SCHS122J-NOVEMBER 1997-REVISED FEBRUARY 2011

CD74HCT4052, CD54/74HC4053, CD54/74HC54053 HIGH-SPEED CMOS LOGIC ANALOG MULTIPLEXERS/DEMULTIPLEXERS

Check for Samples: CD/74HC4051, CD54/74HCT4051, CD54/74HC4052,

FEATURES

- Wide Analog Input Voltage Range. . ±5 V Max
- Low ON Resistance
 - 70 Ω Typical (V_{CC} V_{EE} = 4.5 V)
 - 40 Ω Typical (V_{CC} V_{EE} = 9 V)
- Low Crosstalk Between Switches
- Fast Switching and Propagation Speeds
- Break-Before-Make Switching
- Wide Operating Temperature Range –55°C to 125°C
- CD54HC/CD74HC Types
 - Operation Control Voltage 2 V to 6 V
 - Switch Voltage 0 V to 10 V
- CD54HCT/CD74HCT Types
 - Operation Control Voltage . . . 4.5 V to 5.5 V
 - Switch Voltage 0 V to 10

- Direct LSTTL Input Logic Compatibility
 V_{IL} = 0.8 V Max, V_{IH} = 2 V Min
- CMOS Input Compatibility $I_I \le 1 \mu A$ at V_{OL} , V_{OH}

DESCRIPTION

These devices are digitally controlled analog switches which utilize silicon gate CMOS technology to achieve operating speeds similar to LSTTL with the low power consumption of standard CMOS integrated circuits.

These analog multiplexers/demultiplexers control analog voltages that may vary across the voltage supply range (i.e., V_{CC} to V_{EE}). They are bidirectional switches thus allowing any analog input to be used as an output and vice-versa. The switches have low ON resistance and low OFF leakages. In addition, all three devices have an enable control which, when high, disables all switches to their OFF state.

ORDERING INFORMATION(1)

PART NUMBER	TEMP. RANGE (°C)	PACKAGE
CD54HC4051F3A	–55 to 125	16 Ld CERDIP
CD54HC4052F3A	-55 to 125	16 Ld CERDIP
CD54HC4053F3A	-55 to 125	16 Ld CERDIP
CD54HCT4051F3A	-55 to 125	16 Ld CERDIP
CD74HC4051E	-55 to 125	16 Ld PDIP
CD74HC4051M	-55 to 125	16 Ld SOIC
CD74HC4051MT	-55 to 125	16 Ld SOIC
CD74HC4051M96G3	-55 to 125	16 Ld SOIC
CD74HC4051NSR	-55 to 125	16 Ld SOP
CD74HC4051PWR	-55 to 125	16 Ld TSSOP
CD74HC4051PWT	-55 to 125	16 Ld TSSOP
CD74HC4052E	-55 to 125	16 Ld PDIP
CD74HC4052M	-55 to 125	16 Ld SOIC
CD74HC4052MT	-55 to 125	16 Ld SOIC
CD74HC4052M96G3	-55 to 125	16 Ld SOIC
CD74HC4052NSR	–55 to 125	16 Ld SOP
CD74HC4052PW	-55 to 125	16 Ld TSSOP
CD74HC4052PWR	–55 to 125	16 Ld TSSOP

⁽¹⁾ When ordering, use the entire part number. The suffixes 96 and R denote tape and reel. The suffix T denotes a small-quantity reel of 250.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION⁽¹⁾ (continued)

PART NUMBER	TEMP. RANGE	PACKAGE
PART NUMBER	(°C)	PACKAGE
CD74HC4052PWT	-55 to 125	16 Ld TSSOP
CD74HC4053E	-55 to 125	16 Ld PDIP
CD74HC4053M	-55 to 125	16 Ld SOIC
CD74HC4053MT	-55 to 125	16 Ld SOIC
CD74HC4053M96G3	-55 to 125	16 Ld SOIC
CD74HC4053NSR	-55 to 125	16 Ld SOP
CD74HC4053PW	-55 to 125	16 Ld TSSOP
CD74HC4053PWRG3	-55 to 125	16 Ld TSSOP
CD74HC4053PWT	-55 to 125	16 Ld TSSOP
CD74HCT4051E	-55 to 125	16 Ld PDIP
CD74HCT4051M	-55 to 125	16 Ld SOIC
CD74HCT4051MT	-55 to 125	16 Ld SOIC
CD74HCT4051M96	-55 to 125	16 Ld SOIC
CD74HCT4052E	-55 to 125	16 Ld PDIP
CD74HCT4052M	-55 to 125	16 Ld SOIC
CD74HCT4052MT	-55 to 125	16 Ld SOIC
CD74HCT4052M96	-55 to 125	16 Ld SOIC
CDHCT4053E	-55 to 125	16 Ld PDIP
CDHCT4053M	-55 to 125	16 Ld SOIC
CDHCT4053MT	-55 to 125	16 Ld SOIC
CDHCT4053M96	-55 to 125	16 Ld SOIC
CDHCT4053PWR	-55 to 125	16 Ld TSSOP
CDHCT4053PWT	-55 to 125	16 Ld TSSOP

