通訊系統 期末考輔導課

2021.01.08

- 1. Remaining part shall be done by yourself
- 2. Highly recommend to read text book!

(1) Draw the model of FM receiver

FIGURE 2.40 Model of an FM receiver.

(2) Why add a limiter in the FM receiver

=> 限制訊號大小,砍掉其他雜訊,以避免失真。

Page: 3-62

Page: 3-64

(3) Using the phasor diagram to determine the discriminator output $\theta(t)$ for FM in AWGN channel. Assuming high carrier to noise ratio.

Resultant
$$\frac{\theta(t) - \phi(t)}{A_C} \qquad \psi(t) - \phi(t)$$

$$\therefore \theta(t) = \phi(t) + \frac{r(t)\sin[\psi(t) - \phi(t)]}{A_c + 0}$$
$$\phi(t) = 2\pi k_f \int_0^t m(t)dt$$

Page: 3-63

Q2 (1) What is the power spectral density of FM RCVR output?

$$S_{N_0}(f) = \begin{cases} \frac{N_0 f^2}{A_c^2}, |f| \le W\\ 0, otherwise \end{cases}$$

Page: 3-64

(2) What is the average signal power, average noise power and output SNR?

$$(SNR)_o = \frac{k_f^2 P}{\frac{2N_0 W^3}{3A_c^2}} = \frac{3A_c^2 k_f^2 P}{2N_0 W^3}$$

Page: 3-65

average signal poewr: $k_f^2 P$

noise power:
$$\frac{2N_0W^3}{3A_c^2}$$

Q3 (1) what is the FM threshold effect?

引 当 載波雜訊 比 (P) 小於 闡限值(Pth) , 其輔) 出訊雜比 (SMR)。 会失真 , 明顯產生偏移

=> 当載波雜訊比(高, 則(SNR), FM = 3(CBt))

(2) Why FM is used for satellite communication? Please state the reasons.

小 FM 開限展延能便低下降,可以降低傳輸功率,就算收到弱訊号也不失真

2、 新机 PA 的非線性效應, 只会改变震幅大小, 不会改变相位

An FM signal with message bandwidth W Hz is passed through an AWGN channel with the white noise w(t).

Write the equation to generate power spectral density of w(t), n(t), nQ(t), nd(t), no(t)

$$S_{w}(f) = \frac{N_{0}}{2} \qquad S_{n}(f) = \frac{N_{0}}{2}, -\frac{B_{t}}{2} \leq f \leq \frac{B_{t}}{2} \qquad S_{N_{Q}}(f) = N_{0}, -\frac{B_{t}}{2} \leq f \leq \frac{B_{t}}{2} \qquad S_{N_{d}}(f) = \begin{cases} \frac{N_{0}f^{2}}{A_{c}^{2}}, -\frac{B_{t}}{2} \leq f \leq \frac{B_{t}}{2} \\ 0, otherwise \end{cases} \qquad S_{N_{0}}(f) = \begin{cases} \frac{N_{0}f^{2}}{A_{c}^{2}}, |f| \leq W \\ 0, otherwise \end{cases}$$

$$S_{N_{\mathcal{Q}}}(f) = N_0, -\frac{B_t}{2} \le f \le \frac{B_t}{2}$$

$$S_{N_d}(f) = \begin{cases} \frac{N_0 f^2}{A_c^2}, -\frac{B_t}{2} \le f \le \frac{B_t}{2} \\ 0, otherwise \end{cases}$$

$$S_{N_0}(f) = \begin{cases} \frac{N_0 f^2}{A_c^2}, |f| \le W\\ 0, otherwise \end{cases}$$

Page: 3-64

Q5 (1) What is the function of pre-emphasis filter and De-emphasis filter in FM transceiver.

$$H_{Pe}(f) = 1 + \frac{jf}{f_0}$$

$$H_{De}(f) = \frac{1}{1 + \frac{jf}{f_0}}$$

$$H_{De}(f) = \frac{1}{1 +$$

(2) Why they are needed.

pre-emphasis filter(預強化濾波器): 強化高頻訊號

De-emphasis filter(去強化濾波器): 將高頻部分雜訊抑制掉,使訊號還原

Page: 3-72

Q6 Please draw the block diagram of PLL and state the major components.

Phase-locked loop.

FIGURE 2.51

Q7 (1). Please draw the block diagram of simplified linear model of PLL, when loop gain is greater than 1.

Q8: Compare the (1) figure of merit, (2) output signal to noise ratio for a fixed channel signal to noise ratio and (3) Transmission bandwidth for AM, DSBSC, LSBSC with beta = 2.5 respectively

$$FOM_{AM} = \frac{u^{2}}{2tu^{2}} < I, FOM_{AM, 177\%} = \frac{1}{3} SNR_{0, AM} = \frac{Ac^{2}ka^{2} Pav, M}{2WN_{0}}$$

$$FOM_{pSBSC} = I$$

$$FOM_{LSBSC} = I$$

$$FOM_{M} = \frac{3}{2}D^{2} = \frac{3}{2}R^{2} = 6$$

$$SNR_{0, LSBSC} = \frac{C^{2}Ac^{2} Pav, M}{2N_{0}W}$$

$$SNR_{0, LSBSC} = \frac{C^{2}Ac^{2} Pav, M}{2N_{0}W}$$

$$SNR_{0, LSBSC} = \frac{C^{2}Ac^{2} Pav, M}{2N_{0}W}$$

$$SNR_{0, LSBSC} = \frac{3Ac^{2}k^{2} Pav, M}{2N_{0}W}$$

$$SNR_{0, LSBSC} = \frac{3Ac^{2}k^{2} Pav, M}{2N_{0}W}$$

$$\frac{3Ac^{2}k^{2} Pav, M}{2N_{0}W}$$

$$\frac{3Ac^{$$

Page: 3-52~3-59

課後問答10

If the bandwidth of analog signal g(t) is W Hz, the Nyquist sampling rate is used to get PAM signal.

