SVM (Support Vector Machine):

- used for classification
- we to separate data with the hyperplane and with the biggest margin $\frac{2}{\|w\|}$ between the points
- we basically minimize the objective function using QP(Quadratic programing) = maximizing the margin while applying the constraint that each classified point must be ≥ 1

Input data:

i	X _{1i}	X _{2i}	label y _i
0	1	1	a
1	2	0.5	а
2	40	40	b
3	50	35	b

Constraint:

- $\forall i$ for all i
- w is the weight

$$y_i(w^T.x+b) \ge 1 \quad \forall i \tag{1}$$

- verify the constraint is true

$$y_i = 1$$
:

$$1(w^T.x+b) \ge 1 \quad \rightarrow \quad (w^T.x+b) \ge 1$$

$$y_i = -1: \tag{2}$$

$$-1(w^T.x+b) \geq 1 \ \rightarrow \ (w^T.x+b) \leq -1$$

Primal problem - objective function:

$$min\frac{1}{2}\|w\|^2\tag{3}$$

QP (Quadratic Programming)-equation:

- it is used to solve optimization problems where the objective function is quadratic, and the constraints (if any) are typically linear

$$min\frac{1}{2}x^T.P.x + q^T.x \tag{5}$$

- in the code we can skip (set to zero) the linear term $q^T.x$ because we try to find the maximum margin between classes without any offset or linear bias:

QP (Quadratic Programming)-code:

- relabel the values and ad bias to the matrix

- Define matrices P and q

- define objective function and constraint with the initial guess and run the optimization

- predict the values and calculate the accuracy

$$y_i = sign(w^T.x + b)$$

(6)

```
# Predict function to evaluate the decision function on the training data
def predict(X, w, b):
    return np.sign(np.dot(X, w) + b)

# Extract the weights and bias from the result
optimal_weights = result.x[:-1]
optimal_bias = result.x[-1]

# Make predictions on the training data
predictions = predict(X, optimal_weights, optimal_bias)

# Print predictions and true labels
print("Predictions:", predictions)
print("True Labels:", y)

# Calculate and print accuracy
accuracy = np.mean(predictions == y)
print("Accuracy:", accuracy)

✓ 0.0s

Predictions: [-1. -1. 1. 1.]
True Labels: [-1 -1 1 1]
Accuracy: 1.0
```

-print results

- test model for new data

Dual Problem

Lagrangian for the primal problem:

 $L(w, b, \lambda) = objective function - constraint$

$$L(w, b, \lambda) = \min \frac{1}{2} ||w||^2 - \sum_{i=1}^{n} \lambda_i [y_i(w^T.x + b) - 1]$$

$$\frac{\partial L}{\partial w} = 0 \to w$$

$$\frac{\partial L}{\partial b} = 0 \to b$$
(4)

Dual objective function:

$$max_{(\lambda)} \left(\sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \lambda_j y_i y_j (x_i^T x_j) \right)$$

$$\tag{4}$$