Iowa Social Science Research Center 2020-21 Workshop series

Advanced Spatial analysis with R

Seungwon Kim

Geographical and Sustainability Sciences

Correlation

Regression

 A set of statistical processes for estimating the relationships between a dependent variable and one or more independent variables

- Goals
 - Identify the statistically significant predictors
 - Education, Epidemiology,...
 - Prediction

Ordinary Least Squares Regression (OLS)

- y_i is the <u>response variable</u>
 - a.k.a. Dependent variable
- x_i is the **explanatory variable** or **predictor variable**
 - a.k.a. Independent variable

 We are using X to explain some or most of the variability of y, in particular, the non-random part of y's variability

Steps for linear regression

- Response variable
 - Type of variable
 - Continuous: Simple or multiple regression
 - Count data: Poisson regression or negative binomial regression
 - Binary: Logistic/Probit regression
 - Independent?
 - Study design
 - Ex) School, classroom, students
- Linear relationship between response and predictor(s)
 - Scatter plot

Steps for linear regression (cont.)

- Predictor
 - Check multicollinearity
 - Correlation matrix
 - Variance Inflation Factor (VIF)
- Error
 - Normality
 - Q-Q plot
 - Shapiro-Wilk test
 - H_0 : The population is normally distributed
 - Heteroscedasticity
 - Plot (studentized) residuals vs. predicted y
 - Breusch-Pagan test
 - H_0 : Homoskedasticity
 - Autocorrelation
 - Plot
 - Burbin-Watson test

The first law of geography

- Waldo Tobler
 - "Everything is related to everything else, but near things are more related than distant things."
- Spatial dependence
 - The co-variation of properties within geographic space
 - Weather map (Kriging)
 - Spatial autocorrelation

Back to regression analysis

- Response variable
 - Type of variable
 - Continuous: Simple or multiple regression
 - Count data: Poisson regression or negative binomial regression
 - Binary: Logistic regression
 - Independent? (Spatially independent?)
 - Study design
 - Ex) School, classroom, students

Back to regression analysis

• Error

- Normality
 - Q-Q plot
 - Shapiro-Wilk test
- Heteroscedasticity
 - Plot (studentized) residuals vs. predicted y
 - Breusch-Pagan test
- Autocorrelation (Spatial autocorrelation)
 - Plot
 - Burbin-Watson test

Check Spatial dependence

- Moran's I
 - A measure of spatial autocorrelation

A summary statistic with p-value from bootstrapping

Check Spatial dependence – residual map

Spatial Weight matrix

- The spatial relationships that exist among the features in your dataset
- NxN matrix
- Two ways to determine neighbors
 - Rooks case
 - Queens case

Spatial Weights Matrix

Spatial regression models

Spatial Lag model

- Assumes that dependencies exist directly among the levels of the response variable
- Used when we know the structure of spatial dependence
- $Y = \rho WY + X\beta + \varepsilon$

Spatial Error model

- Error term has dependence
- Used when structure of dependence is unknown
- $Y = X\beta + \lambda W\varepsilon + \xi$

Data Structures

Vectors

- A 1-dimensional object that consists of indexed elements of the same data type
- Numeric / Character / Date / Logical / Factors
- X <- c(1, 2, 3, 4, ...)
- X[i]

Matrix

- A 2-dimensional object that consists of indexed elements of the same data type
- X[i, j]

Data Structures

- Data frame
 - A 2-dimensional object that consists of indexed elements
 - Elements within a given column are of the same type, but types may differ between columns.
 - x[i, j]
 - x[i,] ## Extract a row
 - x[, j] ## Extract a column

R Studio

