

MOTIVATION BEHIND THE PROJECT

- Public Health Concerns: Monitoring water quality ensures safe drinking water, reducing the risk of waterborne diseases.
- Environmental Protection: Contaminated water causes significant risks to human health, aquatic ecosystems, and overall environment.
- The present Traditional monitoring methods often lack real-time data collection, accuracy, and efficiency, leading to challenges in timely detection and response to water quality issues which is dangerous for environment
- Therefore, there is a need for a comprehensive water quality monitoring system that can provide reliable, real-time data to ensure the safety of the human and animal health by ensuring the safety of water resources.

TDS SENSOR and Turbidity sensor

Water quality based on TDS values

Water quality based on turbidity value

Dirty if values is between > 500 ppm

Fair if it is between 200-500ppm

turbidity	Water quality
> 50	poor
< 20	good
20-50	fair

IMPLEMENTATION

Sensor Measurement Principle:

TDS sensor measures conductivity, converting it to TDS values.

Turbidity sensor measures light scattering to determine turbidity.

Data Acquisition and Transmission:

Sensors continuously measure parameters, data acquired by microcontroller.

Microcontroller processes and prepares data for analysis.

Integration into Data Flow:

Microcontroller analyzes data to assess water quality.

If deviations are detected, microcontroller triggers actions like activating solenoid valve.

SENSOR DATA ACQUISITION

DECISION MAKING AND ACTUATION

FEEDBACK AND MONITORING

DATA AND DATA ANALYSIS

TDS ,TURBIDITY

Complete analysis and usage of the data

Real-time TDS Data Analysis:	Continuous monitoring of TDS levels. Setting thresholds for acceptable TDS ranges.
Decision- making Logic:	Triggering valve control if TDS exceeds thresholds. Determining valve actions based on TDS analysis.
Feedback Mechanis m:	Displaying TDS readings and valve status. Generating alerts for high TDS levels.
Dynamic Valve Control:	Adjusting valve parameters based on TDS fluctuations.

TDS SENSOR

TURBIDITY SENSOR

Real-time Turbidity Data Analysis:

- Monitoring turbidity levels continuously.
- Setting thresholds for acceptable levels.

Decision-making Logic:

- Triggering valve control for high turbidity.
- Determining valve actions based on analysis.

Feedback Mechanism:

- Displaying turbidity readings and valve status.
- Generating alerts for high turbidity.

• Dynamic Valve Control:

 Adjusting valve parameters based on turbidity changes.

Failure analysis
Of each
prototype

Failure analysis

- Analysis of Potential Failures in TDS Sensor:
- Calibration Drift: Over time, the TDS sensor may drift, leading to inaccurate readings.
- Electrode
 Contamination:
 Contaminants on the
 electrodes can interfere
 with conductivity
 measurements.
- Sensor Degradation:

 Exposure to harsh
 conditions can degrade
 sensor components.

- Analysis of Potential Failures in Turbidity Sensor:
- 1. Optical Interference:

 Presence of particles in water can interfere with turbidity

 measurements.
- 2. Sensor Fouling:
 Accumulation of substances on the sensor surface can obstruct light transmission.
- 3. Light Source
 Degradation:
 Malfunction of the light source can affect turbidity readings.