Vector Fields on Spheres

Apurv Nakade

1.	Clifford algebras	1
2.	Background	2
	Co-reducibility	3
4.	$\widetilde{KO}(\mathbb{RP}(n,m))$	4
5.	Proof of the main theorem	5
6.	Computations of the K groups	5
7.	Computation of the KO groups	7

Contents

This is a summary of the Adams paper titled "Vector fields on Spheres" in which he computes the upper bound on the number of linearly independent non-vanishing vector fields on S^n .

Definition 0.1. For $n=(2a+1)2^b$ define $\rho(n)=\rho'(b)+1$ where ρ' is defined inductively as

$$\rho'(0) = 0, \rho'(1) = 1, \rho'(2) = 3, \rho'(3) = 7$$

(note: S^0, S^1, S^3, S^7 are trivilizable) and $\rho'(4+b) = 8 + \rho'(b)$.

Theorem 0.1 (Adams). There do not exist $\rho(n)$ linearly independent vector fields on S^{n-1} . This bound is strict i.e. there exist $\rho(n) - 1$ linearly independent vector fields on S^{n-1} .

The steps involved in the proof are as follows:

- (1) Construct of the $\rho(n) 1$ vector fields using Clifford algebras
- (2) Connect the existence of k vector fields on S^n to coreducibility of stunted real projective space i.e. an existence of a map

$$\mathbb{RP}(n+k-1,n-1) \to S^n$$

whose restriction to the n-skeleton is degree 1

- (3) Find obstructions to existence of such a map. The restrictions lie in Steenrod Squares when $8 \not| n$ and Adams operations on KO when $8 \mid n$.
- (4) The action on Steenrod Squares on $H^*(\mathbb{RP}(n,m);\mathbb{Z}/2)$ is pretty well known. The main crux of Adams paper was computing Adams operations on $\widetilde{KO}(\mathbb{RP}(n,m))$.

Note: Here $K, KO, \widetilde{K}, \widetilde{KO}$ denote the 0^{th} K-groups (and rings), H^* will denote singular cohomology with \mathbb{Z} coefficients.

1. Clifford algebras

The Clifford algebra \mathcal{C}_n over \mathbb{R}^n with standard basis e_i is defined as

$$C_n := \mathbb{R}[e_i]/(e_i^2 + 1, e_i e_j + e_j e_i)$$

 \mathcal{C}_n has a vector space basis of monomials in e_i and hence $\dim_{\mathbb{R}} \mathcal{C}_n = 2^n$.

2 APURV NAKADE

We have the following isomorphisms

$$\mathcal{C}_0 \cong \mathbb{R}$$
 $\mathcal{C}_1 \cong \mathbb{C}$
 $\mathcal{C}_2 \cong \mathbb{H}$
 $\mathcal{C}_3 \cong \mathbb{H} \oplus \mathbb{H}$
 $\mathcal{C}_{n+8} \cong \mathcal{C}_n \otimes M_{16}(\mathbb{R})$ (Bott perioditicity)

The first three are just definitions and the last two are proven by giving an explicit isomorphism.

Corollary 1.1. $\mathbb{R}^1, \mathbb{R}^2, \mathbb{R}^4, \mathbb{R}^8$ are modules over C_0, C_1, C_2, C_3 respectively. If M is a module over C_n then $\mathbb{R}^{16} \otimes M$ is a module over C_{n+8} .

Lemma 1.2. If \mathbb{R}^n is a \mathcal{C}_m module then there exist m linearly independent vector fields on S^{n-1} .

Proof: By the module structure we can think of $e_i \in \mathcal{C}_m$ as elements of $GL(n,\mathbb{R})$. So for each $v \in S^{n-1}$ we get m+1 linearly independent vectors $v, e_1 v, \dots, e_m v$. We can then apply the Gram-Schmidt process to get the required m vector fields.

Corollary 1.3. There exist $\rho(n) - 1$ linearly independent vector fields on S^{n-1} .

