Matemática Discreta

Lógica de Primeira Ordem - 1

Universidade de Aveiro 2019/2020

http://elearning.ua.pt

Matemática Discreta

LPO: termos, predicados e quantificadores

Sistema lógico que estende a lógica proposicional.

Exemplo

Considerando as proposições:

- p: "todo o homem é mortal"
- q: "Confúcio é homem"
- r : "Confúcio é mortal"
- A metodologia da lógica proposicional não nos permite concluir que r é consequência lógica de p e de q.
- Além das proposições atómicas e das fórmulas da lógica proposicional, a lógica de primeira ordem conta com:

termos; predicados; quantificadores. LPO: termos, predicados e quantificadores

Termos

Definição (de termo)

Um termo define-se recursivamente da seguinte forma:

- 1) uma constante é um termo;
- 2) uma variável é um termo;
- 3) se f é um símbolo de uma função com n argumentos e t_1, t_2, \ldots, t_n são termos, então $f(t_1, t_2, \ldots, t_n)$ é um termo;
 - os termos são gerados somente por aplicação de 1), 2) e
 3).

Exemplos

- 1) 12;
- 2) **y**;
- 3) pai_de(Luisa).

Matemática Discreta

LPO: termos, predicados e quantificadores

Predicados e átomos

Definição (de predicado)

Um predicado é uma função que a uma dada lista de constantes faz corresponder um valor lógico.

Exemplo

maior(x, y) é um predicado que traduz a relação "x é maior do que y".

Definição (de átomo)

Se P é um predicado com n argumentos e t_1, t_2, \ldots, t_n são termos, então $P(t_1, t_2, \ldots, t_n)$ é um átomo. Nenhuma outra expressão é um átomo.

LPO: termos, predicados e quantificadores

Quantificadores

átomos + conetivos lógicos + quantificadores → fórmulas da lógica de primeira ordem.

 Quantificador universal (∀) → traduz "para todos os elementos...."

Exemplo de aplicação do quantificador universal $(\forall x)$ (maior(x, 1)).

• Quantificador existencial $(\exists) \rightarrow \text{traduz}$ "existe pelo menos um elemento...."

Exemplo de aplicação do quantificador existencial $(\exists x)$ (maior(x, 1)).

Matemática Discreta

LPO: termos, predicados e quantificadores

Alcance de um quantificador

Definição (de alcance de um quantificador)

Designa-se por alcance de um quantificador a parte da fórmula sobre a qual o quantificador atua.

Exemplo

Vamos determinar os alcance dos quantificadores na fórmula $(\forall x) (\exists y) (P(x, y))$.

```
alcance de \forall: (\exists y) (P(x, y)). alcance de \exists: P(x, y).
```

Ocorrências ligadas e livres

Definição (de ocorrência livre e ocorrência ligada)

Uma ocorrência de uma variável numa fórmula diz-se ligada se a ocorrência da variável está dentro do alcance de um quantificador utilizado para essa variável. Uma ocorrência de uma variável numa fórmula diz-se livre se essa ocorrência não é ligada.

Exemplos

- 1) $\forall x (P(x,y));$
- 2) $\forall x (P(x,y) \lor \forall y (Q(y)));$
- 3) $\forall x (P(x)) \Rightarrow Q(x)$.

Matemática Discreta

└Variáveis livres e ligadas

Variáveis ligadas e livres

Definição (de variável livre e ligada)

Uma variável diz-se livre numa fórmula se no mínimo uma sua ocorrência é livre. Uma variável diz-se ligada numa fórmula se no mínimo uma sua ocorrência é ligada.

Exemplos

- 1) $\forall x (P(x,y)) \rightarrow x$ é ligada e y é livre;
- 2) $\forall x (P(x, y) \lor \forall y (Q(y))) \to x$ é ligada e y é livre e ligada:
- 3) $\forall x (P(x)) \Rightarrow Q(x) \rightarrow x \text{ \'e livre e ligada.}$

Observação

Uma fórmula sem variáveis livres é uma proposição.

Fórmulas bem formadas da lógica de primeira ordem

Definição (de fórmula bem formada)

As fórmulas bem formadas (fbf's) da lógica de primeira ordem são definidas sucessivamente da seguinte forma:

- 1) um átomo é uma fbf;
- 2) se F e G são fbf's, então $\neg(F)$, $(F \lor G)$, $(F \land G)$, $(F \Rightarrow G)$ e $(F \Leftrightarrow G)$ são fbf's;
- 3) se F é uma fbf e x é uma variável, então $(\forall x)(F)$ e $(\exists x)(F)$ são fbf's;
- 4) as fbf's são geradas somente por aplicação de um número finito de vezes de 1), 2) e 3).

Matemática Discreta

Fórmulas bem formadas da lógica de primeira ordem

Exemplos de determinação de fórmulas da lógica de primeira ordem

Exemplos

Vamos determinar as fórmulas que exprimem as seguintes afirmações:

- 1) Toda a gente gosta de alguém.
- 2) Todo o ser vivo que não é animal é vegetal.
- 3) Todos os números racionais são números reais.
- 4) Existem números primos.
- 5) O conjunto dos números reais é infinito.

Interpretação na lógica de primeira ordem

Definição (de interpretação)

Seja *F* uma fórmula. Uma interpretação de *F* consiste num domínio *D* e nas seguintes associações de valores:

- 1) para cada constante associamos um elemento de D;
- para cada símbolo de função com n argumentos associamos uma função de Dn em D;
- 3) para cada símbolo de predicado com n argumentos associamos uma função de D^n em $\{0,1\}$ $(\{V,F\})$.
- Trata-se de uma interpretação da fórmula F sobre D.

Matemática Discreta

Interpretação na lógica de primeira ordem

Exemplos

Considerando a fórmula $F : \forall x (P(x, a))$, onde a denota uma constante,

- 1) $D = \{1, 2, 3\}$, a = 1, P(x, a): "x maior ou igual que a", é uma interpretação de F;
- D = {Maria, Luísa, Antónia }, a = Maria, P(x, a): "x é amiga de a", é uma interpretação de F.

Considerando a fórmula $F: \forall x (x \geq a)$, onde a é uma constante,

- 1) $D = \{1, 2, 3\}$, a = 1, é uma interpretação de F;
- 2) $D = \mathbb{Z}$, a = 0, é uma interpretação de F.

Nota: no último exemplo não é necessário definir o predicado na interpretação, uma vez que está definido na fórmula.

Avaliação de fórmulas da lógica de primeira ordem

Para qualquer interpretação de uma fórmula sobre um domínio D, a fórmula pode ser avaliada em 1 (V) ou 0 (F), segundo as seguintes regras:

- 1. se os valores verdadeiros ou falsos das fórmulas $G \in H$ estão avaliados, então os valores verdadeiros ou falsos das fórmulas $\neg(G)$, $(G \land H)$, $(G \lor H)$, $(G \Rightarrow H)$ e $(G \Leftrightarrow H)$ ficam também avaliados;
- (∀x)(G) é avaliada em 1 (V) se G é avaliada em 1 (V) para todas as concretizações possíveis de x em D. Caso contrário, o seu valor é 0 (F).
- (∃x)(G) é avaliada em 1 (V) se G é avaliada em 1 (V) para pelo menos uma concretização de x em D. Caso contrário, o seu valor é 0 (F).

Matemática Discreta

Interpretação na lógica de primeira ordem

Exemplo

Dadas as fórmulas

```
1) (\forall x) (P(x, a));
```

2)
$$(\exists x) (P(x, a))$$
.

onde *a* é uma constante, vamos utilizar a seguinte interpretação *I*:

```
domínio D = \mathbb{Z}; P(x, a) é o predicado "x é maior do que a"; a = 1.
```

Vamos avaliar as fórmulas 1) e 2) para a interpretação /.

Fórmulas que não podem ser avaliadas

Nota: nenhuma fórmula com variáveis livres pode ser avaliada, a menos que se introduza uma função que atribui valores em *D* às variáveis livres.

Exemplo

Se considerarmos a fórmula

$$(\forall x) (P(x,y)),$$

e a interpretação $D = \mathbb{Z}$ e P(x, y): "x é maior do que y", então a fórmula não pode ser avaliada.

Matemática Discreta

Referências e bibliografia

Referência bibliográfica:

D. M. Cardoso, M. P. Carvalho, *Noções de Lógica Matemática*, Universidade de Aveiro, 2007 (versão revista em Março 2015, disponível na página da disciplina).