

离散数学 Discrete Mathematics

西安交通大学 计算机学院

任课教师: 李文

第四章 关系 (relation)

- § 1. 集合的叉积 n元组
- § 2.关系
- §3.关系的表示 关系的性质
- § 4.关系的运算
- § 5. 等价关系
- § 6. 半序关系

§ 1. 集合的叉积 n元组

定义1.叉积,笛卡尔积 (cross product, Cartesian product(1637))

● n个集合A₁, A₂, ..., A_n的 n 维叉积定义为

$$\sum_{i=1}^{n} A_{i} = A_{1} \times A_{2} \times ... \times A_{n}$$

$$= \{(a_{1}, a_{2}, ..., a_{n}): a_{i} \in A_{i} (1 \le i \le n)\};$$

 n 维叉积A₁ × A₂ × ... × A_n的每个元素(a₁, a₂, ..., a_n)都称为一个n元组 (n-tuple);即,叉积是元组的集合;

- •每个n元组($a_1, a_2, ..., a_n$)的第i个位置上的元素 a_i 称为该n元组的第i个分量(坐标或投影);元组各分量的顺序不能改变;
- n 称为该叉积及其元组的维数;
- ●两个元组相等⇔它们的维数相同且对应的分量相等。即 $(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_m) \Leftrightarrow n = m \land (\forall i \in N) (1 \le i \le n) (a_i = b_i);$

注: 笛卡尔(1596-1650), 法国数学家, 1637年发表《方法论》之一《几何学》, 首次提出坐标及变量概念。这里是其概念的推广。

定义2.

● 二个集合A, B的(二维或二重)叉积定义为

$$A \times B = \{(a, b): a \in A \land b \in B\}$$
;

- ●其元素——二元组(a, b)通常称为序偶或偶对(ordered pair);
- ●二元组(a, b)的第一分量上的元素a称为前者;第二分量上的元素b称为后者;
 - ●二重叉积的A×B第一集合A称为前集;第二集合B称为后集。

一般地说,关于叉积和元组有:

- $(1) (a, b) \neq (b, a);$
- $(2) A \times B \neq B \times A$;
- (3)二元组不是集合,因为二元组中的分量计较顺序,而集合中的元素是不讲究顺序的。

- A 成立
- **B** 不成立

为了将所有的概念都统一于集合概念,可采用克亚托斯基(Kazimierz Kurafowski)在1921年给出的定义 (a, b)={{a},{a, b}}

将二元组定义为比其元素高二层的集合;

(4) 也可用二元组来递归的定义n元组如下:

$$(a,b,c)=((a,b),c)$$

• • • • • • • • •

$$(a_1, a_2, ..., a_{n-1}, a_n) = ((a_1, a_2, ..., a_{n-1}), a_n)$$

(5) 可用二重叉积来递归的定义n维叉积如下:

$$A \times B \times C = (A \times B) \times C$$

$$A_1 \times A_2 \times ... \times A_{n-1} \times A_n = (A_1 \times A_2 \times ... \times A_{n-1}) \times A_n$$

(6)利用(5)所给的定义,可以递归的定义集合的叉积幂如下:

$$A^2 = A \times A$$

$$A^3 = A^2 \times A$$

. . .

$$A^n = A^{n-1} \times A$$

(7) 规定空集Ø与任何集合A的叉积是空集Ø。

即
$$A \times \emptyset = \emptyset = \emptyset \times A$$
。

定理1.设A,B,C,D是四个非空的集合。那么

$$A \times B = C \times D \Leftrightarrow A = C \wedge B = D$$
.

[证].⇒): (采用逻辑法)对任何的元素a,b

$$a \in A \land b \in B$$

$$\Leftrightarrow$$
(a,b) \in A \times B

$$\Leftrightarrow$$
(a,b) \in C \times D

(条件: $A \times B = C \times D$)

$$\Leftrightarrow$$
 a \in C \land b \in D

所以 $A = C \wedge B = D$ 。

•••••

```
[证]. ⇐): (采用逻辑法)
     对任何的元素a,b,
          (a,b) \in A \times B
      \Leftrightarrow a \in A \land b \in B
                                     (条件: A = C \land B = D)
      \Leftrightarrow a \in C \land b \in D
      \Leftrightarrow(a,b)\inC\timesD
    所以 A \times B = C \times D。
```

定理2.设A,B,C是三个集合。则

$$(1) A \times (B \cup C) = (A \times B) \cup (A \times C)$$
; (叉积对并)

$$(2)A\times(B\cap C) = (A\times B)\cap(A\times C)$$
; (叉积对交)

$$(3)(A \cup B) \times C = (A \times C) \cup (B \times C)$$
; (叉积对并)

$$(4)(A\cap B)\times C = (A\times C)\cap (B\times C)$$
。 (叉积对交)

[证].只证(1)(采用逻辑法)

对任何的元素a,b

$$(a,b) \in A \times (B \cup C)$$

$$\Leftrightarrow a \in A \land b \in B \cup C$$

$$\Leftrightarrow$$
 a \in A \land (b \in B \lor b \in C)

$$\Leftrightarrow$$
 $(a \in A \land b \in B) \lor (a \in A \land b \in C)$

 \Leftrightarrow $(a,b) \in A \times B \lor (a,b) \in A \times C$

$$\Leftrightarrow$$
 (a,b) \in (A \times B) \cup (A \times C)

所以
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
。

(分配律: $p\land (q\lor r)\Leftrightarrow (p\land q)\lor (p\land r)$)

§ 2.关系

一.关系的基本概念

定义1.设A,B是两个非空的集合,

- ●二重叉集 $A \times B$ 的任何一个子集R都称为是从集合A到集合 B的一种二元关系(binary relation),即 $R \subseteq A \times B$;
- ●当 (a,b)∈R 时, 称a与b有关系R, 记为 aRb;
- ●当 (a,b)∉R 时,称a与b没有关系R,记为 aRb或a K b;
- ●当A=B时,即R⊆A×A,则称R是A上的一个二元关系。

例1.设A是西安交通大学全体同学组成的集合。

 $R=\{(a,b)|a\in A\land b\in A\land a,b$ 的生源地是同一个省/市/自治区 $\}$; $S=\{(a,b)|a\in A\land b\in A\land a,b$ 在同一个自然班 $\}$; $T=\{(a,b)|a\in A\land b\in A\land a,b$ 是自动化81班的同学 \land a,b 是兄弟 $\}$; $R,S,T\subseteq A\times A$ 。

例2.设A是某一大家庭, 怎么定义堂/表兄弟关系?

例3.设N是自然数集合。

 $R=\{(a,b)|a\in N\land b\in N\land a< b\};$

 $S=\{(a,b)|a\in N\land b\in N\land a|b\}$, N上的整除关系;

 $T = \{(a,b) | a \in N \land b \in N \land a \equiv b \pmod{m}\}, N \perp$

的模m同余关系;

 $R,S,T\subseteq N\times N$.

例5.设A是某一C程序中诸函数的集合。

 $R=\{(a,b)|a\in A\land b\in A\land a调用b\}$ 。

例6.设A = {风,马,牛},

 $R=\{(风, +), (马, +), (\Lambda, +)\}\subseteq A\times A$ 。

设A,B是两个非空的集合,R⊆A×B,

- 1°全关系(full relation): R=A×B称为全关系;
- 2° 空关系(empty relation): R= ∅称为空关系;
- •空关系和全关系都是平凡关系;

3° 幺关系或单位关系(identical relation):

$$R = \{(a, a): a \in A\} \subseteq A \times A 称为A 上的幺关系;$$

- 4°关系的交,并,补运算: 叉积是一种(新型的)集合, 关系是叉积的子集,因此,关系也是一种集合,有关集合论 的一切概念、论述、运算也都适合于关系;
- 5° 关系的扩充(expansion): 若 $R_1 \subseteq R_2$,则称关系 R_2 是关系 R_1 的一个扩充;
 - 6° n元关系: n元关系R是n 维叉积的一个子集; 即 R⊆A₁×A₂×…×A_n

定义3.前域(domain) 后域(codomain)

设A,B是两个非空集合,R \subseteq A \times B是一个从A到B的关系。 则关系R的

•前域: $\wp(R) = \{ a : a \in A \land (\exists b \in B)(aRb) \} \subseteq A ;$

●后域: $\Re(R) = \{b: b \in B \land (\exists a \in A)(aRb)\} \subseteq B$ 。

定义3.前域(domain) 后域(codomain)

例9.设A={1,2,3,4}, B={2,4,6,8}。

 $R=\{(1,2),(2,4),(3,6)\}$, 请解出 $\rho(R)$ 和 $\Re(R)$ 。

此题未设置答案,请点击右侧设置按钮

设A={1,2,3,4} , B={2,6,8,10} , R={(1,2),(2,8),(4,6)}。
那么
$$\wp(R) = [填空1]$$
 , $\Re(R) = [填空2]$ 。

正常使用填空题需3.0以上版本雨课堂

二.关系的一些关联性质

定理1. 设 $R_1, R_2 \subseteq A \times B$ 是两个关系。若 $R_1 \subseteq R_2$,则

$$(1)$$
保序性: $\wp(R_1) \subseteq \wp(R_2)$;

$$(2)$$
保序性: $\mathcal{R}(R_1) \subseteq \mathcal{R}(R_2)$;

