Open Data Link

A dataset search engine for open data

Paul Ouellette and Justin Fargnoli

Open Data Link

- Dataset search engine for open data.
- Search methods:
 - Semantic keyword search
 - ► Joinable table search
 - Unionable table search

Motivation

- ► Governments and other organizations publish a lot of open data, but discovery is still difficult.
- ▶ Data scientists can identify ways to integrate datasets.
- ▶ Data publishers can see the wider context of their data.

Demo

Outline

System overview

Joinable table search

Unionable table search

Semantic Keyword Search

Outline

System overview

Joinable table search

Unionable table search

Semantic Keyword Search

System overview

Dataset crawl

- ▶ 10k of 42k datasets on Socrata.
- ▶ 172k columns.
- Most datasets are small.
- ► Largest datasets have over 100 million rows.

Outline

System overview

Joinable table search

Unionable table search

Semantic Keyword Search

Joinable table search

Joinable table search

- Attributes are treated as sets.
- Sets are encoded with minhash data sketches.
- A table T is joinable with the query U if Containment $(X \in T, Q \in U) \ge t$.
- We use an LSH index for fast querying.

Minhash²

▶ Data sketch for estimating Jaccard similarity of sets.

$$J(S,T) = \frac{|S \cap T|}{|S \cup T|}$$

- ➤ A minhash signature is composed of the results of a number of minhashes.
- ► The probability that the minhashes for two sets are the same equals the Jaccard similarity of the sets¹.
- ▶ Minhash LSH hashes similar signatures to the same bucket.

¹Mining of Massive Datasets, Chapter 3.

²A. Broder, "On the Resemblance and Containment of Documents", Compression and Complexity of Sequences 1997.

LSH Ensemble³

Set containment is a better measure for computing joinability.

$$C(Q,X)=\frac{|Q\cap X|}{|Q|}$$

- We can convert Jaccard similarity to containment, given the sizes of the domains.
- ► The size of the indexed domain is not constant, so domains are partitioned by cardinality.
- ▶ A minhash LSH index is constructed for each partition.

³Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, Renée J. Miller, "LSH Ensemble: Internet-Scale Domain Search", VLDB 2016.

Outline

System overview

Joinable table search

Unionable table search

Semantic Keyword Search

Unionable table search

		Candidate Name		Source Type		Source Name		Date		Amo	
UNIO	N	Abbett, Richard		Candidate		Abbett, Richard		09/29/20		16 20.00	
	\rightarrow	Abercrombie, Neil		Other Entity		Facebook, Inc.		04/01/20	14 65.16		5
		Aiona, Sam		Candidate		Aiona, Sam		06/30/20		015 6415	
	Candidate Name		Contributor Type		c	Contributor Name		Date	Amount		.00
L	lge, David		Individual		Ohori, Yoshiko		09/11/2014		99.05		.00
	lge, David		Individual		Pe	Perry, Nolan		10/13/2014		50.00	
	Herkes, Robert		Individual		Ni	Nip, Celeste		02/04/2008		200.00	
	Hannemann, Mufi		Individual		Мι	Murakami, Ross R.		04/15/2008		500.00	
	Hannemann, Mufi		Individual		Di	Dinsmore, Jeffrey C.		07/20/2009		1000.00	
	Hooser, Gary		Individual		SH	SHERMAN, WENDY L.		06/10/2010		500.00	
	Hannemann, Mufi		Individual		Mi	Miyashiro, Alton K.		10/09/2014		2000.00	
	Hannemann, Mufi		Individual		Konishi, Glen S.		07/22/2010		150.00		33
	Hong, Ted		Individual		Malasek, Vojtech		10/29/2008		4000.00		
	Hannemann, Mufi		Individual		Ta	Takara, Russell H.		09/08/2008		1000.00	
	Hokama, Riki		Individual		Ma	Matsuda, Eric		06/25/2013		225.00	
	Hannemann, Mufi		Individual		М	McIntyre, Gregory T.		06/30/2007		250.00	
	Ige, David		Individual		Lir	Lincoln, Faye		11/10/2014		500.00	

Unionable table search

- ► The LSH Ensemble index is queried for each column of the query table.
- ▶ Candidate tables are those that appear in $\geq 40\%$ of the joinability queries.
- ► Candidates are ranked by alignment: the fraction of candidate columns that are unionable with a query column.

