Sheafification

Soham

July 2016

Consider a presheaf \mathcal{F} on a space X. We want to canonically associate a sheaf \mathcal{F}^+ to X. To do this, associate to every open set $U \subset X$ the set of "formal sections" of the form

$$f := (f_p \in \mathcal{F}_p)_{p \in U} \tag{1}$$

with
$$f_q = s_q$$
 at all $q \in V$, for $p \in \text{open } U \subset V$ (2)

The idea is to call a set of germs at points in U a "section" if it locally corresponds to functions in the presheaf. Now call the rule that associates

$$U \mapsto \{f_1, f_2, \dots, \}$$

 \mathcal{F}^+ .

Theorem. \mathcal{F}^+ is a sheaf.

Let's verify all the properties. This will necessarily be a dull task.

Theorem. \mathcal{F}^+ is a presheaf.

Proof. 1. The trivial restriction does nothing to sections. This is obvious, since the open subsets and the sections of \mathcal{F} over the open subsets are the same for U and . . . U.