

80/566486

IAP20 Rec'd FCT PTO 30 JAN 2006  
PATENT APPLICATION  
ATTORNEY DOCKET NO. 08228.087001

**APPLICATION  
FOR  
UNITED STATES LETTERS PATENT  
(Substitute Specification)**

**TITLE: UNIT FOR SEPARATING GAS**

**APPLICANTS: Yoshinori TAJIMA, Takashi FUTATSUKI,  
Tetsuya ABE, Sadamitsu TANZAWA,  
Seiji HIROKI**

**22511  
PATENT TRADEMARK OFFICE**

"EXPRESS MAIL" Mailing Label Number: EV710216059US  
Date of Deposit: JANUARY 30, 2006

IAP20 Rec'd PCT/PTO 30 JAN 2006

## DESCRIPTION

## UNIT FOR SEPARATING GAS

5

## TECHNICAL FIELD

[0001]

The present invention relates to a unit for separating gas, which separates each of a plurality of specific gases from a treatment gas containing the specific gases.

10

## BACKGROUND ART

[0002]

Conventionally, a variety of different gases are used in semiconductor production processes, depending on the nature of the individual process. For example, PFC (perfluoro compound) gas, which includes a variety of fluorine-containing compounds such as CF<sub>4</sub>, NF<sub>3</sub>, C<sub>3</sub>F<sub>8</sub>, SF<sub>6</sub> and CHF<sub>3</sub>, is used as a reactive gas in dry etching processes and thin film formation processes, and an exhaust gas containing this PFC gases is produced.

[0003]

Exhaust gases such as PFC gas cannot be simply discharged from the system, and must be treated using a variety of treatment methods. Examples of these treatment methods include (i) decomposition treatments in which the PFC gas is decomposed by combustion, catalytic heating, or plasma decomposition or the like, (ii) membrane separation in which the materials are separated by a membrane, (iii) cryogenic separation in which separation is achieved by utilizing differences in the boiling points of the gases, and (iv) adsorption treatments.

[0004]

However, there are drawbacks associated with decomposition treatments (i) in that achieving complete decomposition is difficult, and the fact that because the gas is decomposed and discharged, it cannot be recovered and reused. Furthermore, although membrane separation (ii) enables the removal of nitrogen from an exhaust gas, the separation of gases of similar molecular size such as CF<sub>4</sub> and NF<sub>3</sub> is problematic. Moreover, the aforementioned method (iii) requires an extremely large apparatus, and is very expensive in terms of both running costs and the cost of the facilities. Furthermore, the difference in boiling point between NF<sub>3</sub> and CF<sub>4</sub> is only 1°C, meaning separation of these two gases is very difficult. The method (iv) requires regular replacement of the adsorbent, which leads to costs associated with the disposal of the used adsorbent.

[0005]

Accordingly, Japanese Patent Laid-Open Publication No. 2002-273144 proposes a device for separating PFC gases that uses a chromatographic separation device packed with an activated carbon filler. The device disclosed in Japanese Patent Laid-Open Publication No. 2002-27314 is able to effectively separate CF<sub>4</sub> and NF<sub>3</sub>.

[0006]

However, it was found that the device disclosed in Japanese Patent Laid-Open Publication No. 2002-27314 was unable to satisfactorily separate a mixed gas of CF<sub>4</sub> and C<sub>2</sub>F<sub>6</sub>, for example. As described above, PFC gas contains a variety of different gases, and a unit that is capable of effectively treating and separating this type of multi-component PFC gas has been keenly sought.

DISCLOSURE OF INVENTION

[0007]

The present invention provides a unit for separating  
5 gas that is capable of effectively separating each of the  
components from a PFC gas containing a plurality of  
components.

[0008]

The present invention provides a unit for separating  
10 gas, which separates each of a plurality of specific gases  
from a treatment gas containing the specific gases, wherein  
the unit contains a plurality of columns packed with  
different fillers, and by connecting these columns in series,  
and passing the treatment gas sequentially through the  
15 fillers of the plurality of columns, each of the specific  
gases is separated chromatographically from the treatment  
gas.

