CSE221 Assignment 1

Mohammad Arriful Islam

Sec: 02

ID: 20101192

 $\log(\log n)$, $\log n$, \sqrt{n} , $\frac{n\log n}{n}$, $n, n\log n$, $n^{\frac{3}{2}}$, $n^{2}\log n$, n^{2} , 2^{n} , n!, n^{3} , e^{n+1}

(b) (i)
$$n^2 + 15n - 3 = \theta(n^2)$$

if c = 1 and no = 1

c, n2 < n2 + 15n - 3 for all n >1

if cz=3 and no=10

c2 n2 > n2+15n-3 for all n>10

. True

(11)
$$4n^3 - 7n^2 + 15n - 3 = \Theta(n^3)$$

if c, = 3 and no = 1

c, n3 < 4n3-7n2+15n-3 for all n>1

if $c_2 = 5$ and $n_0 = 5$

C2n3 > 4n3 - 7n2+15n-3 for all n25

(iii)
$$T(n) = 4T(\frac{n}{2}) + n = O(n^2)$$

First, $T(n) = 4T(\frac{n}{2}) + n$
Using Moster theorem, $T(n) = aT(\frac{n}{b}) + cn^k$, $T(1) = c$
 $a = 4, b = 2$, $k = 1$, $c = 1$, $T(1) = 1$
 $\Rightarrow b^k = 2^1 < a$... $T(n) = m + n^{\log_2 a}$
 $T(n) = n^{\log_2 4} = n^2$
Now, $n^2 = O(n^2)$
if $c_1 = 1$ and $n > 0$;
 $c_1 n^2 \le n^2$
if $c_2 = 3$ and $n > 0$;
 $c_2 n^2 \ge n^2$
... $n^2 = O(n^2)$ Shown
[IV) $T(n) = 2T(\frac{n}{2}) + n^3$
 $T(n) = aT(\frac{n}{b}) + cn^k$... comparing, we get:

$$T(n) = \alpha T\left(\frac{n}{b}\right) + cn^{k}$$
 : comparing, we get:
 $\alpha = 2$, $b = 2$, $k = 3$
 $b^{k} = 2^{3} > \alpha$: $T(n) = n^{k} = n^{3}$

(v)
$$T(n) = T(n|y) + T(5n|8) + n = O(n) = T(n) = T(n) + \{T(n)\},$$

$$\{T(n)\}, = T(\frac{n}{8|5}) + n$$

$$a = 1, b = \frac{8}{5}, k = 1 \quad Since b^k > a$$

$$\therefore \{T(n)\}, = O(n)$$

$$T(n) = T(\frac{n}{4}) + n$$

$$a = 1, b = 4, k = 1$$

$$Since bk > a (4 > 1)$$

$$T(n) = O(n)$$
(vi) $T(n) = T(\frac{n}{3}) + T(\frac{n}{914}) + n = 0$

$$T(n) = T(\frac{n}{3}) + \{T(n)\},$$

$$\{T(n)\}, = T(\frac{n}{94}) + n$$

$$a = 1, b = \frac{9}{4}, k = 1$$

$$b^k > a (\frac{n}{4} > 1) \therefore \{T(n)\}, = O(n)$$

$$T(n) = T(\frac{n}{3}) + n$$

$$a = 1, b = 3, k = 1$$

$$a = 1, b = 3, k = 1$$

$$a = 1, b = 3, k = 1$$

$$a = 1, b = 3, k = 1$$

$$a = 1, b = 3, k = 1$$

$$a = 1, b = 3, k = 1$$

$$a = 1, b = 3, k = 1$$

$$a = 1, b = 3, k = 1$$

$$a = 1, b = 3, k = 1$$

$$a = 1, b = 3, k = 1$$

$$a = 1, b = 3, k = 1$$

(C)(1)
$$count = 0 \rightarrow O(1)$$

 $forc(i=1, i <= n, i \neq= 2)$
 $forc(j=1, j <= i; j++)$
 $count++; \rightarrow O(1)$

or end to a describer in 187 - 1899 -

for the first loop:

== (log2n) for first loop \$ t(n)} = o(log_n * o(1)) =0(10g2n)

T(n)= O(1) +0{log_2n (log_2n)} $= e \{ 1092n \cdot 1092n \}$

0 (log2n.log2n)

(c)(2)
$$P=3$$
 O(1)
while $(P < n)$
 $P=P*P$

SHEP P

$$3^{2k} = 1 = 3^{2k} = n$$
 $2^{k} \log_{3} 3 = \log_{3} n = 2^{k} = \log_{3} n$
 $2^{k} \log_{3} 2 = \log_{2} (\log_{3} n)$
 $3 = 6561$
 $4 = \log_{2} (\log_{3} n)$
 $4 = \log_{2} (\log_{3} n)$
 $4 = \log_{2} (\log_{3} n)$
 $4 = \log_{2} (\log_{3} n)$

Time $\longrightarrow \Theta(\log_2 n(\log_3 n))$ Complexity

(d)(i) In a termany search for n values:

$$\frac{1}{n}$$
 step 3 $T(n) = T(\frac{n}{3}) + O(1)$

$$\frac{n}{3^{k}} = 1$$

$$\frac{n}{3^k} = 1$$
 : Time = $O(\log_5 n)$

```
(2)(0)
    binary-search (A, value, L, R):
        L>R:
     75
          neturn R+1
     M=(L+R)//2
     if value == A[M] and M+1 < len(A):
           if A[M+1] == value and M+1== len(A)-1;
                   meturn leng len(A) - 1
           elif A[m+1] == value
                    neturn binary-search (A, value, M+1, R)
            else:
                 M+1
      elif val == A [H] and M == len(A)-1:
            return M+1
      elif value A Val > A[M]:
             meturn binary = search (A, val, M+1, R)
              neturn binary-search (A, val, L, M-1)
      else:
     noOf Elements (size 1, size 2, list 1, list 2):
def
                  value = birany-seanch (list 1, i, 0, ten(tist1)=1)
         fore i in list?:
                   print (num, end = "")
          print()
modelenents (
```

(b) For the function binary-search:

n + step 0

 $\frac{n}{2}$ step 1

n = 1 when it stops

n step 2

11 2

· ·

 $log_2 r = k$

and since it is called inside a loop of size 2 and if we consider size 2 as no, then

O(nlog2n)