PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-050458

(43) Date of publication of application: 18.02.1997

(51)Int.CI.

G06F 17/50 // G06F 17/00

(21)Application number: 07-204235

(71)Applicant: HITACHI LTD

(22)Date of filing:

10.08.1995

(72)Inventor: TAKEMURA YOSHIAKI

MARUIZUMI TAKUYA

USHIO JIRO

YURUGEN SHIYURUTEI

(54) METHOD FOR CALCULATING 2 ELECTRONIC INTEGRATION RELATING TO MOLECULAR ORBIT

(57)Abstract:

PROBLEM TO BE SOLVED: To perform a high-speed calculation in a system with a large number of processors by dividing repetitive calculation by the number of a molecular orbit and executing the calculation of 2 electronic integration relating to the molecular orbit in the respective processors in parallel by utilizing the partial sum of the 2 electronic integration.

SOLUTION: The processor number I is set to 1 in the first processor 101, a processing 103 is executed and molecular integration

<ϕiϕj||ϕkϕ1> in the processor of the number I is calculated in the processing 103. Thus, the generation of a calculation processing proportional to the number of the processors is prevented and a high-speed calculation the system with a large number of processors is made possible.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection] [Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9−50458 ∨

(43)公開日 平成9年(1997)2月18日

(51) Int.Cl. ⁸	識別記号	庁内整理番号	ΓI		技術表示箇所	:
G06F 17	7/50		G06F	15/60	638	
# G06F 17	7/00				6 1 2 G	
		7925-5L		15/20	. D	

審査請求 未請求 請求項の数1 OL (全 14 頁)

(21)出願番号	特願平7-204235	(71)出顧人 000005108	
		株式会社日立製作所	
(22)出顧日	平成7年(1995)8月10日	東京都千代田区神田	駿河台四丁目 6番地
		(72)発明者 竹村 佳昭	
		東京都国分寺市東恋	ケ窪1丁目280番地
		株式会社日立製作所	
		(72)発明者 丸泉 琢也	1 7 (317 12711 4
		東京都国分寺市東恋	ケ第1丁目280番曲
		株式会社日立製作所	
		(72)発明者 牛尾 二郎	TANJUMPI
		東京都国分寺市東恋	た焼1丁目200番品
		株式会社日立製作所	中央研究所内
		(74)代理人 弁理士 小川 勝男	
			最終頁に続

(54) 【発明の名称】 分子軌道に関する2電子積分の計算方法

(57)【要約】

【目的】 分子軌道の番号による繰返し計算を分割し、各プロセッサでは分子軌道に関する2電子積分の計算を、2電子積分の部分和を利用し並列に実行することにより、プロセッサ数の大きなシステムでの高速計算を可能とする。

【効果】 プロセッサ数に比例した計算処理の発生を防ぎ、プロセッサ数の大きなシステムでの高速計算を可能とする。

図 1

【特許請求の範囲】

【請求項1】分子軌道法計算における分子軌道に関する 2電子積分計算をN個のプロセッサで並列に行う計算方 法であって、

前記分子軌道の総数をm、原子軌道の総数をm'とし、 I を前記プロセッサの番号を表す正の整数とし、おのお $0.1 \le i \le m$ 、 $1 \le j \le m$ 、 $1 \le k \le m$ 及び $1 \le l \le m$ なる値をとる整数i、j、k及びlを前記分子軌道の番 号とし、おのおの $1 \le p \le m'$ 、 $1 \le q \le m'$ 、 $1 \le r$ ≦m'及び1≦s≦m'なる値をとる整数p、q、r及 びsを前記原子軌道の番号とし、i番目の前記分子軌道 φiを前記原子軌道の線型結合として表記した場合のp 番目の前記原子軌道χρの係数が行列要素Upiで表さ れるような係数行列Uの全ての要素の値をあらかじめ持 ち、電子1と電子2の距離の逆数に、電子1の座標を有 する分子軌道φiの複素共役、電子1の座標を有する分 子軌道φj、電子2の座標を有する分子軌道φkの複素 共役及び電子2の座標を有する分子軌道φ1を乗じ電子 1及び電子2の座標に関して全空間で積分した結果を分 子軌道に関する2電子積分 $<\phii\phij||\phik\phil>$ と し、電子1と電子2の距離の逆数に、電子1の座標を有 する原子軌道 χρの複素共役、電子1の座標を有する原 子軌道 χ q 、電子 2 の座標を有する原子軌道 χ r の複素 共役及び電子2の座標を有する原子軌道χ s を乗じ電子 1及び電子2の座標に関して全空間で積分した結果を原 子軌道に関する2電子積分<pq | | rs>とし、 前記全ての整数 p, q, r, sの組に対して、前記原子 軌道に関する2電子積分<pq | | rs>の計算結果を

