Osciladores por realimentación positiva

Diagrama en bloques:

Cada bloque presenta su función distinta, aunque no correspondan físicamente a circuitos distintos.

A: Amplificador de tensión, corriente o potencia.

β: Red de realimentación. Posee los elementos que determinan la frecuencia de oscilación y forman una sintonía fuertemente selectiva.

Cuando se alimenta al circuito, ocurre un transitorio de encendido debido a la carga o descarga de capacitores de paso y de polarización , más una señal de ruido presente por la existencia de todo elemento pasivo o activo , que produce no menos de un pulso inicial de forma impredecible en el tiempo:

Cuyo espectro en frecuencias difícilmente no sea contínuo (ya que para ser discreto, normalmente la señal temporal es periódica) :

<u>C</u>uando esta señal es amplificada se incorpora a la misma la distorsión del amplificador A, que crece con la amplitud, aportando más componentes al espectro anterior.

Al pasar la misma por β , su selectividad centrada en **fo** dejará pasar una componente y su entorno muy cercano:

Señal que se realimenta en forma positiva y en cada vez que lo realiza aumenta progresivamente su nivel, pudiendo llegar a la limitación por saturación del amplificador. Condición que se debe evitar para no correr el riesgo de poner en conducción junturas de colector – base (esto ocurre en la sobresaturación) de los transistores que conformen el amplificador, con lo cual podrían cargar a la red β , disminuyendo su selectividad por caída del Qc (factor de mérito en carga).

L: Dependencia de la ganancia del lazo con la amplitud. Para pequeñas amplitudes L es una transferencia unitaria, con lo cual:

$$\frac{V2}{V1} = \frac{A}{(1 - A \bullet \beta)}$$

A medida que aumenta la señal de entrada , su nivel pico determina una auto regulación de la transconductancia del transistor bipolar utilizado como amplificador, manifestándose como una disminución que da un factor 0 < L < 1.

$$\frac{V2}{V1} = \frac{A \bullet L}{(1 - A \bullet L \bullet \beta)}$$

A medida que aumenta el nivel de entrada, el transistor pone en evidencia su comportamiento no lineal, modificando su transconductancia efectiva hasta lograr un equilibrio antes de la saturación.

Siendo **Gm** la transconductancia efectiva y gm_0 la transconductancia lineal, la variación relativa $\frac{Gm}{gmo}$ en función de la señal de entrada es:

(Algunas fórmulas y relaciones del gráfico corresponden a un nivel más avanzado de matemática que el de este curso)

Oscilador LC

En el circuito se observa una polarización tipo base común, el cual no invierte la fase entrada_salida como el emisor común.

La realimentación es positiva mediante un transformador que no invierte y un capacitor de acoplamiento para bloquear la contínua del emisor.

El circuito dinámico (si el Qc se mantiene alto como para garantizar la eliminación de armónicas superiores por alinealidad del transistor) es:

Donde:

$$R \text{ int } ot = \frac{1}{G \text{ int } ot}$$
 $Rin = \frac{1}{Gm}$ $Re = \frac{1}{Ge}$ $RL = \frac{1}{GL}$ $RLtot = \frac{1}{GLtot}$

Resulta la conductancia total de entrada:

$$G$$
 int $ot = Ge + Gm$

Reflejando la misma a través del transformador hacia la salida:

$$G \text{ int } ot^* = \frac{Ge + Gm}{\eta^2}$$

Donde $\eta = \frac{N_1}{N_2}$ relación de transformación, definido N_1 como nº de espiras de primario conectado a la salida

del transistor, y N₂ del secundario, conectado a la entrada del mismo.

La conductancia total de carga será analizada a la frecuencia de oscilación, donde las componentes reactivas del tanque LC se anulan, y como el Qc y por lo tanto el Qo son lo suficientemente altos, no hay aporte de conductancia significativa por parte de la sintonía.

$$GLtot = GL + G$$
 int $ot *$

$$Gltot = GL + \frac{G \text{ int } ot}{\eta^2}$$

$$GLtot = GL + \frac{Gm + Ge}{\eta^2}$$

La ganancia total del sistema será:

$$Av \cong Gm \bullet ZLtot$$

donde
$$ZLtot = RLtot + jX_{IC}$$

en resonancia es:
$$jX_{LC} = 0$$

 $Av_o \cong Gm_o \bullet RLtot$

$$Av_o \cong Gm_o \bullet RLtot$$
 siendo Av_o la ganancia con la amplitud de oscilación estabilizada o autolimitada $Av_o \cong \frac{Gm_o}{GLtot}$

y Gm_a la transconductancia efectiva en el punto de oscilación estable:

La oscilación comienza con gm_a (transconductancia lineal) y nivel muy bajo y concluye con el valor de Gm_o efectiva.

 $Vin_o = \frac{Vsal}{n}$

Surge entonces una ganancia de tensión en el arranque de oscilación

$$Av \cong gm_q \bullet RLtot = \frac{gm_q}{GLtot}$$

De valor mucho mayor al de mantenimiento de oscilación Av_o , el cual debe coincidir con la atenuación máxima del circuito en la malla β de realimentación:

$$Av_o \cong \frac{Gm_o}{GLtot} = \eta$$

Entonces

 $Gmo = \eta \bullet GLtot$

Condición de mantenimiento de oscilación

 $gmq > \eta \bullet GLtot$

Condición de arranque de oscilación

La frecuencia de oscilación queda fijada por la resonancia del tanque LC:

$$f_{osc} = \frac{1}{2\pi\sqrt{L \bullet C}}$$

Esto puede deducirse de la transferencia del sistema donde para que oscile se tiene:

$$1 - A(s) \bullet \beta(s) = 0$$

En régimen permanente es

$$s = j\omega_{asc}$$

Donde

$$|A(j\omega_{osc}) \bullet \beta(j\omega_{osc})| = 1$$
 Son las condiciones teóricas para que se produzca el comienzo de la oscilación. donde $n = 1, 2, 3, ...$

En realidad deberían considerarse las capacidades y cargas resistivas del circuito y sus componentes, como ser capacidades de entrada y salida del transistor, capacidad distribuida del inductor, del impreso si la frecuencia de trabajo fuera alta, etc.