Econometrics Cheat Sheet

by Tyler Ransom, University of Oklahoma @tyleransom

Data & Causality

Basics about data types and causality.

Types of data

Experimental Data from randomized experiment Observational Data collected passively Cross-sectional Multiple units, one point in time Time series Single unit, multiple points in time Longitudinal (or Panel) Multiple units followed over multiple time periods

Experimental data

- Correlation \Longrightarrow Causality
- Very rare in Social Sciences

Statistics basics

We examine a random sample of data to learn about the population

Random sample	Representative of population
Parameter (θ)	Some number describing population
Estimator of θ	Rule assigning value of θ to sample
	e.g. Sample average, $\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$
Estimate of θ	What the estimator spits out
	for a particular sample $(\hat{\theta})$

Sampling distribution Distribution of estimates across all possible samples

Bias of estimator W $E(W) - \theta$

W efficient if $Var(W) < Var(\widetilde{W})$ Efficiency W consistent if $\hat{\theta} \to \theta$ as $N \to \infty$ Consistency

Hypothesis testing

p-value

The way we answer ves/no questions about our population using a sample of data. e.g. "Does increasing public school spending increase student achievement?"

null	hypothe	esis	(H_0)	Typically,	H_0	$:\theta=0$
alt.	hypothe	esis	(H_a)	Typically,	H_0	$: \theta \neq 0$
		1	1 ()	CC 1	c	1 .

Tolerance for making Type I error; significance level (α)

(e.g. 10%, 5%, or 1%)

test statistic (T)Some function of the sample of data critical value (c)Value of T such that reject H_0 if |T| > c;

c depends on α :

c depends on if 1- or 2-sided test Largest α at which fail to reject H_0 ;

reject H_0 if $p < \alpha$

Simple Regression Model

Regression is useful because we can estimate a ceteris paribus relationship between some variable x and our outcome y

$$y = \beta_0 + \beta_1 x + u$$

We want to estimate $\hat{\beta}_1$, which gives us the effect of x on y.

OLS formulas

To estimate $\hat{\beta}_0$ and $\hat{\beta}_1$, we make two assumptions:

$$1. \ E\left(u\right) =0$$

2. E(u|x) = E(u) for all x

When these hold, we get the following formulas:

$$\hat{\beta}_{0} = \overline{y} - \hat{\beta}_{1}\overline{x}$$

$$\hat{\beta}_{1} = \frac{\widehat{Cov}(y, x)}{\widehat{Var}(x)}$$

 $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ fitted values (\hat{y}_i) residuals (\hat{u}_i) $\hat{u}_i = y_i - \hat{y}_i$ Total Sum of Squares $SST = \sum_{i=1}^{N} (y_i - \overline{y})^2$ Expl. Sum of Squares $SSE = \sum_{i=1}^{N} (\hat{y}_i - \overline{y})^2$ Resid. Sum of Squares $SSR = \sum_{i=1}^{N} \hat{u}_i^2$ R-squared (R^2) $R^2 = \frac{SSE}{SST}$; "frac. of var. in y explained by x"

Algebraic properties of OLS estimates

 $\sum_{i=1}^{N} \hat{u}_i = 0$ (mean & sum of residuals is zero)

 $\sum_{i=1}^{N} x_i \hat{u}_i = 0$ (zero covariance bet. x and resids.)

The OLS line (SRF) always passes through (\bar{x}, \bar{y}) SSE + SSR = SST

 $0 \le R^2 \le 1$

Interpretation and functional form

Our model is restricted to be linear in parameters But not linear in x

Other functional forms can give more realistic model

Model	DV	RHS	Interpretation of β_1
Level-level	y	x	$\Delta y = \beta_1 \Delta x$
Level-log	y	$\log(x)$	$\Delta y \approx (\beta_1/100) [1\% \Delta x]$
Log-level	$\log(y)$	x	$\%\Delta y \approx (100\beta_1)\Delta x$
Log-log	$\log(y)$	$\log(x)$	$\%\Delta y pprox \beta_1\%\Delta x$
Quadratic	y	$x + x^2$	$\Delta y = (\beta_1 + 2\beta_2 x) \Delta x$

Note: DV = dependent variable; RHS = right hand side

Multiple Regression Model

Multiple regression is more useful than simple regression because we can more plausibly estimate *ceteris paribus* relationships (i.e. E(u|x) = E(u) is more plausible)

 $y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$

 $\hat{\beta}_1, \dots, \hat{\beta}_k$: partial effect of each of the x's on y

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}_1 - \dots - \hat{\beta}_k \overline{x}_k$$

$$\hat{\beta}_j = \frac{\widehat{Cov}(y, \text{residualized } x_j)}{\widehat{Var}(\text{residualized } x_j)}$$

where "residualized x_i " means the residuals from OLS regression of x_i on all other x's (i.e. $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots x_k$)

