Date: 2024/05/13 ~ 2024/05/19

	Progress	To-do
김지윤	 ● 연구주제 관련 논문 리스트 정리 ● Improved Gradient-Based Adversarial Attacks for Quantized Networks 논문 리뷰 	● DeepFool, CW Attack 논문 리뷰 ○ Rauber, J.; Brendel, W.; and Bethge, M. 2017. Foolbox: A python toolbox to benchmark the robustness of machine learning models. arXiv preprint arXiv:1707.04131. ○ Carlini, Nicholas, and David Wagner. "Towards evaluating the robustness of neural networks." 2017 ieee symposium on security and privacy (sp). leee, 2017. ● Improved Gradient-Based Adversarial Attacks for Quantized Networks 코드 분석
박형동	 Reparameterization Table1 작업 - 분류(완료) Reparameterization Intro 퇴고 	 Reparameterization 리뷰 논문 본문 작성 Reparameterization 리뷰 논문 본문 퇴고 RepVGG 실험용 환경 세팅
여인국	 Reparameterization Table1 작업 - 분류(완료) Reparameterization Intro 퇴고 	 Reparameterization 리뷰 논문 본문 작성 Systematic Binary SEC code for in-dram ecc 작성
이수학	● 프롬프트 이해 및 프롬프트 테스트 환경 설정	 프롬프트 설계에 대한 이해와 내용 정리(Prompt Engineering Guide - DIAR.AI 이해) Vertex AI Studio 혹은 다른 환경에서 프롬프트 테스트 및 평가 환경 설정
이수현	● SA Vectors: Vectored Systolic Arrays 리뷰	● scale-up 구조를 적용한 다른 사례 정리
여희주	● Quantum computers(2010, nature review article) 리뷰	● 양자내성암호의 최적화 구현사례(2022 KpqC 기술세미나) 정리

이성현	VScode 개발환경 세팅(CUDA,python,pytorch,가상환경 세팅 등)	● Yolov5 코드 분석
-----	---	----------------