Formulas

Probability

r:

Definitions (Noteworthy ones)

- Sure Event: sample space
- Sample space depends on problem of interest

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = P(A) \cup P(B \cap A')$$

$$P(A) = P(A \cap B) + P(A \cap B')$$

$$P(A) = P(A|B)P(B) + P(A|B')P(B')$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A')P(A')}$$

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

Independence

$$P(A \cap B) = P(A)P(B)$$

$$P(A) = P(A|B), P(B) \neq 0$$

If
$$P(A)>0$$
 and $P(B)>0$, then $A\perp B\Rightarrow A$ and B not mutually exclusive

Contrapositive

, then A and B mutually exclusive $\Rightarrow A \not \perp B$

$$A \perp B \Rightarrow A \perp B', A' \perp B, A' \perp B'$$

Mutually exclusive

$$P(A \cup B) = P(A) + P(B)$$

$$P(A \cap B) = \emptyset$$

Expectation, Variance, Covariance

•
$$E(X) = \sum_{R_X} x f(x)$$
 or $\int_{R_X} x f(x)$

•
$$E(g(X)) = \sum_{R_X} g(x) f(x)$$
 or $\int_{R_X} g(x) f(x)$

•
$$E(aX + b) = aE(X) + b$$

•
$$E(X + Y) = E(X) + E(Y)$$

- $E(X_1 + X_2 + ... + X_n) = nE(X)$
- $X\perp Y\implies E(XY)=E(X)E(Y)$ (INVERSE IS NOT NECESSARILY TRUE!!!)
- $V(X) = E[(X \mu_x)^2]$
- $V(X) = E(X^2) [E(X)]^2$
- $V(aX + b) = a^2V(X)$
- ullet $V(aX_1+bX_2)=a^2V(X)+b^2V(X)$, X_1,X_2 are random **observations** of X
- $\begin{array}{l} \bullet \ \ cov(X,Y) = E[(X \mu_X)(Y \mu_Y)] \\ = E(XY) E(X)E(Y) \\ = \int \int_{R_{X,Y}} (x \mu_x)(y \mu_y) f_{X,Y}(x,y) \ dxdy \end{array}$
- $X\perp Y\implies cov(X,Y)=0$ (INVERSE IS NOT NECESSARILY TRUE!!!)
- $cov(aX + b, cY + d) = ac \cdot cov(X, Y)$
- $V(aX + bY) = a^2V(X) + b^2V(Y) + 2ab \cdot cov(X, Y)$
- $V(X_1 + X_2 + ... + X_n) = V(X_1) + V(X_2) + ... + V(X_n) + 2\sum_{i>i} cov(X_i, X_j)$

Random Variables

Definitions (Noteworthy ones)

- Random Variable: A function which assigns a real number to every $s \in S$

Discrete

Probablity Function

- (1) $f(x_i) \ge 0$ for all $x_i \in R_X$;
- (2) f(x) = 0 for all $x \notin R_X$;
- (3) $\sum_{i=1}^{\infty} f(x_i) = 1$, or $\sum_{x_i \in R_X} f(x_i) = 1$.

Cumulative Distribution Function

$$F(x) = P(X \le x)$$

•
$$P(a \le X \le b) = F(b) - F(a-)$$

•
$$P(a < X < b) = F(b-) - F(a)$$

$$F_X(x) = \begin{cases} 0, & x < 1 \\ 0.3, & 1 \le x < 3 & \text{F(1)} = \text{P(x \le 1)} = \text{F(2)} \\ 0.4, & 3 \le x < 4 & \text{F(3)} = \text{P(x \le 3)} \\ 0.45, & 4 \le x < 6 & \text{F(4)} = \text{P(x \le 4)} = \text{F(5)} \\ 0.6, & 6 \le x < 12 & \text{F(6)} = \text{P(x \le 6)} = \text{F(6)} = \text{F(7)} = \dots = \text{F(11)} \\ 1, & 12 \le x & \text{F(12)} = \text{P(x \le 12)} \end{cases}$$

