Exploratory Data Analysis (EDA)

Introduction

This case study aims to give us an idea of applying EDA in a real business scenario. In this case study, apart from applying the techniques that we have learnt in the EDA module, we will also develop a basic understanding of risk analytics in banking and financial services and understand how data is used to minimize the risk of losing money while lending to customers.

Importing required libraries:

```
import numpy as np
import pandas as pd
import os
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn
from sklearn.model_selection import train_test_split
import statsmodels
import statsmodels.api as sm
from scipy.stats import kurtosis
import scipy
```

Importing Data from CSV

```
[ ] df=pd.read_csv("application_data (1).csv")
[ ] pa_df=pd.read_csv("previous_application.csv")
[ ] col_df=pd.read_csv("columns_description.csv", encoding='latin1')
```

Viewing the Dataset

1. Viewing the Dataset of application_data

2. Viewing the Dataset of previous_application

3. Viewing the Dataset of Columns_Description

col_df.head()

	Unnamed:	0	Table	Row	Description	Special
0		1	application_data	SK_ID_CURR	ID of loan in our sample	NaN
1		2	application_data	TARGET	Target variable (1 - client with payment diffi	NaN
2		5	application_data	NAME_CONTRACT_TYPE	Identification if loan is cash or revolving	NaN
3		6	application_data	CODE_GENDER	Gender of the client	NaN
4		7	application_data	FLAG_OWN_CAR	Flag if the client owns a car	NaN

Checking the shape of dataset

```
#checking the shape of the dataset "application_data"
appl_data.shape

(307511, 122)

#checking the shape of the dataset "previous_application"
pa_df.shape

(1670214, 37)

#checking the shape of the dataset "columns_description"
col_df.shape

(160, 5)
```

Checking the dimension of dataset

```
#checking the dimension of the "application_data" data set -- We have a two dimension dataset
appl_data.ndim

2
#checking the dimension of the "previous_application" data set -- We have a two dimension dataset
pa_df.ndim
```

Checking the datatype of dataset

#checking the data types of columns of data set "application_data"
appl_data.dtypes

SK_ID_CURR	int64
TARGET	int64
NAME_CONTRACT_TYPE	object
CODE_GENDER	object
FLAG_OWN_CAR	object
AMT_REQ_CREDIT_BUREAU_DAY	float64
AMT_REQ_CREDIT_BUREAU_WEEK	float64
AMT_REQ_CREDIT_BUREAU_MON	float64
AMT_REQ_CREDIT_BUREAU_QRT	float64
AMT_REQ_CREDIT_BUREAU_YEAR	float64
Length: 122, dtype: object	

#checking the data types of columns of data set "previous_application"
pa_df.dtypes

SK_ID_PREV	int64
SK_ID_CURR	int64
NAME_CONTRACT_TYPE	object
AMT_ANNUITY	float64
AMT_APPLICATION	float64
AMT_CREDIT	float64
AMT_DOWN_PAYMENT	float64
AMT_GOODS_PRICE	float64
WEEKDAY_APPR_PROCESS_START	object
HOUR_APPR_PROCESS_START	int64
FLAG_LAST_APPL_PER_CONTRACT	object
NFLAG_LAST_APPL_IN_DAY	int64
RATE_DOWN_PAYMENT	float64
RATE_INTEREST_PRIMARY	float64
RATE_INTEREST_PRIVILEGED	float64
NAME_CASH_LOAN_PURPOSE	object
NAME_CONTRACT_STATUS	object
DAYS_DECISION	int64
NAME_PAYMENT_TYPE	object
CODE_REJECT_REASON	object
NAME_TYPE_SUITE	object
NAME CLIENT TYPE	obiect

Statistical summary of all numeric-typed (int, float) columns (from describe command)

