MPI* Maths Programme de khôlles

Semaine 9

STATISTICALLY SPEAKING, IF YOU PICK UP A SEASHELL AND DON'T HOLD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.

Table des matières

1	Cor	naissances de cours et démonstrations exigibles	ations exigibles 1
	A	Questions de cours, groupes $\mathbb{A},\mathbb{B}\ \&\ \mathbb{C}$	&C 1
		A.1 Définition d'un ensemble dénombrable	dénombrable
		A.2 Définition d'une tribu	
		A.3 Compatibilité d'une tribu avec l'intersection finie ou dénombrable	avec l'intersection finie ou dénombrable
		A.4 Définition d'une mesure de probabilité	e probabilité
		A.5 La probabilité d'une union est inférieure à la somme des probabilités	est inférieure à la somme des probabilités
		A.6 Une union dénombrable d'évènements négligeables est négligeable, idem pour "presque sûr"	l'évènements négligeables est négligeable, idem pour "presque sûr"
		A.7 Formule des probabilités totales	otales
		A.8 Formule de Bayes	
		A.9 Si A et B sont indépendants, alors A et \overline{B} le sont également	ts, alors A et \overline{B} le sont également
	В	Questions de cours, groupes $\mathbb B$ et $\mathbb C$	C 5
		B.1 \mathbb{Z} est dénombrable, \mathbb{Q}_+ est dénombrable	
		B.2 \mathbb{R} n'est pas dénombrable	
		B.3 Théorèmes de continuité croissante et décroissante	croissante et décroissante
	C	Questions de cours, groupe $\mathbb C$ uniquement	
		C.1 Une tribu infinie n'est pas dénombrable	
2	Exe	cices de référence	10
	A	Exercices de référence, groupes $\mathbb{A}, \mathbb{B} \& \mathbb{C}$	4 , B & ℂ
	В		
	C		

1 Connaissances de cours et démonstrations exigibles

A Questions de cours, groupes \mathbb{A} , \mathbb{B} & \mathbb{C}

A.1 Définition d'un ensemble dénombrable

Définition - Ensemble dénombrable

On dit d'un ensemble qu'il est $d\acute{e}nombrable$ si il est fini ou en bijection avec $\mathbb N$.

A.2 Définition d'une tribu

Définition - Tribu

Soit Ω un ensemble.

On appelle tribu sur Ω un ensemble $T \subset \mathcal{P}(\Omega)$ tel que :

- $\emptyset \in T$
- $\forall A \in T, \overline{A} \in T$ (stable par complémentaire)
- $\forall (A_n)_n \in T^{\mathbb{N}}$, on a $\left(\bigcup_{n=0}^{+\infty} A_n\right) \in T$ (stable par union dénombrable)

Les éléments de T sont appelés des *évènements*.

A.3 Compatibilité d'une tribu avec l'intersection finie ou dénombrable

Proposition

Soit (Ω, T) un espace probabilisable. Soit $(A_n)_n \in T^{\mathbb{N}}$ une famille dénombrable d'évènements. Alors :

$$\Big(\bigcap_{n=0}^{+\infty}A_n\Big)\in T$$

i.e T est stable par intersection dénombrable.

A.4 Définition d'une mesure de probabilité

Définition - Mesure de probabilité

Soit (Ω, T) un espace probabilisable.

On appelle *mesure de probabilité* sur (Ω, T) une application $p: T \to \mathbb{R}_+$ telle que :

- $\forall A \in T, p(A) \in [0;1]$
- $p(\Omega) = 1$
- $\forall I$ ensemble dénombrable, $\forall (A_i)_{i \in I} \in T^I$ 2 à 2 disjoints, on a

$$p\Big(\bigcup_{i\in I}A_i\Big)=\sum_{i\in I}p(A_i)$$

 $(\sigma$ -additivité)

A.5 La probabilité d'une union est inférieure à la somme des probabilités

Proposition

Soit (Ω, T, p) un espace probabilisé et soient $A, B \in T$. Alors

$$p(A \cup B) \le p(A) + p(B)$$

DÉMONSTRATION.

A.6 Une union dénombrable d'évènements négligeables est négligeable, idem pour "presque sûr"

Définition - Évènements négligeables et presque sûrs

Soient (Ω, T, p) un espace probabilisé et $A \in T$. Alors :

- A est dit $n\acute{e}gligeable$ si p(A) = 0.
- A est dit presque sûr si p(A) = 1.

