

Exploratory data analysis (EDA) with ydata-profiling

Instructor

Fabiana Clemente
Chief Data Officer at YData

A bit about myself...

Fabiana Clemente, Chief Data Officer at YData

Professional experience

Applied Maths & Data Science

From big enterprises to startups

Data Science & Architecture

Co-Founder @YData

Interests

Data Science

Time-Series

Generative Models

What you can expect to learn today

- Data Quality & Data-Centric Al
- Common Data Quality Issues
- Intro to ydata-profiling
- Hands-on tutorial:
 - Create a virtual environment with conda
 - Explore the HCC dataset

Data Quality & Data-Centric Al

Real world data is complex

- Large amounts of data (?) sometimes produced within milliseconds
- Handled by different people within organizations
- Collected from multiple sources (heterogeneous data, unstructured data)
- Recorded at different frequencies and with different formats: audio, video, image, text, sensor
- Stored in decentralised databases
- Data Quality Issues: True Imperfections versus Data Intrinsic Characteristics?
- Data Acquisition, Transmission, and Storage versus Nature of Domains!
- Special Concerns: Interpretability/Explainability, high-stakes domains (mistakes cost lives),
 privacy concerns and data availability, fairness and ethics concerns!
- Great opportunity for Data-Centric AI to prove truly transformative!

Common data quality issues

Understanding your data is crucial to a performant and fair AI development

Several others worth exploring: Dataset Shift, Noisy Data, Lack of Data, Irrelevant or Redundant Data, Inconsistent Data, Class Overlap

Introducing ydata-profiling

Complete exploratory data analysis in a single line of code

ydataai/ydata-profiling

Alerts & warnings

Quickly access a summarized understanding of the challenges and quality issues of your dataset.

Univariate analysis

Through statistics and algebra, get all the information at once.

Multivariate analysis

Multivariate profiling in an unsupervised manner for interactions validation and optimized correlations.

Missing data

Missing data analysis details along with outlier detection for further analysis.

Hands-on tutorial

Exploring the HCC dataset

Kaggle link: kaggle.com/datasets/mrsantos/hcc-dataset

Github: github.com/Data-Centric-Al-Community/awesome-python-for-data-science/blob/main/tutorials/workshop-eda-datahour

