τ -Inflated Beta Regression Model for Estimating τ -Restricted Means and Event-Free Probabilities for Censored Time-to-Event Data.

Joint work with Yizhuo Wang

Source Material:

https://pmc.ncbi.nlm.nih.gov/articles/PMC11604032 https://github.com/yezow/--Inflated-Beta-Regression-Model-for-Estimating--RMST (Manuscript Github Site)

Ann Arbor ASA Meeting Github Site: https://github.com/yezow/tau-IBR ASA

Goals for this presentation

- Review existing τ restricted mean survival time $(\tau\text{-RMST})$ regression model for τ -restricted event times, $\min(\tau, T_i)$ (including R code for estimating these models)
- \triangleright Motivate τ Inflated Regression (τ -IBR) Model
 - Fundamental identity:

$$\min(\tau, T_i) = \tau I(T_i \ge \tau) + T_i I(T_i < \tau)$$

- \triangleright Describe the τ -IBR Model
 - Model specification
 - τ-RMST estimation
- Intuition gained through simulation study
- Example analyses with code

τ -Restricted Event Times, min (τ, T_i)

- We work with these event times nearly always
 - Finite follow-up periods common
 - Suppose τ = largest observed follow-up time

- For $t < \tau$, the Kaplan-Meier (KM) estimate for $P(T_i > t)$ is equivalent to the KM estimate for $P(\min(\tau, T_i) > t)$
- Area under KM curve up to τ estimates $E[\min(\tau, T_i)]$, or the τ -RMST

τ-RMST Regression Model

Most well known regression model for analysis of τ -restricted event times, $\min(\tau, T_i)$, introduced by Andersen, Hansen and Klein (2004)

$$E[\min(\tau, T_i)] = \beta_0 + \beta_1 Z_{1i} + \dots + \beta_p Z_{pi}$$

- Estimates the expected event-free years during τ years of follow-up from covariates
- Paper introduced pseudo-observations, PO_i , i = 1, ..., n, as an approach for estimating model parameters with censored outcomes
- Pseudo-observations, PO_i , i = 1, ..., n, stand in for min (τ, T_i) , i = 1, ..., n, in the model fitting process
- Standard generalized linear model (GLM) software obtains parameter estimates
- Identity and log links both in common use

Pseudo-Observations for min(τ , T_i)

For the i^{th} individual in the dataset, the pseudoobservation, PO_i , corresponding to their min (τ, T_i) outcome is:

$$PO_{i} = n * RMST - (n-1) * RMST^{(-i)},$$

where RMST is the τ -RMST estimate using the whole cohort and $RMST^{(-i)}$ is the τ -RMST estimate using everyone in the cohort except patient i.

- Andersen, Hansen and Klein showed that PO_i has the same conditional expectation as the (potentially censored) $min(\tau, T_i)$ outcome
- That is, we can estimate parameters from the desired model,

$$E\{\min(\tau, T_i)\} = \beta_0 + \beta_1 Z_{1i} + \dots + \beta_p Z_{pi},$$

by fitting the model

$$E\{PO_i\} = \beta_0 + \beta_1 Z_{1i} + \dots + \beta_p Z_{pi}$$

> A 'jackknife methodology' approach

Maximum Possible τ When Using Pseudo-Observations

$$PO_{i} = n * RMST - (n-1) * RMST^{(-i)},$$

where RMST is the τ -RMST based on whole cohort and $RMST^{(-i)}$ is the τ -RMST based on whole cohort without patient i.

- > τ must be a valid choice for estimating $RMST^{(-i)}$ for i = 1, ..., n.
 - At least one of the two largest event times is included in $RMST^{(-i)}$. So, when figuring out the maximum possible τ , you only need to think about these two values.
 - No restriction on τ if largest two event times are both deaths.
 - If both of the largest two event times are censored, then the maximum possible τ is the smaller of these two values.
 - If only one of the largest two event times is censored, then the maximum possible τ is this value.

