

Experiments and Objectives

Voluntary Muscle Contraction

- Motor units and muscle physiology
 - Regulation of muscle tension

 Recruitment and Frequency modulation
 - >Antagonistic muscle function

Evoked (Involuntary) muscle contraction

- Physiology of an action potential
- Events at a neuromuscular junction
- Calculation of nerve conduction velocity

Motor neuron and action potential(s)

An action potential, also known as a nerve impulse, is a short duration electrical current generated due to the movement of charged ions across the cell membrane of a neuron.

This current travels down the axon and terminates at the nerve endings.

Events at the Neuromuscular junction

Regulation of muscle contraction

- A muscle (e.g. : biceps) contains numerous muscle fibers.
- The muscle fibers are 'controlled' by motor neurons.
- Using differences in the size of the motor unit (i.e. the number of muscle fibers a single motor neuron controls) and the frequency of firing of these motor neurons, muscle contraction can be regulated in two ways:
 - Recruitment (of different motor units)
 - Frequency modulation

Motor Unit Architecture

Motor unit

Recruitment and Size Principal

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

EMG (Electro-myo-graph)

An EMG measures the electrical activity generated by a muscle fiber/motor unit during its contraction.

This electrical activity is displayed on the computer screen as a spike (change of voltage in the circuit).

Each spike is the combined electrical output of all motor units firing at that particular time.

Size Principle: smaller motor units are recruited before larger ones.

Voluntary EMG

Phases of a muscle contraction

Frequency Modulation

Voluntary EMG

