Notes on the 12 qubit PPS

Dawei Lu

Notes about the problems in the 12 qubit PPS preparation, including Matlab codes and Experiments.

DEC 12, 2014

Calculating the state to state GRAPE on Ordi2. In pulsefinder folder. paramsfile is 'twqubit_subS2S.m', and the output file is 'twqubit_7zto12z'.

```
% Number of timesteps
2
   params.plength = 400;
 3
4
   % Length of each time step
5
   params.timestep = 10e-6;
6
7
   params.subsystem\{1\} = [1 2 3 9 10 11];
8
   params.subsystem\{2\} = [4 5 6 7 8 12];
9
   params.subsys_weight = [6 6];
10
11
   % Input and goal states for state to state
12
   params.rhoin = mkstate('+1ZZZZZZZIIIII',1);
13
   params.rhogoal = mkstate('+1ZZZZZZZZZZZZ',1);
14
15
   % Allow Zfreedom or not
16
   params.Zfreedomflag = 1;
```

The fidelity keeps 0 all the time. Guess the reason is 'Zfreedom'. Set 'params.Zfreedomflag = 0;'. However, still 0.

Annie said maybe due to the length. Her SWAP gate requires 8ms, so I changed 'params.plength = 800;'. But for with or without Zfreedom, fidelity is still 0.

Check if some of my GRAPE settings are wrong. try to repeat Annie's SWAP gate calculation.

```
% Number of timesteps
2
  params.plength = 800;
3
4
  % Length of each time step
5
  params.timestep = 10e-6;
6
7
  params.subsystem\{1\} = [1 2 3 9 10 11];
8
  params.subsystem\{2\} = [4 5 6 7 8 12];
9
  params.subsys_weight = [6 6];
10
11
  \% Input and goal states for state to state
12
  +1IIIIIIIIII;;
13
  14
15
  % Allow Zfreedom or not
  params.Zfreedomflag = 0;
```

The outputfile is 'twqubit_SWAPC7H5'. And the fidelity is already over 98%. Then I changed 'params.Zfreedomflag = 1;', and the fidelity is over 95% after 30 iterations. Much slower than the no Zfreedom case. Maybe due to different initial guesses.

DEC 15, 2014

Generate all $\pi/2$ and π pulses for the 7 Carbons, with the Calibration = 25KHz. $\pi/2$ pulses are 1ms length and 100 steps, and π pulses are 2ms length and 200 steps. Generating Code in 'twqubit_shape.m'

```
for ii = 1:7
loadfile = ['twqubit_C', num2str(ii), '180', '.mat'];
eval(['load ', loadfile]);
filename1 = ['twqubit_C', num2str(ii), '180_C_25000.txt'];
filename2 = ['twqubit_C', num2str(ii), '180_H_25000.txt'];
make_bruker_shape(pulses{1}, 25000, filename1,1);
make_bruker_shape(pulses{1}, 25000, filename2,2);
end
```

The pulses are saved in Ordi2 '\pulsefinder\12 Qubit\' with the names such as 'twqubit_C590_C_25000.txt'.

I checked all the fidelities of the $\pi/2$ pulses in the folder '\pulseexam_12qubit\C_rotations\check_grape.m'. The code is

```
load Para.mat
   load twpauliX_full.mat
   load twpauliY_full.mat
5
   %% Check all 90 rotations
6 %% Parameters for the GRAPE pulse
7
   for spin_number = 1:7
8 | Name1 = ['twqubit_C', num2str(spin_number), '90_C_25000.txt'];
9 | Name2 = ['twqubit_C', num2str(spin_number), '90_H_25000.txt'];
10
   Amplitude = 25000;
11
   Time = 1e-3;
12 | Length = 100;
13 dt = Time/Length;
14 | FirstLine = 19; % the first line which contains the information of power and
      phase
15
   Output1 = 'test1';
16
17
   Output2 = 'test2';
18
19
   [power1, phase1] = dataout (Name1, Output1, FirstLine, Length);
20 [power2, phase2] = dataout (Name2, Output2, FirstLine, Length);
21
   %% Check
22
   X_C = 0; Y_C = 0;
23 | for jj = 1:7
24
       X_C = X_C + KIx{jj};
25
       Y_C = Y_C + KIy\{jj\};
26
   end
27
28 \mid X_H = 0; Y_H = 0;
   for jj = 8:12
29
30
       X_H = X_H + KIx{jj};
       Y_H = Y_H + KIy{jj};
31
32
   end
33
34
35 U = eye(2^12);
36 \ U = U*expm(-i*H*4e-6);
37 | for ii = 1:Length
```

```
38
       Hext = 2*pi*(Amplitude*power1(ii)/100)*(X_C*cos(phase1(ii)/360*2*pi)-Y_C*sin
          (phase1(ii)/360*2*pi))+2*pi*(Amplitude*power2(ii)/100)*(X_H*cos(phase2(ii
          )/360*2*pi)-Y_H*sin(phase2(ii)/360*2*pi));
39
       U = \exp(-i*(Hext+H)*dt)*U;
40
   end
   U = U*expm(-i*H*4e-6);
41
42
43
   Utar = expm(-i*KIx{spin_number}*pi/2);
44
45 | Fidelity = ['Fidelity_C', num2str(spin_number), '90'];
   % eval(['Fidelity_C', num2str(spin_number), '90 = abs(trace(U*Utar'))/2^12']);
46
47
   Fidelity = abs(trace(U*Utar'))/2^12
48
49 | savefile = ['twqubit_C', num2str(spin_number), '90_Ufid.mat'];
   save (savefile, 'U', 'Fidelity');
50
51
52 end
```