

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Cálculo II Examen IX

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2023

Asignatura Cálculo II.

Curso Académico 2017-18.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Descripción Convocatoria Ordinaria.

Ejercicio 1 (2 puntos). Teorema de Rolle. Teorema del Valor Medio.

Teorema .1 (Teorema de Rolle). Sea $f : [a, b] \to \mathbb{R}$ continua en [a.b] y derivable en [a, b] tal que f(a) = f(b). Entonces,

$$\exists c \in]a, b[|f'(c)| = 0$$

Demostración. En el caso de que f sea constante, tenemos que $f'(x) = 0 \ \forall x \in [a, b]$, por lo que se tiene el resultado.

Supongamos f no constante. Al ser continua en [a, b], por el Teorema de Bolzano-Weierstrass tenemos que $\exists m, M \in \mathbb{R}$, con m < M tal que f([a, b]) = [m, M]. Sean $c_1, c_2 \in \mathbb{R}$ tal que $f(c_1) = m$, $f(c_2) = M$.

- $m \neq (f(a) = f(b))$: Tenemos que $c_1 \in]a, b[$, y es un mínimo relativo, por lo que $f'(c_1) = 0$.
- $M \neq (f(a) = f(b))$: Tenemos que $c_2 \in]a, b[$, y es un máximo relativo, por lo que $f'(c_2) = 0$.

Puesto que $m \neq M$, seguro que estamos al menos ante uno de los dos casos anteriores, por lo que $\exists c \in]a, b[|f'(c)| = 0.$

Teorema .2 (Teorema del Valor Medio). Sea $f:[a,b] \to \mathbb{R}$ continua en [a,b] y derivable en [a,b]. Entonces,

$$\exists c \in]a, b[|f(b) - f(a)| = f'(c)(b - a)$$

Demostración. Sea r(x) la recta que pasa por los puntos (a, f(a)), (b, f(b)):

$$r(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$

Consideramos ahora la función h(x) = f(x) - r(x).

$$h(a) = f(a) - r(a) = f(a) - f(a) + 0 = 0$$

$$h(b) = f(b) - f(a) - f(b) + f(a) = 0$$

Como h(a) = h(b), estamos ante las condiciones de Rolle. Por tanto, $\exists c \in]a, b[$ tal que:

$$0 = h'(c) = f'(c) - r'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}$$

Por tanto,

$$\exists c \in]a, b[|f(b) - f(a) = f'(c)(b - a)$$

Ejercicio 2 (2 puntos). Decir si son verdaderas o falsas las siguientes cuestiones, justificando la respuesta:

1. Toda función cóncava hacia arriba es uniformemente continua. Esto es falso, ya que $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^2$ es cóncava hacia arriba pero no es uniformemente continua. Por tanto, el enunciado es **falso**.

- 2. Si $A \subset \mathbb{R}$ es un conjunto tal que todos los puntos de A son de acumulación de $A, f: A \to \mathbb{R}$ es derivable y f' no se anula, entonces f es inyectiva.
 - Opción 1: Usando el Teorema de Rolle:

Sabemos que f es derivable en $A = A \cap A'$, por lo que también es continua en A.

Supongamos que $\exists x, y \in A$, con x < y, tal que f(x) = f(y). Entonces, por el Teorema de Rolle, $\exists c \in]x, y[|f'(c)| = 0$. No obstante, esto no es posible ya que f' no se anula, por lo que deducimos que $\nexists x, y \in A$, x < y, con f(x) = f(y).

Por tanto, $f(x) = f(y) \iff x = y$, por lo que f es inyectiva.

Opción 2: Sin usar el Teorema de Rolle:

Como es derivable en $A = A \cap A'$, y como f' no se anula, tenemos que f es estrictamente monótona. Por tanto, dados $x, y \in \mathbb{R}$ con x < y, tenemos que f(x) < f(y) o f(x) > f(y). En cualquier caso, tenemos que $x \neq y \Longrightarrow f(x) \neq f(y)$.

