In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
%matplotlib inline
# mpl.style.use('ggplot')
```

In [2]:

```
1 car = pd.read_csv('quikr_car.csv')
```

In [3]:

```
1 car.head()
```

Out[3]:

	name	company	year	Price	kms_driven	fuel_type
0	Hyundai Santro Xing XO eRLX Euro III	Hyundai	2007	80,000	45,000 kms	Petrol
1	Mahindra Jeep CL550 MDI	Mahindra	2006	4,25,000	40 kms	Diesel
2	Maruti Suzuki Alto 800 Vxi	Maruti	2018	Ask For Price	22,000 kms	Petrol
3	Hyundai Grand i10 Magna 1.2 Kappa VTVT	Hyundai	2014	3,25,000	28,000 kms	Petrol
4	Ford EcoSport Titanium 1.5L TDCi	Ford	2014	5,75,000	36,000 kms	Diesel

In [4]:

```
1 car.shape
```

Out[4]:

(892, 6)

In [5]:

```
1 car.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 892 entries, 0 to 891
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	name	892 non-null	object
1	company	892 non-null	object
2	year	892 non-null	object
3	Price	892 non-null	object
4	kms_driven	840 non-null	object
5	<pre>fuel_type</pre>	837 non-null	object

dtypes: object(6)
memory usage: 41.9+ KB

```
In [6]:
```

```
backup = car.copy()
```

Data Quality

- · names are pretty inconsistent
- · names have company names attached to it
- · some names are spam like 'Maruti Ertiga showroom condition with' and 'Well mentained Tata Sumo'
- company: many of the names are not of any company like 'Used', 'URJENT', and so on.
- · year has many non-year values
- · year is in object. Change to integer
- · Price has Ask for Price
- · Price has commas in its prices and is in object
- kms_driven has object values with kms at last.
- · It has nan values and two rows have 'Petrol' in them
- · fuel_type has nan values

Cleaning Data

Year has many non-year valus

```
In [7]:

1     car = car[car['year'].str.isnumeric()]
```

Year is in object. change to intger

```
In [8]:

1 car['year'] = car['year'].astype(int)
```

Price has "Ask for Price"

```
In [9]:

1    car = car[car['Price'] != 'Ask For Price']

In [10]:

1    # car['Price'].unique()
```

Price has commas in its prices and is in object

```
In [11]:
```

```
car['Price']=car['Price'].str.replace(',','').astype(int)
```

kms_driven has object values with kms at last

```
In [12]:
```

```
car['kms_driven']=car['kms_driven'].str.split().str.get(0).str.replace(',','')
```

It has nan value values and two rows have 'Petrol' in them

```
In [13]:
```

```
1 car=car[car['kms_driven'].str.isnumeric()]
```

```
In [14]:
```

```
1 car['kms_driven']=car['kms_driven'].astype(int)
```

fuel_type has nan values

```
In [15]:
```

```
1 car=car[~car['fuel_type'].isna()]
```

In [16]:

```
1 car.shape
```

Out[16]:

(816, 6)

name and company had spammed data...but with previous cleaning, thoserows got removed.

company does not need any cleaning now. WChwanging car names. keeping only the first 3 words

```
In [17]:
```

```
car['name']=car['name'].str.split().str.slice(start=0, stop=3).str.join(' ')
```

Resetting the index of the final cleaned data

```
In [18]:
```

```
1 car=car.reset_index(drop=True)
```

Cleaned Data

```
In [19]:
 1 car.to_csv('Cleaned_Car_data.csv')
In [20]:
   car.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 816 entries, 0 to 815
Data columns (total 6 columns):
                Non-Null Count Dtype
    Column
                                 object
0
    name
                816 non-null
 1
               816 non-null
                                 object
    company
 2
                                 int32
    year
                816 non-null
 3
    Price
                816 non-null
                                int32
 4
    kms_driven 816 non-null
                                int32
 5
    fuel_type 816 non-null
                                 object
dtypes: int32(3), object(3)
memory usage: 28.8+ KB
In [21]:
   car.describe(include='all')
```

