Econometric Analysis

Ch.4 The Single-Equation Linear Model and OLS Estimation

Ryuichi Tanaka

Econometric Analysis

1

4.1 Overview of the Single-Equation Linear Model

The population model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_K x_K + u$

 (y, \mathbf{x}) : observable random vector

u: unobservable random disturbance

 β : parameters to be estimated

Assumptions for the consistency of OLS estimator

- (1) E(u) = 0 (automatically satisfied if the model has a constant term)
- (2) $Cov(x_i, u) = 0, j = 1, 2, \dots, K$. (no correlation between u and x)

Econometric Analysis

2

Endogeneity

Definition

In the population model, x_j is said to be endogenous (exogenous) if $Cov(x_j, u) \neq 0$ ($Cov(x_j, u) = 0$).

- Three main causes of endogeneity
 - Omitted variables
 - ◆Measurement error
 - Simultaneity

conometric Analysis

Omitted variable

Popuolation model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_a q + \varepsilon$

Estimable model: $y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + u$ where $u = \beta_q q + \varepsilon$ q is unobservable.

If q is correlated with x, x is endogenous (e.g., x_1 : education, q: ability) (See section 4.3)

Measurement error

Popuolation model: $y = \beta_0 + \beta x^* + \varepsilon$

Estimable model: $y = \hat{\beta}_0 + \hat{\beta}x + u$ where $u = \varepsilon - \tilde{\varepsilon}$ and $x = x^* + \tilde{\varepsilon}$ x^* is observed with measurement error

If $cov(x, \tilde{\epsilon}) \neq 0$, then $Cov(x, u) \neq 0$ (e.g., x^* :income, y:saving)

See section 4.4

Econometric Analysis

-

Simulataneity

The population model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$, $x_1 = \delta_0 + \delta_1 y$ y: murder rate, x_1 : number of police officers

If you estimate the model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

ignoring $x_1 = \delta_0 + \delta_1 y$, then

$$Cov(x_1, u) = Cov(\delta_0 + \delta_1 y, u) = Cov(\delta_0 + \delta_1 (\beta_0 + \beta_1 x_1 + \beta_2 x_2 + u), u) \neq 0$$

See chapter 9

Econometric Analysis

6

4.2 Asymptotic Properties of OLS

- Consistency?
- Asymptotic distribution?

The population model: $y = x\beta + u$, $x:1 \times K$ with $x_1 = 1$, $\beta:K \times 1$

 $\{(\mathbf{x}_i, y_i) : i = 1, 2, \dots, N\}$: a random sample of size N from the population (to estimate beta), each observation is i.i.d.

For each (\mathbf{x}_i, y_i) , we have $y_i = \mathbf{x}_i \mathbf{\beta} + u_i$

Econometric Analysis

4.2.1 Consistency

Assumption OLS.1 (population orthogonality condition): E(x'u) = 0

This assumption is equivalent to E(u) = 0 (with $x_1 = 1$) and $Cov(x_1, u) = 0$

Mean independence $(E(u | \mathbf{x}) = 0)$ is stronger than **AOLS.1** $(E(u | \mathbf{x}) = 0 \Rightarrow \mathbf{AOLS.1})$

AssumptionOLS.2(full rank condition): $rankE(\mathbf{x}'\mathbf{x}) = K$.

There is no perfect colinearity among regressors in the population

Identifiability

 β is identifiable if β can be written in terms of population moments in observable variables

Claim: Under AOLS.1 and AOLS.2, B is identifiable

$$\mathbf{x'} \ y = \mathbf{x'} \mathbf{x} \boldsymbol{\beta} + \mathbf{x'} \boldsymbol{u}$$

$$E(\mathbf{x'} \ y) = E(\mathbf{x'} \mathbf{x} \boldsymbol{\beta}) + E(\mathbf{x'} \boldsymbol{u}) = E(\mathbf{x'} \mathbf{x}) \boldsymbol{\beta}$$

$$\boldsymbol{\beta} = [E(\mathbf{x'} \mathbf{x})]^{-1} E(\mathbf{x'} \ y)$$

AOLS.1 is needed for consistency

AOLS.2 is needed for identification

Econometric Analysis

9

The analogy principle

Turn the popyulation problem into its sample counterpart Replace E(x'x), E(x'y) by $N^{-1}\sum_{i=1}^{N}x_i'x_i$, $N^{-1}\sum_{i=1}^{N}x_i'y_i$

