Homework 5. Solutions

- 1 Calculate the Christoffel symbols of the canonical flat connection in ${\bf E}^3$ in
- a) cylindrical coordinates $(x = r \cos \varphi, y = r \sin \varphi, z = h)$,
- b) spherical coordinates.

(For the case of sphere try to make calculations at least for components Γ^r_{rr} , $\Gamma^r_{r\theta}$, $\Gamma^r_{r\varphi}$, $\Gamma^r_{\theta\theta}$, \dots , $\Gamma^r_{\varphi\varphi}$)

Remark One can calculate Christoffel symbols using Levi-Civita Theorem (Homework 6)*. Now we perform brute force calculations which just use the fact that Christoffel symbols of flat connection vanish in Cartesian coordinates.

In cylindrical coordinates (r, φ, h) we have

$$\begin{cases} x = r \cos \varphi \\ y = r \sin \varphi \\ z = h \end{cases} \text{ and } \begin{cases} r = \sqrt{x^2 + y^2} \\ \varphi = \arctan \frac{y}{x} \\ h = z \end{cases}$$

'We know that in Cartesian coordinates all Christoffel symbols vanish. Hence in cylindrical coordinates (see in detail lecture notes):

$$\begin{split} \Gamma^r_{rr} &= \frac{\partial^2 x}{\partial^2 r} \frac{\partial r}{\partial x} + \frac{\partial^2 y}{\partial^2 r} \frac{\partial r}{\partial y} + \frac{\partial^2 z}{\partial^2 r} \frac{\partial r}{\partial z} = 0 \,, \\ \Gamma^r_{r\varphi} &= \Gamma^r_{\varphi r} = \frac{\partial^2 x}{\partial r \partial \varphi} \frac{\partial r}{\partial x} + \frac{\partial^2 y}{\partial r \partial \varphi} \frac{\partial r}{\partial y} + \frac{\partial^2 z}{\partial r \partial \varphi} \frac{\partial r}{\partial z} = -\sin \varphi \cos \varphi + \sin \varphi \cos \varphi = 0 \,. \\ \Gamma^r_{\varphi \varphi} &= \frac{\partial^2 x}{\partial^2 \varphi} \frac{\partial r}{\partial x} + \frac{\partial^2 y}{\partial^2 \varphi} \frac{\partial r}{\partial y} + \frac{\partial^2 z}{\partial^2 \varphi} \frac{\partial r}{\partial z} = -x \frac{x}{r} - y \frac{y}{r} = -r \,. \\ \Gamma^\varphi_{rr} &= \frac{\partial^2 x}{\partial^2 r} \frac{\partial \varphi}{\partial x} + \frac{\partial^2 y}{\partial^2 r} \frac{\partial \varphi}{\partial y} + \frac{\partial^2 z}{\partial^2 r} \frac{\partial \varphi}{\partial z} = 0 \,. \\ \Gamma^\varphi_{\varphi r} &= \Gamma^\varphi_{r\varphi} &= \frac{\partial^2 x}{\partial r \partial \varphi} \frac{\partial \varphi}{\partial x} + \frac{\partial^2 y}{\partial r \partial \varphi} \frac{\partial \varphi}{\partial y} + \frac{\partial^2 z}{\partial r \partial \varphi} \frac{\partial \varphi}{\partial z} = -\sin \varphi \frac{-y}{r^2} + \cos \varphi \frac{x}{r^2} = \frac{1}{r} \\ \Gamma^\varphi_{\varphi \varphi} &= \frac{\partial^2 x}{\partial^2 \varphi} \frac{\partial \varphi}{\partial x} + \frac{\partial^2 y}{\partial^2 \varphi} \frac{\partial \varphi}{\partial y} + \frac{\partial^2 z}{\partial^2 \varphi} \frac{\partial \varphi}{\partial z} = -x \frac{-x}{r^2} - y \frac{y}{r^2} = 0 \,. \end{split}$$

All symbols $\Gamma_{\cdot h}^{\cdot}, \Gamma_{h \cdot}^{\cdot}$ vanish

$$\Gamma^r_{rh} = \Gamma^r_{hr} = \Gamma^r_{hh} = \Gamma^r_{\varphi h} = \Gamma^r_{h\varphi} = \Gamma^\varphi_{hr} = dots = 00$$

since
$$\frac{\partial^2 x}{\partial h \partial \dots} = \frac{\partial^2 y}{\partial h \partial \dots} = \frac{\partial^2 z}{\partial h \partial \dots} = 0$$

^{*} There is also a third way to calculate Christoffel symbols: It is using approach of Lagrangian

For all symbols $\Gamma^h_{\cdot \cdot \cdot} \Gamma^h_{\cdot \cdot \cdot} = \frac{\partial^2 z}{\partial \cdot \partial \cdot}$ since $\frac{\partial h}{\partial x} = \frac{\partial h}{\partial y} = 0$ and $\frac{\partial h}{\partial y} = 1$. On the other hand all $\frac{\partial^2 z}{\partial \cdot \partial \cdot}$ vanish. Hence all symbols $\Gamma^h_{\cdot \cdot \cdot}$ vanish.

b) spherical coordinates

$$\begin{cases} x = r \sin \cos \varphi \\ y = r \sin \sin \varphi \\ z = r \cos \theta \end{cases} \qquad \begin{cases} r = \sqrt{x^2 + y^2 + z^2} \\ \theta = \arccos \frac{z}{\sqrt{x^2 + y^2 + z^2}} \\ \varphi = \arctan \frac{y}{x} \end{cases}$$

The fast way to calculate Christoffel symbol is to use Levi-Civita Theorem. Perform now brute force calculations only for some components. (Then later we will calculate using Levi-Civita Theorem.)

$$\Gamma_{rr}^{r} = 0$$
 since $\frac{\partial^{2} x^{i}}{\partial^{2} r} = 0$.

$$\Gamma_{r\theta}^{r} = \Gamma_{\theta r}^{r} = \frac{\partial^{2} x}{\partial r \partial \theta} \frac{\partial r}{\partial x} + \frac{\partial^{2} y}{\partial r \partial \theta} \frac{\partial r}{\partial y} + \frac{\partial^{2} z}{\partial r \partial \theta} \frac{\partial r}{\partial z} = \cos \theta \cos \varphi \frac{x}{r} + \cos \theta \sin \varphi \frac{y}{r} - \sin \theta \frac{z}{r} = 0,$$

$$\Gamma_{r\varphi}^{r} = \Gamma_{\varphi r}^{r} = \frac{\partial^{2} x}{\partial r \partial \varphi} \frac{\partial r}{\partial x} + \frac{\partial^{2} y}{\partial r \partial \varphi} \frac{\partial r}{\partial y} + \frac{\partial^{2} z}{\partial r \partial \varphi} \frac{\partial r}{\partial z} = -\sin\theta \sin\varphi \frac{x}{r} + \sin\theta \cos\varphi \frac{y}{r} = 0$$

and so on....

