Table des matières

Section 1

1 Mécanique	1
2 Ondes	4
3 Éléctromagnétique	6
4 Optique	14
5 Quantique	15
6 Chimie	19
7 Thermodynamique	20
8 Annexes	21
9 Compléments X-FNS	22

1 Mécanique

 Δ un axe fixe, $\mathscr{D} \in \Delta$, O, O', M des points de l'espace, et H $\in \Delta$ le un projeté orthogonal de M sur Δ

Référenciels non Galiléens

Formule de dérivation composée	$\left(\frac{d\vec{U}}{dt}\right)_{R} = \left(\frac{d\vec{U}}{dt}\right)_{R'} + \overrightarrow{\Omega}_{R'/R} \wedge \overrightarrow{U}$
Vitesse	$\vec{v_R}(\mathbf{M}) = \vec{v_{R'}}(\mathbf{M}) + \vec{v_e}(\mathbf{M})$
Vitesse d'entrainement	$\vec{v_e}(\mathbf{M}) = \vec{v_R}(\mathbf{O}') + \vec{\Omega}_{R'/R} \wedge \vec{\mathbf{O}'}\mathbf{M}$
Vitesse ref en translation uniforme	$\vec{v}_{R}(M) = \vec{v}_{R'}(M) + \vec{v}_{e}(M) = \vec{v}_{R}(O') + \vec{v}_{R}(O')$
Vitesse ref en rotation uniforme d'axe fixe	$\vec{v_R}(\mathbf{M}) = \vec{v_{R'}}(\mathbf{M}) + \vec{\Omega}_{\mathbf{R'}/\mathbf{R}} \wedge \vec{\mathbf{HM}}$
Accélération ref en translation uniforme	$\vec{a}_{\mathrm{R}}(\mathrm{M}) = \vec{a}_{\mathrm{R}'}(\mathrm{M}) + \vec{a}_{\mathrm{R}}(\mathrm{O}')$
Accélération ref en rotation uniforme d'axe fixe	$\vec{a}_{\mathrm{R}}(\mathrm{M}) = \vec{a}_{\mathrm{R}'}(\mathrm{M}) + \vec{a}_{c}(\mathrm{M}) + \vec{a}_{e}(\mathrm{M})$
Accélération de Coriolis	$\vec{a}_c(\mathbf{M}) = 2\vec{\Omega}_{\mathbf{R}'/\mathbf{R}} \wedge \vec{v_{\mathbf{R}'}}(\mathbf{M})$
Accélération d'entrainement	$\vec{a}_e(\mathbf{M}) = -\Omega_{\mathbf{R}'/\mathbf{R}}^2 \mathbf{H} \mathbf{M}$
Théorème de la résultante dynamique	$\vec{a_{R'}} = \sum \vec{F_{ext}} - m\vec{a_e} - m\vec{a_c} = \sum \vec{F_{ext}} + \vec{F_{ie}} + \vec{F_{ic}}$
Théorème du moment cinétique	$\left(\frac{d\vec{\mathcal{L}}_{A/R'}(M)}{dt}\right)_{R} = \sum \vec{\mathcal{M}}_{A}\left(\vec{F}_{ext}\right) + \vec{\mathcal{M}}_{A}\left(\vec{F}_{ie}\right) + \vec{\mathcal{M}}_{A}\left(\vec{F}_{ic}\right)$
Energie d'entrainement, cas translation rectiligne	$E_{p,ie} = ma_e x + C^{\text{ste}}$
Energie d'entrainement, cas rotation uniforme d'axe fixe	$E_{p,ie} = -\frac{1}{2}m\Omega_{R'/R}^2 r^2 + C^{\text{ste}}$

TABLE 1 – Formules relatives aux référentiels non inertiels.

Énergétique

D	
Puissance d'une force	$\mathscr{P}(\vec{f}) = \vec{f} \cdot \vec{v}$
Travail élémentaire	$\delta \mathbf{W}(\vec{f}) = \mathcal{P}(\vec{f}) \mathrm{d}t = \vec{f} \cdot \mathbf{d}\vec{\mathrm{OM}}$
Force conservative	$\exists \mathbf{E}_p \mid \delta \mathbf{W}(\vec{f}) = -\mathbf{d}\mathbf{E}_p$
Travail d'une force	$W(\vec{f}) = \int_{M \in AB} \delta W(\vec{f})$
Condition pour qu'une force dérive d'une \mathbf{E}_p	$\vec{\text{rot}}\vec{\text{F}} = \vec{0}$
Théorème de l'énergie cinétique	$\Delta \mathbf{E}_c = \sum_i \mathbf{W}(\vec{f}_i)$
Energie potentielle	$E_p = -\int_{\Gamma} dE_p$
Energie mécanique	$\mathbf{E}_m = \mathbf{E}_p + \mathbf{E}_c$
Théorème de l'énergie mécanique	$\Delta E_m = \sum_i W(\vec{F}_{i, \text{ non conservative}})$
Lien énergie potentielle / force	$\vec{\mathbf{F}} = -\vec{\nabla}\mathbf{E}_p = -\mathbf{grad}(\mathbf{E}_p)$
Lien puissance / Energie	$\mathscr{P} = \frac{\mathrm{dE}}{\mathrm{d}t}$
Théorème de la puissance cinétique	$\mathcal{P} = \frac{\mathrm{dE}}{\mathrm{d}t}$ $\frac{\mathrm{dE}_c}{\mathrm{d}t} = \sum_i \mathcal{P}(\vec{f}_i)$

TABLE 2 – Formules énergiétiques.

