File Name: T-ICML-O_4_I1_going_deeper_faster

Format: Presenter in Studio

Title: Going Deeper, Faster

Presenter: Lak Lakshmanan

Going Deeper, Faster

Lak Lakshmanan

Specialization

End-to-End Machine Learning with TensorFlow on GCP

Production ML Systems

Image Classification Models

Sequence Models

Recommendation Models

Agenda

Introduction

Batch Normalization

Residual Networks

Al Accelerators

Architecture Search

Object identification

Train deeper, more accurate neural networks faster

Train deeper, more accurate neural networks faster

Address internal covariate shift using batch normalization

Train deeper, more accurate neural networks faster

Address internal covariate shift using batch normalization

Add shortcut connections to increase network depth

Train deeper, more accurate neural networks faster

Address internal covariate shift using batch normalization

Add shortcut connections to increase network depth

Take advantage of Tensor Processing Units

Train deeper, more accurate neural networks faster

Address internal covariate shift using batch normalization

Add shortcut connections to increase network depth

Take advantage of Tensor Processing Units

Automate Network Design

AlexNet

Visualizing layer activations

Diagrams by Chris Olah

https://distill.pub/2017/feature-visualization/appendix/

Visualizing layer activations

Diagrams by Chris Olah

https://distill.pub/2017/feature-visualization/appendix/

Visualizing layer activations

Diagrams by Chris Olah

https://distill.pub/2017/feature-visualization/appendix/

GoogLeNet

2012 AlexNet: 8

2013 ZFNet: 8

2014 VGGNet: 19

2014 GoogLeNet: 22

• • •

150?

File Name: T-ICML-O_4_I2_batch_normalization

Format: Presenter in Studio

Title: Batch Normalization

Presenter: Lak Lakshmanan

Agenda

Introduction

Batch Normalization

Residual Networks

Al Accelerators

Architecture Search

Internal Covariate Shift

Neurons may stop learning

Lower the learning rate

Use dropout

Batch normalization scales the weights between layers

Batch normalization helps you train faster

Batch normalization in a pre-made Estimator

```
estimator = DNNClassifier(
    feature_columns=[...],
    hidden_units=[1024, 512, 256],
    batch_norm=True)
```

Batch normalization in a custom Estimator with a Keras model function

```
layer2 = tf.keras.layers.Dense(...)
bn = tf.keras.layers.BatchNormalization(momentum=0.99)
layer3 = bn(layer2, training=training)
```

Batch normalization in a custom Estimator

Subsequent work with normalization

- Weight Normalization
- Layer Normalization
- Self-NormalizingNetworks

File Name: T-ICML-O_4_I3_residual_networks

Format: Presenter in Studio

Title: Residual Networks

Presenter: Lak

Agenda

Introduction

Batch Normalization

Residual Networks

Al Accelerators

Architecture Search

Depth didn't always help

Adapted from https://arxiv.org/pdf/1512.03385.pdf

Vanishing gradients

GoogLeNet

Parallel paths and shortcuts

GoogLeNet used a repeating structure

ResNet uses identity shortcut

Deep Residual Learning for Image Recognition Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, 2015 https://arxiv.org/abs/1512.03385

Residual shortcuts decrease the effective depth

Residual shortcuts decrease the effective depth

2012 AlexNet: 8

2013 ZFNet: 8

2014 VGGNet: 19

2014 GoogLeNet: 22

2015 ResNet-152

Subsequent work on residual connections

- 1. ResNext
- 2. DenseNet
- 3. FractalNet
- 4. SqueezeNet
- 5. Stochastic Depth

File Name: T-ICML-O_4_I4_accelerators

Format: Presenter in Studio

Title: Accelerators

Presenter: Lak

Agenda

Introduction

Batch Normalization

Residual Networks

Al Accelerators

Architecture Search

CUDA for GPUs

Source: Wikimedia Commons

Al accelerators dramatically improve performance

TPUs are ASICs

A 300,000x increase in compute

Many recent Al advances can be attributed to compute power

Expanding the Al frontier of performance

TPU v1 (2015) 92 teraops First Generation

TPU v2 (2017) 180 teraflops Available via Google Cloud

TPU v3
(2018)
420 teraflops
Available via Google
Cloud

ResNet-50 on TPUv2

23.9 min without checkpoints!

File Name: T-ICML-O_4_I5_lab_introduction: __resnet_on_tpu

Format: Presenter in Studio

Title: Lab Introduction: ResNet on TPU

Presenter: Lak

ResNet on TPU: Code

ResNet on TPU: Step 1

ResNet on TPU: Step 1

Cloud TPU training

ResNet on TPU: Step 2

--scale-tier=BASIC_TPU

File Name: T-ICML-O_4_I6_lab_solution:_resnet_on_tpu

Format: Presenter in Studio

Title: Lab Solution: ResNet on TPU

Presenter: Lak

File Name: T-ICML-O_4_I7_tpu_estimator

Format: Presenter in Studio

Title: TPU Estimator

Presenter: Lak

Use the reference models

tf.estimator				High-level API for production-ready models	4
tf.layers, tf.losses, tf.metrics			tf.metrics	Components useful for building custom NN models	ne T
Core TensorFlow (Python)			Python)	Python API gives you full control	- Engine
Core TensorFlow (C++)			C++)	C++ API is quite low-level	TW pr
CPU	GPU	TPU	Android	TF runs on different hardware	Cloud

4 Steps to make a TPUEstimator

- Replace our optimizer
- Replace our EstimatorSpec
- Replace our RunConfig
- Replace our Estimator

optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)

```
# change 1
optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
# change 2
return tf.contrib.tpu.TPUEstimatorSpec(...)
# change 3
iterations_per_loop = 1000
tpu_cluster_resolver =
 tf.contrib.cluster_resolver.TPUClusterResolver(
    hparams['tpu'],
    zone=hparams['tpu_zone'],
    project=hparams['project'])
config = tf.contrib.tpu.RunConfig(
    cluster=tpu_cluster_resolver,
    model_dir=output_dir,
    save_checkpoints_steps=max(600, iterations_per_loop),
    tpu_config=tf.contrib.tpu.TPUConfig(
     iterations_per_loop=iterations_per_loop,
      per_host_input_for_training=True))
```

```
# change 1
optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
# change 2
return tf.contrib.tpu.TPUEstimatorSpec(...)
# change 3
tpu_cluster_resolver = ...
config = tf.contrib.tpu.RunConfig(...)
# change 4
estimator = tf.contrib.tpu.TPUEstimator(
    model_fn=image_classifier,
    params=hparams,
    config=config,
    model_dir=output_dir,
    use_tpu=hparams['use_tpu'])
```

```
# change 4
estimator = tf.contrib.tpu.TPUEstimator(
    model_fn=image_classifier,
    params=hparams,
    config=config,
    model_dir=output_dir,

use_tpu=hparams['use_tpu']),
```

```
# change 1
CrossShardOptimizer(optimizer)

# change 2
TPUEstimatorSpec(...)

# change 3
RunConfig(...)

# change 4
TPUEstimator(...)
```

4 chips/TPU, 2 cores/chip, and 8
 GB Memory/core

4 chips/TPU, 2 cores/chip, and 8
 GB Memory/core, 64 TPUs/pod

A TPU pod has 64 TPUs

- 1. 4 chips/TPU, 2 cores/chip, and 8 GB Memory/core, 64 TPUs/pod
- 2. High-speed interconnect

- 1. 4 chips/TPU, 2 cores/chip, and 8 GB Memory/core, 64 TPUs/pod
- 2. High-speed interconnect within a TPU pod

- 1. 4 chips/TPU, 2 cores/chip, and 8 GB Memory/core, 64 TPUs/pod
- 2. High-speed interconnect
- 3. Very large matrix multiplication hardware

- 1. 4 chips/TPU, 2 cores/chip, and 8 GB Memory/core, 64 TPUs/pod
- 2. High-speed interconnect
- 3. Very large matrix multiplication hardware
- 4. Specialized instruction set

Some points to keep in mind on TPUs

- 4 chips/TPU, 2 cores/chip, and 8
 GB Memory/core, 64 TPUs/pod
- 2. High-speed interconnect
- 3. Very large matrix multiplication hardware
- 4. Specialized instruction set
- 5. bfloat or float32 floating point representation

File Name: T-ICML-O_4_I8_demo:_tpu_estimator

Format: Presenter in Studio

Title: Demo: TPU Estimator

Presenter: Lak

File Name: T-ICML-O_4_I9_neural_architecture_search

Format: Presenter in Studio

Title: Neural Architecture Search

Presenter: Lak

Agenda

Introduction

Batch Normalization

Residual Networks

Al Accelerators

Architecture Search

Painstaking design + hyperparameter tuning

Automate the building of models?

Combinatorial Explosion

AmoebaNet-D

File Name: T-ICML-O_4_I10_summary

Format: Presenter in Studio

Title: Summary

Presenter: Lak

Visualizing layer activations

Diagrams by Chris Olah

https://distill.pub/2017/feature-visualization/appendix/

Batch normalization helps you train faster

Parallel paths and shortcuts

TPUs are ASICs

ResNet on TPU: Code

TPU for custom models

```
optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
return tf.contrib.tpu.TPUEstimatorSpec( # TPU change 2
# change 3
iterations_per_loop = 1000
tpu_cluster_resolver =
 tf.contrib.cluster_resolver.TPUClusterResolver(
    hparams['tpu'],
    zone=hparams['tpu_zone'],
    project=hparams['project'])
config = tf.contrib.tpu.RunConfig(
    cluster=tpu_cluster_resolver,
    model_dir=output_dir,
    save_checkpoints_steps=max(600, iterations_per_loop),
    tpu_config=tf.contrib.tpu.TPUConfig(
     iterations_per_loop=iterations_per_loop,
     per_host_input_for_training=True))
```


update the controller

Data
discovery,
curation,
processing

Data
discovery,
curation,
processing

