

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М.В.Ломоносова

Факультет вычислительной математики и кибернетики

Практикум по C++ Задание по алгоритму имитации отжига

Формальная постановка задачи студентки 421 учебной группы факультета ВМК МГУ Задорожной Юлии Андреевны

1 Формальная постановка задачи

1.1 Основные понятия

Расписание определено, если задано все из нижеперечисленного:

- Множества процессоров и работ;
- Привязка всюду определенная на множестве работ функция, которая задает распределение работ на процессорах;
- Порядок для каждого процессора определен порядок выполнения работ на конкретном процессоре.;

Это определение соответствует графической форме представления расписания (представление исключительно в виде привязки и порядка), однако в нашей задаче будет строится временная диаграмма, поскольку нам полез- но получить результат в виде определенных пар (s_i, p_i) . Доказано, что эти формы представления эквивалентны [1].

 \mathcal{A} лительность расписания – момент времени $T = max(t_i)$, где t_i - момент времени, когда завершилась заключительная работа на процессоре $i = \overline{1,n}$, где n - номер заключительного процессора.

1.2 Формальная постановка

• Дано:

- 1. Множество N, состоящее из n независимых работ;
- 2. Время выполнения каждой работы на процессоре;
- 3. Набор из р однородных процессоров;
- 4. Вектор времен выполнения работ на процессорах длины n: элемент N_i равен времени выполнения i-й работы;
- **Требуется**: Необходимо построить расписание HP на заданном количестве процессоров: нужно привязать каждую i-ю работу к p_i процессору, на котором будет выполняться работа, задать порядок выполнения работ на каждом из процессоров и определить время начало выполнения t_i .
- Минимизируемый критерий(К1): Нужно определить момент завершения последней работы, то есть требуется минимизировать длительность расписания: выбрать такую работу k, для которой $t_k + N_k \to max$, где t_k время начала выполнения работы на процессоре, а N_k время выполнения работы на процессоре.

1.3 Ограничение на коррректность работы расписания

- Каждый процессор за единицу времени может выполнять не больше одной работы.
- Прерывание работ на процессоре недопустимы.
- Перенос частично выполненной работы на другой процессор недопустим.

2 Литература

[1] Калашников А. В. Алгоритмы оптимизации расписаний, основанные на исправлении неоптимальных фрагментов. — 2004.