

V850E2/Fx4 Application Board

User's Manual: Hardware

RENESAS MCU V850 F Series

> AB-050-FX4-MB-L-Q-DEV-V2 AB-050-FX4-MB-L-Q-TCT-V2 AB-050-FX4-MB-X-Q-NONE-V2

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
- "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority- owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Table of Contents

1.	Intro	oduction	4
2.	Boar	rd Overview	5
3.	Micr	ocontroller Area	6
	3.1	Multi-QFP Footprint	6
	3.2	Pin Interfaces	
	3.3	Piggyback Board Connectors	7
4.	Pow	er Supply Area	10
	4.1	Board Power Supply Connectors	10
	4.2	Voltage Regulators	
	4.3	IC Voltage Rails	12
	4.4	External Power Transistor	12
5.	Functional Areas		13
	5.1	LEDs	14
	5.2	DIP Switches	
	5.3	Pushbutton Switches	14
	5.4	Analog Input Potentiometers	14
	5.5	Serial Communications Interfaces	
	5.6	LIN Interfaces	18
	5.7	CAN Interfaces	19
	5.8	FlexRay Interfaces	21
	5.9	On-chip Debug and Flash Programming Connectors	21
6.	Prec	autions	23
	6.1	Limitation of URTE2 for LIN communication	23
	6.2	LEDs will not illuminate	
7.	Sche	ematic	24

1. Introduction

The V850E2/Fx4 Application Board serves as a simple and easy to use platform for evaluating the features and performance of Renesas Electronics' 32-bit V850E2/Fx4™ microcontrollers. The Main Board (AB-050-FX4-MB-x-x-xxx-V2) can be used as a standalone board, or can be mated with one of several Piggyback Boards (AB-050-FX4-PB-x-x-xxx-V2) for extended functionality.

Features:

- Connections for on-chip debugging and flash memory programming
- Access to all microcontroller I/O
- User interaction through switches, buttons, and LEDs
- Serial interface connections for RS232, LIN, CAN, and FlexRay
- High density piggyback board connectors
- Multiple, configurable voltage regulators (9V to 12V DC input)
- Blank, through-hole prototyping area

This document will describe the functionality provided by the Application Board and guide the user through its operation. For details regarding the operation of the microcontroller, refer to the V850E2/Fx4 User's Manual.

This document is valid for the following versions of the Application Board:

- AB-050-Fx4-MB-L-Q-TCT-V2 Application Board with populated socket for the V850E2/FL4 device
- AB-050-Fx4-MB-X-Q-DEV-V2 Application Board populated with the V850E2/FL4 device
- AB-050-Fx4-MB-X-Q-NONE-V2 Application board unpopulated device. AB-050-Fx4-PB-X-XXX-V2 Piggyback Boards can be mounted on this Application Board.

2. Board Overview

Figure 1 provides a top level view of the Main Board. Highlighted in the image are several areas of functionality.

Blue: Microcontroller Area
Red: Power Supply Area
Green: Functional Areas

These areas are described in detail in the following sections.

Figure 1. AB-050-Fx4-MB-X-Q-NONE-V2 top view

3. Microcontroller Area

The Microcontroller Area of the Main Board includes the following features:

- Interfaces to all microcontroller I/O pins
- High density piggyback board connectors

3.1 Multi-QFP Footprint

The Main Board provides a multi-QFP footprint that allows for the soldering of any of the Fx4 microcontroller package sizes.

Caution: Refer to the pinout information in the V850E2/Fx4 User's Manual to determine the appropriate Pin Interface connections for each package size.

Figure 2. Multi-QFP Footprint

On the following board versions a device or a device socket are assembled:

- AB-050-Fx4-MB-L-Q-TCT-V2 (with socket for V850E2/FL4)
- AB-050-Fx4-MB-X-Q-DEV-V2 (with V850E2/FL4 device)

3.2 Pin Interfaces

Each microcontroller I/O pin is connected to a *Pin Interface*. The Pin Interface is a group of pads that allow easy probing of I/O pins, and provide the ability to selectively connect the I/O pins to power, ground or other signals. Figure 3 shows a picture of unpopulated pin interfaces along with a diagram of the circuit. Through-hole pads with 0.1" spacing are provided for signal probing and connections. These pads can be populated with standard 0.1" headers to facilitate signal probing.

