Bachelorarbeit

Explizite Berechnung der Levelt-Turrittin-Zerlegung für spezielle D-Moduln

vorgelegt von Maximilian Huber

am Institut für Mathematik der Universität Augsburg

betreut durch Prof. Dr. Marco Hien

abgegeben am 04.07.2013

stand: 21. Mai 2013

Inhaltsverzeichnis

Ei	Einleitung				
0	Mat	thematische Grundlagen	1		
1	Мо	duln über \mathcal{D}_k	4		
	1.1	Weyl-Algebra und der Ring \mathcal{D}_k	5		
		1.1.1 Alternative Definition / Sichtweise	7		
	1.2	(Links) \mathcal{D} -Moduln	8		
		1.2.1 Holonome \mathcal{D} -Moduln	8		
	1.3	Lokalisierung von $\mathbb{C}\{x\}$ -Moduln	9		
	1.4	Lokalisierung eines \mathcal{D} -Moduls	10		
2	Mei	romorphe Zusammenhänge	11		
	2.1	Systeme von ODEs und Meromorphe Zusammenhänge	11		
		2.1.1 Meromorphe Zusammenhänge	12		
	2.2	Eigenschaften / Äquivalenz zu holonomen lokalisierten $\mathcal{D}\text{-Moduln}$	14		
	2.3	Newton Polygon	17		
		2.3.1 Die Filtrierung ${}^\ell V\mathcal{D}_{\widehat{K}}$ und das ℓ -Symbol	22		
	2.4	Operationen auf Meromorphen Zusammenhängen	24		
		2.4.1 Tensorprodukt	24		
		2.4.2 pull-back und push-forward	24		
		2.4.3 Fouriertransformation	33		
3	Eler	mentare Meromorphe Zusammenhänge	35		
	3.1	Definition in [Sab07]	40		
	3.2	Twisten von Meromorphen Zusammenhängen	41		
4	Lev	elt-Turrittin-Theorem	43		
	4.1	Klassische Version	43		
	12	Sabbah's Refined version	45		

In halts verzeichn is

5	DIE	Klasse der Fourier-Transformationen	46		
	5.1	Rezept für allgemeine φ	46		
	5.2	Levelt-Turrittin-Zerlegung für \mathcal{M}_{φ} mit $\varphi_1 := \frac{a}{x} \dots \dots \dots \dots \dots$	53		
		5.2.1 Konvergenz der Summanden	60		
An	Anhang				
Α	Auft	teilung von $t arphi'(t)$	67		
В	Gen	aueres zu $(x^2\partial_x)^k$	68		
C	Nun	nerische berechnung der Koeffizienten	69		

Abbildungsverzeichnis

2.1	Newton-Polygon zu $P_1 = x \partial_x^2 \dots \dots \dots \dots \dots \dots$	19
2.2	Newton-Polygon zu P_2	19
2.3	Newton Polygon zu $P = x(x\partial_x)^2 + x\partial_x + \frac{1}{2}$	21
2.4	Newton Polygon zu P	22
2.5	Newton Polygon zu	
	$P = x^3 \partial_x^2 - 4x^2 \partial_x - 1 \dots \dots \dots \dots \dots$	31
2.6	Newton Polygon zu	
	$\rho^* P = \frac{1}{4} t^4 \partial_t^2 - \frac{1}{2} t^3 \partial_t - 1 \dots \dots$	31
2.7	Newton-Polygon zu P	34
2.8	Newton-Polygon zu \mathcal{F}_P	34
5.1	Newton-Polygon zu P_{φ} mit $H(x^{2(q-m)}\partial_x^{q-m})$	49
5.2	Newton Polygon zu P_{φ}	53
5.3	Newton Polygon zu $\rho^* P_{\varphi}$	54
5.4	Newton Polygon zu $\mathcal N$	55
5.5	Newton-Polygon zu Q_1	57
5.6	Newton-Polygon zu Q_2	57
5.7	Koeffizienten in abhängigkeit von a	64

Tabellenverzeichnis

Einleitung

0 Mathematische Grundlagen

Kommentar: Hier werde ich mich auf [Sab90] und [Cou95] beziehen.

Wir betrachten \mathbb{C} hier als Complexe Mannigfaltigkeit mit der Klassischen Topologie. In dieser Arbeit spielen die folgenden Funktionenräume eine große Rolle:

- $\mathbb{C}[x] := \{\sum_{i=1}^N a_i x^i | N \in \mathbb{N} \}$ die einfachen Potenzreihen
- $\mathbb{C}\{x\} := \{\sum_{i=1}^{\infty} a_i x^i | \text{pos. Konvergenz radius} \}$ ([HTT07, Chap 5.1.1])
- $\mathbb{C}[\![x]\!] := \{\sum_{i=1}^{\infty} a_i x^i\}$ die formalen Potenzreihen
- $\widehat{K}:=\mathbb{C}(\!(x)\!):=\mathbb{C}[\![x]\!][x^{-1}]$ der Ring der formalen Laurent Reihen.
- $\tilde{\mathcal{O}}$ als der Raum der Keime aller (möglicherweise mehrdeutigen) Funktionen. (bei [HTT07] mit \tilde{K} bezeichnet)

Wobei offensichtlich die Inclulsionen $\mathbb{C}[x]\subsetneq\mathbb{C}\{x\}\subsetneq\mathbb{C}[\![x]\!]$ und $K\subsetneq\widehat{K}$ gelten.

Es bezeichnet der Hut (^) das jeweils formale äquivalent zu einem konvergentem Objekt.

Für $v = (v_1, \dots, v_n)$ ein Vektor, bezeichnet

$${}^tv := \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

den Transponierten Vektor. Es bezeichnet $M(n \times m, k)$ die Menge der n mal m Dimensionalen Matritzen mit Einträgen in k.

Sei R ein Ring, dann bezeichnet R^{\times} die Einheitengruppe von R.

Definition 0.1 (Direkte Summe). [Sta12, 4(Categories).5.1] Seien $x, y \in \text{Ob}(\mathcal{C})$, eine *Direkte Summe* oder das *coprodukt* von x und y ist ein Objekt $x \oplus y \in \text{Ob}(\mathcal{C})$ zusammen mit Morphismen $i \in \text{Mor}_{\mathcal{C}}(x, x \oplus y)$ und $j \in \text{Mor}_{\mathcal{C}}(y, x \oplus y)$ so dass die folgende universelle Eigenschaft gilt: für jedes $w \in Ob(\mathcal{C})$ mit Morphismen $\alpha \in \text{Mor}_{\mathcal{C}}(x, w)$ und $\beta \in \text{Mor}_{\mathcal{C}}(y, w)$ existiert ein eindeutiges $\gamma \in \text{Mor}_{\mathcal{C}}(x \oplus y, w)$ so dass das Diagram

kommutiert.

Definition 0.2 (Tensorprodukt). [Sta12, 3(Algebra).11.21]

$$M \times N \longrightarrow M \otimes_R N$$

$$\downarrow \exists ! \gamma \\ T$$

Für eine Abbildung $f: M \to M'$ definiere das Tensorprodukt davon über R mit N als

$$\operatorname{id}_N \otimes f : N \otimes_R M \to N \otimes_R M'$$

 $n \otimes m \mapsto n \otimes f(m)$

Bemerkung 0.3. Hier ein paar Rechenregeln für das Tensorprodukt,

$$(M \otimes_R N) \otimes_S L \cong M \otimes_R (N \otimes_S L) \tag{0.1}$$

$$M \otimes_R R \cong M \tag{0.2}$$

Sei $f:M'\to M$ eine Abbildung, so gilt

$$N \otimes_R (M/\operatorname{im}(f)) \cong N \otimes_R M/\operatorname{im}(\operatorname{id}_R \otimes f) \tag{0.3}$$

Definition 0.4 (Exacte Sequenz). Eine Sequenz

$$\cdots \longrightarrow M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \longrightarrow \cdots$$

heißt exact, wenn für alle i gilt, dass $\operatorname{im}(f_{i-1}) = \ker f_i$.

Definition 0.5 (Kurze exacte Sequenz). Eine kurze exacte Sequenz ist eine Sequenz

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M'' \longrightarrow 0$$

welche exact ist.

Definition 0.6 (Kokern). Ist $f: M' \to M$ eine Abbildung, so ist der *Kokern* von f definiert als $\operatorname{coker}(f) = M/\operatorname{im}(f)$.

Proposition 0.7. Ist $f: M' \to M$ eine injektive Abbildung, so ist

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{\pi}{\longrightarrow} M/f(M') \longrightarrow 0$$
$$m \longmapsto m \mod f(M')$$

eine kurze exacte Sequenz und $M/f(M') = \operatorname{coker}(f)$ ist der Kokern von f.

Beweis. \Box

Kommentar:

Definition 0.8 (Filtrierung). [Sta12, Def 10.13.1.] [Ell10, Rem 2.5.] Eine aufsteigende Filtrierung F von einem Objekt (Ring) A ist eine Familie von $(F_iA)_{i\in\mathbb{Z}}$ von Unterobjekten (Unterring), so dass

$$0 \subset \cdots \subset F_i \subset F_{i+1} \subset \cdots \subset A$$

und definiere weiter $gr_i^FA:=F_iA/F_{k-1}A$ und damit das zu A mit Filtrierung F assoziierte graduierte Modul

$$gr^F A := \bigoplus_{k \in \mathbb{Z}} gr_i^F A$$
.

Definition 0.9. [Ayo09] [Sab90, Def 3.2.1] Eine Filtrierung heißt gut, falls ...

1 Moduln über \mathcal{D}_k

Ich werde hier die Weyl Algebra, wie in [Sab90, Chapter 1], in einer Veränderlichen einführen. Wir werden als Körper k immer ein Element aus $\{\mathbb{C}[x], \mathbb{C}\{x\}, \mathbb{C}[x], K, \widehat{K}\}$ betrachten.

Definition 1.1 (Kommutator). Sei R ein Ring. Für $a, b \in R$ wird

$$[a,b] = a \cdot b - b \cdot a$$

als der Kommutator von a und b definiert.

Proposition 1.2. Sei $k \in \{\mathbb{C}[x], \mathbb{C}\{x\}, \mathbb{C}[x], K, \widehat{K}\}$. Sei $\partial_x : k \to k$ der gewohnte Ableitungs-operator nach x, so gilt

1.
$$[\partial_x, x] = \partial_x x - x \partial_x = 1$$

2. für $f \in k$ ist

$$[\partial_x, f] = \frac{\partial f}{\partial x}.$$

3. Es gelten die Formeln

$$[\partial_x, x^k] = kx^{k-1} \tag{1.1}$$

$$[\partial_x^j, x] = j\partial_x^{j-1} \tag{1.2}$$

$$[\partial_x^j, x^k] = \sum_{i>1} \frac{k(k-1)\cdots(k-i+1)\cdot j(j-1)\cdots(j-i+1)}{i!} x^{k-i} \partial_x^{j-i}$$
(1.3)

Beweis. 1. Klar.

2. Für ein Testobjekt $g \in k$ ist

$$[\partial_x, f] \cdot g = \partial_x (fg) - f \partial_x g = (\partial_x f)g + \underbrace{f(\partial_x g) - f(\partial_x g)}_{=0} = (\partial_x f)g.$$

3. Siehe [Sab90, 1.2.4.]

1.1 Weyl-Algebra und der Ring \mathcal{D}_k

Sei dazu $\frac{\partial}{\partial x} = \partial_x$ der Ableitungsoperator nach x und sei $f \in k$. Man hat die folgende Kommutations-Relation zwischen dem *Ableitungsoperator* und dem *Multiplikations Operator* f:

$$\left[\frac{\partial}{\partial x}, f\right] = \frac{\partial f}{\partial x} \tag{1.4}$$

wobei die Rechte Seite die Multiplikation mit $\frac{\partial f}{\partial x}$ darstellt. Dies bedeutet, für alle $g \in \mathbb{C}[x]$ hat man

$$\left[\frac{\partial}{\partial x}, f\right] \cdot g = \frac{\partial fg}{\partial x} - f\frac{\partial g}{\partial x} = \frac{\partial f}{\partial x} \cdot g.$$

Definition 1.3. Definiere nun den Ring \mathcal{D}_k als die Quotientenalgebra der freien Algebra, welche von dem Koeffizientenring in k zusammen mit dem Element ∂_x , erzeugt wird, Modulo der Relation (1.4). Wir schreiben diesen Ring auch als

- $A_1(\mathbb{C}):=\mathbb{C}[x]<\partial_x>$ falls $k=\mathbb{C}[x],$ und nennen ihn die Weyl Algebra
- $\mathcal{D} := \mathbb{C}\{x\} < \partial_x > \text{falls } k = \mathbb{C}\{x\}$
- $\widehat{\mathcal{D}} := \mathbb{C}[x] < \partial_x > \text{falls } k = \mathbb{C}[x]$
- $\mathcal{D}_K := \mathbb{C}(\{x\}) < \partial_x > \text{falls } k = K \stackrel{\text{def}}{=} \mathbb{C}\{x\}[x^{-1}]$
- $\mathcal{D}_{\widehat{K}} := \mathbb{C}((x)) < \partial_x > \text{falls } k = \widehat{K} \stackrel{\text{def}}{=} \mathbb{C}[x][x^{-1}]^{[1]}$.

Bemerkung 1.4. • Es gilt $\mathcal{D}[x^{-1}] = \mathcal{D}_K$ und $\widehat{\mathcal{D}}[x^{-1}] = \mathcal{D}_{\widehat{K}}$

- Offensichtlich erhält \mathcal{D}_k in kanonischer weiße eine Ringstruktur, dies ist in [AV09, Kapittel 2 Section 1] genauer ausgeführt.
- \mathcal{D}_k ist nichtkommutativ.

Proposition 1.5. [Sab90, Proposition 1.2.3] Jedes Element in \mathcal{D}_k kann auf eindeutige Weise als $P = \sum_{i=0}^n a_i(x) \partial_x^i$, mit $a_i(x) \in k$, geschrieben werden.

Beweis. Siehe [Sab90, Proposition 1.2.3]

 $[\]overline{[^{1]}\text{Wird mit }\widehat{\mathcal{D}}_{\widehat{K}}\text{ bezeichnet, in [AV09].}}$

Kommentar: Gilt das folgende??

$$\alpha_i(x)\partial_x^i \equiv \frac{\alpha_i}{x^i}(x\partial_x)^i \mod F_{i-1}\mathcal{D}$$

Kommentar: Besser?:

erst Filtrierung definieren und dadurch dann den Grad?

Definition 1.6. Sei $P = \sum_{i=0}^{n} a_i(x) \partial_x^i$, wie in Proposition 1.5, gegeben, so definiere

$$\deg P := \max\{i | a_i \neq 0\}$$

als den Grad (oder den ∂_x -Grad) von P.

Kommentar: Unabhängigkeit von Schreibung? Sabbah script!

In natürlicher Weise erhält man die aufsteigende Filtrierung $F_N\mathcal{D}:=\{P\in\mathcal{D}|\deg P\leq N\}$ mit

$$\cdots \subset F_{-1}\mathcal{D} \subset F_0\mathcal{D} \subset F_1\mathcal{D} \subset \cdots \subset \mathcal{D}$$

und erhalte $gr_k^F \mathcal{D} \stackrel{\text{def}}{=} F_N \mathcal{D}/F_{N-1} \mathcal{D} = \{P \in \mathcal{D} | \deg P = N\} \cong \mathbb{C}\{x\}.$

Beweis. Sei $P \in F_N \mathcal{D}$ so betrachte den Isomorphismus:

$$F_N \mathcal{D}/F_{N-1} \mathcal{D} \to \mathbb{C}\{x\}; [P] = P + F_{N-1} \mathcal{D} \mapsto a_n(x)$$

Proposition 1.7. Es gilt:

$$gr^F \mathcal{D} := \bigoplus_{N \in \mathbb{Z}} gr_N^F \mathcal{D} = \bigoplus_{N \in \mathbb{N}_0} gr_N^F \mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cong \mathbb{C}\{x\}[\xi] = \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$$

$$isomorph \ als \ grad. \ Ringe$$

also $gr^F \mathcal{D} \cong \bigoplus_{N \in \mathbb{N}_0} \mathbb{C}\{x\} \cdot \xi^N$ als graduierte Ringe.

Beweis. TODO

Kommentar: Treffen?

1.1.1 Alternative Definition / Sichtweise

Kommentar: Nur abgeschrieben

[Kas03, Chap 1.1.] Sei X eine 1-Dimensionale complexe Mannigfaltigkeit und \mathcal{O}_X die Garbe der holomorphen Funktionen auf X. Ein (holomorpher) differenzial Operator auf X ist ein Garben-Morphismus $P: \mathcal{O}_X \to \mathcal{O}_X$, lokal in der Koordinate x und mit holomorphen Funktionen $a_n(x)$ als

$$(Pu)(x) = \sum_{n>0} a_n(x)\partial_x^n u(x)$$

geschrieben (für $u \in \mathcal{O}_X$). Zusätzlich nehmen wir an, dass $a_n(x) \equiv 0$ für fast alle $n \in \mathbb{N}$ gilt. Wir setzten $\partial_x^n u(x) = \frac{\partial^n u}{\partial x^n}(x)$. Wir sagen ein Operator hat höchstens Ordnung m, falls $\forall n \geq m : \alpha_n(x) \equiv 0$.

Definition 1.8. Mit \mathcal{D}_X bezeichnen wir die Garbe von Differentialoperatoren auf X.

Die Garbe \mathcal{D}_X hat eine Ring Struktur mittels der Komposition als Multiplikation und \mathcal{O}_X ist ein Unterring von \mathcal{D}_X . Sei Θ_X die Garbe der Vektorfelder über über X. Es gilt, dass Θ_X in \mathcal{D}_X enthalten ist. Bemerke auch, dass Θ_X ein links \mathcal{O}_X -Untermodul, aber kein rechts \mathcal{O}_X -Untermodul ist.

Proposition 1.9. [Ark12, Exmp 1.1] Sei $X = \mathbb{A}^1 = \mathbb{C}$, $\mathcal{O}_X = \mathbb{C}[t]$ und $\Theta_X = \mathbb{C}[x]\partial_x$. Wobei ∂_x als $\partial_x(x^n) = nx^{n-1}$ wirkt. Dann sind die Differentialoperatoren

$$\mathcal{D}_X = \mathbb{C}[x, \partial_x],$$
 mit $\partial_x x - x \partial_x = 1.$

Somit stimmt die Alternative Definition schon mal mit der Einfachen überein.

Kommentar:

Definition 1.10. [Ark12, Defn 2.1] Sei $X = \mathbb{A}^1$, $\mathcal{O}_X = \mathbb{C}[x]$ und $\mathcal{D}_X = [x, \partial_x]$ mit der Relation $[\partial_x, x] = 1$. Dann definieren wir die links \mathcal{D} -Moduln über \mathbb{A}^1 als die $\mathbb{C}[x, \partial_x]$ -Moduln. Sie werden geschrieben als $\mathcal{D} - mod(\mathbb{A}^1)$

1.2 (Links) \mathcal{D} -Moduln

Da \mathcal{D} ein nichtkommutativer Ring ist, muss man vorsichtig sein und zwischen links unr rechts \mathcal{D} -Moduln unterschiden. Wenn ich im folgendem von \mathcal{D} -Moduln rede, werde ich mich immer auf links \mathcal{D} -Moduln beziehen.

Beispiel 1.11 (links \mathcal{D} -Moduln). [Ark12, Exmp 2.2]

- 1. \mathcal{D} ist ein links und rechts \mathcal{D} -Modul
- 2. $\mathcal{M} = \mathbb{C}[x]$ oder $\mathcal{M} = \mathbb{C}[x, x^{-1}]$ jeweils durch $x \cdot x^m = x^{m+1}$ und $\partial(x^m) = mx^{m-1}$
- 3. [Ark12, Exmp 2.2] Führe formal, also ohne analytischen Hintergurnd, ein Symbol $\exp(\lambda x)$ ein, mit $\partial(f(x)\exp(\lambda x)) = \frac{\partial f}{\partial x}\exp(\lambda x) + f\lambda\exp(\lambda x)$. So ist $\mathcal{M} = \mathscr{O}_X\exp(\lambda x)$ ein \mathcal{D} -Modul.
- 4. [Gin98, Exmp 3.1.4] Führe formal ein Symbol $\log(x)$ mit den Eigenschaften $\partial_x \log(x) = \frac{1}{x}$ ein. Erhalte nun das \mathcal{D} -Modul $\mathbb{C}[x] \log(x) + \mathbb{C}[x, x^{-1}]$. Dieses Modul ist über \mathcal{D} erzeugt durch $\log(x)$ und man hat

$$\mathbb{C}[x]\log(x) + \mathbb{C}[x, x^{-1}] = \mathcal{D} \cdot \log(x) = \mathcal{D}/\mathcal{D}(\partial_x x \partial_x).$$

Kommentar

Lemma 1.12. [Sab90, Lem 2.3.3.] Sei \mathcal{M} ein links \mathcal{D} -Modul von endlichem Typ, welches auch von endlichem Typ über $\mathbb{C}\{x\}$ ist. Dann ist \mathcal{M} bereits ein freies $\mathbb{C}\{x\}$ -Modul.

Beweis. Siehe [Sab90, Lem 2.3.3.].

Korollar 1.13. [Sab90, Cor 2.3.4.] Falls \mathcal{M} ein links \mathcal{D} -Modul von endlichem typ, welches außerdem ein endich dimensionaler Vektorraum ist, so ist schon $\mathcal{M} = \{0\}$.

1.2.1 Holonome \mathcal{D} -Moduln

Kommentar: TODO: defn of Car als Charakteristische Varietät

Definition 1.14. [Sab90, Def 3.3.1.] Sei \mathcal{M} lineares Differentialsystem (linear differential system) . Man sagt, \mathcal{M} ist holonom, falls $\mathcal{M} = 0$ oder falls $\operatorname{Car} \mathcal{M} \subset \{x = 0\} \cup \xi = 0$.

Lemma 1.15. [Sab90, Lem 3.3.8.] Ein \mathcal{D} -Modul ist holonom genau dann, wenn $\dim_{gr^F\mathcal{D},0} gr^F\mathcal{M} = 1$.

Beweis. Siehe [Sab90, Lem 3.3.8.]

