Trigonometry

TARANG JANAWALKAR

This work is licensed under a Creative "Attribution-NonCommercial-ShareAlike 4.0 International" license.

Trigonometry CONTENTS

Contents

C	onter	nts	1
1	Def	initions	2
	1.1	Trigonometric Functions	2
	1.2	Inverse Trigonometric Functions	2
	1.3	Properties as a Real Function	2
	1.4	Symmetry	3
	1.5	Periodicity	3
2	Trig	gonometric Identities	3
	2.1	Pythagorean Identities	3
	2.2	Angle Sum Identities	3
	2.3	Double-Angle Identities	4
	2.4	Power Reducing Identities	4
	2.5	Half Angle Identities	4
	2.6	Werner Identities	4
	2.7	Prosthaphaeresis Identities	5
	2.8	Inverse Reciprocal Identities	5
3	Geo	ometric Identities	5
	3.1	Area of a Triangle	5
	3.2	Sine Rule	5
	3.3	Cosine Rule	6
	3.4	Tangent Rule	6
	3.5	Mollweide's Identity	6
	3.6	Newton's Identity	6
4	The	e Unit Circle	6
	4.1	Special Triangles	7
	4.2	2-Argument Arctangent	9

Trigonometry 1 DEFINITIONS

1 Definitions

1.1 Trigonometric Functions

The trigonometric definitions below are derived from the following right triangle construction.

$$\sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \qquad \qquad \csc(\theta) = \frac{\text{hypotenuse}}{\text{opposite}}$$

$$\cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} \qquad \qquad \sec(\theta) = \frac{\text{hypotenuse}}{\text{adjacent}}$$

$$\tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \qquad \qquad \cot(\theta) = \frac{\text{adjacent}}{\text{opposite}}$$

1.2 Inverse Trigonometric Functions

$$y = \arccos(x) \iff x = \cos(y)$$
 $y = \arcsin(x) \iff x = \sec(y)$
 $y = \arcsin(x) \iff x = \sin(y)$ $y = \operatorname{arcsec}(x) \iff x = \sec(y)$
 $y = \arctan(x) \iff x = \tan(y)$ $y = \operatorname{arccot}(x) \iff x = \cot(y)$

1.3 Properties as a Real Function

Let $n \in \mathbb{Z}$ be a constant.

Function	Period	Parity	Domain	Range
$\sin\left(x\right)$	2π	odd	\mathbb{R}	[-1, 1]
$\cos\left(x\right)$	2π	even	\mathbb{R}	[-1, 1]
$\tan\left(x\right)$	π	odd	$\mathbb{R}\setminus\left\{\left(n+\frac{1}{2}\right)\pi\right\}$	\mathbb{R}
$\cot\left(x\right)$	π	odd	$\mathbb{R}\backslash \Big\{n\pi\Big\}$	\mathbb{R}
$\sec\left(x\right)$	2π	even	$\mathbb{R} \setminus \left\{ \left(n + \frac{1}{2} \right) \pi \right\}$	$(-\infty,-1]\cup[1,\infty)$
$\csc(x)$	2π	odd	$\mathbb{R}\setminus \{n\pi\}$	$(-\infty,-1]\cup[1,\infty)$

Function	Parity	Domain	Range
$\arcsin\left(x\right)$	odd	[-1,1]	$\left[-rac{\pi}{2},rac{\pi}{2} ight]$
$\arccos\left(x\right)$	_	[-1, 1]	$[0,\pi]$
$\arctan\left(x\right)$	odd	\mathbb{R}	$[-rac{\pi}{2},rac{\pi}{2}]$
$\mathrm{arccot}(x)$	odd	\mathbb{R}	$[0,\pi]$
$\mathrm{arcsec}(x)$	_	$(-\infty, -1] \cup [1, \infty)$ $(-\infty, -1] \cup [1, \infty)$	$[0,\pi]\backslash\left\{\frac{\pi}{2}\right\}$
$\operatorname{arccsc}\left(x\right)$	odd	$ \left \ (-\infty, -1] \cup [1, \infty) \right $	$[-\tfrac{\pi}{2},\tfrac{\pi}{2}]\backslash\left\{0\right\}$

1.4 Symmetry

$$\begin{aligned} \sin\left(-x\right) &= -\sin\left(x\right) & \csc\left(-x\right) &= -\csc\left(x\right) \\ \cos\left(-x\right) &= \cos\left(x\right) & \sec\left(-x\right) &= \sec\left(x\right) \\ \tan\left(-x\right) &= -\tan\left(x\right) & \cot\left(-x\right) &= -\cot\left(x\right) \end{aligned}$$

1.5 Periodicity

Let $n \in \mathbb{Z}$ be a constant.

