## **CS 577: Project Report**

On

### Compiler optimization for Constant time

# Guided By-: Prof. Chandan Karfa (Assistant professor IIT Guwahati)

#### **Mentor:**

Priyanka Panigrahi
(PhD Computer Science, IIT Guwahati)

### Group - 4

#### Group Members -

| <ol> <li>Ajay Gahlot</li> </ol> | 204101004 |
|---------------------------------|-----------|
| 2. Anil Singh                   | 204101007 |
| 3. Sarthak Agarwal              | 204101049 |
| 4. Mukesh Gandharva             | 204101034 |
| 5. Vivek Singh                  | 204101061 |

Initially we started by observing the **x^k mod p** algorithm

```
r = 1;
for(int i=base-1;i>=0;i--)
{
    r = (r*r)%p;
    if ( (k>>i) & 1) r = (r*x)%p;
}
```

We get the following HLS results for above algo



In this above algorithm line with red color there is leakage

At each iteration r contains the value of  $x^{(k/(2^{i}))}$ , each loop iteration squares r and if the bit at i is 1 then r is multiplied by x. If an attacker can measure the time taken by each iteration of the loop, it can distinguish between the iteration where the tested bit of k is 0 or 1.

We fix this leakage as given below

```
 r = 1 \\ for(int i = base - 1; 0 <= i; --i) \{ \\ r = (r * r) % p; \\ r1 = (r * x) % p; \\ r = ((k >> i) & 1) ? r1 : r; \}
```

#### **Performance Estimates** ☐ Timing (ns) ■ Summary Clock Target Estimated Uncertainty ap\_clk 10.00 8.555 1.25 ■ Latency (clock cycles) Summary Latency Interval min max min max Type 741 741 741 741 none □ Detail **■ Instance ∓** Loop **Utilization Estimates** ■ Summary BRAM\_18K DSP48E LUT URAM Name FF DSP Expression 6 0 188 FIFO -Instance 788 476 Memory -

280

0

Multiplexer

Utilization (%)

Register

Total Available

We have fixed the leakage now latency is the same for min and max which is required.

0

355

53200

213

220 106400

In in terms of resource requirement there is increase in constant time as compared to to without constant time.

### **Advanced Encryption standard (AES)**

Flowchart for AES is as follows -



We have taken the benchmark of AES without applying any change we get following results -

#### Performance Estimates

#### ☐ Timing (ns)

#### ■ Summary

| Clock  | Target | Estimated | Uncertainty |
|--------|--------|-----------|-------------|
| ap_clk | 10.00  | 8.706     | 1.25        |

#### ■ Latency (clock cycles)

#### ■ Summary

| Late | Latency Interval |      |      |      |
|------|------------------|------|------|------|
| min  | max              | min  | max  | Туре |
| 2990 | 3150             | 2990 | 3150 | none |

#### □ Detail

**∓** Instance

**∓ Loop** 

#### **Utilization Estimates**

#### ■ Summary

| _ ,             |          |        |        |       |      |
|-----------------|----------|--------|--------|-------|------|
| Name            | BRAM_18K | DSP48E | FF     | LUT   | URAM |
| DSP             | -        | -      | -      | -     | -    |
| Expression      | -        | -      | -      | -     | -    |
| FIFO            | -        | -      | -      | -     | -    |
| Instance        | 9        | -      | 2232   | 8485  | 0    |
| Memory          | 4        | -      | 0      | 0     | 0    |
| Multiplexer     | -        | -      | -      | 276   | -    |
| Register        | -        | -      | 38     | -     | -    |
| Total           | 13       | 0      | 2270   | 8761  | 0    |
| Available       | 280      | 220    | 106400 | 53200 | 0    |
| Utilization (%) | 4        | 0      | 2      | 16    | 0    |

There were many statements in code where there can be leakage we make change in those statements so that it become constant time

### **Constant time**

After making AES constant time we get the following results -

#### **Performance Estimates**

#### ☐ Timing (ns)

#### Summary

| Clock  | Target | Estimated | Uncertainty |
|--------|--------|-----------|-------------|
| ap_clk | 10.00  | 8.706     | 1.25        |

