AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

- 1. (canceled).
- 2. (currently amended): A complex represented by the below formula (3), and having phosphorescence in a visible region,

$$\left(L^{1}\right)_{1} - M^{1} - \left(L^{2}\right)_{m} \tag{3}$$

(wherein, M¹ is a metal which is an atom having an atomic number of 50 or more, and intersystem crossing between a singlet state and a triplet state can occur in this complex by spin-orbit interaction; L¹ represents a ligand represented by the following formula (4) or formula (5); L² represents: a halogen atom, a hydrogen atom, or a ligand which bonds to M¹ by one or more of nitrogen atom, oxygen atom, carbon atom, sulfur atom, or phosphorus atom; I represents an integer of 1-3; m represents an integer of 0-3; when I is two or more, a plurality of L¹s may be the same or different; when m is two or more, a plurality of L²s may be the same or different; l+m is an integer of 2-6);

$$Ar^{1} \left(\begin{array}{c} \left(R^{1}\right)_{a} \\ \left(R^{2}\right)_{b} \\ \left(R^{3}\right)_{j} \end{array}\right)$$

$$(4)$$

U.S. Application No.: 10/508,861

(wherein, Ar¹ represents a residue of a ligand which bonds to M¹ by one or more of nitrogen atom, or carbon atom, and has covalent bonds to j pieces of As; j represents an integer of 1 to 3; A is a single bond or a divalent group derived from conjugate system; R¹ and R² each independently represent a halogen atom, alkyl group, alkoxy group, alkylthio group, alkylamino group, alkylsilyl group, aryl group, aryloxy group, arylthio group, arylamino group, arylsilyl group, arylalkoxy group, arylalkylthio group, arylalkylamino group, arylalkyl silyl group, acyl group, acyloxy group, imino group, amide group, arylalkenyl group, arylalkynyl group, cyano group, or a monovalent heterocyclic group; R³ represents alkyl group, aryl group, arylalkyl group, arylalkynyl group, or a monovalent heterocyclic group; a represents an integer of 0 to 3; b represents an integer of 0 to 4; when a is two or more, a plurality of R¹s may be the same or different; when b is two or more, a plurality of R²s may be the same or different;

$$Ar^{2} \longrightarrow \begin{pmatrix} R^{4} \\ C \end{pmatrix}_{c}$$

$$\begin{pmatrix} R^{5} \\ d \end{pmatrix}_{d}$$

$$k$$

$$(5)$$

(wherein, Ar² represents a residue of a ligand which bonds to M¹ by one or more of nitrogen atom, oxygen atom, carbon atom, sulfur atom, or phosphorus atom, and has covalent bonds to k pieces of Ds; k represents an integer of 1-3; D is a divalent group derived from conjugate system; R⁴ and R⁵ each independently represent a halogen atom, alkyl group, alkoxy group, alkylthio group, alkylamino group, alkylsilyl group, aryl group, aryloxy group, arylthio group, arylamino

U.S. Application No.: 10/508,861

group, arylalkyl group, arylalkyl group, arylalkoxy group, arylalkylthio group, arylalkyl amino group, arylalkyl silyl group, acyl group, acyloxy group, imino group, amide group, arylalkenyl group, arylalkynyl group, cyano group, or a monovalent heterocyclic group; c and d each independently represent an integer of 0 to 4; when c is two or more, a plurality of R⁴s may be the same or different; when d is two or more, a plurality of R⁵ may be the same or different):

wherein D is selected from the group consisting of vinylene group, acetylene group, an arylene group, a divalent heterocyclic group, bonding unit shown below, and a combination of two or more thereof:

where R' represents alkyl group, aryl group, aryl alkyl group, aryl alkenyl group, aryl alkynyl group, or a monovalent heterocyclic group; and

wherein the arylene group and the divalent heterocyclic group may comprise a substituent selected from the group consisting of a halogen atom, alkyl group, alkoxy group, alkylthio group, alkylamino group, alkyl silyl group, aryl group, aryloxy group, arylthio group, aryl amino group, arylsilyl group, arylalkyl group, arylalkoxy group, arylalkylthio group, arylalkylamino group, arylalkylsilyl group, acyl group, acyloxy group, imino group, amide group, arylalkenyl group, arylalkynyl group, cyano group, thienyl group, C_1 - C_{12} alkylthienyl group, pyroryl group, furyl group, pyridyl group, C_1 - C_{12} alkylpyridyl group, a group represented by formula (1), and a group represented by formula (2):