[0009]

Furthermore, the present invention also provides a unit  
20 for separating gas, which separates each of a plurality of  
specific gases from a treatment gas containing the specific  
gases, wherein the unit contains a column packed with a  
plurality of different fillers, and by passing the treatment  
gas through the plurality of fillers inside the column, each  
25 of the specific gases is separated chromatographically from  
the treatment gas.

[0010]

By conducting chromatographic separation using a  
plurality of fillers in this manner, the plurality of  
30 specific gases can be separated effectively.

[0011]

Furthermore, the aforementioned specific gases are preferably PFC gases discharged from semiconductor production processes, and the aforementioned treatment gas is preferably a gas that also contains nitrogen gas.

5 [0012]

Furthermore, the specific gases preferably include NF<sub>3</sub>, CF<sub>4</sub>, and C<sub>2</sub>F<sub>6</sub>, and the aforementioned fillers preferably include zeolite and activated carbon.

[0013]

10 Furthermore, the zeolite is preferably the molecular sieve 13X or an equivalent product.

[0014]

15 As described above, the present invention enables a plurality of specific gases to be separated effectively, by conducting chromatographic separation using a plurality of fillers.

#### BRIEF DESCRIPTION OF THE DRAWINGS

[0015]

20 Fig. 1 is a diagram showing the structure of an embodiment of the present invention.

Fig. 2 is a diagram showing the structure of a chromatographic separation device that uses a plurality of columns.

25 Fig. 3 is a graph showing the state of gas flow at the outlet of the first column.

Fig. 4 is a graph showing the state of gas flow at the outlet of the second column.

30 Fig. 5 is a diagram showing the structure of a chromatographic separation device that uses a single column containing a plurality of fillers.

Fig. 6 is a graph showing the state of gas flow at the outlet of the column shown in Fig. 5.

Fig. 7 is a diagram showing the structure of a test unit.

5 Fig. 8 is a diagram showing the structure of another test unit.

#### BEST MODE FOR CARRYING OUT THE INVENTION

[0016]

10 As follows is a description of a preferred embodiment of the present invention, based on the drawings.

[0017]

A PFC gas is supplied to a production process 10 such as an etching or thin film formation process conducted at a 15 semiconductor production plant. As a result, an exhaust gas containing the PFC gas is produced. An inlet for a suction pump 12 is connected to the path of the exhaust gas, and the exhaust gas containing the PFC gas is extracted from the production process 10 by this suction pump 12. Gases such 20 as CF<sub>4</sub>, NF<sub>3</sub>, C<sub>2</sub>F<sub>6</sub>, and SF<sub>6</sub> can be used as the PFC gas, and in this embodiment, the PFC gas contains CF<sub>4</sub>, C<sub>2</sub>F<sub>6</sub>, and NF<sub>3</sub>. Because the PFC gas decomposes and generates hydrofluoric acid during the production process 10, the exhaust gas also contains hydrofluoric acid. As a result, if the exhaust gas 25 is introduced directly into the suction pump 12, then there is a danger that the suction pump 12 may be damaged. Furthermore, the exhaust gas also contains metals generated during etching and the like, meaning if the exhaust gas is introduced directly into the suction pump 12, there is a 30 danger that deposits may accumulate inside the suction pump 12. Accordingly, nitrogen (N<sub>2</sub>) gas is supplied as a diluent

gas at a point prior to the exhaust gas reaching the suction pump 12, thereby diluting the exhaust gas.

[0018]

The outlet of the suction pump 12 is connected to a  
5 scrubber 14, and the nitrogen-diluted exhaust gas is supplied to the scrubber 14. This scrubber 14 uses a water shower to dissolve and remove hydrofluoric acid (HF) and any other water-soluble acidic materials contained within the exhaust gas.

10 [0019]

The exhaust gas from the scrubber 14 is then supplied to a dewatering device 16, where moisture is removed from the gas. The exhaust gas from the scrubber contains a large quantity of moisture, and it is preferable to remove this 15 moisture prior to the subsequent steps. Although any form of dewatering device can be employed as the dewatering device 16, devices that remove the moisture by lowering the temperature of the exhaust gas are preferred.

