Работа 3.4.2 Закон Кюри-Вейса

Работу выполнил Матренин Василий Б01-006

Цель работы: Изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

В работе используются: Катушка самоиндукции с образцом из гадолиния, термостат, частотометр, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

1 Теория

При повышении температуры T возрастает дезориентирующее действие теплового движения частиц, и магнитная восприимчивость ферромагнетиков убывает по закону Кюри-Вейсса:

$$\chi \propto \frac{1}{T - \Theta_p},\tag{1}$$

где Θ_p - парамагнитная точка Кюри исследуемого вещества. При $T<\Theta_p$ образец обладает ферромагнитными свойствами и может сохранять намагниченность, при $T>\Theta_p$ образец ведёт себя как парамагнетик, для которого связь B и H однозначная: $I=\chi H,\, B=\mu H$. Для исследования выбран гадолиний, так как его точка Кюри лежит в интервале комнатных температур.

2 Схема установки

Рис 1. Схема установки

Схема установки изображена на рис. 1. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC-автогенератора. Катушка с образцом помещена в стеклянный сосуд, залитый трансформаторным маслом. Температура образца регулируется с помощью термостата. При изменении температуры по закону Кюри-Вейсса изменяется магнитная восприимчивость образца в катушке и, следовательно, изменяется самоиндуктивность этой катушки. При этом изменяется период колебаний автогенератора. Поэтому получаем, что:

$$\frac{1}{\chi} \sim (T - \Theta_p) \sim \frac{1}{(\tau^2 - \tau_0^2)},\tag{2}$$

где τ и τ_0 - период колебаний в цепи с сердечником в катушке и без него соответственно. Измерения проводятся в интервале температур от 14 °C до 40 °C

3 Ход работы

3.1 Подготовил приборы к работе

Оценил допустимую ЭДС термопары: $dV = k * \Delta T = 12$ мВ, где k = 24град/мВ и $\Delta T = 0.5$ °С.

3.2 Исследовал проверяемую зависимость

Исследовал зависимость периода колебания генератора от темературы образца, отмечая период колебаний τ по частотомеру, а температуру T - по показаниям цифрового вольтметра. Снятые значения представлены в таблице 1.

		1		-
$t,^{\circ}C$	au, MKC	T, K	χ	$\frac{1}{\chi}$
10,10	10,18	283,10	0,52	1,92
10,85	10,17	283,85	0,52	1,93
11,94	10,14	284,94	0,51	1,96
12,90	10,11	285,90	0,50	2,00
14,87	10,02	287,87	0,47	2,11
16,75	9,88	289,75	0,43	2,30
18,72	9,64	291,72	0,36	2,75
20,75	9,23	293,75	0,25	4,00
22,70	8,88	295,70	0,16	6,29
24,69	8,68	297,69	0,11	9,46
26,68	8,58	299,68	0,08	12,53

Также данные представлены на рисунке 2.

Puc 2. $\Gamma pa\phi u\kappa 1/\chi(t)$

По графику получаю значение точки Кюри для Гадолиния: $\Theta_p = 20 \pm 1^{\circ} C.$

4 Вывод

В ходе данной лабараторной работы закон Кюри-Вейсса был эксперементально подтвержден. Так же полученное значение точки Кюри для гадолиния совпало с табличным в пределах погрешности.