Noções Básicas de R - Aula 3

Exemplo de uso de R + Markdown + knitr

Prof. Dr. Cleuler Barbosa das Neves currículo.lattes

AULA N. 03 - OBJETOS: VETORES, MATRIZES, DATA.FRAME, ARRAYS, LIST, DATE, TS etc.

R é uma Linguagem funcional orientada para objetos!

[Faz uso de funções & de suas composições !!!

[Armazena&Manipula objetos previamente criados!!!

[Aply essas composições nesses ob-jectos!!!

[Há symbols c/significados operacionais tipics!!!

[CRAN c/centenas de milhares de functions em packages!!!

As "duas" primeiras linhas de comando de um script em R (p. 13) deve ser:

A 1º Linha de comando:

O símbolo ~ representa a abreviatura para o caminho da pasta pessoal (Linux e Windows)

#setwd("~") # Aponta o Diretório de Trabalho para a Pasta Pessoal e subpasta em que se encontra o arqui

Esse comando exibe a seguinte mensagem de alerta importante: "The working directory was changed to C:

getwd() # Exibe o Diretório de Trabalho, no caso o da Pasta Pessoal, executando uma linha de comand

[1] "C:/Users/cleuler-bn/Documents/R_CS/Aula3"

setwd("~/../Documents/R_CS/Aula3") # Produz o mesmo efeito do código anterior
getwd()

[1] "C:/Users/cleuler-bn/Documents/R_CS/Aula3"

```
#Pacotes de importação de BD
#para ativar um pacote do System Library (vem c/a instalação do R): 2.000 f's
library(foreign) # argumento não precisa das aspas
# Para carregar Base de Dados dos aplicativos:
# Minitab, S, SAS, SPSS, Stata, Systat, Weka, dBase ...
#[------]
                    Pacotes da User Library
#[-----7
#P/instalar um pacote da web (CRAN) basta executar install.packages() 1 vez
#install.packages("data.table") # Para carregar BD's de grandes dimensões
library(data.table) # (p.53-53 do livro R_CS); argumento não precisa das aspas
# 1- converter o arquivo para .csv usando a função fwf2csv () do pacote descr
# 2- carregar o BD com a função fread() do pacote data.table, que usa menos
  memória que a função read.fwf() do pacote ...
#install.packages("sqldf") # p/carregar partes de BD's de grandes dimensões
library(sqldf) # R_SC: (p. 53-54)
## Loading required package: gsubfn
## Loading required package: proto
## Loading required package: RSQLite
#install.packages("descr")#Um pacote tem de ser instalado 1 vez no seu micro
library(descr) # Ativado o pacote, suas funções são disponibilizadas p/uso
# "descr" é um pacote com funções voltadas para Estatística Descritiva
#install.packages("qdata")
library(gdata) # pacote para manipulação de dados (BD's) (p. 45)
## Warning: execução do comando '"C:\Users\CLEULE~1\AppData\Local
## \LYX2~1.2\Perl\bin\perl.exe" "C:/Users/cleuler-bn/Documents/R/win-library/
## 3.4/gdata/perl/supportedFormats.pl"' teve status 2
## gdata: Unable to load perl libaries needed by read.xls()
## gdata: to support 'XLX' (Excel 97-2004) files.
## gdata: Unable to load perl libaries needed by read.xls()
## gdata: to support 'XLSX' (Excel 2007+) files.
##
## gdata: Run the function 'installXLSXsupport()'
## gdata: to automatically download and install the perl
## gdata: libaries needed to support Excel XLS and XLSX formats.
## Attaching package: 'gdata'
## The following objects are masked from 'package:data.table':
##
##
      first, last
## The following object is masked from 'package:stats':
##
```

```
##
      nobs
## The following object is masked from 'package:utils':
##
##
      object.size
## The following object is masked from 'package:base':
##
##
      startsWith
              # No Windows poderá ser necessário instalar ActivePerl
              # ou outro interpretador da linguagem perl.
library(igraph) # pacote para Network Analysis and Visualization
## Attaching package: 'igraph'
## The following objects are masked from 'package:stats':
##
      decompose, spectrum
## The following object is masked from 'package:base':
##
##
      union
               # R_CS: cap. 12- Análise de Redes Sociais (com grafos)
#install.packages("knitr")
library(knitr) # pacote para geração de Relatório Dinâmico em R (p. 119)
#install.packages("memisc") # para surveys
library(memisc) # pacote para manipulação de pesquisa de dados (p. 66, 89)
## Loading required package: lattice
## Loading required package: MASS
##
## Attaching package: 'memisc'
## The following objects are masked from 'package:stats':
##
##
      contr.sum, contr.treatment, contrasts
## The following object is masked from 'package:base':
##
##
      as.array
               # e para apresentação de análises de seus resultados
#install.packaqes("rqdal") # para exibição de Mapas e dados espacializados
library(rgdal) # R_SC: cap. 11- Mapas (p. 134-139)
## Loading required package: sp
## rgdal: version: 1.2-18, (SVN revision 718)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 2.2.3, released 2017/11/20
## Path to GDAL shared files: C:/Users/cleuler-bn/Documents/R/win-library/3.4/rgdal/gdal
```

```
## GDAL binary built with GEOS: TRUE
## Loaded PROJ.4 runtime: Rel. 4.9.3, 15 August 2016, [PJ_VERSION: 493]
## Path to PROJ.4 shared files: C:/Users/cleuler-bn/Documents/R/win-library/3.4/rgdal/proj
## Linking to sp version: 1.2-7
# Requer a instalação do pacote sp
#install.packages("sp")
library(sp)
#install.packages("rmarkdown") # para instalação do RMarkdown
library (rmarkdown) #R SC: qeração Relatórios Dinâmicos no RStudio (p. 115-19)
# Requer instalação de outros pacotes p/rodar o RMarkdown dentro do RStudio
#install.packages("htmltools") - esse não precisou, veio c/o RMarkdown
library(htmltools) # Ferramentas para HTML
## Attaching package: 'htmltools'
## The following object is masked from 'package:memisc':
##
##
       css
#install.packages("caTools")# - esse precisou e instalou o bitops
library(caTools) #Tools: moving windows statistics, GIF, Base64, ROC AUC etc.
#install.packages(c("bindr", "bindrcpp", "Rcpp", "stringi")) é uma função composta
library(bindr)# library deve ter package com comprimento 1
library(bindrcpp)#
library(Rcpp)#
library(stringi)#
#install.packages(c("cluster", "Matrix"), lib="C:/Users/cleuler-bn/Documents/R/R-3.4.4/library")
library(cluster)#
library(Matrix)#
#install.packages(c("financial", "FinancialInstrument", "FinancialMath"))
library(financial)#
library(FinancialInstrument)#
## Loading required package: quantmod
## Loading required package: xts
## Loading required package: zoo
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
## Attaching package: 'xts'
## The following objects are masked from 'package:gdata':
##
##
       first, last
## The following objects are masked from 'package:data.table':
```

```
##
##
      first, last
## Loading required package: TTR
## Version 0.4-0 included new data defaults. See ?getSymbols.
library(FinancialMath)#
##
## Attaching package: 'FinancialMath'
## The following object is masked from 'package:FinancialInstrument':
##
##
       bond
#install.packages("tinytex")# - foi preciso instalar para gerar arquivo .pdf direto do RMarkdown
#library(tinytex)# para carregar o pacote tinytex, que gera arquivo .tex e certamente converte para .pd
                   Mas isso gerou uma v2.pdf no formato de uma janela do PDF, sem os marcadores do lado
#
                   Do Jeito antigo estava melhor e gravava um .pdf na pasta R_CS/Aula1 que ao abrir no
#
                   apresentou na parte esquerda da tela do Adobe todos os marcadores das secções do arq
#install.packages(c("lattice")) # é uma função composta
library(grid)# library deve ter package com comprimento 1
library(lattice)#
# Um *look* na sua **Estação de Trabalho** desta sessão do **R** versão 3.4.3
sessionInfo()
## R version 3.4.4 (2018-03-15)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 15063)
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=Portuguese_Brazil.1252 LC_CTYPE=Portuguese_Brazil.1252
## [3] LC_MONETARY=Portuguese_Brazil.1252 LC_NUMERIC=C
## [5] LC_TIME=Portuguese_Brazil.1252
##
## attached base packages:
## [1] grid
                 stats
                           graphics grDevices utils
                                                         datasets methods
## [8] base
##
## other attached packages:
## [1] FinancialMath_0.1.1
                                  FinancialInstrument_1.3.1
## [3] quantmod_0.4-12
                                  TTR_0.23-3
## [5] xts_0.10-2
                                  zoo_1.8-1
## [7] financial_0.2
                                  Matrix_1.2-13
## [9] cluster_2.0.7
                                  stringi_1.1.7
## [11] Rcpp_0.12.16
                                  bindrcpp_0.2.2
## [13] bindr_0.1.1
                                  caTools_1.17.1
## [15] htmltools_0.3.6
                                  rmarkdown_1.9
## [17] rgdal_1.2-18
                                  sp_1.2-7
## [19] memisc_0.99.14.9
                                  MASS_7.3-49
## [21] lattice_0.20-35
                                  knitr_1.20
## [23] igraph_1.2.1
                                  gdata_2.18.0
```

```
## [25] descr_1.1.4
                              sqldf_0.4-11
## [27] RSQLite_2.1.0
                            gsubfn_0.7
## [29] proto_1.0.0
                              data.table_1.10.4-3
## [31] foreign_0.8-69
## loaded via a namespace (and not attached):
## [1] compiler_3.4.4 bitops_1.0-6 tools_3.4.4 digest_0.6.15
## [5] bit_1.1-12 evaluate_0.10.1 memoise_1.1.0 pkgconfig_2.0.1
## [9] DBI_0.8 curl_3.2 yaml_2.1.18 repr_0.12.0
## [13] stringr_1.3.0 gtools_3.5.0 rprojroot_1.3-2 bit64_0.9-7
## [17] tcltk_3.4.4 blob_1.1.1
                                   magrittr_1.5
                                                  backports_1.1.2
## [21] xtable_1.8-2
                     chron_2.3-52
# Os interessados em assinar a *Lista Brasileira do R* -- [R-br] da **UFPR** devem [acessar] (http://lis)
#[
```

