Canoe Project

March 13

Aries, Sherry, Taimoor @ Columbia University

Final Goal

- 1. Predict the document category (Account Statement, Call Notice, Distribution Notice, Other) given a document
- 2. Extract data from the document, if the document's category is Account Statement, or Call Notice or Distribution Notice

In this presentation

- 1. Show how we prepared the data set
- 2. Explain what kind of models/ techniques we are going to use (or have used) and why

Data Preparation

- Used PyPDF2 to extract information from PDFs
- 2. Read all files and added the text to a 2d list containing the text of all files
- 3. Identified dates, entity and fund name and document type from PDF names
- 4. Cleaned data and removed whitespace and new lines, tabs etc

Tagging & Chunking

Tagging

- 1. Stanford CoreNLP tagger
- 2. NLTK part-of-speech tagger
- Automatic tagging (regular expression tagger, the look up tagger)
- N-gram tagging(2-gram or 3-gram)

Chunking: segments and labels multitoken sequences

- 1. Noun-Phrase chunking
- 2. Chunking with regular expressions

Named Entity Recognition

Identifying the boundaries of the NE and its type

- 1. NLTK
- 2. Stanford Named Entity Recognizer Model
- 3. Spacy NER model

NE type	Examples
ORGANIZATION	Georgia-Pacific Corp., WHO
PERSON	Eddy Bonte, President Obama
LOCATION	Murray River, Mount Everest
DATE	June, 2008-06-29
TIME	two fifty a m, 1:30 p.m.
MONEY	175 million Canadian Dollars, GBP 10.40
PERCENT	twenty pct, 18.75 %
FACILITY	Washington Monument, Stonehenge
GPE	South East Asia, Midlothian

Three standard approaches to do NER

- 1. Hand-written regular expressions
- 2. Classifiers
 - Generative: Naive Bayes
 - Discriminative: Maxent models
- 3. Sequence models
- HMMs(Hidden Markov Model)
- CMMs(Conditional Markov models)
 /MEMMs(Maximum Entropy Markov models)
- CRFs(conditional random fields)

The machine learning sequence model approach to NER

Training

- 1. Collect a set of representative training documents
- 2. Label each token for its entity class or other (O)
- 3. Design feature extractors appropriate to the text and classes
- 4. Train a sequence classifier to predict the labels from the data

Testing

- 1. Receive a set of testing documents
- 2. Run sequence model inference to label each token
- 3. Appropriately output the recognized entities

Models for NER in financial documents

- 1. Skip-Gram Model
- 2. CRF(conditional random fields)
- Training is slower, but CRFs avoid causal-competition biases
- Takes into account the position of the current filed, so do not need to spending much time engineering structural features into our model

Problems - NER in financial documents:

- 1. Financial institutions have long complex names
- 2. Financial institution names appear in an individual line, be free of additional text, so it lacks context, natural language features and structure tags
- 3. Names can break across several lines
- 4. Names are often capitalized
- 5. An institution may be mentioned using different names

Data characteristics:

Financial institution names can typically be split into a root fragment and a suffix

Predict Category - Text Classification

Reference: https://monkeylearn.com/text-classification/

Text Classification - Feature Extraction

sklearn.feature extraction.text.CountVectorizer

Convert a collection of text documents to a matrix of token counts.

This implementation produces a sparse representation of the counts using scipy.sparse.csr_matrix.

Examples

Text Classification - Feature Extraction

sklearn.feature_extraction.text.TfidfTransformer

Transform a count matrix to a normalized tf or tf-idf representation (term-frequency times inverse document-frequency)

The weights of each feature computed by the fit method call are stored in a model attribute:

```
>>> transformer.idf_
array([1. ..., 2.25..., 1.84...])
```


Text Classification - Algorithms

- Naive Bayes
 - Multinomial Naive Bayes (MNB)
 - a couple of thousand tagged samples
- Support Vector Machines
 - more computational resources than Naive Bayes
- Deep Learning
 - Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN)
 - at least millions of tagged examples

Text Classification - Example

	index	Category Name	Sub Category	File Name	category	file	text
0	195	Capital Activity	Account Statement	Arsenal Capital Group - Wenger Partners - Acc	1	Arsenal Capital Group - Wenger Partners - Acc	Chelsea Partners
1	199	Capital Activity	Account Statement	Arsenal Capital Group - Wenger Partners - Acc	1	Arsenal Capital Group - Wenger Partners - Acc	Liverpool Investments 6/30/2017 To
2	275	Capital Activity	Account Statement	Arsenal Capital Group - Wenger Partners - Acc	1	Arsenal Capital Group - Wenger Partners - Acc	Newcastle Ventu
3	192	Capital Activity	Account Statement	Arsenal Capital Group - Wenger Partners - Acc	1	Arsenal Capital Group - Wenger Partners - Acc	4/14/2016 Courtois Investment Group 5 Fulham R
4	196	Capital Activity	Account Statement	Arsenal Capital Group - Wenger Partners - Acc	1	Arsenal Capital Group - Wenger Partners - Acc	Liverpool Investments R 1/15/2
5	200	Capital Activity	Account Statement	Arsenal Capital Group - Wenger Partners - Acc	1	Arsenal Capital Group - Wenger Partners - Acc	Tottenham Hotspur
6	193	Capital Activity	Account Statement	Arsenal Capital Group - Wenger Partners - Acc	1	Arsenal Capital Group - Wenger Partners - Acc	
7	197	Capital Activity	Account Statement	Arsenal Capital Group - Wenger Partners - Acc	1	Arsenal Capital Group - Wenger Partners - Acc	Arsenal Capital Group R 9/12/2
8	201	Capital Activity	Account Statement	Arsenal Capital Group - Wenger Partners - Acc	1	Arsenal Capital Group - Wenger Partners - Acc	Capital Account Stateme
9	194	Capital Activity	Account Statement	Arsenal Capital Group - Wenger Partners - Acc	1	Arsenal Capital Group - Wenger Partners - Acc	Chelsea Partners

Account Statement: 1, Distribution Notice: 2, Call Notice: 3, otherwise: -1

Text Classification - Example (CONT.)

	0	1	2	3	4	5	6	7	8	9	•••	73	74	75	76	77	78	79	80	81	82
category	1	1	1	1	3	1	1	1	1	1	•••	1	1	1	1	3	1	3	1	1	1
predict	3	1	1	2	3	3	3	2	3	1		1	1	3	2	1	3	3	1	1	3

	0	1	2	3	4	5	6	7	8	9	 73	74	75	76	77	78	79	80	81	82
category	1	1	1	1	1	1	1	1	1	1	 1	1	1	1	1	1	1	1	1	1
predict	1	1	1	3	1	1	1	1	1	1	 3	3	1	2	1	3	1	1	-1	2

