Homework 1 Solution

ECE 269: Linear Algebra and Applications Homework #1 Solution Instructor: Behrouz Touri

- 1. Review of prior Linear Algebra: Properties of Matrix multiplication. Let $A, B \in \mathbb{R}^{n \times n}$ be regular $n \times n$ real-valued matrices $(n \ge 2)$. Prove or disprove the following claims:
 - (a) AB = BA.
 - (b) If AB = 0, then A = 0 or B = 0.
 - (c) If $A^k = 0$ for all k > 1, then A = 0.
 - (d) If A'A = 0, then A = 0.

Solution:

- (a) **False**: Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$. Then $AB = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $BA = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.
- (b) False: Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Then AB = 0.
- (c) False: Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Then $A^2 = 0$ and thus $A^k = 0$ for all k > 1.
- (d) **True**. Let $A = [A_{ij}]$ and B = A'A. Note that $B_{ii} = \sum_{j=1}^{n} A_{ji}^2$. So, if B is the zero matrix, then $B_{ii} = 0$ which implies $A_{ji} = 0$ for all j. This means that the ith column would be zero, and since this holds for all columns, it implies A is the zero matrix.
- 2. Some set theory. Let A, B, C be three sets.
 - (a) Show that if $A \subseteq B$, then $A C \subseteq B C$ where $A C = A \cap C^c$.
 - (b) Is this true or not: $A \cup (B \cap C) = (A \cup B) \cap C$.

Solution:

- (a) For any $x \in A C$, $x \in A$ and $x \in C^c$. Since $A \subseteq B$ and $x \in A$, we deduce that $x \in B$. So, $x \in B \cap C^c = B C$.
- (b) **False**: Let $C = \emptyset$. Then $A \cup (B \cap C) = A \cup \emptyset = A$ and $(A \cup B) \cap C = (A \cup B) \cap \emptyset = \emptyset$. So if $A \neq \emptyset$, the two terms are not equal.
- 3. Finite field GF(4). As mentioned in the class, a field is a set equipped with two tables (operations), an addition table, and a multiplication table that are related through the distributive law.
 - (a) Construct those tables for the set $\mathbb{F} = \{0, 1, a, b\}$ where 0 is the unity of the additive table and 1 is the unity of the multiplication table.
 - (b) Given your answer in part (a), solve $a \cdot x + 1 = b$ (i.e., find $x \in \mathbb{F}$ that satisfies this identity).

(a) We will construct the multiplicative table first. Let $x = a^2, y = ab, z = b^2$:

•	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	X	у
b	0	b	у	\mathbf{Z}

Each row/column for 1, a, or b needs to have 1. We will show y=1 by proving that $y \neq 1$ and x=z=1 lead to a contradiction. Suppose $y \neq 1$ and x=z=1, i.e. $a^{-1}=a$ and $b^{-1}=b$. If y=a, ab=a. By multiplying both sides by a^{-1} , we get b=1, which is a contradiction. Similarly, y=b leads to a contradiction. Therefore, we have y=1, i.e. $a^{-1}=b$ and $b^{-1}=a$. We will show x=b by showing contradictions. If x=1, $a^2=1$. By multiplying both sides by $a^{-1}=b$, we have a=b, which is a contradiction. If x=a, $a^2=a$. By multiplying both sides by a^{-1} , we have a=1, which is also a contradiction. Therefore, x=b. Similarly, z=a.

•	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	b	1
b	0	b	1	a

Next, we will construct the additive table. We define p, q, r, s, t, u as the following table:

+	0	1	a	b
0	0	1	a	b
1	1	p	q	r
a	a	\mathbf{q}	\mathbf{s}	\mathbf{t}
b	b	r	\mathbf{t}	u

Suppose q=a+1=0. Then 1=-a. By multiplying both sides of a+1=0 by a, we get b+a=0. Since b=-a=1, this is a contradiction. Therefore, $q\neq 0$. Similarly, $r\neq 0$ and $t\neq 0$. Since each row/column has 0, p=s=u=0. If q=1, a=0 (contradiction). If q=a, 1=0 (contradiction). Therefore, q=b. Similarly, r=a and t=1.

+	0	1	a	b
0	0	1	a	b
1	1	0	b	a
a	a	b	0	1
b	b	a	1	0

- (b) ax + 1 = b is equivalent to ax = b + (-1) = b + 1 = a. So, x = 1.
- 4. Field Properties. Let $(\mathbb{F}, +, \cdot)$ be a field with the additive identity element z and multiplicative identity element o. Prove the following.
 - (a) For all $a \in \mathbb{F}$, $z \cdot a = z$.
 - (b) Show that if \mathbb{F} is finite, and $a \neq z$, then $a^q = o$ for some $q \geq 1$.

Solution:

(a) By distributivity and additive identity, we have

$$z \cdot a = (z+z) \cdot a = z \cdot a + z \cdot a.$$

Moreover, by additive inverse,

$$z = z \cdot a + (-z \cdot a) = z \cdot a + z \cdot a + (-z \cdot a) = z \cdot a + z = z \cdot a.$$

(b) Since \mathbb{F} is finite, there exist q_1 and $q_2 \geq 1$ with $q_1 < q_2$ such that $a^{q_1} = a^{q_2}$. Since any two nonzero elements' multiplication is not zero (in our case, z), we know both a^{q_1} and a^{q_2} are not zero. Therefore, there exists the multiplicative inverse $(a^{q_1})^{-1}$ and we have

$$o = (a^{q_1})^{-1}a^{q_1} = (a^{q_1})^{-1}a^{q_2}.$$

Also observe that by associativity of multiplication, $(a^{-1})^{q_1}a^{q_1}=o$. So, $(a^{-1})^{q_1}=(a^{q_1})^{-1}$ and $o=(a^{-1})^{q_1}a^{q_2}=a^{q_2-q_1}$. Now we prove our assertion with $q=q_2-q_1$.

