L'atmosphère terrestre et la vie

Cours

Sommaire

- De l'atmosphère primitive à l'atmosphère actuelle
- A La composition de l'atmosphère
- B L'apparition de l'eau liquide
- L'enrichissement de l'atmosphère en dioxygène
- A La vie et l'apparition du dioxygène dans l'atmosphère
- B Les flux de dioxygène
- C L'ozone dans l'atmosphère
- L'appauvrissement de l'atmosphère en dioxyde de carbone
- (A) Le cycle du carbone
- B Les combustibles fossiles, un réservoir de carbone

De l'atmosphère primitive à l'atmosphère actuelle

La composition de l'atmosphère a évolué de l'atmosphère primitive à l'atmosphère actuelle. L'atmosphère primitive était principalement constituée de vapeur d'eau et de dioxyde de carbone. L'atmosphère actuelle est pauvre en eau et en dioxyde de carbone mais riche en dioxygène. Le refroidissement de la Terre a permis l'apparition d'eau liquide et la formation des océans.

A La composition de l'atmosphère

La composition de l'atmosphère actuelle est différente de celle qui existait au moment de la formation de la Terre il y a 4,6 milliards d'années. L'atmosphère primitive était riche en eau et en dioxyde de carbone, l'atmosphère actuelle est riche en diazote et en dioxygène.

L'atmosphère primitive date de la formation de la Terre, il y a 4,6 milliards d'années. Sa composition proviendrait du volcanisme intense qui régnait à cette époque. En effet, les volcans actuels libèrent principalement de l'eau (sous forme de vapeur d'eau), du dioxyde de carbone ainsi que du diazote et d'autres gaz.

La composition de l'atmosphère primitive et de l'atmosphère actuelle

Atmosphère primitive

Atmosphère actuelle

Les principaux changements entre l'atmosphère primitive et l'atmosphère actuelle sont la disparition presque totale de la vapeur d'eau ($_{12}O$) et du dioxyde de carbone ($_{12}O$), l'augmentation de la teneur en diazote ($_{12}O$) et l'apparition de dioxygène ($_{12}O$).

L'atmosphère actuelle contient de nombreux gaz à l'état de traces. En plus de l'eau et du CO_2 , on trouve du méthane (CH_4) et du protoxyde d'azote (N_2O), gaz à effet de serre.

Le refroidissement de la surface de la Terre primitive a conduit à la liquéfaction de la vapeur d'eau présente dans l'atmosphère initiale. Cette accumulation d'eau liquide pendant des millions d'années a formé les océans.

Les changements d'état de l'eau dépendent des conditions de pression et de température régnant à la surface de la Terre.

Ce diagramme permet de connaître l'état physique de l'eau en fonction de la pression et de la température.

Actuellement, sur Terre, il règne une pression de 1 atm et une température moyenne de 15 °C, ce qui permet la présence d'eau liquide.

Au point triple, l'eau est présente sous les trois états : solide, liquide et gaz.

L'atmosphère primitive est épaisse, la température et la pression sont très élevées et ne permettent pas la présence d'eau liquide. L'eau est présente sous forme de gaz, la vapeur d'eau. Peu à peu, la température du sol diminue, entraînant le refroidissement de l'atmosphère. Lorsque la température devient suffisamment basse, la vapeur d'eau passe à état liquide. Les premières gouttes de pluie brûlantes (300 °C) tombent sur le sol. L'atmosphère se vide peu à peu de sa vapeur d'eau, entraînant une diminution de la pression atmosphérique et une diminution de l'effet de serre, favorisant le refroidissement. Il pleut ainsi pendant plusieurs milliers d'années et l'hydrosphère se forme. La température et la pression continuent de chuter pour atteindre celles que l'on connaît aujourd'hui.

L'enrichissement de l'atmosphère en dioxygène

L'enrichissement de l'atmosphère en dioxygène est initié par l'apparition de la vie dans les océans. Aujourd'hui, les flux de dioxygène sont essentiellement liés aux mécanismes biologiques des êtres vivants ainsi qu'aux combustions. L'abondance du dioxygène a permis la formation de l'ozone dans l'atmosphère à l'origine du développement de la vie sur Terre.