2 Ondes

Avec u une coordonnée de l'espace (u=ax+by+cz), et $\vec{r}=\vec{e_x}+\vec{e_y}+\vec{e_z}$

Formules: Les ondes

D'Alembertien	$\Box \Psi = \Delta \Psi - \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2}$
Équation de D'Alembert	$\Box \Psi = 0$
Cas 1D	$\Box \Psi = \frac{\partial^2 \Psi}{\partial u^2} - \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2} = 0, \text{ avec } u = \alpha x + \beta y + \gamma z$
Surface d'onde	Points M à t fixé tel que $\Psi(M, t) = C^{\text{ste}}$
Solutions de l'EDA 1D	$\Psi(u,t) = f(u-tv) + g(u+vt) \text{ ou } f(t-\frac{u}{v}) + g(t+\frac{u}{v})$
Pour Ψ solution de l'EDA 1D	Avec $a(u) = \Psi(u, 0)$ et $b(u) = \frac{\partial \Psi}{\partial t}(u, 0) = b(u)$
On a	$\Psi(u,t) = f(u-tv) + g(u+vt) \text{ ou } f(t-\frac{u}{v}) + g(t+\frac{u}{v})$ $\text{Avec } a(u) = \Psi(u,0) \text{ et } b(u) = \frac{\partial \Psi}{\partial t}(u,0) = b(u)$ $\Psi(u,t) = \frac{1}{2} \left(a(u-vt) + a(u+vt) + \frac{1}{v} \int_{u-vt}^{u+vt} b(s) ds \right)$
Onde progressive monochromatique	$\Psi(u,t) = \Psi_0 \cos\left(\omega t \pm ku + \varphi\right) = \Psi_0 \cos\left(\omega \left(t \pm \frac{u}{v}\right) + \varphi\right)$
Vecteur d'onde	$ec{k}=kec{e_u}$
Norme du vecteur d'onde	$\ \vec{k}\ = k(\omega) = \frac{\omega}{\nu} = \vec{r} \cdot \vec{k}$
Longueur d'onde	$\ \vec{k}\ = k(\omega) = \frac{\omega}{\nu} = \vec{r} \cdot \vec{k}$ $\lambda = \mathbf{T}^{-1} = \frac{2\pi}{k} \left(\operatorname{car} k(u + \lambda) = ku + 2\pi \right)$
Célérité d'une onde dans la matière	$v_{\mathrm{mat}} = \sqrt{\frac{\mathrm{K}a^2}{m}} = \sqrt{\frac{\mathrm{E}}{\rho}}$ Avec $\mathrm{E} = \frac{\mathrm{K}}{a}$ le module de Young et ρ sa masse volumique.
Célérité d'une onde dans une corde	$v_{\rm corde} = \sqrt{\frac{{ m T}}{\mu_0}}$ Avec T la tension et μ_0 la masse linéique
Ondes stationnaires	$\Psi(u,t) = \gamma(t)\varphi(u)$
Sur une corde de longueur L,	$y_n(x,t) = \left[a_n \cos\left(\frac{n\pi v}{L}t\right) + b_n \sin\left(\frac{n\pi v}{L}t\right) \right] \sin\left(\frac{n\pi v}{L}\right)$

TABLE 3 – Formules : Les Ondes

Paquets d'ondes

	quets a offace
EDA:	$\frac{\partial^2 \theta}{\partial t^2} = v^2 \frac{\partial^2 \theta}{\partial x^2} - \frac{1}{\tau} \frac{\partial \theta}{\partial t} - \omega_0^2 \theta$
Forme recherchée :	$\underline{\theta}(x,t) = \underline{\theta}_0 e^{i(\omega t - kx)}$
Reformulation de l'EDA :	$-\omega^2\theta = v^2k^2\theta - \frac{1}{\tau}i\omega\theta - \omega_0\theta$
Relation de dispertion : $(\theta \neq 0)$	$\frac{\omega_0^2 - \omega^2}{v^2} + \frac{1}{v^2 \tau} i\omega = k^2$
Vecteur d'onde complexe :	$\underline{k} = k' - i k''$
Forme de l'onde :	$\underline{\theta}(x,t) = \underline{\theta}_0 e^{-k''x} e^{i(\omega t - kx)}$
Vitesse de phase :	$v_{arphi} = rac{\omega}{k}$
Distance caracteristique d'atténuation	$\left \begin{array}{c} 1 \\ k''(\omega) \end{array} \right $
Klein Gordon (Limite $\omega_0 \ll 1$)	$\underline{k}^2 = \frac{\omega_0^2 - \omega^2}{v^2}$
Vitesse de groupe	$v_g = \frac{\mathrm{d}\omega}{\mathrm{d}k} = \frac{1}{\mathrm{d}k}$
	$\overline{\mathrm{d}\omega}$

TABLE 4 – Paquets d'onde

3 Éléctromagnétique

Électromagnétique

Vecteur densité de courant volumique	$\vec{\jmath} = q n^* \vec{v} = \rho \vec{v}$
Lien densité de courant volumique / Charge	$dQ = \vec{j} \cdot d\vec{S}dt$
Maxwell Gauss	$\operatorname{div}(\vec{\mathbf{E}}) = \frac{\rho}{\varepsilon_0}$
Maxwell Thomson / Flux	$\operatorname{div}(\vec{\mathrm{B}}) = 0$
Maxwell Faraday	$\vec{\text{rot}}(\vec{\mathbf{E}}) = -\frac{\partial \vec{\mathbf{B}}}{\partial t}$
Maxwell Ampère	$\vec{\text{rot}}(\vec{B}) = \mu_0 \vec{j} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$
Ostrogradski	$\iiint\limits_{\mathcal{H}} \operatorname{div}(\vec{\mathbf{F}}) d\tau = \iint\limits_{\mathcal{S}} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}}$
Stokes	$\iint_{S} \vec{rot}(\vec{F}) \cdot d\vec{S} = \oint_{\Gamma} \vec{F} \cdot d\vec{\ell}$
Théorème de Gauss	$\iint\limits_{\mathcal{S}} \vec{E} \cdot d\vec{S} = \frac{Q_{\text{int}}}{\varepsilon_0}$
Théorème d'Ampère	$\oint\limits_{\Gamma}\vec{\mathrm{B}}\cdot\mathrm{d}\vec{\ell}=\mu_0\mathrm{I}_{\mathrm{enl}}$
Conservation de la charge (local)	$\frac{\partial \rho}{\partial t} + \operatorname{div}(\vec{j}) = 0$
Conservation de la chage (Global)	$\frac{\partial \rho}{\partial t} + \operatorname{div}(\vec{j}) = 0$ $\frac{dQ}{dt} + \iint_{S} \vec{j} \cdot d\vec{S} = 0$
Lien champ éléctrique potentiels	$\vec{E} = -grad(V)$
Lien champ éléctrique potentiels	$dV = -\vec{E} \cdot d\vec{\ell}$

TABLE 5 – Formules électromagnétique.

