Multiple Classical Oscillators

Mike Witt

Physics Cafe

February 22, 2021

Multiple Classical Oscillators

Outline

- 1. Set up the problem.
- Derive the equations.
- 3. Express the problem in a vector space.
- 4. Change the basis to one which diagonalizes the matrix.
- 5. Rewrite the problem in the new basis.
- 6. Solve the decoupled equations.
- 7. Take the solution back to the original basis.
- 8. The propagator.
- 9. The normal modes.

Setup

- Both blocks have the same mass, m.
- All three springs have the same constant, k.
- ullet x_1 and x_2 measure the displacement (to the right) of the masses from their respective equilibrium points.

Derive the equations

- The force on either mass depends only on its displacement and the displacement of the other mass.
- $\ddot{x}_1 = -\frac{2k}{m}x_1 + \frac{k}{m}x_2$
- $\ddot{x}_2 = \frac{k}{m}x_1 \frac{2k}{m}x_2$
- Note that $x_1, x_2, \ddot{x}_1, \ddot{x}_2$ are all implicitly functions of time.
- These two ODEs are *coupled*. The solution to \ddot{x}_1 depends on x_2 and the solution to \ddot{x}_2 depends on x_1 .

Express the problem in a vector space

• Define vectors to represent the displacements.

$$ullet$$
 Let $|1
angle=\left[egin{array}{c}1\\0\end{array}
ight]$ represent $x_1=1$

$$ullet$$
 Let $|2
angle=\left[egin{array}{c}0\\1\end{array}
ight]$ represent $x_2=1$

• Then
$$|x(t)\rangle = x_1(t)|1\rangle + x_2(t)|2\rangle$$

• Let
$$\Omega = \frac{1}{m} \begin{bmatrix} -2k & k \\ k & -2k \end{bmatrix}$$

• Then
$$|\ddot{x}(t)\rangle = \Omega|x(t)\rangle$$
 which comes out to
$$\begin{bmatrix} -\frac{2k}{m}x_1 + \frac{k}{m}x_2 \\ \frac{k}{m}x_1 - \frac{2k}{m}x_2 \end{bmatrix}$$

Change basis to diagonalize the matrix

- ullet The matrix Ω is Hermitian. This means that its eigenvectors form a basis, and that it ${\it can}$ be diagonalized.
- The eigenvalues are: $-\frac{k}{m}$ and $-\frac{3k}{m}$.
- The normalized eigenvectors are: $\frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}$ and $\frac{1}{\sqrt{2}}\begin{bmatrix}1\\-1\end{bmatrix}$.
- (Recognize the "x basis" from electron spin?)
- The diagonal matrix is: $\Omega' = -\frac{1}{m} \begin{bmatrix} k & 0 \\ 0 & 3k \end{bmatrix}$.

Rewrite the problem in the new basis

- ullet Let's call the new basis vectors $|I
 angle=rac{1}{\sqrt{2}}\left[egin{array}{c}1\\1\end{array}
 ight]$ and $|II
 angle=rac{1}{\sqrt{2}}\left[egin{array}{c}1\\-1\end{array}
 ight]$
- And define $|x'(t)\rangle = x_I(t)|I\rangle + x_{II}(t)|II\rangle$.
- Then in the new basis:

$$|\ddot{x}'(t)\rangle = \Omega'|x'(t)\rangle = -\frac{1}{m}\begin{bmatrix} k & 0 \\ 0 & 3k \end{bmatrix}\begin{bmatrix} x_I \\ x_{II} \end{bmatrix} = \begin{bmatrix} -\frac{k}{m}x_I \\ -\frac{3k}{m}x_{II} \end{bmatrix}$$

- The equations are uncoupled.
- But what do x_l and x_{ll} represent physically?
- \bullet x_I represents both masses being pulled to the right.
- \bullet x_{II} represents the two masses being pushed together.

