

Motivation

 d_1

Motivation

Motivation

Agenda

- Decision tree
 - Construction
 - Parameters
- Random forest
 - Construction
 - Application examples

Agenda

- Decision tree
 - Construction
 - Parameters
- Random forest
 - Construction
 - Application examples

Impurity measures:

- Entropy
- Gini index
- Misclassification error

Decision tree - Construction $R_1 < T_1$

Decision tree - Parameters

How to avoid the overfitting/ensure generalization?

- (Pre-,Post-) Pruning
- Impurity tolerance
 - Entropy
 - Gini index
 - Misclassification error

Agenda

- Decision tree
 - Construction
 - Parameters
- Random forest
 - Construction
 - Application examples

Random Forest

A Random Forest (RF) consist in train N uncorrelated trees.

A new sample is labelled using the most frequent labelling by the N trees.

Random Forest - Construction

	Feature 1	Feature 2	Feature 3	•••	Label
Sample 1					1
Sample 2					2
Sample 3					1
Sample 4					3
Sample 5					1
•••					
Sample p					3

Random Forest - Construction

Bagging

	Feature 1	Feature 2	Feature 3	•••	Label
Sample 1					1
Sample 2					2
Sample 3					1
Sample 4					3
Sample 5					1
Sample p					3

Random Forest - Construction

Subset of features to evaluate

	Feature 1	Feature 2	Feature 3	 Label
Sample 1				1
Sample 2				2
Sample 3				1
Sample 4				3
Sample 5				1
Sample p				3

Random Forest - Parameters

- (Pre-,Post-) Pruning
- Impurity tolerance
- Number of features to evaluate in each split
- Number of trees

Randomforest Example by Wasit Limprasert (Mathworks)

Random Forest - Feature importance

- Number of times a feature is selected for splitting
- Distance to the root when is selected

An ensemble deep learning based approach for red lesion detection in fundus images

José Ignacio Orlando a,b,*, Elena Prokofyeva d,e, Mariana del Fresno a,c, Matthew B. Blaschko f

Table 5CPM values and per lesion sensitivities at FPI= 1 for Experiments 1 (red lesions with multiple sizes) and 2 (small red lesions) (Table 4).

Method	Experimen	it 1	Experiment 2		
	СРМ	Se	СРМ	Se	
Seoud et al. [32]	0.3540	0.3462	=	<u>-</u>	
Wu et al. [42]	_	-	0.2729	0.2450	
CNN probabilities	0.3756	0.3621	0.3057	0.2894	
RF with HCF	0.4517	0.4601	0.3558	0.3291	
RF with CNN + HCF	0.4874	0.4883	0.3683	0.3680	

Detection of morphological structures for vessel wall segmentation in IVUS using Random Forests

L. Lo Vercio a,b, M. Del Fresno b,c, I. Larrabide a,b

Table 3. Median thresholds found in the Random Forest (RUS = 0.15).

Feature	F1	F2	F3	F4	F5	F6	F7	
Median threshold	63.07	46.7	157 ₁₇₃	- 1	9906	1.29	0.12 0.2	
Feature	F8	F9	F10	F11	F12	F13	F14	
Median threshold	9.8×10^{-5}	4.0×10^{-3}	77.5 70	23.31	0.44	-37.25	-21.13	21.00
Feature	F15	F16	F17	F18	F19	F20	F21	F22
Median threshold	74.98	27.21	-52.35	104.33	16	0.13	58.85	0.26

Cardiovascular Event Prediction by Machine Learning The Multi-Ethnic Study of Atherosclerosis

Bharath Ambale-Venkatesh, Xiaoying Yang, Colin O. Wu, Kiang Liu, W. Gregory Hundley, Robyn McClelland, Antoinette S. Gomes, Aaron R. Folsom, Steven Shea, Eliseo Guallar, David A. Bluemke, João A.C. Lima

Rank	Coronary heart disease	RVI	All CVD	RVI
1	Coronary Artery Calcium score	0.00	Coronary Artery Calcium score	0.00
2	Tissue necrosis factor-α soluble receptor	0.28	Tissue necrosis factor- α soluble receptor	0.24
3	Cardiac troponin-T	0.31	NT-proBNP	0.25
4	NT-proBNP	0.35	Interleukin-2 soluble receptor	0.28
5	Minnesota code 1 score: F lead group	0.36	Cardiac troponin-T	0.35

Table 3. The Top-20 Ranked Variables by the Variable Importance From the Random Survival Forest Method for Each of the Outcomes of Interest

Rank	Death	RVI	Stroke	RVI
1	Age	0.00	Fasting glucose	0.00
2	Tissue necrosis factor- α soluble receptor	0.07	Interleukin-2 soluble receptor	0.09
3	Interleukin-2 soluble receptor	0.09	Maximum carotid stenosis	0.11
4	NT-proBNP	0.16	Tissue necrosis factor- α soluble receptor	0.13
5	Ankle-brachial index	0.21	NT-proBNP	0.16
6	Coronary Artery Calcium score	0.25	Internal carotid intima media thickness	0.18
7	Common carotid intima media thickness	0.26	Systolic blood pressure	0.24
8	Internal carotid intima media thickness	0.32	Pulse pressure	0.28
9	Descending aortic distensibility	0.33	Descending aortic distensibility	0.32
10	Plasmin-antiplasmin complex	0.35	Ankle-brachial index	0.32

