Ran Space

$$R_{an}(X) = \sum_{x \in A} \{a, b\} \{b\}$$
 $\{a\}$
 $\{b\}$
 $\{a\}$
 $\{b\}$

We have
$$Ran^{II}(X) = Fin_{X}[(Fin_{X})^{II}],$$

$$Ran^{II}(X) = Colim_{X}[X^{II}],$$

$$Teffin_{X}^{II}(X)$$

Rom PreStack Now let X be a separated scheme.

The prestack
$$Ran(X)(S) := Ran(Xar(S)) = Ran(X(rds))$$

The lax prestack
$$\operatorname{Ran}^{\operatorname{untl}}(X)(S) := \operatorname{Ran}^{\operatorname{untl}}(X_{\operatorname{dR}}(S)) = \operatorname{Ran}^{\operatorname{L}}(X(\operatorname{red}S))$$

$$\Rightarrow$$
 IndCoh (Ran(X)), D(Ran(X)); IndCoh(Ran⁺(X)), D(Ran⁺(X))

are well defined.

$$D(Ran(X)) \xrightarrow{\sim} IndCh(Ran(X)); D(Ran(X)) \xrightarrow{\sim} IndCh(Ran(X))$$

$$M \in D(Ran^{(1)}(X)) \iff \forall I \in Fin, M_{I} \in D(X^{I})$$

$$\forall I \xrightarrow{f} J, \Delta_{f}^{!}(M_{I}) \xrightarrow{M_{I}} \in D(X^{T})$$

$$5.t. \text{ this is an isom chanever } f \text{ surjective}$$

$$+ \text{ higher homotopy coherences}$$

 $M \in D(Ran(X))$ $\iff \forall I \in Fin^{s}, M_{I} \in D(X^{I})$ $\forall I \xrightarrow{f_{ij}} J, \Delta_{f}^{i}(M_{I}) \xrightarrow{\sim} M_{J} \in D(X^{J})$ + higher homotopy cherences

Pseudo-Properness SE Schaft; (PreStkaft)/S = (PreStkaft)/S = Smallest full subcat closed under colimits containing X -> S

st. X is a schane, X -> S is proper.

For y laft prestack, PreStky = PreStky

= full subcat of X -> y s.t. XxS -> S is ps-pr y

n

Rook H fry ps-pr => f! has "well behaved" left ad; f!

(f! compatible // base change, satisfies projection formula.)

For X + y map of last categorical prestacks, we say it is ps-pr it

- f is level-wise a cocartesian fibration in gpds

- Y Sescrift, X x S -> S is ps-pr.

Stability of Ps-Pr
-stable under colinits (by defin), base change, compositions, products

Prop

- a) $\forall I$, $X_{dR}^{I} \longrightarrow Ran(X)$ is ps-pr
- b) Ran(X) A Ran(X) × Ran(X) is ps-pr
- c) Ran(X) × Ran(X) -> Ran(X) is ps-pr

PS

- a) If $I \longrightarrow S_{ch} \quad w/ \quad F(i) \longrightarrow F(j) \quad proper, \quad F(i) \longrightarrow colin F$ is ps-pr.
- b) $X_{dR}^{I} \longrightarrow R_{an}(X) \xrightarrow{A} R_{an}(X) \times R_{an}(X)$ $X_{dR}^{I} \times X_{dR}^{I} \xrightarrow{ps-pr} \times ps-pr$
- c) $X_{rr}^{I} \times X_{rr}^{J} \longrightarrow R_{rr}(X) \times R_{rr}(X) \longrightarrow R_{rr}(X)$ $\times X_{rr}^{I} \longrightarrow R_{rr}(X) \times R_{rr}(X) \longrightarrow R_{rr}(X)$ $\times X_{rr}^{I} \longrightarrow R_{rr}(X) \times R_{rr}(X) \longrightarrow R_{rr}(X)$

Compact Generation

Def'n Let C be a DG Category.

· We say ce C is compact if Maps (c, -) is continuous.

Denote by C' the subcategory of compact objects.

For $D \subseteq C$, we say D generates C if $Maps(d, c) = 0 \quad \forall d \in D$ implies $c = 0 \Leftrightarrow C$ containing D is C.

