MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE SECRETARIAT GENERAL

DIRECTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR

DIRECTION DE L'ENSEIGNEMENT SUPERIEUR

PUBLIC et PRIVE

SESSION 2014

Service d'Appui au Baccalauréat

Code matière: 011

Série

PHYSIQUE- CHIMIE Epreuve de : 2 heures 15mn Durée

Coefficients: Obligatoire

Facultatif Bonification

A1: 1

Bonification

A2: 2

SUJET

NB: - Les TROIS (3) exercices sont obligatoires.

- L'utilisation d'une calculatrice scientifique non programmable est autorisée.

EXERCICE 1: (6 points)

 $(A_1; A_2)$

A l'extrémité d'une lame vibrante, est fixée une fourche munie de deux pointes S1 et S2 qui frappent périodiquement la surface libre d'un liquide au repos.

L'équation horaire du mouvement de S_1 est : $y_1(t) = 3.10^{-3} \sin(100\pi t)$.

L'équation horaire du mouvement de S_2 est : $y_2(t) = 3.10^{-3} \sin(100\pi t)$.

(y₁ et y₂ en m, et t en s).

Les ondes se propagent à la surface libre du liquide à la célérité V = 20 cm/s.

On donne $S_1 S_2 = 1$ cm.

1°) Qu'observe-t-on sur la surface libre du liquide ? 2°) Quel phénomène physique se produit-il?

(1pt; 1pt) (2pts; 1pt)

3°) Calculer la longueur d'onde.

(1pt; 1pt)

4°) Déterminer l'état vibratoire d'un point M de la surface libre du liquide, tel que $S_1M = d_1 = 2.5$ cm et $S_2M = d_2 = 3.3$ cm.

(2pts; 1pt)

Pour A2 seulement

5°) Calculer le nombre de points qui vibrent avec une amplitude maximale sur le segment [S₁ S₂]. On précisera la position de chaque point par rapport à S₁.

(2pts)

EXERCICE 2	: (7	points)

 $(A_1; A_2)$

On réalise l'expérience d'interférence lumineuse à l'aide de deux miroirs de Fresnel (M_1) et (M_2) .

La source de lumière S se trouve à la distance $d_1 = 1,2$ m de l'arête commune O des deux miroirs. A la distance $d_2 = 30$ cm de O, on place un écran d'observation (E). La source lumineuse S éclaire ce dispositif avec une lumière monochromatique de longueur d'onde $\lambda = 0,56 \ \mu m$.

1 – a) Faire le schéma du dispositif interférentiel, en précisant la marche des rayons lumineux et le champ d'interférence lumineuse.

(2pts; 1,5pt)

- b) Qu'observe-t-on sur l'écran d'observation (E)?

(1pt; 1pt)

2) La distance entre le milieu de la troisième frange obscure et celui de la frange brillante centrale, d'ordre zéro, est égale à d = 0,75 mm. Calculer l'interfrange i. En déduire la distance a = S₁ S₂ qui sépare les deux images virtuelles S₁ et S₂ de S.

(2pts; 1pt) (2pts; 1,5pt)

Pour A2 seulement

3) Calculer, en radian, l'angle α formé par les deux miroirs (M_1) et (M_2) .

(2pts)

EXERCICE 3: (7 points)

 $(A_1; A_2)$

On dispose d'une source de lumière monochromatique de longueur d'onde $\lambda = 0.579 \ \mu m$.

Un faisceau lumineux issu de cette source est envoyé sur une cellule photoélectrique comportant une cathode recouverte du métal césium.

La fréquence seuil du césium est $v_0 = 4,60.10^{14} \,\mathrm{Hz}$.

1) Quel phénomène physique veut-on mettre en évidence par cette expérience ?

(1pt; 1pt)

2) Pour interpréter ce phénomène, quelle nature doit-on attribuer à la lumière ?

(1pt; 0,5pt)

3) Calculer, en joule puis en eV, l'énergie d'extraction d'un électron de la cathode.

(2pts; 1pt)

4) Calculer la vitesse maximale de l'électron éjecté.

(3pts; 2,5pts)

Pour A₂ seulement

5) Après avoir donné la définition du potentiel d'arrêt, calculer sa valeur.

(2pts)

On donne:

- constante de Planck : $h = 6,62 \times 10^{-34} \text{ J.s}$
- célérité de la lumière dans le vide : $c = 3 \times 10^8 \, m \, .s^{-1}$
- charge électrique élémentaire : $e = 1, 6 \times 10^{-19} C$

$$1 eV = 1,6 \times 10^{-19} J$$

$$1\mu m = 10^{-6} m$$

• masse d'un électron : $m = 9 \times 10^{-31} kg$.
