Kryptographie

Claudia Wierskowski und Andreas Thiessen

Betreuer: Eberhard Heyne

Inhaltsverzeichnis

- Einleitung
- Historisches
- Blockchiffren
 - Symmetrische Verfahren
 - Asymmetrische Verfahren
 - Hybrid Verfahren
- Aktuelle Anwendung
- Politische Randbedingungen
- Ausblick

Einleitung

Einleitung

- Einsatzgebiete
 - Sensible Daten in der Wissenschaft
 - Abwicklung von Geschäftsvorgängen
 - Vertrauliche Informationen im Privaten

Einleitung

- Ziele
 - Vertraulichkeit
 - Integrität
 - Authentizität

- Einleitung
- Historisches
- Blockchiffren
 - Symmetrische Verfahren
 - Asymmetrische Verfahren
 - Hybrid Verfahren
- Aktuelle Anwendung
- Politische Randbedingungen
- Ausblick

Skytale

Caesar Chiffre

Klartext	Α	В	C	ם	Ш	F	G	Η	-	J	Κ	L	М	Z	0	Р	Q	R	S	Т	כ	V	W	Х	Υ	Z
Chiffretext	D	Ε	F	G	Н	Ι	J	K	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z	Α	В	С

Klartext: KRYPTOGRAPHIE

Chiffretext: NUBSWRJUDSKLH

- Vigènere Chiffre
 - ErstesChiffrierverfahrenmit Schlüssel

_	٠.	-	-	-	-			١.						-	_		-	_	_						
Α	В	С	D	Е	F	G	Н		J	K	L	М	N	0	Ρ	Q	R	S	Τ	U	٧	W	Χ	Υ	Ζ
В	С	D	Е	F	G	Н		J	K	L	М	N	0	Р	Q	R	S	Τ	\supset	٧	W	Χ	Υ	Ζ	Α
С	D	Ε	F	G	Н		J	K	L	М	Ν	0	Р	Q	R	S	Τ	U	٧	W	Χ	Υ	Ζ	Α	В
D	Е	F	G	Н		J	Κ	L	М	Ν	0	Р	Q	R	S	Τ	U	٧	W	Χ	Υ	Ζ	Α	В	С
Ε	F	G	Η	_	J	K	L	М	Ν	0	Р	Q	R	S	\vdash	\supset	٧	W	Χ	Υ	Ζ	Α	В	O	D
F	G	Н		J	K	L	М	N	0	Р	Q	R	S	Τ	\supset	٧	W	Χ	Υ	Ζ	Α	В	O	О	Е
G	Н		J	K	L	М	N	0	Р	Q	R	S	Τ	U	٧	W	Χ	Υ	Ζ	Α	В	С	D	Е	F
Н	Ι	J	K	L	М	N	0	Р	Q	R	S	Τ	U	٧	W	Χ	Υ	Ζ	Α	В	С	D	Ε	F	G
Ι	J	K	L	М	N	0	Р	Q	R	S	Τ	U	٧	W	Χ	Υ	Ζ	Α	В	С	D	Ε	F	G	Н
J	K	L	М	N	0	Р	Q	R	S	Τ	U	٧	W	Χ	Υ	Ζ	Α	В	O	D	Ε	F	G	Н	
K	L	М	N	0	Р	Q	R	S	Τ	U	٧	W	Χ	Υ	Ζ	Α	В	С	О	Ε	F	G	Н		J
L	М	Ν	0	Р	Q	R	S	Τ	U	٧	W	Χ	Υ	Ζ	Α	В	С	D	Ε	F	G	Н		J	Κ
M	N	0	Р	Q	R	S	Τ	U	٧	W	Χ	Υ	Ζ	Α	В	С	D	Ε	F	G	Н	Ι	J	K	L
N	0	Р	Q	R	S	Τ	U	٧	W	Χ	Υ	Ζ	Α	В	С	D	Е	F	G	Н	Ι	J	K	L	М
0	Р	Q	R	S	Τ	U	٧	W	Χ	Υ	Ζ	Α	В	С	D	Ε	F	G	Н	Π	J	Κ	L	М	Ν
Р	Q	R	S	Τ	U	٧	W	Χ	Υ	Ζ	Α	В	С	D	Ε	F	G	Н		J	Κ	L	М	Ν	0
Q	R	S	Τ	U	٧	W	Χ	Υ	Ζ	Α	В	С	D	Ε	F	G	Н		J	Κ	L	М	N	0	Ρ
R	S	Τ	U	٧	W	Χ	Υ	Ζ	Α	В	С	D	Ε	F	G	Н		J	Κ	L	М	N	0	Ρ	Q
S	Τ	U	٧	W	Χ	Υ	Ζ	Α	В	С	D	Е	F	G	Н	Τ	J	K	L	М	Ν	0	Р	Q	R
Т	U	٧	W	Χ	Υ	Ζ	Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	М	Ν	0	Р	Q	R	S
U	٧	W	Χ	Υ	Ζ	Α	В	С	D	Ε	F	G	Н	Ι	J	Κ	L	М	N	0	Р	Q	R	S	Т
V	W	Χ	Υ	Ζ	Α	В	С	D	Е	F	G	Н		J	K	L	М	N	0	Р	Q	R	S	T	Ū
W	Χ	Υ	Z	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	P	Q	R	S	T	U	٧
X	Υ	Z	A	В	С	D	Ē	F	G	H		J	K	L	M	N	0	P	Q	R	S	T	Ü	٧	W
Υ	Z	A	В	C	D	Ē	F	G	Н	1	J	K	L	М	N	0	P	Q	R	S	T	U	V	W	Χ
Ż	A	В	C	D	Ē	F	G	H	Ī	J	K	L	М	N	0	Р	O.	R	S	Ť	Ü	V	w	Χ	Υ
	٠,			_		<u>'</u>			· ·	Ü	٠,	_			,	<u> </u>	×	٠,	Ŭ	<u> </u>		<u> </u>		, ·	لن

