ComS 472 Homework 4

Sean Gordon

Oct 26, 2020

- 7.22 -

- If the pair of clauses has no complimentary literals, there are no resolvents. ✓
 If the pair has one or more sets of complimentary literals, the resulting resolvents acquired from applying the same set of literals in any order will eventually reduce down to a single resolvent. ✓
- 2) A clause resolved with itself would contain complimentary literals left in the equation. As this clause does not contain any, it is impossible.
- 3) For a clause to resolve with a copy of itself, it must contain only complimentary literals. This would make the initial clause equivalent to True

	F	Р	D	$F \Rightarrow P$	$D \Rightarrow P$	$(F \Rightarrow P) \vee$	$F \wedge D$	$(F \wedge D)$	$ (F \Rightarrow P) \lor (D \Rightarrow P) $
1)						$(D \Rightarrow P)$		$\Rightarrow P$	\Rightarrow (F \land D) \Rightarrow P
	Т	Т	Т	Т	Т	Т	Т	Т	Т
	Τ	Τ	F	T	Т	Т	F	Т	T
	Т	F	Т	F	F	F	Т	F	T
	Т	F	F	F	Т	Т	F	Т	T
	F	Т	Т	Т	Т	Т	F	Т	Т
	F	Т	F	Т	Т	Т	F	Т	Т
	F	F	Т	Т	F	Т	F	Т	Т
	F	F	F	Т	Т	Т	F	Т	Т

The sentence is valid as it is true for all combinations of variables.

2) Original $(F \Rightarrow P) \lor (D \Rightarrow P) \Rightarrow (F \land D) \Rightarrow P$

Implication Elim: $(\neg F \lor P)\lor (D \Rightarrow P) \Rightarrow (F \land D) \Rightarrow P$ Implication Elim: $(\neg F \lor P)\lor (\neg D \lor P) \Rightarrow (F \land D) \Rightarrow P$ Implication Elim: $(\neg F \lor P)\lor (\neg D \lor P) \Rightarrow \neg (F \land D) \lor P$ De Morgan: $(\neg F \lor P)\lor (\neg D \lor P) \Rightarrow (\neg F \lor \neg D)\lor P$ Implication Elim: $\neg ((\neg F \lor P)\lor (\neg D \lor P))\lor (\neg F \lor \neg D)\lor P$ De Morgan: $\neg (\neg F \lor P)\land \neg (\neg D \lor P)\lor (\neg F \lor \neg D)\lor P$

De Morgan: $(F \land \neg P) \land (D \land \neg P) \lor (\neg F \lor \neg D) \lor P$ Associativity: $(F \land \neg P \land D \land \neg P) \lor (\neg F \lor \neg D \lor P)$

Duplicates: $(F \land \neg P \land D) \lor (\neg F \lor \neg D \lor P)$

Final Form (CNF): $(\mathbf{F} \land \neg \mathbf{P} \land \mathbf{D}) \lor (\neg \mathbf{F} \lor \neg \mathbf{D} \lor \mathbf{P})$

	F	Р	D	$\neg F$	¬Р	$\neg D$	$F \wedge \neg P \wedge D$	$\neg F \lor P \lor \neg D$	$\boxed{ F \wedge \neg P \wedge D \vee \neg F \vee P \vee \neg D }$
	Т	Т	Т	F	F	F	F	Т	Т
	Т	Т	F	F	F	Т	F	Т	Т
	Т	F	Т	F	Т	F	T	F	Т
3)	Т	F	F	F	Т	Т	F	T	Т
	F	Т	Т	Т	F	F	F	Т	Т
	F	Т	F	Т	F	Τ	F	Т	Т
	F	F	Т	Т	Т	F	F	Т	Т
	F	F	F	Т	Τ	Т	F	Т	Т

The resolved sentence is logically equivalent to the original.

