Revisiting Underapproximate Reachability for Multipushdown Systems

Sparsa Roychowdhury, Prof. S Akshay, Prof. S Krishna, and Prof. Paul Gastin

July 26, 2024

Outline

- Introduction
- Multistack Pushdown Automata (MPDA)
- Hole bounded runs of MPDA
- Algorithm
- Extension to time
- Implementation
- Experiments
- Conclusion

Introduction

- Checking the correctness of a system is essential
- ➤ Testing can guarantee the presence of bugs but can not guarantee the absence of it
- ► Formal verification is a celebrated area of computer science that proves the correctness of a system mathematically
- Model checking is one of the most promising approaches to formal verification

Model checking

Figure: Model checking as a reachability/emptiness problem

Model checking contd.

- Finding a proper model is essential to capture the important behaviors of systems
- If the model is too powerful, model checking becomes difficult, sometimes undecidable!
- Thus, finding a good model that strikes a good balance between expressivity and complexity is very crucial in model checking

Multi-stack Pushdown Automata

- Verification of recursive concurrent programs is an active area of interest
- Behaviours of recursive concurrent programs can be modeled using multi-stack pushdown automata(MPDA)

A Multistack Pushdown Automata accepting the language:

$$L^{bh} = \{a^n b^n (a^{q_1} c^{q_1+1} b^{q'_1} a^{q'_1+1} \cdots a^{q_n} c^{q_n+1} b^{q'_n} d^{q'_n+1}) \mid n, q_i, q'_i \in \mathbb{N}, \forall i \in [n]\}$$

Multi-stack Pushdown Automata

- Multi-stack pushdown automata is Turing complete
- Reachability is Undecidable!!
- Under-approximation!
 - 1. Bounded Round La Torre et al. [2010], Qadeer and Wu [2004]
 - 2. Bounded Scope Torre et al. [2016]
 - 3. Bounded Phase La Torre et al. [2007] etc.

Capturing Behavior as Graphs

Graphs can be used to represent set of runs

▶ Well-nested sequence (ws_i) can be ε

- ightharpoonup Well-nested sequence (ws_i) can be ε
- ▶ Pushes not part of a well-nested sequence (represented as \downarrow_i)

- ightharpoonup Well-nested sequence (ws_i) can be ε
- ▶ Pushes not part of a well-nested sequence (represented as \downarrow_i)
- Matching pops that are matched with ↓; (represented as ↑;)

- ightharpoonup Well-nested sequence (ws_i) can be ε
- ▶ Pushes not part of a well-nested sequence (represented as \downarrow_i)
- ▶ Matching pops that are matched with \downarrow_i (represented as \uparrow_i)
- An atomic-i-segment of stack i is a push \downarrow_i followed by a well-nested sequence ws_i .

- ightharpoonup Well-nested sequence (ws_i) can be ε
- ▶ Pushes not part of a well-nested sequence (represented as \downarrow_i)
- ▶ Matching pops that are matched with \downarrow_i (represented as \uparrow_i)
- An atomic-i-segment of stack i is a push \downarrow_i followed by a well-nested sequence ws_i .
- ► An i-segment is the concatenation of multiple atomic-i-segments

Pending-push(\downarrow_i **)** of stack i (w.r.t a position n)

No matching pop prior n

- ▶ Pending-push(↓i) of stack i (w.r.t a position n)
 No matching pop prior n
- ▶ An i-segment is open if its first push transitions are pending

- ▶ Pending-push(↓i) of stack i (w.r.t a position n)
 No matching pop prior n
- ▶ An i-segment is open if its first push transitions are pending
- An i-hole in a run is the maximal factor that is an open i-segment

- ▶ Pending-push(↓i) of stack i (w.r.t a position n)
 No matching pop prior n
- ► An i-segment is open if its first push transitions are pending
- ▶ An i-hole in a run is the maximal factor that is an open i-segment
- We denote by nbHoles(σ) the number of holes in a run σ

Hole Bounded runs of MPDA

Definition

A run σ is said to be K-hole bounded if nbHoles $(\sigma) \leq K$, for $K \in \mathbb{N}$.

