34 (A4B33OPT)

1 Metoda nejmenších čtverců

Metoda nejmenších čtverců je matematicko-statistická metoda používaná zejména při zpracování nepřesných dat (typicky experimentálních empirických dat získaných například měřením). Metoda je v základní podobě určená pro řešení nekompatibilních soustav lineárních rovnic (v obecnější podobě hovoříme o nelineární metodě nejmenších čtverců), díky čemuž je fakticky ekvivalentní tzv. lineární regresi.

 \dot{R} ešme nehomogenn soustavu linearnch rovnic Ax = b

A je matice o rozměrech $m \times n$ a soustava má řešení právě tehdy, když $b \in rngA$, jinak je soustava přeurčená (typicky, když m > n, víc rovnic než neznámých)

V našem případě řešíme přeurčenou soustavu, tedy hledáme takové x, že vzdálenost mezi body Ax a b je co nejmenší, tedy:

$$\min\{||Ax-b|| \mid x \in R^n\}$$
Místo normy klidně můžeme minimalizovat její čtverec: $||Ax-b||^2$

1.1 Použití na regresi:

Regrese je modelování zavislosti proměnné $y \in \mathbb{R}$ na proměnné $t \in \mathbb{T}$ regresn funkcí y = f(t, x), která je známá, až na parametry $x \in R^n$ Je dán soubor dvojic (t_i, y_i) , $i = 1, \ldots, m$, kde měření $y_i \in R$ jsou zatížena chybou. Úkolem je najít parametry x, aby y_i $f(t_i, x)$. Podle metody nejmenších čtverců tedy řešme.

$$\min_{x \in R^n} \sum_{i=1}^m (f(t_i, x) - y_i)^2$$

2 Analytické podmínky na lokální extrémy

2.1 Volné extrémy

V tomto případě hledáme lokální extrémy funkce.

Máme dva důležité typy bodů:

- stacionární bod bod, kde je funkce diferencovatelná a všechny parciální derivace jsou nulové.
- kritický bod bod, který je buď stacionární nebo v něm není funkce diferencovatelná.

2.1.1 Podmínka prvního řádu

Všechny kritické body jsou podezřelé z volného lokálního extrému.¹

 $^{^1{\}rm Když}$ počítáme příklad nejdříve uděláme všechny parciální derivace, následně je položíme rovny nule a vyřešíme soustavu rovnic => kritické body

2.1.2 Podmínky druhého řádu

- f má v bodě x ostré lokální minimum [maximum] na X právě tehdy, když Hessova matice druhých derivací f"(x) je pozitivně² [negativně³] definitní.
- \bullet Je-li f"(x) indefinitní^4, nemá f v x lokální minimum ani lokální maximum na X.
- Je-li f"(x) pozitivně [negativně] semidefinitní, nevíme o tomto bodě jestli je minimem, maximem nebo ani jedno z toho.

2.2 Vázané extrémy

V tomto případě hledáme lokální extrémy funkce za určité podmínky dané nejčastěji jinou funkcí nebo funkcemi.

2.2.1 postup

Extrémy hledáme za pomoci lagrangeových multiplikátorů λ , řešíme rovnici: $f'(x) + \lambda g'(x) = 0^{T5}$

3 Numerické metody pro optimalizaci bez omezení

U všech dále zmíněných případů se jedná o iterační numerické metody pro nalezení volného lokálního minima diferencovatelných funkcí na množině \mathbb{R}^n

3.1 Gradientní metoda

Metoda volí směr sestupu jako záporný gradient funkce f v bode x_k^6 . Tedy $x_{k+1} = x_k - \alpha_k (A^T A)^{-1} f'(x_k)^T$ Rychlost konvergence bývá často pomalá, kvůli cik-cak chování.

3.2 Newtonova metoda

Newtonova metoda je iteracn algoritmus na resen soustav nelinearnch rovnic. Lze ho pouzt i na minimalizaci funkce tak, ze hledame nulovy gradient.

 $^{^{2}}$ V příkladech hledáme vlastní čísla matice, když jsou všechna > 0, pak je poz. def.

 $^{^3{\}rm V}$ příkladech hledáme vlastní čísla matice, když jsou všechna <0, pak je neg. def.

 $^{^4{\}rm V}$ příkladech hledáme vlastní čísla matice, když existuje vlastní číslo, které < 0 a zároveň existuje vlastní číslo, které >0, pak je matice indefinitní

 $^{^5}$ Tedy v praxi si napíšeme zadání a podmínky si převedeme do tvaru, kdy je na jedné straně rovnice nula a roznásobíme je λ_1 $a\tilde{z}$ λ_n , tento výraz se nazývá Lagrangeova funkce, ze které spočítáme první derivace a vyřešíme soustavu rovnic, z níchž dostaneme body podezřelé z extrémů. (zjištění druhu extrému je podle skript i wernera složité a v OPT vůbec nebylo)

 $^{^6}$ tj. vždy jdeme nejstrmějším směrem dolů

3.2.1 Použití na soustavy nelineárních rovnic

Zobrazení g aproximujeme v okolí bodu x_k taylorovým polynomem prvního řádu $g(x) = g(x_k) + g'(x_k)(x - x_k)$

Při řešení soustavy rovnic najdeme další krok, jako $x_{k+1} = x_k - g'(x_k)^{-1}g(x_k)$

3.2.2 Použití na hledání lokálního minima

V tomto případě aproximujeme funkci f taylorovým polynomem druhého řádu.

Tedy newtonovu metodu lze použít pro hledání lokálního extremu dvakrát diferencovatelné funkce, když položíme $g(x)=f'(x)^T$, z toho dostaneme, že iterace:

$$x_{k+1} = x_k - f''(x_k)^{-1} f'(x_k)^T$$

3.3 Gaussova-Newtonova metoda

Snažíme se najít přibližné řešení ve smyslu nejmenších čtverců, což vede na minimalizaci funkce:

$$f(x) = ||g(x)||^2 = g(x)^T g(x)$$

Další krok hledáme následovně:

 $x_{k+1} = x_k - (g'(x_k)^T g'(x_k))^{-1} g'(x_k)^T g(x_k)$, což se dá v případě, že $g'(x_k)$ má plnou hodnost napsat, jako $x_{k+1} = x_k - g'(x_k)^+ g(x_k)$, kde $g'(x_k)^+$ je pseudoinverze.

Výhody: Vyhneme se počítání druhých derivací (hesiánů)

Nevýhody: Metoda má horší konvergenční chování než Newtonova metoda

3.4 Levenberg-Marquardtova metoda

Levenbergova-Marquardtova metoda je široce používané vylepšení Gaussovy-Newtonovy metody, které matici $g'(x_k)^T g'(x_k)$ nahrazuje matici $g'(x_k)^T g'(x_k)$ +

```
\mu_k I, kde \mu_k > 0 Tedy další krok hledáme následovně: x_{k+1} = x_k - (g'(x_k)^T g'(x_k) + \mu_k I)^{-1} g'(x_k)^T g(x_k) Zajímavosti:
```

- Pro malé μ_k se Levenbergova-Marquardtova metoda blíží Gauss-Newtonově metodě.
- Pro velké μ_k se Levenbergova-Marquardtova metoda blíží Gradientní metodě s délkou kroku ${\mu_k}^{-1}$.

Parametr μ_k měníme po každé iteraci.

- Pokud iterace snížila účelovou funkci, pak iteraci přijmeme a μ_k zmenšíme
- Pokud iterace nesnížila účelovou funkci iteraci zamítneme a μ_k zvětšíme

Zmenšování azvětšování μ_k děláme násobením a dělením konstantou.