Redshit-space distortions

Coordinates

- Until now we have calculated $\delta_{dm}(\mathbf{x}, \eta)$
- In Fourier space $\delta_{dm}(\mathbf{k},\eta) = \int d^3\mathbf{x} \, e^{i\mathbf{k}\cdot\mathbf{x}} \, \delta_{dm}(\mathbf{x},\eta)$
- ♦ The **position** of a galaxy \mathbf{x} is given by its direction and its distance $\mathbf{x} = (\mathbf{n}, r)$ with $r = \eta_0 \eta$
- lacktriangle In a survey we do not measure r but we measure the redshift z
- ♦ We calculate the radial distance from the redshift.
- ♦ Photons travel on **null geodesics** $1 + z = \frac{a_0}{a} = \frac{1}{a}$ $dr = -d\eta = -\frac{d\eta}{da} \frac{da}{dz} dz = \frac{1}{a'} \frac{1}{(1+z)^2} dz = \frac{a}{\mathcal{H}} dz$

Coordinates

- ♦ Radial distance $r(z) = \int_0^z dz' \frac{1}{(1+z')\mathcal{H}(z')}$
- ♦ The relation depends on the cosmology (from SNe, CMB).
- ◆ **Problem**: the above relation between redshift and radial distance is only correct in a **homogeneous** universe, where the redshift is entirely due to the expansion of the universe:

 $1 + z = \frac{1}{a}$

♦ In a universe with fluctuations, the redshift is affected by other effects.

Doppler effect

- ♦ Inhomogeneous universe: galaxies are attracted towards over-dense regions.
- ◆ The motion of galaxies with respect to us induces a Doppler shift.
- We use the relation $r(z) = \int_0^z dz' \frac{1}{(1+z')\mathcal{H}(z')}$ and infer a slightly wrong position.
- ◆ Consequence: this changes the observed large-scale structure, e.g. the shape over-densities.

Distortions

Linear regime: over-densities are squeezed along the line of sight.

Non-linear regime: virialised objects (clusters) are elongated, fingers of god effect.

Contours

Fingers of god

The **non-linear** effect can be seen by eyes.

The linear redshift-space distortion is statistically detectable in the correlation function.

Fingers of God in a portion of the Sloan Digital Sky Survey. Image from the Cosmus Open Source Science Outreach project.

Redshift

$$1 + z = \frac{\nu_S}{\nu_O} = \frac{E_S}{E_O} = \frac{(k^{\mu}u_{\mu})_S}{(k^{\mu}u_{\mu})_O}$$

 k^{μ} photon momentum

 u^{μ} 4-velocity of the source and observer

Galaxy distribution

How do the redshift fluctuations affect the observation of δ ?

We extract the number of galaxies per volume element.

redshift distortion

Number of galaxies is conserved: $\rho(\mathbf{x}_{\text{obs}}) d^3 \mathbf{x}_{\text{obs}} = \rho(\mathbf{x}) d^3 \mathbf{x}$

$$\bar{\rho}(1+\delta_{\rm obs}) d^3 \mathbf{x}_{\rm obs} = \bar{\rho}(1+\delta) d^3 \mathbf{x}$$

The change in $\delta_{\rm obs}$ is due to the change from ${\bf x}$ to ${\bf x}_{\rm obs}$

Only the radial coordinate is affected by redshift perturbations

$$r_{\rm obs} = r(z) = r(\bar{z} + \delta z) \simeq r(\bar{z}) + \frac{\partial r}{\partial \bar{z}} \delta z$$

Galaxy over-density

$$r_{\rm obs} = r + \frac{\partial r}{\partial \bar{z}} \, \delta z$$

$$\frac{\partial r}{\partial \bar{z}} = \frac{1}{(1 + \bar{z})\mathcal{H}}$$

We keep only the **Doppler** contribution: $r_{\text{obs}} = r + \frac{1}{\mathcal{H}} \mathbf{v} \cdot \mathbf{n}$

Jacobian:
$$\frac{\partial r_{\text{obs}}}{\partial r} = 1 + \frac{1}{\mathcal{H}} \partial_r (\mathbf{v} \cdot \mathbf{n}) + \frac{\dot{\mathcal{H}}}{\mathcal{H}^2} \mathbf{v} \cdot \mathbf{n}$$