[0020]

20 The exhaust gas containing the PFC gas and nitrogen is then supplied to a concentration device 18. This concentration device 18 is used for removing the nitrogen, and is preferably a membrane separation device that employs a gas permeable membrane. This device separates the 25 nitrogen from the exhaust gas, thereby concentrating the PFC gas (the CF<sub>4</sub>, NF<sub>3</sub>, and C<sub>2</sub>F<sub>6</sub> in this embodiment).

[0021]

Having been concentrated in this manner, the PFC gas is supplied to a chromatographic separation device 20. The 30 chromatographic separation device 20 includes a column packed with a desired filler, and the gas is passed through

this column. Because each of the gas components exhibits a different affinity (adsorption and desorption coefficient) for the filler, the retention times for each component vary, thus enabling the gas to be separated into its components.

- 5 In other words, the CF<sub>4</sub>, NF<sub>3</sub>, and C<sub>2</sub>F<sub>6</sub> are separated. Because nitrogen gas is used as a carrier gas in the chromatographic separation, each gas is generated as a mixed gas with nitrogen.

[0022]

- 10 At this point, the mixed gas of CF<sub>4</sub> + nitrogen is supplied to a concentration device 22, C<sub>2</sub>F<sub>6</sub> + nitrogen is supplied to a concentration device 24, and NF<sub>3</sub> + nitrogen is supplied to a concentration device 26. These concentration devices 22, 24 and 26 are similar to the concentration device 18 described above, and can employ membrane separation devices. Within these membrane separation devices, by employing a structure wherein the concentrated gas is either circulated a number of times, or treated in a plurality of stages, almost 100% of the nitrogen can be separated, meaning pure CF<sub>4</sub> gas, NF<sub>3</sub> gas, and C<sub>2</sub>F<sub>6</sub> gas can be obtained at concentrations of 100%.
- 15
- 20

[0023]

The CF<sub>4</sub> gas, C<sub>2</sub>F<sub>6</sub> gas, and NF<sub>3</sub> gas can be recovered and reused within the production process 10.

- 25 [0024]
- As described below, the chromatographic separation device 20 usually also yields a fraction that contains both CF<sub>4</sub> and NF<sub>3</sub>, but the CF<sub>4</sub> and NF<sub>3</sub> can be separated by subjecting this mixed fraction to further separation, and consequently this CF<sub>4</sub> + NF<sub>3</sub> fraction has been omitted from the diagram.
- 30

[0025]

In this manner, by using the chromatographic separation device 20, the present embodiment enables CF<sub>4</sub>, C<sub>2</sub>F<sub>6</sub>, and NF<sub>3</sub> gases to be separated effectively. Moreover, the separated 5 CF<sub>4</sub>, C<sub>2</sub>F<sub>6</sub>, and NF<sub>3</sub> gases can be recovered and reused.

[0026]

Fig. 2 shows an example of the structure of the chromatographic separation device 20. In this example, the chromatographic separation device 20 includes two columns, 10 namely a first column 50-1 and a second column 50-2, connected together in series. The first column 50-1 is packed with a zeolite (molecular sieve 13X) 30 with a predetermined pore size, and the second column 50-2 is packed with palm shell activated carbon 32. The first 15 column 50-1 is supplied continuously with nitrogen gas (N<sub>2</sub>), and is also supplied intermittently with the treatment gas containing CF<sub>4</sub>, NF<sub>3</sub> and C<sub>2</sub>F<sub>6</sub> via a valve 34. The outlet of the first column 50-1 is connected to the inlet of the second column 50-2 via a valve 36, and is also able to 20 discharge C<sub>2</sub>F<sub>6</sub> gas via a valve 38. In addition, the outlet of the second column 50-2 is able to discharge CF<sub>4</sub> + N<sub>2</sub> gas via a valve 40, CF<sub>4</sub> + NF<sub>3</sub> + N<sub>2</sub> gas via a valve 42, NF<sub>3</sub> + N<sub>2</sub> gas via a valve 44, and nitrogen (N<sub>2</sub>) gas via a valve 46.

