Géométrie repérée

I. Rappels de Seconde

Ce paragraphe étant constitué de rappels, les exemples seront donc limités.

Définition 1.

Soient O un point du plan et \vec{i} et \vec{j} deux vecteurs de ce plan de directions différentes ($non\ colineaires$), alors $(O; \vec{i}; \vec{j})$ est appelé ______ du plan. O est appelé _____ du repère et le couple (\vec{i}, \vec{j}) est appelé _____ du repère.

Définition 2.

Soit un repère $(O; \overrightarrow{i}; \overrightarrow{j})$ du plan.

- 1. Si les directions de \overrightarrow{i} et de \overrightarrow{j} sont _______, le repère est dit orthogonal.
- 2. Si les normes de \overrightarrow{i} et de \overrightarrow{j} sont égales à 1, le repère est dit _____
- 3. Si les directions de \overrightarrow{i} et de \overrightarrow{j} sont orthogonales et que les normes de \overrightarrow{i} et de \overrightarrow{j} sont égales à 1, le repère est dit ______.
- 4. Le cas échéant, le repère est dit _____

Propriété admise. Le plan est muni d'une base (\vec{i}, \vec{j}) .

Pour tout vecteur \vec{u} du plan, il existe un unique couple (x; y), appelé coordonnées de \vec{u} , tel que $\overrightarrow{u} = x \overrightarrow{i} + y \overrightarrow{j}$.

On notera indifféremment $\overrightarrow{u}(x;y)$ ou $\overrightarrow{u}\begin{pmatrix} x\\y\end{pmatrix}$.

Exemple. Soit $\overrightarrow{u} = -4\overrightarrow{i} + 7\overrightarrow{j}$.

nsı: $\frac{\rightarrow}{u} \left(\right.$

Propriétés.

Le plan est muni d'un repère.

Soient $\overrightarrow{u}(x;y)$ et $\overrightarrow{v}(x';y')$ deux vecteurs et k un nombre.

- $\overrightarrow{u} = \overrightarrow{v} \iff \underline{\qquad} = \underline{\qquad} \text{ et } \underline{\qquad} = \underline{\qquad}.$
- **2.** Le vecteur $\overrightarrow{u} + \overrightarrow{v}$ a pour coordonnées (_____; ____).
- 3. Le vecteur $k \stackrel{\longrightarrow}{u}$ a pour coordonnées (_____; ____).

Démonstration. Choisir une des trois propriétés suivantes et en faire la démonstration.

Définition 3.

Le plan étant muni d'un repère $(O; \overrightarrow{i}; \overrightarrow{j})$, on appelle **coordonnées** du point M le couple (x; y) tel que $\overrightarrow{OM} = x \overrightarrow{i} + y \overrightarrow{j}$, x étant appelé ______ de M et y étant _____ de M.

Les coordonnées du point M sont donc les coordonnées du vecteur \overrightarrow{OM} . Cela implique qu'elles dépendent de l'origine du repère.

Propriété. Le plan est muni d'un repère.

Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points du plan. Alors les coordonnées du vecteur \overrightarrow{AB} sont :

Propriété. Le plan est de nouveau muni d'un repère.

Soit $A(x_A; y_A)$ et $B(x_B; y_B)$ et $K(x_K; y_K)$ milieu de [AB]. Alors les coordonnées du point K sont :

Propriété. Le plan est muni d'un repère orthonormé.

Soient A et B deux points du plan P de coordonnées respectives $(x_A; y_A)$ et $(x_B; y_B)$, Alors la distance AB est donnée par :

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

II. Condition de colinéarité de deux vecteurs

Propriété. Le plan est muni d'un repère.

Soient $\vec{u}(x;y)$ et $\vec{v}(x';y')$ deux vecteurs du plan. On rappelle que le **déterminant** associé aux vecteurs \vec{u} et \vec{v} est le nombre réel noté det défini par :

$$\det(\vec{u}\,;\,\vec{v}) = \left| \begin{array}{cc} x & x' \\ y & y' \end{array} \right| = xy' - x'y$$

Alors : \vec{u} et \vec{v} colinéaires $\iff \det(\vec{u}; \vec{v}) = 0 \iff xy' - x'y = 0$

III. Équations cartésiennes d'une droite

Théorème. Le plan est muni d'un repère.

- **1.** Toute *droite* du plan admet une équation de la forme ax + by + c = 0 avec $(a; b) \neq (0; 0)$.
- **2.** L'ensemble des points M du plan dont les coordonnées vérifient ax + by + c = 0 avec $(a; b) \neq (0; 0)$ est une droite.

