1

明細書

延伸成形多層容器及びその製造方法

技術分野

本発明は、ポリカルボン酸系重合体と可塑剤の混合物からなる層、及び多価金属化合物と樹脂の混合物からなる層をそれぞれ少なくとも一層含む、多層シート、または多層プリフォームから延伸成形してなる延伸成形多層容器に関する。

背景技術

ポリ (メタ) アクリル酸やポリビニルアルコールに代表される、分子内に親水性の高い高水素結合性基を含有する重合体は、ガスバリア性重合体として公知である。しかしこれら重合体単独からなるフィルムは、乾燥条件下においては、非常に優れた酸素等のガスバリア性を有する一方で、高湿度条件下においては、その親水性に起因して酸素等のガスバリア性が大きく低下する。また熱水には溶解する等、湿度や熱水に対する耐性に問題があり、それがこれら重合体のガスバリア性樹脂としての工業的な利用に制限を与えている。

かかる問題点を解決するために、本発明者らは、特許文献1 (特開平10-237180号公報(請求項1))において、ポリカルボン酸系重合体とポリアルコール系重合体からなるガスバリア性フィルムの高温水蒸気や熱水に対する耐性を向上させることを目的として、その化学構造中にポリ(メタ)アクリル酸とポリアルコールとの反応によって形成されたエステル結合とポリ(メタ)アクリル酸と多価金属イオンとの間に形成されたイオン結合を有することを特徴とするガスバリア性樹脂組成物を提案している。

特許文献1によれば、前記、エステル結合とイオン結合の割合を特定の範囲に限定することにより、高温水蒸気や熱水に対する耐性を有するガスバリア性フィルムが得られることが開示されている。また前記特許文献1によれば、ポリ(メタ)アクリル酸とポリアルコールとの間に、熱処理によってエステル結合を形成させる方法、及び熱処理後のポリ(メタ)アクリル酸とポリアルコールの混合物をさらに多価金属化合物を含有する水中に浸漬することにより、ポリ(メタ)アクリル酸と多価金属イオンとの間にイオン結合を形成させる方法が開示されている。

特許文献 2 (特開平 1 0 - 1 2 8 9 2 3 号公報 (請求項 6)) には、ポリ (メタ) アクリル酸とポリアルコールとの間にエステル結合が形成されたフィルムからなるレトルト包装用容器を用いて、金属を含む水中でレトルトする方法が開示されている。

さらに、特許文献3 (特開平2000-931号公報(請求項5、及び実施例43))においては、高温水蒸気や熱水に対する耐性を向上させた、ポリカルボン酸系重合体とポリアルコール系重合体からなるガスバリア性フィルムが開示されている。

特許文献3によれば、ポリ(メタ)アクリル酸系重合体とポリアルコール系重合体ポリマーとの混合物からなる成形物層の表面に金属化合物を含む層を塗工してなるガスバリア性フィルムが提案されている。該方法により、簡便に酸素等のガスバリア性、及び高温水蒸気や熱水に対する耐性が向上したガスバリア性フィルムが得られることが開示されている。

前記の、特許文献1、特許文献2、および特許文献3のいずれにおいても、ポリ(メタ)アクリル酸系重合体とポリアルコール系重合体からなる混合物に対し

て、多価金属化合物を作用させることを開示しており、また、高温水蒸気や熱水に対する耐性が得られることも開示している。しかし、該ガスバリア性樹脂組成物やガスバリア性フィルムに対して、十分な酸素ガスバリア性や高温水蒸気、熱水等に対する耐性を発現させるためには、熱処理等の所定の処理操作によって、ポリ(メタ)アクリル酸系ポリマーとポリアルコール系ポリマーからなる混合物を変性させる必要がある。変性が不十分な場合、得られるフィルムは十分な酸素ガスバリア性と高温水蒸気や熱水に対する耐性を有することができない。また、これらの混合物からなる成形物は、延伸性を示さない。従って、成形方法に制限があった。また、特許文献3においては、ガスバリア性フィルムの延伸によるガスバリア性への影響については全く記載されていない。このようにポリ(メタ)アクリル酸系重合体と、ポリアルコール系重合体からなるこれらの混合物フィルムに、多価金属化合物を作用させて成形したフィルム、シートを延伸成形してなる成形品の出現が望まれていた。

特許文献 4 (特願平 2 0 0 2 - 1 2 1 2 4 6 号 (請求項 1)) には、ポリカルボン酸系重合体 (A) と多価金属化合物 (B) を原料とするフィルムであって、該フィルムの赤外線吸収スペクトルのピーク比 (A₁₅₆₀/A₁₇₀₀) が 0. 2 5 以上であるフィルムが開示されている。

特許文献 5 (特開 2 0 0 0 - 3 7 8 2 2 号公報 (請求項1)) には、被コーティングフィルムの少なくとも片面に、ポリ (メタ) アクリル酸系ポリマーと、ポリアルコール系ポリマーと、可塑剤と、水系媒体とを少なくとも含む水系塗工液を塗工して、該被コーティングフィルム上にコート層が配置された塗工フィルムを形成し、前記コート層中に可塑剤が存在している状態で、該塗工フィルムを加熱下に延伸するコーティングフィルムの製造方法を開示している。しかしながら、特許文献 5 では、多価金属化合物層との組合せには至っていない。

本発明の目的は、高湿度雰囲気下でも酸素ガスバリア性に優れた延伸成形多層容器を提供することである。

発明の開示

本発明者らは、前記課題を解決するため鋭意研究を行った結果、熱可塑性樹脂からなるシート状、又はプリフォーム状の層の上にコーティング法を用いて、ポリカルボン酸系重合体と可塑剤の混合物からなる層、及び多価金属化合物と樹脂の混合物からなる層を少なくとも一層形成し、加熱延伸成形を行うことによりガスバリア性に優れた多層容器が得られることを見出し、本発明を完成するに至った。

すなわち本発明の第1は、ポリカルボン酸系重合体(B)と可塑剤(C)の混合物からなる層(bc)、及び多価金属化合物(D)と樹脂(E)の混合物からなる層(de)をそれぞれ少なくとも一層含む、多層シート、または多層プリフォームを面積延伸倍率(以下、「面積倍率」と略称することもある)1. $1\sim100$ 倍の範囲で延伸成形してなる延伸成形多層容器を提供する。

本発明の第2は、層(bc)と層(de)が隣接した層構成単位、(bc)/(de)を少なくとも1単位含む前記発明の延伸成形多層容器を提供する。

本発明の第3は、層(bc)と層(de)が隣接した層構成単位、(de)/(bc)/(de)を少なくとも1単位含む前記第1の発明の延伸成形多層容器を提供する。

本発明の第4は、多層シート、または多層プリフォームが熱可塑性樹脂(A)からなる層(a)を少なくとも1層含む前記第1~第3のいずれかの発明の延伸成形多層容器を提供する。

本発明の第5は、全ての層(bc)及び層(de)の合計を基準として、それ

WO 2005/032813

らの層中に含まれるカルボキシ基の合計 (Bt) に対する多価金属化合物 (D) の合計 (Dt) 中の多価金属の化学当量が 0.2以上である前記第1~第4のいずれかの発明の延伸成形多層容器を提供する。