#### ■ Latency (clock cycles)

#### Summary

| Latency |      | Interval |      |      |
|---------|------|----------|------|------|
| min     | max  | min      | max  | Туре |
| 3070    | 3070 | 3070     | 3070 | none |

#### Detail

- **∓** Instance
- **∓** Loop

#### **Utilization Estimates**

#### ■ Summary

| Name            | BRAM_18K | DSP48E | FF     | LUT   | URAM |
|-----------------|----------|--------|--------|-------|------|
| DSP             | -        | -      | -      | -     | -    |
| Expression      | -        | -      | -      | -     | -    |
| FIFO            | -        | -      | -      | -     | -    |
| Instance        | 9        | -      | 2190   | 8585  | 0    |
| Memory          | 4        | -      | 0      | 0     | 0    |
| Multiplexer     | -        | -      | -      | 276   | -    |
| Register        | -        | -      | 38     | -     | -    |
| Total           | 13       | 0      | 2228   | 8861  | 0    |
| Available       | 280      | 220    | 106400 | 53200 | 0    |
| Utilization (%) | 4        | 0      | 2      | 16    | 0    |

#### **C/RTL Cosimulation**

#### Cosimulation Report for 'aes\_main'

#### Result

|         |        | Latency |      |      |      | Interval |      |
|---------|--------|---------|------|------|------|----------|------|
| RTL     | Status | min     | avg  | max  | min  | avg      | max  |
| VHDL    | NA     | NA      | NA   | NA   | NA   | NA       | NA   |
| Verilog | Pass   | 3070    | 3070 | 3070 | 3071 | 3071     | 3071 |

Export the report(.html) using the Export Wizard

After applying constant time we were able to achieve constant latency (i.e min and max latency is equal to 3070)

For all the test cases we were getting correct results.

As we can see in the figure there is an increase in resources(area) when we make the program constant time which is expected since we need more operators and variables.

.

### **Optimization**

we have apply optimization on constant time code of AES

We started by using loop unrolling

### Partial Loop Unrolling (factor = 2)

#### **Performance Estimates**

#### ☐ Timing (ns)

#### Summary

| Clock  | Target | Estimated | Uncertainty |
|--------|--------|-----------|-------------|
| ap_clk | 10.00  | 8.706     | 1.25        |

#### ■ Latency (clock cycles)

#### □ Summary

| Latency |      | Interval |      |      |
|---------|------|----------|------|------|
| min     | max  | min      | max  | Туре |
| 2372    | 2372 | 2372     | 2372 | none |

#### Detail

**■ Instance**

**⊥** Loop

#### **Utilization Estimates**

#### ■ Summary

| Name            | BRAM_18K | DSP48E | FF     | LUT   | URAM |
|-----------------|----------|--------|--------|-------|------|
| DSP             | -        | -      | -      | -     | -    |
| Expression      | -        | -      | -      | -     | -    |
| FIFO            | -        | -      | -      | -     | -    |
| Instance        | 9        | -      | 2898   | 12280 | 0    |
| Memory          | 4        | -      | 0      | 0     | 0    |
| Multiplexer     | -        | -      | -      | 306   | -    |
| Register        | -        | -      | 38     | -     | -    |
| Total           | 13       | 0      | 2936   | 12586 | 0    |
| Available       | 280      | 220    | 106400 | 53200 | 0    |
| Utilization (%) | 4        | 0      | 2      | 23    | 0    |

### **Complete Loop Unrolling**

#### Performance Estimates

#### ☐ Timing (ns)

#### ■ Summary

| Clock  | Target | Estimated | Uncertainty |
|--------|--------|-----------|-------------|
| ap_clk | 10.00  | 8.706     | 1.25        |

#### ■ Latency (clock cycles)

#### ■ Summary

|      | Interval |      | Latency |      |
|------|----------|------|---------|------|
| Туре | max      | min  | max     | min  |
| none | 1809     | 1809 | 1809    | 1809 |

