

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

⑨ 日本国特許庁 (JP)

⑩ 特許出願公開

⑪ 公開特許公報 (A)

昭58—145930

⑫ Int. Cl.³
G 03 B 17/12

識別記号

厅内整理番号
7256—2H

⑬ 公開 昭和58年(1983)8月31日

発明の数 1
審査請求 未請求

(全 8 頁)

⑭ レンズ系切替式カメラの切替機構

⑮ 特 願 昭57—29572
⑯ 出 願 昭57(1982)2月24日
⑰ 発明者 大橋左一郎

西宮市宮西町10番29号株式会社
甲南カメラ研究所内

⑱ 出願人 富士写真フィルム株式会社

南足柄市中沼210番地

⑲ 代理人 弁理士 青山茂 外2名

明細書

1.発明の名称

レンズ系切替式カメラの切替機構

2.特許請求の範囲

(1) 主光学レンズ系と、副光学レンズ系を備え、副光学レンズ系を撮影光軸外の退避位置と撮影光軸上の所定位置との間で切替可能とする作動手段を設け、主光学レンズ系により第1の撮影光学系を構成するとともに、主光学レンズ系と副光学レンズ系とを組合せて第2の撮影光学系を構成するようとしたレンズ系切替式カメラの切替機構において、

前記主光学レンズ系を前記副光学レンズ系とは独立して繰り込み繰り出し自在に構成する一方、前記副光学レンズ系を前記主光学レンズ系の後方で該主光学レンズ系から所定間隔をおいて定位したまま一体として前後動させる切替リングを設けるとともに、該切替リングと一緒に回動するカムを設け、該カムにより前記作動手段を作動させ、前記切替リングの回動に応動して後進していく副

光学レンズ系を撮影光軸上から撮影光軸外の退避位置へ退避させ、第2の撮影光学系から第1の撮影光学系へ自動的に切り替えるようにしたことを特徴とするレンズ切替式カメラの切替機構。

3.発明の詳細な説明

この発明は、レンズ鏡胴を交換することなく、標準レンズ系と望遠レンズ系の両方を任意に選択して使用することができるカメラに係り、特に、レンズ系の切り替え動作を行う切替機構に関する。

従来より、標準レンズ系に対して、リヤコンバーターレンズを設け、切替操作部材を外部操作することにより、リヤコンバーターレンズを撮影光軸上の所定位置に定位させ、標準レンズ系とリヤコンバーターレンズにより望遠レンズ系を構成するようにしたカメラが知られている。しかしながら、従来のこの種切替機構では、切替操作フォーカシングとは別個の操作として行なわなければならいため、予めいずれのレンズ系を使用するか選択する必要があり、フォーカシングの途中で、望遠の方が好ましいと判断したときには、フォーカシ

ングを一旦中断して、切替操作をしなければならないといった操作上の難点があつた。

この難点を解決するため、本願出願人は、先に、特開昭53-149319号公報（発明の名称：レンズ切替式カメラ）において、切替の操作性を向上させたカメラを開示した。すなわち、フォーカシングリングの回動範囲を第1撮影光学系の距離調節のための第1範囲と、第2撮影光学系（望遠系）の距離調節のための第2範囲とに渡つて設定し、この一つのフォーカシングリングの回動により両光学系の距離調整を可能とするとともに、フォーカシングリングと一緒に回動するカムを設け、フォーカシングリングを第2レンジに回動したときに、該カムにより副光学レンズ系（コンバータレンズ）を撮影光路上に移動させる手段を作動させ、その位置に定位させるようにしたことを基本的な特徴とするものである。

しかしながら、上記開示発明において切替の操作性を向上させたものの、コンバータレンズをフレーム面に対して一定位置に固定すると、望遠系

る。

即ち、切替リングの回動に応じてカメラボディ側へ移動してくるリヤコンバータ等より構成する副光学レンズ系を、切替リングと一緒に回動するカムにより、撮影光軸上から撮影光軸外の退避位置へ移動させる手段を作動させ、第2の撮影光学系から自動的に第1の撮影光学系に切り替えるものである。

