Hashelés

A hashelés/hasítás célja egy olyan adattárolási eljárás megvalósítása, amelyben a keresés, beszúrás és törlés (szótár)műveletek várhatóan nagyon hatékonyak. Feltesszük, hogy a tárolandó rekordoknak van egy egyedi kulcs adattagja. A kulcsok egy U halmaz elemei (U a kulcsok univerzuma), amiről ezúttal nem szükséges feltételezni, hogy rendezhető.

A legegyszerűbb megvalósítás az ún. direkt címzés. Ezt akkor használhatjuk, ha a kulcshalmaz nagyon kicsi. Ha U=0..m-1, akkor egy m méretű tömbben/hasítótáblában tárolhatjuk a rekordokra mutató pointereket úgy, hogy a tömb k indexű tagja a k kulcsú rekordra mutat. Amennyiben nincs k kulcsú rekord, a megfelelő pointer értéke NULL.

Amennyiben a kulcshalmaz nagy, a direkt címzés nem alkalmazható. Ilyenkor felveszünk egy m részre osztott Z[0..(m-1)] hasítótáblát, és bevezetünk egy $h: U \to 0..m-1$ hasító függvényt (tipikusan |U| >> m). A k kulcsú rekordot a hasítótábla Z[h(k)] részében próbáljuk meg eltárolni. Ha két adat k_1 és k_2 kulcsára $h(k_1) = h(k_2)$, akkor kulcsütközésről beszélünk. A különféle hasítási eljárások a k_1 függvény megválasztásában és a kulcsütközések kezelésében különböznek egymástól.

1. Láncolt/vödrös hashelés

Az adatokat m darab S1L listában tároljuk. A hashtábla Z[i] eleme az i. láncolt lista első elemére mutató pointer. Ez a lista azokat a k kulcsú elemeket tartalmazza, amikre h(k) = i. Beszúráskor a megfelelő lista első elejére szúrjuk be az új elemet azért, hogy a beszúrás konstans műveletigényű legyen.

Példa: $m = 7, h : \mathbb{N} \to 0..6, h(k) = k \mod 7$. A táblába beszúrt elemek sorban: 3, 21, 73, 8, 24, 35, 26, 14, 5, 10, 18.

Feladat: Készítsük el a láncolt hashelés kétirányú listás változatát, és rajzoljuk fel a törlés művelet struktogramját! A kétirányú lista nem ciklikus.

A hashelés láncolt megvalósításánál a korábban tanult E_1 , E_2 adattípusok helyett a D_1 és D_2 adattípusokat használjuk. Ezek azonban mindenben megegyeznek a korábbi változatukkal.

2. Nyílt címzéses hashelés

Ebben az esetben nem engedjük meg azt, hogy a hashtábla egy eleméhez egynél több rekord is tartozzon. Ekkor a rekordokat tárolhatjuk közvetlenül a hashtáblában, azonban foglalkoznunk kell a kulcsütközésekkel. Ennek érdekében a kulcsokhoz most már nem egyetlen hash értéket vezetünk be, hanem egy m-tagú sorozatot, ahol m a hashtábla mérete. Legyen $h: U \times 0..(m-1) \to 0..m-1$ egy olyan függvény, amelyre teljesül, hogy tetszőleges k kulcsra a k0, k0, k1, ..., k2, ..., k3 sorozatot a k4. Samok egy permutációja. k5 hasító/hash függvénynek nevezzük, az előbbi sorozatot pedig k4 próbasorozatának hívjuk. Általában olyan próbasorozatot választunk, amely az első eleméből könnyen rekonstruálható. Az első elemet k4, k6 val is jelölhetjük. Mi az órán az ún. lineáris, kvadratikus, és kettős hasítás nevű módszerekre nézünk példát.

Beszúrás: Ha a k kulcsú elemet akarjuk beszúrni a táblába, akkor először megnézzük, hogy szabad-e a h(k,0) indexű pozíció. Amennyiben igen, beszúrjuk, ha nem, akkor megnézzük szabad-e a h(k,1) pozíció. És így tovább, egészen addig, amíg nem találunk neki egy szabad helyet.

Keresés: Amennyiben meg szeretnénk keresni a k kulcsú elemet, úgy elkezdjük sorban végignézni a $h(k,0),\ h(k,1),...,\ h(k,m-1)$ indexű pozíciókat egészen addig, míg nem nem találjuk a keresett elemet, vagy üres helyre nem akadunk. Ha üres helyet találtunk, akkor nincs értelme tovább folytatni a keresést.