х	1	3	4	6	12
$f_X(x)$	0.3	0.1	0.05	0.15	0.4

Continuous

Probability Density Function

- (1) $f(x) \ge 0$ for all $x \in R_X$; and f(x) = 0 for $x \notin R_X$.
- $(2) \int_{R_X} f(x) dx = 1.$
- (3) For any a and b such that $a \le b$,

$$P(a \le X \le b) = \int_a^b f(x)dx.$$

 $f_X(x)$ can be >1

For any arbitrary specific value x_0 , we have

$$P(X = x_0) = \int_{x_0}^{x_0} f(x) dx = 0.$$

This gives an example of "P(A) = 0, but A is not necessarily \emptyset ."

Cumulative Distribution Function

$$F(x) = \int_{-\infty}^{x} f(t)dt.$$

$$f(x) = \frac{dF(x)}{dx}.$$

F(x) for $a \leq X \leq b$ = $\int_a^x f(t) \ dx + F(a)$ for piecewise functions

2D-RVs

Marginal

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$$

$$f_X(x) = \sum_y f_{X,Y}(x,y)$$

Conditional

$$f_{X|Y}(x|y) = rac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

$$f_{X|Y}(x|y)$$
 is a **p.f.** for X

$$egin{aligned} P(X \leq x | Y = y) &= \int_{-\infty}^x f_{X|Y}(x,y) dx \ E(X | Y = y) &= \int_{-\infty}^\infty x f_{X|Y}(x,y) dx \end{aligned}$$

$$\int_{-\infty}^{\infty}f_{X|Y}(x|y)\,dx=1$$
 , but $\int_{-\infty}^{\infty}f_{X|Y}(x|y)\,dy$ need not = 1

Independence

 $f_{X,Y}(x,y) = f_X(x) f_Y(y), \ orall (x,y) \in R_{X,Y}$

1.
$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y) = F(x)F(y) = F_{X,Y}(x,y)$$

2. $g_1(X)$ and $g_2(Y)$ are independent for any arbitrary $g_1(\cdot)$ and $g_2(\cdot)$

a. Consequently,
$$E(XY)=E(X)E(Y); E[g_1(X)g_2(Y)]=E[g_1(X)]E[g_2(Y)]$$

3. If
$$f_X(x)>0$$
 , then $f_{Y|X}(y,x)=f_Y(y)$

If
$$f_Y(y)>0$$
, then $f_{X\mid Y}(x,y)=f_X(x)$

Conditions:

- 1. $f_{X,Y}(x,y)$ can be factorised to the form: $c \cdot g_1(x)g_2(y)$
- 2. Range of X does not depend on Y and vice versa
- ullet If $f_{Y|X}(y|x)$ contains x in the formula, then X and Y are not independent, and vice versa

Sampling

Unbiased estimator: mean value equals to true value of parameter i.e. $E(\hat{\Theta}) = heta$

THEOREM 1 (CENTRAL LIMIT THEOREM (CLT))

If \overline{X} is the mean of a random sample of size n taken from a population having mean μ and finite variance σ^2 , then, as $n \to \infty$,

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \to Z \sim N(0, 1),$$

or equivalently

$$\overline{X} \to N\left(\mu, \frac{\sigma^2}{n}\right)$$
.

WHAT IS THE BIG DEAL?

The Central Limit Theorem states that, under rather general conditions, for large n, sums and means of random samples drawn from a population follows the normal distribution closely.

Note that if the random sample comes from a normal population, \overline{X} is normally distributed regardless of the value of n.