GERANDO UMA BD - AS ALTURAS E PESOS DA TURMA

Criando vetores: um tipo

 $\acute{\rm e}$ um fundamental do R; $\acute{\rm e}$ uma estrutura de dados que permite armazenar um conjunto de valores de um mesmo tipo sob um mesmo nome de .

Seus principais tipos são:

:

O valor NA pode ser armazenado como valor NULL em qualquer um desses tipos. A função vector() cria um vetor do R.

Seus argumentos são: mode (modo ou storage mode of an Object) e length (comprimento do).

Exemplos de uso dessa função.

Criando vetores vazios de vários tipos básicos e de um tipo especial

```
#getwd()
#setwd("~/../R_CS/Aula3")

x <- vector(mode = "character", length = 5)
y <- vector(mode = "numeric", length = 7)
z <- vector(mode = "logical", length = 4)

x

## [1] "" "" "" ""
y</pre>
```

```
## [1] FALSE FALSE FALSE FALSE
Sys.Date()
## [1] "2018-04-18"
hoje<-Sys.Date() # cria um objeto do tipo <Date>, que foi funcionalmente criado (CRAN)
hoje
## [1] "2018-04-18"
format(hoje, "%d %b %Y") # exibe a data de hoje num formato padrão ISO/ABNT
## [1] "18 abr 2018"
dezsemanas<-seq(hoje, len = 10, by = "1 week")</pre>
dez.semanas <- seq(hoje, len = 10, by = "1 week")
rm(dezsemanas)
dez.semanas
## [1] "2018-04-18" "2018-04-25" "2018-05-02" "2018-05-09" "2018-05-16"
## [6] "2018-05-23" "2018-05-30" "2018-06-06" "2018-06-13" "2018-06-20"
dez.semanas<-dez.semanas-7
dez.semanas
## [1] "2018-04-11" "2018-04-18" "2018-04-25" "2018-05-02" "2018-05-09"
## [6] "2018-05-16" "2018-05-23" "2018-05-30" "2018-06-06" "2018-06-13"
#w <- vector(mode = "Date", length = 6) # *Error*
# porque não é um parâmetro válido para o argumento *mode* da função vector()
# Criando um vetor de datas para servir de rótulos para nossa série temporal experimental
\#dez\_semanas < -seq(c("2018-04-11"), len = 10, by = "1 week") \# Error
# Porque "2018-04-11" é um tipo básico <char> e não um tipo especial <Date>.
# É preciso converter <char> em <Date>. E, claro, há uma função para isso!!!
dez semanas <- seq. Date(from = as.Date("2018-04-11"), len = 10, by = "1 week")
dez_semanas<-seq(from = as.Date("2018-04-11"), len = 10, by = "1 week")
dez semanas
## [1] "2018-04-11" "2018-04-18" "2018-04-25" "2018-05-02" "2018-05-09"
## [6] "2018-05-16" "2018-05-23" "2018-05-30" "2018-06-06" "2018-06-13"
# o NA é um valor que pode ser atribuído a uma posição de um vetor de qualquer tipo
a<-c(1:1000) # Uma composição da função c() com a função seq(), simbolizada pelos :
sum(a)
## [1] 500500
args(sum)
## function (..., na.rm = FALSE)
## NULL
a[1001] < -NA
##
      [1]
                  2
                            4
                                           7
                                                                    12
                                                                         13
             1
                       3
                                 5
                                      6
                                                8
                                                      9
                                                          10
                                                               11
##
     [14]
            14
                15
                      16
                           17
                                18
                                     19
                                          20
                                               21
                                                     22
                                                          23
                                                               24
                                                                    25
                                                                         26
     [27]
##
            27
                 28
                      29
                           30
                                31
                                     32
                                          33
                                               34
                                                     35
                                                          36
                                                               37
                                                                    38
                                                                         39
```

