

Bounded Real Lemma

□ Corollary 12.3: Let $\gamma > 0$. $G(s) = C(sI-A)^{-1}B + D \in RH_{\infty}$ and

$$H := \begin{bmatrix} A + BR^{-1}D^*C & BR^{-1}B^* \\ -C^*(I + DR^{-1}D^*)C & -(A + BR^{-1}D^*C)^* \end{bmatrix}$$

$$= \gamma^2 I - D^*D. \text{ Then the following conditions are equiva}$$

where $R=\gamma^2I-D^*D$. Then the following conditions are equivalent: (i) $||G||_{\infty} < \gamma$.

(ii) $||D|| < \gamma$ and H has no eigenvalues on the imaginary axis.

(iii) $||D|| \le \gamma$ and $H \in dom(Ric)$, i.e., there exists an $X \ge \theta$ such that

 $X(A+BR^{-1}D*C)+(A+BR^{-1}D*C)*X+XBR^{-1}B*X+C*(I+DR^{-1}D*)C=0$

and $A+BR^{-1}D*C+BR^{-1}B*X$ is stable.

(iv) $||D|| \le \gamma$, $H \in dom(Ric)$ and $Ric(H) \ge \theta$ ($Ric(H) > \theta$ if (C,A) is observable).

Bounded Real Lemma

 $\Box \qquad \text{Let } z = G(s)w, \ G(s) = C(sI-A)^{-1}B \in RH_{\infty}$

$$\begin{split} & \left\| G \right\|_{\infty} = \sup_{w} \frac{\left\| z \right\|_{2}}{\left\| w \right\|_{2}} \coloneqq \sup_{w} \frac{\sqrt{\int_{0}^{\infty} \left\| z \right\|^{2} dt}}{\sqrt{\int_{0}^{\infty} \left\| w \right\|^{2} dt}}, \\ & \left\| G \right\|_{\infty} < \gamma \quad \Leftrightarrow \int_{0}^{\infty} \left(\left\| z \right\|^{2} - \gamma^{2} \left\| w \right\|^{2} \right) dt < 0, \ \forall w \neq 0 \end{split}$$

 $\exists X = X^* \ge \theta$ such that $XA + A^*X + XBB^*X / \gamma^2 + C^*C = \theta$ and $A + BB^*X / \gamma^2$ is stable.

 \Leftrightarrow

 $Y=Y^*\geq 0$ such that $YA^*+AY+YC^*CY/\gamma^2+BB^*=0$ and $A+YC^*C/\gamma^2$ is stable.

$$\|G^T\|_{\infty} = \|B^T(sI - A^T)^{-1}C^T\|_{\infty} < \gamma$$

An Intuitive Proof

Note that the system equation can be written as

$$\begin{split} \dot{x} &= Ax + B_1 w + B_2 u \\ z &= C_1 x + D_{12} u \\ y &= C_2 x + D_{21} w \end{split}$$

☐ State Feedback: *u=Fx*

$$\dot{x} = (A+B_2F)x + B_1w$$

$$z = (C_1 + D_{12}F)x$$

By Bounded Real Lemma: $\|T_{zw}\|_{\infty} < \gamma \iff \exists X = X * \ge \theta \text{ such that}$

 $X(A+B_2F)+(A+B_2F)*X+XB_1B_1*X/\gamma^2+(C_1+D_{12}F)*(C_1+D_{12}F)=0$ and $A+B_2F+B_1B_1*X/\gamma^2$ is stable.

6

G

❖ (By completing square with respect to F to get) \Leftrightarrow $\exists X = X^* ≥ 0$ such that

 $XA + A^*X + XB_1B_1^*X/\gamma^2 - XB_2B_2^*X + C_1^*C + (F + B_2^*X)^* (F + B_2^*X) = 0$ and $A + B_2F + B_1B_1^*X/\gamma^2$ is stable.

❖ (Intuition suggests that F=-B₂*X)

 $\exists X = X^* \ge 0$ such that

 $XA+A^*X+XB_1B_1^*X/\gamma^2-XB_2B_2^*X+C_1^*C_1=0$ and $A-B_2B_2^*X+B_1B_1^*X/\gamma^2$ is stable.

 $\Leftrightarrow \Rightarrow F=F_{\infty} \text{ and } X=X_{\infty}.$

☐ Output Feedback: Converting to State Estimation

Suppose \exists a K such that $||T_{zw}||_{\infty} < \gamma$

Then $x(\infty) = \theta$ by stability (note also x(0) = 0)

6

Consider the following integral

$$\int_{0}^{\infty} \left(\|z\|^{2} - \gamma^{2} \|w\|^{2} \right) dt = \int_{0}^{\infty} \left(\|z\|^{2} - \gamma^{2} \|w\|^{2} + \frac{d}{dt} (x^{*} X_{\infty} x) \right) dt$$

$$= \int_{0}^{\infty} (\|z\|^{2} - \gamma^{2} \|w\|^{2} + \dot{x}^{*} X_{\infty} x + x^{*} X_{\infty} \dot{x}) dt$$

Substituting $\dot{x} = Ax + B_1w + B_2u$ and $z = C_1x + D_{12}u$ to get

 $= \int_{0}^{\infty} (\|C_{1}x\|^{2} + \|u\|^{2} - \gamma^{2} \|w\|^{2} + 2x^{*}A^{*}X_{\infty}x + 2x^{*}X_{\infty}B_{1}w + 2x^{*}X_{\infty}B_{2}u)dt$

