Mastering the second hand market for peer to peer loans

Giulianna Perrotti December 2016

The Situation

- Lending Club is a provider of peer to peer loans
- FolioInvesting is a trading company that trades second hand notes for Lending Club
- Trading notes on Folio is like trading in the stock market

The Situation

- Lending Club is a provider of peer to peer loans
- FolioInvesting is a trading company that trades second hand notes for Lending Club
- Trading notes on Folio is like trading in the stock market ...ish!

The main difference between Folio and the Stock Market

Folio is a highly non optimized and inefficient platform. That means that, unlike the stock market, it is not fair to say that 'the note is worth its face value'.

The Question

Is it possible to pin point what are the factors that impact the **return on a note** and, therefore, not only understand how much a note should be worth but also **automate the buy-sell mechanism**?

The Question

Is it possible to pin point what are the factors that impact the **return on a note** and, therefore, not only understand how much a note should be worth but also **automate the buy-sell mechanism**?

Let's try!

The Process – Basic strategy

- 1. Estimate what are the factors that impact the value of a note in its inception
- 2. Create a model that predicts how much a note is worth
- 3. Automate the buying process
- 4. Estimate accuracy of returns
- 5. Put feedback loop in place

The Process – 2nd hand market

- 6. Feed the model with additional data, to estimate 2nd hand market
- 7. Automate selling process for notes that are overpriced
- 8. Automate buying process for notes that are underpriced
- 9. Profit

The Dataset

The dataset is a publicly available Lending Club dataset, with notes since inception.

- 1.2 MM observations
- 100 + columns
- Loan Information
- 'Social' Information
- Tradelines Information
- Public Records Information

```
In [6]: df.shape
Out[6]: (1218332, 111)
```

The Coding: Data Cleaning

```
In [7]: #MAPPINGS
        df['loan status'] = df.loan status.map({'Current':0, 'Fully Paid':1, 'Charged Off':2, 'Late (31-120 days)':0,
                            'In Grace Period':0, 'Late (16-30 days)':0, 'Does not meet the credit policy. Status:Fully Paid':0,
                           'Does not meet the credit policy. Status: Charged Off':0, 'Default':2})
        df['home ownership'] = df.home ownership.map({'MORTGAGE':0, 'RENT':1, 'OWN':2, 'OTHER':3, 'NONE':3,
                                                       'ANY':3}).astype('float')
        df['verification status'] = df.verification status.map({'Source Verified':0, 'Verified':1,
                                                                 'Not Verified':2}).astype('float')
        df['verification status joint'] = df.verification status joint.map({'Source Verified':0, 'Verified':1,
                                                                 'Not Verified':2}).astype('float')
        df['application type'] = df.application type.map({'INDIVIDUAL':0, 'JOINT':1, 'DIRECT PAY':2})
        df['term'] = df.term.map({' 36 months':36, ' 60 months':60})
        df['grade'] = df.grade.map({'A':1, 'B':2, 'C':3, 'D':4, 'E':5, 'F':6, 'G':7})
        df['sub grade'] = df.sub grade.map({'A1':11, 'A2':12, 'A3':13, 'A4':14, 'A5':15, 'B1':21, 'B2':22, 'B3':23,
                                            'B4':24, 'B5':25, 'C1':31, 'C2':32, 'C3':33, 'C4':34, 'C5':35, 'D1':41,
                                             'D2':42, 'D3':43, 'D4':44, 'D5':45, 'E1':51, 'E2':52, 'E3':53, 'E4':54,
                                             'E5':55, 'F1':61, 'F2':62, 'F3':63, 'F4':64, 'F5':65, 'G1':71, 'G2':72,
                                             'G3':73, 'G4':74, 'G5':751)
        df['pymnt plan'] = df.pymnt plan.map({'n':0, 'y':1})
        df['addr state'] = df.addr state.map({'CA':1, 'NY':2, 'TX':3, 'FL':4, 'IL':5, 'NJ':6, 'PA':7, 'OH':8, 'GA':9,
                                               'VA':10, 'NC':11, 'MI':12, 'MD':13, 'AZ':14, 'MA':15, 'WA':16, 'CO':17,
                                              'MN':18, 'MO':19, 'IN':20, 'CT':21, 'TN':22, 'NV':23, 'WI':24, 'AL':25,
                                               'SC':26, 'OR':27, 'LA':28, 'KY':29, 'OK':30, 'KS':31, 'AR':32, 'UT':33,
                                               'NM':34, 'HI':35, 'NH':36, 'MS':37, 'WV':38, 'RI':39, 'MT':40, 'DE':41,
                                               'DC':42, 'AK':43, 'WY':44, 'VT':45, 'SD':46, 'NE':47, 'ME':48, 'ND':49,
                                               'ID':50, 'IA':51})
        df['initial list status'] = df.initial list status.map({'w':0, 'f':1})
        df['emp length'] = df.emp length.map({'<1 year':0, '1 year':1, '2 years':2, '3 years':3, '4 years':4, '5 years':5,
                                              '6 years':6, '7 years':7, '8 years':8, '9 years':9, '10 years':10, 'n/a': 11})
        df['purpose'] = df.purpose.map({'debt consolidation':0, 'credit card':1, 'home improvement':2, 'major purchase':3,
                                         'small business':4, 'car':5, 'medical':6, 'other':7, 'moving':8,
                                         'vacation':9, 'house':10, 'wedding':11, 'renewable energy':12, 'educational':13})
```

