

2022 ~ 2023 学年春季学期《大学物理实验》报告

题 目:	实验三 惠斯通电桥		
学院:	先进制造学院		
专业班级:	智能制造工程 221 班		
学生姓名:	朱紫华		
学 号:	5908122030		
指导老师:	全祖赐老师		

得 分 | 评阅人

二〇二三年六月制

用自组惠斯通电桥测量电阻

1. 实验目的

- (1) 了解惠斯通电桥的结构,掌握惠斯通电桥的工作原理;
- (2) 掌握用滑线式惠斯通电桥测量电阻。

2. 实验仪器

滑线式惠斯通电桥,直流可调稳压电源,数字检流计,ZX21型旋转式电阻箱,单刀单掷开关 2 只,待测电阻 五只,导线若干。

3. 实验原理

电阻是电路的基本元件之一,电阻的测量是基本的电学测量。用伏安法测量电阻,虽然原理简单,但有系统误差。在需要精确测量阻值时,必须用惠斯通电桥,惠斯通电桥适宜于测量中值电阻 $(1\sim10^6\Omega)$ 。 惠斯通电桥的原理如图 1-1 所示。

图 1-1 惠斯通电桥原理图

标准电阻 R_0 、 R_1 、 R_2 和待测电阻 R_X 连成四边形,每一条边称为电桥的一个臂。在对角 A 和 C 之间接电源 E,在对角 B 和 D 之间接检流计 G。因此电桥由 A 个臂、电源和检流计三部分组成。当开关 K_E 和 K_G 接通后,各条支路中均有电流通过,检流计支路起了沟通 ABC 和 ADC 两条支路的作用,好象一座"桥"一样,故称为"电桥"。适当调节 R_0 、 R_1 和 R_2 的大小,可以使桥上没有电流通过,即**通过检流计的电流 I_G = 0,这时,B、D 两点的电势相等。电桥的这种状态称为平衡状态。这时 A、B 之间的电势差等于 A、D 之间的电势差,B、C 之间的电势差等于 D、C 之间的电势差。设 ABC 支路和 ADC 支路中的电流分别为 B1 和 B2,由欧姆定律得**

$$I_1 R_X = I_2 R_1$$

 $I_1 R_0 = I_2 R_2$

两式相除,得

$$\frac{R_X}{R_0} = \frac{R_1}{R_2} \tag{1}$$

(1)式称为电桥的平衡条件。由(1)式得

$$R_X = \frac{R_1}{R_2} R_0 \tag{2}$$

即待测电阻 R_X 等于 R_1/R_2 与 R_0 的乘积。通常将 R_1/R_2 称为比率臂,将 R_0 称为比较臂。

4. 仪器简介

(1) 滑线式惠斯通电桥

滑线式惠斯通电桥的构造如图 1-2 所示。A、B、C 是装有接线柱的厚铜片(其电阻可忽略),它们相当于图 1-1 中的 A、B、C 三点。A、C 之间有一根长度 L=100.00cm 的电阻丝,装有接线柱的滑键相当于图 1-1 中的 "D"点。滑键可以沿电阻丝左右滑动,它上面有两个弹性铜片。按下掀钮,铜片就与电阻丝接触,接触点将电阻丝分为左右两段,AD 段(设长度为 L_1)的电阻 R_1 相当于图 1-1 中的 R_1 ,BD 段(设长度为 L_2)的电阻 R_2 相当于图 1-1 中的 R_2 。在 A、B 之间接待测电阻 R_X ,B、C 之间接电阻箱 R_0 ,B、D 之间接检流计 G。A、C 之间接电源 E,电源 E 为可调直流电源,带短路保护功能。

图 1-2 滑线式惠斯通电桥

当滑动滑键, 使检流计通过的电流为 0, 即电桥处于平衡状态时, 待测电阻

$$R_X = \frac{R_1}{R_2} R_0$$

设电阻丝的电阻率为 ρ ,横截面积为S,则

$$R_1 = \rho \frac{L_1}{S}$$
 $R_2 = \rho \frac{L_2}{S}$
$$R_{X1} = \frac{L_1}{L_2} R_0$$

