EIC7024 Autumn 2020 Jong-Han Kim

A short course on distributed optimization for machine learning

Jong-Han Kim

EIC7024 Kyung Hee University

Course contents

- Topics
 - ▶ Machine learning problems
 - Regression
 - Classification
 - ▶ Optimization for machine learning
 - ▶ Optimization algorithms
 - Distributed optimization and statistical learning

Schedules

- ▶ Wk.1: supervised learning, empirical risk minimization, loss functions
- Wk.2: regularization, classification problems
- ▶ Wk.3: optimization
- ▶ Wk.4: distributed optimization

Predictors

Information flow

4

Data fitting

lackbox we think $y\in \mathbf{R}$ and $x\in \mathbf{R}^d$ are (approximately) related by

$$y \approx f(x)$$

- ▶ *x* is called the *independent variable* or *feature vector*
- ▶ y is called the *outcome* or *response* or *target* or *label* or *dependent variable*
- ▶ often *y* is something we want to predict
- lacktriangle we don't know the 'true' relationship between x and y

Features

often x is a vector of features:

- documents
 - ightharpoonup x is word count histogram for a document
- patient data
 - ightharpoonup x are patient attributes, test results, symptoms
- customers
 - ightharpoonup x is purchase history and other attributes of a customer

Where features come from

- we use u to denote the raw input data, such as a vector, word or text, image, video, audio, . . .
- $x = \phi(u)$ is the corresponding *feature vector*
- \blacktriangleright the function ϕ is called the *embedding* or *feature function*
- \blacktriangleright ϕ might be very simple or quite complicated
- lacktriangle similarly, the raw output data v can be featurized as $y=\psi(v)$
- lacktriangle often we take $\phi(u)_1=x_1=1$, the constant feature
- (much more on these ideas later)

Data and prior knowledge

- $lackbox{}$ we are given data $x^1,\ldots,x^n\in \mathsf{R}^d$ and $y^1,\ldots,y^n\in \mathsf{R}$
- \blacktriangleright (x^i, y^i) is the *i*th data pair or observation or example
- ▶ we also (might) have *prior knowledge* about what f might look like
 - $lackbox{ iny } e.g.,\ f$ is smooth or continuous: $f(x)pprox f(ilde{x})$ when x is near $ilde{x}$
 - ightharpoonup or we might know $y \geq 0$

Predictor

- lacktriangle we seek a *predictor* or *model* $g: \mathbf{R}^d
 ightarrow \mathbf{R}$
- lacktriangleright for feature vector x, our prediction (of y) is $\hat{y} = g(x)$
- predictor g is chosen based on both data and prior knowledge
- ▶ in terms of raw data, our predictor is

$$\hat{v} = \psi^{-1}(g(\phi(u)))$$

(with a slight variation when ψ is not invertible)

- $\hat{y}^i pprox y^i$ means our predictor does well on ith data pair
- **b** but our real goal is to have $\hat{y} \approx y$ for (x, y) pairs we have not seen

Prediction methods

- ▶ fraud, psychic powers, telepathy, magic sticks, incantations, crystals, hunches, statistics, AI, machine learning, data science
- ▶ and many algorithms . . .
- example: nearest neighbor predictor
 - lacktriangle given x, find its nearest neighbor x^i among given data
 - lacksquare then predict $\hat{y}=g(x)=y^i$

A learning algorithm is a recipe for producing a predictor given data

Linear predictors

Linear predictor

- ightharpoonup predictors that are linear functions of x are widely used
- a linear predictor has the form

$$g(x) = \theta^{\mathsf{T}} x$$

for some vector $\theta \in \mathbf{R}^d$, called the *predictor parameter vector*

- also called a regression model
- $ightharpoonup x_j$ is the jth feature, so the prediction is a linear combination of features

$$\hat{y}=g(x)= heta_1x_1+\cdots+ heta_dx_d$$

- lacktriangle we get to choose the predictor parameter vector $heta \in \mathbf{R}^d$
- ightharpoonup sometimes we write $g_{\theta}(x)$ to emphasize the dependence on θ

Interpreting a linear predictor

$$\hat{y} = g(x) = \theta_1 x_1 + \dots + \theta_d x_d$$

- lacksquare $heta_3$ is the amount that prediction $\hat{y}=g(x)$ increases when x_3 increases by 1
 - \blacktriangleright particularly interpretable when x_3 is Boolean (only takes values 0 or 1)
- $m{
 ho}$ $heta_7=0$ means that the prediction does not depend on x_7
- lacktriangleright heta small means predictor is insensitive to changes in x:

$$|g(x) - g(ilde{x})| = \left| heta^{ op} x - heta^{ op} ilde{x}
ight| = \left| heta^{ op} (x - ilde{x})
ight| \leq || heta|| \; ||x - ilde{x}||$$

Affine predictor

- ightharpoonup suppose the first feature is constant, $x_1=1$
- ▶ the linear predictor g is then an affine function of $x_{2:d}$, i.e., linear plus a constant

$$g(x) = \theta^{\mathsf{T}} x = \theta_1 + \theta_2 x_2 + \cdots + \theta_d x_d$$

- lacktriangledown eta_1 is called the *offset* or *constant term* in the predictor
- lackbox $heta_1$ is the prediction when all features (except the constant) are zero

Empirical risk minimization

Loss function

a loss or risk function $\ell: \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ quantifies how well (more accurately, how badly) \hat{y} approximates y

- lacktriangle smaller values of $\ell(\hat{y},y)$ indicate that \hat{y} is a good approximation of y
- typically $\ell(y,y)=0$ and $\ell(\hat{y},y)\geq 0$ for all \hat{y},y

examples

- quadratic loss: $\ell(\hat{y}, y) = (\hat{y} y)^2$
- ▶ absolute loss: $\ell(\hat{y}, y) = |\hat{y} y|$

Empirical risk

how well does the predictor g fit a data set (x^i, y^i) , $i = 1, \ldots, n$, with loss ℓ ?

