Les calculatrices sont autorisées.

* * *

NB: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

* * *

AUTOUR DE LA FONCTION ZETA ALTERNÉE DE RIEMANN

Objectifs : On note F la fonction zeta alternée de Riemann définie par

$$F(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^x}$$

et ζ la fonction zeta de Riemann définie sur $]1, +\infty[$ par

$$\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}.$$

Ce problème propose une étude croisée de quelques propriétés de F et ζ .

Mise à part la partie III. qui utilise des résultats de la partie I., les parties sont dans une très large mesure indépendantes.

I. Généralités

- 1. Déterminer l'ensemble de définition de F.
- 2. On considère la suite de fonctions $(g_n)_{n\geqslant 1}$ définies sur [0,1[par

$$g_n(t) = \sum_{k=0}^{n} (-t)^k.$$

Déterminer la limite simple g de (g_n) puis, en utilisant le théorème de convergence dominée, montrer que $F(1) = \int_0^1 g(t) dt$. En déduire la valeur de F(1).

- 3. Démontrer que la série de fonctions $\sum_{n\geqslant 1}\frac{(-1)^{n-1}}{n^x}$ converge normalement sur $[2,+\infty[$. En déduire la limite de F en $+\infty$.
- 4. Dérivabilité de F
 - (a) Soit x > 0. Étudier les variations sur $]0, +\infty[$ de la fonction $t \mapsto \frac{\ln t}{t^x}$ et en déduire que la suite $\left(\frac{\ln n}{n^x}\right)_{n\geqslant 1}$ est monotone à partir d'un certain rang (dépendant de x) que l'on précisera.
 - (b) Pour $n \ge 1$, on pose $f_n : x \mapsto \frac{(-1)^{n-1}}{n^x}$. Si a est un réel strictement positif, démontrer que la série des dérivées $\sum_{n \ge 1} f'_n$ converge uniformément sur $[a, +\infty[$.
- En déduire que F est une fonction de classe C^1 sur $]0, +\infty[$

5. Lien avec ζ Calculer, pour x > 1, $F(x) - \zeta(x)$ en fonction de x et de $\zeta(x)$. En déduire que :

$$F(x) = (1 - 2^{1-x})\zeta(x) .$$

Puis en déduire la limite de ζ en $+\infty$.

II. Produit de Cauchy de la série alternée par elle-même

On rappelle que le produit de Cauchy de deux séries $\sum_{n\geqslant 1}a_n$ et $\sum_{n\geqslant 1}b_n$ est la série $\sum_{n\geqslant 2}c_n$ où

 $c_n = \sum_{k=1}^{n-1} a_k b_{n-k}$. Dans cette partie, on veut déterminer la nature selon la valeur de x, de la série

$$\sum_{n\geqslant 2} c_n(x)$$
, produit de Cauchy de $\sum_{n\geqslant 1} \frac{(-1)^n}{n^x}$ par elle-même.

Cette étude va illustrer le fait que le produit de Cauchy de deux séries convergentes n'est pas nécessairement une série convergente.

Dans toute cette partie, n désigne un entier supérieur ou égal à 2 et x un réel strictement positif.

- 6. Étude de la convergence
 - (a) Indiquer sans aucun calcul la nature et la somme en fonction de F de la série produit $\sum_{x \geq 2} c_n(x), \text{ lorsque } x > 1.$
 - (b) Démontrer que pour x > 0, $|c_n(x)| \ge \frac{4^x(n-1)}{n^{2x}}$. En déduire pour $0 < x \le \frac{1}{2}$, la nature de la série $\sum_{n \ge 2} c_n(x)$.
- 7. Cas où x = 1On suppose dans cette question 7. que x = 1.
 - (a) Décomposer en éléments simples la fraction rationnelle $\frac{1}{X(n-X)}$.

 En déduire une expression de $c_n(x)$ en fonction de $\frac{H_{n-1}}{n}$ où $H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$ (somme partielle de la série harmonique).
 - (b) Déterminer la monotonie de la suite $\left(\frac{H_{n-1}}{n}\right)_{n\geq 2}$.
 - (c) En déduire la nature de la série $\sum_{n\geqslant 2} c_n(x)$.

