Supplemental file of "Selective-Candidate Framework with Similarity Selection Rule for Evolutionary Optimization"

Sheng Xin Zhang a*, Wing Shing Chan a, Zi Kang Peng b, Shao Yong Zheng b*, Kit Sang Tang a

^a Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong ^b School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China

Review of Evolutionary Algorithms and Swarm Intelligences

We briefly review and present the flow of three popular EAs and SIs including DE, ES and PSO and then give the general procedures.

1. **DF**

Differential evolution (DE) as proposed by Storn and Price [1] is a simple yet powerful EA. At each generation *g*, three genetic operations, namely mutation, crossover, and selection are included.

Initialization: Given a *D*-dimensional minimization problem, DE starts with a population $P_0 = \{x_{1,0}, x_{2,0}, ..., x_{NP,0}\}$ of *NP* individuals which is uniformly sampled from the entire searching space.

Mutation: Mutation in DE is performed by combining a basic vector with one or more difference vectors to generate a mutant vector $v_{i,g}$ {i = 1, 2, ..., NP}. The classic "rand/1" mutation strategy is formulated as follows.

$$\mathbf{v}_{i,g} = \mathbf{x}_{r1,g} + F \times (\mathbf{x}_{r2,g} - \mathbf{x}_{r3,g}) \tag{1}$$

where r_1 , r_2 and r_3 are three distinct integers within [1, NP] and are different from the index i, while F is a mutation factor between 0 and 1.

Crossover: After mutation, crossover is performed between the mutant vector $\mathbf{v}_{i,g}$ and the current vector $\mathbf{x}_{i,g}$ to generate a trial vector $\mathbf{u}_{i,g}$ as follows.

$$u_{i,j,g} = \begin{cases} v_{i,j,g} & \text{if } rand_j(0,1) \le CR \text{ or } j = j_{rand} \\ x_{i,j,g} & \text{otherwise} \end{cases}$$
 (2)

where $rand_j(0,1)$ is a uniform random number in (0, 1), j_{rand} is a randomly generated integer from [1, D], and CR is a crossover factor within [0,1].

Selection: Selection compares the fitness of $u_{i,g}$ with that of the corresponding $x_{i,g}$ and selects the better one to enter into the next generation.

$$\mathbf{x}_{i,g+1} = \begin{cases} \mathbf{u}_{i,g} & \text{if } f(\mathbf{u}_{i,g}) \leq f(\mathbf{x}_{i,g}) \\ \mathbf{x}_{i,g} & \text{otherwise} \end{cases}$$
(3)

2. ES

Evolution strategy (ES) first appeared in 1964 at the Technical University of Berlin (TUB), and was used to solve hydrodynamic problems [2]. Different versions of ES have been proposed since this first version. Generally, ES can be categorized according to the number of parents and offspring involved in each generation. (1+1)-ES includes only one parent, which generates one offspring for each generation by means of Gaussian mutation. (μ + 1)-ES uses μ (μ > 1) parents to generate one offspring per generation. (μ + λ)-ES utilizes μ parents to generate λ (λ > μ) offspring and then chooses μ individuals from the (μ + λ) individuals to enter next generation, while (μ , λ)-ES chooses μ individuals only from the λ offspring.

Initialization: Given a *D*-dimensional minimization problem, ES starts with an initial population $P_0 = \{x_{1,0}, x_{2,0}, ..., x_{\mu,0}\}$ of μ individuals. Each individual $x_{i,0} = [x_{i,1,0}, x_{i,2,0}, ..., x_{i,D,0}, \sigma_{i,1,0}, \sigma_{i,2,0}, ..., \sigma_{i,D,0}], (i = 1, 2, ..., \mu)$ has *D* variables and *D* independent standard deviations. The initial standard deviation $\sigma_{i,0}$ is calculated as

$$\sigma_{i,0} = \frac{\Delta x_i}{\sqrt{D}} \tag{4}$$

where Δx_i is the Euclidian distance between $x_{i,0}$ and the fittest individual in the initial population.

Recombination: At each generation g, recombination is performed on two randomly selected individuals to produce a new individual $xr_{i,g}$ { $i = 1, 2, ..., \lambda$ }. Different recombination strategies are specified as follows:

$$xr_{i,j,g} = \begin{cases} x_{p,j,g}, & \text{without recombination} \\ x_{p,j,g}, & \text{or } x_{q,j,g}, & \text{discrete recombination} \\ x_{p,j,g} + \chi \cdot (x_{q,j,g} - x_{p,j,g}), & \text{intermediate recombination} \end{cases}$$
(5)

where p and q are the two distinct integers uniformly selected from the set $\{1, 2, ..., \mu\}, j = 1, 2, ..., D$ is the dimension to be recombined and χ is a constant value usually set to 0.5 [3].

Mutation: Following recombination, mutation is performed to generate λ mutant individuals $xm_{i,g}\{i=1,2,...,\lambda\}$ as described by the following:

$$\sigma_{i,j,g} = \sigma_{i,j,g} \cdot \exp(\tau' \cdot N(0,1) + \tau \cdot N_i(0,1))$$
(6)

$$xm_{i,j,g} = xr_{i,j,g} + N(0,\sigma_{i,j,g})$$
 (7)

where j = 1, 2, ..., D, N(0,1) and $N_i(0,1)$ are two normal distributions, τ' and τ are constants usually set as unity.

Selection: Select μ fittest individuals from the set of $\mu + \lambda$ individuals (($\mu + \lambda$)-ES), or from the set of λ offspring produced by mutation ((μ, λ)-ES).

3. *PSO*

Particle swarm optimization (PSO) as proposed by Kennedy and Eberhart [4] imitates the swarm behavior of animals, such as birds flocking and fish schooling. Given a *D*-dimensional minimization problem, PSO explores the searching space by utilizing a swarm of *NP* particles with each particle associated with a velocity vector $\mathbf{v}_i = [v_{i1}, v_{i2}, ..., v_{iD}]$ and a position vector $\mathbf{x}_i = [x_{i1}, x_{i2}, ..., x_{iD}]$, i = 1, 2, ..., NP. During the searching process, each individual historical best position vector is recorded in **pbest**_i = [$p_{i1}, p_{i2}, ..., p_{iD}$] and the global best position vector is stored in **gbest** = [$gb_1, gb_2, ..., gb_D$]. Based on **pbest**_i and **gbest**, particles update their velocity and position at each iteration by using Eq. (8) and (9) respectively:

$$v_{ij} = w \times v_{ij} + c_1 \times r_{1j} \times (pbest_{ij} - x_{ij}) + c_2 \times r_{2j} \times (gbest_j - x_{ij})$$

$$\tag{8}$$

$$X_{ij} = X_{ij} + V_{ij} \tag{9}$$

where w is the inertia weight, c_1 and c_2 are the acceleration constants, which are commonly set to 2.0. r_{1j} and r_{2j} are two uniformly distributed random numbers within (0, 1) for each dimension j. The updated velocity $|v_{ij}|$ on each dimension is bounded by a maximum value V_{MAXj} . If $|v_{ij}|$ exceeds V_{MAXj} , then it is set as $sign(v_{ij})$ V_{MAXj} .

4. General Procedures

From above, the general procedures for EAs and SIs is summarized as **Algorithm 1.**

Algorithm 1. General Procedures of EAs and SIs

- 1: Initialize population $X = \{x_1, x_2, ..., x_{NP}\};$
- 2: While the stopping criteria are not met **Do**
- 3: Determine the control parameters *CP* for genetic operations or social learning;
- 4: Produce a new population *Y* via genetic operations or social learning on *X*;
- 5: Evaluate the fitness of Y;
- 6: Select solutions as new X from $X \cup Y$ to enter next iteration.
- 7: End While

[1] R. Storn and K. Price, Differential evolution—A simple and efficient adaptive scheme for global optimization over continuous spaces, Berkeley, CA, Tech. Rep., 1995, tech. Rep. TR-95-012.

- [2] T. Bäck and H.-P. Schwefel, An overview of evolutionary algorithms for parameter optimization, Evol. Comput., 1 (1993) 1–23.
- [3] T. Bäck, Evolutionary Algorithms in Theory and Practice. London, U.K.: Oxford Univ. Press, 1996.
- [4] J. Kennedy and R. C. Eberhart, Particle swarm optimization, in Proc. IEEE Int. Conf. Neural Netw., 4 (1995) 1942–1948.

SCSS variants:

SCSS variants and the baseline algorithms. _____

Algorithm S1. SCSS-DE

```
1: Set the population size NP, initialize the population P_0 = \{x_{1.0}, y_{1.0}, 
                                   x_{2,0}, ..., x_{NP,0}}, set F and CR, set the generation counter g = 0;
2: Set GD;
```

3: While the stopping criteria are not met **Do**

4: Determine the fitness ranking rank(i) of each individual i $\{i = 1, 2, ..., NP\};$

5: **For** m = 1: M \Leftarrow

6: **For** i = 1: *NP* **Do**

------Mutation -----

Generate a mutant vector \mathbf{v}_{i}^{m} , g using Eq. (1); -----Crossover-----

8: Generate a trial vector $\mathbf{u}_{i}^{m}_{,g}$ using Eq. (2);

 $dist_i^m$ = Euclidian distance $(\boldsymbol{u}_i^m, g, \boldsymbol{x}_{i,g})$; 9: \leftarrow

10: End For

11: End For \leftarrow

12: **For** i = 1: *NP* **Do**

13: If $rank(i) \le ceil(NP \times GD)$ \leftarrow

14: $index = arg min (dist_i^m);$ \leftarrow

 $m \in \{1, 2, ..., M\}$ $\boldsymbol{u}_{i,g} = \boldsymbol{u}_i^{index}_{,g};$ 15: \Leftarrow

16: Else \Leftarrow

17: $index = arg max(dist_i^m);$ \leftarrow

 $m \in \{1, 2, ..., M\}$

 $\boldsymbol{u}_{i,g} = \boldsymbol{u}_i^{index}_{,g};$ 18: \leftarrow 19: End If

20: End For

21: Evaluate the fitness of $u_{i,g} \{i = 1, 2, ..., NP\};$

-----Selection-----

22: **For** i = 1: *NP* **Do**

If $f(\mathbf{u}_{i,g}) \leq f(\mathbf{x}_{i,g})$ 23:

24: $\mathbf{x}_{i,\,g+1} = \mathbf{u}_{i,\,g};$

25: Else

26: $\mathbf{x}_{i, g+1} = \mathbf{x}_{i, g};$

27: **End If**

28: End For

29: g = g + 1;

30: End While

Algorithm S2. SCSS-ES

_____ 1: Set the population size μ , initialize the population $P_0 = \{x_{1,0}, y_{1,0}\}$ $x_{2,0}, ..., x_{\mu,0}$ }, set the generation counter g = 0;

.....

2: Set *GD*;

3: While the stopping criteria are not met **Do**

4: Determine the fitness ranking RANK(k) of each individual k $\{k=1, 2, ..., \mu\};$

5: **For** i = 1: λ **Do**

-----Recombination-----

6: Randomly choose p and q, use the pth and qth individuals from P_g to generate a new individual $xr_{i,g}$ with the recombination strategy, i.e. Eq. (5);

7: Calculate the fitness rank(i) of individual $i\{i=1, 2, ..., \lambda\}$ as (RANK(p)+RANK(q))/2;

8: End For

9: **For** m = 1: M \Leftarrow

10: **For** $i = 1: \lambda$ **Do**

------Mutation-----

11: Use Eq. (6) and (7) to mutate the individual $xr_{i,g}$ produced by recombination and generate a mutant individual

12: $dist_i^m = \text{Euclidian distance } (\mathbf{xm}_i^m, \mathbf{xr}_{i,g});$

13: End For

14: End For

15: **For** $i = 1: \lambda$ **Do**

16: If $rank(i) \le ceil(\lambda \times GD)$

 $index = arg min (dist_i^m);$ 17: $m{\in}\{1,2,...,M\}$

 $xm_{i,g} = xm_i^{index}_{g};$ 18:

19: Else

20: $index = arg max(dist_i^m);$

 $m \in \{1, 2, ..., M\}$ $xm_{i,g} = xm_i^{index}_{i,g};$ 21: \Leftarrow

22: **End If** \leftarrow

23: End For

24: Evaluate the fitness of all the new individuals $xm_{i,g}$ {i = 1, $2, ..., \lambda$ };

-----Selection-----

25: Select μ fittest individuals $x_{i,g}$ { $i = 1, 2, ..., \mu$ } from the $\mu + \lambda$ individuals to form a new population P_{g+1} .

26: g = g + 1;

27: End While

 \leftarrow

Algorithm S3. SCSS-PSO

1: Set the swarm size NP, initialize positions $X = \{x_1, x_2, ..., x_n\}$ x_{NP} , initialize velocities $V = \{v_1, v_2, ..., v_{NP}\}$, record each particle's historical best position in *pbest*_i and the global best position in **gbest**, set w, c_1 and c_2 , set iteration counter IT = 0;

2: Set *GD*; \leftarrow

3: While the stopping criteria are not met Do

4: Determine the fitness ranking rank(i) of each particle i $\{i = 1, 2, ..., NP\};$

5: **For** m = 1: M \leftarrow

6: **For** i = 1: *NP* **Do**

7: **For** j = 1: D **Do**

Update v_{ij}^m using Eq. (8); 8: 9:

Adjust v_{ij}^{m} if it exceeds V_{MAXi} ;

Update x_{ii}^{m} using Eq. (9); 10:

11: End For

12: $dist_i^m$ = Euclidian distance $(x_i^m, pbest_i)$;

13: End For

14: End For

15: **For** i = 1: *NP* **Do**

If $rank(i) \le ceil(NP \times GD)$ 16: \leftarrow

 \leftarrow

17: $index = arg min (dist_i^m);$ \leftarrow $m \in \{\bar{1}, 2, ..., M\}$

 $\mathbf{x}_i = \mathbf{x}_i^{index}$; 18: \leftarrow

```
19:
         Else
                                                                       \leftarrow
20:
            index = arg max(dist_i^m);
                      m \in \{1, 2, ..., M\}
           \mathbf{x}_i = \mathbf{x}_i^{index}
21:
22:
        End If
                                                                        \leftarrow
23: End For
24: For i = 1: NP Do
      Evaluate the fitness of the new position x_i;
26:
       If f(x_i) \leq f(pbest_i)
27:
          pbest_i = x_i;
28:
       End If
29:
       If f(x_i) \le f(gbest)
30:
          gbest = x_i;
31:
       End If
32: End For
33: IT = IT + 1;
34: End While
```

Remark 1: In SCSS framework, the control parameters that are actually used, cp_i of y_i should be determined (lines 15 and 19 in Algorithm 2) for the reason that different reproduction procedure m may use different CP and the CP may have further usages. For example, in the JADE and SHADE algorithms, control parameters F and CR are generated according to Cauchy and normal distributions, respectively and after the selection of DE, successful CP are archived to determine new location parameters of Cauchy and normal distributions. Thus, in SCSS, the generations of F and CR are independent in each reproduction procedure m and the successful CP that are actually used is archived. In Algorithms S1 and S3, this is not shown because the classic DE and PSO use pre-defined fixed CP, i.e. F and CR in DE and W, C_1 and C_2 in PSO.

Remark 2: In PSO, the personal best position of each particle is regarded as a current solution for the similarity calculation (line 12 in Algorithm S3).

Remark 3: Different from the one-to-one reproduction procedures in DE and PSO, λ offspring is generated by using μ parents in ES. Therefore, we treat the λ new individuals XR produced by recombination as the current solutions, and their fitness rankings are calculated to be the average ranking of the pth and qth individuals used to perform recombination (lines 6 and 7 in Algorithm S2).

