Hotels

Christina Liang

```
library(tidyverse)
library(infer)
hotel_bookings <- read.csv("~/R/DIIG/hotel_bookings.csv")
First, I made some new variables and did some data cleaning:
New variable for total amount of nights stayed:
hotel_bookings <- hotel_bookings %>%
  mutate(total_nights = stays_in_week_nights + stays_in_weekend_nights)
Changing the month of arrival into chronologically-ordered levels:
hotel_bookings <- hotel_bookings %>%
  mutate(arrival_date_month = factor(arrival_date_month,
                                       levels = c("January", "February", "March", "April", "May",
                                                   "June", "July", "August", "September",
                                                   "October", "November", "December")))
I also changed the is_canceled variable from numeric to categorical, as 0 and 1 represent a booking being
cancelled or not.
hotel_bookings$is_canceled <- as.factor(hotel_bookings$is_canceled)
I created a variable for the total number of guests during the duration of the stay:
hotel_bookings <- hotel_bookings %>%
  mutate(total_guests = adults + children + babies)
hotel_bookings <- hotel_bookings %>%
  mutate(arrival_season = case_when(arrival_date_month == "December" ~ "Winter",
                                       arrival_date_month == "January" ~ "Winter",
                                       arrival_date_month == "February" ~ "Winter",
                                       arrival_date_month == "September" ~ "Fall",
                                       arrival_date_month == "October" ~ "Fall",
                                       arrival_date_month == "November" ~ "Fall",
                                       arrival_date_month == "March" ~ "Spring",
                                       arrival_date_month == "April" ~ "Spring",
                                       arrival_date_month == "May" ~ "Spring",
                                       arrival_date_month == "June" ~ "Summer",
```

Next, I visualized the distribution of visits to the hotels based on month of the year, to find that there was an increase in volume of arrivals in the warmer months.

arrival_date_month =="July" ~ "Summer",
arrival_date_month =="August" ~ "Summer"))

```
hotel_bookings %>%
group_by(hotel, arrival_date_month) %>%
```

Distribution of Arrivals at Hotel by Month of the Year Faceted by City vs. Resort Hotel

Distribution of Arrivals at Hotel by Season of the Year Faceted by City vs. Resort Hotel

`summarise()` regrouping output by 'hotel' (override with `.groups` argument)

Mean Average Daily Rate by Hotel

For this data challenge, I'll mainly be focusing on Resort Hotels, so I filtered the "City Hotels" out of my dataset.

```
resort_bookings <- hotel_bookings %>%
  filter(hotel == "Resort Hotel")
How does having kids influence rates?
resort_bookings %>%
  group_by(arrival_season) %>%
  summarise(meanadr = mean(adr))
  `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 4 x 2
##
     arrival_season meanadr
     <chr>>
                       <dbl>
##
## 1 Fall
                        69.0
                        71.7
## 2 Spring
## 3 Summer
                       157.
## 4 Winter
                        58.2
logit_mod1 <- glm(is_canceled ~ arrival_date_month + total_nights,</pre>
                   data = resort_bookings, family = "binomial", maxit = 100)
logit_mod2 <- glm(is_canceled ~ adults + children + babies + meal,</pre>
                   data = resort_bookings, family = "binomial", maxit = 100)
logit_mod2
```

```
##
## Call: glm(formula = is_canceled ~ adults + children + babies + meal,
      family = "binomial", data = resort_bookings, maxit = 100)
##
## Coefficients:
##
    (Intercept)
                        adults
                                     children
                                                      babies
                                                                    mealFB
       -1.85054
                                      0.32996
                                                    -0.64143
                                                                    1.36302
##
                       0.41463
                        mealSC mealUndefined
##
         mealHB
        0.22745
##
                      -2.19245
                                     -0.05317
##
## Degrees of Freedom: 40059 Total (i.e. Null); 40052 Residual
## Null Deviance:
                       47330
## Residual Deviance: 46310
                               AIC: 46330
logit_mod3 <- glm(is_canceled ~ adr + required_car_parking_spaces + total_of_special_requests,</pre>
                 data = resort_bookings, family = "binomial", maxit = 100)
```

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred