Some principles weaker than Markov's principle

Makoto Fujiwara

(joint work with Hajime Ishihara and Takako Nemoto)

School of Information Science, Japan Advanced Institute of Science and Technology (JAIST)

> CTFM 2015 9 September, 2015

This work is supported by Grant-in-Aid for JSPS Fellows, JSPS Core-to-Core Program (A. Advanced Research Networks) and JSPS Bilateral Programs Joint Research Projects/Seminars.

Constructive Mathematics (Early 20th Century –)

Constructive mathematics is distinguished from its traditional counterpart, classical mathematics, by the strict interpretation of the phrase "there exists" as "we can construct".*

^{*}This exposition is taken from Douglas Bridges and Erik Palmgren, Constructive Mathematics, The Stanford Encyclopedia of Philosophy (Winter 2013 Edition).

Constructive Mathematics (Early 20th Century –)

- Constructive mathematics is distinguished from its traditional counterpart, classical mathematics, by the strict interpretation of the phrase "there exists" as "we can construct".*
- In order to work constructively, we need to re-interpret not only the existential quantifier but all the logical connectives and quantifiers as instructions on how to construct a proof of the statement involving these logical expressions (BHK-interpretation).

^{*}This exposition is taken from Douglas Bridges and Erik Palmgren, Constructive Mathematics, The Stanford Encyclopedia of Philosophy (Winter 2013 Edition).

Constructive Mathematics (Early 20th Century –)

- Constructive mathematics is distinguished from its traditional counterpart, classical mathematics, by the strict interpretation of the phrase "there exists" as "we can construct".*
- In order to work constructively, we need to re-interpret not only the existential quantifier but all the logical connectives and quantifiers as instructions on how to construct a proof of the statement involving these logical expressions (BHK-interpretation).
- Heyting (1930's -) and Kolmogorov (1920's -) tried to formalize constructive mathematics and introduced intuitionistic logic.

^{*}This exposition is taken from Douglas Bridges and Erik Palmgren, Constructive Mathematics, The Stanford Encyclopedia of Philosophy (Winter 2013 Edition).

Heyting Arithmetic HA

- As language, HA has variables (for natural numbers), 0, successor S, function constants for all primitive recursive functions and a binary predicate constant =.
- HA is based on intuitionistic first order predicate logic and in addition contains
 - the defining axioms for the primitive recursive function constants,
 - the equality axioms,
 - IND: $A(0) \land \forall x (A(x) \rightarrow A(Sx)) \rightarrow \forall x A(x)$.

Hierarchy of Logical Principles over HA (Akama, Berardi, Hayashi and Kohlenbach, 2004)

- Γ -LEM: $A \vee \neg A$, where $A \in \Gamma$ ($\Gamma \in \{\Sigma_0^0, \Sigma_1^0, \Pi_1^0\}$).
- Σ_1^0 -LLPO: $\neg(A \land B) \to (\neg A \lor \neg B)$, where $A, B \in \Sigma_1^0$.
- Σ_1^0 -DNE: $\neg \neg A \rightarrow A$, where $A \in \Sigma_1^0$.
- lacksquare $\Delta^0_1\text{-LEM}$: $(A \leftrightarrow B) \to (A \lor \neg A)$, where $A \in \Sigma^0_1, B \in \Pi^0_1$.

Hierarchy of Logical Principles over HA (Akama, Berardi, Hayashi and Kohlenbach, 2004)

- Γ -LEM: $A \vee \neg A$, where $A \in \Gamma$ ($\Gamma \in \{\Sigma_0^0, \Sigma_1^0, \Pi_1^0\}$).
- Σ_1^0 -LLPO $\equiv \Sigma_1^0$ -DML: $\neg (A \land B) \rightarrow (\neg A \lor \neg B)$, where $A, B \in \Sigma_1^0$.
- Σ_1^0 -DNE \equiv MP: $\neg \neg A \rightarrow A$, where $A \in \Sigma_1^0$.
- lacksquare Δ_1^0 -LEM: $(A \leftrightarrow B) \rightarrow (A \lor \neg A)$, where $A \in \Sigma_1^0, B \in \Pi_1^0$.

