In [157	Laboratory 2 Scebec Mihai IS-211M 1. Analyse the dataset: the context, size, difficulties, detect the objectives. from sklearn.datasets import fetch_20newsgroups from print import pprint from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer import re from sklearn.naive_bayes import MultinomialNB from sklearn import metrics from sklearn.feature_extraction.text import TfidfVectorizer from nlbt.tokenize import sent_tokenize, word_tokenize import warnings from gensin.models import WordZVec from gensin.models import wordZVec from gensin.test.utils import comnon_texts import numpy as np import pandas as pd import matplottlib.pyplot as plt from sklearn.datasets import fetch_20newsgroups from sklearn.datasets import fetch_20newsgroups from sklearn.datasets import Fetch_20newsgroups from sklearn.madel_selection import train_test_split from time import time from sklearn.madel_selection import GridSearchCV from sklearn.madel_selection import GridSearchCV from sklearn.naive_bayes import MultinomialNB from multiprocessing import to count from sklearn.naive_bayes import MultinomialNB from multiprocessing import fouching import to categorical from keras.preprocessing.text_import Tokenizer, text_to_word_sequence from keras.preprocessing.text_import Tokenizer, text_to_word_sequence from keras.preprocessing.sext_import Tokenizer, text_to_word_sequence from keras.preprocessing.text_import Tokenizer, text_to_word_sequence from keras.models import Model
In [93]:	<pre>from keras.layers import Dense, Input, Flatten, Reshape, concatenate, Dropout from keras.layers import Convlb, Conv2D, MaxPooling1D, MaxPooling2D, Embedding from keras import optimizers from keras.callbacks import EarlyStopping import tensorflow as tf # context newsgroups_train = fetch_2Onewsgroups(subset='train', random_state=42, shuffle=True) pprint(list(newsgroups_train.target_names)) ['alt.atheism', 'comp.graphics', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.sys.mac.hardware', 'rec.autos', 'rec.autos', 'rec.sport.baseball', 'rec.sport.baseball', 'rec.sport.baseball', 'sci.electronics', '</pre>
In [94]:	<pre>'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc'] # size len(newsgroups_train.data) len(newsgroups_train.filenames) print(f"Number of files: {len(newsgroups_train.filenames)}") print("\n".join(newsgroups_train.data[0].split("\n")[:3])) print(newsgroups_train.target_names[newsgroups_train.target[0]]) print(newsgroups_train.target[:10]) for t in newsgroups_train.target[:10]:</pre>
	<pre>print(newsgroups_train.target_names[t]) print("=====/====/====/") for name in newsgroups_train.target_names: news = fetch_20newsgroups(subset='train', categories=[name]).data print(f"Category {name} has {len(news)} records") Number of files: 11314 From: lerxst@wam.umd.edu (where's my thing) Subject: WHAT car is this!? Nntp-Posting-Host: rac3.wam.umd.edu rec.autos [7 4 4 1 14 16 13 3 2 4] rec.autos comp.sys.mac.hardware comp.sys.mac.hardware</pre>
	comp.graphics sci.space talk.politics.guns sci.med comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.sys.mac.hardware ====/===/===/ Category alt.atheism has 480 records Category comp.graphics has 584 records Category comp.os.ms-windows.misc has 591 records Category comp.sys.ibm.pc.hardware has 590 records Category comp.sys.ibm.pc.hardware has 578 records Category comp.sys.mac.hardware has 578 records Category comp.windows.x has 593 records Category misc.forsale has 585 records
	Category rec.autos has 594 records Category rec.motorcycles has 598 records Category rec.sport.baseball has 597 records Category rec.sport.hockey has 600 records Category sci.crypt has 595 records Category sci.electronics has 591 records Category sci.med has 594 records Category sci.space has 593 records Category sci.space has 593 records Category soc.religion.christian has 599 records Category talk.politics.guns has 546 records Category talk.politics.mideast has 564 records Category talk.politics.misc has 465 records Category talk.religion.misc has 377 records Difficulties and objectives? In progress
	1. Assign a fixed integer id to each word occurring in any document of the training set (for instance by building a dictionary from words to integer indices). Below I am trying to modify the data and to use bag of words. I'll start with lowering the case of all text and ignoring/removing frequent words. # print("\n".join(newsgroups_train.data[0].split("\n")[:3])) common_words = ['the','at','there','some','my','of','be','use','her','than','and','this','an','would','first',
	<pre>filtered_data = [new.lower() for new in filtered_data] for d in filtered_data: d = " ".join([w for w in d.split() if w != ""]) # filtered_data = [new.strip() for new in filtered_data] # didnt manage to make it work in time return filtered_data # filtered_data = [re.sub(r'[^\w]', ' ', new) for new in news_data] # for word in common_words: # filtered_data = [new.replace(word, ' ') for new in filtered_data] # filtered_data = [new.lower() for new in filtered_data] # filtered_data = should be valid filtered_data = filter_text_data(news_data) for name, data in zip(newsgroups_train.target_names, newsgroups_train.data): info_about_group = {} info_about_group['name'] = name info_about_group['word_dict'] = {} info_about_group['word_occurence'] = {} info_about_group['word_occurence'] = {} info_about_group['word_occurence'] = {} info_about_group['word_occurence'] = {} data = re.sub(r'[^\w], ' ', data) data = data.lower() integer = 0</pre>
	<pre>reversed_word_occurence_dict = {} for word in data.split(' '): if word and len(word)>1: if word not in info_about_group['word_dict'] and word not in common_words:</pre>
In [96]:	<pre>data_for_groups.append(info_about_group) for integer, occurence in zip(info_about_group['word_dict'].values(), info_about_group['word_occurence'].va_info_about_group['word_occurence_indexes_and_occurences'][integer] = occurence print(data_for_groups[4]['word_occurence_indexes_and_occurences']) {0: 1, 1: 1, 2: 1, 3: 1, 4: 3, 5: 2, 6: 1, 7: 1, 8: 1, 9: 1, 10: 2, 11: 2, 12: 1, 13: 1, 14: 1, 15: 1, 16: 1, 17: 1, 18: 1, 19: 1, 20: 1, 21: 1, 22: 1, 23: 2, 24: 1, 25: 1, 26: 2, 27: 2, 28: 2, 29: 1, 30: 2, 31: 1, 32: 1, 33: 1, 34: 1, 35: 1, 36: 1, 37: 1, 38: 1, 39: 1, 40: 1, 41: 1, 42: 1, 43: 1, 44: 3, 45: 2, 46: 1, 47: 1, 48: 3, 49: 1, 50: 1, 51: 2, 52: 2, 53: 1, 54: 1, 55: 1, 56: 1, 57: 1, 58: 1, 59: 2, 60: 1, 61: 1, 62: 1, 63: 1, 64: 1, 65: 1, 66: 1, 67: 1, 68: 1, 69: 1, 70: 1, 71: 2, 72: 1, 73: 1, 74: 1, 75: 1, 76: 1, 77: 1, 78: 1, 79: 1, 80: 1, 81: 2, 82: 1, 83: 1, 84: 1, 85: 1, 86: 1, 87: 1, 88: 1, 89: 1, 90: 1, 91: 1, 92: 1, 93: 1, 94: 1, 95: 1, 96: 1, 97: 1, 98: 1, 99: 1, 100: 1} # I guess we are counting words now with some pre-built functions count_vect = CountVectorizer() X_train_counts = count_vect.fit_transform(filtered_data) print(X_train_counts.shape) print(Count_vect.vocabularyget(u'algorithm')) (11314, 130107) 27366</pre>
<pre>In [97]: Out[97]: In [98]:</pre>	<pre># as my friend suggested to try tfid tgransform as well, because words frequency can be better than just word of tfidf_transformer = TfidfTransformer() X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts) # this is an example with formatted data tfidf_vectorizer = TfidfVectorizer() vectors = tfidf_vectorizer.fit_transform(filtered_data) # So, if we use already defined functions to vectorize, fit and predict, here it is newsgroups_test = fetch_2Onewsgroups(subset='test', random_state=42, shuffle=True) vectors_test = tfidf_vectorizer.transform(filter_text_data(newsgroups_test.data)) clf = MultinomialNB(alpha=.01) clf.fit(vectors, newsgroups_train.target) pred = clf.predict(vectors_test) metrics.fl_score(newsgroups_test.target, pred, average='macro') 0.8299999321458893 # When the torture is done, let's stick to predefined functions # this is an example with original data vectorizer = TfidfVectorizer()</pre>
