

Breast Cancer Detection Contest

Supervised by

Maria Vakalopoulou Bich-Liên Doan Cristina Maniu

El Malih David, Elmrabet Tarmach Randa, Moalla Fatma, Rami Hamza {david.el-malih, randa.elmrabet-tarmach, fatma.moalla, hamza.rami}@student.ecp.fr

Overview & Contribution

- Automatic Breast Cancer Detection and Classification to assist radiologists on the task.
- Goal: Achieve radiologist expertise using few data samples.
- Contribution: Benchmark 3 state-of-the-art algorithms.

Data

- 325 images from MIAS [4] database.
- 6 different tumour classes.
- 20x augmenting using Horizontal flipping, Blurring, Adding some noise, ...

Object detection algorithms

Faster-RCNN [2]:

• Two-stage detector using Anchor boxes.

RetinaNet [3]:

- One-Stage detector using Anchor boxes
- 2 sub-networks: BBox regression and classification.
- Focal Loss (learns on few examples and handles class imbalance).

FCOS Object Detector [1]:

- One-Stage detector without anchor boxes
- 3 sub-networks: BBox regression, classification and centerness.
- Focal Loss.

Outputs

- **8K bounding boxes** prediction, along with their predicted class and confidence score
- Thresholding on confidence scores & Non-Maximum-Suppression

Filtered

FP - Wrong class

Results

Prediction Cases

TP - All correct

Per-class Precision & Recall

Metrics	RetinaNet	Faster R-CNN	FCOS
Precision	100,00%	94,12%	94,449
Recall	94,72%	98,65%	98,20%
F5-score	94,91%	98,47%	98,05%

Results & Error Analysis

Overall metrics analysis

- RetinaNet: 100% precision | Lowest recall Serious Issue.
- Faster-RCNN outperforms slightly FCOS.

Per-class metrics analysis

- All algorithms: 100% recall on
 MISC, ASYM and ARCH classes.
- Faster-RCNN:
 Outperforms on CALC class Better detection on small tumor.
- FCOS: Outperforms
 on CIRC and SPIC classes.

Model	Pros	Cons
RetinaNet	100% right predictions	Miss some tumours
Faster-RCNN	High recall ~98%	Wrong predictions (mostly
		on CALC)
FCOC	High recall ~98%	Less efficient than Faster-
FCOS		RCNN

Next Steps

- Try ensemble learning.
- Improve data augmentation GANs or AutoAugment.
- Train on larger datasets.
- Deeper classification based on background tissue type or the severity of tumor (B:Benign or M:Malignant).

References

- [1] C. Shen et. al. "FCOS: Fully Convolutional One-Stage Object Detection". In: (Aug. 2019).
- [2] K. He et. al. "Faster R-CNN: Towards Real-Time Object Detection". In: (Jan. 2016).
- [3] T.-Y. Lin et. al. "Focal Loss for Dense Object Detection". In: (Feb. 2018).
- [4] MIAS Database. https://tinyurl.com/y6elv5dr.
- [5] Project github repository. https://tinyurl.com/y5fpyt9y.