	SK_ID_CURR	TARGET	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY AM	NT_GOODS_PRICE R	EGION_POPULATION_RELATIVE					
count	31081.000000	31081.000000	31081.000000	3.108100e+04	3.108100e+04	31081.000000	3.105500e+04	31081.000000	3				
mean	118092.231524	0.080274	0.415881	1.720948e+05	6.001104e+05	27150.678115	5.394902e+05	0.020760	-1				
std	10423.676420	0.271721	0.722285	6.700652e+05	4.030235e+05	14675.416544	3.704613e+05	0.013759					
min	100002.000000	0.000000	0.000000	2.565000e+04	4.500000e+04	2052.000000	4.500000e+04	0.000533	-2				
25%	109063.000000	0.000000	0.000000	1.125000e+05	2.700000e+05	16452.000000	2.385000e+05	0.010006	-1				
50%	118135.000000	0.000000	0.000000	1.467000e+05	5.172660e+05	24939.000000	4.500000e+05	0.018850	-1				
75%	127119.000000	0.000000	1.000000	2.025000e+05	8.086500e+05	34681.500000	6.795000e+05	0.028663	-1				
max	136075.000000	1.000000	9.000000	1.170000e+08	4.050000e+06	258025.500000	4.050000e+06	0.072508	-				
						8 rows × 106 columns pa_df.describe()							
	SK_ID_PREV												
	SK_ID_I KEV	SK_ID_CURR	AMT_ANNUITY	AMT_APPLICATION	AMT_CREDIT	AMT_DOWN_PAYMENT	AMT_GOODS_PRICE	HOUR_APPR_PROCESS_START	ГΝ				
ount	1.670214e+06	SK_ID_CURR 1.670214e+06	AMT_ANNUITY 1.297979e+06	-	AMT_CREDIT 1.670213e+06	AMT_DOWN_PAYMENT 7.743700e+05	AMT_GOODS_PRICE 1.284699e+06						
	1.670214e+06			-				3 1.670214e+06	6				
count mean std	1.670214e+06 1.923089e+06	1.670214e+06	1.297979e+06	1.670214e+06 1.752339e+05	1.670213e+06	7.743700e+05	1.284699e+06	1.670214e+06 1.248418e+01	6 1				
mean	1.670214e+06 1.923089e+06	1.670214e+06 2.783572e+05	1.297979e+06 1.595512e+04	1.670214e+06 1.752339e+05 2.927798e+05	1.670213e+06 1.961140e+05	7.743700e+05 6.697402e+03	1.284699e+06	1.670214e+06 1.248418e+01 3.334028e+00	6 1 0				
mean std	1.670214e+06 1.923089e+06 5.325980e+05 1.000001e+06	1.670214e+06 2.783572e+05 1.028148e+05	1.297979e+06 1.595512e+04 1.478214e+04	1.670214e+06 1.752339e+05 2.927798e+05 0.000000e+00	1.670213e+06 1.961140e+05 3.185746e+05	7.743700e+05 6.697402e+03 2.092150e+04	1.284699e+06 2.278473e+05 3.153966e+05	1.670214e+06 1.248418e+01 3.334028e+00 0.000000e+00	6 1 0				
nean std min 25%	1.670214e+06 1.923089e+06 5.325980e+05 1.000001e+06 1.461857e+06	1.670214e+06 2.783572e+05 1.028148e+05 1.000010e+05	1.297979e+06 1.595512e+04 1.478214e+04 0.000000e+00	1.670214e+06 1.752339e+05 2.927798e+05 0.000000e+00 1.872000e+04	1.670213e+06 1.961140e+05 3.185746e+05 0.000000e+00	7.743700e+05 6.697402e+03 2.092150e+04 -9.000000e-01	1.284699e+06 2.278473e+05 3.153966e+05 0.000000e+06	1.670214e+06 1.248418e+01 3.334028e+00 0.000000e+01 1.000000e+01	6 1 0 0				
mean std min	1.670214e+06 1.923089e+06 5.325980e+05 1.000001e+06 1.461857e+06 1.923110e+06	1.670214e+06 2.783572e+05 1.028148e+05 1.000010e+05 1.893290e+05	1.297979e+06 1.595512e+04 1.478214e+04 0.000000e+00 6.321780e+03	1.670214e+06 1.752339e+05 2.927798e+05 0.000000e+00 1.872000e+04 7.104600e+04	1.670213e+06 1.961140e+05 3.185746e+05 0.000000e+00 2.416050e+04	7.743700e+05 6.697402e+03 2.092150e+04 -9.000000e+01 0.000000e+00	1.284699e+06 2.278473e+05 3.153966e+05 0.000000e+00 5.084100e+04	1.670214e+06 1.248418e+01 3.334028e+00 0.000000e+00 4.1.00000e+01	5 1 0 0				

