TD: Programmation linéaire

Exercice 1

Une entreprise fabrique deux produits P_1 et P_2 . La fabrication de ces produits nécessite du temps de travail (de la main d'œuvre), du temps-machine et de la matière première. Les coefficients techniques de production ainsi que les prix de vente par unité de produit sont fournis dans le tableau suivant :

	<i>P</i> ₁	P_2
Heures de travail nécessaires à la fabrication d'une unité de produit	0,75h	0,5h
Temps-machine nécessaire à la fabrication d'une unité de produit	1,5h	o,8 h
Quantité de matière première nécessaires à la fabrication d'une unité de produit	2 unités	1 unité
Prix de vente d'une unité de produit (exprimé en unité monétaire u.m.)	15	8

Chaque semaine 400 unités de matière première au plus peuvent être achetées au prix de 1,5 u.m. par unité.

L'entreprise emploie 4 personnes qui travaillent chacune 35 heures par semaine. Ces personnes peuvent effectuer des heures supplémentaires qui sont payées 6 unités monétaires l'heure. Chaque semaine la disponibilité en temps machine est de 320 h.

En absence de publicité, la demande hebdomadaire du produit P_1 serait de 50 unités, celle de P_2 de 60 unités; mais on peut réaliser de la publicité pour développer les ventes : chaque unité monétaire dépensée en publicité sur P_1 (respectivement sur P_2) augmente la demande hebdomadaire de P_1 (respectivement P_2) de 10 unités (respectivement 15 unités). Les frais de publicité ne doivent pas dépasser 100 unités par semaine.

Les quantités de P_1 et P_2 fabriquées doivent rester inférieures ou égales à la demande (compte tenu de la publicité).

On définit les 6 variables suivantes :

- \cdot X_1 : nombre d'unités du produit P_1 fabriquées par semaine
- . X_2 : nombre d'unités du produit P_2 fabriquées par semaine
- . HS : nombre total d'heures supplémentaires effectuées par semaine
- . MP : nombre d'unités de matière première achetées par semaine
- . PUB₁: nombre d'unités monétaires dépensées en publicité sur P₁
- . PUB₂: nombre d'unités monétaires dépensées en publicité sur P₂

L'entreprise désire fixer la valeur de chacune de ces variables de manière à maximiser son bénéfice : Bénéfice = Chiffre de vente — Somme des coûts des variables Le salaire (coût des heures normales) des 4 personnes est un coût fixe pour l'entreprise.

► Question : Modéliser le problème par un programme linéaire, l'objectif de l'entreprise étant de maximiser son bénéfice.

TD: Programmation linéaire

Exercice 2: Problème de Production

1. Une usine fabrique deux produits P1 et P2.

Chacun de ces produits demande, pour son usinage, des heures de fabrication unitaires sur les machines (ou dans les ateliers) A B C D E comme indiqué dans le tableau suivant :

	A	В	С	D	E
P1	0	1h,5	2	3	3
P2	3	4	3	2	0
Disponibilité totale de					
chaque machine	39h	60h	57h	70h	57h

Les marges brutes de chaque produit sont respectivement :

M1 = 1700 F

M2 = 3200 F

Ecrire un programme linéaire correspondant.

2. Les produits utilisent trois fournitures F1, F2 et F3 dans les conditions indiquées ci-dessous :

	F1	F2	F3
P1	0	12	8
P2	5	36	0
Unités	Kg	M^3	M ²
Stock disponible	55	432	126

Réécrire sous forme algébrique seulement, le nouveau programme linéaire ainsi créé. Eliminer les contraintes redondantes.

TD: Programmation linéaire

Exercice 3

Trois types de poudres, A, B et C, servant à propulser une fusée doivent être mélangés pour fournir un carburant répondant aux spécifications suivantes :

- Puissance propulsive $\geq 4, 2$
- Facteur corrosif $\leq 6, 4$
- . Poids $(kg)/dm^3 < 8$

Le tableau suivant donne ces spécifications pour 1 dm^3 de chacun des types de poudre ainsi que leur coût.

	Α	В	C
Puissance propulsive	10	5	2
Facteur corrosif	10	4	6
Poids (kg)	6	10	8
Coût	10	5	8

- ► Question 1 : On a besoin de 60 dm^3 de poudre pour la fusée. Quel est le coût minimal du carburant demandé?
- ► Question 2 : Déduire de ces données un problème de programmation linéaire et l'exprimer sous forme standard.

Exercice 4

► Question: Mettre les programmes suivants sous forme standard.

TD: Programmation linéaire

$$3. \ (PL_3) \begin{cases} \min & 3x_1 - x_2 \\ s.c. & -x_1 + 6x_2 - x_3 + x_4 \ge -3 & (1) \\ & & 7x_2 + x_4 = 5 & (2) \\ & & & x_3 + x_4 \le 2 & (3) \\ x_2 & \ge -1 \\ & x_3 & \le 5 \\ & x_4 & \ge -2 \\ & x_2 & \le 2 \end{cases}$$

Exercice 5

Résoudre le PL suivant en utilisant la résolution géométrique

Z= max
$$15x + 25y$$

 $2.5x + 7.5y \le 240$
 $125x + 125y \le 5000$
 $17.5x + 10y \le 595$
 $x, y \ge 0$

TD: Programmation linéaire

Exercice 6

Résoudre le PL suivant en utilisant la résolution géométrique

Exercice 7

À l'approche des fêtes de Pâques, un artisan chocolatier décide de confectionner des œufs en chocolat. En allant inspecter ses réserves, il constate qu'il lui reste 18 kg de cacao, 8 kg de noisettes et 14 kg de lait.

Il a deux spécialités : l'œuf *Extra* et l'œuf *Sublime*. Un œuf *Extra* nécessite 1 kg de cacao, 1 kg de noisettes et 2 kg de lait. Un œuf *Sublime* nécessite 3 kg de cacao, 1 kg de noisettes et 1 kg de lait.

Il fera un profit de 20 fr. en vendant un œuf *Extra*, et de 30 fr. en vendant un œuf *Sublime*.

Combien d'œufs *Extra* et *Sublime* doit-il fabriquer pour faire le plus grand bénéfice possible ?