Big Points: Uma Análise Baseada na Teoria dos Jogos

Mateus Furquim

Engenharia de Software Universidade de Brasília

7 de julho de 2016

Agenda I

- IntroduçãoObjetivos
- 2 Pesquisa Bibliográfica
- 3 Fundamentação Teórica

Definição de Teoria dos Jogos Teoria Econômica dos Jogos Teoria Combinatória dos Jogos Teoria Computacional dos Jogos

Representação de Jogos Forma Extensa Estratégias Puras Forma Normal

4 Big Points Regras Exemplo

Agenda II

5 Resultados Parciais

Cálculo do Número de Partidas e Estados

Quantidade de Partidas Distintas

Espaço na Memória

Quantidade de Estados

Poda por Posição

Tempo de Cálculo dos Estados

6 Considerações Finais

Objetivos

- Geral: Encontrar Winning Move¹
- Específicos:
 - Estabelecer uma heurística² para maximizar o ganho
 - Criar uma IA capaz de jogar contra uma pessoa

²Heurística é uma abordagem para solucionar um problema sem garantias de que o restulado é a solução ótima.

¹ Winning move é um movimento que, a partir de uma determinada jogada, garantirá a vitória independente do resto do jogo

Objetivos

- Geral: Encontrar Winning Move1
- Específicos:
 - Estabelecer uma heurística² para maximizar o ganho
 - Criar uma IA capaz de jogar contra uma pessoa

²Heurística é uma abordagem para solucionar um problema sem garantias de que o restulado é a solução ótima.

¹ Winning move é um movimento que, a partir de uma determinada jogada, garantirá a vitória independente do resto do jogo

Objetivos

- Geral: Encontrar Winning Move1
- Específicos:
 - Estabelecer uma heurística² para maximizar o ganho
 - Criar uma IA capaz de jogar contra uma pessoa

²Heurística é uma abordagem para solucionar um problema sem garantias de que o restulado é a solução ótima.

¹ Winning move é um movimento que, a partir de uma determinada jogada, garantirá a vitória independente do resto do jogo

Resultados Parciais

- Fontes de pesquisa
- Referências (Livros e Artigos)

Bases de Conhecimento

String: "Game Theory"

- Capes Periódicos 10 Artigos
- Ebrary 11 Artigos
- EBSCOhost 8 Artigos
 - Leitura do Título
 - Leitura do Abstract

Livro

Título Game Theory: Mathematical models of conflict Autor Antonia Jane Jones Ano 1980

DuckDuckGo

Artigo - II Bienal da SBM³

Local Universidade Federal da Bahia

Título Uma Introdução a Teoria dos Jogos

Autor Sartini et. al.

Ano 2004

³Sociedade Brasileira de Matemática

A **Teoria dos Jogos** é uma área de estudos derivada da matemática que estuda o comportamento de indivíduos sob uma situação de conflito.

- Teoria Econômica dos Jogos
- Teoria Combinatória dos Jogos
- Teoria Computacional dos Jogos

Teoria Econômica dos Jogos

- 1921 Émile Borel, reinventou Minimax
- 1944 von Neumann and Morgenstern
 - Jogo de Soma Zero
 - Jogo Cooperativo e N\u00e3o Cooperativo
- 1950 John Forbes Nash
 - Equilíbrio de Nash (Estratégias Mistas)

$$J = \{j_1, j_2, ..., j_i\}$$

$$S_i = \{s_{i1}, s_{i2}, ..., s_{ij}\},$$

$$\forall j_i \in J, \exists s_{ij} \in S_i$$

$$P_i : S_i \to \mathbb{R}$$

$$J = \{j_1, j_2, ..., j_i\}$$
 $S_i = \{s_{i1}, s_{i2}, ..., s_{ij}\}$
 $\forall j_i \in J, \ \exists \ s_{ij} \in S_i$
 $P_i : S_i \to \mathbb{R}$

