

Deep-Learning:

Unsupervised Generative models

Deep Belief Networks
Deep Stacked AutoEncoders
Generative Adversarial Networks

Pr. Fabien MOUTARDE Center for Robotics MINES ParisTech PSL Université Paris

Fabien.Moutarde@mines-paristech.fr
http://people.mines-paristech.fr/fabien.moutarde

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 1

Acknowledgements

During preparation of these slides, I got inspiration and borrowed some slide content from several sources, in particular:

- Fei-Fei Li & J. Johnson & S. Yeung: course on Generative Models http://cs231n.stanford.edu/slides/2017/cs231n 2017 lecture 13.pdf
- I. Kokkinos: slides of a CentraleParis course on Deep Belief Networks http://cvn.ecp.fr/personnel/iasonas/course/DL5.pdf
- I. Goodfellow: NIPS'2016 tutorial on Generative Adversarial Networks (GANs) https://media.nips.cc/Conferences/2016/Slides/6202-Slides.pdf
- Binglin, Shashank & Bhargav: A short tutorial on Generative Adversarial Networks (GANs) http://slazebni.cs.illinois.edu/spring17/lec11_gan.pdf

Outline

- Unsupervised Learning and Generative Models
- Deep Belief Networks (DBN) and Deep Boltzman Machine (DBM)
- Autoencoders
- Generative Adversarial Networks (GAN)

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 3

Deep vs Shallow Learning techniques overview

PSLM Supervised vs Unsupervised

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Unsupervised Learning

Training data is cheap

Data: x Just data, no labels! unsupervised learning

Holy grail: Solve => understand structure of visual world

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 5

Unsupervised Learning

Examples:

- Dimension reduction: PCA
- Clustering: k-means
- Density estimation
- Feature learning

General framework:

Find deterministic function f: z = f(x), x: data, z: latent

Generative models

Find generation function g: x = g(z), x: data, z: latent

Unsupervised learning vs. Generative model

- z = f(x) vs. x = g(z)
- P(z|x) vs. P(x|z)
- Encoder vs. Decoder (Generator)
 - P(x, z) needed. (cf: P(y|x) in supervised learning)
 - P(z|x) = P(x, z) / P(x)
 - $P(x|z) = P(x, z) / P(z) \rightarrow P(z)$ is given. (prior)

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 7

Why Generative?

- Conditional generative models
 - Speech synthesis: Text ⇒ Speech
 - Machine Translation: French ⇒ English
 - French: Si mon tonton tond ton tonton, ton tonton sera tondu.
 - English: If my uncle shaves your uncle, your uncle will be shaved
 - Image ⇒ Image segmentation
- Environment simulator
 - Reinforcement learning
 - Planning
- Leverage unlabeled data

Why generative?

Realistic samples for artwork, super-resolution, colorization, etc.

- Generative models of time-series data can be used for simulation and planning (reinforcement learning applications!)
- Training generative models can also enable inference of latent representations that can be useful as general features

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 9

Taxonomy of Generative Models

Outline

- **Unsupervised Learning and Generative Models**
- **Deep Belief Networks (DBN)** and Deep Boltzman Machine (DBM)
- **Autoencoders**
- **Generative Adversarial Networks (GAN)**

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 11

PSL Deep Belief Networks (DBN)

- One of first Deep-Learning models
- Proposed by G. Hinton in 2006
- **Generative probabilistic model (mostly UNSUPERVISED)**

For capturing high-order correlations of observed/visible data (→ pattern analysis, or synthesis); and/or characterizing joint statistical distributions of visible data

(000000) h₃

Greedy successive UNSUPERVISED learning of layers of Restricted Boltzmann Machine (RBM)

Restricted Boltzmann Machine (RBM)

h, hidden (~ latent variables)

v. observed

NB: connections are **BI-DIRECTIONAL** (with same weight)

Modelling <u>probability distribution</u> as:

$$P(\mathbf{v}^{}\,,\mathbf{h};\theta) = \frac{\exp(-E(\,\mathbf{v}^{},\mathbf{h};\theta))}{\sum_{\,\mathbf{v}^{},\mathbf{h}} \exp(-E(\,\mathbf{v}^{},\mathbf{h};\theta))}$$

with <u>« Energy »</u> E given by

$$E(\mathbf{v}, \mathbf{h}; \theta) = -\mathbf{v}^{\top} W \mathbf{h} - \mathbf{b}^{\top} \mathbf{v} - \mathbf{a}^{\top} \mathbf{h}$$

$$= -\sum_{i=1}^{D} \sum_{j=1}^{F} W_{ij} v_i h_j - \sum_{i=1}^{D} b_i v_i - \sum_{j=1}^{F} a_j h_j$$

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 13

Training RBM

Finding θ =(W,a,b) maximizing likelihood $\prod_{v \in S} p_{\theta}(v)$ of dataset S

 \iff minimize NegLogLikelihood $-\sum_{v \in S} \log(p_{\theta}(v))$

Independence within layers $\Rightarrow p(v|h) = \prod_i p(v_i|h)$ and $p(h|v) = \prod_i p(h_i|v)$

So objective = find
$$\theta_* = \underset{\theta}{\operatorname{argMin}} \left(-\sum_{v \in S} \sum_{j} \log(p_{\theta}(v_j)) \right)$$

In binary input case:

$$p(v_i = 1 \mid h) = \sigma(a_i + W_{:,i}h)$$

$$p(h_j = 1 \mid v) = \sigma(b_j + W_{j,:}v)$$
 with $\sigma(u) = \frac{e^u}{e^u + 1}$

Algo: Contrastive Divergence

≈ Gibbs sampling used inside a gradient descent procedure

PSLM Contrastive Divergence algo

Repeat:

- **1.** Take a training sample v_i , compute $p(h_i = 1 | v) = \sigma(b_i + W_{i:i}v)$ and sample a vector h from this probability distribution
- 2. Compute positive gradient as outer product $G_+ = v \otimes h = vh^T$
- 3. From h, compute $p(v'_i = 1 \mid h) = \sigma(a_i + W_{i}h)$ and sample reconstructed v'_i then resample h' using $p(h_i' = 1 | v') = \sigma(b_i + W_{i:}v')$ [Gibbs sampling single step; should theoretically be repeated until convergence]
- 4. Compute <u>negative gradient</u> as outer product $G_- = v' \otimes h' = v' h'^T$
- 5. Update weight matrix by $\delta W = \varepsilon (G_+ G_-) = \varepsilon (vh^T v'h'^T)$
- 6. Update biases a and b analogously: $\delta a = \varepsilon(v v')$ and $\delta b = \varepsilon(h h')$

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 15

Use of trained RBM

- Input data "completion" : set some v_i then compute h, and generate compatible full samples
- Generating representative samples
- Classification if trained with inputs=data+label

Modeling of input data distribution from trained RBM

Initial data is in blue, reconstructed in red (and green line connects each data point with reconstructed one).

Learnt energy function: minima created where data points are

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 17

Interpretation of trained RBM hidden layer

Look at weights of hidden nodes → low-level features

Why go deeper with DBN?

DBN: upper layers -> more « abstract » features

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 19

Learning of DBN

Greedy learning of successive layers

Algorithm 1 Recursive Greedy Learning Procedure for the DBN.

- 1: Fit parameters W^1 of the 1st layer RBM to data.
- 2: Freeze the parameter vector W^1 and use samples \mathbf{h}^1 from $Q(\mathbf{h}^1|\mathbf{v}) = P(\mathbf{h}^1|\mathbf{v}, W^1)$ as the data for training the next layer of binary features with an RBM.
- 3: Freeze the parameters W^2 that define the 2^{nd} layer of features and use the samples h^2 from $Q(\mathbf{h}^2|\mathbf{h}^1) = P(\mathbf{h}^2|\mathbf{h}^1,W^2)$ as the data for training the 3^{rd} layer of binary features.
- 4: Proceed recursively for the next layers.

Using low-dim final features for clustering

Much better results than clustering in input space or using other dimension reduction (PCA, etc...)

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 21

Example application of DBN: Clustering of documents in database

Image Retrieval application example of DBN

· Map images into binary codes for fast retrieval.

- Small Codes, Torralba, Fergus, Weiss, CVPR 2008
- Spectral Hashing, Y. Weiss, A. Torralba, R. Fergus, NIPS 2008
- Kulis and Darrell, NIPS 2009, Gong and Lazebnik, CVPR 20111
- Norouzi and Fleet, ICML 2011,

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 23

DBN supervised tuning

 After layer-by-layer unsupervised pretraining, discriminative fine-tuning by backpropagation achieves an error rate of 1.2% on MNIST. SVM's get 1.4% and randomly initialized backprop gets 1.6%.