##	[40]	40	41	42	43	44	45	46	47	48	49	50	51	52
##	[53]	53	54	55	56	57	58	59	60	61	62	63	64	65
##	[66]	66	67	68	69	70	71	72	73	74	75	76	77	78
##	[79]	79	80	81	82	83	84	85	86	87	88	89	90	91
##	[92]	92	93	94	95	96	97	98	99	100	101	102	103	104
##	[105]	105	106	107	108	109	110	111	112	113	114	115	116	117
##	[118]	118	119	120	121	122	123	124	125	126	127	128	129	130
##	[131]	131	132	133	134	135	136	137	138	139	140	141	142	143
##	[144]	144	145	146	147	148	149	150	151	152	153	154	155	156
##	[157]	157	158	159	160	161	162	163	164	165	166	167	168	169
##	[170]	170	171	172	173	174	175	176	177	178	179	180	181	182
##	[183]	183	184	185	186	187	188	189	190	191	192	193	194	195
##	[196]	196	197	198	199	200	201	202	203	204	205	206	207	208
##	[209]	209	210	211	212	213	214	215	216	217	218	219	220	221
##	[222]	222	223	224	225	226	227	228	229	230	231	232	233	234
##	[235]	235	236	237	238	239	240	241	242	243	244	245	246	247
##	[248]	248	249	250	251	252	253	254	255	256	257	258	259	260
##	[261]	261	262	263	264	265	266	267	268	269	270	271	272	273
##	[274]	274	275	276	277	278	279	280	281	282	283	284	285	286
##	[287]	287	288	289	290	291	292	293	294	295	296	297	298	299
##	[300]	300	301	302	303	304	305	306	307	308	309	310	311	312
##	[313]	313	314	315	316	317	318	319	320	321	322	323	324	325
##	[326]	326	327	328	329	330	331	332	333	334	335	336	337	338
##	[339]	339	340	341	342	343	344	345	346	347	348	349	350	351
##	[352]	352	353	354	355	356	357	358	359	360	361	362	363	364
##	[365]	365	366	367	368	369	370	371	372	373	374	375	376	377
##	[378]	378	379	380	381	382	383	384	385	386	387	388	389	390
##	[391]	391	392	393	394	395	396	397	398	399	400	401	402	403
##	[404]	404	405	406	407	408	409	410	411	412	413	414	415	416
##	[417]	417	418	419	420	421	422	423	424	425	426	427	428	429
##	[430]	430	431	432	433	434	435	436	437	438	439	440	441	442
##	[443]	443	444	445	446	447	448	449	450	451	452	453	454	455
##	[456]	456	457	458	459	460	461	462	463	464	465	466	467	468
##	[469]	469	470	471	472	473	474	475	476	477	478	479	480	481
##	[482]	482	483	484	485	486	487	488	489	490	491	492	493	494
##	[495]	495	496	497	498	499	500	501	502	503	504	505	506	507
##	[508]	508	509	510	511	512	513	514	515	516	517	518	519	520
##	[521]	521	522	523	524	525	526	527	528	529	530	531	532	533
##	[534]	534	535	536	537	538	539	540	541	542	543	544	545	546
##	[547]	547	548	549	550	551	552	553	554	555	556	557	558	559
##	[560]	560	561	562	563	564	565	566	567	568	569	570	571	572
##	[573]	573	574	575	576	577	578	579	580	581	582	583	584	585
##	[586]	586	587	588	589	590	591	592	593	594	595	596	597	598
##	[599]	599	600	601	602	603	604	605	606	607	608	609	610	611
##	[612]	612	613	614	615	616	617	618	619	620	621	622	623 636	624
##	[625] [638]	625 638	626	627	628 641	629 642	630	631	632	633	634	635		637 650
## ##	[651]	651	639 652	640 653	654	655	643 656	644 657	645 658	646 659	647 660	648 661	649 662	663
##	[664]	664	665	666	667	668	669	670	671	672	673	674	675	676
##	[677]	677	678	679	680	681	682	683	684	685	686	687	688	689
##	[690]	690	691	692	693	694	695	696	697	698	699	700	701	702
##	[703]	703	704	705	706	707	708	709	710	711	712	713	714	715
##	[716]	716	717	718	719	720	721	722	723	724	725	726	727	728
##	[729]	729	730	731	732	733	734	735	736	737	738	739	740	741
	201	. 20	. 00		. 02	. 50		. 50	. 00		. 55	. 00	. 10	

```
##
    [742]
          742
               743
                    744
                          745
                               746
                                   747
                                         748
                                              749
                                                   750
                                                        751
                                                             752
                                                                  753
                                                                       754
##
    [755]
          755
               756
                    757
                          758
                               759
                                   760
                                         761
                                              762
                                                   763
                                                        764
                                                             765
                                                                  766
                                                                       767
##
    [768]
          768
                769
                     770
                          771
                               772
                                    773
                                         774
                                              775
                                                   776
                                                        777
                                                             778
                                                                  779
                                                                       780
                               785
                                                        790
    [781]
          781
                782
                    783
                         784
                                   786
                                         787
                                              788
                                                   789
                                                             791
                                                                  792
                                                                       793
##
##
    [794]
          794
                795
                     796
                          797
                               798
                                    799
                                         800
                                              801
                                                   802
                                                        803
                                                             804
                                                                  805
                                                                       806
    [807]
               808
                    809
                                                        816
##
          807
                          810
                               811
                                   812
                                         813
                                             814
                                                   815
                                                             817
                                                                  818
                                                                       819
    [820]
##
          820
                821
                    822
                          823
                               824
                                    825
                                         826
                                              827
                                                   828
                                                        829
                                                             830
                                                                  831
                                                                       832
    [833]
##
          833
               834
                    835
                          836
                               837
                                   838
                                         839
                                             840
                                                   841
                                                        842
                                                             843
                                                                  844
                                                                       845
##
    [846]
          846
                847
                     848
                          849
                               850
                                    851
                                         852
                                              853
                                                   854
                                                        855
                                                             856
                                                                  857
                                                                       858
                               863
##
    [859]
          859
                860
                    861
                         862
                                   864
                                         865
                                              866
                                                   867
                                                        868
                                                             869
                                                                  870
                                                                       871
##
    [872]
          872
                873
                    874
                         875
                               876
                                   877
                                         878
                                              879
                                                   880
                                                        881
                                                             882
                                                                  883
                                                                       884
    [885]
          885
               886
                    887
                         888
                               889
                                   890
                                         891
                                              892
                                                  893
                                                        894
                                                             895
                                                                  896
                                                                       897
##
##
    [898]
          898
               899
                     900
                         901
                               902
                                   903
                                         904
                                              905
                                                   906
                                                        907
                                                             908
                                                                  909
                                                                       910
    [911]
##
          911
                912
                     913
                         914
                               915
                                    916
                                         917
                                              918
                                                   919
                                                        920
                                                             921
                                                                  922
                                                                       923
##
    [924]
                925
                     926
                         927
                               928
                                    929
                                         930
                                              931
                                                   932
                                                        933
                                                             934
                                                                  935
                                                                       936
          924
##
    [937]
          937
                938
                     939
                          940
                               941
                                    942
                                         943
                                              944
                                                   945
                                                        946
                                                             947
                                                                  948
                                                                       949
##
    [950]
                    952
                         953
                               954
                                   955
                                              957
                                                   958
                                                        959
                                                                       962
          950
               951
                                         956
                                                             960
                                                                  961
##
    [963]
          963
                964
                     965
                          966
                               967
                                    968
                                         969
                                              970
                                                   971
                                                        972
                                                             973
                                                                  974
                                                                       975
    [976]
##
          976
               977
                    978
                         979
                               980
                                   981
                                         982
                                             983
                                                   984
                                                        985
                                                             986
                                                                  987
                                                                       988
##
    [989]
           989
                990
                    991
                          992
                               993
                                    994
                                         995
                                              996
                                                   997
                                                        998
                                                             999 1000
                                                                        NA
sum(a)
## [1] NA
sum(a, na.rm = TRUE) # 1 NA será removido para não indeterminar a soma de 1000 parcelas
## [1] 500500
mean(a)
## [1] NA
mean(a, na.rm = TRUE) # nem sua média
## [1] 500.5
sd(a)
## [1] NA
sd(a, na.rm = TRUE) # nem seu desvio padrão (standart desviation)
## [1] 288.8194
# CUIDADO PORQUE UM ÚNICO **NA** NUMA BD PROPAGA SUA CAPACIDADE DE IMPEDIR QUE CÁLCULOS DE ESTATÍSTICA
```

Criando vetores para receber variáveis de uma BD

```
nomes<-c("Bernard",
    "Carlos",
    "Cleuler",
    "Helber",
    "Larissa",
    "Mateus",</pre>
```

```
"Michell",
"Nayana",
"Paula",
"Rafael",
"Tatiane",
"Thiago",
"Wesley")
h < -c(1.74, 1.63, 1.77, 1.75, NA, 1.85, 1.6, NA, 1.55, 1.7, 1.63, 1.7, 1.75)
p < -c(63.8,
79.5,
81.6,
81.3,
49,
82.7,
57.6,
56.3,
72.4,
62.1,
52.6,
82.1,
81.9)
dez_semanas[1]
## [1] "2018-04-11"
nomes
    [1] "Bernard" "Carlos"
                              "Cleuler" "Helber"
                                                                         "Michell"
                                                   "Larissa" "Mateus"
    [8] "Nayana" "Paula"
                              "Rafael" "Tatiane" "Thiago"
##
                                                              "Wesley"
h
##
    [1] 1.74 1.63 1.77 1.75
                                NA 1.85 1.60
                                                NA 1.55 1.70 1.63 1.70 1.75
p
    [1] 63.8 79.5 81.6 81.3 49.0 82.7 57.6 56.3 72.4 62.1 52.6 82.1 81.9
```

Exercícios - Para Resolução em Sala

Refletir e responder às seguintes questões pragmáticas:

- 1) Qual a altura média da sua turma de R?
- 2) Qual o peso médio da sua turma de R na aula do dia 11 abr. 2018?
- 3) Qual o número médio de caracteres dos prenomes dos alunos da turma de R que mediram seus pesos no dia 11 abr. 2018? 4) Qual o número médio de caracteres dos prenomes dos alunos matriculados nesta turma de R? 5) Qual o desvio padrão das médias encontradas?
- 6) Quem está abaixo e acima da média mais ou menos 1 Desvio Padrão? 7) Calcule o IMC de cada observação do dia 11 abr. 2018.

```
# Invocando as funções mean() e sd() para uma <var> <vector> <num>
#1) Média e Desvio Padrão (#5) das alturas dos alunos:
hm<- mean(h, na.rm=TRUE)
hDP<-sd(h, na.rm=TRUE) # Desvio padrão da altura é uma medida de dispersão dessa variável
# É uma turma com 8.7 cm de dispersão em torno da altura média de 1.70 m
# São brasileiros de estatura mediana, gostam muito de..., mas...</pre>
```

```
#6) Quem está abaixo e acima da média mais ou menos 1 Desvio Padrão?
## [1] 1.697273
hDP
## [1] 0.08730303
h[h<hm-hDP | h>hm+hDP]
## [1]
       NA 1.85 1.60
                        NA 1.55
nomes[h<hm-hDP | h>hm+hDP] # Eis os outliers da estatura de nossa turma.
                 "Mateus" "Michell" NA
## [1] NA
                                                "Paula"
#2) Média e Desvio Padrão (#5) dos pesos dos alunos:
pm<- mean(p, na.rm=TRUE) # É uma uma turma de magros!!! Conclusão precipitada?
pDP<-sd(p, na.rm=TRUE)
# A média do peso da turma no dia 11 abr. 2018 é de 69.5~\mathrm{Kg}
# O Desvio Padrão dessas 13 obsevrações de peso = 12.9 Kg
#6) Quem está abaixo e acima da média mais ou menos 1 Desvio Padrão?
p[p<pm-pDP | p>pm+pDP]
## [1] 49.0 82.7 56.3 52.6
nomes[p<pm-pDP | p>pm+pDP] # Eis os outliers da nossa turma.
## [1] "Larissa" "Mateus" "Nayana" "Tatiane"
#3) Número médio de caracteres dos prenomes dos alunos da turma de R que mediram seus pesos no dia 11 a
mean(length(nomes))
## [1] 13
sd(mean(length(nomes))) # retorna um NA. Por que?
## [1] NA
nomes
## [1] "Bernard" "Carlos" "Cleuler" "Helber" "Larissa" "Mateus"
                            "Rafael" "Tatiane" "Thiago" "Wesley"
## [8] "Nayana" "Paula"
tam_nomes<-length(nomes) # cuidado porque retorna o comprimento do vetor names = 13!!!
tam_nomes<-nchar(nomes, keepNA = NA)</pre>
tam_nomes
## [1] 7 6 7 6 7 6 7 6 5 6 7 6 6
tam_nomes_media<-mean(tam_nomes)</pre>
tam_nomes_media
## [1] 6.307692
tam nomes DP
               <-sd(tam nomes)
tam_nomes_DP
## [1] 0.6304252
#6) Quem está abaixo e acima da média mais ou menos 1 Desvio Padrão?
```

tam_nomes[tam_nomes<tam_nomes_media-tam_nomes_DP | tam_nomes>tam_nomes_media+tam_nomes_DP]

```
## [1] 7 7 7 7 5 7
nomes[tam_nomes<tam_nomes_media-tam_nomes_DP | tam_nomes>tam_nomes_media+tam_nomes_DP] # Eis os nomes d
## [1] "Bernard" "Cleuler" "Larissa" "Michell" "Paula"
#7) Cálculo do IMC de cada observação do dia 11 abr. 2018.
#O cálculo do IMC é feito dividindo o peso (em quilogramas) pela altura (em metros) elevada ao quadrado
IMC < -p/h^2
IMC
   [1] 21.07280 29.92209 26.04616 26.54694
                                       NA 24.16362 22.50000
           NA 30.13528 21.48789 19.79751 28.40830 26.74286
IMC_m<- mean(IMC, na.rm=TRUE) # É uma uma turma de magros!!! Conclusão precipitada?
IMC_m # = 25.17 Kg/m2 # 0 IMC médio da turma indica ligeiramente acima do peso normal
## [1] 25.16577
IMC_DP<-sd(IMC, na.rm=TRUE)</pre>
IMC_DP\# = 3.61 Kq/m2
## [1] 3.608471
IMC[IMC<18.5 | IMC>=25]
## [1] 29.92209 26.04616 26.54694
                                       NA 30.13528 28.40830 26.74286
                               NA
## [1] "Carlos" "Cleuler" "Helber" NA
                                     NA
                                             "Paula"
                                                     "Thiago"
## [8] "Wesley"
# cut() Convert Numeric <num> to Factor <fctr>
# CUIDADO PORQUE UM ÚNICO ERRO DE SINTAXE FAZ COM QUE O COMPILADOR INTERROMPA A EXECUÇÃO DO SRCIPT (CÓD
Exercíco da Aula n. 2: 8) Redija e salve um script para a função linear em R. Gere um gráfico para essa
função no intervalo [0,5] e salve-o no formato .pdf.
# TENTATIVAS E ERROS PARA GERAR UM GRÁFICO y=f(x)=a.x+b
# IMPORTANDO UM ARQUIVO FEITO PELO BERNARD E CONVERTENDO-O DE UTF-8 PARA WINDOWS-1252
library(descr)
library(stats)
getwd()
## [1] "C:/Users/cleuler-bn/Documents/R_CS/Aula3"
\#linhas < -readLines("Plottar_grafico.R")
#linhas<-fromUTF8(linhas)</pre>
#writeLines(linhas, "Plotar_grafico-win.R")
#Script desenvolvido para criar graficos
#Criar função da equação da reta > y = ax+b
#-----Parametros-----
```

```
# a = Coeficiente linear
    b = Coeficiente Angular
     x = Vetor de valores no Eixo X
     y = Vetor de valores no Eixo Y
#Cria funcao que representa a equacao da reta
linear <- function(a,b,x){</pre>
 y \leftarrow a*x + b
 return(y)
a <- 1.5 #Coeficiente linear
b <- 0.5 #Coeficiente angular
#x < 1:10 #Vetor de valores do Eixo X # HAVIA UM ERROR. NÃO DE SINTAXE, MAS DE PROGRAMAÇÃO
x <- 1:10 #Vetor de valores do Eixo X
#y <- linear(x) # OCORREU OUTRO ERROR. AO CHAMAR A FUNÇÃO linear()
y <- linear(a,b,x) # é preciso repassar os parâmetros dos argumentos a e b da função
print(y) #Mostrar os valores do Eixo Y
## [1] 2.0 3.5 5.0 6.5 8.0 9.5 11.0 12.5 14.0 15.5
#Parametros do plot
    main = Titulo do grafico
     ylab = Nome do Eixo Y
     xlab = Nome do Eixo X
      type = Tipo de plotagem > l = linha, p = pontos, h = histograma
plot(x,y,main='Gráfico Curso R',ylab='Eixo y',xlab='Eixo x',type='o')
```

Gráfico Curso R


```
# Redesenhando o mesmo Gráfico
x <- 0:10 #Vetor de valores do Eixo X
y <- linear(a,b,x) # é preciso repassar os parâmetros dos argumentos a e b da função
print(y) #Mostrar os valores do Eixo Y

## [1] 0.5 2.0 3.5 5.0 6.5 8.0 9.5 11.0 12.5 14.0 15.5
y1 <- linear(2,0,x)
y2 <- linear(0.5,0,x)

plot.new()
plot(x,y,xlim=c(0,10),ylim=c(0,16),main='Gráfico Curso R',ylab='y',xlab='x',type='o')</pre>
```

Gráfico Curso R

#lines $(x,y1,\ col="blue")$ # Error: plot.new has not been called yet #lines $(x,y2,\ col="red")$

Exercícios remanescentes da Aula n. 01:

9) Apresente duas funções lineraes que sejam inversas. Plote-as juntamente com a função identidade. 10) Descrever os tipos de variáveis geradas na Job Area e suas características.

Trabalho Final do curso: Na primeira aula registrar a altura declarada e medir e registrar o peso de cada aluno, que poderá identificar-se com um apelido.

Em cada aula medir e registrar numa BD o peso de cada aluno numa sequencia aleatória.

Calcular o IMC de cada observação e apontar para os IMC's abaixo ou acima da faixa recomendada pela literatura médica.

Calcular a média e o desvio padrão do IMC da população observada; detectar os pontos outliers.

Gerar um série temporal, com período de 7 dias, ao longo dos nossos 10 encontros.

Tratar eventuais NA's.

Descrever a variação do IMC médio da turma ao longo do curso, dado que será feito um apelo geral para aqueles acima da média para tentarem reduzi-lo nas próximas 10 semanas.

Fazer uma regressão linear do IMC médio em função do tempo analisando se ele sofreu alguma variação estatisticamente significativa.

Inferir qual resultado seria alcançado se o curso durasse 20 semanas.

