Part Ⅲ 触发器与时序逻辑OK

Lecture 09 时序逻辑电路分析

一、概述

1、时序逻辑电路的特点

时序逻辑电路在结构上有两个特点:

①包含**组合电路**和**存储电路**两部分,存储电路是必不可少的:

②存储电路的状态至少有一个作为组合电路的输入,与其他输入信号共同决定电路的输出。

时序逻辑电路的系统框图如下:

图5.1.1 时序逻辑电路的构成方框图

各类信号之间的逻辑关系可以用三组逻辑函数表示:

输出函数:
$$Z(t_n) = f_1[X(t_n), Y(t_n)]$$

激励函数:
$$W(t_n) = f_2[X(t_n), Y(t_n)]$$

状态方程:
$$Y(t_{n+1}) = f_3[W(t_n), Y(t_n)]$$

 $Y(t_n)$ 表示 t_n 时刻存储电路的状态,即现态;

 $Y(t_{n+1})$ 为 t_{n+1} 时刻存储电路的状态,即次态;

 $Z(t_n)$ 是 t_n 时刻的输出;

 $X(t_n)$ 是 t_n 时刻的输入;

 $W(t_n)$ 是 t_n 时刻的激励。

2、时序逻辑电路的分类

根据时钟信号,可分为:同步时序电路和异步时序电路。

同步时序电路: 各触发器的时钟脉冲相同,

其状态的改变受同一个时钟脉冲控制,即电路在 统一时钟控制下,同步改变状态。

异步时序电路:各触发器的时钟脉冲不同, 电路中没有统一的时钟脉冲来控制电路状态的变 化,因此电路各触发器的状态更新有先有后。

根据输出信号,可分为米利(Mealy)型和摩尔(Moore)型。

米利型时序逻辑电路的构成如图 5.1.2(a)所示,该类电路的输出不仅与电路现态有关,而且还取决于电路当前的输入。

图5.1.2 时序逻辑电路框图

(a) 米利(Mealy)型; (b) 摩尔(Moore)型

摩尔型时序逻辑电路的构成如图 5.1.2(b)所示, 其输出仅取决于电路的现态,与电路当前的输入 无关。因此,也可以将摩尔型电路看成是米利型 电路的特例。

图5.1.2 时序逻辑电路框图

(a) 米利(Mealy)型; (b) 摩尔(Moore)型

二、同步时序逻辑电路分析

在同步时序逻辑电路中,所有存储电路或触 发器电路都采用统一的时钟信号,因此在分析这 类电路时,可省略对时钟信号的分析。

分析同步时序逻辑电路的步骤是:

1)根据电路写出输出函数、激励函数和特征方程:

- 2)将激励函数代入特征方程,求出次态方程;
- 3)根据次态方程列出电路的状态表;
- 4)根据状态表画出状态图或时序图;
- 5)检查电路是否具有自启动能力;
- 6)说明电路的逻辑功能。

【例 1】分析图 5.3.2 所示同步时序逻辑电路的功能。

图5.3.2 例5.3.1的电路图

【解答】①激励方程和输出方程:

②将激励方程代入 J-K 触发器的特征方程

 $Q^{n+1} = J\bar{Q}^n + \bar{K}Q^n$ 得到各触发器的次态方程:

$$\begin{cases} J_1 = \overline{Q_3}, K_1 = 1 \\ J_2 = Q_1, K_2 = Q_1 \\ J_3 = Q_1 Q_2, K_3 = 1 \end{cases} \qquad \qquad \begin{cases} Q_1^n \\ Q_2^n \\ Q_2^n \end{cases}$$

