Ethernet

Struktura Ethernet II rámce (DIX 2.0)

8 bytes	6 bytes	6 bytes	2	46 - 1500 bytes	4 bytes
Preamble /	Destination address	Source	Туре	User data	FCS

Preamble

- Slouží k bitové synchronizaci hodinového signálu
- O Skládá se ze 7 Bytů (10101010 sedmkrát -> střídající se 1 a 0)
- SFD (start of frame delimiter)
 - o Označuje začátek rámce
 - o Následuje hned po Preamble
 - o Skládá se z 1 Bytu (10101011)
- **Destination address** (cílová adresa)
 - Formát adresy → MAC
- Source address (zdrojová adresa)
 - Formát adresy → MAC
- Type
 - o Když hodnota tohoto pole je větší než 1536 tak se jedná o Ethernet II frame
 - Udává typ přenášeného protokolu v datovém poli
 - o 2 Byty

Data

- o Minimálně musí mít 46 Bytů
- Když má datové pole méně než 46 bytů, tak je pole uměle doplněno, aby splňovalo daný počet (padding byty jsou přidány)
- Maximální počet bytů je 1500
- Nestandartní Jumbo rámce můžou být i větší
- FCS (frame check sequence)
 - O Zdroj vypočítá kontrolní součet a ten je přidán k rámci
 - Cílová stanice vypočítá kontrolní součet a porovná ho s výsledkem v rámci
 - O Pokud se rovnají je vše v pořádku, když se neshodují je rámec zahozen
 - Ethernet sám osobně nezajišťuje znovu odeslání rámce

Struktura 802.3 rámce

- Vychází z Ethernet II
- Pole Type je nahrazeno polem Length

Length

 Pokud je hodnota tohoto pole menší nebo rovna 1500 tak udává délku přenášených dat

• 802.2 LLC header

- o Obsahuje:
- DSAP (destination service access point)
 - Logická adresa cílového bodu
 - 1 Byte
- SSAP (source service access point)
 - Logická adresa zdrojového bodu
 - 1 Byte
- Control
 - Control field je podobný jako u HDLC
 - 1 nebo 2 Byty
 - U-format: 1 Byte, pro aplikace bez připojení
 - I-format: 2 Byty,
 - S-forma: 2 Byty,
- Snap rozšíření (Subnetwork acces protocol)
 - o Pro rozeznávání více protokolů
 - Skládá se z:
 - OUI (organizationally unique identifier)
 - 24bitové číslo které identifikuje organizaci/výrobce
 - o Protocol ID
 - Ekvivalent **Type pole** v rámci Ethernet II
 - 2 Byty

Shrnutí obou struktur

- Ve dnešním standardu 802.3 je možné používat oba formáty rámců
- V LAN jsou více používané Ethernet II rámce, protože jsou jednodušší a dochází k méně přeslechům
- Kvůli používání obou formátů se musí nějak rozlišit
 - o Ethernet II = Type field ≥ 1536
 - 802.3 rámec = length field \leq 1500
- Oba formáty mohou obsahovat 802.1Q tag
 - Nachází se před Type/Length polem
 - Dokazuje členství určité VLANy

Ethernet

- Skupina technologií používaných v LAN, MAN, WAN
- Nejrozšířenější LAN technologie
- Dříve byl používán koaxiální kabel, ale později byl nahrazen kroucenou dvojlinkou (Twisted pair) a optickým kabelem
 - Přechod ze sběrnicových sítí na hvězdicové
- Fyzická topologie je různá (nejčastěji hvězda), logická topologie je sběrnice
- Specifikuje fyzickou a linkovou vrstvu
- Kabelové Specifikace:
 - o 10Base2

- 10Mbs, coax
- o 10BaseT
 - 10Mbs, twisted pair
- 100BaseTX
 - 100Mbs, twisted pair
- 1000BaseT
 - 1Gbs, twisted pair
- Princip
 - o Systémy komunikující přes Ethernet dělí tok dat do částí tzv. rámce (frame)
 - o Každý frame obsahuje zdrojovou a cílovou adresu a detekci chyb

Historie

- Experimentální Ethernet
 - o Rok 1973
 - o 2,94 Mbit/s, coaxial kabel
- Ethernet I (DIX v1.0)
 - o Rok 1980
- Ethernet II (DIX v2.0)
 - o Rok 1982
- IEEE 802.3 standard
 - o Rok 1983
 - 10Base5 10 Mbit/s
- 802.3ab
 - o Rok 1999
 - o První GigabitEthernet 1000BASE-T přes kroucenou dvojlinku

Aktuální stav

- Zařízení, které lze připojit na drátovou síť mají konektor RJ-45
- Nejobvyklejší rychlost rozhraní je 1000Mbit/s občas i 100Mbit/s