## RNN and Backpropagation

Quiz, 4 questions

4/4 points (100%)



# **Congratulations! You passed!**

Next Item



1/1 point

1.

Consider a task with input sequences of fixed length. Could RNN architecture still be useful for such task?



Yes

#### Correct

RNN could be useful since it may need much less number of parameters.



No



1/1 point

2.

Consider an RNN for a language generation task.  $\hat{y}_t$  is an output of this RNN at each time step, L is a length of the input sequence, N is a number of words in the vocabulary. Choose correct statements about  $\hat{y}_t$ :



 $\hat{y}_t$  is a vector of length N.

#### Correct

The output at each time step is a distribution over a vocabulary, therefore the length of  $\hat{y}_t$  is equal to the vocabulary size.



 $\hat{\boldsymbol{y}}_t$  is a vector of length (L-t).

### **Un-selected** is correct

 $\hat{y}_t$  is a vector of length L imes N.

# DNINI Un-selettediscorrection

4/4 points (100%)

| RIVIN arra-backpropagation | 1 |
|----------------------------|---|
| Ouiz 4 questions           |   |

Each element of  $\hat{\boldsymbol{y}}_t$  is either 0 or 1.

## **Un-selected is correct**



#### Correct

Elements of  $\hat{y}_t$  are probabilities so they are numbers from 0 to 1 and the sum of them equal to 1.

Each element of  $\hat{y}_t$  is a number from 0 to  $N. \label{eq:condition}$ 

## **Un-selected is correct**



1/1 point

3.

# Consider the RNN from the lecture: RNN and Backpropagation Quiz, 4questip( $Vx_t + Wh_{t-1} + b_h$ )

4/4 points (100%)

$$\hat{y}_t = f_y(Uh_t + b_y)$$



Calculate the gradient of the loss L with respect to the bias vector  $b_y$  .  $rac{\partial L}{\partial b_y}=$  ?

$$\frac{\partial L}{\partial b_y} = rac{\partial L}{\partial \hat{y}_t} rac{\partial \hat{y}_t}{\partial b_y}$$

#### Correct

It is correct since  $b_y$  influence each  $L_t$  only once trough  $\hat{y}_t$ .

$$\begin{array}{ccc} & \frac{\partial L}{\partial b_y} = \sum_{t=0}^T \left[ \frac{\partial L_t}{\partial \hat{y}_t} \; \frac{\partial \hat{y}_t}{\partial h_t} \; \frac{\partial h_t}{\partial b_y} \right] \end{array}$$

$$\frac{\partial L}{\partial b_y} = \sum_{t=0}^{T} \left[ \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \sum_{k=0}^{t} \frac{\partial h_k}{\partial b_y} \right]$$

$$\begin{array}{ccc} & & \frac{\partial L}{\partial b_y} = \sum_{t=0}^T \left[ \frac{\partial L_t}{\partial \hat{y}_t} \, \frac{\partial \hat{y}_t}{\partial h_t} \sum_{k=0}^t \left( \prod_{i=k+1}^t \frac{\partial h_i}{\partial h_{i-1}} \right) \frac{\partial h_k}{\partial b_y} \right] \end{array}$$



4/4 points (100%)

Quiz, 4 questions  $\Delta$ 

Consider the RNN network from the previous question. Calculate the gradient of the loss L with respect to the bias vector  $b_h$ .  $\frac{\partial L}{\partial b_h}=$  ?



$$\frac{\partial L}{\partial b_h} = \sum_{t=0}^{T} \left[ \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{\partial h_t}{\partial b_h} \right]$$

$$\frac{\partial L}{\partial b_h} = \sum_{t=0}^T \left[ \frac{\partial L_t}{\partial \hat{y}_t} \, \frac{\partial \hat{y}_t}{\partial h_t} \, \sum_{k=0}^t \frac{\partial h_k}{\partial b_h} \right]$$

#### Correct

It is correct. Hidden units depend on  $b_h$  at each time step, therefore we need to backpropagate through time here.

