

Theoretisch Informatik Turing-Maschinen

Technische Hochschule Rosenheim SS 2019

Prof. Dr. J. Schmidt

Inhalt

- Definition von Turing-Maschinen
- Beispiele für Turing-Maschinen
- Zelluläre Automaten

Einführung

- endliche Automaten und Kellerautomaten sind offensichtlich in ihrer Leistungsfähigkeit eingeschränkt
- Turing-Maschine ist
 - eng mit Automaten verwandt
 - ein sehr einfaches und daher in theoretischen Untersuchungen häufig verwendetes universales Modell für einen Computer
- sie kann alle Probleme lösen, die auch ein Computer lösen kann, und umgekehrt
- alle Konzepte zur Formulierung eines Algorithmus bzw. zur Beschreibung eines abstrakten Computers haben sich bisher als äquivalent zu diesem Turing-Maschinen-Modell erwiesen
- wurde von Alan Turing (1912-1954) bereits in den 1930er Jahren entwickelt
- nach ihm ist auch der Turing-Award benannt, der "Nobelpreis" der Informatik

Definition

Eine (deterministische) Turing-Maschine (TM) besteht aus

- einem (einseitig oder beidseitig) unbegrenzten Ein/Ausgabe-Band (Schreib/Lese-Band),
- einem längs des Bandes nach links (L) und rechts (R) um jeweils einen Schritt beweglichen Schreib/Lese-Kopf,
- einem endlichen Alphabet T von Eingabezeichen,
- einem endlichen Alphabet B von Bandzeichen
 - B umfasst alle Eingabezeichen und eventuell noch weitere, insbesondere das Blank (Leerzeichen), mit dem das Band am Anfang gefüllt ist
- einer endlichen Menge von Zuständen S mit mindestens einem Anfangszustand und mindestens einem Endzustand (Haltezustand).
- yound einer **Zustandsübergangsfunktion** f: $S \times B \rightarrow S \times B \times \{L, R\}$

Anmerkungen

- es gibt andere, leicht abweichende Definitionen
 - z.B. zusätzlich zu L und R ein N (Neutral), der Kopf bleibt stehen
 - diese sind äquivalent zur hier vorgestellten
- Man kann sogar weiter einschränken, es genügt
 - ein Alphabet mit nur zwei Zeichen T = {0,1} ODER
 - nur zwei Zustände (Anfangs- und Endzustand) zu haben
- einseitig unbegrenzte Bänder zu betrachten reicht
- TM mit mehreren Bändern sind äquivalent zu TM mit einem einzigen Band
- auch andere Arten von Modellen, z.B. mit wahlfreiem Zugriff auf den Speicher, haben sich als gleichwertig erwiesen
- wird später mit der Church-Turing-These wieder aufgegriffen

Begriffe

6

Akzeptierte Sprache

- Menge aller Wörter, mit der die Turing-Maschine mit einem Wort aus dieser Menge auf dem Eingabeband startet
- und vom Anfangszustand in einen Endzustand gelangt, also anhält

Konfiguration

- momentane Anordnung der Zeichen auf dem Band
- gemeinsam mit dem Zustand (inkl. Position des Schreib/Lesekopfes)
- Startkonfiguration:
 - Konfiguration der Zeichen auf dem Band vor dem Start der TM
- Endkonfiguration/Haltekonfiguration:
 Konfiguration beim Anhalten der TM

Turing-Maschinen und Berechenbarkeit

- Turing-Maschinen stehen in engem Zusammenhang mit der Theorie der Berechenbarkeit
- **Turing-Berechenbarkeit**: Eine Funktion f(x) = y mit x,y∈T* ist Turing-berechenbar, wenn
 - es Folgen von Zustandsübergängen gibt, mit denen die TM
 - aus jeder Anfangskonfiguration mit dem Wort x
 - in eine Endkonfiguration mit dem Wort y übergeht
 - die TM transformiert die Eingabe x in die Ausgabe y, die dann auf dem Band abgelesen werden kann
- Anmerkung:
 - eine TM muss nicht in jedem Falle anhalten
 - daher ist die Übergangsfunktion f eine partielle Funktion

Beschreibung von TM durch Anweisungen

8

- Übergangsfunktion einer TM wird typischerweise nicht durch Übergangstabellen beschrieben, sondern durch eine endliche Anzahl von Anweisungen
- > Bei Beschränkung auf die Eingabezeichen 0 und 1, z.B.:

$$i = \left\{ \begin{array}{ccccc} 0 & b_1 & r_1 & j \\ & & & \\ 1 & b_2 & r_2 & k \end{array} \right.$$

Bedeutung:

Index i∈N vor der geschweiften Klammer: Anweisungsnummer

erste Spalte: gelesenes Bandzeichen (0 oder 1)

zweite Spalte: zu schreibendes Bandzeichen b (0 oder 1)

dritte Spalte: Richtung r für den nächsten Schritt (R=rechts oder L=links)

vierte Spalte: Index j/k der n\u00e4chsten Anweisung oder j/k=0 f\u00fcr HALT

Darstellung als Übergangsdiagramm

- Zustände als Knoten
- Übergänge als Pfeile
- an der Wurzel des Pfeils: gelesenes Zeichen
- neben dem Pfeil:
 - geschriebenes Zeichen und
 - Richtung des Schrittes auf dem Schreib/Lese-Band
- Anfangszustand gekennzeichnet durch einen Pfeil
- Endzustand durch 0 oder HALT

Beispiel

10

TM, die 3 Einsen auf ein mit Nullen vorbesetztes Band schreibt

Anweisungen:

- Übergangsdiagramm:
- Anmerkung: Zur vollständigen Definition gehören auch
 - Ausgangsposition des Schreib-/Lesekopfes
 - Vorbesetzung des Bandes

$$1 = \begin{bmatrix} 0 & 1 & R & 2 \\ & & & \\ 1 & 1 & R & 0 \end{bmatrix}$$

00000000	1→2
0000010000	2→2
0000110000	2→1
0000110000	1→2
00001110000	2→1
00001110000	1→HALT
00001110000	
1	

12

Nichtdeterministische TM (NTM)

- ähnlich wie bei endlichen Automaten
- NTM können (je nach Sichtweise)
 - aus mehreren Möglichkeiten beliebig wählen (aber so, dass es dann passt!)
 - oder alle Möglichkeiten gleichzeitig parallel ausführen
- NTM "erraten" sozusagen den richtigen Weg
- jede nichtdeterministische TM kann durch eine deterministische TM ersetzt werden, die dieselbe Ausgabe liefert – NTM und DTM sind äquivalent

Akzeptierte Sprache

- die von einer TM akzeptierten Sprachen sind die Typ 0 Sprachen – diese unterliegen bzgl. ihrer Regeln keiner Einschränkung
- die Anzahl aller überhaupt möglichen TM ist aufzählbar, also mit den natürlichen Zahlen durchnummerierbar (abzählbar unendlich)
- jede TM kann einer rekursiv aufzählbaren formalen Sprache zugeordnet werden und umgekehrt
- diese sind äquivalent zu den Typ 0 Sprachen
- die Menge aller Sprachen hat dieselbe Kardinalität wie die reellen Zahlen (überabzählbar unendlich)
- > es gibt also Sprachen, die nicht durch TM darstellbar sind

- Bandalphabet: B = {-, 0, 1}(-: Leerzeichen)
- Zahlendarstellung
 - als Strichcode (1en), z.B. 111 = 3
 - # Eingabezahlen getrennt durch 0, z.B.: 111011 = 3 + 2
- Startposition Schreib-/Lesekopf: rechts von der Eingabe
- Anweisungen:

$$3 = \begin{bmatrix} - & - & L & 0 \\ 0 & 0 & L & 0 \\ 1 & - & R & 0 \end{bmatrix}$$

Beispiel Übergangsdiagramm

Linear beschränkte Automaten (LBA)

- jetzt: Beschränkung der Bandlänge auf Länge des Eingabewortes
- ein LBA kann weniger als eine TM
- ob nichtdeterministische LBAs äquivalent zu deterministischen LBAs sind, ist ein offenes Problem
- die von einem nichtdeterministischen LBA akzeptierten Sprachen sind die kontextsensitiven Sprachen

17

Universelle Turing-Maschine

- Alan Turing 1936: Beschreibt den Aufbau einer universellen Turing-Maschine
- TM U, die jede andere TM T simulieren kann
 - Ein Computer entspricht einer solchen universellen TM
 - Programmierung von U: Schreibe auf Eingabeband
 - Beschreibung der TM T (Gödelisierung)
 - Eingabe x, die von T verarbeitet werden soll
- jeder Algorithmus kann als Turing-Maschine dargestellt werden

18

TM und "echte" Computer

- eine TM kann alles berechnen, was ein Computer auch berechnen kann
 - alle Beschränkungen für TM gelten auch für "echte" Computer
- eine TM hat prinzipiell unendlich viel Speicher zur Verfügung, ein Computer nicht
 - aber: in endlicher Zeit kann eine TM nur endlich viele Daten verarbeiten
- TM ermöglichen Aussagen über Algorithmen unabhängig von "echten" Computern
 - diese werden immer wahr bleiben, unabhängig von Änderungen in der Architektur von Computern

Zelluläre Automaten Das Spiel des Lebens

- Zelluläre Automaten: Entdeckt von John von Neumann in den 1950er/60er Jahren
- äquivalent zu TM
- Spiel des Lebens: John Conway 1968
 - Variante zellulärer Automaten
 - mit einigen wenigen Regeln werden Geburt, Tod und Überleben von Populationen aus "Spielmarken" auf Feldern eines Spielfelds simuliert
 - gespielt wird auf einem rechteckigen Spielbrett, das im Idealfall unendlich groß ist
 - dieses wird mit Spielmarken vorbesetzt

Das Spiel des Lebens Regeln

- Jede Spielmarke mit zwei oder drei Nachbarn überlebt den aktuellen Spielschritt und bleibt für die nächste Generation erhalten.
- Jede Spielmarke auf einem Feld mit vier oder mehr Nachbarn stirbt an Überbevölkerung, d.h. sie wird in der nächsten Generation vom Spielfeld entfernt (gelöscht).
- Jede Spielmarke auf einem Feld mit nur einem oder gar keinem Nachbarn stirbt an Einsamkeit, d.h. sie wird ebenfalls gelöscht.
- Auf jedem leeren, von genau drei Nachbarn umgebenen Feld, wird in der nächsten Generation eine Spielmarke "geboren". Alle anderen leeren Felder bleiben leer.

Das Spiel des Lebens Anmerkungen

21

Bei jedem Generationswechsel:

- zunächst Bewertung aller Spielmarken und aller leeren Spielfelder
- erst wenn dies abgeschlossen ist, dürfen Spielmarken entfernt oder hinzugefügt werden
- diese Prozedur wird dann zur Erzeugung der jeweils nächsten Generation immer wieder aufs Neue durchlaufen
- so entstehen abhängig von der Anfangskonfiguration stabile, oszillierende oder sich stetig ändernde Populationen

Deterministische und nichtdeterministische Automaten

Deterministischer Automat	Nichtdeterministischer Automat	Sind diese äquivalent?
DEA	NEA	ja
DPDA	PDA	nein
DLBA	LBA	offen
DTM	NTM	ja

- TM ist ein Modell für einen Computer
 - Ein-/Ausgabeband, Schreib-/Lesekopf, Zustände
- es gibt viel Erweiterungen, die aber äquivalent sind
 - es genügt ein einziges Band, und das 0, 1 Alphabet
- deterministische und nichtdeterministische TM sind äquivalent
- Darstellung als
 - Anweisungen
 - Übergangsdiagramm
- Linear beschränkte Automaten
 - Bandlänge ist auf Länge der Eingabe beschränkt
 - weniger m\u00e4chtig als eine TM
- Spiel des Lebens als Beispiel für zelluläre Automaten

Quellen

24

Die Folien entstanden auf Basis folgender Literatur

- # H. Ernst, J. Schmidt und G. Beneken: Grundkurs Informatik. Springer Vieweg, 6. Aufl., 2016.
- Schöning, U.: Theoretische Informatik kurz gefasst. Spektrum Akad. Verlag (2008)
- Sander P., Stucky W., Herschel, R.: Automaten, Sprachen, Berechenbarkeit, B.G. Teubner, 1992