日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2004年 3月19日

出願番号 Application Number:

特願2004-080632

[ST. 10/C]:

[JP2004-080632]

出 願 人
Applicant(s):

美津濃株式会社

2004年 4月20日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】 特許願 【整理番号】 1040550 【提出日】 平成16年 3月19日 【あて先】 特許庁長官殿 【国際特許分類】 A63B 53/04 【発明者】 【住所又は居所】 大阪府大阪市住之江区南港北1丁目12番35号 美津濃株式会 社内 【氏名】 野口 修一 【発明者】 【住所又は居所】 大阪府大阪市住之江区南港北1丁目12番35号 美津濃株式会 社内 [氏名] 犬飼 真一 【特許出願人】 【識別番号】 000005935 【住所又は居所】 大阪市中央区北浜4丁目1番23号 【氏名又は名称】 美津濃株式会社 【代理人】 【識別番号】 100064746 【弁理士】 【氏名又は名称】 深見 久郎 【選任した代理人】 【識別番号】 100085132 【弁理士】 【氏名又は名称】 森田 俊雄 【選任した代理人】 【識別番号】 100083703 【弁理士】 【氏名又は名称】 仲村 義平 【選任した代理人】 【識別番号】 100096781 【弁理士】 【氏名又は名称】 堀井 豊 【選任した代理人】 【識別番号】 100098316 【弁理士】 【氏名又は名称】 野田 久登 【選任した代理人】 【識別番号】 100109162 【弁理十】 【氏名又は名称】 酒井 將行 【先の出願に基づく優先権主張】

【出願番号】 特願2003-87874

【出願日】 平成15年 3月27日

【手数料の表示】

【予納台帳番号】 008693 【納付金額】 21.000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】 明細書 1

ページ:

2/E

【物件名】図面 1【物件名】要約書 1【包括委任状番号】0109028

【書類名】特許請求の範囲

【請求項1】

複数の開口部(8)を有するクラウン部(3)を含む金属製のヘッド本体と、

前記開口部(8)を閉じるように前記ヘッド本体に取付けられるクラウンパーツ(11))と、

前記開口部(8)間に設けられ、前記クラウンパーツ(11)を支持する支持部(9)とを備え、

前記開口部(8)の周囲に前記クラウンパーツ(11)の周縁部を載置する載置部(12)を設け、

前記支持部(9)は、前記載置部(12)から前記開口部(8)の内方に向かって延びる、ゴルフクラブヘッド。

【請求項2】

前記ヘッド本体を構成する材質よりも低比重の材質で前記クラウンパーツ(11)を構成し、

前記載置部(12)と前記支持部(9)とに、前記クラウンパーツ(11)を接着した 、請求項1に記載のゴルフクラブヘッド。

【請求項3】

前記載置部(12)と前記支持部(9)とを、該載置部(12)および前記支持部(9)の周囲に位置する前記クラウン部(3)の表面よりも0.5mm以上2.0mm以下前記ヘッド本体の内方側に配置した、請求項1または請求項2に記載のゴルフクラブヘッド

【請求項4】

前記支持部の厚みは 0.7 mm以上 1.2 mm以下であり、前記支持部の幅は 3 mm以上 1.5 mm以下である、請求項 1 から請求項 3 のいずれかに記載のゴルフクラブヘッド。

【請求項5】

前記ヘッド本体は、ソール部(4)を含み、

前記ソール部(4)に前記ヘッド本体を構成する材質よりも高比重の部材を固着した、 請求項1から請求項4のいずれかに記載のゴルフクラブヘッド。

【請求項6】

前記支持部 (9) の表面積は、 $250 \,\mathrm{mm}^2$ 以上 $1000 \,\mathrm{mm}^2$ 以下である、請求項 1 から請求項 5 のいずれかに記載のゴルフクラブヘッド。

【請求項7】

前記支持部(9)の表面積と、前記開口部(8)の面積との比は、1:30~1:2である、請求項1から請求項6のいずれかに記載のゴルフクラブヘッド。

【請求項8】

前記支持部 (9) と前記載置部 (12) の少なくとも一方に開口部 (14) を設けた、請求項1から請求項7のいずれかに記載のゴルフクラブヘッド。

【請求項9】

フェース部(2)と、複数の開口部(8)を有するクラウン部(3)と、ソール部(4)と、トウ部(6)と、ヒール部(7)とを含む金属製のヘッド本体と、

前記開口部(8)を閉じるように前記ヘッド本体に取付けられるクラウンパーツ(11)と、

前記開口部(8)に沿う前記クラウン部(3)の端部であって前記フェース部(2)側に位置する第1端部から連続して前記フェース部から離れる方向に延び前記開口部(8)の一部を規定するとともに前記クラウンパーツ(11)を支持する第1支持部(9)と、

前記開口部 (8) に沿う前記クラウン部 (3) の端部であって前記フェース部 (2) 側に位置し前記第 1 端部よりも前記ヒール部 (7) 側に位置する第 2 端部から連続して前記フェース部から離れる方向に延び前記開口部 (8) の一部を規定するとともにクラウンパーツ (11) を支持する第 2 支持部 (9) とを備え、

前記第1と第2支持部(9,9)は、前記フェース部(2)の中央部を通ってフェース

面と垂直な方向に延びる仮想の直線であるフェースセンターライン(19)と交差する斜め方向に延在する、ゴルフクラブヘッド。

【請求項10】

前記第1と第2支持部(9, 9)を異なる方向に延在させて互いに接続した、請求項9 に記載のゴルフクラブヘッド。

【請求項11】

フェース部(2)と、複数の開口部(8)を有するクラウン部(3)と、ソール部(4)と、トウ部(6)と、ヒール部(7)とを含む金属製のヘッド本体と、

前記開口部(8)を閉じるように前記ヘッド本体に取付けられるクラウンパーツ(11)と、

前記開口部(8)に沿う前記クラウン部(3)の端部であって前記フェース部(2)側に位置する端部から連続して前記フェース部から離れる方向に延び前記開口部(8)の一部を規定するとともに前記クラウンパーツ(11)を支持するX形の支持部(9)とを備えた、ゴルフクラブヘッド。