Objetos

Vetores

Conjunto de elementos do mesmo tipo (logical, numeric, integer, double, character)

```
1. A forma mais simples de se criar um vetor é usar a função de concatenação c().
```

```
value.num = c(3,4,2,6,20)
value.num
## [1] 3 4 2 6 20
value.char = c("koala", "kangaroo")
value.char
## [1] "koala"
                  "kangaroo"
value.logical = c(FALSE, FALSE, TRUE, TRUE)
value.logical
## [1] FALSE FALSE TRUE TRUE
  2. Segunda maneira de criar vetor no R: usando a função scan
values = scan(text="
2
3
4
5"
)
values
## [1] 2 3 4 5
  3. Outra opção usando comando rep
rep(1,5)
## [1] 1 1 1 1 1
rep(c(1,2),3)
## [1] 1 2 1 2 1 2
rep(c(1,6),each=3)
## [1] 1 1 1 6 6 6
rep(c(1,6),c(3,5))
## [1] 1 1 1 6 6 6 6 6
  4. Outra opção usando comando seq
seq(from=1,to=5)
## [1] 1 2 3 4 5
```

```
seq(from=1, to=5, by=0.1)
## [1] 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6
## [18] 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3
## [35] 4.4 4.5 4.6 4.7 4.8 4.9 5.0
seq(from=1, to=5, length=10)
## [1] 1.000000 1.444444 1.888889 2.333333 2.777778 3.222222 3.666667
## [8] 4.111111 4.555556 5.000000
rep(seq(from=1, to=5, length=10),each=3)
## [1] 1.000000 1.000000 1.000000 1.444444 1.444444 1.444444 1.888889
## [8] 1.888889 1.888889 2.333333 2.333333 2.777778 2.777778
## [15] 2.777778 3.222222 3.222222 3.666667 3.666667 3.666667
## [22] 4.111111 4.111111 4.111111 4.555556 4.555556 4.555556 5.000000
## [29] 5.000000 5.000000
  5. Outra opção usando comando:
1:5
## [1] 1 2 3 4 5
c(1:5,10)
## [1] 1 2 3 4 5 10
Operações com Vetores
x = 1:4
y = 5:8
x + y
## [1] 6 8 10 12
2*x +1
## [1] 3 5 7 9
х * у
## [1] 5 12 21 32
```

```
## [1] 0.2000000 0.3333333 0.4285714 0.5000000 log(x)
```

x / y

[1] 0.0000000 0.6931472 1.0986123 1.3862944 log(x,10)

```
## [1] 0.0000000 0.3010300 0.4771213 0.6020600
sum(x)
```

```
## [1] 10
mean(x)
## [1] 2.5
prod(x)
## [1] 24
var(x)
## [1] 1.666667
# O que é um vetor do tipo factor
# usado para variáveis categóricas
# Que apresenta vávios Levels (níveis)
# Comumente cada nível recebe um nome gerando um conjunto denominado Labels
# Exemplo: No nosso estudo de caso seria interessante separar os dados amostrado segundo o sexo biológi
s # um <vctr> do tipo <chr>
## [1] "m" "m" "m" "f" "m" "f" "f" "f" "m" "f" "m"
mode(s)
## [1] "character"
class(s)
## [1] "character"
length(s)
## [1] 13
summary(s)
                        Mode
##
     Length
              Class
##
        13 character character
str(s)
## chr [1:13] "m" "m" "m" "f" "m" "f" "f" "f" "f" "m" "f" "m"
dput(s)
## "m")
# Transformando numa variável factor <fctr>
s<-as.factor(s) # Destroi <chr> e recria o vetor s como um <fctr>
## [1] mmmmfmmffmfmm
## Levels: f m
mode(s) # é um vetor do tipo <numeric>
```

[1] "numeric"

```
class(s) # é um factor <fctr>, que é um caso especial de <numeric> indexado a Labels
## [1] "factor"
length(s)
## [1] 13
summary(s)
## f m
## 4 9
str(s) # investigando a structure da variável s do tipo <fctr>
## Factor w/ 2 levels "f", "m": 2 2 2 2 1 2 2 1 1 2 ...
dput(s)
## structure(c(2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L
## ), .Label = c("f", "m"), class = "factor")
table(s) # retorna um vetor tipo <fctr> com a frequência de cada um dos níveis (Levels) ou categorias d
## s
## f m
## 4 9
# Essa mesma função é usada para retornar tabulações cruzadas (cross table) de duas variáveis categóric
max(h, na.rm = TRUE)
## [1] 1.85
hcat \leftarrow cut(h,c(0,1.6,1.7,2.0),labels = c("Baixo","Médio","Alto"))
# função cat() Convert Numeric to Factor
str(hcat)
## Factor w/ 3 levels "Baixo", "Médio",...: 3 2 3 3 NA 3 1 NA 1 2 ...
dput(hcat)
## structure(c(3L, 2L, 3L, 3L, NA, 3L, 1L, NA, 1L, 2L, 2L, 2L, 3L
## ), .Label = c("Baixo", "Médio", "Alto"), class = "factor")
table(hcat,s)
##
## hcat
         f m
##
    Baixo 1 1
    Médio 1 3
##
    Alto 05
##
hm
## [1] 1.697273
ct<-table(hcat,s)
prop.table(ct,1)
## hcat
              f
   Baixo 0.50 0.50
```

```
Médio 0.25 0.75
##
    Alto 0.00 1.00
##
prop.table(ct,2)
##
         S
## hcat
                  f
##
    Baixo 0.5000000 0.1111111
##
    Médio 0.5000000 0.3333333
    Alto 0.0000000 0.5555556
##
prop.table(ct)
##
         S
## hcat
                   f
    Baixo 0.09090909 0.09090909
##
    Médio 0.09090909 0.27272727
    Alto 0.00000000 0.45454545
100*prop.table(ct)
##
## hcat
                  f
    Baixo 9.090909 9.090909
   Médio 9.090909 27.272727
##
          0.000000 45.454545
# Analisando o resultados dessas cross tables p.u. vê-se que o IMC deve ser categorizado em feminino (X
# Calculando a altura média das observações s == f
s=="f"
## [1] FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE
## [12] FALSE FALSE
h[s=="f"]
## [1] NA NA 1.55 1.63
mean(h[s="f"], na.rm=TRUE) # é média da estatura do sexo feminino = 1.59 m
## [1] 1.59
mean(h[s=="m"], na.rm=TRUE) # é média da estatura do sexo masculino = 1.72 m
## [1] 1.721111
# Exibindo essa diferença graficamente
boxplot(h~s) # homens são, em média, mais alto que as mulheres
```


boxplot(p~s) # homens são, em média, mais pesados que as mulheres


```
# Esses gráficos corroboram uma Hipótese de estratificação f & m para analisar o IMC?????
# Duvidar é preciso.
# Transformar sua dúvida nums hipótese testável.
# E testar adequadamente a Hipótese **contra** as observações colhidas no campo.

boxplot(IMC-s)
```


Matriz

Conjunto de elementos dispostos em linhas e colunas, em que todos os elementos são do mesmo tipo

```
mat.num = matrix(c(1:16),4,4)
mat.num
        [,1] [,2] [,3] [,4]
##
## [1,]
                5
                          13
           1
                      9
## [2,]
           2
                6
                    10
                          14
## [3,]
           3
                7
                    11
                          15
## [4,]
                8
                    12
                          16
mat.char = matrix(LETTERS[1:4],2,2)
mat.char
        [,1] [,2]
## [1,] "A"
## [2,] "B"
```

Manipulando Matrizes

```
#Criando nomes para as linhas de uma matriz
rownames(mat.num) = c("Sao Paulo", "Americana", "Piracicaba", "Madson" )
colnames(mat.num) = 1:4
mat.num
##
          1234
## Sao Paulo 1 5 9 13
## Americana 2 6 10 14
## Piracicaba 3 7 11 15
## Madson 4 8 12 16
#Multiplicação elemento a elemento
mat.num2 = diag(seq(10,40,by=10))
mat.num2
     [,1] [,2] [,3] [,4]
##
## [1,] 10 0 0 0
## [2,]
      0
            20 0
      0
## [3,]
            0 30
## [4,]
      0
           0
mat.num3 = mat.num * mat.num2
mat.num3
            1 2 3 4
## Sao Paulo 10 0 0 0
## Americana 0 120 0 0
## Piracicaba 0 0 330 0
## Madson 0 0 0640
#Multiplicação de Matrizes
iden = diag(4)
iden
    [,1] [,2] [,3] [,4]
## [1,]
       1 0 0
## [2,]
        0
                 0
             1
## [3,]
       0
           0 1 0
## [4,]
mat.num%*%iden
           [,1] [,2] [,3] [,4]
## Sao Paulo
           1 5 9 13
## Americana
             2 6
                    10
                         14
## Piracicaba 3 7 11
                        15
            4 8 12
## Madson
                        16
```

```
#Acessando elementos das matrizes
#Um elemento
mat.num[1,1]
## [1] 1
#Linhas
mat.num[1,]
  1 2
         3 4
   1 5
          9 13
#Colunas
mat.num[,3]
    Sao Paulo
               Americana Piracicaba
                                        Madson
##
                      10
                                 11
                                             12
#Sub Matrizes
mat.num[c(1,3,4), c(2,1,4)]
##
              2 1 4
## Sao Paulo 5 1 13
## Piracicaba 7 3 15
## Madson
              8 4 16
mat.num[c(T,F,T,T), c(T,T,F,T)]
##
              1 2 4
## Sao Paulo 1 5 13
## Piracicaba 3 7 15
## Madson
              4 8 16
mat.num[-c(1,3,4), -c(2,1,4)]
## [1] 10
```