▶ the *empirical risk* is the average loss over the data points,

$$\mathcal{L} = rac{1}{n}\sum_{i=1}^n \ell(\hat{y}^i, y^i) = rac{1}{n}\sum_{i=1}^n \ell(g(x^i), y^i)$$

- \blacktriangleright if $\mathcal L$ is small, the predictor predicts the given data well
- \blacktriangleright when the predictor is parametrized by θ , we write

$$\mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n \ell(g_ heta(x^i), y^i)$$

to show the dependence on the predictor parameter θ

Empirical risk minimization

- ▶ choosing the parameter θ in a parametrized predictor $g_{\theta}(x)$ is called *fitting* the predictor (to data)
- empirical risk minimization (ERM) is a general method for fitting a parametrized predictor
- ▶ ERM: choose θ to minimize empirical risk $\mathcal{L}(\theta)$
- \blacktriangleright thus, ERM chooses θ by attempting to match given data
- often there is no analytic solution to this minimization problem, so we use numerical optimization to find θ that minimizes $\mathcal{L}(\theta)$ (more on this topic later)

Lease squares linear regression

Least squares linear regression

- ▶ linear predictor $\hat{y} = g_{\theta}(x) = \theta^{\mathsf{T}} x$
- $m{ ilde{ heta}}$ $heta \in \mathbf{R}^d$ is the model parameter
- we'll use square loss function $\ell(\hat{y}, y) = (\hat{y} y)^2$
- empirical risk is MSE

$$\mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n (heta^\mathsf{T} x^i - y^i)^2$$

- \blacktriangleright ERM: choose model parameter θ to minimize MSE
- called linear least squares fitting or linear regression

Least squares formulation

express MSE in matrix notation as

$$\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\theta^{\mathsf{T}} x^{i} - y^{i})^{2} = \frac{1}{n} \left\{ (\theta^{\mathsf{T}} x^{1} - y^{1})^{2} + \dots (\theta^{\mathsf{T}} x^{n} - y^{n})^{2} \right\}$$

$$= \frac{1}{n} \left\| \begin{bmatrix} (x^{1})^{\mathsf{T}} \theta - y^{1} \\ \vdots \\ (x^{n})^{\mathsf{T}} \theta - y^{n} \end{bmatrix} \right\|^{2}$$

$$= \frac{1}{n} \left\| \underbrace{\begin{bmatrix} (x^{1})^{\mathsf{T}} \\ \vdots \\ (x^{n})^{\mathsf{T}} \end{bmatrix}}_{\mathbf{x}} \theta - \underbrace{\begin{bmatrix} y^{1} \\ \vdots \\ y^{n} \end{bmatrix}}_{\mathbf{x}} \right\|^{2} = \frac{1}{n} \|X\theta - y\|^{2}$$

▶ ERM is a *least squares problem*: choose θ to minimize $||X\theta - y||^2$ (factor 1/n doesn't affect choice of θ)

Least squares solution

lacktriangle assuming X has linearly independent columns (which implies $n\geq d$), there is a unique optimal heta

$$\theta^{\star} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y = X^{\dagger}y$$

- standard algorithm:
 - ▶ compute QR factorization X = QR (e.g., Gram-Schmidt) (with orthogonal Q and invertible upper triangular R)
 - ightharpoonup compute $Q^{\mathsf{T}}y$
 - lacktriangle solve $R heta^\star = Q^\mathsf{T} y$ by back substitution
- in Julia: theta_opt = X\y
- ▶ in Python: theta_opt = np.linalg.lstsq(X,y,rcond=None)[0]
- ightharpoonup complexity is $2d^2n$ flops

Data matrix

 \blacktriangleright the $n \times d$ matrix

$$X = \left[egin{array}{c} (x^1)^{\mathsf{T}} \ dots \ (x^n)^{\mathsf{T}} \end{array}
ight]$$

is called the data matrix

- ▶ ith row of X is ith feature vector, transposed
- \triangleright jth column of X gives values of jth feature x_j across our data set
- ▶ X_{ij} is the value of jth feature for the ith data point

Constant fit

- the simplest feature vector is constant: $x = \phi(u) = 1$ (doesn't depend on u!)
- lacktriangle corresponding predictor is a constant function: $g(x)= heta_1$
- ightharpoonup data matrix is $X = \mathbf{1}_n$
- \blacktriangleright so $X^{\dagger} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}} = (1/n)\mathbf{1}^{\mathsf{T}}$ and

$$heta^\star = X^\dagger y = \mathbf{1}^{\mathsf{T}} y/n = \mathsf{avg}(y)$$

- ▶ the average of the outcome values is the best constant predictor (for square loss)
- optimal RMSE is standard deviation of outcome values

$$\left(\frac{1}{n}\sum_{i=1}^n(\operatorname{avg}(y)-y^i)^2\right)^{1/2}$$

Regression

$$lacksquare$$
 with $u \in \mathbf{R}^{d-1}$: $x = \phi(u) = (1, u)$

- ightharpoonup same as $x_1=1$ (the first feature is constant)
- predictor has form

$$\hat{y} = \theta^\mathsf{T} x = \theta_1 + \theta_{2:d}^\mathsf{T} u$$

an affine function of $\boldsymbol{\mathit{u}}$

Straight line fit

- ightharpoonup with $u \in \mathbb{R}$, $x = (1, u) \in \mathbb{R}^2$
- ightharpoonup model is $\hat{y} = g(x) = \theta_1 + \theta_2 u$
- ▶ this model is called straight-line fit
- ▶ when u is time, it's called the trend line
- \blacktriangleright when u is the whole market return, and y is an asset return, θ_2 is called ' β '

Constant versus straight-line fit models

 \blacktriangleright for the constant model, we choose θ_1 to minimize

$$\frac{1}{n}\sum_{i=1}^n(\theta_1-y^i)^2$$

▶ for the straight-line model, we choose (θ_1, θ_2) to minimize

$$rac{1}{n}\sum_{i=1}^n(heta_1+ heta_2u^i-y^i)^2$$

- for optimal choices, this value is less than or equal to the one above (since we can take $\theta_2 = 0$ in the straight-line model)
- ▶ so the RMS error of the straight-line fit is no more than the standard deviation

Penalty functions and error histograms

Loss and penalty functions

- lacktriangle empirical risk (or average loss) is $\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(\theta^{\mathsf{T}} x^i, y^i)$
- \blacktriangleright the loss function $\ell(\hat{y},y)$ penalizes deviation between the predicted value \hat{y} and the observed value y
- lacktriangle common form for loss function: $\ell(\hat{y},y) = p(\hat{y}-y)$
- p is the penalty function
- lacktriangledown e.g., the square penalty $p^{\mathsf{sqr}}(r) = r^2$
- $ightharpoonup r = \hat{y} y$ is the prediction error or residual

Penalty functions

- the penalty function tells us how much we object to different values of prediction error
- usually p(0) = 0 and $p(r) \ge 0$ for all r
- ▶ if p is symmetric, i.e., p(-r) = p(r), we care only about the magnitude (absolute value) of prediction error
- ▶ if p is asymmetric, i.e., $p(-r) \neq p(r)$, it bothers us more to over- or underestimate

Square versus absolute value penalty

- lacktriangle for square penalty $p^{
 m sqr}(r) = r^2$
 - ▶ for small prediction errors, penalty is very small (small squared)
 - ▶ for large prediction errors, penalty is very large (large squared)
- lacktriangledown for absolute penalty $p^{\mathsf{abs}}(r) \ = |r|$
 - ▶ for small prediction errors, penalty is large (compared to square)
 - ▶ for large prediction errors, penalty is small (compared to square)