 $= \int_0^\infty \left(x^*(C_1^*C_1 + X_{\infty}A + A^*X_{\infty})x + \|u\|^2 - \gamma^2 \|w\|^2 + 2x^*X_{\infty}B_1w + 2x^*X_{\infty}B_2u\right)dt$ Using X_{∞} equation to get

 $= \int_0^\infty \left(x^* (-X_{\infty} B_1 B_1^* X_{\infty} / \gamma^2 + X_{\infty} B_2 B_2^* X_{\infty}) x + \left\| u \right\|^2$

$$-\gamma^{2} \|w\|^{2} + 2x^{*}X_{\infty}B_{1}w + 2x^{*}X_{\infty}B_{2}u)dt$$

 $= \int_{0}^{\infty} \left(-\left\| B_{1}^{*} X_{\infty} / \gamma \right\|^{2} - \gamma^{2} \left\| w \right\|^{2} + 2x^{*} X_{\infty} B_{1} w + \left\| B_{2}^{*} X_{\infty} x \right\|^{2} + \left\| u \right\|^{2} + 2x^{*} X_{\infty} B_{2} u \right) dt$

completing the squares with respect to u and w

 $= \int_{0}^{\infty} (\|u + B_{2}^{*} X_{\infty} x\|^{2} - \gamma^{2} \|w - \gamma^{-2} B_{1}^{*} X_{\infty} x\|^{2}) dt$

□ Summary:

$$\int_{0}^{\infty} (\|z\|^{2} - \gamma^{2} \|w\|^{2}) dt = \int_{0}^{\infty} (\|v\|^{2} - \gamma^{2} \|r\|^{2}) dt$$

$$v = u + B_{2}^{*} X_{\infty} x = u - F_{\infty} x, \qquad r = w - \gamma^{-2} B_{1}^{*} X_{\infty} x$$

Rewrite the system equation with: $w = r + \gamma^{-2} B_1^* X_{\infty} x$

$$\dot{x} = (A + B_1 B_1^* X_{\infty} / \gamma^2) x + B_1 r + B_2 u$$

$$v = -F_{\infty}x + u$$

$$y = C_2 x + D_{21} w = C_2 x + D_{21} r$$

$$||T_{zw}||_{\infty} < \gamma \Leftrightarrow ||T_{vr}||_{\infty} < \gamma \Leftrightarrow \int_{0}^{\infty} (||u - F_{\infty}x||^{2} - \gamma^{2}||r||^{2}) dt < 0$$

If state is availabe; $u=F_{\infty}x$

worst disturbance: $w_* = \gamma^2 B_1 * X_{\infty} x$

State is not available : using estimated state $u = F_{\infty}\hat{x}$ A standard observer :

$$\dot{\hat{x}} = (A + B_1 B_1^* X_{\infty} / \gamma^2) \hat{x} + B_2 u + L(C_2 \hat{x} - y)$$

where L is the observer gain is to be determined.

Let
$$e := x - \hat{x}$$
. Then

$$\dot{e} = (A + B_1 B_1^* X_{\infty} / \gamma^2 + LC_2) e + (B_1 + LD_{21}) r$$

$$v = -F_{\infty}e$$

 $\|T_{zw}\|_{\infty} < \gamma \iff \|T_{vr}\|_{\infty} < \gamma$ by bounded real lemma

$$Y(A + B_1 B_1^* X_{\infty} / \gamma^2 + LC_2)^* + (A + B_1 B_1^* X_{\infty} / \gamma^2 + LC_2)Y + YF_{\infty}^* F_{\infty} Y / \gamma^2 + (B_1 + LD_{21})(B_1 + LD_{21})^* = 0$$

6

Complete square w.r.t. ${\cal L}$

$$(A + B_{1}B_{1}^{*}X_{\infty}/\gamma^{2})^{*} + (A + B_{1}B_{1}^{*}X_{\infty}/\gamma^{2})Y + YF_{\infty}^{*}F_{\infty}Y/\gamma^{2}$$

$$+B_1B_1^* - YC_2^*C_2Y + (L + YC_2^*)(L + YC_2^*)^* = 0$$

Again, intuition suggests that we can take $L = -YC_2^*$ which gives

$$Y(A + B_1B_1^*X_{\infty}/\gamma^2)^* + (A + B_1B_1^*X_{\infty}/\gamma^2)Y$$

$$+ YF_{\infty}^*F_{\infty}Y / \gamma^2 - YC_2^*C_2Y + B_1B_1^* = 0$$

$$Y = Y_{\infty} (I - \gamma^{-2} X_{\infty} Y_{\infty})^{-1}$$

Since $Y \ge 0$, we must have $\rho(X_{\infty}Y_{\infty}) < \gamma^2$

Hence $L = Z_{\infty}L_{\infty}$ and the controller is given by

$$\dot{\hat{x}} = (A + B_1 B_1^* X_{\infty} / \gamma^2) \hat{x} + B_2 u + Z_{\infty} L_{\infty} (C_2 \hat{x} - y)$$

$$u = F_{\infty} \hat{x}$$