UNIVERSIDADE FEDERAL DA PARAÍBA

Probabilidade II Atividade 6

Paulo Ricardo Seganfredo Campana

Questão 1.

a)

X Y	-1	0	1	P(X=x)
-1	0	$\frac{1}{5}$	0	$\frac{1}{5}$
0	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{3}{5}$
1	0	$\frac{1}{5}$	0	$\frac{1}{5}$
P(Y=y)	$\frac{1}{5}$	$\frac{3}{5}$	$\frac{1}{5}$	1

b)

$$E(X) = (-1)\frac{1}{5} + 0\frac{3}{5} + 1\frac{1}{5} = 0$$

$$E(Y) = (-1)\frac{1}{5} + 0\frac{3}{5} + 1\frac{1}{5} = 0$$

$$E(XY) = 0, \text{ pois todos os valores em que X e Y } \neq 0, \ P(X,Y) = 0$$

$$Cov(X,Y) = E(XY) - E(X)E(Y) = 0$$

c)

Não pois
$$P_{X,Y}(x,y)\neq P_X(x)\cdot P_Y(y)$$
, segue o caso com $(x,y)=(1,1)$
$$P_{X,Y}(1,1)\neq P_X(1)\cdot P_Y(1)$$

$$0\neq \frac{1}{5}\cdot \frac{1}{5}$$

Questão 2.

$$X_1, X_2, \dots, X_n$$
 independentes, $X_i \sim Exp(\beta)$
 $S_n = X_1 + X_2 + \dots + X_n$
 $M_{S_n}(t) = M_{X_1}(t) \cdot M_{X_2}(t) \cdot \dots \cdot M_{X_n}(t)$

$$\begin{split} &= \frac{\beta}{\beta - t} \cdot \frac{\beta}{\beta - t} \cdot \cdots \frac{\beta}{\beta - t} \\ &= \left(\frac{\beta}{\beta - t}\right)^n \\ &= \text{f.g.m}(Y), \quad Y \sim Gama(n, \beta) \end{split}$$

portanto S_n tem distribuição $Gama(n, \beta)$

Questão 3.

X Y	0	1	2	P(X=x)
0	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{2}$
1	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{2}$
P(Y=y)	$\frac{1}{2}$	$\frac{1}{8}$	$\frac{3}{8}$	1

a)

$$\rho_{X,Y} = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

$$E(X) = 0 + 1\frac{1}{2} = \frac{1}{2}$$

$$E(X^2) = 0 + 1\frac{1}{2} = \frac{1}{2}$$

$$Var(X) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$

$$E(Y) = 0 + 1\frac{1}{8} + 2\frac{3}{8} = \frac{7}{8}$$

$$E(Y^2) = 0 + 1\frac{1}{8} + 4\frac{3}{8} = \frac{13}{8}$$

$$Var(Y) = \frac{13}{8} - \frac{49}{64} = \frac{55}{64}$$

$$E(XY) = 0 + 0 + 0 + 0 + 0 + 2\frac{1}{4} = \frac{1}{2}$$

$$Cov(X,Y) = \frac{1}{2} - \frac{1}{2} \cdot \frac{7}{8} = \frac{1}{16}$$

$$\rho_{X,Y} = \frac{\frac{1}{16}}{\sqrt{\frac{1}{4} \cdot \frac{55}{64}}} = \frac{\frac{1}{16}}{\frac{\sqrt{55}}{16}} = \frac{1}{\sqrt{55}}$$

$$Cov(3X, 2Y) = 6 \cdot Cov(X, Y) = \frac{3}{8}$$

$$Cov(X + Y, X - Y) = Cov(X, X - Y) + Cov(Y, X - Y) =$$

$$Cov(X,X) - Cov(X,Y) + Cov(Y,X) - Cov(Y,Y) =$$

$$Var(X) - Var(Y) = \frac{1}{4} - \frac{55}{64} = -\frac{39}{64}$$

Questão 4.

a)

Y X	1	2	P(X=x)
1	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{3}{8}$
2	$\frac{1}{8}$	$\frac{1}{2}$	$\frac{5}{8}$
P(Y=y)	$\frac{1}{4}$	$\frac{3}{4}$	1

$$P(XY \le 3) = 1 - P(XY > 3)$$

XY é apenas maior que 3 quando $(X,Y)=(2,2), \quad p(2,2)=\frac{1}{2}$

$$P(XY \le 3) = 1 - \frac{1}{2} = \frac{1}{2}$$

$$P(X + Y) > 2 = 1 - P(X + Y \le 2)$$

X+Y é apenas menor ou igual a 2 quando $(X,Y)=(1,1), \quad p(1,1)=rac{1}{8}$

$$P(X+Y) > 2 = 1 - \frac{1}{8} = \frac{7}{8}$$

b)

Não pois $P_{X,Y}(x,y) \neq P_X(x) \cdot P_Y(y)$, segue o caso com (x,y) = (1,1)

$$P_{X,Y}(1,1) \neq P_X(1) \cdot P_Y(1)$$

$$\frac{1}{8} \neq \frac{3}{8} \cdot \frac{1}{4}$$

Questão 5.

a)

$$P_X(X = 1) = \frac{2}{3}$$

$$P_X(X = -1) = \frac{1}{3}$$

$$P_Y(Y = 1) = P_Y(Y = 0) = \frac{1}{2}$$

b)

$$P(X = -1, Y = 1) = \frac{1}{6}$$
 apenas em 1
 $P(X = -1, Y = 0) = \frac{1}{6}$ apenas em 2
 $P(X = 1, Y = 1) = \frac{1}{3}$ apenas em 3 e 5
 $P(X = 1, Y = 0) = \frac{1}{3}$ apenas em 4 e 6

Y X	1	0	P(X=x)
-1	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{3}$
1	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{2}{3}$
P(Y=y)	$\frac{1}{2}$	$\frac{1}{2}$	1