Schlüsseltext	G	Е	$_{\rm T}$	Ш		М	G	Ε	Н	Е	Î	М	G	Е	Н	Е	1
Klartext	D		Ш		0	Ш	S	\subset	Ν	G	L	Α	\subset	Т	Е	Т	Х
Chiffretext	J	Μ	L	Ρ	W	Q	Υ	Υ	U	K	Т	Μ	Α	Х	Ĺ	Х	F

- One-Time-Pad
 - einziges 100% sicheres
 Chiffrierverfahren
- Enigma
 - Rotormaschine eingesetzt im 2.Weltkrieg

http://ed-thelen.org/comp-hist/NSA-Enigma.html

Blockchiffren

- Einleitung
- Historisches
- Blockchiffren
 - Symmetrische Verfahren
 - Asymmetrische Verfahren
 - Hybrid Verfahren
- Aktuelle Anwendung
- Politische Randbedingungen
- Ausblick

Blockchiffren

- Nachteile Klassische Verfahren
 - Einfache Verschlüsselung
 - Konfusion
 - Regelmäßigkeiten im Chiffretext
- Blockchiffren
 - Block fester Länge
 - Diffusion
 - Kaum Regelmäßigkeiten
 - Blocklängen 64 oder 128 Bit

Grafik: Robert Gehring (1997)

- Einleitung
- Historisches
- Blockchiffren
 - Symmetrische Verfahren
 - Asymmetrische Verfahren
 - Hybrid Verfahren
- Aktuelle Anwendung
- Politische Randbedingungen
- Ausblick

- Grundlagen
 - Symmetrischer Schlüssel
 - Einfache Chiffriervorschriften
 - XOR
 - Vertauschen
 - Shiften
 - 8-16 Verschlüsselungsrunden