2 Let ∇ be an affine connection on a 2-dimensional manifold M such that in local coordinates (u, v) it is given that $\Gamma^u_{uv} = v$, $\Gamma^v_{uv} = 0$.

Calculate the vector field $\nabla_{\frac{\partial}{\partial u}} \left(u \frac{\partial}{\partial v} \right)$.

Using the properties of connection and definition of Christoffel symbols have

$$\nabla_{\frac{\partial}{\partial u}} \left(u \frac{\partial}{\partial v} \right) = \partial_{\frac{\partial}{\partial u}} \left(u \right) \frac{\partial}{\partial v} + u \nabla_{\frac{\partial}{\partial u}} \left(\frac{\partial}{\partial v} \right) =$$

$$\frac{\partial}{\partial v} + u \left(\Gamma_{uv}^{u} \frac{\partial}{\partial u} + \Gamma_{uv}^{v} \frac{\partial}{\partial v} \right) = \frac{\partial}{\partial v} + u \left(v \frac{\partial}{\partial u} + 0 \right) = \frac{\partial}{\partial v} + u v \frac{\partial}{\partial u}.$$

3 Let ∇ be an affine connection on the 2-dimensional manifold M such that in local coordinates (u, v)

$$\nabla_{\frac{\partial}{\partial u}} \left(u \frac{\partial}{\partial v} \right) = (1 + u^2) \frac{\partial}{\partial v} + u \frac{\partial}{\partial u}.$$

Calculate the Christoffel symbols Γ^u_{uv} and Γ^v_{uv} of this connection.

Using the properties of connection we have $\nabla_{\frac{\partial}{\partial u}} \left(u \frac{\partial}{\partial v} \right) = u \nabla_{\frac{\partial}{\partial u}} \left(\frac{\partial}{\partial v} \right) +$

$$\partial_{\frac{\partial}{\partial u}}\left(u\right)\frac{\partial}{\partial v}=u\left(\Gamma_{uv}^{u}\frac{\partial}{\partial u}+\Gamma_{uv}^{v}\frac{\partial}{\partial v}\right)+1\cdot\frac{\partial}{\partial v}=\left(1+u\Gamma_{uv}^{v}\right)\frac{\partial}{\partial v}+u\Gamma_{uv}^{u}\frac{\partial}{\partial u}=\left(1+u^{2}\right)\frac{\partial}{\partial v}+u\frac{\partial}{\partial u}.$$

Hence $1 + u^2 = 1 + u\Gamma_{uv}^v$ and $u\Gamma_{uv}^v = u$, i.e. $\Gamma_{uv}^v = u$ and $\Gamma_{uv}^u = 1$.

4 Let ∇ be an affine connection on a 2-dimensional manifold M such that, in local coordinates (x,y), all Christoffel symbols vanish except $\Gamma^x_{xx} = xy$, $\Gamma^y_{xx} = -1$ and $\Gamma^y_{yy} = y$. Show that for the vector field $\mathbf{X} = \partial_x + x \partial_y$,

$$\nabla_{\mathbf{X}}\mathbf{X} = xy\mathbf{X} .$$

5 a) Consider a connection such that its Christoffel symbols are symmetric in a given coordinate system: $\Gamma^i_{km} = \Gamma^i_{mk}$.

Show that they are symmetric in an arbitrary coordinate system.

 b^*) Show that the Christoffel symbols of connection ∇ are symmetric (in any coordinate system) if and only if

$$\nabla_{\mathbf{X}}\mathbf{Y} - \nabla_{\mathbf{Y}}\mathbf{X} - [\mathbf{X}, \mathbf{Y}] = 0,$$

for arbitrary vector fields \mathbf{X}, \mathbf{Y} .

c)* Consider for an arbitrary connection the following operation on the vector fields:

$$S(\mathbf{X}, \mathbf{Y}) = \nabla_{\mathbf{X}} \mathbf{Y} - \nabla_{\mathbf{Y}} \mathbf{X} - [\mathbf{X}, \mathbf{Y}]$$

and find its properties.

Solution

a) Let $\Gamma^i_{km} = \Gamma^i_{mk}$. We have to prove that $\Gamma^{i'}_{k'm'} = \Gamma^{i'}_{m'k'}$

We have

$$\Gamma_{k'm'}^{i'} = \frac{\partial x^{i'}}{\partial x^i} \frac{\partial x^k}{\partial x^{k'}} \frac{\partial x^m}{\partial x^{m'}} \Gamma_{km}^i + \frac{\partial x^r}{\partial x^{k'}\partial x^{m'}} \frac{\partial x^{i'}}{\partial x^r} \,. \tag{1}$$

Hence

$$\Gamma_{m'k'}^{i'} = \frac{\partial x^{i'}}{\partial x^i} \frac{\partial x^m}{\partial x^{m'}} \frac{\partial x^k}{\partial x^{k'}} \Gamma_{mk}^i + \frac{\partial x^r}{\partial x^{m'}\partial x^{k'}} \frac{\partial x^{i'}}{\partial x^r}$$

