Bertology Part 2

Katya Artemova

Computational Pragmatics Lab, HSE

October 30, 2019

BERT

- input: $[CLS], x_1, ..., x_N, [SEP], y_1, ..., y_M, [EOS]$
- objectives:
 - masked language modeling
 - next sentence prediction
- base architecture: (L = 12, H = 768, A = 12, 110 Mparams)

ExBERT: A Visual Analysis Tool to Explore Learned Representations in Transformers Models [1]

ex3ERT - A Visual Analysis Tool to Explore Learned Representations in Transformers Models

Benjamin Hoover, Hendrik Strobelt, Sebastian Gehrmann

We present exBERT, an interactive tool named after the popular BERT language model, that provides insights into the meaning of the contextual representations by matching a human-specified inject to similar contexts in a large annotated dataset. By aggregating the americations of the matching similar contexts, ex8ERT helps

Thanks to Jesse Vig for feedback. Please let us know what you think by commenting below!

We collect information about your activity. Since we care about your privacy, all these information are fully anonymized. Check the links below for more information

Today

- Probing BERT
- BERT & Family
- BERT & Friends
- 4 Latest news

What does BERT learn about the structure of language?[2]

Obervation 1: BERT mostly captures phrase-level information in the lower layers and this information gets gradually diluted in higher layers

Figure: 2D t-SNE plot of span embeddings computed from the first and last two layers of BERT

What does BERT learn about the structure of language?[2]

Obervation 2: BERT embeds a rich hierarchy of linguistic signals: surface information at the bottom, syntactic information in the middle, semantic information at the top

Layer	SentLen (Surface)	WC (Surface)	TreeDepth (Syntactic)	TopConst (Syntactic)	BShift (Syntactic)	Tense (Semantic)	SubjNum (Semantic)	ObjNum (Semantic)	SOMO (Semantic)	CoordInv (Semantic)
1	93.9 (2.0)	24.9 (24.8)	35.9 (6.1)	63.6 (9.0)	50.3 (0.3)	82.2 (18.4)	77.6 (10.2)	76.7 (26.3)	49.9 (-0.1)	53.9 (3.9)
2	95.9 (3.4)	65.0 (64.8)	40.6 (11.3)	71.3 (16.1)	55.8 (5.8)	85.9 (23.5)	82.5 (15.3)	80.6 (17.1)	53.8 (4.4)	58.5 (8.5)
3	96.2 (3.9)	66.5 (66.0)	39.7 (10.4)	71.5 (18.5)	64.9 (14.9)	86.6 (23.8)	82.0 (14.6)	80.3 (16.6)	55.8 (5.9)	59.3 (9.3)
4	94.2 (2.3)	69.8 (69.6)	39.4 (10.8)	71.3 (18.3)	74.4 (24.5)	87.6 (25.2)	81.9 (15.0)	81.4 (19.1)	59.0 (8.5)	58.1 (8.1)
5	92.0 (0.5)	69.2 (69.0)	40.6 (11.8)	81.3 (30.8)	81.4 (31.4)	89.5 (26.7)	85.8 (19.4)	81.2 (18.6)	60.2 (10.3)	64.1 (14.1)
6	88.4 (-3.0)	63.5 (63.4)	41.3 (13.0)	83.3 (36.6)	82.9 (32.9)	89.8 (27.6)	88.1 (21.9)	82.0 (20.1)	60.7 (10.2)	71.1 (21.2)
7	83.7 (-7.7)	56.9 (56.7)	40.1 (12.0)	84.1 (39.5)	83.0 (32.9)	89.9 (27.5)	87.4 (22.2)	82.2 (21.1)	61.6 (11.7)	74.8 (24.9)
8	82.9 (-8.1)	51.1 (51.0)	39.2 (10.3)	84.0 (39.5)	83.9 (33.9)	89.9 (27.6)	87.5 (22.2)	81.2 (19.7)	62.1 (12.2)	76.4 (26.4)
9	80.1 (-11.1)	47.9 (47.8)	38.5 (10.8)	83.1 (39.8)	87.0 (37.1)	90.0 (28.0)	87.6 (22.9)	81.8 (20.5)	63.4 (13.4)	78.7 (28.9)
10	77.0 (-14.0)	43.4 (43.2)	38.1 (9.9)	81.7 (39.8)	86.7 (36.7)	89.7 (27.6)	87.1 (22.6)	80.5 (19.9)	63.3 (12.7)	78.4 (28.1)
11	73.9 (-17.0)	42.8 (42.7)	36.3 (7.9)	80.3 (39.1)	86.8 (36.8)	89.9 (27.8)	85.7 (21.9)	78.9 (18.6)	64.4 (14.5)	77.6 (27.9)
12	69.5 (-21.4)	49.1 (49.0)	34.7 (6.9)	76.5 (37.2)	86.4 (36.4)	89.5 (27.7)	84.0 (20.2)	78.7 (18.4)	65.2 (15.3)	74.9 (25.4)

