

JUNE 2002

GCE Advanced Level GCE Advanced Subsidiary Level

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT:9709/5,8719/5

MATHEMATICS (Mechanics 2)

Page 1	Mark Scheme	Syllabus	Paper
<u></u>	A & AS Level Examinations – June 2002	9709, 8719	5

1	(i)	Uses the correct EPE formula [25x0.4 ² /(2x1.6)]	MI	
	-	Obtains 1.25 J	Al	-
<u>_</u>	+-	Obtains GPE = 0.15gx0.4 = 0.6 J	B1	3
•	(ii)	Attempts to form an energy equation involving EPE, GPE and KE terms $[1.25 = \frac{1}{2} 0.15v^2 + 0.6]$	Ml	
		Obtains speed as 2.94 ms ⁻¹ (2.943920)	Al	2

2	(i)	Identifies the distance of centre of mass from vertical face as $\frac{(1/3)x \text{ base } [\bar{x} = 10/3]}{(1/3)x \text{ base } [\bar{x} = 10/3]}$ Use $\sqrt{3} \times \sqrt{3} \times \sqrt{3} = 3$	BJ MI	
		Maximum overhang is 6.67 cm (20/3) ft for $10 - \overline{x}$	BHEA	2
-	(ii)	Identifies the maximum possible width for books as $100 - 2\bar{x}$ and divides by 5 $[100 - 20/3)/5$	M1	
		Obtains greatest number as 18	Al	2

3	Obtains extension of string as 0.2m (or half-extension as 0.1m)	Bi	
	Finds the tension by using the correct Hooke's Law formula	Mi	ļ —
	$T = 12 \times 0.2/0.8$ or $T = 12 \times 0.1/0.4$ [= 3]	A1 🔼	
	Resolves forces on the particle vertically and substitutes for T and $[W = 2x3x(0.14/0.5) \text{ or } 2 \times 3 \cos 73.74^\circ]$ with some treatment of case	MI	ļ
	Obtains $W = 1.68$	A1	5

4	(i)	Use $a = \omega^2 r$ [16 x 1.2 sin45°]	M1	П
		Obtains acceleration as 13.6ms ⁻² (13.57645)	A1	2
	(ii)	Uses Newton's 2 nd Law either horizontally or perpendicular to OP to obtain a 3 term equation	Ml	
		$T \sin 45^{\circ} + N \cos 45^{\circ} = 0.3 \times 13.576 \text{ or}$ $N - 0.3g \sin 45^{\circ} = 0.3 \times 13.576 \cos 45^{\circ}$	Alft	
		Resolves forces vertically or uses Newton's 2 nd Law along OP to obtain a 3 term equation	Μl	
		$N \sin 45^{\circ} = T \cos 45^{\circ} + 0.3g$ or $T + 0.3g \cos 45^{\circ} = 0.3 \times 13.576 \sin 45^{\circ}$	Alft	T
	<u> </u>	Obtains tension as 0.759 N (0.75868)	Al	+
	- 	Obtains force exerted by the cone as 5.00 N (5.00132) (Albu SN)	Al	6

SRI Answers left in Sura form, pondine once only.

SRZ If force exerted by Pon cone vertical allow ?()

N=Trosts +0.35 (RI): Trosts =0.3x13.576(RI) (mex ?())

www.studyguide.pk

Page 2	Mark Scheme	Syllabus	Рарег
	A & AS Level Examinations – June 2002	9709, 8719	5

5	(i)	Uses $(A_1 + A_2)\bar{x} = A_1\bar{x}_1 + A_2\bar{x}_2$ [0.09 $\bar{x} = 0.05 \times 0.25 + 0.04 \times 0.45$]	Ml	
		$\bar{x} = 0.0305/0.09 \left(\text{cr} \left(\sqrt{3} \right)^{2} \right) \left(\text{cr} \left(\sqrt{3} \right)^{2} \right) \left(= 61/180 \text{ or } 0.3388889 \right)$		
Alte	rnativel	y for the above 2 marks:		
		mina into 2 rectangles of weights 5 N and 4 N or considers it as a square of		
vei	ght 25 N	I from which a square of weight 16 N is removed MI		
Obt	ains mo	ment distances as 0.25 and 0.45 or 0.2 and 0.45 (2 rectangles cases) or 0.25		
and	0.2 (2 s	quares case) (distances may be implied) A1		
		Takes moments about A to obtain an equation for T	MI	
		$9 \times 0.0305 / 0/09 = 0.5 T \sin 30^{\circ}$ or $5 \times 0.25 + 4 \times 0.45 = 0.5 T \sin 30^{\circ}$ or	Al ft	1
	+	$4 \times 0.2 + 5 \times 0.45 = 0.5T \sin 30^{\circ}$ or $25 \times 0.25 - 16 \times 0.2 = 0.5T \sin 30^{\circ}$		
		Obtains tension as 12.2 N (Allw any answer which rounds to 12.2)	A1	5
	(ii)	Obtains vertical component of force at A as 2.9 N (ft for $9 - \frac{1}{2}T$)	B1 ft	
		Obtains horizontal component of force at A as $6.1\sqrt{3}$ N (= 10.5655) (ft for $\frac{1}{2}$ T $\sqrt{3}$)	Blft	
		Uses $F^2 = H^2 + V^2$	MI	-
		Obtains magnitude as 11.0 N (10.95628) (Albu HA)	Al	4

