Homological algebra and schemes

Emile T. Okada March 15, 2019

Contents

Co	onten	ts	Τ
1	Abe	lian Categories	3
	1.1	Additive categories	3
	1.2	Semiadditive categories	4
	1.3	Abelian categories	6
	1.4	Exact sequences	8
	1.5	Adjoint functors	10
	1.6	Limits and derived functors	11
2	Shea	of Theory	13
	2.1	Presheaves	13
	2.2	Sheaves	13
	2.3	Étalé space of a presheaf and sheafification	14
	2.4	Maps defined on a basis	16
	2.5	Exact sequences	16
	2.6	Direct sums of sheaves	17
	2.7	Sheaves over different spaces	17
	2.8	The \mathcal{H}_{om} sheaf	20
	2.9	Sheaves of modules	21
	2.10	Tensors	21
	2.11	Injective sheaves	22

Contents

3	Scheme Theory	23				
	3.1 Locally ringed spaces	23				
	3.2 Morphisms	24				
	3.3 \mathscr{O}_X -Modules	27				
	3.4 Locally free \mathcal{O}_X -modules	30				
	3.5 Line bundles	30				
	3.6 Ample line bundles	33				
	3.7 Cohomological results	35				
4	T	37				
	4.1 Grothendieck spectral sequence	37				
5	Group cohomology 39					
6	Appendix - Categorical results					
	6.1 Category theory results	41				
7	Appendix - Sheaf theoretic results					
	7.1 Properties of sheaves of rings	43				
	7.2 Locally ringed spaces	43				
	7.3 Restriction	44				
	7.4 Miscellaneous	44				
8	Appendix - Graded rings and Proj					
	8.1 Graded rings	45				
	8.2 The Proj construction	50				
9	Appendix - Scheme theoretic results					
	9.1 Basic open sets	53				
	9.2 Quasi-separated schemes	54				
	9.3 Spec adjunction	55				
	9.4 Sheaf of ideals	55				
	9.5 Reduced schemes	57				
	9.6 Presheaves on the category of schemes	58				
10	Appendix - Vector Bundles	61				

CHAPTER 1

Abelian Categories

1.1 Additive categories

Let \mathcal{A} be a category such that the hom-sets carry the structure of an abelian group and composition is bilinear. We call such a category Ab-enriched. An additive category is an Ab-enriched category which has finite coproducts and a zero object.

thm:atosa

Thm 1.1.1. Let A be an additive category. Then finite coproducts in A are in fact finite biproducts.

Proof. It is easy to see that initial objects are isomorphic to terminal objects (and they both exist) and so it suffices to show the result for binary coproducts. Let $A, B \in \mathcal{A}$. Define $p_A : A \coprod B \to A$ and $p_B : A \coprod B \to B$ as the maps making the following diagrams commute.

Let $f = i_A \circ p_A + i_B \circ p_B$. Then

commutes and so by universality we must have $f = \mathrm{id}_{A \coprod B}$. Now suppose we have maps $f: C \to A$ and $g: C \to B$. Let $h: C \to A \coprod B$ be the map $i_A \circ f + i_B \circ g$. Then $p_A \circ h = f$ and $p_B \circ h = g$. Moreover, if $h': C \to A \coprod B$ is any other map satisfying $p_A \circ h' = f$ and $p_B \circ h' = g$ then $h' = id_{A \coprod B} \circ h' = i_A \circ f + i_B \circ g = h$ and so $A \coprod B$ is a biproduct.

A functor between additive categories is called additive if it is a homomorphism on hom-sets.

1.2 Semiadditive categories

The above definition of an additive category includes the additive structure on the hom-sets as data. In this section we provide a definition where the additive structure arises as a property instead.

Let \mathcal{A} be a category with a zero object. Recall that in such a category there always exists a morphism between to any two objects $A, B \in \mathcal{A}$ given by $A \to 0 \to B$. We call this the 0 morphism. Moreover if finite coproducts and finite products exists there is a canonical map $A \coprod B \to A \coprod B$ arising from the diagram

$$A \xrightarrow{\operatorname{id}_{A}} A$$

$$B \xrightarrow{\operatorname{id}_{B}} B.$$

$$(1.3)$$

We call a category \mathcal{A} semiadditive if it has a zero object, finite products, finite coproducts and the canonical map $A \coprod B \to A \coprod B$ is an isomorphism for all $A, B \in \mathcal{A}$. In such a category we write $A \oplus B$ for the biproduct.

Thm 1.2.1. Let A be a semiadditive category then it is naturally enriched over the monoidal category of commutative monoids.

Proof. Let $\Delta_A: A \oplus A \to A$ and $\nabla_A: A \to A \oplus A$ be the maps that make

commute. Given $f, g: A \to B$ we can construct a map $f \oplus g: A \oplus A \to B \oplus B$ in the obvious way. We can then define $f + g: A \to B$ to be the composite

$$A \xrightarrow{\nabla_A} A \oplus A \xrightarrow{f \oplus g} B \oplus B \xrightarrow{\Delta_B} B. \tag{1.5}$$

Note that there is a map $t_A: A \oplus A \to A \oplus A$ arising from the diagram

$$\begin{array}{ccc}
A & \xrightarrow{0} & A \\
& & \downarrow & \downarrow \\
A & \xrightarrow{\mathrm{id}_A} & A.
\end{array} \tag{1.6}$$

It is then an easy check to see that $\Delta_A \circ t_A = \Delta_A$ and $t_A \circ \nabla_A = \nabla_A$, from which it follows that + is commutative. Straightforward calculations also show that + is associative, distributes over compositions and has the zero map as identity. The result follows.

A functor between semiadditive categories is called semiadditive if it preserves zero objects and biproducts i.e. there are isomorphisms $F(A \oplus B) \cong F(A) \oplus F(B)$ such that

commutes, and similarly for the projection maps.

prop:sa

Proposition 1.2.2. Let $F: A \to B$ be a semiadditive functor and $f, g: A \to B$ for $A, B \in A$. Then F(f+g) = F(f) + F(g).

We now define an additive category to be a semiadditive category where the enriched hom-sets are in fact groups.

thm:as

Thm 1.2.3. Let A be an additive category according to the first definition. By theorem 1.1.1, A is semiadditive and so the hom-sets naturally carry the structure of a commutative monoid. This monoidal structure agrees with the original group structure.

Proof. Let $A, B \in \mathcal{A}$ and $f, g : A \to B$. Then the addition arising from the semiadditive structure comes from the composition

$$A \xrightarrow{\nabla_A} A \oplus A \xrightarrow{f \oplus g} B \oplus B \xrightarrow{\Delta_B} B. \tag{1.8}$$

But $\nabla_A = i_A^L + i_A^R$, $\Delta_B = p_B^L + p_B^R$ and $f \oplus g = i_B^L \circ f \circ p_A^L + i_B^R \circ g \circ p_A^R$ and so their composition is just f + g.

Corollary 1.2.4. Let $F: A \to B$ be a functor between additive categoires. Then F is additive iff F it is semiadditive.

Proof. Semiadditive \implies additive follows from proposition 1.2.2 and theorem 1.2.3. Additive \implies semiadditive is a straigtforward exercise.

Corollary 1.2.5. Let $F: \mathcal{A} \to \mathcal{B}$ be a functor between additive categories which is a left adjoint. Then F is additive.

Proof. F preserves colimits and so is semiadditive.

Corollary 1.2.6. If A is an additive category then A^{op} is also additive.

Proof. The oppositive category of a semiadditive category is clearly also semiadditive. The resulting monoidal structure on the hom-sets are also clearly the same and so the result follows.

1.3 Abelian categories

Abelian categories are additive categories with more strucure. Before we state exactly what we mean by this we give some definitions.

Definition 1.3.1. Let \mathcal{A} be an additive category and $f: A \to B$ a morphism in \mathcal{A} .

- 1. A kernel of f is an equaliser of $A \xrightarrow{f \atop 0} B$.
- 2. A cokernel of f is a coequaliser of the same diagram.
- 3. f is called monic if $f \circ g = 0$ implies g = 0 for all g.
- 4. f is called epi if $g \circ f = 0$ implies g = 0 for all g.

Remark 1.3.2. It is easy to see that all kernels are monic, all cokernels are epi, a map is monic iff its kernel is 0, and a map is epi iff its cokernel is 0.

We call an additive category \mathcal{A} pre-abelian if all morphisms have kernels and cokernels. In such a category, given any morphism $f: A \to B$ we can form

where α and β exist from the universal property of kernels and cokerners respectively. Since p is epi and $0 = \operatorname{coker}(f) \circ f = \operatorname{coker}(f) \circ \beta \circ p$ it follows

that $\operatorname{coker}(f) \circ \beta = 0$ and so there is a map $\gamma : \operatorname{coker}(\ker(f)) \to \ker(\operatorname{coker}(f))$ such that $i \circ \gamma = \beta$. Similarly there is a map $\gamma' : \operatorname{coker}(\ker(f)) \to \ker(\operatorname{coker}(f))$ such that $\gamma' \circ p = \alpha$. Using that p is epi one can see that $\gamma' = \gamma$ and so for any morphism f there is a canonical decomposition

$$A \xrightarrow{p} \operatorname{coker}(\ker(f)) \xrightarrow{\gamma_f} \ker(\operatorname{coker}(f)) \xrightarrow{i} B.$$
 (1.10)

An abelian category is a pre-abelian category in which γ_f is an isomorphism for every f.

thm:abcat

Thm 1.3.3. Let A be a pre-abelian category. Then γ_f is an isomorphism for all morphism f iff every monic is the kernel of its cokernel and every epi is the cokernel of its kernel.

Proof. (\Rightarrow) The kernel of a monic is the 0 object with the 0 map, and the cokernel of this is just A together with the identity. Thus, if γ_f is an isomorphism the canonical decomposition of f just becomes

$$A \xrightarrow{\mathrm{id}} A \xrightarrow{\cong} \ker(\operatorname{coker}(f)) \xrightarrow{i} B$$
 (1.11)

and so f is the kernel of its cokernel. Similarly one obtains that if f is epi it is the cokernel of its kernel.

(\Leftarrow) First note that if a kernel is epi then it must be an isomorphism so all epic monics must be isomorphisms (since all monics are kernels). Thus, it suffices to show that the maps α and β in equation 1.9 are epi and monic respectively. To see that β is monic let $x:X\to \operatorname{coker}(\ker(f))$ be a map such that $\beta\circ x=0$. Then let $q:\operatorname{coker}(\ker(f))\to\operatorname{coker}(x)$ be the coker of x, and $j:\operatorname{coker}(x)\to B$ the map such that $j\circ q=\beta$. Finally let $l:\ker(q\circ p)\to A$ be the kernel of $q\circ p$. Then we have the following diagram

Since $q \circ p$ is epi it is the coker of l. But also $f \circ l = j \circ q \circ p \circ l = 0$, so l factors through $\ker(f)$ and so $p \circ l = 0$. Thus there exists $p' : \operatorname{coker}(x) \to \operatorname{coker}(\ker(f))$ such that

$$\ker(q \circ p) \xrightarrow{l} A \xrightarrow{p} \operatorname{coker}(\ker(f))$$

$$\downarrow^{q \circ p} \qquad (1.13)$$

$$\operatorname{coker}(x)$$

commutes. Since p is epi, it must follow that $p' \circ q = \text{id}$. Thus q is monic and so x = 0. It follows that β is monic. Similarly one can show that α is epi.

It follows that an abelian category is equivalently a pre-abelian category in which every monic is the kernel of its cokernel and every epi is the cokernel of its kernel.

Thm 1.3.4. If A is an abelian category then A^{op} is also an abelian category.

Proof. It is certainly additive. Moreover, kernels and cokernels simply swap roles. γ_f is then still an isomorphism for all f and so \mathcal{A}^{op} is abelian.

From now on we write im(f) := ker(coker(f)) and coim(f) := coker(ker(f)).

1.4 Exact sequences

sec:es

Let \mathcal{A} be an abelian category and \mathcal{S} be the category with objects given by $A \xrightarrow{f} B \xrightarrow{g} C$ such that $g \circ f = 0$, and morphisms given by chain maps. Recall from earlier that f can be factored as

$$A \xrightarrow{p_f} \operatorname{im}(f) \xrightarrow{i_f} B.$$
 (1.14)

Since p_f is epi, we must have $g \circ i_f = 0$. Thus we can factor f further through $\ker(g)$ to obtain $f: A \to \operatorname{im}(f) \to \ker(g) \to B$. Let $H(A \xrightarrow{f} B \xrightarrow{g} C)$ be the cokernel of the morphism $\operatorname{im}(f) \to \ker(g)$. If we have the commutative diagram

$$\begin{array}{ccc}
A & \xrightarrow{f} & B & \xrightarrow{g} & C \\
\downarrow & & \downarrow & \downarrow \\
A' & \xrightarrow{f'} & B' & \xrightarrow{g'} & C'
\end{array}$$
(1.15)

then there exists maps so that

commutes. In particular there is a morphism

$$\operatorname{coker}(\operatorname{im}(f) \to \ker(g)) \to \operatorname{coker}(\operatorname{im}(f') \to \ker(g')).$$
 (1.17)

It is easy to check that this construction is functorial and so we obtain a functor $H: \mathcal{S} \to \mathcal{A}$.

One can similarly construct a functor $H': \mathcal{S} \to \mathcal{A}$ by considering

$$\ker(\operatorname{coker}(f) \to \operatorname{coim}(g))$$
 (1.18)

instead.

Remark 1.4.1. We may also form a functor by looking simply at the fact that f factors through $\ker(g)$ and then looking at the coker of the resulting morphism $A \to \ker(g)$. It is an easy check to see that this yields a functor naturally isomorphic to H. Similarly for H'.

Lemma 1.4.2. Let $A \xrightarrow{f} B \xrightarrow{g} C \in \mathcal{S}$. Recall that we have the factorisation

$$A \to \operatorname{im}(f) \to \ker(g) \xrightarrow{i_g} B \xrightarrow{p_f} \operatorname{coker}(f) \to \operatorname{coim}(g) \to C.$$
 (1.19)

Let h be the composition $\ker(g) \to B \to \operatorname{coker}(f)$. Then

- 1. $\ker(h) = \operatorname{im}(f) \to \ker(g)$
- 2. $\operatorname{coker}(h) = \operatorname{coker}(f) \to \operatorname{coim}(g)$.

Proof. Let $l: C \to \ker(g)$ be such that $h \circ l = 0$. Then $p_f \circ i_g \circ l = 0$ and so $i_g \circ l$ factors through $\operatorname{im}(f)$. Since i_g is monic it follows that l factors through $\operatorname{im}(f)$. Uniqueness follows automatically. Thus the result follows. The second part follows similarly.

Thm 1.4.3. The functors $H, H': \mathcal{S} \to \mathcal{A}$ are naturally isomorphic.

Proof. Let $S := A \xrightarrow{f} B \xrightarrow{g} C \in \mathcal{S}$ and h be as in the lemma. Then $H(S) = \operatorname{coker}(\ker(h))$ and $H'(S) = \ker(\operatorname{coker}(h))$ so we obtain the factorisation

$$\ker(g) \to H(S) \xrightarrow{\cong} H'(S) \to \operatorname{coker}(f).$$
 (1.20)

Naturality of the isomophism then follows from naturality of this factorisation.

Remark 1.4.4. In a pre-abelian category we still have a natural transformation $H \Rightarrow H'$, but it might not be an isomorphism.

Definition 1.4.5. Let $S := A \xrightarrow{f} B \xrightarrow{g} C \in \mathcal{S}$. We say that S is exact at B if H(S) = 0.

Proposition 1.4.6. $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is a short exact sequence iff $A = \ker(g)$ and $C = \operatorname{coker}(f)$.

Proof. (\Rightarrow) We have $\ker(g) \cong \operatorname{im}(f) \cong A$ and $\operatorname{coker}(f) \cong \operatorname{coim}(g) \cong C$. (\Leftarrow) Certainly have exactness at A and C. Exactness at B also holds.

1.4.1 Split sequences

Thm 1.4.7. Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be a short exact sequence. The following are equivalent

- 1. there exists $q: B \to A$ such that $q \circ f = id_A$
- 2. there exists $p: C \to B$ such that $g \circ p = id_C$
- 3. there is an isomorphism $h: B \to A \oplus C$ such that $h \circ f$ and $g \circ h^{-1}$ are the natural inclusion and projection respectively.

Proof. (3) certainly implies both (1) and (2).

 $(2)\Rightarrow (3)$ Let $q:B\to A$ be the unique map making the following diagram commute

$$\begin{array}{ccc}
A & \xrightarrow{f} & B & \xrightarrow{g} & C. \\
\downarrow & & & & \\
\downarrow & & & & \\
B & & & & \\
\end{array} (1.21)$$

Then $id_B = p \circ g + f \circ q$. It follows that $p = f \circ q \circ p + p$. Since f is monic we have $q \circ p = 0$. Thus $q = q \circ f \circ q$ and so since q is epi, $q \circ f = id_A$. The result follows. $(1) \Rightarrow (3)$ follows similarly.

Corollary 1.4.8. Let $F : A \to B$ be an additive functor of abelian categories. Then F applied to a split short exact sequence is also split exact.

Proposition 1.4.9. Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be a short exact sequence. If either

- 1. A is injective or
- 2. C is projective

then the sequence is split.

1.5 Adjoint functors

Let $L: A \to B$ be an additive functor between abelian categories. If L admits a right adjoint $R: B \to A$ then it turns out L has a lot of useful properties. In this section we explore these properties.

Proposition 1.5.1. Suppose $L \dashv R$. Then L is right exact and R is left exact.

Proof. Consider the short exact sequence $0 \to B_1 \to B_2 \to B_3 \to 0$. For every $A \in \mathcal{A}$ we get the following commutative diagram

$$0 \longrightarrow \operatorname{Hom}(L(A), B_1) \longrightarrow \operatorname{Hom}(L(A), B_2) \longrightarrow \operatorname{Hom}(L(A), B_3)$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong$$

$$0 \longrightarrow \operatorname{Hom}(A, R(B_1)) \longrightarrow \operatorname{Hom}(A, R(B_2)) \longrightarrow \operatorname{Hom}(A, R(B_3))$$

$$(1.22)$$

where the top row is exact. It follows that the bottom row is exact for all A and so the bottow row is too. It follows that

$$0 \longrightarrow R(B_1) \longrightarrow R(B_2) \longrightarrow R(B_3) \tag{1.23}$$

is exact and so R is left exact. By a similar argument L is right exact.

Proposition 1.5.2. Suppose $L \dashv R$. Then

- 1. if L is exact then R preserves injectives
- 2. if R is exact then L preserves projectives.