Predictors and choice of penalty function

- ▶ choice of penalty function depends on how you feel about large, small, positive, or negative prediction errors
- ▶ different choices of penalty function yield different predictor parameters
- ▶ choice of penalty function *shapes* the histogram of prediction errors, *i.e.*,

$$r^1, \ldots, r^n$$

(usually divided into bins and displayed as bar graph distribution)

Histogram of residuals

- lacktriangle artificial data with n=300 and d=30, using 50/50 test/train split
- ightharpoonup plots show histogram of residuals r^1, \ldots, r^n
- \blacktriangleright tilted loss results in distribution with most residuals $r^i <$ 0, $\it i.e.$, predictor prefers $\hat{y}^i < y^i$

Robust fitting

Outliers

- ▶ in some applications, a few data points are 'way off', or just 'wrong'
- occurs due to transcription errors, error in decimal point position, etc.
- ▶ these points are called *outliers*
- even a few outliers in a data set can result in a poor predictor
- > several standard methods are used to remove outliers, or reduce their impact
- one simple method:
 - create predictor from data set
 - ▶ flag data points with large prediction errors as outliers
 - remove them from the data set and repeat

Robust penalty functions

- we say a penalty function is *robust* if it has low sensitivity to outliers
- robust penalty functions grow more slowly for large prediction error values than the square penalty
- ▶ and so 'allow' the predictor to have a few large prediction errors (presumably for the outliers)
- so they handle outliers more gracefully
- ▶ a robust predictor might fit, e.g., 98% of the data very well

Huber loss

▶ the *Huber* penalty function is

$$p^{\mathsf{hub}}(r) = egin{cases} r^2 & \mathsf{if} \; |y| \leq lpha \ lpha(2|r|-lpha) & \mathsf{if} \; |r| > lpha \end{cases}$$

- $ightharpoonup \alpha$ is a parameter
- ightharpoonup quadratic for small r, affine for large r

Huber loss

- ightharpoonup linear growth for large r makes fit less sensitive to outliers
- ▶ ERM with Huber loss is called a *robust* prediction method

Log Huber

quadratic for small y, logarithmic for large y

$$p^{\mathsf{dh}}(y) = egin{cases} y^2 & \mathsf{if} \; |y| \leq lpha \ lpha^2 (1 - 2\log(lpha) + \log(y^2)) & \mathsf{if} \; |y| > lpha \end{cases}$$

▶ diminishing incremental penalty at large y

Log Huber

▶ even less sensitive to outliers than Huber

Error distribution

Regularization

Sensitivity

- lacktriangle we have a linear predictor $\hat{y} = g(x) = heta^\mathsf{T} x$
- if $|\theta_i|$ is large, then the prediction is very sensitive to x_i (i.e., small changes in x_i lead to large changes in the prediction)
- ▶ large sensitivity can lead to overfit, poor generalization (which would turn up in validation)
- ightharpoonup for $x_1=1$ (the constant feature), there is no sensitivity, since the feature does not change
- lacktriangle suggests that we would like heta (or $heta_{2:d}$ if $x_1=1$) not too large

Regularizer

- lacktriangle we will measure the size of heta using a *regularizer* function $r: \mathbf{R}^d
 ightarrow \mathbf{R}$
- $ightharpoonup r(\theta)$ is a measure of the size of θ (or $\theta_{2:d}$)

• quadratic regularizer (a.k.a. ℓ_2 or sum-of-squares):

$$r(\theta) = ||\theta||^2 = \theta_1^2 + \dots + \theta_d^2$$

▶ absolute value regularizer (a.k.a. ℓ₁):

$$r(\theta) = ||\theta||_1 = |\theta_1| + \cdots + |\theta_d|$$

Regularized empirical risk minimization

▶ predictor should fit the given data well, i.e., we want empirical risk

$$\mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n \ell(heta^\mathsf{T} x^i, y^i)$$

to be small

- \blacktriangleright predictor should not be too sensitive, *i.e.*, we want $r(\theta)$ small
- ▶ to trade off these two objectives, form regularized empirical risk

$$\mathcal{L}(\theta) + \lambda r(\theta)$$

where $\lambda \geq 0$ is the *regularization parameter* (or *hyper-parameter*)

- ightharpoonup regularized empirical risk minimization (RERM): choose θ to minimize regularized empirical risk
- an optimization problem

Regularized empirical risk minimization

- for $\lambda = 0$, RERM reduces to ERM
- \blacktriangleright RERM produces a *family* of predictors, one for each value of λ
- lacktriangle in practice, we choose a few tens of values of λ , usually logarithmically spaced over a wide range
- use validation to choose among the candidate predictors
- we choose the largest value of λ that gives near minimum test error (i.e., least sensitive predictor that generalizes well)

Ridge regression

- ightharpoonup ridge regression: square loss and regularizer $r(\theta) = \|\theta\|^2$ (or $\|\theta_{2:d}\|^2$ if $x_1 = 1$)
- also called Tykhonov regularized least squares
- regularized empirical risk is

$$\mathcal{L}(\theta) + \lambda r(\theta) = \|X\theta - y\|^2 + \lambda \|\theta\|^2$$

$$= \left\| \begin{bmatrix} X \\ \sqrt{\lambda}I \end{bmatrix} \theta - \begin{bmatrix} y \\ 0 \end{bmatrix} \right\|^2$$

ightharpoonup so optimal θ is

$$heta^\star = \left[egin{array}{c} X \ \sqrt{\lambda}I \end{array}
ight]^\dagger \left[egin{array}{c} y \ 0 \end{array}
ight] = (X^TX + \lambda I)^{-1}X^Ty$$

▶ (how do you modify this to handle $r(\theta) = ||\theta_{2:d}||^2$?)

Regularizers

Regularizers

- motivation:
 - ▶ large θ_i makes prediction $\theta^T x$ sensitive to value of x_i
 - lacksquare so we want heta (or $heta_{2:d}$ if $x_1=1$) small
- ightharpoonup regularizer $r: \mathbf{R}^d o \mathbf{R}$ measures the size of θ
- usually regularizer is separable,

$$r(\theta) = q(\theta_1) + \cdots + q(\theta_d)$$

where $q: \mathsf{R} \to \mathsf{R}$ is a penalty function for the predictor coefficients

