SYNTHETIC GUARDED DOMAIN THEORY AND CLASSIFYING TOPOI

LINGYUAN YE

1. Introduction

This is an internal analysis on synthetic guarded domain theory [1].

2. The theory of sequential propositions

Let $\overline{\omega}$ be the poset of extended natural numbers $\mathbb{N} \cup \{\infty\}$. As a poset it is a meet-semi-lattice, thus corresponds to an essentially algebraic theory, which we call \mathbb{P} . Since it is a lattice, it is also localic, and can be presented as a theory with infinitely many propositional letters p_0, p_1, \cdots , with infinitely many sequents as axioms

$$p_0 \vdash p_1 \vdash p_2 \vdash \cdots$$

We also consider a geometric quotient \mathbb{P}_{ω} of \mathbb{P} , which is obtained by adding an additional geometric sequent

$$\top \vdash \bigvee_{n:\mathbf{N}} p_n.$$

The classifying topos Set[P] is given by the presheaf category

$$\operatorname{Set}[\mathbb{P}] \simeq \operatorname{Psh}(\overline{\omega}).$$

Inside, the universal model w is given by the sequence of representables,

$$\mathbf{w} := \mathbf{k}_0 \hookrightarrow \mathbf{k}_1 \hookrightarrow \cdots$$

The classifying topos for \mathbb{P}_{ω} is again of presheaf type, given by

$$\operatorname{Set}[\mathbb{P}_{\omega}] \simeq \operatorname{Psh}(\omega).$$

As a subtopos $\operatorname{Psh}(\omega) \hookrightarrow \operatorname{Psh}(\overline{\omega})$, since $\bigvee_{n:\mathbb{N}} n = \infty$ is a universal effective colimit in $\overline{\omega}$, all representables are still sheaves in $\operatorname{Psh}(\omega)$. Thus, the universal model w is again the generic model in $\operatorname{Psh}(\omega)$. Below we will mainly work with the sheaf subtopos $\operatorname{Psh}(\omega)$, and we will denote it as S.

Proposition 2.1. Let $\overline{\omega}_{\perp}$ be the poset $\overline{\omega}$ with a bottom element added, and $\operatorname{Inf}(\omega, \overline{\omega}_{\perp})$ denote the poset of unbounded monotone functions from ω to $\overline{\omega}_{\perp}$. Then we have

$$Topoi(S, S) \simeq \mathbb{P}_{\omega} - Mod(S) \simeq Inf(\omega, \omega_{\perp}).$$

Proof. The first equivalence is due to the universal property of the classifying topos. We note that a model of \mathbb{P}_{ω} in S is a sequence of increasing propositions whose union is 1. Furthermore, we know that in S we have $\mathrm{Sub}(1) \cong \overline{\omega}_{\perp}$, since a proposition can either be $\mbox{$\sharp$}_k$ for some k, or 0, 1. This explains the second equivalence.

We can describe the correspondence more concretely: For any $\mathfrak{F} \in \mathbb{P}_{\omega}\text{-Mod}(S)$, it is a sequence of propositions in S

$$\mathfrak{F}_0 \hookrightarrow \mathfrak{F}_1 \hookrightarrow \cdots$$

such that $\bigvee_{n:N} \mathfrak{F}_n = 1$. It induces a geometric morphism

$$\mathbf{Psh}(\omega) \xrightarrow{\perp} \mathbf{Psh}(\omega)$$

LINGYUAN YE

The right adjoint is easy to define, which is given by

$$\triangleright X(k) \cong S(\mathfrak{F}_k, X) \cong X(f(k)),$$

where here we view $f:\omega\to\overline{\omega}_\perp$ as $\mathfrak F$ under the equivalence in Proposition 2.1, and we define the value of X on \perp,∞ to be

$$X(\perp) := 1, \quad X(\infty) := \varprojlim_{n : \mathbb{N}} X(n).$$

The left adjoint *⊲* is a left Kan extension,

$$\triangleleft X \cong \varinjlim_{x \in X(n)} \mathfrak{F}_n.$$

However, we also have a more concrete description of \triangleleft : For any $k \in \mathbb{N}$, we define

$$k^p := \min\{ n : \mathbf{N} \mid k \le f(n) \}.$$

This is well-defined exactly because $\bigvee_{n:N} \mathfrak{F}_n = 1$.

Lemma 2.2. For any presheaf $X \in S$,

$$\triangleleft X(k) \cong X(k^p).$$

Proof. By construction, since colimits in S are computed pointwise,

$$\lhd X(k) \cong \varinjlim_{x \in X(n)} S(\ \ \ \ \ \ _k, \ \ \ \ _n).$$

Notice that $S(\sharp_k, \mathfrak{F}_n) \cong 1$ when $k \leq f(n)$, and is empty otherwise. This makes $X(k^p)$ terminal in the above colimit.