あらかじめ持ち、前記原子軌道に関する2電子積分<p

q | | r s > に、前記係数行列の行列要素U r k の複素 共役、行列要素Uqj、行列要素Uslを乗じたものを 前記全てのq、r、sについて和したものを2電子積分 の部分和cpjklとし、前記iの変域を連続するN個 の領域に分割し、前記分割されたN個の領域の第I番目 の領域の最小値及び最大値をそれぞれN1(Ⅰ)及びN 2(I)とし、 I 番目の前記プロセッサにおける計算処 理において、おのおのN1(I) \leq i \leq N2(I)、1 ≤j≤m、1≤k≤m及び1≤l≤mなる値をとる整数 i、j、k及びlの全ての組に対して、前記係数行列の 行列要素Upiの複素共役に前記2電子積分の部分和c pjklを乗じたものを前記全てのpの値について和し たものを前記分子軌道に関する2電子積分<φίφί Ι | Φ k Φ l > の値とする分子軌道に関する2電子積分の

【発明の詳細な説明】

[0001]

計算方法。

【産業上の利用分野】本発明は、原子分子の大きさで材 料特性を予測するシミュレーションである分子軌道法に おいて、分子軌道に関する2電子積分の計算方法に関す る。

[0002]

【従来の技術】分子軌道法計算においては、Fock行 列や配置間相互作用における対角化行列の行列要素や、 全エネルギー等の物理量計算のために、数1で表わされ る2電子積分の数値を求める必要がある。

ation of Atomic Orbital) で

る2電子積分<φiφj | | φkφl>は、数3の様に

[0003]

【数1】

$$<\phi_{i}\phi_{j}||\phi_{k}\phi_{l}> = \int \frac{\phi_{i}^{*}(\mathbf{r}_{1})\phi_{j}(\mathbf{r}_{1})\phi_{k}^{*}(\mathbf{r}_{2})\phi_{l}(\mathbf{r}_{2})}{r_{12}}d\mathbf{r}_{1}d\mathbf{r}_{2}$$

(数1)

【0004】ここで、i、j、k、lは分子軌道の番号 を表わす正の整数であり、 r 1 及び r 2 は電子の座標を 表わし、 r 1 2 は電子 1 及び電子 2 の距離を表わす。分 予軌道φiは、数2の様に原子軌道χp(1≦p≦ m')の線形結合(LCAO:near Combin 40

[0005]

【数 2 】

表わされる。

$$\phi_i(\mathbf{r}) = \sum_{p=1}^{m'} \chi_p(\mathbf{r}) U_{pi}$$

(数2)

【0006】ここで、Upiは、原子軌道を分子軌道へ 変換するための係数行列の行列要素、m'は線形結合に 用いる原子軌道数を表わす。

表わされる。 [0008]

【0007】数1及び数2から、前述の分子軌道に関す 50

【数 3】

 $<\phi_i\phi_j||\phi_k\phi_l>=\sum_{l=1}^{n'}\sum_{q=1}^{n'}\sum_{r=1}^{n'}\sum_{s=1}^{m'}U_{pi}^*U_{qj}U_{rk}^*U_{sl}< pq||rs>$

. . . (数3)

【0009】ここで、<pq||rs>は、原子軌道に関する2電子積分であって、数4の様に定義される。

【0010】 【数4】

 $< pq ||rs> = \int \frac{\chi_p^{\star}(\mathbf{r}_1)\chi_q(\mathbf{r}_1)\chi_r^{\star}(\mathbf{r}_2)\chi_s(\mathbf{r}_2)}{r_{12}} d\mathbf{r}_1 d\mathbf{r}_2$