Standard size surface mount pads are also provided. These pads can be populated with standard resistors, capacitors or jumpers to connect the microcontroller I/O pin to ground or one of two voltage rails: VDDA or VDDB. For further details regarding the voltage rails, refer to section 4.3.

Figure 3. Pin Interfaces

3.3 Piggyback Board Connectors

Surrounding the QFP microcontroller footprints are four high density connectors. These connectors allow the Main Board to be interfaced with *Piggyback Boards* to extend the functionality offered by the Main Board. All microcontroller I/O, as well as power and ground are passed through these connectors to the Piggyback Board. A detailed listing of the connector signals can be found in Table 1.

Figure 4. Piggyback Board Connectors

CN1 Pin		Micro Pin / Signal		
1	2	VDDA		
3	4	VDDA		
5	6	GND		
7	8	GND		
9	10	1		
11	12	2		
13	14	3		
15	16	4		
17	18	5		
19	20	6		
21	22	7		
23	24	8		
25	26	9		
27	28	10		
29	30	11		
31	32	12		
33	34	13		
35	36	14		
37	38	15		
39 40		16		

CN2 Pin		Micro Pin / Signal	
1 2		VDDA	
3	4	VDDA	
5	6	GND	
7	8	GND	
9	10	53	
11	12	54	
13	14	55	
15	16 56		
17	18	57	
19	20	58	
21	22	59	
23	24	60	
25	26	61	
27	28	62	
29	30	63	
31	32	64	
33	34	65	
35	36	66	
37 38		67	
39 40		68	

CN3 Pin		Micro Pin / Signal	
1	2	VDDA	
3	4	VDDA	
5 7	6	GND	
7	8	GND	
9	10	105	
11	12	106	
13	14	107	
15	16	108	
17	18	109	
19	20	110	
21	22	111	
23	24	112	
25	26	113	
27	28	114	
29	30	115	
31	32	116	
33	34	117	
35	36	118	
37	38	119	
39 40		120	

CN4 Pin		Micro Pin / Signal		
1	2	VDDA		
3	4	VDDA		
5	6	GND		
7	8	GND		
9	10	157		
11	12	158		
13	14	159		
15	16	160		
17	18	161		
19	20	162		
21	22	163		
23	24	164		
25	26	165		
27	28	166		
29	30	167		
31	32	168		
33	34	169		
35	36	170		
37	38	171		
39	40	172		

CN1	Pin	Micro Pin		
		/ Signal		
41	42	17		
43	44	18		
45	46	19		
47	48	20		
49	50	21		
51	52	22		
53	54	23		
55	56	24		
57	58	25		
59	60	26		
61	62	27		
63	64	28		
65	66	29		
67	68	30		
69	70	31		
71	72	32		
73	74	33		
75	76	34		
77	78	35		
79	80	36		
81	82	37		
83	84	38		
85	86	39		
87	88	40		
89	90	41		
91	92	42		
93	94	43		
95	96	44		
97	98	45		
99	100	46		
101	102	47		
103	104	48		
105	106	49		
107	108	50		
109	110	51		
111	112	52		
113	114	GND		
115	116	GND		
117	118	VDDB		
119	120	VDDB		

CN2 Pin		Micro Pin / Signal		
41	42	69		
43	44	70		
45	46	71		
47	48	72		
49	50	73		
51	52	74		
53	54	75		
55	56	76		
57	58	77		
59	60	78		
61	62	79		
63	64	80		
65	66	81		
67	68	82		
69	70	83		
71	72	84		
73	74	85		
75	76	86		
77	78	87		
79	80	88		
81	82	89		
83	84	90		
85	86	91		
87	88	92		
89	90	93		
91	92	94		
93	94	95		
95	96	96		
97	98	97		
99	100	98		
101	102	99		
103	104	100		
105	106	101		
107	108	102		
109	110	103		
111	112	104		
113	114	GND		
115	116	GND		
117	118	VDDB		
119	120	VDDB		