$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

$$\begin{cases} J_{1} = Q_{3}, K_{1} = 1 \\ J_{2} = Q_{1}, K_{2} = Q_{1} \\ J_{3} = Q_{1}Q_{2}, K_{3} = 1 \end{cases} \qquad \begin{cases} Q_{1}^{n+1} = \overline{Q}_{3}^{n} \overline{Q}_{1}^{n} \\ Q_{2}^{n+1} = Q_{1}^{n} \overline{Q}_{2}^{n} + \overline{Q}_{1}^{n} Q_{2}^{n} = Q_{1}^{n} \oplus Q_{2}^{n} \\ Q_{3}^{n+1} = Q_{1}^{n} Q_{2}^{n} \overline{Q}_{3}^{n} \end{cases}$$

$$\begin{cases}
Q_1^{n+1} = \bar{Q}_3^n \bar{Q}_1^n \\
Q_2^{n+1} = Q_1^n \bar{Q}_2^n + \bar{Q}_1^n Q_2^n = Q_1^n \oplus Q_2^n \\
Q_3^{n+1} = Q_1^n Q_2^n \bar{Q}_3^n
\end{cases}$$

③状态表:

$$\begin{cases} Q_1^{n+1} = \overline{Q}_3^n \overline{Q}_1^n \\ Q_2^{n+1} = Q_1^n \overline{Q}_2^n + \overline{Q}_1^n Q_2^n = Q_1^n \oplus Q_2^n \\ Q_3^{n+1} = Q_1^n Q_2^n \overline{Q}_3^n \end{cases}$$

表5.3.1 例5.3.1电路的状态转移真值表

Q_3^n	Q_2^n	$Q_{\rm l}^{\rm e}$	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	Z
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1

表5.3.1 例5.3.1电路的状态转移真值表

Q_3^n	Q_2^n	$Q_{\rm l}^{\rm u}$	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	Z
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1

④状态图和时序图:

表5.3.1 例5.3.1电路的状态转移真值表

Q_3^n	Q_2^n	$Q_{\mathrm{l}}^{\mathrm{e}}$	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	Z
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1

图5.3.3 例5.3.1的状态转移图

⑤检查自启动能力:能自启动

图5.3.5 例5.3.1 电路的完整状态转移图

⑥功能总结: 具备自启动能力的同步五进制

加法计数器。

【解答】①驱动方程和输出方程:

$$\begin{cases} J_1 = X \oplus \overline{Q}_2^n, K_1 = 1 \\ J_2 = X \oplus Q_1^n, K_2 = 1 \end{cases} \quad Z = (X \oplus Q_2^n) \overline{Q}_1^n$$

②将驱动方程代入 J-K 触发器的特征方程

$$Q^{n+1} = J\bar{Q}^n + \bar{K}Q^n$$
 得到各触发器的次态方程:

$$\begin{cases}
J_{1} = X \oplus \overline{Q}_{2}^{n}, K_{1} = 1 \\
J_{2} = X \oplus Q_{1}^{n}, K_{2} = 1
\end{cases}$$

$$Q^{n+1} = J\overline{Q}^{n} + \overline{K}Q^{n}$$

$$\begin{cases}
Q_{1}^{n+1} = J_{1}\overline{Q}_{1}^{n} + \overline{K}_{1}Q_{1}^{n} = (X \oplus \overline{Q}_{2}^{n})\overline{Q}_{1}^{n} \\
Q_{2}^{n+1} = J_{2}\overline{Q}_{2}^{n} + \overline{K}_{2}Q_{2}^{n} = (X \oplus Q_{1}^{n})\overline{Q}_{2}^{n}
\end{cases}$$

$$\begin{cases} Q_1^{n+1} = J_1 \overline{Q}_1^n + \overline{K}_1 Q_1^n = (X \oplus \overline{Q}_2^n) \overline{Q}_1^n \\ Q_2^{n+1} = J_2 \overline{Q}_2^n + \overline{K}_2 Q_2^n = (X \oplus \overline{Q}_1^n) \overline{Q}_2^n \end{cases}$$

③状态表:

表5.3.2 X=0时的状态转移真值表

Q_2^n	Q_1^n	Q_2^{n+1}	Q_1^{n+1}	Z
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1

表5.3.3 X=1时的状态转移真值表

Q_2^n	Q_1^n	Q_2^{n+1}	Q_1^{n+1}	Z
0	0	1	O	1
1	O	0	1	0
0	1	0	0	0

④状态图和时序图:

图5.3.9 在X控制下的状态转移图

图5.3.10 例5.3.2的时序图

⑤检查自启动能力:能自启动

完整的状态图:

