GUÍA Nº6 DE CORRIENTE, RESISTENCIA Y CIRCUITOS (CB-412)

Profesor: Héctor León Cubillos

1. (a) ¿Cuál es la corriente en una resistencia de 5,6 [Ω] conectada a una batería con resistencia interna de 0,2 [Ω], si el voltaje en las terminales de la batería es 10 [V]? (b) ¿Cuál es la f.e.m. de la batería?

Resp.: (a) 1,79 [A]; (b) 10,4 [V]

2. Una batería tiene una f.e.m. de 15 [V]. El voltaje en las terminales de la batería es 11,6 [V] cuando se liberan 20 [W] de potencia en una resistencia R. (a) Calcular R. (b) ¿Cuál es la resistencia interna de la batería?

Resp.: (a) 6,73 $[\Omega]$; (b) 1,98 $[\Omega]$

3. En el circuito de la figura, la resistencia interna (no dibujada) de la batería es 1 $[\Omega]$. Los valores de las resistencias restantes, medidas en $[\Omega]$, aparecen en el diagrama .Calcule (a) La corriente suministrada por la batería. (b) La corriente en las resistencias de 6 $[\Omega]$ y 8 $[\Omega]$ (c) La potencia disipada en la batería y en la resistencia de 12 $[\Omega]$.

Resp.: (a) (12/7) [A]. (b) (4/7) [A]; (6/7) [A]; (c) 2,93 [W]; 0,98 [W].

4. Hallar la corriente en cada una de las ramas del circuito de la figura, donde $V_1 = 5$ [v], $V_2 = 2$ [v], $R_1 = 3$ [Ω], $R_2 = 2$ [Ω], $R_3 = 4$ [Ω].

Resp.: En R_1 : $i_1 = (11/13)$ [A]; En R_2 : $i_2 = -(3/13)$ [A]; En R_3 : $i_3 = (8/13)$ [A]

5. Una unidad de calefacción de 500 [w] fue proyectada para operar con 220 [volt]. Si el voltaje disminuye a 110 [volt], calcular en qué porcentaje se reduce su potencia. Suponer que en la resistencia no hay cambios al variar la temperatura.

Resp.: 75 %

6. Calcular las f.e.m. ε_1 y ε_2 y la diferencia de potencial entre los puntos A y B en el circuito de la figura.

Resp.: $\varepsilon_1 = 19$ [v]; $\varepsilon_2 = 8$ [v]; $V_{AB} = -14$ [v].

7. En el circuito de la figura $R_1 = 4$ $[\Omega]$, $R_2 = 10$ $[\Omega]$, $R_3 = 10$ $[\Omega]$, $V_1 = 2,1$ [V], $V_2 = 1,9$ [V]. Calcular (a) La intensidad en R_1 . (b) V_{AB} .

Resp.: (a) 0,22 [A]; (b) 0,89 [V].

8. En el circuito de la figura I=1 [mA], V=60 [V], $R_1=10$ [K Ω], $R_2=20$ [K Ω]. Calcular las corrientes I_1 e I_2 .

Resp.: $I_1 = (8/3)$ [mA]; $I_2 = -(5/3)$ [mA].

9. Calcule la potencia suministrada por cada fuente en el circuito de la figura .Suponga que la resistencia interna de las fuentes es despreciable.

Resp.: $P_{6V} = 0.799 [w], P_{4V} = 0.067 [w].$

10. Para el circuito de la figura (a) ¿Cuál es la razón R_1/R_2 del circuito de la figura cuando el amperímetro marca cero? (b) Si $R_1 = 2$ R, $R_2 = 5$ R, y R = 14 [Ω], ¿Qué corriente pasa por el amperímetro?

Resp.: (a) $R_1/R_2 = 4/1$; (b) 0,15 [A]

11. En el circuito de la figura calcular (a) Las corrientes i₁, i₂, i₃. (b) La diferencia de potencial y la potencia disipada en la resistencia R₃.

Rp: (a) $i_1 = \varepsilon / (R_1 + R_2 + 2R_3)$ $i_2 = -\varepsilon / (R_1 + R_2 + 2R_3)$; $i_3 = 2\varepsilon / (R_1 + R_2 + 2R_3)$ $\Delta V = 2\varepsilon R_3 / (R_1 + R_2 + 2R_3)$

 $P = 4 \epsilon^2 R_3/(R_1 + R_2 + 2 R_3)^2$

12. En la figura $R_1=30~[\Omega],~R_2=10~[\Omega],~R_3=20~[\Omega],~\epsilon_1=\epsilon_2=12~[v].$ Si entre los puntos A y circula una corriente de 2,6 [A], determinar: (a) ϵ_3 (b) La potencia disipada en R_2 .

