

Initial Online Assessment Paper

Faculty Name: Information Technology

Module Name: Mathematics 1A Block 2

Module Code: ITMTA1-B22

Start Date: 13/07/2021

Submission: 3 Hours

Total Marks: 80

Examiner: Jennifer Mafemba

External Moderator: Vingin Leung

Copy Editor: Kevin Levy

Resources Required: A non-programmable calculator

Section A: Multiple Choice Question(s) 10 Marks

Section A: Application-Based Question(s) 30 Marks

Section B: Scenario-Based Question(s) 40 Marks

This assessment contributes 50% towards the final mark.

Instructions to Student

- Ensure that you are writing the correct assessment.
- 2. Read each question carefully.
- 3. No late submissions allowed.

Section A

Multiple Choice Questions

10 Marks

There is only one right answer. If more than one option is listed, only the first option appearing in the answer book will be marked.

Question 1

- 1.1 Express the given function, $y = \frac{9}{x^2} + 4$ as a composite of functions f and g such that y = f(g(x)).
 - a. $f(x) = \frac{9}{x^2}$, g(x) = 4
 - b. $f(x) = \frac{1}{x}$, $g(x) = \frac{9}{x} + 4$
 - c. f(x) = x + 4, $g(x) = \frac{9}{x^2}$
 - d. $f(x) = x, g(x) = \frac{9}{x} + 4$
- 1.2 Determine whether the graph of the equation, $f(x) = 9x^4 5x 5$ has symmetry about the x-axis, the y-axis, and the origin.
 - a. Origin
 - b. x axis
 - c. x axis, origin
 - d. No symmetry
- 1.3 The distance D, in meters that an object has fallen after t seconds is given by $D(t) = 16t^2$.
 - i. Evaluate D(3) and D(4).
 - ii. Calculate the slope of the secant line through D(3) and D(4) on the graph of D and interpret the answer in terms of the average rate of change of D from 3 to 4.
 - a. (i) 144, 256
 - (ii) 112, the objects average speed from 3 to 4 is 112 meters/second.
 - b. (i) 48, 64
 - (ii) 112, the objects average speed from 3 to 4 is 112 meters/second.
 - c. (i) 144 256
 - (ii) 16, the objects average speed from 3 to 4 is 16 meters/second.
 - d. (i) 48, 64
 - (ii) 16, the objects average speed from 3 to 4 is 16 meters/second.

- 1.4 Find the limit of the function, $\lim_{x\to 2} (x^3 + 5x^2 7x + 1)$.
 - a. 15
 - b. 29
 - c. 0
 - d. It does not exist.
- 1.5 Find the domain and the range of the function, $f(x) = -3 + \sqrt{x}$.
 - a. Domain: $(-\infty, 0]$, Range: $(-\infty, -3]$
 - b. Domain: $[0, \infty)$, Range: $(-\infty, \infty)$
 - c. Domain: $(-\infty, \infty)$, Range: $[-3, \infty)$
 - d. Domain: $[0, \infty)$, Range: $[-3, \infty)$
- 1.6 If f(x) = 4x + 9 and g(x) = 3x 1, find f(g(x)).
 - a. 12x + 13
 - b. 12x + 8
 - c. 12x + 5
 - d. 12x + 26
- 1.7 If f(x) = -7x 6 and $g(x) = -8x^2 4x + 3$, find g(f(3)).
 - a. 393
 - b. -177
 - c. -1857
 - d. -279
- 1.8 Find -f(x) when $f(x) = 2x^2 + 5x + 2$.
 - a. $2x^2 5x + 2$
 - b. $-2x^2 5x 2$
 - c. $-2x^2 + 5x + 2$
 - d. $-2x^2 5x + 2$

1.9 Write the equation that results in the desired transformation:

The graph of $y = x^3$, vertically compressed by a factor of 0.8.

- a. $y = 0.8\sqrt[3]{x}$
- b. $y = (x 0.8)^3$
- c. $y = (x + 0.8)^3$
- d. $y = 0.8x^3$
- 1.10 Find an equation for the tangent to the curve, $y = x x^2$ at the given point, (-1, -2).
 - a. y = -3x + 1
 - b. y = -x + 1
 - c. y = -x 1
 - d. y = 3x + 1

(10 x 1 Mark)

End of Section A

Section B

Application-Based Question(s)

30 Marks

Question 2

- 2.1 Suppose that f(t) = 3t + 2 12t.
 - a. What is the average rate of change of f(t) over the interval 2 to 3? (4 Marks)
 - b. What is the (instantaneous) rate of change of f(t) when t = 2? (2 Marks)
- 2.2 Determine which function is the derivative of the other. Explain your answer.

(4 Marks)

[Sub Total 10 Marks]

Question 3

Calculate the derivatives of the following functions using the appropriate rules of derivatives.

3.1
$$y = (x^2 + 1)^2 + 3(x^2 - 1)^2$$

(5 Marks)

3.2
$$y = 2\sqrt[4]{x^2 + 1}$$

(5 Marks)

(5 Marks)

[Sub Total 10 Marks]

Question 4

Calculate the derivatives of the following functions using either the product, quotient or chain rule. Simplify your answer in each case.

$$4.1 \quad s = \frac{\sqrt{t}}{1+\sqrt{t}}$$

4.2
$$g(x) = \left(\frac{3x^2 - 2}{2x + 3}\right)^{-2}$$
 (5 Marks)

[Sub Total 10 Marks]

End of Section B

Section C

Scenario-Based Question(s)

40 Marks

Question 5

Find the critical numbers of the function, $g(t) = t\sqrt{4-t}$ where t < 3. (10 Marks)

Question 6

- 6.1 Given the function, $f(x) = \frac{x^2 24}{x 5}$, find the intervals on which the function is increasing or decreasing. (8 Marks)
- 6.2 Find the local maximum and minimum values of $f(x) = \frac{x^2 24}{x 5}$. (2 Marks)

[Sub Total 10 Marks]

Question 7

- 7.1 Determine whether the Mean Value Theorem applies to the following function, $f(x) = \frac{x}{(x+2)}$ on the interval [-1, 2]. (1 Mark)
- 7.2 If so, determine the point(s) that are guaranteed to exist by the Mean Value Theorem. (5 Marks)
- 7.3 Draw a sketch of the function and the line that passes through (a, f(a)) and (b, f(b)). Mark the points P at which the slope of the function equals the slope of the secant line. Sketch the tangent line at P. (4 Marks)

[Sub Total 10 Marks]

Question 8

A model used for the yield *Y* of an agricultural crop as a function of the nitrogen level, N in the soil (measured in appropriate units) is

$$Y = \frac{k N}{1 + N^2}$$

Where k is a positive constant. What nitrogen level gives the best yield?

(10 Marks)

End of Section C			