Por tanto,

$$f(x) = f(y) \iff x = y$$

por lo que f es inyectiva.

Por tanto, tenemos que el enunciado es cierto.

3. Sea I un intervalo no trivial y $f: I \to \mathbb{R}$ una función derivable tal que f' tiene un único cero en x_0 y f tiene un extremo relativo en x_0 . ¿Tiene f un extremo absoluto en x_0 ?

El enunciado es cierto. Veámoslo.

• Suponemos que x_0 mínimo relativo:

Es decir,
$$\exists r > 0 \mid]x_0 - r, x_0 + r \subseteq A$$
 y que, $\forall x \in]x_0 - r, x_0 + r [$ se tiene que $f(x) > f(x_0)$.

Para que x_0 no sea mínimo absoluto, es necesario que $\exists x_m \in I \mid f(x_m) \leq f(x_0)$. Por tanto, como la función es continua, es necesario que exista un $x'_0 \in \mathbb{R}$ entre x_m y x_0 en el que $f(x'_0) = f(x_0)$. Por Rolle, tenemos que $\exists c \neq x_0 \mid f'(c) = 0$, en contradicción con que f' solo tiene un cero.

Por tanto, tenemos que x_0 es un mínimo absoluto.

• Suponemos que x_0 máximo relativo:

Es decir,
$$\exists r > 0 \mid]x_0 - r, x_0 + r[\subseteq A \text{ y que}, \forall x \in]x_0 - r, x_0 + r[\text{ se tiene que } f(x) < f(x_0).$$

Para que x_0 no sea máximo absoluto, es necesario que $\exists x_m \in I \mid f(x_m) \geq f(x_0)$. Por tanto, como la función es continua, es necesario que exista un $x'_0 \in \mathbb{R}$ entre x_m y x_0 en el que $f(x'_0) = f(x_0)$. Por Rolle, tenemos que $\exists c \neq x_0 \mid f'(c) = 0$, en contradicción con que f' solo tiene un cero.

Por tanto, tenemos que x_0 es un máximo absoluto.

Por tanto, en ambos casos tenemos que x_0 es un extremo relativo.

4. La función $f: \mathbb{R}^+ \to \mathbb{R}$ dada por:

$$f(x) = \int_0^x \sqrt{t^5 + t^2 + 1} dt$$
 $(x \in \mathbb{R}^+)$

tiene límite en $+\infty$.

Consideramos $f_I(t) = \sqrt{t^5 + t^2 + 1}$, por lo que $f(x) = \int_0^x f_I(t) dt$.

Sea ahora $g_I(t) = \sqrt{t}$, y definamos $g(x) = \int_0^x g_I(t) dt$.

$$g(x) = \int_0^x g_I(t) dt = \left[\frac{2}{3}t\sqrt{t}\right]_0^x = \frac{2}{3}x\sqrt{x}$$
$$\lim_{x \to \infty} g(x) = \lim_{x \to \infty} \frac{2}{3}x\sqrt{x} = +\infty$$

Por tanto, tenemos que g(x) diverge positivamente.

Como tenemos que $0 \le g_I(x) \le f_I(x)$ y todas ellas son continuas por lo que localmente integrables en \mathbb{R}^+ , tenemos que:

$$f(x) = \int_0^\infty f_I(t) dt$$
 convergente $\Longrightarrow g(x) = \int_0^\infty g_I(t) dt$ convergente

Como g(x) no es convergente, tenemos que f(x) tampoco. Por tanto, es falso.

Ejercicio 3 (2 puntos). Cada tangente a la circunferencia unidad en un punto cualquiera del primer cuadrante corta a los dos ejes en dos puntos de la forma $(x_1, 0)$ y $(0, y_1)$. Halla la ecuación de la recta tangente para que la suma $x_1 + y_1$ sea mínima.

