Pseudo-random Number Generation

Qiuliang Tang

Random Numbers in Cryptography

- ▶ The keystream in the one-time pad
- ▶ The secret key in the DES encryption
- The prime numbers p, q in the RSA encryption
- ▶ The private key in DSA
- ► The initialization vectors (IVs) used in ciphers

Pseudo-random Number Generator

- Pseudo-random number generator:
 - A polynomial-time computable function f (x) that expands a short random string x into a long string f (x) that appears random
- Not truly random in that:
 - Deterministic algorithm
 - Dependent on initial values
- Objectives
 - Fast
 - Secure

Pseudo-random Number Generator

- Classical PRNGs
 - Linear Congruential Generator
- Cryptographically Secure PRNGs
 - RSA Generator
 - Blum-Micali Generator
 - Blum-Blum-Shub Generator
- Standardized PRNGs
 - ANSI X9.17 Generator
 - FIPS 186 Generator

Linear Congruential Generator - Algorithm

Based on the linear recurrence:

$$x_i = a x_{i-1} + b \mod m$$
 $i \ge 1$

Where

x₀ is the seed or start value
 a is the multiplier
 b is the increment
 m is the modulus

Output

$$(x_1, x_2, ..., x_k)$$

 $y_i = x_i \mod 2$
 $Y = (y_1 y_2 ... y_k) \leftarrow \text{pseudo-random sequence of K bits}$

Linear Congruential Generator - Example

- Let $x_n = 3 x_{n-1} + 5 \text{ mod } 31 \text{ n} \ge 1$, and $x_0 = 2$
 - 3 and 31 are relatively prime, one-to-one (affine cipher)
 - 31 is prime, order is 30
- ▶ Then we have the 30 residues in a cycle:
 - 2, 11, 7, 26, 21, 6, 23, 12, 10, 4, 17, 25, 18, 28, 27, 24, 15, 19, 0, 5, 20, 3, 14, 16, 22, 9, 1, 8, 29, 30
- Pseudo-random sequences of 10 bits
 - when $x_0 = 2$ 1101010001
 - When $x_0 = 3$ 0001101001

Linear Congruential Generator - Security

- ► Fast, but insecure
 - Sensitive to the choice of parameters a, b, and m
 - Serial correlation between successive values
 - Short period, often m=2³² or m=2⁶⁴

Linear Congruential Generator - Application

- Used commonly in compilers
 - Rand()

- Not suitable for high-quality randomness applications
 - Issues with the RANDU random number algorithm
 - Use Mersenne Twister algorithm in Monte Carlo simulations
 - Longer period 2¹⁹⁹³⁷-1

- Not suitable for cryptographic applications
 - Use cryptographically secure pseudo-random number generators

Cryptographically Secure

- Passing all polynomial-time statistical tests
 - There is no polynomial-time algorithm that can correctly distinguish a string of k bits generated by a pseudo-random bit generator (PRBG) from a string of k truly random bits with probability significantly greater than ½
 - Probability distributions indistinguishable
- Passing the next-bit test
 - Given the first k bits of a string generated by PRBG, there is no polynomial-time algorithm that can correctly predict the next (k+1)th bit with probability significantly greater than ½
 - Next-bit unpredictable
- ► The two notions are equivalent
 - Proved by Yao

Cryptographically Secure PRNGs

- ► A PRNG from any one-way function
 - A function f is one-way if it is easy to compute y = f(x) but hard to compute $x = f^{-1}(y)$
 - There is a PRNG if and only if there is a one-way function
- One-way functions
 - The RSA function
 - The discrete logarithm function
 - The squaring function
- Cryptographically secure PRNGs
 - RSA Generator
 - Blum-Micali Generator
 - Blum-Blum-Shub Generator

RSA Generator - Algorithm

Based on the RSA one-way function:

Where

- x₀ is the seed, an element of Z_n*
- n = p*q, p and q are large primes
- gcd (b, Φ (n)) = 1 where Φ (n) = (p-1)(q-1)
- n and b are public, p and q are secret

