Лабораторная работа №1

Методы градиентного спуска и метод Ньютона

1. Логистическая регрессия

1.1 Функция логистической регрессии

Для набора данных $X \in \mathbb{R}^{n \times d}$, где n — количество образцов, d — количество признаков, и вектора параметров $\theta \in \mathbb{R}^d$, функция логистической регрессии (или вероятность положительного класса) для всех объектов записывается как:

$$p(\mathbf{y}|\mathbf{X},\boldsymbol{\theta}) = \sigma(\mathbf{X}\boldsymbol{\theta})$$

где $\sigma(z)$ — это сигмоида, определенная как:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Функция правдоподобия для логистической регрессии (без явных суммирований):

$$L(\boldsymbol{\theta}) = -\mathbf{y}^{\mathsf{T}} \log (\sigma(\mathbf{X}\boldsymbol{\theta})) - (\mathbf{1} - \mathbf{y})^{\mathsf{T}} \log (1 - \sigma(\mathbf{X}\boldsymbol{\theta}))$$

где $\mathbf{y} \in \{0,1\}^n$ — вектор меток классов.

1.2 Градиент логистической регрессии

Градиент функции потерь логистической регрессии по параметрам θ (в матрично-векторной форме) выражается как:

$$\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) = \mathbf{X}^{\mathsf{T}} (\sigma(\mathbf{X}\boldsymbol{\theta}) - \mathbf{y})$$

где $\sigma(\mathbf{X}\boldsymbol{\theta})$ — это поэлементное применение функции сигмоиды ко всем элементам вектора $\mathbf{X}\boldsymbol{\theta}$.

1.3 Гессиан логистической регрессии

Гессиан — это матрица вторых производных функции потерь по параметрам θ . Для логистической регрессии он имеет вид:

$$H(\boldsymbol{\theta}) = \mathbf{X}^{\mathsf{TS}}\mathbf{X}$$

где **S** — это диагональная матрица весов, определенная как:

$$\mathbf{S} = \operatorname{diag}\left(\sigma(\mathbf{X}\boldsymbol{\theta}) \odot \left(1 - \sigma(\mathbf{X}\boldsymbol{\theta})\right)\right)$$

Здесь О обозначает поэлементное умножение.

1.4 Вывод формул

• Функция логистической регрессии:

$$L(\boldsymbol{\theta}) = -\mathbf{y}^{\mathsf{T}} \log (\sigma(\mathbf{X}\boldsymbol{\theta})) - (\mathbf{1} - \mathbf{y})^{\mathsf{T}} \log (1 - \sigma(\mathbf{X}\boldsymbol{\theta}))$$

•Градиент:

$$\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) = \mathbf{X}^{\mathsf{T}} (\sigma(\mathbf{X}\boldsymbol{\theta}) - \mathbf{y})$$

•Гессиан:

$$H(\boldsymbol{\theta}) = \mathbf{X}^{\mathsf{TS}}\mathbf{X}$$
), где $(\mathbf{S} = \mathrm{diag} \Big(\sigma(\mathbf{X}\boldsymbol{\theta}) \odot \big(1 - \sigma(\mathbf{X}\boldsymbol{\theta}) \big) \Big)$

2. Эксперимент № 1. Траектория градиентного спуска на квадратичной функции

Суть эксперимента заключается в анализе траектории градиентного спуска для квадратичной функции в зависимости от числа обусловленности функции, выбора начальной точки и стратегии выбора шага (константная стратегия, Армихо, Вульф).

Было сгенерировано три числа обусловленности и выбраны три начальные точки.

2.1 Малое число обусловленности 1.22

2.2 Среднее число обусловленности 5.14

2.3 Большое число обусловленности 10.31

Нач.	Стратегия выбора шага		
точка	Constant	Armijo	Wolfe

Чем больше число обусловленности матрицы, тем быстрее работает константный метод, однако, по сравнению с другими двумя — гораздо дольше. Для методов Армихо и Вульф рост числа обусловленности работает наоборот — с ростом числа обусловленности растет и количество итераций для этих методов.

При любых выбранных переменных метод Вульфа справляется быстрее, чем Армихо и константный, количество итераций метода Вульфа почти не меняется или меняется не сильно. Константный метод же наоборот – работает очень долго.

3. Эксперимент № 2. Зависимость числа итераций градиентного спуска от числа обусловленности и размерности пространства

Эксперимент заключается в исследовании зависимости числа итераций градиентного спуска от числа обусловленности $\kappa \ge 1$ оптимизируемой функции и размерности пространства n.

Числа обусловленности от 1 до 1000 с шагом 50. Размерность пространства 10, 100, 1000.

На графике усредненные значения случайных генераций. С ростом числа обусловленности количество итераций градиентного спуска растет. Для большей размерности пространства градиентный спуск работает быстрее при числе обусловленности менее 350.

4. Эксперимент № 3. Сравнение методов градиентного спуска и Ньютона на реальной задаче логистической регрессии

Размерность датасета w8a: (49749, 300).

Метод градиентного спуска на начальных этапах быстрее по времени, однако его темп замедляется по мере приближения к оптимальному решению. Метод Ньютона, наоборот, имеет более медленное начало, но за счет более крупных шагов достигает решения быстрее на последних этапах.

Размерность датасета real-sim: (72309, 20958).

Размерность датасета gisette scale: (6000, 5000).

Градиентный спуск лучше работает на задачах с высокой размерностью пространства и плотными данными, где стоимость каждой итерации является критичным фактором.

Метод Ньютона, хотя требует больше ресурсов на каждую итерацию, показывает высокую эффективность в задачах с меньшей размерностью пространства или на разреженных данных.

5. Эксперимент № 4. Стратегия выбора длины шага в градиентном спуске

Исследование зависимости поведения метода от стратегии подбора шага на логистической регрессии.

Из графиков видно, что градиентный спуск сильно зависит от выбора шага: при большом шаге алгоритм сходится быстрее, при маленьком — может не сойтись вовсе. Для методов с постоянным шагом важно точно подобрать его значение, иначе

есть риск не сойтись. С шагами по методам Армихо и Вульфа алгоритм стабильно сходился, независимо от начальных условий, и различия в результатах минимальны.

Для задач логистической регрессии предпочтительнее использовать методы Армихо или Вульфа, так как они автоматически подбирают шаг, что снижает риск расхождения.