## Magnetic Field Lines of a Permanent Magnet

FIG. 1



### **Application: Magnetic Trap**

FIG. 2



© 2012 Pearson Education, Inc.

#### **Application: Bubble Chamber**

FIG. 3



#### **Application: Velocity Selector**

FIG. 4

(a) Schematic diagram of velocity selector

Source of charged particles By the right-hand rule, X the force of the  $\vec{B}$  field on the charge points to B the right. The force of the  $\vec{E}$  field on the charge points to the left. For a negative charge, the directions of both forces are reversed.

X

© 2012 Pearson Education, Inc.

**(b)** Free-body diagram for a positive particle

Only if a charged particle has v = E/B do the electric and magnetic forces cancel. All other particles are deflected.

© 2012 Pearson Education, Inc.

### Thomson's Experiment (e/m ratio)

FIG. 5



#### **Application: Mass Spectrometer**

FIG. 6



Magnetic field separates particles by mass; the greater a particle's mass, the larger is the radius of its path.

© 2012 Pearson Education, Inc.

# Current Loop in a Uniform Magnetic Field

FIG. 7



when  $\phi = 180^{\circ}$ .