Définition 4.

Le plan est muni d'un repère.

Soit \mathcal{D} une droite et \overrightarrow{A} et \overrightarrow{B} deux points de cette droite. On appelle **vecteur directeur** de \mathcal{D} tout vecteur $\overrightarrow{u} \neq \overrightarrow{0}$ **colinéaire** à \overrightarrow{AB} .

Théorème. Le plan est muni d'un repère.

Toute droite admettant une équation de la forme ax + by + c = 0 admet $\vec{v} \begin{pmatrix} -b \\ a \end{pmatrix}$ comme vecteur directeur.

Exercice 1.1. Soit (d) la droite d'équation cartésienne 2x - 5y + 2 = 0.

- 1. Donner les coordonnées d'un vecteur \vec{u} directeur de (d).
- **2.** Tracer la droite (d) dans un repère.
- 3. Soit $A\binom{5}{2}$. Déterminer une équation de la droite (d_1) parallèle à (d) et passant par A.
- **4.** Soit $B\begin{pmatrix} -6 \\ -2 \end{pmatrix}$. Le point B appartient-il à (d)? Justifier.
- 5. Déterminer une équation de la droite (AB).

Propriété. Le plan est muni d'un repère.

Soit \mathcal{D} une droite d'équation réduite y = mx + p. Alors $\vec{v} \begin{pmatrix} 1 \\ m \end{pmatrix}$ est un vecteur directeur de \mathcal{D} .

- 1. Déterminer les coordonnées d'un vecteur directeur de (d).
- ${f 2.}$ Préciser les coordonnées d'un vecteur directeur de (d) à coefficients entiers.

Propriété. Deux droites sont parallèles si et seulement si leurs vecteurs directeurs sont.

Exercice 3.1. On considère les droites (d): 3x + 6y = 1 et (d'): $y = -\frac{1}{2}x + 6$.

- 1. Préciser les coordonnées d'un vecteur directeur des droites (d) et (d').
- **2.** Les droites (d) et (d') sont-elles parallèles?

IV. Équation cartésienne d'un cercle

Propriété. Le plan est muni d'un repère orthonormal.

Soit \mathcal{C} le cercle de centre $\Omega(x_0; y_0)$ et de rayon r.

Alors tout point de M de $\mathcal C$ a ses coordonnées qui vérifient :

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

Exercice 4.1. Dans un repère **orthonormal** du plan, on considère le point $A \begin{pmatrix} -6 \\ 3 \end{pmatrix}$.

Établir l'équation du cercle de centre A et de rayon 4.

Dans un repère *orthonormal* du plan, on considère l'équation cartésienne :

$$x^2 + y^2 - 6x + 8y = 0$$

Démontrer que cette équation est celle d'un cercle dont on précisera le centre et le rayon.

V. Vecteur normal à une droite

Définition 5.

Un vecteur normal à une droite (d) est un vecteur non nul orthogonal à tout vecteur directeur de (d).

Propriété.

Soit (d) une droite de vecteur normal $\vec{n} \begin{pmatrix} a \\ b \end{pmatrix}$. Alors une équation de (d) est : ax + by + c = 0. **Réciproquement**, si a et b ne sont pas nuls tous les deux, l'équation ax + by + c = 0 est celle d'une droite de vecteur normal $\vec{n} \begin{pmatrix} a \\ b \end{pmatrix}$.

Exemple. Soit la droite (d) d'équation cartésienne 7x - 4y - 4 = 0. Un vecteur normal \vec{n} à (d) a donc pour coordonnées :

(

Exercice 6.1. Déterminer les coordonnées d'un vecteur normal \vec{n} à \mathcal{D} si un vecteur directeur de \mathcal{D} est :

- 1. $\vec{u} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$
- $\mathbf{2.} \ \vec{u} \begin{pmatrix} 2 \\ -5 \end{pmatrix}$
- $3. \ \vec{u} \begin{pmatrix} 0 \\ -4 \end{pmatrix}$

Exercice 7.1. Déterminer dans chacun des cas suivants une équation cartésienne de la droite \mathcal{D} qui passe par le point A et qui admet pour vecteur normal le vecteur \vec{n} :

- 1. $A \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ et $\vec{n} \begin{pmatrix} 8 \\ -9 \end{pmatrix}$
- **2.** $A \begin{pmatrix} 10 \\ -4 \end{pmatrix}$ et $\vec{n} \begin{pmatrix} 0 \\ 4 \end{pmatrix}$
- 3. $A \begin{pmatrix} 5 \\ -2 \end{pmatrix}$ et $\vec{n} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$