本発明の第6は、ポリカルボン酸系重合体(B)と可塑剤(C)の質量混合比((B)/(C))が、70/30~99.9/0.1である前記第1~第5のいずれかの発明の延伸成形多層容器を提供する。

本発明の第7は、ポリカルボン酸系重合体(B)が、それを単独でフィルムに成形したときに、30%、相対湿度0%における酸素透過係数が $1000cm^3$ (STP)・ μ m/(m^2 ・day・MPa)以下である前記第 $1\sim$ 第6のいずれかの発明の延伸成形多層容器を提供する。

本発明の第8は、ポリカルボン酸系重合体(B)が、アクリル酸、マレイン酸、メタクリル酸の中から選ばれる少なくとも一種の重合性単量体からなる単独重合体、共重合体、及び/またはそれらの混合物である前記第1~第7のいずれかの発明の延伸成形多層容器を提供する。

本発明の第9は、多価金属化合物(D)が2価の金属化合物である前記第1~ 第8のいずれかの発明の延伸成形多層容器を提供する。

本発明の第10は、前記第1~第9のいずれかの発明の延伸成形多層容器用である多層シートを提供する。

本発明の第11は、前記第1~第9のいずれかの発明の延伸成形多層容器用である多層プリフォームを提供する。

本発明の第12は、ボイル、又はレトルト殺菌用途である前記第1~第9のいずれかの発明の延伸成形多層容器を提供する。

本発明の第13は、熱可塑性樹脂(A)からなる層(a)の上にコーティング

法により、ポリカルボン酸系重合体(B)と可塑剤(C)の混合物からなる層(bc)、及び多価金属化合物(D)と樹脂(E)の混合物からなる層(de)を少なくとも一層形成した多層シート、または多層プリフォームを面積倍率で1.1~100倍の範囲で延伸成形する延伸成形多層容器の製造方法を提供する。

本発明の第14は、層(bc)と層(de)が隣接した層構成単位、(bc) /(de)を少なくとも1単位含む前記第13の発明の延伸成形多層容器の製造 方法を提供する。

本発明の第15は、層(bc)と層(de)が隣接した層構成単位、(de) /(bc)/(de)を少なくとも1単位含む前記第13の発明の延伸成形多層 容器の製造方法を提供する。

本発明の第16は、全ての層(bc)及び層(de)の合計を基準として、それらの層中に含まれるカルボキシ基の合計(Bt)に対する多価金属化合物(D)の合計(Dt)中の多価金属の化学当量が0.2以上である前記第13~第15のいずれかの発明の延伸成形多層容器の製造方法を提供する。

本発明の第17は、ポリカルボン酸系重合体(B)と可塑剤(C)の質量混合比((B)/(C))が、70/30~99.9/0.1である前記第13~第16のいずれかの発明の延伸成形多層容器の製造方法を提供する。

本発明の第18は、ポリカルボン酸系重合体(B)が、それを単独でフィルムに成形したときに、30 ℃、相対湿度0 %における酸素透過係数が1000 c m^3 (STP) ・ μ m / (m^2 ・day・MPa)以下である前記第13~第17 のいずれかの発明の延伸成形多層容器の製造方法を提供する。

本発明の第19は、ポリカルボン酸系重合体(B)が、アクリル酸、マレイン酸、メタクリル酸の中から選ばれる少なくとも一種の重合性単量体からなる単独重合体、共重合体、及び/またはそれらの混合物である前記第13~第18のいずれかの発明の延伸成形多層容器の製造方法を提供する。

本発明の第20は、多価金属化合物(C)が2価の金属化合物である前記第1 3~第19のいずれかの発明の延伸成形多層容器の製造方法を提供する。

本発明によれば、延伸成形が可能な、可塑剤を含むポリカルボン酸系重合体からなる層及び多価金属化合物と樹脂との混合物からなる層をそれぞれ少なくとも一層含む多層シート、又は多層プリフォームを提供することができ、且つ、該多層シート、又は多層プリフォームを延伸成形することにより高湿度雰囲気下においても優れたガスバリア性を有する延伸成形された多層容器を提供することができる。

発明を実施するための最良の形態

以下、詳細に本発明を説明する。

本発明の延伸成形多層容器は、ポリカルボン酸系重合体(B)と可塑剤(C)の混合物からなる層(bc)と多価金属化合物(D)と樹脂(E)の混合物からなる層(de)をそれぞれ少なくとも一層含む多層シート、又は多層プリフォーム(押出機で押出したパリソン)を面積倍率1.1~100倍の範囲で延伸成形してなる延伸成形された多層容器(以後、多層容器と略称することもある)である。本発明に係わるポリカルボン酸系重合体(B)と可塑剤(C)の混合物からなる層(bc)、及び多価金属化合物(D)と樹脂(E)の混合物からなる層(de)は、いずれも、塗布、乾燥後においても、良好な延伸性を発現する特徴があり、そのため優れた延伸成形多層容器を与える。

以下、本発明に係わる前記(bc)層を構成する材料について説明する。 ポリカルボン酸系重合体(B)は、既存のポリカルボン酸系重合体であれば、 特に制限はないが、本発明の延伸成形多層容器のガスバリア性、高温水蒸気や熱 水に対する安定性の観点から、原料としてのポリカルボン酸系重合体(B)は、 WO 2005/032813 PCT/JP2004/014902

8

それを単独でフィルムに成形したときに、乾燥条件下(30 °C、相対湿度0 %)で測定した酸素透過係数が1000 cm³(STP)・ μ m/(m^2 ・day・MPa)以下が好ましく、更には好ましくは500 cm³(STP)・ μ m/(m^2 ・day・MPa)以下、最も好ましくは100 cm³(STP)・ μ m/(m^2 ・day・MPa)以下のものである。

ここでいう酸素透過係数は、例えば以下の方法で求めることができる。

ポリカルボン酸系重合体 (B) を水等の溶媒に溶解して10質量%の溶液を調製する。次に調製した溶液をパーコーターを用いて、プラスチックからなる基材上にコーティング、乾燥することにより、厚さ1μmのポリカルボン酸系重合体層が形成されたコーティングフィルムを作製する。得られたコーティングフィルムを乾燥したときの30℃、相対湿度0%における酸素透過度を測定する。ここでプラスチック基材として、その酸素透過度が既知の任意のプラスチックフィルムを用いる。そして、得られたポリカルボン酸系重合体 (B) のコーティングフィルムの酸素透過度が基材として用いたプラスチックフィルム単独の酸素透過度に対して、10分の1以下であれば、その酸素透過度の測定値が、ほぼポリカルボン酸系重合体 (B) の層単独の酸素透過度と見なすことができる。

また得られた値は、厚さ $1 \mu m$ のポリカルボン酸系重合体(B)の酸素透過度であるため、その値に $1 \mu m$ を乗じることにより、酸素透過係数に変換することができる。

本発明で用いるポリカルボン酸系重合体(B)は、既存のポリカルボン酸系重合体を用いることができるが、既存のポリカルボン酸系重合体とは、分子内に2個以上のカルボキシ基を有する重合体の総称である。具体的には、重合性単量体として、 α , β -モノエチレン性不飽和カルボン酸を用いた単独重合体、単量体成分として、 α , β -モノエチレン性不飽和カルボン酸のみからなり、それらの少なくとも2種の共重合体、また α , β -モノエチレン性不飽和カルボン酸のみからなり、それらの少な

