# SILA Rapid Integration



Pick & place labware transportation with benchtop and mobile robots Lab robot use cases and how to address them - Introduction

4th bioSASH (BioLAGO – SiLA 2/AnIML Serial Hackathon), Konstanz, Germany

29.SEP.2022

## Ádám Wolf

PhD Student, Takeda Working Group Lead, SiLA Robotics



# State of the art lab robotics and their limitations

## The lab robotics landscape - Present

## Color code •

- Established product
- Fresh on the market
- Emerging/under development



## **Liquid handling**

- Use Case
  - Parallel pipetting
  - Flexible pipetting
- Technologies
  - Gantry-type liquid handler robots
    - Tecan
    - Beckman Coulter
    - Hamilton
    - Opentron
  - Robots handling hand-held pipettes
    - Andrew+
    - Research





## **Sample transportation**

- Use Case
  - Pick and place
  - Standard objects
  - Physical device interactions
- Technologies
  - Benchtop robots
    - PreciseFlex
    - xArm
    - Denso Cobotta
    - UR
  - Mobile manipulators (floor)
    - Kevin
    - Biosero
    - Astech Projects
    - United Robotics Group
    - Gearu
    - Omron, Stäubli, Kuka
  - Mobile manipulators (bench/track)
    - Formulatrix ROVER
  - Drones (Research)





## **Sample transportation robots**

# SILA Rapid Integration

## Stationary robot arms







## Mobile manipulators



KEVIN, Fraunhofer IPA



OMRON – Biosero



KUKA – University of Liverpool



UniteLabs – Astech Projects

## **Coordinate frames and robot positions**



## **Teaching of vision-based robots [15]**

• Manually drive the robot to station, make sure marker visible

• Base's location on the map is stored as the Pol of the station

- Camera-to-marker transformation is stored (T1)
- Manually move the arm to the site position (s)
- The marker-to-nest transformation is stored (T4)





## **Organization**

- Domain-specific working group
- Reports back to the core WG
- Open group
- Bi-weekly meetings

## **Mission**

- Combine existing established technologies in a comprehensive framework
- SiLA as the central element of the tech stack
- Unify, scale-up and extend functionality
- Incorporate new concepts
- Facilitate exchange in the lab robotics community

## <u>Vision</u>

- Foster the SiLA-based plug & play integration of lab robots
- Unify the communication standard
- Provide vendor-independent solutions

- SiLA-ROS interface
  - BioSASH 3
- Unify feature definitions
  - Structure to incorporate present and future lab robot capabilities
  - Identify candidates as standard definitions for specific capabilities

## Hierarchical levels of laboratory processes



| Process     |                                   | Lab examples                       |                            |                          |                               |
|-------------|-----------------------------------|------------------------------------|----------------------------|--------------------------|-------------------------------|
| Level<br>nr | Level name                        | Examples, liquid handler           | Examples, robot arm        | Examples, mobile robot   | Examples, conveyor            |
| 7           | Service                           |                                    | microscale services        |                          |                               |
| 6           | Procedure<br>(Experiment / assay) | microscale chromatography workflow |                            |                          |                               |
| 5           | Task                              | liquid transfer                    | labware transfer           |                          |                               |
| 4           | Subtask                           | aspirate                           | get labware, put labware   |                          |                               |
| 3           | Motion sequence                   | approach site with pipettor arm    | approach site              | navigate to target       | -                             |
| 2           | Motion primitive                  | motion vectors                     | linear move, close gripper | navigate to intermediary | move tray to desired position |
| 1           | Actuator primitive                | joint control, pump control        | joint control              | base velocity commands   | motor or magnet control       |

