IS422P - DATA MINING 10 - CLUSTERING

AGENDA

What is Cluster Analysis? Requirements for Cluster The Basics Analysis Overview of methods

Partitioning Methods

K-Means

vs. Divisive Distance Measures

Agglomerative Hierarchical Methods

DBSCAN Density-Based Methods

Tendency Evaluation of Clustering Clustering Quality

Assessing

Clustering

AGENDA

What is Cluster Analysis? Requirements for Cluster The Basics Analysis Overview of methods

Partitioning Methods

K-Means

Distance Measures

Agglomerative vs. Divisive Hierarchical Methods

DBSCAN Density-Based Methods

Clustering Tendency Evaluation of Clustering Quality

Output

Output

Description

Output

D

Assessing

WHAT IS CLUSTER ANALYSIS?

- Partitioning a set of data objects into subsets or clusters
 - objects in a cluster are similar, yet dissimilar to objects in other clusters
- Goal: discovery of previously unknown groups within the data
- Clusters are implicit classes
- Applications → business intelligence, image pattern recognition, web search, biology, security
- Clustering can be used for pre-processing and outlier detection

REQUIREMENTS FOR CLUSTER ANALYSIS

- Scalability → currently handles small datasets, uses sampling
- Handling different attribute types → mostly numerical
- Discovering clusters with arbitrary shape → currently mostly spherical
- Domain knowledge & input parameters \rightarrow # clusters & clustering results
- Handling noisy data \rightarrow currently sensitive to noise
- Incremental clustering & insensitivity to input order → new data requires re-computing clusters from scratch − sensitive to order
- Handling high-dimensionality data → mostly low Dimensionality
- Constraint-based clustering → little support for domain constraints
- Interpretability & usability → are results comprehensible & usable?

COMPARING CLUSTER ANALYSIS METHODS

- The partitioning criteria **flat** or **hierarchical**?
- Separation of clusters mutually exclusive or overlapping?
- Similarity measure distance or connectivity/density?

OVERVIEW OF CLUSTER ANALYSIS METHODS PARTITIONING

OVERVIEW OF CLUSTER ANALYSIS METHODS HIERARCHICAL

OVERVIEW OF CLUSTER ANALYSIS METHODS DENSITY-BASED

OVERVIEW OF CLUSTER ANALYSIS METHODS GRID-BASED

OVERVIEW OF CLUSTER ANALYSIS METHODS

Method	Characteristics
Partitioning methods	 Find <u>mutually exclusive</u> clusters of <u>spherical shape</u> <u>Distance-based</u> May <u>use mean or medoid</u> to represent cluster center Effective for <u>small- to medium-size data sets</u>
Hierarchical methods	 Clustering is <u>hierarchy</u> involving multiple levels Cannot correct <u>erroneous merges/splits</u> May consider object "<u>linkages</u>"
Density-based methods	 Can find <u>arbitrarily shaped clusters</u> Clusters are <u>dense regions</u> separated by <u>low-density regions</u> Each point must have a <u>minimum number of points within its "neighborhood"</u> May <u>filter out outliers</u>
Grid-based methods	 Use a multi-resolution <u>grid data structure</u> <u>Fast processing time</u>

AGENDA

What is Cluster Analysis? Requirements for Cluster Analysis
Overview methods for Cluster Overview of

K-Means

Partitioning Methods

Agglomerative vs. Divisive

Distance Measures

Density-Based Methods

DBSCAN

Assessing Clustering Tendency

Grid-Based Methods

Measuring Clustering Quality

Output

Description

PARTITIONING METHODS K-MEANS – A CENTROID-BASED TECHNIQUE

- Divide dataset into k mutually exclusive clusters
- Clusters are represented by their centroids
 - A centroid is a <u>cluster's center point</u>
- o In k-means \rightarrow centroid is mean of points within cluster
 - Each object x in cluster has a distance from centroid $c_i \rightarrow dist(x, c_i)$
- x is assigned to most similar cluster $\rightarrow C_i$ with min dist (x, c_i)
 - Cluster means are updated, then assignment is repeated
- To measure cluster quality → minimize sum of squared errors

$$E = \sum_{i=1}^{\kappa} \sum_{x \in C_i} dist(x, c_i)^2$$

Algorithm: k-means. The k-means algorithm for partitioning, where each cluster's center is represented by the mean value of the objects in the cluster.

Input:

- k: the number of clusters,
- D: a data set containing n objects.

Output: A set of *k* clusters.

