Study Guide for Midterm 3 for Algebra-Based Physics-1: Mechanics (PHYS135A-01)

Dr. Jordan Hanson - Whittier College Dept. of Physics and Astronomy November 19th, 2017

1

1		Rotational Kinematics and Dynamics
	1.	Express the following angles in radians: (a) 10° (b) 20° (c) 30° (d) 40°
	2.	A record is spinning at 45 rpm. What is the angular velocity in radians per second?
	3.	A $sling$ was an ancient weapon used to hurl polished stones at high velocity at enemies (like David versus Goliath). Suppose the tangential velocity of the stone is $v=20$ m/s, and the radius is $r=1$ m. (a) What is the angular velocity? (b) What is the centripetal acceleration at the location indicated by the arrow? (c) How many g's is this?
	4.	A car is traveling along a flat curved road with radius r and frictional coefficient μ . (a) Show that if the net force is zero as the car goes through this curve, that $v=\sqrt{\mu rg}$. (b) What is v , if $r=600$ m, $g\approx 10$ m/s², and $\mu=0.7$?
2		Newton's Law of Gravity
	1.	Set Newton's Law of Gravity ($F_G=Gm_1m_2/r^2$) equal to the weight force ($w=mg$), and rederive the fact that the acceleration due to gravity near the Earth's surface is $g\approx 9.81~\text{m/s}^2$.
	2.	Rederive Kepler's 3rd Law by setting Newton's Law of Gravity equal to the centripetal force of Earth. Using 1 year for the period of Earth's orbit, and 1.5×10^{11} m for the radius of Earth's orbit, calculate the mass of the Sun.
3		Work and the Work-Energy Theorem
	1.	If a force $\vec{F}=-3\hat{i}+9\hat{j}$ N is applied to an object, and the object is displaced by $\vec{d}=2\hat{j}$ m, what is the work done?
	2.	(a) If a person drops a 0.6 kg baseball from a building that is 30 m tall, what is the final speed of the basketball? (b) If a person throws the same basketball 30 m into the air, what is the initial speed of the basketball?

looptheloop.html for a good discussion that neglects rotational inertia.)

3. Recall the loop-the-loop lab activity done in class, in which a marble rolls through a loop of radius R if rolled from a height h. In your own words, what should the ratio h/R be? (See http://physics.bu.edu/~redner/211-sp06/class-energy/