Bayesian Additive Semi-Multivariate Decision Trees

Huiyan Sang

Department of Statistics, Texas AM University

Collaborators

Nonparametric Semi-Structured Regression

• Semi-Structured Regression:

$$Y = f(\mathbf{s}, \mathbf{x}) + \epsilon, \tag{1}$$

- ▶ $Y \in \mathbb{R}$: response at **s** (e.g., housing price)
- ▶ $s \in \mathcal{M}$: structured multivariate features (e.g., spatial locations)
- ▶ $x \in \mathcal{X}$: unstructured features (e.g., square footage, housing age)
- $f: \mathcal{D} \subseteq \mathcal{M} \times \mathcal{X} \to \mathbb{R}$: unknown mean function
- Goal: non-parametric function estimation of f(s, x) from noisy observations.
 - f(s, x): Luo, Sang and Mallick (2022), BAMDT: Bayesian Additive Semi-Multivariate Decision Trees for Nonparametric Regression, ICML, long oral.
 - f(s): Luo, Sang and Mallick (2021), BAST: Bayesian Additive Regression Spanning Trees for Complex Constrained Domain, NeurIPS, 34.

Main Challenges

- ullet Structured feature space ${\cal M}$ has a complex geometry (e.g., irregular boundary/interior holes, road/river networks, graphs, brain cortical surfaces)
- Irregular function discontinuities/sharp changes (e.g., highways/rivers)
- Potentially high dimensional unstructured features x
- Potential interactions between the effects of s and x

Existing Methods

Spline smoothing (Ramsay, 2002; Lai and Schumaker, 2007; Wang and Ranalli, 2007; Wood et al., 2008; Scott-Hayward et al., 2014; Sangalli et al., 2013) and Gaussian process regression (Lin et al., 2019; Niu et al., 2019; Borovitskiy et al., 2020; Dunson et al., 2022):

- ullet Respect complex domain boundaries and intrinsic geometries in ${\cal M}$ \checkmark
- Assume globally smooth f X
- Too many tensor spline basis functions for high dimensional x X
- GP regression usually assumes an additive form: f(s) + f(x), X
 - $f(\mathbf{s}, \mathbf{x}) = \mathbf{x}^\mathsf{T} \boldsymbol{\beta} + GP(\mathbf{s})$
 - f(s,x) = GAM(x) + GP(s) (Nandy et al. 2017)
 - f(s, x) = RF(x) + GP(s) (Saha et al. 2021)

Existing Methods: BART

Bayesian additive regression trees (BART; Chipman et al., 2010):

- Each decision tree corresponds to a piecewise (hyper-rectangular) constant function on the feature space.
- Summation of many simple piecewise constant functions can approximate well complex functions with discontinuities (sharp changes) and different levels of smoothness. ✓

From Dr. McCulloch's talk slides on BART

Existing Methods: BART

Axis-parallel univariate split rules:

- Address feature scaling/feature selection issues with high dimensional x ✓
- May not fully respect domain boundaries and capture irregular data discontinuities in M X

From: blog.wilton.com, landolakes.com, cakesrock.blog

Multivariate Decision Trees (MDT) for f(s)

To motivate the method for $f(\mathbf{s}, \mathbf{x})$, let's first consider a simpler case $f(\mathbf{s})$.

Predictive spanning tree partition prior model (Luo, Sang, Mallick, 2021):

- Prior for the locations of removed edges in spanning tree (where to split)
- Prior for the number of clusters/depth to encourage small MDT
- Prior for the cluster-wise constant to encourage small values at leaf nodes
- Use different reference knots/meshes/spanning trees in each weak MDT learners

Huivan Sang

Multivariate Decision Trees for $f(\mathbf{s}, \mathbf{x})$

Each node η represents a subset $\mathcal{D}_{\eta} \subset \mathcal{D}$.

- 1. Start with a root node representing \mathcal{D} .
- 2. Split a terminal node η with probability $p_{\text{split}}(\eta)$. If η splits, choose one split rule to obtain a bipartition $\{\mathcal{D}_{\eta,1},\mathcal{D}_{\eta,2}\}$:
 - 2.1 With probability p_m , perform a multivariate split (how?).
 - 2.2 Otherwise, perform a univariate split (same as BART).
- 3. Apply Step 2 to each offspring node of η .

Multivariate Decision Trees for $f(\mathbf{s}, \mathbf{x})$

- Main idea: at each multivariate node
 - 1. Project \mathcal{D}_{η} into \mathcal{M} , call it \mathcal{M}_{η}
 - 2. Perform a bipartition of \mathcal{M}_{η} following the predictive spanning tree model
 - 3. Divide \mathcal{D}_{η} into two subsets: $\mathcal{D}_{\eta,k} = \mathcal{D}_{\eta} \cap (\mathcal{M}_{\eta,k} \times \mathcal{X})$, for k = 1, 2,
- Main complications: (1) M_{η} varies with node; (2) how to partition \mathcal{M}_{η} such that both $\mathcal{D}_{\eta,1}$ and $D_{\eta,2}$ contain non-empty sets of observations?

