Лекция 6. ПРОИЗВОДНАЯ ПО НАПРАВЛЕНИЮ

- 1. Производная по направлению.
- 2. Градиент.

1. Производная по направлению.

Рассмотрим функцию z=f(x,y), определенную и дифференцируемую в окрестности точки $P_0(x_0;y_0)$. и пусть $\vec{l}=(\cos\alpha;\cos\beta)$ — произвольный вектор плоскости, отличный от нулевого, где $\cos\alpha$ и $\cos\beta$ направляющие косинусы вектора \vec{l} . Проведем через точку $P_0(x_0;y_0)$ прямую Γ так, чтобы одно из ее направлений совпадало с направлением вектора \vec{l} .

Рис.1

Возьмем на направленной прямой точку $P_1(x_0 + \Delta x; y_0 + \Delta y)$. Тогда $P_0P_1 = \Delta l = \pm \sqrt{\Delta x^2 + \Delta y^2}$ есть приращение вдоль прямой Γ . Функция z = f(x,y) получит при этом приращение $\Delta z = f(x_0 + \Delta x; y_0 + \Delta y) - f(x_0; y_0)$.

Определение 1. *Производной по направлению* вдоль вектора \vec{l} функции z=f(x,y) в точке $P_0\big(x_0;y_0\big)$ называется предел отношения $\frac{\Delta z}{\Delta l}$ при $\Delta l \to 0$.

Обозначается:
$$\frac{\partial z}{\partial l} = \lim_{\Delta l \to 0} \frac{\Delta z}{\Delta l}$$
.

Теорема 1. Если функция z = f(x, y) дифференцируема в точке $P_0(x_0; y_0)$, то производная по направлению в этой точке вычисляется по формуле:

$$\frac{\partial z}{\partial l} = \frac{\partial z}{\partial x} \cos \alpha + \frac{\partial z}{\partial y} \cos \beta .$$

▶ Так как функция дифференцируема в точке $P_0(x_0; y_0)$, то ее приращение в этой точке вдоль прямой Γ можно записать в виде:

$$\Delta z = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y + \alpha_1 \Delta x + \alpha_2 \Delta y ,$$

где $\alpha_1 \to 0$ и $\alpha_2 \to 0$ при $\Delta l \to 0$.

Разделим обе части этого равенства на Δl , получим

$$\frac{\Delta z}{\Delta l} = \frac{\partial z}{\partial x} \frac{\Delta x}{\Delta l} + \frac{\partial z}{\partial y} \frac{\Delta y}{\Delta l} + \alpha_1 \frac{\Delta x}{\Delta l} + \alpha_2 \frac{\Delta y}{\Delta l}.$$

Учитывая, что (рис.1), имеем $\frac{\Delta x}{\Delta l} = \cos \alpha$, $\frac{\Delta y}{\Delta l} = \cos \beta$.

Поэтому

$$\frac{\Delta z}{\Delta l} = \frac{\partial z}{\partial x} \cos \alpha + \frac{\partial z}{\partial y} \cos \beta + \alpha_1 \cos \alpha + \alpha_2 \cos \beta.$$

Переходя к пределу при $\Delta l \rightarrow 0$, имеем:

$$\frac{\partial z}{\partial l} = \frac{\partial z}{\partial x} \cos \alpha + \frac{\partial z}{\partial y} \cos \beta . \blacktriangleleft$$

В частности, при $\alpha=0$ и $\beta=\frac{\pi}{2}$ имеем $\frac{\partial z}{\partial l}=\frac{\partial z}{\partial x}$, а при $\alpha=\frac{\pi}{2}$

и
$$\beta = 0$$
 имеем $\frac{\partial z}{\partial l} = \frac{\partial z}{\partial y}$.

Отсюда следует, что частные производные по переменным x и y являются частными случаями производной по направлению.

Пример. Вычислить производную по направлению функции

$$z = x^2 + xy^2$$

в точке $P_0(1;2)$ в направлении вектора $\overrightarrow{P_0P_1}$, где $P_1(3;0)$.

Pешение. Координаты вектора $\overrightarrow{P_0P_1}$ равны

$$\overrightarrow{P_0P_1} = (3-1;0-2) = (2;-2).$$

Тогда длина вектора ести

$$\overrightarrow{P_0P_1} = \sqrt{2^2 + (-2)^2} = 2\sqrt{2}$$
.

Координаты нормированного вектора есть

$$\vec{l} = \left(\frac{2}{2\sqrt{2}}; -\frac{2}{2\sqrt{2}}\right) = \left(\frac{\sqrt{2}}{2}; -\frac{\sqrt{2}}{2}\right).$$

Отсюда $\cos \alpha = \frac{\sqrt{2}}{2}$ и $\cos \beta = -\frac{\sqrt{2}}{2}$. Поэтому $\alpha = \frac{3\pi}{4}$.