# **Unified feature definitions - Levels**



|          | Process                           | SiLA implementation           |                                          |                                                             |
|----------|-----------------------------------|-------------------------------|------------------------------------------|-------------------------------------------------------------|
| Level nr | Level name                        |                               |                                          |                                                             |
| 7        | Service                           | Fraunhofer Kevin              | UniteLabs MoMa                           | LAPP RARs / Unified<br>SiLA Robotics feature<br>definitions |
| 6        | Procedure<br>(Experiment / assay) |                               |                                          |                                                             |
| 5        | Task                              | Primary SiLA<br>Commands      | Primary SiLA commands                    | Outcome-oriented                                            |
| 4        | Subtask                           | Some SiLA commands reach down | Additional SiLA commands                 | Low-level                                                   |
| 3        | Motion sequence                   |                               | For debugging and custom implementations | LOW-level                                                   |
| 2        | Motion primitive                  | Robot level                   | Robot level                              |                                                             |
| 1        | Actuator primitive                |                               |                                          |                                                             |

## **Unified feature definitions – Structure (1)**



## Outcome-oriented (high-level) features

- ✓ cleaning
  - CleaningController-v0\_0.sila.xml
  - SprayController-v0\_0.sila.xml
- WipeController-v0\_0.sila.xml
- ∨ devicemanipulation
- BayController-v0\_0.sila.xml
- HatchController-v0 0.sila.xml
- UIController-v0 0.sila.xml
- → humaninteraction
- SpeechSerevice-v0\_0.sila.xml

- ∨ labwaremanipulation
- CapController-v0\_0.sila.xml
- ClampController-v0 0.sila.xml
- ConnectorController-v0 0.sila.xml
- ▲ LabelController-v0\_0.sila.xml
- LabwareTransferController-v1 0.sila.xml
- ▲ LidController-v0\_0.sila.xml
- LidFlipController-v0\_0.sila.xml
- PackagingController-v0\_0.sila.xml
- SlideInController-v0 0.sila.xml
- TransportationController-v0\_0.sila.xml
- TrolleyController-v0\_0.sila.xml
- TubeHandlingController-v0\_0.sila.xml

- ∨ perception
- BarcodeProvider-v0 0.sila.xml
- LiquidLevelProvider-v0\_0.sila.xml
- ObjectDetectionProvider-v0\_0.sila.xml
- PhotoProvider-v0 0.sila.xml
- PresenceProvider-v0\_0.sila.xml
- ShapeProvider-v0 0.sila.xml
- √ samplemanipulation
  - PipetteController-v0\_0.sila.xml
  - PourController-v0\_0.sila.xml
  - ShakeController-v0\_0.sila.xml
- StirController-v0 0.sila.xml
- VortexController-v0\_0.sila.xml

## **Unified feature definitions – Structure (2)**



Low-level features

- √ lowlevel
  - ArmController-v0\_0.sila.xml
- BaseController-v0\_0.sila.xml
- GripperController-v0\_0.sila.xml
- ∨ maintenance
  - BatteryController-v0\_0.sila.xml
  - ConfigurationController-v0\_0.sila.xml
  - InitializationService-v0\_0.sila.xml
  - MapService-v0\_0.sila.xml
  - PositionService-v0 0.sila.xml
  - ProgramController-v1\_0.sila.xml
  - StatusProvider-v0\_0.sila.xml
  - TeachingService-v0\_0.sila.xml
  - NalidationService-v0\_0.sila.xml

### **Organization**

- Domain-specific working group
- Reports back to the core WG
- Open group
- Bi-weekly meetings

## **Mission**

- Combine existing established technologies in a comprehensive framework
- SiLA as the central element of the tech stack
- Unify, scale-up and extend functionality
- Incorporate new concepts
- Facilitate exchange in the lab robotics community

## **Vision**

- Foster the SiLA-based plug & play integration of lab robots
- · Unify the communication standard
- Provide vendor-independent solutions

- SiLA-ROS interface
  - Hackathons
- Unify feature definitions
  - Structure to incorporate present and future lab robot capabilities
  - Identify candidates as standard definitions for specific capabilities
- Reference implementations
  - TIAGo □ Panna