In **hole** bounded reachability of MPDA we only search for a **K-hole** bounded accepting run of MPDA where, $K \in \mathbb{N}$.

Hierarchy of Under-approximations

$$\begin{split} L^{ph} &= \{(ab)^n c^n d^n | n \in \mathbb{N} \} \\ L^{bh} &= \{a^n b^n (a^{q_1} c^{q_1+1} b^{q'_1} d^{q'_1+1} \cdots a^{q_n} c^{q_n+1} b^{q'_n} d^{q'_n+1}) \mid n, q_i, q'_i \in \mathbb{N} \end{split}$$

Algorithm to Solve Hole bounded reachability

Question: Given a MPDA and a bound $K \in \mathbb{N}$ does there exists a K-hole bounded run that reaches a target state from the initial state?

- Algorithm
 - Uses fixed-point computation
 - Guided BFS exploration
 - Witness generation

Steps of the Algorithm

We divide the algorithm in two parts,

1. Fixed-point Computation and Memoization Precomputes well nested runs (ws), atomic open-hole $(\downarrow_i ws)$, and open-hole $(\downarrow_i ws)^+$.

Steps of the Algorithm

We divide the algorithm in two parts,

- 1. Fixed-point Computation and Memoization
- On-The-Fly guided Breadth First Search (BFS) Exploration Which solves hole bounded reachability for MPDA

For all state s_i , create the following entries,

- \triangleright (s_i, s_i)
- \triangleright (s_i , s_k) if s_k is reachable by discrete transition

For all state s_i , create the following entries,

- \triangleright (s_i, s_i)
- \triangleright (s_i, s_k) if s_k is reachable by discrete transition

٠.	Sj	 Sk]
:	:	 :		$\left\{ \mathscr{S} \right\}$
Si	1	 0		Π' '
:	:	 :	٠٠.	J

For all state s_i , create the following entries,

- \triangleright (s_i, s_i)
- \triangleright (s_i, s_k) if s_k is reachable by discrete transition

٠.	Sj	 Sk]
:	:	 :] } <i>\$</i>
Si	1	 0		Ţ
:	:	 :	٠.,	J

Transitive Closure will give us the well-nested sequences

An **i-segment** (\downarrow^i (α)ws) for a stack i is a pending push(\downarrow^i) followed by a maximal **well-nested** sequence(ws)

- An **i-segment** (\downarrow^i (α)ws) for a stack i is a pending push(\downarrow^i) followed by a maximal **well-nested** sequence(ws)
- ► We can pre-compute all possible **i-segments** by concatenating well-nested sequences after a push transition of stack *i*.

- An **i-segment** (\downarrow^i (α)ws) for a stack i is a pending push(\downarrow^i) followed by a maximal **well-nested** sequence(ws)
- ➤ We can pre-compute all possible **i-segments** by concatenating well-nested sequences after a push transition of stack *i*.
- Assume we store this information in Mⁱ

- An **i-segment** (\downarrow^i (α)ws) for a stack i is a pending push(\downarrow^i) followed by a maximal **well-nested** sequence(ws)
- ➤ We can pre-compute all possible **i-segments** by concatenating well-nested sequences after a push transition of stack *i*.
- ightharpoonup Assume we store this information in M^i
- ▶ Dropping stack alphabet and doing transitive closure on M^i gives us information of all **i-Holes**, (M_i^h) .

Blocks of a run of MPDA

Every run of a MPDA is made of three basic blocks

- Well-nested sequence (ws_i)
- ► Hole (sequence of $\downarrow_i ws_i$)
- Matching-pops (†i)

Breadth First Search Exploration

Witness

For well-nested runs, we can generate witness by a recursive procedure.

Witness

For well-nested runs, we can generate witness by a recursive procedure.

