

Sistema de monitoreo de temperaturas en tiempo real para refrigeradores críticos de salud

Autor:

Marcelo Castello

Director:

Juan José Salerno (Dirección de Bioingeniería)

${\rm \acute{I}ndice}$

Registros de cambios
Acta de constitución del proyecto
Descripción técnica-conceptual del proyecto a realizar
Identificación y análisis de los interesados
1. Propósito del proyecto
2. Alcance del proyecto
3. Supuestos del proyecto
4. Requerimientos
$egin{array}{cccccccccccccccccccccccccccccccccccc$
5. Entregables principales del proyecto
6. Desglose del trabajo en tareas
7. Diagrama de Activity On Node
8. Diagrama de Gantt
9. Matriz de uso de recursos de materiales
10. Presupuesto detallado del proyecto
11. Matriz de asignación de responsabilidades
12. Gestión de riesgos
13. Gestión de la calidad
14. Comunicación del proyecto
15. Gestión de compras
16. Seguimiento y control
17. Procesos de cierre

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
1.0	Creación del documento	26/08/2020
	Versión inicial: propósito, alcance, supuestos, requerimientos, entregables y desglose del trabajo.	

Acta de constitución del proyecto

Buenos Aires, 25 de agosto de 2020

Por medio de la presente se acuerda con el Ing. Marcelo Castello que su Trabajo Final de la Carrera de Especialización en Internet de las Cosas se titulará "Sistema de monitoreo de temperaturas en tiempo real para refrigeradores críticos de salud", consistirá esencialmente en el prototipo preliminar de un sistema para la medición, visualización y emisión de alertas de temperatura para heladeras y freezers en bancos de sangre y vacunatorios de efectores de salud de la Municipalidad de Rosario, y tendrá un presupuesto preliminar estimado de 638 hs de trabajo y \$XXX, con fecha de inicio 25 de agosto de 2020 y fecha de presentación pública 25 de agosto de 2021.

Se adjunta a esta acta la planificación inicial.

Ariel Lutenberg Director posgrado FIUBA Edgardo Marino Municipalidad de Rosario

Juan José Salerno Director del Trabajo Final

Descripción técnica-conceptual del proyecto a realizar

El buen funcionamiento de los sistemas de refrigeración es afectado a menudo por cortes de energía, mermas en el rendimiento del equipo compresor, o pérdidas en el sello ya sea por desgaste de burletes o puertas no bien cerradas. En el área de salud esto resulta crítico. Productos medicinales como hemoproductos o vacunas, pueden perder la eficacia médica. Esto no sólo se traduce en pérdidas económicas, sino también implica que los tratamientos sobre las personas pueden no ser efectivos o que no puedan ser accedidos por la pérdida del material, con el consecuente impacto social y mediático que esto representa en una empresa pública.

Además la Administración Nacional de Medicamentos Alimentos y Tecnología Médica (ANMAT), a través de la disposición: Reglamento Técnico Mercosur sobre Buenas Prácticas de Distribución de Productos Farmacéuticos", Resolución Mercosur GMC N^0 49/2002, define un conjunto de prácticas para el transporte y almacenamiento de productos farmacéuticos donde exige trazabilidad, equipamiento para el control y registro continuo de temperaturas con el fin de asegurar las condiciones ambientales de almacenamiento de tales productos.

La medición a distancia continua y en tiempo real de estas temperaturas sumado a un sistema de alerta, aseguran las condiciones legales, minimizan los riesgos y garantizan la disponibilidad de hemoproductos y vacunas seguros en el momento y el lugar en que se precise.

Este tabajo se enmarca en dos premisas fundamentales:

- Las políticas escenciales de la Secretaría de Salud Pública cuya misión es preservar la salud de la población, proponiendo un trabajo integrador para la construcción de opciones y entornos saludables.
- El contexto sanitario mundial de hoy exige que en un futuro cercano se puedan distribuir adecuadamente y de manera segura especialidades medicinales tales como las vacunas.