以下、図示の実施例について、本発明を具体的に説明する。

第1図は、レンズ系切替式カメラの鏡胴部の軸方向垂直断面図である。

図において、1は主光学レンズ系としての標準レンズ系、2は標準レンズ系1の周囲を支持し、外周にネジ部2aを備えた支持筒、3は標準レンズ系1と後述する副光学レンズ系とを一体として光軸方向に前後自在に収納する内ヘリコイドリングで、支持筒2のネジ部2aに締合するネジ部3aを備える。図中下方の4はカメラ本体フレーム5に後端が固定され、内ヘリコイドリング3

での倍率やレンズ収差が問題となり、光学設計上の難点を含むとともに、良好な像を得にくい欠点があつた。

本発明は、かかる從来の欠点を解消するとともに、撮影光学系の切替リングの回動に応動させて2種のレンズ系を自動的に切り替えることができるカメラの切替機構を提供することを目的としている。

この目的を達成するため、本発明においては、主光学レンズ系を副光学レンズ系とは独立して振り込み振り出し自在に構成する一方、副光学レンズ系を主光学レンズ系の後方で該主光学レンズ系から所定間隔をおいて定位したまま一体として前後進させる切替リングを設けるとともに、該切替リングと一緒に回動するカムを設け、該カムにより前記切替リングの回動に応動して後進してくる副光学レンズ系を撮影光軸上から撮影光軸外の退避位置へ退避させ、第2の撮影光学系（望遠系）から第1の撮影光学系（標準系又は広角系）へ自動的に切り替えるようにしたことを特徴としている。

を回転させることなく光軸方向にガイドするガイドピン、6は内ヘリコイドリング3の外周に締合した外周ネジ部3bに締合するネジ部9aを備える中間ヘリコイドリング、7は該中間ヘリコイドリング6にネジ8により一体に取り付けたカムリング、9は上記中間ヘリコイドリング6の外周ネジ部6bに締合するネジ部9aを備える外ヘリコイドリング、10はカメラ本体フレーム5に基部が固定され、先端側内周部にネジ11により外ヘリコイドリング9を固定支持した固定リングである。これらリングは、固定リング10に相対してカムリング7を回動することにより、切り替えリングとしての中間ヘリコイド6を外ヘリコイド9に相対して回動させ、この切り替えリングとしての中間ヘリコイドリング6（以下、切替リング6という）の回動により、ガイドピン4によつてガイドされた内ヘリコイドリング3を光軸方向に前後動させ、標準レンズ系1と後述する副光学レンズ系とを一体として振り出し、振り込みを行う切り替え機構の一部を構成している。

一方、前記標準レンズ系1を支持する支持筒2には、カメラ前端方向に延びる延設リング部2bを備え、この延設リング部2bの前端部は、ネジ12により板状リング13と固定されている。14は、この板状リングの切欠凹部に嵌合しているピン状部材14で、このピン状部材14が板状リング14を周方向に押すように作用する。板状リング13が押されて周方向に回動すると、延設リング部2bを介して支持筒2が回動する。このとき、内ヘリコイドリング3は固定状態にあるので、内ヘリコイドリング3（特に、そのネジ部3a）は、標準レンズ系1を回動させながら光軸方向に前後自在に案内する。この標準レンズ系1を回動させながら光軸方向に前後自在に案内する様子は、図中一点鎖線で示す望遠撮影系の初期位置から当該標準レンズ系1を前方へ振り出し（または前方位置から振り込み）望遠撮影を行うときにも同様である。

なお、15は外ヘリコイドリング9に一端を嵌合した内側カバー、16は内側カバー15の外側

を覆う化粧カバー、17は化粧カバー16の前端部に固定された化粧用のカバー、また18はレンズ1の押えリングである。

一方、図中一点鎖線で示される21は副光学レンズ系としてのリヤコンバータレンズで、実線で示される標準レンズ系1だけを用いる標準撮影時には、撮影光軸外のカメラボディ側の退避位置（図示せず）に退避され、望遠撮影をするときは、まず退避位置から撮影光軸上の所定位置に振り出すとともに、標準レンズ系1に対し所定間隔を置いて定位したまま当該標準レンズ系1と一緒に前述され、第1図中一点鎖線で示す望遠撮影の初期位置にまで振り出される。すなわち、第2図に示すように、22はリヤコンバータレンズ21を支持するホルダで、該ホルダ22は、内ヘリコイドリング3後部の環状部23において光軸方向に沿つて複数したピン24に搖動可能に枢支され、標準レンズ系1に対し常時一定距離を保持するよう構成している。したがつて、切替リング6により内ヘリコイドリング3が前後動すると、リヤコ

