

NASA-CR-139150

VOLUME 2

Part 1

(NASA-CR-139150) GEODYN PROGRAMMERS
GUIDE, VOLUME 2, PART 1 Final Report
(Wolf Research and Development Corp.)

367 p

N 75-10974

CSCL 22A

Unclass

G3/13 03462

GEODYN PROGRAMMER'S GUIDE

Contract No.: NAS 5-11735 - MOD 65
PCN 550-W-72416

Prepared By:

N.E. Mullins T.V. Martin
C.C. Goad N.L. Boulware
N.C. Dao M.M. Chin

Wolf Research and Development Corporation
Riverdale, Maryland

For
Goddard Space Flight Center
Greenbelt, Maryland

Reproduced by
**NATIONAL TECHNICAL
INFORMATION SERVICE**
U.S. Department of Commerce
Springfield, VA. 22151

October 1972

303

TABLE OF CONTENTS

	<u>Page</u>
INTRODUCTION	i
1.0 INTRODUCTION TO THE GEODYN PROGRAM	1.0-1
2.0 GEODYN ENVIRONMENTAL REQUIREMENTS	2.0-1
3.0 DIAGRAM OF OVERLAY STRUCTURE	3.0-1
4.0 DIAGRAMS OF SUBROUTINE STRUCTURE	4.0-1
5.0 SUMMARY OF SUBPROGRAMS USED BY GEODYN	5.0-1
6.0 SUBROUTINE CROSS REFERENCE CHART	6.0-1
7.0 COMMON BLOCK CROSS REFERENCE CHART	7.0-1
8.0 PROGRAM DESCRIPTIONS	8.0-1
9.0 COMMON BLOCK DESCRIPTIONS	9.0-1

INTRODUCTION

The Programmer's Guide to GEODYN contains the programming details associated with the GEODYN program. This is the second of four volumes which completely document the GEODYN System and is to be regarded as a programmer's supplement to Volume 1, the Systems Description.

The GEODYN program is the heart of the GEODYN Orbit and Geodetic Parameter Estimation System, as it is responsible for estimating the orbit and geodetic parameters for the System.

SECTION 1.0

INTRODUCTION TO THE GEODYN PROGRAM

The major component of the GEODYN System is the program GEODYN. The GEODYN program estimates orbit and geodetic parameters for the System. It possesses the capability to estimate that set of orbital elements, station positions, measurement biases, and a set of force model parameters such that the orbital tracking data from multiple arcs of multiple satellites best fit the entire set of estimated parameters.

GEODYN currently consists of 113 different program segments, including the main program, subroutines, functions, and block data routines. All are in G or H level FORTRAN and are currently operational on GSFC's IBM 360/95 and IBM 360/91.

Due to the large number of block data routines in GEODYN, each has been assigned a unique name. These are, of course, not FORTRAN names, but are rather a device to enable meaningful discussion.

SECTION 2.0

GEODYN ENVIRONMENTAL REQUIREMENTS

Normal operation of the GEODYN program requires a large scale IBM 360 Computer with a minimum of 400K bytes of users accessible core, one 2314 direct access disk unit, two 9-track tape drives, one high speed card reader, and one high speed printer. For some applications, GEODYN can operate with only one 9-track tape drive.

The current GEODYN program is operational under version 19 of the IBM 360 Operating System on the GSFC IBM 360/95 and version 20 on the GSFG IBM 360/91.

For compilation, GEODYN requires an IBM FORTRAN IV Level G compiler and an IBM FORTRAN IV Level H compiler. A non-GSFC user should ensure that sufficient space is allocated for the desired compiler at SYSGEN time to accomodate the required table space. More efficient operation of GEODYN may be obtained by use of a Level H compiler with level 2 optimization for all subroutines which are not affected by compiler size restrictions.

SECTION 3.0
DIAGRAM OF OVERLAY STRUCTURE

SECTION 4.0

DIAGRAMS OF SUBROUTINE STRUCTURE

On the following pages appear diagrams depicting the subroutine call structure of the GEODYN program. These diagrams show all possible chains of subroutine calls.

MAIN is the executive routine of the GEODYN program. For ease in explaining the subroutine structure MAIN has been broken down into three parts, MAIN 1, MAIN 2, and MAIN 3.

The logic of the diagrams flows down, right or left, but never up. Subroutines which have no extensions from the bottom are on the lowest level. Subroutines may appear at more than one place in the diagrams and, therefore, following a branch backwards does not necessarily determine all subroutines which might call any specific subroutine.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

4
•
0
1
3

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

SECTION 5.0
SUMMARY OF SUBPROGRAMS
USED BY GEODYN

MAIN	Reads and calls subroutines to read GEODYN input cards, determines array sizes for variable storage allocation and acts as a driver for all segments of GEODYN.
NONAME	Serves as a driver for orbit generator and data reduction operations and outputs residuals, ephemeris, and adjustments.
ADDYMD	Adds or subtracts an integral number of days from a date in the form YYMNDD giving a new date in the same one-word form.
ADFLUX	Reads flux cards from GEODYN input deck and adds solar and magnetic flux to stored tables. Writes on scratch file flux information for each arc and the Greenwich mean sidereal time on Jan. 0.0 of the reference year. Counts the number of arcs in the run.
ALIST	Lists the GEODYN input card deck.
ALPMRC	Block data storage of alpha-numeric information used by GEODYN print formats.
AND2	Two byte integer 'AND' function.
APPER	Computes apogee and perigee heights of a satellite.

ARCPAR	Loads individual arc parameters into variable storage arrays.
AREAS	Computes the ellipsoidal surface area lying between two fixed latitudes and two fixed longitudes.
AVGPOT	Computes the average gravitational potential of the Earth using only even zonal harmonic coefficients.
BIAS	Extracts bias start and stop times from data and counts biases.
BMTWRT	Writes out the B-matrix.
BSCOMP	Computes electronic biases and corrects normal equations for extraction of the electronic biases.
CBROWN	Passes variable storage arrays to the subroutines using them.
CHARLY	Allocates core for variable storage arrays.
CLEAR	Clears an array of four-byte integers.
CLEAR2	Clears an array of two-byte integers.
COEF	Computes interpolation coefficients.
COEFL	Lists non-zero gravity model coefficients of the spherical harmonic expansion of the geo-potential used by GEODYN.
COM	Computes binomial coefficients.
COMADJ	Prints adjustments to common parameters.
COMPAR	Loads common parameters into variable storage arrays.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

CONSTS	Block data storage of input/output file numbers, integrator stepsize information, conversion constants, and Earth parameters.
CORREL	Computes and prints correlation coefficients from above diagonal of normal matrix stored in vector form.
COWCOF	Assigns integrator coefficient values (orders 5-15).
COWELL	Integrates satellite equations of motion and force model partial derivatives to desired time.
DATARD	Stores, updates and retrieves individual arc parameter information.
DATBSE	Retrieves observation data from DODS Data Base.
DATES	Converts days elapsed from Jan. 0.0 of the arc reference year applying the transformation from the A.L time system to the UTC time system, into a three word date of the form YYMMDD, HHMM, SEC.
DAYEAR	Converts a date from the year and number of days from Jan. 0.0 of that year to integral days and fraction of a day in integral seconds. Outputs the date in the form YYMMDD..
DELTAZ	Computes the z-coordinate of a point of given latitude on the ellipsoid.
DENSTY	Computes atmospheric density based on the Jacchia-Nicolet model (height and temperature dependent).
DIFF	Calculates the difference between any two time points in the 20th century. Input date is two words in the form YYMMDD and HHMMSS; output date is integral days and seconds of a day.

DINRAD	Converts angles expressed in arc measurements or time measurements to radians.
DNVERT	Double-precision matrix inversion using Gauss-Jordan method of condensation with partial (column) pivoting. No restrictions on dimension of matrix.
DODELM	Retrieves satellite orbital starting elements from DODS Data Base.
DODSRD	Reads observation data tapes in DODS format and partially preprocesses the observations.
DPFCT	Computes arctangents, denormalization factor for geopotential coefficients, Julian dates, and dot products. Computes Earth-fixed x and y from inertial x and y, and inertial x and y from Earth-fixed x and y.
DRAG	Computes acceleration in rectangular coordinates of a satellite due to aerodynamic drag forces.
EGRAV	Calculates acceleration in rectangular coordinates on a satellite due to geopotential forces (spherical harmonic terms to maximum degree and order 30).
ELEM	Converts inertial position and velocity vector to osculating orbital elements.
EPHEM	Reads and interpolates lunar, solar, and planetary ephemerides and the nutation in right ascension.

EQN	Computes nutation in longitude, obliquity, and right ascension, and the true obliquity of date.
EQUATR	Rotates a vector from the mean or true equator and equinox of one epoch to the mean or true equator and equinox of another epoch.
ERROR	Prints specific error messages when the run is abnormally terminated.
ESTIM	Estimates correction vector to state vector using the method of Bayesian least-squares.
F	Evaluates the satellite acceleration vector and force model derivatives.
FLUXM	Blockdata storage of magnetic flux data through January 1972.
FLUXS	Blockdata storage of solar flux data through February, 1972.
FMODEL	Blockdata storage of the coefficients of the spherical harmonic expansion of the geopotential.
GEODYN	Blockdata storage of date and source tape number of this version of GEODYN.
GEOIDH	Positions surface density locations on geoid surface and computes matrix of constraint for density adjustment.
GEOSRD	Reads observation data in GEOS format and partially preprocesses the observations.

GRHRAN Computes the right ascension of Greenwich and the satellite vectors used in computing measurement partials.

INDENT Computes Cartesian coordinates and areas of surface density blocks.

INOUPT Reads GEODYN input cards. Outputs run and arc descriptions. Calls subroutines to read data tapes.

INTRP Interpolation routine.

JANTHG Selects the Greenwich mean sidereal time on Jan. 0.0 of the reference year for each arc and selects flux data for each arc from block-data storage. Computes average solar flux values for each arc.

MÜLMAT Multiplies three 3x3 matrices.

NEWARC Initializes switches and constants for each arc.

NUMBR2 Searches the entries of an array of 2-byte integers and compares them with an input number or bit configuration. The index number or location of the entry matched is returned. If no match is found, zero is returned.

NUMBR4 Searches the entries of an array of 4-byte integers and compares them with an input number or bit configuration. The index number or location of the entry matched is returned. If no match is found, zero is returned.

NUMLOC Searches the entries of an array and compares them with an input number or bit configuration. Index numbers or locations of the entries which match and the number of such matching entries are returned.

NUTATE Generates nutation angles to transform a vector from true equator and equinox to mean equator and equinox.

OBSDOT Calculates time derivatives of requested observation types. (Observation types available: 1 - right ascension and declination; 2 - range; 3 and 4 - range rate; 5 - α and δ direction cosines; 6 - X and Y angles; 7 - azimuth and elevation).

ORBIT Returns satellite state (position and velocity) and force model partials at the called time.

ORB1 Generates a satellite ephemeris tape in ORB1 tape format.

OUTRAD Converts radians to degrees, minutes and seconds or to hours, minutes and seconds.

PCERD Reads PCE format data.

PDEN Prints adjusted surface densities.

PDEN1 Prints input surface densities.

PLHOUT	Converts tracking station location and variance-covariance matrix in geocentric rectangular coordinates to geodetic latitude, longitude and height. Computes partial derivatives of the geodetic coordinates with respect to the geocentric coordinates.
POLE	Selects from a table, for a given input date, the coordinates of the true pole.
POSVEL	Converts osculating orbital elements to inertial position and velocity vectors.
PRECES	Generates the matrix for precession from mean equator and equinox of one epoch to mean equator and equinox of another epoch.
PREDCT	Computes measurements, residuals and measurement partials.
PROCES	Completes the preprocessing of observation measurements.
PRNTPR	Prints the requested observation preprocessing.
RANDOM	Unblocks and reads observations from a random access file. Blocks and writes observations on a random access file.
REARG	Rearranges the back value arrays when the integration step is changed in variable step mode.
REFCOR	Precesses and nutates a vector between the true equator and the equinox of a reference time to the true equator and equinox of date.

REFION Dummy ionospheric refraction subroutine.

RESPAR Calculates the partials of geopotential resonance coefficients requesting adjustment.

RFTMCD Checks an 80-character alphanumeric string to determine if the first 6 characters are numerals and the remaining 74 characters are blank.

RMSCMP Computes RMS, random normal deviate, and mean from summed information.

ROTMAT Generates a rotation matrix from an angle and axis of rotation.

SATCLC Applies satellite clock corrections to GEOS 1 optical data.

SATCL2 Applies satellite clock corrections to GEOS 2 optical data.

SATC21 Part 2 of satellite clock corrections for GEOS 2 (SATCL2).

SATC22 Part 3 of satellite clock corrections for GEOS 2 (SATCL2).

SIMRD Reads simulated data tapes.

SMSTAT Sums statistics.

SQUANT Converts station positions to geocentric rectangular coordinates on the first call. On subsequent calls, converts station positions to latitude, longitude and height. Computes partials of the rectangular coordinates with respect to latitude, longitude and height.

STAINF Computes statistical information at the end of each inner iteration for each arc and at the end of each outer iteration for all arcs. Corrects statistical information for electronic bias compensation.

STAINP Reads input station positions. Determines whether position was input in rectangular or spherical coordinates, converting to spherical whenever necessary and stores those station positions to be used in arc.

STAPOS Blockdata storage of station positions.

START Starts the integration process using interpolator formulas and iterating until desired accuracy is obtained.

STORE Stores common and arc information on disk.

SUMMRY Prints arc statistical summary.

SUNGRV Computes the acceleration in rectangular coordinates on a body in orbit about a central body due to the gravitational attraction of a disturbing body. (Includes the moon, sun, Venus, Mars, Jupiter and Saturn.)

SURDEN	Computes the gradient of the potential due to surface densities, and the partials of the gradients with respect to the surface densities for those densities to be adjusted.
SYMINV	Symmetric matrix inversion.
TDIF	Computes time differences between systems A.1, UTC, UT1 and UT2.
TIDAL	Computes acceleration due to solid Earth tidal bulges caused by lunar and solar gravitational effects on the Earth.
TRUEP	Rotates tracking station coordinates to account for polar wandering.
TWOSTA	Computes measurements and partials for VLBI and average range rate data.
TYPORB	Prints arc summary page.
UPDATE	Updates arc adjusted parameters to compensate for adjustments to common parameters.
UPDOWN	Computes uplink and downlink transit time for average range rate data or the two downlink transit times for VLBI data.
VCONV	Converts variance-covariance from one system to another.
VEVAL	Computes the variational partials of force model parameters.
YMDAY	Computes for a given date the number of days from Jan 0.0 of the reference year for the arc.

SECTION 6.0
SUBROUTINE CROSS REFERENCE CHART

A cross reference chart of the subroutines used by the GEODYN program is given on the following two pages. The calling routines are listed down the side of the page and the called routines are across the top.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

CALLED ROUTINES

*The starred routines have more than one entry point.

SINGING RECITATIVES

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

CALLED ROUTINES

*The starred routines have more than one entry point.

SECTION 7.0
COMMON BLOCK CROSS REFERENCE CHART

On the following page is a cross-reference chart showing the common blocks used in the GEODYN program and which routines use them. The subroutines are listed down the side of the page and the common blocks are across the top.

SUBROUTINES

	SUBROUTINES		FUNCTION		COLUMNS	
MAIN	0	0	0	0	0	0
NONAME	0	0	0	0	0	0
ADDEND	0	0	0	0	0	0
AUFLUX	0	0	0	0	0	0
ALIST	0	0	0	0	0	0
APPER	0	0	0	0	0	0
ARCFAR	0	0	0	0	0	0
AREAS	0	0	0	0	0	0
AVGPOT	0	0	0	0	0	0
BIAS	0	0	0	0	0	0
BATTARI	0	0	0	0	0	0
BSCOMP	0	0	0	0	0	0
CBROWN	0	0	0	0	0	0
COEFF	0	0	0	0	0	0
COFL	0	0	0	0	0	0
COMA	0	0	0	0	0	0
COMADJ	0	0	0	0	0	0
COMPAR	0	0	0	0	0	0
CORREL	0	0	0	0	0	0
COWELL	0	0	0	0	0	0
DATARD	0	0	0	0	0	0
DATESE	0	0	0	0	0	0
DATES	0	0	0	0	0	0
DELTAZ	0	0	0	0	0	0
DENSTY	0	0	0	0	0	0
DIFF	0	0	0	0	0	0
DODELM	0	0	0	0	0	0
DOOSRT	0	0	0	0	0	0
DPCT	0	0	0	0	0	0
DRAG	0	0	0	0	0	0
EGRAV	0	0	0	0	0	0
ELEM	0	0	0	0	0	0
EPHEM	0	0	0	0	0	0
ERROR	0	0	0	0	0	0
ESTIM	0	0	0	0	0	0
F	0	0	0	0	0	0
GEODIH	0	0	0	0	0	0
GEOSRD	0	0	0	0	0	0
GKRNAN	0	0	0	0	0	0
INDENT	0	0	0	0	0	0
INOUTP	0	0	0	0	0	0
JANTNG	0	0	0	0	0	0
NEVAGC	0	0	0	0	0	0
NUTATE	0	0	0	0	0	0
OBSDET	0	0	0	0	0	0
ORB1	0	0	0	0	0	0
ORBIT	0	0	0	0	0	0
PCERO	0	0	0	0	0	0
PDEN	0	0	0	0	0	0
PDEN1	0	0	0	0	0	0
PLHOUT	0	0	0	0	0	0
POSVEL	0	0	0	0	0	0
PRECES	0	0	0	0	0	0
PREOCT	0	0	0	0	0	0
PRINTK	0	0	0	0	0	0
PROCES	0	0	0	0	0	0
RANDOM	0	0	0	0	0	0
RESPAR	0	0	0	0	0	0
RMSCKIP	0	0	0	0	0	0
SIMRD	0	0	0	0	0	0
SOUANT	0	0	0	0	0	0
STANF	0	0	0	0	0	0
SRSTAT	0	0	0	0	0	0
START	0	0	0	0	0	0
STORE	0	0	0	0	0	0
SUMARY	0	0	0	0	0	0
SONGRV	0	0	0	0	0	0
SURDEN	0	0	0	0	0	0
TDF	0	0	0	0	0	0
THDSTAT	0	0	0	0	0	0
TYPEQB	0	0	0	0	0	0
UPDATE	0	0	0	0	0	0
UPDORN	0	0	0	0	0	0
VERVAL	0	0	0	0	0	0
VFRDAY	0	0	0	0	0	0
BLOCK DATA	0	0	0	0	0	0

ORIGINAL PAGE IS POOR
REPRODUCIBILITY OF THE

ALPMRC
APARAM
CELEM
CEPHEM
CGEOS
CONOUT
CONSTS
CORGI
CRANAM
CSUM
CSTAT
CSTNET
CSTIME
CTIME
CUEVENT
DODDAT
DRGELK
EPRNG
FLACK
FMOCCL
GEODYN
GNOTIK
INTERX
INTELK
INTERP
MONTHS
MOONGN
PRFLK
PRIORI
SIGBLK
STANUM
STADPS
SKYBLK
TPCBLK
TRUPOL
VRIAT
VRBLK
XYZ
XYZOUT

8.0 PROGRAM
DESCRIPTIONS

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

SECTION 8.0

PROGRAM DESCRIPTIONS

The functions of GEODYN and all of its subroutines are described within this section.

The listings of the GEODYN program and each of its subroutines have been thoroughly described with internal comment cards. All COMMON storage variables used by each subprogram are described in Section 9.0.

Flowcharts

This document uses the flowcharting systems developed for the NONAME documentation. This system utilizes only six basic flowcharting symbols. The symbols and their uses are as follows:

1)

a) Entry to subroutine without multiple entry points.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

b) Entry to subroutine with multiple entry points.

2)

c) Return.

Description of operation being performed

3)

Subroutine or function call where:
 NAME - Subroutine called
 PURPOSE - Description of the purpose for the call.

4)

Decision

5)

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

a) Statement number.

b) Transfer to statement number.

6)

Off page connector.

In this new flowcharting system logic lines flow down, right, or left but never up. The only way for logic to travel opposite to the flow is to transfer to a statement number which appears earlier in the flow of logic.

At times, statement numbers are not available for back transfer. In these cases, an alphabetic name or character may be inserted in the line of logic at the point to which return of logic flow is desired. The name or character inserted must appear within symbol 5.

This flowcharting system has been designed to correlate as highly as possible with the program listings. The statement numbers used are the same as those used by the FORTRAN program and the description boxes contain the same information as the comment cards appearing in the program.

Programming Technique

This section is included as a further aid to programmers working with the GEODYN program and describes in general terms some of the techniques used in the programming of GEODYN.

Array and scalar names in GEODYN have been chosen in such a manner as to be meaningful. The following are some examples of naming in GEODYN.

<u>NAME</u>	<u>SUBROUTINE</u>	<u>MEANING</u>
PRDMIN	NONAME	Satellite period in minutes.
NARCS	NONAME	Number of arcs in run.
LOUTER	NONAME	Last outer iteration switch.
RATIO1	NONAME	Ratio to sigma for first measurement.

<u>NAME</u>	<u>SUBROUTINE</u>	<u>MEANING</u>
ORBELP	NONAME	Keplerian orbital parameters from previous iteration.
THETG	PROCES	Greenwich Hour Angle in radians.
CLATG	SQUANT	Cosine of station geodetic latitude.
NODEGF	STAINF	Number of degrees of freedom.
TWOP1	TDIF	Two times π .
MJSTOP	DATBSE	Modified Julian date of stop time for data selection.
VAR	COWELL	Switch for variable step integration.

The GEODYN program has been broken into many subroutines in order to optimize its use of core storage and also its efficiency. Many of the smaller subroutines are conversion routines which are called by many different segments of the program. Large portions of the GEODYN program are input/output subroutines which have been designed to give the user maximum ease in setting up the program.

GEODYN also uses a very large amount of COMMON storage. COMMON is used for five primary reasons by GEODYN.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

- 1) To pass information between subroutines.
- 2) To store program constants.
- 3) To set switches for subprogram reinitialization.
- 4) To overlay storage requirements.
- 5) To load block data.

GEODYN uses two additional core saving techniques:

- Linkage Overlay
- Variable Core Allocation

Linkage Overlay

GEODYN uses a complex overlay structure to reduce the effective program size by nearly 300K bytes. A diagram of the GEODYN overlay structure is provided in Section 3.0.

In reference to the Diagram of the Overlay Structure, the overlay segments are utilized as follows:

<u>SEGMENT</u>	<u>FREQUENCY OF USE</u>
ROOT	Always in core.
1A	Once per job.
3A	Once per job.
1D, 2D, 3D, 4D	Maximum of one of these per arc.
1E, 2E	Maximum of one of these per arc.
2A	Once per job.
1B	Once per job.
2B	Once per outer iteration.
3B	Once per outer iteration.

<u>SEGMENT</u>	<u>FREQUENCY OF USE</u>
1C	Once per inner iteration.
2C	Once per inner iteration.
3C	Once per inner iteration.
4C	Once per outer iteration per arc.
5C	Once per outer iteration.
1F	Once or twice per arc.
2F	Once per arc maximum.

Variable Core Allocation

GEODYN counts the input parameters and allocates the minimum array sizes required to process each job.

As a result of this:

- Orbit generator arcs may require as little as 330K, and
- Data reduction arcs as little as 350K or as much as the entire capabilities of the GSFC IBM 360/95, depending on the user input requests.

On the following pages of this section appear the descriptions, program listings and flow charts for the GEODYN program.

The programmer should note that many of the GEODYN subroutines have more than one entry point. In general the purpose of these multiple entry points is to pass to these subroutines the starting locations of those arrays which are variable storage and to also set the dimension of these arrays.

MAIN

DESCRIPTION

- Calls program initialization subroutines.
- Calls FLUXM to list input cards, read flux cards and set up flux arrays.
- Reads run title, reference time, epoch and element cards.
- Calls INOUPUT to read and print a description of the common and arc parameters.
- Calls STORE to store common and arc parameter information.
- Calls DODELM to obtain elements from DODS data base when necessary.
- Calls epoch element conversion routines when necessary.
- Calls APPER to calculate apogee and perigee heights.
- Calls CHARLY to allocate core and begin processing.
- Calls ERROR to print error messages when necessary.

REPRODUCIBILITY OF THE
GINAL PAGE IS POOR

NAME	MAIN
PURPOSE	1) TO READ AND TO CALL SUBROUTINES TO READ GEODYN INPUT CARDS 2) TO DETERMINE ARRAY SIZES FOR VARIABLE STORAGE ALLOCATION 3) DRIVER FOR ALL SEGMENTS OF GEODYN
SUBROUTINES USED	TDIF NEWARC POSVEL FLUXM YMDAY ERROE DCDELM APPSL INOUPR DOTPRD CHARLY STORE ELEM
COMMON BLOCKS	INITBK INTBLK TPEBLK CTIME PREBLK ALPMPC APAPAM CPARAM CSTINF CELEM PRIORI CONOUT
INPUT FILES	FLTP - FLUX DATA FILE INTP - GEODYN INPUT CARDS
OUTPUT FILES	PRINTER

```

IMPLICIT REAL*8(A-H,O-Z)          ONOS 25
DIMENSION ICORE(30)               ONOS 26
DATA INCORE/21/
REAL APLN,CONVRG,OUTCON,RNSALL,ALTIME,EDITH,RFINDX,SIGCHG,
     . VRCOV,RNSTOT,TDIF           ONOS 27
     . LOGICAL*1 VHFCHN,PREPPC   ONOS 28
     . LOGICAL CRGPRA,DELEM,LITPES,INITAL,TOREFT,DRBTSW,MISLOG,VARSTP,
     . HLVDSW,HYPER              ONOS 29
     . INTEGER ADDR,SPAD,ARCN0,ESTSTA,OUTP,CATP,XYZTP,RVTP,PLOTP,SCRA,
     . SCRC,FLTP,GRDTP,ESTSTA,RECNC,AFOR,ORDER  ONOS 30
     . INTEGER*2 IRPREP,INDPRE,INTYPE,ISTHD,CULL,MTYPE,NMEAS,PRETYP,
     . CHANL,JASE                 ONOS 31
     DOUBLE PRECISION LOVE         ONOS 32
DIMENSION IHYPER(2)                ONOS 33
COMMON/INITBK/IEPYMD,IEPHM,EPSEC,IYREF,INNMAX,INNMIN,CONVRG,
     . DRDEL(6,2),EDITH,INSUPR,IDSAT(2),DRBTSW,IXYZSW(11),MISLOS(9)  ONOS 34
COMMON/INTBLK/THOOT(50),OFDER(2,2),ABAT(4),VARSTP(2),HLVDSW(2),
     . NEON(2),AFOR(2,3),LCME(4)  ONOS 35
COMMON/TPEBLK/INTP,CUTP,CATP,XYZTP,KEPTAP,RVTP,PLOTP,IOBS,SCRA,
     . SCRC,FLTP,GRDTP            ONOS 36
COMMON/CTIME/DATEP,CAYREF,DSTART,DAYSTP,DAYINT,DRBIT,CAYEND,
     . DRATE,DRB1,DRB2,DRBRT,VYEEG  ONOS 37
COMMON/PREBLK/AYSTA,DRB01,DRSCP,SIG1,SIG2,SRFNOX,ISTA,MTYPE,
     . NMEAS,PRETYP(2),CHANL,VHFCHN,PREPR0,RECNO  ONOS 38
COMMON/ALFMRC/ALPHA(54),HYPER    ONOS 39
COMMON/APARAK/INPAR,INPART,NIAS,ESTSTA,NSAT,NGPARC,NOREC1,
     . NPARK,INIAE,NPAR           ONOS 40
COMMON/CFXPARM/ISTA,NMAST,NTEST,MAXPAR,NOIAS,NGPC1,NGPC2,
     . NGPCM,INCSEST,CMPGAR,LIN1,LIN2,NDEN,NDENST,NTIDST,NTDEN,
     . INRAS,INCOST,NOCONS       ONOS 41
COMMON/CSTINF/JEASE(556),LBASE  ONOS 42

```

```

COMMON/CELEM/ELEMST(6,2),ORBELA(6,2),XNU,EC,RMSTOT      ONOS 56
COMMON/PRIORI/PLEMIN(6,2),VARCEV(6,6,2),TITLE(30),DRAG(18)  ONOS 57
COMMON/CCNOUT/RMSALL,DUTCON,MINOUT,MAXOUT,LITRES,MAXSAT,MAXZIN.  ONOS 58
NSTART,NEGRMX,IVAR,ICRDER,NARCS,NSTART,LSTART(6)          ONOS 59
LATA INTCCR/0/ NEHTAS/0/                                     ONOS 60
AITIME(DAYREF)=TDIF(4.3, DAYREF)/8.64E4                   ONOS 61
C READ INPUT CARDS, READ FLUX CARDS & SET UP FLUX ARRAYS  ONOS 62
    CALL FLUXM(NARCS)
C READ RUN TITLE
    READ(INTF,10000) TITLE
    NSAT=2
    LBASE=0
C READ COMMON SET CARDS
    CALL INSLFT(NARCS,0)
C STORE COMMON PARAMETER INFORMATION
    CALL STORE(.FALSE.,.TRUE.)
    NGPCOM=NCEEST
    NTIDEN=NTIDST+NDENST-NCCNST
    OUSUPR=INSLPR
    RMSALL=RMSTOT
    NGPC2=0
    MAXSAT=1
    MAXPAR=0
C LOOP THROUGH 1000 READS & STORES ARC PARAMETER INFORMATION
    DO 1000 ARCMO=1,NARCS
C INITIALIZE FCR ARC
    CALL NEWARC
    READ(INTP,10000) TITLE
    READ(INTF,10001) IYREF
    IYSEG=IYREF/10000
    DAYREF=YMCAY(IYREF,0,0,0)
    DAYRF=DAYREF+AITIME(DAYREF)
C READ EPUCHE CARD
    READ(INTP,10001) IEPYMD,IEPHM,EPSEC,INNMAX,INNMIN,CONVRG,IGEOS,
    IYMD,IMD,SEC,IMDD,IMD,SECD,NSAT,IELN,J,ISATID
    DELEM=J,GT,0
    IF(DELEM) NSAT=1
    NSAT=MAXC(1,MIN(1,NSAT,2))
    MAXSAT=MAX0(MAXSAT,NSAT)
    MTYPE=IELN
    IF(IYMD,GT,0) GO TO 100
    IMDD=IEPYMD
    IMD=IEPHM
    SEC0=EPSEC
100  DATAEP=YMCAY(IYMD,IMD,SEC0)
    DATAEP=DATAEP+AITIME(DATAEP)
    INNMIN=MAX0(1,INNMIN)
    INNMAX=MAX0(INNMAX,1)
    IF(CONVRG,LE,0.0) CONVRG=0.02
    DAYSTP=.999,000
    IF(IYMD,EG,0) GO TO 120
    DAYSTP=YMCAY(IYMD,IMD,SEC0)
    DAYSTP=DAYSTP+AITIME(DAYSTP)
120  DSTART=YMCAY(IEPYMD,IEPHM,EPSEC)
    DSTART=DEIAPT+AITIME(DSTART)
C OBTAIN ELEMENTS FROM DBUS DATA BASE IF REQUESTED

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

    IF(DELIM) CALL DODELMIELM,ISATID,DSTART)
    HYPER=.FALSE.
    IHYPER(1)=0
C READ ELEMENTS
    IF(.NOT.DELIM) READ(INTP,10002) ((ELEMST(J,I),J=1,3),IHYPER(I),
    (ELEMST(J,I),J=4,6),I=1,NSAT)
    DO 200 ISAT=1,NSAT
    HYPER=HYPER,CR,IHYPER(ISAT).GT.0
    IF(IHYPER(ISAT)-1) 130,140,165
130  IF(DOTPRD(ELEMST(A,ISAT),ELEMST(A,ISAT)).LT.DFLOAT(3*360**2).AND.
    .   DAOS(ELEMST(2,ISAT)).LT.1.000) GO TO 165
C CALCULATE KEPLER ELEMENTS IF INPUT IS CARTESIAN
    140 CALL ELEM(ELEMST(1,ISAT),ORBELA(I,ISAT),1,.TRUE.,TITLE)
    GO TO 170
165  DO 175 I=1,6
175  GRBELA(I,ISAT)=ELEMST(I,ISAT)
C CALCULATE CARTESIAN ELEMENTS IF INPUT IS KEPLER
    CALL PCSVEL(ELEMST(1,ISAT),GRBELA(1,ISAT),1)
190 DO 200 I=1,5
    ELEMIN(I,ISAT)=ELEMST(I,ISAT)
200  ORBEL(I,ISAT)=ORBELA(I,ISAT)
    IF(.NOT.HYPER) GO TO 220
    PRINT 10003,ARCNU
    CALL ERERR(10,LUVF)
C CALCULATE APCCRE & PERIGEE HEIGHTS
    220 CALL APPRF
    INSUPR=ELEUPR
C READ OPTION CARDS (AND DATA TAPE FOR D.C. RUNS)
    CALL INDLFT(ICEDS,APCNC)
    NEBIAS=MAX0(NEBIAS,NBIAE)
    NGPC1=900-NGPAC
    NGPC2=MAX0(NGFC2,NGPC1)
C STORE INFORMATION FOR ARC PARAMETERS
    .. CALL STORE(.FALSE.,.FALSE.)
    MBIAS=MAX0(MBIAS,NBIAS)
    NEQNMX=MAX0(NEQNMX,INPAR1+NGPC1)
    KURE=0
    DO 400 I=1,NSAT
    K=0
    IF(.NOT.CRTSW) K=6+NEQN(I)+NGPC1+NGPCOM+NTIDEN
    IVAR=1
    IF(VARSTH(I)) IVAR=2
400  KURE=KURE+5*IVAR*((ORDER(I,1)-1)+(ORDER(I,2)-1)-(IVAR-1)*(1+K))
    INTCD=MAX0(INTCD,KURE)
    1000 MAXPAR=MAX0(MAXPAR,NBIAS+INPAR1+NGPC1)
    MAXPAR=MAXPAR+NCSEST+NMAST*3+NTIDEN
    NEQNMX=NEQNMX+NTIDEN+NCSEST+1
    NBIAS=NBIAS+MOD(MBIAS,2)
    NGPC2=NGFC2*MC0(NGPC2,2)
    NCSEST=NCSEST+NGPC2
    NGPC1=NGFC2+1+NBIAS+3*MAXSAT
    NGPC2=NCSEST+NBIAS+3*MAXSAT
C CALCULATE SIZE OF VARIABLE STORAGE ARRAYS
C
C USRT,LSIND,LIASU,LIASSG,ISTAND,BTYPE,LIASN
    ICURE(1)=NBIAS*NCSEST*4+1+MAXSAT*(NBIAS+3*MAXSAT+NCSEST+1)/2

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

C BIAS      ONOS 168
  ICORE(2)=2*(MBIAS+3*MAXSA+NCSEST+NDEN+NTIDST)
C ASUM      ONOS 169
  ICURE(3)=6*4*(NSTA+MAXSAT)*MAXSAT
C NSUM      ONOS 170
  ICURE(4)=3*3*(NSTA+MAXSAT)*MAXSAT
C RLAT,RLUN,H,NAME,RLATO,RLON,O,THERIN   ONOS 171
  ICURE(5)=2*(4*NSTA+4+3*NSTEST)+2*(NSTA+1)*2
C ISTAND,ESTANC,LCC      ONOS 172
  ICURE(6)=NSTEST+(NSTA+2)/2
C ENV      ONOS 173
  ICURE(7)=2*3*(NSTA+1)*2
C SUM1      ONOS 174
  MPAR2=MAXPAR*(MAXPAR+1)
  ICURE(8)=MAX0(MPAR2,72)
C GRPAR      ONOS 175
  ICURE(9)=3*(NCSEST+3*MAXSAT+NTIDEN)*2
C INDEXCS,STANDS      ONOS 176
  ICURE(10)=(3*(NCSEST+NTEST)+1)/2
C SUM2(DDLTA),TTL,DELTA      ONOS 177
  ICURE(11)=2*MAXPAR*3
C XYZSIG,PLHSIG,STASIG,PLHNOM,XYZNOM      ONOS 178
  ICURE(12)=9*NTEST*3+6*NTEST*2
C SUM3,FCT      ONOS 179
  ICORE(13)=INTCOF+12*NEONMX*MAXSAT
C STAXYZ,STAYZC      ONOS 180
  ICURE(14)=2*(NSTA+1+NTEST)*3
C PNPMX0      ONOS 181
  ICORE(15)=2*(NEONMX+8)*2
C XI      ONOS 182
  ICURE(16)=2*NEONMX*6*MAXSAT
C PARNL5      ONOS 183
  ICURE(17)=(NEONMX+9)/2
C AREA,CENTER,ECENTR,DENS0,DSIG      ONOS 184
  ICORE(18)=4*4*NDEN*2+2*NDENST*2+2*(NTIDEN+NCONST)*2
C COEFFICIENTS OF CONSTRAINT EQUATIONS FOR DENSITIES      ONOS 185
  ICURE(19)=2*NDEN *NCONST
C CSUM,MSUM,LSUM      ONOS 186
  KBASE=0
  IF(LBASE.EQ.0) GO TO 444
  DO 333 I=1,NSTA
    J=0
    DO 222 L=1,LEASE
      IF(JBASE(L).EQ.I) J=J+1
    222 CONTINUE
    333 KBASE=MAXC(L,LEASE,J)
  444 LBASE=KBASE
  ICURE(20)=(NSTA+MAXSAT)*MAXSAT*LBASE*(16+6+1)
C BTWA,BTRD,BTWE,BTWF,BESTNO,BTYPE,NUMBER      ONOS 187
  NEBIAS=NEELIAS+NDU(NEELIAS,2)
  NTIAS=NEELIAS
  ICURE(21)=2*(4*MAXPAR+13)*NEBIAS
  DO 300 I=1,NCORE
  300 ICURE(I)=ICORE(I)*4
  REWIND INTP
C ALLOCATE CORE & BEGIN PROCESSING      ONOS 188

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```
CALL CHARLY(NCORE,1CORE,61050)          ONOS 224
STOP 1                                     ONOS 225
1050 KORE=0                                ONOS 226
DO 1050 I=1,NCORE                         ONOS 227
1060 KURE=KURE+1CORE(I)                   ONOS 228
      KURE=KURE/1024+320                  ONOS 229
      PRINT 1070,KURE                     ONOS 230
C INSUFFICIENT CORE AVAILABLE PRINT ERROR MESSAGE
      CALL CHARCD(10,DATAEP)              ONOS 231
1070 FORMAT(1F1.20X,'EXECUTION TERMINATING DUE TO INSUFFICIENT MAIN ',ONOS 232
      * 'CORE STORAGE.',1H0,15X,'THE USER SHOULD SPECIFY REGION=',ONOS 233
      * 1S,1K PLUS ADDITIONAL STORAGE',/21X,'FOR ALL EXCESSIVELY ',ONOS 234
      * 'LARGE I/O BUFFERS USED.',/)       ONOS 235
STOP 10                                     ONOS 236
10000 FORMAT(1CA8)                         ONOS 237
10001 FORMAT(1C,14,F7.4,I2,I1,2FF2.0,I1,2(16,I4,0PF7.4),I1,I6,I1,I7) ONOS 238
10002 FORMAT(3E24.16,I1/3D24.15)           ONOS 239
10003 FORMAT(1F1.20X,'WARNING:',1H0,15X,'INPUT ON THE POSITION VECTOR ',ONOS 240
      * 'CARD IN AFC',13,/21X,'INDICATES THAT KEPLER ELEMENTS ',ONOS 241
      * 'MAY HAVE AN ECCENTRICITY GREATER THAN 1.',/)        ONOS 242
END                                         ONOS 243
                                              ONOS 244
```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NONAME

DESCRIPTION

- Functions as a driver for orbit determination and data reduction operations.
- Reads input tape for restart when necessary.
- Calls GEOIDH to compute surface density geoid heights.
- Calls ESTIM to initialize the least squares estimator.
- Calls TWOSTA to compute partials and calculated observations for VLBI and average range rate data when necessary.
- Calls PREDCT to compute the orbit for orbit generation runs or calculated observations for measurements other than VLBI and average range rate data.
- Sets parameter numbers for adjusted stations, biases and timing biases.
- Writes a binary residual tape, groundtrack tape, and R-V tape and an optional ORB1 tape.
- Calls SUMMARY to print arc residual summary.
- Calculates and prints adjusted elements.
- Calls TYPORB to print arc summary page.

- Punches adjusted elements of drag and solar radiation pressure.
- Calls DATARD to store updated arc parameters.
- Prints adjusted parameter variance-covariance matrix.
- Calls ESTIM to calculate adjusted common parameter values.
- Prints adjusted arc force model parameters.
- Corrects and prints adjusted biases.
- Prints residual summary for all arcs.
- Calls ESTIM to estimate geopotential parameters.
- Computes estimated station correlations.
- Prints estimated station summary.
- Prints geopotential coefficient adjustment information.
- Calls UPDATE to compute effects of adjusted geopotential parameters on adjusted individual arc parameters.
- Calls subroutine to print correlations on adjusted parameters.

NAME	NONAME	
PURPOSE	1) TO DRIVE ORBIT GENERATOR AND DATA REDUCTION OPERATIONS 2) TO OUTPUT RESIDUALS, EPHemeris & ADJUSTMENTS	
CALLING SEQUENCE	CALL NONAME(NPARM,PMPX0,BSNUS,BIASO,BBIAS,BIASSG, BSTRT,BSEND,BSTANO,BYTYPE,PARNOS, DDELTA,TTL,DELTA,STANDS,ISTANC,NAME, SUMI,INDXCS,GPVAL,GPVAL0,GPSIG,GPNO, AREA,CENTER,DENCON,BESTNO,BETYPE)	
SYMBOL	TYPE	DESCRIPTION
NPARM	I	INPUT - MAXIMUM NUMBER OF PARAMETERS PER MEASUREMENTS
PMPX0	DP (NPARM,1)	INPUT - MEASUREMENT PARTIALS WITH RESPECT TO EPOCH PARAMETERS
BSNUS	I*2 (1)	INPUT - LOCATION IN NORMAL MATRIX FOR BIASES
BIAZO	DP (1)	INPUT & OUTPUT - APRIORI BIAS ESTIMATES
BBIAS	DP (1)	INPUT - CURRENT BEST BIAS VALUES
BIASSG	DP (1)	INPUT & OUTPUT - STANDARD DEVIATIONS OF BIASES
BSTRT	JR (1)	INPUT & OUTPUT - BIAS START TIMES IN DAYS FROM JAN 0.0 OF THE REFERENCE YEAR
BSEND	DP (1)	INPUT & OUTPUT - BIAS STOP TIMES IN DAYS FROM JAN 0.0 OF THE REFERENCE YEAR
BSTANO	I*2 (1)	INPUT & OUTPUT - BIAS STATION NUMBERS
BYTYPE	I*2 (1)	INPUT & OUTPUT - BIAS TYPES
PARNUS	I*2 (1)	OUTPUT - PARAMETER NUMBERS
DDELTA	UF (1)	INPUT - SCRATCH VECTOR
TTL	UF (1)	INPUT - ADJUSTED PARAMETER TITLE ARRAY
DELTA	DP (1)	INPUT & OUTPUT - CORRECTION VECTOR FOR ADJUSTED PARAMETERS

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

STANUS I*2 INPUT - LOCATIONS IN NORMAL MATRIX OF INFORMATION
(3,1) PERTAINING TO ADJUSTED STATION COORDINATES

ISTANO I*2 INPUT - STATION NUMBERS
(1)

NAME DP INPUT - STATION NAMES
(1)

SUM1 DP INPUT - NORMAL MATRIX
(1)

INDEXS I*2 INPUT - INDICES OF ADJUSTED GEOPOTENTIAL
(3,1) COEFFICIENTS

GPVAL DF INPUT - CURRENT BEST VALUES OF ADJUSTED
(1) GEOPOTENTIAL COEFFICIENTS

GPVAL0 DF INPUT - APPRIORI ESTIMATE FOR ADJUSTED
(1) GEOPOTENTIAL COEFFICIENTS

GPSIG DP INPUT - SIGMAS FOR ADJUSTED GEOPOTENTIAL PARAMETER
(1)

GNO I*2 INPUT - LOCATIONS OF GEOPOTENTIAL PARAMETERS IN
(1) NORMAL MATRIX

AREA DP INPUT & OUTPUT - SURFACE DENSITY SUB-BLOCK AREAS
(1)

CENTER DF OUTPUT - THE GEOCENTRIC COORDINATES OF THE
(1) SUB-BLOCK CENTERS

GENCON DF INPUT & OUTPUT - COEFFICIENTS RELATING CONSTRAINED
(1) AND UNCONSTRAINED SURFACE DENSITIES

BESTNO I*2 INPUT - ELECTRONIC BIAS STATION NUMBERS
(1)

GETYPE I*2 INPUT - ELECTRONIC BIAS MEASUREMENT TYPES
(1)

SUBROUTINES USED DATARD CLEAR2 PREDCT OUTRAD ORDI
ESTIM RANDWR ERROR COMADJ STAINF
RANDRD C8SDOT SUMMARY UPDATE GEOIDH
DATES ESCOMP TYPORS CLEAR TWJSTA
ELEM CORREL

COMMON BLOCKS APARAM C3DOUT CPARAM ALPMRC INTBLK
INITBK TPEBLK CONSTS CTIME XYZ
XYZOUT PHEBLK FLEXBLK PRIORI CSTINF
FMODEL CGEOS CELEM GNDTRK CORRI

INPUT FILES INSTRT - INPUT RESTART TAPE NUMBER

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

FLTP - FLUX DATA FILE

OUTPUT FILES

CUTP - PRINTER
PLOTP - BINARY RESIDUAL TAPE
XYZTP - PRINTER
RVTP - BINARY SATELLITE EPHEMERIS TAPE
GRDTP - GROUNDRACK TAPE

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

SUBROUTINE NONAME(NPARM,PMPXO,ESNOS,BIASO,BBIAS,BIASSG,BSTRT,
•      BSEND,BSTAND,BYTEP,FARNO,DEELTA,TTL,DELTA,STANO,
•      1STANC,NAME,SUMI,INDXCS,GPVAL,GPVAL0,GPSIG,GPNC,AREA,CENTER,
•      DENCN,BESTNO,BETYPE)
IMPLICIT REAL*8 (A-H,D-Z)
LOGICAL VHFCHN,PREPRO
LOGICAL TREFT,VARSTP,ORBTSP,XYZFS4,XYZLSW,TOREFO,PLTLSW,NOPRNT,
•      PLOTPW,INITAL,DATAWS,SATSW,FITER,LITEN,DRAGSW,LITRES,LINNER,
•      LOUTER,NCRRAT,CMPCPR,GRDSW,GRFSW,SURSAT,KEPLEP,HLDWSW,PARTGP,
•      BMAT,EMDAT,PCESIM,PGMAT,TRKSW,STARTA,STARTR,INNRSW,SATSAT
LOGICAL HYPER
INTEGER FZ MTYPE,N'EAS,PRTYP,CHANL,USTAND,BYTEP,PAPNCS,BSNOS,
•      STANDS,ISTANO,INDXCS,GFNO,ISAT,BETYPE,BESTNO
INTEGER GLTP,RVTP,DATA,XYZTP,ARCNO,ADDR,ADDRD,SRAD,BSNDX,BINDX1,
•      BINDX2,BINDX,PLDTP,FLTP,OUTER,VJ,ISUPR,ESTSTA,PARLIM,RECNO,
•      SCRA,SCRC,GPDT,PECN01,BMATNU,ORDER,STARTA,STARTR,OUTSTR
REAL A11A2,FNU,AXYZ,BSUM,RMSD,EDITH,EAST1,EAST2,RNSND,WMEAN,
•      ASTRSK,CONVRG,RDMEAN,RMSPRV,SGPRINT,VARCOV,TITLE,OUTCON,RMSALL,
•      RMSTUT,ATRAD,RMSLST,RMSWTO,TYPER1,PI,TWOP1,RAD,RSEC,BRSID1,
•      BRSID2,ERSEC,NOEDIT
DOUBLE PRECISION MODEL,NAME,ITM3,LHAT,MSAT,YBODY,LOVE
DIMENSION BSNES(1),RIAS(1),B3IAS(1),BIASSG(1),BSTRT(1),
•      BSEN(1),BETANO(1),BYTEP(1),PARNO(1),PMPXO(NPARM,1),
•      DEELTA(1),TTL(1),DELTA(1),ITARE(2),SDELEM(6),RNSPS(2),
•      IDEG(4),MIN(A),SECA(4),APRICR(2),ADJUST(2),SD(3),LHAT(3),
•      ORBELL(5,2),ORBDIF(6),STANDS(3,1),BSNDX(3),ISTANO(1),
•      NAME(1),SUMI(1),AXYZ(6),STPEZ(1),ICS(3),INDXCS(3,1),DRAG(3),
•      GPNO(1),GPVAL(1),GPVAL0(1),GPSIG(1),BRSID1(3),BRSID2(3)
DIMENSION PVRMS(2,2),AREA(1),CENTER(1),DENCON(1),PESTNE(1),
•      BETYPE(1)
COMMON/AFRAF/INPAR,INPAR1,MSIAS,ESTSTA,NSAT,NGPARC,RECNO1,NPARAM,
•      NEXIAS,MAXPAR
COMMON/CLNOUT/RMSALL,OUTCN,MINOUT,ZAXDUT,LITPES,MAXSAT,MAXZIN,
•      NSTART,NEONMX,IVAR,ICRER,NAPC,NSTARTD,STARTR,STARTW,STARTA,
•      STARTC,INSTRT,OUTSTR
COMMON/CHARAM/NSTA,NMAST,NTEST,NDIM,RIAS,NGPC1,NGPC2,NGPCOM,
•      NCSET,CVPCPR,LIN1,LIM2,NOEN,NOENST,NTIDST,NTIDEN,INNRSW,
•      NCONST,NDCCNS
COMMON/ALFRAC/INRMS(5),TIMING,FLANK,BATYPE(31),UNITS(15),ELCUT,
•      HYPER
COMMON/INTELK/THDOT1,THDOT2,THDTS,GM,AC,AESQ,FLAT,FS032,FFS032,
•      GM3(5),A(2),BDOT(2),FO(2),AFGM(2),APLM(2),PRESS,INITAL,NURPAT,
•      THDTC,HOODY(5),STIFEZ(4),HLVEND(2),DELFRE(2),CTCL(2),FTOL(2),
•      STPLW(2),STEPUP(2),ORDER(2,2),ASAT(2),MSAT(2),VARSTP(2),
•      HLDWSA(2),NCNN(2),APSF(2,3),LOV(2,1),ICFFT,NEODY

```

```

COMMON/INITBK/IEPYMD,IEPHM,EPSEC,IYREF,INNMAX,INNMIN,CONVRG, INON 168
• ORBEL(6,2),EDITN,INSUPP,IDSAT(2),ORBTSA,XYZFSW,XYZLSW,PLTLSW, INON 169
• GROFSW,KEPLER,SUBSAT,PARTGP,PEMAT,BMATNC,SIMDAT,PCESIM, INON 170
• MISLOC(9) INON 171
COMMON/TPEBLK/INTP,OUTP,DATP,XYZTP,KPLRTP,RVTP,PLCOTP,IOBS,SCRA, INON 172
• SCRC,FLTP,GROTP INON 173
COMMON/CCNSTS/DPI,DTWOPI,CRAD,CRSEC INON 174
COMMON/CTIME/DATAEP,DAYREF,DST4RT,DAYSTP,DAYINT,DCRSIT,DAYEND, INON 175
• DRATE,DRF81,DRR81,CRBAT,IYREG INON 176
COMMON/XY2/AEINPM(9),KSAT,IFCRCE(2) INON 177
COMMON/XY2OUT/XYZEND(6,2),DRGPAP(6,2) INON 178
COMMON/PREBLK/DAYSTA,OBSS01,OBSC2,SIG1,SIG2,SPNDX,ISTA,MTYPE, INON 179
• NMEAS,ISAT,PRETYP,CHANL,VHFCHN,PREPRO,RECNO INON 180
COMMON/FLXBLK/FLUX1(405),FLUX2(405),FLUX3(405),FLUX4(405), INON 181
• FLUX5(405) INON 182
COMMON/PRIJRI/ELEMIN(6,2),VARCCV(6,6,2),TITLE(60),DRAGSG(2,3), INON 183
• DRAGU(2,3),CD(2,3) INON 184
COMMON/CESTINF/MEASNO(4),NCBS(4),RMEAN(4),RMSE(4),RND(4), INON 185
• MERSAT(4),ATMEAN(4),RMSWTOT(4),ATRND(4),TYPRMS(30),NOTYPE(2,30),INON 186
• USUM(c,12),RMSNO(30),NCALL(30),NOWTRB,LBASE INON 187
COMMON/FMODEL/INDEX1, NCEx2, INDEX3, INDEX4,CS(30,33),MODEL(6) INON 188
COMMON/CGEOS/ISATIO(2),IPRPR(453) INON 189
COMMON/CELEN/ELEMST(6,2),CRSELAL(6,2),IG1S(4),RMSTOT INON 190
COMMON/GNETHK/SATLAT(2),SATLUN(2),BATH(2),ELEV(2),SATSW INON 191
COMMON/CLRB1/RANDOT(2),PERDCT(2),PERHT(2),APHT(2),PRO(2) INON 192
REAL*8 PREV(2)/'PREVIOUS','US'/,CHANGE/*DELTA*/
EQUIVALENCE (TINDY,UNDOY(1)),(EINDX1,BSNDX(2)),(EINDX2,BSNDX(3)), INON 193
• (SIG,SIG1),(KKSAT,SIG2),(PI,PI1),(TR0PI,DTW0PI), INON 195
• (RAD,CRAD),(RSEC,DRSEC),(PRE(1),TRKS1) INON 196
DATA ASTRES/1#/,NOEDIT/1#/
DATA HERTZ/EFFERTZ/ INON 197
DATA APRICR,ADJUST,SD/ INON 198
• 6FA FRTO,2HRI,SHADJUST,2HED,6HSTANDA,6HRD DEV,6HIATION/ INON 199
DATA AXYZ/2H X,2H Y,2H Z,4HXXDOT,AHYDGT,4HZDDOT/ INON 201
DATA PCE/4H PCE/ INON 202
• DATA ARCNL,CUTER,NPAGE/3#1/ INON 203
DATA ICS/1HC,1HS/,DRAG/AHDRA,EDRAG DST,SHSOLRAD/ INON 204
DATA BMAT//,FALSE// INON 205
DATA NFACEX/1/ INON 206
INUXNU(1)=ENDIN*(I-1)-(I*(I-1))/2 INON 207
10000 FORMAT(2CA4)
NC5MAX=NC5EST INON 208
ARCNL=STARTA INON 209
CUTLR=STARTO INON 210
IF(STARTR) MAXOUT=STARTC INON 211
LCUTR=MAXOUT,LE,CUTER INON 212
IF(.NOT.*STARTA) GO TO 200 INON 213
IF(STARTA.LT.2) GO TO 200 INON 214
IF(STARTA.GT.2) GO TO 200 INON 215
C IF RESTARTING READ INPUT TAPE INON 216
N1=STARTA-1 INON 217
DO 190 N=1,N1 INON 218
CALL LATARD(N,,TRUE,,.FALSE.,.FALSE.,)
NPARAM=INHAN+NBIAS INON 219
IF(N,GT,1) READ(INSTRAT)
READ(INSTRAT) LL INON 220
LENDIN=(N1M+1)/2 INON 221

```

```

    DO 125 I1=1,L,225          INON 224
    I2=MINO(I1+224,L)          INON 225
125 READ(INSTRT) (SUM1(I),I=I1,I2)          INON 226
    DO 150 I1=1,NCLM,225        INON 227
    I2=MINO(I1+224,NDIM)        INON 228
150 READ(INSTRT) (CDELTA(I),I=I1,I2)          INON 229
    DO 175 I1=1,LL,225          INON 230
    I2=MINO(I1+224,LL)          INON 231
175 WRITE(SCRC) (SUM1(I),I=I1,I2)          INON 232
190 CALL DATAFD(N,,FALSE,,TRUE,,FALSE,,)
    REWIND INSTRT
    CALL STAINF(1.0,P,P,P,P,P,P)
C START OF OUTER ITERATION LCOP
200 RECNO=0
    IF(NGPCCN.LE.0) GO TO 250
C SET COMMON ADJUSTED GEOPOTENTIAL COEFFICIENTS TO CURRENT BEST VALUE
    NCS1=NCSMAX-NGPCCM+1          INON 238
    DO 225 I=NCS1,NCSMAX          INON 239
        J=INDEXCS(1,I)
        K=INDEXCS(2,I)
        L=INDEXCS(3,I)
        C1=GPMVAL(I)*GPSIG(I)
        IF(J.EQ.1) CS(N,M+1)=C1
225 IF(J.EQ.2) CS(31-N,33-M)=C1
250 CONTINUE
    IF(NDEN.LE.0) GO TO 300
C COMPUTE SURFACE DENSITY GRID HEIGHTS
    CALL GEODICH(AREA,CENTER,DENCON)
C READ INFORMATION FOR NEXT ARC
300 CALL DATAHD(ARCND,,TRUE,,FALSE,,FALSE,,)
    NSAT3=3*NSAT
    ITAPE(1)=CUTR
    ITAPE(2)=XYZTP
    IF(UUTER.NE.1) GO TO 320
    MAX2IN=MAX0(1,INNMAX/10)
    IF(INNMAX.NE.10) INNMAX=MAX0(1,MOD(INNMAX,10))
320 CALL CLEAR(PSONX,3,1)
    MINDEX=EST1STA
C READ FLUX DATA FOR ARC
    READ(FLTF) THTG0,FLUX1          INON 252
    READ(FLTF) FLUX2              INON 253
    READ(FLTF) FLUX3              INON 254
    READ(FLTF) FLUX4              INON 255
    READ(FLTF) FLUX5              INON 256
    IF(UROTSX) GO TO 380
    CALL CLEAR2(PARND,NPARM,1)      INON 257
    DO 375 I=1,INFARI            INON 258
375 PARNU3(I)=1                INON 259
380 INPARM=INFARI+NRIAS         INON 260
    NPARM=NPARM+1
    LINERK=INNMAX.EQ.1             INON 261
    INERK=1
    DO 400 I=1,4
400 STEPSZ1(I)=STEPSZ(I)        INON 262
    IF(NGPARC.LE.0) GO TO 420
C SET ARC ADJUSTED GEOPOTENTIAL COEFFICIENTS TO CURRENT BEST VALUES

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

        LJ 410 I=1,NGPARC           INON 290
        J=INDXCS(1,I)             INON 291
        N=INDXCS(2,I)             INON 292
        M=INDXCS(3,I)             INON 293
        CI=GPHVAL(I)*GFSIG(I)    INON 294
        IF(J.EQ.1) CS(N,M+1)=CI   INON 295
  410 IF(J.EQ.2) CS(31-N,33-M)=CI INON 296
  420 FAKLIM=NSTART-1          INON 297
C START OF INNER ITERATION LOOP
  650 IF(DRFTSK) GO TO 660      INON 298
C SET SWITCHES FOR DATA REDUCTION
  LIM1=NSTART-1                INON 299
  IF(INNER.EQ.1.AND.ARCHNC.EQ.1) LIM1=NDIM  INON 291
  ESTSTA=NMAST                 INON 292
  LIM2=0                        INON 293
  IF(LINNER) LIM2=1             INON 294
  NUPRNT=INSUPR.EQ.4            INON 295
  DAYOR3=DESTART+DRATE         INON 296
  IF(DATAEP.LT.DSTART) DAYOR3=DATAEP       INON 297
  EMAT=EMAT.CN.EMATND.GT.C     INON 298
  J=INDXKC(NDIM)+NDIM         INON 299
  IF(BMATNC.GT.0) CALL CLEAR(SUM1,J+2)      INON 300
C INITIALIZE LEAST SQUARES ESTIMATOR
  CALL ESTIM(1,P,P,P)          INON 301
  GO TO 670                    INON 302
C SET START TIME FOR ORBIT GENERATOR
  660 DAYOR3=DCSBIT             INON 303
  ISN=0                         INON 304
  670 NOS=MINDEX-1              INON 305
C INITIALIZE INTEGRATOR STEP SIZES FOR NEW INNER ITERATION
  DU 075 I=1,4                  INON 306
  675 STPSZ(I)=STPSZ1(I)       INON 307
  RECOND=RECON1                 INON 308
C SET COUNTERS & LOGICAL SWITCHES FOR NEW INNER ITERATION
  PRTPRS=.FALSE.                INON 309
  MINDEX=1                      INON 310
  DAYI=DATAEP                   INON 311
  INNRSH=.FALSE.                INON 312
  LINESD=0                       INON 313
  LINESK=0                       INON 314
  FITER=INNER.EQ.1.AND.OITER.EQ.1 INON 315
  LITER=LINNER.AND.LOUTER      INON 316
  NUPRNT=.NOT.(NUPRNT.OR.(LITER.AND.INSUPR.GT.1)).OR.(FITER.AND.
               .MLE(INSUPR,21.E0.1)) INON 317
  SATSA=(FITER.AND.XYZFSW).CR.(LITER.AND.XYZLSW) INON 318
  GRSW=FITER.AND.GROFSW        INON 319
  SUBSAT= SATSW.CR.GRSW        INON 320
  PLOT3#=PFLTSLW.AND.LITER    INON 321
  TRKS#=FLE15#                 INON 322
  CMPPRNGFANC.GT.0              INON 323
  NCSEST=ENGFAFC                INON 324
  IF(.NOT.LINNER) GO TO 690      INON 325
  INNRSH=EXTEND.GT.0             INON 326
  INPARC=INPARC.NCMTIDEN       INON 327
  IF(NUPRCM.EQ.0) GO TO 675      INON 328
  CMPPRNG=.TRUE.                 INON 329

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

NCSEST=NCSEMAX           1NON 336
673 I1=NGPCCM+NTIDEN    1NON 337
    IF(I1.LE.0) GO TO 690  1NON 338
    DO 680 I=1,I1          1NON 339
680 PAROUS(INFAR1+1)=NSTART+I-1 1NON 340
C SET NUMBER OF FORCE MODEL EQUATIONS TO BE INTEGRATED 1NON 341
690 NEQN(1)=1            1NON 342
    NEQN(2)=1            1NON 343
    IFURCE(1)=0          1NON 344
    IFURCE(2)=0          1NON 345
    IF(IGRBT3W,0.0,(LITER,AND,LITRES)) GO TO 692 1NON 346
    NEQN(1)=7+NGPARC+MAX0(ACDR(1,1),ADDR(1,2),ADDR(1,3)) 1NON 347
    IFURCE(2)=NEQN(1)-7-NGFARC 1NON 348
    K=MAX0(ADER(2,1),ADER(2,2),ADDR(2,3)) 1NON 349
    IF (K.GT.0) K=K-IFURCE(2) 1NON 350
    NEQN(2)=7+NGPARC+K 1NON 351
    IF(.NOT.,LINNER) GO TO 693 1NON 352
    NEQN(1)=NEQN(1)+NGPCOM+NTIDEN 1NON 353
    NEQN(2)=NEQN(2)+NGPCOM+NTIDEN 1NON 354
    GU TO 693 1NON 355
692 IMPAR=0              1NON 356
693 INITIAL=.TRUE.       1NON 357
C SET EDIT CRITERION & START TIME 1NON 358
    EDITE=RNSTCT*EDITH 1NON 359
    RMSLST=RMSTOT 1NON 360
    DAY0=USTART 1NON 361
    DATA5A=.FALSE. 1NON 362
    ISTA=1 1NON 363
    IF(INNER+EO.1*AND,ARCN0,EO.1) ISTA=0 1NON 364
C INITIALIZE STATISTICS FOR INNER ITERATION 1NON 365
    IF(.NOT.,CH3TSW) CALL STAINE(1,ISTA,P,P,P,P,P) 1NON 366
700 IF(IGRBT3W) GO TO 930 1NON 367
    IF(DATA5A)GO TO 900 1NON 368
720 RCNO=RCNO+1          1NON 369
C READ OBSERVATION 1NON 370
    CALL RANDFD 1NON 371
    IF(MTYPE,CT,0) GO TO 775 1NON 372
730 DAYSTA=,99,99 1NON 373
    GO TO 900 1NON 374
775 CT=DAYSTA-DAY1 1NON 375
    IF(DT,GT,-.001)GO TO 900 1NON 376
    IF(.NOT.,FITER) GO TO 725 1NON 377
C PRINT MESSAGE FOR OBSERVATION OUT OF TIME ORDER 1NON 378
    CALL DATEE(DAYSTA,LYM0,IHM,SEC) 1NON 379
    WRITE(LUTF,10202) ISTANO(ISTA),LYM0,IHM,SEC 1NON 380
    GO TO 725 1NON 381
C DETERMINE EARLIEST TIME FOR INTEGRATION END 1NON 382
900 IF(DAYSTA-DAYERB) 975,950,925 1NON 383
920 ISNE=0                1NON 384
930 DATA5A=.TRUE.        1NON 385
    DAY1=DAYCR 1NON 386
    DAY0D=DAY0+DT/DATE 1NON 387
    GO TO 1000 1NON 388
950 DAY0D=DAY1+DT/DATE 1NON 389
975 DAY1=DAYSTA 1NON 390
    DATA5A=.FALSE. 1NON 391

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

ISN=ISTA 1NON 392
C DETERMINE IF INTEGRATION COMPLETE 1NON 393
1000 IF(DAYSTA.GT.998.00.AND.DAY1.GT,DAYEND) GO TO 2000 1NON 394
    IF(MTYPE.LE.26) GO TO 1100 1NON 395
C COMPUTE PARTIALS & CALCULATED OBSERVATION FOR VLBI & AVG RANGE RATE 1NON 396
C DATA 1NON 397
    CALL TWOSTA(ISN,DAY1,RESID1,DATASH1) 1NON 398
    GO TO 1100 1NON 399
C COMPUTE ORBIT FOR CRUIT GENERATOR FUNS OR CALCULATED OBSERVATION FOR 1NON 400
C MEASUREMENTS OTHER THAN VLBI & AVG RANGE RATE 1NON 401
1100 CALL PREDCT(ISN,DAY1,RESID1,RESID2,DATASH1) 1NON 402
C CALCULATE UTC DATE & TIME OF OBSERVATION OR EPHEMERIS POINT 1NON 403
1150 CALL DATES(DAY1,IYMD,IMM,SEC) 1NON 404
    IF(URBTSW.DR.DATASH2) GO TO 1600 1NON 405
    NEDIT1=0 1NON 406
    NEDIT2=0 1NON 407
    IF(MTYPE.GT.14.AND.MTYPE.LT.27) GO TO 1450 1NON 408
    IF(.NOT.LINNER) GO TO 1450 1NON 409
    IF(NTEST.LT.0) GO TO 1450 1NON 410
C SET PARAMETER NUMBERS FOR ADJUSTED STATIONS 1NON 411
    DO 1410 I=1,3 1NON 412
    PARNUS(NPARM-3+I)=0 1NON 413
    PARNUS(NPARM-6+I)=0 1NON 414
    IF(ISTA.LE.NTEST) PARNUS(NPARM-6+I)=STANOS(I,ISTA) 1NON 415
    IF(MTYPE.LT.27) GO TO 1410 1NON 416
    IF(CHANEL.LE.NTEST) PARNUS(NPARM-3+I)=STANOS(I,CHANEL) 1NON 417
1410 CONTINUE 1NON 418
1450 IF (.NOT.FITER) GO TO 1460 1NON 419
    DAYSTA=DAY1 1NON 420
C REWRITE CORRECTED MEASUREMENTS ON S.A. FILE ON FIRST INNER ITERATION 1NON 421
C OF FIRST OUTER ONLY 1NON 422
    CALL RANDVR 1NON 423
    IF(.NOT.(SIMCAT.AND.FITER)) GO TO 1460 1NON 424
C IF SIMULATED DATA REQUESTED OUTPUT, WRITE CALCULATED OBSERVATION ON 1NON 425
C UNIT 17 ON FIRST INNER OF FIRST OUTER ONLY 1NON 426
    IF(MTYPE.GT.1A) RESID2=0.000 1NON 427
    CUSIM1=UESD1-RESID1 1NON 428
    CUSIM2=UESD2 1NON 429
    ISTA2=CHANEL 1NON 430
    IF(MTYPE.GT.26) CHANEL=ISTAN0(CHANEL) 1NON 431
    IF(MTYPE.LT.1A) OBSIM2=CUSIM2-RESID2 1NON 432
    SATSAT=.FALSE. 1NON 433
    IF(MTYPE.NE.2.AND.MTYPE.NE.3) GO TO 1455 1NON 434
    SATSAT=KKSAT.GT.0.AND.KKSAT.LE.NSAT 1NON 435
    IF(.NOT.SATSAT) GO TO 1455 1NON 436
    JKKSAT 1NON 437
    KKSAT=ISAT0(KKSAT) 1NON 438
    CUSIM2=UESD2 1NON 439
1455 KFISTAN0(ISTA) 1NON 440
    WRITE(17) IYMD,IMM,SEC,0,CSIM1,C3SIM2,SIG1,SIG2,K,MTYPE,NMEAS, 1NON 441
    * ISAT0(ISAT),SFENDX,CHANEL 1NON 442
    CHANEL=ISTA2 1NON 443
    IF(SATSAT) KKSAT=J 1NON 444
C CHECK FOR ELEVATION CUTOFF 1NON 445
1450 IF(ELEV(1SAT).GE.CLCUT) GO TO 1460 1NON 446
    SIG1=0.0DC 1NON 447

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

1465 IF(NMEAS,LT,1) SIG2=0.CD0      INON 448
      IF(MTYPE,LT,27) GO TO 1470      INON 449
      IF(RANDUT(1),LT,FLCUT) SIG1=0.CD0  INON 450
1470 IF(NUPRNT) GO TO 1501          INON 451
      IF(LINES,EO,0) GO TO 1485        INON 452
      IF(MOD(LINES,42),NE,0) GO TO 1500  INON 453
      WRITE(OUTP,10101)
      NPAGE=NPAGE+1                  INON 454
1485 WRITE(OUTP,101001) ARCCD,INNER,CUTER,NPAGE  INON 455
1500 IF(MOD(LINES,6),EO,0) WRITE(OUTP,10102)      INON 456
      LINES=LINES+1                  INON 457
1501 IF(NESIAS,LE,0) GO TO 7000      INON 458
C SET INDICATORS FOR ELECTRONIC BIAS EXTRACTION
      DO 5000 I=1,NEPIAS            INON 459
      IF(ISTA,NE,BESTAND(I)) GO TO 6000      INON 460
      IF(MTYPE,LE,BETYPE(I)) GO TO 5000      INON 461
      IF(MTYPE,GT,7) GO TO 6000      INON 462
      IF(MTYPE,GT,7,NE,BETYPE(I)) GO TO 6000  INON 463
      NEDITT2=I                      INON 464
      GU TO 6000                    INON 465
5000 NEDITT1=I                     INON 466
5000 CONTINUE                      INON 467
7000 IF(NBIAS,EO,0) GO TO 1526      INON 468
C SET INDICATORS FOR BIASES & TIMING BIASES
      DO 1502 I=1,3                INON 469
1502 BSNDX(1)=0
      IF(MTYPE,LT,14,AND,MTYPE,LT,27) GO TO 1526  INON 470
      DO 1503 I=1,NEIAS             INON 471
      IF(ISTA,NE,BESTAND(I)) GO TO 1520      INON 472
      II=BYPTE(I)
      IF(II,EO,0) GO TO 1508      INON 473
      IF(MTYPE,GT,28,AND,MTYPE,EO,II) GO TO 1503  INON 474
      IF(MTYPE,NE,(II-(II/8)*7)) GO TO 1520      INON 475
1503 IF(DAYSTA,LT,BSTHT(I)) GO TO 1520      INON 476
      IF(DAYSTA,GT,BSEND(I)) GO TO 1520      INON 477
      II=INPAR1I
      IF(BYPTYPE(I)-MTYPE)1512,1513,1514      INON 478
1512 TINDEX=II                      INON 479
      MEASTP=MTYPE
      IF(MTYPE,LE,14) TPAR1=CESDOT(MEASTP,ISTA,TPAR2)  INON 480
      GU TO 1520                      INON 481
1513 SINDEX1=II                     INON 482
      GO TO 1520                      INON 483
1514 SINDEX2=II                     INON 484
1520 CONTINUE                      INON 485
      IF(MTYPE,LT,14) GO TO 1525      INON 486
      DO 1524 I=1,NEIAS             INON 487
      IF(CHANEL,NE,BSTAND(I)) GO TO 1524      INON 488
      IF(BYPTYPE(I),NE,0) GO TO 1524      INON 489
      IF(DAYSTA,LT,BSTHT(I)) GO TO 1524      INON 490
      IF(DAYSTA,GT,BSEND(I)) GO TO 1524      INON 491
      J=I+NSDATE
      SINDEX2=INPAR1+I                INON 492
      PARMS(NFARM-F)=SINDEX2          INON 493
      RESID1=RESID1-IMPXC(NFARM-3,1)*B1AG(J)    INON 494
      TPAR1=TPAR2(NFARM-3,1)           INON 495
      REPRODUCIBILITY OF THE
      ORIGINAL PAGE IS POOR

```

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

```

      GO TO 1525          INON 504
1524 CONTINUE          INON 505
C SET PARAMETER NUMBERS FOR BIASES & TIMING BIASES   INON 505
1525 PARNOS(NFARM=7)=BINDEX2          INON 507
      PARNOS(NFARM=6)=TINDEX          INON 508
      PMPXO(NPARM=6,1)=TPAR1          INON 509
C CORRECT RESIDUALS FOR CURRENT VALUE OF BIASES & TIMING BIASES   INON 510
      IF(BINDEX1.GT.0) RESID1=RESID1-EBIAS(BINDEX1-INPARI+NSAT3)    INON 511
      IF(TINDEX.GT.0) RESID1=RESID1-TPAR1*EBIAS(TINDEX-INPARI+NSAT3)  INON 512
      IF(NMCLAS.EQ.1) GO TO 1526          INON 513
      PMPXO(NPARM=6,2)=TPAR2          INON 514
      IF(BINDEX2.GT.0) RESID2=RESID2-EBIAS(BINDEX2-INPARI+NSAT3)    INON 515
      IF(TINDEX.GT.0) RESID2=RESID2-TPAR2*EBIAS(TINDEX-INPARI+NSAT3)  INON 516
C COMPUTE RATIOS TO SIGMA & DETERMINE IF MEASUREMENT EDITED   INON 517
1526 RATIO1=0.00          INON 518
      EAST1=BLANK          INON 519
      IF(SIG1.NE.0.000) RATIC1=DABS(RESID1/SIG1)          INON 520
      IF(NEDIT1.EQ.0.AND.RATIC1.GT.EDIT) SIG1=-SIG1          INON 521
      IF(NEDIT1.GT.0) EAST1=NEDIT1          INON 522
      IF(SIG1.LT.0.001) EAST1=ASTRSK          INON 523
      IF(SIG1.EQ.0.000) NEDIT1=0          INON 524
      IF(NMCLAS.EQ.1) GO TO 1529          INON 525
      RATIO2=0.00          INON 526
      EAST2=BLANK          INON 527
      IF(SIG2.NE.0.000) RATIC2=DABS(RESID2/SIG2)          INON 528
      IF(NEDIT2.EQ.0.AND.RATIC2.GT.EDIT) SIG2=-SIG2          INON 529
      IF(NEDIT2.GT.0) EAST2=NEDIT2          INON 530
      IF(SIG2.EQ.0.000) NEDIT2=0          INON 531
      J=MTYPE+7          INON 532
C SUM RESIDUAL FOR SECOND MEASUREMENT INTO STATISTICS   INON 533
      CALL STAINF(2,ISTA,J,SIG2,RESID2,P,ISAT,P)
      MINDEX=MINDEX+1          INON 534
C SUM RESIDUAL & PARTIALS FOR SECOND MEASUREMENT INTO ESTIMATION   INON 535
      IF(SIG2.GT.0.000.AND.NFCN(ISAT).GT.1) CALL ESTIM(2,SIG2,RESID2,  INON 536
      * PMPXO(1,2))
C REMOVE ELECTRONIC BIAS COMPONENT FROM STATISTICS & ESTIMATOR FOR   INON 537
C SECOND MEASUREMENT          INON 538
      IF(NEDIT2.GT.0) CALL BSCOMP(NEDIT2,RESID2,SIG2,DAY1,PMPXO(1,2),  INON 539
      * LINVER)
      IF(MTYPE.EQ.4.OR.MTYPE.EQ.5) GO TO 1529          INON 540
      US502=US5C2/RAD          INON 541
      RESID2=RESID2/RSEC          INON 542
1529 J=MTYPE          INON 543
      IF(NMCLAS.NE.0) PARNOS(NFARM=7)=BINDEX1          INON 544
      ISTA2=CHANNEL          INON 545
C SUM RESIDUAL FOR FIRST MEASUREMENT INTO STATISTICS   INON 546
      CALL STAINF(2,ISTA,J,SIG1,RESID1,P,ISAT,ISTA2)          INON 547
      MINDEX=MINDEX+1          INON 548
C SUM RESIDUAL & PARTIALS FOR FIRST MEASUREMENT INTO ESTIMATION   INON 549
      IF(SIG1.GT.0.000.AND.NFCN(ISAT).GT.1) CALL ESTIM(2,SIG1,RESID1,  INON 550
      * PMPXO)
C REMOVE ELECTRONIC BIAS COMPONENT FROM STATISTICS & ESTIMATOR FOR   INON 551
C FIRST MEASUREMENT          INON 552
      IF(NEDIT1.GT.0) CALL BSCOMP(NEDIT1,RESID1,SIG1,DAY1,PMPXO,LINVER)  INON 553
      IF(NMCLAS) GO TO 1600          INON 554
                                         REPRODUCIBILITY OF THE
                                         ORIGINAL PAGE IS POOR

```

```

SATSAT=.FALSE.
GO TO (1540,1580,15E5,1535,153C,1540,1540),MTYPE
K=MTYPE-14
GO TO (1520,1580,1580,1585,15E5,1535,1580,1200,1250,1250,
      1280,1220,1240,1585,15E5),K
C CONVERT UNITS OF RESIDUAL & OBSERVATION OF PAIRED MEASUREMENT FOR
C OUTPUT ONLY
1530 C8501=C85C1*1000.00
      C8502=C85C2*1000.00
      RESID1=RESID1*1000.00
      RESID2=RESID2*1000.00
      GO TO 1560
1535 C8501=C85C1*1.0D-3
      RESID2=RESID2*100.00
      GO TO 1560
1540 C8501=085C1/RAD
      RESID1=RESID1/RSEC
1550 IM=MINDEX-2
C PRINT RESIDUAL & OBSERVATION FOR PAIRED MEASUREMENT
      WRITE(OUTP,10103) IYMD,IMN,SEC,ISAT,NAME(ISTA),ATYPE(MTYPE),08501,INON 579
      • RESID1,RATIO1,EAST1,ATYPE(MTYPE+7),08502,RESID2,RATIO2,EAST2,INON 580
      • ELEV(1SAT),IM
      IF(.NOT.FARTGF) GO TO 1600
      IF(SIG1.GT.0.0DG) WRITE(OUTP,46000) PMPX0
      IF(SIG2.GT.0.0DG) WRITE(OUTP,46000) (PMPX0(J,2),J=1,NPARM)
      GO TO 1600
C CONVERT UNITS OF RESIDUAL & OBSERVATION OF UNPAIRED MEASUREMENT FOR
C OUTPUT ONLY
1200 08501=085C1*1.0D6
      RESID1=RESID1*1.0D6
      GO TO 1550
1220 C8501=C85C1*1.0D6
      RESID1=RESID1*1.0D6
      GO TO 1550
1240 08501=C85C1*1.0D+3
      RESID1=RESID1*1.0D+6
      GO TO 1550
1250 C8501=C85C1/DRAD
      RESID1=RESID1/DRSEC
      GO TO 1550
1580 C8501=C85C1*1.0D-3
      GO TO 1580
1585 RESID1=RESID1*100.00
1586 SATSAT=KKSAT.GT.0.AND.KKSAT.LE.0NSAT
1590 IM=MINDEX-1
      SNAME=PCE
      IF(ISTA.NE.0) SNAME=NAME(ISTA)
C PRINT RESIDUAL & OBSERVATION FOR UNPAIRED MEASUREMENT
      WRITE(OUTP,10104) IYMD,IMN,SEC,ISAT,SNAME,ATYPE(MTYPE),08501,
      • RESID1,RATIO1,EAST1,ELEV(1SAT),IM
      IF(MTYPE.CT.2E) GO TO 1592
      IF(SATEAT) WRITE(OUTP,47000) KKSAT
      GO TO 1592
1592 MTYPE=2E
      GO TO (1550,1554,1556,1558),K
1594 WRITE(OUTP,17100) SNAME,NAME(CHANEL),RANROT(1)
      INON 560
      INON 561
      INON 562
      INON 563
      INON 564
      INON 565
      INON 566
      INON 567
      INON 568
      INON 569
      INON 570
      INON 571
      INON 572
      INON 573
      INON 574
      INON 575
      INON 576
      INON 577
      INON 578
      INON 579
      INON 580
      INON 581
      INON 582
      INON 583
      INON 584
      INON 585
      INON 586
      INON 587
      INON 588
      INON 589
      INON 590
      INON 591
      INON 592
      INON 593
      INON 594
      INON 595
      INON 596
      INON 597
      INON 598
      INON 599
      INON 600
      INON 601
      INON 602
      INON 603
      INON 604
      INON 605
      INON 606
      INON 607
      INON 608
      INON 609
      INON 610
      INON 611
      INON 612
      INON 613
      INON 614
      INON 615

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NONAME
Page 14 of 30
October 1972

```

GO TO 1592                                INON 616
1596 J=K-1
      WRITE(DUTP,47200) J,NAME(CHANEL),RANDOT(1)    INON 517
1599 IF(PARTOF,AND,SIG1.GT.0.0E0) WRITE(DUTP,46200) PMPXO  INON 618
1600 DAY0=DAY1
      IF(.NOT.FLTSW) GO TO 1610
      IF(DATASK) GO TO 1620
C WRITE BINARY RESIDUAL TAPE
      INET=0
      IF(ISTA.GT.0) INET=ISTANO(ISTA)/1000
      J=MTYPE
      RATE1=BSGDT(J,ISTA,RATE2)
      BRSEC=SEC
      IF(SIG1.LE.0,CDO) RATIO1=C.0DD
      IF(SIG2.LE.0,0DD) RATIO2=0.0DD
      BRSID1(1)=RESID1
      BRSID1(2)=RATIO1
      BRSID1(3)=RATE1
      BRSID2(1)=RESID2
      BRSID2(2)=RATIO2
      BRSID2(3)=RATE2
      WRITE(PLCTP) IYMD,THM,ERSEC,NAME(ISTA),ATYPE(MTYPE),03S01,BRSID1,
      • 06502,BRSID2,ELEV(1SAT),INET,RANDOT,PMPOUT      INUN 637
      INUN 638
1610 CONTINUE
      IF(.NOT.SRCDSW) GO TO 1620
C WRITE GROUND TRACK TAPE
      WRITE(GRCTP,10120) IYMD,THM,SEC,NAME(ISTA),SATLAT(1SAT),
      • SATLCN(1SAT),SATH(1SAT)      INON 641
1620 IF(.NOT.SATSW) GO TO 700
      BRSEC=SEC
C WRITE RV TAPE
      IF(RVTP.GT.0) WRITE(RVTP) DAY1,IYMD,THM,BRSEC,(XYZEND(I,1),I=1,6),
      • SATLAT(1),SATLCN(1),SATH(1)      INON 647
      IF(LINESX.GT.0) GO TO 1650
      IF(XYZTP.NE.DUTP) WRITE(XYZTP,10302) TITLE
      IF(KPLPTF) WRITE(KPLPTF,10302) TITLE
1650 IF(MOD(LINESX,48).NE.0) GO TO 1675
      WRITE(XYZTP,10300) ARCN1,INER,DUTCR,NPAGEX
      IF(KPLPTF) WRITE(KPLPTF,44180) ARCN1,INER,NPAGEX
      NPAGEX=NPAGEX+1
1675 IF(MOD(LINESX,1).EQ.0) WRITE(XYZTP,10102)      INON 656
C WRITE CARTESIAN EFHEMERIS
      WRITE(XYZTP,10301) IYMD,THM,SEC,(XYZEND(J,1),J=1,6),SATLAT(1),
      • SATLCN(1),SATH(1)
      IF(.NOT.(CHETSK,AND,SINCAT,AND,PCESTM)) GO TO 1630
      DO 1626 I=1,6
      II=I+1
C WRITE CARTESIAN PCG SIMULATED DATA ON UNIT 17 IN ORBIT GENERATOR
C MODE ONLY
1623 WRITE(17,10400) II,IYMD,THM,SEC,XYZEND(I,1)      INON 664
1626 IF(NSAT.LT.2) GO TO 1670
      DO 1666 I=2,NSAT
      LINESX=LINESX+1
1665 WRITE(XYZTP,10304) (XYZEND(J,1),J=1,6),SATLAT(1),SATLCN(1),SATH(1) INON 665
1670 LINESX=LINESX+1
      IF(.NOT.KPLPTF) GO TO 700      INON 671

```

```

C WRITE KEPLER EPHEMERIS          INON 672
    IF(MOD(LINESX,6),EQ,NSAT) WRITE(KPLRTP,10102)
    DO 1550 J=1,NSAT               INON 673
    CALL ELEM(XYZENE(1,J),AEINPM,2,TRUE,P)
    DO 1560 I=3,6                 INON 674
    12=I-2                         INON 675
1630 CALL OUTR/D(AEINPM(I),IDEG(12),MIN(12),SECA(12),1)      INON 676
    IF(J.NE.1) GO TO 1625          INON 677
    WRITE(KPLRTP,44485) IYMD,IHM,SEC,(AEINPM(I),I=1,2),(IDEGL(I),
    * MIN(1),SECA(1),I=1,4)        INON 678
    IF(PCESTIM,CR,NOT,(DRBTSW,AND,SIMDAT)) GO TO 1690      INON 679
C WRITE KEPLER FCE SIMULATED DATA ON UNIT 17 IN DBIT GENERATOR MODE
C ONLY                           INON 680
    DO 1640 I=1,6                 INON 681
    IF(I.GT.2) AEINPM(I)=AEINFM(I)/DRAD      INON 682
    11=2*I+1                         INON 683
1640 WRITE(17,10500) 11,IYMD,IHM,SEC,AEINPM(I)      INON 684
    GO TO 1650                         INON 685
1650 WRITE(KPLRTP,44485) (AEINFM(I),I=1,2),(IDEGL(I),MIN(1),SECA(1),
    * I=1,4)                         INON 686
    1650 CONTINUE                      INON 687
    GO TO 700                          INON 688
C SUMMARIZE INFORMATION DERIVED FROM ITERATION.
2000 IF(DRBTSW)GO TO 3000          INON 689
    IF(MINDEX.EQ.1,AND,DRBL1.GT.0,DO)GO TO 3000
    IF(MINDEX.EQ.1) CALL ERROR(4,CARD10)
    IF(NED185.GT.0) CALL RSCOMP(0,RES101,SIG1,DAY1,PMPX0,LINNER)
    GO TO 2000
    IF(.NOT.NCPNT) WRITE(CUTP,10101)
C SUMMARIZE STATISTICS FOR ITERATION
    CALL SUMMARY(ARCNO,INNER,OUTER,LINNER,EDIT,NAME)
    IF(NEON(1).EQ.1) GO TO 3000
C LIST EPOCH AND LAST ELEMENT SET
    DO 2440 I=1,12                  INON 701
    DRBL2(I,1)=DRBLA(I,1)
2440 DRBLA(I,1)=RELMST(I,1)
    CALL ESTIM(3,F,P,P)
    DO 2475 L=1,NSAT               INON 702
    IOUT=1                           INON 703
    IF(SA1.NE.)IOUT=2               INON 704
    DO 2300 I=1,IOUT              INON 705
    IUNIT=ITARE(I)
    WRITE(IUNIT,10106) L,ARCNO,INNER,OUTER,IEPYMD,IEPHM,EPSEC
    WRITE(IUNIT,10107) APRIGR,ELANK,(ELEMIN(J,L),J=1,6)
2300 WRITE(IUNIT,10107) PREV,PLANK,(DRBLA(J,L),J=1,6)
C SAVE OLD KEPLERIAN ELEMENTS AND COMPUTE STANDARD DEVIATIONS
    RMSPOS(1)=0.00                  INON 706
    RMSPOS(2)=0.00                  INON 707
    11=6*(L-1)                     INON 708
    11=11*(NCIM-1)-11*(11-1)/2   INON 709
    16=6*(L-1)                     INON 710
    DO 2400 I=1,6                  INON 711
    11=I+10                         INON 712
    12=I+11                         INON 713
    13=I+(I-1)/3                   INON 714
    RMSPOS(13)=.NEFOS(13)+SLY1(12)  INON 715
                                         INON 716
                                         INON 717
                                         INON 718
                                         INON 719
                                         INON 720
                                         INON 721
                                         INON 722
                                         INON 723
                                         INON 724
                                         INON 725
                                         INON 726
                                         INON 727
REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

```

IF(SUM1(I2)<LT.0.000) WRITE(OUTP,45000) II
SDELEM(1)=DSORT(DABS(SLV1(I2)))
2400 I1=I1+NDIM-11
RMSPOS(1)=DOSFT(DABS(RMSPOS(1)))
RMSPOS(2)=DOSFT(DABS(RMSPOS(2)))
PVRMS(1,L)=RMSPOS(1)
PVRMS(2,L)=RMSPOS(2)

C CALCULATE ADJUSTED ELEMENTS IN THE FORM OF KEPLERIAN ELEMENTS
CALL ELEM(ELEMST(1,L),CRBELA(1,L),1,.FALSE.,P)
GO 2470 I=1,6
2470 CRBDIF(1)=ORBELA(I,L)-ORHELP(I,L)
C LIST CORRECTED ELEMENTS AND UNCERTAINTIES
WRITE(OUTP,10109) ADJUST,BLANK,(ELEMST(J,L),J=1,6)
J1=(L-1)*6+1
J2=J1+5
WRITE(OUTP,10109) CHANGE,BLANK,(DELTA(J),J=J1,J2)
WRITE(OUTP,10109) SD,SDELEM
WRITE(OUTP,10110) RMSPCS
WRITE(OUTP,10115)
WRITE(OUTP,10116) APFICR,BLANK,(DFBEL(J,L),J=1+6),PREV,BLANK,
     . (ORHELP(J,L),J=1+6),ADJUST,BLANK,(ORBELA(J,L),J=1+6),CHANGE,
     . BLANK,BLANK,CRBDIF
2475 WRITE(OUTP,10303) L,APCNO,(ELEMST(J,L),J=1,6)
IF(INPAR1,EV,1.E-NSAT) GO TO 2603
C UPDATE & PRINT ADJUSTED ARC FORCE MODEL PARAMETERS
WRITE(OUTP,10501) ARCNCF,INNERV,UTER
I1=0
DO 2640 I=1,3
DO 2640 L=1,NSAT
IF(ADJF(L,I).LE.0) GO TO 2640
I1=I1+1
IF(MLU(I1,A5).EQ.1) WRITE(OUTP,10E20)
IF(L.EC,1) WRITE(OUTP,10102)
J=ADDR(L,1)+6*NSAT
J1=INDXNC(J)+J
IF(SUR1(J1).LT.0.000) WRITE(OUTP,45010) L,DRAG(I)
SIG1=DOSRT(DAES(SUM1(J1)))
CD(L,1)=EEIAS(I+3*(L-1))
WRITE(OUTP,10E05) L,DRAG(I),DRAGO(L,1),CD(L,1),DRAGSG(L,1),SIG1
2640 CONTINUE
IF(I1+GT,C) I1=5*NSAT
IF(NGPARC.LE.C) GO TO 2603
K1=0
DO 2650 I=1,NGPARC
I1=I1+1
IF(MOD(I1,E).NE.1) GO TO 2650
IF(K1.NL+C.ANC+MOD(I1,A5).NE.1) GO TO 2645
K1=1
WRITE(OUTP,10E30)
2643 WRITE(OUTP,10102)
2650 J=INDAC5(1,I)
N=INDAC5(2,I)
M=INDAC5(3,I)
C1=GFMVAL(1)*GFSIG(1)
C2=UFMVAL(1)*CSIG(1)
IF(J.EC,1) CS(N,M+1)=C1

