

ACTIVIDAD:

Optimización de Modelos en Salud usando Técnicas Bayesianas

 Objetivo: Aplicar la Optimización Bayesiana para ajustar los hiperparámetros de un modelo de clasificación binaria (Random Forest) sobre un problema de salud pública, comparando dos enfoques populares: Scikit-Optimize (skopt) y Hyperopt, evaluando el rendimiento del modelo y la eficiencia de cada técnica.

Instrucciones:

- 1. Cargar y preparar los datos:
 - o Utiliza el dataset de cáncer de mama (load_breast_cancer) de Scikit-learn.
 - o Aplica StandardScaler para escalar las variables.
 - o Realiza la división en conjunto de entrenamiento y prueba (70/30).
- 2. Entrenar modelo base:
 - o Implementa un modelo RandomForestClassifier sin ajuste de hiperparámetros.
 - Evalúa usando classification_report y F1-Score.
- 3. Aplicar Optimización Bayesiana Parte A (Scikit-Optimize):
 - o Define un espacio de búsqueda para n_estimators, max_depth y min_samples_split.
 - Ejecuta BayesSearchCV con cv=3 y scoring='f1'.
 - Evalúa resultados en el test set.
- 4. Aplicar Optimización Bayesiana Parte B (Hyperopt):
 - o Define el mismo espacio de búsqueda con hp.quniform.
 - o Utiliza fmin() con algoritmo tpe.suggest.
 - Entrena un modelo final con los mejores hiperparámetros encontrados.

- 5. Comparar y reflexionar:
 - o Contrasta F1-Score, tiempo de ejecución y claridad de resultados.
 - o Comenta qué técnica fue más efectiva y por qué.
- 6. Documentación y presentación:
 - Estructura tu notebook con secciones comentadas.
 - o Incluye conclusiones sobre el uso de Optimización Bayesiana frente a técnicas tradicionales.

Entrega:

- Formato ejecutable (Google Colab o Jupyter Notebook).
- Modalidad: Individual.
- Tiempo: 120 min.

Anexo: Recursos recomendados

- <u>Scikit-Optimize Documentación</u>
- <u>Hyperopt Documentación oficial</u>
- Dataset: from sklearn.datasets import load_breast_cancer

