Learn 2 Warm Start

INFORMS 2022 Rajiv Sambharya

Joint work with Brandon Amos, Georgina Hall, Bartolomeo Stellato

Real-time Convex Problem Applications

Robotics and Control

Energy grid

Finance

Convex Problems

 $\mathcal{X} = \{x \mid \mathbf{1}^T x \le 1, x \ge 0\}$

Example

minimize f(x) — Convex function

subject to $x \in \mathcal{X}$ — Convex set

$$f(x) = \|x - \begin{bmatrix} -1 \\ 1 \end{bmatrix}\|_2^2$$

Primal

$$\frac{1}{2}x^T P x + c^T x$$

subject to
$$Ax + s = b$$

Conic constraint

Example Cones

$$\{s \mid s \geq 0\}$$

$$\{(s,t) \mid ||s||_2 \le t\}$$

$$\{S \mid S \succeq 0\}$$

Parametric Convex programs

Often, we solve parametric convex problems from the same family

Goal: Learning mapping efficiently

Parameter $\theta \longrightarrow$

 $\begin{array}{ll} \text{minimize} & f(x,\theta) \\ \text{subject to} & x \in \mathcal{X}(\theta) \end{array}$

Optimal solution \hat{x}

 $\theta \longrightarrow$

Only Optimization

 $\longrightarrow \hat{x}$

Accurate Slow online

9 ——

Only Machine Learning

 \hat{x}

Inaccurate Fast online

Optimization + Machine Learning

 $\longrightarrow \hat{x}$

Goal: accurate Fast online

Running Example: Markowitz

 Σ : Covariance matrix

r: returns vector

 ρ : weighting hyperparameter

Need to Decide

1. Solver choice

Rewrite KKT conditions as a linear complementarity problem

Algorithm: Douglas-Rachford Splitting

First order method

Fixed point iterations $z^{i+1} = T(z^i)$

Details in next 2 slides

2. Learning method with this solver

Fixed Point Iterates

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}x^TPx + c^Tx \\ \text{subject to} & Ax + s = b \\ & s \in \mathcal{K} \end{array}$$

Fixed point iterate

Linear system solve

$$M = \begin{bmatrix} P & A^T \\ -A & 0 \end{bmatrix} \qquad q = (c, b)$$

 $\rightarrow 2^{i+1}$

Projection onto \mathcal{K}^{\star}

Repeat until $||z^{i+1} - z^i||_2$ is small

Markowitz Example

minimize
$$\frac{1}{2}x^T\Sigma x - \rho r^Tx$$
 subject to
$$\mathbf{1}^Tx = 1$$

$$x \geq 0$$

Fixed point iterate

$$u^{i+1} = (I + M)^{-1}(z^{i} - q)$$

$$v^{i+1} = \Pi(2u^{i+1} - z^{i})$$

$$z^{i+1} = z^{i} + v^{i+1} - u^{i+1}$$

Linear system

$$M = egin{bmatrix} \Sigma & \mathbf{1} \\ -\mathbf{1}^T & 0 \end{bmatrix} \qquad q = (\rho r, 1)$$

Projection: clip negative values

Our Neural Network Architecture

Minimize the loss w.r.t. the weights in the ML Prediction block Apply a gradient-based method

Generalization Bounds

Generalization error can be bounded in terms of the Rademacher complexity

T
$$\kappa$$
-contractive $\longrightarrow \hat{\mathcal{R}}_N(\mathcal{H} \circ \mathcal{A} \circ l) \leq 2\sqrt{2}\kappa^k\hat{\mathcal{R}}_N(\mathcal{H})$

 $O(\frac{1}{\sqrt{k}})$ if T is averaged

Markowitz Numerical Example

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}x^T\Sigma x - \rho r^Tx \\ \text{subject to} & \mathbf{1}^Tx = 1 \\ & x \geq 0 \end{array}$$

10000 training problems
5000 testing problems

Used Russell index data 3000 assets

Sampled from noisy returns

r changes for each problem

ML Prediction block

2 hidden layer neural network ReLU activation

Markowitz Results

SCS implementation in C

Warm start	Time (sec)
Learn 2 warm start	0.62
None	3.20

Our contributions

Solve Convex problems in real time

End-to-end learning to accelerate fixed point algorithms

Generalization bounds in terms of N and k