Method:

- (1) arbitrarily choose k objects from D as the initial cluster centers;
- (2) repeat
- (3) (re)assign each object to the cluster to which the object is the most similar, based on the mean value of the objects in the cluster;
- (4) update the cluster means, that is, calculate the mean value of the objects for each cluster;
- (5) until no change;

Cluster the eight points in table using k-means. Assume that k = 3 and that initially the points are assigned to clusters as follows: $C1 = \{x1, x2, x3\}, C2 = \{x4, x5, x6\}, C3 = \{x7, x8\}.$

• Apply the k-means algorithm until convergence (i.e., until the clusters do not change), using the Manhattan distance.

(Hint: The Manhattan distance is: $d(i, j) = |x_{i1}-x_{j1}| + |x_{i2}-x_{j2}| + + |x_{in}-x_{jn}|$.) Make sure you clearly identify the final clustering and show your steps.

	AI	A2		
хI	2	10		
x2	2	5		
x3	8	4		
x4	5	8		
x5	7	5		
x6	6	4		
x7	I	2		
8 x	4	9		

- \circ C1= {x1,x2,x3}={(2,10), (2,5), (8,4)}
 - Mean of C1= $(\frac{2+2+8}{3}, \frac{10+5+4}{3}) = (4, 6\frac{1}{3})$
- \circ C2= {x4,x5,x6}={(5,8), (7,5), (6,4)}
 - Mean of C2 = $(6, 5\frac{2}{3})$
- \circ C3= {x7,x8}={(1,2), (4,9)}
 - Mean of C3 = $(2\frac{1}{2}, 5\frac{1}{2})$

	AI	A2
хI	2	10
x2	2	5
x3	8	4
x4	5	8
x5	7	5
x6	6	4
x7	I	2
x8	4	9

	XI (2,10)	X2 (2,5)	X3 (8,4)	X4 (5,8)	X5 (7,5)	X6 (6,4)	X7 (1,2)	X8 (4,9)	NEW MEAN
C1 $(4,6\frac{1}{3})$	$5\frac{2}{3}$	$3\frac{1}{3}$	$6\frac{1}{3}$	$\left(2\frac{2}{3}\right)$	$4\frac{1}{3}$	$4\frac{1}{3}$	$7\frac{1}{3}$	$\left(2\frac{2}{3}\right)$	$4\frac{1}{2}$, $8\frac{1}{2}$
C2 $(6,5\frac{2}{3})$	$8\frac{1}{3}$	$4\frac{2}{3}$	$\left(3\frac{2}{3}\right)$	$3\frac{1}{3}$	$\left(1\frac{2}{3}\right)$	$\left(1\frac{2}{3}\right)$	$8\frac{2}{3}$	$5\frac{1}{3}$	$7, 4\frac{1}{3}$
$\frac{\text{C3}}{(2\frac{1}{2},5\frac{1}{2})}$	5		7	5	5	5	5	5	$1\frac{2}{3}$, $5\frac{2}{3}$

C1= {x1,x4,x8}={(2,10), (5,8), (4,9)} Mean of C1= $(2\frac{2}{3},9)$ C2= {x3,x5,x6}={(8,4), (7,5), (6,4)} Mean of C2 = $(7, 4\frac{1}{3})$ C3= {x2,x7}={(2,5), (1,2)} Mean of C3 = $(1\frac{1}{2}, 3\frac{1}{2})$

- Factors to consider:
- Selection of k
- Selection of initial centroids
- Calculation of dissimilarity
- Calculation of cluster means
- When it fails!
- Clusters with very different sizes & with concave shapes

AGENDA

What is Cluster Analysis? Requirements Basics for Cluster Analysis Overview methods Overview of

K-Means

DBSCAN

HIERARCHICAL METHODS AGGLOMERATIVE VERSUS DIVISIVE CLUSTERING

- Hierarchical clustering → group data objects into a hierarchy or "tree" of clusters
- Agglomerative → bottom-up (merge) composition
 - Each object has its own cluster
 - Two clusters that are closest merged into a bigger cluster
 - Iteratively merge till termination condition or single cluster is formed
- Divisive → top-down (split) composition
 - All objects in one big cluster
 - Divide into subclusters
 - Recursively divide subclusters into even smaller subclusters
 - Terminate when each object has his own cluster or objects in clusters are similar "enough"

Measure distance between c, d, e and individual elements in cluster {a,b}, choose any with minimum distance (single linkage)

Measure distance between c and individual elements in cluster {a,b} and {d,e}, as well as distance between pairs in {a,b} and {d,e}, choose any with minimum distance (single linkage)

HIERARCHICAL METHODS DIVISIVE CLUSTERING

How to divide a cluster is a challenge! Heuristic approaches may be used

QUESTION?

NEXT