TABLE CAPTIONS

- TABLE S1 PERFORMANCE COMPARISONS OF FOUR SCSS-BASED ADVANCED ALGORITHMS WITH THE BASELINES ON 30-D CEC2014 BENCHMARK SET
- **TABLE S2** PERFORMANCE COMPARISONS OF FOUR SCSS-BASED **ADVANCED ALGORITHMS** WITH THE BASELINES ON 50-D CEC2014 BENCHMARK SET
- **TABLE S3** COMPARISON RESULTS OF SCSS VARIANTS WITH DIFFERENT SS RULES AGAINST THE BASELINES ON 30-D CEC2014 TEST FUNCTIONS (M = 2 FOR ALL THE SCSS VARIANTS, BEST ENTRIES ARE HIGHLIGHTED)
- **TABLE S4** PERFORMANCE COMPARISONS OF SCSS-IPOP-CMA-ES WITH IPOP-CMA-ES ON 30-D AND 50-D CEC2014 BENCHMARK SET
- TABLE S5 PERFORMANCE COMPARISONS OF SCSS-JADE WITH THREE VARIANTS ON 30-D CEC2014 BENCHMARK SET
- **TABLE S6** PERFORMANCE COMPARISON OF SCSS VARIANTS WITH DIFFERENT *M* SETTINGS WITH THE BASELINES (BEST ENTRIES ARE HIGHLIGHTED)
- TABLE \$7 PERFORMANCE COMPARISON BETWEEN SCSS VARIANTS WITH ADJACENT M SETTINGS
- Table $\bf S8$ Performance comparisons of four SCSS-based $\bf TOP$ algorithms with the baselines on $\bf 30$ -d cec $\bf 2014$ benchmark set
- **TABLE S9** PERFORMANCE COMPARISONS OF FOUR SCSS-BASED **TOP ALGORITHMS** WITH THE BASELINES ON 50-D CEC2014 BENCHMARK SET
- TABLE S10 PERFORMANCE COMPARISONS OF FOUR SCSS-BASED ADVANCED ALGORITHMS WITH THE BASELINES ON 30-D CEC2017 BENCHMARK SET
- TABLE S11 PERFORMANCE COMPARISONS OF FOUR SCSS-BASED ADVANCED ALGORITHMS WITH THE BASELINES ON 50-D CEC2017 BENCHMARK SET
- **TABLE S12** PERFORMANCE COMPARISONS OF FOUR SCSS-BASED **TOP ALGORITHMS** WITH THE BASELINES ON 30-D CEC2017 BENCHMARK SET
- TABLE \$13 Performance comparisons of four SCSS-based \$TOP\$ algorithms with the baselines on 50-d cec2017 benchmark set
- **TABLE S14** PERFORMANCE COMPARISONS OF FOUR SCSS-BASED **TOP ALGORITHMS** WITH THE BASELINES ON 100-D CEC2017 BENCHMARK SET

TABLE S1 PERFORMANCE (MEAN(STD)) COMPARISONS OF FOUR SCSS-BASED ADVANCED ALGORITHMS WITH THE BASELINES ON 30-D CEC2014 BENCHMARK SET

		JADE	SCSS-	SHADE	SCSS-	CMA-ES	SCSS-	LIPS	SCSS-
			JADE		SHADE		CMA-ES		LIPS
	cec14F1	2.04E+03 = (2.59E+03)	1.47E+03 (2.14E+03)	1.61E+03 = (2.04E+03)	1.50E+03 (2.68E+03)	0.00E+00 = (0.00E+00)	0.00E+00 (0.00E+00)	2.84E+07 - (2.65E+07)	5.42E+06 (6.50E+06)
Unimodal Functions	F2	0.00E+00=	0.00E+00	0.00E+00=	0.00E+00	0.00E+00)	0.00E+00	2.58E+03 =	5.84E+03
nim	cec14F2	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(4.30E+03)	(8.14E+03)
D	cec14F3	2.08E-05 -	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	3.93E+03 -	2.13E+03
	cec14	(1.13E-04)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(3.64E+03)	(1.95E+03)
	F4	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	2.74E+02 -	1.40E+02
	CCC14	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(1.13E+02)	(6.49E+01)
	cec14F5	2.03E+01 - (3.12E-02)	2.03E+01 (7.09E-02)	2.02E+01 - (2.78E-02)	2.01E+01 (2.29E-02)	2.00E+01 + (3.27E-05)	2.13E+01 (5.20E-01)	2.00E+01 + (8.23E-05)	2.09E+01 (4.90E-02)
	F6	8.76E+00=	7.33E+00	6.42E+00 -	4.12E+00	4.12E+01 -	4.19E+00	1.48E+01 -	7.72E+00
	cec14F6	(2.72E+00)	(3.86E+00)	(3.15E+00)	(3.37E+00)	(9.58E+00)	(5.18E+00)	(2.70E+00)	(2.24E+00)
	F7	3.38E-04 =	1.93E-04	0.00E+00 =	0.00E+00	1.64E-03 =	1.59E-03	1.59E-03 =	2.37E-03
	cec14	(1.71E-03)	(1.38E-03)	(0.00E+00)	(0.00E+00)	(3.51E-03)	(4.45E-03)	(4.86E-03)	(4.57E-03)
	cec14F8	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	4.08E+02 -	2.31E+02	5.35E+01 -	2.64E+01
		(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(8.57E+01) 6.35E+02 -	(2.00E+02)	(1.26E+01)	(6.79E+00)
odal	cec14F9	2.58E+01 - (3.62E+00)	2.13E+01 (4.82E+00)	2.10E+01 - (3.81E+00)	1.92E+01 (3.44E+00)	(1.23E+02)	2.17E+02 (2.74E+02)	6.29E+01 - (1.82E+01)	3.62E+01 (8.74E+00)
lltim ions	F10	4.49E-03 +	9.39E-03	5.31E-03 =	7.76E-03	4.92E+03 -	3.49E+03	1.97E+03 -	9.61E+02
Simple Multimodal Functions	F10	(1.05E-02)	(1.52E-02)	(1.01E-02)	(1.17E-02)	(7.43E+02)	(1.10E+03)	(4.14E+02)	(2.63E+02)
mpl	F11	1.66E+03 -	1.54E+03	1.48E+03 =	1.50E+03	5.10E+03 -	3.58E+03	2.54E+03 -	2.02E+03
S.	cec14	(2.67E+02)	(2.28E+02)	(2.35E+02)	(2.02E+02)	(8.25E+02)	(1.15E+03)	(4.39E+02)	(4.10E+02)
	F12	2.60E-01 -	2.27E-01	2.10E-01 -	1.68E-01	3.76E-01 -	2.40E-01	1.78E-01 =	7.59E-01
	T12	(4.06E-02) 2.10E-01 -	(4.87E-02) 1.85E-01	(2.67E-02) 2.23E-01 -	(2.45E-02) 2.04E-01	(4.02E-01) 2.62E-01 +	(1.01E+00) 4.24E-01	(4.81E-02) 3.06E-01 -	(1.02E+00) 2.75E-01
	F13	(3.53E-02)	(3.68E-02)	(3.61E-02)	(3.18E-02)	(7.72E-02)	4.24E-01 (1.46E-01)	(6.43E-02)	(5.22E-02)
	F14	2.24E-01 =	2.32E-01	2.27E-01 -	2.09E-01	3.71E-01 +	5.66E-01	2.45E-01 +	3.10E-01
	F14	(3.09E-02)	(3.71E-02)	(3.04E-02)	(3.26E-02)	(9.68E-02)	(2.97E-01)	(3.56E-02)	(7.15E-02)
	F15	3.11E+00 -	2.86E+00	2.97E+00 -	2.59E+00	3.49E+00 =	3.21E+00	1.08E+01 -	3.92E+00
	cec14	(4.17E-01)	(3.22E-01)	(3.67E-01)	(3.03E-01)	(7.56E-01)	(6.63E-01)	(3.87E+00)	(8.93E-01)
	F16	9.49E+00 =	9.34E+00	9.51E+00 =	9.50E+00	1.43E+01 -	1.38E+01	1.15E+01 -	1.06E+01
	CCC 14	(3.17E-01)	(4.29E-01)	(3.99E-01)	(4.24E-01)	(4.33E-01)	(7.44E-01)	(4.96E-01)	(4.65E-01)
	F17	1.24E+03 - (3.35E+02)	8.28E+02 (3.47E+02)	9.44E+02 - (3.12E+02)	5.78E+02 (2.32E+02)	1.56E+03 = (4.64E+02)	1.71E+03 (3.84E+02)	2.89E+05 - (3.04E+05)	1.86E+05 (2.99E+05)
	F1 Q	2.11E+02 -	4.72E+01	3.44E+01 -	2.05E+01	1.35E+02 +	1.78E+02	4.88E+02 =	4.92E+02
	F18	(8.15E+02)	(2.34E+01)	(1.74E+01)	(1.20E+01)	(4.50E+01)	(7.13E+01)	(7.08E+02)	(9.08E+02)
S	F19	4.52E+00 -	4.01E+00	3.95E+00 =	3.84E+00	1.01E+01 -	6.74E+00	2.54E+01 -	8.85E+00
Hybrid Functions	cec14	(6.74E-01)	(8.54E-01)	(4.72E-01)	(6.58E-01)	(2.11E+00)	(1.58E+00)	(2.49E+01)	(2.76E+00)
Hy	F20	2.02E+03 =	1.88E+03	1.09E+01 -	8.41E+00	2.89E+02 -	1.49E+02	1.47E+04 =	1.23E+04
		(2.81E+03)	(2.44E+03) 2.41E+02	(4.61E+00)	(3.45E+00) 1.90E+02	(1.01E+02) 1.04E+03 -	(5.45E+01) 8.64E+02	(7.71E+03)	(7.41E+03)
	F21	4.07E+03 - (1.89E+04)	(1.15E+02)	2.13E+02 = (1.01E+02)	(1.12E+02)	(3.50E+02)	(3.05E+02)	1.11E+05 - (8.42E+04)	4.26E+04 (5.58E+04)
	F22	1.30E+04	1.10E+02	6.36E+01 =	7.12E+01	3.07E+02 -	1.16E+02	3.27E+02 -	2.28E+02
	F22	(6.92E+01)	(6.90E+01)	(4.93E+01)	(6.10E+01)	(2.29E+02)	(1.10E+02)	(1.20E+02)	(1.10E+02)
	. F23	3.15E+02 =	3.15E+02	3.15E+02 =	3.15E+02	3.15E+02 +	3.15E+02	3.24E+02 -	3.16E+02
	cec14	(4.02E-13)	(4.02E-13)	(4.02E-13)	(4.02E-13)	(3.15E-12)	(2.57E-11)	(5.26E+00)	(5.73E-01)
	F24	2.26E+02 =	2.25E+02	2.24E+02 =	2.24E+02	2.33E+02 -	2.26E+02	2.39E+02 -	2.33E+02
		(3.11E+00)	(3.27E+00)	(1.01E+00)	(1.21E+00)	(6.83E+00)	(6.96E+00)	(4.83E+00)	(5.09E+00)
	F25	2.05E+02 - (2.18E+00)	2.03E+02 (6.04E-01)	2.04E+02 - (1.04E+00)	2.03E+02 (4.63E-01)	2.04E+02 - (2.42E+00)	2.03E+02 (5.20E-01)	2.16E+02 - (3.59E+00)	2.11E+02 (1.97E+00)
Ę	F26	1.00E+02 -	1.00E+02	1.00E+02 -	1.00E+02	1.31E+02 -	1.26E+02	1.32E+02 -	1.09E+02
Composition Functions	F26	(3.77E-02)	(3.56E-02)	(3.26E-02)	(3.42E-02)	(1.37E+02)	(1.58E+02)	(4.40E+01)	(2.68E+01)
mpc	F27	3.60E+02 =	3.44E+02	3.16E+02 =	3.21E+02	4.40E+02 -	3.40E+02	6.03E+02 -	4.79E+02
S H	cec14	(5.07E+01)	(5.09E+01)	(3.71E+01)	(4.03E+01)	(2.10E+02)	(3.93E+01)	(1.66E+02)	(9.74E+01)
	F28	7.99E+02 =	8.01E+02	7.95E+02 =	7.93E+02	4.43E+03 -	1.25E+03	1.78E+03 -	1.12E+03
		(2.34E+01)	(1.64E+01)	(1.99E+01)	(2.17E+01)	(3.23E+03)	(1.41E+03)	(3.95E+02)	(1.70E+02)
	F29	7.33E+02 - (1.60E+01)	7.20E+02 (7.10E+01)	7.25E+02 - (1.02E+01)	7.12E+02 (5.40E+01)	7.88E+02 = (9.18E+01)	8.00E+02 (1.45E+02)	1.34E+04 - (5.19E+04)	1.29E+03 (2.46E+02)
	E30	1.55E+03 =	1.53E+03	1.45E+03 -	1.19E+03	2.30E+03 -	1.58E+03	3.84E+04 -	1.08E+04
	F30	(6.33E+02)	(6.34E+02)	(6.13E+02)	(3.57E+02)	(5.50E+02)	(5.95E+02)	(2.59E+04)	(6.59E+03)
	/=/+	14/15/1		14/16/0		17/8/5		23/5/2	

