用户稳定度模型实验

业务理解

- 存量监管: 缺少存量用户的有效监管和控制。全量用户缺少有层次、整体的客户评价得分。
- 模型现状: 异动、预警类模型繁多。模型各自独立。覆盖用户群体重复。
- 应用现状:目标用户群体类别过多、整体输出量级过大。用户群相互关系空白,无效交集过多。看管效果重叠、成果难以控制。
- 投资收益:投资成本大大降低,存储、设备、技术、人才的成本都大大降低,对单位数据价值较低的数据也值得投资分析。

模型目标

- 建立离网、携转、降档等预警模型,输出各低稳定用户类型得分。
- 有效整合上述异动预警模型,输出全量用户稳定度综合评分。
- 结合客户低稳定度原因和营销相关的指标,对客户进行细分。

模型简介

不稳定群体分析	不稳定原 因分析	特征构建	子模型构建	稳定度评 分	模型优化	总结
> 离网群体 > 携转群体 > 降档群体	 通话质量原因 为异网竞争原因 资费不满原因 费用过高原因 复餐原因 不良 不良 	基础类特征 基础类特征 基础信类特征 基定品使用特征 在行为波动特征 在行为波动特征 在发诉行为特征 特征 特征 特征 特征 特征	 离网模型 降档模型 携转模型	 子模型评分 输出 子模型评分 整合 权重确定 计算稳定度 评分 	 油户群体调整 数据账期调整 特征衍生与新增 算法优化 	➤ 用户稳定度 评分分析 ➤ 用户维系

数据理解

结合业务经验确定不稳定因素和不稳定客户群体。典型不稳定客户群为: 离网客户、携转客户、降档客户。

不稳定原因

数据准备

118个原始特征

• 用户信息: 用户年龄、性别、网龄、类型等

• 用户账单信息: 月优惠额、实付额、缴费信息、欠费信息等

• 用户话单:通话次数、时长、通信圈、流量使用等

• 投诉工单:用户投诉类别、投诉次数、满意度等

• 用户合约信息: 合约类型、合约期限

读入数据集

区分出数据集中的数值类型、标称类型。 记录所有类型以及所要使用的数据列。方便后续训练过程。

```
##数据读入
import numpy as np
import pandas as pd
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import classification_report
from sklearn.model selection import train test split
# from sklearn.metrics import classification
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
#写入数据列名称 设置字段类型
col_file = pd.read_csv("colname.csv", sep=',', header=None, index_col=None) #118^
特征
allcol_list=[]
numcol list=[]
catcol_list=[]
```

```
usecol_list=[]

model_col = []

for i in range(len(col_file)):
    allcol_list.append(col_file[0][i])
    if col_file[1][i]!='none' and col_file[1][i]!='flag': #num cat
        usecol_list.append(col_file[0][i])
    if col_file[1][i]=='num':
        numcol_list.append(col_file[0][i])
    if col_file[1][i]=='cat':
        catcol_list.append(col_file[0][i])

#读取数据
alldata = pd.read_csv("train_test", sep=',', names=allcol_list ,index_col=None)
s=alldata.copy()
alldata.describe()
print('数据读取完成')
```

进行基本的数据清洗

填充缺失值,对标称属性进行编码。

```
#字段类型设置

#缺失值用零填充
alldata = alldata.replace({'\\N': np.nan})
alldata = alldata.fillna(value=0)

#cat编码序列化
for i in catcol_list:
    alldata[i] = alldata[i].astype('category')
    alldata[i] = alldata[i].cat.codes
```

模型构建

本实验构建三个子模型:

- 子模型一-离网模型:以离网用户为正样本、正常用户为负样本进行二分类模型训练。经过模型训练和调优,确定影响离网用户的主要特征,输出离网倾向用户和离网倾向得分。
- 子模型二-携转模型:以携转用户为正样本、正常用户为负样本进行二分类模型训练。经过模型训练和调优,确定影响携转用户的主要特征,输出携转倾向用户和携转倾向得分。
- 子模型三-降档模型:以降档用户为正样本、正常用户为负样本进行二分类模型训练。经过模型训练和调优,确定影响降档用户的主要特征,输出降档倾向用户和降档倾向得分。

绘制模型重要性前二十的属性

```
def draw_features(model, title=''):
    feature_importance_array = model.feature_importances_
    df=pd.DataFrame(feature_importance_array,index=[usecol_list])
    df_dis=df.sort_values(by=0,ascending=False).head(20)

rc = {'font.sans-serif': 'SimHei',
    'axes.unicode_minus': False}
sns.set(font_scale=0.9,rc=rc)

plt.bar(x = range(len(df_dis)), # 指定条形图x轴的刻度值
    height = df_dis[0], # 指定条形图y轴的数值
    tick_label = df_dis.index, # 指定条形图x轴的刻度标签
    color = 'steelblue', # 指定条形图的填充色
    width = 0.8,
    )
plt.title(title + '重要变量')
plt.xticks(rotation=90)
plt.show()
```

