STK1000 Innføring i anvendt statistikk, høsten 2023 Obligatorisk oppgave 1 av 2, biologiversjonen

Innleveringsfrist

Torsdag 14. september 2023, klokken 14:15 i Canvas (canvas.uio.no).

Instruksjoner

- Du velger selv om du skriver besvarelsen for hånd og scanner besvarelsen eller om du skriver løsningen direkte inn på datamaskin (for eksempel ved bruk av Lage eller i Quarto). Besvarelsen skal leveres som én PDF-fil og scannede ark må være godt lesbare.
- Besvarelsen skal inneholde navn, emne og oblignummer.
- Det forventes at man har en klar og ryddig besvarelse med tydelige begrunnelser. Husk å inkludere alle relevante plott og figurer.
- Følg oppsettet i den foreslåtte malen for besvarelse av hver deloppgave.
- I oppgaver der du blir bedt om å programmere må du legge ved programkoden og levere den sammen med resten av besvarelsen. Det er viktig at programkoden du leverer inneholder et kjøreeksempel, slik at det er lett å se hvilket resultat programmet gir.
- Skriv kommentarer til hver R-kommando i programkoden du legger ved, dvs en kort forklaring av hva som skjer når kommandoen brukes. Etter et #-tegn kan man skrive kommentarer som ikke blir lest av R, noe som betyr at det ikke påvirker koden.
- Samarbeid og alle slags hjelpemidler er tillatt, men den innleverte besvarelsen skal være skrevet av deg og reflektere din forståelse av stoffet. Er vi i tvil om du virkelig har forstått det du har levert inn, kan vi be deg om en muntlig redegjørelse.
- Merk at man har **ett forsøk** på å få oppgaven godkjent. Dette betyr at det ikke lenger gis andregangsforsøk.

Søknad om utsettelse av innleveringsfrist

Hvis du blir syk eller av andre grunner trenger å søke om utsettelse av innleveringsfristen, må du ta kontakt med studieadministrasjonen ved Matematisk institutt senest samme dag som innleveringsfristen (e-post: studieinfo@math.uio.no).

Retningslinjer

- For å få adgang til avsluttende eksamen i dette emnet, må man bestå alle obligatoriske oppgaver i ett og samme semester.
- For fullstendige retningslinjer for innlevering av obligatoriske oppgaver, se www.uio.no/studier/admin/obligatoriske-aktiviteter/mn-math-oblig.html

LYKKE TIL!

Oppgave 1: Sebrafinker

I denne oppgaven skal vi se på en studie [1] hvor det ble gjennomført målinger av basal metabolsk hastighet (BMR) hos sebrafinker (*Taeniopygia guttata*). Basalmetabolisme er den mengden energi et endotermt dyr bruker per tidsenhet i hvile, og måles i antall mL O₂ per min. Datasettet som benyttes i denne oppgaven inneholder informasjon om basal metabolsk hastighet for 150 sebrafinker som er tilfeldig valgt fra det opprinnelige datasettet.

Datafilen kan leses inn i R på følgende måte:

data = "http://www.uio.no/studier/emner/matnat/math/STK1000/data/obligdata/oblig1/zebrafinch.txt"
zebrafinch = read.table(data,header=TRUE)

Datafilen består av én linje for hver av de 150 sebrafinkene. I første kolonne er følgende variabel gitt:

- BMR: Målt basal metabolsk hastighet til individet (mL O₂ per min).

Oppgaven består av å svare følgende punkter:

- (a) Plott et histogram av BMR ved å bruke R. Beskriv hva du ser fra histogrammet. R-hint: hist().
- (b) Finn gjennomsnitt \bar{x} (x betegner variabelen BMR) og median for BMR ved bruk av R. Hva er disse tallene uttrykk for?
- (c) Finn standardavvvik s og inter-kvartil avstand til BMR ved bruk av R. Forklar hvordan disse tallene oppsummerer spredningen i basal metabolsk hastighet.
- (d) Vurder om det er rimelig å anta at BMR er normalfordelt. Forklar hvordan du vurderer dette. R-hint: qqnorm() og qqline().

