UNIVERSIDADE ESTADUAL DE CAMPINAS

Instituto de Computação

Disciplina	Entrega
MC202	30/05/2020,23.59
Professor	
Iago Augusto de Carvalho	
Monitores	
Arthur (PAD), Brenner (PED), Deyvison (PED), Enoque (PED), Matteus (PED), Thiago (PAD).	

Atividade de Laboratório 5

1 Introdução

Diego Nobre (DN) e seus amigos estão brincando da seguinte forma: os amigos formam uma fila e cada um ganha um número distinto. Logo após, todos devem chutar quantas inversões existem nessa fila, sendo declarado ganhador o amigo que chegar mais próximo do resultado correto.

De maneira mais formal, podemos definir uma fila F de K pessoas como $F = \{a_1, a_2, \ldots, a_K\}$. Podemos dizer que existe a necessidade de se realizar uma inversão quando dois amigos a_i e a_j , tal que i < j, quando $a_j < a_i$, ou seja, quando os dois amigos não estão posicionados corretamente em ordem crescente na fila. Na Figura 1 é possível ver um exemplo onde existe 3 inversões na sequência: (4,1), (2,1), (4,3).

DN é péssimo nesse jogo e resolveu pedir ajudas externas e solicitou que você, aluno de MC202, fizesse um programa que dado a ordem que cada amigo está, retorne a quantidade correta de inversões para que DN possa ganhar o jogo.

Figura 1: Inversões nos valores (4,1), (2,1), (4,3)

2 O que deve ser feito

2.1 Algoritmos

Deve-se implementar um **Merge Sort** que, dado um *N*, indicando a quantidade de pessoas que participarão da brincadeira, e o número que cada um ganhou, retorne a quantidade de inversões que a fila possui.

2.2 Restrições

1. O código deve ser **feito em C**;

- 2. Você deverá implementar qualquer estrutura de dados que utilizar;
- 3. Seu algoritmo deve possuir a complexidade menor ou igual a $O(n \log n)$;
 - Esta é exatamente a complexidade do Merge Sort;
 - O Susy será encerrado automaticamente e reportará um erro quando a complexidade do algoritmo for superior a indicada;

2.3 Entrada

A entrada é composta por um inteiro N representando a quantidade de amigos presente na brincadeira e, logo em seguida, N inteiros. O i-ésimo inteiro representa o valor recebido do amigo que está na i-ésima posição na fila formada pelos mesmos.

2.4 Saída

A saída de seu programa é um único inteiro, **seguido** de uma quebra de linha, representando o valor que DN deve falar para ganhar a brincadeira.

2.5 Exemplos de Entrada e Saída

Entrada	Saida
$5 \\ 2\ 4\ 1\ 3\ 5$	3
$\begin{matrix}5\\1&2&3&4&5\end{matrix}$	0
5 5 1 2 3 4	4

A resolução do primeiro exemplo necessita de três inversões. Existem diversas formas de realizar a ordenação deste vetor com somente três inversões. Uma delas segue os passos abaixo.

Fila inicial	$2\ 4\ 1\ 3\ 5$
Primeira inversão	$1\; 4\; 2\; 3\; 5$
Segunda inversão	$1\ 4\ 3\ 2\ 5$
Terceira inversão	1 2 3 4 5

Para o segundo exemplo, a fila está perfeitamente ordenada. Deste modo, nenhuma inversão é necessária. Todos podem notar também que as inversões são sequenciais. No último exemplo, onde a fila é composta pelos números $\{5,1,2,3,4\}$, é preciso quatro inversões. A fila após cada uma destas inversões segue abaixo. Note que todas as inversões envolvem o número 5 (neste caso particular).

Fila inicial	5 1 2 3 4
Primeira inversão	$1\ 5\ 2\ 3\ 4$
Segunda inversão	$1\ 2\ 5\ 3\ 4$
Terceira inversão	$1\; 2\; 3\; 5\; 4$
Quarta inversão	$1\ 2\ 3\ 4\ 5$

3 Entrega

Você deve entregar seu código pelo **Susy**, através do link https://susy.ic.unicamp.br:9999/mc202defg/, contendo um único arquivo **main** nomeado de lab5.c e até 4 outros arquivos .c e .h (**podendo até ser nenhum outro**).

4 Nota

Essa atividade de laboratório possui peso 3.

5 Dúvidas

Em caso de dúvidas, entre em contato com um dos monitores ou o professor da disciplina a qualquer momento.