S-5840B 系列

带闩锁功能的温度开关 IC (恒温器 IC)

www.sii-ic.com

© SII Semiconductor Corporation, 2007-2012

Rev.2.1_01

S-5840B系列是以±2.5°C为精度进行温度检测的、具有闩锁功能的温度开关IC (恒温器IC)。当达到检测温度时输出会翻转,直到检测到电源电压下降为止,输出信号会保持闩锁的状态。

由于是CMOS构成,因此可从低电源电压1.0 V开始工作,且消耗电流仅为12 μA (典型值)。

在同一芯片中集成了带有负温度系数的温度传感器、基准电压发生电路、比较器、电压检测电路和噪声抑制电路,且将它们收容在SOT-23-5封装中。

■ 特点

◆ 检测温度:
T_{DET} = +55°C ~ +95°C、进阶单位为+1°C 检测精度 ±2.5°C

◆ 工作电压广: V_{DD} = 1.0 V ~ 10.0 V

解除电压: V_{RET} = 2.2 V ~ 3.4 V、进阶单位为0.1 V
低消耗电流: I_{DD} = 12 μA (典型值) (Ta = +25°C)

• 内置噪声抑制电路来防止温度检测误工作

- 温度检测后以闩锁方式固定输出逻辑
- 可以选择动态 "H" 或动态 "L" 的输出逻辑
- 可以选择CMOS输出或Nch漏极开路输出的输出方式
- 工作温度范围: Ta = -40°C ~ +100°C
- 无铅、Sn 100%、无卤素*1

*1. 详情请参阅 "■ 产品型号的构成"。

■ 用途

- 游戏机设备
- 各种电子设备

■ 封装

• SOT-23-5

■ 框图

1. CMOS 输出产品

2. Nch 漏极开路输出产品

■ 产品型号的构成

关于S-5840B系列产品,可根据用户的用途来选择指定检测温度、输出方式、输出逻辑和解除电压。

1. 产品名

- *1. 请参阅卷带图。
- *2. 选项一览
 - ・ 检测温度 (T_{DET}) 可在+55°C~+95°C的范围内,以1°C为进阶单位来进行设定。
 - ・ DET端子输出可以选择动态 "H" 或动态 "L" 的输出逻辑。
 - ・ DET端子输出可以选择CMOS输出或者Nch漏极开路输出的输出方式。
 - ・解除电压 (V_{RET}) 可在 $2.2~V\sim3.4~V$ 的范围内,以0.1~V为进阶单位来进行设定。

2. 封装

表 1 封装图纸号码

封装名	外形尺寸图	卷带图	带卷图
SOT-23-5	MP005-A-P-SD	MP005-A-C-SD	MP005-A-R-SD

3. 产品名目录

表2

产品名	检测温度 (T _{DET})	DET端子输出方式	DET端子输出逻辑	解除电压 (V _{RET})
S-5840BAG-M5T1x	+60°C	CMOS	动态 "L"	2.9 V
S-5840BAH-M5T1x	+90°C	CMOS	动态 "H"	2.9 V
S-5840BAJ-M5T1x	+80°C	Nch漏极开路	动态 "L"	2.2 V

备注 1. 需要上述以外的产品时,请向本公司营业部咨询。

- **2.** x:G或U
- 3. 用户需要Sn 100%、无卤素产品时,请选择环保标记为 "U" 的产品。

■ 引脚排列图

1. SOT-23-5

图 3

表 3

引脚号	符号	描述
1	RT ^{*1}	测试端子
2	VSS	GND端子
3	CD	防止误工作时间设定用电容器连接端子
4	DET	输出端子
5	VDD	电源端子

^{*1.} 请在开路状态下使用RT端子。

■ 绝对最大额定值

表4

(除特殊注明外: Ta = +25°C)

