Boston University CS 506 - Lance Galletti

K-means - Lloyd's Algorithm

Q1: Will this algorithm always converge?

Proof (by contradiction): Suppose it does not converge. Then, either:

- 1. The minimum of the cost function is only reached in the limit (i.e. after an infinite number of iterations).
 - Impossible because we are iterating over a finite set of partitions
- The algorithm gets stuck in a cycle / loop
 Impossible since this would require having a clustering that has a lower cost than itself and we know:
 - If old ≠ new clustering then the cost has improved
 - If old = new clustering then the cost is unchanged

Conclusion: Lloyd's Algorithm always converges!

K-means - Lloyd's Algorithm

Q2: Will this always converge to the optimal solution?

No. If the centers are too closed together, they would split up a naturally occurring cluster into 2 unnatural clusters

Local minima:

What's the problem?

Farthest First Traversal

: a clustering initialization method where new cluster centers are chosen to be as far as possible from existing centers

But...

The problem is we could pick outliers as our centers

Random would have been better

Initialize with a combination of the two methods:

- 1. Start with a random center
- 2. Let D(x) be the distance between x and the closest of the centers picked so far. Choose the next center with probability proportional to $D(x)^2$

No reason to use k-means over k-means++

$$D(x)^2 = 3^2 = 9$$

 $D(y)^2 = 2^2 = 4$
 $D(z)^2 = 1^2 = 1$

$$D(x)^{2} = 3^{2} = 9$$

$$D(y)^{2} = 2^{2} = 4$$

$$D(z)^{2} = 1^{2} = 1$$

$$D(x)^{2} = 3^{2} = 9$$

$$D(y)^{2} = 2^{2} = 4$$

$$D(z)^{2} = 1^{2} = 1$$

$$D(x)^{2} = 3^{2} = 9$$

$$D(y)^{2} = 2^{2} = 4$$

$$D(z)^{2} = 1^{2} = 1$$

$$D(x)^{2} = 3^{2} = 9$$

$$D(y)^{2} = 2^{2} = 4$$

$$D(z)^{2} = 1^{2} = 1$$

K-means++

0

Q3: the black box returns "12" as the random number generated. Which point do we choose for the next center (x, y, or z)?

X

K-means++

Q4: the black box returns "4" as the random number generated. Which point do we choose for the next center (x, y, or z)?

У

0

K-means++

What happens if the black box can only generate numbers between 0 and 1?

Let's say we have 6 data points:

$$(1,1),(2,2),(10,10),(11,11),(30,30),(50,50)$$
 Step 1: Pick First Centroid Randomly

• Suppose we randomly pick (1,1) as the first centroid c_1 .

Step 2: Compute Distances from c_1

Point	Distance to $c_1=(1,1)$	Squared Distance $D(x)^-$	
(2,2)	$\sqrt{(2-1)^2+(2-1)^2}=\sqrt{2}$	2	
(10,10)	$\sqrt{(10-1)^2+(10-1)^2}=\sqrt{162}$	162	
(11,11)	$\sqrt{(11-1)^2+(11-1)^2}=\sqrt{200}$	200	
(30,30)	$\sqrt{(30-1)^2+(30-1)^2}=\sqrt{1682}$	1682	
(50,50)	$\sqrt{(50-1)^2+(50-1)^2}=\sqrt{4802}$	4802	

- The probability of choosing a new centroid is proportional to the squared distances.
- Since (50,50) has the largest squared distance, it has the highest probability of being the next centroid.
 with like random number generator
 see the uniform random number part

Step 3: Pick the Next Centroid • Let's say (50,50) is chosen as c_2 .

Step 4: Compute New Distances (Now Using 2 Centroids) Now, for each remaining point, compute its squared distance to the nearest centroid (either

Now, for each remaining point, compute its squared distance to the nearest centroid (either $c_1=(1,1)$ or $c_2=(50,50)$).

(2,2)	$\sqrt{2}$	$\sqrt{4608}$	c_1 (1,1)	2
(10,10)	$\sqrt{162}$	$\sqrt{3200}$	c ₁ (1,1)	162
(11,11)	$\sqrt{200}$	$\sqrt{3024}$	c ₁ (1,1)	200
(30,30)	$\sqrt{1682}$	$\sqrt{800}$	c_2 (50,50)	800

Nearest Centroid

Distance to c_2

4000

 $D(x)^2$

Repeat Until k Centroids are Selected

to be picked next.

Point

• Keep iterating until we get k centroids.

Distance to c_1

<u>/5</u>

Kmeans Quizz (take 2)

How to choose the right k?

1. Iterate through different values of k (elbow method)

How to choose the right k?

