Optimization #1

Dep. EE, KPU 2020년 2학기

Book & Homepage

- Convex Optimization
 - Stephen Boyd & Lieven Vandenberghe
 - Cambridge University Press (2009)
 - Authors' homepage
 - https://web.stanford.edu/~boyd/cvxbook/
 - Boyd's Lecture Videos:
 - https://web.stanford.edu/class/ee364a/videos.html
 - 교재의 pdf 파일
 - http://www.stanford.edu/~boyd/cvxbook/ 에서 다운로드 가능

Basic Concept & Definition

Optimization Problems

$$\min_{\mathbf{x} \in R^n} f(\mathbf{x})$$
 subject to $g_i(\mathbf{x}) \leq 0$, $i=1,\ldots,r$ inequality constraints $h_k(\mathbf{x}) = 0$, $k=1,\ldots,m$ equality constraints $n \times 1$ vector

- Feasible Solution
 - ▶ Constraints를 만족시키는 solution
- Feasible Set
 - ▶ Feasible solution 들의 모든 집합
- Optimal Solution
 - ▶ x*는 모든 constraints를 만족시킴
 - ▶ constraints를 만족시키는 모든 $\overline{\mathbf{x}}$ 에 대해서 $f(\mathbf{x}^*) \leq f(\overline{\mathbf{x}})$

Optimization Problems

■ 최적화 문제는 항상 optimal solution을 가지는가?

$$\min x$$

s. t.
$$g(x) \ge 0$$

where

$$g(x) = \begin{cases} 1, & for \ x > 1 \\ -1, & for \ x \le 1 \end{cases}$$

This problem does not have an optimal solution

Optimization Problems

$$\min f(x)$$

s. t.
$$x \ge 0$$

where

$$f(x) = \begin{cases} -x, & for \ x < 1 \\ 0, & otherwise \end{cases}$$

This problem does not have an optimal solution

Infeasible Problem

$$\min x_1 - x_2$$

 $s.\ t.$

$$x_1 + x_2 \le 1$$

$$x_1 \ge 2$$

$$x_2 \ge 2$$

3개의 constraints를 동시에 만족시키는 해가 없음

→ Infeasible problem

Unbounded Problem

$$\min x_1 - x_2$$

s. t.

$$x_1 + x_2 \ge 1$$

$$x_1, x_2 \ge 0$$

Objective function decreases w/o any bound if the solution moves along vector (1,0) from point (0,1)

Feasible problem이나 unbounded로 solution이 없음

Unique optimal solution

$$\min x_1 + 2x_2$$

s. t.

$$x_1 + x_2 \ge 1$$

$$x_1, x_2 \ge 0$$

Multiple optimal solutions

$$\min x_1 + x_2$$

s. t.

$$x_1 + x_2 \ge 1$$

$$x_1, x_2 \ge 0$$

Global vs Local Optimum

Unconstrained Optimization Problem

- 1D Optimization Problem

Unconstrained Optimization Problem

$$\min_{x \in R} f(x)$$

- (0th order info.) only objective value f is available
- (1st order info.) f' is available, but not f''
- (2nd order info.) both f' and f'' are available
- Higher-order information tends to give more powerful algorithms.
- These methods are also used in multi-dimensional optimization as line search for determine how far to move along a given direction

Graphical Solution

Procedures

- 1. Plot each constraint as an equation and then decide which side of the line is feasible
- 2. Find the feasible region
- 3. Find the coordinations(좌표) of the corner points of the feasible region
- 4. Substitute the corner point coordinates in the objective function
- 5. Choose the optimal solution

Graphical Solution

$$\min_{x \in R} x^3 - 2x^2 - x + 1$$

고차식으로 가면? 그림을 그리기 용이하지 않음!!

Iterative Algorithm

- Most optimization problems cannot be solved in a closed form (a single step).
- For them, we develop iterative algorithms:
 - Start from an initial candidate solution : $x^{(0)}$
 - Generate a sequence of candidate solutions (iterates): $x^{(1)}$, $x^{(2)}$,
 - Stop when a certain condition is met; return the candidate solution
- In a large number of algorithms, $x^{(k+1)}$ is generate from $x^{(k)}$, that is, using the information of f at $x^{(k)}$.
- In some algorithms, $x^{(k+1)}$ is generate from $x^{(k)}$, $x^{(k-1)}$, ... But, for time and memory consideration, most history iterates are not kept in memory.

Iterative Algorithm

Golden Section Search

Given a closed interval $[a_0, b_0]$, a unimodal function (that is, having one and only one local minimizer in $[a_0, b_0]$), and only objective value information, find a point that is no more than ϵ away from that local minimizer.

- Mid-point : evaluate the mid-point, that is compute $f\left(\frac{a_0+b_0}{2}\right)$.
- But, it cannot determine which half contains the local minimizer. Does not work!!!
- Then? Two-points Approach!

