MATH453 Elementary Number Theory

Lecture 7: Congruence

Lecturer: Bruce Berndt Scribe: Kevin Gao

7.1 Congruence

Definition 7.1. a is congruent to b modulo m for $m \in \mathbb{Z}^+$ iff

$$m \mid (a-b)$$

and we write $a \equiv b \mod m$.

For example, $3 \equiv 7 \mod 2$ because 3 - 7 = -4 and $2 \mid -4$.

Remark. Note that despite that congruence is denoted by \equiv , some properties of equality does not hold. Importantly, $ca \equiv cb \mod m$ DOES NOT imply $a \equiv b \mod m$. For a simple counterexample, consider $4 \equiv 6 \mod 2$ but $2 \not\equiv 3 \mod 2$.

7.1.1 Properties of Congruence Relation

$$a\equiv a\mod m$$
 reflexive $a\equiv b\mod m\iff b\equiv a\mod m$ symmetric $a\equiv b\mod m\land b\equiv c\mod m\implies a\equiv c\mod m$ transitive

The reflexive and symmetric properties are obvious. We will provide a short proof for the transitive property.

Proof. By definition of congruence, $a \equiv b \mod m$ means $m \mid (a-b)$. And $b \equiv c \mod m$ means $m \mid (b-c)$. It follows by property of divisibility that $m \mid (a-b+b-c)$. Then, $m \mid (a-c)$, which by definition means $a \equiv c \mod m$.

Because of these three properties, we say that congruence defines an **equivalence relation**. Hence, equivalence relation of congruence divides integers into **equivalence classes**, known as the **congruence classes** or **residue classes**.

7.1.2 Congruence Classes

Definition 7.2 (Congruence Classes). The congruence class of a modulo m, denoted $[a]_m$, is the set of all integers that are congruent to a modulo m

$$\{z \in \mathbb{Z} \mid m \mid (a-z)\}\$$

Lecture 7: Congruence 7-2

Example. Let m=7. Then, $[0]_7=\{\ldots,-14,-7,0,7,14,\ldots\}$ $[1]_7=\{\ldots,-13,-6,1,8,15,\ldots\}$ $[2]_7=\{\ldots,-12,-5,2,9,16,\ldots\}$ $[3]_7=\{\ldots,-11,-4,3,10,17,\ldots\}$

Definition 7.3 (Complete Residue System). A complete residue system modulo m is a set S of integers such that every $n \in \mathbb{Z}$ is congruent to one and only one member of S.

Example. $\{0, 1, 2, 3, 4, 5, 6\}$ is a complete residue system modulo 7. Although less obvious, $\{14, 57, -12, 1060, -24, -2, 76\}$ is also a complete residue system modulo 7.

Proposition 7.1. $S = \{0, 1, ..., m-1\}$ is a complete residue system modulo m.

Proof. Let $a \in \mathbb{Z}$. Apply the division algorithm to a with respect to m, so we have

$$a = mq + r$$
 $0 \le r \le m - 1$

By definition of divisibility, $m \mid (a-r)$, and by definition of congruence, $a \equiv r \mod m$. This shows that every integer is congruent to a member r of $\{0, 1, \ldots, m-1\}$.

We also need to show that a is congruent to only one member of $\{0, 1, \ldots, m-1\}$. We proceed by contradiction. Assume $a \equiv r_1 \mod m$ and $a \equiv r_2 \mod m$ for some $r_1, r_2 \in \{0, 1, \ldots, m-1\}$. By transitivity, $r_1 \equiv r_2 \mod m$, which by definition means $m \mid (r_1 - r_2)$. Since both r_1 and r_2 are between 0 and m-1, $0 \le r_1 - r_2 \le m - 1$. Then, $0 \le r_1 - r_2 \le m - 1$ and $m \mid (r_1 - r_2)$ imply that $r_1 - r_2 = 0$ because otherwise m cannot divide any non-zero integers less than itself. This shows that $r_1 = r_2$ and thus uniqueness.

Proposition 7.2. Let $a, b, c, d \in \mathbb{Z}$. If $a \equiv b \mod m$ and $c \equiv d \mod m$, then

$$a + c \equiv b + d \mod m \tag{7.1}$$

$$ac \equiv bd \mod m$$
 (7.2)

Proof. of Equation (7.1)

By definition of congruence, $m \mid (a-b)$ and $m \mid (c-d)$. By property of divisibility, $m \mid (a-b+c-d)$. This is equivalence to $m \mid [(a+c)-(b+d)]$, which by definition means $a+c \equiv b+d \mod m$.

Proof. of Equation (7.2)

By definition, $m \mid (a-b)$ and $m \mid (c-d)$. Trivially, it follows that $m \mid c(a-b)$. Similarly, $m \mid b(c-d)$. By property of divisibility, $m \mid (ca-cb+bc-bd)$ so $m \mid (ac-bd)$. This by definition means $ac \equiv bd \mod m$.