- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

Группа ТФ-13-22 Студент: Алекбаров Иван

Задача 1.

В три стальные трубы ($d_2x\delta=100x3$ мм), расположенные на открытом воздухе с температурой 5°С поступает горячая вода при температуре 100°С и давлении 5 МПа, которая движется со скоростью 0.2 м/с. Первая труба покрыта слоем минеральной ваты толщиной 50 мм имеющая коэффициент теплопроводности 0.05 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 20°С. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 50 мм имеющая коэффициент теплопроводности 1.28 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала $\varepsilon=0.8$, коэффициент теплоотдачи 12.8 Вт/м²·К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 12.8 Вт/м²·К. Построить графики $t_{\rm ж}(x)$, $q_{\rm L}(x)$, $q_{\rm C}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки мк, протекая через бак с расходом 0.16 кг/с, нагревается в нём от температуры 40° С до температуры 60° С. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0.8, который конденсируется в горизонтальных змеевиках до степени сухости 0.2 при давлении P=2.7 бар, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , M^2 , и расход греющего пара G_1 , кг/с.Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков $5200 \, \mathrm{Bt/(M^2~K)}$; коэффициент теплоотдачи от масла к стенкам бака $54 \, \mathrm{Bt/(M^2~K)}$; коэффициент теплоотдачи от изоляции бака к воздуху $9 \, \mathrm{Bt/(M^2~K)}$; температура окружающего воздуха $27^{\circ}\mathrm{C}$; толщина стенки бака $5 \, \mathrm{mm}$; толщина изоляции бака $15 \, \mathrm{mm}$; поверхность бака $5 \, \mathrm{mm}$. Бак изготовлен из стали марки 15, для тепловой изоляции использован(а) диатомит молотый. Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку диаметром d=100 мм и длиной L=0,12 м, с начальной температурой $t_0=800$ °C поместили в охладительный бассейн с температурой жидкости $t_{\text{ж}}=25$ °C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи $\alpha=70~\text{BT/(M}^2~\text{K})$. Свойства материала заготовки: марка - Сталь 10Cr, плотность - $7785~\text{kr/m}^3$, удельная теплоёмкость - 460~Дж/(kr K), теплопроводность - 31~BT/(M K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =1,2 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента т1.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

Группа ТФ-13-22 Студент: Бадретдинов Виктор

Задача 1.

В три стальные трубы ($d_2x\delta=80x4$ мм), расположенные на открытом воздухе с температурой 10° С поступает горячая вода при температуре 110° С и давлении 5 МПа, которая движется со скоростью 0.3 м/с. Первая труба покрыта слоем минеральной ваты толщиной 45 мм имеющая коэффициент теплопроводности 0.04 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 25° С. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 45 мм имеющая коэффициент теплопроводности 1.1 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала $\varepsilon=0.8$, коэффициент теплоотдачи 12.9 Вт/м²·К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 12.9 Вт/м²·К. Построить графики $t_{\rm ж}(x)$, $q_{\rm c}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки мс-20, протекая через бак с расходом 1,1 т/ч, нагревается в нём от температуры 30° С до температуры 80° С. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0,9, который конденсируется в горизонтальных змеевиках до степени сухости 0,1 при давлении P=5 мпа, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , M^2 , и расход греющего пара G_1 , $\kappa \Gamma$ /с. Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков 6 кВт/(M^2 K); коэффициент теплоотдачи от масла к стенкам бака 88 Вт/(M^2 K); коэффициент теплоотдачи от изоляции бака к воздуху 12 Вт/(M^2 K); температура окружающего воздуха 22° С; толщина стенки бака 4 мм; толщина изоляции бака 2 см; поверхность бака 6 M^2 . Бак изготовлен из стали марки 30, для тепловой изоляции использован(а) зонолит. Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку радиусом $r=0.21\,\mathrm{m}$ и длиной $L=38\,\mathrm{cm}$, с начальной температурой $t_0=600^{\circ}\mathrm{C}$ поместили в охладительный бассейн с температурой жидкости $t_{\mathrm{ж}}=18^{\circ}\mathrm{C}$, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи $\alpha=90\,\mathrm{Bt/(m^2~K)}$. Свойства материала заготовки: марка - Сталь 1Сг, плотность - 7865 кг/м³, удельная теплоёмкость - 460 Дж/(кг K), теплопроводность - 61 Вт/(м K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =5,8 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента т1.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

1 40 1011100 047,411110 0 12 1 110 115

Группа ТФ-13-22 Студент: Богатырев Андрей

Задача 1.

В три стальные трубы $(d_2x\delta=110x5 \text{ мм})$, расположенные на открытом воздухе с температурой 0°C поступает горячая вода при температуре 120° С и давлении 5 МПа, которая движется со скоростью 0,15 м/c. Первая труба покрыта слоем минеральной ваты толщиной 40 мм имеющая коэффициент теплопроводности 0,03 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 30° С. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 40 мм имеющая коэффициент теплопроводности 1,4 Вт/м·K и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала $\varepsilon=0,8$, коэффициент теплоотдачи 14,7 Вт/м²·K. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 14,7 Вт/м²·K. Построить графики $t_{\text{ж}}(x)$, $q_{\text{c}}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки трансформаторное, протекая через бак с расходом 0.25 кг/с, нагревается в нём от температуры 20° С до температуры 100° С. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0.85, который конденсируется в горизонтальных змеевиках до степени сухости 0.15 при давлении P=2000 мм.рт.ст, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , M_2 , и расход греющего пара G_1 , кг/с.Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков 7000 Вт/(M_2 K); коэффициент теплоотдачи от наружной стенки поверхности змеевиков к маслу 100 Вт/(M_2 K); коэффициент теплоотдачи от изоляции бака к воздуху 10 Вт/(M_2 K); температура окружающего воздуха 25° С; толщина стенки бака 6 мм; толщина изоляции бака 0.1 м; поверхность бака 10 м2.20 Бак изготовлен из стали марки нержавеющая, для тепловой изоляции использован(а) шлаковая вата. Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку диаметром d=33 см и длиной L=350 мм, с начальной температурой t_0 =700°C поместили в охладительный бассейн с температурой жидкости $t_{\rm ж}$ =20°C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи α =80 Bt/(м² K). Свойства материала заготовки: марка - Сталь 5Cr, плотность - 7,833 г/см³, удельная теплоёмкость - 460 Дж/(кг K), теплопроводность - 40 Bt/(м K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =6 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, \tau_0, \tau_1)$

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента ті.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

Студент: Богданова Елизавета

Группа ТФ-13-22

Задача 1.