Sum squares regularizer

lacktriangle sum squares regularizer uses square penalty $q^{
m sqr}(a)=a^2$

$$r(\theta) = ||\theta||^2 = \theta_1^2 + \dots + \theta_d^2$$

▶ also called *quadratic*, *Tychonov*, or ℓ_2 regularizer

ℓ_1 regularizer

ightharpoonup sum absolute or ℓ_1 regularizer uses absolute value penalty $q^{\mathrm{abs}}(a) = |a|$

$$r(\theta) = ||\theta||_1 = |\theta_1| + \cdots + |\theta_d|$$

- $| |\theta ||_1$ is ℓ_1 norm of θ
- ▶ like the Euclidean or ℓ_2 norm $||\theta||$, it is a norm, *i.e.*, a measure of the size of the vector θ
- lacktriangle Euclidean norm is often written as $||\theta||_2$ to distinguish it from the ℓ_1 norm
- ▶ they are both members of the *p-norm family*, defined as

$$||\theta||_p = (|\theta_1|^p + \cdots + |\theta_d|^p)^{1/p}$$

for p > 1

Lasso regression

- use square loss $\ell(\hat{y}, y) = (\hat{y} y)^2$
- choosing θ to minimize $\mathcal{L}(\theta) + \lambda ||\theta||_2^2$ is called *ridge regression*
- choosing θ to minimize $\mathcal{L}(\theta) + \lambda ||\theta||_1$ is called *lasso regression*
- ▶ invented by (Stanford's) Rob Tibshirani, 1994
- widely used in advanced machine learning
- unlike ridge regression, there is no formula for the lasso parameter vector
- but we can efficiently compute it anyway (since it's convex)
- the lasso regression model has some interesting properties

Sparsifying regularizers

Sparse coefficient vector

- ightharpoonup suppose heta is sparse, *i.e.*, many of its entries are zero
- ightharpoonup prediction $\theta^{\mathsf{T}}x$ does not depend on features x_i for which $\theta_i=0$
- ▶ this means we select *some* features to use (i.e., those with $\theta_i \neq 0$)
- \blacktriangleright (possible) practical benefits of sparse θ :
 - > can improve performance when many features are actually irrelevant
 - makes predictor simpler to interpret

Sparse coefficient vectors via ℓ_1 regularization

using ℓ_1 regularization leads to sparse coefficient vectors

$$r(\theta) = ||\theta||_1$$
 is called a *sparsifying regularizer*

rough explanation:

- lacktriangleright for square penalty, once $heta_i$ is small, $heta_i^2$ is very small
- so incentive for sum squares regularizer to make a coefficient smaller decreases once it is small
- lacktriangle for absolute penalty, incentive to make $heta_i$ smaller keeps up all the way until it's zero

- ▶ artificially generated 50 data points, 200 features
- only a few features are relevant
- ▶ left hand plots use Tychonov, right hand use lasso

- ightharpoonup sorted $| heta_i|$ at optimal λ
- ▶ lasso solution has only 35 non-zero components

- lacktriangleright choose λ based on regularization path with test data
- lacktriangle keep features corresponding to largest components of heta and retrain
- plots above use most important 7 features identified by lasso

Even stronger sparsifiers

- $q(a) = |a|^{1/2}$
- ▶ called ℓ_{0.5} regularizer
- but you shouldn't use this term since

$$(|\theta_1|^{0.5} + \cdots + |\theta_d|^{0.5})^2$$

is not a norm (see VMLS)

- ightharpoonup 'stronger' sparsifier than ℓ_1
- \blacktriangleright but not convex so computing θ is heuristic

 \triangleright ℓ_2 , ℓ_1 , and square root regularization

Nonnegative regularizer

Nonegative coefficients

- ▶ in some cases we know or require that $\theta_i \geq 0$
- \blacktriangleright this means that when x_i increases, so must our prediction
- ▶ we can think of this constraint as regularization with penalty function

$$q(a) = egin{cases} 0 & a \geq 0 \ \infty & a < 0 \end{cases}$$

- \triangleright example: y is lifespan, x_i measures healthy behavior i
- ▶ with quadratic loss, called *nonnegative least squares* (NNLS)
- ightharpoonup common heuristic for nonnegative least squares: use $(\theta^{ls})_+$ (works poorly)

Classification

Boolean classification

- supervised learning is called boolean classification when raw output variable
 v is a categorical that can take two possible values
- ▶ we denote these −1 and 1, and they often correspond to {FALSE, TRUE} or {NEGATIVE, POSITIVE}
- lacktriangle for a data record u^i, v^i , the value $v^i \in \{-1, 1\}$ is called the *class* or *label*
- lacktriangleright a boolean classifier predicts label \hat{v} given raw input u

Classification

- ightharpoonup here $u \in \mathbf{R}^2$
- lacktriangle red points have $v^i=-1$, blue points have $v^i=1$
- $lackbox{ we'd like a predictor that maps any }u\in\mathbf{R}^2 \text{ into prediction }\hat{v}\in\{-1,1\}$

Example: Least squares classifier

- lacktriangleright embed x=(1,u) and y=v, apply least squares regression
- $lackbox{ gives } \hat{y} = heta_1 + heta_2 u_1 + heta_3 u_2$
- $lackbox{predict using } \hat{v} = \operatorname{sign}(\hat{y})$
- ▶ 11% of points misclassified at training

Confusion matrix

The two types of errors

- ightharpoonup measure performance of a specific predictor on a set of n data records
- lacktriangle each data point i has $v^i \in \{-1, 1\}$
- lacktriangle and corresponding prediction $\hat{v}^i=g(v^i)\in\{-1,1\}$
- lacktriangle only four possible values for the data pair \hat{v}^i , v^i :
 - true positive if $\hat{v}^i = 1$ and $v^i = 1$
 - ▶ true negative if $\hat{v}^i = -1$ and $v^i = -1$
 - false negative or type II error if $\hat{v}^i = -1$ and $v^i = 1$
 - ▶ false positive or type I error if $\hat{v}^i = 1$ and $v^i = -1$

Confusion matrix

▶ for a predictor and a data set define the *confusion matrix*

$$C = \left[\begin{array}{ccc} \# \text{ true negatives} & \# \text{ false negatives} \\ \# \text{ false positives} & \# \text{ true positives} \end{array} \right] = \left[\begin{array}{ccc} C_{\mathsf{tn}} & C_{\mathsf{fn}} \\ C_{\mathsf{fp}} & C_{\mathsf{tp}} \end{array} \right]$$

(warning: some people use the transpose of C)

- $ightharpoonup C_{\sf tn} + C_{\sf fn} + C_{\sf fp} + C_{\sf tp} = n$ (total number of examples)
- $ightharpoonup N_{n} = C_{tn} + C_{fp}$ is number of negative examples
- $ightharpoonup N_p = C_{fn} + C_{tp}$ is number of positive examples
- diagonal entries give numbers of correct predictions
- off-diagonal entries give numbers of incorrect predictions of the two types

Some boolean classification measures

$$lacktriangleright$$
 confusion matrix $\left[egin{array}{cc} C_{\mathsf{tn}} & C_{\mathsf{fn}} \\ C_{\mathsf{fp}} & C_{\mathsf{tp}} \end{array} \right]$

- ▶ the basic error measures:
 - ▶ false positive rate is C_{fp}/n
 - false negative rate is C_{fn}/n
 - error rate is $(C_{fn} + C_{fp})/n$
- error measures some people use:
 - ightharpoonup true positive rate or sensitivity or recall is $C_{\sf tp}/N_{\sf p}$
 - ▶ false alarm rate is C_{fp}/N_n
 - ightharpoonup specificity or true negative rate is $C_{
 m tn}/N_{
 m n}$
 - precision is $C_{\sf tp}/(C_{\sf tp}+C_{\sf fp})$

