עבודת הגשה – מיונים

1. הראה את שלבי מיון מיזוג על המערך הבא. הצג את שלבי הביצוע בדרך

1 -		_	_		_	l _	l _	_
1 /1	1	1_7	Q	1 10	5	2	I _ 5	2
4	<u> </u>	-2	0	10	<u> </u>		-5	3
1	1		1	1		1	1	1

על המערך הבא. איבר הציר הוא תמיד (Quick Sort) איבר הציר הוא תמיד 2. הראה את שלבי מיון מהיר הצג את שלבי הביצוע בדרך

	_	_	_		_	_	_
2	1	1 7	Q	10	[[1 1
3	_ _		0	10)	-5	4
_			_	_	_	_	

2. הראה את שלבי האלגוריתם Select - למציאת האיבר ה 4 הקטן ביותר במערך הבא. הצג את שלבי הביצוע בדרך

_	•	•	•	4		4.0)
/	1 2	l 8	13	l - 1	-4	10	l ()	6
1 -	_	_	•	_	1		•	•

4. פתור את נוסחאות הנסיגה הבאות. חובה להראות דרך מלאה

$$T(n) = T(\sqrt{n}) + 5$$
 .a

$$T(n) = 4T(\sqrt{n}) + \log_2 n$$
 .b

.5

יש למיין את הפונקציות שלהלן על־פי הסיבוכיות שלהן:

$$n, n!, 2^n, n^n, 2^{\log_3 n}, n^{\frac{2n+1}{n+1}}$$

"פך ש g1 , g2 , g3 , g4 , g5 , g6 ויש למצוא סידור

$$g1 = \Omega(g2), g2 = \Omega(g3), g3 = \Omega(g4), g4 = \Omega(g5), g5 = \Omega(g6)$$

$$g_{1}(n)=n^{n},\,g_{2}(n)=n!,\,g_{3}(n)=2^{n},\,g_{4}(n)=n^{\frac{2n+1}{n+1}},\,g_{5}(n)=n,\,g_{6}(n)=2^{\log_{3}n} \quad .1$$

$$g_1(n) = n^n, g_2(n) = n^{\frac{2n+1}{n+1}}, g_3(n) = n!, g_4(n) = 2^n, g_5(n) = 2^{\log_3 n}, g_6(n) = n$$
 .2

$$g_{I}(n) = n^{n}, \, g_{2}(n) = n!, \, g_{3}(n) = 2^{n}, \, g_{4}(n) = 2^{\log_{3}n}, \, g_{5}(n) = n^{\frac{2n+1}{n+1}}, \, g_{6}(n) = n \quad .3$$

$$g_1(n) = n!, g_2(n) = n^n, g_3(n) = n^{\frac{2n+1}{n+1}}, g_4(n) = 2^n, g_5(n) = n, g_6(n) = 2^{\log_3 n}$$
 .4