

Sharing is Not Needed: Modeling Animal Coordinated Hunting with Reinforcement Learning

Minglu Zhao¹, Ning Tang¹, Annya L. Dahmani², Yixin Zhu¹, Federico Rossano³, Tao Gao^{1,4}

¹Department of Statistics, UCLA, ²Department of Psychology, UCLA, ³Department of Cognitive Sciences, UCSD, ⁴Department of Communication, UCLA

Predators have individual action costs

Methods

Multi-agent Deep Deterministic Policy Gradient (MADDPG)

Experiment design

Manipulate evolutionarily important factors:

. Reward distribution: through selfish index

Selfish index = 0: unselfish, share rewards Selfish index = inf: selfish, individual rewards \(\begin{aligned} \] 10.20

- 2. Free-rider effects: through action cost, proportional to action force exerted
- 3. Hunting party size: through number of predators
- 4. Hunting difficulty: through prey speed

Main experiment results

a) number of predator 6

mean episode kill with 75 steps/eps

1. Figure a:

- Performance of selfish agents increases linealy with the group size (line B).

Findings

- Unselfish agents' performance remains the same or drops when having a larger group (line A);
- More selfish, better performance (line C).

- Prey speed increases → predators' performance decreases

3. Figure c:

- Action cost increases → performance decreases
- Increasing action costs hurts unselfish agents more than selfish agents

4. Figure d:

- More selfish agents have their action force less sensitive to action costs. The most unselfish agents decide almost not to move at all when there is a small action cost
- Such a result strongly indicates the presence of the free-rider problem under the rewardsharing mechanism

m_{ean} episode kill **b**) 12.5 10.0

mean episode kill with 75 steps/eps

Predators rewarded only after kills

Equilibrium testing experiment

Motivation: From main results, sharing rewards cannot generate robust coordination. Then can it maintain successful coordination?

Methods: Use models of already-coordinated selfish agents and train them for another around with both the individual-reward strategy and the reward-sharing strategy

Findings

- Performance of agents pretrained with individual rewards for 60k episodes significantly decreased after training with shared rewards for another 60k episodes
- Successful coordination through sharing rewards is **not an** equilibrium, since all agents' policies deviate from it in further training.

Conclusions

Sharing rewards is neither necessary nor sufficient for modeling animal coordinated hunting with reinforcement learning:

Not necessary

Not sufficient - Models without

- any sharedness (selfish agents) achieve good
- training results
- Free-rider problem in sharing rewards - Unselfish agents' hunting performance
- plateaus at small group size
 - Coordination through sharing rewards is not a Nash equilibrium

Animal cognition perspective:

Support the argument that chimpanzees can coordinate in hunting even only with selfish motivations

Computational perspective:

Structures involving developmental insights required to model human-like cooperation