MEPAT - LABORATÓRIO NACIONAL DE ENGENHARIA CIVIL - PORTUGAL

HOMOLOGAÇÃO DE NOVOS MATERIAIS E PROCESSOS DE CONSTRUÇÃO

DOCUMENTO DE HOMOLOGAÇÃO

PRÉTLANTI – Indústria de Pré-fabricação, Ld.⁸

Lugar da Areia – Fonte Boa 4740 ESPOSENDE

Tel. (053) 98 28 26/7 Tel. (053) 98 13 57 Fax (053) 98 13 14

PRÉTLANTI

PAVIMENTOS ALIGEIRADOS DE VIGOTAS PREFABRICADAS DE BETÃO PRÉ-ESFORÇADO

DECISÃO DE HOMOLOGAÇÃO

O presente Documento de Homologação, elaborado em cumprimento do artigo 17º do Regulamento Geral das Edificações Urbanas, Decreto-Lei nº 38 382, de 7 de Agosto de 1951, e do nº 1.3 do artigo 1º do Regulamento de Estruturas de Betão Armado e Pré-esforçado, Decreto-Lei nº 349-C/83, de 30 de Julho, define as características e estabelece as condições de execução e de emprego dos pavimentos PRÉTLANTI constituídos por vigotas prefabricadas de betão pré-esforçado, blocos de cofragem e betão complementar moldado em obra, produzidos pela firma PRÉTLANTI - Indústria de Pré-fabricação, Ld³.

O uso do pavimento fica também condicionado pelas disposições aplicáveis dos documentos referidos no Capítulo 4, que sejam compatíveis com as deste Documento de Homologação.

A concessão da presente homologação não constitui garantia da constância de qualidade do material empregado nos pavimentos PRÉTLANTI, pelo que deverá a fiscalização decidir, quando necessário, as verificações e a realização de ensaios de recepção nas condições recomendadas no §3.3 deste Documento de Homologação.

Independentemente destes ensaios e perante qualquer facto que faça pôr em dúvida a condição essencial da constância de qualidade do material produzido, o Laboratório Nacional de Engenharia Civil reserva-se o direito de exigir a realização de ensaios de controle de qualidade por conta da firma produtora dos pavimentos e em condições a definir.

A homologação concedida é válida até 31 de Março de 2001, data em que serão feitas as suas revisão e renovação.

Lisboa e Laboratório Nacional de Engenharia Civil, Março de 1996.

O DIRECTOR

Prof. E. R. de Arantes e Oliveira

3. R.A.

Página 2

DESCRIÇÃO GERAL

1.1 Constituição e tipo estrutural

Os pavimentos PRÉTLANTI são constituídos por vigotas de betão pré-esforçado e blocos de cofragem, recebendo em obra uma camada de betão armado (betão complementar) com função resistente e de solidarização do conjunto.

O seu funcionamento estrutural é comparável ao de uma laje com armadura resistente unidireccional, sendo indispensável, pará que tal semelhança tenha validade, que se assegure e mantenha a necessária aderência entre o betão complementar e as vigotas.

1.2 Campo de aplicação

Tal como para outros pavimentos com a mesma constituição e sistema estrutural, o campo de aplicação para os diversos tipos considerados dos pavimentos PRÉTLANTI abrange apenas o seu emprego em edifícios de habitação ou com ocupação e utilização semelhantes.

Não se consideram abrangidas as situações em que seja previsível a actuação predominante de acções resultantes de cargas concentradas ou de cargas dinâmicas, de choque e vibração, por mais elevada que seja a capacidade resistente dos pavimentos. Por este motivo, a utilização dos pavimentos nestes últimos casos cai fora do âmbito desta homologação e carece de prévio estudo específico, eventualmente por verificação experimental.

A utilização dos pavimentos com vãos superiores a oito metros fica igualmente fora do âmbito da presente homologação, devendo ser objecto de estudo adequado em cada caso de aplicação.

1.3 Características dos elementos constituintes

1.3.1 Vigotas

As vigotas são prefabricadas, de betão préesforçado, com armadura constituída por fios de aço aderentes. No Anexo I são representados em corte transversal os diferentes tipos de vigotas com indicação dos valores relativos às suas dimensões e à posição dos fios de aço.

O betão é de cimento Portland normal, com as características da classe B45.

O aço dos fios de pré-esforço, homologado pelo LNEC, satisfaz à classe 1770 de baixa relaxação, de acordo com a Euronorm 138/79 [11], a que correspondem os seguintes valores característicos minimos:

-	tensão de rotura à tracção	 1770	MPa
_	tensão limite convencional		
	de proporcionalidade a 0,2%	 1526	MPa

- tensão limite convencional de proporcionalidade a 0.1%1470 MPa

- extensão após rotura (relativa à base de medida de 10 diâmetros) 3,5%

A relaxação dos fios de aço, às mil horas e à temperatura de 20°C, não deve exceder 2,5% para uma tensão inicial aplicada de 0,7 da tensão característica de rotura.

