Solving Alphametics

Sven Bijleveld

July 11, 2022

Contents

1	Problem Definition	1
2	A Simpler Example	2

1 Problem Definition

We want to find a set of operations to solve an alphametic puzzle. An example of

• Find $E, N, O, R, Y \in \mathbb{N}_0$ and $M, S \in \mathbb{N}$ such that

• where the rules of standard addition apply, this can be written as:

$$Y = (D + E) \qquad (\mod 10)$$

$$E = \left(N + R + \lfloor \frac{D + E}{10} \rfloor\right) \qquad (\mod 10)$$

$$N = \left(E + O + \lfloor \frac{N + R + \lfloor \frac{D + E}{10} \rfloor}{10} \rfloor\right) \qquad (\mod 10)$$

$$\vdots$$

• A term c_n can be introduced for the overflow where $c \in \{0, 1\}$.

$$Y = D + E$$
 (mod 10)
 $E = N + R + c_1$ (mod 10)
 $N = E + O + c_2$ (mod 10)
 $O = S + M + c_3$ (mod 10)
 $M = c_4$ (mod 10)

- this can be generalized the maximum for the overflow term is linked to the number of addends $c_{max} = \max\{n_{addends} 1, 9\}$
- we can create a graph of variables that depend on eachother

2 A Simpler Example

Let's experiment by solving a simple example

gives us the following equations

$$T = O + O \tag{mod 10}$$

$$U = T + G + c_1 \tag{mod 10}$$

$$O = c_2 \tag{mod 10}$$