Out[98]:	<pre>vectors = vectorizer.fit_transform(newsgroups_train.data) # So, if we use already defined functions to vectorize, fit and predict, here it is newsgroups_test = fetch_20newsgroups(subset='test', random_state=42, shuffle=True) vectors_test = vectorizer.transform(newsgroups_test.data) clf = MultinomialNB(alpha=.01) clf.fit(vectors, newsgroups_train.target) pred = clf.predict(vectors_test) metrics.fl_score(newsgroups_test.target, pred, average='macro') # overall, not worth the fuzz 0.8290659644474043 Trying different embedding techniques?</pre>
	I won't even pretend that I had time to work and properly test all these, I googled as many examples as I could and hopefully made them work In the lab doc there were mentioned word2vec, FastText, document2vec, BERT, Glove. fs = feature_selection.SelectPercentile(feature_selection.chi2, percentile=40) EMBEDDING_DIM = 100 MAX_SEQUENCE_LENGTH = 1000 MAX_NUM_WORDS = 20000 def text_CNN(embedding_layer): sequence_input = Input(shape=(MAX_LEN,), dtype='int32') are headed as many examples as I could and hopefully made them
	<pre>embedded_sequences = embedding_layer(sequence_input) # Yoon Kim model (https://arxiv.org/abs/1408.5882) embedded_sequences = Reshape((MAX_LEN, EMBEDDING_DIM, 1)) (embedded_sequences) x = Conv2D(100, (5, EMBEDDING_DIM), activation='relu') (embedded_sequences) x = MaxPooling2D((MAX_LEN - 5 + 1, 1)) (x) y = Conv2D(100, (4, EMBEDDING_DIM), activation='relu') (embedded_sequences) y = MaxPooling2D((MAX_LEN - 4 + 1, 1)) (y) z = Conv2D(100, (3, EMBEDDING_DIM), activation='relu') (embedded_sequences) z = MaxPooling2D((MAX_LEN - 3 + 1, 1)) (z) alpha = concatenate([x,y,z])</pre>
	<pre>alpha = Flatten() (alpha) alpha = Dropout(0.5) (alpha) preds = Dense(len(news_groups_train.target_names), activation='softmax') (alpha) model = Model(sequence_input, preds) adadelta = tf.optimizers.Adadelta() model.compile(loss='categorical_crossentropy',</pre>
	<pre>plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() # summarize history for loss plt.plot(history['loss']) plt.plot(history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show()</pre>
	<pre>def show_performance_with_gscv(name, model, x_train, y_train, params): results = {} results['model_name'] = name gscv = GridSearchCV(model, params, cv=3, n_jobs=cpu_count()-1, return_train_score=True) # x_train_fs = fs.fit_transform(x_train, y_train) gscv.fit(x_train, y_train) results['params'] = gscv.best_params_ results['train_time'] = np.mean(gscv.cv_results_['mean_fit_time']) results['val_time'] = np.mean(gscv.cv_results_['mean_score_time']) results['train_score'] = gscv.cv_results_['mean_train_score'][gscv.best_index_] # it is get fro train data set, could be taken as a val result results['val score'] = gscv.cv_results_['mean_test_score'][gscv.best_index_]</pre>
	<pre>results['best_model'] = gscv.best_estimator_ return results def show_distributation(data): dict = {} for index, name in enumerate(news_groups_train.target_names): dict.setdefault(name, np.sum(data==index)) print(dict) print(dict.keys()) print(dict.values()) index = np.arange(len(news_groups_train.target_names))</pre>
	<pre>plt.figure(figsize=(10,5)) plt.bar(index, dict.values()) plt.xticks(index, dict.keys(), rotation=90) plt.title("category distributation") plt.xlabel("data count") plt.ylabel("data category") plt.show() def show_performance(model, x_train, y_train, x_val, y_val): results = {} results['model_name'] = modelclassname_ t0 = time() model.fit(x_train, y_train) results['train_time'] = time() - t0</pre>