Proof. Suppose L is exact and I is an injective object in \mathcal{B} . We need to show that $\operatorname{Hom}(-,R(I))$ is exact. To do this it suffices to show that given $f:A\to B$ injective, the map $f^*:\operatorname{Hom}(B,R(I))\to\operatorname{Hom}(A,R(I))$ is surjective. But L is exact so Lf is injective and so $(Lf)^*:\operatorname{Hom}(LB,I)\to\operatorname{Hom}(LA,I)$ is surjective. We also have that $L\dashv R$ and so

$$\operatorname{Hom}(L(B), I) \xrightarrow{(Lf)^*} \operatorname{Hom}(L(A), I)$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad (1.24)$$

$$\operatorname{Hom}(B, R(I)) \xrightarrow{f^*} \operatorname{Hom}(A, R(I))$$

commutes. It follows that f^* is surjective as required.

The corresponding result for R follows similarly.

1.6 Limits and derived functors

Proposition 1.6.1. An abelian category A is cocomplete iff it has all direct

Proof. We already have kernels and hence equalisers so the statement follows.

Remark 1.6.2. The same result holds if we replace direct sums with product and cocomplete with complete.

Thm 1.6.3. Let \mathcal{A} be a cocomplete abelian category with enough projectives. If $F: \mathcal{A} \to \mathcal{B}$ is a left adjoint, then for every set $\{A_i\}$ of objects in \mathcal{A} we have

$$L_*F\left(\bigoplus_{i\in I}A_i\right)\cong\bigoplus_{i\in I}L_*F(A_i).$$
 (1.25)

Proof. Let $P_i \to A_i$ be projective resolutions. Then $\bigoplus_i P_i \to \bigoplus_i A_i$ is also a projective resolution. Hence

$$L_*F(\oplus_i A_i) = H_*(F(\oplus_i P_i)) \cong H_*(\oplus_i F(P_i)) \cong \oplus_i H_*(F(P_i)) = \oplus_i L_*F(A_i).$$
(1.26)

1.6.1 Filtered colimits

Definition 1.6.4. A category I is called filtered if it has coproduct and coequaliser diagrams. A filtered colimit is the colimit of a functor from a filtered category.

Lemma 1.6.5. Let I be a filtered category, and $A: I \to \mathsf{Mod} - R$. Then

- 1. Every element $a \in colim_I A$ is the image of some element $a_i \in A_i$ for some $i \in I$ under the canonical map $A_i \to colim_I A$.
- 2. For every i, the kernel of the canonical map $A_i \to \operatorname{colim}_I A$ is the union of the kernels of the maps $A(\phi): A_i \to A_j$ for $\phi: i \to j$ in I.

Proof. Use the explicit construction of the colimit as the cokernel of

$$\bigoplus_{i \to j} A_i \to \bigoplus_i A_i. \tag{1.27}$$

Thm 1.6.6. Filtered colimits of R-modules are exact considered as functors from Fun(I, Mod - R) to Mod - R.

Proof. We know that colim is a left adjoint and so is right exact. It thus suffices to show that if $t: A \to B$ is monic then $\operatorname{colim}_I A \to \operatorname{colim}_I B$ is too. But this follows immediately from the previous proposition.

Definition 1.6.7. We say an abelian category \mathcal{A} satisfies axiom (AB5) if it is cocomplete and filtered colimits are exact.

Thm 1.6.8. Let A be an abelian category satisfying axiom (AB5). Then for $F: A \to \mathcal{B}$ a left adjoint, we have that for all filtered I,

$$L_*F(colim_IA) \cong colim_IL_*F(A_i).$$
 (1.28)

Proof. colim_I is exact so commutes with H_i . The rest of the proof is similar to the direct sum proof.

CHAPTER 2

Sheaf Theory

ch:sheafs

2.1 Presheaves

Let \mathcal{C} be any category, \mathcal{A} be an abelian category and define $\mathsf{PreSh}(\mathcal{C}) = \mathsf{Fun}(\mathcal{C}^{op}, \mathcal{A})$ to be the category of presheaves on \mathcal{C} with values in \mathcal{A} . The functor sending all objects to 0 is certainly both initial and terminal, direct sums can be defined pointwise, and the hom-sets in $\mathsf{PreSh}(\mathcal{C})$ inherit an additive structure from \mathcal{A} so $\mathsf{PreSh}(\mathcal{C})$ is naturally an additive category. Moreover kernels and cokernels can be contructed in the obvious way and it is clear that they satisfy the axioms for an abelian category and so $\mathsf{PreSh}(\mathcal{C})$ is abelian.

2.2 Sheaves

To define sheaves we restrict to the case when X be a topological space, \mathcal{U} the poset of open sets of X, and \mathcal{A} be an abelian category. We write $\mathsf{PreSh}(X)$ for $\mathsf{PreSh}(\mathcal{U})$. The category of sheaves on X with values in \mathcal{A} , $\mathsf{Sh}(X)$, is defined to be the full subcategory of $\mathsf{PreSh}(X)$ with objects given by presheaves \mathscr{F} for which the following diagram is an equalizer for all open coverings $U = \cup_i U_i$

$$\mathscr{F}(U) \to \prod_{i} \mathscr{F}(U_i) \Longrightarrow \prod_{i,j} \mathscr{F}(U_i \cap U_j).$$
 (2.1)

Since \mathcal{A} is an abelian category this is equivalent to the following diagram being exact

$$0 \to \mathscr{F}(U) \to \prod_{i} \mathscr{F}(U_{i}) \xrightarrow{\text{diff}} \prod_{i,j} \mathscr{F}(U_{i} \cap U_{j}). \tag{2.2}$$

Note that since \emptyset admits the empty covering and the empty product is 0 this forces $\mathscr{F}(\emptyset) = 0$.

As in the case of $\mathsf{PreSh}(\mathcal{C})$, $\mathsf{Sh}(X)$ is an additive category. However, the cokernel of a morphism between sheaves need not be a sheaf and so we must do some more work to show that $\mathsf{Sh}(X)$ is abelian.

Fix $x \in X$. For a (pre)sheaf \mathscr{F} define the stalk of \mathscr{F} at x to be

$$\mathscr{F}_x = \varinjlim_{U \ni x} \mathscr{F} \tag{2.3}$$

when this limit exists. Note that this is a functor since morphisms between (pre)sheaves are natural transformations.

Thm 2.2.1. Let $\phi: \mathscr{F} \to \mathscr{G}$ be a morphism of sheaves.

- 1. If ϕ_x is injective for all $x \in X$ then ϕ is injective on sections.
- 2. If ϕ_x is an isomorphism for all $x \in X$ then ϕ is an isomorphism.

Proposition 2.2.2. Let \mathscr{F},\mathscr{G} be presheaves and $\phi,\psi:\mathscr{F}\to\mathscr{G}$ be morphisms that are equal on stalks. If \mathscr{G} satisfies sheaf condition (A) then $\phi=\psi$.

Proof. Consider
$$\phi - \psi$$
.

Aside

Although we do not need this right away, given an $A \in \mathcal{A}$ we can define the (pre)sheaf x_*A by

$$(x_*A)(U) = \begin{cases} A & \text{if } x \in U \\ 0 & \text{otherwise} \end{cases}$$
 (2.4)

Proposition 2.2.3. When it exists, the functor $(-)_x : Sh(X) \to A$ is left adjoint to $x_* : A \to Sh(X)$.

Proof. To see this simply note that morphisms between \mathscr{F} and $x_*(A)$ correspond naturally to natrual transformations between \mathscr{F} restricted to $U \ni x$ and $\Delta(A)$.

Remark 2.2.4. The result also holds in PreSh(X).

2.3 Étalé space of a presheaf and sheafification

For a presheaf \mathscr{F} we are now in the position to define its étalé space. The étalé space of \mathscr{F} , denoted $\operatorname{Sp\'e}(\mathscr{F})$ is the topological space with underlying set $\coprod_{x\in X}\mathscr{F}_x$ and topology generated by the basis of sets given by $\{s_x|x\in U\}$ for $s\in\mathscr{F}(U)$ where $U\subset X$ is open. Together with this space there is also a natural continuous map $\pi:\operatorname{Sp\'e}(\mathscr{F})\to X$ sending an element s_x to x. The sheafification of \mathscr{F} , denoted \mathscr{F}^+ , is then defined to be the sheaf of sections of $\pi:\operatorname{Sp\'e}(\mathscr{F})\to X$. By unwrapping the definitions we see that the sections can be characterised as

$$\mathscr{F}^+(U) = \{s : U \to \coprod_{x \in U} \mathscr{F}_x : \forall x \in U, \exists V \subset U \text{ open containing } x \text{ and}$$

$$t \in \mathscr{F}(V) \text{ s.t. } s(y) = t_y \forall y \in V \}$$
 (2.5)

In particular there is a natural morphism $\mathscr{F} \to \mathscr{F}^+$ sending $s \in \mathscr{F}(U)$ to the section $x \mapsto s_x$ which is an isomorphism on stalks. From the characterisation

of sections it clear that if \mathscr{F} is a presheaf of AbGrp, Ring, ... then \mathscr{F}^+ is a sheaf with values in the corresponding abelian category.

We have defined Spé and $(-)^+$ on objects but they can also be turned into functors. If we have a morphism $\phi: \mathscr{F} \to \mathscr{G}$ between presheaves, this induces a continuous map $\operatorname{Sp\acute{e}}(\phi): \operatorname{Sp\acute{e}}(\mathscr{F}) \to \operatorname{Sp\acute{e}}(\mathscr{G})$ given by $s_x \mapsto \phi_x(s_x)$ so that

$$\operatorname{Sp\acute{e}}(\mathscr{F}) \xrightarrow{\operatorname{Sp\acute{e}}(\phi)} \operatorname{Sp\acute{e}}(\mathscr{G}) \tag{2.6}$$

commutes. This construction is functorial and turns Spé into a functor from presheaves to topological bundles over X.

Remark 2.3.1. The natural map $\mathscr{F} \to \mathscr{F}^+$ induces a homeomorphism $\operatorname{Sp\'e}(\mathscr{F}) \to \operatorname{Sp\'e}(\mathscr{F}^+)$.

It follows that we also obtain a map of sheaves $\phi^+: \mathscr{F}^+ \to \mathscr{G}^+$ by composing sections with $\operatorname{Sp\'e}(\phi)$. Thus we have a functor $(-)^+: \operatorname{PreSh}(X) \to \operatorname{Sh}(X)$ and in fact the following diagram commutes.

$$\begin{array}{ccc} \mathscr{F}^+ & \stackrel{\phi^+}{\longrightarrow} \mathscr{G}^+ \\ \uparrow & & \uparrow \\ \mathscr{F} & \stackrel{\phi}{\longrightarrow} \mathscr{G} \end{array} \tag{2.7} \quad \boxed{\text{eq:sheafif}}$$

Note that since the morphism $\mathscr{F} \to \mathscr{F}^+$ is an isomorphism when \mathscr{F} is a sheaf, this says that the functor $(-)^+$ restricted to $\mathsf{Sh}(X)$ is naturally isomorphic to the identity functor.

Thm 2.3.2. Let $\theta: \mathscr{F} \to \mathscr{F}^+$ be the natural morphism. Then for any morphism of presheaves $\phi: \mathscr{F} \to \mathscr{G}$ with \mathscr{G} a sheaf, there exists a unique morphism of sheaves $\psi: \mathscr{F}^+ \to \mathscr{G}$ so that

$$\begin{array}{ccc}
\mathscr{F}^{+} & \xrightarrow{\psi} \mathscr{G} \\
\theta \uparrow & & & \\
\mathscr{F} & & & \\
\end{array} (2.8)$$

commutes.

Proof. This just follows from equation 2.7, the fact that $\theta: \mathcal{G} \to \mathcal{G}^+$ is an isomorphism when \mathcal{G} is a sheaf, and by taking stalks.

Corollary 2.3.3. The sheafification functor is left adjoint to the inclusion functor $\iota : \mathsf{Sh}(X) \to \mathsf{PreSh}(X)$.

Proof. Let \mathscr{F} be a presheaf and \mathscr{G} be a sheaf. Given a morphism $\phi: \mathscr{F}^+ \to \mathscr{G}$ we can precompose it with $\theta: \mathscr{F} \to \mathscr{F}^+$ to obtain a map $\mathscr{F} \to \iota \mathscr{G}$. Conversely,

given $\psi : \mathscr{F} \to \iota \mathscr{G}$, we obtain a map $\mathscr{F}^+ \to \mathscr{G}$ from the theorem. Then the theorem says these operations are inverse so we have a bijection

$$\operatorname{Hom}(\mathscr{F}^+,\mathscr{G}) \cong \operatorname{Hom}(\mathscr{F}, \iota\mathscr{G}). \tag{2.9}$$

Naturality is then an easy check.

Corollary 2.3.4. The sheafification functor is exact.

Proof. It is a left adjoint so it is right exact. It thus suffices to show that if $\phi: \mathscr{F} \to \mathscr{G}$ is injective then so is ϕ^+ . For this it suffices to show that ϕ_x is injective for all x. But this is obvious.

We can now define the cokernel of a morphism $\phi: \mathscr{F} \to \mathscr{G}$ in $\mathsf{Sh}(X)$. We simply define it to be the sheafification of the cokernel in $\mathsf{PreSh}(X)$ and it is an easy to check to see that this is indeed a cokernel object in $\mathsf{Sh}(X)$. It is then easy to see that ker coker = coker ker by looking at stalks and so $\mathsf{Sh}(X)$ is an abelian category.

Remark 2.3.5. While $\mathsf{Sh}(X)$ is a full subcategory of $\mathsf{PreSh}(X)$ that is abelian, it is not a full abelian subcategory.

2.4 Maps defined on a basis

Thm 2.4.1. Let \mathscr{F},\mathscr{G} be sheafs on X and let \mathscr{B} be a basis for the topology on X. Then any morphism $\phi|_{\mathscr{B}}:\mathscr{F}|_{\mathscr{B}}\to\mathscr{G}|_{\mathscr{B}}$ extends uniquely to a morphism $\phi:\mathscr{F}\to\mathscr{G}$. Moreover this procedure is functorial.

Proof. There is a natural isomorphism between $\varinjlim_{U\ni x}\mathscr{F}$ and $\varinjlim_{B\ni x}\mathscr{F}$. Thus we obtain a map $\phi:=\phi|_{\mathcal{B}}^+:\mathscr{F}\to\mathscr{G}$. It is clear that this is a morphism of sheaves. Moreover for $U\in\mathcal{B}$ and $s\in\mathscr{F}(U)$ it is clear that $\phi(U)(s)$ and $\phi|_{\mathcal{B}}(U)(s)$ have the same stalks and so must be equal. Thus ϕ extends $\phi|_{\mathcal{B}}$. Finally, if a morphism extends $\phi|_{\mathcal{B}}$ then it is determined on stalks and hence must equal to ϕ , which gives us uniqueness. Functoriality is clear.

2.5 Exact sequences

Now that we know that we are working in an abelian category we can talk about exact sequences in $\mathsf{Sh}(X)$. Recall from section 1.4 that $\mathscr{F} \xrightarrow{\theta} \mathscr{G} \xrightarrow{\phi} \mathscr{H}$ is exact at \mathscr{G} if $\phi \circ \theta = 0$ and the map induced map $\mathsf{im}(\theta) \to \mathsf{ker}(\phi)$ is an isomorphism. But the map $\mathsf{im}(\theta) \to \mathsf{ker}(\phi)$ is an isomorphism iff it is an isomorphism at the level of stalks iff $\mathscr{F}_x \xrightarrow{\theta_x} \mathscr{G}_x \xrightarrow{\phi_x} \mathscr{H}_x$ is exact for all $x \in X$. Thus $(-)_x$ is an exact functor and exactness in $\mathsf{Sh}(X)$ can be verified by checking exactness at all the stalks.

2.6 Direct sums of sheaves

If \mathcal{A} has direct sums, then so does $\mathsf{PreSh}(X)$ since we can compute the direct sum pointwise. It follows that $\mathsf{PreSh}(X)$ is cocomplete. The sheafification of the direct sum in $\mathsf{PreSh}(X)$ gives us a direct sum in $\mathsf{Sh}(X)$ and hence $\mathsf{Sh}(X)$ is also cocomplete.

We also have products in both $\mathsf{PreSh}(X)$ and $\mathsf{Sh}(X)$ (computed pointwise) and so they are also both complete.

2.7 Sheaves over different spaces

2.7.1 Direct image sheaf

Let $f: X \to Y$ be a continuous map between topological spaces and \mathscr{F} a sheaf on X. We define the direct image of \mathscr{F} under f to be the sheaf $f_*\mathscr{F}$ on Y defined by $f_*\mathscr{F}(U) = \mathscr{F}(f^{-1}(U))$. If we define f_* on morphisms in the obvious way then it is clear that we obtain a functor $f_*: \mathsf{Sh}(X) \to \mathsf{Sh}(Y)$. In fact we also obtain a functor $f_*: \mathsf{PreSh}(X) \to \mathsf{PreSh}(Y)$ and it turns out this functor has nice left adjoint.

Define $\lim_f: \mathsf{PreSh}(Y) \to \mathsf{PreSh}(X)$ to be the functor that sends $\mathscr{F} \in \mathsf{PreSh}(Y)$ to the presheaf $\lim_f(\mathscr{F})(U) = \varinjlim_{V \supset f(U)} \mathscr{F}(V)$ on X, and does the obvious things to morphisms.

Thm 2.7.1. $\lim_{f} \exists f_* \text{ as functors between } \mathsf{PreSh}(X) \text{ and } \mathsf{PreSh}(Y).$

Proof. Let $\phi: \lim_f \mathscr{F} \to \mathscr{G}$ be a morphism of presheaves. For V open in Y, $f^{-1}(V)$ is open in X and so we have maps

$$\mathscr{F}(V) \to \varinjlim_{W \supset f(U)} \mathscr{F}(W) \to \mathscr{G}(U)$$
 (2.10)

where $U = f^{-1}(V)$. If $V' \subset V$, $U = f^{-1}(V)$ and $U' = f^{-1}(V')$ then

$$\mathscr{F}(V) \longrightarrow \varinjlim_{W \supset f(U)} \mathscr{F}(W) \longrightarrow \mathscr{G}(U)
\downarrow \qquad \qquad (2.11)$$

$$\mathscr{F}(V') \longrightarrow \varinjlim_{W \supset f(U')} \mathscr{F}(W) \longrightarrow \mathscr{G}(U')$$

commutes and so these maps in fact define a morphism $\mathscr{F} \to f_*\mathscr{G}$.

Conversely suppose we are given a morphism $\mathscr{F} \to f_*\mathscr{G}$. Let U be open in X. For $V \supset f(U)$ we have maps

$$\mathscr{F}(V) \to \mathscr{G}(f^{-1}(V)) \to \mathscr{G}(U).$$
 (2.12)

Moreover if $V \supset V' \supset f(U)$ then

commutes so we obtain maps $\varinjlim_{V\supset f(U)}\mathscr{F}(V)\to\mathscr{G}(U)$. If $U\supset U'$ we have maps

$$\underbrace{\lim_{V \supset f(U)} \mathscr{F}(V)} \longrightarrow \mathscr{G}(U)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\underbrace{\lim_{V \supset f(U')} \mathscr{F}(V)} \longrightarrow \mathscr{G}(U').$$
(2.14)

A straighforward calculation shows that this commutes and so we obtain a morphism $\lim_f \mathscr{F} \to \mathscr{G}$.

These operations are clearly inverse to each other. A straightforward calculation shows that the bijection is natural.

Corollary 2.7.2. \lim_{f} is an exact functor.

Proof. It is a left adjoint so it is right exact. Thus it suffices to show that it sends injective maps to injective maps. But this is obvious.

Stalks

Proposition 2.7.3. Let \mathscr{F} be a sheaf on X and $f: X \to Y$ a continuous map. Then there is a natural map $(f_*\mathscr{F})_{f(p)} \to \mathscr{F}_p$ in the sense that if \mathscr{G} is another sheaf on X and $\phi: \mathscr{F} \to \mathscr{G}$ is a morphism then

$$(f_*\mathscr{F})_{f(p)} \xrightarrow{(f_*\phi)_{f(p)}} (f_*\mathscr{G})_{f(p)}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathscr{F}_p \xrightarrow{\phi_p} \mathscr{G}_p$$

$$(2.15)$$

commutes.

Proof. We have

$$(f_*\mathscr{F})_{f(p)} = \varinjlim_{U \ni f(p)} f_*\mathscr{F}(U) = \varinjlim_{U:f^{-1}(U)\ni p} \mathscr{F}(f^{-1}(U)). \tag{2.16}$$

But $\{U: f^{-1}(U) \ni p\} \subseteq \{V: V \ni p\}$ and so there is map

$$(f_*\mathscr{F})_{f(p)} = \varinjlim_{U:f^{-1}(U)\ni p} \mathscr{F}(f^{-1}(U)) \to \varinjlim_{V\ni p} \mathscr{F}(V) = \mathscr{F}_p. \tag{2.17}$$

Naturality is an easy exercise.

2.7.2 Inverse image sheaf

Let $f: X \to Y$ be a continuous map between topological spaces and \mathscr{F} a sheaf on Y. Let $f^{-1}\mathrm{Sp\acute{e}}(\mathscr{F})$ be the pullback

$$f^{-1}\operatorname{Sp\acute{e}}(\mathscr{F}) \xrightarrow{f} Y. \tag{2.18}$$

We define the inverse image sheaf $f^{-1}\mathscr{F}$ to be the sheaf of sections of π : $f^{-1}\mathrm{Sp\'e}(\mathscr{F})\to X$. Equivalently, it is the sheaf

$$f^{-1}\mathscr{F}(U) = \left\{ s : U \to \operatorname{Sp\acute{e}}(\mathscr{F}) : \sup_{s \to f|_U} \downarrow_{\pi} \operatorname{commutes} \right\} \qquad (2.19) \quad \boxed{\operatorname{eq:invimg}}$$

or also equivalently, the sheaf

$$f^{-1}\mathscr{F}(U) = \{s: U \to \coprod_{x \in U} \mathscr{F}_{f(x)} : \forall x \in U, \exists W \subset Y, V \subset f^{-1}(W) \cap U \text{ open and } t \in \mathscr{F}(W) \text{ s.t. } x \in V \land s(y) = t_{f(y)} \forall y \in V \}.$$

$$(2.20)$$

It is clear from the construction that we obtain a functor $f^{-1}: \mathsf{Sh}(Y) \to \mathsf{Sh}(X)$.

Remark 2.7.4. A direct calculation shows that $f^{-1}\mathscr{F}_x$ and $\mathscr{F}_{f(x)}$ are naturally isomorphic and so there is a natrual bijection between $f^{-1}\operatorname{Sp\acute{e}}(\mathscr{F})$ and $\operatorname{Sp\acute{e}}(f^{-1}\mathscr{F})$. It is then a straightforward exercise to check that this bijection is in fact a homeomorphism i.e. $f^{-1}\operatorname{Sp\acute{e}}(\mathscr{F})\cong\operatorname{Sp\acute{e}}(f^{-1}\mathscr{F})$.

Thm 2.7.5. f^{-1} is naturally isomorphic to $(-)^+ \circ \lim_f$ as functors $\mathsf{PreSh}(Y) \to \mathsf{Sh}(X)$.

Proof. Let U be an open subset of X and $s \in \lim_f \mathscr{F}(U)$. There is a natural map $\phi_x : (\lim_f \mathscr{F})_x \to \mathscr{F}_{f(x)}$ so we can define a map $U \to \operatorname{Sp\'e}(\mathscr{F})$ by $x \mapsto \phi_x(s_x)$. It is clear that this gives an element of $f^{-1}\mathscr{F}(U)$ as characterised by equation 2.19. Thus we obtain a morphism $\lim_f \mathscr{F} \to f^{-1}\mathscr{F}$. On stalks this map is given by ϕ_x . A direct calculation shows that ϕ_x is an isomorphism for all $x \in X$ and so the induced map $(\lim_f \mathscr{F})^+ \to f^{-1}\mathscr{F}$ must be an isomorphism. It is straightforward to see that this defines a natural transformation.

Remark 2.7.6. In fact $f^{-1} \circ (-)^+$, f^{-1} and $(-)^+ \circ \lim_f$ are all naturally isomorphic.

Corollary 2.7.7. $f^{-1} \dashv f_*$ as functors between Sh(X) and Sh(Y).

Proof. f^{-1} is naturally isomorphic to $(-)^+ \circ \lim_f$ and so for $\mathscr{F} \in \mathsf{Sh}(Y), \mathscr{G} \in \mathsf{Sh}(X)$ we have natural bijections

$$\operatorname{Hom}_{\mathsf{Sh}(X)}(f^{-1}\mathscr{F},\mathscr{G}) \cong \operatorname{Hom}_{\mathsf{Sh}(X)}\left((\lim_{f}\mathscr{F})^{+},\mathscr{G}\right) \cong \operatorname{Hom}_{\mathsf{PreSh}(X)}\left(\lim_{f}\mathscr{F},\mathscr{G}\right)$$
$$\cong \operatorname{Hom}_{\mathsf{PreSh}(Y)}\left(\mathscr{F},f_{*}\mathscr{G}\right) \cong \operatorname{Hom}_{\mathsf{Sh}(Y)}\left(\mathscr{F},f_{*}\mathscr{G}\right). \quad (2.21)$$

Corollary 2.7.8. $(-)_x \circ f^{-1} = (-)_{f(x)}$.

Proof.
$$(-)_x \circ f^{-1} = (-)_x \circ (-)^+ \circ \lim_f = (-)_x \circ \lim_f = (-)_{f(x)}$$
.

Corollary 2.7.9. f^{-1} is an exact functor.

Proof. It is the composition of two exact functors. Alternatively take stalks.

Corollary 2.7.10. There are natural transformations $e: id \Rightarrow f_*f^{-1}$ and $e: f^{-1}f_* \to id$ such that

$$f^{-1} \xrightarrow{f^{-1}e} f^{-1} f_* f^{-1} \xrightarrow{\epsilon f^{-1}} f^{-1} \tag{2.22}$$

$$f_* \xrightarrow{ef_*} f_* f^{-1} f_* \xrightarrow{f_* \epsilon} f_* \tag{2.23}$$

both compose to the identity natural transformation.

2.8 The *Hom* sheaf

Lemma 2.8.1. Let \mathscr{F} and \mathscr{G} be sheaves and $f: Sp\acute{e}(\mathscr{F}) \to Sp\acute{e}(\mathscr{G})$ be a continuous map so that

$$Sp\acute{e}(\mathscr{F}) \xrightarrow{f} Sp\acute{e}(\mathscr{G})$$

$$X \qquad (2.24)$$

commutes. Let $\widetilde{f}: \mathscr{F}^+ \to \mathscr{G}^+$ be the morphism obtained by postcomposing sections with f. Then $\widetilde{f}_x = f|_x$.

Proof. This follows from the fact that if $s \in \mathscr{F}^+(U)$ then for $x \in U$, $s_x = s(x)$.

Thm 2.8.2. Let \mathscr{F} and \mathscr{G} be sheaves. Then there is a bijection between continuous maps $Sp\acute{e}(\mathscr{F}) \to Sp\acute{e}(\mathscr{G})$ and morphisms of sheaves $\mathscr{F} \to \mathscr{G}$.

Proof. For sheaves we have $\mathscr{F}\cong\mathscr{F}^+$ and so the results follows from the lemma.

Corollary 2.8.3. The presheaf $\mathcal{H}_{om}(\mathcal{F},\mathcal{G})$ defined by

$$\mathcal{H}_{om}(\mathcal{F}, \mathcal{G})(U) = \text{Hom}(\mathcal{F}|_{U}, \mathcal{G}|_{U})$$
 (2.25)

is in fact a sheaf.

2.9 Sheaves of modules

Definition 2.9.1. Let \mathscr{A} be a presheaf of rings and \mathscr{F} a presheaf of groups. We say that \mathscr{F} is an \mathscr{A} -module if there is a morphism $\mathscr{A} \times \mathscr{F} \to \mathscr{F}$ satisfying the usual commutative diagrams. Write $\mathsf{PreMod}(\mathscr{A})$ for the category of presheaf \mathscr{A} -modules, and $\mathsf{Mod}(\mathscr{A})$ for the category of \mathscr{A} -modules.

Proposition 2.9.2. Let \mathscr{A} be a presheaf of rings. There is an isomorphism of categories between $\mathsf{Mod}(\mathscr{A})$ and $\mathsf{Mod}(\mathscr{A}^+)$.

Proof. Given $\mathscr{A} \times \mathscr{F} \to \mathscr{F}$ we obtain $\mathscr{A}^+ \times \mathscr{F} \to \mathscr{F}$ via sheafification. Conversely, given $\mathscr{A}^+ \times \mathscr{F} \to \mathscr{F}$ we obtain $\mathscr{A} \times \mathscr{F} \to \mathscr{F}$ by composing with $\mathscr{A} \times \mathscr{F} \to \mathscr{A}^+ \times \mathscr{F}$. These operations are clearly inverse and respect morphisms.

Proposition 2.9.3. Let \mathscr{A} be a sheaf of rings and $\mathscr{F} \in \mathsf{PreMod}(\mathscr{A})$. Then $\mathscr{F}^+ \in \mathsf{Mod}(\mathscr{A}^+)$ and the canonical morphism $\mathscr{F} \to \mathscr{F}^+$ is an \mathscr{A} -module map.

2.10 Tensors

Definition 2.10.1. Let \mathscr{A} be a presheaf of rings, and $\mathscr{F},\mathscr{G} \in \mathsf{PreMod}(\mathscr{A})$. Define $\mathscr{F} \otimes_{\mathscr{A}} \mathscr{G}$ to be the sheafification of the presheaf tensor product. $\mathscr{F} \otimes_{\mathscr{A}} \mathscr{G}$ is a \mathscr{A}^+ -module. Write $\mathscr{F} \otimes_{\mathscr{A}} \mathscr{G}$ for the presheaf tensor.

Thm 2.10.2. Let \mathscr{A} be a sheaf of rings. Then any \mathscr{A} -bilinear morphism $\mathscr{F} \times \mathscr{G} \to \mathscr{H}$ where $\mathscr{H} \in \mathsf{Mod}(\mathscr{A})$ factors uniquely through $\mathscr{F} \times \mathscr{G} \to \mathscr{F} \otimes_{\mathscr{A}} \mathscr{G}$.

Thm 2.10.3. $-\otimes_{\mathscr{A}} - : \mathsf{PreMod}(\mathscr{A}) \times \mathsf{PreMod}(\mathscr{A}) \to \mathsf{Mod}(\mathscr{A}^+)$ is a functor.

Proposition 2.10.4. Let \mathscr{A} be a presheaf of rings on Y, \mathscr{F} , $\mathscr{G} \in \mathsf{PreMod}(\mathscr{A})$, and $f: X \to Y, g: Y \to Z$ be continuous maps. Then there are natural isomorphisms

- 1. $\mathscr{F} \otimes_{\mathscr{A}} \mathscr{A} \cong \mathscr{F}$
- 2. $\mathscr{F} \otimes_{\mathscr{A}} \mathscr{G} \cong \mathscr{F}^+ \otimes_{\mathscr{A}^+} \mathscr{G}^+$
- 3. $f^{-1}(\mathscr{F} \otimes_{\mathscr{A}} \mathscr{G}) \cong f^{-1}\mathscr{F} \otimes_{f^{-1}\mathscr{A}} f^{-1}\mathscr{G}$

Proof. 1. Obvious.

2. Use universal property.

3. It is straightforward to check that $\lim_f (\mathscr{F} \otimes_{\mathscr{A}}' \mathscr{G}) \cong \lim_f \mathscr{F} \otimes_{\lim_f \mathscr{A}}' \lim_f \mathscr{G}.$ But then

$$f^{-1}(\mathscr{F} \otimes_{\mathscr{A}} \mathscr{G}) \cong f^{-1}(\mathscr{F} \otimes_{\mathscr{A}}' \mathscr{G}) \cong \left(\lim_{f} (\mathscr{F} \otimes_{\mathscr{A}}' \mathscr{G}) \right)^{+}$$
$$\cong f^{-1}\mathscr{F} \otimes_{f^{-1}\mathscr{A}} f^{-1}\mathscr{G}$$
(2.26)

Proposition 2.10.5. Let \mathscr{A} be a presheaf of rings on X and $\mathscr{F},\mathscr{G} \in \mathsf{Mod}(X)$. Then $(\mathscr{F} \otimes_{\mathscr{A}} \mathscr{G})_p \cong \mathscr{F}_p \otimes_{\mathscr{A}_p} \mathscr{G}_p$ for all $p \in X$.

2.11 Injective sheaves

Definition 2.11.1. Let \mathscr{F} be a sheaf. Define $D(\mathscr{F})$ to be the sheaf of all (not necessarily continuous) sections of $\operatorname{Sp\'e}(\mathscr{F}) \to X$.

Lemma 2.11.2. $D(\mathscr{F}) = \prod_{x \in X} x_*(\mathscr{F}_x)$.

Proof. Obvious.

Thm 2.11.3. Sh(X) over the abelian category $AbGrp/Ring/Mod_R$ has enough injectives.

Proof. Let \mathcal{A} denote the abelian category. Recall that $x_*:\mathcal{A}\to\operatorname{Sh}(X)$ is the right adjoint of an exact functor. Thus it is left exact and preserves injectives. Let $x\in X$. \mathcal{A} has enough injectives, so there is some injective object I_x such that $0\to \mathscr{F}_x\to I_x$ is exact. It follows that $0\to x_*(\mathscr{F}_x)\to x_*(I_x)$ is also exact. We can then form the exact sequence $0\to \prod_{x\in X}x_*(\mathscr{F}_x)\to\prod_{x\in X}x_*(I_x)$. The last term is injective since it is a product of injective objects. Composing this with the canonical map $\mathscr{F}\to D(\mathscr{F})$ gives the required injection into an injective object.

CHAPTER 3

Scheme Theory

3.1 Locally ringed spaces

A locally ringed space is a pair (X, \mathcal{O}_X) consisting of a topological space X and a sheaf \mathcal{O}_X of rings on X such that the stalks are local rings. A morphism of between the locally ringed spaces (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) is a pair $(f, f^\#)$ consisting of a continuous map $f: X \to Y$ and a morphism of sheaves $f^\#: \mathcal{O}_Y \to f_* \mathcal{O}_X$ which induces morphisms of local rings on stalks $f_p^\#: \mathcal{O}_{Y, f(p)} \to \mathcal{O}_{X, p}$.

Given morphisms $(f, f^{\#}): (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ and $(g, g^{\#}): (Y, \mathscr{O}_Y) \to (Z, \mathscr{O}_Z)$ we define their composition $(h, h^{\#}): (X, \mathscr{O}_X) \to (Z, \mathscr{O}_Z)$ by $h = g \circ f$ and

$$h^{\#} = \mathscr{O}_Z \to g_* \mathscr{O}_Y \to g_* (f_* \mathscr{O}_X) = h_* \mathscr{O}_X. \tag{3.1}$$

Note that

commutes and so $h_p^\#=f_p^\#\circ g_{f(p)}^\#$ is a morphism of local rings and so $(h,h^\#)$ is indeed a morphism of locally ringed spaces.

prop:factor

Proposition 3.1.1. Let $(f, f^{\#}): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of locally ringed spaces. If $f(X) \subseteq U$ for some open subset $U \subseteq Y$ then $(f, f^{\#})$ factors through $(U, \mathcal{O}_Y |_U)$.

Proof. Let $\bar{f}: X \to U$ denote the map f viewed as having codomain U, and $i: U \to Y$. Then $f = i \circ \bar{f}$. Moreover, there is a natural morphism

 $i^{\#}: \mathscr{O}_{Y} \to i_{*}(\mathscr{O}_{Y}\mid_{U})$ given by the restriction maps. Since $\bar{f}^{-1}(V) = f^{-1}(V)$ for $V \subseteq U$, there is also a natural map $\bar{f}^{\#}: \mathscr{O}_{Y}\mid_{U} \to \bar{f}_{*}\mathscr{O}_{X}$ given by the restriction of $f^{\#}$. It is straightforward to see that $f^{\#} = i^{\#} \circ \bar{f}^{\#}$.

Thm 3.1.2. Let $(f, f^{\#}): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of locally ringed spaces. $(f, f^{\#})$ is an isomorphism iff f is a homeomorphism and $f^{\#}$ is an isomorphism.

Proof. The forwards direction is obvious. Now suppose f is a homeomorphism and $f^{\#}$ is an isomorphism. Let $g = f^{-1}: Y \to X$ and $g^{\#} = (g_*f^{\#})^{-1}$. Then $(g, g^{\#}) \circ (f, f^{\#}) = \mathrm{id}$ and $(f, f^{\#}) \circ (g, g^{\#}) = \mathrm{id}$.

Corollary 3.1.3. Let $(f, f^{\#}): (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ be a morphism of locally ringed spaces. If

- 1. U := f(X) is an open subset of Y,
- 2. f is a homeomorphism onto its image,
- 3. $f_p^{\#}$ is an isomorphism for all $p \in X$

then $(X, \mathcal{O}_X) \cong (U, \mathcal{O}_Y \mid_U)$.