...(数4)

【0014】となる。実際の数値計算では m≤m'

となることが多いため、数5はm'の8次以下と見積もることが出来る。

【0015】このため、従来技術では前記原子軌道に関する2電子積分の部分和をとることによりこの繰り返し計算数の次数をさげる工夫が行われてきた。

【0016】以下、従来技術を図面を用いて説明する。 【0017】なお、本明細書における以下の記述では、 簡単の為に、前記分子軌道に関する2電子積分を「分子 積分」、前記原子軌道に関する2電子積分を「原子積 分」と記す。また、特別に断りの無い限り、計算に使用 する分子軌道及び原子軌道の個数は、それぞれm及び m'である。

【0018】図4は、本発明に関する従来技術の処理手順を示す図である。

【0019】401は、繰返し数カウンタpが1からm'まで1ずつ増加する間、一連の処理402、403 及び404をこの順序で繰り返すことを示す。

【0020】402では、全ての正の整数の組(i, j, k, l) に対して分子積分< ϕ i ϕ j | | ϕ k ϕ l > の値を0 とする。ここで、i、j、k、l の値はそれぞれ

 $1 \le i \le m$, $1 \le j \le m$, $1 \le k \le m$, $1 \le l \le m$ $rac{7}{5}$

子軌道に関する 2 電子積分は、< p q | | r s > と係数 行列U p i との積和計算である。

【0012】このとき、全ての分子軌道の組(i,j,k,1)に対して数3に示される数値計算を行うための繰り返し計算の数は、分子軌道数をmとすれば

[0013]

【数5】

...(数5)

【0021】403は、2電子積分の部分和cpjkl を計算する処理であり、この内容は別に記述する。

【0022】404は、繰返し数カウンタiが1からmまで1ずつ増加する間、処理405を繰り返すことを示30 す。

【0023】405は、繰返し数カウンタjが1からmまで1ずつ増加する間、処理406を繰り返すことを示す。

【0024】406は、繰返し数カウンタkが1からmまで1ずつ増加する間、処理407を繰り返すことを示す。

【0025】407は、繰返し数カウンタ1が1からmまで1ずつ増加する間、処理408を繰り返すことを示す。

【0027】図3は、本発明に関する従来技術及び本発明の一実施例において、2電子積分の部分和cpjklを計算する処理403の内容を示す図である。

【0028】403は、一連の処理301、302、3 03及び304がこの順序で行われることにより、2電 50 子積分の部分和cpjklが計算されることを示す。

4

【0029】301は、全ての正の整数の組(p, q, r. j, k, l) に対して部分和apqrl、bpqk 1、cpjklの値をそれぞれ0とすることを示す。こ こで、p、q、r、j、k、lの値はそれぞれ $1 \le p \le q$ $m, 1 \le q \le m, 1 \le r \le m, 1 \le j \le m, 1 \le k \le m$ $m, 1 \le l \le m$ $rac{m}{s}$

【0030】302では、前記数2で表されるような原 子軌道を分子軌道へ変換する係数行列Uの行列要素を全 て読み込む。ここで、行列Uは、m'行m列の行列であ る。303では、全ての正の整数の組(p, q, r, s) に対して、原子積分<pq | | rs>の値を読み込 む。

【0031】304は、繰返し数カウンタqが1から m'まで1ずつ増加する間、一連の処理305及び30 6をこの順序で繰り返すことを示す。

【0032】305は、繰返し数カウンタrが1から m'まで1ずつ増加する間、一連の処理307及び30 8を繰り返すことを示す。

【0033】307は、繰返し数カウンタsが1から を示す。

【0034】309は、繰返し数カウンタ1が1からm まで1ずつ増加する間、処理310を繰り返すことを示 す。

【0035】310では、係数行列Uの行列要素Usl と原子積分〈pallrs〉との積を部分和aparl に加え、その結果をaparlの新しい値とする。

【0036】308は、繰返し数カウンタkが1からm まで1ずつ増加する間、処理311を繰り返すことを示

【0037】311は、繰返し数カウンタ1が1からm

 $x(m')^4$

【0046】および

[0047]

