### Raul Henrique Santana

# Estudo Comparativo de Topologias de Microinversores Para Painéis Fotovoltaicos Conectados à Rede Elétrica

### Raul Henrique Santana

## Estudo Comparativo de Topologias de Microinversores Para Painéis Fotovoltaicos Conectados à Rede Elétrica

Monografia apresentada durante o Seminário dos Trabalhos de Conclusão do Curso de Graduação em Engenharia Elétrica da UFMG, como parte dos requisitos necessários à obtenção do título de Engenheiro Eletricista.

Universidade Federal de Minas Gerais – UFMG Escola de Engenharia Curso de Graduação em Engenharia Elétrica

Orientador: Prof. Pedro Francisco Donoso-Garcia

Belo Horizonte 2018

# Sumário

| 1     | INTRODUÇÃO                                                | 5  |
|-------|-----------------------------------------------------------|----|
| 1.1   | Motivação                                                 | 5  |
| 1.2   | Objetivo                                                  | 7  |
| 1.3   | Estrutura Geral do Trabalho                               | 7  |
| 2     | ESTADO DA ARTE                                            | 9  |
| 2.1   | Modelo do PV                                              | 9  |
| 2.2   | Conversores Estáticos CC/CC                               | 10 |
| 2.2.1 | Conversor Ćuk Convencional                                | 10 |
| 2.2.2 | Conversor Ćuk Entrelaçado                                 | 11 |
| 2.3   | Conversores CC/CA - Inversores tipo fonte de tensão (VSI) | 13 |
| 2.3.1 | Inversor com Modulação por Largura de Pulso Bipolar       | 13 |
| 2.3.2 | Inversor com Modulação por Largura de Pulso Unipolar      | 14 |
| 2.4   | Conversor Integrado (CC/CA)                               | 15 |
| 2.4.1 | Conversor Ćuk Integrado                                   | 15 |
| 2.5   | Rastreamento de máxima potência (MPPT)                    | 16 |
| 3     | METODOLOGIA                                               | 17 |
| 4     | RESULTADOS                                                | 19 |
| 5     | CONCLUSÃO                                                 | 21 |
|       | REFERÊNCIAS                                               | 23 |

## 1 Introdução

#### 1.1 Motivação

A geração de energia elétrica no Brasil é fortemente caracterizada por um modelo geração centralizada e faz uso do conceito de economias de escala (MACHADO; SOUSA; HEWINGS, 2016). Nesse modelo, plantas de grande porte geram toda a energia, que é transmitida e distribuída aos consumidores, ou seja, a energia é gerada de forma centralizada e posteriormente entregue ao destino final. Contudo, além dos riscos e danos ambientais ocasionados por tais centrais geradoras, com foco no cenário brasileiro para a área alagada pelas usinas hidrelétricas, principal fonte de energia do país, está associada à esta estrutura a necessidade de altos investimentos relacionados à distribuição da energia gerada, tanto no condicionamento com a construção e manutenção de subestações quanto na transmissão.

Nesse cenário, a geração distribuída de energia elétrica vem se mostrado cada vez mais uma alternativa viável. Uma rede de geração distribuída pode ser definida como um conjunto de fontes de energia conectadas diretamente à rede de distribuição ou ao cliente (ACKERMANN; ANDERSSON; SöDER, 2001).

Segundo a **ANEEL** (Agência Nacional de Energia Elétrica), desde 2012, com a vigência da solução normativa Resolução Normativa ANEEL nº 482/2012, é permitido ao consumidor brasileiro gerar sua própria energia elétrica, se esta for proveniente de fontes renováveis ou cogeração qualificada. Uma maior adesão da população à GD tem como impactos esperados, além da diversificação da matriz energética nacional, a redução do carregamento e das perdas nas redes, o adiamento de investimentos em expansão e distribuição e a redução do impacto ambiental (ANEEL, 2018).

A principal vantagem na adesão ao sistema distribuído para o consumidor final é a capacidade de fornecer seu excedente de produção à rede local, de modo a obter uma redução ainda maior do valor pago à concessionária de energia no fim de cada mês.

No conjunto de fontes renováveis, destaca-se a energia fotovoltaica, que converte a energia de raios solares em eletricidade através de painéis fotovoltaicos (PV). Além de utilizar recurso abundante e não poluir durante a geração, sistemas geradores fotovoltaicos necessitam de pouca manutenção e utilizam pouco espaço, podendo ser instalados nos tetos dos imóveis. Apesar disso, o custo de instalação destes geradores ainda é elevado e, portanto, é necessário maximizar a eficiência do sistema.