[0027]

25 In this type of chromatographic separation device 20, first the valves 34, 38, 40, 42 and 44 are closed, the valves 36 and 46 are opened, and the first and second columns 50-1 and 50-2 are flushed with N<sub>2</sub> carrier gas. From this state, the valve 34 is opened, and a predetermined 30 quantity of the treatment gas is supplied in a pulse-like manner. This treatment gas should preferably be supplied to

the first column 50-1 with minimal dilution by the N<sub>2</sub> gas. Appropriate switching of the valves may also be used to temporarily halt the supply of N<sub>2</sub> while the treatment gas is supplied.

5 [0028]

Following the supply of the predetermined quantity of the treatment gas, the valve 34 is closed, and the supply of the N<sub>2</sub> gas can be recommenced. The CF<sub>4</sub>, NF<sub>3</sub> and C<sub>2</sub>F<sub>6</sub> within the treatment gas is separated by the molecular sieve 13X inside the first column 50-1. In other words, the C<sub>2</sub>F<sub>6</sub> is slower to desorb from the molecular sieve 13X than the CF<sub>4</sub> and NF<sub>3</sub>. Consequently, as shown in Fig. 3, the CF<sub>4</sub> + NF<sub>3</sub> fraction from the treatment gas appears first at the outlet of the first column 50-1, with the C<sub>2</sub>F<sub>6</sub> fraction appearing considerably later.

[0029]

Accordingly, when the C<sub>2</sub>F<sub>6</sub> is discharged, the valve 36 is closed and the valve 38 is opened, thus enabling separation and extraction of the C<sub>2</sub>F<sub>6</sub> gas. Once extraction of the C<sub>2</sub>F<sub>6</sub> has finished, the valve 38 is closed and the valve 36 is opened.

[0030]

As a result, the second column 50-2 is supplied with a treatment gas that contains CF<sub>4</sub> and NF<sub>3</sub>, but contains no C<sub>2</sub>F<sub>6</sub>. In the second column 50-2, the CF<sub>4</sub> and NF<sub>3</sub> are separated by the activated carbon 32. In other words, the NF<sub>3</sub> is slower to desorb from the activated carbon than the CF<sub>4</sub>. Consequently, as shown in Fig. 4, the CF<sub>4</sub> fraction from the treatment gas appears first at the outlet of the second column 50-2, with the NF<sub>3</sub> fraction appearing later. The CF<sub>4</sub> and NF<sub>3</sub> are not completely separated at this point, and a

mixed gas containing both components is discharged in the middle. Accordingly, when the CF<sub>4</sub> is discharged, the valve 46 is closed, the valve 40 is opened, and CF<sub>4</sub> + N<sub>2</sub> is collected, when CF<sub>4</sub> + NF<sub>3</sub> is discharged, the valve 40 is closed, the valve 42 is opened, and CF<sub>4</sub> + NF<sub>3</sub> + N<sub>2</sub> is collected, and when NF<sub>3</sub> is discharged, the valve 42 is closed, the valve 44 is opened, and NF<sub>3</sub> + N<sub>2</sub> is collected.

5       closed, the valve 42 is opened, and CF<sub>4</sub> + NF<sub>3</sub> + N<sub>2</sub> is collected, and when NF<sub>3</sub> is discharged, the valve 42 is closed, the valve 44 is opened, and NF<sub>3</sub> + N<sub>2</sub> is collected.

The CF<sub>4</sub> + NF<sub>3</sub> fraction may be further separated using a separate column packed with activated carbon. Alternatively,

10      the CF<sub>4</sub> + NF<sub>3</sub> + N<sub>2</sub> may also be returned to the treatment gas side of the separation device.

[0031]

In this manner, C<sub>2</sub>F<sub>6</sub> + N<sub>2</sub>, CF<sub>4</sub> + N<sub>2</sub>, and NF<sub>3</sub> + N<sub>2</sub> fractions can be collected separately.

15      [0032]

Fig. 5 shows an alternative structure for the chromatographic separation device 20. In this example, a single column 50 is packed sequentially with zeolite (molecular sieve 13X) 30 and activated carbon 32, with the zeolite closer to the column inlet. Accordingly, the treatment gas first makes contact with the zeolite 30, and subsequently contacts the activated carbon 32.

20

[0033]

With this type of column 50, gas separation can be conducted in an almost identical manner to that described above for the series-connected first and second columns 50-1 and 50-2. This example differs from that above in that C<sub>2</sub>F<sub>6</sub> also passes through the activated carbon 32, but even after passage through the activated carbon 32, C<sub>2</sub>F<sub>6</sub> is still discharged after CF<sub>4</sub> and NF<sub>3</sub>, meaning there is no deleterious impact on the separation performance. In other words, as

25

30

shown in Fig. 6, the fractions  $\text{CF}_4 + \text{N}_2$ ,  $\text{CF}_4 + \text{NF}_3 + \text{N}_2$ ,  $\text{NF}_3 + \text{N}_2$ , and  $\text{C}_2\text{F}_6 + \text{N}_2$  appear sequentially at the outlet of the column 50. Accordingly, by opening the valves 38, 40, 42 and 44 in sequence, each of the fractions can be separated  
5 and recovered. The  $\text{CF}_4 + \text{NF}_3 + \text{N}_2$  fraction may be further separated using a separate column packed with activated carbon, or may be returned to the treatment gas side of the separation device. Other facets of the structure and the operation of this example are the same as those described in  
10 relation to Fig. 2.

[0034]

In this manner, by using a chromatographic separation device 20 in which the treatment gas is passed sequentially through the two fillers shown in Fig. 2 and Fig. 5,  $\text{CF}_4$ ,  $\text{NF}_3$   
15 and  $\text{C}_2\text{F}_6$  can be separated.

[0035]

In the examples shown in Fig. 2 and Fig. 5, the chromatographic separation was conducted with the zeolite 30 positioned in the former stage and the activated carbon 32 in the latter stage, but this sequence may also be reversed.  
20 Furthermore, in the example of Fig. 5, the zeolite and the activated carbon may also be mixed. However, tests suggest that separating off  $\text{C}_2\text{F}_6$  first using the zeolite 30, and then using the activated carbon 32 to separate  $\text{CF}_4$  and  $\text{NF}_3$  leads  
25 to a reliable separation, whereas if the sequence is reversed, complete separation of  $\text{NF}_3$  and  $\text{C}_2\text{F}_6$  may not be possible.

[0036]

As follows is a description of the separation of  $\text{CF}_4$   
30 and  $\text{C}_2\text{F}_6$  by the zeolite 30. In this example, a zeolite 30 with a pore size of at least 0.5 nm is used as the filler.

By using a zeolite with this type of large pore size, CF<sub>4</sub> and C<sub>2</sub>F<sub>6</sub> can be effectively separated.

[0037]

In other words, a variety of different zeolites were  
5 tested as fillers, and it was found that whereas a molecular  
sieve 5A (manufactured by GL Sciences Inc.) with a pore size  
of approximately 5 nm is unable to produce a satisfactory  
separation, molecular sieve 13X (manufactured by GL Sciences  
Inc.), and zeolite F-9 (manufactured by Tosoh Corporation),  
10 which has a pore size of approximately 0.8 nm (meaning it is  
unable to adsorb molecules with effective diameters greater  
than 0.8 nm) and is marketed as an equivalent product to  
molecular sieve 13X, are ideal for achieving separation.

[0038]

15 Currently, there are no zeolites commercially available  
with a larger pore size than molecular sieve 13X, but it is  
believed that a zeolite with a larger pore size than  
molecular sieve 13X would also be usable, although this has  
not been confirmed.

20 [0039]

For CF<sub>4</sub> and C<sub>2</sub>F<sub>6</sub>, the maximum molecular diameter,  
calculated on the basis of the F-F internuclear distance and  
the F electron cloud radius of 0.133 nm, is 0.4445 nm for  
CF<sub>4</sub> and 5.69 nm for C<sub>2</sub>F<sub>6</sub>. For example, the maximum molecular  
25 diameter for CF<sub>4</sub> is determined using the equation 0.1785  
(the F-F internuclear distance) + 0.133 × 2 (two F).