Proposition

Soit (Ω, T, p) un espace probabilisé. Alors :

- $1. \ \ Une \ union \ d{\'e}nombrable \ d\'ev\`enements \ n\'egligeables \ est \ n\'egligeable.$
- 2. Une intersection dénombrable d'évènements presque sûrs est presque sûre.

A.7 Formule des probabilités totales

Définition - Système quasi-complet d'évènements

Soit (Ω, T, p) un espace probabilisé.

Soient *I* un ensemble dénombrable et $(A_i)_{i \in I} \in T^I$.

On dit que $(A_i)_{i \in I}$ est un *système quasi-complet d'évènements* si :

- 1. Les (A_i) sont 2 à 2 disjoints : $\forall i, j \in I, i \neq j \Rightarrow A_i \cap A_j = \emptyset$
- 2. $\bigcup_{i \in I} A_i$ est presque sûre : $p(\bigcup_{i \in I} A_i) = 1$.

Proposition - Formule des probabilités totales

Soit (Ω, T, p) un espace probabilisé. Soit $(A_i)_{i \in I} \in T^I$ un système quasi-complet d'évènements avec I dénombrable. Soit $B \in T$.

Alors,

$$p(B) = \sum_{i \in I} p(B \cap A_i)$$

et si pour tout $i \in I$, $p(A_i) > 0$:

$$p(B) = \sum_{i \in I} p(A_i) \times p_{A_i}(B)$$

DÉMONSTRATION.

A.8 Formule de Bayes

Définition - Probabilité conditionnelle

Soient (Ω, T, p) un espace probabilisé et $A, B \in T$.

Alors, on définit la probabilité conditionnelle $p_B(A)$, i.e la probabilité que l'évènement A soit réalisé sachant que B l'est, par :

$$p(A \cap B) = p_B(A) \times p(B)$$

Proposition - Formule de Bayes

Soient (Ω, T, p) un espace probabilisé et $A, B \in T$.

Alors, si $p(B) \neq 0$, on a

$$p_B(A) = p_A(B) \times \frac{p(A)}{p(B)}$$

A.9 Si A et B sont indépendants, alors A et \overline{B} le sont également

Définition - Évènements indépendants

Soient (Ω, T, p) un espace probabilisé et $A, B \in T$.

On dit que A et B sont indépendants si :

$$p(A \cap B) = p(A) \times p(B)$$

Définition - Famille d'évènements mutuellement indépendants et 2 à 2 indépendants

Soient (Ω, T, p) un espace probabilisé et $(A_i)_{i \in I} \in T^I$ avec I dénombrable.

• On dit que les $(A_i)_{i \in I}$ sont *mutuellement indépendants* si :

$$\forall J \subset I \ \underline{\text{fini}}, \text{ on a } p\Big(\bigcap_{j \in J} A_j\Big) = \prod_{j \in J} p(A_j)$$

• On dit que les $(A_i)_{i \in I}$ sont 2 à 2 indépendants si :

$$\forall i, j \in I, i \neq j \Rightarrow p(A_i \cap A_j) = p(A_i) \times p(A_j)$$

• On a bien mut. ind. ⇒ 2 à 2 ind. mais la réciproque est fausse!!

Proposition

Soient (Ω, T, p) un espace probabilisé et $A, B \in T$. Alors,

$$A, B \text{ ind. } \Rightarrow A, \overline{B} \text{ ind.}$$

B Questions de cours, groupes $\mathbb B$ et $\mathbb C$

B.1 \mathbb{Z} est dénombrable, \mathbb{Q}_+ est dénombrable

Proposition

 $\mathbb Z$ est dénombrable.

DÉMONSTRATION.

Proposition

 \mathbb{Q}_+ est dénombrable.

B.2 ℝ n'est pas dénombrable

Proposition

R n'est pas dénombrable.

DÉMONSTRATION.

Montrons que [0;1[n'est pas dénombrable.

