General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

CR 151209

(NASA-CR-151209) ESTIMATING NORMAL MIXTURE PARAMETERS FROM THE DISTRIBUTION OF A REDUCED FEATURE VECTOR (Texas A&M Univ.) 38 p HC A03/MF A01 CSCL 12A

N77-18812

G3/64 Unclas G3/64 17289

DEPARTMENT OF MATHEMATICS

TEXAS A&M UNIVERSITY
COLLEGE STATION, TEXAS

ESTIMATING NORMAL MIXTURE PARAMETERS FROM THE DISTRIBUTION OF A REDUCED FEATURE VECTOR

bу

L. F. Guseman, Jr., B. C. Peters, Jr., and Manot Swasdee

Department of Mathematics Texas A&M University

Report #11

Prepared For

Earth Observations Division NASA/Johnson Space Center Houston, Texas Contract NAS-9-14689-4S

November, 1976

ESTIMATING NORMAL MIXTURE PARAMETERS FROM THE DISTRIBUTION OF A REDUCED FEATURE VECTOR

L. F. Guseman, Jr., B. C. Peters, Jr., and Manot Swasdee

INTRODUCTION

Let X be a random n-vector with density function $f(x) = \sum\limits_{i=1}^m \alpha_i f_i(x)$, where $\alpha_i > 0$, $\sum\limits_{i=1}^m \alpha_i = 1$ and $f_i(x) = N(x_i, \mu_i, \Sigma_i)$, the n-variate normal density with mean μ_i and covariance matrix Σ_i . Let B be a real k×n matrix of rank k and let Y = BX. We are interested in estimating some or all of the parameters α_i , μ_i , Σ_i from information about the distribution of Y. The density for Y is $p(y) = \sum\limits_{i=1}^m \alpha_i p_i(y)$ where $p_i(y) = N(y, B\mu_i, B\Sigma_i B^T)$. We will actually estimate the noncentral second moments $S_i = E\{xx^T | i\}$ rather than the covariance matrices.

Let $\{x_i\}_{i=1}^N$ be a sample of independent observations of X and let us assume for the moment that the α_i as well as the transformed parameters $B\mu_i$ and $B\Sigma_i B^T$ are known. Define estimates $\hat{\mu}_i$, \hat{S}_i of μ_i and S_i as

(1a)
$$\hat{\mu}_{i} = \frac{1}{N_{j}} \sum_{j=1}^{N} \frac{p_{i}(y_{j})}{p(y_{j})} \times_{j}$$

(1b)
$$\hat{s}_{i} = \frac{1}{N} \sum_{j=1}^{N} \frac{p_{i}(y_{j})}{p(y_{j})} \times_{j} \times_{j}^{T}$$

where $y_j = Bx_j$, j = 1,...,N.

Then,

(2a)
$$\bar{\mu}_{i} = E\{\hat{\mu}_{i}\} = E\left\{\frac{p_{i}(Bx)}{p(Bx)} \times \right\}$$

(2b)
$$\vec{S}_{i} = E\{\hat{S}_{i}\} = E\{\frac{p_{i}(Bx)}{p(Bx)}xx^{T}\}$$
.

Note that $B\bar{\mu}_i = B\mu_i$, $B\bar{S}_iB^T = BS_iB^T$. The biases of $\hat{\mu}_i$ and \hat{S}_i , as measured in arbitrary norms, satisfy

(3a)
$$||\mu_{i} - \overline{\mu}_{i}||^{2} \leq E \left\{ \left(\frac{p_{i}(Bx)}{p(Bx)} - \frac{f_{i}(x)}{f(x)} \right)^{2} \right\} E \left\{ ||x||^{2} \right\}$$

$$= \left[E \left\{ \frac{f_{i}(x)^{2}}{f(x)^{2}} \right\} - E \left\{ \frac{p_{i}(Bx)^{2}}{p(Bx)^{2}} \right\} \right] E \left\{ ||x||^{2} \right\}$$

(3b)
$$\left|\left|S_{i} - \overline{S}_{i}\right|\right|^{2} \leq \left[E\left\{\frac{f_{i}(x)^{2}}{f(x)^{2}}\right\} - E\left\{\frac{p_{i}(Bx)^{2}}{p(Bx)^{2}}\right\}\right] E\left\{\left|\left|xx^{T}\right|\right|^{2}\right\}.$$

If we define the overall bias by

bias² =
$$\sum_{i=1}^{m} \alpha_i^2 \left[||\mu_i - \bar{\mu}_i||^2 + ||S_i - \bar{S}_i||^2 \right]$$

then

(4) bias²
$$\leq$$
 K [H - H_B]

where

$$K = E\{||x||^2\} + E\{||xx^T||^2\}$$
,

(5)
$$H = \sum_{i=1}^{m} E \left\{ \frac{\alpha_i^2 f_i(x)^2}{f(x)^2} \right\}$$
, and

(6)
$$H_{B} = \sum_{i=1}^{m} E \left\{ \frac{\alpha_{i}^{2} p_{i} (B_{X})^{2}}{p(B_{X})^{2}} \right\} .$$

The expression H (or H_B) has been discussed by Devijver [1] as a measure of the separation of the m pattern classes. H is related to the Bayes probability of correct classification, PCC, by the inequalities

(7)
$$H \leq PCC \leq \frac{1}{m} + \frac{m-1}{m} \sqrt{\frac{m H-1}{m-1}} \leq \sqrt{H}$$

Thus the quality of the estimate is related to the discriminatory power lost in the transformation Y = BX, as measured by the difference $H - H_B$. The following theorem is proved in Appendix A.

Theorem: If PCC = PCC_B then H = H_B and the estimators $\hat{\mu}_i$, \hat{s}_i are unbiased.

2. APPLICATIONS

Even if the estimators $\hat{\mu}_i$ \hat{S}_i are biased it is possible that they may be near enough to the true parameters that the locally contractive successive substitutions procedure UHMLE described in [4] will find the

maximum likelihood estimates in very few iterations. There is some evidence that most of the information required to discriminate among agricultural classes (at least between wheat and non-wheat) lies in a fixed two dimensional subspace of 4-channel LANDSAT data space, [2], [5]. Thus there may be a good a priori choice of B, namely one whose rows span this two dimensional subspace.

Once B is chosen, the transformed densities $p_i(y)$ and the α_i may be estimated by maximum likelihood. Whether this task is more or less difficult than estimating the untransformed class densities $f_i(x)$ directly depends primarily on how well B preserves the separation of the classes. Then, given the estimates of α_i and $p_i(y)$, $\hat{\mu}_i$ and $\hat{\Sigma}_i$ can be calculated and used as starting values for UHMLE in estimating α_i , μ_i , and Σ_i . Figure 1 gives a flow diagram for the procedure.

Figure 1. General Flow Diagram

RESULTS

A FORTRAN program (ESTMIX) for implementing the procedure outlined in Section 2 has been written and tested at Texas A&M University. Data used was obtained from the simulated LACIE segments 1851-1854 derived from Hill County statistics for ten agricultural subclasses [3], and appears in Appendix B. The measurements \mathbf{x}_j consisted of 1000 vectors randomly chosen from segment 1851 representing subclasses 1, 3, 5, 7, and 10 (herein referred to as subclasses 1-5) in equal proportions.

In the first experiment, the vectors $\mathbf{x_j}$ are 4-vectors from pass 3. In each run, starting values for the means and covariances are those for the same subclasses in each of the four segments 1851-1854, pass 3. The matrix B is either a 1×4 matrix B_C computed from the input means and covariances using LFSPMC (Version 2) or the 2×4 matrix

$$B_{K} = \begin{pmatrix} .43258 & .63248 & .58572 & .26414 \\ \\ -.28972 & -.56199 & .59953 & .49070 \end{pmatrix}$$

which was derived from physical considerations by R. Kauth [2,5]. The computed 1×4 B's are given in Appendix B.

In the second experiment, the vectors $\mathbf{x}_{\mathbf{j}}$ are 16 channel measurements, the starting means are from one of the four segments, and the starting covariances are block diagonal matrices with the 4×4 covariance matrix from each pass placed in the appropriate position on the diagonal. That is, the 16 channel starting covariances were constructed as if

there were no correlation between separate passes. The matrix B is either a 1×16 matrix \hat{B} , computed from the input parameters using LFSPMC, or

$$\hat{B}_{K} = \begin{pmatrix} B_{K} & & & \\ & B_{K} & & 0 \\ & 0 & & B_{K} \end{pmatrix}_{8\times16}$$

where B_{K} is the 2×4 matrix used in the first experiment. The computed 1×16 B's are given in Appendix B. The biases obtained for each of the above runs are listed in Figure 2.

Feature Selection	Data Set	bias ²	
Üsed	Used	ô	Θ(MLE)
	1851	1691.46	4.70
LFSPMC	1852	2648.44	736.78
1×4 B's	1853	6779.11	12422.55
(Pass 3)	1854	6757.28	12369.87
	1851	62.19	5.73
Kauth	1852	66.62	6.64
2×4 (Pass 3)	1853	66.20	6.69
	1854	67.10	6.88
	1851	4898.90	138.33
LFSPMC	1852	4734.30	138.33
1×16	1853	11195.32	13491.70
(4 Passes)	1854	4870.29	138.33
	1851	117.92	138.33
Blocked	1852	117.92	138.33
Kauth	1853	21594.70	21387.61
8 16	1854	117.92	138.33
(4 Passes)	· · · · · · · · · · · · · · · · · · ·		

Figure 2. Biases For Runs

APPENDIX A

PROOF OF THEOREM

That $H = H_B$ when PCC = PCC_B follows from

Theorem: If
$$PCC = PCC_B$$
 then $\frac{p_i(Bx)}{p(Bx)} = \frac{f_i(x)}{f(x)}$ for $i = 1, ..., m$.

<u>Proof:</u> Let C be an $(n-k) \times n$ matrix such that $(\frac{B}{C})$ is nonsingular.

