Aufgabe zu Kandidatenschlüssel, Normalform, Synthesealgorithmus [Relation-MNVTPPN]

Betrachten Sie ein abstraktes Relationenschema R(M, N, V, T, P, PN) mit den Funktionalen Abhängigkeiten ¹

$$FA = \left\{ \begin{array}{c} \{M\} \rightarrow \{M\}, \\ \{M\} \rightarrow \{N\}, \\ \{M\} \rightarrow \{N\}, \\ \{V\} \rightarrow \{T, P, PN\}, \\ \{P\} \rightarrow \{PN\}, \end{array} \right.$$

(a) Bestimmen Sie alle Kandidatenschlüssel.

V kommt auf keiner rechten Seite der Funktionalen Abhängigkeiten vor. AttrHülle $(R, \{V\}) = \{V, T, P, PN\} \neq R$ AttrHülle $(R, \{V, M\}) = \{V, M, N, T, P, PN\} = R$ AttrHülle $(R, \{V, P\}) = \{V, P, T, PN\} \neq R$ $\{V, M\}$ ist Schlüsselkandidat

(b) In welcher Normalform befindet sich die Relation?

Die Relation befindet sich in der 1. Normalform weil, nichtprimäre Attribute von einer echten Teilmenge des Schlüsselkandidaten abhängen (z. B. $\{M\} \rightarrow \{N\}$).

- (c) Bestimmen Sie zu den gebenen Funktionalen Abhängigkeiten die kanonische Überdeckung.
 - (i) Linksreduktion

— Führe für jede funktionale Anhängigkeit $\alpha \to \beta \in F$ die Linksreduktion durch, überprüfe also für alle $A \in \alpha$, ob A überflüssig ist, d. h. ob $\beta \subseteq A$ ttrHülle $(F, \alpha - A)$.

Ø Nichts zu tun

(ii) Rechtsreduktion

— Führe für jede (verbliebene) funktionale Abhängigkeit $\alpha \to \beta$ die Rechtsreduktion durch, überprüfe also für alle $B \in \beta$, ob $B \in AttrH$ ülle $(F - (\alpha \to \beta) \cup (\alpha \to (\beta - B)), \alpha)$ gilt. In diesem Fall ist B auf der rechten Seite überflüssig und kann eleminiert werden, d. h. $\alpha \to \beta$ wird durch $\alpha \to (\beta - B)$ ersetzt.

M

$$M \in AttrH\"ulle(F \setminus \{M\} \rightarrow \{M\}, \{M\}) = \{M, N\}$$

$$FA = \left\{ \begin{array}{c} \{M\} \to \{\emptyset\}, \\ \{M\} \to \{N\}, \\ \{V\} \to \{T, P, PN\}, \\ \{P\} \to \{PN\}, \end{array} \right. \right\}$$

PN

$$PN \in AttrH\"ulle(F \setminus \{V\} \rightarrow \{T, P, PN\} \cup \{V\} \rightarrow \{T, P\}, \{V\}) = \{V, T, P, PN\}$$

$$FA = \Big\{$$

¹https://db.in.tum.de/teaching/ws1415/grundlagen/Loesung08.pdf

$$\{M\} \rightarrow \{\emptyset\},$$
 $\{M\} \rightarrow \{N\},$
 $\{V\} \rightarrow \{T, P\},$
 $\{P\} \rightarrow \{PN\},$

(iii) Löschen leerer Klauseln

Ø Nichts zu tun

(iv) Vereinigung

— Fasse mittels der Vereinigungsregel funktionale Abhängigkeiten der Form $\alpha \to \beta_1, \dots, \alpha \to \beta_n$, so dass $\alpha \to \beta_1 \cup \dots \cup \beta_n$ verbleibt.

$$FA = \left\{ \begin{cases} \{M\} \to \{N\}, \\ \{V\} \to \{T, P\}, \\ \{P\} \to \{PN\}, \end{cases} \right\}$$

(d) Falls nötig, überführen Sie die Relation verlustfrei und abhängigkeitsbewahrend in die dritte Normalform.

(i) Relationsschemata formen

— Erzeuge für jede funktionale Abhängigkeit $\alpha \to \beta \in F_c$ ein Relationenschema $\mathcal{R}_\alpha := \alpha \cup \beta$.

$$R_1(\underline{M}, N)$$

 $R_2(\underline{V}, T, P)$
 $R_3(\underline{P}, PN)$

(ii) Schlüssel hinzufügen

— Falls eines der in Schritt 2. erzeugten Schemata R_{α} einen Schlüsselkandidaten von \mathcal{R} bezüglich F_c enthält, sind wir fertig, sonst wähle einen Schlüsselkandidaten $\mathcal{K} \subseteq \mathcal{R}$ aus und definiere folgendes zusätzliche Schema: $\mathcal{R}_{\mathcal{K}} := \mathcal{K}$ und $\mathcal{F}_{\mathcal{K}} := \emptyset$ ——

 $R_1(\underline{M}, N)$ $R_2(\underline{V}, T, P)$ $R_3(\underline{P}, PN)$ $R_4(V, M)$

(iii) Entfernung überflüssiger Teilschemata

— Eliminiere diejenigen Schemata R_{α} , die in einem anderen Relationenschema $R_{\alpha'}$ enthalten sind, d. h. $R_{\alpha} \subseteq R_{\alpha'}$.

Ø Nichts zu tun

 $Github: \verb|Module|| 10_DB|| 50_Relationale-Entwurfs theorie|| 30_Normalformen|| 10_Synthese algorithmus|| Aufgabe_Relation-MNVTPPN.tex||$