PATENT SPECIFICATION

(11) **1 510 587**

(21) Application No. 20279/76 (22) Filed 17 May 1976

(31) Convention Application No. 50/058 938

(32) Filed 16 May 1975 in

(33) Japan (JP)

5

10

15

20

25

30

35

40

(44) Complete Specification published 10 May 1978

(51) INT CL2 C03C 17/22

(52) Index at acceptance C1M 13C 13J 13S2B D16 S16 S23X

5

10

15

20

25

30

35

40

(54) COATING OF GLASS SURFACES

(71) We, SAINT-GOBAIN INDUSTRIES, a Body Corporate organised under the laws of the French Republic, of 62 Boulevard Victor Hugo, 92209 Neuilly Sur Seine, France, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:-

The present invention relates to a method of making glass articles, including

flat glass sheets, coated with a film comprising titanium oxide.

It is known that flat glass covered with a film of metal oxide may be obtained by depositing on the glass heated to an elevated temperature a solution of metal acetyl acetonates to form a film of metal oxide of warm colour, the film being formed of a mixture of oxides chosen from cobalt oxide, chromium oxide and similar

On the other hand there is also used a film of titanium oxide as a coloured coating of cold colour on flat glass, this film being obtained by atomising a solution of titanium acetyl acetonate on the glass heated to a high temperature. However the film of titanium oxide prepared by this method has the disadvantage of not being uniform when the film is too thin or too thick. In particular in the case of a thick film the inequalities in thickness may be visible to the naked eye and the film is often formed of irregular depositions. On the other hand the mechanical properties and chemical intertness of the film leave something to be desired.

The above mentioned faults render the flat glass obtained unsaleable as a heat

reflecting pane.

It has been found that the characteristics of thermal decomposition of the titanium chelates depend on the inertness of the compound to hydrolysis. Titanium acetyl acetonate, which has a high rate of hydrolysis, is decomposed at a relatively low temperature in comparison with other titanium compounds having a low rate of hydrolysis.

On the other hand the rate of thermal decomposition of titanium acetylacetonate is influenced only slightly by the temperature of the glass on which the solution is deposited and the effectiveness of the deposition on the glass to obtain a film of titanium oxide is very high, but the film obtained is not uniform and has mediocre mechanical properties and chemical intertness. Other experiments have shown that titanium tetraoctylene glycol and titanium triethanolamine, which are subject to hydrolysis at a much lower speed than other chelate compounds of titanium, have the disadvantage that the compounds are strongly influenced by the temperature of the glass regarding their efficiency of deposition in the form of titanium oxide. However these compounds provide extremely uniform films on the glass. Other experiments have also shown that titanium methyl acetoacetate and titanium ethylacetoacetate, of which the speeds of hydrolysis are intermediate between that of titanium acetyl acetonate and titanium tetraoctylene glycol and titanium triethanolamine, have intermediate values regarding the efficiency of deposition on the glass as well as a good film uniformity. From these results the applicant has developed a method allowing elimination of the above mentioned disadvantages of titanium oxide films obtained from titanium acetylacetonate.

According to the invention there is provided a method of applying a coating comprising titanium oxide to a glass surface, in which a solution containing at least two titanium compounds selected from titanium acetylacetonate, titanium methyl acetoacetate, titanium ethyl acetoacetate, titanium tetraoctylene glycol and titanium triethanolamine is applied to the surface which is at an elevated temperature sufficient to decompose the compounds to titanium oxide.

45

50

45

65

65

broken and the polymerisation reaction of TiO proceeds at a high speed. For a

titanium compound having a low temperature of dec mposition, the greatest part

- 50 cm³ of xylene.

By means of this solution there was prepared sample No. 1.

4	•		1,510,587			4		
	The comple wa	s studied from		ew of optical pr	operties and the	-		
	following results we	re obtained:		•				
	reflection to	VISIDIC IIGNU	•		33%			
	transmission	of visible light	ht		64% 25%	5		
5	— total reflect	IOR OF SOLAR R	adiation		25% 62%	,		
3				of accietance of a	film to abrasion			
				column of the T	film to abrasion able there is also			
	and also registance	to aikalis and	gClOS. In the ime	Column of the 1	MOIO CHIOLO IS ALL			
	given the degree o	i numorimity c	i deuten en el	region machine	(load 600 g/cm ² ,	10		
10	The abrasion t	riais were can	rieu out ou an at	from the point	(load 600 g/cm², of application of			
••	speed of rotation 3	oo revs. per n	and en	face of applicat	ion of the load l			
	the load to the cen	tre of toration	// lilli, and sale	d with a polishir	ng agent for glass			
	cm ² , a brasive tissue	: o tayers of 8	auze improgram.	of the film is obs	served after each			
	(GLASTER — reg period of 100 revol	istered trade i	ample and the d	legree of resistar	ice to abrasion is	15		
15	period of 100 revoles expressed by the n	utions of the s	dutions necessar	ry for the film to	be very slightly			
	expressed by the h	dinoer of text	Mations indeeds.	,				
	damaged.	sistance to all	calis is effected b	by immersing the	sample in a nor- serving each day			
	The trial for remail aqueous solution	on of caustic	soda at 25°C for	r 10 days and ob	serving each day	2		
20	the appearance of	the film.	5000 27 22			2		
20	the appearance of	esistance to a	cids is carried o	out by immersing	the sample in a vs and observing			
	The trial for a normal aqueous so	lution of hyd	rochloric acid a	t 25°C for 10 da	ys and observing			
	each day the appe	arance of the	film.		C Hamina man			
	The uniformit	v of the film o	of the sample is	appreciated in th	e following man-	2		
25	THE UNITED HE	,		40	lana black tissue	2		
23	The sample of coated glass (dimensions 90 × 60 cm) is placed on a black tissue to provide a background and the appearance of the sample is estimated by visual to provide a background and of 10 metres from the sample.							
	hackt	PROUDO STORE	e annearance or	file agrithre to at	illiated by visual			
	observation from	a distance of	10 metres from	the sample.	on containing as a			
					on containing as a of xylene.			
30	By way of contitanium chelate	0 cm³ of tita	nium acetylaceto	onate in 30 cm	s sample 1 except			
30								
	that the solution	used for form	ing the lilm was	ontical propertie	s as the sample 1			
	The reference	e sample i sil	l f	male had worse	properties regard-			
	according to the i	uvention out	lle leterence sa	Further it wil	be seen that the			
35	ing resistance to uniformity of the	abrasion and	arance sample l	was greatly infe	rior to that of the			
	uniformity of the	IIIM Of the fer	ion					
	sample according	to the macin	.1011.					
			TABLE 1					
			Tests					
	·		Resistance	Resistance	Uniformity			
	Sample	Abrasion	to alkali	to acid	of film			
	Reference 1	100/200	Tom after	Damaged	Interference			
				after 1 day	colours visible			

	_	TABLE 1		
		Tests		
Sample	Abrasion	Resistance to alkali	Resistance to acid	Uniformity of film
Reference 1	100/200 revs/min	Tom after 1 day	Damaged after 1 day	Interference colours visible
Reference 2	50/150	Tom after 1 day	Damaged after 1 day	,,
Sample 1	500/800	Unchanged after 10 days	Unchanged after 10 days	Uniform film
,, 2	300/400	**	,,	,,
,, 3	300/400	,,	,,	,,
,, 4	400/500	,,		,,
,, 5	600/800	,,	,,	,,
,, 6	400/500	,,	,,	,,
,, 7	400/500	,,	,,	,,
,, 8	400/500	,,	,,	,,