Let y = Bx, z = Cx and write f_i as a joint density $f_i(y,z)$, so

that
$$p_i(y) = \int_{R} f_i(y,z)dz$$
.

Then,

$$PCC = \sum_{i=1}^{m} \alpha_{i} \iint_{R_{i}} f_{i}(y,z) dy dz$$

and

$$PCC_{B} = \sum_{i=1}^{m} \alpha_{i} \iint_{R_{i}(B)} f_{i}(y,z) dzdy.$$

where $R_i = \{(y,z) | \alpha_i f_i(y,z) > \alpha_i f_j(y,z) \text{ for each } j \neq i \}$ and

$$R_{i}(B) = \{(y,z) | \alpha_{i}p_{i}(y) > \alpha_{j}p_{j}(y) \text{ for each } j \neq i\}$$
.

Since $PCC = PCC_B$,

 $\alpha_{i}p_{i}(y)>\alpha_{j}p_{j}(y) \ \ \text{for each } j\neq i \ \ \text{iff } \alpha_{i}f_{i}(y,z)>\alpha_{j}f_{j}(y,z) \ \ \text{for each } j\neq i$ for $i=1,\ldots,m.$

Now, $f_i(y,z)$ can be written as

$$f_i(y,z) = p_i(y)q_i(z|y)$$
,

where the conditional density $q_i(z|y)$ is normal with mean

 $\begin{array}{lll} C_{\mu_{j}} + C_{\Sigma_{j}}B^{T}(B_{\Sigma_{j}}B^{T})^{-1}(y-B_{\mu_{j}}) & \text{and covariance} & C_{\Sigma_{j}}C^{T} - C_{\Sigma_{j}}B^{T}(B_{\Sigma_{j}}B^{T})^{-1}B_{\Sigma_{j}}C^{T} \\ & \text{Assuming first that} & \alpha_{j}p_{j}(y) > \alpha_{j}p_{j}(y) & \text{for each } j \neq i \text{ , we have} \end{array}$

$$\frac{q_{j}(z|y)}{q_{j}(z|y)} > \frac{\alpha_{i}p_{j}(y)}{\alpha_{i}p_{j}(y)} \quad \text{for each } z, j \neq i .$$

This inequality implies that

$$cov(z|y,i) > cov(z|y,j)$$
 for each j.

Since cov(z|y,j) is independent of y, all the covariances

$$C\Sigma_{\mathbf{j}}C^{\mathsf{T}} - C\Sigma_{\mathbf{j}}B^{\mathsf{T}}(B\Sigma_{\mathbf{j}}B^{\mathsf{T}})^{-1}B\Sigma_{\mathbf{j}}C^{\mathsf{T}}$$

are equal. This in turn implies that the means

$$C\mu_{j} + C\Sigma_{j}B^{T}(B\Sigma_{j}B^{T})^{-1}(y-B\mu_{j})$$

are equal. Hence, $q_{i}(z|y) = q(z|y)$ is independent of i . It follows that

$$\frac{p_i(y)}{p(y)} = \frac{f_i(y,z)}{f(y,z)} \quad \text{for all } y,z \ .$$
 QED.

Remark: From the proof of the theorem, it follows that

$$\Sigma_{i} - \Sigma_{i}B^{T}(B\Sigma_{i}B^{T})^{-1}B\Sigma_{i}$$

$$\mu_i - \Sigma_i B^T (B \Sigma_i B^T)^{-1} B \mu_i$$

and

$$\Sigma_{\mathbf{i}} B^{\mathsf{T}} (B \Sigma_{\mathbf{i}} B^{\mathsf{T}})^{-1}$$

are all independent of i. It can be shown that $PCC = PCC_B$ if and only if this condition holds.

APPENDIX B

1851			
-0.095043	0.354845	0.169794	-0.092728
-0.130729	0.349954	0.191296	0.007083
-0.206965	0.219549	0.311299	0.382855
-0.399715	0.288661	0.178790	0.204539
1852			
-0.085406	0.293773	0.142224	-0.074233
-0.108779	0.347254	0.191208	0.008994
-0.215696	0.226417	0.319528	0.394695
-0.425490	0.305334	0.187362	0.215776
1853			
-0.075274	0.282277	0.135977	-0.074587
-0.138605	0.371507	0.203038	0.007567
-0.214246	0.227860	0.323095	0.397893
-0.407879	0.295570	0.183850	0.209836
1854			
-0.073043	0.275001	0.132555	-0.072766
-0.125104	0.356312	0.203318	0.004111
-0.201572	0.221260	0.311475	0.394503
-0.431287	0.312728	0.192507	0.221597

1851, PASS	3		
0.425418	-0.177865	0.710975	0.530941
1852, FASS	3		
0.460703	-0.185813	0.696812	0.517378
1853, PASS	3		
0.385670	-0.161554	0.734818	0.534042
1854, PASS	3		
0.423826	-0.177800	0.711105	0.532061

B-Vectors (1×4) Obtained From Feature Selection

P	A	S	S	1
	-	-		•

0.500800	0.647300	0.441000	0.511400
0.647300	1.426999	0.948200	0.963600
0.441000	0. 948200	1.345300	1.202100
0.511400	0.963600	1.202100	1.810900
PASS 2			
0.833100	1.110100	0.311000	-0.005100
1.110100	2.978299	0.218700	-0.602200
0.311000	0.216700	1.622299	1.610399
-0.005100	-0.602200	1.610399	2.896099
PASS 3			
1.996699	2.644300	0.548700	-0.895800
2.544300	4.385799	0.828300	-1.501300
0.548700	0.828300	1.248699	0.826700
-0,895800	-1.501300	0.826709	2.694300
PASS 4			
3.1 22 800	4. 397499	0.967400	-1.430699
4.397499	6.988999	1.521399	-2.182500
0. 967400	1.521399	1.320000	0.454100
-1.430699	-2.1 82500	0.464100	2.491199
MEAN VECTOR	FOR CLASS	1 ,	
20.810287	22.484497	23.706894	22.901794
19.403992	19. 288788	26 122986	26.973190
16.688995	15.008100	26.094193	30.928589
16.753992	15. 2361 99	25.591492	29.169586

PASS 1

0.383500	C.176800	0.151400	0.152900
C.175800	0.838600	C.185000	0.260100
0.151400	0.185000	0.642100	0.481700
0.152900	C. 260100	0.481 700	0.724500
PASS 2			
0.475900	0.198900	0.109202	0.053700
0.198900	0.660000	0.004600	-0-141400
0.109200	0.004600	1.639700	2.162700
0.053700	-0.141400	2.162700	3.690800
PASS 3			
0.834600	0.756300	0.103000	0.139500
0.756300	1.639199	2.029402	0.224700
0.103000	0.029400	0.865300	0.518100
0.139500	0.224700	0.518100	0.774900
PASS 4			
0.624200	-1.132600	-0.169900	2.476700
-1.132600	12.094800	1.815499	-21.455994
-0.159900	1.815499	1.367599	-2.237700
2.476700	- 21 • 455994	-2.237700	41.762994
MEAN VECT	OR FOR CLASS 2		
19.121399	20.448792	19.709299	18.203690
21.427794	23.562988	23.272300	21.638885
22.308990	25. 276199	25. 340500	24.694397
21.022888	22.207993	22.212585	22.555496

PASS 1

1.229699	1 . 424100	1.198000	1.159100
1.424100	2. 821 500	2.070200	2.065399
1.188000	2.070200	2.433399	2.158799
1.159100	2.068399	2.158799	2.648100
PASS 2			
1.418500	1.598300	1.124200	0.0
1.598300	2.904300	1.397300	0.0
1.124200	1.397300	1.520000	0.0
			•••
PASS 3			
4.774400	8.580299	0.799000	-2,181199
8.580299	16. 995987	1.362599	-4.740299
0.799000	1.362599	1.202999	0.594800
-2.181199	-4.747299	0.594800	3.759299
PASS 4			
3.268999	4. 2108 39	1.372000	0.345100
4.210899	6.220400	1.674500	0.135500
1.372000	1.674500	2.851399	2.877599
0.346100	0.136510	2.890599	4.449200
MEAN VECTOR	FOR CLASS 3		
21.925995	24.579895	23.612595	21.899994
22.217392	24. 66 74 72	24.858887	23.187500
21.144699	21.870193	29.094085	30. 987488
16.500290	13.585899	30 • 154 388	35.137497

PASS 1

0 - 61 3000	0.542600	0 . 421 700	0. 373400
0.542600	1.180400	0.565600	0.435100
0.421700	0.565600	0 . 76 54 00	0.472800
0.378400	0.435100	9.472800	0.761400
PASS 2			
0.892600	0.566400	0.710300	0.630600
0.566400	1.025900	0.640400	0.629600
0.710300	0.640400	1.391399	
0.629600	0.608900	1.248600	1.288600 2.121599
PASS 3			
0.516100	0.464300	0.375300	0.402200
0.464300	1.020700	0.350000	0.438200
0.375300	0.350000	0.957810	0.826000
0.402200	C. 438200	0.826000	1.292100
PASS 4			
0.949300	1.243299	-0.082000	-0.812100
1.243299	2. 726500	-0.407800	-1.901500
-0.082000	-0.407800	0.871100	1.043699
-0.812100	-1.901500	1.043699	2.817599
MEAN VECTOR	FOR CLASS 4		
20.258856	22.083496	21.609192	20.473694
20.875992	22.595893	23.177887	22.153488
19.757599	21.715790	21 • 68 96 97	21.206085
20.797592	22. 788391	22.246689	20.846497

PASS 1	p	4	S	S		1
--------	---	---	---	---	--	---

0.745800	0.603100	0.414300	0.524400
0.603100	1.247600	0.414300	0.570600
C.414300	0. 41 4300	0.816100	0.728 209
0.524400	0.570600	0.728900	1.324100
PASS 2			
0.446000	0. 292400	0.393200	0.218300
0.292400	C. 771500	0.398300	0.351900
0.393200	0.398300	1.057099	0.510200
0.218300	0.351900	0.510200	0.907800
PASS 3			
0.514900	0.294500	0.034700	0.005300
0.294500	0.873900	0.176100	0.206100
0.034700	0.176100	0.513100	0.395600
0.005300	0.205100	0.395600	0.907800
PASS 4			
1.388200	1.515800	0.162700	-0.394800
1.515800	2.308499	0.024100	-0.627730
0.162700	0.024100	0.934100	0.850200
-0.39480C	-0.627700	0.850200	1. 918400
MEAN VECTOR	FOP CLASS 5		
19.19758 4	18 622192	20.090500	19.319992
19.376190	18. 483292	21.777100	21.470996
19.088486	17.927689 17.401886	22.531189	23.519989

PASS 1

1.055800	1.125800	0 . 76 3800	C.881600
1.126800	2.459699	1 . 625299	1.643800
0.753800	1.625299	2.294000	2.040199
0.891600	1.643800	2.040199	3.059099
PASS 2			
0.908700	1.209499	0.338800	-0.005600
1.209499	3.241199	0.238000	-0.654900
0.338800	0.238000	1 . 765499	1.751599
-0.005600	-0.654990	1.751599	3.148100
PASS 3			
2.148000	2.841399	0.566222	-0.061400
2.841399	4. 70 71 99	0.589200	-0.961400
0.589300	0.888500	1 • 338699	-1.609500 0.885700
-0.961400	-1.609500	0.885700	2.885099
P455 4			
3.296000	4.637799	1.050000	-1.507999
4.637799	7.365100	1.60 2900	-2.298699
1.020000	1.602900	1.390499	0.488700
-1.507999	-2.298699	0.488700	2.622199
MEAN VECTOR	FOR CLASS 1		
26.925697	29. 083693	30.676392	29.618088
26.925697 20.363892	29.083693	30.676392 27.294693	29.618088 28.141388

Segment 1852--Class Statistics

0.674600	0.307800	0.262200	0.263500
0.307800	1 . 444 300	9.317100	0.443800
0.262200	0.317100	1.094899	0.817600
C.26350C	0.443800	0.817600	1.223900
PASS 2			
0.519100	0.216700	0.119000	0.058500
0.216700	0. 718300	0.005000	-0.153800
0.119000	0.005000	1.784499	2. 352300
0.058500	-0.1538CC	2.352300	4.011900
PASS 3			
0.897900	0.812700	0.110600	0.149700
0.812700	1.759399	2.031500	0.240900
0.110600	0.031500	0.927600	0.555100
0.149700	0.240900	C • 555100	0.829800
PASS 4			
0.658800	-1.1 94502	-0.170000	2 610400
-1.194500	12.745799	1.912900	2.610499 -22.597595
-0.179200	1.912900	1 • 440599	-2.356299
2.610499	- 22. 597595	-2.356297	43. 959198
MEAN VECT	OR FOR CLASS 2		
24 504-05			
24.586685	26.41 3696	25.456085	23.511887
22.476898	24.650497	24 . 279000	22.579788
23.217499	26.243088	26 • 272888	25.570496
21.557495	22.847286	22.824387	23.153091

P			

2.16	3099	2.479199	2.057500	1.998099
2.47	9199	4.861199	3.548300	3.528700
2.05	7500	3.548300	4.149400	3.664000
1.99	8079	3. 528700	3.664000	4.473300
PASS	2			
1.54	7199	1.741400	1.224799	0.958500
1.74	1400	3.160600	1.520599	1.115299
1.22	4799	1.520599	1.654200	C. 910500
0.95	8500	1.115299	0.910500	1.185900
PASS	3			
5.13	5200	9. 219899	0.858000	-2.341100
	9899	18.241699	1.461599	-5.081800
	8022	1.461599	1.289700	0.744400
-2.34	1100	-5. 081 800	0. 744400	4.025499
PASS	4			
3.45	0399	4.441000	1 . 446699	0.364700
4.44	1000	6. 555200	1.764299	0.143700
1 . 44	6579	1.764299	3.003699	3.047799
0.36	4700	0.143700	3.043799	4.683200
MEAN	VECTOR	FOR CLASS 3		
28.40		31.836197	30.553192	28, 31 60 86
23.30		25.795395	25.975998	24.194397
22 24	9796	22. 71 4497	30.159286	32.082596
17.01		13.989200	300.0	. 2 2 3 4 0

P	A	5		1

1.078300	0.944600	0.730300	0.652300
0.944600	2.033799	0. 96 9400	0.742300
0.730300	0. 969400	1.325302	0.802500
0.652300	0.742300	0.802500	1.286200
PASS 2			
0.973600	0.517100	C. 77 3900	0.685500
0.517100	1.116400	0.697000	0.662300
0.773900	0.697000	1.514299	1.401500
0.685500	0.662300	1.401500	2.306199
PASS 3			
0.562800	0.498900	2.403100	0.431600
0.499901	1.095500	0.375500	0.469700
0.403100	0.375500	1.026799	0.885000
0.431500	0.469700	0.865000	1.343599
PASS 4			
1.202000	1.311299	-0.086400	-C. 855900
1.311299	2.873300	-2.429600	-2.002700
-0.086400	-0.429600	0.917700	1.099000
-0.855900	-2.002700	1 • 099000	2.965799
MEAN VECTUR	FOR CLASS 4		
26.208694	24. 559296	27.936996	26.462296
21.901199	23. 642685	24.222397	23.116394
20.571198	22.554489	22.492889	21.960785
21 • 425995	23.436096	22.859390	21.399689

1 . 31 1 799	1.049999	0.717600	0.903900
1.049999	2.145400	0.710200	0.973400
0.717500	0.710200	1.301600	1.237100
0.903900	0.973400	1.237100	2.236799
PASS 2			
0.486500	0.318600	0.428400	0.237700
C. 318600	0.839600	0.433400	0.382700
C.428400	0.433400	1.150399	0.555000
0.237700	0.382700	0.555000	0.986800
PASS 3			
0.553600	0.316400	0.037300	0.005600
0.316400	0.938000	0.188900	0.221000
0.037300	0.186900	0.550100	0.423900
0.005600	0.221000	0.423900	0.972100
PASS 4			
1.465199	1.598700	0 171400	
1.598700	2. 432799	0.02540	-0.416100
0.171500	0.025400	0.984000	-0.561100
-0.416100	-0.661100	0.874200	0.874200 2.091299
MEAN VECTOR	FOR CLASS 5		
24.787796	24.016098	25.953888	24.962799
20.334970	19.351288	22.761093	22,414200
19.877197	18.630096	23.364090	24,355286
19.700699	17.906494	23.344994	23,609085

-	- 44	-	-	-
	•	•	•	•
	•	-	-	- 1

1.220699	1. 300200	860000	1.014799
1.300200	2.833819	,870500	1.890100
0.880000	1.870500	2.636000	2. 342199
1.014799	1.890100	2. 34 21 99	3.508900
PASS 2			
0.931300	1.238999	0.347000	-0.005700
1.238999	3.319200	0.243700	-0.670500
0.347000	0.243700	1 . 80 7300	1.792700
-0.005700	-C.670500	1.792700	3. 221499
PASS 3			
2.341000	3.092299	0.641300	-1.045600
3.092299	5.115499	0.965600	-1,747899
0.541300	0.965500	1 . 454900	C. 961900
-1.045600	-1. 747899	0.961900	3.131000
PASS 4			
3.770300	5.293900	1.163699	-1.716800
5.293900	8. 389099	1.824900	-2.614799
1.163699	1.824900	1.582199	0.555500
-1.718800	-2.614799	0.555500	2.977799
MEAN VECTOR	FOR CLASS 1		
31.791595	33. 245285	34.223495	22-107791
24.447388	21.613495	28.461594	29.315788
19.501785	17. 256485	28 . 852396	33.674500
18.789597	16.955688	28.130588	31.962585

Segment 1853--Class Statistics

PASS 1

0.779300	0.255200	0.302100	0.303400
0.355200	1.665400	0.364900	0.510300
0.302100	0.364900	1.258200	0.938700
0.303400	0.510300	0.938700	1.40 3799
PASS 2			
0.531900	0.222000	0.121900	0.059900
0.222000	C. 735600	0.005100	-0.157400
0.121900	0.005100	1.826699	2.407499
C. 059900	-0.157400	2 • 40 74 99	4.105399
PASS 3			
0.378500	0.884500	0.120400	0.162800
0.884500	1.912000	0.034300	0.261600
0.120400	0.034300	1.008100	0.605800
0.162800	0.261600	0.608800	0.900500
PASS 4			
0.753700	-1.363500	-0.204400	2.975300
-1.363500	14.517799	2.177699	- 25.700790
-0.204400	2.177699	1.639299	-2.673499
2. 375300	- 25. 700790	-2.678499	49.921097
MEAN VECTO	FOF CLASS 2		
29.384293	30.376587	28.627686	25.557588
26.566355	26.125595	25.410385	23.690795
25.587199	28.346100	28.038788	26.953995
23.483597	24. 593887	24.481186	24.731293

2.498599	2.860600	2.370399	2.299899
2.860600	5.603000	4.083599	4.057300
2.370399	4. 283599	4 . 76 80 00	4.206499
2.299899	4.057300	4.206499	5.131100
PASS 2			
1-595600	1. 797900	1 2544.00	0.001400
1.585600	1. 783899	1.254409	0.981600
1.254499	3. 236699 1.556899	1.556839	1.141700
0.381600	1. 141 700	1.693399	0.931900
		7.431.497	1.21 3344
PASS 1			
5.597699	10.033999	0.933800	-2.546100
10.03 1999	19.824097	1.588499	-5.518800
C.93380C	1.598499	1.401600	0.808400
-2.546100	-5.51 8800	0.808400	4, 368600
PASS 4			
3.946899	5.069300	1 • 5504 99	0.415700
5.069300	7.466599	2.008599	0.163500
1.650499	2.008599	3.417800	3.459999
0 • 41 5700	0.163500	3.459999	5. 31 82 99
MEAN VECTOR	FOR CLASS 3		
33. 331 989	76 - 198196	34.091492	30.712891
27.421997	27. 284286	27.127396	25.324097
24.326385	24.657496	32.090393	33. 737991
18.514099	15.147599	33.176193	38.487396

1.245500	1.089999	0.841300	0.750800
1.099999	2. 344199	1.115700	0.853500
0.841300	1.115700	1.499900	0.921400
0.750800	0.853500	0.921400	1.475300
PASS 2			
0.997800	0.632200	0.792700	0.702000
0.632200	1.143299	0.713600	0.678000
0.792700	0.713600	1.550099	1.434400
0.702000	0.678000	1 . 43 44 00	2.359900
PASS 3			
0.722300	0.542900	0.438700	0.469400
C.542900	1.190499	0.408100	0.510100
0.438700	0.408100	1.115999	0.961100
0.469400	C. 510100	0.961100	1.501499
PASS 4			- 111
1.146199	1.496799	-0.098600	-0.975500
1.496799	3.272699	-0.499100	-2.277699
-0.098600	-0.499100	1.044200	1.249299
-0. 975500	-2.277699	1 • 249299	3.367999
MEAN VECTOR	FOR CLASS 4		
31.019989	32.683191	31 - 287094	28.727493
26.003693	25.105789	25.353088	24.237490
22. 424493	24.500793	24.098099	23.193588
23.235992	25.229797	24.518494	22.862793

PASS 1

1.515200	1.211499	0.826700	1.040500
1.211499	2.477500	0 . 61 7300	1.119200
0.826700	0.817300	1.599000	1.420300
1.040500	1.119200	1 • 420 300	2.565700
PASS 2			
0.498600	0.326400	0.438800	0.243400
0.326400	0.859800	0.443800	0.391800
0.438810	C. 443800	1.177699	0.568000
0.243400	0.391800	0.568000	1.009800
PASS 3			
0.503420	r. 34440r	0.040600	0.006100
0.344400	1.019300	0.205300	0.240000
0.040600	0.205300	0.597900	0.460 300
0.006100	0.240000	0.450300	1.054899
PASS 4			
1.575000	1.824800	0.195709	-0.474300
1.824870	2.771000	0.058300	-0.751800
0.195700	0.028900	1.119699	0.993700
-0.474300	-C. 751 800	0.993700	2.293099
MEAN VECTOR	FOR CLASS 5		
29.492996	27.802490	29.161285	27.121597
24.417999	20.763092	23.874588	23.523193
22. 199991	20.409698	25.006393	25.687988
21.390686	19. 328293	25.036392	25.217295

1.330299	1. 41 4300	0.956800	1.102699
1.414300	3.076599	2.029900	2. 749999
0.956800	2.029910	2.859599	2.539399
1.102699	2.049999	2.539399	3.801900
PASS 2			
1.000600	1.329900	0.572300	-0.206100
1.329900	3.558830	2.261102	-0.718100
0.572300	0.261100	1.935699	1.919000
-0.006100	-0.71 B1 00	1.919000	3.446699
PASS 3			
2.477799	3.269799	0.578400	-1-105700
3.269799	5. 40 3700	1.020499	-1.846499
0.578400	1.020499	1.538500	1.016700
-1.105700	-1.846499	1.016700	3.307699
PASS 4			
3.459100	4.863799	1.069300	-1.580299
4. 353799	7.718200	1.679199	-2.407100
1.069300	1 . 679199	1.456100	0.511500
-1.580299	-2.407100	0.511500	2.743799
MEAN VECTOR	FOR CLASS 1		
30.033096	32. 422195	34.177292	32.978485
21.473190	21.233887	28 626999	29.468094
19.255488	17.110992	29.242599	34. 386897
17.742599	16.092392	26 - 92 84 97	30.636292

Segment 1854--Class Statistics

0. 949300	0.386400	0.328500	0.329600
0.386400	1.808100	0.395000	0. 5 5 3400
0.328500	0.396000	1.364900	1.017699
0.329600	C.553400	1.017699	1.521099
PASS 2			
0.571500	0.238300	0.130800	0.064200
0.238300	0. 788700	0.005500	-0.168600
0.130800	0.005500	1.956499	2.577200
0.064200	-0.168600	2.577200	4. 392400
PASS 3			
1.035800	0.935200	0.127400	0.172200
0.935200	2 • 01 96 99	0.036200	0.276400
0.127400	0.036200	1 . 066099	0.637200
0.172200	0.276400	0.637200	0.951300
PASS 4			
0.691500	-1.252700	-2.187800	2.735600
-1.252700	13.356799	2.003799	- 23, 663193
-0.187800	2.003799	1.508599	-2.466499
2.735601	- 23. 6631 93	-2.466499	45.997787
MEAN VECT	OF FOR CLASS 2		
27.519897	29. 4331 97	28.346892	26.171188
23.690399	25.906197	25.469299	23.648788
25.526199	28 • 50 8 5 9 1	28.40.991	27.479385
22.238785	23.41 8900	23.379700	23.694885

