Практическая работа 3. «Эмпирическая функция распределения. Поведение в «целом»

Цель работы:

- ознакомится с методами и результатами оценивания функции при помощи расстояний Колмогорова и Смирнова;
- 2. ознакомится теоретически и практически с построением доверительной

полосы;

 научить использовать критерии согласия и исследовать их свойства при конечном n.

Задание и ход работы

Для случайной величины, распределенной по нормальному закону с параметрами (a, σ^2) , выполнить следующие действия.

- 1. Задать параметры распределения $X \sim N(a, \sigma^2)$.
- 2. Построить график $F_X(x)$, используя функцию normcdf.
- 3. При n=100 построить выборку из генеральной совокупности X.
- По построенной выборке построить график эмпирической функции распределения F_n(x), используя при построении встроенную функцию [a,b]=stairs(x,y) для построения кусочнопостоянной функции. Учесть при построении, что F_n(x) изменяется на 1/n в каждой следующей точке выборки.
- 5. Построить доверительную полосу надежности γ =0.95; $u(\gamma)$ =1.36.
- 6. На этом же графике построить $F_n(x)$ и $F_X(x)$. Убедится, что функция распределения попадает (?) в доверительную полосу.
- На основе критерия Колмогорова и на основе критерия Смирнова провести проверку гипотез согласия с фиксированной функцией распределения при n=10⁴ и n=10⁶.
- 8. Оценить ошибки I и II рода каждого из критериев.

Аналогично для $X{\sim}U(a,b)$ равномерно распределенной на [a,b] случайной величины.

Нормальное распределение N(0, 16)

Функция распределения действительно находится внутри доверительной полосы.

Проверка критериев для нормального распределения N(0, 16)

Критерий Колмогорова:

При $n=10^4:1.1668$

При $n=10^6:0.8348$

Критерий Смирнова:

При $n=10^4:0.3288$

При $n=10^6:0.0882$

Во всех случаях критерии меньше квантилей, значит гипотеза выполняется.

Вероятности ошибок для нормального распределения N(0, 16)

I-ого рода, критерий Колмогорова:

При $n=10^4:0.02$

При $n=10^6:0.03$

І-ого рода, критерий Смирнова:

При $n=10^4:0.02$

При $n=10^6:0.01$

II-ого рода, критерий Колмогорова:

При $n=10^4:0.51$

При $n=10^6:0$

II-ого рода, критерий Смирнова:

При $n=10^4:0.42$

При $n=10^6:0$

При увеличении n, вероятность ошибки I-ого рода стремится к $1-\gamma$.

При увеличении n, вероятность ошибки II-ого рода стремится к 0.

Равномерное распределение U(0, 4)

Функция распределения действительно находится внутри доверительной полосы.

Проверка критериев для равномерно распредления U(0, 4)

Критерий Колмогорова:

При $n=10^4:1.2799$

При $n=10^6:0.6753$

Критерий Смирнова:

При $n=10^4:0.3492$

При $n=10^6:0.0782$

Во всех случаях критерии меньше квантилей, значит гипотеза выполняется.

Вероятности ошибок для равномерно распредления U(0, 4)

І-ого рода, критерий Колмогорова:

При $n=10^4:0.06$

При $n=10^6:0.04$

І-ого рода, критерий Смирнова:

При $n = 10^4 : 0.05$

При $n=10^6:0.04$

II-ого рода, критерий Колмогорова:

При $n=10^4:0$

При $n=10^6:0$

II-ого рода, критерий Смирнова:

При $n=10^4:0$

При $n=10^6:0$

При увеличении n, вероятность ошибки I-ого рода стремится к $1-\gamma$.

При увеличении n, вероятность ошибки II-ого рода стремится к 0.