[证].只证(1) (采用逻辑法)对任何元素 $a \in A$,

$$a \in \mathcal{D}(R_1)$$

$$\Leftrightarrow$$
 a \in A \land (\exists b \in B)(a R₁ b)

$$\Leftrightarrow a \in A \land (\exists b \in B)((a,b) \in R_1)$$

$$\Rightarrow$$
 a∈A∧(∃b∈B)((a,b)∈R₂) (条件: R₁⊆R₂)

$$\Leftrightarrow$$
 a \in A \land (\exists b \in B)(a R₂ b)

$$\Leftrightarrow$$
 a $\in \mathcal{P}(R_2)$

所以
$$\mathscr{O}(R_1) \subseteq \mathscr{O}(R_2)$$
。

定理2.设 $R_1, R_2 \subseteq A \times B$ 是两个二元关系。则

$$(1) \mathscr{D}(R_1 \cup R_2) = \mathscr{D}(R_1) \cup \mathscr{D}(R_2)$$

$$(2)\mathcal{R}(R_1 \cup R_2) = \mathcal{R}(R_1) \cup \mathcal{R}(R_2)$$

$$(3) \mathscr{D} (R_1 \cap R_2) \subseteq \mathscr{D}(R_1) \cap \mathscr{D} (R_2)$$

$$(4)\mathcal{R}(R_1 \cap R_2) \subseteq \mathcal{R}(R_1) \cap \mathcal{R}(R_2)$$

[证].只证(1), (3)

(1)先证: $\wp(R_1) \cup \wp(R_2) \subseteq \wp(R_1 \cup R_2)$ (包含法)

由于 $R_1 \subseteq R_1 \cup R_2$, $R_2 \subseteq R_1 \cup R_2$,

依定理1, 有 $\wp(R_1) \subseteq \wp(R_1 \cup R_2)$,

$$\mathscr{D}(R_2) \subseteq \mathscr{D}(R_1 \cup R_2)$$

故根据第一章 § 2定理2的(3′),就可得

$$\mathscr{D}(R_1) \cup \mathscr{D}(R_2) \subseteq \mathscr{D}(R_1 \cup R_2)$$
;

次证: $\wp(R_1 \cup R_2) \subseteq \wp(R_1) \cup \wp(R_2)$ (采用元素法)

对任何元素 $a \in A$, 若 $a \in \wp(R_1 \cup R_2)$, 则存在 $b \in B$,使得 $a \mathbf{R}_1 \cup \mathbf{R}_2 b$ 因此 $(a,b) \in R_1 \cup R_2$, 从而有 $(a,b) \in R_1$ 或者 $(a,b) \in R_2$, 于是 $a \in \rho(R_1)$ 或者 $a \in \rho(R_2)$, 故此 $a \in \wp(R_1) \cup \wp(R_2)$, 所以 $\wp(R_1 \cup R_2) \subseteq \wp(R_1) \cup \wp(R_2)$; 所以 $\wp(R_1 \cup R_2) = \wp(R_1) \cup \wp(R_2)$ 。

(3) 证: $\wp(R_1 \cap R_2) \subseteq \wp(R_1) \cap \wp(R_2)$ (采用包含法)

由于 $R_1 \cap R_2 \subseteq R_1$, $R_1 \cap R_2 \subseteq R_2$,

依定理1, 有 $\wp(R_1 \cap R_2) \subseteq \wp(R_1)$,

$$\mathscr{D}(R_1 \cap R_2) \subseteq \mathscr{D}(R_2)$$

根据第一章 § 2定理2的(3"), 就可得

$$\mathscr{D}(R_1 \cap R_2) \subseteq \mathscr{D}(R_1) \cap \mathscr{D}(R_2) .$$

设
$$A=\{1,2,3\}$$
, $R_1=\{(1,1),(2,2)\}$, $R_2=\{(1,2),(2,1)\}$, $\mathscr{D}(R_1)\cap\mathscr{D}(R_2)\subseteq\mathscr{D}(R_1\cap R_2)$ 成立吗?

- A 成立
- B 不成立

*元素a∈A和集合 A_1 ⊆A在关系R⊆ $A \times B$ 下的关联集

(1)a的R-关联集(R-relative set of a):

$$R(a)=\{b:b\in B\land aRb\}\subseteq B$$
;

(2) A₁的R-关联集(R-relative set of A₁):

$$R(A_1) = \{b : b \in B \land (\exists a \in A_1)(aRb) \} \subseteq B$$
.

例.设A= $\{a,b,c,d\}$, $A_1 = \{c,d\}$,

 $R=\{(a,a),(a,b),(b,c),(c,a),(d,c),(c,b)\}$, 求出 A_1 的R-关联集。

定理.设 $R\subseteq A\times B$ 是一个二元关系, $A_1,A_2\subseteq A$ 。则

- (1)保序性: $A_1 \subseteq A_2 \Rightarrow R(A_1) \subseteq R(A_2)$;
- $(2)R(A_1 \cup A_2) = R(A_1) \cup R(A_2)$;
- $(3)\mathbf{R}(\mathbf{A}_1 \cap \mathbf{A}_2) \subseteq \mathbf{R}(\mathbf{A}_1) \cap \mathbf{R}(\mathbf{A}_2) .$

§3.关系的表示 关系的性质

一.关系表示法

1°关系的矩阵表示法

设关系 $R \subseteq A \times B$, 这里A,B是两个非空有限集合,

$$A = \{ a_1, a_2, a_3, \dots, a_m \} \text{ , } B = \{ b_1, b_2, b_3, \dots, b_n \} \text{ , }$$

则用一个 $m \times n$ 阶0-1矩阵 M_R 来表示关系R, 称此矩阵 M_R 为关系R的关系矩阵(relation matrix)。

$$M_{R}=(x_{ij})_{m\times n}$$
,其中
$$x_{ij} = \begin{cases} 1 & \text{当 } (a_{i},b_{j}) \in R \text{时} \\ (i=1,...,m; j=1,...,n) \end{cases}$$
 $M_{R}=(x_{ij})_{m\times n}$,其中
$$M_{R}=(x_{ij})_{m\times n}$$
,其中
$$M_{R}=(x_{ij})_{m\times n}$$
,是一个,我们就能成为。
$$M_{R}=(x_{ij})_{m$$

设A={
$$a_1,a_2,a_3,a_4$$
}, B={ b_1,b_2,b_3 }, R \subseteq A×B, R={ $(a_1,b_1),(a_1,b_3),(a_2,b_2),(a_3,b_1),(a_4,b_2)$ }。请写出R的关系矩阵。

正常使用主观题需2.0以上版本雨课堂

2°关系的图形表示法

设关系R⊆A×B, 这里A,B是两个非空有限集合,

$$A = \{ a_1, a_2, a_3, \dots, a_m \}$$
 , $B = \{ b_1, b_2, b_3, \dots, b_n \}$.

则 用一个有向图 $G_R=(V_R,E_R)$ 来表示关系R, 称此有向图 G_R 为关系R的关系图(relation digraph)。

- $V_R = A \cup B$, $E_R = R$;
- V_R中的元素称为结点,用小圆点表示;表示A中元素的结点放在左边一块;表示B中元素的结点放在右边一块;

- E_R 中的元素称为边,用有向弧表示;若aRb(即(a,b) \in R),则在表示a 的结点和表示b的结点之间连一条有向弧。有向弧的始端与结点a相连,有向弧的终端与结点b相连;
 - ●用两个圆圈分别将表示两个集合A和B中元素的结点圈起来。
 - •所有有向弧的始端结点构成 $\wp(R)$; 所有有向弧的终端结点构成 $\Re(R)$ 。
- \bullet 若A=B,这时令 $V_R=A$,规定只画表示一个集合元素的结点;表示元素间关系的有向弧也只在此一个集合的结点间画出。

例3.设关系 R⊆A×B,

$$A=\{a_1,a_2,a_3,a_4\}$$
, $B=\{b_1,b_2,b_3\}$,
$$R=\{(a_1,b_2),(a_1,b_3),(a_2,b_3),(a_3,b_1),(a_4,b_2)\}$$
, R的关系图?

例4.设关系 $S\subseteq A\times A$, $A=\{a_1,a_2,a_3\}$, $S=\{(a_1,a_1),(a_2,a_2),(a_3,a_3),(a_1,a_3),(a_3,a_1)$, $(a_2,a_3),(a_3,a_2)\}$, S的关系图?

