MATH 1210 Tutorial # 5

Oct. 13 - 19, 2011

- 1. Given the vectors $\vec{u} = a\hat{i} 2\hat{j} + \hat{k}$ and $\vec{v} = a\hat{i} + a\hat{j} 3\hat{k}$. Determine for which values of a these two vectors are
 - (a) parallel.
 - (b) perpendicular.
- 2. Consider the vectors $\vec{u} = \hat{i} + \hat{j}$ and $\vec{v} = \hat{j} + \hat{k}$. Find
 - (a) $\vec{u} \cdot \vec{v}$.
 - (b) $\vec{u} \times \vec{v}$.
 - (c) The angle between \vec{u} and \vec{v} .
- 3. Show that the triangle in \mathbb{E}^3 with vertices $P_1(2,2,3), P_2(1,4,4), P_3(5,4,2)$ is a right triangle and find the length of its hypotenuse.
- 4. Show that the triangle with vertices (1,1,0), (0,1,1), (1,0,1) is equilateral and find the coordinates of its center.

Hint: The distance of the center C of an equilateral triangle from a vertex V of the triangle equals $\frac{2}{3}|VM|$, where M is the midpoint of the side opposite the vertex V.

5. Show that

$$\vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w})\vec{v} - (\vec{u} \cdot \vec{v})\vec{w}$$

for any 3 vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{E}^3$.

Hint: First verify this for the special cases $\vec{u} = \hat{i}$, $\vec{u} = \hat{j}$, and $\vec{u} = \hat{k}$. Then use the representation $\vec{u} = u_1\hat{i} + u_2\hat{j} + u_3\hat{k}$.

- 1. (a) For \vec{v} and \vec{v} to be parallel, we must have that $\vec{v} = \lambda \vec{v}$ for some real number $\lambda \neq 0$. This leads to the equations $a = \lambda a$, $-2 = \lambda a$, $1 = \lambda(-3) = -3\lambda$. It follows from the first equation that a = 0, and hence that -2 = 0 by the second equation. Since this is impossible, \vec{v} and \vec{v} are never parallel.
 - (b) For u I V we must have the u v = 0, i.e. (axa)+(-2)(a)+(1)(-3) = a^2-2a-3=0, from which it follows that a=-1 or 3.
- 2. (a) $\vec{u} \cdot \vec{v} = (\hat{c} + \hat{j}) \cdot (\hat{j} + \hat{k}) = (i \times \hat{j}) + (i \times \hat{j}) + (o \times \hat{k}) = (i \times \hat{j}) + (o \times \hat{k}) + (o$
 - (c) $\cos(4(\vec{u},\vec{v})) = \vec{u} \cdot \vec{v}/(||\vec{u}|| ||\vec{v}||) = 1/(\sqrt{2} \cdot \sqrt{2}) = 1/2$, $\cos\theta = x(\vec{u},\vec{v}) = TT/3$ or $\theta = 5TT/3$. Which one? We also have that $\sin\theta = ||\vec{u} \times \vec{v}||/(|\vec{u}|| ||\vec{v}||) = |\vec{u}|/2$. Since $\sin(5T) = -\frac{13}{2}$, if follows that $\theta = T$.
- 3. Since P.P. P. P. = (-1,2,1) · (3,2,-1) = (-1)(3) + (z)(z) + (1)(-1) = 0, the vectors P.P. and P.P. are perpendicular, so the triangle AP.P.P. is a right triangle with the right angle at P. and its hypotenuse the line segment

 $\|P_2P_3\| = \|42 + 03 + (-2)^{\frac{1}{2}}\| = \sqrt{4^2 + 0^2 + (-2)^2} = 2\sqrt{5}$

4. Setting $P_1 = (1,1,0)$, $P_2 = (0,1,1)$, $P_3 = (1,0,1)$ we get $\|P_1P_2\| = \|(-1)\hat{c} + 0\hat{j} + 1\cdot\hat{b}\| = \sqrt{(-1)^2 + 1^2} = \sqrt{2}$ $\|P_1P_2\| = \|(-1)\hat{c} + (-1)\hat{j} + 1\hat{b}\| = \sqrt{(-1)^2 + 1^2} = \sqrt{2}$ $\|P_1P_3\| = \|(-1)\hat{c} + (-1)\hat{c} + 0\hat{b}\| = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2}$, which shows that $\triangle P_1P_2P_3$ is equilateral.

Let M denote the midpoint of the line segment P_2P_3 . Then

P2P3. Then

OM = OP2 + 1/2 P2P3

 $= [0,1,1] + \frac{1}{2}[1,-1,0] = [1/2,1/2,1]$ so M = (1/2,1/2,1). If C denotes the center of the triangle, then

oc = op, + = P, n = [1,1,0] + %[-½,-½,1]

 $= [\frac{2}{3}, \frac{2}{3}, \frac{2}{3}]$ Therefore $C = (\frac{2}{3}, \frac{2}{3}, \frac{2}{3})$.

5. Let "=1, "=1, 1+1/23+1/32, "= w,1+1/23+1/32
Then

 $\vec{u} \times (\vec{v} \times \vec{w}) = \vec{c} \times ((v_2 w_3 - v_3 w_2)\vec{c} + (v_3 w_1 - v_1 w_3)\vec{s} + (v_1 w_2 - v_2 w_1)\vec{k})$ $= (v_2 w_3 - v_3 w_2)(\hat{c} \times \hat{c}) + (v_3 w_1 - v_1 w_3)(\hat{c} \times \hat{s})$ $+ (v_1 w_2 - v_2 w_1)(\hat{c} \times \hat{k})$

= (V3V, -V, W3) & + (V2W, -V, W2) j, where we have used txi=0, ixi=-j. On the other hand, $(\vec{u} \cdot \vec{w})\vec{v} - (\vec{u} \cdot \vec{v})\vec{w} = (\hat{z} \cdot \vec{w})\vec{v} - (\hat{z} \cdot v)\vec{w}$ = W, (V, E+v2)+V3/2) - V, (W, E+ W2)+W3/2) = (w, v, -v, w,) 2+(w, vz-v, wz)]+(w, vz-v, wz)] = (w, v2-v, w2)]+ (w, v3-v, w3) /2 This prowes that the formula is true for $\vec{u}=\hat{z}$. A similar calculation shows that it also holds for the special cases $\vec{u}=\vec{j}$ and $\vec{u}=\hat{z}$. Finally, setting u=u,i+uzj+uzh, we get $\vec{u} \times (\vec{v} \times \vec{w}) = (u_1 \vec{c} + u_2 \vec{b} + u_3 \vec{b}) \times (\vec{v} \times \vec{w})$ = u, (tx(vxw))+ u2(5x(vxw))+u3(kx(vxw)) $= U_{\bullet} \left[(\vec{c} \cdot \vec{\omega}) \vec{\nabla} - (\vec{c} \cdot \vec{\nabla}) \vec{\omega} \right] = U_{\bullet} \left[(\vec{c} \cdot \vec{\omega}) \vec{\omega} \right] = U_{\bullet} \left[$ +U2 (300) V- (300) W] + 43 (Z. W) V-(Z. V) W] = ((4,1+42)+43を)のが)ブー((4,1+42)+43を)ので)が =(いい)マー(いい)ひ