

T202 B/C – Redes de Computadores

07 – Endereçamento de Rede (MAC/IPv4)

Prof. Edson J. C. Gimenez soned@inatel.br

Referências:

✓ Kurose & Ross. Redes de Computadores e a Internet: uma abordagem top-down. Capítulo 4.

Outras referências:

- ✓ Tanenbaum & Wetherall. Redes de Computadores. Capítulo 5.
- ✓ Farrel. A Internet e seu Protocolos: uma Análise Comparativa. Capítulo 2.
- ✓ Comer. Interligação de Redes com TCP/IP, Volume 1. Cap. 4.
- ✓ CCNA1 Routing & Switching. Inatel/Cisco-NetAcademy.

Vídeos sugeridos:

- https://nic.br/videos/ver/como-funciona-a-internet-parte-1-o-protocolo-ip/ (5:45)
- https://nic.br/videos/ver/os-enderecos-ip-nao-sao-todos-iguais-parte-1/ (5:57)
- https://nic.br/videos/ver/os-enderecos-ip-nao-sao-todos-iguais-parte-2/ (9:24)

Sistema de Numeração Binário

Valor da Posição	128 64	32 16	8	4 2	-
Base ^{Expoente}	$2^{7} = 128$ $2^{6} = 64$ $2^{5} = 32$ $2^{4} = 16$	$2^{3} = 8$ $2^{2} = 4$ $2^{1} = 2$ $2^{0} = 1$			
Número de Símbolos	2				
Símbolos	0, 1				

Adaptado: Cisco/CCNA

Exemplos:

$$10110_{2} = (1 \times 2^{4}) + (0 \times 2^{3}) + (1 \times 2^{2}) + (1 \times 2^{1}) + (0 \times 2^{0})$$

$$= 16 + 0 + 4 + 2 + 0 = 22$$

$$10010110_{2} = (1 \times 2^{7}) + (0 \times 2^{6}) + (0 \times 2^{5}) + (1 \times 2^{4}) + (0 \times 2^{3}) + (1 \times 2^{2}) + (1 \times 2^{1}) + (0 \times 2^{0})$$

$$= 128 + 0 + 0 + 16 + 0 + 4 + 2 + 0$$

$$= 150$$

Sistema de Numeração Hexadecimal

Binário	Hexadecimal	Decimal	Binário	Hexadecimal	Decimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	Α	10
0011	3	3	1011	В	11
0100	4	4	1100	С	12
0101	5	5	1101	D	13
0110	6	6	1110	E	14
0111	7	7	1111	F	15

Adaptado: Cisco/CCNA

Exemplo: 2001:0DB8:... (em hexadecimal)

0 0 1 : 0 13 11 8 (cada dígito em decimal)

0010 0000 0000 0001 : 0000 1101 1011 1000 : ... (em binário)

Função lógica "AND" ("E")

Adaptado: Cisco/CCNA

* 1 AND X = X	0 AND X = 0	(X pode ser	qualquer valor 0 ou 1)
Exemplos:			
1001	1101	1000	1111
1100	1001	0101	1010
1000	1001	0000	1010

Endereçamento Físico (endereço de camada 2)

- Também denominado endereço MAC, endereço de enlace, ou ainda endereço de LAN.
- É o endereço associado ao adaptador de rede (interface física).
- Independe da rede que se encontra, é sempre fixo.
- Constituído de 48 bits,
 representados no formato
 hexadecimal (12 dígitos), sendo
 24 bits (OUI) + 24 bits (serial)

^{*} OUI - Organizationally Unique Identifier.

Endereçamento Lógico (endereço de camada 3)

- O endereço lógico, ou endereço IP, é atribuído pelo administrador da rede.
- ✓ IPv4 (IP versão 4)
 - Constituído de 32 bits: 2³² = 4.294.967.296 endereços
 - Representados no formato decimal com ponto
 - Exemplo: 192.168.15.180
- ✓ IPv6 (IP versão 6)
 - Constituído de 128 bits: 2¹²⁸ endereços
 - Representados no formato hexadecimal
 - Exemplo: fe80::c23d:d9ff:fe76:5f70
- ** $2^{128} = 40.282.366.920.938.463.463.374.607.431.768.211.456$ end.
 - ≈ 4,20x10²⁸ endereços IPv6/pessoa (população estimada em 8,1 bilhões)
 - ≈ 7,92x10²⁸ vezes a quantidade de endereços IPv4.


```
Prompt de Comando
 Sufixo DNS específico de conexão. . . . . :
C:\Users\edsonjcg>ipconfig/all
Adaptador de Rede sem Fio Conexão Local* 2:
 Estado da mídia. . . . . . . . . . . : mídia desconectada
 Sufixo DNS específico de conexão. . . . . :
 Físico (MAC)
 DHCP Habilitado . . . . . . . . . . . . . Sim
 Configuração Automática Habilitada. . . . . : Sim
                                                   Lógico (IP)
Adaptador Ethernet Ethernet:
 Sufixo DNS específico de conexão. . . . . : local.inatel.br
                        . . . . : Realtek PCTe FF Family Controlle
 Descrição
 Endereço Físico . . . . . . . . . . . . . . . . 84-7B-EB-E4-6B-A1
 Configuração Automática Habilitada
 Endereço IPv6 de link local . . . . . . : fe80::b47a:46c2:97aa:a8fb%6(Preferencial)
 Concessão Obtida. . . . . . . . . . .
                         . . . : quarta-feira, 20 de março de 2019 13:20:44
 Concessão Expira. . . . . . . . . . . . . . . quinta-feira, 21 de março de 2019 13:20:44
 IAID de DHCPv6. . . . . . . . . . . . . . . . . 59014123
 192.168.10.246
```


Endereço IPv4

Composto de 32 bits, divididos em quatro octetos

Byte	Byte	Byte	Byte
(octeto)	(octeto)	(octeto)	(octeto)
76543210	76543210	76543210	76543210

- □ Ex.: 11000000 . 10101000 . 00000001 . 00001000
 - 192 . 168 . 1 . 8
- Formado por duas partes:
 - Identificação da rede (Net-Id)
 - Identificação do host (Host-Id)
- Endereçamento hierárquico
 - Identifica de forma exclusiva as redes IP e seus hosts
 - O tamanho destinado para identificação da rede e dos hosts varia de acordo com a máscara de rede utilizada.

Máscara de Rede (IPv4)

- Assim como o endereço IP, é formada por 32 bits, representada na forma decimal com ponto ou formato barra (/).

 - Ex.: /30 = 1111111111111111111111111111111100 = 255.255.255.252
- Permite, no endereço IPv4, identificar os campos Net-Id e Host-Id.
 - Net-Id: todos os bits iguais a "um".
 - Host-Id: todos os bits iguais a "zero".

Endereço IP				
1 1 1 1 1 1 0 0 0 0 0 0				
Net-id Host-id				

Máscaras padrão: Classe A: /8 255.0.0.0

Classe B: /16 255.255.0.0

Classe C: /24 255.255.255.0

Classes de endereços

	Octeto 1	Octeto 2	Octeto 3	Octeto 4
Classe A	0 Net - id		Host - id	
Classe B	1 0	Net - id	Hos	t - id
Classe C	1 1 0	Net - id		Host - id
Classe D	1 1 1 0 Endereços Multicast			
		_		
Classe E	1 1 1 1	F	Reservado	

Classe	Formato	Redes	Endereços	Hosts Válidos
Α	7 Bits Rede, 24 Bits Host	128 (126)	16.777.216	16.777.214
В	14 Bits Rede, 16 Bits Host	16.384	65.536	65.534
С	21 Bits Rede, 8 Bits Host	2.097.152	256	254

Adaptado: TL016/Inatel

* Valor do 1° octeto: classe A: 0 - 127

classe B: 128 - 191

classe C: 192 - 223

classe D: 224 - 239

classe E: 240 - 255

Endereços de Rede e de Broadcast

- ✓ Não podem ser atribuídos a nenhum dispositivo de rede.
 - Endereço de rede
 - Identifica a rede (um bloco único de endereços IP).
 - Campo host_id formado por bits 0.
 - Ex.: 192.168.10.0/24 = 11000000.10101000.00001010.00000000
 - Endereço de broadcast
 - Permite o envio de pacotes para todos os hosts (dispositivos) de uma rede específica.
 - Campo host_id formado por bits 1.
 - Ex.: 192.168.10.255/24 = 11000000.10101000.00001010.11111111