## **Reference implementations - TIAGo**



## Panna Zsoldos, summer intern

- Take part in the SiLA Robotics Working Group's effort to unify the feature definitions
  - See <u>later</u>
- Apply the reference SiLA-ROS bridge implementation to TIAGo's framework
- Implement the basic marker-based pick-and-place sample transportation
- Prepare TIAGo for a PoC on LAPP



### **Organization**

- Domain-specific working group
- Reports back to the core WG
- Open group
- Bi-weekly meetings

## **Mission**

- Combine existing established technologies in a comprehensive framework
- SiLA as the central element of the tech stack
- Unify, scale-up and extend functionality
- Incorporate new concepts
- Facilitate exchange in the lab robotics community

## **Vision**

- Foster the SiLA-based plug & play integration of lab robots
- Unify the communication standard
- Provide vendor-independent solutions

- SiLA-ROS interface
  - Hackathons
- Unify feature definitions
  - Structure to incorporate present and future lab robot capabilities
  - Identify candidates as standard definitions for specific capabilities
- Reference implementations
  - TIAGo □ Panna
  - MIR + UR
  - 4<sup>th</sup> BioSASH Hackathon

## Reference implementations – The hackathon working group



## <u>Goals</u>

- Reference implementation of the labware transfer feature for different benchtop robot arms
  - Based on the <u>LabwareTransferController</u> feature definition
- Implement an exemplary labware transfer action, where the robot picks a plate from one device and places it in another device
  - Passive dummy devices with fixed site (aka nest) positions



### **Organization**

- Domain-specific working group
- Reports back to the core WG
- Open group
- Bi-weekly meetings

## **Mission**

- Combine existing established technologies in a comprehensive framework
- SiLA as the central element of the tech stack
- Unify, scale-up and extend functionality
- Incorporate new concepts
- Facilitate exchange in the lab robotics community

## <u>Vision</u>

- Foster the SiLA-based plug & play integration of lab robots
- · Unify the communication standard
- Provide vendor-independent solutions

- SiLA-ROS interface
  - Hackathons
- Unify feature definitions
  - Structure to incorporate present and future lab robot capabilities
  - Identify candidates as standard definitions for specific capabilities
- Reference implementations
  - TIAGo □ Panna
  - MIR + UR
  - 4<sup>th</sup> BioSASH Hackathon
- Incorporate new concepts (LAPP)
  - Digital twin
  - Robotic action templates
  - Labware library



# The Laboratory Automation Plug & Play (LAPP) framework

## **Motivation**



## The three pillars of plug & play lab robotics

#### Communication

- Standardized interoperability for lab devices
- Peer-to-peer communication between:
  - LIMS/Scheduler
  - Lab equipment: Liquid handlers, analytics
- Standardization in Laboratory Automation (SiLA)

## **Digital Twin**

- Information layer for the various components of the system
- Enables plug & play setup
- Laboratory Automation Plug & Play (LAPP)

#### **Robot level**

- Advanced robot implementations
- Robot Operating System (ROS)



















## The Laboratory Automation Plug & Play (LAPP) framework



## Why:

To enable a fully autonomous setup sequence for:

- Navigation
- Motion planning
- Device interactions

#### What:

A comprehensive all-round integration framework for manipulator robots in the lab

#### How:

- Combine existing building blocks
  - SLAM, Fiducial markers, kinematics, vision
- Add semantic and ontological layer:
  - The digital twin
- Provide a systematic approach:
  - Distinguish the components and layers of the system
  - Outline a reference architecture model



## Hierarchical levels of laboratory processes



| Process     |                                   | Lab examples                       |                            |                          |                               |
|-------------|-----------------------------------|------------------------------------|----------------------------|--------------------------|-------------------------------|
| Level<br>nr | Level name                        | Examples, liquid handler           | Examples, robot arm        | Examples, mobile robot   | Examples, conveyor            |
| 7           | Service                           |                                    | microscale services        |                          |                               |
| 6           | Procedure<br>(Experiment / assay) | microscale chromatography workflow |                            |                          |                               |
| 5           | Task                              | liquid transfer                    | labware transfer           |                          |                               |
| 4           | Subtask                           | aspirate                           | get labware, put labware   |                          |                               |
| 3           | Motion sequence                   | approach site with pipettor arm    | approach site              | navigate to target       | -                             |
| 2           | Motion primitive                  | motion vectors                     | linear move, close gripper | navigate to intermediary | move tray to desired position |
| 1           | Actuator primitive                | joint control, pump control        | joint control              | base velocity commands   | motor or magnet control       |