Um paiel fotovoltaico apresenta uma resposta não linear à incidencia solar sobre sua área e, para que seja extraído deste a máxima potência possível devem ser utiliza-

dos algoritmos de rastreamento de ponto de máxima potência (MPPT). Aliados a estes algoritmos também se fazem necessários inversores de alto rendimento, responsáveis por condicionar a tensão contínua fornecida pelos paineis em tensão alternada que pode ser injetada diretamente na rede elétrica.

Por serem o elo de ligação entre o painel fotovoltaico e o sistema elétrico residencial e da concessionária, em sistemas on-grid além de representarem uma parcela considerável do custo total da implantação do gerador os inversores apresentam grande impacto na eficiência final do sistema de geração e, portanto, faz-se pertinente uma análise comparativa de custo e eficiência destes.

A tensão disponibilizada por paineis fotovotaicos é geralmente de baixa amplitude, sendo necessária uma etapa de amplificação entre o painel e a transformação do sinal contínuo em alternado. Esse estágio pode ser evitado em casos nos quais vários paineis são conectados em série de modo que a tensão de saída do conjunto seja maior que a tensão de pico da rede. Esta configuração é, entretanto, pouco usual em sistemas de baixa potência devido à necessidade de se garantir uma tensão mínima fornecida pelos paineis. Sendo assim, as topologias mais comuns de inversores para sistemas fotovoltaicos utilizam um estágio elevador de tensão e um estágio inversor conectados em série (Junior et al., 2011).

Com o intuito de reduzir o custo e o espaço ocupado por inversores responsáveis por lidar com a energia gerada por uma série de paineis fotovoltaicos, vem sido estudada a utilização de microinversores (Bouzguenda et al., 2011), inversores de menor potência, montados atrás de cada painel, pelo qual são responsáveis pela otimização da geração e pelo condicionamento da energia gerada. A principal vantagem na utilização de microinversores está no fato de estes isolarem os efeitos de sombreamento entre paineis (Nezamuddin; Crespo; dos Santos, 2016).

Os microinversores também são compostos, em geral, por dois estágios. O primeiro responsável por elevar a tensão fornecida pelo painel, além de sua operação no ponto de máxima potência e o segundo responsável por gerar a corrente alternada de modo a assegurar a correta conexão com a rede elétrica (Nezamuddin; Crespo; dos Santos, 2016). Podem ser utilizadas, também, topologias integradas que buscam a simplificação e redução de componentes do circuito através da conexão direta entre os estágios (Luigi et al., 2010) (Junior et al., 2011).

É proposto nesse trabalho um estudo comparativo entre algumas topologias de microinversores para sistemas fotovoltaicos baseadas na estrutura CC-CC Ćuk. Serão estudados inversores com conversores Ćuk, Ćuk entrelaçado e Ćuk integrado com um inversor de onda completa, esse último proposto por (Luigi et al., 2010).

A utilização de conversores Ćuk se faz interessante devido ao fato de estes apre-

1.2. Objetivo 7

sentam comportamentode fonte de corrente (Junior et al., 2011), o que torna mais simples sua a conexão de sua saída à rede elétrica, que apresenta o comportamento de uma fonte de tensão, já que devem ser mantidos os níveis de tensão independente da corrente drenada. Isso elimina a necessidade de impedâncias em série entre o inversor e a rede elétrica, utilizadas para limitar a corrente de saída do inversor, as quais são necessárias quando este apresenta características de fonte de tensão. Além disso, o conversor Ćuk apresenta baixo ripple de corrente, o que resulta em baixas perdas e melhor eficiência na conversão (Shawky; Ahmed; Orabi, 2016).

A fonte de energia utilizada será um painel fotovoltaico com potência de aproximadamente 300W, será escolhido e implementado um algoritmo de MPPT e feita, também, uma análise da distorção harmônica injetada por cada implementação.

#### 1.2 Objetivo

O objetivo principal deste TCC é o estudo, projeto, simulação e análise de um sistema de geração de energia elétrica composto por painel fotovoltaico e conversores CC-CC e CC-CA.

As topologias de conversores que serão analisadas estão listadas a seguir e serão combinadas com inversores em ponte completa bipolar e unipolar.

