

DEPARTAMENTO DE INGENIERÍA...

TRABAJO FIN DE GRADO

TÍTULO DEL TRABAJO

Autor: nombre del alumno

 ${\it Director:}\ {\rm nombre}\ {\rm del}\ {\rm director}$

Tutor: nombre del tutor

Copyright ©año. Nombre del alumno Esta obra está licenciada bajo la licencia Creative Commons Atribución-NoComercial-SinDerivadas 3.0 Unported (CC BY-NC-ND 3.0). Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-nc-nd/3.0/deed.es o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, EE.UU.

Todas las opiniones aquí expresadas son del autor, y no reflejan necesariamente las opiniones de la Universidad Carlos III de Madrid.

PRESIDENTE

Título: título del trabajo
Autor: nombre del alumno
Director: nombre del director
Tutor: nombre del tutor

SECRETARIO

EL TRIBUNAL

Presidente:
Vocal:
Secretario:
Realizado el acto de defensa y lectura del Trabajo Fin de Grado el día de
VOCAL

Agradecimientos

Agradezco a

Resumen

Este proyecto de resume en.....

Palabras clave: palabraclave1, palabraclave2, palabraclave3.

VIII RESUMEN

Abstract

In this project...

Keywords: keyword1, keyword2, keyword3.

X ABSTRACT

Índice general

Ag	grade	ecimientos	V
Re	esum	en	VII
Al	ostra	act	IX
1.	Intr 1.1.	roducción Introduccion a la robótica Open-Source TODO TO-	1
	1.1.	DO TODO TODO	1
	1.2.	Asociación de Robótica de la Universidad Carlos III .	2
	1.3.	Descripción del proyecto	3
	1.4.	Estructura del documento	3
2.	Des	cripción de la linea de investigación	5
	2.1.	Linea de investigación de robots mini-humanoides	5
	2.2.	Campeonato CEABOT	6
3.	Esta	ado del arte	11
4.	Obj	etivos TODO	13
	4.1.	Implantación de un controlador basado en visión por	
		computador	13
	4.2.	Estudio de sensores y actuadores	14
	4.3.	Diseño electrónico	14
		Diseño mecánico	15
	4.5.	Programación	15
5.	Elec	cción de componentes	19
	5.1.		19
		5.1.1. Selección de una plataforma robótica	19
	5.2.	Modificaciones básicas sobre el robot Bioloid	23
		5.2.1. Alimentación	23
		5 2 2 Cabeza móvil	23

	5.3.	Elección del controlador	23
		5.3.1. Controlador de locomoción	23
		5.3.2. Controlador de visión	23
	5.4.	Sensorización	23
		5.4.1. Sensores de distancia	23
		5.4.2. Sensor inercial	23
		5.4.3. Cámara	23
		5.4.4. Configuración final	23
6.	Des	cripción de las herramientas a utilizar	25
	6.1.	Herramientas de diseño y fabricación de piezas	25
		6.1.1. OpenSCAD	25
		6.1.2. Impresión 3d	26
	6.2.	Herramientas de diseño de circuitos	27
		6.2.1. KiCad	27
	6.3.	Herramientas de programación	28
		6.3.1. Qt Creator	28
		6.3.2. CM9 IDE	28
		6.3.3. CMake	28
		6.3.4. OpenCV	28
7.	Des	arrollo	29
	7.1.	Diseño de las partes mecánicas	29
		7.1.1. Cabeza	29
		7.1.2. Tronco	29
		7.1.3. Brazos	29
		7.1.4. Piernas	29
	7.2.	Montaje del controlador	29
		7.2.1. Esquema de montaje	29
		7.2.2. Sistema de alimentación	29
		7.2.3. Adecuación de sensores	29
		7.2.4. Desarrollo de una placa de expansión	29
		7.2.5. Puesta en marcha del controlador	29
	7.3.	Programación	29
		7.3.1. Sistema de locomoción	29
		7.3.2. Algoritmos de visión	29
		7.3.3. Pruebas de CEABOT	29
8.	Eva	luación de resultados	31
	8.1.	Pruebas de funcionamiento	31
	8.2.	Conclusión	31
	8.3.	Situación y desarrollos futuros	31

ÍNDICE GENERAL	XIII
Bibliografía	33

Índice de figuras

1.1.	Logotipo de la UC3M (c)UC3M
2.1.	Robots Nao y DARwIn-OP
2.2.	Prueba de la carrera de obstáculos 6
2.3.	Prueba de la escalera
2.4.	Prueba de sumo
2.5.	Marcador de la prueba de visión
5.1.	Hitec Robonova
5.2.	Kondo KHR3-HV
5.3.	RoboBuilder 5710k
6.1.	Pantalla del editor de OpenSCAD 26
	Impresora 3D Prusa i2 Åir

Introducción

En este capítulo...

Este tema.... Esto es un ejemplo de cita de un artículo [1].

- ejemplo de lista de puntos. Ejemplo.
- ejemplo2 de lista. Ejemplo2.

Ejemplo de referencia a figura (figura 1.1).

Figura 1.1: Logotipo de la UC3M ©UC3M

La idea...

1.1. Introduccion a la robótica Open-Source TO-DO TODO TODO

TODO TODO TODO TODO (Lo siguiente son ideas sueltas sin orden)

En los ultimos años blablabla impresoras 3d. El uso de esta nueva herramienta ha revolucionado blablabla hacer robots. La fabricación de piezas, que en la mayoría de los caso resultaba inaccesible para los estudiantes interesados en construir sus propios prototipos, se ha visto impulsada enormemente. Gracias a esto ahora tenemos a nuestro alcance la posibilidad de fabricar de una forma muy rápida y económica robots de un nivel superior al que estamos acostumbrados a ver.

Una de las ramas de la robótica que mas puede haberse beneficiado de este hecho es la robótica humanoide.

El campo de la robótica humanoide tiene como objetivo el desarrollo de robots antropomórficos. El motivo principal es favorecer el hecho de que los robots se desenvuelvan en entornos diseñados por y para seres humanos. Otros robots, como los robots móviles movidos por ruedas, suelen necesitar entornos modificados convenientemente para poder suplir las necesidades que se requieren. Por el contrario, un robot humanoide posee la ventaja de poder interaccionar con un entorno ya existente, así como la posibilidad de utilizar herramientas humanas. Por supuesto, el acceso de un alumno a un robot de este tipo parece algo impensable. Es por ello que en la asociación de robótica existe un linea de investigación de mini-humanoides. A priori, puede parecer que este tipo de robots están muy alejados de los humanoides de los laboratorios mas famosos, sin embargo, suponen un punto de partida viable para el comienzo de su estudio. Los miembros del grupo de mini-humanoides, tienen la oportunidad de trabajar libremente con robots reales, experimentando con su construcción, programación y modificación.

Acostumbrados a verla como una linea de investigación inaccesible . blablabla es cara y practicamente la única forma que tiene un estudiante de darle caña es con simulaciones.

Si bien es cierto, esto no significa que los robots imprimibles vayan a sustituir a los robots caros de laboratorio, pero suponen una primera aproximación a ellos.

TODO TODO Esto hay que ver si se hila con el siguiente apartado o se separa

1.2. Asociación de Robótica de la Universidad Carlos III

La Asociación de Robótica de la Universidad Carlos III de Madrid, AsRob, surgió en el año 2006 (¡- TODO año real) con el objetivo de acercar la robótica a los alumnos de la universidad que

compartían inquietudes e interés por el campo de la robótica.

A día de hoy, la asociación cuenta con mas de cien (¡- TODO cuantos) miembros activos repartidos en cinco lineas de investigación independientes, como son:

- Vehículos Aéreos no Tripulados (UAVs).
- Robot Devastation.
- Robots Personales de Competición.
- Robots Mini-Humanoides.
- Impresoras 3D Open-Source.

Sin embargo, cabe destacar que aunque se trata de proyectos diferentes, existe una gran sinergia entre ellos. Particularmente, los miembros de la linea de Robots Mini-Humanoides, estamos muy ligados al estudio de las impresoras 3D, investigando diferentes técnicas de impresión, diseño de estructuras y materiales. Ejemplo de ello es el proyecto MYOD (¡- TODO referencia), en el que se propone la construcción de robots mini-humanoides compuestos integramente con piezas impresas y replicables.

1.3. Descripción del proyecto

blablabla mi proyecto es la monda

1.4. Estructura del documento

A continuación y para facilitar la lectura del documento, se detalla el contenido de cada capítulo.

- En el capítulo 1 se realiza una introducción.
- En el capítulo 2 se hace un repaso...

Descripción de la linea de investigación

2.1. Linea de investigación de robots mini-humanoides

La sección de la asociación que enmarca este trabajo es la linea de investigación de robots mini-humanoides.

