

VISUAL NAVIGATION

Annex A

Estimation of rotation and translation

Problem formulation

- \triangleright First set of data points (3 x n matrix): \mathbf{X}
- \triangleright Second set of data points (3 x n matrix): \mathbf{X}'
- > The two sets are related as

$$\mathbf{X}_i' = \mathbf{R}\mathbf{X}_i + \mathbf{t}$$

where ${f R}$ is an orthonormal matrix (rotation) and ${f t}$ a real-valued translation vector

➤ How to estimate both rotation and translation?

Estimation

- ightharpoonup Compute centroids $\mathbf{c} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_i$ and $\mathbf{c}' = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_i'$
- > Compute matrix $\mathbf{H} = \sum_{i=1}^n (\mathbf{X}_i \mathbf{c}) (\mathbf{X}_i' \mathbf{c}')^{\mathrm{T}}$
- \succ Compute SVD decomposition $\mathbf{H} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}}$
- \succ Estimation of rotation: $\mathbf{R} = \mathbf{V}\mathbf{U}^{\mathrm{T}}$
- \succ Estimation of translation: $\mathbf{t} = \mathbf{c}' \mathbf{R}\mathbf{c}$