Relatório - Trabalho I Teoria da Computação

Maria Eduarda de Melo Hang Thiago San't Helena da Silva

Maio 2019

1 Questão 1

1.1 Linguagem

 $L = \{ a^{i}b^{j}c^{k} \mid i, j, k \in N \ e \ i * j = k^{2} \}$

1.2 Algoritmo

Entradas:

Fita 1: $> a^i b^j c^k$

Fita 2: >

Algoritmo:

- 1. Se entrada vazia, vai para estado de aprovação.
- 2. Se não tiver a^i , apenas b^j , varre entrada.
- 3. Se encontrar c^k , invalida.
- 4. Se não, vai para estado de aprovação.
- 5. Varre o a^i . Se não houver c nem b, vai para estado de aprovação.
- 6. Se encontrar c^k após a^i , invalida.
- 7. Se encontrar b, retorna ao início da fita.
- 8. Multiplica a^i por b^j , colocando o resultado ao final da fita como "D"
- 9. Multiplica c^k por c^k , colocando o resultado ao final da fita como "E"
- 10. Checa se o número de "D" == número de "E". Se sim, vai para o estado de validação.
- 11. Se não, invalida.

2 Questão 2a

2.1 Linguagem

 $L = \{a^{i}b^{j}c^{k} \mid i, j, k \in N \ e \ i^{2} * j^{2} = k\}$

2.2 Algoritmo

Entradas:

Fita 1: $> a^i b^j c^k$

Fita 2: >

Algoritmo:

- 1. Se entrada vazia, vai para estado de aprovação.
- 2. Se não tiver a^i , apenas b^j , varre entrada.
- 3. Se encontrar c^k , invalida.
- 4. Se não, vai para estado de aprovação.
- 5. Varre o a^i . Se não houver c nem b, vai para estado de aprovação.
- 6. Se encontrar c^k após a^i , invalida.
- 7. Se encontrar b, retorna ao início da fita.
- 8. Multiplica a^i por a^i colocando na fita 2 como "a".
- 9. Multiplica b^j por b^j , colocando na fita 2 como "b".
- 10. Multiplica "a" por "b" da fita 2, colocando ao final da fita como "d"
- 11. Checa se o número de "d" na fita 2 == número de "c" na fita 1. Se sim, vai para o estado de validação.
- 12. Se não, invalida.

3 Questão 2b

3.1 Linguagem

Computar a série de Fibonacci para uma dada entrada unária.

Resultado: Fita 2 (valor unário).

3.2 Algoritmo

Entradas:

Fita 1: $> a^n$

Fita 2: > a

Fita 3: > a

Algoritmo:

- 1. Se na fita 1 não tem "a", apaga a fita 2 e valida e o retorno esta na fita 2.
- 2. Se na fita 1 tem um "a", retorna e o retorno esta na fita 2.
- 3. Caso o contrário, vai para o segundo "a" na fita 1 e continua executando.
- 4. Enquanto leitura na fita 1 == "a":
 - (a) Para cada "a" na fita 3, adiciona um "b" na fita 2.
 - (b) Apaga toda a fita 3.
 - (c) Para cada "a" na fita 2, adiciona um "a" na fita 3.
 - (d) Transforma os "b"s na fita 2 em "a"s.
 - (e) Retorna os cabeçotes das fitas 2 e 3 para o início das fitas.
- 5. Vai para o estado de aprovação.

4 Questão 3

4.1 Linguagem

Computar o MDC para uma dada entrada(unária). Será computado o MDC(a,b). **Resultado**: Fita 1 (valor unário).

4.2 Algoritmo

Entradas:

Fita 1: $> a^n \# b^m$

Fita 2: >

Fita 3: >

Algoritmo:

- 1. Copie b para a Fita 2.
- 2. Limpe b da Fita 2.
- 3. Enquanto $(a \ge b)$:
 - (a) Copie o resultado de (a-b) para Fita 3.

- (b) Se o conteúdo da Fita 3 for igual a zero, aceite.
- (c) Copie o conteúdo da Fita 3 para a Fita 1.
- $4.\,$ Copie o conteúdo da Fita2 para a Fita $1.\,$
- $5.\,$ Copie o conteúdo da Fita 3 para a Fita $2.\,$
- 6. Volte para o passo 3.