Multiples of Bytes

```
KB -> Kilobyte
MB -> Megabyte
GB -> Gigabyte
TB ->
Terabyte
```

1 KB =
$$2^{10}$$
 = 1024 B
B = 2^{10} = 2^{20} B
KB = 2^{10} = 2^{20} KB = 2^{30} B
MB = 2^{10} = 2^{20} MB = 2^{30} KB = 2^{40} B
GB

RAM and ROM size

```
    If a memory size is 512B then
    i) how many locations are in memory chip? 512 locations
    i) How many address bits are there? Since 512 = 29, address bits = 9
```

If a memory size is 64KB then

i) how many locations are in memory chip? Since $64KB = 2^6 \times 2^{10} B = 2^{16}$ locations

Since 1B = 8 bits, data bits = 8

- i) How many address bits are there? address bits = 16
- Since 1B = 8 bits, data bits = 8

RAM and ROM size contd.

```
If a memory size is 4 MB then

i) how many locations are in memory chip? Since 4MB = 2^2 \times 2^{20} B = 2^{22} locations
i) How many address bits are there? address bits = 22
i) Since 1B = 8 bits, data bits = 8
```

If a memory size is 256 M × 16 then

i) how many locations are in memory chip? Since 256M = 2⁸ × 2²⁰ = 2²⁸ locations
i) How many address bits are there? address bits = 28
i) data bits = 16

RAM and ROM size contd.

```
If a memory size is 32GB then
i) how many locations are in memory chip? Since 32GB = 2^5 \times 2^{30} B = 2^{35} locations
```

How many address bits are there? address bits = 35

Since 1B = 8 bits, data bits = 8

```
If a memory size is 2 T × 16 then
```

- i) how many locations are in memory chip? Since $2 T = 2^1 \times 2^{40} = 2^{41}$ locations
- i) How many address bits are there? address bits = 41
 i) data bits = 16

Block diagram of RAM chip

Function table

CS1	CS2	RD	WR	Memory function	State of Data bus	
0	0	×	×	Inhibit	High Impedance	\Rightarrow
0	1	×	×	Inhibit	High Impedance	\Rightarrow
1	0	0	0	Inhibit	High Impedance	
1	0	0	1	Write	Input data to RAM	
1	0	1	×	Read	Output data from RAM	\Rightarrow
1	1	×	×	Inhibit	High Impedance	\Rightarrow

Thank You

