FONCTIONS DE LA VARIABLE COMPLEXE FICHE & MÉTHODES

d'après le cours MA104 - ENSTA Paris

A. Wayoff

2022-2023

Table des matières

1	Fonctions analytiques	2
	1.1 Séries entières	2
	1.2 Fonctions analytiques : définition et exemples	2
	1.3 Principe des zéros isolés	2
2	Fonctions holomorphes et intégrales de chemin	3
	2.1 Fonctions holomorphes	3
	2.2 Intégrales de chemin	3
	2.3 Théorème de Cauchy (v1)	4
3	Suite de la théorie de CAUCHY	4
	3.1 Théorème de Cauchy (v2)	4
	3.2 Formule de Cauchy	4
	3.3 Conséquences	4
	3.3.1 Théorème de Liouville	4
4	Théorème des résidus	5
	4.1 Série de Laurent	5
	4.2 Singularités isolées	5
	4.3 Théorème des résidus	5
5	Fonctions logarithme et racine carrée, coupures	7
	5.1 Préliminaires	7
	5.2 Primitive de fonctions holomorphes	7
	5.3 La fonction logarithme	7
	5.4 La racine carrée	7
6	Transformations conformes	7
	6.1 Inversibilité des fonctions holomorphes	7
	6.2 Propriétés des transformations conformes	8
	6.3 L'exemple des homographies	8
	6.4 Théorème de RIEMANN	8
7	Outils	9

1 Fonctions analytiques

1.1 Séries entières

DÉFINITION 1.1 (Série entière & Rayon de convergence). Une série entière est une fonction de la forme

$$z \mapsto S(z) = \sum_{n=0}^{+\infty} a_n z^n$$
 où $a_n \in \mathbb{C}$.

On pose

$$\rho(S) \stackrel{\text{def}}{=} \left\{ r \geqslant 0 \; \middle| \; \sum_{n=0}^{+\infty} |a_n| r^n < +\infty \right\}$$

le rayon de convergence de S.

MÉTHODE 1.1. En pratique, on calcule le rayon de convergence d'une série entière S en utilisant l'une des formules

$$\frac{1}{\rho(S)} = \limsup |a_n|^{1/n} \in \mathbb{R}_+ \cup \{+\infty\}, \quad (\text{Hadamard})$$
$$\frac{1}{\rho(S)} = \lim \frac{|a_{n+1}|}{|a_n|} \in \mathbb{R}_+ \cup \{+\infty\}. \quad (\text{D'Alembert})$$

1.2 Fonctions analytiques : définition et exemples

DÉFINITION 1.2 (Fonction analytique). Soient Ω un ouvert de \mathbb{C} et $f: \Omega \to \mathbb{C}$.

- Soit $z_0 \in \Omega$, la fonction f est développable en série entière en z_0 s'il existe une série entière S telle que $\rho(S) > 0$ et $f(z) = S(z z_0)$.
- La fonction f est analytique dans Ω si elle est développable en série entière autour de tout $z \in \Omega$.

DÉFINITION 1.3 (Fonction entière). Une fonction est dite *entière* si elle est analytique sur \mathbb{C} .

REMARQUE 1.1. Une fonction rationnelle est analytique dans C privé de ses pôles.

L'analyticité entraîne la continuité et la dérivabilité.

1.3 Principe des zéros isolés

DÉFINITION 1.4 (Connexité). Un ouvert Ω de \mathbb{C} est dit *connexe* si les propriétés équivalentes suivantes sont vérifiées :

- (i) Si z_0 et z_1 sont deux points de Ω , il existe une application continue $\gamma \colon [0\,;1] \subset \mathbb{R} \to \Omega$ telle que $\gamma(0) = z_0$ et $\gamma(1) = z_1$.
- (ii) Si A et B sont deux ouverts de $\mathbb C$ tels que $A \cup B = \Omega$ et $A \cap B = \emptyset$, alors l'un des deux ouverts A ou B est vide.

DÉFINITION 1.5 (Ensemble des zéros d'une fonction). On note Z(f) l'ensemble des zéros de la fonction f:

$$Z(f) \stackrel{\text{def}}{=} \{ z \in \Omega \mid f(z) = 0 \}.$$

REMARQUE 1.2. Attention au calcul des zéros d'une fonction. Par exemple, prenons la fonction $f: z \mapsto \sin(1/z)$. A priori, les zéros de f ne sont pas uniquement les zéros de la fonction analogue définie sur \mathbb{R} . Il se trouve que c'est le cas mais pour s'en convaincre, il faut repasser par l'écriture du sinus complexe et de z sous sa forme algébrique.