- Conversor Ćuk convecional
- Conversor Ćuk Entrelaçado de 2 fases
- Conversor Ćuk integrado

#### 1.3 Estrutura Geral do Trabalho

O capítulo 1 introduz o tema e o objeto de estudo, com uma breve explicação e contextualização do problema. No capítulo 2 é apresentado o estado da arte e apresetado o embasamento teórico necessário para o desenvolvimento do trabalho.

No capítulo 3 é descrita a metodologia utilizada, sendo o capítulo 5 dedicado à exposição dos resultados obtidos através desta. O sexto e útlimo capítulo é dedicado à discussão do resultado e às conclusões obtidas pelo estudo.

## 2 Estado da Arte

#### 2.1 Modelo do PV

O circuito equivalente de células fotovoltaicas pode ser representado por uma fonte de corrente, como pode ser visto na figura 1. Este modelo é amplamente aceito e utilizado em trabalhos relacionados a energia fotovoltaica e seu comportamento do é descrito pelas equações 2.1 a 2.6, nas quais  $i_{pv}$  é a corrente e V a tensão de saída da celula solar, respectivamente.  $I_{ph}$  é a fotocorrente e  $I_r$  a corrente reversa de saturação da célula,  $R_s$  e  $R_p$  são as resistências série e shunt, q é a carga do elétrone  $\eta$  é o fator de idealidade da junção p-n. k é a constante de Boltzmann, T representa a temperatura ambiente, em Kelvins e G representa a densidade de potência da irradiação solar.  $T_r$  é a temperatura nominal, em Kelvins (298K),  $I_{sc}$  é a corrente de curto circuito em condições padrão de teste(STC) ( $T_r = 25^{\circ}C$  e  $G = 1kW/m^2$ ),  $\alpha$  é o coeficiente de temperatura,  $I_r r$  é a corrente de saturação reversa em STC e  $E_g$  é o gap de energia entre as bandas (1.1eV).  $V_{oc}$  é a tensão de circuito aberto das células,  $N_s$  é o número de células por painel e  $M_s$  é o número de painéis conectados em série (de Oliveira et al., 2016).

$$i_{pv} = I_{ph} - I_r \left[ e^{q((V + i_{pv}R_s)/\eta kT)} - 1 \right] - \frac{V + i_{pv}R_s}{R_p}$$
 (2.1)

$$I_{ph} = [I_{SC} + \alpha (T - T_r)] \frac{G}{1000}$$
 (2.2)

$$I_r = I_{rr} \left(\frac{T}{T_r}\right)^3 e^{[(qE_g/\eta k)((1/T_r) - (1/T))]}$$
(2.3)

$$I_{rr} = \frac{I_{SC} - (V_{oc}/R_p)}{e^{(qV_{oc}/\eta kT_r)} - 1}$$
(2.4)

$$V_{pv} = V N_s M_s \tag{2.5}$$

$$V_{oc_{PV}} = V_{oc} N_s M_s \tag{2.6}$$



Figura 1 – Circuito Equivalente de uma Célula Fotovoltaica (de Oliveira et al., 2016)

A partir das equações 2.1, 2.2, 2.3 e 2.4 é possível inferir a existência das relações entre a corrente de saída do painel fotovoltaico, sua temperatura e a irradiação solar.



Figura 2 – Curvas IxV de painel fotovoltaico para diferentes (a) irradiâncias e (b) temperaturas

De fato, quanto maior a temperatura da célula, menor sua tensão de circuito aberto e, portanto, mais rápida sua variação de corrente. Já em relação à irradiação solar, quanto menor a magnitude desta, menor a corrente máxima da célula, relação clara ao analisar a equação 2.2.

Na figura 2 são apresentadas curvas I-V para diferentes valores de irradiação solar e temperatura de painel, para servirem de demonstração da influência dessas variáveis no comportamento do painel.

## 2.2 Conversores Estáticos CC/CC

#### 2.2.1 Conversor Ćuk Convencional

Um conversor Ćuk é um conversor CC-CC baseado na transferência de energia capacitiva que é capaz de fornecer tensão maior ou menor que sua tensão de entrada, com polaridade invertida. Seu circuito pode ser visto na figura 3.



