The Stochastic Polyak Stepsize

A fraudulent but interesting algorithm

Guillaume Garrigos

18 Février 2025 - Séminaire MILES

A work (in progress) in collaboration with

Robert M. Gower Flatiron Institute

K. Mishchenko Meta

Nicolas Loizou Johns Hopkins

Fabian Schaipp Inria

The problem, the algorithm

Let $f_i : \mathbb{R}^N \to \mathbb{R}$ be convex, and minimize

$$\min_{x \in \mathbb{R}^N} f(x) = \frac{1}{m} \sum_{i=1}^m f_i(x).$$

with the Stochastic Gradient Descent (SGD) algorithm

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \gamma_t \nabla f_{i_t}(\mathbf{x}_t), \quad \gamma_t > 0, \quad i_t \sim \mathcal{U}(1, \dots, m)$$

The problem, the algorithm

Let $f_i : \mathbb{R}^N \to \mathbb{R}$ be convex, and minimize

$$\min_{x \in \mathbb{R}^N} f(x) = \frac{1}{m} \sum_{i=1}^m f_i(x).$$

with the Stochastic Gradient Descent (SGD) algorithm

$$\mathbf{X}_{t+1} = \mathbf{X}_t - \gamma_t \nabla f_{i_t}(\mathbf{X}_t), \quad \gamma_t > 0, \quad i_t \sim \mathcal{U}(1, \dots, m)$$

Rk: You can consider $f(x) = \mathbb{E}_{\xi} [f(\xi, x)]$ with $\xi \sim \mathcal{D}$ if you want

Rk: You can do minibatches if you want, the story will remain the same

The problem, the algorithm

Let $f_i : \mathbb{R}^N \to \mathbb{R}$ be convex, and minimize

$$\min_{x\in\mathbb{R}^N} f(x) = \frac{1}{m} \sum_{i=1}^m f_i(x).$$

with the Stochastic Gradient Descent (SGD) algorithm

$$\mathbf{X}_{t+1} = \mathbf{X}_t - \gamma_t \nabla f_{i_t}(\mathbf{X}_t), \quad \gamma_t > 0, \quad i_t \sim \mathcal{U}(1, \dots, m)$$

Rk: You can consider $f(x) = \mathbb{E}_{\xi} [f(\xi, x)]$ with $\xi \sim \mathcal{D}$ if you want

Rk: You can do minibatches if you want, the story will remain the same

Goal: How to tune properly the stepsize γ_t ?

I: Stochastic Gradient Descent

Stochastic Gradient Descent 4/38

I: Stochastic Gradient Descent

1: The smooth case

Smooth case: Known results (1)

Theorem (Constant stepsize)

Let $f_i \in \Gamma_0(\mathbb{R}^N) \cap C_L^{1,1}(\mathbb{R}^N)$ and $\bar{x}^T = \frac{1}{T} \sum_{t=0}^{T-1} x^t$. If $\gamma_t \equiv \gamma \leqslant 1/4L$ then

$$\mathbb{E}\left[f(\bar{\mathbf{x}}^{T}) - \inf f\right] \leqslant \frac{D^{2}}{\gamma T} + 2\gamma \sigma_{*}^{2},$$

where $D:=\|x^0-x^*\|$ and $\sigma^2_*:=\mathbb{V}[\nabla f_i(x^*)]$ for $x^*\in \operatorname{argmin} f$.

Smooth case: Known results (1)

Theorem (Constant stepsize)

Let $f_i \in \Gamma_0(\mathbb{R}^N) \cap C_L^{1,1}(\mathbb{R}^N)$ and $\bar{x}^T = \frac{1}{T} \sum_{t=0}^{T-1} x^t$. If $\gamma_t \equiv \gamma \leqslant 1/4L$ then

$$\mathbb{E}\left[f(\bar{\mathbf{x}}^{\mathsf{T}}) - \mathsf{inf} f\right] \leqslant \frac{D^2}{\gamma \mathsf{T}} + 2\gamma \sigma_*^2,$$

where $D:=\|x^0-x^*\|$ and $\sigma^2_*:=\mathbb{V}[\nabla f_i(x^*)]$ for $x^*\in \operatorname{argmin} f$.

