-CH=CH-N=CH--CH=CH-CH=N- (a-5);

wherein each hydrogen atom in the radicals (a-1), (a-2), (a-3), (a-4) and (a-5) may optionally be replaced by halo, C_{1-6} alkyl, nitro, amino, hydroxy, C_{1-6} alkyloxy, polyhalo C_{1-6} alkyl, carboxyl, amino C_{1-6} alkyl, mono- or di $(C_{1-4}$ alkyl)amino C_{1-6} alkyl, C_{1-6} alkyloxycarbonyl, hydroxy C_{1-6} alkyl, or a radical of formula

wherein =Z is = $^{\circ}$, =CH-C(=O)-NR^{5a}R^{5b}, =CH₂, =CH-C₁₋₆alkyl, =N-OH or =N-O-C₁₋₆alkyl;

Q is a radical of formula

wherein Alk is C₁₋₆alkanediyl;

 Y^1 is a bivalent radical of formula $-NR^2$ - or $-CH(NR^2R^4)$ -;

X¹ is NR⁴, S, S(=O), S(=O)₂, O, CH₂, C(=O), C(=CH₂), CH(OH), CH(CH₃), CH(OCH₃), CH(SCH₃), CH(NR^{5a}R^{5b}), CH₂-NR⁴ or NR⁴-CH₂;

X² is a direct bond, CH₂, C(=O), NR⁴, C₁₋₄alkyl-NR⁴, NR⁴-C₁₋₄alkyl;

t is 2, 3, 4 or 5;

u is 1, 2, 3, 4 or 5;

v is 2 or 3; and

whereby each hydrogen atom in Alk and the carbocycles and the heterocycles defined in radicals (b-3), (b-4), (b-5), (b-6), (b-7) and (b-8) may optionally be

10030202.12.22701

10

AI

15

المنوز

loosoec.letyon

AI

15

20

replaced by R^3 ; with the proviso that when R^3 is hydroxy or C_{1-6} alkyloxy, then R^3 can not replace a hydrogen atom in the α position relative to a nitrogen atom;

G is a direct bond or C₁₋₁₀alkanediyl;

R¹ is a monocyclic heterocycle selected from piperidinyl, piperazinyl, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, pyrrolyl, furanyl, tetrahydrofuranyl, thienyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, oxadiazolyl, and isothiazolyl; and each heterocycle may optionally be substituted with 1 or where possible more, such as 2, 3 or 4, substituents selected from halo, hydroxy, amino, cyano, carboxy, C₁₋₆alkyl, C₁₋₆alkyloxy, C₁₋₆alkylthio, C₁₋₆alkyloxyC₁₋₆alkyl, aryl, arylC₁₋₆alkyl, arylC₁₋₆alkyl, arylC₁₋₆alkyl, mono-or di(C₁₋₆alkyl)amino, mono-or di(C₁₋₆alkyl)aminoC₁₋₆alkyl, polyhaloC₁₋₆alkyl, C₁₋₆alkylcarbonylamino, C₁₋₆alkyl-SO₂-NR^{5c}-, aryl-SO₂-NR^{5c}-, C₁₋₆alkyloxycarbonyl, -C(=O)-NR^{5c}R^{5d}, HO(-CH₂-CH₂-O)_n-, halo(-CH₂-CH₂-O)_n-, C₁₋₆alkyloxy(-CH₂-CH₂-O)_n-, arylC₁₋₆alkyloxy(-CH₂-CH₂-O)_n-, arylC₁₋₆alkyloxy(-CH₂-CH₂-O)_n-,

each n independently is 1, 2, 3 or 4;

 R^2 is hydrogen, formyl, C_{1-6} alkylcarbonyl, Hetcarbonyl, pyrrolidinyl, piperidinyl, homopiperidinyl, C_{3-7} cycloalkyl substituted with $N(R^6)_2$, or C_{1-10} alkyl substituted with $N(R^6)_2$ and optionally with a second, third or fourth substituent selected from amino, hydroxy, C_{3-7} cycloalkyl, C_{2-5} alkanediyl, piperidinyl, mono-or di(C_{1-6} alkyl)amino, C_{1-6} alkyloxycarbonylamino, aryl and aryloxy;