6

Example: Azithromycin for Prevention of Chronic Obstructive Pulmonary Disease (COPD) Exacerbations Trial

- Patients were randomized to azithromycin or placebo.
- Followed for the primary endpoint of time-to-first acute exacerbation during the subsequent year.
- ➤ A 1-year-RMST model estimates acute exacerbation-free days over the follow-up year by treatment group and other patient characteristics
 - For $\tau = 1$, equivalent to interpret parameters as (absolute) increase in the percent exacerbation-free time during the 1-unit follow-up period corresponding to a 1-unit increase in the predictor
 - Advantage to rescaling outcomes from $(0, \tau]$ scale to (0,1] scale when interpreting results

Example: Azithromycin for Prevention of Chronic Obstructive Pulmonary Disease (COPD) Exacerbations Trial

- Variables in ex_data_example.csv:
 - X= observed follow-up days on study
 - Delta=1 if follow-up time, X, corresponds to an exacerbation, 0 otherwise
 - trt = 1 if azithromycin, 0 otherwise
 - age_10_new = age in decades, centered around 65 years
 - gender=1 if male, 0 otherwise
 - fev1_10_new = FEV1 per 10% predicted, centered around 40% of predicted
 - nowsmk=1 if current smoker, 0 otherwise
 - Site indicator variables: latitude_34, latitude_38, latitude_39, latitude_40, latitude 42, latitude 44

R Code for τ-RMST Model (Read in Data)

Data_cens<- read.csv("ex_data_example.csv")</pre>

#Key data shown below (except for site indicator variables)

x ‡	Delta ‡	trt ‡	age_10_new ‡	gender 🕏	fev1_10_new [‡]	nowsmk ‡
84	1	0	0.08145815	1	-0.34759831	0
360	0	0	-1.31854185	1	1.23404754	1
140	1	1	1.18145815	1	0.92965445	0
351	1	0	-0.71854185	1	-2.13845969	0
66	0	0	-1.01854185	1	-1.40125483	0
364	0	0	-0.21854185	1	1.56789132	0
26	1	0	-0.91854185	0	2.07459421	0
361	0	1	0.28145815	1	-1.24743238	0
129	1	1	-0.71854185	1	-1.45947188	1

R Code for τ-RMST Model (Create Pseudo Observations)

```
library(pseudo)
set.seed(1234)
tau= 365
```

#Showing outcomes on year scale: head(cbind(X=Data_cens\$X/tau, Delta=Data_cens\$Delta, Pseudo=pseudo/tau), 10)

Х	Delta	Pseudo
0.230136986	1	0.222603283
0.986301370	0	1.010197920
0.383561644	1	0.371845599
0.961643836	1	0.965209584
0.180821918	0	0.753752513
0.997260274	0	1.010393102
0.071232877	1	0.070089112
0.989041096	0	1.010393102
0.353424658	1	0.341515767

Pseudo-observations have the same conditional expectation as uncensored data values would have, but don't necessarily look like the uncensored outcomes of interest.

R Code for τ-RMST Model (Fit Model)

```
Estimate Std. Error t value Pr(>|t|)
                      0.032569 18.354 < 2e-16
(Intercept)
            0.597749
            0.091471
                       0.022792 4.013 6.39e-05 ***
trt
age_10_new 0.035193
                      0.014373 2.449 0.014499 *
                      0.023578 3.385 0.000736 ***
           0.079823
gender
                      0.007607 3.042 0.002410 **
fev1_10_new 0.023138
nowsmk
                      0.029807 0.467 0.640900
            0.013907
latitude_38 -0.096305
                      0.048329
                                -1.993 0.046541 *
                                -3.479 0.000523 ***
latitude_39 -0.170618
                       0.049043
latitude_40 -0.102577
                       0.032800
                                -3.127 0.001810
                                -4.921 9.92e-07 ***
latitude_42 -0.176630
                       0.035893
                                -4.940 9.00e-07 ***
latitude_44 -0.205978
                       0.041692
```

Manuscript Friendly Results With Coefficients, 95% CIs, P-values

```
trt age_10_new gender fev1_10_new
                                            nowsmk
                   0.035 0.080
coef_tau 0.091
                                      0.023
                                             0.014
lower_CI 0.047
                   0.007 0.034
                                      0.008 -0.045
upper_CI 0.136
                   0.063 0.126
                                      0.038 0.072
p_value
        0.000
                   0.014
                          0.001
                                      0.002
                                             0.641
```