Data.frames

São similares às matrizes no entanto permite que as colunas tenham diferentes tipos

```
data(iris)
iris
```

```
Sepal.Length Sepal.Width Petal.Length Petal.Width
##
                                                                Species
## 1
                 5.1
                              3.5
                                           1.4
                                                        0.2
                                                                 setosa
## 2
                 4.9
                              3.0
                                           1.4
                                                        0.2
                                                                 setosa
## 3
                 4.7
                              3.2
                                           1.3
                                                        0.2
                                                                 setosa
## 4
                 4.6
                              3.1
                                           1.5
                                                        0.2
                                                                 setosa
## 5
                 5.0
                              3.6
                                           1.4
                                                        0.2
                                                                 setosa
## 6
                 5.4
                              3.9
                                           1.7
                                                        0.4
                                                                 setosa
## 7
                 4.6
                              3.4
                                           1.4
                                                        0.3
                                                                 setosa
## 8
                 5.0
                              3.4
                                           1.5
                                                        0.2
                                                                 setosa
## 9
                 4.4
                              2.9
                                           1.4
                                                        0.2
                                                                 setosa
```

##	10	4.9	3.1	1.5	0.1	setosa
##	11	5.4	3.7	1.5	0.2	setosa
##	12	4.8	3.4	1.6	0.2	setosa
##	13	4.8	3.0	1.4	0.1	setosa
##	14	4.3	3.0	1.1	0.1	setosa
##	15	5.8	4.0	1.2	0.2	setosa
##	16	5.7	4.4	1.5	0.4	setosa
##	17	5.4	3.9	1.3	0.4	setosa
##	18	5.1	3.5	1.4	0.3	setosa
##	19	5.7	3.8	1.7	0.3	setosa
##	20	5.1	3.8	1.5	0.3	
						setosa
##	21	5.4	3.4	1.7	0.2	setosa
##	22	5.1	3.7	1.5	0.4	setosa
##	23	4.6	3.6	1.0	0.2	setosa
##	24	5.1	3.3	1.7	0.5	setosa
##	25	4.8	3.4	1.9	0.2	setosa
##	26	5.0	3.0	1.6	0.2	setosa
##	27	5.0	3.4	1.6	0.4	setosa
##	28	5.2	3.5	1.5	0.2	setosa
##	29	5.2	3.4	1.4	0.2	setosa
##	30	4.7	3.2	1.6	0.2	setosa
##	31	4.8	3.1	1.6	0.2	setosa
##	32	5.4	3.4	1.5	0.4	setosa
##	33	5.2	4.1	1.5	0.1	setosa
##	34	5.5	4.2	1.4	0.2	setosa
##	35	4.9	3.1	1.5	0.2	setosa
##	36	5.0	3.2	1.2	0.2	setosa
##	37	5.5	3.5	1.3	0.2	setosa
##	38	4.9	3.6	1.4	0.1	setosa
##	39	4.4	3.0	1.3	0.2	setosa
##	40	5.1	3.4	1.5	0.2	setosa
##	41	5.0	3.5	1.3	0.3	setosa
##	42	4.5	2.3	1.3	0.3	setosa
##	43		3.2	1.3	0.3	setosa
		4.4				
##	44	5.0	3.5	1.6	0.6	setosa
	45	5.1	3.8	1.9	0.4	setosa
##		4.8	3.0	1.4	0.3	setosa
##		5.1	3.8	1.6	0.2	setosa
##		4.6	3.2	1.4	0.2	setosa
##		5.3	3.7	1.5	0.2	setosa
	50	5.0	3.3	1.4	0.2	setosa
	51	7.0	3.2	4.7	1.4 ver	
	52	6.4	3.2	4.5	1.5 ver	
	53	6.9	3.1	4.9	1.5 ver	sicolor
##	54	5.5	2.3	4.0	1.3 ver	sicolor
##	55	6.5	2.8	4.6	1.5 ver	sicolor
##	56	5.7	2.8	4.5	1.3 ver	sicolor
##	57	6.3	3.3	4.7	1.6 ver	sicolor
##	58	4.9	2.4	3.3	1.0 ver	sicolor
##	59	6.6	2.9	4.6	1.3 ver	sicolor
##	60	5.2	2.7	3.9	1.4 ver	sicolor
##	61	5.0	2.0	3.5	1.0 ver	sicolor
##	62	5.9	3.0	4.2	1.5 ver	sicolor
##		6.0	2.2	4.0	1.0 ver	sicolor

## 64	6.1	2.9	4.7	1.4 versicolor
## 65	5.6	2.9	3.6	1.3 versicolor
## 66	6.7	3.1	4.4	1.4 versicolor
## 67	5.6	3.0	4.5	1.5 versicolor
## 68	5.8	2.7	4.1	1.0 versicolor
## 69	6.2	2.2	4.5	1.5 versicolor
## 70	5.6	2.5	3.9	1.1 versicolor
## 71	5.9	3.2	4.8	1.8 versicolor
## 72	6.1	2.8	4.0	1.3 versicolor
## 73	6.3	2.5	4.9	1.5 versicolor
## 74	6.1	2.8	4.7	1.2 versicolor
## 75	6.4	2.9	4.3	1.3 versicolor
## 76	6.6	3.0	4.4	1.4 versicolor
## 70 ## 77	6.8	2.8	4.4	1.4 versicolor
## 78	6.7	3.0	5.0	1.7 versicolor
## 79	6.0	2.9	4.5	1.5 versicolor
## 80	5.7	2.6	3.5	1.0 versicolor
## 81	5.5	2.4	3.8	1.1 versicolor
## 82	5.5	2.4	3.7	1.0 versicolor
## 83	5.8	2.7	3.9	1.2 versicolor
## 84	6.0	2.7	5.1	1.6 versicolor
## 85	5.4	3.0	4.5	1.5 versicolor
## 86	6.0	3.4	4.5	1.6 versicolor
## 87	6.7	3.1	4.7	1.5 versicolor
## 88	6.3	2.3	4.4	1.3 versicolor
## 89	5.6	3.0	4.1	1.3 versicolor
## 90	5.5	2.5	4.0	1.3 versicolor
## 91	5.5	2.6	4.4	1.2 versicolor
## 92	6.1	3.0	4.6	1.4 versicolor
## 93	5.8	2.6	4.0	1.2 versicolor
## 94	5.0	2.3	3.3	1.0 versicolor
## 95	5.6	2.7	4.2	1.3 versicolor
## 96	5.7	3.0	4.2	1.2 versicolor
## 97	5.7	2.9	4.2	1.3 versicolor
## 98	6.2	2.9	4.3	1.3 versicolor
## 99	5.1	2.5	3.0	1.1 versicolor
## 100	5.7	2.8	4.1	1.3 versicolor
## 101	6.3	3.3	6.0	2.5 virginica
## 102	5.8	2.7	5.1	1.9 virginica
## 103	7.1	3.0	5.9	2.1 virginica
## 104	6.3	2.9	5.6	1.8 virginica
## 105	6.5	3.0	5.8	2.2 virginica
## 106	7.6	3.0	6.6	2.1 virginica
## 107	4.9	2.5	4.5	1.7 virginica
## 107	7.3	2.9	6.3	1.8 virginica
## 109	6.7	2.5	5.8	•
				1.8 virginica
	7.2	3.6	6.1	2.5 virginica
## 111	6.5	3.2	5.1	2.0 virginica
## 112	6.4	2.7	5.3	1.9 virginica
## 113	6.8	3.0	5.5	2.1 virginica
## 114	5.7	2.5	5.0	2.0 virginica
## 115	5.8	2.8	5.1	2.4 virginica
## 116	6.4	3.2	5.3	2.3 virginica
## 117	6.5	3.0	5.5	1.8 virginica

```
## 118
                7.7
                            3.8
                                          6.7
                                                      2.2 virginica
## 119
                7.7
                            2.6
                                          6.9
                                                      2.3 virginica
## 120
                6.0
                            2.2
                                          5.0
                                                      1.5 virginica
## 121
                6.9
                            3.2
                                          5.7
                                                      2.3 virginica
## 122
                5.6
                            2.8
                                          4.9
                                                      2.0 virginica
## 123
                7.7
                            2.8
                                          6.7
                                                      2.0 virginica
## 124
                6.3
                            2.7
                                          4.9
                                                      1.8 virginica
## 125
                6.7
                            3.3
                                          5.7
                                                      2.1 virginica
## 126
                7.2
                            3.2
                                          6.0
                                                      1.8
                                                           virginica
## 127
                6.2
                                          4.8
                            2.8
                                                      1.8 virginica
## 128
                6.1
                            3.0
                                          4.9
                                                      1.8 virginica
## 129
                6.4
                            2.8
                                          5.6
                                                      2.1 virginica
## 130
                7.2
                            3.0
                                          5.8
                                                      1.6
                                                           virginica
## 131
                7.4
                            2.8
                                          6.1
                                                          virginica
                                                      1.9
## 132
                7.9
                            3.8
                                          6.4
                                                      2.0 virginica
## 133
                6.4
                            2.8
                                          5.6
                                                      2.2 virginica
## 134
                6.3
                            2.8
                                          5.1
                                                      1.5 virginica
## 135
                6.1
                            2.6
                                          5.6
                                                      1.4 virginica
## 136
                7.7
                            3.0
                                          6.1
                                                      2.3 virginica
## 137
                6.3
                            3.4
                                          5.6
                                                      2.4 virginica
## 138
                6.4
                            3.1
                                          5.5
                                                      1.8 virginica
## 139
                6.0
                            3.0
                                          4.8
                                                      1.8 virginica
## 140
                6.9
                            3.1
                                                      2.1 virginica
                                          5.4
## 141
                6.7
                            3.1
                                          5.6
                                                      2.4 virginica
## 142
                6.9
                            3.1
                                          5.1
                                                      2.3 virginica
## 143
                5.8
                            2.7
                                          5.1
                                                      1.9
                                                           virginica
## 144
                6.8
                            3.2
                                          5.9
                                                      2.3 virginica
## 145
                6.7
                            3.3
                                          5.7
                                                      2.5
                                                           virginica
## 146
                6.7
                            3.0
                                          5.2
                                                      2.3
                                                           virginica
## 147
                            2.5
                6.3
                                          5.0
                                                      1.9
                                                           virginica
## 148
                6.5
                            3.0
                                          5.2
                                                      2.0 virginica
## 149
                6.2
                            3.4
                                          5.4
                                                      2.3 virginica
## 150
                5.9
                                          5.1
                            3.0
                                                      1.8 virginica
```

