第七次习题课

小测讲解、方法提要、习题讲解和内容扩充

助教:邓先涛

2023年10月30日

小测讲解

小测第1题

设 S 为交换幺环,R 为 S 的子环,若 S 看作 R 模是秩为 n 的自由模,则 S 同构于 $M_n(R)$ 的一个子环.

自由模自同态的刻画

思维拓展

 $\mathbb{Z}[\sqrt{2}]$ 作为 \mathbb{Z} 自由模同构于 $M_2(\mathbb{Z})$ 上的哪一个子环? \mathbb{C} 作为 \mathbb{R} 自由模同构于 $M_2(\mathbb{R})$ 上哪一个子环?

- ▶ 任给 $y \in S$, 定义 $f_y(x) = xy$ 是 S 的 R 模自同态.
- ▶ 注意到 $\operatorname{End}_R(S) \cong M_n(R)$,因此存在唯一的 A_y 使得 $f_y = A_y$.
- ▶ 定义 $\eta: S \to M_n(R)$, $\eta(y) = A_y$.
- ▶ η 是环同态,且 $\eta(y) = 0$ 当且仅当 y = 0.
- ▶ 误区: $S \cong R^n$ (模同构) 嵌入到 $M_n(R)$, 对应矩阵的第一行

小测第 2 题第一问

设 $\mathbb{T}(x, y, z) = (x + z, y, y + z)$ 为 \mathbb{R}^3 上的一个线性变换,求 \mathbb{T} 的极小多项式 $m(\lambda)$.

线性变换与矩阵的转换

思维拓展

交换环上自由模的线性变换是否可以建立极小 多项式的概念?是否有类似的 Hamilton-Cayley 定理?是举例进行探索.

证明

▶ 取 \mathbb{R}^3 的标准基 e_1, e_2, e_3 , 得到

$$\mathbb{T}(e_1, e_2, e_3) = (e_1, e_2, e_3) \cdot \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

- ▶ 矩阵极小多项式与 T 的极小多项式相同.
- ▶ 特征多项式为 $(\lambda 1)^3$,且 $(\mathbb{T} \mathbb{I})^2 \neq 0$.
- ▶ 极小多项式为 $m(\lambda) = (\lambda 1)^3$.

小测第2题第2问

将 \mathbb{R}^3 作为 $\mathbb{R}[\lambda]$ 模,定义为 $f(\lambda) \cdot v = f(\mathbb{T})v$. 设 $v \in \mathbb{R}^3$,且 $v \neq (x, 0, z)^t$,则作为 $\mathbb{R}[\lambda]$ -模有模同构 $\mathbb{R}[\lambda] \cdot v \cong \mathbb{R}[\lambda]/(m(\lambda))$.

模同构基本定理

思维拓展

任给 $v \in \mathbb{R}^3$ 作为 $\mathbb{R}[\lambda]$ 模,则 $m(\lambda) \in \text{Ann}(v)$,能否写出集合 $V_i = \{v \in \mathbb{R}^3 | (\lambda - 1)^i \cdot v = 0\}$,其中 i = 0, 1, 2, 3. 并观察这些子空间的性状.

- ▶ 定义 $\eta: \mathbb{R}[\lambda] \to \mathbb{R}[\lambda] \cdot v$, $\eta(f) = f(\lambda) \cdot v$.
- $\blacktriangleright \ker(\eta) = \operatorname{Ann}(v) = \{f(\lambda)|f(\mathbb{T})(v) = 0\}$
- ▶ $\mathbb{R}[\lambda]$ 为主理想整环,令 $\ker(\eta) = (g(\lambda))$.
- ト $m(\lambda) \in \ker(\eta)$, 推出 $g(\lambda) \mid m(\lambda)$, 即 $g(\lambda) = (\lambda 1)^{i} (i = 1, 2, 3)$.
- $ightharpoonup (\mathbb{T} \mathbb{I})^2 v = (y, 0, 0)^t \neq 0.$
- ▶ $ker(\eta) = (m(\lambda))$, 得到命题.

小测第2题第3问

证明: \mathbb{R}^3 是循环 $\mathbb{R}[\lambda]$ 模.

子模的嵌入同态

思维拓展

设 \mathbb{T} 是 \mathbb{R}^n 上的线性变换, \mathbb{T} 满足什么条件可以使得 \mathbb{R}^n 作为 $\mathbb{R}[\lambda]$ 模是不可约模? $n \geq 3$ 时存在这样的 \mathbb{T} 吗?

- ▶ 嵌入 $\mathbb{R}[\lambda] \cdot v \to \mathbb{R}^3$ 是 $\mathbb{R}[\lambda]$ 模同态.
- ▶ 嵌入 $\mathbb{R}[\lambda] \cdot v \to \mathbb{R}^3$ 是 \mathbb{R} 线性映射.
- ▶ ℝ[λ] · v 是 3 维 ℝ 线性空间.
- ▶ 嵌入是满的且是单的,因此相等.

第六章第 20 题

设 A 为域 F 上的 n 维线性空间 V 上的线性变换,则 V 为循环 $F[\lambda]$ 模当且仅当 A 的特征多项式与极小多项式相等.

主理想整环上有限生成模的分解

思维拓展

试用纯线性代数的语言直接证明该问题. 然后对于线性变换 A,给出一般域上 V 是不可约 $F[\lambda]$ 模的 A 的刻画?

- ▶ 设 $V = F[\lambda] \cdot v$, 则存在正整数 m 使得 $V = \langle v, Av, A^2v, \dots, A^{m-1}v \rangle$
- ▶ m = n 且 $v, Av, \dots, A^{m-1}v$ 线性无关,立 刻得到极小多项式的次数大于等于 n.
- ト 反之, 根据模的分解, 设 $V=\oplus_{i=1}^k F[\lambda]v_i$, 其中 $\mathrm{Ann}(v_i)=(p_i^{e_i}(x))$
- ▶ \diamondsuit $v = v_1 + \cdots + v_k$, \bigvee Ann $(v) = (m(\lambda))$
- ▶ $v, Av, \dots, A^{n-1}v$ 线性无关, $V = F[\lambda]v$.

重点知识提要

重点知识提要

- ▶ 主理想整环上的有限生成模: 扭模与无扭模; 有限生成模的秩与自由模.
- ▶ 结构定理: 主理想整环上的有限生成模两种标准分解.
- ▶ 不变量:能够计算标准分解中的初等因子与不变因子.

第六章习题讲解

第六章第1题

设 M 是主理想整环 R 上的有限生成模, x_1, \dots, x_n 是 M 的一组生成元. $y = \sum_{i=1}^n a_i x_i$ 满足 $gcd(a_1, \dots, a_n) = 1$,则存在 y_2, \dots, y_n 使得 y_1, \dots, y_n 为 M 的生成元.

数学归纳法和主理想整环中的 bezout 引理

- ▶ n=2 的情况: 设 $y_1=a_1x_1+a_2x_2$, 有 $u_1a_1+u_2a_2=1$, 令 $y_2=u_2x_1-u_1x_2$ 即可.
- ▶ 归纳假设: 设 n < k 是均成立, n = k + 1 时, 令 $y_1 = a_1x_1 + \cdots + a_kx_k + a_{k+1}x_{k+1}$
- ▶ 令 $gcd(a_1, \dots, a_k) = p$, $py' = y_1 a_{k+1}x_{k+1}$, 根据 $n \leq k$ 的归纳假设, 存在 y_3, \dots, y_{k+1} 使得 $< y', y_3, \cdots, y_{k+1} > = < x_1, \cdots, x_k >$
- ▶ 注意到 $y_1 = py' + a_{k+1}x_{k+1}$ 和 $gcd(p, a_{k+1}) = 1$, 有 $\langle y_1, y_2 \rangle = \langle y', x_{k+1} \rangle$.

