Chapter 1.4. Prime Numbers and Finite Fields

Def. An integer p is called a prime if $p \ge 2$ and the only positive integers dividing p are 1 and p.

Thm. Let p be a prime.

Then, every nonzero element $a \in \mathbb{Z}p$ has a multiplicative inverse. i.e, $\exists b \in \mathbb{Z}p$ s.t. $ab \equiv 1$ mod p

pof. A field is a ring in which every nonzero element has a multiplicative inverse.

Ex. 7/4 is not a field. ($\frac{1}{2}$ b s.t. $2 \cdot b \equiv 1 \mod 6$) $7/4 \quad 18 \quad a \quad field.$

Note. Let If be a finite field.

Then, IF is a prime or IF is a power of prime.