Golden Section Search

- (Step 0) Let $a_0 = a$ and $b_0 = b$, Let k = 0
 - $b_k = \text{upperlimit}$, $a_k = \text{lowerlimit}$
- (Step 1) If $b_k a_k < \epsilon$, Stop.

 Otherwise, go to Step 2.
- (Step 2) Let $\hat{a}_k = a_k + \tau(b_k a_k)$

$$\hat{b}_k = b_k - \tau(b_k - a_k)$$

where
$$\tau = \frac{3-\sqrt{5}}{2} \approx 0.382$$
 (Golden Ratio)

- (a) If $f(a_k) > f(\hat{a}_k)$, then let $a_{k+1} = a_k$, $b_{k+1} = \hat{b}_k$
- (b) If $f(a_k) \le f(\hat{a}_k)$, then let $a_{k+1} = a_k$, $b_{k+1} = \hat{a}_k$
- 2. When $f(\hat{a}_k) > f(\hat{b}_k)$,
 - (a) If $f(\hat{b}_k) < f(b_k)$, then let $a_{k+1} = \hat{a}_k$, $b_{k+1} = b_k$
 - (b) If $f(\hat{b}_k) \ge f(b_k)$, then let $a_{k+1} = \hat{b}_k$, $b_{k+1} = b_k$

뒷장에 상세히

Let k = k + 1. Go to Step 1.

Golden Section Search

(b) If
$$f(a_k) \le f(\hat{a}_k)$$
, then let $a_{k+1} = a_k$, $b_{k+1} = \hat{a}_k$

2. When $f(\hat{a}_k) > f(\hat{b}_k)$,

(a) If
$$f(\hat{b}_k) < f(b_k)$$
, then let $a_{k+1} = \hat{a}_k$, $b_{k+1} = b_k$

(b) If $f(\hat{b}_k) \ge f(b_k)$, then let $a_{k+1} = \hat{b}_k$, $b_{k+1} = b_k$

3. When $f(\hat{a}_k) = f(\hat{b}_k)$, let $a_{k+1} = \hat{a}_k$, $b_{k+1} = \hat{b}_k$

Bisection Search

Bisection Search

- Given a closed interval $[a_0, b_0]$, a <u>continuously differentiable</u>, a unimodal function, and <u>derivative information</u>, find a point that is no more than ϵ away from that local minimizer.
- Mid-point works with derivative!
- (Step 0) Let $a_0 = a$ and $b_0 = b$, Let k = 0
 - $b_k = \text{lower limit}$, $a_k = \text{lower limit}$
- (Step 1) If $b_k a_k < \epsilon$, Stop. Otherwise, go to Step 2.
- (Step 2) Let $c_k = \frac{1}{2}(a_k + b_k)$
 - 1. If $f'(c_k) = 0$, then c_k is the local minimizer.
 - 2. If $f'(c_k) > 0$, then $a_{k+1} = a_k$, $b_{k+1} = c_k$
 - 3. If $f'(c_k) < 0$, then $a_{k+1} = c_k$, $b_{k+1} = b_k$
- Let k = k + 1. Go to Step 1.

Newton's Method

- Given a <u>twice continuously differentiable function</u> and objective, derivative, and <u>2nd derivative information</u>, find an approximate minimizer.
- Newton's method does not need intervals but must start sufficiently close to x^* !!!
- Iteration: minimize the quadratic approximation

$$x_{k+1} \leftarrow \arg\min q(x) \coloneqq f(\mathbf{x_k}) + f'(\mathbf{x_k})(x - \mathbf{x_k}) + \frac{1}{2}f''(\mathbf{x_k})(x - \mathbf{x_k})^2$$

k번째 iteration point인 x_k 에서 2nd order approximation 최소화하는 x를 찾음 (해당 함수 미분해서 0되는 지점 찾음)

Taylor series expansion

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a) (x-a)^2 + \cdots$$

 2^{nd} order Taylor series expansion at x_k

$$f(x) \approx f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2$$

$$f(x) \approx f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2$$
$$= f(x_k) + f'(x_k)\Delta x + \frac{1}{2}f''(x_k)(\Delta x)^2$$

• Derivative with respect to Δx

$$0 = \frac{d}{d\Delta x} \left(f(x_k) + f'(x_k) \Delta x + \frac{1}{2} f''(x_k) (\Delta x)^2 \right) = f'(x_k) + f''(x_k) \Delta x$$

$$\Delta x = -\frac{f'(x_k)}{f''(x_k)}$$

$$x_{k+1} \leftarrow x_k + \Delta x = x_k - \frac{f'(x_k)}{f''(x_k)}$$

다음 x_{k+1} 가 x_k 점에서의 2차 taylaor series expansion을 최소화 시키는 점으로 update

Second derivative → 계산량 많은 문제

Quadratic approximation with f''(x) > 0 arg min $q(x) := f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2$

