

Building the Predicting model of Flight Delay Using Boosting Algorithm

http://www.free-powerpoint-templates-design.com

By Panida Katklangdon

เนื่องจากปัจจุบันการเดินทางระยะไกลส่วนใหญ่เป็นการเดินทางโดยเครื่องบินเพราะว่าสามารถเดินทางได้
 อย่างรวดเร็วเมื่อเทียบกับการเดินทางของทางบกและทางน้ำ

ดังนั้นผู้โดยสารนั้นให้ความสำคัญของเวลาเป็นอย่างมากซึ่งผู้ให้บริการสายการบินนั้นจำเป็นต้องมีความตรงต่อ
 เวลา ปัจจุบันเครื่องบินดีเลย์นับเป็นปัญหาใหญ่ของการขนส่งทางอากาศ โดยเฉพาะในช่วงเทศกาลซึ่งก่อให้
 เกิดปัญหาความไม่สะดวกต่อผู้โดยสารเป็นอย่างมาก

Method

Exploration

data analysis

รายละเอียดข้อมูล ข้อมูลแต่ละแถวจะเป็นข้อมูล ตั้งแต่เครื่องออกจากสนามบินต้นทางไปจนถึงสนามบินปลายทาง

> จำนวนข้อมูลทั้ง 5,819,079 แถว 31 คอลัมน์

- ทำการสุ่มตัวอย่างข้อมูลมา 1%(5หมื่นแถว) จากข้อมูลทั้งหมด 5ล้านแถว เนื่องจาก kernel มี
 ปัญหาล้มเหลวบ่อยเนื่องจากฝึกฝนโมเดลกับข้อมูลจำนวนมาก
- ได้ทำการทดสอบข้อมูลทั้งหมด6ขนาดแล้วคือ 1%, 5%, 10%, 20%, 50%, 100%, พบว่าไม่มีผล กับการสร้างโมเดลเนื่องจากข้อมูลคือเที่ยวบินที่เริ่มตั้งแต่วันที่ 1 ม.ค. 2015 ถึง 31 ธ.ค. 2015 ซึ่ง เป็นข้อมูลที่มีการเรียงลำดับมาเรียบร้อยแล้ว ทำให้ข้อมูลที่สุ่มตัวอย่างในแต่ละขนาดจึงมีจำนวนใน แต่ละเดือนเท่าๆกัน

• ข้อมูลที่ใช้จะเป็นข้อมูลที่สามารถได้รับ

ตั้งแต่เครื่องบินเริ่มเก็บล้อและลอยตัวออกจากรันเวย์

ข้อมูลต่างๆที่ได้รับหลังจากเก็บล้อ จะทำการลบออกจากชุดข้อมูล

Exploration

data analysis(2)

['CANCELLATION_REASON', 'CANCELLED',

'ARRIVAL_TIME', 'DIVERTED', 'ELAPSED_TIME',

'AIR_TIME', 'WHEELS_ON', 'TAXI_IN', 'AIR_SYSTEM_DELAY'

, 'SECURITY_DELAY', 'AIRLINE_DELAY', 'LATE_AIRCRAFT_DELAY', 'WEATHER_DELAY']

ชุดคอลัมน์ข้างบนคือข้อมูลที่จะได้รับตั้งแต่เครื่องเริ่มลอยตัวจากรันเวย์จนถึงท่าอากาศยานปลายทางซึ่งเป็นข้อมูลที่ไม่สามารถใช้ได้ในการสร้างโมเดลได้ เพราะจุดมุ่งหมายของโปรเจคนี้คือการทำนายตอน ที่เครื่องบินเก็บล้อเท่านั้น

['ORIGIN_AIRPORT' 'DESTINATION_AIRPORT' 'TAIL_NUMBER' 'FLIGHT_NUMBER'] คือชุดคอลัมน์ข้อมูลที่จะเป็นแบบคลาสซึ่งในแต่ละคอลัมน์มีประเภทข้อมูลที่หลากหลายและไม่สามารถนำไปทำ one-hot เพื่อใช้เป็นข้อมูลในการสร้างโมเดลได้

Select Feature

 จำนวนแอตทริบิวต์ที่ถูก เลือกมาทั้งหมด
 12 แอตทริต์

ชื่อแอตทริบิวต์	คำอธิบาย				
YEAR	ปีที่เดินทาง				
MONTH	เดือนที่เดินทาง				
DAY	วันที่เดินทาง				
DAY_OF_WEEK	วันที่เดินทางในสัปดาห์				
SCHEDULED_DEPARTURE	เวลาออกเดินทางตามแผน				
DEPARTURE_TIME	เวลาที่เครื่องออกเดินทางจริง				
DEPARTURE_DELAY	ความล่าซ้าที่เครื่องออกเดินทางจริงกับกำหนดการ				
TAXI_OUT	ระยะเวลาที่ใช้ระหว่างเกตไปกระทั่งเวลาที่ล้อเครื่องถูกเก็บ				
WHEELS_OFF	เวลาที่ล้อถูกเก็บขึ้น				
SCHEDULED_TIME	เวลาถึงที่หมายตามแผน				
DISTANCE	ระยะทางการเดินทาง				
SCHEDULED_ARRIVAL	เวลาถึงที่หมายตามแผน				

แสดงจำนวนเที่ยวบินที่เกิดความล่าช้าในแต่ละวันของสัปดาห์

ระดับ	วันที่ในหนึ่งสัปดาห์
ต่ำ (d_low)	6
ปานกลาง (d_medium)	1,2,3,7
สูง (d_high)	4,5

แสดงจำนวนเที่ยวบินที่เกิดความล่าช้าในแต่ละเดือน

ระดับ	เดือน
ต่ำ (M_low)	9,10,11
ปานกลาง (M_medium)	2,4,5
สูง (M_high)	1,3,6,7,8,12

แสดงจำนวนเที่ยวบินที่เกิดความล่าช้าในแต่ละชั่วโมง

ระดับ	ชั่วโมง
ต่ำที่สุด (H_lowest)	22,5,23,0,1,2,3,4
ต่ำ (H_low)	8, 20,9,7,6,21
ปานกลาง (H_medium)	14, 12, 11, 10
สูง (H_high)	17,15,19,18,16,13

one-hot encoding

3 แอตทริบิวต์ ที่ถูกนำมาใช้เทคนิค one-hot encoding คือ

- month_class
- hour_class
- day_delay

ผลการประเมินความสัมพันธ์ของแอตทริบิวต์

แอตทริบิวต์ที่มีค่าความสัมพันธ์ที่ทำให้เกิดความล่าช้ามากที่สุดคือ DEPARTURE_DELAY
 และ TAXI_OUT รองลงมาตามลำดับ

Correlation heatmap

Modeling(การสร้างโมเดล)

ชุดข้อมูลทั้งหมดที่ใช้ในการฝึกฝนและทดสอบโมเดล

	ตัวอย่าง	แอตทริบิวต์	คลาส 0	คลาส 1
ข้อมูลทั้งหมด	56,375	20	35,873	20,502

แบ่งข้อมูลทั้งหมดเป็น 3 ชุด

train(64%)

valid(16%)

test (20%)

สร้างโมเดลโดยใช้เทคนิค

รายละเอียดโมเดล	ชื่อย่อ
Logistic Regression	GB
Ensemble (GB, LG, SVM)	EN
Gradients Boosting	LG
CATBoos	СВ
Random Forest	RF
Support vector machine	SVM

โมเดล	GB	EN	LG	СВ	RF	SVM
ค่าความถูกต้อง (Accuracy)	84.2%	86.3%	86.6%	86.8%	85.5%	86.0%

การสร้างโมเดลที่ใช้เทคนิคที่มีประสิทธิภาพในการประเมินค่าความถูกต้องได้มากที่สุดคือ CATboost คิดเป็น

ร้อยละ 86.8%

