## FOLGEN

Fragen?

Divergenz vs. bestimmte Divergenz:  $q = (-1)^n$ 



Konvægenz:



- \* Folgen. Für folgende Folgen machen Sie bitte das Folgende:
  - Zeichnen Sie die Folgen in einem Graphen.
  - Sind die Folgen beschränkt?
  - Sind die Folgen monoton wachsend oder monoton fallend?
  - Sind die Folgen konvergent (Grenzwert?), divergent oder bestimmt divergent?

a) 
$$a_n = n!, n \in \mathbb{N}_0$$

$$n! := \prod_{i=1}^{n} i$$

$$n! := \prod_{i=1}^{n} i$$
  $0! = \prod_{i=1}^{n} i := 1$ 

- b)  $a_n = \frac{1}{n}$ ,  $n \in \mathbb{N}$
- c)  $a_n = (-1)^n$ ,  $n \in \mathbb{N}_0$

Lösung.

Lösung. a) Fabrultat:  $\frac{n \mid 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid ...}{a_n \mid 0! = 1 \mid 1! = 1 \mid 2! = 2 \cdot 1 \mid 2! = 3 \cdot 2! \mid 4! = 4 \cdot 3! \mid 120 \mid 720 \mid ...}$ 



konvergent? Nein, de nicht bochränkt. D.h. divergent. Hier soger bestimmt divergent gegen too





streng up fa

Nonvesout soper 0: an >0

Noch under beschrändt an >0



**Zinseszins.** Sie legen auf ein Tagesgeldkonto ein Kapital  $K_0 = 1000 \in zu$  einem Zinssatz von 2% p.a. an. Wie viel Kapital haben Sie nach n Jahren? Uberlegen Sie sich eine Folge  $K_n$ , wobei  $K_n$  das Kapital im Jahre n ist.

## Lösung.

nach O Yahren (Yeth!): K = 1000€

20

nach 1 July :  $K_{\Lambda} = K_{0} + 0.02 \cdot K_{0} = 1.02 \cdot K_{0}$ nach 2 July :  $K_{2} = K_{\Lambda} + 0.02 \cdot K_{\Lambda} = 1.02 \cdot K_{\Lambda} = 1.02 \cdot K_{0}$ 

nach 2 January

:

uach u Yahren

:  $K_n = K_{n-n} + 0.02 \cdot K_{n-n} = 1.02 \cdot K_{n-n} = 1.02 \cdot K_0$ reteursiv (Excel)

(Exponential flut. uin h)



23956

· nach unten bochvarrt

str. mo. wa.

· bestimmt divergent -> 00

Wurzelberechnung nach Heron.  $a_0 = 2$  und  $a_n = \frac{1}{2}(a_{n-1} + \frac{2}{a_{n-1}})$  für n > 0. Untersuchen Sie diese Folge auf Konvergenz und bestimmen Sie ggf. den Grenzwert. Implementieren Sie diese rekursive Folge als Funktion in Java.

## Lösung.





· yach under beschrändt (2.8. an 20)

Ahh: 12 = 1,9192 ...

- · streng mo. fa. (ohne benois)
- → honvegent! (pgen was?)

Sei a der Grenzwert, d.h. an > a:

$$\begin{array}{c} \left( \begin{array}{c} a_{n-1} \\ \end{array} \right) + \left( \begin{array}{c} a_{n-1} \\ \end{array} \right) & \begin{array}{c} a \neq \infty \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a = \frac{1}{2} \alpha + \frac{1}{\alpha} \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a = \frac{1}{2} \alpha + \frac{1}{\alpha} \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a = \frac{1}{2} \alpha + \frac{1}{\alpha} \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a = \frac{1}{2} \alpha + \frac{1}{\alpha} \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a = \frac{1}{2} \alpha + \frac{1}{\alpha} \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a = \frac{1}{2} \alpha + \frac{1}{\alpha} \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) & \begin{array}{c} a \neq 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \neq 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \Rightarrow 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \Rightarrow 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \Rightarrow 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \Rightarrow 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \Rightarrow 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \Rightarrow 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \Rightarrow 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \Rightarrow 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \Rightarrow 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \Rightarrow 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \Rightarrow 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \Rightarrow 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \Rightarrow 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \Rightarrow 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \Rightarrow 2 \\ \end{array} \right) \\ \left( \begin{array}{c} a \Rightarrow 2 \\ \end{array} \right) \\ \left( \begin{array}{$$

**Grenzwerte.** Berechnen Sie folgende Grenzwerte für  $n \to \infty$ :

a) 
$$a_n = \frac{4n^2 - 5}{n^2 + n + 1}$$

b) 
$$a_n = \frac{3n^2 + 2}{n^3 + 2n + 1}$$
,

c) 
$$a_n = \frac{n^2 + \sin(n)}{2n^2 + e^{-n}}$$

Lösung.

a) Hödrk Pitent ausklamman:  $a_n = \frac{h^2(4 - \frac{5}{n^2})}{h^2(4 + \frac{1}{n^2} + \frac{1}{n^2})} \xrightarrow{h \to \infty} \frac{4}{1} = 4$ b)  $a_n = \frac{h^2(3 + \frac{2}{n^2})}{h^3(1 + \frac{2}{n^2} + \frac{1}{n^3})} = \frac{1}{n} \cdot \frac{3 + \frac{2}{n^2}}{1 + \frac{2}{n^2} + \frac{1}{n^3}} \xrightarrow{h \to \infty} 0.3 = 0$   $a_n = \frac{h^2(3 + \frac{2}{n^2})}{h^3(1 + \frac{2}{n^2} + \frac{1}{n^3})} = \frac{1}{n} \cdot \frac{3 + \frac{2}{n^2}}{1 + \frac{2}{n^2} + \frac{1}{n^3}} \xrightarrow{h \to \infty} 0.3 = 0$   $a_n = \frac{h^2(4 + \frac{2}{n^2})}{h^3(1 + \frac{2}{n^2} + \frac{1}{n^3})} \xrightarrow{h \to \infty} 0.3 = 0$   $a_n = \frac{h^2(4 + \frac{2}{n^2})}{h^3(1 + \frac{2}{n^2} + \frac{1}{n^3})} \xrightarrow{h \to \infty} 0.3 = 0$ 

 $\frac{\text{Wdh}}{\text{bn}} \xrightarrow{\infty} 0$ 

Sin(h) Schrist of 2 3 4

besilvated 03/2/3/10