レン性不飽和単量体との共重合体、さらにアルギン酸、カルボキシメチルセルロース、ペクチンなどの分子内にカルボキシ基を有する酸性多糖類を例示することができる。これらのポリカルボン酸系重合体 (B) は、それぞれ単独で、または少なくとも2種のポリカルボン酸系重合体 (B) を混合して用いることができる。ここでα,β-モノエチレン性不飽和カルボン酸としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸等が代表的なものである。またそれらと共重合可能なエチレン性不飽和単量体としては、エチレン、プロピレン、酢酸ビニル等の飽和カルボン酸ビニルエステル類、アルキルアクリレート類、アルキルメタクリレート類、アルキルイタコネート類、アクリロニトリル、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、スチレン等が代表的なものである。ポリカルボン酸系重合体 (B) がα,β-モノエチレン性不飽和カルボン酸と酢酸ビニル等の飽和カルボン酸ビニルエステル類との共重合体の場合には、さらにケン化することにより、飽和カルボン酸ビニルエステ

また、本発明のポリカルボン酸系重合体 (B) が、 α , β -モノエチレン性不飽和カルボン酸とその他のエチレン性不飽和単量体との共重合体である場合には、本発明の多層容器のガスバリア性、及び高温水蒸気や熱水に対する耐性の観点から、その共重合組成は、 α , β -モノエチレン性不飽和カルボン酸単量体組成が60モル%以上であることが好ましい。より好ましくは80モル%以上、さらに好ましくは90モル%以上、最も好ましくは100モル%、即ち、ポリカルボン酸系重合体 (B) が α , β -モノエチレン性不飽和カルボン酸のみからなる重合体であることが好ましい。さらにポリカルボン酸系重合体 (B) が α , β -モノエチレン性不飽和カルボン酸のみからなる重合体であることが好ましい。さらにポリカルボン酸系重合体 (B) が α , β -モノエチレン性不飽和カルボン酸のみからなる重合体の場合には、その好適な具体例は、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸からなる群から選ばれる少なくとも1種の重合性単量体の重合によって得られる重

ル部分をビニルアルコールに変換して使用することができる。

合体、及びそれらの混合物が挙げられる。より好ましくは、アクリル酸、メタクリル酸、マレイン酸から選ばれる、少なくとも1種の重合性単量体からなる単独重合体、共重合体、及び/又はそれらの混合物を用いることができる。最も好ましくは、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸、及びそれらの混合物を用いることができる。ポリカルボン酸系重合体(B)が α , β -モノエチレン性不飽和カルボン酸単量体の重合体以外の例えば、酸性多糖類の場合には、アルギン酸を好ましく用いることができる。

ポリカルボン酸系重合体(B)の数平均分子量については、特に限定されないが、フィルム形成性の観点で2,000~10,000,000の範囲であることが好ましく、さらには5,000~1,000,000であることが好ましい。

本発明においては、層(b c)は、ポリカルボン酸系重合体(B)と可塑剤 (C)の混合物からなっている。本発明で用いる可塑剤(C)としては、公知の可塑剤から適宜選択して使用することが可能である。該可塑剤の具体例としては、例えば、エチレングリコール、トリメチレングリコール、プロピレングリコール、テトラメチレングリコール、1,3ーブタンジオール、2,3ーブタンジオール、ペンタメチレングリコール、ヘキサメチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリエチレングリコール、ポリエチレングリコール、ポリエチレングリコール、ポリエチレングリコール、ボリエチレングリコール、ボリエチレングリコール、ズルシトール、エリトリトール、グリセリン、乳酸、脂肪酸などを例示することができる。これらは必要に応じて、混合物で用いてもよい。尚、これらの中、グリセリン、エチレングリコール、ポリエチレングリコール等が、延伸性とガスバリア性の観点から好ましい。可塑剤(C)は、ポリカルボン酸系重合体(B)と混合される。ポリカルボン酸系重合体(B)と可塑剤(C)との混合割合は、質量比でポリカルボン酸系重合体(B)/可塑剤(C)=70/30~99.9/0.1が、更には80/20

 $\sim 99/1$ が好ましい。特に好ましくは $85/15\sim 95/5$ である。可塑剤が $70/30\sim 99.9/0.1$ の範囲にあることにより延伸性とガスバリア性を両立することができるので好ましい。層(bc)中のポリカルボン酸系重合体(B)は、前記、層(de)中の多価金属化合物(D)と塩を生成して安定したガスバリア性を発現する。

本発明に係わる前記層(de)を構成する材料について説明する。

多価金属化合物(D)は、金属イオンの価数が2以上の多価金属原子単体、及びその化合物である。本発明の多層容器のガスバリア性、及び高温水蒸気や熱水に対する耐性、及び製造性の観点で多価金属化合物(D)は2価の金属化合物が好ましく用いられる。また、全ての層(bc)及び層(de)の合計を基準とし

層(de)は、多価金属化合物(D)と樹脂(E)の混合物からなっている。

て、それらの層中に含まれるカルボキシ基の合計 (Bt)に対する多価金属化合物 (D)の合計 (Dt)中の多価金属の化学当量が 0.2以上、更には 0.5化学当量以上、10化学当量以下、であることが好ましい。さらに、上記観点に加え、フィルムの成形性や透明性の観点から、0.8化学当量以上、5化学当量以

下の範囲であることがより好ましい。

多価金属の具体例としては、ベリリウム、マグネシウム、カルシウムなどのアルカリ土類金属、チタン、ジルコニウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛などの遷移金属、アルミニウム等を挙げることができる。多価金属化合物の具体例としては、前記、多価金属の酸化物、水酸化物、炭酸塩、有機酸塩、無機酸塩、その他、多価金属のアンモニウム錯体や多価金属の2~4級アミン錯体とそれら錯体の炭酸塩や有機酸塩等が挙げられる。有機酸塩としては、酢酸塩、シュウ酸塩、クエン酸塩、乳酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、ステアリン酸塩、モノエチレン性不飽和カルボン酸塩等が挙げられる。無機

酸塩としては、塩化物、硫酸塩、硝酸塩等を挙げることができる。それ以外には 多価金属のアルキルアルコキシド等を挙げることができる。

また、本発明の延伸成形多層容器のガスバリア性、及び高温水蒸気や熱水に対する耐性を損なわない範囲で、ポリカルボン酸系重合体(B)は予め一価の金属(アルカリ金属)やアンモニアで部分的に中和しておくことができる。

多価金属化合物 (D) の形態は、特に限定されない。しかしシートの透明性の観点で多価金属化合物 (D) は、粒状で、その粒径が小さい方が好ましい。また、後述するように本発明の多層容器を構成する多層シートまたは多層プリフォームを作製するためのコーティング混合物を調製する上でも、調製時の効率化、及びより均一なコーティング混合物を得る観点で多価金属化合物は粒状で、その粒径は小さい方が好ましい。多価金属化合物の平均粒径としては、好ましくは5μm以下、更に好ましくは1μm以下、最も好ましくは0.1μm以下である。

