

Black Friday Sales Prediction

Bhavesh Khanchandani

Problem Statement

- A retail company "ABC Private Limited" wants to understand the customer purchase behavior (specifically, purchase amount) against various products of different categories.
- They have shared purchase summaries of various customers for selected high volume products from last month.
- The data set also contains customer demographics (age, gender, marital status, citytype, stayincurrentcity), product details (productid and product category) and Total purchase amount from last month.
- Now, they want to build a model to predict the purchase amount of customers against various products which will help them to create personalized offers for customers against different products.

Proposed Solution

Data Preprocessing: This step performs all pre-processing steps such as data manipulation, data filling, converting categorical into numeric, and all processes.

The EDA process involves performing

- 1. Univariate Analysis
- 2. Bivariate analysis
- 3. Removing Missing values if any / Outlier treatment
- 4. Machine Learning: Probability of purchase, and also check if the model is to be underfitting or overfitting if it has then solves this by using cross-validation technique, or perform hyperparameter tuning to improve model performance.

Descriptive Analysis

```
# Datatype info
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 550068 entries, 0 to 550067
Data columns (total 11 columns):
    Column
                                Non-Null Count
                                                 Dtype
                                550068 non-null int64
    User ID
    Product ID
                                550068 non-null
                                                 object
    Gender
                                550068 non-null
                                                 int32
    Age
                                550068 non-null int32
    Occupation
                                550068 non-null int64
                                550068 non-null
    City Category
                                                 int32
    Stay In Current City Years 550068 non-null int32
    Marital Status
                                550068 non-null int64
    Product Category 1
                                550068 non-null int64
    Product Category 2
                                550068 non-null int32
    Purchase
                                550068 non-null int64
dtypes: int32(5), int64(5), object(1)
memory usage: 35.7+ MB
```

```
# Unique values
# Null values
                                              df.apply(lambda x: len(x.unique()))
df.isnull().sum()
                                              User ID
                                                                             5891
User ID
                                              Product ID
                                                                             3631
Product ID
                                              Gender
Gender
                                                                                7
                                              Age
Age
                                              Occupation
                                                                               21
Occupation
                                              City Category
                                                                                3
City Category
                                              Stay In Current City Years
Stay In Current City Years
                                              Marital Status
Marital Status
                                              Product Category 1
                                                                               20
Product Category 1
                                              Product Category 2
                                                                               18
Product Category 2
                                              Product Category 3
                                                                               16
Purchase
                                              Purchase
                                                                            18105
dtype: int64
                                              dtype: int64
```

= # statistical info df.describe()

	User_ID	Occupation	Marital_Status	Product_Category_1	Product_Category_2	Product_Category_3	Purchase
count	5.500680e+05	550068.000000	550068.000000	550068.000000	376430.000000	166821.000000	550068.000000
mean	1.003029e+06	8.076707	0.409653	5.404270	9.842329	12.668243	9263.968713
std	1.727592e+03	6.522660	0.491770	3.936211	5.086590	4.125338	5023.065394
min	1.000001e+06	0.000000	0.000000	1.000000	2.000000	3.000000	12.000000
25%	1.001516e+06	2.000000	0.000000	1.000000	5.000000	9.000000	5823.000000
50%	1.003077e+06	7.000000	0.000000	5.000000	9.000000	14.000000	8047.000000
75%	1.004478e+06	14.000000	1.000000	8.000000	15.000000	16.000000	12054.000000
max	1.006040e+06	20.000000	1.000000	20.000000	18.000000	18.000000	23961.000000

Exploratory Data Analysis

Observations

- Graph 1 We can see the Highest purchase range is between 5000 to 10000
- In graph 2 we can see that M ie Males have Placed more orders, Maybe they are more interested in black Friday sales than females.
- In graph 3 we can see that the most orders were placed by the age group 26-35
- In graph 4 we can see that occupations 0, 4, 7, have placed more orders

Exploratory Data Analysis

Observations

- Graph 5 We can see That males have higher purchase amount than females
- In graph 6 we can see age group 51-55 have higher purchase or spending capacity
- In graph 7 we can see the correlation between columns
- In graph 9 we can see purchases made by every occupation type

Preprocessing the Dataset

- Looking for null values we can see that product category 2 and 3 have null values we can treat them by simply dropping the product category 3 column because it has many missing values more than 60%, we will fill the product category 2 column with the mean value of that column.
- Outlier Treatment: We can remove the outliers by using techniques like IQR or z-score here I have used IQR technique to remove outliers in purchase column

Machine Learning Modelling

Encoding

Method used One hot encoding on Gender, Age, CityCategory, StayInCurrentCityYears, Occupation,
 ProductCategory1, ProductCategory2 columns as this gave a good result.

Input Split

• Splitting the dataset between target variable ie Purchase and input variables ie rest of the columns as

X and y and running them through train_test_split

```
print(X.shape)
print(y.shape)
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)

(547391, 76)
(547391,)
(383173, 76)
(383173,)
(164218, 76)
(164218,)
```

Machine Learning Modelling

We apply machine learning agorithms on the dataset lets check scores

Linear Regression

training score = 0.6347153750403496
Testing score = 0.6350016170765882
Mean Absolute error = 2260.2782310954826
Mean Squared error = 8934811.918436665
Root Mean Squared error = 2989.1155746201357
R2score = 0.6350016170765882

Ridge Regression

training score = 0.6347213760941048
Testing score = 0.6350018572367329
Mean Absolute error = 2260.399594864551
Mean Squared error = 8934806.039545625
Root Mean Squared error = 2989.114591236948
R2score = 0.6350016170765882

Lasso Regression

training score = 0.6347213760940762 Testing score = 0.6350018580884018 Mean Absolute error = 2260.399604181418 Mean Squared error = 8934806.018697584 Root Mean Squared error = 2989.1145877496206 R2score = 0.6350016170765882

Random Forest Regression

training score = 0.7386877920874092
Testing score = 0.6315343220780456
Mean Absolute error = 2260.399594864551
Mean Squared error = 8934806.039545625
Root Mean Squared error = 2989.114591236948
R2score = 0.6350016170765882

Conclusion

The Model performs almost similarly in all the algorithms