Grupo 25 – AMD – AP05

Exercício 2.b)

Foi feita a análise da classe lenses, e neste caso as frequências vinham de acordo com as frequências nominais que apareceram no dataset, pelo que a soma de todos dava o valor total de entradas.

Exercício 2.c)

Neste caso optámos por ver a probabilidade da prescrição ser relacionada com o tipo de lene, e foi possível identificar que as pessoas com lentes rígidas tinham mais tendência a sofrer de hipermetropia.

Também foi apresentado as percentagens dentro do grupo que no caso sugerido era de 75% e no tal era de 12.5%.

Exercício 2.e)

Neste exercício focámo-nos na relação entre tipo de lente e astigmatismo, e conseguimos sugerir com alguma confiança, que pessoas com astigmatismo apenas usam lentes moles, enquanto que quem possui astigmatismo tem de utilizar lentes rígidas.

Exercício 3.a)

No primeiro teste, os resultados foram 0% para a existência de valores ausentes, isto deve-se a todos os valores apresentados no dataset serem válidos e estarem presentes.

De seguida foi feita uma cópia do ficheiro lenses, no qual retirámos valores de todas os atributos, e a incidência foi retirar mais de idade e prescrição, e apenas um de estigmatismo e de tear_rate. A classe lenses manteve-se com 0% de valores ausentes pois não retirámos nenhum. No atributo age, retirámos 5 entradas correspondentes a 20.8%, no atributo prescription retirámos 4 valores correspondendo a 16.7% do total, e retirámos 1 entrada tanto a astigmatic como a tear_rate, que correspondeu em ambos a 4.2%.

Por fim, com o ficheiro "lenses_with_missingValues", faltaram 4 entradas de age, correspondendo a 16.7%, faltou uma entrada de em tear_rate, correspondendo a 4.2% e faltaram 2 entradas de lenses, correspondendo a 8.3%. Nos restantes atributos não houve valores ausentes.

Exercício 3.b)

O que a matriz de contingência mostra, é o mesmo que a regra 1R demonstra, excepto que demonstra de forma diferente. O 1R demonstraria a relação como erros/ valor total de entradas, e poderia ser simplificado como fração, enquanto que a matriz de contingência apresenta exclusivamente os valores que estão dentro dos parâmetros.

Por exemplo no caso de relação entre lentes e idade, para a idade prepresbyopic a matriz de contingência apresenta "respectation | none: 2.0 | soft: 2.0 | " enquanto que a regra 1R apresentaria "respectation | none: 3/5 | soft: 3/5 | ", no entanto acabam por conter a mesma informação.

Exercício 3.f)

O primeiro gráfico apresenta a matriz de erro, que é apresentada no ficheiro Excel do exercício anterior. Isto apresenta o erro que cada combinação prescrição – lente apresenta. Um dos casos curiosos é

hipermetropia – lentes rígidas, que apresenta uma taxa de erro de 1, pelo que de acordo com o dataset podemos sugerir, que uma pessoa que tenha hipermetropia não pode usar lentes rígidas.

Neste exercício a segunda tabela apresenta os mesmo valores para a regra 1R apresentados no slide. Mas isto apenas nas regras apresentadas, que são ('prescription', 'myope', 'hard') e ('prescription', 'hypermetrope', 'none'), sendo que a única diferença é que no slide são apresentados na forma de erro / total, enquanto que aqui são apresentadas na forma de fração.