Électromagnétique (Tableau 2)

Pour une variable d'état $\mathscr E$	$\Delta \mathcal{E} = \sum_{i} \mathcal{E}_{i,\text{\'echang\'e}} + \mathcal{E}_{\text{cr\'ee}}$
Pour une variable d'état (infinitésimal) $\mathscr E$	$d\mathscr{E} = \sum_{i} \delta\mathscr{E}_{i,\text{\'e}chang\'e} + \delta\mathscr{E}_{cr\'ee}$
Relations de passage à l'interface conducteur-vide	$\begin{cases} \vec{E}_{\text{vide}}(M, t) = \frac{\sigma(M, t)}{\varepsilon_0} \vec{n}_{\text{conducteur} \to \text{vide}} \\ \vec{B}_{\text{vide}} = \mu_0 \vec{j}_s(M, t) \wedge \vec{n}_{\text{conducteur} \to \text{vide}} \end{cases}$

TABLE 6 – Formules électromagnétique. (Tableau 2)

Dipôles non rayonnants

Moment dipolaire	$\vec{p} = q\vec{\mathrm{NP}}$
Potentiel Dipôle	$V = \frac{\vec{p} \cdot \vec{u_r}}{4\pi\varepsilon_0 r^2} = \frac{p\cos(\theta)}{4\pi\varepsilon_0 r^2}$
Champ éléctrique, dipôle non rayonnant	$\vec{E} = \frac{p}{4\pi\varepsilon_0 r^3} (2\cos(\theta)\vec{u_r} + \sin(\theta)\vec{u_\theta})$
Champ éléctrique dipôle non rayonnant, Forme intrinseque	$\vec{E} = \frac{\vec{p}}{4\pi\varepsilon_0 r^3} (2\cos(\theta)\vec{u}_r + \sin(\theta)\vec{u}_\theta)$ $\vec{E} = \frac{1}{4\pi\varepsilon_0 r^5} (3(\vec{p} \cdot \vec{r})\vec{r} - r^2 \vec{p})$
Moment dûe à un champ éléctrostatique sur un dipôle <i>rigide</i> non rayonnant	$\vec{\mathcal{M}}_{\mathrm{O}} = \vec{p} \wedge \vec{\mathrm{E}}_{\mathrm{ext}}$
Énergie potentielle dûe à l'action éléstrostatique d'un champ uniforme sur un dipôle <i>rigide</i> non rayonnant	$\mathscr{E}_{\mathrm{p}} = -\vec{p} \cdot \vec{\mathrm{E}}_{\mathrm{ext}}$
Force exercée par un champ electrostatique sur un dipôle non rayonnant au point O	$\vec{F}_{E_{\text{ext}} \to \text{dip}} = \left(\vec{p} \cdot \vec{\text{grad}} \right) \vec{E}_{\text{ext}}(O)$
Analogie champ éléctrique / magnétique	$\frac{1}{\varepsilon_0} \longleftrightarrow \mu_0 \text{ et } \vec{p} \longleftrightarrow \vec{M}$

TABLE 7 – Dipôles non rayonnants.

Formule d'énergétique électromagnétique

_	
Force de Lorentz	$\vec{\mathbf{F}}_{\text{Lorentz}} = q\left(\vec{\mathbf{E}} + \vec{v} \wedge \vec{\mathbf{E}}\right)$
Force de Lorentz volumique	$\vec{f}_{\text{Lorentz}} = \rho \vec{E} + \vec{j} \wedge \vec{B}$
Force de Laplace	$\vec{F}_{\mathscr{L}} = i\vec{L} \wedge \vec{B}$
Force de Drude	$\vec{F}_{\text{Drude}} = -\frac{m_i}{\tau_i} \vec{v}_i$
Loi d'Ohm locale	$\vec{F}_{Drude} = -\frac{m_i}{\tau_i} \vec{v}_i$ $\vec{J} = \gamma \vec{E}, \ \gamma = \sum_i \frac{n_i^* \tau_i q_i^2}{m_i}$
Lien puissance (Volumique) Lorentz / Drude	$p_{\text{lorentz}} = \vec{j} \cdot \vec{E} = -p_{\text{Drude}}$
Densité volumique énergétique éléctromagnétique	e_{em} tel que $\mathscr{E}_{\mathrm{em}} = \iiint\limits_{\mathrm{M}\in\mathrm{V}} e_{\mathrm{em}}\mathrm{d}\mathscr{V}$
Conservation de l'énergie éléctromagnétique (Globale)	$\frac{\mathrm{d}\mathscr{E}_{\mathrm{em}}}{\mathrm{d}t} + \iint\limits_{\mathbf{S}_{\mathscr{V}}} \vec{\Pi} \cdot \mathbf{d}\vec{\mathbf{S}} = -\mathscr{P}_{\mathrm{Lorentz}}$
Conservation de l'énergie éléctromagnétique (Local)	$\frac{\partial e_{\text{em}}}{\partial dt} + \text{div}(\vec{\Pi}) = -\vec{p}_{\text{Lorentz}}$
Formule pour $e_{ m em}$	$e_{\rm em} = \frac{\varepsilon_0 E^2}{2} + \frac{B^2}{2\mu_0}$
Vecteur de Poynting	$\vec{\Pi} = \frac{\vec{E} \wedge \vec{B}}{\mu_0}$