Data Preparation

Creating a new dataframe using the columns of df

Checking the shape of new dataframe

```
#cheking shape of new data, we have now reduced our no of columns from 122 to 28 new_df.shape

(307511, 28)
```

Checking the names of columns of new dataframe

Renaming the column names

Checking for columns with null values

Using a for loop in Python, we can quickly figure out the number of missing values in each column. As mentioned above, "True" represents a missing value and "False" means the value is present in the dataset. In the body of the for loop the method ".value_counts()" counts the number of "True" values.

```
def null_values(new_df):
    return round((new_df.isnull().sum()*100/len(new_df)).sort_values(ascending = False),2)
```

Displaying columns with Percentage of null values

#displaying columns with Percentage of null values
null_values(new_df)

BASEMENTAREA_AVG	58.52
EXT_SOURCE_1	56.38
APARTMENTS_AVG	50.75
OCCUPATION_TYPE	31.35
EXT_SOURCE_3	19.83
EXT_SOURCE_2	0.21
GOODS_PRICE	0.09
ANNUITY	0.00
Family_MEMBERS_no	0.00
LAST_PHONE_CHANGE	0.00
ORGANIZATION_TYPE	0.00
perman_add_NOT_WORK_add	0.00
Perman_add_NOT_cont_REGION	0.00
REGION_CLIENT_CITY	0.00
REGION_CLIENT	0.00
Cust_ID	0.00
INCOME	0.00
MOBIL_given	0.00
DAYS_ID_PUBLISH	0.00
REGISTRATION_change	0.00
Work_Exp	0.00
age	0.00
curr HOUSING TYPE	9.99

```
#number of null values per column
print("missing values : ",new_df.isna().sum().sort_values(ascending = False))
```

179943

missing values : BASEMENTARE	A AVG
EXT_SOURCE_1	_ 173378
APARTMENTS_AVG	156061
OCCUPATION_TYPE	96391
EXT_SOURCE_3	60965
EXT_SOURCE_2	660
GOODS_PRICE	278
ANNUITY	12
Family_MEMBERS_no	2
LAST_PHONE_CHANGE	1
ORGANIZATION_TYPE	0
perman_add_NOT_WORK_add	0
Perman_add_NOT_cont_REGION	0
REGION_CLIENT_CITY	0
REGION_CLIENT	0
Cust_ID	0
INCOME	0
MOBIL_given	0
DAYS_ID_PUBLISH	0
REGISTRATION_change	0
Work_Exp	0
age	0
curr_HOUSING_TYPE	0

Summary:

Columns having maximum null values

BASEMENTAREA_AVG 58.52 EXT_SOURCE_1 56.38

APARTMENTS_AVG 50.75

OCCUPATION_TYPE 31.35

EXT_SOURCE_3 19.83

these are the columns having maximum null values

Replacing null values with NAN

We can deal with missing data by the following ways:

- 1.Drop data
 - a. Drop the whole row
 - b. Drop the whole column
- 2.Replace data
 - a. Replace it by mean
 - b. Replace it by frequency
 - c. Replace it based on other functions

Whole columns should be dropped only if most entries in the column are empty. In our dataset, none of the columns are empty enough to drop entirely.

