

Сопоставление изображений и

локальные особенности

Антон Конушин http://courses.graphicon.ru/main/vision

Many slides adopted from Svetlana Lazebnik, Steve Seitz and Alexey Efros

Задача сопоставления изображений

Построение панорам

Распознавание экземпляров объектов

«Image alignment», «Image matching»

Выравнивание изображений

Есть два изображения одного и того же объекта.

Как нам совместить изображения автоматически?

- Найдём такое преобразование (совмещение изображений), при котором изображения больше всего совпадут
 - Прямое согласование (direct alignment)
- Что нам нужно определить:
 - Какое преобразование будем использовать?
 - Как оценить совпадение (похожесть изображений)?

Геометрические преобразования

• Параллельный перенос

• Подобие (перенос, масштаб, поворот)

• Афинное

• Проективное (гомография)

Геометрические преобразования

• Параллельный перенос

$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

Евклидово преобразование
 (М – ортогональная матрица)

$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

• Аффинное преобразование

$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

- Перспективное преобразование плоскости
- Переводит четырехугольник в другой произвольный четырехугольник

Гомография

• Преобразование между 2мя разными видами одной и той же плоскости

• Преобразование между видами с повернутой камеры (центр проекции общий)

Однородные координаты

• Однородные координаты

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\left[\begin{array}{c} x \\ y \\ w \end{array}\right] \Rightarrow (x/w, y/w)$$

Перевод в однородные координаты

Перевод из однородных координат

Удобнее представлять себе так:

$$\begin{bmatrix} wx & wy & w \end{bmatrix}^T \cong \begin{bmatrix} x & y & 1 \end{bmatrix}^T \cong \begin{bmatrix} x & y \end{bmatrix}^T$$

Подробнее будет в лекциях про геометрические свойства камер!

$$\lambda \begin{bmatrix} x_i' \\ y_i' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} \qquad \lambda x' = Hx$$

Гомография – линейное преобразование в однородных координатах

Сравнение изображений

Попиксельное сравнение изображений:

$$\sum_{X} \sum_{Y} |I_{1}(X, Y) - I_{2}(X, Y)|$$

L1 метрика (SAD - Sum of absolute differences)

$$\sum_{X} \sum_{Y} (I_1(X,Y) - I_2(X,Y))^2$$

L2 метрика (SSD - Sum of squared differences)

$$\sum_{X}\sum_{Y}I_{1}(X,Y)I_{2}(X,Y)$$

Кросс-корреляция (СС - Cross-correlation)

- SAD, SSD минимизируются (0 точное совпадение)
- СС максимизируется (1 точное совпадение)

Алгоритм

Простейший подход – «грубой силы» (brute force)

- Выберем модель преобразования, определим набор параметров, его описывающих
- Выберем функцию сопоставления изображений
 - SSD, Нормализованная корреляция, и т.д.
- Переберём всевозможные значения параметров в разумных пределах:

Пример – параллельный перенос:

```
for tx=x0:step:x1,
  for ty=y0:step:y1,
    compare image1(x,y) to image2(x+tx,y+ty)
  end;
end;
```

Необходимо заранее выбрать x0, x1 и step Что мы ещё не учли?

Задача оптимизации параметров

- Фактически, сопоставление изображений, это задача поиска минимума функции сравнения изображений
- Мы рассмотрели вариант полного перебора параметров с некоторым шагом
 - Grid search
- Можем воспользоваться каким-нибудь другим методом оптимизации, например, градиентным спуском
 - Хорошо сработает только в случае точного начального приближения
 - Ошибка менее 2х пикселей
- Можно улучшить с помощью многомасштабного подхода

Пирамиды изображений

- Известна как Пирамида Гауссиан
- В компьютерной графике "mip map" [Williams, 1983]

P. Burt and E. Adelson, "The Laplacian pyramid as a compact image code," *IEEE Trans. Commun., vol. 31, no. 4, pp. 532–540, 1983.*

Построение пирамиды

- Повторяем до достижения минимального разрешения
 - Сглаживаем с помощью фильтра Гаусса текущее изображение
 - Сэмплируем берём каждый k-ый пиксель (обычно, каждый 2ой)