Proof: It suffices to show that \mathbb{R}^n is a $\mathcal{C}_{\rho(n)-1}$ module. As $\mathbb{R}^n = \mathbb{R}^{2a+1} \otimes \mathbb{R}^{2^b}$ it suffices to show that \mathbb{R}^{2^b} is a $\mathcal{C}_{\rho'(b)}$ module. One can show this by induction. The statement is true for b = 0, 1, 2, 3. Assume the statement to be true for an arbitrary b and consider b + 4. Now $\mathbb{R}^{2^{b+4}} = \mathbb{R}^{16} \otimes \mathbb{R}^{2^b}$ and $\mathcal{C}_{\rho'(b+4)} = \mathcal{C}_{\rho'(b)+8}$ so we are done by the above corollary.

2. Background

2.1. Atiyah Hirzebruch Spectral Sequence.

Theorem 2.1. For any cohomology theory C^* and a finite CW-complex X, there exists a cohomology spectral sequence, the **AHSS** with

$$\begin{split} E_2^{p,q} &= H^q(X^p; C^*(point)) \\ E^{p,q} &\Longrightarrow C^*(X) \end{split}$$

where X^p is the p skeleton of X and H^* denotes the singular cohomology.

2.2. Adams Operations.

Theorem 2.2. Given a finite CW-complex X there exist cohomology operations $\psi_{\mathbb{C}}^k : K(X) \to K(X), k \in \mathbb{Z}$ (called **Adams operations**) which are uniquely determined by the following axioms:

- (1) Naturality: for $f: X \to Y$ we have $f^*\psi_{\mathbb{C}}^k = \psi_{\mathbb{C}}^k f^*$
- (2) For a line bundle L we have $\psi_{\mathbb{C}}^k(L) = L^k$, $\psi_{\mathbb{C}}^0(L) = 1$
- (3) $\psi_{\mathbb{C}}^k \psi_{\mathbb{C}}^l = \psi_{\mathbb{C}}^{kl}$
- (4) If ch^q denotes the $2q^{th}$ component of the Chern character then $ch^q \circ \psi_{\mathbb{C}}^k = k^q.ch^q$. More generally if c_q denotes the q^{th} Chern class then $c_q \circ \psi^k = k^q.c_q$

There exist Adams operations in KO-theory $\psi_{\mathbb{R}}^k: KO(X) \to KO(X)$ satisfying the same axioms and a compatibility condition $\psi_{\mathbb{C}}^k(E \otimes \mathbb{C}) = \psi_{\mathbb{R}}^k(E) \otimes \mathbb{C}$.

Proof: One way to prove this is by using the splitting principle, which is not easy to prove for K theory. Instead Adams uses the exterior algebra representation of GL(n) to define these operations. A dim n vector

bundle can be described by a map $X \to BGL(n)$, the field could be either \mathbb{R} or \mathbb{C} . We have exterior power representations

$$E_r: GL(n) \to GL(\binom{n}{r})$$

$$M \mapsto \wedge^r M$$

Now consider the symmetric polynomials $\sigma_1, \dots, \sigma_n$ in the variables x_1, \dots, x_n . The sum of powers $\sum_i x_i^k$ can be expressed as a polynomial $Q(\sigma_1, \dots, \sigma_n)$. Define the operation k^{th} Adams operation on dim n by

$$\psi^k : BGL(n) \to \mathbb{Z} \times BGL$$

 $B(M \mapsto Q(E_1, \dots, E_n))$

Note that this could lead to a virtual bundle of dim n. Uniqueness is a bit non-trivial and needs some facts from representation theory over \mathbb{R} .

The Chern character can be written in terms of the Chern roots x_1, \dots, x_n as $ch = (e^{x_1} + \dots + e^{x_n})$. Because $c_1(L' \otimes L'') = c_1(L') + c_1(L'')$ we see that $ch \circ \psi^k = (e^{kx_1} + \dots + e^{kx_n})$ which gives us 4).

