Сокращение размерности

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 15 секунд Ограничение по памяти: 256 мегабайт

У Вити есть N точек в M-мерном пространстве, каждая координата точки является случайной величиной, выбранной одинаковым образом. Однако Вите слишком сложно работать с такими многомерными точками, поэтому он хочет их линейно преобразовать так, чтобы точки стали размера K, где K < M, но при этом попарные расстояния не слишком сильно изменились.

Точка X размерности M - это $X = (X_1, X_2, ..., X_M)$, где $X_1, X_2, ..., X_m \in \mathbb{R}$.

Линейным преобразованием точки X размера M в точку Y размера K следует считать таблицу A размера $M \times K$. Тогда $Y = (Y_1, ..., Y_K)$, где $Y_i = A_{1i} \cdot X_1 + A_{2i} \cdot X_2 + ... + A_{Mi} \cdot X_M$.

Расстоянием между точками X и Y равного размера M следует считать следующую величину $\sqrt{(X_1-Y_1)^2+(X_2-Y_2)^2+...+(X_M-Y_M)^2}$ (расстояние, вычисленное по данной формуле, называют Евклидовым).

В первом тесте t=3. Оценка за этот тест: 30 баллов. Каждый подтест стоит от 0 до 10 баллов. Также в этом тесте все координаты точки кроме первой и второй одинаковые.

Во втором тесте t=7. Оценка за этот тест: 70 баллов. Каждый подтест стоит от 0 до 10 баллов.

Формат входных данных

Первая строка содержит три целых числа N, M, K ($10 \le N \le 1000, 20 \le M \le 100, 10 \le K \le 100$). Каждая из следующих N строк содержит M целых чисел, которые составляют координаты соответствующей точки. Каждая координата является целым числом от -1000 до 1000.

Формат выходных данных

Требуется вывести M строк, каждая из которых содержит K вещественных чисел (каждое число от -10^6 до 10^6), образующих линейное преобразование, минимизирующее сумму абсолютной разности попарных расстояний между изначальными точками и сжатыми точками.

Пример

стандартный ввод	стандартный вывод
2	1.00000 0
2 3 2	0 1.00000
1 2 2	0 0
-2 -1 3	1.00000
2 2 1	0
1 2	
3 4	

Замечание

В тестовом примере в первой части 2 точки размерности 3.

Точка (1;2;2) перейдет в точку (1*1+2*0+2*0;1*0+2*1+2*0)=(1;2), (-2;-1;3) перейдет в точку ((-2)*1+(-1)*0+3*0;(-2)*0+(-1)*1+(-3)*0)=(-2;-1).

Во второй части теста точка (1;2) перейдет в точку (1*1+2*0)=(1); точка (3;4) перейдет в точку (3*1+4*0)=(3).

Изначальное расстояние между первой и второй точками при этом $\sqrt{(1-3)^2+(2-4)^2}=\sqrt{8}$. Новое расстояние между первой и второй точками $\sqrt{(1-3)^2}=2$.

Тогда ошибкой в данном случае является разница расстояния между первой и второй изначальными точками и расстояния между первой и второй точками после линейного отображения $|\sqrt{8}-2|$.

Обратите внимание, что существует линейное отображение, которое сохраняет расстояние лучше.