(1)
$$\hat{\beta} = [N^{-1}\sum_{i=1}^{N} \mathbf{x}_{i}'\mathbf{x}_{i}]^{-1}[N^{-1}\sum_{i=1}^{N} \mathbf{x}_{i}'\mathbf{y}_{i}] = \beta + [N^{-1}\sum_{i=1}^{N} \mathbf{x}_{i}'\mathbf{x}_{i}]^{-1}[N^{-1}\sum_{i=1}^{N} \mathbf{x}_{i}'u_{i}]$$

(2) Under AOLS2,
$$p \lim_{i \to 1} [N^{-1} \sum_{i=1}^{N} x_i' x_i]^{-1} = A^{-1}$$
 where $A = E(x'x)$

(3) Under AOLS1,
$$p \lim_{i=1}^{N} x_i' u_i = E(x'u) = 0$$

(4) With Slutsky's theorem, $p \lim(\hat{\beta}) = \beta + A^{-1}0 = \beta$

Econometric Analysis

10

Theorem 4.1: Consistency of the OLS

Theorem 4.1 (consistency of OLS):

Under AOLS.1 and AOLS.2, the OLS estimator $\hat{\beta}$ obtained from a random sample following the population model is consistent for β .

4.2.2: Asymptotic Inference Using OLS

$$\sqrt{N(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})} = \left[N^{-1} \sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{x}_{i} \right]^{-1} \left[N^{-1/2} \sum_{i=1}^{N} \mathbf{x}_{i}' u_{i} \right]$$

(1) WLLN implies
$$p \lim_{i \to 1} \left[N^{-1} \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i} \right]^{-1} = \mathbf{A}^{-1}$$

(2) Since
$$\{(\mathbf{x}_i'u_i): i=1,2,\cdots\}$$
 are *i.i.d.* sequence with zero mean,

CLT implies that
$$N^{-1/2} \sum_{i=1}^{N} \mathbf{x}_i' \mathbf{u}_i \xrightarrow{d} Normal(0, \mathbf{B})$$

(3) Hence
$$\sqrt{N(\hat{\beta} - \beta)} \xrightarrow{d} Normal(0, A^{-1}BA^{-1})$$
 where $B = E(u^2x^2x)$

$$A \, \text{var}(\hat{\boldsymbol{\beta}}) = \hat{\mathbf{A}}^{-1} \hat{\mathbf{B}} \hat{\mathbf{A}}^{-1} / N$$

Econometric Analysis

12

Econometric Analysis

Homoskedasticity

Assumption OLS.3 (homoskedasticity):

$$E(u^2x'x) = \sigma^2 E(x'x)$$
 where $\sigma^2 \equiv E(u^2)$

Theorem 4.2 (Asymptotic Normality of OLS):

Under AOLS.1, 2, and 3, $\sqrt{N(\hat{\beta} - \beta)} \xrightarrow{d} Normal(0, \sigma^2 \mathbf{A}^{-1})$

Under AOLS3, asymptotic variance has the simple form.

Plugging consistent estimators of σ^2 and A,

$$A \, \text{var}(\hat{\boldsymbol{\beta}}) = \hat{\sigma}^2 (\mathbf{X}' \mathbf{X})^{-1}$$
 [where $\mathbf{X}' \mathbf{X} = \sum_{i=1}^N \mathbf{x}_i' \mathbf{x}_i$]

This is the "usual" variance-covariance matrix of OLS estimator t-test and F-test are valid in the limit (asymptotically valid)

Econometric Analysis

4.2.3 Heteroskedasticity-Robust Inference

- ♦ Under AOLS.1 and 2, OLS estimator is consistent (even without AOLS3)
- •Without AOLS.3, the "usual" OLS variance-covariance matrix (and thus the standard errors) are not asymptotically valid (hence we cannot use t-test or F-test)
- Solution: use heteroskedasticity-robust variance matrix (standard error, test statistics)

Econometric Analysis

4.