注: •图中各结点所带的小圆圈称为自反圈; 一对结点间的来回边称为双 向弧; 否则, 一对结点间只有一条边, 则此边称为单向弧。

二.关系的性质

设二元关系 $R\subseteq X\times X$ (或者说 $R\subseteq X^2$),这里 $X\neq\emptyset$ 是一集合。则R称为是X上的

1° 自反关系(reflexive relation): 当且仅当R满足自反性:

$$(\forall x \in X)(xRx)$$
;

反自反关系(irreflexive relation): 当且仅当R满足反自反性:

$$(\forall x \in X)(x \not R x)$$
或 $(\forall x \in X) \neg (x R x)$;

例5.设 $X=\{a,b,c,d\}$, 判断下列关系性质:

$$R_1 = \{(a,a),(b,b),(c,c),(d,d),(a,b)\},\$$

$$R_2 = \{(a,a),(b,b),(c,c),(d,d)\},\$$

$$R_3 = \{(a,b),(a,c),(a,d),(c,d)\},\$$

$$R_4 = \{(a,b),(a,a),(b,b),(c,d),(c,c)\},\$$

$$\Phi, X \times X?$$

注: •自反性和反自反性是关系的两个极端性质; 因此, 自反关系和 反自反关系是两种极端关系;

- ●从关系矩阵来看: 自反关系关系矩阵的对角线上元素全是1; 反 自反关系关系矩阵的对角线上元素全是0;
- •从关系图来看: 自反关系关系图的各结点上全都有自反圈; 反 自反关系关系图的各结点上全都没有自反圈。

2° 对称关系(symmetric relation): 当且仅当R满足 对称性: $(\forall x \in X)(\forall y \in X)(xRy \Rightarrow yRx)$;

3°反对称关系(antisymmetric relation): 当且仅当R满足反对称性:

 $(\forall x \in X)(\forall y \in X)(xRy \land yRx \Rightarrow x = y)$;

注: •对称性和反对称性是关系的两个极端性质; 因此, 对称关系和反对称关系是两种极端关系;

例6.设 $X=\{a,b,c\}$,判断下列关系性质:

$$R_1 = \{(a,b),(b,a)\}$$
, $R_2 = \{(a,b)\}$, $R_3 = \{(a,a),(b,b)\}$, $R_4 = \{(a,b),(b,a),(b,c)\}$, Φ , $X \times X$.

注: •从关系矩阵来看: 对称关系的关系矩阵是对称矩阵。

$$\mathbb{F}^{p}x_{ij} = x_{ji}(1 \le i, j \le n);$$

反对称关系的关系矩阵满足如下性质

$$x_{ij} = 1 \Leftrightarrow x_{ji} = 0 \ (1 \le i, j \le n); \ \vec{A}$$
?

•从关系图来看:对称关系关系图的结点间若有弧则都是**双向弧**;反 对称关系关系图的结点间若有弧则都是单**向弧**; 4°传递关系(transitive relation): 当且仅当R满足

传递性: $(\forall x \in X)(\forall y \in X)(\forall z \in X)(xRy \land yRz \Rightarrow xRz)$;

反传递关系(antisymmetric relation): 当且仅当R满足反传递性:

 $(\forall x \in X)(\forall y \in X)(\forall z \in X)(xRy \land yRz \Rightarrow x \not Rz)$;

- 注: •传递性和反传递性是关系的两个极端性质; 因此, 传递关系和反传递 关系是两种极端关系;
 - •概念反传递性和反传递关系一般不甚用,所以不加讨论;

例7.设 $X=\{a,b,c\}$,判断下列关系性质:

$$R_1 = \{(a,b),(b,c),(a,c)\}, \qquad R_2 = \{(a,a),(a,b)\}$$

$$R_3 = \{(a,a),(a,b),(a,c),(c,b),(c,c)\}$$

$$R_4 = \{(a,a),(a,b),(a,c),(b,a),(c,b)\}, \qquad R_5 = \{(a,b),(c,b)\},$$

例8. 设 $X=\{a,b,c,d\}$, 判断下列关系性质:

$$R_1 = \{(a,b),(b,c),(a,c),(c,d),(a,d),(b,d)\}$$

$$R_2 = \{(a,b),(b,c),(a,c),(c,d),(a,d)\}$$

 Φ , $X \times X$.

例9. 设X是平面上直线的集合。平行关系

 $R=\{(x,y): x\in X \land y\in X \land x//y\}$ 的性质?

例10. 设X是平面上三角形的集合。相似关系

 $R=\{(x, y): x \in X \land y \in X \land x \smile y\}$ 的性质?

- 例11. ●相等关系是自反的、对称的、反对称的、传递的。
 - •全关系X²是自反的、对称的、传递的。
 - ●幺关系I 是自反的、对称的、反对称的、传递的。
 - 空关系∅是反自反的、对称的、反对称的、传递的。

关系性质的其他例子:

例1.设A={a,b,c}, R,S \subseteq 2^A × 2^A,判断下列关系的性质: R={(x,y)|x,y ∈ 2^A \ x \subset y}, S={(x,y)|x,y ∈ 2^A \ x \cap y= Φ }。

例2.设A= $\{0,1,...10\}$, R \subseteq A \times A,判断关系R的性质: R= $\{(x,y)|x,y\in A\land x+y=10\}$ 。

§ 4.关系的运算

1°关系的逆运算

定义1.逆运算(converse operation)

设A, B是两个非空的集合。 称一元运算 $\sim : 2^{A \times B} \rightarrow 2^{B \times A}$ 对任何二元关系R $\subset A \times B$,使得

$$R = \{(b,a) : b \in B \land a \in A \land aRb\} \subseteq B \times A$$

为关系的逆运算;称是R的逆关系(converse of relation)。

* 显然,对任何(b,a)∈ B×A, b A aRb。

例1.设A= $\{a,b,c\}$, B= $\{1,2\}$, R= $\{(a,1),(a,2),(b,2),(c,1)\}$, \mathbb{R} ?

定理1.逆运算基本定理

设两个关系R \subseteq A×B, S \subseteq A×B, 这里 A, B是两个非空的集合。则有

(1)
$$\overset{\smile}{R}$$
R;

反身律

$$(2) R \subseteq S \Rightarrow \overrightarrow{R} \subseteq \overrightarrow{S} ;$$

保序性

$$R=S \Rightarrow \widetilde{R} \widetilde{S};$$

(3)
$$R \cup S = \widetilde{R} \cup \widetilde{S}$$
;

逆对并的分配律

$$(4) \stackrel{\sim}{\mathsf{R} \cap \mathsf{S}} = \stackrel{\sim}{R} \cap \stackrel{\sim}{S};$$

逆对交的分配律

(5)
$$\widetilde{X \times Y} = Y \times X$$
;

$$(7) \ \widecheck{(\mathsf{R}')} = (\widecheck{\mathbf{R}})' ;$$

(8)
$$\widetilde{R}\backslash S = \widetilde{R}\backslash \widetilde{S}$$

(逆对差的分配律)

[证].只证(1), (4), (7) (采用逻辑法)

(1)对任何 $(x,y) \in A \times B$,有

$$(x,y)\in \overset{\smile}{R}$$

$$\Leftrightarrow (y,x) \in \widetilde{R}$$

$$\Leftrightarrow$$
 (x,y) \in R

(4)对任何(x,y)∈B×A,有

$$(x,y)\in R\cap S$$

$$\Leftrightarrow$$
 (y,x) \in R \cap S

$$\Leftrightarrow$$
 $(y,x) \in R \land (y,x) \in S$

$$\Leftrightarrow (x,y) \in \widecheck{\mathbf{R}}(x,y) \in \widecheck{\mathbf{S}}$$

$$\Leftrightarrow (x,y) \in \widetilde{R} \cap \widetilde{S}$$

所以
$$R \cap S = R \cap S$$
 。

(7)对任何(x,y)∈B×A,有 $(x,y)\in(R')$ \Leftrightarrow $(y,x) \in R'$ \Leftrightarrow $(y,x) \notin R$ $\Leftrightarrow (x,y) \notin \widetilde{\mathbf{R}}$ $\Leftrightarrow (x,y) \in (\widetilde{\mathbf{R}})'$ 所以 (R')=(产)'。

2°关系的合成运算

定义2.合成运算(composition operation)

设A, B是两个非空的集合, 称二元运算

 $\circ: 2^{A \times B} \times 2^{B \times C} \rightarrow 2^{A \times C}$

对任何两个二元关系 $R \subseteq A \times B$, $S \subseteq B \times C$, 使得

 $R \circ S = \{(a,c) : a \in A \land c \in C \land (\exists b \in B)(aRb \land bSc)\} \subseteq A \times C$

为关系的合成运算;称R∘S是R与S的合成关系。

* 显然,对任何(a,c)∈A×C, aR°Sc⇔(∃b∈B)(aRb∧bSc)。

例2.设A={ a_1,a_2,a_3 }, B={ b_1,b_2 }, C={ c_1,c_2,c_3,c_4 }

 $R \subseteq A \times B$, $S \subseteq B \times C$

 $R = \{(a_1, b_1), (a_2, b_2), (a_3, b_1)\}, S = \{(b_1, c_4), (b_2, c_2), (b_2, c_3)\},\$

那么 RoS=?

例3.设A是老年男子的集合,B是中年男子的集合,C是 青少年男子的集合。

R是由A到B的父子关系, R⊆A×B

S 是由B到C的父子关系, S⊆B×C,

则R°S=?

