VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

LAB REPORT on

Artificial Intelligence (23CS5PCAIN)

Submitted by

Shreyas K (1BM22CS271)

in partial fulfillment for the award of the degree of BACHELOR OF ENGINEERING in COMPUTER SCIENCE AND ENGINEERING

Saritha A. N.
Assistant Professor
Department of Computer Science and Engineering

B.M.S. COLLEGE OF ENGINEERING
(Autonomous Institution under VTU)
BENGALURU-560019
Sep-2024 to Jan-2025

B.M.S. College of Engineering,

Bull Temple Road, Bangalore 560019

(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Lab work entitled "Artificial Intelligence (23CS5PCAIN)" carried out by **Shreyas K** (**1BM22CS271**), who is bonafide student of **B.M.S. College of Engineering.** It is in partial fulfillment for the award of **Bachelor of Engineering in Computer Science and Engineering** of the Visvesvaraya Technological University, Belgaum. The Lab report has been approved as it satisfies the academic requirements in respect of an Artificial Intelligence (23CS5PCAIN) work prescribed for the said degree.

Saritha A. N.
Assistant Professor
Department of CSE, BMSCE

Dr. Jyothi S Nayak Professor & HOD Department of CSE, BMSCE

Index

Sl. No.	Date	Experiment Title	Page No.	
1	30-9-2024	30-9-2024 Implement Tic –Tac –Toe Game Implement vacuum cleaner agent		
2	7-10-2024	Implement 8 puzzle problems using Depth First Search (DFS) Implement Iterative deepening search algorithm	10-16	
3	14-10-2024 Implement A* search algorithm		17-27	
4	21-10-2024 Implement Hill Climbing search algorithm to solve N-Queens problem		28-31	
5	28-10-2024	28-10-2024 Simulated Annealing to Solve 8-Queens problem		
6	11-11-2024	11-11-2024 Create a knowledge base using propositional logic and show that the given query entails the knowledge base or not.		
7	2-12-2024 Implement unification in first order logic		39-44	
8	2-12-2024 Create a knowledge base consisting of first order logic statements and prove the given query using forward reasoning.		45-47	
9	16-12-2024	16-12-2024 Create a knowledge base consisting of first order logic statements and prove the given query using Resolution		
10	16-12-2024	Implement Alpha-Beta Pruning.	52-54	

Github Link:

 $\underline{https://github.com/Sakshishetty24/Artificial-Intelligence}$

Program 1
Implement Tic –Tac –Toe Game
Implement vacuum cleaner agent
Tic-Tac-Toe

The Tac Toe game
Algorithm.
*) Snitially we should execte a 3x3 table (using 20 away) with empty spaces.
* Let player x make the first move.
2) Print the board (In empty state) 2) let the current player (ie x) make the Birst more (now & column wise)
A bor valid move - -> check if the input is a number se its blux 0 se 2 -> Make sure that it is entered into the empty cell.
2) Next player 2 will make the move
2) Win (case) - 3) if an the (x) or (0) in the same row; column or diagonal.
the statement will be privated.
a m

Algorithm:

```
Code:
def check_win(board, r, c):
  if board[r - 1][c - 1] == 'X':
     ch = "O"
  else:
     ch = "X"
  if ch not in board[r - 1] and '-' not in board[r - 1]:
     return True
  elif ch not in (board[0][c - 1], board[1][c - 1], board[2][c - 1]) and '-' not in (board[0][c - 1],
board[1][c - 1], board[2][c - 1]):
     return True
  elif ch not in (board[0][0], board[1][1], board[2][2]) and '-' not in (board[0][0], board[1][1],
board[2][2]):
     return True
  elif ch not in (board[0][2], board[1][1], board[2][0]) and '-' not in (board[0][2], board[1][1],
board[2][0]):
     return True
  return False
def displayb(board):
 print(board[0])
 print(board[1])
 print(board[2])
board=[['-','-','-'],['-','-'],['-','-']]
displayb(board)
xo=1
flag=0
while '-' in board[0] or '-' in board[1] or '-' in board[2]:
 if xo==1:
  print("enter position to place X:")
  x=int(input())
  y=int(input())
  if(x>3 or y>3):
   print("invalid position")
   continue
  if(board[x-1][y-1]=='-'):
   board[x-1][y-1]='X'
   xo=0
   displayb(board)
  else:
   print("invalid position")
  continue
  if(check_win(board,x,y)):
```

```
flag=1
      break
 else:
   print("enter position to place O:")
   x=int(input())
   y=int(input())
   if(x>3 or y>3):
    print("invalid position")
    continue
   if(board[x-1][y-1]=='-'):
    board[x-1][y-1]='O'
    xo=1
    displayb(board)
   else:
    print("invalid position")
   continue
   if(check_win(board,x,y)):
      print("0 wins")
      flag=1
      break
if flag==0:
 print("Draw")
print("Game Over")
 ['-', '-', '-']
['-', '-', '-']
['-', '-', '-']
enter position to place X:
 ['x', '0', '-']
['x', '-', '-']
['-', '-', '-']
enter position to place 0:
 2
['x', '0', '-']
['x', '0', '-']
['-', '-', '-']
enter position to place X:
   'X', '0', '-']
'X', '0', '-']
'X', '-', '-']
  Game Over
```

print("X wins")

```
['-', '-', '-']
['-', '-', '-']
['-', '-', '-']
enter position to place X:
['X', '-', '-']
['-', '-', '-']
['-', '-', '-']
enter position to place 0:
['X', '-', '-']
['-', '0', '-']
['-', '-', '-']
enter position to place X:
['x', '0', '-']
['-', '0', '-']
['-', '-', 'x']
 enter position to place X:
['X', '0', '-']
['-', '0', '-']
['-', 'X', 'X']
enter position to place 0:
['X', '0', '-']
['-', '0', '-']
['0', 'X', 'X']
enter position to place X:
['X', '0', '-']
['X', '0', '-']
['0', 'X', 'X']
 enter position to place 0:
['x', '0', '-']
['x', '0', '0']
['0', 'x', 'x']
 enter position to place X:
Draw
```

