

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

РАКУЛЬТЕТ «Информатика и системы управления»		
КАФЕДРА	. «Программное обеспечение ЭВМ и информационные технологии»	

Отчет по лабораторной работе № 1 по курсу «Математическая статистика»

Тема	 Гистограмма и эмпирическая функция распределения 		
Студент Виноградов А. О.			
Группа _ ИУ7-66Б			
Оценка (баллы)			
Препо	одаватели Андреева Т. В.		

1 Постановка задачи

Цель работы: построение гистограммы и эмпирической функции распределения.

1.1 Содержание работы

- 1) Для выборки объема n из генеральной совокупности X реализовать в виде программы на ЭВМ
 - (a) вычисление максимального значения Mmax и минимального значения Mmin;
 - (b) размаха R выборки;
 - (c) вычисление оценок $\hat{\mu}$ и S^2 математического ожидания МХ и дисперсии DX;
 - (d) группировку значений выборки в $m = [log 2 \ n] + 2$ интервала;
 - (e) построение на одной координатной плоскости гистограммы и графика функции плотности распределения вероятностей нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 ;
 - (f) построение на другой координатной плоскости графика эмпирической функции распределения и функции распределения нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 .
- 2) Провести вычисления и построить графики для выборки из индивидуального варианта.

2 Теоретическая часть

2.1 Формулы для вычисления величин

Реализация случайной выборки из генеральной совокупности случайной величины X:

$$\overrightarrow{x} = (x_1, x_2, \dots, x_n). \tag{2.1}$$

Минимальное значение выборки:

$$M_{min} = min(x_1, x_2, \dots, x_n). \tag{2.2}$$

Максимальное значение выборки:

$$M_{max} = max(x_1, x_2, \dots, x_n).$$
 (2.3)

Размах выборки:

$$R = M_{max} - M_{min}. (2.4)$$

Оценка математического ожидания выборки:

$$\hat{\mu}(\overrightarrow{x}) = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i. \tag{2.5}$$

Несмещенная (исправленная) оценка дисперсии выборки:

$$S^{2}(\overrightarrow{x}) = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}.$$
 (2.6)

2.2 Эмпирическая плотность и гистограмма

Опредление 1. Эмпирической функцией плотности, отвечающей выборке \overline{x} , называют функцию

$$f_n(x) = \begin{cases} \frac{m_i}{n\Delta}, ecnu \ x \in J_i, \\ 0, uhave, \end{cases}$$
 (2.7)

где m_i — количество значений выборки в J_i интервале интервального ряда, n — объем выборки, Δ — длина интервалов.

Опредление 2. График функции $f_n(x)$ называют гистограммой.

2.3 Эмпирическая функция распределения

Опредление 3. Эмпирической функцией распределения, отвечающей выборке \overline{x} , называют функцию

$$F_n(x,\overline{x}) = \frac{n(x,\overline{x})}{n}, x \in \mathbb{R},$$
(2.8)

где $n(x, \overline{x})$ — количество значений выборки строго меньше x, n — объем выборки.

3 Результаты расчетов для выборки из индивидуального варианта

Задание выполнялось по варианту №2.

Таблица 3.1 – Значения параметров для выборки из индивидуального варианта

M_{min}	-2.79
M_{max}	1.8
R_{\perp}	4.59
$\hat{\mu}(\overrightarrow{x})$	-0.285917
$S^2(\overrightarrow{x})$	0.917021
m	8
Δ	0.57375

Результаты построения гистограммы и графика функции плотности распределения вероятностей нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 , а также построения графика эмпирической функции распределения и функции распределения нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 приведены на рисунках 3.1, 3.2.

Рисунок 3.1 — Гистограмма и график функции плотности распределения вероятностей нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2

Рисунок 3.2 – График эмпирической функции распределения и функции распределения нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2