Индивидуальное домашнее задание по теории вероятностей (2 модуль)

- 1. В наборе n_1 шаров синего цвета, n_2 шаров красного и n_3 шаров белого цвета. Из набора случайным образом без возвращения вынимают m шаров. Найдите вероятности указанных в варианте событий.
- 2. Из колоды в 52 карты наугад (без возвращения) извлекаются пять. Найти вероятность указанных в варианте событий.
- 3. Консультация перед экзаменом должна начаться между 10.00 и 12.00. Преподаватель и студенты забыли уточнить время. Если преподаватель приходит первым в указанное время, а студентов еще нет, то преподаватель ждет студентов не более 30 минут. Если же студенты пришли первыми, то они ждут преподавателя не более 15 минут. Нарисовать указанное в варианте событие и найти его вероятность.
- 4. Система надежности состоит из 7 элементов и имеет заданную структурную схему. События A_i , $i = \overline{1,7}$ отказы элементов за заданный промежуток времени.
 - а) Выразите через события A_i события A и \bar{A} , где A отказ всей системы за заданный промежуток времени.
 - б) Считая, что события A_i независимы в совокупности и имеют вероятности $P(A_i) = p_i$, $i = \overline{1,7}$, вычислите вероятность событий A и \overline{A} .
- 5. В первой урне находятся n_1 белых и m_1 черных шаров, во второй урне— n_2 белых и m_2 черных шаров. Сначала из первой урны во вторую перекладывается наугад k_1 шаров, затем так же наугад перекладывается из второй урны в первую k_2 шаров.
 - а) Определите вероятность того, что после вскрытия первой урны в ней будет столько же белых шаров, сколько было до проведения опыта.
 - б) После вскрытия первой урны оказалось, что в ней столько же черных шаров, сколько было до проведения опыта. Вычислите вероятность того, что при этом условии из первой урны во вторую переложили l черных шаров.
- 6. Вероятность попадания в цель при любом из n выстрелов равна p. Найдите вероятность того, что произойдет:
 - а) Ровно т попаданий.
 - б) Не более m попаданий.
 - в) Не менее m попаданий
 - Γ) От m_1 до m_2 попаданий.
- 7. Определите вероятность того, что среди n_1 изготовленных изделий бракованными окажутся:
 - а) ровно m изделий,
 - δ) не более k изделий,

если вероятность брака равна p_1 , и определите вероятность того, что среди n_2 изготовленных изделий бракованными окажутся

- в) ровно l изделий,
- Γ) от m_1 до m_2 изделий,
- если вероятность брака равна p_2
- 8. В наборе n_1 шаров белого цвета, n_2 шаров синего и n_3 шаров красного цвета. Из набора случайным образом без возвращения вынимают m шаров. Случайная величина ξ число вынутых синих шаров (варианты 1-10 ИДЗ), шаров белого цвета (варианты 11-20 ИДЗ), красного цвета (варианты 21-30 ИДЗ). Найдите:
 - а) Ряд распределения и функцию распределения случайной величины ξ , постройте график функции распределения случайной величины ξ .
 - б) Вероятность попадания случайной величины ξ в интервалы $(x_1; x_2), [x_1; x_2), [x_1; x_2], [x_1; x_2].$
 - в) Найдите ряд распределения случайных величин η и μ
- 9. Непрерывная случайная величина ξ имеет плотность распределения p(x). Найдите:
 - а) Константу A
 - б) Функцию распределения случайной величины ξ и постройте ее график.
 - в) Вычислите функцию распределения и плотность распределения случайной величины $\eta = a(b\xi + c)^3 + d$.
 - г) Вычислите функцию распределения и плотность распределения случайной величины $\mu = a(b\xi + c)^2 + d$
- 10. В условиях задачи 8 выбирают т шаров. Пусть
 - а) (**варианты 1-10 ИДЗ**) случайная величина ξ число вынутых белых шаров, а случайная величина η число вынутых синих шаров;
 - б) (варианты 11-20 ИДЗ) случайная величина ξ число вынутых синих шаров, а случайная величина η число вынутых красных шаров;
 - в) (варианты 21-30 ИДЗ) случайная величина ξ число вынутых красных шаров, а случайная величина η число вынутых белых шаров;

Найдите:

- а) Совместное распределение случайных величин ξ и η (ряд распределения).
- б) Ряды распределения случайных величин ξ и η
- в) Условные распределения случайной величины ξ при условии η , случайной величины η при условии ξ , проверьте случайные величины на независимость
- г) Значения двумерной функции распределения $F_{\xi n}(x;y)$ в заданных точках (x;y)
- д) Ряд распределения новой случайной величины $\mu = f(\xi, \eta)$
- е) Ряд распределения новой двумерной дискретной случайной величины (μ_1 ; μ_2)
- 11. В четырехугольник с вершинами в точках (a_1, a_2) , (b_1, b_2) , (c_1, c_2) , (d_1, d_2) в соответствии с принципом геометрической вероятности падает частица. Пусть ξ и η координаты по оси X и У точки падения частицы.