Los equipos y software de que se dispone en plaza en su mayoría son de origen extranjero, y su utilización -además de onerosa- implica una dependencia con los fabricantes, en términos económicos pero también de criterios (en general se comercializan por módulos, no proveyendo soluciones integrales). En otras palabras, para trabajar con estos recursos se deben seguir criterios técnico-económicos diseñados para otras latitudes y otras condiciones. Se deben realizar adaptaciones y aproximaciones que implican tareas adicionales y que no siempre son del todo efectivas. El personal destinado a estas tareas debe entrenarse utilizando tiempo y esfuerzo, y este entrenamiento debe reforzarse cada vez que el propietario del sistema decide algún cambio o actualización. En el desarrollo de la presente idea, se ha pensado que tal vez este esfuerzo podría ser redirigido a tareas más provechosas. Se requiere entonces el desarrollo de tecnología propia destinada a este fin, que pueda ser adaptada a las necesidades de los investigadores locales, evitando la dependencia tecnológica en equipos y en software, y reduciendo en todo lo posible las erogaciones durante la investigación por este ítem.

Desde el punto de vista tecnológico el presente proyecto se destaca especialmente por incorporar una solución integral sin gastos de abono y con la característica distintiva que los datos están guardados en los servidores del cliente. Esto lo diferencia de otros sistemas similares en que los datos quedan en poder del fabricante, quien eventualmente, nos ofrece un portal para poder hacer una visualización, además al no ofrecer una solución integral, cada módulo extra incorporado, representa un gasto o abono adicional.

La solución propuesta se compone de las siguientes partes:

- Medición de la temperatura
- Transporte de los datos
- Lógica de procesamiento y persistencia de datos
- Visualización y alarmas

En la figura 1 se observa un diagrama en bloques general del sistema, donde se aprecia que los sensores estarán ubicados en distintos efectores del sistema de salud municipal en las áreas de hemoterapia y vacunación. Además se puede ver el sistema de almacenamiento y visualización implementado con un tablero de control (dashboard) en un servidor centralizado ubicado en el datacenter de la Secretaría de Salud Pública. Por simplicidad, se han dibujado sólo tres efectores. Es necesario destacar que el sistema de salud pública municipal de la ciudad de Rosario consta de 6 hospitales, un centro de especialidades médicas, un centro regional de sangre una droguería central y 50 centros de atención primaria de la salud.

Figura 1. Diagrama en bloques del sistema

Identificación y análisis de los interesados

Colaboradores

Rol	Nombre y Ape-	Organización	Puesto
	llido		
Cliente	Edgardo	Municipalidad	Director de Bioingeniería
	Marino	de Rosario	
Impulsor y colaborador	Roberto Collelo	Secretaría de	Sub Director de Bioingeniería
		Salud Pública	
Responsable	Marcelo Caste-	FIUBA	Alumno
	llo		
Colaboradores	Silvana Pereyra	Dirección Cen-	Jefa Droguería Central
		tros de Salud	
Orientador	Juan José Sa-	Dirección de	Director Trabajo final
	lerno	Bioingeniería	

Roberto Collelo, resulta de valiosa ayuda en el desarrollo del firmware de los sensores, además de promover el proyecto en las estructuras de mando de la Secretaría de Salud Pública.

Silvana Pereyra, su intervención será desde el lado usuarios, ya que se muestra como una facilitadora para la implementación del sistema.

1. Propósito del proyecto

El propósito de este proyecto es poner en marcha un sistema de registro y visualización de temperaturas para refrigeradores críticos del área salud, con el objetivo de minimizar los riesgos de pérdida de material, mantener la calidad y eficacia médica de los productos, asegurando las condiciones legales exigidas por la autoridad.

2. Alcance del proyecto

El presente proyecto incluye el desarrollo de sus partes fundamentales para que sea capaz de tener una vigilancia de temperatura de al menos 4 heladeras pertenecientes a distintos efectores de salud de la ciudad de Rosario. Para ello se desarrollarán y producirán las placas de circuito impreso para los sensores de temperatura, se integrarán en una caja plástica para poder ser colocados en el equipamiento a monitorear.

