CONCOURS COMMUN POLYTECHNIQUE (ENSI)

FILIERE MP

MATHEMATIQUES 2

I. Exercice préliminaire

1.

$$H = {}^{t}\Gamma \Gamma = \begin{pmatrix} 1 & -2 & -1 \\ 2 & -1 & -1 \\ 1 & -1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ -2 & -1 & -1 \\ -1 & -1 & -2 \end{pmatrix} = \begin{pmatrix} 6 & 5 & 5 \\ 5 & 6 & 5 \\ 5 & 5 & 6 \end{pmatrix}.$$

H est une matrice symétrique réelle. D'après le théorème spectral, H est orthogonalement semblable à une matrice diagonale (réelle).

On a immédiatement $\operatorname{rg}(H-I_3)=1$. Donc, $\dim(\operatorname{Ker}(H-I_3))=2$, et puisque H est diagonalisable, 1 est valeur propre d'ordre 2. La troisième valeur propre λ est fournie par la trace de $H:1+1+\lambda=18$ et donc $\lambda=16$. Donc,

$$Sp(H) = (1, 1, 16).$$

Il est immédiat que $\operatorname{Ker}(H-I_3)$ est le plan d'équation x+y+z=0. Puisque les sous-espaces propres de H sont orthogonaux, on a d'autre part $\operatorname{Ker}(H-16I_3)=(\operatorname{Ker}(H-I_3))^{\perp}=\operatorname{Vect}((1,1,1))$. On prend $e_3=\frac{1}{\sqrt{3}}(1,1,1)$ (de sorte que (e_3) est une base orthonormée de $\operatorname{Ker}(H-16I_3)$), puis $e_1=\frac{1}{\sqrt{2}}(1,-1,0)$ (vecteur unitaire de $\operatorname{Ker}(H-I_3)$) et enfin,

$$e_2 = e_3 \wedge e_1 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \wedge \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$

 (e_1,e_2,e_3) est une base orthonormée de $\mathcal{M}_{3,1}(\mathbb{R})$ (pour le produit scalaire usuel), constituée de vecteurs propres de H.

$$\text{Si P} = \left(\begin{array}{ccc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{array} \right) \in \mathcal{O}_3(\mathbb{R}) \text{ et } D = \operatorname{diag}(1,1,4) \in \mathcal{D}_3^+(\mathbb{R}) \text{ alors } D^2 = P^{-1} HP.$$

 ${f 2.}$ Puisque ${f S}$ est orthogonalement semblable à une matrice diagonale, ${f S}$ est symétrique. De plus, pour ${f X}$ vecteur colonne quelconque, on a

$${}^{t}XSX = {}^{t}X(PD^{t}P)X = {}^{t}({}^{t}PX)D({}^{t}PX) = x'^{2} + y'^{2} + 4z'^{2} \ge 0,$$

où x', y' et z' sont les composantes de ^tPX. La matrice S est donc positive.

Comme les valeurs propres de S sont les valeurs propres de D à savoir 1 et 4, 0 n'est pas valeur propre de S. Par suite, S est inversible. On peut donc poser $U = \Gamma S^{-1}$. On a déjà $\Gamma = US$ puis, S étant symétrique et P étant orthogonale,

$${}^{t}UU = S^{-1} {}^{t}\Gamma \Gamma S^{-1} = PD^{-1}P^{-1}PD^{2}P^{-1}PD^{-1}P^{-1} = I_{3}.$$

Donc, U est une matrice orthogonale. De plus,

$$\begin{split} \mathbf{U} &= \Gamma \, P D^{-1\, \mathrm{t}} P = \begin{pmatrix} 1 & 2 & 1 \\ -2 & -1 & -1 \\ -1 & -1 & -2 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{4} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} \\ &= \begin{pmatrix} 1 & 2 & 1 \\ -2 & -1 & -1 \\ -1 & -1 & -2 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{4\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{4\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{4\sqrt{3}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} \\ &= \begin{pmatrix} 1 & 2 & 1 \\ -2 & -1 & -1 \\ -1 & -1 & -2 \end{pmatrix} \begin{pmatrix} \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\ -\frac{1}{4} & -\frac{1}{4} & \frac{3}{4} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \end{split}$$

Donc,

$$U = \left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{array}\right).$$

II. Calcul de la distance de A à $\mathcal{S}_n(\mathbb{R})$ et à $\mathcal{A}_n(\mathbb{R})$

3. Soit $(A, B) \in (\mathcal{M}_n(\mathbb{R}))^2$. Posons $A = (a_{i,j})_{1 \le i,j \le n}$ et $B = (b_{i,j})_{1 \le i,j \le n}$. Pour $j \in [1, n]$, le coefficient ligne j, colonne j de la matrice tAB vaut $\sum_{i=1}^n a_{i,j}b_{i,j}$ et donc,

$$\operatorname{Tr}({}^{t}AB) = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} a_{i,j} b_{i,j} \right) = \sum_{1 \le i,j \le n} a_{i,j} b_{i,j}.$$

Ainsi, l'application $(A,B) \mapsto \operatorname{Tr}({}^tAB)$ n'est autre que le produit scalaire canonique sur $\mathcal{M}_n(\mathbb{R})$ et est en particulier un produit scalaire.