SCHS122J - NOVEMBER 1997 - REVISED FEBRUARY 2011

FUNCTIONAL DIAGRAM OF HC/HCT4051

Table 1. TRUTH TABLE 'HC/CD74HCT4051⁽¹⁾

	INPUT S	STATES		ON CHANNELS			
ENABLE	S ₂	S ₁	S ₀				
L	L	L	L	A0			
L	L	L	Н	A1			
L	L	Н	L	A2			
L	L	Н	Н	A3			
L	Н	L	L	A4			
L	Н	L	Н	A5			
L	Н	Н	L	A6			
L	Н	Н	Н	A7			
Н	Х	Х	Х	None			

(1) X = Don't care

FUNCTIONAL DIAGRAM OF HC4052, CD74HCT4052

Table 2. FUNCTION TABLE 'HC4052, CD74HCT4052⁽¹⁾

	INPUT STATES		ON CHANNELS
ENABLE	S ₁	S ₀	
L	L	L	A0, B0
L	L	Н	A1, B1
L	Н	L	A2, B2
L	Н	Н	A3, B3
Н	Х	X	None

(1) X = Don't care

FUNCTIONAL DIAGRAM OF 'HC4053, CD74HCT4053

Table 3. FUNCTION TABLE 'HC4053, CD74HCT4053⁽¹⁾

	INPUT S	STATES		ON CHANNELS
ENABLE	S ₀	S ₁	S ₂	
L	L	L	L	C0, B0, A0
L	Н	L	L	C0, B0, A1
L	L	Н	L	C0, B1, A0
L	Н	Н	L	C0, B1, A1
L	L	L	Н	C1, B0, A0
L	Н	L	Н	C1, B0, A1
L	L	Н	Н	C1, B1, A0
L	Н	Н	Н	C1, B1, A1
Н	X	Χ	X	None

(1) X = Don't care

SCHS122J - NOVEMBER 1997 - REVISED FEBRUARY 2011

Absolute Maximum Ratings(1) (2)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC} - V _{EE}	DC supply voltage		-0.5	10.5	V
V _{CC}	DC supply voltage		-0.5	7	V
V _{EE}	DC supply voltage		0.5	-7	V
I _{IK}	DC input diode current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$		±20	mA
I _{OK}	DC switch diode current	$V_{I} < V_{EE} - 0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$		±20	mA
	DC switch current	$V_{I} > V_{EE} - 0.5 \text{ V or } V_{I} < V_{CC} + 0.5 \text{ V}$		±25	mA
I _{CC}	DC V _{CC} or ground current	•		±50	mA
I _{EE}	DC V _{EE} current			-20	mA
		E (PDIP) package		67	
0	Dealtage thermal impedance (3)	M (SOIC) package		73	°C 111
θ_{JA}	Package thermal impedance (3)	NS (SOP) package		64	°C/W
		PW (TSSOP) package		108	
	Maximum junction temperature			150	°C
	Maximum storage temperature rang	ge	-65	150	°C
	Maximum lead temperature (solder	ing 10 s)		300	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.

