# Neural networks for natural language

Roger Levy
9.19: Computational Psycholinguistics
2 November 2023

## Agenda for the day

Last time: with a hidden layer, a NN can learn XOR...



- ...but language isn't just 2D input+2-class output! So, today:
- Dealing with language in neural networks
- Recurrent neural networks (RNNs)
  - Simple recurrent networks (SRNs)
  - Gated recurrent units (GRUs)
  - Long short-term memory networks (LSTMs)
- Examining RNN behavior

Adam adores zebras ...

For language, input  $\{x_i\}$  and output prediction y seem discrete:

Adam adores zebras ...

For language, input  $\{x_i\}$  and output prediction y seem discrete:

Adam adores zebras ...

Simplest approach is *localist* or *one-hot* representations:

$$\begin{array}{c|c} \mathtt{Adam} \rightarrow \begin{bmatrix} 1\\0\\0\\0\\\vdots\\0\\0\\0 \end{array} \quad \text{adores} \rightarrow \begin{bmatrix} 0\\1\\0\\\vdots\\0\\0\\0 \end{bmatrix} \quad \mathtt{zebras} \rightarrow \begin{bmatrix} 0\\0\\0\\\vdots\\0\\1 \end{bmatrix}$$

For language, input  $\{x_i\}$  and output prediction y seem discrete:

Adam adores zebras ...

Simplest approach is *localist* or *one-hot* representations:

$$\begin{array}{c|c} \texttt{Adam} \rightarrow \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix} & \texttt{adores} \rightarrow \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix} & \texttt{zebras} \rightarrow \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

But lower-dimensional *embeddings* capture word similarities:

$$\mathtt{Adam} \to \begin{bmatrix} 0.6 \\ 0.3 \end{bmatrix} \quad \mathtt{adores} \to \begin{bmatrix} -0.3 \\ 0.4 \end{bmatrix} \quad \mathtt{zebras} \to \begin{bmatrix} 0.7 \\ -0.1 \end{bmatrix}$$

#### Example feed-forward+embedding LM

Bengio et al., 2003: Neural *n*-gram language model



Figure 1: Neural architecture:  $f(i, w_{t-1}, \dots, w_{t-n+1}) = g(i, C(w_{t-1}), \dots, C(w_{t-n+1}))$  where g is the neural network and C(i) is the i-th word feature vector.

#### Old (2003!) perplexity results on Brown corpus

 $\mathbf{m}$ 

 $\mathbf{c}$ 

 $\mathbf{n}$ 

direct

mix

train.

valid.

test.

| neural   |
|----------|
| language |
| models   |

| N     | MLP1                 | 5 |      | 50  | 60 | yes | no  | 182 | 284 | 268         |
|-------|----------------------|---|------|-----|----|-----|-----|-----|-----|-------------|
| N     | MLP2                 | 5 |      | 50  | 60 | yes | yes |     | 275 | 257         |
| N     | MLP3                 | 5 |      | 0   | 60 | yes | no  | 201 | 327 | 310         |
| N     | MLP4                 | 5 |      | 0   | 60 | yes | yes |     | 286 | 272         |
| N     | MLP5                 | 5 |      | 50  | 30 | yes | no  | 209 | 296 | 279         |
| N     | MLP6                 | 5 |      | 50  | 30 | yes | yes |     | 273 | 259         |
| N     | MLP7                 | 3 |      | 50  | 30 | yes | no  | 210 | 309 | <b>2</b> 93 |
| N     | MLP8                 | 3 |      | 50  | 30 | yes | yes |     | 284 | 270         |
| N     | MLP9                 | 5 |      | 100 | 30 | no  | no  | 175 | 280 | 276         |
| MLP10 |                      | 5 |      | 100 | 30 | no  | yes |     | 265 | 252         |
|       | Oel. Int.            | 3 |      |     |    |     |     | 31  | 352 | 336         |
| k     | Kneser-Ney back-off  | 3 |      |     |    |     |     |     | 334 | 323         |
| ŀ     | Kneser-Ney back-off  | 4 |      |     |    |     |     |     | 332 | 321         |
| K     | Kneser-Ney back-off  | 5 |      |     |    |     |     |     | 332 | 321         |
| c     | lass-based back-off  | 3 | 150  |     |    |     |     |     | 348 | 334         |
| c     | lass-based back-off  | 3 | 200  |     |    |     |     |     | 354 | 340         |
| c     | class-based back-off | 3 | 500  |     |    |     |     |     | 326 | 312         |
| c     | lass-based back-off  | 3 | 1000 |     |    |     |     |     | 335 | 319         |
| c     | class-based back-off | 3 | 2000 |     |    |     |     |     | 343 | 326         |
| c     | lass-based back-off  | 4 | 500  |     |    |     |     |     | 327 | 312         |
| C     | class-based back-off | 5 | 500  |     |    |     |     |     | 327 | 312         |

n-gram language models

(Bengio et al., 2003)