Elementary Analysis EL

Elementary analysis EL is a conservative extension of HA, which is served as base theory formalizing (Bishop-style) constructive mathematics.

Background

Elementary Analysis EL

Elementary analysis EL is a conservative extension of HA, which is served as base theory formalizing (Bishop-style) constructive mathematics.

- As language, EL has two-sorted variables (for numbers and functions), abstraction operators λx .(only for numbers), a recursor R in addition to that for HA.
- Axioms and rules of EL contain
 - λ -CON: $(\lambda x.t)t' = t[t'/x]$
 - REC: $Rt\varphi 0 = 0$ and $Rt\varphi(St') = \varphi(Rt\varphi t', t')$
 - QF-AC_{0.0}: $\forall x \exists y A_{qf}(x, y) \rightarrow \exists f \forall x A_{qf}(x, fx)$
 - IND: $A(0) \land \forall x (A(x) \rightarrow A(Sx)) \rightarrow \forall x A(x)$
- \blacksquare EL₀ is a fragment of EL where IND is replaced by QF-IND.

	Intuitionistic Logic	Classical Logic
Non-sorted	HA	PA
Two-sorted	EL	RCA
	EL ₀	RCA ₀

	Intuitionistic Logic	Classical Logic
Non-sorted	HA	PA
Two-sorted	EL	RCA
	EL ₀	RCA_0

- RCA₀ is the most popular base system of reverse mathematics, which consists of
 - basic axioms BA of arithmetic based on classical logic,
 - Σ_1^0 induction scheme Σ_1^0 -IND,
 - Δ_1^0 comprehension scheme Δ_1^0 -CA:

$$\forall \alpha, \beta \left(\begin{array}{c} \forall y \big(\exists x (\alpha(y, x) = 0) \leftrightarrow \neg \exists x (\beta(y, x) = 0) \big) \\ \rightarrow \exists \gamma \forall y \big(\gamma(y) = 0 \leftrightarrow \exists x (\alpha(y, x) = 0) \big) \end{array} \right).$$

■ RCA consists of BA, IND and Δ_1^0 -CA.

Proposition

- EL₀ (containing only QF-IND) $\vdash \Sigma_1^0$ -IND.
- $\mathsf{EL}_0 + \mathrm{LEM}(A \vee \neg A) \vdash \Delta_1^0$ -CA.

Proposition

- EL_0 (containing only QF-IND) $\vdash \Sigma_1^0$ -IND.
- $\mathsf{EL}_0 + \mathrm{LEM}(\mathsf{A} \vee \neg \mathsf{A}) \vdash \Delta_1^0$ -CA.

In fact, Δ_1^0 -CA is intuitionistically derived from QF- $AC_{0,0}$ and Markov's principle MP:

$$\forall \alpha (\neg \neg \exists x (\alpha(x) = 0) \rightarrow \exists x (\alpha(x) = 0)).$$

Note that Δ_1^0 -CA is equivalent to Δ_1^0 -LEM over $\mathsf{EL}_0 + \mathsf{AC}$.

Proposition

- EL_0 (containing only QF-IND) $\vdash \Sigma_1^0$ -IND.
- $\mathsf{EL}_0 + \mathrm{LEM}(\mathsf{A} \vee \neg \mathsf{A}) \vdash \Delta_1^0$ -CA.

In fact, Δ_1^0 -CA is intuitionistically derived from QF- $AC_{0,0}$ and Markov's principle MP:

$$\forall \alpha (\neg \neg \exists x (\alpha(x) = 0) \rightarrow \exists x (\alpha(x) = 0)).$$

- Note that Δ_1^0 -CA is equivalent to Δ_1^0 -LEM over $\mathsf{EL}_0 + AC$.
- Inspecting the proofs in [Akama et al. 2004] reveals that there is also a corresponding hierarchy over EL or EL₀.

Proposition

- EL_0 (containing only QF-IND) $\vdash \Sigma_1^0$ -IND.
- $\mathsf{EL}_0 + \mathrm{LEM}(\mathsf{A} \vee \neg \mathsf{A}) \vdash \Delta_1^0$ -CA.

