Lecture 2: Forward Markets

Modeling and Marketing Making in Foreign Exchange

The FX Forward Markets

- A forward trade is an agreement to exchange some amount of one currency for another amount of another currency at some point in the future
 - Spot is one point on the forward curve
- Bilateral, over-the-counter transactions
 - Not exchange traded, or even traded on SEFs (because of a Treasury exemption from DFA)
- Traded as "outright forwards" or "swaps"
 - Outright forward: just a forward contract
 - Swap: long a forward, short spot (or the reverse), in same notional

The FX Futures Markets

- Currency futures trade on the CME
 - Other exchanges too but most futures liquidity on the CME
- Quarterly settlements going out six contracts
 - Most liquidity is in "prompt" (closest-to-settle) contract
- Relatively small compared to OTC market
 - \$5.3T/day in OTC market (spot+forward)
 - \$0.16T/day in exchange markets
- A lot of trading in the prompt contract is electronic hedgers using it as a close-to-spot product for extra spot liquidity

Forward Market Statistics

- The OTC forward market is a bit bigger than the spot market
 - Spot: \$2.05T/day
 - Outright forwards: \$0.68T/day
 - FX swaps: \$2.23T/day
- Most trading is inside 1y
- Smaller fraction of trades executed electronically than spot
 - For swaps, 53% by volume, vs 65% for spot
 - Electronic market significantly less developed than spot

Forward Market Statistics

Daily Turnover in the FX Forwards Markets (Outrights & Swaps)

Forward Market Conventions

- "Outright", or all-in, forward: regular forward contract
- Forward point: difference between all-in forward and spot prices
 - Mostly a function of interest rates
 - Much more stable than spot
- Tenor of the forward contract adds another dimension
 - Not all trades are fungible with each other, like with spot
 - "Benchmark" tenors trade in the broker market for inter-dealer trades
 - Clients can trade any settlement date they like
 - Spreads are not tighter for benchmark settlement dates
 - Liquidity runs out to 2-3y for most currency pairs

Spot/Forward Correlation

Rolling 3m Correlation of Daily Spot and 1y Forward Returns

The Spot/Forward Arbitrage

- FX is a financial market where the two requirements for spot/forward arbitrage hold:
 - You can store currencies (and receive an interest rate for them)
 - You can borrow & short currencies (and pay an interest rate)
- Interest rate markets for G7 currencies are all well-developed so you can really execute the arbitrage
- In fact, you can view an FX forward trade as just two zero coupon bonds, one in each currency, one long, one short

The Spot/Forward Arbitrage

- eg: forward settling in 1y, receiving 1M EUR, paying 1.13M
 USD
 - Equivalent to being long 1 unit of a zero coupon bond in EUR with a 1y settlement date and being short 1.13 units of a zero coupon bond in USD

$$V(t) = S(t)e^{-Q(t,T)(T-t)} - Ke^{-R(t,T)(T-t)}$$

v(t): price in denominated currency of a forward contract settling at T with strike K

S(t): current spot price

Q(t,T): zero coupon bond rate for asset currency to settlement T

R(t,T): zero coupon bond rate for denominated currency to T

The Spot/Forward Arbitrage

- Traders execute the arbitrage all day, every day
 - Mostly it's FX forwards market makers executing the arb by deciding whether it's more efficient to hedge with a forward directly, or hedge with spot and interest rate contracts
- That arbitrage fixes the market forward price to the fair forward price

$$F(t,T) = S(t)e^{(R(t,T)-Q(t,T))(T-t)}$$

Voice Trading

- Same basic structure as we saw with the spot markets:
 - Clients: market takers who call dealers to get a price
 - Salespeople: take orders from clients and relay prices from traders
 - Traders: market makers who make prices to clients and manage the market risk they accrue by taking the other side of client trades
 - Inter-dealer market: where traders (at dealers) trade with each other to hedge
- Pricing and risk management more complex than for spot because of the tenor dimension of a forward contract
 - Not every forward contract is fungible with every other

