1

Assignment 6

Gautham Bellamkonda - CS20BTECH11017

Download all latex-tikz codes from

https://github.com/GauthamBellamkonda/AI1103/ tree/main/Assignment6

1 Problem

Let $X_1, X_2, ..., X_n$ be a random sample of size $n \ge 2$ from a distribution having the probability density function

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} \exp\left(-\frac{x}{\theta}\right) & x > 0, \\ 0, & \text{otherwise,} \end{cases}$$
 (1.0.1)

where $\theta \in (0, \infty)$. Let $X_{(1)} = \min \{X_1, X_2, \dots, X_n\}$ and $T = \sum_{i=1}^n X_i$. Then $E(X_{(1)}|T)$ equals

(A)
$$\frac{T}{n^2}$$

(B)
$$\frac{T}{n}$$

(C)
$$\frac{(n+1)T}{2n}$$

(D)
$$\frac{(n+1)^2T}{4n^2}$$

2 Prerequisites

Lemma 2.1 (Sum of Gamma random variables). Suppose that $X_1, X_2, X_3, ... X_n$ are n gamma variables with parameters k and θ , $X_i \sim \Gamma(k, \theta)$. Then the sum $T = \sum_{i=1}^n X_i$ follows a gamma distribution with parameters nk and θ , $T \sim \Gamma(nk, \theta)$

Lemma 2.2 (Expectation of $X_{(1)}$). Let $X_1, X_2, ..., X_n$ be a random sample of size $n \ge 2$) from an exponential distribution with scale parameter θ . Let $X_{(1)}$ be the $\min\{X_1, X_2, ..., X_n\}$. Then, expectation of $X_{(1)}$,

$$E(X_{(1)}) = -\frac{\theta}{n} \tag{2.0.1}$$

Proof. Let's find the probability distribution function and the expectation value of $X_{(1)}$:

$$Pr(X_{(1)} > x) = Pr(X_1 > x) \dots Pr(X_n > x)$$
 (2.0.2)

$$= (1 - F_{X_1}(x)) \dots (1 - F_{X_n}(x)) (2.0.3)$$

$$= (1 - F_{X_1}(x))^n (2.0.4)$$

$$= \exp\left(-\frac{nx}{\theta}\right) \tag{2.0.5}$$

$$F_{X_{(1)}}(x) = 1 - \exp\left(-\frac{nx}{\theta}\right)$$
 (2.0.6)

$$f_{X_{(1)}}(x) = \frac{n}{\theta} \exp\left(-\frac{nx}{\theta}\right)$$
 (2.0.7)

Therefore, $X_{(1)}$ follows an exponential distribution with mean $\frac{\theta}{n}$.

$$E(X_{(1)}) = -\frac{\theta}{n} \tag{2.0.8}$$

Definition 1 (Laplace transform). Laplace transform is an integral transform that converts a real function of a real variable t to a function of a complex variable s. The laplace transform of a function f(t) evaluated at s is defined by

$$F(s) = \int_0^\infty f(t)e^{-st}dt \qquad (2.0.9)$$

Lemma 2.3. If the laplace transform of a function f(t) at s is 0 for all s > 0, then the function f(t) = 0 almost everywhere in $(0, \infty)$.

Definition 2 (Complete Statistic). The statistic T is said to be complete for the distribution of X if, for every measurable function g, if

$$E(g(T)) = 0 \ \forall \ \theta \Rightarrow \Pr(g(T) = 0) = 1$$
 (2.0.10)

Definition 3 (Sufficient Statistic). A statistic t = T(X) is sufficient for underlying parameter θ precisely if the conditional probability distribution of the data X, given the statistic t = T(X), does not depend on the parameter θ .

Theorem 2.1 (Fischer-Neymann Factorisation the-

orem). If the probability density function is $f_{\theta}(x)$, then T is sufficient for θ if and only if nonnegative functions g and h can be found such that

$$f_{\theta}(x) = h(x)g_{\theta}(T(x))$$
 (2.0.11)

Lemma 2.4.

$$T = \sum_{i=1}^{n} X_i \tag{2.0.12}$$

is a complete and sufficient statistic.

Proof. 1) (Sufficiency)

$$f_X(x_1, x_2, \dots x_n) = f_{X_1}(x_1) f_{X_2}(x_2) \dots f_{X_n}(x_n)$$

$$= \frac{1}{\theta} \exp\left(-\frac{x_1}{\theta}\right) \dots \frac{1}{\theta} \exp\left(-\frac{x_n}{\theta}\right)$$
(2.0.14)

$$=1\cdot\frac{1}{\theta^n}\exp\left(-\frac{T}{\theta}\right) \qquad (2.0.15)$$

$$= h(X) \cdot g(T, \theta) \tag{2.0.16}$$

with

$$g(T,\theta) = \frac{1}{\theta^n} \exp\left(-\frac{T}{\theta}\right)$$
 (2.0.17)
$$h(X) = 1$$
 (2.0.18)

Therefore, T is a sufficient statistic.

2) (Completeness)

 X_i follow a gamma distribution, $X_i \sim \Gamma\left(1, \frac{1}{\theta}\right)$. Hence, $T = \sum_{i=1}^{n} X_i$ follows a gamma distribution, $T \sim \Gamma\left(n, \frac{1}{\theta}\right)$. Therefore, the expected value of a function g is

$$E(g(T)) = \int_0^\infty g(t) \frac{t^{n-1} e^{-\frac{t}{\theta}}}{\theta^n (n-1)!} dt \qquad (2.0.19)$$

$$= \frac{1}{\theta^n (n-1)!} \int_0^\infty g(t) t^{n-1} e^{-\frac{t}{\theta}} dt \qquad (2.0.20)$$

$$= \frac{1}{\theta^n (n-1)!} F\left(\frac{1}{\theta}\right) \qquad (2.0.21)$$

= 0 for all $\theta > 0$.

where,

$$f(t) = t^{n-1}g(t)$$
 (2.0.23)
 $F\left(\frac{1}{\theta}\right) = \text{Laplace Transform of } f(t) \text{ at } \frac{1}{\theta}$ (2.0.24)

(2.0.22)

Since, E(g(T)) = 0 for all $\theta > 0$,

$$F\left(\frac{1}{\theta}\right) = 0 \text{ for all } \theta > 0.$$
 (2.0.25)

By Lemma 2.3 it follows from (2.0.25) that

$$f(t) = 0$$
 almost everywhere in $(0, \infty)$ (2.0.26)

$$g(t) = 0$$
 almost everywhere in $(0, \infty)$ (2.0.27)

$$\Pr(g(t) = 0) = 1$$
(2.0.28)

Therefore, T is a complete statistic.

Theorem 2.2 (Lehmann–Scheffé theorem). If T is a complete sufficient statistic for θ and

$$E(g(T)) = \tau(\theta) \tag{2.0.29}$$

then g(T) is the uniformly minimum-variance unbiased estimator (UMVUE) of $\tau(\theta)$.

3 Solution

Proposition 3.1. $E(X_{(1)}|T)$ is the uniformly minimum-variance unbiased estimator (UMVUE) of $E(X_{(1)})$

Proof. By the law of total expectation,

$$E(E(X_{(1)}|T)) = E(X_{(1)})$$
 (3.0.1)

We know that $T = \sum_{i=1}^{n} X_i$ is a complete and sufficient statistic by 2.4. By Lehmann–Scheffé theorem, with

$$\theta = X_{(1)},$$
 (3.0.2)

$$\tau(x) = E(x), \tag{3.0.3}$$

$$g(T) = E(X_{(1)}|T).$$
 (3.0.4)

it follows from (3.0.1) that $E(X_{(1)}|T)$ is the UMVUE of $E(X_{(1)})$.

Proposition 3.2. $\frac{T}{n^2}$ is uniformly minimum-variance unbiased estimator (UMVUE) of $E(X_{(1)})$

Proof. $\frac{T}{n^2}$ is uniformly minimum-variance unbiased estimator (UMVUE) of $E(X_{(1)})$, since $E\left(\frac{T}{n^2}\right) = E(X_{(1)})$:

Note that,

$$E\left(\frac{T}{n^2}\right) = E\left(\frac{\sum_{i=1}^n X_i}{n^2}\right) \tag{3.0.5}$$

$$=\frac{E(\sum_{i=1}^{n} X_i)}{n^2}$$
 (3.0.6)

$$=\sum_{i=1}^{n} \frac{E(X_i)}{n^2}$$
 (3.0.7)

$$=\sum_{i=1}^{n} \frac{\theta}{n^2}$$
 (3.0.8)

$$=\frac{\theta}{n}\tag{3.0.9}$$

$$= E(X_{(1)})$$
 (by Lemma 2.2) (3.0.10)

Therefore, by Lehmann-Scheffé theorem, with

$$\theta = X_{(1)},\tag{3.0.11}$$

$$\tau(x) = E(x), (3.0.12)$$

$$g(T) = \frac{T}{n^2},\tag{3.0.13}$$

it follows that $\frac{T}{n^2}$ is UMVUE of $E(X_{(1)})$.

Since there exists a unique UMVUE for $E(X_{(1)})$, it follows from Proposition 3.1 and Proposition 3.2 that

$$E(X_{(1)}|T) = \frac{T}{n^2}$$
 (3.0.14)

Hence, option A is correct.

Fig. 2: Theory vs Simulated plot of $E(X_{(1)}|T)$