Math 327 Homework 3

Chongyi Xu

April 17, 2017

- Give examples of sequences with the following properties. If there is no such sequence, explain why not, citing a reference.
 - (a) Non-increasing, convergent.

$$a_n = \sum 1 - \frac{1}{n^2}$$

(b) Not monotone, convergent.

$$a_n = 1$$

(c) Not monotone, divergent.

$$a_n = (-1)^n$$

(d) Unbounded, monotone.

$$a_n = n$$

(e) Bounded, increasing.

$$a_n = \sum \frac{1}{n^2}$$

(f) Unbounded, convergent.

It is not possible. *Monotone Convergence Theorem* tells that a monotone sequence converges if and only if it is bounded. So if a sequence is unbounded, it could not be convergent.

(g) Monotone, divergent.

$$a_n = n$$

(h) Decreasing, unbounded.

$$a_n = \sum -\frac{1}{n}$$

2. Prove that the set of prime numbers is closed in \mathbb{R} . A prime number is a positive integer greater than 1 whose only positive integer factors are 1 and itself.

• Let $S = \{\text{all prime numbers}\}$. Assume $(a_n)_{n \in \mathbb{N}}$ in S, and $a_n \to a$, $a \in \mathbb{R}$. Let $\varepsilon = \frac{1}{2}$, then for all $n \geq N$, $|a_n - a| < \frac{1}{2}$. So

$$|a_{n+1}-a_n|=|a_{n+1}-a+a-a_n|$$

$$\leq |a_{n+1}-a|+|a_n-a| \ \text{by Triangular inequality}$$

$$<\frac{1}{2}+\frac{1}{2}=1 \text{ for any } n\geq N$$

Since $a_{n+1} - a_n \in S$, then $a_{n+1} - a_n = 0$

So $a_n = a_N$ for all $n \ge N$.

Thus for any $\varepsilon > 0$, there holds $|a_n - a_N| = 0 < \varepsilon$

Therefore, $a = a_N \in S$ Q.E.D.

- 3. Prove the Sandwich Theorem: Let (a_n) , (b_n) and (c_n) be sequences such that $a_n \leq b_n \leq c_n$ for all n. Assume further that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = m$. Then, $\lim_{n\to\infty} b_n = m$.
 - Proof: Given $a_n \leq b_n \leq c_n$ for all n. Since a_n, c_n converges to m, thus for $n \geq N$, let $|a_n - m| < \varepsilon_1$, and $|c_n - m|, \varepsilon_2$ with $\varepsilon_1, \varepsilon_2 > 0$, then we have $-\varepsilon_1 < a_n - m < \varepsilon_1$ and $-\varepsilon_2 < c_n - m < \varepsilon_2$. Then,

$$-\varepsilon_1 < a_n - m \le b_n - m \le c_n - m < \varepsilon_2$$

$$\Rightarrow -\varepsilon_1 < b_n - m < \varepsilon_2$$

$$\Rightarrow |b_n - m| < \min\{\varepsilon_1, \varepsilon_2\}$$

Since either ε_1 or $\varepsilon_2 > 0$, then b_n also converges to m. Q.E.D.

- 4. Suppose that the sequence (a_n) is monotone. Prove that (a_n) converges if and only if (a_n^2) converges. Show by an example that his result does not hold without the monotone assumption.
 - Example: $(a_n) = (-1)^n$. In this case, (a_n) is not monotone and divergent but (a_n^2) converges.
 - Proof: (\Rightarrow) Assume (a_n) is monotone and converges. Then Monotone Convergence Theorem tells that (a_n) is bounded. So $|(a_n)| \leq \sqrt{\varepsilon} \forall n$, with $\varepsilon > 0$. Then $(a_n^2) = |(a_n^2)| \leq \varepsilon \forall n$. Thus (a_n^2) converges.
 - (\Leftarrow) Assume (a_n^2) converges and (a_n) is monotone. Then (a_n^2) is bounded since $|(a_n^2)| = (a_n^2) < \varepsilon$.

Let $|(a_n^2)| \leq M^2 \forall n$, with $M \in \mathbb{R}$. Then $-M \leq (a_n) \leq M$. So (a_n) is bounded. Monotone Convergence Theorem tells (a_n) converges. Q.E.D.

- 5. If (a_n) and (b_n) are monotone sequences, is $(a_n + b_n)$ monotone? Is $(a_n b_n)$ monotone? Prove or give a counterexample.
 - $(a_n + b_n)$ can be non-monotone. Counterexample: $(a_n)_{n \in \mathbb{N}} = 1, 2, 3, 4, ... = n$, $(b_n)_{n \in \mathbb{N}} = -1, -1, -3, -3, -5, -5, ...$ Both (a_n) and (b_n) are monotone, but $(a_n + b_n) = 0, 1, 0, 1, 0, 1, ...$, which is not monotone.
 - $(a_n b_n)$ can be non-monotone. Counterexample: $(a_n)_{n \in \mathbb{N}} = 2, 4, 8, 16, 32, ... = 2^n$, $(b_n)_{n \in \mathbb{N}} = \frac{1}{4}, \frac{1}{16}, \frac{1}{16}, \frac{1}{64}, \frac{1}{64}, ...$ Both (a_n) and (b_n) are monotone, but $(a_n \cdot b_n) = \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, ...$, which is not monotone.
- 6. Suppose that $(a_n) \to a$. Use induction to prove that for any $m \in \mathbb{N}$, the sequence (a_n^m) converges to a^m .
 - Proof by induction on $m \in \mathbb{N}$. Assume $a_n \to a$
 - \circ Base Case m=1

$$a_n \to a$$
 (by assumption)

o Inductive Step

Assume $a_n^m \to a^m$. Prove $a_n^{m+1} \to a^{m+1}$.

Let $\varepsilon > 0$ be given. Since (a_n) converges, it is bounded. Then there exists M > 0 such that $|a_n| \leq M \ \forall n \in \mathbb{N}$.

Since $a_n \to a$ by assumption, there exists N_0 such that $|a_n - a| < \frac{\varepsilon}{2M}$ when $n \ge N_0$.

Since $a_n^m \to a^m$ by inductive hypothesis, there exists N_m such that $|a_n^m - a^m| < \frac{\varepsilon}{2(2+|a^m|)}$ when $n \ge N_m$

Define $N = max\{N_0, N_m\}$. Then

$$\begin{aligned} \left| a_n^{m+1} - a^{m+1} \right| &= \left| a_n^m \cdot a_n - a^m \cdot a \right| \\ &= \left| a_n^m a_n - a^m a_n + a^m a_n - a^m a \right| \\ &\leq \left| a_n^m a_n - a^m a_n \right| + \left| a^m a_n - a^m a \right| \text{(Triangular Inequality)} \\ &= \left| a_n (a_n^m - a^m) \right| + \left| a^m (a_n - a) \right| \\ &= \left| a_n \right| \left| a_n^m - a^m \right| + \left| a^m \right| \left| a_n - a \right| \\ &< M \frac{\varepsilon}{2M} + \left| a^m \right| \frac{\varepsilon}{2(2 + \left| a^m \right|)} \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \text{ since } \frac{\left| a^m \right|}{2 + \left| a^m \right|} < 1 \\ &= \varepsilon \end{aligned}$$

So
$$\left|a_n^{m+1} - a^{m+1}\right| < \varepsilon$$
. Therefore, $a_n^{m+1} \to a^{m+1}$.