1. Esfuerzos sísmicos

1.1. Ejercicio 1: método estático

Clase 1 (20210420)

Alumno: Franco Calvo

Figura 1: Consigna

Columnas	Secciones PB y P1	Secciones P2		
1 - 4 - 6 - 7 - 10 - 11	30 [cm] x 30 [cm]	25 [cm] x 25 [cm]		
- 13 - 16				
2 - 3 - 14 - 15	45 [cm] x 30 [cm]	30 [cm] x 25 [cm]		
5 – 8 – 9 – 12	30 [cm] x 45 [cm]	25 [cm] x 30 [cm]		

Vigas (Continuas)	PB y P1	P2		
Externas	20 [cm] x 50 [cm]	20 [cm] x 40 [cm]		
Internas	30 [cm] x 50 [cm]	30 [cm] x 40 [cm]		

	PB y P1	P2
Azotea	4,2 [KN/m²]	1,5 [KN/m²]
Entrepiso	4,5 [KN/m ²]	3,0 [KN/m ²]

Muros	Espesor	Peso Específico
Exterior	20 [cm]	15 [KN/m ³]
Interior	10 [cm]	1 [KN/m³] (Peso promedio en planta)

Las rigideces de piso son $K_{p_2}=204\,\mathrm{kN/cm},\,K_{p_1}=325\,\mathrm{kN/cm}$ y $K_{pb}=302\,\mathrm{kN/cm}$

1.1.1. Determinación de datos básicos

Del Capítulo 2 del reglamento encontramos:

- Zona 4.
- Tipo de suelo S_c .
- Grupo B. $\gamma_r = 1$
- \blacksquare Factor de ocurriencia: $f_1=0$ para azotea y $f_1=0.25$ para oficina.

Además, verificamos que estando en una estructura tipo B y estando en una Zona 4, no superamos una altura de $45\,\mathrm{m}.$

1.2. Deterimnación de carga gravitatorio de piso W_k

Según Art. 3.6. Ejemplo para 2º Piso:

Losas
$$\longrightarrow 18 \,\mathrm{m} * 18 \,\mathrm{m} * 4.2 \,\mathrm{kN/m^2} = 1360.8 \,\mathrm{kN}$$

Vigas
$$\longrightarrow (4 * 0.20 \text{ m} * 0.4 \text{ m} * 18 \text{ m} + 0.3 \text{ m} * 0.4 \text{ m} * 18 \text{ m}) * 25 = 360 \text{ kN}$$

Columnas
$$\longrightarrow 8 * ((0.25 \text{ m} * 0.25 \text{ m} + 30 \text{ m} * 25 \text{ m}) * 1.6 \text{ m}) * 25 \text{ kN/m}^3 = 44 \text{ kN}$$

Muros
$$\longrightarrow 4 * (2 m * 0.2 m * 18 m)) * 15 kN/m^2 + 4 * (1.6 m * 0.2 m * 18 m) * 15 kN/m^3 = 777.6 kN.$$

Alumno: Franco Calvo

El total de esto nos dará $G_3=2542.4\,\mathrm{kN}$. Realizando lo mismo para los otros pisos tenemos $G_2=3067\,\mathrm{kN}$ y $G_1=3171.5\,\mathrm{kN}$.

Agregamos a esto el factor de ocurrencia, y lo multiplicamos por una carga de $3\,\mathrm{kN/m^2}$ por el área del piso. Entonces:

$$W_3 = 2542 \, \mathrm{kN}$$

$$W_2=3310\,\mathrm{kN}$$

$$W_1 = 3415 \,\mathrm{kN}.$$

1.3. Cálculo de fuerza fundamental

Primero, sabemos que la fuerza será:

$$F_i = \frac{W_i * h_i}{\Sigma W_i * h_i}.$$

Luego, podemos aplicar una matriz como la que sigue:

$$\begin{bmatrix} K_{pb} + K_{p1} & -K_{p1} & 0 \\ -K_{p1} & K_{p1} + K_{p2} & -K_{p2} \\ 0 & K_{p2} & K_{p2} \end{bmatrix} \times \begin{bmatrix} U_1 \\ U_2 \\ U_3 \end{bmatrix} = \begin{bmatrix} F_1 \\ F_2 \\ F_3 \end{bmatrix}$$
 (Matriz deformaciones)

Todo esto es posible automatizarlo con la siguiente tabla:

Nivel	Wi [KN]	hi [m]	Wi · hi	F _i [KN]	ui [cm]	F _i ∙ui		Wi ∙ui²
2	2542	10,40	26436,8	0,4135	3,683 · 10 ⁻³	1,523 ·	10 ⁻³	34,477 · 10 ⁻³
1	3310	7,20	23832,0	0,3728	3,425 · 10 ⁻³	1,277 ·	10 ⁻³	38,829 · 10 ⁻³
PB	3415	4,00	13660,0	0,2137	2,116 · 10 ⁻³	0,452 ·	10 ⁻³	15,293 · 10 ⁻³
	9267		63928,8			3,252 ·	10 ⁻³	88,800 · 10 ⁻³

Figura 2: Tabla de calculo

Y aplicando eq. (Matriz deformaciones) podemos sacar las deformaciones, y por último también podemos encontrar el periodo de la siguiente forma:

$$T = 2 * \pi \sqrt{\frac{88,8 * 10^{-3}}{981 \text{ cm/s}^2 * 3,252 * 10^{-3}}} = 1.05 \text{ s.}$$

De cualquier forma podemos encontrar el **período fundamental aproximado**, deonminado T_a de la siguiente forma:

$$T_a = C_r * H^x = 0.0466 * 10.4^{0.9} = 0.38 \text{ s.}$$

Luego, verificamos la condición del Art. 6.2.3. que dice que el valor de período a utilizar debe cumplir con $T \leq C_u * T_a$. En nuestro caso, $C_i = 1,4$, en función de $a_s = 0,35$ que sale de la Tabla 3.1 del CIRSOC 103. Esto nos indica que el valor del período a adoptar será:

$$T = T_a * 1.4 = 0.35 * 1.4 = 0.49 \,\mathrm{s}.$$