

Machine Learning 1 – Fundamentals

Learning Theory Prof. Dr. J. M. Zöllner, M.Sc. Nikolai Polley, M.Sc. Marcus Fechner

Overview

- Motivation
- Is learning equivalent to optimization?
 - Can learning be described formally?
 - Error minimization for empirical and real error
 - Hypothesis quality, model selection
 - Boosting, Ensembles
- Learnability and Capacity of Learning Machines
 - VC Dimension

Principle – Ockham's Razor

- William of Ockham: Important medieval philosopher and theologian, born in Ockham in 1287 and died in Munich in 1347
 - Accused of heresy
 - Revocation of teaching license
- Occam's razor
 - **Latin**: "Entia non sunt multiplicanda sine necessitate"
 - **German**: "Löse nie ein Problem komplizierter als nötig, denn die einfachste, richtige Erklärung, ist die Beste"
 - **English**: "One should not use more entities than necessary"
- Oftentimes interpreted as: "other things being equal, simpler explanations are generally better than more complex ones"
- Learning theory and successful practice aims to formalize and explain the problem and its solution. Additionally, it tries to explain "simple" and "better"

Learning System

- Learning System: A learning system is defined by ...
 - **Hypothesis Space** H with hypotheses $h_{\theta} \in H$, where θ represents parameters
 - **Example**: Linear model $h_{\theta}(x) = sgn(mx + c)$, with $\theta = (m, c)$ whereas $m \in M$ und $c \in C$
 - The set of all parameter combinations $M \times C$ spans the hypothesis space H_{lin}
 - A specific combination of parameters θ is considered a hypothesis $h_{\theta} \in H_{lin}$
 - **Learning method:** Find an optimal hypothesis $h_{opt} \in H$ with the help of learning examples (requires error function, optimization method, ...)

最后复习的时候对这些问题自己做个解答

- **Challenges**: How to choose a suitable learning system?
 - Which hypothesis space? Linear? Non-linear? Parametric? Non-parametric? ...
 - What learning method? What optimization? What error function? ...
 - What defines a good / optimal hypothesis? With which metrics can we measure it?

Examples

- Example: Classification
 - Underlying data is in \mathbb{R}^2
 - e.g. size and color of apples and pears
 - Non-linear separable (complexity)
 - No strict class-separation in training data (representation)
 - Good model for given data

Example: Regression

- Regression for black data points
 - Dashed black curve should be learned
 - Non-linear solvable
- Bad model for given data (red line), too high complexity, too high polynomial

Overview

- Motivation
- Is learning equivalent to optimization?
 - Can learning be described formally?
 - Error minimization for empirical and real error
 - Hypothesis quality, model selection
 - Boosting, Ensembles
- Learnability and Capacity of Learning Machines
 - VC Dimension

Formal Description – Supervised Learning

- **Learning**: Find optimal hypothesis $h_{opt}: X \to Y$ in hypothesis space H
 - Training dataset $\{(x_1, y_1), ..., (x_N, y_N)\}$
 - Input data $x_i \in X$
 - Output data $y_i \in Y$
 - Taken from (unknown) probability density function p(x,y)
 - Learning method: Optimization
- **Types of supervised Learning**: defined by space $X \times Y$
 - \blacksquare $\mathbb{R}^n \times \{y_1, ..., y_k\}$ Classification: Output data is discrete
 - \blacksquare $\mathbb{R}^n \times \mathbb{R}^m$ **Regression**: Output data is continuous
 - \blacksquare { $Atr_1, ..., Atr_n$ }ⁿ \times {true, false} **Concept**: Input is discrete, output true/false
 - ... (see Deep Learning book by Ian Goodfellow])

Error Minimization

- **Goal**: Find optimal hypothesis h_{opt} by minimizing cost function $\mathcal{L}(h_{\theta})$
- **Loss function**: $\ell(h_{\theta}(x_i), y_i)$
 - \blacksquare Error/mismatch between predicted output $h_{\theta}(x_i)$ of hypothesis and the target output y_i for single instance in dataset

Cost function / Risk:

$$\mathcal{L}(h_{\theta}) = \mathbb{E}_{(x,y)\sim p}[\ell(h_{\theta}(x),y)] = \int \ell(h_{\theta}(x),y) \ p(x,y) \ dx \ dy$$

- Expected loss of **all data** in (unknown) probability density function p(x, y)
- Also called *generalization error* or *generalization risk*

Error Minimization

Challenge: what kind of loss functions ℓ or cost function \mathcal{L} should be used?