The Coding: Data Cleaning

```
#REPLACES
df['int rate'] = df['int rate'].replace('%','',regex=True).astype('float')
df['zip code'] = df['zip code'].replace('xx','',regex=True).astype('float')
df['revol util'] = df['revol util'].replace('%','',regex=True).astype('float')
#IRRELEVANTS
del df['url']
#NEW FIELDS
df['total received'] = df['total rec prncp'] + df['total rec int'] + df['total rec late fee']
df['percent received'] = df['total received']/df['funded amnt']
#MISSING VALUES
df = df.replace([np.inf, -np.inf], np.nan)
df = df[df.id.isnull() == False]
df = df[df.member id.isnull() == False]
df = df[df.percent received.isnull() == False]
```

```
In [8]: #TEMPORARY PATCHES
del df['id']
del df['emp_title']
del df['desc']
del df['title']
```

The Coding: Dates

```
In [40]: #DATES
         import datetime
         @lru cache(maxsize=1000)
         def dater(x):
             try:
                 return datetime.datetime.strptime(x, '%b-%y')
             except:
                 return None
         @lru cache(maxsize=1000)
         def yearer(x):
             try:
                 return float(dater(x).year)
             except:
                 return None
         @lru cache(maxsize=1000)
         def monther(x):
             try:
                 return float(dater(x).month)
             except:
                 return None
         @lru cache(maxsize=1000)
         def numberer(x):
             try:
                 return float(yearer(x) * 12 + monther(x))
             except:
                 return None
```

The Coding: Dates (cont)

```
df['year issue d'] = df.issue d.apply(yearer)
df['month issue d'] = df.issue d.apply(monther)
df['new issue d'] = df.issue d.apply(numberer)
#del df['issue d']
df['year earliest cr line'] = df.earliest cr line.apply(yearer)
df['month earliest cr line'] = df.earliest cr line.apply(monther)
df['new earliest cr line'] = df.earliest cr line.apply(numberer)
#del df['earliest cr line']
df['year last pymnt d'] = df.last pymnt d.apply(yearer)
df['month last pymnt d'] = df.last pymnt d.apply(monther)
df['new last pymnt d'] = df.last pymnt d.apply(numberer)
#del df['last pymnt d']
df['year next pymnt d'] = df.next pymnt d.apply(yearer)
df['month next pymnt d'] = df.next pymnt d.apply(monther)
df['new next pymnt d'] = df.next pymnt d.apply(numberer)
#del df['next pymnt d']
df['year last credit_pull_d'] = df.last_credit_pull_d.apply(yearer)
df['month last credit pull d'] = df.last credit pull d.apply(monther)
df['new last credit pull d'] = df.last credit pull_d.apply(numberer)
#del df['last credit pull d']
#NEW FIELDS
df['year time paying'] = df['year last pymnt d'] - df['year issue d']
df['months time paying'] = df['month last pymnt d'] - df['month issue d']
df['total time paying'] = df['new last pymnt d'] - df['new issue d']
#ADDRESSING MISSING VALUES AGAIN...
df = df[df.year time paying.isnull() == False]
df = df[df.months time paying.isnull() == False]
df = df[df.total time paying.isnull() == False]
```

The Coding: missing values

```
In [56]: df = df[df.year time paying.isnull() == False]
         df = df[df.months_time_paying.isnull() == False]
         df = df[df.total time paying.isnull() == False]
In [57]: #Addressing the missing values
         df['annual inc'].fillna(value = 0, inplace=True)
         df['open acc'].fillna(value = 0, inplace=True)
         df['pub rec'].fillna(value = 0, inplace=True)
         df['deling 2yrs'].fillna(value = 0, inplace=True)
         df['deling amnt'].fillna(value = 0, inplace=True)
         df['acc now deling'].fillna(value = 0, inplace=True)
         df['total acc'].fillna(value = 0, inplace=True)
         df['tax liens'].fillna(value = 0, inplace=True)
         df['chargeoff within 12 mths'].fillna(value = 0, inplace=True)
         df['collections 12 mths ex med'].fillna(value = 0, inplace=True)
         df['revol util'].fillna(value = 0, inplace=True)
         df['pub rec bankruptcies'].fillna(value = 0, inplace=True)
         df['total bal ex mort'].fillna(value = 0, inplace=True)
         df['total bc limit'].fillna(value = 0, inplace=True)
         df['acc open past 24mths'].fillna(value = 0, inplace=True)
         df['num sats'].fillna(value = 0, inplace=True)
         df['num bc sats'].fillna(value = 0, inplace=True)
         df['mths since recent bc'].fillna(value = 0, inplace=True)
         df['bc open to buy'].fillna(value = 0, inplace=True)
         df['percent bc gt 75'].fillna(value = 0, inplace=True)
         df['mort acc'].fillna(value = 0, inplace=True)
         df['num tl op past 12m'].fillna(value = 0, inplace=True)
         df['num tl 90g dpd 24m'].fillna(value = 0, inplace=True)
                                                                     Goes on and on and on...
         df['num tl 30dpd'].fillna(value = 0, inplace=True)
         df['num rev tl bal qt 0'].fillna(value = 0, inplace=True)
         df['num op rev tl'].fillna(value = 0, inplace=True)
```