Máscara de Rede /24

Exemplo: rede 192.168.10.0 / 24

Net-id

Host-id

 4° octeto para host_id \rightarrow 8 bits \rightarrow variando de 0000000 até 11111111

Bloco de endereços:

192.168.10.0

192.168.10.1

192.168.10.2

:

192.168.10.254

192.168.10.255

Portanto:

End. rede

End. hosts

End. broadcast

192.168.10.0

192.168.10.1 até 192.168.10.254

192.168.10.255

Máscara de Rede /16

Exemplo: rede 172.16.0.0 / 16

Net-id

Host-id

 3° e 4° octetos para host id \rightarrow 16 bits

Bloco de endereços:

172.16.0.0

172.16.0.1

172.16.0.2

172.16.255.254

172.16.255.255

Portanto:

Fnd. rede

End. hosts

Fnd. broadcast

172.16.0.0 172.16.0.1 até 172.16.255.254

172.16.255.255

Endereços IPv4 Públicos

- Endereços globais e padronizados, utilizados na Internet.
 - Endereços exclusivos não pode haver mais de um dispositivo conectado à uma rede pública com o mesmo endereço IP público.
- Distribuídos pelo IANA (iana.org), no mundo, através dos cinco centros de distribuições – RIRs (Regional Internet Registry)
- No Brasil, obtidos através de registro ou provedores/operadoras.
 - NIC.br/Registro.br: distribuição de blocos IP no Brasil.

Problema!

 Com o rápido crescimento da Internet, os endereços IPv4 públicos começaram a ficar escassos.

Endereços IP Privados

- Faixa de endereços para uso interno e privado não podem ser roteados pela Internet.
- O RFC 1918 (fevereiro/1996) reserva três blocos de endereços:

Classe A: 10.0.0.0 a 10.255.255.255 /8

■ Classe B: 172.16.0.0 a 172.31.255.255 /12

■ Classe C: 192.168.0.0 a 192.168.255.255 /16

- A conexão de uma rede que usa endereços privados à Internet exige a conversão dos endereços privados em endereços públicos.
- Esse processo de conversão é chamado de NAT (Network Address Translation) ou NAT/PAT (Port Address Translation).

Endereçamento estático

- O administrador atribui manualmente os endereços IP aos hosts.
- Dispositivos que se recomenda a atribuição estática de IP: qualquer dispositivo que necessita ser "visto" globalmente, ou localmente (caso de servidores locais).

Endereçamento dinâmico

 Os endereços IP são atribuídos dinamicamente aos hosts por meio de servidores de configuração; por exemplo, um servidor DHCP (*Dynamic Host Configuration Protocol*).

Exemplo: Dados os seguintes endereços/máscaras, identifique os endereços de rede, de broadcast e a faixa de endereços de hosts os quais esses endereços pertencem.

IP / máscara	End. rede	Faixa end. hosts	End. broadcast
192.168.10.10 /24			
172.16.80.10 /16			
10.100.10.25 /8			

Endereço IP "AND" Máscara de rede = Endereço da rede.

2^{bits_host-id} = num. endereços da rede

2^{bits_host-id} -2 = num. endereços de hosts

Exemplo: (gabarito)

IP / máscara	End. rede	Faixa end. hosts	End. broadcast
192.168.10.10 /24	192.168.10.0	192.168.10.1 até 192.168.10. 254	192.168.10.255
172.16.80.10 /16	172.16.0.0	172.16.0.1 até 172.16.255.254	172.16.255.255
10.100.10.25 /8	10.0.0.0	10.0.0.1 até 10.255.255.254	10.255.255.255

Atividade 6:

Dados os seguintes endereços/máscaras, identifique os endereços de rede, de broadcast e a faixa de endereços de hosts os quais esses endereços pertencem.

IP / máscara	End. rede	Faixa end. hosts	End. broadcast
216.14.10.137 /24			
123.10.10.15 /8			
150.20.2.244 /16			