DTS203TC Design and Analysis of Algorithms

Lecture 18: Number Theory

Dr. Qi Chen
School of AI and Advanced Computing

Learning Outcome

- Divisibility and Primes
- Modular arithmetic

- Euclid's GCD algorithm
- Modular Multiplicative Inverses

Euler's totient function

Divisibility and divisors

- The notion of one integer being divisible by another is key to the theory of numbers.
- If a and d are integers with $d \neq 0$, we say that d divides a if there is an integer k such that $a = k \cdot d$.
 - The notation d | a (read "d divides a")
 - d is a divisor of a.
 - For example, the divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.
- Every positive integer a is divisible by the trivial divisors 1 and
 a. The nontrivial divisors of a are the factors of a.

Prime and Composite Numbers

 An integer a > 1, whose only divisors are trivial divisors 1 and a is a Prime number.

 An integer a > 1, which is not a Prime number, is called Composite Number.

1 is called unit, and it is neither prime nor composite. Similarly,
 0 and all negative integers are neither prime nor composite.

- Find all the first 10 prime numbers.
 - **2**,3,5,7,11,13,17,19,23,29
- Is 39 a composite number?
 - Yes. 39=3*13

Division Theorem

- "For any integer a and any positive integer n, there exist unique integers q and r such that $0 \le r < n$ and a = qn + r".
- The value $q = \lfloor a/n \rfloor$ is the quotient of the division.
- The value r = a mod n is the remainder of the division.
 - n | a (n divides a), if and only if a mod n = 0

Find the quotient and the remainder of 12 and 67.

The quotient: 5

The remainder: 7

Common Divisors

- If d is a divisor of a and d is also divisor of b then d is a common divisor of a and b.
 - '1' is a common divisor of any two integers.
 - If a | b and b | a then a = ± b
- Important Property:
 - If d | a and d | b then d | (a + b) & d | (a b)
 More generally, if d | a and d | b then d | (ax + by)

Find all the common divisors of 24 and 30.

1, 2, 3, 6

Greatest Common Divisor (GCD)

- The GCD of two integers a and b, not both Zero, is the largest of the common divisors of a and b.
 - gcd(24, 30) = 6
 - gcd(5,7) = 1
- Elementary properties of the GCD function:
 - gcd(a, b) = gcd(b, a)
 - gcd(a, b) = gcd(-a, b)
 - gcd(a, b) = gcd(|a|,|b|)
 - = gcd(a, 0) = |a|
 - gcd(a, ka) = |a| for any $k \in \mathbb{Z}$

Relatively Prime Integers

 Two integers a and b are relatively prime (also called co-prime) if their only common divisor is 1.

$$gcd(a, b) = 1$$

■ For example, 8 and 15 are relatively prime.

Are 10 and 21 relatively prime?

Unique factorization

There is exactly one way to write any composite integer a as a product of the form:

$$a = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}$$

Where the p_i are prime, and the e_i are positive integers.

For example, the number 6000 is uniquely factored into primes as $2^4 \cdot 3 \cdot 5^3$

What is the unique factorization of the number 770?

Greatest Common Divisors (GCD)

Let there are two positive integers a and b

$$a=p_1^{e_1}\ p_2^{e_2}\ ...\ p_r^{e_r}$$

$$b=p_1^{f_1}\ p_2^{f_2}\ ...\ p_r^{f_r}$$

$$\text{Here,}\qquad \gcd(a,b)=p_1^{\min(e_1,f_1)}\ p_2^{\min(e_2,f_2)}\ ...\ p_r^{\min(e_r,f_r)}$$

Find the value of gcd(90, 150) using the above rule.

$$a = 2 \cdot 3^2 \cdot 5$$

 $b = 2 \cdot 3 \cdot 5^2$
So, $gcd(a, b) = 2 \cdot 3 \cdot 5 = 30$

• Find the value of gcd(24, 30)

GCD recursion theorem

For any non-negative integer a and any positive integer b, we have

gcd(a,b) = gcd(b, a mod b)

Proof

 We shall show that gcd(a, b) and gcd(b, a mod b) divide each other.

```
■ Case 1: gcd(a, b) \mid gcd(b, a \mod b)

Let d = gcd(a, b), then d \mid a and d \mid b.

Here, a \mod b = a - qb where q = \lfloor a/b \rfloor

Since, a \mod b is a linear combination of a and b, we can say that d \mid (a \mod b).
```

=> gcd(a, b) | gcd(b, a mod b)

So, d | b and d | (a mod b) => d | gcd(b, a mod b)