Example: Azithromycin for Prevention of Chronic Obstructive Pulmonary Disease (COPD) Exacerbations Trial

	Azithromycin (vs. Placebo)	Age (per 10 Years)	Male (vs. Female)	FEV_1 (per 10% Predicted)	Current Smoker (vs. Ex)
τ-RMST Mod	el				
Coef/τ	0.091	0.035	0.080	0.023	0.014
95% CI	(0.047, 0.136)	(0.007, 0.063)	(0.034, 0.126)	(0.008, 0.038)	(-0.045, 0.072)
P-value	<0.001	0.014	<0.001	0.002	0.641

Results are additionally adjusted for the study site (data not shown)

➤ During the year on study, the percentage of time spent exacerbation-free was estimated to be 9.1% longer when taking azithromycin versus placebo (95% CI 4.7-13.6% longer; p<0.001), when adjusted for age, sex, FEV1 % predicted, current smoking status and site.

Motivation for τ - Inflated Beta Regression (τ -IBR) Model

> Fundamental identity:

$$\min(\tau, T_i) = \tau I(T_i \ge \tau) + T_i I(T_i < \tau)$$

is a mixture random variable that can be rewritten in terms of

$$B_i = I(T_i \ge \tau) \sim \text{Bernoulli}(\pi_i) \text{ with mean,}$$

 $\pi_i = P(T_i \ge \tau)$

and

$$\gamma_i = \frac{T_i}{\tau}$$
 given $T_i < \tau$,

which we will assume follows a beta $[\mu_i \nu, (1 - \mu_i)\nu]$ distribution with mean, μ_i .

> In terms of these random variables,

$$\min(\tau, T_i) = \tau[B_i + Y_i(1 - B_i)]$$

Suggests modeling of B_i and Y_i as alternative to τ -RMST model

Components of τ -IBR Model

► Logistic regression model for $B_i = I(T_i \ge \tau)$:

$$\log\left(\frac{\pi_{i}}{1-\pi_{i}}\right) = \beta_{0} + \beta_{1}Z_{\pi_{1}i} + \dots + \beta_{p_{1}}Z_{\pi_{p_{1}}i}$$

What individuals tend to be event-free during follow-up?

 \triangleright Beta regression model for $Y_i = \frac{T_i}{\tau}$ given $T_i < \tau$:

$$\log\left(\frac{\mu_{i}}{1 - \mu_{i}}\right) = \alpha_{0} + \alpha_{1}Z_{\mu_{1}i} + \dots + \alpha_{p_{1}}Z_{\mu_{p_{1}}i}$$

Amongst those who have the outcome during follow-up, what individuals have a higher percent of event-free time?

- Framework achieves a couple of important goals:
 - Directly addresses the point mass at τ if goal is τ RMST estimation based on covariates

•
$$\tau$$
-RMST_i = $\tau[\mu_i(1-\pi_i)+\pi_i]$

• Addresses the possibility that different covariates may play a role in the B_i and Y_i regression models

Interpreting Coefficients from τ -IBR Model

► Logistic regression model for $B_i = I(T_i \ge \tau)$:

$$\log\left(\frac{\pi_i}{1 - \pi_i}\right) = \beta_0 + \beta_1 Z_{\pi 1 i} + \dots + \beta_{p_1} Z_{\pi p_1 i}$$

- For a 1-unit increase of $Z_{\pi ki}$ from z to z+1, with all other covariates fixed, the odds ratio for $B_i = I(T_i \ge \tau) = 1$ becomes e^{β_k}
- ▶ Beta regression model for $Y_i = \frac{T_i}{\tau}$ given $T_i < \tau$:

$$\log\left(\frac{\mu_{i}}{1 - \mu_{i}}\right) = \alpha_{0} + \alpha_{1}Z_{\mu_{1}i} + \dots + \alpha_{p_{1}}Z_{\mu_{p_{1}}i}$$

• For a 1-unit increase of $Z_{\mu ki}$ from z to z+1, with all other covariates set to zero, the fold change for $\mu_i = \frac{1}{\tau} E(T_i \mid T_i < \tau)$ becomes

$$\frac{e^{\alpha_k}(1+e^{\alpha_0+z\alpha_k})}{(1+e^{\alpha_0+\alpha_k+z\alpha_k})}$$

• Helpful to set all covariate reference values to zero

Censoring Addressed by Fitting Models Using One of Two Approaches

- Approach 1: Estimation-maximization (EM)
- Approach 2: Inverse-transform multiple imputation (MI) to fill in missing information for censored outcomes
 - Defines risk sets of similar individuals to censored individual in terms of (μ_i, π_i) and nonparametrically samples missing residual lifetime from risk set's KM estimate
 - M complete datasets obtained via MI algorithm
 - Results combined across imputed datasets via Rubin's rules (Little and Rubin, 1987. Analysis with missing data. JohnWiley & Sons.)
- Technical details omitted, but both EM and MI approaches work well
 - MI approach allows for additional analyses, plots

Learning Through Simulation

- > Setting:
 - n=1000, $\tau = 30$
 - Independent covariates, where $Z_{1i} \sim \text{Unif}(0,1)$, $Z_{2i} \sim \text{Bernoulli}(0.7)$, $Z_{3i} \sim \text{Unif}(0,1)$
- \triangleright Logistic regression model for B_i :

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = -1.0 + 1.0Z_{1i} + 2.0Z_{2i} - 1.5Z_{3i}$$

 \triangleright Beta regression model for Y_i :

$$\log\left(\frac{\mu_i}{1-\mu_i}\right) = -2.0 + 1.2Z_{1i} + 2.0Z_{2i}$$

- Approximately 52% of simulated individuals would have min(30, T_i) = 30, if uncensored
- Independent censoring generated so that approximately 30% censoring of events prior to 30.

Key Simulation Findings

- Both τ -IBR and standard τ -RMST models gave unbiased estimates for E{min(τ , T_i)}
- \blacktriangleright However, τ -IBR estimates were more precise and had better coverage probabilities than τ -RMST estimates

 \gt Both models perform similarly if there are no important covariates in the logistic component of the τ -IBR model

τ-IBR Example: Azithromycin for Prevention of Chronic Obstructive Pulmonary Disease (COPD) Exacerbations Trial

- One feature of the τ -IBR MI algorithm is that we obtain multiple completed datasets of min(τ , T_i) outcomes.
- This allows us to plot data using methods available for uncensored outcomes (see heatmap).

Min(365 day, T_i) Values Averaged Across 10 MI Datasets Using τ -IBR Method)

τ-IBR Example: Azithromycin for Prevention of Chronic Obstructive Pulmonary Disease (COPD) Exacerbations Trial

- > Fitted Models:
- \triangleright Logistic regression model for B_i :

$$\log \left(\frac{\pi_{i}}{1 - \pi_{i}}\right)$$
= -0.681 + 0.558trt + 0.130age_10_new
+0.497gender + 0.113fev_10_new
+0.076nowsmk+site variable results

 \triangleright Beta regression model for Y_i :

$$\log \left(\frac{\mu_i}{1 - \mu_i} \right)$$
= -0.332 + 0.038trt + 0.116age_10_new
+0.049gender + 0.033fev_10_new
+0.001nowsmk+site variable results

Manuscript Presentation of Results (Beta Regression Model for Y_i)

TABLE 3 Azithromycin for Prevention of COPD Exacerbations Trial: Estimated 1-year-IBR and 1-year-RMST multivariable model parameters with 95% confidence intervals and *p*-values. All models are additionally adjusted for the study site (data not shown).