$$\sin(x + 2\pi n) = \sin(x) \qquad \qquad \csc(x + 2\pi n) = \csc(x)$$

$$\cos(x + 2\pi n) = \cos(x) \qquad \qquad \sec(x + 2\pi n) = \sec(x)$$

$$\tan(x + \pi n) = \tan(x) \qquad \qquad \cot(x + \pi n) = \cot(x)$$

2 Trigonometric Identities

2.1 Pythagorean Identities

$$\sin^2(x) + \cos^2(x) = 1$$

Dividing by either the sine or cosine function gives:

$$\tan^2(x) + 1 = \sec^2(x)$$

 $1 + \cot^2(x) = \csc^2(x)$

2.2 Angle Sum Identities

$$\sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y) \qquad \csc(x \pm y) = \frac{1}{\sin(x)\cos(y) \pm \cos(x)\sin(y)}$$

$$\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y) \qquad \sec(x \pm y) = \frac{1}{\cos(x)\cos(y) \mp \sin(x)\sin(y)}$$

$$\tan(x \pm y) = \frac{\tan(x) \pm \tan(y)}{1 \mp \tan(x)\tan(y)} \qquad \cot(x \pm y) = \frac{\cot(x)\cot(y) \mp 1}{\cot(x) \pm \cot(y)}$$

2.3 Double-Angle Identities

$$\sin(2x) = 2\sin(x)\cos(x) \qquad \csc(2x) = \frac{\sec(x)\csc(x)}{2}$$

$$\cos(2x) = \cos^2(x) - \sin^2(x) \qquad \sec(2x) = \frac{\sec^2(x)\csc^2(x)}{\csc^2(x) - \sec^2(x)}$$

$$\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)} \qquad \cot(2x) = \frac{\cot^2(x) - 1}{2\cot(x)}$$

2.4 Power Reducing Identities

$$\sin^{2}(x) = \frac{1 - \cos(2x)}{2}$$

$$\cos^{2}(x) = \frac{1 + \cos(2x)}{2}$$

$$\sec^{2}(x) = \frac{2}{1 - \cos(2x)}$$

$$\sec^{2}(x) = \frac{2}{1 + \cos(2x)}$$

$$\tan^{2}(x) = \frac{1 - \cos(2x)}{1 + \cos(2x)}$$

$$\cot^{2}(x) = \frac{1 + \cos(2x)}{1 - \cos(2x)}$$

2.5 Half Angle Identities

$$\sin\left(\frac{x}{2}\right) = (-1)^{\lfloor\frac{x}{2\pi}\rfloor} \sqrt{\frac{1 - \cos\left(x\right)}{2}} \qquad \qquad \csc\left(\frac{x}{2}\right) = (-1)^{\lfloor\frac{x}{2\pi}\rfloor} \sqrt{\frac{2\sec\left(x\right)}{\sec\left(x\right) - 1}}$$

$$\cos\left(\frac{x}{2}\right) = (-1)^{\lfloor\frac{x+\pi}{2\pi}\rfloor} \sqrt{\frac{1 + \cos\left(x\right)}{2}} \qquad \qquad \sec\left(\frac{x}{2}\right) = (-1)^{\lfloor\frac{x+\pi}{2\pi}\rfloor} \sqrt{\frac{2\sec\left(x\right)}{\sec\left(x\right) + 1}}$$

$$\tan\left(\frac{x}{2}\right) = \frac{1 - \cos\left(x\right)}{\sin\left(x\right)} \qquad \qquad \cot\left(\frac{x}{2}\right) = \frac{\sin\left(x\right)}{1 - \cos\left(x\right)}$$

2.6 Werner Identities

$$\begin{split} 2\sin{(x)}\sin{(y)} &= \cos{(x-y)} - \cos{(x+y)} \\ 2\cos{(x)}\cos{(y)} &= \cos{(x-y)} + \cos{(x+y)} \\ 2\sin{(x)}\cos{(y)} &= \sin{(x-y)} + \sin{(x+y)} \\ -2\cos{(x)}\sin{(y)} &= \sin{(x-y)} - \sin{(x+y)} \end{split}$$

2.7 Prosthaphaeresis Identities

$$\begin{split} \sin\left(x\right) + \sin\left(y\right) &= 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) \\ \sin\left(x\right) - \sin\left(y\right) &= 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right) \\ \cos\left(x\right) + \cos\left(y\right) &= 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) \\ \cos\left(x\right) - \cos\left(y\right) &= -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right) \end{split}$$

