

The challenge

Predict Number of Streams First Week

Create a tool that allows anyone to predict the amount of streams a given song will receive during its first week listed with Spotify.

THE APPROACH

We use a mix of techniques including:

- API Connections
- Web Scraping
- Natural Language Processing
- Logistic Regression
- Model Evaluation

SUCCESS

Build an application that predicts stream count and provides impact weights for each feature

Raw Data Details

- 35 Weeks of data
- 1,184 Songs
- 43 Features

For Each Song Gather:

- Song Information Spotify
- Artist Information Spotify
- Song Audio Analysis Spotify A*
- Song Lyrics Genius
- Tweets Twitter

Data Gathering & Formatting Process

Gathering Our Data:

- Spotify Song Search API Basic info: duration, title, artist...
- Spotify Artist Search API Artist followers, popularity, genres, albums...
- Genius API Song versions and lyrics
- Twitter API User's tweets about artist

Data Transformation Included:

- Standardize track name formats
- Remove duplicates from chart re-entry
- Remove songs without corresponding lyrics

Exploratory Data Analysis

Key Explorations

Let's examine:

- 1. Stream Distributions
- 2. Followers
- 3. Popularity
- 4. Data Completeness
- 5. Lyric Sentiment Distribution

As experienced with our current dataset

Left hand skewed curve as majority of songs debut with less than 1 million streams first week.

Not much of a direct correlation. Several artist with many followers who received low stream counts.

More of the expected direct relationship. Greater popularity yields greater streams.

Hudled toward 0 or "less negative" yet not with the same intensity as the positive.

Prediction Model

Linear Regression Model

Primary Model Details:

- 80 / 20 Train-Test Split
- All Numerical Features
- Avg R2 Score of 23%

Most Impactful Features:

Lyric Scores are actually the strongest positive signals

Acousticness and Danceability are the strongest negative indicators.

pos_lyric_score	2.247465e+08	14
neu_lyric_score	2.210594e+08	13
neg_lyric_score	2.139679e+08	12
valence	1.248370e+06	9
liveness	9.244981e+05	8
com_lyric_score	5.567955e+05	15
Artist_popularity	1.592458e+05	21
loudness	5.834846e+04	3
key	3.964361e+04	2
Artist_followers	7.297673e-02	20
com_twitter_artist_score	0.000000e+00	19
pos_twitter_artist_score	0.000000e+00	18
neu_twitter_artist_score	0.000000e+00	17
neg_twitter_artist_score	-2.384186e-07	16
duration_ms	-1.165475e+01	11
tempo	-8.422243e+03	10
energy	-4.692857e+05	1
mode	-8.573822e+05	4
speechiness	-1.055383e+06	5
instrumentalness	-2.849657e+06	7
danceability	-3.877599e+06	0
acousticness	-3.992321e+06	6

Conclusions

 Its not simple to predict a songs first weeks streams based on the data points provided.

Currently Lyric scores are our strongest signal

 The model has not good way to understand the music

 I need to continue to strengthen this model.

Thank You