- 5. Subspaces. Let V and W be subspaces of a vector space. Which of the following is also a subspace?
 - (a) Minkowski sum $V + W = \{v + w : v \in V, w \in W\}.$
 - (b) $V \cap W$.
 - (c) $\mathcal{V} \cup \mathcal{W}$.

For each case, either verify that it is a subspace or prove otherwise. Solution:

(a) This is a subspace.

Suppose that $u, v \in \mathcal{V} + \mathcal{W}$. Then, by the definition, u = s + x and v = t + y for some $s, t \in V, x, y \in W$. Therefore, for any $a \in F$ we have:

- i. Since $s + t \in V$ and $x + y \in W$, $(s + x) + (t + y) = (s + t) + (x + y) = u + v \in V + W$.
- ii. Since $as \in V$ and $ax \in W$, $a(s+x) = as + ax = av \in V + W$.
- (b) This is a subspace.

Suppose $x, y \in V \cap W, a \in F$, i.e., $x, y \in V$ and $x, y \in W$.

- i. Since V, W are subspaces, $x + y \in V$ and $x + y \in W$, $x + y \in V \cap W$.
- ii. Similarly, $ax \in V$ and $ax \in W$, therefore $ax \in V \cap W$.
- (c) This is not a subspace.

For example, suppose $V = \{[x, 0] \in \mathbb{R}^2\}$ and $W = \{[0, y] \in \mathbb{R}^2\}$. $[x, 0] + [0, y] = [x, y] \notin V \cup W$. Since the set is not closed with respect to addition, it is not a vector space.

- 6. Bases. Find a basis for each of the following subspaces of \mathbb{R}^4 .
 - (a) All vectors whose components are equal.
 - (b) All vectors whose components sum to zero.
 - (c) All vectors orthogonal to both $\begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}'$ and $\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}'$.
 - (d) All vectors spanned by $\begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}'$, $\begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}'$, $\begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}'$, and $\begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}'$

Repeat parts (a)–(d) for \mathbb{Z}_2^4 instead of \mathbb{R}^4 .

Solution:

- (a) $\{\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T \}$ is a basis for the subspace.
- (b) $\{[1 \ 0 \ 0 \ -1]', [0 \ 1 \ 0 \ -1]', [0 \ 0 \ 1 \ -1]'\}$ is a basis for the subspace. Let $x = [a \ b \ c \ d]' \in \mathbb{R}^4$. Since the components sum to zero, a + b + c + d = 0. i.e., d = -a b c. Therefore, the subspace is $\{x = a \begin{bmatrix} 1 \ 0 \ 0 \ -1 \end{bmatrix}' + b \begin{bmatrix} 0 \ 1 \ 0 \ -1 \end{bmatrix}' + c \begin{bmatrix} 0 \ 0 \ 1 \ -1 \end{bmatrix}' | a, b, c \in \mathbb{R} \}$. Since $[1 \ 0 \ 0 \ -1]', [0 \ 1 \ 0 \ -1]', [0 \ 0 \ 1 \ -1]'$ span the subspace and they are linearly independent, they form a basis.
- (c) $\{[1 \ 0 \ -1 \ 0]', [0 \ 1 \ 0 \ -1]'\}$ is a basis for the subspace. Let $x = [a \ b \ c \ d]' \in \mathbb{R}^4$. Since x is orthogonal to both $[1 \ 0 \ 1 \ 0]'$ and $[0 \ 1 \ 0 \ 1]'$, $[1 \ 0 \ 1 \ 0] \ x = a + c = 0$ and $[0 \ 1 \ 0 \ 1] \ x = b + d = 0$. Hence, c = -a, d = -b. Therefore, the subspace is $\{x = a [1 \ 0 \ -1 \ 0]' + c [0 \ 1 \ 0 \ -1]' | a, c \in \mathbb{R}\}$. Since $[1 \ 0 \ -1 \ 0]', [0 \ 1 \ 0 \ -1]'$ span the subspace and they are linearly independent, they form a basis.

We will consider \mathbb{Z}_2^4 instead of \mathbb{R}^4 .

- (a) $\{[1 \ 1 \ 1]'\}$ is a basis for the subspace. Let $x = [a \ b \ c \ d]' \in \mathbb{Z}_2^4$. Since the components are equal, a = b = c = d. Therefore, the subspace is $\{x = a \begin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}' | a \in \mathbb{Z}_2\}$. Since a vector $\begin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}'$ spans the subspace, it is a basis.
- (b) { $\begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}', \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}', \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}'$ } is a basis for the subspace. Let $x = \begin{bmatrix} a & b & c & d \end{bmatrix}' \in \mathbb{Z}_2^4$. Since the components sum to zero, a + b + c + d = 0. i.e., d = a + b + c. Therefore, the subspace is $\{x = a \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}' + b \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}' + c \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}' | a, b, c \in \mathbb{Z}_2$ }. Since $\begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}', \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}', \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}'$ span the subspace and they are linearly independent, they form a basis.
- (c) { $\begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}'$, $\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}'$ } is a basis for the subspace. Let $x = \begin{bmatrix} a & b & c & d \end{bmatrix}' \in \mathbb{Z}_2^4$. Since x is orthogonal to both $\begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}'$ and $\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}'$, $\begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix} x = a + c = 0$ and $\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix} x = b + d = 0$. Hence, c = -a = (-1+2)a = a, d = -b = (-1+2)b = b. Therefore, the subspace is $\{x = a \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}' + c \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}' | a, c \in \mathbb{Z}_2 \}$. Since $\begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}'$, $\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}'$ span the subspace and they are linearly independent, they form a basis.