• Advantages: generalizes over *n*-gram contexts



- Advantages: generalizes over *n*-gram contexts
- Limitations:



- Advantages: generalizes over n-gram contexts
- Limitations:
  - this is for a fixed dimensionality input context



- Advantages: generalizes over n-gram contexts
- Limitations:
  - this is for a fixed dimensionality input context
  - how to model variable-length context, like sentences?

Draw inspiration from real-time nature of human language processing

- Draw inspiration from real-time nature of human language processing
- Previous inputs must be integrated and remembered all together in a uniform representational space

- Draw inspiration from real-time nature of human language processing
- Previous inputs must be integrated and remembered all together in a uniform representational space

The woman brought the sandwich from ...

- Draw inspiration from real-time nature of human language processing
- Previous inputs must be integrated and remembered all together in a uniform representational space



(Jordan, 1986; Elman, 1990)

- Draw inspiration from real-time nature of human language processing
- Previous inputs must be integrated and remembered all together in a uniform representational space



- Draw inspiration from real-time nature of human language processing
- Previous inputs must be integrated and remembered all together in a uniform representational space



(bias nodes not shown)



(bias nodes not shown)



(bias nodes not shown)



(bias nodes not shown)



(bias nodes not shown)



(bias nodes not shown)



(bias nodes not shown)



(bias nodes not shown)



(bias nodes not shown)









# SRN "rolled up" and unrolled

A "rolled-up" representation (Elman, 1990); and unrolled:



# SRN "rolled up" and unrolled

A "rolled-up" representation (Elman, 1990); and unrolled:



# SRN "rolled up" and unrolled

A "rolled-up" representation (Elman, 1990); and unrolled:



# SRN "rolled up" and unrolled

A "rolled-up" representation (Elman, 1990); and unrolled:



TABLE 3
Categories of Lexical Items Used in Sentence Simulation

# Learning with artificial language input

| Category    | Examples            |  |
|-------------|---------------------|--|
| NOUN-HUM    | man, woman          |  |
| NOUN-ANIM   | A cat, mouse        |  |
| NOUN-INAN   | IIM book, rock      |  |
| NOUN-AGRE   | ESS dragon, monster |  |
| NOUN-FRAG   | glass, plate        |  |
| NOUN-FOOI   | D cookie, break     |  |
| VERB-INTRA  | N think, sleep      |  |
| VERB-TRAN   | see, chase          |  |
| VERB-AGPA   | T move, break       |  |
| VERB-PERCE  | PT smell, see       |  |
| VERB-DESTRO | OY break, smash     |  |
| VERB-EAT    | eat                 |  |

TABLE 4
Templates for Sentence Generator

| WORD 1      | WORD 2       | WORD 3      |
|-------------|--------------|-------------|
| NOUN-HUM    | VERB-EAT     | NOUN-FOOD   |
| MUH-NUON    | VERB-PERCEPT | NOUN-INANIM |
| NOUN-HUM    | VERB-DESTROY | NOUN-FRAG   |
| NOUN-HUM    | VERB-INTRAN  |             |
| NOUN-HUM    | VERB-TRAN    | MUH-HUM     |
| NOUN-HUM    | VERB-AGPAT   | NOUN-INANIA |
| MOUH-HUM    | VERB-AGPAT   |             |
| NOUN-ANIM   | VERB-EAT     | NOUN-FOOD   |
| NOUN-ANIM   | VERB-TRAN    | MINA-NUON   |
| NOUN-ANIM   | VERB-AGPAT   | MOUN-INANIA |
| NOUN-ANIM   | VERB-AGPAT   |             |
| MINANI-NUON | VERB-AGPAT   |             |
| NOUN-AGRESS | VERB-DESTROY | NOUN-FRAG   |
| NOUN-AGRESS | VERB-EAT     | NOUN-HUM    |
| NOUN-AGRESS | VERB-EAT     | NOUN-ANIM   |
| NOUN-AGRESS | VERB-EAT     | NOUN-FOOD   |

