MPXV7002

Integrated silicon pressure sensor, on-chip signal conditioned, temperature compensated and calibrated

Rev. 5 — 5 May 2021 Product data sheet

1 General description

The MPXV7002 series piezoresistive transducers are monolithic silicon pressure sensors. The MPXV7002 is designed for a wide range of applications, particularly applications employing a microcontroller, or microprocessor with analog-to-digital inputs. This transducer combines advanced micromachining techniques, thin-film metallization, and bipolar processing to provide an accurate, high-level analog output signal that is proportional to the applied pressure.

2 Features and benefits

- · Ideally suited for microprocessor or microcontroller-based systems
- Thermoplastic (PPS) surface mount package
- Temperature compensated over +10 °C to +60 °C
- · Patented silicon shear stress strain gauge
- · Available in differential and gauge configurations

3 Applications

- · Hospital beds
- HVAC
- Respiratory systems
- Process control

4 Ordering information

Table 1. Ordering information

Type number	Packa	Package							
	Name	Description	Version						
MPXV7002DP	SO8	Plastic, small outline package, 8 terminals, 2.54 mm pitch, 12.06 mm x 12.06 mm x 7.62 mm body	SOT1693-1						
MPXV7002GC	SO8	Plastic, small outline package, 8 terminals, 2.54 mm pitch, 10.67 mm x 10.67 mm x 12.96 mm body	SOT1854-1						
MPXV7002GP	SO8	Plastic, small outline package, 8 terminals, 2.54 mm pitch, 12.06 mm x 12.06 mm x 8.38 mm body	SOT1693-3						

Integrated silicon pressure sensor, on-chip signal conditioned, temperature compensated and

4.1 Ordering options

Table 2. Ordering options

Device name	Package	SOT	#	of Ports	3		Pressure typ	е	Device
Device name	options	no.	None	Single	Dual	Gauge	Differential	Absolute	marking
Small Outline Package (MPXV7002 Series)									
MPXV7002DP	Trays	SOT1693-1			•		•		MPXV7002DP
MPXV7002DPT1	Tape & Reel	SOT1693-1			•		•		MPXV7002DP
MPXV7002GC6U	Rails	SOT1854-1		•		•			MPXV7002G
MPXV7002GP	Trays	SOT1693-3		•		•			MPXV7002G

Small outline packages

MPXV7002DP/DPT1 CASE 1351-01 SOT1693-1

MPXV7002GC6U/C6T1 CASE 482A-01 SOT1854-1

MPXV7002GP CASE 1369-01 SOT1693-3

5 Block diagram

Integrated silicon pressure sensor, on-chip signal conditioned, temperature compensated and

6 Pinning information

6.1 Pinning

Figure 2. MPXV7002DP/DPT1 pin diagram

Figure 3. MPXV7002GC6U/C6T1 pin diagram

Figure 4. MPXV7002GP pin diagram

6.2 Pin description

This device family uses the style 2 pin configuration documented in $\underline{\text{Table 3}}$ and shown in Figure 10.

Table 3. Pin description

Symbol	Pin ^[1]	Description
n.c.	1	_[2]
Vs	2	Supply voltage
GND	3	Ground
V _{out}	4	Voltage output
n.c.	5	
n.c.	6	_[2]
n.c.	7	_[2]
n.c.	8	_[2]

- [1] The notch in the lead indicates pin 1.
- [2] Internal device connection. Do not connect to external circuitry or ground

7 Maximum Ratings

Table 4. Maximum Ratings^[1]

Rating	Symbol	Value	Unit
Maximum pressure (P1 > P2)	P _{max}	75	kPa
Storage temperature	T _{stg}	-30 to +100	° C
Operating temperature	T _A	10 to 60	° C

[1] Exposure beyond the specified limits may cause permanent damage or degradation to the device.

<u>Figure 1</u> shows a block diagram of the internal circuitry integrated on a pressure sensor chip.

