• Lecture 1 (April 23, 2025)

- Today:
 - Admin.
 - Overview of this module

Contact Information

- Course coordinator: Prof. Jiaxin Pan
- Lecturer & TA: Runzhi Zeng
- Email:
 - jiaxin.pan@uni-kassel.de
 - runzhi.zeng@uni-kassel.de
- Office hours
 - Office: Room 2628
 - 2 pm 2:30 pm, Wednesday
 - (Please send an email in advance)
- All information is available on:
 - https://runzhizeng.github.io/QC-s25/

Time

- Summer semester 2025: 23.04.2025 24.07.2025
- 14 Weeks: Wednesday and Thursday every week
- Lecture dates:
 - April: 23, 24, 30
 - May: 01(Labor Day), 7, 8, 14-15 (Travel), 21, 22, 28-29 (Ascension)
 - June: 4, 5, 11, 12, 18, 19(Corpus Christi), 25, 26.
 - July: 2, 3, 9, 10, 16,17, 23, 24.

Format

- Wednesday 12:00 13:30:
 - Two lectures (~40min each) + 10min break
- Thursday 10:00 12:00:
 - One lecture (~45min)
 - Exercise and Q&A (~45min-1h)
 - Explanation of selected exercise questions (~15min-30min)
 - I may ask you to present your solutions
- This module involves a large amounts of calculations
 - Please bring your pen and paper (especially on Thursday!)
 - You can also bring your laptop/iPad to check the lecture notes at any time

Resources

- Lecture notes: Will be updated at https://runzhizeng.github.io/QC-s25
- Calculation Manuscripts: Would be updated at the Moodle.
- Textbooks:
 - Quantum Computation and Quantum Information by Michael Nielsen and Isaac Chuang
 - Linear Algebra and Learning from Data by Gilbert Strang
 - An Introduction to Quantum Computing by Phillip Kaye, Raymond Laflamme, and Michele Mosca.
 - Quantum Computing: A Gentle Introduction by Eleanor Rieffel and Wolfgang Polak
 - ...

Resources

Resources of other QC courses:

(Parts of this module are based on these external course materials)

- Quantum Computation and Information (Videos) by Prof. Ryan O'Donnell (Carnegie Mellon University)
- Quantum Cryptography by Prof. Qipeng Liu (UC San Diego)
- Quantum Cryptography by Prof. Mark Zhandry (Princeton University)
- Introduction to Quantum Computing by Prof. Dakshita Khurana and Prof. Makrand Sinha (University of Illinois)
- Introduction to Quantum Computing by Prof. Henry Yuen (Columbia University)
- <u>Lecture Notes of Quantum Information Science</u> by Prof. Scott Aaronson (UT Austin)

Miscellaneous:

- Qubit Zoo: "Zoo" of interesting qubits and quantum gates
- Quantum Programming (Simulated): Q# and Qiskit

Homework and Exam

- Homework: Some problem sets (notice time: 1~2 weeks).
- Exam type (Oral or written?): To be decided
- When? To be decided

What is Quantum Computing?

• Computation based on **quantum mechanics**, rather than classical physics

Quantum mechanics:

- Classical physics does not work in some cases
- -> Quantization, introduced/explained by Planck, Einstein, ...
- -> Quantum theory, formalized by Schrödinger, Heisenberg, Dirac...

• Computation based on **quantum mechanics**, rather than classical physics

Quantum mechanics:

Classical physics does not work in some cases

Classical physics:

"Light is **continuous wave** (with energy)

- \Rightarrow Shine light on the plate for a long time
- ⇒ Electrons should be emitted eventually"

- Computation based on quantum mechanics, rather than classical physics
- **Quantum mechanics:**
 - Classical physics does not work in some cases

Classical physics:

"Light is **continuous wave** (with energy)

- ⇒ Shine light on the plate for a long time
- ⇒ Electrons should be emitted eventually"

Double slit experiment: Light is a wave, or at least it behaves like a wave https://en.wikipedia.org/wiki/Double-slit_experiment