Gauss-Markov Assumptions

- 1. y is a linear function of the β 's
- 2. y and x's are randomly sampled from population
- 3. No perfect multicollinearity
- 4. $E(u|x_1,...,x_k) = E(u) = 0$ (Unconfoundedness)
- 5. $Var(u|x_1,...,x_k) = Var(u) = \sigma^2$ (Homoskedasticity)

When (1)-(4) hold: OLS is unbiased; i.e. $E(\hat{\beta}_i) = \beta_i$

When (1)-(5) hold: OLS is Best Linear Unbiased Estimator

Variance of u (a.k.a. "error variance")

$$\hat{\sigma}^2 = \frac{SSR}{N - K - 1}$$
$$= \frac{1}{N - K - 1} \sum_{i=1}^{N} \hat{u}_i^2$$

Variance and Standard Error of $\hat{\beta}_i$

$$Var(\hat{eta}_j) = rac{\sigma^2}{SST_j(1 - R_j^2)}, \ j = 1, 2, ..., k$$

where

$$SST_j = (N-1)Var(x_j) = \sum_{i=1}^{N} (x_{ij} - \overline{x}_j)$$

 $R_i^2 = R^2$ from a regression of x_i on all other x's

Standard deviation: Standard error:

$$se(\hat{\beta}_j) = \sqrt{\frac{\hat{\sigma}^2}{SST_j(1 - R_j^2)}}, j = 1, \dots, k$$

Classical Linear Model (CLM)

Add a 6th assumption to Gauss-Markov:

6. u is distributed $N(0, \sigma^2)$

Need this to know what the exact distribution of $\hat{\beta}_i$ is

- If A(6) fails, need **asymptotics** to test β 's
- Then, interpret distr. of $\hat{\beta}_i$ as asymptotic (not exact)

Testing Hypotheses about the β 's

- Under A (1)–(6), can test hypotheses about the β 's
- Or, (much more plausible) A (1)–(5) + asymptotics

t-test for simple hypotheses

To test a simple hypothesis like

$$H_0: \beta_j = 0$$
$$H_a: \beta_i \neq 0$$

use a t-test:

$$t = \frac{\hat{\beta}_j - 0}{se\left(\hat{\beta}_j\right)}$$

where 0 is the null hypothesized value.

Reject H_0 if $p < \alpha$ or if |t| > c (See: Hypothesis testing)

F-test for joint hypotheses

Can't use a t-test for joint hypotheses, e.g.:

$$H_0: \beta_3 = 0, \ \beta_4 = 0, \ \beta_5 = 0$$

 $H_a: \beta_3 \neq 0 \text{ OR } \beta_4 \neq 0 \text{ OR } \beta_5 \neq 0$

Instead, use F statistic:

$$F = \frac{(SSR_r - SSR_{ur})/(df_r - df_{ur})}{SSR_{ur}/df_{ur}} = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(N - k - 1)}$$

where

$$SSR_r = SSR$$
 of restricted model (if H_0 true)
 $SSR_{ur} = SSR$ of unrestricted model (if H_0 false)
 $q = \#$ of equalities in H_0
 $N-k-1 = {\rm Deg.}$ Freedom of unrestricted model

Reject H_0 if $p < \alpha$ or if F > c (See: Hypothesis testing)

Note: F > 0, always

Qualitative data

- Can use qualitative data in our model
- Must create a dummy variable
- e.g. "Yes" represented by 1 and "No" by 0

dummy variable trap: Perfect collinearity that happens when too many dummy variables are included in the model

$$y = \beta_0 + \beta_1 happy + \beta_2 not happy + u$$

The above equation suffers from the dummy variable trap because units can only be "happy" or "not happy," so including both would result in perfect collinearity with the intercept

Interpretation of dummy variables

Interpretation of dummy variable coefficients is always relative to the excluded category (e.g. not_happy):

$$y = \beta_0 + \beta_1 happy + \beta_2 age + u$$

 β_1 : avg. y for those who are happy compared to those who are unhappy, holding fixed age

Interaction terms

interaction term: When two x's are multiplied together

$$y = \beta_0 + \beta_1 happy + \beta_2 age + \beta_3 happy \times age + u$$

 β_3 : difference in age slope for those who are happy compared to those who are unhappy

Linear Probability Model (LPM)

When y is a dummy variable, e.g.

$$happy = \beta_0 + \beta_1 age + \beta_2 income + u$$

 β 's are interpreted as change in probability:

$$\Delta \Pr(y=1) = \beta_1 \Delta x$$

By definition, homoskedasticity is violated in the LPM

Time Series (TS) data

- Observe one unit over many time periods
- e.g. US quarterly GDP, 3-month T-bill rate, etc.
- New G-M assumption: no serial correlation in u_t
- Remove random sampling assumption (makes no sense)

Two focuses of TS data

- 1. Causality (e.g. \uparrow taxes $\stackrel{?}{\Longrightarrow} \downarrow$ GDP growth)
- 2. Forecasting (e.g. AAPL stock price next quarter?)