Proof

```
    Case 2: gcd(b, a mod b) | gcd(a, b)

Let d = gcd(b, a \mod b), then d \mid b and d \mid a \mod b.
Here, a = qb + (a \mod b) where q = \lfloor a/b \rfloor
Since, a is a linear combination of b and (a mod b), we can say
that d | a.
So, d | a and d | b => d | gcd(a, b)
                     => gcd(b, a mod b) | gcd(a, b)
```


From Case 1 and 2, we can say that:

gcd(a,b) = gcd(b, a mod b)

Euclid's Algorithm

Let a and b are non-negative integers.

```
EUCLID(a, b)
if (b == 0)
    return a
else return EUCLID(b, a mod b)
```

Find the value of gcd(30, 21) using Euclid Alogrithm.

```
EUCLID(30,21) = EUCLID (21,9)
= EUCLID (9,3)
= EUCLID (3,0)
= 3.
```


Extended Euclid's Algorithm

 In this algorithm, we find additional information like the values of x and y, where

$$d = gcd(a, b) = ax + by$$

```
EXTENDED-EUCLID(a, b)

If b = 0

return (a,1,0)

else

(d', x', y') = EXTENDED-EUCLID(b, a mod b)

(d, x, y) = (d', y', x' - \lfloor a/b \rfloor y')

return (d, x, y)
```


Extended Euclid's Algorithm

In the algorithm,

$$d = ax + by$$

 $d' = bx' + (a mod b) y'$

Because d = d', we have

$$ax + by = bx' + (a mod b) y'$$

= $bx' + (a - b \lfloor a/b \rfloor) y'$
= $ay' + b (x' - \lfloor a/b \rfloor y')$

So,
$$x = y'$$
 and $y = (x' - \lfloor a/b \rfloor y')$

 Find the value of gcd(99, 78) and corresponding x, y values using Extended-Euclid Algorithm.

a	b	[a/b]	d	Х	у
99	78				


```
gcd(99, 78)

a = 99, b = 78, \lfloor a/b \rfloor = 1

gcd(99, 78) = gcd(78,21)
```

```
EXTENDED-EUCLID(a, b)

If b = 0

return (a,1,0)

else

(d', x', y') = EXTENDED-EUCLID(b, a mod b)

(d, x, y) = (d', y', x' - \lfloor a/b \rfloor y')

return (d, x, y)
```

a	b	$\lfloor a/b \rfloor$	d	X	у
99	78	1			


```
gcd(78, 21)

a = 78, b = 21, \lfloor a/b \rfloor = 3

gcd(78, 21) = gcd(21,15)
```

```
EXTENDED-EUCLID(a, b)
If b = = 0
    return (a,1,0)
else
    (d', x', y') = EXTENDED-EUCLID(b, a mod b)
    (d, x, y) = (d', y', x' - [a/b]y')
    return (d, x, y)
```

a	b	$\lfloor a/b \rfloor$	d	X	у
99	78	1			
78	21	3			


```
gcd(21, 15)

a = 21, b = 15, \lfloor a/b \rfloor = 1

gcd(21, 15) = gcd(15,6)
```

```
EXTENDED-EUCLID(a, b)
If b = = 0
    return (a,1,0)
else
    (d', x', y') = EXTENDED-EUCLID(b, a mod b)
    (d, x, y) = (d', y', x' - [a/b]y')
    return (d, x, y)
```

a	b	$\lfloor a/b \rfloor$	d	X	у
99	78	1			
78	21	3			
21	15	1			


```
gcd(15, 6)

a = 15, b = 6, \lfloor a/b \rfloor = 2

gcd(15, 6) = gcd(6,3)
```

```
EXTENDED-EUCLID(a, b)

If b = 0

return (a,1,0)

else

(d', x', y') = EXTENDED-EUCLID(b, a mod b)

(d, x, y) = (d', y', x' - \lfloor a/b \rfloory')

return (d, x, y)
```

a	b	$\lfloor a/b \rfloor$	d	X	У	
99	78	1				_
78	21	3				
21	15	1				
15	6	2				


```
gcd(6, 3)
a = 6, b = 3, [a/b] = 2
gcd(6, 3) = gcd(3,0)
```

EXTENDED-EUCLID(a, b)
If $b = 0$
return (a,1,0)
else
(d', x', y') = EXTENDED-EUCLID(b, a mod b)
$(d, x, y) = (d', y', x' - \lfloor a/b \rfloor y')$
return (d, x, y)

a	b	$\lfloor a/b \rfloor$	d	X	У
99	78	1			
78	21	3			
21	15	1			
15	6	2			
6	3	2			

gcd(3,0)a = 3, b = 0, [a/b] = -

Return: d = 3, x=1, y=0

EXTENDED-EUCLID(a, b)
If $b = 0$
return (a,1,0)
else
(d', x', y') = EXTENDED-EUCLID(b, a mod b)
$(d, x, y) = (d', y', x' - \lfloor a/b \rfloor y')$
return (d, x, y)

a	b	$\lfloor a/b \rfloor$	d	X	У
99	78	1			
78	21	3			
21	15	1			
15	6	2			
6	3	2			
3	0	-	3	1	0

$$d' = 3, x'=1, y'=0$$

 $(d, x, y) = (d', y', x' - \lfloor a/b \rfloor y')$
So, $d = 3, x = 0, y = 1$

EXTENDED-EUCLID(a, b)
If $b = 0$
return (a,1,0)
else
(d', x', y') = EXTENDED-EUCLID(b, a mod b)
$(d, x, y) = (d', y', x' - \lfloor a/b \rfloor y')$
return (d, x, y)

a	b	$\lfloor a/b \rfloor$	d	X	у
99	78	1			
78	21	3			
21	15	1			
15	6	2			
6	3	2	3	0	1
3	0	-	3	1	0

$$d' = 3, x'=0, y'=1$$

 $(d, x, y) = (d', y', x' - \lfloor a/b \rfloor y')$
So, $d = 3, x = 1, y = -2$

EXTENDED-EUCLID(a, b)
If $b = 0$
return (a,1,0)
else
(d', x', y') = EXTENDED-EUCLID(b, a mod b)
$(d, x, y) = (d', y', x' - \lfloor a/b \rfloor y')$
return (d, x, y)

a	b	$\lfloor a/b \rfloor$	d	X	у
99	78	1			
78	21	3			
21	15	1			
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	-	3	1	0

$$d' = 3, x'=1, y'=-2$$

 $(d, x, y) = (d', y', x' - \lfloor a/b \rfloor y')$
So, $d = 3, x = -2, y = 3$

a	b	$\lfloor a/b \rfloor$	d	X	у
99	78	1			
78	21	3			
21	15	1	3	-2	3
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	-	3	1	0

$$d' = 3, x' = -2, y' = 3$$

 $(d, x, y) = (d', y', x' - \lfloor a/b \rfloor y')$
So, $d = 3, x = 3, y = -11$

EXTENDED-EUCLID(a, b)

If
$$b = 0$$

return (a,1,0)

else

(d', x', y') = EXTENDED-EUCLID(b, a mod b)

(d, x, y) = (d', y', x' - $\lfloor a/b \rfloor$ y')

return (d, x, y)

a	b	$\lfloor a/b \rfloor$	d	X	у
99	78	1			
78	21	3	3	3	-11
21	15	1	3	-2	3
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	-	3	1	0

$$d' = 3, x'=3, y'=-11$$

 $(d, x, y) = (d', y', x' - \lfloor a/b \rfloor y')$
So, $d = 3, x = -11, y = 14$

EXTENDED-EUCLID(a, b)

If
$$b = 0$$

return (a,1,0)

else

(d', x', y') = EXTENDED-EUCLID(b, a mod b)

(d, x, y) = (d', y', x' - $\lfloor a/b \rfloor$ y')

return (d, x, y)

a	b	$\lfloor a/b \rfloor$	d	X	у
99	78	1	3	-11	14
78	21	3	3	3	-11
21	15	1	3	-2	3
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	-	3	1	0

EXTENDED-EUCLID(a, b)
If $b = 0$
return (a,1,0)
else
(d', x', y') = EXTENDED-EUCLID(b, a mod b)
(d, x, y) = (d', y', x' - [a/b]y')
return (d, x, y)

a	b	$\lfloor a/b \rfloor$	d	X	У
99	78	1	3	-11	14
78	21	3	3	3	-11
21	15	1	3	-2	3
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	-	3	1	0

Modular Arithmetic

 We can partition the integers into n equivalence classes according to their remainders modulo n. The equivalence class modulo n containing an integer a is:

$$[a]_n = \{a + kn : k \in \mathbb{Z}\}$$

- For Example, $[3]_7 = \{..., -11, -4, 3, 10, 17, ...\}$; we can also denote this set by $[-4]_7$ and $[10]_7$.
- We can write $a \in [b]_n$ or $a \equiv b \pmod{n}$. a and b are said to be congruent modulo n

(mod *n*) applies to the entire equation

Modular Arithmetic

Examples:

- $2 \equiv -3 \pmod{5}$
- $-8 \equiv 7 \pmod{5}$
- $-3 \equiv -8 \pmod{5}$
- \blacksquare 38 \equiv 14 (mod 12)

$$[a]_n = \{a + kn : k \in \mathbb{Z}\}$$

Properties

Properties [edit]

The congruence relation satisfies all the conditions of an equivalence relation:

- Reflexivity: $a \equiv a \pmod{n}$
- Symmetry: $a \equiv b \pmod{n}$ if $b \equiv a \pmod{n}$ for all a, b, and n.
- Transitivity: If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$

If $a_1 \equiv b_1 \pmod{n}$ and $a_2 \equiv b_2 \pmod{n}$, or if $a \equiv b \pmod{n}$, then:^[1]

- $a + k \equiv b + k \pmod{n}$ for any integer k (compatibility with translation)
- $k \ a \equiv k \ b \pmod{n}$ for any integer k (compatibility with scaling)
- $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$ (compatibility with addition)
- $a_1 a_2 \equiv b_1 b_2 \pmod{n}$ (compatibility with subtraction)
- $a_1 a_2 \equiv b_1 b_2 \pmod{n}$ (compatibility with multiplication)
- $a^k \equiv b^k \pmod{n}$ for any non-negative integer k (compatibility with exponentiation)
- $p(a) \equiv p(b) \pmod{n}$, for any polynomial p(x) with integer coefficients (compatibility with polynomial evaluation)

If $a \equiv b \pmod{n}$, then it is generally false that $k^a \equiv k^b \pmod{n}$. However, the following is true:

• If $c \equiv d \pmod{\varphi(n)}$, where φ is Euler's totient function, then $a^c \equiv a^d \pmod{n}$ —provided that a is coprime with n.

For cancellation of common terms, we have the following rules:

- If $a + k \equiv b + k \pmod{n}$, where k is any integer, then $a \equiv b \pmod{n}$
- If $k \ a \equiv k \ b \pmod{n}$ and k is coprime with n, then $a \equiv b \pmod{n}$
- If $k a \equiv k b \pmod{kn}$, then $a \equiv b \pmod{n}$

From wikipedia

Modular Multiplicative Inverse

- A modular multiplicative inverse of an integer α is an integer x such that αx is congruent to 1 modular some modulus n.

$$ax \equiv 1 \pmod{n}$$

We will also denote x with a-1 mod n

Find the multiplicative inverses of the following, where n = 7

```
1 2 3 4 5 6
```

Answer: 1 4 5 2 3 6

Modular Multiplicative Inverse

- Modular inverse doesn't always exist. E.g., a = 2 and n = 4.
- The modular inverse exists if and only if a and n are relatively prime (i.e. gcd(a, n) = 1).
- Multiplicative group of integers modulo n:

$$Z_n^* = \{a \in Z_n : \gcd(a, n) = 1\}$$

• What is Z_{12}^* ?

$$Z_n^* = \{a \in Z_n : \gcd(a,n) = 1\}$$

$$Z_{12}^* = \{1,5,7,11\}$$

• What is Z_{15}^* ?

$$Z_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$$

Question: How many elements are there in \mathbb{Z}_n^* ?

Euler's totient function

Also called Euler's phi function

$$\phi(n) = |Z_n^*| = n \prod_{p:p \text{ is prime and } p|n} (1 - \frac{1}{p})$$

Example

$$Z_{12}^* = \{1,5,7,11\}$$

 $|Z_{12}^*| = \phi(12) = 12 * \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) = 4$

$$Z_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$$

$$|Z_{15}^*| = \phi(15) = 15 * \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{5}\right) = 8$$

Back to Modular Multiplicative Inverse

How to find modular inverse?

Consider the equation (with unknown x and y):

$$ax + ny = 1$$

When gcd(a,n)=1, the equation has a solution which can be found using the Extended Euclid Algorithm.

Evaluate 17⁻¹ mod 91

```
EXTENDED-EUCLID(a, b)

If b = 0

return (a,1,0)

else

(d', x', y') = EXTENDED-EUCLID(b, a mod b)

(d, x, y) = (d', y', x' - \lfloor a/b \rfloor y')

return (d, x, y)
```

a b $\lfloor a/b \rfloor$ d x y

Evaluate $17^{-1} \mod 91$ gcd(17,91) = gcd(91, 17) = 1= 91 * 3 + 17*(-16)

```
EXTENDED-EUCLID(a, b)
If b = = 0
    return (a,1,0)
else
    (d', x', y') = EXTENDED-EUCLID(b, a mod b)
    (d, x, y) = (d', y', x' - [a/b]y')
    return (d, x, y)
```

We have $17^{-1} \equiv -16 \equiv 75 \pmod{91}$, Since $17 * 75 = 1275 = 14 * 91 + 1 \equiv 1 \pmod{91}$,

a	b	$\lfloor a/b \rfloor$	d	X	У
91	17	5	1	3	-16
17	6	2	1	-1	3
6	5	1	1	1	-1
5	1	5	1	0	1
1	0	-	1	1	0

Learning Outcome

- Divisibility and Primes
- Modular arithmetic

- Euclid's GCD algorithm
- Modular Multiplicative Inverses

Euler's totient function

