Proposição 1. Seja G um grafo conexo. Seja T uma árvore de Busca em Largura de G a partir de um vértice v qualquer. Se existem vértices $s,t \in V(G)$ tais que $st \in E(G)$, $st \notin E(T)$ e $dist_T(v,s) = dist_T(v,t) + 1$, então G possui ciclo par.

Proposição 2. Seja G um grafo conexo livre de ciclos pares. Seja T uma Árvore de Busca em Largura de G a partir de $v \in V(G)$. Seja $V \subsetneq V(G)$ o conjunto de vértices com distância p > 0 de v. Temos que o conjunto E(G[V]) é um emparelhamento.

Lema 1. Seja G um grafo. Se existe uma k-partição V_1, V_2, \ldots, V_k dos vértices de G tal que, para todo vértice $v \in V(G)$, temos que $|N(v) \cap V_i| = 1$, para algum $1 \le i \le k$, então $\chi_{pcf}(G) \le \sum_{i=1}^k \chi(G[V_i])$.

Demonstração. Seja $H_i=G[V_i]$, para todo $1\leq i\leq k$. Iremos colorir cada subgrafo H_i com $\chi(H_i)$ cores distintas. Para isso, cada cor será representada por um par ordenado. Seja $c_i:V(H_i)\to \{i\}\times \chi(H_i)$ uma coloração própria de H_i . Para todo par distinto de colorações c_i e c_j , temos que $c_i(v)\neq c_j(u)$, para todo $v\in V(H_i)$ e $u\in V(H_j)$, pois $(i,x)\neq (j,y)$ para $i\neq j$.

Seja c uma coloração de G tal que $c(v)=c_i(v)$ se e somente se $v\in V(H_i)$. Em outras palavras, c é a união das colorações usadas em cada subgrafo H_i . Como c_i é uma coloração própria de H_i e todo par distinto de subgrafos H_i e H_j são coloridos com cores distintas, temos que c é uma coloração própria de G.

Como, para todo vértice $v \in V(G)$, vale que $|N(v) \cap V(H_i)| = 1$, para algum subgrafo H_i , e como as cores usadas em H_i são distintas das cores usadas em $V(G) \setminus V(H_i)$, temos que existe uma cor (i,x) que aparece uma única vez na vizinhança de v, para $x \in [\chi(H_i)]$. Sendo assim, c descreve uma coloração própria livre de conflitos de G.

Como
$$c_i$$
 utiliza $\chi(H_i)$ cores, para todo $1 \le i \le k$, temos que $\chi_{pcf}(G) \le \sum_{i=1}^k \chi(H_i)$.

Teorema 1. Seja G um grafo conexo. Se G é livre de ciclos pares, então $\chi_{pcf}(G) \leq 7$.

Demonstração. Seja T uma Árvore de Busca em Largura de G a partir de um vértice r qualquer. Sabemos que T é uma árvore geradora, pois G é conexo. Seja V_0, V_1, V_2 uma partição de G tal que $x \in V_i$ se e somente se $i = dist_T(r,x) \pmod 3$. Seja s um vértice de G, tal que $s \neq r$. Seja p o pai de s em T e seja s um filho de s em s. Note que s e f pertencem a partições distintas, pois:

$$dist_T(r,p) \pmod{3} \neq dist_T(r,p) + 2 \pmod{3} = dist_T(r,f) \pmod{3}$$
 (1)

Seja $t \in V(G)$ um vértice tal que $dist_T(r,s) > dist_T(r,t) + 1$. Sabemos que $st \notin E(G)$, pois T é uma árvore de Busca em Largura. Sendo assim, se $st \in E(G)$ e $st \notin E(T)$, então $dist_T(r,s) = dist_T(r,t) + 1$ ou $dist_T(r,s) = dist_T(r,t)$. Pela Proposição 1, sabemos que se $st \in E(G)$ e $st \notin E(T)$, então $dist_T(r,s) = dist_T(r,t)$, pois G é livre de ciclos pares. Note que isto implica que s é adjacente a precisamente um

vértice u em G tal que $dist_T(r, s) = dist_T(r, u) + 1$, e, sendo assim, u é o pai de s em T, i.e., u = p. Note que $|N(s) \cap V_i| = 1$, onde $f \in V_i$, para todo $s \in V(G) \setminus \{r\}$.