Alternative Definition A

Kommentar: Countinho definiert die Carakteristische Varietät erst nach holonom

Definition 1.16 (Holonome \mathcal{D} -Moduln). [Cou95, Chap 10 §1] Ein endlich genertierter \mathcal{D} -Modul \mathcal{M} ist holonom, falls $\mathcal{M} = 0$ gilt, oder falls es die Dimension 1 hat.

Bemerkung 1.17. [Cou95, Chap 10 §1] Sei $\mathfrak{a} \neq 0$ ein Links-Ideal von \mathcal{D} . Es gilt nach [Cou95, Corollary 9.3.5], dass $d(\mathcal{D}/\mathfrak{a}) \leq 1$. Falls $\mathfrak{a} \neq \mathcal{D}$, dann gilt nach der Bernstein's inequality [Cou95, Chap 9 §4], dass $d(\mathcal{D}/\mathfrak{a}) = 1$. Somit ist \mathcal{D}/\mathfrak{a} ein holonomes \mathcal{D} -Modul.

Bemerkung 1.18. [Cou95, Prop 10.1.1]

- ullet Submoduln und Quotienten von holonomen \mathcal{D} -Moduln sind holonom.
- ullet Endliche Summen von holonomen \mathcal{D} -Moduln sind holonom.

Alternative Definition B

Definition 1.19. Ein lokalisiertes \mathcal{D} -Modul \mathcal{M} heißt *holonom*, falls es ein $\mathfrak{a} \triangleleft \mathcal{D}$ gibt, so dass $\mathcal{M} \cong \mathcal{D}/\mathfrak{a}$.

Bemerkung 1.20. In [Cou95] wird dies über die Dimension definiert, und bei [Sab90] über die Carakteristische Varietät.

Kommentar

1.3 Lokalisierung von $\mathbb{C}\{x\}$ -Moduln

[Sab90, Chap 4.1.] Sei M ein $\mathbb{C}\{x\}$ -Modul. Wir schreiben $M[x^{-1}]$ für den K-Vektor Raum $M \otimes_{\mathbb{C}\{x\}} K$. Im allgemeinen gilt, falls M von andlichen Typ über $\mathbb{C}\{x\}$ ist, so ist $C[x^{-1}]$ von endlichem Typ über K. Bemerke aber, dass $M[x^{-1}]$ generell nicht von endlichem Typ über $\mathbb{C}\{x\}$ ist.

1.4 Lokalisierung eines \mathcal{D} -Moduls

[Sab90, Chap 4.2.] Sei \mathcal{M} ein links \mathcal{D} -Modul. Betrachte \mathcal{M} als $\mathbb{C}\{x\}$ -Modul und definiere darauf

$$\mathcal{M}[x^{-1}] := \mathcal{M} \otimes_{\mathbb{C}\{x\}} K$$

als die Lokalisierung von \mathcal{M} .

Proposition 1.21. [Sab90, Prop 4.2.1.] $\mathcal{M}[x^{-1}]$ erhält in natürlicher Weise eine \mathcal{D} -Modul Struktur.

Beweis. [Sab90, Prop 4.2.1.] mit:

$$\partial_x(m \otimes x^{-k}) = ((\partial_x m) \otimes x^{-k}) - km \otimes x^{-k-1}$$

Kommentar: beweis der D-linearität ist als übung gelassen

Korollar 1.22. [Sab90, Cor 4.2.8.] Sei \mathcal{M} ein holonomes Modul. Dann ist die lokalisierung von \mathcal{M} isomorph zu $\mathcal{D}/\mathcal{D} \cdot P$ für ein $P \in \mathcal{D}/\{0\}$

Kommentar: Formal??

2 Meromorphe Zusammenhänge

Sei \mathcal{M} ein \mathcal{D} -Modul ungleich Null von endlichem Typ. Falls die links-Multiplikation mit x bijektiv ist, so nennen wir \mathcal{M} einen Meromorphen Zusammenhang. [Sab90, Chap 4]

2.1 Systeme von ODEs und Meromorphe Zusammenhänge

[HTT07, Chap 5.1.1] Für eine Matrix $A(x) = (a_{ij}(x))_{ij} \in M(n \times n, K)$ betrachten wir das System von gewöhnlichen Differentialgleichungen (kurz ODEs)

$$\frac{d}{dx}u(x) = A(x)u(x) \tag{2.1}$$

wobei $u(x) = {}^t(u_1(x), \ldots, u_n(x))$ ein Spaltenvektor von unbekannten Funktionen. Wir werden (2.1) immer in einer Umgebung um $x = 0 \in \mathbb{C}$ betrachten. Als Lösungen von (2.1) betrachten wir Keime von holomorphen (aber möglicherweise mehrdeutigen) Funktionen an x = 0 (geschrieben als $\tilde{\mathcal{O}}$). Wir sagen $v(x) = {}^t(v_1(x), \ldots, v_n(x))$ ist eine Lösung von (2.1), falls $v_i \in \tilde{\mathcal{O}}$ für alle $i \in \{1, \ldots, n\}$ und v die Gleichung (2.1), auf einer Umgebung um die 0, erfüllt.

 $\kappa_{ommentar}$: TODO: zeige, das der lösungsraum die eigenschaften von \mathcal{D} -Moduln erfüllt siehe alternativer Zugang

Alternativer Zugang

Kommentar: Sei P ein linearer Differentialoperator mit Koeffizienten in $a_i(x) \in \mathbb{C}\{x\}$ geschrieben als $P = \sum_{i=0}^{d} a_i(x) \partial_x^i$. Man sagt eine Funktion $u \in \mathcal{F}$ ist Lösung von P, falls u die Gleichung Pu = 0 erfüllt. Man sagt 0 ist ein singulärer Punkt falls $a_d(0) = 0$. Falls 0 kein singulärer Punkt ist, hat P genau d über \mathbb{C} Unabhängige Lösungen in $\mathbb{C}\{x\}$.

[Sab90, 3.1.1] Sei \mathcal{F} ein Funktionenraum, auf dem die Differentialoperatoren \mathcal{D} wirken. Ein Element $u \in \mathcal{F}$ ist Lösung von $P \in \mathcal{D}$ falls $P \cdot u = 0$ gilt.

Falls u ein Lösung von P ist, so ist u auch Lösung von $Q \cdot P$ mit $Q \in \mathcal{D}$. Also hängt die Lösung nur vom Links Ideal $\mathcal{D} \cdot P \triangleleft \mathcal{D}$ ab.

2.1.1 Meromorphe Zusammenhänge

Nun wollen wir dieses Klassische Gebilde nun in die moderne Sprache der Meromorphen Zusammenhänge übersetzen.

Definition 2.1 (Meromorpher Zusammenhang). Ein Meromorpher Zusammenhang (bei x = 0) ist ein Tuppel $(\mathcal{M}_K, \partial)$ und besteht aus folgenden Daten:

- \mathcal{M}_K , ein endlich dimensionaler K-Vektor Raum
- einer \mathbb{C} -linearen Abbildung $\partial: \mathcal{M}_K \to \mathcal{M}_K$, genannt Derivation oder Zusammenhang, welche für alle $f \in K$ und $u \in \mathcal{M}_K$ die Leibnitzregel

$$\partial(fu) = f'u + f\partial u \tag{2.2}$$

erfüllen soll.

Bemerkung 2.2 (Formaler Meromorpher Zusammenhang). Analog definiert man einen formalen Meromorphen Zusammenhang $(\mathcal{M}_{\widehat{K}}, \partial)$ bestehend, analog wie in Definition 2.1, aus folgenden Daten:

- $\mathcal{M}_{\widehat{K}}$, ein endlich dimensionaler \widehat{K} -Vektor Raum
- einer \mathbb{C} -linearen Derivation $\partial: \mathcal{M}_{\widehat{K}} \to \mathcal{M}_{\widehat{K}}$, welche die Leibnitzregel (2.2) erfüllen soll.

Definition 2.3. Seien $(\mathcal{M}_K, \partial_{\mathcal{M}})$ und $(\mathcal{N}_K, \partial_{\mathcal{N}})$ zwei Meromorphe Zusammenhänge. Eine Klineare Abbildung $\varphi : \mathcal{M} \to \mathcal{N}$ ist ein Morphismus von Meromorphen Zusammenhängen, falls
sie $\varphi \circ \partial_{\mathcal{M}} = \varphi \circ \partial_{\mathcal{N}}$ erfüllt. In diesem Fall schreiben wir auch $\varphi : (\mathcal{M}_K, \partial_{\mathcal{M}}) \to (\mathcal{N}_K, \partial_{\mathcal{N}})$.

Kommentar: TODO: Wann sind die Isomorph

 $\mathcal{M}\cong\mathcal{N}$ und die Ableitungen kommutieren mit dem Isomorphismus

Kommentar:

Definition 2.4. Wir erhalten damit die Kategorie dier meromorphen Zusammenhänge über \widehat{K} mit

Objekte: ()

- Bemerkung 2.5. 1. Später wird man auf die Angabe von ∂ verzichten und einfach \mathcal{M}_K als den Meromorphen Zusammenhang bezeichnen, auch wird manchmal auf die Angabe von K verzichtet.
 - 2. [HTT07, Rem 5.1.2.] Die Bedingung (2.2) ist zur schwächeren Bedingung

$$\partial(fu) = f'u + f\partial u,$$

welche für alle $f \in \tilde{\mathcal{O}}$ und für alle $u \in \mathcal{M}_K$ erfüllt sein muss, äquivalent.

Definition 2.6 (Zusammenhangsmatrix). [HTT07, Seite 129] Sei $(\mathcal{M}_K, \partial)$ ein Meromorpher Zusammenhang so wähle eine K-Basis $\{e_i\}_{i\in\{1,\dots,n\}}$ von \mathcal{M} . Dann ist die Zusammenhangsmatrix bzgl. der Basis $\{e_i\}_{i\in\{1,\dots,n\}}$ die Matrix $A(x) = (a_{ij}(x))_{i,j\in\{1,\dots,n\}} \in M(n \times n, K)$ definiert durch

$$a_{ij}(x) = -^t e_i \partial e_j$$
.

Also ist, bezüglich der Basis $\{e_i\}_{i\in\{1,\ldots,n\}}$, die Wirkung von ∂ auf $u=:{}^t(u_1,\ldots,u_n)$ beschrieben durch

$$\partial(u) = \partial\left(\sum_{i=1}^{n} u_i(x)e_i\right) \stackrel{??}{=} \sum_{i=1}^{n} \left(u_i'(x) - \sum_{j=1}^{n} a_{ij}u_j(x)\right)e_i.$$

Einfache Umformungen zeigen, dass die Bedingung $\partial u(x) = 0$, für $u(x) \in \sum_{i=1}^{n} u_i e_i \in \tilde{\mathcal{O}} \otimes_K \mathcal{M}$, äquivalent zu der Gleichung

$$u'(x) = A(x)u(x)$$

für $u(x) = {}^t(u_1(x), \ldots, u_n(x)) \in \tilde{\mathcal{O}}^n$. Damit haben wir gesehen, dass jeder Meromorphe Zusammanhang (\mathcal{M}, ∂) ausgestattet mit einer K-Basis $\{e_i\}_{i \in \{1, \ldots, n\}}$ von \mathcal{M} zu einem ODE zugeordnet werden kann.

Umgekehrt können wir für jede Matrix $A(x) = (a_{ij}(x))$ den assoziierten Meromorphen Zusammenhang $(\mathcal{M}_A, \partial_A)$ angeben, durch

$$\mathcal{M}_A := \bigoplus_{i=1}^n Ke_i,$$
 $\partial_A e_i := -\sum_{i=1}^n a_{ij}(x)e_i.$

2.2 Eigenschaften / Äquivalenz zu holonomen lokalisierten \mathcal{D} -Moduln

Satz 2.7. [Sab90, Thm 4.3.2] Ein Meromorpher Zusammenhang bestimmt ein holonomes lo-kalisiertes \mathcal{D}_K -Modul und andersherum.

Beweis. [Sab90, Thm 4.3.2]

Lemma/Definition 2.8. [AV09, Satz 4.12] [Sab90, Thm 4.3.2] Ist \mathcal{M}_K ein Meromorpher Zusammenhang, dann existiert ein $P \in \mathcal{D}_K$ so dass $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$. So ein P heißt dann Minimalpolynom von \mathcal{M}_K .

Beweis. [AV09, Satz 4.12] \Box

Kommentar:

Bemerkung 2.9. [Sab90, Proof of Theorem 5.4.7]

 $\dim_{\widehat{K}} \mathcal{M}_{\widehat{K}} = \deg P \text{ wenn } \mathcal{M}_{\widehat{K}} = \mathcal{D}/\mathcal{D} \cdot P$

Kommentar: [Sab90, 4.2] Let \mathcal{M} be a left \mathcal{D} -module. First we consider it only as a $\mathbb{C}\{x\}$ -module and let $\mathcal{M}[x^{-1}]$ be the localized module.

Lemma 2.10 (Lemma vom zyklischen Vektor). [Sab90, Thm 4.3.3] [AV09, Satz 4.8] Sei \mathcal{M}_K ein Meromorpher Zusammenhang. Es Existiert ein Element $m \in \mathcal{M}_K$ und eine ganze Zahl d so dass $m, \partial_x m, \ldots, \partial_x^{d-1} m$ eine K-Basis von \mathcal{M}_K ist.

Beweis. [AV09, Satz 4.8] \Box

Korollar 2.11. In der Situation von Lemma 2.10 gibt es ein $P \in \mathcal{D}_K$ mit ∂ -Grad von P ist gleich d und $P \cdot m = 0$, in diesem Fall ist P ein Minimalpolynom zu \mathcal{M}_K , also gilt $\mathcal{M}_K = \mathcal{D}_K/\mathcal{D}_K \cdot P$.

Satz 2.12. [AV09, Seite 64] Ist $P = P_1 \cdot P_2$ mit $P_1, P_2 \in \mathcal{D}_K$ so gilt

 $\mathcal{D}_K/\mathcal{D}_K \cdot P \cong \mathcal{D}_K/\mathcal{D}_K \cdot P_1 \oplus \mathcal{D}_K/\mathcal{D}_K \cdot P_2$.

Beweis. [AV09, Seite 57-64]

Korollar 2.13. Sei $P = P_1 \cdot P_2$ mit $P_1, P_2 \in \mathcal{D}_K$ wie in Satz 2.12 so gilt

$$\mathcal{D}_K/\mathcal{D}_K \cdot (P_1 \cdot P_2) \cong \mathcal{D}_K/\mathcal{D}_K \cdot (P_2 \cdot P_1)$$

Beweis. Denn:

$$\mathcal{D}_{K}/\mathcal{D}_{K} \cdot P = \mathcal{D}_{K}/\mathcal{D}_{K} \cdot (P_{1} \cdot P_{2})$$

$$\cong \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{1} \oplus \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{2}$$

$$= \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{2} \oplus \mathcal{D}_{K}/\mathcal{D}_{K} \cdot P_{1}$$

$$\cong \mathcal{D}_{K}/\mathcal{D}_{K} \cdot (P_{2} \cdot P_{1})$$

Lemma 2.14. Sei $(\mathcal{M}_K, \partial)$ ein gegebener Meromorpher Zusammenhang, und φ ein Basisisomorphismus von K^r nach \mathcal{M}_K , also in der Situation

$$\begin{array}{ccc}
\mathcal{M}_K & \stackrel{\partial}{\longrightarrow} \mathcal{M}_K \\
\uparrow & & \uparrow \\
\cong \varphi & & \varphi \cong \\
\mid & & \downarrow \\
K^r & \stackrel{\varphi^{-1} \circ \partial \circ \varphi}{\longrightarrow} K^r
\end{array}$$

gilt: $(K^r, \varphi^{-1} \circ \partial \circ \varphi)$ ist ebenfalls ein Meromorpher Zusammenhang.

Beweis. TODO, (3. Treffen)

Kommentar:

Lemma 2.15. Sei $(\mathcal{M}_K, \partial)$ ein gegebener Meromorpher Zusammenhang, und $\varphi : \mathcal{M} \to \mathcal{N}$ ein Isomorphismus so ist $(\mathcal{N}, \varphi^{-1} \circ \partial \circ \varphi)$ ein zu $(\mathcal{M}_K, \partial)$ isomorpher Zusammenhang.

$$\begin{array}{ccc} \mathcal{M}_K & \stackrel{\partial}{\longrightarrow} \mathcal{M}_K \\ \uparrow & \uparrow \\ \cong \varphi & \varphi \cong \\ | & \varphi^{-1} \circ \partial \circ \varphi & | \\ \mathcal{N} & \stackrel{\varphi^{-1}}{\longrightarrow} \mathcal{N} \end{array}$$

Beweis. TODO, (3. Treffen)

Lemma 2.16. Sei \mathcal{M}_K ein endlich dimensionaler K-Vektor Raum mit ∂_1 und ∂_2 zwei darauf definierte Derivationen. So gilt, die differenz zweier Derivationen ist K-linear.

Beweis. Seien ∂_1 und ∂_2 zwei Derivationen auf \mathcal{M}_K . Da ∂_1 und ∂_2 \mathbb{C} -linear, ist $\partial_1 - \partial_2$ \mathbb{C} -linear, also muss nur noch gezeigt werden, dass $(\partial_1 - \partial_2)(fu) = f \cdot (\partial_1 - \partial_2)(u) \ \forall f \in K$ und $u \in \mathcal{M}_K$ gilt.

$$(\partial_1 - \partial_2)(fu) = \partial_1(fu) - \partial_2(fu)$$

$$= f'u + f\partial_1 u - f'u - f\partial_2 u$$

$$= \underbrace{f'u - f'u}_{=0} + f \cdot (\partial_1 u - \partial_2 u)$$

$$= f \cdot (\partial_1 - \partial_2)(u)$$

Korollar 2.17. Für (K^r, ∂) ein Meromorpher Zusammenhang existiert ein $A \in M(r \times r, K)$, so dass $\partial = \frac{d}{dx} - A$.

Beweis. Es sei (K^r, ∂) ein Meromorpher Zusammenhang. So ist $\frac{d}{dx} - \partial : K^r \to K^r$ K-linear, also lässt sich durch eine Matrix $A \in M(r \times r, K)$ darstellen , also ist, wie behauptet, $\partial = \frac{d}{dx} - A$.

Proposition 2.18 (Transformationsformel). [HTT07, Chap 5.1.1] In der Situation

 $mit\ arphi, \psi\ und\ T\ K$ -Linear und $\partial, (\frac{d}{dx}+A)\ und\ (\frac{d}{dx}+B)\ \mathbb{C}$ -Linear, gilt: $Der\ Meromorphe\ Zusammenhang.\ \frac{d}{dx}+A\ auf\ K^r\ wird\ durch\ Basiswechsel\ T\in GL(r,K)\ zu$

$$\frac{d}{dx} + (T^{-1} \cdot T' + T^{-1}AT) = \frac{d}{dx} + B$$

Definition 2.19 (Differenziell Äquivalent). Man nennt A und B differenziell Äquivalent ($A \sim B$) genau dann, wenn es ein $T \in GL(r, K)$ gibt, mit $B = T^{-1} \cdot T' + T^{-1}AT$.

[Sab90, Chap 5.2]

Lemma 2.20. [Sab90, Lem 5.2.1.] Es existiert eine Basis von $\mathcal{M}_{\widehat{K}}$ über \widehat{K} mit der Eigenschaften, dass die Matrix, die $x\partial_x$ beschreibt, nur Einträge in $\mathbb{C}[\![x]\!]$ hat.

Beweis. Wähle einen zyklischen Vektor $m \in \mathcal{M}_{\widehat{K}}$ und betrachte die Basis $m, \partial_x m, \dots, \partial_x^{d-1} m$ (siehe Lemma 2.10). Schreibe $\partial_x^d m = \sum_{i=0}^{d-1} (-b_i(x)) \partial_x^i m$ in Basisdarstellung mit Koeffizienten $b_i \in \widehat{K}$. Also erfüllt m die Gleichung $\partial_x^d m + \sum_{i=0}^{d-1} b_i(x) \partial_x^i m = 0$.

Kommentar: TODO: bis hier schon klar

Tatsächlich kann man $b_i(x) = x^i b_i'(x)$ mit $b_i' \in \mathbb{C}[x]$ schreiben (wegen Regularität).

Dies impliziert, dass $m, x\partial_x m, \ldots, (x\partial_x)^{d-1}m$ ebenfalls eine Basis von $\mathcal{M}_{\widehat{K}}$ ist.

Die Matrix von $x\partial_x$ zu dieser neuen Basis hat nur Einträge in $\mathbb{C}[x]$.

Lemma 2.21. [Sab90, Lem 5.2.2.] Es existiert sogar eine Basis von $\mathcal{M}_{\widehat{K}}$ über \widehat{K} so dass die Matrix zu $x\partial_x$ konstant ist.

Beweis. TODO \Box

Kommentar:
$$1 = TT^{-1} \leadsto T'T^{-1} + T(T^{-1})' = 0$$

 $1 = T^{-1}T \leadsto (T^{-1})'T + T^{-1}T' = 0$

2.3 Newton Polygon

Kommentar: Quelle: sabbah?

sabbah mach alles formal, barbara mach alles konvergent

Jedes $P \in \mathcal{D}_{\widehat{K}}$, also insbesondere auch jedes $P \in \mathcal{D}_K$, lässt sich eindeutig als

$$P = \sum_{k=0}^{n} a_k(x) \partial_x^k = \sum_{k=0}^{n} \left(\sum_{l=-N}^{\infty} \alpha_{kl} x^l \right) \partial_x^k$$

mit $\alpha_{ml} \in \mathbb{C}$ schreiben. Betrachte das zu P dazugehörige

$$\begin{split} H(P) :&= \bigcup_{m,l \text{ mit } \alpha_{ml} \neq 0} \left((m,l-m) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2 \\ &= \bigcup_{m \text{ mit } a_m \neq 0} \left((m,deg(a_m) - m) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2 \,. \end{split}$$

Definition 2.22. Das Randpolygon der konvexen Hülle conv(H(P)) von H(P) heißt das Newton Polygon von P und wird als N(P) geschrieben.

Bemerkung 2.23. Claude Sabbah definiert das Newton-Polygon in [Sab90, 5.1] auf eine andere Weiße. Er schreibt

$$P = \sum_{k} a_k(x) (x\partial_x)^k$$

mit $a_k(x) \in \mathbb{C}\{x\}$ und definiert das Newton-Polygon als das Randpolygon der konvexe Hülle von

$$H'(P) := \bigcup_{m \text{ mit } a_m \neq 0} \left((m, deg(a_m)) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \subset \mathbb{R}^2.$$

Definition 2.24. Die Menge slopes(P) sind die nicht-vertikalen Steigungen von N(P), die sich echt rechts von $\{0\} \times \mathbb{R}$ befinden.