Figure: Probing task performance for each BERT layer

Probing tasks: predict sentence length, presence of words, test for sensitivity to word order, the depth of the syntactic tree, top level constituents in the syntax tree, check for the tense, the subject number, the sensitivity to random replacement of a noun/verb.

What does BERT learn about the structure of language?[2]

Obervation 3: BERT requires deeper layers to model long-range dependency information

Layer	0 (1.5)	1 (5.2)	2 (7.7)	3 (10.5)	4 (13.3)
1	90.89	40.43	23.22	21.46	20
2	92.01	42.6	25.84	24.78	26.02
3	92.77	47.05	29.77	27.22	29.56
4	94.39	52.97	33.02	29.13	30.09
5	94.98	63.12	43.68	36.61	36.11
6	95.45	67.28	46.93	38.22	36.46
7	95.52	72.44	53.03	43.5	41.06
8	95.68	75.66	58.74	48.88	45.49
9	95.54	73.84	57.96	50.34	48.85
10	95.09	69.21	51.5	43.26	41.59
11	94.33	66.62	51.69	46.09	42.65
12	94.06	62.78	51.07	46.04	46.37

Figure: Subject-verb agreement scores for each BERT

The task of predicting the verb number becomes harder when there are more nouns with opposite number intervening between the subject and the verb.

BERT Rediscovers the Classical NLP Pipeline [3]

A probing classifier receives spans $s_1 = [i_1, j_1)$ and (optionally) $s_2 = [i_2, j_2)$ and must predict a label such as a constituent or relation type

Figure: Probing model architecture

Eight labeling tasks: part-of-speech (POS), constituents (Consts.), dependencies (Deps.), entities, semantic role labeling (SRL), coreference (Coref.), semantic proto-roles (SPR; Reisinger et al., 2015), and relation classification (SemEval)

BERT Rediscovers the Classical NLP Pipeline [3]

Figure: Probing model architecture

BERT Rediscovers the Classical NLP Pipeline [3]

Today

- Probing BERT
- 2 BERT & Family
- BERT & Friends
- 4 Latest news

RoBERTa: A Robustly Optimized BERT Pretraining Approach [4]

RoBERTa is an improved pretraining procedure for BERT. It is trained with:

- dynamic masking
- on full sentences that may cross document boundaries (a special separator token is added) without NSP loss
- with larger batches (2K, 8K)
- a larger byte-level BPE

on approx. 160GB uncompressed unannotated texts.

RoBERTa achieves state-of-the-art results on GLUE, RACE and SQuAD, without multi-task finetuning for GLUE or additional data for SQuAD.

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations [5]

- ① factorized embedding parameterization: in original model, E = H. Here the one-hot vectors are projected into a lower dimensional embedding space of size E, and then project it to the hidden space H
- ② cross-layer parameter sharing: FFN parameters and Attention parameters are shared
- **3** inter-sentence coherence loss: sentence order predictions $(< s_1, s_2, 1>, < s_2, s_1, 0>)$

ALBERT has about 18x fewer parameters compared to BERT. ALBERT-xxlarge (1M params) outperforms both BERT and RoBERTa.

DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter [6]

Knowledge distillation is a compression technique in which a compact model - the student, DistilBERT - is trained to reproduce the behaviour of a larger model - the teacher, BERT.

- **1** a linear combination of the distillation loss $L_{ce} = t_i \log(s_i)$, L_{mlm} and cosine embedding loss L_{cos}
- 2 student architecture: same architecture, but H/2 hidden layers
- the student is initialized from the teacher by taking one layer out of two

DistilBERT compares surprisingly well to BERT, retaining 97% of the performance with 40% fewer parameters on GLUE

BERT & Family

- More data and even more GPU! ... this approach is heavily criticized
- Q GLUE benchmarking leads to ensemble training and a lot of fine tuning
- BERT ancestors share a lot: data sources, NSP loss is omitted
- MLM remains the core objective
- Solution
 BUT all of these models lack of common sense! understanding
- BERT separately reconstructs all masked tokens
- Pretrain-finetune discrepancy: the input contains artificial symbols like [MASK] that never occur in downstream tasks

Pretrained language model based on BERT

- BioBERT [7]
- ClinicalBERT [8]
- SciBERT [9]

There is no surprise, all these models show significant improvement over current SoTA.

