

1 Decay Scheme

Th-228 decays 100% by alpha-particle emission to various excited levels and the ground state of Ra-224. Le thorium 228 se désintègre par émission alpha principalement vers le niveau fondamental et le niveau excité de 84,4 keV de radium 224.

2 Nuclear Data

 $T_{1/2}(^{228}{
m Th}\)$: 698,60 (23) d $T_{1/2}(^{224}{
m Ra}\)$: 3,627 (7) d $Q^{\alpha}(^{228}{
m Th}\)$: 5520,12 (22) keV

2.1 α Transitions

	Energy keV	Probability $\times 100$	F
$lpha_{0,8}$ $lpha_{0,7}$ $lpha_{0,6}$ $lpha_{0,5}$ $lpha_{0,4}$ $lpha_{0,3}$ $lpha_{0,2}$ $lpha_{0,1}$ $lpha_{0,0}$	4527,5 (3) 4603,8 (3) 5040,9 (4) 5087,1 (3) 5229,76 (26) 5269,34 (23) 5304,14 (22) 5435,75 (22) 5520,12 (22)	0,0000044 (12) 0,000017 (3) 0,000025 (5) 0,000010 (3) 0,036 (7) 0,20 (2) 0,38 (3) 26,2 (2) 73,2 (2)	7,37 6,96 4370 21300 44,1 13,6 11,5 0,948

2.2 Gamma Transitions and Internal Conversion Coefficients

	$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	$\begin{array}{c} P_{\gamma+ce} \\ \times 100 \end{array}$	Multipolarity	$lpha_K$	$lpha_L$	$lpha_M+$	$lpha_T$
$\gamma_{4,2}(\mathrm{Ra})$	74,4 (1)	0,016 (6)	[E2]		28,9 (8)	7,89 (16)	39,5 (8)
$\gamma_{1,0}(\mathrm{Ra})$	84,373 (3)	26,6 (14)	E2		15,9(3)	5,8 (1)	21,7(4)
$\gamma_{2,1}(\mathrm{Ra})$	131,612 (4)	0,155(8)	E1	0,195(4)	0,041(1)	0,013(1)	0,249(6)
$\gamma_{5,4}(\mathrm{Ra})$	142,7(1)	0,0000041 (13)	[E2]	0,280(6)	1,396 (28)	0,50(1)	2,18(4)
$\gamma_{3,1}(\mathrm{Ra})$	166,410 (4)	0,205(16)	E2	0,225(5)	0,704(14)	0,256(5)	1,185(24)
$\gamma_{5,3}(\mathrm{Ra})$	182,3(1)	0,0000056(20)	[E1]	0,090(2)	0,0178(3)	0,0060(1)	0,114(2)
$\gamma_{4,1}(\mathrm{Ra})$	205,99(4)	0,0201(11)	[E1]	0,0676 (14)	0,0131(3)	0,0042(1)	0,0849(17)
$\gamma_{2,0}(\mathrm{Ra})$	215,985(4)	0,243(22)	E1	0,0605(12)	0,01160(25)	0,0038(1)	0,0759(15)
$\gamma_{6,3}(\mathrm{Ra})$	228,4(2)	0,000025(5)	[E2]	0,125(2)	0,182(4)	0,065(1)	0,372(7)
$\gamma_{7,2}({ m Ra})$	700,4(1)	0,0000029(9)	E1	0,00508(10)	0,00084(2)	0,000270(5)	0,00619(12)
$\gamma_{8,3}({ m Ra})$	741,87(1)	0,0000014(4)	[E2]	0,0121(2)	0,00330(6)	0,00110(2)	0,0165(3)
$\gamma_{7,1}(\mathrm{Ra})$	832,0 (1)	0,000014(2)	E2+M3	0,0098(2)	0,00240(5)	0,00090(2)	0,0131(3)
$\gamma_{8,1}(\mathrm{Ra})$	908,28 (1)	0,0000016(5)	[M1+50%E2]	0,0203(20)	0,0038(4)	0,0012(1)	0,0253 (25)
$\gamma_{8,0}(\mathrm{Ra})$	992,65 (6)	0,0000014 (4)	[E2]	0,00720 (15)	0,00160 (3)	0,00050 (1)	0,0093 (2)

3 Atomic Data

3.1 Ra

3.1.1 X Radiations

		Energy keV		Relative probability
X_{K}				
1-10	$K\alpha_2$	85,43		61,22
	$K\alpha_1$	88,47		100
	$K\beta_3$	99,432	}	
	$\mathrm{K}eta_1$	100,13	}	
	$\mathrm{K}\beta_5''$	100,738	}	34,9
	${ m K}eta_2$	102,89	}	
	$\mathrm{K}eta_4$	103,295	} } }	11,51
	$KO_{2,3}$	103,74	}	,
X_{L}				
	$\mathrm{L}\ell$	10,622		
	$L\alpha$	$12,\!196-12,\!339$		
	$\mathrm{L}\eta$	13,662		
	$\mathrm{L}eta$	$14,\!236 - 15,\!447$		
	${ m L}\gamma$	$17,\!848 - 18,\!412$		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY	65,15 - 72,73 $79,72 - 88,47$ $94,27 - 103,91$	100 58 8,4
Auger L	5,71 - 12,04	9050

4 α Emissions

	$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	Probability $\times 100$
$ \alpha_{0,8} \\ \alpha_{0,7} \\ \alpha_{0,6} \\ \alpha_{0,5} \\ \alpha_{0,4} \\ \alpha_{0,3} \\ \alpha_{0,2} \\ \alpha_{0,1} \\ \alpha_{0,0} $	4448,0 (3) 4523,0 (3) 4952,5 (4) 4997,8 (3) 5138,01 (26) 5176,89 (23) 5211,08 (22) 5340,38 (22) 5423,28 (22)	0,0000044 (12) 0,000017 (3) 0,000025 (5) 0,000010 (3) 0,036 (7) 0,20 (2) 0,38 (3) 26,2 (2) 73,2 (2)

5 Electron Emissions

		Energy keV	Electrons per 100 disint.
${ m e_{AL}}$	(Ra)	5,71 - 12,04	10,5 (4)
e_{AK}	(Ra) KLL KLX KXY	65,15 - 72,73 79,72 - 88,47 94,27 - 103,91	0,00193 (26) } } }
ec _{1,0} T ec _{1,0} L ec _{1,0} M ec _{2,0} K ec _{3,1} L	(Ra) (Ra) (Ra) (Ra) (Ra)	65,14 - 84,09 65,14 - 68,93 79,55 - 84,09 112,067 (5) 147,17 - 150,97	25,4 (8) 18,6 (6) 6,8 (2) 0,180 (6) 0,066 (2)

6 Photon Emissions

6.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Ra)	10,622 — 18,412		8,8 (4)	
$XK\alpha_2 XK\alpha_1$	(Ra) (Ra)	85,43 88,47		0,0172 (8) 0,0281 (12)	} Kα }
$\begin{array}{c} XK\beta_3 \\ XK\beta_1 \\ XK\beta_5^{"} \end{array}$	(Ra) (Ra) (Ra)	99,432 100,13 100,738	} } }	0,0098 (5)	$\operatorname{K}'\beta_1$
$\begin{array}{c} XK\beta_2 \\ XK\beta_4 \\ XKO_{2,3} \end{array}$	(Ra) (Ra) (Ra)	$102,89 \\ 103,295 \\ 103,74$	} } }	0,00323 (16)	$\operatorname{K}'\beta_2$

6.2 Gamma Emissions

	$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	Photons per 100 disint.
$\gamma_{4,2}(Ra)$ $\gamma_{1,0}(Ra)$ $\gamma_{2,1}(Ra)$ $\gamma_{5,4}(Ra)$ $\gamma_{3,1}(Ra)$ $\gamma_{5,3}(Ra)$ $\gamma_{4,1}(Ra)$ $\gamma_{2,0}(Ra)$	74,4 (1) 84,373 (3) 131,612 (4) 142,7 (1) 166,410 (4) 182,3 (1) 205,99 (4) 215,985 (4)	0,00039 (14) 1,17 (5) 0,124 (6) 0,0000013 (4) 0,094 (7) 0,0000050 (18) 0,0185 (10) 0,226 (20)
$\gamma_{6,3}(Ra)$ $\gamma_{7,2}(Ra)$ $\gamma_{8,3}(Ra)$ $\gamma_{7,1}(Ra)$ $\gamma_{8,1}(Ra)$ $\gamma_{8,0}(Ra)$	228,4 (2) 700,4 (1) 741,87 (1) 832,0 (1) 908,28 (1) 992,65 (6)	0,000018 (4) 0,0000029 (9) 0,0000014 (4) 0,000014 (2) 0,0000016 (5) 0,0000014 (4)

7 Main Production Modes

$$Th - 230(p,t)Th - 228$$

$$Th - 230(\alpha, \alpha 2n\gamma)Th - 228$$

 $Ra - 226(\alpha, 2n\gamma)Th - 228$

U - 232 alpha decay

8 References

- F. ASARO, F. STEPHENS, I. PERLMAN. Phys. Rev. 92 (1953) 1495 (Alpha-particle emission probabilities, gamma-ray emission probabilities, internal conversion coefficients)
- H.W. KIRBY, G.R. GROVE, D.L. TIMMA. Phys. Rev. 102 (1956) 1140 (Half-life)
- M.O. COSTA, M.R.S. GRADE. Port. Phys. 4 (1966) 267 (Conversion electrons, internal conversion coefficients)
- C.L. DUKE, W.L. TALBERT. Phys. Rev. 173 (1968) 1125 (Internal conversion coefficients)
- A. PEGHAIRE. Nucl. Instrum. Methods 75 (1969) 66 (Gamma-ray emission probabilities)
- S.A. BARANOV, V.M. SHATINSKII, V.M. KULAKOV, Y.F. RODIONOV. Sov. J. Nucl. Phys. 11 (1970) 515

(Gamma-ray emission probabilities)

- K.C. JORDAN, G.W. OTTO, R.P. RATAY. J. Inorg. Nucl. Chem. 33 (1971) 1215 (Half-life)
- J. DALMASSO. Report FRNC-TH-441 (1972) (Gamma-ray energies)
- R.L. HEATH. Report ANCR-1000-2 (1974) (Gamma-ray energies)
- S.A. BARANOV, A.G. ZELENKOV, V.M. KULAKOV. IAEA-186 III (1976) 249 (Alpha-particle emission probabilities)
- W. KURCEWICZ, N. KAFFRELL, N. TRAUTMANN, A. PLOCHOCKI, J. ZYLICZ, M. MATUL, K. STRYCZNIEWICZ. Nucl. Phys. A289 (1977) 1 (Gamma-ray energies Gamma-ray emission probabilities)
- W. KURCEWICZ, E. RUCHOWSKA, N. KAFFRELL, N. TRAUTMANN. Nucl. Instrum. Methods 146 (1977)

(Gamma-ray energies)

- F. RÖSEL, H.M. FRIES, K. ALDER, H.C. PAULI. At. Data Nucl. Data Tables 21 (1978) 291 (Internal conversion coefficients)
- A. RYTZ. At. Data Nucl. Data Tables 23 (1979) 507 (Alpha emission energies)
- W. KURCEWICZ, E. RUCHOWSKA, N. KAFFRELL, T. BJOERNSTAD, G. NYMAN. Nucl. Phys. A356 (1981) 15

(908.28 keV gamma-ray emission probabilities)

- S. SADASIVAN, V.M. RAGHUNATH. Nucl. Instrum. Methods 196 (1982) 561 (Gamma-ray emission probabilities)
- R.J. GEHRKE, V.J. NOVICK, J.D. BAKER. Int. J. Appl. Radiat. Isotop. 35 (1984) 581 (Gamma-ray emission probabilities)
- M.P. UNTERWEGER, D.D. HOPPES, F.J. SCHIMA. Nucl. Instrum. Methods A312 (1992) 349 (Half-life)
- T. BABELIOWSKY, G. BORTELS. Appl. Rad. Isotopes 44 (1993) 1349 (Alpha-particle emission probabilities)
- G. AUDI, A.H. WAPSTRA. Nucl. Phys. A595 (1995) 409 (Q value)
- G. ARDISSON, M. HUSSONNOIS. Radiochim. Acta 70/71 (1995) 123 (Cluster decay)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods A369 (1996) 527 (K-x ray, L-x ray, Auger electrons)
- A. ARTNA-COHEN. Nucl. Data Sheets 80 (1997) 227 (Nuclear structure, energies)

- S.P. TRETYAKOVA, V.L. MIKHEEV. Nuovo Cim. 110 (1997) 1043 (Cluster decay)
- E. SCHÖNFELD, G. RODLOFF. Report PTB-6.11-98-1 (1998) (Auger electrons)
- E. SCHÖNFELD, G. RODLOFF. Report PTB-6.11-1999-1 (1999) (X-ray emission probabilities)

