MATH 220 Practice Midterm 2 — September, 2024, Duration: 50 minutes This test has 5 questions on 9 pages, for a total of 50 points.

First Name:	Last Name:
Student Number:	Section:
Signature:	

Question:	1	2	3	4	5
Points:					
Total:					/50

- 1. Negate each of the following and prove or disprove the original statement:
 - (a) For all $x \in \mathbb{Z}$, there exists $y \in \mathbb{Z}$, such that there exists $z \in \mathbb{Z}$, such that xy > z implies x + y < z.

(b) For all $x\in\mathbb{N}$, for all $y\in\mathbb{N}$ such that x< y, there exists $a,b\in\mathbb{Z}$ such that $ax+by<\left|\frac{x}{y}\right|$

10 Marks 2. Let $n, k \in \mathbb{N}$. Prove that if for all $m \in \mathbb{Z}$, $m^k \neq n$, then $n^{1/k}$ is irrational.

- 3. The Archimedean property of the reals guarantees that for all $x, y \in \mathbb{R}$ where x > 0, there exists $n \in \mathbb{N}$ such that nx > y.
 - (a) Let $x, y \in \mathbb{R}^+$. Prove that there exists $m \in \mathbb{N}$ such that $(m-1)x \leq y < mx$.

(b) Using (a), prove that for all $x, y \in \mathbb{R}^+$ such that x < y, there exists $q \in \mathbb{Q}$ such that x < q < y. (Hint: Consider y - x and also notice $1 \in \mathbb{R}^+$)

(c) Assume that $\sqrt{2}$ is irrational. Using $\sqrt{2}$, prove that for all $x, y \in \mathbb{R}^+$ such that x < y, there exists $z \in \mathbb{R} \setminus \mathbb{Q}$ such that x < z < y. You may assume that irrational numbers added to and multiplied by rational numbers are still irrational. (Hint: From part (b), we have that there exists $p, q \in \mathbb{Q}$ such that x)

- 4. Let $A = \{-1, 2, \frac{1}{2}\}$
 - (a) Prove by induction that if 1 is written as a product $1 = p_1 p_2 p_3 \dots p_n$ where $p_i \in A$, then n is even.

(b) Prove or disprove that the same applies for $B = \{-1, \pm 2, \pm \frac{1}{2}\}.$

5. Prove that for all $\delta > 0$, there exists $n \in \mathbb{N}$ such that $\frac{1}{\frac{\pi}{2} + 2\pi n} < \delta$, and hence prove that the limit $\lim_{x\to 0} \sin\left(\frac{1}{x}\right) = L$ does not exist. (Hint: Archimedean property of the reals)