

Open to mountation

INTRODUCTION

Le cancer du sein est une tumeur maligne se développant à partir des cellules constituant la glande mammaire. Une cellule, initialement normale, dont les gènes ont subi des modifications pour diverses raisons, se développe alors de façon anarchique, conduisant à l'apparition d'une Afirs ste de le akute more néreusetse maladie, nous allons explorer les donnée WDBC avec Knime qui est un outil de data préparation et de data science, ce qui nous permettrait d'en tirer rapidement des informations grâce aux représentations graphiques, les analyser et conclure avec des prédictions.

Row ID	S Col1	D Col2	D Col3	D Col4	D Col5	D Col6	D Col7	D Col8	D Col9	D Col 10	D Col11	D Col12	D Col13	D Col1
Row0	M	17.99	10.38	122.8	1,001	0.118	0.278	0.3	0.147	0.242	0.079	1.095	0.905	8.589
Row1	M	20.57	17.77	132.9	1,326	0.085	0.079	0.087	0.07	0.181	0.057	0.543	0.734	3.398
Row2	M	19.69	21.25	130	1,203	0.11	0.16	0.197	0.128	0.207	0.06	0.746	0.787	4.585
Row3	M	11.42	20.38	77.58	386.1	0.142	0.284	0.241	0.105	0.26	0.097	0.496	1.156	3.445
Row4	M	20.29	14.34	135.1	1,297	0.1	0.133	0.198	0.104	0.181	0.059	0.757	0.781	5.438
Row5	M	12.45	15.7	82.57	477.1	0.128	0.17	0.158	0.081	0.209	0.076	0.335	0.89	2.217
Row6	M	18.25	19.98	119.6	1,040	0.095	0.109	0.113	0.074	0.179	0.057	0.447	0.773	3.18
Row7	M	13.71	20.83	90.2	577.9	0.119	0.165	0.094	0.06	0.22	0.075	0.584	1.377	3.856
Row8	M	13	21.82	87.5	519.8	0.127	0.193	0.186	0.094	0.235	0.074	0.306	1.002	2.406
Row9	M	12.46	24.04	83.97	475.9	0.119	0.24	0.227	0.085	0.203	0.082	0.298	1.599	2.039
Row10	M	16.02	23.24	102.7	797.8	0.082	0.067	0.033	0.033	0.153	0.057	0.38	1.187	2,466
Row11	M	15.78	17.89	103.6	781	0.097	0.129	0.1	0.066	0.184	0.061	0.506	0.985	3.564
Row12	M	19.17	24.8	132.4	1,123	0.097	0.246	0.206	0.112	0.24	0.078	0.956	3.568	11.07
Row13	M	15.85	23.95	103.7	782.7	0.084	0.1	0.099	0.054	0.185	0.053	0.403	1.078	2.903
Row14	M	13.73	22.61	93.6	578.3	0.113	0.229	0.213	0.08	0.207	0.077	0.212	1.169	2.061
Row15	M	14.54	27.54	96.73	658.8	0.114	0.16	0.164	0.074	0.23	0.071	0.37	1.033	2.879
Row16	M	14.68	20.13	94.74	684.5	0.099	0.072	0.074	0.053	0.159	0.059	0.473	1.24	3.195
Row17	M	16.13	20.68	108.1	798.8	0.117	0.202	0.172	0.103	0.216	0.074	0.569	1.073	3.854
Row18	M	19.81	22.15	130	1,260	0.098	0.103	0.148	0.095	0.158	0.054	0.758	1.017	5.865
Row19	В	13.54	14.36	87.46	566.3	0.098	0.081	0.067	0.048	0.189	0.058	0.27	0.789	2.058
Row20	В	13.08	15.71	85.63	520	0.107	0.127	0.046	0.031	0.197	0.068	0.185	0.748	1.383
Row21	В	9.504	12.44	60.34	273.9	0.102	0.065	0.03	0.021	0.181	0.069	0.277	0.977	1.909
Row22	M	15.34	14.26	102.5	704.4	0.107	0.213	0.208	0.098	0.252	0.07	0.439	0.71	3.384
Row23	M	21.16	23.04	137.2	1,404	0.094	0.102	0.11	0.086	0.177	0.053	0.692	1.127	4.303
Row24	M	16.65	21.38	110	904.6	0.112	0.146	0.152	0.092	0.2	0.063	0.807	0.902	5.455
Row25	M	17.14	16.4	116	912.7	0.119	0.228	0.223	0.14	0.304	0.074	1.046	0.976	7.276
Row26	M	14.58	21.53	97.41	644.8	0.105	0.187	0.142	0.088	0.225	0.069	0.255	0.983	2.11
Row27	M	18.61	20.25	122.1	1,094	0.094	0.107	0.149	0.077	0.17	0.057	0.853	1.849	5.632
Row28	M	15.3	25.27	102.4	732.4	0.108	0.17	0.168	0.088	0.193	0.065	0.439	1.012	3.498
Row29	M	17.57	15.05	115	955.1	0.098	0.116	0.099	0.08	0.174	0.061	0.6	0.823	4.655
Row30	M	18.63	25.11	124.8	1,088	0.106	0.189	0.232	0.124	0.218	0.062	0.831	1.466	5.574
Row31	M	11.84	18.7	77.93	440.6	0.111	0.152	0.122	0.052	0.23	0.078	0.482	1.03	3.475
Row32	M	17.02	23.98	112.8	899.3	0.12	0.15	0.242	0.12	0.225	0.064	0.601	1.398	3.999
Row33	M	19.27	26.47	127.9	1,162	0.094	0.172	0.166	0.076	0.185	0.063	0.556	0.606	3.528
Row34	M	16.13	17.88	107	807.2	0.104	0.156	0.135	0.078	0.2	0.065	0.334	0.686	2.183