#### Used *localist* word representations

| Input                                  | Output                                       |
|----------------------------------------|----------------------------------------------|
| 00000000000000000000000000000000000000 | an) 000000000000000000000000000000000000     |
| 00000000000000000000000010000 (smax    | sh) 00000000000000000001000000000 (plate)    |
| 00000000000000000001000000000 (plate   | e) 0000010000000000000000000000000000000     |
| 00000100000000000000000000000000000000 | 0000000000000000010000000000 (move)          |
| 000000000000000000100000000000 (move   | e) 0000000000000001000000000000000000 (man)  |
| 000000000000000100000000000000 (man    | ) 0001000000000000000000000000000000 (break) |
| 00010000000000000000000000000000000000 | k) 0000100000000000000000000000000000000     |
| 00001000000000000000000000000000000000 | 01000000000000000000000000000000 (boy)       |
| 01000000000000000000000000000000000000 | 00000000000000000100000000000 (move)         |
| 0000000000000000010000000000 (mov      | e) 000000000001000000000000000000 (girl)     |
| 00000000000100000000000000000 (girl)   | 00000000010000000000000000000 (eat)          |
| 00000000010000000000000000000 (eat)    | 00100000000000000000000000000000000 (bread)  |
| 00100000000000000000000000000000000000 | d) 0000000100000000000000000000000000000     |
| 000000010000000000000000000000 (dog)   | 00000000000000000100000000000 (move)         |
| 000000000000000000100000000000 (mov    | e) 000000000000000001000000000000 (mouse     |
| 000000000000000001000000000000 (mou    | se) 000000000000000001000000000000 (mouse    |
| 00000000000000000100000000000 (mou     | se) 0000000000000000010000000000 (move)      |
| 000000000000000000100000000000 (mov    | e) 1000000000000000000000000000000000000     |
| 10000000000000000000000000000000000000 | c) 0000000000000010000000000000000000 (lion) |

(Elman, 1990)

## Learning word classes



## Learning word classes



## Learning word classes





#### Beyond the simple recurrent network

- The SRN has a very strong linear locality bias
- But natural language syntax is characterized by hierarchical structure
- SRNs can learn hierarchy (Elman, 1991), but it is hard their inductive bias disfavors it





Another view of an unrolled SRN:



Another view of an unrolled SRN:



Another view of an unrolled SRN:



Keep the recurrent structure and "swap in" a new unit:







$$\mathbf{r}_t = \sigma(\mathbf{W}_r \mathbf{x}_t + \mathbf{U}_r \mathbf{h}_{t-1})$$

$$\tilde{\mathbf{h}}_t = \tanh(\mathbf{W}\mathbf{x}_t + \mathbf{U}(\mathbf{r}_t \odot \mathbf{h}_{t-1}))$$

$$\mathbf{z}_t = \sigma(\mathbf{W}_z \mathbf{x}_t + \mathbf{U}_z \mathbf{h}_{t-1})$$

$$\mathbf{h}_t = (1 - \mathbf{z}_t) \odot \mathbf{h}_{t-1} + \mathbf{z}_t \odot \tilde{\mathbf{h}}_t$$



logistic/sigmoid activation function

$$\mathbf{r}_t = \sigma(\mathbf{W}_r \mathbf{x}_t + \mathbf{U}_r \mathbf{h}_{t-1})$$

$$\widetilde{\mathbf{h}}_t = \tanh(\mathbf{W}\mathbf{x}_t + \mathbf{U}(\mathbf{r}_t \odot \mathbf{h}_{t-1})$$

$$\mathbf{z}_t = \sigma(\mathbf{W}_z \mathbf{x}_t + \mathbf{U}_z \mathbf{h}_{t-1})$$

$$\mathbf{h}_t = (1 - \mathbf{z}_t) \odot \mathbf{h}_{t-1} + \mathbf{z}_t \odot \tilde{\mathbf{h}}_t$$



logistic/sigmoid activation function

$$\mathbf{r}_t = \sigma(\mathbf{W}_r \mathbf{x}_t + \mathbf{U}_r \mathbf{h}_{t-1})$$

$$\tilde{\mathbf{h}}_t = \tanh(\mathbf{W}\mathbf{x}_t + \mathbf{U}(\mathbf{r}_t \odot \mathbf{h}_{t-1}))$$

$$\mathbf{z}_t = \sigma(\mathbf{W}_z \mathbf{x}_t + \mathbf{U}_z \mathbf{h}_{t-1})$$

$$\mathbf{h}_t = (1 - \mathbf{z}_t) \odot \mathbf{h}_{t-1} + \mathbf{z}_t \odot \tilde{\mathbf{h}}_t$$



