DOCUMENTATION: INTERFACES

 $\underline{\text{Note}} :$ The asterisk indicates that the argument is optional.

Transient 1D reactive transport class:

Subroutine	Input Arguments			Description	
Subroutine	Name	Kind	Description	Description	
read_time_discretisation	unit	Integer	Unit of the file to be read	This subroutine reads the file ending in "_WMA_discr.dat"	
	root	String	Path of the file to be read	that contains the time discretization for the WMA: number of time steps, time step(s) and method integration of chemical reactions.	
write_RT_1D	unit	Integer	Unit of the file where the results are to be written	This subroutine writes the data and results in the final time of all variables to the file ending in	
	root	String	Path of the file where the results are to be written	".out".	
	path_py*	String	Path of the directory where the results needed to use them in Python are to be written		
set_transport	transport_obj	Transient 1D transport class	Transient 1D transport class object.	Assigns the transport attribute of this class.	
set_chemistry	chemistry_obj	Chemistry class	Chemistry class object	Assigns the chemistry attribute of this class.	

• Transient 1D transport class:

read_transport_data_WMA	unit	Integer The unit of the file to be read		This subroutine reads the file ending in "_WMA_lambdas.dat" that contains	
	root	String	Root of the file to be read	the porosity, mixing ratios, and water indices corresponding to the mixing ratios.	

• Chemistry Class:

			Chemical	This subroutine assigns	
set_option	option	Integer	Information Reading Option	the value of the option attribute belonging to the chemical class. This attribute dictates the format that is to be used to read the chemical information. option=1: based on CHEPROO (only operating format right now) option=2: PHREEQC. option=3: PFLOTRAN.	
set_Jac_flag	Jac_flag	Integer	Jacobian computation model	This subroutine assigns the value of the Jac_flag attribute belonging to the chemistry class. This attribute dictates the model to be used to calculate all Jacobians. Jac_flag=0: Incremental coefficients Jac_flag=1: Analytically	
read_chemistry	root	String	contains the root of the data entry files of the problem to be solved	This subroutine reads all the chemical information. It first calls the chemical system's reading subroutine via	
	path_DB	String	contains the directory of chemical databases	its attribute of the chemical system class, then reads the types of initial waters, solids,	
	unit_chem_syst_file	Integer	The unit of the file containing the chemical system (ending in "_sist_quim.dat")	and gases, and finally reads the target waters association. In addition, it assigns objects in the Reactive Zone class	
	unit_loc_chem_file	Integer	Unit of the file containing the initial types of waters, solids, and gases (ending in "_quim_loc.dat")	belonging to the Chemistry class.	
	unit_target_waters_file	Integer	Unit of the file containing the association between Target Waters and initial water, solid, and		

			gas types (ending in "_tar_wat.dat")		
	unit_output_file	Integer	Unit of the file containing the options for writing results (ending in "_out_options.da t")		
	mixing_ratios	Real Array Class	Mixing Ratios	This is the main reactive mix solver. Performs the	
solve_reactive_mixing	mixing_waters_indices	Integer Array Class	Mixing water indices corresponding to mixing ratios	reactive mixing calculations with the WMA for a given time interval.	
	F_mat	Real Vector	Storage matrix	At the local level, the calculations are made	
	time_discr	Time discretization class	Time discretization used to solve transport	by the Aqueous Chemistry class.	
	int_method_chem_reacts	Integer	Temporal integration method for chemical reactions. 1: Euler Explicit 2: Euler Fully Implicit		

Sequence in the main file

- 1) Define path names: problem to be solved, databases and Python (optionally)
- 2) Define file units
- 3) Choose problem to solve. If it is not among the options, it must be added.
- 4) <u>Initialize transport</u>:
 - a. Transient 1D Transport Class Object my_tpt_trans calls read_transport_data_WMA
 - b. Transient 1D Reactive Transport Class Object my_RT_trans calls read_time_discretisation
 - c. my_RT_trans calls for set_transport using my_tpt_trans
- 5) <u>Initialize chemistry</u>:
 - a. Set chemical reading option
 - b. Chemical class object my_chem calls set_option
 - c. Define Jacobian computation model
 - d. my_chem calls set_Jac_flag
 - e. my_chem calls read_chemistry
- 6) Solve reactive mixing and assign chemistry class object:
 - a. my_chem calls solve_reactive_mixing
 - b. my_RT_trans calls set_chemistry using my_chem
- 7) Write data and results:
 - a. my_RT_trans calls write_RT_1D