(1) Write the spectrum equation of $G_{\delta}(f)$ in terms of G(f).

(2) Please draw the block diagram of a PCM transmitter.

Page: 4-1

(3) Determine the frequency transfer function of the LPF.

$$H(f) = \int_{f_s}^{L} \operatorname{rect}\left(\frac{f}{2w}\right) = \int_{f_s}^{l} \int_{f_s}^{l} -u \leq f \leq w$$

$$h(t) = \sin(2wt)$$

(1) How do you avoid the aliasing?

取樣頻率要大於兩倍 Nyquist rate $f_s \geq 2W$

(2) Draw the sampled spectrum with aliasing error.

Page: 4-2

(1) If the impulse response of zero order hold circuit is h(t)=1, $0 \le t \le T$, please use the transfer function explain the aperture effect.

Sit = hit,
$$\times$$
 git, when $H(f) = T \sin c(fT) e^{-i 2\lambda T} f = f$
Stf) = $H(f) G(f)$ Hif, cause amplitude distortion
= $f \in \mathcal{L}_{mz-\infty} G(f-mfs) H(f)$ and $f = delay$ called aperture effect

(2) Draw the spectrum of a sampled signal $g_{\delta}(t)$ with aperture effect 孔徑效應.

aperture effect 孔徑效應:

zero order hold 所造成,導致取樣頻譜的振幅失真和相位失真

(3) Why do you need zero order hold circuit?

使訊號穩定,避免訊號產生氣泡 所以使用zero order hold 把訊號hold住一段時間

Page: 4-18

(1) For a sinusoidal signal $g(t) = A_m \sin 2\pi ft$, the quantized sample is encoded with R bits, derive the output signal to noise ratio of A/D.

$$g(t) = Am \sin 2\pi ft \qquad \Delta = \frac{2Am}{2R}$$

$$M_{max} = Am \qquad \Rightarrow \sigma_{q}^{2} = \frac{1}{3}M_{max}^{2} = \frac{1}{3}Am^{2} = \frac{3P}{Am^{2}} = \frac{3P}{Am^{2}} = \frac{3P}{2R} = \frac$$

$$\Delta = \frac{2 \text{ Mmax}}{2^{R}}$$

$$SNR_{o} = \frac{P}{\sigma p^{2}} = \left(\frac{3P}{M \text{ max}}\right)^{2R}$$

$$\frac{1}{3} M \text{ max}^{2R}$$

$$= \frac{1}{3} M \text{ max}^{2R}$$

(2) If R=8 bits, what is the gain of A/D.

(3) What is the function of oversampling? Please state the reasons.

$$R = 8 \text{ bits} \Rightarrow loolog(SNR)_0 = 1.8 + 6 \times 8$$

= 49.8(dB)

Please draw the block diagram of a PCM transmitter and receiver.

should add one blocks respectively.

Page: 4-21

Write the impulse response equation $h_i(t)$ of ideal reconstruction filter.

Write the output equation of ideal reconstruction filter. If the bandwidth of analog signal g(t) is W Hz, the Nyquist sampling rate is used to get PAM signal.

$$g(t) = g(t) * hi(t)$$

$$= \sum_{n=-\infty}^{\infty} g(nTs) * f(t-nTs) * hi(t,$$

$$= \sum_{n=-\infty}^{\infty} g(nTs) hi(t-nTs)$$

$$= \sum_{n=-\infty}^{\infty} g(nTs) sin(zw(t-nTs))$$

$$= \sum_{n=-\infty}^{\infty} g(nTs) sin(zw(t-nTs))$$

By teacher's note

A TDM (分時多工) is used for four users, which have bandwidth of $w_1 = w_2 = 10 k$ Hz , $w_3 = 20 k$ Hz , $w_4 = 40 k$ Hz

(1) What is the maximum sample interval? (用戶最取頻寬去求得最大取樣區間)

(2) Determine the number of samples per sampling interval. (每個取樣區間的樣本)

$$185 = \frac{15}{71} + \frac{15}{72} + \frac{15}{73} + \frac{75}{74}$$

$$= \frac{\frac{1}{20}}{\frac{1}{20}} + \frac{\frac{1}{20}}{\frac{1}{20}} + \frac{\frac{1}{20}}{\frac{1}{20}} + \frac{\frac{1}{20}}{\frac{1}{20}} = 1 + 1 + 2 + 4 = 8$$

(3) Determine the data rate for 8 bits PCM modulation.

$$kb = \frac{h5 \times bit}{T5}$$

$$Rb = \frac{8 \times 8}{T5} = \frac{8 \times 8}{\frac{1}{20}k}$$

$$= 1280 k bit/sec$$

Please draw the block diagram of a PCM transmitter and receiver, where TDM accommodates 4 voice channel and the compander can get high resolution for small speech signal

What is the type of compression law used in T1 modem?

Page: 4-26

What is the physical meaning of 8 bit PCM codeward at the decoding output of T1?

B1 => sign bit

B2~B4 => identify the segment number

B5~B8 => identify the quantization level in each segment

If the PCM codeward is 01100110, what is sign, segment and quantization level for

the decoding output of T1 modem?

Q8

Draw the linear code waveform of 010110101 using

(1) Manchester code, bipolar RZ code with the reference bit of 1.

Page: 4-19

Please write the formula of the differential encoding if bk is the current bit and dk-1 is the previous difference bit and write the truth table

