$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{i}{k(1+2k^2)(r_1-2r_3-r_5)}$	$\frac{i(6k^2(r_1-2r_3-r_5)-t_1)}{\sqrt{2}k(1+2k^2)^2(r_1-2r_3-r_5)t_1}$	0	$\frac{1}{\frac{-r_1+2r_3+r_5}{(1+2k^2)^2}} + \frac{6k^2}{t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{1}{\sqrt{2} (k^2 + 2k^4) (r_1 - 2r_3 - r_5)}$	$\frac{1}{-r_1 + 2r_3 + r_5} + \frac{6k^2}{t_1}$ $2(k+2k^3)^2$	0	$-\frac{i(6k^2(r_1-2r_3-r_5)-t_1)}{\sqrt{2}k(1+2k^2)^2(r_1-2r_3-r_5)t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 (-r_1 + 2 r_3 + r_5)}$	$\frac{1}{\sqrt{2} (k^2 + 2k^4) (r_1 - 2r_3 - r_5)}$	0	$\frac{i}{k(1+2k^2)(-r_1+2r_3+r_5)}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2 k^2 (2 r_3 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} +^{lphaeta}$	$\sigma_1^{#2} + \alpha \beta$	$\tau_1^{#1} + \alpha \beta$	$\sigma_{1}^{\#_{1}} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} + ^{\alpha}$	$\tau_1^{\#2} + \alpha$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_1^{\sharp 1}{}_{lpha}$	$\omega_{1-\alpha}^{\#2}$	$f_{1}^{\#1}\alpha$	$f_{1}^{#2}\alpha$
$\omega_{\scriptscriptstyle 1}^{\scriptscriptstyle \#1}\dagger^{lphaeta}$	$k^2 (2r_3 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{\scriptscriptstyle 1}^{\scriptscriptstyle \#2}\dagger^{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$k^2 \left(-r_1 + 2 r_3 + r_5 \right) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	<u>i kt</u> 3
$\omega_1^{#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1 3	0	$\frac{1}{3}i\sqrt{2}kt_1$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3}\bar{l}kt_1$	$-\frac{1}{3}i\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$

	$\sigma_0^{\#1}$	$\tau_0^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	$\frac{1}{6 k^2 (-r_1 + r_3)}$	0	0	0
$ au_{0}^{\#1} +$	0	0	0	0
$ au_{0}^{\#2} +$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$-\frac{1}{t_1}$

_	$\omega_{0^+}^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\#1}\dagger$	$6 k^2 (-r_1 + r_3)$	0	0	0
$f_{0}^{#1}\dagger$	0	0	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	$-t_1$

Lagrangian density

Lagrangian density
$-\frac{1}{3} t_1 \omega_i^{\alpha_i} \omega_{\kappa\alpha}^{\kappa} - t_1 \omega_i^{\kappa\lambda} \omega_{\kappa\lambda}^{i} + 2 r_1 \partial_i \omega_{\kappa}^{\kappa\lambda} \partial^i \omega_{\lambda\alpha}^{\alpha} - 2 r_3 \partial_i \omega_{\kappa}^{\kappa\lambda} \partial^i \omega_{\lambda\alpha}^{\alpha} -$
$r_5 \partial_i \omega^{\kappa \lambda}_{\kappa} \partial^i \omega_{\lambda}^{\alpha} - \frac{2}{3} r_1 \partial^{\beta} \omega^{\theta \alpha}_{\kappa} \partial_{\theta} \omega_{\alpha \beta}^{\kappa} - \frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha \beta}^{\kappa} \partial_{\kappa} \omega^{\alpha \beta \theta} +$
$\frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha\beta}^{\ \ \kappa} \partial_{\kappa} \omega^{\theta\alpha\beta} - 2 r_1 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \theta} \partial_{\kappa} \omega^{\theta\kappa\lambda} + 2 r_3 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \theta} \partial_{\kappa} \omega^{\theta\kappa\lambda} -$
$r_5 \partial_\alpha \omega_{\lambda \ \theta}^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} + 2 r_1 \partial_\theta \omega_{\lambda \ \alpha}^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} - 2 r_3 \partial_\theta \omega_{\lambda \ \alpha}^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} +$
$r_5 \partial_\theta \omega_{\lambda \alpha}^{\alpha} \partial_\kappa \omega^{\theta \kappa \lambda} + 2 r_1 \partial_\alpha \omega_{\lambda \theta}^{\alpha} \partial_\kappa \omega^{\kappa \lambda \theta} - 2 r_3 \partial_\alpha \omega_{\lambda \theta}^{\alpha} \partial_\kappa \omega^{\kappa \lambda \theta} -$
$r_5 \partial_{\alpha} \omega_{\lambda \ \theta}^{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} - 4 r_1 \partial_{\theta} \omega_{\lambda \ \alpha}^{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + 4 r_3 \partial_{\theta} \omega_{\lambda \ \alpha}^{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} +$
$2r_5\partial_{\theta}\omega_{\lambda}^{\alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta} - \frac{1}{2}t_1\partial^{\alpha}f_{\theta\kappa}\partial^{\kappa}f_{\alpha}^{\theta} - \frac{1}{2}t_1\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\theta} -$
$\frac{1}{2} t_1 \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f_{\alpha\lambda} + \frac{1}{3} t_1 \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa} f'_{i} + \frac{1}{3} t_1 \omega_{\kappa\lambda}^{\lambda} \partial^{\kappa} f'_{i} + \frac{2}{3} t_1 \partial^{\alpha} f_{\kappa\alpha} \partial^{\kappa} f'_{i} -$
$\frac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{\lambda} \partial^{\kappa} f'_{i} + 2 t_1 \omega_{i\kappa\theta} \partial^{\kappa} f'^{\theta} - \frac{1}{3} t_1 \omega_{i\alpha}^{\alpha} \partial^{\kappa} f'_{\kappa} - \frac{1}{3} t_1 \omega_{i\lambda}^{\lambda} \partial^{\kappa} f'_{\kappa} +$
$\frac{1}{2} t_1 \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f_{\lambda \alpha} + \frac{1}{2} t_1 \partial_{\kappa} f^{\lambda}_{\theta} \partial^{\kappa} f^{\theta}_{\lambda} + \frac{1}{2} t_1 \partial_{\kappa} f^{\lambda}_{\theta} \partial^{\kappa} f^{\theta}_{\lambda} -$
$\frac{1}{3} t_1 \partial^{\alpha} f^{\lambda}_{\alpha} \partial^{\kappa} f_{\lambda \kappa} + \frac{2}{3} r_1 \partial_{\kappa} \omega^{\alpha \beta \theta} \partial^{\kappa} \omega_{\alpha \beta \theta} - \frac{2}{3} r_1 \partial_{\kappa} \omega^{\theta \alpha \beta} \partial^{\kappa} \omega_{\alpha \beta \theta} +$
$\frac{2}{3} r_1 \partial^{\beta} \omega_{I}^{\alpha \lambda} \partial_{\lambda} \omega_{\alpha \beta}^{\ \prime} + \frac{4}{3} r_1 \partial^{\beta} \omega_{I}^{\lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{\ \prime} - 4 r_3 \partial^{\beta} \omega_{I}^{\lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{\ \prime} +$
$2 r_1 \partial_{\alpha} \omega_{\lambda \theta}^{\alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa} - 2 r_3 \partial_{\alpha} \omega_{\lambda \theta}^{\alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa} + r_5 \partial_{\alpha} \omega_{\lambda \theta}^{\alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa} -$
$2r_1 \partial_{\theta} \omega_{\lambda \alpha}^{\alpha} \partial^{\lambda} \omega_{\kappa}^{\theta \kappa} + 2r_3 \partial_{\theta} \omega_{\lambda \alpha}^{\alpha} \partial^{\lambda} \omega_{\kappa}^{\theta \kappa} - r_5 \partial_{\theta} \omega_{\lambda \alpha}^{\alpha} \partial^{\lambda} \omega_{\kappa}^{\theta \kappa}$
Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

$\sigma_{2^{-}}^{\#1} _{lphaeta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$
$\tau_2^{\#1}_+ _{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2}^{\#1} + ^{\alpha\beta}$	$\sigma_{2^-}^{\#1} +^{lphaeta\chi}$

	#1 'αβ	02+1-7-1	$\tau_2^{\#1} + \alpha \beta$	$\sigma_{2}^{#1} + \alpha \beta \chi$			$\omega_{2}^{#1} + ^{\alpha \beta}$	$\zeta_{\#1+\alpha\beta}$	f 2+ T
	#	1	1	3	Ж	м	2	16	
Source constraints	SO(3) irreps	$\tau_{0}^{#2} == 0$	$ \tau_{0+}^{\#1} == 0 $	$t_1^{\#2}{}^{\alpha} + 2 i k \sigma_1^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$t_{2^{+}}^{\#1}\alpha\beta$ - 2 <i>i</i> k $\sigma_{2^{+}}^{\#1}\alpha\beta$ == 0	Total #:	

 $\omega_{2^{-}}^{\#1}\alpha\beta\chi$

 $\omega_{2}^{\#1}{}_{\alpha\beta}\ f_{2}^{\#1}{}_{\alpha\beta}$

 $\frac{i\,k\,t_1}{\sqrt{2}}$

*t*₁

	Massive particle					
?	Pole residue:	$-\frac{1}{r_1} > 0$				
	Polarisations:	5				
	Square mass:	$-\frac{t_1}{2r_1} > 0$				
	Spin:	2				
	Parity:	Odd				

Unitarity conditions $r_1 < 0 \&\& r_5 < r_1 - 2 r_3 \&\& t_1 > 0$