本発明において層(de)を構成する多価金属化合物(D)と共に用いられる 樹脂(E)の例としては、熱可塑性樹脂や熱硬化性樹脂などで、塗料用に用いら れている樹脂であれば好適に使用することができる。具体的には、アルキッド樹 脂、アミノアルキッド樹脂、メラミン樹脂、アクリル樹脂、硝化綿、ウレタン樹 脂、ポリエステル樹脂、フェノール樹脂、アミノ樹脂、フッ素樹脂、シリコーン 樹脂、エポキシ樹脂、ビニル樹脂、セルロース系樹脂、天然樹脂等の樹脂を挙げ ることができる。尚、必要に応じて硬化剤を用いることができ、メラミン樹脂、 ポリイソシアネート、ポリアミン等の公知の樹脂を挙げることができる。

多価金属化合物 (D) と樹脂 (E) の混合割合は、質量比で (D) / (E) = $1/100\sim10/1$ が好ましく、更に好ましくは $1/10\sim5/1$ 、最も好ま

WO 2005/032813

しくは1/5~2/1である。この範囲にあることは、加熱延伸成形性と酸素ガスバリア性を両立させると云う観点から好ましい。また、成分(D)、(E)の他に混合液の粘度などの塗布性を調整するために、多価金属化合物(D)と樹脂(E)の混合分散液の性質を損なわない範囲で水、有機溶剤等を添加してもよい。

塗工乾燥後で延伸成形前の層(b c)、及び層(d e)の厚さは、ポリカルボン酸系重合体(B)のカルボキシ基の合計(B t)に対する多価金属化合物(D)の合計(D t)中の多価金属の化学当量が0. 2以上である条件下であれば特に限定されないが、層(b c)の厚さは、0. $05\sim100\,\mu$ m、更には0. $1\sim10\,\mu$ m、特に0. $2\sim5\,\mu$ mであることが、酸素ガスバリア性の点で好ましい。層(b c)の厚さが0. $05\,\mu$ mに満たないと、層(d e)と積層した際に延伸性を発現することができない。また、 $100\,\mu$ mを超えると生産性の観点で好ましくない。また、層(d e)の厚さは、0. $05\sim100\,\mu$ m、更には0. $1\sim10\,\mu$ m、特に0. $2\sim5\,\mu$ mであることが、延伸成形性とガスバリア性の点で好ましい。

多層シート、又は多層プリフォームにおける層(bc)、及び層(de)の配置は、層(bc)中のポリカルボン酸系重合体(B)のカルボキシ基と層(de)中の多価金属化合物(D)とのイオン結合生成のために、層(bc)と層(de)が隣接した層構成単位、(bc)/(de)を少なくとも1単位含む層構成が好適である。更に、層(bc)と層(de)が隣接した層構成単位、(de)/(bc)と層は、 ではは(bc)/(de)/(bc)を少なくとも1単位含む層構成も好適なものである。

本発明においては、可塑剤(C)分子の有する水酸基とポリカルボン酸系重合体(B)のカルボキシ基とのエステル化反応を促進するための加熱、触媒添加など手段をとらないので、エステル結合は生じ難く、専ら、ポリカルボン酸系重合体(B)のカルボキシ基は、多価金属化合物(D)とのイオン結合生成に用いら

れる。

前記、層(b c)と層(d e)をそれぞれ少なくとも一層含む多層シート、または多層プリフォームは、さらに、熱可塑性樹脂(A)からなる層(a)を少なくとも1層含むことが好ましい。

熱可塑性樹脂(A) としては、種類は特に限定されないが、低密度ポリエチレ ン、高密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン、ポリ4 - メチルペンテン、環状ポリオレフィン等のポリオレフィン系重合体やそれらの 共重合体、及びその酸変性物、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、 エチレンー酢酸ビニル共重合体ケン化物、ポリビニルアルコール等の酢酸ビニル 系共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ エチレンナフタレートなどの芳香族ポリエステル系重合体やその共重合体、ポリ ε-カプロラクトン、 ポリヒドロキシブチレート、ポリヒドロキシバリレートな どの脂肪族ポリエステル系重合体やその共重合体、ナイロン6、ナイロン66、 ナイロン12、ナイロン6、66共重合体、ナイロン6、12共重合体、メタキ シレンアジパミド・ナイロン6共重合体などのポリアミド系重合体やその共重合 体、ポリエーテルスルフォン、ポリフェニレンサルファイド、ポリフェニレンオ キサイドなどのポリエーテル系重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、 ポリフッ化ビニル、ポリフッ化ビニリデン等の塩素系、及びフッ素系重合体やそ の共重合体、ポリメチルアクリレート、ポリエチルアクリレート、ポリメチルメ タクリレート、ポリエチルメタクリレート、ポリアクリロニトリルなどのアクリ ル系重合体やその共重合体、ポリスチレンなどのスチレン系重合体やその共重合 体、ポリイミド系重合体やその共重合体等を用いることができる。熱可塑性樹脂 (A) からなる層(a) は、必要に応じて、要求される機能により選ぶことがで きる。例えば、層(bc)と層(de)の基材として用いたり、外層として耐酷 使層、シール層、または、中間層として、補強層、ガスバリア補助層として用い WO 2005/032813

られる。これらの中、ポリエチレンテレフタレート、ポリプロピレン、ポリアミド系重合体、ポリスチレン等が延伸成形性の点で好ましい。層(a)は、延伸されていてもよく、未延伸であってもよい。

熱可塑性樹脂層(A)の厚さは、 10μ m~50mm、更には 10μ m~500 μ mが好ましい。通常、熱可塑性樹脂(A)からなる層(a)の片面、或いは両面に、接着剤を介し、或いは介することなしに層(bc)、又は層(de)が塗工される。塗工する層の順序は、層(a)/層(bc)/ 個(de)/・・であっても、層(a)/層(de)/層(bc)/・・であっても差し支えない。層(a)を少なくとも1層有し、層構成中に層(bc)/層(de)、又は層(de)/層(bc)/層(de)/層(de)/層(bc)を少なくとも1単位合む層構成が好ましい。また、多層シートの層構成中で層(a)は複数層であってもよい。また、前記、層(a)、層(bc)、及び層(de)の間、例えば、層(a)と層(bc)の間、或いは層(a)と層(de)の間には、必要に応じて、接着剤、アンカー剤を用いることができる。例えば、層(a)と層(bc)の間には横脂(E)と同様な構成の接着剤を用いることが好ましい。

これらの各層により構成される多層シート、又は多層プリフォーム(例えば、押出機で押出したパリソン)の厚さは、多層シートにあっては、最終製品である多層容器の厚さにより、適宜決められるが、 $10\,\mu$ m $\sim 50\,m$ m、更には $10\,\mu$ m $\sim 500\,\mu$ mが好ましい。多層プリフォームの厚さは、最終製品である多層容器の厚さにより、適宜きめられるが、通常 $1\sim 20\,m$ m、更には $1\sim 10\,m$ mが好ましい。

これらの多層シート、及び多層プリフォームは、前記の如く延伸性を有し、好ましくは、面積倍率で1. $1\sim1$ 00倍の範囲、更に、好ましくは、 $1.1\sim5$ 0倍の範囲、最も好ましくは $1.1\sim2$ 5倍の延伸が可能である。

次に、本発明の多層容器の製造方法について、ポリカルボン酸系重合体(B) として、ポリアクリル酸(PAAと略称する)、多価金属化合物(D)として酸 化亜鉛微粒子を用いた場合を例として説明する。尚、得られる多層容器に係わる 好ましい態様は、前記の説明が適用できる。