2.3. K theory of spheres.

Theorem 2.1 (Bott Periodicity).

$$\widetilde{K}(S^{2n+1}) \cong 0$$

$$\widetilde{K}(S^{2n}) \cong \mathbb{Z}$$

$$\widetilde{KO}(S^{4n}) \cong \mathbb{Z}$$

The complexification map $\otimes \mathbb{C}: \widetilde{KO}(S^{4n}) \to \widetilde{K}(S^{4n})$ is injective and the image is \mathbb{Z} if n is even and $2\mathbb{Z}$ if q is odd. The $2n^{th}$ component of the Chern character $ch^n: \widetilde{K}(S^{2n}) \to \widetilde{H}^{2n}(S^{2n}, \mathbb{Q})$ maps isomorphically onto $\widetilde{H}^{2n}(S^{2n}, \mathbb{Z})$.

Corollary 2.2. Combining the above propositions we get that the Adams operations $\psi_{\mathbb{C}}^k$ and $\widetilde{KO}(S^{2n})$ are given by multiplication by k^n and k^{2n} respectively.

3. Co-reducibility

Definition 3.1. Define the following spaces:

Stunted projective spaces:

$$\begin{split} \mathbb{RP}(n,k) &:= \mathbb{R}P^n/\mathbb{R}P^k \\ \mathbb{CP}(n,k) &:= \mathbb{C}P^n/\mathbb{C}P^k \end{split}$$

Canonical line bundles over \mathbb{RP}^k :

$$\begin{split} \gamma^k &:= \{(l,v)|l \in \mathbb{RP}^k, v \in l \subset \mathbb{R}^{k+1}\} \\ \gamma^k_\bot &:= \{(l,v)|l \in \mathbb{RP}^k, v \perp l \subset \mathbb{R}^{k+1}\} \end{split}$$

First a few facts about the canonical line bundles,

Lemma 3.2. Normal bundle of \mathbb{RP}^k in \mathbb{RP}^{n+k} is isomorphic to $n\gamma^k$. It's Thom space $T(n\gamma^k) \cong \mathbb{RP}^{n+k}/\mathbb{RP}^{n-1}$.

Proof: The lift of γ^n to S^n is the trivial bundle $S^n \times \mathbb{R}$, so $\gamma^n \cong S^n \times_{\mathbb{Z}/2} \mathbb{R}$. The normal bundle of S^k inside S^{n+k} is trivial, so the normal bundle of \mathbb{RP}^k in \mathbb{RP}^{n+k} is isomorphic to

$$S^k \times_{\mathbb{Z}/2} \mathbb{R}^n \cong n \gamma^k$$

For the second part it suffices to show that $\mathbb{RP}^{n+k} \setminus \mathbb{RP}^k$ deformation retracts onto \mathbb{RP}^{n-1} . Again it is trivial to see this for S^k inside S^{n+k} and then quotient out by $\mathbb{Z}/2$.

APURV NAKADE

Lemma 3.3. If there exist k-1 linearly independent vector fields on S^{n-1} then the unit sphere bundle $S(n\gamma^{k-1})$ is trivial and hence is homotopy equivalent to $\mathbb{RP}^{k-1} \times S^{n-1}$.

Proof: Assume that there exist s_1, s_2, \dots, s_{k-1} orthonormal vector fields on S^{n-1} . Let s_0 be the radial vector field. Then $(s)_p = (s_0(p), \dots, s_{k-1}(p))$ defines an orthonormal $(n-1) \times k$ matrix for each $p \in S^{n-1}$.

By the above lemma $n\gamma^{k-1} \cong S^{k-1} \times_{\mathbb{Z}/2} \mathbb{R}^n$ so that $S(n\gamma^{k-1}) \cong S^{k-1} \times_{\mathbb{Z}/2} S^{n-1}$.

Define a map

4

$$\mathbb{RP}^{k-1} \times S^{n-1} \to S^{k-1} \times_{\mathbb{Z}/2} S^{n-1}$$
$$([p], q) \mapsto [p, s(q)p]$$

Why is this a homotopy equivalence?

Theorem 3.4 (coreducibility). Given k-1 vector fields on S^{n-1} there exist map

$$f: \mathbb{RP}(n+k-1, n-1) \to S^n$$

such that the composite

$$S^n = \mathbb{RP}(n, n-1) \hookrightarrow \mathbb{RP}(n+k-1, n-1) \xrightarrow{f} S^n$$

has degree 1.

