Определение 1. (Постановка задачи.) На плоскости XOY заданы: прямоугольник

$$\Pi = \{ (x, y) \mid a \leqslant x \leqslant b, \ c \leqslant y \leqslant d \},$$

точка (x_0, y_0) , лежащая строго внутри него, и дифференциальное уравнение y' = F(x, y), правая часть которого $\Pi \to^F \mathbb{R}$ является непрерывной функцией на Π . Мы докажем, что существует ε -окрестность U_{ε} точки x_0 и дифференцируемая функция $U_{\varepsilon} \to^f [c, d]$, такие что $f'(x) = F(x, f(x)) \quad \forall x \in U_{\varepsilon}$ и $f(x_0) = y_0$.

Задача 1. Зададимся некоторой ε -окрестностью U_{ε} точки x_0 и рассмотрим следующие два множества дифференцируемых функций $U_{\varepsilon} \rightarrow^{\varphi} [c,d]$, заданных на этой окрестности:

$$\mathcal{F} \stackrel{\uparrow}{=} \{ \varphi \mid \forall x \in U_{\varepsilon} \ \varphi'(x) > F(x, \varphi(x)) \}$$

$$\mathcal{F}_{\perp} \stackrel{\text{def}}{=} \{ \varphi \mid \forall x \in U_{\varepsilon} \ \varphi'(x) < F(x, \varphi(x)) \}$$

Докажите, что $\exists \ \varepsilon$: оба множества \mathcal{F}^{\uparrow} , \mathcal{F}_{\downarrow} непусты, и справа от x_0 график любой функции из \mathcal{F}^{\uparrow} лежит выше графика любой функции из \mathcal{F}_{\downarrow} , а слева — наоборот.

Задача 2. Определим функцию f(x) справа от x как $\inf_{\varphi \in \mathcal{F}} \varphi(x)$, а слева от x как $\sup_{\varphi \in \mathcal{F}} \varphi(x)$. Докажите, что f существует, непрерывна, дифференцируема и удовлетворяет уравнению y' = F(x,y).

Определение 2. (*Обозначения*.) Пусть $C = \sup_{\Pi} |F(x,y)|$. Обозначим через D_{δ} отрезок $[x_0 - \delta, x_0 + \delta]$, где δ выбрано так, чтобы «бабочка» $B_{\delta} \stackrel{\text{def}}{=} \{ (x,y) \mid x \in D_{\delta}, |y-y_0| \leqslant C|x-x_0| \}$ лежала целиком внутри Π . Обозначим через \mathcal{M}_{δ} множество всех непрерывных функций $D_{\delta} \rightarrow^{\varphi} [c,d]$, график которых содержится в B_d .

Задача 3. Докажите, что \mathcal{M}_{δ} является полным метрическим пространством с расстоянием $\rho(\varphi,\psi) = \sup_{x \in D_{\delta}} |\varphi(x) - \psi(x)|.$

Задача 4. (лемма Асколи–Арцела) Дано некоторое множество $\mathcal F$ непрерывных функций на отрезке. Докажите, что любая ограниченная последовательность функций из $\mathcal F$ содержит поточечно сходящуюся подпоследовательность тогда и только тогда, когда все функции в $\mathcal F$ ограничены общей константой и в равной степени непрерывны (т. е. $\forall \ \varepsilon > 0 \ \exists \ \delta > 0 : |x_1 - x_2| < \delta \Rightarrow |\varphi(x_1) - \varphi(x_2)| < \varepsilon$ сразу для всех $\varphi \in \mathcal F$).

Задача 5. (ломаные Эйлера) Разобъём D_{δ} на 2n равных частей длины $h = \delta/n$ и определим непрерывную функцию $\varphi_n(x)$, полагая $\varphi(x_0) = y_0$, и далее продолжая её влево и вправо индуктивным правилом: над отрезком $[x_0 + kh, x_0 + (k+1)h]$ (где k = 0, 1, 2, ...) и над отрезком $[x_0 + (k-1)h, x_0 + kh]$ (где k = 0, -1, -2, ...) $\varphi(x)$ есть прямая с угловым коэффициентом $F(x_0 + kh, \varphi(x_0 + kh))$ (значение $\varphi(x_0 + kh)$ определено по индуктивному предположению). Докажите, что все φ_n лежат в \mathcal{M}_{δ} и из них можно выбрать подпоследовательность, имеющую поточечный предел, также лежащий в \mathcal{M}_{δ} .

Задача 6. Явно опишите последовательность ломаных Эйлера для уравнения y' = y с начальным условием y(0) = 1 и шагом h = 1/n, и честно найдите её предел при $n \to \infty$.

Задача 7. Докажите, что поточечный предел любой сходящейся последовательности ломаных Эйлера из 5 является дифференцируемой функцией, удовлетворяющий уравнению y' = F(x,y) (мы ещё вернёмся к этой задаче в следующем листке).

1	2	3	4	5	6	7

 $^{^{1}}$ предел которой не обязан принадлежать \mathcal{F}