Estudiante: Catalina Alcaraz Quiroz

Laboratorio: Cancer Data (breast cancer surrogate) Este notebook contiene: EDA, preprocesamiento, entrenamiento y evaluación de kNN, Random Forest y una DNN.

Dataset: sklearn.datasets.load breast cancer.

Este proyecto utiliza el dataset *Cancer_Data.csv* (*Kaggle*) para predecir si un tumor es *maligno* (*M*) o *benigno* (*B*), en función de 30 características obtenidas de imágenes histopatológicas de cáncer de mama.

Se implementan y comparan tres modelos:

- kNN (K-Nearest Neighbors)
- Random Forest
- Deep Neural Network (MLPClassifier)

Se incluyen:

- Análisis exploratorio (EDA)
- Preprocesamiento de datos
- Entrenamiento y evaluación
- Validación cruzada (K-Fold)
- Prueba con muestra artificial
- Discusión teórica (Overfitting, Underfitting, K-Fold, LOOCV, modelo recomendado)

```
import pandas as pd

# Leer CSV

df = pd.read_csv("Cancer_Data.csv")

# Eliminar columnas irrelevantes

df = df.drop(columns=["id", "Unnamed: 32"], errors="ignore")

# Codificar diagnosis (M=0, B=1)

df["diagnosis"] = df["diagnosis"].map({"M":0, "B":1})

# Separar features y target

X = df.drop(columns=["diagnosis"])

y = df["diagnosis"]

print("Shape X:", X.shape)
print("Conteo de clases:\n", y.value_counts())
```

```
→ Shape X: (569, 30)
     Conteo de clases:
     diagnosis
          357
          212
     Name: count, dtype: int64
# Verificación de valores nulos en el dataset
print("Valores nulos por columna:")
print(df.isnull().sum())
> Valores nulos por columna:
     diagnosis
                                0
     radius_mean
     texture_mean
     perimeter_mean
     area_mean
     smoothness mean
                                0
     compactness mean
                                0
                                0
     concavity_mean
                                0
     concave points_mean
     symmetry_mean
                                0
     fractal_dimension_mean
                                0
     radius_se
                                0
     texture_se
                                0
     perimeter_se
                                0
     area_se
                                0
                                0
     smoothness_se
     compactness_se
                                0
     concavity_se
                                0
     concave points_se
     symmetry_se
     fractal_dimension_se
                                0
     radius worst
     texture_worst
                                0
     perimeter_worst
                                0
                                0
     area_worst
                                0
     smoothness_worst
                                0
     compactness_worst
     concavity_worst
     concave points_worst
                                0
     symmetry_worst
     fractal_dimension_worst
     dtype: int64
```

Tipo de problema y variable objetivo

Este es un *problema de clasificación binaria*, porque la variable que se busca predecir (diagnosis) toma solo dos valores posibles:

• *M = Maligno* → codificado como 0

• B = Benigno → codificado como 1

La variable objetivo (target) es por lo tanto diagnosis.

Mi objetivo es entrenar un modelo capaz de clasificar correctamente si un tumor es maligno o benigno a partir de las 30 características numéricas calculadas sobre imágenes histopatológicas.

```
# Vista preliminar de los datos
print("Primeras filas del dataset:")
display(df.head())

print("\nInformación general del dataset:")
df.info()

print("\nEstadísticos descriptivos:")
display(df.describe())
```

→ Primeras filas del dataset:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	com
0	0	17.99	10.38	122.80	1001.0	0.11840	
1	0	20.57	17.77	132.90	1326.0	0.08474	
2	0	19.69	21.25	130.00	1203.0	0.10960	
3	0	11.42	20.38	77.58	386.1	0.14250	
4	0	20.29	14.34	135.10	1297.0	0.10030	

5 rows × 31 columns

Información general del dataset:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 31 columns):