MPXV7002

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Integrated silicon pressure sensor, on-chip signal conditioned, temperature compensated and

Operating Characteristics

Table 5. Operating Characteristics

 $(V_S = 5.0 \text{ Vdc}, T_A = 25 \text{ °C} \text{ unless otherwise noted. Decoupling circuit shown in Figure 6} \text{ required to meet specification.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Pressure rRange ^[1]	P _{OP}	-2.0	_	2.0	<mark>kPa</mark>
Supply voltage ^[2]	Vs	4.75	5.0	5.25	Vdc
Supply current	I _o	_	_	10	mAdc
Pressure offset ^[3] (10 °C to 60 °C) @ V _S = 5.0 Volts	$V_{\rm off}$	0.25	0.5	0.75	Vdc
Full scale output ^[4] (10 °C to 60 °C) @ $V_S = 5.0$ Volts	V _{FSO}	4.25	4.5	4.75	Vdc
Full Scale Span ^[5] (10 °C to 60 °C) @ V_S = 5.0 Volts	V _{FSS}	3.5	4.0	4.5 V	Vdc
Accuracy ^[6] (10 °C to 60 °C)	_	_	± 2.5 ^[7]	± 6.25	%V _{FSS}
Sensitivity	V/P	_	1.0		V/kPa
Response time ^[8]	t _R	_	1.0		ms
Output source current at full scale output	I _{O+}	_	0.1		mAdc
Warm-up time ^[9]	_	_	20		ms

- 1.0 kPa (kiloPascal) equals 0.145 psi.
- [2] [3] Device is ratiometric within this specified excitation range.
- Offset (Voff) is defined as the output voltage at the minimum rated pressure.
- Full scale output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- Full scale span (V_{ESS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated
- Accuracy (error budget) consists of the following:
 - · Linearity: Output deviation from a straight-line relationship with pressure over the specified pressure range.
 - · Temperature hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - · Pressure hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the minimum or maximum rated pressure, at 25 °C.
 - TcSpan: Output deviation over the temperature range of 10° to 60 °C, relative to 25 °C.
 - TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 10° to 60 °C, relative to 25 °C.
 - Variation from Nominal: The variation from nominal values, for offset or full scale span, as a percent of V_{FSS}, at 25 °C.
- Auto Zero at Factory Installation: Due to the sensitivity of the MPXV7002 Series, external mechanical stresses and mounting position can affect the zero pressure output reading. Auto zero is defined as storing the zero pressure output reading and subtracting this from the device's output during normal operations. Reference AN1636 $^{[1]}$ for specific information. The specified accuracy assumes a maximum temperature change of \pm 5 $^{\circ}$ C between auto zero
- Response time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- Warm-up time is defined as the time required for the product to meet the specified output voltage after the pressure has been stabilized.

Integrated silicon pressure sensor, on-chip signal conditioned, temperature compensated and calibrated

9 Characteristics

9.1 On-chip temperature compensation, calibration, and signal conditioning

The performance over temperature is achieved by integrating the shear-stress strain gauge, temperature compensation, calibration, and signal conditioning circuitry onto a single monolithic chip.

<u>Figure 5</u> illustrates the differential or gauge configuration in the basic chip carrier (Case 482). A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the sensor diaphragm.

The MPXV7002 series pressure sensor operating characteristics, and internal reliability and qualification tests are based on use of dry air as the pressure media. Media, other than dry air, may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

<u>Figure 6</u> shows the recommended decoupling circuit for interfacing the integrated sensor to the analog-to-digital input of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended.

o sinal gera essa pressão e daí podemos calcular a velocidade

<u>Figure 7</u> shows the sensor <u>output signal relative to pressure input</u>. Typical, minimum, and maximum output curves are shown for operation over a temperature range of 10° to 60° C using the decoupling circuit shown in <u>Figure 6</u>. The output saturates outside the specified pressure range.

MPXV7002

Integrated silicon pressure sensor, on-chip signal conditioned, temperature compensated and calibrated

9.2 Pressure (P1)/Vacuum (P2) Side Identification Table

NXP designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing a gel die coat which protects the die from harsh media.

The Pressure (P1) side may be identified by using Table 6.

Table 6. Pressure side identification

Part Number	Case Type	Pressure (P1) Side Identifier
MPXV7002GC6U/GC6T1	482A-01	Side with Port Attached
MPXV7002GP	1369-01	Side with Port Attached
MPXV7002DP	1351-01	Side with Part Marking

9.3 Minimum Recommended Footprint for Surface Mounted Applications

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct footprint, the packages self-align when subjected to a solder reflow process. NXP recommends designing boards with a solder mask layer to avoid bridging and shorting between solder pads.

Integrated silicon pressure sensor, on-chip signal conditioned, temperature compensated and calibrated

Integrated silicon pressure sensor, on-chip signal conditioned, temperature compensated and

10 Package outline

Integrated silicon pressure sensor, on-chip signal conditioned, temperature compensated and

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PPROTRUSIONS.