S1)
$$A \Leftrightarrow (C \lor E)$$
 to...
 $(A \Rightarrow (C \lor E)) \land ((C \lor E) \Rightarrow A)$
 $(\neg A \lor (C \lor E)) \land (\neg (C \lor E) \lor A)$
 $(\neg A \lor C \lor E) \land ((\neg C \land \neg E) \lor A)$
 $(\neg A \lor C \lor E) \land (\neg C \lor A) \land (\neg E \lor A)$

- S2) $E \Rightarrow D$ to... $\neg E \lor D$
- S3) $B \wedge F \Rightarrow \neg C \text{ to...}$ $\neg (B \wedge F) \vee \neg C$ $\neg B \vee \neg F \vee \neg C$
- S4) $E \Rightarrow C$ to... $\neg E \lor C$
- S5) $C \Rightarrow F$ to... $\neg C \lor F$
- S6) $C \Rightarrow B \text{ to...}$ $\neg C \lor B$

- 8.11 -

- 1) Occupation(Emily, Surgeon) \vee Occupation(Emily, Lawyer)
- 2) Occupation (Joe, Actor) \land \exists j (Occupation (Joe, j) \land $\neg(j{=}Actor))$
- 3) \forall s (Occupation(s, Surgeon) \Rightarrow Occupation(s, Doctor))
- 4) \forall l (Occupation(l, Lawyer) $\Rightarrow \neg$ Customer(Joe, l))
- 5) \exists b (Boss(b, Emily) \land Occupation(b, Lawyer))
- 6) \exists l \forall c (Occupation(l, Lawyer) \land (Customer(c, l) \Rightarrow Occupation(c, Doctor)))
- 7) \forall s \exists l (Occupation(s, Surgeon) \Rightarrow (Customer(s, l) \land Occupation(l, Lawyer)))

- 1) \exists d Parent(Joan, d) \land Female(d)
- 2) \exists ! d Parent(Joan, d) \land Female(d)
- 3) $(\exists! d Parent(Joan, d)) \land (\forall d Parent(Joan, d) \Rightarrow Female(d))$
- 4) ∃! c Parent(Joan, c) ∧ Parent(Kevin, c)
- 5) $(\exists c \text{ Parent}(\text{Joan}, c) \land \text{Parent}(\text{Kevin}, c)) \land \neg (\exists c \text{ Parent}(\text{Joan}, c) \land \neg \text{Parent}(\text{Kevin}, c))$

- 8.29 -

- 1) This is a good translation
- 2) This is not a good translation, as it doesn't specify only 1 apartment $\exists ! \text{ a Apt(a)} \land \text{In(a, Paris)} \land (\text{Rent(a)} < \text{Dollars(1000)})$
- 3) This is a good translation

- 9.4 -

- 1) $P(A, B, B), P(A, B, z) : \{x/A, y/B, z/B\}$
- 2) Does not exist.
- 3) Older(Father(y), y), Older(Father(x), John) : {x/John, y/John}
- 4) Does not exist.

- 9.7 -

- 1) \forall m (Horse(m) \vee Cow(m) \vee Pig(m)) \Rightarrow Mammal(m)
- 2) \forall h Horse(h) \land (\forall o Offspring(o, h) \Rightarrow Horse(o))
- 3) Horse(Bluebeard)
- 4) Parent(Bluebeard, Charlie)
- 5) \forall p \forall o Offspring(o, p) \Leftrightarrow Parent(p, o)
- 6) \forall m \exists p Parent(p, m)

- 1) False
- 2) True
- 3) True
- 4) False
- 5) False

- 9.16 -

1)

- 2) The domain extends forever, and because of that there are two infinite loops.
- 3) 2 solutions, Charlie and Bluebeard.

1)

$$\begin{array}{cccc} P(A,\,[1,\,2,\,3]) & Goal \\ P(1,\,[1-2,\,3]) & Solution \ with \ A=1 \\ P(1,\,[1-2,\,3]) & \\ P(2,\,[2,\,3]) & Solution \ with \ A=2 \\ P(2,\,[2,\,3]) & \\ P(3,\,[3]) & Solution \ with \ A=3 \\ P(3,\,[3]) & \end{array}$$

2)

$$\begin{array}{ccc} P(2,\,[1,\,A,\,3]) & \text{Goal} \\ P(2,\,[1-\!\!-\!2,\,3]) & \\ P(2,\,[1-\!\!-\!2,\,3]) & \\ P(2,\,[2,\,3]) & \text{Solution with A=2} \\ P(2,\,[2,\,3]) & \\ P(3,\,[3]) & \\ P(3,\,[3]) & \\ \end{array}$$