Introduction to PDEs, Fall 2022

Homework 6 Solutions

Name:		
Name:		

1. In measure theory, there are two additional convergence manners for $f_n \to f$: convergence in measure (called convergence in probability) and convergence almost everywhere (convergence almost surely). This should give you a flavor that probability is a measure and vice versa. Convergence in measure states that for each fixed $\varepsilon > 0$

$$m(\lbrace x \in \Omega : |f_n(x) - f(x)| \ge \varepsilon \rbrace) \to 0$$
, as $n \to \infty$,

and convergence almost everywhere means that the measure of the non-convergence region is zero, i.e., for each fixed $\varepsilon > 0$

$$m(\lbrace x \in \Omega : \lim_{n \to \infty} |f_n(x) - f(x)| \ge \varepsilon \rbrace) = 0.$$

- i) what are the relationships between these two convergence manners? Prove your claims or give a counter-example.
- ii) what are their relationships between strong convergence (convergence in L^2 for instance)? Prove your claims or give a counter-example.

I would like to point out that convergence is global behavior in strong contrast to pointwise convergence since all the points are involved in the convergence limit.

Solution 1. There facts are from your undergraduate course, and I assume that each of you know these statements and their proofs. I present them here to give you a taste how they apply to/in PDEs.

- 2. It is known that strong convergence implies weak convergence, while not the converse. One counter-example we mentioned in class is $f_n(x) := \sin nx$ over $(0, 2\pi)$.
 - (i) Prove that $\sin nx \to 0$ in $L^2((0, 2\pi))$.
 - (ii) Prove that $\sin nx \rightarrow 0$ weakly by showing

$$\int_{0}^{2\pi} g(x) \sin nx dx \to 0 = \left(\int_{0}^{2\pi} g(x) 0 dx \right), \forall g \in L^{2}((0, 2\pi)).$$

If suffices even if $g \in L^1$. Hint: Riemann-Lebesgue lemma.

Solution 2. (i). It is very easy to show that $\|\sin nx\|_{L^2((0,2\pi))} \neq 0$ by straightforward calculations, hence the strong convergence is impossible. (What is the value?)

- (ii). Applying Riemann-Lebesgue lemma gives the desired limit. I already presented partial approach in class and I assume/need that you know how to prove this lemma in detail. One student, if you all remember, mentioned that you learnt this in Calculus. It is possible but I still doubt it as the L^2 -norm was not introduced by then. Wish me wrong.
- 3. We recall that $f_n(x) \rightharpoonup f(x)$ weakly in L^p (resp. convergence in distribution) if for any $\phi \in L^q$ (resp. continuous and bounded), which is its conjugate space with $\frac{1}{p} + \frac{1}{q} = 1$, we have that

$$\int_{\Omega} f_n \phi dx \to \int_{\Omega} f \phi dx.$$

Here we see that for any g in L^q

$$<\cdot,g>=\int_{\Omega}\cdot g$$

defines a bounded linear functional for L^p . Then we also call L^q the dual space of L^p since any element in L^q defines a functional for L^q .

- (i) Another type of convergence that you may see sometimes is $||f_n||_p \to ||f||_p$, which merely states the convergence of a sequence of real numbers. Prove that if $f_n \to f$ in L^p , then $||f_n||_p \to ||f||_p$ (Use Minkowski triangle inequality); however the opposite statement is not necessarily true. Give a counter-example and show it;
- (ii) We have proved that strong convergence in L^p implies the weak convergence by Holder's inequality, however, the opposite statement is not necessarily true. For example, prove that $\sin nx$ converges to zero weakly, but not strongly in L^p . Hint: Riemann–Lebesgue lemma;
- (iii) Prove that, if $f_n \rightharpoonup f$ weakly and $||f_n||_p \to ||f||_p$, then $f_n \to f$ strongly.

Solution 3. Minkowski's triangle inequality states that, $\forall f, g \in L^p$, $p \in (1, \infty)$, we always have that $||f + g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}$. Then it is not hard to obtain that

$$|||f_n||_{L^p} - ||f||_{L^p}| \le ||f_n - f||_{L^p} \to 0,$$

which proves the desired claim. You can fill in the details yourself. I skip presenting a counter-example here, however, here is a hint on how you can construct such a counter-example: think of f_n and f as points in a plane and their norms measure the distance from the origin, therefore $||f_n - f||_{L^p} \to 0$ means that the distance between f_n and f goes to zero, while $||f_n||_{L^p} \to ||f||_{L^p}$ merely means that the distance of f_n to the origin converges to that of f. Now it is not hard to surmise that the former implies the latter, but not the other way. I assume that you can find a counter-example.