The HCC Dataset

Gender	Age	Alcohol	Hallmark	PS	Encephalopathy	Hemoglobin HBeAg	MCV	Total_Bil	02	Dir_Bil	Ferritin	Outcome
Male		67 Yes	AYes	Active	None	13.7 No	106.6	2.1	999	0.5		Alive
Female		52 No	BYes	Active	None	No	103.4		999			Alive
Male		78 Yes	CYes	Ambulatory	None	8.9 No	79.8	0.4	999	0.1	16	Alive
Male		77 Yes	DYes	Active	None	13.4 No	97.1	0.4	999	0.2		Dead
Male		76 Yes	EYes	Active	None	14.3 No	95.1	0.7	999		22	Alive
Male		75 Yes	FYes	Restricted	None	13.4	91.5	3.5	999	1.4	111	Dead
Male		49 No	GYes	Active	None	10.4	102	2.72	999	2.19	1452	Dead
Male		61 Yes	HYes	Selfcare	None	10.8	92	3.2	999	1.3	706	Dead
Male		50 Yes	IYes	Restricted	None	11.9 No	107.5	3.3	999	1.2	982	Alive
Male		43 Yes	JNo	Active	None	11.8 No	87.8	0.5	999	0.7		Alive
Male		41 Yes	KYes	Active	None	13 No	94.2	3	999	1.1		Dead
Male		74 Yes	LYes	Active	None	15.7 No	96.7	1.3	999	0.3	277	Alive
Male		66 Yes	MNo	Active	None	13.3 No	90.1	8.5	999	0.8		Alive
Male		56 No	NYes	Active	None	13.7 No	93.8	1	999			Alive
Male		53 Yes	OYes	Ambulatory	Grade I/II	13.5 No	93	10.5	999	4.5	302	Alive
Female		41 Yes	PYes	Restricted	None	10.2 No	89.6	3.1	999	1.3	60	Alive
Male		72 Yes	QYes	Selfcare	Grade I/II	12.1 No	99.2	9.8	999	2.9	767	Dead
Male		60 Yes	RYes	Ambulatory	None	10.3 No	103.7	0.5	999	3.8	443	Alive
Male		64 Yes	SYes	Restricted	None	14.9 No	94.8	0.9	999	0.9	295	Alive
Male		75 Yes	TYes	Active	None	15.9 No	103.4	3.4	999	1.6	774	Dead
Male		71 Yes	UNo	Active	None	11.7 No	101	1.7	999	0.7	76.9	Alive
Male		73 Yes	VNo	Active	None	16.4 No	90.7	1	999	0.2	84	Alive
Male		66 Yes	WYes	Restricted	None	10.8 No	86.5	1.2	999	0.5	1001	Dead
Male		64 Yes	XYes	Restricted	None	10.7 No	88.1	3.8	999	1.6		Dead
Male		84 Yes	YNo	Disabled	None	13.1	111	1.3	999	0.7		Dead
Male		80 Yes	ZYes	Ambulatory	None	13.7	94.3	1.6	999	0.7	79	Alive
Male		45 Yes	AAYes	Restricted	None	13.6	98.4	1.3	999	0.7		Dead
Male		57 Yes	ABYes	Active	None	15.5 No	88.2	3.2	999	1		Alive
Male		51 Yes	ACYes	Restricted	None	12.2 No	89.5	1.1	999	0.4	70	Dead
Male		20 Yes	ADYes	Restricted	None	9.9	83.4	1.8	999	1.1	369	Alive

Create a virtual environment

Ensure reproducibility of your code and avoid packages incompatibilities

Why create a virtual environment?

- **Isolates Dependencies:** Prevents conflicts between projects.
- Simplifies Management: Makes package and version management easier.
- Enhances Reproducibility: Ensures code runs consistently across different setups.
- **Facilitates Collaboration:** Helps team members work with the same setup.
- Improves Security: Reduces the risk of security vulnerabilities.

```
conda create --name yprofiling python=3.12

conda activate yprofiling

pip install ydata-profiling=4.8.3 jupyter notebook

conda install -c anaconda ipykernel

python -m ipykernel install --user --name=yprofiling
```

Let's profile our dataset!

1st glimpse of your dataset

Quickly access a summarized understanding of the challenges and quality issues of your dataset.

```
import pandas as pd
from ydata_profiling import ProfileReport

df = pd.read_csv('hcc.csv')
report = ProfileReport(df, title='HCC Profile Report')

#export report as html file
report.to_file('hcc_report.html')

#preview report in the notebook
report
```

Compare populations

Quickly access a summarized understanding of the challenges and quality issues of your dataset.

```
import pandas as pd
from ydata_profiling import ProfileReport

df = pd.read_csv('hcc.csv')

#Create the 2 sub-populations from the dataset
df1 = df[df['Gender']==0]
df2 = df[df['Gender']==1]

report1 = ProfileReport(df1, title='Female population profile report')
report2 = ProfileReport(df2, title='Male profile report')

#create the comparison report between both populations
compare = report1.compare(report2)

#Save the report as a html file
compare.to_file("hcc_compare_report.html")
```

How can you leverage ydata-profiling?

Explore more about data quality & data profiling at ydata.ai/register.

- Quick Exploratory Data Analysis and Visualization: fully understanding your data assets
- Debugging and Troubleshooting: coping with changing data requirements, sources, format, schemas (significantly boosting your ETL)
- Data Management and Quality Control: mitigating errors in production and correcting for problems happening in real-time, such as rare events, data drifts, fairness constraints, or misalignments with project goals

Thank You!

Learn more about *data quality, profiling & synthetic* data at ydata.ai/resources