(A) La vie et l'apparition du dioxygène dans l'atmosphère

L'émergence de la vie dans les océans, il y a 3,5 milliards d'années, a permis l'apparition du dioxygène dans l'atmosphère grâce à des organismes photosynthétiques, les cyanobactéries. À partir de 2,4 milliards d'années, l'atmosphère s'est enrichie en dioxygène grâce aux échanges entre l'océan et l'atmosphère.

Pour établir les phénomènes qui se sont produits il y a des millions d'années, les scientifiques utilisent le principe de l'actualisme. Ils considèrent que les phénomènes géologiques du passé se sont formés de la même façon que ceux d'aujourd'hui. C'est ainsi que l'on peut reconstituer l'histoire du passé.

Plusieurs indices permettent de reconstituer l'histoire de l'apparition du dioxygène dans l'atmosphère : la présence de stromatolites, les dépôts de fer rubané, ou encore la présence d'uraninite.

Les stromatolites sont des formations calcaires résultant de l'activité de cyanobactéries. Les plus anciennes sont datées de -3,5 milliards d'années. Le $\frac{CO_2}{\bullet \bullet}$ dissous dans l'eau est utilisé par les cyanobactéries lors de la photosynthèse, libérant ainsi de l' $\frac{O_2}{\bullet \bullet}$. L'eau s'enrichit donc en $\frac{O_2}{\bullet \bullet}$ à partir de -3,5 milliards d'années. Il n'apparaît pas encore dans l'atmosphère.

Photosynthèse :
$$\begin{tabular}{ll} 6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2 \\ \hline \bullet & \hline \end{tabular}$$

DÉFINITION

Cyanobactéries

-4.5

Les cyanobactéries sont des bactéries photosynthétiques également appelées « algues bleues ».

Les dépôts de fer rubané, formations sédimentaires marines, sont composés d'oxydes de fer qui donnent la couleur rouge à ces roches. Ils indiquent la présence d' O_2 dans l'eau. En effet, les ions Fe_2^+ présents dans l'eau ne s'oxydent qu'en présence d' O_2 . L'épuisement des ions Fe_2^+ ralentit la formation de fer rubané. La teneur en O_2 de l'eau augmente et enrichit l'atmosphère en O_2 à partir de -2,4 milliards d'années.

EXEMPLE

L'hématite Fe_2O_3 est un exemple d'oxyde de fer donnant la couleur rouge aux roches. Il se forme selon la réaction suivante :

$$4\mathrm{Fe} + 3\mathrm{O}_2 o 2\mathrm{Fe}_2\mathrm{O}_3$$

D'autres indices corroborent ces résultats :

- L'uraninite est un minéral soluble dans l'eau oxygénée. Sa présence dans des dépôts détritiques des fleuves datés de -3,5 à -2,2 milliards d'années indique l'absence ou une trop faible présence d' ans l'atmosphère terrestre pendant cette période.
- Les couches rouges riches en oxydes ferriques formées en milieu continental, dont les plus anciennes sont datées de 2 milliards d'années, révèlent la présence d' $\frac{O_2}{\blacksquare \Vdash}$ atmosphérique à cette époque.

La teneur actuelle d' $\frac{O_2}{\P| P}$ atmosphérique est présente depuis 500 millions d'années et correspond à l'explosion de la vie sur Terre.

B Les flux de dioxygène

Les flux de dioxygène s'observent entre l'atmosphère et la biosphère. Les êtres vivants sont à la fois des puits et des sources de dioxygène. La teneur en dioxygène de l'atmosphère est ainsi maintenue. Les combustions liées aux activités humaines s'ajoutent aux puits naturels de dioxygène.

Une source d' $O_2 \atop \blacktriangleleft \mid \blacktriangleright$ est un mécanisme qui produit de l' $O_2 \atop \blacktriangleleft \mid \blacktriangleright$, donc enrichit l'atmosphère en $O_2 \atop \blacktriangleleft \mid \blacktriangleright$.

Les êtres vivants aquatiques ou terrestres réalisant la photosynthèse libèrent de l' ${\mathcal O}_2 \atop \blacktriangleleft \mid \blacktriangleright$ dans l'atmosphère.

