Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
Cancún, Q. Roo, 28/02/17	Dr. Héctor Fernando Gómez	Creación del programa para incorporarse en el plan de estudios de Ingeniería en Datos e Inteligencia Organizacional.

Relación con otras asignaturas

Anteriores	Posteriores
Álgebra Lineal	
Tema(s)	a) Realidad Virtual
a) PRINCIPIOS BÁSICOS PARA GRÁFICAS BIDIMENSIONALES	Tema(s) a) GRÁFICAS TRIDIMENSIONALES

Nombre de la asignatura	Departamento o Licenciatura
Graficación por computadora	Ingeniería en Datos e Inteligencia Organizacional

Ciclo	Clave	Créditos	Área de formación curricular
3 - 4	ID3467	6	Licenciatura Elección Libre

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	HI
Seminario	32	16	48	48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Describir las principales metodologías para construcción de gráficas de objetos tridimensionales.

Objetivo procedimental

Aplicar algoritmos de graficación por computadora para la resolución de problemas de visualización de objetos y superficies tridimensionales.

Objetivo actitudinal

Potenciar el trabajo colaborativo para la construcción de proyectos de gráficas por computadora.

Unidades y temas

Unidad I. PRINCIPIOS BÁSICOS PARA GRÁFICAS BIDIMENSIONALES

Describir los elementos básicos de las gráficas bidimensionales para la adquisición de un marco de referencia para la asignatura

- 1) Gráficas vectoriales y matriciales (ráster)
- 2) Objetos geométricos básicos y transformaciones geométricas
- 3) Coordenadas homogéneas
- 4) Movimiento por medio de transformaciones
- 5) Introducción a la Interpolación para transformaciones continuos

Unidad II. TRAZADO DE LÍNEAS Y CURVAS

Aplicar algoritmos básicos para el trazado de líneas y curvas

- 1) Líneas y pixeles
- 2) Recorte de línea (line clipping)
- 3) Algoritmo del punto medio para el trazado de líneas y círcunferencias

4) Trazado de curvas generales
5) Antialising
Unidad III. GRÁFICAS TRIDIMENSIONALES
Emplear diferentes técnicas para la construcción de gráficas de objetos y superficies tridimensionales
1) Transformaciones geométricas
2) Objetos geométricos elementales en tres dimensiones
3) Animación y movimiento de objetos
4) Proyecciones y Superficies
5) Modelado de superficies mediante polígonos
6) Curvas paramétricas
7) Vectores normales a superficies
8) Determinación de visibilidad en superficies
9) Algoritmo z-buffer
Unidad IV. ILUMINACIÓN Y SOMBRAS
Aplicar diferentes metodologías para la visualización correcta de sombras y texturas en objetos gráficos tridimensionales
1) Fuentes de iluminación
2) Reflexión y Sombreado
3) Transparencia y Texturas
4) Modelo de radiosidad (radiosity model)

Actividades que promueven el aprendizaje

Docente Estudiante

Promover el trabajo colaborativo en la definición de propuestas de solución a problemas determinados.

Coordinar la discusión de casos prácticos. Realizar foros para la discusión de temas o problemas. Realizar tareas asignadas Participar en el trabajo individual y en equipo Resolver casos prácticos Discutir temas en el aula

Participar en actividades extraescolares

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal para la lectura de artículos:

Se promoverá el uso de mecanismos asíncronos (correo electrónico, grupo de noticias, WWW y tecnologías de información) como medio de comunicación.

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Examen	30
Evidencias individuales (investigación, ensayos, lecturas, etc.)	20
Evidencias equipo (ejercicios, casos, proyectos, etc.)	30
Evidencias grupales (asambleas, lluvias de ideas, etc.)	20
Total	100

Fuentes de referencia básica

Bibliográficas

Govil-Pail, S, (2005), Principles of Compute Graphics: Theory and Practice Using OpenGL and Maya. (1ra Edición). USA: Springer Verlag

Hughes, J, (2013), Computer Graphics: Principles and Practice. (3ra Edición). USA: Addison Wesley

Marchner, S., (2015), Fundamentals of Computer Graphics, (4ta Edición)USA: CRC Press

Salomon, D, (2011), The Computer Graphics Manual. (1ra Edición). Londres: Springer Verlag

Vince, J, (2014), Mathematics for Computer Graphics, (4ta Edición). USA: Springer Verlag

Web gráficas

.

Fuentes de referencia complementaria

Bibliográficas

.

Web gráficas

.

Perfil profesiográfico del docente

Académicos

Maestría o Doctorado en Ciencias de la Computación.

Docentes

Tener experiencia docente a nivel superior mínima de 3 años en ingeniería.

Profesionales

Tener experiencia en la producción de gráficas por computadora.