In fact, Δ_1^0 -CA is intuitionistically derived from QF- $AC_{0,0}$ and Markov's principle MP:

$$\forall \alpha (\neg \neg \exists x (\alpha(x) = 0) \rightarrow \exists x (\alpha(x) = 0)).$$

- Note that Δ_1^0 -CA is equivalent to Δ_1^0 -LEM over $EL_0 + AC$.
- Inspecting the proofs in [Akama et al. 2004] reveals that there is also a corresponding hierarchy over EL or EL₀.
- In particular, Δ_1^0 -LEM is derived from either MP or Σ_1^0 -DML.

Proposition. (Ishihara 1993)

- **1** $\mathsf{EL}_0 \vdash \mathsf{MP} \to \Pi_1^0\text{-}\mathsf{DML}.$
- **2** $\mathsf{EL}_0 \vdash \Sigma^0_1\text{-}\mathrm{DML} \to \Pi^0_1\text{-}\mathrm{DML}.$

Note that Π_1^0 -DML is denoted as MP^{\vee} in the literature.

Background

Situation

Background

Situation

Question.

How is the relationship between Π_1^0 -DML and Δ_1^0 -LEM?

Results Results

Warning.

Constructively, there is a couple of (classically equivalent) ways to define a formula being Δ_1^0 :

Warning.

Constructively, there is a couple of (classically equivalent) ways to define a formula being Δ_1^0 :

$$\begin{array}{l} \text{(a)} \ \alpha \in \Delta_{a} :\equiv \exists \beta \big(\exists x \alpha(x) = 0 \leftrightarrow \neg \exists x \beta(x) = 0 \big). \\ \text{(b)} \ \alpha \in \Delta_{b} :\equiv \exists \beta \big(\neg \exists x \alpha(x) = 0 \leftrightarrow \exists x \beta(x) = 0 \big). \\ \text{(c)} \ \alpha \in \Delta_{c} :\equiv \exists \beta \big(\neg \exists x \alpha(x) = 0 \leftrightarrow \neg \neg \exists x \beta(x) = 0 \big). \\ \text{(ab)} \ \alpha \in \Delta_{ab} :\equiv \exists \beta \left(\exists x \alpha(x) = 0 \leftrightarrow \neg \exists x \beta(x) = 0 \right). \\ & \& \\ \neg \exists x \alpha(x) = 0 \leftrightarrow \exists x \beta(x) = 0 \end{array} \right).$$

(ab)
$$\alpha \in \Delta_{ab} :\equiv \exists \beta \left(\begin{array}{c} \exists x \alpha(x) = 0 \leftrightarrow \neg \exists x \beta(x) = 0 \\ \& \\ \neg \exists x \alpha(x) = 0 \leftrightarrow \exists x \beta(x) = 0 \end{array} \right)$$

Warning.

Constructively, there is a couple of (classically equivalent) ways to define a formula being Δ_1^0 :

$$\begin{array}{l} \text{(a)} \ \alpha \in \Delta_a : \equiv \exists \beta \big(\exists x \alpha(x) = 0 \leftrightarrow \neg \exists x \beta(x) = 0 \big). \\ \text{(b)} \ \alpha \in \Delta_b : \equiv \exists \beta \big(\neg \exists x \alpha(x) = 0 \leftrightarrow \exists x \beta(x) = 0 \big). \\ \text{(c)} \ \alpha \in \Delta_c : \equiv \exists \beta \big(\neg \exists x \alpha(x) = 0 \leftrightarrow \neg \neg \exists x \beta(x) = 0 \big). \end{array}$$

(b)
$$\alpha \in \Delta_b :\equiv \exists \beta (\neg \exists x \alpha(x) = 0 \leftrightarrow \exists x \beta(x) = 0).$$

(c)
$$\alpha \in \Delta_c :\equiv \exists \beta (\neg \exists x \alpha(x) = 0 \leftrightarrow \neg \neg \exists x \beta(x) = 0).$$

(ab)
$$\alpha \in \Delta_{ab} :\equiv \exists \beta \begin{pmatrix} \exists x \alpha(x) = 0 \leftrightarrow \neg \exists x \beta(x) = 0 \\ \& \\ \neg \exists x \alpha(x) = 0 \leftrightarrow \exists x \beta(x) = 0 \end{pmatrix}.$$

Note that Δ_1^0 -LEM in [Akama et al. 2004] has been defined in the sense of (a).

