CS/B.TECH(EE-NEW)/SEM-5/EE-504/08/(09)

3

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 POWER ELECTRONICS

SEMESTER - 5

Time: 3 Hours]			[Full Marks: 70

GROUP - A

			,		
Cho	ose ti	he correct answer from the	given alteri	natives for any ten of the follo	•
				1	$0 \times 1 = 10$
1)	A s	ingle phase full converter ca	ın operate i	n	
	a)	4 quadrants (V-I)	b)	3 quadrants	,
	c)	2 quadrants	d)	1 quadrant.	
ii)	As	econd quadrant chopper ope	erates in		
	a)	forward motoring mode	b)	forward breaking mode	•
	c)	reverse motoring mode	d)	reverse breaking mode.	
iii)	The	e main reason for connecting	ng a pulse	transformer at the output s	tage of an
	SCI	R firing circuit is to			
	a)	amplify power of the trigg	ering pulse		
	b)	provide electric isolation			
	c)	reduce the turn on time o	f the SCR		
	d)	avoid spurious triggering	of SCR due	to noise.	
iv)	Switch mode power supplies are superior to linear power supplies in				
	a)	size & efficiency	b)	efficiency & regulation	
	c)	regulation & noise	d)	noise & cost.	

55706 (13/12)

`S/	B.TECH	(EE-NEW)	/SEM-5	/EE-504/	'08/(0 9)	1
		•	•	•		

Ulcon	

v)	Bipo	olar junction transistors have	8 / 200g
	a)	low input resistance compared to FET	
	b)	high input resistance compared to FET	
	c)	zero input resistance	
	d)	infinite resistance.	
vi)	A tri	riac can be considered as	
	- a)	two SCRs connected in antiparallel with a common gate	
, T. Y.	b)	two transistors corrected in antiparallel	
	c)	two SCRs connected in parallel with a common gate	
	d)	two SCRs connected in parallel with two gates.	
vii)	In a	constant current source inverter	
٠.	a)	a capacitor is connected in series with voltage source	
	b)	an inductor is connected in series with voltage source	
•	c)	a capacitor is connected in parallel with voltage source	
	d)	an inductor is connected in parallel with voltage source.	
viii)	Reso	onant converters control the output power by	,
	a)	varying the switching frequency around resonating frequency	
	b)	varying the on time of the switch	
	c)	controlling the power loss in the switch	
	d)	none of these.	
ix)	An R	RC snubber circuit is used to protect an SCR against	
	a)	false triggering b) failure to turn on	
	c)	switching transients d) failure to commutate.	

ĆS,	/B.TECH(EE	-NEW)/	SEM-5,	/EE-504/	/08/(09)
-----	------------	--------	--------	----------	----------

5

х)		ristor A has rated gate current of $2A$ & thyristor B has rated gate mA . So,	e current of
	a)	A is GTO & B is conventional SCR	
	b)	A is SCR & B is GTO	
	c)	A may operate as VJT	
	d)	B may operate as transistor.	
xi)	If gat	te current is increased, the forward break-over voltage of an SCR	will
	a)	increase	
	b)	decrease	
	c)	remain same	
	d)	no relation exists between them.	
xii)	For t	he regulation of AC voltages, which of the following device is used	1?
	a)	Diode b) Triac	
	c)	Diac d) SCR.	
		GROUP - B	
		(Short Answer Type Questions)	
		Answer any three of the following.	$3 \times 5 = 15$
Expla	dn wit	th two transistor analogy of SCR, how positive feedback action	takes place
durin	g turr	n on of an SCR.	5
	is a c	current source inverter? Mention its merits & demerits compared erter.	d to voltage $2+3$
Draw	& exp	plain dynamic switching characteristic of an SCR.	5
Discu	ıss wh	nat would happen if gate is made positive with respect to cathode	during the
revers	se blo	cking of an SCR.	5
		neant by commutation? Briefly explain with relevant wav	eform, the $1+4$

55706 (13/12)

2.

3.

6.

6

GROUP - C

(Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

- a) Draw a comparison between power transistor, power MOSFETS & IGBT in relation to their application in power electronics.
 - b) How di/dt & dv/dt protections are achieved in SCR?
 - c) Draw & explain a triggering circuit of an SCR.

5 + 5 + 5

- 8. a) Explain the operation of a single phase half controlled bridge converter connected to R-L load. Show the waveforms of the output voltage, SCR current & source current for a firing angle & considering ripple free output current.
 - b) Derive the expression for average & RMS value of output voltage for the converter mentioned in (a).
 - c) A battery is charged by a fully controlled single phase converter as shown in fig. The input supply is 30 V at 50 Hz. The load consists of a 24 V battery and a resistance of 5Ω connected in series to limit the current. What is the minimum possible firing angle? Compute the value of average output voltage. 6 + 4 + 5

- 9. a) What is a cycloconverter? What benefit does it offer in comparison to invertor?
 - b) With the help of schematic diagram & relevant waveforms, explain the operation of three-phase to single phase cycloconverter.
 - c) What do you mean by blocked group operation & circulating current mode operation of a cycloconverter?
 - d) Mention applications of cycloconverter.

3 + 6 + 3 + 3

CS/B.TECH(EE-NEW)/SEM-5/EE-504/08/(09)

7

- 10. a) Explain different PWM methods to control output voltage of an inverter.
 - b) Discuss constant (V/f) method of speed control of an induction machine. 10 + 5
- 11. Write short notes on any three of the following:

 3×5

- a) Multi-phase choppers
- b) Series & parallel operation of SCR
- c) Static VAR controller
- d) Dual converter.

END