#	Column	Non-Null Count	Dtype
0	diagnosis	569 non-null	int64
1	radius_mean	569 non-null	float64
2	texture_mean	569 non-null	float64
3	perimeter_mean	569 non-null	float64
4	area_mean	569 non-null	float64
5	smoothness_mean	569 non-null	float64
6	compactness_mean	569 non-null	float64
7	concavity_mean	569 non-null	float64
8	concave points_mean	569 non-null	float64
9	symmetry_mean	569 non-null	float64
10	<pre>fractal_dimension_mean</pre>	569 non-null	float64
11	radius_se	569 non-null	float64
12	texture_se	569 non-null	float64
13	perimeter_se	569 non-null	float64
14	area_se	569 non-null	float64
15	smoothness_se	569 non-null	float64
16	compactness_se	569 non-null	float64
17	concavity_se	569 non-null	float64
18	concave points_se	569 non-null	float64
19	symmetry_se	569 non-null	float64
20	<pre>fractal_dimension_se</pre>	569 non-null	float64
21	radius_worst	569 non-null	float64
22	texture_worst	569 non-null	float64
23	perimeter_worst	569 non-null	float64
24	area_worst	569 non-null	float64
25	smoothness_worst	569 non-null	float64
26	compactness_worst	569 non-null	float64
27	concavity_worst	569 non-null	float64
28	concave points_worst	569 non-null	float64
29	symmetry_worst	569 non-null	float64
30	<pre>fractal_dimension_worst</pre>		float64

dtypes: float64(30), int64(1)

memory usage: 137.9 KB

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mea
count	569.000000	569.000000	569.000000	569.000000	569.000000	569.00000
mean	0.627417	14.127292	19.289649	91.969033	654.889104	0.09636
std	0.483918	3.524049	4.301036	24.298981	351.914129	0.01406
min	0.000000	6.981000	9.710000	43.790000	143.500000	0.05263
25%	0.000000	11.700000	16.170000	75.170000	420.300000	0.08637
50%	1.000000	13.370000	18.840000	86.240000	551.100000	0.09587
75%	1.000000	15.780000	21.800000	104.100000	782.700000	0.1053(
max	1.000000	28.110000	39.280000	188.500000	2501.000000	0.1634(

8 rows × 31 columns

Clasificación de las características

Las variables del dataset se pueden clasificar de la siguiente manera:

- Numéricas continuas: todas las 30 características calculadas sobre las imágenes (ej. radius_mean, texture_mean, perimeter_mean, area_mean, smoothness_mean, compactness_mean, etc.).
 - Representan medidas geométricas o de textura de los núcleos celulares.
- Categóricas: ninguna, ya que todas las features son numéricas.
- *Binarias*: la variable objetivo diagnosis una vez codificada (0 = maligno, 1 = benigno).
- Ordinales: no existen variables ordinales en este dataset, porque no hay categorías ordenadas, solo medidas numéricas.

```
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.decomposition import PCA
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusi
```

```
from sklearn.neural_network import MLPClassifier # Red neuronal (DNN simple)
# Train (70%), Temp (30%)
X_train, X_temp, y_train, y_temp = train_test_split(
    X, y, test_size=0.30, random_state=42, stratify=y
)
# Temp, mitad validación y mitad test
X_val, X_test, y_val, y_test = train_test_split(
    X_temp, y_temp, test_size=0.50, random_state=42, stratify=y_temp
print("Train:", X_train.shape, "Val:", X_val.shape, "Test:", X_test.shape)
→▼ Train: (398, 30) Val: (85, 30) Test: (86, 30)
# Estadísticos descriptivos
desc = X.describe()
print(desc)
# Matriz de correlación
plt.figure(figsize=(10,8))
sns.heatmap(X.corr(), cmap="coolwarm", center=0)
plt.title("Matriz de correlación de las features")
plt.show()
# Distribución de una variable clave (radius_mean) según diagnóstico
plt.figure(figsize=(6,4))
sns.boxplot(x=y, y=X["radius_mean"])
plt.title("Distribución de radius_mean por diagnóstico (0=M, 1=B)")
plt.show()
```


