Uniwersytet Warszawski

Wydział Fizyki

Marysia Nazarczuk

Nr albumu: 417755

BADANIE WIDMA LINIOWEGO ZA POMOCĄ SPEKTROMETRU

Streszczenie

Celem doświadczenia było zbadanie widma liniowego neonu oraz wyznaczenie stałej siatki dyfrakcyjnej. Analizując widma helu oraz wodoru uzyskaliśmy wartość stałej statki równą $d=(1000.55\pm0.47)$ [nm]. Posłużyło to nam do wyznaczenia długości fal prążków neonu. Praca została przygotowana zgodnie z instrukcją [1].

Spis treści

	-	-	nniejszego odchylenia prążków widmowych helu, wodoru i neonu
2	.1		doświadczalny
2	.2	Przepi	rowadzenie doświadczenia
		2.2.1	Pomiar widma helu
		2.2.2	Pomiar widma wodoru
		2.2.3	Pomiar widma neonu
2	.3	Analiz	a pomiarów
		2.3.1	Wyznaczanie stałej siatki dyfrakcyjnej
		2.3.2	Analiza widma neonu
2	.4	Wynik	ii, niepewności i wnioski
		2.4.1	Wyniki
		2.4.2	Niepewności
		2.4.3	Wnioski

1. Wstęp teoretyczny

Siatka dyfrakcyjna składa się z wielu równoległych szczelin lub rys, które rozpraszają światło. Gdy światło przechodzi przez te szczeliny, interferuje ze sobą, tworząc jasne i ciemne prążki (maksima i minima dyfrakcyjne).

Kąt najmniejszego odchylenia θ_{min} na siatce dyfrakcyjnej to najmniejszy kąt między kierunkiem promienia padającego a kierunkiem promienia dyfraktowanego, dla którego obserwujemy maksimum dyfrakcyjne. Ten kąt jest istotny, ponieważ przy jego pomocy możemy obliczyć długości fal światła, które przechodzi przez siatkę dyfrakcyjną, używając równania dyfrakcyjnego

$$d\sin(\alpha_n) = n\lambda \tag{1.1}$$

gdzie α_n jest kątem dyfrakcji dla rzędu n, zaś d to stała siatki dyfrakcyjnej. Wzór ten mówi, że dla danego rzędu n, światło o długości fali λ jest dyfraktowane pod kątem α_n . Stała siatki, to odległość między szczelinami w siatce dyfrakcyjnej.

Kąt θ_{min} to kąt, przy którym pojawia się pierwsze (najbliższe osi optycznej) jasne maksimum dyfrakcyjne dla danej długości fali. Zatem θ_{min} jest po prostu kątem dyfrakcji dla pierwszego rzędu widma (n=1) przy danej długości fali λ

W praktyce, mierząc θ_{min} dla znanych długości fal (np. z widma helu lub wodoru), możemy wyznaczyć stałą siatki d

$$d = \frac{\lambda}{\sin(\theta_{min})} \tag{1.2}$$

Później, znając d, możemy obliczać długości fal innych źródeł światła, mierząc kąty dyfrakcji α_n dla różnych rzędów n.

2. Kąty najmniejszego odchylenia prążków widmowych helu, wodoru i neonu

2.1. Układ doświadczalny

Poniżej znajduje się układ doświadczalny dla danego eksperymentu. Lampę widmową ustawiono na przeciwko kolimatora goniometru. Na stoliku ustawiono siatkę dyfrakcyjną. Widma obserwowano przy użyciu lunety.

Rysunek 2.1: Układ doświadczalny do pomiaru kąta θ_{min}

Jako, że światło nie pada idealnie na siatkę pod kątem prostym, toteż wzór 1.2 przekształca się do wzoru

$$d = \frac{\lambda \cos\left(\frac{\theta_{min}}{2}\right)}{\sin\left(\theta_{min}\right)} = \frac{\lambda}{2\sin\left(\frac{\theta_{min}}{2}\right)}$$
(2.1)

2.2. Przeprowadzenie doświadczenia

Dla każdego z trzech układów (hel, wodór i neon) obserwowano kąt najmniejszego odchylenia prążków. Dla każdego prążka dokonano trzech pomiarów, które następnie zostały uśrednione.