 L_1 的长度可以从电阻丝下面所附的米尺上读出, $L_2 = L - L_1$, R_0 可以从电阻箱上读出,根据(3)式即可求出待测电阻

为了消除由于电阻丝不均匀所产生的误差,在上述测量之后,我们把 R_X 和 R_0 的位置对调,重新使电桥处于平衡状态,测得电阻丝 AD 的长度为 L_1 , DC 的长度为 L_2 = L_1 由电桥的平衡条件得

(3)

$$R_{X2} = \frac{\dot{L_2}}{\dot{L_1}} R_0' \tag{4}$$

我们取两次测量的平均值,作为待测电阻的阻值。

最后讨论滑键在什么位置时,测量结果的相对误差最小。

因此,

 $R_{\rm X1}$ \circ

$$\stackrel{\text{\tiny A}}{\Leftrightarrow} \quad \Delta R_{\scriptscriptstyle X} = \frac{(L-L_{\scriptscriptstyle 1})\Delta L_{\scriptscriptstyle 1} + L_{\scriptscriptstyle 1}\Delta L_{\scriptscriptstyle 1}}{\left(L-L_{\scriptscriptstyle 1}\right)^2} \, R_0 = \frac{L\Delta L_{\scriptscriptstyle 1}}{\left(L-L_{\scriptscriptstyle 1}\right)^2} \, R_0$$

所以, R_X 的相对误差

$$E = \frac{\left|\Delta R_X\right|}{R_X} = \frac{L\left|\Delta L_1\right|}{(L - L_1)L_1}$$

由 $\frac{dE}{dL_1}=0$ 知,当 $L_1=\frac{L}{2}$ 时,E 有极小值。因此,我们应当这样选择 R_0 : 当滑键 D 在电阻丝中央时,使电桥

达到平衡状态。

- 5. 实验内容:
- 6. 利用惠斯通电桥测量 6 个电阻阻值:

510 Ω , 820 Ω , 3 k Ω , 10 k Ω , 51 k Ω , 100 k Ω

6.实验步骤

1.按图先摆好仪器,再接好线路。选择待测电阻 $R_X=510\Omega$,可知 R_X 的阻值在 510Ω 左右(若不知 R_X 的大概数值,可用万用表的 Ω 档进行粗测)。将电阻箱 R_0 的阻值调至与 R_X 相当,稳压电源 E 调节到 1V 左右;滑键 D 滑到 AC 中央。经教师检查后,打开稳压电源开关 K_E 。

2.用左手按下滑键 D 上的铜片(注意只能按滑键的一端),眼睛密切注视检流计 G,如果指针迅速偏转,说明通过 G 的电流很大,应迅速松开手指,使铜片弹起,以免烧坏检流计。这是由于 R_0 的阻值和 R_X 的阻值相差太大,电桥很不平衡造成的。应检查 R_0 的阻值,如有错置,立即改正。当左手按下铜片时,如果指针较慢地偏转,可用右手调节 R_0 ,使 G 的指针向 "0"移动,直到指针最接近 "0"为止。调节的方法是由电阻箱的高阻档到低阻档,(×100档、×10档和×1档)逐个仔细调节。

3.缓慢增加稳压电源 E 到 3V 左右,提高加在 AC 两端的电压,以增大电桥的灵敏度,这时检流计的指针又会偏离 "0",仔细调 R_0 的低阻档,使指针重新接近 "0",这时电桥基本处于平衡状态。

- 4.稍微移动滑键 D,当按下铜片时,检流计指针准确指"0",这时电桥就处于平衡状态。读记 R_0 和 L_1 。
- 5.把 R_0 和 R_X 的位置对调,重复上述步骤,读记 R_0 和 L_1 。
- 6.根据(3)式和(4)式,分别计算出待测电阻 R_{X1} 和 R_{X2} ,并求出它们的平均值 R_{X} 。
- 7.选择其它待测电阻,重复上述步骤。
- 8.用标准电阻箱作为被测电阻,验证电阻箱的准确度。