Voice Trading

- The "forwards" traders are really FX swap traders
 - They trade outright forward vs spot as their product
 - Not much spot risk; really they are trading interest rates
- Outright forward trade involves two different traders
 - Spot trader quotes the spot bid/ask
 - Forwards trader quotes the bid/ask on "forward points"
 - Client is shown an aggregated bid/ask by sales, and trade is broken into two pieces for risk management
- FX swap trade involves just the forwards trader

Voice Trading Example

- Hedge fund ABC wants to buy 10M EUR vs USD for 1y settlement
- ABC trader calls Dealer A
 - Talks on the phone to salesperson, and asks him for A's outright 2way market on 10M EUR in 1y settlement
 - Salesperson stands up and yells at the EURUSD spot trader and asks for the 2-way market on 10M EUR for hedge fund ABC
 - Salespeople yells at the EURUSD forwards trader for their two-say on the 1y swap on 10M EUR for hedge fund ABC
 - Traders make their prices and sales aggregates for the client
- ABC trader calls Dealers B and C and checks the pricing and deals on the lowest offer price across the dealers

Voice Market Making

- Same basic inputs for price-making as with spot trading
- Inter-dealer market
 - Market where a dealer can hedge (if desired)
 - Dealing here is by voice as well, via brokers or "direct"
- Current risk position
 - Already long, bias down prices; already short, bias up
- Market views
 - Dealer wants to take risk one way or the other?
- Client behavior
 - Does the client typically buy vs sell? Is the client typically right about market direction?

- An FX forwards portfolio might contain forwards settling on many different dates
- Usually represent risk to benchmark dates only, since those are the easiest points to trade in the inter-dealer market on the hedge
- What is the risk to?
 - Forward points: the difference between all-in forward prices and the spot price
 - Or equivalently, non-USD interest rates, but risk displayed in notional of FX swap equivalents
 - Forwards traders also always monitor delta (risk to spot) but hedge that with their friends on the spot desk

- What are the benchmark settlement dates?
 - 1w, 2w, 1m, 2m, 3m, 6m, 9m, 1y, 2y; maybe 3y, 4y, 5y
- Also some short-dated forward tenors with unusual conventions
 - t/n: "tom/next", the points from 1d before the spot date (ie, tomorrow) to spot (ie, the next date)
 - t/n points = spot price forward price for 1d settlement
 - o/n: "overnight", the points from today to tomorrow
 - o/n points = forward price for 1d settlement forward point for 0d settlement
 - A lot of trading happens here for "rolls"
 - Trades to move ahead the settlement date of a forward about to settle

- Need a way to define "bucketed" interest rate risk that sensibly aggregates risk for every possible settlement date into the (much smaller) set of benchmark dates
- Lots of ways to define this but the most common is the "triangle shock", shown below for time t_i

At the edges the shock is not triangular; it goes flat

- The sum of all those triangle shocks (with the adjusted shocks at the edge points) is a parallel shift to the interest rate curve
 - Nothing is left out, at least to first order
- If a portfolio contains a forward contract with a settlement in between two benchmark settlement dates, its risk will be split (roughly) linearly between the two benchmark buckets
 - Tells the trader which inter-dealer benchmark hedges to do
 - After those hedges the book is still not perfectly hedged, but its remnant risk should be "small"

- What would the suggested hedges be for that example?
 - Assume asset interest rate curve is flat at 2% for all times for simplicity, and unit notional for the forward in the portfolio
- Start with expression for the price of a forward contract with settlement time T and strike K, then take partial derivative with respect to Q:

$$V = Se^{-QT} - Ke^{-RT}$$

$$\frac{\partial V}{\partial Q} = -STe^{-QT}$$

- Assume the actual forward trade in the portfolio has settlement time T (=0.22 years) and the benchmark times are T1 (=0.2 years) and T2 (=0.3 years).
- We want to find the notionals of the two benchmark forwards that hedge the risk of the portfolio:

$$N_{1} = \left(\frac{T_{2} - T}{T_{1}}\right) \frac{1}{T_{1}} e^{-Q(T-T_{1})}$$

$$N_{2} = \left(\frac{T - T_{1}}{T_{2} - T_{1}}\right) \frac{1}{T_{2}} e^{Q(T_{2} - T_{1})}$$

$$T_{2} = \left(\frac{T - T_{1}}{T_{2} - T_{1}}\right) \frac{1}{T_{2}} e^{Q(T_{2} - T_{1})}$$