【請求項12】

フェース部 (2) と、4つの開口部 (8) を有するクラウン部 (3) と、ソール部 (4) と、トウ部 (6) と、ヒール部 (7) とを含む金属製のヘッド本体と、

前記開口部(8)を閉じるように前記ヘッド本体に取付けられ、前記ヘッド本体を構成 する材質よりも低比重の材質で構成されるクラウンパーツ(11)と、

互いに交差するように前記クラウン部 (3) に設けられ、前記4つの開口部 (8) を規定するとともに前記クラウンパーツ (11) を支持する直線状の第1および第2支持部 (9) とを備え、

前記第1と第2支持部(9)によって規定される形状は、前記フェース部(2)の中央部を通ってフェース面と垂直な方向に延びる仮想の直線であるフェースセンターライン(19)に関して対称形状であり、

前記開口部(8)に沿う前記クラウン部(3)の端部であって前記フェース部(2)側に位置する端部を前記トウ部(6)から前記ヒール部(7)に向かう方向に第1、第2、第3および第4エリア(20,21,22,23)に分割した場合に、前記第1あるいは2エリア(20,21)内に位置する前記クラウン部(3)の端部から前記第1支持部(9)が連続して前記フェース部から離れる方向に延び、前記第3あるいは第4エリア(22,23)内に位置する前記クラウン部(3)の端部から前記第2支持部(9)が連続して前記フェース部から離れる方向に延びる、ゴルフクラブヘッド。

【請求項13】

前記第1支持部(9)において前記フェース部(2)側に位置する部分と前記フェースセンターライン(19)とのなす角度は40度以上50度以下であり、前記第2支持部(9)において前記フェース部(2)側に位置する部分と前記フェースセンターライン(19)とのなす角度は40度以上50度以下である、請求項12に記載のゴルフクラブヘッド。

【請求項14】

請求項1から請求項13のいずれかに記載のゴルフクラブヘッドを備えたゴルフクラブ

【書類名】明細書

【発明の名称】ゴルフクラブヘッドおよびゴルフクラブ

【技術分野】

$[0\ 0\ 0\ 1\]$

本発明は、金属製のヘッド本体を備えたゴルフクラブヘッドおよびゴルフクラブに関し、クラウン開口を閉じるようにクラウンパーツを固着したゴルフクラブヘッドおよび該ヘッドを備えたゴルフクラブに関する。

【背景技術】

[0002]

近年、ゴルフクラブヘッドは大型化傾向にあるが、ヘッドの大型化に伴いヘッドの重心位置は高くなる。このようにヘッドの重心位置が高くなると、ボールが上がり難くなり、 飛距離が低下することが懸念される。そこで、ボールを上がり易くして飛距離増大を図る べく、ヘッドの重心位置を低くする様々な工夫がなされている。

[0003]

たとえば特開平8-196665号公報には、ホーゼル部を一体に成形し、ヘッドの重心を含む鉛直方向に貫通する貫通孔を形成して環状のヘッド本体を構成し、このヘッド本体よりも比重が小さくかつ軟質の材料からなる閉塞板をヘッド本体に固定または固着して、ヘッド本体の貫通孔の上方または下方の開口の少なくとも一方が閉塞されたゴルフクラブのヘッドが記載されている。

[0004]

他方、実公平 7 - 4 0 5 0 号公報には、大型で強靭なゴルフクラブヘッドを提供するために、フェース部とネック部との一体成形体、フェース部の裏面からクラブヘッドの後端部にかけて設けられる複数のリブ、複数のリブをクラブヘッドの後端部で固着するための固着部材からクラブヘッドの骨組となる重量体を構成し、さらに重量体の空間部に発泡体を充填してクラブヘッド形状としたゴルフクラブヘッドが記載されている。

[0005]

また、実開平6-86757号公報には、ヘッドの軽量化とフェース部の強度の向上を図るとともに、飛距離の増大およびインパクト時におけるソフトフィーリングが得られ、打球方向のコントロールを容易にするために、ヘッド本体におけるフェース部の凹部に、ヘッド全体の重量配分と重心位置を考慮した形状と大きさの窓状の開口部を所定の位置に形成したり、凹部に装着されるフェース板を強度および剛性の異なる複数層からなる複合材で形成したゴルフクラブのヘッドが記載されている。

【特許文献1】特開平8-196665号公報

【特許文献2】 実公平7-4050号公報

【特許文献3】 実開平6-86757号公報

【発明の開示】

【発明が解決しようとする課題】

[0006]

上記の特開平8-196665号公報に記載のゴルフクラブのヘッドでは、ヘッド本体を鉛直方向に貫通する貫通孔を設けているだけであるので、閉塞板をヘッド本体に固着したとしても、ヘッド本体のクラウン部の強度が低下することが懸念される。

[0007]

他方、実公平7-4050号公報には、フェース部の裏面からクラブヘッドの後端部にかけて複数のリブを設けることが記載されているが、該リブではクラウン部を補強することはできない。また、当該公報に記載の思想をクラウン部に適用することについて記載も示唆もなされておらず、さらにフェース裏面にリブが達しているため、フェースが撓み難くなり、ボールの飛距離低下も懸念される。

[0008]

実開平6-86757号公報に記載のゴルフクラブのヘッドの場合も、フェースの強度 を向上することはできるが、クラウン部を補強することはできず、また当該公報に記載の 思想をクラウン部に適用することについては記載も示唆もなされていない。

[0009]

そこで、本発明は、クラウン開口部を閉じるようにクラウンパーツを固着したゴルフクラブへッドにおいてクラウン部を補強することが可能となるゴルフクラブへッドおよび該ヘッドを備えたゴルフクラブを提供することを目的とする。

