Lecture 2: Dual Support Vector Machine

1. Motivation of Dual SVM

$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$ s. t. $y_n(\mathbf{w}^T\underbrace{\mathbf{z}_n}_{\Phi(\mathbf{x}_n)} + b) \ge 1,$ for n = 1, 2, ..., N

Non-Linear Hard-Margin SVM

1
$$Q = \begin{bmatrix} 0 & \mathbf{0}_{\tilde{d}}^T \\ \mathbf{0}_{\tilde{d}} & I_{\tilde{d}}^T \end{bmatrix}; \mathbf{p} = \mathbf{0}_{\tilde{d}+1};$$

$$\mathbf{a}_n^T = y_n \begin{bmatrix} 1 & \mathbf{z}_n^T \end{bmatrix}; c_n = 1$$
2 $\begin{bmatrix} b \\ \mathbf{w} \end{bmatrix} \leftarrow QP(Q, \mathbf{p}, A, \mathbf{c})$
3 return $b \in \mathbb{R}$ & $\mathbf{w} \in \mathbb{R}^{\tilde{d}}$ with

3 return $b \in \mathbb{R} \& \mathbf{w} \in \mathbb{R}^{\tilde{d}}$ with $g_{\text{SVM}}(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{\Phi}(\mathbf{x}) + b)$

对于非线性的SVM,我们可以通过非线性的变换,将变量从x域转换到z域,在z空间中,使用线性SVM解决问题:用二次规划的方法求出b,w,做线性分类,然后再转换为x域,就能得到最终的非线性的SVM。

使用SVM得到large-margin,减少了有效的VC Dimension,限制了模型复杂度;另一方面,使用特征转换,目的是让模型更复杂,减小 E_{in} 。所以说,非线性SVM是把这两者目的结合起来,平衡这两者的关系。那么,特征转换下,求解QP问题在z域中的维度设为 $\hat{d}+1$,如果模型越复杂,则 $\hat{d}+1$ 越大,相应求解这个QP问题也变得很困难。当无限大的时候,问题将会变得难以求解。

Original SVM

(convex) QP of

- $\tilde{d} + 1$ variables
- N constraints

'Equivalent' SVM

(convex) QP of

- N variables
- N + 1 constraints

Original SVM 二次规划问题的变量个数是 $\hat{a}+1$ 个,N个约束条件。把该问题转换为对偶问题后,求解二次规划时,变量个数变为N个,约束条件为N+1个,与维度 \hat{a} 无关,这样就不会存在当 \hat{a} 无限大时无法求解为的情况。

Key Tool: Lagrange Multipliers

Regularization by Constrained-Minimizing E_{in}

$$\min_{\mathbf{w}} E_{in}(\mathbf{w}) \text{ s.t. } \mathbf{w}^T \mathbf{w} \leq C$$

Regularization by Minimizing E_{aug}

$$\min_{\mathbf{w}} E_{\text{aug}}(\mathbf{w}) = E_{\text{in}}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

• C equivalent to some $\lambda \geq 0$ by checking optimality condition

$$abla E_{\text{in}}(\mathbf{w}) + rac{2\lambda}{N} \mathbf{w} = \mathbf{0}$$

- regularization: view λ as **given parameter instead of** C, and solve 'easily'
- dual SVM: view λ 's as unknown given the constraints, and solve them as variables instead

how many λ 's as variables? N—one per constraint

在正则化中,在最小化 E_{in} 的过程中,添加了限制条件 $w^Tw \leq c$,为了将有条件的最小化问题转换为无条件的最小化问题,引入拉格朗日因子 λ ,得到

$$\min_{w} E_{aug}(w) = E_{in}(W) + \frac{\lambda}{N} w^{T} w$$

, 求得最优解。

所以,在regularization问题中, λ 是已知常量,求解过程变得容易。那么,对于dual SVM问题,同样可以引入 λ ,将条件问题转换为非条件问题,只不过 λ 是未知参数,且个数是N,需要对其进行求解。

