Nonlinear Least Squares (NLS)

Hüseyin Taştan¹

¹Department of Economics Ph.D. Program - Advanced Econometrics Yildiz Technical University

November 11, 2013

3

Nonlinear Least Squares

► A nonlinear regression can be written as

$$y_i = f(x_i, \beta) + u_i, \quad E(u_i) = 0, \quad E(u_i^2) = \sigma^2, \ \forall i.$$
 (1)

where

$$\mathbf{x}_i = [x_{1i}, x_{2i}, \dots, x_{ki}]^{\top}, \quad i = 1, \dots, n$$

► Under the assumption that the functional form is correctly specified

$$\mathsf{E}[y_i|x_i] = f(x_i, \beta), \quad i = 1, 2, \dots, n.$$

where $f(\cdot)$ is a twice differentiable function.

- ▶ The nonlinear function $f(x_i, \beta)$ determines the value of y_i conditional on the information set Ω_i which usually consists of some set of explanatory variables.
- ► These explanatory variables may include lagged values of the dependent variable (if we have a time series or panel data) and exogenous variables.

2

Nonlinear Least Squares

- ► So far we considered regression models that are linear in parameters.
- ▶ We are able to handle certain types of nonlinearity by transforming regressors and dependent variable in the linear regression model framework.
- ► However, there many other types of nonlinearity that cannot be handles within this framework. In this case we need to estimate nonlinear regression models.
- In nonlinear regression models conditional expectation of y_i with respect to the information set Ω_i is a nonlinear function of the parameters.
- ► We assume that no transformation exists to make the model linear in parameters (e.g., natural log transformation).

4

Nonlinear Least Squares

▶ The NLS objective function is

$$Q(\beta) = \frac{1}{2} \sum_{i=1}^{n} (y_i - f(x_i, \beta))^2$$
 (2)

and the NLS estimator is

$$\hat{\beta} = \operatorname*{arg\,min}_{\beta} Q(\beta) \tag{3}$$

► FOC:

$$\frac{\partial Q(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = -\sum_{i=1}^{n} (y_i - f(\boldsymbol{x}_i, \boldsymbol{\beta})) \frac{\partial f(\boldsymbol{x}_i, \boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \mathbf{0}$$
(4

Nonlinear Least Squares

Let the $n \times k$ matrix ${m G}$ be the first derivatives of the nonlinear function whose typical element is

$$g_{ij} = \frac{\partial f(\boldsymbol{x}_i, \boldsymbol{\beta})}{\partial \beta_j}, \quad i = 1, \dots, n, \quad j = 1, \dots, k$$

Using this we can write:

$$-\mathbf{G}^{\top}(\mathbf{y} - f(\mathbf{X}, \boldsymbol{\beta})) = \mathbf{0}.$$
 (5)

Under certain assumptions the NLS estimator has an asymptotic normal distribution:

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \to N\left(0, \sigma^2 \underset{n \to \infty}{\text{plim}} \left(\frac{1}{n} \boldsymbol{G}^{\top} \boldsymbol{G}\right)^{-1}\right)$$
 (6)

where β is the unknown true parameter vector, σ^2 is the unknown true variance of the error term and G is the first derivative matrix evaluated at the true parameter vector.

7

Nonlinear Least Squares

Example (DM,p.212)

Consider the following model:

$$y_i = \beta_1 + \beta_2 x_{i1} + \frac{1}{\beta_2} x_{i2} + u_i$$

Here the nonlinear part is

$$f(\boldsymbol{x}_i, \boldsymbol{\beta}) = \beta_1 + \beta_2 x_{i1} + \frac{1}{\beta_2} x_{i2}$$

6

Nonlinear Least Squares

In practice the covariance matrix can be estimated using

$$V(\hat{\boldsymbol{\beta}}) = s^2 (\hat{\boldsymbol{G}}^\top \hat{\boldsymbol{G}})^{-1} \tag{7}$$

where s^2 is an unbiased estimator of the error variance:

$$s^2 = \frac{1}{n-k} \sum_{t=1}^n \left(y_i - f(\boldsymbol{x}_i, \hat{\boldsymbol{\beta}}) \right)^2.$$

 \hat{G} is the first derivative matrix evaluated at the NLS solution $\hat{\beta}$.