U.S. Application No.: 10/508,861

(wherein A, R^1 , R^2 and a are the same as those of the above formula (4));

$$-D - N = \begin{pmatrix} R^4 \\ c \\ R^5 \end{pmatrix}_d$$
 (2)

(wherein, D is the same as in the above formula (5); R⁴ and R⁵ each independently represent a halogen atom, alkyl group, alkoxy group, alkylthio group, alkylamino group, alkylamino group, alkylsilyl group, arylamino group,

3. (withdrawn): A complex according to claim 2, wherein L¹ is a ligand represented by the above formula (4).

AMENDMENT UNDER 37 C.F.R. § 1.114(c)

U.S. Application No.: 10/508,861

4. (previously presented): A complex according to claim 2, wherein L¹ is a ligand represented by the above formula (5).

Attorney Docket No.: Q83700

- 5. (original): A complex according to any one of claims 2 to 4, wherein L¹ bonds to M¹ by one or more nitrogen atoms, and/or one or more carbon atoms.
 - 6. (original): A complex according to claim 5, wherein L¹ is a multi-dentate ligand.
- 7. (previously presented): A complex according to claim 2, wherein Ar¹ or Ar² is a monovalent bidentate ligand represented by the below formula (6) or (7),

$$R^{6}$$
 R^{7}
 R^{8}
 R^{9}
 R^{10}
 R^{13}
 R^{12}
 R^{11}
 R^{12}
 R^{11}

(wherein, R^6 to R^{13} each independently represent a hydrogen atom, halogen atom, alkyl group, alkoxy group, alkylthio group, alkylamino group, alkylsilyl group, aryl group, aryloxy group, arylthio group, arylamino group, arylsilyl group, arylalkyl group, arylalkoxy group, arylalkylthio group, arylalkylamino group, arylalkylsilyl group, acyl group, acyloxy group, imino group, amide group, arylalkenyl group, arylalkynyl group, cyano group, monovalent heterocyclic group, or a group represented by the below formula (1) or formula (2); at least one of R^6 to R^{13} is a group represented by the below formula (1) or formula (2));

U.S. Application No.: 10/508,861

$$R^{14}$$
 R^{15} E^{1} R^{16} R^{19} R^{18} R^{17}

(wherein, E¹ represents an oxygen atom or a sulfur atom; R¹⁴ to R¹⁹ each independently represent a hydrogen atom, halogen atom, alkyl group, alkoxy group, alkylthio group, alkylamino group, alkylsilyl group, aryl group, aryloxy group, arylthio group, arylamino group, arylsilyl group, arylalkyl group, aryl alkoxy group, arylalkylthio group, arylalkylamino group, arylalkylsilyl group, acyl group, acyloxy group, imino group, amide group, arylalkenyl group, arylalkynyl group, cyano group, monovalent heterocyclic group, or a group represented by the below formula (1) or formula (2); at least one of R¹⁴ to R¹⁹ is a group represented by the below formula (1) or formula (2));

(wherein A, R^1 , R^2 and a are the same as those of the above formula (4));

$$-D - N = \begin{pmatrix} R^4 \\ c \end{pmatrix}_{c}$$

$$(2)$$

$$(R^5)_{d}$$

AMENDMENT UNDER 37 C.F.R. § 1.114(c)

U.S. Application No.: 10/508,861

(wherein D, R⁴, R⁵, c and d are the same as those of the above formula (5)).

Attorney Docket No.: Q83700

8. (previously presented): A complex according to claim 2, wherein M¹ is an iridium atom, platinum atom, gold atom, or europium atom.

9. (previously presented): An organic electroluminescent device comprising a layer which contains the complex according to claim 2 between electrodes consisting of an anode and a cathode.

10. (withdrawn): A polymeric light-emitting substance wherein said light-emitting substance has a metal complex structure showing light emission from triplet excited state in the main chain or side chain, and has a monovalent group represented by the above general formula (1) or (2).

11. (withdrawn, currently amended): A polymeric compound according to claim 10, wherein

said polymeric compound comprising a repeating unit represented by the below formula (8), (9) or (10), has phosphorescence in a visible region,

U.S. Application No.: 10/508,861

(wherein, M² is an atom having atomic number of 50 or more, spin-orbit interaction occurs in the complex, and intersystem crossing between a singlet state and a triplet state can occur in the metal—; L³ represents a ligand represented by the below formula (12) or (13)—); L⁴ represents: a ligand which bonds to M² with one or or—more of nitrogen atom, oxygen atom, carbon atom, sulfur atom, or phosphorus atom; a halogen atom; or a hydrogen atom—; e represents an integer of 1-3—; f represents an integer of 0-3. L⁵ is a ligand which bonds to M² with one or more of nitrogen atom, oxygen atom, carbon atom, sulfur atom, or phosphorus atom, and has two bonds connected to two neiboring neighboring repeating units with covalent bonding—; When—when e is two or more, a plurality of L³ may be the same or different—; e+f is an integer of 1-5¬); when when f is two or more, a plurality of L⁴ may be the same or different—; e+f is an integer of 1-5¬);

(wherein, Ar^4 is a residue of the ligand which bonds to M^2 with one or more nitrogen atom, oxygen atom, carbon atom, sulfur atom, or phosphorus atom, and bonds to o pieces of As-; o represents an integer of 1-3-; A, R^1 - R^3 , a and b are respectively the same as those in the above formula (1)-;

AMENDMENT UNDER 37 C.F.R. § 1.114(c) Attorney Docket No.: Q83700 U.S. Application No.: 10/508,861

$$Ar^5$$
 $(R^4)_c$
 $(R^5)_d$
 p

(wherein, Ar^5 is a residue of the ligand which bonds to M^2 with one or more nitrogen atom, oxygen atom, carbon atom, sulfur atom, or phosphorus atom, and has covalent bonds to p pieces of Ds.-; p represents an integer of 1-3-; D, R^4 , R^5 , c, and d are respectively the same as those in the above formula $(2)_{\overline{r}}$);

(wherein, M², L³, and L⁴ are respectively the same as above—; L⁶ and L⁷ are each independently, a ligand which bonds to M² with one or more nitrogen atom, oxygen atom, carbon atom, sulfur atom, or phosphorus atom, and has a covalent bond to one neiboring neighboring repeating unit with one free bond, respectively—; g represents an integer of 1-3 and h represents an integer of 0-3—; L³s may be the same or different—; When—when h is two or more, a plurality of L⁴s may be the same or different—; g+h is an integer of 1-4-);

AMENDMENT UNDER 37 C.F.R. § 1.114(c) U.S. Application No.: 10/508,861

(wherein, M^2 , L^3 , L^4 , e, and f are respectively the same as those in the above formula (8): Ar³ is a trivalent aromatic group or a trivalent heterocyclic group—; L^8 is a ligand which bonds to M^2 with one or more nitrogen atom, oxygen atom, carbon atom, sulfur atom, or phosphorus atom, and has a covalent bond to Ar^3 with one free bond.