Représentons chaque élément de [0;1[par son écriture décimale, i.e:

$$\forall x \in [0; 1[, \exists!(a_n(x))_n \in [0; 9]]^{\mathbb{N}} \text{ tq. } x = 0, a_1(x)a_2(x)...$$

On remarque que, dans cette écriture, pour que deux réels diffèrent, il suffit qu'il existe une seule composante de leur écriture qui diffère, i.e :

$$\forall x, y \in [0; 1[, x \neq y \Leftrightarrow \exists n \in \mathbb{N} \text{ tq. } a_n(x) \neq a_n(y)$$

Supposons alors par l'absurde que ℝ soit dénombrable. Alors

$$\exists (x_n) \in [0; 1[^{\mathbb{N}} \text{ tq. } [0; 1[=\{x_n \mid n \in \mathbb{N}\}$$

Exposons alors les éléments de cette suite :

$$x_1 = 0, a_1(x_1)a_2(x_1)a_3(x_3)...$$

 $x_2 = 0, a_1(x_2)a_2(x_2)a_3(x_2)...$
 $x_3 = 0, a_1(x_2)a_2(x_2)a_3(x_3)...$

 \Rightarrow Construisons alors un $\tilde{x} \in [0; 1[$ tq. $\forall n \in \mathbb{N}, \tilde{x} \neq x_n.$

Posons l'écriture décimale de $\tilde{x} = 0$, $a_1(\tilde{x})a_2(\tilde{x})a_3(\tilde{x})$

- (1) On prend $a_1(\tilde{x}) \in [0; 8]$ tel que $a_1(\tilde{x}) \neq a_1(x_1)$
- (2) De même, on prend $a_2(\tilde{x}) \in [0;8]$ tel que $a_2(\tilde{x}) \neq a_2(x_1)$
- $\Rightarrow \forall n \in \mathbb{N}$, on prend $a_n(\tilde{x}) \in [0; 8]$ tel que $a_n(\tilde{x}) \neq a_n(x_n)$

On se retrouve alors dans cette configuration (en bleu les composantes qui diffèrent avec l'écriture décimale de \tilde{x}):

$$x_1 = 0, a_1(x_1)a_2(x_1)a_3(x_3)...$$

 $x_2 = 0, a_1(x_2)a_2(x_2)a_3(x_2)...$
 $x_3 = 0, a_1(x_2)a_2(x_2)a_3(x_3)...$

On remarque alors que $\forall n \in \mathbb{N}, \tilde{x} \neq x_n$, i.e $\tilde{x} \notin [0; 1[$, ce qui est absurde.

 $\ensuremath{\mathbb{R}}$ n'est donc pas dénombrable.

Remarques:

- $\circ~$ Ce procédé se prénomme : le ${\it procédé \ diagonal \ de \ Cantor}$
- On prend les $a_i(\tilde{x})$ dans [0;8] pour éviter le problème d'une suite stationnaire convergeant vers 1.

B.3 Théorèmes de continuité croissante et décroissante

Théorème de continuité croissante

Soient (Ω, T, p) un espace probabilisé. Soit $(A_n)_n \in T^{\mathbb{N}}$ croissante par l'inclusion : $\forall n \in \mathbb{N}, A_n \subset A_{n+1}$.

$$\lim_{n\to+\infty}p(A_n)=p\Big(\bigcup_{n=0}^{+\infty}A_n\Big)$$

DÉMONSTRATION.

Théorème de continuité décroissante

Soient (Ω, T, p) un espace probabilisé. Soit $(A_n)_n \in T^{\mathbb{N}}$ décroissante par l'inclusion : $\forall n \in \mathbb{N}, A_{n+1} \subset A_n$. Alors,

$$\lim_{n\to +\infty} p(A_n) = p\Big(\bigcap_{n=0}^{+\infty} A_n\Big)$$

C Questions de cours, groupe $\mathbb C$ uniquement

C.1 Une tribu infinie n'est pas dénombrable

Proposition

Une tribu infinie n'est pas dénombrable.

2 Exercices de référence

- A Exercices de référence, groupes $\mathbb{A}, \mathbb{B} \& \mathbb{C}$
- B Exercices de référence, groupes $\mathbb{B} \& \mathbb{C}$
- C Exercices de référence, groupe $\mathbb C$ uniquement

MODIFIED BAYES' THEOREM:

 $P(H|X) = P(H) \times \left(1 + P(C) \times \left(\frac{P(X|H)}{P(X)} - 1\right)\right)$

H: HYPOTHESIS

X: OBSERVATION

P(H): PRIOR PROBABILITY THAT H IS TRUE

P(x): PRIOR PROBABILITY OF OBSERVING X

P(C): PROBABILITY THAT YOU'RE USING BAYESIAN STATISTICS CORRECTLY