

01

MOTIVATION

Why study wildfires?

02

DATA

Fires, Populations, Weather

03

METHODS

Baselines, GCN, GraphSAGE, GIN

04

PROGRESS

Data subset results

05

PLAN

Full dataset results, comparisons, reasoning

Why Predict Wildfire Cause?

- Expense of wildfire cause evaluation
- Graphical Approach
- Data augmentation

POPULATION

Arson and other human-caused fires usually occur near population centers.

ELEVATION

Lightning is much more likely at high elevations.

WEATHER

Naturally-caused fires, on average, require drier conditions.

Also, thunderstorms predict lightning fires.

	ROWS	FEATURES
WILDFIRES	1.88M	29

KAGGLE WILDFIRE DB

- All U.S. wildfires, 1992-2015
- Size, Discovery Date, Containment Date,

Location, etc.

Cause

	ROWS	FEATURES
WILDFIRES	1.88M	29
POPULATION	141K	7

WORLD CITIES DATABASE

- Countries, Cities, Regions
- Location
- Population

	ROWS	FEATURES
WILDFIRES	1.88M	29
POPULATION	141K	7
WEATHER	1.56 M	32

NOAA GSOD

- 1929-Present
- One reading per day per station
- Missed readings
- Snow, Hail, Wind, etc.
- Temperature, Thunder, Precipitation, Dew Point

MLP

- 3 Hidden dense layers
 - 64 Neurons per layer
 - ReLU activation
 - Batch normalization
- dense 11-node softmax output

%53.8

Original Features

Kaggle %58.0 (Random forest)

METHODS

CONNECTIONS

SPACE

Connect fires by latitude & longitude

SPACE

Connect fires by latitude & longitude

TIME

Connect fires by day of year occurred

SPACE

Connect fires by latitude & longitude

TIME

Connect fires by day of year occurred

SPACE + TIME

Connect fires by both latitude, longitude, and day of year

SPACE

Connect fires by latitude & longitude

TIME

Connect fires by day of year occurred

SPACE + TIME

Connect fires by both latitude, longitude, and day of year

SPACE

Connect fires by latitude & longitude

TIME

Connect fires by day of year occurred

SPACE + TIME

Connect fires by both latitude, longitude, and day of year

METHOD

CONNECTIONS

SPACE

Connect fires by latitude & longitude

TIME

Connect fires by day of year occurred

SPACE + TIME

Connect fires by both latitude, longitude, and day of year

SPACE

Connect fires by latitude & longitude

TIME

Connect fires by day of year occurred

SPACE + TIME

Connect fires by both latitude, longitude, and day of year

MODELS

GCN

Mean Pooling

SPACE

Connect fires by latitude & longitude

TIME

Connect fires by day of year occurred

SPACE + TIME

Connect fires by both latitude, longitude, and day of year

MODELS

GCN

Mean Pooling

GraphSAGE

Max Pooling

METHOD

CONNECTIONS

SPACE

Connect fires by latitude & longitude

TIME

Connect fires by day of year occurred

SPACE + TIME

Connect fires by both latitude, longitude, and day of year

MODELS

GCN

Mean Pooling

GraphSAGE

Max Pooling

GIN

Sum Pooling MLP: 1 hidden layer, 64 neurons

METHOD

CONNECTIONS

SPACE

Connect fires by latitude & longitude

TIME

Connect fires by day of year occurred

SPACE + TIME

Connect fires by both latitude, longitude, and day of year

MODELS - DNN Variant

GCN

Mean Pooling

GraphSAGE

Max Pooling

GIN

Sum Pooling MLP: 1 hidden layer, 64 neurons

- Python library for graph deep learning
- based on Keras and Tensorflow
- all models run on GPU in Ubuntu
- Implements GCN, GraphSAGE, and GIN into Keras model layers

GNN Layers

500 Epochs

3 DNN Layers

Mean Imputation

SPACE + TIME (2015)

Converges quickly, but performs worse than a simple fully-connected model

GCN-DNN

Adding the fully-connected model, with the node embedding as input, does not improve performance

~53.4%

~52.0%

SPACE + TIME (2015)

~63.0%

GraphSAGE

Achieves state-of-the-art performance!

~61.0%

GraphSAGE-DNN

Also outperforms the baseline, but the added DNN does not improve the model.

Ш

SPACE + TIME (2015)

GIN struggles to converge after even 500 epochs of training.

GIN-DNN

The addition of a DNN stabilizes the training, but overall accuracy still is poor.

~43.0%

PROGRESS - GIN

Proposal

Determining problem, datasets, methods

Progress Report

Data augmentation, Familiarizing with tools

Proposal

Determining problem, datasets, methods

submission worthwhile

Future work

- Run analyses on all 1.88M fires
- Experiment with new NN structures?
- Experiment with other adj. matrices?
- Reduction to binary classification
 - Arson is the most important case!

- <u>https://commons.wikimedia.org/wiki/File:Deerfire_high_res_edit.jpg</u>
- https://static01.nyt.com/images/2019/06/11/us/00waspnest-01/merlin _156060048_755263d2-7783-4275-ae26-583f7f568253-superJumbo.jpg
- <u>https://www.nationalgeographic.com/content/dam/science/2019/10/09/california-wildfire/calif-wildfire-ap_18250148901527.adapt.1900.1.jpg</u>
- https://spektral.graphneural.network/
- Presentation template by Slidesgo
- Icons by Flaticon
- Infographics by Freepik
- Images created by Freepik

THANK YOU

Does anyone have questions?

