Homework lecture 3

Basic data structures

*Note: Two consecutive numbers in the same line must be separated by only **one** space.

1. Given a list A of n integer numbers, your task is to write a program to count the number of pairs (i,j) that A[i]=A[j].

Input:

- The first line contains an integer number n
- The second line contains *n* integer numbers separated by spaces.

Output: Write to the screen an integer number (i.e., the number of pairs (i,j) that A[i]=A[j])

Example

Keyboard	Screen
6	4
5 2 4 2 2 5	

- 2. The linked list structure has two following operations:
 - insert (p, x): insert an integer number x at position p, elements from p are moved backward one position.
 - delete (p): delete element at position p, elements after p are moved forward one position.

Start from an empty list, your task is to implement a linked list, perform operations read from the keyboard.

Input:

- The first line contains an integer number n which is the number of operations.
- The next n lines contain the operation description. One operation is in one line in either format:
 - insert p x
 - delete p

where p is the position and x is the number.

Output: Write the resulting linked list to the screen in one line. Numbers are separated by spaces.

Example

Keyboard	Screen
5	1 2 3
insert 0 1	
insert 1 3	
insert 1 4	
insert 2 2	
delete 1	

3. Given a list of integer numbers, your task is to read these numbers into a doubly linked list, and implement function count_triplets() to count all positions p such that the sum of elements at positions p-1, p, and p+1 is zero.

Input:

- The first line contains an integer number n which is the number of numbers.
- The second line contains n integer numbers to read into count_triplets function

Output: Write to the screen an integer number that is the result of function count_triplets().

Example

Keyboard	Screen
6	2
5 -3 -2 2 9 -11	

- 4. The Queue structure has two following operations:
 - enqueue (x): insert integer number x at the tail the queue.
 - dequeue (): remove the element at the head of the queue.

Start from an empty queue, your task is to implement a queue, perform operations from the keyboard and write the resulting queue to the screen.

Input:

The first line contains an integer number n which is the number of operations

- The next n lines contain the operation description. One operation is in one line in either format:
 - enqueue x
 - dequeue

where x is the number to enqueue

Output: Write the resulting queue to the screen. Numbers are separated by spaces.

Example

Keyboard	Screen
7	3 4 5
enqueue 1	
enqueue 2	
enqueue 3	
enqueue 4	
dequeue	
dequeue	
enqueue 5	

- 5. The Stack structure has two following operations:
 - push (x): insert integer number x to the top of the stack
 - pop (): remove the element at the top of the stack

Start from an empty stack, your task is to implement a stack, perform operations from the keyboard and write the resulting stack to the screen

Input:

- The first line contains an integer number n which is the number of operations
- The next n lines contain the operation description. One operation is in one line in either format:
 - push x
 - pop

where x is the number to push to the stack.

Output: Write the resulting stack to the screen. Numbers are separated by spaces.

Example

Keyboard	Screen
7	1 2 5
push 1	
push 2	
push 3	
push 4	
pop	
pop	
push 5	