2.8 Inverse Reciprocal Identities

$$\arcsin\left(\frac{1}{x}\right) = \arccos\left(x\right) \qquad \qquad \arccos\left(\frac{1}{x}\right) = \arcsin\left(x\right)$$

$$\arccos\left(\frac{1}{x}\right) = \arccos\left(x\right) \qquad \qquad \arccos\left(\frac{1}{x}\right) = \arccos\left(x\right)$$

$$\arctan\left(\frac{1}{x}\right) = \operatorname{arccot}\left(x\right) \qquad \qquad \operatorname{arccot}\left(\frac{1}{x}\right) = \arctan\left(x\right)$$

3 Geometric Identities

3.1 Area of a Triangle

$$A = \frac{1}{2}ab\sin\left(\gamma\right)$$

3.2 Sine Rule

$$\frac{\sin\left(\alpha\right)}{a} = \frac{\sin\left(\beta\right)}{b} = \frac{\sin\left(\gamma\right)}{c}$$

3.3 Cosine Rule

$$a^2 = b^2 + c^2 - 2bc\cos\left(\alpha\right)$$

3.4 Tangent Rule

$$\frac{\tan\left(\frac{\alpha-\beta}{2}\right)}{\tan\left(\frac{\alpha+\beta}{2}\right)} = \frac{a-b}{a+b}$$

3.5 Mollweide's Identity

$$\frac{b-c}{a} = \frac{\sin\left(\frac{\beta-\gamma}{2}\right)}{\cos\left(\frac{\alpha}{2}\right)}$$

3.6 Newton's Identity

$$\frac{b+c}{a} = \frac{\cos\left(\frac{\beta-\gamma}{2}\right)}{\sin\left(\frac{\alpha}{2}\right)}$$

4 The Unit Circle

The unit circle C is defined as the set of all points (x, y) which satisfy the equation

$$x^2 + y^2 = 1,$$

or, mathematically,

$$C = \{(x, y) \mid x^2 + y^2 = 1\}.$$

A graph of this function is shown below.

A point that lies on this circle can be described by the angle it forms with the positive x-axis. This point has the components:

$$(x, y) = (\cos(\theta), \sin(\theta)).$$

4.1 Special Triangles

The following right triangle constructions provide coordinates of points that form an angle of $\pi/6$, $\pi/4$, or $\pi/3$ from the positive x-axis.

This is summarised in the table below.

Angle from Positive x-axis	Horizontal Component	Vertical Component
$\frac{\pi}{6} = 30^{\circ}$	$\frac{\sqrt{3}}{2}\approx 0.866025$	$\frac{1}{2} = 0.5$
$\frac{\pi}{4} = 45^{\circ}$	$\frac{\sqrt{2}}{2}\approx 0.707107$	$\frac{\sqrt{2}}{2}\approx 0.707107$
$\frac{\pi}{6} = 30^{\circ}$	$\frac{1}{2} = 0.5$	$\frac{\sqrt{3}}{2} \approx 0.866025$

4.2 2-Argument Arctangent

Consider a point (x, y) that lies on the Cartesian plane. The angle measure from the positive x-axis and the ray from the origin to the point (x, y) is defined by the 2-argument arctangent function:

$$\operatorname{atan2}\left(y,\,x\right) = \begin{cases} \arctan\left(\frac{y}{x}\right) & \text{if } x > 0, \\ \arctan\left(\frac{y}{x}\right) + \pi & \text{if } x < 0 \text{ and } y \geqslant 0, \\ \arctan\left(\frac{y}{x}\right) - \pi & \text{if } x < 0 \text{ and } y < 0, \\ +\frac{\pi}{2} & \text{if } x = 0 \text{ and } y > 0, \\ -\frac{\pi}{2} & \text{if } x = 0 \text{ and } y < 0, \\ \operatorname{undefined} & \text{if } x = 0 \text{ and } y = 0. \end{cases}$$

This definition allows an angle measure to be obtained in any quadrant of the Cartesian plane, on the interval $(-\pi, \pi]$. When x and y describe the real and imaginary parts of a complex number

z=x+yi, the 2-argument arctangent is precisely the principal argument of z:

$$Arg(z) = atan2(y, x),$$

defined on the same interval $(-\pi, \pi]$. Note that the set of all arguments of a complex number is defined by the general argument:

$$\arg(z) = \left\{ \operatorname{Arg}(z) + 2\pi n \,|\, n \in \mathbb{Z} \right\}.$$

These angles can be geometrically determined by considering the quadrant in which the point lies.

This is summarised below.

Quadrant	$\mathbf{Sign}\ x$	Sign y	Angle Measure θ
First	+	+	$\arctan\left(\frac{y}{x}\right)$
Second	_	+	$\pi - \arctan\left(\frac{y}{ x }\right)$
Third	_	_	$-\pi + \arctan\left(\frac{ y }{x}\right)$
Fourth	+	_	$-\arctan\left(\frac{ y }{ x }\right)$