Neglecting the second term:

$$(1 + \delta_{\text{obs}}) \left[1 + \frac{1}{\mathcal{H}} \partial_r (\mathbf{v} \cdot \mathbf{n}) \right] d^3 \mathbf{x} = (1 + \delta) d^3 \mathbf{x}$$

$$\delta_{\text{obs}} = \delta - \frac{1}{\mathcal{H}} \partial_r (\mathbf{v} \cdot \mathbf{n})$$

Kaiser (1987)

Galaxy over-density

$$r_{\rm obs} = r + \frac{\partial r}{\partial \bar{z}} \, \delta z$$

$$\frac{\partial r}{\partial \bar{z}} = \frac{1}{(1 + \bar{z})\mathcal{H}}$$

We keep only the **Doppler** contribution: $r_{\text{obs}} = r + \frac{1}{\mathcal{H}} \mathbf{v} \cdot \mathbf{n}$

Jacobian:
$$\frac{\partial r_{\text{obs}}}{\partial r} = 1 + \frac{1}{\mathcal{H}} \partial_r (\mathbf{v} \cdot \mathbf{n}) + \frac{\dot{\mathcal{H}}}{\mathcal{H}^2} \mathbf{v} \cdot \mathbf{n}$$

Neglecting the second term:

$$(1 + \delta_{\text{obs}}) \left[1 + \frac{1}{\mathcal{H}} \partial_r (\mathbf{v} \cdot \mathbf{n}) \right] d^3 \mathbf{x} =$$
to measure distances directly. How problematic

We see a distorted distribution of galaxies because we are not able to measure distances directly. How problematic is that?

$$\delta_{\text{obs}} = \delta - \frac{1}{\mathcal{H}} \partial_r (\mathbf{v} \cdot \mathbf{n})$$

Kaiser (1987)

Interest of redshift distortions

Redshift distortions provides an opportunity to measure peculiar velocities. Galaxies move according to dark matter inhomogeneities \rightarrow another way of mapping the matter distribution.

We already know the peculiar velocities from conservation equation:

$$\delta' = kv$$

- ♦ We want to test this equation
- ◆ Velocities measure directly the **evolution** of the density. More sensitive to modified gravity.
- ◆ Peculiar velocities are not sensitive to bias:

$$\delta = b \cdot \delta_{dm}$$
 but $v = v_{dm}$

How do we measure redshift distortions and separate velocities from density?

line of sight

The velocity part is anisotropic

$$\delta_{\mathrm{obs}} = \delta - \frac{1}{\mathcal{H}} \partial_r (\mathbf{v} \cdot \mathbf{n})$$

We expect differences along and transverse to the line-of-sight.

distortion

We can detect this anisotropy **statistically** in the correlation function.

Two-point correlation function:

$$\xi = \left\langle \left(\delta(\mathbf{x}, \eta) - \frac{1}{\mathcal{H}} \partial_r \mathbf{v}(\mathbf{x}, \eta) \cdot \mathbf{n} \right) \left(\delta(\mathbf{x}', \eta') - \frac{1}{\mathcal{H}} \partial_{r'} \mathbf{v}(\mathbf{x}', \eta') \cdot \mathbf{n}' \right) \right\rangle$$

Without distortion: $\xi(s,r)$

Observer

Depends on:

- ♦ separation
- distance of the pair

With distortion: $\xi(s,r,\beta)$

Additional dependence on orientation:

max signal: $\beta = 0, \pi$

min signal: $\beta = \frac{\pi}{2}$

Observer

Two-point correlation function:

$$\xi = \left\langle \left(\delta(\mathbf{x}, \eta) - \frac{1}{\mathcal{H}} \partial_r \mathbf{v}(\mathbf{x}, \eta) \cdot \mathbf{n} \right) \left(\delta(\mathbf{x}', \eta') - \frac{1}{\mathcal{H}} \partial_{r'} \mathbf{v}(\mathbf{x}', \eta') \cdot \mathbf{n}' \right) \right\rangle$$

Without distortion: $\xi(s,r)$

Observer

Depends on:

- ♦ separation
- distance of the pair

Two-point correlation function:

$$\xi = \left\langle \left(\delta(\mathbf{x}, \eta) - \frac{1}{\mathcal{H}} \partial_r \mathbf{v}(\mathbf{x}, \eta) \cdot \mathbf{n} \right) \left(\delta(\mathbf{x}', \eta') - \frac{1}{\mathcal{H}} \partial_{r'} \mathbf{v}(\mathbf{x}', \eta') \cdot \mathbf{n}' \right) \right\rangle$$