Vacuum Cleaner

```
10/24
                 Vaccum Cleaner
                                        A Snittal state
                                        1) Action
                                        5) Good test
                                        6) Posti cost.
      Algo:
               create an array with both
 =>
            both the room are clean
          return both rooms are dean
 =>
     Take user input o or I (clean or dirti
                 rooms (a orb)
      Pars it to check bunction
```

Algorithm:

Code:

count = 0

def rec(state, loc):

global count

if state['A'] == 0 and state['B'] == 0:

print("Turning vacuum off")

return

```
if state[loc] == 1:
    state[loc] = 0
    count += 1
    print(f"Cleaned {loc}.")
    next_loc = 'B' if loc == 'A' else 'A'
    state[loc] = int(input(f"Is {loc} clean now? (0 if clean, 1 if dirty): "))
    if(state[next_loc]!=1):
     state[next_loc]=int(input(f"Is {next_loc} dirty? (0 if clean, 1 if dirty): "))
if(state[loc]==1):
```

```
rec(state,loc)
  else:
    next loc = 'B' if loc == 'A' else 'A'
    dire="left" if loc=="B" else "right"
   print(loc,"is clean")
   print(f"Moving vacuum {dire}")
   if state[next loc] == 1:
      rec(state, next_loc)
state = \{ \}
state['A'] = int(input("Enter state of A (0 for clean, 1 for dirty): "))
state ['B'] = int(input("Enter state of B (0 for clean, 1 for dirty): "))
loc = input("Enter location (A or B): ")
rec(state, loc)
print("Cost:",count)
print(state)
                                                       Enter state of A (0 for clean, 1 for dirty): 0
                                                       Enter state of B (0 for clean, 1 for dirty): 1
                                                       Enter location (A or B): A
                                                       A is clean
                                                       Moving vacuum right
                                                       Cleaned B.
Enter state of A (0 for clean, 1 for dirty): 0
                                                       Is B clean now? (0 if clean, 1 if dirty): 0
Enter state of B (0 for clean, 1 for dirty): 0
                                                       Is A dirty? (0 if clean, 1 if dirty): 0
Enter location (A or B): A
                                                       B is clean
Turning vacuum off
                                                       Moving vacuum left
Cost: 0
                                                       Cost: 1
 {'A': 0, 'B': 0}
Enter state of A (0 for clean, 1 for dirty): 1
Enter state of B (0 for clean, 1 for dirty): 0
Cleaned A.
Is A clean now? (0 if clean, 1 if dirty): 0
Is B dirty? (0 if clean, 1 if dirty): 0
Moving vacuum right
 Enter state of A (0 for clean, 1 for dirty): 1
 Enter state of B (0 for clean, 1 for dirty): 1
 Enter location (A or B): A
Cleaned A.
 Is A clean now? (0 if clean, 1 if dirty): 0
 A is clean
```

```
Enter state of B (0 for clean, 1 for dirty): 1
Enter location (A or B): A
Cleaned A.
Is A clean now? (0 if clean, 1 if dirty): 0
A is clean
Moving vacuum right
Cleaned B.
Is B clean now? (0 if clean, 1 if dirty): 0
Is A dirty? (0 if clean, 1 if dirty): 0
B is clean
Moving vacuum left
Cost: 2
{'A': 0, 'B': 0}
```

Program 2

Implement 8 puzzle problems using Depth First Search (DFS)
Implement Iterative deepening search algorithm

8 puzzle using DFS Algorithm:


```
Algorithm
             algo
```

```
Code:

def dfs(initial_board, zero_pos):

stack = [(initial_board, zero_pos, [])]

visited = set()

while stack:

current_board, zero_pos, moves = stack.pop()
```

if is_goal(current_board):

```
return moves, len(moves) # Return moves and their count
```

visited.add(tuple(current_board))

for neighbor_board, neighbor_pos in get_neighbors(current_board, zero_pos): if tuple(neighbor_board) not in visited: stack.append((neighbor_board, neighbor_pos, moves + [neighbor_board]))

```
return None, 0 # No solution found, return count as 0
```

```
# Initial state of the puzzle
initial_board = [1, 2, 3, 0, 4, 6, 7, 5, 8]
zero_position = (1, 0) # Position of the empty tile (0)
# Solve the puzzle using DFS
solution, move_count = dfs(initial_board, zero_position)
if solution:
  print("Solution found with moves ({} moves):".format(move_count))
  for move in solution:
     print_board(move)
     print() # Print an empty line between moves
else:
  print("No solution found.")
```

Implement Iterative deepening search algorithm

_	Sterative - Deepwing (DFS)
=2	
-	Auxtion Iterative - Deepenin
-	a solution or hair search (prof)
-	has death = 0 to a 1
-	result & Death Milled
-	if result to what is
-	function Iterative - Deepening - search (problem) return bon depth = 0 to & do versut < Depth - United - search (problem depth) if versut \$\neq\$ cutoff then return result
-	The state of the s
-	1 11
-	13
	P 5 8 God- 4 5 6
	0 38
DepH	-1 u 6 2 3
	7 5 8 1 4 6 7 4 6
F	7 5 8 9 8
Ī	1 1 2 3 1 2 3
	17/2 8 145 6
	J. R
	172 3
	718 84450 6 11
	1718 Solution found!
_	
_	
_	Algorithm:

Code:

from collections import deque

```
class PuzzleState:
  def __init_(self, board, zero_pos, moves=0, previous=None):
     self.board = board
    self.zero_pos = zero_pos # Position of the zero tile
                              # Number of moves taken to reach this state
     self.moves = moves
     self.previous = previous # For tracking the path
  def is_goal(self, goal_state):
    return self.board == goal_state
  def get_possible_moves(self):
     moves = []
     x, y = self.zero\_pos
     directions = [(-1, 0), (1, 0), (0, -1), (0, 1)] # Up, Down, Left, Right
     for dx, dy in directions:
       new_x, new_y = x + dx, y + dy
       if 0 \le \text{new}_x < 3 and 0 \le \text{new}_y < 3:
          new_board = [row[:] for row in self.board]
```

```
# Swap the zero tile with the adjacent tile
          new_board[x][y], new_board[new_x][new_y] = new_board[new_x][new_y],
new_board[x][y]
          moves.append((new_board, (new_x, new_y)))
     return moves
def ids(initial_state, goal_state, max_depth):
  for depth in range(max_depth):
     visited = set()
     result = dls(initial_state, goal_state, depth, visited)
    if result:
       return result
  return None
def dls(state, goal_state, depth, visited):
  if state.is_goal(goal_state):
     return state
  if depth == 0:
     return None
  visited.add(tuple(map(tuple, state.board))) # Mark this state as visited
  for new_board, new_zero_pos in state.get_possible_moves():
     new state = PuzzleState(new board, new zero pos, state.moves + 1, state)
     if tuple(map(tuple, new board)) not in visited:
       result = dls(new_state, goal_state, depth - 1, visited)
       if result:
          return result
  visited.remove(tuple(map(tuple, state.board))) # Unmark this state
  return None
def print_solution(solution):
  path = []
  while solution:
     path.append(solution.board)
     solution = solution.previous
  for board in reversed(path):
     for row in board:
       print(row)
     print()
# Define the initial state and goal state
initial state = PuzzleState(
  board=[[1, 2, 3],
      [4, 0, 5],
      [7, 8, 6]],
  zero_pos=(1, 1)
```

```
goal_state = [
  [1, 2, 3],
  [4, 5, 6],
  [7, 8, 0]
# Perform Iterative Deepening Search
max_depth = 20 # You can adjust this value
solution = ids(initial_state, goal_state, max_depth)
if solution:
  print("Solution found:")
  print_solution(solution)
else:
  print("No solution found.")
 Solution found:
 [1, 2, 3]
 [4, 0, 5]
 [7, 8, 6]
 [1, 2, 3]
 [4, 5, 0]
 [7, 8, 6]
 [1, 2, 3]
 [4, 5, 6]
 [7, 8, 0]
```

Program 3
Implement A* search algorithm

Algori	ithm:				
rigori	0				10
A	Draw the state space diagram for (A)	B	Hanhattan	2 3	War.
	g(n)=0 2 8 3 1 2 3	-		1 6 V 7 UP	2 4 2 2
	h(n) = 4 1 6 4 8 4 7 6 5		101813	1283	1010
	Smitial Final/good.	964	164	7 6 5	160
Level-1	2 8 3 2 8 3 2 8 3 1 6 4 1 4 1 6 4	glay b	1 7 5 (n)=1,+2+1+1+1=6 7(n)=6+1=7	KW=(+2+1=4 FCM-5	h(x)=1+1+1=1=6
	1+5=6 1+3=4 (+5=6) myour =		2 F3	- Jup	COLEGE STORE
wel-2.	2 8 3 2 3 2 8 3 180th	1.2	2 3 3	184	28374
2.	765 765 765		1 6 5 Kn): 5422 Pln/: 5+2=7	1 6 S h(n): 3 f(n): 05	2 6 5 h(n): 5 f(n): 67
	2+3+5 2+3+5 (2+34=6) 1-2+1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-		1 2 3	(2 3	DX
evels	2	L-3	7 6 S	765	
	3+2-5 3+4 =7		h(m)=2 f(m)=5	P(v)=6	
	J D L&RX.		1 2 3		3
level-u	2 6 5		3 6 5		700000
	4+1 = 5		1, R.		
	[123]		1 2 3	4	
level -9	765		76	2	
	5+0=5 god state.		Goal 9k	<i>y</i>	
-					

```
Code:
Misplaced Tiles
def mistil(state, goal):
  count = 0
  for i in range(3):
     for j in range(3):
       if state[i][j] != goal[i][j]:
          count += 1
  return count
def findmin(open_list, goal):
  minv = float('inf')
  best_state = None
  for state in open_list:
     h = mistil(state['state'], goal)
     f = state['g'] + h
     if f < minv:
       minv = f
       best state = state
  open_list.remove(best_state)
  return best_state
def operation(state):
  next_states = []
  blank_pos = find_blank_position(state['state'])
  for move in ['up', 'down', 'left', 'right']:
     new_state = apply_move(state['state'], blank_pos, move)
     if new state:
       next_states.append({
          'state': new_state,
          'parent': state,
          'move': move,
          'g': state['g'] + 1
  return next_states
def find_blank_position(state):
  for i in range(3):
     for j in range(3):
       if state[i][j] == 0:
          return i, j
  return None
def apply_move(state, blank_pos, move):
  i, j = blank_pos
  new_state = [row[:] for row in state]
  if move == 'up' and i > 0:
```

```
new_state[i][j], new_state[i - 1][j] = new_state[i - 1][j], new_state[i][j]
  elif move == 'down' and i < 2:
     new_state[i][j], new_state[i+1][j] = new_state[i+1][j], new_state[i][j]
  elif move == 'left' and j > 0:
     new state[i][j], new state[i][j - 1] = new state[i][j - 1], new state[i][j]
  elif move == 'right' and i < 2:
     new_state[i][j], new_state[i][j+1] = new_state[i][j+1], new_state[i][j]
  else:
     return None
  return new state
def print_state(state):
  for row in state:
     print(' '.join(map(str, row)))
initial_state = [[2,8,3], [1,6,4], [7,0,5]]
goal\_state = [[1,2,3], [8,0,4], [7,6,5]]
open_list = [{'state': initial_state, 'parent': None, 'move': None, 'g': 0}]
visited states = []
while open_list:
  best_state = findmin(open_list, goal_state)
  print("Current state:")
  print state(best state['state'])
  h = mistil(best_state['state'], goal_state)
  f = best_state['g'] + h
  print(f"g(n): {best_state['g']}, h(n): {h}, f(n): {f}")
  if best_state['move'] is not None:
     print(f"Move: {best state['move']}")
  if mistil(best_state['state'], goal_state) == 0:
     goal_state_reached = best_state
     break
  visited states.append(best state['state'])
  next states = operation(best state)
  for state in next_states:
     if state['state'] not in visited states:
       open_list.append(state)
moves = []
while goal_state_reached['move'] is not None:
  moves.append(goal state reached['move'])
  goal_state_reached = goal_state_reached['parent']
moves.reverse()
print("\nMoves to reach the goal state:", moves)
print("\nGoal state reached:")
```