TABLE 8 – Energie éléctromagnétique

Dipôles Rayonnants

•	•
Moment dipôlaire atome soumis à un champ éléctrique	$\vec{p} = \frac{(Ze)^2}{m\omega_0^2} E_0 \cos(\omega t) \vec{e}_x$
Approximation dipolaire	$r \gg a$
Dans l'approximation non relativiste	$a\omega \ll c$
Zone de rayonnement (Zone de champ lointaine)	$r \gg \lambda$
À l'onde exitatrice $\vec{\mathrm{E}}_{\mathrm{ext}}$ est associé ω et λ tel que	$\lambda f = c \ \lambda \frac{\omega}{2\pi} = c \ \omega = \frac{2\pi c}{\lambda}$
Pour prendre en compte le temps de propagation de l'onde, on définit	$\xi = t - \frac{r}{c}$
Expression des champs éléctromagnétiques dans cette zone	$\begin{cases} \frac{\vec{\mathbf{E}}(\mathbf{M},t) = \frac{\sin\theta}{4\pi\varepsilon r^3} \left(\frac{r}{c}\right)^2 p''(\xi)\vec{e}_{\theta}}{\vec{\mathbf{B}}(\mathbf{M},t) = \frac{\sin\theta}{4\pi\varepsilon_0 r^3 c} \left(\frac{r}{c}\right)^2 p''(\xi)\vec{e}_{\phi}} \\ \langle \vec{\Pi}(\mathbf{M},t) \rangle_t = \frac{p_0^2 \omega^4 \sin^2\theta}{32\pi^2\varepsilon_0 c^3 r^2} \vec{e}_r \\ \mathscr{P} = \iint\limits_{\text{Sphère}} \langle \vec{\Pi}(\mathbf{M},t) \rangle_t \cdot \vec{d\mathbf{S}} = \frac{p_0^2 \omega^4}{12\pi\varepsilon_0 c^3} \end{cases}$
Puissance rayonnée	$\left\langle \vec{\Pi}(\mathbf{M},t) \right\rangle_t = \frac{p_0^2 \omega^4 \sin^2 \theta}{32\pi^2 \varepsilon_0 c^3 r^2} \vec{e}_r$
Puissance moyenne, sphère rayon r , centré sur le dipôle	Spriere
Régime Rayleigh (Régime basse fréquence)	$\omega^2 \ll \omega_0^2$ et donc, $p_0(\omega) = \frac{(Ze)^2 E_0}{m\omega_0^2}$
Puissance de Larmor	$\mathscr{P}_{\text{Larmor}} = \frac{q^2}{4\pi\varepsilon_0} \times \frac{2\langle p^2 \rangle}{3c^2}$

TABLE 9 – Dipôles Rayonnants

Ondes éléctromagnétiques dans l'ionosphère

	Dilué : On néglige la force de drude
Hypothèses sur le plasma	Neutre : Il y a autant de charges + que de –
	Non relativistes : Vitesses faibles devant <i>c</i>
Équations de Maxwell dans le plasma	$(MG): \operatorname{div}\vec{E} = 0 \qquad (MF): \operatorname{rot}\vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $(MT): \operatorname{div}\vec{B} = 0 (MA): \operatorname{rot}\vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$
Equations de Marwon dans le plasma	(MT) : $\operatorname{div} \vec{B} = 0$ (MA) : $\overrightarrow{\operatorname{rot}} \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$
Conductivité complexe du plasma	$\vec{\underline{j}} = \underline{\gamma} \vec{\underline{E}} = \frac{ne^2}{mi\omega} \vec{\underline{E}}$
Pulsation Plasma (Pulsation de coupure)	$\vec{\underline{J}} = \underline{\gamma} \vec{\underline{E}} = \frac{ne^2}{mi\omega} \vec{\underline{E}}$ $\omega_p = \sqrt{\frac{ne^2}{m\varepsilon_0}}$
Relation de dispersion dans le plasma (C'est Kleine Gordon!)	$\underline{k}^2 = \frac{\omega^2 - \omega_p^2}{c^2}$
Indice Optique	$n(\omega) = \frac{c}{ \nu_{\varphi}(\omega) }$
Rappel : Formule de Rayleigh	$v_g = v_{\varphi} + k' \frac{\mathrm{d}v_{\varphi}}{\mathrm{d}k'}$
Formule de Rayleigh, version avec n	$v_g = \frac{\pm c}{n + \omega \frac{\mathrm{d}n}{\mathrm{d}\omega}}$
Dispertion anormale (Impossible dans le plasma) : Dans ce cas, v_g ne définit pas la vitesse de transport de l'information	$\frac{\mathrm{d}n}{\mathrm{d}\omega} < 0 \text{ et } v_{\varphi} > c$
Ordre de grandeur : Fréquence de coupure f_p dans l'ionosphère terrestre	$f_p \simeq 10 \mathrm{MHz}$

TABLE 10 – Ondes éléctromagnétiques dans l'ionosphère

On se limite à des signaux lentements variables (En basse fréquence)