• Misclassification
$$\ell(h_{\theta}(\mathbf{x}), y) = \begin{cases} 1 & \text{if } h_{\theta}(x) \neq y \\ 0 & \text{else} \end{cases}$$

- $\ell(h_{\theta}(\mathbf{x}), \mathbf{y}) = |h_{\theta}(\mathbf{x}) \mathbf{y}|$ Absolute Error
- $\ell(h_{\theta}(x), y) = (h_{\theta}(x) y)^2$ Quadratic Error
- (Binary) Cross Entropy $\ell(h_{\theta}(x), y) = -[y \cdot \log h_{\theta}(x) + (1-y) \log(1-h_{\theta}(x))]$
- Rule of thumb:
 - Loss is always a single positive number greater or equals zero: $\ell(h_{\theta}(x), y) \geq 0$;
 - Classification tasks: usually cross entropy is used
 - Regression tasks: usually quadratic error is used

Error Minimization

- **Problem**: Usually $\mathcal{L}(h_{\theta})$ can't be calculated!
 - To calculate we need all instances in probability function p(x, y)
 - Quick example: Image classification
 - p(x,y) contains all images that could ever exist.
 - For images with resolution 1920×1080 there are $\sim 10^{15,000,000}$ unique images in probability function
 - We need all these images and their corresponding y...
 - Generally, it is impossible to calculate $\mathcal{L}(h_{\theta})$ in finite time
 - Our limited size training dataset defines the empirical distribution $\hat{p}(x,y)$, and is only a very small subset of true probability function p(x, y)
- **Approximate** $\mathcal{L}(h_{\theta})!$ **Empirical Risk Minimization** 经验风险

Empirical Risk Minimization

- Empirical distribution $\hat{p}(x, y)$ is defined by limited dataset $D = \{(x_1, y_1), ..., (x_N, y_N)\}$
- **Empirical Risk / Empirical Error**:

$$\hat{\mathcal{L}}_{\mathrm{D}}(h_{\theta}) = \mathbb{E}_{(x,y) \sim \hat{p}}[\ell(h_{\theta}(x),y)] = \frac{1}{|\mathrm{D}|} \sum_{(x,y) \in D} \ell(h_{\theta}(x),y)$$

- Calculate expected error of estimated data distribution $\hat{p}(x,y)$ instead of actual error of underlying distribution p(x, y)!
- **Consequently:** instead of directly minimizing the real risk $\mathcal{L}(h_{\theta})$, we minimize the empirical risk $\mathcal{L}_{D}(h_{\theta})$ and hope that the $\mathcal{L}(h_{\theta})$ decreases to the same extent
- The difference $\mathcal{L}(h_{\theta}) \hat{\mathcal{L}}_{D}(h_{\theta})$ is called **generalization gap** 泛化误差

Prof. Dr. J. M. Zöllner – Machine Learning I – Fundamentals

- Cannot be calculated because $\mathcal{L}(h_{\theta})$ is still unknown
- Approximate generalization gap by splitting dataset D into training, validation and test

Data Splits: Training, Validation, Test

All Data		
Data used for finding optimal hypothesis		Unseen data
Training Dataset D_T	Validation Dataset D_V	Test D_T
Model training: find best hypothesis/parameters	Evaluate different training- hypotheses	Final model evaluation
ca. 70% of data	ca. 20% of data	ca. 10% of data
Train Error	Validation Error	Test Error

- Usually: Use training error to calculate empirical risk and use difference between test- and training error to calculate generalization gap
- Problem: Empirical risk and generalization gap is dependent of the specific split of the data. Different splits result in different values, especially with small datasets.

Learning: Minimizing Errors with Optimization

One Solution:

- Define initial (random) hypothesis h_{θ}
- Find best θ_{opt} via iterative minimization of empirical train error $\hat{\mathcal{L}}_{D_{Tr}}(h_{\theta})$
- e.g.: gradient descent on empirical cost function of training dataset

Error Minimization with Gradient Descent

Adjustment of parameters using gradient descent:

$$\begin{array}{l} \theta \leftarrow \theta + \Delta \theta \\ \Delta \theta \approx -\eta \nabla \hat{\mathcal{L}}_{D_{Tr}}(\theta) & \eta = learning \ rate \end{array}$$

- Hypothesis needs to be differentiable to calculate the gradient
- Does this work?