	Azithromycin (vs. placebo)	Age (per 10 years)	Male (vs. female)	FEV ₁ (per 10% predicted)	Current smoker (vs. Ex)	
τ-IBR model (MI) (beta regression)						
Fold change ^a	1.022	1.068	1.029	1.020	1.001	
95% CI	(0.923, 1.122)	(1.006, 1.131)	(0.928, 1.129)	(0.986, 1.053)	(0.867, 1.134)	
<i>p-</i> value	0.655	0.031	0.570	0.249	0.993	
τ-IBR model (MI) (logistic regression)						
Odds ratio ^b	1.748	1.139	1.644	1.119	1.079	
95% CI	(1.342, 2.276)	(0.966, 1.342)	(1.245, 2.170)	(1.027, 1.220)	(0.754, 1.544)	
<i>p</i> -value	< 0.001	0.123	< 0.001	0.010	0.678	

aAmong those experiencing an exacerbation during the 1 year of follow-up, fold change is the ratio of estimated exacerbation-free time during the year when comparing those with versus without a one unit increase in the predictor, assuming all other predictors are zero. Age is centered at 65 years, and the percent of predicted FEV_1 is centered at 40% to aid in interpreting fold changes.

bOdds ratio for remaining exacerbation-free at one year comparing those with versus without a one unit increase in the predictor shown, adjusted for other covariates in the model including treatment group, age, gender, percent of predicted FEV_1 , smoking status, and study site.

cPercentage increase in 1-year-RMST for each unit increase of the predictor, adjusted for other covariates in the model.

Fold change for trt going from z = 0 to 1 from MI beta regression model:

$$\frac{e^{\alpha_k(1+e^{\alpha_0+z\alpha_k})}}{(1+e^{\alpha_0+\alpha_k+z\alpha_k})} = \frac{e^{0.038}(1+e^{-0.332})}{(1+e^{-0.332+0.038})} = 1.022$$

Amongst those with exacerbations during the year, azithromycin did not significantly increase the percentage of exacerbation-free time during that period (MI: fold change of 1.022 longer exacerbation-free time comparing azithromycin to placebo and adjusted for other factors in the model, 95% CI: 0.923-1.122, p=0.655).

Manuscript Presentation of Results (Logistic Regression Model for B_i)

TABLE 3 Azithromycin for Prevention of COPD Exacerbations Trial: Estimated 1-year-IBR and 1-year-RMST multivariable model parameters with 95% confidence intervals and *p*-values. All models are additionally adjusted for the study site (data not shown).

	Azithromycin (vs. placebo)	Age (per 10 years)	Male (vs. female)	FEV ₁ (per 10% predicted)	Current smoker (vs. Ex)		
au-IBR model (MI) (beta regression)							
Fold change ^a	1.022	1.068	1.029	1.020	1.001		
95% CI	(0.923, 1.122)	(1.006, 1.131)	(0.928, 1.129)	(0.986, 1.053)	(0.867, 1.134)		
<i>p-</i> value	0.655	0.031	0.570	0.249	0.993		
au-IBR model (MI) (logistic regression)							
Odds ratio ^b	1.748	1.139	1.644	1.119	1.079		
95% CI	(1.342, 2.276)	(0.966, 1.342)	(1.245, 2.170)	(1.027, 1.220)	(0.754, 1.544)		
<i>p</i> -value	< 0.001	0.123	< 0.001	0.010	0.678		

aAmong those experiencing an exacerbation during the 1 year of follow-up, fold change is the ratio of estimated exacerbation-free time during the year when comparing those with versus without a one unit increase in the predictor, assuming all other predictors are zero. Age is centered at 65 years, and the percent of predicted FEV_1 is centered at 40% to aid in interpreting fold changes.

bOdds ratio for remaining exacerbation-free at one year comparing those with versus without a one unit increase in the predictor shown, adjusted for other covariates in the model including treatment group, age, gender, percent of predicted FEV_1 , smoking status, and study site.

cPercentage increase in 1-year-RMST for each unit increase of the predictor, adjusted for other covariates in the model.

 \triangleright Odds ratio for trt going from z = 0 to 1 from MI logistic regression model:

$$e^{\beta_k} = e^{0.558} = 1.748$$

The odds of remaining exacerbation-free at 1 year were significantly higher when taking azithromycin versus placebo, adjusted for other factors in the model (1.748, 95% CI: 1.342–2.276, p < 0.001).

Adjusted Azithromycin Effect on τ –RMST in months (Varying τ)

Results based on τ -IBR model fit using MI approach and assuming average cohort values for confounders: age 65 years, 59% probability of male, 40% FEV1 % predicted, 22% chance of being a current smoker and study site probabilities (not shown).

Adjusted Azithromycin Effect on Exacerbation-free Probabilities at τ (Varying τ)

Results based on τ -IBR model fit using MI approach and assuming average cohort values for confounders: age 65 years, 59% probability of male, 40% FEV1 % predicted, 22% chance of being a current smoker and study site probabilities (not shown).

Adjusted Azithromycin Effect on Proportion of τ Duration Follow-up Spent Exacerbation-free for Individuals with Event-times $< \tau$ (Varying τ)

Results based on τ -IBR model fit using MI approach and assuming average cohort values for confounders: age 65 years, 59% probability of male, 40% FEV1 % predicted, 22% chance of being a current smoker and study site probabilities (not shown).

How to Use Github Site for Ann Arbor ASA Meeting 1-28-2025

- Go to <u>Ann Arbor ASA Meeting Github Site</u>: https://github.com/yezow/tau-IBR_ASA
- > Create a folder with the following:
 - Dataset: ex data example.csv
 - Paper1_func.R
 - MI function.R
 - Your current R code file
 - Following code should work with R Studio

Load a Few R Packages

library(foreach) library(doParallel) library(parallel) library(boot) library(purrr) library(survival) library(survminer) library(data.table) library(survRM2) library(coda) library(numDeriv) library(matrixStats) library(betareg) library(simcausal) library(latex2exp) library(dplyr) library(base) library(eoffice) library(ggplotify) library(gridExtra) library(cowplot) library(pheatmap) library(viridis) library(RColorBrewer) library(ggplot2) library(tikzDevice) library(ggpubr) library(grid)

Data Preparation

```
options(warn=0) #keep running the code with warnings
current_path = rstudioapi::getActiveDocumentContext()$path
setwd(dirname(current path ))
#X and Delta variables must use these variable names
#Need to define all variables in mu model
Z_mu <- data.matrix(dplyr::select(Data_cens,</p>
         trt,
        age_10_new,
        gender,
        fev1 10 new,
        nowsmk,
        latitude_38,latitude_39,latitude_40,
        latitude 42, latitude 44))
Z_mu_length=ncol(Z_mu)
# Need to define all variables in pi model (same for this
example, but need not be)
Z pi <- Z mu
Z_pi_length=ncol(Z_pi)
nsubj<-nrow(Z_mu)
#rows that need multiple imputation
row_MI <- which(Data_cens$X<tau &
                 Data_cens$Delta==0)
```

Fitting τ-IBR model

```
registerDoParallel(cores=4)
import::from("numDeriv", "hessian")
#set initial model parameters for estimation (mu model
then pi model)
initial_para_est <-rep(0, Z_mu_length+ Z_pi_length)
#run code for τ-IBR model once all variables on previous
slide defined
source("Paper1_func.R")
source("MI_function.R")
#MI coefficient estimates (mu then pi model)
coef MI<-MI result[[1]]
#corresponding MI coefficient variances
var MI<-MI result[[2]]
#EM coefficient estimates (mu then pi model)
EM result<-MI impute converge()
coef EM <-EM result[[1]]
#corresponding EM coefficient variances
var EM <- EM var(w,coef EM)
```

MI Model Results

```
results pi=round(rbind(coef pi=coef MI[(ncol(Z mu)+2):
(ncol(Z_mu)+ncol(Z_pi)+2)],var_pi=var_MI[(ncol(Z_mu)+
2):(ncol(Z mu)+ncol(Z pi)+2)]),digits=3)
colnames(results_pi)=colnames(results_mu)
results pi
> results_pi
      intercept trt age_10_new gender fev1_10_new nowsmk latitude_38 latitude_39 latitude_40
        -0.681 0.558
                      0.13 0.497
                                    0.113 0.076
                                                  -0.525
                                                           -1.019
coef_pi
        -0.003 0.001
                      0.00 0.001
                                    0.000 -0.001
var_pi
                                                  0.001
                                                            0.003
                                                                     0.002
      latitude_42 latitude_44
coef_pi
         -0.870
                   -0.777
         0.002
                   0.003
var_pi
results_mu=round(rbind(coef_mu=coef_MI[1:(ncol(Z_mu)
+1)],var_mu=var_MI[1:(ncol(Z_mu)+1)]),digits=3)
colnames(results mu)<-
c("intercept","trt","age_10_new","gender","fev1_10_new",
"nowsmk","latitude 38","latitude 39","latitude 40","latitud
e 42","latitude 44")
results mu
                trt age_10_new gender fev1_10_new nowsmk latitude_38 latitude_39 latitude_40
      intercept
        -0.332 0.038
coef_mu
                      0.116 0.049
                                     0.033 0.001
                                                   -0.195
                                                            -0.187
                                                                     -0.270
         0.019 -0.004
                      0.000 -0.005
                                     0.000 - 0.004
                                                   -0.013
                                                            -0.012
                                                                     -0.014
var_mu
      latitude_42 latitude_44
                   -0.577
coef_mu
         -0.409
```

