Свеждане на кратния интеграл към повторен.

23 януари 2017 г.

Нека за f(x,y) имаме, че:

- 1) f(x,y) е интегрируема върху правоъгълника $\Pi = [a,b]x[c,d]$
- 2) $\forall x \in [a, b], \ \exists \int_{c}^{d} f(x, y) dy.$

Тогава f(x,y) е интегрируема врху П. Тогава $\iint_{\Pi} f(x,y) dx dy = \int_{a}^{b} \left[\int_{c}^{d} f(x,y) dy \right] dx$

Нека за f(x,y) имаме, че:

- 1) f(x,y) е интегрируема върху правоъгълника $\Pi=[a,b]x[c,d]$
- 2) $\forall x \in [a, b], \exists \int_{c}^{d} f(x, y) dy.$
- 3) $\forall y \in [c,d], \exists \int_a^b f(x,y) dx.$ Тогава $\iint_\Pi f(x,y) dx dy = \int_a^b \left[\int_c^d f(x,y) dy \right] dx = \int_c^d \left[\int_a^b f(x,y) dx \right] dy$

Нека $\varphi(X)$ и $\Psi(x)$ са непрекъснати върху [a,b]. Множеството $(*)=D=\{(x,y): a\leq x\leq b, \varphi(X)\leq y\leq \Psi(x)\}$, измеримо по Жордан е криволинеен трапец.

Нека f(x,y) е интегруема върху D(*)?????? Тогава $\iint_\Pi f(x,y) dx dy = \int_a^b dx \int_{\varphi(x)}^{\Psi(x)} f(x,y) dy$. Нека $c:=min\varphi(x), d:=max\Psi(x), \ x\in [a,b].$

$$\begin{split} \Pi &= [a,b]x[c,d]. \text{ Дефинираме } F(x,y) = \left| \begin{matrix} f(x,y) = >(x,y) \in D \\ 0 = >(x,y) \in \Pi/D \end{matrix} \right. \\ \text{ От Твърдени } 1 &= > \iint_{\Pi} F(x,y) dx dy = \int_a^b dx \int_c^d F(x,y) dy = \\ &= \int_a^b dx \left[\int_c^{\varphi(x)} F(x,y) dy + \int_{\varphi(x)}^{\varphi(x)} F(x,y) dy + \int_{\Psi(x)}^d F(x,y) dy \right] = = \int_a^b dx \int_{\varphi(x)}^{\varphi(x)} f(x,y) dy. \end{split}$$