TABLE S2 PERFORMANCE COMPARISONS OF FOUR SCSS-BASED ADVANCED ALGORITHMS WITH THE BASELINES
ON 50-D CEC2014 BENCHMARK SET

SCSS- SUADE SCSS- CMA-FS SCSS- LIPS SCSS-

		JADE	SCSS-	SHADE	SCSS-	CMA-ES	SCSS-	LIPS	SCSS-
		JADE	JADE	SHADE	SHADE	CMA-ES	CMA-ES	LIFS	LIPS
	cec14F1	1.88E+04 =	1.97E+04	2.24E+04 =	2.66E+04	0.00E+00 =	0.00E+00	1.29E+08 -	8.45E+06
r s	cec14	(1.26E+04)	(1.52E+04)	(1.14E+04)	(1.09E+04)	(0.00E+00)	(0.00E+00)	(7.81E+07)	(1.32E+07)
Unimodal Functions	cec14F2	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	7.57E+02 +	1.72E+03
nin	cec14	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(1.40E+03)	(2.71E+03)
DH	F3	3.06E+03 -	2.01E+03	3.13E-06 -	1.02E-07	0.00E+00 =	0.00E+00	1.67E+04 -	1.14E+04
	cec14F3	(2.03E+03)	(2.98E+03)	(1.39E-05)	(3.42E-07)	(0.00E+00)	(0.00E+00)	(6.05E+03)	(5.51E+03)
	F4	1.37E+01 =	2.32E+01	2.81E+01 -	3.08E+01	3.28E+01 =	1.35E+01	7.09E+02 -	2.08E+02
	F4	(3.36E+01)	(4.20E+01)	(4.30E+01)	(4.60E+01)	(4.68E+01)	(3.42E+01)	(3.77E+02)	(5.28E+01)
	F5	2.04E+01 -	2.02E+01	2.02E+01 -	2.02E+01	2.00E+01 +	2.14E+01	2.00E+01 +	2.11E+01
	cec14F5	(3.27E-02)	(2.06E-01)	(2.34E-02)	(2.30E-02)	(1.77E-06)	(3.67E-01)	(1.49E-05)	(3.62E-02)
	F6	1.59E+01 =	1.67E+01	6.87E+00 =	5.35E+00	7.68E+01 -	1.74E+01	3.71E+01 -	2.33E+01
	cec14F6	(6.47E+00)	(6.84E+00)	(5.99E+00)	(4.96E+00)	(1.08E+01)	(1.85E+01)	(4.26E+00)	(3.96E+00)
	F7	4.15E-03 =	2.42E-03	1.59E-03 =	1.69E-03	5.32E-04 =	6.77E-04	5.88E-03 -	7.25E-04
	F7	(5.75E-03)	(4.81E-03)	(3.91E-03)	(4.22E-03)	(2.22E-03)	(2.42E-03)	(1.93E-02)	(2.57E-03)
	F8	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	7.39E+02 -	6.12E+02	1.44E+02 -	6.73E+01
	cec14F8	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(1.09E+02)	(2.31E+02)	(1.89E+01)	(1.23E+01)
-	F9	5.43E+01 -	3.86E+01	4.03E+01 =	3.95E+01	1.13E+03 -	5.88E+02	1.81E+02 -	1.08E+02
nodi	cec14F9	(7.72E+00)	(8.83E+00)	(5.05E+00)	(5.80E+00)	(2.41E+02)	(4.78E+02)	(2.84E+01)	(2.14E+01)
ultir	F10	1.05E-02 =	1.25E-02	5.14E-03 =	9.06E-03	8.43E+03 -	7.21E+03	4.33E+03 -	2.52E+03
Simple Multimodal Functions	F10	(9.47E-03)	(1.56E-02)	(8.35E-03)	(1.30E-02)	(9.42E+02)	(1.17E+03)	(5.04E+02)	(4.62E+02)
mpl F	F11	3.82E+03 -	3.53E+03	3.65E+03 =	3.55E+03	8.23E+03 -	7.25E+03	5.15E+03 -	4.20E+03
Si	cec14	(2.72E+02)	(2.87E+02)	(3.25E+02)	(3.46E+02)	(9.32E+02)	(1.10E+03)	(4.95E+02)	(6.68E+02)
	F12	2.61E-01 -	2.14E-01	2.07E-01 -	1.71E-01	2.71E-01 -	7.63E-02	2.63E-01 -	6.84E-01
	cec14	(3.01E-02)	(7.30E-02)	(2.79E-02)	(2.59E-02)	(2.55E-01)	(4.56E-01)	(7.48E-02)	(1.12E+00)
	F13	3.13E-01 -	2.75E-01	3.20E-01 =	3.12E-01	3.48E-01 +	8.08E-01	4.31E-01 =	4.12E-01
	cec14	(4.70E-02)	(3.91E-02)	(3.32E-02)	(4.02E-02)	(7.71E-02)	(1.59E-01)	(5.93E-02)	(5.70E-02)
	F14	3.00E-01 =	3.18E-01	2.86E-01 =	2.69E-01	4.43E-01 +	1.26E+00	2.71E-01 +	3.48E-01
	cec14	(2.93E-02)	(9.22E-02)	(6.25E-02)	(4.02E-02)	(2.50E-01)	(4.03E-01)	(3.14E-02)	(1.19E-01)
	F15	7.27E+00 -	5.94E+00	6.35E+00 -	5.66E+00	6.41E+00 =	6.02E+00	7.62E+01 -	1.20E+01
	cec14	(8.65E-01)	(6.97E-01)	(7.66E-01)	(5.90E-01)	(1.25E+00)	(1.20E+00)	(4.32E+01)	(2.95E+00)
	F16	1.77E+01 =	1.80E+01	1.79E+01 =	1.79E+01	2.38E+01 =	2.40E+01	2.05E+01 -	1.94E+01
	cec14	(5.34E-01)	(1.05E+00)	(4.14E-01)	(3.62E-01)	(5.19E-01)	(6.18E-01)	(6.41E-01)	(6.37E-01)
	F17	2.29E+03 =	2.53E+03	2.74E+03 =	2.74E+03	2.69E+03 =	2.60E+03	4.00E+06 -	7.38E+05
	cec14	(6.74E+02)	(7.80E+02)	(8.65E+02)	(8.27E+02)	(6.15E+02)	(5.98E+02)	(5.97E+06)	(1.42E+06)
	F18	1.64E+02 =	1.66E+02	1.47E+02 =	1.39E+02	2.30E+02 +	2.67E+02	3.26E+02 -	2.53E+02
	cec14	(4.16E+01)	(4.06E+01)	(4.44E+01)	(4.31E+01)	(4.57E+01)	(7.08E+01)	(1.64E+02)	(7.76E+01)
s	F19	1.48E+01 -	1.06E+01	1.63E+01 -	1.28E+01	1.84E+01 -	1.46E+01	5.78E+01 -	4.25E+01
brid	cec14	(5.97E+00)	(5.22E+00)	(7.08E+00)	(4.48E+00)	(2.57E+00)	(2.30E+00)	(2.86E+01)	(2.26E+01)
Hybrid Functions	F20	8.19E+03 -	1.99E+03	1.92E+02 -	1.10E+02	4.44E+02 -	2.71E+02	3.02E+04 -	1.91E+04
	cec14	(6.72E+03)	(4.70E+03)	(6.69E+01)	(4.37E+01)	(1.22E+02)	(8.53E+01)	(1.09E+04)	(7.19E+03)
	F21	1.29E+03 -	2.36E+04	1.40E+03 -	1.01E+03	1.70E+03 =	1.62E+03	5.78E+05 -	1.71E+05
	cec14	(4.85E+02)	(1.61E+05)	(4.92E+02)	(3.33E+02)	(4.32E+02)	(3.71E+02)	(4.16E+05)	(1.07E+05)
1	F22	4.78E+02 -	3.76E+02	3.76E+02 =	3.38E+02	4.19E+02 -	3.20E+02	8.43E+02 -	5.69E+02
	cec14	(1.66E+02)	(1.61E+02)	(1.18E+02)	(1.09E+02)	(2.61E+02)	(2.11E+02)	(2.08E+02)	(1.88E+02)
	F23	3.44E+02 +	3.44E+02	3.44E+02 =	3.44E+02	3.44E+02 =	3.44E+02	3.77E+02 -	3.50E+02
	CCC 14	(4.55E-13)	(5.16E-13)	(4.31E-13)	(4.50E-13)	(2.32E-05)	(2.38E-05)	(1.34E+01)	(1.83E+00)
	F24	2.74E+02 =	2.75E+02	2.73E+02 =	2.72E+02	3.67E+02 -	2.76E+02	2.95E+02 -	2.80E+02
	cec14	(2.05E+00)	(1.89E+00)	(1.93E+00)	(1.89E+00)	(5.44E+02)	(2.43E+00)	(6.01E+00)	(3.16E+00)
	F25	2.23E+02 -	2.11E+02	2.18E+02 -	2.11E+02	2.05E+02 -	2.05E+02	2.40E+02 -	2.25E+02
	cec14	(3.19E+00)	(6.51E+00)	(5.01E+00)	(6.05E+00)	(9.61E-01)	(2.18E-01)	(8.81E+00)	(4.59E+00)
hon ns	F26	1.04E+02 -	1.00E+02	1.02E+02 -	1.00E+02	1.17E+02 +	1.09E+02	1.66E+02 -	1.36E+02
osil	CCC 14	(1.95E+01)	(8.92E-02)	(1.40E+01)	(5.89E-02)	(5.81E+01)	(4.04E+01)	(4.65E+01)	(4.82E+01)
Composition Functions	F27	4.65E+02 -	4.35E+02	3.91E+02 =	3.79E+02	5.33E+02 -	4.57E+02	1.39E+03 -	9.91E+02
1 0 -	CCC 14	(5.76E+01)	(5.42E+01)	(4.89E+01)	(4.65E+01)	(1.06E+02)	(7.00E+01)	(1.29E+02)	(8.80E+01)
	cec14F28	1.15E+03 -	1.12E+03	1.13E+03 =	1.11E+03	7.61E+03 -	4.39E+03	4.52E+03 -	2.55E+03
	CCC 14	(3.72E+01)	(3.47E+01)	(4.00E+01)	(3.05E+01)	(5.87E+03)	(2.98E+03)	(7.42E+02)	(3.27E+02)
	F29	8.81E+02 =	8.94E+02	9.01E+02 =	9.02E+02	8.86E+02 =	8.94E+02	8.33E+06 -	2.09E+03
	50017	(5.80E+01)	(9.69E+01)	(6.55E+01)	(6.54E+01)	(6.70E+01)	(8.74E+01)	(4.37E+07)	(5.43E+02)
	F30	9.78E+03 -	9.26E+03	9.35E+03 -	8.87E+03	9.31E+03 =	9.45E+03	2.84E+05 -	6.41E+04
		(7.82E+02)	(8.07E+02)	(6.62E+02)	(6.64E+02)	(7.96E+02)	(1.09E+03)	(1.17E+05)	(2.21E+04)
	/=/+	16/13/1		11/19/0		13/12/5		26/1/3	

TABLE S3 COMPARISONS RESULTS OF SCSS VARIANTS WITH DIFFERENT SS RULES AGAINST THE BASELINES ON 30-D CEC2014 TEST FUNCTIONS (M=2 FOR ALL THE SCSS VARIANTS, BEST ENTRIES ARE HIGHLIGHTED)

-/=/+ (P-N)		`	Schei	me 1			Scheme 2
	GD = 0	GD = 0.2	GD = 0.4	GD = 0.6	GD = 0.8	GD = 1.0	
DE	0/5/25(-25)	1/13/16(-15)	2/21/7(-5)	11/19/0(11)	19/11/0 (19)	21/8/1(20)	5/21/4(1)
ES	0/3/27 (-27)	25/5/0 (25)	26/4/0 (26)	26/4/0 (26)	26/4/0 (26)	26/4/0 (26)	26/4/0 (26)
PSO	0/4/26 (-26)	10/15/5(5)	10/18/2(8)	14/16/0(14)	14/16/0(14)	15/15/0(15)	13/17/0(13)
JADE	14/9/7 (7)	15/11/4 (11)	19/8/3 (16)	15/14/1 (14)	5/11/14 (-9)	2/6/22 (-20)	14/15/1 (13)
SHADE	12/12/6 (6)	14/13/3 (11)	15/14/1 (14)	14/16/0 (14)	5/21/4 (1)	3/9/18 (-15)	14/16/0 (14)
CMA-ES	13/15/2 (11)	6/23/1 (5)	0/30/0 (0)	1/25/4 (-3)	1/19/10 (-9)	1/21/8 (-7)	2/26/2(0)
LIPS	16/5/9 (7)	22/4/4 (18)	22/5/3 (19)	22/5/3 (19)	21/5/4 (17)	20/8/2 (18)	23/4/3 (20)

TABLE S4 PERFORMANCE COMPARISONS OF SCSS-IPOP-CMA-ES WITH IPOP-CMA-ES
ON 30-D AND 50-D CEC2014 BENCHMARK SET

30-D 50-D

	30)-D	50)-D
	IPOP-	SCSS-IPOP-	IPOP-	SCSS-IPOP-
	CMA-ES	CMA-ES	CMA-ES	CMA-ES
cec14F1	0.00E+00 =	0.00E+00	0.00E+00=	0.00E+00
	(0.00E+00) 0.00E+00 =	(0.00E+00) 0.00E+00	(0.00E+00) 0.00E+00 =	(0.00E+00)
cec14F2	0.00E+00 = (0.00E+00)	(0.00E+00)	0.00E+00 = (0.00E+00)	0.00E+00 (0.00E+00)
E2	0.00E+00=	0.00E+00	0.00E+00	0.00E+00
cec14F3	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
F4	0.00E+00 =	0.00E+00	7.51E+00 =	7.32E+00
cec14F4	(0.00E+00)	(0.00E+00)	(2.60E+01)	(2.54E+01)
cec14F5	2.10E+01 =	2.11E+01	2.14E+01 +	2.14E+01
cec14	(4.96E-01)	(3.96E-01)	(2.17E-01)	(3.21E-01)
cec14F6	5.06E+00 +	6.83E+00	1.31E+01 +	1.54E+01
	(2.40E+00)	(4.21E+00)	(3.85E+00)	(4.23E+00)
cec14F7	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
cec14F8	1.45E+02 -	5.77E+01	1.30E+02 +	2.09E+02
FO	(4.50E+01) 8.37E+00 =	(3.83E+01) 1.50E+00	(8.44E+01) 8.60E+00 +	(1.05E+02) 3.70E+01
cec14F9	8.3/E+00 = (2.07E+01)	(1.61E+00)	(3.84E+01)	(8.97E+01)
F10	2.64E+03 +	2.67E+03	4.86E+03 -	4.37E+03
F10	(1.62E+03)	(1.09E+03)	(1.41E+03)	(8.60E+02)
F11	1.88E+03 =	2.20E+03	4.24E+03 =	3.45E+03
cec14	(2.02E+03)	(2.36E+03)	(4.27E+03)	(3.18E+03)
cec14F12	4.13E+00 -	2.90E+00	4.52E+00 +	5.51E+00
cec14	(2.85E+00)	(2.76E+00)	(3.09E+00)	(3.19E+00)
F13	7.60E-01 =	2.16E-01	3.69E-01 =	2.94E-01
	(1.65E+00) 1.15E+01 -	(1.32E-01) 5.21E-01	(3.54E-01) 6.48E-01 =	(1.29E-01) 6.42E-01
F14	(3.61E+01)	5.21E-01 (2.11E-01)	6.48E-01 = (5.34E-01)	(2.34E-01)
E15	2.48E+04 =	2.54E+05	2.39E+05 =	2.99E+05
F15	(1.50E+05)	(1.61E+06)	(1.18E+06)	(2.03E+06)
F16	1.29E+01 =	1.27E+01	2.25E+01 +	2.31E+01
cec14F16	(7.81E-01)	(9.70E-01)	(8.99E-01)	(6.59E-01)
cec14F17	1.28E+06 =	2.88E+06	5.16E+05 =	3.60E+04
cec14	(8.29E+06)	(1.48E+07)	(3.19E+06)	(2.35E+05)
F18	1.80E+02 =	6.71E+02	5.99E+05 =	6.86E+02
	(6.37E+01)	(3.48E+03)	(4.23E+06)	(1.45E+03)
F19	3.56E+01 = (1.66E+02)	1.49E+01 (3.92E+01)	1.64E+01 = (2.14E+00)	4.36E+01 (1.91E+02)
E20	2.61E+02 =	4.07E+05	8.75E+04 =	5.81E+04
cec14F20	(2.31E+02)	(2.14E+06)	(4.09E+05)	(2.44E+05)
F21	1.09E+06 =	1.20E+07	4.34E+05 -	9.85E+04
cec14F21	(7.78E+06)	(7.96E+07)	(1.97E+06)	(4.04E+05)
cec14F22	2.41E+02 =	2.30E+02	7.08E+02 -	5.45E+02
cec14	(1.34E+02)	(1.11E+02)	(2.62E+02)	(2.81E+02)
F23	3.15E+02 -	3.15E+02	3.44E+02 =	3.44E+02
	(1.72E-02)	(7.30E-03)	(2.10E-03)	(1.24E-03)
cec14F24	2.32E+02 = (3.12E+01)	2.26E+02 (1.14E+01)	3.09E+02 = (1.15E+02)	2.90E+02 (5.42E+01)
E25	2.22E+02 =	2.15E+02	2.09E+02 =	2.06E+02
F25	(3.02E+01)	(1.98E+01)	(1.58E+01)	(3.51E+00)
F26	1.13E+02 =	1.34E+02	1.39E+02 =	1.04E+02
F26	(5.22E+01)	(8.04E+01)	(8.71E+01)	(2.80E+01)
cec14F27	3.10E+02 -	3.18E+02	4.41E+02 =	3.78E+02
	(3.03E+01)	(5.19E+01)	(4.03E+02)	(2.31E+02)
F28	9.46E+02 =	1.02E+03	1.59E+03 -	1.30E+03
	(3.00E+02)	(7.08E+02)	(1.09E+03)	(2.25E+02)
F29	1.00E+07 =	2.21E+06	1.43E+06 =	4.10E+06
E20	(6.78E+07) 1.39E+04 =	(7.07E+06) 6.30E+03	(7.16E+06) 1.51E+04 =	(1.26E+07) 1.37E+04
cec14F30	(5.36E+04)	(2.20E+04)	(1.85E+04)	(1.03E+04)
_/=/+	5/23/2	(2.202.01)	4/20/6	(1.052.01)
			= 0, 0	ı

table S5 Performance comparisons of SCSS-Jade with three variants on 30-D cec2014 benchmark set