Research

На высшем уровне полоса в пиксель волос, на среднем полоска, на нижнем нос

Многомасштабное сопоставление

Идея метода

- Строим гауссовы пирамиды для каждого из 2х изображений
- Ищем преобразование на самом низком разрешении
 - Можно использовать полный перебор
- Используем как начальное приближение для сопоставления на следующем уровне
 - Для уточнения можем использовать градиентный спуск

Проблемы

- Если на нижнем уровне ошиблись, тогда на следующих не можем исправить ошибку
- Всё равно медленно
- Проблема устойчивости

Перекрытие объекта

- Как быть, если объект («дом») частично перекрыт другими объектами («ёлками»)
- Положение «ёлок» относительно дома разное на разных ракурсах
- Прямое попиксельное сопоставление изображений может не дать хорошего результата

Локальные особенности

- Найти хорошо различимые точки на изображениях
 - «особенности» (features)
 - «локальный особые точки» (local feature points)
 - «характеристические точки» (characteristic points)
- Сопоставить точки (feature matching)
 - Определить, какой точке на одном изображении соответствуют какая точка на втором изображении
- Найти такое преобразование, которое совмещает найденные точки

[™] Применение

Сопоставление изображений и трёхмерная реконструкция

Применение

Классификация изображений и выделение объектов

Применение

Поиск изображений по содержанию в базе изображений

Локальные особенности

Пример особой точки

Пример точки, не являющейся особой

- Локальная (особая) точка *р* изображения І
 - это точка с характерной (особой) окрестностью , т.е. отличающаяся от всех других точек в некоторой окрестности p

Требования к особенностям

- Повторимость (Repeatability)
 - Особенность находится в том же месте сцены не смотря на изменения точки обзора и освещения
- Локальность (Locality)
 - Особенность занимает маленькую область изображения, поэтому работа с ней нечувствительна к перекрытиям
- Значимость (Saliency)
 - Каждая особенность имеет уникальное (distinctive) описание
- Компактность и эффективность
 - Количество особенностей существенно меньше числа пикселей изображения

Локальные особенности

Проведём эксперимент, будем рассматривать разные точки на изображении и проверять, являются ли они локальными особенностями

монотонный регион: в любом направлении изменений нет

«край»: вдоль края изменений нет

«уголок»: изменения при перемещении в любую сторону

- Наиболее популярный детектор локальных особенность точек детектор Харриса (Harris)
- Главное свойство угла
 - в области вокруг угла у градиента изображения два доминирующих направления
- Уголки хорошо повторимы и различимы

C.Harris and M.Stephens. "A Combined Corner and Edge Detector."

Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988

Математические детали

Изменение окрестности точки (x,y) при сдвиге [u,v]:

Source: R. Szeliski

Изменение окрестности точки при сдвиге [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Разложение в ряд Тейлора 2го порядка *I*(*x*,*y*) вокруг (x,y) (билинейная интерполяция при маленьких сдвигах)

$$[I(x+u,y+v)-I(x,y)]^{2} \cong [I(x,y)+I_{x}u+I_{y}v-I(x,y)]^{2}$$

$$= [I_{x}u+I_{y}v]^{2} = I_{x}^{2}u^{2}+2I_{x}I_{y}uv+I_{y}^{2}v^{2}$$

$$= (u,v)\begin{bmatrix} I_{x}^{2} & I_{x}I_{y} \\ I_{x}I_{y} & I_{y}^{2} \end{bmatrix} (u,v)^{T}$$

Математические детали

Итого изменение окрестности можно свести к:

$$E(u,v) \approx [u \ v] \ M \begin{bmatrix} u \\ v \end{bmatrix}$$

где M — матрица 2×2 вычисленная по частным производным:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$M = \begin{bmatrix} \sum_{I_x I_x}^{I_x I_x} & \sum_{I_x I_y}^{I_x I_y} \\ \sum_{I_x I_y}^{I_x I_y} & \sum_{I_y I_y} \end{bmatrix} = \sum_{I_x I_y}^{I_x I_y} [I_x I_y] = \sum_{I_x I_y}^{I_x I_y} \nabla_{I_x I_y}^{I_x I_y}$$