PRÉSENTATION DES DONNEÉS

569 cas.

32 attributs:

Id, diagnostic et 30 fonctions à valeur réelles

Deux diagnostics possibles:

Tumeur Maligne: 212

Tumeur Bénigne:357

Numéro d'identification		0	
Diagnostic (M= maligne ,B= bénigne)		1	
Rayon	2	12	22
Texture	3	13	23
Périmètre	4	14	24
Zone	5	15	25
Douceur	6	16	26
Compacité	7	17	27
Concavité	8	18	28
Concaves	9	19	29
Symétrie	10	20	30
Dimension fractale	11	21	31

VUE STATISTIQUE

Cette technique nous permets d'avoir un peu plus d'informations sur les données dont on dispose comme l'aplatissement des données et leurs position par rapport à la médiane.

Pas de relation entre la symétrie et le critère bénigne ou maligne de la tumeur

Quelques Hypothèses

> Plus le rayon augment plus la tumeur risque d'être maligne

Fréquence

LINEAR CORRELATION

la matrice de corrélation nous sert d'un modèle de Filtrage pour l'outil Correlation Filter, afin d'éliminer les colonnes qui sont très

Row ID	Coll	Col2	Col3	Col4	Col5	Coló	Col7	Col8	Col9	Col10	Co/11	Col12	Col13	Col14	Col15	Col16	Col17	Col18	Coll9
Col1	1	1	7	7	7	2	7	1	7	7	7	7	7	1	7	1	7	2	7
Col2	1	1	0.324	0.998	0.987	0.171	0.506	0.677	0.823	0.148	-0.312	0.679	-0.097	0.674	0.736	-0.223	0.206	0.194	0.376
Col3	2	0.324	1	0.33	0.321	-0.023	0.237	0.302	0.293	0.071	-0.076	0.276	0.386	0.282	0.26	0.007	0.192	0.143	0.164
Col4	1	0.998	0.33	1	0.987	0.207	0.557	0.716	0.851	0.183	-0.261	0.692	-0.087	0.693	0.745	-0.203	0.251	0.228	0.407
Col5	2	0.987	0.321	0.987	1	0.177	0.499	0.686	0.823	0.151	-0.283	0.733	-0.066	0.727	0.8	-0.167	0.213	0.208	0.372
Col6	2	0.171	-0.023	0.207	0.177	1	0.659	0.522	0.554	0.558	0.585	0.301	0.068	0.296	0.247	0.332	0.319	0.248	0.381
Col7	1	0.506	0.237	0.557	0.499	0.659	1	0.883	0.831	0.603	0.565	0.497	0.046	0.549	0.456	0.135	0.739	0.571	0.642
Col8	7	0.677	0.302	0.716	0.686	0.522	0.883		0.921	0.501	0.337	0.632	0.076	0.66	0.617	0.099	0.67	0.691	0.683
Col9	1	0.823	0.293	0.851	0.823	0.554	0.831	0.921	1	0.462	0.167	0.698	0.021	0.711	0.69	0.028	0.49	0.439	0.616
Col10		0.148	0.071	0.183	0.151	0.558	0.603	0.501	0.462	1	0.48	0.303	0.128	0.314	0.224	0.187	0.422	0.343	0.393
Coll1		-0.312	-0.076	-0.261	-0.283	0.585	0.565	0.337	0.167	0.48	1	0	0.164	0.04	-0.09	0.402	0.56	0.447	0.341
Col12		0.679	0.276	0.692	0.733	0.301	0.497	0.632	0.698	0.303	0	1	0.213	0.973	0.952	0.165	0.356	0.332	0.513