	Variant-	Variant-	Variant-	SCSS-		Variant-	Variant-	Variant-	SCSS-
	oppo	Meval	CSM	JADE		oppo	Meval	CSM	JADE
F1	1.81E+05 -	2.41E+03 =	5.50E+00 +	1.47E+03	F16	9.91E+00 -	9.52E+00 -	9.28E+00 =	9.34E+00
cec14F1	(1.28E+06)	(3.07E+03)	(1.56E+01)	(2.14E+03)	F16	(2.48E-01)	(3.18E-01)	(3.48E-01)	(4.29E-01)
cec14F2	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00	F17	2.85E+05 -	1.17E+03 -	2.50E+04 -	8.28E+02
cec14	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	cec14	(4.29E+05)	(4.00E+02)	(1.46E+05)	(3.47E+02)
F3	2.90E+00 -	1.49E-02 -	0.00E+00 =	0.00E+00	F18	2.85E+03 -	9.30E+01 -	1.61E+02 -	4.72E+01
cec14F3	(3.03E+00)	(4.36E-02)	(0.00E+00)	(0.00E+00)	cec14	(3.60E+03)	(2.05E+02)	(2.26E+02)	(2.34E+01)
F4	0.00E+00 =	5.49E-09 =	1.24E+00 -	0.00E+00	F19	4.86E+00 -	4.29E+00 =	4.84E+00 -	4.01E+00
cec14	(0.00E+00)	(3.92E-08)	(8.88E+00)	(0.00E+00)	cec14	(7.86E-01)	(6.58E-01)	(7.48E-01)	(8.54E-01)
cec14F5	2.03E+01 -	2.03E+01 -	2.03E+01 -	2.03E+01	F20	3.53E+03 -	3.21E+03 -	3.18E+03 -	1.88E+03
cec14	(2.70E-02)	(2.83E-02)	(3.27E-02)	(7.09E-02)	cec14	(2.22E+03)	(2.01E+03)	(2.43E+03)	(2.44E+03)
cec14F6	1.24E+01 -	1.02E+01 -	7.04E+00 =	7.33E+00	.F21	7.95E+04 -	3.49E+04 -	2.30E+04 -	2.41E+02
cec14	(1.20E+00)	(1.96E+00)	(3.90E+00)	(3.86E+00)	cec14	(8.65E+04)	(5.81E+04)	(6.33E+04)	(1.15E+02)
F7	0.00E+00 =	1.45E-04 =	1.45E-04 =	1.93E-04	F22	1.64E+02 -	1.20E+02 =	1.59E+02 -	1.10E+02
cec14 ^{F7}	(0.00E+00)	(1.04E-03)	(1.04E-03)	(1.38E-03)	cec14	(7.95E+01)	(7.57E+01)	(7.21E+01)	(6.90E+01)
F8	0.00E+00 =	0.00E+00 =	0.00E+00 =	0.00E+00	F23	3.15E+02 =	3.15E+02 =	3.15E+02 =	3.15E+02
F8	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	cec14	(2.48E-11)	(4.02E-13)	(4.02E-13)	(4.02E-13)
cec14F9	3.91E+01 -	2.88E+01 -	2.48E+01 =	2.13E+01	F24	2.26E+02 -	2.25E+02 =	2.27E+02 -	2.25E+02
cec14	(5.50E+00)	(4.10E+00)	(4.32E+00)	(4.82E+00)	cec14	(3.01E+00)	(2.76E+00)	(3.30E+00)	(3.27E+00)
cec14F10	2.45E-03 +	7.35E-03 =	1.55E-02 -	9.39E-03	F25	2.05E+02 -	2.04E+02 -	2.07E+02 -	2.03E+02
cec14	(6.77E-03)	(1.24E-02)	(1.71E-02)	(1.52E-02)	cec14	(2.05E+00)	(1.30E+00)	(2.00E+00)	(6.04E-01)
F11	2.24E+03 -	1.87E+03 -	1.65E+03 -	1.54E+03	F26	1.00E+02 -	1.00E+02 -	1.02E+02 -	1.00E+02
cec14	(1.84E+02)	(2.53E+02)	(2.38E+02)	(2.28E+02)	cec14	(3.71E-02)	(2.52E-02)	(1.40E+01)	(3.56E-02)
F12	3.76E-01 -	3.12E-01 -	2.55E-01 -	2.27E-01	cec14F27	3.61E+02 -	3.64E+02 -	3.21E+02 =	3.44E+02
cec14	(3.71E-02)	(5.18E-02)	(3.58E-02)	(4.87E-02)	cec14	(5.23E+01)	(5.32E+01)	(2.90E+01)	(5.09E+01)
F13	2.59E-01 -	2.06E-01 -	1.98E-01 -	1.85E-01	F28	8.15E+02 -	8.02E+02 =	8.02E+02 =	8.01E+02
cec14	(3.58E-02)	(2.93E-02)	(3.61E-02)	(3.68E-02)	cec14	(1.91E+01)	(1.75E+01)	(4.59E+01)	(1.64E+01)
F14	2.46E-01 -	2.29E-01 =	2.85E-01 -	2.32E-01	F29	1.28E+03 -	7.29E+02 =	7.89E+02 =	7.20E+02
cec14	(3.02E-02)	(3.45E-02)	(8.52E-02)	(3.71E-02)	cec14	(4.43E+02)	(1.19E+01)	(2.20E+02)	(7.10E+01)
F15	4.30E+00 -	3.55E+00 -	3.25E+00 -	2.86E+00	F30	1.97E+03 -	1.64E+03 =	2.11E+03 -	1.53E+03
cec14	(4.90E-01)	(3.24E-01)	(3.55E-01)	(3.22E-01)	cec14	(6.55E+02)	(6.52E+02)	(6.37E+02)	(6.34E+02)
_/=/+	24/5/1	16/14/0	18/11/1						

Table S6 Performance comparison of SCSS variants with different $\it m$ settings with the baselines (best entries are highlighted)

-/=/+ (P-N)	M=2	M=3	M=4	M=5	M = 10
DE	21/8/1 (20)	25/4/1 (24)	23/6/1 (22)	26/3/1 (25)	27/2/1 (26)
ES	26/4/0 (26)	27/3/0 (27)	27/3/0 (27)	27/2/1 (26)	27/2/1 (26)
PSO	15/15/0 (15)	13/16/1(12)	12/17/1(11)	10/18/2(8)	10/17/3 (7)
JADE	14/15/1 (13)	16/13/1 (15)	14/15/1 (13)	13/14/3 (10)	8/10/12 (-4)
SHADE	14/16/0 (14)	13/15/2 (11)	14/13/3 (11)	12/14/4 (8)	12/8/10(2)
CMA-ES	13/15/2 (11)	15/11/4 (11)	15/11/4 (11)	17/8/5 (12)	17/7/6 (11)
LIPS	23/4/3 (20)	23/4/3 (20)	23/5/2(21)	23/4/3 (20)	20/5/5 (15)

TABLE S7 PERFORMANCE COMPARISON BETWEEN SCSS VARIANTS WITH ADJACENT M SETTINGS

	WITH ADJACENT M SETTINGS										
		CATEGORY 1									
-/=/+ (P-N)	M = 2 v.s. M = 3	M = 3 v.s. M = 4	M = 4 v.s. M = 5	M = 5 v.s. M = 10							
DE	17/12/1 (16)	5/24/1 (4)	6/23/1 (5)	12/14/4 (8)							
ES	25/5/0 (25)	23/7/0(23)	12/18/0 (12)	28/2/0 (28)							
CMA-ES	8/18/4 (4)	7/20/3(4)	1/29/0(1)	5/18/7 (-2)							
LIPS	8/21/1 (7)	2/28/0(2)	0/29/1 (-1)	3/23/4 (-1)							
		CATEGORY 2									
-/=/+ (P-N)	M = 2 v.s. M = 3	M = 3 v.s. M = 4	M = 4 v.s. M = 5	M = 5 v.s. M = 10							
PSO	1/22/7 (-6)	1/28/1 (0)	0/29/1 (-1)	0/28/2 (-2)							
JADE	3/25/2(1)	5/22/3 (2)	4/18/8 (-4)	5/7/18 (-13)							
SHADE	4/24/2 (2)	4/23/3 (1)	7/15/8 (-1)	5/13/12 (-7)							

table S8 Performance comparisons of four SCSS-based top algorithms with the baselines on 30-D cec2014 benchmark set

				ON 30 D CI	ECZU14 BENCH	WITHKIK SET	0000		
		L-SHADE	SCSS-	UMOEA-II	SCSS-	L-SHADE_	SCSS- L-SHADE	jSO	SCSS-
		L-SHADE	L-SHADE	OMOLA-II	UMOEA-II	EpSin	EpSin	J3O	jSO
	F1	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec14F1	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
noda	cec14F2	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
Unimodal Functions	cec14	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
זיי	cec14F3	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec14	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	cec14F4	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	00014	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	cec14F5	2.01E+01 - (3.46E-02)	2.01E+01	2.00E+01 = (1.03E-03)	2.00E+01	2.01E+01 - (2.98E-02)	2.01E+01 (4.75E-02)	2.09E+01 = (8.04E-02)	2.09E+01 (4.80E-02)
	Ε.(9.01E-03 =	(5.37E-02) 9.01E-03	1.99E-01 =	(4.78E-05) 4.24E-06	0.00E+00=	0.00E+00	8.61E-06 =	1.02E-02
	cec14F6	(6.43E-02)	(6.43E-02)	(1.35E+00)	(1.86E-05)	(0.00E+00)	(0.00E+00)	(3.52E-05)	(7.27E-02)
	F7	0.00E+00=	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec14F7	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	F8	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	F8 cec14	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
lal	cec14F9	7.22E+00 =	7.38E+00	8.97E+00 =	9.03E+00	1.31E+01 -	1.24E+01	8.76E+00 -	7.57E+00
Simple Multimodal Functions	cec14	(1.33E+00)	(1.63E+00)	(1.79E+00)	(2.07E+00)	(1.94E+00)	(2.15E+00)	(1.97E+00)	(1.62E+00)
fulti	F10	5.72E-03 =	7.35E-03	1.63E-03 =	4.08E-03	4.49E-03 =	4.90E-03	1.43E+00 =	1.64E+00
ole N Func	cec14	(1.11E-02)	(1.37E-02)	(5.65E-03)	(8.35E-03)	(9.60E-03)	(1.07E-02)	(1.02E+00)	(9.94E-01)
Simp	F11	1.23E+03 =	1.24E+03	1.41E+03 =	1.43E+03	1.14E+03 =	1.16E+03	1.20E+03 =	1.26E+03
9.1		(1.92E+02)	(1.85E+02) 1.65E-01	(3.01E+02)	(3.18E+02) 1.08E-01	(2.09E+02)	(2.03E+02) 1.46E-01	(2.73E+02) 4.17E-01 +	(2.45E+02)
	F12	1.73E-01 = (2.13E-02)	(3.01E-02)	1.01E-01 = (5.51E-02)	1.08E-01 (6.90E-02)	1.54E-01 = (2.30E-02)	1.46E-01 (2.77E-02)	4.17E-01 + (4.93E-01)	9.00E-01 (7.61E-01)
	F13	1.05E-02	1.08E-01	1.14E-01 =	1.09E-02)	1.34E-01 -	1.24E-01	1.37E-01 +	1.52E-01
	cec14	(1.35E-02)	(1.56E-02)	(1.81E-02)	(2.15E-02)	(1.64E-02)	(1.61E-02)	(2.24E-02)	(3.04E-02)
	F14	2.38E-01 -	1.90E-01	2.29E-01 -	2.10E-01	1.93E-01 =	1.93E-01	2.26E-01 =	2.30E-01
	cec14	(2.69E-02)	(2.41E-02)	(2.52E-02)	(3.27E-02)	(2.91E-02)	(2.44E-02)	(4.08E-02)	(3.63E-02)
	F15	2.28E+00 -	2.16E+00	2.44E+00 =	2.29E+00	2.37E+00 -	2.24E+00	2.37E+00 -	2.13E+00
	cec14	(2.93E-01)	(2.47E-01)	(4.60E-01)	(5.34E-01)	(2.41E-01)	(2.91E-01)	(2.73E-01)	(3.37E-01)
	F16	8.51E+00 +	8.65E+00	9.15E+00 +	9.57E+00	8.30E+00 =	8.26E+00	8.58E+00 =	8.60E+00
	CeC14	(3.61E-01)	(4.00E-01)	(5.25E-01)	(6.20E-01)	(4.58E-01)	(3.76E-01)	(7.71E-01)	(7.27E-01)
	F17	2.09E+02 -	8.89E+01	1.29E+02 -	7.77E+01	1.94E+02 -	1.42E+02	6.38E+01 =	6.22E+01
		(1.13E+02)	(4.59E+01)	(7.85E+01)	(4.25E+01)	(8.71E+01)	(8.41E+01)	(2.31E+01)	(2.13E+01)
	F18	6.89E+00 - (3.23E+00)	3.01E+00 (1.50E+00)	4.85E+00 - (1.76E+00)	3.89E+00 (1.47E+00)	6.02E+00 = (2.44E+00)	5.68E+00 (2.09E+00)	2.14E+00 = (1.23E+00)	2.19E+00 (1.17E+00)
	E10	3.75E+00 -	3.08E+00	2.69E+00 -	2.23E+00	2.63E+00 =	2.78E+00	2.04E+00 =	1.86E+00
Hybrid Functions	F19	(5.74E-01)	(6.64E-01)	(6.23E-01)	(6.65E-01)	(8.21E-01)	(6.45E-01)	(7.16E-01)	(6.30E-01)
Hybı	F20	2.84E+00 =	2.59E+00	3.57E+00 =	3.72E+00	2.34E+00 =	2.67E+00	2.04E+00 =	1.97E+00
_ 표	F20	(1.04E+00)	(1.07E+00)	(1.41E+00)	(1.34E+00)	(1.06E+00)	(1.18E+00)	(8.67E-01)	(8.07E-01)
	F21	9.08E+01 -	3.33E+01	7.84E+01 -	2.43E+01	9.09E+01 =	9.96E+01	2.86E+01 =	1.18E+01
	cec14	(7.29E+01)	(5.40E+01)	(7.25E+01)	(4.11E+01)	(7.94E+01)	(8.91E+01)	(4.42E+01)	(8.29E+00)
	F22	2.45E+01 -	2.31E+01	3.43E+01 -	2.54E+01	5.17E+01 -	3.76E+01	2.91E+01 -	2.31E+01
	CCC 14	(3.35E+00)	(2.00E+00)	(2.47E+01)	(4.05E+00)	(5.09E+01)	(3.85E+01)	(2.45E+01)	(3.73E+00)
	F23	3.15E+02 =	3.15E+02	3.15E+02 =	3.15E+02	3.15E+02 =	3.15E+02	3.15E+02 =	3.15E+02
	F2.4	(4.02E-13) 2.24E+02 -	(3.18E-13)	(4.02E-13)	(4.02E-13) 2.22E+02	(4.02E-13)	(4.16E-13)	(4.16E-13)	(4.02E-13)
	F24	2.24E+02 - (1.46E+00)	2.22E+02 (3.44E+00)	2.24E+02 - (1.95E+00)	(4.63E+00)	2.11E+02 = (1.10E+01)	2.11E+02 (1.10E+01)	2.09E+02 - (1.08E+01)	2.02E+02 (5.83E+00)
	E25	2.03E+02 -	2.03E+02	2.03E+02 -	2.03E+02	2.03E+02 =	2.03E+02	2.03E+02 =	2.03E+02
	F25	(5.33E-02)	(4.10E-02)	(3.95E-02)	(4.46E-02)	(3.95E-02)	(3.24E-02)	(2.75E-02)	(2.60E-02)
E	F26	1.00E+02 =	1.00E+02	1.00E+02 =	1.00E+02	1.00E+02 -	1.00E+02	1.00E+02 =	1.00E+02
sitic	F26	(1.47E-02)	(1.38E-02)	(1.92E-02)	(1.98E-02)	(1.25E-02)	(1.64E-02)	(2.13E-02)	(2.44E-02)
Composition Functions	F27	3.00E+02 +	3.00E+02	3.02E+02 =	3.02E+02	3.00E+02 -	3.00E+02	3.00E+02 =	3.00E+02
ರ ಗ	cec14	(1.25E-13)	(2.16E-13)	(1.40E+01)	(1.40E+01)	(1.85E-13)	(9.09E-14)	(2.30E-13)	(1.23E-05)
	F28	8.35E+02 =	8.33E+02	8.39E+02 =	8.35E+02	8.37E+02 =	8.37E+02	8.25E+02 -	8.16E+02
	00014	(1.83E+01)	(1.96E+01)	(1.42E+01)	(1.53E+01)	(1.56E+01)	(1.81E+01)	(2.15E+01)	(1.94E+01)
	F29	7.16E+02 =	7.15E+02	7.17E+02 -	7.16E+02	7.22E+02 =	7.20E+02	7.16E+02 -	7.15E+02
		(2.52E+00)	(1.55E+00)	(3.10E+00)	(2.28E+00)	(1.17E+01)	(6.36E+00)	(2.07E+00)	(1.17E+00)
ļ	F30	1.40E+03 = (6.66E+02)	1.37E+03 (6.31E+02)	9.28E+02 = $(3.55E+02)$	9.35E+02 (4.83E+02)	1.46E+03 = (6.33E+02)	1.51E+03 (6.72E+02)	6.20E+02 - (1.67E+02)	5.70E+02
	/=/+	10/18/2	(0.31E±02)	9/20/1	(4.03ETU2)	8/22/0	(U./ZETUZ)	7/21/2	(1.73E+02)
	1 7 1	10/10/2	I	J120/1		0/22/0		1121/2	I