Ondes éléctromagnétiques dans les conducteurs Ohmiques

TRD appliqué au porteur mobile moyen e^- libre :	$m\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = -e\vec{\mathrm{E}} - \frac{m}{\tau}\vec{v}$
Relation "ohmique"	$\vec{J} = \frac{\gamma_0}{1 + i\tau\omega} \vec{E} = \frac{\frac{ne^2\tau}{m}}{1 + i\tau\omega} \vec{E}$ $\tau\omega \ll 1, \frac{\omega\varepsilon_0}{\gamma_0} \ll 1$
Approximation basse fréquence	$\tau\omega\ll 1, \frac{\omega\varepsilon_0}{\gamma_0}\ll 1$
Ordre de grandeur de ω pour le cuivre à $100 \mathrm{K}$	$1 \times 10^{14} \text{rad/s}$
Cette approximation est vérifiée lorsque (Radiofréquences)	$\omega \ll 1 \times 10^{14} \text{rad/s}$
Radiofréquences :	$f \lesssim 1 \times 10^9 \text{Hz}$
Équations de Maxwell dans l'ARQS	$(MG): \operatorname{div}\vec{E} = 0 \qquad (MF): \operatorname{rot}\vec{E} = -\frac{\partial \vec{B}}{\partial t}$
	$(MT): \operatorname{div} \vec{B} = 0 (MA): \vec{\operatorname{rot}} \vec{B} = \mu_0 \gamma_0 \vec{E}$
Relation de dispertion (Obtenue en injectant (MF) dans (MA))	$\underline{k}^2 = -i\mu_0 \gamma_0 \omega \text{(On a posé} \underline{k} = k' - ik'')$
Expression du champ éléctrique	$\vec{E}(M,t) = \vec{E}_0 e^{-\frac{u}{\delta}} \cos\left(\omega t - \frac{u}{\delta} + \Phi\right)$
Rappel : Distance caractéristique d'atténuation :	$\delta = \frac{1}{ k''(\omega) }$
	mat / freq 1kHz 1GHz
Ordres de grandeur de δ	cuivre $\delta = 2$ mm $\delta = 2$ μ m
	fonte $\delta = 2 \text{cm}$ $\delta = 20 \mu \text{m}$
Conducteur parfait :	$\vec{E}(M, t) = 0$ au sein du conducteur
Une OemPPM en incidence normale réféchie vérifie	 même amplitude même pulsation même polarisation vecteurs d'ondes de même direction mais opposés La réfléction s'accompagne d'un déphasage de π
Coefficient de réfléction en amplitude	$\underline{\Omega} = \frac{\text{Amplitude complexe de } \underline{\mathbf{E}}_r \hat{\mathbf{a}} \text{ l'interface}}{\text{Amplitude complexe de } \underline{\mathbf{E}}_i \hat{\mathbf{a}} \text{ l'interface}}$

Table 11 – Ondes éléctromagnétiques dans les conducteurs Ohmiques $11\,$

Ondes éléctromagnétiques dans les conducteurs Ohmiques (Tableau 2)

· · · · · · · · · · · · · · · · · · ·	-
Transition	$\underline{t} = \frac{\underline{E}_r(\text{interface})}{\underline{E}_i(\text{interface})}$
Dans le modèle du conducteur parfait	$\delta = 0, \ \gamma \to +\infty, \ \underline{\Omega} = -1, \ \underline{t} = 0$
Stationairité des ondes du coté du vide	$\begin{cases} \frac{\vec{\mathrm{B}}_{\mathrm{vide}} = \frac{2E_0}{c}\cos(\omega t + \varphi)\cos(ku)(\vec{e_u} \wedge \vec{e_p})}{\vec{\mathrm{E}}_{\mathrm{vide}} = 2E_0\sin(\omega t + \varphi)\sin(ku)\vec{e_p}} \end{cases}$
Densité d'énergie éléctromagnétique moyenne	$\langle e_{em}(\mathbf{M},t)\rangle_t = \varepsilon_0 \mathbf{E}_0^2$
Vecteur de Poynting moyen	$\left\langle \vec{\Pi}(\mathbf{M},t)\right\rangle _{t}=\vec{0}$

TABLE 12 – Ondes éléctromagnétiques dans les conducteurs Ohmiques (Tableau 2)

Avec j l'unité complexe de partie imaginaire positive. $(j^2 = -1, \Im(j) = 1)$. On pose $x = \frac{\omega}{\omega_0}$

Filtrage

Fonction de transfert complexe	$\underline{\mathbf{H}} = \frac{\underline{s}}{\underline{e}}$
FC ¹ : Passe bas du premier ordre	$\underline{\mathbf{H}} = \frac{\mathbf{H_0}}{1 + jx}$
FC : Passe haut du premier ordre	$\underline{\mathbf{H}} = \frac{\mathbf{H}_0 \hat{\mathbf{j}} \mathbf{x}}{1 + \hat{\mathbf{j}} \mathbf{x}}$
FC : Passe bas du second ordre	$\underline{\mathbf{H}} = \frac{\mathbf{H}_0}{1 - (x)^2 + j\frac{x}{\mathbf{Q}}}$
FC : Passe haut du second ordre	$\underline{\mathbf{H}} = \frac{\mathbf{H}_0(x)^2}{1 - (x)^2 + j\frac{x}{O}}$
FC : Passe bande	$\underline{\mathbf{H}} = \frac{\mathbf{H}_0}{1 + j\mathbf{Q}\left(x - \frac{1}{x}\right)}$
Remarque	Pour passer d'un filtre passe haut à un filtre passe bas, il suffit de multi- plier le numérateur par le terme prédominant en x au denominateur!
Bande passante	$\Delta\omega = \frac{\omega_0}{Q} \operatorname{et} \Delta f = \frac{f_0}{Q}$

TABLE 13 – Filtrage d'un signal periodique en RSF

4 Optique

Optique Ondulatoire

Longueur d'onde dans le vide (Resp. vecteur d'onde)	$\lambda_0 \text{ (resp } k_0)$
Rappel : Relation de Plank Einstein :	$\mathscr{E} = \hbar v = \hbar \omega = \frac{2\pi \hbar}{\lambda_0}$
Onde lumineuse monochromatique :	$\underline{\psi}(\mathbf{M},t) = \Psi(\mathbf{M})e^{i(\omega t - \varphi(\mathbf{M}))}$
Retard de phase :	$\varphi(M) = \tau_{SM} + \varphi(S)$
Retard de phase (2) :	$\tau_{\text{SM}} = \int_{\Gamma_{\text{SM}}} \frac{d\ell}{\nu_{\varphi}} = \int_{\Gamma_{\text{SM}}} \frac{nd\ell}{c} = \frac{1}{c} \int_{\Gamma_{\text{SM}}} nd\ell = \frac{1}{c} (\text{SM})$ $I(M) = k \cdot \langle \psi^{2}(M, t) \rangle_{\tau_{r}} = \frac{k}{\tau_{r}} \int_{t}^{t+\tau_{r}} \psi^{2}(M, u) du, \ k = c\varepsilon_{0} \text{ Note : à l'usage}$
Intensité lumineuse :	$I(M) = k \cdot \langle \psi^2(M, t) \rangle_{\tau_r} = \frac{k}{\tau_r} \int_t^{t+\tau_r} \psi^2(M, u) du, \ k = c\varepsilon_0 \text{ Note : à l'usage},$ on ne prends pas en compte le k . τ_r le temps de réponse du capteur.
Ordre de grandeur de $ au_r$:	$\tau_{r,\text{oeuil humain}} = 1 \times 10^{-1} = 0.1 \text{s} \ \tau_{r,\text{capteur CCD}} = 1 \times 10^{-6} \text{s}$
Pour une onde monochromatique :	$I(M) = \frac{\psi^2(M)}{2}$
Durée de cohérence	$\tau_c = \frac{1}{\Delta \nu} = \pi \tau$

