CS170–Fall 2014 — Solutions to Homework 1

Quoc Thai Nguyen Truong, SID 24547327, cs
170-ig September 7, 2014

Collaborators: Tho Giai Truong

1. Getting started

(1 page)

- (a) I understand the course policies
- (b) No, this is not allowed!

2. Proof of correctness

(2 pages)

To show the correctness of the algorithm, we want to show that:

$$P(x) = \sum_{k=0}^{n} a_k x^k$$

At line 3 where the execution the value of y, we have an invariant:

$$y_{n-(i+1)} = c * y_{n-i} + a_{n-(i+1)}$$

Base case: If n = 0, then we have:

$$Horner((a_0), c) = a_0$$

We know that at line 1, $y_n = a_n$, so if n = 0, then $y_0 = a_0$ and it will ignore line 2 and line 3, and go to line 4 to return $y = a_0$. Therefore the algorithm is true for n = 0.

Proving the Invariant:

We can see that if n > 0, then we will have a list (more than 1 element) of $(a_0, a_1, ..., a_n)$, so line 2 and 3 will be executed.

Using the invariant, we can see that

When i = 0 then $y_{n-1} = c * y_n + a_{n-1}$ where $y_n = a_n$ (from the line 1)

When i = 1 then $y_{n-2} = c * y_{n-1} + a_{n-2}$ where y_{n-1} is from the previous execution (above)

When i = 2 then $y_{n-3} = c * y_{n-2} + a_{n-3}$ where y_{n-2} is from the previous execution (above)

.

until when i = n - 1 then $y_0 = c * y_1 + a_0$

Clearly, after each iteration of the loop, a constant c' will be multiply with

(previous) y_{n-i} and a coefficient $a_{n-(i+1)}$ will be added. Therefore, a new y which is $y_{n-(i+1)}$ is created.

Hence, after the complete loop is executed, we have:

$$y = a_0 + c(a_1 + c(a_2 + ...c(a_n))...)$$

Therefore, we have an induction hypothesis:

$$y_k = a_k + c(a_{k+1} + c(a_{k+2} + ...c(a_n))...)$$

where
$$0 \le k \le n - (i+1)$$
, and $0 \le i \le n$

Prove by induction:

Base: if i = 0 then $y_{n-1} = c * y_n + a_{n-1}$ where $y_n = a_n$ (from the line 1)

Induction Hypothesis:

$$y_k = a_k + c(a_{k+1} + c(a_{k+2} + ...c(a_n))...)$$

where
$$0 \le k \le n - (i+1)$$
, and $0 \le i \le n$

Induction step:

We want to show that
$$y_0 = a_0 + c(a_1 + c(a_2 + ...c(a_n))...) = P(c) = a_n c^n + ... + a_2 c^2 + a_1 c + a_0$$

From line 3, when i = n - 1 we have:

$$y_0 = cy_1 + a_0$$

where $y_1 = a_1 + c(a_2 + c(a_3 + ...c(a_n))...)$ So

$$y_0 = c(a_1 + c(a_2 + c(a_3 + ...c(a_n))...)) + a_0$$

Which is equal to

$$y_0 = a_0 + c(a_1 + c(a_2 + \dots + c(a_n))\dots) = P(c) = a_n c^n + \dots + a_2 c^2 + a_1 c + a_0$$

Conclusion:

Since $y_0 = P(c)$ by proving induction, the invariant guarantees this algorithm will produce the correct output. Therefore the algorithm is true for evaluating the polynomial P at the value x = c

3. Prove this algorithm correct

(3 pages)

(a) Prove that c never goes negative:

At the line 1, we know that c = 0 and v = null.

The algorithm is executed in the loop in lines 2,3, and 4.

1st iteration will be the case c = 0 at line 3, and set v = A[0]. Then c will be increase by 1 which give c = 1 since v = A[0] at line 4.