Out[21]:

	name	company	year	Price	kms_driven	fuel_type
count	816	816	816.000000	8.160000e+02	816.000000	816
unique	254	25	NaN	NaN	NaN	3
top	Maruti Suzuki Swift	Maruti	NaN	NaN	NaN	Petrol
freq	51	221	NaN	NaN	NaN	428
mean	NaN	NaN	2012.444853	4.117176e+05	46275.531863	NaN
std	NaN	NaN	4.002992	4.751844e+05	34297.428044	NaN
min	NaN	NaN	1995.000000	3.000000e+04	0.000000	NaN
25%	NaN	NaN	2010.000000	1.750000e+05	27000.000000	NaN
50%	NaN	NaN	2013.000000	2.999990e+05	41000.000000	NaN
75%	NaN	NaN	2015.000000	4.912500e+05	56818.500000	NaN
max	NaN	NaN	2019.000000	8.500003e+06	400000.000000	NaN

```
In [22]:
```

```
1 car=car[car['Price']<6000000]</pre>
```

Extracting Data

```
In [23]:
```

```
1 x=car.drop(columns='Price')
2 y=car['Price']
```

In [24]:

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2)
```

In [25]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import make_column_transformer
from sklearn.pipeline import make_pipeline
```

In [26]:

```
ohe = OneHotEncoder()
ohe.fit(x[['name','company','fuel_type']])
```

Out[26]:

OneHotEncoder()

In [27]:

In [28]:

```
1 lr = LinearRegression()
```

In [29]:

```
pipe = make_pipeline(column_trans, lr)
```

```
In [30]:
    pipe.fit(x train, y train)
Out[30]:
Pipeline(steps=[('columntransformer',
                 ColumnTransformer(remainder='passthrough',
                                   transformers=[('onehotencoder',
                                                   OneHotEncoder(categories=
[array(['Audi A3 Cabriolet', 'Audi A4 1.8', 'Audi A4 2.0', 'Audi A6 2.0',
       'Audi A8', 'Audi Q3 2.0', 'Audi Q5 2.0', 'Audi Q7', 'BMW 3 Series',
       'BMW 5 Series', 'BMW 7 Series', 'BMW X1', 'BMW X1 sDrive20d',
       'BMW X1 xDrive20d', 'Chevrolet Beat', 'Chevrolet Beat...
array(['Audi', 'BMW', 'Chevrolet', 'Datsun', 'Fiat', 'Force', 'Ford',
       'Hindustan', 'Honda', 'Hyundai', 'Jaguar', 'Jeep', 'Land',
       'Mahindra', 'Maruti', 'Mercedes', 'Mini', 'Mitsubishi', 'Nissan',
       'Renault', 'Skoda', 'Tata', 'Toyota', 'Volkswagen', 'Volvo'],
      dtype=object),
array(['Diesel', 'LPG', 'Petrol'], dtype=object)]),
                                                    'name', 'company',
                                                    'fuel_type'])])),
                ('linearregression', LinearRegression())])
In [31]:
 1 y pred = pipe.predict(x test)
In [32]:
 1 r2_score(y_test, y_pred)
Out[32]:
```

0.6954629091832226

Finding the model with a random state of TrainTestSplit where the model was found to give almost 0.88

In [33]:

```
1
  scores=[]
2
  for i in range(1000):
3
       x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2,random_state
4
       lr=LinearRegression()
5
       pipe=make_pipeline(column_trans, lr)
      pipe.fit(x_train, y_train)
6
7
      y_pred=pipe.predict(x_test)
         print(r2_score(y_test, y_pred), i)
8
  #
9
       scores.append(r2_score(y_test, y_pred))
```

```
In [34]:
    np.argmax(scores)
Out[34]:
661
In [35]:
    scores[np.argmax(scores)]
Out[35]:
0.889770931767991
In [36]:
    x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2,random_state=np.
    lr=LinearRegression()
    pipe=make_pipeline(column_trans, lr)
 4 pipe.fit(x_train, y_train)
    y_pred=pipe.predict(x_test)
   r2_score(y_test, y_pred)
Out[36]:
0.889770931767991
In [37]:
    import pickle
In [38]:
    pickle.dump(pipe,open('LinearRegressionModel.pkl','wb'))
In [39]:
   pipe.predict(pd.DataFrame([['Maruti Suzuki Swift','Maruti', 2019,100,'Petrol']], column
Out[39]:
array([400795.54550476])
In [40]:
    pipe.predict(pd.DataFrame([['Maruti Suzuki Swift', 'Maruti', 2017,100, 'Petrol']], column
    \blacktriangleleft
Out[40]:
array([363365.76708183])
```