MI-PB-5

Diferenciální kryptoanalýza, analýza S-boxů, diferenciální aproximační funkce, extrakce bitů klíče.

Diferenciální kryptoanalýza: Využívá vysokou pravděpodobnost určitých výskytů rozdílů OT a rozdílů v poslední rundě šifry

Pokud $[X_1X_2...X_n]$ jsou vstupy a $[Y_1Y_2...Y_n]$ výstupy kryptosystému, máme dva vstupy X',X'' a dva odpovídající výstupy Y',Y'':

Vstupní rozdíl je $\Delta X=X'\oplus X''=[\Delta X_1\Delta X_2...\Delta X_n]$, kde $\Delta X_i=X_i'\oplus X_i''$. Výstupní rozdíl je $\Delta Y=Y'\oplus Y''=[\Delta Y_1\Delta Y_2...\Delta Y_n]$, kde $\Delta Y_i=Y_i'\oplus Y_i''$

Ideální případ náhodné šifry: pravděpodobnost výskytu rozdílů ΔY daných ΔX je právě $\frac{1}{2^n}$, kde n je délka X

DK hledá využití možnosti výskytu jednotliých ΔY daných ΔX s velmi vysokou pravděpodobností $p_D>\frac{1}{2^n}$

Rozdíl (diferenciál): dvojice $(\Delta X, \Delta Y)$

Diferenciální charakteristiky: Sekvence vstupních a výstupních rozdílů v rundách t.ž. výstupní rozdíly jedné rundy jsou vstupní rozdíly druhé rundy

Vysoce pravděpodobná diferenciální charakteristika: využití informace přocházející do poslední rundy k odvození bitů poslední vrstvy klíče

Průběh DK

Analýza SBOXů

- ullet Tvorba diferenční distribuční tabulky: s jakou pravděpodobností se ΔY vyskytuje pro dané ΔX
 - \circ Ideální SBOX: 1 výskyt každého páru $(\Delta X, \Delta Y)$
- Klíčovaný SBOX: (maskování) Klíč naxorován na vstup každého SBOXu
 - Při DK žádný vliv:

1 z 2 17.05.2020 15:12

Pokud
$$\Delta W=[W_1'\oplus W_1'',...,W_n'\oplus W_n'']$$
 diference vstupu do SBOXu, $\Delta W_i=W_i'\oplus W_i''=(X_i'\oplus K_i)\oplus (X_i''\oplus K_i)=X_i'\oplus X_i''=\Delta X_i$

- o Klíčovaný SBOX má stejnou diferenční distribuční tabulku jako neklíčovaný
- ullet Tvorba diferenciální charakteristiky pro R-1 rund
 - o Volba aktivních SBOXů a jejich vstupních a výstupních rozdílů (cíl: vysoká pravděpodobnost)
 - \circ Z nich počítána **celková pravděpodobnost diference šifry** jako $\prod_{i=1}^k p_i$, kde p_i je pravděpodobnost výskytu zvolené výstupní diference pro zvolenou vstupní diferenci (z tabulky)

Extrakce bitů klíče:

- Pro každý **pravý pár OT** (pár, kde ΔOT sedí na zvolenou diferenci do první rundy):
 - o Pro každý možný podklíč (zajímavou část -- kde jsou aktivní SBOXy poslední rundy):
 - Porovnat rozdíly na vstupu poslední rundy získané z OT s rozdíly hodnot získaných zpětným chodem od ŠT Zpětný chod: $SBOX^{-1}(\check{S}T \oplus podkli\check{c})$
 - Pokud shoda, inkrementovat čítač u podklíče
- ullet Pravděpodobnost podklíčů pro N pravých dvojic: $\operatorname{prob} = rac{\operatorname{count}}{N}$
- Zvolit podklíč s nejvyšší pravděpodobností

2 z 2