VOLUME OF KNOWN CROSS SECTIONS

Area modeled by the function A(x)

DISK METHOD

The Radius could also be R(x) = f(x) - c, the function revolving around an axis y = c, which would be different than the x axis

WASHER METHOD

$$= \pi \int_{a}^{b} \left[\left(R(x) \right)^{2} - \left(\Gamma(x) \right)^{2} \right] dx$$

The Radii could also be R(x) = f(x) - c, r(x) = g(x) - c, if both are revolving around an axis y = c, which would be different than the x axis

SHELL METHOD

Here, the height of the cylinder is the difference between the two functions, h(x) = f(x) - g(x), while the radius would be: r(x) = x - c, in case the axis of rotation is not the origin (in which case r(x) = x), but an axis x = c

ARC LENGTH

AREA OF SURFACES OF REVOLUTION

CENTROIDS

ARC LENGTH OF PARAMETRIC EQUATIONS

AREA UNDER PARAMETRIC EQUATIONS