В три стальные трубы ($d_2x\delta=120x3$ мм), расположенные на открытом воздухе с температурой -5°C поступает горячая вода при температуре 130°C и давлении 5 МПа, которая движется со скоростью 0,72 км/ч. Первая труба покрыта слоем минеральной ваты толщиной 35 мм имеющая коэффициент теплопроводности 0,055 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 35°C. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 35 мм имеющая коэффициент теплопроводности 0,9 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала ε =0,8, коэффициент теплоотдачи 9,5 Вт/м²·К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 9,5 Вт/м²·К. Построить графики $t_{\rm ж}(x)$, $q_{\rm c}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки мк, протекая через бак с расходом $0.8\,\mathrm{T/Y}$, нагревается в нём от температуры $10^{\circ}\mathrm{C}$ до температуры $50^{\circ}\mathrm{C}$. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0.75, который конденсируется в горизонтальных змеевиках до степени сухости $0.25\,\mathrm{npu}$ давлении $P=5\,\mathrm{бар}$, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , M^2 , и расход греющего пара G_1 , $\mathrm{kr/c}$. Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков $8\,\mathrm{kBT/(M^2}\,\mathrm{K)}$; коэффициент теплоотдачи от наружной стенки поверхности змеевиков к маслу $90\,\mathrm{BT/(M^2}\,\mathrm{K)}$; коэффициент теплоотдачи от изоляции бака к воздуху $11\,\mathrm{BT/(M^2}\,\mathrm{K)}$; температура окружающего воздуха $20^{\circ}\mathrm{C}$; толщина стенки бака $7\,\mathrm{mm}$; толщина изоляции бака $0.05\,\mathrm{m}$; поверхность бака $12\,\mathrm{m^2}$. Бак изготовлен из стали марки 15, для тепловой изоляции использован(а) асбестовый шнур. **Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.**

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку радиусом r=0,1 м и длиной L=230 мм, с начальной температурой t_0 =450°C поместили в охладительный бассейн с температурой жидкости $t_{\star m}$ =15°C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи α =100 Bt/(m^2 K). Свойства материала заготовки: марка - Сталь 15Cr10Ni, плотность - 7,865 г/с m^3 , удельная теплоёмкость - 460 Дж/(кг K), теплопроводность - 19 Bt/(м K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =4,8 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента т1.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

Группа ТФ-13-22 Студент: Гаврюшенко Илья

Задача 1.

В три стальные трубы ($d_2x\delta=90x3$ мм), расположенные на открытом воздухе с температурой - 10° С поступает горячая вода при температуре 140° С и давлении 5 МПа, которая движется со скоростью 24 км/ч. Первая труба покрыта слоем минеральной ваты толщиной 30 мм имеющая коэффициент теплопроводности 0,045 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 40° С. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 30 мм имеющая коэффициент теплопроводности 1,5 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала $\epsilon=0,8$, коэффициент теплоотдачи 20 Вт/м²·К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 20 Вт/м²·К. Построить графики $t_{\mathbb{R}}(x)$, $q_{\mathbb{C}}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки мс-20, протекая через бак с расходом 0,2 кг/с, нагревается в нём от температуры 15°C до температуры 60°C. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0,7, который конденсируется в горизонтальных змеевиках до степени сухости 0 при давлении P=2 мпа, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , M^2 , и расход греющего пара G_1 , кг/с. Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков 6500 Вт/(M^2 K); коэффициент теплоотдачи от масла к стенкам бака 60 Вт/(M^2 K); коэффициент теплоотдачи от изоляции бака к воздуху 8 Вт/(M^2 K); температура окружающего воздуха 18°C; толщина стенки бака 5 мм; толщина изоляции бака 20 см; поверхность бака 5 м². Бак изготовлен из стали марки 30, для тепловой изоляции использован(а) стекловата. Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку диаметром d=300 мм и длиной L=34 см, с начальной температурой t_0 =550°C поместили в охладительный бассейн с температурой жидкости $t_{\text{ж}}$ =18°C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи α =90 BT/(м² K). Свойства материала заготовки: марка - Сталь 20Cr15Ni, плотность - 7833 кг/м³, удельная теплоёмкость - 460 Дж/(кг K), теплопроводность - 15,1 BT/(м K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =10,8 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента ті.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

Группа ТФ-13-22 Студент: Глаголев Ян

Задача 1.

В три стальные трубы ($d_2x\delta=150x5$ мм), расположенные на открытом воздухе с температурой -15°C поступает горячая вода при температуре 150°C и давлении 5 МПа, которая движется со скоростью 20 км/ч. Первая труба покрыта слоем минеральной ваты толщиной 25 мм имеющая коэффициент теплопроводности 0,035 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 55°C. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 25 мм имеющая коэффициент теплопроводности 1,28 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала ε =0,8, коэффициент теплоотдачи 12,8 Вт/м²·К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 12,8 Вт/м²·К. Построить графики $t_{\rm ж}(x)$, $q_{\rm c}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки трансформаторное, протекая через бак с расходом 1 т/ч, нагревается в нём от температуры 25° С до температуры 70° С. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0,8, который конденсируется в горизонтальных змеевиках до степени сухости 0,05 при давлении P=2250 мм.рт.ст, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , m^2 , и расход греющего пара G_1 , кг/с.Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков $4 \text{ кВт/(m}^2 \text{ K)}$; коэффициент теплоотдачи от масла к стенкам бака $50 \text{ Br/(m}^2 \text{ K)}$; коэффициент теплоотдачи от изоляции бака к воздуху $14 \text{ Br/(m}^2 \text{ K)}$; температура окружающего воздуха 15° С; толщина стенки бака 4 мм; толщина изоляции бака 60 мм; поверхность бака 6 м^2 . Бак изготовлен из стали марки нержавеющая, для тепловой изоляции использован(а) шлак доменный. **Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты. Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.**

Задача 3.

Цилиндрическую заготовку радиусом r=40 см и длиной L=0,6 м, с начальной температурой $t_0=650$ °C поместили в охладительный бассейн с температурой жидкости $t_m=20$ °C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи $\alpha=80$ BT/(m^2 K). Свойства материала заготовки: марка - Дюралюминий, плотность - 2787 кг/ m^3 , удельная теплоёмкость - 833 Дж/(кг K), теплопроводность - 164 BT/(m K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =5 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента т₁.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

- ... -- -- -- -- J P

Студент: Гогинашвили Анна

Группа ТФ-13-22

Задача 1.

В три стальные трубы $(d_2x\delta=140x4 \text{ мм})$, расположенные на открытом воздухе с температурой 2°C поступает горячая вода при температуре 160° С и давлении 5 МПа, которая движется со скоростью 5,2 м/с. Первая труба покрыта слоем минеральной ваты толщиной 30 мм имеющая коэффициент теплопроводности 0,05 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 70° С. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 30 мм имеющая коэффициент теплопроводности 1,1 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала $\varepsilon=0,8$, коэффициент теплоотдачи 11 Вт/м²-К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 11 Вт/м²-К. Построить графики $t_{\mathbb{R}}(x)$, $q_{\mathbb{C}}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки мк, протекая через бак с расходом 0.16 кг/с, нагревается в нём от температуры 35° С до температуры 80° С. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0.9, который конденсируется в горизонтальных змеевиках до степени сухости 0.2 при давлении P=6 бар, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , M^2 , и расход греющего пара G_1 , кг/с.Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков 7500 Вт/(M^2 K); коэффициент теплоотдачи от масла к стенкам бака 50 Вт/(M^2 K); коэффициент теплоотдачи от изоляции бака к воздуху 15 Вт/(M^2 K); температура окружающего воздуха 10° С; толщина стенки бака 6 мм; толщина изоляции бака 15 мм; поверхность бака 10 м². Бак изготовлен из стали марки 15, для тепловой изоляции использован(а) миканит. Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку диаметром d=330 мм и длиной L=0,4 м, с начальной температурой t_0 =750°C поместили в охладительный бассейн с температурой жидкости $t_{\rm ж}$ =25°C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи α =70 Bt/($\rm M^2$ K). Свойства материала заготовки: марка - Силумин, плотность - 2,659 г/с $\rm M^3$, удельная теплоёмкость - 871 Дж/(кг K), теплопроводность - 164 Bt/($\rm M$ K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =1,3 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента т1.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

Группа ТФ-13-22 Студент: Голов Ярослав

Задача 1.