$$J = \{j_1, j_2, ..., j_i\}$$

 $S_i = \{s_{i1}, s_{i2}, ..., s_{ij}\},$
 $\forall j_i \in J, \ \exists \ s_{ij} \in S_i$
 $P_i : S_i \to \mathbb{R}$

$$J = \{j_1, j_2, ..., j_i\}$$

 $S_i = \{s_{i1}, s_{i2}, ..., s_{ij}\},$
 $\forall j_i \in J, \exists s_{ij} \in S_i$
 $P_i : S_i \to \mathbb{R}$

$$J = \{j_1, j_2, ..., j_i\}$$

$$S_i = \{s_{i1}, s_{i2}, ..., s_{ij}\},$$

$$\forall j_i \in J, \ \exists \ s_{ij} \in S_i$$

$$P_i : S_i \to \mathbb{R}$$


```
G = \{G^L | G^R\}, Representação de jogo
```

```
G = \{G^L | G^R\}, Representação de jogo

\{\emptyset | \emptyset\} = \{\}, Fim de jogo

* = \{0 | 0\}, Estrela, próximo jogador ganha

\uparrow = \{0 | *\}, Left sempre ganha

\downarrow = \{* | 0\}, Right sempre ganha
```

```
G = \{G^L | G^R\}, Representação de jogo \{\emptyset | \emptyset\} = \{\}, Fim de jogo * = \{0|0\}, Estrela, próximo jogador ganha \uparrow = \{0|*\}, Left sempre ganha \downarrow = \{*|0\}, Right sempre ganha
```

```
G = \{G^L | G^R\}, Representação de jogo \{\emptyset | \emptyset\} = \{\}, Fim de jogo * = \{0|0\}, Estrela, próximo jogador ganha \uparrow = \{0|*\}, Left sempre ganha \downarrow = \{*|0\}, Right sempre ganha
```

Big Points

```
G = \{G^L | G^R\}, Representação de jogo
\{\emptyset | \emptyset\} = \{\}, Fim de jogo
     * = \{0|0\}, Estrela, próximo jogador ganha
      \uparrow = \{0|*\}, Left sempre ganha
     \downarrow = \{*|0\}, Right sempre ganha
```


Bia Points

Teoria Computacional dos Jogos

Engloba jogos que podem ser resolvidos por força bruta ou que podem ser jogados contra uma Inteligência Artificial.

- Para jogos pequenos é possível percorrer todas as possibilidades
- Para jogos maiores, é necessário uma função que avalie a posição atual

Teoria Computacional dos Jogos

Dois jogadores alternam turnos. O estado do nó indica a situação do jogador da vez. Estados possíveis na árvore:

- Vencedor (∃ um nó filho Perdedor)
- Perdedor (Todos os nós filho são Vencedores)
- Empate (∄ nó filho *Perdedor*, ∃ nó filho *Empate*)

Fundamentação Teórica

Há duas maneiras de representar um jogo:

- Forma Extensa
- Forma Normal (Matriz de payoff)

Representação de Jogos

- Dois jogadores: Renée e Peter
- Três cartas: Rei (K), Dez (T) e Dois (D)
- R Escolhe uma carta
- P Adivinha se **Alta** (K) ou **Baixa** (D)
 - P erra. R ganha 2
 - P acerta, R perde 3
- No caso T

Baixa R ganha

Alta R escolhe outra carta

P erra, R ganha 3

Representação de Jogos

- Dois jogadores: Renée e Peter
- Três cartas: Rei (**K**), Dez (**T**) e Dois (**D**)

P Adivinha se **Alta** (K) ou **Baixa** (D)

No caso T

Representação de Jogos

- Dois jogadores: Renée e Peter
- Três cartas: Rei (**K**), Dez (**T**) e Dois (**D**)

R Escolhe uma carta

P Adivinha se **Alta** (K) ou **Baixa** (D)

No caso T

Representação de Jogos

- Dois jogadores: *Renée* e *Peter*
- Três cartas: Rei (**K**), Dez (**T**) e Dois (**D**)
- R Escolhe uma carta
- P Adivinha se **Alta** (K) ou **Baixa** (D)