We have some freedom in choosing which method to replace data; however, some methods may seem more reasonable than others.

```
#Replacing null values with NAN for all the columns
new_df=new_df.replace(np.nan, 'NAN')
```

```
#columns after replacing with Nan
print("missing values : ",new_df.isna().sum().sort_values(ascending = False))
```

0

```
missing values : Cust_ID
INCOME
BASEMENTAREA_AVG
APARTMENTS AVG
                               0
EXT SOURCE 3
                               0
EXT_SOURCE_2
EXT SOURCE 1
ORGANIZATION_TYPE
perman_add_NOT_WORK_add
                               0
Perman_add_NOT_cont_REGION
                               0
REGION_CLIENT_CITY
                               0
REGION_CLIENT
                               0
Family_MEMBERS_no
                               0
OCCUPATION_TYPE
                               0
EMAIL given
                               0
MOBIL_given
                               0
```

Understanding of the variables Categorical variables

```
#taking info to check Column name, Non-Null Count, Dtype and sape of data (307511X28)
new_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 307511 entries, 0 to 307510
Data columns (total 28 columns):
 # Column
                                                         Non-Null Count Dtype
--- -----
                                                           -----
 0 Cust ID
                                                           307511 non-null int64
 1 INCOME
                                                        307511 non-null float64
2 Loan_AMT 307511 non-null float64
3 ANNUITY 307511 non-null object
4 GOODS_PRICE 307511 non-null object
5 INCOME_TYPE 307511 non-null object
6 EDUCATION 307511 non-null object
7 FAMILY_STATUS 307511 non-null object
8 curr_HOUSING_TYPE 307511 non-null object
9 age 307511 non-null int64
10 Work Exp 307511 non-null int64
 9 age
10 Work_Exp
 10 Work_Exp 307511 non-null int64
11 REGISTRATION_change 307511 non-null float64
12 DAYS_ID_PUBLISH 307511 non-null int64
13 MOBIL_given 307511 non-null int64
14 EMAIL_given 307511 non-null int64
15 OCCUPATION TYPE 307511 non-null object
```

Checking statistical summary of all the numeric columns

	ticsal summary describe()	of all the nu	umric columns						
	Cust_ID	INCOME	Loan_AMT	age	Work_Exp	REGISTRATION_change	DAYS_ID_PUBLISH	MOBIL_given	EMAIL_given
count	307511.000000	3.075110e+05	3.075110e+05	307511.000000	307511.000000	307511.000000	307511.000000	307511.000000	307511.000000
mean	278180.518577	1.687979e+05	5.990260e+05	-16036.995067	63815.045904	-4986.120328	-2994.202373	0.999997	0.056720
std	102790.175348	2.371231e+05	4.024908e+05	4363.988632	141275.766519	3522.886321	1509.450419	0.001803	0.231307
min	100002.000000	2.565000e+04	4.500000e+04	-25229.000000	-17912.000000	-24672.000000	-7197.000000	0.000000	0.000000
25%	189145.500000	1.125000e+05	2.700000e+05	-19682.000000	-2760.000000	-7479.500000	-4299.000000	1.000000	0.000000
50%	278202.000000	1.471500e+05	5.135310e+05	-15750.000000	-1213.000000	-4504.000000	-3254.000000	1.000000	0.000000
75%	367142.500000	2.025000e+05	8.086500e+05	-12413.000000	-289.000000	-2010.000000	-1720.000000	1.000000	0.000000
max	456255.000000	1.170000e+08	4.050000e+06	-7489.000000	365243.000000	0.000000	0.000000	1.000000	1.000000

Checking correlation summary of all the numeric columns

<pre>#checking corrilation between columns of numeric data new_df.corr()</pre>										
		Cust_ID	INCOME	Loan_AMT	age	Work_Exp	REGISTRATION_change	DAYS_ID_PUBLISH	MOBIL_given	EMAIL_given
	Cust_ID	1.000000	-0.001820	-0.000343	-0.001500	0.001366	-0.000973	-0.000384	0.002804	0.000281
	INCOME	-0.001820	1.000000	0.156870	0.027261	-0.064223	0.027805	0.008506	0.000325	0.038378
	Loan_AMT	-0.000343	0.156870	1.000000	-0.055436	-0.066838	0.009621	-0.006575	0.001436	0.016632
	age	-0.001500	0.027261	-0.055436	1.000000	-0.615864	0.331912	0.272691	-0.003084	0.088208
	Work_Exp	0.001366	-0.064223	-0.066838	-0.615864	1.000000	-0.210242	-0.272378	0.000818	-0.062112
	REGISTRATION_change	-0.000973	0.027805	0.009621	0.331912	-0.210242	1.000000	0.101896	-0.000100	0.034388
	DAYS_ID_PUBLISH	-0.000384	0.008506	-0.006575	0.272691	-0.272378	0.101896	1.000000	-0.002293	0.027505
	MOBIL_given	0.002804	0.000325	0.001436	-0.003084	0.000818	-0.000100	-0.002293	1.000000	0.000442
	EMAIL_given	0.000281	0.038378	0.016632	0.088208	-0.062112	0.034388	0.027505	0.000442	1.000000
	REGION_CLIENT	-0.001075	-0.085465	-0.101776	0.009361	0.032750	0.080210	-0.005103	0.000186	-0.052063
	SECION OFFIT OF	0.004400	0.004705	0.440045	0.000070	0.004004	0.074000	0 007707	0.000440	0.050770

Checking statistical summary of all the non-numeric columns

	cicsal summary describe(includ		n numric colum	ns						
	Cust_ID	INCOME	Loan_AMT	ANNUITY	GOODS_PRICE	INCOME_TYPE	EDUCATION	FAMILY_STATUS	curr_HOUSING_TYPE	age
count	307511.000000	3.075110e+05	3.075110e+05	307511.0	307511.0	307511	307511	307511	307511	307511.000000
unique	NaN	NaN	NaN	13673.0	1003.0	8	5	6	6	NaN
top	NaN	NaN	NaN	9000.0	450000.0	Working	Secondary / secondary special	Married	House / apartment	NaN
freq	NaN	NaN	NaN	6385.0	26022.0	158774	218391	196432	272868	NaN
mean	278180.518577	1.687979e+05	5.990260e+05	NaN	NaN	NaN	NaN	NaN	NaN	-16036.995067
std	102790.175348	2.371231e+05	4.024908e+05	NaN	NaN	NaN	NaN	NaN	NaN	4363.988632
min	100002.000000	2.565000e+04	4.500000e+04	NaN	NaN	NaN	NaN	NaN	NaN	-25229.000000
25%	189145.500000	1.125000e+05	2.700000e+05	NaN	NaN	NaN	NaN	NaN	NaN	-19682.000000
50%	278202.000000	1.471500e+05	5.135310e+05	NaN	NaN	NaN	NaN	NaN	NaN	-15750.000000
750/	367142 500000	2.025000-1.05	9.0965000±05	NoN	NoN	NoN	NoN	NoN	NoN	12413 000000

Checking unique values for categorical columns and Visualizing data

Importing libraries

```
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
```

Unique income type

```
#unique value INCOME_TYPE
new_df.INCOME_TYPE.unique()
```

Counting and plotting unique income type

```
a=new_df.INCOME_TYPE.value_counts()
a
```

Working	158774
Commercial associate	71617
Pensioner	55362
State servant	21703
Unemployed	22
Student	18
Businessman	10
Maternity leave	5
Name: TNCOME TYPE dt	vne inta

Name: INCOME_TYPE, dtype: int64

plt.barh(a.index, a)

<BarContainer object of 8 artists>


```
plt.pie(x=a, labels=a.index, autopct='%1.2f%%')
plt.legend()
plt.show()
```


It can be concluded that clients with income type working class are maximum.

Unique education type

Counting and plotting unique education type

```
b=new_df.EDUCATION.value_counts()
b
```

Secondary / secondary special 218391
Higher education 74863
Incomplete higher 10277
Lower secondary 3816
Academic degree 164

Name: EDUCATION, dtype: int64

<BarContainer object of 5 artists>


```
plt.pie(x=b, labels=b.index, autopct='%1.2f%%')
plt.legend()
plt.show()
```


It can be concluded that clients with the education of secondary/secondary special are maximum.

