Structure Discovery

Machine Learning for Behavioral Data April 25, 2025

Today's Topic

Week	Lecture/Lab
9	Unsupervised Learning
10	Spring Break
11	Unsupervised Learning
12	Ethical Machine Learning
13	Ethical Machine Learning
14	Reserve
15	Poster Presentations

- K-Means, Spectral Clustering
- Choosing the optimal K*
- Clustering time-series data

Getting ready for today's lecture...

• If not done yet: clone the repository containing the Jupyter notebook and data for today's lecture into your Noto workspace

• SpeakUp room for today's lecture:

https://go.epfl.ch/speakup-mlbd2025

Short quiz about the past...

Which of the following NN architecture has the largest number of parameters?

- a) Vanilla RNN
- b) GRU
- c) LSTM

Short quiz about the past...

In contrast to Vanilla RNNs, GRU units include an additional memory cell.

- a) True
- b) False

Short quiz about the past...

Which of the following should be changed to adapt a NN used for classification to a regression task?

- a) The dimension of the hidden layer
- b) The activation function of the output layer
- c) The batch size
- d) The drop-out rate

Why doing structure discovery?

- We are interested in finding different groups of users
 - for analytical purposes (e.g., to analyze how different types of users use our services)
 - to adapt the environment to different user types

Examples:

- Finding groups of students with similar strategies
- Identifying different types of new users on Snapchat (personalized retention)
- Grouping tourists by their mobility patterns (recommendation)

Agenda

- Clustering Algorithms
 - K-Means Clustering
 - Spectral Clustering
- Choosing the optimal number of clusters

Agenda

- Clustering Algorithms
 - K-Means Clustering
 - Spectral Clustering
- Choosing the optimal number of clusters

K-Means Clustering

- Assume the data $\{x_1, ..., x_N\}$ lives in a **Euclidean** space, $x_n \in \mathbb{R}^D$
- Assume the data belongs to K different classes (groups)
- How can we identify those classes (data points that belong to each class)?

K-Means Algorithm

- Initialization: randomly assign cluster centers
- Algorithm iteratively alternates between two steps:
 - Assignment step: assign each data point to the closest cluster
 - Update step: move each cluster center to the center of gravity of the data assigned to it

K-Means Algorithm

- Initialization: set K cluster means $m_1, ..., m_K$ to random values
- Repeat until convergence (until assignments do not change):
 - Assignment: each data point x_n assigned to nearest mean

$$\hat{k}^n = \arg\min_{k} d(\boldsymbol{m_k}, \boldsymbol{x_n})$$

(e.g., with Euclidean distance: $d(\mathbf{m}_k, \mathbf{x}_n) = \|\mathbf{m}_k - \mathbf{x}_n\|_2$)

 Update: adjust means to match sample means of data points they are responsible for:

$$m{m_k} = rac{\sum_n r_k^{(n)} m{x_n}}{\sum_n r_k^{(n)}}$$
 , where $r_k^{(n)} = 1$, if $\hat{k}^n = k$

K-Means Example

Synthetic data with k=5 clusters

Observations

- Solution (goodness of solution) depends on the initial positioning of the cluster centers
- Solution (goodness of solution) depends on the choice of k
 (the number of clusters)

- → How should we initialize the cluster centers?
- → How to choose the optimal number of clusters?

Initialization of cluster centers

- Random restarts:
 - Run to convergence using different random initializations
 - Choose the one the minimizes distortion (squared distance of data to cluster means)
- Distortion *D* (measure of in-cluster variance):

$$D = \sum_{n} \left(d(\boldsymbol{m}_{\widehat{k}^{n}}, \boldsymbol{x}_{n}) \right)^{2}$$

(e.g., with Euclidean distance: $d(\mathbf{m}_k, \mathbf{x}_n) = ||\mathbf{m}_k - \mathbf{x}_n||_2$)

Minimizing Distortion

• Distortion *D* (measure of in-cluster variance):

$$D = \sum_{n} \left(d(m_{\widehat{k}^n}, x_n) \right)^2$$

(e.g., with Euclidean distance: $d(\mathbf{m}_k, \mathbf{x}_n) = ||\mathbf{m}_k - \mathbf{x}_n||_2$)

Could we determine the optimal number of clusters by minimizing D?