1.3.2 Blocos de cofragem

Os blocos de cofragem utilizados são cerâmicos e furados, tendo formas de extradorso curvas ou poligonais e ressaltos laterais para apoio nos banzos das vigotas.

A geometria e as massas nominais dos blocos são apresentadas no Anexo II.

1.3.3 Betão complementar

O betão complementar é aplicado em camada contínua de espessura variável, mas nunca inferior a 30 mm, e incorpora uma armadura de distribuição.

Este betão é de cimento Portland normal, com a dosagem mínima de 300 kg de cimento por metro cúbico e as características da classe B25. A dimensão máxima dos inertes deve permitir o preenchimento fácil e completo dos espaços entre as vigotas e os blocos de cofragem.

1.4 Produção dos elementos prefabricados

1.4.1 Vigotas

As vigotas são fabricadas por sistema mecanizado, sendo a sua moldagem feita, sem moldes fixos, sobre uma plataforma de betão, ao longo da qual se desloca um dispositivo mecânico de distribuição, moldagem lateral e compactação do betão por vibração.

A fim de evitar a aderência da base das vigotas à superfície da plataforma, esta é previamente humedecida com um produto líquido apropriado.

O pré-esforço é aplicado individualmente em cada fio, utilizando macaco hidráulico accionado electricamente e no qual se pode medir o alongamento dos fios e controlar, por manómetro, a força a aplicar de harmonia com a tensão de pré-esforço na origem indicada no Anexo I. 1

Terminada a betonagem, as vigotas são conservadas no local de fabrico em condições ambientes naturais e rega frequente até à data em que o respectivo betão atinja o valor da resistência à compressão indicada no Anexo I.

Quando tais resistências são atingidas, o que normalmente se pode verificar entre 4 a 8 dias após a moldagem das vigotas, é feita a transmissão gradual e simultânea do pré-esforço dos fics às vigotas de cada plataforma, por meio de sistema hidráulico.

Após esta operação, as vigotas são cortadas nos comprimentos desejados e retiradas do local de fabrico para depósito, com os cuidados de transporte necessários.

A instalação de fabrico é constítuida por 9 plataformas para moldagem simultânea de 12 linhas de vigotas por plataforma a que corresponde cerca de 16 200 m de linhas de fabrico.

1.4.2 Blocos de cofragem

Os blocos de cofragem cerâmicos fornecidos pela firma produtora dos pavimentos são fabricados por diversas fábricas de cerâmica.

1.5 Técnica de execução

Nos casos correntes, a execução dos pavimentos consta das operações seguidamente referidas:

- Nivelamento dos apoios para o assentamento das vigotas.
- Montagem de escoramento provisório, para apoio intermédio das vigotas. Deve notar-se que este escoramento tem de ser criteriosamente disposto de modo a evitar esforços de flexão capazes de provocar fendilhação das vigotas não só na sua face inferior, nas zonas entre os apoios, como também na face superior, sobre os apoios.
- Montagem das cofragens junto dos apoios dos pavimentos, para moldagem de zonas maciças nas condições recomendadas em 3.2.2, e ao longo das nervuras transversais que, no referido parágrafo, são preconizadas.
- Colocação das vigotas, dispostas paralelamente entre si, e acerto do seu afastamento por meio de cércea.
- Colocação dos blocos entre vigotas, apoiados nos banzos destas, com eliminação das filas de blocos correspondentes às faixas maciças do pavimento.

- Disposição, nas condições recomendadas em 3.2.2, da armadura de distribuição, na camada de betão complementar, das armaduras das nervuras transversais e das armaduras nos apoios, quando previstas.
- Instalação de passadiços para trânsito de pessoal e de transporte do betão, a fim de evitar a circulação sobre os blocos de cofragem.
- Rega abundante das vigotas e dos blocos de cofragem, precedendo a betonagem, com vista a evitar a dessecação e melhorar a aderência do betão complementar.
- Lançamento, espalhamento, regularização e compactação do betão complementar, tendo o cuidado de assegurar a sua perfeita aderência às faces expostas das vigotas e a manutenção da espessura prevista da camada de betão acima dos blocos. Deve notar-se que, por motivo da relativa e natural fragilidade da estrutura, quando em execução, estará restringido o uso de meios potentes de compactação, o que exige especial cuidado na condução da betonagem.
- Manutenção da humidade do betão em obra, durante os primeiros dias do endurecimento, por exemplo, por meio de rega ou de recobrimento, conservado humedecido, da superfície betonada. A extensão e duração destes cuidados dependerão das condições de temperatura e humidade ambientes.

2. APRECIAÇÃO DOS PAVIMENTOS

2.1 Características mecânicas

2.1.1 Cálculo

A determinação dos valores que representam as características mecânicas dos pavimentos foi efectuada através de cálculo automático em computador. O cálculo teve por base os valores das características mecânicas dos materiais constituintes dos pavimentos registados em 1.3 e o valor de pré-esforço na origem fixado de acordo com as prescrições do artigo 36º do REBAP [3] e indicado no Anexo I.

Ao valor do pré-esforço na origem referido correspondem os valores de pré-esforço, ao fim de determinados intervalos de tempo, também indicados no Anexo I para as diferentes vigotas produzidas.

A determinação dos esforços resistentes de cálculo dos pavimentos teve em conta as disposições definidas na regulamentação em vigor aplicável, RSA [2] e Página 4

REBAP [3] com as adaptações necessárias a este tipo de pavimentos.

Foram ainda determinados para os diferentes pavimentos os valores do factor de rigidez, EI, a utilizar na verificação do estado limite de deformação.

Nos quadros de Elementos de Cálculo do Anexo III são fornecidos os valores, respeitantes às características mecânicas, necessários para a verificação da segurança em relação aos diferentes estados limites.

2.1.2 Verificação experimental

A verificação experimental das características mecânicas dos pavimentos foi feita tendo em conta as disposições aplicáveis das Directivas Comuns UEAtc [8] e do REBAP [3]. Os ensaios incidiram apenas sobre os elementos prefabricados constituintes dos pavimentos – vigotas e blocos de cofragem – e sobre os materiais constituintes das vigotas. O conhecimento existente do comportamento de pavimentos com este tipo estrutural, sob as condições correntes de utilização em edificios para habitação ou com utilização análoga, permitiu dispensar a realização de ensaios sobre protótipos do pavimento completo.

Os ensaios de vigotas constaram de:

- verificação das dimensões da secção das vigotas e do posicionamento da armadura;
- determinação do valor da tensão de pré-esforço nas armaduras das vigotas;
- ensaios de fragilidade das vigotas.

Os ensaios de blocos de cofragem consistiram na verificação das suas dimensões, massa e capacidade resistente.

Sobre o betão constituinte das vigotas foi realizado o seguinte ensaio:

verificação da resistência à compressão.

Os resultados dos ensaios realizados enquadram-se nas prescrições anteriormente referidas e satisfazem as exigências de fabrico fixadas em 1.3 e 3.1, relativamente às características dos materiais e dos elementos prefabricados. No que se refere ao pré-esforço verificado nas armaduras das vigotas há que mencionar a concordância satisfatória dos valores medidos com os calculados e registados no Anexo I.

2.2 Comportamento em caso de incêndio

Os elementos que constituem estes pavimentos, vigotas, blocos de cofragem e betão complementar, são da classe de reacção ao fogo M0 (não-combustíveis). No que se refere à resistência ao fogo estes pavimentos poderão ser classificados, no mínimo, nas seguintes classes [14]:

- CF30 desde que apresentem um revestimento na face inferior com uma espessura mínima de 15 mm de argamassa de cimento e areia ou de cimento, cal e areia;
- CF60 desde que apresentem um revestimento na face inferior com uma espessura mínima de 15 mm de argamassa de cimento e inertes leves (vermiculite, perlite ou fibras minerais).

Estes valores de resistência ao fogo poderão ser utilizados desde que nos apoios se garanta um momento resistente negativo não inferior a 15% do momento resistente último de cálculo fornecido nas tabelas.

No caso de edifícios de habitação as exigências a satisfazer são as que constam no Regulamento de Segurança contra Incêndio em Edifícios de Habitação [9]. Os pavimentos poderão satisfazer as exigências deste documento mediante uma criteriosa escolha do revestimento de tecto.

2.3 Isolamento sonoro

O índice de isolamento sonoro a sons aéreos, Ia, dos pavimentos acabados, isto é, incluindo os revestimentos de tecto e de piso ligados rigidamente ao pavimento, dependem da sua massa. Os valores do la podem ser estimados através da "Lei da Massa" [12]. Deve no entanto ter-se em conta que esta "Lei" se aplica a elementos homogéneos. No caso destes pavimentos, a existência dos blocos de aligeiramento conduz a que se possam verificar ligeiras reduções dos valores do Ia que serão tanto maiores quanto maior for o aligeiramento produzido, no pavimento, pelos blocos [14]. Nos casos em que o isolamento proporcionado pelo pavimento é superior a 35 dB deve também prever-se a contribuição da transmissão marginal na redução dos valores do Ia [12].

Se não se considerarem as reduções anteriormente referidas, para um pavimento com uma massa de 260 kg/m² estima-se um Ia de 48 dB.

O índice de isolamento sonoro a sons de percussão, Ip, depende essencialmente do tipo de revestimento de piso a adoptar.

As exigências a satisfazer são as que constam no Regulamento Geral sobre o Ruído [7].

2.4 Isolamento térmico

Os parâmetros que caracterizam o isolamento térmico - resistência térmica, Rt, ou coeficiente de transmissão térmica, K - podem ser determinados recorrendo a métodos convencionais [10].

Estes parâmetros devem ser determinados nas situações em que os pavimentos têm de satisfazer exigências de isolamento térmico, como é o caso de lajes de esteira ou de cobertura, de pavimentos sobre espaços exteriores ou locais não aquecidos.

Estudos desenvolvidos no LNEC [13] permitem concluir que estes pavimentos, por si sós, não garantem a satisfação das exigências aplicáveis [10] pelo que se torna necessário, naquelas situações, prever soluções de isolamento térmico complementar.

CONDIÇÕES DE EMPREGO DOS PAVIMENTOS

Condições de fabrico dos elementos prefabricados

3.1.1 Vigotas

Durante o fabrico das vigotas, para além das condições já referidas em 1.3.1 e 1.4.1 relativamente às características dos materiais a empregar e ao processo de produção, devem ainda ser satisfeitas as seguintes condições específicas:

- o valor da tensão de pré-esforço na origem a aplicar nas armaduras das vigotas deve ser o indicado no Anexo I;
- a transmissão do pré-esforço às vigotas só deve ser realizada depois de o betão ter adquirido resistência à compressão igual aos valores indicados no Anexo I. Estes valores devem ser verificados através de ensaios à compressão sobre cubos de betão de 15 cm ou de 20 cm de aresta conservados nas mesmas condições de ambiente a que as vigotas estão sujeitas.

Após o fabrico, as vigotas devem ser verificadas em relação aos seguintes aspectos:

- as superfícies exteriores não devem apresentar fendilhação, falhas de betão ou ocos de betonagem;
- o comprimento n\(\tilde{a}\)o deve diferir do valor previsto por diferen\(\tilde{a}\)s superiores a 2 cm;
- as dimensões da secção transversal não devem desviar-se dos valores nominais, apresentados no Anexo I, por diferenças superiores a 5 mm;
- os fios da armadura de pré-esforço não devem apresentar, relativamente à localização prevista, desvios verticais superiores a 3 mm e horizontais que excedam 5 mm;

- a curvatura lateral das vigotas não deve exceder 1/500 do comprimento, nem 10 mm;
- as vigotas, em condições normais de apoio e sob a acção apenas do seu peso próprio, devem apresentar contraflecha de valor não superior a 1/300 do vão.

3.1.2 Blocos de cofragem

Os blocos de cofragem devem satisfazer as seguintes condições:

- a configuração da secção transversal dos blocos deve corresponder às formas representadas em esquema no Anexo II;
- os desvios máximos entre as dimensões dos blocos e os respectivos valores nominais, registados no Anexo II, deverão ser de 3%, com o mínimo de 5 mm e o máximo de 10 mm; a largura do ressalto para apoio nas vigotas não deve diferir mais de 2 mm do respectivo valor nominal;
- os blocos devem ser isentos de fendas ou fracturas;
- nas condições normais de colocação em obra, os blocos deverão satisfazer a carga de rotura mínima de 500 N quando submetidos a ensaio normalizado [8].

Condições de projecto e de execução dos pavimentos

3.2.1 Verificação da segurança

A verificação da segurança dos pavimentos, com base nos valores de cálculo fornecidos no Anexo III, deverá ser efectuada em relação aos estados limites últimos de resistência e em relação aos estados limites de utilização - fendilhação e deformação -, conforme os critérios definidos nos regulamentos RSA e REBAP.

A verificação da segurança em relação aos estados limites últimos de resistência será efectuada por comparação dos valores de cálculo do momento flector resistente e do esforço transverso resistente, designados por M_{Rd} e V_{Rd} , com os correspondentes esforços actuantes, relativos às combinações de acções especificadas no artigo 9° do RSA.

A verificação da segurança em relação ao estado limite de fendilhação é efectuada comparando o valor do momento resistente designado por M_{fetk} , correspondente à formação de fendas, com o momento actuante devido às combinações de acções definidas de