ンバータレンズ21は標準レンズ系1と一緒にまとめて前後動する。

次に、このリヤコンバータレンズ21の切換機構について説明する。

第3図は切替リング6と一緒に回転するカムリング7の形状を示す。C点は撮影光軸に相当し、カムリング7はC点から半径Rの外周部25と、該外周部25の一端から第1の段部26を介して半径r ($r < R$) の円弧部27と、この円弧部27の端点Aからをめらかに連続する渐高カム部28とからなり、渐高カム部28の最も高くなつた位置からは第2の段部29を介して前記外周部25の他端とが連続する構成である。このカムリング7の外周部25は、後述する如く、標準撮影から望遠撮影へ又は望遠撮影から標準撮影への切替時（以下、切替時という）において、該カムリング7を回動させる回動駆動力を付与する部分である。円弧部27（およびこの例では渐高カム部28のB点まで及ぶ）は、後述する如く、作手段30のローラ37が当接しないよう逆がす逃げ部に

相当し、第1段部26は標準レンズ系1とコンバータレンズ21を一体として振り出す限界位置すなわち、望遠撮影時の初期位置（第1図の一点鎖線の位置）に対応する。一方、渐高カム部28は、後述する作手段30を作動せらる領域であり、B点から第2段部29に至るにつれてコンバータレンズ21を光軸上から徐々に退避位置に退避させる。また、第2段部29は、望遠系から標準系への切替時の振り込み限界位置に対応する。

このカムリング7と協働する作手段30は、第4図及び第5図に示すように、カメラ本体内部においてボディフレーム5に光軸方向に固定したピン31により搖動可能に枢支され、該ピン31のまわりに巻装したワイヤベネ32により第4回の反時計回りに付帯されている。

作手段30は、枢部31'から回転の半径方向に延びる2つのアーム部33、34を備える。ほほ光軸に向つて延びるアーム部33の先端部には、光軸方向に平行でカメラ前方に向くピン35が枢設され、このピン35は、標準系への切替時、

特開昭58-145930(4)

コンバータレンズ21が後進してきたとき、ホルダ22の軸状部22aに当接して、光軸上の位置41に定位保持されていた該ホルダ22をすくいあげ、第4図に示すカメラ本体フレーム5に切り欠いた弓形切欠部38に対応する退避位置向へ移行させる。一方、アーム部33に対し或る角度（この例では、ほぼ90°）をなして延びるアーム部34の先端部には、光軸方向に平行でカメラ前方に向くピン36を設け、該ピン36にローラ37を回転自在に支持している。このローラ37は、カムリング7のカム部と係合し、漸高カム部28がA点からB点を経て第2段部29に回動すると、との作動手段30を第4図中時計回りに回動させる。

なお、40はホルダ22の軸状部22aに設けたストップピンであり、切替途中および望遠撮影時、バネ39により第4図中反時計回りに常時付勢されているホルダ22を、ストップ41に当て止めする。このストップ41は、内ヘリコイドリング3後端の環状部23に設けられている。そして、ストップ41は長穴42、42に設けたビ

い望遠フォーカシングをする。ここで、望遠系から標準系に切り替えるため、支持筒2を最も繰り込んだ望遠撮影の初期位置（第1図の一点鎖線で示す位置）にする。次に、カムリング7の外周部25に駆動力を与え、該カムリング7を第4図中時計回りに回動させる。切替リング6が回転し、この切替リング6により内ヘリコイドリング3は、第6図で示すように後進する。このとき、作動手段30のローラ37はカムリング7の円弧部27からはずれています。さらにカムリング7を回動させると、ローラ37は円弧部27のA点付近で接触し、このA点から漸高カム部28へ乗り上げる。作動手段30はピン31のまわりに回動し、第7図に示すように、アーム部33のピン35がホルダ22の軸状部22aの側面に当接する。カムリング7をさらに回動させると、作動手段30はさらに回動し、ピン35が軸状部22aの側面ですべりながら押圧し、それと同時に、該ホルダ22をピン24のまわりに徐々に回動させる。ローラ37の位置へ漸高カム部28の第2段部29が接

