Reasoning-Based Learning of Interpretable ML Models

Alexey Ignatiev¹, Joao Marques-Silva², Nina Narodytska³, and Peter J. Stuckey¹

August 19-26, 2021 | **IJCAI**

¹Monash University, Melbourne, Australia

²IRIT, CNRS, Toulouse, France

³VMware Research, CA, USA

eXplainable AI

This is a cat.

Current Explanation

This is a cat:

- It has fur, whiskers, and claws.
- It has this feature:

XAI Explanation

Why? Status quo...

2/15

Approaches to XAI

interpretable ML models

e.g. decision trees, lists, sets

interpretable ML models

e.g. decision trees, lists, sets

posthoc explanation of ML models "on the fly"

Interpretable rule-based models

rule-based models

Interpretable rule-based models

rule-based models

"transparent" and easy to interpret

rule-based models

"transparent" and easy to interpret

come in handy in XAI

Decision trees

Decision trees: perfect and sparse

perfect DT for *Titanic* dataset (training accuracy 78.25%)

Decision trees: perfect and sparse

perfect DT for *Titanic* dataset (training accuracy 78.25%)

sparse DT for Titanic dataset
(training accuracy 33.05%)

Reasoning-based approaches to decision trees

	mo	del	unbounded				engine		
	perfect	sparse	depth	MIP	СР	SAT	MaxSAT	DP	B-n-B
Nijssen et al., 2007		~						~	
Bessiere et al., 2009	V				~	~			
Bertsimas et al., 2017		~		~					
Verwer et al., 2017		~		~					
Narodytska et al., 2018	V		V			~			
Verwer et al., 2019		~		~					
Hu et al., 2019		~	V					~	~
Zhu et al., 2020		V		V +					
Janota et al., 2020	V		V			~			
Avellaneda et al., 2020	V		V			V +			
Hu et al., 2020	V		V				v +		
Verhaeghe et al., 2020		~			~			~	
Aglin et al., 2020		~						~	~
Demirovic et al., 2020		~						v +	

Decision lists

Decision lists: perfect and sparse

```
IFAge = Adult \land Sex \neq FemaleTHEN Survived = NoELSE IF Category \neq 3rd classTHEN Survived = YesELSE Survived = No
```

smallest size perfect DL for *Titanic* dataset (training accuracy 78.25%)

Decision lists: perfect and sparse

```
IFAge = Adult \land Sex \neq FemaleTHEN Survived = NoELSE IF Category \neq 3rd classTHEN Survived = YesELSE Survived = No
```

smallest size perfect DL for *Titanic* dataset (training accuracy 78.25%)

sparse DL for Titanic dataset
(training accuracy 70.69%)

Reasoning-based approaches to decision lists

	model		criterion		optimality	classification		engine				symmetry
	perfect	sparse	rules	literals	guarantee	binary	arbitrary	MIP	SAT	MaxSAT	B-n-B	breaking
Angelino et al., 2017a		~	~			~		~				
Angelino et al., 2017b		~	~		V	~					~	V
Yu et al., 2020	V	V	V	V	V		V		~	~		V

Decision sets

Decision sets: perfect and sparse

```
IF Category = 3rd classTHEN Survived = NoIF Age = Adult \land Sex \neq FemaleTHEN Survived = NoIF Category \neq 3rd class \land Age \neq AdultTHEN Survived = YesIF Category \neq 3rd class \land Sex = FemaleTHEN Survived = Yes
```

smallest size perfect DS for *Titanic* dataset (training accuracy 78.25%)

Decision sets: perfect and sparse

```
IF Category = 3rd classTHEN Survived = NoIF Age = Adult \land Sex \neq FemaleTHEN Survived = NoIF Category \neq 3rd class \land Age \neq AdultTHEN Survived = YesIF Category \neq 3rd class \land Sex = FemaleTHEN Survived = Yes
```

smallest size perfect DS for Titanic dataset

(training accuracy 78.25%)

```
\begin{tabular}{ll} \textbf{IF Category} = 3 rd class & \textbf{THEN Survived} = \textbf{No} \\ \textbf{IF Sex} \neq \textbf{Female} & \textbf{THEN Survived} = \textbf{No} \\ \textbf{IF Category} \neq 3 rd class \land \textbf{Sex} = \textbf{Female} & \textbf{THEN Survived} = \textbf{Yes} \\ \end{tabular}
```

sparse DS for Titanic dataset

(training accuracy 77.57%)