	PARAM	METER	MIN	MAX	UNIT
V (1)	Supply voltage range	CD54/74HC types	2	6	V
V _{CC} (1)	$(T_A = full package temperature range)$	CD54/74HCT types	4.5	5.5	V
V _{CC} – V _{EE}	Supply voltage range (T _A = full package temperature range)	CD54/74HC types, CD54/74HCT types (see Figure 1)	2	10	V
V _{EE} (2)	Supply voltage range (T _A = full package temperature range)	CD54/74HC types, CD54/74HCT types (see Figure 2)	0	-6	٧
V_{I}	DC input control voltage		GND	V_{CC}	V
V_{IS}	Analog switch I/O voltage		V_{EE}	V_{CC}	V
T _A	Operating temperature		-55	125	°C
		2 V	0	1000	
t _r , t _f	Input rise and fall times	4.5 V	0	500	ns
		6 V	0	400	

⁽¹⁾ All voltages referenced to GND unless otherwise specified.

⁽²⁾ All voltages referenced to GND unless otherwise specified.

⁽³⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

⁽²⁾ In certain applications, the external load resistor current may include both V_{CC} and signal line components. To avoid drawing V_{CC} current when switch current flows into the transmission gate inputs, the voltage drop across the bidirectional switch must not exceed 0.6 V (calculated from r_{ON} values shown in Electrical Specifications table). No V_{CC} current will flow through R_L if the switch current flows into terminal 3 on the HC/HCT4051; terminals 3 and 13 on the HC/HCT4052; terminals 4, 14, and 15 on the HC/HCT4053.

Recommended Operating Area as a Function of Supply Voltages

Figure 1.

Figure 2.

DC Electrical Specifications

	<u>-</u>							AME	BIENT T	EMPER	ATURE,	, T _A		
	PARAMETER		TES	ST CONDITION	ONS			25°C		–40° 85		–55° 125		UNIT
			V _{IS} (V)	V ₁ (V)	V _{EE} (V)	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
нс ту	pes			·							•			
						2	1.5			1.5		1.5		
V_{IH}	High-level input v	oltage				4.5	3.15			3.15		3.15	0	V
						6	4.2			4.2		4.2		
						2			0.5		0.5		0.5	
V_{IL}	Low-level input vo	oltage				4.5			1.35		1.35		1.35	V
						6			1.8		1.8		1.8	
					0	4.5		70	160		200		240	
	1 - 1 mA	V _{CC} or V _{EE}			0	6		60	140		175		210	
r _{ON}	ON resistance	I _O = 1 mA (see		V _{II} or V _{IH}	-4.5	4.5		40	120		150		180	Ω
·ON	Figure 11)	TIL O. TIM	0	4.5		90	180		225		270			
			V _{CC} to V _{EE}		0	6		80	160		200		240	
					-4.5	4.5		45	130		162		195	
	Maximum ON res	istance			0	4.5		10						
Δr_{ON}	between any two				0	6		8.5						Ω
		1			-4.5	4.5		5						
		1 and 2 channels	For switch OFF: When $V_{IS} = V_{CC}$,		0	6			±0.1		±1		±1	
		4053	$V_{OS} = V_{EE}$, When $V_{IS} = V_{FF}$,		- 5	5			±0.1		±1		±1	
I _{IZ}	Switch ON/OFF leakage	4 channels	$V_{OS} = V_{CC}$	V _{IL} or V _{IH}	0	6			±0.1		±1		±1	μA
-12	current	4052	For switch ON: All applicable	IL TO THE	- 5	5			±0.2		±2		±2	
		8 channels	combinations of		0	6			±0.2		±2		±2	
	4051 V _{IS} and V _{OS} voltage levels		– 5	5			±0.4		±4		±4			
I _{IL}	Control input leak	age current		V _{CC} or GND	0	6			±0.1		±1		±1	μΑ
	Quiescent device	1 - 0	When $V_{IS} = V_{EE}$, $V_{OS} = V_{CC}$	V _{CC} or	0	6			8		80		160	μΑ
I _{CC}	current	I _O = 0	When $V_{IS} = V_{CC}$, $V_{OS} = V_{EE}$	GND	– 5	5			16		160		320	μΑ

SCHS122J - NOVEMBER 1997 - REVISED FEBRUARY 2011

DC Electrical Specifications (Continued)

