

Bruce M. Boghosian

Background and motivation

Gamma and

Gamma and

The chi squared

A linear algebra interlude

The independence of \overline{Y} and S^2

Derivation of Student's T Distribution I

Part I: The Chi Square Distribution and related results

Bruce M. Boghosian

Department of Mathematics

Tufts University

Outline

Bruce M. Boghosia

Background and motivation

Gamma and beta functions

Gamma and beta pdfs

The chi squared distribution

A linear algebra interlude

The independence of \overline{Y} and S^2

1 Background and motivation

2 Gamma and beta functions

3 Gamma and beta pdfs

4 The chi squared distribution

5 A linear algebra interlude

6 The independence of \overline{Y} and S^2

7 Summary

Using the sample variance for estimation

Bruce M. Boghosian

Background and motivation

Gamma and beta functions

Gamma and beta pdfs

The chi squared distribution

A linear algebra interlude

The independence of \overline{Y} and S^2

■ Recall difference between *variance* and *sample variance*

$$\sigma_Y^2 = \frac{1}{n} \sum_{j=1}^n \left(Y_j - \overline{Y} \right)^2$$

$$S_Y^2 = \frac{1}{n-1} \sum_{j=1}^n (Y_j - \overline{Y})^2$$

where
$$\overline{Y} := \frac{1}{n} \sum_{k=1}^{n} Y_k$$

- By the CLT, $Z = \frac{\overline{Y} \mu}{\sigma / \sqrt{n}}$ is normally distributed.
- Question: Is $T = \frac{\overline{Y} \mu}{S/\sqrt{n}}$ also normally distributed?
- Answer: For very large n, there is little difference in distributions of Z and T.

Large samples and small samples

Bruce M. Boghosian

Background and motivation

Gamma and beta functions

Gamma and beta pdfs

The chi squared distributior

A linear algebra interlude

The independenc of \overline{Y} and S^2

 \blacksquare For many years it was believed T was also normally distributed for small n.

■ William Sealy Gossett (1876-1937) was the first to realize that it was not.

■ Small-sample quality assurance at the Guinness brewery in Dublin

■ Barley and other ingredients came in small batches (small n) from small farms.

lacksquare σ was generally unknown and had to $\underline{b}\underline{e}$ inferred from the data

■ Gossett noticed distributions of $T = \frac{\overline{Y} - \mu}{S / \sqrt{n}}$ decayed slower than a normal pdf.

Distribution was still bell-shaped, but the tails were "thicker".

Outline of methodology

Bruce M. Boghosian

Background and motivation

Gamma and beta functions

Gamma and beta pdfs

The chi squared distribution

A linear algebra interlude

The independence of \overline{Y} and S^2

Review gamma distributions and sums of gamma-distributed random variables

Understand chi square distribution as a special case of the gamma distribution

Show sums of squares of iid normal r.v.s, $\sum_{j=1}^{n} Z_{j}^{2}$, are chi square distributed

lacksquare Show \overline{Y} and S_Y^2 are independent

■ Show $\frac{(n-1)S^2}{\sigma^2}$ is chi square distributed

■ Derive pdf of ratio of two iid chi square r.v.s, which is called an F distribution

■ Show that $T^2 = \left(\frac{\overline{Y} - \mu}{S/\sqrt{n}}\right)^2$ is F distributed

 $lue{}$ Use the above to derive the T distribution pdf f_T

Tufts The gamma function

Gamma and beta functions

■ Definition of the gamma function: $\Gamma(r) := \int_0^\infty du \ e^{-u} u^{r-1}$

$$\Gamma(r) := \int_0^\infty du \ e^{-u} u^{r-1}$$

Special cases (first by substitution $u = w^2$, second is elementary):

$$\Gamma\left(1/2
ight) = \int_0^\infty du \; rac{e^{-u}}{\sqrt{u}} = \sqrt{\pi} \quad ext{ and } \quad \Gamma(1) = \int_0^\infty du \; e^{-u} = 1.$$

