ERD

Group: 3.9

Project Name: Dairy Database System

Functional dependencies:

```
Milker\_ID \to Milker\_Name
```

Milker_ID → Milker_Contact_details

 $Milker_ID \rightarrow Address$

 $Milker_ID \rightarrow Milk_Type$

 $Milker_ID \rightarrow Village_Branch_ID$

Milk_Type → Price

 ${Milker_ID, Date} \rightarrow Quantity$

 ${Milker_Type, Date} \rightarrow FAT$

 ${Milker_Type, Date} \rightarrow Milk_Type$

 $Village_Branch_ID \to District_Branch_ID$

 $Village_Branch_ID \rightarrow Village_Branch_Name$

 $Village_Branch_ID \rightarrow Village_Contained_Details$

```
Village_Branch_ID → Village_Name
Village_Branch_ID → Maneger_ID
```

Batch_id → Product_name

Batch_id → D_branch_id

Batch_id → manufacturing_date

Batch_id → manufacturing_cost

Batch_id → Expiry date

Employee_ID \rightarrow fname Employee_ID \rightarrow Iname

Employee ID → Date of Birth

 $Employee_ID \rightarrow Gender$

 ${Employee_ID} \rightarrow contact_details$

 ${\sf Employee_ID} \to {\sf Address}$

 ${\sf Employee_ID} \to {\sf Branch_Type}$

 ${\sf Employee_ID} \to {\sf Salary}$

Canonical Cover:

```
Milker_ID → { Milker_ID ,Milker_Name, Milker_Contact_details, Village_Branch_ID,District_Branch_ID,Village_Branch_Name, Village_Contained_Details,Address }

{Milk_Type, Milker_ID, Date} → Quantity

{Milk_Type, Milker_Type, Date} → FAT

Village_Branch_ID → { Village_Branch_ID, District_Branch_ID, Village_Branch_Name, Village_Contained_Details, Address, Branch_Name , Contact_Details,Maneger_ID,Director_ID }

District_Branch_ID → { District_Branch_ID, Branch_Name , Contact_Details,Address ,Director_ID}
```

```
Batch_ID → {Product_Name, Expiry_Date, Manufacturing_Date, District_Branch_ID}

{Batch_ID,Manufacturing_Date} → Quantity

{Batch_ID, Supplier_ID} → {Product_Name, Batch_ID, Supplier_ID, Supply_Date}

{Batch_id} → {Product_name, D_branch_id, manufacturing_date, manufacturing_cost, Expiry_date}

{Supplier_ID} → {Supplier_ID, Supply_Name, City, Contact}

{Employee_ID} → {fname, Iname, Date of Birth, Gender, contact_details, Address, Branch_Type, Salary

{Batch_id, supplierID} →{sales_price, Quantity, supply_date}

}
```

Universal Relation of Dairy system:

R(Milker_ID, Milker_Name,Milker_Contact_details,Address,Milk_Type, Village_Branch_ID,Price,date_collection_milk,Quantity,FAT,Village_Branch_ID,District_Branch_ID,Village_Branch_Name,Village_Contained_Details,Village_Name,Branch_Name,Contact_Details,address_Dbranch,Batch_ID,Product_Name,Expiry_Date,Manufacturing_Date,Quantity,Supply_Date,Supplier_ID,Supply_Name,sup_City,sup_Contact,Employee_ID,fname,Iname,EMP_Date_of_Birth, Gender,EMPcontact_details,EMP_Address,EMP_Branch_Type,EMP_Salary)

This relation is not BCNF because there is no Candidate key and redundancy is there so, we can reduce this relation as below which is BCNF.

