Math 670 HW #1

Due 11:59 PM Friday, February 21

- 1. A smooth manifold M is called *orientable* if there exists a collection of coordinate charts $\{(U_{\alpha}, \phi_{\alpha})\}$ so that, for every α, β such that $\phi_{\alpha}(U_{\alpha}) \cap \phi_{\beta}(U_{\beta}) = W \neq \emptyset$, the differential of the change of coordinates $\phi_{\beta}^{-1} \circ \phi_{\alpha}$ has positive determinant.
 - (a) Show that for any n, the sphere S^n is orientable.

Proof.

(b) Prove that, if M and N are smooth manifolds and $f: M \to N$ is a local diffeomorphism at all points of M, then N being orientable implies that M is orientable. Is the converse true?

Proof. Becasue N is orientable, there is an atlas $\{(V_{\beta}, \psi_{\beta})\}$ for N such that any change of variables has positive determinant. Now we will consider an atlas $\{(U_{\alpha}, \phi_{\alpha})\}$ for M. Any point $p \in M$, there exists chart (U, ϕ) and (V, ψ) where $p \in \phi(U)$ and $f(p) \in \psi(V)$ and $f: \phi(U) \to \psi(V)$ is a diffeomorphism. Now consider a second chart (U_2, ϕ_2) containing the point p. Now we want to show that $\phi_2^{-1} \circ \phi$ defined on $U \cap U_2$ has positive determinant. Let (V_2, ψ_2) be a chart containing $f(\phi_2(U_2))$. Notice that from chasing diagrams we have that

$$\phi_2^{-1} \circ \phi = \phi_2^{-1} \circ f^{-1} \circ \psi_2 \circ \psi_2^{-1} \circ \psi \circ \psi^{-1} \circ f \circ \phi$$

on $U \cap U_2$ in which case

$$\det(\phi_2^{-1} \circ \phi) = \det(\phi_2^{-1} \circ f^{-1} \circ \psi_2) \det(\psi_2^{-1} \circ \psi) \det(\psi^{-1} \circ f \circ \phi)$$

And becasue

2. Supply the details for the proof that, if $F: \operatorname{Mat}_{d \times d}(\mathbb{C}) \to \mathcal{H}(d)$ is given by $F(U) = UU^*$ (where U^* is the conjugate transpose [a.k.a., Hermitian adjoint] of U), then the unitary group

$$U(d) = F^{-1}(I_{d \times d})$$

is a submanifold of $\operatorname{Mat}_{d\times d}(\mathbb{C})$ of dimension d^2 . (Hint: it may be helpful to remember that a Hermitian matrix M can always be written as $M=\frac{1}{2}(M+M^*)$.)

Proof.

- 3. Let M be a compact manifold of dimension n and let $f: M \to \mathbb{R}^n$ be a smooth map. Prove that f must have at least one critical point.
- 4. Prove that, if X, Y, and Z are smooth vector fields on a smooth manifold M and $a, b \in \mathbb{R}$, $f, g \in C^{\infty}(M)$, then
 - (a) [X, Y] = -[Y, X] (anticommutivity)
 - (b) [aX + bY, Z] = a[X, Z] + b[Y, Z] (linearity)
 - (c) [[X,Y],Z]+[[Y,Z],X]+[[Z,X],Y]=0 (Jacobi identity)
 - (d) [fX, gY] = fg[X, Y] + f(Xg)Y g(Yf)X.