(e.g., 
$$\langle 1,2,3 \rangle \odot \langle 0.5,2,1 \rangle = \langle 0.5,4,3 \rangle$$
)



logistic/sigmoid activation function

$$\mathbf{r}_{t} = \sigma(\mathbf{W}_{r}\mathbf{x}_{t} + \mathbf{U}_{r}\mathbf{h}_{t-1})$$

$$\tilde{\mathbf{h}}_{t} = \tanh(\mathbf{W}\mathbf{x}_{t} + \mathbf{U}(\mathbf{r}_{t} \odot \mathbf{h}_{t-1})$$

$$\uparrow$$
element-wise multiplication

$$\mathbf{z}_t = \sigma(\mathbf{W}_z \mathbf{x}_t + \mathbf{U}_z \mathbf{h}_{t-1})$$

$$\mathbf{h}_t = (1 - \mathbf{z}_t) \odot \mathbf{h}_{t-1} + \mathbf{z}_t \odot \tilde{\mathbf{h}}_t$$

(e.g., 
$$\langle 1,2,3 \rangle \odot \langle 0.5,2,1 \rangle = \langle 0.5,4,3 \rangle$$
)



logistic/sigmoid activation function

$$\mathbf{r}_t = \sigma(\mathbf{W}_r \mathbf{x}_t + \mathbf{U}_r \mathbf{h}_{t-1})$$

$$\tilde{\mathbf{h}}_t = \tanh(\mathbf{W}\mathbf{x}_t + \mathbf{U}(\mathbf{r}_t \odot \mathbf{h}_{t-1}))$$

element-wise multiplication

$$\mathbf{z}_t = \sigma(\mathbf{W}_z \mathbf{x}_t + \mathbf{U}_z \mathbf{h}_{t-1})$$

$$\mathbf{h}_t = (1 - \mathbf{z}_t) \odot \mathbf{h}_{t-1} + \mathbf{z}_t \odot \tilde{\mathbf{h}}_t$$

(e.g., 
$$\langle 1,2,3 \rangle \odot \langle 0.5,2,1 \rangle = \langle 0.5,4,3 \rangle$$
)



logistic/sigmoid activation function

$$\mathbf{r}_{t} = \sigma(\mathbf{W}_{r}\mathbf{x}_{t} + \mathbf{U}_{r}\mathbf{h}_{t-1})$$

$$\tilde{\mathbf{h}}_{t} = \tanh(\mathbf{W}\mathbf{x}_{t} + \mathbf{U}(\mathbf{r}_{t} \odot \mathbf{h}_{t-1})$$

$$\uparrow$$
element-wise multiplication

$$\mathbf{z}_t = \sigma(\mathbf{W}_z \mathbf{x}_t + \mathbf{U}_z \mathbf{h}_{t-1})$$

$$\mathbf{h}_t = (1 - \mathbf{z}_t) \odot \mathbf{h}_{t-1} + \mathbf{z}_t \odot \tilde{\mathbf{h}}_t$$

(e.g., 
$$\langle 1,2,3 \rangle \odot \langle 0.5,2,1 \rangle = \langle 0.5,4,3 \rangle$$
)



logistic/sigmoid activation function

$$\mathbf{r}_{t} = \sigma(\mathbf{W}_{r}\mathbf{x}_{t} + \mathbf{U}_{r}\mathbf{h}_{t-1})$$

$$\tilde{\mathbf{h}}_t = \tanh(\mathbf{W}\mathbf{x}_t + \mathbf{U}(\mathbf{r}_t \odot \mathbf{h}_{t-1})$$
element-wise

$$\mathbf{z}_t = \sigma(\mathbf{W}_z \mathbf{x}_t + \mathbf{U}_z \mathbf{h}_{t-1})$$

$$\mathbf{h}_t = (1 - \mathbf{z}_t) \odot \mathbf{h}_{t-1} + \mathbf{z}_t \odot \tilde{\mathbf{h}}_t$$

