Name: Student ID:

# **IPv6** Subnetting

Your organization receives 2001:db8:abba::/48 from an ISP. ( /48 prefix gives you 280 bits in the usable pool)

Remember that subnets are /64, point-to-point links are /127, and loopbacks use /128.

This leaves one block of hex digits (216) for subnetting.

## Defining the Site ID

In order to allow for proper route aggregation and summarization you should define **Site ID**s that you can use at each location (e.g. office, data center, geographic region), and possibly sub-Site ID's.

Subnetting will vary according to business needs; when possible, you can break things down along the nibble boundary to make the notation process in hexadecimal simpler. This gives you the following options:

#### Option A

2 bits for sites plus 2 bits for sub-sites (first nibble), the remaining three nibbles for subnets  $(2^{12})$  – resulting in 4 sites, each containing 4 sub-sites, each of which has 4096 subnets.

#### Option B

4 bits (nibble) for sites, plus 4 bits (nibble) for sub-sites and the remaining 8 bits (byte) for subnets – resulting in 16 sites, each containing 16 sub-sites, each of which has 256 subnets.

### Option C

4 bits (nibble) for sites, 8 bits (byte) for sub-sites, and the remaining 4 bits for subnets – resulting in 16 sites, each containing 256 sub-sites, each of which has 16 subnets.

| Name<br>Stude | -     |
|---------------|-------|
| Case          | Study |

- medium sized business
- bureaus and data centers in Canada (12), Europe (25), and the Middle East (14)
  - o Canada: Toronto (4), Montreal (2), Winnipeg (2), Vancouver (2), St.John (2)
  - Europe: London (4), Paris (4), Berlin (2), Reykjavík (1), Monaco (2),
    Barcelona (2), Uppsala (2), Kiev (2), Amsterdam (2), Luxembourg (2),
    Naples (2)
  - Middle East: Jerusalem (4), Be'er Sheva (4), Osaka (2), Shanghai (2), Manila (2)
- assigned 2001:db8:abba:0:/48
- use Site ID's at the continent level, and sub-sites for countries
  - use four continental aggregates (with number of countries), Africa (57),
    Asia (44), The Americas & Oceana (49), Europe (47)
- 1. The sites that we are currently assigning IPv6 to are:

2. Number of bits for the Site ID's, sub-site (level II), sub-site (level III), and subnets (subnetting on the nibble boundary is not ideal in this case):

3. Assign site prefixes (continents):

| Name:   |     |
|---------|-----|
| Student | ID: |

4. Assign sub-site (level II – countries):

| Name:   |     |
|---------|-----|
| Student | ID. |

5. Assign sub-sub-site (level III – cities):

| Name:   |     |
|---------|-----|
| Student | ID. |

6. Assign the subnets for (some) of the cities:

Name: Student ID:

#### Routing

The /64 subnets will advertise themselves upstream to routers, as will the /62 prefixes. Each of the sub-sites will advertise their /56 prefix up to an aggregation router.

Each aggregation router will be connected to the IPv6 Internet and announce both the enterprise wide /48 and the site /50, as well as advertising their own /50. This provides redundant connectivity via the internet and allows the internet to use longest match to reach the site directly.



#### Requirements

The decision regarding subnetting simply aligns the subnetting with the specific business goals and requirements. There are no requirements regarding the site and sub-site or even how these are broken down. These examples are provided simply as illustrations.