Note: The structural bias that affects the performance of UMOEA-II and L-SHADE_EpSin were removed according to the suggestions in [5]. In detail, in UMOEA-II and SCSS-UMOEA-II, the mutation strategy $V_{i,g} = F_i \times X_{r1,g} + (X_{r2,g} - X_{r3,g})$ was modified as $V_{i,g} = X_{r1,g} + (X_{r2,g} - X_{r3,g})$ by setting $F_i = 1$. In L-SHADE_EpSin and SCSS-L-SHADE_EpSin, the local search procedures were skipped.

table S9 Performance comparisons of four SCSS-based top algorithms with the baselines on 50-D cec 2014 benchmark set

		1		01130 15 01	ECZU14 BENCE	IIII II I			1
			SCSS-		SCSS-	L-SHADE	SCSS-		SCSS-
		L-SHADE	L-SHADE	UMOEA-II	UMOEA-II	_	L-SHADE_	jSO	
			L-SHADE		UMOEA-II	EpSin	EpSin _		jSO
	E1	9.71E+02 -	1.04E+02	1.17E-03 -	5.83E-04	1.33E-02 -	5.13E-05	1.49E+01 -	1.59E+00
	cec14F1	(1.66E+03)	(5.89E+02)	(9.11E-04)	(3.83E-04)	(7.34E-02)	(3.62E-04)	(3.06E+01)	(2.80E+00)
lal ns									
Unimodal Functions	cec14F2	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
in j	cec14	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
) H	F3	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	F3	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	Ε4	8.23E+01 =	7.62E+01	2.69E+01 +	5.00E+01	5.65E+01 -	4.12E+01	5.02E+01 =	5.79E+01
	cec14F4								
		(3.38E+01)	(4.00E+01)	(4.42E+01)	(4.95E+01)	(4.83E+01)	(4.81E+01)	(4.93E+01)	(4.86E+01)
	. F5	2.03E+01 -	2.02E+01	2.00E+01 =	2.00E+01	2.03E+01 -	2.02E+01	2.11E+01 =	2.11E+01
	cec14F5	(3.08E-02)	(8.40E-02)	(6.24E-04)	(4.88E-06)	(3.24E-02)	(7.18E-02)	(5.59E-02)	(5.17E-02)
	cec14F6	9.14E-02 -	5.69E-02	3.49E-01 -	8.13E-02	2.04E-04 -	2.14E-05	3.80E-03 -	3.66E-02
	cec14	(2.74E-01)	(2.45E-01)	(4.91E-01)	(3.21E-01)	(2.15E-04)	(4.97E-05)	(5.50E-03)	(1.44E-01)
	F.7	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec14F7								
		(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	F8	3.64E-08 -	2.37E-08	0.00E+00 =	0.00E+00	3.53E-09 =	0.00E+00	0.00E+00 +	1.82E-09
	cec14	(3.14E-08)	(4.23E-08)	(0.00E+00)	(0.00E+00)	(2.52E-08)	(0.00E+00)	(0.00E+00)	(6.41E-09)
-	cec14F9	1.26E+01 -	1.18E+01	1.60E+01 -	1.39E+01	3.03E+01 -	1.90E+01	1.59E+01 -	1.13E+01
opa	cec14	(2.44E+00)	(2.02E+00)	(4.61E+00)	(3.94E+00)	(5.20E+00)	(5.72E+00)	(3.69E+00)	(2.93E+00)
tim	710		1.38E-01						
Mul	F10	1.72E-01 -		1.30E+00 +	3.53E+00	4.17E-02 =	3.73E-02	9.92E+00 =	8.40E+00
le N	CCC14	(5.24E-02)	(5.18E-02)	(1.19E+00)	(2.29E+00)	(2.19E-02)	(1.78E-02)	(3.90E+00)	(3.24E+00)
Simple Multimodal Functions	. F11	3.42E+03 -	3.28E+03	3.94E+03 =	3.93E+03	3.09E+03 =	3.00E+03	3.22E+03 =	3.26E+03
S	cec14	(3.46E+02)	(3.38E+02)	(7.60E+02)	(6.03E+02)	(3.06E+02)	(3.23E+02)	(3.37E+02)	(3.75E+02)
	F12	2.44E-01 -	2.11E-01	1.63E-01 =	1.68E-01	2.16E-01 -	1.99E-01	3.69E-01 =	7.48E-01
	cec14	(3.53E-02)	(3.26E-02)	(1.06E-01)	(1.06E-01)	(2.70E-02)	(2.81E-02)	(4.10E-01)	(7.45E-01)
		1.60E-01 -							
	F13		1.50E-01	1.63E-01 =	1.60E-01	2.06E-01 -	1.90E-01	1.92E-01 =	2.01E-01
	CCC 14	(1.74E-02)	(2.08E-02)	(2.40E-02)	(2.33E-02)	(2.08E-02)	(2.35E-02)	(2.83E-02)	(4.22E-02)
	F14	3.23E-01 -	2.49E-01	3.01E-01 -	2.63E-01	1.89E-01 -	1.84E-01	2.91E-01 -	2.73E-01
	cec14	(4.96E-02)	(9.34E-02)	(2.29E-02)	(2.99E-02)	(2.33E-02)	(3.13E-02)	(4.34E-02)	(4.15E-02)
	E15	5.30E+00 -	4.99E+00	5.39E+00 =	5.13E+00	5.68E+00 -	5.04E+00	5.18E+00 -	4.68E+00
	F15	(5.66E-01)	(4.75E-01)	(1.04E+00)	(1.06E+00)	(4.74E-01)	(5.05E-01)	(4.85E-01)	(6.92E-01)
	F16	1.69E+01 +	1.71E+01	1.84E+01 +	1.86E+01	1.67E+01 -	1.65E+01	1.70E+01 +	1.73E+01
	F17	(4.35E-01)	(4.88E-01)	(7.63E-01)	(6.65E-01)	(3.44E-01)	(4.28E-01)	(9.41E-01)	(7.30E-01)
	F17	1.63E+03 -	5.59E+02	1.11E+03 -	3.94E+02	3.60E+02 =	3.51E+02	3.51E+02 -	1.76E+02
	F17	(3.52E+02)	(2.32E+02)	(3.60E+02)	(1.81E+02)	(1.60E+02)	(1.39E+02)	(1.70E+02)	(1.11E+02)
	E10	1.05E+02 -	2.30E+01	5.70E+01 -	1.56E+01	1.89E+01 =	1.83E+01	1.08E+01 -	7.21E+00
	F18	(1.38E+01)	(6.42E+00)					(3.24E+00)	(2.16E+00)
				(2.14E+01)	(4.28E+00)	(6.40E+00)	(6.76E+00)		
. 32	F19	8.11E+00 +	9.64E+00	8.17E+00 =	7.66E+00	9.99E+00 -	9.76E+00	9.25E+00 -	8.56E+00
Hybrid Functions	F19	(1.87E+00)	(1.45E+00)	(2.20E+00)	(2.39E+00)	(8.84E-01)	(8.22E-01)	(8.19E-01)	(7.29E-01)
Hyp	F20	1.45E+01 -	7.96E+00	1.34E+01 -	9.33E+00	6.04E+00 =	5.93E+00	5.67E+00 =	5.17E+00
Ė	F20	(3.75E+00)	(1.96E+00)	(3.52E+00)	(3.05E+00)	(2.23E+00)	(1.86E+00)	(1.95E+00)	(1.71E+00)
	E2.1	5.59E+02 -	3.42E+02	4.38E+02 -	3.49E+02	3.25E+02 =	3.08E+02	3.03E+02 -	2.36E+02
	F21	(1.62E+02)		(1.27E+02)					(8.45E+01)
1	-		(1.11E+02)		(1.32E+02)	(9.65E+01)	(1.05E+02)	(9.88E+01)	
	F22	1.03E+02 =	9.95E+01	1.81E+02 =	1.93E+02	9.35E+01 -	6.34E+01	1.51E+02 -	1.03E+02
	CCC 14	(7.30E+01)	(7.03E+01)	(8.35E+01)	(1.19E+02)	(6.13E+01)	(5.00E+01)	(1.00E+02)	(8.34E+01)
1	F23	3.44E+02 =	3.44E+02	3.44E+02 =	3.44E+02	3.44E+02 =	3.44E+02	3.44E+02 =	3.44E+02
	cec14	(3.20E-13)	(3.46E-13)	(4.67E-13)	(4.73E-13)	(2.93E-13)	(3.18E-13)	(3.03E-13)	(3.46E-13)
	E24	2.75E+02 -	2.74E+02	2.75E+02 -	2.75E+02	2.68E+02 =	2.68E+02	2.72E+02 -	2.70E+02
	F24	(4.98E-01)	(1.13E+00)	(8.57E-01)	(7.27E-01)	(1.23E+00)	(1.50E+00)	(1.80E+00)	
		`					`		(2.18E+00)
1	F25	2.05E+02 -	2.05E+02	2.05E+02 =	2.05E+02	2.05E+02 =	2.05E+02	2.05E+02 -	2.05E+02
1	CCC 14	(3.48E-01)	(2.33E-01)	(2.98E-01)	(3.00E-01)	(1.39E-01)	(9.28E-02)	(1.82E-01)	(1.35E-01)
on	F26	1.00E+02 =	1.00E+02	1.00E+02 =	1.00E+02	1.00E+02 -	1.00E+02	1.00E+02 =	1.00E+02
siti	F26	(1.98E-02)	(1.66E-02)	(2.50E-02)	(2.05E-02)	(4.98E-02)	(3.46E-02)	(2.37E-02)	(3.87E-02)
Composition Functions	E27	3.42E+02 -	3.35E+02	3.34E+02 -	3.23E+02	3.17E+02 =	3.25E+02	3.10E+02 -	3.10E+02
Con	F27	(2.68E+01)							
		`	(2.17E+01)	(3.31E+01)	(2.59E+01)	(2.28E+01)	(2.34E+01)	(1.85E+01)	(1.84E+01)
	F28	1.13E+03 =	1.12E+03	1.12E+03 =	1.11E+03	1.14E+03 =	1.14E+03	1.09E+03 =	1.08E+03
1	CCC 14	(3.69E+01)	(3.09E+01)	(2.83E+01)	(2.69E+01)	(3.72E+01)	(3.83E+01)	(2.81E+01)	(3.04E+01)
	F29	8.04E+02 =	8.02E+02	8.05E+02 =	7.95E+02	8.05E+02 =	8.13E+02	8.04E+02 =	8.03E+02
	cec14	(3.34E+01)	(3.22E+01)	(4.27E+01)	(3.95E+01)	(2.77E+01)	(4.03E+01)	(4.11E+01)	(4.48E+01)
	E20	8.59E+03 =	8.53E+03	8.62E+03 =	8.64E+03	8.50E+03 =	8.60E+03	8.38E+03 =	8.30E+03
	F30								
		(4.15E+02)	(3.14E+02)	(4.71E+02)	(5.04E+02)	(3.71E+02)	(4.33E+02)	(3.90E+02)	(3.38E+02)
	-/=/+	18/10/2		10/17/3		13/17/0		13/15/2	
		-		-				-	

table S10 Performance comparisons of four SCSS-based advanced algorithms with the baselines on 30-D cec 2017 benchmark set

		LADE	SCSS-		SCSS-		SCSS-	LIDG	SCSS-
		JADE	JADE	SHADE	SHADE	CMA-ES	CMA-ES	LIPS	LIPS
	cec17F1	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	8.03E+02 +	2.73E+03
r s	cec17	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(1.45E+03)	(4.18E+03)
Unimodal Functions	cec17F2	1.58E-05 =	1.70E-05	1.77E-05 =	1.39E-05	0.00E+00 =	0.00E+00	2.33E+01 -	1.87E-03
Jnin Junc	cec17	(8.56E-06)	(9.99E-06)	(1.03E-05)	(8.49E-06)	(0.00E+00)	(0.00E+00)	(9.02E+01)	(1.95E-04)
J.	cec17F3	1.18E+04 -	7.74E+02	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	1.60E+04 -	7.74E+03
	cec17	(1.92E+04)	(5.53E+03)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(7.66E+03)	(3.55E+03)
	cec17F4	5.18E+01 =	5.14E+01	5.47E+01 =	5.29E+01	3.99E+01 +	4.30E+01	1.64E+02 -	1.11E+02
	cec17	(2.08E+01)	(2.06E+01)	(1.62E+01)	(1.76E+01)	(2.74E+01)	(2.55E+01)	(9.39E+01)	(4.93E+01)
	cec17F5	2.83E+01 -	2.17E+01	1.99E+01 =	1.97E+01	6.58E+02 -	1.34E+02	6.43E+01 -	3.43E+01
	cec17	(4.01E+00)	(4.50E+00)	(3.24E+00)	(3.18E+00)	(2.22E+02)	(2.26E+02)	(1.35E+01)	(9.30E+00)
fal	cec17F6	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	9.91E+01 -	3.99E+01	8.27E+00 -	4.58E-01
imoc	cec1/	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(1.56E+01)	(4.70E+01)	(5.05E+00)	(5.87E-01)
Simple Multimodal Functions	cec17 ^{F7}	5.61E+01 -	5.19E+01	5.09E+01 -	4.92E+01	3.66E+03 -	2.71E+02	9.77E+01 -	7.32E+01
le N Fun	cec1/	(3.87E+00)	(4.41E+00)	(3.87E+00)	(2.84E+00)	(1.11E+03)	(8.12E+02)	(2.10E+01)	(1.09E+01)
imp	cec17F8	2.84E+01 -	2.39E+01	2.16E+01 =	2.07E+01	5.79E+02 -	1.60E+02	6.23E+01 -	3.58E+01
01	CEC17	(5.00E+00)	(4.09E+00)	(3.42E+00)	(3.64E+00)	(1.43E+02)	(2.05E+02)	(1.31E+01)	(8.35E+00)
	cec17 ^{F9}	2.13E-02 =	7.02E-03	0.00E+00 =	0.00E+00	1.37E+04 -	5.85E+03	6.01E+02 -	2.07E+01
	CCC17	(9.01E-02)	(2.43E-02)	(0.00E+00)	(0.00E+00)	(3.23E+03)	(7.13E+03)	(4.21E+02)	(2.53E+01)
	F10	1.88E+03 -	1.79E+03	1.73E+03 =	1.72E+03	4.93E+03 -	4.05E+03	2.80E+03 -	2.15E+03
	CCC17	(2.70E+02)	(2.39E+02)	(2.71E+02)	(2.46E+02)	(5.98E+02)	(1.01E+03)	(4.44E+02)	(3.40E+02)
	F11	3.37E+01 -	2.28E+01	2.10E+01 =	2.13E+01	1.67E+02 -	1.20E+02	1.99E+02 -	8.58E+01
	CCC17	(2.26E+01)	(2.00E+01)	(2.53E+01)	(2.47E+01)	(5.67E+01)	(3.97E+01)	(1.41E+02)	(4.31E+01)
	F12	1.48E+03 =	1.30E+03	2.03E+03 -	1.20E+03	1.51E+03 =	1.55E+03	1.85E+06 -	1.78E+05
	CCC17	(8.87E+02)	(7.31E+02)	(2.68E+03)	(5.83E+02)	(3.69E+02)	(3.41E+02)	(6.00E+06)	(2.11E+05)
	F13	4.36E+01 =	3.92E+01	3.84E+01 -	2.68E+01	1.57E+03 =	1.35E+03	5.74E+03 -	2.78E+03
	00017	(2.16E+01)	(1.61E+01)	(1.76E+01)	(1.20E+01)	(7.42E+02)	(7.07E+02)	(5.63E+03)	(4.82E+03)
	F14	9.70E+03 -	2.05E+03	2.73E+01 =	2.61E+01	1.85E+02 =	1.66E+02	1.40E+04 -	8.81E+03
		(1.12E+04)	(7.03E+03)	(5.83E+00)	(4.08E+00)	(5.74E+01)	(5.33E+01)	(1.13E+04)	(2.02E+04)
q us	F15	1.94E+03 -	1.14E+02	1.32E+01 =	1.05E+01	3.09E+02 =	2.83E+02	2.35E+03 -	1.40E+03
Hybrid Functions		(3.78E+03)	(6.60E+02)	(9.70E+00) 2.91E+02 -	(5.76E+00) 2.43E+02	(1.32E+02) 5.92E+02 -	(1.36E+02) 3.36E+02	(3.05E+03) 7.30E+02 -	(2.16E+03) 4.78E+02
H Fur	F16	3.92E+02 -	3.27E+02						
		(1.27E+02) 8.33E+01 -	(1.28E+02) 7.21E+01	(1.16E+02)	(1.35E+02) 5.10E+01	(2.96E+02)	(2.36E+02) 1.45E+02	(2.21E+02) 2.89E+02 -	(1.61E+02)
	F17	8.33E+01 - (2.86E+01)	(2.09E+01)	4.83E+01 = (1.29E+01)	(9.63E+00)	2.80E+02 - (2.03E+02)	(9.83E+01)	(1.19E+02)	1.52E+02 (6.88E+01)
	F10		7.69E+03			2.03E+02			
	F18	5.06E+04 - (7.16E+04)	(3.87E+04)	7.32E+01 - (4.20E+01)	3.43E+01 (1.53E+01)	(8.94E+01)	1.98E+02 (7.43E+01)	1.71E+05 - (1.53E+05)	1.16E+05 (6.72E+04)
	F10	1.88E+03 -	1.20E+01	7.83E+00=	7.40E+00	2.04E+02 -	1.73E+01)	1.55E+03 =	1.61E+03
	F19	(4.75E+03)	(6.37E+00)	(3.06E+00)	(2.40E+00)	(8.72E+01)	(6.95E+01)	(1.99E+03)	(3.30E+03)
	E20	9.72E+01 -	7.83E+01	6.23E+01 =	5.43E+01	1.38E+03 -	2.05E+02	3.21E+02 -	1.83E+02
	cec17F20	(5.22E+01)	(4.58E+01)	(3.64E+01)	(3.33E+01)	(3.73E+02)	(1.65E+02)	(1.02E+02)	(7.84E+01)
	F2.1	2.28E+02 -	2.22E+02	2.21E+02 =	2.20E+02	4.92E+02 -	3.03E+02	2.65E+02 -	2.39E+02
	F21	(4.78E+00)	(4.93E+00)	(3.13E+00)	(3.86E+00)	(2.67E+02)	3.03E+02 (1.56E+02)	(1.55E+01)	(9.85E+00)
	EGG	1.00E+02 =	1.39E+02	1.00E+02 =	1.00E+02	5.70E+03 -	3.05E+03	1.58E+02 -	1.00E+02
	cec17F22	(2.56E-05)	(2.76E+02)	(1.00E+02 – (1.00E-13)	(1.00E-13)	(1.03E+03)	(2.50E+03)	(4.06E+02)	(2.11E-13)
	F23	3.75E+02 -	3.71E+02	3.68E+02 =	3.66E+02	1.99E+03 -	6.46E+02	4.45E+02 -	3.91E+02
	cec17 F23	(6.33E+00)	(6.99E+00)	(4.87E+00)	(5.71E+00)	(8.26E+02)	(6.87E+02)	(3.32E+01)	(1.08E+01)
	E34	4.40E+02 -	4.36E+02	4.38E+02 -	4.36E+02	4.74E+02 =	4.57E+02	5.00E+02 -	4.49E+02
	F24	(4.90E+00)	(5.27E+00)	(3.82E+00)	(3.77E+00)	(9.73E+01)	(1.09E+01)	(2.83E+01)	(1.02E+01)
ā	F25	3.87E+02 -	3.87E+02	3.87E+02 -	3.87E+02	3.87E+02 -	3.87E+02	4.29E+02 -	3.99E+02
Composition Functions	F25	(1.86E-01)	(1.72E-01)	(1.38E-01)	(1.33E-01)	(2.74E+00)	(2.71E-02)	(2.71E+01)	(1.32E+01)
npo:	F26	1.19E+03 -	1.16E+03	1.12E+03 =	1.09E+03	1.20E+03 -	1.20E+03	1.47E+03 -	1.14E+03
Cor Fu	F26	(1.51E+02)	(8.12E+01)	(6.24E+01)	(6.26E+01)	(4.75E+02)	(3.22E+02)	(8.10E+02)	(5.73E+02)
	E27	5.01E+02 =	5.03E+02	5.02E+02 =	5.02E+02	8.04E+02 -	4.86E+02	6.12E+02 -	5.56E+02
	F27	(7.16E+00)	(7.65E+00)	(5.62E+00)	(4.92E+00)	(1.74E+03)	(1.08E+01)	(2.52E+01)	(1.69E+01)
	F28	3.41E+02 =	3.34E+02	3.34E+02 =	3.30E+02	3.51E+02 =	3.42E+02	5.00E+02 -	3.90E+02
	F28	(5.64E+01)	(5.44E+01)	(5.47E+01)	(4.90E+01)	(6.13E+01)	(5.34E+01)	(9.70E+01)	(7.31E+01)
	F20	4.85E+02 -	4.74E+02	4.63E+02 =	4.65E+02	7.88E+02 -	6.36E+02	9.73E+02 -	7.05E+02
	F29	(2.28E+01)	(1.52E+01)	(2.62E+01)	(1.66E+01)	(1.84E+02)	(1.25E+02)	(1.78E+02)	(7.69E+01)
	F30	2.79E+03 =	2.13E+03	2.10E+03 =	2.08E+03	2.22E+03 =	2.19E+03	1.19E+05 -	1.20E+04
	F30	(2.00E+03)	(1.42E+02)	(1.27E+02)	(1.39E+02)	(2.09E+02)	(2.20E+02)	(1.81E+05)	(5.61E+03)
	/=/+	19/11/0)	7/23/0	*-)	18/11/1	, :- :-)	28/1/1	(= := = = =)
	, , , ,	17/11/0		112310		10/11/1		20/1/1	ı

