Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου

Επιμέλεια διαφανειών: Δ. Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

- Επίπεδο ένα γράφημα που μπορεί να ζωγραφιστεί στο επίπεδο χωρίς να τέμνονται οι ακμές του.
- □ Επίπεδη αποτύπωση ορίζει **ὀψεις** (faces).
 - Περιοχή επιπέδου που ορίζεται από (απλό) κύκλο και δεν μπορεί να διαιρεθεί σε μικρότερες όψεις.
 - Εσωτερικές και εξωτερική όψη.
 - f = #όψεων επίπεδου γραφήματος.
- \Box Τύπος του Euler για συνεκτικά επίπεδα γραφ.: n + f = m + 2
 - #όψεων είναι αναλλοίωτη ιδιότητα, δεν εξαρτάται από αποτύπωση!
 - \blacksquare Γενίκευση: n + f = m + k + 1, k = #συνεκτικών συνιστωσών.

- Μέγιστος αριθμός ακμών απλού επίπεδου γραφήματος.
 - Απλό: κάθε όψη ορίζεται από τουλάχιστον 3 ακμές.
 - Κάθε ακμή «ανήκει» σε μία ή δύο όψεις:
 - Αν ανήκει σε κύκλο: σύνορο δύο όψεων.
 - □ Διαφορετικά, «ανήκει» σε μία όψη.
 - (Κάθε ακυκλικό γράφημα είναι επίπεδο με μία όψη, την εξωτερική).

$$3f \leq \sum_{f \in \text{όψεις}} \#$$
 αχμών $(f) \leq 2m \Rightarrow f \leq 2m/3$

$$m+2=n+f \le n+2m/3 \Rightarrow m/3 \le n-2 \Rightarrow m \le 3n-6$$

- Υπάρχει συνεκτικό απλό επίπεδο γράφημα με m = 3n − 6.
 - □ 'Ολες του οι όψεις είναι τρίγωνα.
- □ Απλό διμερές επίπεδο γράφημα: $m \le 2n 4$.

- Άρα αν απλό γράφημα έχει m > 3n-6 (m > 2n-4 αν διμερές),
 δεν είναι επίπεδο.
 - Ta K_5 και $K_{3,3}$ **δεν** είναι επίπεδα.
 - Το συμπληρωματικό του γραφ. Petersen δεν είναι επίπεδο.
 - Κάθε απλό επίπεδο γράφημα G έχει $\delta(G) \leq 5$.
 - Π.χ. χρησιμοποιείται για να δείξουμε επαγωγικά ότι κάθε επίπεδο γράφημα έχει χρωματικό αριθμό ≤ 5.
 - Κάθε γράφημα G με n ≥ 11 κορυφές, είτε το G είτε το συμπληρωματικό του δεν είναι επίπεδο.
 - Crossing number cr(G): ελάχιστο πλήθος διασταυρώσεων ακμών σε μια επίπεδη αποτύπωση του G.
 - \Box cr(G) \geq m 3n + 6

Επίπεδα Γραφήματα

Ομοιομορφικά Γραφήματα

Απλοποίηση σειράς: απαλοιφή κορυφών βαθμού 2
 (δεν επηρεάζουν επιπεδότητα).

- Γραφήματα G και Η ομοιομορφικά ανν μπορούν να καταλήξουν ισομορφικά με διαδοχική εφαρμογή απλοποιήσεων σειράς.
 - Ομοιομορφικά μπορεί να «διαφωνούν» σε αναλλοίωτες ιδιότητες,
 αλλά «συμφωνούν» σε επιπεδότητα.
 - Ομοιομορφικά «συμφωνούν» σε κύκλο Euler και κύκλο Hamilton;

Θεώρημα Kuratowski

- Θ. Kuratowski: Γράφημα επίπεδο ανν δεν περιέχει υπογράφημα ομοιομορφικό με K₅ ή K_{3,3}.
 - Ένα γράφημα δεν είναι επίπεδο ανν μπορούμε με απλοποιήσεις (διαγραφές κορυφών και ακμών, απλοποιήσεις σειράς)
 να καταλήξουμε σε Κ₅ ή Κ_{3,3}.

Δυϊκό Επίπεδου Γραφήματος

- □ Δυϊκό γράφημα G* ενός επίπεδου γραφήματος G έχει:
 - Μια κορυφή για κάθε όψη του G.
 - Μια ακμή e* για κάθε ακμή e του G. H e* συνδέει κορυφές που αντιστοιχούν στις όψεις όπου ανήκει η e.
 - Η e* είναι ανακύκλωση αν η ακμή e είναι γέφυρα.
 - Κάθε όψη του G* περιλαμβάνει μια κορυφή του G.
 - Το G* είναι επίπεδο και το δυϊκό του G* είναι το G.
 - Το G* μπορεί να μην είναι απλό. Ο βαθμός κάθε κορυφής του G* είναι ίσος με τον βαθμό της αντίστοιχης όψης του G.
 - Συνεκτικό επίπεδο G είναι διμερές ανν
 G* έχει κύκλο Euler.

Πλατωνικά Γραφήματα

□ Πλατωνικό (απλό μη κατευθυνόμενο) γράφημα: επίπεδο, όλες οι κορυφές βαθμού d, και όλες οι όψεις βαθμού h (d, h \geq 3).