But $\Gamma^i_{km} = \Gamma^i_{mk}$ and $\frac{\partial x^r}{\partial x^{m'}\partial x^{k'}} = \frac{\partial x^r}{\partial x^{k'}\partial x^{m'}}$. Hence

$$\Gamma_{m'k'}^{i'} = \frac{\partial x^{i'}}{\partial x^i} \frac{\partial x^m}{\partial x^{m'}} \frac{\partial x^k}{\partial x^{k'}} \Gamma_{mk}^i + \frac{\partial x^r}{\partial x^{m'} \partial x^{k'}} \frac{\partial x^{i'}}{\partial x^r} = \frac{\partial x^{i'}}{\partial x^i} \frac{\partial x^m}{\partial x^{m'}} \frac{\partial x^k}{\partial x^{k'}} \Gamma_{km}^i + \frac{\partial x^r}{\partial x^{k'} \partial x^{m'}} \frac{\partial x^{i'}}{\partial x^r} = \Gamma_{k'm'}^{i'}.$$

b) One can check it by striaghtforward calculations. Check using properties of connection and commutator that the expression

$$S(\mathbf{X}, \mathbf{Y}) = \nabla_{\mathbf{X}} \mathbf{Y} - \nabla_{\mathbf{Y}} \mathbf{X} - [\mathbf{X}, \mathbf{Y}], \qquad (5.1)$$

is linear with respect to $C^{\mid}infty(M)$:

$$S(f\mathbf{X}, \mathbf{Y}) = S(\mathbf{X}, f\mathbf{Y}) = fS(\mathbf{X}, \mathbf{Y}).$$

E.g.

$$S(f\mathbf{X}, Y) = \nabla_{f\mathbf{X}}\mathbf{Y} - \nabla_{\mathbf{Y}}(f\mathbf{X}) - [f\mathbf{X}, \mathbf{Y}] = f\nabla_{X}\mathbf{Y} - f\nabla_{\mathbf{Y}}\mathbf{X} - \partial_{\mathbf{Y}}f\mathbf{X} + [\mathbf{Y}, f\mathbf{X}] = f\nabla_{X}\mathbf{Y} - f\nabla_{\mathbf{Y}}\mathbf{X} - \partial_{\mathbf{Y}}f\mathbf{X} + [\mathbf{Y}, f\mathbf{X}] = f\nabla_{X}\mathbf{Y} - f\nabla_{\mathbf{Y}}\mathbf{X} - \partial_{\mathbf{Y}}f\mathbf{X} + [\mathbf{Y}, f\mathbf{X}] = f\nabla_{X}\mathbf{Y} - f\nabla_{\mathbf{Y}}\mathbf{X} - \partial_{\mathbf{Y}}f\mathbf{X} + [\mathbf{Y}, f\mathbf{X}] = f\nabla_{X}\mathbf{Y} - f\nabla_{\mathbf{Y}}\mathbf{X} - \partial_{\mathbf{Y}}f\mathbf{X} + [\mathbf{Y}, f\mathbf{X}] = f\nabla_{X}\mathbf{Y} - f\nabla_{\mathbf{Y}}\mathbf{X} - \partial_{\mathbf{Y}}f\mathbf{X} + [\mathbf{Y}, f\mathbf{X}] = f\nabla_{X}\mathbf{Y} - f\nabla_{\mathbf{Y}}\mathbf{X} - \partial_{\mathbf{Y}}f\mathbf{X} + [\mathbf{Y}, f\mathbf{X}] = f\nabla_{X}\mathbf{Y} - f\nabla_{\mathbf{Y}}\mathbf{X} - \partial_{\mathbf{Y}}f\mathbf{X} + [\mathbf{Y}, f\mathbf{X}] = f\nabla_{X}\mathbf{Y} - f\nabla_{\mathbf{Y}}\mathbf{X} - \partial_{\mathbf{Y}}f\mathbf{X} + [\mathbf{Y}, f\mathbf{X}] = f\nabla_{X}\mathbf{Y} - f\nabla_{\mathbf{Y}}\mathbf{X} - \partial_{\mathbf{Y}}f\mathbf{X} + [\mathbf{Y}, f\mathbf{X}] = f\nabla_{X}\mathbf{Y} - f\nabla_{\mathbf{Y}}\mathbf{X} - \partial_{\mathbf{Y}}f\mathbf{X} + [\mathbf{Y}, f\mathbf{X}] = f\nabla_{X}\mathbf{Y} - f\nabla_{\mathbf{Y}}\mathbf{X} - \partial_{\mathbf{Y}}f\mathbf{X} + [\mathbf{Y}, f\mathbf{X}] = f\nabla_{X}\mathbf{Y} - f\nabla_{\mathbf{Y}}\mathbf{X} - \partial_{\mathbf{Y}}f\mathbf{X} + [\mathbf{Y}, f\mathbf{X}] = f\nabla_{X}\mathbf{Y} - f\nabla_{\mathbf{Y}}\mathbf{X} - \partial_{\mathbf{Y}}f\mathbf{X} + [\mathbf{Y}, f\mathbf{X}] = f\nabla_{X}\mathbf{Y} - f\nabla_{\mathbf{Y}}\mathbf{X} - \partial_{\mathbf{Y}}f\mathbf{X} + [\mathbf{Y}, f\mathbf{X}] = f\nabla_{X}\mathbf{Y} - f\nabla_{\mathbf{Y}}\mathbf{X} - \partial_{\mathbf{Y}}f\mathbf{X} + [\mathbf{Y}, f\mathbf{X}] = f\nabla_{X}\mathbf{Y} - f\nabla_{\mathbf{Y}}\mathbf{X} - \partial_{\mathbf{Y}}f\mathbf{X} + [\mathbf{Y}, f\mathbf{X}] = f\nabla_{X}\mathbf{Y} - f\nabla_{\mathbf{Y}}\mathbf{X} - \partial_{\mathbf{Y}}f\mathbf{X} + [\mathbf{Y}, f\mathbf{X}] = f\nabla_{X}\mathbf{Y} - f\nabla_{\mathbf{Y}}\mathbf{X} - f\nabla_{\mathbf$$

$$f\nabla_X \mathbf{Y} - f\nabla_\mathbf{Y} \mathbf{X} - (\partial_\mathbf{Y} f) \mathbf{X} + \partial_\mathbf{Y} f \mathbf{X} + f[\mathbf{Y}, \mathbf{X}] = f(\nabla_X \mathbf{Y} - \nabla_\mathbf{Y} \mathbf{X} - [\mathbf{X}, \mathbf{Y}]) = fS(\mathbf{X}, \mathbf{Y}).$$

Hence it is enough to prove for basic fields: Consider $\mathbf{X} = \frac{\partial}{\partial x^i}$, $\mathbf{Y} = \frac{\partial}{\partial x^j}$ then since $[\partial_i, \partial_j] = 0$ we have that

$$\nabla_{\mathbf{X}}\mathbf{Y} - \nabla_{\mathbf{Y}}\mathbf{X} - [\mathbf{X}, \mathbf{Y}] = \nabla_{i}\partial_{j} - \nabla_{j}\partial_{i} = \Gamma_{ij}^{k}\partial_{k} - \Gamma_{ji}^{k}\partial_{k} = (\Gamma_{ij}^{k} - \Gamma_{ji}^{k})\partial_{k} = 0$$

We see that commutator for basic fields $\nabla_{\mathbf{X}}\mathbf{Y} - \nabla_{\mathbf{Y}}\mathbf{X} - [\mathbf{X}, \mathbf{Y}] = 0$ if and only if $\Gamma_{ij}^k - \Gamma_{ji}^k = 0$.