Resp.: (a) -40.4 [V]; (b) 67.6 [w].

- **13.** En el circuito de la figura ,calcular: , i₁ , i₂ , i₄ , i₅ , i₆ $.V_{AB}$. La potencia disipada en R = 12 [Ω] y la potencia de las fuentes de 4 [V] y 6 [V].
- Resp.: (a) $\varepsilon = 15$ [V]; $i_1 = i_4 = 2$ [A]; $i_2 = 0.5$ [A]; = 1,5 [A]; $i_6 = 0$ (b) $V_{AB} = 6,5$ [V] (c) 48 [w]; 2 [w]; 0 [w].

14. En el circuito de la figura, determinar: (a) La corriente por R₃. (b) La diferencia de potencial entre "A" y "B"; y la diferencia de potencial entre "C" y "D". (c) La potencia disipada en la resistencia de R_5 y en la R_2 . $R_1 = 4 [\Omega]$; $R_2 = 6$ $[\Omega]$; $R_3 = 10 [\Omega]$; $R_4 = 12 [\Omega]$; $R_5 = 10 [\Omega]$; ε_1

$$= 2 \text{ [v]}; \ \epsilon_2 = 10 \text{ [v]}; \ \epsilon_3 = 16 \text{ [v]}$$

$$Resp.: \textbf{(a) } \mathbf{I}_1 = \frac{-3}{31} [\mathbf{A}]; \ \mathbf{I}_2 = \frac{23}{31} [\mathbf{A}] \mathbf{e} \ \mathbf{I}_3 = \frac{20}{31} [\mathbf{A}]; \mathbf{(b) } \mathbf{V}_{CD} = \frac{80}{31} [\mathbf{V}]; \mathbf{(c) } \mathbf{P}_{R5} = \mathbf{0} \text{ [W]}; \mathbf{P}_{R2} = \mathbf{0},037 \text{ [W]}$$

15. Se conectan doce resistencias idénticas de valor R, como en la figura, a los bordes de un cubo. Hallar la Resistencia equivalente a través de vértices opuestos diagonalmente, tales como A y B.

Resp.:
$$R_{eq} = \frac{5}{6}R$$

16. Dada la siguiente configuración, encontrar las corrientes I₁, I₂ e I_3 . $R_1 = 3 [\Omega]$; $R_2 = 6 [\Omega]$; $R_3 = 3 [\Omega]$; $R_4 = 3 [\Omega]$; $R_5 = 1,25$ [Ω]; R₆ = 2 [Ω]; R₇ = 1,5 [Ω]; ϵ_1 = 5 [V]; ϵ_2 = 10 [V] Resp.: $\mathbf{I_1} = \frac{110}{83}$ [A]; $\mathbf{I_2} = \frac{-40}{83}$ [A]; $\mathbf{I_3} = \frac{150}{83}$ [A]

Resp.:
$$I_1 = \frac{110}{83} [A]$$
; $I_2 = \frac{-40}{83} [A]$; $I_3 = \frac{150}{83} [A]$

- 17. El interruptor S se conecta en t = 0 [s], estando inicialmente los capacitores descargados. Determinar:
 - (a) La corriente por el circuito para t = 0 [s].
 - (b) La corriente por el circuito para $t \rightarrow \infty$.
 - (c) La carga final en cada condensador.

Resp.: (a)
$$I(t=0) = \frac{2\varepsilon}{3R}[A]; I(t\to\infty) = \frac{\varepsilon}{3R}[A];$$

(c) $Q_1 = \frac{2}{3}C\varepsilon[C]; Q_2 = \frac{C\varepsilon}{3}[C]$

18. Encuentre las resistencias equivalentes $[R_{ab}]$ del siguiente circuito.

Resp.:
$$R_{eq} = 15 [\Omega]$$

19. Encuentre las resistencias equivalentes $[R_{ab}]$ de los circuitos mostrados y cada uno de sus valores están en ohmios $[\Omega]$.

20. Hallar la resistencia equivalente entre los extremos A y B y sus unidades estan en ohmios $[\Omega]$.

