Simplified Cost Function and Gradient Descent

Note: [6:53 - the gradient descent equation should have a 1/m factor]

We can compress our cost function's two conditional cases into one case:

 $\operatorname{Cost}(h_{t}(x),y) = -y \in (1 - y) \log(1 - h_{t}(x))$

Notice that when y is equal to 1, then the second term $(1-y)\log(1-h_{\theta}(x))$ will be zero and will not affect the result. If y is equal to 0, then the first term $-y\log(h_{\theta}(x))$ will be zero and will not affect the result.

We can fully write out our entire cost function as follows:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))]$$

A vectorized implementation is:

Gradient Descent

Remember that the general form of gradient descent is:

\begin{align*}& Repeat \; \lbrace \newline & \; \theta_j := \theta_j - \alpha \dfrac{\partial}{\partial \theta_j}J(\theta) \newline & \rbrace\end{align*}

We can work out the derivative part using calculus to get:

Notice that this algorithm is identical to the one we used in linear regression. We still have to simultaneously update all values in theta.

A vectorized implementation is:

$$\theta := \theta - \frac{\alpha}{m} X^T (g(X\theta) - \vec{y})$$