Se instalará y configurará en un servidor con sistema operativo GNU/Linux con distribución Debian, la dashboard Thingsboard versión Community Edition que es la versión libre de licenciamientos pero que contiene todas las funcionalidades necesarias para este proyecto.

Se configurarán reglas en la dashboard para comparar las temperaturas de los dispositivos con sus rangos para así originar las alarmas y enviar las notificaciones.

Se instalará una base de datos en el servidor central donde se almacenarán las temperaturas, y las configuraciones del sistema.

Se configurarán en la dashboard paneles para que proporcionen información de temperatura y estado para cada dispositivo conectado al sistema.

Las notificaciones de alarmas se harán por medio de la red Telegram, configurando un canal para cada efector/área.

El presente proyecto no incluye la provisión de la infraestructura de transporte de datos, esto es, los equipos para puntos de acceso a internet y las conexiones a internet para cada área donde estarán emplazados los sensores. Tampoco incluirá certificaciones emitidas por las autoridades competentes. Los sensores desarrollados no son aptos para su instalación en equipos ultrafreezer (-70°) . Los sensores no almacenarán los valores de temperaruras en memorias externas tipo SD ni en la memoria interna del microcontrolador. Los sensores no usarán baterías para su funcionamiento.

3. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

- Las áreas donde se colocarán los sensores deberán disponer de una conexión a internet.
- Para la puesta en producción, se utilizará la infraestructura de servidores de la red informática metropolitana de la ciudad de Rosario
- Los recursos humanos y el tiempo necesario para el desarollo, serán proporcionados por la Municipalidad de Rosario.
- El gasto producido por la compra de los elementos necesarios será proporcionado por la Municipalidad de Rosario.

4. Requerimientos

Se presentan a continuación los requerimientos del proyecto, los mismos están presentados en funcionales y no funcionales, donde los ítems de cada requerimiento están priorizados por orden de aparición.

Estos requerimientos se obtuvieron por:

- Relevamiento de las espectativas de los usuarios.
- Relevamiento de las condiciones impuestas por el cliente.
- Estudio de los elementos electrónicos disponibles en el mercado local y extranjero.
- Ordenanza de contabilidad de la Municipalidad de Rosario.
- 1. Requerimientos de hardware de los sensores
 - 1.1. El microcontrolador utilizado deberá estar en fase de producción activa.
 - 1.2. El microcontrolador deberá contener capa física WiFi.
 - 1.3. El elemento sensor deberá tener un rango de medición entre -50 y 100 °C
 - 1.4. Deberá incluir en su circuito un filtro activo para la entrada de temperatura.