TABLE S11 PERFORMANCE COMPARISONS OF FOUR SCSS-BASED ADVANCED ALGORITHMS WITH THE BASELINES
ON 50-D CEC2017 BENCHMARK SET

JADE SCSS- SHADE SCSS- CMA-ES SCSS- LIPS SCSS-

		JADE	SCSS-	SHADE	SCSS-	CMA-ES	SCSS-	LIPS	SCSS-
		JADE	JADE	SHADE	SHADE	CMA-ES	CMA-ES	LIFS	LIPS
	cec17F1	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	1.17E+03 +	2.89E+03
- s	cec17	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(2.02E+03)	(4.25E+03)
oda	F2.	4.21E-05 +	4.93E-05	5.08E-05 =	5.41E-05	0.00E+00 =	0.00E+00	7.62E+02 -	3.25E-03
Unimodal Functions	cec17F2	(1.21E-05)	(1.63E-05)	(1.48E-05)	(1.87E-05)	(0.00E+00)	(0.00E+00)	(7.84E+02)	(4.46E-04)
U	F3	1.42E+04 -	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	9.27E+04 -	6.53E+04
	cec17F3	(3.38E+04)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(2.23E+04)	(1.57E+04)
	F4	5.46E+01 =	5.37E+01	6.40E+01 =	5.50E+01	4.34E+01 =	3.61E+01	6.66E+02 -	2.52E+02
	cec17 ^{F4}	(5.18E+01)	(5.01E+01)	(5.03E+01)	(4.53E+01)	(4.79E+01)	(4.31E+01)	(3.39E+02)	(7.79E+01)
	F5	5.18E+01 -	3.98E+01	4.35E+01 -	3.89E+01	1.03E+03 -	6.32E+02	1.68E+02 -	1.00E+02
	cec17F5	(9.01E+00)	(9.33E+00)	(5.40E+00)	(6.36E+00)	(1.78E+02)	(4.78E+02)	(2.62E+01)	(2.00E+01)
-	F6	0.00E+00 +	5.77E-07	1.59E-06 =	1.67E-06	9.54E+01 -	7.49E+01	2.41E+01 -	4.92E+00
ods.	F6	(0.00E+00)	(2.18E-06)	(2.26E-06)	(1.87E-06)	(1.04E+01)	(3.66E+01)	(5.43E+00)	(2.13E+00)
Simple Multimodal Functions	F7	9.89E+01 -	8.94E+01	8.91E+01 -	8.60E+01	6.42E+03 -	1.65E+03	3.74E+02 -	1.74E+02
Mu	cec17F7	(8.16E+00)	(8.04E+00)	(5.48E+00)	(5.82E+00)	(1.55E+03)	(2.74E+03)	(6.09E+01)	(2.69E+01)
nple Fu	E8	5.43E+01 -	4.17E+01	4.21E+01 =	4.10E+01	1.09E+03 -	5.94E+02	1.74E+02 -	1.02E+02
Sin	cec17F8	(8.64E+00)	(8.53E+00)	(6.54E+00)	(7.27E+00)	(2.12E+02)	(4.60E+02)	(3.49E+01)	(1.71E+01)
	FO	1.44E+00 =	1.46E+00	3.87E-01 =	3.55E-01	3.08E+04 =	2.64E+04	4.44E+03 -	8.85E+02
	cec17 ^{F9}	(1.52E+00)	(1.26E+00)	(3.94E-01)	(4.33E-01)	(5.49E+03)	(1.16E+04)	(1.45E+03)	(5.90E+02)
	F10	3.70E+03 -	3.49E+03	3.48E+03 =	3.43E+03	8.04E+03 -	7.19E+03	5.14E+03 -	4.24E+03
	F10	(3.77E+02)	(3.97E+02)	(3.77E+02)	(3.50E+02)	(9.92E+02)	(1.22E+03)	(6.66E+02)	(6.02E+02)
	E11	1.57E+02 -	1.32E+02	8.67E+01 -	6.88E+01	2.88E+02 -	2.08E+02	2.35E+03 -	2.58E+02
	F11	(5.18E+01)	(3.61E+01)	(2.71E+01)	(1.66E+01)	(6.63E+01)	(5.01E+01)	(2.45E+03)	(8.87E+01)
	E12	7.02E+03 =	6.57E+03	5.66E+03 =	6.95E+03	2.66E+03 =	2.64E+03	1.35E+07 -	1.84E+06
	F12	(6.81E+03)	(3.92E+03)	(3.09E+03)	(4.86E+03)	(6.49E+02)	(6.45E+02)	(4.17E+07)	(1.55E+06)
	E12	2.52E+02 =	2.10E+02	2.94E+02 -	1.33E+02	2.55E+03 =	2.28E+03	6.58E+03 -	1.16E+03
	F13	(1.52E+02)	(1.23E+02)	(1.94E+02)	(5.36E+01)	(7.76E+02)	(7.63E+02)	(3.64E+03)	(7.74E+02)
	F14	6.91E+04 -	5.09E+03	1.82E+02 -	8.43E+01	3.16E+02 =	2.97E+02	1.32E+05 -	2.61E+04
	cec17	(1.19E+05)	(2.12E+04)	(4.59E+01)	(2.75E+01)	(7.64E+01)	(9.08E+01)	(3.30E+05)	(2.66E+04)
	E15	1.13E+03 -	1.92E+02	2.52E+02 -	1.28E+02	4.88E+02 =	4.84E+02	1.97E+03 -	8.09E+02
bi ons	F15	(2.51E+03)	(9.30E+01)	(1.05E+02)	(5.77E+01)	(1.68E+02)	(1.20E+02)	(1.89E+03)	(6.53E+02)
Hybrid Functions	E16	9.06E+02 -	7.24E+02	7.26E+02 =	7.44E+02	9.06E+02 -	5.49E+02	1.44E+03 -	9.12E+02
F.	F16	(1.65E+02)	(1.67E+02)	(1.83E+02)	(1.31E+02)	(3.97E+02)	(3.04E+02)	(3.37E+02)	(2.46E+02)
	E17	6.40E+02 -	5.52E+02	4.78E+02 =	4.90E+02	9.86E+02 -	5.71E+02	1.16E+03 -	7.70E+02
	F17	(1.59E+02)	(1.55E+02)	(1.37E+02)	(1.25E+02)	(2.57E+02)	(2.25E+02)	(2.11E+02)	(1.70E+02)
	E10	1.82E+05 -	1.59E+02	1.38E+02 -	1.10E+02	3.60E+02 =	3.31E+02	1.21E+06 -	3.56E+05
	F18	(4.33E+05)	(1.54E+02)	(8.50E+01)	(7.29E+01)	(1.23E+02)	(1.07E+02)	(2.22E+06)	(2.38E+05)
	E10	9.41E+02 -	1.19E+02	1.14E+02 -	7.53E+01	2.71E+02 =	2.43E+02	3.34E+03 =	3.26E+03
	F19	(2.46E+03)	(4.55E+01)	(4.32E+01)	(3.39E+01)	(1.30E+02)	(7.61E+01)	(4.99E+03)	(5.11E+03)
	E20	4.74E+02 -	3.97E+02	3.46E+02 =	3.27E+02	2.37E+03 -	8.23E+02	6.79E+02 -	4.60E+02
	F20	(1.35E+02)	(1.28E+02)	(1.19E+02)	(9.96E+01)	(5.04E+02)	(8.32E+02)	(1.67E+02)	(1.57E+02)
	F2.1	2.54E+02 -	2.41E+02	2.44E+02 =	2.42E+02	7.97E+02 -	4.13E+02	3.60E+02 -	3.01E+02
	cec17F21	(1.03E+01)	(8.60E+00)	(6.19E+00)	(7.15E+00)	(4.85E+02)	(3.21E+02)	(3.55E+01)	(1.72E+01)
	E22	3.68E+03 -	3.41E+03	3.50E+03 =	3.27E+03	9.11E+03 -	7.94E+03	4.55E+03 -	3.92E+03
	F22	(1.67E+03)	(1.45E+03)	(1.50E+03)	(1.57E+03)	(1.09E+03)	(1.30E+03)	(2.41E+03)	(1.87E+03)
		4.79E+02 -	4.65E+02	4.66E+02 -	4.60E+02	3.18E+03 -	1.20E+03	7.13E+02 -	5.59E+02
	cec17F23	(1.09E+01)	(1.01E+01)	(8.46E+00)	(8.48E+00)	(6.79E+02)	(1.18E+03)	(6.14E+01)	(2.46E+01)
	E24	5.40E+02 -	5.29E+02	5.35E+02 -	5.30E+02	7.00E+02 -	5.72E+02	7.71E+02 -	6.05E+02
	F24	(8.46E+00)	(6.59E+00)	(8.93E+00)	(6.90E+00)	(2.49E+02)	(2.19E+01)	(7.71E+01)	(1.99E+01)
=	E25	5.23E+02 =	5.20E+02	5.15E+02 =	5.08E+02	5.02E+02 =	4.94E+02	9.66E+02 -	6.35E+02
sitio	F25	(3.28E+01)	(3.62E+01)	(3.61E+01)	(3.75E+01)	(3.32E+01)	(2.97E+01)	(2.15E+02)	(4.87E+01)
npos	E26	1.63E+03 -	1.50E+03	1.45E+03 -	1.41E+03	1.90E+03 -	1.76E+03	3.87E+03 -	2.19E+03
Composition Functions	F26	(1.22E+02)	(1.34E+02)	(9.07E+01)	(9.53E+01)	(5.02E+02)	(5.10E+02)	(6.48E+02)	(6.09E+02)
	E27	5.58E+02 =	5.55E+02	5.37E+02 =	5.31E+02	7.55E+02 -	4.76E+02	1.19E+03 -	8.66E+02
	cec17F27	(2.58E+01)	(2.94E+01)	(1.88E+01)	(1.33E+01)	(1.17E+03)	(1.37E+01)	(9.61E+01)	(6.62E+01)
	E28	4.91E+02 =	4.94E+02	4.82E+02 =	4.85E+02	4.70E+02 =	4.64E+02	1.49E+03 -	6.25E+02
	F28	(2.25E+01)	(2.11E+01)	(2.44E+01)	(2.38E+01)	(2.01E+01)	(1.60E+01)	(4.96E+02)	(5.57E+01)
	F20	4.60E+02 =	4.72E+02	4.38E+02 =	4.46E+02	1.04E+03 -	6.93E+02	2.02E+03 -	1.12E+03
	F29	(6.92E+01)	(7.48E+01)	(5.83E+01)	(5.42E+01)	(2.96E+02)	(1.73E+02)	(3.35E+02)	(1.80E+02)
	F30	6.64E+05 =	6.56E+05	6.57E+05 =	6.54E+05	7.86E+05 =	7.87E+05	3.31E+07 -	4.90E+06
	F30	(9.01E+04)	(8.03E+04)	(7.82E+04)	(6.50E+04)	(1.45E+05)	(1.72E+05)	(1.45E+07)	(1.58E+06)
	·/=/+	18/10/2	(0.0022.0.)	11/19/0	(=======)	16/14/0	(22 - 00)	28/1/1	(2.2.2.2.00)
		10/10/2	l .	11/1/10	1	10/17/0		20/1/1	