Интерпретация матрицы моментов

Рассмотрим случай, когда градиенты выровнены по осям (вертикальные или горизонтальные)

$$M = \sum \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Если одно из λ близко к 0, тогда это не угол, и нужно искать другие точки

Общий случай

М – симметричная, поэтому её можно привести к диагональному виду:

этому
$$M=R^{-1}DR=R^{-1}egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix}R$$

R – ортогональная матрица из собственных векторов M, D – диагональная из собственных значений M

Матрицу *М* можно визуализировать в виде эллипса, у которого длины осей определены собственными значениями, а ориентация определена матрицей R

Уравнение эллипса:

$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$

Направление наимедленного изменения

Визуализация матриц вторых моментов (Гессианов)

Детекторы углов

Классификация точек изображения по собственным значениям матрицы производных *М*

$$E(u,v) = (u,v)M(u,v)^{T}$$

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

 λ_1 и λ_2 малы; E не меняется по всем направлениям

Детекторы углов

• Мера отклика угла по Харрису:

$$R = \det M - k \left(\operatorname{trace} M \right)^{2}$$

$$\det M = \lambda_{1} \lambda_{2}$$

$$\operatorname{trace} M = \lambda_{1} + \lambda_{2}$$

$$(k = 0.04 - 0.06)$$

• Мера по Фёрстнеру (Forstner):

$$R = \det M / \operatorname{trace} M$$

Алгоритм детектора Харриса

- 1. Вычислить градиент изображения в каждом пикселе
 - С использованием гауссова сглаживания
- 2. Вычислить матрицу вторых моментов М по окну вокруг каждого пикселя
- 3. Вычислить отклик угла *R*
- 4. Отсечение по порогу R
- 5. Найти локальные максимумы функции отклика (non-maximum suppression) по окрестности заданного радиуса
- 6. Выбор N самых сильных локальных максимумов

Демонстрация по шагам

Демонстрация по шагам

Вычисление отклика угла R

Демонстрация по шагам

Найдём точки с большим откликом *R*>порог

Демонстрация по шагам

Оставим только точки локальных максимумов R

Демонстрация по шагам

Результат работы детектора

детектор Фёрстнера

детектор Харриса

Инвариантность

- Хорошо бы чтобы особенности находились в одной и той же точки сцены, на изображениях с разных ракурсов и в разных условиях освещения
- Если применить геометрическое преобразование к изображению, то алгоритм должен найти тот же самый набор точек

Геометрические

Поворот

Масштаб

Аффинное

подходит для упрощенных моделей камер (ортографической проекции, локально-плоских объектов)

Фотометрические

• Аффинное изменение яркости $(I \rightarrow a I + b)$

- Частичная инвариантность к изменению освещенности
 - √Используются только производные
 - => инвариантность к сдвигу $I \rightarrow I + b$
 - ✓ Масштабирование: $I \rightarrow a I$

Research

Детектор Харриса

Инвариантность к вращению изображения:

Эллипс вращается, но его форма (собственные значения) остаются неизменными

Отклик угла R инвариантен относительно вращению изображения

Масштабирование?

 Угол или нет? - Зависит от масштаба изображения!

Инвариантность к масштабированию

- Цель: определять размер окрестности особой точки в масштабированных версиях одного и того же изображения
- Требуется метод выбора размера характеристической окрестности

Блобы

«Капля», «Blob» - вначале для особенностей такого типа была разработана теория выбора характерного размера

Поиск краев

Второй проход

От краев к блобам

- Край = «всплеск»
- Блоб = совмещение двух «всплесков»

Выбор масштаба: величина отклика лапласиана Гауссиана достигает максимума в центре блоба в том случае, если размер лапласиана «соответствует» размеру блоба

Выбор масштаба

- Нужно найти характеристический размер блоба путем свертки с Лапласианом в нескольких масштабах и найти максимальные отклики
- Однако, отклик Лапласиана затухает при увеличении масштаба:

Почему так происходит?

