Informatique tronc commun Devoir nº 2 – Partie sur machine

2 décembre 2017

Durée: 60 minutes, documents et internet interdits.

- 1. Lisez attentivement tout l'énoncé avant de commencer.
- 2. Ce devoir est à réaliser seul, en utilisant Python 3.
- 3. Nous vous conseillons de commencer par créer un dossier au nom du DS dans le répertoire dédié à l'informatique de votre compte.
- 4. Nous vous rappelons qu'il est possible d'obtenir de l'aide dans l'interpréteur d'idle en tapant help(nom_fonction).
- 5. Vous inscrirez vos réponses sur la feuille réponse fournie. Attention : lisez attentivement le paragraphe suivant.

Fonctionnement du devoir

Vos réponses dépendent d'un paramètre α , unique pour chaque étudiant, qui vous est donné en haut de votre fiche réponse. On considère la suite u à valeurs dans $[0,64\,007]$, définie comme suit.

$$u_0 = \alpha$$
 et $\forall n \in \mathbb{N}, u_{n+1} = (15\,091 \times u_n) [64\,007].$

Nous vous en proposons l'implémentation suivante.

```
def u(alpha,n):
    """u_n, u_0 = alpha"""
    x = alpha
    for i in range(n):
        x = (15091 * x) % 64007
    return x
```

Pour s'assurer que vous avez bien codé la suite u, en voici quelques valeurs.

```
u(100,0) = 100

u(1515,987) = 37099

u(496,10**4) = 53781
```

Dans ce devoir, on notera a%b le reste de la division euclidienne de a par b.

Lorsque vous donnerez un résultat flottant, vous écrirez juste ses huit premières décimales.

Vous trouverez en annexe les réponses pour le paramètre $\alpha = 1$, utilisez-les pour vérifier la correction de vos algorithmes.

Questions de cours.

Q1 Calculer le quotient et le reste de la division euclidienne de $u_2 - u_3^2$ par u_4 .

Q2 Calculer $\sqrt[4]{u_5}$.

Q3 Calculer $\sin(u_6)$.

Exercices.

Dans toute la suite du devoir ¹, on appelle L le tableau $[u_k, k \in [0, 10\ 000]]$, c'est-à-dire

$$L = [u_0, u_1, \dots, u_{9 \ 999}].$$

Si $0 \le k \le 99$, on note a_k le nombre d'éléments de L dont le reste dans la division euclidienne par 100 vaut k.

Q4 Calculer a_{42} .

Q5 Calculer la moyenne du tableau $[a_0, \ldots, a_{99}]$.

Q6 Calculer la variance du tableau $[a_0, \ldots, a_{99}]$.

Dans un tableau de nombres $t = [t_0, \dots, t_{n-1}]$, on appelle dénivelé la valeur

$$\sum_{\substack{0 \le i < n-1 \\ t_i < t_{i+1}}} t_{i+1} - t_i.$$

 $\mathbf{Q7}$ Calculer le dénivelé du tableau L.

Une opération de lissage d'un tableau de nombres $t = [t_0, \dots, t_{n-1}]$ renvoie un nouveau tableau $t' = [t'_0, \dots, t'_{n-1}]$ où :

- le premier et le dernier coefficient de t' sont ceux de t;
- pour chaque autre coefficient de t, on place dans t' la moyenne des coefficients de t qui l'entourent.

Par exemple, le lissage du tableau

$$t = [1, 3, -2, 0, 4]$$

donne le tableau

$$t' = [1, -0.5, 1.5, 1, 4].$$

Q8 On note $L' = [\ell'_0, \dots, \ell'_{9 \ 999}]$ le tableau obtenu après avoir effectué 42 lissages successifs sur le tableau L. Calculer ℓ'_{1515} .

Q9 Calculer le plus petit nombre de lissages successifs à effectuer sur le tableau L pour obtenir un tableau dont la valeur absolue de la différence entre deux coefficients successifs ne dépasse pas 10^4 (strictement).

On dit que la position $1 \le i < 9$ 999 est sous l'eau dans le tableau L s'il existe $k \in [0, i[$ et $\ell \in [i+1, 10^4[$ tels que

$$u_k > u_i$$
 et $u_\ell > u_i$.

Q10 Calculer le nombre de positions sous l'eau dans le tableau L.

 $^{1. \ \, {\}rm On \ aura \ intérêt}$ à calculer une fois pour toutes le tableau L.

$\begin{array}{c} {\rm Informatique\ tronc\ commun} \\ {\rm Devoir\ n^o\ 2\ -\ Partie\ sur\ machine} \\ {\rm Fiche\ de\ test} \end{array}$

$\alpha = 1$

R1 (quotient):	-4085
R1 (reste):	26796
R2:	14.612821101
R3:	-0.999941623
R4:	109
R5:	100.0
R6 :	74.239999999
R7:	107549962
R8:	32747.927784134
R9 :	1176
R10:	9979