【課題を解決するための手段】

$[0\ 0\ 1\ 0]$

本発明に係るゴルフクラブヘッドは、1つの局面では、複数の開口部を有するクラウン部を含む金属製のヘッド本体と、該開口部を閉じるようにヘッド本体に取付けられるクラウンパーツと、開口部間に設けられ、クラウンパーツを支持する支持部とを備える。開口部の周囲にクラウンパーツの周縁部を載置する載置部を設け、上記の支持部は、載置部から開口部の内方に向かって延びる。なお、複数の開口部を設けた場合には、複数の開口部の周囲に載置部を設ける。

$[0\ 0\ 1\ 1]$

このようにクラウン部の開口部間にクラウンパーツを支持する支持部を設けることにより、支持部によってクラウンパーツを補強することができる。その結果、クラウン部を補強することができる。

$[0\ 0\ 1\ 2\]$

上記ヘッド本体を構成する材質よりも低比重の材質でクラウンパーツを構成し、載置部と支持部とに、クラウンパーツを接着することが好ましい。

$[0\ 0\ 1\ 3]$

また、載置部と支持部とを、該載置部と支持部の周囲に位置するクラウン部の表面よりも0.5mm以上2.0mm以下ヘッド本体の内方側に配置することが好ましい。この「クラウン部の表面」とは、凹状部分ではない部分のクラウン部の表面のことである。

$[0\ 0\ 1\ 4\]$

上記支持部の厚みは、好ましくは、0.7mm以上1.2mm以下であり、支持部の幅は、好ましくは、3mm以上15mm以下であり、より好ましくは、5mm以上12mm以下である。

[0015]

上記ヘッド本体は、ソール部を含み、該ソール部にヘッド本体を構成する材質よりも高 比重の金属部材を固着することが好ましい。

$[0\ 0\ 1\ 6]$

上記支持部の表面積は、好ましくは、 $250\,\mathrm{mm}^2$ 以上 $1000\,\mathrm{mm}^2$ 以下である。また、支持部の表面積は開口部の面積よりも小さく、支持部の表面積と、開口部の面積との比は、たとえば $1:30\sim1:2$ 程度であることが好ましい。また、上記支持部と載置部の少なくとも一方に開口部を設けることが好ましい。

$[0\ 0\ 1\ 7]$

本発明に係るゴルフクラブヘッドは、他の局面では、フェース部と、複数の開口部を有するクラウン部と、ソール部と、トウ部と、ヒール部とを含む金属製のヘッド本体と、開口部を閉じるようにヘッド本体に取付けられるクラウンパーツと、開口部に沿うクラウン部の端部であってフェース部側に位置する第1端部から連続してフェース部から離れる方向に延び開口部の一部を規定するとともにクラウンパーツを支持する第1支持部と、開口部に沿うクラウン部の端部であってフェース部側に位置し第1端部よりもヒール部側に位置する第2端部から連続してフェース部から離れる方向に延び開口部の一部を規定するとともにクラウンパーツを支持する第2支持部とを備える。そして、第1と第2支持部は、フェース部の中央部を通ってフェース面と垂直な方向に延びる仮想の直線であるフェースセンターラインと交差する斜め方向に延在する。上記第1と第2支持部を異なる方向に延在させて互いに接続することが好ましい。

$[0\ 0\ 1\ 8]$

本発明に係るゴルフクラブヘッドは、さらに他の局面では、フェース部と、複数の開口

部を有するクラウン部と、ソール部と、トウ部と、ヒール部とを含む金属製のヘッド本体と、開口部を閉じるようにヘッド本体に取付けられるクラウンパーツと、開口部に沿うクラウン部の端部であってフェース部側に位置する端部から連続してフェース部から離れる方向に延び開口部の一部を規定するとともにクラウンパーツを支持するX形の支持部とを備える。

$[0\ 0\ 1\ 9]$

本発明に係るゴルフクラブヘッドは、さらに他の局面では、フェース部と、4つの開口部を有するクラウン部と、ソール部と、トウ部と、ヒール部とを含む金属製のヘッド本体と、開口部を閉じるようにヘッド本体に取付けられヘッド本体を構成する材質な構成されるクラウンパーツと、互いに交差するようにクラウン部に設けられ4つの開口部を規定するとともにクラウンパーツを支持する直線状の第1および第2支持部とを備える。そして、第1と第2支持部によって規定される形状は、フェース部の中央部を通ってフェース面と垂直な方向に延びる仮想の直線であるフェース部側に位置する地に大力をあってフェース部側に位置するが連続してフェース部から第1支持部が連続してフェース部から離れる方向に延び、第3あるいは第4エリア内に位置するクラウン部の端部から第1支持部においてフェース部から離れる方向に延び、第3あるいは第4エリア内に位置するクラウン部の端部であった。上記第1支持部においてフェース部側に位置する部分とフェースセンターラインとのなす角度は、好ましくは40度以上50度以下である。

[0020]

本発明に係るゴルフクラブは、上記のゴルフクラブヘッドを備える。したがって、クラウン部が補強された信頼性の高いヘッドを有するゴルフクラブが得られる。

【発明の効果】

$[0\ 0\ 2\ 1\]$

本発明によれば、クラウン部の開口部にクラウンパーツを支持することが可能な支持部と載置部とを設けているので、クラウン部の強度を補強することができる。それにより、クラウンパーツを固着したゴルフクラブヘッドの信頼性を向上することができる。

$[0 \ 0 \ 2 \ 2]$

また、クラウン部に上記のような第1および第2支持部やX形の支持部を設けることにより、クラウン部の強度を補強できることに加えて、フェース部側で支持部を斜め方向に延在させることで打球時のフェース部の後方への変形をある程度許容することができ、ヘッドの反発特性を高く維持することができる。また、上記のような支持部を設けることにより、ヘッドの剛性をも高めることができ、打球音をも向上することができる。さらに、支持部を斜め方向に延在させることで打球時のヘッドのねじれ変形をも効果的に抑制することができ、打撃後のボールの方向性をも安定化することができる。

