МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДАНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Московский государственный технический

университет имени Н.Э. Баумана»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>ФН</u>

КАФЕДРА «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА»

Направление: Математика и компьютерные науки

Дисциплина: Теория вероятности и математическая статистика

Домашняя работа №6

Группа: ФН11-51Б

Вариант №15

Студент: Пунегов Д.Е.

Преподаватель: Облакова Т.В.

Задача 6. Последовательный критерий отношения правдоподобия

Условие задачи:

В условиях задачи №5

- 1) постройте последовательный критерий Вальда для проверки гипотезы H_0 : $a=a_0$ против альтернативы H_1 : $a=a_1$ при известном $\sigma=\sigma_1$. Ошибка первого рода задана в условии, ошибка второго рода β вычислена вами в пункте 4.
- 2) примените построенный критерий к заданной выборке (порядок чтения

 по столбцам), сформулируйте результат. Дайте графическую иллюстрацию последовательного критерия.
- 3) вычислите математическое ожидание момента принятия решения при основной гипотезе H_0 и при альтернативе H_1 .
- 4) перепишите критическое множество из пункта 3 в виде $\left(\frac{L(\overrightarrow{X_n},a_1)}{L(\overrightarrow{X_n},a_0)} \geq C\right)$, отметьте на графике и сравните результаты применения критериев Вальда и Неймана-Пирсона.

Данные:

Bap	α	a_0	<i>H</i> ₂ :	σ_0	<i>H</i> ₃ :	H_1 : $a = a_1$	σ_1	ε	n	\bar{x}	s ²
15	0.04	-4	$a < a_0$	2.0	$\sigma > \sigma_0$	$a_1 = -4.5$	2.7	0.15	80	-4.427	8.533

Вариант 15

-12.953	-6.924	-3.899	-5.577	-1.907	-7.126	-2.946	-5.936	-8.23	-7.434
1.866	-7.803	-11.133	-4.278	-3.778	-7.213	-4.846	-8.924	-2.306	-4.36
-1.266	0.274	-4.223	-4.767	-1.447	-2.341	3.133	-3.707	-6.248	-1.714
-5.386	-3.212	-11.145	-6.166	-3.878	-1.743	-4.606	-2.666	-4.795	-2.66
-3.798	-2.742	-3.989	-7.383	-5.028	-4.38	-2.598	-7.183	-4.557	-3.034
-7.432	-7.505	-3.089	-5.018	0.633	-7.363	-1.919	-6.944	-1.967	-7.336
-2.767	-6.135	-3.173	-2.852	-7.748	-1.776	-4.381	-5.021	0.088	-4.151
-4.699	-1.634	-4.809	1.433	-2.706	-6.897	-1.722	-4.494	-9.873	-3.988

Последовательный критерий отношения правдоподобия

0. Подготовка

0.1 Импорт нужных библиотек

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   from IPython.display import Markdown as md
   import math
```

0.2 Импорт выборки

1. Постройте последовательный критерий Вальда для проверки гипотезы H_0 : a=-4 против альтернативы H_1 :a=-4.5 при известном $\sigma=2.7$. Ошибка первого рода задана в условии, ошибка второго рода β вычислена вами в пункте 4.

Найдем такие границы А и В, которые удовлетворяют следующему условию:

$$B < z(X_1 \dots X_n) = \frac{L(X_1 \dots X_n, \alpha_1)}{L(X_1 \dots X_n, \alpha_0)} < A$$

Положим:

$$v = min\{n : z(X_1 \dots X_n) \notin (B, A)\}$$

То есть статистикой критерия будет $z(v, X_1 \dots X_n)$.

Критерий Вальда: если $z(X_1\dots X_n)\geq \mathbf{A}$, то принимается H_1 , если $z(X_1\dots X_n)\leq B$, то принимается H_0 . Тогда ошибка первого рода принимает вид:

```
In [4]: md(f'${alpha} = P(z(X_1 ... X_n) \geq A \mid H_0)$') out[4]: out[4
```

А ошибка второго рода:

```
In [5]: beta = 0.53758 # Мы определили в прошлом задании

In [6]: md(f'$${beta} = P(z(X_1 ... X_\\nu) \\leq B | H_0)$$')
```

Out [6]: $0.53758 = P(z(X_1...X_{\nu}) \le B|H_0)$

Постоянные А и В вычислим по формулам Вальда:

```
In [7]: A = (1 - beta) / alpha
md(f'$$A = \\frac {{1 - \\beta}} {{\\alpha}} = {A}$$')
```

Out [7]: $A = \frac{1-\beta}{\alpha} = 11.560500000000001$

Out [8]: $B = \frac{\beta}{1 - \alpha} = 0.559979$

Отношение правдоподобия можно вычислить следующим образом:

$$\frac{L(X_1 \dots X_n, \alpha_1, \sigma_1)}{L(X_1 \dots X_n, \alpha_0, \sigma_1)} = \prod_{1}^{n} \frac{p(X_1 \dots X_n, \alpha_1, \sigma_1)}{p(X_1 \dots X_n, \alpha_0, \sigma_1)} = exp\left(\sum_{k=1}^{n} \frac{(X_k - \alpha_0)^2}{2\sigma_1^2} - \sum_{k=1}^{n} \frac{(X_k - \alpha_1)^2}{2\sigma_1^2}\right) = exp\left(n\frac{\alpha_0^2 - \alpha_1^2}{2\sigma_1^2} + \frac{\alpha_1 - \alpha_0}{\sigma_1^2} \sum_{k=1}^{n} X_k\right)$$

2. Применим построенный критерий:

$$Z(j) = \prod_{k=1}^{j} exp\left(\frac{\alpha_0^2 - \alpha_1^2}{2\sigma_1^2} + \frac{\alpha_1 - \alpha_0}{\sigma_1^2} X_k\right)$$

Out [9]:
$$Z(j) = \prod_{k=1}^{j} exp\left(\frac{-4.25}{14.58} + \frac{-0.5}{7.29}X_k\right) = exp\left(j\frac{-4.25}{14.58} + \frac{-0.5}{7.29}\sum_{k=1}^{j}X_k\right)$$

Приведем графическую иллюстрацию последовательного критерия:

3. Вычислим математическое ожидание момента принятия решения при основной гипотезе H_0 : \mathbf{a} =-4 и при альтернативе H_1 : \mathbf{a} =-4.5.

```
 \begin{array}{lll} & \text{In [11]: } & \text{M\_0} = - \ (a\_1 - a\_0) \ ** \ 2 \ / \ (2 \ * \ sigma\_1 \ ** \ 2) \\ & \text{md} \ (f''' \$ M\_0 = M_{\{\{\alpha\_0\}\} \ ln \ (\eft(\frac{\{p(X_k, \alpha\_1, \sigma\_1)\}}{\{p(X_k, \alpha\_0, \sigma\_1)\}} \\ & = \ (\eft(alpha\_1 - \alpha\_0)\} \ \{2 \sigma\_1^2\} \ (\eft(2M_0X_k - (\alpha\_1 - \alpha\_0) \right) = \ (\eft(\alpha\_1 - \alpha\_0)^2\} \ \{2 \sigma\_1^2\} \ (\eft(2\alpha\_0 - (\alpha\_1 - \alpha\_0) \right) = \ (\eft(\alpha\_1 - \alpha\_0)^2) \ \{2 \sigma\_1^2\} \} = \ (\eft(\alpha\_1 - \alpha\_0)^2\} \ \{2 \sigma\_1^2\} \} = \\ & \text{Out[11]: } \\ & M_0 = M_{a_0} ln \left( \frac{p(X_k, \alpha_1, \sigma_1)}{p(X_k, \alpha_0, \sigma_1)} \right) = \frac{\alpha_1 - \alpha_0}{2\sigma_1^2} (2M_0X_k - (\alpha_1 - \alpha_0)) = \frac{\alpha_1 - \alpha_0}{2\sigma_1^2} (2\alpha_0 - (\alpha_1 - \alpha_0)) = -\frac{(\alpha_1 - \alpha_0)^2}{2\sigma_1^2} = -\frac{(-4.5 - -4)^2}{2 \times 2.7^2} \\ & \text{Note the property of the property of
```