几个扩展问题

- ▶ 上述命题中主理想整环的条件是必要的,试在诺特整环上举出一些"合适"的反例.
- ▶ 如果考虑上述 M 是自由模, x_1, \dots, x_n 是一组基, 那么上述命题的条件是否是充要的?
- ▶ 即 $y = \sum_{i=1}^{n} a_i x_i$ 满足 $\gcd(a_1, \dots, a_n) = 1$ 当且仅当有 y_2, \dots, y_n 使 y_1, \dots, y_n 为 M 生成元.
- ▶ 设 y_1, \dots, y_k 可以扩充为 $y_1, \dots, y_k, \dots, y_n$ 为 M 的生成元的条件应该是怎么样的?

第六章第3题

主理想整环 R 上扭模 M 不可约的充要条件是 M = Rz, 且 Ann(z) = (p), 其中 p 是素元.

主理想整环上素理想为极大理想

思维拓展

写出 \mathbb{Z} 和 $\mathbb{Q}[x]$ 上不可约模的所有等价形式.

- ▶ 设 M = Rz 满足题设,任给形如 Rz_0 的子模,其中 $z_0 = rz$.
- ▶ 讨论 r 是否属于 (p) 得到 Rz_0 是平凡子模.
- ▶ 若 M 是不可约的, $z \neq 0$ 有 M = Rz.
- ▶ $M \cong R/Ann(z)$, 因此 Ann(z) 是极大理想.

第六章第4题

设 M 是主理想整环 R 上的有限生成扭模,M 不能写作非平凡子模的直和当且仅当 M=Rz,且 $\mathrm{Ann}(z)=(p^e)$,其中 p 是素元, $e\geq 1$.

有限生成模的标准分解

思维拓展

有限生成模的条件是必要的吗?即任给主理想整环上的扭模,是否也有上述命题成立?证明或举例证否,并探究其中本质原因.

- ▶ 前推后:直接由标准分解立刻得到结论.
- ▶ 后推前: 反设 $M = M_1 \oplus M_2$, $z = z_1 + z_2$.
- ▶ 根据 M = Rz 有 $M_i = Rz_i$, 令 $z_i = r_i z$.
- ► $r_1 r_2 z \in M_1 \cap M_2 = 0$ 推出 $p \mid r_1 r_2$.
- ▶ 令 $r_1 = p^m r \neq 0$, 讨论其中 m 的值.
- ▶ m=0, 推出 $M_1=M$.
- ▶ m > 0, 要么 $M_1 = 0$, 要么 $Ann(z) \neq (p^e)$

第六章第5题

设 M 主理想整环 R 上的模, N 为 M 的直和项, 则 N 是纯子模.

纯子模定义: $ax = z(a \in R, z \in N)$ 在 M 中有解可以推出它在 N 中有解

思维拓展

该命题反过来在有限生成模的前提下也是成立的,见 209 页习题 7.

- ightharpoonup 设 $M=N\oplus N'$, ax=z 在 M 中有解为 x_0 .
- ▶ \diamondsuit $x_0 = x_1 + x_2$, \bigvee $ax_2 = z ax_1 \in N \cap N'$.
- ▶ 直和表明 $ax_2 = 0$, 推出 $ax_1 = z$.

第六章第6题

设 M 是主理想整环 R 上的模,N 为其纯子模,则 M 关于 N 的陪集 x+N 中均存在元素 y 使得 $Ann(\overline{x}) = Ann(y)$,这里 \overline{x} 为 x 在 M/N 中的像.

零化理想的定义及应用

思维拓展

设 M 是主理想整环 R 上的扭模,循环子模 Rz 满足 $Ann(z) \subset Ann(x)$ 对一切 $x \in M$ 成立,则 Rz 是 M 的纯子模.

