Lecture 10

Factor Analysis

DSA 8070 Multivariate Analysis October 18 - October 22, 2021

> Whitney Huang Clemson University

Notes

Agenda

- Background
- Pactor Model Analysis
- Stock Price Data Example

Notes			

Overview

Factor Analysis (FA) assumes the covariance structure among a set of variables, $\boldsymbol{X}=(X_1,\cdots,X_p)^T$, can be described via a linear combination of unobservable (latent) variables $\boldsymbol{F}=(F_1,\cdots,F_m)^T$, called factors.

There are three typical objectives of FA:

- ② Data interpretation: find features (i.e., factors) that are important for explaining covariance ⇒ exploratory FA
- Theory testing: determine if hypothesized factor strucuture fits observed data ⇒ confirmatory FA

Analysis	Notes		
	-		

10.3

FA and PCA

FA and PCA have similar themes, i.e., to explain covariance between variables via linear combinations of other variables

However, there are distinctions between the two approaches:

- FA assumes a statistical model that describes covariation in observed variables via linear combinations of latent variables
- PCA finds uncorrelated linear combinations of observed variables that explain maximal variance

FA refers to a statistical model, whereas PCA refers to the eigenvalue decomposition of a covariance (or correlation) matrix

Notes			

Factor Model

Let $X=(X_1,\cdots,X_p)^T$ is a random vector with mean vector μ and covariance matrix Σ . The factor model postulates that X can be written as a linear combination of a set of m common factors F_1,F_2,\cdots,F_m :

$$\begin{split} X_1 - \mu_1 &= \ell_{11} F_1 + \ell_{12} F_2 + \dots + \ell_{1m} F_m + \varepsilon_1 \\ X_2 - \mu_2 &= \ell_{21} F_1 + \ell_{22} F_2 + \dots + \ell_{2m} F_m + \varepsilon_2 \\ \vdots & \vdots & \vdots \\ X_p - \mu_p &= \ell_{p1} F_1 + \ell_{p2} F_2 + \dots + \ell_{pm} F_m + \varepsilon_p \end{split}$$

where

- $\{\ell_{jk}\}_{p \times m}$ denotes the matrix of factor loadings, that is, ℓ_{jk} is the loading of the j-th variable on the k-th factor
- \bullet $(F_1,\cdots,F_m)^T$ denotes the vector of the latent factor scores, that is, F_k is the score on the k-th factor
- $(\varepsilon_1,\cdots,\varepsilon_p)^T$ denotes the vector of latent error terms, ε_j is the j-th specific factor

Notes

Factor	Model	in	Matrix	Notation

The factor model can be written in a matrix form:

$$X = \mu + LF + \varepsilon,$$

where

- ullet $oldsymbol{L}=\{\ell_{jk}\}_{p imes m}$ is the factor loading matrix
- $F = (F_1, \cdots, F_m)^T$ is the factor score vector
- $oldsymbol{arepsilon} oldsymbol{arepsilon} = (arepsilon_1, \cdots, arepsilon_p)^T$ is the (latent) error vector

Unlike in linear model, we do not observe ${\it F}$, therefore we need to impose some assumptions to facilitate the model identification

Factor Analysis	Notes
actor Model nalysis	

Notes				

Model Assumptions

First, we assume:

$$\begin{split} \mathbb{E}(F) &= \mathbf{0}, \qquad \mathbb{Vor}(F) = \mathbb{E}(FF^T) = I \\ \mathbb{E}(\varepsilon) &= \mathbf{0}, \qquad \mathbb{Vor}(\varepsilon) = \mathbb{E}(\varepsilon\varepsilon^T) = \Psi = \mathrm{diag}(\psi_i), i = 1, \cdots, p \end{split}$$

Moreover, we assume F and ε are independent, so that $\mathbb{C}\mathrm{ov}(F,\varepsilon)=0$

- \bullet The factors have variance one (i.e., $\mathbb{Vor}(F_i)=1)$ and uncorrelated with one another
- The error vector are uncorrelated with one another with the specific variance $Vor(\varepsilon_i) = \psi_i$
- $oldsymbol{\circ}$ Under the model assumptions, we have $oldsymbol{\Sigma} = oldsymbol{L} oldsymbol{L}^T + oldsymbol{\Psi}$

Factor Model Analysis

Stock Price Data

10.7

Notes

Variances and Covariances of Factor Models

Under the factor model, we have

$$Vor(X_i) = \ell_{i1}^2 + \ell_{i2}^2 + \dots + \ell_{im}^2 + \psi_i$$

$$\mathbb{Cov}(X_i, X_j) = \ell_{i1}\ell_{j1} + \ell_{i2}\ell_{j2} + \dots + \ell_{im}\ell_{jm}$$

