ACH2012 - Cálculo II Sistema de Informação - EACH

Lista 3: Següências infinitas e séries - Continuação ¹

1. (a) O que é uma série de potências?

(b) O que é o raio de convergência de uma série de potência? Como você o encontra?

(c) O que é o intervalo de convergência de uma série de potência? Como você o encontra?

2. Encontre o raio de convergência e o intervalo de convergência da série. (a) $\sum_{n=0}^{\infty} \frac{x^n}{\sqrt{n}}$ (b) $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n+1}$ (c) $\sum_{n=0}^{\infty} nx^n$ (d) $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ (e) $\sum_{n=0}^{\infty} \frac{3^n x^n}{(n+1)^2}$ (f) $\sum_{n=2}^{\infty} \frac{x^n}{\ln n}$ (g) $\sum_{n=0}^{\infty} (-1)^n \frac{(x+2)^n}{n2^n}$ (h) $\sum_{n=0}^{\infty} n! (2x - 1)^n \frac{(x+2)^n}{n2^n}$

 $(h) \sum_{n=0}^{\infty} n! (2x-1)^n$

3. Se $\sum_{n=0}^{\infty} c_n 4^n$ for convergente, as séries que se seguem são convergentes?

 $(a) \sum_{n=0}^{\infty} c_n (-2)^n$

 $(b) \sum_{n=0}^{\infty} c_n (-4)^n$

4. Se $\sum_{n=0}^{\infty} c_n x^n$ converge para x=-4 e diverge para x=6. O que pode ser dito sobre a convergência ou divergência das séries a seguir?.

 $(a) \sum_{n=0}^{\infty} c_n$ $(c) \sum_{n=0}^{\infty} c_n (-3)^n$

(b) $\sum_{n=0}^{\infty} c_n 8^n$ (d) $\sum_{n=0}^{\infty} (-1)^n c_n 9^n$

5. Se k for um inteiro positivo, encontre o raio de convergência da série

$$\sum_{n=0}^{\infty} \frac{(n!)^k}{(kn)!} x^n.$$

6. Mostre que se $\lim_{n\to\infty} \sqrt[n]{|c_n|} = c$, então o raio de convergência da série de potência $\sum_{n=0}^{\infty} c_n x^n \notin R = 1/c.$

7. Suponha que a série $\sum c_n x^n$ tem raio de convergência 2 e que a série $\sum b_n x^n$ tem raio de convergência 3. O que você pode dizer sobre o raio de convergência da série $\sum (c_n + b_n)x^n$? Explique.

8. Se o raio de convergência da série de potência $\sum_{n=0}^{\infty} c_n x^n$ for 10, qual é o raio de convergência da série $\sum_{n=1}^{\infty} nc_n x^{n-1}$? Por quê?.

9. Suponha que $\sum_{n=0}^{\infty} c_n x^n$ converge para |x| < 2. O que você pode dizer sobre a série a seguir? Por quê? $\sum_{n=0}^{\infty} \frac{c_n}{n+1} x^{n+1}$

10. Encontre uma representação em séries de potências para a função e determine o intervalo de convergência.

(a) $\frac{1}{1+x}$ (a) $\frac{1}{1+x}$ (c) $\ln(1+x)$ (b) $\frac{1}{1+9x^2}$ (d) $tq^{-1}(2x)$

11. Avalie a integral indefinida como uma série de potências.

 $(a) \int \frac{1}{1+a^4}$

(b) $\int tq^{-1}(x^2)$

12. Seja $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n^2}$. Encontre os intervalos de convergência para $f, f' \in f''$.

13. Se $f(x) = \sum_{n=0}^{\infty} b_n (x-5)^n$ para todo x, escriba uma formula para b_8 .

14. Encontre a série de Maclaurin para f(x), usando a definição. (Assuma que f tem uma expansão em série de potência.) Também encontre o raio de convergência associado.

(a) f(x) = cos(x) (b) f(x) = sen(2x) (c) $f(x) = (1+x)^{-3}$ (d) f(x) = ln(1+x)

15. Encontre a série de Taylor para f(x) centrada no valor dado de a. (Assuma que f tem uma expansão em série de potência.)

(a) $f(x) = 1 + x + x^2$, a = 2 (b) $f(x) = x^3$, a = -1

(c) $f(x) = e^x$, a = 3(d) $f(x) = \ln x$, a = 2(e) f(x) = sen(x), $a = \pi/4$ (f) $f(x) = \sqrt{x}$, a = 4

16. Avalie a integral indefinida como uma série infinita.

(a) $\int sen(x^2)$

(b) $\int e^{x^3}$

17. Encontre o polinômio de Taylor $T_n(x)$ para a função f em a.

(a) $f(x) = \ln x$, a = 1, n = 4 (b) $f(x) = e^x$, a = 2, n = 3

(c) $f(x) = sen(x), a = \pi/6, n = 3$ (d) $f(x) = \sqrt{3 + x^2}, a = 1, n = 2$

18. Mostre que T_n e f têm as mesmas derivadas em a até a ordem n.

¹Cálculo II, James Stewart