

**DEUTSCHES PATENT- UND MARKENAMT** 

# **®** Offenlegungsschrift ® DE 199 31 185 A 1

⑤ Int. Cl.<sup>7</sup>: A 61 L 9/00 A 01 N 31/00

② Aktenzeichen: ② Anmeldetag:

199 31 185.4 7. 7. 1999

(3) Offenlegungstag:

18. 1.2001

(7) Anmelder:

Schür, Jörg Peter, Prof., 41844 Wegberg, DE

Patentanwälte von Kreisler, Selting, Werner et col., 50667 Köln

® Erfinder:

gleich Anmelder

66 Entgegenhaltungen:

DE US 198 31 306 A1 48 06 526

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

(4) Verfahren zur Entkeimung von Luft

Die vorliegende Erfindung betrifft ein Verfahren zur Entkelmung von Luft, umfassend das Verteilen oder Zer-stäuben einer speziellen antimikrobiellen Zusammensetzung, für diesen Zweck geeignete antimikrobielle Zusammensetzungen sowie die Verwendung dieser Zusammensetzungen zur Entkeimung der Luft.

### Beschreibung

Die vorliegende Erfindung betrifft ein Verfahren zur Entkeimung von Luft, umfassend das Verteilen oder Zerstäuben einer speziellen antimikrobiellen Zusammensetzung, für diesen Zweck geeignete antimikrobielle Zusammensetzungen sowie die Verwendung dieser Zusammensetzungen zur Entkeimung von Luft.

Die Verkeimung der Raumluft ist ein grundsätzliches Problem sowohl in privaten Haushalten und in gewerblichen Bürokomplexen als auch in Betrieben des produzierenden Gewerbes, insbesondere in lebensmittelverarbeitenden Betrieben, auch die Verpackung unterliegt exo- und endogenen Verkeimungen. Zum gegenwärtigen Zeitpunkt wird, falls überhaupt, dieser Verkeimung einzig und allein durch raschen Luftaustausch und ggf. durch die Verwendung von Lufflieranlagen entgegnet. Der hierdurch erzielte Effekt ist jedoch nur unzureichend, insbesondere können die hierbei verwendeten Filteranlagen selbst als Quelle für die Verteilung von Mikroorganismen in der Raumluft dienen. Lösungen für dieses Problem werden momentan weltweit gesucht.

Überraschenderweise wurde nun gefunden, daß durch Verteilen/Zerstäuben einer speziellen antimikrobiellen Zusammensetzung der Keimgehalt in der Raumluft signifikant verringert werden kann. Gegenstand der vorliegenden Anmeltung ist demgemäß

- (1) ein Verfahren zur Entkeimung von Luft, umfassend das Verteilen oder Zerstäuben einer antimikrobiellen Zusammensetzung, wobei die antimikrobielle Zusammensetzung
  - (a) eine oder mehrere GRAS(Generally Recognized As Safe)-Aroma-Alkohole oder deren Derivate und
  - (b) einen oder mehrere Aromastoffe, ausgewählt aus
    - (b1) Polyphenolverbindungen und
    - (b2) GRAS-Aromasäuren oder deren Derivate,
- enthält:

20

25

30

35

- cential;
  (2) eine bevorzugte Ausführungsform des in (1) definierten Verfahrens, wobei die antimikrobielle Zusammensetzung den GRAS-Aroma-Alkohol Benzylalkohol als notwendigen Bestandteil enthält;
- (3) eine antimikrobielle Zusammensetzung, insbesondere eine solche Zusammensetzung zur Entkeimung von Luft, wie in (1) oder (2) definiert; und (4) die Verwendung der in (3) definierten Zusammensetzung zur Entkeimung von Luft.

### Figuren

Die nachfolgend erwähnten Figuren zeigen Vorrichtungen, die in den erfindungsgemäßen Entkeimungsverfahren ein-

- Fig. 1 zeigt einen Luft-EvL(Entkeimung von Luft)-Bubbler.
  - Fig. 2 zeigt ein Zweistoffdüsensystem.
  - Fig. 3 zeigt ein Verdampfungssystem.
  - Fig. 4 zeig eine Bubbler-EvL-Vorrichtung für die Entkeimung in der Verapckung.
  - Im folgenden werden die Bestandteile der erfindungsgemäßen Zusammensetzungen näher beschrieben:
- Die genannten GRAS-Aroma-Alkohole der Komponente (a) sind von der FDA-Behörde zur Verwendung in Nahrungsmitteln als gewerbesicher anerkannt (GRAS = Generally Recognizzed As Safe In Food). Bei den erwähnten GRAS-Aroma-Alkoholen und auch bei den nachfolgend definierten anderen GRAS-Aromastoffen handelt es sich um solche Verbindungen, die in FEMAIFDA GRAS Flavour Substances Lists GRAS 3-15 Nr. 2001-3815 (Stand 1997) genannt sind. In dieser Liste sind natürliche und natunidentische Aromastoffe aufgeführt, die von der amerikanischen Gesundheitsbehörde FDA zur Verwendung in Nahrungsmitteln zugelassen sind: FDA Regulation 21 CFR 172.515 für natunidentische Aromastoffe (Synthetic Flavoring Substances and Adjuvants) und FDA Regulation 21 CFR 182.20 für natürliche Aromastoffe (Natural Flavoring Substances and Adjuvants).
  - Die vorstehend unter (1) definierte antimikrobielle Zusammensetzung kann 0,1 bis 99,9 Gew.-%, vorzugsweise 0,5 bis 99 Gew.-%, Komponente (a), 0 bis 25 Gew.-%, vorzugsweise 0,01 bis 10 Gew.-%, Komponente (b1) und/oder
- 0 bis 70 Gew.-%, vorzugsweise 0,01 bis 30 Gew.-%, Komponente (b2)
- Erfindungsgemäß kann die Komponente (a) einen oder mehrere GRAS-Aroma-Alkoholen enthalten. Bevorzugt wird erfindungsgemäß der Einsatz von zwei oder drei GRAS-Aroma-Alkoholen. Im einzelnen können beispielsweise folgende GRAS-Aroma-Alkohole zum Einsatz kommen:
- Benzylalkohol, Acetoin (Acetylmethylcarbinol), Ethylalkohol (Ethanol), Propylalkohol (1-Propanol), iso-Propylalkohol (2-Propanol, Isopropanol), Propylenglykol, Glycerin, n-Butylalkohol (n-Propylcarbinol), iso-Butylalkohol (2-Methyl-1-propanol), Hexylalkohol (Hexanol), L-Menthol, Octylalkohol (n-Octanol), Zimtalkohol (3-Phenyl-2-propen-1-ol), α-Methylbenzylalkohol (1-Phenylethanol), Heptylalkohol (Heptanol), n-Amylalkohol (1-Pentanol), iso-Amylalkohol (3-Pentanol), iso-Amylalkohol
- Methyl-1-butanol), Anisalkohol (4-Methoxybenylalkohol, p-Anisalkohol), Citronellol, n-Decylalkohol (n-Decanol), Geraniol, β-γ-Hexanol (3-Hexanol), Laurylalkohol (Dodecanol), Linalool, Nerolidol, Nonadienol (2,6-Nonadien-1-ol), Nonylalkohol (Nonanol-1), Rhodinol, Terpineol, Borneol, Clincol (Eucalyptol), Anisol, Cuminylalkohol (Cuminol), 10-Undecen-1-ol, 1-Hexadecanol. Als Derivate können sowohl natürliche oder naturidentische Derivate als auch synthetische Derivate eingesetzt werden. Geeignete Derivate sind z. B. die Ester, Ether und Carbonate der vorstehend genannten GRAS-Aroma-Alkohole. Besonders bevorzugte GRAS-Aroma-Alkohole sind Benzylalkohol, 1-Propanol, Glycerin,
- 65 GRAS-Aroma-Alkohole. Besonders bevorzugte GRAS-Aroma-Alkohole sind Benzylalkohol, 1-Propanol. Propylenglycol, n-Butylalkohol, Citronellol, Hexanol, Linalool, Acetoin und deren Derivate.
  - Als Komponente (b1) können die folgenden Polyphenole eingesetzt werden: Brenzeatechin, Resorcin, Hydrochinon, Phloroglucin, Pyrogallol, Cyclohexan, Usninsäure, Acylpolyphenole, Lignine,