Attorney Docket No.: Q83700

12. (withdrawn, currently amended): A polymeric compound according to claim 10, wherein

said polymeric compound has a structure represented by the below formula (11) at the polymer terminal, and has phosphorescence in a visible region:

$$\begin{array}{c|c}
 & \downarrow^{9} \\
 & \downarrow^{1} \\$$

(wherein, M^2 , L^3 , L^4 , e, and f are respectively the same as those in the above formula (8).): L^9 is a ligand which bonds to M^2 with one or more nitrogen atom, oxygen atom, carbon atom, AMENDMENT UNDER 37 C.F.R. § 1.114(c)

U.S. Application No.: 10/508,861

Attorney Docket No.: Q83700

sulfur atom, or phosphorus atom, and has a covalent bond at the polymer terminal with one free bond-).

13. (withdrawn): A polymeric compound according to claim 10, wherein said polymeric compound has a metal complex structure showing light emission from triplet excited state, and has a monovalent group represented by the above formula (1) or (2), on a repeating unit other than said metal complex structure.

- 14. (withdrawn): A polymeric compound according to any one of claims 10-13, wherein the main chain is a conjugated polymer.
- 15. (withdrawn, currently amended): A polymeric compound according to claim 14, wherein said polymeric compound comprises the repeating unit represented by the following general formula (14),

$$-Ar^{6} + CR^{20} = CR^{21} + \frac{1}{n}$$
(14)

(wherein, Ar^6 represents an arylene group or a divalent heterocyclic group.-; R^{20} and R^{21} each independently represent a hydrogen atom, alkyl group, aryl group, arylalkyl group, arylalkynyl group, monovalent heterocyclic group, or cyano group.-; At-at least one of R^{20} , R^{21} , or the substituents on Ar^6 , represents a group represented by the above formula (1) or (2). n is 0 or 1-).

U.S. Application No.: 10/508,861

16. (withdrawn): A polymeric compound according to any one of claims 10-15, wherein at least one ligand of the metal complex portion showing light emission from triplet excited state bonds to a metal through a nitrogen atom and/or a carbon atom.

17. (withdrawn): A polymeric compound according to any one of claims 10-16, wherein at least one ligand of the metal complex portion showing light emission from triplet excited state is a multi-dentate ligand.

18. (withdrawn, currently amended): A polymeric compound according to any one of claims 10-16, wherein at least one ligands of the metal complex portion showing light emission from triplet excited state is a monovalent bi-dentate ligand represented by the below formula (15) or (16),

(wherein, R²² to R²⁹ each independently represent a hydrogen atom, halogen atom, alkyl group, alkoxy group, alkylthio group, alkylamino group, alkylsilyl group, aryl group, aryloxy group, arylthio group, arylamino group, aryl silyl group, arylalkyl group, arylalkoxy group, arylalkylthio group, arylalkylamino group, arylalkylsilyl group, acyl group, acyloxy group, imino group, amide group, arylalkenyl group, arylalkynyl group, cyano group, or monovalent

U.S. Application No.: 10/508,861

heterocyclic group—; At-at least one of R²² to R²⁹ is a free bond with a main chain or a side chain-);

$$R^{30}$$
 R^{31} E^2 R^{32} R^{35} R^{34} R^{33}

(wherein, E² represents an oxygen atom or a sulfur atom—; R³⁰ to R³⁵ each independently represent a hydrogen atom, halogen atom, alkyl group, alkoxy group, alkylthio group, alkylamino group, alkylsilyl group, aryl group, aryloxy group, arylthio group, arylamino group, arylsilyl group, arylalkyl group, aryl alkoxy group, arylalkylthio group, arylalkylamino group, arylalkylsilyl group, acyl group, acyloxy group, imino group, amide group, arylalkenyl group, arylalkynyl group, cyano group, or monovalent heterocyclic—; At-at least one of R³⁰ to R³⁵ is a free bond with a main chain or a side chain.

19. (withdrawn): A polymeric compound according to any one of claims 10-18, wherein the central metal of the metal complex portion showing light emission from triplet excited state is an iridium atom, platinum atom, gold atom, or europium atom.

20. (withdrawn): An organic electroluminescent device comprising a layer which contains the polymeric compound according to any one of claims 10-19 between electrodes consisting of an anode and a cathode.