TABLE S12 Performance comparisons of four SCSS-based top algorithms with the baselines on 30-D cec 2017 benchmark set

							SCSS-		
		L-SHADE	SCSS-	UMOEA-II	SCSS-	L-SHADE_	L-SHADE	jSO	SCSS-
		L-SHADL	L-SHADE	OWOLA-II	UMOEA-II	EpSin	EpSin	jso	jSO
	Г1	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec17F1	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
Unimodal Functions	F2	4.06E-09 -	0.00E+00)	4.14E-08 =	3.23E-08	0.00E+00	0.00E+00)	6.65E-08 =	9.39E-08
imo	cec17F2	(8.59E-09)	(0.00E+00)	(5.51E-08)	(5.00E-08)	(0.00E+00)	(0.00E+00)	(9.56E-08)	(9.54E-08)
U.E.	F2	0.00E+00=	0.00E+00	0.00E+00=	0.00E+00	0.00E+00	0.00E+00)	0.00E+00=	0.00E+00
	cec17 F3	(0.00E+00)	(0.00E+00)	(0.00E+00 =	(0.00E+00)	(0.00E+00 =	(0.00E+00)	(0.00E+00 =	(0.00E+00)
	cec17 ^{F4}	5.86E+01 =	5.86E+01	5.86E+01 =	5.87E+01	5.86E+01 =	5.86E+01	5.86E+01 =	5.86E+01
		(3.75E-14)	(3.27E-14)	(4.90E-14)	(7.78E-01)	(2.88E-14)	(2.93E-14)	(2.13E-14)	(2.41E-14)
	cec17F5	7.02E+00 =	7.61E+00	8.29E+00 =	8.54E+00	1.22E+01 -	1.06E+01	8.32E+00 -	7.49E+00
	00017	(1.52E+00)	(1.58E+00)	(2.19E+00)	(2.06E+00)	(1.60E+00)	(2.43E+00)	(1.74E+00)	(1.80E+00)
dal	F6	3.38E-09 =	1.14E-08	1.81E-08 =	6.71E-09	8.05E-09 =	0.00E+00	9.39E-09 =	1.74E-08
imo	CCC17	(1.98E-08)	(3.73E-08)	(8.05E-08)	(2.74E-08)	(3.25E-08)	(0.00E+00)	(3.29E-08)	(4.45E-08)
Ault	cec17 ^{F7}	3.79E+01 +	3.91E+01	4.04E+01 =	4.06E+01	4.35E+01 -	4.19E+01	3.84E+01 -	3.75E+01
ole N Fun	Ceci/	(1.18E+00)	(2.03E+00)	(2.73E+00)	(2.68E+00)	(2.48E+00)	(2.75E+00)	(1.83E+00)	(1.33E+00)
Simple Multimodal Functions	cec17F8	7.11E+00 =	8.09E+00	8.45E+00 =	8.54E+00	1.35E+01 -	1.26E+01	8.81E+00 -	7.57E+00
	CCC1/	(1.58E+00)	(2.13E+00)	(1.86E+00)	(2.36E+00)	(1.50E+00)	(2.46E+00)	(2.17E+00)	(2.04E+00)
	cec17 ^{F9}	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec1/	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	cec17F10	1.41E+03 =	1.44E+03	1.69E+03 =	1.63E+03	1.35E+03 =	1.28E+03	1.49E+03 =	1.54E+03
	cec1/	(2.31E+02)	(2.33E+02)	(3.17E+02)	(3.04E+02)	(1.90E+02)	(2.38E+02)	(2.66E+02)	(2.18E+02)
	F11	3.73E+01 -	3.36E+01	1.34E+01 =	1.53E+01	1.58E+01 =	1.97E+01	9.87E+00 =	6.46E+00
	cec17	(2.91E+01)	(2.90E+01)	(2.02E+01)	(2.34E+01)	(2.30E+01)	(2.55E+01)	(1.89E+01)	(1.39E+01)
	F12	1.04E+03 -	6.95E+02	8.28E+02 -	2.84E+02	4.03E+02 =	3.77E+02	1.66E+02 -	8.34E+01
	cec17	(3.37E+02)	(3.16E+02)	(3.18E+02)	(1.85E+02)	(2.22E+02)	(2.15E+02)	(8.86E+01)	(7.27E+01)
	cec17F13	1.92E+01 -	1.73E+01	1.53E+01 =	1.61E+01	1.42E+01 =	1.54E+01	1.60E+01 =	1.63E+01
	cec17	(4.61E+00)	(4.88E+00)	(6.24E+00)	(5.99E+00)	(6.02E+00)	(5.86E+00)	(5.76E+00)	(4.50E+00)
	F14	2.19E+01 +	2.22E+01	2.22E+01 =	2.22E+01	2.13E+01 =	2.26E+01	2.20E+01 =	2.14E+01
	F14	(1.22E+00)	(3.11E+00)	(3.42E+00)	(4.58E+00)	(4.65E+00)	(1.20E+00)	(1.08E+00)	(3.19E+00)
	F15	3.54E+00 -	2.80E+00	3.30E+00 -	2.83E+00	2.41E+00 =	2.58E+00	1.26E+00 =	1.03E+00
Hybrid Functions	cec17	(1.56E+00)	(1.34E+00)	(1.70E+00)	(2.22E+00)	(1.44E+00)	(1.61E+00)	(8.34E-01)	(8.73E-01)
lyb inct	E16	4.00E+01 =	3.43E+01	9.31E+01 =	7.11E+01	5.09E+01 -	3.12E+01	6.50E+01 =	5.02E+01
그 또	F16	(2.74E+01)	(1.48E+01)	(9.08E+01)	(8.16E+01)	(4.44E+01)	(3.38E+01)	(6.92E+01)	(6.73E+01)
	E17	3.29E+01 =	3.44E+01	4.07E+01 +	4.46E+01	2.83E+01 =	2.91E+01	3.45E+01 -	3.17E+01
	F17	(6.27E+00)	(5.90E+00)	(8.68E+00)	(1.00E+01)	(6.47E+00)	(5.86E+00)	(7.04E+00)	(7.19E+00)
	E10	2.23E+01 -	2.04E+01	2.15E+01 =	2.13E+01	2.13E+01 =	2.13E+01	2.08E+01 =	1.95E+01
	F18	(1.28E+00)	(2.79E+00)	(6.94E-01)	(7.26E-01)	(9.45E-01)	(9.30E-01)	(3.79E-01)	(4.82E+00)
	E10	5.96E+00 =	5.90E+00	6.38E+00 =	7.13E+00	5.24E+00 =	5.10E+00	4.53E+00 =	4.06E+00
	F19	(1.87E+00)	(2.05E+00)	(1.91E+00)	(2.35E+00)	(1.63E+00)	(1.87E+00)	(1.90E+00)	(1.43E+00)
	F20	3.01E+01 =	2.99E+01	4.27E+00	3.97E+01	2.83E+00	2.60E+01	3.01E+01=	2.75E+01
	F20 cec17	(5.93E+00)	(4.37E+00)	(9.05E+00)	(7.88E+00)	(7.68E+00)	(5.45E+00)	(8.53E+00)	(7.25E+01)
-									
	F21	2.08E+02 =	2.08E+02 (1.53E+00)	2.09E+02 =	2.10E+02	2.12E+02 -	2.10E+02	2.09E+02 -	2.08E+02
		(1.65E+00)		(2.11E+00)	(2.43E+00)	(2.62E+00)	(2.50E+00)	(1.93E+00)	(2.04E+00)
	cec17F22	1.00E+02 =	1.00E+02	1.00E+02 =	1.00E+02	1.00E+02 =	1.00E+02	1.00E+02 =	1.00E+02
		(9.20E-14)	(1.00E-13)	(1.39E-13)	(1.87E-13)	(1.00E-13)	(1.00E-13)	(9.20E-14)	(1.00E-13)
1	F23	3.54E+02 =	3.54E+02	3.54E+02 =	3.54E+02	3.55E+02 =	3.55E+02	3.51E+02 -	3.50E+02
1	*/	(3.16E+00)	(2.98E+00)	(4.25E+00)	(3.85E+00)	(2.86E+00)	(3.71E+00)	(3.46E+00)	(3.15E+00)
1	F24	4.28E+02 =	4.28E+02	4.28E+02 +	4.29E+02	4.29E+02 -	4.27E+02	4.26E+02 =	4.26E+02
	2001,	(1.58E+00)	(1.87E+00)	(2.39E+00)	(2.35E+00)	(2.73E+00)	(2.07E+00)	(2.38E+00)	(3.06E+00)
Composition Functions	F25	3.87E+02 -	3.87E+02	3.87E+02 -	3.87E+02	3.87E+02 =	3.87E+02	3.87E+02 =	3.87E+02
ctio	CC1/	(1.97E-02)	(1.26E-02)	(2.43E-02)	(1.71E-02)	(5.91E-03)	(5.70E-03)	(5.99E-03)	(6.30E-03)
omj	F26	9.85E+02 -	9.65E+02	9.51E+02 =	9.52E+02	9.55E+02 -	9.35E+02	9.30E+02 =	9.25E+02
5	CCC1/	(3.55E+01)	(3.66E+01)	(3.60E+01)	(4.31E+01)	(3.92E+01)	(4.45E+01)	(3.65E+01)	(4.04E+01)
	cec17F27	5.07E+02 =	5.06E+02	5.03E+02 =	5.01E+02	5.05E+02 =	5.05E+02	4.97E+02 =	4.95E+02
	CCC1/	(4.03E+00)	(5.63E+00)	(4.75E+00)	(6.09E+00)	(4.52E+00)	(4.34E+00)	(6.63E+00)	(7.76E+00)
1	cec17F28	3.39E+02 =	3.27E+02	3.20E+02 =	3.26E+02	3.06E+02 +	3.24E+02	3.13E+02 =	3.02E+02
	CeC1/	(5.61E+01)	(4.88E+01)	(4.37E+01)	(4.74E+01)	(2.63E+01)	(4.66E+01)	(3.54E+01)	(1.60E+01)
	F29	4.36E+02 +	4.42E+02	4.38E+02 +	4.45E+02	4.29E+02 +	4.35E+02	4.32E+02 =	4.27E+02
	cec1'/	(7.53E+00)	(1.15E+01)	(1.62E+01)	(1.19E+01)	(6.34E+00)	(8.65E+00)	(1.58E+01)	(2.42E+01)
	F30	1.99E+03 -	1.97E+03	1.97E+03 =	1.98E+03	1.99E+03 =	1.99E+03	1.97E+03 =	1.97E+03
		(5.56E+01)	(4.32E+01)	(3.05E+01)	(3.66E+01)	(7.24E+01)	(5.68E+01)	(1.68E+01)	(1.11E+01)
-	/=/+	9/18/3		3/24/3		7/21/2		7/23/0	

table S13 Performance comparisons of four SCSS-based top algorithms with the baselines on 50-D cec2017 benchmark set

			SCSS-		SCSS-	L-SHADE	SCSS-		SCSS-
ļ		L-SHADE	L-SHADE	UMOEA-II	UMOEA-II	EpSin	L-SHADE_ EpSin	jSO	jSO
Unimodal Functions	cec17F1	0.00E+00 = (0.00E+00)	0.00E+00 (0.00E+00)	0.00E+00 = (0.00E+00)	0.00E+00 (0.00E+00)	0.00E+00 = (0.00E+00)	0.00E+00 (0.00E+00)	0.00E+00 = (0.00E+00)	0.00E+00 (0.00E+00)
	E2	5.01E-06 -	1.66E-06	1.37E-05 -	6.55E-06	2.23E-07 -	9.62E-08	1.38E-05 =	1.48E-05
	cec17F2	(3.12E-06)	(9.79E-07)	(6.95E-06)	(4.16E-06)	(1.36E-07)	(6.14E-08)	(8.23E-06)	(8.26E-06)
	cec17F3	0.00E+00 =	0.00E+00	3.00E-10 +	1.54E-08	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec1/	(0.00E+00)	(0.00E+00)	(2.14E-09)	(2.31E-08)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
Simple Multimodal Functions	cec17F4	7.23E+01 =	7.34E+01	7.22E+01 =	8.27E+01	5.04E+01 =	4.51E+01	5.85E+01 =	4.87E+01
	F.5	(4.94E+01) 1.19E+01 =	(5.05E+01) 1.20E+01	(4.97E+01) 1.61E+01 -	(5.36E+01) 1.43E+01	(4.38E+01) 2.90E+01 -	(3.97E+01) 1.94E+01	(4.56E+01) 1.56E+01 -	(4.11E+01) 1.26E+01
	cec17 ^{F5}	(2.46E+00)	(1.99E+00)	(4.55E+00)	(3.11E+00)	(6.65E+00)	(6.64E+00)	(2.65E+00)	(2.70E+00)
	F6	7.12E-08 -	2.22E-08	1.66E-04 -	1.16E-07	2.57E-07 -	4.20E-08	4.10E-07 =	2.85E-07
	F6	(2.58E-07)	(6.76E-08)	(5.76E-04)	(2.28E-07)	(3.41E-07)	(6.98E-08)	(5.52E-07)	(5.12E-07)
	cec17 ^{F7}	6.50E+01 =	6.46E+01	7.04E+01 =	6.85E+01	7.98E+01 -	7.15E+01	6.66E+01 -	6.33E+01
ple N Fun		(2.23E+00)	(2.12E+00)	(5.17E+00)	(5.14E+00)	(7.02E+00)	(5.69E+00)	(3.10E+00)	(2.66E+00)
Simp	cec17F8	1.21E+01 = (2.39E+00)	1.17E+01 (2.56E+00)	1.58E+01 = (4.09E+00)	1.43E+01 (4.17E+00)	3.07E+01 - (3.99E+00)	1.96E+01 (6.59E+00)	1.69E+01 - (3.43E+00)	1.20E+01 (2.67E+00)
	EO	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec17F9	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	F10	3.32E+03 -	3.12E+03	3.75E+03 =	3.64E+03	3.07E+03 -	2.89E+03	3.21E+03 -	3.05E+03
	cec17	(2.81E+02)	(3.27E+02)	(5.99E+02)	(5.22E+02)	(2.91E+02)	(2.90E+02)	(3.78E+02)	(3.63E+02)
	F11	4.80E+01 -	3.37E+01	4.42E+01 -	3.16E+01	2.75E+01 =	2.71E+01	2.66E+01 -	2.50E+01
	E12	(6.64E+00) 2.07E+03 =	(4.65E+00) 2.10E+03	(9.48E+00) 2.17E+03 =	(4.51E+00) 2.01E+03	(2.01E+00) 1.38E+03 =	(2.06E+00) 1.36E+03	(3.13E+00) 1.61E+03 -	(4.12E+00) 1.29E+03
	F12	(5.21E+02)	(4.81E+02)	(5.36E+02)	(4.99E+02)	(3.79E+02)	(3.67E+02)	(4.42E+02)	(3.66E+02)
	F13	6.52E+01 -	5.09E+01	4.69E+01 -	3.56E+01	3.76E+01 =	4.29E+01	3.17E+01 =	2.60E+01
	F13	(2.98E+01)	(2.89E+01)	(1.73E+01)	(1.57E+01)	(2.60E+01)	(2.23E+01)	(2.01E+01)	(2.09E+01)
	F14	3.06E+01 -	2.48E+01	2.85E+01 -	2.70E+01	2.71E+01 =	2.67E+01	2.50E+01 =	2.51E+01
Hybrid Functions	cec17	(3.73E+00)	(2.30E+00)	(3.30E+00)	(2.35E+00)	(2.68E+00)	(2.57E+00)	(2.34E+00)	(2.46E+00)
	F15	4.53E+01 -	2.77E+01	3.45E+01 -	2.69E+01	2.51E+01 =	2.39E+01	2.37E+01 -	2.12E+01
	CCC1/	(1.40E+01) 3.76E+02 =	(3.82E+00) 3.49E+02	(6.42E+00) 4.58E+02 =	(3.14E+00) 4.07E+02	(3.17E+00) 3.31E+02 -	(2.44E+00) 2.68E+02	(2.77E+00) 4.77E+02 =	(1.81E+00) 4.45E+02
H H	F16	(1.36E+02)	(1.17E+02)	(1.68E+02)	(1.69E+02)	(1.25E+02)	(1.16E+02)	(1.36E+02)	(1.55E+02)
	F17	2.32E+02 =	2.04E+02	3.14E+02 =	3.01E+02	2.40E+02 -	2.04E+02	2.93E+02 =	2.61E+02
	F17	(6.72E+01)	(9.33E+01)	(1.18E+02)	(1.07E+02)	(6.48E+01)	(8.12E+01)	(1.10E+02)	(1.04E+02)
	cec17F18	5.06E+01 -	2.80E+01	3.26E+01 -	2.60E+01	2.53E+01 =	2.46E+01	2.46E+01 -	2.24E+01
	cec1/	(1.72E+01)	(3.87E+00)	(7.70E+00)	(2.90E+00)	(2.70E+00)	(2.15E+00)	(2.42E+00)	(1.14E+00)
	F19	3.50E+01 - (1.39E+01)	1.71E+01 (3.01E+00)	2.08E+01 - (3.32E+00)	1.70E+01 (3.00E+00)	1.62E+01 = (3.11E+00)	1.56E+01 (2.97E+00)	1.42E+01 - (2.73E+00)	1.17E+01 (2.65E+00)
	F20	1.56E+02 =	1.72E+02	2.60E+02 =	2.80E+02	1.35E+02 -	1.07E+02	1.17E+02 =	1.14E+02
	F20 cec17	(4.95E+01)	(6.37E+01)	(1.20E+02)	(1.16E+02)	(5.03E+01)	(2.47E+01)	(6.45E+01)	(6.57E+01)
	F21	2.16E+02 -	2.14E+02	2.20E+02 -	2.18E+02	2.30E+02 -	2.20E+02	2.17E+02 -	2.14E+02
	cec17	(2.26E+00)	(2.74E+00)	(5.20E+00)	(4.64E+00)	(6.27E+00)	(6.07E+00)	(2.73E+00)	(3.27E+00)
	F22	2.84E+03 =	3.33E+03	2.82E+03 =	2.78E+03	1.54E+03 =	2.10E+03	1.07E+03 =	1.63E+03
	7001	(1.53E+03) 4.33E+02 -	(8.42E+02) 4.30E+02	(2.11E+03) 4.42E+02 -	(2.16E+03) 4.37E+02	(1.62E+03) 4.43E+02 -	(1.46E+03) 4.35E+02	(1.61E+03) 4.30E+02 -	(1.79E+03) 4.26E+02
	F23	4.33E+02 - (4.04E+00)	4.30E+02 (4.60E+00)	4.42E+02 - (8.43E+00)	(7.54E+00)	4.43E+02 - (6.60E+00)	4.35E+02 (7.00E+00)	4.30E+02 - (6.16E+00)	4.26E+02 (6.54E+00)
Composition Functions	F24	5.12E+02 -	5.11E+02	5.12E+02 =	5.11E+02	5.13E+02 -	5.08E+02	5.08E+02 =	5.07E+02
		(3.01E+00)	(2.81E+00)	(4.82E+00)	(3.86E+00)	(5.58E+00)	(4.57E+00)	(4.54E+00)	(3.77E+00)
	F25 cec17 F26 cec17 F27	4.82E+02 -	4.81E+02	4.82E+02 -	4.81E+02	4.80E+02 =	4.81E+02	4.81E+02 -	4.81E+02
		(4.55E+00)	(3.57E+00)	(6.18E+00)	(2.33E+00)	(1.44E-02)	(3.52E+00)	(2.32E+00)	(3.15E+00)
		1.21E+03 -	1.17E+03	1.21E+03 =	1.19E+03	1.27E+03 -	1.18E+03	1.13E+03 =	1.12E+03
		(4.31E+01) 5.43E+02 =	(3.93E+01) 5.38E+02	(6.22E+01) 5.36E+02 -	(5.77E+01) 5.31E+02	(7.63E+01) 5.33E+02 =	(1.08E+02) 5.28E+02	(4.90E+01) 5.14E+02 =	(5.07E+01) 5.10E+02
		(2.15E+01)	(1.56E+01)	(1.67E+01)	(1.78E+01)	(1.56E+01)	(1.16E+01)	(1.01E+01)	(1.37E+01)
	F28	4.64E+02 -	4.60E+02	4.73E+02 -	4.64E+02	4.60E+02 =	4.60E+02	4.59E+02 =	4.59E+02
	F28	(1.51E+01)	(5.68E+00)	(2.25E+01)	(1.55E+01)	(6.84E+00)	(6.84E+00)	(3.03E-13)	(3.32E-13)
	F29	3.53E+02 =	3.57E+02	3.62E+02 +	3.84E+02	3.49E+02 =	3.49E+02	3.65E+02 =	3.65E+02
		(1.08E+01)	(1.44E+01)	(1.91E+01)	(1.93E+01)	(9.11E+00)	(1.14E+01)	(1.52E+01)	(1.40E+01)
	F30	6.68E+05 =	6.51E+05	6.68E+05 =	6.38E+05	6.50E+05 =	6.72E+05	6.08E+05 =	6.04E+05
	/=/+	(8.12E+04) 15/15/0	(8.03E+04)	(1.02E+05) 14/14/2	(5.48E+04)	(6.32E+04) 13/17/0	(8.23E+04)	(3.03E+04) 12/18/0	(2.57E+04)
	7 1	13/13/0	l .	14/14/4	l .	13/1//0	1	14/10/0	<u>I</u>