Outline

- Unsupervised Learning and Generative Models
- Deep Belief Networks (DBN) and Deep Boltzman Machine (DBM)
- Autoencoders
- Generative Adversarial Networks (GAN)

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 25

Autoencoders

Learn q_{θ} and p_{Φ} in order to minimize <u>reconstruction cost</u>:

$$Q = \sum_{k} \lVert \widehat{x}_k - x_k \rVert^2 = \sum_{k} \lVert p_{\phi} (q_{\theta}(x_k)) - x_k \rVert^2$$

unsupervised learning of latent variables, and of a generative model

PSLM Variants of autoencoders

- **Denoising** autoencoders
- **Sparse** autoencoders
- Stochastic autoencoders
- **Contractive autoencoders**
- **VARIATIONAL** autoencoders

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 27

PSL Deep Stacked Autoencoders

Proposed by Yoshua Bengio in 2007

Training of Stacked Autoencoers

etc...

Greedy layerwise training:

for each layer k, use <u>backpropagation</u> to minimize $\|\mathbf{A}_k(\mathbf{h}^{(k)}) - \mathbf{h}^{(k)}\|^2$ (+ regularization cost $\lambda \Sigma_{ij} \|\mathbf{W}_{ij}\|^2$) possibly + additional term for "sparsity"

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 29

Variational AutoEncoders (VAE)

 $\mathcal{L}_{VAE}(\mathbf{x}; \theta, \phi) = \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[-\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] + KL(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))}_{\text{Reconstruction cost}}$

Slide: Irina Higgins, Loïc Matthey

KL = Kullback-Leibler divergence (a.k.a. 'relative entropy')
KL(Q || P) measures how different are distributions

Outline

- **Unsupervised Learning and Generative Models**
- **Deep Belief Networks (DBN)**
- **Autoencoders**
- **Generative Adversarial Networks (GAN)**

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 31

PSL Generative Adversarial Network

[Introduced in 2014 by Ian Goodfellow et al. (incl. Yoshua Bengio) from University of Montreal]

Goal: generate « artificial » but credible examples credible = sampled from same probability distribution p(x)

Idea: instead of trying to explicitly estimate p(x),

- 1. LEARN a transformation G from a simple and known distribution (e.g. random) into X,
- 2. then sampling $z \rightarrow$ generate realistic samples G(z)

GAN's architecture

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 33

GAN training: minimax two-player game!

$$\min_{G} \max_{D} V(D,G)$$

It is formulated as a **minimax game**, where:

- The Discriminator is trying to maximize its reward V(D,G)
- The Generator is trying to minimize Discriminator's reward (or maximize its loss)

$$V(D,G) = \mathbb{E}_{x \sim p(x)}[\log D(x)] + \mathbb{E}_{z \sim q(z)}[\log(1 - D(G(z)))]$$

Joint training of D and G

The Nash equilibrium of this particular game is achieved at:

•
$$P_{data}(x) = P_{gen}(x) \ \forall x$$

•
$$D(x) = \frac{1}{2} \ \forall x$$

GAN training detail

In practice, alternate Discriminator training (gradient ascent) and Generator training:

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right]$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by ascending its stochastic gradient (improved objective):

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log(D_{\theta_d}(G_{\theta_g}(z^{(i)})))$$

end for

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 35

PSL Training the Discriminator

https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

Training the Generator

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 37

Convolutional Generator for GAN

Radford et al, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", ICLR 2016

Example of fake samples generated by GAN

Samples from the model look amazing!

Radford et al, ICLR 2016

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 39

Trajectory in latent space output Description Trajectory in latent space continous image transform

Interpolating between random points in laten space

Radford et al, ICLR 2016

« Arithmetic » of latent vectors

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 41

Image-to-Image translation

Link to an interactive demo of this paper

Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. "Image-to-image translation with conditional adversarial networks". arXiv preprint arXiv:1611.07004. (2016).

GAN for synthesis of realistic images

"Video-to-Video Synthesis", NeurIPS'2018 [Nvidia+MIT] Using Generative Adversarial Network (GAN)

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 43

Domain transfer!

CycleGAN. Zhu et al. 2017.

Summary and perspectives on DBN/DBM/DSA/VAE/GAN

- Intrinsicly UNSUPERVISED
 - → can be used on UNLABELLED DATA
- Impressive results in <u>Image Retrieval</u>
- DBN/DBM/VAE = Generative probabilistic models
- GAN = most promising generative model, with already many remarkable & exciting applications
- Strong potential for enhancement of datasets and for ultra-realistic synthetic data
- Interest for "creative« /artistic computing?

Unsupervised Generative Deep-Learning: DBN+DSA+GAN, Pr F.MOUTARDE, Center for Robotics, MINES ParisTech, PSL, March2019 45

Any QUESTIONS?