Growth Resilience (reanalisis)

AJ Perez-Luque ((???))
2017 Dec

Resilience

- Calcularemos las métricas resiliencia de (???) sobre el crecimiento.
- Vamos a calcularlas sobre el BAI de cada árbol.
- Utilizaremos tres sitios: SJ, CAH y CAL (ver ./analysis/analysis chronologies.md)

Prepare data

- Leer datos rwl de SJ y CA
- Leer datos de diametros de los focal tree

```
machine <- 'ajpelu'
# machine <- 'ajpeluLap'</pre>
di <- paste0('/Users/', machine, '/Dropbox/phd/phd_repos/qpyr_dendro/', sep = '')</pre>
sj <- read.rwl(fname=paste0(di, '/data_raw/dendro_ring/sn_sanjuan/sn_sanjuan.rwl'), format="tucson")
## There does not appear to be a header in the rwl file
## There are 48 series
                                           0.01
## 1
             SNA0101
                           1947
                                    2016
## 2
             SNA0102
                           1947
                                    2016
                                           0.01
## 3
             SNA0201
                           1946
                                    2016
                                           0.01
## 4
             SNA0202
                           1948
                                    2016
                                           0.01
## 5
             SNA0301
                           1949
                                    2016
                                           0.01
## 6
             SNA0302
                           1948
                                    2016
                                           0.01
## 7
             SNA0401
                           1947
                                    2016
                                           0.01
## 8
             SNA0402
                           1947
                                    2016
                                           0.01
## 9
             SNA0501
                           1953
                                    2016
                                           0.01
## 10
             SNA0502
                           1948
                                    2016
                                           0.01
## 11
             SNA0601
                           1948
                                    2016
                                           0.01
## 12
             SNA0602
                           1957
                                    2016
                                           0.01
## 13
             SNA0603
                                    2012
                                           0.01
                           1947
## 14
             SNA0701
                           1954
                                    2016
                                           0.01
             SNA0702
                                    2016
## 15
                           1947
                                           0.01
             SNA0801
## 16
                           1949
                                    2016
                                           0.01
## 17
             SNA0802
                           1951
                                    2016
                                           0.01
## 18
             SNA0901
                           1947
                                    2016
                                           0.01
## 19
             SNA0902
                           1947
                                    2016
                                           0.01
## 20
             SNA0903
                                    2002
                           1947
                                           0.01
## 21
             SNA1001
                           1950
                                    2016
                                           0.01
## 22
             SNA1002
                           1953
                                    2016
                                           0.01
## 23
             SNA1003
                           1948
                                    2008
                                           0.01
## 24
             SNA1101
                           1940
                                    2016
                                           0.01
## 25
             SNA1102
                           1929
                                    2016
                                           0.01
## 26
             SNA1103
                           1942
                                    1994
                                           0.01
```

```
## 27
             SNA1201
                           1929
                                    2016
                                            0.01
             SNA1202
## 28
                           1929
                                    2016
                                            0.01
## 29
             SNA1203
                           1927
                                    1983
                                            0.01
## 30
             SNA1301
                           1960
                                    2016
                                            0.01
## 31
             SNA1302
                           1949
                                    2016
                                            0.01
## 32
                           1949
                                    2011
             SNA1303
                                            0.01
## 33
             SNA1401
                           1930
                                    2016
                                            0.01
## 34
                                    2016
             SNA1402
                           1949
                                            0.01
## 35
             SNA1501
                           1952
                                    2016
                                            0.01
## 36
             SNA1502
                           1948
                                    2016
                                            0.01
## 37
             SNA1601
                           1959
                                    2016
                                            0.01
## 38
                           1927
                                    2016
             SNA1602
                                            0.01
## 39
             SNA1701
                           1926
                                    2016
                                            0.01
## 40
             SNA1702
                           1930
                                    2016
                                            0.01
## 41
             SNA1703
                                            0.01
                           1931
                                    2016
## 42
             SNA1801
                           1937
                                    2016
                                            0.01
## 43
             SNA1802
                           1936
                                    2016
                                            0.01
## 44
             SNA1901
                           1921
                                    2016
                                            0.01
## 45
             SNA1902
                           1924
                                    2016
                                            0.01
## 46
             SNA2001
                           1932
                                    2016
                                            0.01
## 47
             SNA2003
                           1932
                                    2016
                                            0.01
## 48
             SNA2002
                           1934
                                    2016
                                            0.01
# canar
ca <- read.rwl(fname=paste0(di, '/data_raw/dendro_ring/sn_canar/sn_canar.rwl'), format="tucson")
## There does not appear to be a header in the rwl file
## There are 60 series
## 1
             SNB0101
                           1899
                                    2016
                                            0.01
## 2
             SNB0102
                                            0.01
                           1902
                                    2016
## 3
             SNB0201
                                            0.01
                           1916
                                    2016
## 4
             SNB0202
                           1876
                                    2016
                                            0.01
## 5
             SNB0301
                           1862
                                    2016
                                            0.01
## 6
             SNB0302
                           1862
                                    2016
                                            0.01
## 7
             SNB0401
                           1870
                                    2016
                                            0.01
## 8
             SNB0402
                           1866
                                    2016
                                            0.01
## 9
             SNB0501
                           1864
                                    2016
                                            0.01
## 10
                                            0.01
             SNB0502g
                           1867
                                    2016
## 11
             SNB0601
                           1860
                                    2016
                                            0.01
## 12
             SNB0602
                           1873
                                    2016
                                            0.01
## 13
             SNB0701
                                            0.01
                           1851
                                    2016
## 14
             SNB0702g
                           1861
                                    2016
                                            0.01
## 15
             SNB0801g
                                    2016
                                            0.01
                           1851
## 16
             SNB0802g
                           1853
                                    2016
                                            0.01
## 17
             SNB0901g
                           1836
                                    2016
                                            0.01
## 18
             SNB0902
                           1844
                                    2016
                                            0.01
## 19
                                            0.01
             SNB1001
                           1868
                                    2016
## 20
             SNB1002
                           1870
                                    2016
                                            0.01
## 21
             SNB1101
                           1949
                                    2016
                                            0.01
## 22
             SNB1102
                           1893
                                    2016
                                            0.01
## 23
             SNB1201
                           1867
                                    2016
                                            0.01
## 24
             SNB1202
                           1834
                                    2016
                                            0.01
## 25
             SNB1301
                           1865
                                    2016
                                            0.01
## 26
             SNB1302
                           1874
                                    2016
                                            0.01
## 27
             SNB1401
                           1843
                                    2016
                                            0.01
```

```
## 28
             SNB1402
                           1848
                                    2016
                                            0.01
                                    2016
## 29
                                            0.01
             SNB1501
                           1898
## 30
             SNB1502
                           1927
                                    2016
                                            0.01
                           1846
## 31
                                    2016
                                            0.01
             SNB1601
## 32
             SNB1602
                           1857
                                    2016
                                            0.01
## 33
             SNB1701
                           1856
                                    2016
                                            0.01
## 34
             SNB1702
                           1853
                                    2016
                                            0.01
                                    2016
## 35
             SNB1801
                           1827
                                            0.01
## 36
             SNB1802
                           1843
                                    2016
                                            0.01
## 37
             SNB1901
                           1888
                                    2016
                                            0.01
## 38
             SNB1902
                           1901
                                    2016
                                            0.01
## 39
                                    2016
             SNB2001
                           1830
                                            0.01
## 40
             SNB2002g
                           1837
                                    2016
                                            0.01
## 41
             SNB2101
                           1863
                                    2016
                                            0.01
## 42
             SNB2102
                                    2016
                                            0.01
                           1858
## 43
             SNB2201g
                           1819
                                    2016
                                            0.01
## 44
             SNB2202g
                           1822
                                    2016
                                            0.01
             SNB2301g
## 45
                           1832
                                    2016
                                            0.01
                                    2016
## 46
             SNB2302
                           1819
                                            0.01
## 47
             SNB2401
                           1829
                                    2016
                                            0.01
## 48
             SNB2402
                           1831
                                    2016
                                            0.01
## 49
             SNB2501
                                    2016
                                            0.01
                           1831
## 50
                                            0.01
             SNB2502
                           1839
                                    2016
## 51
                                            0.01
             SNB2601
                           1872
                                    2016
## 52
             SNB2602
                           1867
                                    2016
                                            0.01
## 53
             SNB2701
                           1865
                                    2016
                                            0.01
## 54
                           1863
                                    2016
                                            0.01
             SNB2702g
## 55
             SNB2801
                           1860
                                    2016
                                            0.01
## 56
             SNB2802
                           1866
                                    2016
                                            0.01
## 57
             SNB2901
                           1877
                                    2016
                                            0.01
## 58
             SNB2902
                           1892
                                    2016
                                            0.01
## 59
             SNB3001
                           1867
                                    2016
                                            0.01
## 60
             SNB3002
                           1874
                                    2016
                                            0.01
# Read diameters data
compete <- read.csv(file=paste0(di, '/data_raw/dendro_competence.csv'), header=TRUE, sep=',')</pre>
source(paste0(di, 'script/R/rw_byTree.R'))
source(paste0(di, 'script/R/bai_piovesan.R'))
source(paste0(di, 'script/R/baiResilience.R'))
```

- Crear dataframes rwl por cada sitio CA_High, CA_Low, SJ_High. SJ_Low
- Lectura y preparación de datos de diámetro

```
# Prepare Diameter data

# Compute diameter (mm)
compete <- compete %>%
  mutate(dn_mm = (perim_mm / pi))

# Change name focal according to loc
compete <- compete %>%
  mutate(id_focalLoc = stringr::str_replace_all(id_focal, c("A" = "SJ", "B" = "CA")))
```

Aggregate RW by tree

- Agregar valores medios de RW por site (obtenemos sj_tree / caL_tree, caH_tree)
- ver fun rw byTree o utilizar treeMean (dplR)

```
# Remember snc = structure of core name SJ0101 (site | tree | core)
sj_tree <- rw_byTree(sj, snc =c(2,2,2), locname = 'SJ')
caL_tree <- rw_byTree(caL, snc =c(2,2,2), locname = 'CA')
caH_tree <- rw_byTree(caH, snc =c(2,2,2), locname = 'CA')</pre>
```

• Crear diferentes dataset de diametro por sitio

Cómputo del BAI por site

• He construido una funcion para el computo del BAI, teniendo en cuenta la aproximación de (Piovesa et al. 2008). Es similar a bai.out

```
bai_sj <- bai_piovesan(rwdf = sj_tree, diam_df = d_sj)
bai_caH <- bai_piovesan(rwdf = caH_tree, diam_df = d_caH)
bai_caL <- bai_piovesan(rwdf = caL_tree, diam_df = d_caL)

# Set class to bai object
# Esto es para que funcionen algunas otras funciones de dplR
bais <- c('bai_sj', 'bai_caH', 'bai_caL')</pre>
```

```
for (i in bais){
  aux <- get(i)

  class(aux) <- c('rwl', 'data.frame')

  assign(i, aux)
}</pre>
```

Resilience

- Computar métricas de resiliencia BAI para los tres sitios.
- Computar tres eventos climáticos: 1995, 2005, 2012
- Computar ventanas temporales: 2, 3 y 4

```
# Drought years
dyears <- c(1995, 2005, 2012)

# SJ

res_4_sj <- baiResilience(bai_sj, event_years = dyears, window = 4)
res_3_sj <- baiResilience(bai_sj, event_years = dyears, window = 3)
res_2_sj <- baiResilience(bai_sj, event_years = dyears, window = 2)

# caL

res_4_caL <- baiResilience(bai_caL, event_years = dyears, window = 4)
res_3_caL <- baiResilience(bai_caL, event_years = dyears, window = 3)
res_2_caL <- baiResilience(bai_caL, event_years = dyears, window = 2)

# caH

res_4_caH <- baiResilience(bai_caH, event_years = dyears, window = 4)
res_3_caH <- baiResilience(bai_caH, event_years = dyears, window = 3)
res_2_caH <- baiResilience(bai_caH, event_years = dyears, window = 3)
res_2_caH <- baiResilience(bai_caH, event_years = dyears, window = 2)</pre>
```

Computar correlaciones ventanas temporales

Resistance

Recovery

Resilience

Relative Resilience

Coeficientes de correlacion entre ventanas temporales

aux_coefs %>% pander()

var	window_size	r2
rt	2-3	0.916882284149449
rt	2-4	0.804404303544226
rt	3-4	0.954056995082479
rc	2-3	0.940435462578806
rc	2-4	0.875357103621433
rc	3-4	0.977309191655523
rs	2-3	0.887274876125786
rs	2-4	0.764147394080222
rs	3-4	0.955085073886915
rrs	2-3	0.914381250472491
rrs	2-4	0.848277808345292
rrs	3-4	0.978980936308473

Nos quedamos con 3 años de ventana temporal.

Plots Crecimiento

Boxplot with outliers

Mean + se

tables

site	disturb_year	disturb	mean	sd	se
SJ	1995	0_pre	4.949	2.402	0.5371
SJ	1995	1 _dr	3.102	1.395	0.3119
SJ	1995	2 _post	11.04	6.508	1.455
SJ	2005	0 _pre	15.04	5.522	1.235
SJ	2005	1 _dr	6.437	2.358	0.5273
$_{ m SJ}$	2005	2 _post	6.967	2.41	0.5388
SJ	2012	0 _pre	13.67	6.458	1.444
SJ	2012	1 _dr	9.729	3.218	0.7196
SJ	2012	2 _post	13.8	4.651	1.04
caH	1995	0 _pre	20.08	24.07	6.215
caH	1995	1 _dr	9.923	9.846	2.542
$_{\mathrm{caH}}$	1995	2 _post	23.74	27.14	7.008
caH	2005	0 _pre	27.22	25.58	6.605
caH	2005	$1_{ m dr}$	23.29	21.06	5.437
caH	2005	2 _post	20.96	21.79	5.627

site	disturb_year	disturb	mean	sd	se
caH	2012	0_pre	31.76	32.29	8.336
caH	2012	1_dr	24.02	25.33	6.541
caH	2012	2 _post	24.55	25.22	6.511
caL	1995	0 _pre	9.855	5.081	1.312
caL	1995	1_dr	5.577	2.23	0.5757
caL	1995	2 _post	10.07	5.501	1.42
caL	2005	0 _pre	13.7	6.73	1.738
caL	2005	1_dr	12.19	6.549	1.691
caL	2005	2 _post	9.832	4.308	1.112
caL	2012	0 _pre	15.51	7.572	1.955
caL	2012	1_dr	14.45	7.411	1.914
caL	2012	2 _post	13.72	7.05	1.82

Anovas Resiliencia

```
# Prepara data
rsj <- res_3_sj$resilience %>% mutate(site='SJ')
rcaL<- res_3_caL$resilience %>% mutate(site='caL')
rcaH <- res_3_caH$resilience %>% mutate(site='caH')

re <- bind_rows(rsj, rcaL, rcaH)
re$disturb_year <- as.factor(re$disturb_year)
re$site <- as.factor(re$site)

# Export csv
write.csv(re, file=pasteO(di, 'data/resilience/resilience_bai.csv'), row.names = FALSE)</pre>
```

Asumptions

• Explorar si se cumplen los supuestos de normalidad y homocedasticidad. Tenemos que comprobar que cada uno de los grupos son normales (1995,2005,2012; site: SJ, CaH, CaL; e interactions)

Normalidad

```
normtestA <- rbind(nrcA, nrtA, nrsA, nrrsA)
normtestA %>% pander()
```

disturb_year	statistic	p_value	var
1995	0.746	0	rc
2005	0.9571	0.06742	$_{\rm rc}$
2012	0.9422	0.01639	$_{\rm rc}$
1995	0.9857	0.8007	rt
2005	0.9436	0.01871	rt
2012	0.9651	0.1455	rt
1995	0.7908	0	$_{ m rs}$
2005	0.9751	0.3682	$_{\rm rs}$
2012	0.8882	2e-04	$_{\rm rs}$

disturb_year	statistic	p_value	var
1995	0.7946	0	rrs
2005	0.9628	0.1165	rrs
2012	0.9752	0.373	rrs

```
write.csv(normtestA,
```

file=pasteO(di, '/out/anovas_resilience/bai/normo_disturb_year.csv'), row.names = F)

normtestB <- rbind(nrcB, nrtB, nrsB, nrrsB)
normtestB %>% pander()

site	statistic	p_value	var
SJ	0.7041	0	$_{\rm rc}$
caH	0.8221	1e-05	$_{\rm rc}$
caL	0.8419	2e-05	$_{\rm rc}$
SJ	0.9784	0.3642	rt
caH	0.9739	0.3968	rt
caL	0.95	0.05101	rt
SJ	0.8511	0	$_{\rm rs}$
caH	0.8264	1e-05	$_{\rm rs}$
caL	0.9807	0.6473	$_{\rm rs}$
SJ	0.7718	0	rrs
caH	0.8988	0.00087	rrs
caL	0.9386	0.01906	rrs

write.csv(normtestB,

file=paste0(di, '/out/anovas_resilience/bai/normo_site.csv'), row.names = F)

normtestAB <- rbind(nrcAB, nrtAB, nrsAB, nrrsAB)
normtestAB %>% pander()

disturb_year	site	statistic	p_value	var
1995	SJ	0.7989	0.00083	$_{\rm rc}$
1995	caH	0.9388	0.3676	rc
1995	caL	0.8746	0.03943	rc
2005	SJ	0.9849	0.9806	rc
2005	caH	0.958	0.658	rc
2005	caL	0.928	0.2543	rc
2012	SJ	0.945	0.2979	rc
2012	caH	0.8691	0.03275	rc
2012	caL	0.9628	0.7418	rc
1995	SJ	0.9583	0.5109	rt
1995	caH	0.919	0.1861	rt
1995	caL	0.9581	0.6587	rt
2005	SJ	0.9286	0.1453	rt
2005	caH	0.9733	0.9033	rt
2005	caL	0.9632	0.7472	rt
2012	SJ	0.9597	0.5371	rt
2012	caH	0.9797	0.9676	rt
2012	caL	0.8614	0.02526	rt
1995	SJ	0.8921	0.02936	rs

disturb_year	site	statistic	p_value	var
1995	caH	0.8123	0.00531	rs
1995	caL	0.9826	0.9844	$_{\rm rs}$
2005	SJ	0.9191	0.09531	$_{\rm rs}$
2005	caH	0.9316	0.2887	$_{\rm rs}$
2005	caL	0.9163	0.1689	$_{\rm rs}$
2012	SJ	0.8959	0.0345	rs
2012	caH	0.9512	0.5435	rs
2012	caL	0.9275	0.2502	rs
1995	SJ	0.8511	0.00556	rrs
1995	caH	0.8753	0.04041	rrs
1995	caL	0.9468	0.4759	rrs
2005	SJ	0.9638	0.6222	rrs
2005	caH	0.9517	0.551	rrs
2005	caL	0.9489	0.5077	rrs
2012	SJ	0.9657	0.6639	rrs
2012	caH	0.7872	0.00253	rrs
2012	caL	0.9734	0.9052	rrs

• No se cumplen los requisitos de normalidad

Heterocedasticidad

response	factor	lev_pvalue	lev_stat	fk_pvalue	${\rm fk_stat}$
rs	disturb_year	3.436e-07	16.5	2.472e-08	35.03
rs	site	3.573 e-08	19.31	2.613e-10	44.13
rs	interaction(disturb_year,	5.231e-10	9.072	1.425 e - 06	41.88
	site)				
rc	disturb_year	1.414e-06	14.78	1.557e-08	35.96
$_{ m rc}$	site	0.004685	5.564	0.002015	12.41
$_{ m rc}$	interaction(disturb_year,	3.315e-09	8.321	1.232e-10	62.94
	site)				
$_{ m rt}$	disturb_year	7.267e-07	15.59	2.778e-06	25.59
rt	site	0.6993	0.3586	0.7316	0.6251
$_{ m rt}$	interaction(disturb_year,	0.08539	1.782	0.06902	14.53
	site)				
rrs	disturb_year	2.003e-07	17.16	1.537e-09	40.59
rrs	site	0.0008313	7.446	0.0009147	13.99
rrs	interaction(disturb_year,	1.618e-10	9.558	6.67e-09	54.08
	site)				

• Tampoco se cumplen los requisitos de homogeneidad de varianzas entre grupos

Transformación datos

Log

• Probamos a transformar los datos con log y reanalizar los supuestos de homocedasticidad

fk_stat	fk_pvalue	lev_stat	lev_pvalue	factor	response
18.09	0.000118	9.431	0.0001401	disturb_year	logrs
41.3	1.077e-09	30.45	8.633e-12	site	logrs
22.44	0.004155	3.336	0.001586	interaction(disturb_year,	logrs
				site)	
8.671	0.01309	6.408	0.002147	disturb_year	logrc
5.079	0.0789	2.769	0.06602	site	logrc
25.48	0.001286	4.143	0.0001806	interaction(disturb_year,	logrc
				site)	
8.671	0.01309	6.408	0.002147	$disturb_year$	logrt
5.079	0.0789	2.769	0.06602	site	logrt
25.48	0.001286	4.143	0.0001806	interaction(disturb_year,	logrt
				site)	
2.434	0.2961	1.511	0.2256	$disturb_year$	$\log rrs$
2.644	0.2666	0.9344	0.3961	site	$\log rrs$
5.803	0.6692	0.694	0.696	interaction(disturb_year,	$\log rrs$
				site)	

• Tampoco se cumplen

ANOVAS

• Utilizamos una custom function

OJO SOLO 2005 y 2012

```
# Only 2005 and 2012
re <- re %>% filter(disturb_year != 1995) %>% as.data.frame()
vars <- c('disturb_year','site')
re$disturb_year <- factor(re$disturb_year)</pre>
```

Recovery

Table 8: ANOVA table: rc

term	df	sumsq	meansq	statistic	p.value
disturb_year	1	1.316	1.316	32.78	0
site	2	2.847	1.424	35.45	0
$disturb_year:site$	2	0.1961	0.09805	2.442	0.09253
Residuals	94	3.775	0.04016		

	Statistic
R^2	0.54

	Statistic
$\mathrm{adj}R^2$	0.51
σ_e	0.20
F	21.71
p	0.00
$d\!f_m$	6.00
$\log \mathrm{Lik}$	21.95
\widetilde{AIC}	-29.89
BIC	-11.66
dev	3.77
$d\!f_e$	94.00

```
# Post hoc Define model
mymodel <- aov_rc$mymodel</pre>
postH_rc <- phc(mymodel = mymodel, resp_var = resp_var)</pre>
## ### Event ###
## $1smeans
## disturb_year
                                   SE df lower.CL upper.CL
                    lsmean
                 0.9460722 0.02860151 94 0.8892832 1.002861
##
   2005
   2012
                 1.1643064 0.02860151 94 1.1075175 1.221095
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## $contrasts
## contrast
                  estimate
                                   SE df t.ratio p.value
## 2005 - 2012 -0.2182343 0.04044865 94 -5.395 <.0001
## Results are averaged over the levels of: site
##
## disturb_year
                    lsmean
                                   SE df lower.CL upper.CL .group
## 2005
                 0.9460722 0.02860151 94 0.8809216 1.011223 a
                 1.1643064 0.02860151 94 1.0991558 1.229457
##
   2012
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
## ### Clu pop ###
## $1smeans
## site
           lsmean
                           SE df lower.CL upper.CL
        1.2803536 0.03168543 94 1.2174414 1.3432657
   caH 0.9853013 0.03658718 94 0.9126566 1.0579460
   caL 0.8999131 0.03658718 94 0.8272684 0.9725578
##
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
##
## $contrasts
```

```
SE df t.ratio p.value
   contrast
                estimate
##
                                         6.096 <.0001
   SJ - caH 0.29505228 0.04840029 94
   SJ - caL 0.38044051 0.04840029 94
                                         7.860
                                               <.0001
   caH - caL 0.08538823 0.05174209 94
                                         1.650 0.3067
##
##
## Results are averaged over the levels of: disturb year
## P value adjustment: bonferroni method for 3 tests
##
##
   site
                           SE df lower.CL upper.CL .group
            lsmean
##
   caL 0.8999131 0.03658718 94 0.8107290 0.9890971 a
       0.9853013 0.03658718 94 0.8961172 1.0744854
         1.2803536 0.03168543 94 1.2031179 1.3575893
##
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 3 estimates
## P value adjustment: bonferroni method for 3 tests
## significance level used: alpha = 0.01
##
## ### Event:Clu pop ###
## $1smeans
  disturb_year site
                         lsmean
                                        SE df lower.CL upper.CL
   2005
##
                 SJ
                      1.1150292 0.04480996 94 1.0260579 1.2040004
   2012
                      1.4456780 0.04480996 94 1.3567068 1.5346492
##
                 SJ
## 2005
                 caH 0.8836738 0.05174209 94 0.7809387 0.9864089
  2012
                 caH 1.0869288 0.05174209 94 0.9841937 1.1896639
##
   2005
                 caL 0.8395136 0.05174209 94 0.7367785 0.9422487
                 caL 0.9603126 0.05174209 94 0.8575774 1.0630477
##
   2012
##
## Confidence level used: 0.95
##
## $contrasts
   contrast
                                            SE df t.ratio p.value
                           estimate
                                                   -5.218 <.0001
##
   2005,SJ - 2012,SJ
                        -0.33064881 0.06337085 94
   2005,SJ - 2005,caH
                         0.23135538 0.06844835 94
                                                    3.380 0.0159
                         0.02810037 0.06844835 94
##
   2005,SJ - 2012,caH
                                                    0.411 1.0000
   2005,SJ - 2005,caL
                         0.27551559 0.06844835 94
                                                    4.025 0.0017
   2005,SJ - 2012,caL
                         0.15471662 0.06844835 94
                                                    2.260 0.3916
##
   2012,SJ - 2005,caH
                         0.56200419 0.06844835 94
                                                    8.211
                                                           <.0001
##
   2012,SJ - 2012,caH
##
                         0.35874918 0.06844835 94
                                                    5.241
                                                          <.0001
   2012,SJ - 2005,caL
                         0.60616440 0.06844835 94
                                                    8.856 < .0001
   2012,SJ - 2012,caL
                                                    7.091
                                                          <.0001
##
                         0.48536543 0.06844835 94
   2005, caH - 2012, caH -0.20325501 0.07317436 94
                                                   -2.778 0.0991
##
   2005, caH - 2005, caL
                         0.04416021 0.07317436 94
                                                    0.603 1.0000
   2005, caH - 2012, caL -0.07663876 0.07317436 94
                                                   -1.047 1.0000
   2012, caH - 2005, caL 0.24741522 0.07317436 94
                                                    3.381 0.0158
##
##
   2012, caH - 2012, caL 0.12661625 0.07317436 94
                                                    1.730 1.0000
   2005, caL - 2012, caL -0.12079897 0.07317436 94
##
                                                   -1.651 1.0000
## P value adjustment: bonferroni method for 15 tests
ps
```

site effect plot

pd

disturb_year effect plot

picollapse

саН

site

рi

ဂ

8.0

SJ

caL

Resistance

Table 10: ANOVA table: rt

term	df	sumsq	meansq	statistic	p.value
disturb_year	1	0.2122	0.2122	9.867	0.00225
site	2	1.666	0.833	38.74	0
$disturb_year:site$	2	0.8604	0.4302	20.01	0
Residuals	94	2.021	0.0215		

	Statistic
R^2	0.58
$\mathrm{adj}R^2$	0.55
σ_e	0.15
F	25.47
p	0.00
$d\!f_m$	6.00
$\log \mathrm{Lik}$	53.18
AIC	-92.35
BIC	-74.11
dev	2.02
$d\!f_e$	94.00

```
# Post hoc Define model
mymodel <- aov_rt$mymodel</pre>
postH_rt <- phc(mymodel = mymodel, resp_var = resp_var)</pre>
## ### Event ###
## $1smeans
## disturb_year
                                   SE df lower.CL upper.CL
                   lsmean
                0.7483129 0.02092964 94 0.7067567 0.7898692
## 2005
                0.8166033 0.02092964 94 0.7750470 0.8581596
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## $contrasts
                  estimate
## contrast
                                    SE df t.ratio p.value
## 2005 - 2012 -0.06829036 0.02959898 94 -2.307 0.0232
## Results are averaged over the levels of: site
##
## disturb_year
                    lsmean
                                   SE df lower.CL upper.CL .group
## 2005
                 0.7483129 0.02092964 94 0.7006379 0.7959880 a
##
   2012
                 0.8166033 0.02092964 94 0.7689282 0.8642784 a
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
## ### Clu pop ###
```

```
## $1smeans
   site
                          SE df lower.CL upper.CL
           lsmean
        0.6139485 0.02318635 94 0.5679114 0.6599855
   caH 0.8196809 0.02677329 94 0.7665219 0.8728399
##
   caL 0.9137450 0.02677329 94 0.8605860 0.9669040
##
## Results are averaged over the levels of: disturb year
## Confidence level used: 0.95
##
## $contrasts
  contrast
                estimate
                                 SE df t.ratio p.value
## SJ - caH -0.20573248 0.03541773 94 -5.809 <.0001
   SJ - caL -0.29979653 0.03541773 94 -8.465 <.0001
   caH - caL -0.09406405 0.03786314 94 -2.484 0.0442
##
##
## Results are averaged over the levels of: disturb_year
## P value adjustment: bonferroni method for 3 tests
##
##
                          SE df lower.CL upper.CL .group
   site
           lsmean
##
   SJ
        0.6139485 0.02318635 94 0.5574299 0.6704670
##
   caH 0.8196809 0.02677329 94 0.7544190 0.8849429
   caL 0.9137450 0.02677329 94 0.8484830 0.9790069
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 3 estimates
## P value adjustment: bonferroni method for 3 tests
## significance level used: alpha = 0.01
##
## ### Event:Clu pop ###
## $1smeans
## disturb_year site
                        lsmean
                                       SE df lower.CL upper.CL
## 2005
                     0.4606116 0.03279045 94 0.3955054 0.5257178
## 2012
                     0.7672853 0.03279045 94 0.7021791 0.8323915
                S.I
##
   2005
                caH 0.8845609 0.03786314 94 0.8093827 0.9597391
## 2012
                caH 0.7548010 0.03786314 94 0.6796228 0.8299791
##
  2005
                caL 0.8997663 0.03786314 94 0.8245881 0.9749444
##
   2012
                caL 0.9277237 0.03786314 94 0.8525455 1.0029018
##
## Confidence level used: 0.95
##
## $contrasts
##
   contrast
                          estimate
                                           SE df t.ratio p.value
   2005,SJ - 2012,SJ
                       -0.30667361 0.04637269 94
                                                  -6.613 <.0001
   2005,SJ - 2005,caH
                       -0.42394925 0.05008823 94
                                                  -8.464 <.0001
   2005,SJ - 2012,caH
                                                  -5.873
##
                       -0.29418931 0.05008823 94
                                                          <.0001
##
   2005,SJ - 2005,caL
                       -0.43915464 0.05008823 94
                                                  -8.768 <.0001
##
   2005,SJ - 2012,caL
                       -0.46711203 0.05008823 94
                                                  -9.326 <.0001
   2012,SJ - 2005,caH
                       -0.11727564 0.05008823 94
                                                  -2.341 0.3199
##
   2012,SJ - 2012,caH
                        0.01248430 0.05008823 94
                                                   0.249 1.0000
## 2012,SJ - 2005,caL
                       -0.13248102 0.05008823 94
                                                  -2.645 0.1436
## 2012,SJ - 2012,caL -0.16043842 0.05008823 94
                                                  -3.203 0.0278
## 2005,caH - 2012,caH 0.12975994 0.05354657 94
                                                   2.423 0.2594
## 2005,caH - 2005,caL -0.01520539 0.05354657 94 -0.284 1.0000
```

```
## 2005,caH - 2012,caL -0.04316278 0.05354657 94 -0.806 1.0000
## 2012,caH - 2005,caL -0.14496533 0.05354657 94 -2.707 0.1209
## 2012,caH - 2012,caL -0.17292272 0.05354657 94 -3.229 0.0256
## 2005,caL - 2012,caL -0.02795739 0.05354657 94 -0.522 1.0000
##
## P value adjustment: bonferroni method for 15 tests
ps
```

site effect plot

 pd

picollapse

disturb_year*site effect plot

рi

Relative Resilience

Table 12: ANOVA table: rrs

term	df	sumsq	meansq	statistic	p.value
disturb_year	1	0.93	0.93	47.8	0
site	2	1.39	0.6952	35.73	0
disturb_year:site	2	0.145	0.07252	3.727	0.02769
Residuals	94	1.829	0.01946		

	Statistic
R^2	0.57
$\mathrm{adj}R^2$	0.55
σ_e	0.14
F	25.34
p	0.00
$d\!f_m$	6.00
$\log \mathrm{Lik}$	58.18
AIC	-102.35
BIC	-84.12
dev	1.83
df_e	94.00

```
# Post hoc Define model
mymodel <- aov_rrs$mymodel</pre>
postH_rrs <- phc(mymodel = mymodel, resp_var = resp_var)</pre>
## ### Event ###
## $1smeans
## disturb_year
                      lsmean
                                     SE df
                                              lower.CL
                                                           upper.CL
                 -0.07268135 \ 0.01990865 \ 94 \ -0.11221043 \ -0.03315226
## 2005
                  0.11047515 0.01990865 94 0.07094607 0.15000424
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## $contrasts
## contrast
                  estimate
                                   SE df t.ratio p.value
## 2005 - 2012 -0.1831565 0.02815508 94 -6.505 <.0001
## Results are averaged over the levels of: site
##
## disturb_year
                      lsmean
                                     SE df
                                              lower.CL
                                                           upper.CL .group
## 2005
                 -0.07268135 0.01990865 94 -0.11803071 -0.02733199 a
                  0.11047515 0.01990865 94 0.06512579 0.15582451
##
   2012
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
## ### Clu pop ###
```

```
## $1smeans
                             SE df
##
   site
                                      lower.CL
                                                  upper.CL
              lsmean
         0.17544720 0.02205526 94 0.13165595 0.21923844
##
   SJ
   caH -0.02596381 0.02546723 94 -0.07652958 0.02460197
##
##
        -0.09279268 0.02546723 94 -0.14335846 -0.04222691
##
## Results are averaged over the levels of: disturb year
## Confidence level used: 0.95
##
## $contrasts
   contrast
                                 SE df t.ratio p.value
                estimate
   SJ - caH 0.20141101 0.03368997 94
                                         5.978 <.0001
   SJ - caL 0.26823988 0.03368997 94
                                         7.962 < .0001
   caH - caL 0.06682887 0.03601610 94
                                         1.856 0.2000
##
##
## Results are averaged over the levels of: disturb_year
## P value adjustment: bonferroni method for 3 tests
##
##
                             SE df
                                      lower.CL
   site
              lsmean
                                                  upper.CL .group
##
   caL
        -0.09279268 0.02546723 94 -0.15487101 -0.03071435
##
   caH -0.02596381 0.02546723 94 -0.08804214 0.03611452
         0.17544720 0.02205526 94 0.12168579 0.22920861
##
## Results are averaged over the levels of: disturb year
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 3 estimates
\#\# P value adjustment: bonferroni method for 3 tests
## significance level used: alpha = 0.01
##
## ### Event:Clu pop ###
## $1smeans
## disturb_year site
                           lsmean
                                          SE df
                                                   lower.CL
                                                               upper.CL
## 2005
                 SJ
                       0.03528048 0.03119085 94 -0.02664969
                                                             0.09721065
## 2012
                 SJ
                       0.31561391 0.03119085 94 0.25368374
                                                             0.37754408
##
   2005
                     -0.11035142 0.03601610 94 -0.18186223 -0.03884062
                 саН
##
   2012
                       0.05842381 0.03601610 94 -0.01308700 0.12993461
                 caH
##
  2005
                 caL -0.14297310 0.03601610 94 -0.21448390 -0.07146230
##
   2012
                 caL -0.04261226 0.03601610 94 -0.11412307 0.02889854
##
## Confidence level used: 0.95
##
## $contrasts
##
   contrast
                           estimate
                                            SE df t.ratio p.value
   2005,SJ - 2012,SJ
                        -0.28033343 0.04411053 94
                                                          <.0001
##
                                                  -6.355
   2005,SJ - 2005,caH
                        0.14563191 0.04764482 94
                                                    3.057 0.0437
   2005,SJ - 2012,caH
                                                   -0.486
##
                       -0.02314333 0.04764482 94
                                                          1.0000
##
   2005,SJ - 2005,caL
                        0.17825358 0.04764482 94
                                                    3.741 0.0047
##
   2005,SJ - 2012,caL
                        0.07789274 0.04764482 94
                                                    1.635 1.0000
   2012,SJ - 2005,caH
                        0.42596534 0.04764482 94
                                                    8.940 <.0001
##
   2012,SJ - 2012,caH
                        0.25719010 0.04764482 94
                                                    5.398 < .0001
                                                    9.625
## 2012,SJ - 2005,caL
                        0.45858701 0.04764482 94
                                                          <.0001
## 2012,SJ - 2012,caL
                         0.35822618 0.04764482 94
                                                    7.519 <.0001
## 2005,caH - 2012,caH -0.16877523 0.05093445 94
                                                   -3.314 0.0196
## 2005,caH - 2005,caL 0.03262167 0.05093445 94
                                                    0.640 1.0000
```

```
## 2005,caH - 2012,caL -0.06773916 0.05093445 94 -1.330 1.0000
## 2012,caH - 2005,caL 0.20139691 0.05093445 94 3.954 0.0022
## 2012,caH - 2012,caL 0.10103607 0.05093445 94 1.984 0.7532
## 2005,caL - 2012,caL -0.10036083 0.05093445 94 -1.970 0.7760
##
## P value adjustment: bonferroni method for 15 tests
ps
```

site effect plot

 pd

picollapse

disturb_year*site effect plot

рi

Resilience

Table 14: ANOVA table: rs

term	df	sumsq	meansq	statistic	p.value
disturb_year	1	2.031	2.031	66.58	0
site	2	0.01885	0.00942	0.309	0.7349
disturb_year:site	2	1.55	0.775	25.41	0
Residuals	94	2.867	0.0305		

	Statistic
R^2	0.56
$adjR^2$	0.53
σ_e	0.17
F	23.60
p	0.00
$d\!f_m$	6.00
$\log \mathrm{Lik}$	35.70
AIC	-57.41
BIC	-39.17
dev	2.87
df_e	94.00

```
# Post hoc Define model
mymodel <- aov_rs$mymodel</pre>
postH_rs <- phc(mymodel = mymodel, resp_var = resp_var)</pre>
## ### Event ###
## $1smeans
## disturb_year
                    lsmean
                                   SE df lower.CL upper.CL
                 0.6756316 0.02492546 94 0.6261415 0.7251217
## 2005
                 0.9270785 0.02492546 94 0.8775884 0.9765685
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## $contrasts
## contrast
                  estimate
                                   SE df t.ratio p.value
## 2005 - 2012 -0.2514469 0.03524992 94 -7.133 <.0001
## Results are averaged over the levels of: site
##
## disturb_year
                    lsmean
                                   SE df lower.CL upper.CL .group
## 2005
                 0.6756316 0.02492546 94 0.6188546 0.7324086 a
##
   2012
                 0.9270785 \ 0.02492546 \ 94 \ 0.8703014 \ 0.9838555
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
## ### Clu pop ###
```

```
## $1smeans
   site
                          SE df lower.CL upper.CL
           lsmean
        0.7893957 0.02761300 94 0.7345694 0.8442219
   caH 0.7937171 0.03188475 94 0.7304092 0.8570250
##
   caL 0.8209523 0.03188475 94 0.7576444 0.8842602
##
## Results are averaged over the levels of: disturb year
## Confidence level used: 0.95
##
## $contrasts
   contrast
                 estimate
                                  SE df t.ratio p.value
## SJ - caH -0.004321471 0.04217956 94
                                         -0.102 1.0000
   SJ - caL -0.031556651 0.04217956 94 -0.748 1.0000
   caH - caL -0.027235180 0.04509185 94 -0.604 1.0000
##
##
## Results are averaged over the levels of: disturb_year
## P value adjustment: bonferroni method for 3 tests
##
##
                          SE df lower.CL upper.CL .group
   site
           lsmean
##
   SJ
        0.7893957 0.02761300 94 0.7220868 0.8567045
##
   caH 0.7937171 0.03188475 94 0.7159956 0.8714387
   caL 0.8209523 0.03188475 94 0.7432308 0.8986738
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 3 estimates
## P value adjustment: bonferroni method for 3 tests
## significance level used: alpha = 0.01
##
## ### Event:Clu pop ###
## $1smeans
## disturb_year site
                                       SE df lower.CL upper.CL
                        lsmean
## 2005
                     0.4958921 0.03905068 94 0.4183561 0.5734282
## 2012
                     1.0828992 0.03905068 94 1.0053631 1.1604352
                S.I
##
   2005
                caH 0.7742095 0.04509185 94 0.6846786 0.8637404
## 2012
                caH 0.8132248 0.04509185 94 0.7236938 0.9027557
##
  2005
                caL 0.7567932 0.04509185 94 0.6672623 0.8463241
##
   2012
                caL 0.8851114 0.04509185 94 0.7955805 0.9746423
##
## Confidence level used: 0.95
##
## $contrasts
##
   contrast
                          estimate
                                           SE df t.ratio p.value
   2005,SJ - 2012,SJ
                       -0.58700705 0.05522601 94 -10.629 <.0001
##
   2005,SJ - 2005,caH
                       -0.27831735 0.05965091 94
                                                  -4.666 0.0002
   2005,SJ - 2012,caH
                                                  -5.320
##
                       -0.31733264 0.05965091 94
                                                          <.0001
##
   2005,SJ - 2005,caL
                       -0.26090106 0.05965091 94
                                                  -4.374 0.0005
##
   2005,SJ - 2012,caL
                       -0.38921929 0.05965091 94
                                                  -6.525 <.0001
   2012,SJ - 2005,caH
                        0.30868970 0.05965091 94
                                                   5.175 < .0001
##
   2012,SJ - 2012,caH
                        0.26967441 0.05965091 94
                                                   4.521 0.0003
## 2012,SJ - 2005,caL
                        0.32610599 0.05965091 94
                                                   5.467
                                                          <.0001
## 2012,SJ - 2012,caL
                        0.19778776 0.05965091 94
                                                   3.316 0.0195
## 2005,caH - 2012,caH -0.03901529 0.06376950 94
                                                  -0.612 1.0000
## 2005,caH - 2005,caL 0.01741629 0.06376950 94
                                                   0.273 1.0000
```

```
## 2005,caH - 2012,caL -0.11090194 0.06376950 94 -1.739 1.0000

## 2012,caH - 2005,caL 0.05643158 0.06376950 94 0.885 1.0000

## 2012,caH - 2012,caL -0.07188665 0.06376950 94 -1.127 1.0000

## 2005,caL - 2012,caL -0.12831823 0.06376950 94 -2.012 0.7059

## P value adjustment: bonferroni method for 15 tests

ps
```