Output

```
(x_1, x_2, ..., x_k)

y_i = x_i \mod 2

Y = (y_1y_2...y_k) \leftarrow \text{pseudo-random sequence of K bits}
```

RSA Generator - Security

- RSA Generator is provably secure
 - It is difficult to predict the next number in the sequence given the previous numbers, assuming that it is difficult to invert the RSA function (Shamir)

RSA Generator - Efficiency

- RSA Generator is relatively slow
 - Each pseudo-random bit y_i requires a modular exponentiation operation
 - Can be improved by extracting j least significant bits of x_i instead of
 1 least significant bit, where j=cloglogn and c is a constant
 - Micali-Schnorr Generator improves the efficiency

Blum-Micali Generator - Concept

Discrete logarithm

- Let p be an odd prime, then (Z_p^*, \cdot) is a cyclic group with order p-1
- Let g be a generator of the group, then $|\langle g \rangle| = p-1$, and for any element a in the group, we have $g^k = a \mod p$ for some integer k
- If we know k, it is easy to compute a
- However, the inverse is hard to compute, that is, if we know a, it is hard to compute k = log_q a

Example

- (Z_{17}^*, \cdot) is a cyclic group with order 16, 3 is the generator of the group and $3^{16} = 1 \mod 17$
- Let k=4, $3^4=13$ mod 17, which is easy to compute
- The inverse: $3^k = 13 \mod 17$, what is k? what about large p?

Blum-Micali Generator - Algorithm

- Based on the discrete logarithm one-way function:
 - Let p be an odd prime, then (Z_p*, ·) is a cyclic group
 - Let g be a generator of the group, then for any element a, we have g^k = a mod p for some k
 - Let x₀ be a seed

$$x_i = g^{x_{i-1}} \mod p$$
 $i \ge 1$

Output

```
(x_1, x_2, ..., x_k)

y_i = 1 if x_i \ge (p-1)/2

y_i = 0 otherwise

Y = (y_1 y_2 ... y_k) \leftarrow pseudo-random sequence of K bits
```

Blum-Micali Generator - Security

- Blum-Micali Generator is provably secure
 - It is difficult to predict the next bit in the sequence given the previous bits, assuming it is difficult to invert the discrete logarithm function (by reduction)

Blum-Blum-Shub Generator - Concept

Quadratic residues

- Let p be an odd prime and a be an integer
- a is a quadratic residue modulo p if a is not congruent to 0 mod p and there exists an integer x such that $a \equiv x^2 \mod p$
- a is a quadratic non-residue modulo p if a is not congruent to 0 mod p and a is not a quadratic residue modulo p

Example

- Let p=5, then $1^2=1$, $2^2=4$, $3^2=4$, $4^2=1$
- 1 and 4 are quadratic residues modulo 5
- 2 and 3 are quadratic non-residues modulo 5

Blum-Blum-Shub Generator - Algorithm

- Based on the squaring one-way function
 - Let p, q be two odd primes and p≡q≡3 mod 4
 - Let n = p*q
 - Let x₀ be a seed which is a quadratic residue modulo n

$$x_i = x_{i-1}^2 \mod n$$
 $i \ge 1$

Output

$$(x_1, x_2, ..., x_k)$$

 $y_i = x_i \mod 2$
 $Y = (y_1 y_2 ... y_k)$ \leftarrow pseudo-random sequence of K bits

- ► Blum-Blum-Shub Generator is provably secure
 - Euler's criterion
 - Legendre symbol
 - Jacobi symbol
 - Composite quadratic residues

- Euler's criterion
 - Let p be an odd prime. Then a is a quadratic residue modulo p if and only if $a^{(p-1)/2} \equiv 1 \mod p$
- Proof:
 - Suppose $a \equiv x^2 \mod p$, then $a^{(p-1)/2} \equiv x^{2^*(p-1)/2} \equiv x^{p-1} \equiv 1 \mod p$ (By Fermat's little theorem)
 - Suppose $a^{(p-1)/2}\equiv 1 \text{ mod p.}$ Let g be a generator of the group (Z_p^*,\cdot) , then $a\equiv g^k \text{ mod p for some integer } k$ We have $a^{(p-1)/2}\equiv g^{k^*(p-1)/2}\equiv g^{k/2}\equiv 1 \text{ mod p}$ Then k must be even Let k=2m, then $a\equiv (g^m)^2 \text{ mod p}$ which means that a is a quadratic residue modulo p