WELL... YES ... at least oftentimes

- Remember: We minimize $\hat{\mathcal{L}}_{D_{Tr}}(\theta)$ and <u>hope</u> that $\mathcal{L}(h_{\theta})$ is also minimized simultaneously.
 - If this is not the case → large generalization gap
 - Observed with $\hat{\mathcal{L}}_{D_{Test}}(h_{\theta}) > \hat{\mathcal{L}}_{D_{Tr}}(h_{\theta})$
 - An often-occurring problem for minimization is overfitting! (See later)

Learning Challenges

Statistical Problem

The learning system considers a hypothesis space that is "too large" in terms of the amount of training data.

Based on the training data, several hypotheses are equally suitable.

Complexity Problem

- Due to the complexity of the problem, the learning process cannot find an optimal solution within the hypothesis space, although it theoretically exists in hypothesis space.
- Risk of a suboptimal solution.

Representation Problem

- The hypothesis space does not contain sufficiently good approximations of the objective function/concept etc...
- The learning method cannot provide the desired degree of approximation.

Complexity / Capacity

Example (Regression model): Optimal hypothesis is dashed line.

Learning system should find/approximate the optimal hypothesis given the training data.

Complexity / Capacity

- System with high capacity
- Hypothesis space spanned by "many parameters".
 - Can sometimes be calculated with VC Dimension
- Unsuitable model (why?): Overfitting

- System with low capacity
- Hypothesis space spanned by "few parameters"

Unsuitable Model (why?): Underfitting

Overfitting - Underfitting

Overfitting formal

- Definition: A hypothesis overfits the training examples, if some other hypothesis, that fits the training examples less well, -performs better over the entire distribution of instances
 - Learning system memorizes training data instead of learning the underlying structure
- Formal definition:

$$h \in H$$
 overfitting $\iff \exists h' \in H$ such that given D_{Tr} and D_V $\hat{\mathcal{L}}_{D_{Tr}}(h) < \hat{\mathcal{L}}_{D_{Tr}}(h') \land \hat{\mathcal{L}}_{D_V}(h) > \hat{\mathcal{L}}_{D_V}(h')$

- Whereas:
 - \blacksquare D_{Tr} Training Data
 - \blacksquare D_V Validation Data

Reasons for Overfitting

- Model capacity is too large
 - Hypothesis space contains hypotheses that perfectly fit training data but do not correlate to underlying structure
 - Even if a generalized hypothesis exists in hypothesis space, the overfit hypothesis is preferred by learning system because it additionally fits noisy/wrong data.

- Model is trained for too many iterations
 - After a while, the system optimizes the loss by finding (wrong) reasons why noisy/mislabeld/outlier data should be fitted a certain way.

Detect Overfitting

- Track error during training for training / validation dataset
 - Initially: both errors decrease
 - After some iterations: training error keeps decreasing while validation error increases
 - → Model generalization capability decreases

Explanation

Data is different in training and validation set \to Different hypotheses minimize $\hat{\mathcal{L}}_{D_{Tr}}$ and $\hat{\mathcal{L}}_{D_V}$. In training, only $\hat{\mathcal{L}}_{D_{Tr}}$ is minimized and at a certain point it is easier for the model to start memorizing the training data (including outlier/noisy/mislabeled datapoints) instead of learning the underlying structure which in turn increases $\hat{\mathcal{L}}_{D_V}$

Solutions for Overfitting

 Representative instances in training dataset (increase number and types of instances)

- Steer learning with validation error, e.g. early stopping.
 - (Afterwards, validation can no longer be used for performance ~ generalization quality)
- Decrease model capacity

lacksquare Correct choice and search for optimal hypothesis $h_ heta$

Determining Model Quality

- Metrics: To describe how (in)accurate a system is suited to a task
 - \rightarrow not necessarily identical to error $\hat{\mathcal{L}}$
 - → choose carefully
- Different methods depending on the task at hand
 - Classification: e.g. How often is something classified right or wrong?
 - Regression: e.g. How close are you to what you want to approximate?
 - Unsupervised learning: e.g., how well is the data mapped?
 - Generally difficult to measure
 - Reinforcement Learning: Indirectly via the process, How well does the sequence of actions fit?
 - Generally, no general metrics, for individual components (see above)