Warning.

Constructively, there is a couple of (classically equivalent) ways to define a formula being Δ_1^0 :

(a)
$$\alpha \in \Delta_a :\equiv \exists \beta (\exists x \alpha(x) = 0 \leftrightarrow \neg \exists x \beta(x) = 0).$$

(b)
$$\alpha \in \Delta_b :\equiv \exists \beta (\neg \exists x \alpha(x) = 0 \leftrightarrow \exists x \beta(x) = 0).$$

$$\begin{array}{l} \text{(a)} \ \alpha \in \Delta_a : \equiv \exists \beta \big(\exists x \alpha(x) = 0 \leftrightarrow \neg \exists x \beta(x) = 0 \big). \\ \text{(b)} \ \alpha \in \Delta_b : \equiv \exists \beta \big(\neg \exists x \alpha(x) = 0 \leftrightarrow \exists x \beta(x) = 0 \big). \\ \text{(c)} \ \alpha \in \Delta_c : \equiv \exists \beta \big(\neg \exists x \alpha(x) = 0 \leftrightarrow \neg \neg \exists x \beta(x) = 0 \big). \end{array}$$

(ab)
$$\alpha \in \Delta_{ab} :\equiv \exists \beta \begin{pmatrix} \exists x \alpha(x) = 0 \leftrightarrow \neg \exists x \beta(x) = 0 \\ \& \\ \neg \exists x \alpha(x) = 0 \leftrightarrow \exists x \beta(x) = 0 \end{pmatrix}.$$

Note that Δ_1^0 -LEM in [Akama et al. 2004] has been defined in the sense of (a).

 \Rightarrow We consider the fragments of LEM with respect to Δ_i ($i \in \{a, b, c, ab\}$).

$$\Delta_{i}\text{-LEM} :\equiv \forall \alpha \left(\begin{array}{c} \alpha \in \Delta_{i} \to \\ \exists x \alpha(x) = 0 \lor \neg \exists x \alpha(x) = 0 \end{array} \right).$$

- (a) $\alpha \in \Delta_a :\equiv \exists \beta (\exists x \alpha(x) = 0 \leftrightarrow \neg \exists x \beta(x) = 0).$
- (b) $\alpha \in \Delta_b := \exists \beta (\neg \exists x \alpha(x) = 0 \leftrightarrow \exists x \beta(x) = 0).$
- (c) $\alpha \in \Delta_c :\equiv \exists \beta (\neg \exists x \alpha(x) = 0 \leftrightarrow \neg \neg \exists x \beta(x) = 0).$

(ab)
$$\alpha \in \Delta_{ab} :\equiv \exists \beta \left(\begin{array}{c} \exists x \alpha(x) = 0 \leftrightarrow \neg \exists x \beta(x) = 0 \\ \& \\ \neg \exists x \alpha(x) = 0 \leftrightarrow \exists x \beta(x) = 0 \end{array} \right).$$

$$\Delta_{i}\text{-LEM} :\equiv \forall \alpha \left(\begin{array}{c} \alpha \in \Delta_{i} \to \\ \exists x \alpha(x) = 0 \lor \neg \exists x \alpha(x) = 0 \end{array} \right).$$

- (a) $\alpha \in \Delta_a :\equiv \exists \beta (\exists x \alpha(x) = 0 \leftrightarrow \neg \exists x \beta(x) = 0).$
- (b) $\alpha \in \Delta_b :\equiv \exists \beta (\neg \exists x \alpha(x) = 0 \leftrightarrow \exists x \beta(x) = 0).$
- (c) $\alpha \in \Delta_c :\equiv \exists \beta (\neg \exists x \alpha(x) = 0 \leftrightarrow \neg \neg \exists x \beta(x) = 0).$

(ab)
$$\alpha \in \Delta_{ab} :\equiv \exists \beta \left(\begin{array}{c} \exists x \alpha(x) = 0 \leftrightarrow \neg \exists x \beta(x) = 0 \\ \& \\ \neg \exists x \alpha(x) = 0 \leftrightarrow \exists x \beta(x) = 0 \end{array} \right).$$

Remark.

