Principles of Machine Learning: Exercise 4

Alina Pollehn (3197257), Julian Litz (3362592), Manuel Hinz (3334548) Felix Göhde (3336445), Felix Lehmann (3177181), Caspar Wiswesser (3221493) Adrian Köring (3347785), Greta Günther (3326765), Linus Mallwitz (3327653) Niklas Mueller-Goldingen (3363219), Jennifer Kroppen (2783393)

Exercise 4.1: Overview

- Goal: Minimize $f(\mu) := \frac{1}{n} \sum_{i=1}^{n} ||x_i \mu||$
- ② Alternative formulation: Find w > 0 s.t. $1^{\mathsf{T}}w = 1$ and

$$w = \underset{w}{\operatorname{argmin}} \underbrace{\frac{1}{n} \sum_{j=1}^{n} \|x_j - Xw\|^2}_{=:g(w)}$$

We want to use the Frank-Wolfe algorithm to solve our optimization problem, therefore we also need the gradient:

$$\nabla g = 2X^{\mathsf{T}}X[w - \frac{1}{n}1]$$

Exercise 4.1: Implementation

```
def grad_g(w,n):
    vecW=np.ones(n)/n
    return 2*X.T@X@(w-vecW)
def frank_wolfe_minimize_avg_dist(X,T=10000):
    n=X[0,:].shape[0]
    wt=np.zeros(n)
    wt[0]=1
    for t in range(T):
        gamma_t=2/(t+2)
        imin=np.argmin(grad_g(wt,n))
        wt *= gamma_t
        wt[imin] += gamma_t
    return X@wt
```

Exercise 4.1: Error analysis

Because we know the minimizer (which is just the mean of our vectors), we can calculate our error $\epsilon := \|\hat{\mu} - \mu\|$ as a function of the number of iterations. We also know that the error should be in $O(\frac{1}{\tau})$.

We also ran least squares to estimate the exponent similarly to Task 1-3. This yields $-1.05 \approx -1$, which also consistent with our theoretical error bound.

Exercise 4.2: Proving two identities

Let X be our data matrix and $w = \frac{1}{n} 1_n$ and $z \in \mathbb{R}^n$. Then the following identities hold:

$$\operatorname{tr}[\overbrace{X^{\mathsf{T}}X}^{A_{1}}wz^{\mathsf{T}}] = z^{\mathsf{T}}X^{\mathsf{T}}Xw$$

$$\operatorname{tr}[\underbrace{zw^{\mathsf{T}}X^{\mathsf{T}}X}_{A_{2}}wz^{\mathsf{T}}] = z^{\mathsf{T}}z \cdot w^{\mathsf{T}}X^{\mathsf{T}}Xw = z^{\mathsf{T}}(zw^{\mathsf{T}}X^{\mathsf{T}}X)w$$

It suffices to show the following lemma (using either $A=A_1$ or $A=A_2$):

Lemma 1

For a matrix $A \in \mathbb{R}^{n \times n}$, $w = \frac{1}{n} \mathbf{1}_n \in \mathbb{R}^n$ and $z \in R^n$ the following equality holds:

$$tr(Awz^{\mathsf{T}}) = z^{\mathsf{T}}Aw$$

Proof of Lemma 1

Proof.

$$\in \mathbb{R}_{\cdot}^{n \times}$$

- First we use $tr(A \widehat{wz^T}) = tr(wz^TA)$ (because we apply a cyclic permutation)
- **2** Now $a := z^T A$ is just a row vector, therefore

$$wa = \begin{pmatrix} \frac{a_1}{n} & \cdots & \frac{a_n}{n} \\ \vdots & \vdots & \vdots \\ \frac{a_1}{n} & \cdots & \frac{a_n}{n} \end{pmatrix} \in \mathbb{R}^{n \times n}$$

$$\implies \operatorname{tr}(wa) = \sum_{i=1}^n \frac{a_i}{n} = \sum_{i=1}^n \frac{a_i}{n} \cdot 1 = \sum_{i=1}^n a_i \frac{(1_n)_i}{n}$$

$$= (z^T A)w$$

Exercise 4.3: Overview

① Given *n* data points $(x_j)_{i=1}^n, x_j \in \mathbb{R}^m$ find *k* points which are maximally different:

$$\hat{S} = \underset{S \subset X, |S| = k}{\operatorname{argmax}} \sum_{x_i \in S} \sum_{x_j \in S} ||x_i - x_j||^2$$

- Two approaches
 - Farthest first: Iteratively select points, s.t. the minimum of the distances to the previously selected points is maximized
 - Repeatedly drawing random subsets of size k and only keeping the maximal subset w.r.t the objective function
- Results
 - The first and last algorithm give similar results w.r.t to the objective function, but look very different.
 - Converges in probability for fixed n, k

Comparing our two main approaches

- Greedy:
 - Rather fast
 - Harder to justify why it works
- Repeated drawing:
 - Run time determines expected error
 - Almost surely converges for fixed n, k
 - ullet Randomized algorithm \Longrightarrow outliers are unlikely, but can happen
 - Theory: Order statistics are well understood
- The greedy approach is stable and fast
- Repeated drawing is random, slower, but comes with a strong theoretical foundation and convergence