Classification: True vs. False Positive vs. Negative

- Differentiation between 4 classification outcomes
 - Correct classification of positive instances True Positive (TP)
 - Correct classification of negative instances True Negative (TN)
 - False classification of positive instances: False Positive (FP)
 - False classification of negative instances False Negative (FN)

Classification: True vs. False Positive vs. Negative

- Example: The boy who cried wolf...
 - wolf present. positive class
 - wolf absent. negative class
 - TP: Boy cries wolf, wolf is present
 - Sheeps are save
 - TN: Boy doesn't cry wolf, wolf is absent
 - Sheeps are save
 - FP: Boy cries wolf, wolf is absent
 - Neighbours are angry
 - FN: Boy doesn't cry wolf, wolf is present
 - Sheeps are eaten

Classification: Confusion Matrix

Confusion matrix for 2 classes

- Generalization to multiclasses possible
- Desired Result:
 - High values on the diagonal
 - Low FP and FN

Metrics: Accuracy and Error Rate

Accuracy (as high as possible)

$$Acc = \frac{correct}{total} = \frac{TP + TN}{TP + FN + FP + TN}$$

■ False positive rate **FPR**, (as small as possible) $FPR = \frac{FP}{FP + TN}$

$$FPR = \frac{FP}{FP + TN}$$

■ False negative rate **FNR** (as small as possible) $FNR = \frac{FN}{TP + FN} = 1 - TPR$

$$FNR = \frac{FN}{TP + FN} = 1 - TPR$$

Metrics: Recall und Precision

Precision (as high as possible)

$$P = \frac{TP}{TP + FP}$$

Recall (as high as possible)

$$TPR = R = \frac{TP}{TP + FN}$$

■ F1 – Score: harmonic mean of precision and recall (as high as possible)

$$F_1 = \frac{2}{\frac{1}{R} + \frac{1}{P}}$$

Find Best Model of a Learning System

- Combine multiple metrics to determine best hypothesis from multiple hypotheses of learning system
- Approaches
 - TPR/FPR-Graph (Receiver-Operating Characteristic, ROC)
 - Precision-Recall-Graph

Determine Model Quality – Data-Dependent

- Splitting learning data into three datasets drastically reduces the data we can use to train/evaluate the system
 - Validation and test dataset can not be used for training
 - A learning systems might have large variances in performance, depending on the specific split of the data
- One Solution: Cross-Validation
 - Repeatedly partition data into training and validation data
 - Then determine good hypotheses (or parameters of the learning machine)
 - Calculate respective metrics ("generalization")
 - Repeat

Determine Model Quality – Data-Dependent

- Forms:
 - K-fold cross-validation
 - Decompose the learning data into k folds
 - Train on k 1 folds, and validate each on remaining fold
 - Measure variance between validation folds?
 - Leave-one-out cross-validation (special case)
 - \blacksquare k-fold whereas k = size of dataset |D|
 - Validation fold only contains single instance of dataset
 - Train model |D|-times and measure average evaluation error

Bootstrap

- Fundamental idea: "How can you achieve more with simple procedures?"
- Learning
 - Draw randomly (with layback) |D| instances k-times from dataset D
 - Learn model/parameters
 - Repeat
 - Determine the mean, variance,... of the model's metrics
- →Analysis of quality / stability
- →Use to find a higher quality model

Bagging: Bootstrap Aggregating

- Variant of bootstrap
- Use multiple different learning systems
 - Use bootstrap principle
 - \blacksquare draw n = |D| instances (with layback)
 - Determine the respective models
- Combine the learning machines, e.g. weighted sum
 - Higher quality of the resulting model

Bagging: Bootstrap Aggregating

- Given : $\mathcal{D} = \{ (\vec{x}_1, y_1), ..., (\vec{x}_n, y_n) \}$
- $For k = 1, ..., k_{max}$
 - Draw new dataset \mathcal{D}_k with layback from \mathcal{D} with size n
 - Train model M_k with \mathcal{D}_k

Regression: use average of trained models:

$$M(\vec{x}) = \frac{1}{k_{max}} \sum_{k=1}^{k_{max}} M_k(\vec{x})$$

Classification: Each model votes for the most likely class. Choose class that received the most votes.