Robust variance matrix

Without AOLS3, $A var(\hat{\beta}) = A^{-1}BA^{-1} / N$, A = E(x'x), $B = E(u^2x'x)$

Estimator of asymptotic variance: $\hat{V} = A v \hat{a} r(\hat{\beta}) = \hat{A}^{-1} \hat{B} \hat{A}^{-1} / N$

Consistent estimator of A = E(x'x): $\hat{A} = \left[N^{-1} \sum_{i=1}^{N} x_i' x_i \right]$

Consistent estimator of $B = E(u^2x'x)$:

 $\hat{\mathbf{B}} = N^{-1} \sum_{i=1}^{N} \hat{u}_{i}^{2} \mathbf{x}_{i} \mathbf{x}_{i} \quad \text{where} \quad \hat{u}_{i} = y_{i} - \mathbf{x}_{i} \hat{\boldsymbol{\beta}} \quad \text{(OLS residuals):}$

Test of linear constraint H_0 : $R\beta = r$:

$$W = (R\hat{\beta} - r)'(R\hat{V}R')^{-1}(R\hat{\beta} - r) \sim \chi_0^2$$

Econometric Analysis

4.2.4 Lagrange Multiplier (Score) Test

The population model : $y = x_1\beta_1 + x_2\beta_2 + u$ Null hypothesis : $H_0: \beta_2 = 0$

LM Test

- 1. Estimate $y = x_1\beta_1 + u$ by OLS and obtain OLS residual $\tilde{u}_i = y_i x_n\tilde{\beta}_1$
- 2. Regress \tilde{u}_i on x_{ij} and x_{2i} , and obtain the usual R_u^2 . Then

 $LM = NR_u^2 \sim \chi_{K_1}^2$ (K_2 is the number of restrictions)

Interpretation

If the null hypothesis H_0 : $\beta_2 = 0$ is correct, \tilde{u}_i and \mathbf{x}_{2i} are uncorrelated (\mathbf{x}_{2i}) is not in the error term)

If \tilde{u}_i and \mathbf{x}_{2i} are correlated, \mathbf{x}_{2i} explains \tilde{u}_i well and thus R_u^2 becomes large (and thus reject the null hypothesis)

LM Test

LM Test under homoskedasticity

$$LM = \left(N^{-1/2} \sum_{i=1}^{N} \hat{\mathbf{f}}_{i}^{1} \tilde{\boldsymbol{u}}_{i}\right) \left(\tilde{\boldsymbol{\sigma}}^{2} N^{-1} \sum_{i=1}^{N} \hat{\mathbf{f}}_{i}^{2} \hat{\mathbf{f}}_{i}\right)^{-1} \left(N^{-1/2} \sum_{i=1}^{N} \hat{\mathbf{f}}_{i}^{1} \tilde{\boldsymbol{u}}_{i}\right)$$

 $\tilde{\sigma}^2 = N^{-1} \sum_{i=1}^{N} \tilde{u}_i^2$, $\hat{r}_i : 1 \times K$ vector of OLS residuals from the regression of x_{2i} on x_{1i}

LM test under heteroskedasticity

$$LM = \left(N^{-1/2} \sum_{i=1}^{N} \hat{\mathbf{f}}_{i}^{\mathsf{T}} \tilde{\boldsymbol{u}}_{i}\right) \left(N^{-1} \sum_{i=1}^{N} \tilde{\boldsymbol{u}}_{i}^{2} \hat{\mathbf{f}}_{i}^{\mathsf{T}} \hat{\boldsymbol{f}}_{i}\right)^{-1} \left(N^{-1/2} \sum_{i=1}^{N} \hat{\mathbf{f}}_{i}^{\mathsf{T}} \tilde{\boldsymbol{u}}_{i}\right)$$

How to obtain the test statistics

- 1. Regress x_{ij} on x_{ij} and collect the residuals in \hat{r}_{ij}
- 2. Form $\tilde{u}_i \cdot \hat{r}_i$ and run the regression 1 on $\tilde{u}_i \cdot \hat{r}_i$ and obtain SSR_0 .

