

Varianta 26

Subiectul I.

- **a)** $AC = \sqrt{5}$.
- **b**) 3.
- c) $AC = BC = \sqrt{5}$, deci triunghiul ABC este isoscel.
- **d**) $z \in \{-i, i\}.$
- **e**) a = 0, b = 1.
- **f**) Aria cercului este $S = 4\pi$.

Subjectul II.

- 1.
- **a**) 0.
- **b**) a = 1.
- c) 6 funcții injective.
- **d)** $x \in \left\{ \frac{1}{9}, 1 \right\}.$
- e) Probabilitatea căutată este $p = \frac{1}{2}$
- 2
- a) $f(f(-2)) = \frac{2}{3}$.
- **b)** Dreapta de ecuație y=1 este asimptota căutată.
- c) $f'(x) = \frac{1}{(x+1)^2}$, $\forall x \in \mathbf{R} \setminus \{-1\}$.
- **d**) f''(x) < 0, $\forall x > -1$, așadar funcția f este concavă pe $(-1, \infty)$.
- e) $\lim_{x\to\infty}\int_{0}^{x}f(t)dt=+\infty$.

Subjectul III.

- **a**) $\det(A_0) = -1$.
- **b)** $\det(A_0 + xI_3) = x^3 + 2x^2 x 1, \ \forall \ x \in \mathbf{R}$.
- c) Evident.
- **d**) Avem $c = f_A(0) = \det(A)$.
- e) $\det(A + \sqrt{2} \cdot I) = 0 \iff f_A(\sqrt{2}) = 0$ şi din c) obţinem că
- $f_A(x) = (x^2 2) \cdot (x + a)$, cu rădăcina întreagă x = -a.
- f) Se demonstrează prin reducere la absurd.

g) Avem $\det (A) = f_A(0)$ și $\det (A + I_3) = f_A(1)$ și din **c**) știm că $f_A \in \mathbf{Z}[X]$. Deoarece $f_A(0)$ și $f_A(1)$ sunt impare, din **f**) rezultă că f_A nu are rădăcini întregi. Este evident că în acest caz f_A , care are coeficientul dominant egal cu 1, nu are rădăcini raționale .

Subjectul IV.

a)
$$\int_{-2}^{2} f_1(x) dx = 0$$
 şi $\int_{-2}^{2} f_2(x) dx = -\frac{8}{3}$.

- **b)** $f_3(x) = x^3 3x$, pentru $x \in \mathbf{R}$.
- c) Evident.
- **d**) Se demonstrează prin inducție, folosind că pentru $k \in \mathbb{N}^*$, $f_k(2\cos x) = 2\cos kx$
- și $f_{k+1}(2\cos x) = 2\cos(k+1)x$ și demonstrând că $f_{k+2}(2\cos x) = 2\cos(k+2)x$.
- e) Pentru $n \in \mathbb{N}^*$, se efectuează în integala din dreapta schimbarea de variabilă $2\cos t = x$.
- **f**) Pentru orice $n \in \mathbb{N}^*$, $f_n(1) \stackrel{\text{c}}{=} 2\cos\frac{n\pi}{3}$.

Mai mult, $f_{6k}(1) = 2 \rightarrow 2$ și $f_{6k+1}(1) = 1 \rightarrow 1$,

deci şirul $(f_n(1))_{n \in \mathbb{N}^*}$ este divergent, având două subşiruri cu limite diferite.

g) Pentru orice $n \in \mathbb{N}^*$, folosind punctele e) și d)

$$a_n = \int_{-2}^{2} f_n(x) dx = \frac{2(1 - (-1)^{n+1})}{n+1} + \frac{2((-1)^{n-1} - 1)}{n-1}, \text{ de unde rezultă că } \lim_{n \to \infty} a_n = 0.$$

Folosind relația din ipoteză, rezultă concluzia.