Lab Nr. 4, Probability and Statistics

Random number generators; RND; Computer simulations of discrete random variables Numerical characteristics of random variables

- 1. Function rnd in Statistics Toolbox; special functions rand and randn.
- **2.** Using a $\mathcal{U}(0,1)$ (standard Uniform) random number generator, generate the common discrete probability distributions:
- **a. Bernoulli Distribution** Bern(p), with parameter $p \in (0,1)$: $X \begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}$;
- **b. Binomial Distribution** Bino(p), with parameters $n \in \mathbb{N}, p \in (0,1)$: $X \begin{pmatrix} k \\ C_n^k p^k q^{n-k} \end{pmatrix}_{k=\overline{0,n}}$;

Hint: A Binomial Bino(n, p) variable is the sum of n independent Bern(p) variables;

- **c.** Geometric Distribution Geo(p), with parameter $p \in (0,1)$: $X \binom{k}{pq^k}_{k \in \mathbb{N}}$; Hint: A Geometric Geo(p) variable represents the number of failures (i.e. the number of Bernoulli trials that ended up being failures) needed to get the first success;
- **d. Pascal Distribution** NB(n,p) with parameters $n \in \mathbb{N}, p \in (0,1)$: $X \begin{pmatrix} k \\ C_{n+k-1}^k p^n q^k \end{pmatrix}_{k \in \mathbb{N}}$; **Hint:** A Pascal NB(n,p) variable is the sum of n independent Geo(p) variables;
- 3. Numerical characteristics of random Variables: in *Statistics Toolbox* stat

 The means and variances of the following distributions (fill in the table):

Distribution	Notation	$\mathbf{Mean} E(X)$	Variance $V(X)$
Discrete Uniform	U(m)	(m-1)/2	(m^2 - 1) / 2
Binomial	B(n,p)	n*p	n * p * (1 - p)
Hypergeometric	$H(N, n_1, n)$	n1 * n / N	n1*n*(N-n)*(N-n1)/(N^2*(N-1)
Poisson	$P(\lambda)$	λ	λ
Pascal (Neg. Bin.)	NB(n,p)	n*(1-p)/p^2	n*(1-p)/p^2
Geometric	G(p)	1/p	(1-p)/p^2
Uniform	U(a,b)	(a+b)/2	(b-a)^2/12
Normal	$N(\mu,\sigma)$	μ	σ
Gamma	Ga(a,b)	a*b	a*b^2
Exponential	$Exp(\lambda)$	1/λ	1/λ^2
Beta	$\beta(a,b)$	a/(a+b)	ab/((a+b)^2(a+b+1))
Student	T(n)	0	n/(n-2)
Chi squared	$\chi^2(n)$	n	2n
Fisher	F(m,n)	n/(n-2)	2n^2(m+n-2)/(m*(n-2)^2(n - 4