

Renauld, Jean-Christophe Fickensicher, Helmut Dumoutier, Laure Hor, Simon

<120> Isolated Cytokine Receptor LICR-2

<130> LUD 5752 NDH

<140> US10/026,106

<141> 2001-12-21

<160> 19

<210>1

<211>21

<212> DNA

<213> Homo sapiens

<220>

<400> 1

gggaaccaag gagctgctat g

21

<210>2

<211>21

<212> DNA

<213> Homo sapiens

<220>

<400>2

tggcactgag gcagtggtgt t

21

<210>3

<211>20

<212> DNA

<213> Homo sapiens

<220>

<400>3

aaggccatgg cgggcccga

20

<210>4

<211>20

```
<212> DNA
<213> Homo sapiens
<220>
<400> 4
                                         20
cagaaggtca gtgctgaag
<210> 5
<211>21
<212> DNA
<213> Homo sapiens
<220>
<400> 5
                                         21
acctgcttct tgctggaggt c
<210>6
<211>21
<212> DNA
<213> Homo sapiens
<220>
<400> 6
                                           21
catcagattc ggtgggatgt c
<210>7
<211>
<212> DNA
<213> Homo sapiens
<220>
<400> 7
                                                                          60
aaggccatgg cggggcccga gcgctggggc cccctgctcc tgtgcctgct gcaggccgct
                                                                         120
ccagggagge cccgtctgge ccctccccag aatgtgacge tgctctccca gaacttcage
                                                                         180
gtgtacctga catggctcc cagggcttggc aacccccagg atgtgaccta ttttgtggcc
                                                                         240
atcagaget etcecaceg tagaeggtgg egegaagtgg aagagtgtge gggaaceaag
                                                                         300
gagctgctat gttctatgat gtgcctgaag aaacaggacc tgtacaacaa gttcaaggga
                                                                         360
cgcgtgcgga cggtttctcc cagctccaag tcccctgg gtggagtccga atacctggat
                                                                         420
tacctttttg aagtggagcc ggccccacct gtcctggtgc tcacccagac ggaggagat
                                                                         480
cctgagtgcca atgccacgta ccagctgccc ccctgcatgc ccccactgga tctgaagtat
                                                                         540
gaggtggcat tctggaagga gggggccgga aacaagaccc tatttccagt cactccccat
                                                                         600
ggccagccag tccagatcac tctccagcca gctgccagcg aacaccactg cctcagtgcc
                                                                         660
agaaccatct acacgttcag tgtcccgaaa tacagcaagt tctctaagcc cacctgcttc
                                                                         720
ttgctggagg tcccagaagc caactgggct ttcctggtgc tgccatcgct tctgatactg
                                                                         780
ctgttagtaa ttgccgcagg gggtgtgatc tggaagaccc tcatggggaa cccctggttt
```

cagegggeaa agatgecaeg ggeeetggae ttttetggae acacacaee tgtggeaace	840
tttcagccca gcagaccaga gtccgtgaat gacttgttcc tctgtcccca aaaggaactg	900
accagagggg teaggeegae geetegagte agggeeceag ceacceaaca gacaagatgg	960
aagaaggacc ttgcagagga cgaagaggag gaggatgagg aggacacaga agatggcgtc	1020
agettecage cetacattga accacettet tteetgggge aagageacea ggetecaggg	1080
cacteggagg etggtggggt ggaeteaggg aggeeeaggg eteetetggt eecaagegaa	1140
ggeteetetg ettgggatte tteagacaga agetgggeea geaetgtgga eteeteetgg	1200
gacagggctg ggtcctctgg ctatttggct gagaaggggc caggccaagg gccgggtggg	1260
gatgggcacc aagaatctct cccaccacct gaattctcca aggactcggg tttcctggaa	1320
gageteccag aagataacet eteeteetgg gecacetggg geacettace aeeggageeg	1380
aatetggtee etgggggaee eccagtttet etteagaeae tgaeettetg etgggaaage	1440
agccctgagg aggaagagga ggcgagggaa tcagaaattg aggacagcga tgcgggcagc	1500
tggggggctg agagcaccca gaggaccgag gacaggggcc ggacattggg gcattacatg	1560
gccaggtgag ctgtcccccg acatcccacc gaatctgatg	1600

```
<210>8
<211> 522
<212> PRT
<213> Homo sapiens
<220>
<400>8
Met Ala Gly Pro Glu Arg Trp Gly Pro Leu Leu Cys Leu Leu Gln
Ala Ala Pro Gly Arg Pro Arg Leu Ala Pro Pro Gln Asn Val Thr Leu
           20
                                25
                                                    30
Leu Ser Gln Asn Phe Ser Val Tyr Leu Thr Trp Leu Pro Gly Leu Gly
                            40
Asn Pro Gln Asp Val Thr Tyr Phe Val Ala Tyr Gln Ser Ser Pro Thr
    50
                        55
                                            60
\label{eq:conditional} \text{Arg Arg Trp Arg Glu Val Glu Glu Cys Ala Gly Thr Lys Glu Leu}
                     70
                                         75
Leu Cys Ser Met Met Cys Leu Lys Lys Gln Asp Leu Tyr Asn Lys Phe
                                      90
                                                           95
                85
Lys Gly Arg Val Arg Thr Val Ser Pro Ser Ser Lys Ser Pro Trp Val
                                105
Glu Ser Glu Tyr Leu Asp Tyr Leu Phe Glu Val Glu Pro Ala Pro Pro
                                                 125
       115
                            120
Val Leu Val Leu Thr Gln Thr Glu Glu Ile Leu Ser Ala Asn Ala Thr
                                            140
    130
                         135
```

-	Leu Pro	Pro Cys 1	Met Pro	Pro L	_	Leu L	ys Tyr	
145		150			155	. Di		160
Ala Phe	Trp Lys	Glu Gly	Ala Gly		-	Leu Pl	he Pro	
	** 1 691	165	01	_	70	1 201 1		175
Pro His		Pro His G	ily Gln		d Gln I			n Pro
	180			185			190	70.1
Ala Ala		His His C		Ser Al	a Arg			ir Phe
0 1/1	195	т O т	200	Q . T	- D 1	205		T
	=	Tyr Ser I	=	Ser Ly			s Phe L	eu Leu
210			15	DI T		220 L. D.	O T	т.
	Pro Glu	Ala Asn	rp Ala	rne L		Leu Pr	o ser i	
225	T	230 Val IIa A	1a A1- /	71 C1	235	_ т т	TI.	240
ne Leu	Leu Leu	Val Ile A	ia Ala (e 1tb r		
Mat C1-	, A cm D==	245	C1- A-	250 a Ala I		t Dec A	25:	
Mei Gly	Asn Pro 260	Trp Phe	GIII AI	265	Jys ivie	i Pio A	rg Ala 270	
Phe Ser	-	Thr Thr F		Val Ala	a Thr P			er Arg
	275		280			285		
Pro Glu 290		Asn Asp	Leu Phe 295	e Leu C	Cys Pro	Gln L ₂ 300	ys Glu	Leu Thr
Arg Gly	Val Arg	Pro Thr	Pro Arg	y Val A	rg Pro	Ala Th	r Gln (Gln Thr
305		310			315			320
Arg Trp	Lys Lys	Asp Leu	Ala Gl	u Asp (Glu Glı	u Glu C	3lu Asp	Thr Glu
	-	325			330		-	335
Asp Gly	Val Ser	Phe Gln	Pro Tyr	lle Glu	u Pro P	ro Ser	Phe Le	u Gly
	340			345			350	
Gln Glu	His Gln	Ala Pro (Gly His	Ser Gl	u Ala (Gly Gly	Val A	sp Ser
	355		360)		365	;	
Gly Arg 370	Pro Arg	Ala Pro l	Leu Val 375	l Pro Se		Gly Sea	r Ser A	la Trp
	Ser Asp	Arg Ser		Ser Th			Ser T	rp Asp
385	*	390	-		395	-		400
	Gly Ser	Ser Gly 7	Tyr Leu	Ala G	lu Lys	Gly Pro	o Gly (3ln Gly
_	•	405	-		10	-	-	15
Pro Gly	Gly Asp	Gly His	Gln Glu	ı Ser L	eu Pro	Pro Pro	o Glu P	he Ser
- 7	420	-		425			430	
Lys Asr		Phe Leu	Glu Glı		ro Glu	Asp A	sn Leu	Ser Ser
, r	435		44(45	
Trp Ala	Thr Trp	Gly Thr I	Leu Pro	Pro Gl	lu Pro 1	Pro Ası	n Leu V	/al Pro
-	I.	-				460		
450			155		•	400		

Gly Gly Pro Pro Val Ser Leu Gln Thr Leu Thr Phe Cys Trp Glu Ser
465 470 475 480

Ser Pro Glu Glu Glu Glu Glu Ala Arg Glu Ser Glu Ile Glu Asp Ser
485 490 495

Asp Ala Gly Ser Trp Gly Ala Glu Ser Thr Gln Arg Thr Glu Asp Arg
500 505 510

Gly Arg Thr Leu Gly His Tyr Met Ala Arg
515 520

<210>9 <211> 1469 <212> DNA <213> Homo sapiens <220> <400> 9

60 aaggccatgg eggggeeega gegetgggge eeeetgetee tgtgeetget geaggeeget 120 ccagggagge cccgtctgge ccctccccag aatgtgacge tgctctccca gaacttcage 180 gtgtacctga catggctccc agggcttggc aacccccagg atgtgaccta ttttgtggcc 240 tatcagaget eteceaceg tagaeggtgg egegaagtgg aagagtgtge gggaaceaag 300 gagetgetat gttetatgat gtgeetgaag aaacaggace tgtacaacaa gtteaaggga 360 cgcgtgcgga cggtttctcc cagctccaag tcccctggg tggagtccga atacctggat 420 tacetttttg aagtggagee ggeeceaect gteetggtge teaceeagae ggaggagate 480 ctgagtgcca atgccacgta ccagctgccc ccctgcatgc ccccactgga tctgaagtat 540 gaggtggcat tctggaagga gggggccgga aacaagaccc tatttccagt cactccccat 600 ggccagccag tccagatcac tctccagcca gctgccagcg aacaccactg cctcagtgcc 660 agaaccatct acacgttcag tgtcccgaaa tacagcaagt tctctaagcc cacctgcttc 720 ttgctggagg tcccaggact tttctggaca cacacacct gtggcaacct ttcagcccag 780 cagaccagag teegtgaatg acttgtteet etgteeceaa aaggaactga eeagaggggt 840 caggccgacg cctcgagtca gggccccagc cacccaacag acaagatgga agaaggacct 900 tgcagaggac gaagaggagg aggatgagga ggacacagaa gatggcgtca gcttccagcc 960 ctacattgaa ccaccttctt tcctggggca agagcaccag gctccagggc actcggaggc 1020 tggtgggtg gactcaggga ggcccagggc tcctctggtc ccaagcgaag gctcctctgc 1080 ttgggattet teagacagaa getgggeeag eaetgtggae teeteetggg acagggetgg 1140 gtcctctggc tatttggctg agaaggggcc aggccaaggg ccgggtgggg atgggcacca 1200 agaatetete ceaceacetg aattetecaa ggaetegggt tteetggaag ageteecaga 1260 agataacete teeteetggg eeacetgggg eacettacea eeggageega atetggteee 1320 tgggggaccc ccagtttctc ttcagacact gaccttctgc tgggaaagca gccctgagga ggaagaggag gcgagggaat cagaaattga ggacagcgat gcgggcagct ggggggctga 1380 1440 gagcacccag aggaccgagg acaggggccg gacattgggg cattacatgg ccaggtgagc

```
<210>10
<211>244
<212> PRT
<213> Homo sapiens
<220>
<400> 10
Met Ala Gly Pro Glu Arg Trp Gly Pro Leu Leu Cys Leu Leu Gln
Ala Ala Pro Gly Arg Pro Arg Leu Ala Pro Pro Gln Asn Val Thr Leu
                               25
Leu Ser Gln Asn Phe Ser Val Tyr Leu Thr Trp Leu Pro Gly Leu Gly
Asn Pro Gln Asp Val Thr Tyr Phe Val Ala Tyr Gln Ser Ser Pro Thr
                        55
Arg Arg Arg Trp Arg Glu Val Glu Glu Cys Ala Gly Thr Lys Glu Leu
65
                                                            80
                    70
Leu Cys Ser Met Met Cys Leu Lys Lys Gln Asp Leu Tyr Asn Lys Phe
Lys Gly Arg Val Arg Thr Val Ser Pro Ser Ser Lys Ser Pro Trp Val
                               105
                                                  110
Glu Ser Glu Tyr Leu Asp Tyr Leu Phe Glu Val Glu Pro Ala Pro Pro
                           120
                                                125
Val Leu Val Leu Thr Gln Thr Glu Glu Ile Leu Ser Ala Asn Ala Thr
    130
                        135
Tyr Gln Leu Pro Pro Cys Met Pro Pro Leu Asp Leu Lys Tyr Glu Val
                   150
                                       155
Ala Phe Trp Lys Glu Gly Ala Gly Asn Lys Thr Leu Phe Pro Val Thr
                                   170
Pro His Gly Gln Pro Val Gln Ile Thr Leu Gln Pro Ala Ala Ser Glu
                              185
His His Cys Leu Ser Ala Arg Thr Ile Tyr Thr Phe Ser Val Pro Lys
       195
                           200
                                              205
Tyr Ser Lys Phe Ser Lys Pro Thr Cys Phe Leu Leu Glu Val Pro Gly
                       215
                                           220
    210
```

Leu Phe Trp Thr His Thr Pro Cys Gly Asn Leu Ser Ala Gln Gln Thr 225 230 235 240 Arg Val Arg Glu <210>11 <211>21 <212> DNA <213> Homo sapiens <220> <400> 11 21 ttcagtgtcc cgaaatacag c <210> 12 <211>20 <212> DNA <213> Homo sapiens <220> <400> 12 20 aagaaggtgg ttcaatgttag <210> 13 <211>38 <212> DNA <213> Homo sapiens <220> <400> 13 38 tggcagcacc atgatcaccc agttggcttc tgggacct <210> 14 <211>35 <212> DNA <213> Homo sapiens <220> <400> 14 aagactgagt tgatcaagag aatcagagcc ttaga 35 <210> 15 <211>27 <212> DNA

<213> Homo sapiens

<220>	
<400> 15	
aatgtctaga tgctgttctc atttacc	27
<210>16	
<211>24	
<212> DNA	
<213> Homo sapiens	
<220>	
<400> 24	
gctccatggg acgatgccgc tgtg	24
<210> 17	
<211>20	
<212> DNA	
<213> Homo sapiens	
<220>	
<400> 17	
gtgaaatatt gctccgtcgt	20
<210> 18	
<211> 27	
<212> DNA	
<213> Homo sapiens	
<220>	
<400> 18	
gaagaatatt gggctttcct ggtgctg	27
<210> 19	
<211> 20	
<212> DNA	
<220>	
<400> 19	
cactgcattc tagttgtggt	20
<213> Homo sapiens	