Word embedding with neural network

- Identify the key concepts of word representations
- Generate word embeddings
- Prepare text for machine learning
- Implement the continuous bag-of-words model

Some basic applications of word embeddings

Semantic analogies and similarity

Sentiment analysis

Classification of customer feedback

Advanced applications of word embeddings

Machine translation

Information extraction

Question answering

Basic Word Representations

- Integers
- One-hot vectors
- Word embeddings

- Integers
 - + Simple
 - Ordering: little semantic sense

Word	Number
а	1
able	2
about	3
hand	615
happy	621
 zebra	 1000
hand happy	zebra
	1000
615 21 621	?!

One-hot vectors

- + No implied ordering
- + Simple
- Huge vectors
- No embedded meaning

One-hot vectors

Word	Number	- 	happy	,″
а	1		0	a
able	2		0	able
about	3	3	0	about
hand	615	615	0	hand
•••	/		:	
happy	621 ←	→ 621	1	happy
			•	
zebra	1000	1000	0	zebra

Meaning as vectors

Word embedding vectors

- Low dimension
- + Embed meaning
 - e.g. semantic distance

o e.g. analogies

Paris:France :: Rome:?

Terminology

word vectors

~100—~1000

rows

one-hot vectors

word embedding vectors

"happy"

"word vectors" word embeddings

integers

How to Create Word Embeddings

Word embedding process

Word embedding methods

FPT UNIVERSITY

- Basic
 - word2vec (Google, 2013)
 - Continuous bag-of-words (CBOW)
 - Continuous skip-gram / Skip-gram with negative sampling (SGNS)
 - Global Vectors (GloVe) (Stanford, 2014)
 - fastText (Facebook, 2016)
 - Supports out-of-vocabulary (OOV) words
 - Deep learning, contextual embeddings
 - BERT (Google, 2018)
 - ELMo (Allen Institute for AI, 2018)
 - GPT-2 (OpenAI, 2018)

Tunable pre-trained models available

Continuous Bag-of-Words Model

Continuous bag-of-words word embedding process

Center word prediction: rationale

Creating a training example center word

From corpus to training

I am happy because I am learning

Word embeddings

Cleaning and Tokenization

Letter case

"The" == "the" == "THE" \rightarrow lowercase / upper case

Punctuation

```
, ! . ? \rightarrow " ' « » ' " \rightarrow ... !! ???? \rightarrow ...
```

Numbers

- 1 2 3 5 8 \rightarrow Ø 3.14159 90210 \rightarrow as is/<NUMBER>
- Special characters
 ∇ \$ € § ¶ ** → Ø
- Special words

Example in Python: corpus, libraries


```
Who "word embeddings" in 2020? I do!!!

emoji punctuation number
```

```
# pip install nltk
# pip install emoji
import nltk
from nltk.tokenize import word_tokenize
import emoji
nltk.download('punkt') # download pre-trained Punkt tokenizer for
English
```

Sliding window of words in Python


```
def get_windows(words, C):
    i = C
    while i < len(words) - C:
        center_word = words[i]
        context_words = words[(i - C):i] + words[(i+1):(i+C+1)]
        yield context_words, center_word
        i += 1</pre>
```

Ι	am	happy	because	Ι	am	learning
0	1	2	3	4	5	6

```
def get_windows(words, C):
     ...
     yield context_words, center_word
```

Sliding window of words in Python


```
→ ['I', 'am', 'because', 'I'] happy
['am', 'happy', 'I', 'am'] because
['happy', 'because', 'am', 'learning'] I
```

Transforming center words into vectors

Corpus I am happy because I am learning

Vocabulary am, because, happy, I, learning

One-hot vector

	am	
am	1	
because	0	
happy	0	
I	0	
learning	0	

Transforming context words into vectors

Average of individual one-hot vectors

$$\begin{bmatrix} & & & \text{am} & \text{because} & I \\ & \text{am} & 0 \\ & \text{because} & 0 \\ & \text{happy} & 0 \\ & I & 1 \\ & \text{learning} & 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 \text{ am because } I \\ 0.25 \\ 0.25 \\ 0 \end{bmatrix}$$

Final prepared training set

Context words	Context words vector	Center word	Center word vector
I am because I	[0.25; 0.25; 0; 0.5; 0]	happy	[0; 0; 1; 0; 0]

Architecture of the CBOW model

Hyperparameters

N: Word embedding size

Dimensions (single input)

$$\mathbf{z_1} = \mathbf{W_1}\mathbf{x} + \mathbf{b_1}$$

Row vectors

$$\mathbf{z_1} = \mathbf{xW_{1_\top}} + \mathbf{b_1}$$

$$\mathbf{b_1} = \left(\begin{array}{c} 1 \times N \end{array} \right) \qquad \mathbf{W_1} = \left(\begin{array}{c} N \times V \end{array} \right) \qquad \mathbf{b_1} = \left(\begin{array}{c} 1 \times N \end{array} \right)$$

Dimensions (batch input)

Dimensions (batch input)

Activation Functions

Rectified Linear Unit (ReLU)