	<pre>t1 = time() predicts = model.predict(x_train) results['val_time'] = time() - t1 train_score = model.score(x_train, y_train) val_score = model.score(x_val, y_val) results['train_score'] = train_score results['val_score'] = val_score print(results) def show_words(data): count = [] for f in data: count.append(len(f.split())) plt.figure(figsize=(10,5))</pre>
	<pre>plt.hist(count, bins=20) plt.title("words distributation") plt.xlabel("words count") plt.ylabel("words weight") plt.show() def show_chars(data): count = [] for f in data: count.append(len(f)) plt.figure(figsize=(10,5)) plt.hist(count, bins=20) plt.title("chars distributation") plt.xlabel("chars count")</pre>
	<pre>plt.ylabel("chars count") plt.show() def autolabel(ax, rects, xpos='center'): xpos = xpos.lower() # normalize the case of the parameter ha = {'center': 'center', 'right': 'left': 'right'} offset = {'center': 0.5, 'right': 0.57, 'left': 0.43} # x_txt = x + w*off for rect in rects: height = rect.get_height() ax.text(rect.get_x() + rect.get_width()*offset[xpos], 1.01*height,</pre>
	<pre>val_time = (rs_lr['val_time'], rs_svc['val_time'], rs_nb['val_time']) train_score = (rs_lr['train_score'], rs_svc['train_score'], rs_nb['train_score']) val_score = (rs_lr['val_score'], rs_svc['val_score'], rs_nb['val_score']) ind = np.arange(len(train_time)) # the x locations for the groups width = 0.35 # the width of the bars fig, ax0 = plt.subplots(1, 1, figsize = (16,5)) rects1 = ax0.bar(ind - width/2, train_time, width,</pre>
	<pre># Add some text for labels, title and custom x-axis tick labels, etc. ax0.set_ylabel('time') ax0.set_title('time by train and val') ax0.set_xticks(ind) ax0.set_xticklabels(('LogisticRegression', 'SVC', 'NaiveBayes')) ax0.legend() autolabel(ax0, rects1, "left") autolabel(ax0, rects2, "right") plt.show() fig, ax1 = plt.subplots(1, 1, figsize = (16,5)) rects3 = ax1.bar(ind - width/2, train_score, width,</pre>
In [106	color='IndianRed', label='val score') ax1.set_ylabel('Scores') ax1.set_title('Scores by train and val') ax1.set_xticks(ind) ax1.set_xticklabels(('LogisticRegression', 'SVC', 'NaiveBayes')) ax1.legend() autolabel(ax1, rects3, "left") autolabel(ax1, rects4, "right") plt.show() # let's start all over again then news_groups_train = fetch_20newsgroups(subset='train', shuffle=True, download_if_missing=False) news groups test = fetch 20newsgroups(subset='test', shuffle=True, download if missing=False)
In [107	<pre>filtered_train = filter_text_data(news_groups_train.data) filtered_test = filter_text_data(news_groups_test.data) x_train, y_train = filtered_train, news_groups_train.target x_sp_train, x_sp_val, y_sp_train, y_sp_val = train_test_split(x_train, y_train, test_size=0.2, random_state=0) x_test, y_test = filtered_train, news_groups_test.target print("count for data in 20 news groups", len(x_sp_train), len(x_sp_val), len(x_test)) print("count for train and validation data in 20 news groups", len(x_sp_train) + len(x_sp_val), " and for test print("count for train data in 20 news groups", len(x_sp_train)) print("count for validation data in 20 news groups", len(x_sp_val)) print("count for test data in 20 news groups", len(x_test)) count for data in 20 news groups 9051 2263 11314</pre>
In [108	count for train and validation data in 20 news groups 11314 and for test data 11314 count for train data in 20 news groups 9051 count for validation data in 20 news groups 2263 count for test data in 20 news groups 11314 print(x_sp_train[10]) from djf cck coventry ac uk marvin batty subject re moonbase race nntp posting host cc_sysk organization starfleet coventry uk lines 22 in article 1r46o9inn14j mojo eng umd edu sysmgr king eng umd edu writes in article c5teik 7z9 zoo toronto edu henry zoo toronto edu henry spencer writes apollo done hard bi g hurry very limited technology base government contracts just doing privately rather government pro ject cuts costs factor several so much cost private venture assuming could talk us government leasing couple pads florida why ground launch pad it entirely posible launch altitude this shuttle originally int ended it might seriously cheaper also bio engineered co2 absorbing plants instead lox bottles stick em 1
