Отчет по лабораторной работе №222

«Изучение электрического разряда в неоновой лампе»

Цель работы:

Изучить самостоятельный электрический разряд в неоновой лампе и свойства лампы как элемента цепи

Оборудование и приборы, используемые в работе:

Установка с набором сопротивлений и емкостей, неоновая лампа, источник постоянного тока, реостат, провода, электронный осциллограф, вольтметр B7-16A, вольтметр GDM-8245.

Вольтамперная характеристика неоновой лампы

На рис. 5 приведена идеализированная вольтамперная характеристика неоновой лампы (ВАХ). При малых напряжениях лампа практически не пропускает тока ("не горит"). Ток в лампе возникает только в том случае, если разность потенциалов между электродами достигнет "напряжения зажигания" V₃. При этом скачком устанавливается конечная сила тока І₃. Дальнейшее увеличение напряжения 7 приводит к возрастанию тока по закону, близкому к линейному. Если теперь уменьшать напряжение на горящей лампе, то при напряжении V₃, лампа не погаснет, и сила тока будет продолжать уменьшаться. Лампа перестанет пропускать ток лишь при напряжении гашения V_г, которое всегда меньше V_3 . Сила тока при этом скачком падает от значения І₁ до нуля.

Релаксационный генератор на неоновой лампе

Тот факт, что напряжение гашения неоновой лампы меньше напряжения зажигания, позволяет получить незатухающие колебания в схеме, содержащей лампу, конденсатор и сопротивление. Колебания в этом случае являются последовательностью двух апериодических процессов - зарядки конденсатора и его разрядки.

Период колебаний выражается формулой

$$T = \tau_1 + \tau_2$$

где время зарядки конденсатора

$$\tau_{1} = RC * ln \frac{E - V_{r}}{E - V_{s}}$$

А время разрядки

$$\tau_2 = \rho C * ln \frac{(V_2 - V_0)R + (V_2 - E)R_0}{(V_r - V_0)R + (V_r - E)R_0}$$

Практическая часть

Задание 1. Снятие ВАХ неоновой лампы

Вольтамперную характеристику лампы предлагается снять с помощью схемы изображенной ниже

При снятии ВАХ особое внимание обращаем на точное определение $V_{\scriptscriptstyle 3}$ и $V_{\scriptscriptstyle r}$.

Полученные данные изобразим на графике, который аппроксимируем прямой линией.

Можно соединить точки по-другому

Выделим 2 ветви: одна содержит значения, снятые при возрастании, в другой ветви данные, которые снимались при уменьшении тока.

Заметно, что ВАХ, снятая при возрастании напряжения, отличается от снятой при убывании: при возрастании напряжение выше на 1-3В, что не на много больше погрешности измерений. Получается, что идеализация $I(V)=\frac{V-V \circ}{R \circ}$ вполне приемлема, но для последующих целей придется определиться с V_{0} , который разнится для двух ветвей.

Колебания будут происходить в области между напряжением зажигания и гашения, поэтому рассмотрим точки с соответствующим напряжением.

Чтобы определить R_0 и V_0 сравним $I(V)=\frac{V-V_0}{R_0}$ с y=0.1878x-21.715

Находим R₀

$$0.1878 * 10^{-3} = \frac{1}{R_{\rm D}} \Rightarrow R_{\rm D} = 5324.8 \text{ OM}$$

 V_0

$$20,715 * 10^{-3} = \frac{V_0}{R_0} \Rightarrow V_0 = 115,6 \text{ B}$$

Обратим внимание на напряжение зажигания $V_{\scriptscriptstyle 3}$ и напряжение гашения $V_{\scriptscriptstyle \Gamma}$ неоновой лампы

Vз, В	133	133.1	133	133.1
Vг, В	121	121.6	121.5	119.1

Найдем средние значения:

$$\overline{V}_{\!\scriptscriptstyle 3}=133~{\rm B}$$

$$\overline{V}_{r} = 120.8 \text{ B}$$

И случайную погрешность

$$\sigma_{\text{carya}}(\overline{V}_{\text{s}}) = \sqrt{\frac{\sum (\overline{V}_{\text{s}} - {V_{\text{s}}}^i)^2}{n(n-1)}} = 0.029 \text{ B}$$

$$\sigma_{\text{cary'i}}(\overline{V}_{\text{r}}) = \sqrt{\frac{\sum (\overline{V}_{\text{r}} - {V_{\text{r}}}^i)^2}{n(n-1)}} = 0.58 \text{ B}$$

Приборная погрешность вольтметра 0,1 В

$$\sigma = \sqrt{\sigma_{\text{cyry*}}^2 + \sigma_{\text{mp}}^2}$$

$$\overline{V}_{s} = 133 \pm 0.1 \,\mathrm{B}$$

$$\overline{V}_{c} = 120.8 \pm 0.59 \text{ B}$$

Задание 2. Исследование релаксационных колебаний

Используется схема на рис. 6

В опыте при помощи осциллографа измерим период колебаний в зависимости от различных параметров схемы и сравним полученное с теорией.

Погрешность Δt измерения временных характеристик определяем из шкалы времени осциллографа

Полученные данные выписаны в приложении после выводов.

Построим график теоретической зависимости T(R) и отметим точки, соответствующие эксперименту

График теоретической зависимости Т(С) и точки, соответствующие эксперименту

Теоретическое и практическое значения Т(Е)

Полученные данные относительно хорошо ложатся на теоретические кривые.

Можно провести оценку точности теоретического предсказания следующим образом: найти ещё погрешности V_0 и R_0 исходя из использованных линейных аппроксимаций, затем используя эти погрешности и погрешности V_3 и V_r , построить пределы.

Однако, делать этого мы пока не будем, ведь по этому всё равно нельзя сказать наверняка о верности использованной модели. Основную часть времени цепь проводит не при разрядке конденсатора через лампу, а при его <u>зарядке</u> от источника, которая нас сейчас не интересует.

Посмотрим лучше отдельно на соотношения для времени <u>разрядки</u> конденсатора τ_2 через работающую лампу...

Практически во всех случаях конденсатор разряжается дольше, чем предполагалось.

Причем при вариации R_0 и V_0 в разумных пределах (грубая оценка погрешности 3000< R_0 <8000, 90< V_0 <119) и V_3 с V_r в пределах погрешности, теоретические графики не размещаются в пределах погрешностей эксперимента и лежат в основном ниже (хорошо приближаются при R_0 >10000 Ом).

Это может говорить о том, что в колебательном процессе ВАХ лампы не приближается использованной формулой линейной зависимости $I(\mathcal{V})$.

Дополнительно сравним реальные осциллограммы напряжения на лампе с поведением, предсказываемым упрощенной моделью.

В экспериментах осциллограммы были следующие:

Приводим теоретический график для тех же параметров (Е≈133,4В, С=0,24мкФ, R=59,6 кОм)

Видно, что на самом деле лампа выключается не так резко, как предсказывает теория (падения напряжения на самом деле затягиваются во времени ближе к концу а возрастания начинаются плавно). То есть ток через лампу постепенно спадает по мере приближения к её полному гашению, что заметно увеличивает время разрядки конденсатора через неё.

Вывод:

В ходе работы мы исследовали основние свойства и характеристики неоновой лампы: напряжения и токи гашения и зажигания, внутренне сопротивление.

Также мы подробно рассмотрели работу релаксационного генератора на неоновой лампе, исследовали зависимость периода от ЭДС источника, сопротивления и емкости в цепи.

Мы обнаружили, что, хотя ВАХ неоновой лампы и правда хорошо приближается линейно, разрядка конденсатора через лампу в релаксационном колебательном контуре происходит отнюдь не в соответствии в таким законом.

Использованные экспериментальные данные:

Вольтамперная харатеристика:

1	3.12	5.73	7.5	9.45	11.5	14.2	
U	131.6	147	155	165	175.5	189.5	
обратно							
1	0	0.78	2.36	3.8	5.9	8.49	11.29
U	119	119.6	129	137	149	163.3	175.8

Зависимость периода колебаний от напряжения:

С, мкФ

0.248

E, B

149.93

R, кОм	296	362	415	500	702	854
Т, мс	44.8	53.2	60	72	98.5	119
t2, мc	10	9.6	10	9.6	11	8.8
dt, Mc	0.5	0.48	0.5	0.48	0.275	0.44
amplU	9.36	10.1	9.68	10.2	9.44	10
du	0.1	0.1	0.1	0.1	0.1	0.1

Зависимость периода колебаний от емкости в цепи:

	_	
R	кОм	362

С, мкФ	0.248	0.33	0.5	0.75	0.85	0.995	1.3
Т, мс	53.2	69.6	100	142	157	186	228
t2, мс	9.6	12	15	19	21	22	26
amplU	10.1	9.6	9.44	9.44	9.6	9.68	9.92
dt, c	0.025	0.025	0.0625	0.0625	0.0625	0.0625	0.125

Зависимость периода колебаний от напряжения источника:

362

R, ĸOm

С, мкФ 0.5

Е, В	180	170	160.2	139.8	190.2
Т, мс	52	61.2	75.2	168	45.2
t2, мс	16.8	16.4	15.2	14	17.2
amplU	10.1	10.1	10	9.28	9.92
dT.c	0.025	0.025	0.025	0.03125	0.025

Для построения теоретических графиков использовались формулы: (защитное сопротивление R_3 =10кОм)

$$T = \tau_{1} + \tau_{2}$$

$$\tau_{1} = RC * ln \frac{E - V_{r}}{E - V_{3}}$$

$$\tau_{2} = \rho C * ln \frac{(V_{2} - V_{0})R + (V_{3} - E)(R_{0} + R_{3})}{(V_{r} - V_{0})R + (V_{r} - E)(R_{0} + R_{3})}$$

$$V_{1}(t) = E - (E - V_{r}) \exp\left(-\frac{t}{RC}\right)$$

$$V_{2}(t) = \rho\left(\frac{E}{R} + \frac{V_{0}}{R_{0} + R_{3}}\right) + \left(V_{2} - \rho\left(\frac{E}{R} + \frac{V_{0}}{R_{0} + R_{3}}\right)\right) \exp\left(-\frac{t}{\rho C}\right)$$