Neyman-Pearson error

- lacktriangle Neyman-Pearson error over a data set is $\kappa C_{\mathsf{fn}}/n + C_{\mathsf{fp}}/n$
- ▶ a scalarization of our two objectives, false positive and false negative rates
- \triangleright κ is how much more false negatives irritate us than false positives
- when $\kappa = 1$, the Neyman-Pearson error is the *error rate*

▶ we'll use the Neyman-Pearson error as our scalarized measure

ERM for classification tasks

Embedding

- lacktriangle we embed raw input and output records as $x=\phi(u)$ and $y=\psi(v)$
- $ightharpoonup \phi$ is the feature map
- ψ is the identity map, $\psi(v) = v$
- un-embed by $\hat{v} = \text{sign}(\hat{y})$
- $lackbox{ equivalent to } \hat{v} = \mathop{
 m argmin}_{v \in \{-1,1\}} |\hat{y} \psi(v)|$
- ightharpoonup i.e., choose the nearest boolean value to the (real) prediction \hat{y}

ERM

 \blacktriangleright given loss function $\ell(\hat{y}, y)$, empirical risk on a data set is

$$\mathcal{L} = rac{1}{n} \sum_{i=1}^n \ell(\hat{y}^i, y^i)$$

▶ for linear model $\hat{y} = \theta^{\mathsf{T}} x$, with $\theta \in \mathbf{R}^d$,

$$\mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n \ell(heta^{ extsf{T}} x^i, y^i)$$

- ▶ ERM: choose θ to minimize $\mathcal{L}(\theta)$
- lacktriangledown regularized ERM: choose heta to minimize $\mathcal{L}(heta) + \lambda r(heta)$, with $\lambda > 0$

Loss functions for boolean classification

- **b** to apply ERM, we need a loss function on embedded variables $\ell(\hat{y}, y)$
- ightharpoonup y can only take values -1 or 1
- lackbox but $\hat{y} = \theta^{\mathsf{T}} x \in \mathsf{R}$ can be any real number
- ▶ to specify ℓ , we only need to give two functions (of a scalar \hat{y}):
 - lacksquare $\ell(\hat{y},-1)$ is how much \hat{y} irritates us when y=-1
 - ▶ $\ell(\hat{y}, 1)$ is how much \hat{y} irritates us when y = 1
- we can take $\ell(\hat{y}, 1) = \kappa \ell(-\hat{y}, -1)$, to reflect that false negatives irritate us a factor κ more than false positives

Neyman-Pearson loss

▶ Neyman-Pearson loss is

$$\blacktriangleright \ \ell^{\mathsf{NP}}(\hat{y},-1) = \begin{cases} 1 & \hat{y} \geq 0 \\ 0 & \hat{y} < 0 \end{cases}$$

$$\blacktriangleright \ \ell^{\mathsf{NP}}(\hat{y},1) = \kappa l^{\mathsf{NP}}(\hat{y},-1) = \begin{cases} \kappa & \hat{y} < 0 \\ 0 & \hat{y} \geq 0 \end{cases}$$

ightharpoonup empirical Neyman-Pearson risk $\mathcal{L}^{\mathsf{NP}}$ is the Neyman-Pearson error

The problem with Neyman-Pearson loss

- ▶ empirical Neyman-Pearson risk $\mathcal{L}^{\text{NP}}(\theta)$ is not differentiable, or even continuous (and certainly not convex)
- lacktriangle worse, its gradient $abla \mathcal{L}^{\mathrm{NP}}(heta)$ is either zero or undefined
- so an optimizer does not know how to improve the predictor

Idea of proxy loss

- we get better results using a proxy loss that
 - ▶ approximates, or at least captures the flavor of, the Neyman-Pearson loss
 - ▶ is more easily optimized (e.g., is convex or has nonzero derivative)

- we want a proxy loss function
 - lacktriangle with $\ell(\hat{y},-1)$ small when $\hat{y}<0$, and larger when $\hat{y}>0$
 - $lackbox{ with } \ell(\hat{y},+1)$ small when $\hat{y}>0$, and larger when $\hat{y}<0$
 - which has other nice characteristics, e.g., differentiable or convex

Sigmoid loss

$$\blacktriangleright \ \ell(\hat{y},-1) = \frac{1}{1+e^{-\hat{y}}}, \quad \ell(\hat{y},1) = \kappa \ell(-\hat{y},-1) = \frac{\kappa}{1+e^{\hat{y}}}$$

- ▶ differentiable approximation of Neyman-Pearson loss
- but not convex

Logistic loss

- $\blacktriangleright \ \ell(\hat{y}, -1) = \log(1 + e^{\hat{y}}), \quad \ell(\hat{y}, 1) = \kappa \ell(-\hat{y}, -1) = \kappa \log(1 + e^{-\hat{y}})$
- ▶ differentiable and convex approximation of Neyman-Pearson loss

Hinge loss

$$ullet \ \ell(\hat{y},-1) = (1+\hat{y})_+, \quad \ell(\hat{y},1) = \kappa \ell(-\hat{y},-1) = \kappa (1-\hat{y})_+$$

▶ nondifferentiable but convex approximation of Neyman-Pearson loss

Square loss

- $ullet \ \ell(\hat{y},-1) = (1+\hat{y})^2, \quad \ell(\hat{y},1) = \kappa \ell(-\hat{y},-1) = \kappa (1-\hat{y})^2$
- ▶ ERM is least squares problem

Hubristic loss

▶ define the *hubristic loss* (huber + logistic) as

$$\ell(\hat{y},-1) = egin{cases} 0 & \hat{y} < -1 \ (\hat{y}+1)^2 & -1 \leq \hat{y} \leq 0 \ 1+2\hat{y} & \hat{y} > 0 \end{cases}$$

 $\qquad \qquad \boldsymbol{\ell}(\hat{y},1) = \kappa \boldsymbol{\ell}(-\hat{y},-1)$

Boolean classifiers

Least squares classifier

▶ use empirical risk with square loss

$$\mathcal{L}(heta) = rac{1}{n} \left(\sum_{i: y^i = -1} (1 + \hat{y}^i)^2 \ + \ \kappa \sum_{i: y^i = 1} (1 - \hat{y}^i)^2
ight)$$

and your choice of regularizer

- with sum squares regularizer, this is least squares classifier
- lacktriangle we can minimize $\mathcal{L}(heta) + \lambda r(heta)$ using, e.g., QR factorization