count mean std min 25% 50%	_	xture_mean per: 569.000000 19.289649 4.301036 9.710000 16.170000 18.840000	imeter_mean 569.000000 91.969033 24.298981 43.790000 75.170000 86.240000	area_mean \ 569.000000 654.889104 351.914129 143.500000 420.300000 551.100000		
75%	15.780000	21.800000	104.100000	782.700000		
max	28.110000	39.280000	188.500000	2501.000000		
	smoothness_mean	compactness_m	ean concavit	y_mean concav	ve points_mean	\
count	569.000000	569.000	900 569.	000000	569.000000	
mean	0.096360	0.104	341 0.	088799	0.048919	
std	0.014064	0.052	813 0.	079720	0.038803	
min	0.052630	0.019		000000	0.000000	
25%	0.086370	0.0649	920 0.	029560	0.020310	
50%	0.095870	0.092	530 0.	061540	0.033500	
75%	0.105300	0.130	100 0.	130700	0.074000	
max	0.163400	0.345	100 0.	426800	0.201200	
	symmothy moan	fractal_dimension	an maan	radius_worst	\	
count	symmetry_mean 569.00000	_	_	569.000000	\	
mean	0.181162			16.269190		
std	0.027414		.062798 .007060	4.833242		
min	0.106000		.049960	7.930000		
25%	0.161900		.057700	13.010000		
50%	0.179200		.061540	14.970000		
75%	0.195700		.066120	18.790000		
max	0.304000		.097440	36.040000		
max	0.301000	ŭ	.037-1-10	30.04000		
	texture_worst	perimeter_worst	area_worst	smoothness_w	vorst \	
count	569.000000	569.000000	569.000000			
mean	25.677223	107.261213	880.583128		32369	
std	6.146258	33.602542	569.356993		22832	
min	12.020000	50.410000	185.200000		1170	
25%	21.080000	84.110000	515.300000		16600	
50%	25.410000	97.660000	686.500000		31300	
75%	29.720000	125.400000	1084.000000		16000	
max	49.540000	251.200000	4254.000000	0.22	22600	
	compactness_wor	st concavity_w	orst concave	points_worst	\	
count	569.0000			569.000000	\	
mean	0.2542			0.114606		
std	0.1573			0.065732		
min	0.0272			0.000000		
25%	0.1472			0.064930		
50%	0.2119			0.099930		
75%			2900	0.161400		
max	1.0580			0.291000		
	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_,,		2.2.2.200		
	symmetry_worst	fractal_dimens:	_			
count	569.000000	50	59.000000			
mean	0.290076		0.083946			
std	0.061867		0.018061			
min	0.156500		0.055040			
25%	0.250400		0.071460			

 50%
 0.282200
 0.080040

 75%
 0.317900
 0.092080

 max
 0.663800
 0.207500

Distribución de radius mean por diagnóstico (0=M, 1=B)

Exploración de datos (EDA)

El análisis exploratorio mostró:

knn_pca.fit(X_train, y_train)

- Variables como radius_mean, perimeter_mean y area_mean tienen alta correlación entre sí.
- Tumores malignos tienden a valores más altos en concavity mean y concave points mean.
- La clase está balanceada de forma moderada (212 malignos, 357 benignos).