- γ_t can go up to $\frac{2}{L}$, requires knowing L
- $\sigma_*^2 = 0$ in the deterministic case (not only!), we recover classic results

Interlude: Interpolation

Definition (Interpolation constants)

- $\sigma_*^2 := \mathbb{V}[\nabla f_i(\mathbf{x}^*)]$ for $\mathbf{x}^* \in \operatorname{argmin} f$,
- $\Delta_* := \inf f \mathbb{E} \left[\inf f_i\right]$

Proposition

Assume that the f_i are convex and smooth. Then $\sigma_*^2, \Delta_* \ge 0$ and

$$\sigma_*^2 = 0 \Leftrightarrow \Delta_* = 0 \Leftrightarrow \bigcap_{i=1}^m \operatorname{argmin} f_i \neq \emptyset$$

Interlude: Interpolation

$$\sigma_*^2 := \mathbb{V}[\nabla f_i(\mathbf{x}^*)], \ \Delta_* := \inf f - \mathbb{E}[\inf f_i]$$

Example (Linear model)

Suppose that we have a linear model (least squares problem):

$$f_i(x) = \frac{1}{2} (\langle \phi_i, x \rangle - y_i)^2, \quad f(x) = \frac{1}{2m} ||\Phi x - y||^2, \quad \Phi = (\phi_i)_i$$

Interpolation means that there is an hyperplane supported by x^* which contains *every data point* $(\phi_i; y_i)_i$. Always true if Φ surjective.

Interlude: Interpolation

$$\sigma_*^2 := \mathbb{V}[\nabla f_i(x^*)], \ \Delta_* := \inf f - \mathbb{E}[\inf f_i]$$

Example (Neural Networks)

It is shown (Belkin et al.) that Neural Networks with a *very very* large number of parameters interpolate (conditions apply).

This is sometimes observed in *practice*.

Smooth case: Known results (1)

Theorem (Constant stepsize)

Let $f_i \in \Gamma_0(\mathbb{R}^N) \cap C_L^{1,1}(\mathbb{R}^N)$ and $\bar{x}^T = \frac{1}{T} \sum_{t=0}^{T-1} x^t$. If $\gamma_t \equiv \gamma \leqslant 1/4L$ then

$$\mathbb{E}\left[f(\bar{\mathbf{x}}^{\mathsf{T}}) - \mathsf{inf}\,f\right] \leqslant \frac{D^2}{\gamma \mathsf{T}} + 2\gamma\sigma_*^2,$$

where $D := ||x^0 - x^*||$ and $\sigma_*^2 := \mathbb{V}[\nabla f_i(x^*)]$ for $x^* \in \operatorname{argmin} f$.

- SGD does *not* converge with constant stepsizes (complexity available)
- $\gamma \propto \frac{1}{\sqrt{T}}$ gives a *finite horizon* rate of $O(\frac{D^2 + \sigma_*^2}{\sqrt{T}})$, not optimal
- $\gamma \propto \frac{1}{\sqrt{\sigma_*^2 T + 1}}$ gives a better rate $O(\frac{D^2}{T} + \frac{\sigma_*^2}{\sqrt{T}})$ not *adaptive* to σ_*^2

Smooth case: Known results (2)

Theorem (Vanishing stepsize)

Let
$$f_i \in \Gamma_0(\mathbb{R}^N) \cap C_L^{1,1}(\mathbb{R}^N)$$
 and $\bar{x}^T = \frac{1}{T} \sum_{t=0}^{T-1} x^t$. If $\gamma_t \propto \frac{1}{\sqrt{t}} \leqslant 1/4L$ then

$$\mathbb{E}\left[f(\bar{\mathbf{x}}^T) - \inf f\right] \leqslant O\left(\frac{D^2}{\sqrt{T}} + \frac{\log(T)}{T}\sigma_*^2\right),\,$$

where $D := ||x^0 - x^*||$ and $\sigma_*^2 := \mathbb{V}[\nabla f_i(x^*)]$ for $x^* \in \operatorname{argmin} f$.

- This is an asymptotic convergence rate
- Still not optimal if $\sigma_* = 0$

Smooth case: what we really want

Ideally we want

$$\mathbb{E}\left[f(\bar{\mathbf{x}}^T) - \inf f\right] \leqslant O\left(\frac{D^2}{\sqrt{T}} + \frac{1}{T}\sigma_*^2\right)$$

where γ does not need to know σ_*^2 . And possibly neither L.

- Adaptivity to L is standard for GD (linesearch) but uncommon for SGD
- Adaptivity to σ_*^2 is not really investigated (?)