5	EXAMPLE 2. A sample 2 was prepared using a solution of titanium chelate formed of 35 cm ³ of titanium acetylacetonate, 15 cm ³ of titanium tetraethanolamine, 25 cm ³ of xylene and 25 cm ³ of isoamyl acetate, the spraying conditions being the same as in Example 1.	5
	The sample 2 has approximately the same optical characteristics as those of sample 1 and it has a mechanical and chemical resistance and also a uniformity of film greater than those of the reference sample 1 as will be seen in Table 1.	
10	EXAMPLE 3. A sample 3 was prepared using a solution of titanium chelate formed of 30 cm ³ of titanium methyl acetoacetate 20 cm ³ of titanium tetraoctylene glycol and 50 cm ³ of xylene. The spraying conditions are the same as in Example 1. The sample 3 has approximately the same optical characteristics as the sample	10
15	l and it has properties of mechanical strength and chemical inertness and uniformity of film superior to those of reference sample 1 as will be seen in Table 1.	15
20 ,	EXAMPLE 4. The sample 4 is obtained using a solution of titanium chelate formed of 35 cm ³ of titanium ethylacetoacetate, 15 cm ³ of titanium tetraoctylene glycol and 50 cm ³ of xylene. The spraying conditions are the same as in Example 1. The sample 4 has approximately the same optical characteristics as those of sample 1 and it has properties of mechanical strength, chemical inertness and film uniformity superior to those of the sample of reference 1 as seen in Table 1.	20
25	EXAMPLE 5. The sample 5 is prepared using a solution of titanium chelate compound of 15 cm³ of titanium acetylacetonate, 15 cm³ of titanium ethyl acetoacetate, 20 cm³ of titanium tetraoctylene glycol and as solvent a mixture of 25 cm³ of xylene and 25 cm³ of butanol.	25
30	The spraying conditions are the same as in Example 1. The sample 5 has approximately the same optical characteristics as those of sample 1 and it has properties of mechanical strength, chemical inertness and film uniformity which are superior to those of reference sample 1 as seen in Table 1.	30
35	EXAMPLE 6. The sample 6 is prepared using a titanium chelate solution formed of 25 cm³ of titanium acetylacetonate, 25 cm³ of titanium ethyl acetoacetate and 50 cm³ of xylene. The spraying conditions are the same as in Example 1.	35
40	The sample 6 has the same optical characteristics as those of sample 1 and it has properties of mechanical strength, chemical inertness and film uniformity superior to those of reference sample 1 as seen in Table 1.	40
4 5	EXAMPLE 7. The sample 7 is prepared using a solution of titanium chelate formed of 15 cm ³ of titanium methyl acetoacetate, 20 cm ³ of titanium ethylacetoacetate and 65 cm ³ of xylene. The spraying conditions are the same as in Example 1. The sample 7 has approximately the same optical characteristics as those of sample 1 and it has properties of mechanical strength, chemical inertness and film	45
	uniformity superior to those of reference sample 1 as seen in Table 1. EXAMPLE 8. At the output of a chamber for manufacture of glass floating on a bath of	
50	molten metal, there is sprayed a solution of titanium chelates on a glass ribbon of which the dimensions are about 3 m width and 10 mm thickness. The glass ribbon is heated at 580°C and is displaced at a speed of 3.2 metres per minute. Spraying is carried out at a pressure of 4 kg/cm² by means of a sprayer which is displaced in to	50
55	and fro movement transversely to the direction of advance of the glass ribbon; the surface of the glass is covered with a solution which forms a titanium oxide film, the ribbon then being passed in a re-heating enclosure and cut up after cooling. The solution of titanium chelate which is pulverised on the surface of the glass is formed of 30 cm³ of titanium acetylacetonate, 15 cm³ of titanium tetraoctylene glycol and 55 cm³ of xylene as a solvent.	55

•		
5	A sample 8 is prepared. The optical characteristics of this sample are approximately the same as those of sample 1. The properties of mechanical strength, chemical inertness and uniformity of film are also indicated in Table 1. By way of comparison there is prepared a reference sample 2 using the same conditions of spraying as in Example 8, but using as the solution of titanium chelate a mixture f 50 cm³ of titanium acetylacetonate and 50 cm³ of xylene as solvent. The reference sample 2 has the same optical characteristics as those of sample 2 but the reference sample 2 gives inferior results regarding the mechanical strength and chemical inertness and also uniformity of film in comparison with sample 8 as appears from Table 1. After the preceding trails, it is apparent that the glass coated with a film of titanium oxide according to the method of the present invention, has characteristics of mechanical strength, chemical inertness and film uniformity superior to those of the film prepared by the known process.	5
15	EXAMPLE 9. There is placed a sheet of float glass (30 cm × 30 cm × 5 mm) in an electric	15
20	furnace heated at 670°. The sample is left for 4 minutes in the furnace and then is removed and there is sprayed on the hot glass plate a solution of titanium chelate described below with a feed of 25 cm³/mn for 8 to 10 seconds at a pressure of 3 kg/cm² using a sprayer (registered trake mark WIDER 60). There is thus obtained a glass plate covered with a film having a reflective power of about 33% for visible light. Each spraying solution is formed of 30 cm³ of	20
25	one of the organic solvents listed in Table 2. Each time the appearance of the titanium oxide film thus produced is estimated by examining with the naked eye the particles of titanium oxide in the	25
30	film thus obtained is thus indicated in Table 2. As will be seen from the Table there is always obtained a film of excellent uniformity if there is used an organic solvent having a boiling point of greater than 100°C.	30