 $y(m')^4$

【0048】とする。

【0049】また、404、405、406、407及 40 び408からなる処理の繰り返し計算数を

 $\langle z(m')^4 \rangle$

【0051】とする。

【0052】このとき、図3及び図4における処理の繰 り返し計算数は

6 まで1ずつ増加する間、処理312を繰り返すことを示 す。

【0038】312では、係数行列Uの行列要素Urk の複素共役と部分和aparlとの積を部分和bpak 1に加え、その結果をbpqklの新しい値とする。

【0039】306は、繰返し数カウンタjが1からm まで1ずつ増加する間、処理313を繰り返すことを示

【0040】313は、繰返し数カウンタkが1からm 10 まで1ずつ増加する間、処理314を繰り返すことを示 す。

【0041】314は、繰返し数カウンタ1が1からm まで1ずつ増加する間、処理315を繰り返すことを示 す。

【0042】315では、係数行列Uの行列要素Uqj と部分和bpaklとの積を部分和cpjklに加え、 その結果をcpjklの新しい値とする。

【0043】以上、図4及び図3に見られるように、処 理401はm'の1次、処理402及び403はともに m * π * π 05、406、407及び408からなる処理の合計は m'の4次の繰返し数と見積もれる。従って、図4及び 図3に記述された従来技術では、全ての分子軌道の組 (i, j, k, l) に対して数3に示される数値計算を 行うための繰り返し計算の数は、m'の5次となる。

> 【0044】ここで、以下の記述における繰り返し計算 の数比較のため、処理402及び403の繰り返し計算 数をそれぞれ

[0045]

30 【数 6】

...(数6)

【数7】

(数 7)

[0050]

【数8】

(数8)

[0053]

【数 9】

 $7 (x+y+z)(m')^5$

..(数9)

【0054】となる。

【0055】これに類似の技術は、例えば、「Methods of Electronic Structure Theory」第6章205頁ないし208頁

(編集者 HenryF. Schaefer III、 前記該当箇所の執筆者 Isaiah Shavit t、1977年、アメリカ合衆国ニューヨーク州Ple num Press社発行)に記されている。

[0056]

【発明が解決しようとする課題】上記従来技術は主としてノイマン型計算機を対象として用いられてきた。しかし、近年、並列計算機を使用した高速計算技術が発展してきており、上記従来技術も並列計算機上で実行し計算を高速化することが期待されている。

【0057】上記従来技術を並列計算処理するための基本的な方法は、最も上位に位置する繰返し401を分割して各プロセッサに処理させることである。以下、この場合の問題点を、図面を用いて説明する。

【0058】なお、以下の記述において、並列計算機を 構成する並列なプロセッサ数をNとする。

【0059】図5は、本発明に関する従来技術において、最も上位に位置する繰返し401を分割して各プロセッサに並列処理させる手順を示したものである。

【0060】501は、1番目のプロセッサにおいて、 プロセッサ番号Jを1とし、処理502を実行すること *30* を示す。

【0061】503は、N番目のプロセッサにおいて、 プロセッサ番号JをNとし、処理502を実行すること を示す。

【0062】ここで、501及び503に記述された処理内容は、2番目以降(N-1)番目のプロセッサにおいても同様である。

【0063】また、501及び503は、1番目からN番目までの個々のプロセッサ上でそれぞれ処理502が行われること、及び1番目からN番目までの全てのプロ 40セッサ上で処理502が終了した後に処理504が行われることを示している。

【0064】502は、番号Jのプロセッサにおける分子積分の部分和 $<\phi$ i ϕ j|| ϕ k ϕ 1>[J]を計算する処理であり、この内容は別に記述する。

 $1 \le i \le m$, $1 \le j \le m$, $1 \le k \le m$, $1 \le l \le m$

である。

【0066】505は、繰返し数カウンタiが1からmまで1ずつ増加する間、処理506を繰り返すことを示す。

8

【0067】506は、繰返し数カウンタjが1からmまで1ずつ増加する間、処理507を繰り返すことを示す。

【0068】507は、繰返し数カウン9kが1からmまで1ずつ増加する間、処理508を繰り返すことを示す。

【0069】508は、繰返し数カウンタ1が1からmまで1ずつ増加する間、処理509を繰り返すことを示す。

を高速化することが期待されている。 【0070】509は、繰返し数カウンタJが1からN 【0057】上記従来技術を並列計算処理するための基 *20* まで1ずつ増加する間、処理510を繰り返すことを示 本的な方法は、最も上位に位置する繰返し401を分割 す。