- DES Data-Encryption-Standard
 - Ab 1977 USA Standard Chiffrierverfahren
 - Wurde durch Brute Force Angriff gebrochen
 - Erweiterung Triple-DES ist bis heute sicher
 - 2002 durch AES abgelöst

DES Verfahren

- 64-Bit Schlüssel
- 64-Bit Blöcke
- 16 Runden
- Teilen des 64- Bit Blockes in eine linke und eine rechte Hälfte
- Basiert auf gegebenen Permutationstabellen

					Ei	ngan	gspe	ermut	tation	ı:					
58	50	42	34	26	18	10	2	60	52	44	36	28	20	12	4
			38												
57		41	33	25	17	9	1	59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5	63	55	47	39	31	23	15	7

Angewandte Kryptographie, W. Ertel

Runde,

- Schlüsselerzeugung
 - 64-Bit Schlüssel auf 56 Bit kürzen
 - Wiederholung in jeder Runde
 - Teilen in zwei gleich große Teile
 - Shiften
 - 48 von 56 Bit auswählen
 - 48 Bit Schlüssel an Rundenfunktion geben
 - 56 Bit an nächste Runde geben

Eine Runde

- Expansion
- XOR- Verknüpfung mit Schlüssel

Expansionspermutation:

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

Angewandte Kryptographie, W. Ertel

- S-Box Substitution
- P-Box Permutation
- XOR- Verknüpfung mit linker Hälfte

							S-Bo	ox 5:							
2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3

Beispiel:

Eingabe für S-Box 5 ist binär 110100

Bits 1 und 6 sind binär 10 das ergibt den Zeilenindex 2

Bits 2 – 5 ergeben sind binär 1010 den Spaltenindex 10

Rückgabe 12

- Einleitung
- Historisches
- Blockchiffren
 - Symmetrische Verfahren
 - Asymmetrische Verfahren
 - Hybrid Verfahren
- Aktuelle Anwendung
- Politische Randbedingungen
- Ausblick

Grundlagen

- Idee aus 70er Jahre von Whitfield Diffie, Martin Hellmann, Ralph Merkle
- Unterschiedliche Schlüssel zum Ver- und Entschlüsseln
- Schlüsselpaar aus öffentlichem und privaten Schlüssel

=> Public Key Verfahren

http://www.ita.hsr.ch/studienarbeiten/arbeiten/WS98/SecurityTutorial/verschluesselung.html

- Forderungen
 - Schlüsselpaar muss leicht erzeugbar sein
 - Verbindung zwischen Schlüsseln darf nicht herstellbar sein
- Lösung
 - Harte mathematische Probleme

RSA

- benannt nach seinen Erfindern Ron Rivest,
 Adi Shamir und Len Adleman
- 1977 und 1978 entwickelt
- Noch heute wichtigstes Public-Key Verfahren
- Hartes math. Problem: Primzahlfaktorisierung

- Schlüsselerzeugung
 - 1. Wähle zwei Primzahlen p und q. Die Länge der Primzahlen sollte mindestens 512 Bit betragen.
 - Fermat–Test
 - Miller–Rabin–Test
 - 2. Berechne n = pq (n hat dann eine Länge von mindestens 1024 Bit) n heißt das RSA Modul

- 3. Wähle eine kleine ungerade natürliche Zahl e, die zu $\varphi(n) = (p-1)(q-1)$ relativ prim ist, d.h. es gilt $ggT(e, \varphi(n)) = 1$. e heißt Verschlüsselungsexponent
- 4. Berechne d als Lösung der Gleichung ed mod φ(n) = 1 mit Hilfe des erweiterten euklidischen Algorithmus d heißt Entschlüsselungsexponent

Erweiterter euklidischer Algorithmus

- Besagt, dass es Zahlen x, $y \in Z$ gibt, so dass ggT(a,b) = ax + by ist
- Berechnet x und y durch Umkehrung des euklidischen Algorithmus
- Ist d < 0 bilde Inverse: $d = \varphi(n) + d$