Los robots mini-humanoides son robots antropomórficos con una altura máxima de 50cm, tal y como indica la normativa del campeonato CEABOT (¡- TODO referencia al reglamento). De fomar orientativa, tomando como referencia la Humanoid League del campeonato RoboCup, el tamaño de los robots mini-humanoides es ligeramente inferior al de los participantes de la división "KidSize". Robots participantes de la RoboCup en la división KidSize como son el DARwIn-OP de Robotis o el Nao (figura 2.1) de Aldebaran no entrarían dentro de la definición mini-humanoide, ya que sobrepasan el tamaño máximo estipulado.

Figura 2.1: Robots Nao y DARwIn-OP

2.2. Campeonato CEABOT

Desde el año 2006, el campeonato nacional CEABOT reúne anualmente a robots mini-humanoides procedentes de universidades españolas y equipos independientes. Durante tres días, los equipos tienen la posibilidad de presentar a sus robots a diferentes pruebas de habilidad para demostrar sus capacidades. En el reglamento de la edición del 2014, existen un total de cuatro pruebas combinadas de diversa temática que ponen a prueba la locomoción y percepción y actuación sobre el entorno de los robots participantes. Las pruebas son puntuadas por separado, sumandose de forma proporcional a su dificultad en la clasificación final del concurso.

Las pruebas previstas son las siguientes:

Carrera de obstáculos.

El la carrera de obstáculos los robots deben realizar de forma autónoma un recorrido de ida y vuelta sobre una pista de características fijas. El campo (figura 2.2) consiste en una superficie plana de color verde en cuya zona intermedia se colocan de forma arbitraria diferentes obstáculos inmóviles de color blanco. Estos obstáculos tienen forma paralelepípeda y unas dimensiones fijas de 20x20x50cm

Figura 2.2: Prueba de la carrera de obstáculos

El robot participante debe cruzar el campo de extremo a extremo, y una vez haya accedido a la zona de llegada debe darse la vuelta y realizar el recorrido en el sentido contrario. En esta prueba se puntua favorablemente el menor tiempo ocupado y la mayor longitud recorrida, mientras que las caídas o bloqueos

que requieran la intervención de un juez, producen penalizaciónes en la puntuación.

• Escalera.

La prueba de la escalera supone una combinación de las habilidades mecánicas y de sensorización de los robots. La prueba se desarrolla en un escenario formado por tres escalones de subida y tres escalones de bajada consecutivos (figura 2.3).

Figura 2.3: Prueba de la escalera

En este caso el robot debe sortear escalones con una altura fija e igual a 3cm, pero con amplitud variable. El desarrollo consiste en la superación de tres escalones descendentes, cruzar la cima de las escaleras y descender otros tres escalones hasta volver al suelo. De forma paralela a la prueba de navegación, se puntuan el número de escalones superados y el tiempo utilizado; mientras que las caidas y bloqueos que el robot no sea capaz de manejar por sí mismo contarán negativamente.

Lucha (Sumo).

La prueba de sumo (figura 2.4) es una de las mas famosas del concurso. A diferencia del resto de pruebas, en el sumo los robots se enfrentan en parejas. Los duelos están constituidos por tres asaltos de dos minutos cada uno. El ring sobre el que se enfrentan los robots tiene forma circular, con un diámetro de 1.5m. Los robots compiten para derribar y/o sacar del ring a su adversario.

Figura 2.4: Prueba de sumo

Visión.

La prueba de visión se presenta como una novedad en la edición de 2014 del concurso. Por primera vez se implanta en la competición una prueba que obliga a los robots a portar una cámara y realizar procesamiento de imágenes para su superación. El tablero de juego se comparte con el campo de la carrera de obtáculos. En esta prueba, el robot se colocará en el centro del tablero, y a su alrededor se colocarán obstaculos (los mismos que en la carrera de obstaculos) en intervalos de 45°. En la parte superior de los obstáculos se colocará un rectangulo rojo con un código QR en su interior (figura 2.5). El robot deberá leer el código QR, en el que se le indicará una rotación que le permitirá encontrar el siguiente marcador. De esta forma, el robot deberá seguir una secuencia de rotaciones para pasar la prueba.

Palabras clave: palabraclave1, palabraclave2, palabraclave3.

Figura 2.5: Marcador de la prueba de visión

Estado del arte

Este proyecto de resume en.....