Trabajamos en primer lugar con la ecuación de la circunferencia. La ecuación de la circunferencia unidad es:

$$x^2 + y^2 = 1 \Longrightarrow y = \pm \sqrt{1 - x^2}$$

Como estamos trabajando en el primer cuadrante, con valores de $y \geq 0$, tenemos que:

$$f(x) = \sqrt{1 - x^2}$$
 $f'(x) = -\frac{x}{\sqrt{1 - x^2}}$

Como el punto P pertenece a la circunferencia, tenemos que:

$$f(a) = \sqrt{1 - a^2}$$

Trabajamos ahora con la recta. Por la interpretación geométrica, tenemos que:

$$m_t = f'(a) = -\frac{a}{\sqrt{1 - a^2}}$$

Tenemos que la recta que pasa por los dos puntos de corte es:

$$r(x) = y_1 + m_t x = y_1 - \frac{a}{\sqrt{1 - a^2}} \cdot x$$

Como el punto P pertenece a la recta, tenemos que:

$$r(a) = y_1 - \frac{a^2}{\sqrt{1 - a^2}}$$

Usando que el punto P pertenece tanto a la circunferencia como a la recta,

$$f(a) = r(a) \Longrightarrow \sqrt{1 - a^2} = y_1 - \frac{a^2}{\sqrt{1 - a^2}} \Longrightarrow 1 - \cancel{a^2} = y_1 \cdot \sqrt{1 - a^2} - \cancel{a^2} \Longrightarrow y_1 = \frac{1}{\sqrt{1 - a^2}}$$

Por tanto, la recta queda:

$$r(x) = y_1 - \frac{a}{\sqrt{1-a^2}} \cdot x = \frac{1}{\sqrt{1-a^2}} - \frac{a}{\sqrt{1-a^2}} \cdot x = \frac{1-ax}{\sqrt{1-a^2}}$$

Para $x = x_1$, tenemos que $r(x_1) = 0$:

$$r(x_1) = 0 \iff 1 = ax_1 \iff x_1 = \frac{1}{a}$$

Por tanto, la función a minimizar es:

$$S:]0,1[\longrightarrow \mathbb{R}$$

 $a \longrightarrow S(a) = x_1 + y_1 = \frac{1}{a} + \frac{1}{\sqrt{1-a^2}}$

$$S'(a) = -\frac{1}{a^2} - \frac{1}{1 - a^2} \cdot \frac{-2a}{2\sqrt{1 - a^2}} = -\frac{1}{a^2} + \frac{a}{(1 - a^2)\sqrt{1 - a^2}} = 0 \iff$$

$$\iff a^3 = (1 - a^2)\sqrt{1 - a^2} \iff a^6 = (1 - a^2)^3 \iff a^2 = 1 - a^2 \iff$$

$$\iff a^2 = \frac{1}{2} \iff a = \frac{\sqrt{2}}{2}$$

Comprobemos que el punto crítico es un mínimo relativo.

- Para $a < \frac{\sqrt{2}}{2}$: $S'(a) < 0 \Longrightarrow S(a)$ estrictamente decreciente.
- Para $a < \frac{\sqrt{2}}{2}$: $S'(a) > 0 \Longrightarrow S(a)$ estrictamente creciente.

Por tanto, tenemos que $a=\frac{\sqrt{2}}{2}$ es un mínimo relativo. Como A es derivable y es definida en un intervalo, como es un mínimo relativo también es un mínimo absoluto.

$$f\left(\frac{\sqrt{2}}{2}\right) = \sqrt{1 - \left(\frac{\sqrt{2}}{2}\right)^2} = \sqrt{1 - \frac{1}{2}} = \frac{\sqrt{2}}{2}$$

Por tanto, el punto (a, f(a)) que minimiza esa suma es:

$$P\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$

Además, tenemos que:

$$x_1 = y_1 = \sqrt{2}$$

Ejercicio 4 (2 puntos). Calcula los siguientes límites:

1.
$$\lim_{x \to 0} \frac{\int_0^x \arcsin(t) \arctan(t) dt}{(\ln(1+x))^3}$$

Como tenemos que el integrando es una función continua y acotada, tenemos que es Riemman Integrable. Por tanto, se puede emplear el TFC para calcular la derivada del numerador. Se empleará en la resolución del límite.