Beispiel zum erweiterten euklidischen Algorithmus:

Beispiel: a = 531, b = 93

Euklidischer Algorithmus:

Erweiterter euklidischer Algorithmus:

$$3 = 27 - 2 * 12$$

$$= 27 - 2 * (66 - 2 * 27) = -2 * 66 + 5 * 27$$

$$= -2 * 66 + 5 * (93 - 1 * 66) = 5 * 93 - 7 * 66$$

$$= 5 * 93 - 7 * (531 - 5 * 93)$$

$$= -7 * 531 + 40 * 93 => x = -7, y = 40$$

- 5. Gib das Paar P = (e,n) bekannt als öffentlichen Schlüssel.
- 6. Halte das Paar S = (d,n) geheim als geheimen Schlüssel.
- 7. p, q und φ(n) werden nicht mehr benötigt und sollten gelöscht werden

Beispiel zur Schlüsselerzeugung:

- 1. Als Primzahlen wählt man die Zahlen p = 11 und q = 23.
- 2. Also ist n = pq = 253
- 3. $\varphi(n) = (p-1)(q-1) = 220$, dazu das kleinstmöglichste e ist e = 3.
- 4. Der erweiterte euklidische Algorithmus:

1)
$$220 = 73 * 3 + 1$$

 $3 = 3 * 1 + 0 \Rightarrow ggT(220, 73) = 1$

$$2) \quad 1 = 220 - 73 * 3$$

Unser d' ist also
$$-73 => d = 220 - 73 = 147$$

- 5. Öffentlicher Schlüssel P = (3,253)
- 6. Geheimer Schlüssel S = (147, 253)

- Verschlüsselung
 - Alphabet dargestellt durch die Zahlen 0 bis N-1
 - 1. Man setze $k = [log_N n]$ k ist die Länge der Klartextblöcke
 - 2. Verwandle Block $m_1 ... m_k$ in die Zahl $m = \sum_{i=1}^k m_i * N^{k-i}$

3. Diese Zahl m wird nun durch **c** = **m**^e **mod n** chiffriert.

4. Schreibe die Zahl c wieder zur Basis N Man erhält einen Schlüsselblock $c_1...c_{k+1}$

Beispiel zur Verschlüsselung:

Das verwendete Alphabet lautet:

0	а	b	С
0	1	2	3

$$e = 3$$
, $n = 253$, $N = 4$

Klartext: abb => 122

1.
$$k = [log_4 253] = 3$$

2.
$$m = \sum_{i=1}^{k} m_i * N^{k-i} = 1 * 4^2 + 2 * 4^1 + 2 * 4^0 = 26$$

3.
$$c = 26^3 \mod 253 = 119$$

4. c zur Basis N = 4: c=119₁₀ = 1 *
$$4^3$$
 + 3 * 4^2 + 1 * 4^1 + 3 * 4^0 = 1313₄

Der chiffrierte Text lautet also: acac

- Entschlüsselung
 - 1. Man setze $k = [log_N n]$ k+1 ist die Länge der Geheimtextblöcke
 - 2. Verwandle Block $c_1 ... c_{k+1}$ in die Zahl $c = \sum_{i=1}^{k+1} c_i * N^{k-i}$

3. Diese Zahl c wird nun durch **m = c^d mod n** dechiffriert

4. Schreibe die Zahl m wieder zur Basis N Man erhält einen Schlüsselblock m₁...m_k

Beispiel zur Entschlüsselung:

Das verwendete Alphabet lautet:

0	а	b	С
0	1	2	3

$$d = 147$$
, $e = 3$, $n = 253$, $N = 4$ Geheimtext: acac => 1313

1.
$$k = [\log_4 253] = 3$$

2.
$$c = \sum_{i=1}^{k+1} c_i * N^{k-i} = 1 * 4^3 + 3 * 4^2 + 3 * 4^1 + 1 * 4^0 = 119$$

