COL341: Homework -1

Simran Mahawar 2020CS10387

February 3, 2023

Question 1

Consider the hat matrix $H = X(X^TX)^{-1}X^T$, where X is an N by d+ 1 matrix, and X^TX is invertible.

(a) Show that H is symmetric.

A matrix is symmetric if it is equal to its transpose. $H^T = H$

T represents the transpose of a Matrix. We will compute the value of matrix H^T .

$$\begin{split} H^T &= \left(X(X^TX)^{-1}X^T\right)^T \\ &= \left(X(X^TX)^{-1}X^T\right)^T \\ &= (X^T)^T \big(X(X^TX)^{-1}\big)^T \\ &= (X)((X^TX)^{-1})^T X^T\big) \\ &= X((X^TX)^T)^{-1}X^T \\ &= X(X^TX)^{-1}X^T \\ &= H \end{split}$$

Hence proved

(b) Show that $H^K = H$ for any positive integer K.

$$\begin{split} H^2 &= \left(X(X^TX)^{-1}X^T \right) \left(X(X^TX)^{-1}X^T \right) \\ &= X(X^TX)^{-1}(X^TX)(X^TX)^{-1}X^T \\ &= X(X^TX)^{-1}X^T \\ &= H \end{split}$$

 $H^2 = H$ so H is idempotent and $H^K = H$.

(c) If I is the identity matrix of size N, show that $(I-H)^K = I - H$ for any positive integer K.

$$(I - H)^2 = (I - H)(I - H)$$

= $II - IH - HI + H^2$
= $I - 2H + H^2$
= $I - 2H + H$
= $I - H$

 $(I-H)^2 = I-H.$ It is also idempotent. $(I-H)^K = I-H.$

(d) Show that trace(H) = d + 1, where the trace is the sum of diagonal elements.

$$trace(H) = trace (X(X^TX)^{-1}X^T)$$

$$= trace (AB)$$

$$= trace (BA)$$

$$= trace (X^TX(X^TX)^{-1})$$

$$= trace (I)$$

$$= d + 1$$

where the identity matrix I is of size d + 1.

Question 2

Consider a noisy target $y = Xw^* + \epsilon$ for generating the data, where ϵ is a noise term with zero mean and σ^2 variance, independently generated for every example (x, y).

(a) Show that the in-sample estimate of y is given by $\hat{y} = Xw^* + H\epsilon$

We have $y=Xw^*+\epsilon$ and $H=X(X^TX)^{-1}X^T$ Using this into the expression for in-sample estimate of y is \hat{y}

$$\hat{y} = Hy$$

$$= H(Xw^* + \epsilon)$$

$$= Hxw^* + H\epsilon$$

$$= X(X^TX)^{-1}X^TXw^* + H\epsilon$$

$$= Xw^* + H\epsilon$$

(b) Show that the in-sample error vector $\hat{y} - y$ can be expressed by a matrix times ϵ . What is the matrix?

$$\hat{y} - y = Xw^* + H\epsilon - (Xw^* + \epsilon)$$
$$= H\epsilon - I\epsilon$$
$$= (H - I)\epsilon$$

(c) Express $E_i n$ ($w_l i n$ in terms of ϵ using (b), and simplify the expression using Question 1(c).

$$E_{in}(w_{lin}) = \frac{1}{N} ||Xw_{lin} - y||^2$$

$$= \frac{1}{N} ||y - \hat{y}||^2$$

$$= \frac{1}{N} ||(I - H)\epsilon||^2$$

$$= \frac{1}{N} \epsilon^T (I - H)^T (I - H)\epsilon$$

$$= \frac{1}{N} \epsilon^T (I - H)(I - H)\epsilon$$

$$= \frac{1}{N} \epsilon^T (I - H)\epsilon$$

(d) Prove Eq. (1) using (c) and the independence of $\epsilon_1, ..., \epsilon_N$. Using result from part (c) We have to find $E_{\mathcal{D}}[E_{in}(w_{lin})]$.

$$E_{\mathcal{D}}[E_{in}(w_{lin})] = E_{\mathcal{D}}\left[\frac{1}{N}\epsilon^{T}(I - H)\epsilon\right]$$

$$= \frac{1}{N}\left(E_{\mathcal{D}}[\epsilon^{T}\epsilon] - E_{\mathcal{D}}[\epsilon^{T}H\epsilon]\right)$$

$$= \frac{1}{N}\left(E_{\mathcal{D}}[\sum_{k=1}^{N}\epsilon_{k}^{2}] - E_{\mathcal{D}}[\sum_{i=1}^{N}\sum_{j=1}^{N}\epsilon_{i}h_{ij}\epsilon_{j}]\right)$$

$$= \frac{1}{N}\left(\sum_{k=1}^{N}E_{\mathcal{D}}\epsilon_{k}^{2} - \sum_{i=1}^{N}\sum_{j=1}^{N}E_{\mathcal{D}}[\epsilon_{i}h_{ij}\epsilon_{j}]\right)$$

$$= \frac{1}{N}\left(N\sigma^{2} - \sum_{i=1}^{N}E_{\mathcal{D}}[\epsilon_{i}^{2}h_{ii}]\right)$$

$$= \frac{1}{N}\left(N\sigma^{2} - \sum_{i=1}^{N}h_{ii}E_{\mathcal{D}}[\epsilon_{i}^{2}]\right)$$

$$= \frac{1}{N}\left(N\sigma^{2} - \sigma^{2}\operatorname{trace}(H)\right)$$

$$= \sigma^{2}\left(1 - \frac{\operatorname{trace}(H)}{N}\right)$$

$$= \sigma^{2}\left(1 - \frac{d+1}{N}\right)$$

Here we assumed ϵ_i is independent and H is not random variable. We can pull h_{ii} out of $E_{\mathcal{D}}[\epsilon_i^2 h_{ii}]$.

(e) Prove that $E_{\mathcal{D},\epsilon'}[E_{test}(w_{lin})] = \sigma^2 (1 + \frac{d+1}{N}).$

The special test error $E_t est$ is a very restricted case of the general out of sample error. Since X doesn't change, only ϵ changes, we have Here only ϵ is changing X doesn't change. So,

$$\hat{y} - y' = Xw^* + H\epsilon - (Xw^* + \epsilon')$$
$$= H\epsilon - \epsilon'$$

 ϵ and ϵ' are independent of each other

$$E_{\mathcal{D},\epsilon'} \left[E_{test}(w_{lin}) \right] = E_{\mathcal{D},\epsilon'} \left[\frac{1}{N} \| y' - \hat{y} \|^2 \right]$$

$$= E_{\mathcal{D},\epsilon'} \left[\frac{1}{N} \| \epsilon' - H \epsilon \|^2 \right]$$

$$= \frac{1}{N} E_{\mathcal{D},\epsilon'} \left[(\epsilon' - H \epsilon)^T (\epsilon' - H \epsilon) \right]$$

$$= \frac{1}{N} E_{\mathcal{D},\epsilon'} \left[(\epsilon'^T - \epsilon^T H^T) (\epsilon' - H \epsilon) \right]$$

$$= \frac{1}{N} E_{\mathcal{D},\epsilon'} \left[(\epsilon'^T - \epsilon^T H) (\epsilon' - H \epsilon) \right]$$

$$= \frac{1}{N} E_{\mathcal{D},\epsilon'} \left[\epsilon'^T \epsilon' - \epsilon'^T H \epsilon - \epsilon^T H \epsilon' + \epsilon^T H \epsilon \right]$$

$$= \frac{1}{N} E_{\mathcal{D},\epsilon'} \left[\epsilon'^T \epsilon' + \epsilon^T H \epsilon \right]$$

$$= \frac{1}{N} \left(\sum_{k=1}^{N} E_{\mathcal{D}} \epsilon_k'^2 + \sum_{i=1}^{N} \sum_{j=1}^{N} E_{\mathcal{D}} [\epsilon_i h_{ij} \epsilon_j] \right)$$

$$= \sigma^2 \left(1 + \frac{d+1}{N} \right)$$

Question 3

(a) For a test point x, show that the error y - g(x) is $\epsilon_t - x_t^T (X^T X)^{-1} X^T \epsilon$. Where ϵ is the noise realization for the test point and ϵ is the vector of noise realizations on the data. Following question 2 and use the fact that $w_{lin} = (X^T X)^{-1} X^T y$, for a given test point x_t , we have

$$g(x_t) = x_t^T w_{lin}$$

$$= x_t^T (X^T X)^{-1} X^T y$$

$$= x_t^T (X^T X)^{-1} X^T (X w^* + \epsilon)$$

$$= x_t^T (X^T X)^{-1} X^T X w^* + x_t^T (X^T X)^{-1} X^T \epsilon$$

$$= x_t^T w^* + x_t^T (X^T X)^{-1} X^T \epsilon$$

On the other side, the y at test point x_t is: $y = x_t^T w^* + \epsilon_t$, so we have

$$y - g(x_t) = \epsilon_t - x_t^T (X^T X)^{-1} X^T \epsilon$$

Where ϵ_t is the noise realization for the test point and ϵ is the vector of noise realizations on the data.