Anthocyane, Flavone, Catechine, Gallussäurederivate (z. B. Tannine, Gallotannin, Gerbsäuren, Gallus-Gerbsäuren), (einschließlich der Derivate der vorstehend genannten Verbindungen wie (2,5-Dihydroxyphenyl)carboxyl- und (2,5-Dihydroxyphenyl)alkyiencarboxylsubstitutionen, Salze, Ester, Amide), Kaffesäure und deren Ester und Amide, Flavonoide (z. B. Flavon, Flavonol, Isoflavon, Gossypetin, Myrecetin, Robinetin, Apigenin, Morin, Taxifolin, Eriodictyol, Naringin, Rutin, Hesperidin, Troxerutin, Chrysin, Tangeritin, Luteolin, Catechine, Quercetin, Fisetin, Kaempferol, Galangin, Rotenoide, Aurone, Flavonole, -diole), Extrakte aus z. B. Camellia Primula. Weiterhin können auch deren mögliche Denivate, z. B. Salze, Säuren, Ester, Oxide und Ether verwendet werden. Das besonders bevorzugte Polyphenol ist Tannin (eine GRAS-Verbindung).

Als Komponente (b2) können beispielsweise folgende GRAS-Säuren zum Einsatz kommen:

Essigsäure, Aconitsäure, Adipinsäure, Ameisensäure, Apfelsäure (1-Hydroxybernsteinsäure), Capronsäure, Hydrozimtsäure (3-Phenyl-1-propionsäure), Pelargonsäure (Nonansäure), Milchsäure (2-Hydroxypropionsäure), Phenoxyessigsäure (Glykolsäurephenylether), Phenylessigsäure (α-Toluolsäure), Valeriansäure (Pentansäure), iso-Valeriansäure (3-Methylbutansäure), Zimtsäure (3-Phenylpropensäure), Citronensäure, Mandelsäure (Hydroxyphenylessigsäure), Weinsäure (2,3-Dihydroxybutandisäure; 2,3-Dihydroxybernsteinsäure), Fumarsäure, Tanninsäure und deren Derivate.

Geeignete Derivate der genannten Säuren im Sinne der vorliegenden Erfindung sind Ester (z. B. C<sub>1-6</sub>-Alkylester und Benzylester), Amide (einschließlich N-substituierte Amide) und Salze (Alkali-, Erdalkali- und Ammoniumsalze). Ebenfalls umfaßt der Begriff Derivate im Sinne der vorliegenden Erfindung Modifikationen der Seitenketten-Hydroxyfunktionen (z. B. Acyl- und Alkylderivate) und Modifikationen der Doppelbindungen (z. B. die perhydrierten und hydroxilierten Derivate der genannten Säuren).

Das Mischungsverhältnis der Komponente (a) zu Komponenten (b) liegt vorzugsweise zwischen 10.000:1 und 20 1:10.000, besonders bevorzugt zwischen 1000:1 und 1:1000 und ganz besonders bevorzugt zwischen 100:1 und 1:100.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens enthält die antimikrobielle Zusammenset-

(a1) Benzylalkohol als notwendigen Bestandteil und gegebenenfalls

(a2) einen oder mehrere weitere GRAS-Aroma-Alkohole oder deren Derivate und

(b1) eine oder mehrere Polyphenolverbindungen und/oder

(b2) eine oder mehrere GRAS-Säuren oder deren Derivate.

Geeignete Mengen der Komponenten (a1), (a2), (b1) und (b2) sind dabei: 0,1 bis 99 Gew.-%, vorzugsweise 0,1 bis 75 Gew.-% Benzylakohol;

0 bis 99,8 Gew.-%, vorzugsweise 0,01 bis 99 Gew.-% Komponente (a2); 0 bis 25 Gew.-%, vorzugsweise 0,01 bis 10 Gew.-% Komponente (b1) und/oder

0 bis 70 Gew.-%, vorzugsweise 0,01 bis 30 Gew.-% Komponente (b2).

Die antimikrobielle Zusammensetzung kann weiterhin noch die folgenden Komponenten (c) bis (h) enthalten, die ebenfalls Aromastoffe sind, die in der FEMA/FDA GRAS Flavour Substances Liste als G.R.A.S. (Generally Recognized As Safe In Food) 3-15 Nr. 2001-3815 (Stand 1997) anerkannt sind.

Als Komponente (c) können folgende Phenolverbindungen zum Einsatz kommen:

Thymol, Methyleugenol, Acetyleugenol, Safrol, Eugenol, Isoeugenol, Anethol, Phenol, Methylchavicol (Estragol; 3-4-40) Methoxyphenyl-1-propen), Carvacrol, α-Bisabolol, Fornesol, Anisol (Methoxybenzol) und Propenylguaethol (5-Prophenyl-2-ethoxaphenol) und deren Derivate.

Als GRAS-Ester (Komponente (d)) kommen Allicin und die folgenden Acetate iso-Amylacetat (3-Methyl-1-butylacetat), Benzylacetat, Benzylphenylacetat, n-Butylacetat, Cinnamylacetat (3-Phenylpropenylacetat), Citronellylacetat, Ethylacetat (Essigester), Eugenolacetat (Acetyleugenol), Geranylacetat, Hexylacetat (Hexanylethanoat), Hydrocinnamylacetat (3-Phenyl-propylacetet), Linalylacetat, Octylacetat, Phenylethylacetat, Terpinylacetat, Triacetin (Glyceryltriacetat), Kaliumacetat, Natriumacetat, Calciumacetat zum Einsatz. Weitere geeignete Ester sind die Esterderivate der vorstehend definierten Säuren (Komponente (b2)).

Als Terpene (Komponente (e)) kommen z. B. Campher, Limonen und β-Caryophyllen in Betracht,
Zu den verwendbaren Acetalen (Komponente (f)) zählen z. B. Acetal, Acetaldehyddibutylacetal, Acetaldehyddipropylacetal, Acetaldehydpenethylpropylacetal, Zimtaldehydethylenglycolacetal, Decanaldimethylacetal, Heptanaldimethylacetal, Heptanalglycerylacetal und Benzaldehydpropylenglykolacetal.

Als Aldehyde (Komponente (g)) sind z. B. Acetylaldehyd, Anisaldehyd, Benzaldehyd, iso-Butylaldehyd (Methyl-1propanal), Citral, Citronellal, n-Caprinaldehyd (n-Decanal), Ethylvanillin, Fufurol, Heliotropin (Piperonal), Heptylaldehyd (Heptanal), Hexplaldehyd (Hexanal), 2-Hexenal (\(\beta\)-Propylaerolein), Hydrozimtaldehyd (3-Phenyl-1-propanal), Laurylaldehyd (Docdecanal), Nonylaldehyd (n-Nonanal), Octylaldehyd (n-Octanal), Phenylaetaldehyd (1-Oxo-2-phenyl-1-phenylaetaldehyd (1-Oxo-2-phenyl-1-phenylaetaldehyd (1-Oxo-2-phenyl-1-phenylaetaldehyd (1-Oxo-2-phenyl-1-phenylaetaldehyd (1-Oxo-2-phenyl-1-phenylaetaldehyd (1-Oxo-2-phenyl-1-phenylaetaldehyd (1-Oxo-2-phenyl-1-phenylaetaldehyd (1-Oxo-2-phenyl-1-phenyl-1-phenylaetaldehyd (1-Oxo-2-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1-phenyl-1nylethan), Propionaldehyd (Propanal), Vanillin, Zimtaldehyd (3-Phenylpropenal), Perillaaldehyd und Cuminaldehyd

Erfindungsgemäß einsetzbar sind beispielsweise auch die im folgenden aufgeführten etherischen Öle und/oder die alkoholischen, glykolischen oder durch CO2-Hochdruckverfahren erhaltenen Extrakte aus den genannten Pflanzen (Komponente (h)):

(h1) Öle bzw. Extrakte mit hohem Anteil an Alkoholen: Melisse, Koriander, Kardamon, Eukalyptus;

(h2) Ole bzw. Extrakte mit hohem Anteil an Aldehyden: Eukalyptus citriodora, Zimt, Zitrone, Lemongras, Melisse, Citronella, Limette, Orange;

(h3) Öle bzw. Extrakte mit hohem Anteil an Phenolen: Oreganum, Thymian, Rosmarin, Orange, Nelke, Fenchel, Campher, Mandarine, Anis, Cascarille, Estragon und Piment;

(h4) Öle bzw. Extrakte mit hohem Anteil an Acetaten: Lavendel;

(h5) Ole bzw. Extrakte mit hohem Anteil an Estern: Senf, Zwiebel, Knoblauch;

(h6) Öle bzw. Extrakte mit hohem Anteil an Terpenen: Pfeffer, Pomeranze, Kümmel, Dill, Zitrone, Pfefferminz, Muskatnuß.

Der Anteil der Komponenten (c)-(h) in den antimikrobiellen Zusammensetzung ist vorzugsweise kleiner oder gleich 25 Gew.-% und liegt bevorzugt im Bereich von 0,001 bis 9 Gew.-%. Bevorzugt unter den weiteren GRAS-Aromastoffen sind die Phenole (c) und etherischen Öle (h).

Besonders bevorzugt im Sinne der vorliegenden Erfindung sind antimikrobielle Zusammensetzungen, deren antimikrobiell wirksamer Bestandteil ausschließlich aus GRAS-Aromastoffen besteht, d. h. keine "Derivate" der GRAS-Aromastoffe enthält. Als Beispiel einer solchen Zusammensetzung ist ein Gemisch aus Benzylalkohol, einem oder zwei der vorstehend genannten GRAS-Aroma-Alkohole (a2) und Tannin zu nennen. Dieses Gemisch enthält dabei vorzugsweise 0,1-99,9, besonders bevorzugt 0,1-20 Gew.-% Benzylalkohol und 0,01-10 Gew.-% Tannin. Ein weiteres Beispiel einer bevorzugten Zusammensetzung ist ein Gemisch aus 2 Alkoholen, einem Polyphenol (insbesondere Tannin) und einem etherischen Öl (insbesondere einem phenolischen etherischen Öl, Komponente (h3)).

Neben den Komponenten (a) bis (h) können zusätzlich noch weitere Verbindungen (i) wie Alkohole (i1) Emulgatoren (i2), Stabilisatoren (i3), Antioxidantien (i4), Konservierungsmittel (i5), Lösemittel (i6), Trägerstoffe (i7) etc. eingesetzt werden. Der Anteil der Komponenten (i) an der antimikrobiellen Zusammensetzung darf bis 95 Gew.-% sein, ist vorzugsweise kleiner als 10 Gew.-% und liegt besonders bevorzugt im Bereich von 0,1 bis 5 Gew.-%.

Bei den Alkoholen (i1) handelt es sich erfindungsgemäß um einwertige oder mehrwertige Alkohole mit 2 bis 10 C-Atomen, vorzugsweise mit 2 bis 7 C-Atomen, wobei die GRAS-Alkohole (a) hiervon nicht umfaßt sind. Vorzugsweise werden solche Mengen an GRAS-Aroma-Alkoholen (a) und weiteren Alkoholen (i1) eingesetzt, daß deren Mischungsverhältnis zwischen 1000: 1 und 1: 1000, insbesondere zwischen 100: 1 und 1: 100 und besonders bevorzugt zwischen 10: 1 und 1: 10 liegt.

Besonders bevorzugt in dem erfindungsgemäßen Verfahren ist die Verwendung von Systemen, die ausschließlich aus GRAS-Aromastoffen bestehen, insbesondere dann wenn die behandelte Luft in lebensmittelverarbeitenden Betrieben mit Nahrungsmitteln, Getränken oder Verpackungen in Verbindung kommt, da hierdurch auch die Gefahr der Kontamination der verarbeiteten Lebensmittel durch Nicht-GRAS-Verbindungen unterbunden wird. Weiterhin sollte – insbesondere bei der Anwendung des erfindungsgemäßen Verfahrens in lebensmittelverarbeitenden Betrieben oder in bewohnten Räumen – darauf geachtete werden, daß die antimikrobielle Zusammensetzung frei von Ethanol und Isopropanol ist bzw. frei von bedenklichen Dosierungen von Ethanol und Isopropanol ist, da diese Stoffe sowohl von den Lebensmitteln absorbiert werden können, als auch von den Personen in den behandelten Räumen eingeatmet werden können. Darüber hinaus kann bei der Verwendung dieser Verbindungen Explosionsgefahr bestehen.

Das Verteilen/Zerstäuben der antimikrobiellen Zusammensetzung erfolgt durch handelsübliche Zweistoffdüsen oder Verdampfungstechniken. Hierfür vorgesehene Vorrichtungen, wie eine Bubbler-Einrichtung, die die Luft mit Entkeimungsmittel in feinster Verteilung und niedrigst möglicher Dosierung beaufschlagt und eine speziell für die Verpackung anzuwendende Vorrichtung, sind in den beiliegenden Figuren abgebildet. Das Zerstäuben/Verteilen erfolgt dabei so, daß die Konzentration der antimikrobiellen Zusammensetzung 0,001 bis 1 ml pro m³ Luft, insbesondere 0,01 bis 0,1 ml pro m³ Luft, beträgt. Bei austauschenden Luftsystemen, bei denen eine stündliche Umwälzung erfolgt, ist das Verfahren so einzustellen, daß eine Dosierung von 0,001 bis 1 ml pro m³ pro Stunde, insbesondere von 0,02 bis 0,1 ml pro m³ pro Stunde, gegeben ist.

In experimentellen Beispielen konnte gezeigt werden, daß durch die Verteilung bzw. das Zerstäuben der erfindungsgemäßen antimikrobiellen Zusammensetzung ein Reduktionsfaktor Revon log 5 bis 3 erzielbar ist, d. h. eine Reduktion der Keime pro m<sup>3</sup> Luft von 10.000 auf 0 möglich ist.

Das vorliegende Verfahren eignet sich dadurch sowohl zur Entkeimung der Luft in privaten Haushalten, Büros und öffentlichen Gebäuden als auch in lebensmittelverarbeitenden Betrieben, Transportvorrichtungen, Kühl-, Klima- und sonstigen Lüftungsbereichen. In den letzteren wird durch die Entkeimung der Umgebungsluft (z. B. bei der Verpackung der Lebensmittel) eine deutlich höhere Stabilität der Lebensmittel erzielt.

Die vorliegende Erfindung wird anhand der nachfolgenden Beispiele näher erläutert.

### Beispiele

Verwendete Apparaturen: Für die nachfolgend beschriebenen Beispiele wurden die in den Fig. 1 bis 4 abgebildeten Vorrichtungen verwendet.

### Fig. 1: Luft-EvL(Entkeimung von Luft)-Bubbler

Autonome, fest installierte oder mobile Bubblereinheit mit eingebautem Ablustventilator und Pumpe. Lustmenge 2-1600 m³/h (oder größer)

Funktionsprinzip: Bubbler mit schwebendem EvL-Fließbett

55

Luft mit gegenströmendem EvL-Mittel. Hier wird EvL-Mittel in einer Kammer mit starkem Unterdruck zum Schweben gebracht. Dadurch entsteht ein Gleichgewicht zwischen Luftunterdruck und EvL-Mittelgewicht. Die Luft verteilt sich auf die gesamte EvL-Fläche und steigt als mikroskopisch kleine Blasen durch das EvL-Bett. Die Luftblasen bilden eine sehr große Kontaktfläche zwischen Gas und Flüssigkeit. Luftdruck und Verweilzeit stehen in einem ausgewogenen Verhältnis. EvL-Mittel wird mit der Luft entsprechend dosiert mittransportiert.

### Ventilato:

Der Abluft-Radialventilator befindet sich immer im Reinluftbereich und kann auch extern installiert sein.

## Bubbler

| Der Wäscher besteht aus:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|
| <ul> <li>Absorptionsflüssigkeits-Behälter</li> <li>Waschkammer</li> <li>Trockenkammer</li> <li>Ventilator</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                        | . <b>5</b> |  |  |  |  |
| Legende zur Fig. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |  |  |  |  |
| 1 Luftansaugstutzen mit/ohne Mikrofilter 2 EvL-Mittelzufuhr 3 z. B. Pumpe 15 m³/h Motor 220/380 V; 2800 U/min. 1,1 kW 5 Dosiereinheit (elektr.) Menge/Luft Verhältnis EvL-Mitteldosierung 0,02 ml-0,1 ml/m³ (h) Dosierung 6 EvL-Mittel 7 EvL-Mittel 9 Waschkammer                                                                                                                                                                                                                                           | 15         |  |  |  |  |
| 10 Trockner<br>12 Ventilator 1200/1800 m <sup>2</sup> /n Motor 220/380 V; 2800 U/min. 1,1 kW                                                                                                                                                                                                                                                                                                                                                                                                                | 20         |  |  |  |  |
| 15 Ausblasstutzen z. B. Ø 200 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |  |  |  |  |
| Fig. 2: EvL-Zerstäuber-Niederdruck-System (für dünne Flüssigkeiten)                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25         |  |  |  |  |
| Zum Zerstäuben dünner Öle und Flüssigkeiten mit gezieltem Wirkungsbereich. Bereits ab 2 bar Überdruck spricht der                                                                                                                                                                                                                                                                                                                                                                                           |            |  |  |  |  |
| Zerstäuber an.  Der Zerstäuber läßt sich durch den biegsamen Metallschlauch ganz nach Wunsch drehen und wenden und kann mit dem Magnethalter an jeder beliebigen Stelle befestigt werden.                                                                                                                                                                                                                                                                                                                   | 30         |  |  |  |  |
| Funktion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |  |  |  |  |
| Bei anstehender Druckluft wird sofort zerstäubt (ein eingebautes Rückschlagventil läßt die Flüssigkeit im Schlauch nicht absinken. Der Zerstäuber arbeitet dauernd oder mit dem Blasautomat taktweise – aber immer in wohldosierten Mengen. Im Zentrum des Luftstrahls wird die Flüssigkeit wirtschaftlich und sauber zugeführt. Über die Luft- und Flüssigkeitsdrossel kann die Luft- und Flüssigkeitsmenge fein eingestellt werden. Der Zerstäuber ist von 10° bis 30° Sprühwinkel stufenlos einstellbar. |            |  |  |  |  |
| Legende zur Fig. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40         |  |  |  |  |
| 1 Metallschlauch vernickelt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |  |  |  |  |
| 2 Luftdrossel 3 Sprühwinkel 10°-30° 4 Flüssigkeitsdrossel 5 PVC-Schlauch 1 m                                                                                                                                                                                                                                                                                                                                                                                                                                | 45         |  |  |  |  |
| 6 Anschluß für PK4 7 Slebventil                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |  |  |  |  |
| 8 Rückschlagventil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |  |  |  |  |
| 9 Anschluß für Druckluft 10 Drosselkugel (nicht sichtbar)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |  |  |  |  |
| Fig. 3: EvL-Verdampfungssystem                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55         |  |  |  |  |
| Fig. 4: EvL-Entkeimung in der Verpackung mit Bubbler                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |  |  |  |  |
| Ventilator: Der Abluft-Radialventilator befindet sich immer im Reinluftbereich und kann auch extern installiert sein.                                                                                                                                                                                                                                                                                                                                                                                       |            |  |  |  |  |
| Legende zur Fig. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60         |  |  |  |  |
| 1 Luft und/oder CO <sub>2</sub> /oder Stickstoff o. ä. Ansaugstutzen mit/ohne Mikrofilter                                                                                                                                                                                                                                                                                                                                                                                                                   |            |  |  |  |  |
| 2 EvL-Mittelzufuhr 3 Pumpe 15 m³/h Motor 220/380 V; 2800 U/min. 1,1 kW 5 Dosiereinheit (elektr.) Menge/Luft Verhältnis EvL-Mitteldosierung 0,02 ml-0,1 ml/m³ (h) Dosierung 6 EvL-Mittel 7 EvL-Mittel 9 Waschkammer                                                                                                                                                                                                                                                                                          | 65         |  |  |  |  |

<

10 Trockner

15

20

30

12 Ventilator 1200/1800 m3/h Motor 220/380 V; 2800 U/min. 1,1 kW

13 Ausbringung in die Verpackung (z. B. über Lanze)

14 Druckreservoir (ca. 2-8 bar komprimiert) bestehend aus Lust und CO2 und N2 und EvL-Mittel mit geringer Feuchtigkeit

15 Ausblasstutzen z. B. Ø 200 mm

Entkeimungsmittel: In den nachfolgenden Beispielen wird eine Entkeimungsmittelzusammensetzung, bestehend aus 5,5 Gew.-% Polyphenol (z. B. Tannin), 10,3 Gew.-% Benzylalkohol, 4,2 Gew.-% etherisches Öl (phenolisch) und 80,0 Gew.-% Propylenglycol, verwendet (nachfolgend auch als "EvL-Mittel" bezeichnet)

### Beispiel 1

Untersuchung der Entkeimung von Luft mittels der in Fig. 1 dargestellten Vorrichtung

Projekt: Wirksamkeitsprüfung von EvL in Kombination mit Dosierung durch Bubbler (Prototyp)-System (Fig. 1) Probenart: Gelatinefilter aus Luftkeimsammler Satorius MD-8 Untersuchungsmethode: BLA 9420/TRBA 430, indirekte Methode

Probenparameter

Meßdauer: 5 min Volumenstrom: 8 m<sup>3</sup>/h Probenahmevolumen: 666,671 Dosierung: 0,02 ml/m³ EvL-Mittel

Gesamtkeimzahl (KBE): Gemisch aus Schimmel und Hefen (Penicillium commune, Cladosporium, Aspergillus niger, Saccharomyces, cerevisiae)

Die Ergebnisse sind in Tabelle 1 zusammengefaßt.

Tabelle 1

|         | Original-Nr. | Entnahmestelle (Tag)    | Keimzahl      |
|---------|--------------|-------------------------|---------------|
| 35      | 99669-12     | Prüfkammer, Nullwert, 0 | 10.400 KBE/m³ |
| 33      | 99669-13     | Prüfkammer, Nullwert, 0 | 11.150 KBE/m³ |
|         | 99669-14     | Prūfkammer, 10:45, 1    | 50 KBE/m³     |
| 40      | 99669-15     | Prüfkammer, 10:55, 1    | 0 KBE/m³      |
|         | 99669-16     | Prüfkammer, 18:35, 1    | 0 KBE/m³      |
| 45      | 99669-17     | Prüfkammer, 18:40, 1    | 50 KBE/m³     |
|         | 99669-18     | Prüfkammer, 10:15, 2    | 0 KBE/m³      |
|         | 99669-19     | Prüfkammer, 10:25, 2    | 0 KBE/m³      |
| 50      | 99669-20     | Prüfkammer, 19:10, 2    | 0 KBE/m³      |
|         | 99669-21     | Prüfkammer, 8:50, 5     | 0 KBE/m³      |
|         | 99669-22     | Prüfkammer, 9:00, 5     | 0 KBE/m³      |
| 55<br>· | 99669-23     | Prüfkammer, 10:15, 6    | 0 KBE/m³      |
|         | 99669-24     | Prüfkammer, 10:20, 6    | 0 KBE/m³      |
| 60      | 99669-25     | Prüfkammer, 18:40, 6    | 0 KBE/m³      |
|         | 99669-26     | Prüfkammer, 18:50, 6    | 0 KBE/m³      |
|         | Handling-BL  | 18:40, 6                | 0 KBE/m³      |

Durch das Eingeben von Keimen (Schimmelpilze) Gesamtkeimzahl entspricht 10.000 Keime (KBE)/Im3 Luft und dessen bakteriologischer Nullwert Kontrolle konnte nach Eingeben (Feinverteilung der EvL-Mittel durch Bubbler-System (s. technische Funktion) des

EvL-Mittels nach dem 1. bis 6. Tag mehrheitlich keine Verkeimung in der Luft mehr festgestellt werden.

| Despie 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Verifizierung von Anwendungen zur Entkeimung von Luft mittels der in Fig. 2 dargestellten Vorrichtung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| Anwendung: Vernebeln in der Raumlust zur Reduzierung der Keimzahl<br>Problematik: Allgemein hohe Keimzahl darunter auch pathogene Bakterien (grampositiv und und gramnegativ), Bacillus                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| spec.<br>Dosierung: 0,02–0,10 ml EvL-Mittel pro cm³ Luft/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1  |
| Durchführung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| Simulation folgenden Raumklimas: Temperatur: ca. 25°C Rel. Luftfeuchtigkeit: ca. 55% Diskontinuierliche Luftumwälzung mit entspr Gerät (Zerstäuber-Niederdruck (ZN) 2-Stoffdüsen-System); gezielte Kontamination mit Bacillus subtilis, Pseudomonas fluorescens und Staphylococcus aureus (10² bis 10³) und diskontinuierliches Besprühen des Raums mit EvL-Gerät mittels ZN-Kopf-Düsen-Sprühtechnik (alle 200 s wird 5 s gesprüht) Ziel/Ergebnis: Reduzierung des Keimgehalts der Raumluft (Bakteriologie: Gesamtkoloniezahl, Pseudomonas fluorescens als Leitkeim für Legionella spp., Staphylococcus aureus, Bacillus subtilis) | 2  |
| Probenahme (RCS-Luftkeimmessungen und Sedimentationsplatten)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| Vor Beimpfung, nach Beimpfung unmittelbar vor der Anwendung Täglich, bis keine Reduzierung mehr feststellbar ist (1–2 mal täglich an 2 Stellen Sedimentationsplatten, 1×RCS).                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2  |
| Auswertung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| Prüfbereich: Raum ohne Klimaanlage von 32,8 m <sup>3</sup> Vorabergebnis: RCS-Gerät Gesamtkoloniezahl: 380/m <sup>3</sup> Durchführung: Künstliche Belastung der Raumluft mit Bacillus subtilis, Pseudomonas fluorescens und Staphylococcus tureus. Gemessen wurde vorwiegend morgens und zum Teil abends, nachdem ein Ventilator 4 min eingeschaltet worden var. irgebnis: s. nachfolgende Tabelle 2                                                                                                                                                                                                                              | 35 |
| Kommentar: Nach Einbringung der Bakterienensuspension konnte bereits bei EvL-Vernebelung nach einem Tag eine trastische Keimreduktion festgestellt werden. Schon nach einem Tag konnten keine Pseudomonaden oder Bacillus sublis mehr in der Luft festgestellt werden, ebenfalls nach ca. 30 Stunden war kein Staphylococcus aureus-Keim in der Luft eststellbar. Das bedeutet für die Praxis, daß durch eine Anwendung mit EvL die Luft dauerhaft von Bacillus subtilis und Staphylococcus aureus als auch Pseudomonas spec. und somit auch Legionella spp. befreit werden kann.                                                  | 40 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |

### Tabelle 2

|    |             | RCS/m³           | Sedimentationsplatten (Ausstellzeit 30 min) |        |          |                |        |         |
|----|-------------|------------------|---------------------------------------------|--------|----------|----------------|--------|---------|
| 5  |             | GKZ              | vorn im Raum                                |        |          | hinten im Raum |        |         |
| ,  |             |                  | GKZ                                         | Staph. | Pseudo-  | GKZ            | Staph. | Pseudo- |
|    | Kontrolltag |                  |                                             | aureus | monaden  |                | aureus | monaden |
|    | 0 morgens   | 8.600            | 1.300                                       | 1.900  | 640      | 1.560          | 2.400  | 570     |
| 10 |             |                  |                                             |        |          |                |        |         |
|    | 1 morgens   | 240*             | 16                                          | 1      | < 1      | 10             | < 1    | < 1     |
|    | abends      | 205*             | 9                                           | < 1    | < 1      | 12             | < 1    | < 1     |
|    |             |                  |                                             |        |          |                |        |         |
| 15 | 2 morgens   | 105*             | 1                                           | < 1    | < 1      | 3<br>3         | < 1    | < 1     |
|    | abends      | 135*             | 3                                           | < 1    | < 1      | 3              | < 1    | <1      |
|    | 2           | 15*              | 1                                           | < 1    | · <1     |                | < 1    |         |
| 20 | 3 morgens   | 15               | '                                           | \ \ I  | <u> </u> |                | ۲ ا    | <1      |
| 20 | 4 morgens   | 15* <sup>1</sup> | 1                                           | < 1    | < 1      | ·< 1           | < 1    | <1      |
|    | 4 morgons   |                  |                                             | •      | `'       |                | • •    | `'      |
|    | 5 morgens   | 10*1             | 2*                                          | < 1    | < 1      | 4*             | < 1    | < 1     |
| 25 | abends      | 14*1             | 1*                                          | < 1    | <1       | 2*             | < 1    | <1      |
|    |             |                  |                                             |        |          |                |        | ĺ       |
|    | 6 morgens   | · 40*1           | 5*                                          | < 1    | < 1      | 6*             | < 1    | < 1     |
|    |             |                  |                                             |        |          |                |        |         |
| 30 | 7 morgens   | 35*1             | 4*                                          | < 1    | < 1      | 3*             | < 1    | <1.     |

- \* = keine Bacillus subtilis, keine Pseudomonas spec., keine Staph. aureus
- \*1 = vorwiegend Schimmelpilze

Ausgangssuspension: 9,8 × 10<sup>8</sup> Bacillus subtilis 7,6 × 10<sup>8</sup> Staphylococcus aureus 4,9 × 108 Pseudomonas fluorescens

### Beispiel 3

Verifizierung von Anwendungen zur Entkeimung von Luft mittels der in Fig. 3 dargestellten Vorrichtung

### EvL-Entkeimung von Luft

Anwendung: Vernebeln in der Raumluft Problematik: Schimmel und Hefen

Dosierung: 0,02-0,1 ml EvL-Mittel pro cm3 Luft/h (Raum 32,8 m3 ohne Klimaanlage)

### Durchführung

Simulation folgenden Raumklimas: Temperatur: ca. 25°C

45

Rel. Luftfeuchtigkeit: ca. 55%

Kontinuierliche Luftmwälzung mit dem in Fig. 3 gezeigten Verdampfungssystem; gezielte Kontaminierung mit Penicillium commune, Cladosporium suaveolens, Aspergillus niger und Saccharomyces cerevisiae (5 × 10<sup>3</sup>/m³) und kontinuierliches Vernebeln des Raums mit EvL-Entkeimung von Luftmittel mittels Verdampfungs-Gerät. Dosierung: 0,02-0,1 ml/m<sup>3</sup>/h EvL-Mittel

Ziel/Ergebnis: Reduzierung von Schimmel und Hefen (Bakteriologie: Schimmel und Hefen)

### Probenahme (RCS und Sedimentationsplatten)

Am Tag vor der Anwendung; danach täglich, bis keine Reduzierung mehr feststellbar (2× täglich morgens und abends an 2 Stellen Sedimentationsplatten, 1 × RCS) Prüfbereich: Raum ohne Klimaanlage von 32,8 m<sup>3</sup>

### Vorabergebnis

| RCS-Gerät | Sedimentationsplatte (30 min) |       |          |        |          |
|-----------|-------------------------------|-------|----------|--------|----------|
|           |                               | vorne |          | hinten |          |
| Hefen/m³  | Schimmel/m³                   | Hefen | Schimmel | Hefen  | Schimmel |
| 0         | 380                           | 0 .   | 20       | 0      | 14       |

Durchführung: Künstliche Belastung der Raumluft mit Aspergillus niger, Penicillium commune, Cladosporium suaveolens und Saccharomyces cerevisiae am Tag 0 morgens Gemessen wurde vormittags und nachmittags nachdem ein Ventilator 5 min eingeschaltet worden war. Die EvL-Vernebelung begann am Tag 0 nachmittags. Das Ergebnis ist in Ta-

belle 3 zusammengefaßt.

Kommentar: Nach Einbringung der Schimmelpilze und Hefen (5,2 × 10<sup>3</sup>/m<sup>3</sup>) konnte bereits bei EvL Vernebelung am gleichen Tag eine Halbierung der Kontaminanten (2 × 10<sup>3</sup>/m<sup>3</sup>) festgestellt werden.

Am 2. Tag reduzierten sich die Schimmelpilze und Hefen um ca. 90% der Ausgangsbelastung, d. h. auf 10<sup>2</sup>/m<sup>3</sup>. Am 8. Tag (ca. 1 Woche) reduzierten sich der Wert auf 10<sup>2</sup>-10/m<sup>3</sup> bzw. um 98%.

Innerhalb der 2. Woche zeigte sich, daß EvL in der Lage ist, ein einmal erreichtes Bioklima aufrecht zu erhalten. Das 20 würde für die Praxis bedeuten, daß eine Langzeitanwendung mit EvL in der Luft dauerhaft eine niedrige Schimmelpilz-

25

30

35

45

50

55

Tabelle 3

|    |    |           | RCS/m³   |           | Sedimentationsplatte (30 min, YGC- |          |       |           |  |
|----|----|-----------|----------|-----------|------------------------------------|----------|-------|-----------|--|
| 5  |    |           |          |           | vorne                              |          |       | hinten    |  |
| -  |    | ntrolltag | Schimmel |           | Schimm                             | el Hefen | Schim | mel Hefen |  |
|    | 0  | morgens   |          | <u> -</u> | 356                                |          | 360   | -         |  |
| 10 |    | abends    | 2273     | -         | 41                                 | 1        | 48    | 1         |  |
| 10 | 1  | morgens   |          | 20        | 13                                 | 32       | 31    | 32        |  |
|    |    | abends    | 465      | -         | 16                                 | -        | 17    | 1         |  |
| 15 | 2  | morgens   |          | 25        | 28                                 | 37       | 22    | 42        |  |
|    |    | abends    | 365      | 6         | 13                                 | -        | 12    | -         |  |
|    | 3  | morgens   | 290      | 25        | 7                                  | 1        | 12    |           |  |
| 20 |    | abends    | 335      | 10        | 7.                                 | -        | 10    | -         |  |
|    | 4  | morgens   | 420      | -         | 18                                 | -        | 22    |           |  |
| 25 |    | abends    | 295      | -         | 8                                  |          | 12    | -         |  |
|    | 5  | morgens   | 315      | -         | 14                                 | -        | 7     | -         |  |
|    |    | abends    | 345      | 5         | 13                                 | -        | 17    | -         |  |
| 30 | 6  | morgens   | 285      | -         | 7                                  | 1        | 1     | -         |  |
|    |    | abends    | 275      | •         | 7                                  | -        | 6     | 1         |  |
| 35 | 7  | morgens   | 185      | 5         | 4                                  | 5        | 4     | 2         |  |
|    |    | abends    | 95       | 30        | 5                                  | -        | 5     | -         |  |
|    | 8  | morgens   | 105      | •         | 1                                  | -        | -     | -         |  |
| 40 |    | abends    | 85       | -         | 4 .                                | -        | 3     | -         |  |
|    | 9  | morgens   | 205      | -         | 5                                  | 1.       | 9     |           |  |
| 45 |    | abends    | 95 ·     | •         | 2                                  | -        | 11    | -         |  |
|    | 10 | morgens   | 85       |           | 4                                  | 1        | 9     | 1         |  |
|    |    | abends    | 90       | -         | 6                                  | -        | 7     | •         |  |
| 50 | 11 | morgens   |          |           | 4                                  | -        | 8     | <b>-</b>  |  |
|    |    | abends    | 85       | •         | 7                                  | -        | 6     | -         |  |
| 55 | 12 | morgens   |          |           | 4                                  | 1        | 6     | 2         |  |
|    |    | abends    | 90       | -         | 11                                 | -        | 8     | -         |  |
|    | 13 | morgens   |          | •         | 5                                  |          | 5     | -         |  |
| 60 |    | abends    | 50       | -         | 7                                  | -        | 4     | 1-        |  |

Das Bubbler-EvL-System von Beispiel 1 zeigte bereits nach einem Tag Einwirkung die höchste Effektivität, d. h. einen Reduktionsfaktor von RF LOG 5 (ca. 10000 auf 0). Das Zweistoffdüsensystem von Beispiel 2 zeigt eine geringere Effektivität, ist jedoch ausreichend. Das Verdampfungssystem von Beispiel 3 ist nur für kleine Räumlichkeiten effektiv einsetzbar. Das EvL(Entkeimung von Luft)-Mittel zeigt in allen Systemen hohe Wirksamkeit.