 R^3 is hydrogen, hydroxy, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxy, aryl $C_{1\text{-}6}$ alkyloxy;

R⁴ is hydrogen, C₁₋₆alkyl or arylC₁₋₆alkyl;

 R^{5a} , R^{5b} , R^{5c} and R^{5d} each independently are hydrogen or $C_{1\text{-}6}$ alkyl; or

R^{5a} and R^{5b}, or R^{5c} and R^{5d} taken together form a bivalent radical of formula - (CH₂)_s- wherein s is 4 or 5;

 R^6 is hydrogen, C_{1-4} alkyl, formyl, hydroxy C_{1-6} alkyl, C_{1-6} alkyloxycarbonyl;

aryl is phenyl or phenyl substituted with 1 or more, such as 2, 3 or 4, substituents selected from halo, hydroxy, C_{1-6} alkyl, hydroxy C_{1-6} alkyl,

30

 β' cont

5

10

15

20

AI

polyhaloC₁₋₆alkyl, and C₁₋₆alkyloxy; Het is pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl.

2. A compound of formula (I')

$$Q \xrightarrow{N \xrightarrow{a^{1} a^{2}} a^{3}} (I')$$

a prodrug, N-oxide, addition salt, quaternary amine, metal complex or stereochemically isomeric form thereof, wherein $-a^1=a^2-a^3=a^4$ represents a radical of formula

wherein each hydrogen atom in the radicals (a-1), (a-2), (a-3), (a-4) and (a-5) may optionally be replaced by halo, C_{1-6} alkyl, nitro, amino, hydroxy, C_{1-6} alkyloxy, polyhalo C_{1-6} alkyl, carboxyl, amino C_{1-6} alkyl, mono- or di $(C_{1-4}$ alkyl)amino C_{1-6} alkyl, C_{1-6} alkyloxycarbonyl, hydroxy C_{1-6} alkyl, or aradical of formula

wherein =Z is =O, =CH-C(=O)-NR 5a R 5b , =CH $_2$, =CH-C $_{1-6}$ alkyl, =N-OH or =N-O-C $_{1-6}$ alkyl;

Q is a radical of formula

20

25

(b-6)(b-7)(b-8)

wherein Alk is C₁₋₆alkanediyl;

Y¹ is a bivalent radical of formula –NR²- or –CH(NR²R⁴)-;

X¹ is NR⁴, S, S(=O), S(=O)₂, O, CH₂, C(=O), C(=CH₂), CH(OH), CH(CH₃), CH(OCH₃), CH(SCH₃), CH(NR^{5a}R^{5b}), CH₂-NR⁴ or NR⁴-CH₂;

X² is a direct bond, CH₂, C(=O), NR⁴, C₁₋₄alkyl-NR⁴, NR⁴-C₁₋₄alkyl;

t is 2, 3, 4 or 5;

u is 1, 2, 3, 4 or 5;

v is 2 or 3; and

whereby each hydrogen atom in Alk and the carbocycles and the heterocycles defined in radicals (b-3), (b-4), (b-5), (b-6), (b-7) and (b-8) may optionally be replaced by R³; with the proviso that when R³ is hydroxy or C₁₋₆alkyloxy, then R³ can not replace a hydrogen atom in the α position relative to a nitrogen atom;

G is a direct bond or C_{1-10} alkanedivl;

R¹ is a monocyclic heterocycle selected from pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, pyrrolyl, imidazolyl and pyrażolyl; and each heterocycle may optionally be substituted with 1 or where possible more, such as 2, 3 or 4, substituents selected from halo, hydroxy, amino, cyano, carboxy, C₁₋₆alkyl, C₁₋₆alkyloxy, C₁₋₆alkylthio, C₁₋₆alkyloxyC₁₋₆alkyl, aryl, arylC₁₋₆alkyl, arylC₁₋₆alkyloxy, hydroxyC₁₋₆alkyl, monoor di(C₁₋₆alkyl)amino, mono-or di(C₁₋₆alkyl)amino c₁₋₆alkyl, polyhalo C₁₋₆alkyl, C₁₋₆a 6alkylcarbonylamino, C₁₋₆alkyl-SO₂-NR^{5c}-, aryl-SO₂-NR^{5c}-, C₁₋₆alkyloxycarbonyl, $-C(=O)-NR^{5c}R^{5d},\ HO(-CH_2-CH_2-O)_{n^-},\ halo(-CH_2-CH_2-O)_{\underline{h}_1^-},\ C_{1-6}alkyloxy(-CH_2-CH_2-O)_{n^-}$ O)_n-, arylC₁₋₆alkyloxy(-CH₂-CH₂-O)_n- and mono-or di(C₁₋₆alkyl)amino(-CH₂-CH₂- $O)_n$ -;

each n independently is 1, 2, 3 or 4;

R² is hydrogen, formyl, pyrrolidinyl, piperidinyl, homopiperidinyl, C₃. 7cycloalkyl substituted with $N(R^6)_2$, or C_{1-10} alkyl substituted with $N(R^6)_2$ and

AL

15

100 WOMEN

optionally with a second, third or fourth substituent selected from amino, hydroxy, C₃₋₇cxcloalkyl, C₂₋₅alkanediyl, piperidinyl, mono-or di(C₁₋₆alkyl)amino, C₁. 6alkyloxycarbonylamino, aryl and aryloxy;

R³ is hydrogen, hydroxy, C₁₋₆alkyl, C₁₋₆alkyloxy, arylC₁₋₆alkyl or arylC₁₋ 6alkyloxy;

R⁴ is hydrogen, C₁₋₆alkyl or arylC₁₋₆alkyl;

R^{5a}, R^{5b}, R^{5c} and R^{5d} each independently are hydrogen or C₁₋₆alkyl; or

R^{5a} and R^{5b}, or R^{5c} and R^{5d} taken together form a bivalent radical of formula - $(CH_2)_s$ - wherein s is 4 or 5;

R⁶ is hydrogen, Ci_alkyl, formyl, hydroxyC₁₋₆alkyl, C₁₋₆alkylcarbonyl or C_{1-6} alkyloxycarbonyl;

aryl is phenyl or phenyl substituted with 1 or more, such as 2, 3 or 4, substituents selected from halo, hydroxy, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, polyhaloC₁. 6alkyl, and C₁₋₆alkyloxy;

provided that when G is methylene, and R1 is 2-pyridyl, 3-pyridyl, 6-methyl-2pyridyl, 2-pyrazinyl or 5-methyl-imidazol-4-yl, and -a¹=a²-a³=a⁴- is -CH=CH-CH=CH- or -N=CH-CH=CH-, then Q is other than

3. (amended) A compound as claimed in claim 2, wherein:

when Q is
$$R^2 - N - X^1$$

AL

10

15

wherein X^1 is NR^4 , O, S, S(=O), S(=O)₂, CH₂, C(=O), C(=CH₂) or CH(CH₃), then R^1 is other than pyridyl, pyridyl substituted with C₁₋₆alkyl, pyrimidinyl, pyrazinyl, imidazolyl and imidazolyl substituted with C₁₋₆alkyl.

4. (amended) A compound as claimed in claim 2, wherein:

when Q is
$$R^2 - N$$
 X^1

wherein X^1 is NR^4 , O_1 S, S(=O), $S(=O)_2$, CH_2 , C(=O), $C(=CH_2)$ or $CH(CH_3)$, then R^1 is other than pyridyl, pyridyl substituted with C_{1-6} alkyl, pyridyl substituted with 1 or 2 C_{1-6} alkyloxy, pyrazinyl, pyrrolyl, pyrrolyl substituted with C_{1-6} alkyl, imidazolyl and imidazolyl substituted with C_{1-6} alkyl.

5. (amended) A compound as claimed in claim 2, wherein:

when Q is
$$R^2 - N$$

wherein X^1 is NR^4 , O, S, S(=O), S(=O)₂, CH₂, C(=O), C(=CH₂) or CH(CH₃), then R^1 is other than pyridyl, pyridyl substituted with C_{1-6} alkyl, pyrimidinyl, pyrazinyl, imidazolyl and imidazolyl substituted with C_{1-6} alkyl.

