hat{i} + (2,00 \text{ m})\hat{j}$ e $\vec{c} = -(5,00 \text{ m})\hat{i} + (8,66 \text{ m})\hat{j}$; (b) p = -6,67e q = 4,33.
- 3. 540.
- 4. (a) $\phi = 54.7^{\circ}$; (b) $\phi = 35.3^{\circ}$.
- 5. 28,2 m.

- 6. (a) $F = 8.22 \times 10^{-8} \text{ N}$; (b) $v = 2.19 \times 10^{6} \text{ m/s}$.
- 7. (a) $\theta_1 = \theta_2$.
- 8. (a) x = -6.05 cm; (b) . $F = 4.9 \times 10^{-26} \text{ N}.$
- 9. $\vec{E} = (1.02 \times 10^5 \text{ N/C}) \hat{\jmath}$.
- 10. $\vec{E} = -(20.6 \text{ N/C}) \hat{\jmath}$.
- 11. (a) $\lambda = -5.19 \times 10^{-14} \text{ C/m}$; (b) $\vec{E} =$

 $-(1.57 \times 10^3 \text{ N/C}) \ \hat{i}; \ \text{(c)} \ \vec{E} = -\frac{1}{4\pi\varepsilon_0} \frac{q}{a^2}.$ Uma partícula de carga -q localizada a uma distância a.

- 12. $\vec{a} = -(2.1 \times 10^{13} \text{ m/s}^2) \, \hat{\jmath}$; (b) $\vec{v} = (1.5 \times 10^5 \text{ m/s}) \, \hat{\imath} (2.8 \times 10^6 \text{ m/s}) \, \hat{\jmath}$.
- 13. $\Phi_E = E\pi a^2$.
- 14. E=0, para r< R e $E=\frac{Q}{4\pi\varepsilon_0 r^2}$, para r>R.
- 15. $E = \frac{Qr}{4\pi\varepsilon_0 R^3}$, para r < R e $E = \frac{Q}{4\pi\varepsilon_0 r^2}$, para r > R.
- 16. $E = \frac{\lambda}{2\pi\varepsilon_0 r}$.
- 17. $E = \frac{\sigma}{2\varepsilon_0}$.
- 18. (a) $V = 7.19 \times 10^{-10} \text{ V}$; (b) $U = 2.30 \times 10^{-28} \text{ J}$; (c) $U_{\text{sistema}} = 2.43 \times 10^{-29} \text{ J}$.
- $19. \ V = \frac{Q}{4\pi\varepsilon_0 \sqrt{a^2 + z^2}}.$
- $20. \ V = \frac{Q}{2\pi\varepsilon_0 a^2} \left(\sqrt{a^2 + z^2} z \right).$
- 21. $V_B V_A = -32.0 \text{ V}.$
- 22.

$$V = \begin{cases} \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}, r \ge b \\ \frac{Q}{4\pi\varepsilon_0} \frac{1}{b^3 - a^3} \left(\frac{3b^2}{2} - \frac{r^2}{2} - \frac{a^3}{4} \right), a \le r \le b \\ \frac{Q}{4\pi\varepsilon_0} \frac{3(b^2 - a^2)}{2(b^3 - a^3)}, r \le a \end{cases}$$

- 23. $C = 2\pi\varepsilon_0 \frac{\ell}{\ln(b/a)}$.
- 24. (a) $C = 4\pi\varepsilon_0 \frac{ab}{b-a}$; (b) $C = 4\pi\varepsilon_0 a$.
- 25. $q_{\text{tot}} = 3.6 \text{ pC}.$
- 26. (a) 190 V; (b) $U_{\text{tot}} = 0.095 \text{ J}.$
- 27. $U = 6.6 \times 10^{-5} \text{ J}.$

- 28. 9.42×10^{-3} A.
- 29. $\ell = 1.82 \text{ m e } d = 280 \mu\text{m}.$
- 30. Porque $R_1 > R_2 > R_3$ e $P_i = R_i i^2$, onde i = 1, 2, 3. Em paralelo, as intensidades do brilho relativo se invertem, pois $P_i = V^2/R_i$.
- 31. $R_1 = 1,00 \text{ k}\Omega, R_2 = 2,00 \text{ k}\Omega \text{ e } R_3 = 3,0 \text{ k}\Omega.$
- 32. (a) 800 W na resistência de 2,0 Ω superior, 450 W na inferior e 25,0 W em cada um dos resistores de 4,0 Ω ; (b) 1000 W na bateria à esquerda e 300 W na bateria à direita.
- 33. (a) $B_x = -2.0 \text{ T}$; (b) $\theta = 172^{\circ}$.
- 34. $\vec{B} = -(2.67 \times 10^{-4} \text{ T}) \hat{k}$.
- 35. (a) positiva; (b) B = 0,252 T; (c) $\Delta t = 130$ ns.
- 36. $\vec{F} = -(0.600 \text{ N}) \hat{k}$.
- 37. (a) $\vec{\tau} = -(4.3 \times 10^{-3} \text{ N} \cdot \text{m}) \,\hat{\jmath}$; (b) Sentido horário.
- 38. (a) $\vec{B}_C = (2.53 \times 10^{-7} \text{ T}) \hat{k}$; (b) $\vec{B}_C = (1.92 \times 10^{-7} \text{ T}) \hat{i} + (6.12 \times 10^{-8} \text{ T}) \hat{k}$.
- 39. $\vec{F} = (3.20 \times 10^{-3} \text{ N}) \hat{\imath}$.
- 40. (a) $-2.5 \times 10^{-6} \text{ T} \cdot \text{m}$; (b) $-1.6 \times 10^{-5} \text{ T} \cdot \text{m}$.
- 41. $i_{\text{fio}} = 3,00 \times 10^{-3} \text{ A}$, para dentro da página.
- 42. i = 0.272 A.
- 43. Discussão qualitativa.
- 44. (a) $B = \frac{\mu_0 Ni}{l} = 2,93 \times 10^{-3} \text{ T (para cima)};$ (b) $u = \frac{B^2}{2\mu_0} = 3,42 \text{ Pa. (c) Corrente no}$ sentido do relógio; (d) para cima.
- 45. $\mathcal{E} = -14.2\cos(120t) \text{ mV}$
- 46. (a) $\Phi_B = \frac{\pi \mu_0 I r^2 R^2}{2x^3}$; (b) $\mathcal{E} = \frac{3\pi \mu_0 I r^2 R^2 v}{2x^4}$; (c) sentido antihorário.
- 47. (a) 360 mV; (b) 180 mV; (c) t = 3.00 s.