site effect plot

 pd

picollapse

disturb_year*site effect plot

рi


```
plot_mds <- means_distub_site %>%
   ggplot(aes(x=site, y=lsmean, group=disturb_year, colour=disturb_year)) +
   geom_point(aes(shape=disturb_year), size=3) +
   geom_line() +
   theme_bw() + xlab('') + ylab('') +
   facet_wrap(~var, scales='free_y', ncol = 1) +
```

mean + sd

```
grid.arrange(plot_mdSE, plot_msSE, plot_mdsSE, ncol=3)
```


mean + ci

grid.arrange(plot_mdCI, plot_msCI, plot_mdsCI, ncol=3)

pdf ## 2

pdf

2

term	df	sumsq	meansq	statistic	p.value	var
disturb_year	1	1.316	1.316	32.78	1.228e-07	$_{\rm rc}$
site	2	2.847	1.424	35.45	3.373e-12	rc
disturb_year:site	2	0.1961	0.09805	2.442	0.09253	$_{\rm rc}$
Residuals	94	3.775	0.04016	NA	NA	rc
$disturb_year$	1	0.2122	0.2122	9.867	0.00225	rt
site	2	1.666	0.833	38.74	5.363e-13	rt
$disturb_year:site$	2	0.8604	0.4302	20.01	5.77e-08	rt

39

term	$\mathrm{d}\mathrm{f}$	sumsq	meansq	statistic	p.value	var
Residuals	94	2.021	0.0215	NA	NA	$_{ m rt}$
$disturb_year$	1	2.031	2.031	66.58	1.474e-12	$_{\rm rs}$
site	2	0.01885	0.009425	0.309	0.7349	$_{\rm rs}$
disturb_year:site	2	1.55	0.775	25.41	1.506e-09	$_{\rm rs}$
Residuals	94	2.867	0.0305	NA	NA	$_{\rm rs}$
$disturb_year$	1	0.93	0.93	47.8	5.63e-10	rrs
site	2	1.39	0.6952	35.73	2.874e-12	rrs
disturb_year:site	2	0.145	0.07252	3.727	0.02769	rrs
Residuals	94	1.829	0.01946	NA	NA	rrs

	rc	rt	rs	rrs
R^2	0.5359434	0.5753458	0.5566473	0.5741044
$adjR^2$	0.5112596	0.5527578	0.5330647	0.5514503
σ_e	0.2003962	0.1466433	0.1746400	0.1394897
F	21.71230	25.47131	23.60416	25.34227
p	2.166716e-14	$3.707920 \mathrm{e}\text{-}16$	2.678847e-15	4.239928e-16
$d\!f_m$	6	6	6	6
logLik	21.94579	53.17511	35.70279	58.17634
AIC	-29.89157	-92.35023	-57.40558	-102.35268
BIC	-11.65538	-74.11404	-39.16939	-84.11649
dev	3.774913	2.021401	2.866917	1.828994
df_e	94	94	94	94
variable	rc	rt	rs	rrs

ROBUST ANOVA

- Ver Wilcox (2005, 2012)
- Vamos a realizar un Robust factorial ANOVA. En concreto:
- Two-way robust factorial ANOVA on M-estimator
- pkg WRS2

```
robustANOVA <- function(df, resp_var, factores,</pre>
         alpha, nboot, treshold) {
  # alpha: alpha ci for huber m-estimation
  # nboot: numer of iterations
  # treshoold for letter (posthoc)
  # See http://rcompanion.org/rcompanion/d_08a.html
  set.seed(123)
  # Create interaction
  df$interaction <- interaction(df$disturb_year, df$site)</pre>
  # Formulas
  formulaFull <- as.formula(paste0(resp_var, " ~ ",</pre>
                                  paste(factores, collapse = '+')))
  formula_A <- as.formula(paste0(resp_var, " ~ ", factores[1]))</pre>
  formula_B <- as.formula(paste0(resp_var, " ~ ", factores[2]))</pre>
  formula_AB <- as.formula(paste0(resp_var, " ~ interaction"))</pre>
  # Produce Huber M-estimators and confidence intervals by group
  mest <- groupwiseHuber(formulaFull, data = df, ci.type = 'wald', conf.level = alpha)</pre>
  mest_a <- groupwiseHuber(formula_A, data = df, ci.type = 'wald', conf.level = alpha)</pre>
  mest_b <- groupwiseHuber(formula_B, data = df, ci.type = 'wald', conf.level = alpha)</pre>
  # Two-way robust analysis
  x <- pbad2way(formulaFull, data = df, est = "mom", nboot = nboot)
  out_ra <- data.frame(</pre>
   term = c(x$varnames[2],
             x$varnames[3],
             paste0(x$varnames[2], ':', x$varnames[3])),
    p_value = c(x$A.p.value, x$B.p.value, x$AB.p.value))
  out_raTrimmed <- t2way(formulaFull, data = df)</pre>
  out_ratr_df <- data.frame(fact = c(out_raTrimmed$varnames[2],</pre>
                                      out_raTrimmed$varnames[3],
                                     paste0(out_raTrimmed$varnames[2], ':', out_raTrimmed$varnames[3])),
              statistic = c(out_raTrimmed$Qa, out_raTrimmed$Qab), out_raTrimmed$Qab),
              pvalue = c(out_raTrimmed$A.p.value, out_raTrimmed$B.p.value, out_raTrimmed$AB.p.value))
  # post-hoc
  ## factor A
  pha <- pairwiseRobustTest(formula_A, data = df, est = "mom",</pre>
                             nboot = nboot, method="bonferroni")
  ## factor B
  phb <- pairwiseRobustTest(formula_B, data = df, est = "mom",</pre>
                             nboot = nboot, method="bonferroni")
  ## interaction effect (AB)
```

```
phab <- pairwiseRobustTest(formula_AB, data = df, est = "mom",</pre>
                              nboot = nboot, method="bonferroni")
  ph <- rbind(pha, phb, phab)
  phRWS2 <- mcp2a(formulaFull, data=df, est = "mom", nboot = nboot)</pre>
  phtrimmed <- mcp2atm(formulaFull, data=df)</pre>
  out <- list()
  \verb"out$mest <- mest \# \textit{Huber M-estimators and Confidence Intervals}
  out$mest_a <- mest_a
  out$mest_b <- mest_b
  out$raTrimmed <- out_raTrimmed</pre>
  out$out_ratr_df <- out_ratr_df</pre>
  out$ra <- out_ra # Output for Two-way robust analysis (M-estimators)</pre>
  out$ph <- ph # posthoc comparison usinng pairwiseRobustTest</pre>
  out$pha <- pha
  out$phb <- phb
  out$phab <- phab
  print(cat('\n Robust M-Anova \n'))
  print(out ra)
  print(cat('\n Robust Trimmed \n'))
  print(out raTrimmed)
  print(cat('\n post hoc Mhuber \n'))
  print(phRWS2)
  print(cat('\n post hoc Trimmed means \n'))
  print(phtrimmed)
 return(out)
}
  # if (exists('letters_phb')) {
  # letters_phb <- letters_phb} else {</pre>
  # myerror <- evaluate('cldList(comparison = phb$Comparison,</pre>
                         p.value = phb$p.adjust, threshold = treshold)')
  # letters_phb <- as.character(myerror[[2]]$message)}</pre>
  # if (exists('letters pha')) {
  # letters_pha <- letters_pha} else {</pre>
  # myerror <- evaluate('cldList(comparison = pha$Comparison,</pre>
                         p.value = pha$p.adjust, threshold = treshold)')
  # letters_pha <- as.character(myerror[[2]]$message)}</pre>
  # if (exists('letters_phab')) {
  # letters_phab <- letters_phab} else {</pre>
  # myerror <- evaluate('cldList(comparison = phab$Comparison,</pre>
                         p.value = phab$p.adjust, threshold = treshold)')
  # letters_phab <- as.character(myerror[[2]]$message)}</pre>
factores = c('disturb_year', 'site', 'disturb_year:site')
```