TABLE 14 – Optique ondulatoire

Dispositif interferenciels des trous d'Young || Dispositif interferenciels à élargissement des fronts d'onde

1 011 1	3
Interférences à grande distance : Dans l'hyposthèse où M est à grande distance des points S_1 et S_2	$a \ll D \text{ et } x , y \ll D$
Difference de marche à grande distance dans le dispositif des trous d'Young :	$\delta_{1/2}(\mathbf{M}) = n \frac{ax}{\mathbf{D}}$
Difference de marche à grande distance dans le montage de Frauhofer :	$\delta_{1/2}(\mathbf{M}) = n \frac{ax}{f_2'}$
Critère de brouillage par extension spatiale d'une fente source primaire, et critère de brouillage par extension spectrale de la source :	$ \Delta p \gtrsim 1$
Perte de contraste par élargissement angulaire de la source	$\theta_{\text{source}} \simeq \frac{\lambda}{a}$

TABLE 15 – Dispositif interferenciels des trous d'Young

Interferomètre à division d'amplitude || Dispositif interferenciels de Michelson

Difference de marche au point M par l'interferomètre :	$\delta_{1/2}(\mathbf{M}) = 2ne\cos(i)$
Intensité en un point M de l'écran (Fresnel) :	$\mathscr{I}(\mathbf{M}) = \frac{\mathbf{I}_0}{2} \left(1 + \cos(\frac{2\pi}{\lambda_0} \cdot 2en\cos i) \right)$
Rappel : Dans les conditions de gauss, DL_2 :	$\cos(i) = 1 - \frac{i^2}{2} + \underset{i \to 0}{o}(i^2) \sin(i) = i + \underset{i \to 0}{o}(i^2) = \tan(i)$
Reformulation de l'intensité en un point M de l'écran dans les conditions de gauss :	$\mathscr{I}(\mathbf{M}) = \frac{\mathbf{I}_0}{2} \left[1 + \cos \left(\frac{4\pi en}{\lambda_0} \left(1 - \frac{1}{2} \left(\frac{r}{f'} \right)^2 \right) \right) \right]$
Rayon des anneaux :	$r = f' \sqrt{2\left(1 - \frac{p}{p(O')}\right)}$

Table 16 – Dispositif interferenciels de Michelson

5 Quantique

Introduction aux equations de la physique quantique

Energie du photon	$\mathscr{E}_{\mathrm{photon}} = \hbar \omega$
Amplitude de protobabilité de présence	$\psi(\mathbf{M},t), \operatorname{Im}(\psi) \subset \mathbb{C}$
Amplitude de protobabilité de présence	$dP(u,t) = \psi^*(u,t)\psi(u,t)du = \psi(u,t) ^2du$ (La dernière égalité dans le cas u coordonée cartésienne)
En cartésien 1D, on écrit la densité de probabilité de présence	$\rho(u,t) = \psi(u,t) ^2$
La probabilité de trouver la particule dans $[a,b]$ s'écrit	$P(a \le u \le b, t) = \int_{a}^{b} \rho(u, t) du$
Extension spatiale typique de la fonction d'onde	Δu
Longueur d'onde de Broglie (à prononcer <i>Breuil</i>)	λ_0 ou $\lambda_{ m DB}$
Pour u une variable aléatoire :	
Moyenne de <i>u (Esperance</i>)	$\langle u(t)\rangle_{\psi} = \int_{\mathbb{R}} u\rho(u,t) du$
Moments de <i>u</i> (<i>Théorème de transfert</i>)	$\langle u(t) \rangle_{\psi} = \int_{\mathbb{R}} u \rho(u, t) du$ $\langle u^{n}(t) \rangle_{\psi} = \int_{\mathbb{R}} u^{n} \rho(u, t) du, \ n \in \mathbb{N}^{*}$
Si u est en cartésien :	
Extension spatiale typique de la fonction d'onde (<i>Écart type</i>) :	$\Delta u = \sigma(u) = \sqrt{\mathbb{V}(u)} = \sqrt{\mathbb{E}(u^2) - \mathbb{E}(u)^2} = \sqrt{\langle u^2(t) \rangle_{\psi} - \langle u(t) \rangle_{\psi}^2}$
Condition aux limites de Born	
Équation de Schrödinger	$\int_{\mathbb{R}} \rho(u, t) du = 1$ $i\hbar \frac{\partial \psi}{\partial t} = \frac{-\hbar^2}{2m} \Delta \psi + V \psi$ $\frac{-\hbar}{2m} \delta \psi$
Terme d'énergie cinétique de la particule	$-\frac{\hbar}{2m}\delta\psi$
Terme lié à l'énergie potentielle	Vit
Vitesse de la particule (def)	$\langle \nu_{x}(t) \rangle_{\psi} = \lim_{dt \to 0} \frac{\langle x(t+dt) \rangle_{\psi} - \langle x(t) \rangle_{\psi}}{dt}$ $\langle \nu_{x}(t) \rangle_{\psi} = \frac{\hbar}{im} \int_{\mathbb{R}} \psi^{*} \frac{\partial \psi}{\partial x} dx$
Vitesse de la particule	$\langle \nu_x(t) \rangle_{\psi} = \frac{\hbar}{im} \int_{\mathbb{R}} \psi^* \frac{\partial \psi}{\partial x} dx$