7.实验心得:

通过这次实验,我理解了惠斯通电桥测电阻的原理以及四色环电阻的识别方法,在实验过程中我发现无论是调换前还是调换后,测得 Rx 的实验值与标称值误差都很大,但当将两次测量结果求几何平均值后,所得的实验值与标称值很接近,说明交换测量法可以减少误差。同时随 Rx 增大,需要将检流计的量程调小,以便更好地观察电流变化,减小误差。

8.数据处理:

R_{x} 标称			_	,	,	,		R _x 实!	验值(kΩ)	
值 (kΩ)	(cm)	(cm)	R_0 (k Ω)	(cm)	(cm)	$R_0^{'}$ (k Ω)	R_{x1}	R_{x2}	$R_x = (R_{x1} + R_{x2}) / 2$	
0.51(kΩ)	63(cm)	37(cm)	0.3(kΩ)	27.5(cm)	72.5(cm)	$0.2(k\Omega)$	0.51(kΩ)	0.53(kΩ)	0.52(kΩ)	
0.82(kΩ)	44.5(cm)	55.5(cm)	1.0(kΩ)	37.7(cm)	62.3(cm)	0.5(kΩ)	0.80(kΩ)	0.83(kΩ)	$0.815(\mathrm{k}\Omega)$	
3.00(kΩ)	37(cm)	63(cm)	5.0(kΩ)	24.5(cm)	75.5(cm)	1.0(kΩ)	2.94(kΩ)	3.08(kΩ)	3.01(kΩ)	
10.00(kΩ)	33(cm)	67(cm)	$20.0(k\Omega)$	37.3(cm)	62.7(cm)	6.0(kΩ)	9.85(kΩ)	10.09(kΩ)	9.97(kΩ)	
51.00(kΩ)	55.5(cm)	44.5(cm)	$40.0(k\Omega)$	60.5(cm)	39.5(cm)	80.0(kΩ)	49.89(kΩ)	52.23(kΩ)	51.06(kΩ)	
100.00(kΩ)	66.8(cm)	33.2(cm)	50.0(kΩ)	43.7(cm)	56.3(cm)	80.0(kΩ)	100.60(kΩ)	103.07(kΩ)	101.84(kΩ)	

9. 误差分析:

- 1. 零点偏移误差,当检流计零点发生偏移时,必然影响测量的准确度。
- 2. 电阻箱结构误差,提高电阻箱准确度等级,可以减小电阻箱结构误差。
- 3. 导线电阻可使测量值偏大或偏小,跟电路中电阻分布有关,属于系统误差.
- 4. 待测电阻两端接触电阻均可造成测量结果偏大。

10.附上原始数据:

	南
Nan-Maria	

南昌大学实验报告

学生姓名:	学号:		:班级:	
宁坠米刑 ,	口於证口绘入口设计口创新		立 验成绩。	

Rx标称值	L.	L2	R.	L'i	L' ₂	R.'	Ry实验值(kn)		
	(cm)	(kn)	(cm)	(cm)	(ka)	Rxi	R _{×2}	Rx=(Rx+Rx) 12	
0.5	63	37	0.3	27.5	72.5	6.2	0.51	0.53	0.52
0.82	44.5	55.5	1.0	37.7	62.3	0.5	0.80	0.83	0.815
3.00	37	63	5.0	24.5	75.5	1.0	2.94	3.08	3.01
10.00	33	67	20.0	37.3	62.7	6.0	9.85	10.09	9.97
51.00	55.5	44.5	40.0	60,5	39:5	80.0	49.89	52.23	51.06
100.00	66.8	33,7	50.0	43.7	56.3	80.0	100.60	103.07	101.84

全祖赐

2023-4-8

##5908122030 製料器5908122015 影锋5908122015 到月天5908122029