Proposition.

The following are pairwise equivalent over EL (even over EL_0).

- **■** MP.
- Δ_{c} -LEM.
- lacksquare $\Delta_{\mathrm{b}}\text{-LEM}.$

Proposition.

The following are pairwise equivalent over EL (even over EL_0).

- MP.
- Δ_{c} -LEM.
- Δ_{b} -LEM.

Proposition.

 Π_1^0 -DML implies Δ_a -LEM over EL (even over EL₀).

Results Results

Proposition.

The following are pairwise equivalent over EL (even over EL_0).

- MP.
- Δ_{c} -LEM.
- Δ_{b} -LEM.

Proposition.

 $\Pi^0_1\text{-}\mathrm{DML}$ implies $\Delta_a\text{-}\mathrm{LEM}$ over EL (even over EL_0).

Proposition.(Kohlenbach)

 $EL + AC + \Delta_a$ -LEM does not prove Π_1^0 -DML.

Proposition.

The following are pairwise equivalent over EL (even over EL_0).

- MP.
- Δ_{c} -LEM.
- Δ_{b} -LEM.

Proposition.

 $\Pi^0_1\text{-}\mathrm{DML}$ implies $\Delta_a\text{-}\mathrm{LEM}$ over EL (even over EL_0).

Proposition.(Kohlenbach)

 $EL + AC + \Delta_a$ -LEM does not prove Π_1^0 -DML.

Fact. Δ_a -LEM implies Δ_{ab} -LEM over EL (even over EL₀).

Proposition.

The following are pairwise equivalent over EL (even over EL_0).

- MP.
- Δ_{c} -LEM.
- Δ_{b} -LEM.

Proposition.

 Π_1^0 -DML implies Δ_a -LEM over EL (even over EL₀).

Proposition.(Kohlenbach)

 $EL + AC + \Delta_a$ -LEM does not prove Π_1^0 -DML.

Fact. Δ_a -LEM implies Δ_{ab} -LEM over EL (even over EL₀).

⇒ How is the converse direction?

$$\Delta[a \to b] :\equiv \forall \alpha (\alpha \in \Delta_a \to \alpha \in \Delta_b).$$

Fact. Δ_{ab} -LEM + $\Delta[a \rightarrow b]$ implies Δ_a -LEM.

$$\Delta[a \to b] :\equiv \forall \alpha (\alpha \in \Delta_a \to \alpha \in \Delta_b).$$

Fact. Δ_{ab} -LEM + $\Delta[a \rightarrow b]$ implies Δ_a -LEM.

Lemma.

 $\Delta_a\text{-LEM}$ implies $\Delta[a \to b]$ over EL₀.

Proof. We reason in EL₀. Let $\alpha \in \Delta_a$.

Then $\exists x \alpha(x) = 0 \lor \neg \exists x \alpha(x) = 0$ holds by Δ_a -LEM.

In the case of $\exists x \alpha(x) = 0$, take β as $\beta \equiv 1$.

In the case of $\neg \exists x \alpha(x) = 0$, take β as $\beta \equiv 0$.

Then we have $\neg \exists x \alpha(x) = 0 \leftrightarrow \exists x \beta(x) = 0$ in both cases.

$$\Delta[a \to b] :\equiv \forall \alpha (\alpha \in \Delta_a \to \alpha \in \Delta_b).$$

Fact. Δ_{ab} -LEM + $\Delta[a \rightarrow b]$ implies Δ_a -LEM.

Lemma.

 Δ_a -LEM implies $\Delta[a \rightarrow b]$ over EL₀.

Proof. We reason in EL₀. Let $\alpha \in \Delta_a$.

Then $\exists x \alpha(x) = 0 \lor \neg \exists x \alpha(x) = 0$ holds by Δ_a -LEM.

In the case of $\exists x \alpha(x) = 0$, take β as $\beta \equiv 1$.

In the case of $\neg \exists x \alpha(x) = 0$, take β as $\beta \equiv 0$.

Then we have $\neg \exists x \alpha(x) = 0 \leftrightarrow \exists x \beta(x) = 0$ in both cases. \Box

Proposition.