Proof. By proposition 3.1.1, $(f, f^{\#})$ factors through $(\bar{f}, \bar{f}^{\#}) : (X, \mathcal{O}_X) \to (U, \mathcal{O}_Y \mid_U)$. By the theorem it suffices to check that $\bar{f}_p^{\#}$ is an isomorphism for all $p \in X$. But this follows from the fact that $i^{\#}$ is an isomorphism on stalks.

Thm 3.1.4. Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be locally ringed spaces. The presheaf $U \mapsto \operatorname{Hom}((U, \mathcal{O}_X|_U), (Y, \mathcal{O}_Y))$ on $\operatorname{Top}(X)$ is a sheaf of sets.

3.2 Morphisms

3.2.1 Quasi-compact

Definition 3.2.1. Let $(f, f^{\#}): X \to Y$ be a morphism of schemes. We say $(f, f^{\#})$ is quasi-compact if there is an affine covering $\{V_i\}_i$ of Y such that $f^{-1}(V_i)$ is quasi-compact for all i.

Lemma 3.2.2. Let X be a topological space. If X is a finite union of quasicompact open sets then X is quasi-compact.

Thm 3.2.3. Let $(f, f^{\#}): X \to Y$ be quasi-compact. Then for any affine $V \subseteq Y$, $f^{-1}(V)$ is quasi-compact.

Proof. Let us say that an open affine subset $V \subseteq Y$ has the property (P) if $f^{-1}(V)$ is quasi-compact. We show that (P) is an affine-local property.

1. If V has property (P), then certainly V_g for $g \in \mathscr{O}_Y(V)$ does too.

2. Suppose that $(g_1, \ldots, g_k) = \mathscr{O}_Y(V)$ and that V_{g_i} has property (P) for all i. Then $f^{-1}(V) = \bigcup_i f^{-1}(V_{f_i})$ is a finite union of quasi-compact open sets and so is quasi compact.

The result follows from the affine communication lemma.

Remark 3.2.4. It follows easily from the theorem that $f^{-1}(V)$ is quasi-compact for all open quasi-compact subsets V of Y.

Remark 3.2.5. If $\phi: A \to B$ is ring homomorphism, then $\operatorname{Spec}(\phi)$ is always quasi-compact (choose the trivial covers for both spaces).

3.2.2 Quasi-separated

Definition 3.2.6. Let $(f, f^{\#}): X \to Y$ be a morphism of schemes. We say $(f, f^{\#})$ is quasi-separated if there is an affine covering $\{V_i\}_i$ of Y such that $f^{-1}(V_i)$ is quasi-separated for all i.

Thm 3.2.7. Let $(f, f^{\#}): X \to Y$ be quasi-separated. Then for any affine $V \subseteq Y$, $f^{-1}(V)$ is quasi-separated.

Proof. Let us say that an open affine subset $V \subseteq Y$ has the property (P) if $f^{-1}(V)$ is quasi-separated. We show that (P) is an affine-local property.

- 1. If V has property (P), then certainly V_g for $g \in \mathscr{O}_Y(V)$ does too.
- 2. Suppose that $(g_1, \ldots, g_k) = \mathcal{O}_Y(V)$ and that V_{g_i} has property (P) for all i. Then for each i, $f^{-1}(V_{g_i})$ has an open cover $\{W_{ij}\}_j$ such that the intersection between any two elements of the cover is quasi-compact. It is clear that $\{W_{ij}\}_{i,j}$ cover $f^{-1}(V)$ and so it suffices to show that $W_{ij} \cap W_{kl}$ is quasi-compact for $i \neq k$. But by part (1), the $V_{g_ig_j}$ also have property (P). Moreover, $W_{ij} \cap W_{kl} \subseteq f^{-1}(V_{g_ig_k})$ and so $W_{ij} \cap W_{kl} = W_{ij} \cap f^{-1}(V_{g_ig_k}) \cap W_{kl} \cap f^{-1}(V_{g_ig_k})$. But $W_{ij} \cap f^{-1}(V_{g_ig_k}) = (W_{ij})_{f^{\#}(V)(g_k)}$ is affine. Thus $W_{ij} \cap W_{kl}$ is the intersection of two affines in the quasi-separated space $f^{-1}(V_{g_ig_k})$ and is thus quasi-compact.

The result follows from the affine communication lemma.

Remark 3.2.8. If $\phi: A \to B$ is ring homomorphism, then $\operatorname{Spec}(\phi)$ is always quasi-separated (choose the trivial covers for both spaces).

3.2.3 Locally of finite type

Definition 3.2.9. Let $(f, f^{\#}): X \to Y$ be a morphism of schemes. We say $(f, f^{\#})$ is locally of finite type if there is an affine covering $\{V_i\}_i$ of Y, and for each i, and affine covering $\{U_{ij}\}_j$ of $f^{-1}(V_i)$ such that $\mathscr{O}_X(U_{ij})$ is as finitely generated $\mathscr{O}_Y(V_i)$ -algebra.

prop:fg_aff_local

Proposition 3.2.10. Let $\phi: B \to A$ be a ring homomorphism and $(f_1, \ldots, f_n) = A$. Then A is a finitely generated B-algebra iff A_{f_i} is a finitely generated B-algebra for all i.

Thm 3.2.11. Let $(f, f^{\#}): X \to Y$ be locally of finite type. Then for any affine $V \subseteq Y$ and affine $U \subseteq f^{-1}(V)$, $\mathscr{O}_X(U)$ is a finitely generated $\mathscr{O}_Y(V)$ -algebra.

Proof. Let us say that an open affine subset $V \subseteq Y$ has the property (P) if for all open affine $U \subseteq f^{-1}(V)$, $\mathscr{O}_X(U)$ is finitely generated as a $\mathscr{O}_Y(V)$ -algebra. We show that (P) is an affine-local property.

- 1. It is clear that if V has property (P) then so does V_g for $g \in \mathscr{O}_Y(V)$.
- 2. Suppose that $(g_1, \ldots, g_k) = \mathscr{O}_Y(V)$ and that V_{g_i} has property (P) for all i. Let $U \subseteq f^{-1}(V)$ be affine and open and let $\psi: A \to C$ denote the corresponding morphism where $A = \mathscr{O}_Y(V)$ and $C = \mathscr{O}_X(U)$. We have that f restricts to a morphism $U_{\psi(g_i)} \to V_{f_i}$ for all i. Since $U_{\psi(g_i)}$ is affine, $C_{\psi(g_i)}$ is a finitely generated A_{g_i} -algebra and hence a finitely generated A-algebra. Since $(g_1, \ldots, g_k) = A$ it follows that $(\psi(g_1), \ldots, \psi(g_k)) = C$ and so C is a finitely generated A-algebra.

It follows that the property (P) is an affine-local property. But by proposition 3.2.10 and the affine communication lemma, each of the V_i have property (P). Since the V_i cover Y, the result follows from the affine communication lemma.

Remark 3.2.12. If $\phi: A \to B$ is ring homomorphism, then $\operatorname{Spec}(\phi)$ is locally of finite type iff B is a finitely generated A-algebra via ϕ .

3.2.4 Finite type

Definition 3.2.13. Let $(f, f^{\#}): X \to Y$ be a morphism of schemes. We say $(f, f^{\#})$ is of finite type if it is quasi-compact and locally of finite type.

Remark 3.2.14. If $\phi: A \to B$ is ring homomorphism, then $\operatorname{Spec}(\phi)$ is of finite type iff B is a finitely generated A-algebra via ϕ .

3.2.5 Closed immersion

Definition 3.2.15. Let $(f, f^{\#}): X \to Y$ be a morphism of schemes. We say $(f, f^{\#})$ is a closed immersion if f(X) is closed in Y, f is a homeomorphism onto its image, and the morphism $f^{\#}$ is surjective.

Remark 3.2.16. If $\phi: A \to B$ is ring homomorphism, then $\operatorname{Spec}(\phi)$ is a closed immersion iff ϕ is a surjection.

Proposition 3.2.17. Let $f: X \to Y$ be a morphism and suppose there is an open cover $\{U_i\}_i$ of Y such that $f|_{f^{-1}(U_i)}: f^{-1}(U_i) \to U_i$ is a closed immersion for all i. Then f is a closed immersion.

3.2.6 Open immersion

Definition 3.2.18. Let $(f, f^{\#}): X \to Y$ be a morphism of schemes. We say $(f, f^{\#})$ is an open immersion if f(X) is open in Y, f is a homeomorphism onto its image, and $f_{p}^{\#}$ is an isomorphism for all $p \in X$.

3.2.7 Affine

Definition 3.2.19. Let $(f, f^{\#}): X \to Y$ be a morphism of schemes. We say $(f, f^{\#})$ is affine if there is an affine covering $\{V_i\}_i$ of Y such that $f^{-1}(V_i)$ is affine for all i

Thm 3.2.20. Let $(f, f^{\#}): X \to Y$ be affine. Then for any affine $V \subseteq Y$, $f^{-1}(V)$ is affine.

Proof. Let us say that an open affine subset $V \subseteq Y$ has the property (P) if $f^{-1}(V)$ is affine. We show that (P) is an affine-local property.

- 1. If V has property (P), then clearly V_g for $g \in \mathscr{O}_Y(V)$ does too.
- 2. Suppose that $(g_1, \ldots, g_k) = \mathscr{O}_Y(V)$ and that V_{g_i} has property (P) for all i. Then f restricted to $f^{-1}(V) \to V$ is quasi-compact and quasi-separated. It follows that $f^{-1}(V)$ is quasi-compact and quasi-separated. Moreover, $f^{-1}(V)_{f^{\#}(V)(g_i)}$ is affine for all i, and $(f^{\#}(V)(g_1), \ldots, f^{\#}(V)(g_k)) = \Gamma(f^{-1}(V), \mathscr{O}_X)$. It follows from proposition 9.2.5 that $f^{-1}(V)$ is affine.

The result follows from the affine communication lemma.

Remark 3.2.21. If $\phi: A \to B$ is a ring homomorphism, then $\operatorname{Spec}(\phi)$ is always affine (choose the trivial cover for both spaces).

3.3 \mathcal{O}_X -Modules

Definition 3.3.1. Let (X, \mathcal{O}_X) be a locally ringed space. An \mathcal{O}_X -module is a sheaf \mathscr{F} of abelian groups with a compatible \mathcal{O}_X action. Morphisms of \mathcal{O}_X -modules are morphisms of sheaves of abelian groups that respect the \mathcal{O}_X -module structure.

Thm 3.3.2. The category of \mathcal{O}_X -modules is an abelian category.

Proof. Additive structure on hom-sets is obvious. Kernels are the same as the kernels in $\mathsf{Ab}(X)$, with the obvious \mathscr{O}_X -module structure. Similarly for cokernels (if a presheaf has an \mathscr{O}_X -module structure, then so does its sheafification by acting on the stalks). The rest then follows.

Definition 3.3.3. (Tensor product). Let \mathscr{F} and \mathscr{G} be \mathscr{O}_X -modules. Define the tensor product of \mathscr{F} and \mathscr{G} , $\mathscr{F} \otimes_{\mathscr{O}_X} \mathscr{G}$ to be the sheafification of the presheaf tensor product with the obvious \mathscr{O}_X -module structure.

Definition 3.3.4. (Pullback). Let $f: X \to Y$ be a continuous map, and \mathscr{F} an \mathscr{O}_Y . Then $f^{-1}\mathscr{F}$ is naturally a $f^{-1}\mathscr{O}_Y$ -module. Moreover from the inverse image - direct image adjunction we obtain a map $f^{-1}\mathscr{O}_Y \to \mathscr{O}_X$ from $f^{\#}: \mathscr{O}_Y \to f_*\mathscr{O}_X$. We can thus form the sheaf $f^{-1}\mathscr{F} \otimes_{f^{-1}\mathscr{O}_Y} \mathscr{O}_X$. This sheaf is naturally an \mathscr{O}_X -module and we call it $f^*\mathscr{F}$.

Proposition 3.3.5. The maps $X \mapsto \mathsf{Mod}(X)$, $f \mapsto f^*$ give rise to a functor $\mathsf{Sch}^{op} \to \mathsf{Mod}$.

Proof. Clear that the identity maps to the identity. Now suppose we have maps $f: X \to Y, g: Y \to Z$ and let $\mathscr{F} \in \mathsf{Mod}(Z)$. Then

$$f^{*}(g^{*}(\mathscr{F})) = f^{*}(g^{-1}\mathscr{F} \otimes_{g^{-1}\mathscr{O}_{Z}} \mathscr{O}_{Y})$$

$$= f^{-1} (g^{-1}\mathscr{F} \otimes_{g^{-1}\mathscr{O}_{Z}} \mathscr{O}_{Y}) \otimes_{f^{-1}\mathscr{O}_{Y}} \mathscr{O}_{X}$$

$$\cong (g \circ f)^{-1}\mathscr{F} \otimes_{(g \circ f)^{-1}\mathscr{O}_{Z}} \mathscr{O}_{X}$$

$$= (g \circ f)^{*}(\mathscr{F}). \tag{3.3}$$

Thm 3.3.6. Let $\mathscr{F}, \mathscr{G} \in \mathsf{Mod}(Y)$ and $f: X \to Y$. Then

$$f^*(\mathscr{F} \otimes_{\mathscr{O}_Y} \mathscr{G}) \cong f^*\mathscr{F} \otimes_{\mathscr{O}_X} f^*\mathscr{G}.$$
 (3.4)

Remark 3.3.7. If $i: U \hookrightarrow X$ is the inclusion map for an open subset $U \subseteq X$, then $i^* = i^{-1}$.

Definition 3.3.8. (Direct image). Let $f: X \to Y$ be a continuous map, and \mathscr{F} an \mathscr{O}_X . Then $f_*\mathscr{F}$ is naturally a $f_*\mathscr{O}_X$ module, and hence a \mathscr{O}_Y -module via $f^\#: \mathscr{O}_Y \to f_*\mathscr{O}_X$.

thm:tensor-hom

Thm 3.3.9. Let \mathscr{F} be a $(\mathscr{A},\mathscr{B})$ -bimodule. Then $-\otimes_{\mathscr{A}} \mathscr{F} \dashv \mathscr{H}_{m\mathscr{B}}(\mathscr{F},-)$ as functors between $\mathsf{Mod}(\mathscr{A})$ and $\mathsf{Mod}(\mathscr{B})$.

Proof. Follows from the corresponding tensor-hom adjunction for modules.

Lemma 3.3.10. Let $f: X \to Y$, $\mathscr{F} \in \mathsf{Mod}(Y)$ and $\mathscr{G} \in \mathsf{Mod}(X)$. Then under the natural bijection

$$\operatorname{Hom}_{\mathsf{Ab}}(f^{-1}\mathscr{F},\mathscr{G}) \leftrightarrow \operatorname{Hom}_{\mathsf{Ab}}(\mathscr{F}, f_*\mathscr{G})$$
 (3.5)

 $f^{-1}\mathcal{O}_Y$ -module morphisms biject with \mathcal{O}_Y -module morphisms.

Thm 3.3.11. Let $f: X \to Y$ be a continuous map. Then $f^* \dashv f_*$ as functors between Mod(X) and Mod(Y).

Proof. Let $\mathscr{F} \in \mathsf{Mod}(Y)$ and $\mathscr{G} \in \mathsf{Mod}(X)$. Note that \mathscr{O}_X is an $(f^{-1}\mathscr{O}_Y, \mathscr{O}_X)$ -bimodule. We thus have the following chain of natural bijections

$$\operatorname{Hom}_{\mathscr{O}_{X}}(f^{*}\mathscr{F},\mathscr{G}) \leftrightarrow \operatorname{Hom}_{f^{-1}\mathscr{O}_{Y}}(f^{-1}\mathscr{F},\mathscr{H}_{m\mathscr{O}_{X}}(\mathscr{O}_{X},\mathscr{G}))$$

$$\leftrightarrow \operatorname{Hom}_{f^{-1}\mathscr{O}_{Y}}(f^{-1}\mathscr{F},\mathscr{G})$$

$$\leftrightarrow \operatorname{Hom}_{\mathscr{O}_{Y}}(\mathscr{F},f_{*}\mathscr{G}) \tag{3.6}$$

where the last bijection follows from the lemma.

Remark 3.3.12. Given an \mathcal{O}_Y -module \mathscr{F} we have a morphism

$$f^{-1}\mathscr{F} \to f^{-1}\mathscr{F} \otimes_{f^{-1}\mathscr{O}_Y} \mathscr{O}_X = f^*\mathscr{F}.$$
 (3.7)

Thus we have a morphism $\mathscr{F} \to f_* f^{-1} \mathscr{F} \to f_* f^* \mathscr{F}$. This morphism is the same as the one arising from the $f^* \dashv f_*$ adjunction.

Definition 3.3.13. Let \mathscr{F} be an \mathscr{O}_Y -moudle, and $\sigma \in \mathscr{F}(U)$. Write $f^*\sigma$ for the element in $(f^*\mathscr{F})(f^{-1}(U))$ under the morphism $\mathscr{F} \to f_*f^*\mathscr{F}$.

Remark 3.3.14. When $\mathscr{F} = \mathscr{O}_Y$, $f^* = f^{\#}$.

Proposition 3.3.15. Let \mathscr{F} be an \mathscr{O}_Y -module, $\sigma \in \mathscr{F}(Y)$ and $\phi : \mathscr{O}_Y \to \mathscr{F}$ the corresponding map. Then $f^*\phi : \mathscr{O}_X \to f^*\mathscr{F}$ is mulitplication by $f^*\sigma$.

Proof. id $\to f_*f^*$ a natural transformation and so

$$\begin{array}{ccc}
\mathscr{O}_Y & \longrightarrow \mathscr{F} \\
\downarrow & \downarrow \\
f_*\mathscr{O}_X & \longrightarrow f_*f^*\mathscr{F}
\end{array} (3.8)$$

commutes.

Definition 3.3.16. Let R be a ring and M an R-module. Define \widetilde{M} to be the $\mathscr{O}_{\operatorname{Spec}(R)}$ -module which is locally M_r .

Thm 3.3.17. $\widetilde{\bullet}$ is a fully faithful exact functor from Mod_R to $\mathsf{Mod}(\operatorname{Spec}(R))$.

Proof. Localisation is exact.

Corollary 3.3.18. $\widetilde{\bullet}$ and Γ form part of an adjoint equivalence of categories between Mod_R and $\mathsf{Mod}(\operatorname{Spec}(R))$.

3.4 Locally free \mathcal{O}_X -modules

Definition 3.4.1. Let (X, \mathscr{O}_X) be a scheme and \mathscr{F} an \mathscr{O}_X -module. We say \mathscr{F} is locally free of rank n if there exists an open cover $\{U_i\}_i$ of X such that $\mathscr{F}|_{U_i} \cong \mathscr{O}_{U_i}^{\oplus n}$ for all i.