【0071】510では、処理502で計算した分子積分の部分和 $<\phi$ i ϕ j|| ϕ k ϕ l>[J]を分子積分 $<\phi$ i ϕ j|| ϕ k ϕ l>に加え、この結果を $<\phi$ i ϕ j|| ϕ k ϕ l>の新しい値とする。

【0072】図6は、本発明に関する従来技術において、最も上位に位置する繰返し401を分割して各プロセッサに並列処理させる場合、502の処理を示したものである。

0 【0073】502は、一連の処理601、602及び603がこの順序で行われることにより番号Jのプロセッサにおける分子積分の部分和< ϕ i ϕ j|| ϕ k ϕ l>[J] が計算されることを示したものである。

【0074】601では、NPの値をINT (m' / N) とする。

【0075】ここで、INT(x)は、実数xの絶対値を超えない最大の整数値に、xと同一の符号をつけた整数値を表す。

【0076】602では、JとNとの大小を比較し、J 0 <Nの場合には処理604を実行し、それ以外の場合に は処理605を実行する。

【0077】604では、p1の値を (J-1) × NP + 1とし、p2の値をJ × NPとする。

【0078】605では、p1の値を(J-1)×NP+1とし、p2の値をm'とする。603は、繰返し数カウンタpがp1からp2まで1ずつ増加する間、一連の処理606、403及び607をこの順序で繰り返すことを示す。

【0079】606は、全ての正の整数の組(i, j, 50 k, l) に対して分子積分の部分和<φiφj||φk

 ϕ 1 > [J] の値を0とする。ここで、i、j、k、l の値はそれぞれ

 $1 \le i \le m$ 、 $1 \le j \le m$ 、 $1 \le k \le m$ 、 $1 \le l \le m$ である。

【0080】403は、2電子積分の部分和cpjklを計算する処理であり、この内容は別に記述する。

【0081】607は、繰返し数カウン9iが1からmまで1ずつ増加する間、処理608を繰り返すことを示す。

【0082】608は、繰返し数カウンタjが1からm 10 まで1ずつ増加する間、処理609を繰り返すことを示す。

【0083】609は、繰返し数カウン9kが1からmまで1ずつ増加する間、処理610を繰り返すことを示す。

【0084】610は、繰返し数カウンタ1が1からmまで1ずつ増加する間、処理611を繰り返すことを示す。

【0085】611では、原子軌道を分子軌道へ変換するための係数行列の行列要素Upiの複素共役と処理403で計算した2電子積分の部分和cpjklとの積を分子積分の部分和 $<\phii\phijl|\phik\phil>[J]$ に加え、この結果を $<\phii\phijl|\phik\phil>[J]$ の新し

$$\frac{1}{N}(x+y+z)(m')^5$$

【0093】となる。

【0.094】 すなわち、並列化により繰返し数が図4の 30場合の (1/N) 倍となる利点がある。

【0095】しかし、501、502及び503の処理だけでは、分子積分 $<\phii\phij||\phik\phi1>$ の計算は未だ終了せず、各プロセッサ」で分子積分の部分和 $<\phii\phij||\phik\phi1>$ [J]の計算が終了した状態になる。したがって、新たに504、505、506、507、508、509及び510の一連の処理による分子

 $Nz(m')^4$

【0098】となる。

【0099】すなわち、プロセッサ数Nに比例する処理が余計に発生する。

【0100】この結果、プロセッサ数の大きなシステムになるほど、数11に示される様な処理数の増大をまねき、数10に示される様な処理数減少すなわち計算高速化の利点が損なわれ易くなるという問題点があった。

【0101】本発明は、前記問題点を解決するためになされたものである。

【0~1~0~2】本発明の目的は、分子軌道に関する2電子 50~ m、 $1 \le j \le$ m、 $1 \le k \le$ m及び $1 \le l \le$ mなる値をと

い値とする。

【0086】以上、従来技術において401を分割して 各プロセッサに並列処理させる場合の処理手順を説明し た。

【0087】ここで、図3及び図4の様に従来技術をノイマン型計算機で実施した場合と、上記図5及び図6に示した場合とで繰り返し計算数を比較する。

【0088】図5及び図6に示した場合、繰返し数がm'の最大次数となる部分は501、502及び503の部分である。

【0089】まず、502の繰り返し計算数において、 並列化により603の繰り返し計算数は(m'/N)である。

【0090】次に、606の繰り返し計算数は402と同等で上述の数6となる。また、403の繰り返し計算数は前述の数7のようになる。さらに、一連の処理607、608、609、610及び611は404、405、406、407及び408からなる処理と同等の繰り返し計算数で、上述の数8となる。

20 【0091】従って、501、502及び503の部分の繰り返し計算数は

[0092]

【数10】

...(数10)

積分 $< \phi i \phi j \mid | \phi k \phi 1 > 0$ 計算が必要となる。

【0096】まず、504の繰り返し計算数は402と同等で上述の数6となる。次に、505、506、507、508、509及び510の一連の処理の繰り返し計算数は404、405、406、407及び408からなる処理のN倍と同等で、

[0097]

【数11】

.. (数11)

積分計算において、プロセッサ数の大きなシステムにおいても、並列化による計算高速化の利点が損なわれない 様にすることにある。

[0103]

【課題を解決するための手段】上記目的は、分子軌道法計算における分子軌道に関する 2 電子積分計算をN 個のプロセッサで並列に行う計算方法において、前記分子軌道の総数をm、原子軌道の総数をm、とし、I を前記プロセッサの番号を表す正の整数とし、おのおの $1 \le i \le 1$

10

る整数i、j、k及びlを前記分子軌道の番号とし、お のおの $1 \le p \le m$ '、 $1 \le q \le m$ '、 $1 \le r \le m$ '及び 1≤s≤m'なる値をとる整数p、q、r及びsを前記 原子軌道の番号とし、i番目の前記分子軌道φiを前記 原子軌道の線型結合として表記した場合のp番目の前記 原子軌道χρの係数が行列要素Uρiで表されるような 係数行列Uの全ての要素の値をあらかじめ持ち、電子1 と電子2の距離の逆数に、電子1の座標を有する分子軌 道φiの複素共役、電子1の座標を有する分子軌道φ j、電子2の座標を有する分子軌道φkの複素共役及び 電子2の座標を有する分子軌道の1を乗じ電子1及び電 子2の座標に関して全空間で積分した結果を分子軌道に 関する2電子積分 $\langle \phi i \phi j | | \phi k \phi 1 \rangle$ とし、電子 1と電子2の距離の逆数に、電子1の座標を有する原子 軌道 χ p の複素共役、電子1の座標を有する原子軌道 χ q、電子2の座標を有する原子軌道χrの複素共役及び 電子2の座標を有する原子軌道 x s を乗じ電子1及び電 子2の座標に関して全空間で積分した結果を原子軌道に 関する2電子積分<pq||rs>とし、前記全ての整 数p, q, r, sの組に対して、前記原子軌道に関する 2電子積分<pq | | rs>の計算結果をあらかじめ持 ち、前記原子軌道に関する2電子積分<pq | | rs> に、前記係数行列の行列要素Urkの複素共役、行列要 素Uqj、行列要素Uslを乗じたものを前記全ての q、r、sについて和したものを2電子積分の部分和c pjklとし、前記iの変域を連続するN個の領域に分 割し、前記分割されたN個の領域の第I番目の領域の最 小値及び最大値をそれぞれN1(I)及びN2(I)と し、「番目の前記プロセッサにおける計算処理におい て、おのおのN1(I) $\leq i \leq N2$ (I)、 $1 \leq j \leq$ m、 $1 \le k \le m$ 及び $1 \le l \le m$ なる値をとる整数 i、 j、k及びlの全ての組に対して、前記係数行列の行列 要素Upiの複素共役に前記2電子積分の部分和cpj klを乗じたものを前記全てのpの値について和したも のを前記分子軌道に関する2電子積分<0i0j||0 k ø l >の値とすることにより達成される