Col13	1	-0.097	0.386	-0.087	-0.066	0.068	0.046	0.076	0.021	0.128	0.164	0.213	1	0.223	0.112	0.397	0.232	0.195	0.23
Col14	2	0.674	0.282	0.693	0.727	0.296	0.549	0.66	0.711	0.314	0.04	0.973	0.223	1	0.938	0.151	0.416	0.362	0.556
Col15	2	0.736	0.26	0.745	8.0	0.247	0.456	0.617	0.69	0.224	-0.09	0.952	0.112	0.938	1	0.075	0.285	0.271	0.416
Col16	7	-0.223	0.007	-0.203	-0.167	0.332	0.135	0.099	0.028	0.187	0.402	0.165	0.397	0.151	0.075	1	0.337	0.269	0.328
Col17		0.206	0.192	0.251	0.213	0.319	0.739	0.67	0.49	0.422	0.56	0.356	0.232	0.416	0.285	0.337	1	0.801	0.744
Col18	2	0.194	0.143	0.228	0.208	0.248	0.571	0.691	0.439	0.343	0.447	0.332	0.195	0.362	0.271	0.269	0.801	1	0.772
Col19	?	0.376	0.164	0.407	0.372	0.381	0.642	0.683	0.616	0.393	0.341	0.513	0.23	0.556	0.416	0.328	0.744	0.772	1
Col20	2	-0.104	0.009	-0.082	-0.072	0.201	0.23	0.178	0.095	0.449	0.345	0.241	0.412	0.266	0.134	0.414	0.395	0.309	0.313
Col21	7	-0.043	0.054	-0.006	-0.02	0.284	0.507	0.449	0.258	0.332	0.688	0.228	0.28	0.244	0.127	0.427	0.803	0.727	0.611
Col22	2	0.97	0.353	0.969	0.963	0.213	0.535	0.688	0.83	0.186	-0.254	0.715	-0.112	0.697	0.757	-0.231	0.205	0.187	0.358
Col23	1	0.297	0.912	0.303	0.287	0.036	0.248	0.3	0.293	0.091	-0.051	0.195	0.409	0.2	0.196	-0.075	0.143	0.1	0.087
Col24	1	0.965	0.358	0.97	0.959	0.239	0.59	0.73	0.856	0.219	-0.205	0.72	-0.102	0.721	0.761	-0.217	0.261	0.227	0.395
Col25	2	0.941	0.344	0.942	0.959	0.207	0.51	0.676	0.81	0.177	-0.232	0.752	-0.083	0.731	0.811	-0.182	0.199	0.188	0.342
Col26	2	0.12	0.078	0.151	0.124	0.805	0.566	0.449	0.453	0.427	0.505	0.142	-0.074	0.13	0.125	0.314	0.227	0.168	0.215
Col27	1	0.413	0.278	0.456	0.39	0.472	0.866	0.755	0.667	0.473	0.459	0.287	-0.092	0.342	0.283	-0.056	0.679	0.485	0.453
Col28	2	0.527	0.301	0.564	0.513	0.435	0.816	0.884	0.752	0.434	0.346	0.381	-0.069	0.419	0.385	-0.058	0.639	0.663	0.55
Col29	2	0.744	0.295	0.771	0.722	0.503	0.816	0.861	0.91	0.43	0.175	0.531	-0.12	0.555	0.538	-0.102	0.483	0.44	0.602
Col30	3	0.164	0.105	0.189	0.144	0.394	0.51	0.409	0.376	0.7	0.334	0.095	-0.128	0.11	0.074	-0.107	0.278	0.198	0.143
Col31	2	0.007	0.119	0.051	0.004	0.499	0.687	0.515	0.369	0.438	0.767	0.05	-0.046	0.085	0.018	0.101	0.591	0.439	0.311

Paire de colonne très corrélees

CORRELATION FILTER

Pour notre Correlation filter on a choisi de prendre l'indice

de corrélation à 0.9 un indice assez élevé pour garder le maximum d'information.