								AMI	BIENT T	EMPER	ATURE,	T_A		Ī
	PARAMETE	R	TEST	CONDITI	ONS			25°C		–40° 85		–55°(125		UNIT
			V _{IS} (V)	V ₁ (V)	V _{EE} (V)	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
НСТ Ту	pes		•				•							
V _{IH}	High-level input v	oltage				4.5 to 5.5	2			2		2		V
V _{IL}	Low-level input vo	oltage				4.5 to 5.5			0.8		0.8		0.8	V
					0	4.5		70	160		200		240	
			V _{CC} or V _{EE}											
F	ON resistance	I _O = 1 mA (see		V _{IL} or	-4.5	4.5		40	120		150		180	Ω
r _{ON}	Figure 15)		V _{IH}	0	4.5		90	180		225		270	12	
			V_{CC} to V_{EE}											
					-4.5	4.5		45	130		162		195	
	Maximum ON res	intanaa			0	4.5		10						
Δr_{ON}	between any two													Ω
					-4.5	4.5		5						
		1 and 2 channels	For switch OFF: When V _{IS} = V _{CC} ,		0	6			±0.1		±1		±1	
		4053	$V_{OS} = V_{EE},$ When $V_{IS} = V_{EE},$		– 5	5			±0.1		±1		±1	
I _{IZ}	Switch ON/OFF	4 channels	$V_{OS} = V_{CC}$	V _{IL} or	0	6			±0.1		±1		±1	μΑ
-	leakage current	4052	For switch ON: All applicable	V _{IH}	- 5	5			±0.2		±2		±2	•
		8 channels	combinations of V _{IS} and V _{OS}		0	6			±0.2		±2		±2	
		4051	voltage levels		- 5	5			±0.4		±4		±4	
I _{IL}	Control input leak	age current		(1)		5.5			±0.1		±1		±1	μΑ
	Quiescent		When $V_{IS} = V_{EE}$, $V_{OS} = V_{CC}$	V _{CC} or	0	5.5			8		80		160	μA
I _{CC}	device current	I _O = 0	When $V_{IS} = V_{CC}$, $V_{OS} = V_{EE}$	ĞND	-4.5	5.5			16		160		320	μΑ
ΔI _{CC} ⁽²⁾	Additional quiesco device current pe 1 unit load		$\Delta I_{CC}^{(2)}$	V _{CC} – 2.1		4.5 to 5.5		100	360		450		490	μΑ

⁽¹⁾ Any voltage between V_{CC} and GND (2) For dual-supply systems, theoretical worst-case ($V_I = 2.4 \text{ V}$, $V_{CC} = 5.5 \text{ V}$) specification is 1.8 mA.

Table 4. HCT INPUT LOADING TABLE

TYPE	INPUT	UNIT LOADS ⁽¹⁾
4051, 4053	All	0.5
4052	All	0.4

(1) Unit load is ΔI_{CC} limit specified in DC Specifications table, e.g., 360 mA MAX at 25°C.

Switching Specifications

 $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}, \text{ input } t_r, t_f = 6 \text{ ns}$

						TYP	ICAL			
	PARAMETER	TEST CONDITIONS	CL (pF)	4051		4052		4053		UNIT
			(pi)	НС	нст	НС	нст	НС	нст	
t _{PHL} , t _{PLH}		Switch IN to OUT	15	4	4	4	4	4	4	
t _{PHZ} , t _{PLZ}	Propagation delay	Switch turn-off (S or E)	15	19	19	21	21	18	18	ns
t _{PZH} , t _{PZL}		Switch turn-on (S or E)	15	19	23	27	29	18	20	
C _{PD} (1)	Power dissipation capacitance			50	52	74	76	38	42	pF

(1) C_{PD} is used to determine the dynamic power consumption, per package. $P_D = C_{PD} \ V_{CC} \ ^2 f_I + \sum (C_L + C_S) \ V_{CC} \ ^2 f_O$ $f_O =$ output frequency