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

```

IF(J.EQ.2) CS(31-N,33-N)=C1      INON 784
K=GPNC(I)                         INON 735
K=INDEX(K)+K                      INON 795
SIG1=DSQRT(SUM1(K))               INON 787
SIG2=GPSIC(I)*SIG1                INON 728
2650 WRITE(DUTP,10510) ICS(J),N,M,C2,C1,SIG1,SIG2    INON 789
C CORRECT & PRINT ADJUSTED BIASES
2503 IF(NBIAS.EQ.0) GO TO 2640      INON 790
      WRITE(DUTP,10440) ARCN0,INNER,CUTER
      LINES=0                          INON 731
      DO 2504 I=1,NBIAS              INON 722
      1B=I+3                          INON 793
      IF(MOD(LINES,5).EQ.0) WRITE(DUTP,10102)          INON 724
      LINES=LINES+1                   INON 795
      II=INPAR(I)
      II=INUXNL(II)+II                INON 796
      IF(SUM1(II).LT.0.000) WRITE(DUTP,45030)          INON 797
      SIG1=DSQRT(DABS(SUM1(II)))       INON 798
      CALL DATES(ESTRT(I),IYMD1,IHM1,SEC)           INON 799
      CALL DATES(ESEND(I),IYMD2,IHM2,SEC)           INON 800
      C1=TIMING
      II=BYTYPE(I)
      IF(II.NE.C) C1=ATYPE(II)            INON 801
      J=ISTANO(I)                      INON 802
      IZ=BYTYPE(I)+1                   INON 803
      IF(II.LT.15) UNIT=UNITS(IZ)        INON 804
      IF(II.EQ.27) UNIT=UNITS(1)        INON 805
      IF(II.EQ.28) UNIT=HECTZ          INON 806
      IF(II.GT.29) UNIT=UNITS(4)        INON 807
2504 WRITE(DUTP,10450) NAME(J),ISTANO(J),C1,BIAS0(I),BBIAS(IB),
      * UNIT,BIASG(15),SIG1,IYMD1,IHM1,IYMD2,IHM2   INON 808
C INCREMENT ITERATION COUNTER
2560 IF(LINNER) GO TO 3000          INON 810
      IF(FITER) GO TO 2680            INON 811
C CHECK FOR INNER ITERATION CONVERGENCE
      IF(ABS(RMELST-RMSTOT)/RMSTOT.LT.CONVRG) LINNER=.TRUE.
      IF(.NOT.LINNER) GO TO 2540        INON 812
      WRITE(DUTP,45500) ARCN0,INNER,CUTER,CONVRG
      CALL ERRCR(10,CARD10)            INON 813
2680 INNER=INNER+1                 INON 814
      LINNER=(LINNE+.AND..INNER.GE.INNMIN).OR..INNER.GE.INNMAX
      GO TO 650                        INON 815
3000 IF(.NOT.CRUTSK) GO TO 3010        INON 816
      IF(RVTP.EQ.0) GO TO 3010          INON 817
C WRITE LAST RECCFD FOR RV TAPE
      UNSEC=LNSEC
      DAYSTA=755.00
      WRITE(RVTP) DAYSTA,IEPYMD,IEPHS,RFSEC,(ELEM1(1,1),I=1,6)
      * ,SATLAT(1),SATLON(1),SATH(1)
      END FILE RVTP
3010 IF(SATSH) WRITE(KYZTP,10102)
      IF(SATLAT.AND.DUTP,.EQ.0) ENDFILE 17
C PRINT ARC SUMMARY PAGE
      CALL TYPICAL(DAYD,INDEX,ARCN0,CUTER,PVRS)
      IF(INPAR,EQ.0) GO TO 3020
      IF(.NOT.CUTER) GO TO 4000

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

    IF(.NOT.FLTSW) GO TO 301E           INON 840
    WRITE(FLCTF1) (BLANK,J=1,16)        INON 841
    END FILE FLCTF                   INON 842
C PUNCH ADJUSTED ELEMENTS OF DRAG & SOLRAD          INJN 843
301E PUNCH 44500,ARCNO,INNER,CUTER,IYREF,IEPYMD,IEPHM,EPSEC,   INON 844
    • ((ELEMENT(I,L),I=1,5),L=1,NSAT)  INON 845
    DO 3019 L=1,NSAT                  INON 846
    IF(B0(L).LE.0.000) GO TO 3019      INON 847
    IF(CD(L,1).GT.0.000) PUNCH 44510,DPAG(1),L,CD(L,1),DRAGSG(L,1),  ININ 848
    • CD(L,2),DRAGSG(L,2)            ININ 849
    IF(CL(L,3).GT.0.000) PUNCH 44510,DPAG(3),L,CD(L,3),DRAGSG(L,3)  INON 850
    FUNCH 44520,L,ASAT(L),MSAT(L)     INON 851
3019 CONTINUE                                INON 852
3020 CONTINUE                                INON 853
4000 ESTSTA=MINDEX                          INON 854
    IF(DUTER.EQ.1) INNMAX=MAX2IN          INON 855
C STORE UPDATED ARC PARAMETERS             INON 856
    CALL DATAFD(ARCNO,.FALSE.,.TRUE.,.TRUE.)  INON 857
    IF(URRTSA) GO TO 4055                INON 858
C PRINT ADJUSTED PARAMETER VARIANCE-COVARIANCE MATRIX  INON 859
    WRITE(DUTP,48000)                    INON 860
    K1=-5                      INON 861
    J1=0                      INON 862
    DO 4050 L=1,NSAT                INON 863
    K1=K1+5
    L1=K1+1
    L2=K1+5
    WRITE(DUTP,10105) L,ARCNO,(TTL(J),J=L1,L2)  INON 864
    DO 4050 J=L1,L2                INON 865
    L1=J1+J
    L2=J1+5+K1
    WRITE(DUTP,10111) TTL(J),(SUM1(K),K=L1,L2)  INON 866
4050 J1=J1+NSAT-J                  INON 867
    IF(NSAT.GT.1) WRITE(DUTP,48000)        INON 868
    CALL CORRCL(SUM1,NPARAM,NDIM,INNER,TTL)  INON 869
4055 IF(DURB1.LT.0.000,DR=.NOT,LITER)GO TO 4060  INJN 870
    IF(DAYO-LC991.GT.0.00100)INITAL=.TRUE.,  INON 871
    TUREFO=JREFT.GT.1.000               INON 872
    IF(TUREFO) JREFT=OPRPT-1.000       INON 873
    TUREFT=TUREFO                     INON 874
    IF(JOSAT(1).GT.0) ISATIC(1)=IDSAT(1)  INON 875
    MISLG(3)=0                         INON 876
C WRITE OPTIONAL URRI TAPE ON LAST INNER ITERATION OF LAST CUTER  INON 877
C ITERATION
4056 CALL URRI(ORRRT)                  INON 878
4050 ARCNO=ARCNO+1                    INON 879
    IF(NGPARC.LE.0) GO TO 4090          INON 880
C REPLACE A-C (EXPONENTIAL COEFFICIENTS) WITH APRIORI VALUES  INON 881
    DO 4050 I=1,NGPARC                INON 882
    J=INDXLS(1,1)                      INON 883
    N=INDXCS(2,1)                      INON 884
    M=INDXCS(3,1)                      INON 885
    C1=GPVALU(I)>CHSIG(I)            INON 886
    IF(J.EC.1) CS(M,M+1)=C1          INON 887
4050 IF(J.EC.2) CS(J1-1,33-V)=C1      INON 888
4050 IF(ARCNO.GT.NARCST) GO TO 4100  INON 889

```

```

GO TO 300
C STOP IF NJ COMMON PARAMETERS ADJUSTED OR IF B-MATRIX OUTPUT
4100 IF(NSTEST.EQ.0.AND.NGPCM.EQ.0.AND.NTIDEN.EQ.0) STOP 1
    IF(BMAT) STOP 4
    ENDFILE SCR4
    REWIND SCR4
    RMSPRV=RNSALL
    NMALL=3*NMAST+NGPCM+NTIDEN
C OBTAIN STATISTICAL SUMMARY FOR ALL ARCS
    CALL STAINF(4,0,NMALL,RNSALL,P,P,P,P)
C PRINT RESIDUAL SUMMARY FOR ALL ARCS
    WRITE(OUTP,20111) CUTER
    DO 4120 I=1,7
        IF(NUALL(I).GT.0) WRITE(OUTP,20120) ATYPE(I),NOALL(I),TYPRMS(I)
        J=I+7
        IF(NOALL(J).GT.0) WRITE(OUTP,20120) ATYPE(J),NOALL(J),TYPRMS(J)
4120 IF(NUALL(I)+NUALL(J).GT.0) WRITE(OUTP,10102)
    DO 4130 I=15,30
        IF(NOALL(I).LE.0) GO TO 4130
        WRITE(OUTP,20120) ATYPE(I),NOALL(I),TYPRMS(I)
        WRITE(OUTP,10102)
4130 CONTINUE
    WRITE(OUTP,20130) NMALL,RNSALL
    IF(LOUTER.AND.LITRES) GO TO 10220
    ESTSTA=NMAST
C CALCULATE ADJUSTED COMMON PARAMETER VALUES
    CALL ESTIN(4,P,P,P)
C PRINT ADJUSTED COMMON PARAMETERS
    CALL CCMAC(4,CUTER)
C UPDATE ARC ADJUSTED PARAMETERS FOR ADJUSTMENTS TO COMMON PARAMETERS
2020 CALL UPDATE(NARCS,OUTER,NSTART,SUM1,DELTA,
    .      DELTA,TTL,BSNDS,BIAS)
    IDIM=NGPCM+3*NMAST+NTIDEN
    IST=INDXN(NSTART)+NSTART
C PRINT COMMON ADJUSTED PARAMETER VARIANCE-COVARIANCE MATRIX
    CALL CCARREL(SUM1(IST),101M,101M,OUTER,TTL(NSTART))
    IF(LOUTER) GO TO 10220
    CUTER=CUTER+1
C CHECK FOR OUTER ITERATION CONVERGENCE AND INCREMENT ITERATION
C COUNTER
    IF((RMSPRV-RNSALL)/RMSPRV.LE.0.01) LOUTER=.TRUE.
    IF(OUTER.LE.MINOUT) LCLTER=.FALSE.
    LOUTER=LCLTER.OR.OUTER.GE.MAXOUT
    ARCON=1
C REWIND SCRATCH FILE
    REWIND SCR4
    REWIND SCR4
    REWIND FLIP
    IF(.NOT.ESTART) GO TO 200
C REWIND OUTPUT RESTART TAPE
    END FILE OUTSTR
    REWIND OUTSTR
    GO TO 200
10220 IF(.NOT.CHDSW) STOP 2
C ERASE ALL GROUND TRACK TAPE
    ENDFILE CADTP

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR/

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR!

• STOP 3	INON 952
C FORMAT STATEMENTS	INON 953
10001 FORMAT(1C,14,F7.4,12,1I,2FF2.0,18,2(I6,14,0PF7.4),17,1I,A8)	INON 954
10125 FORMAT(1C,2X,14,2X,F7.4,2X,A6,2X,F15.8,2X,F15.8,2X,F15.5)	INON 955
10002 FORMAT(3E2A,16)	INON 956
10440 FORMAT(1H1,19X,3HARC,13,4EH ADJUSTED PARAMETER SUMMARY FOR INNER 1INON 957	
ITERATION,13,1SH OF OUTER ITERATION,I2/ 1H0,10X,7HSTATION,8X.	INON 958
2 • SHPARAMETER,8X,1SHPARAMETER VALUE,13X.	INON 959
2 • 1SHSTANDARD DEVIATION,4X,2AHCOVERAGE --- YYMMDD HHMM/9X,	INON 960
3 • 12HNAME NUMBER,7X,4HTYPE,9X,3HA PRIORI,3X,SHADJUSTED,11X,	INON 961
4 • LHA PRIORI,3X,SHADJUSTED,7X,SHBGIN,9X,3HEND/)	INON 962
10450 FORMAT(3X,A6,16,5X,A6,5F BIAS,2X,1P2E11+3,2X,A6,2E11+3,2X,2(I8,16)INON 963	
•)	INON 964
10100 FORMAT(1H1,28X,3HARC,13,30H RESIDUALS FOR INNER ITERATION,I3,	INON 965
• 19H OF OUTER ITERATION,I2,1EX,4HPAGE,1A//5X,12HTIME OF DATA,	INON 966
• 7X,2HAT,2X,	INON 967
• 7HSTATION,42,11HMEASUREMENT,9X,SHRESIDUAL,3X,SHRATIO,6X,	INON 968
• 11HMEASUREMENT,8X,BHRESIDUAL,3X,SHRATIO,3X,AHCELEV,5X,4HMEAS/	INON 969
• 1X,3HYYMMDD HHMM SE,SSSSSS TRKED NAME,4X,6HTYPE,6X,SHVALUE,	INON 970
• 6X,SH(C-C),6X,14HTO SIGMA TYPE,6X,SHVALUE,7X,SH(D-C),4X,	INON 971
• 14HTO SIGMA (DEG),6X,2HNO)	INON 972
10101 FORMAT('C UNITS FOR INFORMATION ... LINEAR',6X,	INON 973
• 'MEASUREMENTS - KILOMETERS',5X,'RESIDUALS - METERS'/	INON 974
• 26X,'ANGULAR',5X,'MEASUREMENTS - DEGREES',5X,	INON 975
• 'RESIDUALS - SECONDS OF ARC',28X,	INON 976
• 'LINEAR RATE MEASUREMENTS - METERS/SECOND RESIDUALS - ',	INON 977
• 'CENTIMETERS/SECOND',28X,'TIME',5X,	INON 978
• 'MEASUREMENTS - MICROSECONDS RESIDUALS - NANOSECONDS',23X,	INON 979
• 'FRINGE RATE MEASUREMENTS - MILLIHERTZ',5X,	INON 980
• 'RESIDUALS - MICROHERTZ',/	INON 981
• 35X'DIRECTION COSINES ARE SCALED BY A FACTOR OF 1000',/	INON 982
• 36X'ECCENTRICITY IS SCALED BY A FACTOR OF 1000000')	INON 983
10102 FORMAT(1X)	INON 984
10103 FORMAT(1X,16,1S,F10.6,4H SAT,I2,1X,A7,1X,A6,F12.4,F13.3,F8.2,A1,	INON 985
• 2X,A6,F11.4,F13.3,F8.2,A1,F7.2,1B)	INON 986
10104 FORMAT(1X,16,1S,F10.6,4H SAT,I2,1X,A7,1X,A6,F12.4,F13.3,F8.2,A1,	INON 987
• 41X,F7.2,1B)	INON 988
10106 FORMAT(1H1,17X,9HSATELLITE,I2,4H ARC,13,	INON 989
• 35H RECTANGULAR COORDINATE SUMMARY FOR,	INON 990
• 1CH INNER ITERATION,13,19H OF OUTER ITERATION,I2/	INON 991
• 1HC,22X,34HEPOCH OF ELEMENTS - YEAR,MONTH,DAY,17,3X,	INON 992
• 16H HOUR,MINUTE,SECOND,15,FF,4/1H0,33X,1HX,12X,1HY,12X,1HZ,	INON 993
• 10X,4HXPOT,9X,4HYDGT 9X,4HZDGT/23X,3(10X,3H(M)),1X,3(3X,	INON 994
• SF(M/S))/1X)	INON 995
10105 FORMAT(5X,3A6,1X,3F13,1,3F13,4/1X)	INON 996
10110 FIX/AT(1HC/1EX,12HMS POSITION,F11.4,4X,12HRMS VELOCITY,F11.6)	INON 997
10108 FORMAT(1HC/24X,'SATELLITE',12,4H ARC,14,'VARIANCE/COVARIANCE ',	INON 998
• 'MATRIX OF COORDINATES',1H0,20X,A6,9X,A5,3X,A5,9X,A6,	INON 999
• 9X,A6)	INON 1000
10111 FORMAT(1HC,5X,A6,1X,1P(E15.7))	INON 1001
10115 FORMAT(1HC/47X25HKEPLERIAN ELEMENT SUMMARY/1H0,33X,1HA,13X,1HE12X,1H0/100)	
• 1H1,7X,22HHA ASC NODE ARG PERIGEE MEAN ANOMALY/31X,	INON 1003
• 3H(METERS),17X,4(4X,SH(DEGREES))/1X)	INON 1004
10116 FORMAT(5X,2A6,F14.1,F13.4,4F13.5/1X)	INON 1005
10501 FORMAT(1H1,1LX,3HARC,13,	INON 1006
• 32H ADJUSTED FRINGE MODEL PARAMETERS FOR INNER ITERATION,I3,	INON 1007

ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

• 1SH OF OUTER ITERATION,13) INON1008
10520 FORMAT(1HC,40X,3BHSATELLITE PHYSICAL PARAMETERS ADJUSTED//20X, INON1009
 • 11HCOEFFICIENT,19X,5HVALUE,21X,13HSTANDARD DEVIATION/4IX, INON1010
 • BHA PRIORI,7X,BHADJUSTED,10X,BHA PRICPI,8X,BHADJUSTED) INON1011
10530 FORMAT(1HC,37X,44HGEOPOENTIAL RESONANCE COEFFICIENTS ADJUSTED// INON1012
 • 20X,11HCOEFFICIENT,19X,5HVALUE,21X,16HSTANDARD DEVIATION/1IX, INON1013
 • BHA PRIORI,7X,BHADJUSTED,6X,28HRATIO TO A PRIORI ADJUSTED) INON1014
10550 FORMAT(19X,3HSAT,12,1X,A8,D15.6,D15.6,2D16.4) INON1015
10510 FORMAT(22X,A1,1H(.12,1H,,12,1H),D21.6,C16.6,1X,2D16.4) INON1016
10202 FORMAT(3HGSTATION,15,SH AT TIME,17,15,F8.4,18H NOT IN TIME ORDER) INON1017
10300 FORMAT(1H1,25X,3HARC,13,31H SATELLITE EPHEMERIS FOR INNER . INON1018
 • 1SHITERATION,13,1SH OF CUTER ITERATION,12,17X,4HPAGE, INON1019
 • 13/17H0 TIME OF DATA,11X,1HX,12X,1HY,12X,1HZ,8X,4HXDOT,7X, INON1020
 • 4HYDOT,7X,4HZDOT,4X,33HGEODECTIC LAT LONG (E) HEIGHT/ INON1021
 • 20H YYMMDD HHMM SS,SSSS,EX,4H(KM),2(9X,4H(KM)),1X, INON1022
 • 3(6X,5H(X/S)),5X,26SH(DEGREES),2X),4X,6H(KM)) INON1023
10301 FORMAT(1X,16,15,F8.4,-3P3F13.4,0P3F11.4,F12.6,F11.5,-3P3F13.4, INON1024
 • 0P3F11.4,F12.6,F11.5,-3P3F13.4) INON1025
10304 FORMAT(20X,-3P3F13.4,0P3F11.4,F12.6,F11.5,-3P3F13.4) INON1026
10302 FORMAT((1H1,12(/1H0),3(/20X,20A6))) INON1027
10303 FORMAT(1HC,44X,3HSATELLITE,12,30H CURRENT BEST ELEMENTS FOR ARC, INON1028
 • 13// INON1029
 • 4X,1HX,25X,1HY,25X,1HZ// INON1030
 • 30X,3D24.15//42X,4HXDOT,22X,4HZDOT//30X,3D24.16) INON1031
10600 FORMAT(1X,12,1C,1A,F8.4,D24.15,10X) INON1032
20111 FORMAT(1H1,32X,'TOTAL RESIDUAL SUMMARY BY MEASUREMENT TYPE FOR ', INON1033
 1 'CUTER ITERATION',12/ INON1034
 2 'HC,28X,11HMEASUREMENT,EX,10HNUMBER OF , INON1035
 3 'SHWEIGHTED,BX,BHWEIGHTEC/1H ,4IX,4HTYPE,16X,9HRESIDUALS, INON1036
 4 '15X,BHFMVS/) INON1037
20120 FORMAT(1H ,40X,A8,1EX,15,15X,F10.3) INON1038
20130 FORMAT(1H ,43X,11H RMS FOR ALL,15,22H WEIGHTED MEASUREMENTS,F10.3) INON1039
44470 FORMAT(1H0,7X,44HGEOPOENTIAL RESONANCE COEFFICIENTS ADJUSTED//1H0,1INON1040
 1 11HCOEFFICIENT,10X,BHA PRIORI,1EX,BHADJUSTED/1BX,5HVALUE, INON1041
 2 3X,14HRATIO TO SIGMA,3X,5HVALUE,4X,5HSIGMA/) INON1042
44475 FORMAT(2X,A1,1H(.12,1H,,12,1H),4X,3(2X,E10.4),1X,F10.4) INON1043
44480 FORMAT(1H1,33X,3HARC,13,44H SATELLITE KEPLERIAN EPHEMERIS FOR ITERATION,13//25X,4HPAGE,13//8X,4HTIME,17X,1H4,14X,1HE,15X,1H1,11X, INON1044
 • 11HRA ASC NJDE,5X,11HARG PERIGEE,EX,12HMEAN ANOMALY/1X, INON1045
 • 19HYYMMDD HHMM SS,SSSS,EX,BH(METERS),17X,4(2X,15HDEG MM SS,SSSSSS)) INON1047
44485 FORMAT(1X,16,15,F8.4,F12.4,F15.11,4(2X,2I3,F9.5)) INON1048
44490 FORMAT(20X,F16.4,F15.11,4(2X,2I3,F9.5)) INON1049
44500 FORMAT('ARC',13,' ADJUSTED PARAMETERS FOR INNER',13,' OF CUTER',12) INON1050
 • /16/1C,1A,F7.2/(3D24.16,5HINNER)) INON1051
44510 FORMAT(A8,11,2X,2F15.8,7D15.8) INON1052
44530 FORMAT(3HSAT,3X,11,7X,2F15.8) INON1053
45000 FORMAT('***** NEGATIVE ARGUMENT TO DSORT FOR ELEMENT', INON1054
 • 12,' *****') INON1055
45010 FORMAT('***** NEGATIVE ARGUMENT TO DSORT FOR ',A5,'*****') INON1056
45030 FORMAT('***** NEGATIVE ARGUMENT TO DSORT FOR BIAS \$*****') INON1057
46000 FORMAT(1X,12D11.4) INON1058
46501 FORMAT(1H1,20X,'THE ARC',13,' RMS FOR INNER ITERATION',13, INON1059
 • ' OUTER ITERATION',12/16X,'CONVERGED WITHIN',2F5.1, INON1060
 • ' PERCENT OF THE RMS FOR THE PREVIOUS ITERATION OF THIS ARC.') INON1061
47000 FORMAT(1H4,77X,24HTRANSPONDER RELAY BY SAT,12) INON1062
47100 FORMAT(1H6,77X,11H,A1H,1N,2A,A7,1H/,A7,7H(LEV =,F9.2,1H)) INON1063
67200 FORMAT(1H4,77X,11H WAY TRANSMITTER,2X,A7,7H(ELV =,F6.2,1H)) INON1064
49000 FORMAT(1H1) INON1065
 END

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

700

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

NAME ADDYMD

PURPOSE TO ADD OR SUBTRACT DAYS FROM A DATE IN THE FORM YYMMDD AND TO PROVIDE THE USER WITH THE NEW DATE

CALLING SEQUENCE CALL ADDYMD(IYMD, IDAY)

SYMBOL TYPE DESCRIPTION

IYMD I INPUT AND OUTPUT - SIX DIGIT DATE IN THE FORM YYMMDD

IDAY I INPUT - NUMBER OF DAYS TO BE ADDED OR SUBTRACTED FROM INPUT TAPE

SUBROUTINES USED NONE

COMMON BLOCKS MONTHS

INPUT FILES NONE

OUTPUT FILES NONE

RESTRICTIONS CANNOT PROCESS MULTIPLE CENTURIES

SUBROUTINE ADDYMD(IYMD, IDAY) ADDY 29
COMMON/MONTHS/MONTH(11,2) ADDY 30
ISUB(IY)=MOD(MOD(IY,4),1)+1 ADDY 31
C SEPARATE YEAR/MONTH/DAY ADDY 32
IY = IYMC/10000 ADDY 33
IK = IY*10000 ADDY 34
IM = (IYMC-IK)/100 ADDY 35
ID = IYMC-IK-IM*100 ADDY 36
LY=ISUB(IY) ADDY 37
C COMPUTE ELAPSED DAYS FROM JANUARY 0,0 OF CENTURY ADDY 38
ID=(IY-1)*36525/100+MONTH(IM,LY)+ID+IDAY ADDY 39
C COMPUTE NEW YEAR/MONTH/DAY ADDY 40
IY=(ID-1)*100/36525+1 ADDY 41
IS=ID-36525*(IY-1)/100 ADDY 42
LY=ISUB(IY) ADDY 43
IF(LY.EQ.1.OR.ID.LT.366) GO TO 5 ADDY 44
IY=IY+1 ADDY 45
ID=ID-365 ADDY 46
LY=ISUB(IY) ADDY 47
5 DO 10 I=1,12 REPRODUCIBILITY OF THE
IF(I.EQ.1,MONTH(I+1,LY)) GO TO 20 ORIGINAL PAGE IS POOR
10 CONTINUE ADDY 48
C PACK NEW YY-MDD ADDY 50
20 IYMD=IY*10000+I*100+ID-MONTH(I,LY) ADDY 51
RETURN ADDY 52
END ADDY 53
END ADDY 54
END ADDY 55

ADFLUX

Flux values are added to the tables in the location corresponding to the number of days between the date of the flux values and the day prior to the first date for flux data in the table. The stop date for flux data is reset to reflect the presence of the latest available data in the table.

For dates within the range of the table but for which data is not available a linear interpolation between the two non-zero points adjacent to the ends of the missing data span is used to compute values to fill in the table.

The logical function RFTMCD is used to determine when a Reference Time card is encountered signifying the beginning of a new arc.

The function JANHG is used to calculate the Greenwich mean sideral time for Jan 0.0 of the reference year and to load flux data into COMMON FLXBLK.

A flux file is written containing the information obtained from JANHG for each arc.

NAME	ADFLUX				
PURPOSE	1) TO ADD SOLAR AND MAGNETIC FLUX TO STORED TABLES 2) TO COUNT THE NUMBER OF ARCS IN RUN 3) TO WRITE ON SCRATCH FILE THE GREENWICH HOUR ANGLE OF JAN 0,0 OF THE REFERENCE YEAR AND THE FLUX DATA NEEDED FOR EACH ARC				
CALLING SEQUENCE	CALL ADFLUX(NARCS,MGFLUX,NFLUX,SFLUX,MYMD,LYMD)				
SYMBOL	TYPE	DESCRIPTION			
NARCS	I	OUTPUT - NUMBER OF ARCS IN RUN			
MGFLUX	I	INPUT & OUTPUT - MAGNETIC FLUX DATA			
SFLUX	R	INPUT & OUTPUT -- SOLAR FLUX DATA			
MYMD	I	INPUT - START DATE FOR FLUX DATA			
LYMD	I	INPUT & OUTPUT - STOP DATE FOR FLUX DATA			
SUBROUTINE USED	ALIST	AND2	DIFF	ERROR	JANTHG
RFTMCD					
COMMON BLOCKS : *FLEXBLK *INTELK *TPEBLK					
CONSTANTS USED	MASK				
SYMBOL	TYPE	DESCRIPTION			
MASK	I*2	HEX NUMBER USED TO EXTRACT DECIMAL NUMBERS FROM THEIR EBCDIC CODE			
INPUT FILES	INPT - INPUT CARDS				
OUTPUT FILES	FLTP - FLUX DATA FILE				
RESTRICTIONS	MUST BE CALLED BEFORE FIRST READ				

```

SUBROUTINE ADFLUX(NARCS,MGFLUX,NFLUX,SFLUX,MYMD,LYMD)
DOUBLE PRECISION CT1,DATE,DATAN,FLUX5,VALUE1,VALUE2,JANTHG,THETGO ADCL 45
DOUBLE PRECISION FLUX1,FLUX2,FLUX3,FLUX4,FLUX5
LOGICAL LAST,FFTMC
INTEGER FLTF,AND2
INTEGER *2 A(80),SFLUX(NFLUX),MGFLUX(NFLUX)
COMMON/FLEXBLK/FLUX1(405),FLUX2(405),FLUX3(405),FLUX4(405),
     FLUX5(405)
COMMON/INTELK/THDCT1(54),THETGO,MYDTY(76)
COMMON/TPLBLK/INTP,ICHS(9),FLTP,GSTP
INTEGER MASK,ZERO/

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

DATA FLUXS,DATAN/GHFLUX 16HDATA /          ADFL 50
C PRINT INPUT CARDS                         ADFL 57
    CALL ALIST                                ADFL 58
C READ PAST TITLE CARDS                     ADFL 59
    READ(INTP,1,0000)                          ADFL 60
    JDATE=LYMD                                ADFL 61
C SEARCH FOR 'FLUX' CARDS                   ADFL 62
    1   READ(INTP,50000)DT1,DATE,VALUE1,VALUE2  ADFL 63
        IF(JT1.EQ.LATAN) GO TO 2                ADFL 64
        IF(DT1.NE.FLUXS) GO TO 1                ADFL 65
        IDATE=DATE+.1DC                         ADFL 66
        CALL DIFF(MYML,0,IDATE,1,1DAY,1SEC)      ADFL 67
        IF(1DAY.GT.C.AND.IDAY.LT.NFLUX) GO TO 3  ADFL 68
        PRINT 4000,DATE                         ADFL 69
        CALL MARGE(10,DT1)                      ADFL 70
        GO TO 1                                  ADFL 71
C ADD FLUX TO TABLE                         ADFL 72
    3   IF(VALUE1.GT.0.CDC) SFFLUX(IDAY+1)=VALUE1*1.0D+1+0.1DC  ADFL 73
        IF(VALUE2.GT.0.CDC) MGFLUX(IDAY+1)=VALUE2*1.0D+1+C.1DC  ADFL 74
        IF(IDATE.GT.LYMD) LYMD=IDATE            ADFL 75
        GO TO 1                                  ADFL 76
    2   IF(JDATE.EQ.LYMD) GO TO 10              ADFL 77
        CALL DIFF(MYML,0,LYMD,1,JDAY,1SEC)       ADFL 78
C INTERPOLATE TO FILL MISSING FLUX VALUES UP TO THE MOST RECENT TABLE  ADFL 79
C VALUE                                     ADFL 80
    DO 9 LL=1,2                                ADFL 81
    LAST=.FALSE.                                ADFL 82
    AM=.0.                                     ADFL 83
    CALL DIFF(MYML,0,UPDATE,1,1DAY,1SEC)       ADFL 84
    IF(LL.EQ.1) BD=SFFLUX(IDAY+1)             ADFL 85
    IF(LL.EQ.2) BD=MGFLUX(IDAY+1)             ADFL 86
    KDAY=IDAY                                 ADFL 87
    4   IDAY=KDAY                                ADFL 88
    5   KDAY=KDAY+1                            ADFL 89
        IF(KDAY.GT.JDAY+1) GO TO 6              ADFL 90
        IF(LL.EQ.1.AND.SFFLUX(KDAY).LE.0) GO TO 5  ADFL 91
        IF(LL.EQ.2.AND.MGFLUX(KDAY).LE.0) GO TO 5  ADFL 92
        IF(KDAY.EQ.JDAY+1) LAST=.TRUE.           ADFL 93
        X=IDAY                                 ADFL 94
        IF(LL.EQ.1) Y=SFFLUX(IDAY)              ADFL 95
        IF(LL.EQ.2) Y=MGFLUX(IDAY)              ADFL 96
        X1=KDAY                                ADFL 97
        IF(LL.EQ.1) Y1=SFFLUX(KDAY)             ADFL 98
        IF(LL.EQ.2) Y1=MGFLUX(KDAY)             ADFL 99
        AM=(Y1-Y)/(X1-X)                      ADFL 100
        BS=Y1+A.M*X1                           ADFL 101
        GO TO 7                                  ADFL 102
    6   KDAY=KDAY-1                            ADFL 103
        LAST=.TRUE.                            ADFL 104
    7   ID=IDAY+1                            ADFL 105
        DO 8 I=ID,KDAY                         ADFL 106
        X=I
        IF(LL.EQ.2) MGFLUX(I)=Y+AM*X+BD*.5  ADFL 107
        IF(LL.EQ.1) SFFLUX(I)=AM*X+BD*.5  ADFL 108
    8   CONTINUE                                ADFL 109
        IF(.NOT.LAST) GO TO 4                  ADFL 110

```

```
9 CONTINUE ADFL 112
C SEARCH FOR REFERENCE TIME CARD ADFL 113
10 READ(INTP,20000,END=20) A ADFL 114
    IF(.NOT.RETM1(A)) GO TO 10 ADFL 115
C COMPUTE REFERENCE YEAR ADFL 116
    IY=10*(AND2(A(1),MASK)/255)+AND2(A(2),MASK)/256 ADFL 117
C READ EPOCH CARD ADFL 118
    READ(INTP,30000) IYMD,IYMD ADFL 119
    IF(IYMD.GT.0) IYMD=IYMD
    NARCS=NARCS+1 ADFL 120
C DETERMINE GREENWICH HOUR ANGLE OF REFERENCE YEAR IN RADIANS AND ADFL 122
C SELECT FLUX VALUES FOR APC ADFL 123
    THETG0=JANTHO(IYMD,1Y,SFLUX,MFLUX,NYMD,LYMD) ADFL 124
C WRITE FLUX FILE ADFL 125
    WRITE(=LTP) THETG0,FUX1 ADFL 126
    WRITE(=LTP) FUX2 ADFL 127
    WRITE(=LTP) FUX3 ADFL 128
    WRITE(=LTP) FUX4 ADFL 129
    WRITE(=LTP) FUX5 ADFL 130
    GO TO 10 ADFL 131
20 ENDFILE LTP
REWIND LTP
PKIND INTP
RETURN
10000 FORMAT(1X//)
20000 FORMAT(1E11)
30000 FORMAT(16.34X,16)
40000 FORMAT(1H1,2UX,*DATE*,L14.7,* ON FLUX CARD OUT OF RANGE OF *,*
* TABLES. */1H0,15X,*CARD IGNORED.* EXECUTION CONTINUING.*/)
50000 FORMAT(A6.4X,3L15.8)
END
```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME ALIST
 PURPOSE TO LIST GEODYN INPUT CARDS
 CALLING SEQUENCE CALL ALIST
 SUBROUTINES USED NONE
 COMMON BLOCKS TPERBLK
 INPUT FILES INTP - INPUT CARDS
 OUTPUT FILES ICUTP - PRINTER

SUBROUTINE ALIST	ALIS 18
LOGICAL*1 LAFCHO(20), END	ALIS 19
INTEGER*4 ICASE, SELECT/AHSELE/, DELETE/AHDELE/, ENDALL/AHENDA/	ALIS 20
EQUIVALENCE(ICASE,LRECRD(1))	ALIS 21
COMMON/TPERBLK/INTP, ICUTP, ITAPES(10)	ALIS 22
DATA IPAGE/1/, LINE/1/, END/.FALSE./, IDATA/4NDATA/	ALIS 23
C LIST GEODYN INPUT CARDS	ALIS 24
WRITE(IULTP,1000)	ALIS 25
WRITE(IULTP,2000)	ALIS 26
WRITE(IULTP,3000)	ALIS 27
I WRITE(IULTP,101) IPAGE	ALIS 28
IPAGE=IPAGE+1	ALIS 29
I=0	ALIS 30
IF(END) GO TO 20	ALIS 31
5 READ(INTP,100,END=99) LRECRD	ALIS 32
7 I=I+1	ALIS 33
WRITE(IULTP,102) LRECRD,LINE	ALIS 34
LINE=LINE+1	ALIS 35
IF(I.EQ.66) GO TO 1	ALIS 36
IF(ICASE.EQ.1,DATA) END=.TRUE.	ALIS 37
IF(.NOT.=END) GO TO 6	ALIS 38
20 READ(INTP,100,END=99) LAFCRD	ALIS 39
IF(ICASE.EQ.0,SELECT+OR,ICASE.EQ.,DELETE+UR,ICASE.EQ.ENDALL) GO TO 7	ALIS 40
END=.FALSE.	ALIS 41
IF(I.LL,SC) GO TO 40	ALIS 42
WRITE(IULTP,101) IPAGE	ALIS 43
IPAGE=IPAGE+1	ALIS 44
I=0	ALIS 45
GO TO 7	ALIS 46
40 WRITE(IULTP,103)	ALIS 47
I=I+4	ALIS 48
GO TO 7	ALIS 49
55 READING INTP	ALIS 50
RETURN	ALIS 51
100 FORMAT(20A4)	ALIS 52
101 FORMAT('LISTING OF MULTI-ARC GEODYN SET-UP',3X,HPAGE,13//1)	ALIS 53
102 FORMAT(1X,20A4,10X,1A)	ALIS 54
103 FORMAT(1//1)	ALIS 55

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

1000 FORMAT(1H2,20X,5(1H*))/20X,7(1H*)/19X,9(1H*)/13X,4H****,2X,4H****/ ALIS 56
*   13X,3H***,3X,4H***/17X,4H****,3X,4H***/17X,4H****,3X,4H*** ALIS 57
*   /17X,4H***,3X,4H***,6X,3H**/17X,4H***,3X,4H***,4X, ALIS 58
*   5(1H*),53X,5(1H*)/17X,4H***,2X,4H***,2X,6(1H*),54X,5(1H*)/ ALIS 59
*   13X,4H***,1X,4H***,1X,8(1H*),53X,6(1H*)/19X,12(1H*),1X, ALIS 60
*   4H***,53X,4H***/20X,9(1H*),3X,4H***,52X,4H***/21X,5(1H*), ALIS 61
*   6X,4H***,52X,4H***/20X,4H***,8X,4H***,51X,4H***/19X, ALIS 62
*   5(1H*),2X,4H***,51X,4H***/13X,5(1H*),2X,4H***,50X,4H***/ ALIS 63
*   17X,5(1H*),10X,4H***,50X,4H***/16X,5(1H*),11X,4H***,49X, ALIS 64
*   4H***/13X,5(1H*),12X,4H***,49X,4H***/14X,5(1H*),13X, ALIS 65
*   4H***,58X,4H***/13X,5(1H*),14X,4H***,6X,8(1H*),8X,7(1H*), ALIS 66
*   11X,7(1H*),1X,4H***,4X,7(1H*),7X,5(1H*),4X,6(1H*),2X, ALIS 67
*   7(1H*) ALIS 68
2000 FORMAT(12X,5(1H*),15X,4H***,5X,10(1H*),5X,10(1H*),8X,13(1H*), ALIS 69
*   5X,7(1H*),7X,5(1H*),4X,6(1H*),1X,9(1H*)/11X,5(1H*),16X, ALIS 70
*   4H***,4X,11(1H*),4X,12(1H*),5X,13(1H*),5X,7(1H*),7X,4H***, ALIS 71
*   5X,17(1H*)/2X,5(1H*),2X,5(1H*),17X,4H***,3X,4H***,5X,2H**, ALIS 72
*   4X,4H***,5X,3H***,6X,4H***,5X,4H***,9X,4H***,6X,4H***, ALIS 73
*   8X,5(1H*),5X,4H***/ 3X,5(1H*),1X,5(1H*),17X,4H***,4X, ALIS 74
*   4H***,11X,4H***,6X,3H***,5X,4H***,5X,4H***,5X,4H***, ALIS 75
*   6X,4H***,8X,5(1H*),6X,4H***/4X,9(1H*),17X,4H***,5X, ALIS 76
*   5(1H*),5X,3H***,7X,3H***,EX,3H***,7X,4H***,8X,4H***,5X, ALIS 77
*   4H***,6X,4H***,7X,4H***/5X,7(1H*),17X,4H***,8X,6(1H*), ALIS 78
*   6X,4H***,7X,3H***,4X,4H***,7X,4H***,7X,4H***,7X,4H***, ALIS 79
*   6X,4H***,7X,4H***/6X,5(1H*),17X,4H***,7X,4H***,10X,3H***, ALIS 80
*   8X,3H***,6X,3H***,7X,4H***,7X,4H***/6X,6(1H*), ALIS 81
*   10X,4H***,7X,4H***,10X,4H***,7X,4H***,3X,4H***,6X, ALIS 82
*   5(1H*),7X,4H***,6X,5(1H*),2X,4H***,7X,4H***/5X,6(1H*), ALIS 83
*   13X,4H***,8X,4H***,10X,4H***,6X,4H***,4X,4H***,5X, ALIS 84
*   6(1H*),6X,4H***,6X,5(1H*),3X,4H***,7X,4H***, ALIS 85
*   3000 FORMAT(2X,4H***,2X,19(1H*),2X,4H***,6X,4H***,3X,4H***,5X, ALIS 87
*   4H***,5X,4H***,4X,7(1H*),6X,4H***,5X,5(1H*),5X,4H***, ALIS 88
*   7X,4H***/3X,5(1H*),4X,15(1H*),5X,11(1H*),4X,12(1H*),6X, ALIS 89
*   11(1H*),1X,4H***,6X,5(1H*),1X,3H***,8X,4H***,7X,6(1H*)/ ALIS 90
*   2X,c(1H*),5X,12(1H*),12X,c(1H*),5X,10(1H*),3X,5(1H*),2X, ALIS 91
*   4H***,7X,7(1H*),2X,2H***,7X,5(1H*),5X,7(1H*)/101X,4H***/ ALIS 92
*   101X,4H***/100X,4H***/100X,4H***/99X,4H***/99X,4H***/ ALIS 93
*   98X,4H***/3X,25(1H*),43(1H*),30(1H*)/2X,99(1H*)/1X,99(1H*) ALIS 94
*   END ALIS 95

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

ALPMRC
Page 1 of 1
October 1972

NAME ALPMRC
PURPOSE BLOCK DATA STORAGE OF ALPHA-NUMERIC INFORMATION
USED IN GEODYN PRINT FORMATS
COMMON BLOCKS ALPMRC

BLOCK DATA	ALPM 11
IMPLICIT REAL*8 (A-Z)	ALPM 12
LOGICAL HYPER	ALPM 13
COMMON/ALPMRC/ITNMS(5),TIMING,ELANK,ATYPE(31),UNITS(15),ELCUT,	ALPM 14
• HYPER	ALPM 15
DATA BLANK/SH	ALPM 16
DATA TIMING/SHTIMING/	ALPM 17
DATA UNITS/SHSFCOND,SHRADIAN,SHMETERS,SHM/SEC,SHMETERS,1H	ALPM 18
• 3*SHRADIAN,2*1H,SHM/SEC,1H,2*SHRADIAN/	ALPM 19
DATA ATYPE/SHT ASC,SHFRANGE,SHFR RATE,SHHEIGHT,SHALPHA,SHX ANGL,	ALPM 20
• SHAZMUTH,SHOCLIN,2*1H,SHH RATE,SHUETA,SHY ANGL,SHELEV	ALPM 21
• 3H X,3H Y,3H Z,SH XDOT,SH YDOT,SH ZDOT,	ALPM 22
• 3H A,SH E,SH TACL,SH NODE,SH PERG,SH MEAN,	ALPM 23
• SHT CLAY,SHFRG RT,SHAV2 FR,SHAV3 FR,SH ALL/	ALPM 24
DATA ITNMS/SHFIRST,SH LAST,SHITERAT,SHION,4H AND/ END	ALPM 25 ALPM 26

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME AND2
PURPOSE TWO BYTE INTEGER 'AND' FUNCTION
CALLING SEQUENCE I=AND2(I1,I2)
SYMBOL TYPE DESCRIPTION
I1 I*2 INPUT - FIRST INTEGER
I2 I*2 INPUT - SECOND INTEGER
AND2 I OUTPUT - AND OF I1 & I2
SUBROUTINES USED NONE
COMMON BLOCKS NONE
INPUT FILES NONE
OUTPUT FILES NONE

INTEGER FUNCTION AND2(I1,I2)	AND2	26
EQUIVALENCE (IAND,RAND)	AND2	27
INTEGER I*2 I1,I2	AND2	28
C FIND LOGICAL AND OF THE ARGUMENTS	AND2	29
J1=I1	AND2	30
J2=I2	AND2	31
RAND=AND(J1,J2)	AND2	32
AND2=IAND	AND2	33
RETURN	AND2	34
END	AND2	35

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME APPER
 PURPOSE TO COMPUTE SATELLITE APOGEE HEIGHT AND PERIGEE HEIGHT
 CALLING SEQUENCE CALL APPER
 SUBROUTINES USED NONE
 COMMON BLOCKS APARAM CELEM CORRI INTBLK CONSTS
 INPUT FILES NONE
 OUTPUT FILES NONE
 REFERENCES *GEODYN SYSTEM'S DESCRIPTION,
VOLUME 1 - GEODYN DOCUMENTATION

SUBROUTINE APER		
IMPLICIT REAL*8 (A-H,C-Z)		APPE 22
COMMON/APARAM/INPAR(4),NSAT,NGFARC(5)		APPE 23
COMMON/CELEM/ELEMST(5,2),CRRELA(6,2),XHU,EC,IRMSD		APPE 24
COMMON/CORRI/RANDOT(2),PFRADOT(2),PFHT(2),APHT(2),PRD(2)		APPE 25
COMMON/INTBLK/THROT(4),AE,AFSD,FLAT,FSR32,FFS032,GM3(57)		APPE 26
COMMON/CONSTS/CPI,DTXOPI,ERAD,ERSEC		APPE 27
DO 10 I=1,NSAT		APPE 28
SPS1SO=DSIN(CRRELA(3,I)*DFRAD)*DCSIN(DRRELA(5,I)*DRAD)		APPE 29
SPS1SO=SFHISQ**2		APPE 30
C CALCULATE THE EARTH RADIUS TO THE CIRCLE OF INTERSECTION OF THE		APPE 31
C SATELLITE SEMI-MAJOR AXIS WITH THE SPHEROID		APPE 32
EARTH=AE+FS032*SPS1SO**2-FFS032*SPS1SO		APPE 33
AESAT=CRRELA(1,I)+DRRELA(2,I)		APPE 34
C CALCULATE THE APOGEE AND PERIGEE DISTANCES		APPE 35
C SUBTRACT OUT THE EARTH RADII TO CALCULATE APOGEE AND PERIGEE,		APPE 36
C HEIGHTS		APPE 37
Perit(1)=(DRRELA(1,I)-AESAT-EARTH)*1.0D-3		APPE 38
10 APHT(1)=(DRRELA(1,I)+AESAT-EARTH)*1.0D-3		APPE 39
RETURN		APPE 40
END		APPE 41
		APPE 42

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME ARCPAR
PURPOSE TO LOAD INDIVIDUAL ARC PARAMETERS INTO VARIABLE STORAGE ARRAYS
CALLING SEQUENCE CALL ARCPAR(BSTRT,BSEND,BIASO,BBIAS,BIASSG,BTYPE,
BSTANO,BIASNO,GPVALO,GPSIG,GPNO,
GPVAL,INDXCS)

SYMBOL	TYPE	DESCRIPTION	REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
BSTRT (1)	DP	OUTPUT - BIAS START TIMES IN DAYS FROM REFERENCE JAN 0.0	
BSEND (1)	DP	OUTPUT - BIAS STOP TIMES IN DAYS FROM REFERENCE JAN 0.0	
BIAZO (1)	DP	OUTPUT - A PRIORI BIAS ESTIMATES	
BBIAS (1)	DP	OUTPUT - CURRENT BEST BIAS VALUES.	
BIASSG (1)	DP	OUTPUT - STANDARD DEVIATION OF BIASES AND DRAG AND SOLAR RADIATION COEFFICIENTS	
BTYPE (1)	I*2	OUTPUT - BIAS TYPES	
BSTANO (1)	I*2	OUTPUT - BIAS STATION NUMBERS	
BIASNO (1)	DP	OUTPUT - BIAS INDICES	
GPVALO (1)	DP	OUTPUT - A PRIORI VALUES OF ESTIMATED GEOPOTENTIAL COEFFICIENTS	
GPSIG (1)	DP	OUTPUT - A PRIORI SIGMAS OF ADJUSTED GEOPOTENTIAL COEFFICIENTS	
GPNO (1)	I*2	OUTPUT - LOCATIONS OF GEOPOTENTIAL PARAMETERS IN NORMAL MATRIX	
GPVAL (1)	DP	OUTPUT - CURRENT BEST VALUES OF ADJUSTED GEOPOTENTIAL COEFFICIENTS	
INDXCS (1,1)	I*2	OUTPUT - INDICES OF ADJUSTED GEOPOTENTIAL COEFFICIENTS	

SUBROUTINES USED	STORE	CLEAR 2	DATARD	NUMDR2
COMMON BLOCKS	APARAM FMODEL TFEBLK	CONDUT FLXBLK VRSLJK	CONSTS INTULK	CPARAM PRIJRT

INPUT FILES	NONE
OUTPUT FILES	NONE
REFERENCES	'GEODYN SYSTEMS DESCRIPTION' VOLUME 1 - GEODYN DOCUMENTATION

```

SUBROUTINE ARCPAR(RSTRT,BSEND,BIAS0,BIAS,BIASG,BTYPE,BSTAND,
•   BIASNC,GPVAL0,GP SIG,GPND,GPVAL,IDXCS,BESTNO,BETYPE,NEIAS,
•   ISTAN)
IMPLICIT REAL*8 (A-H,O-Z)
LOGICAL CRPGPR,STARTR,STARTW
INTEGER*2 BTYPE,BSTAND,BIASNG,ESTYPE,BSTND,GPND,IDXCS
INTEGER*2 BESTNO,BETYPE,ISTAN
INTEGER ACCR,SRAD,ASAT,SCRC,FLTP,ARCNO,SCRA,ADDRD,STARTA,STARTD,
•   OUTSTR
REAL BIAS,BIASVR
DIMENSION BSTRT(1),BSEND(1),BIAS0(1),BIAS(1),BIASSG(1),
•   BTYPE(1),BSTAND(1),BIASNG(1),GPVAL0(1),GP SIG(1),GPND(1),
•   GPVAL(1),IDXCS(3,1),SU1(1),SU4(1),BESTND(NEIAS),
•   BETYPE(NEIAS),ISTAN(1)
COMMON/AFPARAM/INPAR,INPAR1,NBIAS,NSTA,NSAT,I_GPARC,NREC1,NPARAM,
•   NBIASE,MAXPAR
COMMON/CCNOUT/IC1(11),NACRS,NSTARD,STARTR,STARTW,STARTA,STARTD,
•   INSTRT,OUTSTR
COMMON/CCNST/EP1,DTAPI,ERAD,ERSEC
COMMON/CPARAM/NSTA,NMAST,ASTEST,NO14,MBIAS,NGPC1,NGPC2,NGPCM,
•   NCSEL1,CRPGPR,LIM1,LIM2,NDEN,NDENST,NTIDST,NTIDEN,INNRSW,
•   NCNST,NDCCNS
COMMON/FMDFL/INDEXF(4),CS(30,23),MODEL(15)
COMMON/FLXELK/BTIME1(900),BTIME2(900),BSTYPE(900)
COMMON/INTBLK/THOUT1(55),ADDR(2,3),LUV(8)
COMMON/PRIORT/LEMEN(7P),DRAGSC(2,3),DRAGO(2,3),CD(2,3)

C OBTAIN STORED ARC INFORMATION
COMMON/TREELK/INTP(3),SCRA,SCRC,FLTP(2)
COMMON/VRELCK/BIAS(500),BIASVR(500),BSTND(500)
EQUIVALENCE (PHASE,LCVE(5))
DO 300 ARUNC=1,NAHCS
IF(NBIASE.LE.0) GO TO 10
READ(SCRC) BESTNO
C STORE DRAG AND STILAR RADIATION COEFFICIENTS
READ(SCRC) BETYPE
GO TO 20
10 READ(SCRC)
READ(SCRC)
20 CALL STORE(.TRUE.,.FALSE.)
IF(NBIASE.LE.0) GO TO 80
DO 40 I=1,NBIASE
JBESTNO(I)
40 BSTND(J)=NBESTNO(I,J,ISTAN,NSTA)
80 READ(SCRC) PHASE*SRAD
C STORE ESTIMATED GEOPOTENTIAL RESONANCE COEFFICIENTS

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

      DO 100 I=1,NBIAS
100  BIASNU(I)=0
      II=0
      L1=0*NSAT
      DO 150 L=1,NSAT
      DO 150 I=1,3
      II=II+1
      BIASO(II)=CD(L,II)
      DBIAS(I)=CD(L,II)
      BIASSG(II)=DRAGSG(L,II)
      INDEX=AUDR(L,I)
150  IF(INDEX.EQ.0) BIASNO(II)=L+INDEX
      NGPARC=300-NGPARD
      IF(NGPARC.LT.1) GO TO 200
      NGPCLR=NCEEST-NGPCLM
      CALL CLEAR2(GFNO,NGPCLR,1)
      CALL CLEAR2(INDXCS,NGPCLR,3)
      DO 175 I=1,NGPARC
      II=901-I
      INDXCS(I,II)=ESTYPE(II)
      NM=BSTNUS(II)
      C STORE BIASES
      N=NM/100
      K=NM-N*100
      INDXCS(2,1)=N
      INDXCS(3,1)=K
      GPVAL(1)=BIAS(II)
      GPSIG(1)=BIASVR(II)
      INPARI=INPARI+1
      GPND(1)=INPARI
      M=M+1
      IF(INDXCS(1,1).EQ.1) GO TO 175
      N=31-N
      M=34-N
      C WRITE OUT ARC DATA
175  GPVAL(1)=CS(N,M)/BIASVR(II)
200  IF(NBIAS.LT.1) GO TO 300
      L1=3*NSAT
      DO 250 I=1,NBIAS
      II=I+L1
      BSTRT(II)=ETIME1(I)
      BSEND(II)=ETIME2(I)
      BIASO(II)=BIAS(I)
      DBIAS(II)=BIAS(I)
      ETYHE(II)=ESTYPE(I)
      BIASSG(II)=BIASVR(I)
      BSTANJ(II)=BETNUS(I)
250  BIASNU(II)=INPARI+1
300  CALL DATARD(AUCNO,.TRUE.,.TRUE.,.FALSE.)
      RLAIND SCRD
      END FILE SCRD
      REWIND SCRA
      RETURN
      END

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME	AREAS	
PURPOSE	TO COMPUTE THE ELLIPSOIDAL SURFACE AREA LYING BETWEEN TWO FIXED LATITUDES AND TWO FIXED LONGITUDES	
CALLING SEQUENCE	X=AREAS(Z1,Z2,TLCN)	
SYMBOL	TYPE	DESCRIPTION
Z1	DF	INPUT - Z-COORDINATE ASSOCIATED WITH LATITUDE 1
Z2	DF	INPUT - Z-COORDINATE ASSOCIATED WITH LATITUDE 2
TLCN	DF	INPUT - THE DIFFERENCE (IN DEGREES) BETWEEN THE TWO LONGITUDES
SUBROUTINES USED	NONE	
COMMON BLOCKS	CONSTS	INTBLK
INPUT FILES	NONE	
OUTPUT FILES	NONE	

```

DOUBLE PRECISION FUNCTION AREAS(Z1,Z2,TLCN)                                AREA 29
IMPLICIT REAL*8(A-H,O-Z)                                              AREA 30
LOGICAL ACT1ST                                                 AREA 31
COMMON/CONSTS/DPI,DTWOPI,DEG2RD,DFSEC                                 AREA 32
COMMON/INTBLK/THDOTS(3),GM,AE,AESQ,FLAT,FS032(59)                      AREA 33
DATA ACT1ST/.FALSE./                                         AREA 34
Z=.5D0*(Z1+Z2)                                              AREA 35
C COMPUTE SURFACE AREAS OF ELLIPSOIDAL SURFACES                         AREA 36
IF(NUT1ST) GO TO 10                                              AREA 37
ACT1ST=.TRUE.                                                 AREA 38
BSQ =FLAT*(2.0-FLAT)                                              AREA 39
CSQ =AESQ*ESQ                                                 AREA 40
C =DSQRT(CSQ)                                                 AREA 41
BSQ =AESQ-CSQ                                                 AREA 42
E4 =ESQ**2                                                 AREA 43
10 ROOT1=DSQRT(CSQ**2+E4)                                              AREA 44
ROOT2=DSQRT(CSQ*Z2**2+E4)                                              AREA 45
AREAS=DAE(.5D0*TLCN*DEG2RD*AE*((Z2*ROOT2-Z1*ROOT1)/BSQ+BSQ*DLOG((AREA 46
*                                              C*Z2*ROOT2)/(C*Z1*ROOT1))/C))   AREA 47
RETURN                                                 AREA 48
END                                                 AREA 49

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

AVGPOT

DESCRIPTION

Calls EGRAV to compute Legendre polynomials for geopotential expansion for different latitudes. Evaluates potential at these different latitudes using even zonal harmonic coefficients only.

Computes average of these potentials weighting by the cosine of the geocentric latitude.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME AVGPO_T
 PURPOSE TO COMPUTE AVERAGE GRAVITATIONAL POTENTIAL OF
 EARTH USING EVEN ZONAL HARMONIC COEFFICIENTS ONLY
 CALLING SEQUENCE X=AVGPO_T(NLAT)
 SYMBOL TYPE DESCRIPTION
 NLAT I INPUT - NUMBER OF LATITUDE DIVISIONS USED IN
 AVERAGE POTENTIAL EVALUATION
 X D^P OUTPUT - AVERAGE GRAVITATIONAL POTENTIAL OF THE
 EARTH
 SUBROUTINES USED EGRAY
 COMMON BLOCKS CONSTS FMODEL INTBLK XYZ- VRBLOK
 INPUT FILES NONE
 OUTPUT FILES NONE
 REFERENCES GEODYN SYSTEMS DESCRIPTION
 VOLUME 1 - GEODYN DOCUMENTATION

```

DOUBLE PRECISION FUNCTION AVGPD(T,NLAT)
IMPLICIT REAL*8 (A-H,O-Z)
DOUBLE PRECISION MCDEL
DIMENSION FCT(2)
COMMON/CUNIS/DPPI,DTWDPPI,DRAD,DRSEC
COMMON/FMODEL/INDEX1,INDEX2,INDEX3,INDEX4,CS(30,33),MODEL(8)
COMMON/INTBLK/THTDOT1,THTDOT2,THT2S,GM,AE,AESQ,FLAT,FS932(59)
COMMON/XYZ/XYZ(8),R,RSD,ISAT,1FORCE(2)
COMMON/VRLBLK/XYZQ,COSLAM(31),SINLAM(31),PR,PPSI,PLAMDA,
* .P(33,30),ACRN(30),TPSIM(39)
* EQUIVALENCE (SINPSI,P(1,1)),(COSPSI,P(2,1))
C INITIALIZE CONSTANTS
F1=1.000-FLAT
F1SC=F1*F1
F2F=FLAT*(2.000-FLAT)
THETG=0.000
XYZ(2)=0.000
CLAT=180.000/DFLOAT(NLAT)
XLA1=-90.000+0.2500*CLAT
U=0.000
GMR=0.000
SUMCOS=0.000
IF(INDEX2.LT.2) GO TO 200
C USE DIFFERENT LATITUDES FROM POLE TO POLE
DO 100 LAT=1,NLAT
PSI=LAT*DRAD
AVGP 30
AVGP 31
AVGP 32
AVGP 33
AVGP 34
AVGP 35
AVGP 36
AVGP 37
AVGP 38
AVGP 39
AVGP 40
AVGP 41
AVGP 42
AVGP 43
AVGP 44
AVGP 45
AVGP 46
AVGP 47
AVGP 48
AVGP 49
AVGP 50
AVGP 51
AVGP 52
AVGP 53
AVGP 54
AVGP 55

```

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

```
SINPSI=DSIN(PSI) AVGP 56
SPS150=SINPSI**2 AVGP 57
COSPSI=DSQRT(1.000-SPS150) AVGP 58
RH=AE*F1/DSQRT(F150+F2F*SFS150) AVGP 59
XYZ(1)=RH0*CUSPSI AVGP 60
XYZ(3)=RH0*SINPSI AVGP 61
AVGP 62
C COMPUTE POLYNOMIALS. AVGP 63
    CALL EGRAV(THETG,RASAT,FCT)
    THDTR2=(R*THDT2S*CDSPSI)**2 AVGP 64
    SUM=0.000 AVGP 65
    FN=0.000 AVGP 66
    DO 50 N=2,100*2,2 AVGP 67
    FN=FN+2.0D0 AVGP 68
50   SUM=SUM+FN*AUR(N)*P(1,N)*CS(N+1) AVGP 69
    U=U+SUM*CUSPSI AVGP 70
    GMR=GMR+(GM/R+C5DC*THDTR2)*COSPSI AVGP 71
    SUMCUS=SUMCUS+COSPSI AVGP 72
100  XLAT=XLAT+DLAT AVGP 73
C COMPUTE WEIGHTED AVERAGES AVGP 74
    AVGPUT=(GMK+L)/SUMCOS AVGP 75
    RETURN AVGP 76
C COMPUTE TWO-BODY POTENTIAL AVGP 77
200  GMR=GM/63074c2.5500+(THDT2S*c3c7462.55D0*DCOS(DPI*0.25D0))**2*.5D0AVGP 78
    AVGPUT=GMR AVGP 79
    RETURN AVGP 80
    END AVGP 81
```


NAME	BIAS				
PURPOSE	TO EXTRACT BIAS START - STOP TIMES FROM DATA AND COUNT BIASES				
CALLING SEQUENCE	CALL BIAS				
SUBROUTINES USED	NONE				
COMMON BLOCKS	APARAM	CEPHEM	PREBLK	FLXBLK	VP3BLK
INPUT FILES	NONE				
OUTPUT FILES	NONE				

ROUTINE BIAS	BIAS	19
IMPLICIT REAL*8 (A-H,D-Z)	BIAS	20
LOGICAL*1 VHFCHN,PREPRO,TIMING	BIAS	21
LOGICAL TWSTA	BIAS	22
INTEGER*2 MTYPE,NMEAS,PRETYP,CHANNEL,BTYPE,BSTANO,ISTA	BIAS	23
INTEGER RECNO	BIAS	24
REAL BIAS0,BIASG	BIAS	25
DIMENSION NBIAST(3)	BIAS	26
COMMON/APARAM/INPAR,INPAR1,NBIAS,NSTSTA(2),NGPARC,NOREC1(4)	BIAS	27
COMMON/CEPHEM/NAME(36),ISTAR0(36),ISTA(36)	BIAS	28
COMMON/PREBLK/LAT,LSSU(2),SIGL(2),SRENDA,ISTA,MTYPE,NMEAS,	BIAS	29
• PRETYP(2),CHANNEL,VHFCHN,PREPRO,RECNO	BIAS	30
COMMON/FLXBLK/ESTRT(900),BSEND(900),BTYPE(900)	BIAS	31
COMMON/VP3BLK/BIAS0(900),BIASSG(900),BSTANO(900)	BIAS	32
EQUIVALENCE (NEWTO,NWBIAS(1)),(NEWB1,NWBIAS(2)),(NEWB2,NWBIAS(3))	BIAS	33
DATA TPASS/0.1E-1/	BIAS	34
IF(NBIAS.GE.NCHARC) RETURN	BIAS	35
IF(ISTA.LE.0) RETURN	BIAS	36
TWSTA=MTYPE,GT,26,AND,CHANNEL.NE.,ISTA	BIAS	37
TIMING=.FALSE.	BIAS	38
ISTA=ISTANU(ISTA)	BIAS	39
150 DO 100 I=1,3	BIAS	40
C CHECK FOR CURRENT BIAS	BIAS	41
100 NWEIAS(I)=0	BIAS	42
DO 1200 I=1,NBIAS	BIAS	43
IF(ISTA.NE.,BSTANO(1)) GO TO 1200	BIAS	44
I1=BTYP(E,I)	BIAS	45
IF(I1.EQ.0) GO TO 175	BIAS	46
IF(TIMING) GO TO 1200	BIAS	47
IF(MTYPE.GT,26,AND,MTYPE.EQ.11) GO TO 175	BIAS	48
IF(MTYPE.NE.,(I1-(I1/8)*7)) GO TO 1200	BIAS	49
175 IF(DAY.LT.BSTRT(I)) GO TO 1200	BIAS	50
IF(DAY.LT.BSEND(I)) GO TO 300	BIAS	51
IF(HSEND(I)-BSTRT(I)).LT.1200,200,700	BIAS	52
200 BSTRT(I)=DAY	BIAS	53
BSEND(I)=DAY+TPASS	BIAS	54
300 IF(ETYP(E,I)-MTYPE).LT.400,500,600	BIAS	55

400 NEWTB=0	BIAS	56
GO TO 1200	BIAS	57
500 NEWH1=0	BIAS	58
GO TO 1200	BIAS	59
600 NEWE2=0	BIAS	60
GO TO 1200	BIAS	61
700 IF(LAY.GT.BSEND(1)+TPASS) GO TO 600	BIAS	62
BSEND(1)=BSEND(1)+TPASS	BIAS	63
GO TO 300	BIAS	64
800 IF(EETYPE(1)=MTYPE) 500,1000,1100	BIAS	65
900 NEWI=1	BIAS	66
GO TO 1200	BIAS	67
1000 NEWE1=1	BIAS	68
GO TO 1200	BIAS	69
C ADD NEW BIASES	BIAS	70
1100 NEVE2=1	BIAS	71
1200 CONTINUE	BIAS	72
DO 1300 I=1,3	BIAS	73
II=NBIAS(I)	BIAS	74
C INCREMENT BIAS COUNTER	BIAS	75
IF(II.EQ.0) GO TO 1300	BIAS	76
C SAVE NEW BIASES	BIAS	77
IF(NBIAS.GE.NGFARC) RETURN	BIAS	78
NBIAS=NBIAS+1	BIAS	79
BIASSC(NBIAS)=EIASSG(11)	BIAS	80
BIASO(NBIAS)=EIASO(11)	BIAS	81
BTYPE(NBIAS)=E1TYPE(11)	BIAS	82
BSTHT(NBIAS)=DAY	BIAS	83
BSEND(NBIAS)=DAY+TPASS	BIAS	84
USTANG(NBIAS)=ICSTA	BIAS	85
1300 CONTINUE	BIAS	86
IF(.NOT.TWUSTA) RETURN	BIAS	87
TIMING=.TRUE.	BIAS	88
TWCSTA=.FALSE.	BIAS	89
IBSTARISTAND(CHANEL)	BIAS	90
GO TO 150	BIAS	91
END	BIAS	92

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME BMTWRT
PURPOSE TO WRITE OUT B-MATRIX
CALLING SEQUENCE CALL BMTWRT(SUM1,SUM2,INDXCS,GPNO,GPVAL0,GPSIG,
ESTANO,ISTAND,STAXYZ,FILENO)
SYMBOL TYPE DESCRIPTION
SUM1 DP INPUT - NORMAL MATRIX IN VECTOR FORM
(1)
SUM2 DP INPUT - RIGHT HAND SIDE
(1)
INDXCS I*2 INPUT - INDICES OF ADJUSTED GEOPOTENTIAL
(3,1) COEFFICIENTS
GPNO I*2 INPUT - LOCATIONS OF GEOPOTENTIAL PARAMETERS IN
(1) NORMAL MATRIX
GPVAL0 DP INPUT - A PRIORI ESTIMATES OF GEOPOTENTIAL
(1) COEFFICIENTS
GPSIG DP INPUT - SIGMAS OF ADJUSTED GEOPOTENTIAL PARAMETERS
(1)
ESTANO I*2 INPUT - MASTER STATION NUMBERS FOR ESTIMATED
(1) STATIONS
ISTAND I*2 INPUT - STATION NUMBERS
(1)
STAXYZ DP INPUT - STATION COORDINATES
(3,1)
FILENO I OUTPUT - FILE NUMBER FOR THE B-MATRIX TAPE
SUBROUTINES USED NUMBER2
CEMDEN BLOCKS APARAM CPARAM CSTAT CSTINF FLXBLK
INITPK INTBLK PRIORI TPEBLK VRBLK
INPUT FILES NONE
OUTPUT FILES BMATTP - CUTP
REFERENCES *GEODYN SYSTEMS DESCRIPTION*
VOLUME 1 - GEODYN DOCUMENTATION
GEODYN PROGRAM OPERATIONS DESCRIPTION - APPENDIX C
VOLUME 3 - GEODYN DOCUMENTATION

```

SUBROUTINE BMTWRT(SUM1,SUM2,INDXCS,GPNO,GPVAL0,GPSIG,ESTANO.      BMTW  57
*   ISTANCE,STAXYZ,FILENC)                                         BMTW  58
IMPLICIT REAL*8 (A-H,O-Z)                                         BMTW  59
LOGICAL CMPGPR,PRNMAT                                           BMTW  60
INTEGER#2 GPNC,ESTANO,ISTAND,INDXCS                           BMTW  61
INTEGER RECTYP,ZERO,CODE,ESTSTA,ONE,BMATNO,BMATTP,ADDR,ADDRD,SPAD,BMTW  62
*   OUTP,FILENC                                                 BMTW  63
REAL MATNAM,RESID,SIG,WTSUMT                                     BMTW  64
DIMENSION SUM1(1),SUM2(1),INDXCS(3,1),GPNO(1),GPVAL0(1),GPSIG(1), BMTA  65
*   ESTANO(1),ISTAND(1),STAXYZ(3,1)                                BMTA  66
DIMENSION RECTYP(7),MATNAM(3)                                     BMTW  67
COMMON/APARAM/INPAR,INPAR1,NBIAS,ESTSTA,NSAT,NPARC,NOREC1,NPAPAM, BMTW  68
*   NBIAS,MAXPAR                                                 BMTW  69
COMMON/CF/RAM/NSTA,NMAST,NTEST,NDIM,MBIAS,NGPC1,NGPC2,NGPCM, BMTA  70
*   NCSEST,CMPGPR,LIM1,LIM2,NDEN,NOENST,NTIDST,NTICEN,INNRSW, BMTB  71
*   NCUNST,NDCCNS                                              BMTW  72
COMMON/CSTAT/RESID,SIG,NMTCT,WTSUMT                            BMTW  73
COMMON/CE/INF/MFASSH(282),NOBS,LIBASE                           BMTW  74
COMMON/FLXELK/LUMATRIX(1001),VALUE(1000),V(3),FLX31(21)        BMTW  75
COMMON/INITOK/INITR1(44),FRNMAT,BMATNC,INITB2(11)                BMTW  76
COMMON/INITLK/INITR1(116),ADDR(2),ADDRD(2),SRAD(2),INTB2(3)       BMTW  77
COMMON/PRIORI/ELEM0(6,2),PRIOR1(78),CD(2),CDD(2),EMISS(2)       BMTW  78
COMMON/THERBLK/INTP,CUTP,ITAPES(10)                             BMTW  79
COMMON/VRELLOK/VRE1(66),LABEL(1000),IROW(1000),IVRE2(116)        BMTW  80
DATA RECTYP/10001,10002,10003,10011,10012,10013,-19931/      BMTW  81
DATA MATNAM/1/,MATNAM/BACH /+ONE/1/,ZERO/0/,CODE/3/             BMTW  82
DATA BMATTP/1/                                                 BMTW  83
INDXNU(I)=NDIM*(I-1)-(I*(I-1))/2                               BMTW  84
NCUN=MAX0(ADDR(1),ADDR(2),ADDR(1),ADDRD(2),SRAD(1),SRAD(2))    BMTW  85
NPARM=NGPCM+2*NMAST+6*NSAT+NCUN                                BMTW  86
*   WRITE HEADER RECORD                                         BMTW  87
NELM=NPARM+1                                               BMTA  88
V(1)=WTSUMT                                              BMTW  89
V(2)=WTSUMT                                              BMTW  90
V(3)=0.0DC      .                                         BMTW  91
WRITE(BMATTP) RECTYP(1),BMATNC,NPARM,NELM,V,NOBS,MATTYP,MATNAM  BMTK  92
C FROM THIS POINT TO LABEL 8C...
C REORDER SUM1 INTO PROPER ORDER FOR B-MATRIX
IF(PRNMAT) WRITE(OUTP,100011) BMATNO,NPARM,NOBS               BMTK  93
C DENORMALIZE THE PARTIALS FOR GEOPOTENTIAL COEFFICIENTS
IF(NHPCM.LE.0) GO TO 35
K=NCSEST+NGPCM
DO 10 I=1,NHPCM
K=K+1
LABEL1(I)=(INDXCS(1,K)*100+INDXCS(2,K))*100+INDXCS(3,K)
IRUA(I)=CFCN(I)
VALUE(I)=GPVAL0(I)*GPSIG(I)
J1=IRUK(I)
IJ=INDANL(J1)
DO S J=J1,NDIM
IJ=IJ+J
SUM1(IJ)=SUM1(IJ)/GPSIG(I)
CONTINUE
IJ=J1
DO 7 IJ=1,J1

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

      SUM1(I,J)=SUM1(IJ)/GPSIG(I)
      IJ=IJ+NDIM-11
    7 CONTINUE
      SUM2(J1)=SUM2(J1)/GPSIG(I)
    10 CONTINUE
      K=NGPCCM-1
      DO 30 I=1,K
      IPLUS1=I+1
      DO 20 J=IFLUS1,NGPCCM
      IF (LABEL(I)).LE..LABEL(J)) GO TO 20
      NTEMP=LABEL(I)
      LABEL(I)=LABEL(J)
      LABEL(J)=NTEMP
      NTEMP=ICK(I)
      IRW(I)=IROW(J)
      IRW(J)=NTEMP
      TEMP=VALUE(I)
      VALUE(I)=VALUE(J)
      VALUE(J)=TEMP
    20 CONTINUE
    30 CONTINUE
    35 IF (NMAST.LT.0) GO TO 65
C ADD STATION ADJUSTMENT TERMS TO B-MATRIX
      I1=NDIM-3*NMAST+NGPCCM
      L=0
      DO 60 I=1,NMAST
    40 L=L+1
      IF (NUMBER(L,ESTAND,NTEST).EQ.0) GO TO 40
      K=NGPCCM+(I-1)*3
      DO 50 J=1,3
      LABEL(J+K)=(J+4)*10000+ISTAND(L)
      IRW(J+K)=I1+J+K
      VALUE(J+K)=STAXYZ(J,L)
    50 CONTINUE
    50 CONTINUE
      IF (NMAST.LT.2) GO TO 65
      K=NGPCCM+2
      L=3*(NMAST-1)+NGPCCM
      DO 57 I=K,L,3
      DO 58 J=1,L,3
      IF (LABEL(I-2).LE..LABEL(J+1)) GO TO 56
      DO 59 IJ=1,3
      I1=I+IJ-3
      J1=J+IJ
      NTEMP=LABEL(I1)
      LABEL(I1)=LABEL(J1)
      LABEL(J1)=NTEMP
      NTEMP=IRCW(I1)
      IRW(J1)=IROW(J1)
      IRW(J1)=NTEMP
      TEMP=VALUE(I1)
      VALUE(I1)=VALUE(J1)
      VALUE(J1)=TEMP
    56 CONTINUE
    58 CONTINUE
    57 CONTINUE
      BMTW 112
      BMTW 113
      BMTW 114
      BMTW 115
      BMTW 116
      BMTW 117
      BMTW 118
      BMTW 119
      BMTW 120
      BMTW 121
      BMTW 122
      BMTW 123
      BMTW 124
      BMTW 125
      BMTW 126
      BMTW 127
      BMTW 128
      BMTW 129
      BMTW 130
      BMTW 131
      BMTW 132
      BMTW 133
      BMTW 134
      BMTW 135
      BMTW 136
      BMTW 137
      BMTW 138
      BMTW 139
      BMTW 140
      BMTW 141
      BMTW 142
      BMTW 143
      BMTW 144
      BMTW 145
      BMTW 146
      BMTW 147
      BMTW 148
      BMTW 149
      BMTW 150
      BMTW 151
      BMTW 152
      BMTW 153
      BMTW 154
      BMTW 155
      BMTW 156
      BMTW 157
      BMTW 158
      BMTW 159
      BMTW 160
      BMTW 161
      BMTW 162
      BMTW 163
      BMTW 164
      BMTW 165
      BMTW 166
      BMTW 167

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

C ADD ELEMENTS, DRAG, & SOLAR RADIATION          BMTW 158
65 L=NPARM-6+NSAT-NCUN                         BMTW 169
DO 30 I=1,NSAT                                 BMTW 170
  IF (SRAD(I).LE.0) GO TO 61                  BMTW 171
  L=L+1                                         BMTW 172
  LABEL(L)=201+100*I                           BMTW 173
  IRW(L)=NSAT*6+SRAD(I)                        BMTW 174
  VALUE(L)=EMISS(I)                            BMTW 175
61 IF (ADDR(I).LE.0) GO TO 62                  BMTW 176
  L=L+1                                         BMTW 177
  LABEL(L)=111+100*I                           BMTW 178
  IRW(L)=NSAT*6+ADDR(I)                        BMTW 179
  VALUE(L)=CC(I)                               BMTW 180
62 IF (ADDRD(I).LE.0) GO TO 63                  BMTW 181
  L=L+1                                         BMTW 182
  LABEL(L)=112+100*I                           BMTW 183
  IRW(L)=NSAT*6+ADDRD(I)                        BMTW 184
  VALUE(L)=CCD(I)                             BMTW 185
63 DO 70 J=1,6
  LABEL(L+J)=100*I+J                          BMTW 186
  IRW(L+J)=J+(I-1)*6                          BMTW 187
  VALUE(L+J)=ELEM0(J,I)                        BMTW 188
70 CONTINUE                                     BMTW 189
  L=L+6                                         BMTW 190
80 CONTINUE                                     BMTW 191
C PRINT B-MATRIX LABELS                         BMTW 192
  IF (PRNMAT) WRITE (OUTP,20001)
    WRITE (3MATTP) RECTYP(2),ZERO,(LABEL(I),I=1,NPARM)
  IF (PRNMAT) WRITE (OUTP,20002)
  IF (PRNMAT) WRITE (OUTP,10002) (LABEL(I),I=1,NPARM)
C PRINT B-MATRIX BY ROWS                      REPRODUCIBILITY OF THE
  IF (PRNMAT) WRITE (OUTP,20004)
  DO 130 J=1,NPARM
    J1=IRW(J)
    BMATRX(1)=SUM2(J1)
    DO 110 I=1,NPARM
      I1=IRW(I)
      IJ=INDXNC(MINC(I1,J1))+MAXO(I1,J1)
      BMATRX(I+1)=SUM1(IJ)
110 CONTINUE                                     ORIGINAL PAGE IS POOR
  WRITE (3MATTP) RECTYP(3),(BMATRX(I),I=1,NELM)
  IF (PRNMAT) WRITE (OUTP,10003) LABEL(J),(BMATRX(I),I=1,NELM)
C SET PARAMETER IDENTITIES                   BMTW 208
130 CONTINUE                                     BMTW 209
  WRITE (3MATTP) RECTYP(4),BMATNC,DN,NPARM,(ZERO,I=1,7),CODE,MATNAMEHITA BMTW 210
  IF (PRNMAT) WRITE (OUTP,10011) BMATNC,NPARM
  WRITE (3MATTP) RECTYP(5),(LABEL(I),I=1,NPARM)
  IF (PRNMAT) WRITE (OUTP,20002)
  IF (PRNMAT) WRITE (OUTP,10012) (LABEL(I),I=1,NPARM)
  WRITE (3MATTP) RECTYP(6),(VALUE(I),I=1,NPARM)
C PRINT 2 TRAILER RECORDS
  IF (PRNMAT) WRITE (OUTP,10017) (VALUE(I),I=1,NPARM)
  WRITE (3MATTP) RECTYP(7),(ZERO,I=1,14)
  WRITE (3MATTP) RECTYP(7),(ZERO,I=1,14)
END FILE EMMTP
FILE: NJFILEA&1

```

```
      WRITE (DLTP,20005) BMATNO,FILENO,BMATTP          BMTW 224
      RETURN
10001 FORMAT ('1B-MATRIX NO.',I6,' WITH',I4,' ROWS AND REPRESENTING',
     *           I6,' WEIGHTED OBSERVATIONS.')
10002 FORMAT ((19X,7(10X,15)/))
10003 FORMAT (1X,15,1PD15.6,1X,'*',7D15.0/(22X,'*',7D15.0))
10011 FORMAT ('1B-MATRIX NO.',I6,'*',I5,' A-PRIORI PARAMETER VALUES.')
10012 FORMAT ((4X,8(10X,15)/))
10013 FORMAT (/2X,1P8D15.6)
20001 FORMAT ('EXPLANATION OF LABELS',//1X,'GEOPOTENTIAL',RX,'C(N,M)', BMTW 225
     *           3X,'1MMNN',1X,'COEFFICIENTS',RX,'S(N,M)',4X,'2MMNN',1X, BMTW 226
     *           1STATION JJJJJ',8X,'X(JJJJJ)',3X,'5JJJJ',1X,'COORDINATES',9X, BMTW 227
     *           'Y(JJJJJ)',3X,'6JJJJ',21X,'Z(JJJJJ)',3X,'7JJJJ',1X,
     *           'SOLAR RADIATION',5X,'CR',1CX,'301',1X,'DRAG CONSTANT',7X, BMTW 228
     *           'CD',1CX,'211',1X,'DRAG DOT CONSTANT',3X, BMTW 229
     *           'CD',3X,'212',1X,'POSITION',12X,'X',11X,'101',1X,'AND',17X, BMTW 230
     *           'Y',1IX,'102',1X,'VELOCITY',12X,'Z',11X,'103',1X,'VECTORS', BMTW 231
     *           '13A','XDOT',RX,'104',21X,'YDOT',RX,'105',21X,'ZDOT',8X,'106',1) BMTW 232
20002 FORMAT (74X,'COLUMN LABELS')
20003 FORMAT (5EX,'PARAMETER LABELS')
20004 FORMAT ('C ROW',5X,'RIGHT-HAND',2X,AA(''),' NORMAL B-MATRIX ', BMTW 233
     *           AA(''),' LABEL',7X,'SIDE',5X,'')
20005 FORMAT ('1B-MATRIX NO.',I6,' HAS BEEN WRITTEN ON FILE NO.',I4, BMTW 234
     *           ' OF OUTPUT UNIT NO.',I3,'')
      END
```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

BSCOMP
Page 1 of 3
October 1972

NAME BSCOMP

ENTRY POINT PURPOSE

BSCMP1 INITIAL IZATION

BSCOMP TO COMPUTE ELECTRONIC BIASES AND CORRECT NORMAL EQUATIONS FOR EXTRACTION OF THE ELECTRONIC BIASES

CALLING SEQUENCE CALL BSCMP1(BTWA,BTWD,BTWD,BTIME,SUM1,SUM2,NEBIAS,
RESIDNO,NUMBER,PETYPE,PARNOS)

SYMBOL TYPE DESCRIPTION

BTWA DP SCRATCH - VECTOR OF SUMS OF PRODUCT OF BIAS PARTIAL
(NEBIAS,1) TIMES WEIGHT TIMES PARTIALS OF ADJUSTED
PARAMETERS

BTWD DP SCRATCH - VECTOR OF SUMS OF PRODUCT OF BIAS PARTIAL
(1) TIMES WEIGHT TIMES RESIDUAL

BTWB DP SCRATCH - SUMS OF WEIGHTS
(1)

PTIME DP SCRATCH - BIAS TIME ARRAY USED TO DETERMINE START OF
(1) NEW PASSES

SUM1 DP INPUT/OUTPUT - NORMAL MATRIX
(1)

SUM2 DP INPUT/OUTPUT - RIGHT-HAND SIDE OF NORMAL EQUATIONS
(1)

NEBIAS I*4 INPUT - MAXIMUM NUMBER OF ELECTRONIC BIASES IN ANY
ONE PASS

RESIDNO I*2 INPUT - ELECTRONIC BIAS STATION NUMBER
(1)

NUMBER I*2 SCRATCH - ARRAY FOR COUNTING THE NUMBER OF
(1) MEASUREMENTS IN THE PASS

PETYPE I*2 INPUT - ELECTRONIC BIAS TYPE NUMBERS REPRODUCIBILITY OF THE
(1) ORIGINAL PAGE IS POOR

PARNOS I*2 INPUT - MEASUREMENT PARAMETER NUMBERS
(1)

CALLING SEQUENCE CALL BSCOMP(IEBIAS,RESIDN,SIG,TIME+PMPXC,LINNEN)

SYMBOL TYPE DESCRIPTION

IEBIAS I*4 INPUT - ELECTRONIC BIAS INDEX NUMBER

RESIDN DP INPUT - MEASUREMENT RESIDUAL

SIG DP INPUT - MEASUREMENT SIGMA
 TIME D 244 INPUT - TIME OF MEASUREMENT
 PMPXO DP INPUT - MEASUREMENT PARTIALS
 (1)
 LINNRP #4 INPUT - LOGICAL SWITCH -- .TRUE. = LAST INNER
 ITERATION

SUBROUTINES USED STAIF2

COMMON BLOCKS APARAM CPARAM
 INPUT FILES NONE
 OUTPUT FILES NONE

```

SUBROUTINE BSCMPI(BTWA,BTWD,BTWB,BTIME,SUM1,SUM2,NBIAS,BSTNO,
* NUMBER,BETYPE,PARNDS)
* ,SUM1,NBIAS,BSTNO,NUMBER,BETYPE,PARNDS)
IMPLICIT REAL*2 (A-H,C-Z)
LOGICAL CMPGPR,LINNER,ARCPAR
INTEGER*2 PARNDS,BSTNO,NUMBER,BETYPE
INTEGER RECN01,PARMAX
REAL BTIME,TIME
DIMENSION BTWA(NBIAS+1),BTWD(1),BTWB(1),
* BTIME(1),SUM1(1),SUM2(1),PMXPXO(1),
* PARNDS(1),BSTNO(1),NUMBER(1),BETYPE(1)
COMMON/APARAM/INPAR,INPAR1,NSTA,NBIAS,NSAT,NGPARC,
* RECN01,NPAPAM,NRTAGE,PARMAX
COMMON/SPARAM/NSTA,NMAST,NSTEST,NDIM,NBIAS,
* NGPC1,NGPC2,NGPCM,NCSTGT,CMPGPR,LIM1,
* LIM2,NDEN,NDENST,NTIDST,NTIDEN,INNRSW,
* NCONGT,NDCONS
ENDNC(I)=ENDM=(I-1)-(I*(I-1))/2
C INITIALIZE
NSTART = NDIM - 3*NMAST-NGPCM-NTIDEN+1
RETURN
ENTRY BSCOMP(1BIAS,RESID,SIG,TIME,PMXPXO,LINNER)
IB1=1
IB2=NBIAS
IF(1BIAS.EQ.0) GO TO 500
IB1=IBIAS
IB2=IB1
REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
C IF NEW PASS HAS STARTED, SOLVE FOR BIASES ON PREVIOUS PASS.
IF(TIME.GT.(ETIME(1BIAS)+0.1E-11)) GO TO 500
C SUM INTO NORMAL EQUATIONS FOR ELECTRONIC BIASES
100 WTE=1.01/(SIG*SIG)
NUMBER(1BIAS)=NUMBER(1BIAS)+1
GO TO 101,PARMAX
110 PARNDS(J)
      
```

```

IF(I1.EQ.0) GO TO 200
BTWA(1B1AS,J)=BTWA(1B1AS,J)+WT*INDXC(J)
200 CONTINUE
BTWD(1B1AS)=BTWD(1B1AS)+WT*RES10
BTWB(1B1AS)=BTWB(1B1AS)+WT
BTIME(1B1AS)=BTIME
RETURN
500 ARCPAR=NSTART.GT.NDIM .OR.,NOT.LINNER
600 J=0
N=NUMBER(1B1)
IF(N.LE.0) GO TO 1200
C COMPUTE BIAS
BTWB1=1.000/BTWB(IP1)
BIAS=BTWB1*BTWD(1B1)
ISTA=BTSTNO(1B1)
SIG1=DSORT(DPLDAT(N)*BTWB1)
MTYPE=BTTYPE(IP1)
PRINT 2000,ISTA,MTYPE,BIAS
2000 FORMAT(1D***** STATION',13,' TYPE',12,' BIAS =',G25.16)
C UPDATE STATISTICAL INFORMATION
CALL STATE2(ISTA,MTYPE,SIG1,BIAS,N,NSTAT)
C CORRECT NORMAL MATRIX
DO 900 I=1,NPARAM
SUM=BTWA(IP1,I)*BTWD(IP1)
DO 700 K=I,NPARAM
L=J+K
700 SUM1(L)=SUM1(L)-SUM*BTWA(IP1,K)
SUM2(I)=SUM2(I)-SUM*BTWD(IP1)
BTWA(IP1,I)=0.000
IF(ARCPAR) GO TO 900
DO 800 K=NSTART,NDIM
L=J+K
800 SUM1(L)=SUM1(L)-SUM*BTWA(IP1,K)
900 J=J+NDIM-I
IF(ARCPAR) GO TO 1200
J=INDXN(NSTART)
DO 1100 I=NSTART,NDIM
SUM=BTWA(IP1,I)*BTWB1
DO 1200 K=I,NDIM
L=J+K
1200 SUM1(L)=SUM1(L)-SUM*BTWA(IP1,K)
SUM2(I)=SUM2(I)-SUM*BTWD(IP1)
BTWA(IP1,I)=0.000
1100 J=J+NDIM-1
C ZERO SUMMING ARRAYS
1200 BTWA(IP1,I)=0.000
BTWD(IP1,I)=0.000
BTIME(IP1,I)=0.0
NUMBER(IP1)=0
IP1=IP1 + 1
C IF LAST CALL FOR ARC, PROCESS LAST PASS FOR EACH ITERATION (GO TO 600)
IF((IP1.EQ.IP2)) GO TO 600
C AFTER ALL PASSES COMPLETE, RETURN IF LAST CALL FOR ITERATION
IF((IP1AS.EQ.0)) RETURN
IP1=IP2
C SAVE TIME OF LAST MEASUREMENT FOR CHECK TO DETERMINE NEW PASS
BTIME(IP1)=BTIME
GO TO 1100
END

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME	CBROWN	
PURPOSE	TO SET UP VARIABLE STORAGE ARRAYS AND TO INITIALIZE SUBROUTINES USING THESE ARRAYS	
CALLING SEQUENCE	CALL CBROWN(IADDR,IBIAS,BBIAS,KSUM,NSUM,PLHN, ISTANO,ENV,SUM1,GRPAR,INXCXS,SUM2, XYZSIG,XFIT,XYZ,PPMXD,XI,PARKOS,ENSE, DENCON,CSUM,EBIAS)	
SYMBOL	TYPE	DESCRIPTION
IADDR	I	INPUT - ARRAY CONTAINING ADDRESSES OF THE VARIABLE STORAGE ARRAYS
IBIAS	I*2	INPUT - VARIABLE STORAGE ARRAY NO. 1 FOR BIASES
BBIAS	DP	INPUT - VARIABLE STORAGE ARRAY NO. 2 FOR BIASES
KSUM	I	INPUT - VARIABLE STORAGE ARRAY NO. 1 FOR STATISTICS
NSUM	I	INPUT - VARIABLE STORAGE ARRAY NO. 2 FOR STATISTICS
PLHN	DP	INPUT - VARIABLE STORAGE ARRAY NO. 1 FOR STATIONS
ISTANO	I*2	INPUT - VARIABLE STORAGE ARRAY NO. 2 FOR STATIONS
ENV	DP	INPUT - VARIABLE STORAGE ARRAY NO. 3 FOR STATIONS
SUM1	DP	INPUT - VARIABLE STORAGE ARRAY NO. 1 FOR NORMAL EQUATIONS
GRPAR	DP	INPUT - VARIABLE STORAGE ARRAY NO. 1 FOR PARTIALS
INXCXS	I*2	INPUT - VARIABLE STORAGE ARRAY NO. 1 FOR GEOPOTENTIAL
SUM2	DP	INPUT - VARIABLE STORAGE ARRAY NO. 2 FOR NORMAL EQUATIONS
XYZSIG	R	INPUT - VARIABLE STORAGE ARRAY NO. 4 FOR STATIONS
XFIT	DP	INPUT - VARIABLE STORAGE ARRAY NO. 1 FOR INTEGRATOR
XYZ	DP	INPUT - VARIABLE STORAGE ARRAY NO. 5 FOR STATIONS

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

CBROWN
Page 2 of 7
October 1972

(1)

PMPXO DP INPUT - VARIABLE STORAGE ARRAY NO. 2 FOR PARTIALS
(1)

XI DP INPUT - VARIABLE STORAGE ARRAY NO. 1 FOR
(1) INTERPOLATOR

PARNOS I*2 INPUT - VARIABLE STORAGE ARRAY NO. 1 FOR PARAMETER
(1) NUMBERS

DENSE DP INPUT - VARIABLE STORAGE ARRAY NO. 1 FOR DENSITIES
(1)

DENCCN DP INPUT - VARIABLE STORAGE ARRAY NO. 2 FOR DENSITIES
(1)

CSUM I INPUT - VARIABLE STORAGE ARRAY NO. 3 FOR STATISTICS
(1)

EBIAS I*2 INPUT - VARIABLE STORAGE ARRAY NO. 1 FOR ELECTRONIC
(1) BIASES

SUBROUTINES USED	CLEAR	BSCMP1	COMAD1	ORBIT1	PROCS1
	STAI1	VAL1	F1	PDEN2	COMPAR
	ESTIM1	RESPI1	SURON1	DRAG1	CLEAR2
	TRUEP1	ARCPAR	DATRO1	GRHRA1	NONAME
	CSDOT1	PREDC1	SQANT1	THOST1	

COMMON BLOCKS APARAM CPARAM CONOUT CSTINF VRSLOK

INPUT FILES NONE

OUTPUT FILES NONE

SUBROUTINE CBFCW(N,IADDR,IBIAS,Ebias,KSUM,NSUM,PLHN,ISTANO,ENV,	CBRC	94
• SUM1,GRPAR,INXC,NSUM2,XYZSIG,XFIT,XYZ,PMPXO,XI,PARNOS,	CBRC	95
• DENSE,DENCCN,CSUM,EBIAS)	CBRC	96
IMPLICIT REAL*8 (A-H,O-Z)	CBRO	97
• DIMENSION IADDR(18),IBIAS(1),EBIAS(1),KSUM(1),NSUM(1),PLHN(1),	CBRO	98
• ISTANO(1),ENV(1),SUM1(1),GRPAR(1),INXC(1),NSUM2(1),	CBRO	99
• XYZSIG(1),XFIT(1),XYZ(1),PMPXO(1),XI(1),PARNOS(1),DENSE(1)	CBRO	100
DIMENSION DENCCN(1),CSUM(1),EBIAS(1)	CBRO	101
INTEGER*2 IBIAS,ISTANO,INXC,PARNO,EBIAS	CBRC	102
INTEGER ESTSTA,CSUM	CBRC	103
LOGICAL CMPGPR	CBRO	104
REAL XYZSIG,RMSALL,OUTCON	CBRO	105
COMMON/APARAM/INPAR,INPARI,NEIAS,ESTSTA,NSAT,NSPARC,NORECI,NPARAM,CBRO	106	
• NEIAS,MAXPAR	CBRO	107
COMMON/CPARAM/ASTA,NMAST,NSTEST,NDIM,MBIAS,NGPC1,NGPC2,	CBRO	108
• NGPCOM,NCSEST,CMPGRP,LIM1,LIM2,NDEN,NDENST,NTIDST,NTIDEN,	CBRO	109
• INNRSW,NCONST,NDCONS	CBRO	110
COMMON/CONOUT/RMSALL,OUTCON,MINOUT,MAXOUT,LITRES,MAXSAT,MAXZIN,	CBRO	111

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

CBROWN
Page 3 of 7
October 1972

```

NSTART,NEQNMX,IVAR,IORDER,NARES,NSTART,LSTART(6)           CBRO 112
COMMON/CSTINF/NCASNG(283),LEASE                           CBRO 113
COMMON/VIRBLCK/COSLAM(66),PR(105P)                         CBRO 114
C COMPUTE INDICES OF STARTING LOCATIONS OF DIFFERENT ARRAYS TO BE USED   CBRO 115
NBIASE=NBIAS                                              CBRC 116
IB1=1                                                       CBRO 117
IB2=IB1+4*NBIAS                                         CBRC 118
IB3=IB2+4*NBIAS                                         CBRO 119
MSAT3=MAXSAT*3                                           CBRC 120
IH4=IB3+4*(MBIAS+MSAT3+NCSEST)                          CBRO 121
IB5=IB4+4*(MBIAS+MSAT3+NCSEST)                          CBRO 122
IB6=IB5+MBIAS                                           CBRC 123
IB7=IB6+MBIAS                                           CBRO 124
IC1=IB3+4*(MBIAS+MSAT3)                                 CBRC 125
IC2=IB4+4*(MBIAS+MSAT3)                                 CBRO 126
IC3=IB7+MBIAS+MSAT3                                    CBRC 127
IB81=1                                                     CBRO 128
IBC1=IB81+MBIAS+MSAT3                                  CBRC 129
IBD1=IBC1+NCSEST                                       CBRO 130
IDC2=IBD1+NTIDST                                       CBRO 131
MBIAS=MBIAS+MSAT3                                      CBRO 132
NSTAT=NSTAT+MAXSAT                                     CBRO 133
IP=1                                                       CBRC 134
IL=IP+NSTA+1                                            CBRC 135
IH=IL+NSTA+1                                            CBRC 136
IN=IH+NSTA+1                                            CBRC 137
IPO=IN+NSTA+1                                           CBRO 138
ILC=IPO+NTEST                                         CBRO 139
IHO=ILO+NTEST                                         CBRO 140
ITHFRM=IHO+NTEST                                       CBRC 141
ISTA=1                                                     CBRO 142
IEST=ISTA+NSTA+1                                       CBRO 143
ILOC=IEST+NTEST                                       CBRO 144
IENV1=1                                                   CBRC 145
IENV2=IENV1+3*(NSTA+1)                                 CBRO 146
IENV3=IENV2+3*(NSTA+1)                                 CBRC 147
ISUM2=1                                                   CBRO 148
ITTL=ISUM2+NDIM                                         CBRC 149
IDELTA=ITTL+NDIM                                       CBRO 150
ISIG1=1                                                   CBRO 151
ISIG2=9*NTEST+ISIG1                                     CBRO 152
ISIG3=9*NTEST+ISIG2                                     CBRO 153
ISIG4=9*NTEST+ISIG3                                     CBRC 154
ISIG5=6*NTEST+ISIG4                                     CBRO 155
IXFIT=1                                                   CBRO 156
IFCI=IXFIT+6*NEQNMX*MAXSAT                            CBRO 157
ISTNCS=3*NCSEST+1                                       CBRO 158
ISTXYZ=1                                                 CBRC 159
ISTXYZ0=ISTXYZ+2*(NSTA+1)                             CBRO 160
IXI=1                                                   CBRO 161
IPXPX0=IXI+6                                           CBRC 162
IAREA=1                                                 CBRO 163
ICENTR=IAREA+4*NDEN                                     CBRC 164
ICCENT=ICENTR+12*NDFN                                   CBRO 165
IDENS0=ICCENT+2*NOELST                                CF RO 166
IDENS2=IDENS0+NTICST                                CBRC 167

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

    IDSIG=IDENS0+NTIDEN+NCONST          CBRO 158
    IDSIG2=IDSIG+NTIDST                CBRO 159
    ICSUM=1           CBRO 170
    IMSUM=ICSUM+NSTAT*MAXSAT*LBASE*16   CBRO 171
    ILSUM=IMSUM+NSTAT*MAXSAT*LBASE*6    CBRO 172
    IOTKA=1                           CBRO 173
    IOTAD=IOTKA++*NDIM*NEBIAS         CBRO 174
    IOTWD=IOTWD++*NEMBIAS            CBRO 175
    IOTIME=IOTWD+4*NEMBIAS          CBRO 176
    IBESTA=IBTIME+2*NEMBIAS        CBRO 177
    IBETYP=IBESTA*NEDIAS          CBRC 178
    INUMBR=IBETYP*NEDIAS          CBRO 179
    NCLEAR=INUMBR*NEDIAS-1        CBRO 180
    IF(NEDIAS.GT.0) CALL CLEAR2(EBIAS,NCLEAR,1)
    NPARM=NENMX+6                  CBRO 181
    NSTAI=NSTA+1                   CBRO 182
    NSTART=NDIM-NPAST*3-NGPCOM-NTIDEN  CBRO 183
    C INITIALIZE SUBROUTINES USING VARIABLE STORAGE ARRAYS
    CALL CATROI(LBIAS,IBIAS,SUM1,INDXCS,SUM2,BBIAS(IBESTA))
    CALL SQANTI(PLHN(IH),XYZSIG(ISIG3),XYZSIG(ISTG2),XYZ(ISTXYZ),
    ENV(IENV1),ENV(IENV2),ENV(IENV3),PLHN(ITHPRM),PLHN(IP),
    PLHN(IL),ISTANO)                 CBRO 185
    C LOAD COMMON PARAMETER INFORMATION INTO VARIABLE STORAGE ARRAYS
    CALL COMPAR(IEIAS(IC1),IBIAS(IC2),IBIAS(IC3),BBIAS(IBC1),
    PLHN(IP),PLHN(IL),PLHN(IF),PLHN(IN),PLHN(IP0),PLHN(IL0),
    PLHN(IHO),ISTANG(ISTA),ISTANG(IEST),INDXCS,SUM2(ITL),
    XYZSIG(ISIG3),XYZSIG(ISIG2),XYZSIG(ISTG1),XYZSIG(ISIG4),
    XYZSIG(ISIG5),XYZ(ISTXYZ),XYZ(ISTXY0),INDXCS(ISTNS),
    ISTANO(ILC),DENSE(IDSIG2),DENSE(IDENS2),BBIAS(IBC2),
    DENSE(IAREP),DENSE(ICENTR),DENSE(ISCENT))  CBRO 190
    C LOAD ARC PARAMETER INFORMATION INTO VARIABLE STORAGE ARRAYS
    CALL ARCPAR(IEIAS(IBC1),IBIAS(IBC2),IBIAS(IBC3),BBIAS(IBC1),
    IBIAS(IBC4),IBIAS(IBC5),IBIAS(IBC6),IBIAS(IBC7),IBIAS(IC1),
    IBIAS(IC2),IBIAS(IC3),BBIAS(IBC1),INDXCS,IBIAS(IBESTA),
    EBIAS(IBEITYP),NEIASE,ISTANO)      CBRO 199
    C INITIALIZE REMAINING SUBROUTINES USING VARIABLE STORAGE ARRAYS
    CALL COMAD1(ISTANG(ISTA),ISTANG(IEST),ISTANU(ILDC),XYZ(ISTXYZ),
    XYZ(ISTXY0),PLHN(IP),PLHN(IL),PLHN(IN),PLHN(IP0),PLHN(IL0),
    PLHN(IHO),PLHN(IN),XYZSIG(ISIG3),XYZSIG(ISTG2),XYZSIG(ISIG5),
    XYZSIG(ISIG4),SUM1,INDXCS,BEIASC(IBC1),IEIAS(IC1),IBIAS(IC2))
    CALL DRAG1(GRF/R)
    CALL ESTIM1(SUM1,SUM2(1SUM2),SUM2(1DELTA),XYZ(ISTXYZ),
    XYZ(ISTXY0),XYZSIG(ISTG1),BEIAS,IBIAS(IBC3),IBIAS(IBC4),
    ISTAND(ISTA),ISTAND(IEST),ISTAND(ILC),IBIAS(IBC7),PARNOS,
    INDXCS,DENSE(IDENO),DENSE(IDSIG))  CBRO 203
    CALL F1(GRF/R)
    A=GRHRA1(ENV,NSTA)
    A=DSDT1(ENV(IENV1),ENV(IENV2),ENV(IENV3))
    CALL ORBIT1(XFIT(IFCT),XFIT(IXFIT),XI(XI))
    CALL PREDC1(ENV(IENV1),ENV(IENV2),ENV(IENV3),PMPX0,XI(7),NPARM,
    NECNMX)
    CALL PROCS1(ISTAND(ISTA),XYZ(ISTXYZ),PLHN(IP),PLHN(IL))
    CALL RESPRI(INDXCS,IBIAS(IC2),GRPAR)
    CALL STATFI(KSLM,NSUM,NSTAT,MAXSAT,CSUM(ICSUM),CSUM(IMSJM),
    LBASE,CSUM(ILSUM))                 CBRO 219
    IF(LBASE.GT.0) LBASE=NSTA          CBRO 220
                                            CBRO 221
                                            CBRO 222
                                            CBRO 223

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

CBROWN
Page 5 of 7
October 1972

CALL TWOST1(PNPX0,NPARM)	CBRO 224
CALL SURON1(EBIAS(IUD2),DENSE(IAREA),DENSE(1CENTR),GRPAR,DENCON)	CHRO 225
CALL PDEN2(DENSE(1CENTR),DENSE(IAREA),DENSE(1DENS2))	CBRO 226
• EBIAS(IUD2),DENSE(1DSIG2),SUM1,DENCON,GRPAR)	CBRO 227
CALL TRUEPI(XYZ)	CBRO 228
CALL DSCMP1(EBIAS(IRTWA),EBIAS(TBTWD),EBIAS(IBTWB),EBIAS(IBTIME))	CBRO 229
• SUM1,SUM2,NETASE,EBIAS(IEESTA),EBIAS(INUMBR),EBIAS(IEETYP),	CBRO 230
• FARNOS)	CBRC 231
CALL VEVAL1(GRFAR)	CBRO 232
CALL CLEAR(CUSLAM,66,2)	CBRO 233
COSLAM(2)=1.0CC	CBRO 234
C CALL NCNAME AND PERFORM JOB PRIME FUNCTIONS	CBRO 235
CALL NCNAME(NPARM,PNPX0,IBIAS(1B7),IBIAS(1B3+12),IBIAS,IBIAS(1B4),	CHRO 236
• IBIAS(1B1),IBIAS(1B2),IBIAS(1B5),IBIAS(1B6),PARNUS,	CBRO 237
• SUM2(1SUM2),SUM2(1TTL),SUM2(1DELTA),INDXCS,IBIAS(1BC1),IBIAS(IC1),	CBRO 238
• ISTANU(1STA),PLIN(IN)+SUM1,INDXCS,IBIAS(1BC1),IBIAS(IC1),	CBRO 239
• IBIAS(IC2),IBIAS(IC3),DENSE(IAREA),DENSE(1CENTR),DENCON,	CBRO 240
• EBIAS(1DESTA),EBIAS(IEETYP))	CHRO 241
RETURN	CBRO 242
END	CHRO 243

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

PURPOSE TO ALLOCATE CORE FOR VARIABLE STORAGE ARRAYS

CALLING SEQUENCE CALL CHARLY(NCORE,ICORE,\$1050)

SYMBOL TYPE DESCRIPTION

NCORE I+4 NUMBER OF ARRAYS FOR WHICH CORE IS TO BE ALLOCATED
ICORE I+4 SIZES IN BYTES OF ARRAYS TO BE ALLOCATED(CORE
(NCORE))
\$1050 I+4 RETURN LABEL - RETURN TO THIS NUMBER IF
INSUFFICIENT CORE IS AVAILABLE

SUBROUTINES USED NONE

COMMON BLOCKS NONE

INPUT FILES NONE

OUTPUT FILES NONE

CHARLY START 0		CHAR	27
* STORE OFF REGISTERS		CHAR	28
RC 15,12(15)		CHAR	29
DC X'7F		CHAR	30
DC CL7'CHARLY'		CHAR	31
STM 14,12,12(13)		CHAR	32
BALR 12,0		CHAR	33
USING R,12		CHAR	34
* SET UP SAVE AREA CHAIN		CHAR	35
LR 10,13		CHAR	36
LA 13,AREA		CHAR	37
ST 18,8(0,1C)		CHAR	38
ST 10,4(0,13)		CHAR	39
RC 15,FIRST		CHAR	40
AREA DS 13F		CHAR	41
* LOAD REGISTER 2 WITH THE NUMBER OF ARRAYS		CHAR	42
FIRST L 2,C(1)		CHAR	43
L 2,C(2)		CHAR	44
* LOAD REGISTER 3 WITH THE ADDRESS OF BYTE COUNT ARRAY		CHAR	45
L 3,C(1)		CHAR	46
* CONSTRUCT BYTE COUNT LIST FOR GETMAIN		CHAR	47
SR 6,5		CHAR	48
SR 6,5		CHAR	49
LOOP ST 5,LIST(6)		CHAR	50
L 7,0(3)		CHAR	51
ST 7,LIST(6)		CHAR	52
LA 6,-(6)		CHAR	53
LA 3,4(3)		CHAR	54
DCT 2,LOOP		CHAR	55

TC	9,X'80*	CHAR	56
STC	9,LIST-4(6)	CHAR	57
* ISSUE REQUEST FOR STORAGE		CHAR	58
	GETMAIN LC,LA=LIST, A=ADDR	CHAR	59
	STC 9,ADDR-4(6)	CHAR	60
* RETURN IF INSUFFICIENT STORAGE AVAILABLE		CHAR	61
	NR 15,15	CHAR	62
	BC 1,RET	CHAR	63
* CALL CBROWN		CHAR	64
	L4 1,ADDR	CHAR	65
	ST 1,LADDR	CHAR	66
	LA 1+LADDR	CHAR	67
	L 15,ADCON	CHAR	68
	BALR 14,15	CHAR	69
* RESTORE REGISTER AND RETURN		CHAR	70
	SR 15,15	CHAR	71
PET	L 13,AREA+4	CHAR	72
	LM 2,12,28(13)	CHAR	73
	L 14,12(13)	CHAR	74
	MVI 12(13),X'FF'	CHAR	75
	BCR 15,14	CHAR	76
ADCON	DC V(CBROWN)	CHAR	77
LIST	DS 30F	CHAR	78
LADDR	DS F	CHAR	79
ADDR	DS 30F	CHAR	80
END		CHAR	81

CLEAR
Page 1 of 1
October 1972

NAME CLEAR
PURPOSE TO SET AN ARRAY TO ZERO
CALLING SEQUENCE CALL CLEAR(IA,N,K)
SYMBOL TYPE DESCRIPTION
IA I OUTPUT - ARRAY TO BE CLEARED
(1)
N I INPUT - FIRST DIMENSION OF ARRAY
K I INPUT - SECOND DIMENSION OF ARRAY
SUBROUTINES USED NONE
COMMON BLOCKS NONE
INPUT FILES NONE
OUTPUT FILES NONE

SUBROUTINE CLEAR(IA,N,K)	CLEA	27
DIMENSION IA(1)	CLEA	28
J=N*K	CLEA	29
C CLEAR THE ARRAY	CLEA	30
DO 10 I=1,J	CLEA	31
10 IA(I)=0	CLEA	32
RETURN	CLEA	33
END	CLEA	34

NAME CLEAR2
PURPOSE TO SET AN ARRAY TO ZERO
CALLING SEQUENCE CALL CLEAR2(IA,K,L)

SYMBOL TYPE DESCRIPTION
IA I OUTPUT - ARRAY TO BE CLEARED
K I INPUT - FIRST DIMENSION OF ARRAY
L I INPUT - SECOND DIMENSION OF ARRAY

SUBROUTINES USED NONE
COMMON BLOCKS NONE
INPUT FILES NONE
OUTPUT FILES NONE

SUBROUTINE CLEAR2(IA,K,L)
INTEGER*2 IA(1)
J=K*L
C CLEAR THE ARRAY
DO 10 I=1,J
10 IA(I)=C
RETURN
END

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

COEF

DESCRIPTION

COEF computes the set of interpolation coefficients needed based on the order of the interpolation and the distance in units of stepsizes from the most recent time point in the array of back values.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NANE COEF
 PURPOSE TO COMPUTE INTERPOLATOR COEFFICIENTS
 CALLING SEQUENCE CALL COEF(S,ICRDER,A,AS)
 SYMBOL TYPE DESCRIPTION
 S DP INPUT - INTERVAL DISTANCE
 ICRDER I INPUT - CRDPR
 A DP OUTPUT - POSITION COEFFICIENT VECTOR
 AS DP OUTPUT - VELOCITY COEFFICIENT VECTOR
 SUBROUTINES USED COM
 COMMON BLOCKS INTERP
 INPUT FILES NONE
 OUTPUT FILES NONE
 REFERENCES GSFC X-553-70-372
 "GEOSTAR-II A GEOPOTENTIAL AND STATION POSITION
 RECOVERY SYSTEM", C. E. VELEZ, G. P. BRODSKY
 OCTOBER 1970

```

SUBROUTINE COEF(S, ICRDER,A,AS)
IMPLICIT REAL*8 (A-H,O-Z)
COMMON/INTERP/CDPB(21,21),M12(4)
DATA MAXC/15/
DATA ICL2/0/
DIMENSION BPZ(21),BPPZ(21),BP(22),BPP(23),B(23),A(1),AS(1)
IF (ICL2+N-1) 100 TO 900
CALL CEM(20)

C INITIALIZE
E(1)=1.00
EPZ(1)=1.00
EPPZ(1)=1.00
EP(1)=1.00
BPP(1)=1.00
DO 10 I=2,MAXC
IL1=I-1
SUM=0.00
DO 9 L=1,IL1
  SUM=SUM-EPZ(L)/DFLOAT(I-L+1)
10 EPZ(1)=SUM
DO 20 I=2,MAXC
  
```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

COEF	35
CUEF	36
COEF	37
COEF	38
COEF	39
COEF	40
COEF	41
COEF	42
COEF	43
COEF	44
COEF	45
COEF	46
COEF	47
CUEF	48
COEF	49
COEF	50
COEF	51
COEF	52
COEF	53
COEF	54
COEF	55

```
SUM=0.00 COEF 56
DO 19 L=1,1 COEF 57
19 SUM=SUM+EFZ(L)*BPZ(I-L+1) COEF 58
20 BPPZ(I)=SUM COEF 59
C END INITIALIZATION COEF 60
900 IOL1=ICRDER-1 COEF 61
IOL2=ICRDER-2 COEF 62
DO 30 I=2,ICRDER COEF 63
30 B(I)=B(I-1)*(DFLOAT(2-I)-S)/DFLOAT(I-1) COEF 64
DO 40 I=2,ICRDER COEF 65
SUM=0.00 COEF 66
DO 39 L=1,1 COEF 67
39 SUM=SUM+EFZ(L)*B(I-L+1) COEF 68
40 BPP(I)=SUM COEF 69
DO 50 I=2,ICRDER COEF 70
SUM=0.00 COEF 71
DO 49 L=1,1 COEF 72
49 SUM=SUM+EFZ(L)*B(I-L+1) COEF 73
50 BPP(I)=SUM COEF 74
FACT=1.00 COEF 75
DO 100 I=1,ICL2 COEF 76
SUM=0.00 COEF 77
DO 80 L=1,ICL2 COEF 78
80 SUM=SUM+FACT*COMB(L,I)*BPP(L+2) COEF 79
A(I)=SUM COEF 80
100 FACT=-FACT COEF 81
FACT=1.00 COEF 82
DO 110 I=1,IOL1 COEF 83
SUM=0.00 COEF 84
DO 105 L=1,IOL1 COEF 85
105 SUM=SUM+FACT*COMB(L,I)*BPP(L+1) COEF 86
AS(I)=SUM COEF 87
110 FACT=-FACT COEF 88
RETURN COEF 89
END COEF 90
```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME COEFL
 PURPOSE TO LIST NON-ZERO GRAVITY MODEL COEFFICIENTS OF THE SPHERICAL HARMONIC EXPANSION OF THE GEOPOTENTIAL
 CALLING SEQUENCE CALL COEFL(IUNIT,NORMAL)
 SYMBOL TYPE DESCRIPTION
 IUNIT I INPUT - PRINTER FILE NUMBER
 NORMAL L INPUT - SWITCH INDICATING NORMALIZED COEFFICIENTS ARE DESIRED
 SUBROUTINES USED DENORM
 COMMON BLOCKS FMODEL
 INPUT FILES NONE
 OUTPUT FILES NONE

```

SUBROUTINE COEFL(IUNIT,NORMAL)                               COEF 25
IMPLICIT REAL*8(A-H,O-Z)                                 COEF 27
LOGICAL NORMAL                                         COEF 28
REAL*8 CS                                              COEF 29
COMMON/FMODEL/INDEX1, INDEX2, INDEX3, INDEX4,CS(30,33),MMODEL(8) COEF 30
DIMENSION OUT1(5),OUT2(3),IND1(5),IND2(5)                COEF 31
REAL*8 MCCEL                                         COEF 32
DATA CC0,CC1/1H0,1H1/                                     COEF 33
WRITE(IUNIT,100) MODEL                                    COEF 34
C WRITE OUT ZENALS                                     COEF 35
  I=0                                                 COEF 36
  DO 10 N=3,INDEX1                                     COEF 37
  NC=N-1                                             COEF 38
  IF(CS(NC,1).EQ.0.000) GO TO 10                      COEF 39
  I=I+1                                             COEF 40
  OUT1(I)=CS(NC,1)                                    COEF 41
  IF(NORMAL) OUT1(I)=OUT1(I)/DENORM(NC,0)             COEF 42
  IND1(I)=NC                                         COEF 43
  IND2(I)=C                                         COEF 44
  IF(I.LT.5) GOTO 10                                  COEF 45
  I=0                                                 COEF 46
  WRITE(IUNIT,102) (IND1(J),IND2(J),OUT1(J),J=1,5)    COEF 47
10  CONTINUE                                         COEF 48
  IF(I.GT.5) WRITE(IUNIT,102) (IND1(J),IND2(J),OUT1(J),J=1,1) COEF 49
C WRITE SECTORIALS & TESSERALS                      COEF 50
  LINES=0                                            COEF 51
  I=0                                                 COEF 52
  CC=CC0                                           COEF 53
  DO 20 N=3,INDEX1                                     COEF 54
  NC=N-1                                             COEF 55

```

```

NS=32-N          COEF 56
MAXU=MINO(INDEX3,N) COEF 57
DU 20 M=2,MAXC COEF 58
MS=34-N          COEF 59
MT=M-1          COEF 60
IF(CS(NC,M).EQ.0.0D0.AND.CS(NS,MS).EQ.0.0D0) GO TO 20
I=I+1          COEF 61
ANORM=1.0D0      COEF 62
IF(NORMAL) ANCRN=1.0D0/ENCRH(NC,MT)
OUT1(1)=CS(NC,M)*ANCRN COEF 63
OUT2(1)=CS(NS,MS)*ANORM COEF 64
IND1(1)=NC COEF 65
IND2(1)=NT COEF 66
IF(I.LT.3) GOTO 20 COEF 67
IF(MOD(LINES,30).EQ.0) WRITE(IUNIT,103) CC COEF 68
IF(MOD(LINES,5).EQ.0) WRITE(IUNIT,101) COEF 69
I=0          COEF 70
CC=CC1          COEF 71
LINES=LINES+1 COEF 72
WRITE(IUNIT,104) (IND1(J),IND2(J),OUT1(J),OUT2(J),J=1,3) COEF 73
20 CONTINUE COEF 74
IF(I.GT.0)WRITE(IUNIT,104) (IND1(J),IND2(J),OUT1(J),OUT2(J),J=1,I) COEF 75
RETURN COEF 76
100 FORMAT(1H1,14X,9A8//6X, COEF 77
      *      6HONALS/5X,6(1H-)//5(5X,5HINDEX,5X,5HVALUE,1X)/7X, COEF 78
      *      5(4HN-M,12X)/1X) COEF 79
101 FORMAT(1X) COEF 80
102 FORMAT(1H ,3X,5(2X,12,13,2X,1PE12.5,1X)) COEF 81
103 FORMAT(A1,5X,24HSECTORIALS AND TESSERALS/5X,10(1H-),1X,3(1H-), COEF 82
      *      1X,9(1H-)//5X,5(5HINDEX,13X, COEF 83
      *      5HVALUE,15X)/7X,3(4HN-M,FX,1HC,13X,1HS,1IX)) COEF 84
104 FORMAT(1H ,5X,3(12,13,2X,1PE12.5,3X,1PE12.5,4X)) COEF 85
END COEF 86
COEF 87
COEF 88

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

COM
Page 1 of 1
October 1972

NAME	COM	
PURPOSE	TO COMPUTE BINOMIAL COEFFICIENTS	
CALLING SEQUENCE	CALL COM(M)	
SYMBOL	TYPE	DESCRIPTION
M	I	INPUT - NUMBER OF COEFFICIENTS
SUBROUTINES USED	NONE	
COMMON BLOCKS	INTERP	
INPUT FILES	NONE	
OUTPUT FILES	NONE	

SUBROUTINE COM(M)	COM 22
IMPLICIT REAL*8 (A-H,O-Z)	COM 23
COMMON/INTERP/C(21,21),NDUM(4)	COM 24
M1=M+1	COM 25
DO 10 I=1,M1	COM 26
C(I,1)=1.0D	COM 27
C(I,1)=I,CD	COM 28
IF(I.LE.2) GO TO 10	COM 29
I1=I-1	COM 30
DO 5 J=2,I1	COM 31
5 C(I,J)=C(I-1,J)+C(I-1,J-1)	COM 32
10 CONTINUE	COM 33
RETURN	COM 34
END	COM 35

8.0-94

0 0 04

NAME COMADJ
ENTRY POINT PURPOSE
COMADI INITIALIZATION
COMADJ TO PRINT ADJUSTMENTS TO COMMON PARAMETERS

CALLING SEQUENCE CALL COMADI(ISTANO,ESTANO,LCC,STAXYZ,STXYZO,RLAT,
RLON,H,RLATO,RLONO,HO,NAME,PSIG,
PLHSIG,XYZNOM,PLHNOM,SUM1,INDXCS,
GPVAL,GPVAL0,GPSIG1)

SYMBOL	TYPE	DESCRIPTION
ISTANO	I*2	INPUT - STATION NUMBERS (1)
ESTANO	I*2	INPUT - MASTER STATION NUMBERS FOR ESTIMATED STATIONS (1)
LCC	I*2	SCRATCH
STAXYZ	DP	INPUT & OUTPUT - CURRENT BEST STATION COORDINATES (3,1)
STXYZO	DP	INPUT - A PRIORI STATION POSITIONS (3,1)
RLAT	DF	INPUT - STATION LATITUDES IN RADIANS (1)
RLON	DF	INPUT - STATION LONGITUDES IN RADIANS (1)
H	DF	INPUT - STATION HEIGHT IN METERS (1)
RLATO	DP	INPUT - A PRIORI STATION LATITUDE IN RADIANS (2)
RLONO	DF	INPUT - A PRIORI STATION LONGITUDE IN RADIANS (1)
HO	DP	INPUT - A PRIORI STATION HEIGHT IN METERS (1)
NAME	DP	INPUT - STATION NAMES (1)
PSIG	R	OUTPUT - STATION COVARIANCES (3,3,1)
PLHSIG	R	INPUT & OUTPUT - STATION SPHERICAL COORDINATE COVARIANCES (3,3,1)

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

XYZNUM	R	INPUT - NOMINAL SIGMAS AND CORRELATIONS ON (6,1)
PLHNUM	R	INPUT - NOMINAL SIGMAS AND CORRELATIONS ON (6,1)
SLMI	DP	INPUT - INVERTED LEAST SQUARES MATRIX IN VECTOR (1)
INDXCS	I*2	INPUT - INDICES OF ADJUSTED GEOPOTENTIAL (3,1)
GPVAL	DP	INPUT - CURRENT VALUES OF ADJUSTED GEOPOTENTIAL (1)
GPVAL0	DP	INPUT - A PRIORI VALUES FOR ADJUSTED (1) GEOPOTENTIAL COEFFICIENTS
GPSIG	DP	INPUT - SIGMAS FOR ADJUSTED GEOPOTENTIAL (1) PARAMETERS

CALLING SEQUENCE CALL COMADJ(OUTER)

SYMBOL	TYPE	DESCRIPTION		
OUTER	I	INPUT - OUTER ITERATION NUMBER		
SUBROUTINES USED	PDEN	SQANT	OUTRAD	NUMLOC
COMMON BLOCKS	CONSTS	CPARAM	FNodel	TPEBLK
INPUT FILES	NONE			
OUTPUT FILES	OUTP - PRINTER			

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

SUBROUTINE COMADJ(ISTANC,ESTANG,LCC,STAXYZ,STXYZ0,RLAT,RLON,H, • RLATO,RLONO,HG,NAME,PSIG,PLHSIG,XYZNUM,PLHNUM,SUM1,INDXCS, • GPVAL,GPVAL0,GPSIG) IMPLICIT REAL*8 (A-H,O-Z) LOGICAL CNPGPF INTEGER I*2 ISTANC,ESTANG,LCC,INDXCS INTEGER OUTER,DASH,OUTP,DATA REAL PLHNUM,XYZNUM,PSIG,SIG,PLHSIG DOUBLE PRECISION NAME,NCDEL DIMENSION IARRAY(3),SDEV(3),COF1(3),SIG(3,3),SUM1(1),ISTAND(1), • ESTANG(1),LCC(1),STAXYZ(3,1),STXYZ0(3,1),RLAT(1),RLON(1),H(1), • RLATO(1),RLONO(1),HG(1),NAME(1),PSIG(3,3,1),PLHSIG(3,3,1), • XYZNUM(6,1),PLHNUM(6,1),INDXCS(3,1),GPVAL(1),GPVAL0(1), • GPSIG(1),ICG(2) COMMON/CONSTS/CP1,DTWOP,ERAD,EPSEC COMMON/CPARAM/NCSTA,NMAST,NTEST,N14,M1AS,NGPC1,NGPC2,NPCOM, • NCSET,NCPGPF,LTM1,LTM2,NEN,NOD,NTINTCST,NTICEN,INVRSW,	COMA 95 COMA 96 COMA 97 COMA 98 COMA 99 COMA 100 COMA 101 COMA 102 COMA 103 COMA 104 COMA 105 COMA 106 COMA 107 COMA 108 COMA 109 COMA 110 COMA 111
---	---

```

• NCONST,NDCCNS
COMMON/FPLDFL/INDEX(4),CS(30,33),MODEL(8)
COMMON/TPERBLK/INTP,CUTP,DATP(1C)
DATA TBL/IH //,D4SH/IH//,APRJDP/6HA PRIGR/,ADJUST/0ADJUSTED/
DATA ICS/IFC,IHS/
INDEX(I)=NDIM*(I-1)-(I*(I-1))/2
RETURN
ENTRY COMADJ(CUTER)
C PRINT ADJUSTED SURFACE SENSITIES
IF(NDENST.GT.0) CALL PDEN(DUTEP)
NSTART=NC14-3*NVAST-NGFCON-NTEST+1
IF(NTEST.LE.0) GO TO 1000
C PRINT ADJUSTED STATION POSITIONS
LINES=0
INSTA=0
1ST=NDIM-3*NMAST+1
DO 400 L=1,NMAST
DO 100 J=1,3
I2=INDEX(1ST)+IST
SIG(J,J)=SUM1(I2)
IARRAY(J)=I2
IF(SUM1(I2).LT.0.000) WRITE(DUTP,3020) J,L
SOLV(J)=DSEOPT(DABS(SUM1(I2)))
100 IST=IST+1
I2=IARRAY(1)
I3=IARRAY(2)
SIG(1,2)=SUM1(I2+1)
SIG(1,3)=SUM1(I2+2)
SIG(2,3)=SUM1(I3+1)
SIG(2,1)=SIG(1,2)
SIG(3,1)=SIG(1,3)
SIG(3,2)=SIG(2,3)
CURI(1)=SUM1(I2+1)/(SDEV(1)*SDEV(2))
CURI(2)=SUM1(I2+2)/(SDEV(1)*SDEV(3))
CURI(3)=SUM1(I3+1)/(SDEV(2)*SDEV(3))
200 INSTA=INSTA+1
NCON=NUMLOC(INSTA,ESTAND,NSTEST,LDC)
IF(NCON.EQ.0) GO TO 200
DO 400 K=1,NCON
LINES=LINES+1
IF(MUL(LINES,15).NE.1) GO TO 250
REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
WRITE(DUTP,3000) CUTER
WRITE(DUTP,3010)
250 I=LDC(K)
DO 300 J=1,3
DO 300 K=1,3
300 FSIG(J,K,1)=SIG(J,K)
WRITE(DUTP,4000)
WRITE(DUTP,3020) APRICE,NAME(1),ISTAND(1),(STXYZ0(J,1),J=1,3),
(XYZAC(J,1),J=1,6)
400 WRITE(DUTP,3030) ADJUST,NAME(1),ISTAND(1),(STXYZ(J,1),J=1,3),
SOLV,CURI
CALL SCOUNT(NSTEST,NTEST,.FALSE.)
LINES=0
FUNCII 3050,CL100
DO 500 I=1,NSTEST

```


12. * CF MASTER STATION*, I3, * ***** */1 COMA 224
3030 FORMAT(1H ,5X,A8,4X,A6,16,3X,3F13.2,1X,3F8.2,3F8.4) COMA 225
3040 FORMAT(1HC/5X,20HGEODETIC COORDINATES,52X,1SHSTANDARD DEVIATION, COMA 226
* 10X,11HCORRFATLATION//21X,7HSTATION,3X,17HGEODETIC LATITUDE, COMA 227
* 2X,14HFEAST LCNGITUDE,2X,6HHEIGHT,6X,3HLAT,6X,3HLON,6X,2HHT, COMA 228
* 2X,7HLAT-LON,2X,EHLAT-HT,2X,6HLON-HT/1PX,11HNAME NUMBER, COMA 229
* 3X,7HLAT-LON,2X,EHLAT-HT,2X,6HLON-HT/1PX,11HNAME NUMBER, COMA 230
* 2(3X,13HDEG MN SECOND,1X),SH (METERS),2X,2(2X,5H(SEC),1X), COMA 231
* 3X,3H(M)) COMA 232
3050 FORMAT(1H ,5X,A8,4X,A6,16,2(16,13,F7.3,1X),F9.2,2F8.3,F8.2,3F8.4) COMA 233
3060 FORMAT(A6,14,A1,2I2,F10.7,13,I2,F10.7,F10.3) COMA 234
3070 FORMAT(1H1,31X,33HGEOPOTENTIAL COEFFICIENTS ADJUSTED FOR, COMA 235
* 15H OUTER ITERATION,12//20X, COMA 236
* 11HCOEFFICIENT,19X,SHVALUE,21X,1SHSTANDARD DEVIATION/4IX, COMA 237
* SHMA PRIORI,7X,SHADJUSTED,6X,25HRATIO TO A PRIORI ADJUSTED) COMA 238
3080 FORMAT(22X,A1,1H(,I2,1H,,I2,1H),1PD21.6,015.6,1X,0P2016.4) COMA 239
3090 FORMAT(*ADJUSTED STATION, COORDINATES FOR OUTER*,13) COMA 240
4000 FORMAT(1X) COMA 241
END

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0-100

0 n 100

NAME : COMPAR

PURPOSE : TO LOAD COMMON PARAMETERS INTO VARIABLE STORAGE ARRAYS

CALLING SEQUENCE : CALL COMPAR(GPVAL0, GPSIG, GPN0, GPVAL, RLAT, RLON, H,
NAME, RLATO, RLCNO, H0, ISTANC, ESTAND,
1NDXCS, TTL, XYZSIG, PLHSIG, STASIG,
PLHNEM, XYZNOV, STAXYZ, STXYZ0, STANDS,
LOC, DSIG, DENSO, UENS, AREA, CENTER,
BCENTR)

SYMBOL	TYPE	DESCRIPTION
GPVAL0 (1)	DP	OUTPUT - A PRIORI VALUES FOR ADJUSTED GEOPOTENTIAL COEFFICIENTS
GPSIG (1)	DP	OUTPUT - SIGMAS FOR ADJUSTED GEOPOTENTIAL PARAMETERS
GPN0 (1)	DP	OUTPUT - LOCATIONS OF GEOPOTENTIAL PARAMETERS IN NORMAL MATRIX
GPVAL (1)	DP	INPUT - CURRENT VALUES OF ADJUSTED GEOPOTENTIAL COEFFICIENTS
RLAT (1)	DP	INPUT - STATION LATITUDE IN RADIANS
RLON (1)	DP	INPUT - STATION LONGITUDE IN RADIANS
H (1)	DP	INPUT - STATION HEIGHT IN METERS
NAME (1)	DF	INPUT - STATION NAMES
RLATO (1)	DP	OUTPUT - A PRIORI STATION LATITUDE IN RADIANS
RLCNO (1)	DP	OUTPUT - A PRIORI STATION LONGITUDE IN RADIANS
H0 (1)	DP	OUTPUT - A PRIORI STATION HEIGHT IN METERS
ISTAND (1)	I*2	INPUT - STATION NUMBERS
ESTAND (1)	I*2	INPUT & OUTPUT - MASTER STATION NUMBER TO WHICH ADJUSTED STATIONS ARE CONSTRAINED
1NDXCS (3,1)	I*2	OUTPUT - INDICES OF ADJUSTED GEOPOTENTIAL COEFFICIENTS

TTL	DP	OUTPUT - ADJUSTED PARAMETER TITLE ARRAY			
(1)					
XYZSIG	R	OUTPUT - STATION RECTANGULAR COORDINATE COVARIANCES			
(3,3,1)					
PLHSIG	R	OUTPUT - STATION SPHERICAL COORDINATE COVARIANCES			
(3,3,1)					
STASIG	R	OUTPUT - SIGMAS AND COVARIANCES OF ADJUSTED STATION COORDINATES			
(3,3,1)					
PLHNOM	R	OUTPUT - NOMINAL SIGMAS AND CORRELATIONS ON ADJUSTED SPHERICAL STATION COORDINATES			
(6,1)					
XYZNOM	R	OUTPUT - NOMINAL SIGMAS AND CORRELATIONS ON ADJUSTED RECTANGULAR STATION COORDINATES			
(6,1)					
STAXYZ	DP	INPUT - TRACKING STATION CARTESIAN COORDINATES.			
(3,1)					
STXYZ0	DP	OUTPUT - A PRIORI STATION POSITIONS			
(3,1)					
STANDS	I*2	OUTPUT - LOCATIONS IN NORMAL MATRIX OF INFORMATION PERTAINING TO ADJUSTED STATION COORDINATES			
(3,11)					
LCG	I*2	SCRATCH			
(1)					
DSIG	DF	OUTPUT - SIGMAS OF ADJUSTED SURFACE DENSITY			
(1)					
CENSO	DP	OUTPUT - A PRIORI VALUES OF ADJUSTED SURFACE DENSITIES			
(1)					
CENS	DF	OUTPUT - SURFACE DENSITY VALUES.			
(1)					
AREA	DP	OUTPUT - SURFACE DENSITY SUB-BLOCK AREAS			
(1)					
CENTER	DP	OUTPUT - THE GEOCENTRIC COORDINATES OF THE SUB-BLOCK CENTERS			
(1)					
BCENTR	DF	OUTPUT - THE LATITUDE AND LONGITUDE OF THE ADJUSTED SURFACE DENSITY BLOCK			
(1)					
SUBROUTINES USED	STAINP VCONV	INENT SYMINV	STORE OUTRAD	SQANT NUMBR2	PLHOUT NUMLOC
COMMON BLOCKS	CONDUT TPBLK	CONST VERBLK	CPARAN	FLXBULK	FMODEL
INPUT FILES	NONE				REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

OUTPUT FILES OUTP - PRINTER

```

SUBROUTINE COMPARE(GPVAL0, GPSIG, GPN0, GRVAL, RLAT, RLON, H, NAME,
•    RLATO, RLONO, HO, I STANC, ESTANC, INDEXCS, TTL, XYZSIG, PLHSIG, STASIG,
•    PLHNOM, XYZNOM, STAXYZ, STXYZC, STANUS, LOC, DSIG, DENSO, DFNS, AREA,
•    CENTER, BCENTR)
IMPLICIT REAL*8 (A-H,O-Z)
LOGICAL41 PLHSV
LOGICAL CMPGPR
INTEGER2 GANC, I STANC, ESTANO, INDEXCS, STANDS, NDEXCS, LOC
INTEGER CLTP, DATP, SCRC, FLTP
REAL XYZSIG, PLHSIG, STASIG, PLHNOM, XYZNOM, PSIG, GPSIGN, TWD1
DOUBLE PRECISION NAME, MODEL
DIMENSION GPVAL0(1), GPSTG(1), GPVAL(1), RLAT(1), RLON(1), H(1),
•    NAME(1), PLATC(1), RLONO(1), HC(1), I STAND(1), ESTAND(1), LOC(1),
•    INDEXCS(3,1), TTL(1), XYZSIG(3,3,1), PLHSIG(3,3,1), STASIG(3,3,1),
•    PLHNOM(6,1), STAXYZ(3,1), STXYZC(3,1), STANUS(3,1), SUM1(6),
•    SUM2(3), TWD1(2), XYZNOM(6,1), GPN(1), AXYZ(6), DSIG(1), DENSO(1),
•    DFNS(1), AREA(1), CENTER(1), ACENTR(1), ISURF(1), JSURF(1)
COMMON/CNOUT/IG1(7),NSTART,NECNMX(4),NSTARD,LSTART(6)
COMMON/CRSTS/DPI,DTKOP1,DRAC,FSEC
COMMON/CPARAM/NSTA,NMAST,NTEST,NDM,MBIAS,NGPC1,NGPC2,NGPCM,
•    NCSEST,CMPGPR,LIM1,LIM2,NDER,NCNST,NTDST,NTIDEN,INRSW,
•    NCUNST,NCEND
COMMON/FLXBLK/NDEXCS(260,2),PSI1(6,331),PLHS(1290)
COMMON/FMCDEL/INDEX(4),CS(30,331),MODEL(3)
COMMON/TPERLK/INTP,OUTP,DATP(7),SCRC,FLTP(2)
COMMON/VREL0K/GPSIGN(2250)
DATA AXYZ/3H X,3H Y,3H Z,5H XCOT,5H YDOT,5H ZDOT/,BL/1H /
DATA LWD/SHCCCCC/, SWC/SHCCCCC/
EQUIVALENCE (ISURF(1),NDEXCS(1,1)),(JSURF(1),GPSIGN(1))
EQUIVALENCE (TAC,TWD1(1))
NSTART=NMIM-3*NMAST-NGPCM-NTIDEN+1
C READ STATION POSITIONS
CALL STAINP(NSTA,ISTANC,NAME,RLAT,RLON,H,NSTARD,NTEST,ESTAND)
END FILE SCRC
RLXIND SCRC
IF(NJEN.LE.0) GO TO 580
C READ SURFACE DENSITY INFORMATION FROM SCRATCH FILE
DO 700 I1=1,4050,450
I2=MIND(I1+445,4050)
700 READ(SCRC) (ISURF(1),I=I1,I2)
DO 700 I1=1,2020,450
I2=MIND(I1+45,2020)
700 READ(SCRC) (JSURF(1),I=I1,I2)
C PRINT AND CONVERT SURFACE DENSITY INFORMATION INTO X, Y, Z'S
CALL INDET(USIG,DENSO,DFNS,AREA,CENTER,BCENTR)
580 IF(NJEN.LT.0) GO TO ECO
C READ GRADIENT POTENTIAL A PRIORI VALUES FROM SCRATCH FILE
NGPA=NCSEST-NGPCM
DO 800 I1=1,NGPCM,225
I2=MIND(NGPCM,I1+225)
800 READ(SCRC) (GRVAL(I),I=I1,I2)

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

DO 650 I=1,NGFCOM          COMP 158
  I1=I+NGPA
650 GPVAL0(I1)=GPVAL(I)    COMP 159
C OBTAIN STORED COMMON PARAMETER INFORMATION
800 CALL STORE(.TRUE.,.TRUE.)
C CONVERT STATIONS TO X, Y, Z'S
  IF(NSTA.GT.0) CALL SQUANT(NSTA,NTEST,.TRUE.)
  IF(NDIM.LE.0) GO TO 5
  DO 1 I=1,NDIM
    TTL(I)=DL
    IF(I.LT.7) TTL(I)=AXYZ(I)
1 CONTINUE
  IF(INSTEST.EQ.0) GO TO 200
C SAVE NUMINAL ADJUSTED STATION INFORMATION
  DO 20 I=1,NTEST
    STAXYZ(1,I)=STAXYZ(1,I)
    STAXYZ(2,I)=STAXYZ(2,I)
    STAXYZ(3,I)=STAXYZ(3,I)
    RLATO(I)=RLAT(I)
    RLONO(I)=RLON(I)
    F0(I)=F(I)
    J=ESTANO(I)
    ESTANO(I)=NUMBER2(J,ISTANO,NTEST)
    IF(PLHSW(I)) GO TO 10
    STASIG(1,1,I)=PSIG(1,I)
    STASIG(2,2,I)=PSIG(2,I)
    STASIG(3,3,I)=PSIG(3,I)
    STASIG(4,4,I)=PSIG(4,I)
    STASIG(5,5,I)=PSIG(5,I)
    STASIG(6,6,I)=PSIG(6,I)
    GO TO 20
10 PLHSIG(1,1,I)=PSIG(1,I)
  PLHSIG(2,2,I)=PSIG(2,I)
  PLHSIG(3,3,I)=PSIG(3,I)
  PLHSIG(4,4,I)=PSIG(4,I)
  PLHSIG(5,5,I)=PSIG(5,I)
  PLHSIG(6,6,I)=PSIG(6,I)
20 CONTINUE
  DO 120 LL=1,2
  DO 120 I=1,NTEST
    II=ESTANO(I)
    IF(II.EQ.1) GO TO 40
    IF(LL.EQ.1) GO TO 120
    DO 30 J=1,3
    DO 30 K=1,3
30 STASIG(J,K,I)=STASIG(J,K,II)
    GO TO 90
40 IF(LL.EQ.2) GO TO 120
    DO 50 J=1,2
    DO 50 K=2,3
    IF(J.EQ.K) GO TO 60
    IF(PLHSW(I)) GO TO 50
    STASIG(J,K,I)=STASIG(J,K,1)*STASIG(J,J,1)*STASIG(K,K,1)
    STASIG(K,J,I)=STASIG(J,K,1)
    GO TO 60
50 PLHSIG(J,K,I)=PLHSIG(J,K,1)*PLSIG(J,J,1)*PLHSIG(K,K,1)

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR.

```

PLHSIG(K,J,I)=PLHSIG(J,K,I)          COMP 224
60 CONTINUE
DO 80 J=1,3
IF(PLHSW(I)) GO TO 70
STASIG(J,J,I)=STASIG(J,J,I)**2
GO TO 80
70 PLHSIG(J,J,I)=PLHSIG(J,J,I)**2      COMP 225
80 CONTINUE
IF(PLHSW(I)) GO TO 100
90 CALL PLHCLT(STAXYZ(1,1),STASIG(1,1,I),PLHSIG(1,1,I),P1,P2,P3)
GO TO 120
100 CALL VCJAV(PLHSIG(1,1,I),STASIG(1,1,I),XYZSIG(1,1,I))
120 CONTINUE
DO 130 I=1,NTEST
DO 130 J=1,3
XYZNUM(J,I)=SCRT(STASIG(J,J,I))
130 PLHNOM(J,I)=SCRT(PLHSIG(J,J,I))
DO 140 J=1,3
JI=J/3+1
J2=(J+4)/2
XYZNOM(J+3,I)=STASIG(J1,J2,I)/(XYZNUM(J1,I)*XYZNOM(J2,I))
140 PLHNOM(J+2,I)=PLHSIG(J1,J2,I)/(PLHNOM(J1,I)*PLHNOM(J2,I))
DO 150 J=1,2
150 PLHNOM(J,I)=PLHNOM(J,I)/RSEC
DO 170 I=1,NTEST
II=1
DO 160 J=1,3
DO 160 K=J,3
SUM1(I)=STASIG(K,J,I)
160 II=II+1
CALL SYMINV(SUM1,3,2,SUM2)
II=
DO 170 J=1,3
DO 170 K=J,3
STASIG(J,K,I)=SUM1(I)
STASIG(K,J,I)=SUM1(I)
170 II=II+1
NSTART=NDIM-2*NMAST
DO 175 I=1,NTEST
STANOS(1,I)=0
STANOS(2,I)=0
175 STANOS(3,I)=0
LL=0
DO 180 I=1,NMAST
180 LL=LL+1
NUCIN=NULUC(LL,ESTANO,NTEST,LOC)
IF(NUCIN.EQ.0) GO TO 180
DO 185 K=1,NUCIN
K1=LUC(K)
DO 185 J=1,3
185 STANOS(J,K1)=3*(I-1)+J+NSTART
TTL(NSTART+3*(I-1)+2)=NAME(LL)
190 CONTINUE
NSTART=NSTART+1
200 IF(NSTART.LT.0) GO TO 300
C PRINT STATION POSITIONS

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

LINES=0                                COMP 280
DO 250 I=1,NSTA
LINES=LINES+1
IF(MOD(LINES,45).EQ.1) WRITE(DUTP,10000)
CALL OUTRAD(RLAT(I),LATD,LATM,SLAT,1)
CALL OUTRAD(RLON(I),LOND,LONM,SLON,1)
IF(MOD(LINES,5).EQ.1) WRITE(DUTP,10100)
WRITE(DUTP,10200) NAME(I),ISTAN(I),LATD,LATM,SLAT,LOND,LONM,SLON,COMP 287
* H(I)
IF(I.GT.NTEST) GO TO 250
*WRITE(DUTP,10300) (PLHNGR(J,I),J=1,3)
*WRITE(DUTP,10400)
250 CONTINUE
300 NGP=NOIM-NGFCCM-3*NMAST-NTIDEN
NSTART=NGP+1
IF(NGPCEN.LE.0) RETURN
C LOAD ESTIMATE GEOPOTENTIAL COEFFICIENT INFORMATION INTO VARIABLE
C STORAGE ARRAYS
NCP1=NCBEST-NGPCDM
DO 500 I=1,NGFCOM
ICS=NDEXCS(I,1)
N=NDEXCS(I,2)
M=NDEXCS(I,3)
II=I+NCP1
INDXCS(1,II)=ICS
INDXCS(2,II)=N
INDXCS(3,II)=M
MEM+I
ITTL=NGP+I
GPNJ(I)=ITTL
TWD=CAD
IF(ICS.EQ.2) TWD=SWD
J=N/10
II=J*2E3
J=N-10*I
II=II+J*2E3
J=(M-1)/IC
II=II+J
J=1577721c*(M-1-10*I)
TWD1(1)=CR(TWD1(1),II)
TWD1(2)=CR(TWD1(2),J)
SIG=GPSIGN(I)
GPSIG(II)=SIG
TTL(ITTL)=TWD
IF(ICS.LT.2) GO TO 500
N=31-N
M=34-M
500 GPVAL(II)=CS(N,M)/SIG
RETURN
10000 FORMAT(1H1,12X,1PHTRACKING COMPLEMENT/,1H0,12X,7HSTATION,6X,
1 17HGLCETIC LATITUDE,6X,1AH EAST LONGITUDE,6X,9HSFEROID ,
2 5HNE1(FT/1H0,10X,11HNAME NUMBER,5X,2(1HDEG MN SECONDS,BX),
3 3X,EM(KEETERS))
10100 FORMAT(1X)
10200 FORMAT(10X,A7,V1C,6X,2(21D,F7.3,9X),F11.2)
10300 FORMAT(1H+,10X,1H+,F4.1,17X,1H+,F4.1,15X,1H+,F5.1)
10400 FORMAT(1H+,4CX,1H_,21X,1H_,19X,1H_)
END

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME	CONSTS
PURPOSE	BLOCKDATA STORAGE OF INPUT/OUTPUT FILE NUMBERS, INTEGRATOR STEPSIZE INFORMATION, CONVERSION CONSTANTS, AND EARTH PARAMETERS
COMMON BLOCKS	CONSTS CPARAM CONGUT INTBLK CGEOS MONTHS VRELOK TPBLK

BLOCK DATA	CONS 13
IMPLICIT REAL*8 (A-H,D-Z)	CONS 14
LOGICAL TCREFT,VARSTP,NORRAT,INITAL,HLVDSW	CONS 15
INTEGER XYZTP,RVTP,SCRA,SCRC,FLTP,PLOTP,DATP,OUTP,GDTDP,ORDER	CONS 16
DOUBLE PRECISION LOVE	CONS 17
COMMON/CONSTS/DPI,DTWDPI,CRAD,ERSEC	CONS 18
COMMON/CPARAM/NSTA(19)	CONS 19
COMMON/CENDUT/NARCS(19)	CONS 20
COMMON/INTBLK/THOOT1,THOOT2(2),GM,AE,AESQ,FINV,FS032(18),RPRESS,	CONS 21
INITAL,NORRAT,THETG,POIES(E),STEPsz(4),HLVER3(2),CBLERB(2),	CONS 22
CTOL(2),RTOL(2),STPLCW(2),STEPUP(2),ORDER(4),ASAT(4),VARSTP(2),	CONS 23
HLVDSW(2),NEQN(8),LOVE(3),TCREFT,NBODY	CONS 24
COMMON/CGEOS/ISATID(24),THETGO(18),IG6(417)	CONS 25
COMMON/MONTHS/MONTH(24)	CONS 26
COMMON/VRBLDK/COSLAN(66),IG(2118)	CONS 27
COMMON/TPBLK/INTP,OUTP,DATP,XYZTP,KEPTAP,RVTP,PLOTP,ICBS,SCRA,	CONS 28
SCRC,FLTP,GDTDP	CONS 29
DATA STEPsz/4*1.00+2/, HLVER3/2*0.250-4/,	CONS 30
CBLERB/2*0.250-10/, CTOL/2*0.250-10/,	CONS 31
RTOL/2*0.250-7/, STPLCW/2*12.500/,	CONS 32
STEPUP/2*4.002/, ORDER/4*11/,	CONS 33
VARSTP/2*,FALSE./*, HLVDSW/2*,TRUE./*,	CONS 34
TCREFT/*,FALSE./*, NORRAT/*,FALSE./*,	CONS 35
FS032,ASAT/21*0.000/, NEQN/8*0/	CONS 36
DATA INTP,OUTP,DATP,XYZTP,KEPTAP,RVTP,PLOTP,ICBS,SCRA,SCRC,	CONS 37
FLTP,GDTDP/3,6,12,8,9,0,19,20,1A,16,13,1B/	CONS 38
DATA MONT/0,31,60,91,121,152,182,213,244,274,305,335,366,	CONS 39
0,31,59,90,120,151,181,212,243,273,304,334,365/	CONS 40
DATA NSTA/16*0/	CONS 41
DATA NARCS/15*0/	CONS 42
DATA NBODY/2/	CONS 43
C GRAVITATIONAL CONSTANT TIMES MASS OF EARTH IN METERS**3/SECONDS**2	CONS 44
DATA GM/3.986C13000D+14/,	CONS 45
C SEMI-MAJOR AXIS OF REFERENCE ELLIPSOID IN METERS	CONS 46
AE/6378156.00/,	CONS 47
C INVERSE OF FLATTENING OF REFERENCE ELLIPSOID	CONS 48
FINV/294.25E00/,	CONS 49
C RATIOS OF LUNAR, SOLAR, PLANETARY MASSES TO MASS OF EARTH	CONS 50
C **.MLUN	CONS 51
MLUN/0.1220997171C06FC7D+C1,	CONS 52
C **.SON	CONS 53
SON/0.32294554192E437E0+C6,	CONS 54
C **.VERUS	CONS 55

C	***MARS	0.815000322533495BD+CO.	CONS 56
C	***JUPITER	0.1074468525270C73D+CO.	CONS 57
C	***SATURN	0.31788093030+03.	CONS 58
C	RIGHT ASCENSION OF GREENWICH AT JAN 0:0 FOR 1958-1975 IN DEGREES	DATA THETCO/99.151441700,98.912725000,98.674006500,	CONS 59
		99.420934700,99.192216500,98.941498500,	CONS 60
		98.704782500,99.451711700,99.212893500,	CONS 61
		98.974276500,98.735559500,99.432429600,	CONS 62
		99.243775000,99.00505A1676700,99.766337500,	CONS 63
		99.513270333300,99.274554150600,99.0353375000/.	CONS 64
C	MEAN ADVANCE IN RT ASC OF GREENWICH PER MEAN SOLAR DAY IN DEGREES	TFDCT1/.9856473354D0/.	CONS 65
C	SCALAR RADIATION PRESSURE IN NEWTONS/METER**2	RPRESS/.45D-5/	CONS 66
C	PI IN RADIANS (DOUBLE PRECISION)	DATA DPI /3.1415926535897932D0/.	CONS 67
C	TWO PI IN RADIANS (DOUBLE PRECISION)	DTWCFI /6.28318530717958E4D0/.	CONS 68
C	CONVERSION FROM DEGREES TO RADIANS (DOUBLE PRECISION)	DRAD /.017453292E194329600/.	CONS 69
C	CONVERSION FROM SECONDS OF ARC TO RADIANS (DOUBLE PRECISION)	DRSEC/.454E135E1109520F-5/	CONS 70
C	CONSTANTS FOR SOLID EARTH TIDES	K2	CONS 71
C		DATA LOVE/0.29D0,	CONS 72
C		K3	CONS 73
C		0.000,	CONS 74
C		LAMEA (PHASE ANGLE - DEGREES)	CONS 75
C		0.000/	CONS 76
C		DATA LUSL/4/0.000,1.000,64*0.000/	CONS 77
C		END	CONS 78

NAME CORREL

PURPOSE TO COMPUTE AND PRINT CORRELATION COEFFICIENTS FROM THE DIAGONAL AND ABOVE THE DIAGONAL OF A NORMAL MATRIX IN VECTOR FORM

CALLING SEQUENCE CALL CORREL(SUM1,NPARAM,NDIM,INNER,TTL)

SYMBOL	TYPE	DESCRIPTION
SUM1	DP	INPUT - INVERTED LEAST SQUARES MATRIX IN VECTOR FORM
(1)		
NPARAM	I	INPUT - ORDER OF LEAST SQUARES MATRIX
NDIM	I	INPUT - FIRST DIMENSION OF SQUARE ARRAY EQUIVALENT TO 'SUM1' VECTOR
INNER	I	INPUT - ITERATION NUMBER
TTL	DP	INPUT - CORRELATION PARAMETER TITLE ARRAY
(1)		
ROUTINES USED	NONE	
COMMON BLOCKS	TPEBLK	
INPUT FILES	NONE	
OUTPUT FILES	OUTP - PRINTER	

```

SUBROUTINE CORREL(SUM1,NPARAM,NDIM,INNER,TTL)
INTEGER CLTP,COL1,COL2
REAL+8 SUM1(1),TTL(1)
COMMON/TPEBLK/INTP,OUTP,SCRTP(10)
C COMPUTE CORRELATION COEFFICIENTS
      IF(NPARAM-1)20,10,30
10    SUM1(1)=CSQRT(SUM1(1))
20    RETURN
30    DO 2534 I=1,NPARAM
      II=NDIM*(I-1)-(I-1)*I/2+1
      SUM1(II)=CSQRT(SUM1(II))
      IF(I.EQ.NPARAM) GO TO 2532
      II=I+1
      GO 2531 J=II,NPARAM
      1J=II+J-I
2531 SUM1(1J)=SUM1(IJ)/SUM1(II)
C DIVIDE OFF-DIAGONAL TERMS BY SQUARE ROOT OF ROW AND COLUMN DIAGONAL
C TERM
      IF(I.EQ.1) GO TO 2534
2532 II=I-1
      JI=I
      CORP 35
      CORP 36
      CORR 37
      CORF 38
      CORF 39
      CORF 40
      CORR 41
      CORP 42
      CORP 43
      CORR 44
      CORR 45
      CORP 46
      CORP 47
      CORR 48
      CORR 49
      CORP 50
      CORR 51
      CORF 52
      CORF 53
      CORP 54
      CORP 55

```

DO 2533 J=1,II	CORR 56
SUM1(JI)=SUM1(JI)/SUM1(II)	CORR 57
2533 JI=JI+NO1K-J	CORR 58
2534 CONTINUE	CORR 59
C PRINT CORRELATION COEFFICIENTS	CORR 60
JSTART=2	CORR 61
ISTOP=NPARAM-1	CORR 62
ISTRTRT=1	CORR 63
WRITE(COUTF,10112) INNER	CORR 64
2535 WRITE(COUTF,10214) TTL(I),I=JSTART,NPARAM)	CORR 65
DO 2536 I=1,ISTOP	CORR 66
I1=NDIM*(I-1)+(I*(I-1))/2+I+1,ISTRTRT	CORR 67
COL1=ISTRTRT+I	CORR 68
CUL2=MINC(COL1+19,NPARAM)	CORR 69
I2=I1+CCL2-CCL1	CORR 70
2536 WRITE(COUTF,10215) TTL(I),(SUM1(J),J=I1,I2)	CORR 71
JSTART=JSTART+20	CORR 72
IF(JSTART,GT,NPARAM) RETURN	CORR 73
ISTOP=ISTOP+20	CORR 74
ISTRTRT=ISTRTRT+20	CORR 75
GO TO 2535	CORR 76
10112 FORMAT(1HC,5X,71HCORRELATION COEFFICIENTS FOR ADJUSTED PARAMETERS	CORR 77
•AFTER ITERATION NUMBER,13)	CORR 78
10214 FORMAT(1HC,5X,20A6/(7X,20A6))	CORR 79
10215 FORMAT(1HC,A6,20FF,3)	CORR 80
END	CORR 81

COWCOF

DESCRIPTION

COWCOF assigns predictor or corrector coefficients for the integrator depending on the order requested. Permissible orders are five through fifteen.

NAME COWCOF

PURPCSE TO ASSIGN INTEGRATOR COEFFICIENT VALUES -
ORDERS 5 - 15

CALLING SEQUENCE CALL COWCOF(POS, VEL, IORDER, IPC)

SYMBOL	TYPE	DESCRIPTION
POS	DP	OUTPUT - VECTOR OF POSITION COEFFICIENTS (1)
VEL	DP	OUTPUT - VECTOR OF VELOCITY COEFFICIENTS (1)
IORDER	I	INPUT - ORDER
IPC	I	INPUT - PREDICTOR/CORRECTOR SELECTION SWITCH
SUBROUTINES USED	NONE	
COMMON BLOCKS	NONE	
INPUT FILES	NONE	
OUTPUT FILES	PRINTER -- 6	

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

SUBROUTINE COWCOF(POS, VEL, IORDER, IPC)          COWC 31
IMPLICIT REAL*8 (A-H,O-Z)                      COWC 32
DIMENSION POS(1), VEL(1)                         COWC 33
DIMENSION BETA(99), BETAS(99), ALPHA(99), ALPHAS(99) COWC 34
DIMENSION BS(4), BA(5), F7(6), B2(7), B9(8), B10(9), B11(10), B12(11), COWC 35
•   B13(12), B14(13), B15(14), B55(4), B56(5), B57(6), B58(7), B59(8), COWC 36
•   B510(9), B511(10), B512(11), B513(12), B514(13), B515(14)      COWC 37
DIMENSION A5(4), A6(5), A7(6), A8(7), A9(8), A10(9), A11(10), A12(11), COWC 38
•   A13(12), A14(13), A15(14), A55(4), A56(5), A57(6), A58(7), A59(8), COWC 39
•   A510(9), A511(10), A512(11), A513(12), A514(13), A515(14)      COWC 40
EQUIVALENCE (BS(1), BETA(1)), (BS(1), BETAS(1)), (B7(1), BETA(10)), COWC 41
•   (B3(1), BETA(15)), (B5(1), BETA(23)), (B10(1), BETA(31)), COWC 42
•   (B11(1), BETA(40)), (B12(1), BETA(50)), (B13(1), BETA(61)), COWC 43
•   (B14(1), BETA(73)), (B15(1), BETA(85))                           COWC 44
EQUIVALENCE (B55(1), BETAS(1)), (B56(1), BETAS(5)), COWC 45
•   (B57(1), BETAS(10)), (B58(1), BETAS(16)), (B59(1), BETAS(23)), COWC 46
•   (B510(1), BETAS(31)), (B511(1), BETAS(40)), (B512(1), BETAS(50)), COWC 47
•   (B513(1), BETAS(61)), (B514(1), BETAS(73)), (B515(1), BETAS(85)) COWC 48
EQUIVALENCE (A5(1), ALPHA(1)), (A6(1), ALPHA(5)), (A7(1), ALPHA(10)), COWC 49
•   (A8(1), ALPHA(15)), (A9(1), ALPHA(23)), (A10(1), ALPHA(31)), COWC 50
•   (A11(1), ALPHA(40)), (A12(1), ALPHA(50)), (A13(1), ALPHA(61)), COWC 51
•   (A14(1), ALPHA(73)), (A15(1), ALPHA(85))                          COWC 52
EQUIVALENCE (AS5(1), ALPHAS(1)), (AS6(1), ALPHAS(5)), COWC 53
•   (AS7(1), ALPHAS(10)), (AS8(1), ALPHAS(16)), (AS9(1), ALPHAS(23)), COWC 54
•   (AS10(1), ALPHAS(31)), (AS11(1), ALPHAS(40)), (AS12(1), ALPHAS(50)), COWC 55

```


DATA B56/	+.3298611111111111D+00,	+.3209316333333333D+00,	COWC 112
	- .2233333333333333D+00,	+.1013993888888888D+00,	COWC 113
	- .1874699999999999D-01/		CDAC 114
DATA B57/	+.3185919312166312169D+00,	+.392179232804232804U+00,	COWC 115
	- .376025132275132274E+00,	+.2440705178306373300+00,	COWC 116
	- .9009585947085547070-01,	+.1426417739417939410-01/	CJWC 117
DATA B58/	+.304224537037037036D+00,	+.4603335978835778830+00,	COWC 118
	- .546536044973544973C+00,	+.471620571422571429D+00,	COWC 119
	- .260606812166312169D+00,	+.8247354497354497349-01,	COWC 120
	- .113673941798941798C-01/		COWC 121
DATA B59/	+.294863000440917107D+00,	+.52087723540564373390+00,	COWC 122
	- .743023313492063A91E+00,	+.734907332292753958D+00,	COWC 123
	- .582065553033507699C+00,	+.2736603134220531E10+00,	COAC 124
	- .766631503527336659C-01,	+.9355335536119329440-02/	COAC 125
DATA B60/	+.266975446428571428E+00,	+.567019785155202821D+00,	COWC 126
	- .96401422537742504D+00,	+.124337037679412698D+01,	COWC 127
	- .114056437389770723D+01,	+.720940838193421515D+00,	COWC 128
	- .297654562698A12F98D+00,	+.724935585943853614D-01,	COWC 129
	- .782255401234567900D-02/		COWC 130
DATA B61/	+.2801468643936721D+00,	+.650093136015915182D+00,	COAC 131
	- .12003054252F469154C+01,	+.1210900177960344235D+01,	COWC 132
	- .199559147154162029D+01,	+.157526093624739458D+01,	COAC 133
	- .667866061407728073C+00,	+.3187377681417343C8D+00,	COAC 134
	- .659652038740550406D-01,	+.678946993453470625D-02/	COWC 135
DATA B62/	+.274255540031599055D+00,	+.709333000140291305D+00,	COWC 136
	- .137468756593778675D+01,	+.252171484517396163D+01,	COWC 137
	- .32396333126525E938D+01,	+.306822313215648643D+01,	CJWC 138
	- .211191790799263716C+01,	+.102767433762223428D+01,	COAC 139
	- .325547742423252645C+00,	+.660264141030113301D-01,	COWC 140
	- .592405641233766233D-02/		COWC 141
DATA B63/	+.269023646773648774D+00,	+.70636226977744342D+00,	COAC 142
	- .17429060302705243D+01,	+.33054273273575327D+01,	COWC 143
	- .49677420936718345C+01,	+.543817543732951713D+01,	COAC 144
	- .4531270131317166536C+01,	+.27157031127434335D+01,	COWC 145
	- .11996021295C104938C+01,	+.354044543293277002D+00,	COAC 146
	- .633276322497907979D-01,	+.527632325793023506D-02/	COWC 147
DATA B64/	+.26475134916660502C+00,	+.82307400462252116D+00,	COWC 148
	- .2071620537651184109D+01,	+.441429263228E05706D+01,	COAC 149
	- .72E310380316210439D+01,	+.919275417570699067D+01,	CJWC 150
	- .85E327372127322127D+01,	+.516035185112332165D+01,	COWC 151
	- .351436330147697081D+01,	+.13830341923445752D+01,	CJWC 152
	- .372242577114580255D+00,	+.613666741424574592D-01,	COAC 153
	- .467743340704226451D-02/		COWC 154
DATA B65/	+.260136396127601036D+00,	+.277830735959323263D+00,	COAC 155
	- .240032726257425077D+01,	+.62015492204052230D+01,	COWC 156
	- .102967445560516174C+02,	+.146173277073070342D+02,	COAC 157
	- .150461337534121126D+02,	+.131632149932557132D+02,	COWC 158
	- .353950737107701477D+01,	+.4305785604373348329D+01,	COAC 159
	- .15777189174701549D+01,	+.370132603734234341D+00,	COWC 160
	- .654713775141124116D-01,	+.421415223700547228D-02/	COAC 161
DATA A5/	.2153333233333333D+00,	- .24161166475566665D+00,	COWC 162
	+ .79166565666566656C-01,	+.0.0.0.0/	COAC 163
DATA A6/	.3202333333333333D+00,	- .66156656665665665D+00,	COWC 164
	+ .301166666666666666666666D-01,	-.71942799999999999999-01,	COAC 165
	+ 0.0.0.0/		COWC 166
DATA A7/	+.32174232604232406D+00,	-.702040264330264349D+00,	CJWC 167

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0 - 116

•	+.7322420636920E3491D+00,-.360333597333597823D+00,	COWC 168
•	+.7134509947029547C8D-01,+0.000/	COWC 169
DATA A8/	+.460383597293597683D+00,-.109307208334708354D+01,	COWC 170
•	+.14142457142F571420D+01,-.104242724657724367D+01,	COWC 171
•	+.412357724867724867D+00,-.632043650793650792D-01,	COWC 172
•	+0.000/	COWC 173
DATA A9/	+.525373354056437309D+00,-.148604662693412698D+01,	COWC 174
•	+.239672205687830667D+01,-.235234237213403879D+01,	COWC 175
•	+.139430406746031715D+01,-.461173902113402116D+00,	COWC 176
•	+.554495756172839506D-01,+0.000/	COWC 177
DATA A10/	+.52901978615E202821D+00,-.192802963157548500D+01,	COWC 178
•	+.372267113095230C55D+01,-.466225745539082952D+01,	COWC 179
•	+.360471913091710758D+01,-.173712797619047619D+01,	COWC 180
•	+.507478780864197530D+00,-.631404320987654320D-01,	COWC 181
•	+0.000/	COWC 182
DATA A11/	+.655092436016915122D+00,-.241651035055918389D+01,	COWC 183
•	+.543270532709032707D+01,-.798232588784672117D+01,	COWC 184
•	+.787980468123657289D+01,-.520719636844636844D+01,	COWC 185
•	+.221731297649214365D+01,-.551721430992464325D+00,	COWC 186
•	+.610723458617123616D-01,+0.000/	COWC 187
DATA A12/	+.705333000140291605D+00,-.294977532767957351D+01,	COWC 188
•	+.756536543552156551D+01,-.125535332742103575D+02,	COWC 189
•	+.1534411576C7824274D+02,-.126715074479918229D+02,	COWC 190
•	+.7193720363355780C1D+01,-.260433193943A02276D+01,	COWC 191
•	+.594237726972101971D+00,-.592405541233765233D-01,	COWC 192
•	+0.000/	COWC 193
DATA A13/	+.67655625577744642D+00,-.1362581219605410496D+01,	COWC 194
•	+.10157522722072766D+02,-.10270263274704733D+02,	COWC 195
•	+.276403771366475859D+02,-.271375211590300131D+02,	COWC 196
•	+.192904F17592209355D+02,-.933641703932839204D+01,	COWC 197
•	+.318540033965749307D+01,-.6352756222697907980D+00,	COWC 198
•	+.576036258374531355D-01,+0.000/	COWC 199
DATA A14/	+.32306560662252116D+00,-.414324167573269378D+01,	COWC 200
•	+.13244677746551711D+02,-.291334162205434175D+02,	COWC 201
•	+.459637703765349534D+02,-.531145723275723276D+02,	COWC 202
•	+.62225329578632530D+02,-.231147107313157665D+02,	COWC 203
•	+.124478477356011763D+02,-.372242577114380255D+01,	COWC 204
•	+.675033415567032031D+00,-.56120980845071741D-01,	COWC 205
•	+0.000/	COWC 206
DATA A15/	+.977860285959323263D+00,-.480077452505853755D+01,	COWC 207
•	+.16861105767921869D+02,-.411471795242040679D+02,	COWC 208
•	+.73086988636351712D+02,-.955153205904725762D+02,	COWC 209
•	+.956525392527969429D+02,-.715158541845161150D+02,	COWC 210
•	+.395710453336013946D+02,-.157771341747014549D+02,	COWC 211
•	+.44291652436F33272775D+01,-.71352630169350939D+00,	COWC 212
•	+.347313791070711471D-01,+0.000/	COWC 213
DATA A55/	+.7216654666666666666D+01,+.931333133333333332D-02,	COWC 214
•	-.4166666666666666666D-02,+0.000/	COWC 215
DATA A56/	+.7491699999999999999D-01,+.204313333333333333D-01,	COWC 216
•	-.1666666666666666666D-01,+.4166666666666666666D-02,	COWC 217
•	+0.000/	COWC 218
DATA A57/	+.713453994708004700D-01,+.3544373364373354496D-01,	COWC 219
•	-.385912624612508412D-01,+.147231587830547330D-01,	COWC 220
•	-.368410052910052509D-02,+0.000/	COWC 221
DATA A58/	+.92013660742650792D-01,+.311578074074074073D-01,	COWC 222
•	-.700064127561375650D-01,+.501334126933125753D-01,	COWC 223

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

•      -.193E 17724967724867E-01,+.314153439153439153D-021 COWC 224
•      +0.000/
• DATA AS9/+.549575617283950600-01,+.6710206034656094650-01, COWC 225
•      -.1106357473E+4573540+00,+.1043705908289241620+00, COWC 226
•      -.58990936084660846E-01,+.1539311783058783060-01, COWC 227
•      -.270F60890652657319C-02,+0.000/ COWC 228
• DATA AS10/+.6214043209876E4320E-01,+.8389532936507936500-01, COWC 229
•      -.1600975529100529C9D+C0,+.186806333421515754D+00, COWC 230
•      -.142427243677243677E+00,+.6155499233852433862D-01, COWC 231
•      -.191938774250440916D-01,+.225532407407407407D-02, COWC 232
•      +0.000/ COWC 233
• DATA AS11/+.610726498617123616D-01,+.100433537261503928D+00, COWC 234
•      -.2179954555476339300+00,+.3026027336964905950+00, COWC 235
•      -.287172005270963604C+00,+.184650798661215327D+00, COWC 236
•      -.770937800525300624C-01,+.158975819704995371D-01, COWC 237
•      -.206778223705307C38C-02,+0.000/ COWC 238
• DATA AS12/+.5924056412337662330-01,+.116027358906525573D+00, COWC 239
•      -.283950542127625450D+C0,+.458497940715690716D+00, COWC 240
•      -.5120148033012656340+00,+.415493601691811357D+00, COWC 241
•      -.230988982082732082D+00,+.848526685505852171D-01, COWC 242
•      -.165656538E20747157D-01,+.18320157383357333D-02, COWC 243
•      +0.000/ COWC 244
• DATA AS13/+.576035253374521356D-01,+.172295741755750449D+00, COWC 245
•      -.35761276499A1824C4D+C0,+.612930535027509232D+00, COWC 246
•      -.861771713345199039D+00,+.823002049744237243D+00, COWC 247
•      -.5747450221236E4487E+00,+.281285262361403733D+00, COWC 248
•      -.9221877674F6316592D-01,+.1-2014655975706147D-01, COWC 249
•      -.163693E26592348764C-02,+0.000/ COWC 250
• DATA AS14/+.561245500345071741D-01,+.147506935248156026D+00, COWC 251
•      -.4326532374C4210253D+00,+.99600196226359233D+00, COWC 252
•      -.134807468281734631C+01,+.130282601300527147D+01, COWC 253
•      -.125556532031769372D+01,+.767554097333571043D+00, COWC 254
•      -.335370193684715315D+00,+.992817410095984996D-01, COWC 255
•      -.178470327683290546D-01,+.147364495294595164D-02, COWC 256
•      +0.000/ COWC 257
• DATA AS15/+.54794374107C711471D-01,+.163534057577328350D+00, COWC 258
•      -.52E312S54716P6C074D+00,+.114991434329551363D+01, COWC 259
•      -.200919756267519973D+01,+.250662242973450469D+01, COWC 260
•      -.244965503273258771C+01,+.128334479505290446D+01, COWC 261
•      -.95649307381E5417C3D+00,+.329014332015524450D+00, COWC 262
•      -.105496750079100849D+00,+.175003662821732361D-01, COWC 263
•      -.133560177743602708E-02,+0.000/ COWC 264
IF(IORDER.GT.15,OR,IORDER.LT.6) GO TO 400 COWC 265
INDEX=((ICRDER-5)*(IORDER+2))/2 COWC 266
L=IORDER-2 COWC 267
LP1=L+1 COWC 268
IF(IPC.EQ.110GOTO 100 COWC 269
IF(IPC.NE.01GU TO 200 COWC 270
DO 10 I=1,L COWC 271
FUS(1)=ALPHAS(INDEX+I) COWC 272
VAL(1)=BETAS(INDEX+I) COWC 273
10 CONTINUE COWC 274
VAL(LP1)=BETAS(INDEX+LP1) COWC 275
RETURN COWC 276
100 DO 110 I=1,L COWC 277
FUS(1)=ALPHA (INDEX+I) COWC 278
      
```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```
VEL(I)=BETA (INDEX+I)          COWC 280
110 CONTINUE                    COWC 281
      VEL(LP1)=BETA (INDEX+LP1)  COWC 282
      RETURN                      COWC 283
200 WRITE(6,50) IFC             COWC 284
300 FORMAT(1H1,' PERMISSIBLE VALUES OF IPC ARE 0 AND 1. VALUE PASSED W' COWC 285
     *AS*,G10.0,' ****RUN TERMINATED*****')
     GJ TU 100C                  COWC 286
400 WRITE(6,50) IORDER          COWC 287
500 FORMAT(1H1,'PERMISSIBLE VALUES OF IORDER ARE 5 THROUGH 15. VALUE PCOWC 288
     *ASSED WAS*,G10.0,' ****RUN TERMINATED*****')
1000 STOP 6666                 COWC 289
      END.                      COWC 290
                                         COWC 291
                                         COWC 292
```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

COWELL

DESCRIPTION

COWELL is the integration subroutine in GEODYN. It integrates the satellite equations of motion and the variational equations. COWELL features a second order predictor-corrector method with variable stepsize. The order of the integrator is also optional.

The integration procedure is not self-starting. The starting procedure consists of initializing logic and data arrays, using START to obtain the requisite back values. F is also invoked to evaluate the accelerations; VEVAL is invoked to evaluate the variational equations.

The order of computation for normal processing is as follows:

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

- Predict position. Predict velocity if drag perturbations present.
- Correct position and velocity at least once, twice if necessary.
- Evaluate (integrated) variational partials based on corrected values for position and velocity.
- Check for decreasing or increasing of stepsize and update tables of back values. If necessary call REARG to increase or decrease stepsize.
- If the time of interest has not been reached, start processing cycle over for the next stop. Otherwise, processing has completed and control is returned to the calling routine.

NAME COWELL

PURPOSE TO SUM COWELL INTEGRATOR WHICH INTEGRATES SATELLITE EQUATIONS OF MOTION AND ALL FORCE MODEL PARTIAL DERIVATIVES TO DESIRED TIME (DAY)

CALLING SEQUENCE CALL COWELL(DAY,Y,FCT,IORDER,H,TIM,SUM,VAR,FAC,M,
NN,ISAT,PP,P,CC,C,VCC,VC)

SYMBOL	TYPE	DESCRIPTION
DAY	DP	INPUT - DESIRED OUTPUT TIME
Y (6,1)	DP	INPUT - ARRAY CONTAINING SATELLITE POSITION & VELOCITY AND FORCE MODEL PARTIALS, AN OUTPUT ARRAY FROM INTERPOLATOR
FCT (3,1)	DP	INPUT & OUTPUT - BACK VALUE ARRAY OF ACCELERATIONS
IORDER (2)	I	INPUT - ARRAY OF INTEGRATION ORDER FOR ORBIT AND PARTIALS
H (2)	DP	INPUT - ARRAY OF STEP SIZES FOR ORBIT AND PARTIALS
TIM (2)	DP	INPUT - ARRAY OF INTEGRATION TIMES OF ORBIT AND PARTIALS
SUM (2,3,1)	DP	INPUT - ARRAY CONTAINING SUMS USED BY INTEGRATOR AND INTERPOLATOR
VAR	L	INPUT - VARIABLE STEP SWITCH
FAC	DP	INPUT - = +1 IF FORWARD = -1 IF BACKWARD
M (2)	I	INPUT - DISPLACEMENT ARRAY USED BY INTEGRATOR
NN	I	INPUT - NUMBER OF EQUATIONS
ISAT	I	INPUT - SATELLITE NUMBER
PP (1)	DP	INPUT - POSITION PREDICTOR COEFFICIENTS
P (1)	DP	INPUT - VELOCITY PREDICTOR COEFFICIENTS
CC (1)	DP	INPUT - POSITION CORRECTION COEFFICIENTS
C (1)	DP	INPUT - VELOCITY CORRECTION COEFFICIENTS

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

VCC	DF	INPUT - VARIATIONAL PARTIAL CORRECTOR COEFFICIENTS			
(1)					
VC	DF	INPUT - VARIATION PARTIAL FIRST TIME DERIVATIVE CORRECTOR COEFFICIENTS.			
(1)					
SUBROUTINES USED	COWCOF INTRP	START VEVAL	F DNVERT	REARG	CLEAR
COMMON BLOCKS	INTPLK	VMAT	CELEM	CTIME	
INPUT FILES	NONE				
OUTPUT FILES	PRINTER				
REFERENCES	'GEODYN SYSTEMS DESCRIPTION' VOLUME 1 - GEODYN DOCUMENTATION				

```

SUBROUTINE COWELL(DAY,Y,FCT,T0FDEF,H,TIM,SUM,VAR,FAC,M,NN,ISAT,
  • PP,P,CC,C,VCC,VC)
  IMPLICIT REAL*8(A-H,O-Z)
  DIMENSION SUM(2,3,1),AUX(1),ECCN(11),FCT(3,1),H(2),TIM(2),
  • Y(2,1),
  • PC(1),C(1),PP(1),CC(1),VC(1),VCC(1),PC(3)
  INTEGER ICPOEP(2),M(2),KJUNT(2)*2#0/,KJUNT(2)/2#0/
  LOGICAL INITIAL,FEVAL,NDRAG,VAF,HLVDSW
  LOGICAL FEVAL/.TRUE./,STRTP(2)
  LOGICAL KERHAT
  DATA ECCN/.0500,.05263157900,
  • .0487213#00,.0440324#00,
  • .03712131#00,.0359614#00,
  • .03274#94000,.0299924#00,
  • .0275232051#00,.0255582503#00,
  • .023754#0200/
  EQUIVALENCE(PC1,PC(1)),(PC2,PC(2)),(PC3,PC(3))
  EQUIVALENCE(AUX(1),AUX1),(AUX(2),AUX2),(AUX(3),AUX3)
  COMMON/INTPLK/LG2(30),E(2),LG4(18),INITAL,NDRRAT,LG3(14),
  • STEPSZ(4),HLVERB(2),
  • DBLERE(2),CTOL(2),
  • RTOL(2),STEPLO(2),STPUP(2),MEAT(14),HLVDSW(2),LOVE(16)
  COMMON/VNAT/VNATRIX(3,5),S(6,6),LYT(18)
  COMMON/CELEM/ELEMST(6,2),TIRREL(2)
  COMMON/CTIME/DATAEP(2),DAY0,ISTP(17)

C INITIALIZE
  NDRAG=E(ISAT).GT.0.00
  IFCR1=ICFD+R(1)
  IFCR2=ICFD+R(2)
  IUL1=IFCR1-1
  IUL2=IUL1-1
  M1=M(1)
  M2=M(2)
  M1=M1+1
  M2=M1+2

```