8

Example (The Linear Regression Model with AR(1) Errors (Davidson and MacKinnon, p.212))

Consider the following linear regression model for time series data:

$$y_t = \boldsymbol{X}_t \boldsymbol{\beta} + u_t$$

where u_t follows a first order autoregressive process:

$$u_t = \rho u_{t-1} + \epsilon_t, \quad \epsilon_t \sim iid(0, \sigma_{\epsilon}^2)$$

Substituting $\rho u_{t-1}+\epsilon_t$ for u_t and then replacing u_{t-1} by $y_{t-1}-\pmb{X}_{t-1}\pmb{\beta}$ we obtain

$$y_t = \rho y_{t-1} + X_t \beta - \rho X_{t-1} \beta + \epsilon_t, \quad \epsilon_t \sim iid(0, \sigma_{\epsilon}^2)$$

which is nonlinear in parameters. The model cannot be estimated by OLS. Instead we need to use NLS.

Example (CES Production Function)

A flexible form for the production function is the constant elasticity of substitution (CES):

$$y = \alpha \left(\delta L^{-\gamma} + (1 - \delta)K^{-\gamma}\right)^{-\lambda/\gamma}$$

where y is output, K is capital and L is labor, and $\alpha > 0$, $0 < \delta < 1$, $\gamma \ge -1$. Elasticity of substitution is given by

$$s = \frac{d\log(K/L)}{d\log(MP_L/MP_K)} = \frac{1}{1+\gamma} \ge 0$$

where MP_j is the marginal product of inputs, j=K,L. Taking natural logs and adding an error term we obtain a nonlinear model:

$$\log(y) = \log(\alpha) - \frac{\lambda}{\gamma} \log \left(\delta L^{-\gamma} + (1 - \delta)K^{-\gamma}\right) + u$$

An alternative to this model is translog production function which can be estimated by OLS.

11

NLS Application 1: Consumption Function

```
. nl (realcons = {alpha=400} + {beta=1}*realdpi^{gamma=1} )
(obs = 204)
```

Source		SS	df	MS		
	-+-				Number of obs =	204
Model		432036555	2	216018277	R-squared =	0.9988
Residual		504403.222	201	2509.46877	Adj R-squared =	0.9988
	-+-				Root MSE =	50.0946
Total	I	432540958	203	2130743.64	Res. dev. =	2172.781

Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
458.7991	22.50139	20.39	0.000	414.4301	503.1682
.100852	.0109104	9.24	0.000	.0793386	.1223655
1.244828	.0120548	103.26	0.000	1.221057	1.268598
	458.7991 1 .100852	458.7991 22.50139 .100852 .0109104	458.7991 22.50139 20.39 .100852 .0109104 9.24	458.7991 22.50139 20.39 0.000 .100852 .0109104 9.24 0.000	458.7991 22.50139 20.39 0.000 414.4301 .100852 .0109104 9.24 0.000 .0793386

Parameter alpha taken as constant term in model & ANOVA table

. matrix list e(V)

10

NLS Application 1: Consumption Function

- ▶ This example is from Greene (p.191)
- ► Consider the following nonlinear consumption function:

$$C = \alpha + \beta Y^{\gamma} + u$$

- \blacktriangleright If we assume that γ the model becomes linear in parameters.
- ► We will use income and consumption data for the US economy 1950Q1-2000Q4
- ► STATA: TableF5-2.dta

12

NLS Application 2: CES Production Function

► CES production function

$$\log(y) = \log(\alpha) - \frac{\lambda}{\gamma} \log \left(\delta L^{-\gamma} + (1 - \delta)K^{-\gamma}\right) + u$$

► Elasticity of substitution

$$s = \frac{1}{1+\gamma} \ge 0$$

► STATA: production.dta

13

Example: CES Production Function

Source	SS	df	MS		
 +				Number of obs =	100
Model	91.1542478	3	30.3847493	R-squared =	0.7564
Residual	29.3565583	96	.305797482	Adj R -squared =	0.7488
 +				Root MSE =	.5529896
Total	120.510806	99	1.21728087	Res. dev. =	161.2223

logQ	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
/alpha	44.32413	4.51106	9.83	0.000	35.36975	53.27851
/lambda	.9888227	.0632858	15.62	0.000	.8632014	1.114444
/gamma	1.432666	.5570501	2.57	0.012	.3269304	2.538402
/delta	.5193183	.0552948	9.39	0.000	.4095589	.6290776

Parameter alpha taken as constant term in model & ANOVA table

14

Example: CES Production Function

```
. // Elasticity of substitution
. nlcom (1 / (1+_b[/gamma]))
```

logQ	Coef.		[95% Conf.
	.4110716		. 2242246