Algebraic Number Theory

Lecture Notes

January 8, 2025

Contents

1	Integral elements	1
2	Free A-modules	3
3	Bilinear forms	3
4	Dedekind rings	7
5	Valuations and DVR's	8
6	Projective modules over Dedekind rings	9
7	Ideal class group	10
8	Norm of an ideal	11
9	Latices	11
10	Unit theorem	14
11	Regulator	14
12	Dedekind zeta Function	15

1 Integral elements

Definition 1.1

 $\varphi:A\to B,\,b\in B$ is integral over A iff $\exists f\in A[t]$ monic with f(b)=0. The ring B is integral over A if all $b\in B$ are integral over A.

Example 1.1. $\sqrt{2} \in \mathbb{Q}[\sqrt{2}]$ is integral over \mathbb{Z} , $\frac{1}{2} \in \mathbb{Q}$ is not integral over \mathbb{Z} .

Proposition 1.1

 $\varphi: A \to B$ then the following are equivalent:

- (i) b is integral over A
- (ii) A[b] is finitely generated as an A-module.
- (iii) $A[b] \subset C \subset B$, C is finitely generated as an A-module.
- (iv) There exists a faithful A[b]-module M finite as an A-module.

Definition 1.2

 $A \subset B, \overline{A} = \{b \in B \mid b \text{ integral over } A\}$ is called the integral closure of A in B.

Corollary 1.1

 \overline{A} is a ring.

Proposition 1.2

 $A \subset B, B \subset C$ are integral $\Rightarrow A \subset C$ is integral.

Corollary 1.2

 $A \subset B$ then $\overline{\overline{A}} = A$.

Our objects of study: $O_{\rm K}$. It is clearly integrally closed.

$$\mathbb{Q} \longrightarrow K$$

$$\uparrow \qquad \qquad \uparrow$$

$$\mathbb{Z} \longrightarrow \overline{\mathbb{Z}} =: O_{K}$$

Figure 1: $O_{\rm K}$

Remark: *A* is UFD then $A = \overline{A} \subset \operatorname{Frac}(A)$

Proof. Same as for $\mathbb{Z} \subset \mathbb{Q}$.

Proposition 1.3

 $A = \overline{A} \subset K = \operatorname{Frac}(A)$. L|K separable field extension. Then $l \in L$ integral over $A \Leftrightarrow f_l \in A[t]$.

Example 1.2. $K = \mathbb{Q}[\sqrt{5}]$ $O_K = ?$. Let $x = a + b\sqrt{5} \in O_K \subset K$. Then $f_x = (X - x)(X - \overline{x}) = X^2 - 2aX + a^2 - 5b^2$. Thus $2a, a^2 - 5b^2 \in \mathbb{Z}$. From this one can calculate that $O_K = \mathbb{Q}[\frac{1+\sqrt{5}}{2}] \neq \mathbb{Q}[\sqrt{5}]$.

2 Free A-modules

Theorem 2.1: Structure theorem for finitely generated Abelian groups

Any finitely generated \mathbb{Z} -module M is isomorphic to $M = \mathbb{Z}^r \oplus \mathbb{Z}/(d_1) \oplus \cdots \oplus, d_i \mid d_{i+1}$. In other terms $M = \mathbb{Z}^r \oplus \bigoplus_i \mathbb{Z}/(p_i^{e_i})$

Construction: B is an A-algebra free as an A-module. Let $b \in B$. $tr(b) := tr(M_b)$, $Nm(b) := det(M_b)$ where M_b is the matrix of the multiplication map $\cdot b$. Then $tr : B \to A$ is additive and A-linear and $Nm : B \to A$ is multiplicative.

Proposition 2.1

L|K finite extension, [L:K]=n. Let $l \in L$ with minimal polynomial $f_l(x)=x^m-a_1x^{m-1}+\cdots \pm a_m$. Let $s=\frac{n}{m}$. Then $\operatorname{tr}(l)=sa_1$, $\operatorname{Nm}(l)=a_m^s$.

3 Bilinear forms

Let M be free as an A-module and let $\Psi: M \times M \to A$ be a bilinear form with Gram-matrix $G=(g_{ij})$, i.e. $g_{ij}=\Psi(e_i,e_j)$. The discriminat of Ψ with respect to the standard basis is disc $\Psi=\det(G)$. Let B be a change-of-basis matrix. Then the Gram-matrix with respect to the new basis is given by $G'=B^tGB$ meaning that $\det(G)=\det(B)^2\det(G)$. This means that usually for rings the determinant of the Gram-matrix is not independent of the chosen basis. However if $A=\mathbb{Z}$, then the discriminant is independent of bases!