训练模型

根据类型选择flag属性中对应值,使用梯度提升模型对数据进行分类预测,并保存模型。

- 1离网模型 2携转模型 3降档模型
- 上述三种模型flag取值分别为1, 2, 3以及正常0
- 选择离网和正常作为正例和负例,其余同理

```
import pickle
def train model(model num=1):
   model_name = ['', '离网模型', '携转模型', '降档模型']
   X=alldata[(alldata['flag']==0)|(alldata['flag']==model_num)][usecol_list]
   Y=alldata[(alldata['flag']==0)|(alldata['flag']==model num)]['flag']
   #切分训练集
   X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2,
random_state=7)
   #模型训练gbdt
   model = GradientBoostingClassifier(learning_rate=0.4,
                                      n_estimators=50,
                                      subsample=0.75,
                                      max depth=3,
                                      max features='log2',
                                      random state=49
   model.fit(X_train, y_train)
   ###保存模型到文件
   with open('model_model_' + str(model_num) + '.pkl', 'wb') as file:
       pickle.dump(model, file)
```

```
##预测
y_predict = model.predict(X_test)

##模型训练结果 分析
print(classification_report(y_test, y_predict))
print(confusion_matrix(y_test, y_predict))
draw_features(model, model_name[model_num])
```

分别设置model_num=1, 2, 3, 得到三种模型训练效果以及模型重要性前二十属性。

离网模型

	precision	recall	f1-score	support
0	0.90	0.94	0.92	1843
1	0.67	0.53	0.59	401
accuracy			0.87	2244
macro avg	0.78	0.74	0.76	2244
weighted avg	0.86	0.87	0.86	2244

混淆矩阵:

	1	0
1	1737	106
0	189	212

离网模型重要变量

携转模型

	precision	recall	f1-score	support
0	0.95	0.98	0.96	1831
1	0.38	0.18	0.25	121
accuracy			0.93	1952
macro avg	0.66	0.58	0.60	1952
weighted avg	0.91	0.93	0.92	1952

混淆矩阵:

1 0

	1	0
1	1795	36
0	99	22

携转模型重要变量

降档模型

_	precision	recall	f1-score	support
0	0.78	0.75	0.77	1821
1	0.66	0.69	0.67	1255
accuracy			0.73	3076
macro avg	0.72	0.72	0.72	3076

	precision	recall	f1-score	support
weighted avg	0.73	0.73	0.73	3075

混淆矩阵:

	1	0
1	1370	451
0	389	866

使用模型

读取已训练模型,分别保存为model_1, model_2, model_3。 读取预测数据,同样进行数据预处理。

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import pickle
import sys
#写入数据列名称 设置字段类型
col_file = pd.read_csv("colname-pre.csv", sep=',', header=None, index_col=None)
allcol list=[]
numcol_list=[]
catcol_list=[]
usecol_list=[]
for i in range(len(col_file)):
    allcol_list.append(col_file[0][i])
    if col_file[1][i]!='none' and col_file[1][i]!='flag':
        usecol_list.append(col_file[0][i])
    if col_file[1][i]=='num':
        numcol_list.append(col_file[0][i])
    if col_file[1][i]=='cat':
        catcol_list.append(col_file[0][i])
##模型读取 1离网模型 2携转模型 3降档模型
with open('model//model 1.pkl', 'rb') as file:
   model_1 = pickle.load(file)
with open('model//model 2.pkl', 'rb') as file:
   model_2 = pickle.load(file)
with open('model//model 3.pkl', 'rb') as file:
    model_3 = pickle.load(file)
#读取数据
all = pd.read csv("pre test", sep=',', names=allcol list,
header=None, index col=False, chunksize=1000000)
for chunk in all:
   s=chunk.copy()
   alldata=chunk
    alldata.describe()
    print(chunk)
   print('数据读取完成')
###缺失值用零填充
alldata = alldata.replace({'\\N': np.nan})
alldata = alldata.fillna(value=0)
#cat编码序列化
for i in catcol list:
    alldata[i] = alldata[i].astype('category')
    alldata[i] = alldata[i].cat.codes
```

预测可能性,正常(稳定)为负例,因此预测结果为离网可能性。 同时提取每个模型中重要性前五的列。

```
输出三个子模型的得分
##预测
X=alldata[usecol list]
y_predict_proba_1 = pd.Series(model_1.predict_proba(alldata[usecol_list])
[:,1].tolist(),index=alldata.index)
y_predict_proba_2 = pd.Series(model_2.predict_proba(alldata[usecol_list])
[:,1].tolist(),index=alldata.index)
y_predict_proba_3 = pd.Series(model_3.predict_proba(alldata[usecol_list])
[:,1].tolist(),index=alldata.index)
# 每个模型中重要性前五的列
imp_list_1 =
['realfee_agv','called_cnt','on_net_dur','call_cnt','neti_called_cnt']
imp_list_2 =
['is_carryout_query','smos_xie_allmon','called_num','realfee_agv','neto_called_cnt
'1
imp_list_3 =
['flu_mainoffer_uncover_times','call_mainoffer_uncover_num','realfee_agv','flu_tot
al_uncover_num','call_total_uncover_times']
s['realfee_agv']=s['realfee_agv']/100
result_data =
pd.concat([s['subs_id'],y_predict_proba_1,s[imp_list_1],y_predict_proba_2,s[imp_li
st_2],y_predict_proba_3,s[imp_list_3]],axis=1)
result_data.rename(columns={0:'proba_1',1:'proba_2',2:'proba_3'},inplace=True)
result_data.head()
```

计算加权稳定值得分, 对降档权重