定理2.合成运算基本定理

$$(1)\mathbf{R} \circ \varnothing = \varnothing \circ \mathbf{S} = \varnothing;$$

$$(2) \wp(R \circ S) \subseteq \wp(R);$$

$$\Re(R \circ S) \subseteq \Re(S);$$

$$(3)$$
 $R_1 \subseteq R_2 \land S_1 \subseteq S_2 \Rightarrow R_1 \circ S_1 \subseteq R_2 \circ S_2$; 保序性

(5)
$$R \circ (S_1 \cup S_2) = (R \circ S_1) \cup (R \circ S_2)$$
;

合成运算对并的左分配律

$$(S_1 \cup S_2) \circ T = (S_1 \circ T) \cup (S_2 \circ T);$$

合成运算对并的右分配律

(6)
$$R \circ (S_1 \cap S_2) \subseteq (R \circ S_1) \cap (R \circ S_2)$$
;

合成运算对交的左分配不等式

$$(S_1 \cap S_2) \circ T \subseteq (S_1 \circ T) \cap (S_2 \circ T);$$

合成运算对交的右分配不等式 鞋袜律

$$(7) (R \circ S) = S \circ R \circ$$

```
\Leftrightarrow (\exists c \in C)(\exists b \in B)((aRb \land bSc) \land cTd)
                                                    (∧的结合律: p∧(q∧r)⇔(p∧q)∧r)
\Leftrightarrow (\exists c \in C)((\exists b \in B)(aRb \land bSc) \land cTd)
                                                      (量词后移: \exists x(p \land A(x)) \Leftrightarrow p \land \exists x A(x))
\Leftrightarrow (\exists c \in C)(a(R \circ S)c \land cTd)
\Leftrightarrow a(R \circ S) \circ Td
所以 R \circ (S \circ T) = (R \circ S) \circ T;
```

*但是合成运算不满足交换律。即,一般 R°S≠S°R

$$R=\{(a,b),(c,d),(b,b)\}, S=\{(b,e),(c,a),(a,c),(d,b)\},$$

3°关系矩阵的合成运算

设R⊆ $A \times B$,S⊆ $B \times C$ 是两个二元关系,其合成关系为 $R \circ S$ 。这里

$$A \!\!=\!\! \{\; a_1,\!a_2,\!\dots,\!a_m \}$$
 , $B \!\!=\!\! \{b_1,\!b_2\,,\,\dots,\,b_l \}$, $C \!\!=\!\! \{c_1,\,c_2,\,\dots,\!c_n \}_{\circ}$

设它们的关系矩阵分别为

$$\mathbf{M}_{\mathrm{R}} = (x_{\mathrm{ij}})_{\mathrm{m} \times 1}$$
, $\mathbf{M}_{\mathrm{S}} = (y_{\mathrm{ij}})_{\mathrm{l} \times \mathrm{n}}$,

$$M_{R \circ S} = (u_{ij})_{m \times n}$$

则有: $M_{R \circ S} = M_R \circ M_S$

其中: $M_R \circ M_S = (t_{ij})_{m \times n}$

$$t_{ij} = \bigvee_{k=1}^{7} (x_{ik} \wedge y_{kj}) \quad (1 \le i \le m, 1 \le j \le n)$$

注:这里关系矩阵的合成运算与《线性代数》中的一般矩阵的乘法运算相似,不同的是:乘法换成布尔乘(\wedge);加法换成布尔加(\vee)。这里的布尔加 $1 \vee 1 = 1$ (不进位),而非 $1 \vee 1 = 0$ (进位)。

[证]. (采用逻辑法) 对任何的i, $j(1 \le i \le m, 1 \le j \le n)$, 有

$$\begin{array}{l} u_{ij} = 1 \\ \Leftrightarrow a_i R \circ Sc_j \\ \Leftrightarrow (\exists b \in B)(a_i Rb \wedge bSc_j) \\ \Leftrightarrow (a_i Rb_1 \wedge b_1 Sc_j) \vee (a_i Rb_2 \wedge b_2 Sc_j) \vee \ldots \vee (a_i Rb_l \wedge b_l Sc_j) \\ \Leftrightarrow (x_{i1} = 1 \wedge y_{1j} = 1) \vee (x_{i2} = 1 \wedge y_{2j} = 1) \vee \ldots \vee (x_{il} = 1 \wedge y_{lj} = 1) \\ & \qquad \qquad (\wedge \wedge \vee \not{E} \cap \not{B} \circ) \not{A} = (A_i \wedge y_{lj}) \vee (A_i \wedge$$

例5.设A={a,b,c,d,e},则关系

$$R = \{(a,b),(c,d),(b,b)\}, S = \{(b,e),(c,a),(a,c),(d,b)\}$$

的合成关系 R ° S= {(a,e),(b,e),(c,b)}

其关系矩阵分别为

计算 M_R∘M_S=?

4°关系的闭包运算(宏运算)

定义3.关系的合成幂(nth power)

设二元关系R \subseteq A × A, n \in N 。这里A 是一个非空的集合, N 是自然数集。 规定:

- (1) $R^0 = I$ (这里 $I = I_A = \{(a,a) : a \in A\}$ 是A上的幺关系);
- (2) $R^1 = R$;
- (3) $R^{n+1} = R^{n_0}R$ (特别地: $R^2 = R^{0}R$)。

定理3.指数律

设二元关系 $R \subseteq A \times A$, $m, n \in N$ 。这里 A 是一个非空的集合, N 是自然数集。则

(1)交换律: $R^{m_0}R^n = R^{n_0}R^m = R^{m+n}$;

特别地: $I \circ R = R \circ I = R (幺关系是合成运算的幺元);$

(2)交换律: $(R^m)^n = (R^n)^m = R^{m \cdot n}$ 。

[证]. (采用数学归纳法) 只证(1)的一个等式: $R^{m_0}R^n = R^{m+n}$; 归纳变量选取n(让m固定) n=0时, $R^{m_0}R^0=R^{m_0}I$ (定义3的(1): $R^0=I$) $= R^{m}$ n=1时, $R^{m_0}R^1=R^{m_0}R$ (定义3的(2): R¹=R) (定义3的(3)) $= \mathbf{R}^{\mathbf{m}+1}$

结论成立;

• • • • •

结论成立;

根据数学归纳法,即证明了该结论。

例6.设二元关系 $R\subseteq A\times A$,这里 $A=\{a,b,c\}$, $R=\{(a,b),(c,b)\}$ 。从而有

 $I=\{(a,a),(b,b),(c,c)\}$, $\mathbf{R}\{(b,a),(b,c)\}$ 计算 \mathbf{R} R, $\mathbf{R} \circ \mathbf{R}$ 。

注: • 由定理2的(1)有: $\emptyset \circ R = R \circ \emptyset = \emptyset$, 这说明空集是合成运算的零元。

●一般地 $a R^n b \Leftrightarrow (\exists c_1)(\exists c_2) \dots (\exists c_{n-1})(aRc_1 \wedge c_1Rc_2 \wedge \dots \wedge c_{n-1}Rb)$; 特别地 $a R^2 b \Leftrightarrow (\exists c) (aRc \wedge cRb)$ 。

定义4.闭包运算(closure operation)

设二元关系 $R \subseteq A \times A$ 。这里 $A \in A \cap A$ 。定义:

(1)传递闭包(transitive closure):

$$R^{+} = \bigcup_{k=1}^{\infty} R^{k} = R \cup R^{2} \cup R^{3} \cup ... \cup R^{k} \cup ...$$
;

(2)自反传递闭包(reflexive and transitive closure):

$$R^* = \bigcup_{k=0}^{\infty} R^k = I \cup R \cup R^2 \cup R^3 \cup ... \cup R^k \cup ... \circ$$

- 注: •传递闭包有时也记为t(R); 自反传递闭包有时也记为rt(R);
 - a $R^+b \Leftrightarrow (\exists k \in N)(k \ge 1)(aR^kb)$;
 - a $R^*b \Leftrightarrow (\exists k \in N)(aR^kb)$

$$\Leftrightarrow$$
 $(a=b)\lor (\exists k \in N)(k \ge 1)(aR^kb) \Leftrightarrow (a=b)\lor (aR^+b)$.

定理4.传递闭包基本定理

设二元关系R⊆A×A, R≠Ø。则

- (1)若 m∈N, m≥1,则 R^m⊆ R⁺;特别地 R⊆ R⁺;
- (2) R^+ 是传递关系: 即,对任何元素 a, b, c \in A, $aR^+b \land bR^+c \Rightarrow aR^+c$;
- (3) R^+ 是包含R的最小传递关系: 即,对任何二元关系 $S \subseteq A \times A$,若 $R \subseteq S$ 且S也是传递关系,那么 $R^+ \subseteq S$;

$$(4)$$
若 $|A|=n$,则 $R^+ = \bigcup_{k=1}^{n} R^k$; 这时

a
$$R^+b \Leftrightarrow (\exists k \in N)(1 \le k \le n)(aR^kb)$$
;

(5)若R是传递关系,则 $R^+ = R$ 。

[证].只证(2)(采用逻辑法)(R+是传递关系)

(2)对任何元素a, b, c \in A, 有

 $aR^+b \wedge bR^+c$

 \Rightarrow (∃k)(aR^kb) \land (∃l)(bR^lc) (这里k≥1, l≥1)

• • • • •

$$\Rightarrow (\exists x_1)(\exists x_2) \dots (\exists x_{k-1})(aRx_1 \land x_1Rx_2 \land \dots \land x_{k-1}Rb)$$

$$\land (\exists y_1)(\exists y_2) \dots (\exists y_{l-1})(bRy_1 \land y_1Ry_2 \land \dots \land y_{l-1}Rc)$$

$$\Rightarrow (\exists x_1)(\exists x_2) \dots (\exists x_{k-1})(aRx_1 \land x_1Rx_2 \land \dots \land x_{k-1}Rb$$

$$\land (\exists y_1)(\exists y_2) \dots (\exists y_{l-1})(bRy_1 \land y_1Ry_2 \land \dots \land y_{l-1}Rc))$$

$$(量词前移: \exists xA(x) \land p \Leftrightarrow \exists x(A(x) \land p))$$

$$\Rightarrow (\exists x_1)(\exists x_2) \dots (\exists x_{k-1})(\exists y_1)(\exists y_2) \dots (\exists y_{l-1})(aRx_1 \land x_1Rx_2$$

$$\land \dots \land x_{k-1}Rb \land bRy_1 \land y_1Ry_2 \land \dots \land y_{l-1}Rc)$$

$$(量词前移: p \land \exists xA(x) \Leftrightarrow \exists x(p \land A(x)))$$

• • • • •

$$\Rightarrow$$
($\exists x_{1}$)($\exists x_{2}$) ...($\exists x_{k-1}$)($\exists x_{k}$)($\exists x_{k+1}$)($\exists x_{k+2}$) ...($\exists x_{k+l-1}$)(aRx_{1}) $\land x_{1}Rx_{2} \land ... \land x_{k-1}Rx_{k} \land x_{k}Rx_{k+1} \land x_{k+1}Rx_{k+2} \land ... \land x_{k+l-1}Rc$)

(这里,令: $x_{k} = b$, $x_{k+1} = y_{1}$, $x_{k+2} = y_{2}$, ... , $x_{k+l-1} = y_{l-1}$)

 \Rightarrow ($\exists n$)($aR^{n}c$) (这里,令: $n = k+l \ge 1+1 \ge 1$)

 $\Rightarrow aR^{+}c$

所以, R^{+} 是传递的。

定理5.自反传递闭包基本定理

设二元关系 $R\subseteq A\times A$, $R\neq\emptyset$ 。则

- (1)若 m∈N,则 R^m⊆ R^{*};特别地 I⊆ R^{*},R⊆ R^{*};
- (2) R*是自反传递关系:即,

对任何元素 $a \in A$, aR^*a ;

对任何元素 $a, b, c \in A$,

 $aR^*b \wedge bR^*c \Rightarrow aR^*c$;

(3) R^* 是包含R的最小自反传递关系:即,对任何二元关系 $S \subseteq A \times A$,若 $R \subseteq S$ 且S也是自反传递关系,那么 $R^* \subseteq S$;

$$(4) 若 |A| = n , 则 R^* = \bigcup_{k=0}^{n} R^k ; 这时$$

$$a R^*b \Leftrightarrow (\exists k \in N)(0 \le k \le n)(aR^kb)$$

$$\Leftrightarrow (a=b) \lor (\exists k \in N)(1 \le k \le n)(aR^kb) ;$$

(5)若R是自反传递关系,则 $R^* = R$ 。

```
[证].只证(3)(采用逻辑法)(若R\subseteqS且S也是自反传递关系,那么 R^*\subseteqS)
  (3)对任何元素a, b∈A,有
   aR*b
\Rightarrow(a=b)\lor(∃k)(aR<sup>k</sup>b) (这里k≥1)
\Rightarrow(a=b)\vee(\exists x_1)(\exists x_2)...(\exists x_{k-1})(aRx_1 \wedge x_1Rx_2 \wedge ... \wedge x_{k-1}Rb)
⇒aSb∨(\exists x_1)(\exists x_2) ...(\exists x_{k-1})(aSx_1 \land x_1Sx_2 \land ... \land x_{k-1}Sb) (S是自反的且R⊆S)
                       (S是传递的 且 ∃xp⇔p)
⇒aSb∨aSb
                       (幂等性: p∨p⇔p )
⇒aSb
 所以 R*⊂S。
```

小练习

- 1 设 R_1 、 R_2 是非空集合A上的二元关系,请判断:
- (1) R₁和R₂自反, R₁°R₂ 自反。
- (2) $R_1 \rightarrow R_2 \subset X$ 反对称, $R_1 \cap R_2 \subset X$ 对称。
- (3) R₁和R₂对称, R₁°R₂ 对称。
- (4) R_1 和 R_2 对称, $R_1 \cup R_2$ 对称
- (5) R₁和R₂传递, R₁∘R₂ 传递。
- (6) R₁和R₂传递,R₁ U R₂ 传递。
- 2 设A={a,b,c,d}, R ⊆ A×A, R={(a,a),(b,b), (a,b),(c,d)}, 求R+, R*。

§ 5. 等价关系

1°等价关系和等价类

定义1.等价关系(equivalence relation)

设二元关系R⊂A×A。这里A是非空的集合。

R是A上的等价关系⇔R是自反的、对称的、传递的。

例1.同乡关系是等价关系吗?

例2.平面几何中的三角形间的相似关系是等价关系吗?

例3.平面几何中的三角形间的全等关系是等价关系吗?

例4.平面几何中的直线间的平行关系是等价关系吗?

例5.设N是自然数集,m是一正整数, R是N上的模m同余关系, $R=\{(a,b): a \in N \land b \in N \land a \equiv b \pmod{m}\}$ 是等价关系吗?

例6.非空集合A上的幺关系、全关系是等价关系吗?

例7.非空集合A上的空关系是等价关系吗?

例8. 设二元关系R⊆A×A,这里

A={a,b,c}, R={(a,a), (b,b), (c,c), (b,c),(c,b)}, 其关系图如下。

•等价关系的实质是将集合A中的元素进行分类。

定义2.等价类(块)(equivalence classes(block))

设R是非空集合A上的等价关系。对任何元素 $a \in A$,由a生成的 (或者说是由a诱导出的)关于R的等价类定义为

 $\{b:b\in A\land bRa\}$

记为 $[a]_R$ (显然有 $[a]_R \subseteq A$)。同时称a为等价类 $[a]_R$ 的代表元。

定义3. 设R是非空集合A上的等价关系。 定义集合

 $\Pi_R = \{[a]_R : a \in A\}$ (注意: 应**去掉**重复的类!)

为集合A关于等价关系R的商集。记为A/R。称A/R中元素的个数为

R的秩。

例9.设N是自然数集,m是一个正整数。R是N上的模m同余 关系,即 $R=\{(a,b): a\in N \land b\in N \land a\equiv b \pmod m\}$ 。 R是N上的等价关系,其商集是?关系R的秩是?

定理1. 设R是非空集合A上的等价关系。对任意的 $a,b \in A$,有

$$(1)a\in[a]_R$$
 (故 $[a]_R\neq\varnothing$);
 $(2)aRb$ (即 $(a,b)\in R$) \Leftrightarrow $[a]_R=[b]_R$;

(3)(3.1)
$$[a]_R \cap [b]_R \neq \emptyset \Rightarrow [a]_R = [b]_R$$

(⇒ aRb, $\mathbb{P}(a,b) \in R$);

- $(3.2) (a,b) \notin R \Rightarrow [a]_R \cap [b]_R = \emptyset$;
- (4)两个等价类 $[a]_R$ 和 $[b]_R$,要么完全重合(即 $[a]_R = [b]_R$),要么不交(即 $[a]_R \cap [b]_R = \emptyset$);二者必居其一,也只居其一。

[证]. (采用逻辑法)

(1)对任何元素a,有

 $a \in A$

⇒aRa (R是等价关系,故R自反)

 $\Rightarrow a \in [a]_R$

 \Rightarrow [a]_R \neq Ø;

(2) 先证:
$$aRb \Rightarrow [a]_R = [b]_R$$

为证
$$[a]_R = [b]_R$$
,须证 $[a]_R \subseteq [b]_R$ 并且 $[b]_R \subseteq [a]_R$

(a) 对任何元素 $x \in A$,

$$\Rightarrow$$
 xRa

$$\Rightarrow x \in [b]_R$$

所以
$$[a]_R \subseteq [b]_R$$

(b) 任何元素 $x \in A$,有 $x \in [b]_R$

 $\Rightarrow xRb$

⇒xRb∧aRb (已知条件: aRb)

⇒xRb∧bRa (R对称)

⇒xRa (R传递)

 $\Rightarrow x \in [a]_R$

所以 $[b]_R \subseteq [a]_R$

综合(a)和(b), 即得[a]_R = [b]_R;

次证:
$$[a]_R = [b]_R \Rightarrow aRb$$

$$[a]_R \neq \emptyset \qquad (本定理的(1))$$

$$\Rightarrow (\exists x_0 \in A)(x_0 \in [a]_R)$$

$$\Rightarrow (\exists x_0 \in A)(x_0 \in [a]_R \land x_0 \in [b]_R) (已知条件: [a]_R = [b]_R)$$

$$\Rightarrow (\exists x_0 \in A)(x_0 Ra \land x_0 Rb)$$

$$\Rightarrow (\exists x_0 \in A)(aRx_0 \land x_0 Rb) \qquad (R是等价关系,故R对称)$$

$$\Rightarrow aRb \qquad (R是等价关系,故R传递且 \exists xp \Leftrightarrow p)$$

$$(3)(3.1)$$

$$[a]_{R} \cap [b]_{R} \neq \emptyset$$

$$\Rightarrow (\exists x_{0} \in A)(x_{0} \in [a]_{R} \cap [b]_{R})$$

$$\Rightarrow (\exists x_{0} \in A)(x_{0} \in [a]_{R} \wedge x_{0} \in [b]_{R})$$

$$\Rightarrow (\exists x_{0} \in A)(x_{0} \in A_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A)(a_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A)(a_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A)(a_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in A_{0} \wedge x_{0} \wedge x_{0} \otimes A_{0})$$

$$\Rightarrow (\exists x_{0} \in$$

(3.2) (整体采用反证法) 若(a,b)∉R,则 $[a]_R \cap [b]_R = \emptyset$ 。

否则若

$$[a]_R \cap [b]_R \neq \emptyset$$

$$\Rightarrow$$
 [a]_R = [b]_R

⇒aRb

$$\Rightarrow$$
(a,b) \in R

这就与已知条件: (a,b)∉R矛盾;

(本定理的(2))

(4)对任何序偶(a,b)

$$(a,b) \in A \times A$$

$$\Rightarrow$$
(a,b) \in R \vee (a,b) \notin R

(二分法, 互斥)

$$\Rightarrow$$
([a]_R = [b]_R) \vee ([a]_R \cap [b]_R = \varnothing)

(本定理的(2)和(3.2), 互斥)。

定义4. 设R和S是非空集合A上的两个等价关系。若R \subseteq S,则 称R细于S,或S粗于R。

例11.设A是一非空集。则

- (1)A上最细的等价关系是?其商集A/R是?
 - (2)A上最粗的等价关系是全? 其商集A/R是?

定理2. 设R和S是非空集合A上的两个等价关系。则

$$R\subseteq S\Leftrightarrow (\forall a\in A)([a]_R\subseteq [a]_S)$$

[证]. (采用逻辑法) 先证: $R \subseteq S \Rightarrow (\forall a \in A)([a]_R \subseteq [a]_S)$

对任何元素a∈A,有

对任何元素x∈A,有

$$x \in [a]_R$$

 \Rightarrow xRa

⇒ xSa (已知条件: R⊆S)

 $\Rightarrow x \in [a]_s$

所以 [a]_R⊆[a]_S

所以($\forall a \in A$)([a]_R \subseteq [a]_S);

次证: (∀a∈A)([a]_R⊆[a]_S)⇒R⊆S 对任何序偶(a,b)∈A×A

 $(a,b) \in R$

⇒aRb

⇒bRa (R是等价关系,故R对称)

 $\Rightarrow b \in [a]_R$

⇒b∈[a]_S ($\exists x \in A$)([a]_R⊆[a]_S))

⇒bSa

⇒aSb (S是等价关系,故S对称)

 \Rightarrow (a,b) \in S

所以 R⊆S。

定理3. 设R和S是非空集合A上的两个等价关系。则

$$R=S \Leftrightarrow (\forall a \in A)([a]_R = [a]_S) \ \circ$$
[证].(采用逻辑法)
$$R=S$$

$$\Leftrightarrow R \subseteq S \land S \subseteq R$$

$$\Leftrightarrow (\forall a \in A)([a]_R \subseteq [a]_S) \land (\forall a \in A)([a]_S \subseteq [a]_R) \quad (定理2)$$

$$\Leftrightarrow (\forall a \in A)([a]_R \subseteq [a]_S \land [a]_S \subseteq [a]_R)$$

$$(\forall 量词对 \land 的分配律: \ \forall x (A(x) \land \forall x B(x) \Leftrightarrow \ \forall x (A(x) \land B(x)))$$

$$\Leftrightarrow (\forall a \in A)([a]_R = [a]_S) \quad \circ$$

注: •由定理2知,若两个等价关系相等,则每个元素所对应的等价类也相同;若两个等价关系的等价类集合相等,则两个等价关系相同。

•由定理3知,等价关系与等价类集合——对应。即相同的等价关系对应着相同的等价类集合,不同的等价关系对应着不同的等价类集合。

2°划分与等价关系

定义5. 覆盖、划分(covering partition)

设A是一非空集合。则A的

(1) 覆盖是一集合之集 $\Pi = \{A_{\gamma} : \gamma \in \Gamma \land A_{\gamma} \neq \emptyset\}$,

满足条件: $A \subseteq \bigcup_{\gamma \in \Gamma} A_{\gamma}$

(2)划分是一集合之集 $\Pi=\{A_{\gamma}: \gamma \in \Gamma \land A_{\gamma} \neq \emptyset\}$, 满足条件:

(a)
$$A = \bigcup_{\gamma \in \Gamma} A_{\gamma}$$

(b)
$$\gamma_1 \neq \gamma_2 \Rightarrow A_{\gamma_1} \cap A_{\gamma_2} = \emptyset$$
;

其中A_γ称为划分Π的划分块(block of partition)。

注: •由划分和覆盖的定义可知, A上的划分一定是A上的覆盖; 反之则未必。

定理4。设R是非空集合A上的等价关系。则R的等价类之集

 $\Pi_R = \{ [a]_R : a \in A \}$

是A上的一个划分; 等价类就是划分块。

定理5. 设 $\Pi = \{A_{\gamma} : \gamma \in \Gamma \land A_{\gamma} \neq \emptyset\}$ 是非空集合A上的一个划分。借助 Π 来定义A上的二元关系 $R_{\Pi} \subseteq A \times A$,使得

$$R_{\Pi} = \{(a,b) : (\exists \gamma \in \Gamma) (a \in A_{\gamma} \land b \in A_{\gamma})\}$$

则 R_{Π} 是A上的等价关系。 称为是由划分 Π 产生的(或者说是诱导出的)A上的等价关系。

```
[证]. (1)自反性:
        对任何元素a,有
          a \in A
         \Rightarrow a \in \bigcup_{\gamma \in \Gamma} A_{\gamma}
                                            (划分的条件(a): A = \bigcup_{r \in \Gamma} A_r)
         \Rightarrow (\exists \gamma \in \Gamma)(a \in A_{\gamma})
         ⇒(\exists \gamma \in \Gamma)(a \in A_{\gamma} \land a \in A_{\gamma}) (幂等律: p⇔p∧p)
         \Rightarrow (a,a) \in R_{\Pi}
         \Rightarrow aR_{\Pi}a
     所以R<sub>Π</sub>是自反的;
```

```
(2)对称性:
 对任何元素a,b∈A,有
          aR_{\Pi}b
     \Rightarrow(a,b)\inR<sub>\Pi</sub>
     \Rightarrow (\exists \gamma \in \Gamma)(a \in A_{\gamma} \land b \in A_{\gamma})
    \Rightarrow (\exists \gamma \in \Gamma)(b \in A_{\gamma} \land a \in A_{\gamma})
                                                               (交换律: p∧q⇔q∧p)
   \Rightarrow(b,a)\inR<sub>\Pi</sub>
   \Rightarrow bR_{\Pi} a
  所以R<sub>11</sub>是对称的;
```

(3)传递性: 对任何元素a,b,c∈A,有 aR_π b∧bR_π c \Rightarrow (a,b) $\in R_{\Pi} \land$ (b,c) $\in R_{\Pi}$ $\Rightarrow (\exists \gamma_1 \in \Gamma)(a \in A_{\gamma_1} \land b \in A_{\gamma_1}) \land (\exists \gamma_2 \in \Gamma)(b \in A_{\gamma_2} \land c \in A_{\gamma_2})$ $\Rightarrow (\exists \gamma_1 \in \Gamma)(a \in A_{\gamma_1}) \land (\exists \gamma_1 \in \Gamma)(b \in A_{\gamma_1}) \land$ $(\exists \gamma 2 \in \Gamma)(b \in A_{\gamma 2}) \land (\exists \gamma_2 \in \Gamma)(c \in A_{\gamma 2})$ $(\exists x(A(x) \land B(x)) \Rightarrow \exists xA(x) \land \exists xB(x))$

*注:定理5表明:由集合A上的划分∏可产生A上的一个等价关系;划分块就是等价类。

*问题:

- 1.由A上的一个等价关系R出发,由等价类可以得到一个划分 $\Pi_{R=}$ X/R,由该划分出发,又可产生一个新的等价关系R₁,这个过程是否要进行下去? R与R₁有什么关系?
- 2.由A上的一个划分 Π 出发可产生一个等价关系 R_{Π} ,由该关系又可产生新的划分 Π_1 , Π 与 Π_1 有什么关系?

定理6。设R是非空集合 A 上的等价关系, ∏是A上的一个

划分。那么
$$R = R_{\Pi} \Leftrightarrow \Pi_{R} = \Pi$$
 。

[证]. (采用逻辑法)

[证]. (采用逻辑法) 先证:
$$R = R_{\Pi} \Rightarrow \Pi_{R} = \Pi$$
 对任何元素 $a \in A$,有 对任何元素 $x \in A$,有 $x \in [a]_{R}$ $\Leftrightarrow xRa$ $\Leftrightarrow xR_{\Pi}a$ (已知条件: $R = R_{\Pi}$) $\Leftrightarrow x \in [a]_{R^{\Pi}}$ 所以 $[a]_{R} = [a]_{R^{\Pi}}$ 所以 $(\forall a \in A)([a]_{R} = [a]_{R^{\Pi}})$ 所以 $\Pi_{R} = \{[a]_{R} : a \in A\} = \{[a]_{R^{\Pi}} : a \in A\} = \Pi$;

注: ●由定理4,5,6可知: 由等**价**关系可以产生一个划分,由划分可以产生一个等**价**关系;

•划分与等价关系是一一对应的。即每个划分对应一个等价关系, 且每个等价关系对应一个划分。

§ 6. 半序关系

定义1. 半序关系(partial order relation)

设二元关系R⊆A×A。这里A是非空的集合。

R是A上的半序关系⇔R是自反的、反对称的、传递的。

*通常,半序关系R记为≤ ,称系统(A, ≤)为半序集(poset)。

例1. 自然数集N、整数集I、有理数集Q、实数集R上的小于等于关系' \leq '是半序关系吗?

例2.集合X的幂集2×上的包含关系'⊆'是半序关系吗?

例3. N、整数集I、有理数集Q、实数集R上的小于关系 '<'是半序关系吗?

注: 二元关系 $R\subseteq A\times A(A\neq\emptyset)$ 是A上的拟序关系(quasi order) $\Leftrightarrow R$ 是反自反的、传递的。拟序一般记作<,称系统(A,<)为拟序集;

拟序与半序的关系是:对任何元素a,b∈A

 $a < b \iff a \le b \land a \ne b$;

例4.集合X的幂集2×上的真包含关系'⊂'是半序关系吗?是拟序关系吗?

定义2.可比较性(comparability)

设(A, ≤)是一半序集,a与b是A中的一对元素。 称 a与b是可比较的 ⇔ a≤b∨b≤a 。

注: ●否则,若a≰b∧b≰a ,则称a与b是不可比较的;

•半序关系≤在集合A上建立了一种比较关系。

例5. 对小于等于关系'≤',任何二数a,b是可比较的吗?

例6. 对于 '⊆',任何二集合A,B都是可比较的吗?

定义3.全序关系 线性序 链(total order, linear order, chain)

设(A, ≤)是一半序集。

≤是A上的全序关系⇔≤满足全可比较性:

 $(\forall a \in A)(\forall b \in A)(a \le b \lor b \le a)$.

这时, 简称≤是全序或线性序; 称(A,≤)是一全序集。

注: ●否则,若(∃a∈A)(∃b∈A)(a≰b∧b≰a),一般 则称≤是非线性序 (nonlinear order);

●非线性序在实**际**中有**很**重要的作用;也是本课程的一个重要研究对象。

114

•字典序(lexicographic)

$$\Sigma^* = \{\Lambda\} \cup \Sigma \cup \Sigma^2 \cup \Sigma^3 \cup \ldots \cup \Sigma^n \cup \ldots \quad (\Lambda 称为空字)$$

其任何元素 $w \in \Sigma^*$ 称为一个字(word); 必有 $k \in N$,使得

$$W \in \Sigma^{k}$$
,从而

$$w=(a_{i1}, a_{i2}, a_{i3}, ..., a_{ik})=a_{i1}a_{i2} a_{i3} ...a_{ik}$$

这里 $a_{ij}\in\Sigma$ (1 \leq j \leq k)。

定义二元关系 $\leq ^* \subseteq \Sigma^* \times \Sigma^*$,使得;

对于任何二字 w_1 = $a_{i1}a_{i2}a_{i3}...a_{im}$ 和 w_2 = $b_{i1}b_{i2}b_{i3}...b_{in}$

 $W_1 \leq^* W_2$ 当且仅当 下列四条之一成立:

- (1) $a_{i1}a_{i2}a_{i3}...a_{im}=b_{i1}b_{i2}b_{i3}...b_{in}$; (这时: m=n, $a_{ij}=b_{ij}$)
- $(2)a_{i1}$ ≠ b_{i1} $\blacksquare a_{i1}$ ≤ b_{i1} ;
- (3)存在着某个k ∈N, 1≤k≤min(m,n), 使得

 $a_{i1}a_{i2}a_{i3}...a_{ik-1}$ = $b_{i1}b_{i2}b_{i3}...b_{ik-1}$ 且 a_{ik} ≠ b_{ik} 且 a_{ik} ≤ b_{ik} .

(4) w_1 是 w_2 的前缀。

例7.小于等于关系'≤',包含关系'⊆'是全序关系吗?

例8.(I, \le),(R, \le) 都是全序集。但是在(I, \le) 中每个整数,下一个比它大的或比它小的(即紧挨着它的)那个数都可确定;而在(R, \le) 中却不可能。

定义3.直接后继 后继(direct successor, successor)

设(A, ≤)是一半序集,a与b是A中的一对元素。 称 b是a的直接后继

$$\Leftrightarrow a \neq b \land a \leq b \land (\forall t \in A)(a \leq t \land t \leq b \Rightarrow t = a \lor t = b)$$

直接后继简称后继; a的后继记作a+, 即b= a+, 这时称a是 b的前驱或前趋(predecessor)。

例9. (N_m, ≤), (N, ≤), (I, ≤), (R, ≤) 都是全序集。

 $N_m = \{0,1,2,...,m-1\}$

(N_m,≤)中每个元素都有后继、前驱?

(N, ≤)每个元素都有后继、前驱?

(R,≤)每个元素都有后继、前驱?

半序集的表示法——哈斯图(Hasse)

半序集 (A, \leq) 的Hasse图是一个图 $G_{\leq} = (V_{\leq}, E_{\leq})$

其中: V_{\leq} = A 是结点集;

 $E_{\leq}=\{(a,b):a\in A\land b\in A\land a\leq b\land b=a^{+}\}$ 是边集。

在画法上,规定:

- (1)结点a+必须画在结点a 的紧(斜)上方;
- (2)不画边的方向。

注:与关系图相比, Hasse图:

●省略了自反性的边(圈); 省略了(反对称性)方向; 省略了传递性的边;

例10. 设A ={a,b,c}, 2^A上的包含关系⊆的 Hasse图。

注; 在非线性半序集中, 直接后继一般不唯一;

其Hasse图呈现网格状;其实正是这点导致一门现代数学的重要学科——格论的出现;而此例正好给人们形象、直观的展现出布尔代数(用其三大特例之一——集合代数来表现)的内部数学结构。

例11. 设A = {2,3,4,6,7,8,12,36,60},

 $R = \{(a,b): a \in A \land b \in A \land b \mid a\},\$

R是A上的倍数关系。

R的Hasse图?

例12. 设A ={2,3,6,12,24,36},

 $R=\{(a,b):a\in A\land b\in A\land a\mid b\}$

R是A上的整除关系。

R的Hasse图?

注: 虽然同为整除关系, 但由于集合不同, 其Hasse图就呈现出明显的不同; 这说明两例中的半序集是不同的; 所以, 在论及半序关系时, 重要的是一 定要指明其是那个集合上的半序关系; 半序集是一个整体, 不能分而论之。

定义4.最大元 最小元 (greatest element, least element)

设(A, ≤)是半序集,B \subseteq A, $x_0 ∈ B$ 。则称

 $(1)x_0$ 是B的最大元⇔ $(∀x∈B)(x≤x_0)$;

 $(2)x_0$ 是B的最小元⇔ $(\forall x \in B)(x_0 \le x)$ 。

注: •最大(小)元未必存在; 即使B(甚或A)是有限集合也未必;

● B的最大(小)元若存在,则一定在B中;

定理1. 设(A,≤)是半序集,B⊆A。若B有最大(小)元,则必是唯一的。

[证]. (采用逻辑法)只证最大元的唯一性

 X_{01} 是B的最大元 $\wedge X_{02}$ 是B的最大元

$$\Rightarrow (\forall x \in B)(x \le x_{01}) \land (\forall x \in B)(x \le x_{02}),$$

$$\Rightarrow x_{02} \le x_{01} \land x_{01} \le x_{02}$$

 $(因x_{01},x_{02} \in B$ 都是B的普通一元;根据普遍性特殊化:

$$\forall x A(x) \Rightarrow A(y);$$
 以及合成律: $(p \rightarrow q) \land (r \rightarrow s) \Rightarrow p \land r \rightarrow q \land s$

所以, B的最大元是唯一的。

定义5.极大元 极小元(maximum element,minimal element)

设(A, ≤)是半序集, $B \subseteq A$, $x_0 ∈ B$ 。则 称

(1)x₀是B的一个极大元

$$\Leftrightarrow \neg (\exists x \in B)(x_0 \le x \land x \ne x_0) \Leftrightarrow \neg (\exists x \in B)(x_0 < x)$$
;

(2)x₀是B的一个极小元

$$\Leftrightarrow \neg (\exists x \in B)(x \le x_0 \land x \ne x_0) \Leftrightarrow \neg (\exists x \in B)(x < x_0)$$
.

- 注: •极大(小)元不一定存在; 但在B(或A)是有限集合时一定存在;
 - •极大(小)元即使存在,一般也是不唯一的;
 - B的极大(小)元若存在,则一定在B中。

定义6.上界 下界(upper bound,lower bound)

设 (A, \leq) 是半序集, $B\subseteq A$, $z_0 \in A$ 。则称

- $(1)z_0$ 是B的一个上界⇔ $(\forall x \in B)(x \le z_0)$;
- $(2)z_0$ 是B的一个下界⇔ $(\forall x \in B)(z_0 \le x)$;
- (3)若B有一个上界,则称B上方有界; 若B有一个下界,则称B下方有界; 若B上、下方都有界,则称B有界。

注: •上界、下界、界一般不一定存在;

- B(或A)有限不一定有上界、下界、界; 有上界、下界、界B(或A)也不一定有限;
 - •上界、下界、界即使存在,一般也是不唯一的;
 - B的上界、下界、界若存在,可以在B中,也可以不在B中。

例13. (R, ≤) 是全序集。

取B=(0,1)={x: x∈R \wedge 0<x<1} \subseteq R,B的上下界?