6. (amended) A compound as claimed in claim 2, wherein:

when Q is
$$R^2$$
—N—CH₂-

then R^1 is other than pyridyl, pyrimidinyl, pyrazinyl, imidazolyl and imidazolyl substituted with C_{1-6} alkyl.

7. (amended) A compound as claimed in claim 2, wherein:

when Q is
$$R^2$$
— N — X^2 —

8. (amended) A compound as claimed in claim 2, wherein the compound is:

wherein X^2 is CH_2 or a direct bond, then R^1 is other than pyridyl, pyridyl substituted with C_{1-6} alkyl, pyrimidinyl, pyrazinyl, imidazolyl and imidazolyl substituted with C_{1-6} alkyl.

Al

10

15

20

25

30

 (\pm) -2-[[2-[[1-(2-amino-3-methylbutyl)-4-piperidinyl]amino]-7-methyl-1Hbenzimidazol-1-yl]methyl]-6-methyl-3-pyridinol tetrahydrochloride monohydrate; 2-[[2-[[1-(2-aminoethyl)-4-piperidinyl]amino]-1H-benzimidazol-1-yl]methyl-3pyridinol; $(\pm)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-6-chloro-1-[(1,4-dimethyl-$ 1H-imidazol-5-yl)methyl]-ÎH-benzimidazol-2-amine monohydrate; (±)-N-[1-(2amino-3-methylbutyl)-4-piperidinyl]-6-chloro-1-[(6-methyl-2-pyridinyl)methyl]-1Hbenzimidazol-2-amine; (\pm) -2-[[2-](3-amino-2-hydroxypropyl)amino]-1Hbenzimidazol-1-yl]methyl]-6-methyll-3-pyridinol; N-[1-(2-aminoethyl)-4-piperidinyl]-1-[[3-(2-ethoxyethoxy)-6-methyl-2-pyridinyl]methyl]-1H-benzimidazol-2-amine tetrahydrochloride dihydrate; (±)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[(2chloro-1,4-dimethyl-1H-imidazol-5-yl)methyl]-1H-benzimidazol-2-amine; (\pm)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-6-chloro-1-[(2-chloro-1,4-dimethyl-1Himidazol-5-yl)methyl]-1H-benzimidazol-2-amine; (\pm)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-6-methyl-1-[(6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-2-amine; (\pm) -N-[1-(2-aminopropyl)-4-piperidinyl]-1-[(3,5,6-trimethylpyrazinyl)methyl]-1Hbenzimidazol-2-amine tetrahydrochloride trihydrate; (±)-N-[1-(2-amino-3methylbutyl)-4-piperidinyl]-1-[(3,5,6-trimethylpyrazinyl)methyl]-1H-benzimidazol-2amine; N-[1-(2-aminoethyl)-4-piperidinyl]-1-[[3-(2-chloroethoxy)-6-methyl-2pyridinyl]methyl]-1H-benzimidazol-2-amine trihydrochloride dihydrate; (\pm)-N-[1-(2amino-3-methylbutyl)-4-piperidinyl]-1-[3-amino-2-pyridinyl)methyl]-1Hbenzimidazol-2-amine tetrahydrochloride trihydrate; 2-[[2-[N-(2-aminoethyl)-4piperidinyl]amino]-4-methyl-1H-benzimidazol-1-yl]methyl]-6-methyl-3-pyridinol tetrahydrochloride; (±)-2-[[2-[[1-(2-amino-3-methylbutyl)-4-piperidinyl]amino]-7methyl-3*H*-imidazo[4,5-b]pyridin-3-yl]methyl]-6-methyl-3-pyridingl; 2-[[2-[[1-(2aminoethyl)-4-piperidinyl]amino]-6-chloro-4-methyl-1H-benzimidazol-1-yl]methyl]-

3-methylbutyl)-4-piperidinyl]amino]-4-methyl-1H-benzimidazol-1-yl]methyl]-6-

6-methyl-3-pyridinol tetrahydrochloride 2-propanolate (1:1); (±)-2-[[2-[[1-(2-amino-

meth $\sqrt{-3}$ -pyridinol; (±)-2-[[2-[[1-(2-aminopropyl)-4-piperidinyl]amino]-4-methyl-1Hbenzimidazol-1-yl]methyl]-6-methyl-3-pyridinol tetrahydrochloride trihydrate; 2-[[2-

