Couples de variables aléatoires discrètes

Exercice 1 (Choix uniformément uniforme)

On dispose de n urnes, numérotées de 1 à n.

Pour tout $k \in [1, n]$, l'urne numéo k contient k boules, numérotées de 1 à k.

On lance un dé à n faces équilibré, puis on tire au hasard une boule dans l'urne dont le numéro est indiqué par le dé.

On note X le numéro indiqué par le dé et Y le numéro de la boule tirée.

- 1. Déterminer la loi du couple (X, Y).
- 2. En déduire la loi de Y.
- 3. Calculer E(Y).

Exercice 2 (Loi du couple donnée)

Soient X et Y deux variables aléatoires discrètes de support \mathbb{N}^* , dont la loi du couple est donnée par :

$$\forall (i,j) \in \mathbb{N}^*, \ P([X=i] \cap [Y=j]) = \frac{a}{2^{i+j}}.$$

- 1. Déterminer la valeur de la constante a.
- 2. Déterminer la loi de X et la loi de Y.
- 3. X et Y sont-elles indépendantes?

Exercice 3 (Expériences indépendantes de même résultat?)

1. Pour tout $n \in \mathbb{N}$, démontrer l'égalité :

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}.$$

Indication : calculer de deux façons le coefficient de X^n dans le polynôme $P = (1 + X)^{2n}$.

2. Deux amis s'isolent dans deux pièces différentes et effectuent chacun n lancers successifs d'une pièce équilibrée, en notant le nombre total de "Pile" obtenus. Ils se rejoignent pour comparer leurs résultats. Quelle est la probabilité qu'ils aient obtenu le même total?

Exercice 4 (Couple géométrique)

Soient X et Y deux variables aléatoires discrètes indépendantes, de lois respectives $\mathcal{G}(p)$ et $\mathcal{G}(q)$. (avec $p, q \in]0,1[$).

- 1. Quelle est la loi du couple (X, Y)?
- 2. Déterminer la loi de $Z = \min(X, Y)$. On notera qu'il s'agit d'une loi géométrique $\mathcal{G}(\alpha)$, où l'on précisera la valeur de α en fonction de p et q.
- 3. On veut déterminer la loi de la somme S = X + Y.
- (a) Montrer que pour tout $n \ge 2$,

$$P(S=n) = pq(1-q)^{n-2} \sum_{k=0}^{n-2} \left(\frac{1-p}{1-q}\right)^k$$

(b) En distinguant les cas p = q et $p \neq q$, expliciter P(S = n) en fonction de $n \geq 2$.

Exercice 5 (Calcul d'espérance)

Soient X et Y deux variables aléatoires discrètes indépendantes de même loi de Poisson $\mathcal{P}(\lambda)$ (avec $\lambda > 0$).

Montrer que
$$E\left(\frac{X}{1+Y}\right) = 1 - e^{-\lambda}$$
.

Exercice 6 (Loi conditionnelle)

Soient X et Y deux variables aléatoires discrètes indépendantes, de lois $X \hookrightarrow \mathcal{P}(\lambda)$ et $Y \hookrightarrow \mathcal{P}(\mu)$ (avec $\lambda, \mu > 0$).

Soit $n \in \mathbb{N}$. Montrer que, pour tout $k \in [0, n]$,

$$P_{[X+Y=n]}(X=k) = \binom{n}{k} \left(\frac{\lambda}{\lambda+\mu}\right)^k \left(\frac{\mu}{\lambda+\mu}\right)^{n-k}.$$

Indication : Revenir à la définition de la probabilité conditionnelle...

(Autrement dit : la loi de X "conditionnellement à l'évènement [X+Y=n]" est $\mathcal{B}(n,\frac{\lambda}{\lambda+\mu})$).