CN3 Pin		Micro Pin / Signal		
41	42	121		
43	44	122		
45	46	123		
47	48	124		
49	50	125		
51	52	126		
53	54	127		
55	56	128		
57	58	129		
59	60	130		
61	62	131		
63	64	132		
65	66	133		
67	68	134		
69	70	135		
71	72	136		
73	74	137		
75	76	138		
77	78	139		
79	80	140		
81	82	141		
83	84	142		
85	86	143		
87	88	144		
89	90	145		
91	92	146		
93	94	147		
95	96	148		
97	98	149		
99	100	150		
101	102	151		
103	104	152		
105	106	153		
107	108	154		
109	110	155		
111	112	156		
113	114	GND		
115	116	GND		
117 118		VDDB		
119 120		VDDB		
ard Connector Signals				

CN4 Pin		Micro Pin / Signal		
41	42	173		
43	44	174		
45	46	175		
47	48	176		
49	50	177		
51	52	178		
53	54	179		
55	56	180		
57	58	181		
59	60	182		
61	62	183		
63	64	184		
65	66	185		
67	68	186		
69	70	187		
71	72	188		
73	74	189		
75	76	190		
77	78	191		
79	80	192		
81	82	193		
83	84	194		
85	86	195		
87	88	196		
89	90	197		
91	92	198		
93	94	199		
95	96	200		
97	98	201		
99	100	202		
101	102	203		
103	104	204		
105	106	205		
107	108	206		
109	110	207		
111	112	208		
113	114	GND		
115	116	GND		
117	118	VDDB		
119	120	VDDB		

Table 1. Piggyback Board Connector Signals

4. Power Supply Area

The power supply area includes multiple connectors for providing a variety of power supply options to the Main Board and Piggyback Boards. On board voltage regulators are available to regulate the board's DC input voltage to the levels required for the integrated circuits. To provide flexible prototyping capabilities, the voltage regulator outputs and IC voltage rails are selectable. Indicator LEDs are provided to easily observe the state of the IC voltage rails.

Caution: See precaution 6.2 for details regarding the voltage rail indicator LEDs.

Figure 5. Power Supply Area

4.1 Board Power Supply Connectors

Power is supplied externally to the board using the connectors described in Table 2. If VBAT is supplied using connectors CN5 or CN6, the on-board regulators can be used to regulate the

supply voltages required for the integrated circuits. If desired, connector CN7 and/or connector CN8 can be used to supply the IC voltage rails directly.

In order to achieve LIN or FlexRay bus communication it is necessary to supply VBAT. This supply is used directly by the LIN and FlexRay transceivers, and can be used to generate the 5 volt supply voltage required by the FlexRay transceiver.

In order to achieve CAN bus communication, the 5 volt supply voltage required by the CAN transceiver can either be directly supplied to the board using connectors CN7 or CN8, or it can be generated from VBAT, which is supplied to the board using connectors CN5 or CN6.

Caution: The voltage rails provided by connectors CN7 and CN8 are not regulated and can be directly supplied to the integrated circuits. Damage may occur if a voltage greater than that described in Table 2 is supplied.

Connector	Description	Rail	Input Voltage Range
CN5	DC Power Jack ID=2.1mm, center positive	Ext_VBAT	+9v to +15v
CN6	Red Banana Jack	EXI_VDAT	+9v to +15v
CN7	Red Banana Jack	Ext_VDD1	+3v to +5.5v
CN8	Red Banana Jack	Ext_VDD2	+3v to +5.5v or +1.0v to +1.3v
CN9	Black Banana Jack	GND	0v

Table 2. Power Supply Connectors

4.2 Voltage Regulators

Three on board voltage regulators are provided to regulate the external DC input voltage (Ext_VBAT) to the levels required for the integrated circuits. The voltage level of regulator outputs 1 and 2 are selectable. These regulators can be used to supply the I/O and core voltages to the microcontroller. The output of the third regulator is fixed at 5 volts, and is used to supply the necessary 5 volt rail to the CAN and FlexRay transceivers in the functional areas.