4. Soit $A \in \mathcal{M}_n(\mathbb{R})$.

$$A \in \mathcal{S}_n(\mathbb{R}) \cap \mathcal{A}_n(\mathbb{R}) \Rightarrow^t A = A = -A \Rightarrow A = 0.$$

Donc $\mathcal{S}_n(\mathbb{R}) \cap \mathcal{A}_n(\mathbb{R}) = \{0\}$. Ensuite, pour tout $A \in \mathcal{M}_n(\mathbb{R})$,

$$A = \frac{1}{2}(A + {}^{t}A) + \frac{1}{2}(A - {}^{t}A),$$

 $\mathrm{avec}\ \frac{1}{2}(A+^tA)\in\mathcal{S}_n(\mathbb{R})\ \mathrm{et}\ \frac{1}{2}(A-^tA)\in\mathcal{A}_n(\mathbb{R}).\ \mathrm{Donc},$

$$\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R}).$$

Soit enfin $(A, B) \in \mathcal{S}_n(\mathbb{R}) \times \mathcal{A}_n(\mathbb{R})$.

$$A|B = Tr({}^{t}AB) = Tr(AB) = Tr(BA) = Tr(-{}^{t}BA) = -B|A,$$

et donc, A|B = 0. Cette somme directe est donc orthogonale.

$$\mathcal{M}_{\mathbf{n}}(\mathbb{R}) = \mathcal{S}_{\mathbf{n}}(\mathbb{R}) \stackrel{\perp}{\oplus} \mathcal{A}_{\mathbf{n}}(\mathbb{R}).$$

5. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Posons $B = \frac{1}{2}(A + {}^t A)$ et $C = \frac{1}{2}(A - {}^t A)$. B (resp.C) est le projeté orthogonal de A sur $\mathcal{S}_n(\mathbb{R})$ (resp. $\mathcal{A}_n(\mathbb{R})$) parallèlement à $\mathcal{A}_n(\mathbb{R})$ (resp. $\mathcal{S}_n(\mathbb{R})$). Par suite, pour toute $M \in \mathcal{S}_n(\mathbb{R})$, B - M est orthogonale à C et le théorème de Pythagore permet d'écrire

$$||A - M||^2 = ||C + (B - M)||^2 = ||C||^2 + ||B - M||^2 \ge ||C||^2$$

avec égalité si et seulement si M = B. Donc,

$$d(A,\mathcal{S}_n(\mathbb{R})) = \inf_{M \in \mathcal{S}_n(\mathbb{R})} ||A - M|| = \min_{M \in \mathcal{S}_n(\mathbb{R})} ||A - M|| = ||C|| = ||\frac{1}{2}(A - ^t A)||.$$

De même,

$$d(A,\mathcal{A}_n(\mathbb{R})) = \|\frac{1}{2}(A+^tA)\|.$$

$$\forall A \in \mathcal{M}_n(\mathbb{R}), \ d(A,\mathcal{S}_n(\mathbb{R})) = \|\frac{1}{2}(A-^tA)\| \ \mathrm{et} \ d(A,\mathcal{A}_n(\mathbb{R})) = \|\frac{1}{2}(A+^tA)\|.$$

6. La partie symétrique de Γ est

$$\frac{1}{2}(\Gamma + {}^{\mathrm{t}}\Gamma) = \frac{1}{2} \left(\begin{pmatrix} 1 & 2 & 1 \\ -2 & -1 & -1 \\ -1 & -1 & -2 \end{pmatrix} + \begin{pmatrix} 1 & -2 & -1 \\ 2 & -1 & -1 \\ 1 & -1 & -2 \end{pmatrix} \right) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -2 \end{pmatrix}.$$

Par suite,

$$d(\Gamma,\mathcal{A}_n(\mathbb{R})) = \|\frac{1}{2}(\Gamma + {}^t\Gamma)\| = \sqrt{8} = 2\sqrt{2}.$$

III. Calcul de la distance de A à $\mathcal{O}_{\mathbf{n}}(\mathbb{R})$

A. Théorème de la décomposition polaire

- **7.** Soit $S \in \mathcal{S}_n(\mathbb{R})$. Les valeurs propres de S dans \mathbb{C} sont donc réelles.
 - Supposons $S \in \mathcal{S}_n^+(\mathbb{R})$. Soit $\lambda \in \mathbb{R}$ une valeur propre de S et $X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$ un vecteur propre associé. Alors,

$$0 \le {}^{\mathrm{t}}XSX = {}^{\mathrm{t}}X(\lambda X) = \lambda ||X||^2.$$

Maintenant X n'est pas nul et donc $||X||^2 > 0$. Après simplification, on obtient $\lambda \ge 0$. On a ainsi montré que toutes les valeurs propres de S sont des réels positifs ou nuls.

