Phil 424: HW #6 Solutions

Point Values

There were 5 questions. Each was worth 20 points. Partial credit was awarded.

1 Craps

There are 36 possible outcomes of dice rolls. Let Sn be the proposition that the sum of the dice is exactly n.

There are 6 equiprobable ways for the dice to add up to 7. So $cr(S7) = \frac{6}{36}$. There is only one way for the dice to add up to 2, so $cr(S2) = \frac{1}{36}$. There are 2 ways for the dice to add up to 3, so $cr(S3) = \frac{2}{36} = \frac{1}{18}$. There is only way for the dice to add up to 12, so $cr(S12) = \frac{1}{36}$

$$E\$(BR) = \$4 \cdot \operatorname{cr}(S7) + (-\$1) \cdot \operatorname{cr}(\sim S7) = \$4 \cdot \frac{1}{6} + (-\$1) \cdot \frac{5}{6} = -\$\frac{6}{36} = -\$\frac{1}{6}$$

$$E\$(C) = \$7 \cdot \operatorname{cr}(S2) + \$7 \cdot \operatorname{cr}(S3) + \$7 \cdot \operatorname{cr}(S12) + (-\$1) \cdot \operatorname{cr}(\sim (S2 \vee S3 \vee S12)) = \$7 \cdot \frac{1}{36} + \$7 \cdot \frac{2}{36} + \$7 \cdot \frac{1}{36} + (-\$1) \cdot \frac{-32}{36} = -\$\frac{4}{36} = -\$\frac{1}{9}$$

$$E\$(SE) = \$30 \cdot \operatorname{cr}(S2) + (-\$1) \cdot \operatorname{cr}(\sim S2) = \$30 \cdot \frac{1}{36} + (-\$1) \cdot \frac{35}{36} = -\$\frac{5}{36}$$

So the ranking of the bets by their expected dollar values is C, SE, BR

2 4 Gambles

2.a x and y

$$\mathrm{EU}_{\mathrm{SAV}}(1) = \mathrm{u}(1 \ \& \ P) \cdot \mathrm{cr}(P) + \mathrm{u}(1 \ \& \ \sim P) \cdot \mathrm{cr}(\sim P) = x \cdot \mathrm{cr}(P) + y \cdot \mathrm{cr}(\sim P)$$

$$EU_{SAV}(2) = u(2 \& P) \cdot cr(P) + u(2 \& \sim P) \cdot cr(\sim P) = y \cdot cr(P) + x \cdot cr(\sim P)$$

$$x \cdot \operatorname{cr}(P) + y \cdot \operatorname{cr}(\sim P) = y \cdot \operatorname{cr}(P) + x \cdot \operatorname{cr}(\sim P)$$
 Assumption
$$\operatorname{cr}(P) \cdot (x - y) = \operatorname{cr}(\sim P) \cdot (x - y)$$
 Algebra
$$\operatorname{cr}(P) = \operatorname{cr}(\sim P)$$
 Algebra, assumption that $x \neq y$
$$\operatorname{cr}(P) = \frac{1}{2}$$
 Probability axioms

2.b a, z, and m

$$EU_{SAV}(3) = u(3 \& P) \cdot cr(P) + u(3 \& \sim P) \cdot cr(\sim P) = 100 \cdot \frac{1}{2} + (-100) \cdot \frac{1}{2} = 50 + (-50) = 0$$

$$EU_{SAV}(4) = u(4 \& P) \cdot cr(P) + u(4 \& \sim P) \cdot cr(\sim P) = m \cdot 1/2 + m1/2 = m$$

This immediately entails m = 0

3 Jeffrey

3.a *B* is Not Highest

No. This is because EDT doesn't respect the Dominance Principle. Consider the following utility table:

	S	~S
A	10	0
В	1	-5
\overline{C}	8	0

With the credence table:

Then $EU_{EDT}(A) = u(A \& S) \cdot cr(S|A) + u(A \& \sim S) \cdot cr(\sim S|A) = 10 \cdot 0.01 + 0 \cdot 0.99 = 0.1$

$$EU_{EDT}(B) = u(B \& S) \cdot cr(S|B) + u(B \& \sim S) \cdot cr(\sim S|B) = 1 \cdot 0.99 + (-5) \cdot 0.01 = 0.94$$

$$EU_{EDT}(C) = u(C \& S) \cdot cr(S|C) + u(C \& \sim S) \cdot cr(\sim S|C) = 8 \cdot 0.01 + 0 \cdot 0.99 = 0.08$$

Since $\mathrm{EU}_{\mathrm{EDT}}(B) > \mathrm{EU}_{\mathrm{EDT}}(A) > \mathrm{EU}_{\mathrm{EDT}}(C)$, the agent will choose action B. But B & S does not have the highest utility of the S outcomes and $B \& \sim S$ does not have the highest utility of the $\sim S$ outcomes.

3.b B is Lowest

No, the decision problem above also shows this.