- 1.5. Deberá incorporar leds de conexión y rango.
- 2. Requerimientos del software de los sensores
 - 2.1. Deberá contener un conjunto de parámetros que identifiquen de forma unívoca el sensor dentro del sistema.
 - 2.2. Los parámetros se deberán almacenar en memoria no volátil.
 - 2.3. Deberá gestionar el procesamiento de los valores de temperatura: muestreo cada segundo y promediado cada 600 segundos.
 - 2.4. Se deberá incorporar una página web para configuración de parámetros específicos del sensor.
 - 2.5. Deberá incorporar un sistema de actualización remota del firmware.
 - 2.6. Deberá ser capaz de conectar distintos modelos de sensores de temperatura.
- 3. Requerimientos de seguridad informática
 - 3.1. La transmisión de los datos se deberá realizar con encriptación, utilizando para ello protocolos de seguridad.
 - 3.2. El acceso al sistema de visualización deberá ser con usuario y contraseña.
 - 3.3. El acceso a la página web del sensor deberá ser con usuario y contraseña.
- 4. Requerimientos del cliente
 - 4.1. El sistema de visualización debe incluir roles para distintos usuarios.
 - 1) Rol Administrador: podrá dar alta a usuarios y cambiar sus roles.
 - 2) Rol Jefe: podrá cambiar parámetros, visualizar series de tiempo y recibir alertas.
 - 3) Rol Operador: Sólo podrá visualizar series de tiempo y recibir alertas.
 - 4.2. El sistema deberá prever la incorporación de otras variables a monitorear, que serán materia de desarrollos futuros de sensores.
 - 4.3. El sistema de visualización deberá mostrar claramente la estructura jerárquica geográfica de la empresa.
 - 4.4. El sistema deberá ser escalable para implementar nuevas áreas a monitorear.
- 5. Requerimientos del sistema de visualización
 - 5.1. Deberá mostrar la temperatura.
 - 5.2. Deberá mostrar el estado del dispositivo. (online/fuera de rango)
 - 5.3. Deberá mostrar la fecha y hora de la última telemetría enviada al servidor.
 - 5.4. Deberá mostrar la configuración de los parámetros de alertas (rangos de temperatura).
 - 5.5. Deberá mostrar una vista rápida de los sensores fuera de rango mediante plano en pantalla del área.
 - 5.6. Deberá mostrar una tabla con el histórico de alarmas por cada sensor.
 - 5.7. Deberá mostrar mediante gráficas la evolución de las temperaturas en el dominio del tiempo con entorno configurable.
 - 5.8. Deberá mostrar el lugar de emplazamiento del dispositivo.
- 6. Requerimientos de las alarmas
 - 6.1. Deberá enviar las alarmas discriminadas por efector/área.

- 6.2. Deberá enviar notificaciones ante desplazamientos de la temperatura por encima del rango.
- 6.3. Deberá enviar notificaciones ante desplazamientos de la temperatura por debajo del rango.
- 6.4. Deberá enviar notificaciones ante desconexiones del dispositivo sensor.
- 6.5. Deberá enviar notificaciones ante recupero de la conexión del dispositivo sensor.
- 7. Requerimientos de compras
 - 7.1. Se deberá utilizar la gestión de compras directas para elementos con presupuesto menor a \$10.000.
 - 7.2. Se deberán realizar las gestiones correspondiente para realizar compras en el exterior.

Historias de usuarios (Product backlog)

Se muestran a continuación, las historias de usuarios recopiladas. Al principio se presentan dos épicas y sus correspondientes desgloses emanadas de las máximas autoridades de la empresa. La ponderación de estas historias se realizó teniendo en cuenta la complejidad y el tiempo necesario en resolverlas (criterios complejidad-volumen). Se elijió para la ello una escala basada en la serie de Fibonacci desde el 0 al 13, donde el 0 representa poco esfuerzo y el 13 alto esfuerzo para lograr el objetivo.

Luego, se les asignó una prioridad de resolución, teniendo como premisa que el sistema funcione de forma ininterrumpida. Si el sistema funciona como es debido, se podrán cumplir con las funcionalidades primarias que son la de vigilar las temperaturas, luego vendrán las otras funcionalidades: emisión de alertas, visualización, etc.

■ EPICA Como Secretario de Salud Pública Municipal, necesito estar seguro de la buena conservación de las vacunas, para poder informar al estado provincial y nacional la disponibilidad de las mismas.

Desglose

- Como secretario de Salud Pública Municipal deseo poder visualizar en cualquier momento la temperatura de cualquier heladera con el objetivo de asegurarse de que no se deterioren
- Como secretario de Salud Pública Municipal deseo poder recibir una alarma si alguna de las heladeras superan la temperatura de 4 grados centígrados con el objetivo de poder actuar rápidamente y no se deterioren las vacunas
- Como secretario de Salud Pública Municipal deseo poder visualizar en cualquier momento cuántas vacunas hay por heladera con el fin de saber si se pueden reubicar vacunas ante una eventual falla de alguna heladera
- EPICA Como Director de Infraestructura Hospitalaria, deseo visualizar mendiante un mapa interactivo, si algún efector de la red presenta problemas en los refrigeradores críticos y así direccionar las acciones necesarias para su correción.