Resta agora a partição do vértice raiz r. Iremos remover um vértice $v \in N(r)$ da partição V_1 e iremos construir uma nova partição $V_0, V_1^{'}, V_2, V_3$ de G, de modo que $V_1^{'} = V_1 \setminus \{v\}$ e $V_3 = \{v\}$. Seja s um vértice onde $|N(s) \cap V_1| = 1$, i.e., o pai p de s pertence a V_1 . Queremos argumentar que a propriedade é satisfeita para s na nova partição $V_0, V_1^{'}, V_2, V_3$. Se $p \neq v$, então $|N(s) \cap V_1^{'}| = 1$ e a propriedade continua valendo. Se p = v, então $N(s) \cap V_3 = \{v\}$, i.e., $|N(s) \cap V_3| = 1$ e a propriedade vale.

Note que a partição V_0, V_1', V_2 e V_3 satisfaz a condição do Lema 1. Note que pela Proposição 2, $E(G[V_i])$ é um emparelhamento. Sendo assim, temos que $\chi(G[V_i])=2$, para $0 \le i \le 2$. Note que $\chi(G[V_3])=1$, pois $V_3=\{v\}$. Sendo assim, pelo Lema 1, temos que $\chi_{pcf}(G) \le 7$.

Definição 1. Seja $\mathcal{P} = \{P_1, P_2, \dots P_k\}$ uma k-partição de d elementos distintos. Dizemos que \mathcal{P} é uma k-partição par se $|P_i|$ é par, para todo $P_i \in \mathcal{P}$.

Definição 2. Denotamos por $\mu(d, k)$ a quantidade de k-partições pares distintas de d elementos distintos.

Definição 3. Denotamos por $\varphi_2(d,k)$ a quantidade de k-partições \mathcal{P} não pares de d elementos onde somente as duas primeiras partes $P_1, P_2 \in \mathcal{P}$ possuem cardinalidade ímpar.

Definição 4. Denotamos por $\chi_{io}(G)$ o menor inteiro k tal que G possui uma k-coloração ímpar não própria.

Proposição 3. Seja 2n!! o fatorial dos impares. Temos que $2n!! \le n^n$.

Teorema 2.
$$\chi_{io}(G) \leq \ell \cdot \sqrt[\ell]{e \cdot \Delta^2}$$
, para $1 \leq \ell \leq \left\lceil \frac{\delta(G)}{2} \right\rceil$.

Para demonstrar o Teorema 2, primeiro iremos demonstrar que $\mathbb{P}[X_v] = \mathbb{P}[Y_{d(v)}]$, onde X_v é o evento do vértice $v \in V(G)$ não ter testemunha ímpar em uma k-coloração arbitrária e $Y_{d(v)}$ é o evento de uma k-partição \mathcal{P} de d(v) elementos ser par. Com isso, podemos analisar apenas $\mathbb{P}[Y_{d(v)}] = \frac{\mu(d(v),k)}{k^{d(v)}}$. Como $\mu(d(v),k)$ é igual a 0 para d(v) ímpar, iremos considerar apenas quando d(v) é par. Após, iremos demonstrar um limitante superior para $\mu(d(v),k)$ e, com isso, um limitante superior para $\mathbb{P}[Y_{d(v)}]$. Por fim, iremos demonstrar que $\mathbb{P}[Y_{d(u)}] \leq \mathbb{P}[Y_{d(v)}]$, para $d(u) \geq d(v)$, i.e., a probabilidade de uma k-partição \mathcal{P} ser par não aumenta conforme aumentamos o número de elementos que temos que particionar, considerando que d(u) e d(v) são pares. Isto implica que $\mathbb{P}[X_v] = \mathbb{P}[Y_{d(v)}] \leq \mathbb{P}[Y_{2\ell}]$, para todo $v \in V(G)$ e $1 \leq \ell \leq \frac{\delta(G)}{2}$. Sendo assim, utilizando o Lema Local de Lovász, iremos limitar o problema da k-coloração ímpar não própria por $\delta(G)$.

Lema 2. Seja G um grafo de ordem n colorido com k cores uniforme e aleatoriamente. Seja X_v o evento do vértice $v \in V(G)$ não ter testemunha ímpar. Seja $Y_{d(v)}$ o evento de uma k-partição de d(v) elementos \mathcal{P} ser par. Temos que $\mathbb{P}[X_v] = \mathbb{P}[Y_{d(v)}]$.

