MACHINE LEARNING 2 ADVANCED CRIME ANALYSIS UCL

BENNETT KLEINBERG
25 FEB 2019

MACHINE LEARNING 2

TODAY

- Recap supervised machine learning
- UNsupervised ML
 - Step-by-step example
- Performance metrics
- Validation and generalisation

RECAP SUPERVISED ML

- supervised = labeled data
 - classification (e.g. death/alive, fake/real)
 - regression (e.g. income, number of deaths)
- step-wise procedure

STEPS IN SUPERVISED ML

- clarify what outcome and features are
- determine which classification algorithm to use
- train the model
 - train/test split
 - cross-validation
- fit the model

UNSUPERVISED ML

- often we don't have labelled data
- sometimes there are no labels at all
- core idea: finding clusters in the data

library(caret)

EXAMPLES

- grouping of online ads
- clusters in crime descriptions

• ...

Practically everywhere.

Clustering reduces your data!

THE UNSUPERVISED CASE

You know nothing about groups inherent to the data.

THE K-MEANS IDEA

- separate data in set number of clusters
- find best cluster assignment of observations

STEPWISE

- 1. set the number of clusters
- 2. find best cluster assignment

1. NO. OF CLUSTERS

Let's take 4.

WHAT'S INSIDE?

THE K-MEANS ALGORITHM

- find random centers
- assign each observation to its closest center
- optimise for the WSS

WHAT'S PROBLEMATIC HERE?

BUT HOW DO WE KNOW HOW MANY CENTERS?

Possible approach:

- run it for several combinations
- assess the WSS
- determine based on scree-plot

CLUSTER DETERMINATION

```
wss = numeric()
for(i in 1:20){
   kmeans_model = kmeans(data4, centers = i, iter.max = 20, nstart = 1
   wss[i] = kmeans_model$tot.withinss
}
```

SCREE PLOT (ELBOW METHOD)

Look for the inflexion point at center size *i*.

OTHER METHODS TO ESTABLISH K

- Silhoutte method (cluster fit)
- Gap statistic

See also this tutorial.

SILHOUETTE METHOD

GAP STATISTIC

CHOOSING K

We settle for k=2

PLOT THE CLUSTER ASSIGNMENT

OTHER UNSUPERVISED METHODS

- k-means (today)
- hierarchical clustering
- density clustering

ISSUES WITH UNSUPERVISED LEARNING

What's lacking?

What can you (not) say?

CAVEATS OF UNSUP. ML

- there is no "ground truth"
- interpretation/subjectivity
- cluster choice


```
unsup_model_final$centers
```

```
## salary height
## 1 -0.8395549 -0.7457021
## 2 0.6869085 0.6101199
```

- Cluster 1: low salary, small
- Cluster 2: high salary, tall

Note: we cannot say anything about accuracy.

See the k-NN model.

- subjective
- labelling tricky
- researchers choice!
- be open about this

CLUSTER CHOICE

What if we chose k = 3?

```
km_3 = kmeans(data4, centers = 3, nstart = 10, iter.max = 10)
fviz_cluster(km_3, geom = "point", data = data4)
```


CLUSTER CHOICE

What if we chose k = 3?

```
km_3$centers
```

```
## salary height

## 1 0.7063757 0.8795474

## 2 -1.4058046 -0.5668204

## 3 0.1876933 -0.7256515
```

- Cluster 1: high salary, very tall
- Cluster 2: very low salary, small
- Cluster 3: avg salary, small

CLUSTER CHOICE

- be open about it
- make all choices transparent
- always share code and data ("least vulnerable" principle)

PERFORMANCE METRICS FOR CLASSIFICATION TASKS

FAKE NEWS PROBLEM

STEP 1: SPLITTING THE DATA

STEP 2: DEFINE TRAINING CONTROLS

STEP 3: TRAIN THE MODEL

STEP 4: FIT THE MODEL

model.predictions = predict(fakenews_model, test_data)

YOUR TASK:

Evaluate the model.

What do you do?

MODEL EVALUATION

	fake	real
fake	252	48
real	80	220

(252+220)/600 = 0.79

INTERMEZZO THE CONFUSION MATRIX

CONFUSION MATRIX

	Fake	Real
Fake	True positives	False negatives
Real	False positives	True negatives

CONFUSION MATRIX

- true positives (TP): correctly identified fake ones
- true negatives (TN): correctly identified real ones
- false positives (FP): false accusations
- false negatives (FN): missed fakes

OKAY: LET'S USE ACCURACIES

$$acc = \frac{(TP+TN)}{N}$$

Any problems with that?

ACCURACY

Model 1

	Fake	Real
Fake	252	48
Real	80	220

Model 2

	Fake	Real
Fake	290	10
Real	118	182

PROBLEM WITH ACCURACY

- same accuracy, different confusion matrix
- relies on thresholding idea
- not suitable for comparing models (don't be fooled by the literature!!)