ポリアクリル酸(PAA)を蒸留水で希釈し、PAAの、例えば5質量%水溶液を調製する。得られたポリアクリル酸水溶液、例えば90質量部に対して、可塑剤としてグリセリン5質量%水溶液を10質量部混合し、撹拌し、PAA/グリセリン混合物水溶液を調製する。得られたPAAとグリセリンの混合物水溶液をコーティング法により、(例えば、卓上コーターを用いて)未延伸非晶ポリエチレンテレフタレートシート(PETシート)(厚さ250μm)の片面、又は両面に塗布し、温度、室温~90℃、時間10秒~60分、例えば70℃、30秒で乾燥し、乾燥皮膜を得る。

一方、酸化亜鉛微粒子とポリエステル系樹脂の混合分散液(不揮発分33%、溶媒トルエン/MEK)100質量部に対し、硬化剤 $0\sim15$ 質量部を混合した多価金属化合物を含む混合液を調製する。この酸化亜鉛混合液を、前記PETシートのPAA/グリセリン混合物を塗工し、乾燥した塗工面に、卓上コーターを用いて塗工し、温度、室温 ~90 °C、時間、10秒 ~60 分、例えば、70°C、30秒で乾燥し、乾燥後の厚みが約 1μ mになる程度塗布する。

ここで、酸化亜鉛微粒子と樹脂の混合分散液の酸化亜鉛/樹脂混合比は、1/100~10/1である。上記塗膜中の亜鉛(Zn)量はPAAのカルボキシ基に対して0.2化学当量以上である。

ここで云うコーティング法とは、前記のようにポリカルボン酸系重合体(B) と可塑剤(C)の混合物の分散液、又は溶液、或いは多価金属化合物(D)と樹脂(E)の混合分散液、又は溶液をグラビアロールコーター、リバースロールコーター、ディップコーター、またはダイコーター、メイヤーバー、刷毛等で熱可 塑性樹脂(A)からなる層(a)の表面に塗工する方法、懸濁液、または溶液をスプレー等で噴霧する方法、或いは浸漬法を含む塗工を云う。

このようにして未延伸非晶ポリエチレンテレフタレート層(a)/PAAとグリセリンの混合物層(bc)/酸化亜鉛微粒子とポリエステル系樹脂層(de)からなる成形用多層シートが得られる。多層シートの厚さは、通常 10μ m~50mm、更には 10μ m~500 μ mが好ましい。次いで、この成形用多層シートを深絞り型高速自動真空包装機(大森機械工業(株)製FV-603型)を用いて加熱軟化させ、真空成形して、例えば成形物のサイズ、 $\phi100$ mm、深さ10mmの基材PET層(a)を被包装物に接する側に配置した延伸成形容器が得られる。通常、延伸成形機により面積倍率で $1.1\sim5$ 倍程度、延伸される。成形機は、溶融成形機、真空成形機、圧空成形機、また必要により、更にプラグを併用した金型形状に成形する方法(ストレート法、ドレープ法、エアースリップ法、スナップバック法、プラグアシスト法)、或いは圧縮成形等のような公知の成形方法を用いることができる。

基材の樹脂層がボトルのプリフォームの場合は、例えば、浸漬法で層(bc)或いは層(de)を塗布し、乾燥する。次いで塗布層の上へ層(de)或いは層(bc)を浸漬法により塗布し、乾燥する。乾燥後の塗工済みプリフォームをボトル成形機で基材樹脂に適した成形温度で延伸成形し、ボトルを作製する。このようにして得られる延伸成形容器やボトルなどの多層容器の酸素透過度は、30℃、相対湿度80%の条件で200cm³(STP)/m²・day・MPa以下が好ましく、更に好ましくは、100cm³(STP)/m²・day・MPa以下である。本発明の多層容器の酸素透過度は、後述する方法で求めることができる。

このようにして得られる本発明の延伸成形多層容器の具体的な形状は、ボトル、

トレー、カップ、チューブ、及びそれら容器に蓋材、口部シール材を貼り合わせ た容器等が挙げられ、これについても積層材料構成を任意に選択することにより、 易開封性、易引裂性、収縮性、電子レンジ適性、紫外線遮断性、意匠性等を付与 して用いることができる。本発明の延伸成形多屬容器は、酸素等の影響により、 劣化を受けやすい、食品、飲料、薬品、医薬品、電子部品等の精密金属部品の包 **装体又は包装容器として適している。さらに長期にわたり安定したガスバリア性** 能が必要で、日つボイル、レトルト殺菌等の高温熱水条件下での処理を必要とす る物品の包装材料として好適に使用することができる。ボイル、レトルト殺菌等 の高温熱水条件下での処理を必要とする物品の具体例としては、例えばカレーや シチュウー、パスタソースなどの調味食品、中華料理の素などの合わせ調味料、 ベビーフード、米飯、おかゆ、オーブントースター及び電子レンジ用調理済み食 品、スープ類、デザート類、農畜産加工品など、農産加工品については、じゃが いも、サツマイモ、トウモロコシ、栗、豆類等の穀物やアスパラガス、ブロッコ リー、キャベツ、タケノコ、トマトなどの野菜類、大根、人参、山芋、ゴボウ、 レンコンなどの根菜類、キノコ類、リンゴやパインアップルなどの果物類などレ トルトやボイル殺菌処理をかねて加熱調理を行うような食品が挙げられる。畜産 加工品としては、ソーセージやハムなどが挙げられる。

また一方で本発明の延伸成形多層容器は、特定の条件下、酸、またはアルカリに対する易溶解性を有し、廃棄時において分離回収を容易に行うことが可能な易廃棄性を併せ持つことから、上記した用途の中でも、特に包装材料の分離回収が必要な分野において好適に使用することができる。

実施例

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。

酸素透過度の評価方法

酸素透過度を測定するための試料として、(1)延伸成形多層容器、及び(2)ポリアクリル酸(PAA)の酸素透過度を測定するために、ポリエチレンテレフタレートに PAAを塗工した積層フィルムの2種類について、下記方法により測定した。酸素透過度は、Modern Contorol社製酸素透過試験器OXTRAN $^{\text{N}}2/2$ 0を用いて測定した。測定方法は、JIS K-7126、B法(等圧法)、及びASTM D3985-81に準拠し、(1)延伸成形多層容器については、温度30 $^{\text{C}}$ 、相対湿度80%(80%(RH)と記載することもある)の条件で測定し、単位cm³(STP)/(m²・day・MPa)で表記し、(2)PAAについては、温度30 $^{\text{C}}$ 、相対湿度0%の条件で測定し、PAAの厚さを乗じることにより酸素透過係数に変換し、単位cm³(STP) $^{\text{C}}$ (STP)は酸素の体積を規定するための標準条件(0 $^{\text{C}}$ 、1気圧)を意味する。

- (1)延伸成形多層容器の酸素透過度は、2本の銅管が隙間からガスが漏れないように貫通したアルミニウム板に、両銅管の先端が容器内に入るように容器口部を接着剤を使用して塞ぎ(2本の銅管を付けたアルミニウム板が容器の蓋となる)、一方の銅管から80%RHの窒素ガスを容器内にパージし、他方の銅管からは、容器内のガスが排出されるようにした。排出ガスは壁を透過した酸素ガスを含む窒素ガスであり、該排出ガスを酸素センサーに導き、排出ガス中の酸素含量を測定し、容器内に透過して侵入する酸素量を算出した。なお、前記容器全体をチャンバー内に設置し、該チャンバーには30℃、相対湿度80%に調節した酸素ガス雰囲気に保った。このようにして常圧における容器全体の酸素透過度を測定できるようにした。なお、実施例においては、別途容器の表面積を求め、単位表面積当たりの酸素透過量に換算して表した。