# Hierarchical levels of workflow representation and control architecture SILA Rapid Integration



| Process     |                                   | Protocols and languages                                   |                                | Control architecture                                |                     |
|-------------|-----------------------------------|-----------------------------------------------------------|--------------------------------|-----------------------------------------------------|---------------------|
| Level<br>nr | Level name                        | Liquid handling                                           | Robotics                       | Liquid handling                                     | Robotics            |
| 7           | Service                           | Service protocol                                          |                                | Lab management (LIMS, LES)                          |                     |
| 6           | Procedure<br>(Experiment / assay) | Experiment design language<br>Laboratory process language |                                | Automation Scheduler (E.g. GBG, niceLabs, PharmaMV) |                     |
| 5           | Task                              | High-level liquid handling script                         |                                | EVO PC                                              | Robot controller PC |
| 4           | Subtask                           |                                                           | Modular robot program          |                                                     |                     |
| 3           | Motion sequence                   | Low-level liquid handling script                          |                                |                                                     |                     |
| 2           | Motion primitive                  | Device firmware                                           | Low-level robot program        | Embadded controller                                 |                     |
| 1           | Actuator primitive                |                                                           | Joint trajectories, IO control | Embedded controller                                 | Robot controller    |

### **Organization**

- Domain-specific working group
- Reports back to the core WG
- Open group
- Bi-weekly meetings

## **Mission**

- Combine existing established technologies in a comprehensive framework
- SiLA as the central element of the tech stack
- Unify, scale-up and extend functionality
- Incorporate new concepts
- Facilitate exchange in the lab robotics community

## <u>Vision</u>

- Foster the SiLA-based plug & play integration of lab robots
- Unify the communication standard
- Provide vendor-independent solutions

- SiLA-ROS interface
  - Hackathons
- Unify feature definitions
  - Structure to incorporate present and future lab robot capabilities
  - Identify candidates as standard definitions for specific capabilities
- Reference implementations
  - TIAGo □ Panna
  - MIR + UR
  - 4<sup>th</sup> BioSASH Hackathon
- Incorporate new concepts (LAPP)
  - Digital twin
  - Robotic action templates
  - Labware library
  - Advanced robotic technologies: Perception, manipulation, Human-machine collaboration

## Position representation for stationary robots with the LAPP DT







**Shadow Robot** 









V4R, ACIN, TU Wien











V4R, ACIN, TU Wien

Jiang et al.

### **Organization**

- Domain-specific working group
- Reports back to the core WG
- Open group
- Bi-weekly meetings

## **Mission**

- Combine existing established technologies in a comprehensive framework
- SiLA as the central element of the tech stack
- Unify, scale-up and extend functionality
- Incorporate new concepts
- Facilitate exchange in the lab robotics community

## <u>Vision</u>

- Foster the SiLA-based plug & play integration of lab robots
- · Unify the communication standard
- Provide vendor-independent solutions

- SiLA-ROS interface
  - Hackathons
- Unify feature definitions
  - Structure to incorporate present and future lab robot capabilities
  - Identify candidates as standard definitions for specific capabilities
- Reference implementations
  - TIAGo □ Panna
  - MIR + UR
  - 4<sup>th</sup> BioSASH Hackathon
- Incorporate new concepts (LAPP)
  - Digital twin
  - Robotic action templates
  - Labware library
  - Advanced robotic technologies: Perception, manipulation, Human-machine collaboration
- Bi-weekly meetings on-going
  - Discussions: workflow representations, labware ontologies, etc.
  - Contact adam.wolf@sila-standard.org to join