Transformation of random variables - Some exercises

E2-202 - Random Processes, Fall 2017, ECE, IISc. Prepared by - Karthik and Sahasranand

September 16, 2017

- 1. Let X be a discrete random variable. Calculate the pmf of Y in all the cases below:
 - (a) $X \sim \text{unif}\{-n, -n+1, \dots, -1, 0, 1, \dots, n\}$ and Y = |X|
 - (b) $X \sim \text{Bin}(n, p)$ and Y = n X. What is the distribution of Y?
 - (c) $X \sim \text{Poi}(\lambda)$ and Y = 2X
 - (d) $X \sim \text{Geo}(p)$ and $Y = \frac{1}{X+1}$.
- 2. Let $U \sim \text{unif}(0,1)$.
 - (a) What is the pmf of $\lfloor nU \rfloor + 1$ where n is a fixed positive integer? Note: $\lfloor a \rfloor$ stands for the largest integer smaller than or equal to a.
 - (b) For 0 < q < 1, $X = \left| \log_q U \right| + 1$. Show that $X \sim \text{Geo}(1 q)$.
- 3. Let the pdf of X be

$$f_X(x) = \begin{cases} 2x, & 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Calculate $\mathbb{P}[X \ge 0.4 | X \le 0.8]$.
- (b) Let $Y = -\log X$. Calculate the pdf of Y.
- 4. Let $X \sim \text{Exp}(\lambda)$ and $Z = \min\{X, 3\}$. Calculate the pdf of Z.
- 5. Let $X \sim \mathcal{N}(\mu, \sigma^2)$ and $Y = e^X$. Calculate the pdf of Y (Y is called a log Normal random variable).
- 6. Let U and V be random variables with joint pdf

$$f_{U,V}(u,v) = \begin{cases} u+v, & 0 \le u \le 1, \ 0 \le v \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

Let $X=U^2,\,Y=U(1+V).$ Calculate $f_{X,Y}(x,y).$

7. Let $\Theta \sim \operatorname{unif}(-\pi/2, \pi/2)$. Let $Y = \tan \Theta$. Verify that the pdf of Y is given by

$$f_Y(y) = \frac{1}{\pi(y^2 + 1)}, \ y \in (-\infty, \infty).$$

Y is called a Cauchy random variable.

- (a) Does E[Y] exist?
- (b) Does $E[Y^2]$ exist?
- (c) Does Var[Y] exist?

8. Let X_1, X_2 be independent zero mean Normals with variance σ^2 . Define

$$R = \sqrt{X_1^2 + X_2^2}, \quad \Theta = \tan^{-1} \left(\frac{X_2}{X_1}\right).$$

- (a) Compute the densities of R and Θ .
- (b) Are R and Θ independent?
- (c) Let $S = X_1^2 + X_2^2 = R^2$. What is the distribution of S?
- 9. Let $X_1 \sim \text{Exp}(\lambda_1)$, $X_2 \sim \text{Exp}(\lambda_2)$ be independent. Let $R = \frac{X_1}{X_2}$. Compute the pdf of R.