In [114	marvin batty djf uk ac cov cck and they shall those things sort rafia base fathers put just night before at 8 o clock show_distributation(y_sp_train) {'alt.atheism': 392, 'comp.graphics': 456, 'comp.os.ms-windows.misc': 478, 'comp.sys.ibm.pc.hardware': 462, 'comp.sys.mac.hardware': 456, 'comp.windows.x': 473, 'misc.forsale': 480, 'rec.autos': 477, 'rec.motorcycles': 470, 'rec.sport.baseball': 478, 'rec.sport.hockey': 485, 'sci.crypt': 465, 'sci.electronics': 469, 'sci.med': 49 5, 'sci.space': 471, 'soc.religion.christian': 472, 'talk.politics.guns': 431, 'talk.politics.mideast': 452, 'talk.politics.mise': 385, 'talk.religion.mise': 302) dict keys('alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.ma c.hardware', 'comp.graphics', 'comp.os.ms-windows.misc', 'tec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.gun s', 'talk.politics.mideast', 'talk.politics.mideast', 'talk.politics.misc', 'talk.politics.misc']) dict values([392, 456, 478, 462, 458, 473, 480, 477, 470, 478, 485, 465, 469, 495, 471, 472, 431, 452, 385, 30 2]) category distributation category distributation
In [115	show_distributation(y_sp_val) ('alt.atheism': 88, 'comp.graphics': 128, 'comp.os.ms-windows.misc': 113, 'comp.sys.ibm.pc.hardware': 128, 'comp.sys.mac.hardware': 120, 'comp.sys.mac.hardware': 120, 'comp.sys.mac.hardware': 120, 'comp.sys.mac.hardware': 128, 'comp.sys.mac.hardware': 120, 'comp.sys.mac.hard
	olitics.misc': 80, 'talk.religion.misc': 75} dict_keys(['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.ma c.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.spor t.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.gun s', 'talk.politics.misc', 'talk.religion.misc']) dict_values([88, 128, 113, 128, 120, 120, 105, 117, 128, 119, 115, 130, 122, 99, 122, 127, 115, 112, 80, 75]) category distributation 120 680 100 680
In [116	altatheism comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.sys.mac.hardware comp.sys.mac.hardware comp.sys.mac.hardware rec.autos rec.autos rec.sport.bockey sci.crypt sci.electronics sci.med sci.ned sci
	<pre>{'alt.atheism': 319, 'comp.graphics': 389, 'comp.os.ms-windows.misc': 394, 'comp.sys.ibm.pc.hardware': 392, 'co mp.sys.mac.hardware': 385, 'comp.windows.x': 395, 'misc.forsale': 390, 'rec.autos': 396, 'rec.motorcycles': 39 8, 'rec.sport.baseball': 397, 'rec.sport.hockey': 399, 'sci.crypt': 396, 'sci.electronics': 393, 'sci.med': 39 6, 'sci.space': 394, 'soc.religion.christian': 398, 'talk.politics.guns': 364, 'talk.politics.mideast': 376, 't alk.politics.misc': 310, 'talk.religion.misc': 251} dict_keys(['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.ma c.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.spor t.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.gun s', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc']) dict_values([319, 389, 394, 392, 385, 395, 390, 396, 398, 397, 399, 396, 393, 396, 394, 398, 364, 376, 310, 25 1]) category distributation 400 400 </pre>
In [118	altatheism comp graphics on parabilism comp sys ibm pc. hardware comp sys imac hardware comp sys mac. hardware misc. forsale rec. sport baseball r
	words distributation 8000 - 6000 - 6000 - 2000 - 2000 - 6
In [119	0 2000 4000 6000 8000 10000 12000 14000 16000 show_chars(x_sp_train) chars distributation
	6000 - 1000 - 10000 20000 30000 40000 50000 60000 chars count
In [124	<pre>vectorizer = CountVectorizer(max_df=0.97, min_df=3,</pre>
	(0, 9808) 2 (0, 843) 1 (0, 22261) 1 (0, 3992) 1 (0, 8554) 1 (0, 18156) 1 (0, 15031) 2 (0, 31245) 1 (0, 2317) 1 (0, 1364) 1 (0, 21345) 2 (0, 27183) 1 (0, 30910) 2
	(0, 11617) 4 (0, 29670) 1 (0, 22295) 1 (0, 21824) 1 : (9050, 4638) 1 (9050, 10294) 1 (9050, 30051) 1 (9050, 10748) 1 (9050, 19840) 1 (9050, 6631) 1 (9050, 7654) 1 (9050, 7654) 1 (9050, 21566) 1
	(9050, 5957) 1 (9050, 32212) 1 (9050, 3705) 1 (9050, 22290) 1 (9050, 19412) 3 (9050, 8257) 1 (9050, 23391) 1 (9050, 1058) 1 (9050, 28860) 1 (9050, 30371) 1 (9050, 19568) 1 (9050, 18984) 1 (9050, 3639) 1 (9050, 29399) 1
In [126	<pre>tfidf_vectorizer = TfidfVectorizer(max_df=0.97, min_df=2,</pre>
	print(tfidf_x_test.shape) print(tfidf_x_sp_train) (9051, 49254) (2263, 49254) (11314, 49254) (11314, 49254) (0, 9116)
	(0, 42799)
	(0, 38113)
	(9050, 12840)
In [132 In [133	<pre># make word2vec mode1 model = Word2Vec(sentences=common_texts, vector_size=100, window=5, min_count=1, workers=4) model.save("word2vec.model") lr = LogisticRegression(C=1.0, penalty='12') show_performance(lr, tfidf_x_sp_train, y_sp_train, tfidf_x_sp_val, y_sp_val) {'model_name': 'LogisticRegression', 'train_time': 13.854101181030273, 'val_time': 0.01900005340576172, 'train_score': 0.9791183294663574, 'val_score': 0.8992487847989394} svc = SVC(kernel='linear', C=0.5, gamma=0.9, random_state=0)</pre>
In [134 In [138	show_performance(svc, tfidf_x_sp_train, y_sp_train, tfidf_x_sp_val, y_sp_val) {'model_name': 'SVC', 'train_time': 68.07835531234741, 'val_time': 55.86075687408447, 'train_score': 0.98243288 03447133, 'val_score': 0.9032258064516129}
	rs_lr = show_performance_with_gscv('LogisticRegression', LogisticRegression(penalty='12'), tfidf_x_train, y_train
In [141 In [146	
In [148	5364201863, 'train_score': 0.9966413429851532, 'val_score': 0.9056920458347125, 'best_model': MultinomialNB(alp ha=0.01)} show_metrics(rs_lr, rs_svc, rs_nb) time by train and val 111.33690526750352 train time val time val time
	60 - 45.50942958725824 40 - 34.86272047625648 34.86272047625648 34.86272047625648
	0.8 -

	<pre>print('embedding matrix shape: embedding_layer = Embedding(mi</pre>	<pre>v: wv[word] ix[index] = model[word] ape: {}'.format(embedding_matrix.shape)) g(min_num_words+1, EMBEDDING_DIM, weights=[embedding_matrix], input_length=M trainable=False)</pre>			
	<pre>text_cnn.summary() embedding matrix shape: (20001, Model: "model_1" Layer (type) ====================================</pre>	Output Shape [(None, 1000)]	0 2000100	Connected to [] ['input_2[0][0]'] ['embedding_1[0][0]']	
	<pre>conv2d_3 (Conv2D) conv2d_4 (Conv2D) conv2d_5 (Conv2D) max_pooling2d_3 (MaxPooling2D) max_pooling2d_4 (MaxPooling2D) max_pooling2d_5 (MaxPooling2D) concatenate_1 (Concatenate) flatten_1 (Flatten) dropout_1 (Dropout) dense_1 (Dense)</pre>	(None, 996, 1, 100) (None, 997, 1, 100) (None, 998, 1, 100) (None, 1, 1, 100) (None, 1, 1, 100) (None, 1, 1, 100) (None, 1, 1, 300) (None, 300) (None, 300)	40100 30100 0 0 0 0		
)	Epoch 1/60	(monitor='val_acc', prain_dl, y_sp_train_dl	., validation	mode='max') n_data=(x_sp_val_dl, y_sp_val_dl), epochs s: 2.9957 - acc: 0.0547 - val_loss: 2.995	
	Epoch 2/60 182/182 [====================================	======] - 33s 184ms		s: 2.9957 - acc: 0.0547 - val_loss: 2.995 s: 2.9957 - acc: 0.0547 - val_loss: 2.995	
	0.054 - train test 0.052 - 0.050 - 0.048 - 0.046 -				
	0.044 - 0.00 0.25 0.50 0.75 1.00 epoch 1e-5+2.9956000000 model loss 7.8 train test 7.6 - 7.4 - 7.2	1.25 1.50 1.75 2.00			
	epoch	qualitative work in such sh	ort time, and th	ne results are corresponding to that fact.	
t	And I assume this is fair for every other so say the least.	approach. Asking to do thi	s in a week froi	explanation from kaggle(!) I would need a couple description people that most probably work 8 hours a day is usion this happened to be the work that I physically	