Math 136 Homework 6

Alexandre Lipson

May 6, 2024

1.

Problem. Let A be a matrix such that A^*A is invertible. With $P_{\text{Im }A}$ given by $A(A^*A)^{-1}A^*$, find $P_{\ker A}$, $P_{\ker A^*}$, and $P_{\text{Im }A^*}$.

We can express any vector $z \in V$ uniquely by expressing its components as projections onto the linearly independent subspaces $E, E^{\perp} \subset V$,

$$z = P_E(z) + P_{E^{\perp}}(z).$$

Given the $P_{\operatorname{Im} A}$ and the above, we can find the projection onto $(\operatorname{Im} A)^{\perp} = \ker A^*$.

$$z = P_{\text{Im } A}(z) + P_{\text{ker } A^*}(z)$$
$$z - P_{\text{Im } A}(z) = P_{\text{ker } A^*}(z)$$
$$z(I - A(A^*A)^{-1}A^*) = P_{\text{ker } A^*}(z)$$
$$I - A(A^*A)^{-1}A^* = P_{\text{ker } A^*}.$$

Then, we will consider the same with the linearly independent pair of orthogonal subspaces ker A and $(\ker A)^{\perp} = \operatorname{Im} A^*$. Since A^*A is invertible, $\ker A = \vec{0}$, then the image of any vector under the operator A projected into the kernel of A will be the zero vector. So,

$$z = P_{\ker A} + P_{\operatorname{Im} A^*}$$

$$Az = AP_{\ker A} + AP_{\operatorname{Im} A^*}$$

$$Az = AP_{\operatorname{Im} A^*}$$

$$I = P_{\operatorname{Im} A^*}$$

and

$$0 = P_{\ker A}$$
.

2.

Problem. Let $\langle \cdot, \cdot \rangle$ be a positive definite inner product on the vector space V. Let $L: V \longmapsto V$ be a linear transformation that satisfies the condition,

$$\langle u, L(v) \rangle = \langle L(u), v \rangle, \quad \forall u, v \in V.$$

Such an operator is said to be *self-adjoint*.

Let v_{λ} and v_{μ} be eigenvectors associated to the eigenvalues λ and μ of L, with $\lambda \neq \mu$.

Show that $v_{\lambda} \perp v_{\mu}$

Lemma. Self-adjoint matrices have real eigenvalues.

Proof. Let z be an eigenvector with eigenvalue λ .

First, we will use the left eigenvalue,

$$\langle Lz, z \rangle = \langle z, Lz \rangle$$
$$\langle \lambda z, z \rangle = \langle z, \lambda z \rangle$$
$$\lambda \langle z, z \rangle = \overline{\lambda} \langle z, z \rangle.$$

Since $z = \overline{z}$, then $z \in \mathbb{R}$.

Eigenvectors with different eigenvalues from a self-adjoint matrix are always orthogonal.

Since L is self adjoint, by the Lemma, we will only take out real eigenvalues from either position in the inner product.

So,

$$\begin{split} \langle Lv_{\mu}, v_{\lambda} \rangle &= \langle v_{\mu}, Lv_{\lambda} \rangle \\ \langle \mu v_{\mu}, v_{\lambda} \rangle &= \langle v_{\mu}, \lambda v_{\lambda} \rangle \\ \mu \langle v_{\mu}, v_{\lambda} \rangle &= \lambda \langle v_{\mu}, v_{\lambda} \rangle \\ (\mu - \lambda) \langle v_{\mu}, v_{\lambda} \rangle &= 0, \qquad \mu \neq \lambda \\ \langle v_{\mu}, v_{\lambda} \rangle &= 0. \end{split}$$

Therefore $v_{\mu} \perp v_{\lambda}$.

3.

Problem. Let V be the vector space of continuous functions on the closed interval [-1,1], with scalar product defined by

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx.$$

- (a) Apply the Gram-Schmidt orthogonalization process to the set $\{1, x, x^2, x^3\}$ to obtain an orthogonal set of four polynomials, $\{p_0(x), p_1(x), p_2(x), p_3(x)\}$.
- (b) Verify that p_k is a solution of the differential equation

$$(1-x^2)y'' - 2xy' + \lambda y = 0$$
, with $\lambda = k(k+1)$

for k = 0, 1, 2, 3.

(a) Let $v_k = x^k$ for k = 0, 1, 2, 3.

Gram-Schmidt orthogonalization gives the following formula where P_{E_k} gives the projection onto the k^{th} subspace defined by the first k vectors from the p_k set,

$$p_{k+1} = v_{k+1} - P_{E_k} v_{k+1} = v_{k+1} - \sum_{i=1}^k \frac{\langle v_{k+1}, p_i \rangle}{\langle p_i, p_i \rangle} p_i.$$

We let $p_1 = v_1 = 1$.

