

UNIVERSIDADE FEDERAL DO PIAUÍ CENTRO DE CIÊNCIAS DA NATUREZA DEPARTAMENTO DE COMPUTAÇÃO PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO PPGCC021-Análise e Processamento de Imagens-60h - 2024.1 Prof. Dr. Laurindo de Sousa Britto Neto laurindoneto@ufpi.edu.br

LISTA DE EXERCÍCIOS #03

1. Sejam os perfis de linhas horizontais de uma imagem, esboce o gradiente e o laplaciano desses perfis.

2. Seja a imagem 3 × 3 com 8 níveis de intensidade, na qual, ao redor da imagem, foi realizado um *padding* de zeros com tamanho de um pixel. Calcule o LoG realizando a convolução da imagem com filtros 3 × 3.

0	0	0	0	0
0	7	0	0	0
0	0	7	0	0
0	0	0	7	0
0	0	0	0	0

- 3. A transformada de Hough pode ser usada para a detecção de linhas. A abordagem consiste em definir um mapeamento entre o espaço da imagem (xy) e o espaço de parâmetros em coordenadas polares $(\rho\theta)$. Encontre os parâmetros (ρ,θ) que representam a linha y=-2x+1.
- 4. Segmente a imagem abaixo utilizando a limiarização global simples, mostrando cada passo para encontrar o limiar final. Utilize como limiar inicial T=2 e o parâmetro $\Delta T=0,1$.

0	1	2	6	0
1	3	5	7	5
2	5	2	6	2
6	7	6	3	1
0	5	2	1	0

5. Segmente a imagem abaixo utilizando crescimento de região, utilizando a vizinhança 4-conectado, duas sementes (já marcadas com triângulo e círculo) e o limiar T=3.

5	0	2	6	1
1	1	7	8	7
7	/	0	\bigcirc	2
2	0	7	6	6
5	1	0	6	1

6. Utilize o algoritmo do código da cadeia para descrever a imagem abaixo. Calcule o código da cadeia com 4 direções, o inteiro de magnitude mínima, a primeira diferença e o número do formato.

7. Utilizando o algoritmo de esqueletização, como ficaria a imagem abaixo após:

- a) Uma passagem do Passo 1 do algoritmo?
- b) Uma passagem do Passo 2 do algoritmo sobre o resultado do Passo 1?
- 8. Compute a matriz de coocorrência da imagem abaixo, sabendo que L=4 e Q= "um pixel imediatamente à direita".

0	1	2	2	0
1	3	1	3	2
2	1	2	2	2
2	3	2	3	1
0	1	2	1	0

- 9. Use PCA para normalizar a escala, translação e rotação do conjunto de coordenadas {(1, 1), (3, 5), (5, 3), (7, 7)}. Após a normalização, translade as coordenadas transformadas para a origem do sistema e, em seguida, translade-as acrescentando o vetor $(1, 1)^T$ de forma que todas as coordenadas resultantes fiquem maiores que zero.
- 10. Detecte MSERs do pedaço de imagem abaixo de 8 bits, usando T = 10 e $\Delta T = 50$. Apresente a árvore de componentes.

255	5	255	255
5	5	5	255
125	5	90	255
255	175	90	90

- 11. Sejam as classes de padrões a seguir: ω_1 : { $(0,0)^T$, $(2,0)^T$, $(2,2)^T$, $(0,2)^T$ } e ω_2 : { $(4,4)^T$, $(6,4)^T$, $(6,6)^T$, $(4,6)^T$ }. Calcule a função de decisão de um classificador de distância mínima para os padrões apresentados.
- 12. As classes de padrões a seguir têm funções de densidade de probabilidade gaussiana: ω_1 : { $(0,0)^T$, $(2,0)^T$, $(2,2)^T$, $(0,2)^T$ } e ω_2 : { $(4,4)^T$, $(6,4)^T$, $(6,6)^T$, $(4,6)^T$ }. Assumindo que $P(\omega_1) = P(\omega_2) = \frac{1}{2}$, calcule a função de decisão bayesiana entre essas duas classes.
- 13. Aplique o algoritmo do perceptron para as classes de padrões a seguir: ω_1 : { $(0,0,0)^T$, $(1,0,0)^T$, $(1,0,1)^T$, $(1,1,0)^T$ } e ω_2 : { $(0,0,1)^T$, $(0,1,1)^T$, $(0,1,0)^T$, $(1,1,1)^T$ }. Assuma que c = 1 e $w(1) = (-1,-2,-2,0)^T$.