Problemi Tattici – Operativi Patient Flow

LM-41 Medicina TD – PGSS A.A. 23-24 Mimmo Conforti

Problemi Tattici - Operativi

□ Gestione delle attività

- Gestione produzione ed erogazione dei servizi
- Gestione accesso ai servizi (liste d'attesa, CUP)
- Assegnamento / Allocazione Risorse
- Gestione flusso delle attività

Patient Flow

□ Framework *PATIENT FLOW*

Rappresenta la capacità del sistema sanitario di soddisfare, in modo efficace ed efficiente, le esigenze di tutela della salute mentre i pazienti si *muovono* lungo i vari *stadi* dei processi di assistenza e cura.

Patient Flow

□ Framework *PATIENT FLOW*

- In che modo è possibile pianificare l'erogazione dei servizi e governare l'accesso dei pazienti con l'obiettivo di rendere il sistema nel suo complesso più efficace ed efficiente.
- Garantire un flusso continuo dei pazienti lungo i vari stadi, con adeguato controllo dei ritardi (tempi d'attesa, dimensione delle liste d'attesa), con contestuale erogazione efficace dei servizi e uso efficiente delle risorse.

Patient Flow

Patient Flow: Applicazioni

- □ Gestione dei pazienti in Radioterapia (*ammissione*)
- □ Gestione delle Sale Operatorie (*ammissione*, *risorse*)
- ☐ Gestione Ricovero Ospedaliero Week Hospital (ammissione, risorse, servizi)
- □ Gestione Pacchetto Ambulatoriale Complesso (PAC)
 - Day Service (ammissione, servizi)
- □ Assegnamento Posto Letto in ospedale (*ammissione*, *risorse*)

Gestione Pazienti in Radioterapia

Analisi del contesto (1)

□ RADIOTERAPIA

- La radioterapia è una terapia localizzata, non invasiva, indolore, effettuata per lo più in regime ambulatoriale, in grado di provocare la necrosi ovvero la morte delle cellule del tumore attraverso l'utilizzo di radiazioni di elevata energia chiamate radiazioni ionizzanti.
- Si stima che circa il 60 per cento dei malati di tumore, nel percorso di cura, sia sottoposto ad almeno un ciclo di radioterapia.

□ RISORSE

 Dispositivi biomedicali per produrre ed erogare le radiazioni ionizzanti: ACCELERATORI DI PARTICELLE (LINAC).

PROCESSO

Analisi del contesto (2)

□ Pianificazione del Trattamento

- Medico radioterapista determina la DOSE complessiva di radiazioni per il paziente
- **DOSE** di radiazione va erogata all'interno di un *CICLO* di trattamenti (durata del *CICLO*: 4-6 settimane)
- Un CICLO è articolato in SESSIONI settimanali
- Ogni SESSIONE settimanale è suddivisa in SEDUTE giornaliere
- Tra le *SESSIONI* è previsto qualche giorno di riposo
- In genere è prevista al più una *SEDUTA* al giorno

Analisi del contesto (3)

\Box CICLO - SESSIONE - SEDUTA

CICLO

Analisi del contesto (4)

 Organizzazione della SESSIONE – Calendario settimanale delle SEDUTE

	Slot 1	Slot 2	Slot 3	Slot 4	Slot 5	Slot 6	Slot 7	Slot 8
LUN								
MAR								
MER								
GIO								
VEN								

GIORNO – SLOT – PAZIENTE

Le celle colorate identificano la seduta del paziente (colore = paziente)

Problema decisionale (1)

Quale paziente trattare e quando trattare

Problema decisionale (2)

□ Requisiti

- Orizzonte temporale di schedulazione: <u>Settimana</u> (**Sessione**)
- Giorno suddiviso in Slot temporali di uguale durata
- Per ogni **Paziente**:
 - □ *Ciclo* basato su più *Sessioni* consecutive intervallate dallo stesso numero di giorni di riposo
 - □ Sessione articolata in una Seduta giornaliera ripetuta su giorni consecutivi
 - Numero di *Sedute* nella *Sessione*
 - □ Tempi netti di trattamento uguali
 - □ **Prima Seduta** del ciclo occupa 2 slot consecutivi
 - ☐ Indice di priorità clinica
- Pazienti già schedulati nelle settimane precedenti e che non hanno completato il *Ciclo* mantengono la stessa schedula della prima settimana
- Un solo LINAC a disposizione

Dinamica del processo decisionale

Schedulazione Pazienti Radioterapia

Modello di Ottimizzazione

Modello Base (1)

DATI

- \Box J = lista dinamica dei nuovi pazienti da schedulare per ogni settimana
- \square K = insieme dei giorni lavorativi della settimana
- $lue{W}$ = insieme degli slot temporali previsti nel giorno lavorativo
- □ $SCHED(/K/x/W/) = matrice\{0, 1\}$ che indica gli Slot già occupati
- □ Profilo Clinico Paziente:
 - Livello di Priorità Clinica pr_i
 - Numero di Sedute settimanali e_j

Modello Base (2)

DECISIONI

- □ Determinare se **Paziente** $j \in J$ avvierà il proprio *Ciclo* nella settimana corrente
- □ Determinare il **Giorno** $k \in K$ e lo **Slot** $w \in W$ in cui il paziente $j \in J$ sarà sottoposto alla *Prima Seduta* del *Ciclo*
- □ Determinare il **Giorno** $k \in K$ e lo **Slot** $w \in W$ in cui il **Paziente** $j \in J$ sarà sottoposto al fissato numero e_j di *Sedute* settimanali

Modello Base (3)

Variabili Decisionali

```
x_j = \begin{cases} 1 & \text{if the patient } j \text{ begins the treatment program on the current} \\ & \text{week;} \\ 0 & \text{otherwise.} \end{cases}
```

$$t_{jkw} = \begin{cases} 1 & \text{if the patient } j \text{ has the first appointment in time slot } w \text{ on day } k; \\ 0 & \text{otherwise.} \end{cases}$$

$$y_{jkw} = \begin{cases} 1 & \text{if the patient } j \text{ is assigned to time slot } w \text{ on day } k; \\ 0 & \text{otherwise.} \end{cases}$$

Modello Base (4)

OBIETTIVO

Massimizzare il numero di pazienti schedulati, pesati con la priorità clinica.

$$\max z = \sum_{j \in J} pr_j x_j$$

Osservazione

- Mitigare la scelta di privilegiare in assoluto i pazienti con alta priorità clinica.
- Tenere conto dei pazienti con stessa priorità ma in lista da più tempo e dei pazienti in lista da più tempo con bassa priorità.

Modello Base (5)

Funzione Obiettivo

$$\min \sum_{j} \sum_{k} \sum_{w} \left(\frac{1}{pr_{j}} - 1 \right) t_{jkw} + \sum_{j} \sum_{k} \sum_{w} \left(1 - t_{jkw} \right) \frac{1}{j} pr_{j}^{\left(\frac{1}{P \max - pr_{j}} \right)}$$

$$P_{\max} = \max_{j \in \mathcal{J}} \left\{ pr_j \right\} + 1$$

Modello Base (6)

CONDIZIONI - LIMITAZIONI

- □ Ad ogni Slot può essere assegnata al più una attività
- □ Ad ogni Paziente può essere assegnato al più uno Slot al giorno
- □ Ogni Paziente può avere al più una Prima Seduta del Ciclo
- □ Ad ogni Paziente possono essere assegnati due Slot consecutivi al più una volta nel Ciclo
- □ Ogni Paziente schedulato deve completare le previste Sedute nella Sessione
- □ Le Sedute previste nella Sessione devono essere effettuate in giorni consecutivi
- □ Occorre assegnare due Slot consecutivi per la Prima Seduta

Modello Base (7)

Vincoli

$$\begin{array}{lll} \sum\limits_{j} y_{jkw} + \sum\limits_{j} r_{jkw} + sched_{kw} \leq 1 & \forall k, \forall w \\ \sum\limits_{j} y_{jkw} \leq 1 & \forall j \\ \sum\limits_{k} \sum\limits_{j} t_{jkw} \leq 1 & \forall j \\ \sum\limits_{k} \sum\limits_{j} \sum\limits_{j} t_{jkw} \leq 1 & \forall j \\ \sum\limits_{k} \sum\limits_{j} \sum\limits_{j} y_{jkw} = x_{j}e_{j} & \forall j \\ \sum\limits_{k+e_{j}-1} \sum\limits_{j} \sum\limits_{k} y_{jsw} \geq e_{j} \sum\limits_{j} t_{jkw} & \forall j, k = 1, ..., daylim(j) & daylim(j) = |K| - e_{j} + 1 \\ t_{jkw} = r_{jk(w+1)} & \forall j, \forall k, \forall w = 1, ..., |\mathcal{W}| - 1 \\ y_{jkw} \geq t_{jkw} & \forall j, \forall k, \forall w \\ x_{j}, y_{jkw}, t_{jkw}, r_{jkw} \in \{0, 1\} & \forall j, \forall k, \forall w \\ \end{array}$$

