Advanced Image Processing and Analysis

ECE 4438B/ECE 9202B/ECE 9022B BIOMED/BIOPHYS/CAMI 9519BWinter 2018

Instructor

Elvis Chen, PhD, LEL (echen29@uwo.ca)

Robarts Research Institute

Department of Electrical and Computer Engineering

Biomedical Engineering Graduate Program

Department of Medical Biophysics

Questions/Comments

- Instructor
 - Elvis Chen, PhD, LEL
 - echen29@uwo.ca
- Teaching Assistant
 - Reid Francis Vassallo
 - rvassall@uwo.ca
 - 1hr/week, email for appointment

So far...

- Topics and Themes
- Course outline
- Course policy
- Implementation Tools
 - Python as a programming language
 - SimpleITK for Image Processing and Analysis
 - Jupyter Notebooks as the environment

Why Python

- Do you know
 - Dropbox client was written entirely in python
 - Google:
 - "Python where we can, C++ where we must"

Why SimpleITK

- Implementation tools
 - Matlab (<u>https://www.mathworks.com/</u>)
 - Insight Segmentation and Registration Toolkit (ITK, https://itk.org/)
 - 3D Slicer (https://www.slicer.org/)
- All are very good tools, serving different purposes

Implementation Tools

- Matlab: Processing + visualization, large number of algorithms, best suited for 2D
- ITK: Processing only, vary large number of algorithms, suited for 2D/3D/4D/nD
- 3D Slicer: Processing + visualization, small number of algorithms, best suited for 3D
 - Very useful/popular as a research platform

Why ITK

- ITK
 - Open source
 - Very large number of algorithms
 - Implemented in C++ (with language bindings)
 - Need external programs (3D Slicer) for visualization

Why ITK

- Built starting in 1999 using funding from the National Library of Medicine (NIH)
- ITK consortium consisted of three industrial partners (GE Corporate R&D, Kitware, and MathSoft) and three academic partners (U. North Carolina, U. Tennessee, U.Penn)
- Currently
 - 1.7 million lines of code
 - >300 contributors
 - >1500 new code commits per year
 - Requires 494 person-years of effort to build

Why ITK

- Has code that
 - Read/write many 3D medical imaging file formats
 - Implements many widely-used algorithms for
 - Filtering
 - Segmentation
 - Registration
 - 3D mesh processing
 - Finite element modelling
 - And much more...

Why SimpleITK

- To perform image processing in ITK
 - Need a C++ compiler
 - Knowledge in C++ programming (Templated C++)
 - Download and "build" ITK as an external library
 - Write you own code and link it against ITK
 - Use external program to visualize the result
 - Steep learning curve

Why SimpleITK

- Simplified layer built on top of ITK
- Intended to facilitate its use in rapid prototyping, education
- C++ library
- Object-Oriented
 - Without templates
- Language binding for Python and Java (and others)
- With Jupyter Notebooks, allows us to program (in python) interactively and visualize the results immediately

Jupyter Notebook

- The Jupyter Notebook (https://jupyter.org/) is an open-source web application that allows one to create and share documents that contains:
 - Live code
 - Equations
 - Visualizations
 - Narrative texts

Notebook document

- Documents produced by the Jupyter Notebook App, which contains both computer codes (python) and rich text elements (markdown)
 - Highly readable
 - As we go through the course, more course materials will be presented through Notebook documents instead of PowerPoint slides
 - You will be writing your assignment using Notebook document

Why Notebook document

- Use rich text
 (Markdown) to explain
 your thoughts
- Use comments to document your codes
- Debugging is trivial
- In-text visualization

THE ART OF PROGRAMMING - PART 2: KISS

• Starts here

A notebook consists of a sequence of cells

Markdown cells: rich text, a superset of HTML

 Code cells: edit/write code with syntax highlighting and tab completion

Moving on

- Now let's move on Jupyter Notebook
- Assume that you already have (Day 1 slides)
 - Installed anaconda and updated it
 - Installed git (within anaconda)
 - Git clone my Github repository
 - Created a SimpleITK environment
- We will now see if SimpleITK is installed properly
- If so, move onto Python tutorial

Questions/Comments

- Instructor
 - Elvis Chen, PhD, LEL
 - chene@robarts.ca
- Teaching Assistant
 - Madeleine Van De Kleut
 - mvandekl@uwo.ca
 - 1hr/week, email for appointment