TABLE 17 – Introduction aux equations de la physique quantique

Introduction aux equations de la physique quantique (Tableau 2)

Quantité de mouvement	$\langle p_x \rangle_{\psi} = m \langle v_x \rangle_{\psi} = \int_{\mathbb{R}} \psi^* \left(\frac{\hbar}{i} \right) \frac{\partial \psi}{\partial x} dx$
Quantité de mouvement (Moment d'ordre 2)	$\langle p_x^2 \rangle_{\psi} = \int_{\mathbb{R}} \psi^* \left(\frac{\hbar}{i}\right)^2 \frac{\partial^2 \psi}{\partial x^2} dx$
Théorène d'Ehrenfest	$\langle p_x \rangle_{\psi} = m \langle v_x \rangle_{\psi} = \int_{\mathbb{R}} \psi^* \left(\frac{\hbar}{i} \right) \frac{\partial \psi}{\partial x} dx$ $\langle p_x^2 \rangle_{\psi} = \int_{\mathbb{R}} \psi^* \left(\frac{\hbar}{i} \right)^2 \frac{\partial^2 \psi}{\partial x^2} dx$ $\frac{d \langle p_x \rangle_{\psi}}{dt} = -\left\langle \frac{\partial V}{\partial x} \right\rangle_{\psi}$ $\frac{d \langle p_x \rangle_{\psi}}{dt} = -\frac{\partial V}{\partial x} (\langle x \rangle_{\psi,t}) \text{ C'est le TRD!}$
Dans la limite classique $\Delta x \ll \Lambda$ (Λ l'echelle de longueur typique sur laquelle x varie, i.e. $V(x)$ peut être approché par sa tangente)	$\frac{\mathrm{d}\langle p_x \rangle_{\psi}}{\mathrm{d}t} = -\frac{\partial V}{\partial x} (\langle x \rangle_{\psi,t}) \text{ C'est le TRD!}$
Énergie cinétique	$\langle \mathbf{E}_c \rangle_{\psi} = \int_{\mathbb{R}} \psi^* \left(\frac{-\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} \right) \mathrm{d}x$
Dans l'état stationnaire	φ
Longueur d'onde de De Broglie pour une onde (état) station- naire	$\lambda_0 = \frac{h}{\sqrt{2mE}}$
Vitesse de phase pour une propagation libre	$v_{\varphi} = \frac{\hbar \omega}{2m}$ $v_{g} = \frac{\hbar k}{m}$
Vitesse de groupe pour une propagation libre	$v_g = \frac{\hbar k}{m}$
Remarque : $v_g \neq v_{\varphi}$, la propagation est dispersive	
Inégalité de Heisenberg (Cauchy-Schwartz)	$\Delta u \Delta p_u \geqslant \frac{\hbar}{2}$ $\Delta \sin \theta = \frac{\lambda_0}{2}$
Formule de diffraction pour les particules	$\Delta \sin \theta = \frac{\lambda_0}{a}$
Equation locale de conservation des probabilités de présence	$\frac{\partial \rho}{\partial t} + \frac{\partial j}{\partial u} = 0$ $\vec{j} = \frac{1}{m} \operatorname{Re} \left(\psi^* \frac{\hbar}{i} \frac{\partial \psi}{\partial u} \right)$ $\vec{j} = \rho \langle v \rangle_{\psi} = \psi ^2 \frac{\hbar \vec{k}}{m}$
Vecteur densité de courant de probabilité de présence	$\vec{J} = \frac{1}{m} \operatorname{Re} \left(\psi^* \frac{\hbar}{i} \frac{\partial \psi}{\partial u} \right)$
Vecteur densité de courant de probabilité de présence pour une onde de Broglie	$\vec{j} = \rho \langle \nu \rangle_{\psi} = \psi ^2 \frac{\hbar \vec{k}}{m}$

TABLE 18 – Introduction aux equations de la physique quantique (Tableau 2)

Avec η la taille du bord, λ_0 la longueur d'onde de De Broglie

Quantas et barrieres de potentiels

Approximation sur la taille du bord	$\lambda_0 \ll \eta$
Conditions de discontinuités	φ et φ' sont continues
Expression de la fonction d'onde, cas $E > V_0$	$\psi(x,t) = \begin{cases} \frac{A_1 e^{-i\frac{E}{\hbar}t} \left(e^{ik_1 x} + \frac{k_1 - k_2}{k_1 + k_2} e^{ik_1 x} \right) \text{ si } x < 0}{A_1 e^{-i\frac{E}{\hbar}t} \frac{2k_1}{k_1 + k_2} e^{-ik_2 x}} \end{cases}$
Expression de la fonction d'onde, cas $E < V_0$	$\psi(x,t)=\{$
Probabilité de transmission en la marche de potentiel	$T = \frac{ \vec{J}_{t} }{ \vec{J}_{t} }$ $R = \frac{ \vec{J}_{r} }{ \vec{J}_{t} }$ $T = \frac{ \vec{J}_{t}, \mathbf{m} }{ \vec{J}_{t} }$
Probabilité de réfléction en la marche de potentiel	$R = \frac{ \vec{ j_r } }{ \vec{ j_i } }$
Probabilité de transmission pour une barrière de potentiel épaisse	Ji,I
Probabilité de réfléction pour une barrière de potentiel épaisse	$T = \frac{ \vec{\mathbf{J}}_{r,\mathbf{I}} }{ \vec{\mathbf{J}}_{i,\mathbf{I}} }$ 2L
Dans l'approximation $L \simeq qq\delta$	$T = e^{-\frac{\delta}{\delta}}$
Dans un puit de potentiel infini	$E_m = \frac{\hbar^2}{8mL^2}n^2, n \in \mathbb{N}^*$
Energie de confinement	$E_{m} = \frac{\hbar^{2}}{8mL^{2}}n^{2}, n \in \mathbb{N}^{*}$ $E_{\min} \simeq \frac{\hbar^{2}}{mL^{2}}$ $\omega_{mn} = \frac{E_{m} - E_{n}}{\hbar}$
Pulsation de Bohr	$\omega_{mn} = \frac{\mathbf{E}_m - \mathbf{E}_n}{\hbar}$

