•••

Fine Grain Analysis

A Project on Rice Classification

Amy Zhao Cassidy Xu Marios Tsotras Spencer Morga

Sup-Rice Pop Quiz!

Can you classify these grains of rice?

WHY ARE WE DOING THIS?

LOGISTIC TO REGRESSION + KNN

FEATURE DATA PREPROCESSING

- 5 types: arborio, basmati, karacadag, ipsala, jasmine
 - quantitative feature metrics measured from rice
 - unnecessary features removed
 - 60k 15k train test split
 - 3 models run LR, LR–L2, kNN

PROCEDURE

- preprocess metrics dataset
- scale, impute, encode data with pipeline
 - fit, train, and test log reg / KNN models
 - create confusion matrices
 - k-fold cross validation

model performance

LOG REG NO PENALTY

accuracy	0.977267
precision	0.977412
recall	0.977338
f-1 score	0.977355

LOG REG L2 PENALTY

accuracy	0.97720
precision	0.97736
recall	0.97727
f-1 score	0.97729

KNN CLASSIFIER

accuracy	0.979133
precision	0.979272
recall	0.979191
f-1 score	0.979204

k-fold cross validation

KNN mean accuracy:

97.94%

Log Reg mean accuracy: (no penalty)

97.76%

kNN when k=5 performs best with accuracy of 97.91%

CONCLUSIONS

Accurate, but impractical

Hard to gather data

Easy implementation

THE PROBLEM

We can analyze the data quantitatively, but can we figure out a way to visually classify the rice?

And is it better?

yes.

BENEFITS of visualization

Classification Accessibility

Improves Accuracy

PROCEDURE

- gather image dataset
- convert all images to tensors
- split into train, test, and validation data
- create the convolutional neural network
 - optimize then train the model
 - evaluate data loss and accuracy

model performance

7,157,901 trainable parameters

2500 total images

Cross entropy loss function

Test Accuracy: **0.976000**

Test Loss: **0.054742**

k-NN classification

Less data needed

Very quick implementation

Accurate Results

Accuracy: **0.9791**

Impractical Usage

visual classification (cnn)

A lot more data is needed

Extremely long implementation

Accurate Results

Accuracy: **0.9760**

Practical Usage

Rice Image NN Classification

By Karl Adrian de Guzman (kaggle)

- 99.9% accuracy
- Utilizes transfer learning
- Utilizes dropout
 - Decrease overfitting
 - Maximize efficiency
- 4932 iterations across 12 epochs
- Batch size 128 (larger than ours)

accuracy and loss PRE

transfer learning and model evaluation

accuracy and loss **POST**

transfer learning and model evaluation

epoch

10

CONCLUSIONS

- Best performing feature model: kNN
 - Accuracy: 97.91%
- Best performance image classification model: CNN
 - Accuracy: 97.60%
- However, CNN beats kNN in <u>practicality</u>
 - Accessibility to images is greater than a rice metric file
- Allows for **other visual detection**, not only classification
 - Color, unwanted substances, blemishes, etc.

References

de Guzman, Karl Adrian. "(99.9%) Rice Image Classification Using CNN in TF." Kaggle,

Kaggle, 25 Apr. 2022,

https://www.kaggle.com/code/karladriandeguzman/99-9-rice-image-classificatio

n-using-cnn-in-tf.