10

5

10

TABLE 2

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Appearance f film		
Organic solv nt	Boiling P int °C	Number of particles /cm²	Particles bserved by the naked eye	
Methylene chloride	40	480	Large number visible	
Methanol	6.5	350	,, ,, ,,	
Ethanol	78	330))	
Benzene	80	360	. , ,	
Isopropyl alcohol	82	170	Visible	
N-Heptane	98	126		
Toluene	111	40	Invisible	
Butanol	118	17		
N-Butylacetate	126	16	**	
Ethylene glycol- monomethylether	135	14	,,	
Xylene	144	40	**	
Isoamyl acetate	145	12	••	
Diethylene glycol- diethylether	188	26	**	
Xylene-butanol (1:1) mixture	-	36	••	
Xylene-acetate iso amyl (1:1) mixture	-	30	"	

EXAMPLE 10.

There is deposited by a spraying as in Example 9 various solutions of titanium chelates on glass plates which are heated to produce a film of titanium oxide.

Each spraying solution used is formed of 40 cm³ of titanium methylaceto-acetate and 10 cm³ of titanium tetraoctylene glycol dissolved in 50 cm³ of one of the organic solvents mentioned in Table 3.

There is observed each time the appearance of film of size in a raid and at the appearance of film of size in a raid and at the appearance of film of size in a raid and at the appearance of film of size in a raid and at the appearance of film of size in a raid and at the appearance of film of size in a raid and at the size in a raid and at the appearance of film of size in a raid and at the size in a raid and a raid an

There is observed each time the appearance of film of titanium oxide and the possible presence of titanium oxide particles in the same way as in Example 9.

The results are indicated in Table 3.

As will be seen, the film has excellent uniformity when the organic solvent used has a boiling point greater than 100°C.

TABLE 3

•			Ap	pearance of film
5	Organic solvent	Boiling Point °C	Number of particles /cm²	Particles observed by the naked ye
	Methylene chloride	40	710	Large number visible
10	Methanol	65	640	,,
. •	Ethanol	78	620	,,
	Benzene	80	<i>5</i> 70	
15	Isopropyl alcohol	. 82	420	,,
	N-Heptane	98	150	Visible
	Toluene	111	102	Slightly visible
20	Butanol	118	30	Invisible
	N-Butylacetate	126	15	,,
25	Ethylene glycol- monomethylether	135	30	,,
	Xylene	144	16	· ,,
30	Isoamylacetate	145	21	,,
	Diethylene glycol- diethylether	188	16	•
	Xylene-butanol (1:1) mixture	-	20	,,
	Xylene-acetate			

20

EXAMPLE 11.

On glass plates heated in the same conditions as Example 9 there were deposited various solutions of titanium chelates to produce films of titanium oxide. Each spraying solution is formed of 30 cm³ of titanium ethylacetoacetate and 20 cm³ of titanium tetraoctylene glycol dissolved in 50 cm³ of one of the solvents of Table 4. There is observed the appearance of the film and especially the presence of titanium oxide in the same manner as in Example 9. The results are shown in Table 4. As will be seen in the Table there is obtained a film of excellent uniformity when there is used a solvent having a boiling point greater than 100°C. when there is used a solvent having a boiling point greater than 100°C.

5

10

isoamyl (1:1)

mixture

TABLE 4

	<u> 16.1</u>				
		Appearance of film			
Organic solvent	Boiling Point °C	Number of particles /cm²	Particles observed by the naked eye		
Methylene chloride	40	470	Large number visible		
Methanol	65	450	. 11		
Ethanol	78	470	,,		
Benzene	80	420	,,		
Isopropyl alcohol	82	320	,,		
N-Heptane	98	130	Visible		
Toluene	111	90	Hardly visible		
Butanol	118	46	Invisible		
N-Butylacetate	126	26	,,		
Ethylene glycol- monomethylether	135	8	.,		
Xylene	144	29	,,		
Isoamyl acetate	145	32	,,		
Diethylene glycol- diethylether	188	12	,,		
Xylene-butanol (1:1) mixture	-	19	,,		
Xylene-acetate isoamyl (1:1) mixture	-	18	,,		

EXAMPLE 12.

There are applied onto glass plates heated by the same spraying process as in Example 9 various solutions of titanium chelate in such a manner as to produce on the glass a film of titanium oxide. Each solution used is formed of 20 cm³ titanium acetylacetonate, 10 cm³ of titanium ethylacetoacetate, 20 cm³ of titanium tetraoctyleneglycol and 50 cm³ of one of the organic solvents mentioned in Table 5.

The appearance of the film and possible presence of titanium oxide particles are observed by the same method as in Example 9.