Proof: Look at the following diagram,

$$S^{n} \cong \mathbb{RP}(n, n-1) \hookrightarrow \mathbb{RP}(n+k-1, n-1)$$

$$\downarrow \cong$$

$$Th(n\gamma^{k-1})$$

$$\downarrow \cong$$

$$Th(\mathbb{RP}^{k-1} \times S^{n-1})$$

$$\downarrow \cong$$

$$\mathbb{RP}^{k-1}_{+} \wedge S^{n}$$

$$\downarrow S^{n}$$

Define f to be the composition of the vertical arrows.

4.
$$\widetilde{KO}(\mathbb{RP}(n,m))$$

The computation of these groups are quite complicated as \mathbb{RP}^n has cells in all dimensions. The results of this section will be proven at the end.

Theorem 4.1. If $b \ge 3$ where $n = (2a + 1)2^b$ then for any positive integer k

$$\widetilde{KO}(\mathbb{RP}(n+k,n-1)) = \mathbb{Z}\mu \oplus \mathbb{Z}/2^{b+1}\lambda$$

The Adams operations on the generators are given by

$$\psi_{\mathbb{R}}^{3}(\lambda) = \lambda$$

$$\psi_{\mathbb{R}}^{3}(\mu) = 3^{n/2}\mu + \frac{3^{n/2} - 1}{2}\lambda$$

5. Proof of the main theorem

Proof: Proof by **contradiction**. Assume that there exists an n such that there are $\rho(n)$ linearly independent vector fields on S^{n-1} . By the coreducibility theorem (3.4) we get an $f: \mathbb{RP}(n+\rho(n), n-1) \to S^n$.

Claim 5.1. n is divisible by 8.

Proof: By looking at the Euler characteristic we should have 2|n. Recall that $H^*(\mathbb{RP}^n; \mathbb{Z}/2) = \mathbb{Z}/2[x]/x^{n+1}$ and $Sq^i(x^j) = \binom{j}{i}x^{i+j}$ for $j \geq i$.

Tracing the generator of $H^n(S^n; \mathbb{Z}/2)$ in the following diagram

$$H^{n}(S^{n}) \xrightarrow{f^{*}} H^{n}(\mathbb{RP}(n+\rho(n),n-1)) \xrightarrow{} H^{n}(\mathbb{RP}^{n+\rho(n)}) \qquad \alpha \mid \longrightarrow x^{n}$$

$$S_{q}^{\rho(n)} \downarrow \qquad S_{q}^{\rho(n)} \downarrow \qquad \downarrow \qquad \downarrow$$

$$H^{n+\rho(n)}(S^{n}) \xrightarrow{f^{*}} H^{n+\rho(n)}(\mathbb{RP}(n+\rho(n),n-1))) \xrightarrow{} H^{n+\rho(n)}(\mathbb{RP}^{n+\rho(n)}) \qquad 0 \mid \longrightarrow \binom{n}{\rho(n)}x^{n+\rho(n)}$$

we get $2 \mid \binom{n+\rho(n)}{n}$. An easy check shows that this forces $8 \mid n$.

The map f should map a generator α of $\widetilde{KO}(S^n)$ to a non-torsion generator of $\mathbb{RP}(n+\rho(n),n-1)$. As 8|n we can invoke theorem (4.1) so that for some integer N

$$f^*\alpha = \mu + N\lambda$$

Applying $\psi_{\mathbb{R}}^3$ and using (2.2) and (4.1) we get

$$f^*\psi_{\mathbb{R}}^3\alpha = \psi_{\mathbb{R}}^3\mu + N\psi_{\mathbb{R}}^3\lambda$$

$$\Rightarrow \qquad f^*(3^{n/2}\alpha) = (3^{n/2}\mu + \frac{3^{n/2} - 1}{2}\lambda) + N\lambda$$

$$\Rightarrow \qquad 3^{n/2}\mu + 3^{n/2}.N\lambda = 3^{n/2}\mu + ((3^{n/2} - 1)/2 + N)\lambda$$

$$\Rightarrow \qquad 3^{n/2}.N \equiv (3^{n/2} - 1)/2 + N \mod 2^{b+1}$$

$$\Rightarrow \qquad (3^{n/2} - 1)(N - 1/2) \equiv 0 \mod 2^{b+1}$$

$$\Rightarrow \qquad 3^{n/2} \equiv 1 \mod 2^{b+2}$$

By an inductive argument one can show that this can never happen which completes the proof.