[[1-(2-aminoethyl)-4-piperidinyl]amino]-7-methyl-1H-benzimidazol-1-yl]methyl]-6-

piperidinyl]amino]-6-bromo-4-methyl-1H-benzimidazol-1-yl]methyl]-6-methyl-3-

pyridinol tetrahydrochloride; 2-[[2-[[1-(2-aminoethyl)-4-piperidinyl]amino]-1H-

 (\pm) -2-[[2-[[1-(2-amino-3-methylbutyl)-4-piperidinyl]amino]-1H-benzimidazol-1-

benzimidazol-1-yl]methyl]-6-methyl-3-pyridinol tetrahydrochloride monohydrate;

methyl-3-pyridinol tetrahydrochloride dihydrate; 2-[[2-[[1-(2-aminoethyl)-4-

AI

10

15

19030mgr

20

25

30

yl]methyl]-6-methyl-3-pyrldinol; (±)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-4methyl-1-[(6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-2-amine; a prodrug, N-oxide, addition salt, quaternary amine, metal complex or stereochemically isomeric form thereof. 9. (amended) A compound as claimed in claim 2, wherein the compound is:

2-[[2-[[1-(2-aminoethyl)-4-piperidinyl]amino]-5-chloro-7-methyl-1H-benzimidazol-1vl]methyl]-6-methyl-3-pyridinol tetrahydrochloride tetrahydrate; N-[1-(2aminoethyl)-4-piperidinyl]-1-[(2,4-dimethyl-5-oxazolyl)methyl]-1H-benzimidazol-2amine; N-[1-(2-aminoethyl)-4-piperidinyl]-1-[(2,5-dimethyl-4-oxazolyl)methyl]-1Hbenzimidazol-2-amine trihydrochloride monohydrate; 4-[[3-[[5-(methoxymethyl)-2furanyl]methyl]-3H-imidazo[4,5-b]pyridine-2-yl]methyl]-1-piperidineetanamine; N-[1-(2-aminoethyl)-4-piperidinyl]-1-[(5-methyl-3-isoxazolyl)methyl]-1H-benzimidazol-2amine trihydrochloride monohydrate; N-[1-(2-aminoethyl)-4)piperidinyl]-1-[(2methyl-5-oxazolyl)methyl]-1H-benzimidazol-2-amine monohydrate; N-[1-(2aminoethyl)-4-piperidinyl]-1-[(2-methyl-5-oxazolyl)methyl]-1H-benzimidazol-2-amine trihydrochloride monohydrate; N-[1-(2-aminoethyl)-4-piperidinyl]-3-[(2,4-dimethyl-5oxazolyl)methyl]-3H-imidazo[4,5-b]pyridin-2-amine; 4-[[3-[(2-methyl]-5oxazolyl)methyl]-3H-imidazo[4,5-b]pyridin-2-yl]methyl]-1-piperazineethanamine; N-[1-(2-aminoethyl)-4-piperidinyl]-1-(4-thiazolylmethyl)-1H-benzimidazol-2 amine; N-

 \mathbb{N} -(2-aminoethyl)-4-piperidinyl]-1-[(5-phenyl-1,2,4-oxadiazol-3-yl)methyl]-1H-