Example 2.3. The universal model w induces the identity on S.

Example 2.4. Consider the model w[-1] defined by

$$\mathbf{w}[-1] := 0 \hookrightarrow \mathbf{x}_0 \hookrightarrow \mathbf{x}_1 \hookrightarrow \cdots$$

The adjoint pair $\lhd \dashv \triangleright$ induced by w[-1] is the usual modalities used in synthetic guarded domain theory [1].

3. Guarded recursion externally

Definition 3.1. We say a model \mathfrak{F} is subgeneric if $\mathfrak{F} \leq w$.

Under the equivalence in Proposition 2.1, a subgeneric model $\mathfrak F$ induces the following natural transformations,

$$\sigma: \triangleleft \Rightarrow id, \quad \eta: id \Rightarrow \triangleright.$$

Using η , we can in fact turn \triangleright into an S-indexed functor:

Proposition 3.2. Let $\triangleright_X : S/X \to S/X$ sends $f : Y \to X$ to the following pullback,

This gives a well-defined S-indexed functor.

Definition 3.3. We say a model \mathfrak{F} is *inductive*, if f(n) < n for all $n \in \omega$.

Theorem 3.4. For any inductive model \mathfrak{F} , Löb's induction holds in S,

$$\forall \varphi \in \Omega. (\triangleright \varphi \to \varphi) \to \varphi.$$

Proof. Using the Kripke-Joyal semantics, suppose we have $\varphi \in \Omega(n)$ such that

$$n \models \triangleright \varphi \rightarrow \varphi$$
.

Now we have

$$n \models \varphi \Leftrightarrow n \models \triangleright \varphi \Leftrightarrow f(n) \models \varphi \Leftrightarrow f(f(n)) \models \varphi \cdots \Leftrightarrow \bot \models \varphi.$$

which then implies that $n \models \varphi$ since $\bot \models \varphi$ always holds.

4. Guarded recursion internally

Equivalently, the geometric theory \mathbb{P}_{ω} is the theory of *filters* on ω , and for any filter \mathfrak{F} , the proposition \mathfrak{F}_n can be identified as $n \in \mathfrak{F}$. In this section we will solely use the latter notation.

Definition 4.1. We say a filter \mathfrak{F} is *sup-generic*, if $\mathbf{w} \subseteq \mathfrak{F}$. The *spectrum* of a sup-generic filter \mathfrak{F} is simply

Spec
$$\mathfrak{F} := \mathfrak{F} \subseteq \mathbf{w} \leftrightarrow \mathfrak{F} = \mathbf{w}$$
.

Proposition 4.2. For any sup-generic filter \mathfrak{F} , we have

$$\mathfrak{F} = \mathbf{w}^{\operatorname{Spec} \mathfrak{F}}.$$

In other words for any $n : \omega$,

$$n \in \mathfrak{F} \Leftrightarrow \mathfrak{F} = \mathbb{W} \to n \in \mathbb{W}.$$

Proof. This is exactly quasi-coherence for the theory \mathbb{P} .

Theorem 4.3. There is an adjunction between Ω and $SFil(\omega)$ of sup-generic filters on ω ,

$$SFil(\omega)^{op} \perp \Omega$$

which identifies $SFil(\omega)^{op}$ as a reflective sub-poset of Ω .

Proof. For any proposition $\varphi:\Omega$ and sup-generic filter \mathfrak{F} , if $\varphi\to\operatorname{Spec}\mathfrak{F}$, then

$$n \in \mathfrak{F} \Leftrightarrow \operatorname{Spec} \mathfrak{F} \to n \in \mathbf{w}$$

 $\Rightarrow \varphi \to n \in \mathbf{w}$
 $\Leftrightarrow n \in \mathbf{w}^{\varphi}$

which implies $\mathfrak{F}\subseteq \mathbf{w}^{\varphi}$. On the other hand, suppose $\mathfrak{F}\subseteq \mathbf{w}^{\varphi}$. If φ holds, then $\mathbf{w}^{\varphi}=\mathbf{w}$, which implies $\mathfrak{F}=\mathbf{w}$ since \mathfrak{F} is sup-generic. Hence, Spec \mathfrak{F} also holds.

Definition 4.4. We say a proposition is *affine* if it belongs to the image of Spec. By Theorem 4.3, affine propositions are

Example 4.5.

Proposition 4.6. Affine propositions are closed under arbitrary meets.

Remark 4.7. The above explains perfectly what it means for w to be the *generic filter*.

Proposition 4.8. For any $n : \omega, \neg \neg n \in \mathbb{W}$.