- EPICA Como Director de Infraestructura Hospitalaria, deseo que a este sistema se le puedadn adicionar otras variables físicas para tener un panel de control completo de todos
- Como responsable de mantenimiento necesito conocer la evolución de las temperaturas de los refirgeradores en los últimos 6 meses, para estimar las intervenciones preventivas en tales equipos.
- Como operario de mantenimiento necesito que el sistema me envíe inmediatamente un alerta a mi teléfono si hay algún apartamiento de temperaturas, para solucionar rápidamente el desperfecto.
- Como encargado de mantenimiento electrónico, necesito saber cuándo un sensor deja de funcionar para inmediatamente proceder a su reparación.
- Como encargado de mantenimiento electrónico, necesito poder visualizar el último dato de temperatura enviado al servidor para
- Como jefe de seguridad informática, necesito que la comunicación de los sensores se haga con mecanismos de encriptación, para proteger los datos de posibles cambios por intromisiones no desadas.
- Como Director de farmacia desearía que el acceso al sistema de visualización sea con usuario y contraseña para poder definir roles de usuarios.
- Como director de Bioingeniería, debería tener acceso a los datos históricos de temperatura para evaluar el funcionamiento a largo plazo de los equipos de refrigeración.
- Como director de Bioingeniería, desearía poder visualizar una tabla con los históricos de alarmas para evaluar la cantidad de fallos del equipo de refrigeración.
- Como jefa de droguería, necesito tener en pantalla el histórico de temperaturas para visualizar si los productos perdieron la cadena de frío.
- Como jefa de droguería, necesito tener acceso a cambiar los rangos de temperatura para poder almacenar diferentes productos en diferentes refrigeradores según las necesidades.
- Como técnico hemoterapista de guardia, necesito obtener el reporte de las últimas 24 hs de temperaturas para entregar mi guardia con los productos asegurados en su cadena de frio.
- Como operario de droguería, necesito que el sistema registre las temperaturas cada 10 minutos para evitar los olvidos y las impresiciones del registro manual.

5. Entregables principales del proyecto

- Manual de uso
- Diagrama esquemático
- Código fuente del firmware de los sensores.
- 4 placas de PCB sensores de temperatura con el firware instalado y configurado.
- Imagen del servidor central con todos los servicios, programas y configuraciones correspondientes.
- Diagrama de instalación
- Informe final

6. Desglose del trabajo en tareas

- 1. Planificación general. (46 hs)
 - 1.1. Definiciones de alcances, requerimientos y presupuestos. (9 hs).
 - 1.2. Selección de efectores donde colocar los prototipos. (3 hs).
 - 1.3. Selección de usuarios que harán las pruebas del prototipo. (3 hs).
 - 1.4. Charlas de sensibilización con los usuarios seleccionados. (6 hs)
 - 1.5. Estudio y selección de las dashboards disponibles. (10 hs).
 - 1.6. Escritura del plan de trabajo final. (15 hs).
- 2. Planificación y desarrollo del circuito electrónico y PCB del sensor. (69 hs).
 - 2.1. Estudio y selección de sensores de temperatura. (2 hs).
 - 2.2. Estudio, cáculo y simulación del filtro activo para el sensor de temperatura. (6 hs).
 - 2.3. Desarrollo y pruebas del circuito sensor-filtro activo. (15 hs).
 - 2.4. Investigación de los microcontroladores aptos para el proyecto. (4 hs).
 - 2.5. Investigación de las librerías disponibles para el microcontrolador seleccionado. (4 hs).
 - 2.6. Desarrollo de la placa PCB del sensor. (30 hs).
 - 2.7. Montaje de los componentes en 4 placas PCB. (8 hs).
- 3. Planificación y desarrollo del firmware del sensor 235. (hs).
 - 3.1. Estudio del funcionamiento de las librerías para conectividad WiFI del microcontrolador. (15 hs).
 - 3.2. Estudio y elaboración de los certificados TLS. (10 hs).

