

ERB4U 继电器模块 用户手册可扩展,可编程,最大 30VDC /32A

产品简介

- ERB4U 系列是一款可通过 USART 串口程控的继电器模块
- PC 端仅需 1 根 USB Type-C 线,即可同时读取/控制多个串联的继电器模块。
- 每路继电器输出: 最大 30VDC/10A, 1NO + 1NC
- 继电器总输出: 最大 30VDC/32A
- 工作原理: ERB4U 设备从 USB 或 J1 连接器 (USART1) 接收指令,并把原指令通过 J6 连接器 (USART2) 传递给下游 ERB4U 设备,实现可扩展功能。当接收到指令 后,ERB4U 会检查本机地址,只有当地址正确时,才会执行动作。
- USART 功能
 - ▶ USART 参数: 115200 波特率. 8 数据位. 1 停止位. 奇校验. 无流控制
 - ▶ 读取: 单个/多个 ERB4U 的温度, 继电器状态, PN/SN 等信息
 - ▶ 控制: 单个/多个继电器状态
- 地址设定: 4 位拨码开关设定地址 0-15, 多个 ERB4U 可同时使用一个地址
- 保护电路
 - ▶ 输入 PMOS 防反接
 - ▶ MCU 与继电器光耦隔离
 - ▶ 可接阻性 (R) 或感性 (L) 负载
- API & 例程代码: Python API, 完整例程代码
- 工作温度: -40 to 85 ℃

应用场景

- 工业自动化控制
- 自动化测试机
- 嵌入式电子设备
- 大学、科研机构、实验室
- 科创教育、培训机构

版本控制

版本号	发布时间	版本说明与变更
1.0	2024年5月1号	初始发布版本
1.1	2024年5月30号	添加读取 LDO VDDA 指令

目录

1	电气参数	5
	1.1 继电器	5
	1.2 地址设定	5
	1.3 USART 通讯	6
	1.4 LED	8
	1.5 复位按键	8
	1.6 工作温度	9
2.	保护电路	9
	2.1 输入 PMOS 防反接	9
	2.2 MCU 与继电器光耦隔离	. 10
	2.3 可接阻性 (R) 或感性 (L) 负载	. 10
3.	通讯协议	.11
	3.1 读指令	.11
	3.2 写指令	.13
	3.3 故障信息	.13
4.	功能方框图	. 14
5.	产品图片	. 15
	5.1 实物图	. 15
	5.2 图纸 2D	.16
	5.3 模型 3D	. 17
6.	例程代码和 API	.18
7.	测试报告	.18
0	以 以	40

1 电气参数

1.1 继电器

- 继电器模块启动后,默认所有继电器关闭
- 1 路继电器输出最大 30VDC/10A, 1NO + 1NC
- MCU 与继电器光耦隔离
- 继电器输出带续流二极管,支持阻性负载和感性负载(例如电磁阀,电机等)

1.2 地址设定

• 可通过 4 位拨码开关选择地址 0x00 - 0x0F

DIP拨码开关, 选择地址

1.3 USART 通讯

PC 端仅需 1 根 USB Type-C 数据线与 ERB4U 模块连接,即可实现 USART 串口读/写功能。

参数	数值	
通信模式	 USART1 连接到 USB Type-C 和 J1 连接器,用于和 PC 或上游 ERB4U 继电器模块通讯 USART2 连接到 J6 连接器,用于和下游 ERB4U 继电器模块通讯 	
波特率 Baud rate	115200	
数据位数 Data bits	8	
停止位数 Stop bits	1	
奇偶校验 Parity	奇校验	
流控制 Flow Control	无	

如果继电器数量不够,可以通过数据线(PN: S108520017, 厂家: Ckmtw 灿科盟), 把上游 ERB4U 的 J6 连接器, 与下游 ERB4U 的 J1 连接器相连接, 实现可扩展功能。具体工作原理如下:

- USB 与 J1 连接器 (顶部) 与 USART1 连接。
- J6 连接器(底部)与 USART2 连接。
- 当 PC 端给 ERB4U 发送写指令后, USB 或 J1 连接器(USART1)会接收到指令, 并把原 指令通过 J6 连接器(USART2)发送给下一级 ERB4U,实现可扩展功能。
- 当 ERB4U 收到指令后,会检查自己的地址。如果地址符合,则 ERB4U 会执行相应动作。如果地址不符合,则 ERB4U 不会执行指令。
- 具体 USART 指令,请参考 <3. 通讯协议> 章节。

1.4 LED

● 当 USB 通电时,<mark>USB 绿色 LED 灯</mark>点亮

● 当继电器使能时,<mark>继电器绿色 LED 灯</mark>点亮

● USART1 TX: 蓝色 LED

● USART1 RX: 黄色 LED

● USART2 RX: 蓝色 LED

● USART2 TX: 黄色 LED

1.5 复位按键

• 当复位按键按下后,MCU 重启,所有继电器会回到默认关闭状态。

1.6 工作温度

• 产品工作温度范围 -40 to 85 ℃。

2. 保护电路

2.1 输入 PMOS 防反接

由于 PMOS 存在导通电阻 R_{ds_on} ,当电流通过 PMOS 时,PMOS 会发热。当 ERB4U 工作时,一般情况下 PMOS 会是 PCBA 上发热最严重的区域。温度计算公式如下