ス42、42'によつて微調整しうるようになつており、リヤコンバータレンズ21の光軸を標準レンズ系1の光軸に正確に一致させることができる構造としている。

また、上記アーム部33の基部外周から山型に突出させたカム43は、標準撮影と望遠撮影との切り替え時に、作動レバー44を連動させて、カメラのファインダの視野枠45を切り替えるためのものである。さらに、内ヘリコイドリング3後部の環状部23に固定され、切替時の前後動に追従して移動する略I字状部材46は、第1図にも示すように、光軸方向に振動可能に支持されたファインダの変倍レンズ47を前後進させるためのものである。これらファインダの視野枠45および変倍レンズ47については公知であるので説明を略す。

次に、本発明に係る切替機構の動作を、第6図、第7図および第8図を参考として説明する。

望遠撮影時には、標準レンズ系1を保持する支持筒2を単独で回転させて繰り出し繰り込みを行

近していくと、作動手段30の回動速度は速くなり、ピン35はホルダ22を押圧したままで急にすくいあげる。最終的には、ホルダ22に支持されたコンバータレンズ21はカメラボディ側に形成した弓形切欠部38（第4図）に嵌り込む。第8図はコンバータレンズ21が退避位置に完全に退避した状態を示す。

なお、カムリング7に回転駆動力を付与する手段は、モータでも、人手によるものでも、いずれでもよい。前者の場合、カムリング7の外周部25にギヤを形成し、適当なギヤ列を介してモータの回転力を伝達する。後者の場合には、カムリング7に鏡胴から突出する操作ピンを設け、人手によって操作する。

以上詳細に説明したことから明らかをよう、本発明は、副光学レンズ系を主光学レンズ系の後方に所定間隔をおいて定位したまま一体として前後進させる切替リングを設けるとともに、この切替リングと一緒に回動するカムにより、切替リングの回動に応動して後進していく副光学レンズ系

を撮影光路上から撮影光路外の退避位置へ移動させる手段を作動させるようしたので、第2の撮影光学系を構成するとき副光学レンズ系を単に撮影光軸上の定位置に固定する従来例と比べ、倍率やレンズ収差がそれほど問題とならず、光学設計を簡単化する効果があり、さらに、切替リングの回動に応じて自動的に第2の撮影光学系から第1の撮影光学系に切り替えることができ、カメラの操作性を著しく向上させることができる。また、切替操作手段を特別に設ける必要がなくなるので、カメラをコンパクトなものとすることができる利点もある。

4. 図面の簡単な説明

第1図は本発明の一実施例に係るカメラの鏡胴部の光軸方向垂直断面図、第2図はリヤコンバータレンズを配置した望遠レンズ系の縦断面説明図、第3図はカムリングの形状を説明するための正面説明図、第4図はリヤコンバータレンズの動きを説明するための正面説明図、第5図は作動手段の構造を示すとともに、リヤコンバータのホルダと

特開昭58-145930(5)

の関係を説明するための説明図であり、実際にはこの図の状態は存在しない。第6図、第7図は切替機構の動作を説明するための部分斜視図、第8図は、コンバータレンズが退避した状態の鏡胴部の縦断面図である。

1 ……標準レンズ系、3 ……内ヘリコイドリング、6 ……切替リング、7 ……カムリング、21 ……リヤコンバータレンズ、22 ……ホルダ、
28 ……漸高カム部、30 ……作動手段、35 ……ピン、37 ……ローラ。

特許出願人 富士写真フィルム株式会社

代理人 弁理士 青山 褐ほか2名

第2図

第3図

第4図

第5図

第6図

特開昭58-145930(8)

第7図

第8図