Component	Regulator Output	Jumper	Setting	Output Level
	VReg output 1 (Reg_VDD1)	J1	open	5 volts
	viceg output 1 (iceg_vbb1)	31	closed	3.3 volts
IC1	VReg output 2 (Reg_VDD2)	J9	open	5 volts
			1 – 2	3.3 volts
			1 – 2 and 3 – 4	1.2 volts
IC2, IC3	VReg 5 volt output (Reg_VDD5V)	_	_	5 volts

Table 3. Voltage Regulators

4.3 IC Voltage Rails

The Main Board provides several options for powering the board's integrated circuits. Jumpers are provided to select from the available voltage sources, or to completely disconnect the rail. Indicator LEDs, D4 to D7, are provided to easily observe the state of the VDDA, VDDB, VDDIOF and VBATF voltage rails.

Caution: See precaution 6.2 for details regarding the voltage rail indicator LEDs.

Caution: Ensure that only one voltage source is selected for each voltage rail.

Voltage Rail	Description	Jumper	Setting	Source
	supply voltage to microcontroller		1 – 2	VReg output 1
VDDA		J2	3 – 4	VReg output 2
VDDA	Supply voltage to microcontroller	32	5 – 6	connector CN7
			7 – 8	connector CN8
			1 – 2	VReg output 1
VDDB	supply voltage to microcontroller	J3	3 – 4	VReg output 2
VDDB			5 – 6	connector CN7
			7 – 8	transistor Q1
VBATF	battery level supply voltage to ICs	J5	1 – 2	connector CN5 or CN6
	I/O level supply voltage to ICs	J6	1 – 2	VReg output 1
VDDIOF			3 – 4	VReg output 2
VDDIOI			5 – 6	connector CN7
			7 – 8	connector CN8
			1 – 2	VReg 5 volt output
VDD5F	5 volt supply to ICs	J7	3 – 4	connector CN7
			5 – 6	connector CN8

Table 4. Voltage Rail Selections

4.4 External Power Transistor

The M2 version of V850E2/Fx4 microcontrollers is capable of controlling an external power transistor to regulate its core logic voltage. Transistor Q1 is provided for use with M2 version microcontrollers. Jumper J4 can be used to connect the control signal and core logic voltage rail (PT_CVDD). Jumper J3, described in Table 4, is used to connect the core logic rail to the microcontroller.

5. Functional Areas

The functional areas provide various circuits and components useful for interacting with the microcontroller's I/O. All microcontroller I/O signals provided to the functional area circuits are connector via jumpers. This allows for isolation of the microcontroller, as well as the opportunity to substitute signals other than the microcontroller I/O routed on the board. The I/O signals selected to be provided to the functional area circuits are based on the pinout of the V850E2/FL4 208-pin microcontroller. When prototyping with other microcontrollers, the appropriate signals may not be routed to each functional area circuit. In this case, wires can be added between the pin interfaces and the jumper headers to supply the correct signals.

Figure 6. Functional Areas

5.1 LEDs

Four LEDs, D8 to D11, are provided to allow visual observation of microcontroller output port states. The LEDs are connected to the microcontroller via jumper J52. The LED signals are active high.

LED	J52 Setting	Device Port
D8	1 – 2	P1_2
D9	3 – 4	P1_3
D10	5 – 6	P1_4
D11	7 – 8	P1_5

Table 5. LED Signals

Caution: See precaution 6.2 for details of the usage restriction regarding this feature.

5.2 DIP Switches

A four signal DIP switch, S1, is provided to allow the setting of microcontroller input port states. The switches are connected to the microcontroller via jumper J53. The switch signals are active high.

Switch	J53 Setting	Device Port
S1 – 1	1 – 2	P4_5
S1 – 2	3 – 4	P4_6
S1 – 3	5 – 6	P4_7
S1 – 4	7 – 8	P4_8

Table 6. DIP Switch Signals

5.3 Pushbutton Switches

Four pushbutton switches, S2 to S5, are provided to allow the switching of microcontroller input port states. The switches are connected to the microcontroller via jumper J55. Switches S2 and S3 are active low. Switches S4 and S5 are active high. Switches S2, S3 and S4 are normally open switches. Switch S5 is normally closed.