Reasoning-based approaches to decision sets

	model		criterion			explicit repr.		setup			engine			
	perfect	sparse	rules	lex	literals	single class	all classes	single run	two phases	IP	SAT	MaxSAT	LS	
Kamath et al., 1992	V		~			V		V		~				
Lakkaraju et al., 2016		~	~				V	V					V	
Ignatiev et al., 2018	V		~	~			~	~			V	V		
Malioutov et al., 2018		V			V-	~		~				V		
Dash et al., 2018		~	V			~		~		~				
Ghosh et al., 2019		~			V-	V		~				V		
Ghosh et al., 2020		v +			V-	~		~				V		
Yu et al., 2020	V	~			~		~	~			V	V		
Ignatiev et al., 2021	V		V		~		V		~	V	V	~		

- · Comparing to heuristic methods
 - higher accuracy but

- · Comparing to heuristic methods
 - higher accuracy but
 - · higher training time
 - evolution of reasoning methods!

- · Comparing to heuristic methods
 - higher accuracy but
 - · higher training time
 - · evolution of reasoning methods!
- · Other interpretable models
 - learning OBDDs
 - · SAT-based inference

- · Comparing to heuristic methods
 - · higher accuracy but
 - · higher training time
 - · evolution of reasoning methods!
- Other interpretable models
 - learning OBDDs
 - · SAT-based inference
- · Perfect vs. sparse models
 - pros of perfect models:
 - highest possible accuracy

- · Comparing to heuristic methods
 - higher accuracy but
 - higher training time
 - · evolution of reasoning methods!
- Other interpretable models
 - learning OBDDs
 - · SAT-based inference
- · Perfect vs. sparse models
 - pros of perfect models:
 - highest possible accuracy
 - pros of sparse models:
 - · smaller size
 - · easier to compute
 - · smaller explanations

- Comparing to heuristic methods
 - higher accuracy but
 - · higher training time
 - · evolution of reasoning methods!
- · Other interpretable models
 - learning OBDDs
 - · SAT-based inference
- · Perfect vs. sparse models
 - · pros of perfect models:
 - · highest possible accuracy
 - pros of sparse models:
 - · smaller size
 - · easier to compute
 - · smaller explanations

- · Model expressivity and size
 - DLs are more succinct than DTs

- Comparing to heuristic methods
 - higher accuracy but
 - higher training time
 - · evolution of reasoning methods!
- · Other interpretable models
 - learning OBDDs
 - · SAT-based inference
- · Perfect vs. sparse models
 - pros of perfect models:
 - highest possible accuracy
 - pros of sparse models:
 - · smaller size
 - · easier to compute
 - · smaller explanations

- · Model expressivity and size
 - DLs are more succinct than DTs
 - · DLs are more succinct than DNFs
 - a special case of DSs

- Comparing to heuristic methods
 - higher accuracy but
 - · higher training time
 - · evolution of reasoning methods!
- · Other interpretable models
 - learning OBDDs
 - · SAT-based inference
- · Perfect vs. sparse models
 - pros of perfect models:
 - highest possible accuracy
 - · pros of sparse models:
 - smaller size
 - · easier to compute
 - · smaller explanations

- · Model expressivity and size
 - DLs are more succinct than DTs
 - · DLs are more succinct than DNFs
 - a special case of DSs
 - how to categorise DSs?
 - empirically, less succinct than DLs!

- Comparing to heuristic methods
 - higher accuracy but
 - · higher training time
 - · evolution of reasoning methods!
- · Other interpretable models
 - learning OBDDs
 - · SAT-based inference
- · Perfect vs. sparse models
 - pros of perfect models:
 - highest possible accuracy
 - pros of sparse models:
 - smaller size
 - · easier to compute
 - · smaller explanations

- · Model expressivity and size
 - · DLs are more succinct than DTs
 - · DLs are more succinct than DNFs
 - a special case of DSs
 - how to categorise DSs?
 - empirically, less succinct than DLs!
 - · OBDDs vs. other models?

