BENNETT UNIVERSITY, GREATER NOIDA Supplementary Examination, Fall SEMESTER 2019-20

Supplementary Examination	, 1	Question	Marks
		1	
Name of Student Enrolment No		2	
Department / School		3	
		4	
COURSE CODE: EPHY105L COURSE NAME: Electromagnetics	MAX. DURATION: 2 Hours	5	
	MAX. MARK: 100	Total	

- A. Please write answers to all questions in the space provided in the question paper itself.
- B. Rough work elsewhere will not be graded
- C. There are FIVE questions in the question paper
- D. ALL QUESTIONS ARE COMPULSORY
- 1. Put a tick mark on the correct answer for the following questions (Tick marks on more (7x3=21)than one choice will be allotted zero marks):
- a) Two equal point charges +Q are placed at points with Cartesian coordinates (1,0,0) and (-1,0,0). The electrostatic potential at the origin will be
 - i. Zero
 - ii. $Q/(4\pi\epsilon_0)$
 - $Q/(2\pi\epsilon_o)$ iii.
 - $2Q/\epsilon_0$ iv.
- b) Consider a sphere of radius R carrying a total charge Q distributed uniformly in the entire volume of the sphere. The value of $\iiint \nabla \cdot \vec{E} d\tau$ where the volume integration is over a sphere of radius R/2 concentric with the charge distribution will be
 - i. Zero
 - ii.
 - iii.
 - iv.
- c) Consider a dielectric sphere of radius R which has a polarization given by $\vec{P} = P_0 \hat{z}$ where P_0 is a constant. If ρ_b and σ_b represent bound volume and surface charge densities, then
 - $\rho_b = 0$ and $\sigma_b = 0$
 - $\rho_b \neq 0$ and $\sigma_b = 0$. ii.
 - $\rho_b = 0$ and $\sigma_b \neq 0$ iii.
 - $\rho_b \neq 0$ and $\sigma_b \neq 0$. iv.
- d) A straight cylindrical wire of radius R carries a current I distributed uniformly across its cross section. The axis of the wire is along \hat{z} . The value of $\nabla \times \vec{B}$ at a point at a distance R/4 will be
 - i.
 - ii. πR^2
 - iii. Zero
 - iv. $\mu_0 I \hat{z}$

- e) The vector function $\vec{F}_1 = xy\hat{\imath} + yz\hat{\jmath} + 2xz\hat{k}$
 - i. Can represent both an electrostatic field and a magnetic field
 - ii. Can represent an electrostatic field but not a magnetic field
 - iii. Can represent a magnetic field but not an electrostatic field
 - iv. Can represent neither an electrostatic field nor a magnetic field
- f) Consider an infinitely long solenoid with circular cross section of radius R having n turns per unit length and carrying a current I. If a cylindrical rod of radius a = R/2 and made of a material of magnetic susceptibility χ_m is placed coaxially within the solenoid, then
 - i. \vec{H} and \vec{B} have the same value in the regions $0 < r < \frac{R}{2}$ and $\frac{R}{2} < r < R$.
 - ii. \vec{H} has the same value in the regions $0 < r < \frac{R}{2}$ and $\frac{R}{2} < r < R$ but \vec{B} values are different.
 - iii. \vec{B} has the same value in the regions $0 < r < \frac{R}{2}$ and $\frac{R}{2} < r < R$ but \vec{H} values are different
 - iv. \vec{H} and \vec{B} both have different values in the regions $0 < r < \frac{R}{2}$ and $\frac{R}{2} < r < R$.
- g) An electromagnetic wave propagating in free space is described by the following expression for the electric field: $\vec{E} = \vec{E}_0 \cos[(5\pi \times 10^6 x + \omega t)]$.
 - i. The wavelength of the wave is $0.4\pi \times 10^{-6}$ m.
 - ii. The direction of \vec{E}_0 is along \hat{x} .
 - iii. The magnetic field associated with the wave is parallel to \vec{E}_0 .
 - iv. The wave is propagating along -x direction.
- 2. Give brief answers to the following questions:

 $(6 \times 6=36)$

a) Consider a point charge +Q located at a point with Cartesian coordinates $(x_1, 0, 0)$. What will be the force \vec{F} on a charge -Q placed at a point with coordinates $(0, y_2, z_2)$?

b) An infinite dielectric slab with parallel surfaces and of thickness d and dielectric constant K is placed in a uniform electric field $\vec{E} = E_0 \hat{z}$ pointing perpendicular to the surfaces. Calculate the bound surface charge density on the surface of the dielectric in terms of E_0 .

c) In a certain region of space the electrostatic potential (in spherical polar coordinates) is given by $V(r, \theta, \phi) = -Cr^2$ where C is a constant. Obtain the electrostatic field \vec{E} and the charge density ρ in this region.