Boosting for classification – originally Schapire 1990

- Idea: Combine "weak" models to get a good model
- Basic Approach:
 - \blacksquare Get initial dataset \mathcal{D}_1 from \mathcal{D}
 - Use it to create model M_1
 - Choose \mathcal{D}_2 from \mathcal{D} in such a way, so that 50% of its instances are classified correctly by M_1
 - Use D_2 to create model M_2
 - For \mathcal{D}_3 , choose instances for which M_1 and M_2 are contradictory and create M_3
 - Combine models

$$M = \begin{cases} M_1, & \text{if } M_1 = M_2 \\ M_3, & \text{else} \end{cases}$$

AdaBoost – adaptive Boosting

- Given: $\mathcal{D} = \{ (\vec{x}_1, y_1), ..., (\vec{x}_n, y_n) \}$
- Initialization: Fixed weight for all learning instances $W_i = \frac{1}{n}$
- For $k = 1, ..., k_{max}$
 - Train M_k with \mathcal{D}_k ($|\mathcal{D}_k| = n$) with weighted learning instances W_i
 - How much to trust M_k ?
 - Assign weights α_k to M_k
 - Increase weight of false classified learning instances
 - lacktriangle Calculate weights for all learning instances W_i
 - Normalize weights W_i
- Final Model Prediction:

$$\hat{y} = sign\left(\sum_{k=1}^{k_{max}} \alpha_k \, \mathbf{M}_k(x)\right)$$

k = 1: Learning a classifier on original data

- Calculate α_1 with weights of M_1 using weighted error E_k
- 10 samples: $W_i = \frac{1}{n} = \frac{1}{10}$

If E_k large \rightarrow don't trust M_k $\rightarrow \alpha_k$ should be small

$$\alpha_k = \frac{1}{2} \ln \left(\frac{1 - E_k}{E_k} \right)$$

$$E_1 = \frac{3}{10} = 0.3$$

$$\alpha_1 = \frac{1}{2} \ln \left(\frac{1 - 0.3}{0.3} \right) = 0.42$$

- Updating W_i :
 - If instance \vec{x}_i is correctly classified \rightarrow decrease its W_i
 - If instance \vec{x}_i is falsely classified \rightarrow increase W_i

- \blacksquare Normalize W_i ,
 - Important for numerical stability.

$$W_i \leftarrow \begin{cases} \frac{0.065}{3 \cdot 0.152 + 7 \cdot 0.065} = 0.071 & \text{if } M_1(\vec{x}_i) = y_i \\ \frac{0.0152}{3 \cdot 0.152 + 7 \cdot 0.065} = 0.166 & \text{if } M_1(\vec{x}_i) \neq y_i \end{cases}$$

$$7 \cdot 0.071 + 3 \cdot 0.166 \approx 1$$

• Update of W_i

k = 2: Learn new classifier on weighted dataset

• Calculate α_2 with weighted error of M_2

$$\alpha_2 = \frac{1}{2} \ln \left(\frac{1 - E_2}{E_2} \right)$$

$$E_2 = 3 \cdot 0.071 = 0.21$$

$$\alpha_2 = 0.65$$

• Update α_2

 $k = 3 (k_{max})$: learn last classifier

$$M_3$$
 $E_3 = 3 \cdot 0.047 = 0.141$ $\alpha_3 = \frac{1}{2} \ln \left(\frac{1 - 0.141}{0.141} \right) \approx 0.92$

Adaptive Boosting: Example- final classification

Bagging vs. Boosting

- k_{max} models are used
- Bagging trains in parallel (models are independent of each other)

Boosting creates new learning systems sequentially.