 $\Delta_a\text{-}LEM$ is equivalent to $\Delta_{ab}\text{-}LEM+\Delta[a\to b]$ over EL_0.

$$\Delta[a \to b] :\equiv \forall \alpha (\alpha \in \Delta_a \to \alpha \in \Delta_b).$$

Fact. Δ_{ab} -LEM + $\Delta[a \rightarrow b]$ implies Δ_a -LEM.

Lemma.

 Δ_a -LEM implies $\Delta[a \to b]$ over EL₀.

Proof. We reason in EL₀. Let $\alpha \in \Delta_a$.

Then $\exists x \alpha(x) = 0 \vee \neg \exists x \alpha(x) = 0$ holds by Δ_a -LEM.

In the case of $\exists x \alpha(x) = 0$, take β as $\beta \equiv 1$.

In the case of $\neg \exists x \alpha(x) = 0$, take β as $\beta \equiv 0$.

Then we have $\neg \exists x \alpha(x) = 0 \leftrightarrow \exists x \beta(x) = 0$ in both cases.

Proposition.

 $\Delta_a\text{-}\mathrm{LEM}$ is equivalent to $\Delta_{ab}\text{-}\mathrm{LEM} + \Delta[a \to b]$ over EL_0.

Open Problem. Does Δ_{ab} -LEM imply $\Delta[a \to b]$ over EL?

Remark. Reverse Mathathematical Hierarchy vs Hierarchy of Logical Principles

■ Reverse Mathematics Phenomenon:

Remark. Reverse Mathathematical Hierarchy vs Hierarchy of Logical Principles

Reverse Mathematics Phenomenon:

■ Some relationship between the uniform provability in classical reverse mathematics and the hierarchy of logical principles has been recently established by [Hirst/Mummert 2011], [Dorais 2014], [Kohlenbach/F. 2015] etc.

Remark. Reverse Mathathematical Hierarchy vs Hierarchy of Logical Principles

■ Reverse Mathematics Phenomenon:

- Some relationship between the uniform provability in classical reverse mathematics and the hierarchy of logical principles has been recently established by [Hirst/Mummert 2011], [Dorais 2014], [Kohlenbach/F. 2015] etc.
- $EL_0 \vdash ACA \leftrightarrow \Sigma_1^0$ -LEM + Π_1^0 -AC_{0.0}. (Ishihara, 2005)
- $\mathsf{EL}_0 \vdash \mathsf{WKL} \leftrightarrow \Sigma_1^0\text{-}\mathsf{DML} + \Pi_1^0\text{-}\mathsf{AC}_{0,0}^{\lor}$. (Ishihara, 2005)

Remark. Reverse Mathathematical Hierarchy vs Hierarchy of Logical Principles

■ Reverse Mathematics Phenomenon:

- Some relationship between the uniform provability in classical reverse mathematics and the hierarchy of logical principles has been recently established by [Hirst/Mummert 2011], [Dorais 2014], [Kohlenbach/F. 2015] etc.
- $\mathsf{EL}_0 \vdash \mathsf{ACA} \leftrightarrow \Sigma_1^0\text{-}\mathsf{LEM} + \Pi_1^0\text{-}\mathsf{AC}_{0,0}$. (Ishihara, 2005)
- $\mathsf{EL_0} \vdash \mathsf{WKL} \leftrightarrow \Sigma_1^0\text{-}\mathsf{DML} + \Pi_1^0\text{-}\mathsf{AC}_{0,0}^{\lor}$. (Ishihara, 2005)
- However, the corresponding system to Π_1^0 -DML or Δ_i -LEM is still missing.

References

- Makoto Fujiwara, Hajime Ishihara and Takako Nemoto, Some principles weaker than Markov's principle, Arch. Math. Logic, to appear.
- Urlich Kohlenbach, On the disjunctive Markov principle,
 Studia Logica, to appear.
- Y. Akama, S. Berardi, S. Hayashi and U. Kohlenbach, An arithmetical hierarchy of the law of excluded middle and related principles. Proc. of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS'04), pp. 192–201, IEEE Press, 2004.
- Hajime Ishihara, *Markov's principle, Church's thesis and Lindelöf theorem*, Indag. Math. (N.S.) **4**, pp. 321–325, 1993.

Thank you for your attention!