В три стальные трубы ($d_2x\delta=130x3$ мм), расположенные на открытом воздухе с температурой -4°C поступает горячая вода при температуре 170°C и давлении 5 МПа, которая движется со скоростью 3,8 м/с. Первая труба покрыта слоем минеральной ваты толщиной 50 мм имеющая коэффициент теплопроводности 0,04 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 40°C. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 50 мм имеющая коэффициент теплопроводности 1,4 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала ε =0,8, коэффициент теплоотдачи 12,2 Вт/м²·К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 12,2 Вт/м²·К. Построить графики $t_{\rm ж}(x)$, $q_{\rm c}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки мс-20, протекая через бак с расходом 1,1 т/ч, нагревается в нём от температуры 45°C до температуры 90°C. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0,85, который конденсируется в горизонтальных змеевиках до степени сухости 0,1 при давлении P=3 мпа, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , м², и расход греющего пара G_1 , кг/с.Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков 7 кВт/(м² K); коэффициент теплоотдачи от масла к стенкам бака 60 Вт/(м² K); коэффициент теплоотдачи от изоляции бака к воздуху 14 Вт/(м² K); температура окружающего воздуха 22°C; толщина стенки бака 7 мм; толщина изоляции бака 2 см; поверхность бака 12 м². Бак изготовлен из стали марки 30, для тепловой изоляции использован(а) войлок шерстяной. Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку радиусом r=0,1 м и длиной L=25 см, с начальной температурой t_0 =780°C поместили в охладительный бассейн с температурой жидкости t_{π} =30°C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи α =60 Bt/(м² K). Свойства материала заготовки: марка - Железо 0,5C, плотность - 7,849 г/см³, удельная теплоёмкость - 460 Дж/(кг K), теплопроводность - 59 Bt/(м K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =2,8 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента ті.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

Группа ТФ-13-22 Студент: Григоров Никита

Задача 1.

В три стальные трубы ($d_2x\delta=70x3$ мм), расположенные на открытом воздухе с температурой -12°C поступает горячая вода при температуре 180°C и давлении 5 МПа, которая движется со скоростью 4,8 м/с. Первая труба покрыта слоем минеральной ваты толщиной 40 мм имеющая коэффициент теплопроводности 0,03 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 60°C. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 40 мм имеющая коэффициент теплопроводности 0,9 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала ϵ =0,8, коэффициент теплоотдачи 12 Вт/м²·К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 12 Вт/м²·К. Построить графики $t_{\rm ж}(x)$, $q_{\rm c}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки трансформаторное, протекая через бак с расходом 0.25 кг/с, нагревается в нём от температуры 40° С до температуры 100° С. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0.75, который конденсируется в горизонтальных змеевиках до степени сухости 0.15 при давлении P=3000 мм.рт.ст, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , M_2 , и расход греющего пара G_1 , кг/с.Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков 6500 Вт/(M_2 K); коэффициент теплоотдачи от наружной стенки поверхности змеевиков к маслу 100 Вт/(M_2 K); коэффициент теплоотдачи от масла к стенкам бака 80 Вт/(M_2 K); коэффициент теплоотдачи от изоляции бака к воздуху 8 Вт/(M_2 K); температура окружающего воздуха 25° С; толщина стенки бака 5 мм; толщина изоляции бака 0.1 м; поверхность бака 5 м2. Бак изготовлен из стали марки нержавеющая, для тепловой изоляции использован(0.10) керамзит. **Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.**

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку диаметром d=20 см и длиной L=140 мм, с начальной температурой $t_0=400$ °C поместили в охладительный бассейн с температурой жидкости $t_{\text{ж}}=15$ °C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи $\alpha=150$ Вт/(м^2 К). Свойства материала заготовки: марка - Чугун, плотность - 7272 кг/ м^3 , удельная теплоёмкость - 420 Дж/(кг К), теплопроводность - 52 Вт/(м К).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =1,4 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента ті.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

Группа ТФ-13-22 Студент: Дубишкин Дмитрий

Задача 1.

В три стальные трубы ($d_2x\delta=100x4$ мм), расположенные на открытом воздухе с температурой 8°C поступает горячая вода при температуре 190°C и давлении 5 МПа, которая движется со скоростью 10 км/ч. Первая труба покрыта слоем минеральной ваты толщиной 30 мм имеющая коэффициент теплопроводности 0,055 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 80°C. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 30 мм имеющая коэффициент теплопроводности 1,5 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала ε =0,8, коэффициент теплоотдачи 18,8 Вт/м²·К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 18,8 Вт/м²·К. Построить графики $t_{\rm ж}(x)$, $q_{\rm c}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки мк, протекая через бак с расходом $0.8\,\mathrm{T/y}$, нагревается в нём от температуры $30^{\circ}\mathrm{C}$ до температуры $110^{\circ}\mathrm{C}$. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0.7, который конденсируется в горизонтальных змеевиках до степени сухости $0.25\,\mathrm{npu}$ давлении $P=7\,\mathrm{бар}$, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , M^2 , и расход греющего пара G_1 , кг/с.Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков $8\,\mathrm{kBr/(m^2~K)}$; коэффициент теплоотдачи от масла к стенкам бака $70\,\mathrm{Br/(m^2~K)}$; коэффициент теплоотдачи от изоляции бака к воздуху $11\,\mathrm{Br/(m^2~K)}$; температура окружающего воздуха $20^{\circ}\mathrm{C}$; толщина стенки бака $4\,\mathrm{mm}$; толщина изоляции бака $0.05\,\mathrm{mm}$; поверхность бака $6\,\mathrm{m^2}$. Бак изготовлен из стали марки 15, для тепловой изоляции использован(а) пеногипс. Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку радиусом r=0,1 м и длиной L=250 мм, с начальной температурой t_0 =500°C поместили в охладительный бассейн с температурой жидкости $t_{\star m}$ =18°C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи α =140 BT/(m^2 K). Свойства материала заготовки: марка - Алюминиевая бронза, плотность - 8666 кг/ m^3 , удельная теплоёмкость - 410 Дж/(кг K), теплопроводность - 83 BT/(m K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =1,6 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента т1.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

Группа ТФ-13-22 Студент: Жаркова Анна

Задача 1.