Palabras clave: palabraclave1, palabraclave2, palabraclave3.

Objetivos TODO

4.1. Implantación de un controlador basado en visión por computador

El objetivo principal de este proyecto consiste en la implantación de un controlador para un robot humanoide que proporcione las capacidades necesarias para el desarrollo de algoritmos de interacción con el entorno basados en ténicas de visión por computador.

De este modo, se pretende dotar al robot de un comportamiento autónomo en ejercicios de interacción con el entorno tales como la navegación y la manipulación de objetos físicos (TODO : Pegarle un guantazo a otro robot).

• Sistema de visión.

Se realizará un estudio de las posibilidades existentes para incluir un sistema de visión, tanto a nivel de software tanto de hardware. Para ello se evaluarán las opciones actuales para elegir componentes, teniendo en cuenta el rendimiento que pueden proporcionar respecto a otros factores como su coste y su facilidad de adquisición.

Implementación de OpenCV.

El control de los algoritmos se basará de las librerías de código abierto OpenCV. Sin embargo, el robot a parte de la cámara posee otro tipo de sensores, por lo que se requerirá realizar una programación que permita la coexistencia de los datos extraídos de la cámara con otros métodos de reconocimiento del entorno.

4.2. Estudio de sensores y actuadores

Durante la construcción del robot he utilizado diversos tipos de sensores y actuadores. En este proyecto, se han seleccionado algunos de ellos teniendo en cuenta su funcionamiento, consumo energético, conexión con el controlador... etc.

Estudio y elección de sensores.

Actualmente, existe una amplia variedad de sensores de bajo coste aptos para su uso en este tipo de robots. El principal objetivo es seleccionar los sensores que pueden proporcionar una funcionalidad óptima aplicada a la programación y a las características físicas (tales como sus dimensiones y peso) del robot.

Estudio y elección de actuadores.

De forma paralela, existen diversos actuadores adecuados en el mercado para su montaje en robots micro-humanoides. Aunque en este caso el factor mas determinante pueda ser el aspecto económico, existen varias alternativas a considerar, siendo crítico mantener unas proporciones de rendimiento y tamaño acordes al tipo de robot que se propone en el proyecto.

4.3. Diseño electrónico

Configuración de un controlador partido.

Para favorecer la escalabilidad del sistema y su división en bloques funcionales, se ha decidido utilizar dos placas controladoras diferentes en una configuración de maestro y esclavo. El sistema se compone de un SBC y una placa de prototipado basada en un microcontrolador mas sencillo. De esta forma, el microcontrolador (esclavo) se encargará de almacenar y activar los actuadores del robot con una programación a bajo nivel, mientras que el SBC (maestro) será quien procese la información de la cámara y los sensores para...

■ Diseño y fabricación de una placa de expansión.

El montaje propuesto requiere de múltiples conexiones eléctricas entre las placas de control, la alimentación, los sensores y los actuadores. Con la necesidad de realizar un montaje limpio y seguro, se ha diseñado y fabricado un placa de expasión que reune los conectores de cada elemento del sistema en un mismo punto.

• Elección de batería y alimentación.

4.4. Diseño mecánico

Durante la construcción del robot se han diseñado diversas partes para posibilitar la integración de las diferentes partes del robot. Si bien es cierto que la plataforma parte de un robot comercial, la mayor parte de las piezas han sido rediseñadas e impresas para conseguir un conjunto mecánico optimizado a los componentes que se han montado.

■ Impresión 3D.

La fabricación de las piezas se realizará mediante la utilización de una impresora 3D open-source. Esto significa que los diseños deberán cumplir una serie de características que los haga válidos para ser impresos, de forma que no solo se evaluarán las piezas por su modelo virtual, sino también por su estructura de impresión.

Plataforma móvil para rotar una cámara en varias direcciones.

Una forma de potenciar la implantación de la cámara es dotando a ésta de un sistema de movilidad que le permita rotar en dos direcciones.

• Modificaciónes estructurales.

Como decía al principio de este apartado, todas las piezas del robot han sido diseñadas con el objetivo de permitir el montaje de los actuadores, sensores, y placas de control seleccionados. A parte, las piezas se han optimizado para variar ru rigidez y peso en función de las necesidades de cada zona del cuerpo.

4.5. Programación

Una vez montado todo el sistema se comenzará con la programación de los diferentes niveles de control del sistema.

• Elección de un sistema operativo.