Computation based on quantum mechanics, rather than classical physics

Quantum mechanics:

Classical physics does not work in some cases

Classical physics:

"Light is **continuous wave** (with energy)

- \Rightarrow Shine light on the plate for a long time
- ⇒ Electrons should be emitted eventually"

Reality (Experiments):

- There is a threshold frequency.
 (Electrons are emitted only if the light's frequency is high enough)
- 2. The emission of electrons is "immediately", regardless of light's intensity

• Computation based on **quantum mechanics**, rather than classical physics

Quantum mechanics:

Classical physics does not work in some cases

ous wave (with energy)
the plate for a long time
uld be emitted eventually"

ents):

(Source: Wikipedia)(Electrons are emitted

2. The emission of electron

Wenn sich nämlich bei der Ausbreitung eines Lichtstrahls die Energie nicht kontinuierlich im ganzen Raum verteilt, sondern aus einzelnen, **im Raum lokalisierten Quanten**

besteht, dann erklärt das diemerkwürdigen Eigenschaften der Photoelektrizität...

Example: Photoelectric effect

metal plate

• Computation based on **quantum mechanics**, rather than classical physics

Quantum mechanics:

- Classical physics does not work in some cases
- -> Quantization, introduced/explained by Planck, Einstein, ...

Example: $E = h \cdot v$

E: Energy of the photon

h: Planck's constant

v: Frequency of the photon

(Source: Wikipedia)

• Computation based on **quantum mechanics**, rather than classical physics

Quantum mechanics:

- Classical physics does not work in some cases
- -> Quantization, introduced/explained by Planck, Einstein, ...
- -> Quantum theory, formalized by Schrödinger, Heisenberg, **Dirac**, ...

 $U|\psi
angle\langle\phi||\psi
angle=\langle\phi|\psi
angle U|\psi
angle$ (Dirac's notation)

 $i\hbar \frac{d}{dt} |\Psi(t)\rangle = \widehat{H} \big(\Psi(t)\big)$ (Schrödinger equation)

(Source: Wikipedia)

Schrödinger's Cat (picture from Medium)

$$\Delta x \cdot \Delta p \geq \frac{\hbar}{2}$$

(Heisenberg Uncertainty Principle)

(Source: Wikipedia)

• Computation based on **quantum mechanics**, rather than classical physics

Quantum Mechanics

Information Theory

- + Quantum Mechanics
- **= Quantum Computing**

. .

• Computation based on **quantum mechanics**, rather than classical physics

Quantum Mechanics

Richard Feynman

- Simulating quantum systems with classical computers is *inefficient*
- Quantum Systems/Computers are required

David Deutsch

- Deutsch's algorithm, Deutsch-Jozsa algorithm
- Quantum Turing Machine

• •

• Computation based on **quantum mechanics**, rather than classical physics

Quantum Mechanics

...

Information Theory

- + Quantum Mechanics
- **= Quantum Computing**

Peter Williston Shor

- Breakthrough: Shor's algorithm
- Break most of existing public-key cryptosystems
- ... which motivates "post-quantum cryptography"

Lov K. Grover

- Grover search:A Quantum search algorithm
- Significant impacts on information theory, computation complexity, cryptography, ...

• Computation based on **quantum mechanics**, rather than classical physics

Quantum Mechanics

• •

Information Theory

- + Quantum Mechanics
- **= Quantum Computing**

• • •

Advances in quantum computing

• Computation based on **quantum mechanics**, rather than classical physics

Quantum Mechanics

Information Theory

- + Quantum Mechanics
- **= Quantum Computing**

Advances in quantum computing

We are now in the NISQ era!