[0040]

When molecular sieve 5A is used, it is thought that the  
reason that separation of CF<sub>4</sub> and C<sub>2</sub>F<sub>6</sub> cannot be achieved  
30 reflects the fact that the pore size is smaller than the  
molecular diameter of the C<sub>2</sub>F<sub>6</sub>. Accordingly, the pore size

of the zeolite must be larger than the maximum molecular diameter of C<sub>2</sub>F<sub>6</sub>.

[0041]

When this type of zeolite is used, the adsorption of CF<sub>4</sub> weakens, whereas the C<sub>2</sub>F<sub>6</sub> continues to be adsorbed. It is thought that this effect is responsible for the reliable separation of the CF<sub>4</sub> and C<sub>2</sub>F<sub>6</sub>.

[0042]

A molecular sieve is normally used for separating molecules that are larger than the sieve pore size from molecules that are smaller, and the conducting of a separation process using a molecular sieve with a pore size that is larger than both of the separation target materials is unusual.

[0043]

In this embodiment, separation of the target materials CF<sub>4</sub> and C<sub>2</sub>F<sub>6</sub> is achieved using a zeolite with an adsorption pore size that is larger than the maximum diameter of both CF<sub>4</sub> and C<sub>2</sub>F<sub>6</sub>.

[0044]

In this chromatographic separation device 20, nitrogen is used as a carrier gas, and by using this carrier gas to sequentially desorb and discharge the CF<sub>4</sub> and C<sub>2</sub>F<sub>6</sub> adsorbed to the filler, the CF<sub>4</sub> and C<sub>2</sub>F<sub>6</sub> are separated.

[0045]

In another preferred configuration, a plurality of the above chromatographic separation devices 20 are prepared, and the exhaust gas is passed sequentially through each of these chromatographic separation devices 20, with each fraction collected sequentially from each of the chromatographic separation devices 20.

[0046]

The collection of each of the component gases at the outlet of the chromatographic separation device 20, and the switching of the valves, are preferably conducted in accordance with the results of analyses performed on the gas at the outlet. For example, the different components can be detected using a quadrupole mass spectrometer (QMS), a differential thermal detector (TCD), or a Fourier transform infrared analyzer (FT-IR), with control then conducted in accordance with the results of the analysis.

#### EXAMPLES

[0047]

A test was conducted using a test unit with the structure shown in Fig. 7. The unit in Fig. 7 corresponds with the configuration shown in Fig. 2.

[0048]

The first column 50-1 for the test employed a column in which a 5 m long SUS pipe of outer diameter 1/8 inch was packed with a zeolite 30 comprising molecular sieve 13X (manufactured by GL Sciences Inc.) with a particle size of 60 to 80 mesh. The second column 50-2 for the test employed a column in which a 5 m long SUS pipe of outer diameter 1/8 inch was packed with an activated carbon 32 comprising palm shell activated carbon with a specific surface area of 1158 m<sup>2</sup>/g and a particle size of 60 to 80 mesh. The first and second columns 50-1 and 50-2 were connected together in series.

[0049]

Nitrogen (N<sub>2</sub>) gas was passed through the first and second columns 50-1 and 50-2 at a flow rate of 35 mL/minute,

and a six-way cock 60 was used to introduce a mixed gas of CF<sub>4</sub>/C<sub>2</sub>F<sub>6</sub>/NF<sub>3</sub> (CF<sub>4</sub>:C<sub>2</sub>F<sub>6</sub>:NF<sub>3</sub> = 1:1:1) in a pulse-like manner. Furthermore, the outlets of both the first column 50-1 and the second column 50-2 were analyzed using a mass spectrometer 62. In the drawing, MFC represents a flow rate controller.

[0050]

The analysis results from the outlet of the first column 50-1 are shown in Fig. 3, and the analysis results from the outlet of the second column 50-2 are shown in Fig. 4.

[0051]

The test was conducted at 40°C, but other temperatures are also acceptable. However, because the separation properties vary depending on the temperature, the test is preferably conducted at a constant temperature.