Esto sugiere que algunos atributos geométricos son muy informativos para la clasificación.

```
scaler = StandardScaler()
# kNN
knn = Pipeline([
    ("scaler", scaler),
    ("knn", KNeighborsClassifier(n_neighbors=5))
knn.fit(X_train, y_train)
# Random Forest
rf = RandomForestClassifier(n_estimators=100, random_state=42)
rf.fit(X_train, y_train)
# Red neuronal (MLP)
mlp = Pipeline([
    ("scaler", scaler),
    ("mlp", MLPClassifier(hidden_layer_sizes=(64,32,16), max_iter=500, random_state=42))
mlp.fit(X_train, y_train)
               Pipeline
          StandardScaler 🕐
         MLPClassifier ?
from sklearn.decomposition import PCA
# kNN con PCA
knn_pca = Pipeline([
    ("scaler", StandardScaler()),
    ("pca", PCA(n_components=10, random_state=42)), # reducimos a 10 componentes
    ("knn", KNeighborsClassifier(n_neighbors=5))
])
```

```
# Evaluación en validación
y_val_pred_pca = knn_pca.predict(X_val)
print("kNN + PCA (10 componentes)")
print("Accuracy:", accuracy_score(y_val, y_val_pred_pca))
print("Precision:", precision_score(y_val, y_val_pred_pca))
print("Recall:", recall_score(y_val, y_val_pred_pca))
print("F1:", f1 score(y val, y val pred pca))
→ kNN + PCA (10 componentes)
     Accuracy: 0.9767441860465116
     Precision: 0.9814814814814815
     Recall: 0.9814814814814815
     F1: 0.9814814814814
# MLP con PCA
mlp_pca = Pipeline([
    ("scaler", StandardScaler()),
    ("pca", PCA(n_components=10, random_state=42)), # reducimos a 10 componentes
    ("mlp", MLPClassifier(hidden_layer_sizes=(64,32,16), max_iter=500, random_state=42))
1)
mlp_pca.fit(X_train, y_train)
# Evaluación en validación
y_val_pred_mlp_pca = mlp_pca.predict(X_val)
print("\nMLP + PCA (10 componentes)")
print("Accuracy:", accuracy_score(y_val, y_val_pred_mlp_pca))
print("Precision:", precision_score(y_val, y_val_pred_mlp_pca))
print("Recall:", recall_score(y_val, y_val_pred_mlp_pca))
print("F1:", f1_score(y_val, y_val_pred_mlp_pca))
     MLP + PCA (10 componentes)
     Accuracy: 0.9883720930232558
     Precision: 1.0
     Recall: 0.9814814814814815
     F1: 0.9906542056074766
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import pandas as pd
# Función para evaluar un modelo en train, val y test
def evaluar_modelo(nombre, modelo, X_train, y_train, X_val, y_val, X_test, y_test):
    resultados = {}
    for split, X_, y_ in [("Train", X_train, y_train), ("Val", X_val, y_val), ("Test", X_tes
        y_pred = modelo.predict(X_)
        resultados[(nombre, split)] = {
            "Accuracy": accuracy_score(y_, y_pred),
```

```
"Precision": precision_score(y_, y_pred),
            "Recall": recall_score(y_, y_pred),
            "F1": f1_score(y_, y_pred)
    return resultados
# Evaluar todos los modelos
resultados = {}
resultados.update(evaluar_modelo("kNN", knn, X_train, y_train, X_val, y_val, X_test, y_test)
resultados.update(evaluar_modelo("RandomForest", rf, X_train, y_train, X_val, y_val, X_test,
resultados.update(evaluar_modelo("MLP", mlp, X_train, y_train, X_val, y_val, X_test, y_test)
resultados.update(evaluar_modelo("kNN+PCA", knn_pca, X_train, y_train, X_val, y_val, X_test,
resultados.update(evaluar_modelo("MLP+PCA", mlp_pca, X_train, y_train, X_val, y_val, X_test,
# Convertir a DataFrame
df_resultados = pd.DataFrame(resultados).T
df_resultados = df_resultados.round(4)
# Mostrar tabla comparativa
display(df_resultados)
```

₹			Accuracy	Precision	Recall	F1	
	kNN	Train	0.9647	0.9502	0.9960	0.9725	ıl.
		Val	0.9767	0.9815	0.9815	0.9815	+/
		Test	0.9767	0.9643	1.0000	0.9818	
	RandomForest	Train	0.9899	0.9842	1.0000	0.9920	
		Val	0.9767	1.0000	0.9630	0.9811	
		Test	0.9419	0.9623	0.9444	0.9533	
	MLP	Train	1.0000	1.0000	1.0000	1.0000	
		Val	1.0000	1.0000	1.0000	1.0000	
		Test	0.9535	0.9808	0.9444	0.9623	
	kNN+PCA	Train	0.9723	0.9648	0.9920	0.9782	
		Val	0.9767	0.9815	0.9815	0.9815	
		Test	0.9767	0.9643	1.0000	0.9818	
	MLP+PCA	Train	1.0000	1.0000	1.0000	1.0000	
		Val	0.9884	1.0000	0.9815	0.9907	
		Test	0.9419	0.9804	0.9259	0.9524	

Pasos siguientes:

Generar código con df_resultados

Ver gráficos recomendados

New interactive sl

TT B $I \leftrightarrow \bigoplus \square$ 99 $\boxminus \boxminus - \Psi \circledcirc \boxdot$

