データ解析論・データ解析演習

講義資料は http://nip.info.kogakuin.ac.jp/lectures/ で公開する

授業中のアンケートに Google Form を利用したクリッカーを使います http://goo.gl/forms/ifqOCEgRQB

第1回(2016-04-07)概論・準備

授業の狙い

現在得られているデータから背景にある構造を推定し未来あるいは未知のデータに関する予測を 行う方法として、確率モデルと各種の推定手法を学ぶ。特に、データの変数間の関係性について 調べる基本的な考え方である多変量正規分布の理解を軸に、主成分分析、因子分析、判別分析、 クラスタ分析の利用法について学ぶ。

受講に当たっての前提条件

「データ解析論」と「データ解析演習」を同時に履修すること。

具体的な到達目標

- → 分散・共分散行列と多変量正規分布について理解する
- → 重回帰分析と因子分析について理解し、実際にデータに適用できる
- → 判別分析による分類学習について理解し、実際にデータに適用できる
- → いくつかのクラスタ分析の手法について理解し、実際にデータに適用できる
- → 分類学習やクラスタ分析に関して、より実用性の高い代表的な方法を知る

評価

データ解析論

→ 授業内試験と期末試験の結果を3:7の割合で評価する

データ解析演習

- → 1~12回の各回は、演習時間内に提出された課題の回答を各回5点満点で評価する
- → 13回には総合的な課題を課し、提出されたレポートを期末試験として40点満点で評価
- → 各回評価の合計を総合評価とし、A+~Fの6段階評価でD以上を合格とする。

教科書

★ 足立浩平「多変量データ解析法」 ISBN 978-4-7795-0057-2 出版社 ナカニシヤ出版

参考書

- ★ Bruce Frey 「STATISTICS HACKS」
 ISBN 978-4-87311-335-7
 出版社 オライリー・ジャパン
 具体的な例で実践的に統計を理解したい場合の参考に
- ★ Wes McKinney「Pythonによるデータ分析入門」
 ISBN 978-4-87311-655-6
 出版社 オライリー・ジャパン
 演習で利用する Python Pandas の詳細な利用方法を理解したい場合の参考に

授業計画 (案)

1. 多変量データ

多変量データの扱い方について学ぶ

- 2. 分散・共分散行列と多変量正規分布 多変量データの分散・共分散行列とその性質について学ぶ
- 3. 多変量正規分布と主成分分析 主成分分析の考え方と利用法について学ぶ
- 4. 重回帰分析とパス解析

重回帰分析とその一般化であるパス解析について学ぶ

5. 確認的因子分析

因子分析の基本的な考え方について学ぶ

6. 探索的因子分析

実践的な因子分析の利用法を学ぶ

- 7. 習熟度の確認
 - 1~6回の範囲について試験を行う(講義)
 - 1~6回の範囲について総合的な課題を行う(演習)
- 8. 判別分析

2 群のデータが与えられた時に未知のデータの分類を行う方法を学ぶ

9. サポートベクトルマシンの基礎

汎化性能の高い分類器であるサポートベクトルマシンについて学ぶ

10. サポートベクトルマシンの利用

ソフトマージンの考え方とカーネル法について学ぶ

11. 階層的クラスタリング

階層的クラスタリングについて学ぶ

12. k-平均法

k-平均法によるクラスタリングついて学ぶ

13. 確率モデルに基づいたクラスタリング手法 混合正規分布モデルによるクラスタリングについて学ぶ

期末試験(講義)・最終レポート(演習)

14. 学習内容の振り返り

準備学習

教科書の該当する章をあらかじめ読んでおくこと

オフィスアワー

竹川高志 <jt13456@ns.kogakuin.ac.jp>

場所: 新宿高層棟A1516

時間:月曜日3限

今日の講義&演習内容

平均/分散/標準偏差/共分散/相関係数の復習

定義

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i} \quad s_{x}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} \quad s_{x} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$s_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y}) \quad r_{xy} = \frac{s_{xy}}{s_{x}s_{y}}$$

参考: 分散についての計算上の性質

$$s_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2$$

$$s_{xy} = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y}) = \frac{1}{n} \sum_{i=1}^n x_i y_i - \bar{x}\bar{y}$$

データ形式

ファイル形式 (表計算, CSV)

- ➤ 表計算ソフト
 - o Microsoft Office の Excel など
- ➤ CSV (camma 「,」 separated values)
 - テキストファイル
 - 一行に1つのデータ
 - 要素の間は「,」で区切る
 - 先頭行をデータの種類を示すヘッダとする場合が多い

表計算や CSV を利用する際のデータ形式

- ➤ 1行にすべての関連する情報を入れる
 - 階層型のデータと扱いと比較して考えると重複が多い
 - すべての要素を対等に扱えるので処理の際わかりやすい
- ➤ 具体例

実験番号	条件1	条件2	結果	CSV ファイル
1	а	x	2.0	実験番号,条件1,条件2,結果, 1,a,x,2.0, 2,a,y,3.0, 3,a,z,4.0, 4,b,x,2.5, 5,b,y,3.5, 6,b,z,4.5,
2	а	у	3.0	
3	а	z	4.0	
4	b	x	2.5	
5	b	у	3.5	
6	b	z	4.5	

利用する計算機環境について

(Python + 各種ライブラリ + Jupyter Notebook)

- → 演習室にインストールされている
- → 各自でインストールするのも比較的容易である(講義ページの「環境設定」参照)
- ➤ WinPython version 3 http://winpython.sourceforge.net/
 - Python プログラミング言語 https://python.rog/ http://www.python.jp/
 - numpy, scipy 数値計算, 科学技術ライブラリ http://www.numpy.org/
 - pandas 統計データ解析用ライブラリ<u>http://pandas.pydata.org/</u>
 - matplotlib グラフ作成ライブラリ http://matplotlib.org/
 - seaborn matplotlib を用いたさらに高度なグラフ作成ライブラリ https://stanford.edu/~mwaskom/software/seaborn/
 - Jupyter Notebook
 - python の統合実行環境の一つ

演習準備

WinPython (Jupyter Notebook) の起動(既存のファイルを利用)

- → http://nip.info.kogakuin.ac.jp/lectures/ から Lecture01.ipvnb をダウンロード
- → Notebook ファイル (拡張子 .ipynb) を「Jupyter Notebook,exe」を選択して実行
- → localhost にサーバが起動
- → Web ブラウザ上で実行される(http://localhost:8888)

Jupyter 環境について

- → 「Code」ブロック
 - ◆ プログラムを記述 Shift + Return で実行
- → 「Markdown」ブロック
 - ◆ 文章を Markdown 記法で記述(ヘルプや web の情報を参照すること)

課題

- 1. http://nip.info.kogakuin.ac.jp/lectures/ から data01.csv をダウンロード
- 2. Lecture01.ipynb と同じ作業ディレクトリに置く
- 3. Lecture01.ipynb の最初の Markdown ブロックに学籍番号/氏名などを記入
- 4. 続くブロックの指示に従って、プログラムを順に実行する
- 5. 最後の Markdown ブロックに質問/感想を記入
- 6. ファイルを保存する
- 7. 作業済みの ipynb ファイルを提出 http://nip.info.kogakuin.ac.jp/lectures/2016/data_analysis

参考資料