Son varias las opciones disponibles que se pueden encontrar en internet a la hora de seleccionar el sistema operativo mas adecuado para un robot. En este proyecto se ha realiza una comparativa de diferentes distribuciones de Linux, con el objetivo de seleccionar la opción mas adecuada para el caso que se presenta.

Biblioteca de interfaz de las entradas y salidas del SBC.

El SBC supone el elemento maestro que controla el resto de dispositivos. Es por ello que establecer las conexiones necesita implementar diferentes protocolos de comunicación entre componentes. Se propone la creación de una librería que simplifique el problema mediante el desarrollo de una interfaz sencilla que abstraiga el funcionamiento de cada dispositivo a un formato común.

• Control de servos Dynamixel.

Los servomotores de la familia Dynamixel son unos potentes actuadores que permiten al usuario controlar una amplia gama de variables mas allá de la posición inicial y final, como son la velocidad, el torque o incluso la temperaura de funcionamiento. Para llevar a cabo el movimiento sincronizado de los 19 servos es necesario el desarrollo de una biblioteca de funciones que se encarguen de parametrizar las variables de cada actuador y configurar automáticamente su valor para adaptarse a las condiciones y exigencias solicitadas en tiempo real.

Funciones de desplazamiento.

Dado que se trata de un robot micro-humanoide con locomoción bípeda, otorgarle la capacidad de desplazarse omnidireccionalmente no es un asunto trivial. En este apartado se presenta el estudio de diferentes técnicas de marcha bípeda para buscar una aplicación factible que posibilite el desplazamiento del robot de una forma estable y controlda. (TODO cuando sepa qué haré exáctamente tengo que reescribir esto)

Algoritmos de visión.

Apoyándome en las librerías de OpenCV, la propuesta de este trabajo consiste en sacar datos del entorno del robot de una forma eficiente. Siendo un factor limitante la capacidad de procesamiento del robot, se buscarán funciones simples y optimizadas al problema propuesto.

17

• Estrategias para la competición en CEABOT.

La participación en el campeonato nacional CEABOT supone un gran reto para — además de ser un marco fantástico para la evaluación de los resultados obtenidos. Para finalizar el proyecto, se propone la presentación de algoritmos que permitan realizar las pruebas del campeonato utilizando las herramientas que se han desarrollado.

Palabras clave: TODO palabras lave1, palabras lave2, palabras ve3.

Elección de componentes

Este proyecto de resume en.....

5.1. Plataforma robótica

El primer paso para la realización de este proyecto fue el estudio y selección de las plataformas robóticas que pueden conseguirse actualmente. Dado que el objetivo es encontrar un robot humanoide sobre el que se pueda implantar un sistema de visión, es necesario analizar diversos aspectos; algunos mecánicos como el numero y fuerza de los actuadores, y otros electrónicos como la capacidad de procesamiento y velocidad del controlador. Sin embargo, dado que este proyecto es autofinanciado en su mayor medida, el factor económico también es un limitante destacable.

A continuación se presenta un estudio las principales principales opciones.

5.1.1. Selección de una plataforma robótica

En el mercado existe una gran variedad de robots educativos que cumplen las características antropomórficas necesarias para ser considerados robots mini-humanoides. Los robots que se muestran a continuación son una recopilación de algunos de los modelos mas accesibles y extendidos.

Hitec Robonova

El Robonova (figura 5.1) es uno de los mini-humanoides mas extendidos a nivel mundial. Fue uno de los primeros robots de este tipo que se fabricó comercialmente y marcó un antes y un despues en su categoría. Es por esto que es muy común encontrar Robonovas en competiciones como Ceabot, ya que durante muchos años fue el robot mini-humanoide mejor equipado y mas vendido. En la Asociación de Robótica de la Universidad Carlos III, se han utilizado Robonovas en competiciones y proyectos desde su fundación.

Figura 5.1: Hitec Robonova

El kit de fábrica cuenta con 16 grados de libertad. Sus actuadores son servos digitales HSR 8498HB, que desarrollan un torque de 7.4kg/cm. Cabe destacar de estor servos su función "Motion Feedback", es decir, su capacidad para leer posiciones y comunicarselas al controlador. La placa de control del Robonova está basada en un microcontrolador ATMega 128 y cuenta con hasta 40 pines GPIO (puertos binarios de entrada y salida), 8 entradas analógicas, 3 salidas PWM, puerto serie y conexión I2C. Gracias a esto, el Robonova es fácilmente ampliable con sensores y actuadores, no necesariamente de la misma marca. En cuanto al software, Hitec da soporte a la programación con RoboBasic, un entorno de desarrollo completo con un lenguaje basado en Basic.

