Nombre complexe

1 Définition d'un nombre complexe

L'ensemble des nombres complexes est actuellement défini comme une extension de l'ensemble des nombres réels, contenant en particulier un nombre imaginaire noté i tel que $i^2=-1$.

2 Écriture algébrique d'un nombre complexe

Dans ce chapitre le plan est rapport un repère orthonormal $(O; \overrightarrow{e_1}, \overrightarrow{e_2})$

2.1 Définitions

L'ensemble des nombres de la forme $a+i\,b$, où a et b sont des réels et i est tel que a=1, est appelé ensemble des nombres complexes. On le note a=1.

Les propriétés des opérations addition et multiplication dans $\mathbb R$ se prolongent dans $\mathbb C.$

L'écriture $z=a+i\,b$ est la forme algébrique du nombre complexe z.

a est la partie réelle de z, b sa partie imaginaire.

On note
$$Re(z) = a$$
, $Im(z) = b$.

 $\mathbb R$ est une partie de $\mathbb C$, $\mathbb R$ contient les nombres complexes dont la partie imaginaire b est nulle.

Tout nombre complexe dont la partie réelle a est nulle est appelé nombre imaginaire pur.

Ex.:
$$z = -3 + 2i, \quad Re(z) = -3, \quad Im(z) = 2$$

2.2 Propriétés

Deux nombres complexes sont égaux si et seulement si ils ont la même partie réelle et la même partie imaginaire.

0 est considéré à la fois comme un réel et un imaginaire pur.

2.3 Somme, produit et inverse

Soient $z=a+i\,b$ et $z'=a'+i\,b'$ deux nombres complexes.

$$\boxed{z+z'=(a+a')+i\,(b+b')}, \quad \boxed{z\times z'=(aa'-bb')+i\,(ab'+a'b)}, \quad (z\neq 0), \quad \boxed{\frac{1}{z}=\frac{a}{a^2+b^2}-i\frac{b}{a^2+b^2}}$$

Démo .:

$$\begin{array}{l} \cdot \ z \times z' = (a+i\,b)(a'+i\,b') = aa' + i\,ab' + i\,a'b + i^2bb' = aa' - bb' + i(ab' + a'b) \end{array}$$