- c) We proved it above: see equation (5.1).
- **5** Consider the surface M in the Euclidean space \mathbf{E}^n . Calculate the induced connection in the following cases
 - a) $M = S^1 \ in \ \mathbf{E}^2$,
 - b) M— parabola $y = x^2$ in \mathbf{E}^2 ,
 - c) cylinder in \mathbf{E}^3 .
 - d) cone in \mathbf{E}^3 .
 - e) sphere in \mathbf{E}^3 .
 - f) saddle z = xy in \mathbf{E}^3

Solution.

a) Consider polar coordinate on S^1 , $x = R\cos\varphi$, $y = R\sin\varphi$. We have to define the connection on S^1 induced by the canonical flat connection on \mathbf{E}^2 . It suffices to define $\nabla_{\frac{\partial}{\partial x_0}} \frac{\partial}{\partial \varphi} = \Gamma_{\varphi\varphi}^{\varphi} \partial_{\varphi}$.

Recall the general rule. Let $\mathbf{r}(u^{\alpha})$: $x^{i} = x^{i}(u^{\alpha})$ is embedded surface in Euclidean space \mathbf{E}^{n} . The basic vectors $\frac{\partial}{\partial u^{\alpha}} = \frac{\partial \mathbf{r}(u)}{\partial u^{\alpha}}$. To take the induced covariant derivative $\nabla_{\mathbf{X}}\mathbf{Y}$ for two tangent vectors \mathbf{X}, \mathbf{Y} we take a usual derivative of vector \mathbf{Y} along vector \mathbf{X} (the derivative with respect to canonical flat connection: in Cartesian coordinates is just usual

derivatives of components) then we take the tangent component of the answer, since in general derivative of vector \mathbf{Y} along vector \mathbf{X} is not tangent to surface:

$$\nabla_{\frac{\partial}{\partial u^{\alpha}}} \frac{\partial}{\partial u^{\beta}} = \Gamma_{\alpha\beta}^{\gamma} \frac{\partial}{\partial u^{\gamma}} = \left(\nabla_{\partial_{\alpha}}^{\text{(canonical)}} \frac{\partial}{\partial u^{\beta}} \right)_{\text{tangent}} = \left(\frac{\partial^{2} \mathbf{r}(u)}{\partial u^{\alpha} \partial u^{\beta}} \right)_{\text{tangent}}$$

 $(\nabla_{\text{canonical }\partial_{\alpha}} \frac{\partial}{\partial u^{\beta}})$ is just usual derivative in Euclidean space since for canonical connection all Christoffel symbols vanish.)

In the case of 1-dimensional manifold, curve it is just tangential acceleration!:

$$\nabla_{\frac{\partial}{\partial u}} \frac{\partial}{\partial u} = \Gamma^u_{uu} \frac{\partial}{\partial u} = \left(\nabla^{(\text{canonical})}_{\partial u} \frac{\partial}{\partial u}\right)_{\text{tangent}} = \left(\frac{d^2 \mathbf{r}(u)}{du^2}\right)_{\text{tangent}} = \mathbf{a}_{\text{tangent}}$$

For the circle S^1 , $(x = R\cos\varphi, y = R\sin\varphi)$, in \mathbf{E}^2 . We have

$$\mathbf{r}_{\varphi} = \frac{\partial}{\partial \varphi} = \frac{\partial x}{\partial \varphi} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \varphi} \frac{\partial}{\partial y} = -R \sin \varphi \frac{\partial}{\partial x} + R \cos \varphi \frac{\partial}{\partial y},$$

$$\nabla_{\frac{\partial}{\partial \varphi}} \frac{\partial}{\partial \varphi} = \Gamma_{\varphi\varphi}^{\varphi} \partial_{\varphi} = \left(\nabla_{\partial_{\varphi}}^{(\text{canonic.})} \partial_{\varphi}\right)_{\text{tangent}} = \left(\frac{\partial}{\partial \varphi} \mathbf{r}_{\varphi}\right)_{\text{tangent}} =$$

$$\left(\frac{\partial}{\partial \varphi} \left(-R \sin \varphi\right) \frac{\partial}{\partial x} + \frac{\partial}{\partial \varphi} \left(R \cos \varphi\right) \frac{\partial}{\partial y}\right)_{\text{tangent}} = \left(-R \cos \varphi \frac{\partial}{\partial x} - R \sin \varphi \frac{\partial}{\partial y}\right)_{\text{tangent}} = 0,$$

since the vector $-R\cos\varphi\frac{\partial}{\partial x}-R\sin\varphi\frac{\partial}{\partial y}$ is orthogonal to the tangent vector \mathbf{r}_{φ} . In other words it means that acceleration is centripetal: tangential acceleration equals to zero.

We see that in coordinate φ , $\Gamma_{\varphi\varphi}^{\varphi} = 0$.

Additional work: Perform calculation of Christoffel symbol in stereographic coordinate t:

$$x = \frac{2tR^2}{R^2 + t^2}, y = \frac{R(t^2 - R^2)}{t^2 + R^2}.$$

In this case

$$\mathbf{r}_{t} = \frac{\partial}{\partial t} = \frac{\partial x}{\partial t} \frac{\partial}{\partial x} + \frac{\partial y}{\partial t} \frac{\partial}{\partial y} = \frac{2R^{2}}{(R^{2} + t^{2})^{2}} \left((R^{2} - t^{2}) \frac{\partial}{\partial x} + 2tR \frac{\partial}{\partial x} \right),$$

$$\nabla_{\frac{\partial}{\partial t}} \frac{\partial}{\partial t} = \Gamma_{tt}^{t} \partial_{t} = \left(\nabla_{\partial_{t}}^{(\text{canonic.})} \partial_{t} \right)_{\text{tangent}} = \left(\frac{\partial}{\partial t} \mathbf{r}_{t} \right)_{\text{tangent}} = (\mathbf{r}_{tt})_{\text{tangent}} =$$

$$\left(-\frac{4t}{t^{2} + R^{2}} \mathbf{r}_{t} + \frac{2R^{2}}{(R^{2} + t^{2})^{2}} \left(-2t \frac{\partial}{\partial x} + 2R \frac{\partial}{\partial y} \right) \right)_{\text{tangent}}$$

