10 Matrix Inverse

Unit 1: Vectors, Book ILA Ch. 1-5

Unit 2: Matrices, Book ILA Ch. 6-11 + Book IMC Ch. 2

- 06 Matrices
- 07 Linear Equations
- 08 Linear Dynamical Systems
- 09 Matrix Multiplication
- 10 Matrix Inverse

Unit 3: Least Squares, Book ILA Ch. 12-14

Outline: 10 Matrix Inverse

- Left and right inverses
- Inverse
- Solving linear equations
- Examples

Left inverse

Definition: Consider a scalar a. A scalar x that satisfies xa = 1 is called the inverse of a.

• We have $x=rac{1}{a}$, which exists and is unique if and only if a
eq 0 .

Definition: Consider a matrix A. A matrix X that satistifies:

$$XA = I$$

is called a left-inverse of A. If a left inverse exists, A is left-invertible. The left-inverse might not be unique.

Exercise: Show that the matrix:

$$A = egin{bmatrix} -3 & -4 \ 4 & 6 \ 1 & 1 \end{bmatrix}$$

has two different left-inverses:

$$X_1 = rac{1}{9}egin{bmatrix} -11 & -10 & 16 \ 7 & 8 & -11 \end{bmatrix}, \quad X_2 = rac{1}{2}egin{bmatrix} 0 & -1 & 6 \ 0 & 1 & -4 \end{bmatrix}.$$

Properties of left inverses

Properties:

• If A has a left inverse, then the columns of A are linearly independent.

• If A has a left inverse, then A is tall or square.

Exercise: Prove the above statement.

Solving linear equations with left inverses

Proposition: Consider the linear equation Ax = b. Consider C a left-inverse of A. Then, a solution to the linear equation is:

$$x = Cb$$
.

Exercise: Prove the above statement.

Example: Consider the matrix
$$A=\begin{bmatrix} -3 & -4 \\ 4 & 6 \\ 1 & 1 \end{bmatrix}$$
 from the previous slide, and $b=\begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$.

Give two solutions to the linear equation:

$$Ax = b$$
.

Right inverses

Definition: Consider a matrix A. A matrix X that satistifies:

$$AX = I$$

is called a right-inverse of A. If a right inverse exists, A is right-invertible. The right-inverse might not be unique.

Properties of right inverses

Properties:

- ullet A is right invertible if and only if A^T is left invertible.
- *A* is right invertible if and only if its rows are linearly independent.
- If A is right invertible, then A is wide or square.

Exercise: Prove the above statements.

Solving linear equations with right inverses

Proposition: Consider the linear equation Ax = b. Consider B a right-inverse of A. Then, a solution to the linear equation is:

$$x = Bb$$
.

Exercise: Prove the above statement.

Outline: 10 Matrix Inverse

- · Left and right inverses
- Inverse
- Solving linear equations
- Examples

Fill out this second anonymous survey;)

https://tinyurl.com/2vaxhke9

Inverse

Definition: If A has a left and a right inverse, they are unique and equal. We say that A is invertible. We denote A^{-1} the (unique) inverse of A.

Properties:

- If A is invertible then A is square.
- The inverse of the inverse is: $(A^{-1})^{-1} = A$.

Which Matrices are Invertible?

Properties: Examples of matrices that are always invertible:

- ullet Any lower triangular matrix L with nonzero diagonal entries is invertible.
- ullet Any upper triangular R with nonzero diagonal entries is invertible.

Exercise: Give examples of invertible matrices.

Computing Inverses: 2 imes 2 matrices

Properties: Consider A is a 2 imes 2 matrix:

- A is invertible if and only if $A_{11}A_{22}
 eq A_{12}A_{21}$.
- ullet In this case: $A^{-1}=rac{1}{A_{11}A_{22}-A_{12}A_{21}}egin{bmatrix} A_{22}&-A_{12}\ -A_{21}&A_{11} \end{bmatrix}$

Exercise: Compute the inverse of $\begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix}$.

Computing Inverses

Properties:

 $\bullet \quad I^{-1} = I$

- If Q is square matrix with $Q^TQ=I$:
 - $\blacksquare \quad \text{Then } Q^{-1} = Q^T.$
- If $D=diag(a_1,\ldots,a_n)$ is a diagonal matrix with nonzero elements:
 - lacksquare Then $D^{-1}=diag(rac{1}{a_1},\ldots,rac{1}{a_n}).$

Computing Inverses

Properties: Consider invertible square matrices A, B with known inverses A^{-1}, B^{-1} .

- $(AB)^{-1} = B^{-1}A^{-1}$
- $(A^T)^{-1} = (A^{-1})^T$
- New notation: Negative powers! $A^{-k} = (A^k)^{-1}$

Computing Inverses from QR decomposition

 $egin{align*} ext{Properties} : ext{Consider } A, ext{ a square and invertible matrix}. ext{ Consider the QR factorization } A = QR \end{aligned}$

• Then, the inverse of A can be written: $A^{-1} = R^{-1}Q^T$.

Computing Inverses in Python

In Python, we use np.linalg.inv to compute the inverse.

```
In [1]:
    import numpy as np

A = np.array([
        [1, 2],
        [0, 4]
    ])
    np.linalg.inv(A)

Out[1]: array([[ 1. , -0.5 ],
        [ 0. , 0.25]])
```

Outline: 10 Matrix Inverse

- Left and right inverses
- Inverse
- Solving linear equations
- Examples

Recall: Linear equations

Definition: A set (or system) of m linear equations in n variables x_1, \ldots, x_n is defined as:

$$A_{11}x_1 + A_{12}x_2 + \cdots + A_{1n}x_n = b_1$$
 \vdots $A_{m1}x_1 + A_{m2}x_2 + \cdots + A_{mn}x_n = b_m$

and can be written compactly as: Ax = b.

Proposition: Consider the linear equation Ax = b. If A is invertible with inverse A^{-1} , then the equation has a unique solution: $x = A^{-1}b$.

In what follows, we see methods to solve Ax=b in several special cases, i.e. methods to compute A^{-1} :

- ullet when we can compute A^{-1}
- ullet when A is upper-triangular invertible
- ullet when we know the QR decomposition of A
- using Python.

Special case: we know A^{-1}

Method: Consider A an invertible matrix and the linear equation Ax = b. Assume that we know A^{-1} .

• Then the unique solution of Ax=b is given by $A^{-1}b$.

Example: An airplane travels 1200 miles in 4 hours with a tail wind. On the way back, the same trip takes 5 hours, now with a head wind (against the wind). What is the speed of the plane in still air, and what was the wind speed?

Special case: A=R upper triangular invertible

Method: Consider R an upper triangular matrix with nonzero entries and the linear equation: Rx = b, which can be re-written as:

$$R_{11}x_1+$$
 $R_{12}x_2+$ $\ldots+$ $R_{1,n}x_n=b_1$ \vdots $R_{nn}x_n=b_n$

The solution of the linear equation can be found by back-substitution:

- Last equation gives: $x_n = b_n/R_{nn}$
- ullet Second to last equation gives: $x_{n-1}=(b_{n-1}-R_{n-1,n}x_n)/R_{n-1,n-1}$
- Iterate.

Special case: $A={\cal Q}{\cal R}$ via QR Factorization

Method: Consider A an invertible matrix and the linear equation Ax = b. Assume that the QR factorization of A is given: A = QR.

The solution of the linear equation can be found by using these steps:

- Compute Q^Tb
- ullet Solve the linear equation $Rx=Q^Tb$ by back substitution.

Example: We will see an example in a next slide.

General case in Python

In Python, a system of linear equations can be solved in several ways:

```
• using np.linalg.qr
```

- using np.linalg.inv
- using np.linalg.solve

Outline: 10 Matrix Inverse

- Left and right inverses
- Inverse
- Solving linear equations
- Examples

Example: Interpolation

```
In [14]: from IPython.display import Video; Video("figs/11_aftereff.mp4")
Out[14]:
```

0:00

Example: Polynomial Interpolation

Example: Consider a cubic polynomial with unknown coefficients c_0, \ldots, c_3 :

$$p(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3,$$

that satisfies: p(-1.1) = 1, p(-0.4) = 2, p(0.1) = 4, p(0.8) = 1.

Find the polynomial that interpolates these 4 points. You can only use <code>np.linalg.qr</code>.

-1.3892444 0.41677332 -1.27198641]

0. 0.84 -0.378

Outline: 10 Matrix Inverse

- Left and right inverses
- Inverse

[0.

[0.

- Solving linear equations
- Examples

Resources: Book ILA Ch. 11