- a) Ye
- b) No

Selecting k^* - Elbow Method

• Elbow Method (Heuristic): choose k^* such that adding another cluster does not lead to a much better model of the data

Selecting k^* - Silhouette Score

- Silhouette width $(-1 \le s \le 1)$: Silhouette width measures how similar a data point is to its own cluster (cohesion) compared to other clusters (separation)
- Can be computed for k = 2, ..., N
- For a data point x_i in cluster C_k :

$$a(i) = \frac{1}{|C_k| - 1} \sum_{j \in C_k, i \neq j} d(x_i, x_j) \qquad b(i) = \min_{l \neq k} \frac{1}{|C_l|} \sum_{j \in C_l} d(x_i, x_j)$$

$$s(i) = \frac{b(i) - a(i)}{\max\{b(i), a(i)\}} \text{ if } |C_k| > 1 \qquad s(i) = 0 \text{ if } |C_k| = 1$$

Selecting k*- Silhouette Score

• Overall average silhouette width: average over all data points x_i , given a cluster number k:

$$\bar{s}_k = \frac{1}{N} \sum_{i=1}^{N} s(i)$$

• Find k^* that maximizes the overall average silhouette width:

$$k^* = arg \max_{k} \bar{s}_k$$

Example: Silhouette Width

Selecting k^* - BIC Score

- Assumptions of K-Means:
 - Data points live in an Euclidean space
 - Data points are spherically distributed around centroid of clusters (spherical Gaussians)
- ightharpoonup We can compute the likelihood of our cluster solution for a given k
- \longrightarrow We can use the *BIC* to determine k^*

Bayesian Information Criterion (BIC)

$$BIC = -2 \cdot LL + \log(N) \cdot d$$

- d is the number of parameters of our model f
- LL is the log-likelihood (logarithm of the likelihood) of the sample data T given a specific k
- N is the number of samples in the data set, i.e. |T| = N

Schwarz Criterion (BIC)

$$BIC = -2 \cdot LL + \log(N) \cdot d$$

$$BIC = LL - \frac{d}{2} \cdot \log(N)$$

Likelihood for one data point

• Probability for a data point x_i , where \hat{r}^i denotes the cluster assignments for x_i (spherical gaussian assumption):

$$p(x_i) = \frac{\left|C_{\hat{r}^i}\right|}{N} \cdot \frac{1}{\sqrt{2\pi}\sigma} \cdot e^{-\frac{1}{2\sigma^2} \cdot \left\|x_i - m_{\hat{r}^i}\right\|_2^2}$$

• Computing the variance σ^2 of the data:

$$\sigma^2 = \frac{1}{N-k} \cdot \sum_{i=1}^{N} (x_i - m_{\hat{r}^i})^2$$

Computing the log-likelihood

Compute the log-likelihood over all data points:

$$LL = \log \prod_{i=1}^{N} p(x_i)$$

$$= \sum_{i=1}^{N} \log \frac{|C_{\hat{r}^i}|}{N} + \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{2\sigma^2} \cdot \|\mathbf{x_i} - \mathbf{m_{\hat{r}^i}}\|_2^2$$

Computing the number of parameters *d*

Here, number of parameters is equivalent to degrees of freedom:

$$d = (k-1) + 1 + k \cdot D$$

- k is the number of clusters, D is the number of dimensions of the data points x_i
- We estimate the following:
 - -k-1 prior probabilities (for the k clusters)
 - 1 variance estimate (σ^2)
 - $-k \cdot D$ centroid coordinates

BIC Example

Agenda

- Clustering Algorithms
 - K-Means Clustering
 - Spectral Clustering
- Choosing the optimal number of clusters

Two broad assumptions for clustering

- Compactness: Points that lie close to each other fall in the same cluster and are compact around the cluster center. The closeness can be measured by the distance between the observations.
- Connectivity: Points that are connected or immediately next to each other are put in the same cluster. Even if 2 points are close together, if they are not connected, they are not clustered together.

