The **World-to-Screen** transformation is the process of mapping an object's coordinates in a 3D world space (world coordinates) to 2D screen space. This involves several transformations: Model transformation, View transformation, Projection transformation, and Viewport transformation. Here's a step-by-step breakdown of the procedure, including the matrices and an example for each transformation.

1. Model Transformation

The model transformation maps the object's local coordinates to world coordinates. This transformation allows the object to be positioned, rotated, and scaled in the world.

Matrix:

$$M_{
m model} = egin{bmatrix} s_x & 0 & 0 & t_x \ 0 & s_y & 0 & t_y \ 0 & 0 & s_z & t_z \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Where:

$$s_x,s_y,s_z$$

are the scaling factors along each axis.

ullet t_x,t_y,t_z

are the translation components along each axis.

Example:

Suppose we want to scale an object by a factor of 2 and translate it by

$$t_x = 3, t_y = 4, t_z = 5$$

. The model matrix would be:

$$M_{
m model} = egin{bmatrix} 2 & 0 & 0 & 3 \ 0 & 2 & 0 & 4 \ 0 & 0 & 2 & 5 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

2. View Transformation (Camera Transformation)

The view transformation defines the camera's position and orientation in the world. This transforms the world coordinates to the camera (view) coordinates.

Matrix:

$$M_{
m view} = egin{bmatrix} r_{xx} & r_{xy} & r_{xz} & -{
m eye}_x \ r_{yx} & r_{yy} & r_{yz} & -{
m eye}_y \ r_{zx} & r_{zy} & r_{zz} & -{
m eye}_z \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Where:

 $oldsymbol{r}_{xx}, oldsymbol{r}_{xy}, \ldots, oldsymbol{r}_{zz}$

are the components of the rotation matrix that defines the camera's orientation.

 eye_x, eye_y, eye_z

are the camera's position in world coordinates.

• Example:

If the camera is at the origin

and looking along the z-axis, the view matrix might be an identity matrix:

$$M_{
m view} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

3. Projection Transformation

The projection matrix transforms the 3D coordinates into a 2D plane. There are two common types of projection:

- Orthographic projection (no perspective distortion)
- Perspective projection (objects further away appear smaller)
- Matrix for Perspective Projection:

$$M_{
m proj} = egin{bmatrix} rac{1}{ an(heta/2)} & 0 & 0 & 0 \ 0 & rac{1}{ an(heta/2)} & 0 & 0 \ 0 & 0 & rac{f+n}{f-n} & rac{2fn}{f-n} \ 0 & 0 & -1 & 0 \end{bmatrix}$$

Where:

 $oldsymbol{ heta}$

is the field of view angle.

ullet

is the far clipping plane.

 \bullet n

is the near clipping plane.

• Example:

Suppose the field of view is

 90°

and the near and far planes are at

n = 1

and

. The perspective projection matrix could be:

$$M_{
m proj} = egin{bmatrix} 1.0 & 0 & 0 & 0 \ 0 & 1.0 & 0 & 0 \ 0 & 0 & rac{101}{99} & rac{2 imes100 imes1}{99} \ 0 & 0 & -1 & 0 \end{bmatrix}$$

4. Viewport Transformation

The viewport transformation maps the normalized device coordinates (which range from -1 to 1 after the projection transformation) to screen coordinates. The matrix for viewport transformation is used to scale and translate the coordinates to the actual screen resolution.

Matrix:

$$M_{
m viewport} = egin{bmatrix} rac{w}{2} & 0 & 0 & rac{w}{2} \ 0 & rac{h}{2} & 0 & rac{h}{2} \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Where:

is the width of the screen.

• h

is the height of the screen.

• Example:

If the screen width is

800

pixels and the height is

600

pixels, the viewport matrix would be:

$$M_{
m viewport} = egin{bmatrix} 400 & 0 & 0 & 400 \ 0 & 300 & 0 & 300 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Final Transformation

To compute the final coordinates, you need to multiply all these matrices in the following order:

$$P_{\mathrm{final}} = M_{\mathrm{viewport}} imes M_{\mathrm{proj}} imes M_{\mathrm{view}} imes M_{\mathrm{model}} imes P_{\mathrm{object}}$$

Where

$$P_{
m object}$$

is the object's coordinates in its local space.

Example Walkthrough:

Let's say we have an object with local coordinates

$$P_{\text{object}} = (1, 2, 3, 1)$$

.

1. Model Transformation:

• Apply the model matrix to the object:

$$M_{
m model} imes P_{
m object} = egin{bmatrix} 2 & 0 & 0 & 3 \ 0 & 2 & 0 & 4 \ 0 & 0 & 2 & 5 \ 0 & 0 & 0 & 1 \end{bmatrix} imes egin{bmatrix} 1 \ 2 \ 3 \ 1 \end{bmatrix} = egin{bmatrix} 2(1) + 0(2) + 0(3) + 3 \ 0(1) + 2(2) + 0(3) + 4 \ 0(1) + 0(2) + 2(3) + 5 \ 1 \end{bmatrix} = egin{bmatrix} 5 \ 8 \ 11 \ 1 \end{bmatrix}$$

2. View Transformation:

• Apply the identity view matrix:

$$M_{ ext{view}} imes P_{ ext{object}} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} imes egin{bmatrix} 5 \ 8 \ 11 \ 1 \end{bmatrix} = egin{bmatrix} 5 \ 8 \ 11 \ 1 \end{bmatrix}$$

3. Projection Transformation:

• Apply the perspective projection matrix (assuming values as before):

$$M_{ ext{proj}} imes P_{ ext{object}} = egin{bmatrix} 1.0 & 0 & 0 & 0 \ 0 & 1.0 & 0 & 0 \ 0 & 0 & rac{101}{99} & rac{2 imes 100 imes 1}{99} \ 0 & 0 & -1 & 0 \end{bmatrix} imes egin{bmatrix} 5 \ 8 \ 11 \ 1 \end{bmatrix} = egin{bmatrix} 5 \ 8 \ rac{101}{99} imes 11 + rac{2 imes 100 imes 1}{99} \ -11 \end{bmatrix}$$

4. Viewport Transformation:

• Finally, apply the viewport matrix (assuming the screen size as before):

$$M_{ ext{viewport}} imes P_{ ext{object}} = egin{bmatrix} 400 & 0 & 0 & 400 \ 0 & 300 & 0 & 300 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} imes egin{bmatrix} 5 \ 8 \ ext{calculated z value} \ -11 \end{bmatrix}$$

This gives the final 2D screen coordinates for the object.