Компакты в \mathbb{R}^n

Битюков Юрий Иванович

24.03.2022

Компакт $X \subset \mathbb{R}^n$ - это такое подмножество в \mathbb{R}^n , из любой плоскости точек которого можно выделить сходящуюся подпоследовательность, предел которой принадлежит X.

Теорема. $X \subset \mathbb{R}^n$ - компакт $\iff X$ ограничено и замкнуто.

Доказательство. Пусть X - компакт. Допустим, что X не является ограниченным \Longrightarrow для $\forall m \in \mathbb{N} \ \exists x_m \in X : \rho(0,x_m) > m \Longrightarrow \lim_{m \to \infty} \rho(0,\dots,m) = \infty \Longrightarrow$ из $\{x_{m_k}\}$ нельзя выделить сходящуюся подпоследовательность (так как $\forall \{x_{m_k}\} \Longrightarrow \rho(0,x_{m_k}) = \omega) \Longrightarrow \{x_{m_k}\}$ не ограничена, что не может быть при сходимости $\Longrightarrow X$ ограничена.

Докажем замкнутость $X=\overline{X}$. Допустим, что $\exists a\in \overline{X}\backslash X;\ 0\leq \rho(a,x_m)<\frac{1}{m}\xrightarrow{m\to n}0$. Тогда $\forall m\in\mathbb{N}\ \exists x_m\in X: \rho(0,x_m)<\frac{1}{m}\Longrightarrow X$ - компакт $\Longrightarrow\exists \{x_{m_k}\}_{m_k\in\mathbb{N}}$ сходится к точке X, но $\rho(0,x_m)<\frac{1}{m_k}\to 0,\ k\to\infty\Longrightarrow \lim_{k\to\infty}x_{m_k}=a\Longrightarrow a\in X$ - противоречие, т.к. $a\in\overline{X}\backslash X$ $\Longrightarrow X$ - замкнуто.

Обратно: Пусть X ограничено и замкнуто. Возьмем последовательность $\{x_m\}_{m\in\mathbb{N}} < X$ - последовательность ограничена \Longrightarrow по теореме Больцано-Вейерштраса из $\{x_m\}_{m\in\mathbb{N}}$ можно выделить сходящуюся подпоследовательность $\{x_{m_k}\}_{m_k\in\mathbb{N}}$: $\lim_{k\to\infty} x_{m_k} = a \Longrightarrow a$ - предельная точка $X \Longrightarrow$ из замкнутости $\Longrightarrow a \in X \Longrightarrow X$ - компакт. \square