■ Chapter 6:

 Analogue-to-Digital Converters and Digital-to-Analogue Converters

Analogue to Digital and Digital to Analogue conversions

Analogue-to-digital converters and Digital-to-Analogue converters

■ Problems:

Analogue signals cannot be interfaced directly to a digital system like a microprocessor or a PC.

Similarly, digital signals cannot be interfaced directly to an analogue system.

Solutions:

To solve this problem we need some means to convert and analogue signal to a digital signal and vice versa.

These are achieved by using Analogue to Digital Converters (ADC) and Digital to Analogue Converters (DAC)

Analogue to Digital and Digital to Analogue conversions

Digital to Analogue Converter

Part 1: Analogue to digital converters

- Flash ADC
- Digital Ramp ADC
- Successive Approximation ADC

Analogue to Digital and Digital to Analogue conversions

The true table for an 8 to 3-bit priority encoder.

X = don't care

			Inp	uts				0	utpu	ıts
D_7	D ₆	Ds	D_4	D ₃	D_2	D ₁	D ₀	Q ₂	Q1	Q ₀
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	х	0	0	1
0	0	0	0	0	1	х	х	0	1	0
0	0	0	0	1	х	х	х	0	1	1
0	0	0	1	х	х	х	х	1	0	0
0	0	1	х	х	х	х	х	1	0	1
0	1	x	х	х	x	х	х	1	1	0
1	х	x	х	х	х	х	х	1	1	1

Analogue to Digital and Digital to Analogue conversions

9

Flash ADC or Parallel ADC

Flash ADC or Parallel ADC

Advantages

Very fast

Disadvantages

- Needs many comparators.
 comparators for 3-bit ADC)
 comparators for 8-bit ADC)
- 2. Expensive
- 3. Large power consumption

Analogue to Digital and Digital to Analogue conversions

11

Digital Ramp ADC

The ADC is built from a DAC as DACs are easier to design

Analogue to Digital and Digital to Analogue conversions

Successive Approximation ADC, SAR ADC

- 1. Improvement from the RAMP ADC.
- 2. The main difference is the improvement of the counter which is replaced by a successive approximation Register

Applications:

- 1. Medium-to-high-resolution applications.
- SAR ADCs most commonly range in resolution from 8to 16-bits and provide low power consumption as well as a small form factor

Analogue to Digital and Digital to Analogue conversions

Operation of the SAR ADC

bit 3	bit 2	bit1	bit 0
0	0	0	0
0	1	0	0
0	1	0	0
0	1	0	1

Note: the successive approximation ADC is much faster than the RAMP ADC, since the counter does not reset to zero for every conversion.

Analogue to Digital and Digital to Analogue conversions

Part 2: Digital to Analogue converters

- R/2nR DAC
- PWM DAC

Analogue to Digital and Digital to Analogue conversions

15

R/2nR DAC

Inverting summer circuit

 $\mathbf{V_{out}} = \mathbf{-} \ (\mathbf{V_1} + \mathbf{V_2} + \mathbf{V_3})$

Analogue to Digital and Digital to Analogue conversions

R/2nR DAC

Inverting summer circuit

$$\mathbf{V_{out}} = -(\mathbf{V_1} + \mathbf{V_2} + \mathbf{V_3})$$

Eg:

If D1 = 1, D2 = 0, D3 = 0 then Vout = -V

If D0 = 0, D2 = 1, D3 = 0 then Vout = -V

Therefore 100 or 010 or 001 give the same results.

Is this acceptable?

Analogue to Digital and Digital to Analogue conversions

17

R/2nR DAC

The solution is to modify the circuit as shown below:

MSB LSB	Vout
000	0
001	-1/4
010	-2/4
011	-3/4
100	-1
101	-5/4
110	-6/4
111	-7/4

Note: The Resistors R should be very precise

Analogue to Digital and Digital to Analogue conversions

