Attorney Docket No.: P1031 - LAM

Amendment to the Claims:

This listing of the claims will replace all prior versions, and listings of claims in the present patent application:

Listing of Claims:

Claim 1 (previously amended). A method of removing a photoresist layer from an integrated circuit (IC) structure having an etched dielectric layer with an exposed barrier layer, wherein said dielectric layer comprises silicon and oxygen and said barrier layer is composed of a material selected from a group consisting of silicon nitride and silicon carbide, said method comprising:

firstly, etching said dielectric layer and exposing said barrier layer;

secondly, feeding an oxidizing gas mixture into a reactor wherein said oxidizing first gas mixture comprises carbon monoxide (CO);

generating a plasma in said reactor; and

selectively removing said photoresist layer with said oxidizing gas mixture comprising carbon monoxide (CO) with little or no etching of said exposed barrier layer, thereby minimizing the loss of said exposed barrier material during said removing of said photoresist layer.

Claim 2 (currently amended). The method of claim 1 wherein said dielectric material layer is silicon dioxide.

Claim 3 (previously amended). The method of claim 1 wherein said oxidizing gas mixture further comprises oxygen (O₂).

Attorney Docket No.: P1031 - LAM

Claim 4 (previously amended). The method of claim 1 wherein said oxidizing gas mixture further comprises nitrogen (N_2) .

Claim 5 (previously amended). The method of claim 1 wherein said oxidizing gas mixture further comprises the gas mixtures selected from the group consisting of oxygen (O₂), nitrogen (N₂), nitrogen (N₂)/oxygen (O₂), nitrous oxide (N₂O), nitrogen (N₂)/hydrogen (H₂), and water vapor (H₂O).

Claim 6 (original). The method of claim 1 wherein said etched dielectric material is composed of a material selected from the group consisting of silicon dioxide, silicon oxide, organosilicate glass, and fluorinated silicate glass.

Claim 7 (original). The method of claim 1 wherein said IC structure further comprises a cap layer located between said dielectric and said photoresist, said cap layer is composed of a material selected from the group consisting of silicon dioxide, silicon oxynitride, silicon carbide and silicon nitride.

Claim 8 (original). The method of claim 1 wherein said reactor used to remove said photoresist from said IC structure is also used to etch said dielectric.

Claim 9 (previously amended). A method of removing a photoresist layer from an integrated circuit (IC) structure having an etched first dielectric layer, an exposed second barrier layer wherein said barrier layer is composed of a material selected from a group consisting of silicon nitride and silicon carbide, and a third layer that includes a conductive interconnect that abuts said barrier layer and a second dielectric material adjacent said conductive interconnect, said barrier layer between said etched first dielectric layer and said third layer, comprising:

firstly, etching said dielectric layer and exposing said barrier layer;
secondly, feeding an oxidizing gas mixture into a reactor wherein said oxidizing
first gas mixture comprises carbon monoxide (CO);

generating a plasma in said reactor; and

selectively removing said photoresist layer with said oxidizing gas mixture comprising carbon monoxide (CO) with little or no etching of said exposed barrier layer, thereby minimizing the loss of said exposed barrier material during said removing of said photoresist layer.

Claim 10 (original). The method of claim 9 wherein said first dielectric layer and said second dielectric layer is comprised of materials that include silicon and oxygen.

Claim 11 (previously amended). The method of claim 9 wherein said oxidizing gas mixture comprises the gas mixtures selected from the group consisting of oxygen (O_2) , nitrogen (N_2) , nitrogen (N_2) /oxygen (O_2) , nitrous oxide (N_2O) , nitrogen (N_2) /hydrogen (H_2O) , and water vapor (H_2O) .

Attorney Docket No.: P1031 - LAM

Claim 12 (original). The method of claim 9 wherein said etched first dielectric layer is composed of a material selected from the group consisting of silicon dioxide, silicon oxide, organosilicate glass, and fluorinated silicate glass.

Claim 13 (original). The method of claim 9 wherein said IC structure further comprises a cap layer located between said photoresist layer and said first dielectric layer, said cap layer is composed of a material selected from the group consisting of silicon dioxide, silicon oxynitride, silicon carbide and silicon nitride.