Unique family status

Counting and plotting unique family status

```
c=new_df.FAMILY_STATUS.value_counts()
c
```

Married	196432
Single / not married	45444
Civil marriage	29775
Separated	19770
Widow	16088
Unknown	2

Name: FAMILY_STATUS, dtype: int64

```
plt.barh(c.index, c)
```

<BarContainer object of 6 artists>


```
plt.pie(x=c, labels=c.index, autopct='%1.2f%%')
plt.legend()
plt.show()
```


It can be concluded that clients with married family status are maximum.

Unique housing type

Counting and plotting unique housing type

```
d=new_df.curr_HOUSING_TYPE.value_counts()
d
```

House / apartment 272868
With parents 14840
Municipal apartment 11183
Rented apartment 4881
Office apartment 2617
Co-op apartment 1122

Name: curr_HOUSING_TYPE, dtype: int64

```
plt.barh(d.index, d)
```

<BarContainer object of 6 artists>


```
plt.pie(x=d, labels=d.index, autopct='%1.2f%%')
plt.legend()
plt.show()
```


It can be concluded that clients living in housing type of house/apartment are maximum.

Unique organization type

```
new_df.ORGANIZATION_TYPE.unique()
```

```
array(['Business Entity Type 3', 'School', 'Government', 'Religion',
    'Other', 'XNA', 'Electricity', 'Medicine',
    'Business Entity Type 2', 'Self-employed', 'Transport: type 2',
    'Construction', 'Housing', 'Kindergarten', 'Trade: type 7',
    'Industry: type 11', 'Military', 'Services', 'Security Ministries',
    'Transport: type 4', 'Industry: type 1', 'Emergency', 'Security',
    'Trade: type 2', 'University', 'Transport: type 3', 'Police',
    'Business Entity Type 1', 'Postal', 'Industry: type 4',
    'Agriculture', 'Restaurant', 'Culture', 'Hotel',
    'Industry: type 7', 'Trade: type 3', 'Industry: type 3', 'Bank',
    'Industry: type 9', 'Insurance', 'Trade: type 6',
    'Industry: type 9', 'Insurance', 'Trade: type 6',
    'Mobile', 'Trade: type 1', 'Industry: type 5', 'Industry: type 10',
    'Legal Services', 'Advertising', 'Trade: type 5', 'Cleaning',
    'Industry: type 13', 'Trade: type 4', 'Telecom',
    'Industry: type 8', 'Realtor', 'Industry: type 6'], dtype=object)
```

Counting unique organization type

new_df.ORGANIZATION_TYPE.value_counts()

Business Entity Type 3	67992
XNA	55374
Self-employed	38412
Other	16683
Medicine	11193
Business Entity Type 2	10553
Government	10404
School	8893
Trade: type 7	7831
Kindergarten	6880
Construction	6721
Business Entity Type 1	5984
Transport: type 4	5398
Trade: type 3	3492
Industry: type 9	3368
Industry: type 3	3278
Security	3247
Housing	2958
Industry: type 11	2704
Military	2634
Bank	2507
Agriculture	2454
Police	2341
Transport: type 2	2204
Postal	2157

For categorical data(Analyzing and visualizing)

Checking datatypes of columns for finding continuous data type.

new_df.dtypes	
Cust_ID	int64
INCOME	float64
Loan_AMT	float64
ANNUITY	object
GOODS_PRICE	object
INCOME_TYPE	object
EDUCATION	object
FAMILY_STATUS	object
curr_HOUSING_TYPE	object
age	int64
Work_Exp	int64
REGISTRATION_change	float64
DAYS_ID_PUBLISH	int64
MOBIL_given	int64
EMAIL_given	int64
OCCUPATION_TYPE	object
Family_MEMBERS_no	object
REGION_CLIENT	int64
REGION_CLIENT_CITY	int64
Perman_add_NOT_cont_REGION	int64
perman_add_NOT_WORK_add	int64
ORGANIZATION_TYPE	object
EXT_SOURCE_1	object
EXT_SOURCE_2	object

```
#taking only continues data into account
cat_df=new_df[['Cust_ID','INCOME','Loan_AMT','ANNUITY','GOODS_PRICE']]
```

cat_df.head()

