Project Design Phase-II Technology Stack (Architecture & Stack)

Date	24 June 3035	
Team ID	LTVIP2025TMID30982	
Project Name	Sustainable Smart City Assistant Using IBM Granite Model	
Maximum Marks	4 Marks	

Sustainable Smart City Assistant– Technology Stack & Architecture

1. Overview

The Sustainable Smart City Assistant is an AI-powered platform designed to optimize urban resource allocation, predict policy impacts, and engage residents in sustainability efforts. It leverages IBM Granite LLM integrated with geospatial analytics via a modular FastAPI and Gradio architecture.

2. Solution Architecture

The architecture is modular, enabling clean separation of concerns and scalability. Below is the key component flow:

- User Inputs
- City planners submit policy drafts via Gradio UI
- Residents report infrastructure issues through mobile/web forms
- API Layer
- FastAPI backend validates and routes requests
- Authentication via JWT tokens for government users
- AI Processing
- IBM Granite model analyzes policies using city datasets
- Computer vision (optional) processes resident-uploaded images of waste/energy issues
- Output Delivery
- Interactive dashboards for planners (Plotly/Dash)
- SMS/email alerts for residents with action steps

- Optional Modules
- IoT sensor integration for real-time monitoring
- Blockchain-based transparency logs for public trust

3. Technology Stack

Component	Technology	Purpose
Frontend UI	Gradio	Rapid prototyping for city
		staff with form-based inputs
Admin Dashboard	Streamlit	Advanced analytics
		visualization for planners
Backend API	FastAPI	Handles policy simulations,
		data validation, and
		resident requests
Web Server	Uvicorn	ASGI server with reverse
		proxy for production traffic
LLM Core	IBM Granite (via Watsonx.ai	Processes urban policy
	SDK)	queries and predicts
		outcomes
Geospatial Analytics	GeoPandas + Kepler.gl	Maps sustainability metrics
		(e.g., energy use by district)
Data Pipeline	Apache Airflow	Automates ETL for city
		datasets
		(energy/waste/transport)
Database	PostgreSQL + PostGIS	Stores geotagged urban
		data with spatial query
		support
Auth	IBM Cloud Code Engine	Serverless scaling for policy
		simulation workloads
Deployment	IBM Cloud Code Engine	Tracks API performance
		and model accuracy