```

M2P1=M2+1          COWE 112
1 IF(NN.EQ.1) GO TO 3  COWE 113
1U2L1=10HCR2-1      COWE 114
1U2L2=1UHCR2-2      COWE 115
3 IF(INITAL)GO TO 4  COWE 116
IF(NN.GT.1)GO TO 260 COWE 117
GO TO 10C           COWE 118
4 INITAL=.FALSE.
KOUNT(1SAT)=IC1LI   COWE 119
M2=0                COWE 120
M(1)=IC1LI          COWE 121
IF(NN.EQ.1) GO TO 18 COWE 122
IF(IUHCR2.GT.ICRDR1) ICRDR2=IORDR1
1U2L1=1UHCR2-1      COWE 123
1U2L2=1C2L1-1      COWE 124
KOUNT2(1SAT)=1U2L1  COWE 125
M(2)=1U2L1          COWE 126
18 IF(.NOT.VARI) GO TO 20 COWE 127
M(1)=M(1)+M(1)-1  COWE 128
IF(NN.GT.1)M(2)=M(2)+M(2)-1 COWE 129
20 CONTINUE          COWE 130
M1=M(1)             COWE 131
M2=M(2)             COWE 132
M1P1=M1+1           COWE 133
M1P2=M1P1+1         COWE 134
M2P1=M2+1           COWE 135
C SET PREDICTOR COEFFICIENTS COWE 136
21 CALL COWCLF(PP,P,IORDR1,1) COWE 137
C SET CORRECTOR COEFFICIENTS COWE 138
CALL COWCCF(CC,C,IORDR1,0) COWE 139
IF(NN.EQ.1) GO TO 23 COWE 140
IF(IORDR1.EQ.IORDR2) GO TO 23 COWE 141
C SET VARIATION EQUATION COEFFICIENTS COWE 142
CALL COWCCF(VCC,VC,IOPDR2,0) COWE 143
GO TO 24            COWE 144
23 DU 22 I=1,IC1L2  COWE 145
VCC(I)=CC(I)        COWE 146
22 VC(I)=C(I)        COWE 147
VC(IC1L1)=C(IC1L1)  COWE 148
24 CONTINUE          COWE 149
C START INTEGRATION PROCESS COWE 150
CALL START(IOPDR2,      H(2),FCT,SUM,Y,NN,M1,M2,TIM(2)) COWE 151
IF(IOPDR1.NE.IOPDR2.OR.H(1).NE.H(2)) GO TO 25 COWE 152
TIM(1)=TIM(2)        COWE 153
GO TO 29             COWE 154
25 CALL START(IOPDR1,      H(1),FCT,SUM,Y,1,M1,M1,TIM(1)) COWE 155
25 STATR(1SAT)=.FALSE. COWE 156
C CHECK IF DESIRED TIME HAS BEEN REACHED (DAY)
10000 T2=(TIM(1)-2.0D0*H(1))/2.54D4 COWE 157
IF(DAY*FAC.GE.T2*FAC) GO TO 100 COWE 158
IF(NN.EQ.1) RETURN    COWE 159
T2=(TIM(1)-2.0D0*H(2))/2.54D4 COWE 160
IF(DAY*FAC.LT.T2*FAC) RETURN COWE 161
C PREDICT          COWE 162
100 DO 150 J=1,3    COWE 163
PAED = 0.000          COWE 164
150 CONTINUE          COWE 165
      COWE 166
      COWE 167
      COWE 168
      COWE 169
      COWE 170
      COWE 171
      COWE 172
      COWE 173
      COWE 174
      COWE 175
      COWE 176
      COWE 177
      COWE 178
      COWE 179
      COWE 180
      COWE 181
      COWE 182
      COWE 183
      COWE 184
      COWE 185
      COWE 186
      COWE 187
      COWE 188
      COWE 189
      COWE 190
      COWE 191
      COWE 192
      COWE 193
      COWE 194
      COWE 195
      COWE 196
      COWE 197
      COWE 198
      COWE 199
      COWE 200
      COWE 201
      COWE 202
      COWE 203
      COWE 204
      COWE 205
      COWE 206
      COWE 207
      COWE 208
      COWE 209
      COWE 210
      COWE 211
      COWE 212
      COWE 213
      COWE 214
      COWE 215
      COWE 216
      COWE 217
      COWE 218
      COWE 219
      COWE 220
      COWE 221
      COWE 222
      COWE 223
      COWE 224
      COWE 225
      COWE 226
      COWE 227
      COWE 228
      COWE 229
      COWE 230
      COWE 231
      COWE 232
      COWE 233
      COWE 234
      COWE 235
      COWE 236
      COWE 237
      COWE 238
      COWE 239
      COWE 240
      COWE 241
      COWE 242
      COWE 243
      COWE 244
      COWE 245
      COWE 246
      COWE 247
      COWE 248
      COWE 249
      COWE 250
      COWE 251
      COWE 252
      COWE 253
      COWE 254
      COWE 255
      COWE 256
      COWE 257
      COWE 258
      COWE 259
      COWE 260
      COWE 261
      COWE 262
      COWE 263
      COWE 264
      COWE 265
      COWE 266
      COWE 267
      COWE 268
      COWE 269
      COWE 270
      COWE 271
      COWE 272
      COWE 273
      COWE 274
      COWE 275
      COWE 276
      COWE 277
      COWE 278
      COWE 279
      COWE 280
      COWE 281
      COWE 282
      COWE 283
      COWE 284
      COWE 285
      COWE 286
      COWE 287
      COWE 288
      COWE 289
      COWE 290
      COWE 291
      COWE 292
      COWE 293
      COWE 294
      COWE 295
      COWE 296
      COWE 297
      COWE 298
      COWE 299
      COWE 300
      COWE 301
      COWE 302
      COWE 303
      COWE 304
      COWE 305
      COWE 306
      COWE 307
      COWE 308
      COWE 309
      COWE 310
      COWE 311
      COWE 312
      COWE 313
      COWE 314
      COWE 315
      COWE 316
      COWE 317
      COWE 318
      COWE 319
      COWE 320
      COWE 321
      COWE 322
      COWE 323
      COWE 324
      COWE 325
      COWE 326
      COWE 327
      COWE 328
      COWE 329
      COWE 330
      COWE 331
      COWE 332
      COWE 333
      COWE 334
      COWE 335
      COWE 336
      COWE 337
      COWE 338
      COWE 339
      COWE 340
      COWE 341
      COWE 342
      COWE 343
      COWE 344
      COWE 345
      COWE 346
      COWE 347
      COWE 348
      COWE 349
      COWE 350
      COWE 351
      COWE 352
      COWE 353
      COWE 354
      COWE 355
      COWE 356
      COWE 357
      COWE 358
      COWE 359
      COWE 360
      COWE 361
      COWE 362
      COWE 363
      COWE 364
      COWE 365
      COWE 366
      COWE 367
      COWE 368
      COWE 369
      COWE 370
      COWE 371
      COWE 372
      COWE 373
      COWE 374
      COWE 375
      COWE 376
      COWE 377
      COWE 378
      COWE 379
      COWE 380
      COWE 381
      COWE 382
      COWE 383
      COWE 384
      COWE 385
      COWE 386
      COWE 387
      COWE 388
      COWE 389
      COWE 390
      COWE 391
      COWE 392
      COWE 393
      COWE 394
      COWE 395
      COWE 396
      COWE 397
      COWE 398
      COWE 399
      COWE 400
      COWE 401
      COWE 402
      COWE 403
      COWE 404
      COWE 405
      COWE 406
      COWE 407
      COWE 408
      COWE 409
      COWE 410
      COWE 411
      COWE 412
      COWE 413
      COWE 414
      COWE 415
      COWE 416
      COWE 417
      COWE 418
      COWE 419
      COWE 420
      COWE 421
      COWE 422
      COWE 423
      COWE 424
      COWE 425
      COWE 426
      COWE 427
      COWE 428
      COWE 429
      COWE 430
      COWE 431
      COWE 432
      COWE 433
      COWE 434
      COWE 435
      COWE 436
      COWE 437
      COWE 438
      COWE 439
      COWE 440
      COWE 441
      COWE 442
      COWE 443
      COWE 444
      COWE 445
      COWE 446
      COWE 447
      COWE 448
      COWE 449
      COWE 450
      COWE 451
      COWE 452
      COWE 453
      COWE 454
      COWE 455
      COWE 456
      COWE 457
      COWE 458
      COWE 459
      COWE 460
      COWE 461
      COWE 462
      COWE 463
      COWE 464
      COWE 465
      COWE 466
      COWE 467
      COWE 468
      COWE 469
      COWE 470
      COWE 471
      COWE 472
      COWE 473
      COWE 474
      COWE 475
      COWE 476
      COWE 477
      COWE 478
      COWE 479
      COWE 480
      COWE 481
      COWE 482
      COWE 483
      COWE 484
      COWE 485
      COWE 486
      COWE 487
      COWE 488
      COWE 489
      COWE 490
      COWE 491
      COWE 492
      COWE 493
      COWE 494
      COWE 495
      COWE 496
      COWE 497
      COWE 498
      COWE 499
      COWE 500
      COWE 501
      COWE 502
      COWE 503
      COWE 504
      COWE 505
      COWE 506
      COWE 507
      COWE 508
      COWE 509
      COWE 510
      COWE 511
      COWE 512
      COWE 513
      COWE 514
      COWE 515
      COWE 516
      COWE 517
      COWE 518
      COWE 519
      COWE 520
      COWE 521
      COWE 522
      COWE 523
      COWE 524
      COWE 525
      COWE 526
      COWE 527
      COWE 528
      COWE 529
      COWE 530
      COWE 531
      COWE 532
      COWE 533
      COWE 534
      COWE 535
      COWE 536
      COWE 537
      COWE 538
      COWE 539
      COWE 540
      COWE 541
      COWE 542
      COWE 543
      COWE 544
      COWE 545
      COWE 546
      COWE 547
      COWE 548
      COWE 549
      COWE 550
      COWE 551
      COWE 552
      COWE 553
      COWE 554
      COWE 555
      COWE 556
      COWE 557
      COWE 558
      COWE 559
      COWE 560
      COWE 561
      COWE 562
      COWE 563
      COWE 564
      COWE 565
      COWE 566
      COWE 567
      COWE 568
      COWE 569
      COWE 570
      COWE 571
      COWE 572
      COWE 573
      COWE 574
      COWE 575
      COWE 576
      COWE 577
      COWE 578
      COWE 579
      COWE 580
      COWE 581
      COWE 582
      COWE 583
      COWE 584
      COWE 585
      COWE 586
      COWE 587
      COWE 588
      COWE 589
      COWE 590
      COWE 591
      COWE 592
      COWE 593
      COWE 594
      COWE 595
      COWE 596
      COWE 597
      COWE 598
      COWE 599
      COWE 600
      COWE 601
      COWE 602
      COWE 603
      COWE 604
      COWE 605
      COWE 606
      COWE 607
      COWE 608
      COWE 609
      COWE 610
      COWE 611
      COWE 612
      COWE 613
      COWE 614
      COWE 615
      COWE 616
      COWE 617
      COWE 618
      COWE 619
      COWE 620
      COWE 621
      COWE 622
      COWE 623
      COWE 624
      COWE 625
      COWE 626
      COWE 627
      COWE 628
      COWE 629
      COWE 630
      COWE 631
      COWE 632
      COWE 633
      COWE 634
      COWE 635
      COWE 636
      COWE 637
      COWE 638
      COWE 639
      COWE 640
      COWE 641
      COWE 642
      COWE 643
      COWE 644
      COWE 645
      COWE 646
      COWE 647
      COWE 648
      COWE 649
      COWE 650
      COWE 651
      COWE 652
      COWE 653
      COWE 654
      COWE 655
      COWE 656
      COWE 657
      COWE 658
      COWE 659
      COWE 660
      COWE 661
      COWE 662
      COWE 663
      COWE 664
      COWE 665
      COWE 666
      COWE 667
      COWE 668
      COWE 669
      COWE 670
      COWE 671
      COWE 672
      COWE 673
      COWE 674
      COWE 675
      COWE 676
      COWE 677
      COWE 678
      COWE 679
      COWE 680
      COWE 681
      COWE 682
      COWE 683
      COWE 684
      COWE 685
      COWE 686
      COWE 687
      COWE 688
      COWE 689
      COWE 690
      COWE 691
      COWE 692
      COWE 693
      COWE 694
      COWE 695
      COWE 696
      COWE 697
      COWE 698
      COWE 699
      COWE 700
      COWE 701
      COWE 702
      COWE 703
      COWE 704
      COWE 705
      COWE 706
      COWE 707
      COWE 708
      COWE 709
      COWE 710
      COWE 711
      COWE 712
      COWE 713
      COWE 714
      COWE 715
      COWE 716
      COWE 717
      COWE 718
      COWE 719
      COWE 720
      COWE 721
      COWE 722
      COWE 723
      COWE 724
      COWE 725
      COWE 726
      COWE 727
      COWE 728
      COWE 729
      COWE 730
      COWE 731
      COWE 732
      COWE 733
      COWE 734
      COWE 735
      COWE 736
      COWE 737
      COWE 738
      COWE 739
      COWE 740
      COWE 741
      COWE 742
      COWE 743
      COWE 744
      COWE 745
      COWE 746
      COWE 747
      COWE 748
      COWE 749
      COWE 750
      COWE 751
      COWE 752
      COWE 753
      COWE 754
      COWE 755
      COWE 756
      COWE 757
      COWE 758
      COWE 759
      COWE 760
      COWE 761
      COWE 762
      COWE 763
      COWE 764
      COWE 765
      COWE 766
      COWE 767
      COWE 768
      COWE 769
      COWE 770
      COWE 771
      COWE 772
      COWE 773
      COWE 774
      COWE 775
      COWE 776
      COWE 777
      COWE 778
      COWE 779
      COWE 780
      COWE 781
      COWE 782
      COWE 783
      COWE 784
      COWE 785
      COWE 786
      COWE 787
      COWE 788
      COWE 789
      COWE 790
      COWE 791
      COWE 792
      COWE 793
      COWE 794
      COWE 795
      COWE 796
      COWE 797
      COWE 798
      COWE 799
      COWE 800
      COWE 801
      COWE 802
      COWE 803
      COWE 804
      COWE 805
      COWE 806
      COWE 807
      COWE 808
      COWE 809
      COWE 810
      COWE 811
      COWE 812
      COWE 813
      COWE 814
      COWE 815
      COWE 816
      COWE 817
      COWE 818
      COWE 819
      COWE 820
      COWE 821
      COWE 822
      COWE 823
      COWE 824
      COWE 825
      COWE 826
      COWE 827
      COWE 828
      COWE 829
      COWE 830
      COWE 831
      COWE 832
      COWE 833
      COWE 834
      COWE 835
      COWE 836
      COWE 837
      COWE 838
      COWE 839
      COWE 840
      COWE 841
      COWE 842
      COWE 843
      COWE 844
      COWE 845
      COWE 846
      COWE 847
      COWE 848
      COWE 849
      COWE 850
      COWE 851
      COWE 852
      COWE 853
      COWE 854
      COWE 855
      COWE 856
      COWE 857
      COWE 858
      COWE 859
      COWE 860
      COWE 861
      COWE 862
      COWE 863
      COWE 864
      COWE 865
      COWE 866
      COWE 867
      COWE 868
      COWE 869
      COWE 870
      COWE 871
      COWE 872
      COWE 873
      COWE 874
      COWE 875
      COWE 876
      COWE 877
      COWE 878
      COWE 879
      COWE 880
      COWE 881
      COWE 882
      COWE 883
      COWE 884
      COWE 885
      COWE 886
      COWE 887
      COWE 888
      COWE 889
      COWE 890
      COWE 891
      COWE 892
      COWE 893
      COWE 894
      COWE 895
      COWE 896
      COWE 897
      COWE 898
      COWE 899
      COWE 900
      COWE 901
      COWE 902
      COWE 903
      COWE 904
      COWE 905
      COWE 906
      COWE 907
      COWE 908
      COWE 909
      COWE 910
      COWE 911
      COWE 912
      COWE 913
      COWE 914
      COWE 915
      COWE 916
      COWE 917
      COWE 918
      COWE 919
      COWE 920
      COWE 921
      COWE 922
      COWE 923
      COWE 924
      COWE 925
      COWE 926
      COWE 927
      COWE 928
      COWE 929
      COWE 930
      COWE 931
      COWE 932
      COWE 933
      COWE 934
      COWE 935
      COWE 936
      COWE 937
      COWE 938
      COWE 939
      COWE 940
      COWE 941
      COWE 942
      COWE 943
      COWE 944
      COWE 945
      COWE 946
      COWE 947
      COWE 948
      COWE 949
      COWE 950
      COWE 951
      COWE 952
      COWE 953
      COWE 954
      COWE 955
      COWE 956
      COWE 957
      COWE 958
      COWE 959
      COWE 960
      COWE 961
      COWE 962
      COWE 963
      COWE 964
      COWE 965
      COWE 966
      COWE 967
      COWE 968
      COWE 969
      COWE 970
      COWE 971
      COWE 972
      COWE 973
      COWE 974
      COWE 975
      COWE 976
      COWE 977
      COWE 978
      COWE 979
      COWE 980
      COWE 981
      COWE 982
      COWE 983
      COWE 984
      COWE 985
      COWE 986
      COWE 987
      COWE 988
      COWE 989
      COWE 990
      COWE 991
      COWE 992
      COWE 993
      COWE 994
      COWE 995
      COWE 996
      COWE 997
      COWE 998
      COWE 999
      COWE 1000
      COWE 1001
      COWE 1002
      COWE 1003
      COWE 1004
      COWE 1005
      COWE 1006
      COWE 1007
      COWE 1008
      COWE 1009
      COWE 1010
      COWE 1011
      COWE 1012
      COWE 1013
      COWE 1014
      COWE 1015
      COWE 1016
      COWE 1017
      COWE 1018
      COWE 1019
      COWE 1020
      COWE 1021
      COWE 1022
      COWE 1023
      COWE 1024
      COWE 1025
      COWE 1026
      COWE 1027
      COWE 1028
      COWE 1029
      COWE 1030
      COWE 1031
      COWE 1032
      COWE 1033
      COWE 1034
      COWE 1035
      COWE 1036
      COWE 1037
      COWE 1038
      COWE 1039
      COWE 1040
      COWE 1041
      COWE 1042
      COWE 1043
      COWE 1044
      COWE 1045
      COWE 1046
      COWE 1047
      COWE 1048
      COWE 1049
      COWE 1050
      COWE 1051
      COWE 1052
      COWE 1053
      COWE 1054
      COWE 1055
      COWE 1056
      COWE 1057
      COWE 1058
      COWE 1059
      COWE 1060
      COWE 1061
      COWE 1062
      COWE 1063
      COWE 1064
      COWE 1065
      COWE 1066
      COWE 1067
      COWE 1068
      COWE 1069
      COWE 1070
      COWE 1071
      COWE 1072
      COWE 1073
      COWE 1074
      COWE 1075
      COWE 1076
      COWE 1077
      COWE 1078
      COWE 1079
      COWE 1080
      COWE 1081
      COWE 1082
      COWE 1083
      COWE 1084
      COWE 1085
      COWE 1086
      COWE 1087
      COWE 1088
      COWE 1089
      COWE 1090
      COWE 1091
      COWE 1092
      COWE 1093
      COWE 1094
      COWE 1095
      COWE 1096
      COWE 1097
      COWE 1098
      COWE 1099
      COWE 1100
      COWE 1101
      COWE 1102
      COWE 1103
      COWE 1104
      COWE 1105
      COWE 1106
      COWE 1107
      COWE 1108
      COWE 1109
      COWE 1110
      COWE 1111
      COWE 1112
      COWE 1113
      COWE 1114
      COWE 1115
      COWE 1116
      COWE 1117
      COWE 1118
      COWE 1119
      COWE 1120
      COWE 1121
      COWE 1122
      COWE 1123
      COWE 1124
      COWE 1125
      COWE 1126
      COWE 1127
      COWE 1128
      COWE 1129
      COWE 1130
      COWE 1131
      COWE 1132
      COWE 1133
      COWE 1134
      COWE 1135
      COWE 1136
      COWE 1137
      COWE 1138
      COWE 1139
      COWE 1140
      COWE 1141
      COWE 1142
      COWE 1143
      COWE 1144
      COWE 1145
      COWE 1146
      COWE 1147
      COWE 1148
      COWE 1149
      COWE 1150
      COWE 1151
      COWE 1152
      COWE 1153
      COWE 1154
      COWE 1155
      COWE 1156
      COWE 1157
      COWE 1158
      COWE 1159
      COWE 1160
      COWE 1161
      COWE 1162
      COWE 1163
      COWE 1164
      COWE 1165
      COWE 1166
      COWE 1167
      COWE 1168
      COWE 1169
      COWE 1170
      COWE 1171
      COWE 1172
      COWE 1173
      COWE 1174
      COWE 1175
      COWE 1176
      COWE 1177
      COWE 1178
      COWE 1179
      COWE 1180
      COWE 1181
      COWE 1182
      COWE 1183
      COWE 1184
      COWE 1185
      COWE 1186
      COWE 1187
      COWE 1188
      COWE 1189
      COWE 1190
      COWE 1191
      COWE 1192
      COWE 1193
      COWE 1194
      COWE 1195
      COWE 1196
      COWE 1197
      COWE 1198
      COWE 1199
      COWE 1200
      COWE 1201
      COWE 1202
      COWE 1203
      COWE 1204
      COWE 1205
      COWE 1206
      COWE 1207
      COWE 1208
      COWE 1209
      COWE 1210
      COWE 1211
      COWE 1212
      COWE 1213
      COWE 1214
      COWE 1215
      COWE 1216
      COWE 1217
      COWE 1218
      COWE 1219
      COWE 1220
      COWE 1221
      COWE 1222
      COWE 1223
      COWE 1224
      COWE 1225
      COWE 1226
      COWE 1227
      COWE 1228
      COWE 1229
      COWE 1230
      COWE 1231
      COWE 1232
      COWE 1233
      COWE 1234
      COWE 1235
      COWE 1236
      COWE 1237
      COWE 1238
      COWE 1239
      COWE 1240
      COWE 1241
      COWE 1242
      COWE 1243
      COWE 1244
      COWE 1245
      COWE 1246
      COWE 1247
      COWE 1248
      COWE 1249
      COWE 1250
      COWE 1251
      COWE 1252
      COWE 1253
      COWE 1254
      COWE 1255
      COWE 1256
      COWE 1257
      COWE 1258
      COWE 1259
      COWE 1260
      COWE 1261
      COWE 1262
      COWE 1263
      COWE 1264
      COWE 
```

```

DO 150 I=1,101L2          COWE 168
  K=M1P1-I
150 PREC=PREC+PP(I)*FCT(J,K) COWE 169
150 Y(J,1)=(SUM(2,J,1)+PREC)*H(1)**2 COWE 170
152 IF(NJURAG) GO TO 155 COWE 171
DO 150 J=4,6               COWE 172
J1=J-3                     COWE 173
PREC=0.000                 COWE 174
DO 165 I=1,101L1           COWE 175
  K=M1P1-I
155 PREC=PREC+P(1)*FCT(J1,K) COWE 176
150 Y(J,1)=(SUM(1,J1,1)+PREC)*H(1) COWE 177
C SAVE PREDICTED POSITION FOR USE BY VARIABLE STEP INTEGRATOR COWE 178
156 IF(.NOT.({FEVAL,OR,VAR}) GO TO 154 COWE 179
  PC1=Y(1,1)
  PC2=Y(2,1)
  PC3=Y(3,1)
154 NCURR=0                 COWE 180
  TYN=TIN(1)+H(1)
200 NCURR=NCURR+1           COWE 181
C EVALUATE ACCELERATION      COWE 182
  CALL F(TYN,Y,AUX,.FALSE.)
C CORRECT                   COWE 183
220 DO 250 J=1,3           COWE 184
  POS=0.00                  COWE 185
  VEL=0.00                  COWE 186
  DO 240 I=2,101L2           COWE 187
    K=M1P2-I
    FOS=POS+C(I)*FCT(J,K)   COWE 188
240 VEL=VEL+C(I)*FCT(J,K)   COWE 189
  FOS=POS+C(1)*AUX(J)
  VEL=VEL+C(1)*AUX(J)
  VEL=VEL+C(I01L1)*FCT(J,M1P2-I01L1)
  Y(J,1)=(PC5+SUM(2,J,1))*H(1)**2
  Y(J+3,1)=(VEL+SUM(1,J,1))*H(1)
250 CONTINUE                 COWE 190
251 IF(NJURN,LT,1) GO TO 256 COWE 191
  IF(.NOT.({FEVAL,OR,VAR}) GO TO 255 COWE 192
C COMPUTE DISCREPANCY BETWEEN PREDICTED & CORRECTED VALUES COWE 193
  YPCR=(PC1-Y(1,1))**2+(PC2-Y(2,1))**2+(PC3-Y(3,1))**2 COWE 194
  YPCR=YPCR+ECON(T0D0P1-4)**2 COWE 195
  IF(.NOT. VAR) GO TO 257 COWE 196
  IF(YPCR.GT.0.000001) GOT0259 COWE 197
C INCREASE STEP              COWE 198
  IF(KOUNT(1SAT).LT.M1) GOT0257 COWE 199
  IF(HN.GT.1.AND.KJUNT2(1SAT).LT.M2) GOT0257 COWE 200
  C=2.00                      COWE 201
  IF(HLYDSK(1SAT)) GOT0252 COWE 202
  IF(YPCR.LT.1.C-2) GOT0252 COWE 203
  MERTOL(1SAT)/YPCR          COWE 204
  L=6.**((1.00/(DFLOAT(I01L1+I01L1))) COWE 205
  IF(L.GT.2.00) C=2.00        COWE 206
  IF(L.LT.1.00) C=1.00        COWE 207
252 IF(FACG>H(1).GT.STRUP(1SAT)) GOT0257 COWE 208
  IF(HN.GT.1.AND.H(2)>0.CT*STRUP(1SAT)) GOT0257 COWE 209
  CALL REARGE(M1,M1,ICDRN1,LT,CT,H(1),H(1), TIN(1),TIM(1), COWE 210

```

```

    • FCT,1,SLM,SLM,CC,C,Y,Y   ..FALSE.,FCT,0)          COWE 224
    • IF(NN.GT.1)CALL REARG(M2,M1,ICRDR1,ICRDR2,H(1),H(2),  TIM(1))COWE 225
    • ,TIM(2),FCT(1,M1+1),NN,SUM(1,1,2),SUM,VCC,VC,Y(1,2),Y..TRUE.. COWE 226
    • FCT,C )          COWE 227
    KOUNT(1SAT)=IC1L2          COWE 228
    IF(NN.GT.1)KOUNT2(1SAT)=IC2L2          COWE 229
    GO TO 100          COWE 230
25x IF(YPCR.LT.PLVERB(TSAT))GOTO257          COWE 231
C REDUCE STEP          COWE 232
    C=.5D0          COWE 233
    IF(HLVDSW(1SAT))GOTO258          COWE 234
    Q=RTOL(1SAT)/YPCR          COWE 235
    Q=Q*(1.0C/(DFLOAT(IC1L1+IC1L1)))          COWE 236
    IF(Q.GT.2.0D0)C=2.0D0          COWE 237
    IF(Q.LT.+5D0)C=+.5D0          COWE 238
258 IF(FAC*H(1)*Q.LT,STEP(LC(1SAT)))GOTO257          COWE 239
C IF FIRST TIME OUT OF STARTER AND STEP REDUCTION IS NEEDED, RESTART          COWE 240
C WITH SMALLER STEP          COWE 241
    IF(ISTRTR(1SAT))GOTO253          COWE 242
    H(1)=Q*H(1)          COWE 243
    H(2)=Q*H(2)          COWE 244
    AUX1=Q*ES(H(1))          COWE 245
    CALL CLEAR(Y,12,NN)          COWE 246
    DO 2520 I=1,6          COWE 247
    Y(I,1)=ELEMST(I,1SAT)          COWE 248
2520 CONTINUE          COWE 249
    TJK(1)=3.6404*DAY0          COWE 250
    TIM(2)=TIM(1)          COWE 251
    IF(NN.EQ.1)GO TO 2540          COWE 252
    DO 2525 I=1,6          COWE 253
    Y(I,I+1)=1.0D0          COWE 254
2525 CONTINUE          COWE 255
2540 WRITE(6,254)1SAT,AUX1          COWE 256
254 FORMAT(1H1,'1 SAT',I2,'.',' INITIAL STEP TOO LARGE',/,
    • 'RESTARTING WITH',G11.4,' SEC STEP')          COWE 257
    • IF(NN.EQ.1)GOTO259          COWE 258
    GO TO 24          COWE 259
259 CALL REARG(M1,M1,ICRDR1,ICRDR1,H(1),H(1),  TIM(1),TIM(1),          COWE 260
    • FCT,1,SLM,SUM,CC,C,Y,Y,  ..FALSE.,FCT,0 )          COWE 261
    • IF(NN.GT.1)CALL REARG(M2,M1,  ICRDR1,ICRDR2,H(1),H(2),  TIM(1))COWE 262
    • ,TIM(2),FCT(1,M1+1),NN,SUM(1,1,2),SUM,VCC,VC,Y(1,2),Y..TRUE.. COWE 263
    • FCT,C )          COWE 264
    KOUNT(1SAT)=IC1L2          COWE 265
    IF(NN.GT.1)KOUNT2(1SAT)=IC2L2          COWE 266
    GO TO 100          COWE 267
267 IF(FEVAL.AND.YPCR.LE.CTRL(1SAT))GOTO256          COWE 268
268 IF(INCURR.LT.2)GO TO 200          COWE 269
269 TIM(1)=TIM          COWE 270
    IF(VAK.AND.KOUNT(1SAT).LT.M1)KOUNT(1SAT)=KOUNT(1SAT)+1          COWE 271
    MN=M1-1          COWE 272
C RESET BACK VALUE ARRAY          COWE 273
    DO 157 II=1,MM          COWE 274
    DO 157 JJ=1,3          COWE 275
157 FCT(J,II)=FCT(J,II+1)          COWE 276
    FCT(1,M1)=AUX1          COWE 277
    FCT(2,M1)=AUX2          COWE 278

```

```

      FCT(J,M1)=AUX3
199 CONTINUE
      STRTH(ISAT)=.TRUE.
C UPDATE SUMS
      DO 896 J=1,3
      SUM(1,J,1)=SUM(1,J,1)+FCT(J,M1)
993 SUM(2,J,1)=SUM(2,J,1)+SUM(1,J,1)
260 IF(NN.EQ.1)GOTO950
      PRED=TIM(2)+H(2)
      IF(PRED.GT.TIM(1))GO TO 100
      TIM(2)=PRED
      NNL1=NN-1
      MM=M2-1
      DO 198 JJ=1,NNL1
      KKK=(JJ-1)*M2+M1
      DO 196 JJ=1,MM
      KKE=KKK+1
      DO 195 J=1,3
198 FCT(J,KK)=FCT(J,KK+1)
      IF(VAC=.AND.KOUNT2(ISAT).LT.M2)KOUNT2(ISAT)=KOUNT2(ISAT)+1
      PREC=(TIM(2)-TIM(1))/H(1)
      IF(PREC.EQ.0.0)GO TO 262
      CALL INTFP(PRED,H(1),ICHR1,1,Y,FCT,M1,SUM)
262 CALL F(TIM(2),Y,AUX,.TRUE.)
C EVALUATE FORCE MODEL PARTIAL ACCELERATION
      CALL VEVAL(Y,FCT(1,M1+M2),6,.FALSE.,42)
C INTEGRATE VARIATION EQUATIONS USING CORRECTOR COEFFICIENTS ONLY
      DO 320 L1=2,NN
      KO=M1+(L1-2)*M2
      DO 320 J=1,3
      PC1=0.0D0
      DO 316 I=1,102L2
      K=M2P1-I
      215 PC1=PC1+VCC(I)*FCT(J,KO+K)
      320 Y(J,L1)=(SUM(2,J,L1)+PC1)*H(2)**2
      H2C=VCC(1)*H(2)**2
      IF(NODHAC) GO TO 331
      NNN=0
      H1C=VC(1)*H(2)
      DO 325 L1=2,NN
      KO=M1+(L1-2)*M2
      DO 325 J=1,3
      J1=J+3
      PC1=0.0D0
      DO 322 I=1,IC2L1
      K=M2P1-I
      322 PC1=PC1+VC(I)*FCT(J,KO+K)
      325 Y(J1,L1)=(SLM(1,J,L1)+PC1)*H(2)
      DO 330 J=1,3
      J1=J+3
      DO 329 I=1,3
      II=I+3
      S(1,J)=-H2C*VMATRX(I,J)
      S(1,J1)=-H2C*VMATRX(I,J1)
      S(11,J)=-H1C*VMATRX(I,J)
      329 S(11,J1)=-H1C*VMATRX(I,J1)

```

```

S(J,J)=S(J,J)+1.00          COWE 336
330 S(J1,J1)=S(J1,J1)+1.00  COWE 337
GO TO 334                  COWE 338
331 NNN=3                   COWE 339
DO 333 I=1,3                COWE 340
DO 332 J=1,3                COWE 341
332 S(I,J)=-H2C*VMATRX(I,J) COWE 342
333 S(I,I)=S(I,I)+1.00      COWE 343
334 CALL CNVEFT(NNN,S,S,AUX) COWE 344
DO 336 L1=2,NN              COWE 345
KK=M1+(L1-1)*M2            COWE 346
DO 335 J=1,NNN              COWE 347
PC1=0.00                   COWE 348
DO 337 K=1,NNN              COWE 349
337 FC1=PC1+S(J,K)*Y(K,L1) COWE 350
338 AUX(J)=PC1              COWE 351
DO 336 I=1,3                COWE 352
PC1=0.00                   COWE 353
DO 338 J=1,NNN              COWE 354
339 PC1=PC1+VMATRX(I,J)*AUX(J) COWE 355
336 FCT(I,KK)=FCT(I,KK)+PC1 COWE 356
DO 900 L=2,NN              COWE 357
L1=M1+L*M2-M2              COWE 358
DO 900 J=1,3                COWE 359
C UPDATE SUMS               COWE 360
SUM(1,J,L)=SUM(1,J,L)+FCT(J,L) COWE 361
900 SUM(2,J,L)=SUM(2,J,L)+SUM(1,J,L) COWE 362
C DETERMINE IF DESIRED TIME HAS BEEN REACHED COWE 363
T2=(TIM(2)-2.00*H(2))/2.64D4 COWE 364
1F(DAY*FAC.GT.T2*FAC) GO TO 260 COWE 365
950 T2=(TIM(1)-2.00*H(1))/2.64D4 COWE 366
1F (DAY*FAC.GT.T2*FAC) GO TO 1C0 COWE 367
RETURN
END

```


REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

DATARD
Page 1 of 7
October 1972

DATARD

DESCRIPTION

DATARD is a subroutine specifically designed for the MULTI-ARC GEODYN program.

DATARD stores on scratch files, updates and retrieves from scratch files all a priori and parameter estimation information about each arc.

DATARD uses several switches that operate as follows.

UPDATE - .TRUE. = write information.

.FALSE. = Read information.

APRIOR - .TRUE. = a priori information to be operated on.

.FALSE. = a priori information not to be operated on.

BMAT - .TRUE. = normal equations to be operated on.

.FALSE. = normal equations not to be operated on.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME	DATARD				
ENTRY POINT	PURPOSE				
DATRD	INITIALIZATION				
DATARD	TO STORE, UPDATE, AND RETRIEVE INDIVIDUAL ARC PARAMETER INFORMATION				
CALLING SEQUENCE CALL DATRD(CD,BIAS,SUM1,IDXCS,SUM2)					
SYMBOL	TYPE	DESCRIPTION			
CD	I	INPUT & OUTPUT - ADJUSTED VALUES OF THE INDIVIDUAL (1) FORCE MODEL PARAMETERS			
BIAIS	I	INPUT - A PRIORI VALUES OF THE INDIVIDUAL ARC (1) PARAMETER			
SUM1	DF	INPUT & OUTPUT - ARC NORMAL MATRIX (1)			
IDXCS	I*2	INPUT - INDICES OF ADJUSTED GEOPOTENTIAL (1) COEFFICIENTS			
SUM2	DF	INPUT - RIGHT HAND SIDE OF NORMAL EQUATIONS (1)			
CALLING SEQUENCE CALL DATARD(ARCNO,APRIOR,UPDATE,BMAT)					
SYMBOL	TYPE	DESCRIPTION			
ARCNO	I	INPUT - ARC NUMBER			
APRIOR	L	INPUT - •TRUE• THEN READ OR WRITE A PRIORI INFORMATION ACCORDING TO •UPDATE• •FALSE• THEN DON'T READ OR WRITE A PRIORI INFORMATION			
UPDATE	L	INPUT - •TRUE• THEN WRITE INFORMATION •FALSE• THEN READ INFORMATION			
BMAT	L	INPUT - •TRUE• THEN READ OR WRITE NORMAL MATRIX ACCORDING TO •UPDATE• •FALSE• THEN DON'T READ OR WRITE NORMAL MATRIX			
SUBROUTINES USED	CLEAR	CPWRITE	DRREAD	ERROR	
COMMON BLOCKS	ALPHARC CTIME PRIORI	APARAM FMODEL TPRBLK	CELEM INITBLK VRBLCK	CONJUT INTBLK	CPARAM PREBLK
INPUT FILES	NONE				

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

OUTPUT FILES **NONE**

```

SUBROUTINE CATRD1(CC,BIAS,SUM1,INDXCS,SUM2)
IMPLICIT REAL*8 (A-H,O-Z)
LOGICAL AFRIOR,UPDATE,EMAT,CMPCPA,STARTR,STARTW,HYPER
INTEGER*2 INDEXCS
INTEGER BIAS,ARCNO,SCRA,SCRB,SCRC,FLTP,CUTP,XYZTP,PLOTTP,GRDTP,
     * THDCT1,VELEMN1,VELEMST,DAYREF,CD,SUM1,DATP,STARTA,STARTO,OUTSTR,
     * SUM2,EEIAS
DOUBLE PRECISION MODEL
DIMENSION CD(1),BIAS(1),SUM1(1),INDXCS(1),NSTORE(6),SUM2(1)
DIMENSION EIAS(1)
COMMON/ALFMPC/ALPHA(53),ELCUT,HYPER
COMMON/AFARAM/INPAR(10)
COMMON/CELMR/VELEMST(53)
COMMON/CCNCUT/IG1(131),STARTR,STARTW,STARTA,STARTO,INSTRT,OUTSTR
COMMON/CHARAM/NSTA,MAST,NTEST,NDIM,NEIAS,NGPC1,NGPC2,NGPCOM,
     * NCSEST,CMPGFR,LIM1,LIM2,NDEK,NDENST,NTIDEST,NTIDEN,INNRSW,
     * NCONST,NCDCNS
COMMON/CTIME/DAYREF(23)
COMMON/FMODEL/INDEX(4),CS(30,32),MODEL(6)
COMMON/INTEK/IIPYMO(42),NISLOC(9)
COMMON/INTELK/THDCT1(52),NORRAT(79)
COMMON/PREBLK/DAYSTA,NLPS(15)
COMMON/PRIGRI/VELEMN(152)
COMMON/TPEBLK/INTP,CUTP,DATP,XYZTP(3),PLOTTP,IOBS,SCRA,SCRC,FLTP,
     * GRDTP
COMMON/VRELCK/A1(66),IEUF(1980),ACRN(69)
EQUIVALENCE (SCRB,DAFILE),(NGPAC,INPAR(6)),(NPARAM,INPAR(8))
EQUIVALENCE (MAXSAT,IG1(6)),(NEIAS,INPAR(9))
DATA SCR2/15/
NSTORE(1)=1
NSTORE(2)=5*NEIAS+2*(NCSEST-NGPCOM)-12*MAXSAT
NSTORE(3)=NSTORE(2)+2*NGPCOM+1
NSTORE(4)=NSTORE(3)+NEIAS*2-1+2*(NCSEST-NGPCOM)
NSTORE(5)=NSTORE(4)+2*NGPCOM+1
NSTORE(6)=NSTORE(5)+NEIAS-3*MAXSAT+(NGPC1-2)/2
NREC=(NGPC1-2)/225+2
NREC1=NREC+1
NWUD=2*(NGPC1-1)
RETURN
ENTRY CATARD(ARCNO,APRICR,UPDATE,EMAT)
NSTART=(ARCNO-1)*NREC+1
IF(.NOT.UPDATE) GO TO 600
C SAVE A PRIORI APC INFORMATION
IF(.NOT.APRICR) GO TO 200
WRITE(SCRA) INPAR,INDEX,DAYSTA,XYZTP,NORRAT,ELCUT,HYPER
IF(NEIAS.LE.0) GO TO 90
GO TO 1111,NEIAS,350
12=MJ10(11+200,675)
40=MJ10(11+200,675)
50=LJ100(N=1,1,2)
130=LJ100(NS=1042,1)

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

      ISTOR2=NSTORE(N+1)
      DO 100 I1=ISTCR1,ISTOR2,450
      I2=MINO(I1+449,ISTOR2)
100 WRITE(SCRA) (EIAS(I),I=I1,I2)
C SAVE INITIAL ESTIMATES OF ADJUSTED ARC PARAMETERS
      IF(NGPARC.LE.0) GO TO 200
      NGP=3*NGFARC
      DU 150 I1=1,NGP,200
      I2=MINO(I1+895,NGP)
150 WRITE(SCRA) (INDXCS(I),I=I1,I2)
200 CALL CLRAR(1BLF,990,2)
      DO 300 I=1,53
300 IBUF(I)=cLEMST(I)
      DO 310 I=1,23
      I1=I+53
310 IBUF(I1)=cAYREF(I)
      DO 320 I=1,48
      I1=I+76
320 IBUF(I1)=cEPYMD(I)
      DO 330 I=1,192
      I1=I+124
330 IBUF(I1)=cLEMIN(I)
      IBUF(317)=NPARAM
      CALL DWRITE(SCR2,NSTART,IBUF)
      DU 400 J1=1,NKORD,450
      J2=MINO(J1+949,NAORD)
      DU 450-J2,J1,J2
      I=J-J1+1
C SAVE ARC PART OF NORMAL MATRIX
      350 IBUF(I)=CC(J)
      NSTART=NSTART+1
400 CALL DWRITE(SCRB,NSTART,IBUF)
      IF(.NOT.EMAT) RETURN
      IF(NPARAM,LE.0) RETURN
C STORE NORMAL MATRIX ON TAPE FOR RESTART
      L=2*N1M*NPARAM-NPARAM*(NPARAM+1)
      DO 500 I1=1,L,450
      I2=MINO(I1+449,L)
500 WRITE(SCRC) (SUM1(I),I=I1,I2)
      IF(.NOT.STARTW) RETURN
      L=L/2
      KRITC(LUTSTR) L
      L=NDIM*(NCIM+1)
      DO 550 I1=1,L,450
      I2=MINO(I1+449,L)
550 WRITE(CUTSTR) (SUM1(I),I=I1,I2)
      L=NDIM*2
      DO 575 I1=1,L1,450
C READ ARC A PRIORI INFORMATION
      I2=MINO(I1+449,L1)
575 WRITE(CUTSTR) (SUM2(I),I=I1,I2)
      WRITE(CUTSTR) INDEX
      RETURN
600 IF(.NOT.APRIOR) GO TO 800
      CALL CLRF(MISLOG,F+1)
      REAL(SCRA) INPAR,INDEX,CAYSTA,XYZTP,NORFAT,ELCUT,HYPER
      DATA 112
      DATA 113
      DATA 114
      DATA 115
      DATA 116
      DATA 117
      DATA 118
      DATA 119
      DATA 120
      DATA 121
      DATA 122
      DATA 123
      DATA 124
      DATA 125
      DATA 126
      DATA 127
      DATA 128
      DATA 129
      DATA 130
      DATA 131
      DATA 132
      DATA 133
      DATA 134
      DATA 135
      DATA 136
      DATA 137
      DATA 138
      DATA 139
      DATA 140
      DATA 141
      DATA 142
      DATA 143
      DATA 144
      DATA 145
      DATA 146
      DATA 147
      DATA 148
      DATA 149
      DATA 150
      DATA 151
      DATA 152
      DATA 153
      DATA 154
      DATA 155
      DATA 156
      DATA 157
      DATA 158
      DATA 159
      DATA 160
      DATA 161
      DATA 162
      DATA 163
      DATA 164
      DATA 165
      DATA 166
      DATA 167

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

      IF(NEIAS.LE.0) GO TO 600
      DO 640 I1=1,NERIAS,350
         I2=MINC(I1+749,675)
640 READ(SCRA) (EEIAS(I),I=I1,I2)
660 DO 700 N=1,5,2
      1STOR1=NS1ORE(N)
C READ ARC ADJUSTED PARAMETER VALUES
      1STOR2=NS1ORE(N+1)
C READ ARC PART OF NORMAL MATRIX
      DO 700 I1=1STOR1,1STOR2,450
         I2=MINC(I1+449,1STOR2)
700 READ(SCRA) (BIAS(I),I=I1,I2)
      IF(NGPARC.LE.0) GO TO 800
      NGP=3*NGFARC
      DO 750 I1=1,NGP,900
         I2=MINC(I1+399,NGP)
750 READ(SCRA) (INEXCS(I),I=I1,I2)
800 CALL DREAD(SCFB,NSTART,IBUF,&2000)
      DO 810 I=1,53
810 ELEMJ(I)=IBUF(I)
      DO 820 I=1,23
         I1=I+53
820 LAYREF(I)=IBUF(I1)
      DO 830 I=1,48
         I1=I+76
830 LEPMU(I)=IBUF(I1)
      DO 840 I=1,192
         I1=I+124
840 ELEMIN(I)=IBUF(I1)
      NPARAM=IBUF(317)
      DO 900 J1=1,NWUD,450
      NSTART=NSTART+1
      CALL DREAD(SCFB,NSTART,IBUF,&2000)
      J2=MINO(J1+149,NWUD)
      DO 900 J=J1,J2
         I=J-J1+1
900 CD(J)=IBUF(I)
      IF(.NOT.EMAT) RETURN
      IF(NPARAM.LE.0) RETURN
      L=2*NJ1*I*NPARAM-NPARAM*(NPARAM-1)
      DO 1000 I1=1,L,450
         I2=MINO(I1+449,L)
1000 READ(SCRC) (SUM1(I),I=I1,I2)
      RETURN
2000 CALL ERRER(11,SCRB)
      RETURN
      END

```

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

DATBSE

DESCRIPTION

DATBSE is a subroutine specifically designed to read data from the DODS Data Base. It also has the capability to read data tapes in DODS Data Tape Format. DATBSE does not interpret the data it reads. It can read only observation data.

When reading data from the data base, DATBSE first searches the observation file directory record to ascertain if data is present for the satellite requested. If data is present DATBSE determines which partitions contain the desired data and then reads into core one physical record of data containing 35 observations and then returns a header record indicator through COMMON to the calling program. On all subsequent calls DATBSE returns through COMMON one observation per call until all of the requested data has been returned at which time it returns a sentinel record indicator.

DATBSE assumes that the first call for each arc requests data for a different satellite and searches through the observation file director to ascertain if data is available.

When no data is available or when read errors occur DATBSE prints error messages and terminates the run by calling ERROR.

NAME DATBSE
 PURPOSE TO READ OBSERVATION DATA FROM DOOS DATA BASE
 CALLING SEQUENCE CALL DATBSE(IN,DSTART,DSTOP,ISATID,OLDARC)
 SYMBOL TYPE DESCRIPTION
 IN I INPUT - DATA FILE NUMBER
 DSTART DP INPUT - DATA STARTS IN DAYS FROM JAN 0.0 OF THE
 REFERENCE YEAR
 DSTOP DP INPUT - DATA STOP TIME IN DAYS FROM JAN 0.0 OF
 THE REFERENCE YEAR
 ISATID I INPUT - SATELLITE ID
 OLDARC L*1 INPUT & OUTPUT - FALSE ON FIRST CALL FOR EACH ARC
 CHANGED TO TRUE
 SUBROUTINES USED CLEAR DJUL ERROR YMDAY
 COMMON BLOCKS DOODAT
 INPUT FILES IN - DATA FILE NUMBER REPRODUCIBILITY OF THE
 OUTPUT FILES OUTP - PRINTER ORIGINAL PAGE IS POOR
 RESTRICTIONS DATA FILE NUMBER MUST BE 33 FOR DOOS DATA BASE
 OTHERWISE DATA FILE IS ASSUMED SEQUENTIAL DOOS
 FORMAT DATA TAPE
 REFERENCES DOOS DATA BASE OBSERVATION FILE DESCRIPTION
 IGSFC DOOS DOCUMENTATION

```

SUBROUTINE DATBSE(IN,DSTART,DSTOP,ISATID,OLDARC)      DATB 30
REAL*8 TIME1,STNAM1,ORS1,CG(2),OBSCR,DSTART,DSTOP,MJSTRT,MJSTOP, DATB 40
I MJU,DJUL,DJREF,YMDAY                               DATB 41
DIMENSION G(5),IDR(25),MPEC(25,35)                  DATB 42
LOGICAL*1 NOTIST,OLDARC                             DATB 43
INTEGER ISATID,SATNO,RECORD(FAC),OUTP,ISAT,RECSAT    DATB 44
INTEGER*2 LREC,RECPAR,IG,IG1,PEIT1,PEIT2,IG2(2),IT,TTAG,LLREC1(2),DATB 45
I LRD,REC2(1740)                                     DATB 46
DIMENSION MPEC(25,35)                                DATB 47
COMMON/DOODAT/TIME1,STNAM1,OBSCR,ISATNO,IG,TCOR,DATB 48
I TGT,IT1,IG1,TTAG,PEIT1,PEIT2,IG
EQUIVALENCE (LREC,LLREC1(1),RECORD(1),REC2(1)),(IREC1,ICOUNT) DATB 49
EQUIVALENCE (IG(1),TIME1)                           DATB 50
DATA DJREF/NOTIST,.J,OUTP,1E4/24*365+500.,FALSE,-1.6,0/ DATB 51
  1F(INEQ,2) GC TO 20                                DATB 52
C READ DATA TAPE
  E FLAG(IN,ENDIC,TREE) TIME1,STNAM1,OBSCR,SATNO,IG,TCOR, DATB 53
                    RECORD(FAC),OUTP,ISAT,RECSAT,LLREC1(2),DATB 54
                    MPEC(25,35),MPEC(25,35),MPEC(25,35)          DATB 55

```

```

1   WT1,G,TCCR,IG2,IT,IG1,TTAG,FBIT1,PBIT2,IG      DATB  56
    CLDARC=.TRUE.
    RETURN
C SET SENTINEL RECORD INDICATOR
10 TTYPE1=-24000
    RETURN
20 IF(OLDARC) GO TO 100
    IF(NOT1ST) GO TO 22
    NOT1ST=.TRUE.
C DEFINE DATA BASE RANDOM ACCESS FILE
    DEFINE FILE 2(E609,3520,L,1COUNT)
    ICOUNT=1
C READ DIRECTORY RECORD
    READ(IN*1COUNT,ERR=1000) RECORD
    CALL CLEAF(M2FFC,25,35)
    RECPLK=LLREC1(2)
22 CLDARC=.TRUE.
C SEARCH DIRECTORY FOR SATELLITE
    DO 25 I=2,LREC
        IF(RECCRD(I).GE.0) GO TO 25
        ISATE=RECCRD(I)
        IF(ISAT.EQ.ISATID) GO TO 30
25 CONTINUE
    GO TO 1010
30 NCUS=RECCRD(I+1)-1
    RECSAT=(NCUS-1)/35+1
    NUPART=(RECSAT-1)/RECPLK+1
    INWORD=I+4
C CONVERT START TIME TO DOOS SYSTEM
    MJSTART=DJULL(DSTART)-DJREF-.0000100
C CONVERT STOP TIME TO DOOS SYSTEM
    MJSTOP=DJULL(DSTOP)-DJREF+.0000100
    NJORD=INWORD+NUPART-1
C DETERMINE FIRST & LAST PARTITIONS TO BE READ
    DO 35 J=INWORD,NWORD
        KWD2=2*j-1
        MJDFR2=KWD2
        IF(MJSTART.LT.(MJDFR2+DC)) GO TO 40
35 CONTINUE
C ONLY LAST PARTITION MIGHT HAVE DATA
    J=NWORD
    INWORD=KWD-(NCUS-1)/35*35
    NUREC=RECSAT-RECSAT/RECPLK*RECPLK
    IREC1=REC2(KWD2+1)+NUREC-1
C READ LAST PARTITION AND CHECK TIME
    READ(IN*1COUNT,ERR=1030) MREC
    IUD(1)=MREC(1,INWORD)
    IUD(2)=MREC(2,INWORD)
    ADJUSTIVE1YMDAY(370919,0,0.00)+0.0100
    IF(MJDFR2.LT.DSTART) GO TO 1020
C FIRST PARTITION TO BE READ NOW DETERMINED
    AC INPARTMAX(J-1,ND,1)
    KWD2=2*(INPART+1)
    IREC1=REC2(KWD2)
    DO 40 K=INPART
    LUD(2)=2*k-1

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

MJD=REC2(LWORD2)
IF(MJSTOP.LT.(MJD+1.00)) GO TO 50
45 CONTINUE
C LAST PARTITION TO BE READ NOW DETERMINED
50 KPART=MINC(NOPART,K-1WORD+1)
NREC=IREC1+NRECPAR-1
NOREC=REC(SAT-RECSAT)/RECPAR*RECFAIR
IF(NDREC.EQ.0) NDREC=RECPAR
IF(IPART.EQ.KPART) NREC=IREC1+NREC-1
INDUB=35
NCB=0
NDUB=NCHS-NODE/35*35
IF(NDUB.EC.0) NDUB=35
SATNU#ISAT
C SET FLADER RECORD INDICATOR
TIME1=-1.000
LABEL=1
C READ FIRST 35 DATA RECORDS
READ(IN*ICOUNT,ERR=1030) MREC
LABEL=2
IF(IPART.NE.KPART) RETURN
NREC=IREC1+NREC-1
IF(NDREC.EQ.1) INDUB=NDUB
RETURN
100 NODE=NODE+1
IF(NODE.GT.INDUB) GO TO 150
C CHECK FOR DUPLICATE OBSERVATIONS
DO 110 I=1,25
IF(MREC(1,NODE).EQ.M2REC(1,I).AND.MREC(2,NODE).EQ.M2REC(2,I).AND.
1 MREC(3,NODE).EQ.M2REC(3,I).AND.MREC(4,NODE).EQ.M2REC(4,I).AND.
2 MREC(23,NODE).EQ.M2REC(23,I)) GO TO 100
110 CONTINUE
C SELECT ONE OBSERVATION FROM CORE AND LOAD IN COMMON
DO 120 I=1,25
120 IOD(I)=MREC(I,NODE)
RETURN
C SAVE PREVIOUS 35 OBSERVATIONS
150 CJ 160 I=1,25
DO 160 J=1,35
160 M2REC(I,J)=MREC(I,J)
IF(ICOUNT.GT.NREC) GO TO 200
C READ 35 MORE OBSERVATIONS
READ(IN*ICOUNT,ERR=1030) MREC
NOD=0
IF(IPART.EQ.KPART.AND.ICOUNT.EC.NREC) INDUB=NDUB
GO TO 100
200 IF(IPART.CE.KPART) GO TO 10
C DETERMINE FIRST RECORD IN NEW PARTITION
NOD=0
IPART=IPART+1
KWORD2=K-1WORD+2
ICOUNT=REC2(KWORD2)
NREC=ICOUNT+NRECPAR-1
IF(IPART.LT.KPART) GO TO 100
NREC=ICOUNT+NREC-1
IF(NODC.EQ.1) INDUB=NDUB

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```
    GO TO 10C          DATB 163
C PRINT ERROR MESSAGES      DATB 163
1000 WRITE(LUTF,2000) J      DATB 170
    GO TO 1035        DATB 171
1010 WRITE(LUTF,2010) ISATID  DATB 172
    GO TO 1025        DATB 173
1020 WRITE(LUTF,2020) ISATID  DATB 174
    GO TO 1025        DATB 175
1030 IERR=IERR+1            DATB 176
    WRITE(LUTF,2030) ISATID,ICOUNT  DATB 177
    IF(IERR.LT.10) GO TO (1040*150),LABEL  DATB 178
    WRITE(LUTF,2035)          DATB 179
1035 WRITE(LUTF,2040) RECCRC,MFEC  DATB 180
C TAKE ERROR EXIT          DATB 181
    CALL ERROR(7,CSTART)      DATB 182
1040 IF(IKART.EQ.KFART) NREC=NREC  DATB 183
    RETURN                  DATB 184
2000 FORMAT(1H1,20X,'UNABLE TO READ DOOS DATA BASE DATA DIRECTORY'/
           1 21X,'ERROR CODE IS',I9/21X,'NUNAME EXECUTION TERMINATED')  DATB 185
2010 FORMAT(1H1,20X,'NO DATA AVAILABLE FOR SATELLITE REQUESTED'/21X,
           1  'SATELLITE ID IS',I9/21X,'NUNAME EXECUTION TERMINATED')  DATB 186
2020 FORMAT(1H1,20X,'NO DATA AVAILABLE FOR THE TIME PERIOD REQUESTED'/
           1  'FOR'/21X,'SATELLITE',I9/21X,'NUNAME EXECUTION TERMINATED')  DATB 187
2030 FORMAT(1H1,20X,'DOOS DATA BASE READ ERROR OCCURED FOR'/21X,
           1  'SATELLITE',I9/21X,'DATA RECORD NUMBER IS',I9/)  DATB 188
2035 FORMAT(1H1,20X,'NUNAME EXECUTION TERMINATED DUE TO'/21X,
           1  'EXCESSIVE DOOS DATA BASE READ ERRORS')  DATB 189
2040 FORMAT(1H1/10X,22,1X,22,2X,28,1X,28,1X,22,2X,28,1X,28)  DATB 190
    END                  DATB 191
```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0-145

8.0-115

80-147

DATES
Page 1 of 1
October 1972

NAME	DATES	
PURPOSE	TO CONVERT DAYS ELAPSED FROM JAN 0.0 OF THE ARC REFERENCE YEAR INTO A 3 WORD DATE OF THE FORM : YYMMDD HMM SEC	
CALLING SEQUENCE	CALL DATES(DAYNR,IYND,IHM,SEC)	
SYMBOL	TYPE	DESCRIPTION
DAYNR	I	INPUT - DAYS ELAPSED FROM JAN 0.0 OF THE REFERENCE YEAR
IYND	I	OUTPUT - YEAR, MONTH, DAY IN THE FORM OF YYMMDD
IHM	I	OUTPUT - HOUR, MINUTE IN THE FORM OF HMM
SEC	R	OUTPUT - SECONDS
SUBROUTINES USED	ACDYN0	TDIF
COMMON BLOCKS	CTIME	
INPUT FILES	NONE	
OUTPUT FILES	NONE	

```

SUBROUTINE DATES(DAYNR,IYND,IHM,SEC)
DOUBLE PRECISION DAYNR,S,DAY,SEC
COMMON/CTIME/CAYREF(22),IY
C CONVERT TO UTC TIME SYSTEM
  DAY=CAYNR+(DFLL(TDIF(3,4,CAYNR))+1.0D-3)/3.64D4
  ICAY=DAY-1.0D0
  IYMD=IY*10000+ICAY
C CALCULATE YEAR/MONTH/DAY OF INTEREST
  CALL ACDYN0(IYMD,ICAY)
C CALCULATE NUMBER OF SECONDS REMAINING
  S=J,6+D4*(DAY-DFLL(ICAY+1))
  ISLC=3
C CONVERT TO HOUR/MINUTE FORMAT
  IHM=ISLC*(ISEC/3600)+ISEC/60
C REMAINING SECONDS
  SEC=S-DFLL(60*(ISEC/60))-1.0D-6
  RETURN
END

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

DATE	31
DATE	32
DATE	33
DATE	34
DATE	35
DATE	36
DATE	37
DATE	38
DATE	39
DATE	40
DATE	41
DATE	42
DATE	43
DATE	44
DATE	45
DATE	46
DATE	47
DATE	48

DAYEAR
Page 1 of 1
October 1972

NAME DAYEAR

PURPOSE TO COMPUTE A DATE, DAY, NUMBER OF YEARS, AND TIME OF DAY IN SECONDS FROM A GIVEN TIME IN DAYS FROM JAN 0.0 OF REFERENCE YEAR

CALLING SEQUENCE CALL DAYEAR(DAY,IYMD,IDAY,ISEC)

SYMBOL	TYPE	DESCRIPTION
DAY	DP	INPUT - DAYS ELAPSED FROM JAN 0.0 OF THE REFERENCE YEAR
IYMD	I	INPUT - YEAR, MONTH, DAY IN THE FORM OF YYYYMMDD
IDAY	I	OUTPUT - DAY NUMBER OF YEAR
ISEC	I	OUTPUT - FRACTION OF DAY CONVERTED TO INTEGRAL SECONDS

SUBROUTINES USED DATES DIFF

COMMON BLOCKS NONE

INPUT FILES NONE

OUTPUT FILES NONE

```
SUBROUTINE DAYEAR(DAY,IYMD,IDAY,ISEC)
REAL*8 DAY, SEC
CALL DATEE(DAY,IYMD,IHM,SEC)
JANO=IYMD/10000*10000+100
IHMS=IHM*100+INT(SEC*100)
CALL DIFF(JANO,0,IYMD,IHMS, IDAY, ISEC)
END
```

DAYE 22
DAYE 23
DAYE 24
DAYE 25
DAYE 26
DAYE 27
DAYE 28
DAYE 29

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME DELTAZ
PURPOSE TO COMPUTE THE Z COORDINATE OF A POINT OF GIVEN LATITUDE ON THE ELLIPSOID
CALLING SEQUENCE X=DELTAZ(SUBLAT)
SYMBOL TYPE DESCRIPTION
SUBLAT DP INPUT - LATITUDE OF POINT ON THE ELLIPSOID
SUBROUTINES USED NCNE
COMMON BLOCKS CONSTS INTBLK
INPUT FILES NCNE
OUTPUT FILES NCNE

```
DOUBLE PRECISION FUNCTION DELTAZ(SUBLAT)
    IMPLICIT REAL*8(A-H,O-Z)
    LOGICAL NOT1ST
    COMMON/CONSTS/DPI,BTWOPI,BSQ2RD,BS3LC
    COMMON/INTBLK/THOUTS(7),GR,AE,AESQ,FLAT,FSQ32(59)
    DATA NOT1ST/.FALSE./
    IF(NOT1ST) GO TO 10
    NOT1ST=.TRUE.
    F1=1.0D0-FLAT
    F1SQ=F1*D1
    F2F=FLAT*(2.0D0-FLAT)
10   SPSI=D SIN(SUBLAT)*BSQ2RD
    SPSI SQ=SPSI *#2
    EARTH=AE*F1/DSQRT(F1SQ+F2F*SPSISQ)
    DELTAZ=SPSI *EARTH
    FF TURN
    END
```

DELT 23
DELT 24
DELT 25
DELT 26
DELT 27
DELT 28
DELT 29
DELT 30
DELT 31
DELT 32
DELT 33
DELT 34
DELT 35
DELT 36
DELT 37
DELT 38
DELT 39

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0-150

0 0 150

DENSTY

DESCRIPTION

DENSTY is a real valued function whose value is the atmospheric density at a given time for a given satellite position. Additionally, DENSTY computes the partial derivative of the atmospheric density with respect to the spheroid height.

The density model used is the Jacchia 1971 Static Density Model. A thorough mathematical description and a list of references are provided in the GEODYN Systems Description, Volume I.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

IE

3

80-151

NAME: DENSTY

PURPOSE: THE FUNCTION DENSTY COMPUTES AN ATMOSPHERIC DENSITY WHICH IS DEPENDENT UPON HEIGHT, TEMPERATURE, AND SEASONAL LATITUDINAL VARIATIONS. TEMPERATURE IS DERIVED FROM THE JACCHIA 1971 MODEL AND IS DEPENDENT UPON THE FOLLOWING:

1. SOLAR ACTIVITY
2. GEOMAGNETIC ACTIVITY AND
3. DIURNAL PULSE

SEMIANNUAL VARIATIONS OF DENSITY ARE EXPRESSED AS A PRODUCT FUNCTION OF HEIGHT AND TIME. THERE ARE SEASONAL LATITUDINAL VARIATIONS OF THE LOWER THERMOSPHERE AND HELIUM

CALLING SEQUENCE: X=DENSITY(RASAT)

SYMBOL	TYPE	DESCRIPTION
RASAT	DD	INPUT - RIGHT ASCENSION OF SATELLITE
X	??	OUTPUT - ATMOSPHERIC DENSITY - KILOGRAMS/METER ³

SUBROUTINES USED: CPHEM, YMHDAY

COMMON BLOCKS	CPHEM	CONSTS	FLXBLK	XYZ	CTIME
	TPBLK	INTBLK			

INPUT FILES: NONE

OUTPUT FILES: NONE

RESTRICTIONS: NONE

REFERENCES: *GEOODYN SYSTEMS DESCRIPTION
VOLUME 1 - GEOODYN DOCUMENTATION

FUNCTION DENSTY(RASAT)
UPDATED AS OF APRIL 1972
IMPLICIT REAL*8 (A-H,D-Z)
DOUBLE PRECISION KP,KP3,LN10
INTEGER ORDER,START
LOGICAL NOT1ST
COMMON/CPHEM/GB(4),UVUN(4),GA(64)
COMMON/INST/PI,TWDP,TRAD,RSEC
COMMON/FLXBLK/XFLX,X(67),DFLX(67),KDF(67)
COMMON/XYZ/X,Y,Z,DOTS(3),R,P,SQ,ISAT,IPRCP(3)
COMMON/CT/LRF/DAT,APP,DSTART(7),DAY1,1DAY2,M(13)
COMMON/TPBLK/HT,SORT,SC,C(4),PROF(5),DOSAG
COMMON/INTBLK/I(48),NOT1ST,L(52)(9)
DIMENSION RA(3),CC(3),TC(3),EXPXP(7),AC(17),R(48),AA(33),RR(21)
EQUVAL IN (AA(1),A(64)),(PP(1),P(48))

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

DENS	41
DPNS	42
DENS	43
DENS	44
DENS	45
DENS	46
DENS	47
DENS	48
DENS	49
DENS	50
DENS	51
DENS	52
DENS	53
DENS	54
DENS	55

EQUIVALENCE (PCPHOD, C(1))

DATA BETA, GAMA, PX, P/-0.45771823237700, 0.752491579357400.

DENS 56

DENS 57

* C.302,0,+104714755+119600/

DENS 58

DATA EPSIL, FFAV0G/C.4071051666700, 0.66459999670-23/

DENS 59

DATA PI, SIN/C.7853981643974500, 0.3535533905332700/

DENS 60

DATA DJJL50/2433231.50/

DENS 61

DATA ANGLAT/C.26179938779800/

DENS 62

DATA N3/1/

DENS 63

C TEMPERATURE COEFFICIENTS FOR DENSITY AT DIFFERENT HEIGHT RANGES DENS DENS

DATA AA/

DENS 64

C 50<HT<200 500<T<1900

DENS 65

* C.4220821650+01, 0.9439283440-07, -0.95212770-25, 0.1471533510-08,

DENS 66

* -0.2613421560+00, -0.2341194440-04, 0.1573571120-06, -0.7467492740-12,

DENS 67

* 0.7359131500-03, C.1596613800-05, -0.1106041800-08, 0.2502685370-12,

DENS 68

* -0.1208747620-05, -0.3435499820-04, 0.224578330-11, -0.5105914110-15,

DENS 69

C 200<HT<500 500<T<800

DENS 70

* C.1283975330+02, C.4070908200-02, 0.9777406610-05, -0.1064251860-07,

DENS 71

* 0.9228219700-01, -0.7121502920-03, 0.2654264830-06, -0.5512332280-10,

DENS 72

* -0.6950514500-03, C.2440152170-05, -0.2705514170-08, 0.2900342670-12,

DENS 73

* 0.1126278290-05, -0.4186717330-06, C.5051712120-11, -0.2048373140-14,

DENS 74

C 200<HT<500 500<T<1900

DENS 75

* -0.459523220+01, -0.1500144600-03, -0.6264019400-06, 0.246118500-09,

DENS 76

* -0.2830441710-01, C.1776114370-05, 0.6139771390-08, -0.2776154120-11,

DENS 77

* 0.5599787360-05, C.7746122300-07, -0.5949024400-10, C.0.1492050720-13,

DENS 78

* 0.1983413450-08, -0.7643121500-10, 0.5833255690-13, -0.1459517730-16,

DENS 79

C 500<HT<1000 500<T<800

DENS 80

* -0.7753820320+02, C.157271980+00, -0.5657218260-04, -0.5042399400-07,

DENS 81

* 0.3263919930+00, -0.9893629900-07, 0.7493197180-06, -0.6317827240-10,

DENS 82

* -0.2893435570-03, C.1297261970-05, -0.1677646500-08, C.0.1419093070-12,

DENS 83

* 0.1596201960-05, -0.5404895210-09, C.4670859710-12, -0.7188646880-16,

DENS 84

DATA AA/

DENS 85

C 500<HT<1000 900<T<1900

DENS 86

* C.5039117080+02, -0.1260123610+00, C.8389572940-04, -0.1827624890-07,

DENS 87

* -0.3057162100+00, C.6170574550-03, -0.4144298670-06, 0.9109592980-10,

DENS 88

* 0.4176635600-03, -0.8874291880-06, C.6103974560-09, -0.1363390960-12,

DENS 89

* -0.1794421140-06, C.3938629180-09, -0.2763926920-12, 0.6264914390-16,

DENS 90

C 1000<HT<2500 500<T<800

DENS 91

* 0.3453213630+02, -0.2615132500+00, C.4146739640-03, -0.2166121110-06,

DENS 92

* -0.4635213260-01, C.2590144140-03, -0.42125580-06, 0.2709525420-09,

DENS 93

* 0.1114175110-04, -0.7743977500-07, C.1644930770-09, -0.9905499570-13,

DENS 94

* -0.2505830050-10, C.4472476860-11, -0.1408518270-13, 0.1044294020-16,

DENS 95

C 1000<HT<2500 500<T<1900

DENS 96

* C.9241112090+02, -0.2065246860+00, C.2164156170-03, -0.9062287610-07,

DENS 97

* 0.1305413230-10,

DENS 98

* -0.1435435570+01, C.4311734500-03, -0.4613652400-06, 0.2017896710-09,

DENS 99

* -0.2028825530-13,

DENS 100

* 0.8749241750-04, -0.2715685900-06, 0.2974526080-09, -0.1342408850-12,

DENS 101

* 0.2136573420-16,

DENS 102

* -0.167174340-07, C.4963166830-17, -0.5529740780-13, 0.2543182980-16,

DENS 103

* -0.413273740-27,

DENS 104

* DATA AA/

DENS 105

C TEMPERATURE COEFFICIENTS FOR HELIUM NUMBER DENSITIES

DATA AA/

DENS 106

C 50<HT<100 500<T<800 HELIUM

DENS 107

* C.9371215440+01, -0.5752343370-02, C.570987907237-05, -0.2047064820-09,

DENS 108

* -0.1314076350-01, C.3131432640-04, -0.3249769440-07, C.1257251200-10,

DENS 109

* 0.2607171710-05, -0.7873004270-03, C.93705746730-11, -0.065939070-14,

DENS 110

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

DENSTY
Page 4 of 10
October 1972

•-.521562262D-09, C.190553227D-11,-.26578239D-14, C.125348645D-17, DENS 112
C 570<HT<1000 300<T<1900 HELIUM DENS 113
•.0.439137641D+01,-.1643733851D-02,C.780319872D-04,-.143227332D-03, DENS 114
•-.692494191D-02,C.841392444D-03,-.445771945D-05,C.456271447D-12, DENS 115
•.0.105103477D-05,-.126678705D-08,C.711374611D-12,-.141725219D-15, DENS 116
•-.122220749D-09,C.147492662D-12,-.976579335D-16,C.214983150D-13, DENS 117
C 1000<HT<2500 300<T<800 HELIUM DENS 118
•.0.910457126D+01,-.434095717D-02,C.402920462D-05,-.145215436D-08, DENS 119
•-.122E+24600-01,C.279809C98D-04,-.279720348D-07,C.103703654D-11, DENS 120
•.0.153925578D-05,-.355625514D-03,C.364761274D-11,-.129453154D-14, DENS 121
•-.113298309D-09,C.251378003D-12,-.25224F763D-15,C.497136100D-19, DENS 122
DATA RD/ DENS 123
C 1000<HT<2500 800<T<1900 HELIUM DENS 124
•.0.P61202904D+01,-.253633341D-02,C.190793214D-05,-.736961519D-09, DENS 125
•.0.113377766D-13, DENS 126
•-.8484715420-02,C.140836697D-04,-.113857415D-07,C.148705458D-11, DENS 127
•-.690642377D-15, DENS 128
•.0.115431751D-05,-.198838962D-08,C.166354261D-11,-.576277769D-15, DENS 129
•.0.137057450D-18, DENS 130
•-.245207301C-10,C.173870019D-12,-.153678377D-15,C.654015993D-19, DENS 131
•-.107604301D-22/, DENS 132
C INITIALIZE DENSITY CORRECTIONS DENS 133
HELIUM=C.300 DENS 134
DENS=0.100 DENS 135
DO 500 J=1,9 DENS 136
500 C(J)=C.00 DENS 137
IF(NOTIST) GO TO 1 DENS 138
DAY5=DYMDAY(500100,0,0,0DC), DENS 139
FORPI=4,1D0*PI DENS 140
LN1=DL0G(10.000) DENS 141
INC3=-1 DENS 142
IX1=-1 DENS 143
IX1=-1 DENS 144
IX2=-1 DENS 145
NOTIST=.TRUE. DENS 146
1 HT2=HT+1.0D-3 DENS 147
HT=HT+1.0-5 DENS 148
IF(HT.LT.25.0DC) GO TO 10 DENS 149
DENSTY=1.000 DENS 150
RETURN DENS 151
10 ID=DATAEP DENS 152
DAY5=DAY1-ID DENS 153
IX=DAY5+1.5DC DENS 154
IF(IX.LT.1) IX=1 DENS 155
IF(IX.GT.673) IX=673 DENS 156
I=IX DENS 157
IF(IX.EQ.IX1) GO TO 20 DENS 158
K=1 DENS 159
IF(IX.EQ.IX2) GO TO 12 DENS 160
IF(IX.EQ.IX0) GO TO 14 DENS 161
J=1 DENS 162
K=0 DENS 163
GO TO 17 DENS 164
12 RA(1)=RA(2) DENS 165
DC(1)=DC(2) DENS 166
TC(1)=TC(2) DENS 167
REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

80-154

```

IX=IX+1          DENS 166
J=2              DENS 169
GO TO 14         DENS 172
14 RA(2)=RA(1)   DENS 171
DC(2)=DC(1)     DENS 172
TC(2)=TC(1)     DENS 173
J=1              DENS 174
15 IX0=I-I       DENS 175
IX1=I           DENS 176
IX2=I+1         DENS 177
16 CONTINUE      DENS 178
C COMPUTE GLOBAL NIGHTTIME MINIMUM TEMPERATURE AT 12 HOURS GMT    DENS 179
C DAILY SOLAR FLUX VALUE USED IS FOR ONE DAY EARLIER             DENS 180
TC(J)=379.0DC+3.24DC*AVFLX(IX+1)+1.3D0*(DFLK(IX)-AVFLX(IX+1)) DENS 181
C COMPUTE RIGHT ASCENSION AND DECLINATION OF SUN AT 12 HOURS GMT DENS 182
FDAY=ID+IX-1      DENS 183
CALL EPHEM(FDAY,.FALSE.)      DENS 184
DC(J)=DAPSIN(UVSUN(3))      DENS 185
RA(J)=DATAN2(UVSUN(2),UVSUM(1)) DENS 186
C COMPUTE VARIABLES FOR INTERPOLATING VALUES.      DENS 187
IF(K,EO,1) GO TO 19      DENS 188
IX=IX+1          DENS 189
J=2              DENS 190
K=1              DENS 191
GO TO 15         DENS 192
19 RA(3)=RA(2)-RA(1)      DENS 193
DC(3)=DC(2)-DC(1)      DENS 194
TC(3)=TC(2)-TC(1)      DENS 195
20 FDAY=DAY1-DFLOAT(ID+I-1) DENS 196
DECSD=DC(1)+DC(3)*FDAY      DENS 197
RAS=RA(1)+RA(3)*FDAY      DENS 198
T3=TC(1)+TC(3)*FDAY      DENS 199
C COMPUTE 6,7 HOUR LAG IN GEOMAGNETIC EFFECTS WRT GEOMAGNETIC INDEX DENS 200
C GEOMAGNETIC INDEX IS REFERENCED TO 12 HOURS GMT      DENS 201
DAYLAG=DAY8-1.279166666666D0      DENS 202
IDAY1=DAYLAG+1.0D0      DENS 203
FDAY1=DAYLAG-DFLOAT(IDAY1-1)      DENS 204
S=FDAY1*DFLOAT(N3)      DENS 205
INT1=S      DENS 206
IND1=IDAY1*N3+INT1+1      DENS 207
IF(IND3,EO,IND1) GO TO 60      DENS 208
IF(IND3,LT,0) EXPKP(2)=CXEXP(KP(IND1))      DENS 209
EXPKP(1)=EXPKP(2)      DENS 210
EXPKP(2)=DEXP(KP(IND1+1))      DENS 211
IND2=IND1      DENS 212
C COMPUTE GEOMAG EFFECTS. IF ALTITUDE IS LOWER THAN 200 KM USE HYBRID DENS 213
C FORMULAS. GEOMAG=THMP. CORRECTION**DENMAG=LOG DENSITY CORRECTION DENS 214
60 S=SFLOAT(INT1)      DENS 215
KP2=KP(IND1)+S*(KP(IND1+1)-KP(IND1))      DENS 216
EXPKP3=EXPKP(1)+S*(EXPKP(2)-EXPKP(1))      DENS 217
IF(HT,LT,2.0D0) GO TO 30      DENS 218
GEOMAG=1.0D0*KP2+C.200*EXPKP3      DENS 219
GO TO 32      DENS 220
30 GEOMAG=(1.0D0*KP2+C.200*EXPKP2)      DENS 221
DENMAG=C.1200*KP3+1.20-5*EXPKP3      DENS 222
DENSD=DEVS+DENMAG      DENS 223

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

DENSTY
Page 6 of 10
October 1972

```

32 CONTINUE                                         DENS 224
C COMPUTE DIURNAL VARIATION OF TEMPERATURE          DENS 225
    HRANG=RASAT-RAS                                DENS 226
    IF(HRANG.LT.0.00)JHRANG=HRANG+TWOPT           DENS 227
    PHI=7/P                                           DENS 228
    SPHI=PHT+PHI                                     DENS 229
    PHI=DAPSIN(PHI)                                 DENS 230
    THETA=DAB3S(PHI+DECS)*0.5DC                    DENS 231
    ETA=DAB3S(PHI-DECS)*0.5DC                     DENS 232
    TAU=HRANG+BETA+P*DOSIN(HRANG+GAMA)            DENS 233
    CE=DCOS(ETA)**2.2DC                            DENS 234
    ST=DSIN(THETA)**2.2DC                          DENS 235
    STT=1.00+RX*ST                                  DENS 236
    TAU=DMOD(TAU+TWOPT,TWOPT)                      DENS 237
    IF(TAU.GT.PI) TAU=TAU-TWOPT                   DENS 238
    CT=DCOS(TAU*0.500)                            DENS 239
    CT=CT**#2                                     DENS 240
C CORRECTION FOR A GIVEN HOUR AND GEOGRAPHIC LOCATION DENS 241
    TL=(T3-STT)*(1.00+RX*(CE-ST)/STT*CT)          DENS 242
    TEN=TL+GECMAG                                 DENS 243
    TEN4=TEN**#4                                    DENS 244
C MODIFIO JULIAN DATE OF 36204 IS JAN. 1, 1959      DENS 245
    T=DAY1-DAY50+DJUL50-2400000.500                DENS 246
    PHASE=(T-36204.000)/365.242200                DENS 247
C CORRECTION TO LOG OF DENSITY DUE TO SEMIANNUAL VARIATIONS DENS 248
    FZA=-2.8E3D-3*HT2                             DENS 249
    IF(FZA.LT.-20.000) GO TO 33                  DENS 250
    EXPFZA=DEXP(FZA)                            DENS 251
    HI31=HI<#1.51100                               DENS 252
    FZ=(5.875D-7*(HT2*HI31)+0.06328DC1)*EXPZFA   DENS 253
    DFZDZ=-2.368D-3*FZ+5.875D-7*2.33101*HI31*EXPZFA DENS 254
    PH=TWOPT+PHASE+6.07500                         DENS 255
    PH=DMOD(PH,TWOPT)                           DENS 256
    SP=(0.500+0.500*DSIN(PH))**1.6500-0.500       DENS 257
    TAUT=PHASE+0.0954400*SP                      DENS 258
    TT2=TWOPT+TAUT+4.13700                         DENS 259
    TT2=DMOD(TT2,TWOPT)                           DENS 260
    TT4=DMOD(TT2,TWOPT)                           DENS 261
    TT4=DMOD(TT4,TWOPT)                           DENS 262
    GT=0.0233500+0.391700*(1.00+0.467100*DSIN(TT2))+DSIN(TT4) DENS 263
C SEMIANNUAL EFFECTS ON LOG DENSITY                 DENS 264
    PPO(2)=GT*DFZDZ                                DENS 265
    DENS=DENS+FZ*GT                                DENS 266
C SEASONAL LATITUDINAL VARIATIONS OF THE LOWER THERMOSPHERE DENS 267
33 IF(HT.GT.1.670) GO TO 40
    HT90C=HT-20.000
    HT90SO=HT90C**2
    EXS=-0.0213DC*HT90SO
    IF(EXS.LT.-20.00) GO TO 40
    SS=0.01400*DEXP(FXS)
    PH=TWOPT+PHASE+1.7200
    PH=DMOD(PH,TWOPT)
    PPO=DSIN(PH)
    PH1AHS=DSIGN(1.00,PH)
    DENLAT=SS*PH1AHS*2.2*SPH
    PPO(3)=DENLAT*(1.00-0.002607*HT90SO)          DENS 268
                                            DENS 269
                                            DENS 270
                                            DENS 271
                                            DENS 272
                                            DENS 273
                                            DENS 274
                                            DENS 275
                                            DENS 276
                                            DENS 277
                                            DENS 278
                                            DENS 279

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

DENLAT=DFNLAT*HT20
DENS=DENS+DENLAT
40 CONTINUE
C SEASONAL LATITUDINAL VARIATIONS OF HELIUM
C   CORRECTIONS TO LOG HELIUM NUMBER DENSITY
IF(HT.LT.-5.000) GO TO 50
IF(HT.GT.+5.000.AND.HT.LT.+8.000.AND.DASS(PHI).LT.ANGLAT) GO TO 50
ARG=PI-PHI*C.5DC*DSIGN(1.000,DFCS)
SN=DSIN(ARG)
SN2=SN*F2
DECLP=DFCS/EPSP1L
HELOG=C.55D0*DARS(DECLP)*(SN2-SIN3)
C CALCULATION OF LOG OF HELIUM NUMBER DENSITY
START=0
ORDER=4
IF(TFM.GT.+8.002) GO TO 42
IF(HT.LE.-10.000) GO TO 45
START=32
GO TO 43
42 START=16
IF(HT.LE.-10.000) GO TO 45
START=43
ORDER=5
45 K=START-ORDER
DO 55 J=1,4
K=K+ORDER
55 C(J)=R(K+1)+TEM*(R(K+2)+TEM*(R(K+3)+TEM*R(K+4)))
IF(DFDFR.LT.-5) GO TO 59
K=START
DO 56 J=1,4
K=K+ORDER
56 C(J)=C(J)+TEM4*B(K)
59 HEFNCT=C(1)+HT2*(C(2)+HT2*(C(3)+HT2*C(4)))
PPO(F)=C(2)+(2.000+C(3)+3.000)*C(4)*HT2*HT2
HELOG=HELOG+HEFNCT
HELIUM=(1.000**HELOG)-10.000*(HEFNCT)/HEAVG
50 CONTINUE
C USE NEW POLYNOMIAL FIT TO JACCHIA'S DENSITY TABLES 1971
START=0
ORDER=4
IF(HT.LE.-2.000) GO TO 65
IF(TEM.GT.+9.002) GO TO 62
START=15
IF(HT.LE.-5.000) GO TO 65
START=44
IF(HT.LE.-1.001) GO TO 65
START=80
GO TO 65
62 START=22
IF(HT.LE.-5.000) GO TO 65
START=64
IF(HT.LE.-1.001) GO TO 65
START=80
DOVERE=5
66 K=START-ORDER
DO 70 J=1,4
DENS 280
DENS 281
DENS 282
DENS 283
DENS 284
DENS 285
DENS 286
DENS 287
DENS 288
DENS 289
DENS 290
DENS 291
DENS 292
DENS 293
DENS 294
DENS 295
DENS 296
DENS 297
DENS 298
DENS 299
DENS 300
DENS 301
DENS 302
DENS 303
DENS 304
DENS 305
DENS 306
DENS 307
DENS 308
DENS 309
DENS 310
DENS 311
DENS 312
DENS 313
DENS 314
DENS 315
DENS 316
DENS 317
DENS 318
DENS 319
DENS 320
DENS 321
DENS 322
DENS 323
DENS 324
DENS 325
DENS 326
DENS 327
DENS 328
DENS 329
DENS 330
DENS 331
DENS 332
DENS 333
DENS 334
DENS 335

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

K=K+ORDER	DENS 336
73 C(J)=A(K+1)+TEM*(A(K+2)+TEM*(A(K+3)+TEM*A(K+4)))	DENS 337
IF(ORDER.LT.5) GO TO 80	DENS 338
K=START	DENS 339
DO 75 J=1,4	DENS 340
K=K+ORDER	DENS 341
75 C(J)=C(1)+TEM4*A(K)	DENS 342
80 EXPT=C(1)+HT2*(C(2)+HT2*(C(3)+HT2*C(4)))	DENS 343
PP0(1)=C(2)+(2.000*C(3)+2.100*C(4)*HT2)*HT2	DENS 344
C COMPUTE DENSITY IN GM/CM**3 LESS DIRECT HELIUM CORRECTION	DENS 345
EXSUMP=1.000***(EXPT+DENS)	DENS 346
C ADD HELIUM CORRECTION AND CONVERT TO KG/M**3	DENS 347
DENS=1.0034(EXSUMP+HELIUM)	DENS 348
C COMPUTE PARTIAL OF DENSITY WRT SPHEROID HEIGHT IN KG/M**4	DENS 349
PP0H=LN(1.0*(EXSUMP*(PP0(1)+PP0(2)+PP0(3))+HELIUM*PP0(5)))	DENS 350
C NORMALIZE DENSITY PARTIAL BY DIVIDING BY DENSITY	DENS 351
PP0HD=PP0H/DENS	DENS 352
RETURN	DENS 353
END	DENS 354

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

DIFF
Page 1 of 2
October 1972

NAME DIFF

PURPOSE TO CALCULATE THE DIFFERENCE BETWEEN ANY TWO TIME POINTS IN THE 20TH CENTURY

CALLING SEQUENCE CALL DIFF(IYMD1, IHMS1, IYMD2, IHMS2, IDAY, ISEC)

SYMBOL TYPE DESCRIPTION

IYMD1 I INPUT - DATE IN FORM YYYYDD

IHMS1 I INPUT - TIME ON IYMD1 IN FORM HHMMSS

IYMD2 I INPUT - SECOND DATE IN FORM YYYYDD

IHMS2 I INPUT - TIME ON IYMD2 IN FORM HHMMSS

IDAY? I OUTPUT - ELAPSED FULL DAY DIFFERENCE
IDAY IS NEGATIVE IF IYMD2, IHMS2 IS THE EARLIER TIME

ISEC HAS THE SAME SIGN CONVENTION AS IDAY

SUBROUTINES USED NONE

ISEC I OUTPUT - REMAINDER OF DIFFERENCE IN SECONDS

COMMON BLOCKS MONTHS

INPUT FILES NONE

OUTPUT FILES NONE

SUBROUTINE DIFF(IYMD1, IHMS1, IYMD2, IHMS2, IDAY, ISEC) DIFF 36
COMMON/MONTHS/MONTH(12,2) DIFF 37
ISUPC(IY)=MING(MOD(IY,4),1)+1 DIFF 38
C CHECK FOR A DIFFERENCE OF LESS THAN ONE DAY DIFF 39
ISFC=0 DIFF 40
IF (IYMD1.EQ.IYMD2) GOTO 4000 DIFF 41
C SEPARATE IYMD1 AND IYMD2 INTO THREE WORD EACH DIFF 42
IY1=IYMD1/10000 DIFF 43
ID1=IYMD1-IY1*10000 DIFF 44
IM1=ID1/100 DIFF 45
ID1=ID1-IM1*100 DIFF 46
IY2=IYMD2/10000 DIFF 47
ID2=IYMD2-ID2*10000 DIFF 48
IM2=ID2/100 DIFF 49
ID2=ID2-IM2*100 DIFF 50
REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR DIFF 51
C COMPUTE THE ELAPSED DAY SINCE JAN 1, 1900
L1=ISUPC(IY1) DIFF 52
IYAD1=(IY1-1)/100*MONTH(IY1,L1)+ID1 DIFF 53
L2=ISUPC(IY2) DIFF 54
IYAD2=(IY2-1)/100*MONTH(IY2,L2)+ID2 DIFF 55

DIFF
Page 2 of 2
October 1972

C CONVERT ELAPSED DAYS INTO ELAPSED SECONDS

DIFF 56

ISFC=(IYEAR2-IYEAR1)*86400

DIFF 57

C CALCULATE ELAPSED SECONDS INTO EACH DAY

DIFF 58

4000 ISFC1=IMHS1/100-2400*(IMHS1/10000)

DIFF 59

ISFC2=IMHS2/100-2400*(IMHS2/10000)

DIFF 60

C SUBTRACT THE TWO ELAPSED SECONDS VALUES

DIFF 61

ISFC=ISFC2-ISFC1

DIFF 62

C COMPUTE IDAY

DIFF 63

IDAY=ISFC/86400

DIFF 64

C COMPUTE ISFC

DIFF 65

ISFC=ISFC-IDAY*86400

DIFF 66

RETURN

DIFF 67

END

DIFF 68

8.0-162

DINRAD
Page 1 of 1
October 1972

NAME DINRAD
PURPOSE TO CONVERT ANGLES EXPRESSED IN ARC MEASUREMENTS OR TIME MEASUREMENTS TO RADIANS
CALLING SEQUENCE CALL DINRAD(RAD, IH, IM, S, K)
SYMBOL TYPE DESCRIPTION
RAD DP OUTPUT - CONVERTED ANGLES IN RADIANS
IH I INPUT - SIGNED DEGREES OR HOURS
IM I INPUT - UNSIGNED MINUTES OF ARC OR TIME
S I INPUT - UNSIGNED SECONDS OF ARC OR TIME
K I INPUT - SWITCH FOR TYPE OF INPUT
K=1 INPUT IS IN ARC MEASUREMENT
K=2 INPUT IS IN TIME MEASUREMENT
SUBROUTINES USED NONE
COMMON BLOCKS NONE
INPUT FILES NONE
OUTPUT FILES NONE

```
SUBROUTINE DINRAD(RAD,IH,IM,S,K)
DOUBLE PRECISION RAD,S
RAD=1DFLOAT(IH*360.0+IM*6.0)+S*1# .4B481369110953E00-5
IF(K.EQ.2)RAD=RAD*15.0
RETURN
END
```

DINP 33
DINR 34
DINP 35
DINR 36
DINP 37
DINR 38

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

DNVERT
Page 1 of 4
October 1972

DNVERT

DESCRIPTION

DNVERT is a subroutine to perform the double precision inversion of a given input matrix using the Gauss-Jordan Method of Condensation with partial pivoting. The input matrix is destroyed.

It should be noted that this routine was written specifically for GEODYN. Because of the type of matrices it is required to process, pivotal element testing is not incorporated.

8.0-164

DNVERT
Page 1 of 4
October 1972

NAME	DNVERT				
PURPOSE	TO INVERT A MATRIX USING GAUSS-JORDAN METHOD OF CONDENSATION WITH PARTIAL (COLUMN) PIVOTING				
CALLING SEQUENCE	CALL DNVERT(N, AVMX, NT, NR)				
SYMBOL TYPE DESCRIPTION					
N	I	INPUT - NUMBER OF ROWS OR COLUMNS OF THE MATRIX AVMX WHICH ARE ACTUALLY UTILIZED IN THE CALLING PROGRAM			
AVMX	DP (NT,NT)	INPUT - MATRIX TO BE INVERTED OUTPUT - INVERSE OF THE "INPUT" MATRIX AVMX			
NT	I	INPUT - DIMENSION OF THE MATRIX AVMX AS DEFINED BY THE CALLING PROGRAM			
NR (N)	I	INPUT - TEMPORARY STORAGE USED BY PROGRAM TO STORE THE INDICES OF THE PIVOTAL COLUMNS THE DIMENSION OF THE ARRAY IN THE CALLING PROGRAM EQUIVALENT TO NR MUST BE AT LEAST EQUAL TO N			
SUBROUTINES USED	NONE				
COMMON BLOCKS	NONE				
INPUT FILES	NONE				
OUTPUT FILES	NONE				

```
273 AXMX(K,L)=C          DNVF  66
C SAVE INVERSE OF PIVOTAL ELEMENT 1./AXMX(L,L)      DNVF  67
  C=1.00/AXMX(L,L)      DNVF  68
C SET DIAGONAL ELEMENT AXMX(L,L) = 1.      DNVF  69
  AXMX(L,L)=1.00      DNVF  70
C MULTIPLY LTH ROW BY INVERSE OF PIVOTAL ELEMENT      DNVF  71
  DO 282 J=1,N      DNVF  72
  282 AXMX(L,J)=C*AXMX(L,J)      DNVF  73
C MULTIPLY KTH ROW BY VALUE IN DIAGONAL POSITION      DNVF  74
C SUBTRACTING CONSECUTIVE ROW VALUES      DNVF  75
  DO 285 K=1,N      DNVF  76
  IF(L.EQ.K) GO TO 285      DNVF  77
  C=AXMX(K,L)      DNVF  78
  AXMX(K,L)=0.00      DNVF  79
  DO 284 J=1,N      DNVF  80
  284 AXMX(K,J)=AXMX(K,J)-C*AXMX(L,J)      DNVF  81
C INVERSE CAN NOW BE FOUND BY ADJUSTING FOR PREVIOUS COLUMN OPERATIONS      DNVF  82
C CONTINUE      DNVF  83
  285 CONTINUE      DNVF  84
  DO 287 I=1,N      DNVF  85
  L=N+1-I      DNVF  86
  K=N+P(L)      DNVF  87
  DO 289 J=1,N      DNVF  88
  C=AXMX(L,J)      DNVF  89
  AXMX(L,J)=AXMX(K,J)      DNVF  90
  289 AXMX(K,J)=C      DNVF  91
  RETURN      DNVF  92
  END      DNVF  93
```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0-144

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

DODELM

DESCRIPTION

DODELM is a subroutine specifically designed to read orbital element data from the DODS Data Base. DODELM can read both Cartesian elements and Kepler elements.

DODELM may be requested to read an element set number from observation data near the epoch time. When such data is used, it must be read from the DODS Data Base by subroutine DATBSE.

If the element set number of the desired elements is known, this number may be input to DODELM.

DODELM may determine elements either by element set number or by time. If no element set is found using the former procedure, DODELM will switch to the latter procedure attempting to find an element set at, or before the input epoch time if possible, and later than the epoch time only when all else fails.

If no element set can be found, or if errors in the data are encountered, DODELM will print an error message and terminate the GEODYN run by calling ERROR.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0 - 164

DODELM
Page 2 of 14
October 1972

NAME: DODELM
 PURPOSE: TO READ ORBITAL ELEMENTS FROM DOOS DATA BASE
 CALLING SEQUENCE: CALL DODELM(IELM,ISATID,DAYEPC)
 SYMBOL TYPE DESCRIPTION
 IELM I INPUT & OUTPUT - ELEMENT SET NUMBER
 ISATID I INPUT - SATELLITE ID
 DAYEPC D INPUT & OUTPUT - EPOCH TIME IN DAYS FROM JAN 0,0
OF THE REFERENCE YEAR
 SUBROUTINES USED: CLEAR YMDAY DATBSE DATES DJUL ERROR
 COMMON BLOCKS: CTIME CELEM CONSTS DOODAT INITBK
 INPUT FILES: DOODISK - DOOS DATA BASE ELEMENT FILE NUMBER
 OUTPUT FILES: OUTP - PRINTER
 REFERENCES: DOOS DATA BASE ELEMENT FILE DESCRIPTION
 * GSFC DOOS DOCUMENTATION
 * GEODYN SYSTEMS DESCRIPTION - SECTION 2.11.1
 VOLUME 1 - GEODYN DOCUMENTATION

SUBROUTINE DODELM(IELM,ISATID,DAYEPC)	DOOE	24
REAL*8 DAYEPC,DJUL,DUT,PRFF,MJEPCH,YMDAY,DPAD,MJD,DJREF,	DOOE	25
1 ELEMST,DRRELA,DUL,DATAEP,XNU,EC,EPSEC,SFC	DOOE	26
LOGICAL NOTIST,DOODELM	DOOE	27
INTEGER ISATID,SATNO,RECORD(80),DOODISK,OUTP,RECSAT,FLREC(12),	DOOE	28
1 MREC,JED(2)	DOOE	29
INTEGER*2 LREC,REC2(17601),REC2P,IG2	DOOE	30
COMMON/CTIME/DATAEP,DAYREF(21)	DOOE	31
COMMON/CELEM/ELEMST(12),DRRELA(12),XNU,EC,RVS	DOOE	32
COMMON/CONSTS/DUM2(4),DPAD,DUM3(2)	DOOE	33
COMMON/DOODAT/DUM4(21),IG2(8)	DOOE	34
dimension MREC(172,5)	DOOE	35
COMMON/INITBK/IEPYMD,IEPHM,EPSEC,DUM1(53)	DOOE	36
EQUIVALENCE (LREC,RECORD(1)),PEC2(1))	DOOE	37
DATA DJREF,DUL,DUT/2433099.500,1.0D7,8.6402/	DOOE	38
DATA NOTIST/.FALSE./	DOOE	39
DATA OUTP,DOODISK,J/0,4,-1/	DOOE	40
IF(IELM.LT.0) GO TO 40	DOOE	41
5 IF(NOTIST) GO TO 100	DOOE	42
NOTIST=.TRUE.	DOOE	43
C DEFINE RANDOM ACCESS FILE	DOOE	44

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0-169

```

DEFINE FILE 4 (442,352),L,ICNT
  ICNT=1
C READ DIRECTORY RECORD
  READ(DISK1,ICNT,EPR=1000) RECORD
  RECPAR=REC2(2)
C SEARCH FOR SATELLITE
  100 DO 12 I=2,LRFC
    IF(RECORD(I).GE.0) GO TO 12
    ISATE=RECORD(I)
    IF(ISAT.EQ.1,ISATD) GO TO 15
  10 CONTINUE
  GO TO 1010
  15 NOPS=REC1RD(I+1)-1
    IF(NOPS.LE.0) GO TO 1010
    RECSAT=(NOPS-1)/5+1
    NOOB=NOPS-NOBS/5*5
    INOOS=0
    NOPART=(RECSAT-1)/RECPAR+1
    IWCRD=I+4
C CONVERT EPOCH TO DODS SYSTEM
    MJEPCH=DJUL(DAYEPC)-DJREF
    JWCRD=IWCRD+NOPART-1
    NDREC=RECSAT-RECSAT/RECPAR*RECPAR
    IF(NDREC.EQ.0) NDREC=RECPAR
    IF(ICLM.GT.0) GO TO 207
C SEARCH FOR PARTITION CONTAINING EPOCH TIME
  18 DO 20 J=IWCRD,NWORD
    JWCRD2=2*(J-1)
    MJC=REC2(JWCRD2)
    IF(MJEPCH.LT.(MJC+1.DC)) GO TO 25
  20 CONTINUE
  GO TO 230
C EPOCH TIME PARTITION DETERMINED
  25 IPART=MAX((J-IWORD+1)
    JWCRD2=2*(IWCRD+IPART-1)
  28 NOB=0
    ICOUNT=REC2(JWCRD2)
    NRFC=ICOUNT+RECPAR-1
    LANFL=1
    IF(IPART.NE.NPART) GO TO 30
    NRFC=ICOUNT+NDREC-1
    IF(NDREC.EQ.0) INOOS=NOOB
C READ PHYSICAL RECORD
  30 ICNT=ICNT+1
    READ(DISK1,ICNT,EPR=1020) MREC
  40 NOP=NRFC+1
    IF(NOB.GT.NOB) GO TO 50
    JED(1)=IREC(2,NOP)
    JED(2)=IREC(3,NOP)
    MJF=MJEPCH+DC-2
C CHECK FOR ELEMENT SET AT EPOCH
    IF(MJEPCH.EQ.MJF) GO TO 50
    IF(MJEPCH.GT.MJF) GO TO 42
    NOB=NOB+1
    IF(ENO.EQ.0) GO TO 90
    GO TO 60
      DODE 56
      DODE 57
      DODE 58
      DODE 59
      DODE 60
      DODE 61
      DODE 62
      DODE 63
      DODE 64
      DODE 65
      DODE 66
      DODE 67
      DODE 68
      DODE 69
      DODE 70
      DODE 71
      DODE 72
      DODE 73
      DODE 74
      DODE 75
      DODE 76
      DODE 77
      DODE 78
      DODE 79
      DODE 80
      DODE 81
      DODE 82
      DODE 83
      DODE 84
      DODE 85
      DODE 86
      DODE 87
      DODE 88
      DODE 89
      DODE 90
      DODE 91
      DODE 92
      DODE 93
      DODE 94
      DODE 95
      DODE 96
      DODE 97
      DODE 98
      DODE 99
      DODE 100
      DODE 101
      DODE 102
      DODE 103
      DODE 104
      DODE 105
      DODE 106
      DODE 107
      DODE 108
      DODE 109
      DODE 110
      DODE 111

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR.

