SCHOOL OF ELECTRONIC ENGINEERING AND COMPUTER SCIENCE QUEEN MARY UNIVERSITY OF LONDON

CBU5201 Principles of Machine Learning Supervised learning: Classification I

Dr Chao Liu

Credit to Dr Jesús Reguena Carrión

Oct 2023

Agenda

Formulating classification problems

Linear classifiers

Logistic model

Nearest neighbours

Summary

Best, but risky, linear solutions

Draw two linear boundaries that achieve an accuracy A = 1. Which one would you choose? Why?

If you prefer one over the other, you might be inadvertently assessing their **generalisation ability** and modelling the **distribution of samples**. Your unconscious ML mind is working faster than your conscious mind!

Keep that boundary away from me!

As we get closer to the decision boundary, life gets harder for a classifier: it is **noise territory** and we should beware of **jumpy samples**.

The **further** we are from the boundary, the **higher our certainty** that we are classifying samples correctly.

The logistic model

The logistic function p(d) is defined as

$$p(d) = \frac{e^d}{1 + e^d} = \frac{1}{1 + e^{-d}}$$

Note that

- p(0) = 0.5.
- As $d \to \infty$, $p(d) \to 1$.
- As $d \to -\infty$, $p(d) \to 0$.

The logistic model

Given a linear boundary w and a predictor vector x_i , the quantity $w^T x_i$ can be interpreted as the **distance** from the sample to the boundary.

If we set $d = \mathbf{w}^T \mathbf{x}_i$ in the logistic function, we get:

$$p(\boldsymbol{w}^T \boldsymbol{x}_i) = \frac{e^{\boldsymbol{w}^T \boldsymbol{x}_i}}{1 + e^{\boldsymbol{w}^T \boldsymbol{x}_i}}$$

For a fixed w, we will simply denote it as $p(x_i)$ to simplify the notation:

- When $w^Tx \to \infty$, the logistic function $p(x_i) \to 1$
- When $\mathbf{w}^T \mathbf{x} \to -\infty$, the logistic function $p(\mathbf{x}_i) \to 0$

We will use the logistic function to quantify the notion of **certainty** in classifiers. This certainty is a quantity between 0 and 1.

The logistic model

Consider a linear classifier w that labels samples such that $w^T x_i > 0$ as o and samples such that $w^T x_i < 0$ as o.

Notice that:

- If $\mathbf{w}^T \mathbf{x}_i = 0$ (\mathbf{x}_i is on the boundary), $p(\mathbf{x}_i) = 0.5$.
- If $w^T x_i > 0$ (x_i is in the o region), $p(x_i) \to 1$ as we move away from the boundary .
- If $w^T x_i < 0$ (x_i is in the o region), $p(x_i) \to 0$ as we move away from the boundary.

Here is the crucial point, so use all your neurons:

- $p(x_i)$ is the classifier's certainty that $y_i = 0$ true.
- $1 p(x_i)$ is the classifier's certainty that $y_i = 0$ true.

Visualising logistic regression

The logistic classifier

We can obtain the classifier's certainty that x_i belongs to either o or o. Can we calculate the certainty for a **labelled dataset** $\{(x_i, y_i)\}$?

The answer is yes, by **multiplying** the individual certainties:

$$L = \prod_{y_i = \mathbf{0}} (1 - p(\mathbf{x}_i)) \prod_{y_i = \mathbf{0}} p(\mathbf{x}_i)$$

L is known as the **likelihood function** and defines a **quality metric**. Taking logarithms, we obtain the **log-likelihood**:

$$l = \sum_{y_i = \mathbf{0}} \log \left[1 - p(\mathbf{x}_i) \right] + \sum_{y_i = \mathbf{0}} \log \left[p(\mathbf{x}_i) \right]$$

The linear classifier that maximises L or l is known as the **Logistic** Regression classifier. It can be found using gradient descent.

Example I

- Let's define $d_i = \boldsymbol{w}^T \boldsymbol{x}_i$
- We can rewrite the logistic function as

$$p(d_i) = \frac{e^{d_i}}{1 + e^{d_i}}$$

■ For instance p(0) = 0.5, $p(1) \approx 0.73$, $p(2) \approx 0.88$, $p(-1) \approx 0.27$ and $p(-2) \approx 0.12$

Assume this linear classifier labels samples on the right half-plane as \triangle and samples on the left half-plane as \square .

Then $p(\Delta) \approx 0.88$, $1 - p(\Box) \approx 0.88$ and $L = p(\Delta) (1 - p(\Box)) \approx 0.77$.

Example II

The global certainty of each classifier (i.e. boundary) is:

- $L = p(\triangle) (1 p(\square)) \approx 0.70$
- $L = p(\triangle) (1 p(\square)) \approx 0.77$
- $L = p(\triangle) (1 p(\square)) \approx 0.70$

Example III

The global certainty of each classifier (i.e. boundary) is:

- *L* ≈ 0.49
- *L* ≈ 0.60
- $L \approx 0.49$

Example IV

The global certainty of each classifier (i.e. boundary) is:

- *L* ≈ 0.20
- *L* ≈ 0.47
- $L \approx 0.57$

Agenda

Formulating classification problems

Linear classifiers

Logistic model

Nearest neighbours

Summary

Parametric and non-parametric approaches

Linear classifiers belong to the family of **parametric** approaches: a shape is assumed (in this case linear) and our dataset is used to find the best boundary amongst all the boundaries with the preselected shape.

Non-parametric approaches offer a more flexible alternative, as they do not assume any type of boundary. In this section, we will study a popular non-parametric approach, namely **k Nearest Neighbours** (kNN).

Nearest Neighbours

In nearest neighbours (NN), new samples are assigned the **label of the closest** (*most similar*) **training sample**. Therefore:

- Boundaries are not defined explicitly (although they exist and can be obtained).
- The whole training dataset needs to be **memorised**. That's why sometimes we say NN is an **instance-based method**.

Boundaries in Nearest Neighbours classifiers

Boundaries in Nearest Neighbours classifiers

k Nearest Neighbours

Boundaries in nearest neighbours classifiers can be too complex and hard to interpret. Can we smooth them?

K nearest neighbours (kNN) is a simple extension of nearest neighbours that proceeds as follows. Given a new sample x:

- We calculate the distance to all the training samples x_i .
- Extract the *K* closest samples (neighbours).
- Obtain the number of neighbours that belong to each class.
- Assign the label of the most popular class among the neighbours.

Boundaries in kNN classifiers

Boundaries in kNN classifiers

k Nearest Neighbours

Note that:

- There is always an implicit boundary, although it is not used to classify new samples.
- As K increases, the boundary becomes less complex. We move away from overfitting (small K) to underfitting (large K) classifiers.
- In binary problems, the value of K is usually an odd number. The idea is to prevent situations where half of the nearest neighbours of a sample belong to each class.
- kNN can be easily implemented in multi-class scenarios.

Agenda

Formulating classification problems

Linear classifiers

Logistic model

Nearest neighbours

Summary

Machine learning classifiers

- Classifiers are partitions of the predictor space into decision regions separated by boundaries.
- Each decision region is associated with one label.
- In machine learning, classifiers are built using a dataset (otherwise it's not machine learning!).

Flexibility and complexity in classifiers

- The notions of flexibility, complexity, interpretability, overfitting and underfitting also apply to classifiers.
- Linear boundaries are simple and rigid; kNN produces boundaries whose complexity depends on the value of *K*.
- Logistic regression is a strategy to train linear classifiers. It's called regression because indirectly we solve a regression problem or the classifier's certainty.
- Weirdly, kNN does not involve training as it uses all the samples each time a new sample is to be classified.

Hey, hold on a second, what's going on?

- In machine learning we use a quality metric to define what we mean by the best model.
- We have presented two quality metrics: **accuracy** and **error rate**.
- However, neither the logistic regression nor kNN classifiers use the notion of accuracy.
- What's going on?