table S14 Performance comparisons of four SCSS-based top algorithms with the baselines on 100-D cec2017 benchmark set

					LCZOT / BLIVE		SCSS-		
		I CHADE	SCSS-	ID COE A II	SCSS-	L-SHADE		:00	SCSS-
		L-SHADE	L-SHADE	UMOEA-II	UMOEA-II	EpSin -	L-SHADE_	jSO	jSO
						•	EpSin		-
Unimodal Functions	F1	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00	0.00E+00 =	0.00E+00
	cec17F1	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)	(0.00E+00)
	F2	3.16E-04 +	3.41E-04	9.66E-05 =	9.31E-05	1.58E-04 -	1.38E-04	3.10E-04 +	3.66E-04
	cec17F2	(5.07E-05)	(5.81E-05)	(1.75E-05)	(1.35E-05)	(4.22E-05)	(4.25E-05)	(5.45E-05)	(6.77E-05)
		,		_					
	cec17F3	5.47E-06 +	1.07E-03	2.84E-06 +	6.60E-06	5.35E-09 -	2.20E-10	2.71E-06 +	1.52E-04
	CeC 1 /	(6.19E-06)	(1.73E-03)	(3.01E-06)	(4.57E-06)	(1.11E-08)	(1.57E-09)	(2.72E-06)	(1.69E-04)
Simple Multimodal Functions	cec17 ^{F4}	2.01E+02 -	2.00E+02	1.87E+02 =	1.93E+02	2.04E+02 =	2.05E+02	1.94E+02 =	1.96E+02
		(7.69E+00)	(8.00E+00)	(4.03E+01)	(3.12E+01)	(9.79E+00)	(1.11E+01)	(2.35E+01)	(1.09E+01)
	cec17F5	3.78E+01 -	2.69E+01	3.53E+01 -	2.79E+01	6.06E+01 -	4.15E+01	4.29E+01 -	2.84E+01
	cec17	(7.64E+00)	(6.48E+00)	(7.62E+00)	(7.14E+00)	(7.15E+00)	(6.26E+00)	(7.17E+00)	(5.43E+00)
	F6	1.37E-03 -	5.37E-04	8.12E-03 -	2.61E-03	3.51E-05 -	9.41E-06	1.61E-04 -	1.68E-05
					(2.27E-03)		(5.14E-06)	(4.30E-04)	(1.18E-05)
		(8.75E-04)	(4.36E-04)	(5.54E-03)		(1.38E-05)			
	cec17F7	1.51E+02 -	1.38E+02	1.41E+02 -	1.36E+02	1.67E+02 -	1.45E+02	1.41E+02 -	1.27E+02
	cec1/	(4.80E+00)	(4.48E+00)	(9.72E+00)	(9.40E+00)	(9.13E+00)	(5.70E+00)	(6.94E+00)	(4.53E+00)
	cec17F8	3.92E+01 -	2.75E+01	3.60E+01 -	2.78E+01	5.73E+01 -	3.87E+01	4.31E+01 -	2.99E+01
	cec17	(5.48E+00)	(5.11E+00)	(7.09E+00)	(7.23E+00)	(9.38E+00)	(6.26E+00)	(5.58E+00)	(5.62E+00)
	F9	1.56E-01 -	1.42E-02	5.35E-01 -	9.17E-02	0.00E+00 =	0.00E+00	4.60E-02 -	0.00E+00
	cec17F9	(2.22E-01)	(6.64E-02)	(5.13E-01)	(1.35E-01)	(0.00E+00)	(0.00E+00)	(1.11E-01)	(0.00E+00)
	F10	1.14E+04 -	1.05E+04	1.19E+04 =	1.13E+04	1.05E+04 -	9.57E+03	9.71E+03 -	9.23E+03
	cec17F10	(6.11E+02)	(4.67E+02)	(1.25E+03)	(1.59E+03)	(5.15E+02)	(4.63E+02)	(6.59E+02)	(6.08E+02)
 	F1.1	3.86E+02 -	1.54E+02	4.27E+02 -	1.58E+02	4.16E+01 =	4.26E+01	1.06E+02 -	7.21E+01
	F11	(9.53E+01)	(5.30E+01)	(1.03E+02)	(4.12E+01)	(2.39E+01)	(2.91E+01)	(3.82E+01)	(3.10E+01)
	cec17F12	2.37E+04 =	2.25E+04	4.52E+03 =	4.86E+03	5.28E+03 -	4.62E+03	2.05E+04 -	1.41E+04
	CCC17	(1.05E+04)	(8.53E+03)	(8.56E+02)	(1.42E+03)	(1.39E+03)	(7.33E+02)	(1.06E+04)	(8.02E+03)
	cec17F13	1.36E+03 -	2.45E+02	3.60E+02 -	1.64E+02	7.92E+01 =	8.36E+01	1.60E+02 -	1.12E+02
	cec1/	(8.06E+02)	(7.34E+01)	(1.47E+02)	(4.77E+01)	(2.87E+01)	(3.44E+01)	(4.19E+01)	(2.79E+01)
	F14	2.55E+02 -	1.01E+02	2.35E+02 -	7.25E+01	5.13E+01 =	4.86E+01	6.28E+01 -	3.95E+01
	cec17	(3.25E+01)	(2.01E+01)	(3.25E+01)	(1.56E+01)	(8.93E+00)	(6.46E+00)	(1.18E+01)	(4.08E+00)
	F15	2.50E+02 =	2.59E+02	2.67E+02 -	2.21E+02	7.28E+01 =	7.73E+01	1.64E+02 -	9.73E+01
Hybrid Functions	F15	(4.87E+01)	(4.34E+01)	(5.38E+01)	(4.82E+01)	(3.14E+01)	(2.83E+01)	(4.20E+01)	(3.56E+01)
lyb inct	E1.6	1.79E+03 -	1.55E+03	1.67E+03 =	1.64E+03	1.55E+03 -	1.31E+03	1.84E+03 =	1.74E+03
Fu	F16	(2.58E+02)	(2.39E+02)	(4.55E+02)	(4.27E+02)	(2.51E+02)	(2.61E+02)	(3.15E+02)	(2.99E+02)
	F4.5	1.20E+03 -	1.04E+03	1.36E+03 =	1.28E+03	1.16E+03 -	9.23E+02	1.26E+03 -	1.13E+03
	F17								
		(2.21E+02)	(2.00E+02)	(3.13E+02)	(2.62E+02)	(1.72E+02)	(1.76E+02)	(2.63E+02)	(2.20E+02)
	cec17F18	2.15E+02 =	2.11E+02	2.35E+02 =	2.16E+02	7.92E+01 =	7.59E+01	1.76E+02 -	1.11E+02
	CeC17	(4.60E+01)	(5.33E+01)	(6.29E+01)	(4.72E+01)	(2.19E+01)	(1.83E+01)	(4.05E+01)	(3.07E+01)
	F19	1.77E+02 -	1.63E+02	1.76E+02 -	1.52E+02	5.22E+01 =	5.09E+01	1.07E+02 -	5.22E+01
	F19	(2.31E+01)	(2.46E+01)	(2.65E+01)	(2.50E+01)	(6.65E+00)	(5.78E+00)	(2.14E+01)	(5.72E+00)
	cec17F20	1.57E+03 -	1.50E+03	1.93E+03 =	1.89E+03	1.44E+03 -	1.23E+03	1.38E+03 =	1.29E+03
	cec17	(2.42E+02)	(1.79E+02)	(3.61E+02)	(3.11E+02)	(1.96E+02)	(1.89E+02)	(2.44E+02)	(2.12E+02)
	E21	2.69E+02 -	2.59E+02	2.56E+02 =	2.55E+02	2.83E+02 -	2.64E+02	2.64E+02 -	2.49E+02
	F21	(5.81E+00)	(4.38E+00)	(6.84E+00)	(6.49E+00)	(1.41E+01)	(5.61E+00)	(6.56E+00)	(5.18E+00)
		1.19E+04 -	1.12E+04	1.27E+04 =	1.25E+04	1.08E+04 -	9.54E+03	1.07E+04 -	1.01E+04
	F22								
		(5.24E+02)	(6.26E+02)	(1.81E+03)	(1.61E+03)	(5.90E+02)	(5.05E+02)	(6.27E+02)	(6.70E+02)
	cec17F23	5.68E+02 =	5.67E+02	5.70E+02 =	5.70E+02	5.98E+02 -	5.92E+02	5.69E+02 =	5.67E+02
	CECT/	(7.98E+00)	(7.15E+00)	(9.40E+00)	(1.34E+01)	(7.21E+00)	(6.32E+00)	(1.37E+01)	(1.14E+01)
	F24	9.19E+02 -	9.12E+02	9.22E+02 -	9.16E+02	9.37E+02 -	9.08E+02	9.01E+02 -	8.96E+02
	cec17	(8.98E+00)	(8.61E+00)	(8.89E+00)	(1.16E+01)	(2.15E+01)	(8.10E+00)	(1.04E+01)	(7.84E+00)
Composition Functions	F25 cec17 F26	7.46E+02 =	7.44E+02	7.49E+02 -	7.29E+02	6.93E+02 =	6.89E+02	7.18E+02 =	7.13E+02
		(3.47E+01)	(3.50E+01)	(2.76E+01)	(3.77E+01)	(4.53E+01)	(4.55E+01)	(3.87E+01)	(4.26E+01)
		3.41E+03 -	3.31E+03	3.42E+03 -	3.32E+03	3.24E+03 -	3.06E+03	3.20E+03 -	3.12E+03
	cec17	(1.02E+02)	(9.92E+01)	(9.37E+01)	(9.49E+01)	(2.51E+02)	(9.06E+01)	(8.46E+01)	(9.03E+01)
	E27	6.58E+02 -	6.47E+02	6.41E+02 -	6.32E+02	5.92E+02 =	5.90E+02	5.86E+02 -	5.77E+02
	F27	(1.38E+01)	(1.57E+01)	(1.79E+01)	(1.61E+01)	(1.37E+01)	(1.81E+01)	(2.05E+01)	(2.28E+01)
	F28	5.28E+02 =	5.34E+02	5.18E+02 +	5.28E+02	5.15E+02 =	5.22E+02	5.29E+02 =	5.25E+02
		(2.19E+01)	(2.30E+01)	(3.80E+01)	(3.07E+01)	(1.95E+01)	(2.30E+01)	(2.78E+01)	(2.86E+01)
	F29	1.53E+03 =	1.48E+03	1.40E+03 =	1.48E+03	1.23E+03 =	1.21E+03	1.33E+03 -	1.25E+03
		(1.92E+02)	(1.83E+02)	(2.46E+02)	(2.33E+02)	(1.62E+02)	(1.42E+02)	(2.02E+02)	(1.82E+02)
	cec17F30	2.43E+03 -	2.34E+03	2.36E+03 =	2.36E+03	2.34E+03 =	2.37E+03	2.31E+03 =	2.27E+03
	cec17	(1.45E+02)	(1.32E+02)	(1.26E+02)	(1.53E+02)	(1.35E+02)	(1.92E+02)	(1.23E+02)	(1.06E+02)
_	/=/+	20/8/2		14/14/2		16/14/0		20/8/2	
			i .		i .		i .		