iris\$Sepal.Length

```
## [1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9 5.4 4.8 4.8 4.3 5.8 5.7 5.4 ## [18] 5.1 5.7 5.1 5.4 5.1 4.6 5.1 4.8 5.0 5.0 5.2 5.2 4.7 4.8 5.4 5.2 5.5 ## [35] 4.9 5.0 5.5 4.9 4.4 5.1 5.0 4.5 4.4 5.0 5.1 4.8 5.1 4.6 5.3 5.0 7.0 ## [52] 6.4 6.9 5.5 6.5 5.7 6.3 4.9 6.6 5.2 5.0 5.9 6.0 6.1 5.6 6.7 5.6 5.8 ## [69] 6.2 5.6 5.9 6.1 6.3 6.1 6.4 6.6 6.8 6.7 6.0 5.7 5.5 5.5 5.8 6.0 5.4 ## [86] 6.0 6.7 6.3 5.6 5.5 5.5 6.1 5.8 5.0 5.6 5.7 5.7 6.2 5.1 5.7 6.3 5.8 ## [103] 7.1 6.3 6.5 7.6 4.9 7.3 6.7 7.2 6.5 6.4 6.8 5.7 5.8 6.4 6.5 7.7 7.7 ## [120] 6.0 6.9 5.6 7.7 6.3 6.7 7.2 6.2 6.1 6.4 7.2 7.4 7.9 6.4 6.3 6.1 7.7 ## [137] 6.3 6.4 6.0 6.9 6.7 6.9 5.8 6.8 6.7 6.7 6.3 6.5 6.2 5.9
```

```
iris$Renato = TRUE
```

iris

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species	Renato
##	1	5.1	3.5	1.4	0.2	setosa	TRUE
##	2	4.9	3.0	1.4	0.2	setosa	TRUE
##	3	4.7	3.2	1.3	0.2	setosa	TRUE
##	4	4.6	3.1	1.5	0.2	setosa	TRUE
##	5	5.0	3.6	1.4	0.2	setosa	TRUE

## 6	5.4	3.9	1.7	0.4	setosa	TRUE
## 7	4.6	3.4	1.4	0.3	setosa	TRUE
## 8	5.0	3.4	1.5	0.2	setosa	TRUE
## 9	4.4	2.9	1.4	0.2	setosa	TRUE
## 10	4.9	3.1	1.5	0.1	setosa	TRUE
## 11	5.4	3.7	1.5	0.2	setosa	TRUE
## 12	4.8	3.4	1.6	0.2	setosa	TRUE
## 13	4.8	3.0	1.4	0.1	setosa	TRUE
## 14	4.3	3.0	1.1	0.1	setosa	TRUE
## 15	5.8	4.0	1.2	0.2	setosa	TRUE
## 16	5.7	4.4	1.5	0.4	setosa	TRUE
## 17	5.4	3.9	1.3	0.4	setosa	TRUE
## 18	5.1	3.5	1.4	0.3	setosa	TRUE
## 19	5.7	3.8	1.7	0.3	setosa	TRUE
## 20	5.1	3.8	1.5	0.3	setosa	TRUE
## 21	5.4	3.4	1.7	0.2	setosa	TRUE
## 22	5.1	3.7	1.5	0.4	setosa	TRUE
## 23	4.6	3.6	1.0	0.2	setosa	TRUE
## 24	5.1	3.3	1.7	0.5	setosa	TRUE
## 25	4.8	3.4	1.9	0.2	setosa	TRUE
## 26	5.0	3.0	1.6	0.2	setosa	TRUE
## 27	5.0	3.4	1.6	0.4	setosa	TRUE
## 28	5.2	3.5	1.5	0.2	setosa	TRUE
## 29	5.2	3.4	1.4	0.2	setosa	TRUE
## 30	4.7	3.2	1.6	0.2	setosa	TRUE
## 31	4.8	3.1	1.6	0.2	setosa	TRUE
## 32	5.4	3.4	1.5	0.4	setosa	TRUE
## 33	5.2	4.1	1.5	0.1	setosa	TRUE
## 34	5.5	4.2	1.4	0.2	setosa	TRUE
## 35	4.9	3.1	1.5	0.2	setosa	TRUE
## 36	5.0	3.2	1.2	0.2	setosa	TRUE
## 37	5.5	3.5	1.3	0.2	setosa	TRUE
## 38	4.9	3.6	1.4	0.1	setosa	TRUE
## 39	4.4	3.0	1.3	0.2	setosa	TRUE
## 40	5.1	3.4	1.5	0.2	setosa	TRUE
## 41	5.0	3.5	1.3	0.3	setosa	TRUE
## 42	4.5	2.3	1.3	0.3	setosa	TRUE
## 43	4.4	3.2	1.3	0.2	setosa	TRUE
## 44	5.0	3.5	1.6	0.6	setosa	TRUE
## 45	5.1	3.8	1.9	0.4	setosa	TRUE
## 46	4.8	3.0	1.4	0.3	setosa	TRUE
## 47	5.1	3.8	1.6	0.2	setosa	TRUE
## 48	4.6	3.2	1.4	0.2	setosa	TRUE
## 49	5.3	3.7	1.5	0.2	setosa	TRUE
## 50	5.0	3.3	1.4	0.2	setosa	TRUE
## 51	7.0	3.2	4.7	1.4 ver	sicolor	TRUE
## 52	6.4	3.2	4.5	1.5 ver	sicolor	TRUE
## 53	6.9	3.1	4.9	1.5 ver	sicolor	TRUE
## 54	5.5	2.3	4.0	1.3 ver	sicolor	TRUE
## 55	6.5	2.8	4.6	1.5 ver	sicolor	TRUE
## 56	5.7	2.8	4.5	1.3 ver	sicolor	TRUE
## 57	6.3	3.3	4.7	1.6 ver	sicolor	TRUE
## 58	4.9	2.4	3.3	1.0 ver	sicolor	TRUE
## 59	6.6	2.9	4.6	1.3 ver	sicolor	TRUE

