Case Study: A Data-Driven Analysis of a Fitness Application

MSE803: Data Analytics - Assessment 2

Supervisor: Dr. Mukesh Mishra

Prepared by Thanushka Wickramrachchi

Student ID: 270599091

Jul 13, 2025

Introduction & Objective

Analyze user behavior in a fitness app

How users behave, how much they move, and how the app can support them better

- Predict calories burned and activity levels
 - Built models to predict how many calories someone burns
- Group users into segments (clustering)
 - grouped users based on their behavior using clustering.
- Suggest smart app improvements
- Focus on ethical and culturally respectful design
 - Focused on ensuring the app respects people's privacy and culture.

Dataset Overview

• 5,000 User Records

dataset includes information from 5,000 people who use a fitness tracking app

8 Key Attributes

- Each person has 8 types of data
- Age, Gender, Location, Activity Level, App Sessions, Distance, Calories

0 Missing Values

- Data is already clean
- No need to fix or fill anything before starting the analysis

Data Preprocessing

Preparing the Data

Before using the data for machine learning, had to prepare it

Encoded text data into numbers

 Location, gender, and activity level - Changed text data into numbers using encoding

• Grouped age into three ranges: 18-30, 31-45, 46-60

 grouped ages into three categories - This helps. to discover trends or differences between different age groups

Standardized numbers

Important for fair results in clustering and modeling.

Exploratory Data Analysis

More sessions = more distance & calories

- Explored the data to understand general patterns
- key findings was that people who use the app more often usually walk more and burn more calories.

Active users burn more calories

Active users - burned more calories than those who are sedentary

Age doesn't affect calorie burn much

That means young and older users can be equally active

Data is well balanced (gender, location, activity)

 dataset was balanced. There were equal numbers of male and female users and a good mix from urban, suburban, and rural areas

Exploratory Data Analysis (CONT.) |

Figure 1: Distribution of categorical features — Gender, Activity Level, and Location

Figure 2: Histograms showing the distribution of Age, App Sessions, Distance Travelled (km), and Calories Burned

Figure 3 : Correlation matrix showing linear relationships among Age, App Sessions, Distance Travelled, and Calories Burned

Figure 4: Calories Burned by Activity Level and Gender (Boxplot)

Predictive Modeling

Used two different models

Predict how many calories a user will burn

Linear Regression (basic)

First, I tried this - simple and easy to understand, but not very powerful for complex data

Random Forest (advanced)

Then, I used Random Forest. Usually this model is more powerful and works better

Model	Accuracy (R ² Score)	Prediction Error (MAE)
Linear Regression (Simple)	0.64	93.2 Calories
Random Forest (Complex)	0.6	96.1 Calories

Table 1: Model Performance Comparison: Linear Regression vs. Random Forest

- In this case, both models gave good results; the simple model did slightly better.
- I thought a complex model would work best but it was wrong. The simple linear regression model was actually more accurate.
- This provides a strong foundation for building predictive features.

User Segmentation with Clustering

Used K-Means (4 clusters)

 I used a technique called K-Means Clustering to group users based on their real behavior

Groups found:

- Cluster 1 (Yellow): Young Power Users (very active)
- Cluster 3 (Purple): Older Power Users (highly active but older)
- Cluster 0 (Blue): Low-Engagement Active Users (Steady, but room to grow)
- Cluster 2 (Green): Older Casual Users (Lowest frequency within the active base)
- These user groups help the app team.
- Instead of showing the same thing to everyone, the app can be personalized.
- E.g., Inactive users can get motivational messages, and active users can see advanced features.

User Segmentation with Clustering (CONT.)

Figure 5: Pair Plot of User Segments Colored by Cluster

Engineering Implications

- Two Smart Features We Can Build:
- 1. Goal Prediction Build real-time calorie prediction feature
 - Predict how many calories a user will burn
 - We can show users how many calories they'll burn before they start a workout (Eg - You'll burn 550 calories for 10km)
 - Based on: Simple Linear Regression model
 - Benefit: Fast, accurate, and easy to use
- 2. Adaptive User Interface (UI) Show different UI for each user group
 - App screen changes based on user type
 - The app screen can change based on the user's group
 - Based on: 4 user groups from clustering
 - Benefit: Easy for beginners, advanced for active users
 - giving more tips to new users and advanced stats to active ones.

Engineering Implications (CONT.)

Use A/B testing based on user type

- we can test if motivational notifications work.
- Older Casuals send a notification to half of them and see if their engagement increases.
- This is a much smarter way to improve the app

Create a live dashboard for developers

 developers and managers can use a live dashboard to track user behavior, engagement, and the effects of new features.

Ethical & Cultural Considerations

Respect user privacy

Tell users what data is collected and why, and keep their info safe.

Avoid bias in predictions

 the app should not assume older users are always inactive or make unfair recommendations.

Make features culturally sensitive

 Some users may not want competitive messages or may prefer different styles of motivation based on age or culture.

Give users control over their data

give users control — let them see, change, or delete their data.

Follow standards like GDPR

to keep everything legal and fair.

Strategic Recommendations & Conclusion

Build real-time calorie prediction

■ Add calorie prediction using the model we built — it's accurate and useful.

Use cluster-based personalized UI

Give advanced features to power users and simpler screens to inactive ones.

Run A/B tests by user type

Run A/B tests by user group to find out what features or messages work best.

Launch internal BI dashboard

- Build a business intelligence (BI) dashboard for the team so they can track users and features in real time.
 - http://localhost:8501/

Follow ethical data practices

- most importantly, protect user privacy and be fair with data follow rules and stay transparent.
- By using smart data analysis and respecting user privacy, we can build a better app that is smart, safe, and helpful for everyone.

References

- Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. Proceedings of the 1st Conference on Fairness, Accountability and Transparency, 81, 77–91. https://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf
- Cavoukian, A. (2009). Privacy by design: The 7 foundational principles [Technical report]. Information and Privacy Commissioner of Ontario. https://student.cs.uwaterloo.ca/~cs492/papers/7foundationalprinciples_longer.pdf
- Disterer, G. (2013). ISO/IEC 27000, 27001 and 27002 for information security management. Journal of Information Security, 4(2), 92–100. https://doi.org/10.4236/jis.2013.42011
- European Union. (2016). General Data Protection Regulation [Official legal text]. https://eur-lex.europa.eu/eli/reg/2016/679/oj
- Friedman, B., & Nissenbaum, H. (1996). Bias in computer systems. ACM Transactions on Information Systems (TOIS), 14(3), 330-347.
 https://doi.org/10.1145/230538.230561
- Papageorgiou, A., Strigkos, M., Politou, E., Alepis, E., Solanas, A., & Patsakis, C. (2018). Security and privacy analysis of mobile health applications: The alarming state of practice. IEEE Access, 6, 9390–9403. https://doi.org/10.1109/ACCESS.2018.2799522
- U.S. Department of Health & Human Services. (2013). Summary of the HIPAA privacy rule. https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html

Thank You

