CSM 152: NETWORKING AND INTERNET

LESSON 2

Dr. Gaddafi Abdul-Salaam

Department of Computer Science Faculty of Physical Sciences
College of Science

Introduction to Internet

What is Internet?

The network formed by the co-operative interconnection of a large number of computer networks.

- Network of networks
- No one owns the Internet
- Every person who makes a connection owns a slice of the network
- There is no central administration to the Internet.

So what is it actually?

- A community of people
 - Who use and develop the networks.
- A collection of resources
 - That can be reached from those resources
- A setup to facilitate collaboration
 - Among members of the research and educational communities, world—wide.
- The connected network use the TCP/IP protocol.

Key milestones in evolution

- 1950s -
- > ARPA (Advanced Research Projects Agency).
- 1970-
- ARPANET creates precursor to Transmission Control Protocols(TCP)
- 1971
 - universities added to the network
 - Telnet and FTP are available
- 1972-
 - First electronic mail message sent

Contd.

1973-

ARPANET connected to England and Norway 1974-

TCP starts being used for communicating across a system of networks

1982-

US DoD starts building defense data networks based on ARPANET technology

1983-

> ARPANET splits into ARPANET and MILNET

Contd.

- 1983-
- Internet now in place
- > TCP/IP standard

1986-

National Science Foundation (NSF) implements NSFNET; a system of regional network of routers connected over a backbone network.

1991-

Archie and Gopher released

Contd.

1992-

Internet links more than 17,000 networks in 33 countries; 3 million hosts.

1993-

World Wide Web is launched

1995-

Interconnected network providers starts offering service

1995-

➤ About 30 million users

Growth of Internet

Internet User Growth = +9% in 2013 vs. +11% in 2012 = Solid, But Slowing

Global Internet Users, 1996 – 2013 (B)

Growth of Internet

Layered Network Architecture

- Open systems Interconnection (OSI) reference model.
 - Seven layered model
 - Communication functions are partitioned into a hierarchical set of layers.
- Objective:
 - Systematic approach to design.
 - Changes in one layer should not require changes in other layers.

The 7-layer OSI model

Layer functions

- Physical
 - Transmit raw bit stream over a physical medium.
- Data Link
 - Reliable transfer of frames over a point-topoint link (flow control, error control).
- Network
 - Establishing, maintaining and terminating connections.
 - Routes packets through point-to-point links.

Layer function (contd.)

- Transport
 - End-to-end reliable data transfer, with error recovery and flow control.
- Session
 - Manages sessions.
- Presentation
 - Provides data independence.
- Application
 - Interface point for user applications.

How Data Flows

Connecting a computer to DN

Campus Network Schematic

Connecting to Outside World

Important Internet Applications

- TELNET
- File Transfer Protocol (FTP)
- Electronic Mail (Email)
- Gopher
- Internet Relay Chart (IRC)
- Usenet News
- World Wide Web

Request For Comments (RFC)

Internet Standards and RFC

Internet Societies

- Internet Architecture Board (IAB)
- Internet Engineering Task Force (IETF)
- Internet Engineering Steering Group (IESG)

Request For Comments (RFC) publications

- ➤ The actual development of new standards is carried out by working groups charted by the IETF
- Membership is voluntary

The process involved:

- > The working group makes a draft version of the document.
- > Places it in the "Internet draft" online directory.
- ➤ Kept there for six months, and review and comments on the draft obtained.

- The IESG may approve the publication of the draft as an RFC during this period.
 - ➤Or else it is withdrawn from the directory.
- The working group may subsequently publish a revised version of the draft.

Important RFCs

- RFC821: Simple Mail Transfer Protocol
- RFC791: Internet Protocol
- RFC793: Transmission Control Protocol
- RFC2616: Hypertext Transfer Protocol 1.1
- RFC2045: MIME-Multi-Purpose-Internet-Mail-Extensions
- RFC1321: DM5 Message Digest Algorithm
- RFC1866: Hypertext Markup Language
- RFC2437: RSA Crypt Specializations 2.0
- RFC2631: Diffie-Hellman Key Agreement

Where to find the RFCs

- Available in many web sites
- http://www.faqs.org/rfc
- http://www.ietf.org/rfc.html
- http://www.rfcnet.com

TCP/IP

- TCP/IP is the first set of protocols used in Internet.
- Allows computers to communicate / share resources across the network.
- Work on TCP/IP started in the 1970s.
- Funded by the US Military- ARPA

TCP/IP and the Internet

- The modern internet sits on top of the TCP/IP technology.
 - used as a standard to bridge the gap between non compatible platforms.
 - ➤ All computers connected to the internet understand the TCP/IP.

Network layering in TCP/IP

In 1978, International Standards Organizations (ISO) proposed the 7 layer reference model for the network services and protocols.

- Known as the OSI model
- TCP/IP does not strictly follow this 7-layer model.
- > TCP/IP follows a simplified 4 layer model

Why layering?

To provide well defined interface between adjacent layers

- ➤ A change in one interface does not affect the other.
- Interface must remain the same
- Allows a structured development of network software

The simplified 4-layer protocol

Data Flow in 4-layer Model

TCP/IP Protocol Suite

- Refers to a family of protocols.
- The protocols are built on top of connectionless technology.
- Data sent from one node to another as a sequence of datagram.
- Each datagram sent independently
- The datagrams corresponding to the same message may follow different routes. variable delay, arrival order at destination

What does IP do?

- IP transports datagrams (packets) from source node to the destination node.
 - Responsible for routing the packets.
 - Breaks a packet into smaller packets, if required.
 - Unreliable service.
 - A packet may be lost in transit.
 - Packets may arrive out of order
 - Duplicate packets may be generated.

What does TCP do?

- TCP provides a connection-oriented, reliable service for sending messages.
 - Split a message into packets.
 - Reassemble packets at destination.
 - Resend packets that were lost in transit
- Interface with IP
 - Each packet forwarded to IP for delivery.
 - > Error control is done by TCP.

What does UDP do?

- UDP provides a connectionless, unreliable service for sending datagrams (packets).
 - Messages small enough to fit in a packet (e.g. DNS query).
 - Simpler and faster than TCP.
 - Never split data into multiple packets.
 - Does not care about error control.
 - The abstract network model.
- Interface with IP:
 - Each UDP packet sent to IP for delivery

Addresses in TCP/IP

