MÉTHODE 1

En encadrant la fonction intégrée

SITUATION

Lorsque l'on ne peut pas calculer la valeur de $\int_a^b f\left(x
ight) \,\mathrm{d}x\,$ car on ne connaît pas de primitive de la fonction sous l'intégrale, l'énoncé peut demander d'encadrer cette intégrale. On peut obtenir cet encadrement à partir d'un encadrement de la fonction f.

ÉNONCÉ

Soit *n* un entier naturel. Démontrer l'inégalité suivante :

$$\int_0^1 x^n e^{-x} \; \mathrm{d}x \leqslant rac{1}{n+1}$$

ETAPE 1

Repérer les éléments à conserver dans l'expression de f

L'encadrement voulu est toujours donné par l'énoncé. On y repère donc les éléments qui doivent être conservés lors de l'encadrement de f.

APPLICATION

On constate que l'entier *n* est présent dans le terme de droite. Il faut donc penser à le conserver quand on majorera $x^n e^{-x}$.

ETAPE 2

Encadrer la fonction f

On encadre la fonction f sur $\left[a;b\right]$. On démontre donc un encadrement de la forme suivante :

$$orall x \in \left[a;b
ight], u\left(x
ight) \leqslant f\left(x
ight) \leqslant v\left(x
ight)$$

APPLICATION On encadre d'abord $\,e^{-x}\,$ sur $\,[0;1]\,.$

Soit x un réel compris entre 0 et 1. On a :

 $-1 \leqslant -x \leqslant 0$

La fonction exponentielle étant strictement croissante sur ${\mathbb R}$:

 $e^{-1} \leqslant e^{-x} \leqslant e^{-0}$

En gardant uniquement la majoration, on a :

 $e^{-x} \leqslant 1$

On multiplie par x^n qui est positif. On obtient donc :

 $x^n e^{-x} \leqslant x^n$

ETAPE 3

Utiliser les comparaisons d'intégrales

On s'assure que $\,a\leqslant b\,.\,$

Grâce à l'encadrement trouvé dans l'étape précédente, on a alors, par comparaison d'intégrales :

 $\int_{a}^{b} u(x) dx \leqslant \int_{a}^{b} f(x) dx \leqslant \int_{a}^{b} v(x) dx$

On calcule $\int_{a}^{b}u\left(x\right) \,\mathrm{d}x$ et $\int_{a}^{b}v\left(x\right) \,\mathrm{d}x$ pour obtenir l'encadrement voulu.

APPLICATION

0 est bien inférieur à 1. Donc, d'après l'inégalité précédente, par comparaison d'intégrales, on a :

 $\int_0^1 x^n e^{-x} \, \mathrm{d}x \leqslant \int_0^1 x^n \, \mathrm{d}x$

Or:

$$\int_0^1 x^n \, \mathrm{d}x = \left[\frac{x^{n+1}}{n+1} \right]_0^1 = \frac{1^{n+1}}{n+1} - \frac{0^{n+1}}{n+1} = \frac{1}{n+1}$$

On peut donc conclure:

$$\int_0^1 x^n e^{-x} \, \mathrm{d}x \leqslant \frac{1}{n+1}$$

MÉTHODE 2

En utilisant l'inégalité de la moyenne

SITUATION

On peut parfois obtenir directement un encadrement d'intégrale grâce à l'inégalité de la moyenne.

ÉNONCÉ

Démontrer l'inégalité suivante :

$$0 \leqslant \int_0^1 x e^x \, \mathrm{d}x \leqslant e$$

X

ETAPE 1

Énoncer les propriétés de l'inégalité de la moyenne Si f est une fonction continue sur [a;b] ($a\leqslant b$), minorée par m et majorée par M sur cet intervalle, on a,

d'après l'inégalité de la moyenne : $m(b-a) \leqslant \int_a^b f(x) dx \leqslant M(b-a)$

APPLICATION Si f est une fonction continue sur [a;b] ($a\leqslant b$), minorée par m et majorée par M sur cet intervalle,

on a, d'après l'inégalité de la moyenne : $m(b-a) \leqslant \int_a^b f(x) dx \leqslant M(b-a)$

Déterminer un majorant et un minorant de f

ETAPE 2

On détermine tout d'abord un minorant et un majorant de la fonction f sur $\left[a;b\right]$, ce qui revient à

démontrer une inégalité de la forme $\,m\leqslant f\left(x
ight)\leqslant M\,$, où m et M ne dépendent pas de x.

APPLICATION Soit x un réel compris entre 0 et 1. On a :

• $0 \leqslant x \leqslant 1$

• $e^0\leqslant e^x\leqslant e^1$ car la fonction exponentielle est strictement croissante sur ${\mathbb R}$

Les deux quantités étant positives, par produit, on a :

Soit:

 $0 \times e^0 \leqslant xe^x \leqslant 1 \times e^x$

 $0 \leqslant xe^x \leqslant e$

ETAPE 3

APPLICATION

En appliquant l'inégalité de la moyenne à la fonction $f:x\longmapsto xe^x$ entre 0 et 1, d'après le résultat

On remplace m et M par les valeurs trouvées dans l'étape 1 pour obtenir l'encadrement souhaité.

 $0 \times (1-0) \leqslant \int_0^1 x e^x \, \mathrm{d}x \leqslant e \times (1-0)$

Écrire l'inégalité obtenue

On peut donc conclure:

de l'étape 2, on a :

 $0 \leqslant \int_0^1 x e^x \, \mathrm{d}x \leqslant e$

conserver dans l'expression de f

- (2) Encadrer la fonction f
- (3) Utiliser les comparaisons d'intégrales
- moyenne **1** Énoncer les propriétés de l'inégalité de la moyenne

En utilisant l'inégalité de la

- Déterminer un majorant et un minorant de *f*
- 3 Écrire l'inégalité obtenue

Découvre notre option Prof en ligne par chat tout les jours de 16h à 19h S'abonner Nouveau kartable