WO 2005/032813

いる理由は、ポリカルボン酸系重合体(B)単層から形成されるフィルムの酸素 透過度が相対湿度の影響で変化するからである。乾燥状態とは、試料を相対湿度 0%の条件で乾燥したことを云う。測定結果から次式により、PAA層の酸素透 過度を算出した。

 $1/P_{TOTAL} = 1/P_{PAA} + 1/P_{BASE}$

P TOTAL は、積層体そのものの酸素透過度(測定結果)を、P BASEは、基材フィルムの酸素透過度を、P PAAは、P A A 層の酸素透過度を表す。

(実施例1)

ポリアクリル酸(PAA)(東亞合成化学(株)社製、アロン™A-10H、 25%水溶液、数平均分子量150,000)を、蒸留水で1/5倍に希釈して、 5 質量%の P A A 水溶液を調製した。得られたポリアクリル酸水溶液 9 0 質量部 に、グリセリン5質量%水溶液(市販品(和光純薬工業(株)製)を蒸留水で2 0倍に希釈し、5質量%水溶液とした)を10質量部混合、撹拌し、PAAとグ リセリンとの混合物水溶液を調製した。この混合物水溶液を卓上コーター(RK Print-Coat Instruments 社製、K303PROOFER) を用いて、未延伸非晶ポリ エチレンテレフタレートシート(ロイファン A-PET-CR:厚さ250 μ m) (以後、 未延伸非晶 Ρ Ε Τ シートと略称する)上に塗工、乾燥し、厚さ 0.7 μ m の乾燥 皮膜を得た。酸化亜鉛微粒子とポリエステル系樹脂の混合分散液(住友大阪セメ ント(株)製、透明性紫外線遮蔽分散液 ZR-133 (この分散液による層を表 中ではZRと略す)、不揮発分33%、溶媒トルエン/MEK)100質量部に 対し、硬化剤(大日本インキ(株)製、DN-980)を5質量部の割合で混合 した後、PAAとグリセリンとの混合物水溶液が塗工されたPETシートの塗工 面に卓上コーターを用いて塗工し、乾燥して、未延伸の多層シートを製造した。 乾燥塗工量は2g/m²(厚み約1μm)であった。

ここで、酸化亜鉛微粒子と樹脂の混合分散液の酸化亜鉛/樹脂の質量混合比は

1. 5 / 1であった。上記塗膜中のZn量はPAAのカルボキシ基に対して100mo1%(2化学当量)であった。次に、上記で製造した多層シートを深絞り型高速自動真空包装機(大森機械工業(株)製FV-603型)を用いて100℃ないし120℃位に加熱軟化させ、次いで真空成形して、成形物のサイズ、φ100mm、深さ10mmのPET層を被包装物に接する側に配置した加熱延伸成形容器を作製した。上記包装容器の面積倍率は1. 4倍であった。得られた包装容器について、酸素透過度を評価した。

尚、本実施例で使用したPAAを未延伸非晶PETシートに塗工して積層フィルムとしたPAA層単独の酸素透過係数は、30 \mathbb{C} 、相対湿度0 %で、100 \mathbb{C} \mathbb{C}

(実施例2)

伸成形容器を作製し、酸素透過度を評価した。

実施例1のポリアクリル酸に替えて、ポリアクリル酸のナトリウム(Na)による部分中和物を用い、又可塑剤をポリエチレングリコール(和光純薬工業(株)製、PEG、分子量600)に替えた以外は実施例1と同様にして加熱延

ポリアクリル酸の部分中和物は、実施例1で調製したポリアクリル酸5質量%水溶液に対して水酸化ナトリウムを添加、溶解することにより調製した。水酸化ナトリウムは、Na量がポリアクリル酸水溶液中のカルボキシ基のモル数に対して10mo1%(0.1化学当量)になるように計算して添加した。

(実施例3)

可塑剤をソルビトール(和光純薬工業(株)製)に替えて、ポリアクリル酸水溶液95質量部に対して、ソルビトール(和光純薬工業(株)製)5質量%水溶液を5質量部、混合、攪拌し、PAAとソルビトールとの混合物水溶液を調製した以外は実施例1と同様にして加熱延伸成形容器を作製し、酸素透過度を評価し

た。尚、上記塗膜中のZn量は、PAAのカルボキシ基に対して95mo1%(1. 9化学当量)であった。

(実施例4)

可塑剤をエチレングリコール (和光純薬工業 (株) 製) に替えて、ポリアクリル酸水溶液 7 0 質量部に対して、エチレングリコール (和光純薬工業 (株) 製) 5 質量%水溶液を 3 0 質量部混合、撹拌し、PAAとエチレングリコールとの混合物水溶液を調製した以外は実施例 1 と同様にして加熱延伸成形容器を作製し、酸素透過度を評価した。上記塗膜中の Z n 量は、PAAのカルボキシ基に対して130mol% (2.6 化学当量)であった。

(実施例5)

ポリアクリル酸水溶液 9 9. 9質量部に対して、グリセリン 5 質量%水溶液を 0. 1質量部混合した以外は、実施例 1 と同様にして、加熱延伸成形容器を作製し、酸素透過度を評価した。上記塗膜中の Z n 量は、PAAのカルボキシ基に対して 9 0 m o 1% (1. 8 化学当量)であった。

(実施例6)

酸化亜鉛微粒子と樹脂の混合分散液の酸化亜鉛/樹脂混合比(質量比)が1/2である以外は実施例1と同様にして、加熱延伸成形容器を作製し、酸素透過度を評価した。上記塗膜中の2n量はPAAのカルボキシ基に対して60mo1%(1.2化学当量)であった。

(実施例7)

未延伸非晶PETシート上に微粒子酸化亜鉛と樹脂混合分散液、PAAとグリセリンとの混合水溶液、微粒子酸化亜鉛と樹脂混合分散液の順で、卓上コーター

を用いて実施例1と同じように、それぞれの層を塗工、乾燥して、多層シートとした。上記塗膜中のZn量はPAAのカルボキシル基に対して200mo1% (4化学当量)であった。次に実施例1と同様に深絞り型高速自動真空包装機を用いて加熱延伸成形容器を作製し、酸素透過度を評価した。

(実施例8)

PETシートに替えて、未延伸ポリプロピレンシート (CPP厚さ60μm) を用い、実施例1と同様のPAAとグリセリンとの混合水溶液、及び微粒子酸化 亜鉛と樹脂の混合分散液をグラビアコーターを用いて、順次塗工乾燥した。

次いで塗工面に対して、未延伸ポリプロピレンシート(CPP、厚さ300 μ m)をドライラミネーターを用い、接着剤(大日本インキ(株)社製、LX747、樹脂成分ポリエステル系樹脂)を7質量部に対し、硬化剤(大日本インキ(株)製 KX75、ポリイソシアネート系樹脂)を1質量部の割合で混合した後、酢酸エチルを48質量部の割合で混合、撹拌した溶液を接着剤として介して積層した。得られた積層シートを真空・圧空成形機(東葛大和製作所製 PFー2940型)を用いて210℃に加熱軟化させ、溶融、絞り成形して、成形物のサイズ、横180mm、縦120mm、深さ50mmの加熱延伸成形容器を作製した。上記包装容器の面積倍率は、2.4倍であった。上記塗膜中のZn量は、PAAのカルボキシ基に対して100mo1%(2化学当量)であった。得られた容器の酸素透過度を評価した。