Нормализация масштаба

 Отклик производной фильтра Гаусса на идеальный край затухает с увеличением масштаба σ

Нормализация масштаба

- Отклик производной фильтра Гаусса на идеальный край затухает при увеличении σ
- Нужно домножить производную на σ для достижения инвариантности к масштабу
- Лапласиан это вторая производная фильтра гаусса, поэтому домножаем на σ²

Эффект нормализации

Лапласиан Гауссиана: Центрально-симметричный оператор поиска блобов в 2D

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

Лапласиан Гауссиана: Центрально-симметричный оператор поиска блобов в 2D

$$\nabla_{\text{norm}}^2 g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right)$$

Выбор масштаба

• На каком масштабе Лапласиан достигает максимума отклика на бинарный круг радиуса r?

изображение

Лапласиан

Выбор масштаба

• 2D Лапласиан задается формулой:

$$(x^2+y^2-2\sigma^2)\,e^{-(x^2+y^2)/2\sigma^2}$$
 (с точностью до масштаба)

• Для бинарного круга радиуса r, Лапласиан достигает максимума в $\sigma = r/\sqrt{2}$

Характеристический размер

Характеристический размер определяется как масштаб, на котором достигается максимум отклика Лапласиана

T. Lindeberg (1998). <u>"Feature detection with automatic scale selection."</u> *International Journal of Computer Vision* **30** (2): pp 77--116.

Slide by S. Lazebnik

Характеристический размер

У «хорошего блоба» – один ярко выраженный пик функции

Многомасштабный детектор блобов

- 1. Свертываем изображение нормализованным фильтром Лапласианом на разных масштабах
- 2. Ищем максимум отклика Лапласиана в 3D

Пример

Research

Пример

sigma = 11.9912

Пример

Research

Эффективная реализация (DoG)

Приближение Лапласиана с помощью разницы гауссиан:

$$L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
 (Лапласиан)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$
 (Разница Гауссиан)

Difference of Gaussian = DoG

Эффективная реализация (DoG)

Детектор DoG также выделяет «блобы» на изображении

Детектор Harris-Laplacian

- Выделяем углы на изображении, но с характеристическим размером
- Максимизация:
 - По изображению откликов углов Харриса
 - По масштабу Лапласиана
- Разные варианты чередования вычисления функции Харриса и Лапласиана

Сравнение

 Сравнение простого детектора Харриса и Харрис-Лапласиана

Харрис-Лаплас

Углы и блобы

- Углы и блобы разные виды локальных особенностей
- Детекторы Харрис-Лапласиан и LoG (DoG) выделяют разные множества особенностей
- Можно применять их одновременно

Выбор точек

- Цель: выбрать фиксированное кол-во точек на изображении
 - Точки должны быть равномерно распределены по изображению
 - Самые сильные отклики обычно расположены в текстурированных областях, неравномерно распределенных по изображению

(a) Strongest 250

(b) Strongest 500

Адаптивный радиус

- Пройдёмся по всем точкам в порядке качества
- Для каждой точки выкинем из списка всех соседей в окрестности радиуса r
- Посчитаем количество оставшихся точек
- Выберем такой радиус r, при котором получим нужное нам количество точек

Детекторы областей

- Стоит попробовать работать с более уникальными характеристиками изображения – с областями
- Интересных областей гораздо меньше, но они более точно характеризуют сцену или объект

- Детектор областей IBR (Intensity-extrema based regions)
- Идти от локального экстремума яркости по лучам, считая некоторую величину f
- Остановка при достижении пика f

• Области на паре изображений могут различаться, поэтому опишем вокруг них эллипсы

• Если эллипсы превратить в окружности, то получим полное сходство с точностью до поворота (об этом позже)

MSER = Maximally Stable Extremal Regions

- Задать порог яркости Т
- Провести сегментацию
- Извлечь области
- Для каждой области найти порог, при котором рост площади минимален
- Описать вокруг области эллипс

Research

Резюме локальных особенностей

- Локальные особенности один из основных инструментов анализа изображений
- Рассмотрели алгоритмы выделения особенностей:
 - Уголки: Harris (Forstner), Harris-Laplace)
 - Блобы: LoG (Laplacian of Gaussian), DoG (Difference of Gaussians)
 - Области: IBR (Intensity-extrema based regions), MSER (Maximally Stable Extremal Regions)

Дескрипторы

Точки найдены – как их сопоставить?