In this case \mathbf{r}_{tt} is not orthogonal to velocity: to calculate $(\mathbf{r}_{tt})_{\text{tangent}}$ we need to extract its orthogonal component:

$$(\mathbf{r}_{tt})_{\mathrm{tangent}} = \mathbf{r}_{tt} - \langle \mathbf{r}_{tt}, \mathbf{n}_t \rangle \mathbf{n}$$

We have

$$\mathbf{n}_t = \frac{\mathbf{r}}{|\mathbf{r}|} = \frac{1}{R^2 + t^2} \left(2tR\partial_x + (t^2 - R^2)\partial_y \right) ,$$

where $\langle \mathbf{r}_t, \mathbf{n} \rangle = 0$. Hence $\langle \mathbf{r}_{tt}, \mathbf{n}_t \rangle = \frac{-4R^3}{(t^2 + R^2)^2}$ and

$$(\mathbf{r}_{tt})_{\mathrm{tangent}} = \mathbf{r}_{tt} - \langle \mathbf{r}_{tt}, \mathbf{n}_t \rangle \mathbf{n} =$$

$$\left(-\frac{4t}{t^2+R^2}\mathbf{r}_t + \frac{2R^2}{(R^2+t^2)^2}\left(-2t\frac{\partial}{\partial x} + 2R\frac{\partial}{\partial y}\right)\right) + \frac{4R^3}{(t^2+R^2)^2} \cdot \frac{1}{R^2+t^2}\left(2tR\partial_x + (t^2-R^2)\partial_y\right) = \frac{-2t^2}{t^2+t^2}$$

We come to the answer:

$$\nabla_{\partial_t} \partial_t = \frac{-2t}{t^2 + R^2} \partial_t$$
, i.e. $\Gamma_{tt}^t = \frac{-2t}{t^2 + R^2}$

Of course we could calculate the Christoffel symbol in stereographic coordinates just using the fact that we already know the Christoffel symbol in polar coordinates: $\Gamma_{\varphi\varphi}^{\varphi} = 0$, hence

$$\Gamma^t_{tt} = \frac{dt}{d\varphi} \frac{d\varphi}{dx} \frac{d\varphi}{dx} \Gamma^{\varphi}_{\varphi\varphi} + \frac{d^2\varphi}{dt^2} \frac{dt}{d\varphi} = \frac{d^2\varphi}{dt^2} \frac{dt}{d\varphi}$$

It is easy to see that $t = R \tan \left(\frac{\pi}{4} + \frac{\varphi}{2}\right)$, i.e. $\varphi = 2 \arctan \frac{t}{R} - \frac{\pi}{2}$ and

$$\Gamma^t_{tt} = \frac{d^2\varphi}{dt^2} \frac{dt}{d\varphi} = \frac{\frac{d^2\varphi}{dt^2}}{\frac{d\varphi}{dt}} = -\frac{2t}{t^2 + R^2} \,.$$

b) For parabola $x = t, y = t^2$

$$\mathbf{r}_{t} = \frac{\partial}{\partial t} = \frac{\partial x}{\partial t} \frac{\partial}{\partial x} + \frac{\partial y}{\partial t} \frac{\partial}{\partial y} = \frac{\partial}{\partial x} + 2t \frac{\partial}{\partial y},$$

$$\nabla_{\frac{\partial}{\partial t}} \frac{\partial}{\partial t} = \Gamma_{tt}^t \partial_t = \left(\nabla_{\partial_t}^{(\text{canonic.})} \partial_t \right)_{\text{tangent}} = \left(\frac{\partial}{\partial t} \mathbf{r}_t \right)_{\text{tangent}} = \left(\mathbf{r}_{tt} \right)_{\text{tangent}} = \left(2 \frac{\partial}{\partial y} \right)_{\text{tangent}}$$

To calculate $(\mathbf{r}_{tt})_{\text{tangent}}$ we need to extract its orthogonal component: $(\mathbf{r}_{tt})_{\text{tangent}} = \mathbf{r}_{tt} - \langle \mathbf{r}_{tt}, \mathbf{n}_t \rangle \mathbf{n}$, where \mathbf{n} is an orthogonal unit vector: $\langle \mathbf{n}, \mathbf{r}_t \rangle = 0, \langle \mathbf{n}, \mathbf{n} \rangle = 1$:

$$\mathbf{n}_t = \frac{1}{\sqrt{1+4t^2}} \left(-2t\partial_x + \partial_y \right) .$$

We have

$$(\mathbf{r}_{tt})_{\mathrm{tangent}} = \mathbf{r}_{tt} - \langle \mathbf{r}_{tt}, \mathbf{n}_t \rangle \mathbf{n} = 2\partial_y - \left\langle 2\partial_y, \frac{1}{\sqrt{1+4t^2}} \left(-2t\partial_x + \partial_y \right) \right\rangle \frac{1}{\sqrt{1+4t^2}} \left(-2t\partial_x + \partial_y \right) = \mathbf{r}_{tt} - \left\langle \mathbf{r}_{tt}, \mathbf{n}_t \right\rangle \mathbf{n} = 2\partial_y - \left\langle 2\partial_y, \frac{1}{\sqrt{1+4t^2}} \left(-2t\partial_x + \partial_y \right) \right\rangle \frac{1}{\sqrt{1+4t^2}} \left(-2t\partial_x + \partial_y \right) = \mathbf{r}_{tt} - \left\langle \mathbf{r}_{tt}, \mathbf{n}_t \right\rangle \mathbf{n}$$

$$\frac{4t}{1+4t^2}\partial_x + \frac{8t^2}{1+4t^2}\partial_y = \frac{4t}{1+4t^2}(\partial_x + 2t\partial_y) = \frac{4t}{1+4t^2}\partial_t$$

We come to the answer:

$$\nabla_{\partial_t} \partial_t = \frac{4t}{1 + 4t^2} \partial_t$$
, i.e. $\Gamma_{tt}^t = \frac{4t}{1 + 4t^2}$

Remark Do not be surprised by resemblance of the answer to the answer for circle in stereographic coordinates.

c) Cylinder
$$\mathbf{r}(h,\varphi) \colon \begin{cases} x = a \cos \varphi \\ y = a \sin \varphi \\ z = h \end{cases}$$

$$\partial_h = \mathbf{r}_h = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \, \partial_\varphi = \mathbf{r}_\varphi = \begin{pmatrix} -a \sin \varphi \\ a \cos \varphi \\ 0 \end{pmatrix}$$

Calculate

$$\nabla_{\partial_h} \partial_h = \Gamma_{hh}^h \partial_h + \Gamma_{hh}^{\varphi} \partial_{\varphi} = \left(\frac{\partial^2 \mathbf{r}}{\partial h^2}\right)_{\text{tangent}} = 0 \text{ since } \mathbf{r}_{hh} = 0.$$

Hence $\Gamma_{hh}^h = \Gamma_{hh}^\varphi = 0$

$$\nabla_{\partial_h} \partial_{\varphi} = \nabla_{\partial_{\varphi}} \partial_h = \Gamma_{h\varphi}^h \partial_h + \Gamma_{h\varphi}^{\varphi} \partial_{\varphi} = \left(\frac{\partial^2 \mathbf{r}}{\partial h \partial \varphi}\right)_{\text{tangent}} = 0 \text{ since } \mathbf{r}_{h\varphi} = 0$$

Hence $\Gamma_{h\varphi}^h = \Gamma_{\varphi h}^h = \Gamma_{h\varphi}^\varphi = \Gamma_{\varphi h}^\varphi = 0.$

$$\nabla_{\partial_{\varphi}}\partial_{\varphi} = \Gamma_{\varphi\varphi}^{h}\partial_{h} + \Gamma_{\varphi\varphi}^{\varphi}\partial_{\varphi} = \left(\frac{\partial^{2}\mathbf{r}}{\partial\varphi\partial\varphi}\right)_{\text{tangent}} = \left(\begin{pmatrix} -a\cos\varphi\\ -a\sin\varphi\\ 0\end{pmatrix}\right)_{\text{tangent}} = 0$$

since the vector $\mathbf{r}_{\varphi\varphi} = \begin{pmatrix} -a\cos\varphi \\ -a\sin\varphi \\ 0 \end{pmatrix}$ is orthogonal to the surface of cylinder. Hence $\Gamma^h_{h\varphi} = \Gamma^h_{\varphi h} = \Gamma^\varphi_{h\varphi} = \Gamma^\varphi_{\varphi h} = 0$

We see that for cylinder all Christoffel symbols in cylindrical coordinates vanish. This is not big surprise: in cylindrical coordinates metric equals $dh^2 = a^2 d\varphi^2$. This due to Levi-Civita theorem one can see that Levi-Civita connection which is equal to induced connection vanishes since all coefficients are constants.

d) Cone

For cone:
$$x^2 + y^2 = k^2 z^2$$
 we have $\mathbf{r}(h, \varphi) = \begin{cases} x = kh \cos \varphi \\ y = kh \sin \varphi \\ z = h \end{cases}$

$$\frac{\partial}{\partial h} = \mathbf{r}_h = \begin{pmatrix} k\cos\varphi\\k\sin\varphi\\1 \end{pmatrix}, \frac{\partial}{\partial\varphi} = \mathbf{r}_\varphi = \begin{pmatrix} -kh\sin\varphi\\kh\cos\varphi\\0 \end{pmatrix}, \mathbf{n} = \frac{1}{\sqrt{1+k^2}} \begin{pmatrix} \cos\varphi\\\sin\varphi\\-k \end{pmatrix}$$

We have
$$\mathbf{r}_{hh} = 0$$
, hence $\nabla_{\partial_h} \partial_h = 0$. i.e. $\Gamma_{hh}^h = \Gamma_{hh}^{\varphi} = 0$.
We have that $\mathbf{r}_{h\varphi} = \mathbf{r}_{\varphi h} = \begin{pmatrix} -k \sin \varphi \\ k \cos \varphi \\ 0 \end{pmatrix} = \frac{\mathbf{r}_{\varphi}}{h}$, i.e. $\nabla_{\partial_h} \partial_{\varphi} = \nabla_{\partial_{\varphi}} \partial_h = \frac{\mathbf{r}_{\varphi}}{h}$:

$$\Gamma^{\varphi}_{h\varphi} = \Gamma^{\varphi}_{\varphi,h} = \frac{1}{h}, \quad \Gamma^{h}_{h\varphi} = \Gamma^{h}_{\varphi h}.$$

Now calculate $\mathbf{r}_{\varphi\varphi}$: $\mathbf{r}_{\varphi\varphi} = \begin{pmatrix} -kh\cos\varphi \\ -kh\sin\varphi \\ 0 \end{pmatrix}$. This vector is neither tangent to the cone nor orthogonal to the cone: $0 \neq \langle \mathbf{r}_{\varphi\varphi}, \mathbf{n} \rangle = -\frac{kh}{\sqrt{1+k^2}}$. Hence we have consider its decomposition:

$$\mathbf{r}_{\varphi\varphi} = \underbrace{\mathbf{r}_{\varphi\varphi} - \langle \mathbf{r}_{\varphi\varphi}, \mathbf{n} \rangle \mathbf{n}}_{ ext{tangent component}} + \underbrace{\langle \mathbf{r}_{\varphi\varphi}, \mathbf{n} \rangle \mathbf{n}}_{ ext{orthogonal component}}$$

Hence we have

$$\nabla_{\varphi} \partial_{\varphi} = (\mathbf{r}_{\varphi\varphi})_{tangent} = \mathbf{r}_{\varphi\varphi} - \langle \mathbf{r}_{\varphi\varphi}, \mathbf{n} \rangle \mathbf{n} = \mathbf{r}_{\varphi\varphi} + \frac{kh}{\sqrt{1+k^2}} \mathbf{n} =$$

$$\begin{pmatrix} -kh\cos\varphi \\ -kh\sin\varphi \\ 0 \end{pmatrix} + \frac{kh}{1+k^2} \begin{pmatrix} \cos\varphi \\ \sin\varphi \\ -k \end{pmatrix} = -\frac{hk^2}{1+k^2} \begin{pmatrix} k\cos\varphi \\ k\sin\varphi \\ 1 \end{pmatrix} = -\frac{hk^2}{1+k^2} \mathbf{r}_h,$$

i.e.

$$\Gamma^h_{\varphi\varphi} = -\frac{hk^2}{1+k^2} \,,\, \Gamma^\varphi_{\varphi\varphi} = 0 \,.$$

e) Sphere

For the sphere
$$\mathbf{r}(\theta, \varphi)$$
:
$$\begin{cases} x = R \sin \theta \cos \varphi \\ y = R \sin \theta \sin \varphi \end{cases}$$
, we have
$$z = R \cos \theta$$

$$\frac{\partial}{\partial \theta} = \mathbf{r}_{\theta} = \begin{pmatrix} R \cos \theta \cos \varphi \\ R \cos \theta \sin \varphi \\ -R \sin \theta \end{pmatrix}, \frac{\partial}{\partial \varphi} = \mathbf{r}_{\varphi} = \begin{pmatrix} -R \sin \theta \sin \varphi \\ R \sin \theta \cos \varphi \\ 0 \end{pmatrix}, \mathbf{n} = \begin{pmatrix} \sin \theta \cos \varphi \\ \sin \theta \sin \varphi \\ \cos \theta \end{pmatrix}$$

Calculate

$$\nabla_{\partial_{\theta}} \partial_{\theta} = \Gamma^{\theta}_{\theta\theta} \partial_{\theta} + \Gamma^{\varphi}_{\theta\theta} \partial_{\varphi} = \left(\frac{\partial^{2} \mathbf{r}}{\partial \theta^{2}}\right)_{\text{tangent}} = 0$$

since $\frac{\partial^2 \mathbf{r}}{\partial \theta^2} = -R\mathbf{n}$ is orthogonal to the sphere. Hence $\Gamma^{\theta}_{\theta\theta} = \Gamma^{\varphi}_{\theta\theta} = 0$. Now calculate

$$\nabla_{\partial_{\theta}} \partial_{\varphi} = \Gamma^{\theta}_{\theta \varphi} \partial_{\theta} + \Gamma^{\varphi}_{\theta \varphi} \partial_{\varphi} = \left(\frac{\partial^{2} \mathbf{r}}{\partial \theta \partial \varphi} \right)_{\text{tangent}}.$$

We have

$$\frac{\partial^2 \mathbf{r}}{\partial \theta \partial \varphi} = \cot \theta \mathbf{r}_{\varphi},$$

hence

$$\nabla_{\partial_{\theta}} \partial_{\varphi} = \Gamma^{\theta}_{\theta \varphi} \partial_{\theta} + \Gamma^{\varphi}_{\theta \varphi} \partial_{\varphi} = \left(\frac{\partial^{2} \mathbf{r}}{\partial \theta \partial \varphi} \right)_{\text{tangent}} = \cot \theta \mathbf{r}_{\varphi}, i.e.$$

$$\Gamma^{\theta}_{\theta\varphi}=0, \Gamma^{\varphi}_{\theta\varphi}=\cot \theta$$

Now calculate

$$\nabla_{\partial_{\varphi}} \partial_{\theta} = \Gamma^{\theta}_{\varphi\theta} \partial_{\theta} + \Gamma^{\varphi}_{\varphi\theta} \partial_{\varphi} = \left(\frac{\partial^{2} \mathbf{r}}{\partial \varphi \partial \theta}\right)_{\text{tangent}}.$$

We have

$$\frac{\partial^2 \mathbf{r}}{\partial \varphi \partial \theta} = \cot \theta \mathbf{r}_{\varphi},$$

hence

$$\nabla_{\partial_{\theta}} \partial_{\varphi} = \Gamma^{\theta}_{\theta \varphi} \partial_{\theta} + \Gamma^{\varphi}_{\theta \varphi} \partial_{\varphi} = \left(\frac{\partial^{2} \mathbf{r}}{\partial \theta \partial \varphi} \right)_{\text{tangent}} = \cot \theta \mathbf{r}_{\varphi}, i.e.$$

 $\Gamma^{\theta}_{\varphi\theta} = 0, \Gamma^{\varphi}_{\varphi\theta} = \cot \theta$. Of course we did not need to perform these calculations: since ∇ is symmetric connection and $\nabla_{\partial_{\varphi}} \partial_{\theta} = \nabla_{\partial_{\theta}} \partial_{\varphi}$, i.e.

$$\Gamma^{\theta}_{\varphi\theta} = \Gamma^{\theta}_{\theta\varphi} = 0 \ \Gamma^{\varphi}_{\varphi\theta} = \Gamma^{\varphi}_{\theta\varphi} = \cot \theta \, .$$

and finally

$$\nabla_{\partial_{\varphi}} \partial_{\varphi} = \Gamma^{\theta}_{\varphi\varphi} \partial_{\theta} + \Gamma^{\varphi}_{\varphi\varphi} \partial_{\varphi} = \left(\frac{\partial^{2} \mathbf{r}}{\partial \varphi^{2}}\right)_{\text{tangent}}.$$

We have

$$\frac{\partial^2 \mathbf{r}}{\partial \varphi^2} = \mathbf{r}_{\varphi\varphi} = \begin{pmatrix} -R\sin\theta\cos\varphi \\ -R\sin\theta\sin\varphi \\ 0 \end{pmatrix}.$$

The vector $\mathbf{r}_{\varphi\varphi}$ is not proportional to normal vector \mathbf{n} , i.e. it is not orthogonal to the sphere; the vector $\mathbf{r}_{\varphi\varphi}$ is not tangent to sphere, i.e. it is not orthogonal to vector \mathbf{n} :

 $0 \neq \langle \mathbf{r}_{\varphi\varphi}, \mathbf{n} \rangle = -R \sin^2 \theta$. We decompose the vector $\mathbf{r}_{\varphi\varphi}$ on the sum of tangent vector and orthogonal vector:

$$\mathbf{r}_{\varphi\varphi} = \underbrace{\mathbf{r}_{\varphi\varphi} - \mathbf{n} \langle \mathbf{r}_{\varphi\varphi}, \mathbf{n} \rangle}_{tangent} + \mathbf{n} \langle \mathbf{r}_{\varphi\varphi}, \mathbf{n} \rangle,$$