- Legendre symbol
 - Let p be an odd prime and a be an integer

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } a \equiv 0 \pmod{p} \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p \\ -1 & \text{if } a \text{ is a quadratic non-residue modulo } p \end{cases}$$

- If a is a multiple of p, then $a^{(p-1)/2} \equiv 0 \mod p$
- If a is a quadratic residue modulo p, then $a^{(p-1)/2} \equiv 1 \mod p$
- If a is a quadratic non-residue modulo p, then $a^{(p-1)/2} \equiv -1 \mod p$ since $(a^{(p-1)/2})^2 \equiv a^{p-1} \equiv 1 \mod p$

$$\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \; (\bmod \; p)$$

• Example: Let p=5 (0/5)=0; (1/5)=(4/5)=1; (2/5)=(3/5)=-1

- Jacobi symbol
 - Let n be an odd positive integer
 - p_i is the prime factor of n and e_i is the power of the prime factor
 - (a/p_i) is the Legendre symbol and (a/n) is the Jacobi symbol

$$n = \prod_{i=1}^k p_i^{e_i}$$

$$\left(rac{a}{n}
ight) = \prod_{i=1}^k \left(rac{a}{p_i}
ight)^{e_i}$$

Example: Let n=15=3*5 (9/15)=(9/3)(9/5)=0 (11/15)=(11/3)(11/5)=(2/3)(1/5)=(-1)(1)=-1 (8/15)=(8/3)(8/5)=(2/3)(3/5)=(-1)(-1)=1 (4/15)=(4/3)(4/5)=(1)(1)=1

- Composite quadratic residues
 - Let p, q be two odd primes and n = p*q
 - If (x/n) = (x/p)(x/q) = 1, then either (x/p) = (x/q) = 1 x is a quadratic residue modulo n or (x/p) = (x/q) = -1 x is a pseudo-square modulo n
 - It is difficult to determine if x is a quadratic residue modulo n as factoring n=p*q is difficult

$$\left(\frac{x}{n}\right) = \begin{cases} 0 & \text{if } \gcd(x,n) > 1\\ 1 & \text{if } \left(\frac{x}{p}\right) = \left(\frac{x}{q}\right) = 1 \text{ or if } \left(\frac{x}{p}\right) = \left(\frac{x}{q}\right) = -1\\ -1 & \text{if one of } \left(\frac{x}{p}\right) \text{ and } \left(\frac{x}{q}\right) = 1 \text{ and the other } = -1 \end{cases}$$

• Example: Let n=15=3*5(8/15)=(8/3)(8/5)=(2/3)(3/5)=(-1)(-1)=1; 8 is a pseudo-square (4/15)=(4/3)(4/5)=(1)(1)=1; 4 is a quadratic residue

- \triangleright Why p \equiv q \equiv 3 mod 4
 - Such that every quadratic residue x has a square root y which is itself a quadratic residue
 - Denote the square root of x to be y, that is, x=y² mod n
 - Let p = 4m + 3, then m = (p-3)/4.
 - > $y = x^{(p+1)/4}$ mod p is a principal square root of x modulo p $x^{(p-1)/2} = x^{(4m+3-1)/2} = x^{2m+1} = 1 \mod p = > x^{2m+2} = x \mod p = > (x^{m+1})^2 = x \mod p = > y = x^{m+1} = x^{(p+1)/4}$
 - y is a quadratic residue $y^{(p-1)/2} = (x^{(p+1)/4})^{(p-1)/2} = (x^{(p-1)/2})^{(p+1)/4} = 1^{(p+1)/4} = 1 \mod p$
 - Similar for q, $y = x^{(q+1)/4} \mod q$
 - Since n=p*q and x is a quadratic residue modulo n, then x has a unique square root modulo n (Chinese remainder theorem)
 - As a result, the mapping from x to x² mod n is a bijection from the set of quadratic residues modulo n onto itself