Resilience

```
rars <- robustANOVA(df=re, resp_var='rs', factores=factores,</pre>
              alpha = 0.95, nboot = 3000, treshold = 0.01)
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
## [1] "comparison 4 ..."
## [1] "comparison 5 ..."
## [1] "comparison 6 ..."
## [1] "comparison 7 ..."
## [1] "comparison 8 ..."
## [1] "comparison 9 ..."
## [1] "comparison 10 ..."
## [1] "comparison 11 ..."
## [1] "comparison 12 ..."
## [1] "comparison 13 ..."
## [1] "comparison 14 ..."
## [1] "comparison 15 ..."
##
##
##
## Robust M-Anova
## NULL
##
                  term
                           p_value
## 1
          disturb_year 0.000000000
## 2
                  site 0.404000000
## 3 disturb_year:site 0.002333333
##
## Robust Trimmed
## NULL
## Call:
## t2way(formula = formulaFull, data = df)
##
##
                       value p.value
## disturb_year
                     44.3134
                               0.001
                      1.3103
                                0.534
## site
## disturb_year:site 30.0141
                                0.001
##
## post hoc Mhuber
## NULL
## mcp2a(formula = formulaFull, data = df, est = "mom", nboot = nboot)
##
```

```
## site2
                       -0.13328 -0.34962 0.13655 0.16633
## site3
                        0.03889 -0.21029 0.18357 0.45567
## disturb_year1:site1 -0.46693 -0.76256 -0.26831 0.00000
## disturb_year1:site2 -0.31564 -0.65462 -0.17853 0.00000
## disturb_year1:site3  0.15129 -0.09236  0.31023  0.13367
##
##
## post hoc Trimmed means
## NULL
## Call:
## mcp2atm(formula = formulaFull, data = df)
##
##
                         psihat ci.lower ci.upper p-value
                       -0.73922 -0.96305 -0.51538 0.00000
## disturb_year1
## site1
                       -0.09423 -0.35080 0.16235 0.36418
                       -0.09809 -0.32050 0.12432 0.27356
## site2
## site3
                       -0.00387 -0.20852 0.20079 0.96199
## disturb_year1:site1 -0.52928 -0.78586 -0.27271 0.00001
## disturb_year1:site2 -0.41786 -0.64028 -0.19545 0.00005
## disturb_year1:site3  0.11142 -0.09324  0.31607  0.17735
Rs Letters
x <-rars
letraArs <- cldList(comparison = x$pha$Comparison, p.value = x$pha$p.adjust, threshold = 0.01) %>% mut
letraArs
##
     Group Letter MonoLetter var
## 1
        25
                а
                             rs
## 2
       212
                b
                           b rs
letraBrs <- cldList(comparison = x$phb$Comparison, p.value = x$phb$p.adjust, threshold = 0.01) %>% mut
## Error: No significant differences.
letraBrs # Manual (IMPROVE IT)
## Error in eval(expr, envir, enclos): object 'letraBrs' not found
letraBrs <- data.frame(Group = c('SJ', 'caH', 'caL'),</pre>
                     Letter = c('a', 'a', 'a'),
                     MonoLetter = c('a', 'a', 'a')) %>% mutate(var = 'rs')
letraBrs
     Group Letter MonoLetter var
##
## 1
       SJ
                a
                           a rs
## 2
       caH
                           a rs
                a
## 3
                a
                           a rs
letraABrs <- cldList(comparison = x$phab$Comparison, p.value = x$phab$p.adjust, threshold = 0.01) %>%
letraABrs
##
       Group Letter MonoLetter var
## 1
       25.SJ
                  a
```

psihat ci.lower ci.upper p-value

-0.66998 -0.99312 -0.45850 0.00000

-0.17216 -0.35171 0.16278 0.18600

##

site1

disturb_year1

```
## 2 212.SJ b b rs
## 3 25.caH bc bc rs
## 4 212.caH bc bc rs
## 5 25.caL ac a c rs
## 6 212.caL bc bc rs
```

Recovery

```
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
## [1] "comparison 4 ..."
## [1] "comparison 5 ..."
## [1] "comparison 6 ..."
## [1] "comparison 7 ..."
## [1] "comparison 8 ..."
## [1] "comparison 9 ..."
## [1] "comparison 10 ..."
## [1] "comparison 11 ..."
## [1] "comparison 12 ..."
## [1] "comparison 13 ..."
## [1] "comparison 14 ..."
##
  [1] "comparison 15 ..."
##
##
##
## Robust M-Anova
## NULL
##
                  term p_value
## 1
          disturb_year 0.0000000
## 2
                  site 0.0000000
## 3 disturb_year:site 0.1046667
##
## Robust Trimmed
## NULL
## Call:
## t2way(formula = formulaFull, data = df)
##
##
                       value p.value
                     29.5491
                               0.001
## disturb_year
## site
                     53.0783
                               0.001
## disturb_year:site 4.3962
                               0.134
```

```
##
##
## post hoc Mhuber
## NULL
## mcp2a(formula = formulaFull, data = df, est = "mom", nboot = nboot)
##
                        psihat ci.lower ci.upper p-value
## disturb_year1
                      -0.66711 -0.95045 -0.41849 0.00000
                       0.55891 0.31081 0.82798 0.00000
## site1
## site2
                       0.77967 0.54353 1.02893 0.00000
## site3
                       0.22076 0.03026 0.40455 0.00767
## disturb_year1:site1 -0.09620 -0.36969 0.13276 0.17433
## disturb_year1:site2 -0.22864 -0.47797 0.02064 0.02733
## disturb_year1:site3 -0.13244 -0.30168 0.08120 0.10233
##
##
## post hoc Trimmed means
## NULL
## Call:
## mcp2atm(formula = formulaFull, data = df)
##
                        psihat ci.lower ci.upper p-value
                      -0.68242 -0.93631 -0.42852 0.00000
## disturb year1
## site1
                       0.58042 0.28923 0.87161 0.00002
## site2
                       0.79940 0.51965 1.07915 0.00000
## site3
                       0.21898 \quad 0.02158 \quad 0.41639 \ 0.00906
## disturb_year1:site1 -0.12231 -0.41350 0.16888 0.29851
## disturb_year1:site2 -0.21777 -0.49752 0.06198 0.05870
## disturb_year1:site3 -0.09546 -0.29287 0.10194 0.22763
Rc Letters
x <-rarc
letraArc <- cldList(comparison = x$pha$Comparison, p.value = x$pha$p.adjust, threshold = 0.01) %>% mut
letraArc
##
    Group Letter MonoLetter var
       25
               a
                          b rc
      212
               b
letraBrc <- cldList(comparison = x$phb$Comparison, p.value = x$phb$p.adjust, threshold = 0.01) %>% mut
   Group Letter MonoLetter var
## 1
                         a rc
       SJ
               а
## 2
      caH
               b
                          b rc
## 3
                          b rc
      caL
               b
letraABrc <- cldList(comparison = x$phab$Comparison, p.value = x$phab$p.adjust, threshold = 0.01) %>%;
      Group Letter MonoLetter var
## 1
      25.SJ
             abc
                        abc rc
## 2 212.SJ
               a
                          a rc
```

```
## 3 25.caH bc bc rc
## 4 212.caH ab ab rc
## 5 25.caL c c rc
## 6 212.caL bc bc rc
```

Resistance

```
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
## [1] "comparison 4 ..."
## [1] "comparison 5 ..."
## [1] "comparison 6 ..."
## [1] "comparison 7 ..."
## [1] "comparison 8 ..."
## [1] "comparison 9 ..."
## [1] "comparison 10 ..."
## [1] "comparison 11 ..."
## [1] "comparison 12 ..."
## [1] "comparison 13 ..."
## [1] "comparison 14 ..."
## [1] "comparison 15 ..."
##
##
##
## Robust M-Anova
## NULL
##
                  term
                          p_value
## 1
          disturb_year 0.02533333
                  site 0.00000000
## 3 disturb_year:site 0.00000000
##
## Robust Trimmed
## NULL
## Call:
## t2way(formula = formulaFull, data = df)
##
##
                       value p.value
## disturb_year
                      6.0189
                               0.019
## site
                     59.2535
                               0.001
## disturb_year:site 32.2363
                               0.001
##
```

```
##
## post hoc Mhuber
## NULL
## Call:
## mcp2a(formula = formulaFull, data = df, est = "mom", nboot = nboot)
                        psihat ci.lower ci.upper p-value
## disturb_year1
                       -0.22274 -0.43042 -0.03561 0.01400
## site1
                       -0.43120 -0.62168 -0.24081 0.00000
## site2
                       -0.59768 -0.80159 -0.43318 0.00000
## site3
                       -0.16648 -0.34530 -0.03932 0.00367
## disturb_year1:site1 -0.49622 -0.66165 -0.30074 0.00000
## disturb_year1:site2 -0.31961 -0.50767 -0.13402 0.00000
## disturb_year1:site3  0.17661  0.00627  0.30451  0.01300
##
##
## post hoc Trimmed means
## NULL
## Call:
## mcp2atm(formula = formulaFull, data = df)
##
                        psihat ci.lower ci.upper p-value
                      -0.23252 -0.42362 -0.04141 0.01826
## disturb_year1
                       -0.43515 -0.64428 -0.22601 0.00001
## site1
## site2
                      -0.62330 -0.82736 -0.41923 0.00000
                      -0.18815 -0.35938 -0.01692 0.00973
## disturb_year1:site1 -0.47330 -0.68244 -0.26417 0.00000
## disturb_year1:site2 -0.32296 -0.52703 -0.11890 0.00039
## disturb_year1:site3  0.15034 -0.02089  0.32157  0.03407
Rt Letters
x <-rart
letraArt <- cldList(comparison = x$pha$Comparison, p.value = x$pha$p.adjust, threshold = 0.01) %>% mut
## Error: No significant differences.
letraArt #Manual (IMPROVE IT)
## Error in eval(expr, envir, enclos): object 'letraArt' not found
letraArt <- data.frame(Group = as.factor(c('25', '212')),</pre>
                     Letter = as.factor(c('a', 'a')),
                     MonoLetter = as.factor(c('a', 'a'))) %>% mutate(var ='rt')
letraArt
     Group Letter MonoLetter var
## 1
       25
                           a rt
                а
## 2
      212
                           a rt
letraBrt <- cldList(comparison = x$phb$Comparison, p.value = x$phb$p.adjust, threshold = 0.01) %>% mut
letraBrt
    Group Letter MonoLetter var
## 1
       SJ
               a
                        а
## 2
      caH
               h
                         b rt
```

```
letraABrt <- cldList(comparison = x$phab$Comparison, p.value = x$phab$p.adjust, threshold = 0.01) %>% =
letraABrt
##
      Group Letter MonoLetter var
## 1
      25.SJ
                a
## 2 212.SJ
                bc
                          bc rt
## 3 25.caH
                bc
                          bc rt
## 4 212.caH
               b
                          b
                              rt
## 5 25.caL
                bc
                          bc rt
## 6 212.caL
                 С
                            c rt
```