[0104]

【作用】分子軌道の数をm、原子軌道の数をm'とする。

【0105】このとき、分子軌道に関する2電子積分< ϕ i ϕ j | | ϕ k ϕ l >は、上述の数1の様に定義される。

【0106】また、分子軌道 ϕ iは、上述の数2の様に原子軌道 χ p($1 \le p \le m$ ')の線形結合で定義され

る。

【0107】ここで、Upiは、原子軌道を分子軌道へ変換するための係数行列の行列要素、m'は線形結合に用いる原子軌道数を表わす。

12

【0108】数1及び数2から、前述の分子軌道に関する2電子積分 $< \phi$ i ϕ j $| | \phi$ k ϕ 1>は、数3の様に表わされる。

【0109】ここで、<pq||rs>は、原子軌道に関する2電子積分であって、数4の様に定義される。

① 【0110】いま、全ての正の整数の組(i, j, k, 1)に対して分子積分<φiφj | | φkφl>の値を数3の関係に基づき計算する処理を、N個のプロセッサで並列に処理させる。

【0111】ここで、i、j、k、lの値はそれぞれ 1 \leq i \leq m、 $1<math>\leq$ j \leq m、1 \leq l \leq mである。

【0112】プロセッサIにおいて、以下の処理をおこなう。

【0113】まず、NIの値をINT (m/N)とす 20 る。

【0114】ここで、INT(x)は、実数xの絶対値を超えない最大の整数値に、xと同一の符号をつけた整数値を表す。

【0115】次に、 $N1の値を(I-1) \times NI+1$ とする。

【0116】次に、IとNとの大小を比較し、I<Nの場合にはN2の値をI \times N1とし、それ以外の場合にはN2の値をMとする。

【0117】そして、全ての正の整数の組(i, j,

30 k, l) に対して分子積分< ϕ i ϕ j| | ϕ k ϕ l>の値を0とする。ここで、i、j、k、lの値はそれぞれ N1 \le i \le N2、1 \le j \le m、1 \le k \le m、1 \le l \le m である。

[0119]

【数12】

$$c_{pjkl} = \sum_{q=1}^{m'} \sum_{r=1}^{m'} \sum_{s=1}^{m'} U_{qj} U_{rk}^* U_{si} < pq || rs >$$

...(数12)

[0120]

【実施例】以下、本発明請求項1の実施例を図面を用い て説明する。

【0121】図1は、本発明の一実施例の処理手順を示す図である。

【0122】101は、1番目のプロセッサにおいて、 プロセッサ番号 I を1とし、処理103を実行すること を示す。

【0123】102は、N番目のプロセッサにおいて、 N1 \leq i プロセッサ番号 I をNとし、処理103を実行すること *10* である。 を示す。 【013

【0124】ここで、101及び102に記述された処理内容は、2番目以降(N-1)番目のプロセッサにおいても同様である。

【0125】また、101及び102は、1番目からN番目までの個々のプロセッサ上でそれぞれ処理103が行われること、及び1番目からN番目までの全てのプロセッサ上で処理103が終了した後に図1に示す全ての処理が終了することを示している。

【0126】103は、番号Iのプロセッサにおける分子積分<φiφj-|φkφl>を計算する処理であり、この内容は別に記述する。

【0 1 2 8】 2 0 2 では、N I の値を I N T (m/N) レオス

【0129】 ここで、INT(x) は、実数xの絶対値を超えない最大の整数値に、xと同一の符号をつけた整数値を表す。

【0130】203では、IとNとの大小を比較し、I <Nの場合には処理206を実行し、それ以外の場合に は処理207を実行する。

 $\frac{1}{N}x(m')^4$

【0 1 4 3】であり、4 0 2 の (1/N) 倍となる。

【0144】また、処理201の繰り返し計算数はm' である。

【0145】次に、403の繰り返し計算数は、前述の数7のようになる。

【0146】一方、205、208、209、210及

14

【0131】206では、N1の値を(I-1)×NI+1とし、N2の値をI×NIとする。

【0132】207では、N1の値を(I-1)×NI+1とし、N2の値をmとする。

N 1 \leq i \leq N 2 . 1 \leq j \leq m. 1 \leq k \leq m. 1 \leq l \leq m.