MOLD FLASH AND PROTRUSIONS SHALL NOT EXCEED .006 PER SIDE.

DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .008 MAXIMUM.

STYLE 1:		STYLE 2:		
PIN 1:	GND	PIN	1:	N/C
PIN 2:	+Vout	PIN	2:	Vs
PIN 3:	٧s	PIN	3:	GND
PIN 4:	–Vou t	PIN	4:	Vout
PIN 5:	N/C	PIN	5:	N/C
PIN 6:	N/C	PIN	6:	N/C
PIN 7:	N/C	PIN	7:	N/C
PIN 8:	N/C	PIN	8:	N/C

NXP SEMICONDUCTORS N. V. ALL RIGHTS RESERVED	MECHANICAL OU	TLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUMEN	NT NO: 98ASA99255D	REV: B
8 LD SNSR, DUAL	PORT	STANDAF	RD: NON-JEDEC	
		S0T1693	3–1	14 MAR 2016

Figure 10. SOT1693-1, 8 Lead sensor, dual port package outline notes, 98ASA99255D, Rev. B

Integrated silicon pressure sensor, on-chip signal conditioned, temperature compensated and calibrated

Integrated silicon pressure sensor, on-chip signal conditioned, temperature compensated and calibrated

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION 'A' AND 'B' DO NOT INCLUDE MOLD PROTUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006).
- 5. ALL VERTICAL SURFACES 5' TYPICAL DRAFT.

	INC	HES	MIL	LIM	ETERS			
DIM	MIN	MAX	MI	N	MAX			
Α	0.415	0.425	10. 5	4	10. 79			
В	0.415	0.425	10. 5	4	10. 79			
С	0. 500	0.520	12. 7	70	13. 21			
D	0. 038	0.042	0.9	96	1. 07			
G	0.100	BSC	2.	54	BSC			
Н	0.002	0.010	0.0	5	0. 25			
J	0.009	0.011	0. 2	3	0. 28			
K	0.061	0.071	1. 5	5	1.80			
М	0°	7°	0	ı °	7°			
N	0.444	0.448	11. 2	8	11.38			
S	0. 709	0.725	18.0	1	18. 41			
V	0. 245	0. 255	6. 2	2	6. 48			
W	0. 115	0.125	2. 9.	2	3. 17			
C	NXP SEMICONI ALL RIGHTS	DUCTORS N.V. RESERVED		М	ECHANICAL	- OU	TLINE	PRINT VERSION NOT TO SCALE
TITLE:	St	ENSOR L	JNIBO	ΟY,			DOCUME	NT NO: 98ASB17757C REV: C
		11.33			PKG,		STANDAF	RD: NON-JEDEC
	2.	54 PITC	Н, 8 І	1/0			SOT1854	-1 13 JUL 2017

Figure 12. SOT1854-1, Unibody sensor package outline notes, 98ASB17757C, Rev. C

Integrated silicon pressure sensor, on-chip signal conditioned, temperature compensated and calibrated

Integrated silicon pressure sensor, on-chip signal conditioned, temperature compensated and calibrated

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- △ DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PPROTRUSIONS.

 MOLD FLASH AND PROTRUSIONS SHALL NOT EXCEED .006 (0.152) PER SIDE.
- A DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .008 (0.203) MAXIMUM.

	INC	HES	MILLIMETERS			INCHES		MILLI	MILLIMETERS	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
Α	.300	.330	7.62	8.38	θ	0.	7.	0.	7.	
A1	.002	.010	0.05	0.25	_					
b	.038	.042	0.96	1.07	-		s 			
D	.465	.485	11.81	12.32	_					
Е	.717	BSC	18	3.21 BSC	-					
E1	.465	.485	11.81	12.32	_					
е	.100	BSC	2.	2.54 BSC			1 <u></u>			
F	.245	.255	6.22	6.47	-					
K	.120	.130	3.05	3.30	-		s 			
L	.061	.071	1.55	1.80	_					
М	.270	.290	6.86	7.36	-					
N	.080	.090	2.03	2.28	_					
Р	.009	.011	0.23	0.28	_		111			
Ţ	.115	.125	2.92	3.17	_		(
	A NVD CENTO	ONDUCTORS N. V		MODELLANDON MODELLA CADALLER PERSONAL	PI 8367896		Ven mix m SERTEMS SE SENSORT	AZONON DE SEEL SEEL BESTERNE	Name of the State	
		HTS RESERVED	•	MECHANICA	L OU	TLINE	PRINT VER	SION NOT	TO SCALE	
TITI	LE:					DOCUMEN	NT NO: 98ASA	99303D	REV: E	
	8 LI	SOP, S	IDE PO	ORT		STANDARD: NON-JEDEC				
		and the second s				S0T1693	3–3	14	MAR 2016	