THEOREM 7 (LAW OF LARGE NUMBERS (LLN))

If X_1, \ldots, X_n are independent random variables with the same mean μ and variance σ^2 , then for any $\varepsilon \in \mathbb{R}$,

$$P(|\overline{X} - \mu| > \varepsilon) \to 0 \text{ as } n \to \infty.$$

Sample Mean of X

Sample Variance of X (unbiased estimator)

$$\begin{split} \mu_X &= E(X) \\ S^2 &= \sigma_X^2 = \frac{\sum (X - \overline{X})^2}{n - 1} \\ &= \frac{1}{n - 1} (\sum X^2 - \frac{(\sum X)^2}{n}) \\ &= \frac{1}{n - 1} (\sum (X^2) - n\overline{X}^2) \end{split}$$

Sample Mean of \overline{X}

Sample Variance of \overline{X}

$$\mu_{\overline{X}} = \mu_X$$
 $\sigma_{\overline{X}}^2 = \frac{\sigma_X^2}{n}$

Central Limit Theorem

Distribution (X)	Variance	Size	Distribution (\overline{X})
Normal	Known	Any	Standard Normal
Any	Known	Large	Standard Normal
Any	Unknown	Large	Standard Normal
Normal	Unknown	Small	t Distribution

Approximations

- $X \sim B(n,p) \approx X \sim \mathrm{Poisson}(np)$,
 - $\circ \ \ n \geq 20$ and p < 0.05 , or $n \geq 100$ and np < 10
- $X \sim B(n,p) \approx X \sim N(np, npq)$,
 - $\circ np > 5$ and n(1-p) > 5

In this example, we have made the **continuity correction** to improve the approximation. In general, we have

- (a) $P(X = k) \approx P(k 1/2 < X < k + 1/2);$
- (b) $P(a \le X \le b) \approx P(a 1/2 < X < b + 1/2);$ $P(a < X \le b) \approx P(a + 1/2 < X < b + 1/2);$
 - $P(a \le X < b) \approx P(a 1/2 < X < b 1/2);$
 - $P(a < X < b) \approx P(a + 1/2 < X < b 1/2).$
- (c) $P(X \le c) = P(0 \le X \le c) \approx P(-1/2 < X < c + 1/2)$.
- (d) $P(X > c) = P(c < X \le n) \approx P(c + 1/2 < X < n + 1/2)$.

Distributions

	$D/V \rightarrow c c c$	D(V <)	E(X)	I/ (I/)	
	$P(X=x) / f_X(x)$	$P(X \le x)$ / $F_X(x)$	E(X)	Var(X)	Misc
Discrete Uniform (D)	1/k		$\frac{1}{k} \sum_{i=1}^k x_i$	$rac{1}{k}\sum_{}x^{2}-E(X)$	
Bernoulli	$p^x(1-p)^{1-x}$		p	p(1-p)	
Binomial (D)	$\binom{n}{x}p^x(1-p)^{n-x}$		np	np(1-p)	$X+Y\sim B(2n,p)$, if $X\perp Y$
Negative Binomial (D)	$\binom{x-1}{k-1} p^k (1-p)^{x-k}$		k/p	$(1-p)k/p^2$	
Poisson (D)	$(e^{-\lambda}\lambda^k)/k!,\lambda>0$		λ	λ	$X + Y \sim Poisson(\lambda_x + \lambda_y)$
Geometric (D)	$(1-p)^{x-1}p$		1/p	$(1-p)/p^2$	$P(X > x) = (1 - p)^x$ $P(X = x_2 X > x_1) = P(X = x_2 - x_1)$
Continuous Uniform (C)	$1/(b-a)$ $a \le x \le b$	(x-a)/(b-a) $a \le x \le b$	(a+b)/2	$(b-a)^2/12$	
Exponential (C)	$\lambda e^{-\lambda x}, \lambda > 0, x > 0$	$1 - e^{-\lambda x}$	$1/\lambda$	$1/\lambda^2$	$P(X > x_2 X > x_1) = P(X > x_2 - x_1)$
Normal (C)	$\frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/(2\sigma^2)}$	$P(Z \le \frac{X - \mu}{\sigma})$	μ	σ^2	$aX+b\sim N(a\mu+b,a^2\sigma^2)$ $aX\pm bY\sim N(a\mu_1\pm b\mu_2,a^2\sigma_1^2+b^2\sigma_2^2)$, if $X\perp Y$ Range: $\mu\pm s.d(\sigma)$