Demonstração. Sabemos que há $\mu(d(v),k)$ maneiras de k-colorir os vértices de N(v), de modo que v não possua testemunha ímpar. Note que temos exatamente $\mu(d(v),k)\cdot k^{n-d(v)}$ maneiras de colorir G com k cores de modo que v não possua testemunha ímpar, pois ao colorir N(v) com uma das k-colorações contadas em $\mu(d(v),k)$, podemos colorir os vértices de $V(G)\setminus N(v)$ com qualquer uma das k cores disponíveis. Note que há k^n formas de colorir G com k cores. Sendo assim:

$$\mathbb{P}[X_v] = \frac{\mu(d(v), k) \cdot k^{n - d(v)}}{k^n} = \frac{\mu(d(v), k)}{k^{d(v)}} = \mathbb{P}[Y_{d(v)}]$$
 (2)

Lema 3. $\mu(2d, k) \le (2d - 1) \cdot k \cdot \mu(2d - 2, k)$, para $d \ge 1$.

Demonstração. Iremos construir as k-partições pares \mathcal{P} possíveis de 2d elementos com base nas escolhas que temos para um determinado elemento $x \in [2d]$. Devemos escolher uma parte P_i para x pertencer e temos k partes disponíveis para x. Como cada parte tem tamanho par, devemos escolher um elemento $y \in [2d]$ diferente de x para pertencer também à parte P_i . Temos 2d-1 escolhas para este caso. Por fim, devemos particionar os 2d-2 elementos restantes em k partes de modo que cada parte tenha tamanho par. Sendo assim, devemos escolher uma k-partição par \mathcal{P}' de 2d-2 elementos. Logo, $\mu(2d,k) \leq (2d-1) \cdot k \cdot \mu(2d-2,k)$.

Lema 4. $\mu(2d, k) \leq (d \cdot k)^d$, para $d \geq 1$.

Demonstração. Iremos demonstrar por indução em d que $\mu(2d,k) \leq 2d!! \cdot k^d$. Como $2d!! \leq d^d$, pela Proposição 3, disto segue que $\mu(2d,k) \leq (d\cdot k)^d$.

Base (d=1): Pelo Lema 3, temos que $\mu(2,k) \leq k \cdot \mu(0,k) = 2!! \cdot k$ e o resultado segue.

Passo (d>1): Suponha que $\mu(2\ell,k)\leq (2\ell)!!\cdot k^\ell$, para $1\leq \ell < d$. Pelo Lema 3, $\mu(2d,k)\leq (2d-1)\cdot k\cdot \mu(2\cdot (d-1),k)$. Por HI, temos que:

$$\mu(2 \cdot (d-1), k) \le (2d-2)!! \cdot k^{d-1} \tag{3}$$

Portanto:

$$\mu(2d, k) \le (2d - 1) \cdot k \cdot \mu(2 \cdot (d - 1), k)$$

$$\le (2d - 1) \cdot k \cdot (2d - 2)!! \cdot k^{d - 1}$$

$$< 2d!! \cdot k^{d}$$
(4)

Lema 5.

$$\mu(2d,k) = \begin{cases} 1 & k = 1\\ \sum_{i=0}^{d} {2d \choose 2i} \cdot \mu(2i,k-1) & c.c. \end{cases}$$
 (5)

Demonstração. Se k=1, então $\mu(2d,k)=1$, pois os 2d elementos devem estar contidos em uma única parte. Sendo assim, considere que k>1. Agora, iremos construir as k-partições pares $\mathcal{P}=\{P_1,P_2,\dots P_k\}$ possíveis de 2d elementos. Primeiro, devemos escolher quantos dos 2d elementos irão pertencer a parte P_k . Como $|P_k|$ é par, podemos escolher qualquer inteiro i entre 0 e d, de modo que $|P_k|=2i$. Como os 2d elementos são distintos, temos $\binom{2d}{2i}=\binom{2d}{2d-2i}$ maneiras de escolher 2i elementos para a parte P_k . Após isso, devemos particionar os 2d-2i elementos restantes em (k-1) partes de tamanho par, sendo assim, devemos escolher uma (k-1)-partição par \mathcal{P}' de 2d-2i elementos. Portanto:

$$\mu(2d, k) = \sum_{i=0}^{d} {2d \choose 2i} \cdot \mu(2d - 2i, k - 1)$$

$$= \sum_{i=0}^{d} {2d \choose 2d - 2i} \cdot \mu(2d - 2i, k - 1)$$

$$= \sum_{i=0}^{d} {2d \choose 2i} \cdot \mu(2i, k - 1)$$
(6)

Lema 6.

$$\varphi_{2}(2d,k) = \begin{cases} 0 & \text{se } k \leq 1\\ 2^{2d-1} & \text{se } k = 2\\ \sum_{i=1}^{d} {2d \choose 2i} \cdot \varphi_{2}(2i,k-1) & \text{c. c.} \end{cases}$$
 (7)

Demonstração. Iremos analisar cada caso da recorrência separadamente.