- Let us define $g(x) = f'(x) \rightarrow g'(x) = f''(x)$
- Newton's method is a way to solve g(x) = f'(x) = 0

$$x_{k+1} \leftarrow x_k - \frac{f'(x_k)}{f''(x_k)} = x_k - \frac{g(x_k)}{g'(x_k)}$$

• What if $f''(x_k) < 0$?

q(x) (2차 approximation)가 위로 볼록 함수 \rightarrow 미분해서 0 되는 지점을 찾는데

미분해서 0 되는 지점을 찾는데 이 지점은 최소값 찾는 방향에서 더욱 멀어짐

→ 처음에 초기값을 솔루션 근처로 잘 잡아야함

즉, Newton's iteration 은 발산함

Secant Method

• Recall Newton's method uses $f''(x_k)$ for minimizing f(x):

$$x_{k+1} \coloneqq x_k - \frac{f'(x_k)}{f''(x_k)}$$

• If f'' is not available or is expensive to compute, we can approximate

$$f''(x_k) \approx \frac{f'(x_k) - f'(x_{k-1})}{x_k - x_{k-1}}$$

This gives the iteration of the secant method:

$$x_{k+1} \coloneqq x_k - \frac{(x_k - x_{k-1})f'(x_k)}{f'(x_k) - f'(x_{k-1})} = \frac{x_{k-1}f'(x_k) - x_kf'(x_{k-1})}{f'(x_k) - f'(x_{k-1})}$$

Note: the method needs two initial points. (미분 해야 하므로)

Secant Method

$$f''(x_k) = \frac{f'(x_k) - f'(x_{k-1})}{x_k - x_{k-1}}$$

The secant method is slightly slower than Newton's method but is cheaper!

Comparisons

- Comparisons of different 1D search methods
 - Golden section search (and Fibonacci search):
 - One objective evaluation at each iteration
 - Narrows search interval by less than half each time
 - Bisection search:
 - One derivative evaluation at each iteration
 - Narrows search interval to exactly half each time
 - Secant method:
 - Two points to start with; then one derivative evaluation at each iteration
 - Must start near x*, has superlinear convergence
 - Newton's method:
 - One derivative and one second derivative evaluations at each iteration.
 - Must start near x^* , has quadratic convergence, fastest among the four

Comparisons

- 이외에도 많은 알고리즘
 - ▶ Gradient descent 알고리즘 등 (다음 주 강의)

 MATLAB으로 Golden Section Search 알고리즘을 구현하여 해를 구하시오.

$$\min f(x) = x^4 - 14x^3 + 60x^2 - 70x$$

- Initial Interval: [0,2]
- Required Accuracy $\varepsilon = 0.00001$
- 각 iteration마다 a_k 값을 확인하시오.


```
XXX Sample Code of Golden Section Method XXXX
       %%% Copyright) Prof. Seungho Chae %%%%%%%%%%
       clc; clear all; close all;
       epsilon = 0.00001;
       stepsize = (3 - \text{sqrt}(5))/2;
 9 -
       a_k = 0;
10 -
       b_k = 2;
11 -
       dx = b_k-a_k;
      f = b_k^4 - 14*b_k^3 + 60*b_k^2 - 70*b_k;
12 -
13 -
       iteration = 0;
14
      fprintf('iter a_k b_k dx f(b_k)\\n')
15 -
     fprintf('---- ------ ----
16 -
17 -
      fprintf('%3i %12.6f %12.6f %12.6f %12.6f\m',iteration,a_k,b_k,dx,f)
18
     \Box while ( (b_k - a_k) > epsilon )
19 -
20
21 -
          iteration = iteration + 1;
22
23 -
          hat_a_k = a_k + stepsize*(b_k - a_k);
24 -
          hat_b_k = b_k - stepsize*(b_k - a_k);
25
26 -
          f_ak = a_k^4 - 14*a_k^3 + 60*a_k^2 - 70*a_k; % objective function at a_k
          f_b_k = b_k^4 - 14*b_k^3 + 60*b_k^2 - 70*b_k;
27 -
28
          f_{hat_a_k} = hat_a_k^4 - 14*hat_a_k^3 + 60*hat_a_k^2 - 70*hat_a_k;
29 -
30 -
           f_{hat_b_k} = hat_b_k^4 - 14*hat_b_k^3 + 60*hat_b_k^2 - 70*hat_b_k;
31
          if (f_hat_a_k < f_hat_b_k)
32 -
33 -
              check = 1;
           elseif (f_hat_a_k > f_hat_b_k)
34 -
35 -
              check = 2;
36 -
           else
37 -
              check = 3;
38 –
           end
39
```

```
40 -
            switch check
41 -
                 case 1
42 -
43 -
                                                a_k, b_k를 어떻게 update를
해야할지 잘 고민해 보기
44 -
45 -
46 -
47 -
48 -
49
50 -
                case 2
51 -
52 -
53 -
54 -
55 -
56 -
57 -
58
59 -
                case 3
60 -
61 -
62 -
            end
63
64 -
            f = b_k^4 - 14*b_k^3 + 60*b_k^2 - 70*b_k;
65 -
            dx = b_k-a_k;
66
            fprintf('%3i %12.6f %12.6f %12.6f %12.6f\mun',iteration, a_k, b_k, dx, f)
67 -
68
69 -
       L end
```

