Reinforcement Learning: Policy-based Methods

Benjamin Rosman

School of Computer Science and Applied Mathematics
University of the Witwatersrand
South Africa

African Masters of Machine Intelligence (Kigali, Rwanda)

January 13-17 2020

Further reading...

- Reinforcement Learning: An Introduction (Sutton and Barto)
 - Chapter 13
- CS 294-122 (Sergey Levine)
 - Lectures 4 and 5
- COMPM050/COMPGI13 (David Silver)
 - Lecture 7

A quick recap

Decision maker (agent) exists within an environment

Agent takes **actions** based on the environment **state**

Environment **state** updates

Agent receives feedback as rewards

Markov Decision Process (MDP)

$$M = \langle S, A, T, R, \gamma \rangle$$

- States: encode world configurations
- Actions: choices made by agent

Markov Decision Process (MDP)

$$M = \langle S, A, T, R, \gamma \rangle$$

Transition function: how the world evolves under actions

Stochastic!

$$T(s, a, s') = P(s_{t+1} = s' | s_t = s, a_t = a)$$

Markov Decision Process (MDP)

$$M = \langle S, A, T, R, \gamma \rangle$$

Rewards: feedback signal to agent

$$R(s,a) = E[r_t|s_t = s, a_t = a]$$

Markov Decision Process (MDP)

$$M = \langle S, A, T, R, \gamma \rangle$$

• $\gamma \in [0,1]$ discounting for future rewards

Particularly important for continuing tasks

The value of something now is usually greater than in the future.

Example

- I want to get this robot to walk as far as possible:
 - What is *S*, *A*, *T*, *R*?

- I want to play this game as well as possible:
 - What is *S*, *A*, *T*, *R*?

Why can't we act greedily?

Cannot just rely on the **instantaneous** reward function Tradeoff: don't just act myopically (short term)

Notion of **value** to codify the goodness of a state, considering a policy running into the future

Represented as a value function

Warning: reward functions

- The reward tells the agent **what** we want it to achieve
 - Learning is about figuring out **how** to achieve it
- Be careful: the agent will literally do exactly what you ask it
 - It doesn't "know what you mean"
- Where might this be a problem?

Value functions

Allow us to act greedily by considering estimates of the future

Optimal policy:

NB: Equivalence between optimal policy and optimal value function

Value functions: recursion

 $V(s) \Rightarrow$ expected return starting at s and following π Suggests dependence on value of next state s'

Bellman Equation:

$$V^{\pi}(s) = R(s,\pi(s)) + \gamma \sum_{s'} T(s,\pi(s),s') V^{\pi}(s')$$
 value of s reward for all probability s' possible of reaching next that state states with π

Solution techniques

- If you know *T* and *R*:
 - Iteratively compute solution
 - Dynamic programming
 - Policy iteration and value iteration
- If you don't know T and R: (more common case)
 - Explore the environment and collect samples
 - Use samples to learn T and R
 - Model-based RL (more next time)
 - Use samples to learn V
 - Model-free RL
 - E.g. TD-learning, SARSA, Q-learning, ...

Q-Learning

- Initialise Q(s, a) for all s, a
- Repeat (for each episode):
 - Initialise s
 - Repeat (for each step of episode):
 - Choose a from s using policy from Q (ϵ -greedy)
 - Take action a, observe r, s'
 - $Q(s,a) \leftarrow Q(s,a) + \alpha [r + \gamma \max_{a'} Q(s',a') Q(s,a)]$

take best next action (so far)

- $s \leftarrow s'$
- Until s is terminal

ϵ -Greedy ($0 < \epsilon \le 1$):

- With probability 1ϵ exploit:
 - Choose the best action from Q
- With probability ϵ explore:
 - Randomly choose action

 ε usually higher at beginning, decay later

learn

Benjamin Rosman

Function approximation

• This works well if you can tabulate the value function

State	a_1		a_m
s_1	1.7		2.8
s_2	-3.9		-3.1
		•••	•••
s_n	0.2	•••	-0.1

- But if the state space is large/continuous
 - Approximate this with a learned function
 - Why?
 - Infinity? May not visit every state (many times)? Need to generalise?

Deep Q-Networks

DQN

- Take action a_t according to ϵ -greedy policy
 - Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory D
- Sample mini-batch of transitions (s, a, r, s') from D
 - Experience replay: decorrelate samples
- Compute Q-learning targets w.r.t old fixed parameters w⁻
 - Fixed Q-targets: avoid oscillations
- Optimise MSE between Q-network and Q-learning targets

•
$$L_i(w_i) = \mathbb{E}_{s,a,r,s'\sim D_i} \left[\left(r + \gamma \max_{a'} Q(s',a',w_i^-) - Q(s,a,w_i)\right)^2 \right]$$

• Using stochastic gradient descent on $\nabla_{w_i} L_i(w_i)$

RL approaches

Questions?

RL approaches

Policy Search

Learn policy directly:

$$\pi_{\theta}(s, a) = \pi(s, a; \theta)$$

Parameterise policy: learn parameters of policy

- Why?
 - When might it be easier to learn a policy than a value function?
 - Learning a Q-function can be complicated
 - Policy may be much simpler than learning a value for each state-action
 - Injecting information?
 - Stochasticity?

Policy Search

- Objective function?
 - Maximise return given θ :

•
$$J(\theta) = \mathbb{E}[\sum_t \gamma^t r_t | \pi_{\theta}]$$

•
$$\theta^* = argmax_{\theta}J(\theta)$$

Trajectory au

$$p(\tau|\theta) = p_{\theta}(s_1, a_1, s_2, a_2, \dots, s_T, a_T)$$

$$= p(s_1) \prod_{t=1}^{T} \pi_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t)$$

Note:

The return R, cost J, utility U are often used interchangeably here

Always more efficient to follow the gradient!

Hill Climbing

• What if you can't differentiate π ?

- Sample-based optimisation:
 - Sample some θ values near your current best θ
 - Compute return
 - Approximate a gradient
 - Finite differences
 - Adjust your current best θ to give the highest value
- Other approaches, e.g. genetic algorithms

Aibo gait optimization

from Kohl and Stone, ICRA 2004

Fig. 2. The elliptical locus of the Aibo's foot. The half-ellipse is defined by length, height, and position in the x-y plane.

All told, the following set of 12 parameters define the Aibo's gait [10]:

- The front locus (3 parameters: height, x-pos., y-pos.)
- The rear locus (3 parameters)
- Locus length
- Locus skew multiplier in the x-y plane (for turning)
- The height of the front of the body
- The height of the rear of the body
- The time each foot takes to move through its locus
- The fraction of time each foot spends on the ground

Using gradients

- If we can differentiate π
 - Compute and ascend $\partial R/\partial \theta$

• This is the gradient of return w.r.t policy parameters

•
$$\theta_{t+1} = \theta_t + \Delta \theta_t$$

= $\theta_t + \alpha \nabla J(\theta_t)$

These are called policy gradient methods

Policy Gradient Theorem

Why does this work?

 Relate the gradient of performance with respect to the policy parameter to the gradient of the policy

- Policy gradient theorem:
 - $\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) Q^{\pi_{\theta}}(s, a)]$
- No explicit dependence on distribution of states (or model)

What is a good form for a parameterised function f?

- Simplest thing you can do?
 - Linear value function approximation
 - Use set of basis functions $\phi_1, ..., \phi_n$
 - *f* is a linear function of them:
 - $\hat{f} = \mathbf{w} \cdot \Phi(s, a) = \sum_{i=1}^{n} w_i \phi_i(s, a)$
 - We'll want to learn parameters w
- Neural network:
 - $f = f(s, a; \mathbf{w})$

Basis functions $\phi(x)$:

- Could be polynomial in state vars:
 - 1st order: [1, x, y]
 - 2^{nd} order: $[1, x, y, x^2, y^2, xy]$
 - This is a Taylor expansion
- Others:
 - Fourier basis
 - Wavelet basis
 - ...

- REINFORCE: one particularly popular sample-based estimate of the gradient
 - ullet Based on the policy gradient theorem, but approximate the $\mathbb E$ with sampled trajectories (Monte-Carlo samples)

The return R_t acts as an estimate of $Q^{\pi_{\theta}}(s,a)$

The return
$$R_t$$
 acts as an estimate of $Q^{\pi_{\theta}}(s, a)$

$$\Delta \theta_t = \alpha R_t \frac{\nabla_{\theta} \pi_{\theta}(a_t | s_t)}{\pi_{\theta}(a_t | s_t)} = \alpha R_t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

$$= \alpha R_t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

$$= \log \text{derivative trick: } \frac{\nabla_{\theta} x}{x} = \nabla_{\theta} \log x$$