Caso 1 ($k \le 1$): Se $k \le 1$, então não há como k-particionar os 2d elementos de modo que apenas as partes P_1 e P_2 tenham tamanho ímpar. Portanto, $\varphi(2d,k)=0$.

Caso 2 (k=2): Se k=2, então qualquer k-partição $\mathcal{P}=\{P_1,P_2\}$ de 2d elementos é contada em $\mu(2d,2)$ ou em $\varphi_2(2d,2)$, pois como temos um número par de elementos, ambas partes P_1 e P_2 têm tamanho par ou ímpar. Logo $\mu(2d,2)+\varphi_2(2d,2)=2^{2d}$, pois 2^{2d} é o total de 2-partições possíveis de 2d elementos. Pelo Lema 5:

$$\mu(2d,2) = \sum_{i=0}^{d} {2d \choose 2i} \cdot \mu(2i,1) = \sum_{i=0}^{d} {2d \choose 2i} = 2^{2d-1}$$
 (8)

Logo, temos que $\varphi_2(2d, 2) = 2^{2d} - 2^{2d-1} = 2^{2d-1}$ e o resultado segue.

Caso 3 (k>2): Iremos construir as k-partições não pares $\mathcal{P}=\{P_1,P_2,\dots P_k\}$ possíveis de 2d elementos. Como k>2, existe uma parte $P_i\in\mathcal{P}$, onde $|P_i|$ é par. Sendo assim, a demonstração segue de modo análogo à demonstração do Lema 5, com a única restrição de que $|P_i|<2d$, pois as partes P_1 e P_2 tem ao menos um elemento. \square

Lema 7.
$$\mu(2d, k) \leq \mu(2d - 2, k) \cdot k^2$$
, para $d \geq 1$.

Demonstração. Iremos provar que $\mu(2d,k)=k\cdot\mu(2d-2,k)+(k^2-k)\cdot\varphi_2(2d-2,k)$. Disto segue que $\mu(2d,k)\leq\mu(2d-2,k)\cdot k^2$, pois, pelos Lemas 5 e 6, temos que $\varphi_2(2d-2,k)\leq\mu(2d-2,k)$, considerando que ambos possuem uma recorrência similar e ainda $\varphi_2(2d,2)=\mu(2d,2)$. Sejam dois elementos distintos $x,y\in[2d]$. Iremos construir uma k-partição par $\mathcal P$ de 2d elementos com base em duas escolhas: se x e y irão pertencer a mesma parte $P_i\in\mathcal P$ ou não.

Caso 1: Se escolhermos que x e y irão pertencer a mesma parte $P_i \in \mathcal{P}$, então devemos escolher uma parte P_i das k partes disponíveis. Após, devemos escolher uma k-partição par \mathcal{P}' de 2d-2 elementos para os elementos restantes. Sendo assim, para este caso, temos $k \cdot \mu(2d-2,k)$ partições possíveis.

Caso 2: Se escolhermos que $x \in P_i$ e $y \in P_j$, onde $P_i \neq P_j$, então devemos escolher primeiro quais são as partes P_i e P_j dentre as k partes que irão conter x e y respectivamente. Temos $2 \cdot \binom{k}{2} = k^2 - k$ formas de escolher P_i e P_j , pois há $\binom{k}{2}$ maneiras de escolher duas das k partes disponíveis e há duas maneiras de escolher qual das duas partes irá conter cada elemento. Após, devemos escolher uma k-partição não par \mathcal{P}' onde apenas as partes P_i e P_j tenham tamanho ímpar. Por simetria das partes, há exatamente $\varphi_2(2d-2,k)$ partições \mathcal{P}' distintas. Logo, para este caso, temos $(k^2-k)\cdot \varphi_2(2d-2,k)$ partições possíveis.

Lema 8. Seja Y_{2d} o evento de uma k-partição de 2d elementos \mathcal{P} ser par, para $d \geq 1$. Seja Y_{2d-2} o evento de uma k-partição de 2d-2 elementos \mathcal{P}' ser par. Temos que $\mathbb{P}[Y_{2d}] \leq \mathbb{P}[Y_{2d-2}]$.