【0134】201は、繰返し数カウンタpが1から m'まで1ずつ増加する間、一連の処理403及び205をこの順序で繰り返すことを示す。

【0135】403は、2電子積分の部分和cpjkl を計算する処理であり、この内容は別に記述する。

【0136】205は、繰返し数カウン9iがN1から N2まで1ずつ増加する間、処理208を繰り返すことを示す。

【0137】208は、繰返し数カウンタjが1からm の まで1ずつ増加する間、処理209を繰り返すことを示す。

【0138】209は、繰返し数カウン9kが1からmまで1ずつ増加する間、処理210を繰り返すことを示す。

【0139】210は、繰返し数カウンタ1が1からmまで1ずつ増加する間、処理211を繰り返すことを示す

【0140】211では、原子軌道を分子軌道へ変換するための係数行列の行列要素Upiの複素共役と処理43003で計算した2電子積分の部分和<math>cpjklとの積を分子積分 $\sqrt{\phii\phijl}$ 0 $\sqrt{\phi$

【0141】以上、図1及び図2に見られるように、204の繰り返し計算数は、

[0142]

【数13】

...(数13)

び211からなる一連の処理の繰り返し計算数は、40 4、405、406、407及び408からなる処理の 繰り返し計算数の(1/N)倍であり、

[0147]

【数14】

 $\frac{1}{N}z(m')^4$

...(数14)

16

【0148】となる。

【0149】以上、103における繰り返し計算数をまとめると

$$\frac{x}{N}(m!)^4 + (y + \frac{z}{N})(m!)^5$$

【0151】となる。

【0152】 すなわち、数9に示したような、ノイマン型計算機で実現した従来技術の場合に比べて、繰り返し計算数を記述する項のうち \mathbf{m} " についての次数が下がる項が生じるとともに主要な項が(1/N)倍されている。

【0153】また、従来技術における最上位の繰り返し 処理を並列化した場合に比べて、数11に示したよう な、Nに比例する項は全く存在しない。

【0154】なお、本実施例では原子軌道、分子軌道、 及び原子軌道を分子軌道に変換する係数行列の行列要素 は複素数として取り扱ったが、多くの分子軌道計算で用 いられるように、これらを実数とした場合でも、繰返し 計算数の大小関係は同様である。

[0155]

【発明の効果】以上に示したように、繰返し計算数の主要な項が(1/N)倍となり並列処理による高速化の利点が得られる一方で、各プロセッサの処理が終了した後もプロセッサ数Nに比例する処理はまったく発生しない。したがって、プロセッサ数の大きなシステムにおいても、並列化による計算高速化の利点が損なわれることはない。

...(数15)

[0156]

[0150]

【数15】

【図面の簡単な説明】

【図1】本発明の一実施例の処理手順を示す図。

【図2】本発明の一実施例において、処理103の処理 手順を示す図。

20 【図3】本発明に関する従来技術及び本発明の一実施例において、2電子積分の部分和cpjklを計算する処理403の内容を示す図。

【図4】本発明に関する従来技術の処理手順を示す図。

【図5】本発明に関する従来技術において、最も上位に 位置する繰返し401を分割して各プロセッサに並列処 理させる手順を示す図。

【図6】本発明に関する従来技術において、最も上位に 位置する繰返し401を分割して各プロセッサに並列処 理させる場合、502の処理を示す図。

0 【符号の説明】

101... 1番目のプロセッサにおいて、プロセッサ番号 I を 1 とし、処理 103を実行、102... N番目のプロセッサにおいて、プロセッサ番号 I を N とし、処理 103 を実行、103... 番号 I のプロセッサにおける分子積分< ϕ i ϕ j $| - | \phi$ k ϕ l > を計算する処理。

【図1】

図 1

【図4】

図 4

【図2】

[図3]

【図5】

図 5

【図6】

フロントページの続き

(72)発明者 ユルゲン・シュルティ 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内