

LLMs for Graph

HTET ARKAR

Junior | Undergraduate

School of Computer Science and Engineering

Chung-Ang University

A Survey of Large Language Models for Graphs

Xubin Ren¹, Jiabin Tang¹, Dawei Yin², Nitesh Chawla³, Chao Huang¹

¹University of Hong Kong, ²Baidu Inc., ³University of Notre Dame

KDD'24

Contents

- Introduction
- Definitions
- LLMs for Graphs
 - GNNs as Prefix
 - LLMs as Prefix
 - LLMs-Graphs Integration
 - *LLMs-only*
- Future Directions
- Conclusion

Graphs

- Structured data form
- Comprising nodes and edges that signify relationships
- Essential for real-world connections across various domains
 - □ Social Networks
 - ☐ Molecular Graphs
 - ☐ Recommender Systems
 - □ Academic Networks

Graphs

Graph Neural Network (GNNs)

- Passing and aggregating information across nodes
- Iteratively refining node features through supervised learning
- Remarkable results in capturing structural nuances
- Enhance model accuracy

Graphs

Graph Convolutional Networks (GCNs)

■ Effective in propagation embedding across nodes

Graph Attention Networks (GATs)

- Leverage attention mechanisms
- Perform precise aggregation of node features

Graph Transformers

Graphs

Challenges

- Data Sparsity
 - ☐ Particularly in scenarios where graph structure is incomplete or noisy
- Generalization ability
 - ☐ New graphs or unseen nodes

Need for more robust and adaptive models

Introduction (Cont'd)

Large Language Models

- Great generalization abilities for unseen tasks
- Powerful tools in various research fields
 - □ Natural Language Processing (NLP)
 - ☐ Computer Vision
 - ☐ Informational Retrieval

Graph Learning Communities

LLMs + GNNs - Powerful new waves of Methods

- Prompting Investigations into the potential of LLMs
- To enhance performance on graph-related tasks
- Not only improving task performance
- But also demonstrating impressive zero-shot generalization capabilities

Three Keywords

- Graph-Structured Data
- Graph Neural Networks (GNNs)
- Large Language Models (LLMs)

Graph-Structured Data

Graph

- $G = (\mathcal{V}, \mathcal{E})$
- A non-linear data structure
- Edge (u, v) directed : orientation, undirected : no orientation

Text-Attributed Graph (TAG)

- A node is associated with a sequential text feature (i.e., sentence)
- $\mathcal{G}_{S} = (\mathcal{V}, \mathcal{E}, \mathcal{T})$
- \mathcal{T} : a set of text features

Graph Neural Networks (GNNs)

- Deep learning architectures for graph-structured data
- Aggregate information from neighboring nodes
- \blacksquare Update node embeddings by stacking L layers
- Final node embeddings can be used for downstream tasks
 - □ Node classification and link prediction

$$\mathbf{h}_{v}^{(l+1)} = \psi(\phi(\{\mathbf{h}_{v'}^{(l)} : v' \in \mathcal{N}(v)\}), \mathbf{h}_{v}^{(l)})$$

Large Language Models (LLMs)

- A statistical model that estimates the probability distribution of words for a given sentence
- Superior performance in solving a wide range of natural language tasks
- Recent LLMs are built with transformer blocks
 - ☐ Use a query-key-value (QKV)-based attention mechanism
 - ☐ Aggregate information in the sequence of tokens

Large Language Models (LLMs)

- Based on the direction of attention, LLMs can be categorized into two
 - (i) Masked Language Modeling (MLM)
 - (ii) Causal Language Modeling (CLM)

Large Language Models (LLMs)

Masked Language Modeling (MLM)

- Making out certain tokens in a sequence
- Predicting the masked tokens based on the surrounding context
- Both left and right context of the masked token
- e.g., BERT, RoBERTa

"The quick brown [MASK] jumps over the lazy dog." \rightarrow fox

Causal Language Modeling (CLM)

- Predicting the next token in a sequence based on the previous tokens
- Only the left context of the current token
- e.g., GPT and Llama

"The quick brown fox jumps" ightarrow over

Assistant

Causal Language Modeling $p(x_i|x_0,x_1,...,x_{i-1})$

MASK

Virtual

LLMs for Graphs

- GNNs as Prefix
- LLMs as Prefix
- LLMs-Graphs Integration
- LLMs-only

GNNs as Prefix

- GNNs serve as the first component to process graph data
- Provide structure-aware tokens for LLMs for inference

- LLMs as Prefix
- LLMs-Graphs Integration
- LLMs-only

Figure 2: GNNs as Prefix.

- GNNs as Prefix
- LLMs as Prefix
 - LLMs first process graph data with textual information
 - Provide node embeddings or generated labels for improved training of GNNs

- LLMs-Graphs Integration
- LLMs-only

Figure 3: LLMs as Prefix.

- GNNs as Prefix
- LLMs as Prefix
- LLMs-Graphs Integration
 - LLMs achieve higher level of integration with graph data
 - Fusion training
 - Alignment with GNNs
 - Building LLM-based agent
 - ☐ To interact with graph information

Figure 4: LLMs-Graphs Intergration.

LLMs-only

- GNNs as Prefix
- LLMs as Prefix
- LLMs-Graphs Integration
- LLMs-only
 - Designing practical prompting methods
 - Ground graph-structured data into sequences of words
 - Incorporate multi-model tokens

Figure 5: LLMs-Only.

LLMs for Graphs

GNNs as Prefix

- Application of GNNs: structural encoders
- GNN generally play the role of a tokenizer
- \blacksquare Graph data \rightarrow graph token sequence (rich in structural information)
- Then input into LLMs to align with natural language
- Divided into two categories:
 - 1) Node-level Tokenization
 - 2) Graph-level Tokenization

Figure 2: GNNs as Prefix.

Node-level Tokenization

- For some downstream tasks in Graph Learning, models need to
 - Model the fine-grained structural information at node level
 - □ Distinguish the semantic differences between different nodes

GraphGPT

- Initially align the graph encoder with natural language semantics through textgraph grounding
- ☐ Then combine the trained graph encoder with the LLM using a projector

23

Node-level Tokenization

- For some downstream tasks in Graph Learning, models need to
 - ☐ Model the fine-grained structural information at node level
 - ☐ Distinguish the semantic differences between different nodes

GraphGPT

- ☐ Initially align the **graph encoder** with natural language semantics through textgraph grounding
- ☐ Then combine the trained graph encoder with the LLM using a projector

```
Graph Information: <graph>: Central Node: 68442, Edge index: [[...src node...], [...dst node...]], Node list: [...]
                                                                                                                                         Graph Matching
Human Question: Given a sequence of graph tokens <graph> that constitute a subgraph of a citation graph, .... Here is a list of paper titles: 1. ...
2. ..., please reorder the list of papers according to the order of graph tokens.
GraphGPT Response: Based on the given graph tokens and the list of paper titles, we obtain the matching of graph tokens and papers: Graph token 1
corresponds to smt based induction methods for timed systems. Graph token 2 corresponds to ...
Graph Information: <graph>: Central Node: 2, Edge index: [[...src node...], [...dst node...]], Node list: [...]
                                                                                                                                    Node Classification
Human Question: Given a citation graph: <graph> where the 0th node is the target paper, with the following information: Abstract: ... Title: ...
Question: Which arXiv CS sub-category does this paper belong to? ...
GraphGPT Response: cs.IT, cs.LG, cs.SP, cs.CV, cs.NA. The paper discusses the Restricted Isometry .... So, it is likely to belong to cs.IT...
Graph Information: <graph>: Central Node 1: 8471, Edge index 1: [[...src node...], [...dst node...]], Node list 1: [...]
                                                                                                                                        Link Prediction
                    <graph>: Central Node 2: 19368, Edge index 2: [[...src node...],[...dst node...]], Node list 2: [...]
Human Question: Given a sequence of graph tokens: <graph> that constitute a subgraph of a citation graph, .... Abstract: ... Titile: ... and the other
sequence of graph tokens: <graph>, ... Abstract: ... Title: ..., are these two central nodes connected? Give me an answer of "yes" or "no".
GraphGPT Response: Yes, they are connected. Based on the first paper, .... And the second paper proposes ....
```

Figure 4: Our instruction designs for graph matching task (upper), node classification (middle) and link prediction (lower).