I: Stochastic Gradient Descent

2: The nonsmooth case

Nonsmooth case: Known results

Theorem (Constant stepsize)

Let
$$f_i \in \Gamma_0(\mathbb{R}^N)$$
 be G-Lipschitz and $\bar{\mathbf{x}}^T = \frac{1}{T} \sum_{t=0}^{T-1} \mathbf{x}^t$. If $\gamma_t \equiv \gamma$ then
$$\mathbb{E}\left[f(\bar{\mathbf{x}}^T) - \inf f\right] \leqslant \frac{D^2}{2\gamma T} + \frac{\gamma G^2}{2}.$$

- No conditions on γ_t
- Remains true if f_i are not differentiable (use subgradients)
- no interpolation story here

Nonsmooth case: Known results

Theorem (Constant stepsize)

Let
$$f_i \in \Gamma_0(\mathbb{R}^N)$$
 be G-Lipschitz and $\bar{\mathbf{x}}^T = \frac{1}{T} \sum_{t=0}^{T-1} \mathbf{x}^t$. If $\gamma_t \equiv \gamma$ then
$$\mathbb{E}\left[f(\bar{\mathbf{x}}^T) - \inf f\right] \leqslant \frac{D^2}{2\gamma T} + \frac{\gamma G^2}{2}.$$

- $\gamma = \frac{1}{\sqrt{T}}$ gives a finite horizon rate of $\frac{D^2 + G^2}{2\sqrt{T}}$
- $\gamma = \frac{D}{G\sqrt{T}}$ gives an *optimal* rate of $\frac{DG}{2\sqrt{T}}$, requires knowing D, G
- Adaptive methods attempt to do this while ignoring D or G

Nonsmooth case: what we really want

Ideally we want to keep

$$\mathbb{E}\left[f(\bar{\mathbf{x}}^T) - \mathsf{inf} f\right] \leqslant O\left(\frac{D^2}{\sqrt{T}} + \frac{1}{T}\sigma_*^2\right)$$

where γ does not need to know D, G.

- Adaptivity to G (knowing D) is achieved e.g. by Adagrad $\gamma_t = \frac{\gamma D}{\sqrt{\sum_s \|g_s\|^2}}$
- Adaptivity to D (knowing G) is achieved with coin-betting (online)
- Interesting recent litterature in the deterministic setting [D-adaptation, DoG, DoWG]
- Not yet mature in the stochastic setting?

II: Stochastic Polyak Stepsize

Stochastic Polyak Stepsize 15 / 38

II : Stochastic Polyak Stepsize

1 : Warm-up : Deterministic Polyak Stepsize

Polyak Stepsize

In the deterministic setting (m = 1) Polyak proposed the following rule

$$\gamma_t := \frac{f(\mathbf{x}^t) - \inf f}{\|\nabla f(\mathbf{x}^t)\|^2}$$

- Updates are scale-invariant: $\gamma_t \nabla f(x_t)$ has no units (Adam, Adagrad, ..)
- We need to know inf f!!
 - \circ In the worst cases, this is as hard as minimizing f
 - In some cases (think interpolation) we know that $\inf f = 0$
 - this is in general *unreasonable*

Polyak Stepsize

In the deterministic setting (m = 1) Polyak proposed the following rule

$$\gamma_t := \frac{f(x^t) - \inf f}{\|\nabla f(x^t)\|^2}$$

Theorem (Polyak - 1987 & Hazad, Kakade - 2019)

When using the Polyak stepsize, we can guarantee:

- 1. $f(x^T) \inf f \le \frac{2LD^2}{T}$ in the smooth case
- 2. $f(x^T) \inf f \leq \frac{DG}{\sqrt{T}}$ in the nonsmooth case

Bounds are "optimal" and adaptive to L, D, G!

Polyak Stepsize

In the deterministic setting (m = 1) Polyak proposed the following rule

$$\gamma_t := \frac{f(x^t) - \inf f}{\|\nabla f(x^t)\|^2}$$

Where does this come from? The analysis of the Lyapunov energy:

$$\|\mathbf{x}^{t+1} - \mathbf{x}^*\|^2 - \|\mathbf{x}^t - \mathbf{x}^*\|^2 \le \gamma^2 \|\nabla f(\mathbf{x}_t)\|^2 - 2\gamma \left(f(\mathbf{x}^t) - f(\mathbf{x}^*)\right)$$

Upper bound is *minimized* if γ_t is the Polyak stepsize.

