

Universidade do Minho

Escola de Engenharia Departamento de Informática

> Mestrado Integrado em Engenharia Informática Mestrado em Engenharia Informática Aprendizagem e Extração de Conhecimento 2020/2021

Filipe Gonçalves, César Analide, Paulo Novais

- Paulo Novais pjon@di.uminho.pt
- César Analide analide@di.uminho.pt
- Filipe Gonçalves <u>fgoncalves@algoritmi.uminho.pt</u>

- Departamento de Informática Escola de Engenharia Universidade do Minho
- ISLab (Synthetic Intelligence Lab)
- Centro ALGORITMI
 Universidade do Minho

Supervised & Unsupervised Learning

What is machine learning?

- Algorithms that can learn from observational data, and can make predictions based on it
 - o Technique based on brain's activity

Unsupervised Learning

- The model is not giving any "answers" to learn from it must make sense of the data just given the observations themselves.
- Example: group/cluster objects together into 2 different sets. However, no information is provided stating what the "right" set is for any object ahead of time.

Do I want big and small things? Round and square things? Red and blue things? Unsupervised learning could give me any of those results.

Unsupervised Learning

- Objective: looking for relatable/latent variables without the "correct" answers
- Example:
 - o Cluster users on a dating site based on their information and behaviour
 - Cluster movies based on their properties (current concepts of genre may be outdated?)
 - Analyze the text of product descriptions to find the terms that carry most meaning for a certain category

Supervised Learning

- Objective: the data the algorithm "learns" from outcomes with the "correct" answers
- The model created is then used to predict the answer for new, unknown values
- Example:
 - Train a model for predicting car prices based on car attributes using historical sales data
 - Model can predict the optimal price for new cars that haven't been sold before

Train / Test in practice

- Need to ensure both sets are large enough to contain representatives of all the variations and outliers in the data you care about
- Datasets must be selected randomly
- Train / Test is a great way to guard agaisnt overfitting

Train / Test is not Infallible

- Maybe your sample sizes are too small
- Or due to random change your train & test cases look remarkably similar
- Overfitting can still happen

K-fold Cross Validation

- One way to further protect against overfitting is K-fold cross validation
- How it works?
- 1) Split your full dataset into K randomlyassigned segments
 - 2) Reserve one segment as your test data
- 3) Train on each of the remaining K-1 segments and measure their performance against the test set
- 4) Take the average of the K-1 evaluation scores

K-Means Clustering

- Attempts to split data into K groups that are closest to K centroids
- Unsupervised learning uses only the positions of each data point
- Can uncover interesting groupings of people / objects / behaviours
- Example:
 - Where do millionaires live?
 - Genres of music / movies that naturally fall out of data?
 - Create your own stereotypes from demographic data

K-Means Clustering

- How it works?
 - 1) Randomly pick K centroids (k-means)
 - 2) Assign each data point to the centroid it's closest to
 - 3) Recompute the centroids based on the average position of each centroid's points
 - 4) Iterate until points stop changing assignment to centroids
 - 5) To predict the cluster for new points, find the centroid they're closest to

Example

K-Means Clustering

- Choosing a K Value
 - To choose the "best" K value is no easy answer
 - Elbow method provides a way to choose K at which the sum of squared error (SSE) decreases abruptly:
 - 1) Compute the SSE for some values of K (e.g., 2,4,6,8,etc.)
 - 2) SSE is defined as the sum of the squared distance between each member of the cluster and its centroid.
 - 3) By ploting K agaisnt SSE, the error decreases as K gets larger when the clusters increase, they should be smaller, so distortion is also smaller

Example – Elbow Effect

K-Means Clustering – Take in mind!

- Choosing a K Value
 - Increase K values until you stop getting large reductions in squared error distances from each point to their centroids
- Avoid local mínima
 - Random choice of initial centroids can yield different results
 - o Run it a few times to make sure your initial results don't variate too much
- Labeling the clusters
 - K-Means does not attempt to assign any meaning to the clusters it finds
 - o It's up to the data scientist to dig into the data and try to determine that

- Works well for classifying higherdimensional data (datasets with lots of features)
- SVM supervised learning model
- Finds higher-dimensional support vectors which "divides" the data
- Applys kernels to represent data in higher-dimensional spaces to find hyperplanes that might not be apparent in lower dimensions

- How it works?
- 1) Image a labeled training data

- How it works?
- 1) Image a labeled training data
- Draw a separating "hyperplane" between the classes

- How it works?
- Image a labeled training data
- Draw a separating "hyperplane" between the classes – many options that separate perfectly...
- 3) Choose a hyperplane that maximizes the margin between classes

- How it works?
- 1) Image a labeled training data
- Draw a separating "hyperplane" between the classes – many options that separate perfectly...
- 3) Choose a hyperplane that maximizes the margin between classes – vector points that the margin lines touch are known as Support Vectors

Support Vector Machines

The idea can be expanded to non-linearly separable data through the "kernel trick"

AEC @ 2020/2021

Support Vector Classification

- Use of SVC to classify data using SVM
- Apply different "kernels" with SVC
- Different kernels provide different results for a given dataset

Universidade do Minho

Escola de Engenharia Departamento de Informática

> Mestrado Integrado em Engenharia Informática Mestrado em Engenharia Informática Aprendizagem e Extração de Conhecimento 2020/2021

Filipe Gonçalves, César Analide, Paulo Novais