```

      50 ICOUNT=ICOUNT+1
      IF(ICOUNT.GT.NREC) GO TO 500
      LABEL=?
      ICNT=ICNT+INT
C READ NEW PHYSICAL RECORD
      READ(OC DISK* ICNT,ERR=1020) MREC
      NOR=?
      IF(IPART.EQ.NPART.AND.ICOUNT.EQ.NREC) INODH=NDOS
      GO TO 40
C ELEMENTS HAVE BEEN FOUND
      60 DO 61 I=1,12
      61 ELEM(I)=MREC(I+4,NOR)
      IELM=MREC(1,NOR)
      JED(1)=MREC(2,NOR)
      JED(2)=MREC(3,NOR)
      MJD=MJD+1,00-2
      ITYPE=MREC(4,NOR)
      GO TO (65,75), ITYPE
      GO TO 1030
C CARTHESIAN ELEMENTS LOADED INTO COMMON
      65 DO 71 I=1,3
      ELEMST(I)=ORPELA(I)*DUL
      70 ELEVST(I+3)=ORPELA(I+3)*DUL/DJT
      GO TO 85
C KEPLERIAN ELEMENTS LOADED INTO COMMON
      75 ELEMST(1)=ORPELA(1)*DUL
      ELEMST(2)=ORPELA(2)
      DO 80 I=3,6
      80 ELFST(I)=ORPELA(I)/DRAD
      85 CALL CLRAR(MREC,ABC,1)
      IF(MJEPCH.EQ.MJD) RETURN
C RESET TPOCH
      DAYEPC=MJD+YMDAY(570913,C,0,00)
      DAYEPC=DAYEPC+TD(IF(4,3,DAYEPC)/8.64E4
      DATAEPC=DAYEPC
      CALL DATES(DAYEPC,IEPYMD,IMM,SEC)
      IFMM=I MM
      EPSEC=SEC
      RETURN
      90 ICOUNT=ICOUNT-1
      NOR=1
      IPART=IPART-1
      IF(IPART.LT.1) GO TO 60
C BACK UP ONE PARTITION
      JWCRD2=?*(IWCRD+IPART-1)
      ICOUNT=REC2(JWCRD2)+RECPAR-1
      GO TO 300
C SEARCH BY ELEMENT SET NUMBER
      200 DO 250 J=1,WORD,NWORD
      JWCRD2=?*J
      ICOUNT=IFC?(JWCRD2)-1
      NREC=ICOUNT+SECDAR
      IF(J,EC,1)*NREC) NREC=ICOUNT+NREC
      210 ICOUNT=ICOUNT+1
      IF(ICOUNT.GT.NREC) GO TO 250
      LABEL=?
      DODE 112
      DODE 113
      DODE 114
      DODE 115
      DODE 116
      DODE 117
      DODE 118
      DODE 119
      DODE 120
      DODE 121
      DODE 122
      DODE 123
      DODE 124
      DODE 125
      DODE 126
      DODE 127
      DODE 128
      DODE 129
      DODE 130
      DODE 131
      DODE 132
      DODE 133
      DODE 134
      DODE 135
      DODE 136
      DODE 137
      DODE 138
      DODE 139
      DODE 140
      DODE 141
      DODE 142
      DODE 143
      DODE 144
      DODE 145
      DODE 146
      DODE 147
      DODE 148
      DODE 149
      DODE 150
      DODE 151
      DODE 152
      DODE 153
      DODE 154
      DODE 155
      DODE 156
      DODE 157
      DODE 158
      DODE 159
      DODE 160
      DODE 161
      DODE 162
      DODE 163
      DODE 164
      DODE 165
      DODE 166
      DODE 167

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

DODELM
Page 5 of 14
October 1972

ICNT=ICOUNT
 C READ NEW PHYSICAL RECORD
 READ(D00DISK,ICNT,ERR=1020) MREC
 IF(IICOUNT.EQ.NREC.AND.J.EQ.NWORD) INDDOB=NDOB
 DO 240 NDR=1,1NDRB
 IF(MREC(1,NDR).EQ.1ELM) GO TO 60
 240 CONTINUE
 250 CONTINUE
 C NO ELEMENTS AVAILABLE WITH THIS NUMBER
 WRITE(DJTP,2250) 1ELM
 1ELM=0
 GO TO 13
 300 JWORD2=2*NWORD
 ICOUNT=REC2(JWORD2)+NREC-1
 C TAKE LATEST ELEMENT SET
 LABEL=0
 NDR=NDRB
 GO TO 310
 305 NDR=5
 310 ICNT=ICOUNT
 C READ LAST PHYSICAL RECORD
 C FIND ELEMENT SET NUMBER FROM DATA
 READ(D00DISK,ICNT,ERR=1020) MREC
 GO TO 6
 400 MJEPCH=DAYEPC+1+SD2
 'DCTELM=.FALSE.
 IN=33
 CALL DATOSC(IN,DAYEPC,MJEPCH,ISATID,DATSCLM)
 CALL DATOSC(IN,DAYEPC,MJEPCH,ISATID,DATSCLM)
 1FLN=TG2(1)
 GO TO 5
 500 JWORD2=JWORD2+2
 'IF(IPART.EQ.NPART) GO TO 1010
 C TRY NEXT PARTITION
 IPART=IPART+1
 GO TO 23
 C PRINT ERROR MESSAGES
 1000 WRITE(DJTP,2000) J
 GO TO 1135
 1010 WRITE(DJTP,2010) ISATID
 GO TO 1135
 1020 WRITE(DJTP,2020) ISATID,ICOUNT,LABEL
 GO TO 1135
 1030 WRITE(DJTP,2030) ISATID,ICOUNT,ITYPE,LABEL
 1035 WRITE(DJTP,2040) RECORD,MREC
 C TAKE ERROR EXIT
 CALL ERDP(7,DAYEPC)
 STOP
 2000 FORMAT(1H1,20X,'UNABLE TO READ DDOS DATA BASE ELEMENT DIRECTORY'/
 ! ,18X,'RETURN CODE IS ',18/2IX,'INNATE EXECUTION TERMINATED')
 2010 FORMAT(1H1,20X,'NO ELEMENT SET IN DDOS DATA BASE FOR /2IX/
 ! ,18X,'INNATE EXECUTION TERMINATED')
 2020 FORMAT(1H1,20X,'DDOS DATA BASE READING /2IX/ OCCURRED IN ELEMENT /
 ! ,18X,'FILE DDOS.DAT/2IX, /DATFILE/18/2IX, /DATA REC IDD NUMBER /18/16/
 ! ,2IX, /INNATE EXECUTION TERMINATED/2IX, /FILE EXIT/2IX)
 2030 FORMAT(1H1,20X,'DDOS ELEMENT READING ARRIVED ENCOUNTERED FOR /
 ! ,18X,'INNATE EXECUTION TERMINATED')

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR/

DODELM
Page 6 of 14
October 1972

1. 'ISATELLITE', 19/21X, 'ELEMENT TYPE INCORRECTLY SPECIFIED IN ', DODE 224
2. 'RECORDS', 19/21X, 'TYPE SPECIFIED IS', 19/21X, 'INNAME EXECUTION', DODE 225
3. ' TERMINATED' /21X, 'LABEL =', 12) DODE 226
224C FORMAT(1H1/(10X,Z8,1X,Z8,2X,Z8,1X,Z2+4X,Z8,1X,Z8,2X,Z8,1X,Z8)) DODE 227
225C FORMAT(1H0,20X,'UNABLE TO FIND ELEMENT SET',1F/21X,'IN DODS DATA',DODE 228
1. ' BASE ELEMENT FILE' /21X, 'PROGRAM SEARCHING FOR ELEMENT SET ', DODE 229
2. 'CORRESPONDING TO EPOCH//') DODE 230
END DODE 231

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0-175

8.0-176

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0-179
0.0 170

NAME	DODSRD				
PURPOSE	TO READ OBSERVATION DATA IN DODS FORMAT AND PARTIALLY PREPROCESS THE OBSERVATIONS				
CALLING SEQUENCE	CALL DODSRD(NSTARD)				
SYMBOL TYPE	DESCRIPTION				
NSTARD	I	INPUT - NUMBER OF STATIONS THAT WERE READ FROM CARDS			
SUBROUTINES USED	AND2 TOIF NUMBER2	CLEAR YMDAY	CARCTN NUMBER4	CATBSE RANWR	EQUATR BIAS
COMMON BLOCKS	APARAM DODDAT STANCM	CGECS CEPHEM TPEBLK	CONSTS INTBLK	CPARAM PREBLK	CTIME SIGBLK
INPUT FILES	INTP - INPUT CARDS				
OUTPUT FILES	NEWTP - OUTPUT DATA TAPE NUMBER PRINTER				

MAINROUTINE DODSRD(NSTARD)	DODS	29
IMPLICIT REAL*8 (A-H,O-Z)	DODS	30
LOGICAL*1 PREFFO,VHFCHN,NEWTP,LSTANN,BL,NOT1ST,ONEOB,OKSAT,NAME7	DODS	31
LOGICAL NORATE	DODS	32
DOUBLE PRECISION NAME,JNAME	DODS	33
REAL RFINDX,SIGCHG,SIGSTD,S2R,TCOR,SIG1,SIG2,DRREC,TOIF,SQRT	DODS	34
INTEGER*2 MTYPE,NMEAS,PRETYP,CHANL,INCPRE,IPREPR,IMTYPE,ISTNO,	DODS	35
CHMSK,OBITS,IG,IT,TAG,PEIT1,PDIT2,ITYPE,OBIT,IG1,IG2,	DODS	36
FEEDBK,CULL,IBIT,ISTARD,ESTANO,ISTANO,STANDS,ISAT	DODS	37
INTEGER AND2,AMBIG,SATNO,RECNO,DELETE	DODS	38
DIMENSION TIME(14),STNAM(14),GDS(14),DRREC(25),X(3),OBITS(14),	DODS	39
ITYPE(16),FEEDBK(4),DELETE(7),LSTANN(3),CNEDB(7),IBIT(16)	DODS	40
COMMON/APARAM/INPAR,INPAR1,NEIAS,NSTSTA(7)	DODS	41
COMMON/CGECS/ISATIC,ISAT2,IFHPR(4,50),RFINDX(2,50),INCPRE(2,50),	DODS	42
IPRE,NSIG,NCULL,SIGCHG(50),IMTYPE(50),ISTNO(50),CULL(2,100)	DODS	43
COMMON/CONSTS/EP1,CTWDPI,DRAD,S2R,IS2R	DODS	44
COMMON/CPARAM/NSTA,NMAST(15)	DODS	45
COMMON/CTIME/CATAEP,DAYREF,DESTART,DAYSTR,INTOAY(15)	DODS	46
COMMON/DUDLAT/TIME1,STNAM1,CDD1,DG(2),DRSCOR,SATNO,IOBND1,	DODS	47
IT,IG2(2),TCOR,IG1,IT,TAG,PEIT1,PDIT2,IG	DODS	48
COMMON/CEPHEM/JNAME(381),ISTARD(381),ESTANO(381),ISTANO(386)	DODS	49
COMMON/INTBLK/INTEG1(531),NORATE,INTEG2(73)	DODS	50
COMMON/PREBLK/DAY,DRS1,DRS2,SIG(2),SIGNDK,ISTA,MTYPE,NMEAS,	DODS	51
ISAT,PRETYP,CHANL,VHFCHN,PHEPRO,RECNO	DODS	52
COMMON/SIGBLK/SIGSTD(60),IN,VIDTAPE(2)	DODS	53
COMMON/STANCM/NAME(280),STANCS(280),NOSTUR	DODS	54
COMMON/TPEBLK/INTP(7),IND,ISCRAC(4)	DODS	55

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0-182

```

EQUIVALENCE (SIG1,SIG(1)),(SIG2,SIG(2)),(FEEDBK(1),DG(2)),      D00S  56
  • (LSTANH(1),STNAM1),(OBREC(1),TIME1)                         D00S  57
  DATA CHNSK/Z77,101T/Z1,22,24,28,Z10,220,240,ZH0,Z100,Z200,Z400, D00S  58
  • Z00,Z1000,Z2000,Z4000,Z20000,DUL/1.00+7/,DUT/3.54D12/,       D00S  59
  • MTPLST/G/,STNLST/GH //,DAYLST/0.000/,IM/0/,NEWTAP/3/,        D00S  60
  • ITYPE/2,5,12,7,14,1,0,0,3,7X0.6,13/,BL/1H/,UNCD/1/,FALSE,,    D00S  61
  • 3*,TRUE,,34,FALSE//,VLIGHT/2.99792503/                         D00S  62
NUMELR=0                                         D00S  63
NOTIST=.FALSE.                                    D00S  64
ISAT=1                                           D00S  65
C INITIALIZE
  NCRATE=.TRUE.
  IF(IN.LE.0) IN=21
  CALL CLEAR(DELETE,7,1)
C READ DELETE CARD
  IF(MOC(IND,2).EQ.1) READ(5,2000) DELETE
  NEWTP=IND.EQ.2.OR.IND.EQ.3
  IND=0
  CKSAT=.FALSE.
  CO 3 I=1,14
  TIME(I)=0.000
  5 STNAR(I)=0.000
  REFTIM=YMDAY(570916,0,0.000)
  CJEARSE=YMDAY(5CQ10C,0,0.000)
C READ OBSERVATION
  10 CALL DATUBS(LIN,DATAEP,DAYSTF,ISATID,NOTIST)
  IF(TIME1.GT.0.000) GO TO 15
  IF(TIME1.LT.-1.5D0) GO TO 200
  •IF(CKSAT) GO TO 200
C CHECK SATELLITE ID
  OKSAT=ISATID.EQ.SATNO.OR.ISATID.EQ.0
  IF(OKSAT) ISATID=SATNO
  VFCHN=ISATID.EQ.67511.OR.ISATID.EQ.6750101
  IF(NEWTAP.AND.CKSAT) WRITE(NEWTAP) OBREC
  GO TO 10
  15 IF(.NOT.OKSAT) GO TO 10
  MTYPE=ITYPE(IT)
  IF(MTYPE.EQ.0) GO TO 10
  IF(NEWTAP) WRITE(NEWTAP) OBREC
C STORE OBSERVATION UNTIL PAIRS ARE MATCHED
  TIME1=TIME1+TCCR
  OBC1=OBD1+JDSCCR
  TIME(MTYPE)=TIME1
  STNAR(MTYPE)=STNAM1
  ODS(MTYPE)=OBD1
C CHECK PREPROCESSING INDICATORS
  AMBIG=(FEEDBK(4)-(FEEDBK(4)/256)*256)/16
  CHANNEL=AND2(CHNSK,FEEDBK(4))
  I=PEIT1
  J=PEIT2
  C115(MTYPE)=LCR(I,J)
  MTYPE=MTYPE-MTYPE/8*7
  IF(CNEQI(MTYPE)) GO TO 20
  IF(TIME(MTYPE).NE.TIME(MTYPE+7).OR.STNAM(MTYPE).NE.STNAM(MTYPE+7)) D00S 109
  • GO TO 10
  20 DAY=TIME(MTYPE)/1.00+2+REFTIM                         D00S 110
                                                D00S 111

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0-183

```

C CONVERT TO A.D TIME
  IF(ITA0/250.NE.2) DAY=DAY+TDIF(A,3,CAY)/36400
  IF(CAY.LT.DATALP) GO TO 10
  IF(CAY.GT.DAY) DAY=TDIF(A,3,CAY)
  MT=MTYPE

C CHECK FOR RATE MEASUREMENTS PRESENT
  IF(ENUMUR+(MT,DELETE,7).GT.0) GO TO 10
  INAM=0
  LSTANM(6)=BL
  590 DO 600 I=1,NSTARD
    IF(STRAM1.EQ.JNAME(I)) GO TO 630
  600 CONTINUE
    DO 610 I=1,NUSTOR
      IF(STRAM1.EQ.JNAME(I)) GO TO 620
  610 CONTINUE
    INAM=INAM+1
    LSTANM(7)=UL
    IF(INAM.EQ.1) GO TO 590
    PRINT 1000,STRAM1
    GO TO 10
  620 ISN=ISTAND(I)
  630 ISN=ISTARD(I)
  640 ISTA=ENUMUR2(ISN,ISTAND,NSTA)
    IF(ISTA.GT.0) GO TO 650
    ISTA=NSTA+1
    NSTA=ISTA
    ISTAND(NSTA)=ISN
  650 IF(NSIG.LE.0) GO TO 24
    IF(MTYPE.EQ.3) GO TO 25
    NN1=U
    DO 23 I=1,NSIG
      IF(ISN.EQ.1STNL(I).AND.1STNC(I).NE.C) GO TO 23
      IF(C.EQ.1MTYPE(I).OR.1MTYPE(I).EQ.0) NN1=I
  23 CONTINUE
    IF(NN1.GT.0.AND.S1CHG(NN1).NE.0.) NORATE=.FALSE.
    GO TO 26
  24 NORATE=.FALSE.
  25 CONTINUE
    DBIT=CBITS(MTYPE)
    DBS1=CBG(MTYPE)
    CBS2=CHS(MTYPE+7)

C DELETE REduNDANT RESERvATIONS
  IF(MTYPE.EQ.MTFLST.AND.STNAM1.EQ.STNLST.AND.DAY.EQ.DAYLST)
    GO TO 10
  MTFLST=MTYPE
  STNLST=STNAM1
  DAYLST=DAY
  NMEAS=2
  IPRE=0
  PRETYPE=U
  IF(NPRE.EQ.0) GO TO 90
  IND=0

C DETERMINE PREPROCESSING TO BE DONE
  DO 70 I=1,NPRE
  70 IF((INDPHE(1,1).EQ.0.OR.INDPHE(1,1).EQ.ISN).AND.

```

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

8.0-184

```

* (INPRE(2,1),EQ.0,OR,INPRE(2,1),EQ,MTYPE))IND=1      DODS 162
* IF(IND.EQ.0) GO TO 90                                DODS 163
  SRFAUX=RFINDEX(1,INC)                                DODS 170
  IF(IPREPR(3,INC).GT.0) DAY=DAY+RFINDEX(2,IND)/86400.   DODS 171
  IPRE=IPREPR(1,IND)                                    DODS 172
  IF(IPRE.EQ.1,AND,AND2(OBIT,IBIT(1)).EQ.1) IPRE=0     DODS 173
  PRETYPE=IPREPR(2,IND)                                DODS 174
C PROCESS MEASUREMENTS ACCORDING TO TYPE               DODS 175
  90 GO TO (110,120,130,130,150,200,320),MTYPE          DODS 176
C ...CPICAL                                         DODS 177
  110 CUSD=DCOS(UBS2)                                 DODS 178
    SIGZ=SIGSTD(6)*S2R                                DODS 179
    SIGI=SIGSTD(1)*S2R/CUSD                           DODS 180
    IF(IND.EQ.0) GO TO 400                            DODS 181
    IF(IPREPR(4,INC).EQ.0) GO TO 115                  DODS 182
    IF(IPREPR(4,INC).EQ.1,AND,AND2(OBIT,IBIT(5)).NE.0) GO TO 115 DODS 183
    IPRE=1                                         DODS 184
    X(1)=DCOS(UBS1)*CUSD                           DODS 185
    X(2)=DSIN(UBS1)*CUSD                           DODS 186
    X(3)=DSIN(UBS2)                                DODS 187
    CALL EQUATH(X,DURASE,,FALSE,,X,DAY,,TRUE,,)       DODS 188
    UBS1=CARCTN(X(2),X(1))                          DODS 189
    UBS2=CARSIN(X(3))                               DODS 190
  115 IF(IPREPR(1,INC).EQ.0) IND=0                   DODS 191
    GO TO 400                                         DODS 192
C ...RANCE RATE                                     DODS 193
  130 OBS1=LOS1/DLT                                DODS 194
    SIG1=0.01*SIGSTD(2)                            DODS 195
C ...RANGE & RANGE RATE                         DODS 196
  120 OBS1=LOS1+DLR                                DODS 197
    NMES=1                                         DODS 198
    IF(MTYPE.EQ.3) GO TO 400                      DODS 199
    SIG1=SIGSTD(2)                                DODS 200
    IF(IND.EQ.0) GO TO 400                      DODS 201
    IF(IPRE.EQ.1,AND,AND2(OBIT,IBIT(6)).NE.0) IPRE=(AMBIG+2)/3 DODS 202
    IF(IPRE.NE.0) DAY=DAY-OBS1/(VLIGHT*E.5404)        DODS 203
    GO TO 400                                         DODS 204
C ...MINITRACK                                     DODS 205
  150 SIG1=0.51**2                                DODS 206
    IF(SIG1.LT.1.) SIG1=SQRT(1.-SIG1)              DODS 207
    SIG1=SIGSTD(5)*1.E-3/SIG1                     DODS 208
    SIG2=0.52**2                                DODS 209
    IF(SIG2.LT.1.) SIG2=SQRT(1.-SIG2)              DODS 210
    SIG2=SIGSTD(12)*1.E-3/SIG2                    DODS 211
    GO TO 400                                         DODS 212
C RETURN STATION ZERO                            DODS 213
  200 ISTA=0                                         DODS 214
    MTYPE=0                                         DODS 215
    IN=0                                           DODS 216
    IF(NCWT) END FILE NEWTAP                      DODS 217
    RECN0=RECN0+1                                  DODS 218
    PRINT 3000,NUMER,IN                           DODS 219
    CALL RANDWR                                     DODS 220
    DAYSTF=DAY                                     DODS 221
    RETURN                                         DODS 222
  300 SIG1=SIGSTD(6)*S2R                           DODS 223

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0 - 185

```

C ** X-Y ANGLES
    SIG2=SIGSTD(13)*S2R
    GO TO 400
320 SIG1=SIGSTD(7)*S2R
C ** AZIMUTH & ELEVATION
    SIG2=SIGSTD(14)*S2R
    400 IF(SIG1,EQ.0) GO TO 410
C MAKE SIGMA CHANGES
    NN1=0
    NN2=0
    DO 405 I=1,NSIG
        IF(1SN,NE,1STNC(I),AND,1STNC(I),NE,C) GO TO 405
        IF(MTYPE,EQ,IMTYPE(I),OR,IMTYPE(I),EQ,0) NN1=I
        IF(MTYPE+7,EQ,IMTYPE(I),OR,IMTYPE(I),EQ,0) NN2=I
405 CONTINUE
    IF(NN1,GT,0) SIG(1)=SIGCHG(NN1)*SIG1/SIGSTD(MTYPE)
    IF(NN2,GT,0) SIG(2)=SIGCHG(NN2)*SIG2/SIGSTD(MTYPE+7)
    410 IF(NCULL,EQ,0) GO TO 420
C CULL MEASUREMENTS
    DO 415 I=1,NCULL
        DO 415 J=1,NMEAS
            IF(IM+J-CULL(1,I)) 415,413,411
411 IF(IM+J,GT,CULL(2,I)) GO TO 415
413 SIG(J)=0.000
415 CONTINUE
420 IM=IM+NMEAS
    PREPRO=NPRE+1,0,AND,IND,GT,0
C SET PROCESSING SWITCH
    PRETYPE=PRETYPE+10*NPRE
    RECN0=RECN0+1
    IF(RECN0,GT,0) CALL DIAS
    NUMBER=NUMBER+NMEAS
    CALL RANDRK
    SIG(2)=0.000
    TIME(MTYPE)=0.000
    TIME(MTYPE+7)=0.000
    GO TO 10
1000 FORMAT(' STATION ',A8,' NOT FOUND')
2000 FORMAT(6X,712)
3000 FORMAT(1H0//312,1E,+1 OBSERVATIONS SELECTED FROM MASTER DODS ',
           'DATA TAPE NUMBER',13)
    END

```


REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0-186
2010

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0-189

DPFCT
Page 1 of 5
October 1972

DPFCT

DESCRIPTION

DPFCT is a multi-purpose multiple entry point function. There exist 8 different points of entry:

DARCTN - is a double argument Arctangent Function providing function values between 0 and 2π radians

DENORM - computes the denormalization factor for geopotential coefficients

DJUL - computes Julian dates when given dates as computed by subroutine YMDAY

DOTPRD - computes dot products

XEFIX - $X_{ECI} * \cos \theta_G + Y_{ECI} * \sin \theta_G$

YEFIX - $Y_{ECI} * \cos \theta_G - X_{ECI} * \sin \theta_G$

XINERT - $X_{ECF} * \cos \theta_G - Y_{ECF} * \sin \theta_G$

YINERT - $Y_{ECF} * \cos \theta_G + X_{ECF} * \sin \theta_G$

DPFCT
Page 2 of 5
October 1972

NAME	OPPCT	
PURPOSE	MULTI-PURPOSE MULTIPLE ENTRY POINT FUNCTION	
ENTRY POINT	PURPCSE	
DARCTN	TO COMPUTE THE ARCTANGENT BETWEEN 0 & TWO PI	
DENORM	TO COMPUTE THE DENORMALIZATION FACTOR FOR GEOPOTENTIAL COEFFICIENTS	
DJUL	TO COMPUTE JULIAN DATE FOR AN INPUT TIME IN DAYS FROM JAN 0.0 OF THE REFERENCE YEAR FOR THE ARC	
COTPRO	TO COMPUTE THE DOT PRODUCT OF 2 THREE DIMENSIONAL VECTORS	
XEFIX	GIVEN INERTIAL X AND Y RETURN EARTH FIXED X	
XINERT	GIVEN EARTH FIXED X AND Y RETURN INERTIAL X	
YEFIX	GIVEN INERTIAL X AND Y RETURN EARTH FIXED Y	
YINERT	GIVEN EARTH FIXED X AND Y RETURN INERTIAL Y	
CALLING SEQUENCE	DARCTN(Y,X)	
SYMBOL	TYPE	DESCRIPTION
Y	DP	INPUT - R*SIN(A)
X	DP	INPUT - R*COS(A)
DARCTN	DP	OUTPUT - ARCTANGENT OF ANGLE A IN RADIANS BETWEEN 0 AND +2PI RADIAN

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

CALLING SEQUENCE	DENORM(N,M)	
SYMBOL	TYPE	DESCRIPTION
N	I	INPUT - DEGREE OF LEGENDRE POLYNOMIALS
M	I	INPUT - ORDER OF LEGENDRE POLYNOMIALS
DENORM	DP	OUTPUT - DENORMALIZATION FACTOR

CALLING SEQUENCE CJUL(X)

SYMBOL TYPE DESCRIPTION

X DP INPUT - TIME IN DAYS FROM JAN 0.0 OF THE REFERENCE YEAR

CJUL DP OUTPUT - JULIAN DATE

CALLING SEQUENCE DOTPRO(A,B)

SYMBOL TYPE DESCRIPTION

A DP INPUT - COMPONENTS OF VECTOR A
(3)

B DP INPUT - COMPONENTS OF VECTOR B
(3)

DOTPRO DP OUTPUT - DOT PRODUCT OF VECTORS A & B

CALLING SEQUENCE XEFIX(X,Y)

SYMBOL TYPE DESCRIPTION

X DP INPUT - INERTIAL X

Y DP INPUT - INERTIAL Y.

XEFIX DP OUTPUT - EARTH FIXED X POSITION

CALLING SEQUENCE XINERT(X,Y)

SYMBOL TYPE DESCRIPTION

X DP INPUT - EARTH FIXED X

Y DP INPUT - EARTH FIXED Y

XINERT DP OUTPUT - INERTIAL X

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

CALLING SEQUENCE YEFIX(X,Y)

SYMBOL TYPE DESCRIPTION

X DP INPUT - INERTIAL X

Y DP INPUT - INERTIAL Y

YEFIX DP OUTPUT - EARTH FIXED Y POSITION

CALLING SEQUENCE YINERT(X,Y)

SYMBOL	TYPE	DESCRIPTION
X	DP	INPUT - EARTH FIXED X
Y	DP	INPUT - EARTH FIXED Y
YINERT	DP	OUTPUT - INERTIAL Y
SUBROUTINES USED YMDAY		
COMMON BLOCKS	CSTHET	CONSTS INITBK
INPUT FILES	NONE	
OUTPUT FILES	NONE	

```

DOUBLE PRECISION FUNCTION DARC TN(Y,X) DPFC 131
IMPLICIT REAL*8 (A-H,O-Z) DPFC 132
COMMON/CSTHET/CTHETC,STHETG DPFC 133
COMMON/CONSTS/PI,TWOPI,DRAD,DRSEC DPFC 134
COMMON/INITBK/IG1(49),NDJIST,IG2(7) DPFC 135
LOGICAL NDJIST DPFC 136
DARC TN=DATAN2(Y,X)
IF(DARC TN.LT.0.000) DAFCTN=TWOPI+DAFCTN
RETURN
ENTRY DENCRM(N,M) DPFC 137
IF(M.EQ.0) GO TO 120 DPFC 138
XN=4.000*DFLOAT(N)+2.000 DPFC 139
NMV1=N-MF1 DPFC 140
NPM=N+M DPFC 141
FACT=1.00 DPFC 142
DO 110 I=NMV1,NPM DPFC 143
110 FACT=FACT*DFLOAT(I) DPFC 144
XN=XN/FACT DPFC 145
GO TO 130 DPFC 146
120 XN=2.000*DFLOAT(N)+1.000 DPFC 147
130 DENCRM=DSQRT(XN) DPFC 148
RETURN
ENTRY DJUL(X) DPFC 149
IF(NDJIST) GO TO 10 DPFC 150
NDJIST=.TRUE. DPFC 151
DJ=2433251.500-YMDAY(500100,0,C.000) DPFC 152
10 DJUL=DJ+X DPFC 153
RETURN
ENTRY DUTPRC(A,E) DPFC 154
DOUBLE PRECISION A(3),B(3) DPFC 155
DUTPRC=A(1)*E(1)+A(2)*B(2)+A(3)*B(3) DPFC 156
RETURN
ENTRY XEFIX(X,Y) DPFC 157
XEFIX=X*CTHETC+Y*STHETG DPFC 158
RETURN
ENTRY XINERT(X,Y) DPFC 159
XINERT=X*CTHETC-Y*STHETG DPFC 160

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```
RETURN  
ENTRY YEFIX(X,Y)  
YEFIX=Y*C1HETC-X*S1HETG  
RETURN  
ENTRY YINCH(X,Y)  
YINCH=Y*C1HETC+X*S1HETG  
RETURN  
END
```

DPFC 161
DPFC 162
DPFC 170
DPFC 171
DPFC 172
DPFC 173
DPFC 174
DPFC 175

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME	DRAG
ENTRY POINT	PURPOSE
DRAG1	INITIALIZATION
DRAG	TO COMPUTE ACCELERATION IN RECTANGULAR COORDINATES DUE TO AERO-DYNAMIC DRAG FORCES

CALLING SEQUENCE CALL DRAG1(GRPAR)

SYMBOL	TYPE	DESCRIPTION
GRPAR	DP	OUTPUT - PARTIALS OF FORCE MODEL PARAMETERS (1)

CALLING SEQUENCE DRAG(RASAT,DX,DT)

SYMBOL	TYPE	DESCRIPTION
RASAT	DP	INPUT - RIGHT ASCENSION OF SATELLITE
DX	DP	INPUT & OUTPUT - SATELLITE ACCELERATION VECTOR
DT	DP	INPUT - TIME IN DAYS FROM EPOCH

SUBROUTINES USED DENSITY

COMMON BLOCKS DRGBLK XYZ INTBLK

INPUT FILES NONE

OUTPUT FILES NONE

REFERENCES • GEODYN SYSTEMS DESCRIPTION •
VOLUME 1 - GEODYN DOCUMENTATION

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

SUBROUTINE DRAG1(GRPAR)	DRAG	41
IMPLICIT REAL*8 (A-H,C-Z)	DRAG	42
DOUBLE PRECISION DX(3),X,Y,Z,XDOT,YDOT,ZDOT,R,RSQ,THDT2S,AE,RASAT	DRAG	43
INTEGER ADDR,ACDRD	DRAG	44
DIMENSION GRPAR(1)	DRAG	45
COMMON/DRGBLK/HT,SPSI50,C(4),C1,VEL,XDCTR,YDCTR,RHO	DRAG	46
COMMON/XYZ/X,Y,Z,XDOT,YDOT,ZDOT,R,RSQ,ISAT,IFORCE(2)	DRAG	47
COMMON/INTBLK/THD0T1(2),THDT2S,GM,AE,AES0,FLAT,FS032,FFS032,	DRAG	48
• GM3(6),B(2),BDOT(2),B0(2),AFGM(38),ADDR(2),ACDFD(2),SRAD(5)	DRAG	49
RETURN	DRAG	50
ENTRY DRAG(RASAT,DX,DT)	DRAG	51
SPSI50=Z**2/RSQ	DRAG	52
HT=R-AE-(FS032*SPSI50**2-FFSC32*SPSIS032)	DRAG	53
C OBTAIN ATMOSPHERIC DENSITY	DRAG	54
RHO=DENSITY(RASAT)	DRAG	55

```
XDOTR=XDOT+ THDT2S*Y          DRAG 55
YDOTR=YDOT- THDT2S*X          DRAG 57
VEL=XDOTR**2+YDOTR**2+ZDOT**2  DRAG 59
VEL=DSQRT(VEL)                DRAG 60
C3=VEL*RHO                     DRAG 61
C1=C3*(B(I SAT)+B0(I SAT)*DT) DRAG 62
C SUM IN ACCELERATION DUE TO DRAG
DX(1)=O X(1)-C1 * XDOTR        DRAG 63
DX(2)=O X(2)-C1 * YDOTR        DRAG 64
DX(3)=O X(3)-C1 * ZDOT         DRAG 65
IND=IFORCE(I SAT)*3           DRAG 66
IF(ADDR(I SAT),EQ.0) GO TO 100
C COMPUTE PARTIALS FOR DRAG    DRAG 67
IND=IND+3                      DRAG 68
C2=-C3*B0(I SAT)              DRAG 69
GRPAR(1)=C2 * XDOTR            DRAG 70
GRPAR(2)=C2 * YDOTR            DRAG 71
GRPAR(3)=C2 * ZDOT             DRAG 72
100 IF(ADDR(I SAT),EQ.0) RETURN DRAG 73
C COMPUTE PARTIALS FOR DRAG RATE
C2=-C3*B0(I SAT)*DT           DRAG 74
GRPAR(IND+1)=C2 * XDOTR        DRAG 75
GRPAR(IND+2)=C2 * YDOTR        DRAG 76
GRPAR(IND+3)=C2 * ZDOT         DRAG 77
RETURN                         DRAG 78
END                            DRAG 79
DRAG 80
DRAG 81
```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

EGRAV

DESCRIPTION

EGRAV is the GEODYN System subroutine for determining the acceleration on the satellite due to the Earth's gravitation. Certain intermediate data are saved for use in subroutines VEVAL, RESPAR, AVGPOT and GEOIDH.

The intermediate data mentioned above are computed following the determination of the Earth-fixed spherical coordinates of the satellite. They are:

$$\frac{GM}{r} \quad \frac{a^n}{r}$$

$$P_n^m (\sin \phi)$$

$$\sin m \lambda$$

$$\cos m \lambda$$

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

$$m \tan \phi$$

for each m and/or n. Multiple angle formulae are used for the sine and cosines and the usual recursive relationships are used for the Legendre functions $P_n^m (\sin \phi)$.

The accelerations are computed in Earth-fixed spherical coordinates and then converted to inertial Cartesian coordinates.

NAME EGRAV
 PURPOSE TO COMPUTE ACCELERATION DUE TO GRAVITY
 CALLING SEQUENCE CALL EGRAV(THETG,RASAT,DX)
 SYMBOL TYPE DESCRIPTION
 THETG DD INPUT - APPARENT RIGHT ASCENSION OF GREENWICH
 RASAT DD INPUT & OUTPUT - RIGHT ASCENSION OF SATELLITE
 DX DP OUTPUT - ACCELERATION VECTOR IN METERS/SECONDS**2
 SUBROUTINE USED CLFAR
 COMMON BLOCKS CSLIM FMODEL INITBK INTPLK XYZ
 INPUT FILES NONE
 OUTPUT FILES NONE
 REFERENCES *GEODYN SYSTEMS DESCRIPTION*
 VOLUME I - GEODYN DOCUMENTATION

NOTATIONS

Psi-Latitude (Geocentric)
 Lamda-Longitude (+Eastward)
 R-Geocentric radius to satellite in Earth radii
 GM-Gravitational constant times mass of Earth
 P(m,n)-Coefficients of Legendre polynomial
 C(n,m)-Coefficients of cosine function
 S(n,m)-Coefficients of sine function
 INDEX1-Degree of summation plus 1

SUBROUTINE EGRAV(THETG,RASAT,DX)	REPRODUCIBILITY OF THE	EGR4 42
IMPLICIT REAL*8(A-H,O-Z)	ORIGINAL PAGE IS POOR	EGR4 43
LOGICAL NOTIST		EGR4 44
INTEGER ULIMIT		EGR4 45
DOUBLE PRECISION MODEL,LAMRDA		EGR4 46
DIMENSION C(30,33),S(30,33),DX(3)		EGR4 47
COMMON/CSLIM/LLIMIT(31),ULIMIT(31)		EGR4 48
COMMON/FMODEL/INDEX1,INDEX2,INDEX3,INDEX4,CS(30,33),MODEL(3)		EGR4 49
COMMON/INITBK/IG(150),NOTIST,NSW1(6)		EGR4 50
COMMON/INTPLK/ITHOTS(61),GM,AF,1DHN(1C2)		EGR4 51
COMMON/XYZ/X,Y,Z,XROT,YROT,ZROT,R,RSQ,TROT,TFORCE(21)		EGR4 52
COMMON/VRELCK/XYSQ,COSLAN(71),SINLAN(31),PR,PSI1,PLAMDA,		EGR4 53
P(32,32),ADRN(30),TOSTM(73)		EGR4 54
EQUIVAL NCF (TPSTM(2),TAN2S1),(C(1,1),S(1,1),CS(1,1)),(P(1,1),		EGR4 55

```

        SINPSI), (P(2,1), COSPSI), (TPSIM(1), ZFRO) . EGPA F6
C INITIALIZE SUMMATION INDICES EGPA 57
  IF(NOTIST) GO TO 100
  CALL CLEAR(P,60,33)
  CALL CLEAR(TPSIM,54,1)
  CALL CLEAR(LLIMIT, 31,1)
  CALL CLEAR(ULIMIT, 31,1)
  ZFRO=0.0D0
  DO 20 NC=2,INDEX2 EGPA 58
    NS=31-NC
    N1=MINT( NC+1, INDEX3)
    DO 25 NC=2,N1 EGPA 59
      MS=34-NC
      IF(C( NC, NC).EQ.0.0D0 .AND. S(NS,MS).EQ.0.D0)GO TO 25
      IF(LLIMIT( NC).EQ.0) LLIMIT( NC)=NC
      ULIMIT( NC)=NC
  25 CONTINUE EGPA 60
  50 CONTINUE EGPA 61
  NOTIST=.TRUE.
C PUT SATELLITE IN EARTH CENTERED - EARTH FIXED RECTANGULAR COORDINATES EGPA 62
  100 RASATE=RATAN2(Y,X)
    XYEQ=X**2+Y**2 EGPA 63
    RTKYSQ=NSORT(XYSQ)
    LAMRDA=RASAT-THETG EGPA 64
    SINLAM(2)=DSIN(LAMRDA)
    COSLAM(2)=DCOS(LAMRDA)
    RSG=XYEQ/Z**2 EGPA 65
    R=NSORT(RSG)
C SINE, COSINE, AND TANGENT OF LATITUDE EGPA 66
    SINPSI=Z/R EGPA 67
    COSPSI=RTKYSQ/R EGPA 68
    TANPSI= SINPSI/COSPSI EGPA 69
C CONVERT R TO EARTH RADII EGPA 70
    RINV=A/EZR EGPA 71
C CALCULATE POLYNOMIAL TERMS ...NOTE... P TAKES FORM P(M,N) EGPA 72
    CPS=3.0D0*COSPSI
    P(1,2)=1.5D0*SINPSI**2-.5D0
    P(2,2)=CP2*SINPSI
    P(3,2)=CP3*COSPSI
    TPSIM(3)=2.0D0*TANPSI
C CALCULATE AND SAVE SINES AND COSINES OF LONGITUDE EGPA 73
    CL2=2.0D0*COSLAM(2)
    SINLAM(3)=CL2*SINLAM(2)
    COSLAM(3)=CL2*COSLAM(2)-1.0D0
    GMF=GM/R
    ADFN(2)=RINV**2*GMF
    DO 120 N=3,INDEX2 EGPA 74
      ADFN(N)=ADFN(N-1)*RINV
      F1=N EGPA 75
      F2=F1-1.0D0
      F3=2.0D0*F1-1.0D0
      F4=F3*COSPSI
      N1=N-1
      N2=N-2
C ZONAL HARMONICS (M=0) EGPA 76
      P61(N)=COSPSI*SINPSI*(CL1-LN1)-F2*B1(N2)/F1
      REPRODUCIBILITY OF THE
      ORIGINAL PAGE IS POOR!

```

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

```

IF(INDEX3.LT.2)GO TO 120          EGRA 112
NX=MINC(N,INDEX3+2)              EGPA 113
DO 110 M=2,NX                     EGPA 114
C TESSERAL HARMONICS (M NON-ZERO, LESS THAN N)    EGPA 115
110 P(M,N)=P(M,N2)+F4*R(M-1,N1)    EGPA 116
IF(NX.LT.N)GO TO 120             EGPA 117
NN1=EN+1                          EGPA 118
C SECTORAL HARMONICS (M=N, NON-ZERO)    EGPA 119
P(NN1,M)=F4*R(N,N1)              EGPA 120
TPSIM(NN1)=TPS(M,N)+TAU*PSI     EGPA 121
SINLAM(MN1)=CL2*SINLAM(N)-SINLAM(N1)    EGPA 122
COSLAM(NN1)=CL2*COSLAM(N)-COSLAM(N1)    EGPA 123
120 CONTINUE                      EGPA 124
C INITIALIZATION FOR SUMMATION FOR PARTIALS    EGPA 125
140 PREC=0.00                      EGPA 126
PLAMDA=1.00                       EGPA 127
PPSI=0.00                         EGPA 128
EN1=2.00                          EGPA 129
C SUMMATION FOR PARTIALS           EGPA 130
DO 250 NC=2,INDEX2               EGPA 131
NS=31-NC                          EGPA 132
EN1=EN1+1.00                     EGPA 133
CLAMDA=1.00                       EGPA 134
F1=C(NC,1)*CCSLAM(1)             EGPA 135
DP=F1*P(1,NC)                    EGPA 136
DPSI=F1*(P(2,NC)-TPSIM(1)*P(1,NC))    EGPA 137
NLL=LIMIT(1,NC)                  EGPA 138
111(NLL+1,0) GO TO 225          EGPA 139
N1=ULIMIT(NC)                   EGPA 140
PN=ALL-1                         EGPA 141
DO 200 NC=NLL,N1                EGPA 142
NS=34-NC                         EGPA 143
P1=P(NC,NC)                      EGPA 144
C PARTIAL WRT LAMBDA (SUMMATION)    EGRA 145
DLAMDA=DLAMDA+FM-P1*(S(NS,NS)*COSLAM(NC)-C(1,NC)*SINLAM(NC))    EGPA 146
F1=C(1,NC)*COSLAM(NC)+S(NS,NS)*SINLAM(NC)    EGPA 147
IF(F1.EQ.0.00)GO TO 200          EGPA 148
C PARTIAL WRT R (SUMMATION)       EGRA 149
DR=DR+F1*P1                      EGPA 150
C PARTIAL WRT PSI (SUMMATION)    EGRA 151
DPSI=DPSI+F1*(P(NC+1,NC)-TPSIM(NC)*P1)    EGPA 152
200 FM=FM+1.00                   EGPA 153
PLAMDA=PLAMDA+DLAMDA*ADRN(NC)    EGPA 154
225 PR=PR+DR*EN1*ADRN(NC)        EGPA 155
250 PPSI=PPSI+DPSI*ADRN(NC)      EGPA 156
C COMPLETE PARTIAL WRT R        EGRA 157
PRE=(GM2+PR)/R                  EGPA 158
C CONVERT ACCELERATION IN SPHERICAL COORDINATES TO ACCELERATION IN
C RECTANGULAR COORDINATES (MULTIPLY BY MATRIX OF PARTIALS OF SPHERICAL
C WITH RESPECT TO RECTANGULAR)
PRF=PR/R                         EGRA 159
PLXY=PLAMDA/XYSO                 EGPA 160
PRZ=PR/RTKYSO*Z/(RTKYSO*RSO)    EGPA 161
DX(1)=X*PRP-R*PLXY*Y            EGPA 162
DX(2)=Y*PRP-R*PLXY*X            EGPA 163
DX(3)=Z*PRP-R*PLXY*Z            EGPA 164
PRU=PR*RTKYSO*PPSI/RSO          EGPA 165
PPSI=PPSI*RTKYSO/RSO            EGPA 166
END                             EGPA 167

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

ELEM

DESCRIPTION

ELEM converts the inertial rectangular components of the position and velocity vectors of a satellite to the corresponding osculating Kepler elements.

Subroutine ERROR is invoked if the square of the eccentricity is not less than one.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME	ELEM			
PURPOSE	TO CONVERT INERTIAL POSITION AND VELOCITY VECTOR TO OSCULATING ORBITAL ELEMENTS			
CALLING SEQUENCE	CALL ELEM(XYZ,AEI,ICRAD,FRSTME,AEIXYZ)			
SYMBOL TYPE	DESCRIPTION			
XYZ DP	INPUT - CARTESIAN ELEMENTS			
(6)				
AEI DP	OUTPUT - KEPLER ELEMENTS			
(6)				
ICRAD I	INPUT - =3 - OUTPUT IS IN RADIANS AND PARTIAL MATRIX IS REQUESTED =2 - OUTPUT IS IN RADIANS =1 - OUTPUT IS IN DEGREES			
FRSTME L	INPUT - FIRST TIME SWITCH			
AEIXYZ DP	OUTPUT - PARTIALS OF KEPLER ELEMENTS WITH RESPECT (6,3,2) TO X, Y, Z			
SUBROUTINES USED	ERROR			
COMMON BLOCKS	ALPMHC	CELEM	CONSTS	INTBLK
INPUT FILES	NONE			
OUTPUT FILES	NONE			
REFERENCES	'GEODYN SYSTEMS DESCRIPTION' VOLUME 1 - GEODYN DOCUMENTATION			

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

SUBROUTINE ELEM(XYZ,ZEI,ICRAD,FRSTME,AEIXYZ)          ELEM 40
IMPLICIT REAL*8 (A-H,O-Z)                            ELEM 41
LOGICAL FRSTME,HYPER,HYPSW                           ELEM 42
REAL RMSTUT                                         ELEM 43
DOUBLE PRECISION INCL,MEAN,NCDE                      ELEM 44
DIMENSION AEI(6),XYZ(6),AEINPM(6),XYZXYZ(6),AEIXYZ(6,3,2),PHIP(3) ELEM 45
COMMON/ALPMHC/ALPHA(54),HYPSW
COMMON/CELEM/LLM(24),XNU,EC,RMETUT
COMMON/CONSTS/F1,TCPPI,RAD,RSEC
COMMON/INTBLK/THOTS(3),GM,AE(62)
EQUIVALENCE (A,AEINPM(1)),(E,AEINPM(2)),(INCL,AEINPM(3)),
* (NCDE,AEINPM(4)),(P,AEINPM(5)),(MEAN,AEINPM(6)),
* (X,XYZXYZ(1)),(Y,XYZXYZ(2)),(Z,XYZXYZ(3)),
* (XDOT,XYZXYZ(4)),(YDOT,XYZXYZ(5)),(ZDOT,XYZXYZ(6))
DO 10 I=1,6
10 XYZXYZ(I)=XYZ(I)

```

```

R=DSQRT(X**2+Y**2+Z**2)
VSC=X*YLT*Z*YCLT
C1=Y*ZDOT-Z*YCLT
C2=Z*XDOT-X*ZDOT
C3=X*YDOT-Y*XCLT
HSQ=C1**2+C2**2+C3**2
H=DSQRT(HSQ)
CCSI=C3/H
SINI=DSQRT(1.000-CCSI**2)
C COMPUTE INCLINATION
INCL=DATAN2(SINI,COSI)
IF (INCL.LT.0.000) INCL=INCL+TWOPi
AINV=2.000/R-VEG/GM
C COMPUTE SEMI-MAJOR AXIS
A=1.000/AINV
C COMPUTE ECCENTRICITY
ESO=1.000-HSQ*AINV/GM
E=DSQRT(ESO)
HYPER=ESO.GE.1.000
IF(HYPER.AND.,FRSTME.AND.,NOT.HYPSE) CALL ERROR(1,ESO)
IF(HYPER.AND.,NOT.(HYPSE.OR.,FRSTME)) CALL ERROR(2,ESO)
P=A*(1.000-ESO)
P=A*(1.000-ESO)
RRDLT=X*XDOT+Y*YDOT+Z*ZDOT
HSI=H*SINI
SINN=C1/HSI
COSN=-C2/HSI
C COMPUTE LONGITUDE OF ASCENDING NODE
NODE=DATAN2(SINN,COSN)
IF(NODE.LT.0.000)NODE=NODE+TWOPi
PER=P/(E+R)
SNU=RRDLT*PER/R
CNU=PER-1.000/E
XNU=DATAN2(SNU,CNU)
IF(XNU.LT.0.000)XNU=XNU+TWOPi
CEC=(CNU+E)/(1.000+E*CNU)
SEC=(LSQRT(DAES(1.000-ESO))*SNU)/(1.000+E*CNU)
IF (HYPER) GO TO 15
EC = DATAN2(SEC,CEC)
IF(EC.LT.0.000)EC = EC + TWOPi
C COMPUTE MEAN ANOMALY
MEAN = EC - E*SEC
GO TO 10
15 EC=LLCG(CEC+SEC)
MEAN=E*SEC-EC
16 CU=( X*COSN+Y*SINN)/R
SU=((Y*COSN-X*SINN)*COSI+Z*SINI)/R
U=DATAN2(SU,CU)
IF(U.LT.0.000)U=U+TWOPi
C COMPUTE ARGUMENT OF PERIGEE
P=L-XNU
IF(P.LT.0.000)P=P+TWOPi
SCALE=1.000
IF (IDRAD.LE.11 SCALE=1.000/RAD
DO 20 I=1,0
AE(I)=AE(INPH(I))

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

    IF(I.LE.2) GO TO 20          ELEM 112
    AEI(I)=AEINFM(I)*SCALE     ELEM 113
20 CONTINUE                   ELEM 114
    IF (ILRAD.LT.3) RETURN      ELEM 115
C COMPUTE PARTIALS OF KEPLER ELEMENTS W/D CARTESIAN ELEMENTS
    DO 40 I=1,3                ELEM 116
    PX=(4-I)/3                 ELEM 117
    PY=1-MOD(I,2)               ELEM 118
    I1=MOD(I,3)+4              ELEM 119
    I2=MOD(I,3)+1              ELEM 120
    AEIXYZ(1,I,1)=2.000*A**2/R**2*XYZXYZ(I)   ELEM 121
    AEIXYZ(1,I,2)=2.000*A**2*XYZXYZ(I+3)/GM   ELEM 122
    DO 40 J=1,2                ELEM 123
    DO 30 K=1,3                ELEM 124
    PHIP(K)=0.000               ELEM 125
    IF (I.EQ.K) GO TO 30       ELEM 126
    L=(4-J)+3-I-K             ELEM 127
    PHIP(K)=XYZXYZ(L)         ELEM 128
    IF (L.NE.I1.AND.L.NE.I2) PHIP(K)=-PHIP(K)   ELEM 129
30 CONTINUE                   ELEM 130
    PHP=(C1*PHIP(1)+C2*PHIP(2)+C3*PHIP(3))/H   ELEM 131
    PR=2-J                     ELEM 132
    PX=H*PX                    ELEM 133
    PY=H*PY                    ELEM 134
    PR=PR*XYZXYZ(1)/R         ELEM 135
    AEIXYZ(2,I,J)=(H*AINV/2.000*AEIXYZ(1,I,J)-PHP)*H*AINV/(E*GM) ELEM 136
    AEIXYZ(3,I,J)=(CCSI*PHP-PHIP(3))/HSI        ELEM 137
    AEIXYZ(4,I,J)=(SINI*(C3*AEIXYZ(3,I,J)+SINI*PHP)-PHIP(1))/C2 ELEM 138
    PUP=((X+SINN*Y*COSN)*ACTXYZ(4,I,J)-COSN*PX-SINN*PY+CU*PR)/(H*SU) ELEM 139
    PNUF=(c+(1.000-ESU)*(X*PR-R*AEIXYZ(1,I,J))-(R*(R-A+(1.000+ESU))+ ELEM 140
    * AEIXYZ(2,I,J))/(ESU*R**2*SNUI)           ELEM 141
    AEIXYZ(5,I,J)=PUP-PNUF                      ELEM 142
    PECP=(AINV*(PR-R*AINV*AEIXYZ(1,I,J))+CEC*AEIXYZ(2,I,J))/(E*SEC) ELEM 143
    AEIXYZ(6,I,J)=R*AINV*PECP-SEC*AEIXYZ(2,I,J)   ELEM 144
40 CONTINUE                   ELEM 145
    RETURN                      ELEM 146
    END                         ELEM 147
                                         ELEM 148

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

EPHEM
Page 1 of 9
October 1972

EPHEM

DESCRIPTION

EPHEM is a subroutine specifically designed to read an ephemeris tape prepared from a JPL planetary ephemeris tape but containing only those ephemerides used by GEODYN.

The ephemerides read by EPHEM are those of the Sun, the Moon, Venus, Mars, Jupiter, Saturn, and nutation in right ascension. Lunar and nutation data are provided on the tape at half day intervals. All other data are provided at 4 day intervals. Double buffers used by EPHEM provide GEODYN with 16 days of resident ephemeris data.

EPHEM interpolates the data to any desired time within the data span present on the data tape using a fifth order Everett scheme.

The data read and output by EPHEM is in true coordinates of date.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME EPHEM

PURPOSE

- 1) READ LUNAR, SOLAR & PLANETARY EPHEMERIDES AND NUTATION IN RIGHT ASCENSION
- 2) INTERPOLATE THE DATA USING FIFTH ORDER EVERETT SCHEME

CALLING SEQUENCE CALL EPHEM(DAY,ONLYEQ)

SYMBOL	TYPE	DESCRIPTION
DAY	DP	INPUT - TIME AT WHICH DATA IS DESIRED IN DAYS FROM JAN 0.0 OF THE REFERENCE YEAR FOR THE ARC
ONLYEQ	L	INPUT - TRUE REQUESTS ONLY NUTATION BE COMPUTED
SUBROUTINES USED	ERROR	TDIF YMDAY
COMMON BLOCKS	CEPHEM	INITBLK INTBLK
INPUT FILES	DATP	- EPHemeris DATA FILE
OUTPUT FILES	PRINTER	
REFERENCES	'GEODYN OPERATIONS DESCRIPTION' - APPENDIX C VOLUME 3 - GEODYN DOCUMENTATION	
	'GEODYN SUPPORT PROGRAMS' - EPHemeris TAPE GENERATOR VOLUME 4 - GEODYN DOCUMENTATION	

```

SUBROUTINE EPHEM(DAY,ONLYEQ) EPHE 34
IMPLICIT REAL*8 (A-H,O-Z) EPHE 35
LOGICAL NOT1ST,ONLYEQ EPHE 36
INTEGER DATP EPHE 37
REAL ANUT,BUF1N,BUF2N,SEC EPHE 38
DIMENSION BUF1M1(51),BUF1M2(51),BUF1M3(51),BUF2M1(51), EPHE 39
•   BUF2M2(51),BUF2M3(51),BUF1S(27),BUF2S(27),BUF1VM(54), EPHE 40
•   BUF2VM(54),BUF1JS(54),BUF2JS(54),BUF1N(51),BUF2N(51),IYMD(2), EPHE 41
•   IHM(2),SEC(2) EPHE 42
COMMON/CEPHEM/A0(25),PMOON(306),SUN(270),ANUT(102),DUMMY(16) EPHE 43
COMMON/INITBLK/IG1(51),NOT1ST,IC2(5) EPHE 44
COMMON/INTBLK/THDOT1(2),THDT2S,IG3(125),KBODY EPHE 45
EQUIVALENCE (BUF1M1(1),PMOON(1)),(BUF1M2(1),PMOON(32)), EPHE 46
•   (BUF1M3(1),PMOON(103)),(BUF2M1(1),PMOON(154)), EPHE 47
•   (BUF2M2(1),PMOON(205)),(BUF2M3(1),PMOON(256)), EPHE 48
•   (BUF1S(1),SUN(1)),(BUF1VM(1),SUN(28)), EPHE 49
•   (BUF1JS(1),SUN(32)),(BUF2S(1),SUN(136)), EPHE 50
•   (BUF2VM(1),SUN(163)),(BUF2JS(1),SUN(217)), EPHE 51
•   (BUF1N(1),ANUT(1)),(BUF2N(1),ANUT(52)), EPHE 52
•   (S,FSO) EPHE 53
DATA DATP/1/ EPHE 54
DATA DAYR/9999.000/ EPHE 55

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

F2(S)=S*(S+F2-1.0D0)/6.0D0	EPHE	56
,FA(S,F2)=F2*(S+4.0D0)*0.ED-01	EPHE	57
IF(NOTIST) GO TO 4	EPHE	58
C INITIALIZE	EPHE	59
NCTIST=.TRUE.	EPHE	60
NBODY=KBODY-1	EPHE	61
IBODY=KBODY*4	EPHE	62
FACTOR=1.0D0/62.302D0	EPHE	63
IF(CAYR.GT.5YSE.D0) GO TO 5	EPHE	64
SEC1=SEC(1)	EPHE	65
C IF NOT FIRST ENTRY THEN RECOMPUTE TIMES	EPHE	66
DAYR1=YMDAY(IYMD(1),IHM(1),SEC1)	EPHE	67
SEC1=SLC(2)	EPHE	68
DAYR2=YMDAY(IYMD(2),IHM(2),SEC1)	EPHE	69
IF (N.EQ.1) GO TO 2	EPHE	70
CAYC=CAYR1	EPHE	71
CAYR=CAYR2	EPHE	72
GO TO 3	EPHE	73
2 CAY0=CAYR2	EPHE	74
CAYR=CAYR1	EPHE	75
4 IF(CAYPRV.EQ.CAY) RETURN	EPHE	76
5 IF(CAY-CAYR) 10.60.50	EPHE	77
C IF DATA IN CORE LATER THAN REQUESTED TIME THEN REWIND TAPE AND READ	EPHE	78
C AGAIN	EPHE	79
10 REWIND DATP	EPHE	80
READ(DATP,END=200) IYMD(1),IHM(1),SEC(1),BUF1N,BUF1S	EPHE	81
READ(DATP,END=200) BUF1M1	EPHE	82
READ(DATP,END=200) BUF1M2	EPHE	83
READ(DATP,END=200) BUF1M3	EPHE	84
READ(DATP,END=200) BUF1VM	EPHE	85
READ(DATP,END=200) BUF1JS	EPHE	86
IF(IYMD(1).EQ.0) GO TO 200	EPHE	87
SEC1=SEC(1)	EPHE	88
CAYR1=YMDAY(IYMD(1),IHM(1),SEC1)	EPHE	89
READ(DATP,END=200) IYMD(2),IHM(2),SEC(2),BUF2N,BUF2S	EPHE	90
READ(DATP,END=200) BUF2M1	EPHE	91
READ(DATP,END=200) BUF2M2	EPHE	92
READ(DATP,END=200) BUF2M3	EPHE	93
READ(DATP,END=200) BUF2VM	EPHE	94
READ(DATP,END=200) BUF2JS	EPHE	95
IF(IYMD(2).EQ.0) GO TO 200	EPHE	96
SEC1=SEC(2)	EPHE	97
CAYR2=YMDAY(IYMD(2),IHM(2),SEC1)	EPHE	98
CAYR=CAYR1	EPHE	99
DAYC=CAYR2	EPHE	100
N=1	EPHE	101
20 IF(CAY-CAYR) 30.60.50	EPHE	102
C READ NEW RECORD	EPHE	103
30 READ(DATP,END=200) IYMD(1),IHM(1),SEC(1),BUF1N,BUF1S	EPHE	104
READ(DATP,END=200) BUF1M1	EPHE	105
READ(DATP,END=200) BUF1M2	EPHE	106
READ(DATP,END=200) BUF1M3	EPHE	107
READ(DATP,END=200) BUF1VM	EPHE	108
READ(DATP,END=200) BUF1JS	EPHE	109
IF(IYMD(1).EQ.0) GO TO 200	EPHE	110
N=2	EPHE	111

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

SEC1=SEC(1) EPHE 112
DAYR1=YMDAY(IYMD(1),IHM(1),SEC1) EPHE 113
DAYR=DAYO EPHE 114
DAYU=DAYR1 EPHE 115
GO TO 50 EPHE 116
C READ NEW RECORD EPHE 117
40 READ(CATP,END=200) IYMD(2),IHM(2),SEC(2),BUF2N,BUF2S EPHE 118
READ(CATP,END=200) BUF2M1 EPHE 119
READ(CATP,END=200) BUF2M2 EPHE 120
READ(CATP,END=200) BUF2M3 EPHE 121
READ(CATP,END=200) BUF2VM EPHE 122
READ(CATP,END=200) BUF2JS EPHE 123
K=1 EPHE 124
SEC1=SEC(2) EPHE 125
DAYR2=YMDAY(IYMD(2),IHM(2),SEC1) EPHE 126
DAYR=DAYO EPHE 127
DAYU=DAYR2 EPHE 128
50 IF(DAY.GT.DAYC+2,0D0) GO TO 30,401,N EPHE 129
C DATA FOUND AT CORRECT TIME - INTERPOLATE EPHE 130
60 DAYI=DAYO EPHE 131
K=NLC(N,2)+1 EPHE 132
IF(DAY.GE.DAY0) GO TO 70 EPHE 133
DAYI=DAYR EPHE 134
K=N EPHE 135
70 INDEX=IDINT((DAY-DAYI)*2.0D0) EPHE 136
DAYI=DAYI+0.5D0+DFLOAT(INDEX) EPHE 137
S=(DAY-DAYI)*2.0D0 EPHE 138
FOS=1.0D0-S EPHE 139
FS2=F2(S) EPHE 140
F2S=F2(FOS) EPHE 141
F4S=F4(FOS,F2S) EPHE 142
F5S=F4(S,FS2) EPHE 143
INDEX0=INDEX*3+(K-1)*51 EPHE 144
C ...NUTATION EPHE 145
A0(25)=ANUT(INDEX0+3)*F4S + ANUT(INDEX0+6)*F54 + EPHE 146
1 ANUT(INDEX0+2)*F2S + ANUT(INDEX0+5)*F52 + EPHE 147
2 ANUT(INDEX0+1)*F0S + ANUT(INDEX0+4)*F50 EPHE 148
A0(25)=A0(25)+TDIF(1,4,DAY)*THCT2S EPHE 149
DAYFRV=1.0D0+S0 EPHE 150
C IF ONLY NUTATION REQUESTED, RETURN EPHE 151
IF(NLYEQ) RETURN EPHE 152
INDEX5=(K-1)*1E3+INDEX*9 EPHE 153
INDEXc=INDEX5+S EPHE 154
C ...LUNAR EPHemeris EPHE 155
DO 90 I=1,3 EPHE 156
I3=1#3-3 EPHE 157
INDEX1=INDEX5+I3 EPHE 158
INDEX2=INDEX0+I3 EPHE 159
90 A0(1)=PMCON(INDEX1+3)*F4S + PMCON(INDEX2+3)*F54 + EPHE 160
1 PMCON(INDEX1+2)*F2S + PMCON(INDEX2+2)*F52 + EPHE 161
2 PMCON(INDEX1+1)*F0S + PMCON(INDEX2+1)*F50 EPHE 162
INDEX=IDINT((DAY-DAYI)*0.25D0) EPHE 163
DAYI=DAYI+4.0LCL+DFLOAT(INDEX) EPHE 164
S=(DAY-DAYI)*C.25D0 EPHE 165
FOS=1.0D0-S EPHE 166
FS2=F2(S) EPHE 167

```

```

F2S=F2(F0$)
.F4S=F4(F0$,F2$)
.F54=F4(S,F2$)
INDEX5=(K-1)*135+INDEX*9
INDEX6=INDEX5+S
C ***SUN & PLANETS (VENUS,MARS,JUPITER,SATURN)
DO 100 J=1,NJCCY
INDEX0=4*J
J27=J+27-27
INDEX3=INDEX0+J27
INDEX4=INDEX0+J27
DO 100 I=1+3
I3=I*3-3
INDEX1=INDEX3+I3
INDEX2=INDEX4+I3
100 AO(INDEX0+1)=SUN(INDEX1+3)*F4$ + SUN(INDEX2+3)*F54 +
    • SUN(INDEX1+2)*F2$ + SUN(INDEX2+2)*F52 +
    • SUN(INDEX1+1)*F0$ + SUN(INDEX2+1)*F50
C CONVERT SUN TO GEOCENTRIC
AO(5)=AO(5)+FACTOR*AO(1)
AO(6)=AO(6)+FACTOR*AO(2)
AO(7)=AO(7)+FACTOR*AO(3)
IF(NJCDY.LT.2) GO TO 110
C CONVERT PLANET TO GEOCENTRIC
DO 105 I=2,NJCCY
I1=I*4
AO(I1+1)=AO(I1+1)+AO(5)
AO(I1+2)=AO(I1+2)+AO(6)
105 AO(I1+3)=AO(I1+3)+AO(7)
110 DO 120 I=1,IBJCCY,4
L=I+3
AO(L)=AO(I)+AC(I)+AO(I+1)*AO(I+1)+AC(I+2)*AO(I+2)
AO(L)=D$ORT(AC(L))
L1=L-1
DO 120 J=1,L1
120 AO(J)=AO(J)/AO(L)
DAYFRV=DAY
RETURN
C NO DATA AVAILABLE THIS LATE
200 WRITE(6,1000) IYMD(K),IMH(K),SEC(K)
    CALL ERROR(7,CAY)
C NO DATA AVAILABLE THIS EARLY
300 WRITE(6,2000) IYMD(N),IMH(N),SEC(N)
    CALL ERROR(7,CAY)
1000 FORMAT('1PROGRAM TERMINATED'//'0INSUFFICIENT EPHemeris DATA'/
1      '0LAST DATA POINT',I8,I6,F8.5/)
2000 FORMAT('1PROGRAM TERMINATED'//'0INSUFFICIENT EPHemeris DATA'/
1      '0FIRST DATA POINT',I8,I6,F8.5/)
STOP
END

```

EPHEM 168
EPHEM 169
EPHEM 170
EPHEM 171
EPHEM 172
EPHEM 173
EPHEM 174
EPHEM 175
EPHEM 176
EPHEM 177
EPHEM 178
EPHEM 179
EPHEM 180
EPHEM 181
EPHEM 182
EPHEM 183
EPHEM 184
EPHEM 185
EPHEM 186
EPHEM 187
EPHEM 188
EPHEM 189
EPHEM 190
EPHEM 191
EPHEM 192
EPHEM 193
EPHEM 194
EPHEM 195
EPHEM 196
EPHEM 197
EPHEM 198
EPHEM 199
EPHEM 200
EPHEM 201
EPHEM 202
EPHEM 203
EPHEM 204
EPHEM 205
EPHEM 206
EPHEM 207
EPHEM 208
EPHEM 209
EPHEM 210
EPHEM 211
EPHEM 212
EPHEM 213
EPHEM 214
EPHEM 215
EPHEM 216
EPHEM 217

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR!

EQN

DESCRIPTION

EQN is a real function whose value is the equation of the equinoxes (nutation in right ascension). EQN also returns the nutation in longitude, the nutation in obliquity, and the true obliquity of date.

Multiple angle formulae have been used to reduce the massive number of trigonometric evaluations in Woolard's solution.

NAME	EQN		
PURPOSE	COMPUTES NUTATION IN LONGITUDE, NUTATION IN OBLIQUITY, TRUE OBLIQUITY OF DATE, AND NUTATION IN RIGHT ASCENSION (EQUATION OF THE EQUINOX)		
CALLING SEQUENCE	EQN(DJ,DPSI,DE,E)		
SYMBOL	TYPE	DESCRIPTION	
DJ	DP	INPUT - JULIAN DATE	
DPSI	DP	OUTPUT - NUTATION IN LONGITUDE - RADIANS	
DE	DP	OUTPUT - NUTATION IN OBLIQUITY - RADIANS	
E	DP	OUTPUT - TRUE OBLIQUITY - RADIANS	
EQN	DP	OUTPUT - NUTATION IN RIGHT ASCENSION - RADIANS (EQUATION OF THE EQUINOX)	
SUBROUTINES USED	NONE		
COMMON BLOCKS	NONE		
INPUT FILES	NONE		
CUTPUT FILES	NONE		
RESTRICTIONS	ALL PERIODIC TERMS IN WOOLARD'S THEORY WITH COEFFICIENTS LESS THAN .001 SECONDS OF ARC HAVE BEEN NEGLECTED. ALL SECULAR PORTIONS OF THE COEFFICIENTS HAVE BEEN NEGLECTED WHENEVER THE SECULAR COEFFICIENTS ARE LESS THAN .001 SECONDS OF ARC.		
REFERENCES	THE FORMULATION BY EDGAR W. WOOLARD MAY BE FOUND IN 4 PUBLICATIONS - <ul style="list-style-type: none">1. ASTRONOMICAL PAPERS PREPARED FOR THE USE OF AMERICAN EPHEMERIS AND NAUTICAL ALMANAC - VOLUME 15, PART 1, PAGE 153 (THEORY OF THE ROTATION OF THE EARTH AROUND ITS CENTER OF MASS - BY EDGAR W. WOOLARD)2. EXPLANATORY SUPPLEMENT TO THE ASTRONOMICAL EPHEMERIS AND THE AMERICAN EPHEMERIS AND NAUTICAL ALMANAC - PAGES 44 AND 453. IMPROVED LUNAR EPHEMERIS 1952-1959 - A JOINT SUPPLEMENT TO THE AMERICAN EPHEMERIS AND THE (BRITISH) NAUTICAL ALMANAC - PAGES IX AND X4. ASTRONOMICAL JOURNAL, 1953 FEBRUARY, VOL. 58, NO. 1, PAGES 1-3 (A REDEVELOPMENT OF THE		

THEORY OF NUTATION - BY EDGAR W. KOLLARD

"GEODYN SYSTEMS DESCRIPTION" - SEC. 2.3.6 & 2.3.6.2
VOLUME 1 - GEODYN DOCUMENTATION

"EXPLANATORY SUPPLEMENT TO THE AMERICAN EPHemeris &
NAUTICAL ALMANAC", PP. 44-45, 93

FUNCTION EUN(D,DPSI,DE,E)	EQN	67
DOUBLE PRECISION DJ,D,C0,C1,DPSI,DE,E	EQN	68
CIMENSION SCF(34),S(34),CCF(19),C(19),FARG(5),C0(5),C1(5),C2(5),	EQN	69
C3(5)	EQN	70
1 DATA C0/+5.15E00345745D0, +6.25E23530497D0,	EQN	71
1 +0.1963E5054867D0, +6.121523942807D0,	EQN	72
2 +4.523601E14852D0/	EQN	73
DATA C1/+0.22E027134939576D0,+0.0172015976646D0,	EQN	74
1 +0.230395723235372D0,+0.21276371167514D0,	EQN	75
2 -0.000924220294225D0/	EQN	76
DATA C2/+0.12C25169E-12,-0.00196240E-12,-0.04200996E-12	EQN	77
1 -0.01878219E-12,+0.02718291E-12/	EQN	78
DATA C3/+5.153E76E-21,-1.193948E-21,-0.119395E-21,	EQN	79
1 +0.676571E-21,+0.738965E-21/	EQN	80
C DEFINE CONSTANTS (COEFFICIENTS OF SINE AND COSINE TERMS	EQN	81
DATA SCF/0.,-1.2729,+0.2033,-0.2037,+0.1261,+0.0675,	EQN	82
1 -0.0497,-0.0342,-0.0261,+0.0214,-0.0149,	EQN	83
2 +0.0124,+0.0114,+0.0060,+0.0056,-0.0057,	EQN	84
3 -0.0032,+0.0045,+0.0045,-0.0044,-0.0032,	EQN	85
4 +0.0028,+0.0026,-0.0026,+0.0025,-0.0021,	EQN	86
5 +0.0019,+0.0016,-0.0015,-0.0015,+0.0014,	EQN	87
6 -0.0013,-0.0010,+0.0010/	EQN	88
DATA CCF/+9.2100,+0.5522,-0.09C4,+0.0E84,+0.0216,	EQN	89
1 +0.0123,+0.0113,-0.0093,-0.0066,-0.0050,	EQN	90
2 -0.0031,+0.0030,-0.0024,+0.0023,+0.0022,	EQN	91
3 +0.0014,-0.0011,+0.0011,-0.0010/	EQN	92
REAL#8 DMOD,ARGMOD,DTWOP1	EQN	93
DATA DTWOP1/3.2331853071795E600/	EQN	94
C COMPUTE D = NUMBER OF DAYS ELAPSED FROM 1900 JANUARY 0.5 DAYS	EQN	95
C EPHemeris TIME	EQN	96
D=DJ-2415020.EC	EQN	97
C2=C*D	EQN	98
D3=C*D2	EQN	99
C COMPUTE FUNDAMENTAL ARGUMENTS AND REDUCE BY MODULUS 2 PI	EQN	100
C FARG(1) = MEAN ANOMALY - MOON	EQN	101
C FARG(2) = MEAN ANOMALY - SUN	EQN	102
C FARG(3) = MEAN ARGUMENT OF LATITUDE - MC0N	EQN	103
C FARG(4) = MEAN ELONGATION OF MOON FROM SUN	EQN	104
C FARG(5) = LONGITUDE OF MEAN ASCENDING NODE - MC0N	EQN	105
DO 1 N=1,5	EQN	106
ARGMOC=C0(N)+C1(N)*C+D0LE(C2(N)*D2)+D0LE(C3(N)*D3)	EQN	107
1 FARG(N)=DMUL(ARGMOC,DTWOP1)	EQN	108
C COMPUTE SINES AND COSINES OF FUNDAMENTAL ARGUMENTS AND THE	EQN	109
C COMBINATION OF THE FUNDAMENTAL ARGUMENTS	EQN	110
S(1) = SIN(FARG(5))	EQN	111

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

C(1) = COS(FAHC(5))
S(3) = 2.0*S(1)*C(1)
C(3) = C(1)**2-S(1)**2
SF = SIN(FAHC(3))
CF = COS(FAHC(3))
S(25) = 2.0*SF*CF
C2F = CF**2-SF**2
SU = SIN(FAHC(4))
CD = COS(FAHC(4))
S(14) = 2.0*SU*CD
C2D = CD**2-SD**2
S(4) = S(25)*C(3)+C2F *S(3)
C(4) = C2F *C(3)-S(25)*S(3)
AL = S(4)*C2D
AL1 = C(4)*S(14)
AL2 = S(4)*S(14)
AL3 = C(4)*C2D
S(2) = AL -AL1
C(2) = AL3+AL2
S(21) = AL +AL1
C(1c) = AL3-AL2
S(5) = SIN(FAHC(2))
CL1 = COS(FAHC(2))
S(2c) = 2.0*S(5)*CL1
C2L1 = CL1**2-S(5)**2
S(6) = SIN(FAHC(1))
CL = COS(FAHC(1))
S(22) = 2.0*S(6)*CL
C2L = CL**2-S(6)**2
S(8) = S(25)*C(1)+C2F *S(1)
C(6) = C2F **C(1)-S(25)*S(1)
BE = S(2)*CL1
BE1 = C(2)*S(5)
BE2 = S(2)*S(5)
BE3 = C(2)*CL1
S(7) = BE +BE1
C(5) = BE3-BE2
S(10) = BE -BE1
C(8) = BE3+BE2
GA = S(4)*CL
GA1 = C(4)*S(6)
GA2 = S(4)*S(6)
GA3 = C(4)*CL
S(9) = GA +GA1
C(7) = GA3-GA2
S(12) = GA -GA1
C(10) = GA3+GA2
S(11) = S(6)*C2E-CL *S(14)
CT = CL *C2D+S(6)*S(14)
S(12) = S(6)*C2L-C(6)*S(14)
C(9) = C(6)*C2D+S(8)*S(14)
DE = S(1)*CL
DE1 = C(1)*S(6)
DE2 = S(1)*S(6)
CE3 = C(1)*CL
S(15) = DE +DE1

```

EQN 112
 EQN 113
 EQN 114
 EQN 115
 EQN 116
 EQN 117
 EQN 118
 EQN 119
 EQN 120
 EQN 121
 EQN 122
 EQN 123
 EQN 124
 EQN 125
 EQN 126
 EQN 127
 EQN 128
 EQN 129
 EQN 130
 EQN 131
 EQN 132
 EQN 133
 EQN 134
 EQN 135
 EQN 136
 EQN 137
 EQN 138
 EQN 139
 EQN 140
 EQN 141
 EQN 142
 EQN 143
 EQN 144
 EQN 145
 EQN 146
 EQN 147
 EQN 148
 EQN 149
 EQN 150
 EQN 151
 EQN 152
 EQN 153
 EQN 154
 EQN 155
 EQN 156
 EQN 157
 EQN 158
 EQN 159
 EQN 160
 EQN 161
 EQN 162
 EQN 163
 EQN 164
 EQN 165
 EQN 166
 EQN 167

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

C(11)= DE3-DE2          EON 168
S(1)= DE -De1          EON 169
C(12)= DE3+CL2          EON 170
S(17)= S(21)*CL -C(16)*S(6)      EON 171
C(16)= C(15)*CL +S(21)*S(6)      EON 172
S(12)= S(8) *C2L-C(6) *S(22)      EON 173
C(13)= C(6) *C2L+S(8) *S(22)      EON 174
S(19)= S(22)*C2D-C2L *S(14)      EON 175
EP = S(8)*CL          EON 176
EP1 = C(6)*S(6)          EON 177
EP2 = S(3)*S(6)          EON 178
EP3 = C(6)*CL          EON 179
S(20)= EP +EP1          EON 180
C(14)= EP3-EP2          EON 181
S(21)= EP -EP1          EON 182
C(19)=EP3+EP2          EON 183
S(23)= S(2)*CL +C(2)*S(6)      EON 184
C(17)= C(2)*CL -S(2)*S(6)      EON 185
S(24)= S(4)*C2L +C(4)*S(22)      EON 186
C(16)= C(4)*C2L -S(4)*S(22)      EON 187
S(2c)= S(25)*C2D -S(14)*C2F      EON 188
S(25)= S(2) *C2L1+C(2) *S(28)      EON 189
ZE = S(1)*CL1          EON 190
ZE1 = C(1)*S(6)          EON 191
S(33)= ZE-ZE1          EON 192
S(30)= ZE+ZE1          EON 193
AMU = S(1)*CT          EON 194
AMUI = C(1)*S(11)      EON 195
S(31)= AMU-AMU1      EON 196
S(32)= AMU+AMU1      EON 197
S(34)= S(22)*C2F-C2L*S(25)      EON 198
C DEFINE VARIABLE COEFFICIENT OF SINE TERM      EON 199
SCF(1)= -17.2227 - .4755646EE-6*D      EON 200
C COMPUTE NUTATION IN LONGITUDE BY SUMMING PRODUCTS OF SINE      EON 201
C COEFFICIENTS WITH THEIR RESPECTIVE SINE TERMS      EON 202
C COMPUTE NUTATION IN DECLINITY BY SUMMING PRODUCTS OF COSINE      EON 203
C COEFFICIENTS WITH THEIR RESPECTIVE COSINE TERMS      EON 204
    DPSI=0          EON 205
    DE =0          EON 206
    DO 3 N=1,19          EON 207
    DPSI=DPSI+SCF(N)*S(N)      EON 208
3 DE =DE +CCF(N)*C(N)      EON 209
    DO 4 N=20,34          EON 210
4 DPSI=DPSI+SCF(N)*S(N)      EON 211
C CONVERT FROM SECONDS OF ARC TO RADIANS      EON 212
    DPSI=DPSI*.48481368D-05      EON 213
    DE=DE*.48481368D-05      EON 214
C COMPUTE TRUE DECLINITY OF DATE IN RADIANS      EON 215
    E=0.4093197E0C-6.217959D-9*D-.021441D-15*D2+.100037D-21*D3+DE      EON 216
C COMPUTE NUTATION IN RIGHT ASCENSION (EQUATION OF THE EQUINOXES)      EON 217
C IN RADIANS      EON 218
    EON=DPSI*DCCS(E)      EON 219
    RETURN          EON 220
    END          EON 221

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

EQUATR

DESCRIPTION

Subroutine EQUATR rotates a vector from mean or true equator and equinox of one epoch to mean or true equator and equinox of another epoch.