Найдите:

- а) Совместную функцию распределения $F_{\xi\eta}(x,y)$ случайной величины $(\xi;\eta)$ (нарисовать область интегрирования для всех возможных вариантов совместной функции распределения) и по совместной функции совместную плотность распределения случайной величины $(\xi;\eta)$.
- б) Одномерные функции и плотности распределения случайных величин ξ и η .
- в) Условные функции распределения и условные плотности распределения случайной величины ξ при условии η , и случайной величины η при условии ξ . Проверьте, будут ли эти случайные величины независимыми
- г) Значение функции распределения случайной величины $\mu = g(\xi, \eta)$ в точке z
- 12. Совместная плотность распределения случайных величин ξ и η задана формулой

$$p_{\xi,\eta}(x;y) = C(ax^{\alpha} + by^{\beta}), (x;y) \in D$$

где область D задана в варианте (нарисовать область D). Найдите:

- а) Постоянную C.
- б) Значения двумерной функции распределения $F_{\xi\eta}(x;y)$ в заданных точках (x;y) (нарисовать область)
- в) Одномерные плотности и функции распределения случайных величин ξ и η .
- г) Условные функции распределения и условные плотности распределения случайной величины ξ при условии η и случайной величины η при условии ξ . Проверьте, будут ли эти случайные величины независимыми
- д) Вычислите вероятность попадания вектора (ξ, η) в треугольник с вершинами в точках $(z_1; z_2), (u_1; u_2), (v_1; v_2)$. (Нарисовать область интегрирования, записать интеграл, расставить пределы интегрирования, вычислять интеграл не надо)
- е) Значение функции распределения $F_{\mu}(z)$ новой случайной величины $\mu = g(\xi, \eta)$ в точке z. (Нарисовать область интегрирования, записать интеграл, расставить пределы интегрирования, вычислять интеграл не надо)

Распределение баллов (15 баллов)

Задача 1	Задача 2	Задача 3	Задача 4	Задача 5	Задача 6	Задача 7
1 балл						

Задача 8	Задача 9	Задача 10	Задача 11	Задача 12
1 балл	2 балла	2 балла	1 балл	2 балла

	№ задачи	Данные					
		$n_1 = 4, n_2 = 5, n_3 = 4, m = 4.$					
	1.	Событие A={синих и белых шаров (вместе) достали не больше, чем красных}, событие B={достали хотя бы три красных шара}					
	2.	Событие A={карты трех мастей}, событие B={карты красного цвета трех достоинств}					
	3.	Преподаватель и студенты пришли между 10.25 и 11.25, консультации не было после 11.00					
	4.	$p_1 = p_4 = 0.2, p_2 = p_3 = 0.3,$ $p_5 = p_6 = p_7 = 0.1.$					
		7					
	5.	$n_1 = 5, m_1 = 3, n_2 = 4, m_2 = 5, k_1 = 3, k_2 = 5, l = 2.$					
	6.	$n = 6, p = \frac{1}{6}, m = 4, m_1 = 2, m_2 = 5.$					
	7.	$p_1 = 0,007; n_1 = 500; m = 3; k = 5.$ $p_2 = 0,085; n_2 = 1200; l = 100; m_1 = 110; m_2 = 130$					
9	8.	$n_1 = 5, n_2 = 7, n_3 = 3, m = 6;$ $x_1 = 4, \qquad x_2 = 6.$ $\eta = (7 - \xi)^2 - 10, \qquad \mu = 8 - \xi^3 - 2\xi^2 $					
	9.	$p_{\xi}(x) = \begin{cases} A\left(1 - \left \frac{1}{2} + x\right \right)^{2}, & -1 \le x \le 1\\ 0, & x < -1, & x > 1 \end{cases}$ $a = 1, b = -\frac{1}{2}, c = 1, d = -3.$					
	10.	$(x; y) = (4; 3), (7; 3), (2; 6);$ $\mu = \xi - \eta^2 - \xi - \eta^2 $ $\mu_1 = 1 - \frac{\xi - \frac{3 + \eta - 2\xi}{2}}{2}; \mu_2 = \eta - \frac{\eta - 2(1 - \xi + \eta)}{3}$					
	11.	$(a_1, a_2) = (-2; -3), (b_1, b_2) = (-2; 2), (c_1, c_2) = (2; -3), (d_1, d_2) = (2; 2)$					
	12.	$\mu = 3\xi + \eta, \ z = 2$ $a = \frac{1}{3}, \alpha = 2, b = \frac{1}{2}, \beta = 1,$ $D = \left\{ (x; y) : x = 0, y = 4, y = \frac{2}{3}x \right\}$ $(x; y) = \left(\frac{9}{2}, \frac{7}{2}\right)$ $(z_1, z_2) = (0; 3), (u_1, u_2) = (2; 5), (v_1, v_2) = (4; 0),$ $\mu = \eta - \frac{1}{2}(\xi - 3)^2, z = 1$					