Avantari Technologies: Machine Learning Task Solution

Shashank Kumar Singh: shashank9830@gmail.com

Problem statement: You are provided with a dataset of ~5k 512x512 images, your program should accept an 512x512 input image and return N images from the provided dataset similar to the input image.

Approach to solve this task:

This task was divided into two parts:

- 1. Given an input image (512x512x3), find N similar images from the dataset.
- 2. Cluster the dataset into K-groups.

[1] Given an input image (512x512x3), find N similar images

Below mentioned approach was used to tackle this problem:

- 1. Images in the given dataset were resized to 256x256 to reduce computation cost.
- 2. For resizing, <u>bilinear interpolation</u> was utilized (refer <u>resize_dataset.py</u>).
- 3. <u>AutoEncoder</u> model was developed (refer <u>create autoencoder.py</u>) and trained on this dataset.
 - a. Input and output to the model were 256x256x3 images.
 - b. It was a combination of Encoder + Decoder.
 - c. For training code please refer "trainer_notebook.ipynb".
- 4. After training the AutoEncoder, its encoder part was separated (refer <u>create autoencoder.py</u>).
- 5. Encodings for all the images in the dataset were computed using the separated encoder.
- 6. Each encoding was 32x32x4 in dimension. On flattening, its dimension changed to (4096,).
- 7. After this all the encodings were saved in NumPy format (refer get encodings.ipynb).
- 8. Now with 4738 such encodings, the task was to find similarity between all encodings (refer get similarity.ipynb).
- 9. Cosine Similarity was the chosen metric to determine how similar two encodings were.
- 10. Since there were 4738 images, a similarity matrix of (4738x4738) was created.
 - a. Each field in the matrix contained a value between -1 to 0.
 - b. -1 shows maximum similarity whereas 0 shows minimum similarity.

	0	1	2	3	4	5	6	•••	4737
0	-1	-0.94	-0.36	-0.25	-0.16	-0.13	-0.55	•••	-0.67
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
4737	-0.99	-0.96	-0.45	-0.73	-0.51	-0.57	-0.01		-1

Table 1: An example of similarity matrix is shown above.

- 11. After this, rows were converted to lists and sorted in descending order of similarity.
 - a. For each row in the similarity matrix (which shows the similarity of 1 image with 4738 different images), sorting was applied.

Row0	-1	-0.94	-0.36	-0.25	-0.16	-0.13	-0.55	•••	-0.67
------	----	-------	-------	-------	-------	-------	-------	-----	-------

Table 2: Image 0.jpg's row depicting its similarity with other images.

b. Values in the rows were tagged with image no and then sorted in descending order of similarity.

Table 3: Row is converted to list, values are tagged with image numbers and then sorting is applied.

- c. This gave us a list of 4738 such lists.
- d. Each internal list was sorted in descending order of similarity.
- e. Quite obviously, the first image inside each list was that image itself. For clarity,
 - i. Row 0 (or later, list 0) was for 1st image (or image 0.jpg).
 - ii. First item in List 0 was also 0.jpg (as an image is most similar to itself).
 - iii. Items after that had decreasing similarities.
- f. This was done for all the rows (each row depicting image equal to its row number).
- 12. At last, two modes of execution were created to handle requests (refer <u>final_solution.ipynb</u>).
 - a. If an image from dataset is given as input (<u>cached</u> mode).
 - i. This image is already encoded and cached with its similarity measure calculated and sorted against every image in the database.
 - ii. The only task left is to select first N images from the sorted list and present them as similar images.
 - iii. This requires no extra computation.
 - b. If an image was given which is NOT in the dataset (default mode).
 - i. The image is first preprocessed to 256x256x3 size using bilinear interpolation.
 - ii. It is encoded using the encoder.
 - iii. Cosine similarity is calculated against all the encodings saved in the cache.
 - iv. The similarities are sorted in decreasing order.
 - v. First N images are presented as the solution.
 - vi. This is slightly more time taking compared to the cached mode but works exactly as expected.
- 13. This is how first part of the task was solved.

[2] Cluster the dataset into K-groups.

This problem was again divided into two parts:

- I. Find the optimal value for K, medoids and clusters.
- II. Divide the dataset into K groups.

[2 (I)] Find the optimal value of \boldsymbol{K}

<u>Elbow method</u> was used to find the optimal value of K.

• Minimum value of K was set to 2.

- Maximum value of K was set to 100.
- WCE for different values of K is calculated using Elbow method.

Image: Within Cluster Error (WCE) vs. No. of clusters (K) plot

According to the Elbow method, the optimal value of K was 19.

[2 (II)] Divide the dataset into K groups

<u>K-Medoids</u> algorithm was used to partition (or form clusters) the dataset into K groups (clusters according to the algorithm).

- Take value of K given by Elbow method.
- Randomly initialize K medoids.
- Perform the K-Medoids algorithm to find actual medoids and clusters.

NOTE: refer k grouping.py and partition_dataset.py for all the code of (2)(I) and (2)(II).

Pyclustering library was used for all the tasks in section 2.

Model Type: AutoEncoder

Programming language: Python 3

Machine Learning Framework: Tensorflow/Keras

Libraries: tensorflow, numpy, matplotlib, time, json, os, math, pillow, pyclustering and shutil.

Information on files inside the main directory (listed in order of approach)

	Filename	Type	Information
1	dataset	Directory	Original dataset.
2	resize_dataset.py	Python script	Resizes the dataset images to 256x256.
3	resized_256	Directory	Resized dataset.
4	create_autoencoder.py	Python script	Creates an autoencoder model.
5	autoencoder.h5	H5 file	AutoEncoder model saved in H5 format.
6	trainer_notebook.ipynb	Jupyter Notebook	Model training code.
7	trained_autoencoder.h5	H5 file	Trained autoencoder saved in H5 format.
8	trained_encoder.h5	H5 file	Encoder part of the trained autoencoder.

9	get_encodings.ipynb	Jupyter Notebook	Code to get the encodings of all the images.		
10	encodings.npy	NumPy file	Encodings of all 4738 images.		
11	get_similarity.ipynb	Jupyter Notebook	Code to find similarity of all the images with each other.		
12	cosine_similarity_matrix.npy	NumPy file	Cosine similarity matrix generated in the previous step.		
13	sim_mat_sorted.json	JSON file	Images sorted in decreasing order of similarity to each other.		
14	final_solution.ipynb	Jupyter Notebook	Main user notebook. Run this for final output.		
15	Sample outputs	Directory	Some pre-executed notebook outputs in HTML format. One example of both cached and default mode.		
16	k_grouping.py	Python script	Code to implement Elbow and K-medoids algorithm.		
17	k_groups.json	JSON file	JSON file containing list of medoids and clusters		
18	partition_dataset.py	Python script	Code to partition the dataset as mentioned in the above JSON file		
19	K Groups	Directory	Folder containing K-Groups		
20	.ipynb_checkpoints				