José Luis González Fragoso

Nuevo León, México | pepe3fragoso@gmail.com | +52 (868) 101 2540 | https://www.linkedin.com/in/joseluisglzfra

EDUCATION

Monterrey, NL, México | 08/2021 - Present

Instituto Tecnológico de Estudios Superiores de Monterrey | Bachelor of Mechatronics Engineering

• Cumulative **GPA**: 3.72/4.00

Concentration | Automotive Engineering

WORK EXPERIENCE

John Deere

Monterrey, NL, México | 08/2023 - Present

Electrical/Harness Design Intern

- Designed precise **3D models of harness** systems for agricultural machinery utilizing **Creo Parametric**; ensured all technical drawings met industry standards to improve accuracy in the manufacturing workflow.
- Developed detailed **wiring diagrams** for specialized agricultural machinery utilizing **Capital Harness XC**, ensuring compliance with industry standards and enabling the production team to streamline assembly processes and achieve a **20% reduction** in errors.
- Led initiatives involving collaboration across three key internal groups dedicated solely toward innovating
 solutions for recurrent structural flaws identified during testing phases without compromising deadline
 expectations or budget constraints.

Roborregos

Monterrey, NL, México | 09/2022 - Present

Project Manager & Mechanical/Electronic Engineer

- Spearheaded the design and integration of robotic systems for the TMR competition, enhancing functionality
 metrics by 30% through innovative methodologies that streamlined project workflows and drove team
 efficiency in critical timeframes.
- Implemented and optimized a **custom PCB** for an innovative **robotic gripper**; enhanced communication between components resulted in a 25% increase in response speed during critical competition scenarios.
- Fabricated and implemented a gripper mechanism using **SolidWorks**, enhancing manipulation **capabilities of the butler robot by 30%**, leading to better efficiency in robotic tasks performed during testing phases.

PROJECTS

Ternium & Metalsa Collaboration

- Analyzed chassis geometry using ANSYS Workbench, identifying three key design weaknesses; increased
 overall modularity of the structure to ensure compatibility with both internal combustion and electric vehicle
 applications.
- Applied advanced knowledge in static physics to optimize chassis geometry with **SOLIDWORKS**, achieving a **15% reduction in weight** while **enhancing modularity** for assembly efficiency and design flexibility.
- Evaluated the Ternium list of iron materials, identifying optimal options for chassis design based on mechanical properties; selected material achieved a weight reduction of 15% while maintaining structural integrity.

Piaggio Collaboration

- Analyzed performance data from combustion engine and electric motor carts using SuperFlow
 dynamometer, leading to the identification of key retrofitting strategies that aligned power output within an
 acceptable 5% variance for project feasibility.
- Led efforts in designing innovative geometric layouts for the three-wheeled vehicle's powertrain components which led integration efficiency by 20 % while maintaining essential modular capabilities necessary across different frameworks.
- Conducted performance testing on electric motor carts, analyzing battery power output and efficiency as part of retrofitting efforts; reduced battery train wight by 10% therefore reducing energy consumption.
- Applied **statistical analysis** to calculate and identify key metrics using **Excel** such as rolling resistance and aerodynamic coefficients, optimizing vehicle performance through data-driven decisions.

Parker Collaboration

- Achieved enhanced process reliability through the design of a fully integrated automatic assembly cell featuring safety measures and real-time monitoring capabilities using **Cognex technology**.
- Developed custom **feeders and fixtures** for automated presses, which reduced manual intervention by 60% and decreased production cycle time, enhancing overall operational efficiency and consistency.

ACHIEVEMENTS

- Attained University Academic Talent Scholarship in recognition of outstanding achievements in coursework
 and project contributions; distinguished as one of all the applying students selected for this honor during
 competitive evaluations.
- 1st place in Mechatronics Competition (3rd semester) Propose and create an electric motor.
- Diploma in Renewable Energies.
- Championed initiatives to optimize workflows among diverse team roles on the robotics squad; identified
 key areas for improvement and implemented strategies that improved project delivery timelines by an average
 of three weeks.
- Accomplished the first **internship at John Deere**, contributing to advanced projects in agricultural technology that streamlined development processes and enhanced product efficiency for future innovations.
- Received acknowledgment from Parker for a groundbreaking manufacturing cell design, addressing key
 operational challenges while contributing findings that targeted the three biggest causes of delays in the
 assembly process.

SKILLS

- Advanced mechanics & structural analysis.
- Electric powertrain knowledge & power electronics.
- Matlab & Simulink.
- Battery Systems & Powertrain Integration (Basic understanding).
- Project management & teamwork.
- Material science & metallurgy.
- Python and C++
- Fixture and tooling.
- CAD (Solidworks, Creo Parametric, CATIA) & GD&T.
- Automation, PLC's and robotic systems.
- FEM (Ansys).
- Design for Manufacturability (DFM) and Design for Assembly (DFA)