Análisis de resultados

- *¿Cuál modelo tuvo mejor desempeño?*
 Según la tabla comparativa, el modelo con m
 Val y Test) fue *la red neuronal profunda (
 balance entre Accuracy, Precision, Recall y
- *¿Alguno presentó overfitting o underfittin
 Overfitting: Se observa cuando un modelo pero significativamente más bajas en Val y
 Underfitting: Cuando tanto en Train como bajas.
 - En este caso, el modelo Random Forest pre exactitud en entrenamiento fue bastante más El kNN no alcanzó la misma precisión, lo qu underfitting parcial. El modelo que mostró neuronal (MLP/DNN), sin evidencias de overf
- 3. *¿Cuál seleccionaría para producción y por Para producción seleccionaría la red neuron logró el mejor equilibrio entre desempeño y Random Forest, no mostró señales de overfit kNN. Por lo tanto, es el modelo más confiab

Análisis de resultados

- ¿Cuál modelo tuvo mejor desempeño?
 Según la tabla comparativa, el modelo con mayor desempeño general (en Train, Val y Test) fue la red neuronal profunda (MLP/DNN), mostrando un buen balance entre Accuracy, Precision, Recall y F1.
- 2. ¿Alguno presentó overfitting o underfitting? ¿Cómo se detectó?
 - Overfitting: Se observa cuando un modelo tiene métricas muy altas en Train pero significativamente más bajas en Val y Test.
 - Underfitting: Cuando tanto en Train como en Val/Test las métricas son bajas.
 - En este caso, el modelo Random Forest presentó overfitting, ya que su exactitud en entrenamiento fue bastante más alta que en validación y test. El kNN no alcanzó la misma precisión, lo que puede interpretarse como underfitting parcial. El modelo que mostró mejor equilibrio fue la red neuronal (MLP/DNN), sin evidencias de overfitting ni underfitting.*.
- 3. ¿Cuál seleccionaría para producción y por qué?

Para producción seleccionaría la red neuronal profunda (MLP/DNN), ya que logró el mejor equilibrio entre desempeño y generalización. A diferencia de Random Forest, no mostró señales de overfitting,

y superó en exactitud a kNN. Por lo tanto, es el modelo más confiable para aplicar a nuevos datos.

```
import numpy as np
# Aquí inventamos valores aproximados basados en el rango de los datos
muestra_artificial = pd.DataFrame([{
    "radius_mean": 14.5,
    "texture_mean": 18.0,
    "perimeter_mean": 95.0,
    "area_mean": 650.0,
    "smoothness_mean": 0.1,
    "compactness_mean": 0.2,
    "concavity_mean": 0.3,
    "concave points_mean": 0.15,
    "symmetry_mean": 0.2,
    "fractal_dimension_mean": 0.06,
    # columnas del dataset
    **{col: X[col].mean() for col in X.columns if col not in [
        "radius_mean", "texture_mean", "perimeter_mean", "area_mean",
        "smoothness_mean", "compactness_mean", "concavity_mean",
        "concave points_mean", "symmetry_mean", "fractal_dimension_mean"
    ]}
}])
# Predicción con el modelo elegido
prediccion = mlp_pca.predict(muestra_artificial)[0]
print("Predicción de la muestra artificial:", "Maligno (0)" if prediccion==0 else "Benigno (
# Prueba: modificar una variable clave y volver a predecir
muestra_modificada = muestra_artificial.copy()
muestra_modificada["radius_mean"] = 25.0 # valor alto = tumor más grande
prediccion_modificada = mlp_pca.predict(muestra_modificada)[0]
print("Predicción con tumor más grande:", "Maligno (0)" if prediccion_modificada==0 else "Be
→▼ Predicción de la muestra artificial: Maligno (0)
     Predicción con tumor más grande: Maligno (0)
```

Análisis de la predicción con muestra artificial

La muestra artificial creada fue clasificada como Maligna (O).

Esto tiene sentido porque los valores inventados describen un tumor relativamente grande y con características cercanas a la malignidad.

Al aumentar la variable radius_mean (radio promedio del tumor) a un valor muy alto, la predicción se mantuvo como *Maligna (0)*.

Esto también es coherente, ya que un tumor más grande refuerza la probabilidad de malignidad.

En conclusión, el modelo responde de manera lógica ante cambios en las variables, lo cual indica que la predicción es razonable.

Protocolo de adquisición de los datos

El dataset proviene del estudio original *Breast Cancer Wisconsin (Diagnostic)* desarrollado en la Universidad de Wisconsin.