Requirements for TS data

To properly use TS data for causal inf / forecasting, need data free of the following elements:

Trends: y always \uparrow or \downarrow every period Seasonality: y always \uparrow or \downarrow at regular intervals Non-stationarity: y has a unit root; i.e. not stable

Otherwise, R^2 and $\hat{\beta}_i$'s are misleading

AR(1) and Unit Root Processes

AR(1) model (Auto Regressive of order 1):

$$y_t = \rho y_{t-1} + u_t$$

Stable if $|\rho|<1$; Unit Root if $|\rho|\geq 1$ "Non-stationary," "Unit Root," "Integrated" are all synonymous

Correcting for Non-stationarity

Easiest way is to take a first difference:

First difference: Use $\Delta y = y_t - y_{t-1}$ instead of y_t Test for unit root: Augmented Dickey-Fuller (ADF) test H_0 of ADF test: y has a unit root

TS Forecasting

A good forecast minimizes forecasting error \hat{f}_t :

$$\min_{f_t} E\left(e_{t+1}^2 | I_t\right) = E\left[(y_{t+1} - f_t)^2 | I_t \right]$$

where I_t is the **information set**

RMSE measures forecast performance (on future data):

Root Mean Squared Error =
$$\sqrt{\frac{1}{m}\sum_{h=0}^{m-1}\hat{e}_{T+h+1}^2}$$

Model with lowest RMSE is best forecast

- Can choose f_t in many ways
- Basic way: \hat{y}_{T+1} from linear model
- ARIMA, ARMA-GARCH are cutting-edge models

Granger causality

z Granger causes y if, after controlling for past values of y, past values of z help forecast y_t

CLM violations

Heteroskedasticity

- Test: Breusch-Pagan or White tests (H_0 : homosk.)
- If H_0 rejected, SEs, t-, and F-stats are invalid
- Instead use heterosk -robust SEs and t- and F-stats

Serial correlation

- Test: Breusch-Godfrey test (H_0 : no serial corr.)
- If H₀ rejected, SEs, t-, and F-stats are invalid
- Instead use HAC SEs and t- and F-stats
- HAC: "Heterosk. and Autocorrelation Consistent"

Measurement error

- Measurement error in x can be a violation of A4
- Attenuation bias: β_i biased towards 0

Omitted Variable Bias

When an important x is excluded: **omitted variable bias**.

Bias depends on two forces:

- 1. Partial effect of x_2 on y (i.e. β_2)
- 2. Correlation between x_2 and x_1

Which direction does the bias go?

	$Corr(x_1, x_2) > 0$	$Corr(x_1, x_2) < 0$
$\beta_2 > 0$ $\beta_2 < 0$	Positive Bias Negative Bias	Negative Bias Positive Bias

Note: "Positive bias" means β_1 is too big; "Negative bias" means β_1 is too small

How to resolve $E(u|\mathbf{x}) \neq 0$

How can we get unbiased $\hat{\beta}_i$'s when $E(u|\mathbf{x}) \neq 0$?

- \bullet Include lagged y as a regressor
- Include proxy variables for omitted ones
- Use instrumental variables
- Use a natural experiment (e.g. diff-in-diff)
- Use panel data

Instrumental Variables (IV)

A variable z, called the instrument, satisfies:

- 1. cov(z, u) = 0 (**not** testable)
- 2. $cov(z, x) \neq 0$ (testable)

z typically comes from a natural experiment

$$\hat{\beta}_{IV} = \frac{cov(z, y)}{cov(z, x)}$$

- SE's much larger when using IV compared to OLS
- Be aware of weak instruments

When there are multiple instruments:

- use Two-stage least squares (2SLS)
- \bullet exclude at least as many z's as endogenous x's

1st stage: regress endogenous x on z's and exogenous x's 2nd stage: regress y on \hat{x} and exogenous x's

Test for weak instruments: Instrument is weak if

- 1st stage F stat < 10
- or 1st stage $|t| < \sqrt{10} \approx 3.2$

Difference in Differences (DiD)

