圏の練習1

石塚 伶

0.1 Definition of category

圏 (category) $\mathscr C$ とは、以下のようなものをいう。 (1) $\mathscr C$ の 対象 (obfect) と呼ばれるもの全体 $\mathsf{Ob}(\mathscr C)$ が与えられている。

X が圏 $\mathscr C$ の対象であるとき、 $X\in \mathrm{Ob}(\mathscr C)$ のように表す。紛れのないときは、 $X\in\mathscr C$ のように略記する。

(2) $\mathscr C$ の任意の二つの対象 X,Y の間に、X から Y への射 (morphism) または矢 (arrow) の集合 $\mathscr C(X,Y)$ が与えられている。 *1 射 $f\in\mathscr C(X,Y)$ を、

$$X \xrightarrow{f} Y$$
 あるいは $f: X \longrightarrow Y$

のように表記する。射は次の二つの性質を満たす。

(i) 二つの射が次のように続いている場合、

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

これらの合成 (composition) $g \circ f \in \mathcal{C}(X, Z)$ 、つまり

$$X \stackrel{g \circ f}{\longrightarrow} Z$$

が与えられ、結合則を満たす。すなわち、三つの射

$$W \xrightarrow{e} X \xrightarrow{f} Y \xrightarrow{g} Z$$

に対して、 $(g \circ f) \circ e = g \circ (f \circ e)$ が成立する。すなわち、

$$W \xrightarrow{e} X \xrightarrow{f \circ g} Y \xrightarrow{g} Z$$

のように書ける。こうして得られる等しい射を $g\circ f\circ e$ と表す。四つ以上の射の合成についても同様に表記する。

(ii) $\mathscr C$ の任意の対象 X に対して、恒等射 (identity) と呼ばれる射 $\mathrm{id}_X \in \mathscr C(X,Y)$ がひとつずつ与えられており、合成に関し単位元的にふるまう。すなわち、X からの任意の射

$$f: X \longrightarrow Y$$

に対して $f \circ id_X = f$ が成立し、X への任意の射

$$e: W \longrightarrow X$$

に対して $\mathrm{id}_X \circ e = e$ が成立する。 id_X をしばしば単に id と書く。あるいは、 1_X または単に 1 と書くこともある。射 $f\colon X \longrightarrow Y$ に対して X を f の始域 (domain) または始点 (source) といい、 $\mathrm{dom} f$ や s(f) で表す。また、Y を f の終域 (codomain) または終点 (target) といい、 $\mathrm{cod} f$ や t(f) で表す。

^{*1} $\mathrm{Mor}(X,Y)$ や $\mathrm{Hom}(X,Y)$ のように書くこともある。 $\mathscr C$ を明記するときには $\mathrm{Mor}_{\mathscr C}(X,Y)$ や $\mathrm{Hom}_{\mathscr C}(X,Y)$ とも書く。