HW 3 - Astrophysical Dynamics

a)

Defining variables

```
In[13]:= n = 128(*Number of zones = n^3*);
   G = 6.674 * 10^-11 (*Gravitational constant*);
   M = 10^12 * 1.99 * 10^30 (*Mass of sphere*);
   pc = 3.086 * 10^16 (*Parsecs to meters*);
   R = 30 * 10^3 pc (*Radius of the sphere*);
   L = 90 * 10^3 pc (*Length of the box*);
```

Green's function

The array mG stores the values of the the Green's function in real space.

Fourier transform of the Green's function

```
In[21]:= FmG = Fourier[mG];
```

The array FmG stores the values of the the Green's function in fourier space.

b)

Density function

```
\begin{split} & \text{In}[22] = \ P = \text{If} \left[ \left( \# 1 - L \middle/ 2 \right) ^2 + \left( \# 2 - L \middle/ 2 \right) ^2 + \left( \# 3 - L \middle/ 2 \right) ^2 \le R^2, \, M \middle/ \left( 4 \middle/ 3 \, \text{Pi} \, R^3 \right), \, 0 \right] \, \&; \\ & \text{mn} = \text{ConstantArray}[0, \, \{2 \, n, \, 2 \, n, \, 2 \, n\}]; \\ & \text{mn}[[1 \, ; ; \, n, \, 1 \, ; ; \, n, \, 1 \, ; ; \, n]] = \\ & \text{Table}[P[i \, L \middle/ \, n, \, j \, L \middle/ \, n, \, k \, L \middle/ \, n], \, \{i, \, 1, \, n\}, \, \{j, \, 1, \, n\}, \, \{k, \, 1, \, n\}]; \end{split}
```

The array mn stores the values of the density in real space.

Fourier transform of density function

```
In[25]:= Fmn = Fourier[mn];
```

Fmn is the fourier transform of the density array.

Inverse fourier transform of the product

```
In[26]:= mSol = Re[InverseFourier[Fmn * FmG]][[1;; n, 1;; n, 1;; n]];
```

The array mSol now contains the values of gravitational potential.

Analytical solution

```
ln[27] = V[r] := If[Abs[r] < R, -GM(3R^2 - r^2)/(2R^3), -GM/Abs[r]]
```

Plot of analytic vs numerical solution along x-axis

```
ln[28]:= A = mSol[[1; n, Floor[n/2], Floor[n/2]]];
     B = V / @ \left( Range[n] L / n - L / 2 \right); X = Range[n] L / n;
```

The numerical solution only matches with the analytical solution after multiplying by a constant factor (4177.68) due to some unknown reason. The numerical solution is scaled by this constant for the following plots.

Averaging radial potential

Calculating the zones within shells of radius 2jL/n and 2L(j+1)/n

Calculating average potential of all zones within a shell

```
ln[31] = Vr = Table [Mean[Select[grid, #[[1]] == j \&][[All, 2]]], {j, 1, n/2}];
```

The array Vr now contains the average radial potential measured over steps of 2L/n.

Plot of analytic vs numerical solution of average radial potential

```
In[36]= Show [ListPlot[Transpose [ {Range [Length[Vr]] L / n, Abs [Vr] (-V[0] / Max[Abs [Vr]])}],

AxesLabel → {HoldForm["r"], HoldForm["$\phi"]},

PlotLabel → HoldForm["|Average radial potential| vs r"]],

Plot[-V[x], {x, 0, L/2}, PlotStyle → Red]]

| Average radial potential| vs r

| Average radial potential| vs r
```

 $8.0 * 10^{20}$

 $2.0 * 10^{20}$

 $4.0 * 10^{20}$

 $6.0 * 10^{20}$

1.0 * 10²¹

1.4 * 10²¹

 $1.2 * 10^{21}$

Defining constants

```
In[70]:= pc = 3.086 * 10^16 (*Parsecs to meters*);
    n = nxy = 128(*Number of zones along x and y*);
    nz = n; (*Number of zones along z*);
    G = 6.674 * 10^-11 (*Gravitational constant*);
    Lxy = 30 * 10^3 pc (*Length of the box along x and y directions*);
    Lz = 1 * 10^3 pc (*Length of the box along z direction*);

In[33]:= p0 = 8 * 10^10 * 1.99 * 10^30 / (10^3 pc)^3;
    r0 = 10^3 pc;
    h = .1 * 10^3 pc;
```

Green's function

The array mkG stores the values of the the Green's function in real space.

Fourier transform of the Green's function

```
In[38]:= FmkG = Fourier[mkG];
```

The array FmkG stores the values of the the Green's function in fourier space.

Density function

```
In[39]:= Pk = p0 (1 + (\#1 - Lxy/2)^2 + (\#2 - Lxy/2)^2)/r0^2)^(-3/2)

Exp[-Abs[\#3 - Lz/2]/h] &;

mkn = ConstantArray[0, {2 n, 2 n, 2 nz}];

mkn[[1 ;; n, 1 ;; n, 1 ;; nz]] =

Table[Pk[i Lxy/n, j Lxy/n, k Lz/nz], {i, 1, n}, {j, 1, n}, {k, 1, nz}];
```

The array mkn stores the values of the density in real space.

Fourier transform of density function

```
In[42]:= Fmkn = Fourier[mkn];
```

Fmkn is the fourier transform of the density array.

Inverse fourier transform of the product

```
In[43]:= mkSol = Re[InverseFourier[Fmkn *FmkG]][[1;; n, 1;; n, 1;; nz]];
```

The array mkSol now contains the values of gravitational potential.

Plot of potential along x-axis passing through the center of the disk

```
ln[44]:= S = mkSol[[n/2, 1;; n, nz/2]]; X = Range[n] Lxy/n;
\label{eq:local_local_problem} $$\ln[45] = \text{ListPlot[Transpose[}\{X, -S\}], AxesLabel} \to \{\text{HoldForm[}"x"], \text{HoldForm[}"\phi"]\},
       PlotLabel → HoldForm["|Potential| vs x coordinate"]]
```


Finding average radial potential on the disk

```
log[46] = gridk = Flatten[Table[Floor[Sqrt[1.0 (i-n/2+.5)^2+ (j-n/2+.5)^2]],
          mkSol[[i, j, nz/2]], {i, 1, n}, {j, 1, n}], 1];
```

Calculating average potential of all zones within a shell

```
ln[47] = Vkr = Table[Mean[Select[gridk, #[[1]] == j &][[All, 2]]], {j, 1, n/2}];
```


Finding an interpolating function passing through these points

Interpolation to find derivatives

```
In[49]:= fR = Interpolation Transpose
                \left\{ \left( \text{Range} \left[ \text{n} / \text{2, n} \right] - \text{n} / \text{2} \right) \text{Lxy} / \text{n, -mkSol} \left[ \left[ \text{Floor} \left[ \text{n} / \text{2} \right] \right] ; \text{n, n} / \text{2, nz} / \text{2} \right] \right] \right\} \right]
```


Circular orbit frequency

Epicyclic frequency

The epicyclic frequency k(R) is given by:

Corotation radius

$$\Omega_b = \mathsf{wb}$$

$$ln[64]$$
:= **wb** = **10^-7**/(**365 24** * **60** * **60**.0)
Out[64]= 3.170979198 * 10⁻¹⁵

The corotation radius (Rc) is that value of R at which k(R)=wb

Inner Lindbald resonance occurs when k(R)>wb => R<Rc

Outer Lindbald resonance occurs when k(R)<wb => R>Rc