Final Exam

Dec 15, 2009 Total Time Allotted: 3 hours

DO ALL WORK ON EXAM PAGES (Exam paper has a total of 9 pages including cover page)

- 1. Closed book exam. You are allowed to bring 3 sheets (8.5" x 11") of notes.
- 2. You can use a calculator. NO cell phone or computer.
- 3. If you put down the wrong answer, partial credits will be given only if you show the correct steps.
- 4. Points will be taken off for answers without units.

Last (Family) Name	Solut	tions	_
First Name:			
Student ID:	Discussion Session (# or TA):		
Signature:			
	Problem 1 (18 points)		
	Problem 2 (25 Points)		
	Problem 3 (22 Points)		
	Problem 4 (25 Points)		
	Problem 5 (25 points)		
	Problem 6 (15 Points)		
	Problem 7 (15 points)		
	Problem 8 (25 Points)		
	Problem 9 (30 points)		

(200 points)

TOTAL

Problem 1 Diode Circuits (18 points total)

All pn diodes shown below have a voltage drop of 0.6V when they are "ON".

Indicate in the table whether the diodes D_{1A} , D_{1B} and D_2 are **ON/OFF** with the given V_A and V_B values (1point each). Also give the corresponding V_{OUT} numerical values (3 points each). NO PARTIAL CREDIT WILL BE GIVEN FOR THIS PROBLEM.

V _A	V _B	D _{1A} (ON/OFF)	D _{1B} (ON/OFF)	D ₂ (ON/OFF)	V _{OUT} (sign and numerical value)
0V	0V	ON	ON	ON	0V
0V	+4V	ON	OFF	ON	0V
+4V	+4V	OFF	OFF	ON	+0.7V

 $\begin{array}{l} V_{A}\!=\!0V,\,V_{B}\!=\!0V,\,D_{1A}is\,\,ON,\,D_{1B}\,\,is\,\,ON,\,V_{X}\!=\!+\!0,\!6V.\,\,D_{2}\,\,is\,\,ON.\,\,V_{OUT}\!=\!0V\\ V_{A}\!=\!0V,\,V_{B}\!=\!+\!4V,\,D_{1A}\,\,is\,\,\,ON,\,D_{1B}\,\,is\,\,OFF,\,\,V_{X}\!=\!+\!0,\!6V.\,\,D_{2}\,\,is\,\,ON.\,\,V_{OUT}\!=\!0V\\ V_{A}\!=\!+\!4V,\,V_{B}\!=\!+\!4V,\,D_{1A}\,\,is\,\,\,OFF,\,D_{1B}\,\,is\,\,OFF,\,\,D_{2}\,\,is\,\,ON\,\,, \end{array}$

Current through D2 = (4-(-2)-0.6)/10k $\Omega = 5.4$ x 10^{-4} A

 $V_{OUT} = -2V + 5k\Omega \times 5.4 \times 10^{-4} A = -2V + 2.7V = +0.7V$

Note: $V_X = 4V - 5k\Omega x 5.4x 10^{-4} A = 4 - 2.7V = +1.3V$ (consistent with D2 ON)

Problem2: MOSFET Amplifier (25 points total)

Consider the N-channel MOSFET amplifier given above. $i_{DS} = \frac{K}{2}(v_{GS} - V_T)^2$, $V_{DD} = 5V$, $R_L = 2k\Omega$, $K = 1 \text{mA/V}^2$, $V_T = 1V$. You can ignore r_d of the MOSFET. C_C is the input coupling capacitor. You can assume it is infinitely large.

a) (3 points) Derive an expression for the transistor bias point V_{GSQ} as a function of V_{DD} , R_a and R_b .

This is just a resistive divider,
$$V_{GS} = V_{DD} \frac{R_b}{R_b + R_a}$$

b) (10 points) Determine the required ratio R_a/R_b such that the MOSFET $g_m = 1 \text{mA/V}$. Remember that g_m is defined as $\frac{\partial I_{DS}}{\partial V_{GS}}$.

First calculate V_{GS} from the equation for g_{m}

$$g_{m} = \frac{\partial I_{DS}}{\partial V_{GS}} = K(V_{GS} - V_{T}) = 1mA/V$$

$$= 1mA/V^{2}(V_{GS} - 1V) = 1mA/V$$

$$(V_{GS} - 1V) = 1V$$

$$V_{GS} = 2V$$

Next use the result from part a to determine the required rato

$$V_{GS} = V_{DD} \frac{R_b}{R_b + R_a} = 5V \frac{R_b}{R_b + R_a} = 2V$$

$$\frac{R_b}{R_b + R_a} = \frac{2}{5}$$

$$R_a = 1.5R_b$$

c) (6 points) What is the voltage bias point of the output V_{outQ} ? (If you cannot calculate a numerical answer leave the answer it in terms of the given circuit parameter values, R_a and R_b .). Use the results from part(b).

First solve for the quiescent current, then calculate the voltage:

$$I_{DS} = \frac{K}{2}(V_{GS} - V_T)^2 = \frac{1mA/V^2}{2}(2V - 1V)^2 = 0.5mA$$

$$V_{OUT} = V_{DD} - I_{DS}R_L = 5V - 0.5mA \cdot 2k\Omega = 4V$$

In terms of circuit parameters:

$$I_{DS} = \frac{K}{2} (V_{GS} - V_T)^2 = \frac{K}{2} (V_{DD} \frac{R_b}{R_b + R_a} - V_T)^2$$

$$V_{OUT} = V_{DD} - I_{DS}R_L = V_{DD} - \frac{K}{2}(V_{DD}\frac{R_b}{R_b + R_a} - V_T)^2 R_L$$

d) (6 points) Draw the small-signal model for the amplifier and calculate the gain v_{out}/v_{in} . Clearly label the component values and small-signal voltages v_{in} and v_{out} . Us ethe results from part(b).

The small-signal model:

The gain is just $g_m * R_L = 2$

Problem 3 MOSFET and diode: Qualitative behavior (22 points total)

a) You are given the following circuit, and the magical ability to change each of the following input parameters independently: V_1 , V_2 , K, V_7 . You also measure each of the following parameters: I_1 , I_2 , g_m , r_d . Indicate in the table how an increase in each of the "input" parameters changes each of the "output" parameters. Please use these symbols:

$$\uparrow$$
 = increase, \downarrow = decrease, -- = no change.

You may assume that the transistor is in saturation.

	I_1	I_2	g_m	r_d
V_1	- 1	↑	↑	\rightarrow
V_2		↑	1	\
K		1	1	\
V_T		\	\	↑

 I_I is always zero, and is not affected by any of the input parameters.

- $I_2 = K(V_1 V_T)^2 (1 + \lambda V_2)$ $I_2 \text{ increases with } K, V_1 \text{ and } V_2, \text{ and decreases with } V_7.$
- $g_m = 2\sqrt{KI_2}$ g_m varies the same way as I_2 . $r_d = \frac{1}{\lambda I_2}$

$$r_d = \frac{1}{\lambda I_z}$$

 r_d varies in the opposite way from I_2 .

Problem 3 continued

(b) The following diode circuit and the parameters are shown in the table. Fill in the table how an increase in each of the "input" parameters V_D,I_S,V_{Th} changes each of the "output" parameters. Please use these symbols:

$$\uparrow$$
 = increase, \downarrow = decrease, -- = no change.

 V_{Th} is the thermal voltage (kT/q) and r_d is the small signal resistance

The diode I-V characteristics is :
$$I_D = I_S (e^{V_D/V_{Th}} - 1) \cong I_S e^{V_D/V_{Th}}$$

	I_D	r_d
V_D	↑	\downarrow
I_S	↑	\
V_{Th}	\	↑

For the diode, we have the following equations:

$$I_D = I_S(e^{V_D/V_{Th}} - 1) \cong I_S e^{V_D/V_{Th}}$$

$$r_d = \frac{V_{Th}}{I_D}$$

(If you didn't have the equation for r_d on your formula sheet, you can easily derive it, or estimate from a sketch of I_D .) We see that:

- I_D increases with I_S and V_D , and decreases with V_{Th} .
- r_d varies in the opposite way as I_D . For the dependence on V_{Th_r} both the numerator and the denominator cause r_d to increase.

Problem 4 Diodes and transients (25 points total)

A circuit with input resistance R_i uses a Zener diode with breakdown voltage V_{BR} (=5V) to protect itself from large input voltages.

For this problem, we will augment the diode model used in class to include the diode's *capacitance* due to the p-n junction. The equivalent circuit of the Zener diode in the reverse-bias region is modeled as a capacitor C_D if there is no breakdown. The diode is modeled as a short plus V_{BR} if there is breakdown (see figures at right)

A large input voltage step with magnitude V_s is connected to the circuit through a resistance R_s . It is given that $V_s = 14V$ and V_I (t=0) =0. Let $R_i = R_s$.

(a) Find an analytical expression for the time constant τ in terms of R_S, R_i and C_D when the diode is not conducting. (10 pts)

The natural response in the reverse-bias region can be found by setting the forcing function to zero and substituting a capacitor for the diode:

The resistors now appear in parallel. We can find the time constant in terms of the equivalent (parallel) resistance:

$$\tau = R_{eq}C_D = (R_s||R_i)C_D = \frac{R_sR_i}{R_s + R_i}C_D$$

$$=\frac{R_s}{2}C_D=\frac{R_t}{2}C_D$$

(b) **Sketch the voltage** V_I , **versus time in units of** τ , on the axes given. Find the voltage at $t = \tau$, 2τ , 3τ and show the values on your plot. (15 pts) [Hint: Apply the method of assumed states for each time t and check consistency]

Observe that this is a first-order transient with initial value 0V. Ignoring the breakdown of the diode (i.e. assuming that the model valid at t = 0 remains valid for all time), the final value is given by a voltage divider consisting of two equal resistors:

$$v_f = V_s/2 = 7 \text{ V}$$

This allows us to find the value at $t = \tau$:

$$v_1(t=\tau) = v_f(1-e^{-1}) = 4.42 \text{ V}$$

We can use the same approach to find the value at $t = 2\tau$:

$$v_f(1 - e^{-2}) = 6.05 \text{ V}$$

But this is greater than the diode's breakdown voltage. Therefore, somewhere between τ and 2τ , the diode will start to conduct, and clip off any further increase in voltage. Therefore,

$$v_1 = V_{BR} = 5 \text{ V}$$

**For those who ignore the V_{BR} in the Zener diode model after breakdown, the capacitance discharges immediately and completely at the onset of breakdown, returning the circuit to the state at $t = 0^+$ and leading to a periodic waveform, like this:

You will also obtain full credit for this answer.

Problem 5 Reactive Elements and Power (25 points total)

You are driving a sinusoidal signal v_1 through a resistance R_S , into a device with a large parasitic input capacitance C_1 (=100pF) .Besides the capacitor, no other current flows into the device.

a) Does the current i_i lead or lag the applied voltage v_i ? (5 pts)

The current leads the voltage, because a capacitor is present, which differentiates voltage. Suppose the applied voltage is a sine function. At t = 0, the voltage is zero, but because the voltage is increasing, current is already flowing in the capacitor.

b) Suppose Vc (t) is known to be $4 \cdot \cos(\omega t)$ V. Calculate the current $i_1(t)$ at 22 MHz. (5 pts)

First, find the current i_i :

$$v_C = V_C e^{j\omega t} = V_C \cos(\omega t)$$

$$\Rightarrow i_t = \frac{v_C}{Z_C} = \frac{V_C e^{j\omega t}}{Z_C}$$

$$Z_C = \frac{1}{j\omega C} = \frac{1}{j2\pi fC} = \frac{72.3}{j}\Omega$$

$$\Rightarrow i_t = 55.3 \text{ mA sin } (\omega t)$$

c) Calculate the peak power dissipated in the capacitor at 22 MHz? (10 pts)

Now we can find the power after knowing current, using the derivation described on Hambley p. 226:

$$p_C(t) = i_i v_C = V_C I_i \cos(\omega t) \sin(\omega t)$$

$$=V_CI_i\frac{1}{2}\sin(2\omega t)$$

The peak power is just the amplitude of this waveform:

$$\Rightarrow P_C = |p_C| = \frac{V_C I_i}{2}$$

$$\Rightarrow P_C = \frac{4 \text{ V} \cdot 55.3 \text{ mA}}{2} = 0.111 \text{ W}$$

Note: The time-average power in a reactive element always averages to **zero** (as we can see in this particular case from the fact that it is a sinusoid).

d) You want to reduce the peak power consumption by adding an extra parallel element Z_p as shown. Indicate whether you will choose a **resistor**, **inductor**, or **capacitor**, and justify your choice in 10 words or less (further words will not be graded). (5 pts)

In order to reduce the power, we must reduce the current i_1 . Only an inductor can achieve this. Possible justifications include:

- "Resonance" give infinite impedance of LC.
- "Increase impedance after resistor"
- "Positive reactance cancels negative reactance"

Problem 6 Cascade Op Amp Circuits (15 points total)

The goal is to design an exponential amplifier such that $V_{OUT} = \exp(V_{IN})$ with the following op amp circuit. Ideal op amp operation is assumed. Voltages are in units of volts.

The Diode D1 has I-V characteristics: I = 1mA \bullet [exp (V_D/ V_{Th}) -1] , where the thermal voltage V_{Th}=0.026V at room temperature.

(a) (4 points) Choose the ratio R1/R2 such that $V_X/V_{IN} = 0.026$. Show your work.

First op amp circuit is a voltage follower V_x = Vin • R2/(R1+R2) or 1+ R1/R2 = 1/0.026= 38.46 Therefore R1/R2=37.46

(b) (5 points) What numerical value of R (in Ω) will you choose? Show your work.

```
V_Z= -R• I= -R•1mA • [ exp( V_X/V_{Th}) -1 ] =-R•1mA • [ exp(V_{IN}) -1 ] We will choose R=1k\Omega to make the pre-exponential factor =1 V_Z = - [ (exp(V_{IN}) -1 ]
```

(c) (6 points) What numerical value of V_{offset} (in volts) will you choose? Show your work.

