Определение 1 Арифметическим квадратным корнем из неотрицательного числа А называют такое неотрицательное число B, квадрат которого равен A.

$$\sqrt{A} = B \Rightarrow B \cdot B = A$$

Определение 2 Арифметическим квадратным корнем из неотрицательного числа А называ- ω такое неотрицательное число B, квадрат которого равен A.

$$\sqrt{A} = B \Rightarrow B \cdot B = A$$

1 Вычислить:

1)
$$\sqrt{4}$$

1)
$$\sqrt{4}$$
 4) $\sqrt{100}$

7)
$$\sqrt{144}$$

10)
$$\sqrt{1,21}$$

12)
$$\sqrt{\frac{1}{9}}$$
 14) $\sqrt{\frac{36}{25}}$

14)
$$\sqrt{\frac{36}{25}}$$

2)
$$\sqrt{9}$$

2)
$$\sqrt{9}$$
 5) $\sqrt{121}$

3) $\sqrt{25}$ 6) $\sqrt{400}$

8)
$$\sqrt{1600}$$

11)
$$\sqrt{3.24}$$

9)
$$\sqrt{0.04}$$
 11) $\sqrt{3.24}$ 13) $\sqrt{\frac{1}{1600}}$ 15) $\sqrt{\frac{81}{100}}$

15)
$$\sqrt{\frac{81}{100}}$$

2 Вычислить:

1)
$$2 + \sqrt{1}$$

4)
$$2 \cdot \sqrt{81}$$

7)
$$\sqrt{\frac{1}{9}} \cdot \sqrt{81}$$
 9) $\sqrt{49} : \sqrt{0.01}$

9)
$$\sqrt{49}:\sqrt{0,01}$$

2)
$$\sqrt{9} + \sqrt{25}$$
 5) $\sqrt{16} \cdot \sqrt{9}$
3) $15 - \sqrt{36}$ 6) $\sqrt{0.16} \cdot \sqrt{9}$

5)
$$\sqrt{16} \cdot \sqrt{9}$$

6) $\sqrt{0,16} \cdot \sqrt{0,25}$

8)
$$\sqrt{4} \cdot \sqrt{0.25}$$

10)
$$0, 1\sqrt{900} - \frac{1}{4}\sqrt{400}$$

3 Вычислить:

1)
$$\sqrt{2\frac{1}{4}}$$

$$2) \quad \sqrt{1\frac{7}{9}}$$

3)
$$\sqrt{1\frac{9}{16}}$$

4)
$$\sqrt{5\frac{4}{9}}$$

5)
$$\sqrt{11\frac{1}{9}}$$

1)
$$\sqrt{2\frac{1}{4}}$$
 2) $\sqrt{1\frac{7}{9}}$ 3) $\sqrt{1\frac{9}{16}}$ 4) $\sqrt{5\frac{4}{9}}$ 5) $\sqrt{11\frac{1}{9}}$ 6) $\sqrt{1\frac{40}{81}}$

Определение 3 Арифметические квадратные корни из равных чисел равны.

Определение 4 Больше тот из арифметических корней, чье подкоренное значение больше.

Сравните числа:

1)
$$\sqrt{20+9}$$
 и $\sqrt{15+14}$

2)
$$\sqrt{100}$$
 и $\sqrt{81}$

3)
$$\sqrt{0,2}$$
 и $\sqrt{\frac{1}{5}}$

4)
$$\sqrt{0,09}$$
 и $\sqrt{\frac{4}{25}}$

5 Между какими двумя последовательными натуральными числами находится число:

1)
$$\sqrt{31}$$

2)
$$\sqrt{50}$$

3)
$$\sqrt{119}$$

4)
$$\sqrt{234}$$

Определение 5 Для любого **неотрицательного** числа A справедливо равенство: $\left(\sqrt{A}\right)^2 = A$

6 Вычислить:

1)
$$(\sqrt{2})^2$$

3)
$$(\sqrt{110})^2$$

5)
$$(\sqrt{13})^2 - (\sqrt{12})^2$$

2)
$$(\sqrt{17})^2$$

4)
$$(\sqrt{29})^2 + (\sqrt{29})^2$$

6)
$$(\sqrt{12} - \sqrt{11})(\sqrt{12} + \sqrt{11})$$

Вычислить:

1)
$$(-2\sqrt{11})^2 - \sqrt{1,44}$$

2)
$$\frac{3}{11}\sqrt{1,21} - \frac{1}{5}(\sqrt{7})^2$$
 3) $(4\sqrt{3})^2 - (3\sqrt{5})^2$

3)
$$(4\sqrt{3})^2 - (3\sqrt{5})^2$$

Вычислить:

1)
$$\sqrt{16}$$

6)
$$\sqrt{676}$$

11)
$$\sqrt{0,0529}$$

2)
$$\sqrt{81}$$

7)
$$\sqrt{3600}$$

$$\frac{0.0529}{100}$$
14) $\sqrt{\frac{36}{100}}$

3)
$$\sqrt{121}$$

8)
$$\sqrt{6400}$$

12)
$$\sqrt{\frac{1}{9}}$$
 15) $\sqrt{\frac{121}{1600}}$

4)
$$\sqrt{324}$$

5) $\sqrt{625}$

9)
$$\sqrt{0,16}$$

13)
$$\sqrt{\frac{25}{49}}$$

16)
$$\sqrt{\frac{0,01}{0.04}}$$

$\mathbf{2}$ Вычислить:

1)
$$1 + \sqrt{1}$$

4)
$$\sqrt{\frac{25}{49}} + \frac{2}{7}$$

10) $\sqrt{0,0049}$

7)
$$\sqrt{1600} - 1600$$

10)
$$\sqrt{0.81} + 26.3$$

2)
$$12 - \sqrt{16}$$

5)
$$225 + \sqrt{625}$$

8)
$$\sqrt{4}:2\cdot\sqrt{36}$$

11)
$$\sqrt{0,36} + \sqrt{\frac{25}{100}}$$

3)
$$\sqrt{25} + \sqrt{49} - 12$$

6)
$$\sqrt{81} \cdot \sqrt{9}$$

9)
$$\sqrt{\frac{1}{16}} + \sqrt{\frac{1}{25}}$$

12)
$$\sqrt{81} + \sqrt{144}$$

3 Вычислить:

1)
$$\sqrt{1\frac{11}{25}}$$

$$(2) \quad \sqrt{2\frac{46}{49}}$$

3)
$$\sqrt{8\frac{1}{36}}$$

4)
$$\sqrt{2\frac{7}{9}}$$

5)
$$\sqrt{2\frac{23}{49}}$$

1)
$$\sqrt{1\frac{11}{25}}$$
 2) $\sqrt{2\frac{46}{49}}$ 3) $\sqrt{8\frac{1}{36}}$ 4) $\sqrt{2\frac{7}{9}}$ 5) $\sqrt{2\frac{23}{49}}$ 6) $\sqrt{1\frac{69}{100}}$

4 Сравните числа:

1)
$$\sqrt{21+4}$$
 и $\sqrt{36-5}$

3)
$$\sqrt{155+13}$$
 и $\sqrt{\frac{336}{2}}$

2)
$$\sqrt{80-2}$$
 и $\sqrt{78}$

4)
$$\sqrt{15}$$
 и $\sqrt{2,5\cdot 6}$

5 Между какими двумя последовательными числами находится число:

1)
$$\sqrt{40}$$

2)
$$\sqrt{230}$$

3)
$$\sqrt{1400}$$

4)
$$\sqrt{30}$$

5)
$$\sqrt{65}$$

6 Вычислить:

1)
$$(\sqrt{16})^2$$

5)
$$(\sqrt{122})^2$$

2)
$$(\sqrt{5})^2$$

6)
$$(\sqrt{120})^2 + (\sqrt{80})^2$$

3)
$$(\sqrt{3})^2$$

7)
$$(\sqrt{100})^2 : (\sqrt{10})^2$$

4)
$$(\sqrt{70})^2$$

8)
$$(\sqrt{50} - \sqrt{40})(\sqrt{50} + \sqrt{40})$$

7 Вычилсить:

1)
$$(-3\sqrt{15})^2 - \sqrt{1,44}$$

$$2) \quad \frac{7}{12}\sqrt{1,44} - \frac{1}{5}(\sqrt{7})^2$$

3)
$$(5\sqrt{6})^2 - (7\sqrt{2})^2$$

1 Пусто.

Определение 1 Корень из произведения неотрицательных множителей равен произведению корней из этих множителей. То есть если $a \ge 0$ и $b \ge 0$, то:

$$\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$$

Определение 2 Корень из дроби, числитель которой неотрицателен, а знаменатель положителен, равен корню числителя, деленному на корень из знаменателя. То есть если $a \geqslant 0$ и b > 0, mo:

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

Определение 3 Для любого неотрицательного числа А справедливы равенства:

$$\left(\sqrt{A}\right)^2 = A \ u \ \sqrt{A^2} = A$$

Определение 4 Для любого **целого** числа A справедливо равенство: $\sqrt{A^2} = |A|$

1 Вычислить:

1)
$$\sqrt{100 \cdot 49}$$

4)
$$\sqrt{81 \cdot 0,0049}$$

7)
$$\sqrt{9 \cdot 64 \cdot 0, 25}$$

2)
$$\sqrt{81 \cdot 400}$$

5)
$$\sqrt{25 \cdot 0,0529}$$

3)
$$\sqrt{0.01 \cdot 169}$$

6)
$$\sqrt{2,25\cdot 0,04}$$

8)
$$\sqrt{1,21\cdot 0,09\cdot 0,0001}$$

 $\mathbf{2}$ Вычислить:

1)
$$\sqrt{77 \cdot 24 \cdot 33 \cdot 14}$$

2)
$$\sqrt{21 \cdot 65 \cdot 39 \cdot 35}$$

3)
$$\sqrt{1,44\cdot 1,21-1,44\cdot 0,4}$$

3 Вычислить:

$$1) \quad \sqrt{2} \cdot \sqrt{32}$$

2)
$$\sqrt{45} \cdot \sqrt{5}$$

3)
$$\sqrt{1,3} \cdot \sqrt{5,2}$$

4)
$$\sqrt{50} \cdot \sqrt{4,5}$$

2)
$$\sqrt{45} \cdot \sqrt{5}$$
 3) $\sqrt{1,3} \cdot \sqrt{5,2}$ 4) $\sqrt{50} \cdot \sqrt{4,5}$ 5) $\sqrt{16,9} \cdot \sqrt{0,4}$

4 Вычислить:

$$1) \quad \sqrt{21} \cdot \sqrt{3 \, \frac{6}{7}}$$

$$2) \quad \sqrt{15} \cdot \sqrt{6 \frac{2}{3}}$$

3)
$$\sqrt{1\frac{4}{5}} \cdot \sqrt{0,2}$$

4)
$$0, 3\sqrt{289}$$

5 Вычислить:

1)
$$\sqrt{\frac{9}{64}}$$

3)
$$\sqrt{1\frac{9}{16}}$$

5)
$$\sqrt{\frac{10}{90}}$$

7)
$$\frac{\sqrt{12\,500}}{\sqrt{500}}$$

2)
$$\sqrt{\frac{36}{25}}$$

4)
$$\sqrt{5\frac{1}{16}}$$

$$6) \quad \frac{\sqrt{15}}{\sqrt{735}}$$

8)
$$\frac{\sqrt{2,8} \cdot \sqrt{4,2}}{\sqrt{0,24}}$$

Вынести множитель из под знака корня:

1)
$$\sqrt{8}$$

2)
$$\sqrt{18}$$

3)
$$\sqrt{32}$$

4)
$$\sqrt{75}$$

5)
$$\sqrt{12}$$

6)
$$\sqrt{98}$$

2)
$$\sqrt{18}$$
 3) $\sqrt{32}$ 4) $\sqrt{75}$ 5) $\sqrt{12}$ 6) $\sqrt{98}$ 7) $\sqrt{250}$ 8) $\sqrt{200}$

8)
$$\sqrt{200}$$

7 Упростить:

1)
$$3\sqrt{5} + 4\sqrt{5} - 2\sqrt{5}$$

2)
$$3,2\sqrt{13} - \frac{1}{8}\sqrt{13} + 0,25\sqrt{13}$$

3)
$$\sqrt{12} + 5\sqrt{3}$$

4)
$$\sqrt{27} - \sqrt{3}$$

5)
$$\sqrt{125} + \sqrt{50}$$

6)
$$9\sqrt{7} - 2\sqrt{98}$$

7)
$$\frac{1}{4}\sqrt{72} + 1,5\sqrt{2}$$

8)
$$0.5\sqrt{32} - 1.2\sqrt{128}$$

8 Вычислить:

1)
$$\sqrt{3} \cdot (3\sqrt{12} - \sqrt{75})$$

3)
$$(2\sqrt{5} - \sqrt{3})(\sqrt{3} + 3\sqrt{5})$$
 5) $(3 + \sqrt{21})(\sqrt{3} - \sqrt{7})$

5)
$$(3+\sqrt{21})(\sqrt{3}-\sqrt{7})$$

2)
$$(\sqrt{15} + \sqrt{10}) \cdot 2\sqrt{5} - 5\sqrt{12}$$

4)
$$(\sqrt{15} - \sqrt{5})(\sqrt{15} + \sqrt{5})$$

2)
$$(\sqrt{15} + \sqrt{10}) \cdot 2\sqrt{5} - 5\sqrt{12}$$
 4) $(\sqrt{15} - \sqrt{5})(\sqrt{15} + \sqrt{5})$ 6) $(\sqrt{10} - \sqrt{12})(\sqrt{10} + \sqrt{12})$

9 Вычислить:

1)
$$(\sqrt{3} - \sqrt{2})^2$$

4)
$$\sqrt{6,8^2-3,2^2}$$

6)
$$\sqrt{9+4\sqrt{5}} \cdot \sqrt{9-4\sqrt{5}}$$

2)
$$(4-\sqrt{3})^3$$

3)
$$\sqrt{313^2 - 312^2}$$

5)
$$\left(\frac{\sqrt{12} - \sqrt{27}}{\sqrt{18} - \sqrt{2}}\right)^2$$

7)
$$\frac{(\sqrt{13} + \sqrt{7})^2}{10 + \sqrt{91}}$$

10 Между какими двумя целыми числами стоит число:

1)
$$\sqrt{223}$$

2)
$$\sqrt{1512}$$

3)
$$-\sqrt{215}$$

1 Пусто

1 Пусто.