print_state(goal_state)

```
Current state:
283
164
7 0 5
g(n): 0, h(n): 5, f(n): 5
Current state:
283
1 0 4
g(n): 1, h(n): 3, f(n): 4
Move: up
203
184
7 6 5
g(n): 2, h(n): 4, f(n): 6
Move: up
Current state:
283
014
7 6 5
g(n): 2, h(n): 4, f(n): 6
Move: left
Current state:
023
184
g(n): 3, h(n): 3, f(n): 6
Move: left
Current state:
084
765
g(n): 4, h(n): 2, f(n): 6
Move: down
```

```
Current state:
1 2 3
8 0 4
7 6 5
g(n): 5, h(n): 0, f(n): 5
Move: right

Moves to reach the goal state: ['up', 'up', 'left', 'down', 'right']

Goal state reached:
1 2 3
8 0 4
7 6 5
```

```
Manhattan Distance
def manhattan_distance(state, goal):
  distance = 0
  for i in range(3):
     for j in range(3):
       tile = state[i][j]
       if tile != 0: # Ignore the blank space (0)
          # Find the position of the tile in the goal state
          for r in range(3):
            for c in range(3):
               if goal[r][c] == tile:
                  target_row, target_col = r, c
                  break
          # Add the Manhattan distance (absolute difference in rows and columns)
          distance += abs(target row - i) + abs(target col - j)
  return distance
def findmin(open_list, goal):
  minv = float('inf')
  best state = None
  for state in open_list:
     h = manhattan_distance(state['state'], goal) # Use Manhattan distance here
     f = state['g'] + h
    if f < minv:
       minv = f
       best_state = state
  open_list.remove(best_state)
  return best_state
def operation(state):
  next_states = []
  blank_pos = find_blank_position(state['state'])
  for move in ['up', 'down', 'left', 'right']:
     new_state = apply_move(state['state'], blank_pos, move)
     if new_state:
       next_states.append({
          'state': new_state,
          'parent': state,
          'move': move,
          'g': state['g'] + 1
        })
  return next states
def find_blank_position(state):
  for i in range(3):
     for j in range(3):
       if state[i][j] == 0:
```

```
return i, j
  return None
def apply_move(state, blank_pos, move):
  i, j = blank pos
  new_state = [row[:] for row in state]
  if move == 'up' and i > 0:
     new_state[i][j], new_state[i - 1][j] = new_state[i - 1][j], new_state[i][j]
  elif move == 'down' and i < 2:
     new_state[i][j], new_state[i+1][j] = new_state[i+1][j], new_state[i][j]
  elif move == 'left' and i > 0:
     new_state[i][j], new_state[i][j - 1] = new_state[i][j - 1], new_state[i][j]
  elif move == 'right' and i < 2:
     new_state[i][j], new_state[i][j+1] = new_state[i][j+1], new_state[i][j]
  else:
     return None
  return new_state
def print state(state):
  for row in state:
     print(' '.join(map(str, row)))
# Initial state and goal state
initial_state = [[2,8,3], [1,6,4], [7,0,5]]
goal\_state = [[1,2,3], [8,0,4], [7,6,5]]
# Open list and visited states
open_list = [{'state': initial_state, 'parent': None, 'move': None, 'g': 0}]
visited states = []
while open_list:
  best state = findmin(open list, goal state)
  print("Current state:")
  print_state(best_state['state'])
  h = manhattan_distance(best_state['state'], goal_state) # Using Manhattan distance here
  f = best_state['g'] + h
  print(f"g(n): {best_state['g']}, h(n): {h}, f(n): {f}")
  if best_state['move'] is not None:
     print(f"Move: {best state['move']}")
  print()
  if h == 0: # Goal is reached if h == 0
     goal_state_reached = best_state
     break
```

```
visited_states.append(best_state['state'])
next_states = operation(best_state)

for state in next_states:
    if state['state'] not in visited_states:
        open_list.append(state)

# Reconstruct the path of moves
moves = []
while goal_state_reached['move'] is not None:
    moves.append(goal_state_reached['move'])
    goal_state_reached = goal_state_reached['parent']
moves.reverse()

print("\nMoves to reach the goal state:", moves)
print("\nGoal state reached:")
print_state(goal_state)
```

```
Current state:
283
164
7 0 5
g(n): \theta, h(n): 5, f(n): 5
283
1 0 4
765
g(n): 1, h(n): 4, f(n): 5
Current state:
203
184
765
g(n): 2, h(n): 3, f(n): 5
Move: up
Current state:
023
765
g(n): 3, h(n): 2, f(n): 5
Move: left
Current state:
084
765
g(n): 4, h(n): 1, f(n): 5
Move: down
```

```
Current state:
1 2 3
8 0 4
7 6 5
g(n): 5, h(n): 0, f(n): 5
Move: right

Moves to reach the goal state: ['up', 'up', 'left', 'down', 'right']

Goal state reached:
1 2 3
8 0 4
7 6 5
```

