Assignment 3

STA4321 - Intro. Mathematical Statistics I

Dr. A Cohen

Summer 2019

Due by Friday July 26th at 11:59PM. Submission should only be online via Canvas

Solve all problems and submit via Canvas in a single PDF. A typed submission using LaTeX is preferred (10% bonus).

1. Suppose Y possesses the density function

$$f(y) = cy$$
 if $0 \le y \le 2$; 0 otherwise (1)

• Find c that makes f(y) a probability density function.

• Find F(y), the CDF.

• Use F(y) to find $P(1 \le Y \le 2)$.

2. The length of time to failure (in hundreds of hours) for a transistor is a random variable Y with the cumulative distribution function:

$$F(y) = 1 - e^{-y^2}$$
 if $y \ge 0$; 0 otherwise (2)

• Find f(y).

• Find the probability that the transistor will operates for at least 200 hours (not hundreds of hours!).

• Find $P(Y > 1 \mid Y \le 2)$.

3. If Y has density function:

$$f(y) = (3/2)y^2 + y$$
 if $0 \le y \le 1$; 0 otherwise (3)

(a) Find the mean of Y.

(b) Find the variance of Y.

4. The cycle time Y for trucks hauling concrete to a highway construction site is uniformly distributed over the interval 50 to 70 minutes. What is the probability that the cycle time exceeds 65 minutes if it is known that the cycle time exceeds 55 minutes. (conditional probability).

5. Use the table (attached) of the standard normal CDF to find:

(a)
$$P(0 < Z < 1.2) =$$

(b)
$$P(-0.9 < Z < 0) =$$

(c)
$$P(0.3 < Z < 1.56) =$$

(d)
$$P(-0.2 < Z < 0.2) =$$

(e)
$$P(-1.56 < Z < -0.2) =$$

- 6. If Y has an exponential distribution and P(Y>2)=0.0821
 - (a) Give the PDF of Y, f(y)

(b) Find the CDF of Y; F(y)

(c) Find $\beta = E(Y)$

(d) Find $P(Y \le 1.7)$

I Cumulative Standard Normal Distribution^a

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du$$

z	0.00	0.01	0.02	0.03	0.04	z
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.0
0.1	0.53983	0.54379	0.54776	0.55172	0.55567	0.1
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.2
0.3	0.61791	0.62172	0.62551	0.62930	0.63307	0.3
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.4
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.5
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.6
0.7	0.75803	0.76115	0.76424	0.76730	0.77035	0.7
0.8	0.78814	0.79103	0.79389	0.79673	0.79954	0.8
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.9
1.0	0.84134	0.84375	0.84613	0.84849	0.85083	1.0
1.1	0.86433	0.86650	0.86864	0.87076	0.87285	1.1
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	1.2
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	1.3
1.4	0.91924	0.92073	0.92219	0.92364	0.92506	1.4
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	1.5
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	1.6
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	1.7
1.8	0.96407	0.96485	0.96562	0.96637	0.96711	1.8
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	1.9
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	2.0
2.1	0.98214	0.98257	0.98300	0.98341	0.93882	2.1
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	2.2
2.3	0.98928	0.98956	0.98983	0.99010	0.99036	2.3
2.4	0.99180	0.99202	0.99224	0.99245	0.99266	2.4
2.5	0.99379	0.99396	0.99413	0.99430	0.99446	2.5
2.6	0.99534	0.99547	0.99560	0.99573	0.99585	2.6
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	2.7
2.8	0.99744	0.99752	0.99760	0.99767	0.99774	2.8
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	2.9
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	3.0
3.1	0.99903	0.99906	0.99910	0.99913	0.99916	3.1
3.2	0.99931	0.99934	0.99936	0.99938	0.99940	3.2
3.3	0.99952	0.99953	0.99955	0.99957	0.99958	3.3
3.4	0.99966	0.99968	0.99969	0.99970	0.99971	3.4
3.5	0.99977	0.99978	0.99978	0.99979	0.99980	3.5
3.6	0.99984	0.99985	0.99985	0.99986	0.99986	3.6
3.7	0.99989	0.99990	0.99990	0.99990	0.99991	3.7
3.8	0.99993	0.99993	0.99993	0.99994	0.99994	3.8
3.9	0.99995	0.99995	0.99996	0.99996	0.99996	3.9

^aReproduced with permission from *Probability and Statistics in Engineering and Management Science*, 3rd edition, by W. W. Hines and D. C. Montgomery, Wiley, New York, 1990.