Benchmark Forward Notionals

Example of a forward risk report

Forwar	d Risk I	Report											
Currency	o/n	t/n	1w	2w	1m	2m	3m	6m	9m	1 y	2y	5у	Total
EUR	100	31	-96	-94	-67	46	90	81	-16	12	46	95	228
JPY	-93	-90	1	-51	-11	87	20	10	12	86	-89	-85	-203
CHF	-57	83	77	89	-17	-38	95	-19	-20	31	61	-39	246
AUD	77	-78	-50	11	29	-93	74	3	-90	92	7	-22	-40

Reducing Risk Dimensionality

- Lots of numbers even for a single currency on that report
 - Not unmanageable, but maybe we can do better
- Want a way to efficiently reduce the dimensionality of the market risk
 - Market risk to interest rate spreads, that is (currency rate minus USD rate); which is how people tend to think about risk to FX forwards
- Two common approaches:
 - Principal component analysis
 - Parametric factor models

Principal Component Analysis

- Look for most important (non-parametric) shocks that tend to drive moves in the whole curve
 - eg parallel shift, tilt move, bend move, etc
- Use historical daily interest rate spread moves, particularly covariances between them, to figure out the factors
 - Assumes all daily returns of constant-tenor rate spreads are drawn from an identical distribution
 - Pick off the component shocks (eigenfunctions of the covariance matrix) corresponding to the largest eigenvalues of the covariance matrix

Principal Component Analysis

- In practice people don't use this very often
- Non-parametric shocks are hard to understand properly
 - Can have unusual shapes due to specific data points in the history you're using
- Non-parametric shock shapes change over time
 - Do you fix the shock shape based on a particular historical run?
 - Do you recalculate the shock shapes every day based on rolling historical runs?
- Together they make traders unsure what their risk numbers mean

Factor Models

- More common are factor models for the interest rate spread curve
- We'll focus on forward curve models; one variation is

$$dS(t,T) = \sum_{i=1}^{N} \sigma_i(t,T) dz_i(t)$$

- S(t,T): term interest rate spread for tenor T as seen at time t
- σ_i(t,T): volatility of ith factor
- dz_i(t): Brownian motion driving ith factor (all correlated)

Two Factor Model

Common form for a 2-factor forward curve model:

$$dS(t,T) = \sigma_1 e^{-\beta_1 T} dz_1(t) + \sigma_2 e^{-\beta_2 T} dz_2(t)$$
$$E[dz_1(t) dz_2(t)] = \rho dt$$

- σ_1 , σ_2 , β_1 , β_2 , and ρ are factor model parameters
- Calibrate them to historical dynamics

Two Factor Model

Covariance of log returns in the two-factor model

$$Cov[dS(T_1), dS(T_2)] = \left(\sigma_1^2 e^{-\beta_1(T_1 + T_2)} + \sigma_2^2 e^{-\beta_2(T_1 + T_2)} + \rho \sigma_1 \sigma_2 \left(e^{-\beta_1 T_1 - \beta_2 T_2} + e^{-\beta_1 T_2 - \beta_2 T_1}\right)\right) dt$$

- Can compare the model covariances with historical covariances
- Then do a 5-dimensional non-linear rootfinding to find the model parameters that best match the historical dynamics
- Need to choose two elements of historical data:
 - The set of tenors to include in the historical data
 - The length of the historical data set

Two Factor Model

- The two factor model can give shocks that look a lot like the first two principal component shocks
 - Roughly parallel: one shock with relatively low mean reversion strength
 - Tilt: another shock with a high mean reversion that's correlated with the first shock
 - Then the orthogonal shocks look like parallel plus a shock that looks like a difference between exponentials, which shapes a tilt

$$dS(t,T) = \left(\sigma_{1}e^{-\beta_{1}T} + \rho\sigma_{2}e^{-\beta_{2}T}\right)dz_{1}(t) + \sigma_{2}\sqrt{1-\rho^{2}}e^{-\beta_{2}T}dz_{3}(t)$$

Tilt Shock (ρ<0)

Roughly parallel shock

$$E[dz_1(t)dz_3(t)] = 0$$