AI £ 15

10

15

20

25

benzimidazol-2-amine trihydrochloride; 5-[[2-[[1-(2-aminoethyl)-4-piperidinyl]amino-1H-benzimidazol-1-yl]methyl-2-oxazolemethanol tetrahydrochloride dihydrate; N-[1-(2-amingethyl)-4-piperidinyl]-1-[(3-methyl-5-isoxazolyl)methyl]-1H-benzimidazol-2amine trihydrochloride monohydrate; 4-[[1-[[2-(dimethylamino)-4-thiazolyl]methyl]-1H-benzimidazol-2-yl]methyl]-1-piperidineethanamine tetrahydrochloride monohydrate 2-propanolate (1:1); ethyl 5-[[2-[[1-[2-[[(1,1dimethylethoxy)carbonyl]amino]ethyl]-4-piperidinyl]amino]-1H-benzimidazol-1yl]methyl]-2-methyl 4-oxazolecarboxylate; 4-[[1-[(2-methyl-4-thiazolyl)methyl]-1Hbenzimidazol-2-yl]methyl]-1-piperidineethanamine; N-[1-(2-aminoethyl)-4piperidinyl]-1-[(2-methyl\3-furanyl)methyl]-1H-benzimidazol-2-amine; ethyl 4-[[3-[(3-hydroxy-6-methyl-2-pyridinyl)methyl]-7-methyl-3H-imidazo[4,5-b]pyridine-2yl]amino]-1-piperidinecarboxylate; 1,1-dimethylethyl 4-[[1-[[3-[2-(dimethylamino)ethoxy]-6-methyl-2-pyridinyl]methyl]-1H-benzimidazol-2-yl]amino-1-piperidinecarboxylate; ethyl 4-[1]-[(3-amino-2-pyridinyl)methyl]-1H-benzimidazol-2-yl]amino]-1-piperidinecarboxylate; N-[1-(6-methyl-2-pyridinyl)-1H-benzimidazol-2-yl]-1-(3-pyridinylcarbonyl)-4-piperidinamine; a prodrug, N-oxide, addition salt, quaternary amine, metal complex or stereochemically isomeric form thereof.

- 10. (amended)A method of using as a medicine a compound as claimed in any one of claims 2 to 9.
- 11. (amended) A method of manufacturing a medicament for the treatment of viral infections, comprising the step of providing the compound as claimed in claim 9.
- 12. (amended) The method of claim 1 or 11, wherein said viral infection is a respiratory syncytial virus infection.

10020E0E

AI

10

15

- 13. (amended) A pharmaceutical composition, comprising a pharmaceutically acceptable carrier and as active ingredient a therapeutically effective amount of a compound as claimed in any one of claims 2 to 9.
- 14. (amended) A process of preparing a composition as claimed in claim 13, comprising the step of intimately mixing said carrier with said compound.
- 15. (amended) A process of preparing a compound as claimed in claim 2, comprising at least one step selected from the group consisting of:
 - a) reacting an intermediate of formula (II-a) or (II-b) with an intermediate of formula (III)

$$Q = \begin{pmatrix} H & R^{1} - G - W_{1} \\ & & &$$

with R^1 , G, Q and $-a^1=a^2-a^3=a^4$ defined as in claim 2, and W_1 being a suitable leaving group, in the presence of a suitable base and in a suitable reaction-inert solvent;

b) deprotecting an intermediate of formula (IV)

$$P - Q_{1} - N - A_{1} - A_{2} - A_{3}$$

$$(IV)$$

$$H - Q_{1} - N - A_{1} - A_{2} - A_{3}$$

$$(I'-a)$$

B1

Αı

LOCIOZOZ . I PETA

10

15

5

with R^1 , G, and $-a^1=a^2-a^3=a^4$ - defined as in claim 2, H-Q₁ being defined as Q according to claim 2 provided that R^2 or at least one R^6 substituent is hydrogen, and P being a protective group;

c) deprotecting and reducing an intermediate of formula (IV-a)

$$P \longrightarrow Q_{1a}(CH=CH) \longrightarrow Q_{1a}(CH) \longrightarrow Q_{1a$$

with R^1 , G, and $-a^1=a^2-a^8=a^4$ - defined as in claim 2, $H-Q_1$ being defined as Q according to claim 2 provided that R^2 or at least one R^6 substituent is hydrogen, $Q_{1a}(CH=CH)$ being defined as Q_1 provided that Q_1 comprises an unsaturated bond, and P being a protective group;

d) deprotecting an intermediate of formula (V)

with R^1 , G, and $-a^1=a^2-a^3=a^4$ - defined as in claim 2, and H_2N-Q_2 being defined as Q according to claim 2 provided that both R^6 substituents are hydrogen or R^2 and R^4 are both hydrogen;

e) deprotecting an intermediate of formula (VI)