- 1. Iterate through different values of k (elbow method)
- 2. Use empirical / domain-specific knowledge Example: Is there a known approximate distribution of the data? (K-means is good for spherical gaussians)
- 3. Metric for evaluating a clustering output

Evaluation

Recall our goal: Find a clustering such that

- Similar data points are in the same cluster
- Dissimilar data points are in different clusters

Evaluation

Recall our goal: Find a clustering such that

- Similar data points are in the same cluster 🔽
- Dissimilar data points are in different clusters

Evaluation

K-means cost function tells us the within-cluster distances between points will be small overall.

But what about the intra-cluster distance? Are the clusters we created far? How far? Relative to what?

Discuss - 5min

Define a metric that evaluates how spread out the clusters are from one another.

a: average within-cluster distance

b: average intra-cluster distance

a: average within-cluster distance

b: average intra-cluster distance

What does it mean for (b - a) to be 0? means clusters are right next to each other

Clusters are well-separated: A large b suggests that the clusters are far apart, meaning the data points from different clusters are distinctly different.

Clusters are compact: A small a indicates that the points within each cluster are tightly packed, meaning the intra-cluster similarity is high.

a: average within-cluster distanceb: average intra-cluster distance

What does it mean for (b - a) to be large?

The value of (b-a) doesn't mean much by itself. Can we compare it to something so that the ratio becomes a value between 0 and 1?

Value between 0 and 1

(b - a) / max(a, b)

close to 1: good close to 0: not good

What does it mean for (b - a) / max(a, b) to be close to 1?

close to 1: b-a is large so the data points are well-separated from each other and from other clusters close to 0: not good; opposite

What does it mean for (b - a) / max(a, b) to be close to 0?

For each data point i: a_i: mean distance from point i to every other point in its cluster

For each data point i:

a_i: mean distance from point i to every other point in its cluster

b_i: smallest mean distance from point i to every point in another cluster

For each data point i:

a_i: mean distance from point i to every other point in its cluster

b_i: smallest mean distance from point i to every point in another cluster

$$s_i = (b_i - a_i) / max(a_i, b_i)$$

silhouette score ranges from -1 to 1

close to 1: the samples are well-clustered, a score

close to 0: overlapping clusters

negative score: the samples might have been

assigned to the wrong cluster

$$s_i = (b_i - a_i) / max(a_i, b_i)$$

Silhouette score plot

return the mean s_i over the entire dataset as a measure of goodness of fit

Let's say we have two clusters:

Cluster 1: A(1,1), B(2,2), C(3,3)Cluster 2: D(10, 10), E(11, 11), F(12, 12)

Now, let's calculate the silhouette score for point A(1,1).

1. Compute
$$a(i)$$
: Intra-cluster distance

a(i) is the average distance between A(1,1) and the other points in **Cluster 1**:

 $a(A) = \frac{\operatorname{dist}(A,B) + \operatorname{dist}(A,C)}{2}$

Using Euclidean distance:

 $dist(A, B) = \sqrt{(2-1)^2 + (2-1)^2} = \sqrt{2} \approx 1.41$ $\operatorname{dist}(A,C) = \sqrt{(3-1)^2 + (3-1)^2} = \sqrt{8} \approx 2.83$ $a(A) = rac{1.41 + 2.83}{2} = 2.12$

cluster가 여러개라면 거기서 나오는 mean과 비교

2. Compute b(i): Nearest-cluster distance

b(A) is the average distance from A to all points in the nearest cluster (Cluster 2).

$$b(A) = rac{\operatorname{dist}(A,D) + \operatorname{dist}(A,E) + \operatorname{dist}(A,F)}{3}$$
 $\operatorname{dist}(A,D) = \sqrt{(10-1)^2 + (10-1)^2} = \sqrt{162} pprox 12.73$ $\operatorname{dist}(A,E) = \sqrt{(11-1)^2 + (11-1)^2} = \sqrt{200} pprox 14.14$ $\operatorname{dist}(A,F) = \sqrt{(12-1)^2 + (12-1)^2} = \sqrt{242} pprox 15.56$ $b(A) = rac{12.73 + 14.14 + 15.56}{3} = 14.14$

3. Compute s(A): Silhouette Score

$$s(A) = rac{b(A) - a(A)}{\max(a(A), b(A))}$$
 $s(A) = rac{14.14 - 2.12}{\max(2.12, 14.14)} = rac{12.02}{14.14} = 0.85$

Step 3: Interpret the Result

- s(A)=0.85 is close to 1, meaning A is well-clustered and far from the other cluster.
- If we repeat this for all points and take the average, we get the overall Silhouette Score for the clustering.

K-means Variations

- 1. K-medians (uses the L₁ norm / manhattan distance)
- 2. K-medoids (any distance function + the centers must be in the dataset)
- 3. Weighted K-means (each point has a different weight when computing the mean)