For runs which are not well-nested backtracking is used

Witness

For well-nested runs, we can generate witness by a recursive procedure.

For runs which are not well-nested backtracking is used

Timed Automata Alur and Dill [1994]

Timed automaton is a well-studied model that capture the behaviors of real-time systems

► Finite States + Clocks

Figure: A Timed Automaton.

- Infinite state space
- ► Region construction
- ► Reachability is PSPACE-C

Extension to Time

We also extend the algorithm to handle Timed Multistack Pushdown Automata

- Clocks + Age (closed guards)
- Data Structures
- Timed witness generation

BHIM

- ► We have built a tool BHIM¹ based on the algorithm
- Works on both timed and untimed MPDA
- Generates a run as a witness of reachability
- ▶ We tested our tool on a set of benchmarks

¹https://sparsa.github.io/bhim

Experiments

Name	Locations	Transitions	Stacks	Holes	Time Empty (mili sec)	Time Witness (mili sec)	Memory(KB)
Bluetooth	45	89	2	0	149.3	0.241	6934
MultiProdCons-1(2)	11	18	2	2	11.1	0.1	1796
MultiProdCons-2(3,2)	7	11	2	2	126.529	0.281	5632
MultiProdCons-2(24,7)	32	34	2	2	1879.33	10.63	21836
dm-target	22	27	2	2	26.483	0.279	6624
Binary Search Tree	29	78	2	2	60.8	5.1	5143
untimed-L ^{crit}	6	10	2	2	14.9	0.7	4692
Untimed-Maze	9	12	2	0	8.25	0.07	5558
L ^{bh}	7	13	2	2	22.2	0.6	4404

Table: Experimental results: Time Empty and Time Witness column represents no. of milliseconds needed for emptiness checking and to generate witness, respectively.

Name	Locations	Transitions	Stacks	Clocks	c _{max}	Aged(Y/N)	Holes	Time Empty(mili sec)	Time Witness (mili sec)	Memory(KB)
Bluetooth	45	89	2	0	2	Y	0	152.8	0.119	5568
L ^{crit}	6	10	2	2	8	Υ	2	9965.2	3.7	203396
Maze	9	12	2	2	5	Y	2	349.3	0.31	11604

Table: Experimental results of timed examples. The column c_{max} is defined as the maximum constant in the automaton, and Aged denotes if the stack is timed or not

A new underapproximation

- ► A new underapproximation
- Subsumes already known underapproximations

- A new underapproximation
- Subsumes already known underapproximations
- Decidable reachability

- A new underapproximation
- Subsumes already known underapproximations
- Decidable reachability
- ► BHIM

Thank You

Thank You

Questions?

Bibliography I

- S. Akshay, Paul Gastin, Shankara Narayanan Krishna, and Ilias Sarkar. Towards an efficient tree automata based technique for timed systems. In 28th International Conference on Concurrency Theory, CONCUR 2017, September 5-8, 2017, Berlin, Germany, pages 39:1-39:15, 2017. URL https://doi.org/10.4230/LIPIcs.CONCUR.2017.39.
- Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer science, 126(2):183-235, 1994.
- Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato. A robust class of context-sensitive languages. In Logic in Computer Science, 2007. LICS 2007. 22nd Annual IEEE Symposium on, pages 161–170. IEEE, 2007.
- Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato. The language theory of bounded context-switching. In Latin American Symposium on Theoretical Informatics. pages 96–107. Springer. 2010.
- P Madhusudan and Gennaro Parlato. The tree width of auxiliary storage. In ACM SIGPLAN Notices, volume 46, pages 283-294.

 ACM. 2011.
- Shaz Qadeer and Dinghao Wu. Kiss: keep it simple and sequential. ACM sigplan notices, 39(6):14-24, 2004.
- Salvatore La Torre, Margherita Napoli, and Gennaro Parlato. Scope-bounded pushdown languages. International Journal of Foundations of Computer Science, 27(02):215–233, 2016.

