OBJEKTUM ELVŰ ALKALMAZÁSOK FEJLESZTÉSE Dokumentáció az 1. házi feladathoz

Név: Soós Bálint **Neptun kód:** HDX9MU **Elérhetőség:** soba95@inf.elte.hu

Feladatszám: 7. 2015. október 2.

Csoport: 8.

Feladatleírás

Valósítsa meg az egész számokat tartalmazó halmaz típust! A halmazt dinamikusan lefoglalt tömb segítségével ábrázolja! Implementálja a szokásos műveleteket (elem betevése, kivétele, üres-e a halmaz, egy elem benne van-e a halmazban), valamint két halmaz metszetét, továbbá egy halmaz kiírását, és végül a másoló konstruktort és az értékadás operátort! Törekedjen a metszetképzés műveletigényének minimalizálására, a dokumentációban mutasson rá a saját megoldásának műveletigényére!

Típusérték-halmaz

Feladatom egy egész számokat tartalmazó halmaz típus megvalósítása, azaz olyan (esetünkben dinamikus) tömb létrehozása, amelyben az elemek nem ismétlődhetnek.

Típus-műveletek

1. Elem berakása a halmazba

A felhasználó által megadott egész számot berakjuk a halmaz elemei közé, így a halmaz mérete eggyel nő. Érdemes megjegyezni, hogy a műveletet csak akkor kell elvégezni, ha az adott elem még nem szerepel a halmazban.

2. Elem kivétele a halmazból

Először megvizsgáljuk, hogy szerepel-e az adott elem a halmazban. Ha igen, akkor az elemet eltávolítjuk a halmazból, így mérete eggyel csökken.

3. Üres-e a halmaz

Megvizsgáljuk, hogy a halmazban van-e elem, azaz a halmaz üres, ha mérete 0.

4. Elem benne van-e a halmazban

Szerepel-e az adott elem a halmaz elemei között.

5. Halmaz kiírása

Megjelenítjük a halmaz méretét, és az elemek listáját.

6. Két halmaz metszete

Két halmaz metszete egy olyan halmaz, melynek elemei mindkét halmaznak is elemei.

Reprezentáció

Az egész számokat tartalmazó halmazt egy dinamikusan lefoglalt, egydimenziós, 1-től n-ig indexelt tömbbel ábrázoltam, amelynek méretét (tömb hosszúságát) egy külön változóban tárolom. Az halmazműveletek hatékonyságát szem előtt tartva a tömb elemei rendezve vannak. A rendezéshez a beszúró rendezés algoritmusát használtam.

Implementáció

1. Elem berakása a halmazba (put)

A tömb hosszúságát eggyel megnövelve (dinamikusan lefoglalt tömb esetén ehhez először törölni kell a tömböt) a beszúró rendezés algoritmusát felhasználva berakom a tömbbe a megadott elemet.

Ehhez létrehozok egy ideiglenes, az eredeti tömb hosszúságánál eggyel hosszabb statikus tömböt, amelybe a beszúró algoritmus során bepakolom az elemeket, majd az algoritmus végén átmásolom az eredeti tömbbe.

2. Elem kivétele a halmazból (remove)

Egy elem kivételére létrehozok egy statikus, az eredeti tömb hosszúságánál eggyel rövidebb ideiglenes tömböt, amibe az adott elem kivételével átmásolom a tömb tartalmát.

Az algoritmus végeztével az ideiglenes tömb tartalmát átmásolom az eredeti tömbbe.

3. Üres-e a halmaz (isEmpty)

Ha a tömb hosszúsága 0, akkor a tömb üres.

$$empty := false$$

$$size = 0$$

$$empty := true$$

$$return : empty$$

4. Elem benne van-e a halmazban (isContain)

items[]: halmaz elemeit tartamazó dinamikusan lefoglalt tömb, size: a tömb hosszúsága (halmaz mérete)

5. Halmaz kiírása (print)

Tömb elemein végiglépdelve kiírjuk a kimenetre az elemek értékeit. (a programban a tömb hosszúságát is kiírjuk)

i := 0		
	i < size	
	output: items[i]	
	i := i + 1	

6. *Két halmaz metszete (intersection)*

Az s és h halmaz metszete (felhasználva, hogy a tömbök rendezettek és lehetnek üresek is).

$\neg s.isEmpty() \land \neg h.isEmpty()$		/
iOfS := s.size - 1		
iOfH := h.size - 1		
$iOfS >= 0 \land iOfH >= 0$		
s.items[iOfS] > h.items[iOfH]		
iOfS := iOfS - 1		
s.items[iOfS] < h.items[iOfH]		_
iOfH := iOfH - 1	_	
s.items[iOfS] = h.items[iOfH]		
output: s.items[iOfS]		
iOfS := iOfS - 1	_	
iOfH := iOfH - 1		

Metszetképzés műveletigénye:

c1: függvény kiértékelés

c2: értékadás, kivonás

c3: reláció kiértékelés

c4: tömb elemének kiolvasásása

c5: output

n1, n2: tömbök hossza

M: műveletigény

minimális M (ha legalább egy tömb üres): M = 2 c1

maximális M: Ha nincs metszetelem: M = 2 c1 + 4 c2 + (n1+n2)*(c3 + 2 c4 + 2 c1)

M: O(n1+n2)

Osztály

Az egész számokat tartalmazó halmaz típust egy Set nevű osztály segítségével valósítottam meg.

Set	Exceptions
-items: int*	
-size: int	
+Set()	
+Set(int)	
+Set(Set&)	
+operator=(Set&) : Set	
+put(int) : void	+EMPTY
+remove(int) : void	+CONTAIN
+print() : void	+INVALID ITEM
+intersection(Set&) : void	TINVALID_ITEM
+isContain(int) : bool	
+isEmpty() : bool	
+getSize(): int	
+getItems(): int*	

Az osztály-definíciót a set.h fejállományban helyeztem el.

Tesztelési terv:

- I) A feladat specifikációjára épülő (fekete doboz) tesztesetek:
 - 1) 1,2,3 hosszúságú halmazok létrehozása a put metódussal
 - 2) 1,2,3 hosszúságú halmazok esetén a remove metódus kipróbálása
 - 3) 0 hosszúságú halmazok esetén a remove metódus hívása
 - 4) 0,1,2 hosszúságú halmazok esetén az isEmpty és isContain metódus kipróbálása
 - 5) 0,1,2 hosszúságú halmazok esetén az isEmpty és isContain metódus kipróbálása
 - 6) 0,1,2 hosszúságú halmazok esetén a print metódus kipróbálása
 - 7) két azonos (nem 0) hosszúságú halmazok metszete
 - 8) két különböző (nem 0) hosszúságú halmazok metszete
 - 9) két különböző (az egyik 0) hosszúságú halmazok metszete
 - 10) két 0 hosszúságú halmazok metszete
- II) A megoldó programra épülő (fehér doboz) tesztesetek:
 - 1) Halmazok létrehozása (max 10 db halmaz)
 - 2) Már meglévő 10 db halmaz esetén új halmaz létrehozás (max 10 db halmaz lehet)
 - 3) Halmazok közti váltás, ha valid, illetve ha invalid halmaz számot adunk meg
 - 4) Új elem berakása a halmazba, ha az még nem létezik.
 - 5) Új elem berakása a halmazba, ha az már létezik.
 - 6) Elem törlése a halmazból, ha az létezik.
 - 7) Elem törlése a halmazból, ha az nem létezik.