B' cont

5

10

15

AI

idosena . ispos

with R^1 , G, and $-a^1=a^2-a^3=a^4$ - defined as in claim 2, and H_2N-Q_2 being defined as Q according to claim 2 provided that both R^6 substituents are hydrogen or R^2 and R^4 are both hydrogen, and P being a protective group;

f) deprotecting an intermediate of formula (VII) or (VIII)

$$P-Q_{1'}(OP) \longrightarrow \begin{pmatrix} R^{1} & & & \\ & & &$$

with R^1 , G, and $-a^1=a^2-a^3=a^4$ defined as in claim 2, H-Q₁ (OH) being defined as Q according to claim 2 provided that R^2 or at least one R^6 substituent is hydrogen and provided that Q comprises a hydroxy moiety, H₂N-Q₂ (OH) being defined as Q according to claim 2 provided that both R^6 substituents are hydrogen or R^2 and R^4 are both hydrogen and provided that Q comprises a hydroxy moiety, and P being a protective group;

g) amination of an intermediate of formula (IX)

$$(O \Longrightarrow) Q_3 \longrightarrow \begin{pmatrix} R^1 \\ N & a^1 \\ A^2 & a^3 \end{pmatrix}$$
 amination
$$H_2 N \longrightarrow Q_3 H \longrightarrow \begin{pmatrix} R^1 \\ N & a^1 \\ A^2 & a^3 \end{pmatrix}$$
 (IT-a-1-2)

with R^1 , G, and $-a^1=a^2-a^3=a^4$ - defined as in claim 2, and $H_2N_7Q_3H$ being defined as Q according to claim 2 provided that both R^6 substituents are hydrogen or R^2 and R^4 are both hydrogen, and the carbon adjacent to the nitrogen carrying the R^6 , or R^2

Bont

and R⁴ substituents contains at least one hydrogen, in the presence of a suitable amination reagent;

h) reducing an intermediate of formula (X)

with R^1 , G, and $-a^1=a^2-a^3=a^4$ defined as in claim 2, and $H_2N-CH_2-Q_4$ being defined as Q according to claim 2 provided that Q comprises a $-CH_2-NH_2$ moiety, in the presence of a suitable reducing agent;

i) reducing an intermediate of formula (X-a)

$$\begin{array}{c} R^{1'} - C_{1-6} a lkyl - OH \\ G \\ NC - Q_4 - A \\ N - A \\ A - A$$

with G, and $-a^1=a^2-a^3=a^4$ - defined as in claim 2, $H_2N-CH_2-Q_4$ being defined as Q according to claim 2 provided that Q comprises a $-CH_2-NH_2$ moiety, and R¹ being defined as R¹ according to claim 2 provided that it comprises at least one substituent, in the presence of a suitable reducing agent and suitable solvent;

j) amination of an intermediate of formula (XI)

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\$$

with R^1 , G, and $-a^1=a^2-a^3=a^4$ defined as in claim 2, and H_2N -CH₂-CHOH-CH₂-Q₄ being defined as Q according to claim 2 provided that Q comprises a CH₂-CHOH-CH₂-NH₂ moiety, in the presence of a suitable amination reagent,

5

10

1 1

10

15

5

k) reacting an intermediate of formula (XII) with formic acid, formamide and ammonia

$$C_{1^{-4}}\text{alky} \vdash C_{-CH_2} - Q_1 = \begin{pmatrix} R^1 \\ N \\ a^1 \\ a^2 \\ a^3 \end{pmatrix}$$

$$(I^{-b})$$

$$(XII)$$

with R^1 , G, and $-a^1=a^2-a^3=a^4$ -defined as in claim 2, and H-C(=O)- Q_1 being defined as Q according to claim 2 provided that R^2 or at least one R^6 substituent is formyl;

amination of an intermediate of formula (XIII) by reaction with an intermediate of formula (XIV)

$$(O=)Q_{5} \xrightarrow{N} A_{a}^{1} A_{a}^{2} + R^{2a} NH_{2}$$

$$(XIII)$$

$$(XIV)$$

$$Amination$$

$$R^{2a} - NH - HQ_{5} \xrightarrow{N} A_{a}^{1} A_{a}^{2}$$

$$(T-c)$$

with R^1 , G, and $-a^1=a^2-a^3=a^4$ - defined as in claim 2, and R^{2a} -NH-HQ₅ being defined as Q according to claim 2 provided that R^2 is other than hydrogen and is represented by R^{2a} , R^4 is hydrogen, and the carbon atom adjacent to the nitrogen atom carrying the R^2 and R^4 substituents, carries also at least one hydrogen atom, in the presence of a suitable reducing agent;

