Cultural Transmission of Structured Knowledge and Technological Complexity:

The Axelrod Model Extended

Mark E. Madsen
University of Washington

Carl P. Lipo CSU Long Beach

Behavioral Modernity

"Middle to Upper Paleolithic Transition" "Upper Paleolithic Revolution"

Slowly changing technology

Rapid and cumulative change

Continental scale traditions

Strong regional differentiation

Low toolkit complexity

Complex, multipart tools

Explaining Behavioral Modernity

Major biological differences?

Complex tools with moderns and Neanderthals

Sharp revolution in space and time

Long history in Africa, Near East, and Europe

One-way change from ancestral to modern

Plenty of early appearances that don't persist

Behavioral Modernity and Cultural Transmission

- Richness and complexity increase with population...or do they?
- Metapopulation dynamics can promote diversity and differentiation (L. Premo)
- Possible changes in learning modes: declining conformism?
- Possible changes in the structure of socially learned information itself — hierarchy, prerequisites, dependencies (Mesoudi and O'Brien, this paper)

Social Learning of Structured Knowledge

 Knowledge and skills are structured with dependencies

• Which become *prerequisite relations* during learning and skill acquisition

 Complex technologies require dependencies to be passed on intact

Dependencies in skill execution...

imply structure to the order of learning and mastery

Hypothesis

Increasing learning fidelity across knowledge prerequisites may directly lead to:

- More diverse cultural repertoires
- Differentiation between individuals and groups

...and in combination with population structure and other factors, lead directly to behavioral modernity

"Semantic" Axelrod Model

Social learning model incorporating:

- Design space mapping trait prerequisites
- Copying based upon homophily (Axelrod model)
- Probabilistic learning of prerequisites
- Individual innovations

Parameters: learning rate, innovation rate, design space size

CT model adapted from Robert Axelrod (1997) Hierarchical trait space from Mesoudi and O'Brien (2008)

Design Space

Starting Configuration

Completed Sample

Expectations

Intrapopulation diversification:

More cultural configurations at high prerequisite learning rates.

Cumulative knowledge:
Depth of trait trees increases with prerequisite
learning rate

Low learning/small design space: Most individuals share traits, little differentiation into separate repertoires.

High prereq learning or large design space: Cultural repertoires become differentiated, most individuals hold unique configurations

Low prerequisite learning: cultural repertoire fairly static compared to initial conditions

High prereq learning + global innovation: growing and deepening cultural repertoire

Summary

- Differentiation is facilitated by enhancing learning of prerequisites efficiently.
- Richer cultural repertoires require both learning prerequisites and individual innovation.
- Expansion of the overall design space is both a product and a driving force

Structured models like this are a useful platform for examining technological evolution, and questions like behavioral modernity

For more information

- Notes: http://notebook.madsenlab.org
- Code: https://github.com/mmadsen/axelrod-ct
- Analysis: https://github.com/mmadsen/madsenlipo2014
- Preprint: http://arxiv.org/abs/1404.5704