【発明を実施するための最良の形態】

[0023]

以下、本発明の実施の形態におけるゴルフクラブヘッドおよびゴルフクラブについて説明する。本実施の形態の思想は、金属製ゴルフクラブヘッドを備えたウッドゴルフクラブに有用である。

[0024]

本実施の形態におけるゴルフクラブは、後述するゴルフクラブヘッド、シャフトおよび グリップを備える。ゴルフクラブヘッドは、フェース部と、ヘッド本体と、クラウンパー ツとを備える。シャフトおよびグリップとしては周知のものを採用可能である。

[0025]

フェース部は、典型的にはヘッド本体とは別パーツで構成され、チタン合金などの金属で主に構成される。該フェース部は、たとえば鍛造により成形可能であり、溶接によりヘッド本体と接合される。

[0026]

ヘッド本体は、クラウン部、ソール部、サイド部、トウ部およびヒール部を含み、純チタンやチタン合金などの金属で主に構成される。該ヘッド本体は、たとえば鋳造により成形可能である。なお、金属以外の素材と金属素材との複合素材あるいは異種金属同士の複合素材でヘッド本体を構成してもよい。

[0027]

ヘッド本体のクラウン部には、開口部を設ける。該開口部は、単数であっても複数であってもよい。クラウン部に開口部を設けることで、クラウン部を軽量化することができ、ヘッドの重心位置を低くすることができる。また、ソール部にヘッド本体を構成する材質よりも高比重の金属部材などのウェイト部材を固着することが好ましい。それにより、さらにヘッドの重心位置を低くすることができる。

[0028]

クラウンパーツは、上記の開口部を閉じるようにヘッド本体に取付けられる。該クラウンパーツは、典型的には、ヘッド本体を構成する材質よりも低比重の材質で構成される。 たとえばヘッド本体を純チタンやチタン合金で構成した場合には、クラウンパーツを、マグネシウム合金などの低比重の金属材料や、樹脂、プラスチック、ゴム、カーボン材料、カーボンファイバーなどの金属以外の低比重材料で構成することが考えられる。

[0029]

上記のクラウンパーツは、たとえば接着剤や両面テープを用いてヘッド本体に接合可能 であるが、これ以外の方法でヘッド本体に固着してもよい。

$[0\ 0\ 3\ 0]$

本実施の形態では、クラウン部の開口部に、上記のクラウンパーツを支持する支持部を設ける。該支持部は、たとえば上記の開口部を規定するクラウン部の端部間を接続するように設けられる。それにより、該支持部によって上記の開口部を複数の領域に分割することができ、クラウン部に複数の開口部を設けることができる。この場合には、開口部間に上記の支持部が設けられることとなる。

$[0\ 0\ 3\ 1]$

支持部は直線状であっても曲線状であってもよいが、複数の支持部を設け、該支持部を クラウン部の開口部の中央部あるいはその近傍で互いに接続することが考えられる。

[0032]

支持部全体の形状は任意に選択可能であるが、たとえばソールセンターラインまたはフェースセンターライン(フェース部の中央部を通ってフェース面と垂直な方向に延びる仮想の直線)に関して対称形状となるように支持部の形状を選択することが考えられる。具体的には、支持部の形状をX形としたり、十字形とすることが考えられる。

[0033]

支持部は、上記の開口部を規定するクラウン部の端部から該開口部の内方に向かって延びるように設けられればよい。このとき、支持部の先端を、上記のように互いに接続してもよいが、該支持部の先端と対向するクラウン部の端部から離隔させてもよい。支持部の先端をクラウン部の端部から離隔させた場合、支持部の自由端(先端)が開口部内に位置することとなり、クラウン部には1つの開口部が設けられることとなる。

[0034]

なお、上記の開口部を規定するクラウン部の端部から複数の支持部を、開口部内方に向かって突出させ、それぞれの先端同士を接続しないようにしてもよい。この場合にも、互いに連通した1つの開口部がクラウン部に設けられることとなる。

[0035]

支持部は、開口部に沿うクラウン部の端部であってフェース部側に位置する第1端部から連続してフェース部から離れる方向に延び開口部の一部を規定するとともにクラウンパーツを支持する第1支持部と、開口部に沿うクラウン部の端部であってフェース部側に位置し第1端部よりもヒール部側に位置する第2端部から連続してフェース部から離れる方向に延び開口部の一部を規定するとともにクラウンパーツを支持する第2支持部とを含む

ものであってもよい。該第1と第2支持部は、典型的には、上記のフェースセンターラインと交差する斜め方向に延在する。

[0036]

上記第1と第2支持部を異なる方向に延在させ、互いに離隔させるようにしてもよいが、第1と第2支持部を接続することが好ましい。また、第1と第2支持部は直線状の形状であってもよい。

[0037]

たとえば上記の第1と第2支持部を直線状の形状とし、互いにクラウン部において接続することにより、上記のようなX形の支持部を形成することができる。なお、打球時のフェース部の後方(ヘッドのバック部側)へのある程度の撓み量を確保するためには、少なくとも支持部においてフェース部側に位置する部分がフェースセンターラインと交差する斜め方向に延在すればよいものと考えられるので、支持部の形状を、X形以外に、V形や、Y形や、X形、V形、Y形を組み合わせた形状など様々な形状とすることが考えられる。また、フェース部側に複数の斜め方向の支持部を設けることが好ましいことから、支持部をV形やY形とする場合、支持部において分岐した側の2つの先端部を、開口部に沿うクラウン部の端部であってフェース部側に位置する端部と接続することが好ましい。

[0038]

支持部形状をX形とした場合、クラウン部には4つの開口部が形成される。該X形の支持部が2本の直線状の第1と第2支持部で構成される場合、この第1と第2支持部によって規定される形状は、フェースセンターラインに関して対称形状であることが好ましい。

