Advanced Level Experimental Physics

86-Q3: Resistivity, Using a Wheatstone Bridge

Time $1\frac{1}{2}$ hr.

Apparatus

Metre bridge & jockey; resistance wire (length \approx 1m, resistance \approx 2Ω but not less); metre rule; resistors (0.5 Ω , 1 Ω , 2 \times 2 Ω , 5 Ω , 10 Ω , 20 Ω); 1.5V cell; galvanometer; 4 connecting leads (3 long, 1 short); 1 sheet graph paper; micrometer.

The aim of this experiment is to determine the electrical resistivity of the wire provided. Proceed as follows:

- a. Set up a slide-wire metre bridge as illustrated below where $\, \mathbf{E} \,$ is a cell, $\, \mathbf{G} \,$ is a Galvanometer, length $\, l \,$ of the resistance wire is connected across the right-hand gap of the bridge, and the jockey or slider $\, \mathbf{J} \,$ is placed at the 50cm mark.
- b. With ${\bf R}=20\Omega,$ find the value of length $\it l$ for which the galvanometer gives zero deflection when the slider is tapped onto the 50cm mark as shown below. (2 Marks)
- c. Repeat the procedure in (b) for values of **R** equal to 10Ω , 5Ω , 2Ω , 1Ω , and 0.5Ω . (8 marks)

- i. Calculate and tabulate the values of $\frac{1}{R}$ and $\frac{1}{l}$ for the values of R equal to 20 Ω , 10 Ω , 5 Ω , 2 Ω , 1 Ω , and 0.5 Ω obtained in (b) and (c) above. (7 marks)
- ii. By means of the micrometer screw gauge provided, measure the diameter of the resistance wire, and hence calculate its average diameter d. (5 marks)
- iii. Plot a graph of $\frac{1}{R}$ vs. $\frac{1}{l}$ (whose values are recorded in i above) and determine the gradient. (12, 5 marks)
- iv. Determine the resistivity ρ of the resistance wire given that:

$$\frac{1}{R} = \frac{A}{\rho} \frac{1}{l} - \frac{1}{2}$$

Where A is the cross-sectional area of the resistance wire. (4, 7 marks)

© 2015 <u>CC-BY</u> by Bob Drach and Norman Price Based off of book published ???? About