图5.3.11 例5.3.2的完整状态转移图

⑥功能总结:具备自启动能力的加减可控的

三进制计数器。

【例3】分析下面的同步时序逻辑电路:

【解答】①输出函数和激励函数表达式

$$J_1 = K_1 = 1$$
; $J_2 = K_2 = x \oplus y_1$

②电路次态真值表

次态真值表

输入	现	态		激励	函數	ζ	次	态 yı (n+1)		J K	$O^{(n+1)}$
X	y 2	y 1	J ₂	K ₂	Jı	Kı	y ₂ (n+1)	yı (n+1)		V 11	~
0	0	0	0	0	1	1	0	1		0.0	Q
0	0	1	1	1	1	1	1	0		0.4	
0	1	0	0	0	1	1	1	1		0.1	0
0	1	1	1	1	1	1	0	0			
1	0	0	1	1	1	1	1	1		1 0	1
1	0	1	0	0	1	1	0	0			
1	1	0	1	1	1	1	0	1		1 1	O
1	1	1	0	0	1	1	1	0	-		

$$J_1 = K_1 = 1$$
; $J_2 = K_2 = x \oplus y_1$

③状态表和状态图

状态表

现态	次态y ₂ (n+	$y_1^{(n+1)}$
$y_2 y_1$	X=0	X=1
0 0	0 1	1 1
0 1	1 0	0 0
1 0	1 1	0 1
1 1	0 0	1 0

④电路的逻辑功能:是2位2进制可逆计数

当输入x=0时,可逆计数器进行加 1 计数,其计数序列如下左。

当输入x=1时,可逆计数器进行减1计数,其计数序列如上右。

【例 4】分析下图所示的同步时序电路:

【解答】①输出函数和激励函数的表达式:

$$Z = xy_{2}\overline{y_{1}}$$

$$D_{2} = \overline{x + y_{2} + y_{1}} = \overline{xy_{2}y_{1}}$$

$$D_{1} = x$$

②电路次态真值表:

次态真值表

输入	現 y2	态 yı	激励函数 D ₂ D ₁	大
0	0	0	0 0	0 0
0	0	1	1 0	1 0
0	1	0	0 0	0 0
0	1	1	0 0	0 0
1	0	0	0 1	0 1
1	0	1	0 1	0 1
1	1	0	0 1	0 1
1	1	1	0 1	0 1

③状态表和状态图

		状态表	
现	态	次态/输出(y 2 ^(r,+1) y ₁ (r,+1)/Z)
y 2	y 1	x =0	x =1
0	0	00/0	01/0
0 \	1	10/0	01/0
1	1	00/0	01/0
1	0	00/0	01/1

④电路的逻辑功能:设电路初始状态为"00",输入x为脉冲信号,其输入序列为 010110100。根

据状态图可作出电路的状态响应序列和输出响应序列如下:

CP: 1 2 3 4 5 6 7 8 9

$$x: 0 1 0 1 1 0 1 0 0$$
 $y_2: 0 0 0 1 0 0 1 0 1$
 $y_1: 0 0 1 0 1 1 0 1$

 y_1^{n+1} : 0 1 0 1 0 0

z: 0 0 0 1 0 0 1 0 0

由输入、输出序列可以看出,一旦输入*X*出现信号"101",输出z便产生一个相应的 1,其他情况下输出z为 0。因此,该电路是一个"101"序列检测器。

说明: 总结时序电路功能时, 主要是看状态图中的回路!

三、异步时序逻辑电路分析

异步时序电路与同步时序电路的主要差异有 三个方面:

- ①异步时序电路中无统一的外加时钟脉冲, 这是最主要的区别,这就意味着异步时序逻辑电 路中各个触发器状态的变化不是同时进行的;
 - ②异步时序电路中,通常情况下输入变量 X

为脉冲信号,由输入脉冲直接引起电路状态的改变;