Starting Point: Constrained to 'Unconstrained'

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

s.t.
$$y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1$$
,
for $n = 1, 2, ..., N$

Lagrange Function

with Lagrange multipliers $\searrow_{\mathbb{R}} \alpha_n$,

$$\mathcal{L}(b, \mathbf{w}, \alpha) = \underbrace{\frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w}}_{\text{chiestive}} + \sum_{n=1}^{N} \alpha_{n} (\underbrace{1 - y_{n}(\mathbf{w}^{\mathsf{T}}\mathbf{z}_{n} + b)}_{\text{constraint}})$$

Claim

$$\mathsf{SVM} \equiv \min_{b,\mathbf{w}} \left(\max_{\substack{\mathsf{all } \alpha_n \geq 0}} \mathcal{L}(b,\mathbf{w},\alpha) \right) = \min_{\substack{\mathsf{b},\mathbf{w}}} \left(\infty \text{ if violate } ; \frac{1}{2}\mathbf{w}^\mathsf{T}\mathbf{w} \text{ if feasible} \right)$$

• any 'violating'
$$(b, \mathbf{w})$$
: $\max_{\text{all } \alpha_n > 0} \left(\Box + \sum_n \alpha_n (\text{some positive}) \right) \to \infty$

• any 'feasible'
$$(b, \mathbf{w})$$
: $\max_{\substack{\text{all } \alpha_n \geq 0}} \left(\Box + \sum_n \alpha_n (\text{all non-positive}) \right) = \Box$

constraints now hidden in max

首先,设定 $\alpha_n \geq 0$,根据SVM的约束条件可得 $1-y_n(w^Tz_n+b) \leq 0$,如果不满足最优解,即 $1-y_n(w^Tz_n+b) \geq 0$,又因 $\alpha_n \geq 0$,所以存在 $\sum_n \alpha_n(1-y_n(w^Tz_n+b)) \geq 0$,此时最大值是趋于无穷大,是无解的。当所有的点均满足 $1-y_n(w^Tz_n+b) \leq 0$,则 $\sum_n \alpha_n(1-y_n(w^Tz_n+b)) \leq 0$,当 $\sum_n \alpha_n(1-y_n(w^Tz_n+b)) = 0$ 时可得最大值 $\frac{1}{2}$ w^Tw ,这正是我们SVM的目标。因此,这种转化为非条件的SVM

2. Lagrange Dual Problem

构造函数的形式是可行的。

对于固定的 α' ,

$$\max_{all \ \alpha_n \geq 0} \mathcal{L}(b, w, \alpha) \geq \mathcal{L}(b, w, \alpha')$$

Lagrange Dual Problem

for any fixed α' with all $\alpha'_n \geq 0$,

$$\min_{b,\mathbf{w}} \left(\max_{\text{all } \alpha_n \geq 0} \mathcal{L}(b,\mathbf{w},\alpha) \right) \geq \min_{b,\mathbf{w}} \mathcal{L}(b,\mathbf{w},\alpha')$$

because $\max \ge any$

for best $\alpha' \geq \mathbf{0}$ on RHS,

$$\min_{b,\mathbf{w}} \left(\max_{\text{all } \alpha_n \geq 0} \mathcal{L}(b,\mathbf{w},\alpha) \right) \geq \underbrace{\max_{\substack{\text{all } \alpha_n' \geq 0 \\ \text{Lagrange dual problem}}} \mathcal{L}(b,\mathbf{w},\alpha')}_{\text{Lagrange dual problem}}$$

because best is one of any

Lagrange dual problem:

'outer' maximization of α on lower bound of original problem

上述不等式表明,我们对SVM的min和max做了对调,满足这样的关系,这叫做Lagrange dual problem。不等式右边是SVM问题的下界,我们接下来的目的就是求出这个下界.

