Oliver Cabral, Omar Fayoumi

Problem 1.2: Chapter 1

```
2
         Name: Assignment 1: Problem 1.2
 3
         Date: 09/04/2023
 4
         Class: CECS 271
 5
         Instructor: Minhthong Nguyen
 6
         Purpose: In this problem, we are tasked to modify the scipt given in
 7
         Section 1.2.5 in order to learn various functionalities in MATLAB such as using
8
         for loops, pause, and math functions.
 9
          Last updated: 09/05/2023
10
11
12
         %Code provided in Section 1.2.5
13
          [x \ y] = meshgrid(-8 : 0.5 : 8);
14
         r = sqrt(x.^2 + y.^2) + eps;
15
16
         % Modefied per instructions in part A
17
         % for n=-3:0.05:3;
     日
         for n=-4:0.05:4;
18
19
             %Modefied per instructions in part C
20
     21
             %z=sin(r.*n)./r;
22
             z=cos(r.*n);
23
24
             surf(z), view(-37, 38), axis([0,40,0,40,-4,4]);
25
             % Modefided based on instructions in part B
26
27
             %pause(0.05)
28
              pause(0.1);
29
         end
```


From top left to bottom right: a) n = 0; b) n = 2 and -2; c) n = 4 and -4

Problem 2.11: Chapter 2

```
1 🖃
           Name: Assignment 1: Problem 2.11
          Date: 09/05/2023
 3
 4
          Class: CECS 271
  5
          Instructor: Minhthong Nguyen
  6
          Purpose:a) A script that converts Celsius to Farenheit that also gives
 7
          a special comments based on the temperature. b) A script that uses vectors
          and array operations to computer Farenheit equivalents of Celcius
  8
  9
          temperature ranging from 20 degrees to 30 degrees in 1 degrees increment.
          Last updated: 09/05/2023
 10
 11
          %}
 12
 13
 14
          %Part A; Line 14 to 29
 15
          c = input("Enter temperature in Celsius: ");
 16
          f = (c*9/5) + 32;
 17
          %Checking if Celcius is a "special" value
 18
 19
          if c == -40
              disp("The Fahrenheit temperature is " + num2str(f) + ": Only value where Farenheit = Celsius!");
 20
 21
          elseif c == -100
 22
              disp("The Fahrenheit temperature is " + num2str(f) + ": Boiling point of water!");
 23
          elseif c == -37
 24
              disp("The Fahrenheit temperature is " + num2str(f) + ": Normal human temperature");
 25
          elseif c == 5526
              disp("The Fahrenheit temperature is " + num2str(f) + ": Temperature of the Sun's surface")
 26
 27
              disp("The Fahrenheit temperature is " + f)
 29
 30
 31
          %Part B: Line 31-35
 32
          format bank
          % Create 2 arrays containing temps in C and calculate for F in 2nd array (B)
 33
 34
         A = [20:1:30];
 35
         B = [(A*9/5) + 32];
          T = table(A',B', 'VariableNames',["Celsius", "Fahrenheit"]);
 36
37
          disp(T)
```

Enter temperature in Celsius: 1 The Fahrenheit temperature is 33.8

Celsius	Fahrenheit
S	
20.00	68.00
21.00	69.80
22.00	71.60
23.00	73.40
24.00	75.20
25.00	77.00
26.00	78.80
27.00	80.60
28.00	82.40
29.00	84.20
30.00	86.00

Problem 2.25: Chapter 2

```
1
         %{
 2
          Name: Assignment 1: Problem 2.25
 3
          Date: 09/05/2023
 4
          Class: CECS 271
 5
          Instructor: Minhthong Nguyen
 6
          Purpose: A program that displays the interest rate, amount of interest,
 7
          balance of a savings account given in exercise 2.25 in Essential MATLAB for
 8
          Engineers and Scientists (6th Edition)
 9
          Last updated: 09/05/2023
          %}
10
11
12
13
          %Prealocating memory to a matrix. Each column contains the month, interest
14
          %rate, amount of interest, and new balance in order from left to right.
15
          grid = zeros(12,4);
16
          balance = 100000;
17
          for month = [1:1:12]
18
19
              grid(month,1) = month;
20
21
              if balance < 110000
22
                  grid(month, 2) = 0.01;
23
              elseif balance <= 125000
                  grid(month,2) = 0.015;
24
25
              else
26
                  grid(month, 2) = 0.02;
27
              end
28
29
              grid(month,3) = grid(month,2) * balance;
30
              grid(month,4) = grid(month,3) + balance + 1000;
31
              balance = grid(month,4)
32
          end
```

```
format bank

colname = {'Month', 'Interest Rate', 'Amount of Interest', 'New Balance'}

T = array2table(grid, 'VariableNames', colname)

disp(T)
```

Month	Interest Rate	Amount of Interest	New Balance
1.00	0.01	1000.00	102000.00
2.00	0.01	1020.00	104020.00
3.00	0.01	1040.20	106060.20
4.00	0.01	1060.60	108120.80
5.00	0.01	1081.21	110202.01
6.00	0.01	1653.03	112855.04
7.00	0.01	1692.83	115547.87
8.00	0.01	1733.22	118281.08
9.00	0.01	1774.22	121055.30
10.00	0.01	1815.83	123871.13
11.00	0.01	1858.07	126729.20
12.00	0.02	2534.58	130263.78

Problem 4.8: Chapter 4

```
1
          %{
 2
          Name: Assignment 1: Problem 4.8
 3
          Date: 09/06/23
 4
         Class: CECS 271
 5
          Instructor: Minhthong Nguyen
 6
          Purpose: Calculate the deflection across a beam with a uniform load
 7
          Last Update: 09/07/2023
 8
         %}
 9
10
         %generate the x-axis data points a vector from 0 to 10 with a step size of 0.1
          % a = sqrt(0.1)
11
12
          % W EI/T^2 = 1 so we don't need to include it
13
14
15
          % Formula: num/den + wx*lx
16
          x = 0:0.1:10;
17
          num = cosh(sqrt(0.1)*(5-x(:)));
          den = cosh(sqrt(0.1)*5);
18
19
          wx = 0.05*x(:);
20
          1x = 10 - x(:);
21
          y = (num(:)./den(:) - 1) + wx(:).*lx(:);
22
23
          % Plot the y vs x graph
24
          plot(x,y)
25
          axis([0 10 0 10]) %
26
          title("Deflection of the Beam across its length")
          xlabel("Distance from the hinge (m)")
27
28
          ylabel("Deflection of the beam (m)")
```


Problem 5.7: Chapter 7

```
目
         %{
 2
         Name: Assignment 1: Problem 5.7
         Date: 09/06/23
3
4
         Class: CECS 271
5
         Instructor: Minhthong Nguyen
 6
         Purpose: Calculate the cost of electricity used per residence
7
         Last Update: 09/07/2023
8
         %}
9
10
         res = [200; 500; 700; 1000; 1500];
         cost = calculateElectricityCost(res);
11
12
         report = [res, cost]
13
14
         % Calculates electricity cost based on x units
15
     function cost = calculateElectricityCost(x)
16
             s = size(x);
             cost = [1:1:size(x)];
17
             for c = 1:size(x)
18
19
                if(x(c) <= 500)
20
                    cost(c) = x(c)*.02 + 5;
21
                elseif(x(c) <= 1000)
22
                    cost(c) = 15 + ((x(c)-500)*.05);
23
                else
24
                    cost(c) = 40 + ((x(c)-1000)*.1);
25
                end
             end
26
27
             cost = cost';
28
         end
29
```

report =

200	9
500	15
700	25
1000	40
1500	90