Optimizing carbon tax for decentralized electricity markets with an agent-based model

Anonymized

ABSTRACT

Placeholder

KEYWORDS

Energy markets, policy, carbon tax, genetic algorithm, optimization

ACM Reference Format:

Anonymized. 2020. Optimizing carbon tax for decentralized electricity markets with an agent-based model. In *ICPE '20: ACM/SPEC International Conference on Performance Engineering, April 20–24, 2020, Edmonton, Canada.* ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3185768.3186313

1 INTRODUCTION

Computer simulation allows practitioners to model real-world systems using software. These simulations allow for 'what-if' analyses which can provide an indication as to how a system may behave under certain policies, environments and assumptions. These simulations become important in systems which have high costs, impacts or risks associated with them.

Electricity markets are an example of such a system. Disruptions to electricity supply, a substantial increase in the cost of electricity or unrestrained carbon emissions have the potential to destabilise economies. It is for reasons such as these that electricity market models are used to test hypotheses, develop strategies and gain an understanding of underlying dynamics [?].

2 LITERATURE REVIEW

Placeholder

3 OPTIMIZATION METHODS

Placeholder

4 SIMULATION ENVIRONMENT

Placeholder

5 RESULTS

Placeholder

6 CONCLUSION

Placeholder

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ICPE '20, April 20–24, 2020, Edmonton, Canada © 2020 Association for Computing Machinery. ACM ISBN 978-1-4503-XXXX-X/18/06...\$15.00 https://doi.org/10.1145/3185768.3186313

Figure 1: Development of genetic algorithm rewards of average electricity price and relative carbon density in 2035 over time for highest degrees of freedom per year.

Figure 2: 2D density plot of carbon tax strategies that led to an average electricity price of below £5/MWh by 2035.

ACKNOWLEDGMENTS

Anonymized

REFERENCES

Figure 3: Development of genetic algorithm rewards of average electricity price and relative carbon density in 2035 over time for linear carbon strategy.

Figure 4: Density plot of average electricity price smaller than £8/MWh in 2035 over generation number of genetic algorithm.

Figure 5: Linear carbon tax strategies visualised with average electricity price smaller than £5/MWh.