II : Stochastic Polyak Stepsize

2: Our proposal for SGD

The Stochastic Polyak Stepsize (SPS)

The same Lyapunov analysis leads to

$$\|\mathbf{x}^{t+1} - \mathbf{x}^*\|^2 - \|\mathbf{x}^t - \mathbf{x}^*\|^2 \le \gamma^2 \|\nabla f_{i_t}(\mathbf{x}_t)\|^2 - 2\gamma \left(f_{i_t}(\mathbf{x}^t) - f_{i_t}(\mathbf{x}^*)\right)$$

The upper bound is minimized if:

$$\gamma_t := \frac{(f_{i_t}(\mathbf{x}^t) - f_{i_t}(\mathbf{x}^*))_+}{\|\nabla f_{i_t}(\mathbf{x}^t)\|^2}$$

- $f_{i_t}(x^*)$ is impossible to know exactly ... except if there is interpolation
- γ_t can be 0 if x^t is too good at minimizing f_{i_t}
- the distance to minimizers is decreasing which is unheard of for SGD

$$\gamma_t := \frac{(f_{i_t}(x^t) - f_{i_t}(x^*))_+}{\|\nabla f_{i_t}(x^t)\|^2}$$

$$\gamma_t := \frac{(f_{i_t}(x^t) - f_{i_t}(x^*))_+}{\|\nabla f_{i_t}(x^t)\|^2}$$

Given a solution x^* , our problem is equivalent to find x such that

$$(\forall i \in \{1,\ldots,m\}) \quad f_i(x) \leqslant f_i(x^*)$$

$$\gamma_t := \frac{(f_{i_t}(x^t) - f_{i_t}(x^*))_+}{\|\nabla f_{i_t}(x^t)\|^2}$$

Given a solution x^* , our problem is equivalent to find x such that

$$(\forall i \in \{1,\ldots,m\}) \quad f_i(x) \leqslant f_i(x^*)$$

Newton-Raphson: sample & project onto linearization of the constraints

$$x^{t+1} = \text{argmin } \|x - x^t\|^2 \text{ s.t. } f_{i_t}(x^t) + \langle \nabla f_{i_t}(x^t), x - x^t \rangle \leqslant f_{i_t}(x^*)$$

$$\gamma_t := \frac{(f_{i_t}(x^t) - f_{i_t}(x^*))_+}{\|\nabla f_{i_t}(x^t)\|^2}$$

Given a solution x^* , our problem is equivalent to find x such that

$$(\forall i \in \{1,\ldots,m\}) \quad f_i(x) \leqslant f_i(x^*)$$

Newton-Raphson: sample & project onto linearization of the constraints

$$\mathbf{x}^{t+1} = \operatorname{argmin} \|\mathbf{x} - \mathbf{x}^t\|^2 \text{ s.t. } f_{i_t}(\mathbf{x}^t) + \langle \nabla f_{i_t}(\mathbf{x}^t), \mathbf{x} - \mathbf{x}^t \rangle \leqslant f_{i_t}(\mathbf{x}^*)$$

- Those iterates are exactly the ones of SGD+SPS
- No convexity needed for this formulation (but ≠ problem)

SPS: the smooth case

Theorem

Let $f_i \in \Gamma_0(\mathbb{R}^N)$ be locally smooth and $\bar{x}^T = \frac{1}{T} \sum_{t=0}^{T-1} x^t$. Then

$$\mathbb{E}\left[f(\bar{\mathbf{x}}^T) - \inf f\right] \leqslant \frac{4LD^2}{T} + \frac{2D\sigma_*}{\sqrt{T}},$$

where *L* is the worst Lipschitz constant of ∇f_i over $\mathbb{B}(x^*, D)$.

SPS: the smooth case

Theorem

Let $f_i \in \Gamma_0(\mathbb{R}^N)$ be locally smooth and $\bar{x}^T = \frac{1}{T} \sum_{t=0}^{T-1} x^t$. Then

$$\mathbb{E}\left[f(\bar{x}^T) - \inf f\right] \leqslant \frac{4LD^2}{T} + \frac{2D\sigma_*}{\sqrt{T}},$$

where *L* is the worst Lipschitz constant of ∇f_i over $\mathbb{B}(x^*, D)$.

