Pontificia Universidad Católica del Perú.

Escuela de Posgrado: Maestría en Matemáticas

Temas de Geometría (MAT 747)

Tarea 2: parte 1

Primer Semestre 2019

Indicaciones Generales:

Fecha de Entrega: 12 de julio, 2019.

Problema 1. Muestre que \mathbb{CP}^1 es isomorfo a la esfera S^2 .

Problema 2.

a) Muestre que en \mathbb{CP}^1 , la forma Fubini-Study en $U_0=\{[z_0,z_1]\in\mathbb{CP}^1|z_0\neq 0\}$, está dada por

 $\omega_{\rm FS} = \frac{dx \wedge dy}{\left(x^2 + y^2 + 1\right)^2},$

donde $\frac{z_1}{z_0} = z = x + iy$.

b) Calcule el área total de $\mathbb{CP}^1 = \mathbb{C} \cup \{\infty\}$ con respecto a ω_{FS} :

$$\int_{\mathbb{CP}^1} \omega_{\mathrm{FS}} = \int_{\mathbb{R}^2} \frac{dx \wedge dy}{(x^2 + y^2 + 1)^2}.$$

c) Sobre S^2 existe una forma de área estándar $\omega_{\rm std}$ inducida al considerar la esfera en \mathbb{R}^3 : en coordenadas cilíndricas (θ,h) sobre S^2 excluyendo los polos $(0 \le \theta < 2\pi \text{ and } -1 \le h \le 1)$, tenemos $\omega_{\rm std} = d\theta \wedge dh$. Muestre que

$$\omega_{\rm FS} = \frac{1}{4}\omega_{\rm std}.$$

Problema 3. (Métricas de Kähler: definición tradicional.)

Sea (M, J) una variedad casi compleja, y sea g una métrica riemanniana sobre ella. Decimos que g es una métrica hermitiana si se cumple

(i) g(v, w) = g(Jv, Jw) para campos vectoriales v, w en M,

Esta es una condición de compatibilidad natural entre la estructura casi compleja y la estructura riemanniana.

Muestre que dada una métrica hermitiana g podemos extender esta de manera \mathbb{C} -lineal a un único producto escalar hermitiano sobre el fibrado complexificado $TM \otimes_{\mathbb{R}} \mathbb{C}$ satisfaciendo

(i)
$$g(\bar{Z}, \bar{W}) = \overline{g(Z, W)}$$
, para todo $Z, W \in (TM \otimes_{\mathbb{R}} \mathbb{C})$.

(ii) $q(Z, \bar{Z}) > 0$ para todo $Z \neq 0$.

(iii)
$$g(Z, \bar{W}) = 0$$
 para $Z \in (T^{(1,0)}M)$ y $W \in (T^{(0,1)}M)$.

Localmente, en una carta coordenada compleja $(U, z_1, \ldots z_m)$, podemos escribir este producto escalar q extendido como

$$g = \sum_{\alpha,\beta=1}^{m} g_{\alpha\bar{\beta}} dz_{\alpha} \otimes d\bar{z}_{\beta}. \tag{1}$$

Observemos que a partir de (i), se sigue que $g_{\alpha\bar{\beta}}$ satisface $g_{\alpha\bar{\beta}} = \overline{g_{\beta\bar{\alpha}}}$ y por tanto $g_{\alpha\bar{\beta}}$ refiere a una matriz hermitiana $n \times n$.

Si g es hermitiana, definimos una 2-forma ω sobre M llamada la forma hermitiana de g:

(i) $\omega(v,w) = q(Jv,w)$ para campos vectoriales v,w en M,

Observemos que de estas condiciones, es evidente que ω es una 2-forma real y actúa sobre elementos mixtos, esto es, ω es una (1, 1)-forma.

Podemos expresar ω (extendida de manera \mathbb{C} -lineal) como la suma

$$\sum_{\alpha,\beta} A_{\alpha,\beta} dz_{\alpha} \wedge dz_{\beta} + \sum_{\alpha,\beta} B_{\bar{\alpha},\bar{\beta}} d\bar{z}_{\alpha} \wedge d\bar{z}_{\beta} + \sum_{\alpha,\beta} C_{\alpha,\bar{\beta}} dz_{\alpha} \wedge d\bar{z}_{\beta}.$$

No es difícil ver $\omega(\frac{\partial}{\partial z_{\alpha}}, \frac{\partial}{\partial z_{\beta}}) = \omega(\frac{\partial}{\partial \bar{z}_{\alpha}}, \frac{\partial}{\partial \bar{z}_{\beta}}) = 0$. Por otro lado $\omega(\frac{\partial}{\partial z_{\alpha}}, \frac{\partial}{\partial \bar{z}_{\beta}}) = g(J\frac{\partial}{\partial z_{\alpha}}, \frac{\partial}{\partial \bar{z}_{\beta}})$. Pero esta última expresión es igual a $ig(\frac{\partial}{\partial z_{\alpha}}, \frac{\partial}{\partial \bar{z}_{\beta}})$. Así obtene-

$$\omega = i \sum_{\alpha, \beta = 1}^{m} g_{\alpha\bar{\beta}} dz_{\alpha} \wedge d\bar{z}_{\beta}. \tag{2}$$

Es interesante ver que uno puede reconstruir la métrica q de ω usando la ecuación $q(v,w) = \omega(v,Jw)$. Decimos que una (1,1)-forma ω es positiva si $\omega(v,Jv) > 0$ para todo campo vectorial no nulo v. Se sigue fácilmente que si ω es una (1,1)-forma en una variedad compleja, entonces ω es una forma hermitiana de una métrica hermitiana si y solo si ω es positiva.

Definición. Sea M una variedad compleja y g una métrica hermitiana en M, con forma hermitiana ω . Decimos que g es una métrica de Kähler si $d\omega = 0$. En este caso llamamos a ω la forma de Kähler.

Problema 4. Muestre que el grassmanniano complejo es una variedad Kähler. (sugiero ver el argumento dado en el libro de Kobayashi y Nomizu: Foundations of Differential Geometry, Vol2. página 160, ejemplo 6.4)

San Miguel, 28 de mayo, 2019.