实分析第六周作业

涂嘉乐 PB23151786

2025年4月4日

习题 3.4

T5

证明 因为 $f(\zeta) \in H\big(B(0,1)\big)$,所以 $\frac{1}{2\pi i}\int_{|\zeta|=1}f(\zeta)\mathrm{d}\zeta=0$,且由 Cauchy 积分公式

$$f(0) = \frac{1}{2\pi i} \int_{|\zeta|=1} \frac{f(\zeta)}{\zeta} d\zeta, \quad f'(0) = \frac{1}{2\pi i} \int_{|\zeta|=1} \frac{f(\zeta)}{\zeta^2} d\zeta$$

因此

$$2f(0) + f'(0) = \frac{1}{2\pi i} \int_{|\zeta|=1} \left[f(\zeta) + \frac{2f(\zeta)}{\zeta} + \frac{f(\zeta)}{\zeta^2} \right] d\zeta$$

$$= \frac{1}{2\pi i} \int_0^{2\pi} \left[f(e^{i\theta}) + \frac{2f(e^{i\theta})}{e^{i\theta}} + \frac{f(e^{i\theta})}{e^{2i\theta}} \right] ie^{i\theta} d\theta$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) (e^{i\theta} + e^{-i\theta} + 2) d\theta$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) (2 + 2\cos\theta) d\theta$$

$$= \frac{2}{\pi} \int_0^{2\pi} f(e^{i\theta}) \cos^2\left(\frac{\theta}{2}\right) d\theta$$

$$2f(0) - f'(0) = \frac{1}{2\pi i} \int_{|\zeta|=1} \left[-f(\zeta) + \frac{2f(\zeta)}{\zeta} - \frac{f(\zeta)}{\zeta^2} \right] d\zeta$$

$$= \frac{1}{2\pi i} \int_0^{2\pi} \left[-f(e^{i\theta}) + \frac{2f(e^{i\theta})}{e^{i\theta}} - \frac{f(e^{i\theta})}{e^{2i\theta}} \right] ie^{i\theta} d\theta$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) (-e^{i\theta} - e^{-i\theta} + 2) d\theta$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) (2 - 2\cos\theta) d\theta$$

$$= \frac{2}{\pi} \int_0^{2\pi} f(e^{i\theta}) \sin^2\left(\frac{\theta}{2}\right) d\theta$$

T9

证明 设 $\zeta = re^{i\theta}$,则 $d\zeta = rie^{i\theta}d\theta$,则

$$\frac{1}{\pi r} \int_{0}^{2\pi} u(re^{i\theta}) e^{-i\theta} d\theta = \frac{1}{\pi r} \int_{|\zeta|=r} u(\zeta) e^{-i\theta} \cdot \frac{d\zeta}{rie^{i\theta}}$$

$$= \frac{1}{2\pi i} \int_{|\zeta|=r} \frac{2u(\zeta)}{\zeta^{2}} d\zeta$$

$$= \frac{1}{2\pi i} \int_{|\zeta|=r} \frac{f(\zeta) + \overline{f(\zeta)}}{\zeta^{2}} d\zeta$$

$$= f'(0) + \frac{1}{2\pi i} \int_{|\zeta|=r} \frac{\overline{f(\zeta)}}{\zeta^{2}} d\zeta$$

因为

$$\int_{|\zeta|=r} \frac{\overline{f(\zeta)}}{\zeta^2} d\zeta = \overline{\int_{|\zeta|=r} \frac{f(\zeta)}{\overline{\zeta}^2}} d\zeta = \overline{\int_{|\zeta|=r} \frac{\zeta^2 f(\zeta)}{R^4}} d\zeta$$

而 $z^2 f(\zeta) \in H\big(B(0,R)\big)$, 所以上式积分值为零, 取共轭后仍为零, 因此

$$\frac{1}{\pi r} \int_0^{2\pi} u(re^{i\theta}) e^{-i\theta} d\theta = f'(0), \quad \forall 0 < r \le R$$

习题 3.5

T2

证明 对 $\forall z \in \mathbb{C}$, 由于 $f(z) = O(|z|^{\alpha})$, 所以 $\exists M \gg 1$, 对充分大的 R, 当 $|\zeta - z| \geq R$ 时,就有 $f(\zeta) \leq M|\zeta|^{\alpha}$, 取 $n = [\alpha] + 1$, 则

$$|f^{(n)}(z)| = \frac{n!}{2\pi} \left| \int_{|\zeta - z| = R} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta \right|$$

$$\leq \frac{n!}{2\pi} \int_{|\zeta - z| = R} \frac{M|\zeta|^{\alpha}}{R^{n+1}} \cdot |d\zeta|$$

$$\leq n! M \cdot \frac{(R + |z|)^{\alpha}}{R^n}$$

令 $R \to \infty$,因为 $n = [\alpha] + 1 > \alpha$,所以 $|f^{(n)}(z)| = 0$,由 z 的任意性知, $f^{(n)}(z) \equiv 0$,再由习题 3.3 的第三题知,f 是次数不超过 $[\alpha]$ 的多项式