Figura 3 – Conversor Ćuk convencional (CZARKOWSKI, 2001)

Quando a chave S está fechada (ON), os indutores L1 e L2 são carregados pela tensão de entrada e capacitor C1, respectivamente. O capacitor C1 polariza reversamente o diodo D e descarrega fornecendo energia para a carga R, o capacitor de filtro C e o

indutor de filtro L2. Com o transistor representado pela chave S em estado aberto (OFF), o indutor de entrada L1 carrega o capacitor de transferência de energia C1. O diodo D conduz as correntes de ambos L1 e L2 e, portanto, o indutor L2 descarrega fornecendo energia à carga (CZARKOWSKI, 2001) (Joseph; Daniel; Unnikrishnan, 2015).

A função de transferência CC desse conversor é dada pela equação 2.7, na qual d é o ciclo de trabalho ( $duty\ cycle$ ),  $V_s$  a tensão de entrada e  $V_o$  a tensão de saída (CZAR-KOWSKI, 2001) (Joseph; Daniel; Unnikrishnan, 2018).

$$M_v = \frac{V_o}{V_s} = -\frac{d}{1-d}$$
 (2.7)

O conversor Ćuk opera em modo de condução contínua para  $L1 > L_{b1}$  e  $L2 > L_{b2}$  pelas equações 2.8 e 2.9.

O capacitor de filtro C mínimo para uma certa tensão de ripple  $V_r$  pode ser encontrado utilizando a equação 2.10. Já a tensão de ripple no capacitor C1 pode ser estimada pela equação 2.11.

$$L_{b1} = \frac{(1-d)R}{2df} \tag{2.8}$$

$$L_{b2} = \frac{(1-d)R}{2f} \tag{2.9}$$

$$C_{min} = \frac{(1-d)V_o}{8V_r L_2 f^2} \tag{2.10}$$

$$V_{r_{C1}} = \frac{dV_o}{C_1 R f} (2.11)$$

Nas equações 2.8 a 2.10 f é a frequência de chaveamento do transistor S.

#### 2.2.2 Conversor Ćuk Entrelaçado

Um conversor cuk entrelaçado consiste de um capacitor, dois indutores, um transistor e um diodo para cada fase, além do capacitor de filtro que pode ser comum entre todas as fases. A figura 4 apresenta o circuito de um conversor cuk entrelaçado de 2 fases.

Segundo Joseph, Daniel e Unnikrishnan (2015), essa topologia tem o intuito de reduzir o ripple de corrente na entrada e reduzir o stress de chaveamento, sem sacrificar sua eficiência. Para tal, os transistores são ligados um por vez, por um período de  $T_{on}/2$ , e somente após passado um período  $T_{off}/2$  do desligamento do transistor anterior. Isso é feito utilizando-se a técnica de modulação por largura de pulso com deslocamento de fase, PSPWM, do inglês  $Phase-Shifted\ Pulse\ Width\ Modulation$ .

O funcionamento do conversor cuk entrelaçado de 2 fases pode ser descrito em 3 modos (Joseph; Daniel; Unnikrishnan, 2015):

• Modo 1  $(t_0$ - $t_1)$ :  $S_1$  ligado e  $S_2$  desligado;

- Modo 2  $(t_1$ - $t_2$  e  $t_3$ - $t_4$ ):  $S_1$  e  $S_2$  desligados;
- Modo 3  $(t_2$ - $t_3)$ :  $S_1$  desligado e  $S_2$  ligado.

No modo 1, ocorre a carga do indutor  $L_{1a}$  e a descarga do indutor  $L_{1b}$ , que fornece energia ao capacitor  $C_2$ . Enquanto isso, o capacitor  $C_1$  para a carga.

Assumindo uma variação linear na corrente dos indutores, a corrente de ripple para os indutores nesse modo pode ser calculada com as equações 2.12 a 2.14, nas quais  $t_1$ é o tempo em que o transistor  $S_1$ está ligado,  $V_d$ a tensão de entrada e  $V_{C_1}$  e  $V_{C_2}$  a tensão nos capacitores  $C_1$  e  $C_2$ , respectivamente.

$$\Delta I_{L_{1a}} = \frac{t_1 V_d}{L_{1a}} \tag{2.12}$$

$$\Delta I_{L_{1b}} = \frac{t_1 \left( V_{C_2} - V_d \right)}{L_{1b}} \tag{2.13}$$

$$\Delta I_{L_2} = \frac{t_1 \left( V_{C_1} + V_o \right)}{L_2} \tag{2.14}$$



Figura 4 – Conversor Ćuk entrelaçado de 2 fases (Joseph; Daniel; Unnikrishnan, 2015)

Quando ambos os transistores estão desligados, ou seja, no modo 2, os indutores de entrada  $L_{1a}$  e  $L_{1b}$  são descarregados, fornecendo energia aos capacitores  $C_1$  e  $C_2$ , respectivamente, de forma que, entre  $t_1$  e  $t_2$ ,  $C_1$  carrega a energia que foi fornecida à carga no modo anterior, enquanto que entre  $t_3$  e  $t_4$ ,  $C_2$  o faz. Além disso, os indutores  $L_2$ e  $L_3$  fornecem energia à carga e, portanto são descarregados.