I resten av oppgaven: Vi antar at BMR er normalfordelt. Vi kjenner ikke populasjonens μ og σ , men vi later som vi kjenner disse ved å la $\mu = \bar{x}$ og $\sigma = s$.

- (e) Gi et uttrykk for den standardiserte verdien av BMR. Regn ut den standardiserte verdien av BMR = 0.8 mL O_2 per min . Forklar hvordan svaret skal tolkes.
- (f) Hvor stor andel sebrafinker har BMR lavere enn 0.6 mL O₂ per min? R-hint: pnorm().
- (g) Hvor stor andel sebrafinker har BMR høyere enn 1.0 mL O_2 per min?

Oppgave 2: Lett jaktet ulv og tungt jaktet ulv

Menneskelig aktivitet kan bidra til endret atferd hos dyrelivet. I en studie [2] ble det undersøkt om ulv (*Canis lupus*) som var utsatt for høyere grad av jakt, opplevde en økning i produksjon av steroidehormoner. Målinger av konsentrasjonen av steroidehormoner ble gjennomført ved å analysere hårprøver fra 148 individuelle ulver fra ulike regioner i nordlige deler av Canada, fra enten et lett jaktet område eller et tungt jaktet område. Stereoidehormonene ble målt i antall picogram (pg) per miligram (mg) hår. I denne oppgaven har hormonene testosteron og kortison blitt valgt ut fra det opprinnelige datasettet.

Datafilen kan leses inn i R på følgende måte:

```
data ="http://www.uio.no/studier/emner/matnat/math/STK1000/data/obligdata/oblig1/wolves.txt"
wolf = read.table(data,header=TRUE)
```

Datafilen består av én linje for hver av de 148 hårprøvene. I fire kolonner er følgende variable gitt:

- sex: Kjønnet til hvert individ (F for hunn, M for hann).
- population: Indikator for om individet kommer fra en lett eller tungt jaktet populasjon (1 = lett jaktet, 2 = tungt jaktet).
- cpmg: Konsentrasjonen av kortisol i hårprøven (pg/mg).
- tpmg: Konsentrasjonen av testosteron i hårprøven (pg/mg).

Oppgaven består av å svare følgende punkter:

- (a) Forklar forskjellen på en kategorisk og en kvantitativ variabel. Hvilke av variablene i datasettet er kvalitative, og hvilke variable er kvantitative?
- (b) Lag oppsummeringer av den/de kategoriske variablene i filen ved å bruke følgende R-koder og kommenter resultatene:

```
table(variabelnavn)
pie(table(variabelnavn))
```

(c) Del opp dataene i to datasett: Ett som inneholder data for ulvene som er lett jaktet (wolf.lett) og ett for ulvene som er tungt jaktet (wolf.tungt). Dette gjør du ved følgende R-kommandoer:

```
wolf.lett = wolf[wolf[,"population"]==1,]
wolf.tungt = wolf[wolf[,"population"]==2,]
```

- (d) For hvert av datasettene wolf.lett og wolf.tungt, plott histogram og boxplott av kortisolkonsentrasjon i hårprøvene. Beskriv hva du ser fra hvert plott. Sammenlign plottene for de to datasettene. R-hint: hist() og boxplot(). For å få $p \times q$ plott i en figur (f.eks. for p = q = 2) kan du bruke par(mfrow=c(p,q)) før plotte-kommandoer.
- (e) For hvert av datasettene wolf.lett og wolf.tungt, finn gjennomsnitt og median av kortisolkonsentrasjon i hårprøvene, og sammenlign disse størrelsene. Kommenter og forklar. Sammenlign også resultatene for de to datasettene.
- (f) Læreboken nevner to ulike måter å oppsummere data numerisk på: femtallsoppsummering og gjennomsnitt med standardavvik. Hvilken av disse måtene oppsummerer kortisolkonsentrasjonen best for hvert av datasettene wolf.lett og wolf.tungt? Begrunn svaret.
- (g) Vurder om konsentrasjonen av kortisol i hårprøvene (cpmg) er tilnærmet normalfordelt for hvert av datasettene wolf.lett og wolf.tungt.