Graph-level Tokenization

- To adapt to other graph-level tasks, models need to
 - ☐ Be able to extract graph information from node representations
 - ☐ To obtain high-level graph semantic tokens

GNP

- Employ cross-modality pooling to integrate the node representations encoded by the graph encoder with the natural language tokens
- ☐ Resulting in a unified graph representation

Graph-level Tokenization

- To adapt to other graph-level tasks, models need to
 - Be able to extract graph information from node representations
 - To obtain high-level graph semantic tokens

GNP

- This representation is aligned with the instructions through the LLM
- To apply in QA tasks
- To demonstrate superiority in commonsense and biomedical reasoning tasks

Question:

What is the best way to guess a babies eve color?

Options:

- (a) The surroundings they are born in
- (b) Their parents usual diet
- (c) Just take a random guess
- (d) The genealogy records of their family

Model Prediction:

Prompt Tuning: (c) Just take ... X GNP: (d) The genealogy ...

Retrieved subgraph from question entities:

Results & Challenges

(GNNs as Prefix)

Unprecedented generalization (zero-shot capability)

Effective for non-text-attributed graphs

LLMs for Graphs

LLMs as Prefix

- Leverage the information produced by LLMs to improve training of GNNs
- This information includes:
 - □ Textual content
 - □ Labels, or
 - ☐ Embeddings derived from LLMs
- Derived into two categories:
 - 1) Embeddings from LLMs for GNNs
 - 2) Labels from LLMs for GNNs

Figure 3: LLMs as Prefix.

LLMs as Prefix

Embeddings from LLMs for GNNs

- Initial node embeddings are diverse across different domains
 - □ ID-based embeddings in RecSys, or bag-of-words embeddings in citation networks
- Poor quality of embeddings can result in suboptimal performance of GNN
- Lack of a universal design for node embedders
- Challenging to address the generalization capability of GNNs
 - ☐ In unseen tasks with different node sets

Leveraging LLMs to generate meaningful and effective embeddings for GNN's training

LLMs as Prefix

Embeddings from LLMs for GNNs

- LLMRec
 - □ Achieve graph augmentation on user-item interaction data using GPT-3.5
 - ☐ Filter out noise interactions and add meaningful training data
 - ☐ Enrich the initial node embeddings for users and items with generated rich textual profiles
 - □ Ultimately improving the performance of recommenders

Provide the inquired information of the given movie. [332] Heart and Souls (1993), Comedy|Fantasy The inquired information is: director, country, language. And please output them in form of: director, country, language

Ron Underwood, USA, English

(c) Item Attribute

LLMs as Prefix

Labels from LLMs for GNNs

- Leveraging the generated labels from LLMs as supervision
 - ☐ To improve the training of GNNs
- Generated information from LLMs is used
 - □ Not as input to the GNNs, or
 - ☐ Form the supervision signals for better optimization
- Enable GNNs to achieve higher performance on various tasks
- RLMRec model:

Figure 3: The overall framework of our proposed LLM-enhanced representation learning framework RLMRec.

Results & Challenges

(LLMs as Prefix)

- Generalization capability
 - LLMs: generate meaningful and effective embeddings
- Better optimization & higher performance

- Computational resource limitations
- Heavy dependency on LLMs

LLMs for Graphs

DMAIS

LLMs-Graphs Integration

- Integrate LLMs with graph data
- Enhance (1) the ability of LLMs to tackle graph tasks and
 - (2) the parameter learning of GNNs
- Categorized into three types:
 - 1. Fusion Training of GNNs and LLMs
 - 2. Alignment between GNNs and LLMs
 - 3. LLMs Agent for Graph

Figure 4: LLMs-Graphs Intergration.