定义7.上确界、下确界(least upper bound, greatest lower bound)

设 (A, \leq) 是半序集, $B\subseteq A$, $z_0 \in A$ 。则 称

 $(1)z_0$ 是B的上确界

$$\Leftrightarrow (\forall x \in B)(x \le z_0) \land (\forall z \in A)((\forall x \in B)(x \le z) \Rightarrow z_0 \le z)$$
;

(2)z₀是B的下确界

$$\Leftrightarrow (\forall x \in B)(z_0 \le x) \land (\forall z \in A)((\forall x \in B)(z \le x) \Rightarrow z \le z_0)$$
;

(3)上确界即是最小上界, 记为LUB(B);

下确界即是最大下界,记为GLB(B)。

注: ●上(下)确界一般不一定存在;即使B(或A)是有限集合也未必;

●B的上(下)确界若存在,可以在B中,也可以不在B中;

例14. 令: A={ $-\frac{1}{n}$: n ∈ N \ n ≥ 1}

 $B=\{\frac{1}{n}: n \in \mathbb{N} \land n \geq 1\}$

 $X=A\cup B$

定理2. 设(A,≤)是半序集,B⊆A。若B有上(下)确界,则必是唯一的。

- 注: ●最大(小)元一定是极大(小)元; 极大(小)元不一定是最大(小)
- 元; 极大(小)元存在不一定有最大(小)元;
- •最大(小)元一定是上(下)确界; (下)确界不一定是最大(小)元; 上(下)确界存在不一定有最大(小)元;
 - •上(下)确界一定是上(下)界;
 - 上(下)界不一定是上(下)确界;
 - 上(下)界存在不一定有上(下)确界;
 - ●讨论B的上(下)确界的前提是B的上(下)界存在;

例15. 设A={2,3,4,6,7,8,12,36,60},

 $R=\{(a,b): a\in A\land b\in A\land a\mid b\}$, 其中:

$$B_1 = \{8,12\}, B_2 = \{2,3\}, B_3 = \{7,8\}, B_4 = \{2,4,12\},\$$

各个子集的特殊元素是什么?

集合	最大元	最小元	极大元	极小元	上确界	下确界
B ₁	/	/		F4/1		The same of the sa
B_2	1	1				

●半序集的全序化(非线性序的线性化)

设 (A, \leq) 是一半序集,其中A= $\{a_1, a_2, a_3, \dots, a_n\}$ 。下面的拓扑排序(分类)(A topological sort)算法是将半序集 (A, \leq) 整对(或者说转化)为一个全序集 (A, \leq) ,并且满足保序性: $(\forall a \in A)(\forall b \in A)(a \leq b \Rightarrow a \leq b)$ (也称为遗传性)。

注: •拓扑学主要是研究变化中的不变量;

•而这里,全序化是变化;遗传性是不变量。

拓扑排序(分类)算法:

- $No.1 k \leftarrow 1;$ (设置计数器)
- No.2 在A中任取半序集(A, ≤)的一个极小元 a_{ik} ;
- No.3 若 k=n ,则算法停止;欲得之全序为:

$$a_{i1} \le a_{i2} \le a_{i3} \le \dots \le a_{ik} \le \dots \le a_{in}$$
;

- No.4 (否则 $k\neq n$) $k \leftarrow k+1$, $A \leftarrow A \setminus \{a_{ik}\}$; go to No.2。
- 注: •拓扑排序算法所得之全序不是唯一的(因为极小元不唯一);
 - •例如,在例14中的半序集就可被转化为如下的全序:
 - 7, 3, 2, 6, 4, 12, 8, 60, 36 .
- 问题: •有限半序集中一定有极小元吗? 定义5下的注已经回答;
 - •半序集的子集和原序还构成半序集吗?回答参见习题35。

134

定义8.良序集(well ordered set)

设(A, ≤)是半序集。则 称

(A, ≤)是良序集⇔A的每个非空子集都有最小元

 $\Leftrightarrow (\forall B \subseteq A)(\exists x_0 \in B) (\forall x \in B)(x_0 \le x)$

。这时称半序(关系)≤是良序(关系)。

例16. (N, ≤), (I, ≤) 是良序关系吗?

定理3. 设(A,≤)是良序集。那么

(1)(A,≤)是全序集;(即,良序集一定是全序集)

(2)对于任何元素a \in A,若a不是A的最大元,则a的直

接后继a⁺一定存在;即

 $(\forall a \in A)(\neg(\forall x \in A)(x \le a) \Rightarrow (\exists b \in A)(b = a^+))$.

[证]. (采用逻辑法,构造法)

(1)
$$(\forall B \subseteq A)(\exists x_0 \in B) (\forall x \in B)(x_0 \le x)$$

(因≤是良序)

 $\Rightarrow (\forall \{a,b\}\subseteq A)(\exists x_0 \in \{a,b\})(\forall x \in \{a,b\})(x_0 \le x)$

(普遍性特殊化)

- $\Rightarrow (\forall \{a,b\} \subseteq A)(\exists x_0 \in \{a,b\})(x_0 \le a \land x_0 \le b)$
- $\Rightarrow (\forall a \in A)(\forall b \in A)((a \le a \land a \le b) \lor (b \le a \land b \le b))$
- $\Rightarrow (\forall a \in A)(\forall b \in A)(a \le b \lor b \le a)$

合取分析式: p∧q⇒p)

所以≤是全序关系;

(2) $(∀B \subseteq A)(∃x_0 \in B)$ $(∀x \in B)(x_0 \le x)$ (良序,存在最小元 x_0)

 $\Rightarrow (\forall B \subseteq A)(\exists x_0 \in A)(x_0 \in B \land (\forall x \in A)(x \in B \Rightarrow x_0 \le x))$

(放大缩小法。注意: \exists 量词的特征谓词 $x_0 \in B$ 作为合取项;

∀量词的特征谓词x∈B作为蕴含条件)

 $\Rightarrow (\forall B \subseteq A)(\exists b \in A)(b \in B \land (\forall t \in A)(t \in B \Rightarrow b \le t))$

(约束变项换名: $\exists xA(x) \Leftrightarrow \exists yA(y) (x_0 换名为b)$;

最小元为b , $\forall xA(x) \Leftrightarrow \forall yA(y) (x换名为t)$)

```
\Rightarrow (\forall B_1 = \{x : x \neq a \land a \leq x\} \subseteq A) (\exists b \in A)(b \in B_1 \land (\forall t \in A)(t \in B_1 \Rightarrow b \leq t) \}
                                              (B普遍性特殊化为B₁,最小元为b)
                                        a不是最大元
                                                                                                            (已知条件)
                                        \Leftrightarrow \neg (\forall x \in A)(x \leq a)
                                        \Leftrightarrow (\exists x \in A) \neg (x \le a) (量词对偶律: \neg \forall x A(x) \Leftrightarrow \exists x \neg A(x))
                                                                                                        (因≤是全序)
                                        \Leftrightarrow (\exists x \in A)(a \neq x \land a \leq x)
                                           \Leftrightarrow B_1 \neq \emptyset )
\Rightarrow (\forall a \in A)(\exists b \in A)(b \neq a \land a \leq b \land (\forall t \in A)(t \neq a \land a \leq t \Rightarrow b \leq t))
                                                                     (b \in B_1 \Leftrightarrow b \neq a \land a \leq b, t \in B_1 \Leftrightarrow t \neq a \land a \leq t)
```

⇒
$$(\forall a \in A)(\exists b \in A)(b \neq a \land a \leq b \land b \leq t \land t \leq b)$$
)

$$(\forall t \in A)(t \neq a \land a \leq t \land t \leq b) \Rightarrow b \leq t \land t \leq b))$$

$$(\forall a \in A)(\exists b \in A)(b \neq a \land a \leq b \land (\forall t \in A)(t \neq a \land a \leq t \land t \leq b) \Rightarrow t = b))$$

$$(\leq E \in B, \quad b \leq E \in A)(b \neq a \land a \leq b \land (\forall t \in A)(a \leq t \land t \leq b) \Rightarrow t = a \lor t = b))$$

$$(\forall a \in A)(\exists b \in A)(b \neq a \land a \leq b \land (\forall t \in A)(a \leq t \land t \leq b) \Rightarrow t = a \lor t = b))$$

$$(\forall a \in A)(\exists b \in A)(b \neq a \land a \leq b \land (\forall t \in A)(a \leq t \land t \leq b) \Rightarrow t = a \lor t = b))$$

$$(\forall a \in A)(\exists b \in A)(b \neq a \land a \leq b \land (\forall t \in A)(a \leq t \land t \leq b) \Rightarrow t = a \lor t = b))$$

$$(\forall a \in A)(\exists b \in A)(b \neq a \land a \leq b \land (\forall t \in A)(a \leq t \land t \leq b) \Rightarrow t = a \lor t = b))$$

$$(\forall a \in A)(\exists b \in A)(b \neq a \land a \leq b \land (\forall t \in A)(a \leq t \land t \leq b) \Rightarrow t = a \lor t = b))$$

$$(\forall a \in A)(\exists b \in A)(b \neq a \land a \leq b \land (\forall t \in A)(a \leq t \land t \leq b) \Rightarrow t = a \lor t = b))$$