Program 4
Implement Hill Climbing search algorithm to solve N-Queens problem

Algorithm:


```
Code:
import random

def calculate_conflicts(board):
    conflicts = 0
    n = len(board)
    for i in range(n):
        for j in range(i + 1, n):
            if board[i] == board[j] or abs(board[i] - board[j]) == abs(i - j):
            conflicts += 1
```

```
return conflicts
def hill climbing(n):
  cost=0
  while True:
    # Initialize a random board
    current board = list(range(n))
    random.shuffle(current_board)
    current_conflicts = calculate_conflicts(current_board)
    while True:
       # Generate neighbors by moving each queen to a different position
       found better = False
       for i in range(n):
         for j in range(n):
            if j != current_board[i]: # Only consider different positions
               neighbor board = list(current board)
               neighbor_board[i] = j
               neighbor conflicts = calculate conflicts(neighbor board)
               if neighbor_conflicts < current_conflicts:
                 print_board(current_board)
                 print(current_conflicts)
                 print_board(neighbor_board)
                 print(neighbor conflicts)
                 current_board = neighbor_board
                 current_conflicts = neighbor_conflicts
                 cost += 1
                 found better = True
                 break
         if found better:
            break
       # If no better neighbor found, stop searching
       if not found better:
         break
    # If a solution is found (zero conflicts), return the board
    if current_conflicts == 0:
       return current_board, current_conflicts, cost
def print_board(board):
  n = len(board)
  for i in range(n):
    row = ['.'] * n
    row[board[i]] = 'Q' # Place a queen
    print(' '.join(row))
```

print()

```
print("======="")
# Example Usage
n = 4
solution, conflicts, cost = hill_climbing(n)
print("Final Board Configuration:")
print_board(solution)
print("Number of Cost:", cost)
```

```
Q . . .
. . Q .
. Q . .
Q . . .
. Q . .
Q . . .
Q . . .
. . Q .
. Q . .
. . Q .
. Q . .
. Q . .
Q . . .
Final Board Configuration:
```

Program 5
Simulated Annealing to Solve 8-Queens problem Algorithm:

Jun 24	LAB-6				4.1	11000		
20/10/24			1				-	
=7	Write a program to implement simulated		adout.	chuchue;	Cowayle 110 3	,0,35,	u, 27)	21.020
	Finnealing rigo		Result	Laurd:	1103	5 42		1
	function Simulated Annealing (problem, schooling)		Best route	stance/	(10 3 best	route:	21.0	203425
	CATAL COUNTY : MOUNDAU FIVE OF THE		Total	1	No. Mary		11/1	105
	In tal to a do		,		and assess	Ligan	· Long	
	T G (chalule (t)		1014	W. 10	242 O	24	10	
	I To has return current		hames	10	A A Un -	7. 3		_
	nest & a vardomly selected successor of current		British	1		4		
	DE & next. Value - current value		Day 1988	13. 43	7	10.00	10 11	
	if AE>0 then current € next		a line	1 1 1			100	ed I
	else curent & read only with					1		
	probability eselt		Leb J. Barrie	y less	11 - 3 - 12	100 11	and the	66
		-	A DESCRIPTION OF THE PERSON OF	at all	tor 33	316	100	
	0 0 0	-			Contract			
	Solution -	-	avas	× 66	(12) h	34/4	- 33	133
	for 8 Queens Rook!	-		3160		10000		
		-	2 4	2004	1244 1		4	4
	1) Initialize - start with arrangent of quiens	15		7	la del	1000	-	
	set initial temp & cooling personals		1	1	7		100	1
				7	124		1.13	4
h	2) Evaluale fitness:			40%	The second		77	3 1
	calculate no of conflicts blu queens		1	-	7	-		
	lower conflict : former fitness			2	The Real	(3	-	- 1
	S) Generale Neighbou :		-		Y.	3	10	7
	(reale a reighbour by coopping 2 grows			17		33	1	
	calculate its fitness				200	Jan 1		
	4) Areast as Doroct Neighbours.					3500		
	a) Accept on Reject Neighbour: 5) (modully Reduce to temp & report antil				Maria La			-
	the temp is very low /				out the		-	
	6) Return the best assurgement found							-

```
Code:
import numpy as np
from scipy.optimize import dual annealing
def queens_max(position):
  # This function calculates the number of pairs of queens that are not attacking each other
  position = np.round(position).astype(int) # Round and convert to integers for queen positions
  n = len(position)
  queen_not_attacking = 0
  for i in range(n - 1):
     no_attack_on_j = 0
     for j in range(i + 1, n):
       # Check if queens are on the same row or on the same diagonal
       if position[i] != position[i] and abs(position[i] - position[i]) != (i - i):
          no_attack_on_j += 1
     if no attack on i == n - 1 - i:
       queen_not_attacking += 1
  if queen_not_attacking == n - 1:
     queen_not_attacking += 1
  return -queen_not_attacking # Negative because we want to maximize this value
# Bounds for each queen's position (0 to 7 for an 8x8 chessboard)
bounds = [(0, 8) \text{ for } \_\text{ in range}(8)]
# Use dual_annealing for simulated annealing optimization
result = dual_annealing(queens_max, bounds)
# Display the results
best position = np.round(result.x).astype(int)
best_objective = -result.fun # Flip sign to get the number of non-attacking queens
print('The best position found is:', best_position)
print('The number of queens that are not attacking each other is:', best_objective)
The best position found is: [0 8 5 2 6 3 7 4]
The number of queens that are not attacking each other is: 8
```

Program 6

Create a knowledge base using propositional logic and show that the given query entails the knowledge base or not.