Os ripples de corrente para os indutores nesse modo são encontrados utilizando as equações 2.15 a 2.17

$$\Delta I_{L_{1a}} = \frac{t_2 \left( V_{C_1} - V_d \right)}{L_{1a}} \tag{2.15}$$

$$\Delta I_{L_{1a}} = \frac{t_2 (V_{C_1} - V_d)}{L_{1a}}$$

$$\Delta I_{L_{1b}} = \frac{t_2 (V_{C_2} - V_d)}{L_{1b}}$$

$$\Delta I_{L_2} = -\frac{t_2 V_o}{L_2}$$
(2.15)
$$(2.16)$$

$$\Delta I_{L_2} = -\frac{t_2 V_o}{L_2} \tag{2.17}$$

No terceiro modo, com  $S_2$  ligado, enquanto o indutor  $L_{1b}$  continua sendo carregado, o indutor  $L_{1a}$  é descarregado, fornecendo energia ao capacitor  $C_1$ . Por sua vez, o capacitor  $C_2$  fornece energia à carga e aos componentes  $L_3$ ,  $C_o$ .

Através das equações 2.12, 2.15,2.14 e 2.17, tem-se a equação da tensão de saída (2.18), onde  $d=T_{on}/T$ .

$$V_o = -\frac{d \cdot V_d}{1 - d} \tag{2.18}$$

## 2.3 Conversores CC/CA - Inversores tipo fonte de tensão (VSI)

O inversor de tensão é responsável por converter uma tensão contínua em outra alternada, com frequência e amplitude bem definidas. A topologia de um inversor tipo fonte de tensão, *VSI*, do ingês *Voltage Source Inverter* monofásico em ponte completa pode ser vista na figura 5.

É facilmente perceptível que, caso ambos um transistores de uma das pernas do circuito estejam em condução simultaneamente haverá um curto-circuito na tensão de entrada  $v_i$ , que corresponde á tensão de barramento CC que alimenta o circuito. Dessa forma deve-se sempre garantir que apenas um dos transistores em cada perna conduza em um certo período de tempo.

No total o circuito apresenta cinco possíeis estados de operação, sendo quatro com tensão de saída definida(estados 1 a 4) e um com tensão indefinida(estado 5). O estados e sua tensão de saída correspondente são (ESPINOZA, 2001):

| Estado | $S_{1_+}$ | $S_{1_{-}}$ | $S_{2_+}$ | $S_{2-}$  | Tensão de Saída |
|--------|-----------|-------------|-----------|-----------|-----------------|
| 1      | Ligado    | Desligado   | Desligado | Ligado    | $v_i$           |
| 2      | Desligado | Ligado      | Ligado    | Desligado | $-v_i$          |
| 3      | Ligado    | Desligado   | Ligado    | Desligado | 0               |
| 4      | Desligado | Ligado      | Desligado | Ligado    | 0               |
| 5      | Desligado | Desligado   | Desligado | Desligado | $v_i$ ou $-v_i$ |

Tabela 1 – Possíveis estados de operação de um VSI em Ponte Completa

Como um inversor deve ser capaz de fornecer tensão com amplitude bem definida, o estado 5 deve ser evitado. Para isso, a modulação utilizada deve garantir que a todo momento um, e apenas um, dos transistores de cada perna esteja conduzindo corrente. Várias técnicas de modulação podem ser aplicadas a inversores VSI de ponte completa, entre elas as de PWM bipolar e unipolar(ESPINOZA, 2001).

## 2.3.1 Inversor com Modulação por Largura de Pulso Bipolar

No inversor com PWM bipolar apenas os estados 1 e 2 da tabela 1 são utilizados para gerar o sinal de saída, de modo que este apresenta apenas dois valores,  $v_i$  e  $-v_i$ .