③由次态逻辑产生各触发器的驱动信号及时钟信号。

具体步骤: ①根据逻辑电路图写出各逻辑方程: 各触发器的时钟方程、时序电路的输出方程和各触发器的驱动方程。

- ②将驱动方程代入相应触发器的**特征方程**,得到时序逻辑电路的**次态方程**。
- ③根据次态方程和输出方程,列出电路的状态表,画出状态图或时序图。
- ④根据电路的状态表或状态图说明电路的<mark>逻</mark> 辑功能。

【例1】试分析下图所示的时序逻辑电路。

【解答】①时钟方程:

$$|CP_0| = CP \land$$
 $(CP 上 升 沿 触 发)$
 $|CP_1| = Q_0 \land$ (当 FF_0 的 Q_0 由 $0 \rightarrow 1$ 时, Q_1 才可能改变状态)

输出方程: $Z = \overline{Q}_1^n \overline{Q}_0^n$

驱动方程:
$$D_0 = \overline{Q}_0^n CP_0, D_1 = \overline{Q}_1^n CP_1$$

②次态方程:
$$\begin{cases} Q_0^{n+1} = D_0 = \bar{Q}_0^n C P_0 \\ Q_1^{n+1} = D_1 = \bar{Q}_1^n C P_1 \end{cases}$$

③状态表:

$$\begin{cases} Q_0^{n+1} = D_0 = \overline{Q}_0^n C P_0 \\ Q_1^{n+1} = D_1 = \overline{Q}_1^n C P_1 \end{cases}$$

表5.3.4 例5.3.3 电路的状态转移真值表

现	态	次	态	输出		时钟脉冲	
Q_1^n	Q_0^n	Q_1^{n+1}	Q_0^{n+1}	Z	CP ₁	CP_0	CP
0	0	1	1	1	^	↑	^
1	1	1	0	0	0	†	†
1	0	0	1	0	<u> </u>	†	†
0	1	0	0	0	0	↑	†

④状态图和时序图:

图5.3.13 例5.3.3电路的状态转移图

图5.3.14 例5.3.3电路的时序图

⑤逻辑功能:是一个四进制减法计数器, Z 是借位信号。

【例2】分析下图所示电路的功能:

图5.3.15 例5.3.4的电路图

【解答】①时钟方程:
$$\begin{cases} CP_0 = CP \\ CP_1 = \bar{Q}_0 \\ CP_2 = CP \end{cases}$$

$$D_0 = ar{Q}_2^n ar{Q}_0^n$$
 驱动方程: $D_1 = ar{Q}_1^n D_1^n$ $D_2 = ar{Q}_1^n Q_0^n$

输出方程: Y=Q2

$$Q_0^{n+1} = \overline{Q}_2^n \overline{Q}_0^n \cdot CP_0 \uparrow$$
②次态方程:
$$Q_1^{n+1} = \overline{Q}_1^n \cdot CP_1 \uparrow$$

$$Q_2^{n+1} = Q_1^n Q_0^n \cdot CP_2 \uparrow$$

$$\begin{cases} Q_0^{n+1} = \overline{Q}_2^n \overline{Q}_0^n \cdot CP_0 \uparrow \\ Q_1^{n+1} = \overline{Q}_1^n \cdot CP_1 \uparrow \\ Q_2^{n+1} = Q_1^n Q_0^n \cdot CP_2 \uparrow \end{cases}$$

表5.3.5 例5.3.4电路的状态转移真值表

	现 态			次 态		输出		时钟	脉冲	
$Q_2^{\scriptscriptstyle{ m N}}$	Q_1^u	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Y	CP_2	CP_1	CP_0	CP
0	0	0	0	0	1	0	↑	\	↑	↑
0	0	1	0	1	0	0	†	†	↑	↑
0	1	0	0	1	1	0	†	\downarrow	↑	†
0	1	1	1	0	0	0	†	↑	↑	†
1	0	0	0	0	0	1	†	0	†	†
1	0	1	0	1	0	1	↑	↑	†	†
1	1	0	0	1	0	1	†	0	↑	†
1	1	1	1	0	0	1	†	†	↑	↑

② 状态图和时序图:

图5.3.16 例5.3.4电路的状态转移图

图5.3.17 例5.3.4电路的时序图

⑤逻辑功能:是一个具有自启动功能的五进制异步计数器。