Inverse Q-function

Topics: Reinforcement Learning, Inversion, Q-Function

Modulation is best avoided in ML. There should not be a separation between the Q_{θ} function (the judge) and the action function U_{ϕ} (the executioner).

A simple way of avoiding this separation is to approximate Q by an easily invertible parameterized function Q_{θ} . The ease of inversion should remain after conditioning on any state s.

If Q_{θ} generalizes well the mapping Q of the subspace S to the subspace T, there should be a guaranteed generalization of Q_{θ}^{-1} from T to S.

Then $Q_{\theta}^{-1}(\operatorname{High\ Return};s)$ should yield a good action if $s\in S.$