The results are indicated in Table 5. As will be seen from this Table there is obtained a film of excellent uniformity when the solvent is an organic solvent having a boiling point greater than 100°C.

5

10

10

TABLE 5

		Appearance of film		
Organic solvent	Boiling P int °C	Number f particles /cm²	Particles bserved by the naked eye	
Methylene chloride	40	400	Large number visible	
Methanol	65	420	,,	
Ethanol	78	310	, ,,	
Benzene	80	320	,,,	
Isopropyl alcohol	82	110	Visible	
N-Heptane	98	95	,,	
Toluene	111	70	Hardly visible	
Butanol	118	40	Invisible	
N-Butylacetate	126	40	**	
Ethylene glycol- monomethylether	135	36	,,	
Xylene	144	26	,,	
Isoamyl acetate	145	35	,,	
Diethylene glycol- diethylether	188	28	,,	
Xylene-butanol (1:1) mixture	_	36	,,	
Xylene-acetate isoamyl (1:1) mixture	_	36	,,	

EXAMPLE 13.

EXAMPLE 13.

On glass plates which are heated there is sprayed by the process of Example 9 various solutions of titanium chelate in order to produce a film of titanium oxide on the glass. Each spraying solution used is formed of 30 cm³ titanium acetylacetonate, 20 cm³ of tetraoctylene glycol titanium, 3 grams of iron acetylacetonate, 3 grams of chromium acetylacetonate and 50 cm³ of one of the solvents of Table 6. The properties of the film and the possible presence of titanium oxide particles are observed in the same way as in Example 9. The results are indicated in Table 6 in which it is possible to see that the film has excellent properties of uniformity when the solvent used has a boiling point greater than 100°C.

5

15

5

10

15

20

TABLE 6

		Appearance of film		
Organic s lvent	Boiling Point °C	Number of particles /cm²	Particles observed by the naked eye	
Methylene chloride	40	520	Large number visible	
Methanol	65	450	,,	
Ethanol	78	430	,,	
Benzene	80	410	**	
Isopropyl alcohol	82	220	,,	
N-Heptane	98	120	Visible	
Toluene	111	93	Hardly visible	
Butanol	118	20	,,	
N-Butylacetate	126	36	,,	
Ethylene glycol- monomethylether	135	14	,,	
Xylene	144	36	,,	
Isoamyl acetate	145	27	,,	
Diethylene-glycol diethylether	188	8	,,	
Xylene-butanol (1:1) mixture	_	19	,,	
Xylene-acetate isoamyl (1:1) mixture	_	8	,,	

As will appear from the description above, owing to the process of the invention, there is avoided the adhesion of titanium oxide particles on the coating film and there is no alteration in the good appearance of the film of titanium oxide.

WHAT WE CLAIM IS:—

1. A method of applying a coating comprising titanium oxide to a glass surface, in which a solution containing at least two titanium compounds selected from titanium acetylacetonate, titanium methyl acetoacetate, titanium ethyl acetoacetate, titanium tetraoctylene glycol and titanium triethanolamine is applied to the surface which is at an elevated temperature sufficient to decompose the compounds to titanium oxide.

2. A method according to Claim 1, in which the solution comprises an organic solvent having a boiling point of at least 100°C.

3. A method according to either preceding claim, in which the temperature of the surface is from 500° to 700°C.

4. A method according to any preceding claim, in which the solution is

sprayed on to the surface.

5. A method according to Claim 4, in which the solution is sprayed on to a

surface of a ribbon of glass prepared by the float glass pr cess.

6. A method according to any preceding claim, in which the solution contains from 5 to 80% by volume of said titanium compounds.

	7. A method according to any preceding claim, in which the solution contains at least 20% by volume of said titanium compounds other than titanium acetyl-	
	acetonate. 8. A method according to any preceding claim, in which the solution contains	
5	a compound of a metal other than titanium capable of forming an oxide of said	5
,	metal on heating	
	9. A method of applying a coating comprising titanium oxide to a glass surface, substantially as hereinbefore described with reference to the Examples.	
	10. Glass articles provided with a titanium oxide coating applied by a method	4.0
	according to any preceding claim.	10

For the Applicants,
RAWORTH, MOSS & COOK,
Chartered Patent Agents,
36 Sydenham Road,
Croydon, Surrey.
— and —
75 Victoria Street,
Westminster,
London, S.W.1.

Printed for Her Majesty's Stationery Office by the Courier Press, Leamington Spa. 1978. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.