- This is an asymptotic $\frac{1}{\sqrt{T}}$ rate, with no log terms
- Nearly optimal in the interpolation regime, adaptive to σ_*^2 , L, D
- No need for global smoothness!
- If $f = \mathbb{E}f_{\varepsilon_t}$ ask locally smooth to be uniform in ξ

SPS: the nonsmooth case

Theorem

Let $f_i \in \Gamma_0(\mathbb{R}^N)$ be locally lipschitz and $\bar{x}^T = \frac{1}{T} \sum_{t=0}^{T-1} x^t$. Then

$$\mathbb{E}\left[f(\bar{x}^T) - \inf f\right] \leqslant \frac{DG}{\sqrt{T}},$$

where *G* is the worst Lipschitz constant of f_i over $\mathbb{B}(x^*, D)$.

- This is an *asymptotic* $\frac{1}{\sqrt{T}}$ rate
- Nearly optimal for this class of problem, adaptive to G, D
- No need for global Lipschitz!
- If $f = \mathbb{E}f_{\xi}$, ask instead local expected lipschitz

II : Stochastic Polyak Stepsize

3 : Can we run this in practice ???

SPS for large NNs

For large (enough) models, interpolation holds, meaning that $f_i(x^*) = \inf f_i$ So it is worth trying the cheap rule $\gamma_t = \frac{f_{i_t}(x^t) - \inf f_i}{\|\nabla f_{i_t}(x^t)\|^2}$ Usually $\inf f_i = 0$ except for regularized problems where the extra $\|x\|^2$

perturbs the minima. But we can still compute the infimum[Loizou et al.]

Stochastic Polyak Stepsize. Can we run this in practice ???

SPS with approximation: optimistic version

A reasonable approach consists in replacing $f_i(x^*)$ with an approximation One could *hope* that interpolation holds, and use $\inf f_i$ even if it is illegal

Theorem (Loizou et al. - 2021)

Let f_i be convex and L-smooth. If $\gamma_t := \max\left\{rac{f_{i_t}(x^t) - \inf f_i}{\|\nabla f_{i_t}(x^t)\|^2}; ar{\gamma}
ight\}$ then

$$\mathbb{E}\left[f(\bar{\mathbf{x}}^T) - \inf f\right] \leqslant O\left(\frac{D^2}{\bar{\gamma}T} + \Delta^*\right)$$

where $\Delta^* = \mathbb{E}\left[f_i(x^*) - \inf f_i\right] = \inf f - \mathbb{E}\left[\inf f_i\right]$.

We pay the error we make on estimating $f_i(x^*)$

SPS with approximation: educated version

A reasonable approach consists in replacing $f_i(x^*)$ with an approximation One could hope that interpolation holds, and use $\inf f_i$ even if it is not legal We could build a more precise estimation of $f_i(x^*)$

Example (Black-box model distillation)

Train a small model (student) with a pretrained bigger model (teacher). If the weights of the teacher are good, it should happen that

$$f_i(x^*) \simeq f_i(x^{\mathsf{tea}}) \leqslant f_i(x^{\mathsf{stu}})$$

So we can use $f_i(x^{\text{tea}})$ as a surrogate for $f_i(x^*)$.

Numerical experiment: Distillation

SGD (gray), Adam (Orange), SPS+Mom (Blue), SPS+Adam (Dark blue)

Dotted lines: scheduler (warmup + cosine decay)

Datasets: 300K, 1M, 2M tokens

SPS with approximation: on-the-fly version

Remember that SGD+SPS is Newton applied to the feasability problem

$$(\forall i \in \{1,\ldots,m\}) \quad f_i(x) \leqslant f_i(x^*)$$

We could be creative and introduce an other problem without $f_i(x^*)$ such as:

$$\min_{x \in \mathbb{R}^n, s \in \mathbb{R}^m} \frac{1}{m} \sum_{i=1}^m s_i \text{ s.t. } f_i(x) \leqslant s_i.$$

Not only do we need to project on linearization of the constraints, but also take into account the objective function. This leads to a stochastic proximal method:

$$x^{t+1}, s^{t+1} = \operatorname{argmin} s_i + \|(x, s) - (x^t, s^t)\|^2 \text{ s.t. } f_i(x^t) + \langle \nabla f_i(x^t), x - x^t \rangle \leqslant s_i$$

SPS with approximation: on-the-fly version

$$x^{t+1}, s^{t+1} = \operatorname{argmin} s_i + \|(x, s) - (x^t, s^t)\|^2 \text{ s.t. } f_i(x^t) + \langle \nabla f_i(x^t), x - x^t \rangle \leqslant s_i$$

- This algorithm (FUVAL) admits a closed form solution (nasty)
- s_i^t tries to converge to $f_i(w^*)$
- Extra parameters needed for the theory to work (boooo)
- Can garantee a dirty $O\left(\frac{1}{\sqrt{7}}\right)$ rate in the nonsmooth case
- Can guarantee a $O\left(\frac{1}{7} + \Delta_*\right)$ rate in the smooth case
- Numerics aren't great
- To be improved! Stochastic prox methods are not well understood...

II : Stochastic Polyak Stepsize

4: Would you want some momentum?

Adam is SGD + AdaGrad + Momentum. Replace Adagrad with SPS?

Adam is SGD + AdaGrad + Momentum. Replace Adagrad with SPS?

Momentum (v1 : Heavy Ball)

$$y_t = x_t + \beta_t(x_t - x_{t-1})$$

$$x_{t+1} = y_t - \gamma \nabla f_{i_t}(x_t)$$

Momentum (v2 : Classic)

$$m_t = \beta_t m_{t-1} + \nabla f_{i_t}(x_t)$$

$$x_{t+1} = x_t - \gamma m_t$$

Momentum (v3 : Iterative Moving Average)

$$z_t = z_{t-1} - \eta_t \nabla f_{i_t}(x_t)$$

$$x_{t+1} = (1 - \alpha_t)x_t + \alpha_t z_t$$

Momentum: Known result

Theorem

Let $f_i \in \Gamma_0(\mathbb{R}^N) \cap C_L^{1,1}(\mathbb{R}^N)$ and run IMA with $\eta_t \equiv \eta \leqslant \frac{1}{4L}$ and $\alpha_t = \frac{2}{2+t}$.

$$\mathbb{E}\left[f(\mathbf{x}^{\mathsf{T}}) - \inf f\right] \leqslant \frac{D^2}{\eta T} + 2\eta \sigma_*^2,$$

- Exact same bound as SGD constant stepsize
- Momentum provides last iterate bounds
- No known acceleration

Momentum + SPS : Smooth case

Theorem

Let f_i convex and locally smooth, and run IMA with $\eta_t = {\sf SPS}$ and $\alpha_t = \frac{1}{1+t}$.

$$\mathbb{E}\left[f(\mathbf{x}^{\mathsf{T}}) - \inf f\right] \leqslant \frac{2LD^2 \log(T)}{T} + \frac{2\sqrt{L\Delta_*}D}{\sqrt{T}},$$

- Like SGD+SPS but with last iterates
- Spurious log term (boooo)

Momentum + SPS : Nonsmooth case

Theorem

Let f_i convex and locally Lipschitz, run IMA with $\eta_t = \text{SPS}$ and $\alpha_t = \frac{1}{1+t}$:

$$\mathbb{E}\left[f(\mathbf{x}^{\mathsf{T}}) - \inf f\right] \leqslant \frac{GD}{\sqrt{T}}.$$

- Like SGD+SPS but with last iterates
- No spurious log term (yay)

What is SPS for momentum?

If you really want to know:

Definition (Momentum + SPS)

$$\begin{cases} \eta_t &= \frac{\left(f_{i_t}(x^t) - f_{i_t}(x^*) + \langle \nabla f_{i_k}(x_k), z_{t-1} - x_t \rangle\right)_+}{\|\nabla f_{i_k}(x_k)\|^2} \\ z_k &= z_{t-1} - \eta_t \nabla f_{i_k}(x_k) \\ x_{k+1} &= (1 - \alpha_k)x_k + \alpha_k z_k \end{cases}$$

We can also do SPS for Adam!

Conclusion

Conclusion 36 / 38

Conclusion on SPS

- Theory: great
 - Nearly optimal rates in both smooth and nonsmooth
 - Adaptivity to all parameters (except $f_i(x^*)$)
- Practice: disputable
 - Can't be used as is in every scenario
 - Some promising edge cases (interpolation, distillation)
 - Need for more analysis when approximating $f_i(x^*)$
 - Need more algorithms like FUVAL with on-the-fly tracking of $f_i(x^*)$

Conclusion 37/38

Thanks for your attention! Any questions?