- \triangleright S^* : Reference knots on \mathcal{M} .
- \mathcal{G}_T^* : Fixed undirected spanning tree graph on \mathcal{S}^* .

Figure: A predictive spanning tree bipartition

- Notations:
 - ▶ S*: Reference knots on M.
 - $\mathcal{G}_{\mathcal{T}}^*$: Fixed undirected spanning tree graph on \mathcal{S}^* .
- To obtain a bipartition of \mathcal{M}_{η} :
 - Identify S_η*: Union of the nearest reference knot of each observed point in M_η under geodesic distance d_g.

Figure: A predictive spanning tree bipartition

- ▶ S*: Reference knots on M.
- $\mathcal{G}_{\mathcal{T}}^*$: Fixed undirected spanning tree graph on \mathcal{S}^* .
- To obtain a bipartition of \mathcal{M}_{η} :
 - 1. Identify \mathcal{S}_{η}^* : Union of the nearest reference knot of each observed point in \mathcal{M}_{η} under geodesic distance d_g .
 - 2. Randomly sample two knots \mathbf{s}^* and \mathbf{t}^* from \mathcal{S}_n^* .
 - Randomly sample an edge e* from the unique path in G_T* connecting s* and t*.

Figure: A predictive spanning tree bipartition

- S^* : Reference knots on \mathcal{M} .
- $\mathcal{G}_{\mathcal{T}}^*$: Fixed undirected spanning tree graph on \mathcal{S}^* .
- To obtain a bipartition of \mathcal{M}_{η} :
 - 1. Identify \mathcal{S}_{η}^* : Union of the nearest reference knot of each observed point in \mathcal{M}_{η} under geodesic distance d_g .
 - 2. Randomly sample two knots \mathbf{s}^* and \mathbf{t}^* from \mathcal{S}_n^* .
 - Randomly sample an edge e* from the unique path in G_T* connecting s* and t*.
 - 4. Remove e^* from \mathcal{G}_T^* to obtain bipartitions of \mathcal{S}_{η}^* and \mathcal{M}_{η} .

Figure: A predictive spanning tree bipartition

- S^* : Reference knots on \mathcal{M} .
- $\mathcal{G}_{\mathcal{T}}^*$: Fixed undirected spanning tree graph on \mathcal{S}^* .
- To obtain a bipartition of \mathcal{M}_{η} :
 - 1. Identify \mathcal{S}_{η}^* : Union of the nearest reference knot of each observed point in \mathcal{M}_{η} under geodesic distance d_g .
 - 2. Randomly sample two knots \mathbf{s}^* and \mathbf{t}^* from \mathcal{S}_n^* .
 - Randomly sample an edge e* from the unique path in G_T* connecting s* and t*.
 - 4. Remove e^* from \mathcal{G}_T^* to obtain bipartitions of \mathcal{S}_{η}^* and \mathcal{M}_{η} .

Figure: A predictive spanning tree bipartition

A Bayesian Sum-of-multivariate-decision-trees Model

ullet Let T denote an sMDT. Define a piecewise constant mapping from ${\mathcal D}$ to ${\mathbb R}$

$$g(\mathbf{s}, \mathbf{x} | T, \boldsymbol{\mu}) = \mu_j, \quad \text{if } (\mathbf{s}, \mathbf{x}) \in \mathcal{D}_j.$$

• BAMDT models $Y = f(\mathbf{s}, \mathbf{x}) + \epsilon$ with

$$f(\mathbf{s}, \mathbf{x}) = \sum_{m=1}^{M} g(\mathbf{s}, \mathbf{x} | T_m, \mu_m).$$

• Prior specification:

$$p\left(\left\{T_m, \mu_m\right\}_{m=1}^M, \sigma^2\right) = \left\{\prod_{m=1}^M p(\mu_m | T_m) p(T_m)\right\} p(\sigma^2),$$

where $\{T_m\}$ is assumed a priori to be an iid sample from the sMDT generative process.

Bayesian Inference

- To draw a posterior sample from $[T_m|-]$ with μ_m marginalized out, perform one of the following moves.
 - Grow: Randomly choose a terminal node of T_m and split it following Step 2 of the sMDT generating process.
 - ▶ Prune: Randomly choose a node of T_m with two terminal nodes and remove it (and its children) from T_m .
- Importance metric for a feature z:
 - ▶ Defined as the proportion of the split rules involving *z* in the ensemble.
 - ightharpoonup z can be $\mathbf{s}, x_1, \ldots,$ or x_p .