Switch	J55 Setting	Device signal	Active Level	Inactive State
S2	1 – 2	RESET	low	open
S3	3 – 4	INTP0	low	open
S4	5 – 6	NMI	high	open
S5	7 – 8	VCMP0IN	high	closed

Table 7. Pushbutton Switch Signals

5.4 Analog Input Potentiometers

Potentiometers R149 and R150 are provided to generate analog voltages to the microcontroller's analog inputs. The potentiometers are connected to the microcontroller via jumper J54. By adjusting the potentiometer screws, a voltage between GND and VDDIOF can be created.

Potentiometer	J54 Setting	Analog Input
R149	1 – 2	ADCA0I0
R150	3 – 4	ADCA0I1

Table 8. Analog Input Signals

5.5 Serial Communications Interfaces

RS232 transceivers, IC10 to IC12, are supplied to provide up to 6 serial interfaces. Each transceiver can be selectively connected to one of the microcontroller's UART interfaces (URTE) via jumpers J17 to J34. The serial interfaces are connected to the DB9 connectors CN13 to CN15 via jumpers J41 to J46.

Caution: The microcontroller's UART interfaces and the DB9 connectors are shared between the board's RS232 and LIN interfaces. Ensure that each interface is configured for the operation of only one, RS232 or LIN, using jumpers J17 to J47.

Transceiver	UART instance	Jumper Settings Device signal	
	LIDTEO	J17 1 – 2	URTE0TX
	URTE0	J18 1 – 2, J19 open	URTE0RX
	URTE2	J17 2 – 3	URTE2TX
IC10	UNTEZ	J18 2 – 3, J19 open	URTE2RX
1010	URTE1	J26 1 – 2	URTE1TX
	UKIEI	J27 1 – 2, J28 open	URTE1RX
	URTE3	J26 2 – 3	URTE3TX
	UKIES	J27 2 – 3, J28 open	URTE3RX
	URTE4	J20 1 – 2	URTE4TX
	URIE4	J21 1 – 2, J22 open	URTE4RX
	URTE6	J20 2 – 3	URTE6TX
IC11		J21 2 – 3, J22 open	URTE6RX
	URTE5	J29 1 – 2	URTE5TX
		J30 1 – 2, J31 open	URTE5RX
	URTE7	J29 2 – 3	URTE7TX
	OKTE	J30 2 – 3, J31 open	URTE7RX
	URTE8	J23 1 – 2	URTE8TX
	UNTEO	J24 1 – 2, J25 open	URTE8RX
	URTE10	J23 2 – 3	URTE10TX
IC12	UKIEIU	J24 2 – 3, J25 open	URTE10RX
1012	URTE9	J32 1 – 2	URTE9TX
	UKIE9	J33 1 – 2, J34 open	URTE9RX
	URTE11	J32 2 – 3	URTE11TX
	UNILII	J33 2 – 3, J34 open	URTE11RX

Table 9. Serial Communications Interfaces Signals

Connector	UART instance	Jum	per Settings	Signal
			1 – 2	RS232 0 TX
CN13B	LIDTEO/O	J41	3 – 4	RS232 0 RX
Lower	URTE0/2	J41	5 – 6	GND
			all others open	_
			1 – 2	RS232 1 TX
CN13A	URTE1/3	J42	3 – 4	RS232 1 RX
Upper	UKIE1/3	J42	5 – 6	GND
			all others open	_
			1 – 2	RS232 2 TX
CN14B	URTE4/6	J43	3 – 4	RS232 2 RX
Lower			5 – 6	GND
			all others open	_
	URTE5/7		1 – 2	RS232 3 TX
CN14A		J44	3 – 4	RS232 3 RX
Upper			5 – 6	GND
			all others open	_
			1 – 2	RS232 4 TX
CN15B	URTE8/10	J45	3 – 4	RS232 4 RX
Lower	UKTEO/TO	345	5 – 6	GND
			all others open	_
			1 – 2	RS232 5 TX
CN15A	LIDTEO/44	140	3 – 4	RS232 5 RX
Upper	URTE9/11	J46	5 – 6	GND
			all others open	_