- Schreibe $\mathcal{P}(\mathcal{M})$ für die Menge der zu \mathcal{M} gehörigen slopes.
- P heißt regulär oder regulär singulär : \Leftrightarrow slopes $(P) = \{0\}$ oder deg P = 0, sonst irregulär singulär.
- Ein meromorpher Zusammenhang $\mathcal{M}_{\widehat{K}}$ (bzw. \mathcal{M}_K) heißt regulär singulär, falls es ein regulär singuläres $P \in \mathcal{D}_{\widehat{K}}$ (bzw. $P \in \mathcal{D}_K$) gibt, mit $\mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ (bzw. $\mathcal{M}_K \cong \mathcal{D}_K/\mathcal{D}_K \cdot P$).

Beispiel 2.25. 1. Ein besonders einfaches Beispiel ist $P_1 = x^1 \partial_x^2$. Es ist leicht abzulesen, dass

$$m=2$$
 $l=1$

so dass

$$H(P_1) = \left((2, \frac{1}{2} - 2) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) = \left\{ (u, v) \in \mathbb{R}^2 | u \leq 2, v \geq -1 \right\}.$$

In Abbildung 2.1 ist $H(P_1)$ (blau) sowie das Newton Polygon eingezeichnet. Offensichtlich ist slopes $(P_1) = \{0\}$ und damit ist P_1 regulär singulär.

2. [AV09, Bsp 5.3. 2.] Sei $P_2 = x^4(x+1)\partial_x^4 + x\partial_x^2 + \frac{1}{x}\partial_x + 1$ so kann man das entsprechende Newton Polygon konstruieren. Das Newton Polygon wurde in Abbildung 2.2 visualisiert. Man erkennt, dass $\mathcal{P}(P_2) = \{0, \frac{2}{3}\}$ ist.

Abbildung 2.1: Newton-Polygon zu $P_1 = x\partial_x^2$

Abbildung 2.2: Newton-Polygon zu P_2

Bemerkung 2.26. [AV09, Bem 5.4] Für alle $f \in \mathcal{D}_{\widehat{K}}^{\times}$

Kommentar:
$$f \in \mathbb{C}(\{x\}) \setminus \{0\}$$

gilt allgemein, dass das zu $P \in \mathcal{D}_{\widehat{K}}$ gehörige Newton Polygon, bis auf vertikale Verschiebung mit dem von $f \cdot P$ übereinstimmt.

Beweis. TODO

 κ_{ommentar} : Damit Lässt sich das Newton Polygon, durch ein f, immer so verschieben, dass $(0,0) \in N(f \cdot P)$, und es gilt, dass

$$\mathcal{D}_K \cdot P = \mathcal{D}_K \cdot (f \cdot P) \lhd \mathcal{D}_K$$

ist.

Definition 2.27. In einem Polynom $P = \varepsilon x^p \partial_x^q + \sum_{k=0}^n \left(\sum_{l=-N}^\infty \alpha_{kl} x^l \right) \partial_x^k$, mit $\varepsilon, \alpha_{kl} \in \mathbb{C}, p, q \in \mathbb{Z}$ sind die restlichen Monome *Therme im Quadranten* von $\varepsilon x^p \partial_x^q$, falls für alle $k \in \mathbb{N}$ und $l \in \mathbb{Z}_{\geq -N}$ mit $\alpha_{kl} \neq 0$ gilt: $k \leq q$ und $l - k \geq p - q$.

Bemerkung 2.28. • Anschaulich bedeutet das, dass

$$H(\varepsilon x^p \partial_x^q) = \left((q, p - q) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) \supset \left((k, l - k) + \mathbb{R}_{\leq 0} \times \mathbb{R}_{\geq 0} \right) = H(\alpha_{kl} x^l \partial_x^k),$$

für alle relevanten k und l.

• Sei P ein Polynom, bei dem alle Koeffizienten im Quadranten von $\varepsilon x^p \partial_x^q$ sind, dann gilt:

$$H(P) = H(\varepsilon x^p \partial_x^q + \sum_{k=0}^n \left(\sum_{l=-N}^\infty \alpha_{kl} x^l \right) \partial_x^k)$$

$$= H(\varepsilon x^p \partial_x^q + \mathbf{T.i.Q. \ von} \ x^p \partial_x^q)$$

$$= H(\varepsilon x^p \partial_x^q)$$

$$\Rightarrow N(P) = N(\varepsilon x^p \partial_x^q).$$

Also können Therme, die sich bereits im Quadranten eines anderen Therms befinden und nicht der Therm selbst sind, vernachlässigt werden, wenn das Newton-Polygon gesucht ist. Das **T.i.Q.** ist eine hier Abkürzung für Therme im Quadranten.

Kommentar:

Beispiel 2.29.

$$(x^a\partial_x^b)^c=x^{ac}\partial_x^{bc}+\mathbf{T.i.Q.}$$
von $x^{ac}\partial_x^{bc}$

und somit gilt

$$N((x^a\partial_x^b)^c) = N(x^{ac}\partial_x^{bc} + \mathbf{T.i.Q.} \text{ von } x^{ac}\partial_x^{bc})$$

= $N(x^{ac}\partial_x^{bc})$

Lemma 2.30. [Sab90, Seite 26] Das Newton-Polygon hängt, bis auf vertikales verschieben, nur von dem assoziierten Meromorphen Zusammenhang ab.

коттента: ODER: assoziierte Meromorphen Zusammenhänge haben gleiche Slopes aber sind möglicherweise vertikal verschoben.

Lemma 2.31. [Sab90, 5.1]

- 1. $\mathcal{P}(\mathcal{M}_K)$ ist nicht Leer, wenn $\mathcal{M}_K \neq \{0\}$
- 2. Wenn man eine exacte Sequenz $0 \to \mathcal{M}'_K \to \mathcal{M}_K \to \mathcal{M}''_K \to 0$ hat, so gilt $\mathcal{P}(\mathcal{M}_K) = \mathcal{P}(\mathcal{M}'_K) \cup \mathcal{P}(\mathcal{M}''_K)$.

Kommentar: Siehe auch [Sab90, Thm 5.3.4]

Dort Steht:

Wir erhalten die Exacte Sequenz

$$0 \to \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_1 \to \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P \to \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_2 \to 0$$

Korollar 2.32. [Sab90, Thm 5.3.4] $\mathcal{P}(P) = \mathcal{P}(P_1) \cup \mathcal{P}(P_2)$ und $\mathcal{P}(P_1) \cap \mathcal{P}(P_2) = \emptyset$

Satz 2.33. [Sab90, Thm 5.3.1] [AV09, 5.15] Sei $\mathcal{M}_{\widehat{K}}$ ein formaler Meromorpher Zusammenhang und sei $\mathcal{P}(\mathcal{M}_{\widehat{K}}) = \{\Lambda_1, \ldots, \Lambda_r\}$ die Menge seiner slopes. Es exisitiert eine (bis auf Permutation) eindeutige Zerlegung

$$\mathcal{M}_{\widehat{K}} = \bigoplus_{i=1}^{r} \mathcal{M}_{\widehat{K}}^{(i)}$$

in formale Meromorphe Zusammenhänge mit $\mathcal{P}(\mathcal{M}_{\widehat{K}}^{(i)}) = \{\Lambda_i\}.$

Beweis. [Sab90, Thm 5.3.1] oder [AV09, 5.15]

Bemerkung 2.34. In Satz 2.33 ist es wirklich notwendig formale Meromorphe Zusammenhänge zu betrachten, denn das Resultat gilt nicht für konvergente Meromorphe Zusammenhänge.

Kommentar:

Beispiel 2.35. [Sab90, Ex 5.3.6] Sei $P = x(x\partial_x)^2 + x\partial_x + \frac{1}{2}$. So sieht das Newton-Polygon wie folgt aus

Abbildung 2.3: Newton Polygon zu $P=x(x\partial_x)^2+x\partial_x+\frac{1}{2}$

mit den Slopes $\mathcal{P}(P) = \{0,1\} =: \{\Lambda_1, \Lambda_2\}$. Nach dem Satz **2.33** existiert eine Zerlegung $P = P_1 \cdot P_2$ mit $\mathcal{P}(P_1) = \{\Lambda_1\}$ und $\mathcal{P}(P_2) = \{\Lambda_2\}$. Durch scharfes hinsehen erkennt man, dass

$$P = x(x\partial_x)^2 + x\partial_x + \frac{1}{2}$$

. . .

$$= (x(x\partial_x) + \dots) \cdot (x\partial_x + \dots)$$

$$\dots$$

$$= P_1 \cdot P_2$$

anders geschrieben

$$P = x(x\partial_x)^2 + x\partial_x + \frac{1}{2}$$

$$= xx\partial_x x\partial_x + x\partial_x + \frac{1}{2}$$

$$= x^2(x\partial_x + 1)\partial_x + x\partial_x + \frac{1}{2}$$

$$= x^3\partial_x^2 + x^2\partial_x + x\partial_x + \frac{1}{2}$$

$$= x^3\partial_x^2 + (x^2 + x)\partial_x + \frac{1}{2}$$

So sieht das Newton-Polygon wie folgt aus

Abbildung 2.4: Newton Polygon zu P

Kommentar:

Korollar 2.36. [Sab90, Cor 5.2.6] Falls $\mathcal{M}_{\widehat{K}}$ ein regulärer formaler Meromorpher Zusammenhang ist, dann ist $\mathcal{M}_{\widehat{K}}$ isomorph zu einer direkten Summe von elementaren formalen Zusammenhängen. Wobei die elementaren formalen Zusammenhänge die sind, die zu passendem $\mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (x\partial_x - \alpha)^p$ isomorph sind.

2.3.1 Die Filtrierung ${}^\ell V\mathcal{D}_{\widehat{K}}$ und das $\ell ext{-Symbol}$

Kommentar: TODO: mache alle Linearform L zu ℓ

Sei $\Lambda = \frac{\lambda_0}{\lambda_1} \in \mathbb{Q}_{\geq 0}$ vollständig gekürtzt, also mit λ_0 und λ_1 in \mathbb{N} relativ prim. Definiere die Linearform $\ell(s_0, s_1) = \lambda_0 s_0 + \lambda_1 s_1$ in zwei Variablen, Sei $P \in \mathcal{D}_{\widehat{K}}$. Falls $P = x^a \partial_x^b$ mit $a \in \mathbb{Z}$ und $b \in \mathbb{N}$ setzen wir

$$\operatorname{ord}_{\ell}(P) = \ell(b, b - a)$$

und falls $P = \sum_{i=0}^d b_i(x) \partial_x^i$ mit $b_i \in \widehat{K}$ setzen wir

$$\operatorname{ord}_{\ell}(P) = \max_{\{i \mid a_i \neq 0\}} \ell(i, i - v(b_i)).$$

Definition 2.37 (Die Filtrierung ${}^{\ell}V\mathcal{D}_{\widehat{K}}$). [Sab90, Seite 25] Nun können wir die aufsteigende Filtration ${}^{\ell}V\mathcal{D}_{\widehat{K}}$, welche mit \mathbb{Z} indiziert ist, durch

$${}^{\ell}V_{\lambda}\mathcal{D}_{\widehat{K}} := \{ P \in \mathcal{D}_{\widehat{K}} \mid \operatorname{ord}_{\ell}(P) \leq \lambda \}$$

definieren.

Bemerkung 2.38. Man hat $\operatorname{ord}_{\ell}(PQ) = \operatorname{ord}_{\ell}(P) + \operatorname{ord}_{\ell}(Q)$ und falls $\lambda_0 \neq 0$ hat man auch, dass $\operatorname{ord}_{\ell}([P,Q]) \leq \operatorname{ord}_{\ell}(P) + \operatorname{ord}_{\ell}(Q) - 1$.

Definition 2.39 (ℓ -Symbol). [Sab90, Seite 25] Falls $\lambda_0 \neq 0$ ist der graduierte Ring $gr^{\ell V} \mathcal{D}_{\widehat{K}} \stackrel{\text{def}}{=} \bigoplus_{\lambda \in \mathbb{Z}} gr_{\lambda}^{\ell V} \mathcal{D}_{\widehat{K}}$ ein kommutativer Ring. Bezeichne die Klasse von ∂_x in dem Ring durch ξ , dann ist der Ring isomorph zu $\widehat{K}[\xi]$. Sei $P \in \mathcal{D}_{\widehat{K}}$, so ist $\sigma_{\ell}(P)$ definiert als die Klasse von P in $gr_{\operatorname{ord}_{\ell}(P)}^{\ell V} \mathcal{D}_{\widehat{K}}$. σ_{ℓ} wir hierbei als das ℓ -Symbol Bezeichnet.

Zum Beispiel ist $\sigma_{\ell}(x^a \partial_x^b) = x^a \xi^b$.

Bemerkung 2.40. Bei [Sab90] wird der Buchstabe L anstatt ℓ für Linearformen verweden, dieser ist hier aber bereits für $\mathbb{C}\{t\}$ reserviert. Dementsprechend ist die Filtrierung dort als ${}^LV\mathcal{D}_{\widehat{K}}$ und das ℓ -Symbol als L-Symbol zu finden.

Bemerkung 2.41. Ist $P \in \mathcal{D}_{\widehat{K}}$ geschrieben als $P = \sum_{i} \sum_{j} \alpha_{ij} x^{j} \partial_{x}^{i}$. So erhält man $\sigma_{\ell}(P)$ durch die Setzung

$$\sigma_{\ell}(P) = \sum_{\{(i,j)|\ell(i,i-j) = \operatorname{ord}_{\ell}(P)\}} \alpha_{ij} x^{j} \xi^{i}.$$

Beweis. \Box

коmmentar: Ich will die Linearform vermeiden und direkt die skalare Steigung verwenden

Definition 2.42 (Stützfunktion). Die Funktion

$$\omega_P: [0,\infty) \to \mathbb{R}, \omega_P(t) := \inf\{v - tu \mid (u.v) \in N(P)\}$$

heißt Stützfunktion und wird in [AV09] als Alternative zu dieser Ordnung verwendet.

Bemerkung 2.43. Wenn $\ell(x_0, s_1)$ wie oben aus Λ entstanden ist, so gilt

$$\omega_P(\Lambda) = ord_\ell(P)$$
.

комментат: TODO: ist ℓ Slope (gehört zu Slope) dann hat $\sigma_{\ell}(P)$ zumindest 2 Monome

2.4 Operationen auf Meromorphen Zusammenhängen

2.4.1 Tensorprodukt

Proposition 2.44. [Sch, Prop 4.1.1] Seien $(\mathcal{M}, \partial_{\mathcal{M}})$ und $(\mathcal{N}, \partial_{\mathcal{N}})$ Meromorphe Zusammenhänge. Sei $n \otimes n \in \mathcal{M} \otimes_K \mathcal{N}$. Durch setzten von

$$\partial_{\otimes}(m\otimes n) = \partial_{\mathcal{M}}(m)\otimes n + m\otimes \partial_{\mathcal{N}}(n) \tag{2.3}$$

als die Wirkung von ∂ auf das K-Modul $\mathcal{M} \otimes_K \mathcal{N}$, wird $(\mathcal{M} \otimes_K \mathcal{N}, \partial)$ zu einem Meromorphen Zusammenhang.

Lemma 2.45. [Sab90, Ex 5.3.7] Falls \mathcal{N} regulär und nicht Null, dann ist die Menge der Slopes von $\mathcal{M} \otimes \mathcal{N}$ genau die Menge der Slopes von \mathcal{M} .

Beweis.
$$TODO$$

2.4.2 pull-back und push-forward

Kommentar: Nach [Sab07, 1.a] und [HTT07, 1.3].

Es sei

$$\rho: \mathbb{C} \to \mathbb{C}, t \mapsto x := \rho(t) \qquad \in t\mathbb{C}[\![t]\!]$$

eine Polynomielle Abbildung mit Bewertung $p \ge 1$. Hier werden wir meistens $\rho(t) = t^p$ für ein $p \in \mathbb{N}$ betrachten. Diese Funktion induziert eine Abbildung

$$\rho^*: \mathbb{C}\{x\} \hookrightarrow \mathbb{C}\{t\}, f \mapsto f \circ \rho \qquad \qquad \text{bzw.} \qquad \qquad \rho^*: \mathbb{C}[\![x]\!] \hookrightarrow \mathbb{C}[\![t]\!], f \mapsto f \circ \rho$$

analog erhalten wir

$$\rho^*: K \hookrightarrow L := \mathbb{C}(\!\{t\}\!), f \mapsto f \circ \rho \qquad \quad \text{bzw.} \qquad \quad \rho^*: \widehat{K} \hookrightarrow \widehat{L} := \mathbb{C}(\!(t)\!), f \mapsto f \circ \rho$$

wobei L (bzw. \widehat{L}) eine enldiche Körpererweiterung von K (bzw. \widehat{K}) ist.

Kommentar: TODO: damit wird \widehat{L} zu einem \widehat{K} Vektorraum.

Sei $\mathcal{M}_{\widehat{K}}$ ein endlich dimensionaler $\mathbb{C}(\!(t)\!)$ Vektorraum ausgestattet mit einem Zusammenhang ∇ .

Definition 2.46 (pull-back). [Sab07, 1.a] und [Sab90, Page 34] Der *pull-back* oder das *Inverses* Bild $\rho^+\mathcal{M}_{\widehat{K}}$ von $(\mathcal{M}_{\widehat{K}}, \nabla)$ ist der Vektorraum

$$\rho^*\mathcal{M}_{\widehat{K}}:=\widehat{L}\otimes_{\widehat{K}}\mathcal{M}_{\widehat{K}}\stackrel{\mathrm{def}}{=}\mathbb{C}(\!(t)\!)\otimes_{\mathbb{C}(\!(x)\!)}\mathcal{M}_{\mathbb{C}(\!(x)\!)}$$

mit dem pull-back Zusammenhang $\rho^* \nabla$ definiert durch

$$\partial_t(1\otimes m) := \rho'(t)\otimes \partial_x m. \tag{2.4}$$

Für ein allgemeines $\varphi \otimes m \in \rho^* \mathcal{M}_{\widehat{K}}$ gilt somit

$$\partial_t(\varphi \otimes m) := \rho'(t)(\varphi \otimes \partial_x m) + \frac{\partial \varphi}{\partial t} \otimes m.$$
 (2.5)

комментат: Nun wollen wir uns noch genauer mit dem pull-back beschäftigen, und stellen uns die Frage:

Wie sieht die Wirkung der Derivation auf dem pull-back Zusammenhang aus? Für $\rho(t) = t^p$ betrachten wir beispielsweise ein Element der Form $f(x)m = f(\rho(t))m \in \rho^*\mathcal{M}_{\widehat{K}}$, dann gilt

$$\partial_x(f(x)m) = \partial_{\rho(t)}(f(\rho(t))m)$$

$$= f'(\rho(t)) \cdot \underbrace{\frac{\partial(f(t))}{\partial(f(t))}}_{=1} m + f(\rho(t)) \underbrace{\partial_{\rho(t)}}_{=\partial_x} m$$

$$= f'(\rho(t))m + f(\rho(t))\partial_x m = (\star)$$

$$\rho'(t)^{-1}\partial_t(f(x)m) = \frac{1}{pt^{p-1}}\partial_t(f(t^p)m)$$

$$= f'(t^p)m + f(t^p)\frac{1}{pt^{p-1}}\partial_t m = (\star)$$

Also gilt $\partial_t(f(t)m) = \rho'(u)^{-1}\partial_u(f(t)m)$ und somit lässt sich vermuten, dass die Wirkung von ∂_x gleich der Wirkung von $\rho'(t)^{-1}\partial_t$ ist. In der Tat stimmt diese Vermutung, wie das folgende Lemma zeigt.

Satz 2.47. In der Situation von Lemma 2.46, mit $\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x)$ für ein $P(x, \partial_x) \in \mathcal{D}_{\widehat{K}}$, gilt

$$\rho^* \mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot P(\rho(t), \rho'(t)^{-1} \partial_t).$$

Für $P(\rho(t), \rho'(t)^{-1}\partial_t)$ werden wir auch ρ^*P schreiben.

комментат: [Cou95, Seite 130] Holonomic modules are preserved under this construction.

Kommentar: [Sab90, Page 34] Sei $\mathcal{M}_{\widehat{K}}$ ein formaler Meromorpher Zusammenhang. Man definiert $\pi^*\mathcal{M}_{\widehat{K}}$ als den Vektor Raum über $\widehat{L}:\pi^*\mathcal{M}_{\widehat{K}}=\widehat{L}\otimes_{\widehat{K}}\mathcal{M}_{\widehat{K}}$. Dann definiert man die Wirkung von ∂_t durch: $t\partial_t\cdot(1\otimes m)=q(1\otimes(x\partial_x\otimes m))$ und damit

$$t\partial_t \cdot (\varphi \otimes m) = q(\varphi \otimes (x\partial_x \cdot m)) + ((t\frac{\partial \varphi}{\partial t}) \otimes m).$$

Man erhält damit die Wirkung von $\partial_t = t^{-1}(t\partial_t)$.

Für den Beweis von Satz 2.47 werden zunächst ein paar Lemmata bewiesen.

Lemma 2.48. Es gilt $\rho^*\mathcal{D}_{\widehat{K}} \stackrel{\text{def}}{=} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}}$ als $\mathcal{D}_{\widehat{L}}$ -Moduln, mittels

$$\Phi: \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\cong} \mathcal{D}_{\widehat{L}}$$

$$f(t) \otimes Q(x, \partial_x) \longmapsto f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t)$$

Beweis. Prüfe zunächst die Injektivität. Sei $f(t) \otimes Q(x, \partial_x) \in \ker(\Phi)$ so, dass

$$0 = \Phi(f(t) \otimes Q(x, \partial_x))$$
$$= f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t)$$

und, da hier alles Nullteilerfrei ist, ist die Bedingung äquivalent zur folgenden

$$\Leftrightarrow$$
 $0 = f(t)$ oder $0 = m(\rho(t), \rho'(t)^{-1}\partial_t)$ $\Leftrightarrow \dots$

Kommentar: TODO

Nun zur Surjektivität. Sei $g(t,\partial_t)=\sum_k a_k(t)\partial_t^k\in\mathcal{D}_{\widehat{L}}$ so gilt

$$g(t, \partial_t) = \sum_k a_k(t) \partial_t^k$$

$$= \sum_k a_k(t) \underbrace{\rho'(t)\rho'(t)^{-1}}_{=1} \partial_t^k$$

$$= \rho'(t) \sum_k a_k(t)\rho'(t)^{-1} \partial_t^k$$

$$= \dots$$

Kommentar: TODO

Lemma 2.49. Das in Lemma 2.48 definierte Φ ist sogar ein Morphismus von Meromorphen Zusammenhängen, also gilt sogar $\rho^*\mathcal{D}_{\widehat{K}} \stackrel{\text{def}}{=} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}}$ als Meromorphe Zusammenhänge.