DÉFINITION 1.6 (Point d'accumulation). Le point z^* est un point d'accumulation de la fonction f si

$$z^* = \lim_{n \to \infty} z_n$$
 tel que $f(z_n) = 0$.

THÉORÈME 1.1 (Zéros isolés). Soient Ω connexe et f une fonction analytique dans Ω . Si Z(f) a un point d'accumulation $z^* \in \Omega$, alors $f \equiv 0$ dans Ω .

MÉTHODE 1.2. Pour montrer qu'une fonction est constante sur un domaine, il est judicieux d'utiliser le théorème de zéros isolés (ou le théorème de LIOUVILLE).

THÉORÈME 1.2 (Prolongement analytique). Soit \mathcal{O} et Ω deux ouverts de \mathbb{C} , tels que $\mathcal{O} \subset \Omega$ et Ω est connexe, et soit f une fonction analytique dans \mathcal{O} . Alors il existe au plus une fonction g analytique dans Ω telle que f=g dans \mathcal{O} . Dans ce cas, la fonction g est appelée le prolongement analytique de f à l'ouvert Ω

2 Fonctions holomorphes et intégrales de chemin

2.1 Fonctions holomorphes

Dans toute la suite, on identifie $f\colon z\in\mathbb{C}\to\mathbb{C}$ à $\tilde{f}\colon (x,y)\in\mathbb{R}^2\to\mathbb{C}$.

Théorème 2.1 (CNS de \mathbb{C} -dérivabilité). La fonction f est dérivable en z_0 si et seulement si \tilde{f} est différentiable en (x_0, y_0) et vérifie les relations de CAUCHY-RIEMANN :

$$\frac{\partial \tilde{f}}{\partial x} + i \frac{\partial \tilde{f}}{\partial y} = 0.$$

Dans ce cas,

$$f'(z_0) = \frac{\partial \tilde{f}}{\partial x}.$$

On pose $\tilde{f}(x,y) = P(x,y) + iQ(x,y)$ avec P et Q à valeurs réelles. Les conditions de Cauchy-Riemann s'écrivent

$$\begin{cases} \frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y} = 0\\ \frac{\partial P}{\partial y} + \frac{\partial Q}{\partial x} = 0 \end{cases}.$$

REMARQUE 2.1.

différentiabilité $< \mathbb{C}$ -dérivabilité

DÉFINITION 2.1 (Fonction holomorphe).

f holomorphe dans $\Omega \iff f$ dérivable en tout $z \in \Omega$.

THÉORÈME 2.2 (Conservation de l'holomorphie par dérivation).

$$f \in H(\Omega) \implies f^{(n)} \in H(\Omega) \ \forall n \geqslant 1.$$

- Si $\nabla f \equiv 0$ sur un ouvert Ω connexe, alors $f \equiv 0$ sur Ω .
- La fonction $z \mapsto \text{Re}(z)$ n'est dérivable nulle part.

PROPOSITION 2.1. Soient Ω un ouvert connexe de $\mathbb C$ et $f:\Omega\to\mathbb C$ une fonction holomorphe. Les conditions suivantes sont équivalentes :

- -f = cste,
- $-\operatorname{Re}(f) = \operatorname{cste},$
- $-\operatorname{Im}(f) = \operatorname{cste},$
- $f(\overline{z}) = f(z).$

2.2 Intégrales de chemin

DÉFINITION 2.2 (Paramétrage et intégrale de chemin). Un chemin est un couple (γ, g) où g est le paramétrage de γ :

$$g: [a;b] \to \mathbb{C},$$

 $g([a,b]) = \gamma.$

On suppose de plus que

— g est injectif sur [a;b[,

- g est \mathscr{C}^1 par morceaux,
- $-g'(t) \neq 0 \text{ p.p. } t \in [a;b].$

Soient γ un chemin paramétré par g est f une fonction continue sur γ , alors l'intégrale de f sur γ s'écrit

$$\int_{\gamma} f(z) dz \stackrel{\text{def}}{=} \int_{a}^{b} f(g(t))g'(t) dt.$$

RÉSULTAT À CONNAÎTRE. Sur un lacet γ ,

$$\int_{\gamma} \frac{\mathrm{d}z}{z} = 2\mathrm{i}\pi.$$

Méthode 2.1. Paramétrage d'une ellipse dans $\mathbb C$:

$$g(t) = a\cos(t) + ib\sin(t).$$

LEMME 2.1 (d'estimation).

