```
import pandas as pd
In [1]:
         pd.plotting.register_matplotlib_converters()
         import matplotlib.pyplot as plt
         %matplotlib inline
         import numpy as np
         import seaborn as sns
         ar = pd.read_csv('../Desktop/DS/AirQuality.csv')
In [5]:
Out[5]:
                   10/03/2004;18.00.00;2
                                                       6;1360;150;11 9;1046;166;1056;113;1692;1268;13
         10/03/2004;19.00.00;2;1292;112;9 4;955;103;1174;92;1559;972;13
                                                                                               3;47
                                                                                                     7
                   10/03/2004;20.00.00;2
                                                         2;1402;88;9
                                                                      0;939;131;1140;114;1555;1074;11
                                                                                                    9;!
                   10/03/2004;21.00.00;2
                                                         2;1376;80;9
                                                                      2;948;172;1092;122;1584;1203;11
                   10/03/2004;22.00.00;1
                                                         6;1272;51;6
                                                                      5;836;131;1205;116;1490;1110;11
                              .....
                                                               NaN
                                                                                               NaN Na
        9471 rows × 1 columns
         ar = pd.read_csv('../Desktop/DS/AirQuality.csv',sep=';')
In [7]:
         ar.head(143)
```

		Date	Time	CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08.S2(NMHC)	NOx(GT)	b.
	0	10/03/2004	18.00.00	2,6	1360.0	150.0	11,9	1046.0	166.0	
	1	10/03/2004	19.00.00	2	1292.0	112.0	9,4	955.0	103.0	
	2	10/03/2004	20.00.00	2,2	1402.0	88.0	9,0	939.0	131.0	
	3	10/03/2004	21.00.00	2,2	1376.0	80.0	9,2	948.0	172.0	
	4	10/03/2004	22.00.00	1,6	1272.0	51.0	6,5	836.0	131.0	
	•••									
1	38	16/03/2004	12.00.00	3,3	1452.0	283.0	18,3	1250.0	217.0	
1	39	16/03/2004	13.00.00	4	1579.0	366.0	22,3	1359.0	252.0	
1	40	16/03/2004	14.00.00	3,8	1466.0	318.0	20,4	1309.0	263.0	
1	41	16/03/2004	15.00.00	2,8	1280.0	228.0	14,6	1136.0	180.0	
1	42	16/03/2004	16.00.00	2,9	1407.0	201.0	16,6	1197.0	184.0	

143 rows × 17 columns

In [8]: # LinePlot----->
sns.lineplot(data = ar)

Out[8]: <Axes: >

Out[7]:

In [12]: # Histogram------>
plt.hist(ar['PT08.S1(CO)'])

```
Out[12]: (array([ 366., 0., 0., 20., 1934., 3789., 2096., 929., 189., 34.]),

array([-200., 24., 248., 472., 696., 920., 1144., 1368., 1592., 1816., 2040.]),

<BarContainer object of 10 artists>)
```



```
In [10]: # Barplot----->
sns.barplot(x=ar['NO2(GT)'], y=ar['PT08.S5(03)'])
```

Out[10]. <Axes: xlabel='NO2(GT)', ylabel='PT08.S5(03)'>


```
In [11]: # Scatterplot----->
sns.scatterplot(x=ar['NMHC(GT)'], y=ar['NO2(GT)'])
```

Out[11]: <Axes: xlabel='NMHC(GT)', ylabel='NO2(GT)'>

In []: