几何库 geometry 函数介绍

松坂さとう

功能型函数

round(num[,decimal])--保留指定小数位数

第一个参数填数字; 第二个参数填要保留的小数位数, 不填默认取整。

random_N(min[,max][,variance][,expectation])--正态分布随机数发生器

第一个参数填最小值;第二个参数填最大值,不填默认范围从0到最小值;第三个参数填方差,不填默认((max-min)/6)^2;第四个参数填期望,不填默认范围内的平均值。

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

正态分布概率密度函数

random_S(min,max,segments)--分段随机

第一个参数填最小值;第二个参数填最大值;第三个参数填分段数,有几段就 产生几个随机数。函数返回一个装着随机数的表。

random_P(min,max,step)--生成一个可指定步长的随机数

第一个参数填最小值;第二个参数填最大值;第三个参数填步长。

reverse_color(color)--计算一种颜色的反色

唯一一个参数为颜色字符串。

gradient_color(c1,c2,pct,accel)--计算两种颜色的渐变色

前两个参数填颜色字符串,第三个参数填渐变程度,范围[0,1],0 为 c1,1 为 c2,不填默认 0.5;第四个参数填加速度,不填默认 1。

extract(str)--提取 AI2ASS 转出的颜色和绘图

先用"处理 Al2ASS.lua"这个脚本把所有的"\N"都替换成""、所有的"\"都替换成"\",然后就可以把处理过的字符串作为参数填入。函数返回两

个表,第一个是颜色表第二个是绘图表。

生成绘图型函数

circle(diameter[,clockwise])--固定直径圆形,可指定路径方向 第一个参数填圆的直径;第二个参数可选,填 0 或 1 (0 代表路径顺时针,1 代 表路径逆时针),不填默认顺指针。

random_circle(min,max[,clockwise])--随机范围直径圆形,可指定路径 方向

第一个参数填圆的最小直径;第二个参数填圆的最大直径;第三个参数可选,填0或1(0代表路径顺时针,1代表路径逆时针),不填默认顺指针。

ellipse(x_length,y_length[,clockwise])--椭圆,可指定路径方向 第一个参数填椭圆的长轴长度;第二个参数填椭圆的短轴长度;第三个参数可 选,填 0 或 1 (0 代表路径顺时针,1 代表路径逆时针),不填默认顺指针。

isosceles_triangle(length,height[,clockwise])--固定底高等腰三角形,可指定路径方向

第一个参数填等腰三角形的底的长度;第二个参数填等腰三角形的高;第三个参数可选,填0或1(0代表路径顺时针,1代表路径逆时针),不填默认顺指针。

regular_triangle(length[,clockwise])--固定大小正三角形,可指定路 径方向

第一个参数填这个正三角形的最小外接圆的直径;第二个参数可选,填0或1 (0代表路径顺时针,1代表路径逆时针),不填默认顺指针。

square(length[,clockwise])--固定边长正方形,可指定路径方向 第一个参数填正方形的边长;第二个参数可选,填 0 或 1 (0 代表路径顺时 针,1 代表路径逆时针),不填默认顺指针。

random_square(min,max[,clockwise])--随机范围边长正方形,可指定路径方向

第一个参数填正方形的最小边长;第二个参数填正方形的最大边长;第三个参数可选,填0或1(0代表路径顺时针,1代表路径逆时针),不填默认顺指针。

rectangle(length,height[,clockwise])--固定长宽矩形,可指定路径方向

第一个参数填长方形的长;第二个参数填长方形的宽;第三个参数可选,填0或1(0代表路径顺时针,1代表路径逆时针),不填默认顺指针。

random_rectangle(l_min,l_max[,h_min][,h_max][,clockwise])--随机 范围长宽矩形,可指定路径方向

第一个参数填矩形的最小长度;第二个参数填矩形的最大长度;第三个参数填矩形的最小高度,不填默认等于最小长度;第四个参数填矩形的最大高度,不填默认等于最大长度;第五个参数可选,填0或1(0代表路径顺时针,1代表路径逆时针),不填默认顺指针。

rounded_rectangle(length[,height][,roundx][,roundy][,clockwise])--固定长宽圆角矩形,可指定路径方向

第一个参数填圆角矩形的长度;第二个参数填圆角矩形的高度,不填默认等于长度;第三个参数填圆角矩形的圆角长度,不填默认等于长度和高度中较小者的 1/5;第四个参数填圆角矩形的圆角高度,不填默认等于圆角长度;第五个参数可选,填0或1(0代表路径顺时针,1代表路径逆时针),不填默认顺指针。

ran_rou_rect(l_min,l_max[,h_min][,h_max][,rx][,ry][,clockwise])--随机范围长宽圆角矩形,可指定路径方向

第一个参数填圆角矩形的最小长度;第二个参数填圆角矩形的最大长度;第三个参数填圆角矩形的最小高度,不填默认等于最小长度;第四个参数填圆角矩形的最大高度,不填默认等于最大长度;第五个参数填圆角矩形的圆角长度,不填默认等于生成长度和生成高度中较小者的1/5;第六个参数填圆角矩形的圆角高度,不填默认等于圆角长度;第七个参数可选,填0或1(0代表路径顺时针,1代表路径逆时针),不填默认顺指针。

rhombus(length,height[,clockwise])--固定长高菱形,可指定路径方向

第一个参数填菱形的横向长度;第二个参数可选,填菱形的纵向高度,不填默 认等于菱形的横向长度;第三个参数可选,填 0 或 1 (0 代表路径顺时针, 1 代表路径逆时针),不填默认顺指针。

parallelogram(length,height,incline[,directivity][,clockwise])
--固定长高平行四边形,可指定倾斜量、倾斜方向和路径方向

第一个参数填平行四边形的长;第二个参数填平行四边形的高;第三个参数填倾斜量;第四个参数可选,填0或1(0代表左倾斜,1代表右倾斜),不填默认右倾斜;第五个参数可选,填0或1(0代表路径顺时针,1代表路径逆时针),不填默认顺指针。

star(length,curvature,clockwise)--星形,可指定形状和路径方向 第一个参数填星形的长宽;第二个参数控制星形的"胖瘦",它不能超过长宽的 一半,不填默认等于长宽的 1/10;第三个参数可选,填 0 或 1 (0 代表路径顺 时针,1 代表路径逆时针),不填默认顺指针。

pentagram(length[,clockwise][,proportion])--五角星形,可指定路径方向和形状

第一个参数填这个五角星形的最小外接圆的直径;第二个参数可选,填 0 或 1 (0 代表路径顺时针,1 代表路径逆时针),不填默认顺指针;第三个参数可选,填这个五角星形的最大内切圆的半径与最小外接圆的半径的比值。它控制这个五角星的"胖瘦",可填的范围是 $(0,\sin 54^\circ]$ ($\sin 54^\circ \approx 0.809$)。当填入的值小于等于 0 时取 0.001;大于 $\sin 54^\circ$ 时取 $\sin 54^\circ$;不填默认为 $\sin 18^\circ$ / $\sin 54^\circ$ (此值约为 0.379,此时形状为正五角星形)。填入的值越接近 0,五角星越"瘦";越接近 $\sin 54^\circ$,五角星越"胖"。

regular_hexagon(length[,clockwise])--固定边长正六边形,可指定路径 方向

第一个参数填这个正六边形的最小外接圆的直径;第二个参数可选,填0或1 (0代表路径顺时针,1代表路径逆时针),不填默认顺指针。

arrow(length1,length2[,length3][,length4][,direction][,clockwise])--箭头,可指定指向和路径方向

前四个参数与如图所示,后四个参数为可选参数。length3的默认值为length1的一半,length4的默认值为length2的一半。第五个参数填1或2或3或4,方向分别对应上下左右,不填默认4;第六个参数可

选,填0或1(0代表路径顺时针,1代表路径逆时针),不填默认顺指针。

note([x])--七个音符,可指定任意一个

该函数只有一个参数,填 1~7。每个值与音符的对应关系如下:

1: 高分音符

2: 二分音符

3: 四分音符

4: 八分音符

5: 两个八分音符(用符杠连接两个八分音符的符干)

6: 十六分音符

7: 两个十六分音符(用符杠连接两个十六分音符的符干) 也可以不填,不填默认 7。一般配合 math.random(1,7)使用。

binary_digit(digit)--生成指定位数的随机二进制数字绘图 唯一一个参数为要生成的二进制数字的位数。 10100001

clip_blinds(length,height,num,pct[,angle][,x][,y][,direction][
,mode])--生成百叶窗绘图,用于 clip 效果

第一个参数填覆盖范围的长度;第二个参数填覆盖范围的高度;第三个参数填百叶窗的条数;第四个参数填展开程度,范围[0,1],0为未展开,1为完全展开;第五个参数填百叶窗的旋转角度,不填默认0;第六个参数填百叶窗的横向平移距离,不填默认0;第七个参数填百叶窗的纵向平移距离,不填默认0;第八个参数控制展开方向,填0或1,0代表从左向右展开,1代表从中间向两侧展开,不填默认0;第九个参数为返回值模式,填0或1,0代表函数返回字符串,1代表函数返回表,不填默认0。

chain(num[,x_length][,y_length][,width][,first])--生成直线锁链绘图

第一个参数填链环的个数;第二个参数填0环的横向长度,默认值为30;第三个参数填0环平直部分的纵向长度,默认值为20;第四个参数填1环的宽度,默认值为5;第五个参数指定第一个链环是0环还是1环,填0或1,默认值为0。

操作绘图型函数

translate(ass_shape[,x_incline][,y_incline])--平移绘图

第一个参数填绘图代码(支持整数和小数);第二个参数填x方向上的位移(水平向右为正方向),不填默认0;第三个参数填y方向上的位移(水平向下为正方向),不填默认0。

zoom(ass_shape[,x_zoom][,y_zoom][,zoom_center][,zoom_middle])--缩放绘图

第一个参数填绘图代码(支持整数和小数);第二个参数填横向缩放的百分比,不填默认 100;第三个参数纵向缩放的百分比,不填默认等于横向缩放的百分比;第四个参数填缩放中心的 x 坐标,不填默认 0;第五个参数填缩放中心的 y 坐标,不填默认 0。

spin(ass_shape[,x_angle][,y_angle][,z_angle][,spin_center][,spin_middle])--旋转绘图

第一个参数填绘图代码(支持整数和小数);第二个参数填绕 \times 轴的旋转角,不填默认 0;第三个参数填绕 \times 轴的旋转角,不填默认 0;第四个参数填绕 \times 轴的旋转角,不填默认 0;第五个参数填旋转中心的 \times 坐标,不填默认 0;第六个参数填旋转中心的 \times 坐标,不填默认 0。(注:该函数与用于旋转的标签不同,没有"近大远小"的视觉效果。)

translate_tbl(ass_table[,x_incline][,y_incline])--平移绘图表中的 每个绘图

第一个参数填装着绘图代码的表;第二个参数填x方向上的位移(水平向右为正方向),不填默认0;第三个参数填y方向上的位移(水平向下为正方向),不填默认0。

zoom_tbl(ass_table[,x_zoom][,y_zoom][,zoom_center][,zoom_middle])--缩放绘图表中的每个绘图

第一个参数填装着绘图代码的表;第二个参数填横向缩放的百分比,不填默认 100;第三个参数纵向缩放的百分比,不填默认等于横向缩放的百分比;第四个参数填缩放中心的 x 坐标,不填默认 0;第五个参数填缩放中心的 y 坐标,不填默认 0。

spin_tbl(ass_table[,x_angle][,y_angle][,z_angle][,spin_center]
[,spin_middle])--旋转绘图表中的每个绘图

第一个参数填装着绘图代码的表;第二个参数填绕 x 轴的旋转角,不填默认 0;第三个参数填绕 y 轴的旋转角,不填默认 0;第四个参数填绕 z 轴的旋转角,不填默认 0;第五个参数填旋转中心的 x 坐标,不填默认 0;第六个参数填旋转中心的 y 坐标,不填默认 0。(注:该函数与用于旋转的标签不同,没有"近大远小"的视觉效果。)

round_tbl(ass_table[,decimal])--给表里的绘图坐标保留指定小数位数第一个参数填装着绘图代码的表;第二个参数填要保留的小数位数,不填默认取整。

disassemble(ass_shape)--拆解单 m 绘图

唯一一个参数为一个绘图代码,函数返回一个装着所有单 m 绘图的表。

part(tbl,level[,mode])--随机显示表中一部分比例的绘图

第一个参数填装着绘图代码的表;第二个参数填一个 0~1 范围内的数字,它表示要显示的绘图代码的比例;第三个参数为返回值模式,填0或1。0 代表函数返回字符串;1 代表函数返回表。不填默认0。

arrange(ass_shape,line_number,x_incline[,line][,y_incline][,fi
rst_proportion][,last_proportion][,line_x_incline][,mode])

--[[生成规律排列的绘图 参数:图形,单行个数,x偏移量,总行数,y偏移量,

第一行缩放比例,最后一行缩放比例,偶数行初始 x 偏移量,模式]]

第1个参数(图形): 坐标为整数小数均可。

第2个参数(单行个数):一行有几个图形。

第3个参数(x偏移量):每行相邻两个图形几何中心的x坐标的差值。

第 4 个参数(总行数,可选): 一共有多少行,不填默认 1。

第 5 个参数 (y 偏移量,可选): 相邻两行的图形的 y 坐标的差值,不填默认等于 x 偏移量。

第6个参数(第一行缩放比例,可选): 第一行的图形与填入图形的缩放百分比,不填默认100。

第7个参数(最后一行缩放比例,可选):最后一行的图形与填入图形的缩放百分比,不填默认等于第一行缩放比例。

第8个参数(偶数行初始x偏移量,可选): 第二行第一个图形与第一行第一个图形的x坐标的差值,不填默认0。

第 9 个参数(返回值模式,可选): 填 0 或 1。0 代表函数返回字符串; 1 代表函数返回表。不填默认 0。

overturn(ass_shape,line_number,x_incline,line,y_incline)--做密 铺正六边形和菱形翻转效果

第1个参数(图形):填入一个正六边形或菱形的绘图代码。

第2个参数(单行个数):一行有几个图形。

第3个参数(x偏移量):每行相邻两个图形几何中心的x坐标的差值。

第4个参数(总行数):一共有多少行(如果你填入的是奇数,最终也会生成刚好大于这个奇数的偶数行)。

第 5 个参数(y 偏移量):第二行与第一行的图形的几何中心的 y 坐标的差值。函数返回一个表,里面装着一个固定的绘图代码和定位信息。调用绘图代码时要用 a.s 的形式,调用定位信息时要用 a[j].x 和 a[j].y 的形式(a 的命名可以更换)。

tessellation(shape,line_number,x_incline,line,y_incline[,line_
x_incline][,first_overturn][,adjacent_overturn][,adjacent_y_in
cline][,mode])

--[[生成密铺状态的可密铺图形 参数:图形,单行个数,x 偏移量,总行数,y 偏移量,偶数行初始 x 偏移量,偶数行第一个图形翻转状态,每行相邻两个图形的翻转状态,每行相邻两个图形的 y 偏移量,模式]]

第1个参数(图形): 支持整数和小数,但正六边形和正三角形最好用小数。

(注: geometry 中所有用算法生成的图形坐标都是小数。)

第2个参数(单行个数):一行有几个图形。

第3个参数(x偏移量): 每行相邻两个图形几何中心的x坐标的差值。

第 4 个参数 (总行数): 一共有多少行。

第 5 个参数 (v 偏移量):相邻两行中翻转状态相同的图形的 v 坐标的差值。

第6个参数(偶数行初始x偏移量,可选): 第二行第一个图形与第一行第一个图形的x坐标的差值。不填默认0。

第7个参数(偶数行第一个图形翻转状态,可选): 填0或1或2。0代表图形绕y轴横向翻转180度;1代表图形绕x轴纵向翻转180度;2代表不翻转。 不填默认2。

第8个参数(每行相邻两个图形的翻转状态,可选): 填0或1。0代表图形绕x轴纵向翻转180度;1代表不翻转。不填默认1。

第 9 个参数(每行相邻两个图形的 y 偏移量,可选):每行相邻两个图形的 y 坐标的差值。不填默认 0。

第 10 个参数 (返回值模式,可选): 填 0 或 1。0 代表函数返回字符串;1 代表函数返回表。不填默认 0。

close(ass_shape)--封闭绘图

唯一一个参数为绘图字符串,函数返回封闭路径的绘图。

topmost(ass_shape)--求全直线绘图的所有最顶端的点

唯一一个参数为全直线绘图字符串,函数返回装着所有最顶端的点坐标的表。 调用定位信息时要用 a[i].x 和 a[i].y 的形式(a 的命名可以更换)。