$$\left| \int_{\gamma} f(z) \, \mathrm{d}z \right| \leqslant \log(\gamma) \sup_{z \in \mathrm{Im}(\gamma)} |f(z)|$$

2.3 Théorème de CAUCHY (v1)

THÉORÈME 2.3 (CAUCHY). Soient Ω un ouvert de \mathbb{C} , γ le bord de Ω et $f \in H(\Omega) \cap \mathscr{C}^0(\overline{\Omega})$. Alors,

$$\int_{\gamma} f(z) \, \mathrm{d}z = 0.$$

3 Suite de la théorie de CAUCHY

3.1 Théorème de CAUCHY (v2)

THÉORÈME 3.1 (CAUCHY). Soient Ω un ouvert borné de \mathbb{C} et $\gamma = \gamma_1 \cup \cdots \cup \gamma_N$ le bord orienté du compact $\overline{\Omega}$. Alors,

$$f \in H(\Omega) \cap \mathscr{C}^0(\overline{\Omega}) \implies \int_{\gamma} f(z) dz = 0 \Longrightarrow \sum_{i=1}^N \int_{\gamma_i} f(z) dz = 0.$$

3.2 Formule de CAUCHY

PROPOSITION 3.1 (Formule de CAUCHY). Soient $\Omega \subset \mathbb{C}$ borné, γ multi-lacet bord orienté de $\overline{\Omega}$ et $f \in H(\Omega) \cap \mathscr{C}^0(\overline{\Omega})$. Alors,

$$\forall a \in \Omega, \quad f(a) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(z)}{z - a} dz.$$

MÉTHODE 3.1. Calcul de

$$\int_0^{2\pi} \frac{\mathrm{d}t}{a^2 \cos^2 t + b^2 \sin^2 t}.$$

Identifier les parties imaginaires avec $\int_{\gamma} \frac{dz}{z}$.

3.3 Conséquences

$$f \in H(\Omega) \implies f$$
 analytique sur Ω

4

3.3.1 Théorème de LIOUVILLE

THÉORÈME 3.2 (LIOUVILLE). Soit f une fonction **entière** telle qu'il existe C > 0 et $p \in \mathbb{N}$ tels que $|f(z)| \leq C(1+|z|^p)$ pour tout $z \in \mathbb{C}$. Alors f est un polynôme de degré inférieur ou égal à p.

Remarque 3.1. En particulier, si f est bornée, alors f est constante.

4 Théorème des résidus

4.1 Série de LAURENT

DÉFINITION 4.1 (Série de LAURENT). Une série de LAURENT est une série de fonctions de la forme

$$S(z) = \sum_{n = -\infty}^{+\infty} a_n z^n \quad \text{où } a_n \in \mathbb{C}.$$

Théorème 4.1. Si $\rho(S^+)\rho(S^-) > 1$ alors la série de Laurent

$$S(z) = S^+(z) + S^-\left(\frac{1}{z}\right)$$

converge dans la couronne

$$\mathcal{C} = \left\{ z \in \mathbb{C} \mid \frac{1}{\rho(S^-)} < |z| < \rho(S^+) \right\}$$

vers une fonction holomorphe : $S \in H(\mathcal{C})$.

Théorème 4.2. Soient r_1 , r_2 tels que $0 < r_1 < r_2 < +\infty$ et $\mathcal{C} \stackrel{\text{def}}{=} \{z \in \mathbb{C}, r_1 < |z| < r_2\}$. Si $f \in H(\mathcal{C})$, alors f est développable en série de LAURENT :

$$f(z) = S^+(z) + S^-\left(\frac{1}{z}\right) \quad \forall z \in \mathcal{C}$$

avec $\rho(R^+) \geqslant r_2$ et $\rho(S^-) \geqslant \frac{1}{r_1}$.

4.2 Singularités isolées

DÉFINITION 4.2 (Disque pointé).

$$\dot{D}(z_0, r) \stackrel{\text{def}}{=} \left\{ z \in \mathbb{C} \mid 0 < |z - z_0| < r \right\}$$

$$\mathcal{N} \stackrel{\text{def}}{=} \operatorname{card} \{ n < 0 \mid a_n \neq 0 \} \leqslant +\infty$$

Classification des singularités :

- $\mathcal{N}=0$: la singularité en z_0 est fictive
- $\mathcal{N} \neq 0$ et $\mathcal{N} < +\infty$: la fonction f a un pôle d'ordre m en z_0 .
- $\mathcal{N} = +\infty$: la fonction f a une singularité essentielle en z_0 .