$$\lim_{x \to 0} \frac{\int_{0}^{x} \arcsin(t) \arctan(t) dt}{(\ln(1+x))^{3}} = \left[\frac{0}{0}\right] \stackrel{L'H\hat{o}pital}{=} \lim_{x \to 0} \frac{\arccos(x) \arctan(x)}{3\frac{\ln^{2}(1+x)}{1+x}} = \\
= \lim_{x \to 0} \frac{(1+x) \arcsin(x) \arctan(x)}{3\ln^{2}(1+x)} = \left[\frac{0}{0}\right] \stackrel{L'H\hat{o}pital}{=} \\
= \lim_{x \to 0} \frac{\arcsin x \arctan x + \frac{(1+x) \arctan x}{\sqrt{1-x^{2}}} + \frac{(1+x) \arcsin x}{1+x^{2}}}{6\frac{\ln(1+x)}{1+x}}$$

Aplicando que el límite de la suma es la suma de los límites, tenemos:

$$\lim_{x \to 0} \frac{\int_0^x \arcsin(t) \arctan(t) dt}{(\ln(1+x))^3} = \\ = \lim_{x \to 0} \frac{(1+x) \arcsin x \arctan x}{6 \ln(1+x)} + \lim_{x \to 0} \frac{(1+x)^2 \arctan x}{6\sqrt{1-x^2} \ln(1+x)} + \lim_{x \to 0} \frac{(1+x)^2 \arcsin x}{6(1+x^2) \ln(1+x)}$$

Aplicando que el límite del producto es el producto de los límites, tenemos:

$$\begin{split} \lim_{x \to 0} \frac{\int_0^x \arctan(t) \arctan(t) dt}{(\ln(1+x))^3} &= \\ &= \lim_{x \to 0} \frac{(1+x) \arcsin x}{6} \lim_{x \to 0} \frac{\arctan x}{\ln(1+x)} + \lim_{x \to 0} \frac{(1+x)^2}{6\sqrt{1-x^2}} \lim_{x \to 0} \frac{\arctan x}{\ln(1+x)} + \\ &+ \lim_{x \to 0} \frac{(1+x)^2}{6(1+x^2)} \lim_{x \to 0} \frac{\arcsin x}{\ln(1+x)} \end{split}$$

Calculo los siguientes límites:

$$\lim_{x \to 0} \frac{\arctan x}{\ln 1 + x} \stackrel{L'H\hat{o}pital}{=} \lim_{x \to 0} \frac{1 + x}{1 + x^2} = 1$$

$$\lim_{x \to 0} \frac{\arcsin x}{\ln 1 + x} \stackrel{L'H\hat{o}pital}{=} \lim_{x \to 0} \frac{1 + x}{\sqrt{1 - x^2}} = 1$$

Por tanto, usando los límites calculados, tenemos que:

$$\begin{split} &\lim_{x\to 0} \frac{\int_0^x \arcsin(t)\arctan(t)dt}{(\ln(1+x))^3} = \\ &= \lim_{x\to 0} \frac{(1+x) \arcsin x}{6} \lim_{x\to 0} \frac{\arctan x}{\ln(1+x)} + \lim_{x\to 0} \frac{(1+x)^2}{6\sqrt{1-x^2}} \lim_{x\to 0} \frac{\arctan x}{\ln(1+x)} + \\ &\quad + \lim_{x\to 0} \frac{(1+x)^2}{6(1+x^2)} \lim_{x\to 0} \frac{\arcsin x}{\ln(1+x)} = 0 \cdot 1 + \frac{1}{6} \cdot 1 + \frac{1}{6} \cdot 1 = \frac{1}{3} \end{split}$$

2.
$$\lim_{x \to 0} \left(\frac{2 + \sin x}{2 - \sin x} \right)^{\frac{1}{x}}$$

$$\lim_{x \to 0} \left(\frac{2 + \sin x}{2 - \sin x} \right)^{\frac{1}{x}} = \lim_{x \to 0} e^{\frac{\ln\left(\frac{2 + \sin x}{2 - \sin x}\right)}{x}} \stackrel{Ec. 1}{=} e^{1} = e^{1}$$

donde previamente he resuelto esta indeterminación:

$$\lim_{x \to 0} \frac{\ln\left(\frac{2+\sin x}{2-\sin x}\right)}{x} = \left[\frac{0}{0}\right] \stackrel{L'H\hat{o}pital}{=} \lim_{x \to 0} \frac{\frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{(2-\sin x)^2}}{\frac{2+\sin x}{2-\sin x}} = \lim_{x \to 0} \frac{\frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2-\sin x}}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2-\sin x) + \cos x(2+\sin x)}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2+\sin x) + \cos x}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2+\sin x) + \cos x}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2+\sin x) + \cos x}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2+\sin x) + \cos x}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2+\sin x) + \cos x}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2+\sin x) + \cos x}{2+\sin x} = \lim_{x \to 0} \frac{\cos x(2+\sin x) + \cos x}{2+\sin x} = \lim_{x \to 0}$$

Ejercicio 5. Sea $f: I \to \mathbb{R}$ de clase $C^{n+1}(I)$, $n \in \mathbb{N}$ y $P_{n,a}^f(x)$ su polinomio de Taylor de grado n centrado en el punto $a \in I$. Probar que $\forall x \in I$, $x \neq a$ se cumple:

$$f(x) - P_{n,a}^f(x) = \frac{1}{n!} \int_a^x f^{n+1}(t)(x-t)^n dt$$

(Indicación: Inducción e integración por partes)

Por el TFC, como f es de clase n+2, $f^{n+2}(x)$ es continua y por tanto Riemman Integrable en I, y por el TFC tenemos que:

$$\int f^{p+1}(x) \ dx = f^{p}(x) \qquad \forall p \le n+1$$

Demostramos ahora la igualdad por inducción sobre n:

■ Para n = 0:

Resolvemos la integral del término de la derecha.

$$\int_a^x f'(t) \ dt = [f(t)]_a^x$$

Por tanto, la igualdad a demostrar es:

$$f(x) - P_{0,a}^f(x) = \frac{1}{0!} [f(t)]_a^x \iff f(x) - \frac{f(a)}{0!} x^0 = f(x) - f(a)$$

Por tanto, tenemos que es cierto para n=0.

■ Supuesto cierto para n-1, demostramos para n: Resolvemos la integral del término de la derecha.

$$\int_{a}^{x} f^{n+1}(t)(x-t)^{n} dt = \begin{bmatrix} u(t) = (x-t)^{n} & u'(t) = -n(x-t)^{n-1} \\ v'(t) = f^{n+1}(t) & v(t) = f^{n}(t) \end{bmatrix} = \begin{bmatrix} f^{n}(t)(x-t)^{n} \end{bmatrix}_{a}^{x} + n \int_{a}^{x} f^{n}(t)(x-t)^{n-1} dt$$

Usando la hipótesis de inducción, resolvemos la integral restante:

$$\int_{a}^{x} f^{n+1}(t)(x-t)^{n} dt = \left[f^{n}(t)(x-t)^{n} \right]_{a}^{x} + n(n-1)! \left[f(x) - P_{n-1,a}^{f}(x) \right] =$$

$$= -f^{n}(a)(x-a)^{n} + n! \left[f(x) - P_{n-1,a}^{f}(x) \right]$$

Pasando el factorial dividiendo, tenemos que:

$$\frac{1}{n!} \int_{a}^{x} f^{n+1}(t)(x-t)^{n} dt = -\frac{f^{n}(a)}{n!} (x-a)^{n} + \left[f(x) - P_{n-1,a}^{f}(x) \right]$$

No obstante, tenemos que el término n-ésimo del polinomio de Taylor en cuestión, por lo que tenemos:

$$\frac{1}{n!} \int_{a}^{x} f^{n+1}(t)(x-t)^{n} dt = f(x) - P_{n,a}^{f}(x)$$

Por tanto, lo tenemos demostrado para n.