Transformations chimiques en solution aqueuse

Quelles sont les différentes types de réaction en solution aqueuse?

Thème 2 Réaction d'oxydoréduction en solution aqueuse

Approche empirique

Extrait programme PCSI

S'appuyant sur les notions de couple redox et de pile rencontrées dans le secondaire, l'étude des phénomènes d'oxydo-réduction en solution aqueuse est complétée par l'utilisation de la relation de Nernst (admise en première année) et de la relation entre la constante thermodynamique d'équilibre d'une réaction d'oxydo-réduction et les potentiels standard.

Enfin, les diagrammes potentiel-pH et potentiel-pL sont présentés, puis superposés pour prévoir ou interpréter des transformations chimiques.

Les dosages par titrage sont étudiés exclusivement en travaux pratiques. L'analyse des conditions choisies ou la réflexion conduisant à une proposition de protocole expérimental pour atteindre un objectif donné constituent des mises en situation des enseignements évoqués précédemment. La compréhension des phénomènes mis en jeu dans les titrages est par ailleurs un outil pour l'écriture de la réaction prépondérante. Ces séances de travail expérimental constituent une nouvelle occasion

Extrait programme PC

- 2. Énergie chimique et énergie électrique : conversion et stockage
 - 2.1 Thermodynamique des réactions d'oxydoréduction
 - 2.2 Cinétique des réactions d'oxydoréduction

Extrait programme BCPST

Potentiel standard apparent

Prérequis

- Notions sur les piles (polarité, réaction aux électrodes)
- Réaction d'oxydoréduction modélisée par un transfert d'électrons (oxydant, réducteur, équation de réaction)

Objectifs

Comprendre

- Les protocoles des dosages réalisés au laboratoire
- Les phénomènes chimiques observer dans le monde minéral

Agir

- Proposer un protocole de dosage
- Intervenir sur le monde

Moyens

- Relation de Nernst
- Constante d'équilibre

Le contenu de niveau PC sera vu après le cours de thermodynamique chimique

Pile (électrochimique)

Compétences niveau lycée

Réaction d'oxydoréduction

Potentiel d'électrode, potentiel d'oxydoréduction

Relation de Nernst

Prévision du sens d'évolution d'une réaction redox. Calcul de la constante d'équilibre

Influence du pH

Diagramme E-pH; potentiel standard apparent

La pile Volta

5

1800

L'italien Alessandro Volta invente un objet fournissant un courant électrique.
Cet objet est constitué de rondelles de tissu, de cuivre et d'argent que l'on empile, empilement répété plusieurs fois.
Lorsqu'on relie les 2 extrémités de l'empilement par un fil de cuivre, un courant électrique traverse ce fil.

John Frédéric Daniell (1790-1845) physicien anglais. Les piles de Daniell furent utilisées par les compagnies de télégraphe américaines et britanniques

La pile Daniell 1836

Fonctionnement de la pile Daniell

On construit la pile suivante :

Comment déterminer polarité d'une pile ?

 \emptyset $Zn_{(s)} \mid ZnSO_{4(aq)}(1 \ mol.L^{-1}) \mid CuSO_{4(aq)}(1 \ mol.L^{-1}) \mid Cu_{(s)} \oplus Identifier l'anoda, la authoda et donner l'aquation des réactions élect$

Identifier l'anode, la cathode et donner l'équation des réactions électrochimiques qui s'y déroulent. Donner le bilan de la réaction de la pile.

M2 SPC prépa agreg physique I.Haller

$$Zn(s) + Cu^{2+} \rightarrow Zn^{2+} + Cu(s)$$

Données sur quelques piles usuelles

1868

Appellation	Pile saline Leclanché	Pile alcaline			Piles au lithium
Température de fonctionnement (°C)	-5 à 55	-18 à 55	-18 à 55	-10 à 55	-40 à 60
f.e.m. (V)	1,5V	1,5V	1,35V	1,6V	1,5 et 3V
Energie massique (Wh.kg ⁻¹)	100	100	123	136	32 à 260
Energie volumique (W.h.cm ⁻³)	0,18	0,24	0,50	0,55	0,34 à 0,50
Coût	Faible	Moyen	Elevé	Elevé	Elevé
Autodécharge par an à 20°C	6%	3%	3%	3%	1%
Utilisation	Jouets, télécommandes, radios, réveils	Radios, jouets, lampes, appareils photos	Piles boutons : montres, calculatrices Les piles au mercure sont maintenant interdites en Europe et aux USA (depuis Décembre 1998).		Photos, téléphones cellulaires, ordinateurs

Pile (électrochimique)

Réaction d'oxydoréduction

Compétence lycée sauf n.o.

Potentiel d'électrode, potentiel d'oxydoréduction

Prévision du sens d'évolution d'une réaction redox. Calcul de la constante d'équilibre

Influence du pH

Réaction d'oxydoréduction

Réaction d'oxydoréduction : échange **formel** d'électrons entre 2 couples redox

définitions : oxydant, réducteur, oxydation, réduction, dismutation, retrodismutation ou médiamutation.

M2 SPC prépa agreg physique I.Hallery 10

Comment «équilibrer» une réaction d'oxydoréduction?

Ecrire de bilan de la réaction d'oxydation de l'alcool benzylique, $C_6H_5CH_2OH$, par l'ion permanganate, MnO_4 en milieu basique.

Couples impliqués : $C_6H_5COO^{-}/C_6H_5CH_2OH$, $MnO_4^{-}/MnO_{2(s)}$.

Méthode de Pourbaix

Equilibrer chaque demi-équation rédox :

- Equilibrer en l'élément qui est oxydé ou réduit
- O par H₂O
- H par H⁺
- Charge par e-

Combiner les deux demi-équations de telle sorte que le nombre d'électrons gagnés par l'un des couples soit égal au nombre d'électrons cédés par l'autre couple

Tenir compte du pH : en milieu basique, ce sont les ions OH qui sont prépondérants.

Voilà ce que sait un (excellent) élève de terminale!

Nombre d'oxydation (n.o) ou degré d'oxydation (D.O) d'un élément

Propriétés

Plus n.o est élévé plus l'élément est oxydé.

Si l'élément est oxydé (réduit) son n.o augmente (diminue).

Définition

Le n.o d'un élément chimique (au sein d'une molécule, d'un ion ou d'un radical) est la charge réelle ou fictive portée par cet élément si on considère que l'élément :

- Possède tous les électrons des liaisons établies avec des atomes moins électronégatifs que lui
- Ne possède aucun des électrons des liaisons établies avec des atomes plus électronégatifs que lui.

Donner la formule de Lewis des espèces suivantes : H_2 , O_2 , H_2O , H_2O_2 , SO_2 , SO_4^{2-} , $S_2O_3^{2-}$. En déduire le nombre d'oxydation de chacun des atomes.

Règles pratiques de calcul du n.o.

Soit une espèce constituée de plusieurs éléments

- $\sum_{esp\`{
 m e}ce}no(Xi)=charge\ de\ l'esp\`{
 m e}ce$ En général
- n.o(O) = -II (sauf dans O₂ et H₂O₂)
- n.o(H) = +I (Sauf dans H₂ et NaH, NaBH₄, LiAlH₄ ...)

Indiquer, parmi les couples suivants, ceux qui constituent un couple redox. Identifier, s'il y a lieu, l'oxydant et le réducteur du couple : CrO_4^{2-} et $Cr_2O_7^{2-}$, SO_4^{2-} et $S_2O_3^{2-}$, I_3^{-} et I^{-} .