LLMs-Graphs Integration

Alignment between GNNs and LLM

- GNNs and LLMs are designed to handle different modalities of data
 - ☐ GNNs focusing on structural data and LLMs focusing on textual data
- This results in different feature spaces for the two models
- To address this issue and make both modalities of data more beneficial for the learning of both GNNs and LLMs

LLMs-Graphs Integration

Fusion Training of GNNs and LLMs

- To achieve higher level of integration between LLMs and GNNs
- Designing a deeper fusion of the architecture of the modules
- Co-training GNNs and LLMs can result in win-win bi-directional benefit
- GreaseLM model:

LLMs-Graphs Integration

LLMs Agent for Graph

- LLMs powerful capabilities in understanding instructions and selfplanning to solve tasks
- In graph domains, LLMs-based agents can interact directly with graph data
 - ☐ To perform tasks such as node classification and link prediction

Results & Challenges

(LLMs-Graphs Integration)

- Minimizing modality gap
- More accurate and flexible reasoning over graph data

- Scalability
- Limited interaction between graph agent and graph data

LLMs for Graphs

DMAIS

LLMs-Only

- Allow LLMs to directly accept graph structure information
- Understand it
- Perform inference for various downstream tasks
- Divided into two broad categories:
 - 1. Tuning-free
 - 2. Tuning-required

Figure 5: LLMs-Only.

LLMs-only

DMAIS

Tuning-free

- Graph data has unique structured characteristics
- Two critical challenges arise:
 - effectively constructing a graph in natural language format
 - determining whether LLMs can accurately comprehend graph structures as represented linguistically
- To address these issues,
 - ☐ Tuning-free approaches are being developed to model and infer graphs solely within the text space
 - Exploring the potential of pre-trained LLMs for enhanced structural understanding

Figure 1: Overview of our framework for reasoning with graphs using LLMs.

LLMs-only

Tuning-required

- Limitations of expressing graph structural information using pure text
- To align graphs as node token sequences with natural language token sequences when inputting them to LLMs
- Tuning-required LLM-only approach
 - ☐ Discard the graph encoder and
 - Adopt a specific arrangement of graph token sequences
 - ☐ Along with carefully designed embeddings of graph tokens in prompts
 - ☐ Achieving promising performances in various downstream graph-related tasks

Results & Challenges

(LLMs-Only)

- Interpreting graph data
- Merging graphs with natural language instructions

 Effective transforming graphs into text prompts and reordering graph token sequences

- LLMs for Multi-model Graphs
- Efficiency and Less Computational Cost
- Tackling Different Graph Tasks
- User-Centric Agents on Graphs

LLMs for Multi-model Graphs

- To make LLMs process and understand multi-modal data
 - □ Nodes may contain features from multiple modalities
- By developing multi-modal LLMs
 - ☐ Enable more accurate and comprehensive reasoning over graph structures
 - ☐ Taking account not only textual information

 but also visual, auditory, and other types of data

Efficiency and Less Computational Cost

- The substantial computational expenses in LLMs pose a significant limitation
 - ☐ Associated with both the training and inference phases of LLMs
- Necessity to discover and implement efficient strategies
 - ☐ With reduced computational costs

Tackling Different Graph Tasks

contextually accurate knowledge bases

Potential in tackling more complex and generative tasks
 Graph generation
 Graph understanding
 Graph-based question answering
 Able to unlock a large number of new opportunities for their applications across diverse domains
 Drug Discovery: Generation of novel molecular structure
 Social Network Analysis: Deeper insights into intricate relationship patterns
 Knowledge Graph Construction: Creation of more comprehensive and

User-Centric Agents on Graphs

- LLM-based Agents:
 - Predominantly tailored for single graph tasks
 - ☐ One-time-run procedure
- Should be user-friendly
- Posses the capability to dynamically search for answers within graph data
 - ☐ In response to a diverse range of open-ended questions posed by users
- Should be both adaptable and robust

Conclusion

- **Graphs**: an essential data structure utilized to represent relationships in real-world scenarios
- Challenges like data sparsity and limited generalization capabilities continue to persists
- LLMs excel in language comprehension and summarization
- Integrating LLMs with graph learning techniques is a way to enhance performance in graph learning tasks

Conclusion

- Four main types of model architecture design for LLMs for graphs
 - ☐ GNNs as Prefix
 - □ LLMs as Prefix
 - □ LLMs-Graphs Integration
 - □ LLMs-only
- Future Direction
 - ☐ LLMs for Multi-model Graphs
 - ☐ Efficiency and Less Computational Cost
 - ☐ Tackling Different Graph Tasks
 - ☐ User-Centric Agents on Graphs

HTET ARKAR hak3601@cau.ac.kr