Comment connaître le type de la singularité sans connaître le développement de LAURENT?

LEMME 4.1. Soit
$$f \in H(\dot{D}(z_0, r))$$
. On suppose que $(z - z_0)f(z) \xrightarrow[z \to z_0]{} \ell \in \mathbb{C}$.

- $si \ \ell = 0 : z_0$ est une singularité fictive,
- $si \ \ell \neq 0 : z_0$ est un pôle d'ordre 1 (simple).

4.3 Théorème des résidus

DÉFINITION 4.3 (Résidu). Soit $f \in H(\dot{D}(z_0, r))$ qui s'écrit sous la forme $f(z) = \sum_{n=-\infty}^{+\infty} a_n (z - z_0)^n$. Le résidu de la fonction f en z_0 est

$$\operatorname{Res}(f, z_0) \stackrel{\text{def}}{=} a_{-1}.$$

Par exemple, si la fonction f a un pôle simple en 0, elle s'écrit sous la forme

$$f(z) = \frac{a_{-1}}{z} + h(z)$$

avec h analytique.

LEMME 4.2. Soit $f \in H(\dot{D}(z_0, r))$,

$$\forall \varepsilon \in \left]0\,; r\right[\quad \int_{\gamma_\varepsilon(z_0)} f(z) \,\mathrm{d}z = 2\mathrm{i}\pi \mathrm{Res}(f,z_0)$$

où $\gamma_{\varepsilon}(z_0)$ est le cercle de centre z_0 , de rayon ε , orienté dans le sens direct.

THÉORÈME 4.3 (des résidus). Soient Ω ouvert borné de classe \mathscr{C}^1 par morceaux, de bord orienté γ . On pose $\mathcal{P} = \{z_1, \dots, z_p\} \subset \Omega$ et soit $f \in H(\Omega \setminus \mathcal{P}) \cap \mathscr{C}^0(\overline{\Omega} \setminus \mathcal{P})$. Alors,

$$\int_{\gamma} f(z) dz = 2i\pi \sum_{j=1}^{p} \operatorname{Res}(f, z_{j}).$$

MÉTHODE 4.1. Calcul de l'ordre d'un résidu

Soit z_0 un pôle de f. Son ordre p est tel que

$$(z-z_0)^p f(z) \xrightarrow[z \to z_0]{} \ell \neq 0$$

ou bien tel que

$$\lim_{z \to z_0} f^{(p)}(z) = \ell \neq 0.$$

Si quel que soit l'entier p, la fonction $(z-z_0)^p f(z)$ n'est pas bornée dans le disque pointé $\dot{D}(z_0,r)$, alors f admet une **singularité** essentielle en z_0 .

MÉTHODE 4.2 (Calcul de résidus).

- $-(z-z_0)f(z) \xrightarrow[z\to z_0]{} \ell \neq 0 \iff z_0 \text{ pôle simple et } \operatorname{Res}(f,z_0) = \ell.$
- Si f a un pôle **double** :

$$\operatorname{Res}(f, z_0) = \lim_{z \to z_0} \frac{\mathrm{d}}{\mathrm{d}z} ((z - z_0)^2 f(z)).$$

— Si f a un pôle d'ordre p,

$$\operatorname{Res}(f, z_0) = \lim_{z \to z_0} \frac{1}{(p-1)!} ((z - z_0)^p f(z))^{(p-1)}.$$

— Cas d'une fraction : soit z_0 une racine de Q,

$$\operatorname{Res}\left(\frac{P}{Q}, z_0\right) = \lim_{z \to z_0} \frac{z - z_0}{Q(z)} P(z) = \lim_{z \to z_0} \frac{z - z_0}{Q(z) - Q(z_0)} P(z) = \frac{P(z_0)}{Q'(z_0)}.$$

MÉTHODE 4.3.

$$\operatorname{Res}(f,\mathbf{i}) = \overline{\operatorname{Res}(f,-\mathbf{i})}$$

1 est une singularité essentielle de $z\mapsto\sin\frac{1}{1-z}$. z_0 pôle simple. $f=\frac{u}{v}$.

