Формальные языки

Мой номер – 22.

- 1. Привести три самых коротких различных строки, принадлежащих языку, описанному регулярным выражением; принадлежат ли строки abbab и bababa данному языку? 6) $(ab \mid b)^* \mid (bb \mid a)^*$
 - Строки a и b принадлежат языку. Пустая строка тоже принадлежит языку. Строка abbab принадлежит языку, так как подходит под 1 регулярное выражение. Строка bababa не принадлежит языку, так как не подходит под оба регулярных выражения. Под первое не подходит, так как заканчивается на a, а все слова из него заканчиваются на b, под второе не подходит, так как начинается на ba, а в регулярном выражении слова начинаются на a или на bb.
- 2. Построить минимальный детерминированный конечный автомат, распознающий язык: 10) $\{a\cdot\omega\cdot b\mid\omega\in\{0,1\}^*,a\in\{0,1\},b\in\{0,1\},a\neq b\}$

- 3. Построить регулярную грамматику, задающую язык:
 - 2) $\{\alpha \cdot 100 \cdot \beta \mid \alpha, \beta \in \{0, 1\}^*\} \cup \{\gamma \cdot 000 \cdot \delta \mid \gamma, \delta \in \{0, 1\}^*\}$

Этот язык описывает следующее регулярное выражение $(0|1)^*(0|1)00(0|1)^*$ или следующая регулярная грамматика:

$$S \to 0A$$

$$S \to 1A$$

$$A \to 0B$$

$$A \rightarrow 1A$$

$$B \to 0C$$

$$B \to 1A$$

$$C \to 0C$$

$$C \rightarrow 1C$$

4. Проверить регулярность языка (если регулярный, построить автомат, регулярное выражение или регулярную грамматику, иначе — доказать нерегулярность)

6) $\{\alpha \cdot a \cdot \beta \mid \alpha, \beta \in \{a, b\}^*, |\alpha|_b > |\beta|_a\}$

Докажем с помощью леммы о накачке, что язык не является регулярным. Пусть $w=b^na^n\in L$ Тогда при k=0 $xy^kz\notin L$, так как в таком случае β состоит из n букв a, а α имеет меньше, чем n букв b.

- 5. По регулярному выражению построить недетерминированный конечный автомат без эпсилон-переходов
 - 6) $(ab \mid b)^* \mid (bb \mid a)^*$