Experiment design:

- 1 to create a new vocabulary or not
- to train the model from scratch or to fine-tune BERT

Today

- Probing BERT
- BERT & Family
- BERT & Friends
- 4 Latest news

AR vs AE LMs

Figure: Autoregressive language model predicts the word based on its left (or right) context

Figure: Aautoencoder language model aims to reconstruct the original data from corrupted input

XLNet: Generalized Autoregressive Pretraining for Language Understanding [10]

Figure: Permutation language model objective

XLNet: Generalized Autoregressive Pretraining for Language Understanding [10]

Figure: Architecture overview

20 / 26

XLNet: Generalized Autoregressive Pretraining for Language Understanding [10]

- XLNet significantly improves upon BERT on 20 tasks
- It costs \$245,000 to train the XLNet model

	BERT	RoBERTa	DistilBERT	XLNet	
Size (millions)	Base: 110 Large: 340	Base: 110 Large: 340	Base: 66	Base: ~110 Large: ~340	
Training Time	Base: 8 x V100 x 12 days* Large: 64 TPU Chips x 4 days (or 280 x V100 x 1 days*)	Large: 1024 x V100 x 1 day; 4-5 times more than BERT.	Base: 8 x V100 x 3.5 days; 4 times less than BERT.	Large: 512 TPU Chips x 2.5 days; 5 times more than BERT.	
Performance	Outperforms state-of- the-art in Oct 2018	2-20% improvement over BERT	3% degradation from BERT	2-15% improvement over BERT	
Data	16 GB BERT data (Books Corpus + Wikipedia). 3.3 Billion words.	160 GB (16 GB BERT data + 144 GB additional)	16 GB BERT data. 3.3 Billion words.	Base: 16 GB BERT data Large: 113 GB (16 GB BERT data + 97 GB additional). 33 Billion words.	
Method	BERT (Bidirectional Transformer with MLM and NSP)	BERT without NSP**	BERT Distillation	Bidirectional Transformer with Permutation based modeling	

Today

- Probing BERT
- BERT & Family
- BERT & Friends
- 4 Latest news

T5: Text-To-Text Transfer Transformer [11]

In short:

- NMT Transfromer architecture
- new SoTA on GLUE
- 3 an extensive study of transfer learning techniques (a must read!)

Reference I

- B. Hoover, H. Strobelt, and S. Gehrmann, Exbert: A visual analysis tool to explore learned representations in transformers models, 2019. arXiv: 1910.05276 [cs.CL].
- G. Jawahar, B. Sagot, D. Seddah, S. Unicomb, G. Iñiguez, M. Karsai, Y. Léo, M. Karsai, C. Sarraute, É. Fleury, et al., "What does bert learn about the structure of language?," in 57th Annual Meeting of the Association for Computational Linguistics (ACL), Florence, Italy, 2019.
- I. Tenney, D. Das, and E. Pavlick, Bert rediscovers the classical nlp pipeline, 2019. arXiv: 1905.05950 [cs.CL].
 - Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov, "Roberta: A robustly optimized bert pretraining approach," arXiv preprint arXiv:1907.11692. 2019.

Reference II

- Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, "Albert: A lite bert for self-supervised learning of language representations," arXiv preprint arXiv:1909.11942, 2019.
- V. Sanh, L. Debut, J. Chaumond, and T. Wolf, *Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter*, 2019. arXiv: 1910.01108 [cs.CL].
- J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang, "Biobert: Pre-trained biomedical language representation model for biomedical text mining," arXiv preprint arXiv:1901.08746, 2019.
- E. Alsentzer, J. R. Murphy, W. Boag, W.-H. Weng, D. Jin, T. Naumann, and M. McDermott, "Publicly available clinical bert embeddings," arXiv preprint arXiv:1904.03323, 2019.
- I. Beltagy, K. Lo, and A. Cohan, Scibert: A pretrained language model for scientific text, 2019. arXiv: 1903.10676 [cs.CL].

25 / 26

Reference III

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le, *XInet: Generalized autoregressive pretraining for language understanding*, 2019. arXiv: 1906.08237 [cs.CL].

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, *Exploring the limits of transfer learning with a unified text-to-text transformer*, 2019. arXiv: 1910.10683 [cs.LG].