Risk Analytics Correlated default

Graphical model for defaults

Dr. Paul Larsen

October 29, 2017

Table of contents

Introduction

Firm-value models of default

Graphical model for defaults

Implications for CDOs

Introduction to correlated default

Article: [Dolmetsch,]

Firm-value default models

Intuition: Default occurs if firm is assets are below critical threshold at maturity T

- Counterparty i assets at time T: $A_{\tau}^{(i)}$
- Default threshold: C_i

Definition

The *default event* in a firm-value model is $D_i = I_{\{A_T^{(i)} < C_i\}}$.

Firm-value default models

Definition

The default event in a firm-value model is $D_i = I_{\{A_T^{(i)} < C_i\}}$.

Firm value default models-key assumptions

Classic firm value model: [Merton, 1974] Assumptions:

Under real-world measure, the firm's value (V_t) and debt B satisfies

$$dV_t = \mu_V V_t dt + \sigma_V V_t dW_t$$
.

- Frictionless market with continuous trading.
- Risk-free interest rate deterministic and >= 0.
- The process (V_t) is independent of how the firm is financed. In particular, it is independent on B.

Less classical asset value model: Frank Hunziker, UBS, 2015 Banking Credit Risk Management Summit (Vienna)

Bernoulli default models

Set
$$p_i = \mathbb{E}_{\mathscr{P}}[D_i]$$
, probability of default at T . Then
$$D_i = \begin{cases} 1 \text{ (default)} & \text{with probability } p_i \\ 0 \text{ (no default)} & \text{with probability } 1 - p_i \end{cases}$$

i.e. $D_i \sim B(1, p_i)^{1}$

Definition

A Bernoulli credit portfolio is a vector of random variables $\mathbf{D} = (D_1, \dots, D_m)$ such that $D_i \sim B(1, p_i)$ for all i. The default count statistic of D is

$$D=\sum_{i=1}^m D_i.$$

¹ B(m,p) is the binomial distribution, with $\mathcal{P}(X=n)=\binom{m}{n}p^n(1-p)^{m-n}$

Bernoulli default models, II

Case: D_i independent, $D_i \sim B(1,p) \implies D \sim B(m,p)$

Example: m = 2, p = 0.1

Table: Default count distribution

Quick task: Derive the default count distribution for m = 2, arbitrary p.

Bernoulli default models, II

Case: D_i independent, $D_i \sim B(1,p) \implies D \sim B(m,p)$

Example: m = 2, p = 0.1

Table: Default count distribution

0	1	2
0.81	0.18	0.01

Quick task: Derive the default count distribution for m = 2, arbitrary p. Solution:

$$\mathcal{P}(D=0) = (1-p)^2$$

$$\mathcal{P}(D=1) = 2p(1-p)$$

$$\mathcal{P}(D=2) = p^2$$

Bernoulli credit portfolio as before, but now default probabilities random variables

- **P** = $(P_1, ..., P_m) \sim F$, where
- F a distribution function with support in [0,1]^m

Definition

A Bernoulli mixture default model is a portfolio $\mathbf{D} = (D_1, \dots, D_m)$ such that

- $D_i|_{P_i=p_i} \sim B(1,p_i)$
- $(D_i|_{\mathbf{P}=\mathbf{p}})$ independent

For $d_i \in \{0,1\}$, the probability distribution of **D** is

$$\mathscr{P}(D_1 = d_1, ..., D_m = d_m) = \int_{[0,1]^m} \prod_{i=1}^m p_i^{d_i} (1-p_i)^{1-d_i} dF(p_1, ..., p_m)$$

Example (Single factor CreditMetrics™, KMV models)

•
$$D_i = I_{\{A_T^{(i)} < C_i\}} \sim B\left(1, \mathcal{P}\left(A_T^{(i)} < C_i\right)\right)$$

- Asset value dependent on underlying factors, e.g. GDP, unemployment, region
- Normalizing log-returns $\log (A_T^{(i)}/A_0^{(i)})$, asset-value is $r_i = \sqrt{\rho}\Phi + \sqrt{1 - \rho}\epsilon_i$
 - Φ: composite systemic factor, Φ ~ N(0,1)²
 - ϵ_i : idiosyncratic factor, $\epsilon_i \sim N(0,1)$
 - All ϵ_i assumed independent of one another and of Φ
 - $\rho = \text{Covar}(A_i, \Phi)$: systemic risk of counterparty i
- \implies Default event is $D_i = I_{\{r_i < c_i\}} \sim B(1, \mathcal{P}(r_i < c_i))$
- \implies (Normalized) default threshold satisfies $c_i = N^{-1}(p_i)$

²In general there are more systemic factors

Bernoulli mixture models, III

Recap

- Default $\iff r_i = \sqrt{\rho}\Phi + \sqrt{1 \rho}\epsilon_i < c_i$, where $r_i, \Phi, \epsilon_i \sim N(0, 1)$, and $c_i = N^{-1}(p_i)$
- Default probabilities P_i depend on ρ , Φ : $\mathscr{P}(P_i = p_i | \Phi = \phi) = N(c_i - \sqrt{\rho}\phi)$
- The conditional default portfolio $\mathbf{D}|_{\Phi=\phi}=(D_1,\ldots,D_m)|_{\Phi=\phi}$ is independent $\Longrightarrow \mathbf{D}$ is a Bernoulli default mixture model

Bernoulli mixture example

Set
$$m = 2$$
, $\rho = 0.5$, $c = (c_1, c_2) = (-1.28, -2.88)$
 $\Rightarrow (p_1, p_2) = (0.1, 0.002)$

Table: Default count distribution

0	1	2
0.8992	0.0995	0.0013

Alternate default dependence structures

Basics of t-distribution: Let $X_i \sim N(0,1)$ be independent.

Definition

The random variable $X = X_1^2 + ... + X_n^2$ is χ^2 -distributed with n degrees of freedom

Let
$$\mathbf{Y} = (Y_1, ..., Y_m) \sim N(0, \Gamma)$$
, and let $\Theta = \sqrt{(n/X)}$, where $X \sim \chi^2(n)$, and \mathbf{Y}, Θ independent

Definition

The random variable $Z = \Theta Y$ is a multivariate t-distribution with n degrees of freedom and correlation matrix Γ .

Bernoulli mixture model with t-copula, m = 2,125

Table: Default count distribution, m=2

	0	1	2
Gaussian copula	0.8992	0.0995	0.0013
t-copula	0.8994	0.0991	0.0015

Stress testing Bernoulli mixture models

Goal: Quantify change in credit loss distribution in adverse economic situation

- Increase PDs
- Increase λ (loss-given-default)
- Truncate systemic factors Φ

Graphical default models

Single-factor, m = 2:

- $D_1, D_2 \in \{0, 1\}$ as before
- Systemic factor Φ replaced with $S \in \{0, 1\}$, where $S = 0 \implies$ healthy, $S = 1 \implies$ distress
- Model parameters η_i, η_F (nodes), $\eta_{i,S}$ (edges)

Graphical default models, II

Definition

A graphical default model is called homogeneous single-factor if $\eta_{i,S} = \eta_{D,S}$, and $\eta_i = \eta_D$ for all $i \in \{1, ..., m\}$

If homogeneous, single-factor

 \implies total distribution function, $(\mathbf{d}, s) = (d_1, \dots, d_m, s) \in \{0, 1\}^{m+1}$:

$$\mathscr{P}(\mathbf{D} = \mathbf{d}, S = s) = \frac{1}{Z} \exp\left(\eta_D \sum_{i=1}^m d_i + \eta_S s + \eta_{D,S} s \sum_{i=1}^m d_i\right),$$

where Z is partition function to ensure total probability = 1:

$$Z = (1 + e^{\eta_D})^m + e^{\eta_S} (1 + e^{\eta_D + \eta_{D,S}})^m$$

Risk Analytics Dr. Paul Larsen October 29, 2017

Graphical default models, III

Assume homogenous, single-factor. Then Counterparty marginal distribution:

$$\mathscr{P}(\mathbf{D} = \mathbf{d}) = \sum_{\mathbf{S} \in \{0,1\}} \mathscr{P}(\mathbf{D} = \mathbf{d}, \mathbf{S} = \mathbf{s})$$

$$= 1/Z \left(\exp \left(\eta_D \sum_{i=1}^m d_i \right) + \exp \left(\eta_S + (\eta_D + \eta_{D,S}) \sum_{i=1}^m d_i \right) \right)$$

And the default count distribution is

$$\mathscr{P}(D=n) = \mathscr{P}\left(\sum_{i=1}^{m} D_{i} = n\right)$$
$$= \frac{1}{Z}\binom{m}{n}\left(\exp(\eta_{D}n) + \exp\left(\eta_{S} + (\eta_{D} + \eta_{D,S})n\right)\right)$$

Graphical default models, example

Set
$$m = 15$$
, $\eta_D = -0.7$, $\eta_D S = -2.1$, $\eta_S = 5.5$

Figure: Graphical Model Default Count Distribution

Dr. Paul Larsen Risk Analytics October 29, 2017

17

Collateralized debt obligations and default models

- CDO investor payments separated into tranches: highest tranch (senior) gets payments first, lowest tranch (equity) gets remainder payments after defaults
- Spread per tranch
 ⇔ default risk per tranch
 ⇔ correlated default risk
- Gaussian copulas used to price CDOs leading up to 2007-8 crisis [?]

Main sources

- [Bluhm et al., 2016], Chapter 2
- [McNeil et al., 2015], Chapter 8
- [Rutkowski and Tarca, 2015]
- [Kalkbrener and Packham, 2015]
- [Filiz et al., 2012]

Bibliography I

Bluhm, C., Overbeck, L., and Wagner, C. (2016). Introduction to credit risk modeling. CRC Press.

Dolmetsch, C.

Filiz, I. O., Guo, X., Morton, J., and Sturmfels, B. (2012). Graphical models for correlated defaults. Mathematical Finance, 22(4):621–644.

Kalkbrener, M. and Packham, N. (2015). Correlation under stress in normal variance mixture models. *Mathematical Finance*, 25(2):426–456.

McNeil, A. J., Frey, R., and Embrechts, P. (2015). Quantitative risk management: Concepts, techniques and tools. Princeton university press.

Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of finance, 29(2):449-470.

Rutkowski, M. and Tarca, S. (2015). Regulatory capital modeling for credit risk. International Journal of Theoretical and Applied Finance, 18(05):1550034.