高等数学 II		
2018-2019		

姓名: 专业: 学号:

第 05 周作业

练习 1. 填空

函数	定义域	类型(填: 闭集/开集, 有界集/无界集, 连通/不连通)
$z = \sqrt{x - \sqrt{y}}$	$D = \{(x, y) y \ge 0, x \ge 0 \exists x^2 \ge y \}$	闭集,无界集,连通
$z = \frac{1}{\sqrt{x+y}} + \frac{1}{\sqrt{x}}$	$ D = \{(x, y) x + y > 0 \perp x - y > 0 \} $	开集,无界集,连通

并分别画出上述两定义域 D, 在图上标示哪部分是内点, 哪部分是外点, 哪部分是边界。

练习 2. 画出二元函数 $z = 2 - x^2 - y^2$ 的函数图形,其中函数定义域为 $D = \{(x, y) | x^2 + y^2 \le 1\}$ 。

练习 3. 设 E 是平面上一个点集,则平面上任意一点 P 只能是一下三种的一种: (1) E 的内点; (2) E 的外点; (3) E 的边界点。现假设点 Q 是 E 的聚点,则可以证明 Q 或者为 E 的内点,或者为 E 的边界点;也就是

{全体聚点} ⊂ {内点} ∪ {边界点}

但一般而言, $\{$ 全体聚点 $\}$ 未必与并集 $\{$ 内点 $\}$ \cup $\{$ 边界点 $\}$ 相同。以下是一个例子

假设点集 $E = \{(x, y) | (x-2)^2 + (y-2)^2 \le 0.7^2 \} \cup \{(0.6, 0.8)\}$ (如下图)。填写(请填上 \checkmark 或 \times)

	内点	边界点	聚点
$P_1(1.61.8)$			
$P_2(2, 2.7)$			
$P_3(0.6, 0.8)$			

练习 4. 证明下列极限不存在

1.
$$\lim_{(x,y)\to(0,0)} \frac{x-y}{\sqrt{x^2+y^2}}$$

2.
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$$

练习 5. 求下列函数的偏导数

$$(1) \quad s = \frac{u^2 + v^2}{uv}$$

(1)
$$s = \frac{u^2 + v^2}{uv}$$
; (2) $z = \sin(xy) + \cos^2(xy)$; (3) $z = (1 + xy)^y$; (4) $u = \arctan(x - y)^z$.

$$(3) \quad z = (1 + xy)^y$$

(4)
$$u = \arctan(x - y)^z$$

练习 6. 现在设 $f(x, y) = x + (y - 1) \arcsin \sqrt{\frac{x}{y}}$, 计算 $f_x(x, 1)$.

练习 7. 没
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
. 求 $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$.

练习 8. 求下列函数的所有二阶偏导数

(1)
$$z = \arctan \frac{y}{x}$$
; (2) $z = y^x$.

下面是附加题,关于空间中的旋转,试利用前一章的知识求解。做出来的同学下周请交上来。

练习 9. 如图,设 \vec{n} 是空间中一单位向量,求向量 \vec{v} 绕 \vec{n} 转 θ 角度(按右手法则方向)角度所得的向量 \vec{w} 。

提示: 1. 求 \vec{v} 在 ℓ 上的投影向量 \overrightarrow{OM} ,然后求出 \overrightarrow{MP} 。2. 要求 \vec{w} ,只需求出 \overrightarrow{MQ} 。3. 设 $\overrightarrow{e_1}$, $\overrightarrow{e_2}$ 为单位 向量, $\overrightarrow{e_1}$ 与 \overrightarrow{MP} 同向, $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, \vec{n} 两两垂直且符合右手法则,求出 $\overrightarrow{e_2}$ 。4. $\overrightarrow{e_1}$ 绕 \vec{n} 转 θ 角度所得向量是 $\overrightarrow{e_1}$, $\overrightarrow{e_2}$ 的线性组合,求出此向量。