T5

证明 考虑将 $\mathbb{C}\setminus[0,1]$ 打到上半平面的单叶全纯变换

Step 1. 作用 $f_1(z) = \frac{1}{z}$,则 $\mathbb{C}\setminus[0,1]$ 打到 $\mathbb{C}\setminus[1,+\infty)$

Step 2. 作用 $f_2(z) = z - 1$, 则 $\mathbb{C} \setminus [1, +\infty)$ 打到 $\mathbb{C} \setminus [0, +\infty)$

Step 3. 作用 $f_3(z) = \sqrt{z}$, 则 $\mathbb{C} \setminus [0, +\infty)$ 打到上半平面

因此,考虑 $\varphi(f(z)) = \sqrt{\frac{1}{f(z)} - 1}$,则 $\varphi \circ f(\mathbb{C}) \subset \{z \in \mathbb{C} | \mathrm{Im} z > 0\}$,且由 $f(z) \neq 0$ 知, $\varphi \circ f$ 也是整函数,由上一题(课上已经证过)知, $\varphi \circ f \equiv c$,且 φ 单叶,故 $f \equiv C$

证明 显然有 $F(z) \in H(D\setminus\{z_0\})\cap C(D)$, 由莫雷拉定理, 我们只需证明沿 D 内的任意一条可求长 闭曲线 γ 的积分为零

Case 1. 若 z_0 在 γ 外部,则由 $F(z) = \frac{f(z) - f(z_0)}{z - z_0}$ 在 $z \in D \setminus \{z_0\}$ 全纯知

$$\int_{\gamma} F(z) \mathrm{d}z = 0$$

Case 2. 若 z_0 在 γ 上,则我们可以取 ε_0 足够小,使得 $B(z_0,\varepsilon_0)\subset D$,且 γ 仅仅只穿入、穿出一次 $B(z_0,\varepsilon_0)$,记 γ 在 $B(z_0,\varepsilon_0)$ 内的那段曲线为 γ_1 , $B(z_0,\varepsilon_0)$ 在 γ 内的那段圆弧为 γ_2 ,如下图

因为 ∂D 是闭集, $\overline{B(z_0,\varepsilon_0)}$ 是紧集,所以 $\rho=\mathrm{dist}\,(\partial D,\overline{B(z_0,\varepsilon_0)})>0$,我们可以取 $G=\{z\in D:\mathrm{d}(z,\partial B(z_0,\varepsilon_0))<\frac{\rho}{2}\}$,则 $B(z_0,\varepsilon_0)\subset G\subset \overline{G}\subset D$,因此在紧集 $G\perp F$ 一致连续:对 $\forall \varepsilon>0,\exists \delta>0,\mathrm{s.t.}\,\,\forall |z_1-z_2|<\delta,|F(z_1)-F(z_2)|<\varepsilon$,由 Cauchy 积分定理, $\int_{\gamma}F(z)\mathrm{d}z=\int_{\gamma_2^-+\gamma_1}F(z)\mathrm{d}z$,因此对于固定的 ε ,我们可以选取更小的圆周半径 $\varepsilon_0<\min\{\delta,\varepsilon\}$,则

$$\left| \int_{\gamma} F(z) dz \right| = \left| - \int_{\gamma_2} F(z) dz + \int_{\gamma_1} F(z) dz \right|$$

$$\leq \left| \int_{\gamma_2} F(z) - \int_{\gamma_2} F(z_0) dz \right| + \left| \int_{\gamma_1} F(z) - \int_{\gamma_1} F(z_0) dz \right|$$

$$\leq \int_{\gamma_2} |F(z) - F(z_0)| \cdot |dz| + \int_{\gamma_1} |F(z) - F(z_0)| \cdot |dz|$$

$$\leq \varepsilon |\gamma_2| + \varepsilon |\gamma_1|$$

而 $|\gamma_1|, |\gamma_2| \leq 2\pi\varepsilon$, 所以

$$\left| \int_{\gamma} F(z) \mathrm{d}z \right| \le 4\pi \varepsilon^2$$

 $\ \ \ \ \ \varepsilon \to 0^+, \ \ \ \ \ \int_{\gamma} F(z) \mathrm{d}z = 0$

Case 3. 若 z_0 在 γ 内部,则可以通过一条过 z_0 的曲线将 γ 分为两部分,且每一部分都满足 Case 2,所以此时仍有

$$\int_{\gamma} F(z) \mathrm{d}z = 0$$

综上, 由莫雷拉定理, $F \in H(D)$

习题 4.5

T3

证明 假设不存在这样的 z_0 ,则 $\forall z \in \partial B(0,1)$, $\prod_{k=1}^n |z_0 - z_k| \le 1$,考虑 $f(z) = (z - z_1) \cdots (z - z_k)$,取 D = B(0,1),则 $f(z) \in H(D) \cap C(\overline{D})$,所以 f(z) 的最大模在 ∂D 上取得,由假设知, $\max_{z \in D} |f(z)| \le 1$,注意到

$$|f(0)| = \prod_{i=1}^{n} |z_i| > 1$$

这就导出矛盾! 因此 $\exists z_0 \in \partial B(0,1), \text{s.t.} \prod_{k=1}^n |z_0 - z_k| > 1$