6. Computations of the K groups

6.1. $K(\mathbb{CP}^n)$. Because the only non-zero cohomology groups of \mathbb{CP}^n are even, the AHSS collapses on page 2. $H^*(\mathbb{CP}^n) = \mathbb{Z}[x]/x^{n+1}$ gives us

$$K(\mathbb{CP}^n) = K^0(\mathbb{CP}^n) = \mathbb{Z}[y]/y^{n+1}$$

The generator y of \mathbb{CP}^n is precisely the **canonical line bundle** $\epsilon-1$ over \mathbb{CP}^n . The Adams operations are given by

$$\psi^{k}(y) = \psi^{k}(\epsilon - 1)$$
$$= \epsilon^{k} - 1$$
$$= (y + 1)^{k} - 1$$

6.2. $K(\mathbb{RP}^{2n})$. $H^*(\mathbb{RP}^{2n})$ is non-zero only in the even dimensions so again the AHSS collapses at the E_2 page. The AHSS gives us

$$E^0_{\infty} = gr(K(\mathbb{RP}^{2n})) = \mathbb{Z} \oplus (\mathbb{Z}/2)^{\oplus n}$$

Because of torsion we cannot compute $K(\mathbb{RP}^{2n})$ from the SS alone.

Claim 6.1.

$$K(\mathbb{RP}^{2n}) \cong \mathbb{Z} \oplus \mathbb{Z}/2^n$$

Proof: In the AHSS for $K(\mathbb{CP}^n)$, $E_{\infty}^0 = gr(K(\mathbb{CP}^{2n})) = \mathbb{Z} \oplus \mathbb{Z}y \oplus \cdots \mathbb{Z}y^n$ so that for \mathbb{RP}^{2n} , $E_{\infty}^0 = gr(K(\mathbb{RP}^{2n})) = \mathbb{Z} \oplus (\mathbb{Z}/2)\pi^*y \oplus \cdots (\mathbb{Z}/2)\pi^*y^n$. So we see that $(\pi^*y)^n \neq 0$. The bounds on the AHSS imply $(\pi^*y)^{n+1} = 0$.

By comparing the first Chern class we see that $\pi^*y = \pi^*(\epsilon - 1) = \mathbb{C} \otimes (\gamma^{2n} - 1)$ so $(\pi^*y + 1)^2 = \mathbb{C} \otimes (\gamma^{2n} \otimes \gamma^{2n}) = 1$, so that $(\pi^*y)^2 = -2(\pi^*y) \implies (\pi^*y)^{k+1} = (-2)(\pi^*y)^k = (-2)^k(\pi^*y)$. Combining the results we get

$$2^{n-1}(\pi^*y) \neq 0, 2^n(\pi^*y) = 0$$

This and the size of $gr(K(\mathbb{RP}^{2n}))$ give us $K(\mathbb{RP}^{2n}) \cong \mathbb{Z} \oplus \mathbb{Z}/2^n(\pi^*y)$.

The action of the Adams operations would be

$$\begin{split} \psi^k(\pi^*y) &= \pi^*(\psi^k y) \\ &= ((\pi^*y + 1)^k - 1) \\ &= \sum_{i=0}^{k-1} \binom{k}{i+1} (\pi^*y)^{i+1} \\ &= \left(\sum_{i=0}^{k-1} \binom{k}{i+1} (-2)^i\right) \pi^*y \\ &= ((1-2)^k - 1)\pi^*y/(-2) = \begin{cases} \pi^*y & \text{if } k \text{ odd} \\ 0 & \text{if } k \text{ even} \end{cases} \end{split}$$

6.3. $K(\mathbb{RP}^{2n+1})$. The AHSS for $K(\mathbb{RP}^{2n+1})$ does have non-zero elements in odd dimensions but all the differentials on the *reduced part* are of the form $\mathbb{Z}/2 \to \mathbb{Z}$ and hence 0. So the AHSS again collapses at the E_2 page, so that

$$K(\mathbb{RP}^{2n+1}) \cong K(\mathbb{RP}^{2n})$$

Note that because of the collapse of the spectral sequence we can conclude that $K^1(\mathbb{RP}^n) = 0$.

