Overfitting and Underfitting

"No Free Lunch" Theorems

 $Acc_G(L)$ = Generalization accuracy of learner L= Accuracy of L on non-training examples \mathcal{F} = Set of all possible concepts, $y = f(\mathbf{x})$

Theorem: For any learner L, $\frac{1}{|\mathcal{F}|} \sum_{\mathcal{F}} Acc_G(L) = \frac{1}{2}$ (given any distribution \mathcal{D} over \mathbf{x} and training set size n)

Bias and Variance

• Bias – error caused because the model can not represent the concept

 Variance – error caused because the learning algorithm overreacts to small changes (noise) in the training data

TotalLoss = Bias + Variance (+ noise)

 Goal: produce a model that matches this concept

True Concept

- Goal: produce a model that matches this concept
- Training Data for the concept

Training Data

- Goal: produce a model that matches this concept
- Training Data for concept

• Bias: Can't represent it...

Fit a Linear Model

- Goal: produce a model that matches this concept
- New data, new model

Different Bias Mistakes

Fit a Linear Model

Visualizing Variance

- Goal: produce a model that matches this concept
- New data, new model
- New data, new model...

 Variance: Sensitivity to changes & noise

Fit a Linear Model

Another way to think about Bias & Variance

Bias and Variance: More Powerful Model

 Powerful Models can represent complex concepts

No Mistakes!

Bias and Variance: More Powerful Model

But get more data…

• Not good!

Overfitting vs Underfitting

Overfitting

- Fitting the data too well
 - Features are noisy / uncorrelated to concept
 - Modeling process very sensitive (powerful)
 - Too much search

Underfitting

- Learning too little of the true concept
 - Features don't capture concept
 - Too much bias in model
 - Too little search to fit model

The Effect of Noise

The Effect of Features

Throw out x_2

- Not much info
- Won't learn well
- Powerful -> high variance

New x_3

- Captures concept
- Simple model -> low bias
- Powerful -> low variance

The Power of a Model Building Process

Weaker Modeling Process (higher bias)

- Simple Model (e.g. linear)
- Fixed sized Model (e.g. fixed # weights)

• Small Feature Set (e.g. top 10 tokens)

 Constrained Search (e.g. few iterations of gradient descent)

More Powerful Modeling Process (higher variance)

- Complex Model (e.g. high order polynomial)
- Scalable Model (e.g. decision tree)

Large Feature Set (e.g. every token in data)

Unconstrained Search (e.g. exhaustive search)

Example of Under/Over-fitting

Ways to Control Decision Tree Learning

- Increase minToSplit
- Increase minGainToSplit
- Limit total number of Nodes
- Penalize complexity

$$Loss(S) = \sum_{i}^{n} Loss(y_{i}^{\land}, y_{i}) + \alpha Log_{2}(\# Nodes)$$

Ways to Control Logistic Regression

Adjust Step Size

Adjust Iterations / stopping criteria of Gradient Descent

Regularization

$$Loss(S) = \sum_{i}^{n} Loss(y_{i}^{\land}, y_{i}) + \alpha \sum_{j}^{\text{\#Weights}} |w_{j}|$$

Modeling to Balance Under & Overfitting

- Data
- Learning Algorithms
- Feature Sets
- Complexity of Concept
- Search and Computation

• Parameter sweeps!

Parameter Sweep

```
# optimize first parameter
for p in [ setting_certain_to_underfit, ..., setting_certain_to_overfit]:
    # do cross validation to estimate accuracy
    # find the setting that balances overfitting & underfitting

# optimize second parameter
    # etc...
```

examine the parameters that seem best and adjust whatever you can...

Types of Parameter Sweeps

- Optimize one parameter at a time
 - Optimize one, update, move on
 - Iterate a few times
- Gradient descent on meta-parameters
 - Start somewhere 'reasonable'
 - Computationally calculate gradient wrt change in parameters

- Grid
 - Try every combination of every parameter
- Quick vs Full runs
 - Expensive parameter sweep on 'small' sample of data (e.g. grid)
 - A bit of iteration on full data to refine
- Intuition & Experience
 - Learn your tools
 - Learn your problem

Summary of Overfitting and Underfitting

• Bias / Variance tradeoff a primary challenge in machine learning

• Internalize: More powerful modeling is not always better

Learn to identify overfitting and underfitting

Tuning parameters & interpreting output correctly is key