The Library of Functions

The Constant Function:

$$f(x) = 1$$

Domain: $(-\infty, \infty)$ Range: $\{1\}$

The Identity Function:

$$f(x) = x$$

Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$

The Quadratic Function:

$$f(x)=x^2$$

Domain: $(-\infty, \infty)$ Range: $[0, \infty)$

The Cubic Function:

$$f(x) = x^3$$

Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$

The Square Root Function:

$$f(x) = \sqrt{x}$$

Domain: $[0, \infty)$ Range: $[0, \infty)$

The Absolute Value Function:

$$f(x) = |x|$$

Domain: $(-\infty, \infty)$ Range: $[0, \infty)$

The Reciprocal Function:

$$f(x)=\frac{1}{x}$$

Domain: $(-\infty, 0) \cup (0, \infty)$

Range: $(-\infty, 0) \cup (0, \infty)$

The Exponential Function:

$$f(x) = b^x \qquad (b > 0, b \neq 1)$$

Domain: $(-\infty, \infty)$ Range: $(0, \infty)$

The Logarithmic Function:

$$f(x) = \log_b x \qquad (b > 0, b \neq 1)$$

Domain: $(0, \infty)$ Range: $(-\infty, \infty)$

$$f(x) = \frac{1}{x^2}$$

Domain: $(-\infty, 0) \cup (0, \infty)$

Range: $(0, \infty)$

Module 5: Transformations 2

VERTICAL			
Graph	Function Notation	Point	
"up"	g(x) =		
"down"	g(x) =		
"Stretching"	g(x) =		
"Shrinking"	g(x) =		
HORIZONTAL			
Graph	Function Notation	Point	
"left"	g(x) =		
"Right"	g(x) =		
"Shrinking"	g(x) =		
"Stretching"	g(x) =		
REFLECTIONS			
Graph	Function Notation	Point	
"Across the x-axis"	g(x) =		
"Across the y-axis"	g(x) =		

Examples:

Let $f(x) = x^2$ $g(x) = x $ $h(x) = \sqrt{x}$			
Horizontal shift to the right 1 & vertical shift up 2.	Vertical stretch by a factor of 2.	Horizontal shrink by a factor of 2.	

For the following problems, the graph of f is drawn. Use the graphing feature on your calculator to find out how the following transformations affect the graphs of these functions. Then come up with a general rule on the right that applies to any number c.

- 1. If $f(x) = x^2$
 - a. Find f(x+3) =
 - b. Sketch the graph of the transformed function:

c. The rule for f(x+c) is: If you add a number directly to x, you shift the graph to the _____ that many units.

- 3. If f(x) = |x|,
 - a. Find f(x) + 1 =
 - b. Sketch the graph of the transformed function:

c. The rule for f(x) + c is: If you *add* a number to the entire function it shifts the graph _____ that many units.

- $5. \quad \text{If } f(x) = \sqrt{x}$
 - a. Find f(-x) =
 - b. Sketch the graph of the transformed function:
 - c. The rule for f(-x) is: If you make the x negative, it _____ the graph over the ____-axis.

2. If
$$f(x) = x^3$$

- a. Find f(x-2) =
- b. Sketch the graph of the transformed function:

c. The rule for f(x-c) is: If you *subtract* a number directly from x, you shift the graph to the _____ that many units.

4. If
$$f(x) = \frac{1}{x}$$

- a. Find f(x) 2 =
- b. Sketch the graph of the transformed function:

c. The rule for f(x) - c is: If you subtract a number from the entire function, it shifts the graph _____ that number of units.

- 6. If $f(x) = x^2$
 - a. Find -f(x) =
 - b. Sketch the graph of the transformed function:
 - c. The rule for -f(x) is: If you make the entire function negative, it ______ axis.

- 7. If $f(x) = x^2$
 - a. Find f(2x) =
 - b. Sketch the graph of the transformed function:

- 8. If $f(x) = x^2$
 - a. Find $f\left(\frac{1}{2}x\right) =$
 - b. Sketch the graph of the transformed function:

- c. The rule for for $f(c \cdot x)$ is: If you multiply x by c>1 the graph is ______ horizontally. If you multiply x by 0 < c < 1 the graph is ______ horizontally
- 9. If $f(x) = x^2$
 - a. Find 3f(x) =
 - b. Sketch the graph of the transformed function:

- 10. If $f(x) = x^2$
 - a. Find $\frac{1}{3}f(x) =$
 - b. Sketch the graph of the transformed function:

c. The rule for $c \cdot f(x)$ is: If you multiply f(x) by c > 1 the graph is ______ vertically. If you multiply f(x) by 0 < c < 1 the graph is ______ vertically.

Explain how you can tell the difference in a horizontal transformation and a vertical transformation if given the equation of the function.

Transformation Examples:

1. The graph of function f is given below. Sketch the graphs of the other functions, each of which is a transformation of the graph of function f.

Reflections

Let
$$y = f(x)$$

a)
$$g(x) = f(-x)$$

b)
$$h(x) = -f(x)$$

Translations

c)
$$j(x) = f(x) + 2$$

d)
$$k(x) = f(x - 1)$$

e)
$$s(x) = f(x+2) + 3$$

Horizontal Stretching and Shrinking

2. The graph of function f is given below. Sketch the graphs of the other functions, each of which is a transformation of the graph of function f.

Let
$$y = f(x)$$

a)
$$g(x) = f(2x)$$

b)
$$h(x) = f\left(\frac{1}{2}x\right)$$

Vertical Shrinking and Stretching:

$$j(x) = 2f(x)$$

a)
$$g(x) = \frac{1}{2}f(x)$$

b)
$$h(x) = 2f(x)$$

Multiple Transformations:

$$y = g(x)$$
 is shown.

Find
$$y = g(2x) + 3$$

$$y = h(x)$$
 is shown.

Find
$$y = -h(x - 3)$$

Order Matters!

$$y = f(x)$$
 is shown.

Find
$$y = 2f(x) - 3$$

Write the Equation:

If
$$f(x) = \sqrt{x}$$
,

then
$$k(x) =$$

If
$$f(x) = -|x|$$
,

then
$$g(x) =$$

If
$$f(x) = -\frac{1}{2}x^2$$
,

then
$$g(x) =$$

Graphing Absolute Value Equations:

Graph the equation:

$$y = -4|x + 2| + 3$$

Graphing Quadratic Equations:

Graph the equation:

$$y = (x+4)^2 - 3$$

Graphing Square Root Equations:

Graph the equation:

$$y = 3\sqrt{x - 2}$$

