Previsão de Autonomia Elétrica e Análise de Estações de Carregamento

Global Solution - 3ECR | Alunos

- Daniel Kramer de Holleben Santos | RM: 94277

- Rafaela Hitomi Osugi | RM: 95062

- Luana Domingos Dias | RM: 93191

Sumário

1. Introdução	3
2. Descrição do Problema	3
2.1 Previsão de Autonomia Elétrica	3
2.2 Análise de Estações de Carregamento	4
3. Metodologia Utilizada	4
3.1 Machine Learning: Previsão de Autonomia Elétrica	4
3.2 Visão Computacional: Análise de Estações de Carregamento	5
4. Resultados Obtidos	6
4.1 Resultados do Machine Learning	6
4.2 Resultados da Visão Computacional	6
4.3 Visualizações	6
5. Conclusões	7
6. Próximos Passos	7
7. Anexos	8

1. Introdução

Com a crescente popularidade dos veículos elétricos (EVs), os desafios relacionados à sua adoção têm aumentado. Fabricantes enfrentam dificuldades em prever com precisão a autonomia elétrica, enquanto gestores de infraestrutura precisam lidar com a manutenção e o monitoramento de estações de carregamento. Esses problemas impactam diretamente a confiabilidade dos consumidores e a eficiência operacional.

Este projeto propõe uma solução integrada que combina **Machine Learning (ML)** e **Visão Computacional (CV)**, desenvolvida com o objetivo de:

- 1. Prever a autonomia elétrica de veículos de forma precisa.
- 2. Automatizar a análise de imagens de estações de carregamento, identificando falhas estruturais e elementos relevantes.

2. Descrição do Problema

2.1 Previsão de Autonomia Elétrica

A autonomia elétrica de um veículo é influenciada por múltiplos fatores, como:

- Ano de fabricação.
- Fabricante e tipo de veículo.
- Preço base e localização geográfica.

Estimativas imprecisas afetam:

- Fabricantes: Que precisam planejar melhorias nos modelos.
- Consumidores: Que buscam confiança na autonomia oferecida.

2.2 Análise de Estações de Carregamento

À medida que a infraestrutura cresce, monitorar manualmente as estações torna-se impraticável. Fatores como:

- Desgaste físico.
- Obstruções nos conectores.
- Falhas nos cabos e painéis, requerem uma análise automatizada para aumentar a eficiência.

3. Metodologia Utilizada

O projeto foi dividido em duas frentes principais: **Previsão de Autonomia Elétrica** e **Análise Visual das Estações de Carregamento**.

3.1 Machine Learning: Previsão de Autonomia Elétrica

1. Coleta e Pré-processamento de Dados:

- Dataset: Inclui informações como:
 - Ano do Modelo (Model Year).
 - Fabricante (Make).
 - Tipo de Veículo Elétrico (Electric Vehicle Type).
 - Autonomia Elétrica (Electric Range).
 - Preço Base (Base MSRP).
- o Tratamento de Dados:
 - Remoção de valores nulos.
 - Codificação das variáveis categóricas (Make, Electric Vehicle Type) usando LabelEncoder.

2. Divisão dos Dados:

 Divisão em 80% para treino e 20% para teste, utilizando train_test_split.

3. Modelagem:

- o Modelo utilizado: RandomForestRegressor.
 - Configurações: 100 árvores de decisão, random_state=42.
 - Justificativa: Alta precisão em problemas de regressão e robustez para dados mistos.

4. Avaliação do Modelo:

- o Erro Quadrático Médio (MSE): 94.75
- o Coeficiente de Determinação (R2): 0.99

3.2 Visão Computacional: Análise de Estações de Carregamento

1. Processamento de Imagem:

 Imagens das estações foram carregadas e convertidas para escala de cinza usando cv2.COLOR_BGR2GRAY.

2. Detecção de Bordas:

- o Algoritmo utilizado: Canny.
 - Reduz o ruído com suavização (filtro Gaussiano).
 - Detecta bordas fortes e fracas em um processo de dois limiares.

3. Visualização:

 As bordas detectadas foram exibidas com Matplotlib, destacando elementos relevantes como painéis, conectores e cabos.

4. Resultados Obtidos

4.1 Resultados do Machine Learning

- Desempenho do Modelo:
 - o MSE: 94.75
 - o R²: 0.99
 - O modelo demonstrou excelente precisão na previsão da autonomia elétrica, sendo capaz de fornecer estimativas confiáveis para fabricantes e consumidores.

4.2 Resultados da Visão Computacional

- O módulo de Visão Computacional processou imagens com eficiência, identificando contornos e bordas relevantes.
- As estruturas das estações foram claramente detectadas, permitindo o monitoramento automatizado para manutenção preditiva.

4.3 Visualizações

- Distribuição de Autonomia Elétrica:
 - Histogramas mostraram a consistência dos dados analisados.

Imagens Processadas:

 A detecção de bordas destacou os elementos estruturais das estações de carregamento.

5. Conclusões

1. Previsão de Autonomia Elétrica:

O modelo de Machine Learning desenvolvido apresentou alta precisão e desempenho, podendo ser utilizado para melhorar a confiança dos consumidores e otimizar decisões de mercado para fabricantes.

2. Análise de Estações de Carregamento:

 A integração com Visão Computacional automatizou a análise de imagens, destacando elementos estruturais e identificando possíveis falhas.

3. Impacto Geral:

 A solução é escalável e pode ser aplicada em larga escala, auxiliando fabricantes, consumidores e gestores de infraestrutura.

6. Próximos Passos

1. Aprimoramento do Modelo de Machine Learning:

- Experimentar com algoritmos mais avançados, como Gradient Boosting e XGBoost.
- Adicionar variáveis como condições climáticas e padrões de uso.

2. Expansão da Visão Computacional:

- Incorporar Redes Neurais Convolucionais (CNNs) para análise em tempo real.
- Detectar danos estruturais específicos, como rachaduras e desgastes.

3. Integração de Dados em Tempo Real:

 Utilizar sensores IoT para monitoramento contínuo das estações de carregamento.

7. Anexos

• Código-Fonte:

 Implementação detalhada disponível no arquivo Python anexado. Github

Resultados Visuais:

- o Histogramas de distribuição de autonomia elétrica.
- o Imagens com bordas detectadas usando o algoritmo Canny.

Métricas do Modelo:

o **MSE:** 94.75

 \circ $R^2: 0.99$