MATS132 Lineaariset Lien ryhmät demo 3 (07.02.2018)

1. Affiini ryhmä on

$$\operatorname{Aff}(n,\mathbb{K}) = \left\{ \begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix} : A \in \operatorname{GL}(n,\mathbb{K}), b \in \mathcal{M}_{n \times 1}(\mathbb{K}) \simeq \mathbb{K}^n \right\}.$$

- (a) Osoita, että $\mathrm{Aff}(n,\mathbb{K})$ on matriisiryhmä.
- (b) Olkoon $\iota: \mathbb{K}^n \hookrightarrow \mathbb{K}^n \times \{1\} \subset \mathbb{K}^{n+1}$ inkluusio $\iota(x) = (x,1)$. Osoita, että kaikille $L = \begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix} \in \mathrm{Aff}(n,\mathbb{K})$ kuvaus $\iota^{-1} \circ L \circ \iota: \mathbb{K}^n \to \mathbb{K}^n$ on hyvin määritelty, ja antaa affiinin kuvauksen

$$\iota^{-1} \circ L \circ \iota(x) = Ax + b.$$

2. Euklidinen ryhmä on

$$E(n) = \left\{ \begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix} : A \in O(n), b \in \mathcal{M}_{n \times 1}(\mathbb{R}) \simeq \mathbb{R}^n \right\}.$$

- (a) Osoita, että $E(n) < Aff(n, \mathbb{R})$ on matriisiryhmä.
- (b) Osoita, että jokaiselle $L \in E(n)$, affiini kuvaus $F = \iota^{-1} \circ L \circ \iota : \mathbb{R}^n \to \mathbb{R}^n$ on isometria, eli että ||F(x) F(y)|| = ||x y|| kaikille $x, y \in \mathbb{R}^n$.
- 3. (a) Olkoon $G<\mathrm{GL}(n,\mathbb{K})$ matriisiryhmä ja $\gamma:[0,1]\to G$ sekä $\beta:[0,1]\to G$ polkuja. Osoita, että

$$\gamma \star \beta : [0,2] \to \mathrm{GL}(n,\mathbb{K}), \quad \gamma \star \beta(t) = \begin{cases} \gamma(t), & 0 \le t < 1 \\ \gamma(1)\beta(0)^{-1}\beta(t-1), & 1 \le t \le 2 \end{cases}$$

on myös polku G:ssä.

(b) Olkoon $G \simeq (\mathbb{R}, +)$ (katso 1. demojen 2. tehtävästä matriisiryhmäesitys tälle additiiviselle ryhmälle) ja $\gamma : [0, 1] \to G$, $\gamma(t) = t$. Määritä polku $\gamma \star \gamma : [0, 2] \to G$.

4. Tarkastellaan kuvausta $\Phi: \mathrm{SU}(2) \times \mathrm{SU}(2) \to \mathrm{GL}(4,\mathbb{R}),$ missä $A = \Phi(q,p)$ määritellään kvaterniotulona

$$A: \mathbb{H} \to \mathbb{H}, \quad A(x) = qxp^{-1}.$$

(Muista, että vektoriavaruuksina $\mathbb{H} \simeq \mathbb{R}^4$)

- (a) Osoita, että Φ on jatkuva homomorfismi.
- (b) Osoita, että $\Phi(SU(2) \times SU(2)) \subset SO(4)$ (Vihje: hyödynnä matriisiryhmän SU(2) yhtenäisyyttä).
- (c) Osoita, että $\ker \Phi = \{\pm I\}.$
- 5. Tarkista matriisien (operaattori)normin ominaisuudet:
- (a) $||AB|| \le ||A|| ||B||$ kaikille $A, B \in \mathcal{M}_n(\mathbb{K})$
- (b) $||A + B|| \le ||A|| + ||B||$ kaikille $A, B \in \mathcal{M}_n(\mathbb{K})$
- (c) $||A_k A|| \to 0 \iff A_k \to A$ komponenteittain.
- (d) $A \in \mathcal{M}_n(\mathbb{K})$ ja $||A I|| < 1 \implies A \in GL(n, \mathbb{K})$.
- **6.** Todista Lemma 4.9: $\exp(BAB^{-1}) = B \exp(A)B^{-1}$ kaikille $A \in \mathcal{M}_n(\mathbb{K})$ ja $B \in GL(n, \mathbb{K})$.
- 7. Olkoot $x,y\in\mathbb{C}^2$ vektoreita joille $\|x\|=\|y\|.$ Osoita, että on olemassa $A\in\mathrm{SU}(2)$ jolle Ax=y.
- **8.** Osoita, että $\mathrm{SU}(n), n \geq 3$, on polkuyhtenäinen olettaen että $\mathrm{SU}(n-1)$ ja $\mathrm{SU}(2)$ tunnetaan polkuyhtenäisiksi.