Clase 12 Evaluación de supuestos pruebas paramétricas

Curso Introducción al Análisis de datos con R para la acuicultura.

Dr. José A. Gallardo | jose.gallardo@pucv.cl | Pontificia Universidad Católica de Valparaíso

11 July 2021

PLAN DE LA CLASE

1.- Introducción

- Supuestos de los análisis paramétricos.
- Consecuencias de la violación de los supuestos.
- Métodos gráficos y análisis de residuos para evaluar supuestos.
- Pruebas de hipótesis para evaluar supuestos.

2.- Práctica con R y Rstudio cloud

- Evaluar supuestos de las pruebas paramétricas.
- Elaborar un reporte dinámico en formato pdf.

SUPUESTOS: INDEPENDENCIA

Independencia

Cada observación de la muestra no debe estar relacionada con otra observación de la muestra.

Ejemplo violación del supuesto

- Muestreo de peces de una misma familia.
- Diversidad de especies en una muestra de plancton.
- Medidas repetidas en un mismo individuo (antes y despues de un tratamiento).

Si se viola este supuesto la prueba paramétrica NO es válida.

SUPUESTOS: HOMOGENEIDAD DE VARIANZAS

Homocedasticidad

En el caso de comparación de dos o más muestras estan deben provenir de poblaciones con la misma varianza.

En la práctica alguna heterogeneidad es permitida, particularmente con n > 30.

SUPUESTOS: NORMALIDAD

Normalidad

Los datos de muestreo se obtienen de una población que tiene distribución normal.

Ejemplo violación del supuesto

- No es simétrica.
- No es continua.
- Tiene *límites* a la izquierda o derecha .

VIOLACIÓN DEL SUPUESTO DE NORMALIDAD

¿Cuál es el problema?

Cambia la probabilidad de rechazar la hipótesis nula.

VIOLACIÓN DEL SUPUESTO DE NORMALIDAD 2

¿Cómo afecta una población no normal a la probabilidad de rechazar?

n	Cola izq.	Cola der.	lphaEmpirica
5	0,20	0,26	0,46
10	0,24	0,28	0,52
20	0,23	0,26	0,49
30	0,24	0,27	0,51
50	0,24	0,26	0,50
100	0,24	0,26	0,50

En la práctica apróximadamente normal es suficiente, particularmente con n > 30.

ANÁLISIS DE RESIDUALES

¿Qué son los residuos?

Residuo = valor observado - valor predicho e = y - \hat{y}

Residuos en ANOVA

$$\sum_{i=1}^{n} (y - \hat{y})^2$$

Note que la suma de residuos representa la variabilidad no explicada por el modelo.

¿Para qué sirven?

Para someter a prueba los supuestos de muchos análisis paramétricos como ANOVA, ANCOVA o REGRESION.

EVALUACIÓN DE SUPUESTOS

Regla de oro

Primero evalúe independencia, luego homogeneidad de varianzas y finalmente normalidad.

Estudio de caso

ANOVA EN LA FORMA DE MODELO LINEAL

Se recomienda simpre tratar los ANOVA y similares como casos particulares de un modelo lineal

```
lm.aov <- lm(Peso ~ Tratamiento, data = my data)</pre>
aov(lm.aov)
## Call:
## aov(formula = lm.aov)
##
## Terms:
##
                   Tratamiento Residuals
## Sum of Squares
                  205.350 3246.859
## Deg. of Freedom
                                       58
##
## Residual standard error: 7.482001
## Estimated effects may be unbalanced
```

INDEPENDENCIA: ANÁLISIS DE RESIDUALES

plot(lm.aov\$residuals, pch=20, col = "blue")

INDEPENDENCIA: DURBIN-WATSON

Hipótesis

 $\mathbf{H_0}$: Son independientes o no existe autocorrelación. $\mathbf{H_A}$: No son independientes y existe autocorrelación. library(Imtest)

```
##
## Durbin-Watson test
##
## data: Peso ~ Tratamiento
## DW = 0.61428, p-value = 1.166e-10
## alternative hypothesis: true autocorrelation is not 0
```

HOMOGENEIDAD DE VARIANZAS: ANÁLISIS DE RESIDUALES

```
plot(lm.aov, 1, pch=20, col = "blue")
```


HOMOGENEIDAD DE VARIANZAS: PRUEBA DE LEVENE

H₀: $\sigma_1^2 = \sigma_2^2$ **H**_A: $\sigma_1^2 \neq \sigma_2^2$

58

##

NORMALIDAD: GRÁFICO DE CUANTILES

```
qqnorm(my_data$Peso, pch = 1, frame = TRUE)
qqline(my_data$Peso, col = "steelblue", lwd = 2)
```


NORMALIDAD: GRÁFICO DE CUANTILES 2

library(car)

qqPlot(my_data\$Peso)

NORMALIDAD: ANÁLISIS DE RESIDUALES

plot(lm.aov, 2, pch=20, col = "blue")

NORMALIDAD: HISTOGRAMA DE RESIDUALES

```
aov_residuals <- residuals(object = lm.aov)
hist(x= aov_residuals, main = "Histograma de residuales")</pre>
```


NORMALIDAD: PRUEBA DE SHAPIRO-WILKS

H₀: La distribución es normal.H_A: La distribución no es normal.

```
shapiro.test(x= aov_residuals)
```

```
##
## Shapiro-Wilk normality test
##
## data: aov_residuals
## W = 0.96949, p-value = 0.1378
```

PRÁCTICA ANÁLISIS DE DATOS

- Guía de trabajo práctico disponible en drive y Rstudio.cloud.
 Clase_12
- El trabajo práctico se realiza en Rstudio.cloud.
 12 Evaluación de supuestos

RESUMEN DE LA CLASE

- Teoría
- Supuestos de los análisis paramétricos.
- Consecuencias de la violación de los supuestos.
- Interretación de métodos gráficos, análisis de residuos y pruebas de hipótesis para evaluar supuestos.
- Evaluación de supuestos
 - Independencia.
 - Homocedasticidad.
 - Normalidad.