RetentionClassifier:Model Training and Evaluation Report

1. Input Features

The dataset comprises the following features:

- Age: Continuous numerical feature representing employee age.
- **Gender**: Categorical feature indicating male or female.
- Department: Categorical feature representing the department in which the employee works.
- **Job Title**: Categorical feature specifying the employee's role.
- Years at Company: Numerical feature indicating the duration of employment.
- Satisfaction Level: Numerical feature (likely normalized between 0 and 1) reflecting employee satisfaction.
- Average Monthly Hours: Numerical feature showing average working hours per month.
- **Promotion Last 5 Years**: Binary feature indicating if the employee was promoted in the last 5 years.
- Salary: Ordinal categorical feature (e.g., low, medium, high).
- **Attrition**: Target variable (binary: 0 = No Attrition, 1 = Attrition).

2. Models Trained

You trained several machine learning models:

- 1. Logistic Regression
- 2. Decision Tree
- 3. Random Forest
- 4. Support Vector Machine (SVM)
- 5. Naive Bayes
- 6. K-Nearest Neighbors (KNN)
- XGBoost
- 8. Gradient Boosting

Best Model

- Gradient Boosting was identified as the best-performing model.
- Accuracy: 52%

3. Best Model Performance

Gradient Boosting Results

Metric	Class 0 (No Attrition)	Class 1 (Attrition)	Macro Avg	Weighted Avg
Precision	53%	50%	52%	52%
Recall	51%	52%	52%	52%
F1-Score	52%	51%	51%	52%
Support (Count)	102	98		-
Overall Accuracy				52%

Insights:

- The model struggles to differentiate between the two classes.
- The F1-Score for both classes is almost equal, indicating no bias toward a particular class.
- The recall for both classes hovers around 51-52%, showing that the model is failing to identify many true positives for either class.

4. Observations

Low Accuracy and Metrics:

- Accuracy of 52% is marginally better than random guessing (50% for a binary classifier).
- Precision, recall, and F1-scores indicate that the model's performance is limited, potentially due to:
 - Insufficient features or poor feature quality.
 - Imbalanced target classes.
 - o Data preprocessing issues (e.g., lack of proper encoding or scaling).
 - Lack of hyperparameter tuning for models.

Class Imbalance:

If the target classes (Attrition: 0 vs. 1) are imbalanced, the model might not generalize well. Check the class distribution in your dataset.

Feature Importance:

Gradient Boosting models can provide feature importance. Use this to determine which features are contributing most to the predictions. For instance, features like **Satisfaction Level** or **Years at Company** might be critical in predicting attrition.

5. Recommendations

Data Improvements:

1. Feature Engineering:

- Combine or derive new features that better capture employee behavior.
- For example, create a "Work-Life Balance Index" using Satisfaction Level and Average Monthly Hours.

2. Data Balancing:

 If the classes are imbalanced, consider techniques like SMOTE (Synthetic Minority Oversampling Technique) to balance them.

3. Categorical Encoding:

Use one-hot encoding or ordinal encoding for categorical variables like
Department, Job Title, and Salary.

Model Tuning:

- 1. Perform hyperparameter tuning for Gradient Boosting or other tree-based models using techniques like Grid Search or Random Search.
- 2. Experiment with ensemble models (e.g., combining Random Forest and XGBoost).

Alternative Approaches:

- 1. **Try Neural Networks:** If the dataset size is large enough, simple feed-forward neural networks may perform better.
- Consider Domain Knowledge: Incorporate expert knowledge about the factors driving attrition.

Evaluation Metrics:

- 1. Use additional metrics like the Area Under the ROC Curve (AUC-ROC) to evaluate model discrimination power.
- 2. Generate a confusion matrix to understand misclassifications.

6. Next Steps

1. Conduct an EDA (Exploratory Data Analysis):

o Investigate relationships between features and the target variable.

o Identify outliers or unusual patterns.

2. Analyze Feature Importance:

 Use feature_importances_ from Gradient Boosting to rank the top predictors.

3. Refine the Dataset:

- o Address any missing data, outliers, or inconsistencies.
- o Normalize or scale numerical features for better model convergence.

4. Iterate with Tuned Models:

- o Train Gradient Boosting with optimized parameters.
- Explore hybrid models or stacking approaches.