· C is said to be compactly general & if C generates C.

If C is compactly generated, C= Ind(C') so C is dualizable w/ C' = |nd(C') = |nd(Cc,op).

Fact Let I: I -> DGCatcont, Suppose Ci -> Ci admits a cts right adjoint V: -> j. Denote I: I -> DG(alout the diagram of right adjoints, Then colin C; ~ lim C;

Furtherrore, if C; compactly generated Vi, Colin C; is compactly generated.

uptly generated b/c XI is Since $Ran(X) = \frac{colim}{I \in Fin^{s,op}} X^{I}$, $D(Ran(X)) = \frac{lim}{I \in Fin^{s}} (D(X^{I}), f^{I})$ = colin (D(XI), f;), D(Ran(X)) is copyly generated. defined by for I -> J,

X^J -> X^I is proper Lemma Let $C \rightarrow D$ continuous, F + G.

• G $cts \rightarrow F$ preserves compacts

If C is coptly generated, this is E.

• E conservative E (ess., image of) E generates

• Thus, if E is coptly generated and E is E conservative then E is coptly generated.

Thm D(Ran(X)) is aptly generated (=> dualizable).

Pf Let Rang(X):=(RanH(X))drpd = Ran(X) U {\$\psi\}.

D(Rang(X)) is compactly generated.

Now consider i: Rang(X) -> Ran(X)

i!: D(Rang(X)) -> D(Rang(X)) is cts + conservative.

It suffices to show i! admits a left adjoint.

$$Ran^{-1}(X)(S) = \begin{cases} (I, T) & I \in Rang(X)(S) \\ J \in Rang(X)(S) \end{cases}$$

$$Rang(X) = \begin{cases} (I, T) & I \in Rang(X)(S) \\ J \in Rang(X)(S) \end{cases}$$

$$Rang(X) = \begin{cases} (I, T) & I \in Rang(X)(S) \\ J \in Rang(X)(S) \end{cases}$$

$$Rang(X) = \begin{cases} (I, T) & I \in Rang(X)(S) \\ J \in Rang(X)(S) \end{cases}$$

\$\pseudo-proper, so \$1. -1 \$\frac{1}{2}\$ is defined. We claim that $i_1 := \phi_1 - G_1^! : D(Ran_{\phi}(X)) \rightarrow D(Ran_{\phi}(X))$ is the left adjoint of i!: · i factors as $\operatorname{Ran}_{\varphi}(X) \xrightarrow{\nu} \operatorname{Ran}_{(X)} \xrightarrow{\varphi} \operatorname{Ran}_{(X)}(X)$ $I \longmapsto (I, I)$ $(I, J) \mapsto J$ so $i' = \nu' \cdot \phi'$ Now it suffices to show & + v? This follows from V + & as maps of law overthe Universal Homological Contractibility Let F: C -> D ke a function of C an on-cat, D an on-gpd. Then fibers of F are contractible YE Fun(D, E) -> Fun(C, E) is fully faithful. Defin y, I y, Elax Prestk, yz & Prestk We say f is UHC if YS & Schage $\mathbb{D}(S) \xrightarrow{f_s'} \mathbb{D}(S \times y_i)$ is fally faithful (\rightarrow) $D(y_2) \xrightarrow{f'} D(y_1)$ is J_{ij} .

Rink If $\forall S \in Sch$, $M_1(S) \longrightarrow M_2(S)$ has contractible Albers, $M_1(S) \longrightarrow M_2(S)$ has contractible Albers, $M_2(S) \longrightarrow M_2(S)$ has contractible.

Thus $\text{Ran}^{\text{unfl}}(X)$ is UHC since $\text{Ran}^{\text{unfl}}(X_{\text{AR}}(S))$ is contractible.

What if D isn't an ∞ -grd? Define E=D is called contractible if for any $d \approx d'$,

Factor $(\alpha) = \S d \longrightarrow F(c) \longrightarrow J'\S$ is contractible.