Blum-Blum-Shub Generator - Application

- ► The basis for the Blum-Goldwasser probabilistic public-key encryption
 - To generate the keystream during encryption and decryption

Standardized PRNGs

- General characteristics
 - Not been proven to be cryptographically secure
 - Sufficient for most applications
 - Using one-way functions such as hash function SHA-1 or block cipher DES with secret key k
- Examples
 - ANSI X9.17 Generator
 - FIPS 186 Generator

ANSI X9.17 Generator

Algorithm

- Let s be a random secret 64-bit seed, E_k be the DES E-D-E two-key triple-encryption with key k, and m be an integer
- $I = E_k(D)$, where D is a 64-bit representation of the date/time with finest available resolution
- For i=1,...,m do $x_i = E_k (I XOR s)$ $s = E_k (x_i XOR I)$
- Return $(x_1, x_2, ...x_m)$ ← m pseudo-random 64-bit strings
- Used as an initialization vector or a key for DES

FIPS 186 Generator

- Used for DSA private keys
- Algorithm
 - Let q be a 160-bit prime number, and m be an integer
 - Let (b, G) = (160, DES) or (b, G) = (160..512, SHA-1)
 - Let s be a random secret seed with b bits
 - Let t be a 160-bit constant, t= 67452301 efcdab89 98badcfe 10325476 c3d2e1f0
 - For i=1...m do
 Either select a b-bit string y_i, or set y_i=0 (optional user input)
 z_i = (s + y_i) mod 2^b
 a_i = G(t, z_i) mod q
 s = (1 + s + a_i) mod 2^b
 - Return (a₁, a₂, ..., a_m) ← m pseudo-random numbers in [0, q-1]

FIPS 186 Generator

- Used for DSA per message secret numbers
- Algorithm
 - Let q be a 160-bit prime number, and m be an integer
 - Let (b, G) = (160, DES) or (b, G) = (160..512, SHA-1)
 - Let s be a random secret seed with b bits
 - Let t be a 160-bit constant, t= efcdab89 98badcfe 10325476 c3d2e1f0 67452301
 - For i=1...m do $k_i = G(t, s) \mod q$ $s = (1 + s + k_i) \mod 2^b$
 - Return $(k_1, k_2, ..., k_m)$ \leftarrow m pseudo-random numbers in [0, q-1]

References

- D. Stinson. <u>Cryptography, Theory and Practice</u>. 3rd Ed. Chapman & Hall/CRC, 2006
- A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. <u>Handbook of applied cryptography</u>. CRC Press, 1997
- J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator from any one-way function. SIAM Journal on Computing, 28(4): 1364-1393, 1999
- 4. S. Goldwasser and M. Bellare. *Lecture Notes on Cryptography*. 2008. http://cseweb.ucsd.edu/~mihir/papers/gb.pdf
- 5. P. Junod. *Cryptographic Secure Pseudo-Random Bits Generation: The Blum-Blum-Shub Generator*. 1999. http://crypto.junod.info/bbs.pdf
- 6. M. J. Fischer. *Pseudorandom Sequence Generation*. Yale University. http://zoo.cs.yale.edu/classes/cs467/2006f/course/handouts/ho15.pdf
- 7. Federal Information Processing Standards Publication. *Digital Signature Standard (DSS)*. 2000.
 - http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf

Quiz

- Name one criterion when considering a pseudo-random number generator to be cryptographically secure
- Name the one-way function that the Blum-Micali generator is based on
- 3. What are the four concepts that are used when considering the security of the Blum-Blum-Shub generator?
- Let p be an odd prime and p \equiv 3 mod 4. Let x be a quadratic residue modulo p. Let y be the principal square root of x. What is y in terms of x and p?
- 5. Name the two standardized pseudo-random number generators

Bonus:

What are the two objectives when designing a pseudo-random number generator?