Figure 14. SOT1693-3, 8 Lead SOP, Side port package out line notes, 98ASA99303D, Rev. E

Integrated silicon pressure sensor, on-chip signal conditioned, temperature compensated and

11 References

[1] AN1646 – Noise considerations for integrated pressure sensors https://www.nxp.com/docs/en/application-note/AN1646.pdf

12 Revision History

Table 7. Revision History

Document ID	Release Date	Data sheet status	Change notice	Supercedes
MPXV7002 Rev. 5	20210505	Product	_	MPXV7002 Rev. 4
Modifications	of NXP Semiconductor appropriate. • Global changes, revis — Revised all images Semiconductor grap — Performed minor grap • Section 1, revised the • Section 2, removed twanties of features. • Section 3, added new • Section 4.1, removed • Section 6.2, added clashown in Figure 10. • Section 9.1, revised "A Section 10, updated the Section 11, added new • Cover page and Section 15.	ed as follows: including the package outlook standards. ammar, content, and type first paragraph. wo bullets starting with "2. section. row for "MPXV7002GC6 arification stating this dev A gel die coat" to "A flue the package information station on 12, revised data shee	ice family uses the style a	with NXP ghout. % maximum" from the 2 pin configuration as
MPXV7002 Rev. 4	2017 March	Technical data	_	MPXV7002 Rev. 3.0
MPXV7002 Rev. 3.0	2015 January	Technical data	_	MPXV7002 Rev. 2.0
MPXV7002 Rev. 2.0	2009 January	Technical data	_	MPXV7002 Rev. 1.0
MPXV7002 Rev. 1.0	2008 September	Technical data	_	MPXV7002 Rev. 0
MPXV7002 Rev. 0	2005 September	Technical data	_	_

Integrated silicon pressure sensor, on-chip signal conditioned, temperature compensated and

13 Legal information

13.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

13.2 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

13.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer. In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages. Notwithstanding any damages that customer might incur for any reason whatsoever (including without

MPXV7002

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2021. All rights reserved.

Integrated silicon pressure sensor, on-chip signal conditioned, temperature compensated and

limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use

in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

13.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

Integrated silicon pressure sensor, on-chip signal conditioned, temperature compensated and calibrated

Tables

Tab. 1. Tab. 2. Tab. 3. Tab. 4.	Ordering information1Ordering options2Pin description3Maximum Ratings3	Tab. 5. Tab. 6. Tab. 7.	Operating Characteristics
Figur	es		
Fig. 1. Fig. 2. Fig. 3.	Integrated pressure sensor schematic	Fig. 10.	SOT1693-1, 8 Lead sensor, dual port package outline notes, 98ASA99255D, Rev. B9
Fig. 4. Fig. 5.	MPXV7002GP pin diagram3 Cross-Sectional Diagram SOP (not to	Fig. 11.	SOT1854-1, Unibody sensor package outline, 98ASB17757C, Rev. C
Fig. 6.	scale)	Fig. 12.	SOT1854-1, Unibody sensor package outline notes, 98ASB17757C, Rev. C
Fig. 7. Fig. 8. Fig. 9.	and Output Filtering	Fig. 13. Fig. 14.	SOT1693-3, 8 Lead SOP, Side port package out line, 98ASA99303D, Rev. E

Integrated silicon pressure sensor, on-chip signal conditioned, temperature compensated and

Contents

1	General description	1
2	Features and benefits	
3	Applications	1
4	Ordering information	1
4.1	Ordering options	2
5	Block diagram	
6	Pinning information	
6.1	Pinning	
6.2	Pin description	
7	Maximum Ratings	
8	Operating Characteristics	
9	Characteristics	
9.1	On-chip temperature compensation,	
	calibration, and signal conditioning	5
9.2	Pressure (P1)/Vacuum (P2) Side	
	Identification Table	6
9.3	Minimum Recommended Footprint for	
	Surface Mounted Applications	6
10	Package outline	
11	References	
12	Revision History	
13	Legal information	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.