

Efeito fotoeléctrico

Determinação da constante de Planck.

1 OBJECTIVO DO TRABALHO

- Verificação experimental do efeito fotoeléctrico.
- Determinação da energia cinética dos fotoelectrões em função da frequência da luz incidente sobre a célula fotoeléctrica.
- Determinação da constante de Planck h.

2 INTRODUÇÃO

O efeito fotoeléctrico era já conhecido no final do séc. XIX, com a emissão de partículas carregadas da superfície de um metal quando iluminadas por luz intensa. Verificou-se também que a energia destas partículas, que mais tarde foram identificadas por electrões, não dependia da intensidade da luz incidente mas sim do seu comprimento de onda, λ . A explicação correcta do efeito fotoeléctrico foi proposta em 1905 por Einstein¹ baseada na teoria de Max Planck² da emissão-absorção da luz. Para ambos, a luz seria formada pela emissão de corpúsculos (quantuns), que se batizaram como fotões, cada um com energia E dada por:

$$E = h\nu \tag{1}$$

em que h é apropriadamente a constante de Planck e ν a frequência da luz ($\nu = c/\lambda$).

De acordo com esta teoria corpuscular da luz, quando um fotão incide sobre a superfície de um metal é absorvido por um átomo, e a sua energia é depositada num dos electrões de valência. Se o fotão incidente tiver mais energia que um dado limiar (W_O - Work function, característica de cada metal), o electrão é libertado da rede metálica e emitido do sólido com uma energia cinética $K_e = h\nu - W_O$. A intensidade da luz determina assim o n'umero de fotolectrões emitidos, mas não a sua energia!

A figura 1 representa esquematicamente o fotão incidente, a superfície do sólido, e os níveis de energia dos electrões de valência do material. Note que se a energia do fotão incidente não for suficiente (i.e. se $E_f < W_O$) não há emissão de fotoelectrões.

 $^{^{1}}$ Pela qual recebeu o prémio Nobel em 1921.

 $^{^2\}mathrm{Teoria}$ Quântica da luz, pela qual recebeu o prémio Nobel em 1918.

Figura 1 – Efeito fotoeléctrico

A constante de Planck pode ser determinada expondo a superfície de um metal a luz monocromática, caracterizada por um comprimento de onda $\lambda = c/\nu$ fixo e medindo a energia cinética máxima dos fotoelectrões emitidos. A fig. 2 representa esquematicamente uma montagem experimental para a realização desta experiência.

Figura 2 – Diagrama esquemático da experiência do efeito fotoeléctrico. V - fonte de tensão (potencial retardador); C - condensador; K - cátodo; A - ânodo; F - filtro óptico.

A luz incide na superfície de um sólido metálico, designado $c\'{a}todo$ (K), através de um $\^{a}nodo$ (A) anelar ou transparente. Como cátodo, é normalmente utilizado um metal alcalino (potássio, sódio ou cádmio) pois neste caso os electrões de valência estão fracamente ligados ao núcleo (i.e. têm uma baixa função trabalho W_O). Como ânodo, utiliza-se por exemplo a platina (Pt). O ânodo recebe parte dos fotoelectrões emitidos, dando origem a uma corrente I_f no circuito exterior. Se aplicarmos um potencial eléctrico retardador V entre o ânodo e o cátodo a fotocorrente decresce, pois os fotoelectrões terão de vencer uma barreira de potencial electrostática U = eV, onde e é a carga do electrão. Para uma dada tensão crítica V_s (potencial de paragem), deixa de existir fotocorrente.

Experimentalmente, pode usar-se uma fonte de tensão externa para aplicar o potencial de paragem. Mais simplesmente, pode usar-se um condensador para acumular a carga (q = CV) transportada pela própria corrente dos fotoelectrões (Fig. 2), aumentando gradualmente a diferença de potencial V, até se atingir o valor V_s , para o qual a corrente é auto-eliminada. Mas neste caso, é necessário utilizar um voltímetro de impedância de entrada muito elevada (> 10 M Ω) ou um amplificador electrónico de instrumentação, que é o caso da nossa montagem experimental. Após medir o potencial de paragem, podemos assim escrever:³

$$e V_s = K_e^{max} = h\nu - W_O \tag{2}$$

Medindo o potencial de paragem sucessivamente para luz incidente de várias frequências, podemos então fazer o gráfico de V_s vs. ν . Este gráfico deverá aproximar-se de uma recta de declive h/e e ordenada na origem -W/e.

Figura 3 – Exemplo da determinação de h pelo efeito fotoeléctrico

A constante h é uma das constantes físicas fundamentais que se conhecem com maior precisão. O valor padrão actual é de $h = 6.626\,070\,040(81) \times 10^{-34}\,\mathrm{J\cdot s} = 4.135\,667\,662(25) \times 10^{-15}\,\mathrm{eV\cdot s}$ (os dígitos entre parênteses representam a incerteza com a mesma resolução dos dois últimos dígitos do valor). A contínua procura de um valor mais preciso não é apenas um desafio intelectual da comunidade científica, pois terá um efeito revolucionário na ciência da Metrologia e todas as suas aplicações: Como h se pode relacionar com o número de Avogadro N_A , quando se conhecer com maior precisão será possível redefinir a unidade padrão de massa do Sistema Internacional, a partir de um único átomo de um elemento químico, válido e diretamente utilizável em todo o Universo. O padrão oficial actual de massa (kg) é o último "resistente" do sistema MKS que é baseado num artefacto: um cilindro de platina-irídio guardado a "sete chaves" em Sèvres, nos arredores de Paris⁵.

 $^{^3}$ Na realidade a função de trabalho tem de ser corrigida pelo potencial de contacto entre os dois metais, $W=W_O-\phi$, o que naturalmente não é importante para a determinação da constante de proporcionalidade.

 $^{^4{\}rm O}$ dispositivo mais preciso é a balança de Watt, onde se espera chegar à precisão de $u_r \sim 1 \times 10^{-11}$

⁵Ver por exemplo o artigo da revista Economist http://www.economist.com/node/18007494

3 Procedimento Experimental

Figura 4 – Montagem experimental do efeito fotoeléctrico

- 1. Ligue a fonte de lâmpada de Mercúrio (Hg) e deixe estabilizar durante cerca de 10 minutos.
- 2. Enquanto espera, teste as tensões de cada uma das duas pilhas do amplificador da célula fotovoltaica.
- 3. Monte os componentes tal como indicado na Fig. 4.
- 4. Regule o conjunto de lente + rede de difração de modo a obter as riscas de cor bem focadas na zona do detector. Alinhe a montagem da fenda para que a célula esteja bem iluminada e centrada na risca.
- 5. O que observa depois da rede é uma figura de difracção. Esta figura é simétrica (esquerda/direita) no que respeita às posições das riscas e das intensidades observadas? Quantas ordens de difracção consegue identificar?
- 6. Para cada uma das riscas (cores) pressione o botão de RESET e depois anote o valor da tensão de paragem e o tempo aproximado até a tensão estabilizar.
- 7. Repita o ponto anterior para outras duas riscas e com pelo menos dois filtros de transmissão.

Cor	Freq. [THz]	$\lambda \text{ [nm]}$
Amarelo	518.672	578
Verde	548.996	546.074
Azul	687.858	435.835
Violeta	740.858	404.656
U.V.	820.264	365.483

Tabela 1 – Riscas observáveis do espectro de Mercúrio.

Pode consultar o espectro de Mercúrio em NIST Atomic Spectra Database, esconhendo o elemento "Hg I" e um *Relative intensity minimum:* de 1000, por exemplo.