No caso T

- Dois jogadores: *Renée* e *Peter*
- Três cartas: Rei (**K**), Dez (**T**) e Dois (**D**)

R Escolhe uma carta

P Adivinha se **Alta** (K) ou **Baixa** (D)

P erra, R ganha 2

No caso T

Resultados Parciais

Representação de Jogos

- Dois jogadores: *Renée* e *Peter*
- Três cartas: Rei (**K**), Dez (**T**) e Dois (**D**)
- R Escolhe uma carta
- P Adivinha se **Alta** (K) ou **Baixa** (D)
 - P erra, R ganha 2
 - P acerta, R perde 3

Representação de Jogos

- Dois jogadores: *Renée* e *Peter*
- Três cartas: Rei (**K**), Dez (**T**) e Dois (**D**)
- R Escolhe uma carta
- P Adivinha se **Alta** (K) ou **Baixa** (D)
 - P erra, R ganha 2
 - P acerta, R perde 3
- No caso T

Representação de Jogos

- Dois jogadores: *Renée* e *Peter*
- Três cartas: Rei (**K**), Dez (**T**) e Dois (**D**)
- R Escolhe uma carta
- P Adivinha se **Alta** (K) ou **Baixa** (D)
 - P erra, R ganha 2
 - P acerta, R perde 3
- No caso T

Baixa R ganha 1

Representação de Jogos

- Dois jogadores: *Renée* e *Peter*
- Três cartas: Rei (**K**), Dez (**T**) e Dois (**D**)

R Escolhe uma carta

P Adivinha se **Alta** (K) ou **Baixa** (D)

P erra, R ganha 2

P acerta, R perde 3

No caso T

Baixa R ganha 1 Alta R escolhe outra carta

Representação de Jogos

- Dois jogadores: *Renée* e *Peter*
- Três cartas: Rei (**K**), Dez (**T**) e Dois (**D**)
- R Escolhe uma carta
- P Adivinha se **Alta** (K) ou **Baixa** (D)
 - P erra, R ganha 2
 - P acerta, R perde 3
- No caso T
- Baixa R ganha 1
 - Alta R escolhe outra carta
 - P erra, R ganha 3

Representação de Jogos

- Dois jogadores: *Renée* e *Peter*
- Três cartas: Rei (**K**), Dez (**T**) e Dois (**D**)
- R Escolhe uma carta
- P Adivinha se **Alta** (K) ou **Baixa** (D)
 - P erra, R ganha 2
 - P acerta, R perde 3
- No caso T

Baixa R ganha 1

Alta R escolhe outra carta

P erra, R ganha 3

P acerta, R perde 1

Forma Extensa Vez de *Renée*

Renée

Forma Extensa Opções de *Renée*

Forma Extensa Vez de *Peter*

Forma Extensa Conjunto de Informação

Forma Extensa Se *Peter* errar

Forma Extensa Se *Peter* acertar

Forma Extensa Caso *T*

Forma Extensa Vez de *Renée*

Forma Extensa Opções de *Renée*

Forma Extensa Vez de *Peter*

Forma Extensa Ganhos em relação à *Renée*

Estratégias Puras Peter

- PI Escolher Alta; Se R escolher T, escolher Alta.
- PII Escolher Alta; Se R escolher T, escolher Baixa.
- PIII Escolher Baixa.

- RI Escolher K.
- RII Escolher T; Se P escolher Alta, escolher K.
- RIII Escolher T; Se P escolher Alta, escolher D.
- RIV Escolher D.