В три стальные трубы ($d_2x\delta=80x3$ мм), расположенные на открытом воздухе с температурой 6°С поступает горячая вода при температуре 200°С и давлении 5 МПа, которая движется со скоростью 12 км/ч. Первая труба покрыта слоем минеральной ваты толщиной 50 мм имеющая коэффициент теплопроводности 0,045 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 40°С. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 50 мм имеющая коэффициент теплопроводности 1,28 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала ε =0,8, коэффициент теплоотдачи 14,2 Вт/м²·К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 14,2 Вт/м²·К. Построить графики $t_{\rm ж}(x)$, $q_{\rm c}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки мс-20, протекая через бак с расходом 0,2 кг/с, нагревается в нём от температуры 20° С до температуры 50° С. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0,8, который конденсируется в горизонтальных змеевиках до степени сухости 0 при давлении P=4 мпа, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , M^2 , и расход греющего пара G_1 , кг/с. Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков $7000 \, \mathrm{Bt/(M^2~K)}$; коэффициент теплоотдачи от масла к стенкам бака $88 \, \mathrm{Bt/(M^2~K)}$; коэффициент теплоотдачи от изоляции бака к воздуху $10 \, \mathrm{Bt/(M^2~K)}$; температура окружающего воздуха 18° С; толщина стенки бака $6 \, \mathrm{mm}$; толщина изоляции бака $20 \, \mathrm{cm}$; поверхность бака $10 \, \mathrm{m^2}$. Бак изготовлен из стали марки 30, для тепловой изоляции использован(а) диатомит молотый. **Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.**

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку диаметром d=120 мм и длиной L=14 см, с начальной температурой $t_0=600$ °C поместили в охладительный бассейн с температурой жидкости $t_{\text{ж}}=20$ °C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи $\alpha=130~\text{BT/(M}^2~\text{K})$. Свойства материала заготовки: марка - Бронза, плотность - $8,666~\text{г/см}^3$, удельная теплоёмкость - 343~Дж/(кг K), теплопроводность - 26~BT/(M K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =1,8 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента т1.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

Студент: Заварницын Данил

Задача 1.

В три стальные трубы ($d_2x\delta=110x4$ мм), расположенные на открытом воздухе с температурой -8°C поступает горячая вода при температуре 210°C и давлении 5 МПа, которая движется со скоростью 18 км/ч. Первая труба покрыта слоем минеральной ваты толщиной 40 мм имеющая коэффициент теплопроводности 0,035 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 60°C. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 40 мм имеющая коэффициент теплопроводности 1,1 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала ε =0,8, коэффициент теплоотдачи 11,6 Вт/м²·К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 11,6 Вт/м²·К. Построить графики $t_{\rm ж}(x)$, $q_{\rm c}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

Группа ТФ-13-22

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки трансформаторное, протекая через бак с расходом 1 т/ч, нагревается в нём от температуры 10° С до температуры 60° С. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0,9, который конденсируется в горизонтальных змеевиках до степени сухости 0,05 при давлении P=3750 мм.рт.ст, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , M^2 , и расход греющего пара G_1 , K_1 /с. Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков 6 кВт/(M^2 K); коэффициент теплоотдачи от масла к стенкам бака M_1 0; коэффициент теплоотдачи от изоляции бака к воздуху M_2 12 Вт/(M^2 K); температура окружающего воздуха M_2 15°С; толщина стенки бака M_3 2 мм; толщина изоляции бака M_4 3 мм; поверхность бака M_4 4. Бак изготовлен из стали марки нержавеющая, для тепловой изоляции использован(а) зонолит. **Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.**

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку радиусом r=6.5 см и длиной L=0.15 м, с начальной температурой $t_0=700$ °C поместили в охладительный бассейн с температурой жидкости $t_{**}=25$ °C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи $\alpha=120$ Вт/(м² K). Свойства материала заготовки: марка - Константан, плотность - 8.922 г/см³, удельная теплоёмкость - 410 Дж/(кг K), теплопроводность - 22.7 Вт/(м K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =2 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента т₁.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

i no ioinoo suguino va i no n

Группа ТФ-13-22 Студент: Кастрикин Иван

Задача 1.

В три стальные трубы $(d_2x\delta=120x5 \text{ мм})$, расположенные на открытом воздухе с температурой -6°C поступает горячая вода при температуре 220° С и давлении 5 МПа, которая движется со скоростью 1,8 м/с. Первая труба покрыта слоем минеральной ваты толщиной 30 мм имеющая коэффициент теплопроводности 0,05 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 80° С. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 30 мм имеющая коэффициент теплопроводности 1,4 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала $\varepsilon=0.8$, коэффициент теплоотдачи 15,6 Вт/м²·К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 15,6 Вт/м²·К. Построить графики $t_{\rm ж}(x)$, $q_{\rm c}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки мк, протекая через бак с расходом 0.16 кг/с, нагревается в нём от температуры 15° С до температуры 70° С. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0.85, который конденсируется в горизонтальных змеевиках до степени сухости 0.2 при давлении P=8 бар, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , M^2 , и расход греющего пара G_1 , кг/с.Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков $5000 \, \mathrm{Bt/(M^2~K)}$; коэффициент теплоотдачи от масла к стенкам бака $5 \, \mathrm{Bt/(M^2~K)}$; коэффициент теплоотдачи от изоляции бака к воздуху $9 \, \mathrm{Bt/(M^2~K)}$; температура окружающего воздуха $10^{\circ}\mathrm{C}$; толщина стенки бака $5 \, \mathrm{mm}$; толщина изоляции бака $15 \, \mathrm{mm}$; поверхность бака $5 \, \mathrm{mm}^2$. Бак изготовлен из стали марки 15, для тепловой изоляции использован(а) шлаковая вата. Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку диаметром d=300 мм и длиной L=0,25 м, с начальной температурой t_0 =800°C поместили в охладительный бассейн с температурой жидкости $t_{\rm ж}$ =30°C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи α =110 BT/($\rm M^2$ K). Свойства материала заготовки: марка - Латунь, плотность - 8522 кг/ $\rm M^3$, удельная теплоёмкость - 385 Дж/(кг K), теплопроводность - 111 BT/($\rm M$ K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =2,2 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента т1.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

Группа ТФ-13-22 Студент: Ланин Илья

Задача 1.

В три стальные трубы ($d_2x\delta=90x4$ мм), расположенные на открытом воздухе с температурой -2°C поступает горячая вода при температуре 230°C и давлении 5 МПа, которая движется со скоростью 4,4 м/с. Первая труба покрыта слоем минеральной ваты толщиной 50 мм имеющая коэффициент теплопроводности 0,04 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 40°C. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 50 мм имеющая коэффициент теплопроводности 0,9 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала ε =0,8, коэффициент теплоотдачи 9,5 Вт/м²·К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 9,5 Вт/м²·К. Построить графики $t_{\rm ж}(x)$, $q_{\rm c}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки мс-20, протекая через бак с расходом 1,1 т/ч, нагревается в нём от температуры 25° С до температуры 80° С. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0,75, который конденсируется в горизонтальных змеевиках до степени сухости 0,1 при давлении P=5 мпа, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , M^2 , и расход греющего пара G_1 , K_1 /с. Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков 4 кВт/(M^2 K); коэффициент теплоотдачи от масла к стенкам бака M^2 0 вт/(M^2 0 к); коэффициент теплоотдачи от изоляции бака к воздуху M^2 15 вт/(M^2 0 к); температура окружающего воздуха M^2 20 столщина стенки бака 4 мм; толщина изоляции бака 2 см; поверхность бака 6 M^2 0. Бак изготовлен из стали марки 30, для тепловой изоляции использован(а) асбестовый шнур. **Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.**

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку радиусом r=0.075 м и длиной L=17 см, с начальной температурой $t_0=450 ^{\circ}\text{C}$ поместили в охладительный бассейн с температурой жидкости $t_{\text{ж}}=18 ^{\circ}\text{C}$, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи $\alpha=140 \text{ BT/(M}^2 \text{ K)}$. Свойства материала заготовки: марка - Нейзильбер, плотность - 8618 кг/м^3 , удельная теплоёмкость - 394 Дж/(кг K), теплопроводность - 24.9 BT/(M K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =2,4 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента т1.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

Группа ТФ-13-22 Студент: Лебединский Леонид

Задача 1.

В три стальные трубы $(d_2x\delta=150x4 \text{ мм})$, расположенные на открытом воздухе с температурой 4°C поступает горячая вода при температуре 240° С и давлении 5 МПа, которая движется со скоростью 3.7 м/c. Первая труба покрыта слоем минеральной ваты толщиной 40 мм имеющая коэффициент теплопроводности 0.03 Вт/м·K. Определить длину трубы если на выходе из нее температура воды уменьшилась на 60° С. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 40 мм имеющая коэффициент теплопроводности 1.5 Вт/м·K и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала $\varepsilon=0.8$, коэффициент теплоотдачи 13 Вт/м²-K. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 13 Вт/м²-K. Построить графики $t_{\text{ж}}(x)$, $q_{\text{c}}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки трансформаторное, протекая через бак с расходом 0.25 кг/с, нагревается в нём от температуры 35° С до температуры 90° С. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0.7, который конденсируется в горизонтальных змеевиках до степени сухости 0.15 при давлении P=4500 мм.рт.ст, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , M^2 , и расход греющего пара G_1 , кг/с.Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков 6500 Вт/(M^2 K); коэффициент теплоотдачи от масла к стенкам бака 70 Вт/(M^2 K); коэффициент теплоотдачи от изоляции бака к воздуху 14 Вт/(M^2 K); температура окружающего воздуха 25° С; толщина стенки бака 6 мм; толщина изоляции бака 0.1 м; поверхность бака 10 м20. Бак изготовлен из стали марки нержавеющая, для тепловой изоляции использован(0.1) стекловата. Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку диаметром d=22 см и длиной L=200 мм, с начальной температурой $t_0=550$ °C поместили в охладительный бассейн с температурой жидкости $t_{**}=20$ °C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи $\alpha=130$ Вт/(м 2 K). Свойства материала заготовки: марка - Томпак, плотность - 8,714 г/см 3 , удельная теплоёмкость - 385 Дж/(кг K), теплопроводность - 61 Вт/(м K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =2,6 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента т1.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

Группа ТФ-13-22 Студент: Лобанов Павел

Задача 1.

В три стальные трубы ($d_2x\delta=140x5$ мм), расположенные на открытом воздухе с температурой 5°С поступает горячая вода при температуре 250°С и давлении 5 МПа, которая движется со скоростью 15 км/ч. Первая труба покрыта слоем минеральной ваты толщиной 30 мм имеющая коэффициент теплопроводности 0,055 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 80°С. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 30 мм имеющая коэффициент теплопроводности 1,28 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала ε =0,8, коэффициент теплоотдачи 12,8 Вт/м²·К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 12,8 Вт/м²·К. Построить графики $t_{\rm ж}(x)$, $q_{\rm c}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки мк, протекая через бак с расходом $0.8\,\mathrm{T/y}$, нагревается в нём от температуры $45^{\circ}\mathrm{C}$ до температуры $100^{\circ}\mathrm{C}$. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0.8, который конденсируется в горизонтальных змеевиках до степени сухости $0.25\,\mathrm{npu}$ давлении $P=9\,\mathrm{бар}$, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , M^2 , и расход греющего пара G_1 , кг/с.Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков $8\,\mathrm{kBr/(m^2~K)}$; коэффициент теплоотдачи от масла к стенкам бака $80\,\mathrm{Br/(m^2~K)}$; коэффициент теплоотдачи от изоляции бака к воздуху $8\,\mathrm{Br/(m^2~K)}$; коэффициент теплоотдачи от изоляции бака $0.05\,\mathrm{m}$; поверхность бака $12\,\mathrm{m^2}$. Бак изготовлен из стали марки 15, для тепловой изоляции использован(а) шлак доменный. Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку радиусом r=0,095 м и длиной L=190 мм, с начальной температурой t_0 =650°C поместили в охладительный бассейн с температурой жидкости $t_{\rm ж}$ =25°C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи α =120 Bt/(м 2 K). Свойства материала заготовки: марка - Сталь 1В, плотность - 7,913 г/см 3 , удельная теплоёмкость - 448 Дж/(кг K), теплопроводность - 66 Bt/(м K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =2,2 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента т1.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

Студент: Маркаров Марк

Группа ТФ-13-22

Задача 1.

В три стальные трубы ($d_2x\delta=130x4$ мм), расположенные на открытом воздухе с температурой 10° С поступает горячая вода при температуре 110° С и давлении 5 МПа, которая движется со скоростью 21 км/ч. Первая труба покрыта слоем минеральной ваты толщиной 50 мм имеющая коэффициент теплопроводности 0,045 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 30° С. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 50 мм имеющая коэффициент теплопроводности 1,1 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала $\varepsilon=0,8$, коэффициент теплоотдачи 9,6 Вт/м²·К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 9,6 Вт/м²·К. Построить графики $t_{\rm ж}(x)$, $q_{\rm c}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки мс-20, протекая через бак с расходом 0.2 кг/с, нагревается в нём от температуры 40° С до температуры 110° С. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0.9, который конденсируется в горизонтальных змеевиках до степени сухости 0 при давлении P=6 мпа, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , M^2 , и расход греющего пара G_1 , кг/с.Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков $5200 \, \mathrm{Bt/(M^2~K)}$; коэффициент теплоотдачи от масла к стенкам бака $60 \, \mathrm{Bt/(M^2~K)}$; коэффициент теплоотдачи от изоляции бака к воздуху $11 \, \mathrm{Bt/(M^2~K)}$; температура окружающего воздуха 18° С; толщина стенки бака $5 \, \mathrm{mm}$; толщина изоляции бака $20 \, \mathrm{cm}$; поверхность бака $5 \, \mathrm{m}^2$. Бак изготовлен из стали марки 30, для тепловой изоляции использован(а) миканит. Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку диаметром d=420 мм и длиной L=38 см, с начальной температурой $t_0=600$ °C поместили в охладительный бассейн с температурой жидкости $t_{\text{ж}}=18$ °C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи $\alpha=70~\text{BT/(M}^2~\text{K})$. Свойства материала заготовки: марка - Сталь 1Сг, плотность - $7865~\text{кг/м}^3$, удельная теплоёмкость - 460~Дж/(кг K), теплопроводность - 61~BT/(M K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =5,8 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента ті.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

Группа ТФ-13-22 Студент: Мартиросян Микаэл

Задача 1.