Bitten Torus Example: f(s)

Figure: True function and predictive surfaces

Table: Average prediction performance over 50 replicates

	BAST	BART	inGP (Niu et al., 2019)
MSPE	0.487	1.115	2.283
MAPE	0.307	0.406	1.159
Mean CRPS	0.225	0.355	_

Application to Chlorophyll Data in Aral Sea: f(s)

Figure: Observed data and predictive surfaces

Table: Prediction performance from 5-fold cross-validation

	BAST	BART	SFS (Wood et al, 2008)	inGP
MSPE	2.339	2.933	2.894	3.191
MAPE	0.926	1.172	1.071	1.200
Mean CRPS	0.641	0.955	_	_

U-shape and Bitten Torus Examples: $f(\mathbf{s}, \mathbf{x})$

	BAMDT	BART	GP	BAST-s	BAST	GAM-additive	GAM-TP
MSPE	0.374	1.405	0.583	0.912	2.155	0.985	0.418
MAPE	0.281	0.612	0.488	0.543	0.641	0.720	0.345
CRPS	0.219	0.508	0.390	0.398	0.479		
	(b) U-shape example with $n=500$, $p=10$, and $\sigma=0.1$						
MSPE	0.495	1.219	0.632	0.911	1.214	1.168	
MAPE	0.317	0.688	0.537	0.543	0.662	0.751	
CRPS	0.252	0.552	0.409	0.398	0.453		
(c) Bitten torus example with $n=500,\ p=2,\ {\rm and}\ \sigma=0.1$							
MSPE	0.967	1.958	1.621	1.606	1.678		
MAPE	0.545	0.693	0.805	0.814	0.666		
CRPS	0.431	0.573	0.646	0.591	0.529		

In the setting of p=10, the average percentage of splits involving (s,x_1) in BAMDT is 73.98%, while the one in BART is 54.62%

Application to Sacramento Housing Data

 Model housing price using spatial locations, square footage, #bedrooms, and #bathrooms.

Figure: Predicted price versus square footage.

Figure: Observed data and predicted price for a representative house.

Conclusion and Future Work

- A novel Bayesian ensemble model, BAMDT, is developed for nonparametric regression problems on complex constrained domains using the flexible partition models as weak learners.
- Next steps:
 - Extension to unknown manifolds where geodesic distance metrics need to be estimated.
 - Adopting BAMDT as a nonparametric prior model for latent functions in many Bayesian hierarchical modeling settings.
 - ► Theoretical guarantee such as posterior concentration results.
 - ► Soft BAST and BAMDT following Linero and Yang, 2018
 - ▶ Other partition models? Talk to Changwoo Lee.

Thanks!!

U-shape Example: $f(\mathbf{x}, \mathbf{x})$

Figure: Posterior predictive surfaces

BAMDT vs BART

Table: Average prediction performance metrics over 50 replicate data sets of BAMDT and BART with various numbers of weak learners

	BAMDT		BA		
	M = 50	M = 50	M = 100	M = 200	M = 400
MSPE	0.374	1.405	1.234	1.162	1.126
	(0.106)	(0.249)	(0.217)	(0.161)	(0.069)
MAPE	0.281	0.612	0.590	0.586	0.627
	(0.025)	(0.056)	(0.051)	(0.029)	(0.024)
CRPS	0.219	0.508	0.475	0.458	0.481
	(0.023)	(0.052)	(0.046)	(0.026)	(0.018)

U-shape Example: $f(\mathbf{x}, \mathbf{x})$

Figure: Posterior predictive surfaces

BAMDT - Sacramento Housing Data

Figure: Map of five representative locations.

Figure: Posterior predictive standard deviation.

References I

- Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. P. (2020). Matérn Gaussian processes on Riemannian manifolds. In *Proceedings of Advances in Neural Information Processing Systems (NeurIPS)*.
- Chipman, H. A., George, E. I., and McCulloch, R. E. (2010). BART: Bayesian additive regression trees. *The Annals of Applied Statistics*, 4(1):266–298.
- Dunson, D. B., Wu, H.-T., Wu, N., et al. (2022). Graph based Gaussian processes on restricted domains. Journal of the Royal Statistical Society Series B, 84(2):414–439.
- Lai, M.-J. and Schumaker, L. L. (2007). Spline functions on triangulations, volume 110. Cambridge University Press.
- Lin, L., Mu, N., Cheung, P., and Dunson, D. (2019). Extrinsic Gaussian processes for regression and classification on manifolds. *Bayesian Analysis*, 14(3):887–906.
- Niu, M., Cheung, P., Lin, L., Dai, Z., Lawrence, N., and Dunson, D. (2019). Intrinsic Gaussian processes on complex constrained domains. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 81(3):603–627.
- Ramsay, T. (2002). Spline smoothing over difficult regions. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 64(2):307–319.
- Sangalli, L. M., Ramsay, J. O., and Ramsay, T. O. (2013). Spatial spline regression models. Journal of the Royal Statistical Society: Series B: Statistical Methodology, pages 681–703.
- Scott-Hayward, L. A. S., MacKenzie, M. L., Donovan, C. R., Walker, C., and Ashe, E. (2014). Complex region spatial smoother (CReSS). *Journal of Computational and Graphical Statistics*, 23(2):340–360.

24 / 25

References II

- Wang, H. and Ranalli, M. G. (2007). Low-rank smoothing splines on complicated domains. *Biometrics*, 63(1):209–217.
- Wood, S. N., Bravington, M. V., and Hedley, S. L. (2008). Soap film smoothing. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 70(5):931–955.