Res
$$(f, z_0) = \frac{u(z_0)}{v'(z_0)}$$
.

LEMME 4.3 (JORDAN). Soit f telle que (z-a)f(z) tende vers 0 lorsque z tend vers a. L'intégrale

$$\int_C f(z) \, \mathrm{d}z$$

prise le long d'un cercle de rayon infiniment petit décrit autour de a tend vers 0.

5 Fonctions logarithme et racine carrée, coupures

5.1 Préliminaires

L'intégrale d'une dérivée sur un lacet est nulle. On en déduit par exemple que la fonction $z\mapsto \frac{1}{z}$ n'admet pas de dérivée dans \mathbb{C}^* .

5.2 Primitive de fonctions holomorphes

DÉFINITION 5.1 (Primitive d'une fonction holomorphe). Soit $\Omega \subset \mathbb{C}$, ouvert et soit $f \in H(\Omega)$. On appelle primitive F de f une fonction telle que F' = f. Si Ω est **connexe**, la fonction F est unique à une constante additive près.

DÉFINITION 5.2 (Ouvert étoilé). On dit que Ω est un *ouvert étoilé* s'il existe $a \in \Omega$ tel que pour tout $z \in \Omega$, $[a;z] \subset \Omega$.

LEMME 5.1. Soit $\Omega \subset \mathbb{C}$ un ouvert étoilé et soit $f \in H(\Omega)$. Alors il existe $F \in H(\Omega)$ telle que F'(z) = f(z) pour tout $z \in \Omega$.

Soient Ω un ouvert étoilé et f une fonction différentiable de Ω dans $\mathbb C$ telle que son gradient est nul dans Ω . Alors f est constante dans Ω .

5.3 La fonction logarithme

DÉFINITION 5.3 (Détermination principale du log). On a défini une fonction $z \mapsto \log z$ telle que

- $-\log z \in H(\mathbb{C} \setminus \mathbb{R}_{-}),$
- $(\log z)' = \frac{1}{z},$
- $-\log z = \log x \text{ si } x > 0,$
- $-\log z = \log \rho + i\theta \text{ si } z = \rho e^{i\theta} \text{ avec } -\pi < \theta < \pi.$

Soient $x \in \mathbb{R}_-$ et $\varepsilon > 0$: $\log(x + \mathrm{i}\varepsilon) \xrightarrow[\varepsilon \to 0]{} \log|x| + \mathrm{i}\pi$ et $\log(x - \mathrm{i}\varepsilon) \xrightarrow[\varepsilon \to 0]{} \log|x| - \mathrm{i}\pi$

Le saut du log à travers sa coupure est donc égal à $2i\pi$.

La fonction $z \mapsto \log z$ peut être prolongée par continuité sur \mathbb{R}_{-}^* à partir de $\log(x + i\varepsilon) \to \log|x| + i\pi$.

5.4 La racine carrée

DÉFINITION 5.4 (**Détermination principale de** \sqrt{z}). On pose $z = \rho e^{i\theta}$ avec $-\pi < \theta < \pi$. On définit la fonction $z \mapsto \sqrt{z}$ par

 $\sqrt{z} = \exp\left(\frac{1}{2}(\log \rho + \mathrm{i}\theta)\right) = \sqrt{\rho} \mathrm{e}^{\mathrm{i}\frac{\theta}{2}}.$

PROPOSITION 5.1.

- $-z \mapsto \sqrt{z} \in H(\mathbb{C} \setminus \mathbb{R}_{-}),$
- $-\sqrt{z} = \sqrt{x} \ pour \ z = x > 0,$
- $-\left(\sqrt{z}\right)'=\frac{1}{2\sqrt{z}},$
- $-\operatorname{Re}\sqrt{z} \geqslant 0.$

Son saut à travers la coupure est égal à $2i\sqrt{\rho}$.

Remarque 5.1. Attention, on n'a pas toujours $\sqrt{z_1 z_2} = \sqrt{z_1} \sqrt{z_2}$.

6 Transformations conformes

Dans la suite, on abrégera « transformation conforme » par « TC ».

6.1 Inversibilité des fonctions holomorphes

LEMME 6.1. Soient $f \in H(\Omega)$ et $z_0 \in \Omega$. Si $f'(z_0) \neq 0$, alors f est localement inversible et f^{-1} est holomorphe.