- · Fairness and other constraints
 - model properties can be enforced
 - in the form of constraints
 - easy to plug in!

- · Fairness and other constraints
 - · model properties can be enforced
 - in the form of constraints
 - easy to plug in!
 - · fairness constraints
 - · learning fair DTs and DSs
 - · accuracy vs. fairness

- · Fairness and other constraints
 - · model properties can be enforced
 - · in the form of constraints
 - easy to plug in!
 - · fairness constraints
 - · learning fair DTs and DSs
 - · accuracy vs. fairness

- Intepretability
 - empirical considerations:
 - |XP| for perfect DSs < |XP| for perfect DLs

- · Fairness and other constraints
 - · model properties can be enforced
 - · in the form of constraints
 - easy to plug in!
 - · fairness constraints
 - · learning fair DTs and DSs
 - accuracy vs. fairness

- Intepretability
 - empirical considerations:
 - |XP| for perfect DSs < |XP| for perfect DLs
 - |XP| for sparse DSs > |XP| for sparse DLs

- · Fairness and other constraints
 - · model properties can be enforced
 - · in the form of constraints
 - easy to plug in!
 - · fairness constraints
 - · learning fair DTs and DSs
 - accuracy vs. fairness

Intepretability

- · empirical considerations:
 - |XP| for perfect DSs < |XP| for perfect DLs
 - |XP| for sparse DSs > |XP| for sparse DLs
 - quality of sparsity metrics differs

- · Fairness and other constraints
 - · model properties can be enforced
 - · in the form of constraints
 - easy to plug in!
 - · fairness constraints
 - · learning fair DTs and DSs
 - accuracy vs. fairness

Intepretability

- · empirical considerations:
 - |XP| for perfect DSs < |XP| for perfect DLs
 - |XP| for sparse DSs > |XP| for sparse DLs
 - quality of sparsity metrics differs
- interpretability of DTs

$$f(x_1,\ldots,x_n)=\bigvee_{i=1}^{n/2}x_{2i-1} \bigwedge x_{2i}\text{, with }n=4$$

$$f(x_1,\ldots,x_n)=\bigvee_{i=1}^{n/2}x_{2i-1} \bigwedge x_{2i}$$
 , with $n=4$

instance v = (1, 0, 1, 1), i.e. 4 literals in the path

$$f(x_1,...,x_n) = \bigvee_{i=1}^{n/2} x_{2i-1} \wedge x_{2i}$$
, with $n = 4$

instance v = (1, 0, 1, 1), i.e. 4 literals in the path

$$f(x_1,...,x_n) = \bigvee_{i=1}^{n/2} x_{2i-1} \wedge x_{2i}$$
, with $n=4$

instance v = (1, 0, 1, 1), i.e. 4 literals in the path actual explanation $x_3 = 1 \land x_4 = 1$, i.e. 2 literals

- · Fairness and other constraints
 - · model properties can be enforced
 - · in the form of constraints
 - easy to plug in!
 - · fairness constraints
 - · learning fair DTs and DSs
 - accuracy vs. fairness

- Intepretability
 - empirical considerations:
 - |XP| for perfect DSs < |XP| for perfect DLs
 - |XP| for sparse DSs > |XP| for sparse DLs
 - quality of sparsity metrics differs
 - DTs may be uninterpretable
 - similar problem for DLs

- · Fairness and other constraints
 - model properties can be enforced
 - · in the form of constraints
 - easy to plug in!
 - · fairness constraints
 - · learning fair DTs and DSs
 - · accuracy vs. fairness

Intepretability

- empirical considerations:
 - |XP| for perfect DSs < |XP| for perfect DLs
 - |XP| for sparse DSs > |XP| for sparse DLs
 - quality of sparsity metrics differs
- DTs may be uninterpretable
 - similar problem for DLs
- AXps for DTs in polytime!
 - not the case for DLs and DSs!