Modello Esteso (1)

- Ad ogni settimana, **ri-schedulare** i Pazienti che hanno già avviato il *Ciclo* con l'obiettivo di incrementare il numero dei nuovi Pazienti schedulati
- ➢ Pazienti già schedulati che hanno avviato il *Ciclo* devono continuare le *Sessioni* previste del *Ciclo*
- \triangleright Pazienti nuovi $j \in J$,
- ightharpoonup Pazienti con Ciclo già avviato $i \in RTPL$, $\overline{e_j}$ numero di Sedute settimanali del Paziente
- ✓ Nuova Decisione = ri-schedulare il Paziente $i \in RTPL$

$$p_{ikw} = \begin{cases} 1, se \ paziente \ i \in RTPL \ \grave{e} \ schedulato \ nel \ giorno \ k, slot \ w \\ 0, altrimenti \end{cases}$$

Modello Esteso (2)

 $j \in \mathcal{J}$ $j \in \mathcal{J}$ $i \in \mathcal{RTPL}$

$$\begin{split} & \sum_{w} p_{ikw} \leq 1 & \forall i \in \mathcal{RTPL}, \forall k \\ & \sum_{k = \bar{e}_i - 1}^{k + \bar{e}_i - 1} \sum_{w} p_{isw} \geq \bar{e}_i p_{ikw} & \forall i \in \mathcal{RTPL}, \forall k = 1, \dots, daylim(i), \forall w \\ & \sum_{k = \bar{e}_i}^{k + \bar{e}_i - 1} \sum_{w} p_{ikw} = \bar{e}_i & \forall i \in \mathcal{RTPL}. \\ & \sum_{k = \bar{e}_i}^{k + \bar{e}_i - 1} \sum_{w} p_{ikw} + \sum_{k = \bar{e}_i}^{k + \bar{e}_i - 1} \sum_{w} p_{ikw} \leq 1 & \forall k \in \mathcal{K}, \forall w \in \mathcal{W} \end{split}$$

Modello Esteso (3)

$$\min \sum_{j} \sum_{k} \sum_{w} \left(\frac{1}{pr_{j}} - 1 \right) t_{jkw} + \sum_{j} \sum_{k} \sum_{w} \left(1 - t_{jkw} \right) \frac{1}{j} pr_{j}^{\left(\frac{1}{P \max - pr_{j}} \right)}$$
s.t.

$$\begin{array}{lll} \sum\limits_{w}^{w}y_{jkw} \leq 1 & \forall j, \forall k \\ \sum\limits_{w}^{w}p_{ikw} \leq 1 & \forall i \in \mathcal{R}T\mathcal{PL}, \forall k \\ y_{jkw} \geq t_{jkw} & \forall j, \forall k, \forall w \\ \sum\limits_{j}^{w}y_{jkw} + \sum\limits_{j}^{w}r_{jkw} + \sum\limits_{i \in \mathcal{R}T\mathcal{PL}}^{w}p_{ikw} \leq 1 & \forall j, \forall k, \forall w \\ t_{jkw} = r_{jk(w+1)} & \forall j, \forall k, \forall w \\ \sum\limits_{k}^{w}\sum\limits_{j}^{w}r_{jkw} \leq 1 & \forall j \\ \sum\limits_{k+\bar{e}_i-1}^{w}\sum\limits_{k}^{w}p_{isw} \geq \bar{e}_i\,p_{ikw} & \forall i \in \mathcal{R}T\mathcal{PL}, \forall w, \\ \sum\limits_{k}^{w}\sum\limits_{w}^{w}p_{ikw} = \bar{e}_i & \forall i \in \mathcal{R}T\mathcal{PL} \\ \sum\limits_{k}^{w}\sum\limits_{w}^{w}p_{ikw} = \bar{e}_i & \forall j, k = 1, \dots, daylim(i) \\ \sum\limits_{k}^{w}\sum\limits_{w}^{w}y_{jkw} = e_j\sum\limits_{k}^{w}\sum\limits_{w}^{w}t_{jkw} & \forall j, k = 1, \dots, daylim(j) \\ \sum\limits_{k}^{w}\sum\limits_{w}^{w}y_{jkw} = e_j\sum\limits_{k}^{w}\sum\limits_{w}^{w}t_{jkw} & \forall j, \forall k, \forall w. \end{array}$$

