(Probabilistic) Context-Free Grammars

A phrase structure grammar

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $NP \rightarrow N$

 $VP \rightarrow V NP PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow e$

 $PP \rightarrow P NP$

people fish tanks

people fish with rods

 $N \rightarrow people$

 $V \rightarrow fish$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow tanks$

 $P \rightarrow with$

Ambiguous: People people people, fish fish

Phrase structure grammars = context-free grammars (CFGs)

- G = (T, N, S, R)
 - T is a set of terminal symbols
 - N is a set of nonterminal symbols
 - S is the start symbol ($S \in N$)
 - R is a set of rules/productions of the form $X \rightarrow \gamma$
 - $X \in \mathbb{N}$ and $\gamma \in (\mathbb{N} \cup \mathbb{T})^*$
- A grammar G generates a language L.

Phrase structure grammars in NLP

- G = (T, C, N, S, L, R)
 - T is a set of terminal symbols
 - C is a set of preterminal symbols
 - N is a set of nonterminal symbols
 - S is the start symbol ($S \in N$)
 - L is the lexicon, a set of items of the form $X \rightarrow x$
 - $X \in C$ and $x \in T$
 - R is the grammar, a set of items of the form $X \rightarrow \gamma$
 - $X \in \mathbb{N}$ and $\gamma \in (\mathbb{N} \cup \mathbb{C})^*$
- By usual convention, S is the start symbol, but in statistical NLP, we usually have an extra node at the top (ROOT, TOP)
- We usually write e for an empty sequence, rather than nothing

A phrase structure grammar (empty, unary, binary)

Grammar Rules

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow N$

 $NP \rightarrow e$

 $PP \rightarrow P NP$

EMPTY fish tanks people fish EMPTY

Lexicon

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $P \rightarrow with$

Probabilistic/stochastic – context-free grammars (PCFGs)

- G = (T, N, S, R, P)
 - T is a set of terminal symbols
 - N is a set of nonterminal symbols
 - S is the start symbol ($S \in N$)
 - R is a set of rules/productions of the form $X \rightarrow \gamma$
 - P is a probability function
 - P: $R \to [0,1]$

$$\forall X \in N, \sum_{X \to \gamma \in R} P(X \to \gamma) = 1$$

A PCFG

1.0		$N \rightarrow people$	0.5
0.6		$N \rightarrow fish$	0.2
	0.4	$N \rightarrow tanks$	0.2
	0.1	$N \rightarrow rods$	0.1
0.2		$V \rightarrow people$	0.1
0.7		$V \rightarrow fish$	0.6
1.0		$V \rightarrow tanks$	0.3
		$P \rightarrow with$	1.0
	0.60.20.7	 0.6 0.4 0.1 0.2 0.7 	0.6 $N \rightarrow fish$ 0.4 $N \rightarrow tanks$ 0.1 $N \rightarrow rods$ 0.2 $V \rightarrow people$ 0.7 $V \rightarrow fish$ 1.0 $V \rightarrow tanks$

The probability of trees and strings

- P(t) The probability of a tree t is the product of the probabilities of the rules used to generate it.
- P(s) The probability of the string s is the sum of the probabilities of the trees which have that string as their yield

$$P(s) = \Sigma_t P(s, t)$$
 where t is a parse of s
$$= \Sigma_t P(t)$$

Preposition "with" modifying "fish"

Preposition "with" modifying "tank"

Tree and String Probabilities

```
• s = people fish tanks with rods
• P(t_1) = 1.0 \times 0.7 \times 0.4 \times 0.5 \times 0.6 \times 0.7
                 \times 1.0 \times 0.2 \times 1.0 \times 0.7 \times 0.1
             = 0.0008232
• P(t_2) = 1.0 \times 0.7 \times 0.6 \times 0.5 \times 0.6 \times 0.2
                 \times 0.7 \times 1.0 \times 0.2 \times 1.0 \times 0.7 \times 0.1
             = 0.00024696
 \bullet \ \mathsf{P}(s) = \ \mathsf{P}(t_1) + \ \mathsf{P}(t_2) 
            = 0.0008232 + 0.00024696
             = 0.00107016
```

Verb attach

Noun attach

Grammar Transforms

Restricting the grammar form for efficient parsing

Chomsky Normal Form

- All rules are of the form $X \rightarrow Y Z$ or $X \rightarrow w$
 - $X, Y, Z \in N$ and $w \in T$
- A transformation to this form doesn't change the weak generative capacity of a CFG
 - That is, it recognizes the same language
 - But maybe with different trees
- Empties and unaries are removed recursively
- n-ary rules are divided by introducing new nonterminals (n > 2)

A phrase structure grammar

5	\rightarrow	N	P	V	P
J		IV		V	

$$VP \rightarrow V NP$$

$$VP \rightarrow V NP PP$$

$$NP \rightarrow NP NP$$

$$NP \rightarrow NP PP$$

$$NP \rightarrow N$$

$$NP \rightarrow e$$

$$PP \rightarrow P NP$$

$$N \rightarrow people$$

$$N \rightarrow fish$$

$$N \rightarrow tanks$$

$$N \rightarrow rods$$

$$V \rightarrow people$$

$$V \rightarrow fish$$

$$V \rightarrow tanks$$

$$P \rightarrow with$$

Start discussing epsilon removal

 $S \rightarrow NP VP$

 $S \rightarrow VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V$

 $VP \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $P \rightarrow with$

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V$

 $S \rightarrow V$

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $P \rightarrow with$

Remove more unaries, next $S \rightarrow V$

```
S \rightarrow NP VP
VP \rightarrow V NP
S \rightarrow V NP
VP \rightarrow V
VP \rightarrow V NP PP
S \rightarrow V NP PP
VP \rightarrow VPP
S \rightarrow V PP
NP \rightarrow NP NP
NP \rightarrow NP
NP \rightarrow NP PP
NP \rightarrow PP
NP \rightarrow N
PP \rightarrow P NP
PP \rightarrow P
```

```
N \rightarrow people
N \rightarrow fish
N \rightarrow tanks
N \rightarrow rods
V \rightarrow people
S \rightarrow people
V \rightarrow fish
S \rightarrow fish
V \rightarrow tanks
S \rightarrow tanks
P \rightarrow with
```

After remove $S \rightarrow V$ get this, and then do $VP \rightarrow V$

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $P \rightarrow with$

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow P NP$

 $PP \rightarrow P NP$

 $NP \rightarrow people$

 $NP \rightarrow fish$

 $NP \rightarrow tanks$

 $NP \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $P \rightarrow with$

 $PP \rightarrow with$

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V @VP_V$

 $@VP V \rightarrow NP PP$

 $S \rightarrow V @S V$

@S $V \rightarrow NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow P NP$

 $PP \rightarrow P NP$

 $NP \rightarrow people$

 $NP \rightarrow fish$

 $NP \rightarrow tanks$

 $NP \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $P \rightarrow with$

 $PP \rightarrow with$

A phrase structure grammar

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow N$

 $NP \rightarrow e$

 $PP \rightarrow P NP$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $P \rightarrow with$

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V @VP_V$

 $@VP V \rightarrow NP PP$

 $S \rightarrow V @S V$

@S $V \rightarrow NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow P NP$

 $PP \rightarrow P NP$

 $NP \rightarrow people$

 $NP \rightarrow fish$

 $NP \rightarrow tanks$

 $NP \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $P \rightarrow with$

 $PP \rightarrow with$

Chomsky Normal Form

- You should think of this as a transformation for efficient parsing
- With some extra book-keeping in symbol names, you can even reconstruct the same trees with a detransform
- In practice full Chomsky Normal Form is a pain
 - Reconstructing n-aries is easy
 - Reconstructing unaries/empties is trickier
- Binarization is crucial for cubic time CFG parsing
- The rest isn't necessary; it just makes the algorithms cleaner and a bit quicker

An example: before binarization...

An example: before binarization...

ROOT S VP NP NP PP NP Ν Ν tanks with people fish rods

After binarization...

Evaluating constituency parsing

Gold standard brackets: **S-(0:11)**, **NP-(0:2)**, VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), NP-(9:10)

Candidate brackets:

S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:6), PP-(6-10), NP-(7,10)

Evaluating constituency parsing

Gold standard brackets:

S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), NP-(9:10)

Candidate brackets:

S-(0:11), **NP-(0:2)**, VP-(2:10), VP-(3:10), **NP-(4:6)**, PP-(6-10), NP-(7,10)

Labeled Precision 3/7 = 42.9%

Labeled Recall 3/8 = 37.5%

LP/LR F1 40.0%

Tagging Accuracy 11/11 = 100.0%