For a field extension L|K we define $\operatorname{disc}_{L|K} := \operatorname{disc}\operatorname{Tr}$, where Tr is the trace form $\operatorname{Tr}: L \times L \to K$, $(l, l') \mapsto \operatorname{tr}(l \cdot l')$.

Example 3.1.
$$L = \mathbb{Q}[\sqrt{d}]$$
, $\mathcal{B} = (1, \sqrt{d})$, $\operatorname{Tr} = \begin{pmatrix} \operatorname{tr}(1) & \operatorname{tr}(\sqrt{d}) \\ \operatorname{tr}(\sqrt{d}) & \operatorname{tr}(\sqrt{d}) \end{pmatrix}$. Then $\operatorname{disc}_{L|K}(\mathcal{B}) = 4d$.

Proposition 3.1

L|K finite separable extension of degree n=[L:K]. Let $\sigma_i:L\to \overline{L}$ be the embeddings of L in an algebraically closed field (or even the normal closure of L). Then for any $l\in L$, $tr(l)=\sum_{i=1}^n\sigma_i l$ and $\mathrm{Nm}(l)=\prod_{i=1}^n\sigma_i(l)$.

In particular, if L|K is Galois, then $\operatorname{tr}(l) = \sum_{\sigma \in \operatorname{Gal}(L|K)} \sigma(l)$. $\Psi: M \times M \to A$, $\operatorname{disc}(\Psi) = 0 \Leftrightarrow : \Psi$ is degenerate $\Leftrightarrow \Psi(m, \cdot) \equiv 0$ for some $m \neq 0 \Leftrightarrow \Psi(\cdot, m) \equiv 0$ for some $m \neq 0$. We need the trace form to be non-degenerate for separable L|K.

Theorem 3.1: Dedekind's theorem on the independence of characters

Let K be a field, G a group and $\chi_i: G \to K*$ pairwise different. Then $\{\chi_i\}_{i\in I}$ is linearly independent over K.

Proposition 3.2

Let $A = \overline{A} \subset K$ and B be the integral closure of A in L for a finite field extension L|K. Then for any $b \in B$, $\operatorname{tr}_{L|K}(b)$, $\operatorname{Nm}_{L|K}(b) \in A$.

Proof. Since $b \in B$, minpol $(b) \in A[X]$.

Proposition 3.3

Let L|K be a finite separable field extension, n = [L : K]. Let σ_i be the embeddings of L in its Galois closure. For a basis $\mathcal{B} = (l_1, \ldots, l_n)$ of L as a K-vector space we have $\mathrm{disc}_{L|K}^{\mathcal{B}} = \mathrm{det}^2((\sigma_i l_i)_{ij}) \neq 0$.

Proof. $\det(\operatorname{Tr}_{L|K}) = \det((\operatorname{tr}(l_il_j)_{ij})) \det((\sum_k \sigma_k(l_il_j))_{ij}) = \det((\sum_k \sigma_k(l_i)\sigma_k(l_j))) = \det^2(\sigma_k(l_i))$. Let $M = (\sigma_k l_j)_{kj}$ Suppose $\det M = 0$. Then the rows are linearly dependent, meaning $\sum \lambda_i \sigma_i(l_j) = 0 \forall j$. Thus $\sum \lambda_i \sigma_i \equiv 0$, contradicting Dedekind's theorem on the independence of characters.

Theorem 3.2

Let $A \subset K$ be integrally closed, L|K finite and separable of degree n. Then the integral closure B of A in L is a finitely generated A-module of rank n. The rank of a module B is defined as $\dim_K(K \otimes_A B)$. Furthermore

- if *A* is Noetherian, so is *B*.
- if *A* is a PID then $B \cong A^{\oplus n}$

Corollary 3.1

If $A = \mathbb{Z}$, $K|\mathbb{Q}$ a finite field extension, then $O_K = \mathbb{Z}^n$ where $n = [K : \mathbb{Q}]$.

Definition 3.1

A basis of O_K as a \mathbb{Z} -module is called an integral basis of O_K .

Example 3.2.

- Let $K = \mathbb{Q}[\sqrt{d}]$ and $\mathcal{B} = (1, \sqrt{d})$ which is a basis of K consisting of integral elements. Then $\mathrm{disc}_{K|Q}^{\mathcal{B}} = \mathrm{det}\begin{pmatrix} \mathrm{tr}(1) & \mathrm{tr}(\sqrt{d}) \\ \mathrm{tr}(\sqrt{d}) & \mathrm{tr}(d) \end{pmatrix} = 4d$. Let $\mathcal{B}' = (e_1, e_2)$ be an integral basis of O_K . Then the elements of \mathcal{B} can be written as a linear combinations over \mathbb{Z} of the elements of \mathcal{B}' meaning $\mathcal{B} = M\mathcal{B}'$ for some matrix M. Thus $4d = \mathrm{disc}^{\mathcal{B}} = \mathrm{det}^2(M)\,\mathrm{disc}^{\mathcal{B}'}$. Thus $\mathrm{det}(M) \mid 2$. If $|\det(M)| = 2$, $\mathbb{Z}(\mathcal{B}) \hookrightarrow \mathbb{Z}(\mathcal{B}')$ is of index 2. Thus the candidates to be checked for an integral basis of O_K are $\frac{1}{2}$, $\frac{\sqrt{d}}{2}$, $\frac{1+\sqrt{d}}{2}$. Since the first two can be easily discarded, we get $(1, \frac{1+\sqrt{d}}{2})$ as an integral basis.
- Let $\mathcal{B} = (e_1, \dots, e_n)$ be a basis of $K|\mathbb{Q}$ consisting of integral elements. $\mathrm{disc}_{L|K}^{\mathcal{B}} = \pm \prod_{i=1}^n p_i e_i$. If $e_i < 2$, then \mathcal{B} is automatically an integral basis. Else if there is only one prime $p := p_i$ with $e_i = 2$ and the rest $e_j < 2$, we only have to check elements of the form $\sum_{i=1}^n \frac{n_i l_i}{p}$ to find an integral basis.

Let $f \in K[X]$ with $f = \prod (X\alpha_i)$ in \overline{K} . $\Delta(f) := \prod_{i < j} (\alpha_i - \alpha_j)$ which is a polynomial in the coefficients of f. If deg f = 2 and $f \in \mathbb{R}[X]$. Then if $x_1 = z \in \mathbb{C} \setminus \mathbb{R}$. then $x_2 = \overline{z}$, meaning $z - \overline{z} \in i\mathbb{R} \implies (z - \overline{z})^2 \in \mathbb{R}_{\leq 0}$. If deg f = 3 and α_1 is real and α_2 is not real, then $\alpha_3 = \overline{\alpha_1}$. Thus $\Delta(f) \in i\mathbb{R}$.

not necessarily an integral basis!

Proposition 3.4

 O_K is the maximal subring of K finitely generated as a \mathbb{Z} -module.

Proof. Let $B \subset K$ be a finitely generated \mathbb{Z} -module. Then by a previous theorem since \mathbb{Z} is a PID we have $B = \mathbb{Z}^n$. Let $b \in B$. Thus $\mathbb{Z}[b]$ is free and finite as a \mathbb{Z} -module meaning that b is integral over \mathbb{Z} . Thus $b \in O_K$.

Proposition 3.5

Let L|K be a field extension. Let L = K[x] and f_x be the minimal polynomial of x over K. With deg f = n and $\mathcal{B} = (1, x, \dots, x^{n-1})$ basis of L let $x_i = \sigma_i(x)$ be the different images of x under embeddings of L in its algebraic closure. Then

$$\operatorname{disc}_{L|K}^{\mathscr{B}} = \prod_{i < j} (x_i - x_j)^2 = (-1)^{n(n-1)/2} \operatorname{Nm}(f'(x))$$

Example 3.3. Let $f=X^n-a$ and L=K[x]|K with $x^n=a$, $n\neq 0\in L$. Then $g=f'=nx^{n-1}=n\frac{x^n}{x}=\frac{na}{x}$. Clearly then $y\in K[x]$. Since $x=\frac{na}{y}\in K[y]$ we have K[x]=K[y]. We need now only the minimal polynomial of y. $0=f(x)=f(\frac{na}{y})=(\frac{na}{y})^n-a=0 \Rightarrow y^n-n^na^{n-1}=0$. Thus $\mathrm{Nm}(y)=\pm n^n\cdot a^{n-1}$ and $\mathrm{disc}^{\mathscr{B}}=\pm n^na^{n-1}$.

Corollary 3.2

If
$$f = X^n + aX + b$$
 then $disc(f) = a^n + b^{n-1}$.

By a simple calculation

$$\operatorname{disc}(f) = (-1)^{\binom{n}{2}} (1-n)^{n-1} a^n + (-1)^{\binom{n}{2}} n^n b^{n-1}$$

We thus get

$$\operatorname{disc}(X^{2} + aX + b) = a^{2} - 4b$$
$$\operatorname{disc}(X^{3} + aX + b) = -27b^{2} - 4a^{3}$$
$$\operatorname{disc}(X^{5} + aX + b) = 5^{5}b^{4} - 4^{4}a^{5}$$

Example 3.4. $\operatorname{disc}(X^5 - X - 1) = 19 \cdot 5 \cdot 3$ meaning that $\mathcal{B} = (1, \cdot, x^4)$ is an integral basis of O_K .

meaning calculation to be inserted

Proposition 3.6

Let $K|\mathbb{Q}$ be a finite field extension and \mathscr{B} a \mathbb{Q} -basis of K. Then $\mathrm{sgn}(\mathrm{disc}^{\mathscr{B}}) = (-1)^s$ where s is the number of non-real embedding of K in \mathbb{C} .

Theorem 3.3: Stickelberger's theorem

Let $K|\mathbb{Q}$ be a finite extension of degree n and \mathcal{B} be a basis of integral elements. Then $\mathrm{disc}^{\mathcal{B}} \equiv 0, 1 \pmod{4}$.

4 Dedekind rings

Example 4.1. Let $K|\mathbb{Q}$ be a finite extension of degree n. Then

- $O_{\mathrm{K}} = \mathbb{Z}^n$
- is Noetherian
- · is integrally closed
- $\operatorname{Frac}(O_{\mathbf{K}}) = K$.

Let $\mathfrak{a} \subset O_K$ be a non-zero ideal. Pick a non-zero element $a \in \mathfrak{a}$. Then $\mathbb{Z}^n = (a) \subset \mathfrak{a} \subset O_K = \mathbb{Z}^n$ thus $\mathfrak{a} = \mathbb{Z}^n$ is a free \mathbb{Z} -module. This implies that O_K/\mathfrak{a} is finite. In fact if we take a prime ideal $0 \neq \mathfrak{p} \subset O_K$ then \mathfrak{p} is maximal since every finite domain is a field.

Remark 4.1. This means that O_K is of (Krull-)dimension 1.

Definition 4.1

A ring *A* is a Dedekind ring if *A* is an integrally closed, Noetherian ring of dimension one.

Example 4.2. O_K , K[x] are Dedekind.

Lemma 4.1

Let $A \subset B$ be a ring extension such that B is a finite A-module. Then A is a field $\Leftrightarrow B$ is a field.

Proposition 4.1

Let $A \subset K := \operatorname{Frac}(A)$ be a Dedekind ring and L|K be a finite separable field extension. Then the integral closue $B = \overline{A} \subset L$ is also a Dedekind ring.

5 Valuations and DVR's

Section on local properties missing

Definition 5.1

A valuation v on a field K is a group homomorphism $v: K^* \to G$ where G is a totally ordered Abelian group satisfying $v(\lambda + \mu) \ge \min(v(\lambda), v(\mu))$. A valuation is discrete is $G = \mathbb{Z}$.

Remark 5.1. We sometimes assume that $v: K^* \to \mathbb{Z}$ is surjective.

Definition 5.2

A domain *A* is a discrete valuation ring (DVR) if $A = v^{-1}(\mathbb{N}_{\geq 0})$ for some discrete valuation on Frac(*A*).

Example 5.1. Let $K=\mathbb{Q}$ and fix a prime number p. Then for $\frac{a}{b}=p^m\frac{\overline{a}}{\overline{b}}$ with $(\overline{a},\overline{b})=(\overline{a},p)=(\overline{b},p)=1$ we assign $v_p(\frac{a}{b})=m$. This is a discrete valuation. Its DVR is $v_p^{-1}(\mathbb{N})=\{\frac{a}{b}\mid p\nmid b\}=\mathbb{Z}_{(p)}$.

Proposition 5.1

Let $v:K^* \to \mathbb{Z}$ be a valuation and $A=v^{-1}(\mathbb{N}).$ Let $t\in v^{-1}(1).$

- (i) A is noetherian
- (ii) m = t is the only maximal ideal
- (iii) $\mathfrak{a} \in A$ ideal then $\mathfrak{a} = (t^n)$.
- (iv) A is integrally closed

Theorem 5.1

Let (A, \mathfrak{m}) be a local Dedekind domain. Then A is a DVR.

Remark 5.2. Let *A* be a Dedekind ring and $\mathfrak{m} \subset A$ maximal. Then $A_{\mathfrak{m}}$ is

a local Dedekind ring $\Rightarrow A_{\mathfrak{m}}$ is a DVR.

Theorem 5.2

Let $A \subset K$ be a Dedekind ring, and $\mathfrak{a} \subset A$ be an ideal. Then $\mathfrak{a} = \prod_{i=1}^n \mathfrak{m}_i^{e_i}$. This product is unique upto refactoring.

Lemma 5.1

Let *A* be a Dedekind ring, then any ideal $\mathfrak{a} \subset A$ contains a product of maximal ideals.