Kondo KHR-3HV

El KHR-3HV (figura 5.2), del fabricante japonés Kondo, es uno de los mini-humanoides mas avanzados actualmente. Puede presumir de ser el modelo de serie mas utilizado en el campeonato Robo-One, siendo seleccionado por los equipos por su gran agilidad y

tamaño compacto.

Figura 5.2: Kondo KHR3-HV

En su configuración standard, el KHR-3HV cuenta con 17 servomotores KRS-2552HV de 14kg/cm de torque. Dichos actuadores, además, incluyen un pequeño microcontrolador, lo que les permite conectarse en daisy chain. El robot incluye una controladora RCB-4, expandible con 10 entradas analogicas y 10 GPIOs, y con capacidad para controlar hasta 35 servos. El software de programación ofrecido por Kondo es el Heart to Heart V4, que puede ser descargado gratuitamente desde su web oficial. Es importante recalcar que gracias a su inmensa comunidad de usuarios, existen varios proyectos de código abierto con librerías que permiten programar el KHR-3HV en lenguajes mas convencionales, como C y Python.

RoboBuilder 5710k

Uno de los robots mas interesantes por su atípica configuración de servomotores es el RoboBuilder 5710k (figura 5.3). Se presenta como un kit modular con el que se pueden construir diferentes configuraciones de robots, siendo la mas .avanzada" la antropomórfica.

Figura 5.3: RoboBuilder 5710k

Vstone Robovie-X

The Robovie-X is the standard model and comes with 17 degrees of freedom and features VS-S092J servos which have 9.2 kg/cm of torque. The VS-RC003HV onboard controller features a built-in audio system.

Robotis Bioloid

La empresa koreana Robotis, comercializa un kit robótico conocido como Bioloid. Este kit proporciona una amplia gama de piezas diferentes para montar distintos modelos de robots. La modularidad de los componentes le convierten en una base excelente sobre la que realizar modificaciones, pudiendo diseñar configuraciones alternativas con gran facilidad.

El robot Bioloid incluye 18 servos Dynamixel, modelo AX-12A o AX-18A, dependiendo de la versión del kit. Los actuadores Dynamixel están controlados internamente por un microcontrolador AT-Mega8. Gracias a él, estos servos permiten realizar funciones avanzadas tales como el control de velocidad, torque, temperatura de ejecución... etc, posibilitando procesar información de bajo nivel directamente dentro del actuador y pudiendo abstraer el control de la

controladora del robot a un nivel superior.

comparativa y elección final

- 5.2. Modificaciones básicas sobre el robot Bioloid
- 5.2.1. Alimentación
- 5.2.2. Cabeza móvil
- 5.3. Elección del controlador
- 5.3.1. Controlador de locomoción

Arbotix

Serie OpenCM

5.3.2. Controlador de visión

BeagleBone Black

Raspberry Pi

Comparativa y selección

- 5.4. Sensorización
- 5.4.1. Sensores de distancia

Infrarrojos

- 5.4.2. Sensor inercial
- 5.4.3. Cámara
- 5.4.4. Configuración final

Palabras clave: palabraclave1, palabraclave2, palabraclave3.

Capítulo 6

Descripción de las herramientas a utilizar

A continuación se presentan las herramientas básicas que serán necesarias durante el desarrollo del proyecto.

6.1. Herramientas de diseño y fabricación de piezas

Dado que la plataforma robótica seleccionada requiere modificaciones mecánicas para permitir el montaje de los componentes necesarios, se requiere construir una serie de piezas que sustituyan a las originales y que aporten al robot algunas características de las que carece. Todas las piezas del robot serán diseñadas con OpenSCAD e impresas posteriormente con una impresora 3D open-source.

6.1.1. OpenSCAD

OpenSCAD es un programa destinado a la creación de objetos sólidos tridimensionales. Se trata de software libre y es compatible con Linux/UNIX, Windows y Mac OS X. A diferencia de otros programas de diseño 3D, OpenSCAD no se centra en los aspectos artísticos del diseño, sino en el aspecto técnico. Por ello, es una aplicación muy interesante cuando nuestro objetivo es crear piezas mecánicas, y en este caso particular, para un robot.

La propiedad mas característica de OpenSCAD y que le hace diferente de otros programas de diseño como SolidWorks o FreeCAD, es su interfaz (figura 6.1). Este programa funciona como un compilador de objetos 3D, leyendo un script qu describe el objeto y renderizando el objeto a partir de ese archivo. Gracias a esto, el usuario tiene total

control sobre el proceso de modelado, permitiendo la realización de modelos variables a partir de parámetros configurables.

OpenCad también permite el diseño de modelos planos, siendo compatible con formatos como DXF. Sin embargo, para el caso de este proyecto, los archivos que nos interesa producir son los STL.

Figura 6.1: Pantalla del editor de OpenSCAD

6.1.2. Impresión 3d

Para la fabricación de las piezas que integran el robot, se ha utilizado una impresora 3D replicable open-source modelo Prusa i2 Air (figura ??). A través del programa Repetier-Host, que se ocupa de gestionar el funcionamiento de la impresora desde el ordenador, y partiendo de los archivos STL que han sido generados anteriormente desde OpenSCAD, la impresora nos permite desarrollar prototipos y piezas finales para el proyecto.

Esta impresora, dado su funcionamiento, pertenece a la familia del modelado por deposición fundida. La materia prima que utilizan este tipo de impresoras es un rollo de filamento de plástico termofusible de entre 1.5 y 3mm de diámetro. En este caso, se utilizará ABS de 3mm. El filamento de plástico es dirigido a un extrusor que empuja el material a través de un conducto caliente conocido como hotend. Al llegar a este punto, el filamento se funde y se hace pasar por un agujero de salida de tamaño muy inferior al de entrada, produciendo hilos de material fundido. Durante la impresión, el extrusor deposita plástico fundido a lo largo de diferentes trayectorias con el objetivo de formar capas horizontales sólidas. Mediante

la apilación de estas capas se consigue dotar de altura al modelo y crear la pieza requerida.

Figura 6.2: Impresora 3D Prusa i2 Air

6.2. Herramientas de diseño de circuitos

Dado que se va a necesitar expandir las conexiones físicas del controlador, se requiere diseñar una placa de expansión que permita realizar un montaje adecuado del sistema.

6.2.1. KiCad

KiCad es un software EDA (diseño automático electrónico) opensource que contiene todas las utilidades necesarias para diseñar circuitos impresos. El entorno cuenta con cuatro aplicaciones independientes:

- Eeschema. Editor del esquemático.
- Pcbnew. Editor de la placa de circuito impreso.
- Gerbview. Visor de archivos GERBER
- Cvpcb. Editor de huellas para componentes.

28 CAPÍTULO 6. DESCRIPCIÓN DE LAS HERRAMIENTAS A UTILIZAR

6.3. Herramientas de programación

- 6.3.1. Qt Creator
- 6.3.2. CM9 IDE
- 6.3.3. CMake

CM9 IDE es un entorno de programación basado en Arduino IDE, preparado para programar placas electrónicas de la serie OpenCM.

6.3.4. OpenCV

Palabras clave: palabraclave1, palabraclave2, palabraclave3.

Capítulo 7

Desarrollo

Este	proyecto	de	${\rm resume}$	en
------	----------	----	----------------	----

7.1.	Diseño	de las	partes	mecánicas
		ac ias	Pat uco	modulious

- 7.1.1. Cabeza
- 7.1.2. Tronco
- 7.1.3. Brazos
- 7.1.4. Piernas

7.2. Montaje del controlador

- 7.2.1. Esquema de montaje
- 7.2.2. Sistema de alimentación
- 7.2.3. Adecuación de sensores
- 7.2.4. Desarrollo de una placa de expansión
- 7.2.5. Puesta en marcha del controlador

7.3. Programación

- 7.3.1. Sistema de locomoción
- 7.3.2. Algoritmos de visión
- 7.3.3. Pruebas de CEABOT

Palabras clave: palabraclave1, palabraclave2, palabraclave3.

Capítulo 8

Evaluación de resultados

Se presentan a continuación las conclusiones...

8.1. Pruebas de funcionamiento

8.2. Conclusión

Una vez finalizado el proyecto...

8.3. Situación y desarrollos futuros

Un posible desarrollo...

Bibliografía

[1] M. González-Fierro, A. Jardón, S. Martínez de la Casa, M.F. Stoelen, J.G. Víctores, and C. Balaguer. Educational initiatives related with the ceabot contest.