Softmax

being center word

Softmax: example

Cost Function

Loss

Cross-entropy loss

Actual
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_V \end{bmatrix}$$
 Predicted $\hat{\mathbf{y}}_1 \\ \vdots \\ \hat{\mathbf{y}}_V \end{bmatrix}$

$$J = -\sum_{k=1}^{V} y_k \log \hat{y}_k$$

I am happy because I am learning

Cross-entropy loss

$$J = -\sum_{k=1}^{V} y_k \log \hat{y}_k$$

Cross-entropy loss

$$J = -log \hat{y}_{actual}$$
word

y		ŷ	
0	am	0.96	
0	because	0.01	
1	happy	0.01	* J = 4.61
0	I	0.01	
0	learning	0.01	

Training process

Forward propagation

$$\mathbf{Z_1} = \mathbf{W_1X} + \mathbf{B_1}$$
 $\mathbf{Z_2} = \mathbf{W_2H} + \mathbf{B_2}$
 $\mathbf{H} = \text{ReLU}(\mathbf{Z_1})$ $\hat{\mathbf{Y}} = \text{softmax}(\mathbf{Z_2})$

Cost

Cost: mean of losses

$$J_{batch} = -\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{V} y_j^{(i)} \log \hat{y}_j^{(i)}$$

$$J_{batch} = -\frac{1}{m} \sum_{i=1}^{m} J^{(i)}$$

Predicted center word matrix

$$\hat{\mathbf{y}} = \left(\begin{bmatrix} \hat{\mathbf{y}}^{(1)} \\ \end{bmatrix} \cdots \begin{bmatrix} \hat{\mathbf{y}}^{(m)} \end{bmatrix} \right)$$

Actual center word matrix

Backpropagation and Gradient Descent

Minimizing the cost

$$J_{batch} = f(\mathbf{W_1}, \mathbf{W_2}, \mathbf{b_1}, \mathbf{b_2})$$

- Backpropagation: calculate partial derivatives of cost with respect to
- weights and biases

$$\frac{\partial J_{batch}}{\partial \mathbf{W_1}}, \frac{\partial J_{batch}}{\partial \mathbf{W_2}}, \frac{\partial J_{batch}}{\partial \mathbf{b_1}}, \frac{\partial J_{batch}}{\partial \mathbf{b_2}}$$

Gradient descent: update weights and biases

Backpropagation

$\frac{\partial J_{batch}}{\partial \mathbf{W_1}} = \frac{1}{m} \text{ReLU} \left(\mathbf{W_2}^{\top} (\hat{\mathbf{Y}} - \mathbf{Y}) \right) \mathbf{X}^{\top}$

$$\frac{\partial J_{batch}}{\partial \mathbf{W_2}} = \frac{1}{m} (\mathbf{\hat{Y}} - \mathbf{Y}) \mathbf{H}^{\top}$$

$$\frac{\partial J_{batch}}{\partial \mathbf{b_1}} = \frac{1}{m} \text{ReLU} \left(\mathbf{W_2}^{\top} (\hat{\mathbf{Y}} - \mathbf{Y}) \right) \mathbf{1}_m^{\top}$$

$$\frac{\partial J_{batch}}{\partial \mathbf{b_2}} = \frac{1}{m} (\hat{\mathbf{Y}} - \mathbf{Y}) \mathbf{1}_m^{\top}$$

Gradient descent

Hyperparameter: learning rate a

$$\mathbf{W_1} := \mathbf{W_1} - \alpha \frac{\partial J_{batch}}{\partial \mathbf{W_1}}$$

$$\mathbf{W_2} := \mathbf{W_2} - \alpha \frac{\partial J_{batch}}{\partial \mathbf{W_2}}$$

$$\mathbf{b_1} := \mathbf{b_1} - \alpha \frac{\partial J_{batch}}{\partial \mathbf{b_1}}$$

$$\mathbf{b_2} := \mathbf{b_2} - \alpha \frac{\partial J_{batch}}{\partial \mathbf{b_2}}$$

Extracting word embedding vectors: option 1,2,3

Evaluating Word Embeddings

- Intrinsic evaluation
 - Intrinsic evaluation methods assess how well the word embeddings inherently capture the semantic(meaning) or syntactic(grammar) relationships between the words.
 - Test on semantic analogies
 - Using a clustering algorithm to group similar word embedding vectors, and determining of the cluster's capture related words

Test relationships between words Analogies

Semantic analogies

"France" is to "Paris" as "Italy" is to <?>

Syntactic analogies

"seen" is to "saw" as "been" is to <?>

↑ Ambiguity
"wolf" is to "pack" as "bee" is to <?> → swarm? colony?

Intrinsic evaluation

- Test relationships between words
- Analogies _____

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Einstein - scientist Messi: midfielder		Picasso: painter
Sarkozy - France Berlusconi: Ita		Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer Google: Yahoo		IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

Intrinsic evaluation

Test relationships between words

- Analogies
- Clustering
- Visualization

Extrinsic evaluation

- Test the word embeddings to perform an external task, Named Entity recognition, POS tagging
- Evaluate this classifier on the test set with some selected evaluation metric, such as accuracy or the F1 score.
- The evaluation will be more time-consuming than an intrinsic evaluation and more difficult to troubleshoot.
- Test word embeddings on external task
 - e.g. named entity recognition, parts-of-speech tagging
- Evaluates actual usefulness of embeddings
 - Time-consuming
 - More difficult to troubleshoot