TABLE 19 – Quantas et barrieres de potentiels

6 Chimie

Transformations Chimiques & acide base

Potentiel Hydrogène pour un acide fort en solution	$pH = -\log\left(\frac{[H_3O^+]}{c_0}\right)$
Constante d'équilibre de la réaction d'autoprotolyse de l'eau	$2H_2O_{(l)} \leftrightharpoons H_3O_{(aq)}^+ + HO_{(aq)}^- Ke = 1.0 \times 10^{-14}$
Potentiel Hydrogène pour une base forte en solution	$[H_3O^+] = \frac{Ke(c_0)^2}{[HO^-]} \text{ donc } pH = -\log\left(\frac{Ke(c_0)}{[HO^-]}\right)$
Formule d'Enderson (C'est – log(Gulberg & Waage))	$-pH = -pKa + \log\left(\frac{[\text{base}]}{[\text{acide}]}\right)$
Approximation de la réaction très peu avancée	$c_0 K_a \ll c_a$
Approximation de la réaction très avancée	$c_0 K_a \gg c_a$

TABLE 20 – Transformations Chimiques & acide base

7 Thermodynamique

Thermodynamique

Premier principe de la thermodynamique (Pour un système fermé avec $> 10^6$ particules) :	$dU + dE_c = \delta W + \delta Q$
Rappel : G une grandeur extensive, $\Sigma_1 = \Sigma_2$	$G(\Sigma_1 + \Sigma_2) = G(\Sigma_1) + G(\Sigma_2)$
Rappel : G une grandeur intensive, $\Sigma_1 = \Sigma_2$	$G(\Sigma_1 + \Sigma_2) = 2G(\Sigma_1)$
Avertissement:	$d \equiv \text{variation}, \ \delta \equiv \text{petite quantit\'e}. \ \text{En forme int\'egr\'e}, \ \text{on a} \ d \mapsto \Delta, \delta \mapsto \varepsilon$
Entalpie	H = U + pV
Transformation:	
Isobare	La pression interieure ne change pas
Monobare	Dans une atmosphère (i.e pression exterieure constante, le système doit pouvoir échanger du volume)
Adiabatique	Pas de transfert thermique
Isochore	Le volume est constant
Deuxième principe de la thermodynamique (Pour un système avec suffisement de particules)	$dS = \delta S_{cr\acute{e}} + \delta S_{\acute{e}chang\acute{e}e}$
Propriétés de S _{crée}	$\delta S_{crée} > 0J/K$
Propriétés de S _{échangée}	$\delta S_{\text{\'echang\'ee}} = \sum_{k \in \text{Paroix}} \frac{\delta Q_k}{T_k}$
Exemple imbatable de la non-conservation de l'entropie	$\Omega = \{\text{Univers}\}, dS_{\text{Univers}} = \delta S_{\text{crée}} + \underbrace{\delta S_{\acute{e}chang\acute{e}}}_{=0} > 0$
Rendement ou éfficacité de Carnot	$\eta = rac{ ext{grandeur \'energ\'etique utile}}{ ext{grandeur \'energ\'etique co\^uteuse}}$
Transformation réversible	$S_{crée} = 0$

TABLE 21 – Formules Thermodynamique.

8 Annexes

Quelques constantes

Constante de gravitation	$\mathcal{G} = 6.67 \times 10^{-11} \mathrm{N} \mathrm{m}^2/\mathrm{kg}^2$
Vitesse de la lumière	$c = 3,00 \times 10^8 \text{m/s}$
Constante de Planck	$h = 6.63 \times 10^{-34} \text{J s}$
Charge élémentaire	$e = 1,60 \times 10^{-19}$ C
Constante de Boltzmann	$k_{\rm B} = 1.38 \times 10^{-23} {\rm J/K}$
Masse du proton	$m_p = 1,67 \times 10^{-27} \text{kg}$
Masse de l'électron	$m_e = 9.11 \times 10^{-31} \text{kg}$
Constante de permittivité du vide	$\varepsilon_0 = 8.85 \times 10^{-12} \text{F/m}$
Constante de perméabilité du vide	$\mu_0 = 4\pi \times 10^{-7} \text{H/m}$
Champ de claquage de l'air sec	$E_{claquage, air sec} = 10 \times 10^5 V/m$
Masse de la Terre	$M_{Terre} = 5.97 \times 10^{24} \text{kg}$
Rayon moyen de la Terre	$R_{Terre} = 6.37 \times 10^6 \text{m}$
Constante de Stefan-Boltzmann	$\sigma = 5.67 \times 10^{-8} \text{W/m}^2/\text{K}^4$
Constante d'Avogadro	$N_A = 6,022 \times 10^{23} 1/\text{mol}$
Constante des gaz parfaits	R = 8.31J/(mol K)
Masse du Soleil	$M_{\odot} = 1,989 \times 10^{30} \text{kg}$
Rayon moyen du Soleil	$R_{\odot} = 6.96 \times 10^8 \text{m}$
K standard de la réaction d'autoprotolise de l'eau $(2H_2O_{(l)}\leftrightarrows H_3O_{(aq)}^+ + HO_{(aq)}^-)$	$K_e = 10 \times 10^{-14}$

TABLE 22 – Quelques constantes physiques

Formulaire d'analyse vectorielle

TABLE 23 – Formulaire d'analyse vectorielle

9 Compléments X-ENS

Compléments

Loi de Biot et Savart $\frac{1}{4\pi} \mathcal{V} \frac{1}{ \vec{r} - \vec{r'} ^3}$	Loi de Biot et Savart	
---	-----------------------	--

TABLE 24 – Compléments