

II SEMESTER B. TECH (PHYSICS) IN SEMESTER EXAMINATION – II, JUNE 2020

SUBJECT: ENGINEERING PHYSICS (PHY 1051)
REVISED CREDIT SYSTEM

Time: 90 Minutes MAX. MARKS: 15

Note: Answer ALL the questions.
Upload a single pdf file in MS Teams

1.	Explain all the laws governing the blackbody radiation.	03		
2.	Prove the uncertainty relation for energy (E) and time (t) i.e., $\Delta E. \Delta t \geq \frac{h}{4\pi}$ from position (x) —momentum (p) uncertainty relation $\Delta x. \Delta p \geq \frac{h}{4\pi}$.	02		
3.	Consider a particle subject to a linear restoring force F =- kx , where k is a constant and x is the position of the particle relative to equilibrium (x =0). Classically, if the particle is displaced from its equilibrium position and released, it oscillates between the points x =- A and x =+ A , where A is the amplitude of the motion. Derive an expression for the total energy of the oscillator. Take x =Asin ω t			
	A free particle moving along positive x-axis encounter three regions as shown in the figure. The wave functions of the particle in region 1 and region 2 are of the form $\Psi(x) = A\sin(kx-\omega t)$. Where $k=2\pi/\lambda$ is a wave number and $\omega t=\phi$ is the phase term. In region 1, the amplitude of the wave function $A_1=11.5$, wavelength $\lambda_1=4.97$ nm and phase $\phi_1=-65.3^\circ$. The wavelength in region 2 is $\lambda_2=10.5$ nm. The boundary C is located at $x=0$, and the boundary D is located at $x=L$, where $L=20$ nm. Using the mathematical features of wave function, find the amplitude of the wave function and the phase in region 2. $(A_2$ and $\phi_2)$			
4.	Region 1 Region 2 Region 3 $C \qquad D \\ (x=0) \qquad (x=L)$	03		

PHY 1051 Page 1 of 3

HAND BOOK FOR STUDENTS

Quantum Physics					
Wien's Displacement Law	$\lambda_m T = 2.898 \times 10^{-3} \text{ m.K}$	λ_m : wavelength corresponding to peak intensity. T: equilibrium temperature of the blackbody.			
Stefan's Law	$P = \sigma A e T^4$	 P: power radiated from the surface area A of the object. T: equilibrium surface temperature. σ: Stefan-Boltzmann constant. e: emissivity of the surface 			
Planck's law	$I(\lambda, T) = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda k_B T}} - 1}$	$I\left(\lambda,T\right)d\lambda$: intensity or power per unit area emitted in the wavelength interval $d\lambda$ from a blackbody at the equilibrium temperature T h : Planck's constant. k_B : Boltzmann's constant c : speed of light in vacuum			
Einstein's photoelectric equation	$K_{max} = hf - \phi$	f : frequency of incident photon. K_{max} : kinetic energy of the most energetic photoelectron. ϕ : work function of the photocathode material.			

PHY 1051 Page 2 of 3

Relativistic momentum of a particle	$p = \gamma m v$ $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$	p: momentum of the particle				
Relativistic kinetic energy of a particle	$K = (\gamma - 1) \text{ m } c^2$	m : mass of the particle v : speed of the particle c : speed of light in vacuum				
Total energy (relativistic) of the particle	$E = \gamma m c^2$ $E^2 = p^2 c^2 + m^2 c^4$					
Compton shift equation	$\lambda' - \lambda_o = \frac{h}{mc} (1 - \cos \theta)$	λ_{o} : wavelength of the incident photon. λ' : wavelength of the scattered photon, θ : angle of scattering				
de Broglie wavelength, λ	$\lambda = \frac{h}{p} = \frac{h}{mv}$ $p = m v = \sqrt{2 m q \Delta V}$	 h : Planck's constant p : momentum of the quantum particle. m : mass of the particle v : speed of the particle q : charge of the particle ΔV: accelerating voltage 				
Relation between group speed and phase speed	$v_g = v_P - \lambda \left(\frac{dv_P}{d\lambda}\right)$	v_g : group speed v_P : phase speed				
Heisenberg uncertainty relations.	$(\Delta x) (\Delta p_x) \ge h/4\pi$ $(\Delta E) (\Delta t) \ge h/4\pi$	ΔX : uncertainty in the measurement of position x of the particle. $\Delta p_{\rm X}$: uncertainty in the measurement of momentum $p_{\rm X}$ of the particle. ΔE : uncertainty in the measurement of energy E Δt : time interval in the measurement of E .				
Quantum Mechanics						
One dimensional time independent Schrödinger equation	$-\frac{\hbar^2}{2 m} \frac{d^2 \psi}{dx^2} + U \psi = E \psi$	方 : Reduced Planck's constant				
Wave function for a particle inside a potential box	$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$	m : mass of the particle ψ : wave function $U(x)$: potential energy function				
Particle in a "box" E _n - quantized energy values of the particle.	$E_n = \left(\frac{h^2}{8 m L^2}\right) n^2$	E: total energy of the system h: Planck's constant L: length of the "box". n: integers				
Transmission coefficient	$T \approx e^{-2CL}$ $C = \frac{\sqrt{2 m (U - E)}}{\hbar}$	T: tunneling probability				

PHY 1051 Page **3** of **3**