m) reducing an intermediate of formula (XV)

$$(R^{6})_{2}N_{-(C_{1}-9alkyl)-NH-HQ_{5}} N_{-(C_{1}-9alkyl)-NH-HQ_{5}} N_{-(C_{1}-9alkyl)-NH-H$$

with R, G, and -a = a - a = a - defined as in claim 2, and $(R^6)_2N-[(C_{1-9}alkyl)CH_2OH]-NH-HQ_5$ being defined as Q according to claim 2

B' cont

AI

loosoecalezos

provided that R^2 is other than hydrogen and is represented by C_{1-10} alkyl substituted with $N(R_6)_2$ and with hydroxy, and the carbon atom carrying the hydroxy, carries also two hydrogen atoms, and provided that R^4 is hydrogen, and the carbon atom adjacent to the nitrogen atom carrying the R^2 and R^4 substituents, carries also at least one hydrogen atom, with a suitable reducing agent;

n) deprotecting an intermediate of formula (XVI), (XVI-a) or (XVI-b)

10

with G, and -a¹=a²-a³=a⁴- defined as in claim 2, and H-Q₁ being defined as Q according to claim 2 provided that R² or at least one R⁶ substituent is hydrogen, and R^{1a}-(A-O-H)_w, R^{1a'}-(A-O-H)₂ and R^{1a''}-(A-O-H)₃ being defined as R¹ according to claim 2 provided that R¹ is substituted with hydroxy, hydroxyC₁ calkyl, or

AI

10

 $HO(-CH_2-CH_2-O)_n$, with w being an integer from 1 to 4 and P or P_1 being a suitable protecting group, with a suitable acid;

o) amination of an intermediate of formula (XVII)

$$C_{1^{-4}alky} \vdash O - C - Alk - X^{1} - Alk$$

with R^1 , G, $-a^1=a^2-a^3=a^4$, Alk, X^1 R^2 and R^4 defined as in claim 2, in the presence of a suitable amination agent; and

p) amination of an intermediate of formula (XIX)

$$\begin{array}{c} O \\ H - C - C_{1^{-3}} \text{alkyl} - NR^4 - NR^$$

with R^1 , G, and $-a^1=a^2-a^3=a^4$ - defined as in claim 2, and $Q_6N-CH_2-C_{1-3}$ alkyl- NR^4 being defined as Q according to claim 2 provided that in the definition of Q, X^2 is C_{2-4} alkyl- NR^4 , in the presence of a suitable amination agent.

- 16. (amended) A product, comprising:
 - (a) a first compound as claimed in any one of claims 2 to 9; and
- (b) a second antiviral compound,

 wherein said first compound and said second compound

wherein said first compound and said second compound are simultaneously, separately or sequentially used in the treatment or the prevention of viral infections.

17. (amended) A pharmaceutical composition, comprising:

- (a) a pharmaceutically acceptable carrier; and
- (b) as active ingredients:
 - i. a first compound as claimed in any one of claims 2 to 9; and
- ii. a second antiviral compound.

Please add the following new claims:

B' out 10

18. (new) The process of claim 15, further comprising the step of converting compound of formula (I'), stereochemically isomeric forms, metal complexes, quaternary aritines or N-oxide forms thereof, into a therapeutically active non-toxic acid addition salt by treatment with an acid.

15

19. (new) The process of claim 15, further comprising the step of converting compound of formula (I'), stereochemically isomeric forms, metal complexes, quaternary amines or N-oxide forms thereof, into a therapeutically active non-toxic base addition salt by treatment with alkali.

20

20. (new) The process of claim 15, further comprising the step of converting the acid addition salt form of compound of formula (I'), stereochemically isomeric forms, metal complexes, quaternary amines or N-oxide forms thereof, into the free base by treatment with alkali.

25

21. (new) The process of claim 15, further comprising the step of converting the base addition salt form of compound of formula (I'), stereochemically isomeric forms, metal complexes, quaternary amines or N-oxide forms thereof, into the free acid by treatment with acid.