 f_l = input frequency C_L = output load capacitance

 C_S = switch capacitance

 V_{CC} = supply voltage

SCHS122J - NOVEMBER 1997 - REVISED FEBRUARY 2011

Switching Specifications

 $C_L = 50 \text{ pF}$, input t_r , $t_f = 6 \text{ ns}$

							- 1			PERATI	JRE, T _A					1
	PARAMETER		VEE	V _{cc}	2	5°C			–40°C t	o 85°C		-	-55°C to	125°C		UNI
	T A COUNTER CONTRACTOR		(V)	(V)	HC	Н	CT	Н	С	НС	T	Н	С	НС	CT	
					MIN MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
			0	2	60				75				90			
t _{PLH} ,	Propagation delay,		0	4.5	12		12		15		15		18		18	ns
t _{PHL}	switch in to out		0	6	10				13				15			113
			-4.5	4.5	8		8		10		10		12		12	
			0	2	225				280				340			
		4051	0	4.5	45		45		56		56		68		68	
		4031	0	6	38				48				57			=
			-4.5	4.5	32		32		40		40		48		48	
			0	2	250				315				375			
^t PHZ, OFF dela	Maximum switch turn \overline{E} to	4052	0	4.5	50		50		63		63		75		75	ns
	switch output	4052	0	6	43				54				65			n
			-4.5	4.5	38		38		48		48		57		57	
			0	2	210				265				315			
		4053	0	4.5	42		44		53		55		63		66	
			0	6	36				45				54			1
			-4.5	4.5	29		31		36		39		44		47	
			0	2	225				280				340			
		1051	0	4.5	45		55		56		69		68		83	
		4051	0	6	38				48				57			
			-4.5	4.5	32		39		40		49		48		59	
			0	2	325				405				490			
t_{PZL} ,	Maximum switch turn	4050	0	4.5	65		70		81		68		98		105	
t _{PZH}	ON delay from S or \overline{E} to switch output	4052	0	6	55				69				83			n
	,		-4.5	4.5	46		48		58		60		69		72	
			0	2	220				275				330			
		40=0	0	4.5	44		48		55		60		66		72	
		4053	0	6	37				47				56			
			-4.5	4.5	31		34		39		43		47		51	51
Cı	Input (control) capacitance				10		10		10		10		10		10	pf

Analog Channel Specifications

Typical values at $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	HC/HCT TYPES	V _{EE} (V)	V _{CC} (V)	нс/нст	UNIT
Cı	Switch input capacitance		All			5	pF
			4051			25	
C_{COM}	Common output capacitance		4052			12	pF
			4053			8	
			4051			145	
			4052	-2.25	2.25	165	
4	Minimum switch frequency response at –3 dB	See Figure 3 (1) (2)	4053			200	MHz
	(see Figures 12, 14, 16)	See Figure 3 (7)	4051			180	IVITZ
			4052	-4.5	4.5	185	
			4053			200	
	Sine-wave distortion	Soo Figure F	All	-2.25	2.25	0.035	%
	Sine-wave distortion	See Figure 5	All	-4.5	4.5	0.018	70
			4051	-2.25	2.25	-73	
			4052			-65	
Switch OFF signal feed	Switch OFF signal feedthrough	See Figure 7 ⁽²⁾ (3)	4053			-64	dB
	(see Figures 13, 15, 17)	See rigule 1 -7 (8)	4051	-4.5	4.5	-75	uB
			4052			-67	
			4053			-66	

Adjust input voltage to obtain 0 dBm at V_{OS} for f_{IN} = 1 MHz V_{IS} is centered at $(V_{CC} - V_{EE})/2$. Adjust input for 0 dBm

APPLICATION INFORMATION

Figure 3. Frequency Response Test Circuit

Figure 5. Sine-Wave Distortion Test Circuit

V_{CC}/2 Figure 4. Crosstalk Between Two Switches

 v_{cc} V_{P-F} 600Ω **SWITCH ALTERNATING** ∕os ON AND OFF $t_{r}\text{, }t_{f}\leq 6ns$ V_{CC}/2 $\mathbf{600}\Omega$ 50pF f_{CONT} = 1MHz 50% DUTY SCOPE **CYCLE** V_{CC}/2

Figure 6. Control to Switch Feedthrough Noise **Test Circuit**

Figure 7. Switch OFF Signal Feedthrough

APPLICATION INFORMATION

FIGURE 8A.

FIGURE 8B. HC TYPES

FIGURE 8C. HCT TYPES

Figure 8. Switch Propagation Delay, Turn-On, Turn-Off Times

Figure 9. Switch ON/OFF Propagation Delay Test Circuit

Figure 10. Switch In to Switch Out Propagation Delay Test Circuit

TYPICAL PERFORMANCE CURVES

Figure 11. Typical ON Resistance vs Input Signal Voltage

Figure 12. Channel ON Bandwidth (HC/HCT4051)

Figure 13. Channel OFF Feedthrough (HC/HCT4051)

Figure 14. Channel ON Bandwidth (HC/HCT4052)

Figure 15. Channel OFF Feedthrough (HC/HCT4052)

Figure 16. Channel ON Bandwidth (HC/HCT4053)