Logistic regression

use empirical risk with logistic loss

$$\mathcal{L}(heta) = rac{1}{n} \left(\sum_{i:y^i = -1} \log(1 + e^{\hat{y}^i}) \ + \ \kappa \sum_{i:y^i = 1} \log(1 + e^{-\hat{y}^i})
ight)$$

and your choice of regularizer

- lacktriangle can minimize $\mathcal{L}(heta) + \lambda r(heta)$ using prox-gradient method
- ightharpoonup we will find an actual minimizer if r is convex

Support vector machine

(usually abbreviated as **SVM**)

use empirical risk with hinge loss

$$\mathcal{L}(heta) = rac{1}{n} \left(\sum_{i:y^i = -1} (1 + \hat{y}^i)_+ \ + \ \kappa \sum_{i:y^i = 1} (1 - \hat{y}^i)_+
ight)$$

and sum squares regularizer

- $ightharpoonup \mathcal{L}(heta) + \lambda r(heta)$ is convex
- ▶ it can be minimized by various methods (but not prox-gradient)

Support vector machine

- ▶ decision boundary is $\theta^T x = 0$
- lacktriangle black lines show points where $heta^\mathsf{T} x = \pm 1$
- ▶ what is the training risk here?

Optimization problems and algorithms

Optimization problem

minimize $f(\theta)$

- \bullet $\theta \in \mathbb{R}^d$ is the *variable* or *decision variable*
- ▶ $f: \mathbf{R}^d \to \mathbf{R}$ is the *objective function*
- ightharpoonup goal is to choose heta to minimize f
- $lackbox{}{} heta^{\star}$ is optimal means that for all $heta, \ f(heta) \geq f(heta^{\star})$
- $f^* = f(\theta^*)$ is the *optimal value* of the problem
- optimization problems arise in many fields and applications, including machine learning

Optimality condition

- ▶ let's assume that f is differentiable, i.e., partial derivatives $\frac{\partial f(\theta)}{\partial \theta_i}$ exist
- lacksquare if $heta^{\star}$ is optimal, then $abla f(heta^{\star}) = 0$
- ▶ $\nabla f(\theta) = 0$ is called the *optimality condition* for the problem
- lacktriangle there can be points that satisfy abla f(heta) = 0 but are not optimal
- we call points that satisfy $\nabla f(\theta) = 0$ stationary points
- not all stationary points are optimal

Solving optimization problems

- ▶ in some cases, we can solve the problem analytically
- e.g., least squares: minimize $f(\theta) = ||X\theta y||^2$
 - optimality condition is $\nabla f(\theta) = 2X^T(X\theta y) = 0$
 - ▶ this has (unique) solution $\theta^* = (X^TX)^{-1}X^Ty = X^{\dagger}y$ (when columns of X are linearly independent)
- ▶ in other cases, we resort to an *iterative algorithm* that computes a sequence $\theta^1, \theta^2, \ldots$ with, hopefully, $f(\theta^k) \to f^*$ as $k \to \infty$

Iterative algorithms

- iterative algorithm computes a sequence $\theta^1, \theta^2, \dots$
- $\triangleright \theta^k$ is called the kth iterate
- \triangleright θ^1 is called the *starting point*
- ▶ many iterative algorithms are descent methods, which means

$$f(\theta^{k+1}) < f(\theta^k), \quad k = 1, 2, \dots$$

i.e., each iterate is better than the previous one

 \blacktriangleright this means that $f(\theta^k)$ converges, but not necessarily to f^\star

Stopping criterion

- ▶ in practice, we stop after a finite number *K* of steps
- ▶ typical stopping criterion: stop if $||\nabla f(\theta^k)|| < \epsilon$ or $k = k^{\text{max}}$
- ightharpoonup ϵ is a small positive number, the stopping tolerance
- $\triangleright k^{\max}$ is the maximum number of iterations
- ightharpoonup in words: we stop when θ^k is almost a stationary point
- lacktriangle we hope that $f(\theta^K)$ is not too much bigger than f^\star
- \blacktriangleright or more realistically, that θ^K is at least useful for our application

Non-heuristic and heuristic algorithms

- lacktriangle in some cases we ${\color{red}know}$ that $f(heta^k) o f^\star$, for any $heta^1$
- ▶ in words: we'll get to a solution if we keep iterating
- ▶ called *non-heuristic*

- lacktriangle other algorithms do not guarantee that $f(heta^k) o f^\star$
- lacktriangle we can hope that even if $f(heta^k)
 ot \to f^\star$, $heta^k$ is still useful for our application
- ▶ called *heuristic*

Convex functions

▶ a function $f: \mathbf{R}^d \to \mathbf{R}$ is *convex* if for any θ , $\tilde{\theta}$, and α with $0 \le \alpha \le 1$,

$$f(lpha heta + (1-lpha) ilde{ heta}) \leq lpha f(heta) + (1-lpha)f(ilde{ heta})$$

- ightharpoonup roughly speaking, f has 'upward curvature'
- ▶ for d = 1, same as $f''(\theta) \ge 0$ for all θ

Convex optimization

 \blacktriangleright optimization problem $\mbox{minimize} \quad f(\theta)$ is called $\mbox{\it convex}$ if the objective function f is convex

▶ for convex optimization problem, $\nabla f(\theta) = 0$ only for θ optimal, *i.e.*, all stationary points are optimal

- ▶ algorithms for convex optimization are non-heuristic
- ▶ i.e., we can solve convex optimization problems (exactly, in principle)

Convex ERM problems

▶ regularized empirical risk function $f(\theta) = \mathcal{L}(\theta) + \lambda r(\theta)$, with $\lambda \geq 0$,

$$\mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n p(heta^\mathsf{T} x^i - y^i), \qquad r(heta) = q(heta_1) + \dots + q(heta_d)$$

lackbox f is convex if loss penalty p and parameter penalty q functions are convex

- ▶ convex penalties: square, absolute, tilted absolute, Huber
- non-convex penalties: log Huber, squareroot

Gradient method

Gradient method

- assume f is differentiable
- lacktriangle at iteration $heta^k$, create affine (Taylor) approximation of f valid near $heta^k$

$$\hat{f}(\theta; \theta^k) = f(\theta^k) + \nabla f(\theta^k)^T (\theta - \theta^k)$$

- $ightharpoonup \hat{f}(heta; heta^k) pprox f(heta)$ for heta near $heta^k$
- lacktriangle choose $heta^{k+1}$ to make $\hat{f}(heta^{k+1}; heta^k)$ small, but with $|| heta^{k+1} heta^k||$ not too large
- ▶ choose θ^{k+1} to minimize $\hat{f}(\theta; \theta^k) + \frac{1}{2h^k} ||\theta \theta^k||^2$
- $b h^k > 0$ is a trust parameter or step length or learning rate
- ightharpoonup solution is $\theta^{k+1} = \theta^k h^k \nabla f(\theta^k)$
- roughly: take step in direction of negative gradient