Needed: more nuanced metrics

BEYOND ACCURACY

```
## prediction
## reality Fake Real Sum
## Fake 252 48 300
## Real 80 220 300
## Sum 332 268 600

## prediction
## reality Fake Real Sum
## Fake 290 10 300
## Real 118 182 300
## Sum 408 192 600
```

PRECISION

i.e. -> how often the prediction is correct when prediction class X

Note: we have two classes, so we get *two* precision values

Formally:

•
$$Pr_{fake} = \frac{TP}{(TP+FP)}$$

• $Pr_{real} = \frac{TN}{(TN+FN)}$

•
$$Pr_{real} = \frac{TN}{(TN+FN)}$$

PRECISION

```
## prediction

## reality Fake Real Sum

## Fake 252 48 300

## Real 80 220 300

## Sum 332 268 600
```

•
$$Pr_{fake} = \frac{252}{332} = 0.76$$

• $Pr_{real} = \frac{220}{268} = 0.82$

COMPARING THE MODELS

	Model 1	Model 2
acc	0.79	0.79
Pr_{fake}	0.76	0.71
Pr_{real}	0.82	0.95

RECALL

i.e. -> how many of class X is detected

Note: we have two classes, so we get two recall values

Also called sensitivity and specificity!

Formally:

•
$$R_{fake} = \frac{TP}{(TP+FN)}$$

• $R_{real} = \frac{TN}{(TN+FP)}$

•
$$R_{real} = \frac{TN}{(TN+FP)}$$

RECALL

```
##
         prediction
  reality Fake Real Sum
##
      Fake 252 48 300
            80 220 300
     Real
##
           332
                268 600
      Sum
```

•
$$R_{fake} = \frac{252}{300} = 0.84$$

• $R_{real} = \frac{220}{300} = 0.73$

•
$$R_{real} = \frac{220}{300} = 0.73$$

COMPARING THE MODELS

	Model 1	Model 2
асс	0.79	0.79
Pr_{fake}	0.76	0.71
Pr_{real}	0.82	0.95
R_{fake}	0.84	0.97
R_{real}	0.73	0.61

COMBINING PRAND R

The F1 measure.

Note: we combine Pr and R for each class, so we get two F1 measures.

Formally:

•
$$F1_{fake} = 2 * \frac{Pr_{fake} * R_{fake}}{Pr_{fake} + R_{fake}}$$

• $F1_{real} = 2 * \frac{Pr_{real} * R_{real}}{Pr_{real} + R_{real}}$

•
$$F1_{real} = 2 * \frac{Pr_{real} * R_{real}}{Pr_{real} + R_{real}}$$

F1 MEASURE

```
## prediction

## reality Fake Real Sum

## Fake 252 48 300

## Real 80 220 300

## Sum 332 268 600
```

•
$$F1_{fake} = 2 * \frac{0.76*0.84}{0.76+0.84} = 2 * \frac{0.64}{1.60} = 0.80$$

• $F1_{real} = 2 * \frac{0.82*0.73}{0.82+0.73} = 0.78$

COMPARING THE MODELS

	Model 1	Model 2
асс	0.79	0.79
Pr_{fake}	0.76	0.71
Pr_{real}	0.82	0.95
R_{fake}	0.84	0.97
R_{real}	0.73	0.61
$F1_{fake}$	0.80	0.82
$F1_{real}$	0.78	0.74

IN CARET

confusionMatrix(model.predictions, as.factor(test_data\$outcome))

```
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction fake real
##
        fake 252 80
##
     real 48 220
##
##
                 Accuracy : 0.7867
##
                    95% CI: (0.7517, 0.8188)
##
      No Information Rate: 0.5
##
      P-Value [Acc > NIR] : < 2.2e-16
##
##
                    Kappa : 0.5733
##
   Mcnemar's Test P-Value: 0.006143
##
##
              Sensitivity: 0.8400
```

THERE'S MORE

What's actually behind the model's predictions?

Any ideas?

CLASS PROBABILITIES

Notice anything?

Class probabilities for ACC. = 0.79

THE THRESHOLD PROBLEM

ISSUE!

- classification threshold little informative
- obscures certainty in judgment

Needed: a representation across all possible values

THE AREA UNDER THE CURVE (AUC)

Idea:

- plot all observed values (here: class probs)
- y-axis: sensitivity
- x-axis: 1-specificity

AUC STEP-WISE

```
threshold_1 = probs[1]
threshold_1
```

```
## [1] 0.6280156
```

```
pred_threshold_1 = ifelse(probs >= threshold_1, 'fake', 'real')
knitr::kable(table(test_data$outcome, pred_threshold_1))
```

	fake	real
fake	221	79
real	52	248

SENSITIVITY AND 1-SPECIFICITY

	fake	real
fake	221	79
real	52	248

$$Sens. = 221/300 = 0.74$$

$$Spec. = 248/300 = 0.83$$

$$Sens. = 221/300 = 0.74$$

$$Spec. = 248/300 = 0.83$$

Threshold	Sens.	1-Spec
0.63	0.74	0.17

Do this for every threshold observed.

.. AND PLOT THE RESULTS:

QUANTIFY THIS PLOT

WHAT IF WE COMPARE OUR TWO MODELS?

AUCS NUMERICALLY

```
#model 1
roc(response = test data$outcome , predictor = probs, ci=T)
##
## Call:
## roc.default(response = test data$outcome, predictor = probs,
##
## Data: probs in 300 controls (test data$outcome fake) > 300 cases
## Area under the curve: 0.8521
## 95% CI: 0.8216-0.8827 (DeLong)
#model 2
roc(response = test data$outcome , predictor = probs2, ci=T)
##
## Call:
## roc.default(response = test data$outcome, predictor = probs2,
##
## Data: probs2 in 300 controls (test data$outcome fake) > 300 cases
## Area under the curve: 0.9573
```

95% CI: 0.9437-0.971 (DeLong)

RECAP

- Unsupervised ML
- Performance metrics
 - confusion matrix
 - AUC
- Validation and generalisation

OUTLOOK

Tutorial tomorrow

Week 8: Applied predictive modelling + R Notebooks

END