Prof. Pablo Rosero. Abstract Algebra: Lesson 1

1 Basic properties of the integers

1

In this lesson and onwards, we consider \mathbb{Z} to be the set of integers numbers, whereas \mathbb{Z}^+ is the set of strictly positive integers numbers.

Definition 1.1. Let $a, b \in \mathbb{Z}$, with $a \neq 0$. We say a is a divisor of b if there is an integer c such that $a \cdot c = b$. In this case, we write $a \mid b$.

Remark 1. If *a* does not divide *b*, we write $a \nmid b$.

Theorem 1.1. Let $a, b \in \mathbb{Z} \setminus \{0\}$, there is a unique positive integer d, called the **greatest common divisor of** a **and** b, satisfying

- 1. $d \mid a$ and $d \mid b$.
- 2. If $e \mid a$ and $e \mid b$ then $e \mid d$.

Remark 2. If d is the greatest common divisor of a and b, we write d = (a, b). In the particular case when (a, b) = 1, we say a and b are coprimes.

Question 1. Why does (a, b) always exist for $a, b \in \mathbb{Z} \setminus \{0\}$?

Theorem 1.2 (Division algorithm). *If* $a, b \in \mathbb{Z} \setminus \{0\}$, *there are unique* $q, r \in Z$ such that

$$a = qb + r$$
 and $0 \le r < |b|$.

We call *q* the quotient and *r* the remainder.

Proof. П **Euclidean Algorithm.** This is an efficient method to compute the gcd of any two integers. It is based on the division algorithm. (Keep in mind that, despite the name, the *division algorithm* is a theorem whereas the *euclidean algorithm* is a procedure.)

If a and b are nonzero integers, then by the division algorithm we get $q, r \in \mathbb{Z}$ such that a = qb + r. Let $q_0 = q$ and $r_0 = r$. By applying the division algorithm again with q_0 and r_0 we obtain a new quotient q_1 and a new remainder r_1 . The idea of this procedure is to continue applying the division algorithm until we reach a zero remainder. From one step to the next, the divisor becomes the dividend and the remainder the divisor, as follows:

$$a = q_0b + r_0$$

$$b = q_1r_0 + r_1$$

$$r_0 = q_2r_1 + r_2$$

$$r_1 = q_3r_2 + r_3$$

$$\vdots$$

$$r_{n-2} = q_nr_{n-1} + r_n$$

$$r_{n-1} = q_{n+1}r_n$$

Remark 3. Keep in mind the condition $0 \le r < |b|$ in the division algorithm. This means the remainder always gets smaller.

Question 2. Why the Euclidean algorithm always terminates? In other words, why we always get a zero remainder at the end of the Euclidean algorithm?

Exercise 1. Compute (1761, 1567) and write this integer as a linear combination of 1761 and 1567.

Solution 1. By the Euclidean algorithm,

$$1761 = 1 \cdot 1567 + 194$$

$$1567 = 8 \cdot 194 + 15$$

$$194 = 12 \cdot 15 + 14$$

$$15 = 1 \cdot 14 + 1$$

$$14 = 14 \cdot 1 + 0$$

From the next to laxt line we get (1761, 1567) = 1.

Definition 1.2. An integer p is prime iff

- (i) p > 1, and
- (ii) the only positive divisors of p are p and 1.

An integer is composite iff it not prime.

Remark 4. If p is a prime and $b \in \mathbb{Z} \setminus \{0\}$ then

$$(p,b) = \begin{cases} p & \text{if } p \mid b \\ s & \text{else} \end{cases}$$

Prove this claim.

Proposition 1.1. *Let* $I \subseteq \mathbb{Z}$ *be such that*

- (i) $0 \in I$,
- (ii) if $a, b \in I$, then $a b \in I$,
- (iii) if $a \in I$ and $q \in I$, then $aq \subseteq I$.

Then, there is some nonnegative integer $d \in I$ such that

$$I = \{dk : k \in \mathbb{Z}\}.$$

Remark 5. If $A \subseteq \mathbb{Z}$ and $n \in \mathbb{Z}$, we denote $nA = \{na : a \in A\}$. If $A = \mathbb{Z}$, then $(n) = n\mathbb{Z}$. Thus, this result states that I = (d) for some $d \in I$.

Proof. If $I = \{0\}$, take d = 0. Suppose $I \neq \{0\}$ and $a \in I$. By (ii), if $a \in I$, then $-a \in I$, so I contains both positive and negative integers. Since $I \cap \mathbb{Z}^+ \neq \emptyset$, the Well Ordering Principle (W.O.P.) implies there is a smallest positive integer in I. Take d as this integer. By (iii), we have $(d) \subseteq I$. Let's see the other inclusion. If $a \in I$, then by the division algorithm, a = qd + r for some $q, r \in Z$ with $0 \le r < d$. By (ii), $r = a - qd \in I$. However, d is the smallest positive integer contained in I. Since $0 \le r < d$, the only possibility for this inequality to be true is when r = 0. Therefore a = qd. It follows I = (d), and the proof is complete. □

Theorem 1.3 (Euclid's lemma). Let $a, b \in \mathbb{Z}$. If p is prime and $p \mid ab$, then $p \mid a$ or $p \mid b$.
Proof.
Exercise 2. Let $a_1a_2 \cdots a_n \in \mathbb{Z}$. Prove, by induction, that if p is prime and $p \mid a_1a_2 \cdots a_n$, then there is $i \in \{1, \ldots, n\}$ such that $p \mid a_i$, i.e., p must divide at least one integer in the product.
The converse of Euclid's lemma is also true.
Proposition 1.2. Let $p > 1$. If
$\forall a,b \in \mathbb{Z} : p \mid ab \implies p \mid a \text{ or } p \mid b,$
then p is prime.
<i>Proof.</i> By contradiction.
Proposition 1.3. <i>Let</i> $a, b, c \in Z$. <i>If</i>
(i) $(a,c) = 1$, and
(ii) c ab
then $c \mid b$.
Proof.
Definition 1.3. Let $a, b \in \mathbb{Z}$ with $b \neq 0$. We say $\frac{a}{b}$ is in lowest terms if $(a, b) = 1$.
Lemma 1.1. Every nonzero rational number equals a fraction in lowest terms.
Proof.
Proposition 1.4. $\sqrt{2}$ is irrational.

Theorem 1.4 (Fundamental Theorem of Arithmetic).

Proof.

The following function computes the amount of smaller integers that are coprime to a given integer.

Definition 1.4 (Euler's totient function φ). Define $\varphi \colon \mathbb{Z}^+ \to \mathbb{Z}$ by

$$\varphi(n) = |\{a \le n : (a, n) = 1\}|.$$

Properties.