ACTL2131 2.4 - Hypothesis Testing

Tadhg Xu-Glassop 2025T1

MyExperience

Please do it!

Motivating Hypothesis Testing

- When we collect data, we may want to make claims from our results.
 - E.g. the heights of two different teams is different, the population mean of the returns of a stock is non-zero...
- But our observations are random, so in theory we could observe any value! This makes things tricky.
- We need a formal way of testing claims (hypothesis) about our statistics/data - a way of determining when something is "too unlikely" to be true.

Obviously, we need two things coming into the test:

- A statement / hypothesis about our data;

Obviously, we need two things coming into the test:

- A statement / hypothesis about our data;
 - A null hypothesis \mathcal{H}_0 that we want to reject, and an alternate hypothesis \mathcal{H}_1 we wish to accept instead.

Obviously, we need two things coming into the test:

- A statement / hypothesis about our data;
 - A null hypothesis \mathcal{H}_0 that we want to reject, and an alternate hypothesis \mathcal{H}_1 we wish to accept instead.
- What constitutes as something "too unlikely"

Obviously, we need two things coming into the test:

- A statement / hypothesis about our data;
 - A null hypothesis \mathcal{H}_0 that we want to reject, and an alternate hypothesis \mathcal{H}_1 we wish to accept instead.
- What constitutes as something "too unlikely"
 - A level of significance, α . If the probability of the null being true is less than this, then we reject our null.

Example

Suppose the height of UNSW students has unknown population mean $\mu.$ We may wish to test

$$\mathcal{H}_0: \mu = 2$$
 v.s. $\mathcal{H}_1: \mu \neq 2$,

or

$$\mathcal{H}_0: \mu = 2$$
 v.s. $\mathcal{H}_1: \mu < 2$,

under the significance level of $\alpha = 5\%$.

How do I find out how "rare" my data is?

Remember, we can compute statistics from our sample such as \bar{X} and s^2 .

If only there was a way to **pivot** from these sample statistics to a known distribution...

How do I find out how "rare" my data is?

Remember, we can compute statistics from our sample such as \bar{X} and s^2 .

If only there was a way to **pivot** from these sample statistics to a known distribution...

- Pivots (from confidence intervals) let us do exactly this!

Then, we assume (almost like a contradiction) that the null is true, and see how likely the things we observe are. If it is less than α and more likely to be \mathcal{H}_1 , we reject \mathcal{H}_0 in favour of \mathcal{H}_1 .

Example (cont.)

Suppose the height of UNSW students is normally distributed with unknown mean μ and known variance σ^2 . We collect n heights and compute \bar{X} . We want to test

$$\mathcal{H}_0: \mu = 2$$
 v.s. $\mathcal{H}_1: \mu \neq 2$,

with $\alpha = 5\%$.

Example (cont.)

Suppose the height of UNSW students is normally distributed with unknown mean μ and known variance σ^2 . We collect n heights and compute \bar{X} . We want to test

$$\mathcal{H}_0: \mu=2$$
 v.s. $\mathcal{H}_1: \mu \neq 2$,

with $\alpha = 5\%$.

A suitable pivot here that incorporates everything I want is

$$\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\sim \mathcal{N}(0,1).$$

Testing our Null Hypothesis

As mentioned before, we assume our null is true and aim to test how plausible this assumption is. If it's unlikely to be a good assumption (under α), we reject.

There are two ways of achieving this:

- If \mathcal{H}_0 is true, I can use my pivot to make a $1-\alpha$ confidence interval on the value of my statistics! If what I observe falls outside, then my assumption is bad.
- If \mathcal{H}_0 is true, I can find the probability **my observation and anything else more extreme** is! If it's very low (less than α), then my assumption is bad.

These are called **critical region** and *p*-**values** respectively. You only need to do one, and they are equivalent.

Example (cont.)

Again, suppose the height of UNSW students X is normally distributed with unknown mean μ and known variance 0.025. We collect 40 heights and compute $\bar{X}=1.94$. We want to test

$$\mathcal{H}_0: \mu = 2$$
 v.s. $\mathcal{H}_1: \mu \neq 2$,

with $\alpha = 5\%$.

Example (cont.)

Again, suppose the height of UNSW students X is normally distributed with unknown mean μ and known variance 0.025. We collect 40 heights and compute $\bar{X}=1.94$. We want to test

$$\mathcal{H}_0: \mu = 2$$
 v.s. $\mathcal{H}_1: \mu \neq 2$,

with $\alpha = 5\%$.

A suitable pivot here that incorporates everything I want is

$$T = rac{ar{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1).$$

Who thinks we're going to reject?

Example - Critical Region

Let's assume that \mathcal{H}_0 is true, and find a confidence interval for my statistic \bar{X} .

Then, $X|\mathcal{H}_0 \sim \mathcal{N}(2,0.025)$, and so I find a $1-\alpha=0.95$ confidence interval for \bar{X} using my pivot.

$$\implies 2 \pm 1.96 \cdot \sqrt{0.025/40} \implies (1.951, 2.049).$$

Clearly, 1.9 falls out of this region. So, we reject \mathcal{H}_0 in favour of \mathcal{H}_1 . That is, there is significant statistical evidence that $\mu \neq 2$.

Example - *p*-value

Let's assume that \mathcal{H}_0 is true, and find the probability of observing my value of \bar{X} or anything more extreme!

Example - p-value

Let's assume that \mathcal{H}_0 is true, and find the probability of observing my value of \bar{X} or anything more extreme!

Drawing a graph here is very useful here - since our distribution is symmetrical and our test is two tailed*, this includes both tails.

Example - *p*-value (cont.)

Now, under the null,

$$T|\mathcal{H}_0 = \frac{1.94 - 2}{\sqrt{0.025/40}} = -2.4.$$

So, the *p*-value is

$$p = 2 \cdot \Phi(-2.4) = 2(1 - \Phi(2.4)) = 0.0164.$$

Since 0.0164 $< \alpha$, we reject our null. That is, there is significant statistical evidence that $\mu \neq 2$.

Hypothesis Testing

Method

- 1. Establish \mathcal{H}_0 and \mathcal{H}_1 and some significance level α .
- 2. Find a pivot that connects what we're trying to test with what's available.
- 3. Either find the critical region or the *p*-value, and make a conclusion.

One-tailed vs Two-tailed tests

But what if we wanted to test

$$\mathcal{H}_0: \mu = 2$$
 v.s. $\mathcal{H}_1: \mu > 2$

under $\alpha=$ 5% ? If we used the same process, would you say that $\mu>$ 2?

One-tailed vs Two-tailed tests

But what if we wanted to test

$$\mathcal{H}_0: \mu = 2$$
 v.s. $\mathcal{H}_1: \mu > 2$

under $\alpha=5\%$? If we used the same process, would you say that $\mu>2$?

No! We found that $ar{X}=1.94$ - how is this evidence that $\mu>2$?

To adapt,

- Our critical region would be from $(-\infty, L)$ (one tail).
- Our *p*-value would only be the area that the alternate is implying (one tail).

This contrasts one-tailed and two-tailed tests.

Advice

There is so much to consider, but you can still approach each test intuitively.

Think:

- When would I reject \mathcal{H}_0 for \mathcal{H}_1 ? Under big or small or positive or negative T ?
- Does your result make sense?

Extra Terminology

Type I Error - α

- Reject \mathcal{H}_0 when \mathcal{H}_0 is true

Type II Error - β

- Don't reject \mathcal{H}_0 when \mathcal{H}_0 is false.

Power - $\pi = 1 - \beta$.

Tutorial Questions