0.1 OPTIČNE KOMUNIKACIJE

- vsepovsod v elektroniki:
 - dljinec za TV
 - internetne povezave
 - IR merjenje razdalj
 - lasersko merjenje hitrosti
 - senzor za dež

0.2 Svetlobni izvor

- svetleče diode
- Ee = Ef -> eU = h c/a
- e_0 osnovni naboj $e_0 = 1.6 \, 10^{-19} C$
- c svetlobna hitrost $c=3.0\,10^8\frac{m}{s}$
- h Planckova konstanta $h=6.6\,10^{-34}Js$

0.2.1 Krmiljenje svetlobnega izvora z Darlingtonovim tranzistorjem

- izhod z odprtim kolektorjem
- ULN2804A:
 - Rb je vezje kompatibilno s 5V TTL
 - R1, R2 da se tranzistor hitreje zapre
 - D1 za vklapljanje induktivnih bremen
 - !str.5: Linearni uopr ni potreben,... JE POTREBEN... izračunajmo!
- primer vezja(KiCAD)

0.2.2 Svetlobni senzorji

- delilnik napetosti
- izračun izhodne napetosti

$$U_i = R_r I_r = R_r \frac{U_c}{R_r + R_{LDR}} \tag{1}$$

dr. David Rihtaršič

- pogoji za kompatibilnost s TTL digitalnimi vezji:
 - $0 = \{-0.7V .. 0.6V\}$
 - -1 = [2.6V..5.25V]
 - vmesni interval .. ni definiran
- · izračunajmo najprimernejši fotoupor:
 - 1. $U_1 = ...$
 - 2. $U_2 = ...$
 - 3. $\Delta U = \dots$
 - 4. $\frac{\partial}{\partial R_x} \Delta U = \dots = 0 (maximum)$
 - 5. $R_r(max\Delta U) = \sqrt{R_1R_2}$
- fototranzistor je počasen...
- namesto njega uporabimo:
 - fotodiodo ali
 - fototranzistor (pri fischertechnik kockah)
- · fotodiodo vs fototranzizstor
 - v splošnem velja, da ima fotodioda hitrejši odziv od fototranzistorja,
 - a so tokovi skoznjo precej manjši (ima večjo upornost)
 - ni vedno tako, zato moramo vedno preveriti specifikacije elementov, lahko se izkaže, da sta elementa po specifikaciji zelo podobna:
 - * fototranzizstor LPT80A
 - * fotodioda BPW34
 - * 100lux = 1.5E-5 W/cm² = 1.5E-2 mW/cm² pretvorba
- Zato moramo uporabiti tokovno-napetostni pretvornik:
 - prenosna funkcija je: Uout=Itr * Rref

0.3 To-do

- Uporaba operacijskega ojačevalnika kot komparatorja napetosti
- Komparatorji napetosti z odprtim kolektorjem
- Schmittov sprožilnik
- digitalni Schmittov sprožilnik
- · Optični spojniki

dr. David Rihtaršič