REINFORCE algorithm

- Initialise θ
- For each episode
 - Choose actions according to π_{θ} : $a \sim \pi_{\theta}(a|s)$
 - Gather samples $\{s_1, a_1, r_1, ..., s_T, a_T, r_T\}$
 - For t = 1 to T
 - $\theta \leftarrow \theta + \alpha R_t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$

(that's it)

Deriving REINFORCE

• Cost:
$$J(\theta) = \mathbb{E}_{\tau \sim p(\tau;\theta)} \left[r(\tau) \right]$$

$$= \int_{\tau} r(\tau) p(\tau;\theta) \mathrm{d}\tau$$

$$\tau = (s_0, a_0, r_0, s_1, \ldots)$$

• Derivative:
$$\nabla_{\theta}J(\theta)=\int_{ au}r(au)\nabla_{\theta}p(au; heta)\mathrm{d} au$$

 $\textbf{J}_{\tau} \\ \textbf{- Transformation:} \quad \nabla_{\theta} p(\tau;\theta) = \underbrace{p(\tau;\theta)}_{p(\tau;\theta)} \underbrace{\nabla_{\theta} p(\tau;\theta)}_{p(\tau;\theta)} \\ = p(\tau;\theta) \nabla_{\theta} \log p(\tau;\theta) \\ = p(\tau;\theta) \nabla_{\theta} \log p(\tau;\theta)$

• Substitute:
$$\nabla_{\theta} J(\theta) = \int_{\tau} \left(r(\tau) \nabla_{\theta} \log p(\tau;\theta) \right) p(\tau;\theta) \mathrm{d}\tau$$

$$= \mathbb{E}_{\tau \sim p(\tau;\theta)} \left[r(\tau) \nabla_{\theta} \log p(\tau;\theta) \right]$$

Deriving REINFORCE

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p(\tau;\theta)} \left[r(\tau) \nabla_{\theta} \log p(\tau;\theta) \right]$$

• Recall:
$$p(\tau;\theta) = \prod_{t>0} p(s_{t+1}|s_t,a_t) \pi_{\theta}(a_t|s_t)$$

• So:
$$\log p(\tau; \theta) = \sum_{t \ge 0} \log p(s_{t+1}|s_t, a_t) + \log \pi_{\theta}(a_t|s_t)$$

• Derivative:
$$\nabla_{\theta} \log p(\tau; \theta) = \sum_{t \geq 0} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$
 Note we lose dependence on dynamics

• And so estimate:
$$\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Interpretation

- Gradient estimator: $\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$
- Think of this as saying:
 - If $r(\tau)$ is high: push up probabilities of seen actions
 - If $r(\tau)$ is low: push down probabilities of seen actions
- Simple version of credit assignment

Variance

• This gradient estimator (MC) turns out to have a high variance

$$\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

- Why?
 - These are all samples of a run of a policy!
- Slow convergence
- Correct with a baseline:

•
$$\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} (r(\tau) - b(s_t)) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

- Because b could be 0, this is a generalisation of REINFORCE
 - Will converge asymptotically to a local minimum

Why can we use a baseline?

•
$$\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} (r(\tau) - b(s_t)) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

- Intuition: can add or subtract b from r without biasing algorithm
 - As long as b not a function of a_t

• Mathematically (with some notational abuse):

i.e. doesn't change the expected value, but can change the variance!
$$= \int \left[\sum_t b \pi_\theta(a_t|s_t) \nabla_\theta \log \pi_\theta(a_t|s_t) \right] d\tau$$

$$= \int b \nabla_\theta \pi_\theta(\tau) d\tau \qquad \text{Log derivative trick: } \frac{\nabla_\theta x}{x} = \nabla_\theta \log x$$

$$= b \nabla_\theta \int \pi_\theta(\tau) d\tau = b \nabla_\theta 1 = 0$$

Keeps the gradient unbiased,

Benjamin Rosman

Choice of baseline

What baseline to use?

- $b(s_t) = V(s_t)$
 - Change based on whether or not reward was better than expected
 - Term $r(\tau) b(s_t)$ resembles advantage function:
 - $A^{\pi}(s,a) = Q^{\pi}(s,a) V^{\pi}(s)$
 - Measures how much better a is than whatever π would have done
- Suggests we should be learning π and V!