Outline

System overview

Joinable table search

Unionable table search

Semantic Keyword Search

Semantic Keyword Search

- ▶ Problem: Given a list of keywords, return top-k similar datasets
- Motivation: Data scientists want a simple way to find new and insightful datasets

Our Approach

- Search on the metadata, not on the data in the dataset
 - Data in dataset is too noisy
- Metadata that we have:
 - Dataset description
 - Column description
 - Datasets tags

Our Approach (Cont.)

Use semantic similarity

Example: Fish & Seafood

Example: Coronavirus & Respitory System

Others Approach

► Google Dataset Search

System Overview

- FastText: word in dataset's metadata -> embedding vector
- SimHash: embedding vector -> bit vector
- Locality Sensitive Hashing (LSH): build index on the bit vector of each word

FastText⁴

- ▶ Word in dataset's metadata -> embedding vector
- Embedding vector represent the semantics of words
- Embedding vectors are learned from wikipedia articles

⁴A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, *Bag of Tricks for Efficient Text Classification*

FastText (Cont.)

- closeness or similarity of vectors := Cosine-Similarity
- ► Closer a pair of vectors, closer the semantics of the two words
- Example: King and Queen have high cosine similarity

Simhash

- Embedding Vector -> Bit Vector
- ► Word: [puple, blue, green]
 - ► Neighbor: [1, 1, 0]
 - ► Family: [1, 0, 0]
 - ► King: [0, 0, 0]
 - ▶ Queen: [0, 0, 0]

Locality Sensitive Hashing (LSH)

- ▶ Underlying data structure: Hash Table
 - ► Predefined # of buckets
- ▶ Insert SimHashed embedding vectors into hash table
- ► Collitions in hash table buckets are candidate pairs.

SimHash LSH (Cont.)

- ► Predefined # of hash tables
- Query each hash table for M candidates
 - $M \ge k$
- Order M candidates into a top-k list by the cosine similarity of embedding vectors

Problem with SimHash LSH

- ► The # of hash tables and # of buckets in each hash table must be hand tuned
- ▶ Must be retuned when data size significantly changes

LSH Forest⁵

- Underlying data structure: Prefix Tree or Trie
- Similar to LSH
 - Predefined # of prefix trees
 - Ascend each prefix tree for M candidates
 - $ightharpoonup M \ge k$

⁵Mayank Bawa, Tyson Condie, and Prasanna Ganesan. 2005. *LSH forest:* self-tuning indexes for similarity search

LSH Forest (Cont.)

Variable length hashing in prefix tree solves LSH's problems

► Add Bit Vector: [0, 0, 1, ...]

- Prefix Tree expands and contracts to account for # of embedding vectors
 - ► Thus, no hand tuning

Review

- ► FastText: Word in Metadata -> Embedding vector
- ► SimHash: Embedding Vector -> Bit Vector
- ► LSH Forest: Index on Bit Vectors

Answering Queries

- Query the index with each keyword in the keyword list
- Add the results to a list
- Rank datasets by how often they appear in the list

Problems

- ▶ No semantic relationships **between** words
 - Example: Keyword List := "traffic violations"
 - Produces good results for "traffic" and "violations", but not "traffic violations"

Outline

System overview

Joinable table search

Unionable table search

Semantic Keyword Search

- Improve ability to see semantic relationships between words
- Organize datasets into a directory structure
- Use semantic similarity of column names in unionable table search.
- Similar dataset search based on metadata similarity.
- Keyword search over data values.