TYPICAL PERFORMANCE CURVES

Figure 17. Channel OFF Feedthrough (HC/HCT4053)

22-Jul-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins		Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
5962-8775401EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8775401EA CD54HC4053F3A	Samples
5962-8855601EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8855601EA CD54HC4052F3A	Samples
5962-9065401MEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9065401ME A CD54HCT4051F3A	Samples
CD54HC4051F	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD54HC4051F	Samples
CD54HC4051F3A	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD54HC4051F3A	Samples
CD54HC4052F	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD54HC4052F	Samples
CD54HC4052F3A	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8855601EA CD54HC4052F3A	Samples
CD54HC4053F	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD54HC4053F	Samples
CD54HC4053F3A	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8775401EA CD54HC4053F3A	Samples
CD54HCT4051F3A	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9065401ME A CD54HCT4051F3A	Samples
CD74HC4051E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC4051E	Samples
CD74HC4051EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC4051E	Samples
CD74HC4051M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4051M	Samples
CD74HC4051M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-55 to 125	HC4051M	Samples
CD74HC4051M96E4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4051M	Samples
CD74HC4051M96G3	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-55 to 125	HC4051M	Samples
CD74HC4051M96G4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4051M	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CD74HC4051ME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4051M	Samples
CD74HC4051MG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4051M	Samples
CD74HC4051MT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4051M	Samples
CD74HC4051NSR	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4051M	Samples
CD74HC4051NSRE4	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4051M	Samples
CD74HC4051PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-55 to 125	HJ4051	Samples
CD74HC4051PWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4051	Samples
CD74HC4051PWT	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4051	Samples
CD74HC4051PWTG4	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4051	Samples
CD74HC4052E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC4052E	Samples
CD74HC4052EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC4052E	Samples
CD74HC4052M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4052M	Samples
CD74HC4052M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-55 to 125	HC4052M	Samples
CD74HC4052M96E4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4052M	Samples
CD74HC4052M96G4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4052M	Samples
CD74HC4052ME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4052M	Samples
CD74HC4052MG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4052M	Samples
CD74HC4052MT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4052M	Samples

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samp
CD74HC4052MTG4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4052M	Samp
CD74HC4052NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4052M	Samp
CD74HC4052NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4052M	Samp
CD74HC4052PW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4052	Samp
CD74HC4052PWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4052	Samp
CD74HC4052PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-55 to 125	HJ4052	Samp
CD74HC4052PWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4052	Sam
CD74HC4052PWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4052	Sam
CD74HC4052PWT	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4052	Sam
CD74HC4053E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC4053E	Sam
CD74HC4053EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC4053E	Sam
CD74HC4053M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4053M	Sam
CD74HC4053M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-55 to 125	HC4053M	Sam
CD74HC4053M96E4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4053M	Sam
CD74HC4053M96G3	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-55 to 125	HC4053M	Sam
CD74HC4053M96G4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4053M	Sam
CD74HC4053ME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4053M	Sam
CD74HC4053MG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4053M	Sam

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CD74HC4053MT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4053M	Samples
CD74HC4053NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4053M	Samples
CD74HC4053PW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4053	Samples
CD74HC4053PWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4053	Samples
CD74HC4053PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-55 to 125	HJ4053	Samples
CD74HC4053PWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4053	Samples
CD74HC4053PWT	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4053	Samples
CD74HCT4051E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT4051E	Samples
CD74HCT4051M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4051M	Samples
CD74HCT4051M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4051M	Samples
CD74HCT4051M96E4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4051M	Samples
CD74HCT4051M96G4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4051M	Samples
CD74HCT4051ME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4051M	Samples
CD74HCT4051MG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4051M	Samples
CD74HCT4051MT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4051M	Samples
CD74HCT4051MTG4	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4051M	Samples
CD74HCT4052E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT4052E	Samples
CD74HCT4052EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT4052E	Samples

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CD74HCT4052M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4052M	Samples
CD74HCT4052M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4052M	Samples
CD74HCT4052M96G4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4052M	Samples
CD74HCT4052ME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4052M	Samples
CD74HCT4052MG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4052M	Samples
CD74HCT4052MT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4052M	Samples
CD74HCT4053E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT4053E	Samples
CD74HCT4053EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT4053E	Samples
CD74HCT4053M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4053M	Samples
CD74HCT4053M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4053M	Samples
CD74HCT4053M96E4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4053M	Samples
CD74HCT4053M96G4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4053M	Samples
CD74HCT4053ME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4053M	Samples
CD74HCT4053MG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4053M	Samples
CD74HCT4053MT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4053M	Samples
CD74HCT4053PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-55 to 125	HK4053	Samples
CD74HCT4053PWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HK4053	Samples
CD74HCT4053PWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HK4053	Samples