Learning with a baseline

Actor-Critic

- Combine ideas from policy and value function methods
 - Approximate both the policy and the value function
- Actor improvement
 - Policy parameterised by heta
- Critic evaluation
 - Value function parameterised by ω
 - Either $V(s; \omega)$ or $Q(s, a; \omega)$
- Keep track of two sets of parameters

Actor-Critic pseudocode

- Input: parameterised forms for $\pi_{\theta}(s|a)$ and $V_{\omega}(s)$
- Input: learning rates $\alpha_{\omega} > 0$ and $\alpha_{\theta} > 0$
- For each episode:
 - Initialise s
 - For each time step:
 - Choose $a \sim \pi_{\theta}(s|a)$

Policy is stochastic: this is a random draw

Update parameters by gradient ascent

- Take a, observe s', r
- $\delta \leftarrow r + \gamma V_{\omega}(s') V_{\omega}(s)$

Compute TD error

- $\omega \leftarrow \omega + \alpha_{\omega} \delta \nabla_{\omega} V_{\omega}(s)$
- $\theta \leftarrow \theta + \alpha_{\theta} \delta \nabla_{\theta} \log \pi_{\theta} (a|s)$
- $s \leftarrow s'$

What forms could we use?

Many different ways to do the updates

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ v_{t} \right] \qquad \text{REINFORCE}$$

$$= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ Q^{w}(s, a) \right] \qquad \text{Q Actor-Critic}$$

$$= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ A^{w}(s, a) \right] \qquad \text{Advantage Actor-Critic}$$

$$= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \delta \right] \qquad \text{TD Actor-Critic}$$

$$= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \ \delta e \right] \qquad \text{TD}(\lambda) \text{ Actor-Critic}$$

$$G_{\theta}^{-1} \nabla_{\theta} J(\theta) = w \qquad \text{Natural Actor-Critic}$$

Asynchronous Advantage Actor-Critic (A3C)

[Mnih et al., 2016]

- Actor-Critic can be easily parallelised
- Why is this useful?
 - Speed up exploration of state space

 Have multiple agents training with shared parameters


```
Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.
   // Assume global shared parameter vectors \theta and \theta_v and global shared counter T=0
   // Assume thread-specific parameter vectors \theta' and \theta'_v
   Initialize thread step counter t \leftarrow 1
                                                                                                  Spin up a new agent/thread
   repeat
       Reset gradients: d\theta \leftarrow 0 and d\theta_v \leftarrow 0.
        Synchronize thread-specific parameters \theta' = \theta and \theta'_v = \theta_v
       t_{start} = t
       Get state s_t
                                                                                                          Use global parameters
        repeat
            Perform a_t according to policy \pi(a_t|s_t;\theta')
            Receive reward r_t and new state s_{t+1}
                                                                                                                Act
            t \leftarrow t + 1
            T \leftarrow T + 1
        until terminal s_t or t - t_{start} == t_{max}
       R = \begin{cases} 0 & \text{for terminal } s_t \\ V(s_t, \theta_v') & \text{for non-terminal } s_t \text{// Bootstrap from last state} \end{cases}
                                                                                                                   Update local parameters using
       for i \in \{t-1, \ldots, t_{start}\} do
                                                                                                                   advantage functions
            R \leftarrow r_i + \gamma R
            Accumulate gradients wrt \theta': d\theta \leftarrow d\theta + \nabla_{\theta'} \log \pi(a_i|s_i;\theta')(R - V(s_i;\theta'_v))
            Accumulate gradients wrt \theta_v': d\theta_v \leftarrow d\theta_v + \partial (R - V(s_i; \theta_v'))^2 / \partial \theta_v'
                                                                                                                          Update global parameters
       end for
        Perform asynchronous update of \theta using d\theta and of \theta_v using d\theta_v.
   until T > T_{max}
```

[Mnih et al., 2016]

Deep policy search

Figure 1: Our method learns visuomotor policies that directly use camera image observations (left) to set motor torques on a PR2 robot (right).

[Levine et al., 2016]

Deep policy search

[Levine et al., 2016]

Robotics

Conclusion

- Recap:
 - The RL setting, MDPs
 - Rewards and value functions
 - Q-learning
 - Function approximation → DQN
- Policy-based methods
 - Gradient free
 - Hill climbing
 - Gradient based
 - Policy Gradient Theorem
 - REINFORCE
 - Baselines
 - Actor-Critic (A3C)
 - Incorporate ideas from supervised learning, deep learning, etc.