Beweis. Wir wollen noch zeigen, dass $\partial_t \circ \Phi = \Phi \circ \partial_{\otimes}$ gilt, also dass Φ ein Morphismus von Meromorphen Zusammenhängen ist. Betrachte dazu das Diagram

$$\widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\partial_{\otimes}} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad$$

und für einene Elementartensor $f(t)\otimes Q(x,\partial_x)\in \widehat{L}\otimes_{\widehat{K}}\mathcal{D}_{\widehat{K}}$ folgt dann

$$f(t) \otimes Q(x, \partial_x) \longmapsto \partial_t f(t) \otimes Q(x, \partial_x) + \rho'(t) \otimes \partial_x Q(x, \partial_x)$$

$$\downarrow \Phi \qquad \qquad \partial_t f(t) Q(x, \partial_x) + \underbrace{\rho'(t) \cdot \rho'(t)^{-1}}_{=1} \partial_t Q(\rho(t), \rho'(t)^{-q} \partial_t)$$

$$\downarrow f(t) Q(\rho(t), \rho'(t)^{-1} \partial_t) \longmapsto \partial_t f(t) Q(x, \partial_x) + \partial_t Q(\rho(t), \rho'(t)^{-q} \partial_t)$$

also kommutiert das Diagram.

Kommentar:

Bemerkung 2.50. BENÜTZT BEREITS DAS NÄCHSTE LEMMA...

Das soeben, in Lemma 2.48, definierte Φ erfüllt für Elementartensoren $1 \otimes m \in \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}$

$$\partial_{u}(1 \otimes m) \stackrel{\text{def}}{=} \rho'(t) \otimes \partial_{x} m$$

$$\stackrel{\Phi}{\mapsto} \underbrace{\rho'(t)\rho'(t)^{-1}}_{=1} \partial_{t} m(\rho(t), \rho'(t)^{-1} \partial_{t})$$

$$= \partial_{t} m(\rho(t), \rho'(t)^{-1} \partial_{t})$$

$$-$$

und somit (2.4) wie gewollt.

Lemma 2.51. Sei $P(x, \partial_x) \in \mathcal{D}_K$. In der Situation

$$\begin{array}{ccc} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes_{-} \cdot P(x, \partial_{x})} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \\ \downarrow & & \downarrow \\ \mathcal{D}_{\widehat{L}} \xrightarrow{\alpha} & \mathcal{D}_{\widehat{L}} \end{array}$$

 $mit \ \Phi \ wie \ in \ Lemma \ 2.48 \ macht \ \alpha := \underline{} \cdot P(\rho(t), \rho'(t)^{-1} \partial_t) \ das \ Diagram \ kommutativ.$

Beweis. Betrachte ein $f(t) \otimes Q(x, \partial_x) \in \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}$. So gilt

$$f(t) \otimes Q(x, \partial_x) \longmapsto^{\operatorname{id} \otimes \underline{\hspace{1cm}} \cdot P(x, \partial_x)} f(t) \otimes Q(x, \partial_x) \cdot P(x, \partial_x)$$

$$\downarrow^{\Phi}$$

$$f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t) \cdot P(\rho(t), \rho'(t)^{-1}\partial_t)$$

und

$$f(t) \otimes Q(x, \partial_x)$$

$$\downarrow^{\Phi}$$

$$f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t) \longmapsto^{-\cdot P(\rho(t), \rho'(t)^{-1}\partial_t)} f(t)Q(\rho(t), \rho'(t)^{-1}\partial_t) \cdot P(\rho(t), \rho'(t)^{-1}\partial_t)$$

also kommutiert das Diagram mit $\alpha = \underline{} \cdot P(\rho(t), \rho'(t)^{-1} \partial_t)$.

Beweis zu Satz 2.47. Sei $P \in \mathcal{D}_{\widehat{K}}$ und $\mathcal{M}_{\widehat{K}} := \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$. Wir wollen zeigen, dass

$$\rho^* \mathcal{M}_{\widehat{K}} \stackrel{!}{\cong} \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot Q$$

für $Q = P(\rho(t), \rho'(t)^{-1}\partial_t)$ gilt. Betrachte dazu die kurze Sequenz

$$0 \longrightarrow \mathcal{D}_{\widehat{K}} \xrightarrow{-\cdot P} \mathcal{D}_{\widehat{K}} \xrightarrow{\pi_{\widehat{K}}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$u \longmapsto u \cdot P$$

$$u \longmapsto u \mod \mathcal{D}_{\widehat{K}} \cdot P$$

ist exact, weil $\mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P = \operatorname{coker}(_\cdot P)$. Weil \widehat{K} flach ist, da Körper, ist auch, nach anwenden des Funktors $\widehat{L} \otimes_{\widehat{K}}$ _, die Sequenz

$$0 \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \underline{\cdot} P} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \pi_{\widehat{K}}} \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$\rho^* \mathcal{M}_{\widehat{K}}$$

exact.

Kommentar: Deshalb ist
$$\rho^* \mathcal{M}_{\widehat{K}} \cong \operatorname{coker}(\operatorname{id} \otimes_{_} \cdot P) \qquad \qquad (\text{weil exact})$$

$$\cong \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \big/ \Big((\widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}}) \cdot (\operatorname{id} \otimes_{_} \cdot P) \Big) \qquad (\text{nach def. von coker})$$

Also mit Φ wie in Lemma 2.48 und $Q(t,\partial_t):=P(\rho(t),\rho'(t)^{-1}\partial_t)$ nach Lemma 2.51 ergibt sich

$$0 \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes_{\underline{-}} \cdot P} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$\downarrow \\ \cong \Phi \\ \downarrow \\ \mathcal{D}_{\widehat{L}} \xrightarrow{\underline{-} \cdot Q} \mathcal{D}_{\widehat{L}}$$

als kommutatives Diagram. Nun, weil $_\cdot Q$ injektiv ist, lässt sich die untere Zeile zu einer exacten Sequenz fortsetzen

$$0 \longrightarrow \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes_{-} \cdot P} \widehat{L} \otimes_{\widehat{K}} \mathcal{D}_{\widehat{K}} \xrightarrow{\operatorname{id} \otimes \pi_{\widehat{K}}} \widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

und damit folgt, wegen Isomorphie der Cokerne, die Behauptung.

Lemma 2.52. [Sab90, 5.4.3] Sei $\mathcal{P}(\mathcal{M}_{\widehat{K}}) = \{\Lambda_1, \dots, \Lambda_r\}$ die Menge der Slopes von $\mathcal{M}_{\widehat{K}}$ und $\rho: t \mapsto x := t^p$, dann gilt für $\mathcal{P}(\rho^* \mathcal{M}_{\widehat{K}}) = \{\Lambda'_1, \dots, \Lambda'_r\}$, dass $\Lambda'_n = p \cdot \Lambda_n$.

Beweis. Sei $\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ mit $P = \sum a_i(x)\partial_x^i$, dann ist $\rho^*\mathcal{M}_{\widehat{K}} \cong \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot P'$ mit

$$P'(t, \partial_t) = P(\rho(t), \rho'(t)^{-1} \partial_t)$$

$$= \sum_i a_i(\rho(t)) (\rho'(t)^{-1} \partial_t)^i$$

$$= \sum_i a_i(t^p) ((p \cdot t^{p-1})^{-1} \partial_t)^i$$

Kommentar: TODO: Hier weiter...

Beispiel 2.53 (pull-back). Hier nun ein explizit berechneter pull-back. Wir wollen $\mathcal{M}_{\widehat{K}} := \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ bzgl. $P := x^3 \partial_x^2 - 4x^2 \partial_x - 1$ betrachten. Unser Ziel ist es hier ganzzahlige Slopes zu erhalten. Es gilt slopes $(P) = \{\frac{1}{2}\}$ (siehe Abbildung 2.5) und es ist 2 der Hauptnenner aller Slopes. Wende den pull-back mit $\rho: t \to x := t^2$ an. Zunächst ein paar Nebenrechnungen, damit wir Satz 2.47 einfacher anwenden können.

$$\partial_x \leadsto \frac{1}{\rho'(t)} \partial_t = \frac{1}{2t} \partial_t$$

$$\partial_x^2 \leadsto (\frac{1}{2t} \partial_t)^2 = \frac{1}{2t} \partial_t (\frac{1}{2t} \partial_t) = \frac{1}{2t} (-\frac{1}{2t^2} \partial_t + \frac{1}{2t} \partial_t^2) = \frac{1}{4t^2} \partial_t^2 - \frac{1}{4t^3} \partial_t$$

also ergibt einsetzen

$$\rho^* P = (t^2)^3 (\frac{1}{4t^2} \partial_t^2 - \frac{1}{4t^3} \partial_t) - 4(t^2)^2 \frac{1}{2t} \partial_t - 1$$

$$= \frac{1}{4} t^4 \partial_t^2 - t^3 \frac{1}{4} \partial_t - 4t^3 \frac{1}{2} \partial_t - 1$$

$$= \frac{1}{4} t^4 \partial_t^2 - 2\frac{1}{4} t^3 \partial_t - 1$$

Also ist $\rho^*P = \frac{1}{4}t^4\partial_t^2 - \frac{1}{2}t^3\partial_t - 1$ mit $\operatorname{slopes}(\rho^*P) = \{1\}$ (siehe Abbildung 2.6) und somit $\rho^*\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\frac{1}{4}t^4\partial_t^2 - \frac{1}{2}t^3\partial_t - 1).$

Abbildung 2.5: Newton Polygon zu $P = x^3 \partial_x^2 - 4x^2 \partial_x - 1$

Abbildung 2.6: Newton Polygon zu
$$\rho^*P=\tfrac{1}{4}t^4\partial_t^2-\tfrac{1}{2}t^3\partial_t-1$$

Sei $\mathcal{N}_{\widehat{L}}$ ein endlich dimensionaler \widehat{L} -VR mit Verknüpfung, so definiere den push-forward wie folgt.

Definition 2.54 (push-forward). [Sab07, 1.a] Der push-forward oder das Direktes Bild $\rho_+ \mathcal{N}_{\widehat{L}}$ von $\mathcal{N}_{\widehat{L}}$ ist

- der \widehat{K} -VR $\rho_*\mathcal{N}$ ist definiert als der \mathbb{C} -Vektor Raum $\mathcal{N}_{\widehat{L}}$ mit der \widehat{K} -Vektor Raum Struktur durch die skalare Multiplikation $\cdot: \widehat{K} \times \mathcal{N}_{\widehat{L}} \to \mathcal{N}_{\widehat{L}}$ und $(f(x),m) \mapsto f(x) \cdot m := f(\rho(t))m$
- mit der Wirkung ∂_x beschrieben durch $\rho'(t)^{-1}\partial_t$.

Newton-Polygon zu P

Beispiel 2.55 (push-forward). Für $\rho:t\to u^2,\, \varphi=\frac{1}{u^2}$ betrachte

$$\mathscr{E}^{\varphi} \cong \widehat{\mathcal{D}}/\widehat{\mathcal{D}} \cdot (\partial_u + \partial_u \frac{1}{u^2})$$
$$= \widehat{\mathcal{D}}/\widehat{\mathcal{D}} \cdot (\underbrace{\partial_u + \frac{2}{u^3}}_{=:P})$$

mit slopes(P) = {2} (siehe Abbildung 2.4.2). Bilde nun das Direkte Bild über ρ , betrachte dazu

$$\partial_u + \frac{2}{u^3} = 2u(\frac{1}{2u}\partial_u + \frac{1}{u^4})$$
$$= 2u(\rho'(u)^{-1}\partial_u + \frac{1}{u^4})$$

$$=2u(\partial_t + \frac{1}{t^2})$$

Also ist $\rho_+ \mathscr{E}^{\varphi} \cong \widehat{\mathcal{D}}/\widehat{\mathcal{D}} \cdot (\partial_t + \frac{1}{t^2})$ mit $\rho_+ P = \partial_t + \frac{1}{t^2}$ und slopes $(\rho_+ P) = \{1\}$ (siehe Abbildung 2.4.2)

Satz 2.56. [Sab07, 1.a] Es gilt die Projektionsformel

$$\rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} \rho^{+} \mathcal{M}_{\widehat{K}}) \cong \rho_{+} \mathcal{N}_{\widehat{L}} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}. \tag{2.6}$$

Beweis.

$$\rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} \rho^{+} \mathcal{M}_{\widehat{K}}) = \rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} (\widehat{L} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{L}})) \qquad (\text{def von } \rho^{+} \mathcal{M}_{\widehat{K}})$$

$$\cong \rho_{+}((\mathcal{N}_{\widehat{L}} \otimes_{\widehat{L}} \widehat{L}) \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}) \qquad (\text{Rechenregeln Tensorprodukt})$$

$$\cong \rho_{+}(\mathcal{N}_{\widehat{L}} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}}) \qquad (\text{Rechenregeln Tensorprodukt})$$

$$= \rho_{+} \mathcal{N}_{\widehat{L}} \otimes_{\widehat{K}} \mathcal{M}_{\widehat{K}} \qquad (?)$$

Kommentar: Sei $\rho(u) = u^p = t$ und $\varphi(t)$ gegeben.

$$\rho^{+} \mathcal{E}^{\varphi(t)} = \mathcal{E}^{\varphi(\rho(u))} = \mathcal{E}^{\varphi(u^{p})}$$
$$\rho^{+} \rho_{+} \mathcal{E}^{\varphi(u)} = \bigoplus_{\zeta \in \mu_{p}} \mathcal{E}^{\varphi(\zeta \cdot u)}$$

2.4.3 Fouriertransformation

Definition 2.57 (Fouriertransformation). [Blo04, Def 3.1] [GL04] [AV09, Def 6.1] Sei $P = \sum_{i=0}^{d} a_i(x) \partial_x^i$. Dann ist die *Fouriertransformierte* von P gegeben durch

$$\mathcal{F}_P := \mathcal{F}_P(z, \partial_z) = \sum_{i=0}^d a_i(\partial_z)(-z)^i$$

Definition 2.58 (Fouriertransformation von lokalisierten holonomen D-Moduln). Ist $\mathcal{M}_{\widehat{K}} = \widehat{K}/\widehat{K} \cdot P$ so ist die Fouriertransformierte davon ${}^{\mathcal{F}}\mathcal{M}_{\widehat{K}} = \widehat{K}/\widehat{K} \cdot \mathcal{F}_P(x, \partial_x)$.

Beispiel 2.59. Sei $P=x^3\partial_x^4+x^2\partial_x^2+x$ dann ist die Fouriertransformierte davon

$$\begin{split} \mathcal{F}_{P} &= \partial_{z}^{3}(-z)^{4} + \partial_{z}^{2}(-z)^{2} + \partial_{z} \\ &= \partial_{z}^{2}z^{2} + \partial_{z}^{3}z^{4} + \partial_{z} \\ &= z^{4}\partial_{z}^{3} + \left[\partial_{z}^{3}, z^{4}\right] + z^{2}\partial_{z}^{2} + \left[\partial_{z}^{2}, z^{2}\right] + \partial_{z} \\ &= z^{4}\partial_{z}^{3} + \sum_{i=1}^{3} \frac{4 \cdot 3 \dots (5-i) \cdot 3 \cdot 2 \dots (4-i)}{i!} z^{4-i}\partial_{z}^{3-i} + z^{2}\partial_{z}^{2} \\ &+ \sum_{i=1}^{2} \frac{2 \cdot 1 \dots (3-i) \cdot 2 \cdot 1 \dots (3-i)}{i!} z^{2-i}\partial_{z}^{2-i} + \partial_{z} \\ &= z^{4}\partial_{z}^{3} + 12z^{3}\partial_{z}^{2} + \frac{72}{2}z^{2}\partial_{z} + \frac{144}{6}z + z^{2}\partial_{z}^{2} + 4z\partial_{z} + \frac{4}{2} + \partial_{z} \\ &= z^{4}\partial_{z}^{3} + (12z^{3} + z^{2})\partial_{z}^{2} + (36z^{2} + 4z + 1)\partial_{z} + 24z + 2 \end{split}$$

mit den Newton Polygonen wie in Abbildung 2.7 und 2.8.

Abbildung 2.7: Newton-Polygon zu P

Abbildung 2.8: Newton-Polygon zu \mathcal{F}_P

3 Elementare Meromorphe Zusammenhänge

комменtar: einführen als Bausteine oder kleinste Meromorphe Zusammenhänge

Definition 3.1. [Sab07, 1.a] Sei $\varphi \in \widehat{K}$. Wir schreiben $\mathscr{E}_{\widehat{K}}^{\varphi}$ für den (formalen) Rang 1 Vektorraum $\mathbb{C}(\!(x)\!) \stackrel{\text{def}}{=} \widehat{K}$ ausgestattet mit dem Zusammenhang $\nabla = \partial_x + \partial_x \varphi$, im speziellen also $\nabla_{\partial_x} 1 = \partial_x 1 = \varphi'$.

Bemerkung 3.2. 1. Es für ein allgemeines $f(x) \in \mathscr{E}_{\widehat{K}}^{\varphi}$ gilt $\partial_x f(x) = f'(x) + f(x)\varphi'(x)$.

- 2. Auf die Angabe von des Rang 1 Vektorraums im Subscript wird im folgendem meist verzichtet.
- 3. Offensichtlich ist $\mathscr{E}^{\varphi} \cong \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot (\partial_x \varphi'(x))$, weil für den zyklischen Vektor 1 gilt, dass $\partial_x \cdot 1 = \varphi'(x) \cdot 1$.

Bemerkung 3.3. [Sab07, 1.a] Es gilt $\mathscr{E}^{\varphi} \cong \mathscr{E}^{\psi}$ genau dann wenn $\varphi \equiv \psi \mod \mathbb{C}[x]$.

Kommentar:

Lemma 3.4 (Slope von \mathcal{E}^{φ}). TODO

Sei $\rho: t \mapsto x := t^p \text{ und } \mu_{\xi}: t \mapsto \xi t.$

Lemma 3.5. [Sab07, Lem 2.4] Für alle $\varphi \in \widehat{L}$ gilt

$$\rho^+ \rho_+ \mathscr{E}^{\varphi} = \bigoplus_{\xi^p = 1} \mathscr{E}^{\varphi \circ \mu_{\xi}}.$$

Beweis. Wir wollen zeigen, dass das folgende Diagram, für einen passenden Isomorphismus, kommutiert:

$$\rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \xrightarrow{\cong} \bigoplus_{\xi^{p}=1} \mathscr{E}^{\varphi\circ\mu_{\xi}}$$

$$\downarrow \partial_{t} \qquad \qquad \downarrow \partial_{t}$$

$$\rho^{+}\rho_{+}\mathscr{E}^{\varphi(u)} \xrightarrow{\cong} \bigoplus_{\xi^{p}=1} \mathscr{E}^{\varphi\circ\mu_{\xi}}$$

Es sei oBdA $\varphi \in t^{-1}\mathbb{C}[t^{-1}]$, dies ist nach Bemerkung 3.3 berechtigt. Wir wählen eine \widehat{L} Basis e des Rang 1 \widehat{L} -Vektorraum \mathscr{E}^{φ} und damit erhält man die Familie $e, te, ..., t^{p-1}e$ als \widehat{K} -Basis von $\rho_+\mathscr{E}^{\varphi}$. Es gilt

$$\partial_x t^k \mathbf{e} = \rho'(t)^{-1} \partial_t t^k \mathbf{e} = \rho'(t)^{-1} \left(t^k \partial_t + k t^{k-1} \right) \mathbf{e}. \tag{3.1}$$

Durch die Setzung $e_k := t^{-k} \otimes_{\widehat{K}} t^k e$ wird die Familie $\mathbf{e} := (e_0, ..., e_{p-1})$ eine \widehat{L} -Basis von $\rho^+ \rho_+ \mathscr{E}^{\varphi}$.