Relation Decompose In BCNF as Below:

```
Milker(Milker_ID,Milker_Name,contact_details,Address,Milk_type,Village _Branch_ID)
```

```
FDs: Milker_ID → Milker_Name

Milker_ID → Milker_Contact_details

Milker_ID → Address

Milker_ID → Milk_Type

Milker_ID → Village_Branch_ID.

Candidate Key: Milker_ID.
```

So, all FDs satisfies BCNF conditions. Hence, given relation is in BCNF.

village_Branch(V_branch_ID,Branch_Name,village_name,contact_detail s,Manager_ID,D_Branch_ID)

```
FDs: Village_Branch_ID → District_Branch_ID

Village_Branch_ID → Village_Branch_Name

Village_Branch_ID → Village_Contained_Details

Village_Branch_ID → Village_Name

Village_Branch_ID → Maneger_ID
```

Candidate Key: Village_Branch_ID.

So, all FDs satisfies BCNF conditions. Hence, given relation is in BCNF.

milk(Date,milker_id,FAT milk_type, quantity of milk)

```
FDs:
     { Milker_ID, Date} → Quantity
     \{Milker\ ID,\ Date\} \rightarrow FAT
     {Milker ID, Date} → Milk Type
Candidate Key:{Milker ID, Date}
So, given FD satisfies BCNF conditions. Hence, given relation is in BCNF.
milk_price(milk_type,price_per_L)
FDs:
     Milk type -> Price per L
Candidate Key: Milk type
So, given FD satisfies BCNF conditions. Hence, given relation is in BCNF.
District level branch(D branch ID, Branch name, Contact details, addre
ss,Director_ID)
FDs:
     District Branch ID → Branch Name
     District Branch ID → Contact Details
     District\_Branch\_ID \to Address
     District Branch ID → Director ID
Candidate key: District Branch ID.
So, given FD satisfies BCNF conditions. Hence, given relation is in BCNF.
Product(Branch ID, Product name, D branch ID)
FDs:
Batch_ID → District_Branch_ID
Batch ID → Product Name
Candidate Key: Batch_ID.
So, given FD satisfies BCNF conditions. Hence, given relation is in BCNF.
```

```
Employee (Employee ID, DOB, Gender, Contact details, address,
Fname, Lname, Branch ID, salary)
FDs:
     Employee ID → fname
     Employee ID → Iname
     Employee ID → Date of Birth
     Employee ID → Gender
     Employee ID → contact details
     Employee ID → Address
     Employee ID → Branch Type
     Employee ID → Salary
Candidate Key: Employee ID
So, given FD satisfies BCNF conditions. Hence, given relation is in BCNF.
Supplier (Supplier ID, S_name, City, contact)
FDs:
     Supplier ID → Supply Name
     Supplier ID → City
     Supplier ID → Contact
Candidate Key: Supplier ID
So, given FD satisfies BCNF conditions. Hence, given relation is in
BCNF.
product supply details(Batch ID, supplier ID, sale price, Quantity,
supply_date)
FDs:
     {Batch ID, supplier ID} \rightarrow sale price
     {Batch ID, supplier ID} → Quantity
     {Batch ID, supplier ID} → supply date
Candidate Key: {Batch ID, supplier ID}
```

So, all FDs satisfies BCNF conditions. Hence, given relation is in BCNF.

Manufacturing_Details(Manufacturing_date,Manufacturing_cost,quantity, Expiry_date,Batch_ID)

```
FDs: Batch_ID → Expiry_Date

Batch_ID → Manufacturing_Date

Batch_ID → Manufacturing_cost.

{Batch_ID,Manufacturing_Date} → Quantity
```

Candidate Key: {Batch_ID,Manufacturing_Date}.

So,here given relation is **NOT BCNF**. Hence we have to decompose this relation.

R1(<u>Batch_Id</u>, Manufacturing_cost,Expiry_date)
R2(<u>Batch_ID</u>, <u>Manufacturing_Date</u>, Quantity)

So, Now both the relation are in **BCNF**.

Supplier(Supplier_ID,S_Name,City,Contact)

```
FDs: Supplier_ID → S_Name
Supplier_ID → City
Supplier ID → Contact Details
```

Candidate Key: {Supplier_ID}

So, all FDs satisfies BCNF conditions. Hence, given relation is in **BCNF**.