		Peter		
		ı	Ш	Ш
Renée	ı	Р	Р	R
	Ш	Р	R	Ρ
	Ш	R	Ρ	Ρ
	IV	R	R	Р

Tabela: Forma normal do jogo Renée v Peter

Introdução

Representação de Jogos

		Peter		
		ı	Ш	Ш
Renée	I	-3	-3	2
	Ш	-1	3	-2
	Ш	3	-1	-2
	IV	2	2	-3

Tabela: Matriz de payoff do jogo Renée v Peter

Resultados Parciais

		Peter		
		I	Ш	Ш
Renée	I	(-3,3)	(-3,3)	(2,-2)
	Ш	(-1,1)	(3,-3)	(-2,2)
	Ш	(3,-3)	(-1,1)	(-2,2)
	IV	(2,-2)	(2,-2)	(-3,3)

Tabela: Renée v Peter, Jogo de Soma Zero

- 2 a 5 Jogadores
- 5 peões de cores distintas
- 55 discos
 - 9 de cada cor comum
 - 5 de cada cor especial
- Cada jogador, no seu turno, escolhe um peão
- O peão é movido para o primeiro disco de sua cor
- O jogador da vez recolhe um disco disponível à frente ou atrás do peão

- 2 a 5 Jogadores
- 5 peões de cores distintas
- 55 discos
 - 9 de cada cor comum
 - 5 de cada cor especial
- Cada jogador, no seu turno, escolhe um peão
- O peão é movido para o primeiro disco de sua cor
- O jogador da vez recolhe um disco disponível à frente ou atrás do peão

- 2 a 5 Jogadores
- 5 peões de cores distintas
- 55 discos
 - 9 de cada cor comum
 - 5 de cada cor especial

- 2 a 5 Jogadores
- 5 peões de cores distintas
- 55 discos
 - 9 de cada cor comum
 - 5 de cada cor especial

- 2 a 5 Jogadores
- 5 peões de cores distintas
- 55 discos
 - 9 de cada cor comum
 - 5 de cada cor especial
- Cada jogador, no seu turno, escolhe um peão
- O peão é movido para o primeiro disco de sua cor
- O jogador da vez recolhe um disco disponível à frente ou atrás do peão

- 2 a 5 Jogadores
- 5 peões de cores distintas
- 55 discos
 - 9 de cada cor comum
 - 5 de cada cor especial
- Cada jogador, no seu turno, escolhe um peão
- O peão é movido para o primeiro disco de sua cor
- O jogador da vez recolhe um disco disponível à frente ou atrás do peão

- 2 a 5 Jogadores
- 5 peões de cores distintas
- 55 discos
 - 9 de cada cor comum
 - 5 de cada cor especial
- Cada jogador, no seu turno, escolhe um peão
- O peão é movido para o primeiro disco de sua cor
- O jogador da vez recolhe um disco disponível à frente ou atrás do peão

Introdução

- 2 a 5 Jogadores
- 5 peões de cores distintas
- 55 discos
 - 9 de cada cor comum
 - 5 de cada cor especial
- Cada jogador, no seu turno, escolhe um peão
- O peão é movido para o primeiro disco de sua cor
- O jogador da vez recolhe um disco disponível à frente ou atrás do peão

Exemplo


```
Jogador 1: 0
Jogador 2:
R
        G o o o o _ | 1
```



```
Jogador 1: 0
Jogador 2:
R
   B o o o G o _|1
```



```
Jogador 1: 0
Jogador 2: o
R
   B o o o G _ | 1
```



```
Jogador 1: 0
Jogador 2: 0
        o B o G _|1
R
```



```
Jogador 1: 0 0
Jogador 2: o
                    |2| o
R
```



```
Jogador 1: 0 0
Jogador 2: o o
                       В
                    |2| o
R
```



```
Jogador 1: 0 0
Jogador 2: 0 0

B
-|2| 0
0 R G -|1 | 0
```



```
Jogador 1: o o o
Jogador 2: o o
                      В
                    |2| o
            R G _ | 1 | o
```



```
Jogador 1: 0 0 0
Jogador 2: o o
                     В
                   R|2| o
           o G _|1
```



```
Jogador 1: 0 0 0
Jogador 2: o o o
                           В
                        \mathbb{R} | 2 |
              o G _|1
```



```
Jogador 1: 0 0 0

Jogador 2: 0 0 0

B

R|2|

0 0 G|1 | 0
```

```
Jogador 1: o o o o
Jogador 2: 0 0 0
                             В
                          \mathbb{R}|2|
                       G | 1
```



```
Jogador 1: 1+0+2+0 = 3
Jogador 2: 2+2+1
                            B
                         \mathbb{R}|2|
                       G | 1
```


