1 多項式の評価

A(x) を n-1 次の多項式 $A(x) = a_0 + a_1 x^1 + a_2 x^2 + \cdots + a_{n-1} x^{n-1}$ とする. A(x) の係数の列を $a_A = (a_0, \ldots, a_{n-1})$ で表す. ここで一般性を失うことなく n は偶数であると仮定してよい; そうでないなら n' = n+1 次の A'(x) ただし $a_{A'} = (a_0, a_1, \ldots, a_{n-1}, 0)$, つまり n 次の係数は 0, を考える. すると,

$$A(x) = a_0 + a_2 x^2 + \dots + a_{n-2} x^{n-2} + a_1 x^1 + a_3 x^3 + \dots + a_{n-1} x^{n-1}$$
$$= \sum_{i=0}^{n/2-1} a_{2i} x^{2i} + x \cdot \sum_{i=0}^{n/2-1} a_{2i+1} x^{2i}$$

と書ける. ここで係数列 (a_0,a_2,\ldots,a_{n-2}) を持つ $\frac{n}{2}$ 次の多項式 A_0 と (a_1,a_3,\ldots,a_{n-1}) の A_1 を導入すれば、上式は

$$A(x) = A_0(x^2) + x \cdot A_1(x^2)$$

と書き換えられる. $n=2^k$ であれば, 深さ $k=\log n$ 段の再帰的な評価をおこなえば A(x) が求まることになる.

2 多項式の評価による文字列パタン照合

 $\Sigma = \{\sigma_0, \dots, \sigma_{N-1}\}$ を有限アルファベット, それぞれ文字 $\sigma_i \in \Sigma$ は数値 $(\sigma_i) = e^{\iota \frac{2\pi}{N}i}$ で表すとする. ただし ι は虚数単位 $\iota^2 = -1$. このとき, 同じ文字どうしのノルム積(内積)は, $(\sigma_i)^{\dagger} \cdot (\sigma_i) = 1$ となる.

 $t,p\in\Sigma^*$ はそれぞれ長さ n,m で、かつ $n\geq m$ を満たすとする. また t^\dagger で t の文字 ごとの複素共役をとったものを表すとする. この t,p それぞれの多項式による表現を

$$T(x) = \sum_{i=0}^{n-1} (t_i)^{\dagger} \cdot x^i, P(x) = \sum_{i=0}^{n-1} (p_i) \cdot w_p(i) \cdot x^{n-1-i},$$

ただし

$$w_p(i) = \begin{cases} 1 & 0 \le i < m, \\ 0 & それ以外, \end{cases}$$

と定義する.

たとえばパタン $p = p_0 \cdot p_1 \cdot p_2$ がテキスト $t = t_0 \cdots t_4 \cdot t_5 \cdot t_6 \cdots t_{n-1}$ の位置 4 に出現する, すなわち $0 \le i < m$ について $p_i = t_{4+i}$ であるかどうかは, 多項式

$$(t_4)^{\dagger} x^4(p_0) x^{n-1} + (t_5)^{\dagger} x^5(p_1) x^{n-2} + (t_6)^{\dagger} x^6(p_2) x^{n-3}$$
$$= x^{n+3} \sum_{i=0}^{2} (t_{i+4})^{\dagger} \cdot (p_i) = x^{n+3} \sum_{i=0}^{n-1} (t_{(i+4) \bmod n})^{\dagger} \cdot (p_i) \cdot w_p(i)$$

が $|p| \cdot x^{n+3}$ に等しいかどうかで調べることができる. すなわち,

$$M(x) = T(x) \cdot P(x) = x^n \sum_{j=0}^{n-1} x^{j-1} \cdot \sum_{i=0}^{n-1} (t_{i+j})^{\dagger} \cdot w_p(i) \cdot (p_i)$$

の x^{n-1+j} の項の係数をすべて求めれば, p が位置 j に出現しているかどうか判定できることになる.

3 FFT による文字列検索

 $x = e^{-\iota \frac{2\pi}{n}y}$ とおくと, T(x) は

$$\tilde{T}(y) = \sum_{i=0}^{n-1} t_i^{\dagger} \cdot e^{-\iota \frac{2\pi}{n} yi}$$

と書ける. この右辺は t_i^\dagger の離散フーリエ変換であり, n を 0 埋めで 2 のべきにすれば, FFT が使用できる. $p_i w_p(i)$ についても同様に $\tilde{P}(y)$ が得られる. これらの y の次数ごとの積を, y の関数 から x の関数に戻すために逆フーリエ変換を行えば, ここでは x のノルムは 1 であるので, 各 x についての M(x) のノルムを取ることで各次数の係数を求めることができる.

したがって、全体のアルゴリズムは以下のようになる.

入力: 有限アルファベット $\Sigma = \{\sigma_0, \ldots, \sigma_{N-1}\}$ 上のテキスト $t \in \Sigma^*$ と パターン $p \in \Sigma^*$.

- 1. $n = 2^{\lceil \log \max\{|t|,|p|\} \rceil}$ とする.
- 2. t の各文字 σ_i を $\mathrm{e}^{-\iota \frac{2\pi}{N}i}$ で置き換え, 長さ n に不足する部分は 0 で埋めた列 t^\dagger と, p の各文字を $\mathrm{e}^{\iota \frac{2\pi}{N}i}$ で置き換え, 長さ n に不足する部分は 0 で埋めた列を逆順にした列 p^R を作る.
- $3. t^{\dagger}$ と p^{R} それぞれを高速フーリエ変換して列 \tilde{T}, \tilde{P} を得る.
- 4. \tilde{T} と \tilde{P} の要素ごとの積からなる列 \tilde{M} を求める. $(\tilde{M}(i) = \tilde{T}(i) \cdot \tilde{P}(i))$
- $5. \tilde{M}$ を逆高速フーリエ変換し列 M を得る.
- 6. |M(i)| = |p| となる位置 i を枚挙する. 出現位置は i+1 である.

以上により $O(n \log n)$ 時間で終了する.