Digital Electronics and Microprocessors

Class 11

CHHAYADEVI BHAMARE

Some important terms

- Modulus of a counter (Divide-by-*N* counter):-the number of states trough which a counter sequences before repeating.
- □ Full sequence counter.
- Example:- mod 4 (Divide-by-4), mod 8 (Divide-By-8), mod 16(Divide-by-16), mod32(Divide-by-32)
- □ Truncated sequence counter.

```
Example:-mod 3 (Divide-by 3)(0,1,2,0,1,2....) mod 10(Divide-by 10) (0,1,2,3,4,5,6,7,8,9,0,1,2....)
```

Counters

- □ Asynchronous (Ripple)
- □ Synchronous

Counters

- □ Analysis of counter:-counter circuit is given analyzing its count sequence.
- □ Design of a counter:-counter behavior will be given, then designing a circuit accordingly to get expected counter behavior.

Four-bit asynchronous (ripple) up counter.

Counters with MOD Number $<2^N$

PROGRAMMING A RIPPLE COUNTER

•Counters may be made to recycle after any desired count by using a gate to reset the counter.

CONVERT MOD 8 TO MOD6

INPUT CLK				
	C	В	A	
0	0	0	0	
1	0	0	1	
2	0	1	0	
3	0	1	1	
4	1	0	0	
5	1	0	1	UNSTABLE
6	1	1	0	STATE
7				SIAIL

3 FLIP FLOPS

 $2^{3} = MOD 8$

HIGHEST COUNT = $2^3 - 1 = 7$

HOW TO BUILD A COUNTER TO GO FROM ZERO TO MOD NUMBER X

1. Determine smallest number of FF's such that $IF \ 2^{N} = X$, $SKIP \ STEPS \ 2 \ AND \ 3$

 $2^N \geq X$

2. Connect a NAND gate output to asynchronous clears of all FF's

3. Determine which FF's will be high at count = X
Connect the Q outputs of these FF's to NAND gate inputs

BUILD A COUNTER THAT COUNTS FROM ZERO TO NINE (X=MOD 10)

1. Determine smallest number of FF's such that

$$2^N \geq X$$

$$2^3 = 8$$
 and $2^4 = 16$ thus 4 FF's are required

- 2. Connect a NAND gate to asynchronous clears of all FF's
- 3. Determine which FF's will be high at count = X
 Connect the Q outputs of these FF's to NAND gate inputs

ASYNCHRONOUS DOWN COUNTER

- Direction of count can be reversed by
 - (a) complementing each FF's output or
 - (b) complementing each FF's input

COUNTER PROBLEM

- 1. What is the value of the last usable state before the NAND gate resets the circuitry? $1101_2 = 13_{10}$
- 2. What value does the NAND gate reset the value to?
- $1000_2 = 8_{10}$

- 3. What is the modulus of this counter?
- 4. If count starts at decimal 11 and receives seven clock pulses, what is the new value on the counter? 12_{10}
- 5. What is the unstable state of the counter?

$$1110_2 = 14_{10}$$

COUNTER PROBLEM

1. What is the value of the unstable state, in decimal?

$$111_2 = 7_{10}$$

2. At what value does the NAND gate set the counter to?

$$011_2 = 3_{10}$$

3. If QA=1, QB=1, and QC=0, and 5 clock pulses are applied:

$$QC = QBL$$

$$QA\underline{0}$$

0

4. What is the modulus of this counter?

IC ASYNCHRONOUS COUNTERS

Logic Diagram for 7493

7493 AS A MOD-16 COUNTER

Logic Diagram for 7493

Build a MOD 10 counter with a 7493

BCD COUNTER

- •Binary counter that counts from 0000 to 1001 before it recycles (MOD-10).
- •Widespread applications where pulses or events are to be counted and the results displayed on a decimal numerical read-out.
- •Also used for dividing a pulse frequency *exactly* by 10.

Cascading BCD counters to count and display from 000 to 999.

MOD-60 COUNTER

Two 7493s can be combined to produce a MOD-60 Counter

Design of a counter(Synchronous)

Design of a synchronous 2 bit up/down counter using D flip flops

- □ Determine the number of flip-flops
- □ Draw state diagram
- □ Get excitation table
- □ Obtain the minimal expressions for inputs
- □ Draw the logic diagram

Present State	Next State	F.F. Input
Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

Present State	Next State	F.F. Input		es
Q(t)	Q(t+1)	J	K	
0	0	0	X	
0	1	1	X	$ \leq$
1	0	X	1	K
1	1	X	0	

1	(No shares)
	0 0 (No change)
	0 1 (Reset)
	1 0 (Set)
	11 (Toggle)
	0 1 (Reset)
	11 (Toggle)
<	0 (No change)
	1 0 (Set)

Q(t)	Q(t+1)	T
0	0	0
0	1	1
1	0	1
1	1	0

The complete state diagram and table Present State Inputs Next :

Presen	t State	Inputs	Next	State
Q_1	Q_0	X	Q_1	Q_0
0	0	0	0	1
0	0	1	1	1
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	0
1	1	1	1	0

D flip-flop inputs

- ☐ If we use D flip-flops, then the D inputs will just be the same as the desired next states.
- □ Equations for the D flip-flop inputs are shown at the right.

Present State		Inputs	Next	State
Q_1	Q_0	X	Q_1	Q_0
0	0	0	0	1
0	0	1	1	1
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	0
1	1	1	1	0

$$D_1 = Q_1 \oplus Q_0 \oplus X$$

Design of a synchronous 3 bit up/down counter using JK flip flops

- Determine the number of flip-flops
- Draw state diagram
- □ Get excitaion table
- □ Obtain the minimal expressions for inputs
- □ Draw the logic diagram

□ State diagram

Excitation table

	ese:	nt	Mo	Ne	ext state Required inputs		ts					
Sta	ate		de									
Q 3	Q2	Q1	M	Q3	Q2	Q1	Ј3	К3	J2	K2	J1	K1
0	0	0	0	1	1	1	1	X	1	X	1	X
0	0	0	1	0	0	1	0	X	0	X	1	X
0	0	1	0	0	0	0	0	X	0	X	X	1
0	0	1	1	0	1	0	0	X	1	X	X	1
0	1	0	0	0	0	1	0	X	X	1	1	X
0	1	0	1	0	1	1	0	X	X	0	1	X
0	1	1	0	0	1	0	0	X	X	0	X	1
0	1	1	1	1	0	0	1	X	X	1	X	1
1	0	0	0	0	1	1	X	1	1	X	1	X
1	0	0	1	1	0	1	X	0	0	X	1	X
1	0	1	0	1	0	0	X	0	0	X	X	1
1	0	1	1	1	1	0	X	0	1	X	X	1
1	1	0	0	1	0	1	X	0	X	1	1	X
1	1	0	1	1	1	1	X	0	X	0	1	X
1	1	1	0	1	1	0	X	0	X	0	X	1
1	1	1	1	0	0	0	X	1	X	1	X	1

Present State	Next State	F.F Inp	
Q(t)	Q(t+1)	$oldsymbol{J}$	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Q3(PS)Q3(NS) = 01 then from excitation table of JK flip flop J3K3 should be 1X(J3=1 K3=X)
Q2(PS)Q2(NS)= 01 then from excitation table of JK flip flop J2K2 should be 1X(J2=1 K2=X)
Similarly fill all the rows of excitation inputs for all states of counter

^{*} PS=Present state *NS= Next state

K-maps for excitations of synchronous 3 bit U/D counter

Draw the final circuit of 3bit UP/DOWN counter using D and T flip flop

□ Work for you

Design of a BCD (mod10) or decade counter using JK and T flip flops

- Determine the number of flip-flops
- □ Draw state diagram
- Get excitation table
- □ Obtain the minimal expressions for inputs
- □ Draw the logic diagram

Determine the number of flip-flops

- □ 3 will not be sufficient (0 to 7)
- □ We will require 4(JK or D)

Draw state diagram

Write Excitation table (Present state Next State Excitation Inputs for JK FF and T FF).

Obtain the Equations for J1K1 J2K2 J3K3 and J4K4 Draw the final circuit of BCD counter using JK flip flop. Obtain the Equations for T1, T2,T3 and T4.

Draw the final circuit of BCD counter using T flip flop.

□ Work for you