Oppgave 3: Sammenheng/assosiasjon mellom navlehøyde og kroppslengde

I denne oppgaven skal vi se på kroppsmål gjennomført på 223 studenter som tok emnet BIO2150 ved UiO mellom 2012 og 2016. Hensikten med øvelsen var å samle inn data som kunne brukes

til statistisk analyse. I datasettet vitruvisk.txt¹ finner man resultatene for de 223 studentene som deltok på øvelsen. Navnet på datasettet refererer til Leonardo da Vincis berømte "Den Vitruviske Mann", som er en illustrasjon av menneskets proposjoner.

Datafilen kan leses inn i R på følgende måte:

data = "http://www.uio.no/studier/emner/matnat/math/STK1000/data/obligdata/oblig1/vitruvisk.txt"
vitruvisk = read.table(data,header=TRUE)

Datafilen består av én linje for hver av de 223 studentene. I fem kolonner er følgende variable gitt:

- kjonn: Kjønnet til personen (K for kvinne, M for mann).
- kroppslengde: Total kroppslengde (cm).
- fot.navle: Avstand fra gulv til navle (cm).
- navle.isse: Avstand fra navle til isse (cm).
- favn: Avstand fra venstre langfingerspiss til høyre langfingerspiss med utstrakte armer (cm).

Oppgaven består av å svare følgende punkter:

- (a) Bruk R-funksjonen summary() til å se et sammendrag av data. Hvor mange av målingene ble gjennomført på kvinner, og hvor mange av målingene ble gjennomført på menn? Hva er fem-punkts-oppsummeringene for kroppslengde og fot.navle?
- (b) Bruk plot()-funksjonen i R til å lage et spredningsplott med fot.navle på x-aksen og kroppslengde på y-aksen. Gi aksene passende navn. Hva kan du slutte om sammenhengen mellom navlehøyde og kroppslengde ut fra dette plottet?
- (c) Bruk cor()-funksjonen i R til å regne ut korrelasjonen mellom fot . navle og kroppslengde. Forklar hvordan svaret skal tolkes.
- (d) Tilpass en lineær modell for sammenhengen mellom navlehøyde og kroppslengde. Plott regresjonslinjen i spredningsplottet fra oppgave (b). Legg følgende R-kode til etter plotte-kommandoen fra (b):

```
fit = lm(vitruvisk$kroppslengde ~ vitruvisk$fot.navle)
abline(fit)
```

- (e) Finn skjæringspunkt og stigningstall til den lineære modellen fra summary(fit). Ifølge modellen, hvor mye øker predikert kroppslengde hvis navlehøyde øker med én cm?
- (f) Bruk modellen i (d) til å predikere kroppslengden til en person med en navle som er 121 cm over bakken.
- (g) Bruk også summary()-kommandoen til å finne ut hvor stor andel av variasjonen i kroppslengede som forklares av navlehøyde. Sammenlign med svaret i oppgave (c).
- (h) Lag et plott av residualene i modellen. Identifiser eventuelle uteliggere. Hva kan du si om hvor godt modellen passer til og beskriver dataene ut fra dette plottet? Bruk følgende R-kode:

¹Datasettet er laget og behandlet av Halvor Aarnes og Tom Andersen fra IBV, UiO.

```
plot(vitruvisk$fot.navle,residuals(fit))
abline(h=0)
```

Referanser

- [1] K. J. Mathot, K. Martin, B. Kempenaers, and W. Forstmeier. Basal metabolic rate can evolve independently of morphological and behavioural traits. *Heredity*, 111:175, 2013.
- [2] M. Bryan Heather, E. G. Smits Judit, Lee Koren, C. Paquet Paul, E. Wynne-Edwards Katherine, and Marco Musiani. Heavily hunted wolves have higher stress and reproductive steroids than wolves with lower hunting pressure. *Functional Ecology*, 29(3):347–356, 2014.