Lecture 6

- Cascade of linear time-varying systems
- Step response of an LTI system
- LTI systems and differentiation.
- Laplace transforms: definition and basic examples.

Cascade of linear time-varying systems

S1, S2 have impulse response functions $h_1(t,\sigma)$, $h_2(t,\sigma)$

$$z(t) = \int_{-\infty}^{\infty} h_2(t,\sigma) y(\sigma) d\sigma$$

$$= \int_{-\infty}^{\infty} h_2(t,\sigma) \left[\int_{-\infty}^{\infty} h_1(\sigma,\tau) x(\tau) d\tau \right] d\sigma$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} h_2(t,\sigma) h_1(\sigma,\tau) d\sigma \right] x(\tau) d\tau$$
Change order of integration
$$h_{1,2}(t,\tau)$$

Cascade of linear time-varying systems

S1, S2 have impulse response functions $h_1(t,\sigma)$, $h_2(t,\sigma)$

$$h_{1,2}(t,\tau) = \int_{-\infty}^{\infty} h_2(t,\sigma) h_1(\sigma,\tau) d\sigma$$

Impulse response of the cascade.

Note: in general, $h_{1,2} \neq h_{2,1}$.

LTV systems do not commute

Example: LTV systems do not commute

$$x \xrightarrow{S1} y \xrightarrow{S2} z$$

$$y(t) = x(t)\cos(t), \qquad z(t) = \int_{-\infty}^{t} y(\sigma)d\sigma$$

Applying
$$x(t) = \delta(t)$$
 $\Longrightarrow y(t) = \delta(t)\cos(t)$ $\Longrightarrow z(t) = u(t)$
= $\delta(t)$

Therefore $h_{1,2}(t,0) = u(t)$

x S2 V S1 W
$$v(t) = \int_{-\infty}^{t} x(\sigma)d\sigma, \qquad w(t) = v(t)\cos(t).$$

Applying
$$x(t) = \delta(t) \implies v(t) = u(t) \implies w(t) = u(t)\cos(t)$$

Therefore
$$h_{2,1}(t,0) = u(t)\cos(t) \neq h_{1,2}(t,0)$$

The step response of an LTI system

$$\mathbf{x} \longrightarrow \mathbf{y} \qquad \mathbf{y}(t) = T[\mathbf{x}(t)]$$

The step response is defined as: g(t) = T[u(t)]

We assume the system is time invariant, with impulse response h(t). Then:

$$g(t) = h * u = u * h = \int_{-\infty}^{\infty} u(t - \sigma)h(\sigma)d\sigma = \int_{-\infty}^{t} h(\sigma)d\sigma$$

$$g(t) = \int_{-\infty}^{t} h(\sigma) d\sigma, \qquad \frac{dg}{dt} = h$$

LTI systems and differentiation

$$\frac{dg}{dt} = h$$
 means that $\frac{d}{dt}T[u(t)] = T\left[\frac{du}{dt}\right]$

More generally,
$$\frac{d}{dt}T[x(t)] = T\left[\frac{dx}{dt}\right]$$
 for any $x(t)$

Proof: let y(t) = T[x(t)]. Since T is LTI we have

$$\frac{y(t+\tau)-y(t)}{\tau} = \frac{T[x(t+\tau)]-T[x(t)]}{\tau} = T\left[\frac{x(t+\tau)-x(t)}{\tau}\right]$$

Taking limit as $\tau \to 0$, we have $\frac{dy}{dt} = T \left[\frac{dx}{dt} \right]$.

$$\frac{d}{dt}T[x(t)] = T\left[\frac{dx}{dt}\right]$$
, for T linear time invariant.

$$\longrightarrow \frac{d}{dt} \longrightarrow T \longrightarrow = \longrightarrow T \longrightarrow \frac{d}{dt} \longrightarrow$$

Another way to see it: LTI systems commute,

and the "differentiator" $\frac{d}{dt}$ is also LTI:

$$\frac{d}{dt} [x(t-\tau)] = \frac{dx}{dt} (t-\tau)$$

Q: What is the impulse response of the differentiator?

A: $\frac{d\delta}{dt}$. But what is this?

The derivative of delta.

A natural definition would be $\frac{d\delta}{dt} = \lim_{\tau \to 0} \frac{\delta(t+\tau) - \delta(t)}{\tau}$.

This is the limit of a pair of opposing impulses, of increasing magnitude and becoming close together in time.

Strange object, rarely encountered in physical models, or in the rest of this course.

One example: an electric **dipole:** a pair of positive and negative electric charges, becoming close together in *space*.

Laplace Transforms

- Time-domain tools for studying systems: differential equations and convolutions.
- We want a more convenient analytical tool.
- Idea: transform time-domain functions to functions in another domain.

$$f(t) \xrightarrow{\mathcal{L}} F(s)$$

• This mapping should be such that the system operations become simpler.