- ERB4U 装有 3 个 PMOS
- PMOS 导通电阻 $R_{ds\ on}$ = 20 m Ω
- PMOS 热阻 $R_{\theta JA}$ = 62 °C/W
- 假设室温 25℃
- PMOS 最大的温度不得超过 150℃

PMOS 温度 = 室温 + (负载电流^2)* PMOS 导通电阻 R_{ds_on} * PMOS 热阻 $R_{\theta JA}$ / PMOS 数量 PMOS 温度 = 25 + (负载电流^2)* 0.02 * 62 / 3

PMOS 温度 = 25 + (负载电流^2)*0.4133

- 建议持续输入的总电流不超过 15A。
- 当输入总电流超过 15A 时,需要添加散热片。
- 当输入总电流波动时,可通过以上公式,计算出 PMOS 温度。

2.2 MCU 与继电器光耦隔离

由于 MCU 是 3.3V 低电压,而负载输出一般是大电流的,所以需要光电三极管在中间进行 光耦隔离,从而保护 MCU。

- MCU 通过 3.3V GPIO 打开光电三极管
- 光电三极管将 MCU 与继电器进行光耦隔离
- 光电三极管的输出是 5V, 用来打开继电器

2.3 可接阻性(R)或感性(L)负载

- 如果负载是感性负载(例如电磁阀,电机等),当继电器关闭时,根据电感的特性,感性负载会产生反向电动势,瞬间的反向电压会远超正常工作电压。
- 如果电流较大,甚至会拉出电弧。
- 长期使用后,会使继电器触点发黑或粘连,导致继电器无法正常打开或关闭。

为了解决以上问题,继电器的输入和输出端,都加入了 25ns 的超快速续流二极管。可在 25ns 内,快速释放掉电感的能量,解决反向电动势和电弧的问题。

3. 通讯协议

3.1 读指令

	读指令		
字节	指令	功能	备注
第0字 节	0x00 - 0x0F	产品地址,可通过板载 DIP 开关设置	/
第1字 节	0x00	读操作	如果既不是读操作(0x00), 也不是写操作(0x01),会返 回报错: Error byte 1: unknown read/write operation
第 2 字 节	0x01 - 0x08	读取指定继电器的状态	返回值: 1: 继电器已打开 0: 继电器已关闭
	0xA0	读取所有继电器的状态	返回值: 如果总共有8个继电器,第 1个继电器为ON,其余继电 器为OFF,则返回 "10000000"
	0xA1	读取继电器数量	返回值: 如果总共有8个继电器,则 返回"8"
	0xA2	读取 MCU 内部温度传感器	2 位小数 (℃)
	0xA3	读取 LDO VDDA 电压,额定电压 3.3V	3 位小数 (V)
	0xF0	读取 PN	可能的 PN 有: ERB4U-4 ERB4U-8 ERB4U-12
	0xF1	读取 SN	96 位 UUID
	0xF2	读取硬件版本	HW: X.Y.Z X = 主要硬件更改, 例如添加 /删除组件 Y = 次要硬件更新, 例如 PN 更改 Z = 补丁, 例如错误修复
	0xF3	读取固件版本	FW: X.Y.Z X = 主要固件更改,例如新功 能或算法 Y = 次要固件更新,例如次要

			功能改进 Z=补丁,例如错误修复
	其他	报错	返回值: Error byte 2: unknown read CMD
第3字 节	其他	未定义,可使用任意字节填补	/

3.2 写指令

写指令			
字节	指令	功能	备注
第0字	0x00 -	产品地址,可通过板载 DIP 开关设	/
节	0x0F	置	
第1字	0x01	写操作	如果既不是读操作
节			(0x00),也不是写操作
			(0x01),会返回报错:
			Error byte 1: unknown
			read/write operation
第2字	0x01 -	设置特定继电器的状态	/
节	0x08		
	0xA0	关闭所有继电器	/
	0xA1	打开所有继电器	/
	其他	报错	返回值:
			Error byte 2: unknown write
			CMD
第3字	0x00	关闭指定继电器	/
节	0x01	打开指定继电器	/
	其他	报错	返回值:
			Error byte 3: unknown relay
			state

3.3 故障信息

故障信息		
字节1错误	Error byte 1: unknown read/write operation	
字节 2 错误	Error byte 2: unknown read CMD	
(读)		
字节 2 错误	Error byte 2: unknown write CMD	
(写)		
字节 3 错误	Error byte 3: unknown relay state	
(写)		

4. 功能方框图

5. 产品图片

5.1 实物图

5.2 图纸 2D

• <u>点击下载 2D 图纸</u>: DWG, DXF

● 单位: mm

5.3 模型 3D

6. 例程代码和 API

• 点击进入 GitHub 链接

7. 测试报告

● ERB4U 测试报告模板:下载

8. 联系方式

• 公司官网: https://altita-tech.com/

电话: +86 13512122992 (销售董小姐)微信: DL13512122992 (销售董小姐)

• 销售: sales@altita-tech.com

• 技术支持: tech@altita-tech.com