Special Distributions

$$Y \sim \chi^2(n) \qquad \text{Definition: } Y = Z_1^2 + Z_2^2 + \ldots + Z_n^2$$

$$E(Y) = n, V(Y) = 2n$$

$$Y \approx N(n, 2n), n \to \infty$$

$$X \perp Y \Longrightarrow X + Y \sim \chi^2(m+n)$$

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1), \text{ if normal}$$

$$T \sim t(n) \qquad \text{Definition: } T = \frac{Z}{\sqrt{U/n}}, \text{ if } Z \perp U \text{ and } U \sim \chi^2(n)$$

$$E(T) = 0, V(T) = n/(n-2)$$

$$T \approx N(0,1), n \geq 30$$

$$\frac{X-\mu}{S/\sqrt{n}} \sim t(n-1)$$

$$X \sim F(m,n) \qquad \text{Definition: } F = \frac{U/m}{V/n}, U \sim \chi^2(m) \perp V \sim \chi^2(n)$$

$$E(X) = n/(n-2), V(X) = \frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}$$

$$X \sim F(m,n) \Longrightarrow 1/X \sim F(n.m)$$

$$F(n,m;\alpha/2) = 1/F(m,n;1-\alpha/2)$$

$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1-1,n_2-1), \text{ given two independent populations}$$

Confidence Intervals and MaxEoE

Max Error of Estimate: $100\alpha\%$ probability that $|\overline{X}-\mu|$ is less than E Confidence Interval: If many CIs are taken, about $(1-\alpha)\%$ of them will contain the true parameter μ

INCORRECT DEFINITION: "The probability that μ is contained in the CI is $(1-\alpha)\%$ "

DIF	FERE	NT CASES:					
		Population	σ	n	Statistic	E	n for desired E_0 and α
	Ι	Normal	known	any	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	$z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$	$\left(\frac{z_{\alpha/2} \cdot \sigma}{E_0}\right)^2$
	П	any	known	large	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	$z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$	$\left(\frac{z_{\alpha/2} \cdot \sigma}{E_0}\right)^2$
	Ш	Normal	unknown	small	$T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$	$t_{n-1;\alpha/2} \cdot \frac{s}{\sqrt{n}}$	$\left(\frac{t_{n-1;\alpha/2} \cdot s}{E_0}\right)^2$
	IV	any	unknown	large	$Z = \frac{\overline{X} - \mu}{S/\sqrt{n}}$	$z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$	$\left(\frac{z_{\alpha/2} \cdot s}{E_0}\right)^2$

CONFIDENCE INTERVALS FOR THE MEAN:

The table below gives the $(1-\alpha)$ confidence interval (formulas) for the population mean

Case	Population	σ	n	Confidence Interval
I	Normal	known	any	$\overline{x} \pm z_{\alpha/2} \cdot \sigma/\sqrt{n}$
П	any	known	large	$\overline{x} \pm z_{\alpha/2} \cdot \sigma/\sqrt{n}$
III	Normal	unknown	small	$\overline{x} \pm t_{n-1;\alpha/2} \cdot s / \sqrt{n}$
IV	any	unknown	large	$\overline{x} \pm z_{\alpha/2} \cdot s/\sqrt{n}$

Note that *n* is considered large when $n \ge 30$.

