SEGMENTATION DES CLIENTS

OLIST

Marie-France LAROCHE-BARTHET

20/01/2022

INTRODUCTION

PROBLÉMATIQUE |

- Client du projet :
 - OLIST
 - Entreprise brésilienne
 - Solution de vente sur les marketplaces en ligne
- ➤ Enjeux du client :
 - Comprendre différents types d'utilisateurs
 - Cibler campagnes de communication
- ➤ BUT du projet :
 - Modèle de segmentation non supervisé
 - → Segmenter clients
 - → Caractérisation des segments
 - → Fréquence de mise à jour du modèle

Premier aperçu

- 9 Datasets
- 96096 clients uniques
- 99440 commandes
- →3.1% des clients avec au moins 2 commandes
- Outliers (price, freight_value, payment_value)
- > 50% review score = 5
- Fusion des datasets : 1 dataset global avec toutes les colonnes
 - 94720 clients uniques (1.4%) 3% des clients avec au moins 2 commandes
 - 97916 commandes (1.5%)
 - Données géolocalisation pour client et vendeur
 - Noms des produits en anglais
- Feature Engineering (94720 x 6)
 - 5 variables numériques
 - → *nb cmd* : Nombre total de commandes par client
 - montant dep: Montant total dépensé par client
 - → *nb prod* : Nombre total de produits commandés par client
 - → note moy: Note moyenne attribuée par client
 - → *nb jours last cmd* : Nombre de jours écoulés entre dernière commande du client et commande la plus récente des données
 - 1 Variable catégorielle
 - > customer unique id: identifiant unique du client > Servira d'index dans la suite

- Distribution des variables
- ➤ Pas de valeurs impossibles
- ➤ Variables déséquilibrées
- ➤ Présence d'outliers

→ Utiliser RobustScaler

nb_prod

- Distributiondes variables
- ➤ Pas de valeurs impossibles
- ➤ Variables déséquilibrées
- ➤ Présence d'outliers

→ Utiliser RobustScaler

- > Répartition des clients
- ➤ Selon 3 variables
- ➤ nb_cmd et note_moy semblent séparer clients
- ➤ Doute sur intérêt du *nb_jours_last_cmd* et sur *nb_prod*

→ Utilisation PCA ?

MODÉLISATIONS EFFECTUÉES

ESTIMATION DU NOMBRE DE SEGMENTS

- ➤ Echantillon réduit (15000 x 5) pour raison performance
- ➤ Dendrogramme (méthode de Ward)
- ➤ 3 ou 4 clusters

INFORMATIONS APPORTÉES PAR PCA

- > Cercles des corrélations
- ➤ Projection des 5 variables selon composantes PCA
- ➤ 93.6% de la variance expliquée avec 3 composantes
- ➤ 3 variables se détachent :
 - montant_dep
 - note_moy
 - nb jours last cmd

- ✓ 5 variables
- ✓ 5 variables sur 3 axes **PCA**
- ✓ 3 variables

Cercle des corrélations (F1 et F2)

MODÈLES TESTÉS

> DBSCAN - Non concluant

- Raison performance, test en changeant un hyperparamètre à la fois
- Trop de clusters
- Clusters très déséquilibrés

➤ AGGLOMERATIVE CLUSTERING → Non concluant

- Impossible à faire fonctionner sur l'ensemble des données
- ➤ KMEANS Concluant pour n = 4 clusters
 - Test pour un nombre de clusters entre 2 et 10
 - Test sur 3 jeux de données
 - → 5 variables nb_cmd, montant_dep, nb_prod, note_moy, nb_jours_last_cmd
 - → 5 variables projetées sur 3 axes PCA
 - → 3 variables montant_dep, note_moy, nb_jours_last_cmd
 - Métriques utilisées
 - → Score de Silhouette
 - → Indice de Davies-Bouldin
 - → Score de Calinski-Harabasz
 - « Elbow method » pour aide au choix du nombre de clusters

KMEANS 4 CLUSTERS

Comparaison des métriques

- ➤ Amélioration des scores en « réduisant » à 3 variables
 - Inertie plus faible également

→ 3 variables

KMEANS 4 CLUSTERS

Comparaison de la répartition des clients

- ➤ Répartition quasi similaire
 - Plus de clients dans les clusters 0 et 1 avec 3 variables

→ 3 variables

MODELE FINAL

Répartition des clients

> Répartition des clients avec centroids

> Répartition des clients avec centroids

ZOOM (montant_dep <6000)

Caractéristiques des clusters

Cluster 0 - 67590 Clients

- Montant dépensé faible (< 360 euros ; moy ~ 120 euros)
- Les plus satisfaits (moy 4.7)
- 2.5% avec au moins 2 commandes
- 9.4% avec au moins 2 produits commandés

➤ Cluster 1 - 19813 Clients

- Montant dépensé faible (< 510 euros ; moy ~ 130 euros)
- Les moins satisfaits (moy 1.9)
- 2.4% avec au moins 2 commandes
- 17.1% avec au moins 2 produits commandés

➤ Cluster 2 - 6496 Clients

- Montant dépensé moyen (330 euros < < 1200 euros)
- Satisfaction globalement bonne (moy 4.2)
- 10.1% avec au moins 2 commandes
- 28% avec au moins 2 produits commandés

Cluster 3 - 821 Clients

- Montant dépensé élevé (> ~ 1200 euros)
- Satisfaction assez bonne (moy 3.8)
- 7.3% avec au moins 2 commandes
- 23.8% avec au moins 2 produits commandés

DELAI DE MAINTENANCE

MÉTHODE

- Utilisation du modèle précédent
 - Non supervisé
 - Base de la segmentation
 - → Modèle classification (supervisé)
- ➤ Modèle de base
 - Entrainé sur période de base donnée
- ➤ Ajout de nouveaux clients
 - Par période régulière : tous les mois
 - Entrainement du modèle sur nouvelle période
 - → Prédiction « vraie » des clusters
 - Prédiction du modèle de base sur nouvelle période
 - Comparaison des prédictions
 - → Via ARI (Adjusted Rand Index)
 - → Si la valeur diminue trop, mise à jour du modèle nécessaire

RÉSULTATS

➤ Période de base : Sept 2016-Août 2017

- Valeurs ARI assez élevées
- Evolution quasi linéaire du nb de clients
- Chute au bout de 4 mois
 - → Mise à jour

- Valeurs ARI très élevées
- Evolution linéaire du nb de clients
- Chute (relative) au bout de 5 mois
 - → Mise à jour

CONCLUSION

CONCLUSION

- Modèle pour segmenter clients de chez OLIST
 - KMeans
 - 4 clusters de clients
 - 3 variables
 - Robuste
- Fréquence de maintenance
 - 4 à 5 mois
 - → Valeur seuil
 - → Ou post Noël
- > Piste d'amélioration :
 - Inclusion d'autres variables
 - → Localisation
 - → Moyen de paiement
 - Catégorie de produits

→ Affiner le « gros » cluster

MERCI

QUESTIONS