Hoja de ecuaciones Física General III

Electrostática

Ley de Coulomb

$$oxed{ec{F}_{1,2} = rac{k \cdot q_1 \cdot q_2}{r_{1,2}^2} \cdot \hat{r}_{1,2}}$$

 $egin{aligned} \vec{F}_{1,2} = \overline{\frac{k \cdot q_1 \cdot q_2}{r_{1,2}^2} \cdot \hat{r}_{1,2}} \end{aligned} \hat{F}_{1,2} = ext{Fuerza que el cuepo 1 le ejerce al cuerpo 2}.$

 $q_i =$ cargas de los cuerpos.

 $\vec{r}_{1,2} = \text{vector de posición de 1 a 2.}$

- $k \equiv \text{constante de Coulomb}$.
- $k = 8,98755 \cdot 10^9 \frac{Nm^2}{C^2} = \frac{1}{4\pi\varepsilon_0}$
- $\varepsilon_0 \equiv$ perimitividad en el vacío.
- $\bullet \ \varepsilon_0 = 8,85419 \cdot 10^{-12} \frac{C^2}{Nm^2}$
- $C \equiv Coulomb$.

Principio de superposición

ullet En un sistema con múltiples cargas , la fuerza ejercida sobre una partícula (X), es la suma de las fuerzas $\vec{F}_{i,X}$:

$$ec{F}_T = k \cdot \sum_{i=0}^n rac{q_X \cdot q_i}{r_{i,X}^2} \cdot \hat{r}_{i,X}$$

Constantes

ullet Las cargas están cuantizadas de la forma $q=ne:n\in\mathbb{Z}$, tal que $e=1,6022\cdot 10^{-19}C$

ullet Carga del protón: $p^+=e$

• Carga del electrón: $e^- = -e$

ullet Carga del neutrón: $N^0=0$

• Masa del protón: $m_{n^+} = 1,673 \cdot 10^{-27} kg$

ullet Masa del electrón: $m_{e^-}=9,109\cdot 10^{-31} kg$

ullet Masa del neutrón: $m_{N^0}=1,675\cdot 10^{-27} kg$

Campo eléctrico

$$\bullet \, \vec{F} = q \cdot \vec{E}$$

$$ullet$$
 \vec{E} \equiv Campo eléctrico, $[E] = \frac{N}{C}$

Principio de superposición del campo

$$ec{E}_T(ec{r}) = k \cdot \sum_i rac{q_i}{r_{i,0}^2} \cdot \hat{r}_{i,0} = k \cdot \sum_i rac{q_i \cdot (ec{r}_0 - ec{r}_i)}{|ec{r}_0 - ec{r}_i|^3}$$

Líneas de campo

ullet Son líneas continuas tangentes al campo, tal que la cantidad de líneas de campo por unidad de área esta asociada a la magnitud de \vec{E} . Estas tienen sentido de forma que apuntan desde cargas positivas hacia cargas negativas.

Campo de una densidad de carga

- ullet $ho \equiv$ densidad de carga volumétrica.
- ullet $\sigma \equiv$ densidad de carga superficial.
- ullet $\lambda \equiv$ densidad de carga lineal.

$$ec{E} = \iiint_V rac{k \cdot
ho \cdot \hat{r}_p}{r_p^2} dV$$

 $\vec{r}_p \equiv {
m vector}$ desde el dV hasta la posición en la que se calcula el campo