LINGYUAN YE

Proof. Suppose $n \notin w$. Then consider the filter \mathfrak{P}_n defined by

$$\mathfrak{P}_n := \{ k : \omega \mid n \le k \}.$$

For any $k \in \mathbb{W}$ we know that $n \leq k$, since if k < n and $k \in \mathbb{W}$ then $n \in \mathbb{W}$, contradictory. Hence, $n \leq k$, since this proposition is decidable. It follows that \mathfrak{P}_n is sup-generic, which by Proposition 4.2 implies for any $k : \omega$

$$k\in \mathfrak{P}_n \Leftrightarrow n\leq k \Leftrightarrow \mathfrak{P}_n = \mathbb{w} \to k \in \mathbb{w}.$$

Furthermore, the topos S can be viewed as an internal way to doing *forcing* on ω :

Definition 4.9. For any $n : \omega$ and $\varphi : \Omega$, we define the forcing relation

$$n \Vdash \varphi := \mathbf{w}_n \to \varphi$$
.

Lemma 4.10. For any $n : \omega$, the forcing relation $n \Vdash (-) : \Omega \to \Omega$ has a right adjoint.

Proof. Given a family $\varphi: I \to \Omega$ of propositions, consider the sup-generic filter Φ ,

$$n \in \Phi := n \in \mathbb{W} \vee \bigvee_{i:I} \varphi_i.$$

This way, we have

$$\Phi = \mathbf{w} \Leftrightarrow \left(\bigvee_{i:I} \varphi_i\right) \to \mathbf{w}_n = \bigwedge_{i:I} \varphi_i \to \mathbf{w}_n.$$

By Proposition 4.2, we have that

$$\begin{split} n \in \Phi &\Leftrightarrow \mathbf{w}_n \vee \bigvee_{i:I} \varphi_i \Leftrightarrow \left(\bigwedge_{i:I} \varphi_i \to \mathbf{w}_n \right) \to \mathbf{w}_n. \\ n \Vdash \bigvee_{i:I} \varphi_i &\Leftrightarrow \mathbf{w}_n \to \bigvee_{i:I} \varphi_i. \end{split}$$

This inspires the following construction:

Construction 1. Any \mathbb{P}_{ω} -model \mathfrak{F} induces two modalities on Ω , where for $\varphi:\Omega$

$$eg \varphi := \bigvee_{\mathbf{w}_n \to \varphi} \mathfrak{F}_n, \quad \triangleright \varphi := .$$

Lemma 4.11. For all $n : \omega$, $\triangleleft w_n = \mathfrak{F}_n$.

Proof. Notice that $\mathbf{w}_n \to \mathbf{w}_n$, thus $\mathfrak{F}_n \to \bigvee_{\mathbf{w}_m \to \mathbf{w}_m} \mathfrak{F}_m = \triangleleft \mathbf{w}_n$. On the other hand, for any m that $\mathbf{w}_m \to \mathbf{w}_n$, we have $m \le n$. Thus, $\mathfrak{F}_m \to \mathfrak{F}_n$, and $\triangleleft \mathbf{w}_n = \bigvee_{\mathbf{w}_m \to \mathbf{w}_n} \mathfrak{F}_m \to \mathfrak{F}_n$.

Proposition 4.12. *The two modalities are adjoint to each other* $\triangleleft \dashv \triangleright$ *.*

Proof. For any φ , ψ : Ω , we have

On the other hand,

$$\varphi \leq \triangleright \psi \Leftrightarrow \forall k \in \mathbb{N}. \ p_k \subseteq \psi \to k \in \varphi.$$

Lemma 4.13. For any

$$p \leftrightarrow \mathbf{w}^{\operatorname{Spec} p}$$

Proof. This holds by quasi-coherence.

Theorem 4.14. For any $\varphi : \Omega$, we have

$$\varphi \vee \neg \varphi \vee \exists n \in \mathbb{N}. \ \varphi = \mathbb{W}_n.$$

Proof. \Box

Definition 4.15. By an w-algebra we mean an increasing proposition $p: \mathbb{N} \to \Omega$ such that $\mathbf{w} \le p$. The *spectrum* of p is defined to be

Spec
$$p := \forall n \in \mathbb{N}. \ p_n \leq \mathbb{w}_n \leftrightarrow p = \mathbb{w}.$$

Example 4.16. For \mathbf{w}_n , we have

$$\triangleleft \mathbf{w}_n = \bigvee_{\mathbf{w}_n \leq p_k} \mathbf{w}_k$$

REFERENCES

[1] Birkedal, L., Møgelberg, R. E., Schwinghammer, J., and Støvring, K. (2012). First steps in synthetic guarded domain theory: step-indexing in the topos of trees. *Logical Methods in Computer Science*, 8.

LINGYUAN YE
DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY
UNIVERSITY OF CAMBRIDGE
CAMBRIDGE, UK
ye.lingyuan.ac@gmail.com