• Supposons que toutes les valeurs propres de S soient des réels positifs ou nuls. Notons $(\lambda_i)_{1 \leq i \leq n}$ la famille des n valeurs propres de S et posons $D = \operatorname{diag}(\lambda_i)_{1 \leq i \leq n}$. On sait que

$$\exists P \in \mathcal{O}_n(\mathbb{R}) / S = PDP^{-1}$$
.

Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$. Posons $X' = {}^{t}PX = (x'_{i})_{1 \leq i \leq n}$. On a alors

$$^tXSX={^tXPD}^tPX={^t(^tPX)D(^tPX)}=\sum_{i=1}^n\lambda_i(x_i')^2\geq 0.$$

On a ainsi montré que S appartient à $\mathcal{S}_n^+(\mathbb{R})$.

En résumé

$$\forall S \in \mathcal{S}_n(\mathbb{R}), \; (S \in \mathcal{S}_n^+(\mathbb{R}) \Leftrightarrow \operatorname{Sp}(S) \subset \mathbb{R}^+).$$

- **8.** Soit $A \in \mathcal{M}_n(\mathbb{R})$.
 - ${}^{t}({}^{A}A) = {}^{t}A^{t}({}^{t}A) = {}^{t}AA$ et donc ${}^{t}AA \in \mathcal{S}_{n}(\mathbb{R})$.
 - Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$.

$${}^{t}X({}^{t}AA)X = {}^{t}({}^{A}X)(AX) = ||AX||^{2} > 0.$$

Donc,

$$\forall A \in \mathcal{M}_n(\mathbb{R}), \ ^tAA \in \mathcal{S}_n^+(\mathbb{R}).$$

9. a. Soit $(i,j) \in [1,n]^2$. tA_iA_j est le coefficient ligne i, colonne j de tAA et donc de D^2 . Par suite,

$$\label{eq:continuity} \boxed{ \forall (i,j) \in [\![1,n]\!]^2, \ ^tA_iA_j = \left\{ \begin{array}{ll} d_i^2 & \mathrm{si}\ i=j \\ 0 & \mathrm{si}\ i \neq j \end{array} \right. = \delta_{i,j}d_i^2. }$$

En particulier, pour chaque $\mathfrak i$ on a $\|A_{\mathfrak i}\|^2=^tA_{\mathfrak i}A_{\mathfrak i}=d_{\mathfrak i}^2.$ Donc

$$\forall i \in [\![1,n]\!], \ (d_i = 0 \Leftrightarrow A_i = 0).$$

b. Si A est nulle, alors D est nulle et n'importe quelle base orthonormée de $\mathcal{M}_{n,1}(\mathbb{R})$ convient. Sinon, pour chaque colonne A_i non nulle, $(d_i$ est alors non nul) et on pose

$$E_i = \frac{1}{\|A_i\|} A_i = \frac{1}{d_i} A_i.$$

Ces vecteurs E_i constituent clairement une famille orthonormée pour le produit scalaire usuel de $\mathcal{M}_{n,1}(\mathbb{R})$. On la complète en une base orthonormée $(E_1,...,E_n)$ de $\mathcal{M}_{n,1}(\mathbb{R})$. Pour chaque i, que la colonne A_i soit nulle ou pas, on a $A_i = d_i E_i$.

c. Soit E la matrice dont les colonnes sont $E_1,...,E_n$. Puisque ces colonnes constituent une base orthonormée de $\mathcal{M}_{n,1}(\mathbb{R})$ pour le produit scalaire usuel, on sait que E est une matrice orthogonale. Les égalités de la question b. signifient alors que A = ED.

10. a. Posons $S = {}^{t}AA = {}^{t}BB$. D'après la question 8., S est une matrice symétrique positive et d'après la question 7., les valeurs propres de S sont des réels positifs.