Schedulazione Pazienti Radioterapia

Esperimenti Computazionali

Generica Istanza del Problema

Saturday

Scenari Sperimentali

- 3 possibili scenari applicativi
- Le varie istanze risolte con il sistema software LINGO
- Orizzonte di pianificazione = settimana, |K| = 6, |W| = 10
- Numero sedute per sessione = $e_i \in \{4, 5\}$
- 6 pazienti hanno già avviato il proprio ciclo, ognuno con 5 sedute da effettuare
 - RTPL = $\{ P1, P2, P3, P4, P5, P6 \}$, con $e_i \in \{ 5, 5, 5, 5, 5, 5 \}$
 - Valori di priorità uguali per ogni paziente
- 5 nuovi pazienti in lista d'attesa:
 - $J = \{P1, P2, P3, P4, P5\}, con e_j \in \{5, 5, 5, 5, 4\}$
 - Valori di priorità uguali per ogni nuovo paziente

Esempio possibile scenario

	1	2	3	4	5	6	7	8	9	10
Monday	Χ			Χ	Χ	Χ		Χ		Χ
Tuesday	χ			Χ	Χ	Χ		Χ		Χ
Wednesday	Χ			Χ	Χ	Χ		Χ		Χ
Thursday	χ			Χ	Χ	Χ		Χ		Χ
Friday	Χ			Χ	Χ	Χ		Χ		Χ
Saturday										

Scenario 1: schedulazione ottima

	1	2	3	4	5	6	7	8	9	10
Monday	F)1		Χ	Χ	F	2		F	3
Tuesday	Χ	P1		Χ	Χ	Χ	P2	Χ	P 3	Χ
Wednesday	Χ	P1		Χ	Χ	Χ	P2	Χ	P3	Χ
Thursday	Χ	P1		Χ	Χ	Χ	P2	Χ	P3	Χ
Friday	Χ	P1		Χ	Χ	Χ	P2	Χ	P3	Χ
Saturday	Χ					Χ		Χ		Χ

Scenario 2: schedulazione ottima

	1	2	3	4	5	6	7	8	9	10
Monday	P4	P4	P1	P1		P2	P2		P3	P3
Tuesday	Χ	P4	P1	Χ	Χ	Χ	P2	Χ	P3	Χ
Wednesday	Χ	P4	P1	Χ	Χ	Χ	P2	Χ	P3	Χ
Thursday	Χ	P4	P1	Χ	Χ	Χ	P2	Χ	P3	Χ
Friday	Χ		P1	Χ	Χ	Χ	P2	Χ	P3	Χ
Saturday	Χ		_	Χ	Χ	Χ		Χ		Χ

Scenario 3: schedulazione ottima

	1	2	3	4	5	6	7	8	9	10
Monday	Χ	F	2	Χ	Χ	Χ		Χ		Χ
Tuesday	Χ	F	1	Χ	Χ	Χ	P2	Χ		Χ
Wednesday	Χ	F	5	Χ	Χ	Χ	P2	Χ	P1	Χ
Thursday	Χ	P5		Χ	Χ	Χ	P2	Χ	P1	Χ
Friday	Χ	P5		Χ	Χ	Χ	P2	Χ	P1	Χ
Saturday		P5							P1	

Modello Esteso

I tre scenari precedenti sono equivalenti. Schedula ottima

	1	2	3	4	5	6	7	8	9	10
Monday	Р	2	F	21	Р	4		6	P	3
Tuesday	P2	4	3	P1	P4	1	5	6	P3	2
Wednesday	P2	4	3	P1	P4	1	5	6	P3	2
Thursday	P2	4	3	P1	P4	1	5	6	P3	2
Friday	P2	4	3	P1	P4	1	5	6	P3	2
Saturday		4	3			1	5			2

Due differenti classi di priorità. Schedula ottima

	1	2	3	4	5	6	7	8	9	10
Monday		Р	4	Р	1	6	Р	5	P	3
Tuesday	2	P4	1	P1	4	6	P5	5	P3	3
Wednesday	2	P4	1	P1	4	6	P5	5	P3	3
Thursday	2	P4	1	P1	4	6	P5	5	P3	3
Friday	2	P4	1	P1	4	6	P5	5	P3	3
Saturday	2		1		4			5		3