Farthest first approach: Code

```
import random
def farthest_first_traversal(X, num_points=3):
    data = X.T
    subset = [random.choice(data)] # Select the first point randomly
    while len(subset) < num_points:</pre>
        # Calculate vectorized distance matrix between X and subset S
        diff = data[np.newaxis, ...] - np.array(subset)[:, np.newaxis, :] # N, S, 2
        dist = np.linalg.norm(diff, axis=-1)
                                                                            # N. S
        min distances = dist.min(axis=0) # distance determined via nearest subset point
        subset.append(data[np.argmax(min_distances)]) # point furthest away
    return np.array(subset).T
```

Randomized drawing: Code

 Exercise 4.1
 Exercise 4.2
 Exercise 4.3
 Exercise 4.4
 Exercise 4.5
 Exercise 4.6

 000
 00
 0000●000
 0000
 000
 00
 00

Exercise 4.3: Results: Blobs

Figure: Farthest first result: Blobs

Figure: Randomized drawing result: Blobs

 Exercise 4.1
 Exercise 4.2
 Exercise 4.3
 Exercise 4.4
 Exercise 4.5
 Exercise 4.6

 000
 00
 00000●00
 0000
 00
 00
 00

Exercise 4.3: Results: Faces

Figure: Randomized drawing results

Figure: Farthest first results

Randomized drawing: A typical realisation

Figure: In practice randomized drawing reaches a stable maximum rather quickly

Figure: Randomized drawing: Run time

Exercise 4.3: Convergence and run time

Figure: Result for the blobs

Figure: Result for the faces

k-means clustering: Two perspectives

well known formulation: Minimize:

$$\mu_1, \dots, \mu_k = \operatorname*{argmin}_{\mu_1, \dots, \mu_k} \sum_{i=1}^k \sum_{x_i \in C_i} \|x_i - \mu_i\|^2$$

where $(C_i)_i$ are the clusters and μ_i are the centroids of each cluster.

Alternative formulation:

$$\mu_1, \dots, \mu_k = \operatorname*{argmin}_{\mu_1, \dots, \mu_k} \sum_{i=1}^k \sum_{x_j \in C_i} z_{ij} \|x_j - \mu_i\|^2$$

where $z_{ij} \in \{0,1\}$ and $\sum_{i=1}^k z_{ij} = 1$

The second formulation can be solved by a Frank-Wolfe-procedure:

```
def FW_KMEANS_VERSION1(X,k,T_max):
    idx=np.random.randint(0,X.shape[1],k)
    M=X[:,idx]
    for t in range(T_max):
        Z = 1/k *np.ones((k,X.shape[1]))
        Z = FW_UPDATE_Z(X,M,Z, 1)
        M = X @ Z.T @ np.linalg.inv(Z@Z.T)
    return M,Z
```

```
def FW_UPDATE_Z(X,M,Z, t_max):
    ei= np.identity(Z.shape[0])
    for t in range(t_max):
        G_z = 2* (M.T @ M @ Z - M.T @ X)
        #vectorize for loop
        o=np.argmin(G_z, axis=0)
        Z += 2/(t+2) * (ei[o].T- Z)
    return Z
```

Exercise 4.4.1: Results

Figure: Result of the naive algorithm

Figure: Result of FW-k-means Version 1

1.0

1.5

Clearly the results of the naive algorithm are worthless, while also crashing considerably more!

Exercise 4.4.2: Results

- While using random data points to construct M causes stability issues, because of two matrix inversions, these were manageable
- Given that our solution for Exercise 4.3 is still rather slow for large k, it was still faster to use random, rather than maximally different, data points.

Figure: Result of FW-k-means Version 1

Exercise 4.5:

- Code is very similar to exercise 4.4:
 - uses the same vectorization to get rid of the for-loop
 - ullet uses random data points to generate M before the first iteration
- Main difference: no matrix inversion ⇒ more robust
- Similar results: comparable difference when comparing both, or two results of the same version

Exercise 4.5: Results

Figure: Result of FW-*k*-means Version 2 for threeBlobs.csv

Figure: Result of FW-*k*-means Version 2 for faceMatrix.npy

Exercise 4.6: Comparisson

 Similar optimization problem compared to exercise 4.5: We only drop the constraint

$$Z \in \{0,1\}^{k \times n}$$

- Similar code to exercise 4.5
- Result: We get a set of "exaggerated" representations for each cluster, rather than the mean of each cluster

```
def FW ARCHETYPAL ANALYSIS(X.k. T max=100):
    idx=np.random.randint(0,X.shape[1],k)
    A=X[:.idx]
    for t in range(T_max):
        Z = 1/k *np.ones((k,X.shape[1]))
        Z = FW\_UPDATE\_Z(X,A,Z, t_max=100)
        Y = 1/X.shape[1] *np.ones((X.shape[1],k))
        Y = FW_update_Y(X, Y, Z, t_max=100)
        A = XQY
    return A,Y,Z
```

Exercise 4.1 Exercise 4.2 Exercise 4.3 Exercise 4.4 Exercise 4.5 **Exercise 4.6**000 00 0000000 000 000 00

Exercise 4.6: Results

Figure: Archetypes of threeBlobs.csv

Figure: Archetypes of faceMatrix.npy