An Emphatic Approach to the problem of Off-policy Temporal-Difference Learning Sutton, R. S., Mahmood A. R., White M.

Greta Laage

March 16, 2017

Abstract

Off-policy TD learning with function approximation

- Emphasizing or de-emphasizing updates on different time steps
- Certain ways lead to stability under off-policy training
- One learned parameter vector and one step-size parameter

Gradient TD methods: TDC, $GTD(\lambda)$, $GQ(\lambda)$

- ▶ Model-free Gradient-TD methods with updates in O(n)
- Stability under off-policy training

Specificities of $ETD(\lambda)$

- State-dependent discounting
- Bootstrapping functions
- Varying interests for states

Off-Policy TD(0)

Off policy settings

Data from a continuing finite MDP

Behavior policy
$$\mu \neq \pi$$
 target policy ${m d}_{\mu} = \mathbb{P}[S_t = s]$

Assumption of coverage: $\pi(a|s)>0 => \mu(a|s)>0$

Off Policy TD(0)

$$\theta_{t+1} = \theta_t + \rho_t \alpha \left(R_{t+1} + \gamma \theta_t^\mathsf{T} \phi_{t+1} - \theta_t^\mathsf{T} \phi_t \right) \phi_t$$

$$\theta_{t+1} = \theta_t + \alpha \left(\rho_t R_{t+1} \phi_t - \rho_t \phi_t (\phi_t - \gamma \phi_{t+1})^\mathsf{T} \theta_t \right)$$

A matrix

$$\mathbf{A} = \mathbf{\Phi}^{\mathsf{T}} \mathbf{D}_{\mu} (\mathbf{I} - \gamma \mathbf{P}_{\pi}) \mathbf{\Phi}$$

- ► Columns sum may be negative
- ► A not positive definite
- ▶ Divergence of the parameter is likely

Instability of Off-Policy TD(0)

Example of divergence

Figure 1: $\theta \rightarrow 2\theta$ example without a terminal state.

- A = -0.2 < 0 => Expected update and algorithm are not stable
- Only 2 transitions to the right that create updates and occur equally often
- ▶ From 1 to 2: $\theta + 16\alpha$ and from 2 to 2: $\theta 8\alpha =$ divergence

Emphatic $TD(\lambda)$

Emphasizing or de-emphasizing updates on different time steps

- ▶ Varies emphasis so as to reweight the distribution of linear $TD(\lambda)$ updates
- ► Goal : Creating a weighting equivalent to the *followon distribution*

Emphatic $TD(\lambda)$

Emphasizing or de-emphasizing updates on different time steps

- ▶ Varies emphasis so as to reweight the distribution of linear $TD(\lambda)$ updates
- ► Goal : Creating a weighting equivalent to the followon distribution

followon distribution: weights states according to their number of occurences before termination if the agent follows the target policy.

Stability: expected update over the distribution is a contraction (positive definite matrix). Prerequisite for full convergence of the stochastic algorithm.

Off policy issue

 μ may take the process to $d_{\mu} \neq d_{\pi}$ while the states might be similar because of FA.

Off policy issue

 μ may take the process to $d_{\mu} \neq d_{\pi}$ while the states might be similar because of FA.

Emphatic approach: New contemplated excursion from the current state at every time step:

- **Excursion** begin in a state sampled from d_{μ} following π
- Sequence of states and actions would exist
- Product of importance sampling ratios since the beginning of the excursion

Update at t emphasized proportional to a new scalar F_t , corrects for the state distribution.

Off policy issue

 μ may take the process to $d_{\mu} \neq d_{\pi}$ while the states might be similar because of FA.

Emphatic approach: New contemplated excursion from the current state at every time step:

- **Excursion** begin in a state sampled from d_{μ} following π
- Sequence of states and actions would exist
- ► Product of importance sampling ratios since the beginning of the excursion

Update at t emphasized proportional to a new scalar F_t , corrects for the state distribution.

 $f(s)=d_{\mu}(s)\mathbb{E}_{\mu}[F_t|S_t=s]$ is the followon trace. It is the expected number of time steps that would be spent in each state during an excursion starting from d_{μ} .

Emphasis

$$F_t = \gamma \rho_{t-1} F_{t-1} + 1$$

Algorithm update

$$\theta_{t+1} = \theta_t + \alpha \rho_t F_t \left(R_{t+1} + \gamma \theta_t^T \phi_{t+1} - \theta_t^T \phi_t \right) \phi_t$$
$$= \theta_t + \alpha \left(\rho_t F_t \phi_t R_{t+1} - \rho_t F_t \phi_t (\phi_t - \gamma \phi_{t+1})^T \theta_t \right)$$

A matrix

$$\mathbf{A} = \mathbf{\Phi}^{\mathsf{T}} \mathbf{F} (\mathbf{I} - \gamma \mathbf{\Phi}_{\pi}) \mathbf{\Phi}$$

Diagonal of $m{F}$: $f(s) = d_{\mu}(s)\mathbb{E}_{\mu}[F_t|S_t = s]$

A positive definite => algorithm stable

Figure 1: $\theta \rightarrow 2\theta$ example without a terminal state.

- ▶ f(s): d_{μ} + where to 1 step + where to 2 steps ...
- $f(1) = d_{\mu}(1) = 0.5$: only in 1 if you start there
- $f(2) = 0.5 + 0.9 + 0.9^2...$: $\gamma = 0.9$, $\rho = 2$ and $\mu(right|.) = 0.5$

 $\textbf{\emph{F}}$ emphasizes the second state which would occur more often under π compared to μ

General case of emphatic TD

Discount, interest and bootstrapping functions

Discount function:
$$\gamma:\mathcal{S} \to [0,1]$$
 such that $\prod_{k=1}^\infty \gamma(\mathcal{S}_{t+k}=0)w.p.1$

Interest function: $i:\mathcal{S} \to [0,\infty[$

Bootstrapping function: $\lambda: \mathcal{S} \rightarrow [0,1]$

Specify a different degree of bootstrapping $1 - \lambda(s)$ for each state

Objective function

$$MSVE(\theta) = \sum_{s \in S} d_{\mu}(s)i(s) \left(v_{\pi} - \theta^{T}\phi(s)\right)^{2}$$

Empirical Example 1

$$\lambda = 0$$

$$i(S_0) = 1, i(S_1) = 0$$

Empirical Example 2

$$\lambda = 0$$
 $i(s) = 1 \quad \forall s$