This routine invokes subroutine PRECES and NUTATE to generate the requisite rotation matrices. Note that the precession matrix is to precess to the given epoch from the mean equator and equinox of 1950.0; the nutation matrix rotates the vector from mean to true equator and equinox of date. Hence, the last two of the possible four rotation matrices generated must be inverted.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME	EQUATR		
PURPOSE	TO ROTATE VECTOR FROM MEAN OR TRUE EQUATOR AND EQUINOX OF ONE EPOCH TO MEAN OR TRUE EQUATOR AND EQUINOX OF ANOTHER EPOCH		
CALLING SEQUENCE	CALL EQUATR(X,DIN,TIN,Y,DOUT,TOUT)		
SYMBOL	TYPE	DESCRIPTION	
X	DP	INPUT - INPUT VECTOR (3)	
DIN	DP	INPUT - DAYS FROM JAN 0.0 OF REFERENCE YEAR FOR INPUT VECTOR	
TIN	L	INPUT - TYPES OF INPUT : •TRUE. = TRUE COORDINATE SYSTEM •FALSE. = MEAN COORDINATE SYSTEM	
Y	DP	CUTPUT - OUTPUT VECTOR (3)	
DOUT	DP	CUTPUT - DAYS FROM JAN 0.0 OF REFERENCE YEAR FOR OUTPUT VECTOR	
TOUT	L	CUTPUT - TYPES OF OUTPUT : •TRUE. = TRUE COORDINATE SYSTEM •FALSE. = MEAN COORDINATE SYSTEM	
SUBROUTINES USED	NUTATE	PRECES	
COMMON BLOCKS	NONE		
INPUT FILES	NONE		
OUTPUT FILES	NONE		
REFERENCES	'GEOCYN SYSTEMS DESCRIPTION' VOLUME 1 - GEOCYN DOCUMENTATION		

SUBROUTINE EQUATR(X,DIN,TIN,Y,DOUT,TOUT)	EQUA	45
REAL*8 X(3),Y(3),NP(3,3,4),T(3),DIN,DOUT,TEMP	EQUA	46
LOGICAL TIN,TOUT	EQUA	47
K=2	EQUA	48
IF(.NOT.TIN) GO TO 10	EQUA	49
M=1	EQUA	50
C OBTAIN MATRIX TO NUTATE FROM TRUE TO MEAN OF INPUT EPOCH	EQUA	51
CALL NUTATE(DIN,NP(1,1,1))	EQUA	52
C OBTAIN MATRIX TO PRECES FROM INPUT EPOCH TO 1950	EQUA	53
10 CALL PRECES(DIN,NP(1,1,2))	EQUA	54
C OBTAIN MATRIX TO PRECES FROM OUTPUT EPOCH TO 1950	EQUA	55

```
      CALL PRECES(DULT,NP(1,1,3))          EQUA 56
      N=3                                     EQUA 57
      IF(.NCT.TOUT) GO TO 20                 EQUA 58
      N=4                                     EQUA 59
C OBTAIN MATRIX TO NUTATE FROM TRUE TO MEAN OF OUTPUT EPOCH   EQUA 60
      CALL NUTATE(DULT,NP(1,1,4))           EQUA 61
C TRANPOSE OUTPUT EPOCH PRECESSION AND NUTATION MATRICES     EQUA 62
 20   DO 30 I=1,3                         EQUA 63
      Y(I)=X(I)                           EQUA 64
      DO 30 J=1,3                         EQUA 65
      DO 20 K=3,N                         EQUA 66
      TEMP=NP(I,J,K)
      NP(I,J,K)=NP(J,I,K)                EQUA 67
 30   NP(J,I,K)=TEMP                  EQUA 68
C ROTATE INPUT VECTOR TO OBTAIN OUTPUT VECTOR                 EQUA 69
      DO 60 K=N,1                         EQUA 70
      DO 60 I=1,3                         EQUA 71
      T(I)=Y(I)                           EQUA 72
 50   Y(I)=0.00                          EQUA 73
      DO 60 I=1,3                         EQUA 74
      DO 60 J=1,3                         EQUA 75
 60   Y(I)=Y(I)+NP(I,J,K)*T(J)        EQUA 76
      RETURN                               EQUA 77
      END                                  EQUA 78
```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME	ERROR	
PURPOSE	TO PRINT GEODYN ERROR MESSAGES AND PROVIDE ERROR TERMINATION	
CALLING SEQUENCE	CALL ERROR(NUMBER,A)	
SYMBOL	TYPE	DESCRIPTION
NUMBER	I	ERROR TYPE CODE NUMBER AS FOLLOWS: NUMBER ERROR TYPE
	1	INVALID INPUT ORBITAL ELEMENTS
	2	INVALID ADJUSTED ORBITAL ELEMENTS
	3	INVALID OPTION CARD IN INPUT
	4	NO TRACKING DATA FOUND IN DATA PERIOD
	E	FEWER THAN E WEIGHTED OBSERVATIONS LEFT
	E	NO DATA CARD TERMINATING INPUT CARDS
	7	OTHER ERRORS - NO EXPLANATION PRINTED
	E	DUPLICATE STATION IN TRACKING COMPLEMENT
	S	REQUEST FOR ADJUSTMENT OF A STATION WHICH IS NOT IN THE TRACKING COMPLEMENT
	1C	PRINT GEODYN SIGNATURE
	11	I/O ERROR IN D.A. READ
	12	GEOPOTENTIAL COEFFICIENTS OUT OF RANGE
	13 & 14	ILLEGAL SURF CARD
	15	INSUFFICIENT DENSITIES ADJUSTED RELATIVE TO THE NUMBER OF CONSTRAINTS
A	DP	NAME OF INVALID OPTION CARD IN A6 FORMAT OR THE STATION NUMBER IN ERROR. NOTE THAT WHEN THIS VARIABLE IS USED AS A STATION NUMBER IT MUST BE AN INTEGER IN THE CALLING PROGRAM AND MUST START IN AN EVEN CORE LOCATION
SUBROUTINES USED	NCNE	
COMMON BLOCKS	FERNSG	INTBLK
INPUT FILES	NONE	
OUTPUT FILES	PRINTER	
	REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR	

SUBROUTINE ERROR(NUMBER,A)	ERRO 60
REAL*8 DEGREE(2)/6HDEGREE,5HORDER/,A	ERRC 61
EQUIVALENCE (ISTA,E)	ERRO 62
COMMON/ERMSG/IMES(26)	ERRC 63
COMMON/INTBLK/LUM(112),STEPSP,DUM2(19)	ERRO 64
LOGICAL STEPSW	ERRO 65
E=A	ERRO 66
C SELECT AND PRINT ERROR MESSAGE	ERRO 67
GO TO (10,20,30,40,50,60,100,80,90,110,120,130,140,140,150,160),	ERRO 68
NUMBER	ERRC 69
C FATAL ERRORS - TERMINATE PROGRAM	ERRO 70
10 WRITE(6,500)	ERRO 71
GO TO 100	ERRO 72
20 WRITE(6,510)	ERRO 73
IF(.NOT.STEPSW) WRITE(6,511)	ERRU 74
IF(STEPSW) WRITE(6,512)	ERRO 75
WRITE(6,513)	ERRO 76
GO TO 100	ERRO 77
30 WRITE(6,560) A	ERRO 78
GO TO 100	ERRO 79
40 WRITE(6,570)	ERRO 80
GO TO 100	ERRO 81
50 WRITE(6,580)	ERRC 82
GO TO 100	ERRO 83
60 WRITE(6,590)	ERRO 84
GO TO 100	ERRO 85
90 WRITE(6,610) ISTA	ERRO 86
100 WRITE(6,99999)	ERRO 87
STCF 9,999	ERRO 88
C NON-FATAL ERRORS - RETURN	ERRO 89
80 WRITE(6,600) ISTA	ERRC 90
110 WRITE(6,99999)	ERRO 91
RETURN	ERRO 92
C FATAL ERRORS - TERMINATE PROGRAM	ERRO 93
120 WRITE(6,620) ISTA,IMES	ERRO 94
GO TO 100	ERRO 95
130 J=NLMER-11	ERRO 96
WRITE(6,630) DEGREE(J)	ERRO 97
GO TO 100	ERRO 98
140 WRITE(6,640) A	ERRO 99
GO TO 100	ERRO 100
150 WRITE(6,650)	ERRO 101
GO TO 100	ERRO 102
160 WRITE(6,660)	ERRO 103
GO TO 100	ERRO 104
500 FORMAT(1H1,20X,'PROGRAM TERMINATION DUE TO ILLEGAL INPUT'/	ERRO 105
1H0,15X,'EXPLANATION: INPUT CARTESIAN EPOCH ELEMENTS ',	ERRC 106
2 1H0,15X,'EXPLANATION: INPUT CARTESIAN EPOCH ELEMENTS WITH AN ECCENTRICITY',	ERRO 107
3 1H0,15X,'EXPLANATION: INPUT CARTESIAN EPOCH ELEMENTS WITH AN ECCENTRICITY',	ERRC 108
4 1H0,15X,'EXPLANATION: INPUT CARTESIAN EPOCH ELEMENTS WITH AN ECCENTRICITY',	ERRO 109
5 1H0,15X,'EXPLANATION: INPUT CARTESIAN EPOCH ELEMENTS WITH AN ECCENTRICITY',	ERRC 110
510 FORMAT(1H1,20X,'PROGRAM TERMINATION DUE TO INAPPROPRIATE INPUT',/	ERRO 111
1H0,15X,'EXPLANATION: ADJUSTED CARTESIAN EPOCH ELEMENTS ',	ERRC 112

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

2	EQUIVALENT TO KEPLERIAN ELEMENTS WITH ECCENTRICITY	ERRC 112
3	IH .20X, 'GREATER THAN 1.'//1H0,15X, 'PROBABLE CAUSES:')	ERRC 113
511	FORMAT(IH .20X,'1) POOR FIRST ITERATION ORBIT DUE TO POOR',	ERRC 114
1	' STARTING ELEMENTS OR A STEP SIZE TOO LARGE FOR THE',	EPRC 115
2	IH .22X, 'NUMERICAL ORBIT INTEGRATION IN THE FIXED STEP ',	ERRC 116
3	'MODE.')	ERRC 117
512	FORMAT(IH .20X,'1) POOR FIRST ITERATION ORBIT DUE TO POOR',	ERRC 118
1	'STARTING ELEMENTS OR INAPPROPRIATE ERROR BOUNDS.')	EPRC 119
513	FORMAT(IH .20X,'2) THE EXISTENCE OF WILD DATA POINTS WHICH WERE',	ERRC 120
1	' NOT EDITED FROM THE SOLUTION.')	EPRC 121
560	FORMAT(IH1,20X,'PROGRAM TERMINATION DUE TO ILLEGAL INPUT')	ERRC 122
1	IHO,15X,'EXPLANATION: THE CARD ',A6,', IN THE OPTION CARD ',	EPRC 123
2	'GROUP IS ILLEGAL. PLEASE CHECK INPUT FOR KEYPUNCH ')	ERRC 124
3	IH .20X, 'ERRORS OR MISSING OR MISPLACED CARDS.')	ERRC 125
570	FORMAT(IH1,20X,'PROGRAM TERMINATION DUE TO INSUFFICIENT ',	EPRC 126
1	'OBSERVATIONS')//IHO,15X, 'EXPLANATION: THE SETUP AND ',	ERRC 127
2	'OPERATION OF THIS RUN WERE SUCH THAT NO OBSERVATIONS ',	ERRC 128
3	'WERE ',/IH .20X, 'AVAILABLE IN THE TIME PERIOD SPECIFIED ',	ERRC 129
4	'FOR THE SATELLITE REQUESTED. PLEASE CHECK YOUR SETUP ')	EPRC 130
5	IH .20X, 'DECK OR TAPE ASSIGNMENTS.')	ERRC 131
580	FORMAT(IH1,20X,'PROGRAM TERMINATION DUE TO INSUFFICIENT WEIGHTED',	EPRC 132
1	' OBSERVATIONS.')	EFRO 133
2	IHO,15X,'EXPLANATION: INPUT ELEMENTS AND EDITING ',	ERRC 134
3	'CRITERIA WERE SUCH THAT FEWER THAN 8 OBSERVATIONS WERE ',	ERRC 135
4	IH .20X, 'LEFT IN THE SOLUTION.')	ERRC 136
590	FORMAT(IH1,20X,'PROGRAM TERMINATION DUE TO MISSING DATA CARD')	ERRC 137
1	IHO,15X,'EXPLANATION: PROGRAM ENCOUNTERED END OF FILE ON ',	ERRC 138
2	'DATAS BEFORE READING DATA CARD TERMINATING LAST ARC.')	ERRC 139
3	IHO,15X,'PLEASE CHECK INPUT DECK FOR MISSING OR MISPLACED ',	ERRC 140
4	'DATA CARD OR MISPLACED END OF FILE')	ERRC 141
600	FORMAT(IH1,20X,'ILLEGAL STATION POSITION INPUT')//IHO,15X,	ERRC 142
1	'EXPLANATION: MORE THAN ONE STATION POSITION CARD WAS INPUT ',	ERRC 143
2	'FOR STATION ',I5,1H./ IHO,15X, 'PROGRAM ACTION: THE DUPLICATE ',	ERRC 144
3	'OF THIS STATION HAS BEEN REMOVED FROM THE TRACKING COMPLEMENT',	ERRC 145
4	', ',/21X, 'THE FIRST STATION ENCOUNTERED WITH THIS NUMBER WAS ',	ERRC 146
5	'USED.',/IHO,15X, 'PROGRAM EXECUTION WILL BE CONTINUED.')	ERRC 147
610	FORMAT(IH1,20X,'PROGRAM TERMINATION DUE TO INSUFFICIENT ',	ERRC 148
1	'A PRIORI INFORMATION.')//IHO,15X, 'EXPLANATION: THE ADJUSTMENT',	EPRC 149
2	' OF STATION ',I5, ' HAS BEEN REQUESTED.',/16X, 'BUT NO A PRIORI',	EPRC 150
3	' POSITION IS AVAILABLE FOR THIS STATION.')	ERRC 151
620	FORMAT(IH1,20X,'EXECUTION TERMINATING DUE READ ERROR ON RANDOM',	ERRC 152
1	' ACCESS FILE ',I3/IHO,15X, 'ERROR BUFFER IS //15X,Z3,I6,20A4/	ERRC 153
2	I6X,A(1X,ZE)//	ERRC 154
630	FORMAT(IH1,20X,'EXECUTION TERMINATING DUE TO INPUT ERROR')	EPRC 155
*	IHO,15X,'EXPLANATION: THE SETUP OF THIS RUN IS SUCH THAT THE ',	ERRC 156
*	'ESTIMATION OF ',/20X, 'GEOPOTENTIAL COEFFICIENTS OF ',A7,	ERRC 157
*	'GREATER THAN USED IN THE ',/20X, 'GEOPOTENTIAL EXPANSION HAS ',	EPRC 158
*	'BEEN REQUESTED.')	ERRC 159
640	FORMAT (IH1,20X,'PROGRAM TERMINATION DUE TO ILLEGAL INPUT')	ERRC 160
*	IHO,15X,'EXPLANATION: THE CARD ',A6,', IN THE OPTION CARD ',	ERRC 161
*	'GROUP IS MISSING A CONTINUATION.',/IH .20X, 'PLEASE CHECK ',	EPRC 162
*	'INPUT FOR MISSING OR MISPLACED CARDS.')	EPRC 163
650	FORMAT (IH1,20X,'PROGRAM TERMINATION DUE TO ILLEGAL INPUT')	ERRC 164
*	IHO,15X,'EXPLANATION: AN ILLEGAL SURFACE DENSITY INCREMENT ',	ERRC 165
*	'SIZE WAS SPECIFIED.',/IH .20X, 'PLEASE CHECK INPUT FOR ',	ERRC 166
*	'KEYPUNCH ERRORS.')	ERRC 167

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

660 FORMAT(1H1,20X,'EXECUTION TERMINATING DUE TO INAPPROPRIATE INPUT      ERRC 169
      .  THO,15X,'EXPLANATION: THE SETUP OF THIS DECK IS SUCH THAT ',      ERRC 169
      .  'THE NUMBER OF SURFACE'//21X,'DENSITY CONSTRAINT EQUATIONS ',      ERRC 170
      .  'IS GREATER THAN OR EQUAL TO'//21X,      ERRC 171
      .  'THE NUMBER OF ADJUSTED SURFACE DENSITIES.'//)      ERRC 172
99999 FORMAT(52X,2H***/51X,5(1H*)/50X,2H***,2X,2H***/50X,2H**,2X,2H***,      ERRC 173
      .  3X,2H***/50X,2H**,2X,2H***,2X,2H***/50X,2H**,1X,2H***,2X,3H***,      ERRC 174
      .  21X,3H***/50X,4H****,1X,5(1H*),31X,3H****/51X,6(1H*),1X,2H***/30X,      ERRC 175
      .  2H***/51X,3H***,4X,2H***,30X,2H***/50X,2H**,5X,2H***,29X,2H***/      ERRC 176
      .  49X,2H***,7X,2H***,29X,2H***/48X,2H***,3X,2H***,28X,2H***/47X,2H***,      ERRC 177
      .  9X,2H***,2X,4H***,5X,4H***,7X,2H***,1X,3H***,3X,4H***,4X,      ERRC 178
      .  3H***,2X,3H***,2X,4H***/46X,2H**,10X,1H*,2X,6(1H*),4X,2H**,      ERRC 179
      .  1X,3H***,5X,2H**,1X,4H***,4X,4H***,4X,2H**,3X,3H***,1X,      ERRC 180
      .  6(1H*),41X,2H***,1X,2H**,10X,2H**,1X,3H***,3X,1H*,3X,2H***,3X,      ERRC 181
      .  2H**,4X,2H***,3X,3H***,5X,2H**,4X,2H**,5X,4H***,3X,2H***/      ERRC 182
      .  42X,4(1H*),10X,2H**,3X,4H***,4X,2H**,4X,2H**,3X,2H**,4X,2H***,      ERRC 183
      .  0X,2H**,3X,2H**,6X,2H**,5X,2H***/43X,4H***,8X,2H**,3X,2H**,6X,      ERRC 184
      .  2H**,5X,2H**,2X,2H**,5X,2H**,5X,2H**,4X,2H**,5X,2H**,5X,2H***/      ERRC 185
      .  43X,5H***,5X,2H**,3X,3H***,6X,2H**,4X,2H**,3X,2H**,4X,      ERRC 186
      .  3H***,4X,2H**,4X,3H***,5X,2H***/42X,2H**,2X,9(1H*),5X,      ERRC 187
      .  6(1H*),2X,2H**,3X,2H**,4X,2H**,3X,5(1H*),3X,2H**,3X,3H***,5X,      ERRC 188
      .  2H**,5X,2H***/41X,3H***,4X,6(1H*),7X,4H***,4X,5(1H*),6X,6(1H*),      ERRC 189
      .  1X,2H**,4X,4H***,1X,2H**,4X,3H***,4X,4(1H*)/97X,2H***/97X,      ERRC 190
      .  2H***/41X,57(1H*)      ERRC 191
      .  END      ERRC 192

```

ESTIM

DESCRIPTION

ESTIM is the Bayesian least squares numerical parameter estimation subroutine designed specifically for the GEODYN system.

ESTIM has four types of calls, each performing a specific task. The tasks performed on each of the ESTIM calls are the following:

- 1) Initialization.
- 2) Formation of the estimation matrices.
- 3) Estimation of single arc parameters and, on the last inner iteration, computation of effects of single arc parameters on adjusted geodetic parameters.
- 4) Estimation of geopotential parameters.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME	ESTIM	PURPOSE
ENTRY POINT		
ESTIM1		INITIALIZATION
ESTIM		TO ESTIMATE CORRECTION VECTOR TO STATE VECTOR USING METHOD OF BAYESTIAN LEAST SQUARES
CALLING SEQUENCE CALL ESTIM1(SUM1,SUM2,DELTA,STPOS,STPOS0,SIGSTA, FBIAS,BIAS0,BIASSG,I STAND,ESTANO,LOC, BIASNO,PARNOS,INDXCS,TDEN0,TDSIG)		
SYMBOL	TYPE	DESCRIPTION
SUM1 (1)	DP	INPUT & OUTPUT - NORMAL MATRIX
SUM2 (1)	DP	INPUT & OUTPUT - RIGHT HAND SIDE OF NORMAL EQUATIONS
DELTA (1)	DP	OUTPUT - CORRECTION VECTOR
STPOS (3x1)	DP	INPUT & OUTPUT - CURRENT STATION COORDINATES
STPOS0 (3x1)	DP	INPUT - A PRIORI STATION COORDINATES
SIGSTA (3x3,1)	R	INPUT - STATION COORDINATE VARIANCE/COVARIANCE MATRICES
FBIAS (1)	DP	INPUT & OUTPUT - CURRENT DRAG, SOLAR RADIATION, BIAS, GEOPOTENTIAL & SURFACE DENSITY VALUES
BIAS0 (1)	DP	INPUT - A PRIORI DRAG, SOLAR RADIATION, BIAS, AND GEOPOTENTIAL VALUES
BIASSG (1)	DP	INPUT - DRAG, SOLAR RADIATION, BIAS, GEOPOTENTIAL AND SURFACE DENSITY VALUES
I STAND (1)	I*2	INPUT - STATION NUMBERS
ESTANO (1)	I*2	INPUT - MASTER STATION LOCATION INDICES
LOC (1)	I*2	SCRATCH
BIASNO (1)	I*2	INPUT - DRAG, SOLAR RADIATION, BIAS, GEOPOTENTIAL AND SURFACE DENSITY LOCATION INDICES

PARNOS I#2 INPUT - PARAMETER NUMBERS
(1)

INDEXCS I#2 INPUT - INDICES OF ADJUSTED GEOPOTENTIAL
(3,1) COEFFICIENTS

TDENO DP INPUT - APRIORI VALUES OF SURFACE DENSITIES
(1)

TDSIG DP INPUT - APRIORI SIGMAS OF SURFACE DENSITIES
(1)

CALLING SEQUENCE CALL ESTIM(ITYPE,SIGMA,RESID,MPARTL)

SYMBOL	TYPE	DESCRIPTION				
ITYPE	I	INPUT - INDICATES TYPE OF OPERATION TO BE PERFORMED				
SIGMA	DP	INPUT - MEASUREMENT STANDARD DEVIATION				
RESID	DP	INPUT - MEASUREMENT RESIDUAL				
MPARTL	DP	INPUT - PARTIALS OF MEASUREMENTS WITH RESPECT TO (1) UNKNOWNS				
SUBROUTINES USED	CLEAR	DMTWRT	GYMINV	NUMBRC	NUMLOC	
COMMON BLOCKS	APARAM PRIORI	CFLEM	CONDUT	CPARAM	INITBK	
INPUT FILES	NONE					
OUTPUT FILES	NONE					REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR
REFERENCES	• GEODYN SYSTEMS DESCRIPTION VOLUME 1 - GEODYN DOCUMENTATION					

```

SUBROUTINE ESTIM1(SUM1,SUM2,DELTA,STPOS,STPOS0,SIGSTA,BRIAS,BIAST,ESTI 98
• BIASG,ISTANO,ESTANO,LOC,BIASNO,PARNOS,INDEXCS,TDENO,TDSIG) ESTI 99
IMPLICIT REAL*8 (A-H,C-Z) ESTI 100
LOGICAL LINNER,CMPGPR,SMAT ESTI 101
INTEGER PARMAX,ESTSTA,DMATNO,SIMDAT ESTI 102
INTEGER*2 ISTAND,ESTAN0,LOC,BIASNO,PARNOS,INDEXCS ESTI 103
REAL SIGSTA,RMSTOT,VARCOV ESTI 104
DOUBLE PRECISION MPARTL ESTI 105
DIMENSION SUM1(1),SUM2(1),STPOS(3,1),STPOS0(3,1),SIGSTA(3,3,1),ESTI 106
• BIAS(1),BIASC(1),BIASSG(1),ISTANO(1),ESTANO(1),LOC(1),ESTI 107
• BIASN(1),PARNOS(1),DELTA(1),MPARTL(1),INDEXCS(3,1),TDENO(1),ESTI 108
• TDSIG(1) ESTI 109
COMMON/APARAM/INPAR,INPAR1,NBIAS,ESTSTA,NSAT,NGPARC,NPRECI,NPARAM,ESTI 110
• NEBIAS,PARMAX ESTI 111

```

```

COMMON/CELEM/ELEMST(6,2),ORRELA(14),RMSTDT          ESTI 112
COMMON/CONOUT/IG1(8),NFONMX,IG2(10)                ESTI 113
COMMON/CPARAM/NSTA,NMAST,NTEST,NDIM,MBIAS,NGPC1,NGPC2. ESTI 114
    NGPC1M,NCSEST,CVPGPR,LIM1,LIM2,NDEN,NDENST,NTIDEN, ESTI 115
    INNRSW,NCCNST,NDCONS                           ESTI 116
COMMON/INTRAK/IEPYMD(45),BMATNO,SIMDAT(11)        ESTI 117
COMMON/PRIORI/ELEM(6,2),VARCOV(6,6,2),TITLE(30),DRAG(18) ESTI 118
DATA NOFILE/0/                                     ESTI 119
INDEXNO(I)=NDIM*(I-1)-(I*(I-1))/2                  ESTI 120
RETURN                                              ESTI 121
ENTRY ESTIM(ITYPE,SIGMA,RESID,MPARTL)             ESTI 122
C INITIALIZE
GO TO (100,200,300,600),ITYPE                     ESTI 123
100 PARMAX=INPARI                                 ESTI 124
IF(NBIAS.GT.0) PARMAX=NEONMX+2                   ESTI 125
ISTART=INPARI+1                                    ESTI 126
I1=LIM1                                         ESTI 127
CALL CLEAR(SUM2,2,I1)                            ESTI 128
I1=INDEXND(I1)+NDIM                            ESTI 129
CALL CLEAR(SUM1,2,I1)                            ESTI 130
LINNER=LIM2.GT.0.AND.(NMAST.GT.0.OR.NGPCDM.GT.0.DP.NTIDEN.GT.0) ESTI 131
BMAT=.FALSE.
IF(.NOT.LINNER) RETURN                         ESTI 132
BMAT=BMATNO.GT.0                                ESTI 133
IF(NMAST.GT.0) PARMAX=NEONMX+8                 ESTI 134
IF(PARMAX.EQ.INPARI) PARMAX=NEONMX            ESTI 135
NSTART=NDIM-3*NMAST+1-NGPCDM-NTIDEN           ESTI 136
C FORM NORMAL MATRIX
RETURN                                              ESTI 137
200 WT=1.00/(SIGMA*SIGMA)                        ESTI 138
C SINGLE ARC FORCE MODEL PARAMETERS
IST=0                                              ESTI 139
DO 240 I=1,INPARI                               ESTI 140
T=MPARTL(I)*WT                                  ESTI 141
SUM2(I)=SU42(I)+T*RESID                         ESTI 142
DO 235 J=1,PARMAX                               ESTI 143
I1=PARNOS(J)
IF(I1.EQ.0) GO TO 235                          ESTI 144
I2=IST+I1                                      ESTI 145
SUM1(I2)=SU41(I2)+T*MPARTL(J)                  ESTI 146
235 CONTINUE                                     ESTI 147
240 IST=IST+NDIM-I                             ESTI 148
C BIASES AND GEODETIC PARAMETERS
IF(PARMAX.EQ.INPARI) RETURN                    ESTI 149
DO 250 I=ISTART,PARMAX                         ESTI 150
I1=PARNOS(I)
IF(I1.EQ.0) GO TO 250                          ESTI 151
T=MPARTL(I)*WT                                  ESTI 152
SUM2(I1)=SU42(I1)+T*RESID                      ESTI 153
DO 245 J=1,PARMAX                               ESTI 154
I2=PARNOS(J)
IF(I2.EQ.0) GO TO 245                          ESTI 155
IF(I2.LT.I1) GO TO 242                        ESTI 156
NCOLM1=I1-1                                     ESTI 157
IST=NCOLM1*NDIM-(I1*NCOLM1)/2+I2              ESTI 158
GO TO 234                                     ESTI 159

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

242 NCOLM1=12-1 ESTI 168
    IST=NCOLM1*NDIM-(12*NCOLM1)/2 + 11 ESTI 169
244 SUM1(IST)=SUM1(IST)+T*NPARTL(J) ESTI 170
245 CONTINUE ESTI 171
250 CONTINUE FSTI 172
C ADD SINGLE ARC PARAMETER A PRIORI
    RETURN ESTI 173
C ELEMENTS
300 IST=0 ESTI 174
    DO 310 L=1,NSAT ESTI 175
        L1=6*(L-1)
        DO 310 I=1,6 ESTI 176
            II=L1+I
            DO 305 J=1,6 FSTI 177
                SUM2(II)=SUM2(II)+VARCOV(I,J,L)*(ELEM0(J,L)-ELEMST(J,L))
                DO 308 J=1,6 ESTI 178
                    II=IST+J+L1
                    SUM1(II)=SUM1(II)+VARCOV(J,I,L) ESTI 179
305 310 IST=IST+NDIM-1-L1 ESTI 180
C DRAG, SOLAR RADIATION, AND BIASES FSTI 181
    NBSGP=MBIAS+NGPARC ESTI 182
    DO 315 I=1,NBSGP ESTI 183
        II=BIASNO(I)
        IF(II.EQ.0) GO TO 315 ESTI 184
        T=1.0D0
        IF(I.LE.4BIAS) T=1.0D0/BIASSG(I)**2 ESTI 185
        SUM2(II)=SUM2(II)+T*(BIASO(I)-BBIAS(I)) ESTI 186
        II=INOXNO(II)+11 ESTI 187
        SUM1(II)=SUM1(II)+T ESTI 188
315 CONTINUE ESTI 189
C CN OPTION, WRITE NORMAL MATRIX FSTI 190
    IF(BMAT) CALL BMTRWT(SUM1,SUM2,INDXCS,BIASNO(NGPC1),BIASO(NGPC1),
        * BIASSG(NGPC1),ESTAN0,ISTAN0,STPOS,NDFILE) ESTI 191
C INVERT NORMAL MATRIX OF SINGLE ARC PARAMETERS FSTI 192
    CALL SYMINV(SUM1,NDIM,NPARAM,DELTA) ESTI 193
C CN LAST INNER ITERATION COMPUTE EFFECTS OF ARC PARAMETERS ON
C GEODETIC PARAMETERS ESTI 194
    IF(.NOT.LINNER) GO TO 525 ESTI 195
    II=INDXNO(INSTART)
    DO 500 I=INSTART,NDIM ESTI 196
        L1=0
        DO 450 L=1,NPARAM ESTI 197
            DELTA(L)=0.0D0
            IST=0
            DO 400 J=1,L ESTI 198
                J1=IST+L
                J2=IST+I
                DELTA(L)=DELTA(L)+SUM1(J1)*SUM1(J2) REPRODUCIBILITY OF THE
300 400 IST=IST+NDIM-J ORIGINAL PAGE IS POOR
                IF(L.EQ.NPARAM) GO TO 425
                LP1=L+1
                DO 410 J=LP1,NPARAM
                    J1=LI+J
                    J2=IST+I
C SUBTRACT OUT SINGLE ARC EFFECTS ON GEODETIC PARAMETERS
                    DELTA(L)=DELTA(L)+SUM1(J1)*SUM1(J2) ESTI 200
                    ESTI 201
                    ESTI 202
                    ESTI 203
                    ESTI 204
                    ESTI 205
                    ESTI 206
                    ESTI 207
                    ESTI 208
                    ESTI 209
                    ESTI 210
                    ESTI 211
                    ESTI 212
                    ESTI 213
                    ESTI 214
                    ESTI 215
                    ESTI 216
                    ESTI 217
                    ESTI 218
                    ESTI 219
                    ESTI 220
                    ESTI 221
                    ESTI 222
                    ESTI 223

```

```

410 IST=IST+NDIM-J          ESTI 224
425 SUM2(I)=SUM2(I)-SUM2(L)*DELTAL(L)      ESTI 225
    DO 440 K=I,NDIM           ESTI 226
        K1=II+K               ESTI 227
        K2=L1+K               ESTI 228
440 SUM1(K1)=SUM1(K1)-DELTAL(L)*SUM1(K2)   ESTI 229
450 L1=L1+NDIM-L             ESTI 230
        J1=I                  ESTI 231
        DO 495 J=1,NPARAM      ESTI 232
            SUM1(J1)=DELTAL(J)  ESTI 233
495 J1=J1+NDIM-J             ESTI 234
500 II=II+NDIM-I             ESTI 235
C COMPUTE CORRECTION VECTOR FOR SINGLE ARC PARAMETERS
525 IST=0                    ESTI 236
    L=6*NSAT                 ESTI 237
    DO 550 I=1,NPARAM         ESTI 238
        DELTA(I)=0.000         ESTI 239
        II=I                  ESTI 240
        DO 540 J=1,I           ESTI 241
            DELTA(I)=DELTA(I)+SUM1(II)*SUM2(J)  ESTI 242
540 II=II+NDIM-J             ESTI 243
        IF(I.EQ.NPARAM) GO TO 548      ESTI 244
        IP1=I+1                ESTI 245
        DO 545 J=IP1,NPARAM       ESTI 246
            II=IST+J             ESTI 247
C UPDATE ELEMENTS           ESTI 248
545 DELTAL(I)=DELTA(I)+SUM1(II)*SUM2(J)      ESTI 249
548 IF(I.LF.L1) ELEMST(I,1)=ELEMST(I,1)+DELTA(I)  ESTI 250
550 IST=IST+NDIM-I             ESTI 251
ESTI 252
C UPDATE DRAG, SCALAR RADIATION, AND BIASES
    IF(NPARAM.EQ.L) RETURN      ESTI 253
    DO 560 I=1,NBSGP           ESTI 254
        II=BIASNO(I)            ESTI 255
560 IF(II.NE.0) BRIAS(I)=BBIAS(I)+DELTA(II)    ESTI 256
ESTI 257
C ADD GEOPOTENTIAL COEFFICIENT A PRIORI
    RETURN                      ESTI 258
    600 IF(NGPCOM.LE.0) GO TO 606      ESTI 259
        T=1.0D0                 ESTI 260
        DO 605 I=NGPC1,NGPC2       ESTI 261
            II=BIASNO(I)          ESTI 262
            IF(II.EQ.0) GO TO 605  ESTI 263
            SUM2(II)=SUM2(II)+BIASO(I)-BBIAS(I)  ESTI 264
            II=INDXNO(II)+II      ESTI 265
            SUM1(II)=SUM1(II)+T    ESTI 266
        605 CONTINUE              ESTI 267
C ADD STATION POSITION A PRIORI
    606 IF(NTIDEN.LE.0) GO TO 750      ESTI 268
        L1=NSTART+NGPCCM-1      ESTI 269
        DO 725 I=1,NTIDEN        ESTI 270
            T=1.0D0/TDSIG(I)**2  ESTI 271
            II=L1+I                ESTI 272
            SUM2(II)=SUM2(II)+T*(TDENO(I)-BBIAS(I+NGPC2))  ESTI 273
            II=INDXNO(II)+II      ESTI 274
        725 SUM1(II)=SUM1(II)+T    ESTI 275
    750 IF(NMAST.EQ.0) GO TO 630      ESTI 276
        II=NSTART+NGPCCM+NTIDEN  ESTI 277
ESTI 278
REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

DESCRIPTION

F evaluates the total acceleration of the satellite due to all of the forces present in the model. F is primarily executive in nature, calling subroutines for all effects except solar radiation pressure. F also computes the partial derivatives of the acceleration due to radiation pressure with respect to the satellite reflectivity coefficient.

The satellite acceleration vector is computed in an instantaneous coordinate system, referred to the true equator and equinox at the integration time. REFCOR is called to transform the position, and velocity if required, from the reference to the instantaneous coordinate system. After the evaluation of the accelerations, REFCOR is again called to transform the acceleration vector to the inertial reference system for integration.

NAME F

ENTRY POINT PURPOSE

F1 INITIALIZATION

F TO EVALUATE SATELLITE ACCELERATION VECTOR AND FORCE MODEL PARTIAL DERIVATIVES

CALLING SEQUENCE CALL F1(GRPAR)

SYMBOL	TYPE	DESCRIPTION
GRPAR	DP	CUTPUT - FORCE MODEL PARTIAL VECTOR (3,1)

CALLING SEQUENCE CALL F(T,S,FCT,FCALL)

SYMBOL	TYPE	DESCRIPTION
T	DP	INPUT - TIME IN SECONDS
S	DP	INPUT - SATELLITE STATE VECTOR (6)
FCT	DP	CUTPUT - SATELLITE ACCELERATION VECTOR (3)
FCALL	L	INPUT - = TRUE. NO ACCELERATIONS NECESSARY = FALSE. BOTH ACCELERATIONS & PARTIALS NECESSARY

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

SUBROUTINES USED	REFCOR	EPHEM	EGRAV	SURDEN	DRAG
	SUNGRV	TICAL	COTPRD		
COMMON BLOCKS	CEPHEM	CTIME	FMODEL	INTBLK	MOONGR
INPUT FILES	XYZ				
OUTPUT FILES	NONE				
REFERENCES	' GEODYN SYSTEMS DESCRIPTION ' VOLUME 1 - GEODYN DOCUMENTATION				

SUBROUTINE F1(GRPAR)	F	50
IMPLICIT REAL*8 (A-H,O-Z)	F	51
LOGICAL FCALL,TOREFT	F	52
INTEGER ADDA,SRAD	F	53
DOUBLE PRECISION MOODY,LOVE,MODEL	F	54
DIMENSION GRPAR(3,1),S(6),P(3),FCT(3)	F	55

COMMON/CEPHEN/VARD(24),E0,GEPEH(643)	F	56
COMMON/CTIME/CTALP(2),DAY0,FSTART,CAY2,DORH1(6),IY	F	57
COMMON/FMODEL/INDEX1,INDEX2,INDEX3,INDEX4,CS(30,33),MODEL(8)	F	58
COMMON/INTBLK/THOT1,THOT2,THOT2S,GM(2),AESQ,FLAT(3),CM3(6),B(6),F	F	59
APGM(2),APLM(4),THETG0,MBCDY(31),ADDR(4),SRAD(2),LOVE(3),	F	60
TREFT,NSDUC	F	61
COMMON/RHOUNGR/CPXUV(6),RHOM(3,6),RHCS0(12)	F	62
COMMON/XYZ/ELEM(6),R,RSQ,ISAT,IFORCE(2)	F	63
RETURN	F	64
ENTRY F(T,S,FCT,FCALL)	F	65
IF(FCALL,AND,T,EQ,TPREV) RETURN	F	66
TPREV=T	F	67
DO 100 I=1,6	F	68
100 ELEM(I)=S(I)	F	69
CAY2=T/6.64E4	F	70
C PRECESS AND NUTATE POSITION TO TRUE OF DATE		
CALL REFCOR(CAY2,,FALSE,,ELEM)	F	71
C READ LUNAR, SOLAR, PLANETARY EPHEMERIDES		
CALL EPHEM(DAY2,,FALSE,,)	F	72
DAY=ICINT(DAY2)	F	73
ECAY=LAY2-DAY	F	74
C COMPUTE RIGHT ASCENSION OF GREENWICH		
THETG=THETG0+THDOT1*DAY+THOT2*DDAY+E0	F	75
INDEX2=INDEX1-1	F	76
IF(FCALL) INDEX2=INDEX4	F	77
C ADD GEOPOTENTIAL ACCELERATION		
CALL EGRAV(THETG,RASAT,FCT)	F	78
C ADD SURFACE DENSITY ACCELERATION AND COMPUTE PARTIALS		
CALL SURDEN(FCT,THETG)	F	79
C ADD LUNAR, SOLAR, PLANETARY GRAVITY		
CALL SUNGRV(FCT)	F	80
C ADD TIDAL ACCELERATIONS		
IF(.NOT,FCALL) CALL TIDAL(FCT)	F	81
IF(APGM(ISAT),EQ,0.000) GO TO 700	F	82
INDX=SRAD(ISAT)-IFCRCE(ISAT)	F	83
IF(APGM(ISAT),LT,0.000) GO TO 650	F	84
IF(CPXUV(2),GT,0.000) GO TO 500	F	85
DO 450 I=1,3	F	86
450 P(I)=ELEM(I)-CPXUV(2)*VARD(I+4)	F	87
PMAG=DUTPRD(P,F)	F	88
IF(PMAG,LT,A=SCI) GO TO 650	F	89
500 IF(FCALL) GO TO 610	F	90
C APPLY SOLAR RADIATION WHEN NOT IN SHADOW		
DO 600 I=1,3	F	91
600 FCT(I)=FCT(I)-APGM(ISAT)*VARD(I+4)	F	92
610 IF (INDX,LE,0) GO TO 700	F	93
C COMPUTE SOLAR RADIATION PARTIALS		
DO 625 I=1,3	F	94
625 GRPAR(I,INDX)=-APLM(ISAT)*VARD(I+4)	F	95
GO TO 700	F	96
650 IF (INDX,LE,0) GO TO 700	F	97
DO 660 I=1,3	F	98
660 GRPAR(I,INDX)=0.000	F	99
700 IF(E(ISAT),EQ,C,0DC) GO TO 800	F	100
C PRECESS AND NUTATE VELOCITIES TO TRUE OF DATE		
CALL REFCOR(CAY2,,FALSE,,ELEM(4))	F	101
	F	102
	F	103
	F	104
	F	105
	F	106
	F	107
	F	108
	F	109
	F	110
	F	111

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```
DT=DAY2-DAY0
C ADD DRAG ACCELERATION AND COMPUTE PARTIALS
    CALL DRAG(RASAT,FCT,DT)
    B00 IF(FCALL) RETLEN
C PRECESS AND NUTATE ACCELERATION TO REFERENCE SYSTEM
    CALL REFCOR(DAY2,TRUE,FCT)
    RETURN
END
```

F	112
F	113
F	114
F	115
F	116
F	117
F	118
F	119

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

FLUXM

DESCRIPTION

FLUXM stores in half-word integers ten times the daily mean of the eight three-hourly geomagnetic indices, K_p .

FLUX tables must be updated using the values obtained from bulletins printed by ESSA., Boulder, Colorado. An example of the bulletin is given on the following page.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

GEOMAGNETIC ACTIVITY INDICES

MAY 1972

DAY		K_p								SUM	C_i	C_p	A_p
		1	2	3	4	5	6	7	8				
1	D	4-	4-	4	3-	3-	3	3+	3-	26-	1.1	1.0	18
2	D	3-	3+	4+	4	3	2+	3-	3+	26-	1.1	1.0	18
3		2	2-	2-	2	3	2	1+	1	15-	0.3	0.4	7
4	O	1+	2	2-	1	2	2-	1+	0+	11+	0.1	0.2	5
5	O	2-	2-	1-	1+	1-	1+	1+	3	12-	0.2	0.3	6
6		2	1+	3-	2	3	2+	3-	2-	18-	0.6	0.5	9
7	QQ	2	1-	0	0+	0+	1-	1-	1+	6	0.0	0.1	3
8	QQ	1-	1-	0+	0+	1	1	2+	1-	7	0.1	0.1	4
9		1+	2	4-	3	3-	2+	3+	4-	22	0.9	0.8	14
10		2	2	3-	2+	2	2	3	2	18	0.5	0.5	9
11		1-	2+	1+	2	2	2+	2	2+	15	0.3	0.4	7
12		2	3	3	3-	2+	1+	2-	1+	17+	0.5	0.5	9
13		3	1+	2-	0+	1-	2+	2+	3	15-	0.3	0.4	8
14		2+	2-	2	2-	2	2-	2-	2-	15-	0.3	0.3	7
15	D	1+	0+	1	2-	1	2	8-	6+	21+	1.4	1.4	33
16	D	6	4-	2+	3-	2-	1+	1+	1+	20+	1.1	1.0	18
17		3	2+	3-	1+	2+	3-	1+	2	18-	0.6	0.5	9
18		3+	3+	3-	3-	2-	1	1	1	17-	0.6	0.5	10
19	QQ	1-	1	1-	1-	0+	0+	1	2	7+	0.2	0.1	4
20	QQ	2	1	1-	2-	1-	0+	0+	2-	8+	0.2	0.1	4
21	QQ	1+	1	1-	1-	0+	1	2-	1	8-	0.0	0.1	4
22	O	2	2+	1+	1-	1-	1	2-	1+	11	0.2	0.2	5
23		2-	1-	0+	0+	1+	3+	2+	3-	13-	0.4	0.4	7
24	Q	2+	2-	1+	0+	1-	1	1-	0+	9	0.2	0.2	5
25	Q	1	1+	2-	1	1	1	2-	2+	11	0.2	0.2	5
26		3-	2	1	1+	1	2+	3-	3	16	0.3	0.5	8
27		2	1+	0+	1-	1+	3-	3	3	14+	0.4	0.4	8
28	D	3	2	3-	3+	4	5+	4+	2-	26+	1.2	1.1	22
29		2+	3-	2	3	2+	2+	2-	2+	19-	0.6	0.5	10
30		3	3	1+	2-	3+	4-	4-	3-	22+	0.8	0.8	14
31		3-	4-	3	3-	2+	2+	1+	3	21	0.8	0.7	12
										MEAN	0.50	0.49	10

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME FLUXM
 PURPOSE STORES MAGNETIC FLUX INDICES. VALUES ARE DATA MEANS OF KP TIMES 10
 CALLING SEQUENCE CALL FLUXM(NARCS)
 SYMBOL TYPE DESCRIPTION
 NARCS I OUTPUT - NUMBER OF ARCS
 SUBROUTINES USED FLUXS
 COMMON BLOCKS NCNE
 INPUT FILES NONE
 OUTPUT FILES NONE
 REFERENCES "SOLAR GEOPHYSICAL DATA: PART 1"
 E.S.S.A., BOULDER, COLO.
 "GEODYN SYSTEMS DESCRIPTION"

SUBROUTINE FLUXM(NARCS)

INTEGER NFLUXS/5785/
 INTEGER #2 MFLUX(5785)
 INTEGER #2

- MGF01(122), MGF02(184), MGF03(181), MGF04(184), MGF05(182),
- MGF06(184), MGF07(181), MGF08(184), MGF09(181), MGF10(184),
- MGF11(181), MGF12(184), MGF13(182), MGF14(184),
- MGFLU1(181), MGFLU2(184), MGFLU3(181), MGFLU4(184), MGFLU5(181),
- MGFLU6(184), MGFLU7(182), MGFLU8(184), MGFLU9(181), MGFL10(184),
- MGFL11(181), MGFL12(184), MGFL13(181), MGFL14(184), MGFL15(182),
- MGFL16(184), MGFL17(181), MGFL18(184)

EQUIVALENCE

- (MFLUX(1), MGF01(1)), (MFLUX(123), MGF02(1)),
- (MFLUX(307), MGF03(1)), (MFLUX(488), MGF04(1)),
- (MFLUX(672), MGF05(1)), (MFLUX(854), MGF06(1)),
- (MFLUX(1038), MGF07(1)), (MFLUX(1219), MGF08(1)),
- (MFLUX(1403), MGF09(1)), (MFLUX(1584), MGF10(1)),
- (MFLUX(1768), MGF11(1)), (MFLUX(1949), MGF12(1)),
- (MFLUX(2133), MGF13(1)), (MFLUX(2315), MGF14(1)),
- (MFLUX(2499), MGFLU1(1)), (MFLUX(2680), MGFLU2(1)),
- (MFLUX(2864), MGFLU3(1)), (MFLUX(3045), MGFLU4(1)),
- (MFLUX(3229), MGFLU5(1)), (MFLUX(3410), MGFLU6(1)),
- (MFLUX(3564), MGFLU7(1)), (MFLUX(3775), MGFLU8(1)),
- (MFLUX(3960), MGFLU9(1)), (MFLUX(4141), MGFL10(1)),
- (MFLUX(4325), MGFL11(1)), (MFLUX(4505), MGFL12(1)),
- (MFLUX(4650), MGFL13(1)), (MFLUX(4871), MGFL14(1)),
- (MFLUX(5055), MGFL15(1)), (MFLUX(5237), MGFL16(1)),
- (MFLUX(5421), MGFL17(1)), (MFLUX(5602), MGFL18(1))

----- MAGNETIC FLUX FOR 580301 TC 580630

FLUX	27
FLUX	28
FLUX	29
FLUX	30
FLUX	31
FLUX	32
FLUX	33
FLUX	34
FLUX	35
FLUX	36
FLUX	37
FLUX	38
FLUX	39
FLUX	40
FLUX	41
FLUX	42
FLUX	43
FLUX	44
FLUX	45
FLUX	46
FLUX	47
FLUX	48
FLUX	49
FLUX	50
FLUX	51
FLUX	52
FLUX	53
FLUX	54
FLUX	55

DATA MGFC01/		FLUX	56
• 17, 20, 36, 41, 47, 45, 39, 37, 35, 33, 37, 56, 50, 35, 37, 31, FLUX	57		
• 40, 44, 49, 46, 44, 38, 36, 40, 44, 40, 32, 30, 24, 43, 33, FLUX	58		
• 34, 44, 33, 45, 39, 37, 32, 23, 23, 13, 20, 17, 17, 35, 39, 43, FLUX	59		
• 52, 49, 38, 30, 29, 17, 20, 30, 26, 28, 24, 38, 43, 41, FLUX	60		
• 36, 26, 20, 22, 27, 22, 17, 26, 24, 35, 24, 29, 41, 46, 40, 31, FLUX	61		
• 32, 33, 24, 13, 17, 13, 10, 3, 24, 47, 38, 33, 52, 27, 58, FLUX	62		
• 55, 39, 17, 13, 22, 30, 59, 28, 43, 43, 33, 30, 23, 30, 36, 24, FLUX	63		
• 10, 20, 23, 22, 56, 46, 28, 33, 31, 22, 22, 53, 65, 23, FLUX	64		
C----- MAGNETIC FLUX FOR 580701 TC 581231		FLUX	65
DATA MGFO2/		FLUX	66
• 32, 17, 30, 36, 26, 17, 32, 79, 59, 32, 30, 36, 30, 29, 17, 20, FLUX	67		
• 31, 44, 39, 37, 52, 35, 17, 33, 37, 26, 41, 24, 23, 27, 30, FLUX	68		
• 30, 27, 24, 10, 13, 13, 27, 10, 20, 31, 30, 24, 27, 20, 23, 27, FLUX	69		
• 60, 35, 26, 17, 17, 44, 28, 61, 33, 29, 56, 28, 26, 23, 20, FLUX	70		
• 13, 13, 56, 70, 58, 17, 31, 35, 39, 27, 20, 13, 7, 10, 17, 47, FLUX	71		
• 28, 10, 10, 10, 10, 13, 17, 60, 39, 24, 22, 13, 35, FLUX	72		
• 30, 26, 33, 13, 28, 27, 29, 24, 13, 10, 17, 7, 20, 20, 24, 23, FLUX	73		
• 23, 22, 22, 17, 17, 50, 49, 62, 24, 26, 42, 46, 35, 34, 27, FLUX	74		
• 20, 31, 27, 24, 7, 7, 17, 7, 10, 27, 32, 23, 17, 7, 17, 23, FLUX	75		
• 23, 22, 13, 10, 10, 7, 20, 22, 24, 22, 23, 33, 27, 3, FLUX	76		
• 3, 37, 20, 52, 41, 27, 17, 24, 27, 10, 22, 17, 51, 34, 24, 31, FLUX	77		
• 42, 44, 36, 30, 22, 23, 27, 20, 10, 28, 27, 29, 24, 27, 20, FLUX	78		
C----- MAGNETIC FLUX FOR 590101 TC 590630		FLUX	79
DATA MGFO3/		FLUX	80
• 2, 7, 17, 20, 39, 38, 34, 33, 46, 49, 29, 28, 23, 22, 22, 32, FLUX	81		
• 33, 34, 24, 10, 7, 20, 22, 10, 33, 37, 23, 23, 32, 26, 29, FLUX	82		
• 26, 37, 37, 45, 38, 33, 26, 27, 37, 17, 45, 39, 36, 42, 46, 55, FLUX	83		
• 38, 10, 27, 10, 17, 32, 30, 10, 57, 50, 42, 49, FLUX	84		
• 48, 43, 37, 29, 27, 17, 17, 26, 10, 3, 10, 33, 27, 22, 17, 10, FLUX	85		
• 17, 20, 17, 13, 17, 13, 26, 22, 43, 60, 77, 62, 58, 35, 34, FLUX	86		
• 26, 17, 27, 20, 17, 17, 22, 37, 49, 64, 37, 24, 23, 26, 24, 17, FLUX	87		
• 20, 13, 10, 13, 22, 7, 47, 40, 37, 33, 29, 27, 38, 36, FLUX	88		
• 23, 20, 20, 31, 41, 7, 17, 44, 31, 29, 39, 66, 29, 13, 44, 45, FLUX	89		
• 28, 38, 29, 24, 28, 30, 27, 52, 39, 20, 13, 7, 7, 17, 37, FLUX	90		
• 20, 34, 31, 37, 30, 27, 22, 26, 34, 27, 38, 17, 10, 23, 22, 17, FLUX	91		
• 17, 22, 20, 22, 22, 26, 30, 39, 17, 29, 43, 44, 51, 46, FLUX	92		
C----- MAGNETIC FLUX FOR 590701 TC 591231		FLUX	93
DATA MGFO4/		FLUX	94
• 13, 29, 13, 30, 31, 26, 29, 29, 33, 28, 49, 38, 26, 31, 83, 50, FLUX	95		
• 66, 68, 43, 33, 31, 28, 28, 41, 46, 44, 39, 28, 24, 10, 30, FLUX	96		
• 35, 31, 35, 34, 23, 37, 29, 29, 37, 29, 22, 13, 17, 17, 40, 70, FLUX	97		
• 67, 41, 36, 41, 44, 40, 41, 35, 30, 22, 13, 7, 28, 23, 23, FLUX	98		
• 35, 44, 44, 65, 44, 33, 20, 24, 17, 22, 30, 29, 29, 33, 33, 31, FLUX	99		
• 37, 40, 45, 55, 61, 58, 38, 38, 46, 37, 36, 33, 23, 27, FLUX	100		
• 49, 37, 49, 51, 46, 52, 30, 22, 17, 10, 7, 20, 10, 28, 30, 10, FLUX	101		
• 32, 45, 30, 22, 17, 34, 24, 17, 37, 39, 26, 10, 17, 41, 46, FLUX	102		
• 48, 57, 50, 45, 41, 37, 26, 28, 23, 24, 13, 20, 27, 41, 13, 22, FLUX	103		
• 27, 25, 26, 10, 31, 32, 47, 22, 24, 28, 30, 60, 30, 48, FLUX	104		
• 41, 42, 51, 27, 57, 31, 17, 20, 22, 17, 17, 31, 33, 47, 39, 32, FLUX	105		
• 22, 24, 29, 17, 10, 17, 41, 30, 22, 39, 46, 47, 33, 29, 20, FLUX	106		
C----- MAGNETIC FLUX FOR 600101 TC 500630		FLUX	107
DATA MGFC05/		FLUX	108
• 10, 13, 17, 24, 38, 23, 17, 13, 10, 48, 40, 30, 24, 48, 42, 17, FLUX	109		
• 29, 37, 22, 32, 51, 35, 33, 33, 24, 20, 23, 17, 27, 3, 7, FLUX	110		
• 22, 20, 34, 33, 34, 34, 13, 24, 17, 17, 22, 17, 26, 41, 23, 40, FLUX	111		

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

• 37.	41.	36.	34.	37.	24.	24.	10.	10.	17.	37.	17.	31.		FLUX 112		
• 34.	37.	36.	31.	29.	28.	10.	28.	26.	37.	44.	22.	13.	22.	36.	52.	FLUX 113
• 36.	27.	24.	10.	20.	13.	13.	31.	17.	20.	17.	32.	33.	35.	70.		FLUX 114
• 84.	55.	57.	39.	44.	32.	37.	31.	29.	44.	39.	45.	41.	29.	38.	41.	FLUX 115
• 42.	36.	10.	3.	7.	13.	30.	56.	54.	33.	43.	61.	53.	76.			FLUX 116
• 50.	30.	22.	13.	24.	55.	53.	69.	31.	27.	48.	35.	26.	28.	24.	48.	FLUX 117
• 29.	17.	13.	10.	17.	13.	39.	43.	34.	34.	31.	33.	52.	33.	28.		FLUX 118
• 41.	13.	22.	52.	37.	39.	30.	38.	34.	17.	13.	13.	17.	29.	26.	17.	FLUX 119
• 20.	29.	31.	22.	31.	28.	26.	28.	39.	37.	56.	45.	45.	53.			FLUX 120
C----- MAGNETIC FLUX FOR 600701 TC 501231															FLUX 121	
DATA MGFC6/															FLUX 122	
• 39.	31.	28.	35.	31.	27.	13.	7.	10.	22.	24.	24.	27.	47.	63.	59.	FLUX 123
• 38.	29.	45.	39.	24.	24.	23.	24.	10.	22.	17.	17.	41.	41.	46.		FLUX 124
• 29.	33.	20.	20.	7.	20.	20.	31.	37.	29.	37.	38.	22.	29.	22.	52.	FLUX 125
• 66.	31.	36.	39.	41.	29.	20.	17.	7.	10.	31.	29.	49.	54.	31.		FLUX 126
• 7.	35.	45.	64.	68.	41.	40.	34.	31.	28.	30.	26.	36.	28.	10.	10.	FLUX 127
• 22.	31.	10.	13.	22.	24.	29.	40.	13.	24.	32.	20.	29.	41.			FLUX 128
• 50.	50.	30.	45.	44.	80.	78.	44.	46.	24.	32.	17.	10.	7.	32.	17.	FLUX 129
• 20.	40.	24.	24.	22.	3.	7.	36.	59.	55.	46.	49.	47.	44.	41.		FLUX 130
• 27.	31.	33.	52.	26.	17.	17.	7.	13.	17.	33.	57.	86.	50.	57.	63.	FLUX 131
• 33.	13.	17.	23.	49.	42.	24.	31.	47.	32.	36.	36.	23.	32.			FLUX 132
• 63.	39.	23.	17.	24.	36.	39.	37.	35.	24.	23.	33.	29.	17.	48.	44.	FLUX 133
• 20.	39.	32.	38.	39.	35.	29.	30.	23.	31.	51.	37.	34.	32.	30.		FLUX 134
C----- MAGNETIC FLUX FOR 610101 TC 510630															FLUX 135	
DATA MGFC7/															FLUX 136	
• 20.	10.	13.	7.	10.	17.	22.	37.	42.	13.	2.	13.	23.	13.	34.	27.	FLUX 137
• 22.	32.	39.	47.	33.	36.	17.	33.	33.	27.	22.	27.	23.	10.	10.		FLUX 138
• 7.	3.	28.	48.	41.	37.	26.	23.	20.	10.	23.	3.	37.	22.	20.	40.	FLUX 139
• 41.	51.	33.	42.	37.	33.	26.	24.	7.	10.	23.	27.					FLUX 140
• 22.	22.	13.	7.	29.	46.	7.	13.	28.	49.	17.	20.	24.	39.	38.	35.	FLUX 141
• 29.	27.	46.	32.	26.	28.	24.	22.	13.	23.	37.	32.	31.	24.	17.		FLUX 142
• 32.	29.	40.	17.	13.	23.	22.	17.	38.	32.	39.	24.	30.	52.	55.	28.	FLUX 143
• 10.	13.	20.	20.	3.	22.	22.	26.	22.	29.	27.	20.	13.	23.			FLUX 144
• 30.	34.	10.	22.	35.	42.	35.	26.	30.	22.	34.	30.	37.	24.	10.	41.	FLUX 145
• 22.	7.	22.	28.	13.	26.	29.	22.	44.	20.	17.	24.	13.	23.	37.		FLUX 146
• 42.	41.	24.	22.	23.	32.	38.	31.	17.	10.	3.	22.	7.	10.	26.	24.	FLUX 147
• 17.	29.	20.	24.	54.	54.	23.	17.	23.	17.	20.	10.	39.	10.			FLUX 148
C----- MAGNETIC FLUX FOR 610701 TC 511231															FLUX 149	
DATA MGFC8/															FLUX 150	
• 24.	27.	31.	31.	49.	31.	29.	24.	23.	29.	23.	13.	65.	64.	39.	37.	FLUX 151
• 45.	63.	33.	34.	45.	27.	32.	28.	29.	37.	67.	33.	22.	22.	17.		FLUX 152
• 22.	48.	33.	33.	23.	20.	10.	32.	13.	26.	38.	20.	3.	22.	22.	13.	FLUX 153
• 13.	13.	23.	17.	13.	3.	7.	10.	23.	26.	22.	13.	31.	46.	42.		FLUX 154
• 41.	28.	27.	13.	27.	13.	10.	10.	22.	20.	27.	32.	22.	41.	17.	20.	FLUX 155
• 26.	20.	7.	23.	3.	17.	3.	48.	45.	33.	39.	13.	17.	45.			FLUX 156
• 67.	17.	13.	20.	10.	13.	17.	7.	3.	27.	35.	29.	17.	7.	2.	2.	FLUX 157
• 2.	7.	17.	33.	22.	13.	17.	13.	22.	43.	42.	69.	43.	17.	13.		FLUX 158
• 13.	10.	10.	34.	31.	48.	37.	27.	13.	7.	30.	10.	28.	2.	7.	7.	FLUX 159
• 31.	50.	26.	28.	20.	3.	3.	7.	10.	13.	10.	7.	7.	3.			FLUX 160
• 52.	56.	53.	24.	26.	30.	17.	3.	7.	17.	29.	17.	10.	10.	20.	10.	FLUX 161
• 10.	3.	2.	7.	7.	17.	27.	24.	3.	10.	23.	33.	28.	31.	20.		FLUX 162
C----- MAGNETIC FLUX FOR 620101 TC 520630															FLUX 163	
DATA MGFC9/															FLUX 164	
• 17.	23.	3.	2.	2.	7.	7.	10.	17.	52.	27.	10.	13.	26.	24.	27.	FLUX 165
• 10.	3.	30.	10.	20.	2.	2.	2.	10.	22.	24.	7.	20.	20.	2.		FLUX 166
• 2.	10.	10.	35.	20.	17.	35.	7.	17.	7.	28.	35.	28.	30.	27.	41.	FLUX 167

• 29, 17, 7, 7, 20, 28, 24, 23, 22, 32, 32, 3,	FLUX 168
• 20, 20, 20, 17, 32, 43, 22, 3, 3, 27, 27, 31, 22, 10, 24, 10, FLUX 169	
• 10, 22, 28, 28, 30, 10, 10, 20, 23, 10, 10, 10, 22, 7, 10, FLUX 170	
• 26, 23, 28, 27, 20, 40, 54, 43, 27, 42, 37, 23, 13, 7, 23, 20, FLUX 171	
• 22, 27, 20, 24, 35, 42, 27, 10, 28, 26, 20, 22, 17, 13, FLUX 172	
• 23, 23, 20, 3, 10, 37, 20, 17, 3, 17, 23, 7, 28, 30, 30, 22, FLUX 173	
• 7, 3, 24, 13, 7, 7, 3, 3, 3, 10, 27, 17, 17, 7, 37, FLUX 174	
• 23, 13, 13, 28, 24, 24, 23, 7, 37, 32, 17, 22, 13, 22, 26, 17, FLUX 175	
• 3, 3, 10, 10, 27, 24, 30, 17, 17, 20, 34, 32, 29, 28, FLUX 176	

C----- MAGNETIC FLUX FOR 620701 TC 521231

DATA MGF10/	FLUX 177
• 23, 22, 22, 34, 31, 27, 22, 24, 17, 22, 23, 20, 26, 23, 17, 7, FLUX 178	
• 3, 10, 24, 31, 27, 20, 22, 31, 30, 49, 41, 33, 24, 13, 26, FLUX 180	
• 46, 24, 26, 17, 22, 33, 36, 43, 34, 24, 3, 10, 13, 23, 37, 36, FLUX 181	
• 38, 36, 32, 13, 20, 43, 32, 35, 28, 22, 13, 10, 30, 28, 39, FLUX 182	
• 41, 44, 50, 45, 31, 37, 29, 29, 26, 26, 23, 54, 37, 26, 30, 24, FLUX 183	
• 20, 13, 47, 28, 27, 36, 28, 17, 20, 43, 23, 23, 34, 29, FLUX 184	
• 48, 37, 26, 24, 27, 32, 27, 45, 43, 37, 39, 23, 26, 42, 24, 35, FLUX 185	
• 20, 32, 41, 26, 29, 37, 37, 40, 44, 44, 41, 33, 27, 29, 23, FLUX 186	
• 22, 30, 29, 34, 17, 38, 30, 22, 13, 10, 26, 10, 7, 20, 39, 40, FLUX 187	
• 22, 2, 10, 10, 34, 45, 35, 31, 34, 17, 23, 20, 22, 43, FLUX 188	
• 20, 7, 10, 32, 20, 7, 10, 20, 20, 20, 39, 26, 31, 28, 26, 13, FLUX 189	
• 45, 49, 48, 45, 37, 26, 10, 10, 32, 17, 10, 13, 10, 27, FLUX 190	

C----- MAGNETIC FLUX FOR 630101 TC 530630

DATA MGF11/	FLUX 191
• 13, 2, 3, 22, 7, 0, 20, 3, 0, 7, 17, 13, 41, 43, 39, 38, FLUX 192	
• 34, 30, 34, 17, 7, 13, 23, 24, 20, 3, 2, 3, 13, 41, 48, FLUX 193	
• 28, 3, 7, 7, 7, 10, 7, 2, 22, 49, 36, 36, 40, 34, 22, 10, FLUX 194	
• 10, 7, 3, 23, 17, 17, 17, 3, 10, 13, 3, 20, FLUX 195	
• 30, 17, 22, 10, 7, 13, 23, 43, 33, 50, 35, 27, 22, 3, 3, 3, FLUX 196	
• 10, 17, 20, 10, 7, 3, 26, 10, 7, 3, 2, 10, 13, 7, 10, FLUX 197	
• 27, 10, 10, 34, 43, 34, 30, 20, 20, 3, 7, 23, 24, 32, 30, 17, FLUX 198	
• 20, 30, 24, 20, 10, 26, 23, 3, 10, 13, 24, 7, 10, 37, FLUX 199	
• 45, 38, 29, 34, 24, 23, 17, 24, 29, 29, 33, 23, 37, 27, 17, 22, FLUX 200	
• 17, 7, 13, 22, 13, 7, 7, 3, 22, 17, 20, 31, 36, 27, 23, FLUX 201	
• 26, 24, 17, 13, 3, 31, 48, 27, 24, 13, 17, 13, 13, 13, 23, 3, FLUX 202	
• 23, 36, 24, 28, 22, 10, 10, 17, 37, 39, 31, 28, 23, 26, FLUX 203	

C----- MAGNETIC FLUX FOR 630701 TC 531231

DATA MGF12/	FLUX 204
• 13, 7, 7, 29, 33, 35, 26, 28, 30, 24, 17, 10, 13, 10, 10, 20, FLUX 205	
• 31, 23, 13, 20, 39, 28, 37, 42, 28, 29, 31, 17, 10, 41, 33, FLUX 206	
• 32, 30, 23, 28, 27, 26, 24, 17, 23, 20, 10, 10, 7, 7, 20, 17, FLUX 207	
• 23, 39, 38, 54, 40, 22, 33, 23, 22, 24, 31, 39, 30, 24, 32, FLUX 208	
• 30, 22, 23, 13, 23, 23, 17, 30, 29, 23, 35, 28, 22, 60, 46, 44, FLUX 209	
• 48, 36, 39, 28, 49, 69, 59, 33, 55, 40, 44, 50, 34, 27, FLUX 210	
• 10, 7, 10, 17, 22, 13, 26, 31, 17, 23, 37, 47, 38, 43, 31, 31, FLUX 211	
• 13, 13, 13, 28, 23, 7, 7, 55, 31, 22, 10, 20, 58, 45, 17, FLUX 212	
• 22, 31, 31, 17, 3, 27, 47, 50, 44, 41, 31, 29, 13, 13, 10, 7, FLUX 213	
• 31, 7, 3, 10, 3, 17, 22, 35, 31, 3, 10, 13, 22, 33, FLUX 214	
• 13, 27, 45, 39, 41, 37, 30, 29, 20, 0, 3, 10, 22, 26, 20, 20, 20, FLUX 215	
• 10, 3, 10, 35, 26, 28, 28, 24, 7, 10, 10, 26, 31, 13, 7, FLUX 216	

C----- MAGNETIC FLUX FOR 640101 TC 540630

DATA MGF13/	FLUX 217
• 17, 52, 36, 34, 22, 13, 20, 17, 35, 36, 22, 17, 17, 2, 3, 40, FLUX 218	
• 32, 20, 20, 17, 3, 10, 10, 26, 31, 20, 10, 23, 36, 24, 39, FLUX 219	
• 24, 22, 3, 27, 26, 42, 30, 35, 30, 20, 7, 29, 43, 24, 20, 13, FLUX 220	

• 17, 52, 36, 34, 22, 13, 20, 17, 35, 36, 22, 17, 17, 2, 3, 40, FLUX 221

• 32, 20, 20, 17, 3, 10, 10, 26, 31, 20, 10, 23, 36, 24, 39, FLUX 222

• 24, 22, 3, 27, 26, 42, 30, 35, 30, 20, 7, 29, 43, 24, 20, 13, FLUX 223

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

• 17, 13, 3, 33, 30, 20, 22, 20, 34, 33, 30, 32, 22,	FLUX 224
• 10, 2, 20, 52, 44, 32, 27, 33, 23, 10, 22, 31, 22, 24, 26, 22, FLUX 225	
• 24, 7, 7, 22, 27, 41, 42, 34, 31, 26, 7, 0, 7, 39, 7, FLUX 226	
• 49, 39, 33, 26, 26, 17, 24, 29, 20, 13, 29, 10, 13, 10, 23, 23, FLUX 227	
• 31, 36, 37, 30, 23, 3, 7, 10, 26, 24, 39, 44, 31, 26, FLUX 228	
• 37, 26, 10, 10, 23, 10, 7, 2, 3, 35, 34, 3, 33, 40, 41, 36, FLUX 229	
• 23, 13, 10, 7, 13, 10, 17, 36, 43, 20, 26, 22, 13, 17, 10, FLUX 230	
• 13, 10, 10, 10, 7, 10, 13, 23, 22, 50, 39, 27, 23, 20, 17, 10, FLUX 231	
• 10, 20, 13, 32, 26, 13, 17, 13, 24, 13, 26, 17, 7, FLUX 232	
C----- MAGNETIC FLUX FOR 640701 TC 541231	FLUX 233
DATA MGFL1 /	FLUX 234
• 10, 7, 33, 22, 13, 13, 33, 36, 31, 28, 17, 17, 17, 7, 3, 20, FLUX 235	
• 37, 38, 29, 24, 17, 23, 13, 10, 13, 10, 3, 3, 31, 29, 20, FLUX 236	
• 17, 10, 13, 44, 31, 20, 28, 10, 22, 7, 40, 29, 20, 10, 7, 17, FLUX 237	
• 13, 17, 13, 10, 10, 20, 10, 7, 22, 24, 22, 7, 13, 7, 28, FLUX 238	
• 35, 24, 23, 23, 17, 27, 41, 37, 31, 24, 10, 3, 3, 3, 7, 28, FLUX 239	
• 23, 13, 7, 3, 13, 49, 22, 23, 13, 10, 17, 45, 20, 37, FLUX 240	
• 23, 10, 24, 42, 35, 28, 28, 30, 29, 10, 7, 30, 20, 20, 17, 10, FLUX 241	
• 17, 27, 39, 27, 30, 7, 2, 13, 10, 33, 17, 13, 20, 7, 3, FLUX 242	
• 29, 28, 10, 20, 23, 10, 2, 22, 34, 26, 13, 22, 10, 2, 27, 24, FLUX 243	
• 13, 13, 3, 7, 7, 17, 35, 3, 3, 26, 10, 24, 10, 26, FLUX 244	
• 22, 7, 13, 10, 3, 7, 24, 17, 13, 7, 7, 3, 23, 20, 20, 22, 30, FLUX 245	
• 30, 17, 23, 10, 10, 7, 10, 7, 10, 13, 3, 7, 10, 3, 7, FLUX 246	
C----- MAGNETIC FLUX FOR 650101 TC 550630	FLUX 247
DATA MGFLU1 /	FLUX 248
• 7, 26, 20, 10, 3, 3, 10, 28, 20, 13, 3, 27, 28, 17, 17, 7, FLUX 249	
• 24, 13, 10, 20, 24, 35, 20, 3, 3, 7, 17, 13, 13, 10, 7, FLUX 250	
• 10, 3, 13, 24, 13, 24, 43, 32, 24, 27, 24, 10, 10, 26, 27, 17, FLUX 251	
• 3, 10, 10, 13, 32, 13, 33, 26, 29, 20, 23, 17, FLUX 252	
• 20, 22, 39, 36, 20, 10, 20, 3, 10, 3, 10, 10, 24, 17, 27, 10, FLUX 253	
• 13, 3, 10, 13, 22, 22, 39, 27, 35, 28, 23, 13, 17, 3, 10, FLUX 254	
• 10, 3, 7, 17, 10, 20, 22, 10, 26, 17, 22, 20, 13, 13, 10, 10, FLUX 255	
• 26, 57, 29, 24, 7, 13, 13, 13, 10, 17, 13, 7, 13, 13, FLUX 256	
• 10, 3, 7, 10, 39, 17, 13, 26, 27, 20, 3, 10, 7, 7, 10, 33, FLUX 257	
• 13, 10, 3, 10, 13, 17, 13, 17, 7, 10, 17, 13, 7, 7, 10, FLUX 258	
• 13, 17, 23, 26, 17, 13, 7, 23, 27, 3, 13, 7, 3, 17, 34, 58, FLUX 259	
• 44, 26, 3, 3, 10, 7, 7, 26, 24, 17, 7, 26, 29, FLUX 260	
C----- MAGNETIC FLUX FOR 650701 TC 551231	FLUX 261
DATA MGFLU2 /	FLUX 262
• 28, 13, 13, 7, 7, 34, 22, 36, 27, 29, 3, 13, 13, 10, 24, 10, FLUX 263	
• 3, 17, 28, 13, 7, 10, 28, 20, 17, 10, 22, 30, 27, 10, 7, FLUX 264	
• 13, 26, 17, 20, 10, 7, 17, 17, 20, 10, 17, 17, 7, 22, 17, 20, FLUX 265	
• 26, 36, 40, 32, 27, 13, 23, 29, 28, 20, 17, 7, 17, 22, 26, FLUX 266	
• 17, 13, 10, 31, 23, 23, 20, 10, 7, 7, 10, 26, 17, 7, 30, 45, FLUX 267	
• 33, 31, 32, 13, 13, 13, 24, 24, 27, 23, 35, 40, 20, 7, FLUX 268	
• 3, 31, 7, 2, 22, 3, 17, 30, 10, 7, 7, 17, 22, 17, 3, 3, 3, FLUX 269	
• 3, 17, 10, 3, 2, 29, 34, 29, 26, 20, 17, 30, 13, 22, 17, FLUX 270	
• 10, 13, 2, 22, 28, 32, 23, 10, 13, 0, 7, 7, 24, 7, 3, 2, 2, FLUX 271	
• 10, 17, 24, 32, 24, 10, 3, 10, 13, 10, 10, 3, 7, 27, FLUX 272	
• 34, 23, 3, 26, 7, 7, 10, 17, 24, 24, 24, 17, 3, 2, 2, 2, FLUX 273	
• 3, 27, 20, 10, 3, 17, 7, 23, 27, 34, 24, 31, 22, 17, 7, FLUX 274	
C----- MAGNETIC FLUX FOR 660101 TC 560630	FLUX 275
DATA MGFLU3 /	FLUX 276
• 3, 22, 17, 26, 10, 3, 20, 22, 22, 20, 3, 3, 3, 7, 13, 0, FLUX 277	
• 3, 13, 7, 30, 37, 40, 29, 29, 26, 29, 7, 20, 17, 3, 3, FLUX 278	
• 7, 7, 26, 23, 33, 22, 10, 10, 7, 20, 27, 13, 17, 3, 10, 13, FLUX 279	

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

• 10,	7,	29,	32,	10,	29,	41,	34,	24,	7,	10,	3,		FLUX	280		
• 7,	7,	24,	23,	13,	10,	3,	7,	10,	24,	17,	17,	29,	56,	20,	20, FLUX	281
• 17,	10,	35,	24,	22,	20,	57,	3,	29,	35,	28,	48,	27,	17,	7,	FLUX	282
• 33,	28,	20,	22,	17,	20,	24,	24,	13,	13,	3,	7,	30,	22,	10,	7, FLUX	283
• 10,	7,	3,	13,	13,	28,	24,	17,	7,	7,	2,	10,	17,	24,		FLUX	284
• 22,	27,	13,	27,	17,	20,	10,	13,	13,	3,	24,	17,	20,	3,	3,	13, FLUX	285
• 20,	13,	7,	22,	10,	10,	3,	3,	13,	59,	13,	13,	10,	17,	50,	FLUX	286
• 27,	24,	20,	10,	13,	10,	23,	10,	7,	3,	7,	20,	13,	10,	17,	17, FLUX	287
• 10,	7,	17,	20,	10,	7,	32,	31,	31,	17,	10,	13,	17,	17,		FLUX	288
C----- MAGNETIC FLUX FOR 660701 TC 661231														FLUX	289	
DATA MGFLU4 /														FLUX	290	
• 13,	10,	10,	29,	13,	13,	10,	37,	45,	39,	22,	30,	7,	10,	22,	17, FLUX	291
• 26,	10,	13,	17,	29,	22,	17,	17,	10,	17,	26,	24,	13,	17,	13,	FLUX	292
• 17,	2,	20,	22,	24,	17,	13,	13,	23,	27,	29,	29,	17,	23,	13,	10, FLUX	293
• 3,	24,	35,	20,	13,	10,	37,	31,	22,	17,	13,	10,	28,	60,	37,	FLUX	294
• 37,	30,	63,	67,	28,	38,	29,	48,	34,	34,	20,	13,	10,	24,	35,	24, FLUX	295
• 23,	7,	32,	36,	24,	17,	32,	27,	28,	37,	33,	37,	32,	31,		FLUX	296
• 17,	7,	10,	39,	45,	37,	22,	13,	23,	7,	3,	24,	22,	10,	29,	35, FLUX	297
• 17,	10,	10,	3,	3,	3,	26,	37,	30,	17,	13,	10,	28,	44,		FLUX	298
• 43,	29,	32,	23,	23,	20,	17,	20,	7,	23,	17,	22,	20,	3,	10,	10, FLUX	299
• 26,	27,	27,	22,	17,	7,	3,	17,	10,	24,	17,	34,	30,	41,		FLUX	300
• 32,	17,	10,	34,	35,	20,	10,	10,	7,	10,	7,	3,	35,	50,	33,	22, FLUX	301
• 23,	13,	7,	20,	27,	29,	22,	27,	29,	38,	44,	29,	20,	17,	7,	FLUX	302
C----- MAGNETIC FLUX FOR 670101 TC 570630														FLUX	303	
DATA MGFLU5 /														FLUX	304	
• 33,	20,	24,	3,	7,	17,	41,	55,	27,	10,	31,	3,	39,	55,	23,	23, FLUX	305
• 10,	13,	13,	28,	23,	10,	13,	3,	13,	10,	10,	27,	10,	7,	3,	FLUX	306
• 10,	3,	3,	26,	30,	20,	42,	49,	22,	3,	26,	3,	10,	10,	20,	56, FLUX	307
• 30,	13,	13,	13,	17,	20,	29,	10,	30,	26,	13,	10,				FLUX	308
• 13,	10,	22,	17,	26,	22,	13,	3,	27,	22,	3,	3,	13,	13,	3,	7, FLUX	309
• 10,	37,	39,	28,	24,	10,	10,	7,	10,	10,	33,	22,	17,	26,	7,	FLUX	310
• 33,	27,	13,	30,	26,	27,	22,	13,	13,	13,	10,	10,	3,	7,	10,	24, FLUX	311
• 24,	20,	35,	20,	20,	33,	36,	41,	22,	7,	7,	7,	13,	7,		FLUX	312
• 29,	39,	62,	27,	24,	17,	31,	13,	13,	20,	24,	28,	29,	24,	17,	17, FLUX	313
• 26,	20,	22,	17,	17,	7,	23,	26,	70,	72,	35,	53,	49,	48,	48,	FLUX	314
• 10,	23,	20,	28,	45,	49,	37,	30,	29,	20,	17,	13,	17,	29,	23,	17, FLUX	315
• 23,	10,	13,	10,	10,	13,	10,	10,	38,	38,	34,	24,	23,	29,		FLUX	316
C----- MAGNETIC FLUX FOR 670701 TC 571231														FLUX	317	
DATA MGFLU6 /														FLUX	318	
• 32,	20,	10,	17,	31,	22,	27,	10,	7,	7,	36,	22,	20,	20,	22,	10, FLUX	319
• 10,	20,	10,	13,	13,	7,	29,	22,	26,	17,	10,	27,	27,	32,	3,	FLUX	320
• 10,	3,	7,	22,	22,	17,	23,	26,	20,	28,	39,	22,	17,	24,	17,	22, FLUX	321
• 34,	29,	23,	26,	17,	13,	13,	20,	29,	24,	20,	17,	22,	24,	26,	FLUX	322
• 39,	37,	17,	17,	10,	10,	23,	23,	26,	7,	7,	10,	41,	29,	29,	26, FLUX	323
• 13,	27,	33,	49,	61,	24,	10,	17,	17,	10,	13,	45,	49,	45,		FLUX	324
• 24,	13,	20,	10,	20,	17,	20,	27,	33,	44,	28,	34,	23,	28,	22,	13, FLUX	325
• 24,	20,	10,	7,	2,	17,	22,	10,	7,	7,	24,	39,	39,	30,	20,	FLUX	326
• 7,	24,	37,	23,	26,	10,	7,	33,	24,	10,	32,	37,	32,	26,	24,	23, FLUX	327
• 3,	7,	7,	3,	13,	28,	22,	35,	25,	23,	22,	32,	30,	28,		FLUX	328
• 44,	33,	22,	20,	28,	36,	35,	39,	24,	17,	7,	17,	13,	10,	24,	22, FLUX	329
• 26,	34,	42,	43,	31,	30,	31,	3,	7,	20,	23,	13,	17,	23,	54,	FLUX	330
C----- MAGNETIC FLUX FOR 680101 TC 580630														FLUX	331	
DATA MGFLU7 /														FLUX	332	
• 39,	45,	23,	20,	24,	31,	22,	17,	7,	13,	24,	28,	23,	27,	24,	28, FLUX	333
• 28,	24,	23,	30,	22,	23,	24,	24,	10,	28,	23,	29,	31,	26,	22,	FLUX	334
• 24,	34,	31,	32,	22,	3,	10,	29,	34,	45,	51,	29,	33,	13,	39,	29, FLUX	335

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

• 33, 38, 27, 45, 38, 24, 13, 20, 10, 10, 22, 42, 33, FLUX 336
 • 24, 23, 29, 31, 32, 20, 13, 10, 23, 30, 22, 22, 13, 37, 41, 39, FLUX 337
 • 27, 27, 26, 35, 20, 13, 23, 37, 34, 29, 31, 27, 29, 40, 31, FLUX 338
 • 39, 27, 28, 23, 44, 45, 26, 7, 3, 17, 24, 26, 37, 39, 29, 29, 29, FLUX 339
 • 24, 22, 7, 3, 10, 22, 27, 22, 13, 39, 35, 31, 29, 20, FLUX 340
 • 28, 29, 26, 17, 10, 7, 52, 20, 36, 24, 32, 40, 29, 26, 23, 26, FLUX 341
 • 30, 32, 26, 34, 38, 31, 28, 33, 17, 10, 10, 17, 23, 24, 24, FLUX 342
 • 32, 32, 29, 23, 13, 13, 26, 28, 23, 45, 65, 46, 50, 39, 22, 28, FLUX 343
 • 33, 27, 29, 20, 7, 24, 17, 3, 10, 29, 26, 17, 28, 26, FLUX 344
 C----- MAGNETIC FLUX FOR 680701 TC 631231 FLUX 345

DATA MGFL18 / FLUX 346
 • 24, 23, 31, 24, 22, 17, 20, 17, 10, 45, 24, 20, 57, 37, 17, 23, FLUX 347
 • 17, 24, 22, 13, 23, 34, 26, 7, 20, 30, 26, 22, 13, 20, 13, FLUX 348
 • 10, 10, 27, 17, 27, 31, 28, 29, 28, 20, 17, 17, 26, 40, 37, 47, FLUX 349
 • 47, 34, 24, 17, 10, 13, 26, 34, 10, 10, 13, 10, 3, 7, 29, FLUX 350
 • 23, 24, 33, 29, 27, 34, 33, 50, 27, 17, 17, 34, 48, 41, 42, 24, FLUX 351
 • 17, 7, 27, 20, 28, 26, 37, 10, 3, 10, 7, 22, 23, 20, FLUX 352
 • 31, 50, 41, 7, 3, 17, 30, 20, 23, 17, 3, 51, 42, 29, 13, 13, FLUX 353
 • 23, 22, 26, 20, 3, 2, 7, 20, 17, 13, 17, 13, 46, 30, 67, FLUX 354
 • 68, 60, 45, 40, 17, 20, 32, 24, 37, 27, 27, 7, 17, 10, 7, 32, FLUX 355
 • 34, 37, 17, 32, 20, 13, 17, 13, 22, 20, 24, 20, 10, 3, FLUX 356
 • 23, 17, 33, 36, 39, 23, 13, 26, 17, 29, 17, 22, 17, 7, 17, 22, FLUX 357
 • 10, 20, 27, 38, 28, 28, 29, 23, 35, 10, 28, 13, 23, 22, 26, FLUX 358

C----- MAGNETIC FLUX FOR 690101 TC 590630 FLUX 359

DATA MGFL19 / FLUX 360
 • 22, 10, 2, 7, 7, 2, 23, 22, 10, 7, 10, 17, 2, 23, 28, 24, FLUX 361
 • 36, 35, 26, 26, 17, 10, 13, 27, 41, 37, 27, 13, 3, 17, 17, FLUX 362
 • 7, 50, 52, 28, 24, 31, 23, 23, 10, 27, 55, 24, 24, 24, 33, 26, FLUX 363
 • 10, 2, 22, 22, 22, 10, 23, 17, 20, 27, 43, 30, FLUX 364
 • 24, 23, 7, 17, 24, 29, 32, 26, 23, 13, 33, 47, 22, 22, 33, 30, FLUX 365
 • 46, 26, 32, 37, 28, 26, 50, 60, 37, 24, 17, 17, 28, 31, 30, FLUX 366
 • 38, 31, 32, 26, 24, 26, 35, 22, 27, 17, 20, 26, 35, 31, 29, 32, FLUX 367
 • 36, 30, 13, 22, 17, 24, 13, 23, 23, 17, 26, 55, 27, 40, FLUX 368
 • 22, 41, 30, 22, 24, 22, 13, 13, 26, 24, 13, 22, 47, 51, 70, 48, FLUX 369
 • 29, 35, 24, 22, 28, 26, 24, 24, 20, 10, 7, 23, 13, 26, 27, FLUX 370
 • 13, 17, 13, 13, 17, 10, 22, 29, 30, 26, 22, 33, 30, 43, 22, 33, FLUX 371
 • 33, 10, 17, 24, 13, 3, 13, 27, 24, 17, 13, 10, 10, 13, FLUX 372

C----- MAGNETIC FLUX FOR 690701 TC 591231 FLUX 373

DATA MGFL10 / FLUX 374
 • 32, 17, 7, 7, 3, 10, 17, 13, 20, 20, 17, 27, 29, 28, 13, 24, FLUX 375
 • 10, 7, 3, 7, 10, 20, 13, 10, 10, 35, 49, 10, 3, 28, 17, FLUX 376
 • 7, 13, 29, 28, 20, 13, 22, 23, 26, 17, 10, 36, 20, 17, 10, 10, 10, FLUX 377
 • 17, 20, 28, 20, 17, 13, 26, 17, 10, 30, 36, 17, 10, 10, 13, FLUX 378
 • 7, 3, 10, 10, 33, 35, 28, 34, 24, 22, 22, 10, 3, 26, 34, 20, FLUX 379
 • 27, 34, 23, 22, 13, 7, 20, 17, 24, 10, 17, 50, 58, 62, FLUX 380
 • 35, 43, 33, 24, 17, 31, 17, 7, 23, 36, 24, 23, 13, 7, 7, 13, FLUX 381
 • 17, 20, 24, 13, 22, 20, 10, 29, 20, 10, 22, 17, 10, 2, 13, FLUX 382
 • 7, 26, 31, 17, 17, 7, 27, 29, 47, 46, 26, 20, 13, 3, 3, 3, FLUX 383
 • 7, 10, 20, 10, 3, 24, 13, 17, 17, 26, 37, 23, 28, 33, FLUX 384
 • 13, 10, 10, 20, 33, 34, 13, 13, 27, 22, 26, 13, 7, 10, 13, 26, FLUX 385
 • 10, 7, 10, 7, 7, 20, 26, 23, 23, 24, 23, 10, 10, 3, 7, FLUX 386

C----- MAGNETIC FLUX FOR 700101 TC 700630 FLUX 387

DATA MGFL11 / FLUX 388
 • 22, 42, 23, 7, 17, 13, 13, 17, 24, 17, 10, 22, 10, 17, 20, 32, FLUX 389
 • 26, 17, 13, 20, 17, 13, 13, 20, 3, 3, 17, 13, 17, 27, 22, FLUX 390
 • 23, 35, 20, 27, 24, 10, 3, 3, 7, 13, 7, 7, 13, 26, 22, 13, FLUX 391

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR.

• 24, 23, 10, 7, 3, 3, 10, 26, 10, 24, 22, 29,	FLUX 392
• 37, 31, 30, 31, 27, 39, 48, 73, 50, 20, 7, 17, 22, 7, 20, 7, FLUX 393	
• 13, 17, 13, 10, 7, 3, 13, 3, 7, 13, 31, 36, 32, 31, 51, FLUX 394	
• 17, 17, 26, 24, 23, 37, 24, 27, 33, 7, 22, 17, 10, 7, 13, 29, FLUX 395	
• 41, 33, 36, 36, 62, 47, 29, 31, 32, 28, 24, 13, 20, 33, FLUX 396	
• 26, 23, 24, 17, 27, 17, 17, 10, 10, 3, 7, 30, 17, 28, 24, 17, FLUX 397	
• 24, 13, 17, 28, 22, 17, 20, 17, 20, 3, 30, 49, 28, 26, 17, FLUX 398	
• 41, 23, 26, 22, 17, 7, 23, 28, 13, 17, 10, 13, 24, 22, 28, 23, FLUX 399	
• 28, 40, 22, 33, 32, 10, 10, 17, 17, 28, 45, 20, 17, 13, FLUX 400	

C----- MAGNETIC FLUX FOR 700701 TC 701231 FLUX 401
DATA MGFL12/ FLUX 402

• 24, 26, 38, 39, 31, 30, 13, 24, 62, 44, 24, 29, 24, 23, 13, 17, FLUX 403
• 22, 13, 13, 17, 42, 27, 23, 39, 63, 36, 29, 10, 49, 20, 29, FLUX 404
• 10, 17, 10, 10, 7, 22, 27, 39, 34, 20, 23, 23, 17, 10, 20, 36, FLUX 405
• 67, 45, 29, 10, 13, 17, 20, 10, 22, 32, 27, 27, 24, 13, 27, FLUX 406
• 37, 33, 30, 26, 22, 13, 17, 22, 13, 17, 2, 13, 38, 34, 26, 22, FLUX 407
• 22, 24, 33, 30, 37, 27, 17, 17, 22, 17, 34, 20, 13, 23, FLUX 408
• 24, 23, 29, 39, 23, 17, 10, 3, 3, 20, 30, 31, 23, 22, 10, 46, FLUX 409
• 44, 47, 26, 20, 2, 33, 41, 29, 17, 10, 13, 30, 28, 23, 10, FLUX 410
• 3, 10, 22, 20, 23, 27, 54, 22, 22, 32, 35, 24, 23, 20, 10, 13, FLUX 411
• 17, 33, 33, 7, 42, 33, 36, 27, 28, 22, 24, 22, 3, 2, FLUX 412
• 2, 10, 10, 13, 22, 22, 22, 34, 17, 7, 3, 10, 10, 10, 56, 29, 10, FLUX 413
• 7, 7, 24, 22, 10, 17, 20, 29, 10, 10, 22, 33, 27, 28, 37, FLUX 414

C----- MAGNETIC FLUX FOR 710101 TC 710630 FLUX 415
DATA MGFL13/ FLUX 416

• 17, 34, 44, 31, 23, 10, 2, 0, 2, 17, 22, 7, 17, 23, 22, 20, FLUX 417
• 17, 30, 28, 41, 27, 24, 17, 24, 23, 3, 46, 47, 31, 39, 32, FLUX 418
• 31, 23, 10, 10, 10, 17, 17, 24, 24, 24, 13, 17, 10, 31, 41, 41, FLUX 419
• 28, 27, 23, 22, 20, 7, 28, 28, 48, 43, 24, 17, FLUX 420
• 10, 10, 23, 29, 13, 10, 10, 30, 17, 30, 20, 35, 47, 41, 37, 29, FLUX 421
• 23, 17, 31, 28, 7, 7, 7, 29, 27, 30, 23, 3, 3, 23, 39, FLUX 422
• 27, 20, 31, 40, 26, 29, 17, 17, 52, 42, 40, 24, 22, 47, 45, 30, FLUX 423
• 22, 26, 22, 10, 37, 29, 24, 7, 2, 13, 22, 36, 23, 22, FLUX 424
• 20, 32, 22, 22, 22, 51, 45, 28, 27, 26, 10, 10, 10, 29, 27, 13, FLUX 425
• 58, 47, 24, 13, 13, 13, 26, 20, 17, 23, 3, 10, 17, 34, 10, FLUX 426
• 37, 43, 39, 23, 17, 13, 7, 20, 7, 10, 17, 7, 22, 13, 13, 17, FLUX 427
• 24, 17, 3, 10, 10, 13, 20, 13, 43, 27, 10, 23, 37, 24, FLUX 428

C----- MAGNETIC FLUX FOR 710701 TC 711231 FLUX 429
DATA MGFL14/ FLUX 430

• 24, 25, 20, 20, 20, 23, 7, 22, 17, 3, 17, 20, 23, 22, 22, 17, FLUX 431
• 10, 20, 20, 10, 36, 22, 22, 13, 7, 32, 23, 17, 17, 22, 23, FLUX 432
• 17, 32, 10, 20, 29, 3, 13, 26, 23, 26, 30, 24, 17, 10, 13, 22, FLUX 433
• 26, 29, 10, 10, 22, 23, 27, 20, 20, 24, 7, 17, 17, 17, 43, FLUX 434
• 24, 3, 13, 23, 29, 27, 35, 27, 20, 17, 17, 22, 32, 23, 23, 26, FLUX 435
• 28, 50, 23, 31, 13, 10, 3, 17, 40, 36, 46, 24, 17, 37, FLUX 436
• 36, 36, 35, 28, 31, 35, 31, 37, 46, 22, 24, 23, 29, 23, 22, 10, FLUX 437
• 7, 3, 3, 10, 13, 23, 17, 28, 17, 3, 10, 32, 40, 29, 13, FLUX 438
• 17, 7, 7, 17, 13, 7, 20, 22, 10, 13, 31, 23, 7, 2, 3, 3, FLUX 439
• 2, 20, 20, 17, 26, 43, 49, 45, 48, 34, 22, 24, 13, 13, FLUX 440
• 17, 13, 27, 22, 13, 7, 2, 7, 20, 7, 17, 23, 28, 7, 7, 22, FLUX 441
• 57, 37, 26, 7, 24, 34, 27, 20, 17, 27, 10, 10, 30, 31, 20, FLUX 442

C----- MAGNETIC FLUX FOR 720101 TC 720630 FLUX 443
DATA MGFL15/ FLUX 444

• 20, 22, 17, 24, 17, 3, 10, 10, 13, 20, 30, 17, 10, 7, 34, 41, FLUX 445
• 35, 34, 26, 22, 37, 39, 43, 24, 32, 37, 30, 37, 29, 23, 20, FLUX 446
• 17, 26, 20, 21, 15, 14, 18, 15, 9, 23, 17, 9, 32, 28, 26, 20, FLUX 447