Strong Duality of Quadratic Programming

$$\underbrace{\min_{\substack{b,\mathbf{w} \text{ all } \alpha_n \geq 0}} \mathcal{L}(b,\mathbf{w},\alpha)}_{\text{equiv. to original (primal) SVM}} \geq \underbrace{\max_{\substack{\text{all } \alpha_n \geq 0}} \left(\min_{\substack{b,\mathbf{w} \text{ bolimate} \\ b,\mathbf{w}}} \mathcal{L}(b,\mathbf{w},\alpha)\right)}_{\text{Lagrange dual}}$$

- '≥': weak duality
- '=': strong duality, true for QP if
 - convex primal
 - feasible primal (true if Φ-separable)
 - linear constraints
 - -called constraint qualification

exists primal-dual optimal solution $(b, \mathbf{w}, \boldsymbol{\alpha})$ for both sides

已知>是一种弱对偶关系,在二次规划QP问题中,如果满足以下三个条件:

- 函数是凸的 (convex primal)
- 函数有解 (feasible primal)
- 条件是线性的 (linear constraints)

那么,上述不等式关系就变成强对偶关系, \geq 变成=,即一定存在满足条件的解 (b, w, α) ,使等式左边和右边都成立,SVM的解就转化为右边的形式。 经过推导,SVM对偶问题的解已经转化为无条件形式:

$$\max_{\substack{\mathbf{all}\ \boldsymbol{\alpha}_n \geq 0 \\ \mathbf{b}, \mathbf{w}}} \underbrace{\frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^{N} \alpha_n (1 - y_n (\mathbf{w}^T \mathbf{z}_n + b))}_{\mathcal{L}(b, \mathbf{w}, \boldsymbol{\alpha})}}$$

- inner problem 'unconstrained', at optimal: $\frac{\partial \mathcal{L}(b,\mathbf{w},\alpha)}{\partial b} = 0 = -\sum_{n=1}^{N} \alpha_n y_n$
- no loss of optimality if solving with constraint $\sum_{n=1}^{N} \alpha_n y_n = 0$

其中,上式括号里面的是对拉格朗日函数 $\mathcal{L}(b,w,\alpha)$ 计算最小值。那么根据梯度下降算法思想:最小值位置满足梯度为零。首先,令 $\mathcal{L}(b,w,\alpha)$ 对参数b的梯度为零,得到 $\sum_{n=1}^{N}\alpha_{n}y_{n}=0$,带入原式化简为:

$$\max_{\text{all } \boldsymbol{\alpha}_n \geq 0, \sum y_n \boldsymbol{\alpha}_n = 0} \left(\min_{b, \mathbf{w}} \frac{1}{2} \mathbf{w}^\mathsf{T} \mathbf{w} + \sum_{n=1}^N \boldsymbol{\alpha}_n (1 - y_n(\mathbf{w}^\mathsf{T} \mathbf{z}_n)) \right)$$

然后, 再根据最小值思想, 令 $\mathcal{L}(b, w, \alpha)$ 对参数w的梯度为零,得到:

- inner problem 'unconstrained', at optimal: $\frac{\partial \mathcal{L}(b,\mathbf{w},\alpha)}{\partial w_i} = 0 = w_i \sum_{n=1}^N \alpha_n y_n z_{n,i}$
- no loss of optimality if solving with constraint $\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{z}_n$

将其带入原式化简为:

$$\max_{\substack{\text{all } \alpha_n \geq 0, \sum y_n \alpha_n = 0, \mathbf{w} = \sum \alpha_n y_n \mathbf{z}_n \\ \text{all } \alpha_n \geq 0, \sum y_n \alpha_n = 0, \mathbf{w} = \sum \alpha_n y_n \mathbf{z}_n}} \left(\min_{\substack{b, \mathbf{w}}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \alpha_n - \mathbf{w}^T \mathbf{w} \right)$$

$$\iff \max_{\substack{\text{all } \alpha_n \geq 0, \sum y_n \alpha_n = 0, \mathbf{w} = \sum \alpha_n y_n \mathbf{z}_n}} -\frac{1}{2} \| \sum_{n=1}^N \alpha_n y_n \mathbf{z}_n \|^2 + \sum_{n=1}^N \alpha_n$$