Can get causal effects from pooled cross sectional data

A nat. experiment divides units into treatment, control groups

$$y_{it} = \beta_0 + \delta_0 d2_t + \beta_1 dT_{it} + \delta_1 d2_t \times dT_{it} + u_{it}$$

where

- $d2_t = \text{dummy for being in time period } 2$
- $dT_{it} = \text{dummy for being in the treatment group}$
- $\hat{\delta}_1 =$ difference in differences

$$\hat{\delta}_{1} = \left(\overline{y}_{treat,2} - \overline{y}_{control,2}\right) - \left(\overline{y}_{treat,1} - \overline{y}_{control,1}\right)$$

Extensions:

• Can also include x's in the model

- Can also use with more than 2 time periods
- $\hat{\delta}_1$ has same interpretation, different math formula

Validity:

- Need y changing across time and treatment for reasons only due to the policy
- a.k.a. parallel trends assumption

Panel data

Follow same sample of units over multiple time periods

$$y_{it} = \beta_0 + \beta_1 x_{it1} + \dots + \beta_k x_{itk} + \underbrace{a_i + u_{it}}_{\nu_{it}}$$

- $\nu_{it} =$ composite error
- a_i = unit-specific unobservables
- $u_{it} = idiosyncratic error$
- Allow $E(a|\mathbf{x}) \neq 0$
- Maintain $E(u|\mathbf{x}) = 0$

Four different methods of estimating β_i 's:

- 1. Pooled OLS (i.e. ignore composite error)
 - 2. First differences (FD):

$$\Delta y_i = \beta_1 \Delta x_{i1} + \dots + \Delta \beta_k x_{ik} + \Delta u_i$$

estimated via Pooled OLS on transformed data

3. Fixed effects (FE):

$$y_{it} - \overline{y}_i = \beta_1 (x_{it1} - \overline{x}_{i1}) + \cdots + \beta_k (x_{itk} - \overline{x}_{ik}) + (u_{it} - \overline{u}_i)$$

estimated via Pooled OLS on transformed data

4. Random effects (RE):

$$y_{it} - \theta \overline{y}_i = \beta_0 (1 - \theta) + \beta_1 (x_{it1} - \theta \overline{x}_{i1}) + \cdots + \beta_k (x_{itk} - \theta \overline{x}_{ik}) + (\nu_{it} - \theta \overline{\nu}_i)$$

estimated via FGLS, where

$$\theta = 1 - \sqrt{\frac{\sigma_u^2}{\sigma_u^2 + T\sigma_a^2}}$$

$$\hat{\beta}_{RE} \to \hat{\beta}_{FE} \text{ as } \theta \to 1$$

 $\hat{\beta}_{RE} \to \hat{\beta}_{POLS} \text{ as } \theta \to 0$

RE assumes $E(a|\mathbf{x}) = 0$

Cluster-robust SEs

- Serial correlation of ν_{it} is a problem
- Use cluster-robust SEs
- These correct for serial corr. and heterosk.
- Cluster at the unit level

Binary dependent variables

Three options for estimation when y is binary (0/1):

- Linear Probability Model
- Logit
- Probit

Latter two are *nonlinear* models:

$$P(y = 1 | \mathbf{x}) = G(\beta_0 + \beta_1 x_1 + \beta_2 x_2)$$

where $G(\cdot)$ is some nonlinear function satisfying $0 < G(\cdot) < 1$

Trade-offs with logit/probit

Disadvantages

- Now it's much harder to estimate and interpret β 's!
- Can no longer use OLS; instead use maximum likelihood
- Nonlinear $G(\cdot) \Longrightarrow$
 - Must use chain rule to compute slope
 - Slope of tangent line depends on x!

Main advantage

- Now $0 < \hat{y} < 1 \implies$ more realistic
- (Recall: in LPM, possible to have negative probabilities)

Common choices for $G(\cdot)$

Logit model:

$$G(\mathbf{x}\beta) = \frac{\exp(\mathbf{x}\beta)}{1 + \exp(\mathbf{x}\beta)} = \Lambda(\mathbf{x}\beta)$$

Probit model:

$$G(\mathbf{x}\beta) = \int_{-\infty}^{\mathbf{x}\beta} \phi(z) dz = \Phi(\mathbf{x}\beta)$$

where $\phi(\cdot)$ is the standard normal pdf

Interpreting logit/probit parameter estimates

- β 's that come from logit/probit $\neq \beta$'s from LPM
- But, sign is same
- In logit/probit, we have

$$\frac{\partial p\left(\mathbf{x}\right)}{\partial x_{i}} = \beta_{j} g\left(\mathbf{x}\beta\right)$$

where $q(\mathbf{x}\beta)$ is the first derivative of $G(\mathbf{x}\beta)$

• In LPM, we have $\frac{\partial p(\mathbf{x})}{\partial x_i} = \beta_j$

Layout by Winston Chang, http://wch.github.io/latexsheet/