Recurrence formula

$$\Gamma(r+1) := \int_0^\infty du \ e^{-u} u^r = -e^{-u} u^r \Big|_0^\infty + r \int_0^\infty du \ e^{-u} u^{r-1}$$

$$\boxed{\Gamma(r+1) = r \Gamma(r)}$$

■ Then $\Gamma(2) = 1 \cdot \Gamma(1) = 1!$, $\Gamma(3) = 2 \cdot \Gamma(2) = 2!$, and more generally

$$\Gamma(r+1)=r!$$
 if $r\in\mathbb{Z}$

The beta function

Gamma and beta functions

Definition

$$B(r,s) := \int_0^1 dt \ t^{r-1} (1-t)^{s-1}$$

Symmetry

$$B(r,s)=B(s,r)$$

Relationship to gamma function

$$B(r,s) = \frac{\Gamma(r)\Gamma(s)}{\Gamma(r+s)}$$

Proof of relationship between beta and gamma functions

Bruce M. Boghosiar

Background and motivation

Gamma and beta functions

Gamma and beta pdfs

The chi squared distribution

A linear algebra interlude

The ndependence of \overline{Y} and S^2

First note

$$\Gamma(r)\Gamma(s) = \int_0^\infty du \ e^{-u} u^{r-1} \int_0^\infty dv \ e^{-v} v^{s-1} = \int_0^\infty du \int_0^\infty dv \ e^{-u-v} u^{r-1} v^{s-1}$$

- Change variables u = zt and v = z(1 t), so z = u + v and t = u/(u + v)
- Jacobian is $J = \begin{vmatrix} t & z \\ 1-t & -z \end{vmatrix} = z$

$$\Gamma(r)\Gamma(s) = \int_0^\infty dz \int_0^\infty dt \ z \ e^{-z} (zt)^{r-1} \left[z(1-t) \right]^{s-1}$$
$$= \int_0^\infty dz \ e^{-z} z^{r+s-1} \int_0^1 dt \ t^{r-1} (1-t)^{s-1}$$
$$= \Gamma(r+s)B(r,s),$$

from which the desired result immediately follows.

Tufts The gamma pdf I

Gamma and beta pdfs

Definition of the two-parameter gamma pdf for v > 0

$$f_Y(y) = \frac{\lambda^r}{\Gamma(r)} y^{r-1} e^{-\lambda y}$$

- Normalization follows immediately from definition of gamma function
- Expectation:

$$E(Y) = \int_0^\infty dy \, \frac{\lambda^r}{\Gamma(r)} y^{r-1} e^{-\lambda y} y = \frac{r}{\lambda} \int_0^\infty dy \, \frac{\lambda^{r+1}}{\Gamma(r+1)} y^{(r+1)-1} e^{-\lambda y}$$

$$E(Y) = \frac{r}{\lambda}$$

The gamma pdf II

Bruce M. Boghosian

Background and motivation

Gamma and beta functions

Gamma and beta pdfs

The chi squared distribution

A linear algebra interlude

The independence of \overline{Y} and S^2

Mean sq.:

$$E(Y^2) = \int_0^\infty dy \, \frac{\lambda^r}{\Gamma(r)} y^{r-1} e^{-\lambda y} y^2 = \frac{r(r+1)}{\lambda^2} \int_0^\infty dy \, \frac{\lambda^{r+2}}{\Gamma(r+2)} y^{r+1} e^{-\lambda y}$$

$$E(Y^2) = \frac{r(r+1)}{\lambda^2}$$

Variance:

$$Var(Y) = E(Y^{2}) - [E(Y)]^{2} = \frac{r(r+1)}{\lambda^{2}} - \left(\frac{r}{\lambda}\right)^{2}$$

$$Var(Y) = \frac{r}{\lambda^{2}}$$

Tufts The beta pdf I

Gamma and beta pdfs

Definition of the two-parameter beta pdf for v > 0

$$f_{\Theta}(heta) = rac{1}{B(r,s)} heta^{r-1} (1- heta)^{s-1}$$

- Normalization follows immediately from definition of beta function
- Expectation:

$$E(\Theta) = \frac{B(r+1,s)}{B(r,s)} = \frac{\Gamma(r+1)\Gamma(s)}{\Gamma(r+s+1)} \cdot \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} = \frac{r\Gamma(r)\Gamma(r+s)}{(r+s)\Gamma(r+s)\Gamma(r)}$$

$$E(\Theta) = \frac{r}{r+s}$$

The beta pdf II

Gamma and beta pdfs

Mean square:

$$E(\Theta^2) = \frac{B(r+2,s)}{B(r,s)} = \frac{\Gamma(r+2)\Gamma(s)}{\Gamma(r+s+2)} \cdot \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} = \frac{r(r+1)\Gamma(r)\Gamma(r+s)}{(r+s)(r+s+1)\Gamma(r+s)\Gamma(r)}$$

$$E(\Theta^2) = \frac{r(r+1)}{(r+s)(r+s+1)}$$

Variance:

$$\mathsf{Var}(\Theta) = E(\Theta^2) - [E(\Theta)]^2 = \frac{r(r+1)}{(r+s)(r+s+1)} - \left(\frac{r}{r+s}\right)^2$$

$$Var(\Theta) = \frac{rs}{(r+s)^2(r+s+1)}$$

Trifts Sums of random variables

Gamma and beta pdfs

Suppose $U, V \in \mathbb{R}$ are independent r.v.s with pdfs $f_U(u)$ and $f_V(v)$

• We wise to find the pdf of the sum U+V. Begin with the cdf

$$F_{U+V}(t) = P(U+V < t)$$

$$= \int_{-\infty}^{+\infty} du \int_{-\infty}^{t-u} dv \ f_U(u) f_V(v).$$

Differentiating both sides with respect to t yields

$$\left|f_{U+V}(t)=\int_{-\infty}^{+\infty}du\ f_U(u)f_V(t-v).\right|$$

Tufts Sums of gamma-distributed r.v.s

Gamma and beta pdfs

 \blacksquare Suppose U and V are independent gamma-distributed r.v.s with parameters (r, λ) and (s, λ) , respectively.

Then $f_{U+V}(t)$ is given by a convolution

$$f_{U+V}(t) = \int_{-\infty}^{+\infty} du \ f_{U}(u) f_{V}(t-u) = \int_{0}^{t} du \ \left[\frac{\lambda^{r}}{\Gamma(r)} u^{r-1} e^{-\lambda u} \right] \left[\frac{\lambda^{s}}{\Gamma(s)} (t-u)^{s-1} e^{-\lambda(t-u)} \right]$$

$$= e^{-\lambda t} \frac{\lambda^{r+s}}{\Gamma(r)\Gamma(s)} \int_{0}^{t} du \ u^{r-1} (t-u)^{s-1} = e^{-\lambda t} \frac{\lambda^{r+s}}{\Gamma(r)\Gamma(s)} t \ t^{r-1} t^{s-1} \int_{0}^{1} dz \ z^{r-1} (1-z)^{s-1}$$

$$= \frac{\lambda^{r+s}}{\Gamma(r)\Gamma(s)} t^{r+s-1} B(r,s) e^{-\lambda t} = \frac{\lambda^{r+s}}{\Gamma(r)\Gamma(s)} t^{r+s-1} \frac{\Gamma(r)\Gamma(s)}{\Gamma(r+s)} e^{-\lambda t}$$

So U+V is also gamma-distributed, with parameters $(r+s,\lambda)$,

$$f_{U+V}(t) = \frac{\lambda^{r+s}}{\Gamma(r+s)} t^{r+s-1} e^{-\lambda t}$$

The chi squared distribution I

Bruce M. Boghosiar

Background and motivation

Gamma and beta functions

Gamma and beta pdfs

The chi squared distribution

A linear algebra interlude

independence of \overline{Y} and S^2

■ **Thm.:** Let $U = \sum_{i=1}^{n} Z_i^2$ where the Z_i are iid standard normal.

■ Then U is gamma-distributed with parameters r = n/2 and $\lambda = 1/2$,

$$f_U(u) = \frac{\left(\frac{1}{2}\right)^{n/2}}{\Gamma\left(\frac{n}{2}\right)} u^{(n/2)-1} e^{-u/2}$$
 where $u > 0$

■ **Pf.:** First take n = 1. For all $u \ge 0$,

$$F_{Z^2}(u) = P(Z^2 \le u) = P\left(-\sqrt{u} \le Z \le +\sqrt{u}\right) = 2P(0 \le Z \le \sqrt{u}).$$

or

$$F_{Z^2}(u) = \frac{2}{\sqrt{2\pi}} \int_0^{\sqrt{u}} dz \ e^{-z^2/2}$$

The chi squared distribution II

Bruce M. Boghosian

Background and motivation

Gamma and beta functions

Gamma and beta pdfs

The chi squared distribution

A linear algebra interlude

The independence of \overline{Y} and S^2

■ Pf. (continued): We have

$$F_{Z^2}(u) = \frac{2}{\sqrt{2\pi}} \int_0^{\sqrt{u}} dz \ e^{-z^2/2}$$

■ Differentiate to find that Z is gamma-distributed with parameters r=1/2 and $\lambda=1/2$,

$$f_{Z^2}(u) = \frac{2}{\sqrt{2\pi}\sqrt{u}}e^{-u/2} = \frac{\left(\frac{1}{2}\right)^{1/2}}{\Gamma\left(\frac{1}{2}\right)}u^{(1/2)-1}e^{-u/2}$$

Hence, if $U = \sum_{j=1}^{n} Z_{j}^{2}$, it must be that U is gamma-distributed with parameters $r = \frac{n}{2}$ and $\lambda = \frac{1}{2}$.

The chi squared distribution III

Bruce M. Boghosian

Background and motivation

Gamma and beta functions

Gamma and beta pdfs

squared distribution

A linear algebra interlude

independence of \overline{Y} and S^2

■ **Def.:** The pdf of $U = \sum_{j=1}^{n} Z_j^2$, where Z_j are iid standard normal, is called the *chi squared distribution with n degrees of freedom*.

$$f_{Z^2}(u) = \frac{\left(\frac{n}{2}\right)^{1/2}}{\Gamma\left(\frac{1}{2}\right)} u^{(n/2)-1} e^{-u/2}$$

■ The chi squared distribution is a special case of the gamma distribution with parameters n/2 and 1/2.

Orthogonal matrices I

Bruce M. Boghosiar

Background and motivation

Gamma and beta functions

Gamma and beta pdfs

The chi squared distribution

A linear algebra interlude

The independence of \overline{Y} and S^2

Column vector
$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$

- Transpose is row vector $v^T = [v_1 \cdots v_n]$
- Square of length of vector is given by

$$\|v\|^2 = v_1^2 + \cdots + v_n^2 = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = v^T v$$

■ Hence length of vector is given by

$$||v|| = \sqrt{v^T v}$$

Orthogonal matrices II

Bruce M. Boghosia

Background and motivation

Gamma and beta functions

Gamma and beta pdfs

The chi squared distribution

A linear algebra interlude

The independence of \overline{Y} and S^2

Consider a linear transformation of the vector, u = Av, where A is an $n \times n$ matrix, and demand that it preserve length

$$0 = u^{T}u - v^{T}v = (Av)^{T}(Av) - v^{T}v = v^{T}A^{T}Av - v^{T}v = v^{T}(A^{T}A - I)v.$$

If we require the above to be true for all vectors v, it must be that

$$A^T A = I$$

- A matrix with this property is called an *orthogonal matrix*.
- If the squarematrix A is nonsingular, postmultiplying both sides of the the above by A^{-1} yields

$$A^T = A^{-1}.$$

and premultiplying both sides of this by A yields

$$AA^T = I$$

Orthogonal matrices III

Bruce M. Boghosian

Background and motivation

Gamma and beta functions

Gamma and beta pdfs

The chi squared distribution

A linear algebra interlude

The independence of \overline{Y} and S^2

Let a_j denote the jth column of A

■ The equation $A^T A = I$ indicated

$$a_j^T a_k = \begin{cases} 1 & \text{if } j = k \\ 0 & \text{otherwise} \end{cases}$$

Hence the rows and columns of an orthogonal matrix are unit vectors.

