CENMLP

Felipe Gutiérrez

f.gutierrezlucero@uandresbello.edu Ingeniería Civil Informática

Santiago Salvador

s.salvadorclarke@uandresbello.edu Ingeniería Civil Informática

Abril 2024 Santiago, Chile

¿Qué es CENMLP?

También conocido como "Coordinador Eléctrico Nacional Machine Learning Proyect" es un proyecto desarrollado para el curso CINF104 (Aprendizaje de Máquina).

Mercado de Energía

Consumo Eléctrico

CEN

Parte I: Análisis de la Calidad de los Datos

Valores atípicos

V: Consumo medido en MWs

Correlación

Variables:

- Barra: Variable constante, NS
- Muestras_hora: Variable constante, NS
- Calidad_senal: Corr. < Δ, NS
- Cantidad_interruptores: Corr. < Δ, NS

Por tanto **Consumo** y **Tiempo** únicas variables significativas y las cuales forman una serie de tiempo

 $\Delta = 0.05$ (95% significancia)

Series de Tiempo

Series de Tiempo

S: AJAHUEL

ADF Statistic: -12.940704

p-value: 0.000000 Critical Values:

1%: -3.430

5%: -2.862

10%: -2.567

Parte II: Diseño de Modelos de Aprendizaje

Modelo 1 - RNN

S: AJAHUEL

```
# Definir conjuntos de datos de prueba y entrenamiento
train_mask = (df.index >= '2017-03-01') & (df.index <= '2021-03-31')
test_mask = (df.index >= '2021-04-01') & (df.index <= '2022-04-30') #</pre>
```

```
# Crear secuencias de tiempo
window_size = 7 # usaremos una ventana de 7 días
X_train, y_train = create_sequences(df[train_mask].values, window_size)
X_test, y_test = create_sequences(df[test_mask].values, window_size)

X_train, y_train = X_train[window_size:], y_train[window_size:]
X_test, y_test = X_test[window_size:], y_test[window_size:]
```

Layer (type)	Output Shape	Param #
simple_rnn (SimpleRNN)	(None, 256)	66,048
dense (Dense)	(None, 128)	32,896
dense_1 (Dense)	(None, 1)	129

Modelo 2 - ARIMA

S: AJAHUEL

```
train = df.loc['2017-03-01':'2021-03-31'] # Filtrar data
test = df.loc['2021-04-01':'2022-04-30'] # Filtrar datas

train.index = pd.to_datetime(train.index)
train.index = train.index.strftime('%Y-%m-%d %H:%M:%S')

test.index = pd.to_datetime(test.index)
test.index = test.index.strftime('%Y-%m-%d %H:%M:%S')
```

Parte III: Comparación de Modelos

MAE: 66.14

MSE: 7647.85

Modelo 1 - RNN

Utilizando model.predict()

Time Series Forecasting

MAE: 57.16

MSE: 6307.35

Modelo 2 - ARIMA

Utilizando model.predict()

Time Series Forecasting