这样,SVM表达式消去了w,SVM最佳化形式转化为只与 α 有关。

KKT Optimality Conditions

$$\max_{\substack{\text{all } \boldsymbol{\alpha}_n \geq 0, \sum y_n \boldsymbol{\alpha}_n = 0, \mathbf{w} = \sum \boldsymbol{\alpha}_n y_n \mathbf{z}_n}} - \frac{1}{2} \| \sum_{n=1}^N \boldsymbol{\alpha}_n y_n \mathbf{z}_n \|^2 + \sum_{n=1}^N \boldsymbol{\alpha}_n$$

if primal-dual optimal $(b, \mathbf{w}, \boldsymbol{\alpha})$,

- primal feasible: $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1$
- dual feasible: $\alpha_n \ge 0$
- dual-inner optimal: $\sum y_n \alpha_n = 0$; $\mathbf{w} = \sum \alpha_n y_n \mathbf{z}_n$
- primal-inner optimal (at optimal all 'Lagrange terms' disappear):

$$\alpha_n(1-y_n(\mathbf{w}^T\mathbf{z}_n+b))=0$$

—called **Karush-Kuhn-Tucker (KKT) conditions**, necessary for optimality [& sufficient here]

will use **KKT** to 'solve' (b, \mathbf{w}) from optimal α

原问题的约束 对偶问题的约束 对偶问题内部求最佳化的约束

3. Solving Dual SVM

Dual Formulation of Support Vector Machine

$$\max_{\substack{\text{all } \alpha_n \geq 0, \sum y_n \alpha_n = 0, \mathbf{w} = \sum \alpha_n y_n \mathbf{z}_n}} \quad -\frac{1}{2} \| \sum_{n=1}^N \alpha_n y_n \mathbf{z}_n \|^2 + \sum_{n=1}^N \alpha_n$$

standard hard-margin SVM dual

$$\begin{split} \min_{\pmb{\alpha}} & \quad \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^{N} \alpha_n \\ \text{subject to} & \quad \sum_{n=1}^{N} y_n \alpha_n = 0; \\ & \quad \alpha_n \geq 0, \text{ for } n = 1, 2, \dots, N \end{split}$$

(convex) QP of N variables & N+1 constraints, as promised

二次规划里面的系数含义:

Q: 二次项系数 p: 一次项系数 A: 条件里面的系数 c:条件里面的常数

optimal
$$\alpha = ?$$

$$\min_{\alpha} \quad \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y_{n} y_{m} \mathbf{z}_{n}^{T} \mathbf{z}_{m}$$

$$-\sum_{n=1}^{N} \alpha_{n}$$
subject to
$$\sum_{n=1}^{N} y_{n} \alpha_{n} = 0;$$

$$\alpha_{n} \geq 0,$$

$$\text{for } n = 1, 2, ..., N$$

$$\text{optimal } \alpha \leftarrow \mathsf{QP}(\mathsf{Q}, \mathbf{p}, \mathsf{A}, \mathbf{c})$$

$$\min_{\alpha} \quad \frac{1}{2} \alpha^{T} \mathsf{Q} \alpha + \mathbf{p}^{T} \alpha$$
subject to
$$\mathbf{a}_{i}^{T} \alpha \geq c_{i},$$

$$\text{for } i = 1, 2, ...$$

$$\bullet \quad q_{n,m} = y_{n} y_{m} \mathbf{z}_{n}^{T} \mathbf{z}_{m}$$

$$\bullet \quad \mathbf{p} = -\mathbf{1}_{N}$$

$$\bullet \quad \mathbf{a}_{\geq} = \mathbf{y}, \quad \mathbf{a}_{\leq} = -\mathbf{y};$$

$$\mathbf{a}_{n}^{T} = n\text{-th unit direction}$$

$$\bullet \quad c_{\geq} = 0, \quad c_{\leq} = 0; \quad c_{n} = 0$$

note: many solvers treat equality (a_{\geq}, a_{\leq}) & bound (a_n) constraints specially for numerical stability

在求解过程中, $q_{n,m} = y_n y_m z_n^T z_m$ 大部分值是非零的,称为dense。当N很大的时候,例如N=30000,那么对应的的计算量将会很大,存储空间也很大。所以一般情况下,对dual SVM问题的矩阵,需要使用一些特殊的方法.

- $q_{nm} = y_n y_m \mathbf{z}_n^T \mathbf{z}_m$, often non-zero
- if N = 30,000, dense Q_D (N by N symmetric) takes > 3G RAM
- need special solver for
 - not storing whole Q_D
 - utilizing special constraints properly

to scale up to large N

 通过计算得到 α 后,根据KKT条件,可以计算出b,w通过 $w=\sum \alpha_n y_n z_n$ 可以得到w,然后利用 $\alpha_n (1-y_n(w^Tz_n+b))=0$ 约束,令 $\alpha_n\geq 0$,则 $(1-y_n(w^Tz_n+b))=0$,推出 $b=y_n-w^Tz_n$

Optimal (b, w)

KKT conditions

if primal-dual optimal (b, \mathbf{w}, α) ,

- primal feasible: $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1$
- dual feasible: $\alpha_n \ge 0$
- dual-inner optimal: $\sum y_n \alpha_n = 0$; $\mathbf{w} = \sum \alpha_n y_n \mathbf{z}_n$
- primal-inner optimal (at optimal all 'Lagrange terms' disappear):

$$\alpha_n(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b)) = 0$$
 (complementary slackness)

- optimal $\alpha \Longrightarrow$ optimal **w**? easy above!
- optimal $\alpha \Longrightarrow$ optimal b? a range from primal feasible & equality from **comp. slackness** if one $\alpha_n > 0 \Rightarrow b = y_n \mathbf{w}^T \mathbf{z}_n$

comp. slackness:

 $\alpha_n > 0 \Rightarrow$ on fat boundary (SV!)

在计算b值的时候, $\alpha_n \geq 0$ 时,有 $y_n(w^Tz_n + b)) = 1$,表示该点在SVM的分类线上,是fat boundary。

4. Messages behind Dual SVM

一开始我们把在边界上的点称为支撑向量,在解决了对偶问题后,如果 $\alpha_n \geq 0$,那它一定在边界上,称为support vectors, candidates 称为在边界上的点。

- on boundary: 'locates' fattest hyperplane; others: not needed
- examples with $\alpha_n > 0$: on boundary
- call α_n > 0 examples (z_n, y_n)
 support vectors (candidates)
- SV (positive α_n)
 ⊆ SV candidates (on boundary)

- only SV needed to compute **w**: $\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{z}_n = \sum_{SV} \alpha_n y_n \mathbf{z}_n$
- only SV needed to compute b: $b = y_n \mathbf{w}^T \mathbf{z}_n$ with any SV (\mathbf{z}_n, y_n)

SV只由 $\alpha_n > 0$ 的点决定,根据上一部分推导的w和b的计算公式,我们发现,w和b仅由SV即 $\alpha > 0$ 的点决定,简化了计算量。这跟我们上一节课介绍的分类线只由"胖"边界上的点所决定是一个道理。也就是说,样本点可以分成两类:一类是support vectors,通过support vectors可以求得fattest hyperplane;另一类不是support vectors,对我们求得fattest hyperplane没有影响。