Then $N - SSR_0 \sim \chi_K^2$

Econometric Analysis

4.3 OLS Solutions to the Omitted Variables Problem 4.3.1 OLS Ignoring the Omitted Variables

The error form of the structural model with omitted variable *q*:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_K x_K + \gamma q + v, \ E(v \mid x_1, x_2, \dots, x_K, q) = 0$$

Example y: log(wage), q: ability, x: education

Estimable model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_K x_K + u, \quad u = \gamma q + v$$

If q and x are correlated, u and x are correlated (endogeneity)

OLS estimator is inconsistent

Econometric Analysis

10

OLS Omitted Variable Inconsistency

Linear projection of q on observables (1 and $x_1, \dots x_K$)

$$q = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \dots + \delta_K x_K + r$$

$$E(r) = 0$$
, $Cov(x_i, r) = 0$, $\delta = [Var(\mathbf{x})]^{-1}Cov(\mathbf{x}, q)$, $\delta_0 = q - E(\mathbf{x})\delta$

Estimable equation :

$$y = (\beta_0 + \gamma \delta_0) + (\beta_1 + \gamma \delta_1) x_1 + (\beta_2 + \gamma \delta_2) x_2 + \dots + (\beta_K + \gamma \delta_K) x_K + u, \quad u = \gamma r + v$$

$$E(u) = 0$$
, $Cov(x_i, u) = 0 \Rightarrow p \lim(\hat{\beta}_j) = \beta_j + \gamma \delta_j$

Suppose that only x_k is endogenous

$$p \lim(\hat{\beta}_i) = \beta_i$$
 for $j = 1, ..., K-1$

$$p \lim(\hat{\beta}_K) = \beta_K + \gamma \delta_K = \beta_K + \gamma [Var(x_K)]^{-1} Cov(x_K, q)$$

We can infer the sign and magnitude of asymptotic bias from this equation

Econometric Analysis

3

Example 4.2 Over-estimation of the returns to education

Structural model in the error form:

$$\log(wage) = \beta_0 + \beta_1 exper + \beta_2 exper^2 + \beta_3 educ + \gamma abil + v$$
 abil is unobservable

LP of abil:
$$abil = \delta_0 + \delta_1 exper + \delta_2 exper^2 + \delta_3 educ + r$$

Under
$$\delta_1 = \delta_2 = 0$$
, β_1 and β_2 can be consistently estimated

However,
$$p \lim \hat{\beta}_3 = \beta_3 + \gamma \delta_3$$

The returns to education is overestimated if ability raises wages
$$(\gamma>0)$$
 and education is positively

correlated with ability
$$(\delta_3 > 0)$$

4.3.2 The Proxy Variable-OLS Solution

If you have proxy variables to unobservables (omitted variables), you can eliminate (or mitigate at least) omitted variable bias

Proxy variable

A variable proxies for unobserved variables, but not contained in the population model (structure equation)

Ex IQ test score is a proxy variable for ability

Econometric Analysis

1

Two formal requirements for a Proxy variable

(Requirement 1) Proxy variable (z) is redundant (ignorable) in the structural equation:

$$E(y \mid \mathbf{x}, q, z) = E(y \mid \mathbf{x}, q)$$

After controlling x and q, z has no explanation power for y

Ex. z: 10 test score

Since not IQ test score but ability does increase wage, IQ test score has no explanation power for wage after controlling ability

Econometric Analysis

22

Two formal requirements for a Proxy variable

(Requirement 2) Correlation between the omitted variable q and each xj be zero once we partial out z. Using LP,

$$L(q | 1, x_1, \dots, x_K, z) = L(q | 1, z)$$

Z is closely enough related to unobserved variable q so that once it is included in the above LP, the other xs' are not partially correlated with q

Proxy variable is a variable that proxies for unobserved variables but not contained in the structural equation

(Perfect) proxy variable can eliminate omitted variable bias

LP: $q = \theta_0 + \theta_1 z + r$, E(r) = 0, Cov(z, r) = 0 (from the definition of LP)