Excursion: Viola & Jones Object Detection

Excursions are not relevant for

 $[\sim 2001 - 2003]$

- Detection of faces in images
- Sliding Window: Create cutouts (e.g. 24 x 24 pixel) and decide if the contain face/ no face
- Classification: Characteristic-based (Haar-like Features)

Naïve → e.g. 180000 features per section then linear separation

- Much more efficient
 - Trick 1: Cascades of classificators with adjustable quality
 - Trick 2: Adjust quality of selected features with Adaboost

Excursion: Cascade Viola & Jones 2001

- 2-class problem
- Trick 1: Cascade
 - We are looking for a sequence of classifiers with increasing complexity
 - Procedure: A subset (F no face) is gradually discarded from the dataset, which was classified by the previous cascade with T (potentially face).

Excursion: Cascade Viola & Jones 2001

- Define minimum conditions for each classifier
 - Recognition rate (here: real face in T)
 - False positive rate (here: no face in T)
- Cascade: Gradual reduction of the false positive rate (but increasing the false negative rate and reducing the detection rate)

■ For 10 steps in the cascade, a detection rate of at least 0.99 and a false positive rate of 0.3 at the

cascade will have at most:

a detection rate of $0.99^{10} \approx 0.9$ and

a false positive rate of no more than $0.3^{10} \approx 0.000006$

Excursion: Cascade Viola & Jones 2001

- Define minimum conditions for each classifier
 - Recognition rate (here: real face in T)
 - False positive rate (here: no face in T)
- Trick 2: Build individual classifiers such that the conditions are met
- Method: AdaBoost (iterative)
 - Combine simple threshold classifiers based on individual Haar-features
 - Which n? (→ Iteration)
 - What are the best features? (→ Adaboost)

Overview

- Motivation
- Is learning equivalent to optimization?
 - Can learning be described formally?
 - Error minimization for empirical and real error
 - Hypothesis quality, model selection
 - Boosting, Ensembles
- Learnability and Capacity of Learning Machines
 - VC Dimension

Excursion: PAC – Learnability

- PAC = Probably Approximate Correct
- Given:
 - A set X of instances, each with length n
 - Concept $C: X \rightarrow \{true, false\}$
 - Hypotheses space H
 - lacksquare A set of learning data D_L
- Can a correct hypothesis from H, $h(\vec{x}) = c(\vec{x})$, $\forall \vec{x} \in D_L$ be found?
 - No
 - But an ε accurate: $\hat{\mathcal{L}}_{D_L}(h) \leq \varepsilon$, $0 < \varepsilon < \frac{1}{2}$ Approximate Correct

Excursion: PAC – Learnability

- Can it be found always?
 - No
 - But with chosen probability

$$1 - \delta$$
, $0 < \delta < \frac{1}{2}$ Probably

- How is the problem (to find hypothesis) solvable?
 - in polynomial time depending on: $\frac{1}{\delta}$, $\frac{1}{\varepsilon}$, n
 - with memory complexity depending on: C

And the number of learning data needed (sample complexity) is:

$$m \ge \frac{1}{\varepsilon} (\ln(\frac{1}{\delta}) + \ln|H|)$$

- And what does that mean?
 - the higher the desired quality
 - the smaller the permissible error
 - the larger the hypothesis space
 - > the greater the number of data required

Excursion: PAC – Example (Excursion)

- For hypotheses
 - that consist of conjunctions of
 - up to ten literals
 - can with 95% certainty
 - a hypothesis with error < 0.1 be found</p>
- Given these prerequisites, a learning system requires at least:

$$m \ge \frac{1}{0.1} \left(ln \left(\frac{1}{0.05} \right) + 10 ln |3| \right) = 140 |H| = 3^{10}$$
 learning instances

Unfortunately, not so easy for complex functions and machines

Vapnik-Chervonenkis (VC) Dimension

- How can we formally define what a learning system can achieve?
- A set of mappings (hypotheses)

 $\{h_{\theta}: \theta \in Parameter Space\}$

define the hypotheses space *H*

■ **Definition** (for linear classification): The VC-Dimension $VC(h_{\theta})$ of H is equal to the maximum number of data points (from set S) which can be arbitrarily separated from H

Vapnik-Chervonenkis (VC) Dimension

Definition (for linear classification): A mapping (hypothesis) h(x) shatters the data S if h(x) creates subsets which can be defined:

$${x|h(x) = 0}$$
 ${x|h(x) = 1}$

Example:

Hypotheses space are hyperplanes in \mathbb{R}^2 and $S \subset \mathbb{R}^2$

VC Dimension Example

Assertion:

A maximum of 3 data points can be separated from straight lines if all arbitrary splits

are allowed

■ General: Hyperplane in $R^n \Rightarrow n+1$ separable values

VC Dimension – Use Case I

- Measure of data complexity of learning [Blumer et al 1988]
- lacktriangle Statements about PAC sample complexity, number of learning examples m

$$m \ge \frac{1}{\varepsilon} \left(4\log_2(\frac{2}{\delta}) + 8VC(h)\log_2(\frac{13}{\varepsilon}) \right)$$

- Significantly better estimation, which also includes the learning machine
- There are further restrictions for special machines......