Lemma 5.2

Let A be a ring $\mathfrak{m} \subset A$ maximal. Let $\mathfrak{m}_{\mathfrak{m}}$ be the maximal ideal of the local ring $A_{\mathfrak{m}} = (A \setminus \mathfrak{m})^{-1}A$. Then for any $n \in \mathbb{N}$ $A/\mathfrak{m}^n \cong A_{\mathfrak{m}}/\mathfrak{m}^n$.

6 Projective modules over Dedekind rings

Definition 6.1

 $M \in \operatorname{Mod}(A)$ is *projective* if for every modules N and N^* with a surjection $\pi: N \twoheadrightarrow N^*$ and homomorphism $\alpha: M \to N^*$ there exists a so called *lift* $\widetilde{\alpha}: M \to N$ such that $\alpha = \pi \circ \widetilde{\alpha}$.

Example 6.1.

- $M = A^n$ is projective.
- M is projective $\Rightarrow M \oplus M'$ is free for some M'.

Corollary 6.1

 $0 \neq \mathfrak{a} \subset A$ ideal is a Dedekind ring. Then \mathfrak{a} is projective as an A-module.

Corollary 6.2: Existence of inverse

For any $\mathfrak{a} \neq 0$ there exists an ideal \mathfrak{b} such that $\mathfrak{ab} = (c)$ for some $c \in A$.

7 Ideal class group

Definition 7.1

A fractional ideal is finitely generated A-module in $K = \operatorname{Frac} A$.

Remark 7.1. $M = \langle \frac{a_i}{s_i} \rangle$. Let $s = \prod_{i=1}^N a_i$. Then $sM = \langle a_i \rangle = \mathfrak{a}$ is an ideal. Thus all fractional ideals are of the from $\frac{1}{s}\mathfrak{a}$ for some ideal \mathfrak{a} .

Remark 7.2. Let $\lambda, \mu \in K^*$. Define $(\lambda) = A\lambda$. Then $(\lambda) = (\mu) \Leftrightarrow \mu \in (\lambda) \land \lambda \in (\mu) \Leftrightarrow \lambda = u\mu$ for some unit u.

Definition 7.2: Ideal class group

Define the *ideal class group* Cl_K through the following exact sequence $0 \to A^* \to K^* \to Frac \operatorname{Id}(A) \to Cl_K \to 0$, where Frac Id is the set of all fractional ideals. Then Cl_K is a group.

Definition 7.3

Let $A \subset K = \operatorname{Frac} A$ be a Dedekind ring and L|K be a finite field extension. Let B be the integral closure of A in L. Then B is Dedekind. Let $\mathfrak p$ be a prime ideal of A. Then $\mathfrak p^e = \prod_{i=1}^g \mathfrak p_i^{e_i}$. The e_i are called the *ramification index* of $\mathfrak p_i$. $f_i = [B/\mathfrak p_i : A/\mathfrak p]$ is called the *inertial degree*.

Theorem 7.1

 $n = \sum_{i=1}^{g} e_i f_i$. If L|K is Galois then the Galois group G acts transitively on the prime ideals \mathfrak{p}_i . We then have $e_i = e$, $f_i = f$ for all i and thus n = efg.

Proposition 7.1

Let $A \subset K$ be Dedekind.

- $\mathfrak{a} \subset A$ is projective
- M is projective $\Rightarrow M \cong A^{n-1} \oplus \mathfrak{a}$.
- $A^{n-1} \oplus \mathfrak{a} \cong A^{n-1} \oplus \mathfrak{b} \Leftrightarrow \mathfrak{a} \sim \mathfrak{b}$.
- $\forall S \subset A \ S^{-1}A \otimes_A M \cong S^{-1}M$.

Theorem 7.2: L

 $t\ A \subset K$ be Dedekind, L|K finite field extension and B the integral closure of A in L. Assume that $B \cong A^n$ and that $\forall \mathfrak{p} \subset A\ A/\mathfrak{p}$ is perfect. Let \mathscr{B} be a basis of B as an A-module. Then $(\Delta_{L|K}) = \prod_{i=1}^n \mathfrak{p}_i^{e_i}$. Then $\mathfrak{p} \subset A$ is ramified $\Leftrightarrow \mathfrak{p}$ is one of the \mathfrak{p}_i .

Corollary 7.1

Let $K|\mathbb{Q}$ be finite. Then there are only finitely many primes dividing $\Delta_{K|\mathbb{Q}}$, meaning that only finitely many primes ramify.

8 Norm of an ideal

Definition 8.1

Let L|K a finite field extension and $\mathfrak{q} \subset O_K$. Then $\mathfrak{p} = O_K \cap \mathfrak{q}$ is also prime. Let $[O_K/\mathfrak{q}:O_K/\mathfrak{p}] = f$. Then the define the *norm* of \mathfrak{q} by $\mathrm{Nm}(\mathfrak{q}) = \mathfrak{q}^f$. Define $\mathrm{Nm}(\prod_i \mathfrak{q}_i^{e_i}) = \prod_i \mathrm{Nm}(\mathfrak{q}_i)^{e_i}$.

Proposition 8.1

- $\mathfrak{a} \subset O_{K}$ then $Nm(\mathfrak{a}^{e}) = \mathfrak{a}^{n}$.
- L|K Galois, then $Nm(\mathfrak{a}) = \prod_{\sigma \in G} \sigma(\mathfrak{q})$.
- $\operatorname{Nm}_{M|K} = \operatorname{Nm}_{L|K} \circ \operatorname{Nm}_{M|L}$ for a tower $K \to L \to M$ of fields.
- $b \in O_K$ then Nm((b)) = (Nm(b)).

9 Latices

Definition 9.1: Latice

Let $V \cong \mathbb{R}^n$ be a Euclidean vector space $(V, \langle \cdot \rangle)$. A subgroup $\Lambda \subset V$ is called a *latice* if

- $\Lambda \cong \mathbb{Z}^n$
- Λ is spanned by a basis of V

Example 9.1. $\mathbb{Z}^n \subset \mathbb{R}^n$. If $\mathcal{B}_lambda = (l_1, \ldots, l_n)$ is a latice basis, then for any other basis $\mathcal{B}'_{\Lambda} = A \cdot \mathcal{B}_{\Lambda}$ with $A \in GL_n(\mathbb{Z})$

Definition 9.2

Let Λ ba lattice. The *covolume* of Λ for a basis $\mathcal{B}_{\Lambda} = (l_i)$ is the determinant $\det(G)$ where $G = (g_{ij})$ with $g_{ij} = \langle l_i, l_j \rangle$.

Remark 9.1. • For a different basis $\mathcal{B}' = A\mathcal{B}$ we have $\deg(G') = \det(A^tGA) = \det(A)^2 \det(B)$.

• $\operatorname{covol}(\Lambda) = \operatorname{vol}(V/\Lambda) = \operatorname{vol}(F)$ where $F = \{\sum_{i=1}^{n} x_i l_i \mid x_i \in [0, 1]\}.$

Definition 9.3

A subset $K \subset V$ is called

- *central* if $x \in K \Leftrightarrow -x \in K$.
- convex if $x, y \in K \Rightarrow tx + (1 t)y \in K \forall t \in [0, 1]$.

Theorem 9.1: Minkowskis latice point theorem

Let $K \subset V$ be a compact, convex and central subset such that $\mu(K) \geq 2^n \mu(F_{\Lambda})$. Then K contains a non-zero latice point of Λ .

Let $K|\mathbb{Q}$ be a number field of degree n. Since the extension is separable there exists an $\alpha \in K$ with $K = \mathbb{Q}(\alpha)$ with $f = f_{\alpha}$ its minimal polynomial. We will construct $V_K \cong \mathbb{R}^n$. For any root α_i of f we get an embedding $K \to \mathbb{C}$. Let r be the number of purely real embeddings and s be the number of pairs of non-real complex embeddings. Then n = r + 2s. Let now

$$V_K = \bigoplus_{\sigma_i: K \to \mathbb{R}} \mathbb{R} \bigoplus_{\sigma_i: K \to \mathbb{C}} \mathbb{C}$$

Then $\dim_{\mathbb{R}} V_k = r + 2s = n$. Consider $v \in V_K$ with $v = (x_1, \dots, x_r, z_1, \dots, z_s)$. Define

$$||v||^2 = \sum_{i=1}^k x_i^2 + 2 \sum_{i=1}^s ||z_i||^2$$

12

. Let $\nu: K \to V_K$ be given by $\nu(a)_i = \sigma_i(a)$.

Theorem 9.2

 $\nu(O_K)$ is a lattice in V_K of covolume $2^{-s}\sqrt{|\Delta_K|}$.

Theorem 9.3

Let $K|\mathbb{Q}$ be finite. Then for any class $[\mathfrak{a}] \in Cl(\mathcal{O}_K)$ there exists an ideal $\mathfrak{a} \in [\mathfrak{a}]$ such that

- $\mathfrak{a} \subset O_{K}$.
- Nm(\mathfrak{a}) $\leq \frac{n!}{n^n} (\frac{4}{\pi})^s \sqrt{|\Delta_K|}$

Corollary 9.1

 $Cl(O_K)$ is finite.

Corollary 9.2

Let $K|\mathbb{Q}$ be a number field of degree $n \geq 2$. Then $\Delta_K \neq 1$.

Proposition 9.1

- $\operatorname{covol}(\sigma(\operatorname{Nm}(\mathfrak{a})))\sqrt{|\Delta_K|}$.
- $x_i \in \mathbb{R}_{\geq 0}$

Proposition 9.2: AM-GM Inequality

For $x_i \in \mathbb{R}_{\geq 0}$ we have $\sqrt[n]{\prod_i x_i} \leq \frac{\sum_i x_i}{n}$

Proof. WLOG we may assume that $\sum_i x_i = 1$. Let $K := \{x \in \mathbb{R}_{\geq 0} \mid \sum_i x_i = 1\}$. The set is clearly compact. Consider now $f : K \to \mathbb{R}$ given by $(x_i) \mapsto \prod_i x_i$. Since the function is continuous, there must a maximum. Then $\nabla f = (\prod_i x_i)(\frac{1}{x_1}, \dots, \frac{1}{x_n})^t$. Let x be the maximum of f and $t \in \mathbb{R}^n$ arbitrary. $f(x + \varepsilon t) = f(x) + \varepsilon t \cdot \nabla F$ for $\varepsilon \to 0$. Thus $t \perp \nabla f(x)$. Choosing $t = (1, -1, 0, \dots, 0)^t$ we get $x_1 = x_2$. Similarly $x_1 = \dots = x_n = \frac{1}{n}$. Thus we get $\prod_i x_i \leq \frac{1}{n}$.

 $K = K(t) := \{x \in V_K \mid \sum_{i=1}^r |x_i| + 2 \sum_{i=1}^s ||x_{r+1}|| \le t \}$. Then K is closed. Furtehrmore $\operatorname{vol}(K(t)) = t^n \operatorname{vol}(K(1))$.

13

Proposition 9.3

$$\operatorname{vol} K(1) = \frac{2^r (\frac{\pi}{2})^2}{n!}.$$

Theorem 9.4

For anny class $\eta \in Cl(O_K)$ there exists a non-fractional ideal $\mathfrak{a} \in \eta$ with $Nm(\mathfrak{a}) \leq \frac{n!}{n^n} (\frac{4}{\pi})^s \sqrt{|\Delta_K|}$.

Theorem 9.5

A subgroup $\Gamma \subset V$ is discrete $\Leftrightarrow \Gamma$ is a lattice.

10 Unit theorem

Main result to be proved:

Theorem 10.1: Unit theorem

Let $K|\mathbb{Q}$ be finite of degree n = r + 2s. Then $u_K = O_K^* = \mu(K) \oplus \mathbb{Z}^{r+s-1}$ where $\mu(K) = \{\lambda \in K \mid \exists n(\lambda) : \lambda^{n(\lambda)} = 1\}$.

Example 10.1. $\mu(\mathbb{Q}(i)) = \langle i \rangle$.

Lemma 10.1: Easy finiteness lemma

Let $M \in \mathbb{R}$ and $m \in \mathbb{N}$. Then

 $\#(\{z \in \mathbb{C} \mid \text{ integral over } \mathbb{Z}; \deg(z) \leq m; \|\sigma_i z\| \leq M \forall i\}) < \infty$

Proposition 10.1

LEt $z \in K^*$. Then we have $z \in \mu(K) \Leftrightarrow \|\sigma(z)\| = 1 \forall \sigma : K \to \mathbb{C}$

Remark 10.1. $\mu(K) \subset U_K = O_K^* \subset O_K$

Theorem 10.2

rank $U_K = r + s - 1$. In particular $U_K \cong \mu(K) \oplus \mathbb{Z}^{r+s-1}$.

11 Regulator

Let $K|\mathbb{Q}$ be a number field. Then $O_K^* = \mathbb{Z}/(m) \oplus \mathbb{Z}^{r+s-1}$. We can embed $L: O_K \to \mathbb{R}^{r+s}$ by $L(x) = (\log(|\sigma_1(x)|), \ldots, \log(||\sigma_{r+s}(x)||^2))$. The image im L is a lattice in $H = ((1, \ldots, 1)^t)^{\perp}$.

Definition 11.1: Regulator

The *regulator* R_K of K is

$$R_K = \frac{1}{\sqrt{r+s}} \cdot \operatorname{covol}((L(O_K^*) \subset H))$$

Let $v = \frac{1}{\sqrt{r+s}}(1,\ldots,1)^t$, which is of norm 1. Then $R_K = \text{covol}(\Lambda = (L(\varepsilon_1),\ldots,L(\varepsilon_{r+s-1}),v))$

Proposition 11.1

$$R_K = |\det(M_{ij})| \text{ with } (M_{ij}) = (L(\varepsilon_1), \dots, v)$$

Corollary 11.1

$$R_K = |\det((L(\varepsilon_1), \dots, L(\varepsilon_{r+s-1})))|$$

Example 11.1. Let $K = \mathbb{Q}[\sqrt{d}]$ and $\varepsilon = a + b\sqrt{d}$ be a generator of U_K . $R_K = \log|z|$.

