Systems and Control - AE 315, 231

Week 1: Assignment No. 1

King Fahd University for Petroleum and Minerals - Aerospace Dept.

August 2023

Assignment Instructions

- 1. Attempt all the presented questions for partial grades.
- 2. Deliverables:
 - (a) The MATLAB script (.m) file.
 - (b) A **report** showing your work **results** (.pdf). (On MATLAB, go to PUBLISH tab, select publish, choose the file type as pdf, click save)
 - (c) Name your files according to this format: AE_315__Your_Name__HW_#.(pdf/m)

1 Math operations

1. (4 points) Evaluate the following expressions

(a)
$$f(\theta) = \sin^2(\theta) + \cos^2(\theta)$$
, where:

i.
$$\theta = \pi$$
 rad.

ii.
$$\theta = 30^{\circ}$$

(b)
$$x = \frac{\log(10) + e^{-8.1}}{\sqrt{2^2 \times 4 + 1}}$$

(c)
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$
, where $\sigma = 0.2$, $\mu = 0$, $x = 0$

Hints: Take care of the distinction between radians and degrees, pay attention to the order of operations, and try to use lookfor, help, doc commands whenever you have a confusion in any function.

2 Vectors and matrices

- 1. (3 points) Using the colon operator create the following vectors:
 - (a) $v_1 = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 5 & 6 & 7 \end{bmatrix}$
 - (b) $v_2 = \begin{bmatrix} 10 & 8 & 6 & 4 & 2 & 0 & -2 & -4 \end{bmatrix}$
 - (c) $v_3 = \begin{bmatrix} 1.1 & 1.3 & 1.5 & 1.7 & 1.9 \end{bmatrix}$
- 2. (1 point) Consider a system of linear equations of the form of Ax = b have the following:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \text{and} \quad \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

1

This system can be solved using the simple formula

$$\boldsymbol{x} = A^{-1}\boldsymbol{b}$$

write a MATLAB code to solve for the \boldsymbol{x} vector.

3 Visualization

1. (2 points) Reconsider the formula given in Question 1, point (c) agian:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \tag{1}$$

The formula describes what so called the Normal (Gaussian) distribution. We want to investigate the effect of changing both μ (the mean) and σ (the standard deviation) on the shape of this function. So,

- (a) Create a vector \boldsymbol{x} using linspace command starting with -5 and ending at 5 with a total number of points = 100.
- (b) Evaluate the following function in equation 1 with the following parameters:
 - i. \boldsymbol{f}_1 with $\mu = 0$ and $\sigma = 0.15$
 - ii. \boldsymbol{f}_2 with $\mu = 0$ and $\sigma = 1$
 - iii. \boldsymbol{f}_3 with $\mu = -2$ and $\sigma = 0.4$

Hint: You should expect f_1 , f_2 , and f_3 to be vectors of size (1, 100), check using whos command

- (c) Plot f_1, f_2, f_3 in the y-axis against the x vector on the x-axis
- (d) Write down a code to show the xlabel (x), ylabel (f(x)), legend, and the title (plot for the normal distribution)

Hint: You should end up having a plot that looks like figure 1.

Figure 1: Question 3 plot reference