2.2.1. Pomiar widma helu

Rysunek 2.2: Zdjęcie widma liniowego helu

Tabela 2.1

Kolor	1 pomiar	2 pomiar	3 pomiar	Średni kąt [°]
fioletowy	25° 43′	25° 47′	25° 48′	25.76 ± 0.05 27.25 ± 0.10 28.50 ± 0.08
granatowy	27° 8′	27° 15′	27° 21′	
turkusowy	28° 25′	28° 34′	28° 30′	
zielony	29° 1′	28° 59′	29° 3′	29.02 ± 0.03
żółty	34° 8′	34° 14′	34° 11′	34.18 ± 0.05
czerwony	38° 59′	39° 1′	38° 58′	38.98 ± 0.02

2.2.2. Pomiar widma wodoru

Rysunek 2.3: Zdjęcie widma liniowego wodoru

Tabela 2.2

Kolor	1 pomiar	2 pomiar	3 pomiar	Średni kąt [°]
fioletowy	25° 3′	25° 1′	25° 2′	25.03 ± 0.02
niebieski	28° 7′	28° 6′	28° 9′	28.03 ± 0.02
czerwony	38° 15′	38° 15′	38° 19′	38.27 ± 0.02

2.2.3. Pomiar widma neonu

Rysunek 2.4: Zdjęcie widma liniowego Neonu

Tabela 2.3

Kolor	1 pomiar	2 pomiar	3 pomiar	Średni kąt [°]
ciemnozielony żółty1	30° 35′ 33° 1′	30° 31′ 33° 4′	30° 39′ 33° 58′	30.42 ± 0.06 33.02 ± 0.03
żółty2	34° 30′	34° 34′	34° 29′	34.29 ± 0.08
pomarańczowy1 pomarańczowy2	35° 18′ 35° 40′	35° 19′ 35° 40′	35° 20′ 35° 41′	35.17 ± 0.09 35.40 ± 0.04
różowy2	36° 46′	36° 44′	36° 46′	36.85 ± 0.02
różowy1	37° 14′	37° 14′	37° 14′	37.13 ± 0.03

2.3. Analiza pomiarów

2.3.1. Wyznaczanie stałej siatki dyfrakcyjnej

Dopasujmy prążkom widma helu i wodoru odpowiadające im długości fali λ [2].

Tabela 2.4: Długość fali widm helu

Tabela 2.5: Długość fali widm wodoru

Kolor	Średni kąt [°]	Długość fali [nm]
fioletowy	25.76 ± 0.05	447.15
granatowy	27.25 ± 0.10	471.31
turkusowy	28.50 ± 0.08	492.19
zielony	29.02 ± 0.03	501.57
żółty	34.18 ± 0.05	587.56
czerwony	38.98 ± 0.02	667.81

fioletowy 25.03 ± 0.02 434.05 niebieski 28.03 ± 0.02 486.13 czerwony 38.27 ± 0.02 656.28		Kolor	Średni kąt [°]	Długość fali [nm]
	1	niebieski	28.03 ± 0.02	486.13

Korzystając ze wzoru 2.1, używając metody najmniejszych kwadratów, dopasujmy wartość współczynnika d w zależności od długości fali dla widma helu oraz wodoru.

Rysunek 2.5: Wartość współczynnika d wyliczona ze wzoru 2.1 dla poszczególnych widm helu i wodoru

Otrzymujemy

$$d_{\text{hel}} = (1000.70 \pm 0.49) \text{ [nm]}$$
 (2.2)

oraz

$$d_{\text{wod\'or}} = (1000.26 \pm 0.43) \text{ [nm]}$$
 (2.3)

co po obliczeniu wartości oczekiwanej daje nam wynik

$$d = (1000.55 \pm 0.47) \text{ [nm]} \tag{2.4}$$

2.3.2. Analiza widma neonu

Korzystając z wyznaczonej wartości stałej siatki dyfrakcyjnej 2.4 oraz przekształcając równanie 2.1 do równania

$$\lambda = 2d \cdot \sin\left(\frac{\theta_{min}}{2}\right) \tag{2.5}$$

możemy wyznaczyć długość fali światła odpowiadającym poszczególnym prążkom widma neonu.

Tabela 2.6: Długość fali widm neonu

Kolor	Średni kąt [°]	Długość fali [nm]
ciemnozielony	30.42 ± 0.06	525.00 ± 1.01
żółty1 żółty2	33.02 ± 0.03 34.29 ± 0.08	568.68 ± 0.50 589.91 ± 1.33
$pomara\'nczowy1$	35.17 ± 0.09	604.57 ± 1.50
pomarańczowy2	35.40 ± 0.04	608.40 ± 0.67
różowy1 różowy2	36.85 ± 0.02 37.13 ± 0.03	632.47 ± 0.33 637.11 ± 0.50

2.4. Wyniki, niepewności i wnioski

2.4.1. Wyniki

Otrzymaliśmy wartość stałej siatki dyfrakcyjnej równą

$$d = (1000.55 \pm 0.47) \text{ [nm]} \tag{2.6}$$

oraz wyznaczyliśmy długości fal widm neonu. Dane te zebrane zostały w tabeli 2.6.

2.4.2. Niepewności

Niedokładność goniometru wynosi $1' \approx 0.02^{\circ}$, jednak większe znaczenie ma w danym doświadczeniu nieprecyzyjnie ustawienie aparatury przy próbie odczytania kata minimalnego.

2.4.3. Wnioski

Odczytana wartość nominalna stałej siatki dyfrakcyjnej wynosi $d_n=1000$ nm. Przeprowadzając test χ^2 nie mamy podstaw do odrzucenia wyznaczonej przez nas wartości za poprawną. Porównując również wartości długości fal widma neonu z tabeli 2.6 wraz z tablicowymi długościami [2] możemy uznać wyznaczone długości za poprawne.

3. Podsumowanie

W doświadczeniu wyznaczono stałą siatki dyfrakcyjnej

$$d = (1000.55 \pm 0.47) \text{ [nm]} \tag{3.1}$$

Wyznaczono również długości fal dla widma neonu

Tabela 3.1: Długość fali widm neonu

Kolor	Średni kąt [°]	Długość fali [nm]
ciemnozielony żółty1 żółty2 pomarańczowy1 pomarańczowy2 różowy1	30.42 ± 0.06 33.02 ± 0.03 34.29 ± 0.08 35.17 ± 0.09 35.40 ± 0.04 36.85 ± 0.02	525.00 ± 1.01 568.68 ± 0.50 589.91 ± 1.33 604.57 ± 1.50 608.40 ± 0.67 632.47 ± 0.33
różowy2	37.13 ± 0.03	637.11 ± 0.50

Wszystkie wyznaczone wartości są zgodne z oczekiwaniami.

Wszelkie rachunki przeprowadziłam ręcznie, posługując się jedynie kalkulatorem prostym oraz arkuszem kalkulacyjnym Google. Na każdym etapie obliczeń zaokrąglałam wynik do dwóch miejsc znaczących. Ostateczne wyniki sprawdziłam przy użyciu programów napisanych w Pythonie i na podstawie tych wyników dopasowałam krzywą do danych na wykresach. Do szacowania niepewności pomiarowych użyłam metody obliczania niepewności pomiarowej za pomocą pierwiastków elementów na diagonali macierzy kowariancji.

Bibliografia

- [1] Roman J. Nowak Krzysztof Korona. Instrukcja do zadania o9 badanie widma liniowego za pomoca spektrometru, 23.11.2015.
- [2] Tabela długości fal linii widmowych. https://lpf.wppt.pwr.edu.pl/.