(b) Take the expectation with respect to the test point, i.e., x and ϵ , to obtain an expression for Eout. Show that $E_{out} = \sigma^2 + trace(\Sigma(X^TX)^{-1}X^T\epsilon\epsilon^TX(X^TX)^{-1})$ Take the expectation w.r.t. to the test point, i.e. x_t and ϵ_t , we have

$$\begin{split} E_{out} &= E[(y - g(x_t))^2] \\ &= E[(\epsilon_t - x_t^T (X^T X)^{-1} X^T \epsilon)^2 t] \\ &= E[\epsilon_t^2 - 2\epsilon_t x_t^T (X^T X)^{-1} X^T \epsilon + (x_t^T (X^T X)^{-1} X^T \epsilon) (x_t^T (X^T X)^{-1} X^T \epsilon)^T] \\ \text{Note the last term is a scalar} \\ &= E[\epsilon_t^2] - 2E[\epsilon_t x_t^T (X^T X)^{-1} X^T \epsilon] + E[x_t^T (X^T X)^{-1} X^T \epsilon \epsilon^T X (X^T X)^{-T} x_t] \\ &= \sigma^2 - 2E[\epsilon_t] E[x_t^T (X^T X)^{-1} X^T \epsilon] + E[trace(x_t^T (X^T X)^{-1} X^T \epsilon \epsilon^T X (X^T X)^{-T} x_t)] \end{split}$$

In the last term we use the fact that trace on a scalar equals to the scalar We also apply the independence between ϵ_t and x_t . Also note that X and ϵ are non-random in this expectation

$$= \sigma^2 + E[trace(x_t x_t^T (X^T X)^{-1} X^T \epsilon \epsilon^T X (X^T X)^{-T})]$$

$$= \sigma^2 + trace(E[x_t x_t^T (X^T X)^{-1} X^T \epsilon \epsilon^T X (X^T X)^{-T}])$$

$$= \sigma^2 + trace(E[x_t x_t^T] E[(X^T X)^{-1} X^T \epsilon \epsilon^T X (X^T X)^{-1}])$$

$$= \sigma^2 + trace(\Sigma (X^T X)^{-1} X^T \epsilon \epsilon^T X (X^T X)^{-1})$$

- (c) What is $E_{\epsilon}[\epsilon \epsilon^T]$ $\epsilon \epsilon^T$ is a $N \times N$ matrix, with entries $\epsilon_i \epsilon_j$. So $E_{\epsilon}[\epsilon \epsilon^T] = \sigma^2 I$ where the expectation of $E[\epsilon_i \epsilon_j] = 0$ when $i \neq j$, otherwise σ^2 .
- (d) Take the expectation with respect to ϵ to show that, on average, $E_{out} = \sigma^2 + \frac{\sigma^2}{N} trace(\Sigma(\frac{1}{N}X^TX)^{-1})$

If $\frac{1}{N}X^TX = \Sigma$, then what is E_{out} on average? Take the expectation w.r.t. ϵ , which is a $N \times 1$ vector. We have

$$\begin{split} E_{out} &= \sigma^2 + E_{\epsilon}[trace(\Sigma(X^TX)^{-1}X^T\epsilon\epsilon^TX(X^TX)^{-1})] \\ &= \sigma^2 + trace(E_{\epsilon}[\Sigma(X^TX)^{-1}X^T\epsilon\epsilon^TX(X^TX)^{-1}]) \\ &= \sigma^2 + trace(E_{\epsilon}[\Sigma(X^TX)^{-1}X^T]E_{\epsilon}[\epsilon\epsilon^T]E_{\epsilon}[X(X^TX)^{-1}]) \\ &= \sigma^2 + trace(\Sigma(X^TX)^{-1}X^T\sigma^2IX(X^TX)^{-1}) \\ &= \sigma^2 + \sigma^2trace(\Sigma(X^TX)^{-1}X^TX(X^TX)^{-1}) \\ &= \sigma^2 + \sigma^2trace(\Sigma(X^TX)^{-1}) \\ &= \sigma^2 + \frac{\sigma^2}{N}trace(\Sigma(\frac{1}{N}X^TX)^{-1}) \end{split}$$

Note that $\frac{1}{N}X^TX = \frac{1}{N}\sum_{n=1}^N x_n x_n^T$ is an N-sample estimate of Σ . So $\frac{1}{N}X^TX \approx \Sigma$, in such case, we have

$$E_{out} = \sigma^2 + \frac{\sigma^2}{N} trace(I) = \sigma^2 + \frac{\sigma^2(d+1)}{N} = \sigma^2(1 + \frac{d+1}{N})$$

(e) Show that (after taking the expectation over the data noise) with high probability, $E_{out} = \sigma^2(1 + \frac{d+1}{N} + o(\frac{1}{N}))$

By law of large numbers $\frac{1}{N}X^TX$ converges in probability to Σ , so by continuity of the inverse at Σ , $(\frac{1}{N}X^TX)^{-1}$ converges in probability to Σ^{-1} . $trace(\Sigma(\frac{1}{N}X^TX)^{-1}) = trace(I) + o(1)$, so we have $E_{out} = \sigma^2 + \frac{\sigma^2}{N}(d+1+o(1)) = \sigma^2(1+\frac{d+1}{N}+o(\frac{1}{N}))$