Without distortion: $\xi(s,r)$

Depends on:

- ♦ separation
- distance of the pair

With distortion: $\xi(s, r, \beta)$

Additional dependence on orientation:

max signal: $\beta = 0, \pi$

min signal: $\beta = \frac{\pi}{2}$

Observer

Observer

Result

$$\xi = D_1^2 \left\{ \left(1 + \frac{2f}{3} + \frac{f^2}{5} \right) \mu_0(s) - \left(\frac{4f}{3} + \frac{4f^2}{7} \right) \mu_2(s) P_2(\cos \beta) + \frac{8f^2}{35} \mu_4(s) P_4(\cos \beta) \right\}$$
 Hamilton (1992)

$$\mu_{\ell}(s) = \frac{A}{2\pi^2} \int \frac{dk}{k} \left(\frac{k}{H_0}\right)^{n_s - 1} T_{\delta}^2(k) j_{\ell}(k \cdot s)$$

sets the shape of the correlation as a function of separation.

other terms: \blacklozenge cross-terms density-velocity proportional to f

lacktriangle velocity-velocity terms proportional to f^2

with
$$f = \frac{a}{D_1} \frac{d}{da} D_1$$

Result

$$\xi = D_1^2 \left\{ \left(1 + \frac{2f}{3} + \frac{f^2}{5} \right) \mu_0(s) - \left(\frac{4f}{3} + \frac{4f^2}{7} \right) \mu_2(s) P_2(\cos \beta) \right\}$$

growth function

$$+\frac{8f^2}{35}\mu_4(s)P_4(\cos\beta)$$
 Hamilton (1992)

primordial amplitude

$$\mu_0(s) = \frac{A}{2\pi^2} \int \frac{dk}{k} \left(\frac{k}{H_0}\right)^{n_s-1} \qquad \text{sets the shape of the correlation as a function of separation.}$$

transfer function

separation

other terms: \blacklozenge cross-terms **density-velocity** proportional to f

lacktriangle velocity-velocity terms proportional to f^2

with
$$f = \frac{a}{D_1} \frac{d}{da} D_1$$

Result

$$\xi = D_1^2 \left\{ \left(1 + \frac{2f}{3} + \frac{f^2}{5} \right) \mu_0(s) - \left(\frac{4f}{3} + \frac{4f^2}{7} \right) \mu_2(s) P_2(\cos \beta) + \frac{8f^2}{35} \mu_4(s) P_4(\cos \beta) \right\}$$
Hamilton (1992)

$$\mu_2(s) = \frac{A}{2\pi^2} \int \frac{dk}{k} \left(\frac{k}{H_0}\right)^{n_s-1} T_\delta^2(k) \, j_2(k \cdot s) \qquad \text{slightly different dependence in separation than the density}$$

redshift distortion

The angular dependence is given by:

$$P_2(\cos\beta) = \frac{3}{2}\cos^2\beta - \frac{1}{2}$$

- lacktriangle The amplitude of the correlation function is modulated by $P_2(\cos\beta)$
- ♦ The quadrupole is **negative**: $-\frac{4f}{3}$

- lacktriangle The amplitude of the correlation function is modulated by $P_2(\cos\beta)$
- ♦ The quadrupole is **negative**: $-\frac{4f}{3}$

- lacktriangle The amplitude of the correlation function is modulated by $P_2(\cos\beta)$
- ♦ The quadrupole is **negative**: $-\frac{4f}{3}$

- lacktriangle The amplitude of the correlation function is modulated by $P_2(\cos\beta)$
- ♦ The quadrupole is **negative**: $-\frac{4f}{3}$

- lacktriangle The amplitude of the correlation function is modulated by $P_2(\cos\beta)$
- ♦ The quadrupole is **negative**: $-\frac{4f}{3}$

- lacktriangle The amplitude of the correlation function is modulated by $P_2(\cos\beta)$
- ♦ The quadrupole is **negative**: $-\frac{4f}{3}$

Negative quadrupole

Redshift distortions increase the **gradient** along the line-of-sight.

At a given separation, the correlation is **stronger transverse** to the line-of-sight than along the line-of-sight \rightarrow negative quadrupole.

