Chapter 2.10

3. Negate the statement "For every prime number p, there is another prime q such that q>p."

There exists a prime number p for which all prime numbers q satisfy $q \leq p$.

4. Negate the statement: "For every positive number ϵ , there is a positive number σ such that $|x-a| \Rightarrow |f(x)-f(a)|$."

There exists a prime number p for which all prime numbers q satisfy $q \leq p$.

23. Prove that for every $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$, $a^3 \equiv b^3 \pmod{n}$.

woot.