Collaborative Data Science Practices

Will Beasley 2019-02-01

Contents

1	Pre	requisites	7
2	Arc	hitecture Principles	9
	2.1	Encapsulation	9
	2.2	Leverage team member's strenghts & avoid weaknesses	9
	2.3	Scales	9
	2.4	Consistency	9
3	Pro	totypical File	11
	3.1	Clear Memory	11
	3.2	Load Sources	11
	3.3	Load Packages	11
	3.4	Declare Globals	11
	3.5	Load Data	11
	3.6	Tweak Data	11
	3.7	(Unique Content)	11
	3.8	Verify Values	11
	3.9	Specify Output Columns	11
	3.10	Save to Disk or Database	11
4	Pro	totypical Repository	13
	4.1	Analysis	13
	4.2	Data Public	13
	4.3	Data Unshared	13
	4.4	Documentation	13
	4.5	Manipulation	13
	4.6	Stitched Output	13
	4.7	Utility	13

4 CONTENTS

5	Data	a at Rest	15
	5.1	Data States	15
	5.2	Data Containers	15
6	Patt	erns	17
	6.1	Ellis	17
	6.2	Arch	19
	6.3	Ferry	19
	6.4	Scribe	19
	6.5	Analysis	19
	6.6	Presentation -Static	19
	6.7	Presentation -Interactive	19
	6.8	Metadata	19
7	Secu	urity & Private Data	21
	7.1	File-level permissions	21
	7.2	Database permissions	21
	7.3	Public & Private Repositories	21
8	Aut	omation	23
	8.1	Flow File in R $$	23
	8.2	Makefile	23
	8.3	SSIS	23
	8.4	cron Jobs & Task Scheduler	23
	8.5	Sink Log Files	23
9	Scal	$\operatorname{ing}\operatorname{Up}$	25
	9.1	Data Storage	25
	9.2	Data Processing	25
10	Para	allel Collaboration	27
	10.1	Social Contract	27
	10.2	Code Reviews	27
	10.3	Remote	27

CONTENTS5

11 Doc	numentation	29
11.1	Team-wide	29
11.2	Project-specific	29
11.3	Dataset Origin & Structure	29
11.4	Issues & Tasks	29
11.5	Flow Diagrams	29
11.6	Setting up new machine	29
12 Pub	dishing Results	31
12.1	To Other Analysts	31
12.2	To Researchers & Content Experts	31
12.3	To Technical-Phobic Audiences	31
13 Test	ing, Validation, & Defensive Programming	33
13.1	Testing Functions	33
13.2	Defensive Programming	33
13.3	Validator	33
14 Tro	ubleshooting and Debugging	35
14.1	Finding Help	35
14.2	Debugging	35
15 Con	siderations when Selecting Tools	37
15.1	Required Installation	37
15.2	Recommended Installation	37
15.3	Optional Installation	37
15.4	Asset Locations	37
16 Con	siderations when Selecting Tools	39
16.1	General	39
16.2	Languages	39
16.3	R Packages	39
16.4	Database	39
17 Gro	wing a Team	41
17.1	Recruiting	41
17.2	Training to Data Science	41
17.3	Bridges Outside the Team	41
18 Intr	oduction	43

0		CONTENTS
n	h	CONTRINTS
u	U	CONTENIO

19 Scratch Pad of Loose Ideas	45	
19.1 Chapters & Sections to Form	45	

Prerequisites

This is a *sample* book written in **Markdown**. You can use anything that Pandoc's Markdown supports, e.g., a math equation $a^2 + b^2 = c^2$.

The **bookdown** package can be installed from CRAN or Github:

```
install.packages("bookdown")
# or the development version
# devtools::install_github("rstudio/bookdown")
```

Remember each Rmd file contains one and only one chapter, and a chapter is defined by the first-level heading #.

To compile this example to PDF, you need XeLaTeX. You are recommended to install TinyTeX (which includes XeLaTeX): https://yihui.name/tinytex/.

Architecture Principles

2.1 Encapsulation

2.2 Leverage team member's strenghts & avoid weaknesses

- 1. Focused code files
- 2. Metadata for content experts

2.3 Scales

- 1. Single source & single analysis
- 2. Multiple sources & multiple analyses

2.4 Consistency

- 1. Across Files {#consistency-files}
- 2. Across Languages
- 3. Across Projects

Prototypical File

As stated before, in Consistency Files, using a consistent file structure can (a) improve the quality of the code because the structure has been proven over time to facilitate good practices and (b) allow your intentions to be more clear to teammates because they are familiar with the order and intentions of the chunks.