```
* 23, 20, 24, 24, 22, 11, 16, 41, 30, 14, 11, 14, 4, FLUX 448
* 19, 23, 30, 19, 13, 24, 46, 23, 23, 7, 14, 8, 17, 10, 13, 31, FLUX 449
* 30, 22, 12, 13, 13, 21, 19, 33, 20, 23, 32, 19, 34, 38, 28, FLUX 450
* 29, 18, 8, 30, 28, 17, 20, 14, 5, 14, 14, 23, 25, 18, 17, 14, FLUX 451
* 15, 37, 20, 18, 30, 17, 20, 12, 7, 5, 14, 33, 47, 29, FLUX 452
* 32, 32, 18, 14, 15, 22, 8, 9, 28, 23, 19, 22, 18, 18, 27, 25, FLUX 453
* 22, 21, 8, 10, 10, 14, 16, 11, 14, 20, 18, 33, 23, 28, 26, FLUX 454
* 14, 17, 25, 27, 25, 15, 19, 15, 10, 10, 8, 7, 11, 21, 23, 20, FLUX 455
* 48, 66, 29, 18, 13, 25, 25, 26, 15, 21, 29, 27, 25, 7, FLUX 456
C----- MAGNETIC FLUX FOR 720701 TC 721231
    DATA MGFL16/
    * 31#14,153#0/
C----- MAGNETIC FLUX FOR 730101 TC 730630
    DATA MGFL17/
    * 181#0/
C----- MAGNETIC FLUX FOR 730701 TC 731231
    DATA MGFL18/
    * 184#0/
    CALL FLUX(NARCS,MFLUX,NFLUXS)
C----DATE OF LAST MAGNETIC FLUX VALUE      720630
    RETURN
    END
```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

FLUXS

DESCRIPTION

FLUXS stores in half-word integers ten times the daily 10.7 cm. flux line observed at Ottawa and adjusted to one A.U.

FLUXS tables must be updated using the values obtained from bulletins printed by E.S.S.A., Boulder, Colorado. An example of the bulletin is given on the following page.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

DAILY SOLAR INDICES

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

JUNE 1972

C 4

JUN. 1972	YEAR DAY	CARTELS 27-DAY CYCLE NUMBER	SUNSPOT NUMBERS		OBSERVED FLUX OTTAWA 2300	SOLAR FLUX ADJUSTED TO 1 A.U.								
			R _Z	R _{A'}		AFCRL 15400	AFCRL 8800	AFCRL 4995	OTTAWA 2800	AFCRL 2695	AFCRL 1415	AFCRL 606	AFCRL 410	AFCRL 245
1	153	3	78	75	124.6	534	281	162	128.2	117.9	76.3	53.1	24.7	10.5
2	154	4	96	86	126.3	54	287	163	130.0	126.0	78.7	54.4	25.2	10.9
3	155	5	102	100	133.6*	54	293	169	137.5*	135.3	86.7	59.6	20.1	11.6
4	156	6	116	121	145.3*	54	300	164	149.5*	146.4	90.3	60.9	29.8	14.6
5	157	7	132	130	160.0	54	303	203	164.8	158.5	98.3	65.3	29.3	10.9
6	158	8	103	115	154.5*	54	301	194	159.1	150.9	96.1	61.9	28.8	10.9
7	159	9	95	99	143.3	54	300	194	152.7	145.4	91.0	63.2	28.8	10.7
8	160	10	87	90	145.3*	54	310	199	150.2*	143.2	94.0	62.2	30.6	11.5
9	161	11	76	79	144.6*	55	311	197	149.1*	143.6	95.1	62.0	28.6	11.6
10	162	12	68	65	135.3	55	302	182	139.5	133.5	88.9	59.6	26.4	11.7
11	163	13	63	41	139.6*	54	301	186	143.2*	143.1	94.5	64.4	29.0	12.2
12	164	14	48	38	145.2	55	300	183	149.7	143.0	93.3	64.2	29.3	11.5
13	165	15	43	45	134.6*	54	280	174	130.9*	133.7	90.9	63.7	28.9	11.8
14	166	16	60	56	132.3	53	273	167	136.5	132.0	89.9	63.5	30.1	11.8
15	167	17	88	96	135.2*	55	293	195	139.5*	154.4	101.0	66.3	32.9	21.3
16	168	18	98	95	130.3*	54	281	176	142.7*	134.5	89.9	61.9	28.6	14.0
17	169	19	101	96	145.0	54	280	177	149.6	139.5	93.6	62.1	30.3	11.8
18	170	20	86	84	144.2*	54	281	178	149.0*	145.2	95.8	61.9	31.0	15.9
19	171	21	83	80	138.6*	53	277	173	143.2*	140.0	93.6	59.8	23.2	11.9
20	172	22	92	88	137.9	53	272	168	142.5	133.5	86.5	82.6	53.2	51.4
21	173	23	96	93	134.6*	53	279	171	139.0*	137.0	86.7	70.0	43.1	26.8
22	174	24	87	97	130.8	54	279	169	135.1	131.1	86.6	58.5	31.3	14.6
23	175	25	84	84	126.5	54	271	166	130.7	127.1	83.6	56.5	29.4	12.2
24	176	26	79	80	124.4	54	271	162	128.5	121.8	82.9	56.4	23.4	13.3
25	177	27	77	74	121.5	53	270	159	125.5	118.9	80.6	55.1	23.9	11.1
26	178	1	73	71	116.8	54	265	155	120.8	114.1	83.1	54.1	27.4	10.5
27	179	2	66	63	117.9*	53	265	156	121.9*	119.0	82.3	54.2	27.6	10.9
28	180	3	78	69	123.1	54	269	160	127.3	124.5	81.3	55.2	27.8	10.5
29	181	4	73	70	128.0	53	269	163	132.4	127.2	82.3	55.9	27.4	10.9
30	182	5	73	66	130.1	53	269	164	134.5	127.2	80.9	58.6	20.2	10.8
MEAN			83.4	81.7	135.4	54	284	175	139.7	134.9	88.8	60.9	30.3	14.0

NAME	FLUXS
PURPOSE	STORES SOLAR FLUX DATA THROUTH FEB., 1972
CALLING SEQUENCE	CALL FLUXS(NARCS,MFLUX,NFLUXS)
SYMBOL . TYPE	DESCRIPTION
NARCS	I INPUT - NUMBER OF ARCS
MFLUX	I INPUT - MAGNETIC FLUX ARRAY (1)
NFLUXS	I INPUT - NUMBER OF SOLAR FLUX VALUES IN ARRAY
SUBROUTINES USED	ADFLUX
COMMON BLOCKS	NONE
INPUT FILES	NONE
OUTPUT FILES	NONE
REFERENCES	*SOLAR GEOPHYSICAL DATA, PART 1, 1972 E.S.S.A., BOULDER, COLO. *GEODYN SYSTEMS DESCRIPTION

SUBROUTINE FLUXS(NARCS,MFLUX,NFLUXS)	FLUX	31
INTEGER REGYMD,ENDYMD	FLUX	32
INTEGER#2 SFLUX,MFLUX	FLUX	33
DIMENSION SFLUX(5785),MFLUX(1)	FLUX	34
INTEGER#2	FLUX	35
• SFL01(61),SFL02(123),SFL03(122),	FLUX	36
• SFL04(120),SFL05(123),SFL06(122),SFL07(121),SFL08(123),	FLUX	37
• SFL09(122),SFL10(123),SFL11(123),SFL12(122),SFL13(120),	FLUX	38
• SFL14(123),SFL15(122),SFL16(120),SFL17(123),SFL18(122),	FLUX	39
• SFL19(121),SFL20(123),SFL21(122),	FLUX	40
• SFLUX1(120),SFLUX2(123),SFLUX3(122),	FLUX	41
• SFLUX4(120),SFLUX5(123),SFLUX6(122),SFLUX7(120),SFLUX8(123),	FLUX	42
• SFLUX9(122),SFLU10(121),SFLU11(123),SFLU12(122),SFLU13(121),	FLUX	43
• SFLU14(123),SFLU15(122),SFLU16(120),SFLU17(123),SFLU18(122),	FLUX	44
• SFLU19(120),SFLU20(123),SFLU21(122),SFLU22(121),SFLU23(123),	FLUX	45
• SFLU24(122),SFLU25(120),SFLU26(123),SFLU27(122)	FLUX	46
EQUIVALENCE	FLUX	47
• (SFLUX(1), SFL01(1)),(SFLUX(62), SFL02(1)),	FLUX	48
• (SFLUX(135), SFL03(1)),(SFLUX(327), SFL04(1)),	FLUX	49
• (SFLUX(427), SFL05(1)),(SFLUX(550), SFL06(1)),	FLUX	50
• (SFLUX(672), SFL07(1)),(SFLUX(793), SFL08(1)),	FLUX	51
• (SFLUX(916), SFL09(1)),(SFLUX(1029), SFL10(1)),	FLUX	52
• (SFLUX(1158), SFL11(1)),(SFLUX(1281), SFL12(1)),	FLUX	53
• (SFLUX(1403), SFL13(1)),(SFLUX(1321), SFL14(1)),	FLUX	54
• (SFLUX(1646), SFL15(1)),(SFLUX(1764), SFL16(1)),	FLUX	55
• (SFLUX(1893), SFL17(1)),(SFLUX(2011), SFL18(1)),	FLUX	56

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

•(SFLUX(2133), SFL19(1)),(SFLUX(2254), SFL20(1)),
 •(SFLUX(2377), SFL21(1)),(SFLUX(2499), SFLUX1(1)),
 •(SFLUX(2519), SFLUX2(1)),(SFLUX(2742), SFLUX3(1))
 EQUIVALENCE
 •(SFLUX(2264), SFLUX4(1)),(SFLUX(2984), SFLUX5(1)),
 •(SFLUX(3107), SFLUX6(1)),(SFLUX(3229), SFLUX7(1)),
 •(SFLUX(3349), SFLUX8(1)),(SFLUX(3472), SFLUX9(1)),
 •(SFLUX(3594), SFLU10(1)),(SFLUX(3715), SFLU11(1)),
 •(SFLUX(3838), SFLU12(1)),(SFLUX(3960), SFLU13(1)),
 •(SFLUX(4080), SFLU14(1)),(SFLUX(4202), SFLU15(1)),
 •(SFLUX(4325), SFLU16(1)),(SFLUX(4446), SFLU17(1)),
 •(SFLUX(4568), SFLU18(1)),(SFLUX(4690), SFLU19(1)),
 •(SFLUX(4810), SFLU20(1)),(SFLUX(4933), SFLU21(1)),
 •(SFLUX(5055), SFLU22(1)),(SFLUX(5176), SFLU23(1)),
 •(SFLUX(5299), SFLU24(1)),(SFLUX(5421), SFLU25(1)),
 •(SFLUX(5541), SFLU26(1)),(SFLUX(5664), SFLU27(1))

DATA BEGYMD,ENDYMD/580301,720731/

C----- SOLAR FLUX FOR 580301 TO 580430

DATA SFL01/
 • 1950, 2090, 2230, 2320, 2330, 2510, 2560, 2610, 2660, 2420,
 • 2350, 2320, 2380, 2270, 2170, 2140, 2080, 2100, 2200, 2320,
 • 2240, 2560, 2680, 2740, 2580, 2840, 3020, 2950, 3320, 3440,
 • 3380,
 • 3210, 3260, 3020, 2950, 2900, 2890, 2930, 2720, 2500, 2440,
 • 2160, 1950, 1790, 1770, 1880, 1970, 2070, 2130, 2210, 2260,
 • 2290, 2370, 2350, 2440, 2480, 2450, 2700, 2580, 2550, 2650/

C----- SOLAR FLUX FOR 580501 TO 580631

DATA SFL02/
 • 2660, 2760, 2780, 2800, 2690, 2630, 2490, 2360, 2390, 2090,
 • 2110, 2090, 2030, 1940, 1960, 1940, 1740, 1970, 1970, 1970,
 • 1590, 1990, 2060, 2110, 2070, 2100, 2010, 2020, 2190, 2130,
 • 2090,
 • 2190, 2200, 2270, 2460, 2560, 2600, 2330, 2330, 2520, 2340/
 • 2350, 2270, 2200, 2080, 1970, 1910, 1820, 1770, 1390, 1930,
 • 1940, 2130, 2170, 2210, 2260, 2330, 2370, 2120, 2230, 2170,
 • 2150, 2150, 2240, 2320, 2380, 2320, 2370, 2320, 2180, 2080,
 • 2030, 1980, 1910, 1820, 1810, 1920, 1380, 1900, 2750, 2000,
 • 2090, 2140, 2130, 2260, 2400, 2600, 2610, 2900, 2850, 2870,
 • 2880,
 • 2740, 2540, 2370, 2160, 2210, 2390, 2350, 2360, 2250, 2220,
 • 2250, 2220, 2360, 2350, 2310, 2150, 2110, 2180, 2190, 2200,
 • 2310, 2390, 2430, 2530, 2630, 2640, 2520, 2440, 2520, 2490,
 • 2590/

C----- SOLAR FLUX FOR 580901 TO 581231

DATA SFL03/
 • 2610, 2610, 2700, 2560, 2330, 2160, 2100, 2110, 2350, 2450,
 • 2500, 2700, 2850, 2900, 2710, 2630, 2530, 2460, 2430, 2310,
 • 2210, 2490, 2260, 2250, 2220, 2180, 2190, 2250, 2270, 2280,
 • 2310, 2210, 2190, 1990, 1890, 1470, 1970, 1920, 1940,
 • 2100, 2190, 2250, 2260, 2330, 2530, 2960, 2860, 2960, 2780,
 • 2770, 2700, 2400, 2270, 1910, 1940, 1910, 2090, 2200, 2290,
 • 2220,
 • 2340, 2410, 2240, 2200, 2220, 2040, 2760, 1910, 1900, 1690,
 • 1660, 1560, 1630, 1660, 1660, 1620, 1730, 1740, 1430, 1870,
 • 1040, 2030, 2130, 2290, 2430, 2640, 2580, 2500, 2430, 2640,
 • 2F90, 2570, 2410, 2410, 2530, 2490, 2530, 2610, 2540, 2690,

FLUX	56
FLUX	57
FLUX	58
FLUX	59
FLUX	60
FLUX	61
FLUX	62
FLUX	63
FLUX	64
FLUX	65
FLUX	66
FLUX	67
FLUX	68
FLUX	69
FLUX	70
FLUX	71
FLUX	72
FLUX	73
FLUX	74
FLUX	75
FLUX	76
FLUX	77
FLUX	78
FLUX	79
FLUX	80
FLUX	81
FLUX	82
FLUX	83
FLUX	84
FLUX	85
FLUX	86
FLUX	87
FLUX	88
FLUX	89
FLUX	90
FLUX	91
FLUX	92
FLUX	93
FLUX	94
FLUX	95
FLUX	96
FLUX	97
FLUX	98
FLUX	99
FLUX	100
FLUX	101
FLUX	102
FLUX	103
FLUX	104
FLUX	105
FLUX	106
FLUX	107
FLUX	108
FLUX	109
FLUX	110
FLUX	111

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

- 2560, 2570, 2600, 2580, 2350, 2170, 2040, 2020, 1970, 1990,
- 1980, 2110, 2150, 2240, 2310, 2380, 2270, 2230, 2190, 2240,
- 2260/

FLUX 112

FLUX 113

FLUX 114

FLUX 115

FLUX 116

FLUX 117

FLUX 118

FLUX 119

FLUX 120

FLUX 121

FLUX 122

FLUX 123

FLUX 124

FLUX 125

FLUX 126

FLUX 127

FLUX 128

FLUX 129

FLUX 130

FLUX 131

FLUX 132

FLUX 133

FLUX 134

FLUX 135

FLUX 136

FLUX 137

FLUX 138

FLUX 139

FLUX 140

FLUX 141

FLUX 142

FLUX 143

FLUX 144

FLUX 145

FLUX 146

FLUX 147

FLUX 148

FLUX 149

FLUX 150

FLUX 151

FLUX 152

FLUX 153

FLUX 154

FLUX 155

FLUX 156

FLUX 157

FLUX 158

FLUX 159

FLUX 160

FLUX 161

FLUX 162

FLUX 163

FLUX 164

FLUX 165

FLUX 166

FLUX 167

C----- SOLAR FLUX FOR 590101 TO 590430

DATA SFL04/

- 2350, 2500, 2660, 2700, 2820, 2940, 3060, 2780, 2680, 2820,
- 2600, 2510, 2350, 2240, 2070, 2130, 2200, 2370, 2650, 2940,
- 3150, 3370, 3280, 3340, 3210, 3140, 3220, 3040, 2620, 2240,
- 2140,
- 2050, 2050, 2040, 2010, 1910, 1950, 1920, 1820, 1740, 1900,
- 1990, 1990, 2010, 1990, 2130, 2140, 2200, 2180, 2180, 2280,
- 2240, 2190, 2120, 2200, 2270, 2190, 2110, 2010,
- 1870, 1810, 1810, 1780, 1790, 1900, 1880, 1910, 1980, 2040,
- 2010, 1940, 2070, 2150, 2350, 2460, 2590, 2740, 2910, 2850,
- 2870, 2620, 2580, 2470, 2480, 2470, 2460, 2480, 2450, 2580,
- 2540,
- 2560, 2360, 2160, 2150, 1960, 1960, 2170, 2150, 2150, 2200,
- 2320, 2240, 2090, 1980, 1890, 1880, 1900, 1810, 1960, 2030,
- 2030, 1990, 2130, 2130, 2110, 2160, 2120, 2160, 2110, 2200/

C----- SOLAR FLUX FOR 590501 TO 590831

DATA SFL05/

- 2040, 1940, 1950, 1840, 1860, 2020, 2280, 2440, 2490, 2590,
- 2640, 2660, 2640, 2440, 2280, 2220, 2240, 2170, 1990, 2010,
- 2010, 2010, 1980, 1990, 2030, 2050, 2080, 1950, 1760, 1770,
- 1790,
- 1930, 1980, 1980, 1900, 1970, 2100, 1980, 2130, 2230, 2280,
- 2260, 2200, 2120, 2080, 2250, 2200, 2250, 2280, 2370, 2260,
- 2280, 2190, 2200, 2320, 2330, 2380, 2400, 2240, 2190, 1950,

C

- 1880, 1740, 1710, 1770, 1760, 1880, 1920, 1850, 1950, 2010,
- 1940, 2340, 2430, 2640, 2450, 2610, 2400, 2310, 2220, 2080,
- 1890, 1780, 1780, 1810, 1820, 1820, 2000, 2050, 2070, 2040,
- 2080,
- 2140, 2280, 2400, 2360, 2290, 2270, 2120, 2040, 2040, 2020,
- 2000, 1960, 1940, 1890, 1900, 2010, 2240, 2290, 2150, 2240,
- 2300, 2430, 2620, 2450, 2530, 2570, 2790, 3020, 3080, 3120,
- 3050/

C----- SOLAR FLUX FOR 590901 TO 591231

DATA SFL06/

- 2820, 2590, 2570, 2390, 2200, 2000, 1920, 1990, 2090, 2010,
- 2030, 1950, 1890, 1960, 1840, 1680, 1700, 1670, 1750, 1850,
- 1820, 1880, 1820, 1830, 1750, 1640, 1630, 1620, 1590, 1580,
- 1600, 1450, 1440, 1480, 1550, 1740, 1590, 1550, 1530, 1490,
- 1470, 1540, 1550, 1530, 1600, 1670, 1690, 1710, 1730, 1750,
- 1750, 1870, 1830, 1810, 1860, 1900, 1830, 1770, 1720, 1670,
- 1610,
- 1590, 1580, 1650, 1540, 1510, 1570, 1610, 1730, 1830, 1940,
- 1930, 1920, 1910, 1870, 1820, 1750, 1610, 1550, 1570, 1540,
- 1540, 1730, 1870, 2050, 2260, 2210, 2150, 2270, 2250, 2300,
- 2220, 2170, 2020, 1950, 2040, 2020, 1910, 1930, 1730, 1740,
- 1710, 1590, 1620, 1650, 1710, 1640, 1670, 1690, 1800, 1790,
- 1650, 1710, 1630, 1630, 1620, 1610, 1670, 1720, 1710, 1720,
- 1670/

C----- SOLAR FLUX FOR 600101 TO 600430

DATA SFL07/

- 1710, 1750, 1820, 1930, 2130, 2150, 2240, 2190, 2010, 1930,

FLUX 165

FLUX 166

FLUX 167

- 2000, 1840, 1780, 1760, 1830, 1830, 1790, 1760, 1640, 1570,
- 1620, 1720, 1880, 2100, 2300, 2420, 2480, 2520, 2370, 2300,
- 2240,
- 2250, 2130, 2150, 2090, 2090, 1920, 1870, 1830, 1830, 1780,
- 1750, 1560, 1670, 1670, 1600, 1580, 1530, 1510, 1470, 1420,
- 1560, 1490, 1430, 1400, 1470, 1470, 1470, 1400, 1400,
- 1570, 1370, 1380, 1390, 1400, 1350, 1390, 1410, 1430, 1320,
- 1320, 1290, 1350, 1340, 1370, 1420, 1400, 1330, 1370, 1430,
- 1450, 1520, 1540, 1560, 1570, 1660, 1650, 1750, 1810, 1930,
- 1820,
- 2010, 1840, 1790, 1880, 1820, 1690, 1650, 1470, 1480, 1560,
- 1590, 1580, 1790, 1830, 1900, 1830, 1780, 1760, 1700, 1750,
- 1630, 1500, 1660, 1650, 1470, 1430, 1400, 1420, 1530, 1610/

C----- SOLAR FLUX FOR 600501 TO 600831

DATA SFL08/

- 1520, 1500, 1580, 1560, 1520, 1560, 1620, 1680, 1700, 1700,
- 1800, 1790, 1700, 1620, 1620, 1550, 1510, 1530, 1530, 1600,
- 1640, 1540, 1630, 1640, 1620, 1580, 1660, 1710, 1700, 1700,
- 1590,
- 1660, 1570, 1670, 1720, 1700, 1750, 1850, 1850, 1810, 1780,
- 1710, 1570, 1620, 1660, 1660, 1570, 1530, 1390, 1400, 1330,
- 1310, 1300, 1360, 1320, 1400, 1550, 1640, 1840, 1900, 1940,
- 2080, 2070, 2100, 2120, 2090, 2000, 1870, 1760, 1760, 1660,
- 1530, 1420, 1350, 1350, 1460, 1440, 1530, 1590, 1560, 1520,
- 1530, 1480, 1510, 1590, 1480, 1490, 1500, 1490, 1540, 1460,
- 1450,
- 1400, 1340, 1250, 1220, 1260, 1270, 1340, 1450, 1520, 1760,
- 1870, 2140, 2340, 2380, 2400, 2410, 2470, 2500, 2340, 2190,
- 2010, 1890, 1710, 1620, 1580, 1620, 1500, 1400, 1290, 1290,
- 1320/

C----- SOLAR FLUX FOR 600901 TO 601231

DATA SFL09/

- 1370, 1520, 1490, 1420, 1420, 1490, 1620, 1700, 1730, 1750,
- 1750, 1770, 1810, 1810, 1780, 1770, 1850, 1900, 1990, 1950,
- 1890, 1840, 1750, 1620, 1550, 1480, 1420, 1320, 1240, 1210,
- 1150, 1120, 1200, 1320, 1320, 1320, 1440, 1430, 1510, 1590,
- 1520, 1590, 1620, 1660, 1650, 1650, 1670, 1540, 1530, 1490,
- 1440, 1410, 1340, 1290, 1300, 1320, 1320, 1220, 1310, 1280,
- 1270,
- 1240, 1290, 1300, 1310, 1440, 1480, 1570, 1680, 1750, 2000,
- 1880, 1690, 1800, 1920, 1330, 1740, 1640, 1530, 1500, 1470,
- 1390, 1270, 1160, 1130, 1110, 1170, 1190, 1170, 1190, 1310,
- 1360, 1450, 1520, 1630, 1590, 1610, 1520, 1540, 1500, 1510,
- 1440, 1400, 1360, 1320, 1380, 1340, 1250, 1180, 1150, 1190,
- 1160, 1360, 1030, 1060, 1110, 1160, 1250, 1360, 1450, 1590,
- 1630/

C----- SOLAR FLUX FOR 610101 TO 610430

DATA SFL10/

- 1640, 1760, 1750, 1650, 1600, 1430, 1320, 1250, 1220, 1150,
- 1100, 1030, 960, 960, 970, 1000, 1020, 1030, 1020, 1020,
- 1040, 1020, 1000, 1020, 1030, 1080, 1090, 1250, 1320, 1290,
- 1230,
- 1230, 1220, 1180, 1180, 1190, 1210, 1140, 1110, 1080, 1040,
- 1010, 980, 970, 970, 980, 960, 960, 960, 960, 990,
- 1000, 1020, 1030, 1040, 1060, 1010, 1030, 1030, 1030,
- 1030, 1030, 1040, 960, 960, 930, 950, 940, 900, 910,

REPRODUCIBILITY OF THE
8.0-264 ORIGINAL PAGE IS POOR

- FLUX 168
- FLUX 169
- FLUX 170
- FLUX 171
- FLUX 172
- FLUX 173
- FLUX 174
- FLUX 175
- FLUX 176
- FLUX 177
- FLUX 178
- FLUX 179
- FLUX 180
- FLUX 181
- FLUX 182
- FLUX 183
- FLUX 184
- FLUX 185
- FLUX 186
- FLUX 187
- FLUX 188
- FLUX 189
- FLUX 190
- FLUX 191
- FLUX 192
- FLUX 193
- FLUX 194
- FLUX 195
- FLUX 196
- FLUX 197
- FLUX 198
- FLUX 199
- FLUX 200
- FLUX 201
- FLUX 202
- FLUX 203
- FLUX 204
- FLUX 205
- FLUX 206
- FLUX 207
- FLUX 208
- FLUX 209
- FLUX 210
- FLUX 211
- FLUX 212
- FLUX 213
- FLUX 214
- FLUX 215
- FLUX 216
- FLUX 217
- FLUX 218
- FLUX 219
- FLUX 220
- FLUX 221
- FLUX 222
- FLUX 223

• 980, 920, 930, 910, 980, 990, 980, 1010, 1020, 1050,	FLUX 224
• 1050, 1060, 1100, 1160, 1180, 1210, 1250, 1260, 1260, 1250,	FLUX 225
• 1170,	FLUX 226
• 1130, 1050, 1010, 1030, 1070, 1060, 980, 1040, 960, 930,	FLUX 227
• 920, 890, 880, 930, 990, 1030, 1050, 1270, 1050, 1030,	FLUX 228
• 1040, 1030, 1050, 1110, 1110, 1260, 1200, 1140, 1210, 1220/	FLUX 229
C----- SOLAR FLUX FOR 610501 TO 610831	
DATA SPL11/	FLUX 230
• 1250, 1190, 1110, 1040, 1030, 970, 970, 940, 960, 920,	FLUX 231
• 980, 1010, 970, 930, 910, 880, 880, 950, 1000, 1050,	FLUX 232
• 1100, 1090, 1100, 1080, 1060, 880, 950, 910, 910, 880,	FLUX 233
• 880,	FLUX 234
• 860, 880, 920, 890, 860, 880, 890, 910, 1000, 1020,	FLUX 235
• 1100, 1080, 1140, 1230, 1290, 1320, 1370, 1360, 1310, 1310,	FLUX 236
• 1320, 1340, 1350, 1170, 1110, 1080, 990, 950, 1020, 1030,	FLUX 237
• 1040, 990, 1040, 1030, 1060, 1020, 1050, 1070, 1120, 1240,	FLUX 238
• 1380, 1370, 1410, 1360, 1360, 1320, 1370, 1310, 1260, 1230,	FLUX 239
• 1180, 1190, 1180, 1180, 1170, 1150, 1110, 1050, 1030, 920,	FLUX 240
• 910,	FLUX 241
• 900, 870, 910, 880, 900, 920, 990, 1050, 1130, 1220,	FLUX 242
• 1300, 1280, 1280, 1270, 1230, 1190, 1120, 1160, 1130, 1090,	FLUX 243
• 1040, 1030, 980, 970, 930, 950, 950, 1000, 1030, 1060,	FLUX 244
• 1080/	FLUX 245
C----- SOLAR FLUX FOR 610901 TO 611231	
DATA SPL12/	FLUX 246
• 1100, 1100, 1170, 1180, 1140, 1120, 1150, 1170, 1260, 1300,	FLUX 247
• 1270, 1300, 1300, 1370, 1350, 1330, 1240, 1150, 1340, 1010,	FLUX 248
• 960, 920, 900, 970, 970, 980, 960, 960, 1020, 1000,	FLUX 249
• 980, 970, 970, 1020, 1080, 1010, 990, 980, 1070, 1060,	FLUX 250
• 1070, 1110, 1110, 1050, 1060, 1000, 970, 950, 950, 930,	FLUX 251
• 920, 890, 850, 850, 830, 830, 840, 860, 850, 870,	FLUX 252
• 860,	FLUX 253
• 860, 830, 810, 820, 870, 870, 930, 990, 980, 1010,	FLUX 254
• 990, 940, 910, 860, 800, 860, 830, 790, 770, 800,	FLUX 255
• 830, 840, 870, 870, 920, 930, 950, 980, 980, 1040,	FLUX 256
• 1050, 1080, 1110, 1050, 1010, 1010, 940, 960, 920, 870,	FLUX 257
• 820, 730, 820, 810, 810, 810, 790, 810, 820, 880,	FLUX 258
• 900, 990, 1010, 1040, 1030, 1020, 1030, 980, 980, 940,	FLUX 259
• 930/	FLUX 260
C----- SOLAR FLUX FOR 620101 TO 620430	
DATA SPL13/	FLUX 261
• 890, 840, 790, 810, 780, 770, 770, 740, 740, 750,	FLUX 262
• 760, 770, 740, 820, 860, 840, 870, 940, 990, 1070,	FLUX 263
• 1120, 1110, 1160, 1140, 1150, 1150, 1150, 1150, 1290, 1010,	FLUX 264
• 1020,	FLUX 265
• 1100, 1030, 1010, 1040, 920, 860, 820, 820, 830, 810,	FLUX 266
• 820, 810, 840, 830, 830, 860, 870, 910, 1080, 1070,	FLUX 267
• 1140, 1210, 1360, 1340, 1290, 1290, 1360, 1220,	FLUX 268
• 1210, 1120, 1000, 850, 860, 810, 900, 770, 790, 750,	FLUX 269
• 780, 920, 810, 820, 940, 860, 940, 980, 1160, 1180,	FLUX 270
• 1270, 1230, 1300, 1260, 1280, 1180, 1170, 1090, 1030, 990,	FLUX 271
• 920,	FLUX 272
• 880, 830, 800, 780, 760, 780, 770, 770, 780, 810,	FLUX 273
• 830, 930, 1020, 1100, 1110, 1190, 1140, 1100, 1090, 1090,	FLUX 274
• 1120, 1120, 1000, 1050, 1010, 1000, 1020, 960, 730, 910/	FLUX 275
C----- SOLAR FLUX FOR 620501 TO 620431	

8.0-265 REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

DATA SFL14/	FLUX 280
• 940, 950, 940, 910, 870, 870, 830, 840, 870, 910,	FLUX 281
• 980, 980, 960, 940, 910, 890, 930, 950, 970, 1030,	FLUX 282
• 1060, 1100, 1110, 1110, 1120, 1100, 1090, 1030, 1040, 1050,	FLUX 283
• 1040,	FLUX 284
• 980, 920, 870, 850, 850, 870, 920, 900, 910, 900,	FLUX 285
• 890, 880, 890, 890, 930, 950, 980, 970, 980, 950,	FLUX 286
• 900, 900, 860, 870, 900, 920, 930, 910, 910, 910,	FLUX 287
• 900, 900, 900, 900, 880, 860, 880, 830, 800, 810,	FLUX 288
• 830, 820, 860, 860, 850, 840, 840, 820, 800, 800,	FLUX 289
• 790, 800, 780, 780, 740, 760, 740, 740, 730, 720,	FLUX 290
• 730,	FLUX 291
• 710, 730, 720, 730, 700, 720, 710, 720, 730, 750,	FLUX 292
• 740, 760, 790, 830, 920, 900, 890, 850, 830, 840,	FLUX 293
• 820, 800, 790, 790, 770, 750, 730, 720, 720, 720,	FLUX 294
• 750/	FLUX 295
C----- SOLAR FLUX FOR 620901 TO 621231	
DATA SFL15/	FLUX 296
• 840, 930, 980, 990, 980, 1000, 1000, 970, 940, 910,	FLUX 297
• 900, 930, 920, 950, 930, 910, 890, 860, 840, 840,	FLUX 298
• 830, 810, 820, 820, 840, 840, 840, 830, 860, 900,	FLUX 299
• 860, 860, 830, 820, 860, 840, 840, 850, 870, 860, 930,	FLUX 300
• 930, 930, 950, 950, 940, 910, 910, 890, 970, 890,	FLUX 301
• 870, 850, 840, 890, 870, 870, 860, 820, 800, 820,	FLUX 302
• 810,	FLUX 303
• 800, 800, 800, 820, 820, 830, 840, 850, 860, 870,	FLUX 304
• 870, 880, 930, 950, 950, 990, 940, 880, 890, 860,	FLUX 305
• 810, 790, 770, 800, 770, 770, 760, 740, 750, 770,	FLUX 306
• 770, 810, 830, 820, 920, 830, 860, 840, 830, 840,	FLUX 307
• 780, 760, 770, 760, 760, 760, 780, 830, 840, 860,	FLUX 308
• 850, 820, 790, 790, 780, 760, 750, 740, 740, 740,	FLUX 309
• 750/	FLUX 310
C----- SOLAR FLUX FOR 630101 TO 630430	
DATA SFL15/	FLUX 311
• 750, 760, 770, 790, 770, 770, 770, 760, 780, 800,	FLUX 312
• 810, 780, 790, 860, 850, 820, 820, 800, 780, 780,	FLUX 313
• 760, 750, 740, 730, 740, 730, 810, 890, 790, 780,	FLUX 314
• 820,	FLUX 315
• 870, 860, 850, 880, 870, 850, 830, 820, 790, 790,	FLUX 316
• 760, 740, 740, 750, 760, 770, 790, 810, 790, 770,	FLUX 317
• 740, 760, 750, 760, 780, 770, 750, 740,	FLUX 318
• 740, 750, 780, 800, 820, 850, 840, 830, 820, 800,	FLUX 319
• 780, 770, 740, 800, 800, 790, 790, 800, 770, 770,	FLUX 320
• 760, 760, 750, 750, 730, 730, 740, 730, 750, 740,	FLUX 321
• 730,	FLUX 322
• 730, 740, 740, 700, 720, 780, 800, 810, 820, 820,	FLUX 323
• 880, 930, 890, 870, 880, 880, 870, 880, 840, 780,	FLUX 324
• 740, 720, 710, 730, 720, 720, 750, 780, 780, 800/	FLUX 325
C----- SOLAR FLUX FOR 630501 TO 620831	
DATA SFL17/	FLUX 326
• 820, 820, 810, 820, 840, 870, 880, 860, 880, 870,	FLUX 327
• 840, 870, 890, 950, 980, 1000, 1000, 980, 990, 910,	FLUX 328
• 880, 890, 930, 890, 830, 760, 900, 790, 700, 830,	FLUX 329
• 890,	FLUX 330
• 840, 810, 810, 790, 780, 770, 840, 900, 930, 990,	FLUX 331
• 1030, 1090, 1070, 1000, 960, 890, 860, 820, 790, 750,	FLUX 332

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

• 730,	720,	720,	720,	740,	740,	720,	740,	730,	750,	FLUX 736
• 760,	770,	780,	780,	780,	770,	770,	770,	750,	FLUX 737	
• 750,	740,	760,	770,	760,	760,	740,	740,	740,	FLUX 738	
• 750,	730,	720,	720,	740,	730,	740,	730,	770,	FLUX 739	
• 850,									FLUX 740	
• 870,	870,	870,	880,	860,	880,	850,	810,	800,	FLUX 741	
• 720,	730,	740,	710,	720,	760,	820,	800,	790,	FLUX 742	
• 840,	860,	900,	870,	850,	820,	800,	770,	770,	FLUX 743	
• 770/									FLUX 744	

C----- SOLAR FLUX FOR 630901 TO 631231

DATA SFL18/										
• 730,	730,	740,	750,	740,	740,	780,	750,	770,	760,	FLUX 747
• 720,	770,	890,	980,	990,	1050,	990,	970,	1020,	1090,	FLUX 748
• 900,	1050,	990,	950,	860,	840,	780,	740,	710,	690,	FLUX 749
• 680,	690,	700,	710,	730,	770,	790,	850,	860,	870,	FLUX 750
• 870,	840,	840,	860,	880,	870,	840,	830,	880,	890,	FLUX 751
• 940,	960,	940,	940,	960,	960,	980,	840,	850,	850,	FLUX 752
• 870,	850,	830,	830,	800,	780,	760,	750,	760,	750,	FLUX 753
• 760,	770,	770,	780,	810,	810,	800,	820,	860,	840,	FLUX 754
• 860,	860,	840,	830,	820,	820,	810,	790,	790,	790,	FLUX 755
• 790,	800,	790,	770,	760,	760,	770,	780,	780,	790,	FLUX 756
• 800,	820,	810,	750,	810,	780,	780,	790,	780,	790,	FLUX 757
• 790,	770,	760,	760,	750,	740,	730,	720,	710,	710,	FLUX 758
• 710/										FLUX 759

C----- SOLAR FLUX FOR 640101 TO 640430

DATA SFL19/										
• 700,	583,	707,	704,	713,	725,	725,	706,	710,	709,	FLUX 761
• 721,	737,	736,	731,	721,	720,	692,	715,	724,	735,	FLUX 762
• 725,	723,	724,	720,	709,	715,	711,	749,	752,	727,	FLUX 763
• 721,										FLUX 764
• 709,	695,	688,	692,	704,	707,	701,	712,	699,	703,	FLUX 765
• 698,	709,	715,	708,	709,	713,	721,	743,	739,	745,	FLUX 766
• 763,	780,	826,	834,	827,	848,	833,	828,	793,		FLUX 767
• 761,	739,	725,	733,	709,	724,	718,	727,	706,	722,	FLUX 768
• 741,	763,	773,	780,	778,	762,	767,	746,	736,	737,	FLUX 769
• 739,	779,	769,	765,	737,	740,	749,	755,	748,	780,	FLUX 770
• 767,										FLUX 771
• 773,	753,	768,	769,	761,	758,	757,	737,	752,	731,	FLUX 772
• 743,	731,	734,	720,	719,	712,	724,	724,	715,	721,	FLUX 773
• 723,	715,	711,	725,	714,	705,	705,	709,	698,	700/	FLUX 774

C----- SOLAR FLUX FOR 640501 TO 650831

DATA SFL20/										
• 700,	695,	710,	715,	732,	722,	722,	729,	722,	715,	FLUX 775
• 715,	709,	699,	694,	695,	715,	712,	721,	703,	693,	FLUX 776
• 697,	688,	690,	698,	693,	702,	695,	715,	710,	701,	FLUX 777
• 696,										FLUX 778
• 697,	700,	702,	702,	698,	705,	717,	719,	711,	725,	FLUX 779
• 725,	710,	724,	729,	739,	729,	738,	741,	724,	727,	FLUX 780
• 720,	718,	696,	702,	693,	699,	697,	696,	694,	695,	FLUX 781
• 697,	693,	696,	704,	690,	701,	693,	702,	694,	699,	FLUX 782
• 699,	691,	687,	715,	718,	716,	709,	702,	596,	689,	FLUX 783
• 635,	632,	685,	682,	679,	669,	673,	674,	679,	633,	FLUX 784
• 682,										FLUX 785
• 682,	697,	701,	698,	710,	702,	696,	694,	698,	707,	FLUX 786
• 699,	705,	759,	780,	777,	748,	733,	713,	722,	714,	FLUX 787
• 708,	706,	703,	699,	671,	689,	696,	685,	685,	699,	FLUX 788

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

* 702/

C----- SOLAR FLUX FOR 640901 TO 641231

DATA SFL21/

- * 713, 704, 708, 710, 708, 715, 718, 719, 724, 728,
- * 730, 732, 729, 725, 719, 702, 690, 690, 694, 695,
- * 691, 691, 690, 684, 681, 697, 700, 705, 709, 716,
- * 720, 716, 718, 708, 716, 726, 740, 768, 729, 727,
- * 715, 697, 719, 703, 702, 705, 704, 718, 722, 719,
- * 703, 718, 723, 730, 754, 754, 749, 735, 732, 732,
- * 740,
- * 736, 733, 727, 721, 716, 726, 715, 711, 704, 701,
- * 702, 707, 707, 711, 706, 703, 737, 733, 731, 740,
- * 720, 715, 699, 693, 695, 681, 696, 688, 710, 715,
- * 739, 738, 744, 757, 753, 746, 738, 750, 750, 750,
- * 770, 743, 755, 761, 765, 782, 778, 781, 791, 776,
- * 762, 749, 735, 725, 724, 715, 738, 747, 751, 741,
- * 759/

FLUX 392

FLUX 393

FLUX 394

FLUX 395

FLUX 396

FLUX 397

FLUX 398

FLUX 399

FLUX 400

FLUX 401

FLUX 402

FLUX 403

FLUX 404

FLUX 405

FLUX 406

FLUX 407

FLUX 408

FLUX 409

FLUX 410

FLUX 411

FLUX 412

FLUX 413

FLUX 414

FLUX 415

FLUX 416

FLUX 417

FLUX 418

FLUX 419

FLUX 420

FLUX 421

FLUX 422

FLUX 423

FLUX 424

FLUX 425

FLUX 426

FLUX 427

FLUX 428

FLUX 429

FLUX 430

FLUX 431

FLUX 432

FLUX 433

FLUX 434

FLUX 435

FLUX 436

FLUX 437

FLUX 438

FLUX 439

FLUX 440

FLUX 441

FLUX 442

FLUX 443

FLUX 444

FLUX 445

FLUX 446

FLUX 447

C----- SOLAR FLUX FOR 650101 TO 650430

DATA SFLUX1/

- * 827, 815, 794, 780, 774, 777, 757, 749, 741, 735,
- * 727, 726, 725, 720, 724, 714, 712, 721, 715, 737,
- * 741, 744, 734, 741, 731, 735, 768, 751, 766, 786,
- * 777,
- * 762, 768, 764, 752, 741, 741, 752, 734, 734, 739,
- * 718, 712, 706, 701, 708, 714, 716, 705, 706, 698,
- * 700, 703, 715, 729, 727, 723, 746, 748,
- * 751, 740, 737, 738, 748, 755, 758, 734, 719, 721,
- * 709, 726, 746, 737, 719, 705, 708, 744, 763, 738,
- * 734, 721, 725, 720, 734, 730, 718, 714, 717, 712,
- * 714,
- * 711, 715, 713, 711, 708, 710, 708, 707, 719, 734,
- * 741, 737, 740, 753, 755, 751, 738, 737, 748, 731,
- * 737, 735, 740, 716, 704, 700, 702, 705, 712, 709/

C----- SOLAR FLUX FOR 650501 TO 650831

DATA SFLUX2/

- * 722, 719, 719, 709, 702, 717, 727, 734, 738, 735,
- * 725, 733, 760, 770, 623, 883, 932, 926, 946, 970,
- * 951, 945, 884, 873, 831, 800, 781, 765, 758, 761,
- * 736,
- * 728, 758, 774, 805, 806, 807, 795, 807, 814, 807,
- * 789, 784, 792, 785, 791, 784, 787, 808, 774, 785,
- * 784, 807, 828, 807, 819, 814, 803, 793, 790, 796,
- * 786, 782, 788, 785, 780, 812, 843, 838, 841, 830,
- * 826, 809, 788, 772, 770, 745, 743, 743, 749, 754,
- * 750, 739, 732, 724, 723, 717, 723, 729, 734, 734,
- * 730,
- * 742, 752, 796, 807, 785, 811, 818, 795, 798, 782,
- * 788, 779, 767, 756, 744, 756, 742, 750, 761, 755,
- * 753, 746, 746, 747, 738, 735, 760, 747, 757, 764,
- * 763/

FLUX 426

FLUX 427

FLUX 428

FLUX 429

FLUX 430

FLUX 431

FLUX 432

FLUX 433

FLUX 434

FLUX 435

FLUX 436

FLUX 437

FLUX 438

FLUX 439

FLUX 440

FLUX 441

FLUX 442

FLUX 443

FLUX 444

FLUX 445

FLUX 446

FLUX 447

C----- SOLAR FLUX FOR 650901 TO 651231

DATA SFLUX3/

- * 769, 773, 776, 780, 800, 783, 789, 794, 772, 767,
- * 767, 763, 759, 761, 757, 745, 745, 777, 734, 734,
- * 731, 717, 723, 766, 762, 774, 787, 808, 876, 893,
- * 622, 933, 961, 975, 916, 916, 951, 935, 826, 830, 831,

FLUX 444

FLUX 445

FLUX 446

FLUX 447

FLUX 448

FLUX 449

FLUX 450

FLUX 451

FLUX 452

FLUX 453

FLUX 454

FLUX 455

FLUX 456

FLUX 457

FLUX 458

FLUX 459

FLUX 460

FLUX 461

FLUX 462

FLUX 463

FLUX 464

FLUX 465

FLUX 466

FLUX 467

FLUX 468

FLUX 469

FLUX 470

FLUX 471

FLUX 472

FLUX 473

FLUX 474

FLUX 475

FLUX 476

FLUX 477

FLUX 478

FLUX 479

FLUX 480

FLUX 481

FLUX 482

FLUX 483

FLUX 484

FLUX 485

FLUX 486

FLUX 487

FLUX 488

FLUX 489

FLUX 490

FLUX 491

FLUX 492

FLUX 493

FLUX 494

FLUX 495

FLUX 496

FLUX 497

FLUX 498

FLUX 499

FLUX 500

FLUX 501

FLUX 502

FLUX 503

FLUX 504

FLUX 505

FLUX 506

FLUX 507

FLUX 508

FLUX 509

FLUX 510

FLUX 511

FLUX 512

FLUX 513

FLUX 514

FLUX 515

FLUX 516

FLUX 517

FLUX 518

FLUX 519

FLUX 520

FLUX 521

FLUX 522

FLUX 523

FLUX 524

FLUX 525

FLUX 526

FLUX 527

FLUX 528

FLUX 529

FLUX 530

FLUX 531

FLUX 532

FLUX 533

FLUX 534

FLUX 535

FLUX 536

FLUX 537

FLUX 538

FLUX 539

FLUX 540

FLUX 541

FLUX 542

FLUX 543

FLUX 544

FLUX 545

FLUX 546

FLUX 547

FLUX 548

FLUX 549

FLUX 550

FLUX 551

FLUX 552

FLUX 553

FLUX 554

FLUX 555

FLUX 556

FLUX 557

FLUX 558

FLUX 559

FLUX 560

FLUX 561

FLUX 562

FLUX 563

FLUX 564

FLUX 565

FLUX 566

FLUX 567

FLUX 568

FLUX 569

FLUX 570

FLUX 571

FLUX 572

• 757, 745, 754, 743, 733, 718, 720, 716, 712, 720, FLUX 44R
 • 726, 754, 779, 755, 770, 773, 770, 762, 756, 751, FLUX 440
 • 769, FLUX 450
 • 776, 782, 798, 784, 767, 792, 837, 789, 804, 824, FLUX 451
 • 825, 791, 757, 744, 748, 724, 726, 733, 716, 739, FLUX 452
 • 705, 700, 695, 693, 688, 699, 721, 749, 719, 730, FLUX 453
 • 733, 729, 727, 723, 732, 740, 730, 744, 727, 730, FLUX 454
 • 732, 735, 717, 724, 744, 751, 759, 759, 743, 721, FLUX 455
 • 717, 700, 703, 688, 697, 744, 809, 810, 819, 792, FLUX 456
 • 781, FLUX 457
 FLUX 458

C----- SOLAR FLUX FOR 660101 TD 660430

DATA SFLUX4/

• 793, 763, 759, 778, 774, 771, 782, 779, 774, 772, FLUX 460
 • 782, 812, 843, 901, 985, 1026, 984, 1014, 1051, 990, FLUX 461
 • 957, 918, 906, 889, 854, 827, 799, 781, 783, 763, FLUX 462
 • 754, FLUX 463
 • 776, 769, 775, 790, 806, 821, 828, 823, 829, 838, FLUX 464
 • 836, 832, 839, 839, 833, 827, 921, 822, 911, 828, FLUX 465
 • 857, 860, 827, 819, 793, 831, 832, 841, FLUX 466
 • 797, 767, 758, 765, 748, 755, 762, 764, 785, 786, FLUX 467
 • 780, 783, 800, 814, 871, 929, 1051, 1096, 1146, 1110, FLUX 468
 • 1203, 1051, 962, 929, 911, 847, 831, 876, 961, 990, FLUX 469
 • 1104, FLUX 470
 • 1069, 1063, 1021, 1026, 1020, 1042, 1028, 1073, 1003, 948, FLUX 471
 • 939, 948, 931, 910, 963, 932, 952, 929, 890, 935, FLUX 472
 • 917, 934, 938, 1037, 1039, 1013, 960, 949, 945, 933, FLUX 473

C----- SOLAR FLUX FOR 660501 TD 660331

DATA SFLUX5/

• 917, 940, 940, 925, 886, 875, 899, 878, 875, 866, FLUX 475
 • 883, 926, 929, 972, 992, 1001, 989, 987, 1271, 1155, FLUX 476
 • 1236, 1210, 1139, 1177, 1151, 1123, 1085, 1076, 1068, 1016, FLUX 477
 • 1056, FLUX 478
 • 1048, 1039, 1026, 1020, 1017, 1019, 959, 995, 989, 958, FLUX 479
 • 961, 959, 961, 969, 947, 979, 995, 982, 969, 943, FLUX 480
 • 935, 961, 992, 1035, 1048, 1056, 1008, 1014, 999, 1007, FLUX 481
 • 1001, 982, 993, 1048, 1050, 1097, 1126, 1144, 1078, 1081, FLUX 482
 • 1090, 1027, 1004, 998, 1011, 1028, 1012, 1013, 1015, 1018, FLUX 483
 • 1037, 1055, 1149, 1206, 1260, 1276, 1238, 1242, 1329, 1290, FLUX 484
 • 1246, FLUX 485
 • 1259, 1196, 1182, 1160, 1105, 1060, 1015, 977, 964, 943, FLUX 486
 • 925, 928, 932, 928, 937, 951, 968, 975, 1000, 1016, FLUX 487
 • 1027, 1055, 1147, 1221, 1263, 1302, 1334, 1326, 1298, 1261, FLUX 488
 • 1209, FLUX 489
 FLUX 490

C----- SOLAR FLUX FOR 660901 TD 661231

DATA SFLUX6/

• 1166, 1363, 1032, 1019, 1005, 979, 959, 952, 953, 939, FLUX 491
 • 966, 1008, 1024, 1074, 1120, 1246, 1291, 1426, 1466, 1460, FLUX 492
 • 1372, 1315, 1275, 1260, 1188, 1094, 1029, 970, 986, 957, FLUX 493
 • 1014, 1020, 1032, 1006, 1000, 1019, 1031, 974, 1035, 1056, FLUX 494
 • 1098, 1142, 1228, 1203, 1206, 1203, 1225, 1135, 1156, 1241, FLUX 495
 • 1209, 1198, 1111, 1061, 1008, 977, 920, 941, 997, 957, FLUX 496
 • 971, FLUX 497
 • 946, 967, 931, 917, 979, 1047, 1134, 1169, 1172, 1219, FLUX 498
 • 1261, 1262, 1264, 1240, 1226, 1212, 1172, 1174, 1117, 1139, FLUX 499
 • 1107, 1165, 1147, 1123, 1107, 1073, 1111, 1041, 990, 946, FLUX 500
 • 922, 951, 999, 1048, 1109, 1156, 1177, 1237, 1462, 1573, FLUX 501

- 1628, 1576, 1555, 1495, 1449, 1351, 1249, 1112, 1123, 1076,
- 1065, 1055, 1106, 1105, 1116, 1109, 1096, 1075, 1093, 1151,
- 1205/

FLUX F04
FLUX F05
FLUX F06
FLUX F07
FLUX F08

C----- SOLAR FLUX FOR 670101 TO 670430

DATA SFLUX7/

- 1244, 1430, 1540, 1607, 1682, 1605, 1536, 1420, 1447, 1456,
- 1398, 1391, 1381, 1362, 1266, 1202, 1169, 1174, 1164, 1270,
- 1382, 1399, 1488, 1468, 1427, 1543, 1583, 1562, 1582, 1590,
- 1564,
- 1516, 1435, 1387, 1373, 1468, 1488, 1625, 1483, 1459, 1405,
- 1337, 1329, 1300, 1292, 1264, 1249, 1222, 1242, 1210, 1285,
- 1218, 1460, 1493, 1622, 1595, 1733, 1767, 1802,
- 1642, 1978, 1964, 2059, 1792, 1774, 1638, 1561, 1579, 1484,
- 1416, 1343, 1291, 1272, 1324, 1321, 1326, 1322, 1350, 1404,
- 1472, 1495, 1557, 1619, 1692, 1639, 1628, 1807, 1784, 1758,
- 1676,
- 1586, 1410, 1333, 1252, 1221, 1190, 1262, 1357, 1333, 1303,
- 1311, 1298, 1268, 1335, 1241, 1261, 1259, 1287, 1267, 1271,
- 1340, 1315, 1280, 1305, 1329, 1254, 1292, 1351, 1375, 1353/

FLUX F09
FLUX F10
FLUX F11
FLUX F12
FLUX F13
FLUX F14
FLUX F15
FLUX F16
FLUX F17
FLUX F18
FLUX F19
FLUX F20
FLUX F21
FLUX F22
FLUX F23
FLUX F24
FLUX F25
FLUX F26
FLUX F27
FLUX F28
FLUX F29
FLUX F30
FLUX F31
FLUX F32
FLUX F33
FLUX F34
FLUX F35
FLUX F36
FLUX F37
FLUX F38
FLUX F39
FLUX F40
FLUX F41

C----- SOLAR FLUX FOR 670501 TO 670831

DATA SFLUX8/

- 1366, 1318, 1283, 1258, 1281, 1228, 1197, 1169, 1136, 1094,
- 1061, 1097, 1073, 1084, 1110, 1131, 1154, 1248, 1356, 1453,
- 1603, 1827, 1940, 2009, 2107, 2189, 2138, 2026, 1883, 1774,
- 1754,
- 1746, 1580, 1504, 1484, 1387, 1305, 1191, 1101, 1037, 971,
- 969, 965, 998, 1038, 1072, 1119, 1120, 1154, 1190, 1213,
- 1220, 1206, 1331, 1321, 1331, 1279, 1315, 1367, 1334, 1261,
- 1250, 1257, 1296, 1272, 1237, 1166, 1160, 1118, 1097, 1058,
- 1071, 1061, 1138, 1224, 1276, 1301, 1296, 1313, 1286, 1355,
- 1402, 1524, 1618, 1764, 1955, 1999, 2132, 2131, 2157, 2116,
- 1889,
- 1766, 1667, 1635, 1493, 1554, 1554, 1502, 1434, 1412, 1367,
- 1362, 1389, 1375, 1303, 1274, 1329, 1483, 1571, 1723, 1729,
- 1788, 1785, 1783, 1699, 1708, 1720, 1712, 1699, 1727, 1640,
- 1657/

FLUX F25
FLUX F26
FLUX F27
FLUX F28
FLUX F29
FLUX F30
FLUX F31
FLUX F32
FLUX F33
FLUX F34
FLUX F35
FLUX F36
FLUX F37
FLUX F38
FLUX F39
FLUX F40
FLUX F41

C----- SOLAR FLUX FOR 670901 TO 671231

DATA SFLUX9/

- 1605, 1556, 1470, 1409, 1387, 1338, 1284, 1739, 1315, 1336,
- 1318, 1317, 1276, 1280, 1304, 1264, 1267, 1287, 1277, 1306,
- 1265, 1246, 1238, 1318, 1341, 1344, 1373, 1346, 1317, 1317,
- 1397, 1350, 1315, 1299, 1257, 1299, 1258, 1215, 1221, 1273,
- 1365, 1354, 1303, 1273, 1226, 1180, 1173, 1133, 1193, 1312,
- 1301, 1373, 1394, 1413, 1421, 1482, 1611, 1770, 1634, 1595,
- 1486,
- 1403, 1409, 1375, 1305, 1218, 1196, 1131, 1128, 1111, 1173,
- 1241, 1327, 1347, 1369, 1429, 1518, 1549, 1569, 1667, 1660,
- 1614, 1594, 1566, 1525, 1547, 1579, 1550, 1572, 1503, 1444,
- 1400, 1115, 1205, 1203, 1216, 1303, 1276, 1206, 1300, 1277,
- 1366, 1391, 1430, 1534, 1643, 1813, 2020, 2124, 2054, 2015,
- 1980, 1823, 1640, 1529, 1594, 1653, 1770, 1641, 1765, 1589,
- 1525/

FLUX F42
FLUX F43
FLUX F44
FLUX F45
FLUX F46
FLUX F47
FLUX F48
FLUX F49
FLUX F50
FLUX F51
FLUX F52
FLUX F53
FLUX F54
FLUX F55
FLUX F56

C----- SOLAR FLUX FOR 680101 TO 680430

DATA SFLX10/

- 1714, 1718, 1793, 1833, 1912, 2097, 2232, 2302, 2220, 2083,
- 2025, 1999, 1972, 1870, 1765, 1608, 1574, 1485, 1416, 1373,

FLUX F57
FLUX F58
FLUX F59

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

- 1325, 1357, 1379, 1486, 1601, 1740, 1856, 2130, 2207, 2291.
- 2391,
- 2541, 2530, 2443, 2203, 1914, 1722, 1542, 1515, 1517, 1557,
- 1557, 1591, 1491, 1457, 1418, 1425, 1396, 1352, 1375, 1386,
- 1485, 1518, 1565, 1646, 1774, 1839, 1757, 1707, 1674,
- 1678, 1574, 1508, 1385, 1378, 1360, 1314, 1261, 1223, 1241,
- 1283, 1304, 1278, 1279, 1259, 1282, 1352, 1322, 1301, 1296,
- 1400, 1422, 1456, 1544, 1560, 1568, 1592, 1571, 1562, 1603,
- 1558,
- 1438, 1441, 1371, 1317, 1291, 1251, 1247, 1307, 1411, 1428,
- 1384, 1427, 1419, 1383, 1400, 1410, 1322, 1277, 1253, 1224,
- 1234, 1156, 1117, 1175, 1199, 1143, 1191, 1284, 1280, 1328/

C----- SOLAR FLUX FOR 630501 TO 680831

DATA SFU11/

- 1448, 1432, 1563, 1545, 1560, 1485, 1454, 1416, 1398, 1397,
- 1535, 1273, 1283, 1382, 1418, 1507, 1665, 1784, 1853, 1936,
- 1946, 1903, 1857, 1826, 1810, 1771, 1709, 1531, 1509, 1513,
- 1489,
- 1520, 1454, 1438, 1443, 1383, 1455, 1522, 1546, 1490, 1479,
- 1465, 1434, 1434, 1395, 1397, 1382, 1396, 1432, 1475, 1515,
- 1572, 1546, 1636, 1575, 1540, 1462, 1476, 1423, 1391, 1359,
- 1283, 1203, 1172, 1163, 1194, 1201, 1350, 1471, 1536, 1570,
- 1628, 1561, 1556, 1559, 1479, 1495, 1436, 1352, 1353, 1339,
- 1330, 1390, 1461, 1527, 1582, 1544, 1468, 1436, 1443, 1385,
- 1347,
- 1342, 1342, 1409, 1356, 1359, 1460, 1398, 1418, 1467, 1466,
- 1507, 1616, 1708, 1851, 1857, 1790, 1692, 1548, 1598, 1599,
- 1586, 1538, 1377, 1308, 1242, 1180, 1145, 1194, 1217, 1255,
- 1235/

C----- SOLAR FLUX FOR 630901 TO 681231

DATA SFU12/

- 1295, 1342, 1428, 1432, 1396, 1360, 1411, 1494, 1494, 1562,
- 1525, 1560, 1506, 1467, 1357, 1320, 1315, 1297, 1273, 1274,
- 1336, 1275, 1268, 1430, 1581, 1600, 1579, 1593, 1540, 1443,
- 1365, 1363, 1452, 1461, 1479, 1453, 1469, 1416, 1373, 1346,
- 1339, 1368, 1272, 1321, 1370, 1372, 1425, 1426, 1537, 1555,
- 1633, 1548, 1670, 1733, 1717, 1725, 1729, 1710, 1911, 1639,
- 1595,
- 1534, 1515, 1461, 1403, 1329, 1314, 1291, 1331, 1354, 1352,
- 1326, 1293, 1315, 1313, 1335, 1276, 1405, 1480, 1413, 1391,
- 1338, 1310, 1323, 1342, 1353, 1352, 1341, 1296, 1282, 1286,
- 1402, 1499, 1496, 1479, 1466, 1429, 1402, 1418, 1456, 1480,
- 1436, 1390, 1315, 1343, 1341, 1270, 1302, 1339, 1419, 1447,
- 1471, 1473, 1463, 1540, 1553, 1540, 1535, 1507, 1472, 1442,
- 1396/

C----- SOLAR FLUX FOR 600101 TO 690430

DATA SFU13/

- 1399, 1421, 1441, 1545, 1625, 1789, 1330, 1831, 1833, 1693,
- 1685, 1631, 1572, 1533, 1541, 1622, 1491, 1443, 1316, 1280,
- 1319, 1339, 1248, 1308, 1341, 1422, 1315, 1296, 1292, 1261,
- 1264,
- 1293, 1390, 1391, 1378, 1389, 1785, 1403, 1347, 1333, 1295,
- 1293, 1246, 1263, 1250, 1248, 1280, 1343, 1324, 1500, 1591,
- 1692, 1847, 2014, 2053, 2071, 1847, 1971, 1325,
- 1656, 1520, 1478, 1479, 1369, 1364, 1381, 1373, 1418, 1378,
- 1360, 1385, 1340, 1360, 1619, 1740, 2001, 2109, 2095, 2137,

FLUX F60
FLUX F61
FLUX F62
FLUX F63
FLUX F64
FLUX F65
FLUX F66
FLUX F67
FLUX F68
FLUX F69
FLUX F70
FLUX F71
FLUX F72
FLUX F73
FLUX F74
FLUX F75
FLUX F76
FLUX F77
FLUX F78
FLUX F79
FLUX F80
FLUX F81
FLUX F82
FLUX F83
FLUX F84
FLUX F85
FLUX F86
FLUX F87
FLUX F88
FLUX F89
FLUX F90
FLUX F91
FLUX F92
FLUX F93
FLUX F94
FLUX F95
FLUX F96
FLUX F97
FLUX F98
FLUX F99
FLUX F100
FLUX F101
FLUX F102
FLUX F103
FLUX F104
FLUX F105
FLUX F106
FLUX F107
FLUX F108
FLUX F109
FLUX F110
FLUX F111
FLUX F112
FLUX F113
FLUX F114
FLUX F115

• 2308, 2225, 2056, 1954, 1811, 1912, 1777, 1775, 1819, 1829,	FLUX F16
• 1855,	FLUX F17
• 1887, 1914, 1898, 1773, 1757, 1626, 1542, 1476, 1438, 1489,	FLUX F18
• 1509, 1555, 1725, 1794, 1812, 1671, 1547, 1468, 1464, 1493,	FLUX F19
• 1572, 1478, 1441, 1447, 1477, 1437, 1350, 1349, 1282, 1291/	FLUX F20
C----- SOLAR FLUX FOR 690501 TO 690831	FLUX F21
DATA SFU14/	FLUX F22
• 1250, 1278, 1319, 1355, 1541, 1382, 1298, 1385, 1354, 1377,	FLUX F23
• 1501, 1603, 1541, 1577, 1588, 1594, 1641, 1624, 1576, 1590,	FLUX F24
• 1707, 1774, 1728, 1714, 1685, 1637, 1535, 1432, 1226, 1157,	FLUX F25
• 1119,	FLUX F26
• 1133, 1212, 1334, 1590, 1778, 1964, 2222, 2384, 2358, 2435,	FLUX F27
• 2466, 2367, 2287, 2235, 2005, 1747, 1572, 1539, 1470, 1449,	FLUX F28
• 1397, 1331, 1316, 1289, 1202, 1172, 1142, 1183, 1238, 1368,	FLUX F29
• 1492, 1621, 1675, 1692, 1666, 1652, 1667, 1652, 1658, 1644,	FLUX F30
• 1581, 1514, 1451, 1343, 1265, 1261, 1242, 1199, 1181, 1154,	FLUX F31
• 1157, 1151, 1165, 1157, 1178, 1192, 1263, 1351, 1371, 1470,	FLUX F32
• 1670,	FLUX F33
• 1757, 1925, 1888, 1920, 1877, 1719, 1631, 1503, 1455, 1393,	FLUX F34
• 1359, 1286, 1231, 1175, 1155, 1123, 1079, 1052, 1039, 1095,	FLUX F35
• 1167, 1210, 1332, 1460, 1458, 1564, 1678, 1715, 1776, 1696,	FLUX F36
• 1638/	FLUX F37
C----- SOLAR FLUX FOR 690901 TO 691231	FLUX F38
DATA SFU15/	FLUX F39
• 1563, 1552, 1517, 1505, 1382, 1357, 1283, 1241, 1173, 1166,	FLUX F40
• 1190, 1207, 1312, 1299, 1353, 1342, 1333, 1344, 1315, 1365,	FLUX F41
• 1378, 1405, 1455, 1557, 1691, 1589, 1613, 1427, 1399, 1379,	FLUX F42
• 1229, 1432, 1325, 1322, 1409, 1432, 1450, 1501, 1417, 1357,	FLUX F43
• 1301, 1280, 1243, 1191, 1177, 1154, 1223, 1288, 1458, 1619,	FLUX F44
• 1770, 1862, 1931, 2045, 2040, 2046, 2008, 1896, 1725, 1617,	FLUX F45
• 1539,	FLUX F46
• 1394, 1389, 1267, 1296, 1300, 1319, 1358, 1304, 1277, 1228,	FLUX F47
• 1220, 1223, 1266, 1341, 1379, 1455, 1601, 1772, 1852, 1939,	FLUX F48
• 1982, 2053, 2095, 2007, 1857, 1753, 1728, 1568, 1415, 1365,	FLUX F49
• 1302, 1315, 1317, 1329, 1333, 1234, 1207, 1121, 1161, 1148,	FLUX F50
• 1179, 1223, 1296, 1327, 1359, 1369, 1441, 1441, 1472, 1542,	FLUX F51
• 1603, 1630, 1563, 1529, 1535, 1510, 1469, 1490, 1534, 1579,	FLUX F52
• 1518/	FLUX F53
C----- SOLAR FLUX FOR 700101 TO 700430	FLUX F54
DATA SFU16/	FLUX F55
• 1509, 1445, 1371, 1315, 1265, 1176, 1130, 1133, 1196, 1345,	FLUX F56
• 1601, 1716, 1729, 1718, 1800, 1743, 1806, 1794, 1753, 1684,	FLUX F57
• 1770, 1505, 1534, 1436, 1495, 1564, 1630, 1620, 1632, 1548,	FLUX F58
• 1434,	FLUX F59
• 1346, 1331, 1237, 1194, 1210, 1319, 1394, 1526, 1541, 1703,	FLUX F60
• 1843, 2010, 1976, 1962, 2016, 1933, 1939, 1977, 1985, 1965,	FLUX F61
• 1911, 1830, 1839, 1859, 1796, 1783, 1769, 1741,	FLUX F62
• 1757, 1730, 1673, 1653, 1698, 1678, 1584, 1728, 1644, 1583,	FLUX F63
• 1563, 1544, 1524, 1473, 1449, 1390, 1337, 1335, 1702, 1411,	FLUX F64
• 1497, 1509, 1649, 1699, 1672, 1664, 1592, 1538, 1531, 1494,	FLUX F65
• 1493,	FLUX F66
• 1608, 1571, 1635, 1704, 1794, 1929, 1934, 2031, 2185, 2247,	FLUX F67
• 2064, 1985, 1853, 1733, 1636, 1522, 1480, 1419, 1157, 1312,	FLUX F68
• 1263, 1286, 1301, 1301, 1348, 1353, 1390, 1486, 1561, 1533/	FLUX F69
C----- SOLAR FLUX FOR 700501 TO 700831	FLUX F70
DATA SFU17/	FLUX F71

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

• 1595, 1607, 1635, 1623, 1679, 1633, 1624, 1567, 1549, 1628,	FLUX 672
• 1762, 1803, 1931, 1969, 2063, 2060, 1979, 1946, 1974, 1839,	FLUX 673
• 1749, 1793, 1637, 1626, 1606, 1628, 1552, 1539, 1585, 1637,	FLUX 674
• 1652,	FLUX 675
• 1455, 1418, 1334, 1317, 1329, 1300, 1345, 1342, 1382, 1459,	FLUX 676
• 1695, 1717, 2003, 2074, 2092, 1986, 1906, 1818, 1751, 1633,	FLUX 677
• 1606, 1501, 1437, 1423, 1493, 1514, 1600, 1605, 1580, 1748,	FLUX 678
• 1799, 1890, 1946, 1950, 1910, 1864, 1663, 1604, 1484, 1438,	FLUX 679
• 1377, 1354, 1307, 1263, 1219, 1214, 1259, 1310, 1359, 1364,	FLUX 680
• 1506, 1538, 1587, 1640, 1690, 1763, 1359, 1821, 1610, 1561,	FLUX 681
• 1415,	FLUX 682
• 1349, 1285, 1279, 1274, 1284, 1280, 1282, 1318, 1383, 1373,	FLUX 683
• 1272, 1269, 1497, 1670, 1691, 1625, 1516, 1490, 1454, 1486,	FLUX 684
• 1428, 1417, 1462, 1402, 1365, 1357, 1372, 1416, 1487, 1490,	FLUX 685
• 1545/	FLUX 686

C----- SOLAR FLUX FOR 700901 TO 701231

DATA SFLU18/

• 1541, 1357, 1632, 1634, 1623, 1615, 1644, 1569, 1572, 1439,	FLUX 688
• 1344, 1261, 1201, 1219, 1180, 1184, 1169, 1207, 1347, 1469,	FLUX 689
• 1494, 1552, 1616, 1560, 1558, 1559, 1450, 1445, 1387, 1347,	FLUX 690
• 1287, 1254, 1260, 1373, 1345, 1280, 1333, 1420, 1449, 1476,	FLUX 691
• 1428, 1354, 1318, 1349, 1402, 1340, 1315, 1385, 1390, 1372,	FLUX 692
• 1365, 1350, 1490, 1612, 1686, 1871, 1918, 1903, 1890, 1752,	FLUX 693
• 1686,	FLUX 694
• 1633, 1591, 1532, 1483, 1475, 1498, 1506, 1411, 1419, 1478,	FLUX 695
• 1556, 1551, 1791, 1864, 2000, 1935, 1841, 1931, 1855, 1737,	FLUX 696
• 1633, 1542, 1424, 1339, 1279, 1293, 1351, 1489, 1484, 1525,	FLUX 697
• 1464, 1484, 1481, 1540, 1614, 1675, 1665, 1673, 1715, 1709,	FLUX 698
• 1726, 1784, 1643, 1546, 1541, 1467, 1468, 1516, 1524, 1556,	FLUX 700
• 1463, 1368, 1321, 1244, 1240, 1223, 1198, 1173, 1234, 1290,	FLUX 701
• 1333/	FLUX 702

C----- SOLAR FLUX FOR 710101 TO 710430

DATA SFLU19/

• 1305, 1348, 1347, 1402, 1461, 1469, 1502, 1491, 1528, 1521,	FLUX 704
• 1490, 1505, 1481, 1539, 1537, 1564, 1553, 1603, 1658, 1692,	FLUX 705
• 1787, 1806, 1829, 1770, 1686, 1649, 1667, 1662, 1507, 1630,	FLUX 706
• 1701,	FLUX 707
• 1656, 1605, 1547, 1486, 1447, 1437, 1334, 1232, 1104, 1095,	FLUX 708
• 1097, 1105, 1132, 1143, 1171, 1295, 1326, 1304, 1385, 1362,	FLUX 709
• 1361, 1435, 1432, 1475, 1464, 1432, 1400, 1366,	FLUX 710
• 1292, 1258, 1217, 1160, 1137, 1091, 1052, 1040, 1045, 1070,	FLUX 711
• 1095, 1153, 1125, 1117, 1103, 1145, 1161, 1142, 1091, 1063,	FLUX 712
• 1126, 1124, 1082, 1078, 1083, 1078, 1035, 1062, 1034, 1009,	FLUX 713
• 1029,	FLUX 714
• 1005, 1076, 1090, 1077, 1083, 1073, 1132, 1101, 1089, 1098,	FLUX 715
• 1241, 1297, 1396, 1410, 1400, 1396, 1399, 1372, 1384, 1368,	FLUX 716
• 1289, 1205, 1175, 1051, 1060, 1048, 1017, 975, 958, 948/	FLUX 717

C----- SOLAR FLUX FOR 710501 TO 710831

DATA SFLU20/

• 953, 996, 1062, 1126, 1179, 1256, 1311, 1327, 1383, 1358,	FLUX 718
• 1353, 1302, 1250, 1223, 1180, 1161, 1129, 1112, 1098, 1060,	FLUX 719
• 1020, 934, 897, 882, 923, 937, 1039, 1079, 1285, 1103,	FLUX 720
• 1116,	FLUX 721
• 1101, 1083, 1078, 1073, 1062, 1050, 1015, 1018, 1009, 975,	FLUX 722
• 960, 933, 937, 943, 913, 908, 931, 954, 946, 942,	FLUX 723
• 952, 934, 949, 1053, 1101, 1150, 1225, 1311, 1411, 1483,	FLUX 724
	FLUX 725
	FLUX 726
	FLUX 727

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

• 1451, 1394, 1305, 1347, 1346, 1270, 1225, 1167, 1077, 1085,	FLUX 728
• 1087, 1096, 1112, 1139, 1256, 1253, 1215, 1210, 1269, 1188,	FLUX 729
• 1136, 1157, 1213, 1345, 1214, 1223, 1190, 1167, 1143, 1163,	FLUX 730
• 1132,	FLUX 731
• 1097, 1092, 1064, 1064, 1069, 1050, 1026, 1086, 1121, 1097,	FLUX 732
• 1047, 1021, 1019, 1007, 973, 989, 1036, 1105, 1262, 1411,	FLUX 733
• 1503, 1512, 1486, 1576, 1435, 1388, 1253, 1236, 1120, 1033,	FLUX 734
• 963/	FLUX 735

C----- SOLAR FLUX FOR 710901 TO 711231

DATA SFLU21/

• 903, 901, 925, 926, 952, 1018, 1073, 1035, 983, 918,	FLUX 737
• 893, 916, 989, 1081, 1135, 1125, 1165, 1166, 1131, 1103,	FLUX 738
• 1092, 1103, 1081, 1063, 1092, 1119, 1166, 1156, 1148, 1169,	FLUX 739
• 1146, 1142, 1134, 1091, 1061, 1024, 983, 981, 995, 954,	FLUX 740
• 945, 949, 910, 899, 898, 893, 947, 991, 1098, 1156,	FLUX 741
• 1193, 1222, 1239, 1257, 1243, 1193, 1161, 1105, 1051, 1075,	FLUX 742
• 1062,	FLUX 743
• 1095, 1117, 1152, 1128, 1160, 1095, 1046, 1007, 1016, 1027,	FLUX 744
• 1045, 1026, 1033, 1031, 1011, 1047, 1054, 1041, 1076, 1130,	FLUX 745
• 1149, 1188, 1204, 1216, 1217, 1283, 1281, 1256, 1172, 1141,	FLUX 746
• 1169, 1094, 1097, 1062, 1117, 1119, 1130, 1147, 1212, 1224,	FLUX 747
• 1222, 1240, 1187, 1185, 1173, 1176, 1312, 1346, 1344, 1352,	FLUX 748
• 1357, 1392, 1329, 1294, 1268, 1202, 1202, 1132, 1127, 1124,	FLUX 749
• 1068/	FLUX 750

C----- SOLAR FLUX FOR 720101 TO 720430

DATA SFLU22/

• 1047, 1231, 996, 979, 991, 1031, 995, 988, 943, 923,	FLUX 751
• 958, 996, 990, 1059, 1164, 1135, 1179, 1109, 1159, 1230,	FLUX 752
• 1279, 1232, 1363, 1372, 1318, 1238, 1189, 1195, 1161, 1129,	FLUX 753
• 1119,	FLUX 754
• 1067, 1065, 1048, 1036, 1026, 986, 1022, 1043, 1063, 1136,	FLUX 755
• 1184, 1239, 1263, 1367, 1458, 1532, 1682, 1844, 1906, 2025,	FLUX 756
• 1896, 1304, 1756, 1642, 1519, 1493, 1493, 1332, 1305,	FLUX 757
• 1255, 1297, 1311, 1371, 1408, 1437, 1433, 1416, 1374, 1325,	FLUX 758
• 1349, 1285, 1293, 1297, 1353, 1320, 1339, 1319, 1310, 1352,	FLUX 759
• 1358, 1312, 1400, 1265, 1164, 1105, 1041, 1011, 965, 983,	FLUX 760
• 957,	FLUX 761
• 963, 973, 981, 1010, 1053, 1181, 1213, 1238, 1305, 1303,	FLUX 762
• 1298, 1283, 1294, 1250, 1260, 1243, 1203, 1157, 1154, 1113,	FLUX 763
• 1069, 1094, 1084, 1102, 1116, 1049, 1090, 1032, 986, 970/	FLUX 764

C----- SOLAR FLUX FOR 720501 TO 720831

DATA SFLU23/

• 950, 949, 977, 1027, 1087, 1176, 1209, 1288, 1330, 1393,	FLUX 765
• 1408, 1436, 1616, 1628, 1616, 1618, 1593, 1655, 1567, 1523,	FLUX 766
• 1482, 1433, 1352, 1355, 1273, 1163, 1143, 1108, 1162, 1158,	FLUX 767
• 1225,	FLUX 768
• 1282, 1300, 1375, 1495, 1648, 1691, 1527, 1502, 1491, 1395,	FLUX 769
• 1432, 1497, 1389, 1365, 1395, 1427, 1493, 1490, 1432, 1425,	FLUX 770
• 1390, 1351, 1307, 1285, 1255, 1208, 1219, 1273, 1324, 1345,	FLUX 771
• 1330, 1370, 1399, 1467, 1502, 1461, 1432, 1367, 1271, 1217,	FLUX 772
• 1236, 1193, 1199, 1195, 1176, 1151, 1146, 1089, 1099, 1109,	FLUX 773
• 1117, 1116, 1096, 1095, 1124, 1204, 1272, 1333, 1391, 1412,	FLUX 774
• 1502,	FLUX 775
• 31*0/	FLUX 776

C----- SOLAR FLUX FOR 720901 TO 721231

DATA SFLU24/

FLUX 777

• 122*0/	FLUX 784
C----- SOLAR FLUX FOR 730101 TO 730430	FLUX 785
DATA SFLJ25/	FLUX 786
• 120*0/	FLUX 787
C----- SOLAR FLUX FOR 730501 TO 730831	FLUX 788
DATA SFLU26/	FLUX 789
• 123*0/	FLUX 790
C----- SOLAR FLUX FOR 730901 TO 731231	FLUX 791
DATA SFLJ27/	FLUX 792
• 122*0/	FLUX 793
CALL ADFLUX(NARCS,MFLUX,NFLUXS,SFLUX,BEGYMD,ENDYMD)	FLUX 794
C DATE OF LAST SOLAR FLUX VALUE 720731	FLUX 795
RETURN	FLUX 796
END	FLUX 797

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

FMODEL
Page 1 of 7
October 1972

FMODEL

DESCRIPTION

FMODEL is a BLOCK DATA routines which contains the geopotential model information.

The storage of the spherical harmonic coefficients, C_{nm} and S_{nm} , is of particular note. Because for physical reasons $m \leq n$, the set of C_{nm} and the set of S_{nm} each require only half a column more than half the matrix. To conserve storage, both sets of coefficients are stored in the same matrix. This storage algorithm is illustrated in Figure 1 for the case of 30 x 30 model used in GEODYN.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

The matrix CS (30,33) containing the coefficients C_{nm} and S_{nm}

REPRODUCIBILITY OF THIS
ORIGINAL PAGE IS POOR

	<u>Index</u>	<u>Matrix Subscript Computation</u>
C coefficients	n	N
	m	M+1
S coefficients	n	31-N
	m	33-M

NAME FMODEL
 PURPOSE BLOCK DATA STORAGE OF THE COEFFICIENTS OF THE SPHERICAL HARMONIC EXPANSION OF THE GEOPOTENTIAL
 COMMON BLOCKS FMODEL
 REFERENCES *GEOCYN SYSTEMS DESCRIPTION
 VOLUME 1 - GEOCYN DOCUMENTATION

BLOCK DATA		FMOD 14
IMPLICIT REAL*8(A-H,O-Z)		FMOD 15
COMMON/FMODEL/ INDEX1,INDEX2,INDEX3,INDEX4,CS01(30),CS02(30),CS03(30),CS04(30),		FMOD 16
CS05(30),CS06(30),CS07(30),CS08(30),CS09(30),CS10(30),CS11(30),		FMOD 17
CS12(30),CS13(30),CS14(30),CS15(30),CS16(30),CS17(30),CS18(30),		FMOD 18
CS19(30),CS20(30),CS21(30),CS22(30),CS23(30),CS24(30),CS25(30),		FMOD 19
CS26(30),CS27(30),CS28(30),CS29(30),CS30(30),CS31(30),CS32(30),		FMOD 20
CS33(30),MODEL(8)		FMOD 21
REAL*8 MODEL		FMOD 22
DATA MODEL/6HSAD 1969,8H STANDAR,BHD EARTH ,8H		FMOD 23
8H 8H 8H 8H		FMOD 24
DATA INDEX1,INDEX2,INDEX3,INDEX4/23+4,23,4/		FMOD 25
DATA CS01/		FMOD 26
+0.0 -.-10826300-02,0.253200D-05,0.159300D-05,0.230000D-06,FMOD		FMOD 27
-.-5C2000D-06,C.352000D-06,0.119000D-06,0.100000D-06,0.354000D-06,FMOD		28
-.-2C2000D-06,0.420000D-07,0.123000D-06,0.730000D-07,0.174000D-06,FMOD		29
-.-137000D-06,-.8499995D-07,0.231000D-06,0.215000D-06,0.500000D-08,FMOD		30
-.-144000D-06,C.0 .0.0 .0.0 .0.0 ,FMOD		31
.0.0 ,C.0 .0.0 .0.0 .0.0 ,FMOD		32
DATA CS02/		FMOD 33
.0.0 .0.0 .0.212763D-05,-.502693D-06,-.460353D-07,FMOD		34
-.-770801D-07,C.17670100-05,0.214773D-07,0.998199D-07,0.695215D-07,FMOD		35
.0.2E9153D-06,-.26016900-07,-.365263D-07,-.121347D-07,-.132826D-03,FMOD		36
-.-117103D-07,C.0 .0.0 .0.0 .0.0 ,FMOD		37
.0.0 ,C.0 .0.0 .0.0 .0.0 ,FMOD		38
.0.0 ,C.0 .0.0 .0.0 .0.0 ,FMOD		39
.0.0 ,C.0 .0.0 .0.0 .0.0 ,FMOD		40
DATA CS03/		FMOD 41
.0.0 ,C.15575200-05,0.304690D-06,0.730439D-07,0.991820D-07,FMOD		42
.0.6E2041D-08,C.28193400-07,0.395567D-08,0.462298D-09,-.135660D-03,FMOD		43
.0.2E3180D-08,C.12537000-08,-.192671D-08,0.117044D-08,-.147706D-08,FMOD		44
.0.E35345D-08,C.0 .0.0 .0.0 .0.0 ,FMOD		45
.0.0 ,C.0 .0.0 .0.0 .0.0 ,FMOD		46
.0.0 ,C.0 .0.0 .0.0 .0.0 ,FMOD		47
DATA CS04/		FMOD 48
.0.0 ,C.0 .0.956999D-07,0.591297D-07,-.142322D-07,FMOD		49
-.-577515D-08,C.28573200-08,-.5607600-09,-.729034D-09,-.135117D-09,FMOD		50
-.-2117200-09,C.21743300-09,C.729369D-10,0.425814D-10,0.178795D-10,FMOD		51
-.-E7047D-10,C.0 .0.0 .0.0 .0.0 ,FMOD		52
.0.0 ,C.0 .0.0 .0.0 .0.0 ,FMOD		53
.0.0 ,C.0 .0.0 .0.0 .0.0 ,FMOD		54
CATA CS05/		FMOD 55

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

•0.0	.0.0	.0.0	.0.0	-•.168330D-08,-•.207839D-03,FMOD	56
-•.152714D-11,-.4185089D-09,-.200713D-05,0.4888A2D-10,-•.203791D-10,FMOD					57
-•.12/1310-10,-.1354910D-10,-.465964D-11,0.141454D-11,0.193491D-11,FMOD					58
+•.132129D-11,0.0	.0.0	.0.0	.0.0	-•.0.0	59
•0.0	.0.0	.0.0	.0.0	-•.0.0	60
•0.0	.0.0	.0.0	.0.0	-•.0.0	61
DATA CS06/					FMOD
•0.0	.0.0	.0.0	.0.0	-•.310069D-09,FMOD	62
-•.170635D-09,-.3075970D-12,-.102666D-10,-.628361D-12,-•.49566E0D-11,FMOD					63
•0.125397D-11,C.6221E20D-12,0.178209D-11,-.341444D-12,0.304688D-12,FMOD					64
-•.317492D-12,0.0	.0.0	.0.0	.0.0	-•.0.0	65
•0.0	.0.0	.0.0	.0.0	-•.0.0	66
•0.0	.0.0	.0.0	.0.0	-•.0.0	67
DATA CS07/					FMOD
•0.0	.0.0	.0.0	.0.0	-•.0.0	68
•0.0.205637D-10,-.1754029D-10,-.150564D-11,0.319361D-12,-•.225484D-12,FMOD					69
•0.147796D-12,-.565974D-13,-.124773D-12,0.137652D-13,0.464651D-13,FMOD					70
-•.265757D-13,0.0	.0.0	.0.0	.0.0	-•.0.0	71
•0.0	.0.0	.0.0	.0.0	-•.0.0	72
•0.0	.0.0	.0.0	.0.0	-•.0.0	73
DATA CS08/					FMOD
•0.0	.0.0	.0.0	.0.0	-•.0.0	74
•0.0.0.2952499D-11,0.176356D-12,-.961519D-13,0.462616D-13,FMOD					75
-•.187679D-13,C.3221E5D-14,-.660104D-14,0.836665D-15,0.359127D-14,FMOD					76
•0.322361D-14,0.0	.0.0	.0.0	.0.0	-•.0.0	77
•0.0	.0.0	.0.0	.0.0	-•.0.0	78
•0.0	.0.0	.0.0	.0.0	-•.0.0	79
DATA CS09/					FMOD
•0.0	.0.0	.0.0	.0.0	-•.0.0	80
•0.0	.0.0	-•.926207D-13,0.763504D-13,0.647126D-14,FMOD			81
•0.3C7451D-14,-.1284880D-15,-.470290D-15,-.184524D-15,-.339521D-15,FMOD					82
-•.175492D-15,0.0	.0.0	.0.0	.0.0	-•.0.0	83
•0.0	.0.0	.0.0	.0.0	-•.0.0	84
•0.0	.0.0	-•.0.0	.0.0	-•.0.0	85
-•.175492D-15,0.0	.0.0	.0.0	.0.0	-•.0.0	86
•0.0	.0.0	.0.0	.0.0	-•.0.0	87
•0.0	.0.0	.0.0	.0.0	-•.0.0	88
DATA CS10/					FMOD
•0.0	.0.0	.0.0	.0.0	-•.0.0	89
•0.0	.0.0	-•.635510D-14,-.127399D-15,FMOD			90
•0.722552D-15,-.7810450D-16,-.275137D-16,0.257042D-16,0.591825D-17,FMOD					91
•0.131799D-17,0.0	.0.0	.0.0	.0.0	-•.0.0	92
•0.0	.0.0	.0.0	.0.0	-•.0.0	93
•0.0	.0.0	.0.0	.0.0	-•.0.0	94
DATA CS11/					FMOD
•0.0	.0.0	.0.0	.0.0	-•.0.0	95
•0.0	.0.0	.0.0	.0.0	-•.0.514254D-15,FMOD	96
-•.111359D-15,-.5544930D-17,0.969366D-17,0.254507D-17,-.452211D-18,FMOD					97
•0.324010D-18,0.0	.0.0	.0.0	.0.0	-•.0.0	98
•0.0	.0.0	.0.0	.0.0	-•.0.0	99
•0.0	.0.0	.0.0	.0.0	-•.0.0	100
DATA CS12/					FMOD
•0.0	.0.0	.0.0	.0.0	-•.0.0	101
•0.0	.0.0	.0.0	.0.0	-•.0.0	102
•0.0	.0.0	.0.0	.0.0	-•.0.0	103
DATA CS13/					FMOD
•0.0	.0.0	.0.0	.0.0	-•.0.0	104
•0.0	.0.0	.0.0	.0.0	-•.0.0	105
•0.0	.0.0	.0.0	.0.0	-•.0.0	106
•0.235410D-16,-.1975550D-17,-.445266D-18,0.131834D-18,-.625906D-19,FMOD					107
•0.54217D-20,0.0	.0.0	.0.0	.0.0	-•.0.0	108
•0.0	.0.0	.0.0	.0.0	-•.0.0	109
•0.0	.0.0	.0.0	.0.0	-•.0.0	110

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

.0.0	.0.0	.0.0	.0.0	.0.0	.FMOD 112
.0.0	.0.0	.C.0	.0.0	.0.0	.FMOD 113
.0.0	-.1742170D-18	-.246832D-20	.0.669371D-20	.0.194518D-20	.FMOD 114
.0.164555D-20	C.2361270D-20	C.165282D-21	0.454057D-21	0.0	.FMOD 115
.0.0	.0.0	.C.0	.0.0	.0.0	.FMOD 116
.0.0	.0.0	.0.0	.0.0	.0.0	.FMOD 117
DATA CS14/					FMOD 118
.0.0	.0.0	.C.0	.0.0	.0.0	.FMOD 119
.0.0	.C.0	.0.0	.0.0	.0.0	.FMOD 120
.0.0	.C.0	-.257198D-19	0.376257D-20	-.753195D-21	.FMOD 121
.0.237411D-21	C.8241809D-22	0.467412D-23	0.153383D-22	0.127350D-22	.FMOD 122
.0.400205D-24	C.0	.0.0	.0.0	.0.0	.FMOD 123
.0.0	.C.0	.0.0	.0.0	.0.0	.FMOD 124
DATA CS15/					FMOD 125
.0.0	.0.0	.0.0	.0.0	.0.0	.FMOD 126
.0.0	.C.0	.0.0	.0.0	.0.0	.FMOD 127
.0.0	.C.0	.0.0	-.713342D-21	0.322877D-22	.FMOD 128
-.519129D-23	-.3629150D-23	-.225483D-23	-.130602D-24	0.157393D-24	.FMOD 129
.0.337218D-24	-.2515790D-25	0.0	.0.0	.0.0	.FMOD 130
.0.0	.C.0	.0.0	.0.0	.0.0	.FMOD 131
DATA CS16/					FMOD 132
.0.0	.C.0	.0.0	.0.0	.0.0	.FMOD 133
.0.0	.0.0	.0.0	.0.0	.0.0	.FMOD 134
.0.0	.0.0	.0.0	.0.0	0.701751D-24	.FMOD 135
-.317511D-23	C.0	.0.0	.0.0	.0.0	.FMOD 136
.0.0	.C.0	.0.0	.0.0	.0.0	.FMOD 137
.0.0	.C.0	.0.0	.0.0	.0.0	.FMOD 138
DATA CS17/					FMOD 139
.0.0	.C.0	.0.0	.0.0	.0.0	.FMOD 140
.0.0	.0.0	.0.0	.0.0	.0.0	.FMOD 141
.0.0	.C.0	.0.0	.0.0	0.136546D-24	.FMOD 142
-.467554D-24	C.0	.0.0	.0.0	.0.0	.FMOD 143
.0.0	.0.0	.0.0	.0.0	.0.0	.FMOD 144
.0.0	.C.0	.0.0	.0.0	.0.0	.FMOD 145
DATA CS18/					FMOD 146
.0.0	.C.0	.0.0	.0.0	.0.0	.FMOD 147
.0.0	.0.0	.0.0	.0.0	.0.0	.FMOD 148
.0.0	.C.0	.0.0	.0.0	0.753687D-25	.FMOD 149
-.713626D-23	C.0	.0.0	.0.0	.0.0	.FMOD 150
.0.0	.C.0	.0.0	.0.0	.0.0	.FMOD 151
.0.0	.0.0	.0.0	.0.0	.0.0	.FMOD 152
DATA CS19/					FMOD 153
.0.0	.0.0	.0.0	.0.0	.0.0	.FMOD 154
.0.0	.0.0	.0.0	0.825801D-25	0.199486D-25	.FMOD 155
-.223849D-24	-.7919560D-24	-.397434D-23	0.616671D-23	-.159612D-22	.FMOD 156
-.709307D-22	-.1770960D-21	0.0	.0.0	.0.0	.FMOD 157
.0.0	.C.0	.0.0	.0.0	.0.0	.FMOD 158
.0.0	.C.0	.0.0	.0.0	.0.0	.FMOD 159
DATA CS20/					FMOD 160
.0.0	.C.0	.0.0	.0.0	.0.0	.FMOD 161
.0.0	.0.0	.0.0	.0.0	-.176520D-23	.FMOD 162
.0.720915D-23	-.29164100-22	-.369401C-22	0.100015D-23	0.139418D-21	.FMOD 163
.0.811700D-22	C.3317300D-20	C.273139D-19	0.0	.0.0	.FMOD 164
.0.0	.0.0	.0.0	.0.0	.0.0	.FMOD 165
.0.0	.0.0	.C.0	.0.0	.0.0	.FMOD 166
DATA CS21/					FMOD 167

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

.0.0	.0.0	.0.0	.0.0	.0.0	FMOD 168
.0.0	.0.0	.0.0	.0.0	.0.0	FMOD 169
.0.0	-.57126400-22.0.120077D-21.0.109186D-21	-.245695D-20	FMOD 170		
.0.0	127028D-20	-.30735300-19.0.153357D-18	-.516611D-18.0.0		FMOD 171
.0.0	.0.0	.0.0	.0.0	.0.0	FMOD 172
.0.0	.0.0	.0.0	.0.0	.0.0	/FMOD 173
					FMOD 174
	DATA CS22/				
.0.0	.0.0	.0.0	.0.0	.0.0	FMOD 175
.0.0	.0.0	.0.0	.0.0	.0.0	FMOD 176
.0.0	.0.0	.0.0	.0.0	.0.0	-.503517D-19
.0.0	180659D-18	-.3366820D-18.0.772359D-18	-.212001D-17	-.823118D-17	FMOD 178
.0.0	.0.0	.0.0	.0.0	.0.0	FMOD 179
.0.0	.0.0	.0.0	.0.0	.0.0	/FMOD 180
					FMOD 181
	DATA CS23/				
.0.0	.0.0	.0.0	.0.0	.0.0	FMOD 182
.0.0	.0.0	.0.0	.0.0	.0.0	FMOD 183
.0.0	.0.0	.0.0	.0.0	.0.0	-.569527D-20
.0.0	117t61D-19	-.2044699D-17	-.117861D-17.0.144311D-17	-.179336D-16	FMOD 186
.0.0	1C7550D-15.0.0	.0.0	.0.0	.0.0	FMOD 186
.0.0	.0.0	.0.0	.0.0	.0.0	/FMOD 187
					FMOD 188
	DATA CS24/				
.0.0	.0.0	.0.0	.0.0	.0.0	FMOD 189
.0.0	.0.0	.0.0	.0.0	.0.0	FMOD 190
.0.0	.0.0	.0.0	.0.0	.0.0	-.155638D-16
.0.0	714333D-17.0.4791489D-16.0.115615C-15	0.103853D-15	-.511562D-16	FMOD 192	
.0.0	1161300-15.0.7112868D-14.0.0	.0.0	.0.0	.0.0	FMOD 193
.0.0	.0.0	.0.0	.0.0	.0.0	/FMOD 194
					FMOD 195
	DATA CS25/				
.0.0	.0.0	.0.0	.0.0	.0.0	FMOD 196
.0.0	.0.0	.0.0	.0.0	.0.0	FMOD 197
.0.0	.0.0	.0.0	.0.0	.0.0	-.511060D-17
.0.0	124152D-15	-.3708268D-15	-.227841D-15.0.749597D-15	-.809426D-15	FMOD 199
.0.0	912577D-14.0.18709000-13.0.861829D-13.0.0	.0.0	.0.0	.0.0	FMOD 200
.0.0	.0.0	.0.0	.0.0	.0.0	/FMOD 201
					FMOD 202
	DATA CS26/				
.0.0	.0.0	.0.0	.0.0	.0.0	FMOD 203
.0.0	.0.0	.0.0	.0.0	.0.0	FMOD 204
.0.0	.0.0	.0.0	.0.0	.0.0	0.246566D-15
.0.0	201326D-14.0.6363628D-15	-.411635C-15.0.221610D-13	-.575625D-13	FMOD 205	
.0.0	269375D-13	-.2420470D-12.0.454672D-12	-.125606D-11.0.0		FMOD 207
.0.0	.0.0	.0.0	.0.0	.0.0	/FMOD 208
					FMOD 209
	DATA CS27/				
.0.0	.0.0	.0.0	.0.0	.0.0	FMOD 210
.0.0	.0.0	.0.0	.0.0	.0.0	FMOD 211
.0.0	.0.0	.0.0	.0.0	.0.0	-.197608D-13
.0.0	7e7e24D-13	-.5757119D-13.0.894201D-13	-.158330D-14.0.271842D-13	FMOD 213	
.0.0	139681D-11.0.2908659D-11.0.724190D-11	0.708604D-11	-.174166D-10	FMOD 214	
.0.0	.0.0	.0.0	.0.0	.0.0	/FMOD 215
					FMOD 216
	DATA CS28/				
.0.0	.0.0	.0.0	.0.0	.0.0	FMOD 217
.0.0	.0.0	.0.0	.0.0	.0.0	FMOD 218
.0.0	.0.0	.0.0	.0.0	.0.0	0.231440D-12
.0.0	175500D-13	-.30706000-12	-.80746D-12.0.113499D-11.0.525778D-11	FMOD 220	
.0.0	8E6463D-11.0.3431620D-12.0.1115600-10	0.348475D-10	-.421805D-09	FMOD 221	
.0.0	147513D-08.0.0	.0.0	.0.0	.0.0	/FMOD 222
					FMOD 223
	DATA CS29/				

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

.0.0 .0.0 .0.0 .0.0 .0.0 /FMOD 224
.0.0 .0.0 .0.0 .0.0 .0.0 /FMOD 225
.0.0 .0.0 .0.0 .0.0 .0.430161D-11,FMOD 225
.0.550577D-11,-.6804069D-11,0.133859D-10,-.691034D-11,0.223707D-10,FMOD 227
.0.-.254714D-10,0.556574D-10,0.92234AD-10,-.241870D-09,-.152688D-08,FMOD 228
.0.546339D-05,C.716888D-08,C.0 .0.0 .0.0 /FMOD 229
DATA CS30/
.0.0 .0.0 .0.0 .0.0 .0.0 /FMOD 230
.0.0 .0.0 .0.0 .0.0 .0.0 /FMOD 231
.0.0 .0.0 .0.0 .0.0 .0.0 /FMOD 232
.0.0 .0.0 .0.0 .0.0 .0.599398D-10,FMOD 233
.0.-.123233D-10,C.3040570D-11,-.826354D-10,0.204056D-09,-.04650D-09,FMOD 234
.0.-.824246D-09,-.8330629D-09,0.172650D-09,-.330236D-08,0.325271D-09,FMOD 235
.0.-.266233D-08,-.524329D-08,0.199460D-06,0.0 .0.0 /FMOD 236
FMOD 237
DATA CS31/
.0.0 .0.0 .0.0 .0.0 .0.0 /FMOD 238
.0.0 .0.0 .0.0 .0.0 .0.0 /FMOD 239
.0.0 .0.0 .0.0 .0.0 .0.919401D-09,FMOD 240
.0.-.523980D-09,-.1630310D-08,C.7C5093D-09,0.346654D-06,-.476299D-08,FMOD 241
.0.-.621344D-08,-.5561427D-08,0.691077D-08,0.155828D-07,-.437589D-07,FMOD 242
.0.-.56762D-07,C.1579400D-06,-.216784D-06,-.630522D-06,0.0 /FMOD 243
FMOD 244
DATA CS32/
.0.0 .0.0 .0.0 .0.0 .0.0 /FMOD 245
.0.0 .0.0 .0.0 .0.0 .0.0 /FMOD 246
.0.0 .0.0 .0.0 .0.0 .0.375404D-07,FMOD 247
.0.0 20+023D-07,C.2510030D-07,0.143192D-07,-.175503D-07,0.175523D-07,FMOD 248
.0.-.628233D-07,-.10461600-07,0.176579D-07,C.046617D-07,0.296244D-07,FMOD 249
.0.-.836407D-07,-.45262500-06,0.2E0994D-06,0.0 .0.0 /FMOD 250
FMOD 251
END

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME GEODYN
PURPOSE BLOCK DATA TO STORE DATE AND SOURCE TAPE NUMBER OF
THIS VERSION OF GEODYN
COMMON BLOCKS GEODYN

BLOCK DATA
IMPLICIT REAL*8 (A-H,O-Z)
COMMON/GEODYN/DATE(5)
DATA DATE//' GEODYN'/(720626)'// SOURCE //TAPE //32607D //
END
GEOD 12
GEOD 13
GEOD 14
GEOD 15
GEOD 16

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

GEOIDH

DESCRIPTION

This subroutine performs two functions critical to the proper evaluation and estimation of surface density potentials.

1. GEOIDH alters the nominal Cartesian coordinates of surface density sub-blocks in such a manner so as to place these sub-blocks on the equi-potential surface defined by the Earth's average global potential as computed by the function AVGPOT.
2. Also computed are the coefficients interrelating all surface density values such that adjusted surface density values are constrained not to conflict with the potential defined by evaluation of the spherical harmonic expansion below some specified maximum degree and order.

The GEODYN Systems Description, Volume I provides a thorough description of the physical and mathematic function performed by this subroutine.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME	GEOIDH			
PURPOSE	TO POSITION SURFACE DENSITY LOCATIONS ON GEOID SURFACE AND COMPUTE MATRIX OF CONSTRAINT FOR DENSITY ADJUSTMENT			
CALLING SEQUENCE	CALL GEOIDH(AREA,CENTER,DENCON)			
SYMBOL TYPE	DESCRIPTION			
AREA DP	INPUT & OUTPUT - SURFACE DENSITY SUB-BLOCK AREAS (1)			
CENTER DP	INPUT & OUTPUT - THE GEOCENTRIC COORDINATES OF THE SUB-BLOCK CENTERS (3,1)			
DENCON DP (NCONST,1)	OUTPUT - COEFFICIENTS RELATING CONSTRAINED AND UNCONSTRAINED ADJUSTED SURFACE DENSITIES			
SUBROUTINES USED	CLEAR	EGRAV	DNVERT	AVGPOT
COMMON BLOCKS	CSLIM XYZ	CPARAM VRBLK	FMODEL	INITBK INTBLK
INPUT FILES	NONE			
OUTPUT FILES	NONE			
REFERENCES	'GEODYN SYSTEMS DESCRIPTION' VOLUME 1 - GEODYN DOCUMENTATION			

SUBROUTINE GEOIDH(AREA,CENTER,DENCON)	GEOI 36
IMPLICIT REAL*8 (A-H,O-Z)	GEOI 37
LOGICAL CNPGPR	GEOI 38
INTEGER ULIMIT	GEOI 39
DOUBLE PRECISION MODEL	GEOI 40
DIMENSION D(1),AREA(1),CENTER(3,1),FCT(3),DENCON(NCONST,1),INDS(4)	GEOI 41
COMMON/CSLIM/LLIMIT(31),ULIMIT(31)	GEOI 42
COMMON/CPARAM/NSTA,NMAST,NTEST,NDIX,MHIAS,NGPC1,NGPC2,NGPCOM,	GEOI 43
* NCSEST,CMPGPR,LIM1,LIM2,NDEN,NDENST,NTIDST,NTIDEN,INNRSW,	GEOI 44
* NCONST,NOCCNS	GEOI 45
COMMON/FMODEL/ INDEX1,INDEX2,INDEX3,INDEX4,CS(30,33),MODEL(8)	GEOI 46
COMMON/INITBK/IG1(50),NOTIST,NSW1(6)	GEOI 47
COMMON/INTBLK/THDT1,THDT2,THDT2S,GM,AE,AES0,DUM(60)	GEOI 48
COMMON/XYZ/XYZ(1),R,R50,ISAT,IFORCE(2)	GEOI 49
COMMON/VRBLK/XYZ0,CUSLAM(31),SINLAM(31),PR,PPSI,PLAMDA,	GEOI 50
* P(33,30),ACRN(30),TPSIM(29)	GEOI 51
EQUIVALENCE (D(1),SINPSI,P(1,1)),(CCSPSI,P(2,1))	GEOI 52
C INITIALIZE	
NOTIST=0	GEOI 53
THEIG=0.000	GEOI 54
	GEOI 55

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

INDEX2=INDEX1-1                                GEOI  56
NCENTR=4*NDEN                                GEOI  57
C COMPUTE AVERAGE GLOBAL GRAVITATIONAL POTENTIAL    GEOI  58
    REFPOT=AvgPOT(45)                            GEOI  59
    CALL CLEAR(DENCON,2*NCONST,NDEN)             GEOI  60
C CALCULATE POTENTIAL AT EACH SUB-BLOCK          GEOI  61
    DO 1000 L=1,NCENTR                         GEOI  62
        XYZ(1)=CENTER(1,L)                      GEOI  63
        XYZ(2)=CENTER(2,L)                      GEOI  64
        XYZ(3)=CENTER(3,L)                      GEOI  65
C EVALUATE LEGENDRE POLYNOMIALS                 GEOI  66
    CALL EGRAV(THETG,RASAT,FCT)                GEOI  67
    THDT2R=R*(THDT2S*CCSPSI)**2               GEOI  68
    SUM0=0.000                                 GEOI  69
    SUM=0.000                                 GEOI  70
    FN=1.000                                 GEOI  71
C SUM TERMS OF POTENTIAL                      GEOI  72
    DO 100 NC=2,INDEX2                         GEOI  73
        NS=31-NC                               GEOI  74
        FN=FN+1.000                           GEOI  75
        FR=FRK(NC)                           GEOI  76
        NUL=MAX0(ULIMIT(NC),1)                  GEOI  77
    DO 50 MC=1,NJL                            GEOI  78
        MS=34-MC                           GEOI  79
        F1=FR*P(MC,NC)                      GEOI  80
        F=F1+F1
        CCSS=CS(NC,NC)*COSLAM(MC)+CS(NS,MS)*SINLAM(MC)
        SUMU=SUM0+F1*CCSS                     GEOI  82
    50 SUM=SUM+F*CCSS                        GEOI  83
    100 CONTINUE                                GEOI  84
C CALCULATE POTENTIAL DIFFERENCE ABOVE GECID     GEOI  85
    U0=GM/R+SUM0                               GEOI  86
    POTDIFF=0.5D0+R*THDT2R+U0-REFPOT           GEOI  87
C CALCULATE PARTIAL OF POTENTIAL WITH RESPECT TO HEIGHT    GEOI  88
    PARFCT=-THDT2R*(U0+SUM)/R                  GEOI  89
C CALCULATE NEW SUB-BLOCK HEIGHT                 GEOI  90
    DR=POTDIF/PARFCT                          GEOI  91
    RNEW=R+DR                                  GEOI  92
C CORRECT SUB-BLOCK AREA                      GEOI  93
    AREA(L)=AREA(L)*(RNEW/R)**2                GEOI  94
    RCL=RNEW*COSPSI                           GEOI  95
C RECALCULATE X,Y,Z'S OF SUB-BLOCK            GEOI  96
    CENTER(1,L)=RCL*COSLAM(2)                  GEOI  97
    CENTER(2,L)=RCL*SINLAM(2)                  GEOI  98
    CENTER(3,L)=RNEW*SINPSI                   GEOI  99
    IND=(L+3)/4                                GEOI 100
    NCCN=0                                     GEOI 101
    AE=AREA(L)                                GEOI 102
    RA=RNEW/AE                                GEOI 103
    RN=1.000                                 GEOI 104
C COMPUTE CONSTRAINT EQUATIONS FOR SURFACE DENSITY ADJUSTMENT   GEOI 105
    DO 500 N=1,NDCNS                         GEOI 106
        RN=FN*RA                                GEOI 107
        FNA=RN*EA                                GEOI 108
        N1=N+1                                 GEOI 109
    DO 500 M1=1,N1                           GEOI 110