Algorithm:

Code:

```
#Create a knowledge base using propositional logic and show that the given query entails the
knowledge base or not.
import itertools
# Function to evaluate an expression
def evaluate_expression(a, b, c, expression):
  # Use eval() to evaluate the logical expression
  return eval(expression)
# Function to generate the truth table and evaluate a logical expression
def truth_table_and_evaluation(kb, query):
  # All possible combinations of truth values for a, b, and c
  truth_values = [True, False]
  combinations = list(itertools.product(truth_values, repeat=3))
  # Reverse the combinations to start from the bottom (False -> True)
  combinations.reverse()
  # Header for the full truth table
  print(f"{'a':<5} {'b':<5} {'c':<5} {'KB':<20}{'Query':<20}")
  # Evaluate the expressions for each combination
```

```
for combination in combinations:
     a, b, c = combination
     # Evaluate the knowledge base (KB) and query expressions
     kb result = evaluate expression(a, b, c, kb)
     query_result = evaluate_expression(a, b, c, query)
     # Replace True/False with string "True"/"False"
     kb_result_str = "True" if kb_result else "False"
     query_result_str = "True" if query_result else "False"
     # Convert boolean values of a, b, c to "True"/"False"
     a str = "True" if a else "False"
     b str = "True" if b else "False"
     c str = "True" if c else "False"
     # Print the results for the knowledge base and the query
     print(f"{a_str:<5} {b_str:<5} {c_str:<5} {kb_result_str:<20} {query_result_str:<20}")
  # Additional output for combinations where both KB and query are true
  print("\nCombinations where both KB and Query are True:")
  print(f"{'a':<5} {'b':<5} {'c':<5} {'KB':<20}{'Query':<20}")
  # Print only the rows where both KB and Query are True
  for combination in combinations:
     a, b, c = combination
     # Evaluate the knowledge base (KB) and query expressions
     kb result = evaluate expression(a, b, c, kb)
     query_result = evaluate_expression(a, b, c, query)
     # If both KB and query are True, print the combination
     if kb result and query result:
       a str = "True" if a else "False"
       b str = "True" if b else "False"
       c_str = "True" if c else "False"
       kb result str = "True" if kb result else "False"
       query_result_str = "True" if query_result else "False"
       print(f"{a_str:<5} {b_str:<5} {c_str:<5} {kb_result_str:<20} {query_result_str:<20}")
# Define the logical expressions as strings
kb = "(a or c) and (b or not c)" # Knowledge Base
query = "a or b" # Query to evaluate
# Generate the truth table and evaluate the knowledge base and query
truth table and evaluation(kb, query)
```

```
b c KB
                                   Query
False False False
                                  False
False False True False
                                  False
False True False False
                                  True
False True True True
                                  True
True False False True
                                  True
True False True False
                                  True
True True False True
                                  True
True True True True
                                  True
Combinations where both KB and Query are True:
a bc KB
                                   Query
False True True True
                                  True
True False False True
                                  True
True True False True
                                  True
True True True True
                                  True
```

<u>Program 7</u> Implement unification in first order logic

Algorithm:

201	
80.1	infin in first order loop
	June 1
	Andinant unitication in First order logic
MON	and
	Algo with (U a) on mercion.
/	Lyny Charles
/	Algo a war a variable on constant
/	6h Grant
	statist the are dentical, then return NIL.
	year is are devoted total NIL.
	of the or to are revolute, of the veture
/	Seles is a course in a the cal
/	o) eles is 9, occurs in \$5, then vetur
/	Failure (/ M. /M.)?
	Luxy & (42/01) 5.
	b. Eles return & (42/01)3.
	o) Elge of 12 is a variable,
/	a) & B; occurs in \$1 then return failure
_	a) i leve teturo ((91/92) 3.
	i) ileve teturo ((4)192)3.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	d) Elese return failure.
	d Eleje resum t
-	Step 2:
-	It is initial Producate sychol in Pr& 1/2 are
_	Leaves they rokun Failure.
	the initial Productor symbol in Pr & the are not some, then return Failure.
	Story of mark
	il v. s. v. nous a dup, no. of organist
	men vetur, failue.
_	Skp 4 - Set substitution sel(subs) to Nic.
	Skp 4 - Set swith human ser course
	sips- for i=1 to no of elements in a)
	of and it element of 42, & put the
	of an and it element of
	Testur into 3.
	b) & S = failure was when failure
	c) & s + Nic Hen da
- 3	

```
Code:
import re

def occurs_check(var, x):
    """Checks if var occurs in x (to prevent circular substitutions)."""
    if var == x:
        return True
    elif isinstance(x, list): # If x is a compound expression (like a function or predicate)
        return any(occurs_check(var, xi) for xi in x)
    return False

def unify_var(var, x, subst):
    """Handles unification of a variable with another term."""
```

```
if var in subst: # If var is already substituted
     return unify(subst[var], x, subst)
  elif isinstance(x, (list, tuple)) and tuple(x) in subst: # Handle compound expressions
     return unify(var, subst[tuple(x)], subst)
  elif occurs check(var, x): # Check for circular references
     return "FAILURE"
  else:
     # Add the substitution to the set (convert list to tuple for hashability)
     subst[var] = tuple(x) if isinstance(x, list) else x
     return subst
def unify(x, y, subst=None):
  Unifies two expressions x and y and returns the substitution set if they can be unified.
  Returns 'FAILURE' if unification is not possible.
  if subst is None:
     subst = {} # Initialize an empty substitution set
  # Step 1: Handle cases where x or y is a variable or constant
  if x == y: # If x and y are identical
     return subst
  elif isinstance(x, str) and x.islower(): # If x is a variable
     return unify_var(x, y, subst)
  elif isinstance(y, str) and y.islower(): # If y is a variable
     return unify_var(y, x, subst)
  elif isinstance(x, list) and isinstance(y, list): # If x and y are compound expressions (lists)
     if len(x) != len(y): # Step 3: Different number of arguments
       return "FAILURE"
     # Step 2: Check if the predicate symbols (the first element) match
     if x[0] != y[0]: # If the predicates/functions are different
       return "FAILURE"
     # Step 5: Recursively unify each argument
     for xi, yi in zip(x[1:], y[1:]): # Skip the predicate (first element)
       subst = unify(xi, yi, subst)
       if subst == "FAILURE":
          return "FAILURE"
     return subst
  else: # If x and y are different constants or non-unifiable structures
     return "FAILURE"
def unify_and_check(expr1, expr2):
  Attempts to unify two expressions and returns a tuple:
  (is unified: bool, substitutions: dict or None)
```

```
** ** **
  result = unify(expr1, expr2)
  if result == "FAILURE":
     return False, None
  return True, result
def display_result(expr1, expr2, is_unified, subst):
  print("Expression 1:", expr1)
  print("Expression 2:", expr2)
  if not is unified:
     print("Result: Unification Failed")
  else:
     print("Result: Unification Successful")
     print("Substitutions:", {k: list(v) if isinstance(v, tuple) else v for k, v in subst.items()})
def parse_input(input_str):
  """Parses a string input into a structure that can be processed by the unification algorithm."""
  # Remove spaces and handle parentheses
  input str = input str.replace(" ", "")
  # Handle compound terms (like p(x, f(y)) \rightarrow [p', x', [f', y']])
  def parse term(term):
     # Handle the compound term
     if '(' in term:
       match = re.match(r'([a-zA-Z0-9]+)(.*)', term)
       if match:
          predicate = match.group(1)
          arguments_str = match.group(2)
          arguments = [parse term(arg.strip()) for arg in arguments str.split(',')]
          return [predicate] + arguments
     return term
  return parse_term(input_str)
# Main function to interact with the user
def main():
  while True:
     # Get the first and second terms from the user
     expr1 input = input("Enter the first expression (e.g., p(x, f(y))): ")
     expr2 input = input("Enter the second expression (e.g., p(a, f(z))): ")
     # Parse the input strings into the appropriate structures
     expr1 = parse_input(expr1_input)
     expr2 = parse_input(expr2_input)
     # Perform unification
     is_unified, result = unify_and_check(expr1, expr2)
```

```
# Display the results
      display_result(expr1, expr2, is_unified, result)
      # Ask the user if they want to run another test
       another_test = input("Do you want to test another pair of expressions? (yes/no): ").strip().lower()
      if another_test != 'yes':
          break
if __name__ == "_main_":
   main()
 Enter the first expression (e.g., p(x, f(y))): p(b,x,f(g(z)))
 Enter the second expression (e.g., p(x, f(y))): p(b,x,f(g(z)))

Expression 1: ['p', '(b', 'x', ['f', '(g(z)))']]

Expression 2: ['p', '(z', ['f', '(y)'], ['f', '(y))']]

Result: Unification Successful
 Substitutions: \{'(b': '(z', 'x': ['f', '(y)'], '(g(z)))': '(y))'\}
Do you want to test another pair of expressions? (yes/no): yes
 Enter the first expression (e.g., p(x, f(y))): p(x,h(y))
 Enter the second expression (e.g., p(a, f(z))): p(a,f(z)) 
Expression 1: ['p', '(x', ['h', '(y))']] 
Expression 2: ['p', '(a', ['f', '(z))']]
 Result: Unification Failed
 Do you want to test another pair of expressions? (yes/no): yes
 Enter the first expression (e.g., p(x, f(y))): p(f(a),g(y))
 Enter the second expression (e.g., p(a, f(z))): p(x,x)
 Expression 1: ['p', '(f(a)', ['g', '(y))']]
Expression 2: ['p', '(x', 'x)']
 Result: Unification Successful
 Substitutions: \{'(f(a)': '(x', 'x)': ['g', '(y))']\}
 Do you want to test another pair of expressions? (yes/no): no
```

Program 8Create a knowledge base consisting of first order logic statements and prove the given query using forward reasoning.

Algorit	hm:
26/11/24	Constant Con
	LAR-8
	Creak a knowledge base consisting of first ord logic statement so prove the given given group ord using forward reasoning.
-)	Smput: -> (condition, result) Set of /facts that mut be true. -> fact inferred it condition true -> Acet of includes the condition true.
¥3."	-> A set of initial foods turion to be true -> A grueny to defuning if it can be informed -> applied rules: true
٤	while applied rules is true: Let applied rules = false Bor such (condition, result) in rules: check if condition & facts ib result & Backs add result to backs let explied rules - True. ib quies & facts return true. ib no new rules applied rules false entitles
3	Outful - if query & facts chun rue (inferred) clise return false (query not interfed)
	The second of th

Code:

```
# Define the knowledge base (KB) as a set of facts
KB = set()
# Premises based on the provided FOL problem
KB.add('American(Robert)')
KB.add('Enemy(America, A)')
KB.add('Missile(T1)')
KB.add('Owns(A, T1)')
# Define inference rules
def modus ponens(fact1, fact2, conclusion):
  """ Apply modus ponens inference rule: if fact1 and fact2 are true, then conclude conclusion """
  if fact1 in KB and fact2 in KB:
    KB.add(conclusion)
    print(f"Inferred: {conclusion}")
def forward chaining():
  """ Perform forward chaining to infer new facts until no more inferences can be made """
  # 1. Apply: Missile(x) \rightarrow Weapon(x)
  if 'Missile(T1)' in KB:
     KB.add('Weapon(T1)')
    print(f"Inferred: Weapon(T1)")
  # 2. Apply: Sells(Robert, T1, A) from Owns(A, T1) and Weapon(T1)
  if 'Owns(A, T1)' in KB and 'Weapon(T1)' in KB:
     KB.add('Sells(Robert, T1, A)')
    print(f"Inferred: Sells(Robert, T1, A)")
  # 3. Apply: Hostile(A) from Enemy(A, America)
  if 'Enemy(America, A)' in KB:
     KB.add('Hostile(A)')
    print(f"Inferred: Hostile(A)")
  # 4. Now, check if the goal is reached (i.e., if 'Criminal(Robert)' can be inferred)
  if 'American(Robert)' in KB and 'Weapon(T1)' in KB and 'Sells(Robert, T1, A)' in KB and
'Hostile(A)' in KB:
     KB.add('Criminal(Robert)')
    print("Inferred: Criminal(Robert)")
  # Check if we've reached our goal
  if 'Criminal(Robert)' in KB:
    print("Robert is a criminal!")
  else:
    print("No more inferences can be made.")
# Run forward chaining to attempt to derive the conclusion
forward chaining()
```

Inferred: Weapon(T1)

Inferred: Sells(Robert, T1, A)
Inferred: Hostile(A)

Inferred: Criminal(Robert)
Robert is a criminal!