I Cumulative Standard Normal Distribution (Continued)

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du$$

z	0.05	0.06	0.07	0.08	0.09	z
0.0	0.51994	0.52392	0.52790	0.53188	0.53586	0.0
0.1	0.55962	0.56356	0.56749	0.57142	0.57534	0.1
0.2	0.59871	0.60257	0.60642	0.61026	0.61409	0.2
0.3	0.63683	0.64058	0.64431	0.64803	0.65173	0.3
0.4	0.67364	0.67724	0.68082	0.68438	0.68793	0.4
0.5	0.70884	0.71226	0.71566	0.71904	0.72240	0.5
0.6	0.74215	0.74537	0.74857	0.75175	0.75490	0.6
0.7	0.77337	0.77637	0.77935	0.78230	0.78523	0.7
0.8	0.80234	0.80510	0.80785	0.81057	0.81327	0.8
0.9	0.82894	0.83147	0.83397	0.83646	0.83891	0.9
1.0	0.85314	0.85543	0.85769	0.85993	0.86214	1.0
1.1	0.87493	0.87697	0.87900	0.88100	0.88297	1.1
1.2	0.89435	0.89616	0.89796	0.89973	0.90147	1.2
1.3	0.91149	0.91308	0.91465	0.91621	0.91773	1.3
1.4	0.92647	0.92785	0.92922	0.93056	0.93189	1.4
1.5	0.93943	0.90462	0.94179	0.94295	0.94408	1.5
1.6	0.95053	0.95154	0.95254	0.95352	0.95448	1.6
1.7	0.95994	0.96080	0.96164	0.96246	0.96327	1.7
1.8	0.96784	0.96856	0.96926	0.96995	0.97062	1.8
1.9	0.97441	0.97500	0.97558	0.97615	0.97670	1.9
2.0	0.97982	0.98030	0.98077	0.98124	0.98169	2.0
2.1	0.98422	0.98461	0.98500	0.98537	0.98574	2.1
2.2	0.98778	0.98809	0.98840	0.98870	0.98899	2.2
2.3	0.99061	0.99086	0.99111	0.99134	0.99158	2.3
2.4	0.99286	0.99305	0.99324	0.99343	0.99361	2.4
2.5	0.99461	0.99477	0.99492	0.99506	0.99520	2.5
2.6	0.99598	0.99609	0.99621	0.99632	0.99643	2.6
2.7	0.99702	0.99711	0.99720	0.99728	0.99736	2.7
2.8	0.99781	0.99788	0.99795	0.99801	0.99807	2.8
2.9	0.99841	0.99846	0.99851	0.99856	0.99861	2.9
3.0	0.99886	0.99889	0.99893	0.99897	0.99900	3.0
3.1	0.99918	0.99921	0.99924	0.99926	0.99929	3.1
3.2	0.99942	0.99944	0.99946	0.99948	0.99950	3.2
3.3	0.99960	0.99961	0.99962	0.99964	0.99965	3.3
3.4	0.99972	0.99973	0.99974	0.99975	0.99976	3.4
3.5	0.99981	0.99981	0.99982	0.99983	0.99983	3.5
3.6	0.99987	0.99987	0.99988	0.99988	0.99989	3.6
3.7	0.99991	0.99992	0.99992	0.99992	0.99992	3.7
3.8	0.99994	0.99994	0.99995	0.99995	0.99995	3.8
3.9	0.99996	0.99996	0.99996	0.99997	0.99997	3.9