T4

证明 若 $f \equiv C$, 则 $M(r) \equiv |C|$ 是 [0,R) 上的增函数; 设 f 不为常数, 下证 M(r) 严格增: 对 $\forall 0 \leq r_1 < r_2 < R$, 由最大模原理 $f \in H\big(B(0,r_2)\big) \cap C\big(\overline{B(0,r_2)}\big)$, 所以 f(z) 在 $\overline{B(0,r_2)}$ 上的最大模 在 $\partial B(0,r_2)$ 上取得, 而在内部无法取到, 而 $\partial B(0,r_1)$ 在 $\overline{B(0,r_2)}$ 的内部, 因此 $M(r_2) > M(r_1)$ □

T6

证明 记 $\lim_{z\to\infty} f(z) = A$,设

$$F(z) = \begin{cases} f\left(\frac{R^2}{z}\right), & z \in \overline{B(0,R)} \setminus \{0\} \\ A, & z = 0 \end{cases}$$

因此对 $\forall \varepsilon > 0, \exists M_{\varepsilon} > 0, \text{s.t.} \ \forall |\zeta| > M_{\varepsilon}, |f(\zeta) - A| < \varepsilon, \ \mathbb{R} \ \delta = \frac{R^2}{M_{\varepsilon}}, \ \mathbb{M} \ \forall |z| < \delta, |F(z) - A| < \varepsilon,$ 因此 F 在 z = 0 处是连续的,且在 z = 0 附近有界,故 z = 0 是可去奇点,因此由 $f(z) \in H(B(\infty,R)) \cap C(\overline{B(\infty,R)})$ 知 $F(z) \in H(B(0,R)) \cap C(\overline{B(0,R)})$,由 T4 知

$$\tilde{M}(r) = \max_{|z|=r} |F(z)|$$

是 [0,R) 上的严格增函数(f 非常数),因此对 $\forall R \leq r_1 < r_2$,我们有 $\frac{R^2}{r_2} < \frac{R^2}{r_1} < R$,所以 $\tilde{M}\left(\frac{R^2}{r_2}\right) < \tilde{M}\left(\frac{R^2}{r_1}\right)$,即

$$\max_{z=r_1} |f(z)| > \max_{z=r_2} |f(z)|$$

所以 M(r) 是 $[R,\infty)$ 上的严格减函数

T7

证明 假设 $\exists z_0 \in D$, s.t. $|f(z_0)| \leq |f(z)|$, $\forall z \in D$, 由 f 在 D 中没有零点知 $g(z) = \frac{1}{f(z)}$ 在 D 上也全纯,取 $\varepsilon > 0$ 满足 $\overline{B(z_0,\varepsilon)} \subseteq D$,则在 $B(z_0,\varepsilon)$ 上对 g(z) 应用最大模原理,则 g(z) 的最大模在 $\partial B(z_0,\varepsilon)$ 上取得,且在内部无法取得,即 $\exists z_1 \in \partial B(z_0,\varepsilon)$, s.t. $|g(z_1)| > |g(z_0)|$, 因此 $|f(z_1)| < |f(z_0)|$, 这与假设矛盾!因此 |f(z)| 在 D 内无法取得最小值

T32

证明 考虑 $f(z)=\frac{P(z)}{z^k}$,则 $f\in H\big(B(\infty,1)\big)\cap C(\overline{B(\infty,1)})$,记 $P(z)=a_kz^k+\cdots+a_1z+a_0$,则

$$\lim_{z \to \infty} f(z) = \lim_{z \to \infty} a_k + \frac{a_{k-1}z^{k-1} + \dots + a_1z + a_0}{z^k} = a_k$$

上式第二项极限为零是因为

$$\left| \frac{a_{k-1}z^{k-1} + \dots + a_1z + a_0}{z^k} \right| \le \frac{|a_{k-1}|}{|z|} + \dots + \frac{|a_1|}{|z|^{k-1}} + \frac{|a_0|}{|z|^k} \to 0 \text{ as } z \to \infty$$

所以由第六题的结论, $M(r) = \max_{|z|=r} |f(z)|$ 是 $[1,\infty)$ 上的严格减函数,因此

$$\left|\frac{P(z)}{z^k}\right| \le M(1) = \max_{|z|=1} |P(z)| \le 1 \Longrightarrow |P(z)| \le |z|^k$$