We use the term "chunk" for a section of code because it corresponds with knitr terminology (Xie, 2015), and in many cases, the chunk of our R file connects to a knitr Rmd file.

- 3.1 Clear Memory
- 3.2 Load Sources
- 3.3 Load Packages
- 3.4 Declare Globals
- 3.5 Load Data
- 3.6 Tweak Data
- 3.7 (Unique Content)
- 3.8 Verify Values
- 3.9 Specify Output Columns
- 3.10 Save to Disk or Database

Prototypical Repository

https://github.com/wibeasley/RAnalysisSkeleton

4.1 Analysis

4.2 Data Public

- 1. Raw
- 2. Derived
- 3. Metadata
- 4. Database
- 5. Original
- 4.3 Data Unshared
- 4.4 Documentation
- 4.5 Manipulation
- 4.6 Stitched Output
- 4.7 Utility

Data at Rest

5.1 Data States

- 1. Raw
- 2. Derived
 - 1. Project-wide File on Repo
 - 2. Project-wide File on Protected File Server
 - 3. User-specific File on Protected File Server
 - 4. Project-wide Database
- 3. Original

5.2 Data Containers

- 1. csv
- 2. rds
- 3. SQLite
- 4. Central Enterprise database
- 5. Central REDCap database
- 6. Containers to avoid for raw/input
 - 1. Proprietary like xlsx, sas7bdat

Patterns

6.1 Ellis

6.1.1 Purpose

To incorporate outside data source into your system safely.

6.1.2 Philosophy

- Without data immigration, all warehouses are useless. Embrace the power of fresh information in a way that is:
 - repeatable when the datasource is updated (and you have to refresh your warehouse)
 - similar to other Ellis lanes (that are designed for other data sources) so you don't have to learn/remember an entirely new pattern. (Like Rubiks cube instructions.)

6.1.3 Guidelines

- Take small bites.
 - Like all software development, don't tackle all the complexity the first time. Start by processing only the important columns before incorporating move.
 - Use only the variables you need in the short-term, especially for new projects. As everyone knows, the variables from the upstream source can change. Don't spend effort writing code for variables you won't need for a few months/years; they'll likely change before you need them.
 - After a row passes through the verify-values chunk, you're accountable for any failures it causes in your warehouse. All analysts know that external data is messy, so don't be surprised. Sometimes I'll spend an hour writing an Ellis for 6 columns.
- Narrowly define each Ellis lane. One code file should strive to (a) consume only one CSV and (b) produce only one table. Exceptions include:
 - 1. if multiple input files are related, and really belong together (e.g., one CSV per month, or one CSV per clinic). This scenario is pretty common.
 - 2. if the CSV should legitimately produce two different tables after munging. This happens infrequently, such as one warehouse table needs to be wide, and another long.

6.1.4 Examples

- https://github.com/wibeasley/RAnalysisSkeleton/blob/master/manipulation/te-ellis.R
- https://github.com/wibeasley/RAnalysisSkeleton/blob/master/manipulation/
- https://github.com/OuhscBbmc/usnavy-billets/blob/master/manipulation/survey-ellis.R

6.1.5 Elements

1. Clear memory In scripting languages like R (unlike compiled languages like Java), it's easy for old variables to hang around. Explicitly clear them before you run the file again.

```
rm(list=ls(all=TRUE)) #Clear the memory of variables from previous run. This is not called by knit
```

2. Load Sources In R, a source()d file is run to execute its code. We prefer that a sourced file only load variables (like function definitions), instead of do real operations like read a dataset or perform a calculation. There are many times that you want a function to be available to multiple files in a repo; there are two approaches we like. The first is collecting those common functions into a single file (and then sourcing it in the callers). The second is to make the repo a legitimate R package.

The first approach is better suited for quick & easy development. The second allows you to add documention and unit tests.

```
# ---- load-sources
source("./manipulation/osdh/ellis/common-ellis.R")
```

3. Load Packages This is another precaution necessary in a scripting language. Determine if the necessary packages are available on the machine. Avoiding attaching packages (with the library() function) when possible. Their functions don't need to be qualified (e.g., dplyr::intersect()) and could cause naming conflicts. Even if you can guarantee they don't conflict with packages now, packages could add new functions in the future that do conflict.

4. **Declare Global Variables and Functions**. This includes defining the expected column names and types of the data sources; use readr::cols_only() (as opposed to readr::cols()) to ignore any new columns that may be been added since the dataset's last refresh.

```
# ---- declare-globals ------
```

5. Load Data Source(s) Read all data (e.g., database table, networked CSV, local lookup table). After this chunk, no new data should be introduced. This is for the sake of reducing human cognition load. Everything below this chunk is derived from these first four chunks.

6.2. ARCH 19

```
# ---- load-data ------
```

6. Tweak Data

```
# ---- tweak-data -----
```

- 7. Body of the Ellis
- 8. Verify

```
# --- verify-values -----
county_month_combo <- paste(ds$county_id, ds$month)
checkmate::assert_character(county_month_combo, pattern ="^\\d{1,2} \\d{2}-\\d{2}$", any.m:</pre>
```

9. **Specify Columns** Define the exact columns and order to upload to the database. Once you import a column into a warehouse that multiple people are using, it's tough to remove it.

```
# --- specify-columns-to-upload -----
```

10. Welcome into your warehouse. Until this chunk, nothing should be persisted.

```
# --- upload-to-db -------
# --- save-to-disk ------
```

- 6.2 Arch
- 6.3 Ferry
- 6.4 Scribe
- 6.5 Analysis
- 6.6 Presentation -Static
- 6.7 Presentation -Interactive
- 6.8 Metadata

Security & Private Data

- 7.1 File-level permissions
- 7.2 Database permissions
- 7.3 Public & Private Repositories

7.3.1 Scrubbing GitHub history

Occassionaly files may be committed to your git repository that need to be removed completely. Not just from the current collections of files (*i.e.*, the branch's head), but from the entire history of the repo.

Scrubbing is require typically when (a) a sensitive file has been accidentally committed and pushed to GitHub, or (b) a huge file has bloated your repository and disrupted productivity.

The two suitable scrubbing approaches both require the command line. The first is the git-filter-branch command within git, and the second is the BFG repo-cleaner. We use the second approach, which is [recommended by GitHub]; it requires 15 minutes to install and configure from scratch, but then is much easier to develop against, and executes much faster.

The bash-centric steps below remove any files from the repo history called 'monster-data.csv' from the 'bloated' repository.

- 1. If the file contains passwords, change them immediately.
- 2. Delete 'monster-data.csv' from your branch and push the commit to GitHub.
- 3. Ask your collaborators to push any outstanding commits to GitHub and delete their local copy of the repo. Once scrubbing is complete, they will re-clone it.
- 4. Download and install the most recent Java JRE from the Oracle site.
- 5. Download the most recent jar file from the BFG site to the home directory.
- 6. Clone a fresh copy of the repository in the user's home directory. The --mirror argument avoids downloading every file, and downloads only the bookkeeping details required for scrubbing.

```
cd ~
git clone --mirror https://github.com/your-org/bloated.git
```

7. Remove all files (in any directory) called 'monster-data.csv'.

```
java -jar bfg-*.jar --delete-files monster-data.csv bloated.git
```

8. Reflog and garbage collect the repo.

```
cd bloated.git
git reflog expire --expire=now --all && git gc --prune=now --aggressive
```

9. Push your local changes to the GitHub server.

```
git push
```

10. Delete the bfg jar from the home directory.

```
cd ~
rm bfg-*.jar
```

- 11. Ask your collaborators to reclone the repo to their local machine. It is important they restart with a fresh copy, so the once-scrubbed file is not reintroduced into the repo's history.
- 12. If the file contains sensitive information, like passwords or PHI, ask GitHub to refresh the cache so the file's history isn't accessible through their website, even if the repo is private.

7.3.1.0.1 Resources

- BFG Repo-Cleaner site
- Additional BFG instructions
- GitHub Sensitive Data Removal Policy

Automation

- 8.1 Flow File in R
- 8.2 Makefile
- 8.3 SSIS
- 8.4 cron Jobs & Task Scheduler
- 8.5 Sink Log Files

Scaling Up

9.1 Data Storage

- 1. Local File vs Conventional Database vs Redshift
- 2. Usage Cases

9.2 Data Processing

- $1. \ \mathrm{R} \ \mathrm{vs} \ \mathrm{SQL}$
- 2. R vs Spark

Parallel Collaboration

10.1 Social Contract

- 1. Issues
- 2. Organized Commits & Coherent Diffs
- 3. Branch & Merge Strategy

10.2 Code Reviews

- 1. Daily Reviews of PRs
- 2. Periodic Reviews of Files

10.3 Remote

1. Headset & sharing screens

Documentation

- 11.1 Team-wide
- 11.2 Project-specific
- 11.3 Dataset Origin & Structure
- 11.4 Issues & Tasks
- 11.5 Flow Diagrams
- 11.6 Setting up new machine

(example)

Publishing Results

- 12.1 To Other Analysts
- 12.2 To Researchers & Content Experts
- 12.3 To Technical-Phobic Audiences

Testing, Validation, & Defensive Programming

13.1 Testing Functions

13.2 Defensive Programming

1. Throwing errors

13.3 Validator

- 1. Benefits for Analysts
- 2. Benefits for Data Collectors

Troubleshooting and Debugging

14.1 Finding Help

- 1. Within your group (eg, Thomas and REDCap questions)
- 2. Within your university (eg, SCUG)
- 3. Outside (eg, Stack Overflow; GitHub issues)

14.2 Debugging

1. traceback(), browser(), etc

Considerations when Selecting Tools

https://github.com/OuhscBbmc/RedcapExamplesAndPatterns/blob/master/DocumentationGlobal/ResourcesInstallation.md

- 15.1 Required Installation
- 15.2 Recommended Installation
- 15.3 Optional Installation
- 15.4 Asset Locations

Considerations when Selecting Tools

16.1 General

16.1.1 The Component's Goal

While disussing the advantages and disadvanages of tools, a colleague once said, "Tidyverse packages don't do anything that I can't already do in Base R, and sometimes it even requires more lines of code". Regardless if I agree, I feel these two points are irrelevant. Sometimes the advantage of a tool isn't to expand existing capabilities, but rather to facilitate development and maintaince for the same capability.

Likewise, I care less about the line count, and more about the readability. I'd prefer to maintain a 20-line chunk that is familiar and readable than a 10-line chunk with dense phrases and unfamiliar functions. The bottleneck for most of our projects is human time, not execution time.

- 16.1.2 Current Skillset of Team
- 16.1.3 Desired Future Skillset of Team
- 16.1.4 Skillset of Audience
- 16.2 Languages
- 16.3 R Packages
- 16.4 Database

Growing a Team

17.1 Recruiting

17.2 Training to Data Science

- 1. Starting with a Researcher
- 2. Starting with a Statistician
- 3. Starting with a DBA
- 4. Starting with a Software Developer

17.3 Bridges Outside the Team

- 1. Monthly User Groups
- 2. Annual Conferences

Introduction

You can label chapter and section titles using {#label} after them, e.g., we can reference Chapter 18. If you do not manually label them, there will be automatic labels anyway, e.g., Chapter 2.

Figures and tables with captions will be placed in figure and table environments, respectively.

```
par(mar = c(4, 4, .1, .1))
plot(pressure, type = 'b', pch = 19)
```

Reference a figure by its code chunk label with the fig: prefix, e.g., see Figure 18.1. Similarly, you can reference tables generated from knitr::kable(), e.g., see Table 18.1.

```
knitr::kable(
  head(iris, 20), caption = 'Here is a nice table!',
  booktabs = TRUE
)
```

You can write citations, too. For example, we are using the **bookdown** package (Xie, 2018) in this sample book, which was built on top of R Markdown and **knitr** (Xie, 2015).

Figure 18.1: Here is a nice figure!

Table 18.1: Here is a nice table!				
Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa
5.0	3.4	1.5	0.2	setosa
4.4	2.9	1.4	0.2	setosa
4.9	3.1	1.5	0.1	setosa
5.4	3.7	1.5	0.2	setosa
4.8	3.4	1.6	0.2	setosa
4.8	3.0	1.4	0.1	setosa
4.3	3.0	1.1	0.1	setosa
5.8	4.0	1.2	0.2	setosa
5.7	4.4	1.5	0.4	setosa
5.4	3.9	1.3	0.4	setosa
5.1	3.5	1.4	0.3	setosa
5.7	3.8	1.7	0.3	setosa
5.1	3.8	1.5	0.3	setosa

Scratch Pad of Loose Ideas

19.1 Chapters & Sections to Form

- $1. \ \, {\rm Tools \ to \ Consider}$
 - 1. tidyverse
 - 2. odbc

Bibliography

Xie, Y. (2015). Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition. ISBN 978-1498716963.

Xie, Y. (2018). bookdown: Authoring Books and Technical Documents with R Markdown. R package version 0.9.