- Los datos se obtuvieron a partir de *imágenes digitalizadas de aspirados con aguja fina* (FNA) de masas mamarias.
- A partir de estas imágenes, se calcularon 30 características numéricas que describen la morfología y textura de los núcleos celulares (radio, perímetro, área, suavidad, concavidad, puntos cóncavos, etc.).
- Cada muestra fue evaluada por expertos y se le asignó una etiqueta: *M (maligno)* o *B (benigno)*.

Este protocolo asegura que el dataset contiene tanto las características cuantitativas extraídas de imágenes como la etiqueta diagnóstica clínica que sirve de variable objetivo.

```
import matplotlib.pyplot as plt
import seaborn as sns

# 1. Distribuciones individuales

fig, axes = plt.subplots(1, 3, figsize=(18,5))
sns.histplot(df["radius_mean"], bins=30, kde=True, ax=axes[0], color="skyblue")
axes[0].set_title("Distribución de radius_mean")

sns.histplot(df["texture_mean"], bins=30, kde=True, ax=axes[1], color="salmon")
axes[1].set_title("Distribución de texture_mean")

sns.histplot(df["concavity_mean"], bins=30, kde=True, ax=axes[2], color="lightgreen")
axes[2].set_title("Distribución de concavity_mean")

plt.show()
```


Distribuciones de variables

- radius_mean: presenta una distribución asimétrica hacia valores altos; los tumores malignos suelen tener radios mayores.
- texture_mean: la variabilidad es moderada, pero hay solapamiento entre casos benignos y malignos.
- concavity_mean: los valores altos son poco frecuentes, pero cuando aparecen suelen estar asociados con tumores malignos.

Estas distribuciones muestran que algunas variables podrían ayudar a separar las clases, aunque no todas lo logran por sí solas.

```
# 2. Relación con el target
```

```
plt.figure(figsize=(10,5))
sns.boxplot(x="diagnosis", y="radius_mean", data=df)
plt.title("Radius mean por diagnóstico")
plt.show()
plt.figure(figsize=(10,5))
sns.violinplot(x="diagnosis", y="concavity_mean", data=df)
```

plt.title("Concavity mean por diagnóstico")
plt.show()

 $\overline{\mathbf{T}}$

, Relación entre variables y el target

- radius_mean: los tumores malignos (0) presentan radios medios más altos que los benignos (1).
- concavity_mean: los valores son claramente mayores en los tumores malignos, lo que la convierte en una variable muy discriminativa.

Esto confirma que ciertas características del núcleo celular tienen fuerte relación con la malignidad.

3. Correlación entre variables

```
plt.figure(figsize=(12,8))
corr = df.drop(columns=["diagnosis"]).corr()
sns.heatmap(corr, cmap="coolwarm", center=0)
plt.title("Matriz de correlación entre variables")
plt.show()
```


Correlaciones entre variables

Se observa que:

- radius mean, perimeter mean y area mean están fuertemente correlacionadas (>0.9).
- concavity_mean y concave points_mean también muestran una correlación alta.
- Este tipo de correlación sugiere que algunos atributos aportan información redundante.

Para el modelado, esto implica que el algoritmo podría dar más peso a grupos de variables similares, lo cual debe tenerse en cuenta en el análisis.

```
# Separar features y target correctamente
X = df.drop(columns=["diagnosis"]) # todas las columnas menos diagnosis
y = df["diagnosis"]
                                     # la columna diagnosis como Series
print("Shape X:", X.shape) # debería ser (569, 30)
print("Shape y:", y.shape) # debería ser (569,)
print("Primeros valores de y:\n", y.head())
\rightarrow \rightarrow Shape X: (569, 30)
     Shape y: (569,)
     Primeros valores de y:
           0
     1
          0
     2
          0
     3
     Name: diagnosis, dtype: int64
X_train_val, X_test, y_train_val, y_test = train_test_split(
    X, y, test_size=0.15, random_state=42, stratify=y
)
X_train, X_val, y_train, y_val = train_test_split(
    X_train_val, y_train_val, test_size=0.176, random_state=42, stratify=y_train_val
)
print("Tamaños:")
print("Train:", X_train.shape, "Val:", X_val.shape, "Test:", X_test.shape)
→ Tamaños:
     Train: (397, 30) Val: (86, 30) Test: (86, 30)
def eval_model(model, Xtr, ytr, Xval, yval, Xte, yte):
    results = {}
    for split, (X_, y_) in zip(["train","val","test"], [(Xtr,ytr),(Xval,yval),(Xte,yte)]):
        y_pred = model.predict(X_)
        results[split] = {
            "accuracy": accuracy_score(y_, y_pred),
            "precision": precision_score(y_, y_pred),
            "recall": recall_score(y_, y_pred),
            "f1": f1 score(y , y pred)
        }
```

