線形代数学・同演習 B

演習問題 7

1. 計算の仕方は,11月21日分の小テストの解答を参考のこと.

- (1) 固有値 $\lambda=5$ に対応する固有ベクトルは $\binom{1}{1}$ 固有値 $\lambda=-3$ に対応する固有ベクトルは $\binom{-1}{7}$
- (2) 固有値 $\lambda = -1$ に対応する固有ベクトルは $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 固有値 $\lambda = 1$ に対応する固有ベクトルは $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$
- (3) 固有値 $\lambda=3$ に対応する固有ベクトルは $\binom{2}{1}$ 固有値 $\lambda=1$ に対応する固有ベクトルは $\binom{1}{1}$
- (4) 固有値 $\lambda=2$ に対応する固有ベクトルは $\left({ -3 \atop 2} \right)$ 固有値 $\lambda=-1$ に対応する固有ベクトルは $\left({ -1 \atop 1} \right)$

 $2.^{\dagger}$

- (1) 固有値 $\lambda=3$ に対応する固有ベクトルは $\begin{pmatrix}0\\-4\\1\end{pmatrix}$ 固有値 $\lambda=-2$ に対応する固有ベクトルは $\begin{pmatrix}0\\1\\1\end{pmatrix}$ 固有値 $\lambda=1$ に対応する固有ベクトルは $\begin{pmatrix}6\\10\end{pmatrix}$
- (2) 固有値 $\lambda=1$ に対応する固有ベクトルは $\begin{pmatrix} \gamma \\ -1 \\ 1 \end{pmatrix}$ 固有値 $\lambda=0$ に対応する固有ベクトルは $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$
- (3) 固有値 $\lambda=2$ に対応する固有ベクトルは $\begin{pmatrix}1\\0\\1\end{pmatrix}$, $\begin{pmatrix}0\\1\\0\end{pmatrix}$ 固有値 $\lambda=-1$ に対応する固有ベクトルは $\begin{pmatrix}0\\-1\\0\end{pmatrix}$
- (4) 固有値 $\lambda=3$ に対応する固有ベクトルは $\begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$ 固有値 $\lambda=2$ に対応する固有ベクトルは $\begin{pmatrix} -1 \\ 1 \\ 2 \\ 2 \end{pmatrix}$ 固有値 $\lambda=1$ に対応する固有ベクトルは $\begin{pmatrix} -1 \\ 1 \\ 2 \\ 1 \end{pmatrix}$
- (5) 固有値 $\lambda=2$ に対応する固有ベクトルは $\begin{pmatrix}2\\1\\0\end{pmatrix}$ 固有値 $\lambda=1$ に対応する固有ベクトルは $\begin{pmatrix}-1\\-1\\1\end{pmatrix}$
- (6) 固有値 $\lambda=-2$ に対応する固有ベクトルは $\left(egin{array}{c}0\\-1\\1\end{array}
 ight)$

```
固有値\lambda=1 に対応する固有ベクトルは\begin{pmatrix}1\\-3\\2\end{pmatrix} (7) 固有値\lambda=3 に対応する固有ベクトルは\begin{pmatrix}1\\-2\\-1\end{pmatrix} 固有値\lambda=2 に対応する固有ベクトルは\begin{pmatrix}1\\-1\\0\\1\end{pmatrix} 固有値\lambda=-1 に対応する固有ベクトルは\begin{pmatrix}-1\\-1\\2\\1\end{pmatrix} (8) 固有値\lambda=-1 に対応する固有ベクトルは\begin{pmatrix}1\\-1\\0\\1\end{pmatrix} の固有値\lambda=1 に対応する固有ベクトルは\begin{pmatrix}-3\\1\\0\end{pmatrix} の目有値\lambda=2 に対応する固有ベクトルは\begin{pmatrix}1\\0\\1\\0\end{pmatrix} の目有値\lambda=-1 に対応する固有ベクトルは\begin{pmatrix}1\\0\\1\\0\end{pmatrix} の目有値\lambda=-1 に対応する固有ベクトルは\begin{pmatrix}1\\0\\1\\0\end{pmatrix}
```

3.†

- (1) 固有値 $\lambda=i$ に対応する固有ベクトルは $\binom{i}{1}$ 固有値 $\lambda=-i$ に対応する固有ベクトルは $\binom{-i}{1}$
- (2) 固有値 $\lambda=1+i$ に対応する固有ベクトルは $\binom{i}{1}$ 固有値 $\lambda=1-i$ に対応する固有ベクトルは $\binom{-i}{1}$
- (3) 固有値 $\lambda=2$ に対応する固有ベクトルは $\binom{i}{1}$ 固有値 $\lambda=0$ に対応する固有ベクトルは $\binom{-i}{1}$
- 4. (1) $t^3-21t-68$, (2) $t^3+4t^2-4t-21=(t+3)(t^2+t-7)$, (3) $t^3+2t^2-7t-48$. 5. $g_A(t)=\det(tE_3-A)$ を地道に計算すればよい.t に関しての次数比較を行うと楽.6.* $S=A+2E_2,\,T=(-A+8E_2)/23$. $p(t)=2t^2-12t^3+19t^2-29t+37$ とおく. $g_A(t)=t^2-6t+7$ であるが, $p(x)=(t^2-6t+7)(5+2t^2)+(2+t)$ であることより.また,S に関しては $S^2-10S+23E_2=O$ が成り立つので, $-23E_2=S(S-10E_2)$,つまり $S^{-1}=-(S-10E_2)/23=(-A+8E_2)/23$.