Power Line Partial Discharge Detection

A.J. Cross, Xuesong Fan, and Aaron Wilson

Overview

- Problem
- Preprocessing and feature extraction
- State of the art
- Classification techniques
- Results
- Conclusions and comments

Problem

- Overhead power lines run for hundreds of miles to supply power
- Manual inspection is expensive
- Challenge is to detect partial discharge patterns in signals acquired from these power lines

Preprocessing and feature extraction

Performance metric and state of the art

- Matthews Correlation Coefficient
- Varies from –1 to +1
- MCC = +1 indicates perfect predictions
- MCC = -1 indicates entirely wrong predictions
- MCC = 0 indicates entirely random predictions

MCC =	$(TP \times TN) - (FP \times FN)$
мсс –	$\sqrt{(TP+FP)(TP+FN)(TN+FP)(TN+FN)}$

Team Members	Score @	Entries	Last
9	0.71899	31	9mo
Q	0.71501	16	9mo
A	0.70488	32	9mo
A	0.70232	27	10mo
2	0.69672	115	9mo

Validation technique

- Training set 8,712 training examples
 - Each contains 800,000 samples
 - Hence need for preprocessing
- Provided testing set is unlabeled
 - m-Fold Cross Validation with m = 10 performed on the training set

Dimensionality reduction

- Normalized data
 - Denoted as nX
- PCA
 - 8 of 12 dimensions kept, with an error rate of 7.60%
 - Denoted as pX
- FLD
 - Denoted as fX

Classification Methods

- MPP (case1, 2, and 3)
- kNN
 - k value looped over to find optimal value
 - Optimal value of k=10 used for MCC values
- Random Forest
 - Optimal value of 100 trees for MCC evaluations

Classification Methods

- SVM
 - Sigmoid, RBF, 1st, 2nd and 3rd order polynomial
 - Optimal SVM uses radial based function
- K-Means Clustering
 - Classify by assigning derived clusters to classes

Classification Methods

- Back-Propagation Neural network:
 - 12 input neurons for nX data, 1 for fX, 8 for pX
 - One hidden layer, 3 neurons
 - One output neuron
 - Sigmoid activation functions
 - Learning rate = 3.0
 - Implemented using Keras from Tensorflow

Accuracy vs. Performance (MPP)

Aggregate results

Processing Time

Classifier Fusion – BPNN & RF

- From the previous plots, the two bestperforming classifiers were the BPNN (MCC = 0.49) and the RF (MCC = 0.55)
- Using the Naïve Bayes fusion technique, a new MCC value of 0.47 was achieved.
 - Worse performance!

Conclusion

- Results give an MCC value of ~0.55 compared to a Kaggle score of ~0.72
- A more in-depth analysis is required to have a high accuracy while maintaining sensitivity
 - Requires complicated features extraction techniques

Task Allocation

Aaron:

Pre-processing, feature extraction, BPNN, classifier fusion

Xuesong:

Normalization and dimensionality reduction, MPP, Random Forest

AJ:

kNN, SVM, K-Means clustering

All:

Presentation slides, report

Summary

- Preprocessed signals to get multiple features via DWT
- Applied algorithms to sort into classes via derived features to obtain accuracy/sensitivity
- Random forest best MCC value of 0.55
- More complex feature extraction methods may be required

Support Vector Machine (SVM)

- Linear, 2nd and 3rd order polynomials
- Sigmoid function: $tanh(\gamma < x, x' > +r)$
- Radial Based Function (RBF): $\exp(-\gamma ||x-x'||^2)$ was found to have the best classification (using MCC)

K-Means Clustering

- Number of cluster centers is the same and the number of classes
- Predicted classifier labels for data points are assigned based on the predicted cluster it belongs to