PACKAGE OPTION ADDENDUM

22-Jul-2014

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
CD74HCT4053PWT	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HK4053	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD54HC4051, CD54HC4052, CD54HC4053, CD54HC4051, CD74HC4051, CD74HC4052, CD74HC4053, CD74HC4051;

22-Jul-2014

- Catalog: CD74HC4051, CD74HC4052, CD74HC4053, CD74HCT4051
- Automotive: CD74HC4051-Q1, CD74HCT4051-Q1, CD74HC4051-Q1, CD74HCT4051-Q1
- Enhanced Product: CD74HC4051-EP, CD74HC4051-EP
- Military: CD54HC4051, CD54HC4052, CD54HC4053, CD54HCT4051

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Apr-2015

TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity AO

A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HC4051M96	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC4051M96G3	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC4051M96G4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC4051PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4051PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4051PWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4051PWT	TSSOP	PW	16	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4052M96	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC4052M96G4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC4052NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
CD74HC4052PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4052PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4052PWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4052PWT	TSSOP	PW	16	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4053M96	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC4053M96G3	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC4053M96G4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC4053PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Apr-2015

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HC4053PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4053PWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4053PWT	TSSOP	PW	16	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HCT4051M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HCT4052M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HCT4053M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HCT4053PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HCT4053PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HCT4053PWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HCT4053PWT	TSSOP	PW	16	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74HC4051M96	SOIC	D	16	2500	364.0	364.0	27.0
CD74HC4051M96G3	SOIC	D	16	2500	364.0	364.0	27.0
CD74HC4051M96G4	SOIC	D	16	2500	333.2	345.9	28.6
CD74HC4051PWR	TSSOP	PW	16	2000	364.0	364.0	27.0
CD74HC4051PWR	TSSOP	PW	16	2000	367.0	367.0	35.0
CD74HC4051PWRG4	TSSOP	PW	16	2000	367.0	367.0	35.0
CD74HC4051PWT	TSSOP	PW	16	250	367.0	367.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Apr-2015

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74HC4052M96	SOIC	D	16	2500	364.0	364.0	27.0
CD74HC4052M96G4	SOIC	D	16	2500	333.2	345.9	28.6
CD74HC4052NSR	SO	NS	16	2000	367.0	367.0	38.0
CD74HC4052PWR	TSSOP	PW	16	2000	364.0	364.0	27.0
CD74HC4052PWR	TSSOP	PW	16	2000	367.0	367.0	35.0
CD74HC4052PWRG4	TSSOP	PW	16	2000	367.0	367.0	35.0
CD74HC4052PWT	TSSOP	PW	16	250	367.0	367.0	35.0
CD74HC4053M96	SOIC	D	16	2500	364.0	364.0	27.0
CD74HC4053M96G3	SOIC	D	16	2500	364.0	364.0	27.0
CD74HC4053M96G4	SOIC	D	16	2500	333.2	345.9	28.6
CD74HC4053PWR	TSSOP	PW	16	2000	364.0	364.0	27.0
CD74HC4053PWR	TSSOP	PW	16	2000	367.0	367.0	35.0
CD74HC4053PWRG4	TSSOP	PW	16	2000	367.0	367.0	35.0
CD74HC4053PWT	TSSOP	PW	16	250	367.0	367.0	35.0
CD74HCT4051M96	SOIC	D	16	2500	333.2	345.9	28.6
CD74HCT4052M96	SOIC	D	16	2500	333.2	345.9	28.6
CD74HCT4053M96	SOIC	D	16	2500	333.2	345.9	28.6
CD74HCT4053PWR	TSSOP	PW	16	2000	364.0	364.0	27.0
CD74HCT4053PWR	TSSOP	PW	16	2000	367.0	367.0	35.0
CD74HCT4053PWRG4	TSSOP	PW	16	2000	367.0	367.0	35.0
CD74HCT4053PWT	TSSOP	PW	16	250	367.0	367.0	35.0

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity