Introductory Statistics for Economics ECON1013: LAB 3

Duong Trinh

University of Glasgow

2025

Intro

- Duong Trinh
 - PhD Student in Economics (Bayesian Microeconometrics)
 - Email: Duong.Trinh@glasgow.ac.uk
- ECON1013 LB07 42 BUTE GDNS:1105 LAB M
 - Tuesday 2-3 pm
 - 3 sessions (4-Feb, 18-Feb, 4-March)
- ECON1013 LB08 42 BUTE GDNS:1105 LAB M
 - Tuesday 3-4 pm
 - 3 sessions (4-Feb, 18-Feb, 4-March)
- ECON1013 LB13 42 BUTE GDNS:912A LAB A
 - ⋄ Friday 11 am 12 pm
 - 3 sessions (7-Feb, 21-Feb, 7-March)
- ECON1013 LB11 42 BUTE GDNS:912A LAB A
 - ♦ Friday 12-1 pm
 - 3 sessions (7-Feb, 21-Feb, 7-March)

Record Attendance

Setup

- Step 1: Download Lab materials from Moodle page → Extract the folder in PC.
- Step 2: Log in Microsoft onedrive using your student account https://onedrive.live.com/login/ and upload the folder above.
- Step 3: Launch the Excel online https://www.office.com/launch/excel?auth=2, which we will use for all lab sessions.

Exercise 1. Confidence intervals.

Exercise 1. Confidence intervals.

- Data set: testscores.xls
- About: A sample (n = 200) of student test scores in Math and English
 - Minimal text score is 0 and maximal test score is 100.

Part 1. Confidence interval for the mean (σ known).

We know that the population standard deviation σ_{μ} for variable "English" is equal to 4.6.

- Find the sample mean for the variable "English".
- 2 Find the standard error of the sample mean for the variable "English".
- 3 Find the margin of error at the 95% confidence level.
- 4 Find the 95% confidence interval for the mean.

Hint: SE = 0.33, ME = 0.64.

Where we currently are

Warning: package 'knitr' was built under R version 4.2.3

Part 2. Confidence interval for the mean (σ unknown).

We do not know the population standard deviation σ_{μ} for the variable "Math".

- 1 Find the sample mean of variable "Math".
- 2 Find the sample standard deviation of variable "Math", denote as s.
- \blacksquare Find (an estimate) for the standard error of the sample mean using s.
- 4 Find the margin of error at the 95% confidence level.
- 5 Find the 95% confidence interval for the mean.

Hint: $\widehat{SE} = 0.93$, ME = 1.83.

Where we currently are

Exercise 2. Confidence intervals.

Part 1. Confidence intervals.

Behave "as if" we did not know that the population mean is 2 and population variance is 1.

For each of the 10 samples, construct the 90% confidence interval for the sample mean.

Where we currently are

Part 2. Coverage.

- Now, we use again our knowledge about the true population mean. Using this information, fill in the blue row, indicating whether the confidence interval contains the true population mean (2).
- Update the table a few times (for example, by refreshing the website) to see what happens. How often is the true population mean contained in the confidence interval?

Exercise 3. Hypothesis testing.

Exercise 3. Hypothesis testing.

- Data set: testscores.xls
 - About: A sample (n = 200) of student test scores in Math and English, drawn from a larger population.
 - \diamond We know that the population standard deviation σ_{μ} for variable "English" is equal to 4.6.
- We want to test the following hypothesis at the 5% significance level:
 - \diamond H_0 : The population mean for variable "English" is equal to 73.5.
 - H₁: The population mean for variable "English" is different from 73.5.
 Run the test using either the "critical values approach" or the "p-value approach" depending on what you prefer.

Where we currently are

Procedure includes 5 steps:

- Null hypothesis *H*₀
- Alternative hypothesis *H*₁
- Test statistic
- Decision rule
- Conclusion

Denote μ the true population mean of English score.

 \square Null hypothesis H_0 :

 H_0 : The population mean of "English" is equal to 73.5.

 H_0 : $\mu = 73.5$

 \square Alternative hypothesis H_1 :

 H_1 : The population mean of "English" is different from 73.5.

 H_1 : $\mu \neq 73.5$

- Test statistic
- Decision rule
- Conclusion

Denote μ the true population mean of English score.

 \square Null hypothesis H_0 :

 H_0 : The population mean of "English" is equal to 73.5.

 H_0 : $\mu = 73.5$

 \square Alternative hypothesis H_1 :

 H_1 : The population mean of "English" is different from 73.5.

 H_1 : $\mu \neq 73.5$

 \Rightarrow This is a two-tailed test.

- Test statistic
- Decision rule
- Conclusion

Test statistic

Given the sample size and the sampling scheme, the sample average is asymptotically normally distributed:

$$Z = rac{ar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$$

We compute the z-score of the observation:

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{73.74 - 73.5}{4.6 / \sqrt{200}} \approx 0.738$$

Decision Rule

- We are conducting a two-tailed test (look again H_1)
- The significance level $\alpha = 0.05$
- Is the decision rule based on **critical values** or **p-value**?

Decision Rule - (1) Critical values approach

For two-tailed test, reject H_0 if

$$z=rac{ar{x}-\mu_0}{\sigma/\sqrt{n}}<-z_{rac{lpha}{2}} ext{ or } z=rac{ar{x}-\mu_0}{\sigma/\sqrt{n}}>z_{rac{lpha}{2}}$$

■ Compute critical value:

$$z_{\frac{\alpha}{2}} = z_{\frac{0.05}{2}} = z_{0.025} = 1.96$$
 (Excel function: = NORM.INV(0.975, 0, 1)).

■ Compare test statistic to critical value:

Notice that $z\approx$ 0.738, which is greater than $-1.96~(-z_{0.025})$ and less than $1.96~(z_{0.025})$

 \Rightarrow We DO NOT reject H_0 at $\alpha = 0.05$.

Decision Rule - (2) P-value approach

P-value corresponds to the probability of finding something more extreme than the observed result, under the assumption that the null hypothesis is true.

For two-tailed test, reject H_0 if $p - value \le \alpha$.

■ Compute p-value associated with the test statistics $z \approx 0.738$:

$$p-value = \Pr(Z \le -0.738) + \Pr(Z \ge 0.738) \approx 2 \times 0.23 = 0.46$$

(Excel function: = NORM.DIST(-0.738, 0, 1, TRUE))

■ Compare p-value to the chosen α : The p-value (0.46) is larger than $\alpha=0.05$. \Rightarrow We DO NOT reject H_0 at $\alpha=0.05$ (the same as Critical values approach).

Decision Rule - Two Equivalent Approaches

Conclusion

We maintain the null hypothesis. We do not reject the claim that the population mean is equal to 73.5.

Estimation

Hypothesis Testing

Hypothesis Testing

General procedure includes 5 steps:

- Null hypothesis *H*₀
- Alternative hypothesis *H*₁
- Test statistic
- Decision rule
- Conclusion

Hypothesis Testing

Procedure includes 5 steps:

- Null hypothesis *H*₀
- Alternative hypothesis *H*₁
- Test statistic
- Decision rule
- Conclusion

Procedure includes 5 steps:

 \square Null hypothesis H_0 :

$$H_0: \mu = \mu_0$$

where μ_0 is a hypothesized value.

- Alternative hypothesis *H*₁
- Test statistic
- Decision rule
- Conclusion

Procedure includes 5 steps:

 \square Null hypothesis H_0 :

$$H_0: \mu = \mu_0$$

where μ_0 is a hypothesized value.

 \square Alternative hypothesis H_1 :

Test	H_1	
Two-sided	$\mu \neq \mu_0$	
Lower-tail	$\mu < \mu_0$	
Upper-tail	$\mu > \mu_0$	

- Test statistic
- Decision rule
- Conclusion

Procedure includes 5 steps:

- Null hypothesis H₀
- Alternative hypothesis H₁
- Test statistic
- Decision rule:
 - ⋄ Is this a two-sided test or an one-sided (lower-tail/upper-tail) test? \implies Look again H_1 .
 - ♦ What is the **significance level** α ? ⇒ Usually chosen to be 0.01, 0.05 or 0.10.
 - ⋄ Is the decision rule based on critical values or p-value?
 ⇒ Distinguish...
- Conclusion

Decision Rule - Two Equivalent Approaches

Approach 1: Critical-value Test

Test	H_1	Reject H_0 if
Two-sided	$\mu \neq \mu_0$	$z^s < -z_{rac{lpha}{2}} ext{ or } z^s > z_{rac{lpha}{2}}$
Lower-tail	$\mu < \mu_0$	$z^{s}<-z_{\alpha}$
Upper-tail	$\mu > \mu_0$	$z^s > z_{\alpha}$

Approach 2: p-value Test

Test	H_1	p-value	Reject H_0 if
Two-sided	$\mu \neq \mu_0$	sum probabilities to the right of $ z^s $ and to the left of $- z^s $	$\text{p-value} < \alpha$
Lower-tail	$\mu < \mu_0$	probability to the left of z^s	$p\text{-}value < \alpha$
Upper-tail	$\mu > \mu_0$	probability to the right of z^s	$\text{p-value} < \alpha$

^{*}Note: p-value is probability of obtaining a test statistic more extreme (\leq or \geq) than the observed sample value given H_0 is true.

Procedure includes 5 steps:

- Null hypothesis *H*₀
- Alternative hypothesis H₁
- Test statistic
- Decision rule
- Conclusion:
 - Do you reject or or fail to reject the null hypothesis at the significance level α?

Relevant functions (I)

Launch the Excel online

https://www.office.com/launch/excel?auth=2

NORM.INV() To return the inverse of the normal cumulative distribution for the specified mean and standard deviation (*real number*).

= NORM.INV(probability,mean,standard_dev)

 $\mathsf{T.INV}()$ To return the t-value of the Student's t-distribution as a function of the probability and the degrees of freedom (real number).

= T.INV(probability,degrees_freedom)

NORMSDIST() To return the standard normal cumulative distribution (probability).

= NORMSDIST(z)

Relevant functions (II)

Launch the Excel online

https://www.office.com/launch/excel?auth=2

NORM.INV(RAND()) To draws a random variable from the normal distribution with the specified mean and standard deviation (*real number*).

= NORM.INV(RAND(),mean,standard_dev)