Gradient method update

ightharpoonup choose θ^{k+1} to as minimizer of

$$f(\theta^k) + \nabla f(\theta^k)^T (\theta - \theta^k) + \frac{1}{2h^k} ||\theta - \theta^k||^2$$

rewrite as

$$f(\theta^{k}) + \frac{1}{2h^{k}} ||(\theta - \theta^{k}) + h^{k} \nabla f(\theta^{k})||^{2} - \frac{h^{k}}{2} ||\nabla f(\theta^{k})||^{2}$$

- \blacktriangleright first and third terms don't depend on θ
- middle term is minimized (made zero!) by choice

$$\theta = \theta^k - h^k \nabla f(\theta^k)$$

How to choose step length

- lacksquare if h^k is too large, we can have $f(heta^{k+1}) > f(heta^k)$
- lacktriangleright is too small, we have $f(\theta^{k+1}) < f(\theta^k)$ but progress is slow

- a simple scheme:
 - ▶ if $f(\theta^{k+1}) > f(\theta^k)$, set $h^{k+1} = h^k/2$, $\theta^{k+1} = \theta^k$ (a rejected step)
 ▶ if $f(\theta^{k+1}) < f(\theta^k)$, set $h^{k+1} = 1.2h^k$ (an accepted step)
- ▶ reduce step length by half if it's too long; increase it 20% otherwise

Gradient method summary

choose an initial $\theta^1 \in \mathbf{R}^d$ and $h^1 > 0$ (e.g., $\theta^1 = 0$, $h^1 = 1$)

for
$$k = 1, 2, \ldots, k^{\mathsf{max}}$$

- 1. compute $\nabla f(\theta^k)$; quit if $||\nabla f(\theta^k)||$ is small enough
- 2. form tentative update $\theta^{\text{tent}} = \theta^k h^k \nabla f(\theta^k)$
- 3. if $f(\theta^{\text{tent}}) \leq f(\theta^k)$, set $\theta^{k+1} = \theta^{\text{tent}}$, $h^{k+1} = 1.2h^k$
- 4. else set $h^k := 0.5h^k$ and go to step 2

Gradient method convergence

(assuming some technical conditions hold) we have

$$||\nabla f(\theta^k)|| o 0$$
 as $k o \infty$

- ▶ i.e., the gradient method always finds a stationary point
- ▶ for convex problems
 - ▶ gradient method is *non-heuristic*
 - lackbox for any starting point $heta^1$, $f(heta^k) o f^\star$ as $k o\infty$
- ▶ for non-convex problems
 - gradient method is heuristic
 - lacksquare we can (and often do) have $f(heta^k)
 ot \to f^\star$

Example: Convex objective

$$\blacktriangleright \ f(\theta) = \tfrac{1}{3} \big(p^\mathsf{hub}(\theta_1 - 1) + p^\mathsf{hub}(\theta_2 - 1) + p^\mathsf{hub}(\theta_1 + \theta_2 - 1) \big)$$

- ▶ f is convex
- \blacktriangleright optimal point is $\theta^*=(2/3,2/3)$, with $f^*=1/9$

Example: Convex objective

- lacksquare $f(\theta^k)$ is a decreasing function of k, (roughly) exponentially
- $ightharpoonup \|
 abla f(heta^k)\| o 0 ext{ as } k o \infty$

Example: Non-convex objective

$$f(\theta) = \frac{1}{3} \left(p^{\mathsf{lh}}(\theta_1 + 3) + p^{\mathsf{lh}}(2\theta_2 + 6) + p^{\mathsf{lh}}(\theta_1 + \theta_2 - 1) \right)$$

- ightharpoonup f is sum of log-Huber functions, so not convex
- ▶ gradient algorithm converges, but limit depends on initial guess

Example: Non-convex objective

Example: Non-convex objective

Gradient method for ERM

Gradient of empirical risk function

empirical risk is sum of terms for each data point

$$\mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n \ell(\hat{y}^i, y^i) = rac{1}{n} \sum_{i=1}^n \ell(heta^T x^i, y^i)$$

- ightharpoonup convex if loss function ℓ is convex in first argument
- gradient is sum of terms for each data point

$$abla \mathcal{L}(heta) =
abla \mathcal{L}(heta) = rac{1}{n} \sum_{i=1}^n \ell'(heta^T x^i, y^i) x^i$$

where $\ell'(\hat{y},y)$ is derivative of ℓ with respect to its first argument \hat{y}

Evaluating gradient of empirical risk function

- ightharpoonup compute n-vector $\hat{y}^k = X\theta^k$
- $lackbox{}$ compute $n\text{-vector }z^k$, with entries $z^k_i=\ell'(\hat{y}^k_i,y^i)$
- $lackbox{compute d-vector }
 abla \mathcal{L}(heta^k) = (1/n)X^Tz^k$

- lacktriangledown first and third steps are matrix-vector multiplication, each costing 2nd flops
- second step costs order n flops (dominated by other two)
- ▶ total is 4nd flops

Prox-gradient method

Minimizing composite functions

- want to minimize $F(\theta) = f(\theta) + g(\theta)$ (called *composite function*)
- ightharpoonup f is differentiable, but g need not be
- lacktriangle example: minimize $\mathcal{L}(heta) + \lambda r(heta)$, with $r(heta) = || heta||_1$
- ▶ we'll see idea of gradient method extends directly to composite functions

Selective linearization

▶ at iteration k, linearize f but not g

$$\hat{F}(\theta; \theta^k) = f(\theta^k) + \nabla f(\theta^k)^T (\theta - \theta^k) + g(\theta)$$

- lacktriangle want $\hat{F}(heta; heta^k)$ small, but with heta near $heta^k$
- ▶ choose θ^{k+1} to minimize $\hat{F}(\theta; \theta^k) + \frac{1}{2h^k} ||\theta \theta^k||^2$, with $h^k > 0$
- same as minimizing

$$\|g(heta) + rac{1}{2h^k} || heta - (heta^k - h^k
abla f(heta^k))||^2$$

- \triangleright for many 'simple' functions g, this minimization can be done analytically
- ▶ this iteration from θ^k to θ^{k+1} is called prox-gradient step

Prox-gradient iteration

- prox-gradient iteration has two parts:
 - 1. gradient step: $\theta^{k+1/2} = \theta^k h^k \nabla f(\theta^k)$
 - 2. *prox step*: choose θ^{k+1} to minimize $g(\theta) + \frac{1}{2h^k} ||\theta \theta^{k+1/2}||^2$

 $(\theta^{k+1/2}$ is an intermediate iterate, in between θ^k and $\theta^{k+1})$

- ▶ step 1 handles differentiable part of objective, i.e., f
- ▶ step 2 handles second part of objective, i.e., g