	项目 符号 绝对最大额定值		单位	
电源电压 (Vss	= 0 V)	V_{DD}	V _{SS} + 12	V
端子电压		V_{RT}, V_{CD}	$V_{SS} - 0.3 \sim V_{DD} + 0.3$	V
输出电压	CMOS输出产品	V	$V_{SS} - 0.3 \sim V_{DD} + 0.3$	V
制山电压	Nch漏极开路产品	V _{DET}	$V_{SS} - 0.3 \sim V_{SS} + 12.0$	V
容许功耗		Б	300 (基板未安装时)	mW
合计切托		P _D	600 ^{*1}	mW
工作环境温度		T _{opr}	−40 ~ +100	°C
保存温度		T _{stq}	−55 ~ +125	°C

*1. 基板安装时

[安装基板]

(1) 基板尺寸: 114.3 mm × 76.2 mm × t1.6 mm(2) 名称: JEDEC STANDARD51-7

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值值。万一超过此额定值,有可能造成产品劣化等物理性 损伤。

■ 推荐外接元器件条件

表5

项目	符号	推荐值	单位
CD电容	Cn	4.7	nF

■ DC 电气特性

1. CMOS 输出品

表 6

(除特殊注明外: Ta = +25°C)

					•			
项目	符号	条件	=	最小值	典型值	最大值	单位	测定 电路
电源电压	V_{DD}	_		1.0	_	10.0	V	1
检测温度	+T _D	_		$T_{\text{DET}}-2.5$	T _{DET}	$T_{DET} + 2.5$	°C	1
输出电流	I _{DETH}	$V_{DD} = 3.5 V_{\gamma}$	$V_{DET} = 2.7 \text{ V}$	2	9.4	ı	mA	2
制山 电流	I _{DETL}	适用于 DET 端子	V _{DET} = 0.4 V	0.5	2.8	1	mA	2
内置电压检测电路 解除电压	V _R	_		$V_{RET} \times 0.98$	V_{RET}	$V_{RET} \times 1.02$	٧	-
内置电压检测电路 滞后幅度	V _{HYS}	_		-	$V_{\text{RET}} \times 0.05$	-	٧	_
内置电压检测电路 温度系数	$\frac{\Delta V_{\text{RET}}}{\Delta Ta \bullet V_{\text{RET}}}$	Ta = -40°C ~ +1	00°C	_	±100	-	ppm/°C	_
工作时消耗电流	I _{DD}	V _{DD} = 3.5 V		_	12	24	μΑ	1

2. Nch 漏极输出品

表 7

(除特殊注明外:Ta = +25°C)

项目	符号	条件	最小值	典型值	最大值	单位	测定 电路
电源电压	V_{DD}	_	1.0	_	10.0	V	1
检测温度	$+T_D$	_	T _{DET} – 2.5	T_DET	$T_{DET} + 2.5$	°C	1
输出电流	I _{DETL}	$V_{DET} = 0.4 \text{ V}, V_{DD} = 3.5 \text{ V}$	0.5	2.8	-	mA	2
泄漏电流	I _{LEAK}	V_{DET} = 10.0 V, V_{DD} = 3.5 V	-	_	100	nA	2
内置电压检测电路 解除电压	V _R	_	$V_{RET} \times 0.98$	V_{RET}	$V_{RET} \times 1.02$	٧	-
内置电压检测电路 滞后幅度	V _{HYS}	-	_	$V_{\text{RET}} \times 0.05$	_	V	-
内置电压检测电路 温度系数	$\frac{\Delta V_{RET}}{\Delta Ta \bullet V_{RET}}$	Ta = -40°C ~ +100°C	-	±100	-	ppm/°C	_
工作时消耗电流	I _{DD}	V _{DD} = 3.5 V	-	12	24	μΑ	1

■ AC 电气特性

表 8

项目	符号	条件	最小值	典型值	最大值	单位	测定 电路
噪声抑制时间	t _{noise}	C _D = 4.7 nF, V _{DD} = 3.5 V, Ta = 检测温度	10	30	50	ms	1