Then,
$$p_2 = v_2 - \frac{\langle v_2, p_1 \rangle}{\langle p_1, p_1 \rangle} p_1$$
.

But $\langle v_2, p_1 \rangle = \int_{-1}^1 x \cdot 1 \, dx = 0$ given that x is odd.

So, $p_2 = x$.

Then,
$$p_3 = v_3 - \left(\frac{\langle v_3, p_1 \rangle}{\langle p_1, p_1 \rangle} p_1 + \frac{\langle v_3, p_2 \rangle}{\langle p_2, p_2 \rangle} p_2 \right)$$
.

For the first term in the sum, $\langle v_3, p_1 \rangle = \int_{-1}^1 x^2 \cdot 1 \, dx = \frac{x^3}{3} \Big|_{-1}^1 = \frac{2}{3}$ and $\langle p_1, p_1 \rangle = \int_{-1}^1 1 \cdot 1 \, dx = 2$ since the integrand is a rectangle.

But, $\langle v_3, p_2 \rangle = \int_{-1}^1 x^2 \cdot x \, dx = 0$ since the integrand x^3 is odd, so the second term is zero.

So,
$$p_3 = x^2 - \frac{2/3}{2} \cdot 1 = x^2 - \frac{1}{3}$$
.

Then
$$p_4 = v_4 - \left(\frac{\langle v_4, p_1 \rangle}{\langle p_1, p_1 \rangle} p_1 + \frac{\langle v_4, p_2 \rangle}{\langle p_2, p_2 \rangle} p_2 + \frac{\langle v_4, p_3 \rangle}{\langle p_3, p_3 \rangle} p_3\right)$$
.

But, the first and third terms become zero since $\langle v_4, p_1 \rangle$ and $\langle v_4, p_3 \rangle$ both produce integrands of odd functions by the integral definition of the inner product, and odd function have zero signed area under the curve on symmetrical regions like [-1,1]. So, these terms reduce to zero.

So, we will consider the second term, where $\langle v_4, p_2 \rangle = \int_{-1}^1 x^3 \cdot x \, dx = \frac{x^5}{5} \Big|_{-1}^1 = \frac{2}{5}$ and $\langle p_2, p_2 \rangle = \int_{-1}^1 x \cdot x \, dx = \frac{x^3}{3} \Big|_{-1}^1 = \frac{2}{3}$.

Thus,
$$p_4 = x^3 - \left(\frac{2/5}{2/3}\right)x = x^3 - \frac{3}{5}x$$
.

(b) For k = 0, $y = p_0 = 1$, so the coefficient of the D^0 term is $\lambda = 0(0+1) = 0$.

So we will verify that the chosen y = 1, y' = y'' = 0 holds for the equation

$$(1 - x^2)y'' - 2xy' = 0.$$

Clearly, if both the first and second derivatives of y are zero, then the left side of the equation is zero and the identity holds.

For
$$k = 1$$
, $y = p_1 = x$ and $\lambda = 1(1+1) = 2$.

So, we get the equation

$$(1 - x^2)y'' - 2xy' + 2y = 0.$$

With y'=1 and y''=0, we need only to compare the D^1 and D^0 terms,

$$(1 - x^2)(0) - 2x(1) + 2(x) = 0.$$

We quickly see that this equation holds.

3

3

For k = 2, we get $\lambda = 2(2+1) = 6$, $y = p_2 = x^2 - \frac{1}{3}$, y' = 2x, and y'' = 2.

We will check if the following holds:

$$(1 - x^{2})(2) - 2x(2x) + 6\left(x^{2} - \frac{1}{3}\right) = 0.$$

We verify by expanding,

$$2 - 2x^2 - 4x^2 + 6x^2 - 2 = 0.$$

We see that this is zero because of term cancellation.

Finally, for
$$k = 3$$
, we get $\lambda = 3(3+1) = 12$, $y = p_3 = x^3 - \frac{3}{5}x$, $y' = 3x^2 - \frac{3}{5}$, and $y'' = 6x$.

Then, we will simply the following and see that it holds:

$$(1 - x^{2})(6x) - 2x\left(3x^{2} - \frac{3}{5}\right) + 12\left(x^{3} - \frac{3}{5}x\right) = 0$$
$$6x - 6x^{3} - 6x^{3} + \frac{6}{5}x + 12x^{3} - \frac{36}{5}x = 0$$
$$\frac{30}{5}x + \frac{6}{5}x - \frac{36}{5}x - 2 \cdot 6x^{3} + 12x^{3} = 0$$

Again, we see that, through cancellation of terms, the differential equation condition holds.

So, p_0, p_1, p_2, p_3 satisfy the given differential equation.