We see that

$$\left(\frac{\partial^{2} \mathbf{r}}{\partial \varphi^{2}}\right)_{\text{tangent}} = \mathbf{r}_{\varphi\varphi} - \mathbf{n} \langle \mathbf{r}_{\varphi\varphi}, \mathbf{n} \rangle = \mathbf{r}_{\varphi\varphi} + R \sin^{2} \theta \mathbf{n} = \begin{pmatrix} -R \sin \theta \cos \varphi \\ -R \sin \theta \sin \varphi \\ 0 \end{pmatrix} + R \sin^{2} \theta \begin{pmatrix} \sin \theta \cos \varphi \\ \sin \theta \sin \varphi \\ \cos \theta \end{pmatrix} = \begin{pmatrix} -R \sin \theta \cos \varphi \\ -R \sin \theta \sin \varphi \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} -R\cos^2\theta\sin\theta\cos\varphi\\ -R\cos^2\theta\sin\theta\sin\varphi\\ R\sin^2\theta\cos\theta \end{pmatrix} = -\sin\theta\cos\theta \begin{pmatrix} \cos\theta\cos\varphi\\ \cos\theta\sin\varphi\\ -\sin\theta \end{pmatrix} = -\sin\theta\cos\theta\mathbf{r}_{\theta}.$$

We have

$$\nabla_{\partial_{\varphi}}\partial_{\varphi} = \Gamma^{\theta}_{\varphi\varphi}\partial_{\theta} + \Gamma^{\varphi}_{\varphi\varphi}\partial_{\varphi} = \left(\frac{\partial^{2}\mathbf{r}}{\partial\varphi\partial\varphi}\right)_{\text{tangent}} = -\sin\theta\cos\theta\mathbf{r}_{\theta}, \ i.e.$$

 $\Gamma^{\theta}_{\varphi\varphi} = -\sin\theta\cos\theta, \Gamma^{\varphi}_{\varphi\varphi} = 0.$

f) Saddle

For saddle
$$z = xy$$
: We have $\mathbf{r}(u, v)$:
$$\begin{cases} x = u \\ y = v \\ z = uv \end{cases}, \ \partial_u = \mathbf{r}_u = \begin{pmatrix} 1 \\ 0 \\ v \end{pmatrix}, \ \partial_v = \mathbf{r}_v = \begin{pmatrix} 0 \\ 1 \\ u \end{pmatrix} \text{ It}$$
 will be useful also to use the normal unit vector $\mathbf{n} = \frac{1}{\sqrt{1 + u^2 + v^2}} \begin{pmatrix} -v \\ -u \\ 1 \end{pmatrix}$.

Calculate:

$$\nabla_{\partial_u}\partial_u = \Gamma^u_{uu}\partial_u + \Gamma^v_{uu}\partial_v = \left(\frac{\partial^2 \mathbf{r}}{\partial u^2}\right)_{\text{tangent}} = (\mathbf{r}_{uu})_{\text{tangent}} = 0 \text{ since } \mathbf{r}_{uu} = 0.$$

Hence $\Gamma^u_{uu} = \Gamma^v_{uu} = 0$.

Analogously $\Gamma_{vv}^u = \Gamma_{vv}^v = 0$ since $\mathbf{r}_{vv} = 0$.

Now calculate $\Gamma^u_{uv}, \Gamma^v_{uv}, \Gamma^u_{vu}, \Gamma^v_{vu}$:

$$\nabla_{\partial_u} \partial_v = \nabla_{\partial_v} \partial_u = \Gamma_{uv}^u \partial_u + \Gamma_{uv}^v \partial_v = (\mathbf{r}_{uv})_{\text{tangent}} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_{\text{tangent}}$$

Using normal unit vector \mathbf{n} we have: $(\mathbf{r}_{uv})_{\text{tangent}} = \mathbf{r}_{uv} - \langle \mathbf{r}_{uv}, \mathbf{n} \rangle \mathbf{n} = \Gamma_{uv}^u \partial_u + \Gamma_{uv}^v \partial_v = \Gamma_$

$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_{\text{tengent}} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \left\langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \frac{1}{\sqrt{1+u^2+v^2}} \begin{pmatrix} -v \\ -u \\ 1 \end{pmatrix} \right\rangle \frac{1}{\sqrt{1+u^2+v^2}} \begin{pmatrix} -v \\ -u \\ 1 \end{pmatrix} = 0$$

$$\frac{1}{1+u^2+v^2} \begin{pmatrix} v \\ u \\ u^2+v^2 \end{pmatrix} = \frac{v}{1+u^2+v^2} \begin{pmatrix} 1 \\ 0 \\ v \end{pmatrix} + \frac{u}{1+u^2+v^2} \begin{pmatrix} 0 \\ u \\ u \end{pmatrix} = \frac{v\mathbf{r}_u + u\mathbf{r}_v}{1+u^2+v^2}.$$

Hence $\Gamma^u_{uv} = \Gamma^u_{vu} = \frac{v}{1+u^2+v^2}$ and $\Gamma^v_{uv} = \Gamma^v_{vu} = \frac{u}{1+u^2+v^2}$.

Sure one may calculate this connection as Levi-Civita connction of the induced Riemannian metric using explicit Levi-Civita formula or using method of Lagrangian of free particle.

7 Let ∇_1, ∇_2 be two different connections. Let $^{(1)}\Gamma^i_{km}$ and $^{(2)}\Gamma^i_{km}$ be the Christoffel symbols of connections ∇_1 and ∇_2 respectively.

Find the transformation law for the object: $T_{km}^i = {}^{(1)}\Gamma_{km}^i - {}^{(2)}\Gamma_{km}^i$ under a change of coordinates. Show that it is $\binom{1}{2}$ tensor.

Christoffel symbols of both connections transform according the law (1). The second term is the same. Hence it vanishes for their difference:

$$T_{k'm'}^{i'} = \,^{(1)}\Gamma_{k'm'}^{i'} - \,^{(2)}\Gamma_{k'm'}^{i'} = \frac{\partial x^{i'}}{\partial x^i} \frac{\partial x^k}{\partial x^{k'}} \frac{\partial x^m}{\partial x^{m'}} \left(^{(1)}\Gamma_{km}^i - ^{(2)}\Gamma_{km}^i\right) = \frac{\partial x^{i'}}{\partial x^i} \frac{\partial x^k}{\partial x^{k'}} \frac{\partial x^m}{\partial x^{m'}} T_{km}^i$$

We see that $T^{i'}_{'km'}$ transforms as a tensor of the type $\binom{1}{2}$.