Assumptions of K-Means

- K-Means assumes a Euclidean space
- K-Means assumes that the variance of the distribution of each cluster is spherical

Assumptions of K-Means

- K-Means assumes a Euclidean space
- K-Means assumes that the variance of the distribution of each cluster is spherical

Spectral Clustering

- No assumption is made about the form/shape of the clusters
- Data points are treated as nodes of graphs
- Algorithm consists of three steps:
 - 1. Compute the pairwise similarities $s(x_i, x_j)$ between all pairs of data points i and j
 - 2. Construct a similarity graph
 - 3. Compute first k eigenvectors (k is the number of clusters) of graph Laplacian
 - 4. Perform clustering on transformed data

Spectral Clustering

- No assumption is made about the form/shape of the clusters
- Data points are treated as nodes of graphs
- Algorithm consists of three steps:
 - 1. Compute the pairwise similarities $s(x_i, x_j)$ between all pairs of data points i and j
 - 2. Construct a similarity graph
 - 3. Compute first k eigenvectors (k is the number of clusters) of graph Laplacian
 - 4. Perform clustering on transformed data

Similarity Measures

- Quantify similarity between two samples
- No single definition exists, can usually be seen as the inverse of distance metrics

Similarity Measures

Cosine Similarity: for vectors, often used for document comparison

$$S_{cos}(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|_{2} \cdot \|\mathbf{y}\|_{2}} = \frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \sqrt{\sum_{i=1}^{n} y_{i}^{2}}}$$

Jaccard Similarity: for set data

$$s(X,Y) = \frac{|X \cap Y|}{|X \cup Y|}$$

Similarity Measures

Gaussian Kernel with Euclidean distance (takes into account local neighborhood)

$$S(\mathbf{x}, \mathbf{y}) = e^{-\frac{\|\mathbf{x} - \mathbf{y}\|_2^2}{2\sigma^2}}$$

Similarity Measures

 Gaussian Kernel with Euclidean distance (takes into account local neighborhood)

$$S(\boldsymbol{x},\boldsymbol{y}) = e^{-\frac{\|\boldsymbol{x}-\boldsymbol{y}\|_2^2}{2\sigma^2}}$$

Similarity Measures

 Gaussian Kernel with Euclidean distance (takes into account local neighborhood)

$$S(x, y) = e^{-\frac{\|x - y\|_2^2}{2\sigma^2}}$$

Spectral Clustering

- No assumption is made about the form/shape of the clusters
- Data points are treated as nodes of graphs
- Algorithm consists of three steps:
 - 1. Compute the pairwise similarities $s(x_i, x_j)$ between all pairs of data points i and j
 - 2. Construct a similarity graph
 - 3. Compute first k eigenvectors (k is the number of clusters) of graph Laplacian
 - 4. Perform clustering on transformed data

Undirected Graphs - Notation

• Weighted adjacency matrix W

$$W = \begin{pmatrix} 0 & 0.2 & 0.5 & 1 \\ 0.2 & 0 & 0.8 & 0 \\ 0.5 & 0.8 & 0 & 0.1 \\ 1 & 0 & 0.1 & 0 \end{pmatrix}$$

• Degree d_i of a node i: $d_i = \sum_{j=1}^n w_{ij}$

Degree matrix
$$D$$
: $D = \begin{pmatrix} d_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & d_n \end{pmatrix}$

- Given: a set of data points $x_1, ..., x_n$ and some notion of similarity $s_{ij} \geq 0$ between all pairs of data points x_i and x_j
- We assume that
 - Each data point x_i represents a vertex of a graph
 - Two "vertices" x_i and x_j are connected, if s_{ij} is larger than a threshold (or zero), and the edge is weighted with s_{ij}

- Fully connected graph: simply connect all data points x_i and x_j with positive similarity s_{ij} and weight the edges with s_{ij}
- Example (*S* denotes the similarity matrix):

$$S = \begin{pmatrix} 1 & 0.2 & 0.7 & 0.1 \\ 0.2 & 1 & 0.8 & 0.4 \\ 0.7 & 0.8 & 1 & 0.6 \\ 0.1 & 0.4 & 0.6 & 1 \end{pmatrix} \qquad 0.5 \qquad 0.6$$

- ε -neighborhood graph: we connect all data points x_i and x_j with similarity $s_{ij} > \varepsilon$ and treat the graph as unweighted
- Example with $\varepsilon = 0.5$ (S denotes the similarity matrix):

$$S = \begin{pmatrix} 1 & 0.2 & 0.7 & 0.1 \\ 0.2 & 1 & 0.8 & 0.4 \\ 0.7 & 0.8 & 1 & 0.6 \\ 0.1 & 0.4 & 0.6 & 1 \end{pmatrix} \qquad W = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