VC Dimension – Use Case II

- ightharpoonup VC(h) is a measure of the capacity of learning systems
- Guess:

The larger VC(h), the better a system can learn to solve a problem

Schematics:

- *VC*(*h*) **>**
- *VC*(*h*) **7**
- Error, in this example, is greater for model with large VC-Dimension

Estimation of Test-Error

• According to Vapnik with probability η :

$$\mathcal{L}(h_{\theta}) \leq \approx \hat{\mathcal{L}}(h_{\theta}) + \sqrt{\dots \frac{VC(h_{\theta})}{N} \dots} \qquad \text{As small as possible}$$
 As large as possible

- whereas:

- $\begin{array}{ccc} & VC(h_{\theta}) & \text{VC-dimension of learning system} \\ & N & \text{number of learning instances} \\ & \hat{\mathcal{L}}(h_{\theta}) & \text{empirical error, dependent from } Vector \\ \end{array}$ - empirical error, dependent from $VC(h_{\theta})$ und N
- $\mathcal{L}(h_{\theta})$

- real error
- Success of learning is dependent on:
 - Capacity of learning system (as small as possible)
 - Optimization method (as good as possible)
 - Learning instances in dataset (representative of real world and as many as possible)

Estimation of Test-Error

- Minimization of emp. error with:
 - Constant VC-dimension
 (e.g. keeping topology of model constant)
 - Constant number of training instances
 - Iterative optimization

- Relationship between empirical and real error
 - VC-dimension = changeable
 - Constant number of training instances.

Structural Risk Minimization

Goal: find a solution for

$$\min_{H^n} \left(\hat{\mathcal{L}}(h_{\theta}) + \sqrt{\dots \frac{VC(h_{\theta})}{N} \dots} \right)$$

- \rightarrow find $VC(h_{\theta})$ ("learning system"), N ("number instances"), and θ ("minimum of empirical error")
- Ideal solution (meta-algorithm): minimize whole sum, not individual summands
 - Use learning system that can create multiple hypotheses spaces with changing complexities
 - Structure hypothesis spaces with regards to their VC-dimension

$$H^1 \subset H^2 \subset \cdots \subset H^n, VC(h_\theta^i) \leq VC(h_\theta^{i+1})$$

- Iterate over all hypothesis spaces H^i
- Train learning system to receive optimal empirical error $\hat{\mathcal{L}}(h_{\theta})$ for given hypothesis space
- If sum is minimized → stop and use this hypothesis.

Structural Risk Minimization

- Problems:
 - Calculation of VC-dimension is hard and resource intensive
 - Mostly unfeasible for currently used large neural network architectures
 - Not all models support the structure and for many models impossible

Correct Learning: Find fitting realizations to get the optimum of the sum

Outlook: Is this always true?

- Are these learning theories from this lecture always applicable?
 - Well, in theory but reality shows exceptions
- Double Descent (short version)
 - With increasing complexity of hypothesis space we initially expect a decrease in test-error and then an increase in test-error (overfitting, classical statistics)
 - But recent observations have shown that increasing complexity even further will reduce test-error again
 - Until now: not fully understood why it is happening, one explanation from 2023: here

Literature

- Tom M. Mitchell: Machine Learning, 1997
 - Online
- Ian Goodfellow and Yoshua Bengio and Aaron Courville: Deep Learning, MIT Press, 2016, https://www.deeplearningbook.org/
- V.N. Vapnik, 1997: Statistical Learning Theory
- Leo Breiman, 1996: Bagging Predictors
- Duda & Hart: Pattern Classification
- P. Viola, M. Jones, 2001: Rapid object detection using a boosted cascade of simple features