[0039]

また、第1支持部においてフェース部側に位置する部分とフェースセンターラインとのなす角度は40度以上50度以下であり、第2支持部においてフェース部側に位置する部分とフェースセンターラインとのなす角度は40度以上50度以下であることが好ましい。それにより、支持部によって、ヘッドのフェース部からバック部に向かうフェース・バック方向と、ヘッドのトウ部からヒール部に向かうトウ・ヒール方向との双方にほぼ均等にヘッド本体の剛性を高めることができる。

[0040]

また、開口部に沿うクラウン部の端部であってフェース部側に位置する端部をトウ部からヒール部に向かう方向に第1、第2、第3および第4エリアに分割した場合に、第1あるいは2エリア内に位置するクラウン部の端部から第1支持部が連続してフェース部から離れる方向に延び、第3あるいは第4エリア内に位置するクラウン部の端部から第2支持部が連続してフェース部から離れる方向に延びることが好ましい。

[0041]

上記のような支持部を設けることにより、クラウンパーツを補強することができ、たとえばクラウンパーツに外部から衝撃が加わった場合に、クラウンパーツの変形や破損を抑制することができる。したがって、クラウン部を補強することができる。

[0042]

また、支持部をソールセンターラインまたはフェースセンターラインに対して斜め方向に延在させることで、打球時のフェース部の後方側(フェース・バック方向)への変形をある程度許容することができる。それにより、ヘッドの反発特性を高く維持することができる。また同時に、ヘッド自体の剛性をも高めることができ、打球音をも向上することができる。さらに、支持部を斜め方向に延在させることで打球時のヘッドのねじれ変形をも効果的に抑制することができる。それにより、打撃後のボールの方向性をも安定化することができる。

[0043]

上記の支持部は、クラウンパーツと固着されることが好ましい。この場合、クラウンパーツの固着面積を増大することができ、クラウンパーツを強固にヘッド本体に固着することができる。

[0044]

また、上記のように開口部を規定するクラウン部の端部間を接続するようにヘッド本体と一体的に支持部を設けた場合には、たとえばヘッド本体を鋳造成形した場合におけるヘッド本体の変形を抑制することができる。それにより、クラウンパーツとの密着精度を向上することができ、あらゆる方向からの衝撃力に対するクラウンパーツの固着強度を向上することができる。また、クラウンパーツを取付けることによってクラウン部に不必要な段差が生じることも抑制することができ、クラウン部とクラウンパーツの表面をほぼ面一に仕上げることも可能となる。したがって、ヘッドの外観をも向上することができる。

[0045]

さらに、開口部上に橋架した状態で支持部を残すことにより、ヘッド本体とフェース部の溶接時のようにヘッド本体に熱が加わった際におけるヘッド本体の変形量を低減することもできる。

$[0\ 0\ 4\ 6]$

また、クラウン部の開口部を複数の領域に分割するとともに該開口部を規定するクラウン部の端部間を接続し、互いに交差する方向に延在してクラウン部の中央部で連結されるように上記の支持部を複数設けた場合には、クラウン部を補強でき、かつヘッド本体の変形をも抑制することができることに加えて、打球後の残響音を、一般にゴルファーにとって心地良いと感じられる高音域の残響音とすることもできる。特に、支持部の形状を対称形状とすることで、当該効果は顕著となるものと考えられる。

[0047]

上記の開口部を囲むようにクラウン部の端部に、クラウンパーツの周縁部を載置する載置部を設けることが好ましい。このとき、支持部は、載置部から局所的に開口部の内方に向かって延びることとなる。該載置部と支持部との双方にクラウンパーツを接着することが好ましい。それにより、クラウンパーツをヘッド本体に強固に固着することができる。

[0048]

上記の載置部と支持部は、凹状にクラウン部に設けることが好ましい。具体的には、載置部と支持部とを、クラウン部の表面よりも0.5mm以上2.0mm以下ヘッド本体の内方側(ソール部側)に配置することが好ましい。

[0049]

載置部と支持部上にはクラウンパーツが設置されるので、載置部の周囲に位置する凹部 以外のクラウン部の表面(上面)からの載置部と支持部のオフセット量(降下量)は、ク ラウンパーツの厚みとほぼ等しくすることが好ましい。それにより、クラウンパーツの表 面(上面)とクラウン部の表面との間に段差が形成されるのを阻止することができる。

$[0\ 0\ 5\ 0]$

しかし、クラウンパーツの表面とクラウン部の表面との間にある程度の段差が生じたとしても、極端な段差でない限り、外観上はあまり問題とならないとも考えられるので、上記のオフセット量は、クラウンパーツの厚みと異なるものであってもよい。

$[0\ 0\ 5\ 1]$

なお、載置部の周囲にさらに凹部を設けるようにクラウン部に段差部を設けてもよい。 つまり、凹状の載置部からクラウン部の外周側に間隔をあけて段差部を設け、該載置部からクラウン部の外周に向かって連続的に延びる凹部を設けてもよい。この場合、該凹部内にクラウンパーツの外周を配置し、クラウンパーツの外周と上記の段差部の壁面との間に間隙を確保するようにする。このような段差部を設けることにより、クラウンパーツの外形がばらついた場合でも、クラウンパーツをクラウン部に確実に固着することができる。

[0 0 5 2]

クラウンパーツの強度確保のためには、クラウンパーツの厚みを 0.5 mm以上とすることが好ましく、クラウンパーツの質量が重過ぎて高重心ヘッドになるのを避けるためにクラウンパーツの厚みを 2.0 mm以下とすることが好ましい。そこで、上記のようにクラウン部の表面からの載置部と支持部のオフセット量を 0.5 mm以上 2.0 mm以下としている。

[0053]

上記の支持部の厚みは、好ましくは、0.7mm以上1.2mm以下程度である。このように支持部の厚みを0.7mm以上としたのは、0.7mm未満ではヘッド本体を鋳造にて製造した場合に鋳造性が低下し、支持部を高精度に成形できないことが懸念されるからである。また、支持部の厚みを1.2mm以下としたのは、支持部の質量が重過ぎてヘッドの重心位置を低くするのに支障を来たすことを回避するためである。

[0054]

上記の支持部の幅は、好ましくは、3 mm以上15 mm以下であり、より好ましくは、5 mm以上12 mm以下程度である。このように支持部の幅を3 mm以上としたのは、3 mm未満ではヘッド本体を鋳造にて製造した場合に鋳造性が低下し、支持部を高精度に成形できないことが懸念されるからである。また、支持部の幅を15 mm以下としたのは、支持部の質量が重過ぎてヘッドの重心位置を低くするのに支障を来たすことを回避するためである。

[0055]

上記支持部の表面積は、好ましくは、250mm²以上1000mm²以下であり、さらに好ましくは、300mm²以上800mm²以下である。支持部の表面積をこの範囲とすることにより、クラウンパーツを効果的に補強するとともに、クラウンパーツの接着面積をも確保することができる。他方、ヘッドの低重心化の観点からは、支持部の表面積は、開口部の面積よりも小さくすることが好ましい。たとえば、支持部の表面積と、開口部の面積との比は、1:30~1:2程度であり、好ましくは、1:20~1:5程度である。

[0056]

上記支持部と載置部の少なくとも一方に開口部を設けることが好ましい。該開口部の形状は、任意に選択可能であるが、たとえば真円や楕円のような円形とすることが考えられる。また、上記開口部の直径または最大径は、支持部の幅の1/2以下であることが好ましい。それにより、支持部の極端な強度低下を抑制することができる。

[0057]

上記のような開口部を設けることにより、支持部の質量を低減することができ、ゴルフクラブヘッドをさらに低重心化することができる。また、該開口部を設けることにより、支持部の強度をも制御することができ、所望の強度の支持部を得ることができる。さらに、開口部の直径や最大径を適切に調節することにより、接着剤を開口部上に残すことができ、クラウンパーツの接着強度を確保することもできる。なお、開口部の代わりに支持部と載置部の少なくとも一方に凹部を設けることも考えられる。

[0058]

上記の支持部は、典型的にはクラウンパーツと固着されるが、支持部をクラウンパーツと積極的に固着しないことも考えられる。また、支持部とクラウンパーツとの間に積極的に間隙を設けることも考えられる。このようにクラウンパーツと支持部との間に積極的に間隙を設けることにより、支持部やクラウンパーツの形状がばらついた場合でも、クリアランスを確保することができるのでクラウンパーツをヘッド本体に取付けることができ、歩留りを向上することができる。

[0059]

以下、本発明の実施例について図1~図10を用いて説明する。

【実施例1】

[0060]

まず、図1~図3および図6~図8を用いて、本発明の実施例1とその変形例について 説明する。本実施例1におけるゴルフクラブは、図1に示すゴルフクラブヘッド1、シャ フトおよびグリップを備える。シャフトおよびグリップとしては周知のものを採用する。

[0061]

図1および図2に示すように、ゴルフクラブヘッド1は、フェース部2と、ヘッド本体と、クラウンパーツ11と、ホーゼル部13とを備える。フェース部2は、チタン合金で

構成され、溶接によりヘッド本体と接合される。

[0062]

ヘッド本体は、クラウン部 3、ソール部 4、サイド部 5、トウ部 6 およびヒール部 7 を 含み、A 1 (アルミニウム) を 6 w t %、V (バナジウム) を 4 w t %含むチタン合金で構成される。該ヘッド本体は、鋳造により成形される。フェース部 2 から離れた側であるバック部側に位置するクラウン部 3 の厚みは 0. 9 mm程度、フェース部 2 側に位置するクラウン部 0 の厚みは 0 の厚みは 0 の厚みは 0 の原みは 0 の原みは 0 の原みは 0 の

[0063]

ヘッド本体のクラウン部3には、本実施例1では4つの開口部8を設ける。該開口部8は、図8に示すように、ソールセンターラインまたはフェースセンターライン19に関し対称な形状を有する。開口部8の周囲には、開口部8を取り囲むように凹状で環状の載置部12が設けられ、該載置部12の周囲に凹部を設けるように段差部10を設けている。

$[0\ 0\ 6\ 4]$

図2に示すように、載置部12と段差部10は、ともにこれらの周囲に位置するクラウン部3の表面よりもヘッド本体の内方側(ソール部側)に配置され、クラウンパーツ11 の周縁部が載置部12上から段差部10上に延びるようにクラウンパーツ11がヘッド本体に固着される。クラウンパーツ11は、カーボン材料で構成される。

$[0\ 0\ 6\ 5]$

図1に示すように、本実施例1では、クラウン部3に4つの開口部8を形成するように X形の支持部9を設ける。支持部9は、載置部12から開口部8の内方に向かって延びて おり、この支持部9、載置部12および段差部10の底面に、接着剤を用いてクラウンパ ーツ11を固着する。

[0066]

ここで、図8を用いて、本実施例1における支持部9の形状についてさらに詳しく説明 する。

[0067]

図8に示すように、一方の直線状の支持部(第1支持部)9においてフェース部2側に位置する部分とフェースセンターライン19とのなす角度 θ は45度であり、他方の直線状の支持部(第2支持部)9においてフェース部2側に位置する部分とフェースセンターライン19とのなす角度も45度である。

[0068]

また、図8に示すように、開口部に沿うクラウン部3の端部であってフェース部2側に位置する端部をトウ部6からヒール部7に向かう方向に第1、第2、第3および第4エリア21~23に分割した場合に、第2エリア21内に位置するクラウン部3の端部から一方の支持部9が連続してフェース部2から離れる方向に延び、第3エリア22内に位置するクラウン部3の端部から他方の支持部9が連続してフェース部2から離れる方向に延びる。

[0069]

また、本実施例 1 では支持部 9 の表面積は、 7 1 3 m m 2 であり、支持部 9 の表面積と 開口部 8 の面積との比は 1 1 1 1 である。

[0070]

なお、図2に示すように、クラウンパーツ11の外周と段差部10の壁面との間には間隙を設けることが好ましい。それにより、クラウンパーツ11の外形のばらつきを許容することができる。

[0071]

段差部10の底面、載置部12および支持部9は、クラウン部3の表面よりも0.9mm程度ヘッド本体の内方側(ソール部側)に配置される。このとき、クラウンパーツ11の厚みも0.9mm程度に設定しておく。それにより、図2に示すように、段差部10の周囲のクラウン部3の表面と、クラウンパーツ11の表面とをほぼ面一に仕上げることが

可能となる。なお、支持部 9 の厚みは 0 . 9 mm程度であり、支持部の幅は 5 mm程度である。

[0072]

上述のような支持部9を設けることにより、クラウン部3を補強することができ、かつクラウンパーツ11を強固にヘッド本体に固着することが可能となるが、打球音についても改善可能であることを確認することができたので、その結果について図6と図7を用いて説明する。

[0073]

具体的には、図1に示すX形の支持部9を設けたヘッドと、X形の支持部9を設けない場合の図1のタイプのヘッドとで打球音の比較試験を行った。その試験結果を図6と図7に示す。

[0074]

図6がX形の支持部9を設けない場合の音解析図であり、図7がX形の支持部9を設けた場合の音解析図である。図6と図7において、縦軸は打球音の時間的な長さ(ms)を示し、横軸は打球音の周波数を示している。

[0075]

今回の打球音比較試験は、ブリュエル・ケアー社製のマイクロホン「商品名;コンデンサマイクロホン4165」を、ブリュエル・ケアー社製のマイクロホンパワーサプライ「商品名;タイプ2804型マイクロホンパワーサプライ」に接続して、打球音をティアックコーポレーション社製のDATレコーダー「商品名;DA-P20」に記録した。打球音の分析は、ブリュエル・ケアー社製のソフトウェア「商品名;7698型音質評価ソフトウェア」を用いて、1kHz、94dBの信号で校正し、打球前0.2秒から打球後0.8秒までの合計1.0秒の打球音データを用いて行った。

[0076]

図6および図7に示すように、4 (kHz)付近に鋭角な山が現れているが、これはソール部4から発生した音であり、6 (kHz)付近の鋭角な山がクラウン部3から発生した音である。

[0077]

このクラウン部3から発生した音を図6と図7とで比較してみると、X形の支持部9を設けない場合の音の長さが300(ms)程度であるのに対し、X形の支持部9を設けた場合の音の長さは350(ms)程度となっており、X形の支持部9を設けた場合の方が高音域において残響音が長くなっているのが分かる。この高音域の残響音がゴルファーにとって心地よいと感じる音であり、X形の支持部9を設けることによる効果が見られる。

[0078]

なお、X形の支持部9の有無に拘らず、クラウン部3の音の周波数(6 kHz)はソール部の音の周波数(4 kHz)の1.5倍の数値を示しており、人が心地よいと感じる協和音になっている。

[0079]

本願発明者等は、図1に示すX形の支持部9を設けたヘッドと、X形の支持部9を設けない場合の図1のタイプのヘッドとで打球後のボールのバックスピン量の比較試験を行ったので、その試験結果について図10を用いて説明する。

[0800]

この試験では、図1に示すX形の支持部9を設けたヘッドを有するゴルフクラブと、X形の支持部9を設けない場合の図1のタイプのヘッドを有するゴルフクラブとを準備し、これらのゴルフクラブをゴルフスイングロボットに装着してボールを打撃し、ボールの初速度およびスピン量を測定した。

[0081]

なお、今回のロボット試験では、図10に示すように、ゴルフクラブヘッドの各打点位置 $15\sim18$ でボールを打撃し、初速度やスピン量を測定した。打点位置15は、フェースセンター位置であり、打点位置16は、フェースセンターの上方に5mmでかつ左側に

5 mmの位置であり、打点位置17は、フェースセンターの上方に5 mmの位置であり、 打点位置18は、フェースセンターの上方に5 mmでかつ右側に5 mmの位置である。ま た、ゴルフクラブの長さは44.5 インチであり、クラブバランスはD0である。

[0082]

下記の表1および表2に、上記のロボット試験の結果を示す。

[0083]

【表 1 】

<VH42.5m/sの場合>

	打点位置 センター	打点位置 センター上 5 mm
X有りボール初速(m/s)	61.63	61. 40
X無しボール初速(m/s)	60.86	60. 78
初速差(m/s)	0. 77	0.62

<VH46m/sの場合>

	打点位置 センター	打点位置 センター上 5 mm
X有りボール初速(m/s)	66, 70	66. 10
X無しボール初速(m/s)	65. 60	64. 81
初速差(m/s)	1. 10	1. 29

[0084]

表1に示すように、ヘッドスピード(VH)が42.5m/sと46m/sの場合のいずれも、X形の支持部9を設けたヘッドの方が打撃後のボールの初速が大きくなることがわかる。また、ヘッドスピードが速くなるほど、ボールの初速度差が大きくなることもわかる。特に、ヘッドスピードが速い場合であってフェースセンターよりも上方でボールを打撃した場合に、X形の支持部9の有無によるボールの初速度の差が大きくなることもわかる。つまり、X形の支持部9を設けることで、ボールを打撃した際のエネルギー損失を低減できることがわかる。

[0085]

【表 2】

	打点位置:	: センター上5mm	打点位置:	センター上5mm左5mm	打点位置:	打点位置:セッター上Smm右Smm
	バックスト	スピン量(rpm)	バックスと	バックスピン量(rpm)	バックス	バックスピン語 (rom)
	Xフレーム有り	Xフレーイ無し	Xフレーム有り	Xフレーム無し	Xフレーム有り	X7レーム無し
	1634	1632	1735	1618	1750	1219
	1584	1706	1580	1284	1666	1265
	1670	1458	1716	1564	1614	1390
	1605	1835	1653	1392	1766	1334
	1513	7691	1713	1523	1791	1699
	1513	1680	1551	1524	1764	1460
	1693	1823	1572	1425	1652	1486
平均值	1602	1689	1646	1476	1715	1398
標準偏差	70.83	126.66	77. 69	114.70	69.01	140, 73
•						

[0086]

表2に示すように、Xフレーム(X形の支持部9)を設けることで、各打点位置 $16\sim18$ でボールを打撃した際のスピン量のばらつき(標準偏差)が小さくなっているのがわかる。また、Xフレーム(X形の支持部9)を設けた場合には、各打点位置 $16\sim18$ でのスピン量の平均値が1602rpm ~1715 rpmであるのに対し、Xフレーム(X形の支持部9)を設けない場合には、各打点位置 $16\sim18$ でのスピン量の平均値が1398rpm ~1689 rpmとなっており、Xフレーム(X形の支持部9)を設けることで打点位置によるボールのスピン量の差を低減できることもわかる。つまり、Xフレーム

(X形の支持部9)を設けることにより、フェースセンター以外の箇所でボールを打撃した(オフセット打撃)場合のボールのスピン量のばらつきを低減することができ、ボールの飛距離や弾道を安定化することもできる。

[0087]

次に、本実施例1のヘッドの変形例について図3を用いて説明する。図3に示すように、支持部9の中央部を除去し、支持部9を断続的に設けてもよい。この場合、クラウン部3の中央部で開口部が互いに連通し、実質的に1つの開口部8が設けられることとなる。それ以外の構成については上述の例と基本的に同様である。

【実施例2】

[0088]

次に、本発明の実施例2について図4および図5を用いて説明する。

[0089]

図4に示すように、支持部9の形状を十字形としてもよい。また、図5に示すように、該十字形の支持部9の中央部を除去し、支持部9を断続的に設けてもよい。本例の場合も、クラウン部3の中央部で開口部が互いに連通し、実質的に1つの開口部8が設けられることとなる。それ以外の構成については図4に示す例と基本的に同様である。

【実施例3】

[0090]

次に、本発明の実施例3について図9を用いて説明する。

[0091]

図9に示すように、本実施例3では、支持部9と載置部12とに円形の開口部14を設けている。支持部9には、ほぼ全体にわたって均等に開口部14を設けているのに対し、載置部12には、フェース部2側に位置する部分にのみ開口部14を設けている。また、載置部12に設けた開口部14の直径を、支持部9に設けた開口部14の直径よりも大きくしている。これ以外の構成については、図1に示す場合と同様である。

[0092]

以上のように本発明の実施の形態および実施例について説明を行なったが、各実施の形態および実施例の構成を互いに組み合わせることも当初から予定している。また、今回開示した実施の形態および実施例は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれる。

【産業上の利用可能性】

[0093]

本発明は、ゴルフクラブヘッドおよび該ヘッドを備えたゴルフクラブに有効に利用され 得る。

【図面の簡単な説明】

[0094]

- 【図1】本発明の実施例1におけるゴルフクラブヘッドのクラウンパーツを外した状態を示す平面図である。
- 【図2】図1のゴルフクラブヘッドの断面図である。
- 【図3】実施例1の変形例におけるゴルフクラブヘッドのクラウンパーツを外した状態を示す平面図である。。
- 【図4】本発明の実施例2におけるゴルフクラブヘッドのクラウンパーツを外した状態を示す平面図である。
- 【図5】実施例2の変形例におけるゴルフクラブヘッドのクラウンパーツを外した状態を示す平面図である。。
- 【図6】 X形の支持部を設けない場合の実施例1のタイプのゴルフクラブヘッドの打球音を解析した音解析図である。
- 【図7】 実施例1のゴルフクラブヘッドの打球音を解析した音解析図である。
- 【図8】本発明の実施例1におけるゴルフクラブヘッドの支持部の特徴を説明するた

めの平面図である。

【図9】本発明の実施例3におけるゴルフクラブヘッドのクラウンパーツを外した状態を示す平面図である。

【図10】打点位置を説明するためのゴルフクラブヘッド1の模式図である。

【符号の説明】

[0095]

1 ゴルフクラブヘッド、2 フェース部、3 クラウン部、4 ソール部、5 サイド部、6 トウ部、7 ヒール部、8,14 開口部、9 支持部、10 段差部、11 クラウンパーツ、12 載置部、13 ホーゼル部、15~18 打点位置、19 フェースセンターライン、20 第1エリア、21 第2エリア、22 第3エリア、23 第4エリア。

1/

BEST AVAILABLE COPY

【図5】

【書類名】要約書

【要約】

【課題】 クラウン開口を閉じるようにクラウンパーツを固着したゴルフクラブヘッドにおいてクラウン部の強度を補強することが可能となるゴルフクラブヘッドおよび該ヘッドを備えたゴルフクラブを提供する。

【解決手段】 ゴルフクラブヘッド1は、複数の開口部8を有するクラウン部3、フェース部2、トウ部6、ヒール部7およびソール部を含むヘッド本体と、開口部8を閉じるようにヘッド本体に取付けられるクラウンパーツと、開口部8間に設けられ、クラウンパーツを支持する支持部9とを備える。支持部9は、たとえばX形の形状を有する。

【選択図】

図 1

特願2004-080632

出願人履歴情報

識別番号

[000005935]

1. 変更年月日

1990年 8月22日

[変更理由] 住 所

新規登録 大阪府大阪市中央区北浜4丁目1番23号

氏 名

美津濃株式会社