```
In [5]: #importing the packages
  import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
```

In [6]: #Reading the csv file
 data=pd.read_csv("Advertising.csv")

In [7]: #displaying the dataset
 data

Out[7]:		Unnamed: 0	TV	Radio	Newspaper	Sales
	0	1	230.1	37.8	69.2	22.1
	1	2	44.5	39.3	45.1	10.4
	2	3	17.2	45.9	69.3	9.3
	3	4	151.5	41.3	58.5	18.5
	4	5	180.8	10.8	58.4	12.9
	•••			•••		
	195	196	38.2	3.7	13.8	7.6
	196	197	94.2	4.9	8.1	9.7
	197	198	177.0	9.3	6.4	12.8
	198	199	283.6	42.0	66.2	25.5
	199	200	232.1	8.6	8.7	13.4

200 rows × 5 columns

In [8]: #diplaying first 5 rows
 data.head()

Out[8]:		Unnamed: 0	TV	Radio	Newspaper	Sales
	0	1	230.1	37.8	69.2	22.1
	1	2	44.5	39.3	45.1	10.4
	2	3	17.2	45.9	69.3	9.3
	3	4	151.5	41.3	58.5	18.5
	4	5	180.8	10.8	58.4	12.9

In [16]: #displaying bottom 5 rows
 data.tail()

Out[16]: Unnamed: 0 TV Radio Newspaper Sales 195 196 38.2 3.7 13.8 7.6 196 197 94.2 4.9 8.1 9.7 197 198 177.0 9.3 6.4 12.8 198 199 283.6 42.0 66.2 25.5 199 200 232.1 8.7 13.4 8.6

In [17]: #displaying random 5 rows
data.sample(5)

Out[17]:

	Unnamed: 0	TV	Radio	Newspaper	Sales
88	89	88.3	25.5	73.4	12.9
51	52	100.4	9.6	3.6	10.7
188	189	286.0	13.9	3.7	15.9
8	9	8.6	2.1	1.0	4.8
3	4	151.5	41.3	58.5	18.5

In [10]: data.shape

Out[10]: (200, 5)

In [11]: data.describe()

Out[11]:

	Unnamed: 0	TV	Radio	Newspaper	Sales
count	200.000000	200.000000	200.000000	200.000000	200.000000
mean	100.500000	147.042500	23.264000	30.554000	14.022500
std	57.879185	85.854236	14.846809	21.778621	5.217457
min	1.000000	0.700000	0.000000	0.300000	1.600000
25%	50.750000	74.375000	9.975000	12.750000	10.375000
50%	100.500000	149.750000	22.900000	25.750000	12.900000
75%	150.250000	218.825000	36.525000	45.100000	17.400000
max	200.000000	296.400000	49.600000	114.000000	27.000000

In [12]: data.info()

7/13/23, 1:38 PM

```
salesprediction
          <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 200 entries, 0 to 199
         Data columns (total 5 columns):
               Column
                           Non-Null Count Dtype
               Unnamed: 0
                          200 non-null
                                            int64
           0
           1
               TV
                           200 non-null
                                            float64
           2
               Radio
                           200 non-null
                                            float64
           3
              Newspaper
                           200 non-null
                                            float64
                                            float64
               Sales
                           200 non-null
         dtypes: float64(4), int64(1)
         memory usage: 7.9 KB
          data.duplicated().sum()
In [13]:
Out[13]:
          data.isnull().sum()
In [14]:
         Unnamed: 0
Out[14]:
         TV
                        0
         Radio
                        0
         Newspaper
                        0
         Sales
                        0
         dtype: int64
         #scatterplot
In [15]:
          plt.figure(figsize=(5,5))
          sns.scatterplot(data=data,x=data['TV'],y=data['Sales'])
          plt.show()
             25
```



```
In [13]: plt.figure(figsize=(5,5))
    sns.scatterplot(data=data,x=data['Radio'],y=data['Sales'])
    plt.show()
```



```
In [14]: plt.figure(figsize=(5,5))
    sns.scatterplot(data=data,x=data['Newspaper'],y=data['Sales'])
    plt.show()
```



```
In [15]:
         #Splitting the dataset into X(the attributes) and y(the target variable)
         X=data.drop('Sales',axis=1)
In [16]:
         y=data['Sales']
                22.1
Out[16]:
                10.4
                 9.3
         2
         3
                18.5
         4
                12.9
         195
                 7.6
         196
                 9.7
         197
                12.8
         198
                25.5
         199
                13.4
         Name: Sales, Length: 200, dtype: float64
         #splitting the data into train and test data
In [17]:
         from sklearn.model_selection import train_test_split
         X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.20, random_state=0)
         from sklearn.linear_model import LinearRegression
In [19]:
         sales=LinearRegression()
         #fitting the model
In [20]:
         sales.fit(X_train,y_train)
```

```
LinearRegression()
Out[20]:
         #prediction
In [21]:
         prediction=sales.predict(X_test)
         prediction
In [22]:
         array([10.24664397, 7.3067958, 7.01313011, 24.0629912, 11.84538583,
Out[22]:
                 6.3623126 , 12.97367539, 15.01392577, 10.95137181, 16.2302401 ,
                22.94764396, 9.07892877, 10.29830431, 15.372556 , 11.63358138,
                12.38729183, 18.91996453, 10.72601207, 16.03372676, 17.36589369,
                23.85225051, 9.51048184, 15.25366204, 12.2528663, 5.81346738,
                15.19998588, 12.12398331, 20.74762723, 13.36651757, 9.16548788,
                13.0430809 , 21.47977498, 18.01828076, 21.14170908, 6.74096317,
                 5.9527019 , 7.82515133 , 13.21661502 , 14.72150697 , 6.18172688])
In [23]:
         #Determining accuracy using different metrics
         from sklearn import metrics
         print('MAE:',metrics.mean_absolute_error(prediction,y_test))
         print('RMSE:',np.sqrt(metrics.mean_squared_error(prediction,y_test)))
         print('R-Squared',metrics.r2 score(prediction,y test))
         MAE: 1.4158480868317487
         RMSE: 2.125203007295874
         R-Squared 0.8283777385812958
 In [ ]:
```