Zerlege nun

$$t\varphi'(t) = \sum_{j=0}^{p-1} t^j \psi_j(t^p) \qquad \in t^{-2} \mathbb{C}[t^{-1}]$$
 (3.2)

mit $\psi_j \in \mathbb{C}[x^{-1}]$ für alle j > 0 und $\psi_0 \in x^{-1}\mathbb{C}[x^{-1}]$ (siehe: Anhang A). Damit gilt:

$$t\partial_t \boldsymbol{e}_k = \sum_{i=0}^{p-1-k} t^i \psi_i(t^p) \boldsymbol{e}_{k+1} + \sum_{i=p-k}^{p-1} t^i \psi_i(t^p) \boldsymbol{e}_{k+i-p}$$

denn:

$$t\partial_{t}\boldsymbol{e}_{k} = t \partial_{t}(t^{-k} \otimes_{\widehat{K}} t^{k}\boldsymbol{e})$$

$$\stackrel{(2.3)}{=} t (-kt^{-k-1} \otimes_{\widehat{K}} t^{k}\boldsymbol{e} + pt^{p-1} \cdot t^{-k} \otimes_{\widehat{K}} \partial_{x}(\underbrace{t^{k}\boldsymbol{e}}_{\in \rho_{+}}))$$

$$\stackrel{(3.1)}{=} -kt^{-k} \otimes_{\widehat{K}} t^{k}\boldsymbol{e} + pt^{p-1}t^{-k+1} \otimes_{\widehat{K}} (pt^{p-1})^{-1}(kt^{k-1}\boldsymbol{e} + t^{k}\varphi'(t)\boldsymbol{e})$$

$$= -kt^{-k} \otimes_{\widehat{K}} t^{k}\boldsymbol{e} + t^{-k+1} \otimes_{\widehat{K}} (kt^{k-1}\boldsymbol{e} + t^{k}\varphi'(t)\boldsymbol{e})$$

$$= \underbrace{-kt^{-k} \otimes_{\widehat{K}} t^{k}\boldsymbol{e} + t^{-k+1} \otimes_{\widehat{K}} kt^{k-1}\boldsymbol{e} + t^{-k+1} \otimes_{\widehat{K}} t^{k}\varphi'(t)\boldsymbol{e}}$$

$$= t^{-k} \otimes_{\widehat{K}} t^{k} t\varphi'(t)\boldsymbol{e}$$

$$\stackrel{(3.2)}{=} t^{-k} \otimes_{\widehat{K}} t^{k} \underbrace{\sum_{i=0}^{p-1} t^{i}\psi_{i}(t^{p})}_{i}\boldsymbol{e}$$

$$= \sum_{i=0}^{p-1} \psi_{i}(t^{p})(t^{-k} \otimes_{\widehat{K}} t^{k}t^{i}\boldsymbol{e})$$

$$= \sum_{i=0}^{p-1} t^{i} \psi_{i}(t^{p})(t^{-k-i} \otimes_{\widehat{K}} t^{k+i} e)$$

$$= \sum_{i=0}^{p-1-k} t^{i} \psi_{i}(t^{p}) e_{k+i} + \sum_{i=p-k}^{p-1} t^{i} \psi_{i}(t^{p}) e_{k+i-p}$$

Sei

$$V := \begin{pmatrix} 0 & & & 1 \\ 1 & 0 & & \\ & \ddots & \ddots & \\ & & 1 & 0 \end{pmatrix}$$

so dass $\mathbf{e} \cdot V = (\mathbf{e}_1, ..., \mathbf{e}_{p-1}, \mathbf{e}_0)$ gilt. Es gilt:

$$t\partial_t \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} t^j \psi_j V^j \right]$$

denn:

$$t\partial_{t}\mathbf{e} = (t\partial_{t}\mathbf{e}_{0}, \dots, t\partial_{t}\mathbf{e}_{p-1})$$

$$= \left(\sum_{i=0}^{p-1-k} t^{i}\psi_{i}(t^{p})\mathbf{e}_{k+1} + \sum_{i=p-k}^{p-1} t^{i}\psi_{i}(t^{p})\mathbf{e}_{k+i-p}\right)_{k\in\{0,\dots,p-1\}}$$

$$= \mathbf{e} \begin{pmatrix} u^{p-1}\psi_{p-1}(t^{p}) & \cdots & t^{3}\psi_{3}(t^{p}) & t^{2}\psi_{2}(t^{p}) & t^{1}\psi_{1}(t^{p}) \\ t^{1}\psi_{1}(t^{p}) & t^{p-1}\psi_{p-1}(t^{p}) & \ddots & t^{2}\psi_{2}(t^{p}) \\ t^{2}\psi_{2}(t^{p}) & t^{1}\psi_{1}(t^{p}) & \ddots & \ddots & \vdots \\ \vdots & \ddots & t^{1}\psi_{1}(t^{p}) & t^{p-1}\psi_{p-1}(t^{p}) \\ \vdots & \ddots & t^{1}\psi_{1}(t^{p}) & t^{p-1}\psi_{p-1}(t^{p}) \\ t^{p-2}\psi_{p-2}(t^{p}) & \cdots & t^{3}\psi_{3}(t^{p}) & t^{2}\psi_{2}(t^{p}) & t^{1}\psi_{1}(t^{p}) & t^{p-1}\psi_{p-1}(t^{p}) \end{pmatrix}$$

$$= \mathbf{e} \begin{bmatrix} \sum_{j=0}^{p-1} t^{j}\psi_{j}(t^{p})V^{j} \end{bmatrix}$$

Die Wirkung von ∂_t auf die Basis **e** von $\rho^+\rho_+\mathscr{E}^{\varphi(t)}$ ist also Beschrieben durch

$$\partial_t \mathbf{e} = \mathbf{e} \left[\sum_{j=0}^{p-1} t^{j-1} \psi_j V^j \right] .$$

Da V das Minimalpolynom $\chi_V(X) = X^p - 1$ hat, können wir diese Matrix durch Ähnlichkeitstransformation mit T auf die Form

$$D := TVT^{-1} = \begin{pmatrix} \xi^0 & & & \\ & \xi^1 & & \\ & & \ddots & \\ & & & \xi^{p-1} \end{pmatrix},$$

mit $\xi^p = 1$, bringen. Sei so ein ξ ab jetzt Fixiert. So dass gilt:

da $\varphi'(t) = pt^{p-1}$. Damit wissen wir bereits, das im Diagram

der mit (\star) bezeichnete Teil kommutiert, wobei $\Phi:(0,\ldots,0,\ 1\ ,0,\ldots,0)\mapsto e_k$ der kanonische Basisisomorphismus und e_k basis von $\mathscr{E}^{\varphi\circ\mu_{\xi^{k-1}}}$. Um zu zeigen, dass das vollständige Diagram kommutiert, zeigen wir noch, dass

$$\partial_t(v) = \Phi(\Phi^{-1}(v) \cdot \left[\sum_{j=0}^{p-1} t^{j-1} \psi_j(t^p) D^j \right]$$

$$\forall v \in \bigoplus_{i=0}^{p-1} \mathscr{E}^{\varphi \circ \mu_{\xi^i}}$$

gilt. Es reicht zu zeigen, dass die Aussage für alle Basiselemente e_k gilt. Nach Definition 3.1 gilt

$$\partial_t e_k = (\varphi \circ \mu_{\xi^{k-1}})'(t) e_k$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$= \varphi(\mu'_{\xi^{k-1}}) \cdot \varphi'(t) e_k$$

$$= (\xi^{k-1})^p \cdot (pt^{p-1}) e_k$$

$$= p(\xi^{k-1}t)^{p-1} \xi^{k-1} e_k$$

und auf dem anderem Weg gilt:

$$\Phi^{-1}(e_k) = (\dots, 0, 1, 0, \dots) \longleftarrow \Phi^{-1} \qquad e_k$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Also kommutiert das Diagram und damit ist die Aussage gezeigt.

Definition 3.6. Ein *Elementarer Meromorpher Zusammenhang* ist ein Zusammenhang \mathcal{M} , für den es $\psi \in \mathbb{C}((x))$, $\alpha \in \mathbb{C}$ und $p \in \mathbb{N}$ gibt, so dass

$$\mathcal{M} \cong \mathscr{E}^{\psi} \otimes R_{\alpha,p}$$
,

mit $R_{\alpha,p} := \mathcal{D}/\mathcal{D}(x\partial_x - \alpha)^p$, ist.

Lemma 3.7. $\mathscr{E}^{\psi} \otimes R_{\alpha,p} \cong \mathcal{D}/\mathcal{D} \cdot (x\partial_x - (\alpha + x\frac{\partial \psi}{\partial x}))^p$

Beweis. Siehe [Hei10, Lem 5.12]

Kommentar:

3.1 Definition in [Sab07]

Definition 3.8 (Elementarer formaler Zusammenhang). [Sab07, Def 2.1] Zu einem gegebenen $\rho \in t\mathbb{C}[\![t]\!], \ \varphi \in \widehat{L} \stackrel{\text{def}}{=} \mathbb{C}(\!(t)\!)$ und einem endlich dimensionalen \widehat{L} -Vektorraum R mit regulärem Zusammenhang ∇ , definieren wir den assoziierten Elementaren endlich dimensionalen \widehat{K} -Vektorraum mit Zusammenhang, durch:

$$El(\rho, \varphi, R) = \rho_{+}(\mathscr{E}^{\varphi} \otimes R)$$

[Sab07, nach Def 2.1] Bis auf Isomorphismus hängt $El(\rho, \varphi, R)$ nur von φ mod $\mathbb{C}[\![t]\!]$ ab.

Lemma 3.9. [Sab07, Lem 2.2]

Lemma 3.10. [Sab07, Lem 2.6.] Es gilt $El([t \mapsto t^p], \varphi, R) \cong El([t \mapsto t^p], \psi, S)$ genau dann, wenn

- es ein ζ gibt, mit $\zeta^p = 1$ und $\psi \circ \mu_{\zeta} \equiv \varphi \mod \mathbb{C}[\![t]\!]$
- und $S \cong R$ als \hat{L} -Vektorräume mit Zusammenhang.

Beweis. Siehe [Sab07, Lem 2.6.]

Proposition 3.11. [Sab07, Prop 3.1] Jeder irreduzible endlich dimensionale \widehat{K} -Vektorraum \mathcal{M} mit Zusammenhang ist isomorph zu $\rho_+(\mathscr{E}^{\varphi}\otimes L)$, wobei $\varphi\in t^{-1}\mathbb{C}[t^{-1}]$, $\rho:t\to t^p$ vom Grad $p\geq 1$ und ist minimal unter φ . (siehe [Sab07, Rem 2.8]) und L ist ein Rang 1 \widehat{L} -Vektrorraum mit regulärem Zusammenhang.

Beweis. Siehe [Sab07, Prop 3.1]

3.2 Twisten von Meromorphen Zusammenhängen

Kommentar: [Cou95, Chap 5 §2]

Lemma 3.12. [Hei10, Seite 44] Sei $\mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x)$ und sei $\varphi \in \widehat{K}$. So gilt

$$\mathcal{M}_{\widehat{K}} \otimes_{\widehat{K}} \mathscr{E}^{\varphi} = \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot Q(x, \partial_x)$$

$$mit\ Q(x,\partial_x) = P(x,\partial_x - \frac{\partial \varphi}{\partial x}).$$

Beweis. TODO \Box

Korollar 3.13. Sei $\mathcal{M}_{\widehat{K}}$ und φ wie in 3.12, so gilt

$$\mathcal{M}_{\widehat{K}} \otimes_{\widehat{K}} \mathscr{E}^{\varphi} \otimes_{\widehat{K}} \mathscr{E}^{-\varphi} = \mathcal{M}_{\widehat{K}}.$$

Beweis. Denn

$$\begin{split} \mathcal{M}_{\widehat{K}} \otimes_{\widehat{K}} \mathscr{E}^{\varphi} \otimes_{\widehat{K}} \mathscr{E}^{-\varphi} &= \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x) \otimes_{\widehat{K}} \mathscr{E}^{\varphi} \otimes_{\widehat{K}} \mathscr{E}^{-\varphi} \\ &= \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x - \frac{\partial \varphi}{\partial x}) \otimes_{\widehat{K}} \mathscr{E}^{-\varphi} \\ &= \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x - \frac{\partial \varphi}{\partial x} - \frac{\partial (-\varphi)}{\partial x}) \\ &= \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot P(x, \partial_x) = \mathcal{M}_{\widehat{K}} \end{split}$$

Lemma 3.14. Sei $\mathcal{M} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P$ ein Meromorpher Zusammenhang mit P von Grad q und mit e als ein zyklischer Vektor, so ist $e \otimes \underbrace{1}_{\in \widehat{K}}$ ein zyklischer Vektor für $\mathcal{N} := \mathcal{M} \otimes_{\widehat{K}} \mathscr{E}_{\widehat{K}}^{\psi}$.

Beweis. Da der Grad von P gleich q ist, ist nach Lemma 3.12 auch Q von grad q und somit $\dim_{\widehat{K}} \mathcal{N} = q$. Also reicht zu zeigen, dass $\mathbf{e} \otimes 1$, $\partial_x(\mathbf{e} \otimes 1)$, $\partial_x^2(\mathbf{e} \otimes 1)$,..., $\partial_x^{q-1}(\mathbf{e} \otimes 1)$ ein linear unabhängiges System ist. Es gilt

$$\partial_x(\mathbf{e} \otimes 1) = (\partial_x \mathbf{e}) \otimes 1 + x \otimes \partial_x 1$$

$$= (\partial_x \mathbf{e}) \otimes 1 + \mathbf{e} \otimes \psi'(x)$$

$$= (\partial_x \mathbf{e}) \otimes 1 + \psi'(x)(\mathbf{e} \otimes 1)$$

$$\partial_x^2(\mathbf{e} \otimes 1) = \partial_x((\partial_x \mathbf{e}) \otimes 1 + \psi'(x)(\mathbf{e} \otimes 1))$$

-41-

$$= (\partial_x^2 \mathbf{e}) \otimes 1 + (\partial_x \mathbf{e}) \otimes \psi'(x) + \psi''(x)(\mathbf{e} \otimes 1) + \psi'(x)((\partial_x \mathbf{e}) \otimes 1 + \mathbf{e} \otimes \psi'(x))$$

$$= (\partial_x^2 \mathbf{e}) \otimes 1 + \psi'(x)(\partial_x \mathbf{e}) \otimes 1 + \psi''(x)(\mathbf{e} \otimes 1) + \psi'(x)(\partial_x \mathbf{e}) \otimes 1 + \psi'(x)^2(\mathbf{e} \otimes 1)$$

$$= (\partial_x^2 \mathbf{e}) \otimes 1 + 2\psi'(x)(\partial_x \mathbf{e}) \otimes 1 + (\psi''(x) + \psi'(x)^2)(\mathbf{e} \otimes 1)$$

$$\vdots$$

$$\partial_x^{q-1}(\mathbf{e} \otimes 1) = (\partial_x^{q-1} \mathbf{e}) \otimes 1 + \lambda_{q-2}(\partial_x^{q-2} \mathbf{e}) \otimes 1 + \dots + \lambda_1(\partial_x \mathbf{e}) \otimes 1 + \lambda_0(\mathbf{e} \otimes 1)$$

und somit ist dann

$$\begin{pmatrix} \boldsymbol{e} \otimes 1 \\ \partial_x(\boldsymbol{e} \otimes 1) \\ \partial_x^2(\boldsymbol{e} \otimes 1) \\ \vdots \\ \partial_x^{q-2}(\boldsymbol{e} \otimes 1) \\ \partial_x^{q-1}(\boldsymbol{e} \otimes 1) \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ \psi'(x) & 1 & 0 & & \vdots \\ \star & \star & 1 & 0 & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ \star & \cdots & \cdots & \star & 1 & 0 \\ \lambda_0 & \lambda_1 & \cdots & \cdots & \lambda_{q-2} & 1 \end{pmatrix} \begin{pmatrix} \boldsymbol{e} \otimes 1 \\ (\partial_x \boldsymbol{e}) \otimes 1 \\ (\partial_x^2 \boldsymbol{e}) \otimes 1 \\ \vdots \\ (\partial_x^{q-2} \boldsymbol{e}) \otimes 1 \\ (\partial_x^{q-1} \boldsymbol{e}) \otimes 1 \end{pmatrix}$$

Da bekanntlich $e \otimes 1$, $(\partial_x e) \otimes 1$, $(\partial_x^2 e) \otimes 1$,..., $(\partial_x^{q-1} e) \otimes 1$ linear unabhängig sind, gilt dies auch für $e \otimes 1$, $\partial_x (e \otimes 1)$, $\partial_x^2 (e \otimes 1)$,..., $\partial_x^{q-1} (e \otimes 1)$. Damit folgt die Behauptung.

4 Levelt-Turrittin-Theorem

Das Levelt-Turrittin-Theorem ist ein Satz, der hilft, Meromorphe Zusammenhänge in ihre irreduziblen Komponenten zu zerlegen.

Kommentar:

4.1 Klassische Version

Satz 4.1. [Sab90, Thm 5.4.7] Sie $\mathcal{M}_{\widehat{K}}$ ein formaler Meromorpher Zusammenhang. So gibt es eine ganze Zahl p so dass der Zusammenhang $\mathcal{M}_{\widehat{L}} := \rho^+ \mathcal{M}_{\widehat{K}}$, mit $\rho : t \mapsto x := t^p$, isomorph zu einer direkten Summe von formalen elementaren Meromorphen Zusammenhänge ist.

Der folgende Beweis stammt hauptsächlich aus [Sab90, Seite 35].

Beweis. Zum Beweis wird Induktion auf die Lexicographisch geordnetem Paare $(\dim_{\widehat{K}} \mathcal{M}_{\widehat{K}}, \kappa)$ angewendet. Wobei $\kappa \in \mathbb{N} \cup \{\infty\}$ dem größtem Slope von $\mathcal{M}_{\widehat{K}}$. Es wird $\kappa = \infty$ gesetzt, falls der größte Slope nicht Ganzzahlig ist.

Kommentar: TODO: induktionsanfang und -schritt kennzeichnen

Wir nehmen oBdA an, dass $\mathcal{M}_{\widehat{K}}$ genau einen Slope Λ hat, sonst Teile $\mathcal{M}_{\widehat{K}}$ mittels Satz 2.33 in Meromorphe Zusammenhänge mit je einem Slope und wende jeweils die Induktion an. Mit $\Lambda =: \frac{\lambda_0}{\lambda_1}$ (vollständig gekürtzt) Definieren wir die dem Slope entsprechende Linearform $L(s_0, s_1) := \lambda_0 s_0 + \lambda_1 s_1$. Wir nennen $\sigma_L(P) \in \widehat{K}[\xi]$ die Determinanten Gleichung von P. Da L zu einem Slope von P gehört, besteht $\sigma_L(P)$ aus zumindest zwei Monomen.

 $\kappa_{\text{commentar}}$: and is homogeneous of degree $\operatorname{ord}_L(P) = 0$ because P is chosen with coefficients in $\mathbb{C}[x]$, one of them, being a unit.

Schreibe

$$\sigma_L(P) = \sum_{L(i,i-j) = \operatorname{ord}_L(P)} \alpha_{ij} x^j \xi^i$$
$$= \sum_{L(i,i-j) = 0} \alpha_{ij} x^j \xi^i.$$

Sei $\theta := x^{\lambda_0 + \lambda_1} x i^{\lambda_1}$ so können wir

$$\sigma_L(P) = \sum_{k>0} \alpha_k \theta^k$$

schreiben, wobei $\alpha_0 \neq 0$ ist.

Erster Fall: $\lambda_1 = 1$. Das bedeutet, dass der Slope ganzzahlig ist. Betrachte die Faktorisierung

$$\sigma_L(P) = \varepsilon \prod_{\beta} (\theta - \beta)^{\gamma_{\beta}}.$$

Wobei $\varepsilon \in \mathbb{C}$ eine Konstante ist. Sei β_0 eine der Nullstellen. So setze $R(z) := (\beta_0/(\lambda_0+1))z^{\lambda_0+1}$ und betrachte $\mathcal{M}_{\widehat{K}} \otimes \mathcal{F}_{\widehat{K}}^R$.

Kommentar: AB HIER VLT NICHT RICHTIG, nur versuch

Falls $P(x, \partial_x) \cdot e = 0$ gilt

$$P(x, \partial_x - \frac{\partial R(x^{-1})}{\partial x}) \cdot e \otimes e(R) = 0$$

und hier haben wir

$$\frac{\partial R(x^{-1})}{\partial x} = \frac{\partial (\frac{\beta_0}{\lambda_0 + 1} x^{-(\lambda_0 + 1)})}{\partial x}$$
$$= -\beta_0 z^{-(\lambda_0 + 2)}.$$

Schreibe $P' = P(x, \partial_x + \beta_0 x^{-(\lambda_0 + 2)}).$

Lemma 4.2. Es gilt, dass P' Koeffizienten in $\mathbb{C}[x]$ hat.

Beweis. TODO
$$\Box$$

Des weiteren ist $\sigma_L(P') = \sum_{k>0} \alpha_k (\theta + \beta_0)^k$. Wir unterscheiden nun 2 Unterfälle:

1. Die Determinanten Gleichung $\sigma_L(P)$ hat nur eine Nullstelle.

Kommentar: TODO: Hier weiter

2. Die Determinanten Gleichung $\sigma_L(P)$ hat mehrere Nullstellen.

Kommentar: TODO: Hier weiter

Zweiter Fall: $\lambda_1 \neq 1$. In diesem Fall ist einzige Slope Λ nicht ganzzahlig. Mache deshalb einen pull-back mit λ_1 . Sei $\rho: t \mapsto x := t^{\lambda_1}$ und erhalte P' so dass $\rho^* \mathcal{M}_{\widehat{K}} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot P'$. Nach Lemma 2.52 hat P' den einen Slope $\Lambda \cdot \lambda_1 = \lambda_0$. Damit können wir nun die zugehörige Linearform $L' := \lambda_0 s_0 + s_1$ definieren. Es gilt dass

$$\sigma_{L'}(P') = \dots$$

ist, welches zumindest zwei unterschiedliche Nullstellen hat. Nun wendet man den zweiten Unterfall des ersten Fall an.

Kommentar:

4.2 Sabbah's Refined version

Proposition 4.3. [Sab07, Prop 3.1] Jeder irreduzible endlich dimensionale formale Meromorphe Zusammenhang $\mathcal{M}_{\widehat{L}}$ ist isomorph zu $\rho_+(\mathscr{E}^{\varphi}\otimes_{\widehat{K}}S)$, wobei $\varphi\in x^{-1}\mathbb{C}[x^-1]$, $\rho:x\mapsto t=x^p$ mit grad $p\geq 1$ minimal bzgl. φ (siehe [Sab07, Rem 2.8]), und S ist ein Rang 1 \widehat{K} -Vektor Raum mit regulärem Zusammenhang.

Beweis. [Sab07, Prop 3.1]

Satz 4.4 (Refined Turrittin-Levelt). [Sab07, Cor 3.3] Jeder endlich dimensionale Meromorphe Zusammenhang $\mathcal{M}_{\widehat{K}}$ kann in eindutiger weiße geschrieben werden als direkte Summe $\bigoplus El(\rho, \varphi, R) \stackrel{\text{def}}{=} \bigoplus \rho_{+}(\mathcal{E}^{\varphi}) \otimes R$, so dass jedes $\rho_{+}\mathcal{E}^{\varphi}$ irreduzibel ist und keine zwei $\rho_{+}\mathcal{E}^{\varphi}$ isomorph sind.

Beweis. [Sab07, Cor 3.3]

5 DIE Klasse der Fourier-Transformationen

In diesem Kapitel werden Beispiele einer speziellen Klasse von \mathcal{D} -Moduln diskutiert. Dazu wird im folgendem zu einem Beispiel unter anderem explizit der Beweis aus [Sab90] zur Levelt-Turrittin-Zerlegung nachvollzogen.

Es wird zunächst ein allgemeines Rezept gegeben, welches zu gegebenem φ D-Moduln ergibt. Im laufe des Kapitels werden immer speziellere φ betrachtet und zuletzt wird für konkrete Beispiele eine explizite Rechnung gegeben.