■ 测定电路

*1. CMOS 输出的产品不需要电阻器 (R)。

图 4 测定电路 1

图 5 测定电路 2

■ 工作说明

1. 基本工作

S-5840B系列是进行温度检测,并向外部输出信号的温度开关IC (恒温器IC)。可以对检测温度、解除电压等的组合进行选择。

以下说明 DET 端子输出逻辑为动态 "H" 时的工作状况。

在电源投入时,通过电压检测电路可以清除检测电路用的触发器电路,DET端子变为 "L" 的状态。转变为工作状态后,开始温度检测,在低于检测温度的情况下,DET端子会保持为 "L"。之后温度会逐渐上升,当达到连接在CD端子上的电容器的时间参数以上、超过检测温度时,DET端子转变为 "H"。一旦进行检测的DET端子的输出转变为 "H",触发器电路会一直保持这种状态,要解除这种状态,需要将电源电压降低到内置电压检测电路的检测电压 $(V_R - V_{HYS})$ 以下,而使内部电路复位。通过使用内置的基准电压以及内置温度传感器,可以保证S-5840B系列内部的温度处于检测温度±2.5°C的范围内。

2. 噪声抑制电路

通过噪声抑制电路, 可以防止因噪声等而引起的误工作。

由于外部噪声或急剧的电源电压变动等,而导致S-5840B系列内部的比较器输出处于动态状态时,连接在CD端子上的电容器开始进行充电。通常工作的情况下,充电到一定的电压为止,可以设置触发器电路。但是,如果有噪声,比较器的输出会立刻返回,由于外接电容器 (C_D) 没有充分地充电,仍然处于 "L" 的状态,DET端子也继续保持为 "L",因此在S-5840B系列内部及外部即使产生噪声也不会发生误工作。

噪声抑制时间 (t_{noise}) 由内置稳定电流和C_D的时间参数而决定,可按照如下的公式求出。

 t_{noise} (ms) = 噪声抑制时间系数 \times C_D (nF) 噪声抑制时间系数 (Ta = +25°C): 6.4 (典型值)

如果所选择 C_D 的泄漏电流相对于内置稳定电流值而言可以忽视,那么其容量可以不受限制。但是有泄漏电流,会导致延迟时间产生误差。

■ 标准电路

*1. CMOS输出的产品不需要电阻器 (R)。

图 6

注意 上述连接图以及参数仅供参考,并不作为保证工作的依据。请在进行充分的评价基础上设定实际的应用电路的参数。

■ 注意事项

- 为了稳定运行,请在VDD VSS端子之间安装 $0.1~\mu F$ 以上的电容器 (C_{IN})。
- 在电源投入时为了防止因噪声而引起的误工作,请在DET端子处连接1 μF左右的电容器 (C_L)。
- 在RT端子处增加电容时,有可能会产生振荡。请将RT端子设置为开路状态,再予以使用。
- 本IC虽内置防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- 使用本公司的IC生产产品时,如在其产品中对该IC的使用方法或产品的规格,或因与所进口国对包括本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

■ 各种特性数据 (典型数据)

1. 消耗电流 – 电源电压特性

2. DET端子电流 "H" - 电源电压特性 (仅限CMOS输出产品)

3. DET端子电流 "L" - 电源电压特性

4. 噪声抑制时间 – 电源电压特性

■ 标记规格

1. SOT-23-5

Top view

(1)~(3): 产品简称(请参阅产品名和产品简称的对照表)

(4): 批号

产品名和产品简称的对照表

产品名	产品简称			
厂吅石	(1)	(2)	(3)	
S-5840BAG-M5T1x	Н	8	M	
S-5840BAH-M5T1x	Н	8	N	
S-5840BAJ-M5T1x	Н	8	0	