Representation of Fattest Hyperplane

SVM

$$\mathbf{w}_{\mathsf{SVM}} = \sum_{n=1}^{N} \alpha_n(y_n \mathbf{z}_n)$$

 α_n from dual solution

PLA

$$\mathbf{w}_{\mathsf{PLA}} = \sum_{n=1}^{N} \beta_n(y_n \mathbf{z}_n)$$

 β_n by # mistake corrections

 $\mathbf{w} = \text{linear combination of } y_n \mathbf{z}_n$

- also true for GD/SGD-based LogReg/LinReg when $\mathbf{w}_0 = \mathbf{0}$
- call w 'represented' by data

SVM: represent w by SVs only

我们发现,二者在形式上是相似的。 w_{SVM} 由fattest hyperplane边界上所有的SV决定, w_{PLA} 由所有当前分类错误的点决定。 w_{SVM} 和 w_{PLA} 都是原始数据点的线性组合形式,是原始数据的代表。

Summary: Two Forms of Hard-Margin SVM

Primal Hard-Margin SVM

min
$$\frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w}$$
 sub. to $y_n(\mathbf{w}^{\mathsf{T}}\mathbf{z}_n + \mathbf{b}) \ge 1$, for $n = 1, 2, ..., N$

- $\tilde{d} + 1$ variables, N constraints —suitable when $\tilde{d} + 1$ small
- physical meaning: locate
 specially-scaled (b, w)

Dual Hard-Margin SVM

$$\min_{\alpha} \quad \frac{1}{2}\alpha^{T}Q_{D}\alpha - \mathbf{1}^{T}\alpha$$
s.t.
$$\mathbf{y}^{T}\alpha = 0;$$

$$\alpha_{n} \geq 0 \text{ for } n = 1, \dots, N$$

- N variables,
 N + 1 simple constraints
 —suitable when N small
- physical meaning: locate SVs (\mathbf{z}_n, y_n) & their α_n

both eventually result in optimal (b, \mathbf{w}) for fattest hyperplane $g_{\text{SVM}}(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{\Phi}(\mathbf{x}) + b)$

总结一下,本节课和上节课主要介绍了两种形式的SVM,一种是Primal HardMarginSVM,另一种是Dual Hard_Margin SVM。Primal HardMargin

SVM有个 $\hat{d}+1$ 参数,有N个限制条件。当 $\hat{d}+1$ 很大时,求解困难。而Dual Hard_Margin SVM有

N个参数,有N+1个限制条件。当数据量N很大时,也同样会增大计算难度。两种形式都能得到w和b,求得fattest hyperplane。通常情况下,如果N不是很大,一般使用Dual SVM来解决问题。

$$\min_{\alpha} \quad \frac{1}{2}\alpha^{T}Q_{D}\alpha - \mathbf{1}^{T}\alpha$$
 subject to
$$\mathbf{y}^{T}\alpha = 0;$$

$$\alpha_{D} \geq 0, \text{ for } n = 1, 2, \dots, N$$

- N variables, N + 1 constraints: no dependence on \tilde{d} ?
- $q_{n,m} = y_n y_m \mathbf{z}_n^T \mathbf{z}_m$: inner product in $\mathbb{R}^{\tilde{d}}$ $-O(\tilde{d})$ via naïve computation!

Dual SVM是否真的消除了对 \hat{d} 的依赖呢?其实并没有。因为在计算 $q_{n,m}=y_ny_mz_nz_m$ 的过程中,由z向量引入了 \hat{d} ,实际上复杂度已经隐藏在计算过程中了。所以,我们的目标并没有实现。

5. 总结

本节课主要介绍了SVM的另一种形式: Dual SVM。我们这样做的出发点是为了移除计算过程对 \hat{d} 的 依赖。Dual SVM的推导过程是通过引入拉格朗日因子 α ,将SVM转化为新的非条件形式。然后,利用QP,得到最佳解的拉格朗日因子 α 。再通过KKT条件,计算得到对应的w和b。最终求得fattest hyperplane。