Computer programmers are those who write computer software. There exist a lot of different approaches for each of those tasks. Techniques like Code refactoring can enhance readability. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. Computer programmers are those who write computer software. There are many approaches to the Software development process. Programs were mostly entered using punched cards or paper tape. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. Techniques like Code refactoring can enhance readability. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). Also, specific user environment and usage history can make it difficult to reproduce the problem. Languages form an approximate spectrum from "low-level" to "high-level": "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). Programmable devices have existed for centuries.