(20 au lieu de 30 sur notre modèle).

SCATTER PLOT

Ce type de graphique s'avère utile pour déceler les relation entres des valeurs et de dégager les valeurs hors norme dans un ensemble de données.

SCATTER MATRIX

Cet outil nous permet de visualiser toutes les colonnes choisies au même temps

PCA
(Analyse en composantes principales

PCA nous donne la possibilité de réduire nos vecteurs en mois de dimensions grâce à l'indice de corrélation

MDS

• On remarque que MDS à tout simplement renversé le diagramme obtenu avec PCA

CLUSTERING

 Ce modèle consiste à utiliser les arbres de décision qui apprend sur une partie des données et prédit la classe du reste des données

Beaucoup d'erreurs pour les données se trouvant au centre du nuage de points. Cluster_0: tumeur malig

Input data and view ... 🖨 🗈 (File Hilite Navigation View Flow Variables Spec - Columns: 36 **Properties** Table "default" - Rows: 569 S Cluster S Col1 Row ID Row131 cluster 0 Row287 cluster 0 cluster 0 Row291 Row403 cluster 0 Row47 cluster 0 Row95 cluster 1 cluster 0 Row96 Row108 cluster 1 Row111 cluster 0 cluster 0 Row112 cluster 1 Row121 Row125 cluster 0 cluster 0 Row153 cluster 0 Row166 Row171 cluster 0 Row172 cluster 0 Row203 cluster 0 Row204 cluster 0 Row282 cluster 1 cluster 0 Row304 cluster 0 Row306 Row307 cluster 0 Row326 cluster 0 Row339 cluster 1 cluster 0 Row340 Row342 cluster 0 cluster 0 Row347 cluster 0 Row382 Row383 cluster 0 Row385 cluster 0 Row389 cluster 1 4

HIERARCHICAL CLUSTERING

En fonction de la distence considerer entre les élèments on obtient un nombre de cluster différent

DECISION TREE PREDICTOR

Après avoir générer l'arbre de décision avec Decision tree learner, Decision tree predictor quant à lui permet de nous prédire si les données appartiennent à la classe maligne ou bénigne en utilisant toutes nos colonnes

Exemple avec la donnée row5

Row ID	D Col14	D Col15	D Col16	D Col17	D Col18	D Col19	D Col20	D Col21	D Col22	D Col23	D Col24	D Col25	D Col26	D Col27
Row5	2.217	27.19	0.008	0.033	0.037	0.011	0.022	0.005	15.47	23.75	103.4	741.6	0.179	0.525

SCORER

Ce modèle consiste à utiliser les arbres de décision qui apprend sur une partie des données et prédit la classe du reste des données.

LES PRÉDICTIONS

Ce modèle consiste à utilise les arbres de décision qui apprend sur une partie des données et prédit la classe reste des données.

oll \ Pre M B 37 2 14 118				
37 2				
14 118	Coll \ Pre	. M		
			118	
Accuracy: 90,643 % Error: 9,357 %		ect classifie		Wrong classified: 16

Row195 Row196 Row208 Row217 Row220 Row223 Row224 Row262 Row265 Row278 Row299 Row302 Row306

File Hilite Navigation View

Row37 Row48 Row72 Row80 Row81 Row89

Row117

Row133 Row134

Row167 Row170

Row172

Row192

Table "wdbc.data" - Rows: 569 | Sp

S Coll

S Predic...

CROSS VALIDATION

Cross validation est un outil de prédiction qui sert à estimer la fiabilité du modèle d'apprentissage fondé sur la technique d'échantillonnage

Echantillonnage partitionné

Avec leave_one_out

Echantillonnage aléatoire

Echantillonnage linéaire

NAÏVE BYES

La particularité de cet outil est de supposer l'existence d'une caractéristique spécifique pour identifier les classes

✓Plus le rayon est élevé plus on risque d'avoir une tumeur maligne, dont les cellules se multiples et se propagent pour envahir les organes voisins.