Claim 14 (original). The method of claim 9 wherein said reactor used to remove said photoresist from said IC structure is also used to etch said first dielectric layer.

Claim 15 (previously amended). A method of removing a photoresist layer from an integrated circuit (IC) structure having an etched dielectric layer with an exposed barrier layer, wherein said barrier layer is composed of a material selected from a group consisting of silicon nitride and silicon carbide, said method comprising:

firstly, etching said dielectric layer and exposing said barrier layer;

secondly, feeding an oxidizing gas mixture into a reactor wherein said oxidizing gas mixture comprises carbon monoxide (CO), wherein said oxidizing gas mixture comprises the gas mixtures selected from the group consisting of oxygen (O₂), nitrogen (N₂), nitrogen (N₂)/oxygen (O₂), nitrous oxide (N₂O), ammonia (NH₃), nitrogen (N₂)/hydrogen (H₂), and water vapor (H₂O);

generating a plasma in said reactor; and

Attorney Docket No.: P1031 – LAM

selectively removing said photoresist layer with said oxidizing gas mixture comprising carbon monoxide (CO) with little or no etching of said exposed barrier layer, thereby minimizing the loss of said exposed barrier material during said removing of said photoresist layer.

Claim 16 (original). The method of claim 13 wherein said dielectric layer is comprised of materials that include silicon and oxygen.

Claim 17 (original). The method of claim 13 wherein said etched dielectric layer is composed of a material selected from the group consisting of silicon dioxide, silicon oxide, organosilicate glass, and fluorinated silicate glass.

Claim 18 (original). The method of claim 13 wherein said IC structure further comprises a cap layer located between said dielectric layer and said photoresist, said cap layer is composed of a material selected from the group consisting of silicon dioxide, silicon oxynitride, silicon carbide and silicon nitride.

Claim 19 (original). The method of claim 13 wherein said reactor used to remove said photoresist from said IC structure is also used to etch said dielectric layer.

Claim 20 (new). A method of removing a photoresist layer from an integrated circuit (IC) structure having an etched dielectric layer with an exposed barrier layer, wherein said dielectric layer comprises silicon dioxide and said barrier layer is composed of a

material selected from a group consisting of silicon nitride and silicon carbide, said method comprising:

firstly, etching said dielectric layer and exposing said barrier layer;

secondly, feeding an oxidizing gas mixture into a reactor wherein said oxidizing gas mixture comprises carbon monoxide (CO) and oxygen (O₂);

generating a plasma in said reactor;

selectively removing said photoresist layer with said oxidizing gas mixture comprising carbon monoxide (CO) with little or no etching of said exposed barrier layer, thereby minimizing the loss of said exposed barrier material during said removing of said photoresist layer.

Claim 21 (new). A method of removing a photoresist layer from an integrated circuit (IC) structure having an etched first dielectric layer, an exposed second barrier layer wherein said barrier layer is composed of a material selected from a group consisting of silicon nitride and silicon carbide, and a third layer that includes a conductive interconnect that abuts said barrier layer and a second dielectric material adjacent said conductive interconnect, said barrier layer between said etched first dielectric layer and said third layer, comprising:

firstly, etching said dielectric layer and exposing said barrier layer;

secondly, feeding an oxidizing gas mixture into a reactor wherein said oxidizing first gas mixture comprises carbon monoxide (CO);

generating a plasma in said reactor;

selectively removing said photoresist layer with said oxidizing gas mixture comprising carbon monoxide (CO) with little or no etching of said exposed barrier layer,

thereby minimizing the loss of said exposed barrier material during said removing of said photoresist layer,

said first dielectric layer and said second dielectric layer is comprised of materials that include silicon and oxygen, and

said oxidizing gas mixture comprises the gas mixtures selected from the group consisting of oxygen (O₂), nitrogen (N₂), nitrogen (N₂)/oxygen (O₂), nitrous oxide (N₂O), nitrogen (N₂)/hydrogen (H₂), and water vapor (H₂O).