Lab Report #0: Risk and Return

Revised: April 5, 2013

I used the old template, ignore and go to the problems.

1. Asset returns. The canonical asset pricing relation can be expressed, variously, as

$$q^{j} = E(md^{j})$$

$$= \sum_{s} p(s)m(s)d^{j}(s)$$

$$= \sum_{s} \theta(s)d^{j}(s).$$

Here q^j is the price "today" of asset j, a claim to the dividend d^j "tomorrow." States s occur with probability p(s). In each state s, the pricing kernel is m(s) and the state price is $\theta(s)$.

Suppose we have two states, s=1 and s=2, which occur with equal probabilities $\theta(1)=2/3$ and $\theta(2)=1/3$. State prices are $\theta(1)=1$ and $\theta(2)=2$.

- (a) Draw the event tree that corresponds to this environment.
- (b) What are the pricing kernel's values in the two states?
- (c) Consider an asset with d(1) = 1 and d(2) = 2. Compute its price q using state prices and the pricing kernel. Verify that you get the same answer.
- (d) How is the (gross) return r related, in general, to q and d? The mean return?
- (e) What are the returns in each state on the asset in part (c)? What is the mean return?
- (f) Consider a second asset with dividends d(1) = 2 and d(2) = 1. What are its price and mean return? Why is its mean return different from the asset in (b)?
- 2. Risk and risk aversion. In the same setting as the previous equation, we'll consider the pricing implied by a representative agent with power utility. Here the pricing kernel is related to consumption growth g by $m = \beta g^{-\alpha}$. Here m is the intertemporal marginal rate of substitution, β is the discount factor, and $\alpha \geq 0$ is the coefficient of relative risk aversion.
 - (a) Suppose $\beta = 0.95$ and $\alpha = 2$. Using the pricing kernel from the previous question, what is consumption growth in the two states?
 - (b) In addition to the other assets, compute the riskfree return: the return on an asset with dividends d(1) = d(2) = 1.
 - (c) What is the risk premium on the asset in part (c) above?
 - (d) Now increase risk aversion to $\alpha = 5$. What is the expected return on the asset on part (c)? Its risk premium? What do you think is happening here?
 - © 2013 NYU Stern School of Business