5.1 Rezept für allgemeine φ

Hier wollen wir nun eine Spezielle Klasse von Meromorphen Zusammenhängen, die die durch das folgende Rezept entstehen.

- 1. Wähle zunächst ein $\varphi\in\{\varphi=\sum_{k\in I}\frac{a_k}{t^k}|I\subset\mathbb{N} \text{ endlich}, a_k\in\mathbb{C}\}$ aus
- 2. und beginne mit \mathscr{E}^{φ} . Es gilt

$$\mathcal{E}^{\varphi} = \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (\partial_t - \frac{d}{dt} \varphi(t))$$

$$= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (\underbrace{\mathbf{Hauptnenner von} \ \frac{d}{dt} \varphi(t)}_{\in \mathbb{C}[t] \subset \mathcal{D}_{\widehat{L}}^*} \cdot (\partial_t - \frac{d}{dt} \varphi(t)))$$

$$= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (\underbrace{t^{\max(I)+1} \cdot (\partial_t - \frac{d}{dt} \varphi(t))}_{=:Q(t,\partial_t)})$$

Kommentar: Dies ändert den Meromorphen Zusammenhang nicht, weil $t^{\max(I)+1}$ eine Einheit in $\mathcal{D}_{\widehat{L}}$ (und auch in \mathcal{D}_L) ist.

3. Fouriertransformiere \mathscr{E}^{φ} und erhalte

$$\mathcal{F}_{\mathcal{E}}^{\varphi} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \mathcal{F}_{Q}(z, \partial_{z})$$

$$\stackrel{\text{def}}{=} \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot \underbrace{Q(\partial_z, -z)}_{\in \mathbb{C}[z] < \partial_z >}$$

4. Betrachte den Zusammenhang bei Unendlich, also wende den Übergang $x \rightsquigarrow z^{-1}$ an. Was passiert mit der Ableitung ∂_x ? Es gilt

$$\partial_x(f(\frac{1}{x})) = \partial_z(f) \cdot (-\frac{1}{x^2}) = -\partial_z(f) \cdot z^2 = -z^2 \cdot \partial_z(f)$$

also $\partial_x \leadsto -z^2 \partial_z$, und somit

$$P_{\varphi}(x, \partial_x) := \mathcal{F}_Q(x^{-1}, -x^2 \partial_x) \in \mathbb{C}[t] < \partial_t > 0$$

Im folgendem werden wir den zum Minimalpolynom P_{φ} assoziierten formalen Meromorphen Zusammenhang $\mathcal{M}_{\varphi} := \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_{\varphi}$ betrachten.

Lemma 5.1. Zu einem $\varphi = \sum_{k \in I} \frac{a_k}{t^k} \in \{\varphi = \sum_{k \in I} \frac{a_k}{t^k} | I \subset \mathbb{N} \text{ endlich}, a_k \in \mathbb{C}\}$ ist das Minimalpolynom von \mathcal{M}_{φ} explizit gegeben durch

$$P_{\varphi}(x,\partial_x) = (-x^2\partial_x)^{\max(I)}(x\partial_x - 1) + \sum_{k \in I} ka_k(-x^2\partial_x)^{\max(I)-k} \qquad \in \mathbb{C}[x] < \partial_x > 0$$

Beweis. Sei $\varphi = \sum_{k \in I} \frac{a_k}{t^k}$, so ist

$$\begin{split} Q(t,\partial_t) &= t^{\max(I)+1} (\partial_t - \frac{d}{dt} \varphi(t)) \\ &= t^{\max(I)+1} \Big(\partial_t + \sum_{k \in I} k \frac{a_k}{t^{k+1}} \Big) \\ &= t^{\max(I)+1} \partial_t + \sum_{k \in I} k a_k t^{\max(I)-k} \\ \mathcal{F}_Q(z,\partial_z) &= Q(\partial_z,-z) \end{split} \in \mathbb{C}[t] < \partial_t > \end{split}$$

$$\mathcal{F}_Q(z, \mathcal{O}_z) = Q(\mathcal{O}_z, -z)$$

$$= -\partial_z^{\max(I)+1} z + \sum_{k \in I} k a_k \partial_z^{\max(I)-k}$$

und damit ist

$$\begin{split} P_{\varphi}(x,\partial_{x}) &= \mathcal{F}_{Q}(x^{-1},-x^{2}\partial_{x}) \\ &= -(-x^{2}\partial_{x})^{\max(I)+1}x^{-1} + \sum_{k \in I} ka_{k}(-x^{2}\partial_{x})^{\max(I)-k} \\ &= (-x^{2}\partial_{x})^{\max(I)}x^{2}\partial_{x}x^{-1} + \sum_{k \in I} ka_{k}(-x^{2}\partial_{x})^{\max(I)-k} \\ &= (-x^{2}\partial_{x})^{\max(I)}x^{2}(x^{-1}\partial_{x}-x^{-2}) + \sum_{k \in I} ka_{k}(-x^{2}\partial_{x})^{\max(I)-k} \end{split}$$

$$= (-x^2 \partial_x)^{\max(I)} \overline{(x \partial_x - 1)} + \sum_{k \in I} k a_k (-x^2 \partial_x)^{\max(I) - k} \in \mathbb{C}[x] < \partial_x > 0$$

Im Anhang B wird das $(x^2\partial_x)^k$ genauer diskutiert. Dies führt aber hier an dieser Stelle nicht mehr weiter in die gewünschte Richtung.

Lemma 5.2. Es gilt $\mathcal{P}(\mathcal{M}_{\varphi}) = \{\frac{q}{q+1}\}.$

Kommentar: Allgemeiner? für allgemeine φ ??

Beweis. [Sab07, 5.b.] Um zu zeigen, dass die Behauptung gilt, formen wir P_{φ} um und isolieren die Monome, die für das Newton-Polygon nicht von bedeutung sind und deshalb vernachlässigt werden können. Betrachte dazu die Konvexen Hüllen, die wie in Abschnitt 2.3 konstruiert werden. Sei $q := \max(I)$.

$$\begin{split} H\Big(P_{\varphi}(x,\partial_x)\Big) &= H\Big(\underbrace{(-x^2\partial_x)^q(x\partial_x - 1)}_{k\in I} + \sum_{k\in I} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &= H\Big(\underbrace{(-1)^q(x^{2q}\partial_x^q + \underbrace{\mathbf{T.i.Q.\ von\ }}_{\text{liefern\ keinen\ Beitrag}} x^{2q}\partial_x^q)(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &= H\Big(\underbrace{(-1)^q}_{\text{liefert\ keinen\ Beitrag}} x^{2q}\partial_x^q(x\partial_x - 1) + \sum_{k\in I} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &= H\Big(x^{2q}\partial_x^qx\,\partial_x - x^{2q}\partial_x^q + \sum_{k\in I} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &= H\Big(x^{2q}(x\partial_x^q + q\partial_x^{q-1})\,\partial_x - x^{2q}\partial_x^q + \sum_{k\in I} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &= H\Big(x^{2q+1}\partial_x^{q+1} + \underbrace{qx^{2q}\partial_x^q - x^{2q}\partial_x^q}_{\text{sind\ also\ vernachlässigbar}}_{\text{sind\ also\ vernachlässigbar}} + \sum_{k\in I} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &= H\Big(x^{2q+1}\partial_x^{q+1} + qa_q + \sum_{k\in I\backslash\{q\}} ka_k(-x^2\partial_x)^{q-k}\Big) \end{split}$$

Nun wollen wir noch zeigen, dass die Summe auch vernachlässigt werden kann.

Behauptung: Es gilt

$$H\left(x^{2q+1}\partial_x^{q+1} + qa_q + \sum_{k \in I \setminus \{q\}} ka_k(-x^2\partial_x)^{q-k}\right) \subset H\left(x^{2q+1}\partial_x^{q+1} + qa_q\right)$$

Denn: Betrachte zu einem $m \in I \setminus \{q\}$, einen Summanden $ma_m(-x^2\partial_x)^{q-m}$ aus der Summe:

$$\begin{split} H(ma_m(-x^2\partial_x)^{q-m}) &= H(ma_m(-1)^q(x^{2(q-m)}\partial_x^{q-m} + \mathbf{T.i.Q. \ von} \ x^{2(q-m)}\partial_x^{q-m})) \\ &= H(x^{2(q-m)}\partial_x^{q-m}) \\ &= (q-m,q-m) + \mathbb{R}_{<0} \times \mathbb{R}_{>0} \end{split}$$

In Abbildung 5.1 ist die Situation, die wir gerade betrachten dargestellt, mit $N(x^{2q+1}\partial_x^{q+1}+qa_q)$ in der gewohnten Farbe und in Blau ist $H(x^{2(q-m)}\partial_x^{q-m})$ eingezeichnet. Man sieht also, dass die Behauptung gilt.

Abbildung 5.1: Newton-Polygon zu P_{φ} mit $H(x^{2(q-m)}\partial_x^{q-m})$

Mit der Behauptung gilt dann, dass

$$\begin{split} H\Big(P_{\varphi}(x,\partial_x)\Big) &= H\Big(x^{2q+1}\partial_x^{q+1} + qa_q + \sum_{k \in I \backslash \{q\}} ka_k(-x^2\partial_x)^{q-k}\Big) \\ &\stackrel{\text{Beh.}}{=} H\Big(x^{2q+1}\partial_x^{q+1} + qa_q\Big) \end{split}$$

Also ist

$$N\Big(P_{\varphi}(x,\partial_x)\Big) = N\Big(x^{2q+1}\partial_x^{q+1} + qa_q\Big).$$

womit die Behauptung des Lemmas folgt und das Newton-Polygon wie in Abbildung 5.1 aussieht. $\hfill\Box$

Kommentar:

Korollar 5.3. Ordnung vom pull-back ist 0

Also ist, nach Lemma 2.52, ein pull-back mit Grad q+1 hinreichend, um einen ganzzahligen Slope zu bekommen. Denn wir wissen, dass nach Anwenden eines solchem pull-backs die Slopes mit q+1 multipliziert werden, also gilt $\mathcal{P}(\rho^+\mathcal{M}_{\varphi})=\{q\}\subset\mathbb{N}$.

Lemma 5.4. Im Fall $\varphi = \frac{a}{t^q}$ ist mit $\rho: t \mapsto x := -(q+1)t^{q+1}$ der pull-back gegeben durch

$$\rho^{+}\mathcal{M}_{\varphi} = \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot ((t^{q+2}\partial_{t})^{q}(t\partial_{t} - (q+1)) + (q+1)qa).$$

Beweis. Sei $\varphi = \frac{a}{t^q}$, so ist P gegeben durch

$$P_{\varphi}(x, \partial_x) = (-x^2 \partial_x)^q (x \partial_x - 1) + qa,$$

und sei $\rho: t \mapsto x := -(q+1)t^{q+1}$. Damit gilt

$$\begin{split} \rho^{+}\mathcal{M}_{\varphi} &= \rho^{+}(\mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_{\varphi}(x,\partial_{x})) \\ &= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot \rho^{*}P_{\varphi}(x,\partial_{x}) \\ &= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_{\varphi}(\rho(t),\rho'(t)^{-1}\partial_{t}) \\ &= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot P_{\varphi}\Big(-(q+1)t^{q+1},-\frac{1}{(q+1)^{2}t^{q}}\partial_{t}\Big) \\ &= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot \left(\left(-(-(q+1)t^{q+1})^{2}\frac{-1}{(q+1)^{2}t^{q}}\partial_{t}\right)^{q} (-(q+1)t^{q+1}\frac{-1}{(q+1)^{2}t^{q}}\partial_{t}-1) + qa \right) \\ &= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot \left(\left(\frac{(q+1)^{2}}{(q+1)^{2}}t^{2(q+1)-q}\partial_{t}\right)^{q} \left(\frac{1}{q+1}t\partial_{t}-1\right) + qa \right) \\ &= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot \left((t^{q+2}\partial_{t})^{q}(t\partial_{t}-(q+1)) + (q+1)qa \right) \\ &= \mathcal{D}_{\widehat{K}}/\mathcal{D}_{\widehat{K}} \cdot \left((t^{q+2}\partial_{t})^{q}(t\partial_{t}-(q+1)) + (q+1)qa \right) \end{split}$$

Definiere mittels $q = \frac{q}{1} =: \frac{\lambda_0}{\lambda_1}$ die Linearform

$$\ell(s_0, s_1) = \lambda_0 s_0 + \lambda_1 s_1 = q s_0 + s_1.$$

Schreibe $\rho^* P_{\varphi} = \sum_i \sum_j \alpha_{ij} t^j \partial_t^i$ und berechne die *Determinanten Gleichung* $\sigma_{\ell}(\rho^* P_{\varphi}) \in \widehat{L}[\xi]$.

Kommentar: Schon gezeigt, das $ord_{\ell} = 0$?

$$\sigma_L(\rho^* P_{\varphi}) = \sum_{\{(i,j) \in \mathbb{N} \times \mathbb{Z} | \ell(i,i-j) = 0\}} \alpha_{ij} t^j \xi^i$$

$$= \sum_{\{(i,j) \in \mathbb{N} \times \mathbb{Z} | (q+1)i-j = 0\}} \alpha_{ij} t^j \xi^i$$

Da $\hat{L}[\xi]$ kommutativ ist gilt hier, dass $(t^j\xi^i)^k=t^{jk}\xi^{ik}$ ist. Setze $\theta=t^{\lambda_0+\lambda_1}\xi^{\lambda_1}=t^{q+1}\xi$ so können wir

$$\sigma_L(\rho^* P_\varphi) = \sum_{k \ge 0} \alpha_k \theta^k \qquad \alpha_k \in \mathbb{C}$$

schreiben, welches wir als nächsten Schritt faktorisieren

$$\sigma_L(\rho^* P_{\varphi}) = \varepsilon \prod_{\beta \text{ Nullstelle}} (\theta - \beta)^{\gamma_{\beta}}.$$

Wobei $\varepsilon \in \mathbb{C}^{\times}$ eine Konstante ist. Sei β eine der Nullstellen. Da $\operatorname{ord}_{\ell}(\rho^* P_{\varphi}) = 0$ und der einzige Slope von $\rho^* P_{\varphi}$ nicht gleich 0 ist, gilt offensichtlich, dass $\alpha_0 \neq 0$. Also ist 0 keine Nullstelle von $\sigma_L(\rho^* P_{\varphi})$. Setze $\psi(x) := (\beta/\lambda_0)t^{-\lambda_0} = (\beta/q)t^{-q}$ und betrachte

$$\mathcal{N} := \rho^+ \mathcal{M}_{\varphi} \otimes_{\widehat{L}} \mathscr{E}_{\widehat{t}}^{\psi} = \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (\rho^* P_{\varphi}) \otimes_{\widehat{L}} \mathscr{E}_{\widehat{t}}^{\psi}.$$

Kommentar:

Lemma 5.5. Sei e ein zyklischer Vektor zu $\rho^+\mathcal{M}_{\varphi}$, so ist $e\otimes\underbrace{1}_{\in\widehat{L}}\in\mathcal{N}$ ein zyklischer Vektor für $\mathcal{N}\stackrel{\text{def}}{=}\rho^+\mathcal{M}_{\varphi}\otimes_{\widehat{L}}\mathscr{E}^{\psi}_{\widehat{\Gamma}}$.

Beweis. Es sei e ein zyklischer Vektor von $\rho^+\mathcal{M}_{\varphi}$. Da der Grad von ρ^*P_{φ} gleich q+1 ist, ist auch die Dimension von $\rho^+\mathcal{M}$ gleich q+1. Damit ist auch dim $_K\mathcal{N}=q+1$, also reicht zu zeigen, dass $e\otimes 1$, $\partial_t(e\otimes 1)$, $\partial_t^2(e\otimes 1)$, ..., $\partial_t^q(e\otimes 1)$ ein linear unabhängiges System ist. Es gilt

$$\partial_t(\mathbf{e} \otimes 1) = (\partial_t \mathbf{e}) \otimes 1 + t \otimes \partial_t 1$$
$$= (\partial_t \mathbf{e}) \otimes 1 + \mathbf{e} \otimes \psi'(t)$$
$$= (\partial_t \mathbf{e}) \otimes 1 + \psi'(t)(\mathbf{e} \otimes 1)$$

$$\partial_t^2(\boldsymbol{e} \otimes 1) = \partial_t((\partial_t \boldsymbol{e}) \otimes 1 + \psi'(t)(\boldsymbol{e} \otimes 1))$$

$$= (\partial_t^2 \boldsymbol{e}) \otimes 1 + (\partial_t \boldsymbol{e}) \otimes \psi'(t) + \psi''(t)(\boldsymbol{e} \otimes 1) + \psi'(t)((\partial_t \boldsymbol{e}) \otimes 1 + \boldsymbol{e} \otimes \psi'(t))$$

$$= (\partial_t^2 \boldsymbol{e}) \otimes 1 + \psi'(t)(\partial_t \boldsymbol{e}) \otimes 1 + \psi''(t)(\boldsymbol{e} \otimes 1) + \psi'(t)(\partial_t \boldsymbol{e}) \otimes 1 + \psi'(t)^2(\boldsymbol{e} \otimes 1)$$

$$= (\partial_t^2 \boldsymbol{e}) \otimes 1 + 2\psi'(t)(\partial_t \boldsymbol{e}) \otimes 1 + (\psi''(t) + \psi'(t)^2)(\boldsymbol{e} \otimes 1)$$

$$\vdots$$

$$\partial_t^q(\boldsymbol{e} \otimes 1) = (\partial_t^q \boldsymbol{e}) \otimes 1 + \lambda_{q-1}(\partial_t^{q-1} \boldsymbol{e}) \otimes 1 + \dots + \lambda_1(\partial_t \boldsymbol{e}) \otimes 1 + \lambda_0(\boldsymbol{e} \otimes 1)$$

und somit ist dann

$$\begin{pmatrix} e \otimes 1 \\ \partial_t(e \otimes 1) \\ \partial_t^2(e \otimes 1) \\ \vdots \\ \partial_t^{q-1}(e \otimes 1) \\ \partial_t^q(e \otimes 1) \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ \psi'(t) & 1 & 0 & & \vdots \\ \star & \star & 1 & 0 & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ \star & \cdots & \cdots & \star & 1 & 0 \\ \lambda_0 & \lambda_1 & \cdots & \cdots & \lambda_{q-1} & 1 \end{pmatrix} \begin{pmatrix} e \otimes 1 \\ (\partial_t e) \otimes 1 \\ (\partial_t^2 e) \otimes 1 \\ \vdots \\ (\partial_t^q e) \otimes 1 \end{pmatrix}$$

Da bekanntlich $e \otimes 1$, $(\partial_t e) \otimes 1$, $(\partial_t^2 e) \otimes 1$,..., $(\partial_t^q e) \otimes 1$ linear unabhängig sind, gilt dies auch für $e \otimes 1$, $\partial_t (e \otimes 1)$, $\partial_t^2 (e \otimes 1)$, ..., $\partial_t^q (e \otimes 1)$. Damit folgt die Behauptung.

Kommentar:

Lemma 5.6. [Hei10, Seite 44] Wenn $\rho^+ \mathcal{M}_{\varphi} = \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (\rho^* P_{\varphi}(t, \partial_t))$ gilt, so ist

$$\mathcal{N} \stackrel{def}{=} \rho^{+} \mathcal{M}_{\varphi} \otimes \mathscr{E}_{\widehat{L}}^{\psi} = \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (\rho^{*} P_{\varphi}(t, \partial_{t} + \frac{\beta}{t^{\lambda+1}}))$$

$$= \mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot (t^{q+2} (\partial_{t} + \frac{\beta}{t^{\lambda+1}}))^{q} (t(\partial_{x} + \frac{\beta}{t^{\lambda+1}}) - (q+1)) + (q+1)qa$$

Zerlege nun wie in Satz 2.33 den Meromorphen Zusammenhang \mathcal{N} in $\mathcal{N} = \bigoplus_i \mathcal{N}_i$ wobei \mathcal{N}_i Meromorphe Zusammenhänge mit genau einem Slope sind. Twiste die \mathcal{N}_i jeweils mit $\mathscr{E}_{\widehat{L}}^{-\psi}$ und somit ist dann

$$\rho^+ \mathcal{M}_{\varphi} = \bigoplus_i \mathcal{N}_i \otimes_{\widehat{L}} \mathscr{E}_{\widehat{L}}^{-\psi}.$$

Für jeden Summanden lässt sich nun, falls dieser nicht schon ein Elementarer Meromorpher Zusammenhang ist, Induktion anwenden.

5.2 Levelt-Turrittin-Zerlegung für \mathcal{M}_{arphi} mit $arphi_1:=rac{a}{x}$

Als konkreten Fall betrachten wir nun \mathcal{M}_{φ} bezüglich $\varphi_1 := \frac{a}{x}$. Es ist das zugehörigen Minimalpolynom gegeben durch

$$P_{\varphi}(x, \partial_x) = -x^2 \partial_x (x \partial_x - 1) + a$$

$$= -x^2 \partial_x x \partial_x + x^2 \partial_x + a$$

$$= -x^2 (x \partial_x + 1) \partial_x + x^2 \partial_x + a$$

$$= -x^3 \partial_x^2 - x^2 \partial_x + x^2 \partial_x + a$$

$$= -x^3 \partial_x^2 + a$$

Erhalte daraus das Newton-Polygon mit den Slopes $\mathcal{P}(\mathcal{M}_{\varphi}) = \{\frac{1}{2}\}.$

Abbildung 5.2: Newton Polygon zu P_{φ}

Berechne nun zu $\rho:t\mapsto x:=-2t^2$ ein Minimalpolynom ρ^*P_{φ} zu $\rho^+\mathcal{M}_{\varphi}$:

$$\rho^* P_{\varphi}(x, \partial_x) = t^3 \partial_t (t \partial_t - 2) + 2a$$

$$= t^3 \partial_t t \partial_t - 2t^3 \partial_t + 2a$$

$$= t^3 (t \partial_t + 1) \partial_t - 2t^3 \partial_t + 2a$$

$$= t^4 \partial_t^2 + t^3 \partial_t - 2t^3 \partial_t + 2a$$

$$= t^4 \partial_t^2 - t^3 \partial_t + 2a$$

und erhalte einen Meromorphen Zusammenhang $\rho^+ \mathcal{M}_{\varphi} = \mathcal{D}_{\widehat{K}} / \mathcal{D}_{\widehat{K}} \cdot \rho^* P_{\varphi}$ mit genau dem Slope $1 = \frac{1}{1} =: \frac{\lambda_0}{\lambda_1}$.

Abbildung 5.3: Newton Polygon zu ρ^*P_φ

Definiere die Linearform $\ell(s_0, s_1) := \lambda_0 s_0 + \lambda_1 s_1 = s_0 + s_1$. Berechne nun die *Determinanten Gleichung* $\sigma_{\ell}(\rho^* P_{\varphi}) \in \widehat{L}[\xi]$ von $\rho^* P_{\varphi}$.

$$\sigma_{\ell}(\rho^* P_{\varphi}) = \sum_{\{(i,j)|2i-j=0\}} \alpha_{ij} x^j \xi^i$$
$$= t^4 \xi^2 + 2a$$

Setze $\theta:=t^{\lambda_0+\lambda_1}\xi^{\lambda_1}=t^2\xi$ so erhalten wir

$$\sigma_{\ell}(\rho^* P_{\varphi}) = \theta^2 + 2a \,,$$

mit den Nullstellen $i\sqrt{2a}=:\beta$ und $-i\sqrt{2a}$. Setze $\psi(x):=(\beta/\lambda_0)t^{-\lambda_0}=i\sqrt{2a}t^{-1}$ und betrachte den Twist $\mathcal{N}:=\rho^+\mathcal{M}_\varphi\otimes\mathscr{E}^\psi$ von $\rho^+\mathcal{M}$. Es ist $e\otimes 1$ ein zyklischer Vektor, wobei e ein zyklischer Vektor von $\rho^+\mathcal{M}$ ist. Mit dem Lemma vom Zyklischem Vektor wollen wir nun ein Minimalpolynom zu \mathcal{N} berechnen:

$$\partial_{t}^{2}(e \otimes 1) = \partial_{t}(\partial_{t}(e \otimes 1))$$

$$\stackrel{(2.3)}{=} \partial_{t}((\partial_{t}e) \otimes 1 + e \otimes \psi'(t))$$

$$\stackrel{(2.3)}{=} (\partial_{t}^{2}e) \otimes 1 + (\partial_{t}e) \otimes \psi'(t) + (\partial_{t}e) \otimes \psi'(t) + e \otimes (\psi''(t) + \psi'(t)^{2})$$

$$= ((t^{-1}\partial_{t} - 2at^{-4})e) \otimes 1 + 2\psi'(t)(\partial_{t}e) \otimes 1 + (\psi''(t) + \psi'(t)^{2})e \otimes 1$$

$$= (t^{-1}\partial_{t}e) \otimes 1 - 2at^{-4}e \otimes 1 + 2\psi'(t)(\partial_{t}e) \otimes 1 + \psi''(t)e \otimes 1 + \psi'(t)^{2}e \otimes 1$$

$$= (t^{-1} + 2\psi'(t)) (\partial_{t}e) \otimes 1 + (-2at^{-4} + \psi''(t) + \psi'(t)^{2})e \otimes 1$$

$$\stackrel{(2.3)}{=} (t^{-1} + 2\psi'(t)) (\partial_{t}(e \otimes 1) - e \otimes \psi'(t)) + (-2at^{-4} + \psi''(t) + \psi'(t)^{2})e \otimes 1$$

$$= (t^{-1} + 2\psi'(t))\partial_{t}(e \otimes 1) - (\psi'(t)t^{-1} + 2\psi'(t)^{2})e \otimes 1$$

$$+ (-2at^{-4} + \psi''(t) + \psi'(t)^{2})e \otimes 1$$

$$= \left((t^{-1} + 2\psi'(t))\partial_t - \psi'(t)t^{-1} - 2\psi'(t)^2 - 2at^{-4} + \psi''(t) + \psi'(t)^2 \right) e \otimes 1$$
$$= \left((t^{-1} + 2\psi'(t))\partial_t - \psi'(t)t^{-1} - 2at^{-4} + \psi''(t) - \psi'(t)^2 \right) e \otimes 1$$

also

$$0 = \left(\underbrace{\partial_t^2 - (t^{-1} + 2\psi'(t))\partial_t + \psi'(t)t^{-1} + 2at^{-4} - \psi''(t) + \psi'(t)^2}_{=:P'}\right)e \otimes 1$$

und mit $\psi(t)=i\sqrt{2a}t^{-1}$ ist $\psi'(t)=-i\sqrt{2a}t^{-2}$ und $\psi''(t)=2i\sqrt{2a}t^{-3}$. Also durch Einsetzen ergibt sich

$$P' = \partial_t^2 - (t^{-1} + 2\psi'(t))\partial_t + \psi'(t)t^{-1} + 2a - \psi''(t) + \psi'(t)^2$$

$$= \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - i\sqrt{2a}t^{-3} + 2a^{-4} - 2i\sqrt{2a}t^{-3} + \underbrace{(-i\sqrt{2a}t^{-2})^2}_{=0}$$

$$= \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - 3i\sqrt{2a}t^{-3} + \underbrace{2at^{-4} - 2at^{-4}}_{=0}$$

$$= \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - 3i\sqrt{2a}t^{-3}$$

mit, wie gewünscht, mehr als einem Slope.

Abbildung 5.4: Newton Polygon zu \mathcal{N}

Kommentar: Alternative berechnung: mit Formel aus [Hei10, Seite 44]

$$P'(t, \partial_t) = \rho^* P(t, \partial_t - \frac{\partial \psi}{\partial t})$$

es ist
$$\rho^* P(t, \partial_t) = t^4 \partial_t^2 - t^3 \partial_t + 2a$$
, und somit
$$P'(t, \partial_t) = \rho^* P(t, \partial_t - \frac{\partial \psi}{\partial t})$$

$$= \rho^* P(t, \partial_t - \frac{-i\sqrt{2a}}{t^2})$$

$$= t^4 \left(\partial_t + \frac{i\sqrt{2a}}{t^2}\right)^2 - t^3 \left(\partial_t + \frac{i\sqrt{2a}}{t^2}\right) + 2a$$

$$= t^4 \left(\partial_t + i\sqrt{2a}t^{-2}\right) \left(\partial_t + i\sqrt{2a}t^{-2}\right) - t^3 \partial_t - i\sqrt{2at} + 2a$$

$$= t^4 \left(\partial_t^2 + i\sqrt{2a}t^{-2}\partial_t + \partial_t i\sqrt{2a}t^{-2} + \left(i\sqrt{2a}t^{-2}\right)^2\right) - t^3 \partial_t - i\sqrt{2at} + 2a$$

$$= t^4 \partial_t^2 + i\sqrt{2a}t^2 \partial_t + i\sqrt{2a}t^4 \partial_t t^{-2} - 2at^{-4}t^4 - t^3 \partial_t - i\sqrt{2at} + 2a$$

$$= t^4 \partial_t^2 + i\sqrt{2a}t^2 \partial_t + i\sqrt{2a}t^4 \left(t^{-2}\partial_t - 2t^{-3}\right) - t^3 \partial_t - i\sqrt{2at}$$

$$= t^4 \partial_t^2 + i\sqrt{2a}t^2 \partial_t + i\sqrt{2a}t^2 \partial_t - 2i\sqrt{2a}t - t^3 \partial_t - i\sqrt{2a}t$$

$$= t^4 \partial_t^2 + i\sqrt{2a}t^2 \partial_t + i\sqrt{2a}t^2 \partial_t - 2i\sqrt{2a}t - t^3 \partial_t - i\sqrt{2a}t$$

$$= t^4 \partial_t^2 - (t^3 - 2i\sqrt{2a}t^2) \partial_t - 3i\sqrt{2at}$$

Unser nächstes Ziel ist es, $\mathcal{N} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot P'$ in zwei Meromorphe Zusammenhänge mit nur einem Slope zerlegen. Betrachte hierzu das Minimalpolynom und zerlege dieses in ein Produkt $P'(t, \partial_t) = Q_1(t, \partial_t) \cdot Q_2(t, \partial_t)$.

Da der ∂_t -Grad von P' genau 2 ist, müssen die Q_i jeweils den Grad 1 haben, um eine nichttriviale Zerlegung zu bekommen.

Beobachtung 5.7. Ist Q_1 und Q_2 so ein solches Paar, dann ist für $\sigma \in \hat{L}$ das Paar $\bar{Q}_1 := Q_1 \cdot \sigma^{-1}$ und $\bar{Q}_2 := \sigma \cdot Q_2$ ebenfalls eine Zerlegung, denn

$$P' = Q_1 \cdot Q_2 = Q_1 \cdot \underbrace{\sigma^{-1} \cdot \sigma}_{=1} \cdot Q_2 = \bar{Q}_1 \cdot \bar{Q}_2.$$

Mit der Beobachtung 5.7 ist klar, dass wir den Faktor vor ∂_t in Q_2 frei wählen können. Setze diesen also allgemein auf 1 und erhalte

$$Q_1 := \bar{v}(t)\partial_t + v(t) \qquad \qquad Q_2 := \partial_t + u(t) \qquad \qquad \text{mit } \bar{v}(t), v(t), u(t) \in \hat{L}$$

und somit ist ist das Produkt gegeben durch

$$Q_1 \cdot Q_2 = \bar{v}(t)\partial_t^2 + \bar{v}(t)\partial_t u(t) + v(t)\partial_t + v(t)u(t)$$

$$\stackrel{!}{=} \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2})\partial_t - 3i\sqrt{2a}t^{-3}$$

$$(5.1)$$

Damit ist ebenfalls $\bar{v}(t) = 1$.

Durch das Wissen über die Slopes der Q_i erhalten wir noch Informationen über die Reihen $v(t) := \sum_n v_n t^n$ bzw. $u(t) := \sum_n u_n t^n$. Die beiden Polynome Q_1 und Q_2 enthalten ∂_t als einziges Monom vom ∂_t -Grad 1, deshalb ist (1,-1) in beiden zugehörigen Newton-Polygonen enthalten. Da Q_1 nur den Slope 0 hat, muss das Newton-Polygon wie in Abbildung 5.5 aussenen und somit wissen wir, dass $v_n = 0$ für alle n < -1. Da Q_2 genau den Slope 1 hat, ist das Newton-Polygon gegeben durch Abbildung 5.6. Damit ist $u_n = 0$ für alle n < -2 und $u_{-2} \neq 0$.

Abbildung 5.5: Newton-Polygon zu Q_1

Abbildung 5.6: Newton-Polygon zu Q_2

Mit diesen Informationen erhalten wir aus (5.1) die Gleichung

$$Q_1 \cdot Q_2 = \partial_t^2 + \partial_t \sum_{n=-2}^{\infty} u_n t^n + \sum_{n=-1}^{\infty} v_n t^n \partial_t + \left(\sum_{n=-1}^{\infty} v_n t^n\right) \left(\sum_{n=-2}^{\infty} u_n t^n\right)$$

$$(5.2)$$

und mit denn Kommutatorregeln gilt

$$\partial_t \sum_{n=-2}^{\infty} u_n t^n = \sum_{n=-2}^{\infty} (u_n t^n \partial_t + [\partial_t, u_n t^n])$$
$$= \sum_{n=-2}^{\infty} (u_n t^n \partial_t + n u_n t^{n-1})$$
$$= \sum_{n=-2}^{\infty} u_n t^n \partial_t + \sum_{n=-2}^{\infty} n u_n t^{n-1}$$

Wenn wir dieses Ergenis nun in (5.2) einsetzen ergibt sich

$$Q_{1} \cdot Q_{2} = \partial_{t}^{2} + \sum_{n=-2}^{\infty} u_{n} t^{n} \partial_{t} + \sum_{n=-2}^{\infty} n u_{n} t^{n-1} + \sum_{n=-1}^{\infty} v_{n} t^{n} \partial_{t} + \left(\sum_{n=-1}^{\infty} v_{n} t^{n}\right) \left(\sum_{n=-2}^{\infty} u_{n} t^{n}\right)$$

$$= \partial_{t}^{2} + \sum_{n=-2}^{\infty} (u_{n} + v_{n}) t^{n} \partial_{t} + \sum_{n=-3}^{\infty} (n+1) u_{n+1} t^{n} + \left(\sum_{n=-1}^{\infty} v_{n} t^{n}\right) \left(\sum_{n=-2}^{\infty} u_{n} t^{n}\right)$$

$$(5.3)$$

Betrachte nun das Letzte Glied, auf welches wir die Cauchy-Produktformel anwenden wollen:

Indexshift
$$\left(\sum_{n=-1}^{\infty} v_n t^n\right) \left(\sum_{n=-2}^{\infty} u_n t^n\right) \stackrel{\downarrow}{=} t^{-3} \left(\sum_{n=0}^{\infty} v_{n-1} t^n\right) \left(\sum_{n=0}^{\infty} u_{n-2} t^n\right)$$
Cauchy Produkt
$$\stackrel{\downarrow}{=} t^{-3} \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} v_{k-1} t^k u_{n-k-2} t^{(n-k)}\right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} v_{k-1} u_{n-k-2} t^{k+(n-k)-3}\right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} v_{k-1} u_{n-k-2}\right) t^{n-3}$$
Indexshift
$$\stackrel{\downarrow}{=} \sum_{n=-3}^{\infty} \left(\sum_{k=0}^{n+3} v_{k-1} u_{n-k+1}\right) t^n$$

Wenn wir auch diese Rechnung in (5.3) integrieren, erhalten wir

$$Q_1 \cdot Q_2 = \partial_t^2 + \sum_{n=-2}^{\infty} (u_n + v_n) t^n \partial_t + \sum_{n=-3}^{\infty} (n+1) u_{n+1} t^n + \sum_{n=-3}^{\infty} \left(\sum_{k=0}^{n+3} v_{k-1} u_{n-k+1} \right) t^n$$

$$= \partial_t^2 + \sum_{n=-2}^{\infty} (u_n + v_n) t^n \partial_t + \sum_{n=-3}^{\infty} \left((n+1) u_{n+1} + \sum_{k=0}^{n+3} v_{k-1} u_{n-k+1} \right) t^n$$

$$\stackrel{!}{=} \partial_t^2 - (t^{-1} - 2i\sqrt{2a}t^{-2}) \partial_t - 3i\sqrt{2a}t^{-3}$$

Nun haben wir ein Ergebnis, das sich Koeffizientenweise mit der gewünschten Formel vergleichen lässt:

$$2i\sqrt{2a}t^{-2} - t^{-1} = \sum_{n=-2}^{\infty} (u_n + v_n)t^n$$
(5.4)

$$-3i\sqrt{2a}t^{-3} = \sum_{n=-3}^{\infty} \left((n+1)u_{n+1} + \sum_{k=0}^{n+3} v_{k-1}u_{n-k+1} \right) t^n$$
(5.5)

Nun können wir mit (5.4) und (5.5) jeweils nochmals einen Koeffizientenvergleich machen und erhalten zunächst aus (5.4), dass

$$2i\sqrt{2a} = u_{-2} + \underbrace{v_{-2}}_{=0} = u_{-2} \tag{5.6}$$

$$-1 = u_{-1} + v_{-1} \tag{5.7}$$

$$0 = u_n + v_n \qquad \forall n \ge 0 \tag{5.8}$$

Als nächstes wollen wir dieses Ergenis mit (5.5) kombinieren. Betrachte zunächst die Vorfaktoren vor t^{-3} :

$$-3i\sqrt{2a} = (-2)u_{-2} + \sum_{k=0}^{0} v_{k-1}u_{-3-k+1}$$

$$= -2u_{-2} + v_{-1}u_{-2}$$

$$\stackrel{(5.6)}{=} -2 \cdot 2i\sqrt{2a} + v_{-1}2i\sqrt{2a}$$

$$\stackrel{a\neq 0}{\Rightarrow} v_{-1} = \frac{4i\sqrt{2a} - 3i\sqrt{2a}}{2i\sqrt{2a}}$$

$$= \frac{1}{2}$$

und somit

$$\stackrel{(5.7)}{\Rightarrow} -1 = u_{-1} + v_{-1}$$

$$= u_{-1} + \frac{1}{2}$$

$$\Rightarrow u_{-1} = -\frac{3}{2}$$

Nun zum allgemeinem Koeffizienten vor t^n mit n > -3:

$$0 = (n+1)u_{n+1} + \sum_{k=0}^{n+3} v_{k-1}u_{n-k+1}$$

$$= (n+1)u_{n+1} + (\sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}) + v_{n+3-1}u_{n-(n+3)+1}$$

$$= (n+1)u_{n+1} + (\sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}) + v_{n+2}u_{-2}$$

$$\Rightarrow v_{n+2}u_{-2} = -\left((n+1)u_{n+1} + \sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}\right)$$

$$\stackrel{u_{-2}\neq 0}{\Rightarrow} v_{n+2} = -\frac{1}{u_{-2}}\left((n+1)u_{n+1} + \sum_{k=0}^{n+2} v_{k-1}u_{n-k+1}\right)$$

und nach passendem Indexshift $n+2 \rightarrow n$ folgt

Kommentar: TODO: mapsto pfeil?

$$\Rightarrow v_n = -\frac{1}{u_{-2}} \left((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \right)$$

$$\stackrel{(5.6)}{=} -\frac{1}{2i\sqrt{2a}} \left((n-1)u_{n-1} + \sum_{k=0}^{n} v_{k-1}u_{n-k-1} \right)$$

$$= \frac{i}{2\sqrt{2a}} \left((n-1)u_{n-1} + \sum_{k=0}^{n} v_{k-1}u_{n-k-1} \right)$$

Zusammen mit $u_{-2}=2i\sqrt{2a},\,u_{-1}=-\frac{3}{2}$ und $v_{-1}=\frac{1}{2}$ sind durch

$$v_n = -u_n = \frac{i}{2\sqrt{2a}} \left((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \right) \qquad \forall n \ge 0$$
 (5.9)

die Koeffizienten von v und u vollständig bestimmt.

Nun lässt sich diese Zerlegung mit $\mathscr{E}^{-\psi(t)}$ zurücktwisten und erhalte damit die Zerlegung

$$\begin{split} \rho^+ \mathcal{M}_{\varphi} &= \mathcal{N}_1 \otimes \mathscr{E}^{-\psi(t)} \oplus \mathcal{N}_2 \otimes \mathscr{E}^{-\psi(t)} \\ &= (\mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot Q_1 \otimes \mathscr{E}^{-\psi(t)}) \oplus (\mathcal{D}_{\widehat{L}} / \mathcal{D}_{\widehat{L}} \cdot Q_2 \otimes \mathscr{E}^{-\psi(t)}) \end{split}$$

und, da Q_1 regulär, ist $\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_1 \otimes \mathscr{E}^{-\psi(t)}$ bereits ein Elementarer Meromorpher Zusammenhang. Betrachte also noch $\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_2 \otimes \mathscr{E}^{-\psi(t)}$:

$$\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_{2} \otimes \mathscr{E}^{-\psi(t)} = \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot Q_{2}(t, \partial_{t} - i\sqrt{2a}t^{-2})$$

$$= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\partial_{t} - i\sqrt{2a}t^{-2} + u(t))$$

$$= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\partial_{t} + i\sqrt{2a}t^{-2} + \sum_{n=-1}^{\infty} u_{n}t^{n})$$

$$= \mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot (\partial_{t} + \sum_{n=-1}^{\infty} u_{n}t^{n}) \otimes \mathscr{E}^{\psi(t)}$$
regulär

Damit ist der zweite Summand also auch ein Elementarer Meromorpher Zusammenhang. Also zerlegt sich \mathcal{M} , nach einem pull-back mit $\rho: t \mapsto x = -2t^2$, in

$$\rho^{+}\mathcal{M}_{\varphi} = \left(\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\partial_{t} + \sum_{n=-1}^{\infty} v_{n} t^{n}\right) \otimes \mathscr{E}^{-\psi(t)}\right) \oplus \left(\mathcal{D}_{\widehat{L}}/\mathcal{D}_{\widehat{L}} \cdot \left(\partial_{t} + \sum_{n=-1}^{\infty} u_{n} t^{n}\right) \otimes \mathscr{E}^{\psi(t)}\right).$$

Damit ist die Levelt-Turrittin-Zerlegung vollständig gegeben.

5.2.1 Konvergenz der Summanden

Kommentar: TODO: text

Es ist klar, dass

$$Q_1 \in \mathcal{D}_{\widehat{L}} \backslash \mathcal{D}_L \Leftrightarrow v(t) \in \widehat{L} \backslash L$$
 bzw. $(\partial_t + \sum_{n=-1}^{\infty} u_n t^n) \in \mathcal{D}_{\widehat{L}} \backslash \mathcal{D}_L \Leftrightarrow u(t) \in \widehat{L} \backslash L$

Deshalb wollen wir die Potenzreihen v und u und im besonderen deren konvergenzverhalten, noch genauer betrachten. Wir betrachten wir den folgenden zwei klasischen Konvergenzkriterien.

Satz 5.8 (Wurzlkriterium nach Cauchy). Sei $\sum_n a_n x^n$ eine Potenzreihe. Es gilt:

$$\limsup_{n\to\infty} \sqrt[n]{|a_n|} = +\infty \Rightarrow die \ Potenzreihe \ ist \ nirgends \ Konvergent.$$

Beweis. siehe [Kno64, §18, Satz 94].

Satz 5.9 (Quotientenkriterium). Sei $\sum_n a_n x^n$ eine Potenzreihe. Es gilt:

$$\lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}=0 \Rightarrow \ die \ Potenzreihe \ ist \ nirgends \ Konvergent.$$

Beweis. Es gilt, dass $\sum_n a_n x^n$ für ein $x \in \mathbb{C}$ konvergent ist, falls

$$\exists N \in \mathbb{N} : \forall n > N : \left| \frac{a_{n+1}x^{n+1}}{a_nx^n} \right| \le \eta < 1$$

und das ist äquivalent zu

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| |x| < 1.$$

Also konvergiert die Reihe für alle x mit $|x| < \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$.