Remark 3.4.2. Given a locally free sheaf \mathscr{F} and an open cover we obtain transition functions $\psi_{ji} \in \mathbf{GL}_n(\mathscr{O}_{U_{ij}})$. Conversely, given such data we obtain a sheaf isomorphic to the original one.

lem:pullback

Lemma 3.4.3. Let $f: X \to Y$ be a morphism of schemes and $\phi: \mathcal{O}_Y \to \mathcal{O}_Y$ the \mathcal{O}_Y -module homomorphism given by multiplication by $\alpha \in \mathcal{O}_Y(Y)$. Then $f^*\phi: \mathcal{O}_X \to \mathcal{O}_X$ is given by multiplication by $f^\#(Y)(\alpha)$.

Proof. We check that they are equal on stalks.

$$\mathcal{O}_{Y,f(p)} \otimes_{\mathcal{O}_{Y,f(p)}} \mathcal{O}_{X,p} \longrightarrow \mathcal{O}_{Y,f(p)} \otimes_{\mathcal{O}_{Y,f(p)}} \mathcal{O}_{X,p}
\uparrow \qquad \qquad \downarrow
\mathcal{O}_{X,p} \xrightarrow{f^*\phi} \mathcal{O}_{X,p}.$$
(3.9)

Following this diagram we get that

$$1 \mapsto 1 \otimes 1 \mapsto \alpha_p \otimes 1 = 1 \otimes f_p^{\#}(\alpha_p) \mapsto f_p^{\#}(\alpha_p). \tag{3.10}$$

Thus $f^*\phi$ is given by multiplication by $f^{\#}(Y)(\alpha)$.

Thm 3.4.4. Let $f: X \to Y$ be a morphism of schemes, and \mathscr{F} a locally free \mathscr{O}_Y -module. Then $f^*\mathscr{F}$ is locally free of the same rank. Moreover, if $\{\psi_{ji}\}$ denote the transition functions for an open cover $\{U_i\}_i$ for Y, then $f^{\#}(\psi_{ji})$ are transition functions for $f^*\mathscr{F}$ on the open cover $\{f^{-1}(U_i)\}_i$.

Proof. There is an isomorphism $\mathscr{F}|_{U_i} \to \mathscr{O}_{U_i}^{\oplus n}$. Thus

$$(f^*\mathscr{F})|_{f^{-1}(U_i)} \cong (f|_{f^{-1}(U_i)})^* (\mathscr{F}|_{U_i}) \cong \mathscr{O}_{f^{-1}(U_i)}^{\oplus n}$$
 (3.11)

and so $f^*\mathscr{F}$ is also locally free of rank n. The result on the transition functions follows from lemma 3.4.3

Proposition 3.4.5. Let \mathscr{F} be a locally free \mathscr{O}_X -module. Then $-\otimes_{\mathscr{O}_X} \mathscr{F}$ is exact.

3.5 Line bundles

Definition 3.5.1. Let S be a scheme and $\mathscr{L}, \mathscr{L}'$ be locally free sheaves on S. We say the morphisms $\phi: \bigoplus \mathscr{O}_S \to \mathscr{L}, \ \psi: \bigoplus \mathscr{O}_S \to \mathscr{L}'$ are isomorphic if there is an isomorphism $i: \mathscr{L} \to \mathscr{L}'$ such that $\psi = i \circ \phi$.

Definition 3.5.2. Let $r \geq 0$. Define $\underline{\mathbb{P}}^r$ to be the functor from Sch^{op} to Set which associates with the scheme S the set of isomorphism classes of sujective morphisms $\phi: \bigoplus_{k=0}^r \mathscr{O}_S \to \mathscr{L}$ where \mathscr{L} is a locally free sheaf of rank 1. Given $f: T \to S$, $\underline{\mathbb{P}}^r(f)$ sends ϕ to $f^*\phi$.

Definition 3.5.3. $\mathbb{P}^r_{\mathbb{Z}} := \operatorname{Proj}(\mathbb{Z}[x_0, \dots, x_r]).$

Lemma 3.5.4. Let \mathscr{L} be a locally free sheaf of rank 1 on a scheme S and $\sigma \in \mathscr{L}(S)$. Then $S_{\sigma} := \{s \in S : \sigma \notin \mathfrak{m}_s \mathscr{L}_s\}$ is an open subset of S and trivialises \mathscr{L} . Moreover, if $\xi : T \to S$ is a morphism of schemes then $T_{\xi^*\sigma} = \xi^{-1}(S_{\sigma})$.

Proof. Let $\{U_i\}_i$ be a trivialising open cover for \mathscr{L} . Then $\psi_i: \mathscr{L}|_{U_i} \xrightarrow{\sim} \mathscr{O}_S|_{U_i}$ and under this isomorphism $\mathfrak{m}_s\mathscr{L}_s$ corresponds to \mathfrak{m}_s . Thus $S_\sigma \cap U_i$ is open for all i and so S_σ is open. Now define the map $\phi: \mathscr{O}_X \to \mathscr{L}$ by $1 \mapsto \sigma$. On $S_\sigma \cap U_i$ the composition $\mathscr{O}_X|_{S_\sigma \cap U_i} \xrightarrow{\phi} \mathscr{L}|_{S_\sigma \cap U_i} \xrightarrow{\psi_i} \mathscr{O}_X|_{S_\sigma \cap U_i}$ must be multiplication by some $\alpha \in \Gamma(S_\sigma \cap U_i, \mathscr{O}_X)$. But looking at stalks, this α must be invertible and so the composition must be an isomorphism. But then $\phi|_{S_\sigma \cap U_i}$ must be too and hence $\phi|_{S_\sigma}$ is an isomorphism.

For the last part note that we have the following commutative diagram

$$\mathcal{L}|_{U_{i}} \longrightarrow \mathcal{O}_{S}|_{U_{i}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(\xi|_{\xi^{-1}(U_{i})})_{*}((\xi^{*}\mathcal{L})|_{\xi^{-1}(U_{i})}) \longrightarrow (\xi|_{\xi^{-1}(U_{i})})_{*}(\mathcal{O}_{T}|_{\xi^{-1}(U_{i})}).$$

It follows that $\xi^*(\sigma|_{U_i})$ maps to $\xi^{\#}(\psi_i(\sigma|_{U_i}))$ under $\xi^*\psi_i$. Thus

$$T_{\xi^*\sigma} \cap \xi^{-1}(U_i) = \xi^{-1}(U_i)_{\xi^{\#}(\psi_i(\sigma|_{U_i}))} = \xi^{-1}\left((U_i)_{\psi_i(\sigma|_{U_i})}\right) = \xi^{-1}(U_i \cap S_\sigma)$$
(3.13)

and so the result follows.

Lemma 3.5.5. Let S be a scheme, \mathscr{L} a locally free sheaf of rank 1 and

$$\phi: \bigoplus_{k=0}^{r} \mathscr{O}_S \to \mathscr{L} \tag{3.14}$$

a surjective morphism of \mathcal{O}_S -modules. Then there is a morphism $\eta_{\phi}: S \to \mathbb{P}^r_{\mathbb{Z}}$. Moreover, this construction only depends on the isomorphism class of ϕ and is functorial in S i.e. given $\gamma: T \to S$ we have $\eta_{\gamma^*(\phi)} = \eta_{\phi} \circ \gamma$.

Remark 3.5.6. Morally such a morphism gives r+1 sections $\sigma_0, \ldots, \sigma_r$. We then obtain the morphism $S \to \mathbb{P}^r_{\mathbb{Z}}$ by $s \mapsto (\sigma_0 : \cdots : \sigma_r)$.

Proof. Let $e_i = \delta_{ij}$ and let $\sigma_0, \ldots, \sigma_r$ be the images of e_0, \ldots, e_r respectively. Since ϕ is surjective, $S = \bigcup_i S_{\sigma_i}$. Let $\psi_i : \mathscr{O}_S|_{S_{\sigma_i}} \to \mathscr{L}|_{S_{\sigma_i}}$ denote the trivialising isomorphisms from the previous lemma and let ξ_i be the inverse of ψ_i .

Restricting ϕ to S_{σ_i} we obtain the composition

$$\bigoplus_{k=0}^r \mathscr{O}_{S_{\sigma_i}} \xrightarrow{\phi|_{S_{\sigma_i}}} \mathscr{L}|_{S_{\sigma_i}} \xrightarrow{\xi_i} \mathscr{O}_{S_{\sigma_i}}. \tag{3.15}$$

Let f_{ji} denote the image of e_j under this composition. Then $f_{ji} \cdot \sigma_i|_{S_{\sigma_i}} = \sigma_j|_{S_{\sigma_i}}$. It follows that

$$f_{ji}|_{S_{\sigma_i} \cap S_{\sigma_j}} \cdot f_{ij}|_{S_{\sigma_i} \cap S_{\sigma_j}} \cdot \sigma_j|_{S_{\sigma_i} \cap S_{\sigma_j}} = \sigma_j|_{S_{\sigma_i} \cap S_{\sigma_j}}. \tag{3.16}$$

Applying $\xi_i|_{S_{\sigma_i}\cap S_{\sigma_i}}$ to both sides yields that

$$f_{ji}|_{S_{\sigma_i} \cap S_{\sigma_j}} = f_{ij}|_{S_{\sigma_i} \cap S_{\sigma_i}}^{-1}.$$
(3.17)

Similarly we get

$$f_{kj}|_{S_{\sigma_i} \cap S_{\sigma_j}} f_{ji}|_{S_{\sigma_i} \cap S_{\sigma_j}} = f_{ki}|_{S_{\sigma_i} \cap S_{\sigma_j}}, \quad f_{ii} = 1.$$

$$(3.18)$$

Now, equation 3.15 gives rise to a morphism $(\eta_{\phi})_i: S_{\sigma_i} \to U_i$ where U_i is the standard affine patch $D_+(x_i) \subseteq \mathbb{P}^r_{\mathbb{Z}}$. This morphism sends $x_j/x_i \in \mathscr{O}_{\mathbb{P}^r_{\mathbb{Z}}}(U_i)$ to f_{ji} (and is uniquely defined by this fact). It follows that

$$(\eta_{\phi})_{i}^{-1}(U_{i} \cap U_{j}) = (S_{\sigma_{i}})_{f_{ji}} = S_{\sigma_{i}} \cap S_{\sigma_{j}}. \tag{3.19}$$

Thus the map $(\eta_{\phi})_i|_{S_{\sigma_i} \cap S_{\sigma_i}}$ factors

and similarly for $(\eta_{\phi})_j|_{S_{\sigma_i}\cap S_{\sigma_i}}$. We thus have maps

$$Spec(\mathbb{Z}[x_0/x_i, \dots, x_0/x_i]_{x_j/x_i})$$

$$S_{\sigma_i} \cap S_{\sigma_j}$$

$$(3.21)$$

$$Spec(\mathbb{Z}[x_0/x_j, \dots, x_0/x_j]_{x_i/x_j})$$

where the vertical map is induced from $x_k/x_i \mapsto (x_k/x_j) \cdot (x_i/x_j)^{-1}$. To see that this diagram commutes note that $(\eta_\phi)_{ji}(x_k/x_i) = f_{ki}|_{S_{\sigma_i} \cap S_{\sigma_i}}$ while

$$(\eta_{\phi})_{ij} \circ \zeta(x_k/x_i) = (\eta_{\phi})_{ij} \left((x_k/x_j) \cdot (x_i/x_j)^{-1} \right)$$

$$= f_{kj}|_{S_{\sigma_i} \cap S_{\sigma_j}} \cdot f_{ij}|_{S_{\sigma_i} \cap S_{\sigma_j}}^{-1}$$

$$= f_{kj}|_{S_{\sigma_i} \cap S_{\sigma_j}} \cdot f_{ji}|_{S_{\sigma_i} \cap S_{\sigma_j}} = f_{ki}|_{S_{\sigma_i} \cap S_{\sigma_j}}. \tag{3.22}$$

It follows that $(\eta_{\phi})_i|_{S_{\sigma_i} \cap S_{\sigma_j}} = (\eta_{\phi})_j|_{S_{\sigma_i} \cap S_{\sigma_j}}$ and hence we obtain a map $\eta_{\phi}: S \to \mathbb{P}^r_{\mathbb{Z}}$. This construction clearly only depends on the isomorphism class of ϕ (the f_{ji} 's are independent of isomorphism class).

Finally we show functoriality. Let $\gamma: T \to S$ be a morphism of schemes. Then e_1, \ldots, e_r get sent to $\gamma^* \sigma_1, \ldots, \gamma^* \sigma_r$ under $\gamma^*(\phi)$. The corresponding open sets are $T_{\gamma^* \sigma_i} = \gamma^{-1}(S_{\sigma_i})$ and the corresponding f_{ji} 's are $\gamma^* f_{ji} = \gamma^\# f_{ji}$. It follows that for each i, $(\eta_{\gamma^*(\phi)})_i = (\eta_{\phi})_i \circ \gamma|_{T_{\gamma^* \sigma_i}}$. Therefore we get that $\eta_{\gamma^*(\phi)} = \eta_{\phi} \circ \gamma$.

rem:trans_fn

Remark 3.5.7. The $f_{ji}|_{S_{\sigma_i}\cap S_{\sigma_j}}$ are the transition functions with respect to the open cover S_{σ_i} .

Definition 3.5.8. Let $\mathscr{O}(1)$ denote the sheaf on $\mathbb{P}^r_{\mathbb{Z}}$ with transition functions $\psi_{ji} = x_i/x_j$. Write χ_k for the section corresponding to x_k/x_i on U_i for $i = 0, \ldots, r$. Then we obtain a surjective morphism $\phi_{\mathbb{P}^r_{\mathbb{Z}}} : \bigoplus_{k=0}^r \mathscr{O}_{\mathbb{P}^r_{\mathbb{Z}}} \to \mathscr{O}(1)$. Note that $\eta_{\phi_{\mathbb{P}^r_{\mathbb{Z}}}} = \mathrm{id}_{\mathbb{P}^r_{\mathbb{Z}}}$.

Thm 3.5.9. $\underline{\mathbb{P}}^r$ is a representable functor with representative $\mathbb{P}^r_{\mathbb{Z}}$.

Proof. From the lemma we have a natural transformation $\underline{\mathbb{P}}^r \Rightarrow \operatorname{Hom}(-, \mathbb{P}^r_{\mathbb{Z}})$. Now consider that map $\operatorname{Hom}(S, \mathbb{P}^r_{\mathbb{Z}}) \to \underline{\mathbb{P}}^r(S)$ given by $\xi \to \xi^*(\phi_{\mathbb{P}^r_x})$. Then

$$\eta_{\xi^*(\phi_{\mathbb{P}^r_q})} = \eta_{\phi_{\mathbb{P}^r_q}} \circ \xi = \xi \tag{3.23}$$

so the composition one way is the identity. Conversely, consider a $\phi: \bigoplus_{k=0}^r \mathscr{O}_S \to \mathscr{L} \in \mathbb{P}^r(S)$. We wish to show that $(\eta_\phi)^*\mathscr{O}(1) \cong \mathscr{L}$ and under this isomorphism, $(\eta_\phi)^*(\phi_{\mathbb{P}^r_z})) = \phi$. First note that $(\eta_\phi)^{-1}(U_i) = S_{\sigma_i}$. Moreover, the corresponding transition functions for $(\eta_\phi)^*\mathscr{O}(1)$ are $(\eta_\phi)^\#(x_i/x_j) = f_{ij}|_{S_{\sigma_i} \cap S_{\sigma_j}}$. It follows from remark 3.5.7 that $(\eta_\phi)^*\mathscr{O}(1) \cong \mathscr{L}$. Finally $(\eta_\phi)^*(\chi_k)$ maps to f_{ki} on the trivialisation on S_{σ_i} . The result follows.

3.6 Ample line bundles

lem:ext

Lemma 3.6.1. Let X be a scheme, \mathscr{F} a quasi-coherent \mathscr{O}_X -module, \mathscr{L} a line bundle and $f \in \Gamma(X, \mathscr{L})$.

- 1. If X is quasi-compact, $s \in \mathscr{F}(X)$ and $s|_{X_f} = 0$ then there is an $n \geq 1$ such that $s \otimes f^{\otimes n} = 0$ in $\mathscr{F} \otimes \mathscr{L}^{\otimes n}$.
- 2. If X is a sqc and $s \in \mathcal{F}(X_f)$ then there is an $n \geq 1$ such that $s \otimes f^{\otimes n} = t|_{X_f}$ for some $t \in (\mathcal{F} \otimes \mathcal{L}^{\otimes n})(X)$.

Proof. (1) Let $\{U_i\}$ be a finite trivialising cover for $\mathscr L$ consisting of affines and let $g_i \in \mathscr O_X(U_i)$ be the section corresponding to $f|_{U_i}$ under $\mathscr L|_{U_i} \cong \mathscr O_X|_{U_i}$. Then $U_i \cap X_f = (U_i)_{g_i}$ so there is an $n \geq 1$ (independent of i) such that $g_i^n s|_{U_i} = 0$. But under the isomorphism $\mathscr F|_{U_i} \cong \mathscr F|_{U_i} \otimes \mathscr O_X|_{U_i}^{\otimes n} \cong \mathscr F|_{U_i} \otimes \mathscr L|_{U_i}^{\otimes n}$, $g_i^n s|_{U_i}$ maps to $s|_{U_i} \otimes f|_{U_i}^{\otimes n}$. It follows that $s \otimes f^{\otimes n} = 0$. (2) Let $\{U_i\}$ and

 $\{g_i\}$ be as before and let $\{\psi_{ji}\}$ be the transition functions. There exists an n (independent of the i) such that $g_i^n s|_{(U_i)_{g_i}} = t_i|_{(U_i)_{g_i}}$ for some $t_i \in \mathscr{F}(U_i)$. Let $\mathscr{G} = \mathscr{F} \otimes \mathscr{L}^{\otimes n}$ and t_i' be the element in $\mathscr{G}(U_i)$ corresponding to t_i . Then $t_i'|_{U_i \cap X_f} = s \otimes f^{\otimes n}|_{U_i \cap X_f}$. Thus we have $t_i'|_{U_i \cap U_j \cap X_f} = t_j'|_{U_i \cap U_j \cap X_f}$. But $U_i \cap U_j$ is quasi-compact since X is quasi-serparated and so by (1) there is a m (independent of i,j) such that $t_i' \otimes f^{\otimes m}|_{U_i \cap U_j} = t_j' \otimes f^{\otimes m}|_{U_i \cap U_j}$. It follows that there is a $t \in \mathscr{G} \otimes \mathscr{L}^{\otimes m}(X)$ that restricts to the $t_i' \otimes f^{\otimes m}$ and hence to $s \otimes f^{\otimes (m+n)}$ on X_f .