Proximal operator

▶ given function $q: \mathbf{R}^d \to \mathbf{R}$, and $\kappa > 0$,

$$\mathbf{prox}_{q,\kappa}(v) = \operatorname*{argmin}_{\theta} \left(q(\theta) + \frac{1}{2\kappa} ||\theta - v||^2 \right)$$

is called the *proximal operator* of q at v, with parameter κ

▶ the prox-gradient step can be expressed as

$$\theta^{k+1} = \mathbf{prox}_{g,h^k}(\theta^{k+1/2}) = \mathbf{prox}_{g,h^k}(\theta^k - h^k \nabla f(\theta^k))$$

▶ hence the name prox-gradient iteration

How to choose step length

▶ same as for gradient, but using $F(\theta) = f(\theta) + g(\theta)$

a simple scheme:

$$lacktriangledown$$
 if $F(heta^{k+1}) > F(heta^k)$, set $h^{k+1} = h^k/2$, $heta^{k+1} = heta^k$ (a rejected step)

▶ reduce step length by half if it's too long; increase it 20% otherwise

Stopping criterion

stopping condition for prox-gradient method:

$$\left\|\nabla f(\theta^{k+1}) - \frac{1}{h^k}(\theta^{k+1} - \theta^{k+1/2})\right\| \leq \epsilon$$

- ▶ analog of $\|\nabla f(\theta^{k+1})\| < \epsilon$ for gradient method
- ▶ second term $-\frac{1}{h^k}(\theta^{k+1} \theta^{k+1/2})$ serves the purpose of a gradient for g (which need not be differentiable)

Prox-gradient method summary

choose an initial
$$\theta^1 \in \mathbf{R}^d$$
 and $h^1 > 0$ (e.g., $\theta^1 = 0$, $h^1 = 1$)

for
$$k = 1, 2, \ldots, k^{\text{max}}$$

- 1. gradient step. $\theta^{k+1/2} = \theta^k h^k \nabla f(\theta^k)$
- 2. prox step. $\theta^{\text{tent}} = \operatorname{argmin}_{\theta} \left(g(\theta) + \frac{1}{2h^k} || \theta \theta^{k+1/2} ||^2 \right)$
- 3. if $F(\theta^{\text{tent}}) \leq F(\theta^k)$,
 - (a) set $\theta^{k+1} = \theta^{\text{tent}}$, $h^{k+1} = 1.2h^k$
 - (b) quit if $\left\| \nabla f(\theta^{k+1}) \frac{1}{h^k} (\theta^{k+1} \theta^{k+1/2}) \right\| \leq \epsilon$
- 4. else set $h^k := 0.5h^k$ and go to step 1

Prox-gradient method convergence

- prox-gradient method always finds a stationary point
 - suitably defined for non-differentiable functions
 - assuming some technical conditions hold

- ▶ for convex problems
 - prox-gradient method is non-heuristic
 - lacktriangledown for any starting point $heta^1$, $F(heta^k) o F^\star$ as $k o\infty$

- ▶ for non-convex problems
 - prox-gradient method is heuristic
 - lacktriangle we can (and often do) have $F(heta^{\,k})
 ot \rightarrow F^{\star}$

Prox-gradient for regularized ERM

Prox-gradient for sum squares regularizer

- lacktriangleright let's apply prox-gradient method to $F(heta) = \mathcal{L}(heta) + \lambda || heta||_2^2$
 - $\blacktriangleright f(\theta) \equiv \mathcal{L}(\theta)$
- ▶ in prox step, we need to minimize $\lambda \theta_i^2 + \frac{1}{2h^k} (\theta_i \theta_i^{k+1/2})^2$ over θ_i
- ightharpoonup solution is $\theta_i = \frac{1}{1+2\lambda h^k} \theta_i^{k+1/2}$
- lacktriangle so prox step just shrinks the gradient step $heta^{k+1/2}$ by the factor $rac{1}{1+2\lambda h^k}$
- prox-gradient iteration:
 - 1. gradient step: $\theta^{k+1/2} = \theta^k h^k \nabla \mathcal{L}(\theta^k)$
 - 2. prox step: $\theta^{k+1} = \frac{1}{1+2\lambda h^k} \theta^{k+1/2}$

Prox-gradient for ℓ_1 regularizer

- ▶ let's apply prox-gradient method to $F(\theta) = \mathcal{L}(\theta) + \lambda ||\theta||_1$
 - $\blacktriangleright f(\theta) = \mathcal{L}(\theta)$
- ▶ in prox step, we need to minimize $\lambda |\theta_i| + \frac{1}{2h^k} (\theta_i \theta_i^{k+1/2})^2$ over θ_i
- solution is

$$\theta_i^{k+1} = \left\{ \begin{array}{ll} \theta_i^{k+1/2} - \lambda h^k & \theta_i^{k+1/2} > \lambda h^k \\ 0 & |\theta_i^{k+1/2}| \leq \lambda h^k \\ \theta_i^{k+1/2} + \lambda h^k & \theta_i^{k+1/2} < -\lambda h^k \end{array} \right.$$

- called soft threshold function
- sometimes written as

$$\begin{split} \boldsymbol{\theta}_i^{k+1} &= S_{\lambda h^k}(\boldsymbol{\theta}_i^{k+1/2}) = \mathrm{sign}(\boldsymbol{\theta}_i^{k+1/2}) (|\boldsymbol{\theta}_i^{k+1/2}| - \lambda h^k)_+ \\ &= (\boldsymbol{\theta}_i^{k+1/2} - \lambda h^k)_+ - (-\boldsymbol{\theta}_i^{k+1/2} - \lambda h^k)_+ \end{split}$$

Soft threshold function

- ▶ prox-gradient iteration for regularized ERM with ℓ_1 regularization:
 - 1. gradient step: $\theta^{k+1/2} = \theta^k h^k \nabla \mathcal{L}(\theta^k)$
 - 2. prox step: $\theta_i^{k+1} = S_{\lambda h^k}(\theta_i^{k+1/2})$ for $i=1,\ldots,d$.
- ▶ the soft threshold step shrinks all coefficients
- ▶ and sets the small ones to zero

Prox-gradient step for nonnegative regularizer

- ▶ let's apply prox-gradient method to $F(\theta)=\mathcal{L}(\theta)+r(\theta)$, where $r(\theta)=0$ for $\theta\geq 0$, ∞ otherwise
 - $\blacktriangleright f(\theta) = \mathcal{L}(\theta)$
- ▶ in prox step, we need to minimize $q(\theta_i) + \frac{1}{2h^k}(\theta_i \theta_i^{k+1/2})^2$ over θ_i
- $lackbox{ solution is } heta_i = \left(heta_i^{k+1/2}
 ight)_+$
- lacktriangleright so prox step just replaces the gradient step $heta_i^{k+1/2}$ with its positive part
- prox gradient iteration:
 - 1. gradient step: $\theta^{k+1/2} = \theta^k h^k \nabla \mathcal{L}(\theta^k)$
 - 2. prox step: $\theta^{k+1} = (\theta^{k+1/2})_+$