Now c > 0, so the next iteration, the algorithm will be executed at line 4, which will be the case of v = A[i] or $c \neq A[i]$. If v = A[i] then c will be increment by one which is c >= 0. Otherwise, $v \neq A[i]$ c will be decrease by one which is c >= 0.

The next iteration, if c = 0 again, we go back to the very first iteration at the 3 which set v = A[i] and then increasing c by 1 (c = 1) which give c >= 0 since v = a[i] at line 4.

Hence: there are 3 cases

If c = 0 then c = 1 which is c >= 0

If v = A[i] then c = c + 1 which is c >= 0

Else we know that $c \neq 0$ (if c = 0, it would have go to the first case of c = 0) which is c > 0, and c is decease by one, so the minimum value of c after decrease the c value in this "Else" case is 0. Therefore c >= 0

Conclusion:

We see that these 4 cases give us c >= 0. Therefore, **c** never goes negative

(b) **Invariant**: At the start of any iteration of the loop, the elements of A[0::i-1] can be partitioned into two groups: a group U_i of at least c instances of the value v, and a group P_i of elements that can be paired off so that the two elements in each pair differ.

Base case: Group U and P are empty at the start of the loop. The start of the loop, i = 0, line 3 is executed, v will be set to A[0], then c = 1 (at line 4, since v = A[0]). Therefore, $U = \{v\}$ (since $U \cup \{v\}$), and

P is still empty \rightarrow the hypothesis is true for base case

Inductive Hypothesis: At the start of any iteration of the loop, the elements of A[0::i-1] can be partitioned into two groups: a group U_i of at least c instances of the value v, and a group P_i of elements that can be paired off so that the two elements in each pair differ.

Induction Step:

There are 3 cases, and we want to show that U_{i+1} and P_{i+1} are also true for these 3 cases.

case 1:
$$c = 0$$

Since c = 0,we know that U_i is empty, and P_i contains some pairs or no pairs. In the execution, at line 3, v will be set to A[i], then c = 1 (at line 4). Therefore, $U_{i+1} \bigcup \{v\}$, and P_{i+1} is not changed \rightarrow the hypothesis is true for this case

case 2:
$$c > 0$$
 and $v = A[i]$

Since c > 0, we know that U_i is not empty, and it has at least c element(s) of value v, and P_i contains some pairs that two elements in each pair differ or no pairs. In the execution, at line 4, c will be increased by 1 (since v = A[i]). Therefore, U_{i+1} will append v so that $U_{i+1} \bigcup \{v\}$, and P_{i+1} won't change \to the hypothesis is true for this case

case 3:
$$c > 0$$
 and $v \neq A[i]$

Since c > 0, we know that U_i is not empty, and it has at least c element(s) of value v, and P_i contains some pairs that two elements in each pair differ or no pairs. In the execution, at line 4, c will be decreased by 1 (since it's "else" case). Therefore, U_{i+1} will lost one element of v, and P_{i+1} will add a pair of two element that are $(v, A[i]) \to$ the hypothesis is true for this case

(c) Prove why the invariant from part (b) implies that the algorithm is correct

Prove by contradiction:

Assume that there is a list A that has a majority elements v (more than 50% in A), and let n be the number of v in list A, let m be the half of total elements of list A. After the algorithm is terminated, group U is empty, and P contains some pairs that two elements in each pair differ

Prove:

Since n is the number of v in list A and appear more than 50% in list A, we know that n > m. Base on the Pigeonhole principle, with n > m, then at least one hole must contain more than one value of v. It tells that the value of c must be at least 1 so c > 0, since the c > 0 we can say that group U contain at least c instances of the value v. This is a contradiction because we assume that group U is empty. Therefore, group U must not be empty, and contains at least c instances of the value v.

Conclusion: We see that group U must not be empty, and contains at least c instances of the value v if list A has majority element of value v. Therefore, it's satisfy the invariant, so the invariant implies that the algorithm is correct.