Relative Resilience

```
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
## [1] "comparison 4 ..."
## [1] "comparison 5 ..."
## [1] "comparison 6 ..."
## [1] "comparison 7 ..."
## [1] "comparison 8 ..."
## [1] "comparison 9 ..."
## [1] "comparison 10 ..."
## [1] "comparison 11 ..."
## [1] "comparison 12 ..."
## [1] "comparison 13 ..."
## [1] "comparison 14 ..."
## [1] "comparison 15 ..."
##
##
##
## Robust M-Anova
## NULL
                  term p_value
## 1
          disturb_year 0.000
                         0.000
                  site
## 3 disturb_year:site
                         0.095
##
## Robust Trimmed
## NULL
## Call:
```

```
## disturb_year:site 6.7909 0.051
##
## post hoc Mhuber
## NULL
## Call:
## mcp2a(formula = formulaFull, data = df, est = "mom", nboot = nboot)
##
                       psihat ci.lower ci.upper p-value
                      -0.56395 -0.75681 -0.36412 0.00000
## disturb_year1
                       0.38674 0.20575 0.56841 0.00000
## site1
## site2
                       0.55080 0.39968 0.73100 0.00000
## site3
                       ## disturb_year1:site1 -0.07004 -0.27611 0.07693 0.12367
## disturb_year1:site2 -0.16885 -0.34767 -0.02413 0.00733
## disturb_year1:site3 -0.09881 -0.25026 0.08640 0.13967
##
##
## post hoc Trimmed means
## NULL
## mcp2atm(formula = formulaFull, data = df)
##
                       psihat ci.lower ci.upper p-value
                      -0.56322 -0.73651 -0.38993 0.00000
## disturb_year1
                      0.38571 0.20032 0.57110 0.00001
## site1
## site2
                       0.56847 0.39544 0.74150 0.00000
                       0.18276  0.00749  0.35802  0.01342
## disturb_year1:site1 -0.10703 -0.29242 0.07836 0.15453
## disturb_year1:site2 -0.17765 -0.35069 -0.00462 0.01474
## disturb_year1:site3 -0.07063 -0.24589 0.10464 0.31247
RRs Letters
x <-rarrs
letraArrs <- cldList(comparison = x$pha$Comparison, p.value = x$pha$p.adjust, threshold = 0.01) %>% mu
letraArrs
    Group Letter MonoLetter var
## 1
       25
                        a rrs
               a
      212
                         b rrs
               b
letraBrrs <- cldList(comparison = x$phb$Comparison, p.value = x$phb$p.adjust, threshold = 0.01) %>% mu
letraBrrs
    Group Letter MonoLetter var
## 1
                        a rrs
       SJ
               а
## 2
      caH
              ab
                         ab rrs
## 3 caL
              b
                         b rrs
```

t2way(formula = formulaFull, data = df)

value p.value

0.001

43.2200 0.001

70.4314

##

##

disturb_year

site

```
letraABrrs <- cldList(comparison = x$phab$Comparison, p.value = x$phab$p.adjust, threshold = 0.01) %>%
letraABrrs
##
      Group Letter MonoLetter var
## 1
      25.SJ a a rrs
## 2 212.SJ
               b
                         b rrs
               a
## 3 25.caH
                         a rrs
## 4 212.caH
              a
                         a rrs
## 5 25.caL
               a
                         a rrs
## 6 212.caL
                a
                          a rrs
letrasA <- rbind(letraArs, letraArc, letraArt, letraArrs) %>%
 mutate(disturb_year =
          case when (Group == "25" \sim "2005",
                   Group == "212" ~ "2012")) %>%
 dplyr::select(-Group)
letrasB <- rbind(letraBrs, letraBrc, letraBrt, letraBrrs) %>% rename(site = Group)
letrasAB <- rbind(letraABrs, letraABrc, letraABrt, letraABrrs) %>%
 separate(Group, into=c('disturb_year', 'site')) %>%
 mutate(disturb_year =
          case_when(disturb_year == "25" ~ "2005",
                   disturb_year == "212" ~ "2012"))
```

Estimadores de huber

var	disturb_year	site	n	M.Huber	ci	Letter
rc	2005	SJ	20	1.112	(1.0004, 1.2241)	abc
rc	2005	caH	15	0.8866	(0.8003, 0.973)	bc
rc	2005	caL	15	0.8321	(0.7326, 0.9315)	c

var	${\it disturb_year}$	site	n	M.Huber	ci	Letter
rc	2012	SJ	20	1.446	(1.3223,1.5691)	a
rc	2012	caH	15	1.107	(1.0257, 1.1885)	ab
rc	2012	caL	15	0.952	(0.8889, 1.015)	bc
rt	2005	SJ	20	0.4454	(0.3751, 0.5158)	a
rt	2005	caH	15	0.8921	(0.8091, 0.9751)	$_{\mathrm{bc}}$
rt	2005	caL	15	0.9012	(0.8132, 0.9892)	bc
rt	2012	SJ	20	0.7687	(0.6839, 0.8534)	bc
rt	2012	caH	15	0.7534	(0.6864, 0.8204)	b
rt	2012	caL	15	0.9263	(0.9001, 0.9526)	\mathbf{c}
rs	2005	SJ	20	0.4888	(0.4213, 0.5562)	a
rs	2005	caH	15	0.7895	(0.6913, 0.8878)	$_{\mathrm{bc}}$
rs	2005	caL	15	0.7303	(0.6118, 0.8489)	ac
rs	2012	SJ	20	1.031	(0.93, 1.1321)	b
rs	2012	caH	15	0.8132	(0.7413, 0.8852)	bc
rs	2012	caL	15	0.8761	(0.8394, 0.9129)	$_{\mathrm{bc}}$
rrs	2005	SJ	20	0.0426	(-0.0066, 0.0918)	a
rrs	2005	caH	15	-0.1075	(-0.1893, -0.0257)	a
rrs	2005	caL	15	-0.1424	(-0.2264, -0.0583)	a
rrs	2012	SJ	20	0.3206	(0.229, 0.4122)	b
rrs	2012	caH	15	0.0819	(0.0275, 0.1364)	a
rrs	2012	caL	15	-0.0443	(-0.1071, 0.0185)	a

var	disturb_year	n	M.Huber	ci	Letter
rc	2005	50	0.9462	(0.8794, 1.0129)	a
rc	2012	50	1.161	(1.0813, 1.2403)	b
rt	2005	50	0.721	(0.6437, 0.7984)	a
rt	2012	50	0.8193	(0.7758, 0.8628)	a
rs	2005	50	0.653	(0.5852, 0.7209)	\mathbf{a}
rs	2012	50	0.9107	(0.8648, 0.9567)	b
rrs	2005	50	-0.0559	(-0.0993, -0.0126)	a
rrs	2012	50	0.1223	(0.0596, 0.185)	b

var	site	n	M.Huber	ci	Letter
rc	SJ	40	1.282	(1.1791,1.3856)	a
rc	caH	30	0.9962	(0.9171, 1.0753)	b
rc	caL	30	0.8972	(0.8431, 0.9514)	b
rt	SJ	40	0.6116	(0.5387, 0.6846)	a
rt	caH	30	0.8157	(0.7549, 0.8764)	b
rt	caL	30	0.9209	(0.8834, 0.9584)	b
rs	SJ	40	0.7694	(0.6524, 0.8864)	a
rs	caH	30	0.7975	(0.7439, 0.8511)	a
rs	caL	30	0.8172	(0.7553, 0.8791)	a
rrs	SJ	40	0.1656	(0.0948, 0.2364)	a
rrs	caH	30	-0.0063	(-0.0668, 0.0541)	ab
rrs	caL	30	-0.0939	(-0.1455, -0.0423)	b

Pairwise comparison

```
rars$ph$var <- 'rs'
rarc$ph$var <- 'rc'
rart$ph$var <- 'rt'
rarrs$ph$var <- 'rrs'

pairwise <- rbind(rarc$ph, rart$ph, rarrs$ph)
pairwise %>% pander()
```

Comparison	Statistic	p.value	p.adjust	var
2005 - 2012 = 0	-0.1672	0.002667	0.002667	rc
SJ - caH = 0	0.2808	0	0	$_{\rm rc}$
SJ - caL = 0	0.3926	0	0	$_{\rm rc}$
caH - caL = 0	0.1118	0.04067	0.122	$_{\rm rc}$
2005.SJ - 2012.SJ = 0	-0.3306	0.002	0.03	$_{\rm rc}$
2005.SJ - 2005.caH = 0	0.2314	0.01533	0.23	$_{\rm rc}$
2005.SJ - 2012.caH = 0	-0.003094	0.9347	1	rc

Comparison	Statistic	p.value	p.adjust	var
2005.SJ - 2005.caL = 0	0.2755	0.002	0.03	rc
2005.SJ - 2012.caL = 0	0.1735	0.024	0.36	rc
2012.SJ - 2005.caH = 0	0.562	0	0	rc
2012.SJ - 2012.caH = 0	0.3276	0.0006667	0.01	rc
2012.SJ - 2005.caL = 0	0.6062	0	0	rc
2012.SJ - 2012.caL = 0	0.5042	0	0	$_{\rm rc}$
2005.caH - 2012.caH = 0	-0.2344	0.002667	0.04	$_{\rm rc}$
2005.caH - 2005.caL = 0	0.04416	0.4167	1	rc
2005.caH - 2012.caL = 0	-0.05785	0.3313	1	rc
2012.caH - 2005.caL = 0	0.2786	0	0	rc
2012.caH - 2012.caL = 0	0.1766	0.002667	0.04	rc
2005.caL - 2012.caL = 0	-0.102	0.05333	0.8	rc
2005 - 2012 = 0	-0.107	0.1067	0.1067	rt
SJ - caH = 0	-0.1948	0.0006667	0.002	rt
SJ - caL = 0	-0.3104	0	0	rt
caH - caL = 0	-0.1156	0.004	0.012	rt
2005.SJ - 2012.SJ = 0	-0.3462	0	0	rt
2005.SJ - 2005.caH = 0	-0.4637	0	0	rt
2005.SJ - 2012.caH = 0	-0.3137	0	0	rt
2005.SJ - 2005.caL = 0	-0.4586	0	0	rt
2005.SJ - 2012.caL = 0	-0.4852	0	0	rt
2012.SJ - 2005.caH = 0	-0.1175	0.092	1	rt
2012.SJ - 2012.caH = 0	0.03251	0.696	1	rt
2012.SJ - 2005.caL = 0	-0.1125	0.07067	1	rt
2012.SJ - 2012.caL = 0	-0.139	0.005333	0.08	$^{\mathrm{rt}}$
2005.caH - 2012.caH = 0	0.15	0.012	0.18	$^{\mathrm{rt}}$
2005.caH - 2005.caL = 0	0.005064	0.8307	1	$^{\mathrm{rt}}$
2005.caH - 2012.caL = 0	-0.02152	0.3687	1	$^{\mathrm{rt}}$
2012.caH - 2005.caL = 0	-0.145	0.005333	0.08	$^{\mathrm{rt}}$
2012.caH - 2012.caL = 0	-0.1715	0	0	$^{\mathrm{rt}}$
2005.caL - 2012.caL = 0	-0.02658	0.6553	1	rt
2005 - 2012 = 0	-0.2266	0	0	$_{ m rs}$
SJ - caH = 0	-0.004321	0.7913	1	rs
SJ - caL = 0	-0.008101	0.5513	1	rs
caH - caL = 0	-0.00378	0.5827	1	rs
2005.SJ - 2012.SJ = 0	-0.4842	0	0	$_{ m rs}$
2005.SJ - 2005.caH = 0	-0.3195	0	0	rs
2005.SJ - 2012.caH = 0	-0.3368	0	0	rs
2005.SJ - 2005.caL = 0 2005.SJ - 2012.caL = 0	-0.2245	0.002	$0.03 \\ 0$	rs
2003.SJ - 2012.CaL = 0 2012.SJ - 2005.caH = 0	-0.393 0.1646	0.012	0.18	rs
2012.SJ - 2003.caH = 0 2012.SJ - 2012.caH = 0	0.1040 0.1474	0.012 0.02333	0.18 0.35	rs
2012.SJ - 2012.caH = 0 2012.SJ - 2005.caL = 0	0.1474 0.2597	0.02555	0.33	rs
2012.SJ - 2003.caL = 0 2012.SJ - 2012.caL = 0	0.2397	0.026	0.39	rs
2005.caH - 2012.caH = 0	-0.01725	0.6387	0.5 <i>9</i> 1	rs
2005.caH - 2012.caH = 0 2005.caH - 2005.caL = 0	0.09509	0.0387 0.52	1	rs rs
2005.caH - 2005.caL = 0 2005.caH - 2012.caL = 0	-0.07345	0.32 0.1027	1	
2005.caH - 2012.caL = 0 2012.caH - 2005.caL = 0	0.1123	0.1027 0.2813	1	rs rs
2012.caH - 2003.caL = 0 2012.caH - 2012.caL = 0	-0.0562	0.212	1	rs
2012.cal - 2012.cal = 0 2005.caL - 2012.caL = 0	-0.1685	0.212 0.02133	0.3199	
2005.cal - 2012.cal = 0 $2005 - 2012 = 0$	-0.1766	0.02133	0.3199	rs rrs
SJ - caH = 0	0.1318	0.012	0.036	rrs
Do - Carr — U	0.1910	0.012	0.000	rrs

Comparison	Statistic	p.value	p.adjust	var
SJ - caL = 0	0.2463	0	0	rrs
caH - caL = 0	0.1145	0.06733	0.202	rrs
2005.SJ - 2012.SJ = 0	-0.2676	0	0	rrs
2005.SJ - 2005.caH = 0	0.1584	0.03133	0.47	rrs
2005.SJ - 2012.caH = 0	-0.03922	0.2413	1	rrs
2005.SJ - 2005.caL = 0	0.191	0.004667	0.07	rrs
2005.SJ - 2012.caL = 0	0.09221	0.02467	0.37	rrs
2012.SJ - 2005.caH = 0	0.426	0	0	rrs
2012.SJ - 2012.caH = 0	0.2284	0	0	rrs
2012.SJ - 2005.caL = 0	0.4586	0	0	rrs
2012.SJ - 2012.caL = 0	0.3598	0	0	rrs
2005.caH - 2012.caH = 0	-0.1976	0.002667	0.04	rrs
2005.caH - 2005.caL = 0	0.03262	0.468	1	rrs
2005.caH - 2012.caL = 0	-0.06614	0.41	1	rrs
2012.caH - 2005.caL = 0	0.2302	0.0006667	0.01	rrs
2012.caH - 2012.caL = 0	0.1314	0.004667	0.07	rrs
2005.caL - 2012.caL = 0	-0.09876	0.054	0.81	rrs

Interaction plot

Response \sim (x=Drought)

```
mhuber<- mhuber %>%
 mutate(var_sorted = case_when(var == "rc" ~ "1_rc",
                                var == "rt" ~ "0_rt",
                                var == "rs" ~ "2_rs",
                                var == "rrs" ~ "3_rrs"))
pd <- position_dodge(.2)</pre>
robust_plot_bai_drought <- ggplot(mhuber, aes(x=disturb_year, y=M.Huber, color = site, group=site, fill-
  geom_errorbar(aes(ymin=lower.ci, ymax=upper.ci),
                width=.1, size=0.7, position=pd) +
  geom_line(aes(group=site,color=site, linetype=site), position=pd) +
  geom_point(shape=21, size=3.5, position=pd) +
  facet_wrap(~var_sorted, nrow = 2, scales = 'free_y',
             labeller=as_labeller(c('0_rt' = 'Resistance',
                                 '1_rc' = 'Recovery',
                                 '2_rs' = 'Resilience',
                                 '3_rrs' = 'Relative Resilience'))) +
  scale_color_manual(values=c('black','blue','red')) +
  scale_fill_manual(values=c('black','blue','red')) + theme_bw() +
  scale_linetype_manual(values=c("solid", "dashed", 'dashed')) +
  theme(panel.grid.minor = element_blank(),
        strip.background = element_rect(colour='black',
                                        fill='white'),
        legend.position="bottom") +
  ylab('') + xlab('Drought event')
robust_plot_bai_drought
```



```
pdf(paste0(di, 'out/resilience_robust/bai/robust_plot_bai_drought.pdf'), width=9, height = 9)
robust_plot_bai_drought
dev.off()
```

pdf ## 2

Response \sim (x=site)

```
pd <- position_dodge(.2)</pre>
robust_plot_bai_site <- ggplot(mhuber, aes(x=site, y=M.Huber, color = disturb_year, group=disturb_year,
  geom_errorbar(aes(ymin=lower.ci, ymax=upper.ci),
                width=.1, size=0.7, position=pd) +
  geom_line(aes(group=disturb_year,color=disturb_year, linetype=disturb_year), position=pd) +
  geom_point(shape=21, size=3.5, position=pd) +
  facet_wrap(~var_sorted, nrow = 2, scales = 'free_y',
             labeller=as_labeller(c('0_rt' = 'Resistance',
                                  '1_rc' = 'Recovery',
                                  '2_rs' = 'Resilience',
                                  '3_rrs' = 'Relative Resilience'))) +
  scale_color_manual(values=c('black','blue')) +
  scale_fill_manual(values=c('black','blue')) + theme_bw() +
  scale_linetype_manual(values=c("solid", "dashed")) +
  theme(panel.grid.minor = element_blank(),
        strip.background = element_rect(colour='black',
```

```
fill='white'),
         legend.position="bottom") +
  ylab('') + xlab('Drought event')
robust_plot_bai_site
                        Resistance
                                                                              Recovery
0.8
0.6
                                                     1.0
                        Resilience
                                                                            Relative Resilience
                                                     0.4
                                                     0.2
0.8
                                                     0.0
                                                 Drought event
                                            disturb_year ◆ 2005 ◆ 2012
pdf(paste0(di, 'out/resilience_robust/bai/robust_plot_bai_site.pdf'), width=9, height = 9)
robust_plot_bai_site
dev.off()
## pdf
##
rars$out_ratr_df$var <- 'rs'</pre>
rarc$out_ratr_df$var <- 'rc'</pre>
rart$out_ratr_df$var <- 'rt'</pre>
rarrs$out_ratr_df$var <- 'rrs'</pre>
trimmedanovas <- rbind(rarc$out_ratr_df, rart$out_ratr_df, rars$out_ratr_df, rarrs$out_ratr_df)</pre>
trimmedanovas %>% pander()
```

fact	statistic	pvalue	var
disturb_year	29.55	0.001	$_{\rm rc}$
site	53.08	0.001	$_{\rm rc}$
disturb_year:site	4.396	0.134	rc
$disturb_year$	6.019	0.019	rt

fact	statistic	pvalue	var
site	59.25	0.001	rt
disturb_year:site	32.24	0.001	rt
$disturb_year$	44.31	0.001	$_{\rm rs}$
site	1.31	0.534	$_{\rm rs}$
disturb_year:site	30.01	0.001	$_{\rm rs}$
$disturb_year$	43.22	0.001	rrs
site	70.43	0.001	rrs
$disturb_year:site$	6.791	0.051	rrs

```
# Export data
```

```
write.csv(mhuber, file=paste0(di, '/out/anovas_resilience/huber_bai/robust_mhuber.csv'), row.names = F)
write.csv(mhuber_agg, file=paste0(di, '/out/anovas_resilience/huber_bai/robust_mhuber_agg.csv'), row.names
write.csv(mhuber_a, file=paste0(di, '/out/anovas_resilience/huber_bai/robust_mhuber_a.csv'), row.names
write.csv(mhuber_agg_a, file=paste0(di, '/out/anovas_resilience/huber_bai/robust_mhuber_agg_a.csv'), row.names
write.csv(mhuber_b, file=paste0(di, '/out/anovas_resilience/huber_bai/robust_mhuber_b.csv'), row.names
write.csv(mhuber_agg_b, file=paste0(di, '/out/anovas_resilience/huber_bai/robust_mhuber_agg_b.csv'), row.names
write.csv(pairwise, file=paste0(di, '/out/anovas_resilience/huber_bai/robust_pairwise.csv'), row.names
write.csv(trimmedanovas, file=paste0(di, '/out/anovas_resilience/huber_bai/trimmed_anovas.csv'), row.names
```

References

Piovesa, G., F. Biondi, A. D. Filippo, A. Alessandrini, and M. Maugeri. 2008. Drought-driven growth reduction in old beech (fagus sylvatica l.) forests of the central apennines, italy. Global Change Biology 14:1265–1281.