```
###稳定度综合得分计算
#1 降档模型分档字段设计
#2 汇总生成 稳定度综合得分
# 分档位值处理

s = s.replace({'\\N': np.nan})
s = s.fillna(value=0)
fav_list=s['fav_val'].copy().astype('float')

fav_list[(fav_list>=0 ) & (fav_list<=8 )]=1.0
fav_list[(fav_list>8 ) & (fav_list<18 )]=0.280
fav_list[(fav_list>=18 ) & (fav_list<20 )]=0.555
fav_list[(fav_list>=20 ) & (fav_list<28 )]=0.588
fav_list[(fav_list>=28 ) & (fav_list<38 )]=0.687
```

```
fav_list[(fav_list>=38 ) & (fav_list<48 )]=0.650</pre>
fav_list[(fav_list>=48 ) & (fav_list<50 )]=0.528</pre>
fav_list[(fav_list>=50 ) & (fav_list<58 )]=0.569</pre>
fav_list[(fav_list>=58 ) & (fav_list<68 )]=0.651</pre>
fav_list[(fav_list>=68 ) & (fav_list<78 )]=0.356</pre>
fav_list[(fav_list>=78 ) & (fav_list<88 )]=0.472
fav_list[(fav_list>=88 ) & (fav_list<98 )]=0.399</pre>
fav_list[(fav_list>=98 ) & (fav_list<108)]=0.507</pre>
fav_list[(fav_list>=108) & (fav_list<118)]=0.386</pre>
fav_list[(fav_list>=118) & (fav_list<128)]=0.450</pre>
fav_list[(fav_list>=128) & (fav_list<138)]=0.498</pre>
fav_list[(fav_list>=138) & (fav_list<158)]=0.414</pre>
fav_list[(fav_list>=158) & (fav_list<168)]=0.480</pre>
fav_list[(fav_list>=168) & (fav_list<188)]=0.499</pre>
fav_list[(fav_list>=188) & (fav_list<198)]=0.511</pre>
fav_list[(fav_list>=198) & (fav_list<218)]=0.516</pre>
fav_list[(fav_list>=218) & (fav_list<238)]=0.451
fav_list[(fav_list>=238) & (fav_list<258)]=0.472</pre>
fav_list[(fav_list>=258) & (fav_list<268)]=0.330
fav_list[(fav_list>=268) & (fav_list<288)]=0.542
fav_list[(fav_list>=288) & (fav_list<298)]=0.575
fav_list[(fav_list>=298) & (fav_list<338)]=0.534</pre>
fav_list[(fav_list>=338) & (fav_list<388)]=0.568</pre>
fav_list[(fav_list>=388) & (fav_list<398)]=0.669</pre>
fav_list[(fav_list>=398) & (fav_list<588)]=0.686</pre>
fav_list[(fav_list>=588) & (fav_list<598)]=0.730</pre>
fav_list[ fav_list>=598
                                             ]=0.792
```

计算可能性加权平均值,除降档外权重均为1

```
#计算 降档分层系数
result_data['down_ratio']=fav_list
result_data['fav_val'] = s['fav_val'].astype('int')

# 计算加权平均值
result_data['stable_score_v3']=
(result_data['proba_1']+result_data['proba_2']+result_data['proba_3']*result_data[
'down_ratio'])/(2+result_data['down_ratio'])
result_data
```

由于正常即保留为负例,因此可能性为离网可能性,此处转化为稳定性得分。

```
result_data['proba_1']=(1-result_data['proba_1'])*100
result_data['proba_2']=(1-result_data['proba_2'])*100
result_data['proba_3']=(1-result_data['proba_3'])*100
result_data['stable_score_v3']=(1-result_data['stable_score_v3'])*100
result_data['statis_month']=s['statis_month']
```

```
print('结果生成完成')
result_data.round(3).to_csv("output//result_test", sep=',', header=True,
index=False, encoding="UTF-8")
print('结果写入文件完成')
result_data.head()
```

最终测试用例得分如下图所示

实验小结

本实验依照所给案例进行了复现,计算了加权稳定度得分。

原案例中,以及所给数据集仅给出了十个测试用例,且映射后降档权重均为1,不能起到很好的验证效果。 此外,原模型验证所给不稳定度比例柱状图中,x轴比例不均匀,最后一档为0-50得分,而第一档仅为100-95, 不知道如此比较是否合适。