iter	a_k	b_k	dx	f(b_k)	
0	0.000000	2.000000	2.000000	4.000000	
1	0.000000	1.236068	1.236068	-18.958161	
2	0.472136	1.236068	0.763932	-18.958161	
3	0.472136	0.944272	0.472136	-23.592462	
4	0.652476	0.944272	0.291796	-23.592462	
5	0.652476	0.832816	0.180340	-24.287887	
6	0.721360	0.832816	0.111456	-24.287887	
7	0.763932	0.832816	0.068884	-24.287887	
8	0.763932	0.806504	0.042572	-24.349526	
9	0.763932	0.790243	0.026311	-24.366907	
10	0.773982	0.790243	0.016261	-24.366907	
11	0.773982	0.784032	0.010050	-24.369296	
12	0.777821	0.784032	0.006211	-24.369296	
13	0.777821	0.781660	0.003839	-24.369583	
14	0.779287	0.781660	0.002372	-24.369583	
15	0.780193	0.781660	0.001466	-24.369583	
16	0.780193	0.781099	0.000906	-24.369600	
17	0.780539	0.781099	0.000560	-24.369600	
18	0.780753	0.781099	0.000346	-24.369600	
19	0.780753	0.780967	0.000214	-24.369601	
20	0.780835	0.780967	0.000132	-24.369601	
21	0.780835	0.780917	0.000082	-24.369602	
22	0.780866	0.780917	0.000051	-24.369602	
23	0.780866	0.780897	0.000031	-24.369602	
24	0.780878	0.780897	0.000019	-24.369602	$x^* \approx 0.780$
25	0.780878	0.780890	0.000012	-24.369602	2017-00
26	0.780878	0.780886	0.000007	-24.369602	

MATLAB으로 bisection Search 알고리즘을 구현하여 해를 구하시
 오.

$$\min f(x) = x^4 - 14x^3 + 60x^2 - 70x$$

- Initial Interval: [0,2]
- Required Accuracy $\varepsilon = 0.00001$
- 각 iteration마다 c_k 값을 확인하시오.

iter	a_k	b_k	d×	f(b_k)
	0.00000			4 000000
0	0.000000	2.000000	2.000000	4.000000
1	0.000000	1.000000	1.000000	-23.000000
2	0.500000	1.000000	0.500000	-21.687500
3	0.750000	1.000000	0.250000	-24.339844
4	0.750000	0.875000	0.125000	-24.105225
5	0.750000	0.812500	0.062500	-24.339096
6	0.750000	0.781250	0.031250	-24.369597
7	0.765625	0.781250	0.015625	-24.362377
8	0.773438	0.781250	0.007813	-24.367886
9	0.777344	0.781250	0.003906	-24.369214
10	0.779297	0.781250	0.001953	-24.369524
11	0.780273	0.781250	0.000977	-24.369590
12	0.780762	0.781250	0.000488	-24.369601
13	0.780762	0.781006	0.000244	-24.369601
14	0.780884	0.781006	0.000122	-24.369602
15	0.780884	0.780945	0.000061	-24.369601
16	0.780884	0.780914	0.000031	-24.369602
17	0.780884	0.780899	0.000015	-24.369602
18	0.780884	0.780891	0.000008	-24.369602

 $x^* \approx 0.7809$

다음 문제를 MATLAB으로 Newtons' method를 구현하여 해를 구하시오.

$$\min f(x) = x^4 - 14x^3 + 60x^2 - 70x \qquad \qquad x^* \approx 0.7809$$

- Initial point: $x_0 = 0$
- $x_1 = 0.5833$
- $x_2 = 0.7631$
- $x_3 = 0.7807$
- $x_4 = 0.7809$
- → Produce highly accurate solutions in
- → Just a few steps.

iter	×	d×	f(x)
0	0.00000000	1.00000000	0.00000000
1	0.58333333	0.58333333 -2	3.07981289
2	0.76310273	0.17976939 -2	4.35978265
3	0.78071929	0.01761656 -2	4.36960073
4	0.78088404	0.00016475 -2	4.36960157
5	0.78088405	0.00000001 -2	4.36960157

 $x^* \approx 0.7809$

Only 5 steps!