If z is a proxy variable, $\theta_1 \neq 0$ and $Cov(x_i, r) = 0$

Then estimable equation is $y = (\beta_0 + \gamma \theta_0) + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_K x_K + \gamma \theta_1 z + (\gamma r + \nu)$

 $E(v | x_1, x_2, \dots, x_K, q) = 0$ and $Cov(x_i, r) = 0$ imply $Cov(x_i, u) = 0$

The requirement 1 implies Cov(z, v) = 0

(without requirement 1, z and v are correlated because z is contained in v as an omitted variable)

Since Cov(z, r) = 0 by definition, Cov(z, u) = 0

Therefore, the OLS estimator of $y = (\beta_0 + \gamma \theta_0) + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_K x_K + \gamma \theta_1 z + u$ is *consistent*!

Econometric Analysis

23

Econometric Analysis

2

Imperfect proxy variable

If some of x_j correlates to r in $q = \theta_0 + \theta_1 z + r$ (by the failure of the requiremt 2), $q = \theta_0 + \rho_1 x_1 + \dots + \rho_K x_K + \theta_1 z + r$

Then, $p \lim(\hat{\beta}_i) = \beta_i + \gamma \rho_i$ となる

In this case, the OLS estimator is inconsistent, but asymptotic bias is small as long as z is a good proxy variable (not perfect though) with small ρ_i

Econometric Analysis

.....

4.4 Properties of OLS under Measurement Error

4.4.1 Measurement Error in the Dependent Variable Measurement error in explained variable

$$y^* = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_K x_K + v$$

 y^* : true value, $y \neq y^*$: observed value, $e_0 = y - y^*$: population measurement error

Estimable model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_K x_K + v + e_0$$

OLS estimators are consistent if the measurement error is uncorrelated to the regressors

Only cost is larger variance of the error term

conometric Analysis

24

4.4.2 Measurement Error in the Explanatory Variable

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_K x_K^* + v$$

 x_{κ}^{*} : true value, $x_{\kappa} \neq x_{\kappa}^{*}$: observed value

Assume $x_K \neq x_K^*$ is uncorrelated to v (redundancy assumption)

 $e_K = x_K - x_K^*$: population measurement error with zero mean

 $E(x_i e_K) = 0$ for j=1,...,K-1

Case 1 $Cov(x_k, e_k) = 0$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_K x_K + (v - \beta_K e_K)$$

The error term is uncorrelated to regressors

OLS estimator is consistent

Classical Errors in variable (CEV)

Case 2
$$Cov(x_K^*, e_K) = 0$$

$$Cov(x_K, e_K) = E(x_K e_K) = \sigma_{e_K}^2$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_K x_K + (\nu - \beta_K e_K)$$
 OLS estimator is inconsistent

$$p \lim(\hat{\beta}_K) = \beta_K \left(\frac{\sigma_{r_k}^2}{\sigma_{r_k}^2 + \sigma_{e_K}^2} \right) \text{ where } r_K^* \text{ is the linear projection error in}$$

$$x_{K}^{*} = \delta_{0} + \delta_{1}x_{1} + \delta_{2}x_{2} + \dots + \delta_{K-1}x_{K-1} + r_{K}^{*}$$

With CEV, OLS estimator "shrinks" toward zero (attenuation bias)
In the case with only one regressor,

$$p \operatorname{lim}(\hat{\beta}_{1}) = \beta_{1} \left(\frac{\sigma_{x_{1}^{+}}^{2}}{\sigma_{x_{k}^{+}}^{2} + \sigma_{x_{1}^{-}}^{2}} \right) = \beta_{1} \left(\frac{\operatorname{Var}(x_{1}^{+})}{\operatorname{Var}(x_{1})} \right)$$

Econometric Analysis

28

PS3 • 4.1 • 4.6 • 4.7 • Reproduce the estimation results in Example 4.1 with Stata (hand in both the output and the DO files) PS4 • Reproduce the estimation results in Example 4.3 and Example 4.4 with Stata (hand in both the output and the DO files) • 4.9 • 4.11

Econometric Analysis

• 4.14