

BF861A; BF861B; BF861C

N-channel junction FETs Rev. 04 — 24 September 2004

Product data sheet

1.1 General description

N-channel symmetrical junction field effect transistors in a SOT23 package.

CAUTION

The device is supplied in an antistatic package. The gate-source input must be protected against static discharge during transport or handling.

1.2 Features

- High transfer admittance
- Low feedback capacitance
- Low input capacitance
- Low noise.

1.3 Applications

Preamplifiers for AM tuners in car radios.

1.4 Quick reference data

Table 1: Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DS}	drain-source voltage (DC)		-	-	25	V
I _{DSS}	drain current					
	BF861A	$V_{GS} = 0 \text{ V}; V_{DS} = 8 \text{ V}$	2	-	6.5	mA
	BF861B	$V_{GS} = 0 \text{ V}; V_{DS} = 8 \text{ V}$	6	-	15	mA
	BF861C	$V_{GS} = 0 \text{ V}; V_{DS} = 8 \text{ V}$	12	-	25	mA
P _{tot}	total power dissipation	up to T _{amb} = 25 °C	-	-	250	mW
y _{fs}	forward transfer admittance;					
	BF861A	$V_{GS} = 0 \text{ V}; V_{DS} = 8 \text{ V}$	12	-	20	mS
	BF861B	$V_{GS} = 0 \text{ V}; V_{DS} = 8 \text{ V}$	16	-	25	mS
	BF861C	$V_{GS} = 0 \text{ V}; V_{DS} = 8 \text{ V}$	20	-	30	mS
C _{iss}	input capacitance	f = 1 MHz	-	-	10	pF
C _{rss}	reverse transfer capacitance	f = 1 MHz	-	-	2.7	pF

2. Pinning information

Table 2: Discrete pinning

	5		
Pin	Description	Simplified outline	Symbol
1	source		
2	drain	3	3 - 2
3	gate	1 2 SOT23	sym053

3. Ordering information

Table 3: Ordering information

Туре	Package				
number	Name	Description	Version		
BF861A	-	plastic surface mounted package; 3 leads	SOT23		
BF861B	-	plastic surface mounted package; 3 leads	SOT23		
BF861C	-	plastic surface mounted package; 3 leads	SOT23		

4. Marking

Table 4: Marking codes

Type number	Marking code [1]
BF861A	28*
BF861B	29*
BF861C	30*

^{[1] * =} p: Made in Hong Kong.

5. Limiting values

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage (DC)		-	25	V
V_{GSO}	gate-source voltage	open drain	-	25	V
V_{DGO}	drain-gate voltage (DC)	open source	-	25	V
I _G	forward gate current (DC)		-	10	mA

^{* =} t: Made in Malaysia.

^{* =} W: Made in China.

 Table 5:
 Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
P _{tot}	total power dissipation	up to $T_{amb} = 25 ^{\circ}C$	<u>[1]</u> _	250	mW
T _{stg}	storage temperature		-65	+150	°C
Tj	operating junction temperature		-	150	°C

[1] Device mounted on an FR4 printed-circuit board.

6. Thermal characteristics

Table 6: Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
$R_{th(j-a)}$	thermal resistance from junction to ambient		<u>[1]</u> 500	K/W

^[1] Device mounted on an FR4 printed-circuit board.

7. Characteristics

Table 7: Characteristics

 $T_i = 25 \,^{\circ}C$; $V_{DS} = 8 \, V$; $V_{GS} = 0 \, V$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$V_{(BR)GSS}$	gate-source breakdown voltage	$I_G = -1 \mu A$	-25	-	-	V

 Table 7:
 Characteristics ...continued

 $T_j = 25 \,^{\circ}C$; $V_{DS} = 8 \, V$; $V_{GS} = 0 \, V$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{GSoff}	gate-source cut-off voltage					
	BF861A	$I_D = 1 \mu A$	-0.2	-	-1	V
	BF861B	$I_D = 1 \mu A$	-0.5	-	-1.5	V
	BF861C	$I_D = 1 \mu A$	-0.8	-	-2	V
V_{GSS}	gate-source forward voltage	$V_{DS} = 0 \text{ V}; I_G = 1 \text{ mA}$	-	-	1	V
I _{DSS}	drain current					
	BF861A		2	-	6.5	mA
	BF861B		6	-	15	mA
	BF861C		12	-	25	mA
I _{GSS}	gate cut-off current	V _{GS} = -20 V; V _{DS} = 0 V	-	-	-1	nA
y _{fs}	forward transfer admittance					
	BF861A		12	-	20	mS
	BF861B		16	-	25	mS
	BF861C		20	-	30	mS
g _{os}	common source output conductance					
	BF861A		-	-	200	μS
	BF861B		-	-	250	μS
	BF861C		-	-	300	μS
C _{iss}	input capacitance	f = 1 MHz	-	-	10	pF
C _{rss}	reverse transfer capacitance	f = 1 MHz	-	2.1	2.7	pF
V _n /√B	equivalent input noise voltage	$V_{GS} = 0 \text{ V; } f = 1 \text{ MHz}$	-	1.5	-	nV/√Hz

Fig 2. Drain current as a function of gate-source cut-off voltage; typical values.

Fig 4. Forward transfer admittance as a function of drain current; typical values.

 $V_{DS} = 8 \text{ V}.$ $V_{GS} = 0 \text{ V}.$

Fig 3. Common-source output conductance as a function of drain current; typical values.

 $V_{DS} = 8 V.$

Fig 5. Forward transfer admittance as a function of drain current; typical values.

 $V_{GS} = 0 V.$

 $V_{DS} = 8 V.$

(1) $V_{GS} = 0 \text{ V}.$

(2) $V_{GS} = -100 \text{ mV}.$

(3) $V_{GS} = -200 \text{ mV}.$

(4) $V_{GS} = -300 \text{ mV}.$

Fig 6. Typical input characteristics; BF861A.

 $V_{DS} = 8 \text{ V}.$

(1) $V_{GS} = 0 V$.

(2) $V_{GS} = -100 \text{ mV}.$

(3) $V_{GS} = -200 \text{ mV}.$

(4) $V_{GS} = -300 \text{ mV}.$ (5) $V_{GS} = -400 \text{ mV}.$

(6) $V_{GS} = -500 \text{ mV}.$

Fig 8. Typical input characteristics; BF861B.

Fig 9. Typical output characteristics; BF861B.

 $V_{DS} = 8 V.$

(1) $V_{GS} = 0 \text{ V}.$

(2) $V_{GS} = -200 \text{ mV}.$

(3) $V_{GS} = -400 \text{ mV}.$

(4) $V_{GS} = -600 \text{ mV}.$

(5) $V_{GS} = -800 \text{ mV}.$

(6) $V_{GS} = -1 \text{ V}.$

Fig 10. Typical input characteristics; BF861C.

 $V_{DS} = 8 \text{ V.}$ f = 1 MHz.

Fig 12. Input and reverse transfer capacitance as functions of gate-source voltage; typical values.

Fig 11. Typical output characteristics; BF861C.

 $V_{DS} = 8 \text{ V}.$

(1) $I_D = 10 \text{ mA}.$

(2) $I_D = 1 \text{ mA}$.

(3) $I_D = 0.1 \text{ mA}.$

(4) $I_D = I_{GSS}$.

Fig 13. Gate current as a function of drain-gate voltage; typical values.

Fig 14. Equivalent input noise as a function of frequency; typical values.

 $V_{DS} = 8 V.$

 $V_{GS} = 0 V.$

 $T_{amb} = 25 \, ^{\circ}C.$

Fig 16. Common-source reverse admittance; typical values.

 $V_{DS} = 8 V.$

 $V_{GS} = 0 V.$

 $T_{amb} = 25 \, ^{\circ}C.$

Fig 15. Common-source input admittance; typical values.

 $V_{DS} = 8 V.$

 $V_{GS} = 0 V.$

 $T_{amb} = 25 \, ^{\circ}C.$

Fig 17. Common-source forward transfer admittance; typical values.

Package outline

Plastic surface mounted package; 3 leads

SOT23

Fig 19. Package outline

SOT23

99-09-13

 \bigcirc

TO-236AB

9. Revision history

Table 8: Revision history

Document ID	Release date	Data sheet status	Change notice	Order number	Supersedes
BF861A_BF861B_BF861C_4	20040924	Product data sheet	-	9397 750 13395	BF861_3
Modifications:	 Converte 	ed document to TDM for	rmat.		
	 Marking 	code changed and add	ed as <u>Table 4</u> .		
BF861_3	19970904	Product specification	-	9397 750 02667	BF861_2
BF861_2	19950414		-	-	BF861_1
BF861_1	19940829		-	-	-

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

- [1] Please consult the most recently issued data sheet before initiating or completing a design.
- [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- [3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

11. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

12. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

13. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

BF861A; BF861B; BF861C

Philips Semiconductors

N-channel junction FETs

14. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications
1.4	Quick reference data
2	Pinning information 2
3	Ordering information
4	Marking 2
5	Limiting values
6	Thermal characteristics 3
7	Characteristics 3
8	Package outline 10
9	Revision history 11
10	Data sheet status
11	Definitions
12	Disclaimers 12
13	Contact information 12

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

