ネットによる連続写像の特徴づけ

1

1.1 前置き

設定 1.1. X で適当な位相空間を表す.

定義 1.2. (ネット). 有向集合 Λ と $x:\Lambda\to X$ の組 (x,Λ) を X のネットという. これを単に $\{x_\lambda\}_{\lambda\in\Lambda}$ で表す.

定義 1.3. (共終). A を順序集合, B を A の部分集合とする. 任意の $a \in A$ に対して, $b \in B$ で $a \le b$

を満たすものが存在するとき, B は A と共終であるという.

定義 1.4. (強共終). A を順序集合, B を A の部分集合とする. 任意の $a \in A$ に対して, $b_0 \in B$ で $b \ge b_0 \Rightarrow a \le b$

を満たすものが存在するとき, B は A と強共終であるという.

定義 1.5. (部分ネット). (x,Λ) を X のネットとする. Λ' を有向集合, $\varphi:\Lambda'\to\Lambda$ とする. $(x,\varphi(\Lambda'))$ は, $\varphi(\Lambda')$ が Λ と強共終であるとき, (x,Λ) の部分ネットという. これを単に $\left\{x_{\varphi(\lambda')}\right\}_{\lambda'\in\Lambda'}$ で表す.

定義 1.6. (補有限回属する). $\{x_{\lambda}\}_{\lambda \in \Lambda}$ を X のネット, $S \subset X$ を X の部分集合とする. $\{x_{\lambda}\}$ は $\lambda_0 \in \Lambda$ で $\lambda > \lambda_0 \Rightarrow x_{\lambda} \in S$

を満たすとき,S に補有限回属するという.

定義 1.7. (頻繁に属する). $\{x_{\lambda}\}_{\lambda\in\Lambda}$ を X のネット, $S\subset X$ を X の部分集合とする. $\{x_{\lambda}\}$ は 任意の $\lambda\in\Lambda$ に対して, $\lambda'\geq\lambda$ で

 $x_{\lambda'} \in S$

を満たすとき,S に頻繁に属するという.

定義 1.8. (普遍ネット). X のネット $\{x_{\lambda}\}$ は、任意の部分集合 $S \subset X$ に対して、S に補有限回属するか、あるいは S^c に補有限回属するとき、普遍ネットであるという.

定義 1.9. (収束点). $\{x_{\lambda}\}$ を X のネットとし, $a \in X$ とする. a の任意の近傍 V_a に対して, $\{x_{\lambda}\}$ が V_a に補有限回属するとき, a を $\{x_{\lambda}\}$ の収束点という. $a = \lim x_{\lambda}$ と表す.

命題 **1.10.** (閉包のネットによる特徴づけ). $S\subset X$ を部分集合とする. $x\in \bar{S}$ であることと, x に収束する S のネットが存在することは必要十分である.

証明・ \Rightarrow を示す.x は S の閉包に属しているので,x の任意の近傍 V に対して, $x_V \in S \cap V$ なる点がとれる.x の近傍全体 \mathcal{N}_x に, $V \leq U$: \Leftrightarrow $V \supset U$ により順序を定めて有向集合とする.すると, $\{x_V\}_{V \in \mathcal{N}_x}$ は x に 収束する S のネットである. \Leftrightarrow を示す. $x \in X \setminus \bar{S}$ であると, $X \setminus \bar{S}$ は閉集合なので,小さい x の開近傍 U_x で \bar{S} と共通部分を持たないものをとると, U_x に補有限回属する S のネットはとれないので x に収束することに矛盾する.

定義 1.11. (堆積点). $\{x_{\lambda}\}$ を X のネットとし, $a \in X$ とする. a の任意の近傍 V_a に対して, $\{x_{\lambda}\}$ が V_a に 頻繁に属するとき, a を $\{x_{\lambda}\}$ の堆積点という.

1.2 本編

命題 1.12. (連続写像のネットによる特徴づけ). X,Y を位相空間, $f:X\to Y$, $x\in X$ とする. f が連続であることと, X の任意の収束ネット $\{x_\lambda\}$ に対して $\{fx_\lambda\}$ が $f(\lim x_\lambda)$ に収束する Y の収束ネットとなることは, 必要十分である.

証明・ \Rightarrow を示す.X の, $x \in X$ に収束するネット $\{x_{\lambda}\}$ をとる.任意に f(x) の近傍 U をとり,その逆像を V_x とする. V_x は x の近傍であるので, $\{x_{\lambda}\}$ は補有限回 V_x に属する.従って, $\{fx_{\lambda}\}$ は U に補有限回属するので,示された. \Leftarrow 連続でない点 x があるとする.f(x) の近傍 U で,x の任意の近傍の f による像が U に含まれないものがとれる.そこで,x の任意の近傍 V に対して $y \in f(V) \setminus U$ が取れるので, $x_V \in V$ で $fx_V = y$ を満たすものがとれる.x の近傍全体 N_x に, $V \leq U$: \Leftrightarrow $V \supset U$ により順序を定めて有向集合とする.すると, $\{x_V\}_{V \in N_x}$ は x に収束する x のネットである.一方で,任意の x に対して x0 に対して x1 に対して x2 に対して x3 の近傍 x4 に対いので,x4 には収束しないので矛盾する.