River Kelly CSCI-347 Homework 04 Collaborator: Kyler Gappa

Show your work. Include any code snippets you used to generate an answer, using comments in the code to clearly indicate which problem corresponds to which code

### **Code Setup**

```
[16]: # import libraries
import numpy as np
import matplotlib.pyplot as plt
```

# Part 1 (2 points) Matrix Vector

Consider matrix *A* and vector *v*. Compute the matrix-vector product *Av*.

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$$
,  $v = \begin{pmatrix} -1 & 1 \end{pmatrix}$ 

```
[17]: # build matrix 'A'
      A = np.ndarray(shape=(2,2), dtype=int)
      A[0] = np.array([2, 1])
      A[1] = np.array([1, 3])
      # build vector 'v'
      V = np.array([-1, 1], dtype=int)
      dot_product = np.array([0] * A.shape[1])
      # loop through row is matrix A
      for i in range(A.shape[1]):
          # get the current row
          a_row = A[i, :]
          # loop over the values in the current row
          # and compute the dot product
          for index, row_value in enumerate(a_row):
              # compute the dot product for i in row
              dot_product[i] += row_value * V[index]
      # show the result dot pot_product
      dot_product
```

[17]: array([-1, 2])

#### Part 2

Consider matrix *A* and data set *D*:

$$A = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}, D = \begin{pmatrix} 1 & 1.5 \\ 1 & 2 \\ 3 & 4 \\ -1 & -1 \\ -1 & 1 \\ 1 & -2 \\ 2 & 2 \\ 2 & 3 \end{pmatrix}$$

#### Helper Code

```
[18]: A = np.matrix([
          [((3**(1/2))/2), -(1/2)],
          [(1/2), ((3**(1/2))/2)]
      ])
      # show matrix 'A'
      Α
[18]: matrix([[ 0.8660254, -0.5
              [ 0.5
                      , 0.8660254]])
[19]: # build data set 'D'
      D = np.ndarray(shape=(8, 2))
      D[0] = [1, 1.5]
      D[1] = [1, 2]
      D[2] = [3, 4]
      D[3] = [-1, -1]
      D[4] = [-1, 1]
      D[5] = [1, -2]
      D[6] = [2, 2]
      D[7] = [2, 3]
      # show data set 'D'
     D
[19]: array([[ 1. , 1.5],
             [1., 2.],
             [3., 4.],
             [-1. , -1. ],
             [-1., 1.],
             [1., -2.],
             [2., 2.],
             [2., 3.]])
```

# 2.a Scatter Plot (2 points)

Let *X*1 and *X*2 be the first and second attributes of the data, respectively. Use Python to create a scatter plot of the data, where the *x*-axis is *X*1 and the *y*-axis is *X*2.

```
[20]: X1 = D[:,0]
X2 = D[:,1]
plt.scatter(x=X1, y=X2, color='blue', marker='o', s=100, edgecolors='black')
plt.xlabel('X1')
plt.ylabel('X2')
plt.title('Scatter Plot of X1 and X2')
plt.show()
```





#### 2.b Linear Transformation (4 points)

Treating each row as a 2-dimensional vector, apply the linear transformation A to each row. In other words, let  $x_i$  be the i-th row of D. For each  $x_i$ , find the matrix-vector product  $Ax_i$ .

For example,

$$x2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

```
[21]: linearTransformationData = np.ndarray(shape=D.shape)
      for row_index, row in enumerate(D):
          dot = np.dot(A, row)
          linearTransformationData[row_index] = [dot[0,0], dot[0,1]]
[22]: # print out the transformed data
      for index, row in enumerate(linearTransformationData):
          print(f"x{index+1}: ", row)
          [0.1160254 1.79903811]
     x2:
          [-0.1339746
                        2.23205081]
     x3: [0.59807621 4.96410162]
     x4:
         [-0.3660254 -1.3660254]
     x5: [-1.3660254 0.3660254]
     x6: [ 1.8660254 -1.23205081]
     x7: [0.73205081 2.73205081]
     x8: [0.23205081 3.59807621]
```

### 2.c Transformed Data (3 points)

UsePythontocreateaplotshowingboththeoriginaldataandthetransformed data, with the x-axis still corresponding to X1 and the y-axis corresponding to X2. Use different colors and markers to differentiate between the original and transformed data. That is, each transformed data point in the plot should be one matrix-vector product  $Ax_i$ , which is a 2-dimensional vector. Each original point in the plot should have the same coordinates as it did in part 2.1.