Für n > 0 gilt $v_{n-1} \stackrel{(5.8)}{=} -u_{n-1}$ und damit wollen wir die Formel noch weiter vereinfachen, um eine Version zu bekommen, die sich gut implementieren lässt. Aus (5.9) ergeben sich zunächst für n = 0 die Koeffizienten

$$\begin{aligned} v_0 &= -\frac{1}{u_{-2}}((-1)u_{-1} + \sum_{k=0}^0 v_{k-1}u_{-k-1}) \\ &= -\frac{1}{u_{-2}}(\frac{3}{2} - \frac{3}{4}) \\ &= -\frac{3}{4u_{-2}} \\ \stackrel{(5.6)}{=} \frac{3i}{8\sqrt{2a}} = -u_0 \end{aligned}$$

Kommentar: Somit ergeben sich für n=1 die Koeffizienten

$$v_{1} = -\frac{1}{u_{-2}}((1-1)u_{1-1} + \sum_{k=0}^{1} v_{k-1}u_{1-k-1})$$

$$= -\frac{1}{u_{-2}}(v_{-1}u_{0} + v_{0}u_{-1})$$

$$= -\frac{v_{0}}{u_{-2}}(-v_{-1} + u_{-1})$$

$$= \frac{3}{u_{-2} \cdot 4u_{-2}}(-\frac{1}{2} - \frac{3}{2})$$

$$= \frac{3}{4u_{-2}^{2}}(-2)$$

$$= -\frac{3}{2u_{-2}^{2}}$$

$$= \frac{3}{16a} = -u_{1}$$

$$\stackrel{a=\frac{1}{8}}{=} 1.5$$

und für n=2 ist

$$v_{2} = -\frac{1}{u_{-2}}((2-1)u_{2-1} + \sum_{k=0}^{2} v_{k-1}u_{2-k-1})$$

$$= -\frac{1}{u_{-2}}(u_{1} + v_{-1}u_{1} + v_{0}u_{0} + v_{1}u_{-1})$$

$$= -\frac{1}{u_{-2}}(\frac{3}{2u_{-2}^{2}} + \frac{1}{2}\frac{3}{2u_{-2}^{2}} + \frac{-3}{4u_{-2}}\frac{3}{4u_{-2}} + \frac{-3}{2u_{-2}^{2}}\frac{-3}{2})$$

$$= -\frac{1}{u_{-2}^{3}}(\frac{24}{16} + \frac{12}{16} - \frac{9}{16} + \frac{36}{16})$$

$$= -\frac{63}{16u_{-2}^{3}}$$

$$= -\frac{63}{16(2i\sqrt{2a})^{3}}$$

$$= \frac{63}{256ia\sqrt{2a}}$$

$$= -\frac{63}{256a\sqrt{2a}} = -u_{2}$$

$$\stackrel{a=\frac{1}{8}}{\approx} -3.9375i$$

und für n=3 ist

$$v_3 = -\frac{1}{u_{-2}}((3-1)u_{3-1} + \sum_{k=0}^{3} v_{k-1}u_{3-k-1})$$

$$\approx -u_{-2}^{-4}(-\frac{63}{8} - \frac{1}{2}v_2 - v_0v_1 - v_1v_0 - \frac{3}{2}v_2)$$

$$= -u_{-2}^{-4}(-\frac{(4-1)63}{32} - 2\frac{-3}{4}\frac{-3}{2} - \frac{3}{2}\frac{-63}{16})$$

$$= -\frac{-(4-1)63 - 8 \cdot 9 + 3 \cdot 63}{32u_{-2}^{4}}$$

$$= -\frac{-8 \cdot 9}{8 \cdot 4u_{-2}^{4}}$$

$$= \frac{9}{4u_{-2}^{4}}$$

Kommentar: und analog, für n = 1 und n = 2

$$v_1 = -\frac{3}{2u_{-2}^2} = \frac{3}{16a} = -u_1$$
 und $v_2 = -\frac{63}{16u_{-2}^3} = -\frac{63i}{256a\sqrt{2a}} = -u_2$.

Die letzten zwei Paare sind für die Berechnung nicht von bedeutung und dienen nur dazu, das Programm zu prüfen.

Nun vereinfachen wir die Formel:

$$\begin{split} v_n &= -\frac{1}{u_{-2}} \Big((n-1)u_{n-1} + \sum_{k=0}^n v_{k-1}u_{n-k-1} \Big) \\ &= -\frac{1}{u_{-2}} \Big(\underbrace{(n-1)u_{n-1} + v_{-1} \underbrace{u_{n-1}}_{l-1} + (\sum_{k=1}^{n-1} v_{k-1} \underbrace{u_{n-k-1}}_{l-1}) + v_{n-1}u_{-1} \Big) \\ &\stackrel{(5.8)}{=} -\frac{1}{u_{-2}} \Big(-(n-1)v_{n-1} + \underbrace{v_{-1} \left(-v_{n-1} \right)}_{l-1} + (\sum_{k=1}^{n-1} v_{k-1} \left(-v_{n-k-1} \right) + \underbrace{v_{n-1}u_{-1}}_{l-1} \Big) \\ &= -\frac{1}{u_{-2}} \Big(-(n-1)v_{n-1} - \frac{1}{2}v_{n-1} - \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} - \frac{3}{2}v_{n-1} \Big) \\ &= \frac{1}{u_{-2}} \Big((n-1)v_{n-1} + \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} \Big) \\ &= \frac{1}{u_{-2}} \Big((n+1)v_{n-1} + \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} \Big) \end{split}$$

Also, zu gegebenem $u_{-2}=2i\sqrt{2a},$ sind die Koeffizienten gegeben durch:

$$v_{-1} = \frac{1}{2}$$

$$v_{0} = -u_{0} = -\frac{3}{4u_{-2}}$$

$$v_{n} = -u_{n} = \frac{1}{u_{-2}} \left((n+1)v_{n-1} + \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} \right)$$

$$\forall n > 0$$

Kommentar: Um den Satz 5.8 anzuwenden, betrachten wir

$$\sqrt[n]{|v_n|} = \sqrt[n]{\left| -\frac{i}{2\sqrt{2a}} \left((n+1)v_{n-1} + \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} \right) \right|}$$

$$= \sqrt[n]{|u_{-2}|}^{-1} \sqrt[n]{\left| (n+1)v_{n-1} + \sum_{k=1}^{n-1} v_{k-1}v_{n-k-1} \right|}$$

 $\kappa_{ommentar}$: In einer geeigneten Programmiersprache ist es nun einfach die v_n und u_n Numerisch zu berechnen. So wird ein geeigneter Quellcode in Anhang C vorgestellt. Mit diesen Programm wurde für verschiedene a numerisch die Beträge der Koeffizienten berechnet und in abhängigkeit von n in Abbildung 5.7 dargestellt.

Abbildung 5.7: Die Beträge der Koeffizienten für unterschiedliche a

A Aufteilung von $t\varphi'(t)$

Sei $\varphi \in t^{-1}\mathbb{C}[t^{-1}]$, so ist $\varphi' \coloneqq \sum_{i=2}^N a_{-i}t^{-i} \in t^{-2}\mathbb{C}[t^{-1}]$ also $u\varphi'(t) = \sum_{i=1}^N a_{-i-1}t^{-i} \in t^{-1}\mathbb{C}[t^{-1}]$, welches wir zerlegen wollen. Zerlege also $t\varphi'(t) = \sum_{j=0}^{p-1} t^j \psi_j(t^p)$ mit $\psi_j \in \mathbb{C}[x^{-1}]$ für alle j > 0 und $\psi_0 \in x^{-1}\mathbb{C}[x^{-1}]$:

also:

$$\psi_0(t^p) = a_{-(p+1)}t^{-p} + a_{-(2p+1)}t^{-2p} + \dots$$

$$\psi_1(t^p) = a_{-p}t^{-p} + a_{-2p}t^{2p} + \dots$$

$$\vdots$$

$$\psi_{p-1}(t^p) = a_{-2}t^p + a_{-(p+2)}t^{2p} + \dots$$

B Genaueres zu $(x^2\partial_x)^k$

Nun wollen wir noch $(x^2\partial_x)^{k+1}$ besser verstehen.

$$(x^{2}\partial_{x})^{k+1} = x^{2} \underbrace{\partial_{x}x^{2}}_{} \partial_{x}(x^{2}\partial_{x})^{k-1}$$

$$= x^{2} \underbrace{(2x + x^{2}\partial_{x})}_{} \partial_{x}(x^{2}\partial_{x})^{k-1}$$

$$= (2x^{3}\partial_{x} + x^{4}\partial_{x}^{2})(x^{2}\partial_{x})^{k-1}$$

$$= (2x^{3}\partial_{x} + x^{4}\partial_{x}^{2})(x^{2}\partial_{x})(x^{2}\partial_{x})^{k-2}$$

$$= (2x^{3}\underbrace{\partial_{x}x^{2}}_{} \partial_{x} + x^{4}\underbrace{\partial_{x}^{2}x^{2}}_{} \partial_{x})(x^{2}\partial_{x})^{k-2}$$

$$= (2x^{3}\underbrace{(2x + x^{2}\partial_{x})}_{} \partial_{x} + x^{4}\underbrace{(2x\partial_{x} + 1 + x^{2}\partial_{x}^{2})}_{} \partial_{x})(x^{2}\partial_{x})^{k-2}$$

$$= (4x^{4}\partial_{x} + 2x^{5}\partial_{x}^{2} + 2x^{5}\partial_{x}^{2} + x^{4}\partial_{x} + x^{6}\partial_{x}^{3})(x^{2}\partial_{x})^{k-2}$$

$$= (5x^{4}\partial_{x} + 4x^{5}\partial_{x}^{2} + x^{6}\partial_{x}^{3})(x^{2}\partial_{x})^{k-2}$$

$$= \sum_{n=1}^{k+1} \binom{k}{n-1} \underbrace{(k+1)!}_{n!} x^{n+k} \partial_{x}^{n}$$

Kommentar: Stirlingzahlen

also gilt für spezielle k

$$(x^{2}\partial_{x})^{k+1} = \begin{cases} 2x^{3}\partial_{x} + x^{4}\partial_{x}^{2} & \text{falls } k = 1\\ 5x^{4}\partial_{x} + 4x^{5}\partial_{x}^{2} + x^{6}\partial_{x}^{3} & \text{falls } k = 2\\ \sum_{n=1}^{k+1} {k \choose n-1} \frac{(k+1)!}{n!} x^{n+k} \partial_{x}^{n} \end{cases}$$
 (B.1)

C Numerische berechnung der Koeffizienten

Hier nun ein Haskell Programm, dass in der Funktion **main** die Koeffizienten von v und u für Abschnitt 5.2.1 numerisch berechnet. Für die beispielhaften Berechnungen hier, wählen wir $a = \frac{1}{9}$, dadurch gilt $u_{-2} = i$.

```
1 module Main where
2 import ComplRat
3 import Data.MemoTrie (memo) -- https://github.com/conal/MemoTrie
6 import qualified Control.Monad.Parallel as P
8 -- for writing to file
9 import System. Environment
10 import System. IO
11 import Data. Time
13 -- returns array with the coefficients of v(t)
14 -- first element in array is koefficient from t^{-1}
vKoeffs :: ComplRat -> [ComplRat]
   vKoeffs uMin2 = 1/2:+:0 : [koeff i|i <- [0..]]
16
    where koeff :: Int -> ComplRat
17
           koeff = memo koeff,
           koeff' :: Int -> ComplRat
19
           koeff' n \mid n > 0 = (koeff (n-1)*(fromIntegral n+1)+summe)/uMin2
                    | n == 0 = -3/(uMin2*4)
21
                    | n == -1 = 1/2
22
23
                    | otherwise = 0
                    where summe = sum [koeff (k-1)*(koeff (n-k-1))|k <- [1..n-1]]
24
   -- returns array with the coefficients of u(t)
27 -- first element in array is koefficient from t^{-2}
28 uKoeffs :: ComplRat -> [ComplRat]
  uKoeffs uMin2 = uMin2 : -3/2:+:0 : (tail $ vKoeffs uMin2)
31 printData :: Int -> ComplRat -> IO()
32 printData end uMin2 = mapM_ addLine $ take end $ zip3 [0..] (tail vals) vals
   where vals = vKoeffs uMin2
           addLine a = putStr $ genLine a
34
36 genLine :: (Int, ComplRat, ComplRat) -> String
```

```
genLine (i,v1,v2) = concat [ show i
                                                          , "\t"
                                                         , "\t"
                              , show $ betrag (i,v1,v2)
38
                              , show $ (cauchy (i,v1,v2)) , "\t"
39
                              , show $ quot (i,v1,v2)
40
                         = fromRational x :: Double
41
     where toDbl x
           betrag (_,v,_) = fromRational $ magnitude v
           cauchy (i,v,_) = (fromRational $ magnitude v)**(1/(fromIntegral i))
43
44
           quot (_,v1,v2) = sqrt $ toDbl $ (magnitudeSq v2) / (magnitudeSq v1)
45
   46
47
  main :: IO()
48
   main = do x <- getArgs
49
             P.sequence_ (funcs $ head $ map (\x -> read x :: Int) x)
50
     where funcs x = map (saveData x) [ ("./data/u_-2=i"
                                                            , (0:+:1))
51
                                     {-, ("./data/u_-2=-i"
                                                               , (0:+:(-1)))-}
52
                                                                , (1:+:0))-}
                                     {-, ("./data/u_-2=1"
53
                                      {-, ("./data/u_-2=-1"
                                                                , (-1:+:0))-}
54
                                                                , (0:+:10000))-}
                                      {-, ("./data/u_-2=10000i"
55
                                      {-, ("./data/u_-2=1000i" , (0:+:1000))-}
56
                                      {-, ("./data/u_-2=100i" , (0:+:100))-}
57
                                      {-, ("./data/u_-2=10i"
                                                                , (0:+:10))-}
58
                                      , ("./data/u_-2=1.0e-1i" , (0:+:1.0e-1))
59
                                      , ("./data/u_-2=1.0e-2i" , (0:+:1.0e-2))
                                      , ("./data/u_-2=1.0e-3i" , (0:+:1.0e-3))
61
                                      , ("./data/u_-2=1.0e-4i" , (0:+:1.0e-4))
62
                                      , ("./data/u_-2=1.0e-5i" , (0:+:1.0e-5))
63
64
  saveData :: Int -> (String, ComplRat) -> IO()
66
  saveData end (fn, uMin2) =
67
     do start <- getCurrentTime</pre>
68
        withFile fn WriteMode (\handle -> do
69
          hPutStr handle (concat $ take end $ map genLine triples))
70
        stop <- getCurrentTime</pre>
71
        putStrLn $ fn ++ " " ++ (show $ diffUTCTime stop start)
72
     where vals
                    = vKoeffs uMin2
           triples = zip3 [0..] (tail vals) vals
74
```

Ist der Code in einer Datei /Pfad/zu/koeff.hs gespeicher, so lässt er sich in Unix-Artigen Systemen beispielsweise mit den folgenden Befehlen compilieren und ausführen.

```
#!/bin/sh
max=$1

ffalse; then
ghc --make -threaded ./koeff.hs
mkdir -p ./data
//koeff $max +RTS -N3

fi
```

```
if false; then
      art[2]="betrag"; art[3]="cauchy"; art[4]="quot";
11
12
      for i in 2 3 4; do
13
        name="${art[i]}"
        gnuplot << EOF
14
   set samples 1001
15
16
    set key below
17
18
    set term push
19
    set term post enh color lw 1 12 "Times-Roman"
20
    set output "${name}.eps"
21
22
    set log xy
    plot for [fn in system("ls data/*")] fn every ::0::\{\max\} using 1:\{i\} with lines title
        system("basename ".fn)
24
   EOF
25
        epstopdf "${name}.eps" --outfile "../img/${name}.pdf"
26
        rm "${name}.eps"
27
      done
28
   fi
```

Durch das Ausführen berechnet das Programm die Koeffizienten von v und u bis zum Index 15 sowie einzelne Werte an 20, 30, 40, 50, 100 und 150 und produziert einen Ausgang, der wie folgt aussieht

```
n
1
      | v_n
           u_n
      0.0 :+ 0.0
               0.0 :+ 1.0
  -1
      0.5 :+ 0.0
               (-1.5) :+ (-0.0)
4
5
      | (-0.0) :+ 0.75
                 0.0 :+ (-0.75)
6
      1.5 :+ 0.0
              (-1.5) :+ (-0.0)
7
      | 0.0 :+ (-3.9375)
                  (-0.0) :+ 3.9375
  2
8
 3
      | (-13.5) :+ (-0.0) 13.5 :+ 0.0
9
 4
      | 0.0 :+ 59.34375
                  (-0.0) :+ (-59.34375)
               (-324.0) :+ (-0.0)
10 5
      | 324.0 :+ 0.0
11
      | 0.0 :+ (-2122.98046875)
                      (-0.0) :+ 2122.98046875
12
  7
      | (-16213.5) :+ (-0.0)
                    16213.5 :+ 0.0
13 8
      14
 9
      | 1376311.5 :+ 0.0
                   (-1376311.5) :+ (-0.0)
15
  10
      | 0.0 :+ (-1.4850124677246094e7)
                           (-0.0) :+ 1.4850124677246094e7
      | (-1.75490226e8) :+ (-0.0)
                        1.75490226e8 :+ 0.0
16
  11
17
  12
      18 13
      | 3.1217145174e10 :+ 0.0
                      (-3.1217145174e10) :+ (-0.0)
19 14
      | 0.0 :+ (-4.641652455250599e11) (-0.0) :+ 4.641652455250599e11
20 15
      21
  20
      22
  30
23 40
      24 50
      25 100
```

26 150 | 0.0 :+ (-2.7737283214890534e264) (-0.0) :+ 2.7737283214890534e264

In Haskell ist das :+ ein Infix-Konstruktor der Klasse **Data.Complex**. So erzeugt ein Aufruf der Form \mathbf{a} :+ \mathbf{b} eine Imaginärzahl, die a+ib entspricht.

Übersetzt in unsere Zahlenschreibweise sieht das Ergebnis also wie folgt aus:

n	v_n	u_n
-2	0	i
-1	0, 5	-1, 5
0	0,75i	-0,75i
1	1,5	-1, 5
2	-3,9375i	3,9375i
3	-13, 5	13, 5
4	59,34375i	-59,34375i
5	324,0	-324,0
6	-2122,98046875i	2122,98046875i
7	-16213, 5	16213, 5
8	141115, 447265625i	-141115, 447265625i
9	1376311,5	-1376311, 5
10	$-1,4850124677246094 \cdot 10^7 i$	$1,4850124677246094 \cdot 10^{7}i$
11	$-1,75490226\cdot 10^{8}$	$1,75490226 \cdot 10^{8}$
12	$2,2530628205925293 \cdot 10^9 i$	$-2,2530628205925293 \cdot 10^9 i$
13	$3,1217145174 \cdot 10^{10}$	$-3,1217145174 \cdot 10^{10}$
14	$-4,641652455250599 \cdot 10^{11}i$	$4,641652455250599 \cdot 10^{11}i$
15	$-7,3709524476135 \cdot 10^{12}$	$7,3709524476135 \cdot 10^{12}$
	:	:
20	$1.753906248830001 \cdot 10^{19}i$	$-1.753906248830001 \cdot 10^{19}i$
	1.7000021000001 10 /	1.700000210000001 10 /
:	:	:
30	$-2.7520294973343126 \cdot 10^{33}i$	$2.7520294973343126 \cdot 10^{33}i$
:	<u>:</u>	:
40	$1.1055855646065139 \cdot 10^{49}i$	$-1.1055855646065139 \cdot 10^{49}i$
	:	:
50	$-5.0878905001062135 \cdot 10^{65}i$	$5.0878905001062135 \cdot 10^{65}i$
:	:	:
100	$3.045728894141079 \cdot 10^{159}i$	$-3.045728894141079 \cdot 10^{159}i$
:		
150	$-2.7737283214890534 \cdot 10^{264}i$	$2.7737283214890534 \cdot 10^{264}i$

Tabelle C.1: Numerisch berechnete Koeffizienten von u(t) und v(t) für $a=\frac{1}{8}$

Literaturverzeichnis

- [Ara] D. Arapura, Notes on d-modules and connections with hodge theory, Notizen?
- [Ark12] S. Arkhipov, *D-modules*, unpublished lecture notes available online, May 2012.
- [AV09] B. Alkofer and F. Vogl, Lineare differentialgleichungen und deren fouriertransformierte aus algebraischer sicht / lineare differentialgleichungen aus algebraischer sicht, 2009.
- [Ayo09] J. Ayoub, Introduction to algebraic d-modules, Vorlesungsskript, 2009.
- [BD04] A. Beilinson and V.G. Drinfeld, *Chiral algebras*, Colloquium Publications American Mathematical Society, no. Bd. 51, American Mathematical Society, 2004.
- [Blo04] Spencer Bloch, Local fourier transforms and rigidity for d-modules, Asian J. Math (2004), 587–605.
- [Cou95] S.C. Coutinho, A primer of algebraic d-modules, London Mathematical Society Student Texts, Cambridge University Press, 1995.
- [Ell10] C. Elliott, *D-modules*, unpublished notes available online, April 2010.
- [Gin98] V. Ginzburg, Lectures on d-modules, Vorlesungsskript, 1998.
- [GL04] Ricardo García López, Microlocalization and stationary phase, Asian J. Math. 8 (2004), no. 4, 747–768. MR MR2127946 (2005m:32014)
- [Har77] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, Springer, 1977.
- [Hei10] Hedwig Heizinger, Verschwindungszykel regulär singulärer D-Moduln und Fouriertransformation, 2010.
- [HTT07] R. Hotta, K. Takeuchi, and T. Tanisaki, *D-modules, perverse sheaves, and representation theory*, Progress in Mathematics, Birkhäuser Boston, 2007.
- [Hut07] Graham Hutton, Programming in Haskell, Cambridge University Press, January 2007.
- [Kas03] M. Kashiwara, *D-modules and microlocal calculus*, Translations of Mathematical Monographs, American Mathematical Society, 2003.

- [Kno64] Konrad Knopp, Theorie und anwendung der unendlichen reihen, Die Grundlehren der mathematischen Wissenschaften, Springer, Berlin, 1964.
- [MR89] H. Matsumura and M. Reid, *Commutative ring theory*, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1989.
- [Sab90] C. Sabbah, Introduction to algebraic theory of linear systems of differential equations, Vorlesungsskript, 1990.
- [Sab07] _____, An explicit stationary phase formula for the local formal Fourier-Laplace transform, June 2007.
 - [Sch] J.P. Schneiders, An introduction to d-modules.
- [Sta12] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, December 2012.

Kommentar: TODO: Erklärung das das wirklich selbstgemacht ist