Definition 3.6.2. A line bundle \mathscr{L} is ample if for any coherent sheaf \mathscr{F} on S, there is a $n_0 \in \mathbb{N}$ such that $\mathscr{F} \otimes \mathscr{L}^{\otimes n}$ is generated by global sections for all $n \geq n_0$.

Thm 3.6.3. Let S be a noetherian scheme. The line bundle \mathscr{L} is very ample iff there is $n \in N$ and $\sigma_1, \ldots, \sigma_k \in \Gamma(S, \mathscr{L}^{\otimes n})$ such that S_{σ_i} is affine for all i and $S = \bigcup_i S_{\sigma_i}$.

Proof. (\Leftarrow) Let \mathscr{F} be a coherent sheaf on S. Then $\mathscr{F}|_{S_{\sigma_i}}$ is globally generated, say by $t_{ji} \in \mathscr{F}(S_{\sigma_i})$, since S_{σ_i} is affine. By lemma 3.6.1, there is an $n \geq 1$ independent of i, and $\lambda_{ji} \in (\mathscr{F} \otimes \mathscr{L}^{\otimes n})(X)$ such that $\lambda_{ji}|_{S_{\sigma_i}} = t_{ji} \otimes \sigma_i^{\otimes n}$. It is clear that these λ_{ji} globally generate $\mathscr{F} \otimes \mathscr{L}^{\otimes n}$. It is straighfroward to see that $\mathscr{F} \otimes \mathscr{L}^{\otimes m}$ is also globally generated for $m \geq n$.

(\Rightarrow) Let $\{U_i\}_i$ be an open cover of S consisting of affines which trivialise \mathscr{L} . Let $Y_i = S \setminus U_i$ and \mathscr{J}_{Y_i} be the ideal sheaf associated to Y_i . Since \mathscr{L} is ample there is an n independent of i, such that $\mathscr{J}_{Y_i} \otimes \mathscr{L}^{\otimes n}$ is globally generated for all i. Let $\widetilde{\sigma}_{ji} \in \mathscr{J}_{Y_i} \otimes \mathscr{L}^{\otimes n}$ be such that for all $x \in U$ there is a j such that $\widetilde{\sigma}_{ji} \notin \mathfrak{m}_x$ (note that $\mathscr{J}|_{U_i} \cong \mathscr{O}_S|_{U_i}$). We have the exact sequence $0 \to \mathscr{J}_{U_i} \otimes \mathscr{L}^{\otimes n} \to \mathscr{L}^{\otimes n}$. Let σ_{ji} be the image of $\widetilde{\sigma}_{ji}$ in $\mathscr{L}^{\otimes n}$. Then by construction we have $S_{\sigma_{ji}} \subseteq U_i$ and in fact $U_i = \cup_j S_{\sigma_{ji}}$. Since U_i is affine and trivialises \mathscr{L} we also have that $S_{\sigma_{ji}}$ is also affine. The result follows.

Corollary 3.6.4. $\mathcal{O}(1)$ is ample.

Lemma 3.6.5. Let S be a Noetherian scheme, \mathscr{L} a line bundle on S, ϕ : $\bigoplus_{k=0}^r \mathscr{O}_S \to \mathscr{L}$ a surjective \mathscr{O}_S -module homomorphism and $\sigma_0, \ldots, \sigma_r$ the distinguished images of ϕ in \mathscr{L} . If S_{σ_i} is affine for all i, then the resulting morphism $S \to \mathbb{P}_{\mathbb{Z}}^r$ is a closed immersion.

Thm 3.6.6. Let $f: S \to \operatorname{Spec}(R)$ be a morphism of finite type, R a Noetherian ring and \mathcal{L} an ample line bundle on S. Then there is an $n \geq 1$ and $\sigma_0, \ldots, \sigma_r \in \Gamma(S, \mathcal{L}^{\otimes n})$ such that the corresponding morphism $S \to \mathbb{P}_R^r$ is a closed immersion into an open subset of \mathbb{P}_R^r .

Proof. Since f is finite, S is Noetherian. Replacing $\mathcal{L}^{\otimes n}$ with \mathcal{L} , we get that there are $\sigma_1, \ldots, \sigma_k \in \Gamma(S, \mathcal{L})$ such that $S = \cup_i S_{\sigma_i}$ and the S_{σ_i} are affine. Each $\Gamma(S_{\sigma_i}, \mathcal{O}_S)$ is a finitely generated R-algebra. Let $\{\sigma_{ji}\}$ be the image of a generating set in $\Gamma(S_{\sigma_i}, \mathcal{L})$. There exists an n independent of i

and $t_{ji} \in \Gamma(S, \mathscr{L}^{\otimes n})$ such that $\sigma_{ji} \otimes \sigma_i^{\otimes n} = t_{ji}|_{S_{\sigma_i}}$. Let Σ be the set of t_{ji} 's and σ_i 's and $\psi : \{0, \ldots, r\} \to \Sigma$ an arbitrary enumeration of Σ . The resulting morphism $S \to \mathbb{P}_R^r$ is obtained by gluing together the morphisms

$$S_{\sigma_i} \to \text{Spec}(R[x_0/x_{\psi^{-1}(\sigma_i)}, \dots, x_r/x_{\psi^{-1}(\sigma_i)}]).$$
 (3.24)

These maps are closed immersions (the corresponding maps on global sections are surjective) and so the result follows.

3.7 Cohomological results

Lemma 3.7.1. Let $f: X \to Y$ be an affine morphism of schemes and suppose that X is noetherian. Then for all quasi-coherent \mathcal{O}_X -modules \mathscr{F} , we have $R^k f_*(\mathscr{F}) = 0$ for all k > 0.

Lemma 3.7.2. Let X be a Noetherian scheme and $i: X \to Y$ be a closed immersion. Then i is an affine morphism.

Proof. WLOG Y is affine. Note that $i_*: \mathsf{Ab}(X) \to \mathsf{Ab}(Y)$ is an exact functor. Let $\mathscr F$ be a quasi-coherent $\mathscr O_X$ -module and $0 \to \mathscr F \to \mathscr I^{\bullet}$ a flasque quasi-coherent resolution. Then $0 \to i_*\mathscr F \to i_*\mathscr I^{\bullet}$ is a flasque quasi-coherent resolution of $i_*\mathscr F$. Thus, as Y is affine,

$$0 = H^k(\Gamma(Y, i_* \mathscr{I}^{\bullet})) = H^k(\Gamma(X, \mathscr{I}^{\bullet})) = H^k(X, \mathscr{F})$$
(3.25)

for k > 0. Thus X must be affine.

Spectral sequences

4.1 Grothendieck spectral sequence

Thm 4.1.1. (Grothendieck spectral sequence). Let $F: A \to B$ and $G: B \to C$ be left exact functors and suppose that F sends injective objects to G-acylic objects. Then for A an object in A there is a spectral sequence $\{E_r(A)\}$ such that

$$E_2^{p,q}(A) = R^p G(R^q F(A)) \Rightarrow R^{p+q}(GF)(A).$$
 (4.1)

Corollary 4.1.2. (Let ay spectral sequence). Let $f: X \to Y, g: Y \to Z$ be continuous maps. Then for a sheaf \mathscr{F} , there is a E_2 cohomological spectral sequence

$$R^{p}g_{*}(R^{q}f_{*}(\mathscr{F})) \Rightarrow R^{p+q}(g \circ f)_{*}(\mathscr{F})$$
(4.2)

which is functorial in \mathscr{F} .

Proof. f_* sends injective sheaves to flabby sheaves, which are g_* -acyclic.

Group cohomology

Appendix - Categorical results

6.1 Category theory results

prop:cat_factor

Proposition 6.1.1. Let $F \dashv G$ and G be full. Let e be the unit of the adjunction. Then every morphism $x \to Gy$ factors uniquely through $e_x : x \to GFx$.

Proof. Let α and β denote the forward and backward maps in

$$\operatorname{Hom}(Fx, y) \leftrightarrow \operatorname{Hom}(x, Gy)$$
 (6.1)

respectively. Let $f: x \to Gy$. Then $f = \alpha(\beta(f))$. But $\alpha(\beta(f)) = G\beta(f) \circ e_x$ so we get existence of a factorisation. For uniqueness, suppose $f = h \circ e_x$. Since G is full there is a $l: Fx \to y$ such that h = Gl. So $\alpha(l) = \alpha(\beta(f))$. But α is a bijection so $l = \beta(f)$ and hence $h = G\beta(f)$ which gives uniqueness.

Appendix - Sheaf theoretic results

7.1 Properties of sheaves of rings

Thm 7.1.1. Let \mathscr{F} be a sheaf of rings on X and $s \in \mathscr{F}(X)$. The following are equivalent:

- 1. s is invertible,
- 2. There exists an open cover $\{U_i\}_i$ of X such that $s|_{U_i}$ is invertible for all i,
- 3. s_x is invertible for all $x \in X$.

Proof. (1) \Rightarrow (2) Trivial. (2) \Rightarrow (1) Suppose $s|_{U_i}$ is invertible for all i. Then there are $t_i \in \mathscr{F}(U_i)$ such that $t_i s|_{U_i} = 1$. But then, since inverses are unique we must have $t_i|_{U_i \cap U_j} = t_j|_{U_i \cap U_j}$ since they are both the inverse of $s|_{U_i \cap U_j}$. Thus there is a section $t \in \mathscr{F}(U)$ that restricts to the t_i . Checking locally it follows that ts = 1 and so s is invertible. (2) \Leftrightarrow (3) Trivial.

7.2 Locally ringed spaces

Lemma 7.2.1. Let $(f, f^{\#}), (g, g^{\#}) : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be morphisms of locally ringed spaces. Let $\mathcal{U} = \{U_i\}$ be an open covering of X. If the morphisms agree on the restrictions to the U_i then they are equal.

Proof. We certainly have f = g. The result then follows from sheaf condition (A).

Proposition 7.2.2. Let X, Y and $\{Z_i\}_i$ be locally ringed spaces together with open immersions $f_i: Z_i \to X, g_i: Z_i \to Y$. Let $\alpha: X \to Y$ be a morphism such that $\alpha \circ f_i = g_i$ for all i and $\alpha: f_i(Z_i) \cap f_j(Z_j) \to g_i(Z_i) \cap g_j(Z_j)$ is an isomorphism for all i, j. Then α is an isomorphism.

Proof. We have that $\alpha: f_i(Z_i) \to g_i(Z_i)$ is an isomorphism for all i. So we can define inverses $\beta_i: g_i(Z_i) \to f_i(Z_i)$. They agree on overlaps and so they glue to give a global inverse β .

Proposition 7.2.3. Let $f: X \to Y$ be a morphism of schemes and let $\{U_i\}$ be an open cover of Y such that the restriction of f to a morphism $f^{-1}(U_i) \to U_i$ is an isomorphism for all i. Then f is an isomorphism.

7.3 Restriction

Remark 7.3.1. Recall from chapter 2 that given $f: X \to Y$ we obtain functors f_*, \lim_f, f^{-1} between $\mathsf{Sh}(X)$ and $\mathsf{Sh}(Y)$. These constructions were themselves functorial and give rise to $\mathsf{contra/co}$ -variant functors $\mathsf{Top} \to \mathsf{Set}$. The same also holds for f_*, f^* as functors between $\mathsf{Mod}(X)$ and $\mathsf{Mod}(Y)$.

Thm 7.3.2. Let $f: X \to Y$ be a continuous map and $U \subseteq X$, $V \subseteq Y$ be open subsets such that $f(U) \subseteq V$. Moreover, let $f|_{U,V}$ denote the map $U \to V$ arising from $f|_U$. Then for $\mathscr{F} \in \mathsf{Sh}(X)$ and $\mathscr{G} \in \mathsf{Sh}(Y)$ we have

1.
$$(f^{-1}\mathscr{G})|_U \cong f|_U^{-1}\mathscr{G} \cong f|_{U,V}^{-1}(\mathscr{G}|_V)$$

2.
$$(f_*\mathscr{F})|_{V} \cong (f|_{U,V})_*(\mathscr{F}|_{U}) \text{ when } U = f^{-1}(V)$$

where are isomorphisms are natural.

Proof. 1. $f|_U = f \circ i_U$ and so we obtain the first isomorphism. $f|_U = i_V \circ f|_{U,V}$ and so we obtain the second isomorphism.

2. Straightforward calculation.

7.4 Miscellaneous

Proposition 7.4.1. Let X be a topological space and \mathscr{F} a sheaf on X. If U, V are disjoint open subsets of X, the $\mathscr{F}(U \cup V) \cong \mathscr{F}(U) \times \mathscr{F}(V)$.

Proof. Obvious.

Appendix - Graded rings and Proj

8.1 Graded rings

8.1.1 General results

Definition 8.1.1. A (\mathbb{Z} -)graded ring is a ring S together with a decomposition $S = \bigoplus_{d \in \mathbb{Z}} S_d$ as abelian groups, such that $S_d \cdot S_e \subseteq S_{d+e}$. An ideal \mathfrak{a} of S is called homogeneous if $\mathfrak{a} = \bigoplus_{d \in \mathbb{Z}} \mathfrak{a} \cap S_d$. A map $\phi : S \to T$ between graded rings is called a graded morphism if it is a ring homomorphism and $\phi(S_d) \subseteq T_d$ for all d.

Proposition 8.1.2. Let S be a graded ring and \mathfrak{a} an ideal of R. The following are equivalent:

- 1. $\mathfrak a$ is a homogeneous ideal
- 2. a is generated by homogeneous elements
- 3. $a \in \mathfrak{a} \Rightarrow the homogeneous parts of a lie in \mathfrak{a}$.

Proof. (1) \Rightarrow (2) \mathfrak{a} is generated by $\bigcup_{d\in\mathbb{Z}}\mathfrak{a}\cap S_d$. (2) \Rightarrow (3) Trivial. (3) \Rightarrow (1) We always have $\mathfrak{a}\supseteq\bigoplus_{d\in\mathbb{Z}}\mathfrak{a}\cap S_d$. Now suppose $a\in\mathfrak{a}$. Then clearly a lies in $\bigoplus_{d\in\mathbb{Z}}\mathfrak{a}\cap S_d$.

Proposition 8.1.3. Let $\phi: S \to T$ be a graded homomorphism and \mathfrak{a} a homogeneous ideal of T. Then $\phi^{-1}(\mathfrak{a})$ is a homogeneous ideal of S.

Proof. Suppose $\phi(s) \in \mathfrak{a}$. Then $\sum_n \phi(s_n) \in \mathfrak{a}$. But \mathfrak{a} is homogeneous and so $\phi(s_n) \in \mathfrak{a}$ for all n. Thus $s_n \in \phi^{-1}(\mathfrak{a})$ for all n and so $\phi^{-1}(\mathfrak{a})$ is a homogeneous ideal.

Proposition 8.1.4. The sum, product, intersection and radical of homogeneous ideals are homogeneous.

Proof. The only nontrivial case is showing that if \mathfrak{a} is homogeneous then so is $\operatorname{rad}(\mathfrak{a})$. Let $r = \sum_d r_d \in \operatorname{rad}(\mathfrak{a})$. Then there exists an $n \geq 1$ such that $r^n \in \mathfrak{a}$. Let d_0 be minimal such that $r_{d_0} \neq 0$. Then $r_{d_0}^n$ is the degree nd_0 homogeneous

part of r^d . Since \mathfrak{a} is homogeneous, we must have $r_{d_0}^n \in \mathfrak{a}$ and so $r_{d_0} \in \operatorname{rad}(\mathfrak{a})$. Now repeat with $r - r_{d_0}$ to get that the homogeneous parts of r must lie in $\operatorname{rad}(\mathfrak{a})$.

Proposition 8.1.5. Let S be a graded ring and $\mathfrak a$ a homogeneous ideal of S. Then $\mathfrak a$ is prime iff $fg \in \mathfrak a \Rightarrow f \in \mathfrak a$ or $g \in \mathfrak a$ for all homogeneous $f,g \in S$.

Proof. (\Rightarrow) Trivial. (\Leftarrow) Let $f = \sum_d f_d, g = \sum_d g_d \in S$ and suppose $fg \in \mathfrak{a}$. Let d_0 be the minimal d such that $f_d \neq 0$, and similarly define d'_0 in terms of g. Then $f_{d_0}g_{d'_0}$ is the $d_0 + d'_0$ homogeneous part of fg and so must lie in \mathfrak{a} . Thus either $f_{d_0} \in \mathfrak{a}$ or $g_{d'_0} \in \mathfrak{a}$. If both are in \mathfrak{a} , then repeat to $(f - f_{d_0})(g - g_{d'_0}) \in \mathfrak{a}$. Otherwise, one must lie in \mathfrak{a} and the other does not. If $f_{d_0} \in \mathfrak{a}$ and $g_{d'_0} \notin \mathfrak{a}$ then $(f - f_{d_0})g \in \mathfrak{a}$. Let d_1 denote the degree of the homogeneous part of $f - f_{d_0}$ of minimal degree. Then $f_{d_1}g_{d'_0} \in \mathfrak{a}$. But $g_{d'_0} \notin \mathfrak{a}$ and so $f_{d_1} \in \mathfrak{a}$. In the other case argue similarly. Repeating in the manner we obtain that either f of g must lie in \mathfrak{a} .

Proposition 8.1.6. Let S be a graded ring and \mathfrak{a} a homogeneous ideal of S. Then \mathfrak{a} is a radical ideal iff $f^n \in \mathfrak{a} \Rightarrow f \in \mathfrak{a}$ for all homogeneous $f \in S$.

Proof. (\Rightarrow) Trivial. (\Leftarrow) Let $f \in S$ be such that $f^n \in \mathfrak{a}$. Let d_0 be the minimal d such that $f_d \neq 0$. Then $(f^n)_{dn} = f_{d_0}^n$. Since \mathfrak{a} is homogeneous, this implies that $f_{d_0}^n \in \mathfrak{a}$ and so $f_{d_0} \in \mathfrak{a}$. Repeat to $f - f_{d_0}$.

Thm 8.1.7. (Graded localisation). Let S be a \mathbb{Z} -graded ring and T a multiplicative subset of S consisting of homogeneous elements. Then $T^{-1}S$ is a \mathbb{Z} -graded ring and the canonical morphism $\phi: S \to T^{-1}S$ is a graded morphism.

Proof. $T^{-1}S$ is a certainly a ring so we only need to define a grading on it. Let T_k denote the elements of T with grading k and define $(T^{-1}S)_n$ to be the set of elements in $T^{-1}S$ that can be written as s/t for some $s \in S_i, t \in T_j$ with i-j=n. We claim that $T^{-1}S = \bigoplus_{n \in \mathbb{Z}} (T^{-1}S)_n$. It is clear that $\sum_n (T^{-1}S)_n = T^{-1}S$. Now suppose there are distinct $n_1, \ldots, n_k \in \mathbb{Z}$ and $x_1 \in (T^{-1}S)_{n_1}, \ldots, x_k \in (T^{-1}S)_{n_k}$ such that $\sum_i x_i = 0$. We can write each x_i as s_i/t_i where $s_i \in S, t_i \in T$ are both homogeneous and $\deg(s_i) - \deg(t_i) = n_i$. WLOG all the t_i are equal to some $t \in T$. Then there is some $u \in T$ such that $u \sum_i s_i = 0$. But each s_i has a different degree and so $us_i = 0$ for all i. It follows that each $x_i = 0$ too. Thus $T^{-1}S = \bigoplus_{n \in \mathbb{Z}} (T^{-1}S)_n$. Finally, the fact that $(T^{-1}S)_n (T^{-1}S)_m \subseteq (T^{-1}S)_{n+m}$ is obvious, and so is the fact that ϕ is a graded morphism.

Proposition 8.1.8. Let $\phi: S \to T^{-1}S$ be the canonical homomorphism.

- 1. Let I be a homogeneous ideal of S. Then $T^{-1}I$ is a homogeneous ideal of $T^{-1}S$.
- 2. Let J be a homogeneous ideal of $T^{-1}S$. Then $\phi^{-1}(J)$ is a homogeneous ideal of S.

Proof. (1) $T^{-1}I$ is generated by the homogeneous elements of I. (2) ϕ is a graded morphism.

Definition 8.1.9. We say a \mathbb{Z} -graded ring S is $\mathbb{Z}_{\geq 0}$ -graded if $S_d = 0$ for all d < 0. For an element $s \in S$ we write $\deg(s)$ for the grading of the homogeneous part of largest grading amongst the non-zero homogeneous parts of s. We write S_+ for the ideal $\bigoplus_{d>0} S_d$. We call S_+ the irrelevant ideal.

Remark 8.1.10. From now on graded ring will refer to a $\mathbb{Z}_{\geq 0}$ -graded ring.

Definition 8.1.11. Fix a ring A and let S be a graded ring. If $S_0 = A$ we say that S is a graded ring over A. If S_+ is a finitely generated ideal of S, we say that S is a finitely generated graded ring over A. If S is generated by S_1 as an A-algebra, we say that S is generated in degree I.

Proposition 8.1.12. S is a finitely generated graded ring over A iff S is a finitely generated graded A-algebra.

Proof. (\Rightarrow) Suppose $S_+ = (r_1, \ldots, r_k)$. WLOG the r_i are all homogeneous. We prove by induction on $\deg(r)$ that r lies in $A[r_1, \ldots, r_n]$. If $\deg(r) = 0$ the result is clear. Now suppose r has $\deg(r) > 0$. Write $r = r_a + r_+$ where $r_a \in A$ and $r_+ \in S_+$. Since $r_+ \in S_+$, we can write $r_+ = \sum_i s_i r_i$ for some $s_i \in S$. Since $\deg(r_i) > 0$, $\deg(s_i) < \deg(r_+)$ for all i. But then each $s_i \in A[r_1, \ldots, r_n]$ by the induction hypothesis. It is then clear that $r \in A[r_1, \ldots, r_n]$.

 (\Leftarrow) Suppose $S = A[r_1, \dots, r_n]$. WLOG $r_i \in S_+$ for all i. Then $(r_1, \dots, r_n) \subseteq S_+$. But $S = A \oplus (r_1, \dots, r_n)$. Thus $(r_1, \dots, r_n) = S_+$.

Corollary 8.1.13. S is Noetherian iff A is Noetherian and S is a finitely generated graded ring.

Proof. (\Rightarrow) If S is Noetherian, then S_+ is finitely generated, so S is a finitely generated graded ring. To see that A must be Noetherian note that $A \cong S/S_+$ is a quotient of a Noetherian ring and so must be Noetherian itself. (\Leftarrow) If A is Noetherian and S is a finitely generated graded ring, then S is a finitely generated A-algebra and so must be Noetherian too (by Hilbert's basis theorem + quotients).

8.1.2 Graded localisation

Definition 8.1.14. Let S be a graded ring and \mathfrak{p} a homogeneous prime ideal of S. Write $S_{(\mathfrak{p})}$ for the 0^{th} graded component of $T^{-1}S$ where T is the set of homogeneous elements in S not in \mathfrak{p} .

For $f \in S_+$ homogeneous write $S_{(f)}$ for the 0^{th} graded component of S_f .

Proposition 8.1.15. Let S be a graded ring and write $S^{(d)}$ for the subring $\bigoplus_{k\geq 0} S_{kd}$. If $f\in S$ is a homogeneous element of degree d then $S_{(f)}\cong S^{(d)}/(1-f)$.

Definition 8.1.16. Let $\mathfrak{a} \triangleleft S_{(f)}$ be a radical ideal. Define $\Psi(\mathfrak{a})_n = \{x \in S_n : x^d/f^n \in \mathfrak{a}\}$ and $\Psi(\mathfrak{a}) = \bigoplus_{n>0} \Psi(\mathfrak{a})_n$.

Lemma 8.1.17. $\Psi(\mathfrak{a})$ is a homogeneous radical ideal of S. If \mathfrak{a} is additionally prime, then so is $\Psi(\mathfrak{a})$.

Proof. We first check that $\Psi(\mathfrak{a})$ is an ideal. Let $x,y\in\Psi(\mathfrak{a})_n$. Then x^d/f^n and y^d/f^n lie in \mathfrak{a} . Thus $((x+y)^d/f^n)^2\in\mathfrak{a}$ and so $(x+y)^d/f^n\in\mathfrak{a}$. Let $x\in\Psi(\mathfrak{a})_n$ and $s\in S_k$. Then $x^d/f^n\in\mathfrak{a}$ and so $(sx)^d/f^{k+n}\in\mathfrak{a}$. Thus \mathfrak{a} is an ideal. By definition it must be homogeneous. To check that $\Psi(\mathfrak{a})$ is a radical ideal suppose $x\in S_k$ and $x^n\in\Psi(\mathfrak{a})_{kn}$ for some n. Then $x^{dn}/f^{kn}=(x^d/f^k)^n\in\mathfrak{a}$. But \mathfrak{a} is a radical ideal and so $x^d/f^k\in\mathfrak{a}$ as required.

Finally, suppose \mathfrak{a} is prime. Let $x \in S_m, y \in S_n$ be such that $xy \in \Psi(\mathfrak{a})_{m+n}$. Then $(xy)^d/f^{m+n} = (x^d/f^m)(y^d/f^n) \in \mathfrak{a}$. Thus either $x \in \Psi(\mathfrak{a})_m$ of $y \in \Psi(\mathfrak{a})_n$.

thm:f_loc

Thm 8.1.18. Let S be a graded ring and let $f \in S_+$ be a homogeneous element of degree d. Then there are maps Φ and Ψ ,

$$\left\{\mathfrak{b} \lhd S : \ \mathfrak{b} \ is \ homog. \ and \ radical \right\} \xrightarrow{\Psi} \left\{\mathfrak{a} \lhd S_{(f)} : \mathfrak{a} \ radical \right\}$$
 (8.1)

such that $\Phi \circ \Psi = id$ and $\mathfrak{b} \subseteq \Psi \circ \Phi(\mathfrak{b})$. Moreover, these maps restict to a bijection

$$\left\{\mathfrak{q} \vartriangleleft S: \begin{array}{c} \mathfrak{q} \ is \ homog. \ and \\ prime \ and \ \mathfrak{q} \not\ni f \end{array}\right\} \xrightarrow{\Psi} \{\mathfrak{p} \vartriangleleft S_{(f)} : \mathfrak{p} \ prime\}. \tag{8.2}$$

Proof. Define Φ by $\mathfrak{b} \mapsto \mathfrak{b}S_f \cap S_{(f)}$. It is clear that $\Phi(\mathfrak{b})$ is radical (resp. prime) if \mathfrak{b} is radical (resp. prime not containing f). Moreover we have the explicit description

$$\Phi(\mathfrak{b}) = \{ x \in S_f : x = b/f^k, b \in \mathfrak{b}_{kd} \}$$
(8.3)

(this holds for any ideal \mathfrak{b}). Let Ψ be as defined earlier. By the lemma it sends radical (resp. prime) ideals to radical (resp. prime not containing f) ideals.

It is straightforward to check that $\Phi(\Psi(\mathfrak{a})) = \mathfrak{a}$ whenever \mathfrak{a} is a radical ideal. It is also easy to see that $\mathfrak{b} \subseteq \Psi(\Phi(\mathfrak{b}))$ for any ideal \mathfrak{b} . It remains to check that $\mathfrak{q} \supseteq \Psi(\Phi(\mathfrak{q}))$ when \mathfrak{q} is a homogeneous prime not containing f. But this is obvious.

Corollary 8.1.19. We have a bijection

$$\{\mathfrak{p} \triangleleft S_{(f)} : \mathfrak{p} \ prime\} \leftrightarrow \{\mathfrak{q} \triangleleft S_f : \mathfrak{q} \ homog. \ and \ prime\}.$$
 (8.4)

Proposition 8.1.20. Let S be a graded ring, $f \in S_+$ be a homogeneous element of degree d and Φ be as in the theorem. Then for $\mathfrak{q} \triangleleft S$ a homogeneous prime not containing f we have

$$S_{(\mathfrak{q})} \cong \left(S_{(f)}\right)_{\Phi(\mathfrak{q})}.\tag{8.5}$$

Proof. Let T be the multiplicative set of homogeneous elements in S not in \mathfrak{q} . There is a canonical homomorphism $S \to T^{-1}S$. Since $f \in T$, this induces a homomorphism $S_f \to T^{-1}S$ which preserves the grading. We thus obtain a map $\phi: S_{(f)} \to S_{(\mathfrak{q})}$. Moreover,

$$S_{(f)} \backslash \Phi(\mathfrak{q}) = \{ x \in S_f : \exists a \in S_{dk} \backslash q_{dk} \text{ s.t. } x = a/f^k \}$$

= $\{ x \in S_{(f)} : x = a/f^k, a \in S_{dk} \Rightarrow a \notin \mathfrak{q}_{dk} \}.$ (8.6)

and so it follows that $S_{(f)}\backslash\Phi(\mathfrak{q})$ maps into $(S_{\mathfrak{q}})^{\times}$ under ϕ . We now wish to show that $S_{(\mathfrak{q})}$ has the required universal property. Let $\psi:S_{(f)}\to R$ be any ring homomorphism such that $S_{(f)}\backslash\Phi(\mathfrak{q})$ gets sent into R^{\times} and let $x\in S_{(\mathfrak{q})}$. We can write x=a/t where $a\in S_m, t\in T$ where $m:=\deg(t)$. Since $T\cap\mathfrak{q}=\emptyset$, $t^d\not\in\mathfrak{q}$ and so $t^d/f^m\in S_{(f)}\backslash\Phi(\mathfrak{q})$. We thus define $\eta:S_{(\mathfrak{q})}\to R$ by

$$\eta(x) = \phi(at^{d-1}/f^m) \cdot \phi(t^d/f^m)^{-1}.$$
 (8.7)

This is well defined: if x = a'/t' write m' for the degree of t'. There exists $u \in T$ such that u(t'a - ta') = 0. Write k for the degree of u. Then

$$\frac{u^d t^{d-1} t'^d a}{f^{k+m+m'}} = \frac{u^d t'^{d-1} t^d a'}{f^{k+m+m'}}$$
(8.8)

and so since $u^d/f^k \in S_{(f)} \setminus \Phi(\mathfrak{q})$,

$$\phi\left(\frac{t^{d-1}a}{f^m}\right)\phi\left(\frac{t^d}{f^m}\right)^{-1} = \phi\left(\frac{t^{d'-1}a'}{f^{m'}}\right)\phi\left(\frac{t'^d}{f^{m'}}\right)^{-1} \tag{8.9}$$

as required. It is then straightforward to check that η is a ring homomorphism and that $\phi = \eta \circ \psi$. Uniqueness follows from that fact that $x = (at^{d-1}/f^m) \cdot (t^d/f^m)^{-1}$ in $S_{(\mathfrak{q})}$.

Corollary 8.1.21. $S_{(\mathfrak{p})}$ is a local ring with maximal ideal $\mathfrak{q} \cdot (T^{-1}S) \cap S_{(\mathfrak{q})}$.

8.1.3 Miscellaneous

Definition 8.1.22. Let S be a graded ring and let I be an ideal of S. Write I^h for the ideal generated by the homogeneous elements of I.

Proposition 8.1.23. If \mathfrak{p} is a prime ideal of S. Then \mathfrak{p}^h is also prime.

Proof. Let $a, b \in S$ be homogeneous. If $ab \in \mathfrak{p}^h \subseteq \mathfrak{p}$ then either $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$.

Corollary 8.1.24. Let S be a graded ring. Then for a homogeneous ideal I, we have

$$rad(I) = \bigcap_{\substack{\mathfrak{p} \supseteq I, \\ homog}} \mathfrak{p}. \tag{8.10}$$

Proof. We certainly have (\subseteq) . (\supseteq) follows from the fact that if $\mathfrak{a} \subseteq \mathfrak{p}$ then $\mathfrak{a} \subseteq \mathfrak{p}^h \subseteq \mathfrak{p}$.

8.2 The Proj construction

Definition 8.2.1. Let S be a graded ring. Define $\operatorname{Proj}(S)$ to be the set of all homogeneous prime ideals of S which do not contain S_+ . If \mathfrak{a} is a homogeneous ideal of S we define $V(\mathfrak{a}) = \{ \mathfrak{p} \in \operatorname{Proj}(S) : \mathfrak{p} \supseteq \mathfrak{a} \}$. As before these sets define a topology on $\operatorname{Proj}(S)$.

Remark 8.2.2. Note that we still have V(I) = V(rad(I)).

Definition 8.2.3. (Basic open sets). Let $f \in S_+$ be a homogeneous element of S. Define $D_+(f) = \text{Proj}(S) \setminus V((f))$.

Proposition 8.2.4. The basic open sets form a base of the topology on Proj(S).

Proof. Clearly $D_+(f) \cap D_+(g) = D_+(fg)$. Finally note that

$$V(I) = V(I \cap S_{+}) = \bigcap_{\substack{f \in I \cap S_{+} \\ \text{homog}}} V((f))$$
(8.11)

and so
$$\operatorname{Proj}(S)\backslash V(I) = \bigcup_{\substack{f\in I\cap S_+\\\text{homog}}} D_+(f).$$

Proposition 8.2.5. Let S be a graded ring and I a homogeneous ideal of S. Then $V(I) = \emptyset$ iff $rad(I) \supseteq S_+$.

Proof. (\Leftarrow) Follows from $V(I) = V(\operatorname{rad}(I))$. (\Rightarrow) $V(I) = \emptyset$. Thus $I \subseteq \mathfrak{p}$ implies $S_+ \subseteq \mathfrak{p}$. But then $S_+ \subseteq \operatorname{rad}(I)$.

Lemma 8.2.6. Let $f \in S_+$ be a homogeneous element and let $\Phi : D_+(f) \to \operatorname{Spec}(S_{(f)})$ be the map from theorem 8.1.18. Then Φ is a homeomorphism.

Proof. Let C be a closed subset of $\operatorname{Spec}(S_{(f)})$. Then $C = V(\mathfrak{a})$ for some radical ideal $\mathfrak{a} \triangleleft S_{(f)}$. It is easy to see from theorem 8.1.18 that $\Phi^{-1}(C) = V(\Psi(\mathfrak{a})) \cap D_{+}(f)$. Similarly, any closed subset of $D_{+}(f)$ is of the form $D_{+}(f) \cap V(\mathfrak{b})$ for some homogeneous radical ideal \mathfrak{b} and $\Phi(D_{+}(f) \cap V(\mathfrak{b})) = V(\Phi(\mathfrak{b}))$.

Remark 8.2.7. Let $g=s/f^k\in S_{(f)}$. Then $\mathfrak{q}\in\Phi^{-1}(V(g))$ iff $\Phi(\mathfrak{q})\supseteq (g)$ iff $s\in\mathfrak{q}$ iff $\mathfrak{q}\in D_+(f)\cap V((s))$. Thus $\Phi^{-1}(D(g))=D_+(fs)$.

Definition 8.2.8. We can turn Proj(S) into a locally ringed space by defining the structure sheaf to be

$$\mathscr{O}_{\operatorname{Proj}(S)}(U) = \left\{ s : U \to \coprod_{\mathfrak{p} \in \operatorname{Proj}(S)} S_{(\mathfrak{p})} : \text{ and homogeneous elements } a, f \in S \\ \mathfrak{q} \in V, f \not\in \mathfrak{q} \text{ and } s(\mathfrak{q}) = a/f \text{ in } S_{(\mathfrak{q})}. \right\}$$

Thm 8.2.9. Let S be a graded ring.

- 1. For any $\mathfrak{p} \in \operatorname{Proj}(S)$, $\mathscr{O}_{\mathfrak{p}} \cong S_{(\mathfrak{p})}$.
- 2. For any homogeneous $f \in S_+$, $(D_+(f), \mathcal{O}|_{D_+(f)}) \cong \operatorname{Spec}(S_{(f)})$.
- 3. Proj(S) is a scheme.

Proof. (1) Trivial. Note that this means that $\operatorname{Proj}(S)$ is a locally ringed space. (2) We have from the previous lemma that the underlying topological spaces are homeomorphic. We have also established that $S_{(\mathfrak{q})} \cong (S_{(f)})_{\Phi(\mathfrak{q})}$. Using this isomorphism we can construct a map $D_+(f) \to \operatorname{Spec}(S_{(f)})$ which is an isomorphism on stalks. It follows that they must be isomorphisms as locally ringed spaces. (3) then follows.

Appendix - Scheme theoretic results

9.1 Basic open sets

Proposition 9.1.1. Let X be a scheme and $f \in \Gamma(X, \mathcal{O}_X)$. Then for affine $U \subseteq X$, $X_f \cap U = U_{f|_U}$ is a basic open set.

Proof. It suffice to prove that for $X = \operatorname{Spec}(R)$ and $r \in R$, $X_r = D_r(R)$. But

$$X_r = \{ \mathfrak{p} \triangleleft R : r/1 \notin \mathfrak{p}_{\mathfrak{p}} \} = \{ \mathfrak{p} \triangleleft R : r \notin \mathfrak{p} \} = D_r(R). \tag{9.1}$$

Proposition 9.1.2. Let $(f, f^{\#}): X \to Y$ be a morphism of schemes and $r \in \Gamma(Y, \mathscr{O}_Y)$. Then $f^{-1}(Y_r) = X_{f^{\#}(Y)(r)}$.