12 Dedekind zeta Function

Definition 12.1

Let $K|\mathbb{Q}$ be a number field of degree n = r + 2s. Let $\sigma_i, \ldots, \sigma_{r+s}$ be the embeddings of K in \mathbb{C} , $h := \operatorname{Cl}(O_K)$ and \mathbb{R}_K the regulator of K. The *Dirichlet zeta function* is defined by

$$\zeta_K(s) = \sum_{0 \neq \mathfrak{a} \subset O_K} \frac{1}{\mathrm{Nm}(\mathfrak{a})^s}$$

Remark 12.1. For $K=\mathbb{Q}$ the function is well defined for s>1 (even for $s\in\mathbb{C}, \Re(s)>1$, not relevant here though). Note that the function $x\mapsto x^{-s}$ is strictly decreasing. Thus $\int_{n-1}^n x^{-s} \ \mathrm{d} x>\frac{1}{n^s}>\int_n^{n+1} x^{-s} \ \mathrm{d} x$. Hence $1+\int_1^\infty x^{-s} \ \mathrm{d} x>\zeta_\mathbb{Q}(s)>\int_1^\infty x^{-s} \ \mathrm{d} x$. Therefore $s>(s-1)\zeta_\mathbb{Q}(s)>1$. Thus

$$\lim_{s \to 1^+} \zeta_{\mathbb{Q}}(s)(s-1) = 1$$

.

Theorem 12.1: Dream

 $\lim_{s\to 1^+} \zeta_K(s)(s-1) = h_K \cdot c_K$ for some easy function c_K depending on r, s, R_K .

1° trick:

Proposition 12.1

$$\zeta_K(s) = \sum_{c \in \mathrm{Cl}(O_K)} \sum_{[\mathfrak{a}] = c} \frac{1}{\mathrm{Nm}(\mathfrak{a})^s} =: \sum_{c \in \mathrm{Cl}(O_K)} \zeta_c(s)$$

Definition 12.2: Fundamental domain

Let $l^* = (1, ..., 1, 2, ..., 2)$ (r and s times respectively). Then $l^*, L(\varepsilon_1), ..., L(\varepsilon_{r+s-1})$ is a basis of \mathbb{R}^{r+s} for ε_i being a list of generators of U_K . Then the *fundamental doamin* $X \subset \mathbb{R}^n$ is defined by

$$X = \{x \in \mathbb{R}^n \mid 0 \le \arg(x_1) \le \frac{2\pi}{m};$$

$$\operatorname{Nm}(x) \ne 0;$$

$$L(x) = \lambda l^* + \sum_{i=1}^{r+s-1} \lambda_i L(\varepsilon_i) \forall \lambda \in \mathbb{R}_{\ge 0}, \lambda_i \in [0, 1)\}$$

Proposition 12.2

Let $c \in Cl(O_K)$ and \mathfrak{a}' be a non-fractional ideal such that $c^{-1} = [\mathfrak{a}']$. Then

$$\zeta_C = \mathrm{N}(a')^s \sum_{(a) \subset \mathfrak{a}} \frac{1}{|\mathrm{N}(a)|^s} = \mathrm{N}(\mathfrak{a}')^s \sum_{a \in \mathfrak{a}'; \sigma(a) \in X} \frac{1}{|\mathrm{N}(a)|^s}$$

Define $S := \{x \in X \mid N(x) = 1\}$ and $T := \{x \in X \mid N(x) \le 1\}$.

Lemma 12.1

S is bounded.

Lemma 1<u>2.2</u>

T is bounded.

Lemma 12.3

Let $u \in U_K$ and $m_u : \mathbb{R}^n \to \mathbb{R}^n$ given by $(x_1, \ldots, z_{r+s})^t \mapsto (\sigma_1(u)x_1, \ldots, \sigma_{r+s}(u)z_{r+s})^t$. Then m_u is volume preserving.

Let $\mu(K)=\langle \eta \rangle$. Define $T_K:=\eta^k T$ for $k=0,\ldots,m-1$. Also define $T_{\rm all}=\bigcup_{k=0}^{m-1}T_K$. Then clearly $\mu(T_{\rm all})=m\mu(T)$. Let $\overline{T}\subset T_{\rm all}$ such that $x_i>0$ for $i=1,\ldots,r$. Then

$$\mu(\overline{T}) = 2^{-r}\mu(T_{\text{all}}) = \frac{m}{2^r}\mu(T)$$

Proposition 12.3

$$vol(T) = \frac{R_K \cdot \pi^s \cdot 2^r}{m}$$