- Нужно как-то описать каждую точку, чтобы можно было отличать одну от другой!
- Дескриптор (Descriptor) вектор признак окрестности точки

Необходимо каждую интересную точку описать набором параметров:

Как будем поступать:

- Возьмём окрестность точки
 - Какой формы?
 - Какого размера?
- Вычислим по окрестности набор признаков
 - Какие?

Простейший подход

- Возьмём квадратные окрестности, со сторонами, параллельными строкам и столбцами изображения
- Яркости пикселов будут признаками
- Сравнивать будем как изображения попиксельно (SAD, SSD)
- Такая окрестность инвариантна только к сдвигу изображения

Инвариантность к яркости

- Можем добиться следующим образом:
 - Локальная нормализация гистограммы
 - Дескрипторы, основанные на градиенте яркости, инвариантны к сдвигу яркости
 - Нормирование яркости вычесть среднее значение, поделить на дисперсию

$$I' = (I - \mu)/\sigma$$

Недостаток простой окрестности

- Детектор точек инвариантен к повороту, а окрестность нет
- Небольшие сдвиги, т.е. ошибки в нахождении точки делают невозможным попиксельное сравнение

SIFT

- Scale-Invariant Feature Transform:
 - Детектор DoG
 - Определение положения и масштаба особенности
 - Ориентация
 - Определение доминантной ориентации по градиентам
 - Дескриптор
 - Использование статистик по направлению градиентам
- Устойчив к изменениям освещенности и небольшим сдвигам

David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

Ориентация

- Идея: найти основное (доминантное) направление градиентов пикселей в окрестности точки
- Посчитаем гистограмму, взвешивая вклад по гауссиане с центром в точке

 Повернуть фрагмент так, чтобы доминантное направление градиента было направлен вверх

• Если локальных максимумов несколько – считаем, что несколько точек с разной ориентацией

Окрестность особенности

- Для каждой найденной особенности теперь знаем характеристические масштаб и ориентацию
- Выберем соответствующую прямоугольную окрестность
 - (Rotation Invariant Frame)
- Приведем окрестность к стандартному размеру (масштабируем)

Пример локальных особенностей

Гистограмма ориентаций градиентов Research

Microsoft^{*}

- Построим дескриптор SIFT идея:
 - Вычислим направление градиента в каждом пикселе
 - Квантуем ориентации градиентов на 8 ячеек (направлений)
 - Пометим каждый пиксель номером ячейки
 - Посчитаем гистограмму направлений градиентов
 - Для каждой ячейки посчитаем количество пикселов с номером этой ячейки
 - Вклад взвесим по гауссине, с центром в центре окрестности

Гистограммы градиентов

- Для учета локальных свойств разделим окрестность на блоки сеткой, в каждом блоке посчитаем свою гистограмму градиентов
- Обычно сетка 4х4, в каждой гистограмма с 8ю ячейками
- Стандартная длина вектора-дескриптора 128 (4*4*8)
- Сравниваем как вектор (разные метрики)

- Вектор-признак длиной 128, по сути гистограмма
- Стандартные L1, L2
- Специальные для гистограмм:

• Пересечение гистограмм
$$D(h_1,h_2) = \sum_{i=1}^N \min(h_1(i),h_2(i))$$

• Расстояние
$$\chi^2$$

$$D(h_1,h_2) = \sum_{i=1}^N \frac{\left(h_1(i) - h_2(i)\right)^2}{h_1(i) + h_2(i)}$$

Earth-Mover Distance

- RGB-SIFT
 - 3 дескриптора SIFT для каждого канала
- C-SIFT
 - Каналы 0₁ и 0₂

$$\begin{pmatrix} O_1 \\ O_2 \\ O_3 \end{pmatrix} = \begin{pmatrix} \frac{R-G}{\sqrt{2}} \\ \frac{R+G-2B}{\sqrt{6}} \\ \frac{R+G+B}{\sqrt{3}} \end{pmatrix}$$

- rgSIFT
 - Каналы г и д

$$\begin{pmatrix} r \\ g \\ b \end{pmatrix} = \begin{pmatrix} \frac{R}{R+G+B} \\ \frac{G}{R+G+B} \\ \frac{B}{R+G+B} \end{pmatrix}$$

Резюме SIFT

- Дескриптор SIFT весьма специфичен, устойчив к изменениям освещения, небольшим сдвигам
- Вся схема SIFT (детектор, выбор окрестностей, дескриптор) оказалась очень эффективным инструментов для анализа изображений
- Очень широко используется

Перспективные искажения

Дескрипторы

В круглую окрестность попадают разные фрагменты – в левом снимке внутрь окружности попала половина буквы G, в правом он почти не попала

Дескрипторы

Research

Найти соответствующие окрестности, с учетом аффинных преобразований описав их эллипсом

Нормализация окрестности

Для облегчения сравнения фрагментов изображения необходимо найти параметры эллипса вокруг интересной точки или области и привести эллипсы к «каноническому» виду – «общему знаменателю»

Помним:
$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

Матрицу *М* можно представить как эллипс, у которого длины осей определены собственными значениями, а ориентация определена матрицей R

Уравнение эллипса:

$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$

Афинная адаптация

Проблема: мы матрицу М считаем по круглой (квадратной) окрестности. На разных изображениях содержимое будет не совпадать, и мы не сможем выделить одинаковые области (эллипсы)

Решение: итеративная адаптация

Аффинная адаптация

- Задача: матрица вторых моментов, определенная весами w(x,y) должна вычисляться по характерной формой области
- Решение: итеративное уточнение
 - Считаем матрицу моментов по круглому окну
 - Применяем аффинную адаптацию для получения эллиптического окна
 - Пересчитываем матрицу моментов по нормализованной окрестности. Повторяем.

Пример аффинной адаптации

Независимые от масштаба области (блобы)

Пример аффинной адаптации

Уточненные окрестности блобов

Нормализация

- Эллипс вторых моментов можно считать «характеристической формой» области
- Нормализуем окрестности путем преобразования эллипса в единичный круг

Неопределенность ориентации

- Нет уникального преобразования из эллипса в единичный круг
 - Мы можем вращать и отражать единичный круг, и он останется единичным кругом

Посчитаем доминирующий градиент и довернём!

Пример

K. Mikolajczyk and C. Schmid, Scale and Affine invariant interest point detectors, IJCV 60(1):63-86, 2004.

http://www.robots.ox.ac.uk/~vgg/research/affine/

Сопоставление

- Имеем набор точек и дескрипторов
- Как будем сопоставлять?

Сопоставление особенностей

- Генерируем пары-кандидаты: для каждого патча в одном изображении, находим несколько наиболее похожих по выбранной метрики пачтей на другом изображении
- Как выбирать пары?
 - Полный перебор
 - Для каждой особенности вычисляем расстояния до всех особенностей второго изображения и берем лучшую
 - Ускоренные приближенные меры
 - Иерархические структуры (kd-trees, vocabulary trees)
 - Хэширование

Резюме лекции

- Сопоставление изображений одна из основных задач в компьютерном зрении
- Прямое сопоставление иногда работает, но страдает от ряда недостатков
- Локальные особенности один из основных инструментов для анализа изображений
 - Детекторы: Harris, LoG, DoG, Harris-Laplace
 - Дескрипторы: SIFT, C-SIFT
 - Афинная адаптация

На следующей лекции

- Геометрические модели прямые, окружности, преобразование изображений
- DLT-метод для оценки их параметров
- Робастные методы оценки параметров
 - Рандомизированные методы
 - Схемы голосования
- Выделение экземпляров объектов через сопоставление