Proof. Recall that $f_x^\#: \mathscr{O}_{Y,f(x)} \to \mathscr{O}_{X,x}$ is a morphism of local rings. Thus $r_{f(x)} \in \mathfrak{m}_{f(x)}$ iff $f_x^\#(r_{f(x)}) \in \mathfrak{m}_x$. But $f_x^\#(r_{f(x)}) = f^\#(Y)(r)_x$ and so

$$f^{-1}(Y_r) = \{ x \in X : r_{f(x)} \notin \mathfrak{m}_{f(x)} \}$$

= $\{ x \in X : f^{\#}(Y)(r)_x \notin \mathfrak{m}_x \} = X_{f^{\#}(Y)(r)}.$ (9.2)

Proposition 9.1.3. Let X be a scheme and U, V be open affine subsets. Then there exists a cover of $U \cap V$ consisting of sets which are basic with respect to both U and V.

Proof. Let $x \in U \cap V$. Then there is a $f \in \mathscr{O}_X(U)$ such that $x \in U_f \subseteq U \cap V$. Let $g \in \mathscr{O}_X(V)$ be such that $x \in V_g \subseteq U_f$. Then $(U_f)_{g|_{U_f}} = V_g$, both of which are basic with respect to U and V respectively.

Lemma 9.1.4. (The Affine Communication Lemma). Let P be some property enjoyed by some affine open subsets of a scheme X such that

- 1. if an affine open subset $\operatorname{Spec}(A) \hookrightarrow X$ has property P, then for any $f \in A$, $\operatorname{Spec}(A_f) \hookrightarrow X$ does too
- 2. if $(f_1, \ldots, f_n) = A$ and $\operatorname{Spec}(A_{f_i}) \hookrightarrow X$ has P for all i, then so does $\operatorname{Spec}(A) \hookrightarrow X$.

Suppose that $X = \bigcup_{i \in I} \operatorname{Spec}(A_i)$ where $\operatorname{Spec}(A_i)$ has property P. Then every affine open subset of X has P too.

Definition 9.1.5. We call such a property an affine-local property.

9.2 Quasi-separated schemes

Definition 9.2.1. We say a topological space X is quasi-separated if the intersection of any two quasi-compact open subsets is quasi-compact.

Thm 9.2.2. Let X be a scheme. The following are equivalent:

- 1. X is quasi-separated
- 2. The intersection of any two affine open subsets is a finite union of affine open subsets
- 3. There exists an open cover $\{V_i\}_i$ such that $V_i \cap V_j$ is a finite union of affine open subsets for any i, j.

Proof. (1) \Rightarrow (2) Obvious. (2) \Rightarrow (3) Obvious. (3) \Rightarrow (1) Let U, V be quasi-compact open subsets of X. The inclusion maps $V_i \hookrightarrow X$ are all quasi-compact and so $V_i \cap U$ is quasi-compact for all i. Thus $U \hookrightarrow X$ is quasi-compact and so $U \cap V$ is quasi-compact.

Corollary 9.2.3. Affine schemes are quasi-separated.

Corollary 9.2.4. A scheme X is quasi-compact and quasi-separated iff X can be covered by a finite number of affine open subsets, any two of which have intersection also covered by a finite number of affine open subsets.

prop:aff_cover_aff

Proposition 9.2.5. Let X be a quasi-compact and quasi-separated scheme and $f_1, \ldots, f_k \in \Gamma(X, \mathscr{O}_X)$ be such that $(f_1, \ldots, f_k) = \Gamma(X, \mathscr{O}_X)$. If X_{f_i} is affine for all i, then X is affine.

Proof. Identical to the noetherian case.

9.3 Spec adjunction

Thm 9.3.1. Let (X, \mathcal{O}_X) be a scheme and A a ring. Then there is a natural bijection

$$\operatorname{Hom}_{\mathsf{Sch}}(X, \operatorname{Spec}(A)) \leftrightarrow \operatorname{Hom}_{\mathsf{Ring}}(A, \Gamma(X, \mathscr{O}_X)).$$
 (9.3)

In other words $\Gamma \dashv \operatorname{Spec}$ as functors between Sch and Ring^{op} .

Proof. Given a morphism $(f, f^{\#}) : (X, \mathscr{O}_X) \to (\operatorname{Spec}(A), \mathscr{O}_{\operatorname{Spec}(A)})$ we obtain map $A \to \Gamma(X, \mathscr{O}_X)$ from $f^{\#}(\operatorname{Spec}(A))$.

Conversely, suppose we have $\phi: A \to \Gamma(X, \mathscr{O}_X)$. For an affine $U \subseteq X$, we have the map $A \to \Gamma(X, \mathscr{O}_X) \to \Gamma(U, \mathscr{O}_X)$, and we thus obtain a map $U \to \operatorname{Spec}(A)$. Let $U, V \subseteq X$ be affine and $W \subseteq U \cap V$ also be affine. The following diagram commutes

$$A \to \Gamma(X, \mathscr{O}_X) \xrightarrow{\Gamma(W, \mathscr{O}_X)} \Gamma(W, \mathscr{O}_X) \tag{9.4}$$

and so

also commutes. So the morphisms agree on overlaps and so can be glued to get a morphism $X \to \operatorname{Spec}(A)$.

It is straightforward to check that this defines a bijection.

Corollary 9.3.2. Let (X, \mathcal{O}_X) be a scheme. There is a canonical morphism $X \to \operatorname{Spec}(\Gamma(X, \mathcal{O}_X))$ such that every morphism from X to an affine scheme factors through this map uniquely.

Proof. This follows from proposition 6.1.1.

9.4 Sheaf of ideals

Definition 9.4.1. Let \mathscr{F} be a sheaf on X. Then $\mathrm{supp}(\mathscr{F}) = \{x \in X : \mathscr{F}_x \neq 0\}.$

Proposition 9.4.2. If \mathscr{F} is a finitely generated \mathscr{O}_X -module then supp(X) is a closed subset of X.

Definition 9.4.3. A subsheaf of \mathcal{O}_X is called a *sheaf of ideals* on X.

Definition 9.4.4. Let \mathscr{J} be a sheaf of ideals on X. Let $Z = \operatorname{supp}(\mathscr{O}_X/\mathscr{J})$. By proposition 9.4.2, Z is a closed subset of X. Let $i:Z\to X$ be the inclusion map. Then we define the structure sheaf on X to be $\mathscr{O}_Z=i^{-1}(\mathscr{O}_X/\mathscr{J})$. This turns Z into a locally ringed space.

Proposition 9.4.5. $i_* \mathcal{O}_Z \cong \mathcal{O}_X / \mathcal{J}$.

Proof. There is a natural map $\mathcal{O}_X/\mathcal{J} \to i_*\mathcal{O}_Z = i_*i^{-1}(\mathcal{O}_X/\mathcal{J})$ arising from the inverse image-direct image adjunction. Looking at stalks shows that this is an isomorphism.

Remark 9.4.6. In particular there is a natural map $i^{\#}: \mathcal{O}_X \to i_*\mathcal{O}_Z$ given by the composition $\mathcal{O}_X \to \mathcal{O}_X/\mathcal{J} \to i_*\mathcal{O}_Z$ inducing a morphism $(i, i^{\#})$ of locally ringed spaces.

Corollary 9.4.7. The map $(i, i^{\#}): (Z, \mathcal{O}_Z) \to (X, \mathcal{O}_X)$ is a closed immersion and $\mathscr{J} = \ker(i^{\#})$.

Lemma 9.4.8. Let A be a ring and $I \triangleleft A$ be an ideal. Then the sheaf $(A/I)^{\sim}$ on Spec(A) has support V(I).

Proof. Consider the following exact sequence of A-modules

$$0 \to I \to A \to A/I \to 0. \tag{9.6}$$

If $I \nsubseteq \mathfrak{p}$ then $IA_{\mathfrak{p}} = A_{\mathfrak{p}}$ and so $(A/I)_{\mathfrak{p}} = 0$. If $I \subseteq \mathfrak{p}$ then $(A/I)_{\mathfrak{p}} \cong (A/I)_{\mathfrak{q}}$ where $\mathfrak{q} = \mathfrak{p}/I$ and so is in particular not 0.

thm:sheaf_of_ideals

Thm 9.4.9. If \mathcal{J} is quasi-coherent then (Z, \mathcal{O}_Z) is a scheme and for any affine piece $(U, \mathcal{O}_X|_U) \cong (\operatorname{Spec}(A), \mathcal{O}_{\operatorname{Spec}(A)})$ of X, $(Z \cap U, \mathcal{O}_Z|_{Z \cap U})$ is isomorphic to $(\operatorname{Spec}(A/I), \mathcal{O}_{\operatorname{Spec}(A/I)})$ where I is the ideal of A corresponding to J(U).

Proof. It suffices to show the second part of the theorem. Let $(U, \mathscr{O}_X|_U) \cong (\operatorname{Spec}(A), \mathscr{O}_{\operatorname{Spec}(A)})$ be an affine piece of X. Restricting the short exact sequence $0 \to \mathscr{J} \to \mathscr{O}_X \to i_*\mathscr{O}_Z \to 0$ to U we get

$$0 \to \mathcal{J}|_{U} \to \mathcal{O}_{X}|_{U} \to (i_{U \cap Z})_{*}(\mathcal{O}_{Z}|_{U \cap Z}) \to 0. \tag{9.7}$$

It follows that

$$(i_{U\cap Z})_*(\mathscr{O}_Z|_{U\cap Z}) \cong (A/I)^{\sim} \cong \operatorname{Spec}(\phi)_*\mathscr{O}_{\operatorname{Spec}(A/I)}$$
 (9.8) [eq:sh_isoms]

where $\phi: A \to A/I$ is the quotient map. By the lemma $U \cap Z = V(I)$ and so there is a homeomorphism $\psi: \operatorname{Spec}(A/I) \to U \cap Z$. Since both $i_{U \cap Z}$ and $\operatorname{Spec}(\phi)$ are homeomorphisms onto their images, the isomorphisms in equation 9.8 induce isomorphisms of sheaves. Taking stalks moreover shows that we get an isomorphism of locally ringed spaces as required.

9.5 Reduced schemes

Definition 9.5.1. A scheme (X, \mathcal{O}_X) is reduced if $\mathcal{O}_X(U)$ is reduced for all $U \subseteq X$ open.

Lemma 9.5.2. (X, \mathcal{O}_X) is reduced iff $\mathcal{O}_{X,p}$ is reduced for all $p \in X$.

Lemma 9.5.3. Let \mathscr{J} be the ideal sheaf of \mathscr{O}_X given by $U \mapsto N(\mathscr{O}_X)$. Then \mathscr{J} is quasi-coherent.

Proof. It suffices to show that $\mathscr{J} \cong N(\mathscr{O}_X(X))^{\sim}$ when X is affine. But we have an isomorphism on the basis and hence between sheaves.

Definition 9.5.4. Let (X, \mathcal{O}_X) be a scheme. We define $(X_{red}, (\mathcal{O}_X)_{red})$ to be the scheme associated with the sheaf of ideals \mathscr{J} given by $\mathscr{J}(U) = N(\mathscr{O}_X(U))$. Let $(z, z^\#) : (X_{red}, (\mathscr{O}_X)_{red}) \to (X, \mathscr{O}_X)$ be the associated closed embedding.

Remark 9.5.5. X_{red} is reduced since it is reduced on affine pieces.

Proposition 9.5.6. z is a homeomorphism.

Proof. It suffices to check that $\operatorname{supp}(\mathscr{O}_X/\mathscr{J})=X$ for affine X. Let $\phi:R\to R/N(R)$ be the quotient map. Then $\operatorname{Spec}(\phi)$ is a homeomorphism. It follows that $\operatorname{supp}(\mathscr{O}_X/\mathscr{J})=X$ and so z is the identity map.

Thm 9.5.7. Let $f: X \to Y$ be a morphism of schemes and suppose X is reduced. Then f factors through Y_{red} .

Proof. Universal property of cokernels.

Definition 9.5.8. For an affine scheme X, let I(Z) be the radical ideal corresponding to a closed set $Z \subset X$. For a general scheme X and a closed subset $Z \subseteq X$, let \mathscr{J}_Z be the sheaf

$$\mathcal{J}_Z(U) = \{ f \in \mathcal{O}_X(U) : f_x \in m_x, \forall x \in U \cap Z \}. \tag{9.9}$$

Lemma 9.5.9. Let X be an affine scheme and $Z \subseteq X$ a closed subset. Then $\mathscr{J}_Z \cong \widetilde{I(Z)}$.

Proof. This holds on global sections and rad commutes with localisation. \blacksquare

Thm 9.5.10. Let X be a scheme and $Z \subseteq X$ a closed subset. Then there is a unique quasi-coherent ideal $\mathscr J$ such that the associated closed immersion $Z' \to X$ has image Z and Z' reduced.

Proof. $\mathscr{J}=\mathscr{J}_Z$ is quasi-coherent and the associated embedding has image Z. It is clear that Z' is reduced (check on affine pieces). It thus remains to check the uniqueness of \mathscr{J} . For this it suffices to consider the affine case. Let $X=\operatorname{Spec}(A)$ and $\mathscr{J}=\widetilde{I}$. Then $Z'=\operatorname{Spec}(A/I)$ and V(I)=Z. But Z' is reduced iff I=I(Z). Thus $\mathscr{J}=\mathscr{J}_Z$.

Remark 9.5.11. If we take Z = X then $Z' = X_{red}$.

Remark 9.5.12. If X is a Noetherian scheme then for any affine $U = \operatorname{Spec}(R)$, we have that $\mathscr{J}_Z(U)$ is an ideal of R and so is finitely generated. It follows that all ideal sheaves on Noetherian schemes are coherent.

9.6 Presheaves on the category of schemes

Definition 9.6.1. Let $F : \mathsf{Sch}^{op} \to \mathsf{Set}$ be a functor. We call F locally sheafy if for any scheme $X, F|_{\mathsf{Top}(X)}$ is a sheaf of sets.

Thm 9.6.2. Let $F, G : \operatorname{Sch}^{op} \to \operatorname{Set}$ be locally sheafy functors and suppose there is a natural transformation $\eta : F|_{\operatorname{Aff}^{op}} \Rightarrow G|_{\operatorname{Aff}^{op}}$. Then there is a unique natural transformation $\zeta : F \Rightarrow G$ such that $\zeta|_{\operatorname{Aff}} = \eta$.

Proof. Let X be a scheme and $s \in F(X)$. We wish to define $\zeta_X(s) \in G(X)$. For each affine piece U of X, define $t_U = \eta_U(s|_U) \in G(U)$. Given any two affine pieces U and V we have $t_U|_{U\cap V} = \eta_{U\cap V}(s|_{U\cap V}) = t_V|_{U\cap V}$. Since the union of all affine pieces of X is X we obtain an element $t \in G(X)$ such that $t|_U = t_U$ for all affine $U \subseteq X$. Define $\zeta_X(s) = t$. Note that if X was already affine then $\zeta_X = \eta_X$. We claim that ζ is a natural transformation.

Let X, Y be schemes and $f: X \to Y$ a morphism (in Sch). Let $U \subseteq Y$ and $V \subseteq f^{-1}(U) \subseteq X$ be affine pieces and $f|_{V,U}: V \to U$ denote the map such that $f \circ i_V = i_U \circ f|_{V,U}$. Then we know that

commutes except for the middle square. Thus $G(i_V) \circ (Gf \circ \zeta_Y) = G(i_V) \circ (\zeta_X \circ Ff)$. But we can vary the U and V so that the V cover X. It follows that $Gf \circ \zeta_Y = \zeta_X \circ Gf$. Thus ζ is a natural transformation.

To see that ζ is unique, suppose $\xi: F \Rightarrow G$ is another natural transformation extending η . Then let $s \in F(X)$ and $U \subseteq X$ be an affine piece. We must have $G(i_U) \circ \zeta_X(s) = \eta_U \circ F(i_U) = G(i_U) \circ \xi_X(s)$. But we can vary U to cover X and so we must have $\zeta_X(s) = \xi_X(s)$ for all $s \in F(X)$ and hence $\zeta_X = \xi_X(s)$ for all X and hence $X = \xi_X(s)$ for all X and hence $X = \xi_X(s)$.

Corollary 9.6.3. Let $F,G: \mathsf{Sch}^{op} \to \mathsf{Set}$ be locally sheafy functors such that $F|_{\mathsf{Aff}^{op}} \cong G|_{\mathsf{Aff}^{op}}$. Then $F \cong G$.

Conjecture 9.6.4. There is an equivalence of categories between locally sheafy presheafs on Sch and locally sheafy presheafs on Aff.

Proof. Given $F: \mathsf{Aff}^{op} \to \mathsf{Set}$ define $\widetilde{F}: \mathsf{Sch}^{op} \to \mathsf{Set}$ by $X \mapsto \varprojlim_{U \subseteq X} F(U)$ where U ranges over affine subsets of X and send morphisms to the obvious things.

Appendix - Vector Bundles

Proposition 10.0.1. Let $\pi: E \to X$ be a vector bundle of rank n with trivialisation $\{U_i\}_i$ and transition functions $\{\psi_{ji}\}_{ji}$.

- 1. If $C \subseteq X$ is a closed subset of X then $\pi : \pi^{-1}(C) \to C$ is a vector bundle of rank n with trivialisation $\{U_i \cap C\}_i$ and transition functions $\{\psi_{ji}|_{U_{ij}\cap C}\}$.
- 2. If Z is a topological space then $\pi' = id \times \pi : Z \times E \to Z \times X$ is a vector bundle with trivialisation $\{Z \times U_i\}_i$ and transition functions $\{\psi'_{ji}(z, u) = \psi_{ji}(u)\}$.

Corollary 10.0.2. Let $\pi: E \to Y$ be a vector bundle of rank n with trivialisation $\{U_i\}$ and transition functions $\{\psi_{ji}(u)\}_{ji}$. If $f: X \to Y$ is a continuous map then $\pi': f^*E \to X$ is a vector bundle of rank n with trivialisation $\{f^{-1}(U_i)\}_i$ and transition functions $\{\psi_{ji}(f(v))\}_{ji}$.

Proof. f^*E is the vector bundle arising from the closed subset of $X \times E \to X \times Y$ given by $G = \{(x, f(x)) : x \in X\}$. But there is a homeomorphism $X \leftrightarrow G$ which descends to $f^{-1}(U_i) \leftrightarrow (X \times U_i) \cap G$. This gives the required trivialisations. It also follows that the transition functions are of the required form.