- 3.3. Desarrollo de las funciones de comunicación utilizando protocolo de seguridad. (40 hs).
- 3.4. Pruebas y depuración de errores en la conexión y transporte del dato al servidor central. (40 hs).
- 3.5. Desarrollo de las fuciones de procesamiento de la variable medida. (15 hs).
- 3.6. Desarrollo de la página web de configuración. (35 hs).
- 3.7. Prueba del conjunto. (40 hs).
- 3.8. Depuración de errores. (40 hs).
- 4. Instalación y configuración del sistema operativo del servidor central. (16 hs).
 - 4.1. Armado de máquina virtual en ESXi e instalación del sistema operativo Linux/Debian 8.0. (8 hs).
 - 4.2. Instalación y configuración de usuarios, permisos y servicios escenciales. (8 hs).
- 5. Instalación y configuración de la dashboard en el servidor central. (123 hs).
 - 5.1. Instalación de la dashboard y su base de datos asociada.(8 hs).
 - 5.2. Aprendizaje del uso de la dashboard.(25 hs).
 - 5.3. Creación y configuración de permisos de los usuarios a la dashboard. (10 hs).
 - 5.4. Creación de los paneles para usuarios administradores, jefes y operadores. (40 hs).
 - 5.5. Prueba y depuración de errores del conjunto. (40 hs).
- 6. Gestión de las notificaciones. (84 hs).
 - 6.1. Creación de canales en Telegram. (2 hs).
 - 6.2. Instalacion de app telegram en usuarios seleccionados para prueba. (2 hs).
 - 6.3. Creación de la cadena de reglas en dashboard para el envío de alarmas. (20 hs).
 - 6.4. Creación de la cadena de reglas en dashboard para mostrar el estado del dispositivo. (20 hs).
 - 6.5. Pruebas de alarmas de baja y alta temperatura. (20 hs).
 - 6.6. Pruebas de alarmas de offline y online de los dispositivos. (20 hs).
- 7. Verificación de todas las funcionalidades. (30 hs).
 - 7.1. Verificación del cumplimiento de los requerimientos. (30 hs).
- 8. Cierre. (51 hs)
 - 8.1. Escritura de la documentación para usuarios. (16 hs).
 - 8.2. Escritura de la memoria final. (15 hs).
 - 8.3. Elaboración de la presentación. (20 hs).

Cantidad total de horas: 638 hs

Figura 2. Diagrama en Activity on Node

7. Diagrama de Activity On Node

Armar el AoN a partir del WBS definido en la etapa anterior.

Indicar claramente en qué unidades están expresados los tiempos. De ser necesario indicar los caminos semicríticos y analizar sus tiempos mediante un cuadro. Es recomendable usar colores y un cuadro indicativo describiendo qué representa cada color, como se muestra en el siguiente ejemplo:

8. Diagrama de Gantt

Utilizar el software Gantter for Google Drive o alguno similar para dibujar el diagrama de Gantt.

Existen muchos programas y recursos *online* para hacer diagramas de gantt, entre las cuales destacamos:

- Planner
- GanttProject
- Trello + plugins. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately, herramienta online colaborativa.
 https://creately.com/diagram/example/ieb3p3ml/LaTeX
- Se puede hacer en latex con el paquete pgfgantt http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS). Configurar el software para que al lado de cada barra muestre el nombre de cada tarea. Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 3, se muestra un ejemplo de diagrama de gantt realizado con el paquete de *pgfgantt*. En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

Figura 3. Diagrama de gantt de ejemplo

Código	Nombre	Recursos requeridos (horas) Material 1 Material 2 Material 3 Material 4			
WBS	tarea	Material 1	Material 2	Material 3	Material 4

9. Matriz de uso de recursos de materiales

10. Presupuesto detallado del proyecto

Si el proyecto es complejo entonces separarlo en partes:

- Un total global, indicando el subtotal acumulado por cada una de las áreas.
- El desglose detallado del subtotal de cada una de las áreas.