# 2.d Multi-Dimensional Mean (1 point)

Write down the multi-dimensional mean of the data. (Remember that this should be a 2-dimensional vector)

```
[24]: def multiDimensionalMean(m):
    # output array (i.e. mean array)
    mean = [0] * m.shape[1]
    # iterate over columns
    for col_index in range(m.shape[1]):
        # get column array
        col_arr = m[:,col_index]
        # column mean
        col_mean = col_arr.mean()
        # set column mean to mean (output) array
        mean[col_index] = col_mean
        # return multi-dimensional mean
        return mean
    multiDimMean = multiDimensionalMean(D)
    multiDimMean
```

[24]: [1.0, 1.3125]

# 2.e Mean-Centered Data (2 points)

Mean-center the data. Write down the mean-centered data matrix.

```
[25]: array([[ 0.
                    , 0.1875],
                  , 0.6875],
            [ 0.
                  , 2.6875],
            [ 2.
                  , -2.3125],
            [-2.
                  , -0.3125],
            Γ-2.
            [ 0.
                  , -3.3125],
                  , 0.6875],
            [ 1.
            [ 1.
                    , 1.6875]])
```

### 2.f Plot of Original v.s. Mean-Centered Data (2 points)

Use Python to create a scatter plot showing both the original data and the mean-centered data, where the x-axis is X1 and the y-axis is X2. Use different colors and markers to differentiate between the original and mean-centered data.





#### 2.g Covariance Matrix (2 points)

Write down the covariance matrix of the data matrix *D*. Use estimated covariance.

```
[27]: def covariance(v1, v2 = None):
          if v2 is None: v2 = v1
          # vector 1 mean
          v1_{mean} = v1.mean()
          # vector 2 mean
          v2_{mean} = v2.mean()
          # co_var (the covariance between v1 and v2)
          co var = 0
          # loop through v1 and v2 values
          for i in range(v1.shape[0]):
              co_{var} += (v1[i] - v1_{mean}) * (v2[i] - v2_{mean})
          \# calculate and return the co-variance between v1 and v2
          return (co_var / (v1.shape[0] - 1))
      def covarianceMatrix(m):
          # co-variance matrix
          covar_m = np.ndarray((m.shape[1], m.shape[1]))
          # loop through input matrix rows
          for i in range(m.shape[1]):
              # loop through input matrix rows (again)
              for j in range(m.shape[1]):
                  # set x_ij covariance value
                  covar_m[i, j] = covariance(m[:,i], m[:,j])
          # return the covariance matrix
          return covar_m
      covarianceMatrix(D)
```

```
[27]: array([[2. , 1.85714286], [1.85714286, 3.92410714]])
```

# 2.h Covariance Matrix of Z (Centered Mean) (3 points)

Write down the covariance matrix of the centered data matrix Z. Use estimated covariance.

#### 2.i Covariance Matric of Standard Normalization (3 points)

Write down the covariance matrix of the data after applying standard normalization.

```
[29]: def zScoreNormalize(m):
          # create normlized matrix based on shape of input matrix
          z_score = np.ndarray(m.shape)
          # loop through input matrix rows
          for row_index in range(m.shape[0]):
              # loop through input matrix columns
              for col_index in range(m.shape[1]):
                  # get current column array
                  col_arr = m[:,col_index]
                  # calculate the standard devieation for the current column
                  col_std_div = (covariance(col_arr)) ** (1/2)
                  # calculate the column's mean
                  col_mean = col_arr.mean()
                  \# get the x_ij value from the imput matix
                  x_ij = m[row_index, col_index]
                  # calculate the x_ji z-score
                  x_ij_zscore = (x_ij - col_mean) / col_std_div
                  # set x_ij normalized value in normalized matrix
                  z_score[row_index, col_index] = x_ij_zscore
          # return the normalized array
          return z_score
      covarianceMatrix(zScoreNormalize(D))
```

```
[29]: array([[1. , 0.66291811], [0.66291811, 1. ]])
```