	Cust_ID	INCOME	Loan_AMT	ANNUITY	GOODS_PRICE
0	100002	202500.0	406597.5	24700.5	351000.0
1	100003	270000.0	1293502.5	35698.5	1129500.0
2	100004	67500.0	135000.0	6750.0	135000.0
3	100006	135000.0	312682.5	29686.5	297000.0
4	100007	121500.0	513000.0	21865.5	513000.0

#Checking Corrilation Between columns of numric continues data
cat_df.corr()

	Cust_ID	INCOME	Loan_AMT
Cust_ID	1.000000	-0.00182	-0.000343
INCOME	-0.001820	1.00000	0.156870
Loan_AMT	-0.000343	0.15687	1.000000

Plotting pairplot for continuous data to check the relation between columns

Showing relationship

sns.pairplot(data=cat_df) <seaborn.axisgrid.PairGrid at 0x7fd9ac019520> 400000 다. 3000000 200000 100000 1.2 1.0 0.8 INCOME 0.6 0.4 0.2 0.0 4 Loan_AMT 100000 200000 300000 400000 0.5 1.0 INCOME le8 le6 Cust_ID Loan_AMT

Handling Outliers

#Checking outliers for INCOME cat_df.INCOME.describe()

```
count 3.075110e+05
mean 1.687979e+05
std 2.371231e+05
min 2.565000e+04
25% 1.125000e+05
50% 1.471500e+05
75% 2.025000e+05
max 1.170000e+08
```

Name: INCOME, dtype: float64

```
sns.boxplot(cat_df.INCOME)
plt.title('Distribution of INCOME')
plt.show()
```

/usr/local/lib/python3.8/dist-packages/seaborn/_decorators.p
warnings.warn(

#Checking outliers for Loan Amount cat_df.Loan_AMT.describe()

```
count 3.075110e+05
       5.990260e+05
mean
std
      4.024908e+05
min
      4.500000e+04
25% 2.700000e+05
50% 5.135310e+05
      8.086500e+05
75%
       4.050000e+06
max
```

Name: Loan_AMT, dtype: float64

```
sns.boxplot(cat_df.Loan_AMT)
plt.title('Distribution of INCOME')
plt.show()
```

/usr/local/lib/python3.8/dist-packages/seaborn/_c warnings.warn(

Distribution of INCOME

Filtering data on bases of Loan amount for top 10 loan amounts

#Filterring data on bases of Laon amount for top 10 loan amounts
df_amt=cat_df.nlargest(10,columns='Loan_AMT')
df_amt.head()

	Cust_ID	INCOME	Loan_AMT	ANNUITY	GOODS_PRICE
14852	117337	760846.5	4050000.0	146002.5	4050000.0
17948	120926	783000.0	4050000.0	258025.5	4050000.0
110459	228135	864900.0	4050000.0	102384.0	4050000.0
119681	238782	931365.0	4050000.0	102514.5	4050000.0
120757	240007	587250.0	4050000.0	106969.5	4050000.0

Plotting graph for approved loan amount(analyzing and visualizing data)

```
#Plotting graph for approved loan amount
df_amt.plot.bar()
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fd9747a82b0>

Checking outliers for ANNUITY

```
cat_df.ANNUITY.dropna()

print("missing values from Annuty : ",cat_df.ANNUITY.isna().sum())

missing values from Annuty : 0
```

Checking outliers for GOODS_PRICE

```
#Checking outliers for GOODS_PRICE
cat_df.GOODS_PRICE.describe()

count     307511.0
unique     1003.0
top     450000.0
freq     26022.0
Name: GOODS_PRICE, dtype: float64
```

Find the top 10 correlation for the Client with payment difficulties and all other cases (Target variable).