Törlés: Egy elem törlése során először megkeressük az előző eljárással a helyét. Fontos, hogy a törlésnél nem változtathatjuk a megtalált pozíciót üresre, hiszen ez gondot okozhatna a későbbi kereséseknél. Épp ezért a törölt elemek helyét valójában nem szabadítjuk fel, hanem az addig ott tárolt kulcsot lecseréljük egy U halmazban nem szereplő D (deleted) szimbólumra.

2.1. Lineáris próba

Lineáris próba esetén a próbasorozat egy számtani sorozatot alkot, ennek differenciája a leggyakrabban 1. Tehát $h(k, n) = h(k, 0) + nd \mod m$.

Példa: $m = 11, h : \mathbb{N} \to 0..10, h(k, n) = (k + n) \mod 11.$

Művelet	k	$h_1(k)$	Próbasorozat	0	1	2	3	4	5	6	7	8	9	10
Beszúr	24	2	$2_E \checkmark$			24								
Beszúr	16	5	$5_E \checkmark$			24			16					
Beszúr	57	2	$2,3_E$ \checkmark			24	57		16					
Beszúr	32	10	$10_E \checkmark$			24	57		16					32
Beszúr	15	4	$4_E \checkmark$			24	57	15	16					32
Töröl	57	2	$2,3_{57}$			24	D	15	16					32
Beszúr	21	10	$10, 0_E \checkmark$	21		24	D	15	16					32
Keres	2	2	$2, 3_D, 4, 5, 6_E$ X	21		24	D	15	16					32
Beszúr	2	2	$2, 3_D, 4, 5, 6_E \checkmark$	21		24	2	15	16					32
Beszúr	2	2	$2, 3_2 X$	21		24	2	15	16					32
Keres	21	10	$10,0_{21}$ ✓	21		24	2	15	16					32

A lépések lejátszása után határozzuk meg a hashtábla kitöltöttségi arányszámát: $\alpha=\frac{6}{11}$

Esetleg meg lehet kérdezni, hogy a fenti műveletek végrehajtása után mennyi egy sikeres keresés várható lépésszáma, de ehhez számológép szükséges. Az előadáson tanult képlet szerint ez $\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$. Ennek értéke jelenleg körülbelül 1,73.

Feladat: Készítsük el a beszúrás struktogramját! A hasítótáblába illesztett adatok típusa R (rekord), ami rendelkezik egy k nevű kulcs adattaggal. Az algoritmus visszatérési értéke egy logikai érték, ami megmondja, hogy sikeres volt-e a beszúrás.

2.2. Négyzetes próba

Négyzetes próba esetén a próbasorozat egy másodfokú függvény segítségével írható le, vagyis $h(k,n)=(h(k,0)+c_1\cdot n+c_2\cdot n^2)$ mod m valamilyen c_1 és c_2 konstansokra. (Ezeket a konstansokat úgy kell megválasztani, hogy a próbasorozat a teljes táblát kiadja. Például kettőhatvány m esetén a $c_1=c_2=\frac{1}{2}$ egy jó választás, ha pedig m egy 4k+3 alakú prím, akkor bármilyen c_2 jó lesz $c_1=0$ esetén.) $c_1=c_2=\frac{1}{2}$ esetén h(k,n)=h(k,n-1)+n.

Példa: $m=8, h: \mathbb{N} \to 0..7, h(k,n)=(k+\frac{n+n^2}{2}) \bmod 8.$

Művelet	k	$h_1(k)$	Próbasorozat	0	1	2	3	4	5	6	7
Beszúr	13	5	5_E \checkmark						13		
Beszúr	20	4	4_E \checkmark					20	13		
Beszúr	31	7	7_E \checkmark					20	13		31
Beszúr	87	7	$7,0_E$ \checkmark	87				20	13		31
Beszúr	12	4	$4, 5, 7, 2_E \checkmark$	87		12		20	13		31
Töröl	31	7	7 ₃₁ ✓	87		12		20	13		D
Keres	12	4	$4, 5, 7_D, 2_{12}$	87		12		20	13		D
Keres	15	7	$7_{D}, 0, 3_{E}$ X	87		12		20	13		D
Beszúr	4	4	$4, 5, 7_D, 2, 6_E \checkmark$	87		12		20	13		4
Töröl	10	2	$2,3_E$ X	87		12		20	13		4
Beszúr	35	3	3 _E ✓	87		12	35	20	13		4
Beszúr	10	2	$2, 3, 5, 0, 4, 1_E \checkmark$	87	10	12	35	20	13		4

$$\alpha = \frac{7}{8}$$

Feladat: Készítsük el a keresés struktogramját! Az algoritmus visszatérési értéke egy egész szám, ami megadja a paraméterül kapott kulcsú rekord indexét. Sikertelen keresés esetén a visszatérési érték -1.

2.3. Kettős hasítás

Ebben az esetben a próbasorozat egy számtani sorozat, azonban a differencia kulcsonként eltérő. Az első elemet egy $h_1: U \to 0..m-1$, a számtani sorozat differenciáját pedig egy $h_2U \to 0..m-1$ függvény adja meg. Ezekből a h hasítófüggvényt a $h(k,n) = (h_1(k) + n \cdot h_2(k))$ mod m képlet adja meg.

Példa: $m = 11$	$h_1(k) = k$	$mod 11 h_2(k)$) = 1 + 1	$(k \bmod 10)$
1 Clua. 116 — 11.	$(n_1)(n_1) - n_1$	mou iiiou	/ — 1	(n mou ro).

Művelet	k	$h_1(k)$	$h_2(k)$	Próbasorozat	0	1	2	3	4	5	6	7	8	9	10
Beszúr	23	1	4	$1_E \checkmark$		24									
Beszúr	42	9	3	9 _E ✓		24								42	
Beszúr	31	9	2	$9,0_E$ \checkmark	31	24								42	
Beszúr	110	0	1	$0, 1, 2_E \checkmark$	31	24	110							42	
Beszúr	55	0	6	$0,6_E$ \checkmark	31	24	110				55			42	
Töröl	55	0	6	$0,6_{55}$ \checkmark	31	24	110				D			42	
Keres	72	6	3	$6_D, 9, 1, 4_E$ X	31	24	110				D			42	
Beszúr	14	3	5	3_E \checkmark	31	24	110	14			D			42	
Töröl	22	3	5	$0, 3, 6_D, 9, 1, 4_E$ X	31	24	110	14			D			42	
Töröl	110	0	1	$0, 1, 2_{110} \checkmark$	31	24	D	14			D			42	
Beszúr	13	2	4	$2_D, 6_D, 10_E \checkmark$	31	24	13	14			D			42	

3. A hasítófüggvény megválasztása

Ha marad idő a gyakorlat végén, akkor átismételhetjük, hogy milyen jó hasítófüggvényeket tanultak előadáson. Az alábbiakban a jegyzet megfelelő részét idézzük:

A $h: U \to 0...(m-1)$ függvény egyszerű egyenletes hasítás, ha a kulcsokat a rések között egyenletesen szórja szét, azaz hozzávetőleg ugyanannyi kulcsot képez le az m rés mindegyikére. Tetszőleges hasító függvénnyel kapcsolatos elvárás, hogy egyszerű egyenletes hasítás legyen.

3.1. Osztó módszer

Ha a kulcsok egész számok, gyakran választják a

$$h(k) = k \mod m$$

hasító függvényt, ami gyorsan és egyszerűen számolható, és ham olyan prím, amely nincs közel a kettő hatványokhoz, általában egyenletesen szórja szét a kulcsokat a 0..(m-1) intervallumon.

Ha pl. a kulcsütközést láncolással szeretnénk feloldani, és kb. 2000 rekordot szeretnénk tárolni $\alpha \approx 3$ kitöltöttségi aránnyal, akkor a 701 jó választás: A 701 ui. olyan prímszám, ami közel esik a 2000/3-hoz, de a szomszédos kettőhatványoktól, az 512-től és az 1024-től is elég távol van.

3.2. Kulcsok a [0,1) intervallumon:

Ha egyenletesen oszlanak el, a

$$h(k) = |k \cdot m|$$

függvény is kielégíti az egyszerű, egyenletes hasítás feltételét.

3.3. Szorzó módszer:

Ha a kulcsok valós számok, tetszőleges 0 < A < 1 konstanssal alkalmazható a

$$h(k) = \lfloor \{k \cdot A\} \cdot m \rfloor$$

hasító függvény. ($\{x\}$ az x törtrésze.) Nem minden lehetséges konstanssal szór egyformán jól. Knuth az $A=\frac{\sqrt{5}-1}{2}\approx 0,618$ választást javasolja, mint ami a kulcsokat valószínűleg szépen egyenletesen fogja elosztani a rések között. Az osztó módszerrel szemben előnye, hogy nem érzékeny a hasító tábla méretére.