Ce sont les sources d' ${\displaystyle \mathop{O}_{2}}_{\bullet}$.

Un puits d' $O_2 \atop \blacktriangleleft \mid \blacktriangleright$ est un mécanisme qui consomme de l' $O_2 \atop \blacktriangleleft \mid \blacktriangleright$, donc appauvrit l'atmosphère en $O_2 \atop \blacktriangleleft \mid \blacktriangleright$.

Les êtres vivants réalisant la respiration utilisent l' $\frac{O_2}{\P| P}$, tout comme les combustions. En effet, dans une combustion, le comburant est le plus souvent le dioxygène. Combustions et respiration sont deux puits de dioxygène.

C L'ozone dans l'atmosphère

L'ozone est formé dans l'atmosphère par l'action du rayonnement ultraviolet sur le dioxygène. Il constitue une couche protectrice ayant permis l'apparition et le développement de la vie en dehors des océans.

La couche d'ozone est située entre 20 et 50 km d'altitude. Sous l'action des rayons ultraviolets (UV), le dioxygène est dissocié en deux atomes d'oxygène (O). Un atome d'oxygène s'associe à une molécule de dioxygène (O) pour former une molécule d'ozone (O3).

Formation d'ozone à partir du dioxygène O₂ 20

L'ozone absorbe les UVC responsables de nombreuses mutations de l'ADN. L'ozone absorbe également les UVC, ainsi qu'une partie des UVB. L'ozone atmosphérique protège ainsi l'ADN de nombreuses mutations.

Spectre d'absorption de l'ADN et de l'ozone

Les crèmes solaires contiennent des substances absorbant les UVA et les UVB dont l'ozone ne nous protège pas.

REMARQUE

L'appauvrissement de l'atmosphère en dioxyde de carbone

L'appauvrissement de l'atmosphère en dioxyde de carbone est lié au stockage du carbone dans plusieurs réservoirs. Les échanges entre les réservoirs constituent le cycle du carbone. Les combustibles fossiles constituent un réservoir de carbone. Ils représentent une source d'énergie non renouvelable.

A Le cycle du carbone

Le cycle du carbone représente l'ensemble des échanges réalisés entre les grands réservoirs constitués par la biosphère, la lithosphère, l'hydrosphère et l'atmosphère. Les flux permettent de maintenir son équilibre.

Les échanges de carbone entre les réservoirs sont quantifiés sous forme de flux (Gt/an). Une gigatonne = 10^9 tonnes.

Les flux de carbone indiquent la masse de carbone qui passe d'un réservoir à l'autre par unité de temps.

Le plus grand réservoir de carbone est la lithosphère avec les roches carbonatées (calcaire) et les roches carbonées (pétrole, gaz, houille).

Les flux naturels les plus importants sont réalisés par les mécanismes de respiration et photosynthèse. Les êtres vivants, composant la biosphère, réalisent des échanges de ${^{\rm CO}_2}$ avec l'atmosphère.

Les flux d'origine anthropique (humaine) sont principalement des émissions de CO_2 dans l'atmosphère lors des combustions de carburant fossile (roches carbonées) et de la déforestation.

B Les combustibles fossiles, un réservoir de carbone

Les combustibles fossiles constituent un réservoir de carbone que l'homme exploite comme source d'énergie. Lors de leur combustion, le carbone stocké dans les roches est libéré sous forme de dioxyde de carbone, venant perturber le cycle naturel du carbone. C'est une source d'énergie non renouvelable.

L'homme utilise le charbon ou le pétrole comme source d'énergie pour le chauffage, les machines, le transport, etc. La combustion du pétrole ou du charbon libère du $\frac{CO_2}{\blacksquare \blacksquare}$ dans l'atmosphère et perturbe le cycle naturel du carbone. La quantité de $\frac{CO_2}{\blacksquare}$ libérée contribue à accélérer le réchauffement climatique.

De plus, il a fallu des millions d'années à ces roches pour se former. Leur combustion se réalise à l'échelle de temps humain. Ainsi, ces roches représentent une source d'énergie non renouvelable. Ces ressources seront épuisées bien avant le renouvellement de leur stock.