(e.g., 
$$\langle 1,2,3 \rangle \odot \langle 0.5,2,1 \rangle = \langle 0.5,4,3 \rangle$$
)

multiplication

#### Long short-term memory (LSTM) units



(Hochreiter & Schmidhuber, 1997)

- The "hidden layer"  $\mathbf{h}_{t-1}$  was used to predict element t of the sequence
- It now gets passed through a "forget gate"



$$\mathbf{f}_t = \sigma(\mathbf{U_f}\mathbf{h}_{t-1} + \mathbf{W}_f\mathbf{x}_t)$$

• Other information from  $h_{t-1}$  gets put into the memory store



$$\mathbf{i}_t = \sigma(\mathbf{U}_{\mathbf{i}}\mathbf{h}_{t-1} + \mathbf{W}_{\mathbf{i}}\mathbf{x}_t)$$

$$\tilde{\mathbf{C}}_t = \tanh(\mathbf{U}_{\mathbf{C}}\mathbf{h}_{t-1} + \mathbf{W}_{\mathbf{C}}\mathbf{x}_t)$$

 That information gets integrated into the memory store (which also gets passed on to the future



$$\mathbf{C}_t = \mathbf{f}_t \odot \mathbf{C}_{t-1} + \mathbf{i}_t \odot \tilde{\mathbf{C}}_t$$

 Finally, we determine the new hidden layer to predict input t+1



$$\mathbf{o}_t = \sigma(\mathbf{U}_{\mathbf{o}}\mathbf{h}_{t-1} + \mathbf{W}_{\mathbf{o}}\mathbf{x}_t)$$

$$\mathbf{h}_t = \mathbf{o}_t \odot \tanh(\mathbf{C}_t)$$

#### The LSTM unit, complete



$$\mathbf{f}_{t} = \sigma(\mathbf{U}_{\mathbf{f}}\mathbf{h}_{t-1} + \mathbf{W}_{f}\mathbf{x}_{t})$$

$$\mathbf{i}_{t} = \sigma(\mathbf{U}_{\mathbf{i}}\mathbf{h}_{t-1} + \mathbf{W}_{\mathbf{i}}\mathbf{x}_{t})$$

$$\tilde{\mathbf{C}}_{t} = \tanh(\mathbf{U}_{\mathbf{C}}\mathbf{h}_{t-1} + \mathbf{W}_{\mathbf{C}}\mathbf{x}_{t})$$

$$\mathbf{C}_{t} = \mathbf{f}_{t} \odot \mathbf{C}_{t-1} + \mathbf{i}_{t} \odot \tilde{\mathbf{C}}_{t}$$

$$\mathbf{o}_{t} = \sigma(\mathbf{U}_{\mathbf{o}}\mathbf{h}_{t-1} + \mathbf{W}_{\mathbf{o}}\mathbf{x}_{t})$$

$$\mathbf{h}_{t} = \mathbf{o}_{t} \odot \tanh(\mathbf{C}_{t})$$

 $a^nb^n$ 

 $a^nb^n$ 

Easily generable with a context-free grammar:

$$S \rightarrow a b$$
  
 $S \rightarrow a S b$ 

#### $a^nb^n$

Easily generable with a context-free grammar:

- ^ab\$
- ^aabb\$
- ^aaabbb\$
- ^aaaabbbb\$
- ^aaaaabbbbb\$
- ^aaaaaabbbbbb\$
- ^aaaaaaabbbbbbb\$

•

^aaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbb

23

 $a^nb^n$ 

Easily generable with a context-free grammar:

```
^ab$
```

^aaabbb\$

^aaaabbbb\$

^aaaaabbbbb\$

^aaaaaabbbbbb\$

^aaaaaaabbbbbbb\$

^aaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbb

(Weiss et al. 2018, ACL)

23

 $a^nb^n$ 

Easily generable with a context-free grammar:

- ^aaabbb\$
- ^aaaabbbb\$

Dtrain

- ^aaaaabbbbb\$
- ^aaaaaabbbbbb\$
- ^aaaaaaabbbbbbb\$

•

N = 20

N = 20

(Weiss et al. 2018, ACL)

# Training recurrent architectures on $a^nb^n$



#### Hidden & cell state contents



Х

#### Summary

- Mechanisms for neural networks at the sentence level:
  - Learned word embeddings
  - Recurrent state representation
- Different units used for recurrent state representation:
  - Simple recurrent network (SRN)
  - Gated recurrent unit (GRU)
  - Long short-term memory (LSTM)
- For classic counting language, LSTM works the best