Cálculo do Número de Partidas e Estados-Quantidade de Partidas Distintas

$$\begin{array}{ll} \textit{Partidas} &= 4 \cdot \binom{55}{5} \cdot \binom{50}{5} \cdot \binom{45}{9} \cdot \binom{45}{9} \cdot \binom{36}{9} \cdot \binom{27}{9} \cdot \binom{18}{9} \cdot \binom{9}{9} \\ \textit{Partidas} &\approx 5 \times 10^{41} \end{array}$$

Cálculo do Número de Partidas e Estados-Espaço na Memória

$$Bytes = \frac{Mask}{8} + 5 \text{ Peões} \cdot \text{char} + 5 \text{ Jogadores} \cdot 7 \text{ Cores} \cdot \text{char}$$

$$Bytes = \frac{55}{8} + 5 \cdot 1 + 5 \cdot 7 \cdot 1$$

$$Bytes = 47 \text{ bytes}$$

Cálculo do Número de Partidas e Estados-Quantidade de Estados

Estados =
$$[B] \cdot [P] \cdot [E] \cdot [D] \cdot [J]$$

 $[B] = 55$ discos, disponíveis ou não
 $[P] = 5$ peões, com 61 locais possíveis
 $[E] = \sum_{i=0}^{5} A_{5,i}$
 $[D] = {15 \choose 5} \cdot {10 \choose 5}$
 $[J] = 5$
Estados = $2^{55} \cdot 61^5 \cdot 326 \cdot 3003^5 \cdot 252^2 \cdot 5$
Estados $\approx 6 \times 10^{37}$

Cálculo do Número de Partidas e Estados

Cálculo do Número de Partidas e Estados-Poda por Posição

$$Estados = 2^{55} \cdot 11^5 \cdot 326 \cdot 3003^5 \cdot 252^2 \cdot 5$$
$$Estados \approx 1 \times 10^{34}$$

Resultados Parciais- Tempo de Cálculo dos Estados

Dado $d \in [2,9]$ discos e $p \in [2,5]$ peões, tem-se #B estados do tabuleiro calculados em Seg segundos:

р	d	#B	Seg
2	2	27	0
2	3	102	0
2	4	361	0
2	5	1251	0
2	6	4296	0
2	7	14746	1
2	8	50746	3
2	თ	175230	19

Pesquisa Bibliográfica

Resultados Parciais- Tempo de Cálculo dos Estados

Dado $d \in [2,9]$ discos e $p \in [2,5]$ peões, tem-se #B estados do tabuleiro calculados em Seg segundos:

р	d	#B	Seg
3	2	150	0
3	3	1219	1
3	4	9082	1
3	5	65195	19
3	6	457855	653
3	7	3173596	19929

Tabela: Quantidade de Estados e Tempo com p = 3

Resultados Parciais- Tempo de Cálculo dos Estados

Dado $d \in [2,9]$ discos e $p \in [2,5]$ peões, tem-se #B estados do tabuleiro calculados em *Seg* segundos:

р	d	#B	Seg
4	2	825	0
4	3	14907	2
4	4	243200	462

Tabela: Quantidade de Estados e Tempo com p = 4

Pesquisa Bibliográfica

Resultados Parciais- Tempo de Cálculo dos Estados

Dado $d \in [2,9]$ discos e $p \in [2,5]$ peões, tem-se #B estados do tabuleiro calculados em Seg segundos:

р	d	#B	Seg
5	2	4513	0
5	3	178898	505
5	4	6303528	526949

Tabela: Quantidade de Estados e Tempo com p = 5

Considerações Finais

Os cálculos da quantidade de estados do jogo e os cálculos dos estados do tabuleiro fornecem um limite superior e inferior à estimativa.

- Não é possível resolver todo o jogo
- Resolver uma versão simplificada
- Encontrar Winning Move
- Encontrar heurística para melhores jogadas