- k -nearest neighbor graph: we connect all data points x_i and x_j if x_i is among the k nearest neighbors of x_j or x_j is among the k nearest neighbors of x_i
- mutual k —nearest neighbor graph: we connect all data points x_i and x_j if x_i is among the k nearest neighbors of x_i and x_j is among the k nearest neighbors of x_i
- Example with k = 2 (S denotes the similarity matrix):

$$S = \begin{pmatrix} 1 & 0.2 & 0.7 & 0.1 \\ 0.2 & 1 & 0.8 & 0.4 \\ 0.7 & 0.8 & 1 & 0.6 \\ 0.1 & 0.4 & 0.6 & 1 \end{pmatrix}$$

$$0.6 \begin{pmatrix} 1 & 0.2 & 0.7 & 0 \\ 0.2 & 1 & 0.8 & 0.4 \\ 0.4 & 0.8 & 1 & 0.6 \\ 0 & 0.4 & 0.6 & 1 \end{pmatrix}$$

Spectral Clustering - Algorithm

Unnormalized spectral clustering

Input: similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of clusters to construct

- Construct a similarity graph and compute W (weighted adjacency matrix) and D (degree matrix)
- Compute the unnormalized graph Laplacian L = D W
- Compute the first k eigenvectors $u_1, ..., u_k$ of L
- Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing the vectors $u_1, ..., u_k$ as columns
- For i=1,...,n, let $y_i \in \mathbb{R}^k$ be the vector corresponding to the i-th row of U
- Cluster the points y_i into clusters C_1 , ..., C_k using k-means clustering (e.g., using Euclidean distance)

Output: Clusters C_1 , ..., C_k

Spectral Clustering - Algorithm

Unnormalized spectral clustering

Input: similarity matrix $S \in \mathbb{R}^{n \times n}$, nur

Normalized Laplacian: $L = I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$ Random Walk Laplacian: $L = I - D^{-1}W$

- Construct a similarity graph and company (degree matrix)
- Compute the unnormalized graph Laplacian L=D-W
- Compute the first k eigenvectors $u_1, ..., u_k$ of L
- Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing the vectors $u_1, ..., u_k$ as columns
- For i=1,...,n, let $y_i \in \mathbb{R}^k$ be the vector corresponding to the i-th row of U
- Cluster the points y_i into clusters $C_1, ..., C_k$ using k-means clustering (e.g. using Euclidean distance)

Output: Clusters C_1 , ..., C_k

Selecting the optimal number of clusters k^*

• Eigengap Heuristic: choose k^* such that the first k eigenvalues $\lambda_1, \dots, \lambda_k$ are very small, but λ_{k+1} is relatively large

 We can also use the Silhouette score to select the optimal number of clusters (on the embedding space)

Agenda

- Clustering Algorithms
 - K-Means Clustering
 - Spectral Clustering
- Choosing the optimal number of clusters

Choosing k^* - Flipped Classroom Data

- Participants: 288 EPFL students of a course taught in *flipped* classroom mode with a duration of 10 weeks
- Structure:
 - Preparation: watch videos (and solve simple quizzes) on new
 content at home as a preparation for the lecture
 - Lecture: discuss open questions and solve more complex tasks
 - Lab session: solve paper-an-pen assignments
- Data: clickstream data (all interactions of the student with the system)

Choosing k^* - Your Turn

- In practice, clusters are not always as well separable...
- Your Task:
 - 1. Choose one of the suggested feature groups (Effort or Proactivity)
 - 2. Cluster the students based on these feature groups
 - Compute (and visualize) the eigengap heuristic as well as the Silhouette score
 - 4. Discuss your findings: what number of clusters would you choose? Why?
 - If you have time: repeat for the second feature group

Summary

K-Means Clustering

- Popular, easy to implement
- Assumptions: data points live in Euclidean space, spherical distribution around cluster centroids
- Need to choose: initialization, distance measure (e.g., Euclidean distance), number of clusters k

Spectral Clustering

- Flexible, no assumptions about shape/form of clusters
- Need to choose: similarity measure, computation of similarity graph, computation of graph Laplacian, number of clusters k