Negative quadrupole

Redshift distortions increase the **gradient** along the line-of-sight.

At a given separation, the correlation is **stronger transverse** to the line-of-sight than along the line-of-sight \rightarrow negative quadrupole.

Hexadecapole dependence

$$\xi = D_1^2 \left\{ \left(1 + \frac{2f}{3} + \frac{f^2}{5} \right) \mu_0(s) - \left(\frac{4f}{3} + \frac{4f^2}{7} \right) \mu_2(s) P_2(\cos \beta) + \frac{8f^2}{35} \mu_4(s) P_4(\cos \beta) \right\}$$
 Hamilton (1992)

Other terms: velocity-velocity correlations contribute to the quadrupole and generate an **hexadecapole**.

$$P_4(\cos\beta) = \frac{1}{8} \left[35\cos^4\beta - 30\cos^2\beta + 3 \right]$$

Maximum at $\beta = 0$ and π

Velocity-density decreases monotonically.

Velocity-velocity have a complicated structure due to a combination of $\cos^2\beta$

CUSO 2016

The large-scale structure of the universe

Camille Bonvin

Multipoles extraction

How can we separate redshift distortions from density?

We can use the particular angular dependence of the terms.

We average over all orientations: $\frac{1}{2} \int_{-1}^{1} d\mu \ \xi(s, r, \mu)$

$$\int_{-1}^{1} d\mu \ P_2(\mu) = 0 \quad \text{and} \quad \int_{-1}^{1} d\mu \ P_4(\mu) = 0$$

→ extract the monopole

$$\xi = D_1^2 \left\{ \left(1 + \frac{2f}{3} + \frac{f^2}{5} \right) \mu_0(s) - \left(\frac{4f}{3} + \frac{4f^2}{7} \right) \mu_2(s) P_2(\cos \beta) + \frac{8f^2}{35} \mu_4(s) P_4(\cos \beta) \right\}$$

Multipoles extraction

$$\xi = D_1^2 \left\{ \left(1 + \frac{2f}{3} + \frac{f^2}{5} \right) \mu_0(s) - \left(\frac{4f}{3} + \frac{4f^2}{7} \right) \mu_2(s) P_2(\cos \beta) + \frac{8f^2}{35} \mu_4(s) P_4(\cos \beta) \right\}$$
 Hamilton (1992)

lacktriangle To extract the **quadrupole** we weight by $P_2(\mu)$

$$\frac{5}{2} \int_{-1}^{1} d\mu \ \xi(s, r, \mu) P_2(\mu) = -D_1^2 \left(\frac{4f}{3} + \frac{4f^2}{7} \right) \mu_2(s)$$

• To extract the **hexadecapole** we weight by $P_4(\mu)$

$$\frac{9}{2} \int_{-1}^{1} d\mu \ \xi(s, r, \mu) P_4(\mu) = D_1^2 \frac{8f^2}{35} \mu_4(s)$$
 Measure f

Bias

Fluctuations in the number of galaxies are biased with respect to the dark matter fluctuations: $\delta = b \cdot \delta_{dm}$

$$\xi = D_1^2 \left\{ \left(\frac{b^2}{3} + \frac{2bf}{3} + \frac{f^2}{5} \right) \mu_0(s) - \left(\frac{4bf}{3} + \frac{4f^2}{7} \right) \mu_2(s) P_2(\cos \beta) + \frac{8f^2}{35} \mu_4(s) P_4(\cos \beta) \right\}$$

The monopole and quadrupole are affected by bias, but the hexadecapole is not. This reflects the fact that the velocities are not biased $v=v_{dm}$

By measuring all multipoles we can measure both b and f

Results: monopole

without redshift distortions

with redshift distortions

$$\xi_0 = D_1^2 \ b^2 \, \mu_0(s)$$

$$\xi_0 = D_1^2 \left(b^2 + \frac{2bf}{3} + \frac{f^2}{5} \right) \mu_0(s)$$

Results: quadrupole

$$\xi_2 = -D_1^2 \left(\frac{4bf}{3} + \frac{4f^2}{7}\right) \mu_2(s)$$

Results: hexadecapole

$$\xi_4 = D_1^2 \, \frac{8f^2}{35} \, \mu_4(s)$$

BOSS results

- $-\!\!\!-$ monopole $imes s^2$
- quadrupole $\times s^2$

Fourier space

Effect of redshift distortions on the power spectrum.