d) A long cylindrical wire of radius R carries a current I distributed uniformly across its cross section with the unit vector \hat{z} pointing along the axis of the cylinder. Write down the values of $\oint \vec{B} \cdot d\vec{l}$ and $\iint \vec{B} \cdot d\vec{a}$ integrated over a circular loop of radius R/2 centered on the axis of the cylinder and placed parallel to the x-y plane.

$$\oint \vec{B} \cdot d\vec{l} =$$

$$\iint \vec{B} \cdot d\vec{a} =$$

e) Consider an infinitely long cylinder of circular cross section of radius R and axis along \hat{z} which is uniformly magnetized with magnetization $\vec{M} = M_0 \hat{z}$ where M_0 is a constant. Obtain the corresponding bound volume and surface current densities.

f) A parallel plate capacitor with plate separation of 10 mm and filled with free space has a time varying applied voltage given by $V = V_0 \sin 2\pi f t$, with $V_0 = 10$ V and $f = 10^8$ Hz. Obtain the peak value of displacement current density between the plates.

- 3. A point charge Q is placed at the center of a dielectric sphere of radius R and dielectric constant K.
 - (a) Starting from Gauss's law, obtain the displacement vector \vec{D} and the electrostatic field \vec{E} in the regions r < R and r > R.
 - (b) Obtain the bound volume charge density within the volume and the surface charge density on the outer surface of the dielectric. (6)

Page left blank for answers

- 4. An infinitely long cylindrical tube with inner radius R_1 and outer radius R_2 made of a medium having a magnetic susceptibility given by χ_m carries a current I which is distributed uniformly across its cross section.
 - (a) From Ampere's law obtain the fields \overrightarrow{H} and \overrightarrow{B} in the region $r < R_1$ and $R_1 < r < R_2$ (9)
 - (b) Calculate the bound surface and volume current densities in the medium. (6)

Page left blank for answers

- 5. Consider a parallel plate capacitor with circular plates of radius R filled with free space. The conduction current charging the capacitor is given by $I_c(t)$.
 - a) Show that the total displacement current between the capacitor plates will be equal to the conduction current flowing along the wire. (6)
 - b) Using the appropriate Maxwell's equation, obtain an expression for the magnetic field generated between the capacitor plates. (8)

Page left blank for answers

Some useful formulas

In Cartesian coordinates:

$$\nabla f = \frac{\partial f}{\partial x} \hat{\imath} + \frac{\partial f}{\partial y} \hat{\jmath} + \frac{\partial f}{\partial z} \hat{k}$$

$$\nabla \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

$$\nabla \times \vec{F} = \left[\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right] \hat{\imath} + \left[\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right] \hat{\jmath} + \left[\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right] \hat{k}$$

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

In spherical polar coordinates:

$$\nabla f = \frac{\partial f}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \hat{\phi}$$

$$\nabla \cdot \vec{F} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 F_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta F_\theta) + \frac{1}{r \sin \theta} \frac{\partial F_\phi}{\partial \phi}$$

$$\nabla \times \vec{F} = \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta F_\phi) - \frac{\partial F_\theta}{\partial \phi} \right] \hat{r} + \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial F_r}{\partial \phi} - \frac{\partial}{\partial r} (r F_\phi) \right] \hat{\theta} + \frac{1}{r} \left[\frac{\partial}{\partial r} (r F_\theta) - \frac{\partial F_r}{\partial \theta} \right] \hat{\phi}$$

$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}$$

In cylindrical coordinates:

$$\nabla f = \frac{\partial f}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial f}{\partial \phi} \hat{\phi} + \frac{\partial f}{\partial z} \hat{z}$$

$$\nabla \cdot \vec{F} = \frac{1}{r} \frac{\partial}{\partial r} (rF_r) + \frac{1}{r} \frac{\partial F_{\phi}}{\partial \phi} + \frac{\partial F_z}{\partial z}$$

$$\nabla \times \vec{F} = \left[\frac{1}{r} \frac{\partial F_z}{\partial \phi} - \frac{\partial F_{\phi}}{\partial z} \right] \hat{r} + \left[\frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r} \right] \hat{\phi} + \frac{1}{r} \left[\frac{\partial}{\partial r} (rF_{\phi}) - \frac{\partial}{\partial \phi} F_r \right] \hat{z}$$

$$\nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}$$

- $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N-m}^2$
- Theorem on Gradients: $\int_a^b \nabla f \cdot d\vec{l} = f(b) f(a)$
- $\iiint \nabla \cdot \vec{F} \, d\tau = \oiint \vec{F} \cdot d\vec{a}$ Divergence theorem:
- $\iint \nabla \times \vec{F} . d\vec{a} = \oint \vec{F} . d\vec{l}$ Stokes theorem:
- Maxwell's equations:

$$\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

$$\nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}$$

No. and the Market