Theorem

The K-hole bounded reachability of MPDA is decidable

► Hole bounded ⇒ Tree-width bounded

Theorem

- ► Hole bounded ⇒ Tree-width bounded
- ► Tree-width bounded ⇒ Decidable reachability Madhusudan and Parlato [2011]

Theorem

- ► Hole bounded ⇒ Tree-width bounded
- ► Tree-width bounded ⇒ Decidable reachability Madhusudan and Parlato [2011]

Theorem

- ► Hole bounded ⇒ Tree-width bounded
- ► Tree-width bounded ⇒ Decidable reachability Madhusudan and Parlato [2011]
- Tree-width based Algorithm Akshay et al. [2017],

Theorem

- ► Hole bounded ⇒ Tree-width bounded
- ► Tree-width bounded ⇒ Decidable reachability Madhusudan and Parlato [2011]
- Tree-width based Algorithm Akshay et al. [2017],
 - 1. Capture the behaviour of the model as a graph

Theorem

- ► Hole bounded ⇒ Tree-width bounded
- ► Tree-width bounded ⇒ Decidable reachability Madhusudan and Parlato [2011]
- Tree-width based Algorithm Akshay et al. [2017],
 - 1. Capture the behaviour of the model as a graph
 - 2. Show that these graphs has bounded tree-width

Theorem

- ► Hole bounded ⇒ Tree-width bounded
- ► Tree-width bounded ⇒ Decidable reachability Madhusudan and Parlato [2011]
- Tree-width based Algorithm Akshay et al. [2017],
 - 1. Capture the behaviour of the model as a graph
 - 2. Show that these graphs has bounded tree-width
 - 3. Solve Reachability using Tree-automata

Theorem

- ► Hole bounded ⇒ Tree-width bounded
- ► Tree-width bounded ⇒ Decidable reachability Madhusudan and Parlato [2011]
- Tree-width based Algorithm Akshay et al. [2017],
 - 1. Capture the behaviour of the model as a graph
 - 2. Show that these graphs has bounded tree-width
 - 3. Solve Reachability using Tree-automata

Theorem

- ► Hole bounded ⇒ Tree-width bounded
- ► Tree-width bounded ⇒ Decidable reachability Madhusudan and Parlato [2011]
- ► Tree-width based Algorithm Akshay et al. [2017],
 - 1. Capture the behaviour of the model as a graph

 - Show that these graphs has bounded tree-width estern.
 Solve Reachability using Tree-automata Officult to
- Naive BFS exploration

Theorem

- ► Hole bounded ⇒ Tree-width bounded
- ► Tree-width bounded ⇒ Decidable reachability Madhusudan and Parlato [2011]
- ► Tree-width based Algorithm Akshay et al. [2017],
 - 1. Capture the behaviour of the model as a graph

 - Show that these graphs has bounded tree-width estern.
 Solve Reachability using Tree-automata Officult to
- Naive BFS exploration
 - 1. makes arbitrary nondeterministic choices

Theorem

- ► Hole bounded ⇒ Tree-width bounded
- ► Tree-width bounded ⇒ Decidable reachability Madhusudan and Parlato [2011]
- ► Tree-width based Algorithm Akshay et al. [2017],
 - 1. Capture the behaviour of the model as a graph

 - Show that these graphs has bounded tree-width estern.
 Solve Reachability using Tree-automata Officult to
- Naive BFS exploration
 - 1. makes arbitrary nondeterministic choices

Theorem

- ► Hole bounded ⇒ Tree-width bounded
- ► Tree-width bounded ⇒ Decidable reachability Madhusudan and Parlato [2011]
- ► Tree-width based Algorithm Akshay et al. [2017],
 - 1. Capture the behaviour of the model as a graph

 - Show that these graphs has bounded tree-widthesign.
 Solve Reachability using Tree-automata nifficult to
- Naive BFS exploration
- 1. makes arbitrary nondeterministic choices United States 1