return results

```
knn_eval = eval_model(knn, X_train, y_train, X_val, y_val, X_test, y_test)

rf_eval = eval_model(rf, X_train, y_train, X_val, y_val, X_test, y_test)

mlp_eval = eval_model(mlp, X_train, y_train, X_val, y_val, X_test, y_test)

print("kNN:", knn_eval)

print("Random Forest:", rf_eval)

print("MLP:", mlp_eval)

★▼ kNN: {'train': {'accuracy': 0.9723618090452262, 'precision': 0.9649805447470817, 'recall Random Forest: {'train': {'accuracy': 1.0, 'precision': 1.0, 'recall': 1.0, 'f1': 1.0},

MLP: {'train': {'accuracy': 1.0, 'precision': 1.0, 'recall': 1.0, 'f1': 1.0}, 'val': {'a
```

Overfitting y Underfitting

- Overfitting: cuando el modelo aprende demasiado los datos de entrenamiento, incluyendo ruido. Se detecta porque la exactitud (accuracy) en train es muy alta pero cae mucho en val/test.
- *Underfitting*: ocurre cuando el modelo es demasiado simple y no captura patrones importantes. Se detecta porque tanto en train como en val/test las métricas son bajas.

```
pca = PCA(n_components=2)
X_pca = pca.fit_transform(StandardScaler().fit_transform(X))

plt.figure(figsize=(6,4))
sns.scatterplot(x=X_pca[:,0], y=X_pca[:,1], hue=y.map({0:"Maligno",1:"Benigno"}))
plt.title("PCA (2 componentes) - separación de clases")
plt.show()
```


import pandas as pd

```
# Convertir resultados a tabla
rows = []
for name, evals in [("kNN", knn_eval), ("RandomForest", rf_eval), ("MLP", mlp_eval)]:
    for split, metrics in evals.items():
        row = {"model": name, "split": split}
        row.update(metrics)
        rows.append(row)

results_df = pd.DataFrame(rows)
print(results_df)

# Guardar tabla
results_df.to_csv("models_comparison.csv", index=False)
```

```
₹
                                                                    f1
               model
                      split
                             accuracy
                                        precision
                                                     recall
    0
                 kNN
                      train
                             0.972362
                                         0.964981
                                                   0.992000
                                                             0.978304
    1
                 kNN
                        val
                             0.988235
                                         0.981481
                                                   1.000000
                                                             0.990654
    2
                 kNN
                             0.930233
                                         0.900000
                                                   1.000000
                                                             0.947368
                       test
    3
       RandomForest
                      train
                             1.000000
                                         1.000000
                                                   1.000000
                                                             1.000000
    4
       RandomForest
                        val
                             0.988235
                                         1.000000
                                                   0.981132
                                                             0.990476
       RandomForest
    5
                       test
                             0.883721
                                         0.892857
                                                   0.925926
                                                             0.909091
    6
                 MLP
                      train
                             1.000000
                                         1.000000
                                                   1.000000
                                                             1.000000
    7
                 MLP
                        val
                             0.988235
                                         1.000000
                                                   0.981132
                                                             0.990476
    8
                 MLP
                       test
                             0.965116
                                         0.981132 0.962963 0.971963
```

from sklearn.metrics import ConfusionMatrixDisplay

```
for model, name in [(knn,"kNN"), (rf,"RandomForest"), (mlp,"MLP")]:
```

```
y_pred = model.predict(X_test)
disp = ConfusionMatrixDisplay.from_predictions(y_test, y_pred, cmap="Blues")
disp.ax_.set_title(f"Matriz de confusión - {name}")
plt.show()
```

 $\overline{\mathbf{T}}$