#### Detail

**∓** Instance

**∓** Loop

#### **Utilization Estimates**

#### ■ Summary

| Name            | BRAM_18K | DSP48E | FF     | LUT   | URAM |
|-----------------|----------|--------|--------|-------|------|
| DSP             | -        | -      | -      | -     | -    |
| Expression      | -        | -      | -      | -     | -    |
| FIFO            | -        | -      | -      | -     | -    |
| Instance        | 9        | -      | 3124   | 13414 | 0    |
| Memory          | 4        | -      | 0      | 0     | 0    |
| Multiplexer     |          |        |        | 306   |      |
| Register        | -        | -      | 38     | -     | -    |
| Total           | 13       | 0      | 3162   | 13720 | 0    |
| Available       | 280      | 220    | 106400 | 53200 | 0    |
| Utilization (%) | 4        | 0      | 2      | 25    | 0    |

- - "

### <u>Array Partition + Loop Unrolling</u>

We have used cyclic array partition with factor = 2

#### **Performance Estimates**

#### ☐ Timing (ns)

#### Summary

| Clock  | Target | Estimated | Uncertainty |
|--------|--------|-----------|-------------|
| ap_clk | 10.00  | 8.706     | 1.25        |

#### ■ Latency (clock cycles)

#### Summary

| Latency |      | Interval |      |      |
|---------|------|----------|------|------|
| min     | max  | min      | max  | Туре |
| 1501    | 1501 | 1501     | 1501 | none |

#### Detail

**■** Instance

**∓** Loop

#### **Utilization Estimates**

#### ■ Summary

| Name            | BRAM_18K | DSP48E | FF     | LUT   | URAM |
|-----------------|----------|--------|--------|-------|------|
| DSP             | -        | -      | -      | -     | -    |
| Expression      | -        | -      | -      | -     | -    |
| FIFO            | -        | -      | -      | -     | -    |
| Instance        | 10       | -      | 3003   | 13720 | 0    |
| Memory          | 6        | -      | 0      | 0     | 0    |
| Multiplexer     | -        | -      | -      | 426   | -    |
| Register        | -        | -      | 38     | -     | -    |
| Total           | 16       | 0      | 3041   | 14146 | 0    |
| Available       | 280      | 220    | 106400 | 53200 | 0    |
| Utilization (%) | 5        | 0      | 2      | 26    | 0    |

- -

### **Array Partition + Loop Unrolling + Pipelining**

#### **Performance Estimates**

#### ☐ Timing (ns)

#### Summary

| Clock  | Target | Estimated | Uncertainty |
|--------|--------|-----------|-------------|
| ap_clk | 10.00  | 9.279     | 1.25        |

#### □ Latency (clock cycles)

#### Summary

| Latency |      | Interval |      |      |
|---------|------|----------|------|------|
| min     | max  | min      | max  | Туре |
| 1252    | 1252 | 1252     | 1252 | none |

#### Detail

**∓** Instance

+ Loop

#### **Utilization Estimates**

#### Summary

| Name            | BRAM_18K | DSP48E | FF     | LUT   | URAM |
|-----------------|----------|--------|--------|-------|------|
| DSP             | -        | -      | -      | -     | -    |
| Expression      | -        | -      | -      | -     | -    |
| FIFO            | -        | -      | -      | -     | -    |
| Instance        | 13       | -      | 6920   | 22791 | 0    |
| Memory          | 6        | -      | 0      | 0     | 0    |
| Multiplexer     | -        | -      | -      | 435   | -    |
| Register        | -        | -      | 38     | -     | -    |
| Total           | 19       | 0      | 6958   | 23226 | 0    |
| Available       | 280      | 220    | 106400 | 53200 | 0    |
| Utilization (%) | 6        | 0      | 6      | 43    | 0    |

As we can see as we decrease the latency the area increases since there is tradeoff b/w area and latency.

And here latency is constant after applying the optimizations.