Table 10. Serial Communications Interfaces Connectors

5.6 LIN Interfaces

LIN transceivers, IC13 to IC18, are supplied to provide up to 6 LIN bus interfaces. Each transceiver can be selectively connected to one of the microcontroller's LIN capable UART interfaces (URTE) via jumpers J17 to J34. The LIN bus interfaces are connected to the DB9 connectors CN13 to CN15 via jumpers J41 to J46.

In order to achieve LIN bus communication, it is necessary to supply the transceivers with the VBAT supply voltage in addition to the I/O voltage. See section 4 for board power supply details.

Caution: The microcontroller's UART interfaces and the DB9 connectors are shared between the board's RS232 and LIN interfaces. Ensure that each interface is configured for the operation of only one, RS232 or LIN, using jumpers J17 to J47.

Transceiver	UART instance	Jumper Settings	Device signal
	URTE0	J17 1 – 2	URTE0TX
IC13	UNTEU	J18 open, J19 1 – 2	URTE0RX
1013	URTE2	see precaution 6.1	URTE2TX
	UNTLZ	see precaution 6.1	URTE2RX
	URTE1	J26 1 – 2	URTE1TX
IC14	OKILI	J27 open, J28 1 – 2	URTE1RX
1014	URTE3	J26 2 – 3	URTE3TX
	UNIES	J27 open, J28 2 – 3	URTE3RX
	URTE4	J20 1 – 2	URTE4TX
IC15	OKTE4	J21 open, J22 1 – 2	URTE4RX
1015	URTE6	J20 2 – 3	URTE6TX
		J21 open, J22 2 – 3	URTE6RX
	URTE5	J29 1 – 2	URTE5TX
IC16		J30 open, J31 1 – 2	URTE5RX
1010	URTE7	J29 2 – 3	URTE7TX
		J30 open, J31 2 – 3	URTE7RX
	URTE8	J23 1 – 2	URTE8TX
IC17	UNTEO	J24 open, J25 1 – 2	URTE8RX
1017	URTE10	J23 2 – 3	URTE10TX
	UNTETU	J24 open, J25 2 – 3	URTE10RX
	URTE9	J32 1 – 2	URTE9TX
IC18	UKIE9	J33 open, J34 1 – 2	URTE9RX
1010	URTE11	J32 2 – 3	URTE11TX
	UNTETT	J33 open, J34 2 – 3	URTE11RX

Table 11. LIN Interfaces Signals

Connector	UART instance	Jum	per Settings	Signal
	LIDTE 2/0		7 – 8	LIN 0
CN13B		J41	9 – 10	VBAT
Lower	URTE0/2	J41	11 – 12	GND
			all others open	_
			7 – 8	LIN 1
CN13A	URTE1/3	J42	9 – 10	VBAT
Upper	UKTE1/3	J42	11 – 12	GND
			all others open	_
			7 – 8	LIN 2
CN14B	URTE4/6	J43	9 – 10	VBAT
Lower			11 – 12	GND
			all others open	_
	URTE5/7	J44	7 – 8	LIN 3
CN14A			9 – 10	VBAT
Upper			11 – 12	GND
			all others open	_
		J45	7 – 8	LIN 4
CN15B	URTE8/10		9 – 10	VBAT
Lower	UKTEO/TU	345	11 – 12	GND
			all others open	_
			7 – 8	LIN 5
CN15A	URTE9/11	J46	9 – 10	VBAT
Upper	UKTE9/TT	J40	11 – 12	GND
			all others open	_

Table 12. LIN Interfaces Connectors

5.7 CAN Interfaces

CAN transceivers, IC4 to IC9, are supplied to provide up to 6 CAN bus interfaces. Each transceiver can be selectively connected to one of the microcontroller's CAN interfaces (FCN, DCN) via jumper J10. The CAN bus interfaces are connected to the DB9 connectors CN10 to CN12. Jumpers J11 to J16 provide additional CAN bus interface configuration options including the ability to selectively interconnect CAN bus interfaces on-board CAN.