IMPORTANTE: No olvidarse de considerar los COSTOS INDIRECTOS.

COSTOS DIRECTOS						
Descripción	Cantidad	Valor unitario	Valor total			
SUBTOTAL						
COSTOS INDIRI	ECTOS					
Descripción	Cantidad	Valor unitario	Valor total			
SUBTOTAL						
TOTAL						

11. Matriz de asignación de responsabilidades

Establecer la matriz de asignación de responsabilidades y el manejo de la autoridad completando la siguiente tabla:

Cádima		Listar todos los nombres y roles del proyecto					
Código WBS	Nombre de la tarea	Responsable	Orientador	Equipo	Cliente		
WDS		Marcelo Castello	Juan José Salerno	Nombre de alguien	Edgardo Marino		

Referencias:

- $\bullet \ {\bf P} = {\bf Responsabilidad\ Primaria}$
- S = Responsabilidad Secundaria
- lacktriangle A = Aprobación
- I = Informado
- C = Consultado

Una de las columnas debe ser para el Director, ya que se supone que participará en el proyecto. A su vez se debe cuidar que no queden muchas tareas seguidas sin "A" o "I".

Importante: es redundante poner "I/A" o "I/C", porque para aprobarlo o responder consultas primero la persona debe ser informada.

12. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos)

• Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).

 Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).
 Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

- Severidad (S):
- Ocurrencia (O):

Riesgo 3:

- Severidad (S):
- Ocurrencia (O):
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*

Criterio adoptado: Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación: - Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S). - Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

13. Gestión de la calidad

Para cada uno de los requerimientos del proyecto indique:

Req #1: copiar acá el requerimiento.
 Verificación y validación:

- Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar
- Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc.

14. Comunicación del proyecto

El plan de comunicación del proyecto es el siguiente:

	PLAN DE COMUNICACIÓN DEL PROYECTO						
¿Qué comu- nicar?	Audiencia	Propósito	Frecuencia	Método de comunicac.	Responsable		

15. Gestión de compras

En caso de tener que comprar elementos o contratar servicios: a) Explique con qué criterios elegiría a un proveedor. b) Redacte el Statement of Work correspondiente.

16. Seguimiento y control

Para cada tarea del proyecto establecer la frecuencia y los indicadores con los se seguirá su avance y quién será el responsable de hacer dicho seguimiento y a quién debe comunicarse la situación (en concordancia con el Plan de Comunicación del proyecto).

El indicador de avance tiene que ser algo medible, mejor incluso si se puede medir en % de avance. Por ejemplo,se pueden indicar en esta columna cosas como "cantidad de conexiones ruteadeas" o "cantidad de funciones implementadas", pero no algo genérico y ambiguo como "%", porque el lector no sabe porcentaje de qué cosa.

	SEGUIMIENTO DE AVANCE							
Tarea del WBS	Indicador de avance	Frecuencia de reporte	Resp. de seguimiento	Persona a ser informada	Método de comunic.			
1.1	Fecha de inicio	Única vez al comienzo	Marcelo Castello	Edgardo Marino, Juan José Salerno	email			

Continúa

	SEGUIMIENTO DE AVANCE							
Tarea del WBS	Indicador de avance	Frecuencia de reporte	Resp. de seguimiento	Persona a ser informada	Método de comunic.			
2.1	Avance de las subtareas	Mensual mientras dure la tarea	Marcelo Castello	Edgardo Marino, Juan José Salerno	email			

	SEGUIMIENTO DE AVANCE						
Tarea del WBS	Indicador de avance	Frecuencia de reporte	Resp. de seguimiento	Persona a ser informada	Método de comunic.		

17. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se utilizaron, y los problemas que surgieron y cómo se solucionaron: Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores: Indicar esto y quién financiará los gastos correspondientes.