importing the dependencies

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

data collection & processing

#load th data from csv file to pandas dataframe
titanic_data = pd.read_csv('/Titanic-Dataset (3).csv')

print the first 5 rows
titanic_data.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	F
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.\$
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1
A	5	n	3	Allen, Mr.	alem	35 N	0	n	373 <i>1</i> 50	₽ (

#rows and columns
titanic_data.shape

(891, 12)

get some info about the data
titanic_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object

```
5 Age 714 non-null float64
6 SibSp 891 non-null int64
7 Parch 891 non-null int64
8 Ticket 891 non-null object
9 Fare 891 non-null float64
10 Cabin 204 non-null object
11 Embarked 889 non-null object
      dtypes: float64(2), int64(5), object(5)
      memory usage: 83.7+ KB
# check the number of missing values from each column
titanic_data.isnull().sum()
      PassengerId
      Survived
      Pclass
                        0
     Name
                        0
      Sex
                      177
      Age
     SibSp
     Parch
                        0
     Ticket
      Fare
      Cabin
                       687
      Embarked
      dtype: int64
handalling the missing values in a data set
#drop the "cabin" column
titanic_data = titanic_data.drop(columns='Cabin', axis=1)
#replacing the age column with mean value
titanic_data['Age'].fillna(titanic_data['Age'].mean() , inplace=True)
# finding the mode value of "Embarked" column
print(titanic_data['Embarked'].mode())
     Name: Embarked, dtype: object
# replacing the missing value of Embarked column with mode value
titanic_data['Embarked'].fillna(titanic_data['Embarked'].mode()[0] , inplace=True)
```

check the number of missing values from each column titanic_data.isnull().sum()

```
PassengerId
Survived
            a
Pclass
Name
Sex
Age
SibSp
Parch
            0
            0
Ticket
Fare
            0
Embarked
             0
dtype: int64
```

Data Analysis

#getting some stasistis about the data
titanic_data.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	F
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204
std	257.353842	0.486592	0.836071	13.002015	1.102743	0.806057	49.693
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000
25%	223.500000	0.000000	2.000000	22.000000	0.000000	0.000000	7.910
50%	446.000000	0.000000	3.000000	29.699118	0.000000	0.000000	14.454
75%	668.500000	1.000000	3.000000	35.000000	1.000000	0.000000	31.000
may	<u> </u>	1 000000	3 000000	20 000000	8 000000	6 000000	512 320

finding the number of people survived and not survived titanic_data['Survived'].value_counts()

0 5491 342

Name: Survived, dtype: int64

Data Visualization

sns.set()

making a count plot for "survived" column
sns.countplot(x='Survived',data=titanic_data)

<Axes: xlabel='Survived', ylabel='count'>

making a count plot for "Sex" column
sns.countplot(x='Sex',data=titanic_data)

titanic_data['Sex'].value_counts()

male 577 female 314

Name: Sex, dtype: int64

number of survivors gender wise sns.countplot(x='Sex', hue='Survived', data=titanic_data)

making a count plot for "Pclass" column sns.countplot(x='Pclass',data=titanic_data) <Axes: xlabel='Pclass', ylabel='count'>

sns.countplot(x='Pclass', hue='Survived', data=titanic_data)

<Axes: xlabel='Pclass', ylabel='count'>

encoding the categorical column

titanic_data['Sex'].value_counts()

male 577 female 314

Name: Sex, dtype: int64

titanic_data['Embarked'].value_counts()

```
S 646
C 168
Q 77
```

Name: Embarked, dtype: int64

#converting the categorical column
titanic_data.replace({'Sex':{'male':0,'female':1},'Embarked':{'S':0,'C':1,'Q':2}},inplace= True)

titanic_data.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Far
0	1	0	3	Braund, Mr. Owen Harris	0	22.0	1	0	A/5 21171	7.250
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	1	38.0	1	0	PC 17599	71.283
2	3	1	3	Heikkinen, Miss. Laina	1	26.0	0	0	STON/O2. 3101282	7.925
4										•

Separating features & Target

```
X = titanic_data.drop(columns= ['PassengerId','Name','Ticket','Survived'],axis=1)
Y = titanic_data['Survived']
```

print(X)

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	3	0	22.000000	1	0	7.2500	0
1	1	1	38.000000	1	0	71.2833	1
2	3	1	26.000000	0	0	7.9250	0
3	1	1	35.000000	1	0	53.1000	0
4	3	0	35.000000	0	0	8.0500	0
• •	• • •	• • •	• • •	• • •	• • •	• • •	
886	2	0	27.000000	0	0	13.0000	0
887	1	1	19.000000	0	0	30.0000	0
888	3	1	29.699118	1	2	23.4500	0
889	1	0	26.000000	0	0	30.0000	1
890	3	0	32.000000	0	0	7.7500	2

[891 rows x 7 columns]

print(Y)

```
0
1
      1
2
      1
3
      1
4
      0
886
887
      1
888
889
      1
890
```

Name: Survived, Length: 891, dtype: int64

Splitting the data into training data and test data

```
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size=0.2, random_state=2)
print(X.shape, X_train.shape, X_test.shape)
     (891, 7) (712, 7) (179, 7)

    Model Training

   · Logistic Regression
model = LogisticRegression()
# training the logistic regression model with training data
model.fit(X_train, Y_train)
     /usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:458: Conver
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
       n_iter_i = _check_optimize_result(
      ▼ LogisticRegression
     LogisticRegression()
```

- · Model Evaluation
- · Accuracy Score

#accuracy on traning data

X train prediction = model.predict(X train)

```
print(X train prediction)
 [0\;1\;0\;0\;0\;0\;0\;1\;0\;0\;0\;1\;0\;0\;1\;0\;1\;0\;0\;0\;0\;1\;0\;0\;1\;0\;0\;1\;0\;1\;0\;0\;1\;0\;1
 00000011001010100000010100110011001
 0\;1\;0\;1\;0\;0\;1\;1\;0\;0\;0\;0\;1\;0\;0\;0\;0\;1\;1\;0\;1\;0\;1\;0\;0\;0\;0\;1\;0\;0\;0\;0\;1\;1\;0\;0
 0001100101
```

```
training_data_accuracy = accuracy_score(Y_train, X_train_prediction)
print("Accuracy score of training data : ", training_data_accuracy)
  Accuracy score of training data : 0.8075842696629213
# accuracy on test data
X_test_prediction = model.predict(X_test)
print(X_test_prediction)
  0 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0
```

test_data_accuracy = accuracy_score(Y_test, X_test_prediction) print("Accuracy score of training data : ", test_data_accuracy)

Accuracy score of training data: 0.7821229050279329