备注 1. x:G或U

2. 用户需要Sn 100%、无卤素产品时,请选择环保标记为 "U" 的产品。

No. MP005-A-P-SD-1.2

TITLE	SOT235-A-PKG Dimensions		
No.	MP005-A-P-SD-1.2		
SCALE			
UNIT	mm		
SILS	SII Semiconductor Corporation		

No. MP005-A-C-SD-2.1

TITLE	SOT235-A-Carrier Tape
No.	MP005-A-C-SD-2.1
SCALE	
UNIT	mm
SII S	emiconductor Corporation

TITLE	SOT235-A-Reel				
No.	MP00	MP005-A-R-SD-1.1			
SCALE		QTY.	3,000		
UNIT	mm				
011.0		1 0			
SII Semiconductor Corporation					

免责事项 (使用注意事项)

- 1. 本资料记载的所有信息 (产品数据、规格、图、表、程序、算法、应用电路示例等) 是本资料公开时的最新信息,有可 能未经预告而更改。
- 2. 本资料记载的电路示例、使用方法仅供参考,并非保证批量生产的设计。 使用本资料的信息后,发生并非因产品而造成的损害,或是发生对第三方知识产权等权利侵犯情况,本公司对此概不承 担任何责任。
- 3. 因本资料记载的内容有说明错误而导致的损害,本公司对此概不承担任何责任。
- 4. 请注意在本资料记载的条件范围内使用产品,特别请注意绝对最大额定值、工作电压范围和电气特性等。 因在本资料记载的条件范围外使用产品而造成的故障和(或)事故等的损害,本公司对此概不承担任何责任。
- 5. 在使用本资料记载的产品时,请确认使用国家、地区以及用途的法律、法规,测试产品用途的满足能力和安全性能。
- 6. 本资料记载的产品出口海外时,请遵守外汇交易及外国贸易法等的出口法令,办理必要的相关手续。
- 7. 严禁将本资料记载的产品用于以及提供(出口)于开发大规模杀伤性武器或军事用途。对于如提供(出口)给开发、制 造、使用或储藏核武器、生物武器、化学武器及导弹,或有其他军事目的者的情况,本公司对此概不承担任何责任。
- 8. 本资料记载的产品并非是设计用于可能对人体、生命及财产造成损失的设备或装置的部件(医疗设备、防灾设备、安全 防范设备、燃料控制设备、基础设施控制设备、车辆设备、交通设备、车载设备、航空设备、太空设备及核能设备等)。 本公司指定的车载用途例外。上述用途未经本公司的书面许可不得使用。本资料所记载的产品不能用于生命维持装置、 植入人体使用的设备等直接影响人体生命的设备。考虑使用于上述用途时,请务必事先与本公司营业部门商谈。 本公司指定用途以外使用本资料记载的产品而导致的损害,本公司对此概不承担任何责任。
- 9. 半导体产品可能有一定的概率发生故障或误工作。 为了防止因本公司产品的故障或误工作而导致的人身事故、火灾事故、社会性损害等,请客户自行负责进行冗长设计、 防止火势蔓延措施、防止误工作等安全设计。并请对整个系统进行充分的评价,客户自行判断适用的可否。
- 10. 本资料记载的产品非耐放射线设计产品。请客户根据用途,在产品设计的过程中采取放射线防护措施。
- 11. 本资料记载的产品在一般的使用条件下,不会影响人体健康,但因含有化学物质和重金属,所以请不要将其放入口中。 另外,晶元和芯片的破裂面可能比较尖锐,徒手接触时请注意防护,以免受伤等。
- 12. 废弃本资料记载的产品时,请遵守使用国家和地区的法令,合理地处理。
- 13. 本资料中也包含了与本公司的著作权和专有知识有关的内容。 本资料记载的内容并非是对本公司或第三方的知识产权、其它权利的实施及使用的承诺或保证。严禁在未经本公司许可 的情况下转载或复制这些著作物的一部分,向第三方公开。
- 14. 有关本资料的详细内容,请向本公司营业部门咨询。

1.0-2016.01