3.
$$m = 119^{147} \mod 253 = 26$$

4. m zur Basis N = 4:
$$m = 26_{10} = 1 * 4^2 + 2 * 4^1 + 2 * 4^0 = 122_4$$

Der dechiffrierte Text lautet also: abb

Blockchiffren: Hybrid Verfahren

- Einleitung
- Historisches
- Blockchiffren
 - Symmetrische Verfahren
 - Asymmetrische Verfahren
 - Hybrid Verfahren
- Aktuelle Anwendung
- Politische Randbedingungen
- Ausblick

Blockchiffren: Hybrid Verfahren

	symmetrisch	asymmetrisch	
Vorteil	kurze SchlüsselEinwegschlüsseleinfache Verfahrensehr schnell	lange SchlüsselMehrwegschlüsselkomplexe Verfahrensehr langsam	Nachteil
Nachteil	Schlüsselübertragungn(n-1)/2 Schlüsselfeste Schlüssellänge	Sicherheit2n SchlüsselSkalierbarkeit	Vorteil

Blockchiffren: Hybrid Verfahren

Aktuelle Anwendungen

- Einleitung
- Historisches
- Blockchiffren
 - Symmetrische Verfahren
 - Asymmetrische Verfahren
 - Hybrid Verfahren
- Aktuelle Anwendung
- Politische Randbedingungen
- Ausblick

Aktuelle Anwendungen

- PGP (Pretty Good Privacy)
 - Arbeitet mit Hybrid Verfahren
 - Aufgaben
 - Email-Verschlüsselung
 - Digitale Unterschrift
 - Infrastruktur
 - Trust-Centren
 - Schlüsselauthentifizierung

Aktuelle Anwendungen

- SSH (Secure Shell)
 - Benutzt Public-Key-Verfahren zur Authentifizierung
 - Kommunikation zwischen Server und Client wird verschlüsselt

http://www.f-secure.com/estore/ssh.shtml

Politische Randbedingungen

- Einleitung
- Historisches
- Blockchiffren
 - Symmetrische Verfahren
 - Asymmetrische Verfahren
 - Hybrid Verfahren
- Aktuelle Anwendung
- Politische Randbedingungen
- Ausblick

Politische Randbedingungen

- Deutschland
 - Kryptographie ist generell erlaubt
 - 1. Signaturgesetz 1997
 - Signaturen sind rechtlich gültig
 - Strenge Vorgaben f
 ür Benutzer
 - praktisch kaum durchführbar
 - →EU Vorgaben 1999 / Gesetz 2001

Politische Randbedingungen

• USA

- 1993 bis 1996 Standard EES
 - Clipper Chip codieren und beim NIST hinterlegen
 - richterliche Anordnung zum Abhören
- Ab 1996 ähnliche Regelungen
- Mittlerweile liberalere Gesetzesvorschläge

- Exportgesetz
 - Unterzeichnung des Wassenaar-Abkommens 1996
 - dennoch Exportverbot für Verschlüsselungssoftware
 - Seit kurzem aufgehoben

Ausblick

- Einleitung
- Historisches
- Blockchiffren
 - Symmetrische Verfahren
 - Asymmetrische Verfahren
 - Hybrid Verfahren
- Aktuelle Anwendung
- Politische Randbedingungen
- Ausblick

Ausblick

- Elliptische Kurven
 - $-y^2 = ax^3 + bx^2 + cx + d$
 - neuen Arithmetik durch elliptische Kurve
 - Verkürzte Schlüssellänge

http://www.roehri.ch/~sr/studium/ecc-semaev/node4.html

Ausblick

- Allgemein
 - Kryptographie wird noch wichtiger
 - bessere Ausnutzung der Vernetzung
 - Bekanntheitsgrad steigt
 - Software wird benutzerfreundlicher

