SVMRanker: A General Termination Analysis Framework of Loop Programs via SVM

Authors: **Xie Li**, Yi Li, Yong Li, Xuechao Sun Andrea Turrini and Lijun Zhang

January 26, 2021

Verification

Checking termination is neccessary.

Example

```
assume(True);

int x = 1;

while(x>0) x++;

assertion(x<=0);
```

The assertion can be checked once the loop is terminating.

However theoretically...

In the practice the program return UNKNOWN once we cannot prove or disprove the termination.

Our tool: focus on the synthesis ranking function.

What is ranking function?

Ranking Function

```
assume(True);
int x = 5;
while(x > 0) x--;
assertion(x<=0);</pre>
```

ranking function is the function used for proof of termiation.

$$\Omega(x,x'):=x>0 \land x'=x-1$$

Ranking function:

$$f(x) = x$$

- ▶ Informally: $f: S \to \mathbb{R}$ where S is the set of states and \mathbb{R} is a well-founded ordered set.
- strictly decreases at each iteration.
- has a lower bound in the loop state space.

More Powerful Ranking Functions

- ▶ Linear ranking function: f(x) = ax + b.
- ▶ Polynomial ranking function.
- ▶ *k*-phase- nested or multiphase ranking function:

$$\langle f_1, \cdots, f_k \rangle$$

Synthesis of Ranking Function

- Prove the termination is UNDECIDABLE.
- Synthesis of a certain class of ranking function is DECIDABLE.

State-of-the-Art Tools

Termination problem is essential and basic to program verification. State-of-the-art tools:

- Lassoranker in Ultimate Automizer.
- ► IRANKFINDER: A tool for ranking function inferring.
- ► LOOPSTER: A static loop termination analyzer.
- ► CPACHECKER
- **.**..

Competition SV-COMP also has a termination track for this problem.

SVMRANKER: Synthesize Ranking Function via SVM

Technique previous tools use.

We reduce the synthesis of ranking functions into the SVM problem.

Advantage? Disadvantage?

SVMRanker: Architecture

Experimental Results: Nonlinear Loops

Cases are adapted from $\operatorname{SV-COMP}\nolimits.$

Case ID	SVMRANKER	IRANKFINDER	Lassoranker	CPACHECKER
116	U	U	U	U
148	Y	U	U	F
149	Y	U	U	U
151	Y	U	U	F
152	Y	U	U	F
153	Y	U	U	F
154	U	U	U	F
155	Y	U	U	F
157	Y	U	U	U
158	Y	U	U	TO
159	Y	U	U	F
160	Y	U	U	TO
161	U	U	U	F
162	Y	U	U	F
163	Y	U	U	F
164	Y	U	U	U
167	Y	U	U	E
171	Y	U	U	E
DoubleNeg	U	U	U	U

Experimental Results: Linear Loops

Draft

Find the derivative of the following function f(x)

$$f(x) = 120x - 4x^2$$

$$\frac{df(x)}{dx} = \lim_{dx \to 0} \frac{f(x+dx) - f(x)}{dx}$$

$$= \lim_{dx \to 0} \frac{120(x+dx) - 4(x+dx)^2 - 120x + 4x^2}{dx}$$

$$= \lim_{dx \to 0} (120 - 8x - 4dx)$$

$$= 120 - 8x$$