Laplace Transform – Definition

Given a time-domain function f(t), its Laplace transform is the function of the complex variable s

defined by
$$F(s) = \int_{0}^{\infty} e^{-st} f(t) dt$$
.

Remarks:

- The integral will be defined only for *s* in a region of the complex plane (more on this later).
- The Laplace transform maps one function f(t) to the other F(s). We denote this by

$$F(s) = \mathcal{L}[f(t)]$$

Example:
$$f(t) = e^{-t}$$
; $F(s) = \int_{0}^{\infty} e^{-st} e^{-t} dt = \int_{0}^{\infty} e^{-(s+1)t} dt$

Assume first that $s \in \mathbb{R}$. Then the integral converges only for s > -1. (s-1) (s-1

Now for complex $s = \alpha + i \omega$:

$$\left|e^{-(s+1)t}\right| = \left|e^{-(\alpha+1)t}e^{-i\omega t}\right| = e^{-(\alpha+1)t}$$

$$\int_{0}^{\infty} \left| e^{-(s+1)t} \right| dt \quad \text{converges for } \alpha = \text{Re}[s] > -1.$$

$$\int_{0}^{\infty} e^{-(s+1)t} dt$$
 is absolutely convergent for $\text{Re}[s] > -1$.

Example:
$$f(t) = e^{-t}$$
; $F(s) = \int_{0}^{\infty} e^{-st} e^{-t} dt = \int_{0}^{\infty} e^{-(s+1)t} dt$

Re[s] > -1 is called the domain of convergence or region of convergence (DOC or ROC) of the Laplace transform $\mathcal{L} \lceil e^{-t} \rceil$.

Inside this DOC, we compute

$$F(s) = \int_{0}^{\infty} e^{-(s+1)t} dt = \frac{e^{-(s+1)t}}{-(s+1)} \Big|_{0}^{\infty} \underbrace{=}_{\text{Re}[s] > -1} \left(0 - \frac{1}{-(s+1)}\right) = \frac{1}{(s+1)}$$

Laplace Transform – Remarks

- We integrate in $t \in [0, +\infty)$. This is a "one-sided" Laplace transform. Values of f(t) for negative time are irrelevant.
- Some books also define the "bilateral" Laplace transform, integrating on $(-\infty, +\infty)$. We will not use it in this course.
- Still, to emphasize onesided-ness we often write $\mathcal{L}[f(t)u(t)]$. This reaffirms that only $[0,+\infty)$ counts. For instance,

$$\mathcal{L}\Big[e^{-t}u(t)\Big] = \frac{1}{s+1}.$$

• The point t = 0 is included in the integration; more precisely,

$$F(s) = \int_{0-}^{\infty} e^{-st} f(t) dt. \quad \text{Example: } \mathcal{L}[\delta(t)] = \int_{0-}^{\infty} e^{-st} \delta(t) dt = 1.$$

Table of Basic Laplace Transforms

f(t)	F(s)	DOC
$\delta(t)$	1	All $s \in \mathbb{C}$
$e^{at}u(t)$	$\frac{1}{s-a}$	$\operatorname{Re}[s] > \operatorname{Re}[a]$
u(t)	$\frac{1}{s}$	$\operatorname{Re}[s] > 0$
$t^n u(t)$	$\frac{n!}{s^{n+1}}$	$\operatorname{Re}[s] > 0$
$\cos(\omega t)u(t)$	$\frac{s}{s^2 + \omega^2}$	$\operatorname{Re}[s] > 0$
$\sin(\omega t)u(t)$	$\frac{\omega}{s^2 + \omega^2}$	$\operatorname{Re}[s] > 0$

$$r(t) = t u(t)$$

$$R(s) = \int_{0}^{\infty} \underbrace{t}_{u} \underbrace{e^{-st}}_{dv} \underbrace{dt}_{e} = \underbrace{\frac{t}{s}}_{e} \underbrace{e^{-st}}_{-s} \Big|_{0}^{\infty} - \int_{0}^{\infty} \underbrace{e^{-st}}_{-s} dt$$

$$= \underbrace{\frac{1}{s}}_{Re[s]>0} \int_{0}^{\infty} e^{-st} dt = \frac{1}{s} \cdot \left(\underbrace{\frac{e^{-st}}{-s}}_{-s} \Big|_{0}^{\infty} \right)$$

$$= \underbrace{\frac{1}{s}}_{Re[s]>0} \cdot \left(0 - \underbrace{\frac{1}{-s}}_{-s} \right) = \underbrace{\frac{1}{s^{2}}}_{s}$$

DOC and poles.

A pole of a function F(s) is a point $s_0 \in \mathbb{C}$ where $\lim_{s \to s_0} F(s) = \infty$. For example,

$$F(s) = \frac{(s+7)}{s(s-2)(s^2+1)}$$

has poles at $0, 2, \pm i$.

DOC of the (one-sided) Laplace transform: to the right of the right-most pole (the one with greatest real part).