The Third op amp circuit is a differential inverting amplifier with gain =1: $V_{OUT} = -(V_z - V_{offset})$, If we choose $V_{offset} = +1V$, $V_{OUT} = exp(V_{IN})$

Problem 7 Wave Shaping Circuits (15 points total)

(A) (10 points) The following diode-capacitor circuit has $v_{in}(t) = V_m \bullet \sin(\omega t)$ shown in the graph. The diode has perfect rectifier behavior. v_C is initially equal to 0 at t=0. Sketch $v_C(t)$ using a dash line and sketch $v_{out}(t)$ as a dotted line in the same graph for all times t.

(B) (5 points) A DC voltage source V_B =+1V is added to the diode-capacitor circuit. Sketch only the **steady-state** $v_{out}(t)$ in the same graph (i.e. after one cycle of V_{in})

Problem 7 answers

(B) You only have to show the steady state waveform to obtain full credit.

Problem 8 Miscellaneous Questions (25 points total)

Please circle either True (T) or False(F) for the following statements:

Т	F	Miniaturization gives faster integrated circuit performance
Т	F	A state-of-the-art solid-state transistor has critical dimensions on the order of 45 nm.
Т	F	The maximum power that a solar cell can deliver in practice equals $i_{sc} \bullet v_{oc}$.
Т	F	KVL and KCL can be applied to circuits with nonlinear circuit elements
Т	F	Superposition Principle can be applied to circuits with nonlinear circuit elements
Т	F	CMOS logic circuits dissipated power only during switching
T	F	Ideal capacitors and inductors have zero instantaneously power at all times.
Т	F	An ideal OP Amp has zero gain for common-mode input signal
Т	F	A real OP Amp voltage follower circuit has very large input resistance
Т	F	For MOSFETs with fixed V_{GS} , triode region has less current than saturation region.
Т	F	All combinatorial logic functions can be synthesized by NOR gates alone.
Т	F	Mesh analysis has fewer independent equations than Nodal Analysis in general
Т	F	The Transresistance Amplifier Model uses a current-controlled voltage source.
Т	F	Amplifier will have no waveform distortion if phase shift is linear proportional to frequency
Т	F	We can use SOP Method to simplify sequential logic design.
Т	F	Bias and offset current sources are desirable for Differential Amplifiers.
Т	F	Harmonic distortion of an amplifier will become bigger with larger signal amplitudes.
Т	F	Overshooting of amplifier with impulse input is related to the amplifier's bandwidth
T	F	A pure resistive load has maximum reactive power.
Т	F	A full wave rectifier circuit requires at least 4 diodes
Т	F	Magnitude Bode Plot of any RLC circuit cannot have a slope larger than 20 dB/decade
Т	F	A Ripple Counters requires both the input signal and a separate clock signal.
Т	F	MOSFET with the drain tied to the gate will operate in the saturation mode when it is ON.
Т	F	A pn diode can be used as a photodetector.
Т	F	"Don't care" as output in truth tables will give simpler Boolean algebraic expressions.

Problem 9 LAB Questions (30 points total)

(A) Write the names of circuit components shown below.

a.)	Potentiometer	(1pt)
a. j	rotentionictei	(1

- b.) Inductor (1pt)
- d.) ______(1pt)
- e.) ______(1pt)
- f.) _____Capacitor____(1pt)

(B)- Write the name of the instruments' labeled below.

- a.)_____Oscilloscope _____(1pt)
- b.) Function Generator (1pt)
- c.) _The Digital Multimeter___(1pt)
- d.) Power supply (1pt)
- e.) _____Breadboard____(1pt)
- f.) _Soldering Iron/Solder____(1pt)

- (C) Which instrument do we use to measure current and voltage? (2pt)
 - Multimeter
 - Avometer
- (D) Draw the missing components of the boost converter circuit. (6pt)

- (E) Write the two basic components of a microcontroller. (2pt)
 - CPU
 - RAM
 - In/Out Ports
 - Timer

(F) Draw a full bridge (i.e. Wheatstoen Bridege) circuit diagram on breadboard with using symbols given below. (4pt)

(G) Please briefly explains, how does a *strain gauge work?* (2pt)

A **strain gauge** is a device used to measure the <u>strain</u> of an object. When an <u>electrical conductor</u> is stretched, it will become narrower and longer. Thus its electrical resistance increases end-to-end. Conversely, when a conductor is compressed, it will broaden and shorten, hence its electrical resistance decreases end-to-end.

(H) Write down voltage values of V1 and V2 in the circuit shown below? (2pt)