Soit $(\lambda_1,...,\lambda_n)$ la famille des valeurs propres de S. Pour chaque i, posons $d_i = \sqrt{\lambda_i}$. Posons encore $D = \operatorname{diag}(d_1,...,d_n)$. D'après le théorème spectral, on sait que S est orthogonalement semblable à $D^2 = \operatorname{diag}(\lambda_1,...,\lambda_n)$. Soit $P \in \mathcal{O}_n(\mathbb{R})$ telle que $S = PD^2P^{-1}$ alors $P^{-1t}AAP = P^{-1t}BBP = D^2$.

b. Puisque

$${}^{t}(AP)(AP) = P^{-1}{}^{t}AAP = P^{-1}{}^{t}BBP = {}^{t}(BP)BP = D^{2}$$

d'après la question 9.c., il existe deux matrices orthogonales E et E' telles que AP = ED et BP = E'D. Donc,

$$A = EDP^{-1} = EE'^{-1}E'DP^{-1} = EE'^{-1}B.$$

Posons $U = EE'^{-1}$. U est un produit de matrices orthogonales et donc, U est une matrice orthogonale. De plus, A = UB. (On peut noter que la réciproque est aussi vraie : ${}^{t}AA = {}^{t}B{}^{t}UUB = {}^{t}BB$).

11. Soit $A \in \mathcal{M}_n(\mathbb{R})$. La matrice ^tAA est une matrice symétrique réelle positive et il existe une matrice orthogonale P et une matrice diagonale D à coefficients réels positifs telles que ^tAA = $PD^{2t}P = {}^{t}(D^{t}P)({}^{t}PD)$.

D'après la question 10., il existe une matrice orthogonale U_0 telle que $A = U_0(D^tP) = (U_0^tP)(PD^tP)$. Posons $U = U_0^tP$ et $S = PD^tP$. U est orthogonale en tant que produit de deux matrices orthogonales et S est symétrique positive car orthogonalement semblable à une matrice diagonale positive. On a montré que

$$\forall A \in \mathcal{M}_n(\mathbb{R}), \; \exists U \in \mathcal{O}_n(\mathbb{R}), \; \exists S \in \mathcal{S}_n^+(\mathbb{R}) / \; A = US.$$

- B. Calcul de $d(A, \mathcal{O}_n(\mathbb{R}))$.
- **12.** Soient $M \in \mathcal{M}_n(\mathbb{R})$ et $\Omega \in \mathcal{O}_n(\mathbb{R})$.

$$\|M\Omega\|^2=\operatorname{Tr}({}^t(M\Omega)M\Omega)=\operatorname{Tr}({}^t\Omega^tMM\Omega)=\operatorname{Tr}(\Omega^t\Omega^tMM)=\operatorname{Tr}({}^tMM)=\|M\|^2,$$

et donc $||M\Omega|| = ||M||$. De même, $||\Omega M|| = ||M||$.

$$\forall A \in \mathcal{M}_n(\mathbb{R}), \ \forall \Omega \in \mathcal{O}_f\mathbb{R}), \ \|M\Omega\| = \|\Omega M\| = \|M\|.$$

13. a. $\|A - \Omega\| = \|US - \Omega\| = \|U(S - U^{-1}\Omega)\| = \|S - U^{-1}\Omega\|$ (d'après la question 12.).

Maintenant, l'application $\Omega \mapsto U^{-1}\Omega$ est une permutation de $\mathcal{O}_n(\mathbb{R})$ (de réciproque $\Omega \mapsto U\Omega$). Donc, quand la matrice Ω décrit $\mathcal{O}_n(\mathbb{R})$, la matrice $\Omega' = U^{-1}\Omega$ décrit aussi $\mathcal{O}_n(\mathbb{R})$. Donc,

$$d(A,\mathcal{O}_{\mathfrak{n}}(\mathbb{R})) = \inf_{\Omega \in \mathcal{O}_{\mathfrak{n}}(\mathbb{R})} \lVert A - \Omega \rVert = \inf_{\Omega \in \mathcal{O}_{\mathfrak{n}}(\mathbb{R})} \lVert S - U^{-1}\Omega \rVert = \inf_{\Omega' \in \mathcal{O}_{\mathfrak{n}}(\mathbb{R})} \lVert S - \Omega' \rVert = d(S,\mathcal{O}_{\mathfrak{n}}(\mathbb{R})).$$

Donc,

$$d(A,\mathcal{O}_{\mathfrak{n}}(\mathbb{R}))=d(S,\mathcal{O}_{\mathfrak{n}}(\mathbb{R}).$$

b. $\|S - \Omega\| = \|PDP^{-1} - \Omega\| = \|P(D - P^{-1}\Omega P)P^{-1}\| = \|D - P^{-1}\Omega P\|$ (toujours d'après la question 12.). Or, l'application $\Omega \mapsto P^{-1}\Omega P$ est une permutation de $\mathcal{O}_n(\mathbb{R})$ (de réciproque $\Omega \mapsto P\Omega P^{-1}$). Donc comme précédemment,

$$d(A,\mathcal{O}_n(\mathbb{R}))=d(S,\mathcal{O}_n(\mathbb{R}))=d(D,\mathcal{O}_n(\mathbb{R})).$$

