MATH20122 Cheat Sheet

1 Definitions and Examples

metric space: a **metric space** (X, d) consists of a non-empty set X and a non-negative real valued **metric** $(distance\ function)\ d: X \times X \to \mathbb{R}^{\geq}$ which satisfies the following axioms:

- (i) $d(x, y) = 0 \iff x = y \text{ for all } x, y \in X$
- (ii) d(x,y) = d(y,x) for all $x, y \in X$
- (iii) $d(x, z) \le d(x, y) + d(y, z)$ for all $x, y, z \in X$ (the triangle inequality)

subspace: given any subset $W \subseteq X$, the restriction of d to W determines the subspace $(W, d := d|_W)$ of (X, d)

open ball: for any metric space (X, d), the open ball of radius r > 0 around any $x \in X$ is $B_r(x) := \{y : d(y, x) < r\}$

closed ball: for any metric space (X, d), the open ball of radius r > 0 around any $x \in X$ is $\bar{B}_r(x) := \{y : d(y, x) \le r\}$

euclidean n-space: (\mathbb{R}^n, d_2) consists of all real n-dimensional vectors $x = (x_1, \dots, x_n)$, equipped with the euclidean metric $d_2(x, y) = ((x_1 - y_1)^2 + \dots + (x_n - y_n)^2)^{1/2}$ where the positive square root is understood

taxicab metric: d_1 is given on \mathbb{R}^n is given by $d_1(x,y) = |x_1 - y_1| + \cdots + |x_n - y_n|$

$$\mathbf{discrete\ metric}: d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{otherwise} \end{cases}$$

isometry: for any two metric spaces (X, d_X) and (Y, d_Y) , a bijection $f: X \to Y$ is an isometry whenever $d_X(x, y) = d_Y(f(x), f(y))$ for all $x, y \in X$

standard metric: $d_{\mathbb{C}}$ on the complex numbers \mathbb{C} is given by $d_{\mathbb{C}}(z,z')=|z-z'|$

graph: $\Gamma := (V, E)$ consists of a set V of **vertices** and a set E of **edges**

path: a path in Γ from u to w is a finite sequence of edges $\pi(u, w) = (uv_1, v_1v_2, \dots, v_{n-2}v_{v-1}, v_{n-1}w)$ with length n

path connected: a graph is path connected whenever there is a path joining any pair of vertices

edge metric: e on the vertex set V of a path connected graph is defined by $e(u, w) = min_{\pi(u, w)}l(\pi(u, w))$

alphabet: a finite set A of letters and a finite sequence of letters is a word in A, the vertex set W of the associated word graph $\Gamma(A)$ consists of all possible words in A, word w_1 and w_2 are joined by an edge iff they differ by one of (i) inserting or deleting a letter (ii) swapping two adjacent letters (iii) replacing one letter with another

word metric: d_w on W is the edge metric on the associated word graph

binary sequences: $X = \{0,1\}^{\infty}$ is the set of all infinite binary sequences $x = x_0 x_1 \dots$ where $x_n = 0$ or 1 for all $n \ge 0$

$$d_{min}(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1/2^n & \text{if } n = min\{m : x_m \neq y_m\} \end{cases}$$
$$d^*(x,y) = \sum_{j=0}^{\infty} \frac{|x_j - y_j|}{2^j}$$

bounded: a real valued function f on a closed interval $[a,b] \subset \mathbb{R}$ is bounded whenever $\exists K, |f(x)| \leq K, \forall x \in [a,b]$

let X denote the set of all bounded $f:[a,b]\to\mathbb{R}$ then

$$d_{sup}(f,g) = \sup_{x \in [a,b]} |f(x) - g(x)| \text{ with } (X,d_{sup}) \text{ denoted by } \mathcal{B}[a,b]$$

let Y denote the set of all continuous $f:[a,b] \to \mathbb{R}$ then

$$d_1(f,g) = \int_a^b |f(t) - g(t)| dt$$
 with (Y, d_1) denoted by $\mathcal{L}_1[0, 1]$

let X denote the set of all closed intervals [a, b] in the euclidean line

interval metric: d_H on X is given by $d_H([a,b],[r,s]) = max\{|r-a|,|s-b|\}$

$$d_{\infty}((x_1, x_2), (y_1, y_2)) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$$

let X be the set of infinite sequences $(a_i : i \ge 0)$ of reals, such that $\sum_i a_i$ is absolutely convergent

$$d_1((a_i),(b_i)) = \sum_{i\geq 0} |a_i - b_i|$$

cartesian product: of two metric spaces (X, d) and (X', d') is the set $X \times X'$ with one of the metrics

- 1. $d_a((x, x'), (y, y')) = d(x, y) + d'(x', y')$
- 2. $d_b((x,x'),(y,y')) = (d(x,y)^2 + d'(x',y')^2)^{1/2}$
- 3. $d_c((x,x'),(y,y')) = max\{d(x,y),d'(x',y')\}$

lipschitz equivalent: two metrics d and e on a given set X are lipschitz equivalent whenever there exists positive constants $h, k \in \mathbb{R}$ such that $he(x, y) \leq d(x, y) \leq ke(x, y)$ for every $x, y \in X$

theorem: the metrics d_a, d_b, d_c on $X \times X'$ are lipschitz equivalent