Figura 5 – Inversor VSI monofásico em ponte completa (ESPINOZA, 2001)

Deseja-se que a tensão alternada na saída siga uma forma de onda que, para este trabalho é senoidal. A técnica de PWM baseada em sinal de portadora atende a essa questão ao definir os estados dos trasistores a partir da comparação entre um sinal que corresponde à saída desejada  $v_m$ , chamado de modulante, e uma forma de onda triangular  $v_p$ , chamada de portadora.

Define-se que, enquanto o sinal modulante é maior que a portadora, o estado 1 é acionado, ou seja, os transistores  $S_{1_+}$  e  $S_{2_-}$  entram em conduução, enquanto so transistores  $S_{1_-}$  e  $S_{2_+}$  são desligados. O estado 2 é acionado quando o sinal de portadora apresenta maior tensão que o sinal modulante.

O sinal obtido na saída de um inversor que segue esta técnica é, basicamente, uma forma de onda senoidal que apresenta amplitude fundamental  $\hat{v}_o$  a qual satisfaz a expressão 2.19, onde  $m_a$  é o índice de modulação, ou razão de modulação de amplitude, representada pela equação 2.20 (ESPINOZA, 2001).

$$\hat{v}_o = v_{ab} = v_i m_a \tag{2.19}$$

$$m_a = \frac{\hat{v}_m}{\hat{v}_p} \tag{2.20}$$

## ADICIONAR GRÁFICOS SOBRE O FUNCIONAMENTO OBTIDOS VIA SIMULAÇÃO!!

### 2.3.2 Inversor com Modulação por Largura de Pulso Unipolar

Já em um inversor com PWM unipolar apenas os estados 1, 2, 3 e 4 da tabela 1 são utilizados para gerar o sinal de saída. Dessa forma a tensão alteranada obtida apresenta três possíveis valores: 0,  $v_i$  e  $-v_i$ .

Neste tipo de modulação são utilizados dois sinais modulantes  $v_m$  e  $-v_m$ . Cada modulante é responsável pela tensão em um dos braços do inversor, em relação ao ponto

newtro (N), de modo que  $v_m$  controla a tensão  $v_{aN}$  e  $-v_m$  é responsável por  $v_{bN}$ . A amplitude da tensão de saída para este método é expressa pela equação 2.23, encontrada pela combinação das equações 2.21 e 2.21.

$$v_{bN} = -v_{aN} \tag{2.21}$$

$$v_o = v_{aN} - v_{bN} \tag{2.22}$$

$$\hat{v}_o = 2 \cdot \hat{v}_{aN} = v_i m_a \tag{2.23}$$

(2.24)

Segundo Espinoza (2001), devido ás tensões de fase ( $V_{aN}$  e  $v_{bN}$ ) serem identicas e desafadas de 180°, a tensão de saída não apresenta harmônicos pares, presentes em inversores que utilizam o método de modulação bipolar.

Essa característica permite que inversores que utilizam a modulação unipolar utilizem filtros menores para obter tensão e corrente de alta qualidade, utilizando a mesma frequência de chaveamento que inversores com modulação bipolar(ESPINOZA, 2001).

## ADICIONAR GRÁFICOS SOBRE O FUNCIONAMENTO OBTIDOS VIA SIMULAÇÃO!!

## 2.4 Conversor Integrado (CC/CA)

### 2.4.1 Conversor Ćuk Integrado

A integração de estágios consiste na união dos estágios subidor de tensão(CC-CA) e inversor (CC-CA) em um único estágio CC-CA, com o circuito mais simples e com menor número componentes.

Segundo proposto por Luigi et al. (2010), a primeira simplificação do conversor cuk integrado ao inversor de tensão em ponte completa é a retirada do capacitor e do indutor de filtro na saída no estágio elevador de tensão, ou seja, no barramento CC. Dessa forma, tensão e corrente do primeiro estágio são entregues diretamente ao inversor. A segunda, e última simplificação possível nessa integração é a retirada do diodo do conversor cuk, uma vez que os diodos anti-paralelos do inversor são capazes de efetuar sua função.

Na figura 6 é possível ver o circuito final resultante das simplificações descritas, no qual os componentes  $L_b$ ,  $S_b$  e  $C_b$  advém de um conversor cuk convencional.

Para conexão com a rede elétrica, como fonte de corrente, o capacitor de saída  $C_o$  da figura 6 pode ser simplesmente subsituído pela rede(Luigi et al., 2010).



Figura 6 – Conversor Ćuk Integrado (Luigi et al., 2010)

## 2.5 Rastreamento de máxima potência (MPPT)

EXPLICA OQ É, PQ É NECESSÁRIO E SOBRE TECNICAS, PROVAVELMENTE SÓ UMA MESMO

# 3 Metodologia

## 4 Resultados

## 5 Conclusão

FALAR SOBRE STATE OF THE ART EM INVERSORES X MICRONIVERSORES <--> FALAR SOBRE TOPOLOGIAS DE INVERSORES DIFERENÇAS ENTRE MICRONIVERSORES E INVERSORES VANTAGENS MICRONIVERSORES MICRONIVERSORES NOS ULTIMOS anos

(microinvesores e inversores topologias, pq cuk?) FALAR SOBRE TOPOLOGIA CUK (PQ ESCOLHER ESSA -> fonte de corrente?/ nova leva?)

FALAR SOBRE TWO PANEL MICROINVERTERS TOPOLOGY

## Referências

ACKERMANN, T.; ANDERSSON, G.; SöDER, L. Distributed generation: a definition. *Electric Power Systems Research*, v. 57, n. 3, p. 195 – 204, 2001. ISSN 0378-7796. Citado na página 5.

ANEEL. Geração Distribuída. 2018. Disponível em: <a href="http://www.aneel.gov.br/geracao-distribuida">http://www.aneel.gov.br/geracao-distribuida</a>. Citado na página 5.

Bouzguenda, M. et al. Solar photovoltaic inverter requirements for smart grid applications. In: 2011 IEEE PES Conference on Innovative Smart Grid Technologies - Middle East. [S.l.: s.n.], 2011. p. 1–5. Citado na página 6.

CZARKOWSKI, D. Cuk converter. In: \_\_\_\_\_. Power Electronics Handbook. [S.l.]: Academic Press, 2001. cap. 13, p. 218. Citado 2 vezes nas páginas 10 e 11.

de Oliveira, F. M. et al. Grid-tied photovoltaic system based on pso mppt technique with active power line conditioning. *IET Power Electronics*, v. 9, n. 6, p. 1180–1191, 2016. ISSN 1755-4535. Citado na página 9.

ESPINOZA, J. R. Full-bridge vsi. In: \_\_\_\_\_. Power Electronics Handbook. [S.l.]: Academic Press, 2001. cap. 14, p. 231–232. Citado 3 vezes nas páginas 13, 14 e 15.

Joseph, K. D.; Daniel, A. E.; Unnikrishnan, A. Reduced ripple interleaved cuk converter with phase shifted pwm. In: 2015 10th Asian Control Conference (ASCC). [S.l.: s.n.], 2015. p. 1–6. Citado 2 vezes nas páginas 11 e 12.

Joseph, K. D.; Daniel, A. E.; Unnikrishnan, A. Interleaved cuk converter with reduced switch current. In: 2018 International Conference on Power, Instrumentation, Control and Computing (PICC). [S.l.: s.n.], 2018. p. 1–6. Citado na página 11.

Junior, L. G. et al. Evaluation of integrated inverter topologies for low power pv systems. In: 2011 International Conference on Clean Electrical Power (ICCEP). [S.l.: s.n.], 2011. p. 35–39. Citado 2 vezes nas páginas 6 e 7.

Luigi, G. et al. Integrated inverter topologies for low power photovoltaic systems. In: 2010 9th IEEE/IAS International Conference on Industry Applications - INDUSCON 2010. [S.l.: s.n.], 2010. p. 1–5. Citado 3 vezes nas páginas 6, 15 e 16.

MACHADO, M. M.; SOUSA, M. C. S. de; HEWINGS, G. Economies of scale and technological progress in electric power production: The case of Brazilian utilities. *Energy Economics*, v. 59, n. C, p. 290–299, 2016. Citado na página 5.

Nezamuddin, O.; Crespo, J.; dos Santos, E. C. Design of a highly efficient microinverter. In: 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). [S.l.: s.n.], 2016. p. 3463–3468. Citado na página 6.

Shawky, A.; Ahmed, M. E.; Orabi, M. Performance analysis of isolated dc-dc converters utilized in three-phase differential inverter. In: 2016 Eighteenth International Middle East Power Systems Conference (MEPCON). [S.l.: s.n.], 2016. p. 821–826. Citado na página 7.