6	(i)	0.40 - 0.1x Uses New Yor 2 with a= vally	BLMI	
	,	With a - v dv/dx > dv/dx = -1/4 ablanced correctly	BUAI	
		Integrates and uses $v(0) = 2$ [$v = -x/4 + 2$]	M1	
	†	Obtains the distance as 8 m	Al	4
	(ii)(a)	Obtains $F = 3/40 \times 0.4g$ [=0.3]	B1	
		Uses Newton's 2^{nd} law and $a = \frac{dv}{dt}$ [0.4 $\frac{dv}{dt} = -0.1v - F$]	MI	_
	<u> </u>	Obtains the given equation $4 \frac{dv}{dt} = -(v+3)$ correctly	Aì	3
_	(b)	Obtains $t = -4 \ln(\nu + 3)$ $(+C)$ $(6, 6, \frac{1}{2})$	BI	\Box
		Uses v (0) = 2 to find Cor evaluates \int_{\frac{1}{2}} \frac{1}{2} \dv \big(\text{m} \frac{1}{2} \cdot \cor \text{cordo} \frac{1}{2} \cdot \cdot \text{n} \frac{1}{2} \dv \big(\text{t} \cdot \fr	Mi	
	1	$t = 4 \ln 5/3 (= 2.04)$	Al	3

www.studyguide.pk

Page 3	Mark Scheme	Syllabus	Paper
	A & AS Level Examinations – June 2002	9709, 8719	5

7 (i	Substit	utes $\theta = 30^{\circ}$, $x = 10$ and $y = 2$ into the correct general equation for	MY	
	the traj	ectory $[2 = 10 \tan 30^{\circ} - \frac{100g}{2V^{2} \cos^{2} 30^{\circ}}]$	81	
	or elim	sinates T from $10 = \frac{VT\sqrt{3}}{2}$, $2 = \frac{VT}{2} - 5T^2 \left(\int_{0}^{\infty} \int_{0}^{\infty} e^{-c} e^{-c} dc \right)$	is.	
	$[2 = \frac{10}{2}]$	$\frac{0}{3} - 5\left(\frac{400}{3V^2}\right)$] $452 = 10 \text{ Vindo } \frac{10}{\sqrt{1000}} - 10$		
	Transp	oses to obtain a numerical expression for V^2 for from $AV = R$; $[eg_{V^2} = \frac{1000}{2(0.75)(\frac{10}{\sqrt{3}} - 2)} = \frac{(= 176.6705)}{(= 176.6705)} IF = \frac{C}{V^2} = \frac{1000}{(= 176.6705)} = \frac{C}{V^2} = \frac{1000}{(= 176.6705)} = \frac{1000}{(= 176.6705)}$	M1	
	Obtain	$\frac{2(0.73)(\sqrt{33}-2)}{\text{s } V = 13.3} \qquad (13.29175)$	A1	3
(i	Substit	tutes for V in $_{10} = \frac{VT\sqrt{3}}{2}$ or $_{2} = \frac{VT}{2} - 5T^{2}$ and solves for T	M1	1
	(If verific	is $T = 0.869$ (0.868735) ical motion is considered, the A mark is awarded only if ation that the value of T found corresponds to (10, 20) rather than takes place)	Al	2
(Uses t	$an\alpha = \pm \frac{\dot{y}}{\dot{x}} \text{ or } \tan\alpha = \pm \frac{dy}{dx} (Allow Find: 3)$	MI	
		$\sin \dot{x} = 43.3\sqrt{3} + 2 + 13.3 \cos 3 \dot{o} \left(\cos \frac{10}{0.469} \right) [11.511]$ $= \tan 30^{\circ} - \frac{gx}{(176.67)(0.75)} \qquad [0.57735 - 0.07547x]$	B1 ft	
	$\dot{y} = 13$	$\frac{3/2-10(0.869)}{(176.67)(0.75)}$ = $\tan 30^{\circ} - \frac{10g}{(176.67)(0.75)}$ [0.57735 - 0.7547]	B1 ft	
	•	is angle as 469.9° (169.9432) or (±)0.1° (10.0568)	A1	4