Program 9

Create a knowledge base consisting of first order logic statements and prove the given query using Resolution

Algorithm:


```
Code:
# Define the knowledge base (KB)
KB = {
  "food(Apple)": True,
  "food(vegetables)": True,
  "eats(Anil, Peanuts)": True,
  "alive(Anil)": True,
  "likes(John, X)": "food(X)", # Rule: John likes all food
  "food(X)": "eats(Y, X) and not killed(Y)", #Rule: Anything eaten and not killed is food
  "eats(Harry, X)": "eats(Anil, X)", # Rule: Harry eats what Anil eats
  "alive(X)": "not killed(X)", # Rule: Alive implies not killed
  "not killed(X)": "alive(X)", # Rule: Not killed implies alive
}
# Function to evaluate if a predicate is true based on the KB
def resolve(predicate):
  # If it's a direct fact in KB
  if predicate in KB and isinstance(KB[predicate], bool):
    return KB[predicate]
  # If it's a derived rule
  if predicate in KB:
    rule = KB[predicate]
    if " and " in rule: # Handle conjunction
       sub preds = rule.split(" and ")
       return all(resolve(sub.strip()) for sub in sub preds)
    elif " or " in rule: # Handle disjunction
       sub preds = rule.split(" or ")
       return any(resolve(sub.strip()) for sub in sub_preds)
    elif "not " in rule: # Handle negation
       sub pred = rule[4:] # Remove "not"
       return not resolve(sub_pred.strip())
    else: # Handle single predicate
       return resolve(rule.strip())
  # If the predicate is a specific query (e.g., likes(John, Peanuts))
  if "(" in predicate:
    func, args = predicate.split("(")
     args = args.strip(")").split(", ")
    if func == "food" and args[0] == "Peanuts":
       return resolve("eats(Anil, Peanuts)") and not resolve("killed(Anil)")
    if func == "likes" and args[0] == "John" and args[1] == "Peanuts":
       return resolve("food(Peanuts)")
  # Default to False if no rule or fact applies
  return False
```

```
# Query to prove: John likes Peanuts
query = "likes(John, Peanuts)"
result = resolve(query)

# Print the result
print(f"Does John like peanuts? {'Yes' if result else 'No'}")
Does John like peanuts? Yes
```

Program 10
Implement Alpha-Beta Pruning.

Algorithm:

3/11/24	O trate
	1 AR -10 /
- Ja	Implement Alpha-bella pausing
)	Input:
aux	-> A game tree with terminal mode values> Depth & whether march or min true.
	More reported to the form of the second of t
2)	steps: -> shittalize \(\alpha = -00' \end{array} \beta = +00' \\
4/433	-> shittably x = -00' & \$ = 100 .
	-> start at root to recursively evaluate child.
	-> bou each modé!
and the last	> of maximizes:
	-> initialize to - 00
	> update x= max value
	> if x 0≥ β -> stop
	-> if win
	-> update \$ = nin value.
	-> if x 2 B -> stop
	hard si walnikatiwa 42.
	-> Return optimal value of root.
	May at lawn will

Code:

```
# Alpha-Beta Pruning Implementation
def alpha_beta_pruning(node, alpha, beta, maximizing_player):
  # Base case: If it's a leaf node, return its value (simulating evaluation of the node)
  if type(node) is int:
    return node
  # If not a leaf node, explore the children
  if maximizing_player:
     max eval = -float('inf')
     for child in node: # Iterate over children of the maximizer node
       eval = alpha_beta_pruning(child, alpha, beta, False)
       max_eval = max(max_eval, eval)
       alpha = max(alpha, eval) # Maximize alpha
       if beta <= alpha: # Prune the branch
          break
    return max_eval
  else:
     min eval = float('inf')
     for child in node: # Iterate over children of the minimizer node
```

```
eval = alpha_beta_pruning(child, alpha, beta, True)
       min_eval = min(min_eval, eval)
       beta = min(beta, eval) # Minimize beta
       if beta <= alpha: # Prune the branch
          break
     return min eval
# Function to build the tree from a list of numbers
def build tree(numbers):
  # We need to build a tree with alternating levels of maximizers and minimizers
  # Start from the leaf nodes and work up
  current_level = [[n] for n in numbers]
  while len(current_level) > 1:
     next level = []
     for i in range(0, len(current_level), 2):
       if i + 1 < len(current level):
          next_level.append(current_level[i] + current_level[i + 1]) # Combine two nodes
       else:
          next_level.append(current_level[i]) # Odd number of elements, just carry forward
     current_level = next_level
  return current level[0] # Return the root node, which is a maximizer
# Main function to run alpha-beta pruning
def main():
  # Input: User provides a list of numbers
  numbers = list(map(int, input("Enter numbers for the game tree (space-separated): ").split()))
  # Build the tree with the given numbers
  tree = build tree(numbers)
  # Parameters: Tree, initial alpha, beta, and the root node is a maximizing player
  alpha = -float('inf')
  beta = float('inf')
  maximizing_player = True # The root node is a maximizing player
  # Perform alpha-beta pruning and get the final result
  result = alpha_beta_pruning(tree, alpha, beta, maximizing_player)
  print("Final Result of Alpha-Beta Pruning:", result)
if __name___== "_main_":
  main()
```