```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.linear_model import LogisticRegression
   from sklearn.model_selection import train_test_split
```

Out[2]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coap
0	LP001002	Male	No	0	Graduate	No	5849	
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	
609	LP002978	Female	No	0	Graduate	No	2900	
610	LP002979	Male	Yes	3+	Graduate	No	4106	
611	LP002983	Male	Yes	1	Graduate	No	8072	
612	LP002984	Male	Yes	2	Graduate	No	7583	
613	LP002990	Female	No	0	Graduate	Yes	4583	
C44 raves v 40 aslumana								

614 rows × 13 columns

```
In [3]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype			
0	Loan_ID	614 non-null	object			
1	Gender	601 non-null	object			
2	Married	611 non-null	object			
3	Dependents	599 non-null	object			
4	Education	614 non-null	object			
5	Self_Employed	582 non-null	object			
6	ApplicantIncome	614 non-null	int64			
7	CoapplicantIncome	614 non-null	float64			
8	LoanAmount	592 non-null	float64			
9	Loan_Amount_Term	600 non-null	float64			
10	Credit_History	564 non-null	float64			
11	Property_Area	614 non-null	object			
12	Loan_Status	614 non-null	object			
d+vnos: $flor+64(4)$ $in+64(1)$ $ohios+(9)$						

dtypes: float64(4), int64(1), object(8)

memory usage: 62.5+ KB

```
In [4]: df=df.dropna()
```

In [5]: df.describe()

Out[5]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
count	480.000000	480.000000	480.000000	480.000000	480.000000
mean	5364.231250	1581.093583	144.735417	342.050000	0.854167
std	5668.251251	2617.692267	80.508164	65.212401	0.353307
min	150.000000	0.000000	9.000000	36.000000	0.000000
25%	2898.750000	0.000000	100.000000	360.000000	1.000000
50%	3859.000000	1084.500000	128.000000	360.000000	1.000000
75%	5852.500000	2253.250000	170.000000	360.000000	1.000000
max	81000.000000	33837.000000	600.000000	480.000000	1.000000

```
In [6]: df.columns
```

```
In [7]: x=df[['ApplicantIncome','CoapplicantIncome','LoanAmount','Loan Amount Term','CoapplicantIncome'
         y=df['Self Employed']
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
         lr=LogisticRegression()
         lr.fit(x_train,y_train)
 Out[7]: LogisticRegression()
 In [8]: lr.predict(x test)
 Out[8]: array(['No', 'No', 'No',
                                  'No', 'No', 'No', 'No', 'No', 'No', 'No',
                            'No',
                      'No',
                                       'Yes', 'No', 'No', 'No', 'No', 'No',
                 'No',
                                  'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                                  'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No',
                      'No',
                            'No',
                'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'Yes', 'No', 'Yes',
                                                                       'No', 'No'
                                                                'No', 'No', 'No',
                'Yes', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                                 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No',
                'No', 'No', 'No',
                                  'No', 'No', 'No', 'No', 'No', 'No', 'No',
                            'No', 'No', 'No', 'No', 'No', 'Yes', 'No',
                'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No',
                'No'], dtype=object)
 In [9]: |lr.score(x test,y test)
 Out[9]: 0.805555555555556
In [10]: from sklearn.preprocessing import StandardScaler
         fs=StandardScaler().fit transform(x)
         logr=LogisticRegression()
         logr.fit(fs,y)
Out[10]: LogisticRegression()
In [12]: o=[[6,7,8,34,52]]
         prediction=logr.predict(o)
         print(prediction)
         ['No']
In [13]: logr.classes_
Out[13]: array(['No', 'Yes'], dtype=object)
In [14]: |logr.predict_proba(o)[0][0]
Out[14]: 0.9786214299532601
In [15]: logr.predict_proba(o)[0][1]
Out[15]: 0.021378570046739934
```

In []: