ROBOTICS

CHAPTER 5: INVERSE KINEMATICS

5.1 INVERSE KINEMATICS PROBLEM

5.2 INVERSE KINEMATICS SOLUTIONS

* "Given a desired end-effector pose (position + orientation), find the values of the joint variables that will realize it"

- * A synthesis problem, with input data in the form:
 - Classical formulation: inverse kinematics for a given end-effector pose

$$T = \begin{bmatrix} R & p \\ 000 & 1 \end{bmatrix} = {}^{0}A_{n}(q)$$

• Generalized formulation: inverse kinematics for a given value of task variables

$$r = \begin{bmatrix} p \\ \theta \end{bmatrix} = f_r(q)$$

- The equations to solve are in general nonlinear, and thus it is not always possible to find a closed-form solution.
- Multiple solutions may exist.
- Infinite solutions may exist, e.g., in the case of a kinematically redundant manipulator.
- There might be no admissible solutions, in wiew of the manipulator kinematic structure.

- * Primary workspace WS1: set of all positions \mathbf{p} that can be reached with at least one orientation ($\boldsymbol{\theta}$ or \mathbf{R})
 - Out of WS1 there is no solution to the problem
 - When $p \in WS1$, there is a suitable θ (or \mathbb{R}) for which a solution exists
- Secondary (or dexterous) workspace WS2: set of positions **p** that can be reached with any orientation (among those feasible for the robot direct kinematics)

When $\mathbf{p} \in WS2$, there exists a solution for any feasible $\boldsymbol{\theta}$ (or \mathbf{R})

♦ WS2 ⊆ WS1

SOLUTION METHODS

ANALYTICAL solution (in closed form)

- Preferred, if it can be found*
- Use ad-hoc geometric inspection
- Algebraic methods polynomial equations)
- systematic ways for generating a reduced set of equations to be solved
- * Sufficient conditions for 6-dof arms
- 3 consecutive rotational joint axes are incident (e.g., spherical wrist), or
- 3 consecutive rotational joint axes are parallel

NUMERICAL solution (in iterative form)

- Certainly needed if n>m (redundant case), or at/close to singularities
- Slower, but easier to be set up
 In its basic form, it uses the (analytical)
 Jacobian matrix of the direct kinematics
 map

$$J_r(q) = \frac{\partial f_r(q)}{\partial q}$$

Newton method, Gradient method, and so on...

***** ALGEBRAIC SOLUTION

Link	a_i	α_i	d_i	θ_i
1	a_1	0	0	$ heta_1$
2	a_2	0	0	$ heta_2$
3	a_3	0	0	$ heta_3$ BA

$$\Rightarrow p_{Wx}^{2} + p_{Wy}^{2} = a_{1}^{2} + a_{2}^{2} + 2a_{1}a_{2}c_{2}$$

$$\Rightarrow c_{2} = \frac{p_{Wx}^{2} + p_{Wy}^{2} - a_{1}^{2} - a_{2}^{2}}{2a_{1}a_{2}c_{2}}; s_{2} = \pm\sqrt{1 - c_{2}^{2}}$$

$$\Rightarrow \theta_{2} = ATAN2(s_{2}, c_{2})$$

***** ALGEBRAIC SOLUTION

GEOMETRIC SOLUTION

GEOMETRIC SOLUTION

5.2 INVERSE KINEMATICS SOLUTION OF MANUPULATOR WITH SPHERICAL WRIST

Solution:

- Compute wrist position $P_{W=}P_{e} d_{6}a_{e}$
- Solve inverse kinematics for (q_1, q_2, q_3)
- Compute ${}^{0}R_{3}(q_{1},q_{2},q_{3})$
- Compute ${}^{3}R_{6}(q_{4},q_{5},q_{6}) = {}^{0}R_{3}^{T}R$
- Solve inverse kinematics for the spherical wrist (q_4, q_5, q_6)

5.2 INVERSE KINEMATICS SOLUTIONS: ARTICALUATED ARM

Link d_i a_i α_i 0 $\pi/2$ 0 a_2

0

 a_3

0

 θ_3

3

$$\left| \text{Condition:} \left| a_2 - a_3 \right| \leq \sqrt{p_{wx}^2 + p_{wy}^2 + p_{wz}^2} \leq a_2 + a_3 \right|$$

5.2 INVERSE KINEMATICS SOLUTIONS: ARTICALUATED ARM

5.2 INVERSE KINEMATICS SOLUTIONS: ARTICALUATED ARM

- There exist four solutions according to the values of θ_1 , θ_2 , θ_3
- It is possible to find the solutions only if at least $p_{Wx} \neq 0$ or $p_{Wy} \neq 0$
- In case $p_{Wx} = p_{Wy} = 0$, an infinity of solutions is obtained => the arm in such configuration is kinematically singular

VERSE KINEMATICS SOLUTIONS: SPHERICAL WRIST

Problem : find the joint variables θ_4 , θ_5 , θ_6	3
corresponding to a given end-effector orientation	$^{3}T_{6}$

Link	a_i	α_i	d_i	θ_i
4	0	$-\pi/2$	0	$\top \lambda \theta_4 \sqcup \parallel$
5	0	$\pi/2$	0	$ heta_5$ Bởi
6	0	0	d_6	θ_6

$${}^{3}T_{6} = \begin{vmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{4}c_{5}s_{6} - s_{4}c_{6} & c_{4}s_{5} & c_{4}s_{5}d_{6} \\ s_{4}c_{5}c_{6} + c_{4}s_{6} & -s_{4}c_{5}s_{6} + c_{4}c_{6} & s_{4}s_{5} & s_{4}s_{5}d_{6} \\ -s_{5}c_{6} & s_{5}s_{6} & c_{5} & c_{5}d_{6} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

$$\Theta_{4} = ATAN2(^{3}a_{y}, ^{3}a_{x})$$

$$\Theta_{5} = ATAN2(\sqrt{(^{3}a_{x})^{2} + (^{3}a_{y})^{2}}, ^{3}a_{z}), \text{ for } \theta_{5} \in (0, \pi)$$

$$\theta_{6} = ATAN2(^{3}s_{z}, -^{3}n_{z})$$

 ${}^{3}T_{6} = \begin{bmatrix} {}^{3}n_{x} & {}^{3}S_{x} & {}^{3}a_{x} \\ {}^{3}n_{y} & {}^{3}S_{y} & {}^{3}a_{y} \\ {}^{3}n_{z} & {}^{3}S_{z} & {}^{3}a_{z} \end{bmatrix}$

$${}^{3}T_{6} = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{4}c_{5}s_{6} - s_{4}c_{6} & c_{4}s_{5} & c_{4}s_{5}d_{6} \\ s_{4}c_{5}c_{6} + c_{4}s_{6} & -s_{4}c_{5}s_{6} + c_{4}c_{6} & s_{4}s_{5} & s_{4}s_{5}d_{6} \\ -s_{5}c_{6} & s_{5}s_{6} & c_{5} & c_{5}d_{6} \\ 0 & 0 & 1 \end{bmatrix}$$
 and
$$\begin{cases} \theta_{4} = ATAN2\left(-^{3}a_{y}, -^{3}a_{x}\right) \\ \theta_{5} = ATAN2\left(-\sqrt{\left(^{3}a_{x}\right)^{2} + \left(^{3}a_{y}\right)^{2}}, ^{3}a_{z}\right), \text{ for } \theta_{5} \in (-\pi, 0) \\ \theta_{6} = ATAN2\left(-^{3}s_{z}, ^{3}n_{z}\right) \end{cases}$$