6.4. $K(\mathbb{RP}(n,2m))$. The sequence $\mathbb{RP}^{2m} \to \mathbb{RP}^n \to \mathbb{RP}(n,2m)$ gives rise to a short exact sequence $0 \leftarrow \widetilde{K}(\mathbb{RP}^{2m}) \leftarrow \widetilde{K}(\mathbb{RP}^n) \leftarrow \widetilde{K}(\mathbb{RP}(n,2m)) \leftarrow \widetilde{K}^1(\mathbb{RP}^{2m}) = 0$ which gives us

$$\widetilde{K}(\mathbb{RP}(n,2m)) = \mathbb{Z}/2^{[n/2]-m}$$

And the action of the Adams operations is same as before.

6.5. $K(\mathbb{RP}(n,2m-1))$. The sequence $\mathbb{RP}(2m,2m-1) \to \mathbb{RP}(n,2m-1) \to \mathbb{RP}(n,2m)$ gives rise to a short exact sequence $0 \leftarrow \widetilde{K}(\mathbb{RP}(2m,2m-1)) = \mathbb{Z} \leftarrow \widetilde{K}(\mathbb{RP}(n,2m-1)) \leftarrow \widetilde{K}(\mathbb{RP}(n,2m)) \leftarrow \widetilde{K}^1(\mathbb{RP}^{2m}) = 0$ which gives us

$$\widetilde{K}(\mathbb{RP}(n,2m-1)) \cong \widetilde{K}(\mathbb{RP}(n,2m)) \oplus \mathbb{Z}\mu$$

= $\mathbb{Z}/2^{[n/2]-m}\lambda \oplus \mathbb{Z}\mu$

 μ maps to the generator of $\widetilde{K}(\mathbb{RP}(2m,2m-1))=\widetilde{K}(S^{2m})$ so that

$$\psi^k \mu = k^m \mu + c_k . \lambda$$

for some constant c_k . To compute c_k consider the projection $\mathbb{RP}(n, 2m-1) \to \mathbb{RP}(n, 2m-2)$, μ maps to the generator of $\widetilde{KO}(\mathbb{RP}(n, 2m-2))$. Tracing action of ψ^k we get,

$$c_k = \begin{cases} k^m/2 & \text{if } k \text{ even} \\ (k^m - 1)/2 & \text{if } k \text{ odd} \end{cases}$$

7. Computation of the KO groups

Definition 7.1. For integers m > n define $\phi(m, n)$ to be the number of integers $k \in (n, m]$ such that $KO^k(*) \neq 0$.

The $KO(\mathbb{RP}^n)$ groups are of the same form as the $K(\mathbb{RP}^n)$ groups. Because there is more torsion in KO^* one needs to make more complicated combinatorial arguments but the ideas are exactly the same as above. I'll only state the results here,

$$\widetilde{KO}(\mathbb{RP}^n) = \mathbb{Z}/2^{\phi(n,0)}$$

$$\widetilde{KO}(\mathbb{RP}(n,m)) = \begin{cases} \mathbb{Z}/2^{\phi(n,m)}\lambda & \text{if } m \not\equiv -1 \mod 4 \\ \mathbb{Z}/2^{\phi(n,m)}\lambda \oplus \mathbb{Z}\mu & \text{if } m \equiv -1 \mod 4 \end{cases}$$

$$\psi^k \lambda = \begin{cases} \lambda & \text{if } k \text{ odd} \\ 0 & \text{if } k \text{ even} \end{cases}$$

$$\psi^k \mu = k^m \mu + \lambda. \begin{cases} k^m/2 & \text{if } k \text{ even} \\ (k^m - 1)/2 & \text{if } k \text{ odd} \end{cases}$$