CLAIMS

1	1.	An etalon comprising:
2		a first rutile material having a first coefficient of thermal optical path
3	length	change β_1 ;
4		a second material having a second coefficient of thermal optical path
5	length	change β_2 ;
6		an optical path extending through said first material and said second
7	materia	al, wherein one of β_1 and β_2 is negative.
1	2.	The etalon as claimed in claim 1, wherein said second material includes an
2	optical	glass.
1	3.	The etalon as claimed in claim 1, wherein said second material includes
2	BK7.	
1	4.	The etalon as claimed in claim 1, wherein said second material includes a
2	crystal	
1	5.	The etalon as claimed in claim 1, wherein said second material includes a
2	quartz.	
1	6.	The etalon as claimed in claim 1, wherein said etalon further includes an
2	anti-re	flective coating between said first rutile material and said second material.
1	7.	An etalon comprising:

- a first material having a first thickness d_l , a first index of refraction n_l , and a first coefficient of thermal optical path length change β_1 , wherein $\beta_1 < -1.0$;
- a second material having a second thickness d₂, a second index of
 refraction n₂, and a second coefficient of thermal optical path length change β₂,
 wherein the ratio d₁/d₂ equals (n₂β₂)/(n₁β₁).
 - 8. The etalon as claimed in claim 7, wherein $-7 > \beta_1 > -25$.
- The etalon as claimed in claim 7, wherein said etalon includes BK7.
 - 10. The etalon as claimed in claim 7, wherein said etalon includes quartz.
- 1 The etalon as claimed in claim 7, wherein said etalon includes silicon.
- 1 12. An etalon including strontium titanate.

1

l

2

3

- 1 13. An etalon including a rutile material and a coefficient of optical path length that is approximately zero.
- An etalon including a strontium titanate material having a negative β, a
 positive β material, and a coefficient of optical path length that is approximately
 zero.
 - 15. An etalon comprising:
 - a rutile material having a first thickness d_l , a first index of refraction n_l , and a first coefficient of thermal optical path length change β_1 ;

- a glass material having a second thickness d_2 , a second index of refraction
- 5 n_2 , and a second coefficient of thermal optical path length change β_2 , wherein the
- 6 ratio d_1/d_2 equals $(n_2\beta_2)/(n_1\beta_1)$.