- 1 Az ábrán látható kapcsolásban a telep feszültsége 12 V. Mennyi a 40 Ω ellenállású izzón átfolyó áram, ha
 - a) csak a K1 kapcsoló van zárva?
 - b) mindkét kapcsoló zárva van?

- Egy áramkör párhuzamosan kapcsolt 10 Ω és 20 Ω nagyságú ellenállásokat tartalmaz. 10 Ω -os ellenálláson 1,2 A áram folyik.
 - a) Mekkora a másikon mérhető áram erőssége?
 - b) Mekkora az áramforrás feszültsége?
- Az ábrán látható áramkörben az A és B pontok közé U feszültséget kapcsolva a C és D pontok között egy ideális feszültségmérő műszer U/2 feszültséget mutat. Mekkora feszültséget mutatna, ha felcserélnénk a feszültségforrással?

4 Feszültségosztó számolása. $U_{\rm be} \downarrow \qquad \qquad I \qquad \qquad I \qquad \qquad U_{\rm I} \qquad \qquad U_{\rm I} \qquad \qquad U_{\rm Ki} \qquad U_{\rm$

Az ábrán látható áramkörben egy elhanyagolható belső ellenállású telep található, melynek elektromotoros ereje $U=10~\rm V$. Az ellenállások értéke $R=10~\Omega$. Mekkora az A és B pontok közti feszültség?

Az 5 V méréshatárú, 500 Ω belső ellenállású feszültségmérővel sorba kapcsolunk egy Re = 10 k Ω nagyságú ellenállást. Mekkorára növekszik így a műszer méréshatára?

Számoljuk ki az ábrán látható áramkörben az 2Ω $4\,\Omega$ áramokat a Kirchhoff törvények segítségével! 8Ω $\overline{}_{32\,\mathrm{V}}$ $20\,\mathrm{V}$

Helyettesítsük az ábrán adott hálózat A és B pontjai között lévő összetett kétpólust egy olyan legegyszerűbb kétpólussal, amely az Rt külső terhelés szempontjából egyenértékű az összetett kétpólussal!

Határozza meg az ábrán látható hálózat R3 ellenállásának áramát és feszültségét a szuperpozíció elvének felhasználásával! $U_0 = 10 \text{ V}$

 $I_0 = 10 A$

 $R1 = 2 \Omega$

 $R2 = 4 \Omega$

 $R3 = 3 \Omega$

 $R4 = 3 \Omega$

