Measurement of associated W+c production

Event selection

$$W \to e \text{ or } \mu$$
 $c \to D^*$, or D^+ , or μ in jet

In total 6 final states

 \Rightarrow selecting events with isolated lepton and jet with charm 'signature'

Signal: oppositely signed (OS) W and c

Background: expect equal fraction of OS and same signed (SS) W and c

 \Rightarrow : suppressed background for OS-SS distributions

Data samples:

- ullet μ : 'SingleMu' dataset
- e: 'SingleEl' dataset

MC:

- \bullet W + jets (MadGraph + Pythia6) [signal]
- Drell-Yan (MadGraph + Pythia6) [background] not included

Event selection

Lepton: leading p_T muon or electron:

- Muons ('muons')
 - $p_T > 25 \text{ GeV}$
 - $|\eta| < 2.1$
 - isolated with $I_{\rm rel}^{\Delta R < 0.4} < 0.12 \; (\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2})$

•
$$M_T > 40$$
 GeV, $M_T = \sqrt{2p_T E_T^{\mathrm{miss}} (1 - \cos(\phi_l - \phi_{E_T^{\mathrm{miss}}}))}$

- required to be global muons
- at least 10 valid tracker hits and 2 pixel hits
- global track fit $\chi^2/{\rm dof} < 10$
- \bullet impact parameter to PV < 0.02 cm in transverse plane and < 0.5 cm in z
- ullet no oppoiste sign muon with $p_T>25$ GeV, $|\eta|<2.4$
- Electrons ('gsfElectrons')
 - $p_T > 35 \text{ GeV}$
 - $|\eta| < 2.1$, excluding $1.44 < |\eta| < 1.57$

•
$$M_T > 55$$
 GeV, $M_T = \sqrt{2p_T E_T^{\rm miss} (1 - \cos(\phi_l - \phi_{E_T^{\rm miss}}))}$

- isolated with $I_{\rm rol}^{\Delta R < 0.3} < 0.05$
- no missing hits in the silicon tracker
- ullet no oppoiste sign electron with $p_T>20$ GeV, $|\eta|<2.5$

Jet ('ak5PFJets' + JEC): leading p_T with $p_T > 25$ GeV, $|\eta| < 2.5$ and charm 'tag'

- $D^+ \to K^- \pi^+ \pi^+$ candidate
- $D^{*+} \rightarrow D^0 \pi_s^+, D^0 \rightarrow K^- \pi^+$ candidate
- muon

Secondary vertex reconstruction

- Crucial to suppress background for D^+ , D^{*+}
- Differs from the paper:
 - open data: all track combinations fitted using AdaptiveVertexFitter [thanks to Nazar Stefaniuk for sharing basic code!]
 - paper: 'exclusive' vertices (no shared tracks)
- Expecting larger selection efficiency, but possibly larger background in open data

$$l_{proj} = \frac{(\vec{d}l \cdot \vec{p}_D)_{xy}}{|\vec{P}_D|_{xy}}, \quad \vec{p}_D = \vec{p}_{K^-} + \vec{p}_{\pi}$$
$$s = \frac{l_{proj}}{\Delta l_{proj}}$$

Require:

- s > 3
- \bullet $(dl)_{xy} < 2$ cm, $(dl)_z < 2$ cm

Signal extraction: D^*

Open Data

TOP-12-002

- Fitted to Gaus (signal) + 1st order polynomial (background)
- More signal events in open data
- Similar signal / background ratio

Signal extraction: D^+

Open Data

TOP-12-002

- Fitted to Gaus (signal) + 1st order polynomial (background)
- More signal events in open data
- Worse signal / background ratio
- Drawback in open data vertexing: usage of Adaptive Vertex Fitter with track weighting

Control distributions

Open Data

TOP-12-002

- Shapes very similar for D mesons
- MC < data for D^+ , μ : missing background samples
- Prevents from measuring cross section in semileptonic channel

Cross section

Cross section measured at parton level:

$$\begin{split} p_T^c > 25 \text{ GeV, } |\eta^c| < 2.5|, \ p_T^\mu > 25 \text{ GeV, } |\eta^\mu| < 2.1|: \\ \sigma &= \frac{N_{Sig}}{ALB}, \ E = \frac{N_{MCreco}}{N_{MCgen}} \end{split}$$

$$L=2.5~\mathrm{fb^{-1}}$$

$$D^*: \quad B = f(c \to D^* \to D^0(K\pi)\pi) = 0.622\%$$

$$D^+: \quad B = f(c \to D^+ \to K\pi)\pi) = 2.08\%$$

 N_{Sig} extracted from fit of invariant mass spectrum (differs from the paper)

Open data

 $W \to \mu \nu$, $p_T^{\mu} > 25$ GeV $W \to e\nu$, $p_T^e > 35 \text{ GeV}$ D^* : 58.5 \pm 11.8 (stat) pb D^* : 83.3 \pm 10.4 (stat) + 8.5 (syst) pb

TOP-12-002

 $W \to \mu \nu, p_T^{\mu} > 25 \text{ GeV}$ D^+ : 129.7 ± 12.4 (stat) pb D^+ : 103.6 ± 7.8 (stat) + 8.1 (syst) pb D^* : 132.9 \pm 13.7 (stat) pb D^* : 116.9 \pm 8.7 (stat) + 10.0 (syst) pb $W \to e\nu$, $p_T^e > 35$ GeV D^+ : 46.9 \pm 9.8 (stat) pb D^+ : 83.5 \pm 6.3 (stat) + 7.1 (syst) pb

⇒ reasonable consistency with the paper