NISQ = Noisy Intermediate-Scale Quantum

- Not yet powerful enough to run Shor's or Grover's algorithms at scale
- But quantum hardware is scaling up!
- Quantum error correction is still needed for fault-tolerant computing

(Classical World)
(Quantum World)

00101 Classical bit(s): 01011 10110 • **0** = Low voltage (e.g., 0V)

1 = High voltage (e.g., 3.3V – 5V)

(Classical World)

(Quantum World)

00101 Classical bit(s): 01011 10110 • **0** = Low voltage (e.g., 0V)

• **1** = High voltage (e.g., 3.3V – 5V)

(Classical World)

(Quantum World)

Single quantum bit (qubit)
represented by Bloch sphere
Superposition of 0 and 1!

superconducting qubits (IBM)

(Classical World)
(Quantum World)

$$N = pq$$
 $(\approx 2^{1024})$
 $p \neq q$ are big primes
 p, q

Using Shor's algorithm

(Though no existing quantum computer can run this yet.)

- What makes Quantum Computing powerful?
 - Quantum **Superposition Qubits**
 - Unitary quantum gates instead of logic gates
 - Quantum Entanglement
 - Quantum Measurement
 - Quantum algorithms utilizing quantum properties...

Impact on Computational Complexity

- Exponential speedups for some specific problems
 - Factoring, discrete logarithm, or more generally, hidden (finite abelian) subgroup problem
- Polynomial speedups for generic search problems
 - Grover search
 - Improve some lower bounds

Impact on Computational Complexity

- Exponential speedups for some specific problems
 - Factoring, discrete logarithm, or more generally, hidden (finite abelian) subgroup problem
- Polynomial speedups for generic search problems
 - Grover search
 - Improve some lower bounds
- Quantum Computers ≠ More "Computable"
 - They cannot solve uncomputable problems (e.g., the halting problem)
- Quantum Computers ≠ Always more efficient
 - No known advantage in many problems (e.g., Traveling Salesman Problem)

Overall Goals

- Main topics:
 - Quantum mechanics and its linear algebra formulation
 - Entanglement and Measurement
 - Quantum Algorithms:
 - Described by quantum gates/circuits, unitaries
 - Quantum "parallelism" evaluation on superposition
 - Applications of quantum algorithms QKD, QFT, search, ...
 - Quantum Information
 - Quantum Programming (TBD)?

Overall Goals

- After completing this module, you should be able to:
 - Explain the fundamental principles of quantum computing (QC) and basic quantum mechanics.
 - **Use** the relevant linear algebra (including qubit representations and quantum gates) to formalize quantum computing notions and perform **basic calculations**.
 - **Describe and apply** quantum algorithms such as the Quantum Fourier Transform and Grover's search algorithm.
 - Design some simple quantum circuits/algorithms based on the algorithms you learned
 - Read and understand introductory research papers on quantum computing and cryptography.

We do not know where • is...
Or, • is in superposition...

No-cloning

Measurement

Measurement

Measurement

The state of the composite system:

$$|\psi\rangle=|\phi_1\rangle\otimes|\phi_2\rangle\otimes|\phi_3\rangle\otimes\cdots\otimes|\phi_n\rangle$$
, \otimes : Tensor product

The state of the composite system:

$$|\psi\rangle=|\phi_1\rangle\otimes|\phi_2\rangle\otimes|\phi_3\rangle\otimes\cdots\otimes|\phi_n\rangle$$
, \otimes : Tensor product

Examples:

$$|0\rangle \otimes |1\rangle \otimes |1\rangle \otimes |1\rangle = |0111\rangle, \ |1\rangle \otimes |0\rangle \otimes |1\rangle \otimes |0\rangle \otimes |1\rangle = |10101\rangle$$

$$|0\rangle \otimes |1\rangle \otimes (\alpha |0\rangle + \beta |1\rangle) \otimes |1\rangle, |0\rangle \otimes |1\rangle \otimes \frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes |1\rangle$$

Entanglement

 $|\psi\rangle = |\phi_1\rangle \otimes |\phi_2\rangle$

Entanglement

Entanglement

Let $f: \{0,1\} \rightarrow \{0,1\}$ be a classical bit function:

The "quantum version" of f:

Reversible Computation

Quantum Gates and Algorithms

Quantum Information – Entropy and Randomness

How much "randomness" does it provide?

Quantum Information - Distinguishability

Thursday's Topic

• Quantum state, qubit, and their linear algebra formulation

• Bring your **pen** and **paper**