Demonstração. Pelo Lema 7, temos que $\mu(2d,k) \leq \mu(2d-2,k) \cdot k^2$. Logo:

$$\mathbb{P}[Y_{2d}] = \frac{\mu(2d, k)}{k^{2d}} \le \frac{\mu(2d - 2, k) \cdot k^2}{k^{2d}} = \frac{\mu(2d - 2, k)}{k^{2d - 2}} = \mathbb{P}[Y_{2d - 2}] \tag{9}$$

Demonstração do Teorema 2. Pinte os vértices de G com $k=\ell\cdot\sqrt[\ell]{e\cdot\Delta^2}$ cores aleatoriamente e independentemente, onde $1\leq\ell\leq\left\lceil\frac{\delta(G)}{2}\right\rceil$. Seja X_v o evento de v não ter testemunha ímpar, para $v\in V(G)$. Pelo Lema 2, temos que $\mathbb{P}[X_v]=\mathbb{P}[Y_{d(v)}]$, onde $Y_{d(v)}$ é o evento de uma k-partição de d(v) elementos \mathcal{P} ser par. Pelo Lema

8, temos que $\mathbb{P}[X_v] = \mathbb{P}[Y_{d(v)}] \leq \mathbb{P}[Y_{2\ell}]$, para todo $v \in V(G)$. Pelo Lema 4, $\mathbb{P}[Y_{2\ell}] = \frac{\mu(2\ell,k)}{k^{2\ell}} \leq \frac{(\ell \cdot k)^\ell}{k^{2\ell}} = \left(\frac{\ell}{k}\right)^\ell$. Portanto:

$$\mathbb{P}[X_v] \le \mathbb{P}[Y_{2\ell}] \le \left(\frac{\ell}{k}\right)^{\ell} = \left(\frac{\ell}{\ell \cdot \sqrt[\ell]{e \cdot \Delta^2}}\right)^{\ell} = \frac{1}{e \cdot \Delta^2}$$
(10)

Note que cada evento X_v é dependente a no máximo $\Delta^2-\Delta$ outros eventos, para todo $v\in V(G)$. Sendo assim, pelo Lema Local de Lovász, temos que $\mathbb{P}[\bigcap_{v\in V(G)}\overline{X_v}]>0$. Portanto, existe uma k-coloração onde v tem testemunha ímpar, para todo $v\in V(G)$. Logo, $\chi_{io}(G)\leq k=\ell\cdot\sqrt[\ell]{e\cdot\Delta^2}$, para $1\leq\ell\leq\frac{\delta}{2}$.

Definição 5. Seja G um grafo. Denotamos por $\tau(e)$ a quantidade de ciclos que a aresta $e \in E(G)$ pertence. Denotamos por $\tau(G) = max(\tau(e) : \forall e \in E(G))$.

Proposição 4. Se G um grafo k-crítico, então G é (k-1)-aresta-conexo.

Teorema 3. $\chi(G) \leq \tau(G) + 2$.

Demonstração. Suponha que o enunciado não vale e seja G um contraexemplo com o menor número de arestas possível. Pela minimalidade de G, temos que H não é um contraexemplo, para qualquer $H \subsetneq G$, i.e., $\chi(H) \leq \tau(H) + 2$. Como $\chi(G) \geq \tau(G) + 3$ e $\tau(G) \geq \tau(H)$, temos que:

$$\chi(G) \ge \tau(G) + 3 \ge \tau(H) + 3 \ge \chi(H) + 1$$

$$\therefore \chi(G) > \chi(H)$$
(11)

Portanto, temos que G é χ -crítico, onde $\chi=\chi(G)$. Pela Proposição 4, temos que G é $(\chi-1)$ -aresta-conexo. Como G é $(\chi-1)$ -aresta-conexo, sabemos que G possui pelo menos $\chi-1$ uv-caminhos disjuntos nas arestas, para todo par distinto $u,v\in V(G)$. Sejam $P_1,P_2,\ldots P_{\chi-1}$ caminhos disjuntos nas arestas de G. Seja e a aresta que incide em u em P_1 . Note que $P_1\cup P_j$ contém um ciclo C, tal que $e\in E(C)$, para $1< j\leq \chi-1$, pois P_1 e P_j são uv-caminhos distintos. Logo $\tau(G)\geq \tau(e)\geq \chi(G)-2$. Portanto, $\chi(G)\geq \tau(G)+3\geq \chi(G)-2+3=\chi(G)+1$, uma contradição.