Sample size	Variance	Formula for $(1-lpha)$ confidence interval
Normal or large	Known + Unequal	$(\overline{x}-\overline{y})\pm z_{a/2}\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}$
Large	Unknown + Unequal	$(\overline{x}-\overline{y})\pm z_{a/2}\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}$
Normal + Small	Unknown + Equal	$egin{aligned} (\overline{x}-\overline{y}) \pm \ (t_{n_1+n_2-2;lpha/2}) S_p \sqrt{rac{1}{n_1}+rac{1}{n_2}} \ S_p^2 &= rac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2} \end{aligned}$
Large	Unknown + Equal	$(\overline{x}-\overline{y})\pm(z_{lpha/2})S_p\sqrt{rac{1}{n_1}+rac{1}{n_2}}$

Sample size	Formula for $(1-lpha)$ confidence interval
Normal + Small	$\overline{d}\pm(t_{n-1;lpha/2})rac{s_D}{\sqrt{n}}$
Large	$\overline{d}\pm(z_{lpha/2})rac{s_D}{\sqrt{n}}$

Hypothesis Testing

Null Hypothesis: Default assumption. Want to show is false

Alternative Hypothesis: Something we want to prove

Type I error: Reject H_0 when H_0 is true

Type II error: Not rejecting H_0 when H_0 is false

 α : Level of significance = $P(\text{Reject } H_0 | H_0 \text{ is true})$

 β : $P(\text{Do not reject } H_0|H_0 \text{ is false})$

1 - β : Power = $P(\text{Reject } H_0 | H_0 \text{ is false})$

p-value: Probability of obtaining a test statistic at least as extreme as the observed sample value,

given H_0 is true (observed level of significance)

Population	Variance	n	Statistic	Rejection Criteria: 1-tailed	Rejection Criteria: 2-tailed
Normal	Known	Any	$Z=rac{\overline{X}-\mu}{\sigma/\sqrt{n}}$	$Z < -z_lpha$ or $Z > z_lpha$ $P(Z < -z_{calc}) < lpha$ or $P(Z > z_{calc}) < lpha$	$Z < -z_{lpha/2}$ or $Z > z_{lpha/2}$ $2P(Z > z_{calc}) < lpha$
Any	Known	Large	$Z = rac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	$Z < -z_{lpha}$ or $Z > z_{lpha}$ $P(Z < z_{calc}) < lpha$ or $P(Z > z_{calc}) < lpha$	$Z < -z_{lpha/2}$ or $Z > z_{lpha/2}$ $2P(Z > z_{calc}) < lpha$
Normal	Unknown	Small	$T=rac{\overline{X}-\mu}{S/\sqrt{n}}\sim t_{n-1}$	$t < -t_{n-1,lpha}$ or $t > t_{n-1,lpha}$	$t<-t_{n-1,lpha/2}$ or $t>t_{n-1,lpha/2}$
Any	Unknown	Large	$Z=rac{\overline{X}-\mu}{S/\sqrt{n}}$	$Z < -z_{lpha}$ or $Z > z_{lpha}$ $P(Z < z_{calc}) < lpha$ or $P(Z > z_{calc}) < lpha$	$Z < -z_{lpha/2}$ or $Z > z_{lpha/2}$ $2P(Z > z_{calc}) < lpha$
Both Normal and independent	Both known	Both Large, if not normal	$Z=rac{\overline{X-Y}-\delta_0}{\sqrt{rac{\sigma_1^2}{n_1^1}+rac{\sigma_0^2}{n_2}}}, \ \delta_0=\overline{D}$ (population) $D_i=X_i-Y_i$	Same as blue	Same as blue
Any	Both unknown	Large	$Z=rac{\overline{X}-\overline{Y}-\delta_0}{\sqrt{rac{S_1^2}{n_1^2}+rac{S_2^2}{n_2^2}}}$	Same as blue	Same as blue
Normal	Both unknown but equal	Small	$Z=rac{\overline{X}-\overline{Y}-\delta_0}{S_p\sqrt{rac{1}{n_1}+rac{1}{n_2}}}\sim t_{n_1+n_2-2}$	Same as blue	Same as blue
Paired	Unknown	Small	$T=rac{\overline{D}-\mu_D}{S_D/\sqrt{n}}\sim t_{n-1}$	Same as red	Same as red
Paired	Unknown	Large	$T=rac{\overline{D}-\mu_D}{S_D/\sqrt{n}}pprox Z\sim N(0,1)$	Same as blue	Same as blue

• Statements will always be about the **means** of a **population**