df['num il tl'].fillna(value = 0, inplace=True)

The Coding: Training Dataset

For Phase 1, disconsidering loans still 'going'

The Coding: Tree Regressor

```
In [160]: #REGRESSION TREE
In [161]: from sklearn.tree import DecisionTreeRegressor
          treereg = DecisionTreeRegressor(random_state=1)
          treereg
Out[161]: DecisionTreeRegressor(criterion='mse', max depth=None, max features=None,
                     max leaf nodes=None, min samples leaf=1, min samples split=2,
                     min weight fraction leaf=0.0, presort=False, random state=1,
                     splitter='best')
In [162]: from sklearn.cross validation import cross val score
          scores = cross val score(treereg, X, y, cv=5, scoring='mean squared error')
          np.mean(np.sqrt(-scores))
Out[162]: 0.065848543259739795
In [163]: treereg = DecisionTreeRegressor(max depth=5, random state=1)
          treereg.fit(X, y)
Out[163]: DecisionTreeRegressor(criterion='mse', max depth=5, max features=None,
                     max leaf nodes=None, min samples leaf=1, min samples split=2,
                     min weight fraction leaf=0.0, presort=False, random state=1,
                     splitter='best')
```

The Coding: Chosen features

In [164]: pd.DataFrame({'feature':feature_cols, 'importance':treereg.feature_importances_}).sort_values(by='importance', ascending = False).head(10)

Out[164]:

	feature	importance
92	total_received	0.461023
1	funded_amnt	0.273879
3	term	0.077394
29	last_pymnt_amnt	0.067814
95	new_issue_d	0.049933
99	year_last_pymnt_d	0.027096
2	funded_amnt_inv	0.022186
101	new_last_pymnt_d	0.009713
4	int_rate	0.007159
0	loan_amnt	0.002764

The Coding: Bagging

The Coding

Out[175]:

	feature	importance
92	total_received	0.461023
1	funded_amnt	0.273879
3	term	0.077394
29	last_pymnt_amnt	0.067814
95	new_issue_d	0.049933
99	year_last_pymnt_d	0.027096
2	funded_amnt_inv	0.022186
101	new_last_pymnt_d	0.009713
4	int_rate	0.007159
0	loan_amnt	0.002764

The Coding: Max Depth

```
In [184]: # list of values to try for max depth
          max depth range = range(1, 30)
          # list to store the average RMSE for each value of max depth
          RMSE scores = []
          # use 10-fold cross-validation with each value of max depth
          from sklearn.cross validation import cross val score
          for depth in max depth range:
              treereg = DecisionTreeRegressor(max depth=depth, random state=1)
              MSE_scores = cross_val_score(treereg, X, y, cv=5, scoring='mean squared error')
              RMSE scores.append(np.mean(np.sqrt(-MSE scores)))
In [185]: # plot max depth (x-axis) versus RMSE (y-axis)
          plt.plot(max depth range, RMSE scores)
          plt.xlabel('max depth')
          plt.ylabel('RMSE (lower is better)')
                                                                   0.30
Out[185]: <matplotlib.text.Text at 0x13e1adb10>
                                                                   0.25
                                                                 RMSE (lower is better)
                                                                   0.20
                                                                   0.15
                 # show the best RMSE and the corresp
    In [186]:
                                                                   0.10
                 sorted(zip(RMSE scores, max depth ra
    Out[186]: (0.062596575263381887, 18)
                                                                   0.05
                                                                               5
                                                                                        10
                                                                                                15
                                                                                                                 25
                                                                                                         20
                                                                                                                          30
                                                                                             max depth
```

- 2. Finish developing the model for over-thecounter notes
- Enrich dataset with Esri Tapestry for zip code information
- Use NLP to assess whether description / profession / purpose play a role in the return rates

3/7/8. Create buy/sell robot

- Infrastructure with Docker containers on ECS, for high availability
- Lending Club offers buy/sell REST API
- Folio offers buy/sell REST API

- 6. Make the model for second hand market
- Enrich dataset with payment information (can be scrapped from Lending Club with note id)
- Assess which are the most relevant features, rebuild model

9. Profit!!

QUESTIONS?