## Dokumentacja projektowa

# Współbieżna, rozproszona gra life w erlangu



## **Autorzy:**

Małgorzata Maciurzyńska Rafał Płonka Konrad Seweryn Mateusz Stanaszek Mateusz Ścirka

#### 1. Wprowadzenie teoretyczne

### 1.1. Cel projektu i wymagania

Celem projektu bylo opracowanie architektury rozproszonego, skalowalnego systemu w erlangu dla gry Life w/g podstawowej reguły Conwaya 23/3.

**Rozmiar planszy** jest kwadratowy będący potęgą 2 począwszy od 256×256 do 16384×16384 (rozmiar 8-14)

Program wykorzystuje rozproszenie.

Program uwzględnia, że nie wszystkie węzły będą zawsze dostępne i nie będą znikać w trakcie obliczeń.

Program posiada możliwość generowania losowych plansz.

Program posiada wbudowany benchmark.1

Program posiada funkcję "next/0", która wylicza następną iterację.

Program ma możliwość wczytania planszy z pliku i zapisu do pliku.<sup>2</sup>

#### 1.2. Reguly gry według Conwaya

Martwa komórka, która ma dokładnie 3 żywych sąsiadów, staje się żywa w następnej jednostce czasu (rodzi się)

Żywa komórka z 2 albo 3 żywymi sąsiadami pozostaje nadal żywa; przy innej liczbie sąsiadów umiera (z "samotności" albo "zatłoczenia").

-

<sup>&</sup>lt;sup>1</sup> https://erlangcentral.org/wiki/index.php/Measuring Function Execution Ti

<sup>&</sup>lt;sup>2</sup> Plik jest skompresowanym ciągiem zawierającym rozmiar jako pierwszy bajt (2°X, np. 12 oznacza planszę 2°12 na 2°12) oraz wartości poszczególnych komórek (0 lub 1) wierszami

### 2. Wykorzystywane algorytm

### 2.1. Dzielenie tablicy na mniejsze

Na poniższym rysunku przedstawiony jest poglądowy widok tablicy, na którym omówiony zostanie algorytm działania.

| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

Tablica dzielona jest według kolorów na mniejsze podtablice. Dodawane są również wiersze w sąsiednich podtablic.

Przykład: niebieska tablica dostaje dodatkowy wiersz z tablicy żółtej i zielonej.

Każda z takich podtablic zostaje przesłana z dodatkową informacją gdzie należy dodać zera. Tak więc przykładowo node z tablicą niebieską otrzymuje:

| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

a także dane {left, right} wskazujące na miejsce umieszczenia zer.

## 2.2. Algorytm liczenia podtablicy

W każdym z node-ów do tablicy która się w nim znajduje dodawane są w odpowiedni sposób zera.

Przykład dla niebieskiej tablicy:

| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |

Kolejnym krokiem jest przeprowadzenie iteracji po wszystkich komórkach w kolorze niebieskim.

| 0 |   |   |   |   |   |   |   |   |   | 0 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | N | N | N | N | N | N | N | N | N | 0 |
| 0 | N | N | N | N | N | N | N | N | N | 0 |
| 0 | N | N | N | N | N | N | N | N | N | 0 |
| 0 | N | N | N | N | N | N | N | N | N | 0 |
| 0 | N | N | N | N | N | N | N | N | N | 0 |
| 0 |   |   |   |   |   |   |   |   |   | 0 |

N jest nową wartością.

Node zapamiętuję tą tablicę, żeby nie trzeba było dodawać zer za każdym razem.

Sąsiednie komórki potrzebują jedynie informację z drugiego i przedostatniego wiersza, dlatego dany node wysyła do nadzorcy swoje 2 wiersza: top i down.



Kiedy nadzorca dostaje od wszystkich swoich node-ów informację o nowych wierszach, a liczba iteracji jeszcze się nie skończyła , przesyła odpowiednie wiersze do odpowiednich node-ów.

Do node-a z niebieską tablicą przesłana zostaje informacja od node-ów zawierającego tablice żółtą oraz zieloną.