Solve the decoupled equations

• Solving the decoupled equations in the x_I, x_{II} basis gives:

$$x_{I} = A\cos\left(\sqrt{\frac{k}{m}}t\right) + B\sin\left(\sqrt{\frac{k}{m}}t\right)$$
$$x_{II} = A'\cos\left(\sqrt{\frac{3k}{m}}t\right) + B'\sin\left(\sqrt{\frac{3k}{m}}t\right)$$

 We are assuming an initial velocity of zero for both masses. The derivaties of the position (the velocities) are A sin() and B cos(), so we want to set the Bs to zero, giving:

$$x_I = A \cos\left(\sqrt{\frac{k}{m}} t\right)$$
 and $x_{II} = A' \cos\left(\sqrt{\frac{3k}{m}} t\right)$

• The initial "positions" of the masses at time zero determine the constants:

$$x_I(t) = x_I(0)\cos\left(\sqrt{\frac{k}{m}}t\right)$$
 and $x_{II}(t) = x_{II}(0)\cos\left(\sqrt{\frac{3k}{m}}t\right)$

Take the solution back to the original basis

• We can take the solution back to the original $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ basis like this:

$$|x\rangle = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_I \left(\frac{1}{\sqrt{2}}\right) \begin{bmatrix} 1 \\ 1 \end{bmatrix} + x_{II} \left(\frac{1}{\sqrt{2}}\right) \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} x_I + x_{II} \\ x_I - x_{II} \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} x_I(0)\cos(\sqrt{\frac{k}{m}}t) + x_{II}(0)\cos(\sqrt{\frac{3k}{m}}t) \\ x_I(0)\cos(\sqrt{\frac{k}{m}}t) - x_{II}(0)\cos(\sqrt{\frac{3k}{m}}t) \end{bmatrix}$$

To get the initial conditions in terms of the original basis, do the projections:

$$x_{I} = \langle I | x(0) \rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_{1}(0) \\ x_{2}(0) \end{bmatrix} = \frac{1}{\sqrt{2}} (x_{1}(0) + x_{2}(0))$$

$$x_{II} = \langle II | x(0) \rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} x_{1}(0) \\ x_{2}(0) \end{bmatrix} = \frac{1}{\sqrt{2}} (x_{1}(0) - x_{2}(0))$$

Mike Witt (Physics Cafe) Multiple Classical

Take the solution back to the original basis

And so we end up with:

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} \frac{1}{\sqrt{2}} [x_1(0) + x_2(0)] \cos(\sqrt{\frac{k}{m}} t) + \frac{1}{\sqrt{2}} [x_1(0) - x_2(0)] \cos(\sqrt{\frac{3k}{m}} t) \\ \frac{1}{\sqrt{2}} [x_1(0) + x_2(0)] \cos(\sqrt{\frac{k}{m}} t) - \frac{1}{\sqrt{2}} [x_1(0) - x_2(0)] \cos(\sqrt{\frac{3k}{m}} t) \end{bmatrix}$$

Which simplfies to:

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \frac{1}{2} \begin{bmatrix} [x_1(0) + x_2(0)] \cos(\sqrt{\frac{k}{m}} t) + [x_1(0) - x_2(0)] \cos(\sqrt{\frac{3k}{m}} t) \\ [x_1(0) + x_2(0)] \cos(\sqrt{\frac{k}{m}} t) - [x_1(0) - x_2(0)] \cos(\sqrt{\frac{3k}{m}} t) \end{bmatrix}$$

• If you're following this in Shankar, then note that the vector equation above is equivalent to the two equations (1.8.38a) and (1.8.38b) on Shankar page 50.

The Propagator

 Now we'll rewrite the equation above using a matrix multiplying the initial condition vector:

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \cos\left(\sqrt{\frac{k}{m}}t\right) + \cos\left(\sqrt{\frac{3k}{m}}t\right) & \cos\left(\sqrt{\frac{k}{m}}t\right) - \cos\left(\sqrt{\frac{3k}{m}}t\right) \\ \cos\left(\sqrt{\frac{k}{m}}t\right) - \cos\left(\sqrt{\frac{3k}{m}}t\right) & \cos\left(\sqrt{\frac{k}{m}}t\right) + \cos\left(\sqrt{\frac{3k}{m}}t\right) \end{bmatrix} \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix}$$

• The matrix above is called the *propagator*. Note that it is a function of time only. We'll encounter the equivalent (but continuous) operator when solving quantum mechanics problems.

The normal modes

Multiple Classical Oscillators

...

Template

Multiple Classical Oscillators

• ...