In order to achieve CAN bus communication, it is necessary to supply the transceivers with a nominal 5 volt supply voltage in addition to the I/O voltage. An on-board, 5 volt output regulator is provided to generate this voltage. See section 4 for board power supply details.

Transceiver	FCAN instance	J10 Setting	Device signal
IC4 (CAN0)	FCN0	1 – 2	FCN0RX
IC4 (CANO)	FCINO	3 – 4	FCN0TX
IC5 (CAN1)	FCN1	5 – 6	FCN1RX
ICS (CANT)	FONT	7 – 8	FCN1TX
ICE (CANS)	FCN2	9 – 10	FCN2RX
IC6 (CAN2)	FGINZ	11 – 12	FCN2TX
IC7 (CAN3)	FCN3	13 – 14	FCN3RX
	ruis	15 – 16	FCN3TX
IC8 (CAN4)	FCN4	17 – 18	FCN4RX
ICO (CAN4)	FCIN4	19 – 20	FCN4TX
IC9 (CAN5)	FCN5	21 – 22	FCN5RX
	FOND	23 – 24	FCN5TX

Table 13. CAN Interfaces Signals

Connector	FCAN instance	Jumpe	er Settings	Description
			1 – 2	enable termination resistor
CN10B	FCN0	J11	3 – 4	connect to on-board CAN bus
lower	FCINU	311	5 – 6	connect to on-board CAN bus
			7 – 8	connect DB9 pin 3 to GND
			1 – 2	enable termination resistor
CN10A	FCN1	J12	3 – 4	connect to on-board CAN bus
upper	FCIVI	JIZ	5 – 6	connect to on-board CAN bus
			7 – 8	connect DB9 pin 3 to GND
			1 – 2	enable termination resistor
CN11B	FCN2	J13	3 – 4	connect to on-board CAN bus
lower		J13	5 – 6	connect to on-board CAN bus
			7 – 8	connect DB9 pin 3 to GND
	FCN3	J14	1 – 2	enable termination resistor
CN11A			3 – 4	connect to on-board CAN bus
upper		314	5 – 6	connect to on-board CAN bus
			7 – 8	connect DB9 pin 3 to GND
		14.5	1 – 2	enable termination resistor
CN12B	FCN4		3 – 4	connect to on-board CAN bus
lower	FCIN4	J15	5 – 6	connect to on-board CAN bus
			7 – 8	connect DB9 pin 3 to GND
			1 – 2	enable termination resistor
CN10A	FCN5	J16	3 – 4	connect to on-board CAN bus
upper	FUND	310	5 – 6	connect to on-board CAN bus
			7 – 8	connect DB9 pin 3 to GND

Table 14. CAN Bus Interface Jumpers

5.8 FlexRay Interfaces

FlexRay transceivers, IC19 and IC20, provide a single FlexRay bus interface. The transceivers can be selectively connected to the microcontroller's FlexRay interface via jumper J47. The FlexRay bus interface is connected to the DB9 connectors CN16A and CN16B. Jumpers J48 to J51 provide additional FlexRay bus interface configuration options.

In order to achieve FlexRay bus communication, it is necessary to supply the transceivers with the VBAT supply voltage and a nominal 5 volt supply voltage in addition to the I/O voltage. See section 4 for board power supply details.

Transceiver	FlexRay instance	J47 Setting	Device signal
	FLX0	1 – 2	FLX0TXDA
IC19		3 – 4	FLX0RXDA
		5 – 6	FLX0TXENA
IC20		7 – 8	FLX0TXDB
		9 – 10	FLX0RXDB
		11 – 12	FLX0TXENB

