7.1
$$conf$$
.

$$\int e^{x} sinx \, dx$$

$$u = e^{x} \quad dy = sinx \, dx$$

$$du = e^{x} dx \quad y = -cosx$$

$$= -e^{x} cosx \quad -\int -cosx \, e^{x} \, dx$$

$$= -e^{x} cosx \quad +\int cosx \, e^{x} \, dx$$

$$u = e^{x} \quad dy = cosx \, dx$$

$$du = e^{x} dx \quad y = sinx$$

$$= -e^{x} cosx \quad +e^{x} sinx \quad -\int e^{x} sinx \, dx$$

$$= -e^{x} cosx \quad +e^{x} sinx \quad -\int e^{x} sinx \, dx$$

$$\Rightarrow 2 \int e^{x} sinx \, dx \quad = -e^{x} cosx \quad +e^{x} sinx$$

$$\Rightarrow 2 \int e^{x} sinx \, dx \quad = \frac{1}{2} e^{x} cosx \quad +\frac{1}{2} e^{x} sinx \quad +c$$

	$\chi \cos^2 \chi$	l _×	
		l _x	
$=\int \int cin^2$			
0(2.1	χ) ² $\cos^2 \chi$.	sinx dx	
= \(\left(1 - \cdot \)	$(0s^2\chi)^2 \cos^2\chi$	c sinx de	
			$u = \cos x$
			$\int du = -\sin x dx$ $-du = \sin x dx$
=) (1 -	u2)2 u2 (-	du)	
= - \(\left(1 - 2 \)	u² +u4)u	2 du	
= - \int (u2 -	2 u4 + u6) du	
$-\left(\frac{u^3}{3}\right)$	2us + 47) + C	
$-\frac{1}{3} \cos^3$	$\chi + \frac{2}{5} \cos^5$	$x - \frac{1}{7} \cos^7$	x + C
	$= \int (1 - 2)^{3}$ $= -\int (u^{2} - 2)^{3}$ $= -\int (u^{3} - 2)^{3}$	$= \int (1 - u^{2})^{2} u^{2} (-a^{2})^{2} = -\int (1 - 2u^{2} + u^{4}) u^{3}$ $= -\int (u^{2} - 2u^{4} + u^{6})$ $-\left(\frac{u^{3}}{3} - \frac{2u^{5}}{3} + \frac{u^{7}}{7}\right)$	$= \int (1-\cos^2 x)^2 \cos^2 x \sin x dx$ $= \int (1-u^2)^2 u^2 (-du)$ $= -\int (1-2u^2+u^4) u^2 du$ $= -\int (u^2-2u^4+u^6) du$ $-\left(\frac{u^3}{3}-\frac{2u^5}{5}+\frac{u^7}{7}\right) + C$ $-\frac{1}{3}\cos^3 x + \frac{2}{5}\cos^5 x -\frac{1}{7}\cos^7 x$