Значения частных производных в точке $P_0(1;2)$ есть

$$\frac{\partial z}{\partial x}\Big|_{(1;2)} = (2x + y^2)\Big|_{(1;2)} = 6$$

$$\frac{\partial z}{\partial y}\Big|_{(1:2)} = 2xy\Big|_{(1:2)} = 4$$
.

Тогда производная по направлению равна

$$\frac{\partial z}{\partial l} = \sqrt{2} \ .$$

2. Градиент.

Определение 2. *Градиентом* функции z = f(x,y) в точке $P_0(x_0;y_0)$ называется вектор, координаты которого равны соответствующим частным производным $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$, взятым в точке $P_0(x_0;y_0)$.

Обозначается: grad $f = \left(\frac{\partial z}{\partial x}; \frac{\partial z}{\partial y}\right)$ или $\nabla f = \left(\frac{\partial z}{\partial x}; \frac{\partial z}{\partial y}\right)$.

Градиент ∇f функции z = f(x, y) можно записать с помо-

щью координатных векторов \vec{i} и \vec{j} в виде $\nabla f = \frac{\partial f}{\partial x}\vec{i} + \frac{\partial f}{\partial y}\vec{j}$.

Используя скалярное произведение векторов в координатной форме, можно записать

$$\frac{\partial z}{\partial x}\cos\alpha + \frac{\partial z}{\partial y}\cos\beta = \vec{l}_0 \cdot \nabla f ,$$

где
$$\vec{l}_0 = \frac{\vec{l}}{\left|\vec{l}\right|}$$
 , $\left|\vec{l}_0\right| = 1$.

С другой стороны, скалярное произведение векторов равно

$$\vec{l}_0 \cdot \nabla f = |\vec{l}_0| \cdot |\nabla f| \cdot \cos \varphi ,$$

где φ — угол между векторами \vec{l}_0 и ∇f . Сравнивая, получим $\frac{\partial z}{\partial l} = \left| \nabla f \right| \cdot \cos \varphi$. Отсюда следует, что $\frac{\partial z}{\partial l}$ имеет наибольшую длину при $\cos \varphi = 1$, т.е. когда направление вектора \vec{l} совпадает с направлением вектора ∇f .

Градиент ∇f функции z = f(x,y) в точке $P_0(x_0;y_0)$ характеризует направление и величину максимальной скорости возрастания этой функции в данной точке.

Замечания. **1.** Производная по направлению для функции трех переменных u = f(x, y, z) имеет вид:

$$\frac{\partial u}{\partial l} = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma ,$$

где $\cos \alpha$, $\cos \beta$, $\cos \gamma$ направляющие косинусы вектора \vec{l} .

2. Пусть функция $u=f(x),\; x=(x_1,x_2,...,x_n),\; n\geq 2$, определена и дифференцируема в точке $x_0=\left(x_1^0;x_2^0;...;x_n^0\right)$. И пусть задан n-мерный вектор $\vec{l}\neq 0$, единичный вектор $\vec{l}_0=\frac{\vec{l}}{\left|\vec{l}\right|}=\left(\cos\alpha_1;\cos\alpha_2;...;\cos\alpha_n\right),\;$ где $\cos\alpha_1,\;\cos\alpha_2,\;...,\;\cos\alpha_n$

направляющие косинусы в пространстве \mathbf{R}^n . Тогда существует производная по любому направлению и

$$\frac{\partial f(x_0)}{\partial l} = \frac{\partial f(x_0)}{\partial x_1} \cos \alpha_1 + \frac{\partial f(x_0)}{\partial x_2} \cos \alpha_2 + \dots + \frac{\partial f(x_0)}{\partial x_n} \cos \alpha_n.$$

2. Градиент $\operatorname{grad} f(x) = \nabla f(x)$ функции u = f(x), $x = (x_1, x_2, ..., x_n)$, $n \ge 2$, определяется по формуле:

grad
$$f(x) = \left(\frac{\partial f(x_0)}{\partial x_1}; \frac{\partial f(x_0)}{\partial x_2}; \dots; \frac{\partial f(x_0)}{\partial x_n}\right).$$

Пример. Найти градиент функции $u = x^2 + y^2 + z^2$ в точке P(1;1;1).

Решение. Находим частные производные

$$\frac{\partial f}{\partial x} = 2x$$
, $\frac{\partial f}{\partial y} = 2y$, $\frac{\partial f}{\partial z} = 2z$.

Тогда

$$\left. \frac{\partial f}{\partial x} \right|_{(1;1;1)} = 2, \left. \frac{\partial f}{\partial y} \right|_{(1;1;1)} = 2, \left. \frac{\partial f}{\partial z} \right|_{(1;1;1)} = 2.$$

Следовательно, градиент функции равен grad f(x) = (2;2;2).

Вопросы для самоконтроля

- 1. Сформулируйте определение производной по направлению. Докажите формулу $\frac{\partial z}{\partial l} = \frac{\partial z}{\partial x} \cos \alpha + \frac{\partial z}{\partial v} \cos \beta$.
- 2. Дайте определение градиента функции в пространствах ${\it R}^2$, ${\it R}^3$, ${\it R}^n$.