Localização de Robôs em Explorações Espaciais: Uma Revisão da Literatura

Gabriel Bianchin de Oliveira

02 de Dezembro de 2019

Sumário

- Introdução
- Conceitos Preliminares
- Métodos
- 4 Conclusão

Introdução

- Planetary Rovers são fundamentais para explorações espaciais
- Localização e estimativa da posição de robôs em corpos celestes
- Falta do sinal GPS
- Derrapagens por conta do terreno

Conceitos Preliminares – Odometria

- Um dos métodos mais simples de localização
- Determina a posição medindo a variação de ângulo da roda de forma incremental ao longo do tempo
- A odometria acumula o erro ao longo do tempo
- Sensível a derrapagens

Conceitos Preliminares – Odometria Visual

- Utilização de câmeras para estimar a posição do robô
- Segue os passos de extrair características das imagens, encontrar correspondência imagens em sequência e estimar a movimentação
- Não é dependente de terreno como a odometria calculada da roda
- Em relação a câmera, pode ser monocular, stereo ou omnidirecional

Métodos – Odometria

Ali et al. [1]

- Utilizado nas explorações dos robôs Spirit e Opportunity em Marte
- Nas expedições, conseguiu estimar a posição em terrenos planos, mas em terrenos arenosos não obteve bons resultados
- Auxiliou a odometria quando n\u00e3o estimou a posi\u00e7\u00e3o de modo correto nas explora\u00e7\u00f3es dos rob\u00f3s Spirit e Opportunity

Métodos – Odometria Visual

Se et al. [2]

- Comparação do LIDAR, odometria visual e odometria calculada pela roda
- Odometria calculada pela roda é relativamente boa em pequenos trajetos
- LIDAR e odometria visual atingiram resultados mais consistentes
- Odometria visual depende da presença de características nos ambientes
- LIDAR depende de características 3D do ambiente

Métodos - Métodos estatísticos

Hidalgo-Carrió et al. [3]

- Odometria calculada pela roda com regressor gaussiano
- Grafos esparsos para localização e mapeamento

Conclusão

- A localização é extremamente importante para o sucesso das explorações espaciais
- Existe uma cronologia de métodos, iniciando com odometria e odometria visual e indo até métodos estatísticos
- Métodos estatísticos e odometria visual são superiores a odometria calculada pela roda, porém são computacionalmente mais caros

Conclusão

Trabalho	Ano	Método
Olson et al.[4]	2000	odometria visual
Corke et al. [5]	2004	odometria visual
Se et al. [2]	2004	odometria visual
Ali et al. [1]	2005	odometria
Barfoot [6]	2005	odometria visual
Cheng et al. [7]	2005	odometria visual
Helmick et al. [8]	2006	odometria visual
Ishigami et al. [9]	2010	método estatístico
Bakambu et al. [10]	2012	odometria visual
Ghosh et al. [11]	2018	método estatístico
Hidalgo-Carrió et al. [3]	2018	método estatístico

Table: Tabela cronológica dos trabalhos encontrados na literatura.

Referências I

- Khaled S Ali, C Anthony Vanelli, Jeffrey J Biesiadecki, Mark W Maimone, Yang Cheng, A Miguel San Martin, and James W Alexander.
 - Attitude and position estimation on the mars exploration rovers. In 2005 IEEE International Conference on Systems, Man and Cybernetics, volume 1, pages 20–27. IEEE, 2005.
- [2] Stephen Se, Ho-Kong Ng, Piotr Jasiobedzki, and Tai-Jing Moyung. Vision based modeling and localization for planetary exploration rovers.
 - In *Proceedings of International Astronautical Congress*, pages 434–440, 2004.

Referências II

[3] Javier Hidalgo-Carrió, Pantelis Poulakis, and Frank Kirchner. Adaptive localization and mapping with application to planetary rovers.

Journal of Field Robotics, 35(6):961-987, 2018.

[4] Clark F Olson, Larry H Matthies, H Schoppers, and Mark W Maimone.

Robust stereo ego-motion for long distance navigation.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662), volume 2, pages 453–458. IEEE, 2000.

Referências III

- [5] Peter Corke, Dennis Strelow, and Sanjiv Singh. Omnidirectional visual odometry for a planetary rover. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), volume 4, pages 4007–4012. IEEE, 2004.
- [6] Timothy D Barfoot. Online visual motion estimation using fastslam with sift features. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 579–585. IEEE, 2005.
- [7] Yang Cheng, Mark Maimone, and Larry Matthies. Visual odometry on the mars exploration rovers. In 2005 IEEE International Conference on Systems, Man and Cybernetics, volume 1, pages 903–910. IEEE, 2005.

Referências IV

- [8] Daniel M Helmick, Stergios I Roumeliotis, Yang Cheng, Daniel S Clouse, Max Bajracharya, and Larry H Matthies. Slip-compensated path following for planetary exploration rovers. Advanced Robotics, 20(11):1257–1280, 2006.
- [9] Genya Ishigami, Gaurav Kewlani, and Karl Iagnemma. Statistical mobility prediction for planetary surface exploration rovers in uncertain terrain. In 2010 IEEE International Conference on Robotics and Automation, pages 588–593. IEEE, 2010.
- [10] Joseph Nsasi Bakambu, Chris Langley, Giri Pushpanathan, W James MacLean, Raja Mukherji, and Erick Dupuis. Field trial results of planetary rover visual motion estimation in mars analogue terrain.

Journal of Field Robotics, 29(3):413-425, 2012.

Referências V

[11] Olivier Lamarre and Jonathan Kelly.

Overcoming the challenges of solar rover autonomy: Enabling long-duration planetary navigation.

arXiv preprint arXiv:1805.05451, 2018.