-0.014

var_mu

-0.014

Example of Fold Change Code for Trt from Beta Regression Model for $Y_i = \frac{T_i}{\tau}$ given $T_i < \tau$

#function called fold_change helps with calculations for MI estimates. E.g. for trt:

```
Change
fold_change_trt <- fold_change(coef_MI[1:2])</pre>
                                                   highlighted
                                                   2's to
#Corresponding variance
                                                   covariate
  var fold change trt <-
                                                   position in
fold_change_var(coef_MI[1:2],var_MI[1:2,1:2])
                                                  Z mu to
                                                  get results
#Lower and Upper 95% CI
                                                  for
  fold_change_Cl_lower<-c(fold_change_trt-
                                                   remaining
1.96*sqrt(var fold change trt))
                                                  variables
  fold_change_Cl_upper<-
c(fold_change_trt+1.96*sqrt(var_fold_change_trt))
#p-value
P mu<-2*(1-
pnorm(abs(coef MI[2]),mean=0,sd=sqrt(var MI[2,2])))
#Display results
```

beta model_results_trt<-rbind(fold_change_trt,

P mu)

round(beta model results trt, digits=3)

fold_change_Cl_lower,

fold_change_CI_upper,

fold_change_trt 1.022 fold_change_CI_lower 0.923 fold_change_CI_upper 1.122 P_mu 0.655

Odds Ratio Results From Logistic Regression Model for $B_i = I(T_i \ge \tau)$

```
pi model results<-function(coef,var){</pre>
    odds_ratio_est<-exp(coef[13:17])
    odds_ratio_lower <- numeric()
                                           13:17 th elements in
                                           overall covariate
    odds_ratio_upper <- numeric()
                                           matrix
    for (j in 13:17){
      odds_ratio_lower <-
  append(odds_ratio_lower,exp(coef[j]-1.96*sqrt(var[j,j])))
      odds_ratio_upper <-
  append(odds_ratio_upper,exp(coef[j]+1.96*sqrt(var[j,j])))
    P pi<-numeric()
    for (i in c(13:17)){
      P_pi<-append(P_pi,(2*(1-
  pnorm(abs(coef[i]),mean=0,sd=sqrt(var[i,i]))))
    pi_model_result<-rbind(odds_ratio_est,
                    odds_ratio_lower,
                    odds_ratio_upper,
                      P pi)
    return(pi_model_result)
  pi_model_results_MI<-pi_model_results(coef_MI,var_MI)
                     trt age_10_new
                                       gender fev1_10_new
                                                          nowsmk
dds_ratio_est
                          1.1386911 1.6437379415 1.11935771 1.0788680
             1.747878e+00
dds_ratio_lower 1.342428e+00
                          0.9656047 1.2448368429 1.02702492 0.7540686
```

1.3428034 2.1704646965

0.1226049 0.0004579197

1.21999151 1.5435679

0.01025489 0.6778524

dds_ratio_upper 2.275784e+00

3.369541e-05

pi

Summary

- The τ -IBR model should be considered if modeling a cohort of participants with many $\min(\tau, T_i)$ events reaching τ .
- Pour simulation results indicate that traditional τ –RMST models give very noisy results if important covariates predict those who are event-free at τ .
- Seeing regression results for the two different components of the τ-IBR model can be helpful in understanding treatment effects.