Package 'ewhorm'

August 29, 2023
Title Statistical Considerations for Designing e-WHORM Adaptive Trial
Version 0.1
Author Marta Bofill Roig [aut, cre] (https://orcid.org/0000-0002-4400-7541), Martin Posch [aut], Sonja Zehetmayer [aut]
Maintainer Marta Bofill Roig <marta.bofillroig@meduniwien.ac.at></marta.bofillroig@meduniwien.ac.at>
Description Data simulation and analysis for the design of e-WHORM trial
License MIT + file LICENSE
Encoding UTF-8
Imports mytnorm, stats, multcomp, gMCP, gtools
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
R topics documented:
get_hyp_mat get_max_col_index sim_data sim_trial sim_trial_pce
Index

2 get_max_col_index

get_hyp_mat

Function to compute the hypotheses to test (closed test)

Description

Function to compute the hypotheses to test (closed test)

Usage

```
get_hyp_mat(n_hypothesis = 3, selected_hypothesis = 1)
```

Arguments

```
\begin{array}{ll} \mbox{n\_hypothesis} & \mbox{num elementary hypotheses} \\ \mbox{selected\_hypothesis} & \mbox{selected hypothesis for closed test} \end{array}
```

Details

eWHORM simulations

Value

maximum value in a row

Author(s)

Marta Bofill Roig

get_max_col_index

Function to get the column index of the maximum value in a row

Description

Function to get the column index of the maximum value in a row

Usage

```
get_max_col_index(row)
```

Arguments

row selected row

Details

eWHORM simulations

Value

maximum value in a row

sim_data 3

Author(s)

Marta Bofill Roig

SIM	data
2 T III _	uutu

Simulate data from a multi-arm trial with shared control

Description

Function to simulate trial data (1-stage, multiple arms)

Usage

```
sim_data(n_arms, N, mu_6m, mu_12m, sigma, rmonth)
```

Arguments

n_arms	number of arms (including control)
N	total sample size
mu_6m	6-month mean response per arm (vector of length n_arm)
mu_12m	12-month mean response per arm (vector of length n_arm)
sigma	covariance matrix between 6- and 12-month responses assumed equal across arms (matrix of dim $2x2$)
rmonth	recruitment per month (recruitment speed assumed constant over time)

Details

eWHORM simulations

Value

simulated data consisting of the responses at 6 and 12 months, treatment arm, and recruitment time for each subject.

Author(s)

Marta Bofill Roig

4 sim_trial

sim_trial Simulate data from a multi-arm multi-stage trial with shared control and dose selection	sim_trial	Simulate data from a multi-arm multi-stage trial with shared control and dose selection
---	-----------	---

Description

Function to simulate trial data (2-stages, with dose selection). Analysis using Dunnett test in stage 1 and closed test for the selected dose, and the Inverse normal combination test for combining pvalues of stages 1 and 2.

Usage

```
sim_trial(
    n_arms = 4,
    N1 = 30 * 4,
    N2 = 30 * 2,
    mu_6m,
    mu_12m,
    sigma,
    rmonth,
    alpha1 = 0.5,
    alpha = 0.05,
    p_safety = c(0.9, 0.8, 0.7),
    safety = T,
    promising = F
)
```

Arguments

n_arms	number of arms (including control)
N1	sample size stage 1
N2	sample size stage 2
mu_6m	6-month mean response per arm (vector of length n_arm)
mu_12m	12-month mean response per arm (vector of length n_arm)
sigma	covariance matrix between 6- and 12-month responses assumed equal across arms (matrix of dim $2x2$)
rmonth	recruitment per month (recruitment speed assumed constant over time)
alpha1	significance level for dose selection
alpha	significance level for selected dose vs control comparison
p_safety	probability of each dose to be safe
safety	indicator - if true, it simulates safety according to p_safety
promising	select the most promising dose at the interim analysis

Details

eWHORM simulations

sim_trial_pce 5

Value

 $Combined \ p\text{-value}, \ selected \ dose \ and \ safety \ for \ each \ dose \ (if \ argument \ safety=TRUE)$

Author(s)

Marta Bofill Roig

sim_trial_pce	Simulate data from a multi-arm multi-stage trial with shared control and two initial doses, where an additional dose could be added after the interim analysis
	•

Description

Function to simulate trial data (2-stages, with dose selection). The analyses are performed using partial conditional error.

Usage

```
sim_trial_pce(
    n_arms = 4,
    N1 = 30 * 4,
    N2 = 30 * 2,
    mu_6m,
    mu_12m,
    sigma,
    rmonth,
    alpha1 = 0.1,
    alpha = 0.05
)
```

Arguments

n_arms	number of arms (including control)
N1	sample size stage 1
N2	sample size stage 2
mu_6m	6-month mean response per arm (vector of length n_arm)
mu_12m	12-month mean response per arm (vector of length n_arm)
sigma	covariance matrix between 6- and 12-month responses assumed equal across arms (matrix of dim $2x2$)
rmonth	recruitment per month (recruitment speed assumed constant over time)
alpha1	significance level for dose selection
alpha	significance level for selected dose vs control comparison

Details

eWHORM simulations

6 sim_trial_pce

Value

A list consisting of pvalues at stage 1, pvalues at stage 2, the decision at stages 1 and 2, the selected dose at stage 1, and the time at which the last patient was recruited in stage 1 and 2.

Author(s)

Marta Bofill Roig

Index

```
get_hyp_mat, 2
get_max_col_index, 2
sim_data, 3
sim_trial, 4
sim_trial_pce, 5
```