Review of Large Scale Cross Category Analysis

Alex Chen

Introduction(Challenges)

- Access to granular detail such as how many and which reviews are being read by customers
 - a. Have access to data that effectively measures reviews actually read by consumers
- 2. Large number of reviews from a wide range of product categories
- 3. Differences in mobile purchases versus traditional method
- 4. What is the best order to present reviews

Overview of insights

- 1. Reviews have significantly less impact than expected
 - a. 70% of the time, reviews aren't read
 - b. More likely to read reviews for expensive products
 - c. As there are more reviews, consumers rely more on summary ratings
 - d. Weigh negative reviews more than positive reviews
- 2. Aesthetics and price content are the most significant dimensions
- 3. Deep learning models outperform conventional NLP models(27%)
 - a. Category-specific content does not have to be hand-coded
 - b. Words to describe aesthetics for a carpet aren't the same as for a T.V.
 - c. Scalability
- 4. Reviews on mobile are more likely to result in conversion than on PC
- 5. Reordering reviews based on content can have the same effect as a 1.6% cut

Deep Learning Model

Basics

- Using Convolutional Neural Network with 4 layers
 - Layer 1: Word embeddings of product reviews
 - Layer 2: Convolutional layer
 - Layer 3: Max-over-time pooling layer
 - Layer 4: Outcome: conversion

Layer 1: Word Embeddings of Product Reviews

- Using word2vec embeddings by Google
 - Takes the text and transforms into word vectors while trying to preserve symantec distance between words
 - Stores words as a 300 dimensional vector

Layer 2: Convolution Filter

- Applying filters of length h where the filter is a one dimensional vector
- For example("The washer is good")
 - First applies to "The washer", then "washer is", etc.
- Trying sizes of 2,3,4, and 5 to try out different size word vectors

Layer 3: Pooling

- Obtaining the most important information across the window positions
- Using max to keep the maximum value in a window
- Running this process multiple times with multiple filters to create different

features.(Using a total of 100 filters for each window size)

Layer 4: Output of Conversion

- Appending multiple aspects of the product purchasing together
 - Features extracted from text
 - Consumer characteristics(total product searched, and web-features used)
 - Product characteristics(price, rating, and total reviews)
- All into one model to predict the binary outcome(conversion or no conversion)

Partial Deep Learning Model

Basics

- Using deep learning to extract content features
- Passing through a classical model

$$u_{ijkt} = \overrightarrow{\theta_k} \overrightarrow{Z_{it}} + \overrightarrow{\gamma_k} \overrightarrow{X_{jt}} + \xi_j + \overrightarrow{\beta_k} * \overrightarrow{ReviewFeatures_{jt}} + \varepsilon_{jkt}$$

i = consumerj = productk = device usedt = time

Where θ and γ are coefficients of Z, consumer characteristics vector, and X, product characteristics vector, respectively. ξ represents other unobserved product characteristics

Quantifying effect on read reviews

Volume

- Number of reviews read
- Does an increase in the number of reviews read cause a higher conversion?

Valance

- Effect of positive and negative reviews
- Do negative reviews cause a lower conversion?

Variety

- Content analysis(aesthetics, price, conformance, durability, feature, perceived quality)
- Which features have the strongest impact on conversion?

Variety

- Use of Amazon Mechanical Turk to provide labels of six dimension of information in reviews
- For example, someone might label "TV looks good but it's too expensive" as being positive for aesthetics and negative for price
- Use of labeled data to create training and testing datasets and using conventional and deep learning models to perform sentiment analysis

Results Deep Learning model

DV: Conversion	Hit Rate	AUC
Full Deep Learning Model	98.9%	0.924
Partial Deep Learning Model	96.2%	0.873

- Full deep learning model performs better
- Coefficients of Deep Learning model aren't directly interpretable
 - Can find which ones affect conversion the most

	Mobile	PC	
Log_Price	-0.787	-0.868	
Total # of Reviews	0.004	0.010	
Average Rating	0.570	0.840	
# Products Searched	-0.135	-0.084	
# Used Interactions	0.442	0.256	
# Positive Reviews Read	0.039	0.060	
# Negative Reviews Read	-0.088	-0.080	
Obs	88118		

Results Partial Deep Learning Model

Classifier/Accuracy %	Mean	Aesthetics	Conformance	Durability	Feature	Perceived Quality	Price
SVM + BoW	0.482	0.465	0.607	0.472	0.427	0.618	0.486
NB+ BoW	0.474	0.541	0.473	0.633	0.295	0.588	0.384
Recurrent-LSTM	0.680	0.624	0.622	0.606	0.808	0.626	0.796
Recursive	0.606	0.627	0.597	0.622	0.573	0.602	0.615
Convolutional	0.846	0.854	0.813	0.826	0.868	0.840	0.872

- Deep learning models can outperform conventional machine learning methods by about 27%
- Generally, deep learning models can capture double negative sentences
 - "Without this battery, my phone is useless"

Summary

- Deep learning models perform significantly better than machine learning models
- Deep learning models require a lot less human effort
- The most impactful attributes talked about in reviews are product and aesthetics