Table 15. FlexRay Interfaces Signals

Jumpe	er Settings	Description
	1 – 2	enable termination resistor
J51	3 – 4	enable termination resistor
331	5 – 6	connect BP A to CN16A pin 7
	7 – 8	connect BM A to CN16A pin 2
1-2		enable termination resistor
J48	3 – 4	enable termination resistor
1 – 2 connect		connect BP B to CN16A pin 7
J49	2 – 3	connect BP B to CN16A pin 8
J50	1 – 2	connect BM B to CN16A pin 2
	2 – 3	connect BM B to CN16A pin 4

Table 16. FlexRay Bus Interface Jumpers

5.9 On-chip Debug and Flash Programming Connectors

Connectors CN20 and CN21 are provided to allow the connection of microcontroller debug and flash programming tools. The debug and flash programming signals are connected to the microcontroller via jumper J56. Connector CN20 is a 16 pin, 0.1" pin pitch connector. The pinout of this connector allows the connection of the Renesas PG-FP4 and PG-FP5 flash programmers, or the Renesas MINICUBE2 debugger. Connector CN21 is a 20 pin, 0.1" pin pitch connector. The pinout of this connector allows the connection of the Renesas MINICUBE debugger.

J56 Setting	Device signal
1 – 12	DCUTDI/FLCS0SI/FLUR0RX
3 – 10	DCUTDO/FLCS0SO/FLUR0TX
5 – 8	DCUTCK/FLCS0SCI
7 – 6	DCUTMS
9 – 4	DCUTRST
11 – 2	DCURDY
13 – 14	RESET
15 – 16	FLMD0

Table 17. Debug and Flash Programming Signals

CN20 Pin	Device signal
1	GND
2	RESET
3	DCUTDO/FLCS0SO/FLUR0TX
4	VDDIOF
5	DCUTDI/FLCS0SI/FLUR0RX
6	_
7	DCUTCK/FLCS0SCI
8	DCUTRDY
9	DCUTRST
10	_
11	_
12	DCUTMS
13	_
14	FLMD0
15	_
16	_

CN21 Pin	Device signal
1	GND
2	DCUTCK
3	GND
4	DCUTMS
5	GND
6	DCUTDI
7	GND
8	DCUTRST
9	GND
10	_
11	GND
12	RESET
13	GND
14	FLMD0
15	GND
16	DCUTRDY
17	GND
18	DCUTDO
19	GND
20	VDDIOF

Table 18. Debug and Flash Programming Connectors

6. Precautions

6.1 Limitation of URTE2 for LIN communication

URTE2 cannot be used for LIN communication. The URTE2RX pin is multiplexed with the FLMD1 function, and requires pull-down resistor R60. The RXD pin of the LIN transceiver is an open-drain output, and requires pull-up resistor R107. When URTE2 is connected to LIN0 via jumpers J17 and J19, the resulting receive signal is invalid. As a result, URTE2 cannot be used for LIN communication and pins 2 and 3 of jumper J19 should be left, unconnected.

6.2 LEDs will not illuminate

Board Version and Serial Number Applicability

Board Toroion and Conai Hambor Applicability				
AB-050-Fx4-X-Q-NONE-V2				
CA00C0071D - CA00C0100D	other			
applicable	not applicable			

Components Q2 and Q3 are populated with an incorrect component that prevents LEDs D4, D5, D10 and D11 from illuminating. No damage can occur as a result of an attempt to operate the LEDs. Note that indicator LEDs for power rails VDDA and VDDB (D4 and D5) will not illuminate. There is no workaround for this precaution.

RENESAS

7. Schematic

REVISION HISTORY	V850E2/Fx4 Application Board User's Manual: Hardware

Rev.	Date	Description	
		Page	Summary
1.00	Jun 4, 2010	_	First Edition issued
1.01	Aug 10, 2010	7	Corrected CN4 label in table
		23	Added Precautions Section
1.02	Jan 13, 2010	23	Added precaution 6.2
1.03	May 21, 2012	1, 4, 6	Added board version information

V850E2/Fx4 Application Board User's Manual: Hardware

Publication Date: Rev.1.00 Jun 4, 2010

Rev.1.03 May 21, 2012

Published by: Renesas Electronics America

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.

SALES OFFICES

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.

Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany

Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.

7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Ámcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.

11F., Samik Lavied or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

V850E2/Fx4 Application Board