В три стальные трубы ($d_2x\delta=70x4$ мм), расположенные на открытом воздухе с температурой 0°С поступает горячая вода при температуре 120°С и давлении 5 МПа, которая движется со скоростью 13 км/ч. Первая труба покрыта слоем минеральной ваты толщиной 40 мм имеющая коэффициент теплопроводности 0,035 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 40°С. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 40 мм имеющая коэффициент теплопроводности 1,4 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала ε =0,8, коэффициент теплоотдачи 18,7 Вт/м²·К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 18,7 Вт/м²·К. Построить графики $t_{\rm ж}(x)$, $q_{\rm c}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки трансформаторное, протекая через бак с расходом 1 т/ч, нагревается в нём от температуры 30° С до температуры 100° С. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0.85, который конденсируется в горизонтальных змеевиках до степени сухости 0.05 при давлении P=6000 мм.рт.ст, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , M_2 , и расход греющего пара G_1 , кг/с.Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков 6 кВт/(M_2 K); коэффициент теплоотдачи от наружной стенки поверхности змеевиков к маслу $130 \, \text{Вт/}(M_2^2 \, \text{K})$; коэффициент теплоотдачи от изоляции бака к воздуху $10 \, \text{Вт/}(M_2^2 \, \text{K})$; температура окружающего воздуха 15° С; толщина стенки бака 4 мм; толщина изоляции бака 60 мм; поверхность бака 6 M_2 . Бак изготовлен из стали марки нержавеющая, для тепловой изоляции использован(а) войлок шерстяной. **Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.**

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку радиусом r=16,5 см и длиной L=0,35 м, с начальной температурой $t_0=700$ °C поместили в охладительный бассейн с температурой жидкости $t_{\text{ж}}=20$ °C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи $\alpha=90$ Вт/(м^2 K). Свойства материала заготовки: марка - Сталь 5Cr, плотность - 7833 кг/м³, удельная теплоёмкость - 460 Дж/(кг K), теплопроводность - 40 Вт/(м K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =6 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента ті.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

Группа ТФ-13-22 Студент: Мутовалов Вячеслав

Задача 1.

В три стальные трубы $(d_2x\delta=100x5 \text{ мм})$, расположенные на открытом воздухе с температурой -5°C поступает горячая вода при температуре 130° С и давлении 5 МПа, которая движется со скоростью 0.8 м/c. Первая труба покрыта слоем минеральной ваты толщиной 30 мм имеющая коэффициент теплопроводности 0.05 Вт/м·K. Определить длину трубы если на выходе из нее температура воды уменьшилась на 50° С. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 30 мм имеющая коэффициент теплопроводности 0.9 Вт/м·K и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала $\varepsilon=0.8$, коэффициент теплоотдачи 11.3 Вт/м²·K. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 11.3 Вт/м²·K. Построить графики $t_{\text{ж}}(x)$, $q_{\text{c}}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки мк, протекая через бак с расходом 0.16 кг/с, нагревается в нём от температуры 20° С до температуры 90° С. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0.75, который конденсируется в горизонтальных змеевиках до степени сухости 0.2 при давлении P=10 бар, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , M^2 , и расход греющего пара G_1 , кг/с.Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков $7000 \, \text{Вт/(M}^2 \, \text{K)}$; коэффициент теплоотдачи от изоляции бака к воздуху $12 \, \text{Вт/(M}^2 \, \text{K)}$; коэффициент теплоотдачи от изоляции бака к воздуху $12 \, \text{Вт/(M}^2 \, \text{K)}$; температура окружающего воздуха 10° С; толщина стенки бака $6 \, \text{мм}$; толщина изоляции бака $15 \, \text{мм}$; поверхность бака $10 \, \text{м}^2$. Бак изготовлен из стали марки 15, для тепловой изоляции использован(а) керамзит. **Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.**

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку диаметром d=200 мм и длиной L=0.23 м, с начальной температурой $t_0=450$ °C поместили в охладительный бассейн с температурой жидкости $t_{\text{ж}}=15$ °C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи $\alpha=80$ Вт/(м² K). Свойства материала заготовки: марка - Сталь 15Cr10Ni, плотность - 7,865 г/см³, удельная теплоёмкость - 460 Дж/(кг K), теплопроводность - 19 Вт/(м K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =4,8 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента т1.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

The ferrior sugarine (= 1 no

Группа ТФ-13-22 Студент: Павлов Илья

Задача 1.

В три стальные трубы ($d_2x\delta=80x5$ мм), расположенные на открытом воздухе с температурой - 10° С поступает горячая вода при температуре 140° С и давлении 5 МПа, которая движется со скоростью 1,2 м/с. Первая труба покрыта слоем минеральной ваты толщиной 50 мм имеющая коэффициент теплопроводности 0,04 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 30° С. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 50 мм имеющая коэффициент теплопроводности 1,5 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала $\varepsilon=0,8$, коэффициент теплоотдачи 16,7 Вт/м²·К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 16,7 Вт/м²·К. Построить графики $t_{\rm ж}(x)$, $q_{\rm c}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки мс-20, протекая через бак с расходом 1,1 т/ч, нагревается в нём от температуры 10° С до температуры 80° С. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0,7, который конденсируется в горизонтальных змеевиках до степени сухости 0,1 при давлении P=7 мпа, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , M^2 , и расход греющего пара G_1 , кг/с.Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков 7 кВт/(M^2 K); коэффициент теплоотдачи от масла к стенкам бака $60 \text{ BT/}(M^2 \text{ K})$; коэффициент теплоотдачи от изоляции бака к воздуху $9 \text{ BT/}(M^2 \text{ K})$; температура окружающего воздуха 22° С; толщина стенки бака 7 мм; толщина изоляции бака 2 см; поверхность бака 12 M^2 . Бак изготовлен из стали марки 30, для тепловой изоляции использован(а) пеногипс. Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку радиусом r=0.15 м и длиной L=34 см, с начальной температурой $t_0=550$ °C поместили в охладительный бассейн с температурой жидкости $t_{**}=18$ °C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи $\alpha=100$ BT/(m^2 K). Свойства материала заготовки: марка - Сталь 20Cr15Ni, плотность - 7,833 г/см³, удельная теплоёмкость - 460 Дж/(кг K), теплопроводность - 15,1 BT/(м K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =10,8 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента ті.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

Студент: Сватков Вячеслав

Задача 1.