## Patentansprüche

| <ol> <li>Verfahren zur Entkeimung von Luft, umfassend das Verteilen oder Zerstäuben einer antimikrobiellen Zusammensetzung, wobei die antimikrobielle Zusammensetzung         <ul> <li>(a) eine oder mehrere GRAS(Generally Recognized As Safe)-Aroma-Alkohole oder deren Derivate und</li> <li>(b) einen oder mehrere Aromastoffe, ausgeikählt aus</li> <li>(b1) Polyphenolverbindungen und</li> <li>(b2) GRAS-Aromasäuren oder deren Derivate,</li> </ul> </li> </ol> | -  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| enthält.  2. Verfahren nach Anspruch 1, wobei die antimikrobielle Zusammensetzung 0,1 bis 99 Gew%, vorzugsweise 0,5 bis 99 Gew%, Komponente (a), 0 bis 25 Gew%, vorzugsweise 0,01 bis 10 Gew%, Komponente (b1) und 0 bis 70 Gew%, vorzugsweise 0,01 bis 30 Gew%, Komponente (b2) enthält.                                                                                                                                                                               | ı  |
| <ol> <li>Verfahren nach Anspruch 1 oder 2, wobei der GRAS-Aroma-Alkohol (a) ausgewählt ist aus: Benzylalkohol, Acetoin, Ethylalkohol, Propylalkohol, iso-Propylalkohol, Propylenglykol, Glycerin, n-Butylalkohol, iso-Butylalkohol, Hexylalkohol, L-Menthol, Octylalkohol, Zimtalkohol, α-Methylbenzylalkohol, Heptylalkohol, n-Amylalkohol, iso-Amylalkohol, Anisalkohol, Citronellol, n-Decylalkohol, Geraniol, β-γ-Hexanol, Laurylal-</li> </ol>                     |    |
| kohol, Linalool, Nerolidol, Nonadienol, Nonylalkohol, Rhodinol, Terpineol, Borneol, Clineol, Anisol, Cuminylal-<br>kohol, 10-Undecen-1-ol, 1-Hexadecanol oder deren Derivate,<br>die Polyphenolverbindung (b1) ausgewählt ist aus:                                                                                                                                                                                                                                      | 20 |
| Brenzcatechin, Resorcin, Hydrochinon, Phloroglucin, Pyrogallol, Cyclohexan, Usninsäure, Acylpolyphenolen, Li-<br>gninen, Anthocyane, Flavonen, Catechinen, Gallussäurederivaten, Kaffesäure, Flavonoiden, Derivaten der genann-<br>ten Polyphenole und Extrakten aus Camellia Primula und                                                                                                                                                                               |    |
| die GRAS-Säure (b2) ausgewählt ist aus:<br>Essigsäure, Aconitsäure, Adipinsäure, Ameisensäure, Apfelsäure, Capronsäure, Hydrozimtsäure, Pelargonsäure,<br>Milchsäure, Phenoxyessigsäure, Phenylessigsäure, Valeriansäure, iso-Valeriansäure, Zimtsäure, Citronensäure,                                                                                                                                                                                                  | 25 |
| Mandelsäure, Weinsäure, Fumarsäure, Tanninsäure und deren Derivate.  4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, wobei die antimikrobielle Zusammensetzung  (a1) Benzylalkohol als notwendigen Bestandteil und gegebenenfalls  (a2) einen oder mehrere weitere GRAS-Aroma-Alkohole oder deren Derivate und  (b1) eine oder mehrere Polyphenolverbindungen und/oder                                                                                     | 30 |
| (b2) eine oder mehrere GRAS-Säuren oder deren Derivate enthält.                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 5. Verfahren nach Anspruch 4, wobei die antimikrobielle Zusammensetzung 0,1 bis 99 Gew%, vorzugsweise 0,1 bis 75 Gew% Benzylakohol; 0 bis 99,8 Gew%, vorzugsweise 0,01 bis 99 Gew% Komponente (a2); und                                                                                                                                                                                                                                                                 | 35 |
| D bis 25 Gew%, vorzugsweise 0,01 bis 10 Gew% Komponente (b1), D bis 70 Gew%, vorzugsweise 0,01 bis 30 Gew% Komponente (b2) enthält.                                                                                                                                                                                                                                                                                                                                     | 40 |
| 5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, wobei die antimikrobielle Zusammensetzung noch weitere GRAS-Aromastoffe, ausgewählt aus (c) Phenolen, (d) Estern, (e) Terpenen, (f) Acetalen, (g) Aldehyden und h) etherischen Ölen, enthält.                                                                                                                                                                                                              |    |
| 7. Verfahren nach Anspruch 6, wobei die antimikrobielle Zusammensetzung 0,001 bis 25 Gew%, vorzugsweise 0,01 bis 9 Gew%, der weiteren GRAS-Aromastoffe (c)-(h) enthält.  8. Verfahren nach Anspruch 6 oder 7, wobei die weiteren GRAS-Aromastoffe Phenole (c) und/oder etherische Öle h) sind.                                                                                                                                                                          | 45 |
| . Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, wobei die antimikrobielle Zusammensetzung keine Derivate der GRAS-Aromastoffe enthält.                                                                                                                                                                                                                                                                                                                      |    |
| <ol> <li>Verfahren nach einem oder mehreren der Ansprüche 4 bis 9, wobei die antimikrobielle Zusammensetzung ein<br/>der zwei GRAS-Aroma-Alkohole (a2) und wenigstens eine Polyphenolverbindung (b1) enthält.</li> <li>Verfahren nach Ansprüch 10, wobei die Polyphenolverbindung (b1) Tannin ist.</li> </ol>                                                                                                                                                           | 50 |
| <ol> <li>Verfahren nach Anspruch 11, wobei die antimikrobielle Zusammensetzung 0,1-20 Gew% Benzylalkohol und 01-10 Gew% Tannin enthält.</li> <li>Verfahren nach einem oder mehreren der Ansprüche 1 bis 12, wobei die Zusammensetzung weiterhin ein oder</li> </ol>                                                                                                                                                                                                     | 55 |
| nehrwertige Alkohole mit 2 bis 10 C-Atomen, Emulgatoren, Stabilisatoren, Antioxidantien, Konservierungsmittel,<br>Ösemittel und/oder Trägerstoffe enthält.                                                                                                                                                                                                                                                                                                              | 33 |
| <ol> <li>Verfahren nach einem oder mehreren der Ansprüche 1 bis 12, wobei die Zusammensetzung ausschließlich aus<br/>RAS-Aromastoffen besteht.</li> <li>Verfahren nach einem oder mehreren der Ansprüche 1 bis 14, wobei das Zerstäuben der antimikrobiellen Zu-</li> </ol>                                                                                                                                                                                             | 60 |
| ammensetzung durch ein Zweistoffdüsensystem, Verdampfungssystem oder eine Bubbleranlage für die Luft bzw. 1 spezieller Ausführung für die Verpackung erfolgt. 6. Verfahren nach Anspruch 15, wobei durch das Verteilen oder Zerstäuben der antimikrobiellen Zusammenset-                                                                                                                                                                                                |    |
| ung eine Dosierung von 0,001 bis 1 ml pro m³ Luft pro Stunde, vorzugsweise von 0,01 bis 0,1 ml pro m³ Luft pro tunde erzielt wird.  7. Antimikrobielle Zusammensetzung zur Entkeimung von Luft, wie in Ansprüchen 1 bis 16 definiert.                                                                                                                                                                                                                                   | 65 |
| 8 Verwendung einer antimikrohiellen Zugammangstrung wie in Angelieb 17 4-6-int - Entri                                                                                                                                                                                                                                                                                                                                                                                  |    |

Luft, einschließlich der Luft in allen Arten von Verpackungen.

Hierzu 4 Seite(n) Zeichnungen

-

ZEICHNUNGEN SEITE 1

Nummer Int. Cl.<sup>7</sup>:

Offenlegungstag:

199 31 185 A1 J L 9/00 18. Januar 2001

Fig. 1



ZEICHNUNCEN SEITE 2

Nummer. Int. Cl.<sup>7</sup>: Offenlegungstag: 199 31 185 A1 1 L 9/00 18. Januar 2001

Fig. 2



Nummer.

Int. Cl.7: Offenlegungstag: 199 31 185 A1 *I* L 9/00 18. Januar 2001

Fig. 3 EvL-Verdampfungssystem



002 063/409

ZEICHNUNGEN GETTE 4

Nummeri Int. Cl.<sup>7</sup>: Offenlegungstag:

L 9/00 18. Januar 2001

Fig. 4