2. 72 3000	3.111600	2.577399	2.459200
3.111500	6.082999	4.431700	4.400499
2.577399	4. 431700	5 . 172500	4.560499
2.499200	4. 400449	4.560499	5.559600
PASS 2			
1.70 3599	1 . 91 4700	1.345799	1.0 52400
1.914700	3. 470400	1.668400	1.222899
1.345799	1.668400	1.81 3600	0.997500
1.052400	1.222899	0.997500	1.298400
PASS 3			
5.924999	10.609900	0.588000	-2.592300
10.609900	20.940796	1.678900	-5.830000
C. 9880C0	1.678900	1.482200	0.854500
-2.592300	-5. B3000C	0.854500	4. 6 151 20
PASS 4			
3.621270	4.657399	1.516600	0.382200
4.657379	6.869499	1.848200	0.150500
1.516600	1.849200	3.145300	3.186099
0.332200	0.150500	3.186099	4.900399
MEAN VECTOR	FOR CLASS	3	
31.693258	35• 49 P886	34.079688	31.526993
24.555488	27-105789	27.246185	25.333196
24.229195	24. 72 7890	32.572388	34.452787
17.478790	14. 3581 99	31 . 72 07 95	36-899490

1.357400	1.185599	0.914800	0.815900
1.185599	2.544999	1.210799	0.925700
0.914800	1.210799	1.627100	0.999900
0.815900	0.925700	0.998900	1.598499
PASS 2			
1.072000	0.578500	C.850300	0. 752700
0.578500	1.225800	0.764700	0.726100
0.850300	0. 764700	1.660199	1.535500
0.752700	0. 726100	1 • 535500	2.524899
PASS 3			
0.764600	0.574100	0.464100	0.496400
0.574100	1.257600	0.431300	0.538900
0.464100	C . 43130C	1.180099	1.015900
0.496400	0.538900	1 . 01 5900	1.586300
PASS 4			
1.051600	1.375199	-0.090600	-0.897000
1.375199	3.011000	-0.450000	-2.097099
-0.090600	-0.450000	0.960900	1.157799
-0.897000	-2.097099	1.150399	3.103299
MEAN VECTOR	FOR CLASS 4		
29.227493	31.833389	31.118896	29.460388
23.086288	24.850098	25.41 9897	24.210190
22.683990	24. 556488	24.353485	23.614268
22.001587	24.026885	23.415497	21.901398

PASS 1

1.651299	1.317800	0.898900	1.130600
1.31 7800	2.689699	0.887000	1.213900
C.848900	0.887000	1.734699	1.539800
1.130600	1.213900	1.539800	2.779900
PASS 2			
0.535700	0.350300	0.470700	0.261000
0.350300	0.921800	0 • 475500	0.415600
0.470700	0.475500	1.261299	0.608000
0.261000	0.419600	0.608000	1. 380400
PASS 3			
0.638700	C. 3641CO	0.043000	0.006500
C. 36410r	1.076799	0.216900	0.253500
0.043000	0.216900	0.632200	0.486600
0.006500	0.253500	0.486600	1.114499
PASS 4			
1.537700	1.476400	4 170000	
1.676600	1.676690	0.179900	-0.436100
0.179900	2.549399	0.026600	-0.653200
-0.435100	-0.692200	1.030399	0.915000
- 3. 4351.70	-0.648500	0.91 5000	2.112900
MEAN VECTOR	FOR CLASS	5	
27.633392	26.751099	28.904785	27. 788606
21.442688	20.353394	23.979898	27.788696
21.938599	20.351700	25 • 287598	26.178085
20.234065	18.368286	23.912186	24.151392

REFERENCES

- 1. P. A. Devijver, On a new class of bounds on Bayes risk in multihypothesis pattern recognition, IEEE Trans. on Computers, Vol. C-23, no. 1, Jan., 1974.
- R. Kauth and G. Thomas, The tasseled cap--a graphic description of the spectral and temporal development of agricultural crops as seen by LANDSAT, Proceedings of the Purdue: Lars Symposium on machine processing of remotely sensed data, June 29-July 1, 1976.
- 3. R. E. Oliver, Description of simulated LACIE segments 1851-1854, IBM internal memorandum, May 5, 1976.
- 4. B. C. Peters and H. Walker, An iterative procedure for obtaining maximum likelihood estimates of the parameters for a mixture of normal distributions, preprint.
- 5. S. G. Wheeler, P. N. Misra, and Q. A. Holmes, Linear dimensionality of LANDSAT agricultural data with implications for classification, Proceedings of the Purdue: LARS Sympsoium on machine processing of remotely sensed data, June 29-July 1, 1976.