Serial 통신

Lesson 04

Serial vs. Parallel 통신

단일 와이어를 통해 한 비트씩 전송

병렬 와이어를 통해 동시에 1바이트 혹은 그 이상을 전송

다양한 직렬통신 표준

- I²C Bus
- Serial Peripheral Interface (SPI)
- System Management Bus (SMBus)
- Universal Serial Bus (USB)
- Serial ATA (SATA)
- Ethernet
- FireWire

Synchronous vs. Asynchronous

Synchronous serial communication

- ◎ 데이터 전송을 위한 선 외에 송신자/수신자간의 동기를 위해 별도의 클럭 신호 사용
- SPI, I2C, USB

Asynchronous serial communication

- ◎ 별도의 클럭 신호 없이 데이터를 전송
- ◎ 시작비트(start bit)와 정지비트(stop bit)를 사용, 송수신자간의 baud rate를 일치
- RS232/TTL-serial using UART

Asynchronous Serial Communication

The Transmitter

- Shifts the parallel data onto the serial line using its own clock
- Also adds the start, stop and parity check bits

The Receiver

- Extracts the data using its own clock
- Converts the serial data back to the parallel form after stripping off the start, stop and parity bits

- 1960년에 EIA에 의해서 지정된 표준
- ◎ 신호특성(signal characteristics)을 정의하는 표준

- Dial-up modems, Bar code scanner, Point of sale devices, 프린터,
 다양한 계측기 등 다양한 기기에서 사용됨
- ◎ USB로 대체되는 추세

RS232 Port and Connector

RS232 vs. TTL-Serial

- ◎ RS232는 마이크로컨트롤러의 TTL Logic과 호환되지 않는 전압 레벨을 사용
- 마이크로컨트롤러와 주변 디바이스들 간의 통신은 주로 TTL-serial임
- 마이크로컨트롤러에서 RS232 통신을 위해서는 MAX232나 MAX233과 같은 컨버터가 필요함 (line driver라고 불림)

UARTs

- Universal Asynchronous Receiver/Transmitter

Arduino의 경우

UART의 Tx, Rx는 USB 인터페이스와 0번과 1번 핀에 동시에 연결되어 있음이 핀들에 MAX232 등을 연결하여 RS232 디바이스와 통신이 가능함

PC와 Arduino간의 Serial 통신

Arduino의 Serial API

available()	parseFloat()	println()
begin()	parseInt()	write()
end()	peek()	read()
find()	setTimeout()	readBytes()
findUntil()	serialEvent()	readBytesUntil()
flush()	print()	

Serial Terminals

- Hyperterminal in Windows XP
- Arduino serial monotor
- Putty in Linux
- **▼ Tera Term, Real-Term, YAT** 등 다양한 프로그램들이 있음
 - https://learn.sparkfun.com/tutorials/terminal-basics

Java

- Sun이 JavaComm이라는 serial communication API를 정의하였으나 Java 표준으로 구현되어 있지는 않음
- **◎ Third party** 라이브러리
 - ◎ RxTx: Java 8 미지원
 - jSSC (Java Simple Serial Connector)
 - http://code.google.com/p/java-simple-serial-connector/
 - jSerialComm
 - http://fazecast.github.io/jSerialComm/

jSerialComm

```
import com.fazecast.jSerialComm.*;
public class SerialTest {
    public static void main(String[] args) {
        SerialPort[] ports = SerialPort.getCommPorts();
       System.out.println("Select a port:");
        int i = 1;
       for(SerialPort port : ports)
            System.out.println(i++ + ": " + port.getSystemPortName());
        Scanner s = new Scanner(System.in);
       int chosenPort = s.nextInt();
        SerialPort serialPort = ports[chosenPort - 1];
        if(serialPort.openPort())
            System.out.println("Port opened successfully.");
        else {
            System.out.println("Unable to open the port.");
            return;
        }
        serialPort.setComPortParameters(9600, 8, 1, SerialPort.NO_PARITY);
        serialPort.setComPortTimeouts(SerialPort.TIMEOUT READ SEMI BLOCKING, 100, 0);
       try {
            while (true)
               byte[] readBuffer = new byte[1024];
               int numRead = serialPort.readBytes(readBuffer, readBuffer.length);
               System.out.println("Read " + numRead + " bytes.");
       } catch (Exception e) { e.printStackTrace(); }
       serialPort.closePort();
}
```

jSSC

```
import jssc.SerialPort;
import jssc.SerialPortException;
public class JSSCTest {
    public static void main(String[] args) {
        SerialPort serialPort = new SerialPort("com11");
        try {
            System.out.println("Port opened: " + serialPort.openPort());
            System.out.println("Params setted: " + serialPort.setParams(9600, 8, 1, 0));
            System.out.println("\"Hello World!!!\" successfully writen to port: " +
            serialPort.writeBytes("Hello World!!!".getBytes()));
            byte[] buffer = serialPort.readBytes(10);//Read 10 bytes from serial port
            for (byte b : buffer)
                System.out.print(b+" ");
            System.out.println("\nPort closed: " + serialPort.closePort());
        }
        catch (SerialPortException ex){
            System.out.println(ex);
        }
    }
```

Python

```
import serial #Import Serial Library
from visual import * #Import all the vPython library
#Create an object for the Serial port.
#Adjust 'com11' to whatever port your arduino is sending to.
arduinoSerialData = serial.Serial('com11', 9600)
measuringRod = cylinder( radius= .1, length=6, color=color.yellow, pos=(-3,-2,0))
lengthLabel = label(pos=(0,5,0), text='Target Distance is: ', box=false, height=30)
target=box(pos=(0, -.5, 0), length=.2, width=3, height=3, color=color.green)
while (1==1):
    rate(20) #Tell vpython to run this loop 20 times a second
    if (arduinoSerialData.inWaiting()>0):
        myData = arduinoSerialData.readline()
        print myData
        distance = float(myData)
        measuringRod.length=distance
        target.pos=(-3+distance, -..., 0)
        myLabel= 'Target Distance is: ' + myData
        lengthLabel.text = myLabel
```