В три стальные трубы ($d_2x\delta=110x3$ мм), расположенные на открытом воздухе с температурой -15°C поступает горячая вода при температуре 150°C и давлении 5 МПа, которая движется со скоростью 2,2 м/с. Первая труба покрыта слоем минеральной ваты толщиной 40 мм имеющая коэффициент теплопроводности 0,03 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 40°C. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 40 мм имеющая коэффициент теплопроводности 1,28 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала ε =0,8, коэффициент теплоотдачи 13,5 Вт/м²·К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 13,5 Вт/м²·К. Построить графики $t_{\rm ж}(x)$, $q_{\rm c}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

Группа ТФ-13-22

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки трансформаторное, протекая через бак с расходом 0.25 кг/с, нагревается в нём от температуры 15° С до температуры 70° С. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0.8, который конденсируется в горизонтальных змеевиках до степени сухости 0.15 при давлении P=7500 мм.рт.ст, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , m^2 , и расход греющего пара G_1 , кг/с.Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков 6500 BT/(m^2 K); коэффициент теплоотдачи от масла к стенкам бака 80 BT/(m^2 K); коэффициент теплоотдачи от изоляции бака к воздуху 15 BT/(m^2 K); температура окружающего воздуха 25° С; толщина стенки бака 5 мм; толщина изоляции бака 0.1 м; поверхность бака 5 м². Бак изготовлен из стали марки нержавеющая, для тепловой изоляции использован(а) диатомит молотый. **Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты. Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.**

Задача 3.

Цилиндрическую заготовку диаметром d=50 см и длиной L=450 мм, с начальной температурой t_0 =650°C поместили в охладительный бассейн с температурой жидкости $t_{\rm ж}$ =20°C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи α =90 Bt/(м² K). Свойства материала заготовки: марка - Дюралюминий, плотность - 2787 кг/м³, удельная теплоёмкость - 833 Дж/(кг K), теплопроводность - 164 Bt/(м K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =3 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента т₁.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

Задача 1.

Студент: Сучков Артемий

В три стальные трубы $(d_2x\delta=120x4 \text{ мм})$, расположенные на открытом воздухе с температурой 2°C поступает горячая вода при температуре 160° С и давлении 5 МПа, которая движется со скоростью 5 км/ч. Первая труба покрыта слоем минеральной ваты толщиной 30 мм имеющая коэффициент теплопроводности 0.055 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 60° С. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 30 мм имеющая коэффициент теплопроводности 1.1 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала $\varepsilon=0.8$, коэффициент теплоотдачи 12.2 Вт/м²·К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 12.2 Вт/м²·К. Построить графики $t_{\rm ж}(x)$, $q_{\rm c}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

Группа ТФ-13-22

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки мк, протекая через бак с расходом 0.8 т/ч, нагревается в нём от температуры 25° С до температуры 60° С. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0.9, который конденсируется в горизонтальных змеевиках до степени сухости 0.25 при давлении P=11 бар, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , M^2 , и расход греющего пара G_1 , кг/с.Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков 8 кВт/(M^2 K); коэффициент теплоотдачи от масла к стенкам бака M^2 0 Вт/(M^2 K); коэффициент теплоотдачи от изоляции бака к воздуху M^2 14 Вт/(M^2 K); температура окружающего воздуха M^2 20°C; толщина стенки бака 4 мм; толщина изоляции бака M^2 3. Бак изготовлен из стали марки M^2 45, для тепловой изоляции использован(а) зонолит. Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку радиусом r=0,16 м и длиной L=400 мм, с начальной температурой $t_0=750$ °C поместили в охладительный бассейн с температурой жидкости $t_{**}=25$ °C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи $\alpha=80$ Вт/(м 2 К). Свойства материала заготовки: марка - Силумин, плотность - 2659 кг/м 3 , удельная теплоёмкость - 871 Дж/(кг К), теплопроводность - 164 Вт/(м К).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =1,2 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента т1.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

Студент: Трейер Илья

Группа ТФ-13-22

Задача 1.

В три стальные трубы ($d_2x\delta=90x5$ мм), расположенные на открытом воздухе с температурой -4°С поступает горячая вода при температуре 170°С и давлении 5 МПа, которая движется со скоростью 4,8 км/ч. Первая труба покрыта слоем минеральной ваты толщиной 20 мм имеющая коэффициент теплопроводности 0,045 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 80°С. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 20 мм имеющая коэффициент теплопроводности 1,4 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала $\varepsilon=0.8$, коэффициент теплоотдачи 21,5 Вт/м²·К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 21,5 Вт/м²·К. Построить графики $t_{\rm ж}(x)$, $q_{\rm c}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки мс-20, протекая через бак с расходом 0,2 кг/с, нагревается в нём от температуры 35°C до температуры 80°C. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0,85, который конденсируется в горизонтальных змеевиках до степени сухости 0 при давлении P=8 мпа, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , м², и расход греющего пара G_1 , кг/с.Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков 5000 Вт/(м² K); коэффициент теплоотдачи от масла к стенкам бака 88 Вт/(м² K); коэффициент теплоотдачи от изоляции бака к воздуху 8 Вт/(м² K); температура окружающего воздуха 18°C; толщина стенки бака 6 мм; толщина изоляции бака 20 см; поверхность бака 10 м². Бак изготовлен из стали марки 30, для тепловой изоляции использован(а) шлаковая вата. Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку диаметром d=220 мм и длиной L=21 см, с начальной температурой $t_0=780$ °C поместили в охладительный бассейн с температурой жидкости $t_{\rm w}=30$ °C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи $\alpha=70~{\rm BT/(m^2~K)}$. Свойства материала заготовки: марка - Железо 0,5C, плотность - 7,849 г/см³, удельная теплоёмкость - 460 Дж/(кг K), теплопроводность - 59 Вт/(м K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =3 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента т₁.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

т истепное задание ил т по курсу

Группа ТФ-13-22 Студент: Филаков Андрей

Задача 1.

В три стальные трубы ($d_2x\delta=150x3$ мм), расположенные на открытом воздухе с температурой -12°C поступает горячая вода при температуре 180°C и давлении 5 МПа, которая движется со скоростью 16 км/ч. Первая труба покрыта слоем минеральной ваты толщиной 50 мм имеющая коэффициент теплопроводности 0,035 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 40°C. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 50 мм имеющая коэффициент теплопроводности 0,9 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала ϵ =0,8, коэффициент теплоотдачи 7,2 Вт/м²·К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 7,2 Вт/м²·К. Построить графики $t_{\rm ж}(x)$, $q_{\rm c}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки трансформаторное, протекая через бак с расходом 1 т/ч, нагревается в нём от температуры 45°С до температуры 100°С. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0.75, который конденсируется в горизонтальных змеевиках до степени сухости 0.05 при давлении P=9000 мм.рт.ст, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , M_2 , и расход греющего пара G_1 , кг/с.Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков 6 кВт/(M_2 K); коэффициент теплоотдачи от масла к стенкам бака M_2 К); коэффициент теплоотдачи от изоляции бака к воздуху M_2 К); температура окружающего воздуха M_2 Коерфициент теплоотдачи от изоляции бака M_2 Коерфициент велловой изоляции использован(а) асбестовый шнур. Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку радиусом r=7.5 см и длиной L=0.2 м, с начальной температурой $t_0=400$ °C поместили в охладительный бассейн с температурой жидкости $t_{sc}=15$ °C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи $\alpha=60$ Вт/(m^2 K). Свойства материала заготовки: марка - Чугун, плотность - 7,272 г/см³, удельная теплоёмкость - 420 Дж/(кг K), теплопроводность - 52 Вт/(м K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =1,4 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента ті.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя

- 1. Если расчет или построение графиков выполняется в программе, то кроме файла PDF присылаете оригинальный файл программы, в котором делался расчет. Без файла источника, расчет не принимается.
- 2. Четко указывать источник данных! Если таблица Александрова, то указывать данные справочника, какая таблица и на какой странице!, если таблица из Цветкова, то указывать какая именно! Если калькулятор WSP, то указать что из WSP и версию программы. Источник из интернета, не допускается. Если нужно найти свойства воды не при температуре насыщения использовать таблицу из Цветкова для воды нельзя!
- 3. В задаче 3 для неупорядоченной стадии использовать 7 слагаемых в уравнение. Корни находятся графическим методом. В расчете отобразить скриншот, как был найден 7 корень! Расчет корней с использованием функций допускается, только для уточнения значения. Для функции необходимо указать интервал, в котором ищется корень с диапазоном не более 0,01. При определении корня на графике увеличить область графика поиска корня, чтобы получить точность 0,001, и записать корень. Использование функций для интерполяции в широком диапазоне не допускается.
- 4. Вы можете воспользоваться функциями интерполирования Mathcad или найти значений в калькуляторе WSP, для нахождения значений свойств, но вы должны вручную присвоить значение переменным. В расчете никаких интерполяционных функций, а уж тем более функций WSP не должно быть!!! Если увижу в расчете, что вы присваиваете значение переменной с использованием функции из пакета WSP (например: t:=wspTSP(p1) или wspTSP(p1)=), сразу считаю задачу невыполненной и ставлю в БАРС 2!!!
- 5. Если требуется уточнить решение методом подбора, то он осуществляется вручную! Вы должны записать не менее 2-х итераций! Поясняйте, почему вы берете именно эти значения для последующих итераций. Особенно если они отличаются от значений, найденных на предыдущем шаге.
- 6. Расчёт должен быть сделан Вами! Если вы присылаете мне вариант, в котором вы только подставили свое значение, не проверив весь расчет на наличие ошибок и неточностей, то такая задача не принимается и возвращается с пометкой «Переделать». Повторная проверка расчета будет не ранее чем через неделю.
- 7. Для получения положительной оценки должны быть сделаны все 3 задачи.

Пояснения к задачам:

Задача 1: значения для каждой из $t_{\mathbb{K}}(x)$, $q_{\mathbb{C}}(x)$ рассчитанные по обеим алгоритмам наносятся на один график.

Tac ternoc saganne sie i no kypcy wi

Студент: Фомин Дмитрий

Группа ТФ-13-22

Задача 1.

В три стальные трубы $(d_2x\delta=140x3 \text{ мм})$, расположенные на открытом воздухе с температурой 5°C поступает горячая вода при температуре 190°C и давлении 5 МПа, которая движется со скоростью 0,2 м/с. Первая труба покрыта слоем минеральной ваты толщиной 40 мм имеющая коэффициент теплопроводности 0,05 Вт/м·К. Определить длину трубы если на выходе из нее температура воды уменьшилась на 60°C. Определить температуры воды на выходе из трубы покрытую слоем бетона толщиной 40 мм имеющая коэффициент теплопроводности 1,5 Вт/м·К и из трубы без изоляции если они имеют ту же длину, что и первая труба. Расчет провести с учетом потерь тепла в окружающую среду совместно конвекцией и излучением. Для всех трех труб принять излучательную способность поверхности материала ε =0,8, коэффициент теплоотдачи 13,6 Вт/м²·К. Коэффициент теплоотдачи от воды к внутренней стороне трубы равен 13,6 Вт/м²·К. Построить графики $t_{\rm ж}(x)$, $q_{\rm c}(x)$ для обеих способов расчета. Сравнить тепловой поток потерь трубопроводов Q для обеих способов расчета.

Указания:

- 1. Решить задачу используя формулу Шухова ($\Delta t_x = \Delta t_0 e^{-kmF_x}$) и по алгоритму решения задачи 3 гл. 2 учебника [1].
- 2. Свойства воды выбирать при средней температуре воды.
- 3. Проанализировать результаты с точки зрения эффективности работы изоляции труб.

Литература к задаче 1

1. Цветков Ф.Ф., Григорьев Б.А. Тепломассообмен: Учебное пособие для вузов. – М.: Изд-во МЭИ, 2008.

Задача 2.

Масло марки мк, протекая через бак с расходом 0.16 кг/с, нагревается в нём от температуры 40° С до температуры 60° С. Греющим теплоносителем является водяной пар, имеющий начальную степень сухости 0.7, который конденсируется в горизонтальных змеевиках до степени сухости 0.1 при давлении P=2.7 бар, смонтированных внутри бака. Для снижения тепловых потерь бак покрыт слоем тепловой изоляции. Требуется определить величину поверхности змеевиков F_1 , M^2 , и расход греющего пара G_1 , кг/с.Для расчёта заданы следующие величины: коэффициент теплоотдачи от пара к внутренней стенке поверхности змеевиков $5200 \, \mathrm{Bt/(M^2 \, K)}$; коэффициент теплоотдачи от масла к стенкам бака $54 \, \mathrm{BT/(M^2 \, K)}$; коэффициент теплоотдачи от изоляции бака к воздуху $9 \, \mathrm{BT/(M^2 \, K)}$; температура окружающего воздуха $27^{\circ}\mathrm{C}$; толщина стенки бака $5 \, \mathrm{mm}$; толщина изоляции бака $15 \, \mathrm{mm}$; поверхность бака $5 \, \mathrm{m^2}$. Бак изготовлен из стали марки 15, для тепловой изоляции использован(а) диатомит молотый. **Тепловые потери определить как при постоянной теплопроводности изоляции, используя температуру окружающего воздуха, так и с учетом её зависимости от температуры. Сравнить результаты.**

Термическим сопротивлением стенки змеевиков пренебречь, изменением внешней поверхности бака из-за его изоляции пренебречь, применить формулы для теплопередачи через плоскую стенку.

Задача 3.

Цилиндрическую заготовку диаметром d=100 мм и длиной L=0,12 м, с начальной температурой $t_0=800$ °C поместили в охладительный бассейн с температурой жидкости $t_{\text{ж}}=25$ °C, в котором она начала охлаждаться при постоянном коэффициенте теплоотдачи $\alpha=70~\text{BT/(M}^2~\text{K})$. Свойства материала заготовки: марка - Сталь 10Cr, плотность - $7785~\text{kr/m}^3$, удельная теплоёмкость - 460~Дж/(kr K), теплопроводность - 31~BT/(M K).

Рассчитать температурное поле в цилиндре как функцию радиуса r (мм) и линейной координаты x (мм) в момент времени τ_1 =1,2 мин от начала охлаждения, результаты вычислений свести в таблицы, построить графики $t(x, 0, \tau_1)$, $t(x, r_0, \tau_1)$, $t(0, r, \tau_1)$, $t(L/2, r, \tau_1)$.

Рассчитать температуру в центре цилиндра и на глубине 0,2d от поверхности как функцию времени; для стадии регулярного режима охлаждения вычислить, имитируя эксперимент, темп охлаждения цилиндра и температуропроводность материала заготовки.

Вычислить количество теплоты, отданной цилиндром за время охлаждения от его начала, до момента т1.

Дата выдачи: 3 ноя. 24 г.

Подпись преподавателя