THÉORÈME 6.1. Soient $\Omega \in \mathbb{C}$ un ouvert **connexe** et $f \in H(\Omega)$ non constante.

- (i) f est une application ouverte, i.e. que l'image d'un ouvert est un ouvert. En paticulier, $f(\Omega) = \widetilde{\Omega}$ est un ouvert.
- (ii) Si f est injective sur Ω , alors f' ne s'annule jamais dans Ω , donc il existe un inverse global $f^{-1} \in H(\widetilde{\Omega})$.

$$\forall z \in \Omega \quad f^{-1}(f(z)) = z, (f^{-1})'(f(z)) = \frac{1}{f'(z)}.$$

6.2 Propriétés des transformations conformes

Proposition 6.1. La TC conserve les angles et l'orientation.

Proposition 6.2. La TC transforme une fonction harmonique en une fonction harmonique.

6.3 L'exemple des homographies

DÉFINITION 6.1 (Fonction homographique). Soient $(a, b, c, d) \in \mathbb{C}^4$ tels que $ad - bc \neq 0$. Une fonction homographique f est de la forme

$$f(z) = \frac{az+b}{cz+d}.$$

PROPOSITION 6.3. Une fonction homographique f réalise une bijection de $\mathbb{C} \setminus \left\{-\frac{d}{c}\right\}$ dans $\mathbb{C} \setminus \left\{\frac{a}{c}\right\}$ dont la réciproque est la fonction homographique

$$f^{-1}(z) = -\frac{dz - b}{cz - a}.$$

Une fonction homographique est une composition des transformations élémentaires suivantes :

- Translations : $z \mapsto z + \alpha$, $\alpha \in \mathbb{C}$,
- Rotations: $z \mapsto ze^{i\theta}, \ \theta \in \mathbb{R}$,
- Homothéties : $z \mapsto \lambda z, \lambda \in \mathbb{R}_+$,
- Inversion : $z \mapsto \frac{1}{z}$.

PROPOSITION 6.4. Soit \mathcal{F} l'ensemble des droites et des cercles de \mathbb{C} . Une homographie transforme un élément de \mathcal{F} (privé de z^*) en un autre élément de \mathcal{F} (privé de \tilde{z}^*).

6.4 Théorème de RIEMANN

DÉFINITION 6.2 (Simple connexité). Un ouvert $\Omega \subset \mathbb{C}$ connexe est *simplement connexe* si pour tout lacet $\gamma \subset \Omega$, l'intérieur du lacet γ est dans Ω .

Remarque 6.1. Une couronne n'est pas simplement connexe.

Théorème 6.2 (RIEMANN). Si Ω est simplement connexe et si $\Omega \neq \mathbb{C}$ alors, il existe une TC qui transforme Ω en le disque unité.

— Attention aux erreurs de signe dans le parcours des chemin.

$$\frac{\left||x| - |y|\right| \leqslant |x - y|}{\frac{1}{|Re^{i\theta} + 1|}} \leqslant \frac{1}{|R - 1|}$$

7 Outils

— Principe de l'argument.

Soit Ω un ouvert borné de \mathbb{C} de bord orienté γ et soit f une fonction holomorphe dans un ouvert contenant $\overline{\Omega}$, et non identiquement nulle.

Si f ne s'annule pas sur γ ,

$$\frac{1}{2\mathrm{i}\pi} \int_{\gamma} \frac{f'(z)}{f(z)} \,\mathrm{d}z = \mathcal{Z}(f,\Omega)$$

où $\mathcal{Z}(f,\Omega)$ désigne le nombre de zéros de f situés dans Ω , comptés avec leur ordre de multiplicité.

— Théorème de Morera.

Soit Ω un ouvert convexe de \mathbb{C} . Une fonction continue $f \colon \Omega \to \mathbb{C}$ est holomorphe si et seulement si pour tout triangle T inclus dans Ω , $\int_{\partial T} f(z) \, \mathrm{d}z = 0$.

— Inégalité de CAUCHY.

Soit f une fonction holomorphe dans un disque de centre z_0 et de rayon R et soit $r \in]0; R[$. On note $M(r) = \sup_{|z-z_0|=r} |f(z)|$. Alors, pour tout $n \in \mathbb{N}$,

$$\left| \frac{f^{(n)}(z_0)}{n!} \right| \leqslant \frac{M(r)}{r^n}.$$

Voir aussi Méthodes de calcul d'intégrales de contour – Wikipédia