2D Shapes

Rectangle

• Area: $A = l \cdot w$ (length × width)

• **Perimeter**: P = 2(l + w)• Diagonal: $d = \sqrt{l^2 + w^2}$

Square

• Area: $A = s^2$ (side length squared)

• **Perimeter**: P = 4s• Diagonal: $d = s\sqrt{2}$

Triangle

• Area: $A = \frac{1}{2}bh$ (base × height)

• **Perimeter**: P = a + b + c (sum of side lengths)

• Heron's Formula for Area: $A = \sqrt{s(s-a)(s-b)(s-c)}$, where $s = \frac{a+b+c}{2}$ (semi-perimeter)

• **Pythagorean Theorem** (for right triangles): $a^2 + b^2 = c^2$ (legs a, b, hypotenuse c)

Circle

• Area: $A = \pi r^2$ (radius squared)

• Circumference: $C = 2\pi r$

• Sector Area: $A = \frac{\theta}{360}\pi r^2$ (θ in degrees) • Arc Length: $L = \frac{\theta}{360} \cdot 2\pi r$ (θ in degrees)

Parallelogram

• Area: A = bh (base \times height)

• **Perimeter**: P = 2(a+b) (adjacent sides a and b)

Trapezoid

• Area: $A = \frac{1}{2}(a+b)h$ (average of parallel sides × height)

• **Perimeter**: P = a + b + c + d (sum of all sides)

3D Shapes

Cube

• **Volume**: $V = s^3$ (side length cubed)

• Surface Area: $SA = 6s^2$ • Space Diagonal: $d = s\sqrt{3}$

Rectangular Prism

• **Volume**: $V = l \cdot w \cdot h$ (length \times width \times height)

• Surface Area: SA = 2(lw + lh + wh)

• Space Diagonal: $d = \sqrt{l^2 + w^2 + h^2}$

Sphere

• Volume: $V = \frac{4}{3}\pi r^3$ (radius cubed)

• Surface Area: $SA = 4\pi r^2$

Cylinder

• Volume: $V = \pi r^2 h$ (radius squared × height)

• Surface Area: $SA = 2\pi r^2 + 2\pi rh$ (base areas + lateral area)

Cone

• Volume: $V = \frac{1}{3}\pi r^2 h$ (one-third base area × height)

• Surface Area: $SA = \pi r^2 + \pi r l$ (base area + lateral area, where $l = \sqrt{r^2 + h^2}$ is slant height)

General Geometry Rules

Angles

• Sum of Angles in a Triangle: 180°

• Sum of Angles in a Quadrilateral: 360°

• Sum of Interior Angles in a Polygon: $(n-2) \cdot 180^{\circ}$ (n is number of sides)

• Sum of Exterior Angles in a Polygon: 360°

Similarity and Congruence

• Similar Figures: Corresponding angles are equal, and corresponding sides are propor-

• Congruent Figures: Corresponding angles and sides are equal.

• AA Similarity for Triangles: If two angles of one triangle are equal to two angles of another, the triangles are similar.

2

Coordinate Geometry

• Distance Formula: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ • Midpoint Formula: $(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$ • Slope Formula: $m = \frac{y_2 - y_1}{x_2 - x_1}$