TMA4315 Generalized linear regression

Module 4: Count and continuous positive response data

What is the canonical link for the Poisson distribution with $E(Y) = \lambda$?

$$E(Y) = \lambda$$
?

$$\begin{array}{cccc} \mathbf{A} & \exp(\lambda) & & \mathbf{B} & \ln(\lambda) \\ \mathbf{c} & \ln(\frac{\lambda}{1-\lambda}) & & \mathbf{D} & \frac{\exp(\lambda)}{\exp(\lambda)+1} \end{array}$$

What is the canonical link for the gamma distribution?

A	μ	В	$ln(\mu)$
С	$-\exp(\mu)$	D	$-\frac{1}{11}$

Is this Poisson regression a good model?

Null deviance:

632.79 on 172 degrees of freedom

Residual deviance:

567.88 on 171 degrees of freedom

What is this method called? $\beta^{(t+1)} = \beta^{(t)} + H(\beta^{(t)})^{-1} s(\beta^{(t)})$

c Score D Fisher scoring

We estimate β by maximum likelihood. What is the asymptotic distri-

bution of
$$\hat{\beta}$$

A $N_n(\beta, \Phi F(\hat{\beta}))$ B $N_n(\beta, F^{-1}(\hat{\beta}))$

A
$$N_p(\beta, \varphi F(\hat{\beta}))$$
 B $N_p(\beta, F^{-1}(\hat{\beta}))$
C $N_p(\beta, F(\hat{\beta}))$ D $N_p(\beta, H^{-1}(\hat{\beta}))$

Which method would you use to test $H_0: \mathbf{C}\beta = \mathbf{d}$ against $H_1: \mathbf{C}\beta \neq \mathbf{d}$

A t-test

B Deviance test

C Pearson test

D Wald test

In a Poisson rate model with log link we have index $t_i = 10$ and transformed linear predictor $\exp(\eta_i) = 5$. What is then $E(Y_i)$?

What is the maximal number of satellites for a female crab in our data set?

```
а 5 в 10 
с 15 р 20
```

Correct?

Are you sure you want to read the correct answers? Maybe try first? The answers are given on the next two slides.

Answers

- 1. B: Poisson canonical link is In.
- 2. D: gamma canonical link is negative inverse.
- 3. No, this is not a good model. Deviance test is rejected.
- 4. A: Newton-Raphson with H

Answers

- 5. B: $N_p(\beta, F^{-1}(\hat{\beta}))$ 6. D: Wald test
- 7. D: $t_i \exp(\eta_i) = \lambda_i$.
 - 8. C: 15