14. a. Soit $\Omega \in \mathcal{M}_n(\mathbb{R})$.

$$\begin{split} \|D - \Omega\|^2 &= \operatorname{Tr} \left({}^t (D - \Omega)(D - \Omega) \right) = \operatorname{Tr}(D^2) - \operatorname{Tr}(D\Omega) - \operatorname{Tr}({}^t (D\Omega)) + \operatorname{Tr}(I_n) \\ &= \sum_{i=1}^n \lambda_i^2 - 2 \operatorname{Tr}(D\Omega) + n. \end{split}$$

b. Notons $\omega_1, \ldots, \omega_n$ les coefficients diagonaux de la matrice Ω . La valeur absolue des coefficients d'une matrice orthogonale sont inférieurs à 1 et en particulier, les ω_i sont inférieursou égaux à 1. Mais alors, puisque les λ_i sont positifs,

$$\mathrm{Tr}(D\Omega) = \sum_{i=1}^n \omega_i \lambda_i \leq \sum_{i=1}^n \lambda_i.$$

c. Soit $\Omega \in \mathcal{O}_n(\mathbb{R})$. D'après la question b., on a

$$\|D - \Omega\|^2 = \sum_{i=1}^n \lambda_i^2 - 2\mathrm{Tr}(D\omega) + n \geq \sum_{i=1}^n \lambda_i^2 - 2\sum_{i=1}^n \lambda_i + n = \sum_{i=1}^n (\lambda_i^2 - 2\lambda_i + 1) = \sum_{i=1}^n (\lambda_i - 1)^2 = \|D - I_n\|^2,$$

avec égalité effectivement obtenue pour $D=I_{\mathfrak{n}}\in \mathcal{O}_{\mathfrak{n}}(\mathbb{R}).$ Donc

$$d(A,\mathcal{O}_n(\mathbb{R})) = d(S,\mathcal{O}_n(\mathbb{R})) = d(D,\mathcal{O}_n(\mathbb{R})) = \|D - I_n\|.$$

15. D'après la question 12., on a

$$||D - I_n|| = ||P(D - I_n)P^{-1}|| = ||S - I_n|| = ||U(S - I_n)|| = ||A - U||,$$

et donc,

$$d(A, \mathcal{O}_n(\mathbb{R})) = \|A - U\|.$$

 $\textbf{16.} \ d(\Gamma,\mathcal{O}_n(\mathbb{R})) = \|D-I_3\| \ \text{où} \ D = \operatorname{diag}(1,1,4) \ \text{et donc} \ D-I_3 = \operatorname{diag}(0,0,3). \ \text{On en déduit que}$

$$d(\Gamma, \mathcal{O}_{n}(\mathbb{R})) = 3.$$

${ m IV}$. Calcul de la distance de A à $\Delta_{ m p}$.

17. a. Soit $M \in \mathcal{M}_n(\mathbb{R})$. Notons χ_M le polynôme caractéristique de M. Si χ_M n'a pas de racine réelle non nulle, on prend $\alpha = 1$. Si χ_M a au moins une racine réelle non nulle, celles-ci sont en nombre fini et on peut prendre pour α la plus petite valeur absolue d'une racine non nulle de χ_M . Dans tous les cas, α est un réel strictement positif tel que χ_M n'admette pas de racine dans $]0, \alpha[$ ou encore tel que pour $\lambda \in]0, \alpha[$, la matrice $M - \lambda I_n$ soit inversible.

b. Soit $\varepsilon > 0$. On choisit un réel λ dans $\left[0, \operatorname{Min}\left\{\alpha, \frac{\varepsilon}{\sqrt{n}}\right\}\right]$. D'une part, la matrice $M - \lambda I_n$ est inversible et d'autre part, $\|M - (M - \lambda I_n)\| = \|\lambda I_n\| = \lambda \sqrt{n} < \frac{\varepsilon}{\sqrt{n}} \sqrt{n} = \varepsilon$.

Ainsi,

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \; \exists N \in \mathcal{GL}_n(\mathbb{R}) / \; \|M - N\| < \epsilon.$$

Par suite,

$$\mathcal{GL}_n(\mathbb{R})$$
 est dense dans $\mathcal{M}_n(\mathbb{R})$.