III. Calcul de la somme d'une série à l'aide d'une étude de zeta au voisinage de 1.

- 8. Développement asymptotique en 1
 - (a) Écrire en fonction de $\ln 2$ et de F'(1) le développement limité à l'ordre 1 et au voisinage de 1 de la fonction F puis déterminer le développement limité à l'ordre 2 et au voisinage de 1 de la fonction $x \mapsto 1 2^{1-x}$.
 - (b) En déduire deux réels a et b qui s'écrivent éventuellement à l'aide de $\ln 2$ et F'(1) tels que l'on ait pour x au voisinage de 1^+ :

$$\zeta(x) = \frac{a}{x-1} + b + o(1).$$

9. Développement asymptotique en 1 (bis) On considère la série de fonctions $\sum_{n\geqslant 1} v_n$ où v_n est définie sur [1, 2] par

$$v_n(x) = \frac{1}{n^x} - \int_n^{n+1} \frac{\mathrm{d}t}{t^x}.$$

(a) Justifier que pour $n \geqslant 1$ et $x \in [1, 2]$, on a :

$$0 \leqslant v_n(x) \leqslant \frac{1}{n^x} - \frac{1}{(n+1)^x}.$$

(b) Justifier que pour $x \in [1, 2]$, la série $\sum_{n \ge 1} v_n(x)$ converge. On note alors $\gamma = \sum_{n=1}^{+\infty} v_n(1)$ (c'est la constante d'Euler).

- (c) Exprimer pour $x \in]1,2]$, la somme $\sum_{n=1}^{+\infty} v_n(x)$ à l'aide de $\zeta(x)$ et 1-x.
- (d) Démontrer que la série de fonctions $\sum_{n\geqslant 1}v_n$ converge uniformément sur [1,2] (on pourra utiliser le reste de la série).
- (e) En déduire que l'on a pour x au voisinage de 1^+ :

$$\zeta(x) = \frac{1}{x-1} + \gamma + o(1).$$

10. Application

Déduire des résultats précédents une expression à l'aide de $\ln 2$ et γ de la somme

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1} \ln n}{n}.$$

IV. Calcul des F(2k) à l'aide des nombres de Bernoulli

Dans cette partie, on se propose d'établir une formule permettant de calculer la valeur des $\zeta(2k)$ avec un entier $k \geqslant 1$. Pour cela, on introduit les polynômes et nombres de Bernoulli. $\mathbb{R}[X]$ désigne la \mathbb{R} -algèbre des polynômes à coefficients réels.

On identifie un polynôme et sa fonction polynomiale associée.

On dit qu'une suite (B_n) de $\mathbb{R}[X]$ est une suite de polynômes de Bernoulli si elle vérifie les propriétés suivantes :

$$B_0 = 1$$
, $\forall n \in \mathbb{N}^*, B'_n = nB_{n-1}$ et $\int_0^1 B_n(t) dt = 0$.

On **admet** qu'il existe **une et une seule** suite de polynômes de Bernoulli que l'on notera (B_n) . On l'appelle **la** suite de polynômes de Bernoulli.

On pose $b_n = B_n(0)$, b_n est appelé le n-ième nombre de Bernoulli.

- 11. Calculer B_1 et B_2 . En déduire b_1 et b_2 .
- 12. Calculer pour $n \ge 2$, $B_n(1) B_n(0)$.
- 13. Symétrie

Démontrer que pour tout $n \in \mathbb{N}$, on a $B_n(X) = (-1)^n B_n(1-X)$.

14. Développement en série de Fourier

Soit k un entier naturel. On définit l'application g_k de $\mathbb R$ dans $\mathbb R$ par :

$$g_k(x) = B_{2k}\left(\frac{x}{2\pi}\right)$$
 pour $x \in [0, 2\pi[$ et g_k est périodique de période 2π .

Justifier avec soin qu'il existe une unique suite de réels $(a_n(k))_{n\geqslant 0}$ telle que pour tout réel x, on ait :

$$g_k(x) = \frac{a_0(k)}{2} + \sum_{n=1}^{+\infty} a_n(k) \cos(nx).$$

- 15. Expression des coefficients
 - (a) Soient $n \ge 1$ et $k \ge 1$. Montrer que l'on a :

$$a_n(k) = \frac{k}{(n\pi)^2} \Big(B_{2k-1}(1) - B_{2k-1}(0) \Big) - \frac{(2k)(2k-1)}{(2n\pi)^2} a_n(k-1).$$

- (b) En déduire la valeur de $a_n(1)$ pour $n \ge 1$.
- (c) Conclure que pour $n \ge 1$ et $k \ge 2$, on a :

$$a_n(k) = \frac{(-1)^{k-1}(2k)!}{2^{2k-1}(n\pi)^{2k}}.$$

On remarquera pour la suite (sans le redémontrer) que cette formule reste vraie pour k=1.

16. Conclusion

Déterminer pour $k \ge 1$ une relation entre $\zeta(2k)$ et b_{2k} .

- 17. Calcul effectif des b_n
 - (a) Démontrer en utilisant une formule de Taylor que pour tout $n \in \mathbb{N}$, on a

$$B_n(X) = \sum_{k=0}^n \binom{n}{k} b_{n-k} X^k.$$

(b) En déduire une relation de récurrence permettant de calculer les nombres de Bernoulli sans avoir à déterminer les polynômes de Bernoulli associés. Écrire, dans un des langages au programme, un petit algorithme permettant d'obtenir la valeur de b_n pour un entier n donné.

Fin de l'énoncé