CSE/ECE 848 Introduction to Evolutionary Computation

Module 2, Lecture 9, Part 3

Variants of BGAs and RGAs

Kalyanmoy Deb, ECE
Koenig Endowed Chair Professor

Real-parameter Mutation Operators

- Variable-wise mutation operators
- \triangleright Every variable is mutated with prob. p_m ($\approx 1/n$)
- $\succ x_i$ is mutated to x'_i (perturbed in neighborhood)
- > Uniform Mutation: (Not recommended)

- Gaussian Mutation
- > Polynomial Mutation
- Mutation clock (effective for bit-wise mutation)
 - > Estimate the next bit (variable) to be mutated

Reference: Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Chichester, London: Wiley

Gaussian Mutation Operator

- \triangleright Use a truncated Gaussian distribution with σ :
- \triangleright Create a random number $u_i \in [0,1]$ for every var.

$$x'_i = x_i + \sqrt{2}\sigma(b_i - a_i)\operatorname{erf}^{-1}(u'_i)$$
, erf() is the Error function

$$u_i' = \begin{cases} 2u_L (1-2u_i), & \text{if } u_i \leq 0.5, \\ 2u_R (2u_i - 1), & \text{otherwise,} \end{cases}$$

$$u_L = 0.5 \left(\operatorname{erf} \left(\frac{a_i - x_i}{\sqrt{2} (b_i - a_i) \sigma} \right) + 1 \right)$$

$$u_R = 0.5 \left(\operatorname{erf} \left(\frac{b_i - x_i}{\sqrt{2} (b_i - a_i) \sigma} \right) + 1 \right)$$

Vector-wise Gaussian mutation possible

Boundary handling included

- \triangleright For the chosen variable, parent is $p \in [a, b]$
- \triangleright Choose a random number $u \in [0,1]$
- Figure 1. If $u \le 1/2$, calculate $\delta_L = (2u)^{\frac{1}{1+\eta_m}} -1$; $\eta_m \in [20,100]$ else calculate $\delta_R = 1 (2(1-u))^{\frac{1}{1+\eta_m}}$
- > Calculate mutated child:

$$p' = p + \delta_L(p-a)$$
, if $u \le \frac{1}{2}$; $p' = p + \delta_R(b-p)$, otherwise

 \triangleright Illustration: $p = 3.0 \in [1,8]$

Reference: Deb, K. and Deb, D. (2014). Analysing mutation schemes for real-parameter genetic algorithms. Int. J. Artificial Intelligence and Soft Computing, 4(1), Inderscience Enterprises Ltd., 1–28.

- When a boundary-less search creates a child outside variable bounds, bring it back, but how?
- Inverse Parabolic penalty: Repair child x^c to create \vec{y} :

$$d' = d_v + \alpha d_v \tan \left(r \tan^{-1} \frac{a - d_v}{\alpha d_v} \right)$$

$$\vec{y} = \vec{x}^c + d'(\vec{x}^p - \vec{x}^c) \quad \begin{array}{l} r \in [0,1] \\ \alpha = 1.2 \\ a = d_u \end{array}$$

Reference: Padhye, N., Mittal, P., and Deb, K. (2015). Feasibility preserving constraint handling strategies for real-parameter evolutionary optimization. Computational Optimization and Applications, 62(3), 851–890.

Mixed Variable Handling

- ► EAs are excellent for handling mixed variables
- ► A mixed representation: [(1) 14 23.457 (101)]
 - ▶ (1): circular or square cross-section
 - ▶ 14 mm: diameter/side
 - ▶ 23.457 mm: length
 - ▶ (101): material
- Otherwise, many opt. runs
- Recomb & mut. on similar var.
- Permutation + real + discrete

Reference: Deb, K., and Goyal. M. (1996). A combined genetic adaptive search (GeneAS) for engi-neering design. Computer Science and Informatics, 26(4), 30–45.

End of Module 2, Lecture 9, Part 3

- > Real-parameter mutation creates a perturbed point
 - > Gaussian mutation
 - > Polynomial mutation
- Boundary handling is required (with RGAs, DE, PSO, etc.)
- > Handling mixed variables relatively easy with EAs