18. Soient $A \in \mathcal{M}_n(\mathbb{R})$ et $\varepsilon > 0$. Il existe une matrice M inversible, et donc de rang au moins \mathfrak{p} telle que $||A - M|| < \varepsilon$. Par suite, pour tout réel strictement positif ε , $d(A, \Delta_{\mathfrak{p}}) \le \varepsilon$ et donc

$$\boxed{\forall p \in [\![0,n]\!], \ \forall A \in \mathcal{M}_n(\mathbb{R}), \ d(A,\Delta_p) = 0.}$$

V. Calcul de la distance de A à ∇_p .

A. Théorème de Courant et Fischer

19. Puisque la famille $(C_i)_{1 \leq i \leq n}$ est une base orthonormée de $\mathcal{M}_{n,1}(\mathbb{R})$ pour le produit scalaire usuel, on a

$${}^{t}XX = X|X = \sum_{i=1}^{n} x_{i}^{2}.$$

Ensuite, pour chaque $i \in [1,n]$, C_i est vecteur propre de A associé à la valeur propre λ_i et donc

$$^{t}XAX = (\sum_{i=1}^{n} x_{i}C_{i})|(\sum_{i=1}^{n} x_{j}AC_{j}) = (\sum_{i=1}^{n} x_{i}C_{i})|(\sum_{i=1}^{n} x_{j}\lambda_{j}C_{j}) = \sum_{i=1}^{n} \lambda_{i}x_{i}^{2}.$$

Par suite,

$$\forall X \in \mathcal{M}_{n,1} \setminus \{0\}, \ \frac{{}^t XAX}{{}^t XX} = \frac{\displaystyle\sum_{i=1}^n \lambda_i x_i^2}{\displaystyle\sum_{i=1}^n x_i^2}.$$

En particulier,

$$\label{eq:definition} \boxed{ \forall k \in \{1,...,n\}, \ \frac{^tC_kAC_k}{^tC_kC_k} = \lambda_k. }$$

20. Soit X un vecteur non nul de F_k . Puisque $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_k$,

$$^tXAX = \sum_{i=1}^n \lambda_i x_i^2 = \sum_{i=1}^k \lambda_i x_i^2 \geq \lambda_k \sum_{i=1}^k x_i^2 = \lambda_k \sum_{i=1}^n x_i^2 = \lambda_k ^tXX.$$

Donc, pour tout vecteur non nul X de F_k , on a $\frac{{}^t XAX}{{}^t XX} \ge \lambda_k$. D'autre part, pour $X = C_k$ (qui est un vecteur non nul de F_k), on a $\frac{{}^t XAX}{{}^t XX} = \frac{{}^t C_k AC_k}{{}^t C_k C_k} = \lambda_k$ et donc,

$$\min_{X\in F_k\setminus\{0\}}\frac{{}^tXAX}{{}^tXX}=\lambda_k.$$

21. a.

$$\begin{split} \dim(F \cap \mathrm{vect}(C_k,...,C_n)) &= \dim(F) + \dim(\mathrm{vect}(C_k,...,C_n)) - \dim(F + \mathrm{vect}(C_k,...,C_n)) \\ &= k + (n-k+1) - \dim(F + \mathrm{vect}(C_k,...,C_n)) = n + 1 - \dim(F + \mathrm{vect}(C_k,...,C_n)) \\ &\geq n + 1 - n = 1. \end{split}$$

$$\forall F \in \Psi_k, \ \dim(F \cap \mathrm{vect}(C_k,...,C_n)) \geq 1.$$

b. Il existe donc un vecteur X non nul dans $F \cap \text{vect}(C_k, ..., C_n)$. On a alors

$$^tXAX = \sum_{i=1}^n \lambda_i x_i^2 = \sum_{i=k}^n \lambda_i x_i^2 \leq \lambda_k \sum_{i=k}^n x_i^2 = \lambda_k \sum_{i=1}^n x_i^2 = \lambda_k ^tXX,$$

et donc, il existe un vecteur non nul de F tel que $\frac{{}^tXAX}{{}^tXX} \leq \lambda_k.$ On en déduit que

$$\min_{X\in F\setminus\{0\}}\frac{{}^tXAX}{{}^tX}X\leq \lambda_k.$$

22. D'après la question 20., il existe un sous-espace F de dimension k (à savoir $F = F_k$) tel que $\min_{X \in F \setminus \{0\}} \frac{{}^t XAX}{{}^t XX} = \lambda_k$. Par suite,

$$\max_{F\in\Psi_k} \min_{X\in F\setminus\{0\}} \frac{{}^tXAX}{{}^tXX} \geq \lambda_k.$$

Mais, d'après la question 21., pour tout sous-espace F de dimension k, on a $\min_{X \in F \setminus \{0\}} \frac{{}^t XAX}{{}^t XX} \le \lambda_k$, et donc

$$\max_{F \in \Psi_k} \min_{X \in F \setminus \{0\}} \frac{{}^t XAX}{{}^t XX} \leq \lambda_k.$$

Finalement,

$$\max_{F\in\Psi_k} \min_{X\in F\setminus\{0\}} \frac{{}^t XAX}{{}^t XX} = \lambda_k.$$

B. Calcul de $d(A, \nabla_p)$

Puisque r > p, A n'est pas dans ∇_p .

23. D'après la question 11., il existe une matrice orthogonale U et une matrice symétrique positive S telles que A = US. Il existe d'autre part une matrice orthogonale P' et une matrice diagonale positive D telles que $S = P'D^tP'$. On prend $P = {}^tP'$ puis E = UP'. E et P sont des matrices orthogonales et D est une matrice diagonale à coefficients positifs telles que A = EDP.

Puisque E et P sont inversibles, le rang de A est le rang de D. D'autre part,

$${}^{t}AA = {}^{t}PD^{t}EEDP = {}^{t}PD^{2}P.$$

Le rang de ^tAA est donc le rang de D². Maintenant, D étant diagonale, le rang de D est le nombre de coefficients non nuls de D. Les coefficients de D² étant les carrés des coefficients de D, ce nombre est également le rang de D². On a montré que

$$\forall A\in \mathcal{M}_{\mathfrak{n}}(\mathbb{R}), \; \mathrm{rg}({}^{t}AA)=\mathrm{rg}A.$$

24.

$$A = EDP = \sum_{l=1}^{n} \sqrt{\mu_l} M_l P.$$

Pour chaque l, posons alors $R_l = M_l P$. Puisque P est inversible, le rang de R_l est le rang de M_l à savoir 1 puisque M_l contient une et une seule colonne non nulle (les colonnes d'une matrice orthogonale étant toutes non nulles). D'autre part, pour $(k,l) \in [\![1,n]\!]$ rrbracket², on a

$$\operatorname{Tr}({}^{\operatorname{t}}R_kR_1) = \operatorname{Tr}(P^{-1}{}^{\operatorname{t}}M_kM_1P) = \operatorname{Tr}({}^{\operatorname{t}}M_kM_1).$$

Maintenant, le coefficient ligne i, colonne i de tM_kM_l est le produit scalaire usuel de la i-ème colonne de M_k par la i-ème colonne de M_l et vaut donc $\delta_{i,k}\delta_{i,l}$. Si $k \neq l$, ces coefficients sont tous nuls et dans ce cas, $\operatorname{Tr}({}^tM_kM_l) = 0$. Si k = l, tous ces coefficients sont nuls sauf le coefficient ligne k, colonne k qui vaut 1. Dans ce cas, $\operatorname{Tr}({}^tM_kM_l) = 1$. En résumé,

$$\forall (k,l) \in \{1,...,n\}^2, \ R_k | R_l = \operatorname{Tr}({}^tR_k R_l) = \delta_{k,l},$$

et la famille $(R_k)_{1 \leq k \leq n}$ est bien une famille orthonormée de $\mathcal{M}_n(\mathbb{R}).$

25. Le rang de N est encore le rang de $NP^{-1} = \sum_{l=1}^{p} \sqrt{\mu_l} M_l$. Mais les n-p dernières colonnes de la matrice NP^{-1} sont nulles et donc $rg(NP^{-1}) \le p$, ou encore

$$N \in \nabla_{\mathfrak{p}}$$
.

Puisque la famille (R_l) est orthonormée, on a alors

$$d(A,\nabla_p)^2 \leq \|A-N\|^2 = \|\sum_{l=p+1}^r \sqrt{\mu_l} R_l\|^2 = \sum_{l=p+1}^r (\sqrt{\mu_l})^2 = \mu_{p+1} + ... + \mu_r,$$

et donc,

$$d(A, \nabla_{\mathfrak{p}}) \leq \sqrt{\mu_{\mathfrak{p}+1} + ... + \mu_{\mathfrak{r}}}.$$

26. a. D'après la question 23., $rg({}^{t}AA) = r$ et donc,

$$\begin{aligned} \dim(\operatorname{Ker} M \cap \operatorname{Im}({}^{\operatorname{t}} A A)) &= \dim(\operatorname{Ker}(M)) + \dim(\operatorname{Im}({}^{\operatorname{t}} A A)) - \dim(\operatorname{Ker} M + \operatorname{Im}({}^{\operatorname{t}} A A)) \\ &= (\mathfrak{n} - \mathfrak{p}) + r - \dim(\operatorname{Ker} M + \operatorname{Im}({}^{\operatorname{t}} A A)) \\ &> (\mathfrak{n} - \mathfrak{p}) + r - \mathfrak{n} = r - \mathfrak{p}. \end{aligned}$$

b. Soit F un sous-espace vectoriel de G de dimension k. D'après la question 21.b.,

$$\min_{X \in F \setminus \{0\}} \frac{{}^t X^t (A-M)(A-M)X}{{}^t XX} \leq \alpha_k,$$

Maintenant, les vecteurs X considérés étant dans le novau de M, on a

$${}^{t}X^{t}(A-M)(A-M)X = {}^{t}X^{t}(A-M)AX = {}^{t}X^{t}AAX - {}^{t}(MX)AX = {}^{t}X^{t}AAX.$$

Donc

$$\min_{X \in F \setminus \{0\}} \frac{{}^t X^t A A X}{{}^t X X} \le \alpha_k.$$

 $\mathbf{c.} \ \mathrm{On} \ \mathrm{a} \ 1 \leq k \leq r-p \ \mathrm{et} \ \mathrm{donc} \ k+p \leq r. \ \mathrm{Pour} \ \mathrm{chaque} \ i \in [\![1,...,k+p]\!], \ \mathrm{on} \ \mathrm{a} \ \mathrm{donc} \ \mu_i \neq 0. \ \mathrm{Mais} \ \mathrm{alors}$

$$V_{\mathfrak{i}} = \frac{1}{\mu_{\mathfrak{i}}}{}^{\mathfrak{t}}AAV_{\mathfrak{i}} \in \mathrm{Im}({}^{\mathfrak{t}}AA).$$

Par suite, $\operatorname{vect}(V_1,...,V_{p+k})\subset\operatorname{Im}({}^tAA).$ On en déduit que

$$G\cap \operatorname{vect}(V_1,...,V_{\mathfrak{p}+k}) = \operatorname{Ker} M \cap \operatorname{Im}({}^tAA) \cap \operatorname{vect}(V_1,...,V_{\mathfrak{p}+k}) = \operatorname{Ker} M \cap \operatorname{vect}(V_1,...,V_{\mathfrak{p}+k}).$$

On en déduit, comme à la question a., que $\dim(G \cap \text{vect}(V_1, ..., V_{p+k}) \ge (n-p) + (p+k) - n = k$.

$$\dim(G\cap\mathrm{vect}(V_1,...,V_{p+k})\geq k.$$

d. On peut donc choisir un sous-espace F de dimension k dans $G \cap \text{vect}(V_1, ..., V_{p+k})$. D'après b., on a

$$\min_{X\in F\setminus\{0\}}\frac{^tX^tAAX}{^tXX}\leq \alpha_k.$$

 $\text{D'autre part, pour } X \in F, \text{ on peut poser } X = \sum_{i=1}^{k+p} x_i V_i. \text{ On a alors (puisque la famille } (V_1,...,V_{k+p}) \text{ est orthonormée)}$

$$^{t}X^{t}AAX = {^{t}}\left(\sum_{i=1}^{k+p}x_{i}V_{i}\right)\left(\sum_{j=1}^{k+p}x_{j}\mu_{j}V_{j}\right) = \sum_{i=1}^{k+p}\mu_{i}x_{i}^{2} \geq \mu_{k+p}\sum_{i=1}^{k+p}x_{i}^{2} = \mu_{k+p}{^{t}}XX.$$

Donc, si X est un vecteur non nul de F, $\frac{{}^tX^tAAX}{{}^tXX} \geq \mu_{k+\mathfrak{p}} \text{ et en particulier},$

$$\min_{X \in F \setminus \{0\}} \frac{{}^t X^t A A X}{{}^t X X} \geq \mu_{k+\mathfrak{p}}.$$

Finalement,

$$\alpha_k \geq \mu_{k+p}$$
.

27. Le travail précédent est valable si on suppose que M est de rang inférieur ou égal à p. Soit M une matrice de rang $q \le p < r$.

$$||A-M||^2 = \mathrm{Tr}({}^t(A-M)(A-M)) = \sum_{i=1}^n \alpha_i \geq \sum_{i=1}^{r-p} \alpha_i \geq \sum_{i=1}^{r-p} \mu_{i+p} = \sum_{k=p+1}^r \mu_k.$$

Par suite, pour toute $M \in \nabla_p$, $||A - M|| \ge \sqrt{\mu_{p+1} + ... + \mu_r}$ et, compte tenu de la question 25.,

$$d(A, \nabla_p) = \sqrt{\mu_p + 1 + ... + \mu_r}.$$

28. Γ est de rang r=3. Les valeurs propres de Γ sont $\mu_1=4,\ \mu_2=1$ et $\mu_3=1$. Donc, $d(\Gamma,\nabla_0)=\sqrt{16+1+1}=3\sqrt{2},\ d(\Gamma,\nabla_1)=\sqrt{1+1}=\sqrt{2},\ d(\Gamma,\nabla_2)=\sqrt{1}=1$. Enfin, comme Γ est dans $\nabla_3=\mathcal{GL}_3(\mathbb{R}),\ d(\Gamma,\nabla_3)=0$.