Introdução a Convolutional Neural Networks com Keras API

LUCAS BEZERRA MAIA

Orientador: Geraldo Braz Junior

SUMÁRIO

- Introdução;
- Deep Features;
- Tipos de Inicialização de Treinamento;
- Implementando CNN com Keras

1

Introdução

REDE NEURAL CONVOLUCIONAL (CNN)

2

Deep Features

3

Tipos de Inicialização de Treino

TREINO "DO ZERO"

- Inicia Rede com pesos randômicos;
- Efetua os ajustes dos pesos do zero;
- Pode demorar encontrar modelo ótimo;
- Precisa de mais amostras de treinamento;

TREINO "FINE TUNING"

- Inicia Rede com pesos já treinados em outras bases;
 - Conceito de Transfer Learning
- Efetua os ajustes dos pesos com a nova base;
- Pode encontrar modelo ótimo de forma mais rápida;
- Precisa de menos amostras de treinamento;

TREINO "FINE TUNING" - IMAGENET CHALLENGE

- Inicia Rede com pesos já treinados em outras bases;
 - Conceito de Transfer Learning
- Efetua os ajustes dos pesos com a nova base;
- Pode encontrar modelo ótimo de forma mais rápida;
- Precisa de menos amostras de treinamento;

Prática

Usando *Keras* API para treinar uma CNN simples

Objetivo:

Aprender fundamentos de Deep Learning, usando keras

PRÁTICA - Git Repository

git clone https://gitlab.com/lucasmaia1202/vc_cnn.git

- #Verificar se todas a libs estão instaladas
- terminal\$: python checkup.py

PRÁTICA - Libs

- from setup
- from ip
- from keras

- from keras.models import Sequential
- from keras.layers import Dense, Dropout, Flatten
- from keras.layers import Conv2D, MaxPooling2D

PRÁTICA - Validação

PRÁTICA - Separar Conjuntos

- # Declarar lista de dicionários informando as bases
- database = [{"url": "Digitos/", "img_type": "jpg"}]

PRÁTICA - Separar Conjuntos

- # Declarar sets
- (train_list, y_train), (test_list, y_test), (valid_list, y_valid) = setup.config_base(database=database, test_prop=0.3, valid_prop=0.1)

PRÁTICA - Variáveis Necessárias

- img_rows = 32
- img_cols = 32
- channels = 3

PRÁTICA - Carregar Imagens em Arrays

- X_train = ip.list_to_array(train_list, (img_rows, img_cols), channels)
- X_test = ip.list_to_array(test_list, (img_rows, img_cols), channels)
- X_valid = ip.list_to_array(valid_list, (img_rows, img_cols), channels)

PRÁTICA - Imprimir Shapes

- # Salvar arquivo e roda
- print(X_train.shape)
- print(X_test.shape)
- print(X_valid.shape)

PRÁTICA - Transformar Saídas

- num_classes = 10
- y_train = keras.utils.to_categorical(y_train, num_classes)
- y_test = keras.utils.to_categorical(y_test, num_classes)
- y_valid = keras.utils.to_categorical(y_valid, num_classes)

cnn.add(MaxPooling2D(pool_size=(2, 2))

cnn.add(Conv2D(filters=6, kernel_size=(3, 3), activation='relu'))

cnn.add(MaxPooling2D(pool_size=(2, 2))

cnn.add(*Dropout*(**0.25**))

cnn.add(Flatten())

cnn.add(Dense(units=120, activation="relu"))

cnn.add(Dense(units=84, activation="relu"))

cnn.add(Dropout(0.5))

cnn.add(Dense(units=num_classes, activation="softmax"))

PRÁTICA - Só falta compilar a CNN criada

cnn.compile(

```
loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.SGD(),
metrics=['accuracy']
```


PRÁTICA - Treino da CNN

PRÁTICA - Avaliação da CNN

- score = cnn.evaluate(X_test, y_test)
- print("Acuracia:" score[1])

OBRIGADO!

Dúvidas?

lucasmaia1202@gmail.com