Örnek

Bir tenis topu, top atma makinesi ile yatay doğrultuyla 53° açı yapacak şekilde ϑ_0 hızı ile atılmaktadır. Top 8 s sonra yanda modellenen yörüngeyi izleyerek yere çarpmaktadır.

Buna göre topun

- a) Yatay ve düşey hız bileşenlerinin büyüklüklerini,
- b) 6. s'de yerden yüksekliğini,
- c) Her 1 s'de düşey doğrultudaki yer değiştirme büyüklüklerini hesaplayarak şekil üzerinde gösteriniz.

(Hava sürtünmesini ihmal ediniz ve sin $53^{\circ} = 0.8$; $\cos 53^{\circ} = 0.6$; $g = 10 \text{ m/s}^2 \text{ alınız.}$)

Cözüm

a) Topun hareket süresi 8 s olduğundan top 4 s'de maksimum yüksekliğe çıkar ve bu noktaya ulaştıktan 4 s sonra yere çarpar. Topun düşey hızı 4. s'de sıfırlandığına göre ilk hızının düşey bileşeninin büyüklüğü 40 m/s olmalıdır. Topun ilk hızının düşey bileşeninin büyüklüğü farklı bir yöntemle

$$\frac{\vartheta_{0_y}}{a} = t_{\varsigma\iota k\iota\varsigma} \text{ matematiksel modelinden } \frac{\vartheta_{0_y}}{10} = 4 \text{ , } \vartheta_{0_y} = 40 \text{ m/s bulunur.}$$

Topun başlangıçtaki düşey hız bileşeninin büyüklüğü ve yatay eksenle yaptığı açı bilindiğinden topun atılma hızı $\vartheta_{0_{v}}=\vartheta_{0}\cdot\sin\alpha$ bağıntısından $40=\vartheta_{0}\cdot0$,8 $\vartheta_{0}=50$ m/s bulunur.

Topun yatay hız bileşeninin büyüklüğü ise $\vartheta_{0_x} = \vartheta \cdot \cos \alpha$ bağıntısından $\vartheta_{0_x} = 50 \cdot 0.6 = 30$ m/s olarak hesaplanır.

Topun yukarı doğru düşey hız bileşeninin büyüklüğü $\theta = \theta_0 - gt$,

aşağı doğru düşey hız bileşeninin büyüklüğü $\vartheta=\vartheta_0+gt$ matematiksel modelinden yararlanılarak hesaplanır. Elde edilen veriler aşağıdaki tabloda gösterildiği gibidir.

Zaman (s)	Düşey Hız Bileşeninin Büyüklüğü (m/s)	Yatay Hız Bileşeninin Büyüklüğü (m/s)
	$\vartheta_{y} = \vartheta_{0_{y}} - \mathbf{g} \cdot \mathbf{t}$	$\theta_{0_x} = \theta_0 \cdot \cos \alpha$
	$\theta_{0_y} = 40 \ m/s$	$\vartheta_{0_x} = 30 \ m/s$
0.	40	30
1.	30	30
2.	20	30
3.	10	30
4.	0	30
	$\vartheta_y = \vartheta_{0_y} + g \cdot t$	$\vartheta_{0_x} = 30 \ m/s$
5.	10	30
6.	20	30
7.	30	30
8.	40	30