[0052]

The test results confirmed that by using a pulsed introduction of gas, the respective peaks for the CF<sub>4</sub> + NF<sub>3</sub> mixture and C<sub>2</sub>F<sub>6</sub> had completely separated by reaching the outlet of the first column 50-1, meaning that by simply selecting the sampling period, a CF<sub>4</sub> + NF<sub>3</sub> mixed gas and pure C<sub>2</sub>F<sub>6</sub> could be obtained. Accordingly, the C<sub>2</sub>F<sub>6</sub> was extracted, and the CF<sub>4</sub> + NF<sub>3</sub> mixed gas was fed into the second column 50-2. As a result, it was found that at the outlet of the second column 50-2, the CF<sub>4</sub> and NF<sub>3</sub> had separated by the time of discharge.

[0053]

At the outlet of the second column 50-2, pure CF<sub>4</sub>, an unseparated CF<sub>4</sub> + NF<sub>3</sub> gas fraction, and pure NF<sub>3</sub> were obtained, and the unseparated gas fraction is preferably

either returned to the inlet of the series-connected first and second columns, or passed through a separate activated carbon column provided in series, to effect separation and recovery.

5 [0054]

Hence, the unit described above was confirmed as being capable of favorable recovery of CF<sub>4</sub>, C<sub>2</sub>F<sub>6</sub>, and NF<sub>3</sub>.

[0055]

(Example 2)

10 A test was conducted using a test unit with the structure shown in Fig. 8. The column 50 for the test employed a column in which a 10 m long SUS pipe of outer diameter 1/8 inch was packed first with palm shell activated carbon with a specific surface area of 1158 m<sup>2</sup>/g and a particle size of 60 to 80 mesh, and then with molecular sieve 13X (manufactured by GL Sciences Inc.) with a particle size of 60 to 80 mesh. This yielded a column such as that shown in Fig. 5, in which the zeolite (molecular sieve 13X) 30 and the activated carbon (palm shell activated carbon) 32 were arranged in sequence along the flow direction of the treatment gas. The packing ratio of the two fillers was 1:1.

20 [0056]

Nitrogen gas was passed through the column 50 at a flow rate of 35 mL/minute, and a six-way cock 60 was used to introduce a mixed gas of CF<sub>4</sub>/C<sub>2</sub>F<sub>6</sub>/NF<sub>3</sub> (CF<sub>4</sub>:C<sub>2</sub>F<sub>6</sub>:NF<sub>3</sub> = 1:1:1) in a pulse-like manner. The outlet of the column 50 was analyzed using a mass spectrometer 62. In the drawing, MFC represents a flow rate controller.

[0057]

30 The analysis results from the outlet are shown in Fig. 6. The test was conducted at 40°C, but other temperatures

are also acceptable. However, because the separation properties vary depending on the temperature, the test is preferably conducted at a constant temperature.

[0058]

5       The test results revealed that the peaks for CF<sub>4</sub>, NF<sub>3</sub>, and C<sub>2</sub>F<sub>6</sub> appeared sequentially at the outlet of the column 50, confirming that each of the gases could be separated. The unseparated CF<sub>4</sub> + NF<sub>3</sub> fraction can be separated by passage through a subsequent, separate activated carbon column.

10      [0059]

The width of the peaks and the level of overlap of the unseparated portion vary depending on the concentration of the supplied gas, but a satisfactory separation can be achieved by altering the packing ratio (in this example 1:1) 15 of the fillers packed inside the single column.

[0060]

In this manner, the unit described above was confirmed as being capable of favorable recovery of CF<sub>4</sub>, C<sub>2</sub>F<sub>6</sub>, and NF<sub>3</sub>.

[0061]

20      Tests were also conducted using F-9 (manufactured by Tosoh Corporation), which is described as having a similar structure to molecular sieve 13X (an equivalent product), as the zeolite 30. This F-9 enabled separation of CF<sub>4</sub> and C<sub>2</sub>F<sub>6</sub> in a similar manner to that observed for the molecular sieve 25 13X, although the retention times were marginally longer.