

Tech Mentorship Unit 6

Booleans, Comparison Operators, and Logical Operators

What is a Boolean?

A Boolean is a data type with two possible values: True or False

True

What are Comparison Operators?

Comparison operators are special characters that allow us to compare values and check the relationship between them.

6 > 6 Answer:

11 == 4Answer: False

04 4 == 4 Answer: True

4 < 12Answer: True

6 > 6
Answer: False

Comparison Operators in Python

```
main.py v E × +

    Shell × > Console ∨ × +

main.py
                                                           5 is greater than 2: False
                                                           5 is greater than or equal to 5: True
                                                           5 is less than 10: True
                                                           3 is less than or equal to 3 True
     print("5 is greater than 2:", 5 > 5)
                                                           5 equals 6: False
                                                                                                 Notice how we can use
     print("5 is greater than or equal to 5:", 5 >= 5)
                                                           10 does not equal 7 True
                                                           > □
                                                                                                         Booleans
     print()
                                                                                                     and Comparison
                                                                                                   Operators in Python
 10
     print("5 is less than 10:", 5 < 10)
     print("3 is less than or equal to 3", 3 <= 3)
 13
     print()
 14
 17
     print("5 equals 6:", 5 == 6)
     print("10 does not equal 7", 10 != 7)
```


What are Logical Operators

keywords used to combine multiple conditions and determine the overall truth value of the combined conditions.

And

The and operator in Python evaluates to True only if both conditions on its left and right are True; otherwise, it evaluates to False.

Or

It evaluates to True if at least one of the conditions is True. If both conditions are False, it evaluates to False.

Not

The not operator is used to negate or reverse the value of a condition.

"and" Operator in Action

True and True

Answer: True

Answer: False

False and True

Answer: False

False and False

Answer: False

"or" Operator in Action

True or True

Answer: True

True or False

Answer: True

False or True

Answer: True

False or False

Answer: False

"Not" Operator in Action

Not True

Answer: False

x= 5+1 5 - 4ac

Not False

Answer: True

Both Operators Together Pt.1

5 > 2 and 10 < 5

1000

Both Operators in Python Pt.1

Both Operators Together Pt.2

Both Operators in Python Pt.2

Both Operators Together Pt.3

13333

not(5 <= 2 and 4 == 4): True

Both Operators in Python Pt.3

Here is the previous slide in Python

Practice & Review

4 > 3 and 2 != 1

Answer: True

Boolean Algebra Formulas

Drawing on similarities with traditional
math allows us to do more complex
Boolean Algebra

Treat variables as either 0 or 1 (AKA F/T)

Treat 'or' like addition

Treat 'and' like multiplication

Name	AND form	OR form
Identity law	1A = A	0 + A = A
Null law	0A = 0	1 + A = 1
Idempotent law	AA = A	A + A = A
Inverse law	$A\overline{A} = 0$	$A + \overline{A} = 1$
Commutative law	AB = BA	A + B = B + A
Associative law	(AB)C = A(BC)	(A + B) + C = A + (B + C)
Distributive law	A + BC = (A + B)(A + C)	A(B+C) = AB + AC
Absorption law	A(A + B) = A	A + AB = A
De Morgan's law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A}\overline{B}$