Orthogonal matrices IV

Bruce M. Boghosiar

Background and motivation

Gamma and beta functions

Gamma and beta pdfs

The chi squared distribution

A linear algebra interlude

ndependence of \overline{Y} and S^2

• Given an orthogonal matrix A, we have $A^TA = I$

■ Take the determinant of both sides and use the theorems on determinants

$$\bullet \det(AB) = \det(A)\det(B)$$

$$\bullet \det(A^T) = \det(A)$$

The result is

$$\det(A^TA) = \det(A^T)\det(A) = [\det(A)]^2 = \det(I) = 1$$

and hence

$$\det(A)=\pm 1.$$

- \blacksquare A transformation with det(A) = +1 is a proper orthogonal transformation
- \blacksquare A transformation with $\det(A) = -1$ is an *improper orthogonal transformation*

Orthogonal matrices V

Bruce M. Boghosiar

Background and motivation

Gamma and beta functions

Gamma and beta pdfs

The chi squared distribution

A linear algebra interlude

The independence of \overline{Y} and S^2

■ The transformation u = Av can be written $u_i = \sum_{j=1}^n A_{ij}v_j$

■ The (i,j)th element of the Jacobian matrix is A_{ij} so the matrix is A,

$$\frac{\partial u_i}{\partial v_j} = A_{ij}$$

 $lue{}$ Jacobian factor for transforming *n*-dimensional integral over the v is

$$J=|\mathrm{det}(A)|=|\pm 1|=1.$$

■ Hence if we write $du = du_1 \cdots du_n$ and $dv = dv_1 \cdots dv_n$,

$$\int du \ f(u) = \int dv \ f(Av).$$

The transformation from X to Z I

Bruce M. Boghosian

Background and motivation

Gamma and beta functions

Gamma and beta pdfs

The chi squared distribution

A linear algebra interlude

The independence of \overline{Y} and S^2

Let
$$X_j = \frac{Y_j - \mu}{\sigma}$$
 for $j = 1, \dots, n$

- We know the X_i are N(0,1) (standard normal)
- Let A be an orthogonal matrix whose last row is $\begin{bmatrix} \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \cdots & \frac{1}{\sqrt{n}} \end{bmatrix}$
- Then

$$Z_n = \frac{X_1}{\sqrt{n}} + \dots + \frac{X_n}{\sqrt{n}} = \sqrt{n} \, \overline{X}$$

The transformation from X to Z II

Bruce M. Boghosiar

Background and motivation

Gamma and beta functions

Gamma and beta pdfs

rne chi squared distribution

A linear algebra interlude

The independence of \overline{Y} and S^2

Also, for variables z and x with z = Ax, we have

$$||z||^2 = z_1^2 + \dots + z_n^2 = x_1^2 + \dots + x_n^2 = ||x||^2$$

■ Since $||x||^2 = ||z||^2$ and the Jacobian is one, the multivariate pdfs transform as

$$f_{X_1,...,X_n}(x_1,...,x_n) = (2\pi)^{-n/2} \exp\left[-\frac{1}{2}(x_1^2 + \dots + x_n^2)\right]$$
$$= (2\pi)^{-n/2} \exp\left[-\frac{1}{2}(z_1^2 + \dots + z_n^2)\right] = f_{Z_1,...,Z_n}(z_1,...,z_n)$$

■ Hence the Z_j are also iid N(0,1) (standard normal) r.v.s

The transformation from X to Z III

Bruce M. Boghosian

Background and motivation

Gamma and beta functions

Gamma and beta pdfs

ne chi squared distributio

A linear algebra interlude

The independence of \overline{Y} and S^2

Finally we note that

$$\sum_{j=1}^{n} Z_j^2 = \sum_{j=1}^{n-1} Z_j^2 + n\overline{X}^2 = \sum_{j=1}^{n} X_j^2 = \sum_{j=1}^{n} (X_j - \overline{X})^2 + n\overline{X}^2$$

Hence we have

$$\frac{1}{n-1}\sum_{j=1}^{n-1}Z_j^2 = \frac{1}{n-1}\sum_{j=1}^n(X_j - \overline{X})^2 = S^2$$

- Hence S^2 is independent of \overline{X}^2 , and hence of \overline{X} .
- Since $Y_i = \mu + \sigma X_i$, S^2 is independent of \overline{Y} .

Summary

Bruce M. Boghosiar

Background and motivation

Gamma and beta functions

Gamma and beta pdfs

The chi squared distribution

A linear algebra interlude

The independenc of \overline{Y} and S^2

Summary

- We have provided some background and motivation for small-sample statistics
- We have reviewed the gamma and beta functions
- We have reviewed the gamma and beta pdfs
- We have learned about the chi squared distribution
- We have reviewed the linear algebra of orthogonal matrices
- We have proven the independence of \overline{Y} and S^2