<pre>return 1.0 / (1.0 + np.exp(-x)) # Plot the sigmoid function vals = np.linspace(-10, 10, num=100, dtype=np.float32) activation = sigmoid(vals) fig = plt.figure(figsize=(12,6)) fig.suptitle('Sigmoid function') plt.plot(vals, activation) plt.grid(True, which='both') plt.axhline(y=0, color='k') plt.axvline(x=0, color='k') plt.yticks() plt.ylim([-0.5, 1.5]);</pre>	
1.50 1.25 1.00 0.75 0.50	
0.00 -0.25 -0.50 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 Thinking of neurons as boolean logic gates	7.5 10.0
	e implementing a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary out bending on its rule. The truth table for a logic gate shows the outputs for each combination of inputs, (0, 0), (0, 1), (1,0), and (1, 1
	OR gate truth table Input Output 0 0 0 1 1 1 0 1 1 1 1
By limiting the inputs of x_1 and x_2 to be in $\{0,1\}$, we can simulate the effect of logic gates videpending on the inputs.	urally leads us to think about boolean values. Imagine a neuron that takes in two inputs, x_1 and x_2 , and a bias term: with our neuron. The goal is to find the weights (represented by ? marks above), such that it returns an output close to 0 or 1
positive (around +10 or greater). Let's think this through: $ \text{ When } x_1 \text{ and } x_2 \text{ are both 0, the only value affecting } z \text{ is } b \text{. Because we want the result } $	erve from the plot above that $\sigma(z)$ is close to 0 when z is largely negative (around -10 or less), and is close to 1 when z is largely $z=w_1x_1+w_2x_2+b$ It for (0, 0) to be close to zero, b should be negative (at least -10) sociated with x_1 and x_2 should be enough to offset b to the point of causing z to be at least 10.
• Let's give b a value of -10. How big do we need w_1 and w_2 to be? • At least +20 • So let's try out $w_1=20$, $w_2=20$, and $b=-10$! def logic_gate(w1, w2, b): # Helper to create logic gate functions	
<pre># Plug in values for weight_a, weight_b, and bias return lambda x1, x2: sigmoid(w1 * x1 + w2 * x2 + b) def test(gate): # Helper function to test out our weight functions. for a, b in (0, 0), (0, 1), (1, 0), (1, 1): print("{}, {}: {}".format(a, b, np.round(gate(a, b))))</pre>	
or_gate = logic_gate(20, 20, -10) test(or_gate) 0, 0: 0.0 0, 1: 1.0 1, 0: 1.0 1, 1: 1.0	OR gate truth table Input Output
This matches! Great! Now you try finding the appropriate weight values for each truth table. ⁻	0 0 0 0 1 1 1 0 1 1 1 1
AND Gate	AND gate truth table Input Output 0 0 0
Lets Determine what values for the neurons would make this function as an AND gate. # TO DO:lets Fill in the w1, w2, and b parameters such that # the truth table matches	0 1 0 1 0 0 1 1 1
<pre>w1 = 11 w2 = 10 b = -20 and_gate = logic_gate(w1, w2, b) test(and_gate) 0, 0: 0.0 0, 1: 0.0 1, 0: 0.0 1, 1: 1 0</pre>	
1, 1: 1.0 Lets do the same for the NOR gate and the NAND gate. NOR (Not Or) Gate	NOR gate truth table Input Output
<pre># TO DO: Fill in the w1, w2, and b parameters such that the # truth table matches</pre>	0 0 1 0 1 0 1 0 0 1 1 0
<pre>w1 = -20 w2 = -20 b = 10 nor_gate = logic_gate(w1, w2, b) test(nor_gate) 0, 0: 1.0 0, 1: 0.0 1, 0: 0.0</pre>	
NAND (Not And) Gate	NAND gate truth table Input Output 0 0 1
# TO DO: Fill in the w1, w2, and b parameters such that the # truth table matches	0 1 1 1 0 1 1 1 0
<pre>w1 = -11 w2 = -10 b = 20 nand_gate = logic_gate(w1, w2, b) test(nand_gate) 0, 0: 1.0 0, 1: 1.0 1, 0: 1.0 1, 1: 0.0</pre>	
The limits of single neurons f you've taken computer science courses, you may know that the XOR gates are the basis of table for XOR:	of computation. They can be used as so-called "half-adders", the foundation of being able to add numbers together. Here's the t
XOR (Exclusive Or) Gate	XOR gate truth table Input Output 0 0 0 0 1 1 1 0 1
Can we create a set of weights such that a single neuron can output this property? t turns out we cannot, since single neurons can't correlate inputs. Can we still use neurons to what if we tried something more complex:	1 1 0 to somehow form an XOR gate?
Here, we've got the inputs going to two separate gates: the top neuron is an OR gate, and the outputs at each combination of input values, you'll see that this is an XOR gate. # Make sure we have or_gate, nand_gate, and and_gate working from above! def xor_gate(a, b): c = or_gate(a, b)	the bottom is a NAND gate. The output of these gates then get passed to another neuron, which is an AND gate. If you work out
<pre>d = nand_gate(a, b) return and_gate(c, d) test(xor_gate) 0, 0: 0.0 0, 1: 1.0 1, 0: 1.0 1, 1: 0.0</pre>	
Feedforward Networks as Matrix Computations Feed-forward computation of a neural network can be thought of as matrix calculations and a Provided below are the following: A Three weight matrices, W. 1, W. 2, and W. 3, representing the weights in each layer. Three weights in each layer.	activation functions. lets do some actual computations with matrices to see this in action. The convention for these matrices is that each $W_{i,j}$ gives the weight from neuron i in the previous (left) layer to neuron j in the respective convention for these matrices is that each $W_{i,j}$ gives the weight from neuron i in the previous (left) layer to neuron j in the respective convention for these matrices is that each $W_{i,j}$ gives the weight from neuron i in the previous (left) layer to neuron i in the layer to neuron i in the neuron i
 (right) layer. A vector x_in representing a single input and a matrix x_mat_in representing 7 different of the following sigmoid activation of the goals for this exercise are: 1. For input x_in calculate the inputs and outputs to each layer (assuming sigmoid activation). 	ction to a single vector, and row-wise to a matrix.
	here each row is a single input. Iter this forward pass, it remains to compare the output of the network to the known truth values, compute the gradient of the loss pefully this process will result in better weight matrices and our loss will be smaller afterwards.
<pre>W_2 = np.array([[3,1,-2,1],[-2,4,1,-4],[-1,-3,2,-5],[3,1,1,1]]) W_3 = np.array([[-1,3,-2],[1,-1,-3],[3,-2,2],[1,2,1]]) x_in = np.array([.5,.8,.2]) x_mat_in = np.array([[.5,.8,.2],[.1,.9,.6],[.2,.2,.3],</pre>	
<pre>def soft_max_mat(mat): return np.exp(mat)/(np.sum(np.exp(mat),axis=1).reshape(-1,1)) print('the matrix W_1\n') print(W_1) print('-'*30) print('vector input x_in\n') print(x_in) print ('-'*30)</pre>	
<pre>print('matrix input x_mat_in starts with the vector `x_in`\n') print(x_mat_in) the matrix W_1 [[2 -1 1 4] [-1 2 -3 1] [3 -2 -1 5]] vector input x_in</pre>	
[0.5 0.8 0.2] matrix input x_mat_in starts with the vector `x_in` [[0.5 0.8 0.2] [0.1 0.9 0.6] [0.2 0.2 0.3] [0.6 0.1 0.9] [0.5 0.5 0.4]	
$[0.9 \ 0.1 \ 0.9]$ $[0.1 \ 0.8 \ 0.7]]$ $z_2 = \text{np.dot}(x_i, w_1)$ z_2 $array([\ 0.8, \ 0.7, \ -2.1, \ 3.8])$ $a_2 = \text{sigmoid}(z_2)$	
a_2 = sigmoid(z_2) a_2 array([0.68997448, 0.66818777, 0.10909682, 0.97811873]) z_3 = np.dot(a_2, W_2) z_3 array([3.55880727, 4.01355384, 0.48455118, -1.55014198])	
<pre>a_3 = sigmoid(z_3) a_3 array([0.97231549, 0.98225163, 0.61882199, 0.17506576]) z_4 = np.dot(a_3, W_3) z_4</pre>	
<pre>array([2.04146788, 1.04718238, -3.47867612]) y_out = soft_max_vec(z_4) y_out array([0.72780576, 0.26927918, 0.00291506])</pre>	tot boing one rou
<pre># lets pass in the full matrix. So we run x_mat_in and instead of it jus z_2 = np.dot(x_mat_in, W_1) z_2 array([[0.8, 0.7, -2.1, 3.8],</pre>	st being one row,
<pre>[1.5, 0.1, -3. , 4.7]]) a_2 = sigmoid(z_2) a_2 array([[0.68997448, 0.66818777, 0.10909682, 0.97811873],</pre>	
[0.84553473, 0.42555748, 0.19781611, 0.98901306], [0.98787157, 0.07585818, 0.42555748, 0.99972542], [0.81757448, 0.52497919, 0.04742587, 0.9909867]]) z_3 = np.dot(a_2, W_2) z_3 array([[3.55880727, 4.01355384, 0.48455118, -1.55014198], [3.92653518, 4.10921334, 0.18688365, -0.94879275],	
[3.88876887, 2.2842146 , 0.4885584 , -1.58990857], [5.37777836, 1.31317855, -0.14871063, -0.19351275], [4.4547123 , 2.94332939, 0.11913329, -0.8567627], [5.38551712, 1.01435726, -0.04904456, -0.44362315], [4.32829928, 3.76620031, -0.02433132, -0.52848494]]) a_3 = sigmoid(z_3) a_3 array([[0.97231549, 0.98225163, 0.61882199, 0.17506576],	
array([[0.97231549, 0.98225163, 0.61882199, 0.17506576],	
array([[2.04146788,	
y_out array([[0.09423345, 0.03486522, 0.00037743],	
<pre>## A one-line function to do the entire neural net computation def nn_comp_vec(x): return soft_max_vec(sigmoid(sigmoid(np.dot(x,W_1)).dot(W_2)).dot(W_3) def nn_comp_mat(x): return soft_max_mat(sigmoid(sigmoid(np.dot(x,W_1)).dot(W_2)).dot(W_3)</pre>	
nn_comp_vec(x_in) array([0.72780576, 0.26927918, 0.00291506]) nn_comp_mat(x_mat_in) array([[0.72780576, 0.26927918, 0.00291506],	
[0.69267581, 0.30361576, 0.00370844], [0.36618794, 0.63016955, 0.00364252], [0.57199769, 0.4251982 , 0.00280411], [0.38373781, 0.61163804, 0.00462415], [0.52510443, 0.4725011 , 0.00239447]])	