- $ightharpoonup ax = ax \in N$,存在 $x_0 \in N$ 使得 $ax_0 = ax$.
- ▶ $\mathbb{R} \ y = x x_0 \in x + N$, $\Leftrightarrow \text{Ann}(y) = (b)$.
- ▶ ay = 0 推出 $a \in (b)$.
- ▶ $bx = bx_0 \in N$ 推出 $b \in Ann(\overline{x}) = (a)$.

讲义 13 页第 5 题第 1 问

设 $A \in M_n(\mathbb{Z})$ 满足 $\det(A) \neq 0$, M 是由 A 的行向量生成的 \mathbb{Z} 子模. 证明: M 是秩为 n 的自由 \mathbb{Z} 模.

整环上的线性代数

思维拓展

定义 $A: \mathbb{Z}^n \to \mathbb{Z}^n$ 为 \mathbb{Z} 模同态,给出

 $rank(Im(\mathcal{A})) = m \le n$ 的充要条件.

- ▶ 定义 $\mathcal{A}: \mathbb{Z}^n \to M$, $\mathcal{A}(v) = vA$.
- ▶ 则 vA = 0 有非零解当且仅当 det(A) = 0.
- ▶ 因此线性无关元映过去仍然线性无关.

讲义 13 页第 5 题第 2 问

设 $A \in M_n(\mathbb{Z})$ 满足 $\det(A) \neq 0$, M 是由 A 的 行向量生成的 \mathbb{Z} 子模. 证明: M 作为 \mathbb{Z}^n 的加 法子群,有 $[\mathbb{Z}^n:M]=|\det(A)|$.

主理想整环上矩阵的等价形式

思维拓展

给命题可否推至一般的主理想整环? 试在 ◎[x] 中重述该命题并给予证明.

- ▶ 存在 \mathbb{Z} 上的可逆矩阵 P 和 Q 使得矩阵 A可以写作 $PAQ = \operatorname{diag}(d_1, \dots, d_n) = B$.
- ▶ 有 $|\det(A)| = |d_1 d_2 \cdots d_n|$
- ▶ $v = (v_1, \dots, v_n)Q^{-1}$ 为 \mathbb{Z}^n 关于 M 的一组 陪集代表元,其中 $0 < v_i < d_i - 1$.
- ▶ 陪集代表元的数量为 | det(A)|, 命题成立.

问题补充和方法扩张

问题 1

设 R 交换幺环,M 是有限生成 R 模,模同态 $\eta: M \to M$ 是满同态时,能否推出 η 是同构?若假定 M 的任意子模均是有限生成的,那么 η 满同态能否推出 η 同构?

简要说明

- ▶ 第一个不能,例子就是考虑 $\mathbb{Q}[x_1,\cdots,x_n,\cdots]$ 作为自身的模.
- ▶ 第二个能,原因与前面第五次课件提到过的诺特环的证明一样.

问题 2

考虑主理想整环 R 上有限生成模 M 的秩 $\operatorname{rank}(M)$ 的概念 (教材 P184),任给 M 子模 N,在子模和相应商模上也可定义秩 (子模商模也是有限生成的),证明 $\operatorname{rank}(M) = \operatorname{rank}(N) + \operatorname{rank}(M/N)$.

简要说明

- ▶ 可以证明 $M \cong R^n/M'$ 意味着 rank(M) = n rank(M').
- ▶ 考察 $N/\operatorname{tor}(N) = N/N \cap \operatorname{tor}(M) \cong (N + \operatorname{tor}(M))/\operatorname{tor}(M)$ 以及 $M/(N + \operatorname{tor}(M)) \cong (M/\operatorname{tor}(M))/((N + \operatorname{tor}(M))/\operatorname{tor}(M)).$
- $\qquad \operatorname{rank}(M/N) = \operatorname{rank}(M/(N + \operatorname{tor}(M))) = \operatorname{rank}(M) \operatorname{rank}(N).$
- ▶ 对于 M 的子模 N_1 和 N_2 , 可推出 $rank(N_1 + N_2) = rank(N_1) + rank(N_2) rank(N_1 \cap N_2)$.