さらに食品の加熱殺菌、特に加圧・加熱殺菌であるレトルト処理においては、空気による加圧を行うため、処理中に容器内へ酸素が侵入する。食品保存の観点からは、レトルト処理中の酸素の侵入を低く抑える必要がある。ここでは、レトルト処理中の容器内への酸素侵入量の測定は、前記の内部を窒素ガスに置換した容器の蓋部をアルミニウム箔で封止し、120℃、1kg/cm²で1時間レトルト処理し、処理後の容器内の酸素濃度を酸素濃度計で測定して行った。得られた

酸素濃度から、容器の容積と表面積を用いて、単位 $c\,m^3$ ($S\,T\,P$) $/m^2 \cdot h\,$ の酸素透過度を求めた。

(実施例9)

未延伸ナイロンフィルム(CNy 厚さ $70\mu m$)を用いる以外は、実施例8と同様にして、加熱延伸成形容器を作製し、同様の酸素透過度の評価を行った。

(実施例10)

PET樹脂(三菱化学(株)社、BK-2180)製、27gのPETボトルプリフォームを基材として実施例1と同様のPAAとグリセリンとの混合水溶液を浸漬法により塗工しドライヤーで乾燥した。次いで微粒子酸化亜鉛とポリエステル系樹脂の混合分散液を浸漬法により塗工しドライヤーで乾燥した。乾燥後の塗工済みボトルプリフォームをボトル成形機(フロンティア社製 EFB-1000)で温度90℃で成形し、PETボトル(500ml、首下160mm、胴径 ϕ 70 μ m、厚さ350 μ m)を作製した。上記ボトルの面積倍率は10倍であった。得られたボトルの酸素透過度を評価した。尚、塗工済みボトルプリフォームの塗膜中のZn量は、PAAのカルボキシ基に対して125mo1%(2.5 化学当量)であった。

(実施例11)

実施例10に替えPP樹脂(三井住友ポリオレフィン(株)社、ホモPPJ247TW)製PPプリフォーム(厚さ、5mm)を基材として用いる以外は実施例10と同様にして塗工済みボトルを作製した。塗工済みボトルをボトル成形機(フロンティア社製、EFB-2000)で温度124℃で成形し、PPボトル(500ml、首下160mm、胴径 ϕ 70mm、厚さ350 μ m)を作製した。このボトルの面積倍率は10倍であった。得られたボトルの酸素透過度を評価した。

(比較例1)

PAAとグリセリンとの混合水溶液、及び酸化亜鉛微粒子と樹脂の混合分散液を両方とも塗工せず、未延伸非晶PETシートのみを用いたこと以外は実施例1と同様にして、加熱延伸成形容器を作製し、同様の酸素透過度評価を行った。

(比較例2)

PAAとグリセリンとの混合水溶液を塗工せずに、酸化亜鉛微粒子と樹脂との混合分散液を塗工したこと以外は実施例1と同様にして、加熱延伸成形容器を作製し、同様の酸素透過度評価を行った。

(比較例3)

酸化亜鉛微粒子と樹脂の混合分散液を塗工せずに、PAAとグリセリンとの混合水溶液を塗工したこと以外は実施例1と同様にして、加熱延伸成形容器を作製し、同様の酸素透過度評価を行った。

影ゴ

PAA/可塑剤 質量混合比 90/10 99.9/0.1 90/10 90/10 95/5 70/30 90/10 90/10 90/10 90/10 90/10 90/10 酸素透過度 容器*1 35 35 8 35 35 9 250 8 250 250 2 27 32 3 62 金属/カルボキシ基 化学当量比 i2 23 D 1 6. 6. 2. 2 2 4 S 2 oi 面積倍率 4 1.4 1.4 1.4 4 4 4 4 1.4 7.4 9 10 Ø CPP/PAA+グリセリン/ZR//CPP PET/ZR /PAA+グリセリン/ZR CNy/PAA+グリセリン/ZR//CPP PET/PAA+ソルビトール/ZR PET/PAA+グリセリン/ZR PET/PAA+グリセリン/ZR PET/PAA+グリセリン/ZR PET/PAA+グリセリン/ZR PET/nPAA*2 +PEG/ZR PP/PAA+グリセリン/ZR PET/PAA+グリセリン PET/PAA+EG/ZR 積層構成 PET/ZR PET アラー級 実施例3 比較例 実施例 1 実施例 2 実施例7 実施例4 実施例 5 実施例 6 実施例8 実施例 10 実施例 11 比較例2 実施例 実施例9 比較例1 比較例3

*1(単位) cm²(STP)/m²·day·MPa(30°C、80%RH)

*2:部分中和 PAA

前記表1において、PETは、未延伸非晶ポリエチレンテレフタレート、PAAは、ポリアクリル酸、EGは、エチレングリコール、PEGは、ポリエチレングリコール、ZRは、酸化亜鉛微粒子とポリエステル系樹脂との混合物、CPPは、未延伸ポリプロピレン、CNyは、未延伸ナイロンを、記号//は、接着剤層をそれぞれ表す。

産業上の利用可能性

従来、ポリアクリル酸系重合体からなる層と多価金属化合物からなる層と熱可塑性樹脂からなる層とからなる延伸性を示すフィルムが開発されていなかった。本発明により延伸性を有する多層シート、又は多層プリフォームを延伸成形した多層容器が提供できたので、今後この分野の用途開発への可能性が増大したと云うことができる。

請求の範囲

- 1. ポリカルボン酸系重合体(B)と可塑剤(C)の混合物からなる層(bc)、及び多価金属化合物(D)と樹脂(E)の混合物からなる層(de)をそれぞれ少なくとも一層含む、多層シート、または多層プリフォームを面積延伸倍率1.1~100倍の範囲で延伸成形してなる延伸成形多層容器。
- 2. 層(bc)と層(de)が隣接した層構成単位、(bc)/(de)を少なくとも1単位含む請求項1記載の延伸成形多層容器。
- 3. 層(bc)と層(de)が隣接した層構成単位、(de)/(bc)/(de)を少なくとも1単位含む請求項1記載の延伸成形多層容器。
- 4. 多層シート、または多層プリフォームが熱可塑性樹脂(A)からなる層(a)を少なくとも1層含むことを特徴とする請求項1~3のいずれかに記載の延伸成形多層容器。
- 5. 全ての層(bc)及び層(de)の合計を基準として、それらの層中に含まれるカルボキシ基の合計(Bt)に対する多価金属化合物(D)の合計(Dt)中の多価金属の化学当量が0.2以上であることを特徴とする請求項1~4のいずれかに記載の延伸成形多層容器。
- 6. ポリカルボン酸系重合体(B)と可塑剤(C)の質量混合比((B)/(C))が、70/30~99.9/0.1である請求項1~5のいずれかに記載の延伸成形多層容器。
- 7. ポリカルボン酸系重合体 (B) が、それを単独でフィルムに成形したときに、30%、相対湿度0%における酸素透過係数が $1000cm^3$ (STP)・ μ m/ (m^2 ・day・MPa)以下である請求項 $1\sim6$ のいずれかに記載の延伸成形多層容器。
- 8. ポリカルボン酸系重合体(B)が、アクリル酸、マレイン酸、メタクリル酸の中から選ばれる少なくとも一種の重合性単量体からなる単独重合体、共