$$\delta_{\text{obs}}(\mathbf{k}, \eta) = \left(1 + (\hat{\mathbf{k}} \cdot \mathbf{n})^2 f\right) \delta(\mathbf{k}, \eta)$$

$$P_{\delta}(k) \, \delta_D(\mathbf{k} + \mathbf{k}')$$

$$\langle \delta_{\text{obs}}(\mathbf{k}, \eta) \delta_{\text{obs}}(\mathbf{k}', \eta) \rangle = \left(1 + (\hat{\mathbf{k}} \cdot \mathbf{n})^2 f\right) \left(1 + (\hat{\mathbf{k}}' \cdot \mathbf{n}')^2 f\right) \langle \delta(\mathbf{k}, \eta) \delta(\mathbf{k}', \eta) \rangle$$

Distant observer approximation: $\mathbf{n} = \mathbf{n}'$

$$P_{\delta}^{\text{obs}}(k, \eta, \cos \alpha) = (1 + \cos^2(\alpha) f^2)^2 P_{\delta}(k, \eta)$$

$$\mathbf{n} \cdot \hat{\mathbf{k}} = \cos \alpha$$

Fourier space

Real space

Breaking of isotropy: the power spectrum depends on the direction of the Fourier mode.

Breaking of isotropy: the correlation function depends on the orientation of the pair.

Multipole expansion

 We rewrite the cosine in terms of Legendre polynomial (orthogonal basis)

$$P_{\delta}^{\text{obs}}(k, \eta, \cos \alpha) = \left\{ 1 + \frac{2f}{3} + \frac{f^2}{5} + \left(\frac{4f}{3} + \frac{4f^2}{7} \right) P_2(\cos \alpha) + \frac{8f^2}{35} P_4(\cos \alpha) \right\} P_{\delta}(k, \eta)$$

- ◆ The density power spectrum factorises out.
- ♦ In the correlation function this was not the case: different dependence in the separation due to the spherical Bessel functions.

Multipole extraction

♦ monopole

$$P_{\delta}^{\text{obs 0}}(k,\eta) = \frac{1}{2} \int_{-1}^{1} d\mu \ P_{\delta}^{\text{obs}}(k,\eta,\mu) = \left(1 + \frac{2f}{3} + \frac{f^2}{5}\right) P_{\delta}(k,\eta)$$

◆ quadrupole

$$P_{\delta}^{\text{obs 2}}(k,\eta) = \frac{5}{2} \int_{-1}^{1} d\mu \, P_2(\mu) \, P_{\delta}^{\text{obs}}(k,\eta,\mu) = \left(\frac{4f}{3} + \frac{4f^2}{7}\right) P_{\delta}(k,\eta)$$

♦ hexadecapole

$$P_{\delta}^{\text{obs 4}}(k,\eta) = \frac{9}{2} \int_{-1}^{1} d\mu \, P_4(\mu) \, P_{\delta}^{\text{obs}}(k,\eta,\mu) = \frac{8f^2}{35} P_{\delta}(k,\eta)$$

We can measure $f\sigma_8$

Results: monopole

without redshift distortions

with redshift distortions

$$b^{2}P_{\delta}(k,\eta) \qquad \left(b^{2} + \frac{2bf}{3} + \frac{f^{2}}{5}\right)P_{\delta}(k,\eta)$$

Results: quadrupole and hexadecapole

quadrupole

$$\left(\frac{4bf}{3} + \frac{4f^2}{7}\right) P_{\delta}(k,\eta)$$

hexadecapole

$$\frac{8f^2}{35}P_{\delta}(k,\eta)$$

BOSS results

Growth evolution

Which kind of constraints can we obtain from redshift distortions?

The monopole and quadrupole allow to measure $f\sigma_8$ and $b\sigma_8$ amplitude of P

Growth rate evolution

Cosmological constraints

$$w = w_0 + w_a \frac{z}{1+z}$$

Consistency of General Relativity

How can we quantify deviations from general relativity?

Useful parameterisation: $f(a) = \Omega_m(a)^{\gamma}$ Peebles (1980) Wang and Steinhardt (1998)

In general relativity with a cosmological constant: $\gamma=0.55$

Observing a different values would mean a deviation from Λ CDM.

This is not a general parametrisation but it allows to test the consistency of general relativity.

Consistency of General Relativity