Następnie na nodzie zostaje podmieniony pierwszy i ostatni wiersz.

| 0 | N | N | N | N | N | N | N | N | N | 0 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | N | N | N | N | N | N | N | N | N | 0 |
| 0 | N | N | N | N | N | N | N | N | N | 0 |
| 0 | N | N | N | N | N | N | N | N | N | 0 |
| 0 | N | N | N | N | N | N | N | N | N | 0 |
| 0 | N | N | N | N | N | N | N | N | N | 0 |
| 0 | N | N | N | N | N | N | N | N | N | 0 |

Przeprowadzona zostaje nowa iteracja i cykl się powtarza.

### 2.3. Algorytm scalania podtablic

Ostatnim krokiem algorytmu jest scalenie podtablic ze wszystkich node-ów z powrotem w całość. W tym celu nadzorca "woła" wszystkie node-y, aby te zwróciły mu swoje fragmenty tablicy. Zwracane są one w takiej postaci:

| N | N | N | N | N | N | N | N | N |
|---|---|---|---|---|---|---|---|---|
| N | N | N | N | N | N | N | N | N |
| N | N | N | N | N | N | N | N | N |
| N | N | N | N | N | N | N | N | N |
| N | N | N | N | N | N | N | N | N |

Nadzorca scala wszystkie fragmenty w całość i kończy działanie algorytmu.

## 3. Przebieg algorytmu

### 3.1. Warunki wstępne

Użytkownik ma możliwość:

- wygenerowania losowej planszy i zapisania do pliku
- wczytania planszy z pliku na podstawie jego nazwy
- wyświetlenia planszy z pliku (działa tylko dla małych tablic)
- rozpoczęcia symulacji (konkretna liczba iteracji) wraz ze zmierzeniem czasu iteracji

#### 3.2. Działanie

Zachodzą odpowiednie operacje:

- sprawdzenie liczby dostępnych węzłów i na tej podstawie wybranie nadzorcy oraz procesów odpowiedzialnych za liczenie części tablicy
- nadzorca dzieli planszę podzielenie na mniejsze fragmenty i wysyła je do procesów liczących
- następuje obłożenie tablic zerami i wymiana odpowiednich wierszy pomiędzy nimi
- nadzorca czeka aż wszystkie procesy przyślą wiadomość z obliczonym fragmentem tablicy i wszystkie fragmenty tablicy zostana obliczone
- jeżeli ma wykonać kolejną iterację to wraca do punktu 2 w przeciwnym razie idzie dalej
- zwrócenie przez nadzorcę informacji do użytkownika, że zostały wykonane iteracje

### 3.3. Warunki końcowe

Na koniec zostają wykonane następujące czynności:

- użytkownik zostaje poinformowany o czasie działania algorytmu
- zwracany jest czas działania oraz tablica

#### 3.4. Test skalowalności

• Wpływ kolejnych węzłów na wynik

Używanie kolejnych node-ów poprawia wynik działania programu, jednakże do pewnego momentu. Przy zbyt dużej ilości węzłów szybkość algorytmu spada.

## Spis Treści

| . Wpr  | owadzenie teoretyczne                          | . 2                                                                                                                                                                                     |
|--------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -      |                                                |                                                                                                                                                                                         |
| 1.1.   | Cel projektu i wymagania                       | . 2                                                                                                                                                                                     |
| 1.2.   | Reguly gry według Conwaya                      | . 2                                                                                                                                                                                     |
| . Wyk  | corzystywane algorytm                          | . 3                                                                                                                                                                                     |
| 2.1.   | Dzielenie tablicy na mniejsze                  | . 3                                                                                                                                                                                     |
| 2.2.   | Algorytm liczenia podtablicy                   | . 4                                                                                                                                                                                     |
| 2.3.   | Algorytm scalania podtablic                    | . 5                                                                                                                                                                                     |
| . Prze | bieg algorytmu                                 | . 6                                                                                                                                                                                     |
| 3.1.   | Warunki wstępne                                | . 6                                                                                                                                                                                     |
| 3.2.   | Działanie                                      | . 6                                                                                                                                                                                     |
| 3.3.   | Warunki końcowe                                | . 7                                                                                                                                                                                     |
| 3.4.   | Test skalowalności                             | . 7                                                                                                                                                                                     |
|        | 1.1. 1.2 Wyk 2.1. 2.2. 2.3 Prze 3.1. 3.2. 3.3. | 2.1. Dzielenie tablicy na mniejsze  2.2. Algorytm liczenia podtablicy  2.3. Algorytm scalania podtablic  Przebieg algorytmu  3.1. Warunki wstępne  3.2. Działanie  3.3. Warunki końcowe |