##		5.2	2.7	3.9	1.4 versicolor	TRUE
##	61	5.0	2.0	3.5	1.0 versicolor	TRUE
##	62	5.9	3.0	4.2	1.5 versicolor	TRUE
##	63	6.0	2.2	4.0	1.0 versicolor	TRUE
##	64	6.1	2.9	4.7	1.4 versicolor	TRUE
##	65	5.6	2.9	3.6	1.3 versicolor	TRUE
	66	6.7	3.1	4.4	1.4 versicolor	TRUE
	67	5.6	3.0	4.5	1.5 versicolor	TRUE
	68	5.8	2.7	4.1	1.0 versicolor	TRUE
	69	6.2	2.2	4.5	1.5 versicolor	TRUE
	70	5.6	2.5	3.9	1.1 versicolor	TRUE
	71	5.9	3.2	4.8	1.8 versicolor	TRUE
	72	6.1	2.8	4.0	1.3 versicolor	TRUE
	73	6.3	2.5	4.9	1.5 versicolor	TRUE
	74	6.1	2.8	4.7	1.2 versicolor	TRUE
	75	6.4	2.9	4.3	1.3 versicolor	TRUE
##	76	6.6	3.0	4.4	1.4 versicolor	TRUE
##	77	6.8	2.8	4.8	1.4 versicolor	TRUE
	78	6.7	3.0	5.0	1.7 versicolor	TRUE
##	79	6.0	2.9	4.5	1.5 versicolor	TRUE
##	80	5.7	2.6	3.5	1.0 versicolor	TRUE
##	81	5.5	2.4	3.8	1.1 versicolor	TRUE
##	82	5.5	2.4	3.7	1.0 versicolor	TRUE
##	83	5.8	2.7	3.9	1.2 versicolor	TRUE
##	84	6.0	2.7	5.1	1.6 versicolor	TRUE
	85	5.4	3.0	4.5	1.5 versicolor	TRUE
	86	6.0	3.4	4.5	1.6 versicolor	TRUE
	87	6.7	3.1	4.7	1.5 versicolor	TRUE
	88	6.3	2.3	4.4	1.3 versicolor	TRUE
	89	5.6	3.0	4.1	1.3 versicolor	TRUE
	90	5.5	2.5	4.0	1.3 versicolor	TRUE
	91	5.5	2.6	4.4	1.2 versicolor	TRUE
	92	6.1	3.0	4.6	1.4 versicolor	TRUE
	93	5.8	2.6	4.0	1.2 versicolor	TRUE
	94	5.0	2.3	3.3	1.0 versicolor	TRUE
	95	5.6	2.7	4.2	1.3 versicolor	TRUE
##		5.7	3.0	4.2	1.2 versicolor	TRUE
##	97	5.7	2.9	4.2	1.3 versicolor	TRUE
##	98	6.2	2.9	4.3	1.3 versicolor	TRUE
##	99	5.1	2.5	3.0	1.1 versicolor	TRUE
##	100	5.7	2.8	4.1	1.3 versicolor	TRUE
##	101	6.3	3.3	6.0	2.5 virginica	TRUE
##	102	5.8	2.7	5.1	1.9 virginica	TRUE
	103	7.1	3.0	5.9	2.1 virginica	TRUE
	104	6.3	2.9	5.6	1.8 virginica	TRUE
	105	6.5	3.0	5.8	2.2 virginica	TRUE
	106	7.6	3.0	6.6	2.1 virginica	TRUE
	107	4.9	2.5	4.5	1.7 virginica	TRUE
	108	7.3	2.9	6.3	1.8 virginica	TRUE
					•	
	109	6.7	2.5	5.8	1.8 virginica	TRUE
	110	7.2	3.6	6.1	2.5 virginica	TRUE
	111	6.5	3.2	5.1	2.0 virginica	TRUE
	112	6.4	2.7	5.3	1.9 virginica	TRUE
##	113	6.8	3.0	5.5	2.1 virginica	TRUE

##	114	5.7	2.5	5.0	2.0	virginica	TRUE
##	115	5.8	2.8	5.1	2.4	virginica	TRUE
##	116	6.4	3.2	5.3	2.3	virginica	TRUE
##	117	6.5	3.0	5.5	1.8	virginica	TRUE
##	118	7.7	3.8	6.7	2.2	virginica	TRUE
##	119	7.7	2.6	6.9	2.3	virginica	TRUE
##	120	6.0	2.2	5.0	1.5	virginica	TRUE
##	121	6.9	3.2	5.7	2.3	virginica	TRUE
##	122	5.6	2.8	4.9	2.0	virginica	TRUE
##	123	7.7	2.8	6.7	2.0	virginica	TRUE
##	124	6.3	2.7	4.9	1.8	virginica	TRUE
##	125	6.7	3.3	5.7	2.1	virginica	TRUE
##	126	7.2	3.2	6.0	1.8	virginica	TRUE
##	127	6.2	2.8	4.8	1.8	virginica	TRUE
##	128	6.1	3.0	4.9	1.8	virginica	TRUE
##	129	6.4	2.8	5.6	2.1	virginica	TRUE
##	130	7.2	3.0	5.8	1.6	virginica	TRUE
##	131	7.4	2.8	6.1	1.9	virginica	TRUE
##	132	7.9	3.8	6.4	2.0	virginica	TRUE
##	133	6.4	2.8	5.6	2.2	virginica	TRUE
##	134	6.3	2.8	5.1	1.5	virginica	TRUE
##	135	6.1	2.6	5.6	1.4	virginica	TRUE
##	136	7.7	3.0	6.1	2.3	virginica	TRUE
##	137	6.3	3.4	5.6	2.4	virginica	TRUE
##	138	6.4	3.1	5.5	1.8	virginica	TRUE
##	139	6.0	3.0	4.8	1.8	virginica	TRUE
##	140	6.9	3.1	5.4	2.1	virginica	TRUE
##	141	6.7	3.1	5.6	2.4	virginica	TRUE
##	142	6.9	3.1	5.1	2.3	virginica	TRUE
##	143	5.8	2.7	5.1	1.9	virginica	TRUE
##	144	6.8	3.2	5.9	2.3	virginica	TRUE
##	145	6.7	3.3	5.7	2.5	virginica	TRUE
##	146	6.7	3.0	5.2	2.3	virginica	TRUE
##	147	6.3	2.5	5.0	1.9	virginica	TRUE
##	148	6.5	3.0	5.2	2.0	virginica	TRUE
##	149	6.2	3.4	5.4	2.3	virginica	TRUE
##	150	5.9	3.0	5.1	1.8	virginica	TRUE

Arrays

São vetores formados por dataframes, "matrizes que permitem que suas colunas tenham diferentes tipos de variáveis etc.

```
# Construindo um exemplo
a < - array(1:50, dim = c(2,5,5))
## , , 1
##
##
        [,1] [,2] [,3] [,4] [,5]
                          7
## [1,]
           1
               3
                     5
## [2,]
           2
                4
                     6
                          8
                             10
##
```

```
## , , 2
##
##
         [,1] [,2] [,3] [,4] [,5]
## [1,]
           11
                13
                      15
                           17
                                 19
## [2,]
           12
                14
                      16
                           18
                                 20
##
## , , 3
##
         [,1] [,2] [,3] [,4] [,5]
##
## [1,]
                23
                      25
                                 29
           21
                           27
## [2,]
           22
                24
                      26
                           28
                                 30
##
## , , 4
##
##
         [,1] [,2] [,3] [,4] [,5]
## [1,]
           31
                33
                      35
                           37
                                 39
## [2,]
           32
                34
                      36
                           38
                                 40
##
##
   , , 5
##
##
         [,1] [,2] [,3] [,4] [,5]
## [1,]
           41
                43
                      45
                           47
                                 49
## [2,]
           42
                44
                      46
                           48
                                 50
```

List

[1] 1 2 3 4

```
Generalização dos vetores no sentido de que uma lista é uma coleção de objetos de tipos os mais variados
```

```
dados < -c(rep(1:4, 2, each = 2))
A = list(x = 1:4, y = matrix(1:4,2,2), w = dados, v = list(B=4,C=5))
Α
## $x
## [1] 1 2 3 4
##
## $y
##
        [,1] [,2]
## [1,]
           1
## [2,]
           2
                4
##
## $w
##
    [1] 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4
##
## $v
## $v$B
## [1] 4
##
## $v$C
## [1] 5
A[[1]]
```

```
A[[4]]
## $B
## [1] 4
##
## $C
## [1] 5
A\$x
## [1] 1 2 3 4
A$y
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
A$w
## [1] 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4
## $B
## [1] 4
##
## $C
## [1] 5
B = list(s = 1:5, r = 2)
Q = c(A,B)
## $x
## [1] 1 2 3 4
##
## $y
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
##
## $w
## [1] 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4
## $v
## $v$B
## [1] 4
##
## $v$C
## [1] 5
##
##
## $s
## [1] 1 2 3 4 5
##
```

\$r ## [1] 2