

Name: N.Srinivas Batch: COMETFWC036

Date: 29 August 2025

GATE 2010 CS, 6th Question Analysis

Question 6

The minterm expression of $F(P,Q,R) = PQ + Q\bar{R} + P\bar{R}$

Question Analysis:

Finding minterms of the expression $F = PQ + Q\bar{R} + P\bar{R}$

Step 1: Write the expression $F = PQ + Q\bar{R} + P\bar{R}$

Step 2: Expand each term to include all variables P, Q, R

$$PQ = PQ(R + \bar{R}) = PQR + PQ\bar{R}$$

$$Q\bar{R} = (P + \bar{P})Q\bar{R} = PQ\bar{R} + \bar{P}Q\bar{R}$$

$$P\bar{R} = (Q + \bar{Q})P\bar{R} = PQ\bar{R} + P\bar{Q}\bar{R}$$

Step 3: Combine all terms (removing duplicates) $F = PQR + PQ\bar{R} + \bar{P}Q\bar{R} + P\bar{Q}\bar{R}$ Note that $\bar{P}Q\bar{R}$ is the same as $\bar{P}Q\bar{R}$.

Step 4: Identify minterms explicitly from each product

Term	Minterms	(binary)	Decimal
\overline{PQ}	PQR = 111,	$PQ\bar{R} = 110$	7,6
$Q\bar{R}$	$PQ\bar{R} = 110,$	$\bar{P}Q\bar{R} = 010$	6,2
$P\bar{R}$	$PQ\bar{R} = 110,$	$P\bar{Q}\bar{R} = 100$	6,4

Step 5: Unique minterms

 m_2, m_4, m_6, m_7

Step 6: Final expression in sum of minterms notation

 $f = \sum m(2, 4, 6, 7)$

Hardware Implementation

The above problem is implemented and tested in hardware using Arduino UNO board. Here we implemented a FSM using the 7474 IC and blinked the LED as per truth table and verified the expression.

Required Components & Pin Connections

S.No	Component
1	Arduino Uno Board
2	Breadboard
3	7447 IC
4	LEDs (1)
5	Seven segment (1)
6	Resistors: 220Ω (2)
7	Jumper Wires
8	USB Cable

Component	Arduino Pin
Input P	Digital 2
Input Q	Digital 3
Input R	Digital 4
Output (sevenseg(a) - $7447(a)$)	'
Output (sevenseg(b) - $7447(b)$)	
Output (sevenseg(c) - $7447(c)$)	
Output (sevenseg(d) - $7447(d)$)	
Output (sevenseg(e) - $7447(e)$)	
Output (sevenseg(f) - $7447(f)$)	
Output $(sevenseg(g) - 7447(g))$	
Output F (LED)	Digital 5
Output clk (7474 clk)	Digital 13
GND	GND
VCC	5V

Logic Description

- Let initialize inputs A = 0, B = 0, C = 0
- The output expressions from state transition table are reduced using KMAP and are as follows

•
$$A = \bar{R}$$

•
$$D = 0$$

•
$$B = \bar{Q}R + Q\bar{R}$$

$$\bullet \ C = P\bar{Q} + P\bar{R} + \bar{P}QR$$

•
$$F = \bar{Q}R + \bar{P}R + PQ\bar{R}$$

State Transition Table

Present State		Next State			Output		
A	В	С	d	С	b	a	F
0	0	0	0	0	0	1	0
0	0	1	0	0	1	0	1
0	1	0	0	0	1	1	0
0	1	1	0	1	0	0	1
1	0	0	0	1	0	1	0
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	1
1	1	1	0	0	0	0	0

Code Uploading Steps

- 1. Create a Platform IO project
- 2. Write The code in main.cpp in src
- 3. Run the PIO project with command "pio run". It will compile the code and creates .hex file

- 4. Copy the .hex file to ArduinoDriod folder
- 5. connect the Arduino UNO to mobile with OTG cable
- 6. Upload the hex file using "upload precomplied" option
- 7. Observe the ouput and verify the expression

Experimental Truth Table

Α	В	С	F (LED Output)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Conclusion

- From Experimental Truth Table F will be 1 when $F = P.Q + Q.\overline{R} + P.\overline{R}$.
- This matches option (A) from the original GATE question.
- The hardware experiment confirms the circuit's theoretical logic.