نظریهی یادگیری ماشین

نيمسال دوم ۱۴۰۱ _ ۱۴۰۰

تمرین سری دوم موعد تحویل: ۱۲ فروردین

مسئلهی ۱.

فرض کنید A و B مجموعه ای از توابع هستند که فضای X را به مجموعه ی $\{0,1\}$ نگاشت میکنند. همچنین داریم کنید C را به مجموعه ی C اجتماع دو C اجتماع دو C اجتماع دو C مجموعه ی C اجتماع دو C باشد:

- $\Pi_C(m) \leqslant \Pi_A(m) + \Pi_B(m)$ ثابت کنید برای هر m داریم: (آ)
- (ب) با استفاده از لم Sauer–Shelah نشان دهید برای $m \geqslant d_A + d_B + 2$ داریم: $m \geqslant d_A + d_B + 2$ نشان دهید برای بعد C مجموعهی C مجموعهی C برای بعد C مجموعهی C بنان بعد C مجموعهی C مجموعه C محموعه C محموع C محموعه C محموع C محموعه C محموع C محم

مسئلەي ٢.

خانواده ی فرضیه هایی از توابع سینوسی که به صورت $\{x \to \operatorname{sign}(\sin(\omega x)) : \omega \in \mathbb{R}\}$ تعریف می شوند را در نظر بگیرید.

- (آ) نشان دهید برای هر $\mathbb{R} \in \mathbb{R}$ نقطههای x، 2x، x و 4x نمی توانند با این خانواده از فرضیهها shatter شوند.
 - (ب) نشان دهید که بعد VC خانواده ی توابع سینوسی نامتناهی است.

(راهنمایی: نشان دهید که $\{2^{-m}: m \in \mathbb{N}\}$ برای هر m > 0 میتواند به طور کامل shatter شود.)

مسئلهي ٣.

- H^n_{origin} است را با $w \in \mathbb{R}^n$ که در آنها $w \in \mathbb{R}^n$ است را با $w \in \mathbb{R}^n$ است را با مجموعه نشان می دهیم.
 - . $\operatorname{VCdim}(H^n_{\operatorname{origin}}) = n$ نشان دهید که
- (ب) مجموعه ی صفحه های به فرم $\{x\in\mathbb{R}^n:w^{\top}x+b\geqslant 0\}$ که در آنها $w\in\mathbb{R}^n$ و $w\in\mathbb{R}^n$ است را با $w\in\mathbb{R}^n$ نشان میدهیم.
 - $.VCdim(H^n_{plane}) = n + 1$ نشان دهید که
- $H^n_{ ext{sphere}}$ رج) مجموعهی اَبرکرههای به فرم $\{x\in\mathbb{R}^n:\|x-x_0\|\leqslant r_0\}$ که در آنها $x_0\in\mathbb{R}^n$ و $x_0\in\mathbb{R}^n$ است را با implies نشان می دهیم.
 - $.VCdim(H_{sphere}^n) = n + 2$ نشان دهید که
- (راهنمایی: یک راه برای نشان دادن این موضوع، تبدیل اَبرکره به یک اَبرصفحه در فضایی دیگر و معرفی نگاشتی از \mathbb{R}^n به آن فضا است)

- $\operatorname{VCdim}(H^n_{\operatorname{sphere}}) \geqslant n+1$ کنید که (د)
- . $VCdim(H^n_{sphere}) = n + 1$ (ه) نشان دهيد که (امتيازی) نشان دهيد

مسئلهي ۴.

است، سپس: $\log_2|H|$ است، سپس متناهی فرضیههای H حداکثر برابر با

- (آ) یک مثال از مجموعه فرضیههای H بیابید که شامل تابعهای روی بازهی اعداد طبیعی X=[0,1]=X باشد به صورتی که H نامحدود باشد اما داشته باشیم: VCdim(H)=1.
 - (ب) مثال دیگری بزنید که برای مجموعهی متناهی فرضیههای H روی دامنهی X = [0,1] داشته باشیم: X = [0,1] داشته باشیم: X = [0,1]

مسئلهي ۵.

فرض کنید H_1 خانوادهای از توابع است که X را به $\{0,1\}$ نگاشت میکند و H_2 خانوادهای از توابع است که X را به H_1 نگاشت میکند. اگر H_2 اگر است که H_3 نشان دهید کران پیچیدگی تجربی رادامیچر H_3 برای هر نمونه H_3 برابر است با:

$$\hat{\mathcal{R}}_S(H) \leqslant \hat{\mathcal{R}}_S(H_1) + \hat{\mathcal{R}}_S(H_2)$$

(راهنمایی: میتوانید از نامساوی Talagrand استفاده کنید.)

مسئلەي 6.

برای هر $\alpha \in \mathbb{R}$ و هر دو مجموعه فرضیههای H و H از توابعی که X را به \mathbb{R} نگاشت میکنند، موارد زیر را اثبات کنید:

 $(m \geqslant 1)$

- $\mathcal{R}_m(\alpha H) = |\alpha| \mathcal{R}_m(H)$ (1)
- $\mathcal{R}_m(H+H') \leqslant \mathcal{R}_m(H) + \mathcal{R}_m(H')$ (\smile)
- $\mathcal{R}_m(\{\max(h,h'):h\in H,h'\in H'\})\leqslant \mathcal{R}_m(H)+\mathcal{R}_m(H')$ (7)

. است. $x \to \max_{x \in X}(h(x), h'(x))$ تشان دهنده تابع $\max(h, h')$

مسئلهي ٧.

H فرض کنید $\{h_n:n\in\mathbb{N}\}$ مجموعهای نامحدود و شمارا از توابع دستهبند باینری باشد. نشان دهید نمی توان H را به صورتی وزن دهی نمود که:

- $w: H \to [0,1]$ با استفاده از آن وزنها قابلیت یادگیری غیریکنواخت داشته باشد. در واقع، تابع وزندهی $H \to [0,1]$ شرط $H \to [0,1]$ را رعایت کند.
 - $w(h_i) \leqslant w(h_j)$ اشته باشیم: $w(h_i) \leqslant w(h_j)$ داشته باشیم: $w(h_i) \leqslant w(h_j)$

موفق باشيد