INF0615 – Aprendizado de Máquina Supervisionado

Trabalho 1 - Regressão Linear

Nicole Nogueira Silva

Rodolfo Dalla Costa

Introdução

O Monóxido de carbono (CO) é um gás incolor e inflamável produzido com base na queima incompleta de material combustível rico em carbono. Apesar de suas aplicações na indústria, é um gás asfixiante muito tóxico para os seres humanos. Nesse contexto, avaliar a concentração de CO é fundamental para mensurar a qualidade do ar de uma determinada região. Dessa forma, o objetivo desse trabalho é desenvolver modelos de regressão linear para predizer a concentração de CO no ar usando um conjunto de dados coletados com diversas informações sobre a característica do ar.

Banco de dados

Table 1: Estatísticas sumárias do banco de dados

year	month	day	hour	PM2.5	PM10	SO2	NO2
Min. :2013 1st Qu.:2014 Median :2015 Mean :2015 3rd Qu.:2016	Min.: 1.00 1st Qu.: 3.00 Median: 6.00 Mean: 6.47 3rd Qu.: 9.00	Min.: 1.0 1st Qu.: 8.0 Median:16.0 Mean:15.7 3rd Qu.:23.0	Min.: 0.0 1st Qu.: 6.0 Median:12.0 Mean:11.6 3rd Qu.:18.0	Min.: 2 1st Qu.: 20 Median: 55 Mean: 79 3rd Qu.:111	Min.: 2 1st Qu.: 36 Median: 82 Mean:105 3rd Qu.:145	Min.: 0 1st Qu.: 2 Median: 7 Mean: 16 3rd Qu.: 19	Min.: 2.0 1st Qu.: 23.0 Median: 43.0 Mean: 50.6 3rd Qu.: 71.0
Max. :2017	Max. :12.00	Max. :31.0	Max. :23.0	Max. :844	Max. :999	Max. :500	Max. :290.0

O3	TEMP	PRES	DEWP	RAIN	wd	WSPM	target
Min.: 0 1st Qu.: 10 Median: 45 Mean: 57 3rd Qu.: 82	Min. :-19.9	Min.: 983	Min. :-36.0	Min.: 0.0	NE: 25096	Min.: 0.00	Min.: 100
	1st Qu.: 3.1	1st Qu.:1002	1st Qu.: -9.0	1st Qu.: 0.0	ENE: 20029	1st Qu.: 0.90	1st Qu.: 500
	Median : 14.4	Median:1010	Median : 2.9	Median: 0.0	NW: 19211	Median: 1.40	Median: 900
	Mean : 13.5	Mean:1011	Mean : 2.4	Mean: 0.1	N: 17987	Mean: 1.74	Mean: 1229
	3rd Qu.: 23.2	3rd Qu.:1019	3rd Qu.: 15.0	3rd Qu.: 0.0	E: 17371	3rd Qu.: 2.20	3rd Qu.: 1500
Max. :1071	Max. : 41.6	Max. :1043	Max. : 29.1	Max. :52.1	SW: 16929	Max. :12.90	Max. :10000
NA	NA	NA	NA	NA	(Other):127959	NA	NA

O banco de dados foi dividido em 3 blocos, um conjunto de treinamento que será utilizado para treinar os modelos, um conjunto de validação para mensurar o desempenho dos modelos e um conjunto de teste. A base de treino possui 244582 linhas e 17 colunas enquanto a base de validação possui 61147 linhas e as mesmas colunas do conjunto de treino. Nota-se que o banco de dados não possui dados faltantes, se houvesse, o ideal é avaliar se a informação faltante é erro de preenchimento no momento da coleta ou se realmente traz uma informação relevante.

A partir do summary apresentado na Tabela 1 é possível notar que a variável "wd", que indica a direção do vento no momento da coleta, é a única variável categorizada da base. Para lidar com isso, podemos tranformar a variável utilizando a técnica de One-Hot-encoding.

Análise descritiva

Para entender as relações entre as variáveis e a concentração de monóxido de carbono (nosso Target), vamos analisar a distribuição da correlação entre as colunas da base. A Figura 1 apresenta um panorama geral da correlação com todas as features. Nota-se que a variável resposta tem correlação considerável com as variáveis PM25, PM10 e NO2.

Figure 1: Correlações 2 a 2 das variáveis.

O gráfico da Figura 2 apresenta a distribuição da concentração de CO em relação a concentração de PM2.5 no ar. É possível observar que existe uma relação linear entre as variáveis já que a concentração de CO aumenta conforme o PM2.5 aumenta também o que indica que ajustar um modelo de regrssão linear pode ser vantajoso.

Figure 2: Correlações e distribuição 2 a 2 das variáveis.

Além disso, como é possível notar por meio da Tabela 1, as colunas estão em escalas diferentes, por isso, aplicamos a normalização Z-norma nos dados de treino e os mesmos parâmetros para a validação. Dessa forma, cada feature está padronizada com média zero e desvio padrão correspondente.

Metodologia

Table 2: Resultado do baseline nos conjuntos de treino, validação e teste

N	ИAE	MSE	R2
Validação 3	71.065397896231	366334.640683555	0.733851208682943 0.726277152963655 0.733024757300127

Para predizer o valor da concentração do monóxido de carbono primeiro é importante avaliar um modelo de regressão linear com todas as variáveis, esse será o baseline. A Tabela 2 apresenta as medidas do erro médio (MAE), erro quadrático médio (MSE) e o R2 do baseline para os dados de treino, validação e teste. O baseline apresentou um MAE de 372.4 no conjunto de teste.

Para melhorar a predição do CO, vamos criar um modelo com combinação de features. Para esse modelo, vamos utlizar todas as variáveis e combinar 2 a 2 as variáveis PM2.5, PM10, SO2, NO2, O3, TEMP, PRES e DEWP. Os resultados do MAE, MSE e R2 para o conjunto de validação podem ser observados na Tabela x. A primeira linha corresponde aos resultados do modelo com combinação 2 a 2 enquanto a segunda linha é

Table 3: Resultado das combinações nos conjuntos de treino, validação e teste

MAE	MSE	R2
307 292	$271113 \\ 253683$	0.797 0.810

o modelo utilizando a combinação 3 a 3. É possível observar que o o melhor modelo desta categoria foi o modelo com combinação 3 a 3. Aplicando esse modelo no conjunto de teste obtivemos um MAE de 292.9.

Por fim, vamos testar o modelo de regressão aumentando o grau das features. O gráfico da Figura x apresenta o MAE para cada polinômio no conjunto de treino e validação. Podemos reparar que até o grau x estamos com underfit enquanto a partir do grau y temos overfit. Dessa forma, o ponto ótimo do modelo dessa categoria é de grau b. Ajustando o nosso melhor modelo polinomial de grau b no conjunto de teste obtivemos um MAE de n.

Figure 3: MAE do treino e validação para cada grau.

 $\# Conclus\~ao$