In general, F contractible \iff Fun(D, E) \Longrightarrow Fun(C, E)

fully faithful

(If F is a co/cartesian fibration ++ \iff contractible fibers)

A reaker notion: instead of asking for $Fun(D, E) \rightarrow Fun(E, E)$ f.f.,

Mips_Fun(D, E) ($\overline{\pm}$, $\overline{\pm}_{z}$) $\xrightarrow{\sim}$ Maps_Fun(e, E), $\overline{\pm}_{z} = F$),

Can ask only for this to hold when $\overline{\pm}_{1}/\overline{\pm}_{z}$

maps D to Egrpt () C/1 / C/1 contractible

"right cofinal" / "left cofinal".

When D is a god, F contractible = Fleft/right cofinal = Contractible fibers

Defin Map of lax Pre Stk y, fry yz.

 $S \in Sch$, $\propto : y_2' \longrightarrow y_2''$ in $\mathcal{Y}_2(S)$

Factor (d) E lax PreStle/s

Factor $f(\alpha)$ $\begin{pmatrix} \widehat{S} \\ \widehat{S} \end{pmatrix} = \begin{cases} \begin{cases} y_2' \\ \widehat{S} \end{cases} \rightarrow f(y_1) \rightarrow y_2'' \\ \begin{cases} \widehat{S} \end{cases} \end{cases} y_1 \in \gamma_1(S) \end{cases}$

f is UHC if $\forall S, \alpha$, Factor, $(\alpha) \longrightarrow S$ is UHC

Defin Map of lax Prestk y, + yz.

SESCH, yze Jz(S) ~ (J1) yz/ E lax PreStks

 $(\gamma_1)_{\gamma_1}(\S) = \{(\gamma_1 \in \gamma_1(\S), \gamma_2 \mid_{\S} \rightarrow f(\gamma_1))\}$

f MHLC if ∀(S, x,), (Y,),, → S ; s wHC.

Rink If is value-wise contractible/left cofinal/right astin)

f is UHC/UHCC/UHRC,

Rink f WHC/UHCC/UHRC

f' fully faithful / $F \in D(\mathcal{I}_{\lambda})$, $G \in D(\mathcal{I}_{\lambda})$ \longleftrightarrow Thus $R_{an}(X) \xrightarrow{\Delta} R_{an}(X) \times R_{an}(X)$

is valuevisa left cotina) => UHLC.

Linear Factorization Sheaves

Thm
$$X$$
 a separated last scheme.
 $i: X \longrightarrow Ran^{nnH}(X)$.

$$i = j = q_i \circ p_i + i' \circ q' = i'$$

Thm is fully faithful.

Now we will describe the ess. in. of i.

$$\underline{\mathsf{Def'}_n} \quad \cup : \, \mathsf{Ran}^{\mathsf{unfl}}(\mathsf{X}) \times \mathsf{Ran}^{\mathsf{unfl}}(\mathsf{X}) \longrightarrow \mathsf{Ran}^{\mathsf{unfl}}(\mathsf{X}).$$

$$\sim p' F \oplus p' F \longrightarrow U' F$$

Stratavise description: M & D(Ran (X)) is & LFS(X) $iff \quad \forall \quad I = I, \quad \cup \quad I_2, \quad f_i : I_i \longrightarrow I$ $\Delta_{f_{i}}^{!}(M_{I_{i}}) \oplus \Delta_{f_{2}}^{!}(M_{I_{i}}) \xrightarrow{\nu(M)_{f_{i}} \oplus \nu(M)_{f_{i}}} M_{I}$ is \simeq when restricted to (XI, XXI2) disj. Thin LFS(X) is the essential shape of i. Pf If FELFS(X) and i'F = 0, then FxI is Fero on each state of XI, so FxI = 0 VI => F=0, For example, { x ? = 3 } { 1, 2} $\Delta_{\Lambda}^{!}(\mathcal{F}_{\chi^{2}}) \xrightarrow{\sim} \mathcal{F}_{\chi} = i!\mathcal{F} = 0$ $O = \left(\Delta', \left(\mathcal{F}_{x} \right) \oplus \Delta'_{2} \left(\mathcal{F}_{x} \right) \right) \xrightarrow{\sim} \mathcal{F}_{x^{2}}$ $\chi^{2}_{\partial isj}$

Thus, since i! is conservative on LFS(X), if suffices to show that $im(7,) \in LFS(X)$,