Finding efficient harvest control rules for data limited management

Charles T T Edwards¹ and Finlay Scott²

^{1,2}Imperial College London, UK ²CEFAS, UK

World Fisheries Congress Edinburgh, May 2012

Introduction

Objective: to find control rules that perform well in data poor situations.

- How do we measure performance?
- What do we mean by data poor?

Overview of study:

- Introduce a measure of control rule performance
- Define control rules
- Compare performance under different data scenarios
- Quantify data uncertainty
- Compare performance relative to data uncertainty

Efficiency

How do we measure performance?

Statistical efficiency measures the deviation of an estimated value $\hat{\theta}$ from the true value θ :

$$e(f) = \frac{1/I(\theta)}{E[(\theta - \hat{\theta})^2]}$$

From this definition we obtain our measure of performance.

Performance statistic:

$$e(HCR) \propto \frac{1}{E[(C-\hat{C})^2]}$$

Harvest control rules

How do we calculate C and \hat{C} ?

Harvest control rule:

$$C_{y+1} = \frac{I_{y+1}C^{TAR}}{I^{TAR}}$$

Tested four methods of predicting $\hat{l}_{y+1} \longrightarrow \hat{C}_{y+1}$:

- Moving average
- Linear regression
- Smoothed index
- Model-based (Stock reduction analysis)

Data scenarios

Information input for the control rule

Experimental design: by changing the years of data available to the control rule (n) and the observation error (σ) we can modify the data uncertainty.

Illustrative results

Moving average control rule

Regression-based control rule

Smoothed index control rule

Model-based control rule

Data uncertainty

Quantifying the information available to the control rule

If ε is the observation error residual, then the probability distribution of the mean residual is:

$$E[In(\varepsilon)] \sim N(0, \sigma^2/n)$$

From this observation we obtain our measure of data uncertainty.

Data uncertainty:

$$u(D) := \frac{\sigma}{\sqrt{n}}$$

Data uncertainty

Quantifying the information available to the control rule

Efficiency against uncertainty

Finding efficient harvest control rules for data limited management

Charles T T Edwards¹ and Finlay Scott²

^{1,2}Imperial College London, UK ²CEFAS, UK

World Fisheries Congress Edinburgh, May 2012