Finally, we shall prove that though each condition in does not, while both conditions, imply the strong convergence. To prove this, let us divide our discussions into the following cases:

case 1: p = 2. Then the conclusion is straightforward following Cauchy-Schwarz inequality. I assume that you have no problem proving this case;

case 2: p > 2. We first see that for any $z \in \mathbb{R}$

$$|z+1|^p \ge c|z|^p + pz + 1,$$

where c is a positive constant independent of z. (In order to prove this fact, we just need to show that $\frac{|z+1|^p-pz-1}{|z|^p}$ has a positive lower bounded c over \mathbb{R}). Now we can let $z=\frac{f_n-f}{f}$ in this inequality, multiply it by $|f|^p$ and then integrate the new one over Ω to obtain

$$\int_{\Omega} |f_n|^p dx \ge \int_{\Omega} |f|^p dx + p \int_{\Omega} |f|^{p-2} f(f_n - f) dx + c \int_{\Omega} |f_n - f|^p dx.$$

Since $f_n \to f$ weakly, we see that the second integral on the right hand size of the equality converges to zero (think of $|f|^{p-2}f$ as a test function). On the other hand, we have that $\int_{\Omega} |f_n|^p dx \to \int_{\Omega} |f|^p dx$ thanks to the strong convergence, therefore we must have

$$\int_{\Omega} |f_n - f|^p dx \to 0,$$

which implies the strong convergence.

case 3: $p \in (1,2)$. The proof of this part is a little bit tricky. Similar as above, we can show (by straightforward calculations) that $\forall z \in \mathbb{R}$

$$|z+1| \ge c|z|^p + pz + 1$$
, if $|z| \ge 1$, $|z+1| > c|z|^2 + pz + 1$, if $|z| > 1$.

In order to apply these inequalities, we shall choose $z = \frac{f_n - f}{f}$. Denote

$$\Omega_n := \{ x \in \Omega; |z| \ge 1 \},$$

then we can have by the same calculations as above that

$$\int_{\Omega} |f_n|^p dx = \int_{\Omega \setminus \Omega_n} |f_n|^p dx + \int_{\Omega_n} |f_n|^p dx
= \int_{\Omega \setminus \Omega_n} |z+1|^p |f|^p dx + \int_{\Omega_n} |z+1|^p |f|^p dx
\ge \int_{\Omega \setminus \Omega_n} (c|z|^2 + pz + 1)|f|^p dx + \int_{\Omega_n} (c|z|^p + pz + 1)|f|^p dx,$$

which implies, in light of the formula of z, that

$$\int_{\Omega \setminus \Omega_n} (f_n - f)^2 |f|^{p-2} dx + \int_{\Omega_n} |f_n - f|^p dx \to 0.$$

Both integrals are nonnegative, hence both should converge to zero

$$\int_{\Omega \setminus \Omega_n} (f_n - f)^2 |f|^{p-2} dx \to 0, \int_{\Omega_n} |f_n - f|^p dx \to 0.$$

In particular, we only need to show that

$$\int_{\Omega \setminus \Omega_n} |f_n - f|^p dx \to 0.$$

For this purpose, we shall apply Holder's inequality or Schwarz's inequality as following. Note that $|f_n - f| < |f|$ in $\Omega \setminus \Omega_n$, then we have that

$$\begin{split} \int_{\Omega \backslash \Omega_n} |f_n - f|^p dx &\leq \int_{\Omega \backslash \Omega_n} |f|^{p-1} |f_n - f| dx \\ &\leq \left(\int_{\Omega \backslash \Omega_n} |f|^p \right)^{\frac{1}{2}} \left(\int_{\Omega \backslash \Omega_n} |f|^{p-2} |f_n - f|^2 dx \right)^{\frac{1}{2}} \\ &\leq \left(\int_{\Omega} |f|^p \right)^{\frac{1}{2}} \left(\int_{\Omega \backslash \Omega_n} |f|^{p-2} |f_n - f|^2 dx \right)^{\frac{1}{2}} \to 0, \end{split}$$

which is the desired claim and the proof completes.