The portion of the variance that is contributed by the m common factors is the communality:

$$\ell_{i1}^2 + \ell_{i2}^2 + \dots + \ell_{im}^2$$

and the portion that is not explained by the common factors is called the uniqueness (or the specific variance):

$$\mathbb{Vor}(\varepsilon_i) = \psi_i$$

Notes

Background Factor Model Analysis

10.8

_			
-			
-			
-			

Estimation in Factor Models

In this course we consider two methods to estimate the parameters of a factor model:

Principal Component Method

 $\begin{aligned} \text{PCA}: \qquad & \boldsymbol{\Sigma} = \lambda_1 \boldsymbol{e}_1 \boldsymbol{e}_1^T + \lambda_2 \boldsymbol{e}_2 \boldsymbol{e}_2^T + \dots + \lambda_p \boldsymbol{e}_p \boldsymbol{e}_p^T \\ \text{Factor Model:} \qquad & \boldsymbol{\Sigma} = \boldsymbol{L} \boldsymbol{L}^T + \boldsymbol{\Psi} \end{aligned}$

Main idea: Use the first m PCs to form the factor loading matrix, then use the relationship $\mathbf{\Psi} = \mathbf{\Sigma} - \mathbf{L} \mathbf{L}^T$ to estimate the specific variances $\hat{\psi}_i = s_i^2 - \sum_{j=1}^m \lambda_j \hat{e}_{ji}^2$

• Maximum Likelihood Estimation: assuming data $X_1,\cdots,X_n \overset{i.i.d.}{\sim} N(\mu,\Sigma=LL^T+\Psi)$, maximizing the log-likelihood $\ell(\mu,L,\Psi) \propto -\frac{n}{2}\log|LL^T+\Psi|-\frac{1}{2}\sum_{i=1}^n(X_i-\mu)^T(LL^T+\Psi)^{-1}(X_i-\mu)$ to obtain the parameter estimates

Cl	E	Ν	45	S	·	V
JN	٧	ε	R	S	T	Ý

Factor Model Analysis Stock Price Dat

Notes				

Choosing the Number of Common Factors

- ullet The factor model assumes that the p(p+1)/2 variances and covariances of X can be reproduced from the pm+p factor loadings and the variances of the p unique factors
- Situations in which m, the number of common factors, is small relative to p is when factor analysis works best. For example, if p=12 and m=2, then the $(12\times 13)/2=78$ elements of Σ can be reproduced from $2\times 12+12=36$ parameters in the factor model
- However, if m is too small, the mp+p parameters may not be adequate to describe Σ

Notes

Notes

1	0.	1	0	

A Goodness-of-Fit Test for Factor Model

We wish to test whether the factor model appropriately describes the covariances among the $\it p$ variables

Specifically, we test

$$H_0: \boldsymbol{\Sigma} = \boldsymbol{L}\boldsymbol{L}^T + \boldsymbol{\Psi}$$

versus

 $H_1: \Sigma$ is a positive definite matrix

Bartlett-Corrected Likelihood Ratio Test Statistic

$$-2\log\Lambda = \left(n-1-(2p+4m+5)/6\right)\log\frac{|\hat{\boldsymbol{L}}\hat{\boldsymbol{L}}^T+\hat{\boldsymbol{\Psi}}|}{|\hat{\boldsymbol{\Sigma}}|}$$

• Reject H_0 at level α if

$$-2\log \Lambda > \chi^2_{d\!f = \frac{1}{2}[(p-m)^2 - p - m]}$$

Factor Model Analysis Stock Price Data

10.11

Example: Stock Price Data

Data are weekly returns in stock prices for 103 consecutive weeks for five companies: JP Morgan, City bank, Wells Fargo, Royal Dutch (Shell), and Exxon

- The first three are banks and the last two are oil companies
- The data are first standardized and the sample correlation matrix is used for the analysis
- $\bullet \ \ \text{We will fit an} \ m=2 \ \text{factor model}$

Notes			

Scatter Plot Matrix of the Standardized Data

Factor Analysis
Background Factor Model Analysis Stock Price Data
Example

Screen Plot

Notes

Factor Loadings, Specific Variances, and Residual Matrix

Variable	Loadings 1	Loadings 2	Specific variances
JP Morgan	0.732	0.437	0.273
City bank	0.831	0.280	0.230 A
Wells Fargo	0.726	0.374	0.333
Royal Dutch	0.605	-0.694	0.153
Exxon	0.563	-0.719	0.166

el Data

CLEMS

The residual matrix is $\mathbf{\Sigma} - (\tilde{\boldsymbol{L}}\tilde{\boldsymbol{L}}^T + \tilde{\boldsymbol{\Psi}})$:

$$\begin{bmatrix} 0 & -0.10 & -0.18 & -0.03 & 0.06 \\ 0 & -0.13 & 0.01 & -0.05 \\ 0 & 0.00 & 0.01 \\ & & 0 & -0.16 \\ \end{bmatrix}$$

Question: Are these off-diagonal elements small enough?

Ν	otes

_			
_			
_			

Maximum Likelihood Estimation

Notes

Factor Loading Plot

Votes			
votes			
Notes			