```
new_df.TARGET.unique()
array([1, 0])
```

r=new_df.TARGET.value_counts()
r

0 2826861 24825

Name: TARGET, dtype: int64

plt.barh(r.index, r)

<BarContainer object of 2 artists>


```
plt.pie(x=r, labels=r.index, autopct='%1.2f%%')
plt.legend()
plt.show()
```


Conclusion:: 8.07% of people have payment difficulty

Binary Logistic Regression(taking into account Target as response variable)

```
dff=new_df[['Cust_ID','TARGET','INCOME','Loan_AMT','ANNUITY','GOODS_PRICE']]
```

General Regression:: at least 1 catagorical predictor(we create dummy var) and respoce is continues(we have target variable as catogorical data)

Checking for Target var vs Income

```
x = mydf[['INCOME']]
y=mydf[['TARGET']]

x=sm.add_constant(x)

/usr/local/lib/python3.8/dist-p
x = pd.concat(x[::order], 1)
```

	const	INCOME
0	1.0	202500.0
1	1.0	270000.0
2	1.0	67500.0
3	1.0	135000.0
4	1.0	121500.0
307506	1.0	157500.0
307507	1.0	72000.0
307508	1.0	153000.0
307509	1.0	171000.0
307510	1.0	157500.0

307511 rows × 2 columns

- mod = sm.Logit(y,x).fit()
- Optimization terminated successfully.

 Current function value: 0.280512

 Iterations 7

```
print(mod.summary())
                  Logit Regression Results
  ______
  Dep. Variable:
                     TARGET No. Observations:
                                              307511
             MLE Df Model:
Sat, 31 Dec 2022 Pseudo R-squ.:
11:29:51 Log-Likelihood:
True LL-Null:
  Model:
                    Logit Df Residuals:
                                             307509
  Method:
                                           0.0001219
  Date:
  Time:
                                            -86260.
-86271.
  converged:
  Covariance Type: nonrobust LLR p-value:
                                           4.514e-06
  ______
            coef std err z P > |z| [0.025 0.975]
         -2.3800 0.013 -176.495 0.000 -2.406
  INCOME -3.142e-07 7.08e-08 -4.435 0.000 -4.53e-07 -1.75e-07
  ______
```

p=value is <0.05 so Ho is rejected and it means that Income affect the person will default or not on loan repayment

Checking for Target Var vs Loan_AMT

```
x = mydf[['Loan_AMT']]
y=mydf[['TARGET']]

[ ] x=sm.add_constant(x)

/usr/local/lib/python3.8/dist
x = pd.concat(x[::order], 1
```


0	х		
8		const	Loan_AMT
	0	1.0	406597.5
	1	1.0	1293502.5
	2	1.0	135000.0
	3	1.0	312682.5
	4	1.0	513000.0
	307506	1.0	254700.0
	307507	1.0	269550.0
	307508	1.0	677664.0
	307509	1.0	370107.0
	307510	1.0	675000.0

- mod1 = sm.Logit(y,x).fit()
- Optimization terminated successfully.

 Current function value: 0.280066

 Iterations 7
- print(mod1.summary())
 - Logit Regression Results ______ Dep. Variable: TARGET No. Observations: 307511 Model: Logit Df Residuals: 307509 Method: MLE Df Model: Sat, 31 Dec 2022 Pseudo R-squ.: Date: 0.001712 12:23:30 Log-Likelihood: Time: -86123. converged: True LL-Null: -86271. Covariance Type: nonrobust LLR p-value: 3.428e-66 ______ z P>|z| [0.025 0.975] -2.2617 0.012 -190.937 0.000 -2.285 -2.239 Loan AMT -2.946e-07 1.75e-08 -16.825 0.000 -3.29e-07 -2.6e-07 ______

p=value is <0.05 so Ho is rejected and it means that Income affect the person will default or not on loan repayment