重合体、及び/またはそれらの混合物である請求項 $1\sim7$ のいずれかに記載の延伸成形多層容器。

- 9. 多価金属化合物(D)が2価の金属化合物である請求項1~8のいずれかに記載の延伸成形多層容器。
 - 10. 請求項1~9のいずれかに記載の延伸成形多層容器用である多層シート。
- 11. 請求項1~9のいずれかに記載の延伸成形多層容器用である多層プリフォーム。
- 12. ボイル、又はレトルト殺菌用途である、請求項1~9のいずれかに記載の延伸成形多層容器。
- 13. 熱可塑性樹脂(A)からなる層(a)の上にコーティング法により、ポリカルボン酸系重合体(B)と可塑剤(C)の混合物からなる層(bc)、及び多価金属化合物(D)と樹脂(E)の混合物からなる層(de)を少なくとも一層形成した多層シート、または多層プリフォームを面積倍率で1.1~100倍の範囲で延伸成形することを特徴とする延伸成形多層容器の製造方法。
- 14. 層(bc)と層(de)が隣接した層構成単位、(bc)/(de)を 少なくとも1単位含む請求項13記載の延伸成形多層容器の製造方法。
- 15. 層(bc)と層(de)が隣接した層構成単位、(de)/(bc)/(de)を少なくとも1単位含む請求項13記載の延伸成形多層容器の製造方法。
- 16.全ての層(bc)及び層(de)の合計を基準として、それらの層中に含まれるカルボキシ基の合計(Bt)に対する多価金属化合物(D)の合計(Dt)中の多価金属の化学当量が0.2以上であることを特徴とする請求項13~15のいずれかに記載の延伸成形多層容器の製造方法。
- 17. ポリカルボン酸系重合体(B)と可塑剤(C)の質量混合比((B)/(C))が、70/30~99. 9/0. 1である請求項13~16のいずれかに記載の延伸成形多層容器の製造方法。
 - 18. ポリカルボン酸系重合体(B)が、それを単独でフィルムに成形したと

- きに、30 $^{\circ}$ 、相対湿度0 %における酸素透過係数が1000 c m³ (STP) ・ μ m / (m^2 ・d a y・MP a) 以下であることを特徴とする請求項 $13\sim17$ のいずれかに記載の延伸成形多層容器の製造方法。
- 19. ポリカルボン酸系重合体(B)が、アクリル酸、マレイン酸、メタクリル酸の中から選ばれる少なくとも一種の重合性単量体からなる単独重合体、共重合体、及び/またはそれらの混合物である請求項13~18のいずれかに記載の延伸成形多層容器の製造方法。
- 20. 多価金属化合物(C)が2価の金属化合物である請求項13~19のいずれかに記載の延伸成形多層容器の製造方法。

INTERNATIONAL SEARCH REPORT

International application No.

		PCT/J	P2004/014902	
A. CLASSIFI Int.Cl	CATION OF SUBJECT MATTER 7 B32B27/30	·		
According to In	ternational Patent Classification (IPC) or to both nation	nal classification and IPC		
B. FIELDS SE				
Minimum docur Int.Cl	mentation searched (classification system followed by 6 B32B, C08J7/04	classification symbols)		
Kokai J	itsuyo Shinan Koho 1971-2004 J	oroku Jitsuyo Shinan Koho itsuyo Shinan Toroku Koho	1994-2004 1996-2004	
Electronic data t WPIL	base consulted during the international search (name of	data base and, where practicable, searc	h terms used)	
	NTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a JP 2000-931 A (Kureha Chemic	- -	Relevant to claim No.	
	Ltd.), 07 January, 2000 (07.01.00), Claims; Par. Nos. [0012], [0 [0031] & WO 99/52973 A & EF & US 6605344 B	016] to [0019],	·	
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search O2 December, 2004 (02.12.04) Name and mailing address of the ISA/		"T" later document published after the date and not in conflict with the app the principle or theory underlying the principle or theory underlying the considered novel or cannot be constep when the document is taken alou	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family e of mailing of the international search report 21 December, 2004 (21.12.04)	
Facsimile No.	e Patent Office	Telephone No.		
om PC1/ISA/21((second sheet) (January 2004)			

A. 発明の属	A. 発明の属する分野の分類(国際特許分類 (IPC))				
Int.Cl7	B32B27/30				
D ====================================	→ 八冊 ·				
B. 調査を行った最の 調査を行った最の	った分野 小限資料(国際特許分類(IPC))	,			
Int.Cl	B32B、C08J7/04				
日本国実用第 日本国公開集 日本国登録集	の資料で調査を行った分野に含まれるもの f案公報 1926-1996年 E用新案公報 1971-2004年 E用新案公報 1994-2004年 ff案登録公報 1996-2004年				
国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)					
WPIL					
C. 関連すると認められる文献					
引用文献の	C MO-65 - 24 6.50 > UM		関連する		
カテゴリー*	引用文献名 及び一部の箇所が関連すると	きは、その関連する箇所の表示	請求の範囲の番号		
X .	JP 2000-931 A (吳羽	引化学工業株式会社)、	1 - 20		
1 1	2000.01.07,		1		
	特許請求の範囲、0012、0016	-0019.0031			
1	& WO 99/52973 A &	EF IUOUSOI A			
[& US 6605344 B				
,	•	·			
1			·		
}	•				
	•		ļ ·		
	· .				
<u></u>			<u> </u>		
□ C欄の続き	□ C欄の続きにも文献が列挙されている。 □ パテントファミリーに関する別紙を参照。				
* 引用文献の	カテゴリー	の日の後に公表された文献			
「A」特に関連	のある文献ではなく、一般的技術水準を示す	「T」国際出願日又は優先日後に公表	された文献であって		
もの 出願と矛盾するものではなく 、発明の原理又は理論					
「E」国際出願日前の出願または特許であるが、国際出願日の理解のために引用す			ルロナナホトのフェースタンロロ		
	、表されたもの ・選に反義さ想 およって さきれば の さきの ※ 第一	「X」特に関連のある文献であって、 の新規性又は進歩性がないと 考			
	○張に疑義を提起する文献又は他の文献の発行 ○は他の特別な理由も確立するために引用する	の新規性又は進歩性がないとう 「Y」特に関連のある文献であって、			
日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当覧 文献 (理由を付す) 上の文献との、当業者にとっ て自明					
「O」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの					
「P」国際出願日前で、かつ優先権の主張の基礎となる出願「&」同一パテントファミリー文献					
国際調査を完了した日 02.12.2004		国際調査報告の発送日 21.12.2	004		
国際調査機関の名称及びあて先		特許庁審査官(権限のある職員)	4S 9633		
日本国特許庁 (ISA/JP) 郵便番号100-8915		平井、裕彰			
	事便番号100-8915 第千代田区霞が関三丁目4番3号	 電話番号 03-3581-1101	内線 3430		
木 水和	ドースで下次が、以上しては、この				