```
In [12]: M_Onu = alpha * np.log(A) + (1 - alpha) * np.log(B)
M_Onu /= M_O
M_Onu = round(M_Onu, 5)
                            M_{a_0v} = \frac{\alpha ln(A) + (1 - \alpha)ln(B)}{M} = \frac{0.04 * ln(11.56050000000001) + 0.96 * ln(0.559979)}{0.0000000001} = 26.75477
Out[12]:
Out[13]:
                            M_1 = M_{\alpha_1} ln \left( \frac{p(X_k, \alpha_1, \sigma_1)}{p(X_k, \alpha_0, \sigma_1)} \right) = \frac{\alpha_1 - \alpha_0}{2\sigma_1^2} (2M_1 X_k - (\alpha_1 - \alpha_0)) = \frac{\alpha_1 - \alpha_0}{2\sigma_1^2} (2\alpha_1 - (\alpha_1 - \alpha_0)) = \frac{(\alpha_1 - \alpha_0)^2}{2\sigma_1^2} = \frac{(-4.5 - -4)^2}{2 * 2.7^2} = 0.01715
In [14]: M_1nu = beta * np.log(B) + (1 - beta) * np.log(A)
M_1nu /= M_1
M_1nu = round(M_1nu, 5)
                            Out[14]:
                            4. Перепишем критическое множество из пункта 3 в виде \left(\frac{L(X_1...X_n, a_1)}{L(X_1...X_n, a_n)} \geq C\right)
                              S = \left\{ \frac{L(X_1 \dots X_n, \alpha_1)}{L(X_1 \dots X_n, \alpha_0)} \ge C \right\} = \left\{ \prod_{k=1}^n exp\left( \frac{\alpha_0^2 - \alpha_1^2}{2\sigma_1^2} + \frac{\alpha_1 - \alpha_0}{\sigma_1^2} \sum_{k=1}^n X_k \right) \ge C \right\} = \left\{ exp\left( n \frac{\alpha_0^2 - \alpha_1^2}{2\sigma_1^2} + \frac{\alpha_1 - \alpha_0}{\sigma_1^2} \sum_{k=1}^n X_k \right) \ge C \right\}
                                                                                       S = \left\{ \frac{\alpha_0^2 - \alpha_1^2}{2\sigma_1^2} + \frac{\alpha_1 - \alpha_0}{\sigma_1^2} \sum_{k=1}^n X_k \ge \ln(C) \right\} = \left\{ \frac{\sum_{k=1}^n X_k}{n} \ge \frac{\sigma_1^2 \left( \frac{\ln(C)}{n} - \frac{\alpha_0^2 - \alpha_1^2}{2\sigma_1^2} \right)}{\alpha_1 - \alpha_0} \right\}
                            r = '> 0' if a_1 - a_0 > 0 else '< 0' md(f'a_1 - a_0 = a_1 - a_0 = a_
Out[15]: \alpha_1 - \alpha_0 = -4.5 - -4 = -0.5 < 0 = > меняем знак
 Out[29]:
                             \frac{\sum_{k=1}^{n} X_{k}}{n} <= \frac{\sigma_{1}^{2} \left( \frac{\ln(C)}{n} - \frac{\alpha_{0}^{2} - \alpha_{1}^{2}}{2\sigma_{1}^{2}} \right)}{\alpha_{1} - \alpha_{0}} = C_{5}
```

Значение C_5 было получено из предыдущей задачи

```
In [43]: C = np.exp(abs((4.5285 * (a_1 - a_0) / sigma_1 ** 2 - (a_0 ** 2 - a_1 ** 2) / (2 * sigma_1 ** 2)) * n))

In [44]: C
```

Out[44]: 4.6095060939906745

Таким образом, получаем критическое множество:

$$S = \left\{ \frac{L(X_1 \dots X_n, \alpha_1)}{L(X_1 \dots X_n, \alpha_0)} \ge 4.6095 \right\}$$

Приведем графическую иллюстрацию последовательного критерия:

При этом при n = 80:

Из этого делаем вывод, что принимаем гипотезу ${\cal H}_0$

5. Выводы

При критерии Неймана-Пирсона выбирается гипотеза Н0, что соответствует 3 пункту 5-го домашнего задания. Критерий Вальда не дает точного ответа на вопрос какую гипотезу принимать , недостаточен объем выборки.