실습과제

- Python VR 라이브러리를 이용하여 흥미로운 응용을 만들어본다.
- ◈ 참고:
 - http://www.toptechboy.com/using-python-with-arduino-lessons/ (Lesson3 까지)

Arduino's Software Serial Library

SoftwareSerial Library

- SoftwareSerial library는 다른 핀들을 이용해 serial 통신을 할 수 있도록 UART의 기능을 소프트웨어로 구현한 라이브러리
- SoftwareSerial 라이브러리를 이용하면 Arduino를 2개 이상의 serial device와 연결 가능

SoftwareSerial Library

SoftwareSerial()	overflow()	println()
available()	peek()	listen()
begin()	read()	write()
isListening()	print()	

Example: GPS

GPS

```
\sqrt{(x_i-x)^2+(y_i-y)^2+(z_i-z)^2}+b=
ho_i
(x_i,y_i,z_i): position of satellite i
(x,y,z): position of the receiver

ho_i=c(T_i-t_i): pseudorange
t_i: the time of signal transmission
T_i: the time of signal reception
c: speed of light
b=c\Delta t: receiver clock error
```

4 unknowns, therefore, at least 4 satellite

NMEA

◎ 미국의 The National Marine Electronics Association에서 정의된 시간, 위치, 방위 등의 정보를 전송하기위한 규격

```
$ELEXTECH, Inc G1800s
$HW Version 1.6
$SW Version 231.000.100
$Startup 4
$TOW: 0
$WK: 1192
$POS: 6378137 0 0
$Baud rate: 9600 System clock: 24.553MHz
$GPGGA,114455.532,3735.0079,N,12701.6446,E,1,03,7.9,48.8,M,19.6,M,0.0,0000*48
$GPGSA,A,2,19,25,15,,,,,,21.5,7.9,20.0*32
$GPGSV,3,1,10,03,86,244,00,19,51,218,38,16,51,057,00,07,40,048,00*77
$GPGSV,3,2,10,13,34,279,00,23,33,236,00,15,29,076,40,25,25,143,38*71
$GPGSV,3,3,10,21,18,051,,27,12,315,*77
$GPRMC,114455.532,A,3735.0079,N,12701.6446,E,0.000000,121.61,110706,,*0A
```

GPGGA

EM-406A

GPS Receiver		
Chipset	SiRF Star III/LP Single	
Frequency	L1, 1575.42 MHz	
Code	1.023 MHz chip rate	
Protocol	Electrical Level: TTL level,	
	Output Voltage Level: 0V~2.85V	
	Baud Rate: 4800 bps	
	Output Message: NMEA 0183 GGA, GSA,	
	GSV, RMC (VTG, GLL optional)	
Channels	20	

연결

Sketch

```
#include <SoftwareSerial.h>
#define rxGPS 3
#define txGPS 5
SoftwareSerial serialGPS = SoftwareSerial(rxGPS, txGPS);
String stringGPS = "";
void setup() {
  pinMode(rxGPS, INPUT);
  pinMode(txGPS, OUTPUT);
  Serial.begin(9600);
  Serial.println("Started");
  serialGPS.begin(4800);
  digitalWrite(txGPS,HIGH);
  // Cut first gibberish
  while(serialGPS.available())
    if (serialGPS.read() == '\r')
      break;
ξ
```

Sketch (계속)

```
void loop()
 String s = checkGPS();
 //if(s \&\& s.substring(0, 6) == "$GPGGA")
 if(s && s.length()>0)
    Serial.println(s);
String checkGPS()
 if (serialGPS.available())
    char c = serialGPS.read();
    if (c != '\n' && c != '\r')
      stringGPS += c;
    else
      if (stringGPS != "")
        String tmp = stringGPS;
        stringGPS = "";
        return tmp;
 return "";
```

Google Static Map

```
import urllib
import cStringIO
from PIL import Image
def get_static_google_map(filename_wo_extension, center=None, zoom=None, imgsize="500x500", imgformat="jpeg",
                          maptype="roadmap", markers=None ):
    request = "http://maps.google.com/maps/api/staticmap?" # base URL, append query params, separated by &
    if center != None:
        request += "center=%s&" % center
    if center != None:
       request += "zoom=%i&" % zoom # zoom 0 (all of the world scale ) to 22 (single buildings scale)
   request += "size=%ix%i&" % (imgsize) # tuple of ints, up to 640 by 640
   request += "format=%s&" % imgformat
    request += "maptype=%s&" % maptype # roadmap, satellite, hybrid, terrain
    # add markers (location and style)
    if markers != None:
        for marker in markers:
               request += "%s&" % marker
    request += "sensor=false%" # must be given, deals with getting loction from mobile device
   urllib.urlretrieve(request, filename_wo_extension+"."+imgformat) # Option 1: save image directly to disk
    # Option 2: read into PIL
    web_sock = urllib.urlopen(request)
    imgdata = cStringIO.StringIO(web_sock.read()) # constructs a StringIO holding the image
    try:
        PIL_img = Image.open(imgdata)
    except IOError:
        print ("IOError:", imgdata.read()) # print error (or it may return a image showing the error"
    else:
        PIL_img.show()
if __name__ == '__main__':
    get_static_google_map("google_map_example1", center="35.134764, 129.103390", zoom=18, imgsize=(640,640),
imgformat="png", maptype="hybrid")
```