```

```

NCCN=NCON+1           GEOI 112
RNPA=RNAP(M1,N)       GEOI 113
DENCON(NCON,IND)=DENCON(NCON,IND)+RNPA*COSLAM(M1)  GEOI 114
IF(M1.LT.1) GO TO 500  GEOI 115
NCCN=NCON+1           GEOI 116
DENCON(NCON,IND)=DENCON(NCON,IND)+RNPA*SINLAM(M1)  GEOI 117
500 CONTINUE           GEOI 118
1000 CONTINUE          GEOI 119
IF(NDENST.LE.0) RETURN  GEOI 120
NADJ=NDENST-NCONST   GEOI 121
NADJ1=NADJ+1          GEOI 122
C INVERT SQUARE SEGMENT OF CONSTRAINT MATRIX      GEOI 123
CALL INVERT(NCONST,DENCON(1,NADJ1),NCONST,P)    GEOI 124
LN=2               GEOI 125
IF(NDEN.GT.NDENST) LM=4             GEOI 126
INDS(1)=1           GEOI 127
INDS(2)=NADJ        GEOI 128
INDS(3)=NDENST+1   GEOI 129
INDS(4)=NDEN        GEOI 130
C COMPUTE COEFFICIENTS RELATING CONSTRAINED AND UNCONSTRAINED ADJUSTED  GEOI 131
C SURFACE DENSITIES          GEOI 132
DO 2500 L=1,LN,2          GEOI 133
K1=INDS(L)            GEOI 134
K2=INDS(L+1)          GEOI 135
DO 2500 K=K1,K2          GEOI 136
DO 2000 I=1,NCONST     GEOI 137
A=0.000               GEOI 138
DO 1500 J=1,NCONST     GEOI 139
J1=J+NADJ              GEOI 140
1500 A=A+DENCON(I,J1)+DENCON(J,K)  GEOI 141
2000 C(I)=A             GEOI 142
DO 2500 I=1,NCONST     GEOI 143
2500 DENCON(1,K)=C(I)   GEOI 144
RETURN                GEOI 145
END                   GEOI 146

```


REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME	GEOSRD				
PURPOSE	TO READ OBSERVATION DATA IN GEOS FORMAT AND PARTIALLY PREFPROCESS THE OBSERVATIONS				
CALLING SEQUENCE	'CALL GEOSRD(NSTARD)				
SYMBOL TYPE	DESCRIPTION				
NSTARD I	INPUT - NUMBER OF STATIONS THAT WERE READ FROM CARDS				
SUBROUTINES USED	CLEAR2 NUMBR2 TDIF	RANDWR NUMBRA	DINRAD BIAS	EQUATR SATCL2	SATCLC YMDAY
COMMON BLOCKS	APARAM CPARAM SIGELK	CGECS CSTINF TPEBLK	FREBLK STANUM SRFBALK	CTIME CONSTS	CEPHEM INTBLK
INPUT FILES	IDTAPE - INPUT FILE NUMBERS				
OUTPUT FILES	FPRINTER				
SCRATCH FILES	LATP = 10 ISCR = 11				
REFERENCES	'GEODYN OPERATIONS DESCRIPTION' - APPENDIX C VOLUME 3 - GEODYN DOCUMENTATION				

SUBROUTINE GEOSRD(NSTARD)	GEOS	32
IMPLICIT REAL*8 (A-H,O-Z)	GEOS	33
LOGICAL*I GEUSEF,UKSAT,VFFCHN,PREPPC,LAST,SELSW	GECS	34
LOGICAL TIN,IY,NORATE,NEWTAP	GEOS	35
LCCICAL SATSAT	GECS	36
INTEGER#2 1FREFR,INDPRE,IMTYPE,ISTNC,CULL,MINUS,DSTA,IS,CHANEL,	GEOS	37
• NMEAS,MTYPE,PRETYP,ESTANC,ISTANO,ISTARD,STANDS,ITMOD,ITSEL,	GEOS	38
• IMUD,SELSTA,MTP,ISTA,IT4,IA4,ISATHO,JBASE,KBASE	GECS	39
INTEGER A,DATE,RECNO,OUTP	GECS	40
REAL TDIF,SATCLC,SATCL2,GS2R,GINTEK,SIGSTD,SIG1,SIG2,DAYINT,	GEOS	41
• SIGCHG,RFINDEX,SIGMA1,SIGMA2,S4,SCRPRINT,RFNDX	GEOS	42
DOUBLE PRECISION NAME,JNAME,ICARD	GECS	43
DIMENSION A(12,4),X(3),LAST(4),ISAT(4),MTP(4),ISTA(4),IT4(4),	GECS	44
• ISTA4(4),IY4(4),IH4(4),SA4(4),ID4(4),RFNDX(2)	GEOS	45
COMMON/APARAM/INPAR,INPAR1,NBIAS,NS1STA,NSAT,NSPARC(5)	GECS	46
COMMON/CGECS/ISAT2(2),IPREPR(4,50),RFINDEX(2,50),INDPRE(2,50),	GEOS	47
• NPHE,NSIG NCULL,SIGCHG(50),IMTYPE(50),ISTAD(50),CULL(2,100)	GEOS	48
COMMON/PREBLK/CAY CHS1,DRS2,SIG(2),RFNDX,ISTA,MTYPE,NMEAS,	GEOS	49
• ISATND,PRETYP,CHANEL,VFFCHN,PREPRO,RECNO	GEOS	50
COMMON/CTIME/LATAEF,DAYREF,CAYE,DAYETP,DAYINT(15)	GEOS	51
COMMON/CEPHEM/JNAME(301),ISTARC(301),ESTANU(3&1),ISTANC(396)	GEOS	52
COMMON/CPARAM/STA,NFAST(18)	GEOS	53
COMMON/CSTINF/JBASE(283),KBASE(283),LBASE	GEOS	54
COMMON/STANUM/NAME(220),STANCS(220),NOSTDR	GECS	55

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

COMMON/CONSTS/LPI,DTWOP1,D2R,S2R           GEOS  56
COMMON/SRFBLK/LSTA(600),DTIME(600),EFREQ(600),IYS1(100),IHS1(100),GEOS  57
•     IYS2(100),IHS2(100),ITMOD(386,11),ITSEL(100),IMOD(100),      GEOS  58
•     SELSTA(100),SELEW(100),IEHIAS(676)          GEOS  59
• COMMON/INTBLK/CINTEK(53),NORATE,INTCPK(73)        GEOS  60
COMMON/SIGBLK/SIGSTC(30),SGPRNT(30),IDTAPE(6)       GEOS  61
COMMON/TPEBLK/INTP,OUTP(5),ICBS,ISCFA(4)           GEOS  62
EQUIVALENCE (SIG1,SIG(1)),(KKSAT,SIG2,SIG(2)),(NLAST,LAST(1))    GEOS  63
EQUIVALENCE (RFNDX(1),SRFNDX)                  GEOS  64
DATA LELTE/SHDELETE/,ENDALL/SHENDALL/,NEWTP/3/   GEOS  65
DATA IGEOSA,1GEOS1/65591,650891/                GEOS  66
DATA IGEOSB,1GEOS2/68021,680021/                GEOS  67
DATA C/2.49742E3/                                GEOS  68
DATA MINUS/1H-/,ISCR,DATA/11,10/                 GEOS  69
C INITIALIZE
NUMBER=0                                         GEOS  70
GEOS2F=MTYPE,NE+1                               GEOS  71
NCRATE=.TRUE.                                    GEOS  72
NEXTAP=IOBS+2,DR,IOBS,EO+3                     GEOS  73
IOBS=MOD(IOBS,2)                                GEOS  74
SIG(1)=0.000                                     GEOS  75
SIG(2)=0.000                                     GEOS  76
SIG(3)=0.000                                     GEOS  77
C DETERMINE NUMBER OF INPUT UNITS
DO 610 I=1,3                                     GEOS  78
IF(IDTAPE(I).GT.0) GO TO 610
II=I+1                                         GEOS  79
DO 600 J=II,4                                   GEOS  80
600 ICTAPE(J-1)=ICTAPE(J)
ICTAPE(4)=0                                      GEOS  81
610 CONTINUE
NTAPE=NUMRA4(0,ICTAPE,4)+1                      GEOS  82
IF(NTAPE.LT.0) NTAPE=4                          GEOS  83
IF(NTAPE.GT.0) GO TO 612
NTAPE=1                                         GEOS  84
ICTAPE(1)=20                                     GEOS  85
612 IYMIN=0                                      GEOS  86
IHMIN=250000                                     GEOS  87
IYMAX=999999                                     GEOS  88
IHMAX=0                                         GEOS  89
CALL CLEAR2(ITMO,386,11)                         GEOS  90
PLAST=0                                         GEOS  91
DAYPRV=DATAEP
NORATE=.TRUE.
ISEL=0
DJBASE=YMDAY(SC0100,0,0,000)
IF(IOBS.LE.0) GO TO 620
C READ SELECT AND DELETE CARDS IF NECESSARY
IYMAX=0
IYMIN=999999
613 READ(INTP,400C) ICARD,IYMD,IHM,IT,IST,ISTA,MTYPE,LMOD
IF(ICARD.EQ.2NEALL) GO TO 620
ISEL=ISEL+1
SELSW(ISEL)=ICARD,NE,DELETE
IF(IT.LE.0) IT=999999
IYS1(ISEL)=IYMD
IHS1(ISEL)=IHMD

```

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

```

IYS2(1SEL)=1Y
IHS2(1SEL)=1ST
ITSEL(1SEL)=MTYPE
IMOD(1SEL)=MAX0(LMCD,1)
SELSTA(1SEL)=1STA
IF(.NOT.SELSW(1SEL)) GO TO 618
IYMIN=MIN0(IYMIN,IYMD)
IHMIN=MIND(IHMIN,IHM)
IYMAX=MAX0(IYMAX,IT)
IHMAX=MAX0(IHMAX,1ST)
GO TO 618
C READ FIRST RECORD FROM EACH UNIT
620 DO 625 I=1,NTAPE
    ITAP=IDTAPE(I)
    622 READ(10BS,2000,ERR=622,END=624) ISAT(I),MTP(I),ID4(I),IST4(I),
        IT4(I),ISTA4(I),IY4(I),IH4(I),S4(I),(A(J,I),J=1,12)
        IF(ISAT2(I).EQ.0) ISAT2(I)=ISAT(I)
    DO 670 J=1,NSAT
        IF(ISAT(I).NE.ISAT2(J)) GO TO 670
        GO TO 625
670 CONTINUE
    GO TO 622
624 LAST(I)=.TRUE.
625 CONTINUE
630 IHM=IH4(I)
    IYMD=IY4(I)
    IF(LAST(I)) IYMD=9999999
    ITAPE=1
    IOBS=IDTAPE(I)
    IF(NTAPE.EQ.1) GO TO 640
C TEST FOR EARLIEST TIME
    DO 635 I=2,NTAPE
        IF(LAST(I).CR.IYMD.LT.IY4(I)) GO TO 635
        IHMS=IH4(I)
        IF(IHM.LT.IHMS.AND.IYMD.EQ.IY4(I)) GO TO 635
        ITAPE=1
        IOBS=IDTAPE(I)
        IHM=IHMS
        IYMD=IY4(I)
635 CONTINUE
    IF(LAST(ITAPE)) GO TO 700
    GO TO 640
637 IF(LAST(ITAPE)) GO TO 630
C READ NEXT RECORD FROM UNITS LAST USED
638 READ(10BS,2000,ERR=638,END=639) ISAT(ITAPE),MTP(ITAPE),ID4(ITAPE),GEOS 155
    IT4(ITAPE),ISTA4(ITAPE),IY4(ITAPE),IH4(ITAPE),
    S4(ITAPE),(A(J,ITAPE),J=1,12)
    IF(ISTA4(ITAPE).EQ.0) LAST(ITAPE)=.TRUE.
    CKSAT=.FALSE.
C CHECK SATELLITE ID
    DO 665 I=1,NSAT
        IF(.NOT.CKSAT) GO TO 665
        ISATNC=1
        OKSAT=ISAT(ITAPE).EQ.ISAT2(I)
665 CONTINUE
    IF(.NOT.OKSAT) GO TO 637

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

GO TO 630                                GEOS 168
630 LAST(ITAPE)=.TRUE.
GO TO 630                                GEOS 169
C REWIND INPUT TAPES WHEN SELECTION COMPLETE
700 ISTA=0                                GEOS 170
    IF(.NOT.NEXTAP) GO TO 20
    WRITE(NEWTP,2000) ISAT(ITAPE),MTYPE,ID,IST,IT,ISTA,IYMD,IHM,
    • ID4(ITAPE),(A(J,ITAPE),J=1,12)
    END FILE NEXTP
    GO TO 20                                GEOS 171
C CHECK FOR ACCEPTABLE TIME
640 IF(IYMD,LT,IYMIN,OR,(IYMD,EQ,IYMIN,AND,IHM,LT,IHMIN)) GO TO 637
    IF(IYMD,GT,IYMAX,OR,(IYMD,EQ,IYMAX,AND,IHM,GE,IMMAX)) GO TO 700
    MTYPE=MTP(ITAFC)
    ISTA=ISTA4(ITAPE)
    IF(GEOS2F)ISTA=ISTA/10
    ISTA=MOD(ISTA,10000)
    IF(ISTA,LE,0) GO TO 700
    IF(ISEL,LE,0) GO TO 660
C CHECK IF MEASUREMENT HAS BEEN SELECTED
DC 645 J=1,ISEL
    IF((.NOT.SELSW(1)),OR,(MTYPE,NE,ITSEL(1),AND,ITSEL(1),GT,0),OR,
    • (ISTA,NE,SELSTA(1),AND,SELSTA(1),NE,0),OR,IYMD,LT,IYS1(1),OR,
    • IYMD,GT,IYS2(1)) GO TO 645
    IF(IYMD,EQ,IYS1(1),AND,IHM,LT,IHS1(1)) GO TO 645
    IF(IYMD,EQ,IYS2(1),AND,IHM,GT,IHS2(1)) GO TO 645
    ISMC=IMOD(1)
    GO TO 650
645 CONTINUE
    GO TO 657
C CHECK IF MEASUREMENT HAS BEEN DELETED
650 DO 655 J=1,ISEL
    IF(SELSW(J),OR,(MTYPE,NE,ITSEL(J),AND,ITSEL(J),GT,0),OR,(ISTA
    • ,NE,SELSTA(J),AND,SELSTA(J),NE,0),OR,IYMD,LT,IYS1(J),OR,
    • IYMD,GT,IYS2(J)) GO TO 655
    IF(IYMD,EQ,IYS1(J),AND,IHM,LT,IHS1(J)) GO TO 635
    IF(IYMD,EQ,IYS2(J),AND,IHM,GT,IHS2(J)) GO TO 655
    GO TO 637
655 CONTINUE
660 ISN=ISTA
    ID=ID4(ITAPE)
    ITEMPI=ISCR
    IF(MTYPE,EQ,4,AND,ID,EQ,5)ITEMP=DATP
    IF(.NOT.NORATE) GO TO 15
    IF(MTYPE,NE,3,AND,MTYPE,NE,4) GO TO 15
    IF(NSIG,LE,0) GO TO 17
    NNI=0
C DETERMINE IF SIGMA IS CHANGED
    DC 15 I=1,NSIG
    IF(ISN,NE,ISTNC(1),AND,1STNO(1),NE,0) GO TO 15
    IF(3,LE,IMTYPE(1),OR,IMTYPE(1),EQ,0) NNI=1
15 CONTINUE
    IF(NNI,GT,0,ANC,SIGCHG(NNI),NE,0) NORATE=.FALSE.
    GO TO 16
17 NORATE=.FALSE.
16 ISTA=ISN

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

C CHECK FOR STATION PRESENT
  ISN=NUMBER2(ISTA,ISTANO,NSTA)
  IF(ISN.GT.0) GO TO 73
  ISN=NUMBER2(ISTA,ISTARD,NSTARD)
  IF(ISN.GT.0) GO TO 71
  ISN=NUMBER2(ISTA,STANOS,NOSTCR)
  IF(ISN.GT.0) GO TO 71
  IF(ISTA.EQ.-4.AND.VTYPE.EQ.9.AND.ID.EQ.61) GO TO 71
  PRINT 3000,ISTA
  GO TO 637
71 NSTA=NSTA+1
  ISN=NSTA
  ISTANO(ISN)=ISTA
73 IF(ISHL.LE.0) GO TO 72
  K=MTYPE
  KTYPL=MOD(K,19)
  K=ITMCD(ISN,KTYPL)+1
  K=MCD(K,ISMCD)

C WRITE SELECTED MEASUREMENTS ON SCRATCH FILE
  ITMCD(ISN,KTYPL)=K
  IF(K.NE.0) GO TO 637
72 WRITE(ITEMP,2010) ISAT(ITAPE),MTYPE,ID,IST4(ITAPE),IT4(ITAPE),
  , ISN,IYMD,IHM,S4(ITAPE),(A(J,ITAPE),J=1,12)
  IF(.NET.NEXTAF) GO TO 637
  K=ISTANO(ISN)+10

C END FILE AND REWIND SCRATCH FILE
  WRITE(NEXTTP,2000) ISAT(ITAPE),MTYPE,ID,ISTA(ITAPE),IT4(ITAPE),K,
  , IYMD,IHM,S4(ITAPE),(A(J,ITAPE),J=1,12)
  GO TO 637
20 ENDFILE ISCR
  REWIND ISCR
  ENCFILE DATP
  REWIND DATP
  VFCHNL=.FALSE.
  IY=.TRUE.
  IM=0

C READ DOPPLER FILE AND FILL FREQUENCY TABLE
  NDOF=0
  DJEASE=YMDAY(50100,0,0,00)
  30 READ(DATP,2020,END=40)DSTA(NDOP+1),IYMD,IHM,SEC,BFREQ(NDOP+1)
  NDOF=NDOP+1
  DTIME(NDOP)=YMDAY(IYMD,IHM,SEC)+1.00/1440.00
  IF(NDOP.LT.60) GO TO 30
  PRINT 10000
40 REWIND DATP
  50 READ(ISCR,1000,END=60)ISATID,MTYPE, ID,IST,IT,ISN,IYMD,IHM,SEC
C READ FIRST RECORD FOR EACH OBSERVATION
  SATSAT=.FALSE.
  CHANNEL=0

C STATION AND TYPE ZERO FOR LAST OBSERVATION STORED
  IF(ISN.GT.0) GO TO 70
70 REWIND ISCR
  ISTA=0
  MTYPE=0
  RECNO=RECNO+1
  PRINT 5000,NUNTER,(IDTAPE(I),I=1,NTAPE)

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

CALL RANDWR
IM=0
GEOS 200
C COMPUTE MEASUREMENT TIME IN A.I DAYS FROM REFERENCE JAN 0.0
DAYSTP=DAY
GEOS 201
RETURN
GEOS 202
70 DAY=YMCAY(IYMC,IMM,SEC)
IF(IT.EQ.7) IT=3
GEOS 203
IF(IT.EQ.0,OR,IT.GT.4) IT=3
GEOS 204
DAY=DAY+TJIF(4,IT,DAY)/86400.
GEOS 205
IF(DAY.LT.-DATAEP) GO TO 180
GEOS 206
IF(DAY.GT.-DAYSTP) GO TO 60
GEOS 207
NMEAS=1
GEOS 208
SIG2=0.
GEOS 209
IND=0
GEOS 210
IPRE=0
GEOS 211
PRETYP=0
GEOS 212
ISATNC=NUMBER4(ISATID,ISAT2,NSAT)
GEOS 213
MT=MTYPE
GEOS 214
IF(MTYPE.EQ.4) MT=3
GEOS 215
IF(MTYPE.EQ.0) MT=26+ID
GEOS 216
IF(MTYPE.EQ.9) MT=ID
GEOS 217
KSTA=ISTAND(1EN)
GEOS 218
C DETERMINE PREPROCESSING TO BE DONE
GEOS 219
IF(NPRE.EQ.0,C) GO TO 100
GEOS 220
DO 75 I=1,NPRE
GEOS 221
75 IF((INOPRE(1,I),EQ.0,OR,INOPRE(1,I)+EQ,KSTA).AND.
GEOS 222
(INOPRE(2,I),EQ.0,OR,INOPRE(2,I),EQ,MT)) IND=I
GEOS 223
IF(IND.EQ.0) GO TO 100
GEOS 224
SRFNDX=RFINDX(1,IND)
GEOS 225
IF(IPRERE(3,IND),EQ.0),DAY=DAY+REINDX(2,IND)/86400
GEOS 226
IPRE=IPRERE(1,IND)
GEOS 227
PRETYP=IPRERE(2,IND)
GEOS 228
IF(IPRE.EQ.1) IPRE=1-1ST/S
GEOS 229
C DETERMINE SIGMA CHANGES IF ANY
GEOS 230
100 NN1=0
GEOS 231
NN2=0
GEOS 232
IF(NSIG,EQ.0) GO TO 108
GEOS 233
DO 106 I=1,NSIG
GEOS 234
IF(KSTA.NE.1ST NO(I),AND,1STNO(I),NE.0) GO TO 106
GEOS 235
IF(MT.EQ.1MTYPE(I),OR,1MTYPE(I),EQ,C) NYI=I
GEOS 236
IF(MT.GT.7) GO TO 106
GEOS 237
IF(MT+7.EQ.1MTYPE(I),OR,1MTYPE(I),EQ,0) NN2=I
GEOS 238
106 CONTINUE
GEOS 239
C PROCESS AND READ SECND RECORD ACCORDING TO MEASUREMENT TYPE
GEOS 240
C ...OPTICAL, AZIMUTH & ELEVATION
GEOS 241
108 GO TO (110,120,130,130,150,160,110,170,290),MTYPE
GEOS 242
110 READ(1SCR,101C) M1,N1,OB501,IS,N2,N2,OB502,IMEAN,IEQAT,SIG1,SIG2
GEOS 243
NMEAS=2
GEOS 244
CALL DINRAD(OBS1,M1,N1,OB501,MTYPE+1)
GEOS 245
CALL DINRAD(OBS2,M2,N2,OB502,1)
GEOS 246
IF(IS.EQ.1) N1=DSIGN(OBS2,-1,DC)
GEOS 247
IF(NN1.GT.0) SIG1=SIGCHG(NN1)
GEOS 248
IF(NN2.GT.0) SIG2=SIGCHG(NN2)
GEOS 249
COSD=LCJS(OBS2)
GEOS 250
SIG1=SIG1*S2R
GEOS 251
IF(IND,NE.0,OR,NN1.GT.0) SIG1=SIG1/COSD
GEOS 252
GEOS 253
GEOS 254
GEOS 255
GEOS 256
GEOS 257
GEOS 258
GEOS 259
GEOS 260
GEOS 261
GEOS 262
GEOS 263
GEOS 264
GEOS 265
GEOS 266
GEOS 267
GEOS 268
GEOS 269
GEOS 270
GEOS 271
GEOS 272
GEOS 273
GEOS 274
GEOS 275
GEOS 276
GEOS 277
GEOS 278
GEOS 279
GEOS 280
GEOS 281
GEOS 282
GEOS 283
GEOS 284
GEOS 285
GEOS 286
GEOS 287
GEOS 288
GEOS 289
GEOS 290
GEOS 291
GEOS 292
GEOS 293
GEOS 294
GEOS 295
GEOS 296
GEOS 297
GEOS 298
GEOS 299
GEOS 300
GEOS 301
GEOS 302
GEOS 303
GEOS 304
GEOS 305
GEOS 306
GEOS 307
GEOS 308
GEOS 309
GEOS 310
GEOS 311
GEOS 312
GEOS 313
GEOS 314
GEOS 315
GEOS 316
GEOS 317
GEOS 318
GEOS 319
GEOS 320
GEOS 321
GEOS 322
GEOS 323
GEOS 324
GEOS 325
GEOS 326
GEOS 327
GEOS 328
GEOS 329
GEOS 330
GEOS 331
GEOS 332
GEOS 333
GEOS 334
GEOS 335

```

```

SIG2=SIG2#52R          GEOS 336
IF(MTYPE.EQ.1) GO TO 400   GEOS 337
PRETYP=0                 GEOS 338
IF(IND.EQ.0.OR.IPREPR(4,IND).EQ.0) GO TO 400   GEOS 339
PRETYP=1                 GEOS 340
IF(ID.EQ.0.AND.(ISATID.EQ.1.GEOSA.OR.ISATID.EQ.1GEOS1))   GEOS 341
    DAY=DAY+SATCLC(IY,DAY+TDIF(3.4,DAY/5.64E4)/3.64E4)   GEOS 342
IF(10.EQ.0.AND.(ISATID.EQ.1.GEOS1.OR.ISATID.EQ.1GEOS2))   GEOS 343
    DAY=DAY+SATCL2(IY,DAY+TDIF(3.4,DAY/5.64E4)/3.64E4)   GEOS 344
IF(10.EQ.0.AND.(ISATID.EQ.1.GEOS1.OR.ISATID.EQ.1GEOS2))   GEOS 345
    ISATID.EQ.1GEOS2.OR.ISATID.EQ.1GEOS2),IPRE=0   GEOS 346
TIN=IMAN.EC+1           GEOS 347
IF(TIN.AND.1eCAT.EC.3) GO TO 400   GEOS 348
DECATR=DJBASE           GEOS 349
IF(1eCAT.EC.2) DECATR=0.DD   GEOS 350
IF(1eCAT.EC.3) DECATR=DAY   GEOS 351
X(1)=DCOS(OBS1)*CCSD   GEOS 352
X(2)=DSIN(OBS1)*CSOD   GEOS 353
X(3)=DSIN(OBS2)         GEOS 354
CALL EQUATR(X,DECATR,TIN,X,EAY,,TRUE.)   GEOS 355
OBS1=DATAN2(X(2),X(1))   GEOS 356
IF(CBS1.LT.0.CC) OBS1=OBS1+DTWOP1   GEOS 357
OBS2=CARSIN(X(3))        GEOS 358
GO TO 400               GEOS 359
C ... RANGE             GEOS 360
120 READ(1SCR,1020) OBS1,ISCCR,ITR,IRC,ITROP,SIG1,REFRAC,   GEOS 361
    * INVALID.CHANEL   GEOS 362
    IF(IVALID.LT.6) GO TO 123   GEOS 363
    IF(ISCR<.GT.+9) ISCR=ISCR-100   GEOS 364
    DAY=DAY+JFLDAY(ISCR)/A.64D+10   GEOS 365
123 IF(NN1.GT.0) SIG1=SIGCHG(NN1)   GEOS 366
    IF(PRETYP.EQ.1.AND.(ITROP.EC.1.OR.ITROP.EQ.3)) PRETYP=0   GEOS 367
    IF(ITROP.NE.9.CR,PRETYP.LE.0) GO TO 125   GEOS 368
    PRETYP=3               GEOS 369
    SRFNDX=REFRAC         GEOS 370
125 IF(IPRE.LE.0) GO TO 400   GEOS 371
    IF(INL.GT.0) DAY=DAY-OBS1/(C*B.64D4)   GEOS 372
    IPRE=CHANNEL+1        GEOS 373
    GO TO 400               GEOS 374
C ... RANGE RATE & DOPPLER   GEOS 375
130 READ(1SCR,1030) CBS1,ITROP,SIG1,CHANNEL   GEOS 376
    IF(PRETYP.EQ.1.AND.(ITROP.EC.1.OR.ITROP.EQ.3)) PRETYP=0   GEOS 377
    IF(MTYPE.EQ.3) GO TO 135   GEOS 378
    MTYPE=3                 GEOS 379
    IF(KDCH.EQ.0) GO TO 50   GEOS 380
    DO 140 I=1,KDCH
        IF(DAY.GT.0TIME(I).OR.ISN.NE.DSTA(I)) GO TO 140   GEOS 381
        OBS1=C*(BFREQ(I)-OBS1)/OBS1   GEOS 382
        SIG1=C*SIG1/BFREQ(I)           GEOS 383
135 IF(NN1.GT.0) SIG1=0.01*SIGCHG(NN1)   GEOS 384
    GO TO 400               GEOS 385
140 CONTINUE              GEOS 386
    GO TO 50               GEOS 387
C ... MINITRACK          GEOS 388
150 READ(1SCR,1040) OBS1,OBS2   GEOS 389
    SIGMA1=SIGSTD(E)          GEOS 390
                                         GEOS 391

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

SIGMA2=SIGSTD(12)
IF(NN1.GT.0) SIGMA1=SIGCHG(NN1)
IF(NN2.GT.0) SIGMA2=SIGCHG(NN2)
SIG1=CB51**2
SIG2=CB52**2
IF(SIG1.LT.1.) SIG1=SORY(1.-SIG1)
IF(SIG2.LT.1.) SIG2=SORY(1.-SIG2)
SIG1=SIGMA1*1.E-3/SIG1
SIG2=SIGMA2*1.E-3/SIG2
NMEAS=2
GO TO 400
C .,,X-Y ANGLES
160 READ(LSCR,1030) OBS1,OBS2,SIG1,SIG2
NMEAS=2
CB51=CB51*D2R
OBS2=OBS2*D2R
IF(NN1.GT.0) SIG1=SIGCHG(NN1)
IF(NN2.GT.0) SIG2=SIGCHG(NN2)
SIG1=SIG1*S2R
SIG2=SIG2*S2R
GO TO 400
C .,,TIME DELAY, FIRING RATE, 2 & 3 WAY AVERAGE RANGE RATE
170 READ(LSCR,1060) ITCCR,ITNCP,ICN,IST42,OB51,CB52
DAY=DAY+DFLOAT(ITCCR)/8.64D+10
IPRE=1
MTYPE=20+ID
SIGMA1=SIGSTD(MTYPE)
IF(NN1.GT.0) SIGMA1=SIGCHG(NN1)
SIG1=SIGMA1
IF(PRETYPE.GT.0) PRETYPE=PRETYPE-1+ITNCP
IF(PRETYPE.LE.0) GO TO 172
IND2=0
RFNDX(2)=0,
DO 171 I=1,NPRE
171 IF((INDPRE(1,I).EQ.0.OR.INDPRE(1,I).EQ.ISTA2).AND.
     (INDPRE(2,I).EQ.0.OR.INDPRE(2,I).EQ.MTYPE)) IND2=1
     IF(IND2.GT.0) RFNDX(2)=RFNDX(1,IND2)
172 ISN2=NUMBR2(ISTA2,ISTANO,NSTA)
IF(1SN2.GT.0) GO TO 175
ISN2=NUMBR2(ISTA2,ISTARD,NSTARD)
IF(1SN2.GT.0) GO TO 173
ISN2=NUMBR2(ISTA2,STANOS,NOSTOR)
IF(1SN2.GT.0) GO TO 173
PRINT 3000,ISTA2
GO TO 50
173 NSTA=NSTA+1
ISN2=NSTA
ISTANL(ISN2)=ISTA2
175 CHANNEL=1SN2
SIG(2)=OB52
IF(LBASC.EQ.0) GO TO 185
DO 186 I=1,LBASE
IF(ISN.NE.JBASE(I)) GO TO 186
IF(ISN2.NE.KBASE(I)) GO TO 186
GO TO 190
186 CONTINUE

```

GEOS 372
GEOS 373
GEOS 374
GEOS 375
GEOS 396
GEOS 397
GEOS 398
GEOS 399
GEOS 400
GEOS 401
GEOS 402
GEOS 403
GEOS 404
GEOS 405
GEOS 406
GEOS 407
GEOS 408
GEOS 409
GEOS 410
GEOS 411
GEOS 412
GEOS 413
GEOS 414
GEOS 415
GEOS 416
GEOS 417
GEOS 418
GEOS 419
GEOS 420
GEOS 421
GEOS 422
GEOS 423
GEOS 424
GEOS 425
GEOS 426
GEOS 427
GEOS 428
GEOS 429
GEOS 430
GEOS 431
GEOS 432
GEOS 433
GEOS 434
GEOS 435
GEOS 436
GEOS 437
GEOS 438
GEOS 439
GEOS 440
GEOS 441
GEOS 442
GEOS 443
GEOS 444
GEOS 445
GEOS 446
GEOS 447

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

163 LBASE=LBASE+1          GEOS 448
    JBASE(LBASE)=ISN          GEOS 449
    KBASE(LBASE)=ISN2         GEOS 450
190 GO TO (177,178,179,1791,1D)   GEOS 451
177 SIG1=SIG1+1,OE-9          GEOS 452
    GO TO 400                 GEOS 453
178 SIG1=SIG1+1,OE-5          GEOS 454
    GO TO 400                 GEOS 455
179 DBS2=DAY-DBS2/6.64E+8     GEOS 456
    SIG1=SIG1+1,OE-2          GEOS 457
    GO TO 400                 GEOS 458
180 REAE(1SCR,100C)           GEOS 459
    GO TO 50                  GEOS 460
290 J=10-1                   GEOS 461
    GO TO (292,393,494),J      GEOS 462
292 REAE(1SCR,1092) IREFR,DBS1,SIG1,IRELAY,CHANNEL
    CHANNEL=CHANNEL-1          GEOS 463
    IF(NN1.GT.0) SIG1=SIGCHG(NN1)
    GO TO 90                  GEOS 464
393 READ(1SCR,1093) IREFR,DBS1,SIG1,IRELAY
    IF(NN1.GT.0) SIG1=SIGCHG(NN1)*0.01
90 IF(PRETYP.GT.0) PRETYP=PRETYP-MOD(IREFR,2)
    J=ISATNU
    J=MCD(J,2)+1
    IF(IRELAY.EQ.ISAT2(J)) GO TO 92
    PRINT 6000,IRELAY
    GO TO 50                  GEOS 465
92 KKSAT=J                   GEOS 466
    MTYPE=ID                  GEOS 467
    IPRE=1                     GEOS 468
    DBS2=DAY                  GEOS 469
    SATSAT=.TRUE.              GEOS 470
    GO TO 400                 GEOS 471
494 REAE(1SCR,1071) IREFR,DBS1,SIG1,SIG2,1GE0,DBS2
C     IF(IST.EQ.0) CALL SATCL3(DAY)
    IF(NN1.GT.0) SIG1=SIGCHG(NN1)
    IF(NN2.GT.0) SIG2=SIGCHG(NN2)
    SIG2=SIG2*0.01
    IF(PRETYP.GT.0) PRETYP=PRETYP-MOD(IREFR,2)
    NMEAS=2
    MTYPE=ID
    400 IF(NULL.EQ.0) GO TO 420
C CULL MEASUREMENTS
    DC 415 I=1,NNULL
    DO 415 J=1,NMEAS
    IF(IM+J-CULL(1,I)) 415,413,411
    411 IF(IM+J.GT.CULL(2,I)) GO TO 415
    413 SIG(J)=0.000
    415 CONTINUE
    420 IM=IM+NMEAS
C SET PREPROCESSING SWITCH
    PREFRC=IND.NL.C.AND.NPRE.NE.0
    PREFRC=PREPRC.CR.MTYPE.GT.26
    IF(SATSAT) PREFRC=.TRUE.
    PRETYP=PRETYP+10*IPRE
    NUMBER=NUMBER+NMEAS

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

1STA=ISN	GEOS 504
IF(NTYPE.GT.7) GO TO 425	GEOS 505
CHANNEL=CHANNEL+1	GEOS 506
IF(1L.GT.0) CHANNEL=0	GEOS 507
425 RECNDR=LENCHN0+1	GEOS 508
IF(NJIAS.GT.0) CALL BIAS	GEOS 509
CALL RANDNR	GEOS 510
SIG(2)=0.000	GEOS 511
GO TO 50	GEOS 512
1000 FORMAT(16.211,3X,211,1X,14,16,14,F6.4)	GEOS 513
1010 FORMAT(13.12,DE.3,A1,212,FA.2,8X,211,8X,2F3.2)	GEOS 514
1020 FORMAT(D19.3,312,4X,11,F6.3,F6.4,1X,11,1X,11)	GEOS 515
1030 FORMAT(D19.3,1CX,11,10X,F3.2,2X,11)	GEOS 516
1040 FORMAT(3X,06.7,F6.7)	GEOS 517
1050 FORMAT(05.2,5X,F5.2,22X,2F3.2)	GEOS 518
1060 FORMAT(12,211,1A,D22.16,D16.6)	GEOS 519
1062 FORMAT(11,D19.3,F6.3,I6,11)	GEOS 520
1093 FORMAT(11,D19.6,3PF6.3,I6,11)	GEOS 521
1094 FORMAT(11,D19.3,F3.1,F3.2,I1,D19.6)	GEOS 522
2000 FORMAT(16.211,AA,A1,15,216,A4,A2,11AA)	GEOS 523
2010 FORMAT(16.211,AA,A1,15,216,A4/A2,11AA)	GEOS 524
2020 FORMAT(14X,14,15,1A,F6.4/D19.3)	GEOS 525
3000 FORMAT(1H,'STATION ',14,' NOT FOUND IN FILE')	GEOS 526
10000 FORMAT(1HO,20X,'***** OVER 200 DOPPLER PASSES-TABLE OVERFLOW ****')	GEOS 527
4000 FORMAT(A6,2(I6,1X,16,5X),1X,14,1X,11,I2)	GEOS 528
5000 FORMAT(1HU//31X,16,' OBSERVATIONS SELECTED FROM MASTER GEOS ',	GEOS 529
'DATA TAPE NUMBER(S)',A14)	GEOS 530
6000 FORMAT(' RELAY SATELLITE',18,' NOT PRESENT')	GEOS 531
END	GEOS 532

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

GRHRAN

DESCRIPTION.

GRHRAN is a real valued DOUBLE PRECISION function which

- Computes the right ascension of Greenwich,
- Computes the satellite vectors used in the calculation of the computed measurements and used in the calculation of the measurement partials.

NAME	GRHRAN
ENTRY POINT	PURPOSE
GRHRA1	INITIALIZATION
GRHRAN	TO COMPUTE THE RIGHT ASCENSION OF GREENWICH AND THE SATELLITE VECTORS USED IN COMPUTING MEASUREMENT PARTIALS

CALLING SEQUENCE X=GRHRA1(ENV,NSTA)

SYMBOL	TYPE	DESCRIPTION
ENV	DP	INPUT - STATION UNIT EAST, NORTH, AND VERTICAL (3,NSTA,1) VECTORS
NSTA	I	INPUT - NUMBER OF TRACKING STATIONS
GRHRA1	DP	OUTPUT - NOT USED

CALLING SEQUENCE X=GRHRAN(DAY,ISTA)

SYMBOL	TYPE	DESCRIPTION
DAY	DP	INPUT - OBSERVATION TIME IN DAYS FROM JAN 0.0 OF THE REFERENCE YEAR FOR THE ARC
ISTA	I	INPUT - STATION INDEX
GRHRAN	DP	OUTPUT - RIGHT ASCENSION OF GREENWICH

SUBROUTINES USED	EPHEM	TRUEP	XEFIX	YEFIX
	EOTPRD			
COMMON BLOCKS	APARAM	COASTS	CEPHEM	CSTHET
	CUVECT	INTEBLK	TRUPOL	XYZOUT

INPUT FILES NONE

OUTPUT FILES NONE

REFERENCES 'GEODYN SYSTEMS DESCRIPTION'
VOLUME 1 - GEODYN DOCUMENTATION REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

DOUBLE PRECISION FUNCTION GRHRA1(ENV,NSTA)
IMPLICIT REAL*8 (A-H,O-Z)
DOUBLE PRECISION NBODY
DIMENSION ENV(3,NSTA,1)
COMMON/APARAM/INPAR(4),NSAT,NGPARC(5)
COMMON/CONSTS/FT,DT,OMI,RAD,RSEC
COMMON/CEPHEM/AD(24),EQ,CEPHEM(643)

GRHR	49
GRHR	50
GRHR	51
GRHR	52
GRHR	53
GRHR	54
GRHR	55

```

COMMON/CSTNET/CTHETG,STHETG GRHR 56
COMMON/CUVVEC1/UHAT(3,2),XYZ(3,2),RXYZ(3,2),RENV(3,2),R(2),RSQ(2) GPHR 57
* XYSC(2) GRHR 58
COMMON/INTBLK/THOOT1,THOOT2,THOT2S,CM(24),THETCO,MHOODY(33) GRHR 59
COMMON/TRUPOD/TRUE(3) GPHR 60
COMMON/XYZOUT/XYZI(6,4) GRHR 61
RETURN GRHR 62
ENTRY GRHRAN(DAY,ISTA) GRHR 63
C CALCULATE TIME QUANTITIES NEEDED FOR RIGHT ASCENSION OF GREENWICH GPHR 64
C GRHR 65
C ...DAYS OF TIME OF INTEREST GRHR 66
T2=10INT(DAY) GPHR 67
C ...FRACTIONAL PART OF DAY OF TIME OF INTEREST GRHR 68
T3=DAY-T2 GPHR 69
C COMPUTE EQUATIONS OF THE EQUINOXES GPHR 70
CALL EPHEM(DAY,.TRUE.) GRHR 71
C COMPUTE RIGHT ASCENSION OF GREENWICH GRHR 72
GRHRAN=THETCO+T2+THOOT1+T3*THOT2+EC GPHR 73
GRHRAN=DMOD(GRHRAN,DTWOP1) GRHR 74
C TEST IF ONLY SATELLITE POSITION IS WANTED GRHR 75
IF(ISTA.EQ.0) RETURN GPHR 76
STHETG=DSIN(GRHRAN) GRHR 77
CTHETG=DCOS(GRHRAN) GRHR 78
C OBTAIN STATION POSITION RELATIVE TO TRUE POLE GPHR 79
CALL TRUEP(DAY,ISTA) GPHR 80
C OBTAIN EARTH FIXED POSITION OF SATELLITE GRHR 81
DO 350 L=1,NSAT GPHR 82
XYZ(1,L)=XEFIX(XYZI(1,L),XYZI(2,L)) GRHR 83
XYZ(2,L)=YEFIX(XYZI(1,L),XYZI(2,L)) GRHR 84
XYZ(3,L)=XYZI(3,L) GRHR 85
C CALCULATE SLANT RANGE GRHR 86
RSQ(L)=0.0D0 GPHR 87
DO 300 I=1,3 GRHR 88
RXYZ(I,L)=XYZ(I,L)-TRUE(I) GPHR 89
RSQ(L)=RSQ(L)+RXYZ(I,L)**2 GPHR 90
300 I=1,3 RSQ(L)=RSQ(L) GPHR 91
R(L)=DSQRT(RSQ(L)) GPHR 92
C CALCULATE UNIT VECTORS TO SATELLITE GPHR 93
DO 325 I=1,3 GPHR 94
325 UHAT(I,L)=RXYZ(I,L)/R(L) GPHR 95
C CALCULATE UNIT LOCAL VECTOR GPHR 96
DO 250 I=1,3 GPHR 97
250 RENV(I,L)=DECPRD(UHAT(I,L),ENV(I,ISTA,I)) GPHR 98
RETURN GPHR 99
END GPHR 100

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME	INDET			
PURPOSE	TO COMPUTE X,Y,Z'S AND AREA OF SURFACE DENSITY BLOCKS			
CALLING SEQUENCE	CALL INDET(SIG,ADENSE,DENSE,AREA,CENTER,BLKLOC)			
SYMBOL	TYPE	DESCRIPTION		
SIG	DP	OUTPUT - SIGNAS OF ADJUSTED SURFACE DENSITY		
(1)				
ADENSE	DP	OUTPUT - A PRIORI VALUES OF ADJUSTED SURFACE DENSITIES		
(1)				
DENSE	DP	OUTPUT - SURFACE DENSITY VALUES		
(1)				
AREA	DP	OUTPUT - SURFACE DENSITY SUB-BLOCK AREAS		
(1)				
CENTER	DP	OUTPUT - THE GEOCENTRIC COORDINATES OFTHE SUB-BLOCK CENTERS		
(2,1)				
BLKLOC	DP	OUTPUT - LATITUDE AND LONGITUDE OF BLOCK CENTER		
(2,1)				
SUBROUTINES USE	DELTAZ	AREAS		
COMMON BLOCKS	CCNSTS	CPAPAM	FLXBLK	INTBLK
INPUT FILES	NONE			
OUTPUT FILES	NONE			

```

SUBROUTINE INDET(SIG,ADENSE,DENSE,AREA,CENTER,BLKLOC)           INDE 39
IMPLICIT REAL*8(A-H,D-Z)           INDE 40
LOGICAL C*PCPF           INDE 41
INTEGER#2 NLAT,NLCN,NEXT           INDE 42
REAL DLAT,DLON,SIGD,CEN           INDE 43
DIMENSION SIG(1),ADENSE(1),DENST(1),AREA(1),CENTER(3,1),       INDE 44
     BLKLOC(2,1),NEXT(675)           INDE 45
COMMON/CCNSTS/CFI,CTKOP1,LEG2FC,CFSEC           INDE 46
COMMON/CPAPAM/NTA,NMAST,NTRST,NC1M,NCIAS,NGPC1,NGPC2,NGPCOM,   INDE 47
     NCSTST,NCMPGPR,LIM1,LIM2,NBLOCK,NAQJ,NTICST,NTICEN,INNFSW,   INDE 48
     NCINST,NCCNS           INDE 49
COMMON/FLXBLK/SLAT(675),SLCN(675),CLAT(675),CLON(675)           INDE 50
COMMON/INTBLK/THOOT(3),GM,AL,ATSC,FLAT,FSO32(S)           INDE 51
COMMON/VBBLCK/VBN(675),SIGE(675),NLAT(675),NLON(675),NSUPER,   INDE 52
     KSU,F(224)           INDE 53
DATA NLAT,NLON/2,2/           INDE 54
C ORDER THE SUB-BLOCKS SO THAT THOSE TO BE ADJUSTED APPEAR FIRST    INDE 55

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

NSBLAT=NSBLCN
F1=1.00-FLAT
F150=F1*F1
F2F=FLAT*(2.000-FLAT)
NBLOCK=C
NADJ =C
ISLB =C
M=C
DO 10 N=1,NSUPER
IF(SIGD(N) .EQ. 0.)GO TO 10
M=M+1
NEXT(M)=N
10 CONTINUE
DO 20 N=1,NSUPER
IF(SIGD(N) .NE. 0.)GO TO 20
M=M+1
NEXT(N)=N
20 CONTINUE
C THE DO LOOP TO STATEMENT 500 PROCESSES EACH SUPER BLOCK
DO 500 NS=1,NSUPER
N=NXT(NS)
LAT=NLAT(N)
LON=NLCN(N)
IF(SIGD(N) .NE. 0.)NADJ=NADJ+LAT*LON
RLAT =DLAT(N)
RLCN =DLCN(N)
PLAT2=RLAT*.500
RLON2 =RLON*.500
TLAT =RLAT/CFLCAT(NSBLAT)
TLAT2=TLAT*.500
TLCN =RLCN/CFLCAT(NSBLCN)
TLCN2 =TLCN*.500
BEGLAT=SLAT(N)-DFLOAT(LAT)*PLAT2
BEGLON=SLCN(N)-DFLOAT(LCN)*PLCN2
C THE DO LOOPS TO 400 AND 450 PROCESS EACH BLOCK IN A SUPER BLOCK
DO 450 LT=1,LAT
BEGLN =BEGLON
CENLAT=BEGLAT+PLAT2
DO 400 LN=1,LON
NBLOCK=NBLOCK+1
C STORE BLOCK DENSITY AND UNCERTAINTY      REPRODUCIBILITY OF THE
DENS=(NBLOCK) =DLN(N)                         ORIGINAL PAGE IS POOR
IF(SIGD(N) .LE. 0.)GO TO 200
ADENSE(NBLOCK)=DENS(N)
SIGE(NBLOCK) =SIGE(N)
C STORE LATITUDE AND LONGITUDE OF FLOCK CENTER
BLKLOC(1,NBLOCK)=CENLAT
CENLON=BEGLN+PLCN2
IF(CENLON .GE. +360.3)CENLON=CENLON-.3603
IF(CENLON .LT. -0.3)CENLON=CENLON+.3603
BLKLOC(2,NBLOCK)=CENLON
200 CONTINUE
SURLAT=BEGLAT
ZUGGIN=DFLATZ(SURLAT)
C THE DO LOOP TO 300 AND 350 PROCESS EACH SUBBLOCK IN A FLOCK
DO 350 LTEUP=1,NSBLAT

```

```
ZEND=CELLAZ(SUBLAT+TLAT) INDE 112
PSI=SUBLAT+TLAT2 INDE 113
ARIA=AREA S(ZEGIN,ZEND,TLON) INDE 114
CLON =EGLN+TLON2 INDE 115
SPEI=D SIN(PSI *EGL2RD) INDE 116
SPEI SO=SPEI *42 INDE 117
FCFSI=DSQRT(1.00-SPSISO) INDE 118
RHO=A*#1 /0 SOFT(F1SO+F2F*SFSISO) INDE 119
RCL=RHO*CPSI INDE 120
RSL=RHO*EPSI INDE 121
DO 300 LNSUB=1 ,NSBLDN INDE 122
ISUB=ISUB+1 INDE 123
C STORE AREA OF SUB-BLOCK AND EARTH FIXED X,Y,Z'S OF SUB-BLOCK CENTER INDE 124
ARIA(ISUB)=ARIA INDE 125
CENTER(1,ISUB)=RCL*D COS(CLCN*EGL2RD) INDE 126
CENTER(2,ISUB)=RCL*D SIN(CLCN*EGL2RD) INDE 127
CENTER(3,ISUB)=RSL INDE 128
CLCN=CLCN+TLON INDE 129
300 CONTINUE INDE 130
ZEGIN=ZEND INDE 131
SUBLAT=SUBLAT+TLAT INDE 132
350 CONTINUE INDE 133
BEGLN=EGLN+TLON INDE 134
400 CONTINUE INDE 135
BEGLAT=EGLAT+TLAT INDE 136
450 CONTINUE INDE 137
500 CONTINUE INDE 138
RETURN INDE 139
END INDE 140
```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

INOUPUT

DESCRIPTION

INOUPUT is a subroutine specifically designed as a part of the Multi-Arc GEODYN program.

INOUPUT performs four basic tasks for GEODYN. The tasks that are performed by INOUPUT are the following:

- 1) INOUPUT reads the GEODYN Input Cards which define parameters common to all arcs.
- 2) INOUPUT prints the GEODYN run heading.
- 3) INOUPUT reads the GEODYN INput Cards which define parameters for a single arc.
- 4) INOUPUT prints a heading for each arc.

INOUPUT performs tasks 1 & 2 on the first entry and performs tasks 3 & 4 on all subsequent entries.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME	INPUT				
PURPOSE	1) TO READ OPTIONAL CARDS 2) TO PRINT RUN DESCRIPTIONS 3) TO CALL SUBROUTINES TO READ DATA TAPES				
CALLING SEQUENCE	CALL INOUP1(NARCS,ARCNU)				
SYMBOL	TYPE	DESCRIPTION			
NARCS	I	INPUT - THE NUMBER OF ARCS IN THE RUN			
ARCNO	I	INPUT - THE ARC NUMBER			
SUBROUTINES USED	TDIF NUMBER2 PDEN1 ERROR	YMDAY CCEFL GECSRC SYMINV	GENDRM DOSRD DRVPT SIMRD	PRNTPR DOTPRD DATES	CLEAR ELEM PCERD
COMMON BLOCKS	ALFMRC CCNOUT FLXBLK PRIORI VRBLOK	APAFAM CONSTS FRODEL SIGPLK	CELEM CPHBI INITEK SFPLK	CPHEM CPARAM INTELK TPUBLK	CGEDS CTIME PREBLK VMAT
INPUT FILES	INTP - INPUT CARDS				
OUTPUT FILES	ELTP - PRINTER				
SCRATCH FILES	SCRC - 16				

SUBROUTINE INOUP1(/NARCS/,/ARCNO/)	INOU	35
IMPLICIT REAL*8(A-H,O-Z)	INOU	36
LOGICAL GRCFSW,KEPLER,TREFIT,VARSTP,DRBTSW,XYZFSW,XYZLSW,TREFC,	INOU	37
• PLTLESW,NCPRT,INITAL,NFCNCL,SUPRAT,CMPGPR,FARTGP,PBMAT,SIMDAT,	INOU	38
• PCESIN,HLVDEW,LITRES,STARTP,STARTW,HYPER,SQUEN	INOU	39
LOGICAL#1 VHCCHN,PFEPFD,PLMSW,NAMS,NAMES	INOU	40
INTEGER#2 IFFEPF,IMOPPF,CULL,ISTNC,IMTYPF,DFAGNO,EMISNO,	INOU	41
• BTYPF,DSTANC,ESTAND,ISTANC,ISTART,MTYHT,KMFAS,PFETYP,CHANEL,	INOU	42
• INEXCS,NP,NL,ULSTNC,BETYPE	INOU	43
INTEGER CLTE,FVTF,CUSUPP,XYZTP,ARCNU,ADDR,SEAD,FSTSTA,GFTP,RFCDN,	INOU	44
• EATP,FLTP,SCFA,FLCTP,SCFC,AIDDC,PLCNDI,CFDUR,PMATNO,STARTA,	INOU	45
• STAR10,OLTETR,PARMAX	INOU	46
REAL RAD,REEC,GPSIG,FGSTOT,SIGCHG,ASH,ALTME,PLHSIG,	INOU	47
• SIGSTG,VARCONV,JI5,PI,RATE,TLIF,PIASO,EDITN,TWCPI,RIASSG,	INOU	48
• CONVRG,FFINDX,SGFRNT,CUTCEN,SD,SSD,OPVLL,BSCC	INOU	49
COMMON PRECISION MODEL,NAMS,UNAME,ITUNS,MEOFY,MSAT,LCVR	INOU	50
TIME:SECN C(1:N) (32),PLHGW(1),PLHSIG(6,1),INEXCS(960,3),	INOU	51
• ISURF(4CEU),GPSIG(960),POOTS(6),CNINT(7,2),TIPS(7),	INOU	52
• GPVALU(46),A(6,5),NAM16(8),BISTNG(575),FLTYPF(675),FT15(5),	INOU	53
• KTAPI'S(4)	INOU	54
COMMON/ALFMRC/I TNMS(5),TIMING,BLANK,ATYPE(31),UNITS(15),FLCUT,	INOU	55

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

• HYPER	INOU	66
COMMON/APARAM/INPAR,INPARI,NEIAS,ESTSTA,NSAT,NGPARC,RZCND1,	INOU	57
• INPAR AM,INDIASE,PARMAX	INOU	58
COMMON/CELF/MLELMST(6,2),OFRBLA(6,2),XNU,EC,FMSTCT	INOU	59
COMMON/CSPHEM/UNAME(381),ISTARC(381),ESTAND(381),ISTANO(381)	INOU	60
COMMON/CGEOE/ISATID(2),IPRPRE(4,50),RFIMEX(2,50),INPRE(2,50),	INOU	61
• NCPFR,NEIG,NCULL,SIGCHG(50),IMTYPE(50),ISTNG(50),CULL(2,100)	INOU	62
COMMON/CONDLT/IG1,CUTCON,MINCUT,MAXOUT,LITFES,MAXSAT(7),NSTARD,	INOU	63
• STAR1P,STARTR,STARTA,STARTC,INSTRT,OUTSTR	INOU	64
COMMON/CCONSTS/DF1,DTACPI,CFAD,CFSLC	INOU	65
COMMON/COSE1/FANACT(2),PFSDCT(2),PLKHT(2),APHT(2),PF(2)	INOU	66
COMMON/CPAFAM/NSTA,NMAST,INSTEST,NEIN,W1AS,NGPC1,NGPC2,	INOU	67
• NGPC3,NC5LST,CHPGPF,LIM1,LIM2,INDR,NCNST,NTICST,NTIDEN,	INOU	68
• INNFSW,INCONST,NOCCNS	INOU	69
COMMON/CTIMV/DATAFP,DAYREF,DSTART,DAYSTR,DOBIT,DAYEND,	INOU	70
• DRATE,DORB1,DORB12,GRFTT,IYREF	INOU	71
COMMON/FLXHLK/HSTART(900),BSLAD(900),STYPE(900)	INOU	72
COMMON/FMODEL/INDEX1,NDEX2,INDEX3,NDEX4,CS(30,33),MODEL(8)	INOU	73
COMMON/INITPK/EPYMC,EPHMC,EPSCC,IYREF,INNMAX,INNMIN,CONVRG,	INOU	74
• OF-BEL(6,2),EDITN,INSURF,ICSAT(2),OFUTSW,XY2FSW,XY2LSW,P_TLSW,	INOU	75
• GRDFSW,KEPLER,SUBSAT,PARTGP,PEMAT,EMATNO,SMAT,PCESIM,	INOU	76
• MISLCG(2)	INOU	77
COMMON/INTPLK/THDCT1,THDCT2,THDCT2S,GW,AF,AESG,FLAT,	INOU	78
• FSQ32,FFS032,GM3(6),B(2),BCOT(2),RC(2),APGM(2),APLM(2),RPPFSS,	INOU	79
• INITIAL,NCFRAT,THETGO,NSCDY(5),STEPSZ(2,2),FLVDRB(2),DPLERB(2),	INOU	80
• CTOL(2),FTOL(2),STFLCK(2),STEFUP(2),CDEFR(2,2),ASAT(2),	INOU	81
• MSAT(2),V4FSTP(2),HLVDSW(2),NEON(2),ADD(2),ADDF(2),SRAD(2),	INOU	82
• LOW(3),TOFFET,NAECDY	INOU	83
COMMON/FREPLK/DAYSTA,CBS1,CBS2,SIG1,SIG2,SEFNOCX,ISTA,	INOU	84
• MTYPE,NMEAS,PRETYP(2),CHANL,VHFCHN,PAFPRO,RTCHO	INOU	85
COMMON/PRIDPI/LEMN(6,2),VAFCEV(6,2),TITLE(20),DRAGSG(2),	INOU	86
• DRSGEG(2),UMISSG(2),DRAGO(2),DRGDD(2),EMISSO(2),CE(2),	INOU	87
• COD(2),MISS(2)	INOU	88
COMMON/EIGSLK/SIGSTD(30),EGPENT(30),IARRAY(4)	INOU	89
COMMON/ERFBLK/PHI(675),XLAN(675),CP(675),CL(675),SD(675),	INOU	90
• SSD(675),NP(675),KL(675),NSD	INOU	91
COMMON/TREELK/INTP,CUTP,DATE,XY2TP,LEFTAP,FVTP,FLCTP,IBBS,SCRA,	INOU	92
• SCPC,FLTP,GRDTP	INOU	93
COMMON/VMAT/PKFPLP(6,6),SUM1(27)	INOU	94
COMMON/VRBLCK/BIAS0(900),BIASSG(900),ESTAND(900)	INOU	95
EQUIVALENCE (RSFC,DPSEC),(USTANG,FANACT(1)),	INOU	96
• (INDXC(1,1),SSTRT()),(GFSIG(1),BIAS0(1)),(PLHSIG(1,1),	INOU	97
• BSTRT(721)),(PLHSW(1),BTYFJ(257))	INOU	98
EQUIVALENCE (ISURF(1),PHI(1)),(CAFID,NAME8(1)),(NAME7,NAME8(7))	INOU	99
EQUIVALENCE (HYSTNO(1),NP(1)),(BETYFV(1),NL(1)),(CT1,CT15(1)),	INOU	100
• (T2,DT15(2)),(T3,DT15(3)),(T4,CT15(4)),(T5,DT15(5))	INOU	101
DATA NCARDS/32/,DASH/1H~/	INOU	102
DATA CONAM/GHCFBIT,6HFARTH,6HSAT,6HTICES,6HODIES,6HFRAG	INOU	103
• 6HSOLRAD,6HCLTPUT,6HSIGMA,6HSTEP,6HSTALST,6HCFORREL,6HBIAS	INOU	104
• 6HVARCCV,6HEDIT,6HFSID,6HFLAPC,6HCFRI,6HFULL,6HFLUX	INOU	105
• 6HSTAFUS,6HFCDF,6HFLATA,6HENATHX,6HSIMCAT,6HTOLS,6HRSTART	INOU	106
• 6HSURF,6HLLCUT,6HCCFF,6HEFIAS,6HSOCAT/	INOU	107
DATA TONINT/MIEQUATION,EHS CF MET,3HICEN,3HVARIA10,PHNAL EQUA,	INOU	108
• 6HTICES/	INOU	109
DATA HODITS/6H LUNAR,6H SOLAR,6H V,6H J,6H MARS,6H MERC,6H UPTER,	INOU	110
• 6HSATURN/	INOU	111

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

DATA TIDE S/EHLUNAR,SH AND .SHSOLAR,SH EFFE,SHTCS I,5HINCLUD,2HED/ INOU 112
DATA HLTZ/FHM:RTZ/,SEQUEN=.FALSE.,/,KTAPES/4*0/ INOU 113
AITIME(STAFT)=TUIF(4,3,DGSTART)/8.5454 INOU 114
DO 50,I=1,30 INOU 115
50 SGPNT(I)=SIGSTD(I) INOU 116
ILM=MTYPE INOU 117
IF(ARCNC.NE.+C) GO TO 100 INOU 118
C INITIALIZE FOR COMMON OPTIONS INOU 119
LARC=NAFC S INOU 120
ETAR TR=.FALSE. INOU 121
ETAR TW=.FALSE. INOU 122
ETAR TA=1 INOU 123
ETAR TU=1 INOU 124
ND XDEG=C INOU 125
ND XGDEG=C INOU 126
INSUPR=3 INOU 127
NSTARD=C INOU 128
NSD=6 INOU 129
NDCONS=C INOU 130
CALL CLEAR(JNAME,1336,1) INOU 131
CALL CLEAR(ESTRT,4050,1) INOU 132
CALL CLEAR(BIASO,2250,1) INOU 133
NETEST=C INOU 134
RMETOT=1000. INOU 135
NRMCFL=.FALSE. INOU 136
GO TO 200 INOU 137
C INITIALIZE FOR ARC OPTIONS INOU 138
100 IODS=NAME S
IF(ARCNL.EQ.LARC) SEQUEN=.FALSE. INOU 139
ELCUT=C,000 INOU 140
ND XCG=ND XC M1 INOU 141
ISATID(1)=0 INOU 142
ISATID(2)=0 INOU 143
ND XCD=ND XC M2 INOU 144
NGPARC=900 INOU 145
RCMNG1=RCNC INOU 146
RCMNG2=RCNC INOU 147
C SET DRAG & INTEGRATION DEFAULTS INOU 148
DO 130 I=1,NEAT INOU 149
IF(PERPH(I).GT.8.002) GO TO 120 INOU 150
IF(DRBLA(2,I).GT.1.000,AND.CUTFF(ELEMST(1,1),ELEMST(1,I)) INOU 151
    .GT.E1.5255D+12) GO TO 120 INOU 152
CD(I)=2.3D0 INOU 153
DRAG(I)=2.3D0 INOU 154
DRAGSG(I)=0.5D0 INOU 155
120 IF(DRBLA(2,I).LT.1.00-2,AND.PERFH(I).GT.1.5D3) STEPSZ(I,1)= INOU 156
    .PERFH(I)*8.649557D-3+86.72566D0 INOU 157
    CED(I)=C,000 INOU 158
    EFGD(I)=C,000 INOU 159
    DFGDSG(I)=C,000 INOU 160
    VAFSTP(I)=DRBLA(2,I).GT.0.2D0 INOU 161
    IF(VAFSTP(I)) STEPSZ(I,1)=25.0D0 INOU 162
    IF(LFAGC(I).GT.0,C00,AND.,NOT.VAFSTP(I)) STERSZ(I,1)=75.0D0 INOU 163
    IF(STEPSZ(I,1).GT.4,0D2) STEPSZ(I,1)=4.0D2 INOU 164
130 STEPSZ(I,2)=STEPSZ(I,1)
C READ OPTION CARD INOU 165
200 READ(INTP,10004,END=900) CAROUT,MAPRAY,DT1,T2,T3,T4,TS INOU 166
900 READ(INTP,10004,END=900) CAROUT,MAPRAY,DT1,T2,T3,T4,TS INOU 167

```

```

C DETERMINING TYPE OF CARD READ           INOU 168
  DO 230 I=1,NCARD$                      INOU 169
    IF(CARDIC.EQ.CDNAMC(I)) GO TO(400,405,410,415,420,425,430,435,
     * 440,445,450,455,460,470,480,485,490,475,495,200,550,500,525,
     * 300,310,320,340,350,360,500,370,380),I
  250 CONTINUE                               INOU 170
C ILLIGAL OPTION CARD - PRINT &PROR MESSAGE AND STOP      INOU 171
  CALL ERROR(3,CARDID)                      INOU 172
C BMATRIX CARD                               INOU 173
  300 BMATNG=DT1+C,5D0                      INOU 174
    PBMAT=T2.GT.C,5D0
    GO TO 200                                 INOU 175
C SIMFAT CARD                               INOU 176
  310 SIMFAT=.TFUE.
    PCESIM=IAFFAY(I),EO,0                   INOU 177
    GO TO 200                                 INOU 178
C TOL$ CARD                                INOU 179
  320 J=IAFRAY(1)                           INOU 180
    K=IAFRAY(3)*10+IAFRAY(4)                 INOU 181
    L=13+J,EO,0
    IF(ARCNC.EQ.C) NDCONS=L                  INOU 182
    IF(K.GT.C) NDEX4=MING(30,MAX0(3,K))     INOU 183
    IF(J.EQ.C) GO TO 325                     INOU 184
    IF(J.GT.2) GO TO 325                     INOU 185
    IF(DT1.GT.C,5D0) FTOL(J)=DT1            INOU 186
    IF(T2.G1.C,5D0) CTOL(J)=T2              INOU 187
    GO TO 200                                 INOU 188
  325 DO 325 J=1,2
    IF(DT1.GT.C,5D0) FTOL(J)=DT1            INOU 189
    IF(T2.G1.C,5D0) CTOL(J)=T2              INOU 190
  326 CONTINUE                               INOU 191
    GO TO 200                                 INOU 192
C RSTART CARD                               INOU 193
  340 IF(APCNC.NE.C) GO TO 200             INOU 194
    INSTR=IAFRAY(1)*10+IAFRAY(2)
    OUTSTR=IAFRAY(3)*10+IAFRAY(4)
    STARTA=DT1+C,5D0
    STARTR=124C,5D0
    STARTA=MAXC(1,STARTA)
    STARTD=MAXC(STARTC,1)
    STARTD=1
    STARTP=INSTR.GT,0
    STARTA=CLTS1P.GT,0
    GO TO 200                                 INOU 195
C SURLEN CARD                               INOU 196
  350 IF(ARCNC.NE.?) GO TO 200             INOU 197
    NSC=NSD+1
    SC(NSL)=P,T1
    ESC(NSD)=OABS(T2)
    PH(NSC)=T3
    ALAM(NSC)=T4
    IF AD(IM1P,16004,END=920) CARDIC,IAFFAY,DT1,T2,T3,T4,T5
    IF (CARDIC.NE.PLANK) CALL ERROR(14,CDNAM"(24))
    NP(NSD)=MAXC(IAFRAY(1)*10+IAFRAY(2),1)
    NL(NSL)=MAXC(IAFRAY(3)*10+IAFRAY(4),1)
    IF (DT1.LT.C,5D0) CALL ERROR(15,CARDID)

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

.DP(NSD)=DT1
IF (T2.LE.0.0DC) CALL ERROR(15,CARDID)
DL(NSD)=T2
J=NP(NSD)*NL(NSD)
NDEN=NDEN+J
IF (SED(NSD).GT.0.0) NDENST=NDENST+J
GO TO 200
C ELCLT CARD
360 ELCUT=DT1
GO TO 200
C SBIAS CARD
370 IF (ARCNC.EQ.0) GO TO 200
J=IARRAY(1)*1000+IARRAY(2)*100+IARRAY(3)*10+IARRAY(4)
IF (J.LE.0) GO TO 200
DO 375 I=1,5
K=DT15(I)+C.500
IF (K.LE.0) GO TO 375
IF (K.GT.14) GO TO 375
IF (NBIASE.GE.675) GO TO 200
NBIASE=NBIASE+1
BE STNO(NBIASE)=J
BT TYPE(NBIASE)=K
375 CONTINUE
GO TO 200
C SPOTCAT CARD
380 IF (ARCNC.EQ.0) SEQUEN=.TRUE.
GO TO 200
C ORBIT CARD
400 DBTS=.TRUE.
DFAGSG(1)=C.000
CHAGSG(2)=C.000
DRGCSG(1)=C.000
DRGOSG(2)=C.000
XYZFSK=.TRUE.
RVTP=10*IARRAY(1)+IARRAY(2)
BSEC=IPSEC
IF (RVTP.GT.0) WRITE(FVTP) ESTART,IEFYND,IEPHM,BSEC,(ELEMST(I,1),
    I=1,6)
IYSTAT=DT1+.500
IYEND=DT3+.500
IHM=T2/100.0+1.0-4
SEC=T2-DFLOAT(IHM*100)
DORBIT=YMCAY(IYSTAT,IHM,SEC)
DORBIT=DORBIT+A1 TIME(DORBIT)
DATALP=DMIN1(CATALP,DCRBIT)
IHM=T4/100.0+1.0-4
SEC=T4-DFLOAT(IHM*100)
DAYND=1DAY*(IYEND,IHM,SEC)
DAYEND=DAYND+A1 TIME(DAYEND)
DAYSP=DAYND
GO TO 200
C EARTH CARD
405 J=10*IARRAY(1)+IARRAY(2)
IT(J,GT.0) INDEX1=J
J=10*IARRAY(2)+IARRAY(4)
IF (J.GT.0) INDEX3=J

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

INDEX1=MAX0(4,INDEX1)
INDEX3=MAX0(2,INDEX3)
INDEX3=MINC(INDEX3,INDEX1)
IF(AEQNC,N,0) GO TO 200
IF(DT1.GT.C,0.000) GM=DT1
IF(T2.GT.C,0.000) AE=T2
IF(T2.GT.C,0.000) FLAT=T3
NRMCL=15,G,T,C,DO
IF(T4,LE,C,0.000) GO TO 200
DO 406 J=1,30
DO 406 K=1,33
406 CS(J,K)=C,000
GO TO 200
C SAT CARD
410 J=IAFPAY(1)
IF(J.EQ.0) GO TO 412
IF(J.GT.2) GO TO 412
ASAT(J)=DT1
MSAT(J)=T2
ISATID(J)=T3+C,500
GO TO 200
412 DO 413 J=1,NSAT
ASAT(J)=DT1
MSAT(J)=T2
413 ISATID(J)=T3+C,500
GO TO 200
C TIDES CARD
415 IF(-PONG,NE,0) GO TO 200
LOV1(1)=DT1
LOV1(2)=T2
LOV1(3)=T3
GO TO 200
REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR
C BODIES CARD
420 J=IAFPAY(1)
K=IAFPAY(2)
IF(K.GT.C) NRCDY=MINC(6,MAX0(2,K))
IF(J.EQ.0,OR,J.GT.6) GO TO 200
MBOUY(J)=DT1
GO TO 200
C DFAG CARD
425 J1=1
J2=NSAT
J=IAFPAY(1)
IF(J,LE,0,OR,J.GT.2) GO TO 426
J1=J
J2=J
426 DO 428 J=J1,J2
CD(J)=DT1
DFAGC(J)=DT1
DFAGSG(J)=T2
IF(LT1.GT.C,0.000) GO TO 427
T3=C,000
T4=C,000
427 CD(J)=T3
DPGDO(J)=T3
428 DFAGSG(J)=T4
INOU 280
INOU 281
INOU 282
INOU 283
INOU 284
INOU 285
INOU 286
INOU 287
INOU 288
INOU 289
INOU 290
INOU 291
INOU 292
INOU 293
INOU 294
INOU 295
INOU 296
INOU 297
INOU 298
INOU 299
INOU 300
INOU 301
INOU 302
INOU 303
INOU 304
INOU 305
INOU 306
INOU 307
INOU 308
INOU 309
INOU 310
INOU 311
INOU 312
INOU 313
INOU 314
INOU 315
INOU 316
INOU 317
INOU 318
INOU 319
INOU 320
INOU 321
INOU 322
INOU 323
INOU 324
INOU 325
INOU 326
INOU 327
INOU 328
INOU 329
INOU 330
INOU 331
INOU 332
INOU 333
INOU 334
INOU 335

```

```

GO TO 200
C SOLRAD CARD
430 J1=1
J2=NSAT
J=IAFFAY(1)
IF(J.EQ.0.OR.J.GT.2) GO TO 431
J1=J
J2=J
431 DO 432 J=J1,J2
EMISS(J)=LT1
EMISS0(J)=LT1
432 EMISSG(J)=T2
GO TO 200
C OUTPUT CARD
435 RATE=DT1
IF((T1.LE.C.D0) GO TO 436
DRATE=D T1+D T1*(A1 TIME(DSTART+7,D0)-A1 TIME(DSTART))/7.D0
DRATE=DRATE/6.64D4
436 IF(IARRAY(1).EQ.0.AND.IARRAY(2).EQ.0) GO TO 437
XYZFSW=IAFFAY(1).E0.1.GR.IARRAY(1).E0.3
XYZLSW=IAFFAY(1).E0.2.GR.IARRAY(1).E0.3
GEFFSW=IAFFAY(2).GT.0
437 PLTLSW=IAFFAY(3).GT.0
TORGE=T12.GT.0.D0
KPLPLR=IAFFAY(1).GT.0.AND.IARRAY(4).GT.0
J=13+0.E0.0
IF(J.NO.6.OR.J.EQ.8).AND.PTAP=J
PARTOR=74.GT.0.E0.0D0
GO TO 200
C SIGMA CARD
440 NSIG=NSIG+1
ISTA=DT1+.5E0
MTYPE=T2+.5E0
ISTNG(NSIG)=ISTA
IMTYPE(NSIG)=MTYPE
SIGCHG(NSIG)=T3
IF(ISTA.GT.0) GO TO 200
IF(MTYPE.LT.0) GO TO 442
SGPRINT(MTYPE)=T3
GO TO 200
442 DO 443 I=1,20
443 SGPRINT(I)=T3
GO TO 200
C STEP CARD
445 J=IARRAY(1)
IORD; R=IAFFAY(3)*10+IARRAY(4)
IF(IORD.LT.0) GO TO 448
IORD; K=MINC(15,MAX0(5,1CRDER))
448 J1=1
J2=4
IF(J.EQ.0.OR.J.GT.4) GO TO 446
J1=J
J2=J
446 DO 447 J=J1,J2
IF(DT1.GT.0.1E0) STEPSZ(J,1)=DT1
IF(1CRDER.GT.0) CRDER(J,1)=1CRDER

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

INOUPUT
Page 9 of 25
October 1972

```

IF(J.GT.2) GO TO 447           INOU 392
IF(T2.GT.C.0DC) HLVERB(J)=T2   INOU 393
IF(T3.GT.C.0DC) DBLEFB(J)=T3   INOU 394
IF(T4.GT.C.0DC) STPUP(J)=T4   INOU 395
IF(T5.GT.C.0DC) STPLOW(J)=T5   INOU 396
VARSTP(J)=IARRAY(2).GT.0     INOU 397
HLVDSW(J)=IARRAY(2).EQ.2     INOU 398
447 CONTINUE                   INOU 399
GO TO 200                      INOU 400
C STARST CARD                  INOU 401
450 IF(AFCNC.NE.0) GO TO 200   INOU 402
ISN=DT1+0.5DC                  INOU 403
IST=NUMBER2(ISN,ISTANC,NTEST)  INOU 404
IF(IST.GT.0) GO TO 452        INOU 405
NSTEST=NSTEST+1                INOU 406
IST=NSTEST                     INOU 407
452 ISTANU(IST)=ISN          INOU 408
ESTAND(IST)=ISN              INOU 409
JEN=T5+0.5DC                  INOU 410
IF(JSN.LE.0.DR.JSN.EQ.ISN) GO TO 453  INOU 411
ESTAND(IST)=JSN              INOU 412
GO TO 200                      INOU 413
453 PLHSW(IST)=IARRAY(1).NE.1  INOU 414
NMAST=NMAST+1                  INOU 415
PLHSIG(2,IST)=T4               INOU 416
IF(PLHSIG(1,IST)) GO TO 454   INOU 417
PLHSIG(1,IST)=T2               INOU 418
PLHSIG(2,IST)=T3               INOU 419
GO TO 200                      INOU 420
454 PLHSIG(1,IST)=T2*RSEC    INOU 421
PLHSIG(2,IST)=T3*RSEC    INOU 422
GO TO 200                      INOU 423
C CORREL CARD                  INOU 424
455 ISN=DT1+0.5DC             INOU 425
IST=0                          INOU 426
IF(NSTET.GT.0) IST=NUMBER2(ISN,ISTANC,NTEST)  INOU 427
IF(IST.GT.0) GO TO 457        INOU 428
NSTEST=NSTEST+1                INOU 429
IST=NSTEST                     INOU 430
457 ISTANU(IST)=ISN          INOU 431
PLHSIG(4,IST)=T2               INOU 432
PLHSIG(5,IST)=T3               INOU 433
PLHSIG(6,IST)=T4               INOU 434
GO TO 200                      INOU 435
C BIAS CARD                    INOU 436
460 IF(AFCNC.LE.0) GO TO 465   INOU 437
NBIAAS=NBIAS+1                 INOU 438
BIASC(NBIAS)=DT1               INOU 439
BIASSG(NBIAS)=T2               INOU 440
IYML=T3/1.0D6+1.0D-8          INOU 441
T3=T3-1.0D64FLCAT(IYML)       INOU 442
IHV=T3/1.0D2+1.0D-4           INOU 443
SEC=T3-1.0D24FLCAT(IHV)       INOU 444
IF(IYML.GT.0) DSTRT(NBIAS)=FYNDAY(IYML,IHV,SEC)+A1T INC(DSTART)  INOU 445
IF(IYML.EQ.0) DSTRT(NBIAS)=DATALE  INOU 446
IYMD=T4/1.0D6+1.0D-8          INOU 447

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

80-323

R 0-323

```

T4=T4-1.00*DFLCAT(IYMD)
IHM=T4/1.00 2+1.00-4
SEC=T4-1.00 2*DFLOAT(IHM)
IF(IYMD.GT.0)B$PNC(NPIAS)=YMDAY(IYMD,IHV,SEC)+A1T(ME(DSTART)) INOU 448
IF(IYMD.EQ.0) B$PNC(NPIAS)=DATAEP INOU 449
B$TAND(NPIAS)=1000*IARRAY(1)+100*IARRAY(2)+10*IARRAY(3)+IARRAY(4) INOU 450
B$TYPE(NPIAS)=T5+0.100 INOU 451
GO TO 200 INOU 452
465 J=1 INOU 453
WRITE(OLTP,44600) CARDID,J INOU 454
CALL ERROR(10,CARDID) INOU 455
GO TO 200 INOU 456
C VARCOV CARC
470 J=IARRAY(1) INOU 457
K=IARRAY(2) INOU 458
L=IARRAY(3) INOU 459
J1=1 INOU 460
J2=2 INOU 461
IF(J.EQ.0.OR.J.GT.2) GO TO 471 INOU 462
J1=J INOU 463
J2=J INOU 464
471 DO 474 J=J1,J2 INOU 465
IF(L.GT.0) GO TO 472 INOU 466
READ(INTP,10003) ((VARCOV(N,N,J),N=1,6),N=1,6) INOU 467
GO TO 473 INOU 468
472 READ(INTP,10003) ((VARCOV(N,N,J),N=1,6),N=1,6) INOU 469
473 IF(K.EQ.0) GO TO 474 INOU 470
CALL ELEM(ELEMNT(1,J),A,3,,TRUE,,PKELPL) INOU 471
CALL DNVLFT(6,PKELPL,6,SUM1) INOU 472
DO 467 I=1,6 INOU 473
DO 467 N=1,6 INOU 474
A(I,N)=C,CEC INOU 475
DO 467 N=1,6 INOU 476
467 A(I,N)=A(I,N)+PKELPL(I,M)*VARCOV(M,N,J) INOU 477
DO 469 I=1,6 INOU 478
DO 469 N=1,6 INOU 479
PSLM=C,CEC INOU 480
DO 469 N=1,6 INOU 481
468 PSLM=PSLM+A(I,M)*PKELPL(N,N) INOU 482
469 VARCOV(I,N,J)=PSLM INOU 483
474 CONTINUE INOU 484
GO TO 200 INOU 485
C DRB1 CARC
475 IYSTF T=DT1+.500 INOU 486
IYEND=T3+.500 INOU 487
IHV=T2/100.00+1.00-4 INOU 488
SEC=T2-DFLOAT(IHV*100) INOU 489
DORF1=YMDAY(IYSTRT,IHV,SEC) INOU 490
DORF1=A1T(M(DRB1))+DORF1 INOU 491
TOM:PC=IARRAY(1).GT.0 INOU 492
IHM=T4/100.00+1.00-4 INOU 493
SEC=T4-DFLOAT(IHM*100) INOU 494
SDFR1=YMAY(IY:NE,IHM,SEC) INOU 495
DORF1=A1T(M(DRF1))+A1T(M(DORF1)) INOU 496
DRBT=C,000 INOU 497
DO 476 I=2,4 INOU 498

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

476 DREFT=CRNT*T*10.00+0FLCAT(IARRAY(1))
IF(CRFT.L1.0.0) CRFT=50.00
IDEAT(1)=T0+C000
MCRFT=CRFT-T0+C000*(AINT((T0CRFT+7.00)-41TINE(CORE1))/7.00
DREFT=CRFT/864.00
GO TO 1200
C EDIT CARD
480 IF(T1.GT.0.00) EDITNE=T1
IF(12.GT.0.00) FNSTOT=T2
GO TO 210
C FESIC CARD
485 INSLPF=IAFRAY(1)
IF(INSLPF.GT.4) INSLPF=3
GO TO 230
C PREPRO CARD
490 NCPFRP=ENDPFRP+1
DO 491 I=1,4
491 IPFRP(I,NCPFRP)=IARRAY(I)
INDPRP(1,NCPFRP)=T1+.100
INDPRP(2,NCPFRP)=T2+.100
RFINDX(1,NCPFRP)=T3
RFINDX(2,NCPFRP)=T4
GO TO 200
C CULL CARD
495 NCULL=NCULL+1
CULL(1,NCULL)=T1+.500
CULL(2,NCULL)=T2+.500
IF(T3.EQ.0.00) GO TO 200
NCULL=NCULL+1
CULL(1,NCULL)=T3+.500
CULL(2,NCULL)=T4+.500
GO TO 200
C RECODE (COEF) CARD
500 N=IARRAY(1)*10+IAFRAY(2)
M=IARRAY(3)*10+IAFRAY(4)
T3=DAB S(T3)
T4=DAB S(T4)
IF(N.EQ.0.0) GC TC 502
K=2
IF(M.EQ.0.0 AND N.LT.3) K=1
TSIG=3.1630-3**K
IF(T5.GE.0.00) GC TC 503
TS=OCENCRM(N,M)
DT1=DT1*TS
T2=T2*TS
IF(T3.LT.TSIG) T3=T3*TS
IF(T4.LT.TSIG) T4=T4*TS
TS=-1.000
GO TO 500
503 IF(T5.LE.0.00) GC TC 620
DT1=CS(N,M+1)
T2=CS(31-N,33-M)
520 IF(T3.LE.0.00.CR.ARCH0.00.0) CS(N,M+1)=DT1
IF(T3.GT.TSIG) T3=T3*LABS(DT1)
F(T4,GT,TSIG) T4=T4*LABS(T2)
SL31=21-K

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0-325

```

I=LB2=32-N
IF (T4.LE.0.CDC.OR.ARND.EC.0) CS (ISUB1,ISUB2)=T2
IF (APCNC.GT.0) GO TO 600
IF (T3.LE.0.EC) GC TO 501
NCSE ST=NCSE ST+1
GP VAL J (NCSE ST)=DT1/T3
GP SIG (NCSE ST)=T3
INDEXC (NCSE ST,1)=1
INDEXC (NCSE ST,2)=N
INDEXC (NCSE ST,3)=M
ND XDEG=MAXC (ND XDEG,N)
ND XORD=MAXC (ND XORD,M)
501 IF (T4.LE.0.EC) GO TO 200
NCSE ST=NCSE ST+1
GP VAL J (NCSE ST)=T2/T4
GP SIG (NCSE ST)=T4
INDEXC (NCSE ST,1)=2
INDEXC (NCSE ST,2)=N
INDEXC (NCSE ST,3)=M
ND XDEG=MAXC (ND XDEG,N)
ND XORD=MAXC (ND XORD,M)
GO TO 200
502 J=N+1
K=33-M
I1=J
IF (M.GT.0) I1=J-1
DO 505 I=I1,30
CS(I,J)=C.CDD
505 CS(31-I,K)=C.CDD
GO TO 200
600 IF (T3.LE.0.CEC) GC TO 601
IF (NGPAPC.LE.NRIAS) GC TO 200
BIASSG(NGPAPC)=T3
BTYP1(NGPAPC)=1
BSTAND(NGPAPC)=N*100+M
BIASS(NGPAPC)=T1/T3
ND XDEG=MAXC (ND XDEG,N)
ND XORD=MAXC (ND XORD,M)
NGPAPC=NGPAPC-1
601 IF (T4.LE.0.CDC) GO TO 200
IF (NGPAPC.LE.NRIAS) GC TO 200
BIASSG(NGPAPC)=T4
BTYP1(NGPAPC)=2
BSTAND(NGPAPC)=N*100+M
BIASS(NGPAPC)=T2/T4
ND XDEG=MAXC (ND XDEG,N)
ND XORD=MAXC (ND XORD,M)
NGPAPC=NGPAPC-1
GO TO 200
C DATA CARD
E25 JSTAND=IARRAY(1)*1000+IARRAY(2)*100+IARRAY(3)*10+IARRAY(4)
IF (NACNC.0.0) GC TO 590
C S/T DATA UNITS
ICBS=JSTAND/100
IARRAY(1)=JSTAND-ICBS*100
IARRAY(2)=0 T1+C.500

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0-326

INOUP
Page 13 of 25
October 1972

```

IARRAY(3)=T2+0.5D0      INOU 616
IARRAY(4)=T3+0.5D0      INOU 617
JOBS=20                  INOU 618
IF(MOD(JIGIDS,4).EQ.0) JCRS=21    INOU 619
DO 530 I=1,4             INOU 620
IF(IARRAY(I)) 530,530,700      INOU 621
520 IARRAY(1)=0           INOU 622
IARRAY(1)=JCRS          INOU 623
GO TO 700                INOU 624
C STAPUS CARD          INOU 625
550 NSTARD=C            INOU 626
PPD(1)=DT1              INOU 627
PPD(2)=12               INOU 628
C READ STATION POSITICKS   INOU 629
560 READ(INTP,10005,NINC=900) CARDID,JSTANC,DT1,NANET    INOU 630
    IF(CARDID.EQ.CBNAME(23)) GO TO 590      INOU 631
    NSTARD=NSTARD+1          INOU 632
    ISTAR0(NSTARD)=JSTANC      INOU 633
    JNAME(NSTARD)=CARDID      INOU 634
    GO TO 560                INOU 635
C SET COMMON PARAMETER INDICATORS   INOU 636
590 MINOUT=JSTARD/100        INOU 637
    OUTCON=FLGAT(MINOUT)*1.0E-2    INOU 638
    NSTA=NSTE ST              INOU 639
    IF(OUTCON.LE.0.) CUTCN=0.02    INOU 640
    MAXOUT=JSTARD+100*MINOUT    INOU 641
    MINOUT=MAXOUT/10          INOU 642
    MAXOUT=MAXOUT-MINOUT+10    INOU 643
    MAXOUT=MAXU(MAXOUT,1)      INOU 644
    MINOUT=MAXU(MINOUT,1)      INOU 645
    L1TRES=DT1.GT.0.000       INOU 646
C COMPLETE FLATTENING          INOU 647
    FLAT=1.000/FLAT          INOU 648
    FEG32=1.500/1.*FLAT**2    INOU 649
    FF SQ32=AE*FLAT+FSC32    INOU 650
    AE SQ=AE **2             INOU 651
C WRITE RUN TITLE            INOU 652
620 WRITE(OLTP,44447) NAFCS    INOU 653
    IF(NSTE ST.GT.0) WRITE(OLTP,44448) NSTEST      INOU 654
    WRITE(OLTP,44449) (DASH,I=1,15),TITLE,MAXCUT,CUTCON,MINOUT    INOU 655
    NDXM1=ND X0LG            INOU 656
    NDXM2=ND X0FD            INOU 657
    NDCONS=MAXC(1,NDCCNS)    INOU 658
    NDCONS=MINC(NDCCNS,IND:XI-1)    INOU 659
    IF(INDENST.LE.0) NDCONS=0      INOU 660
    NCONST=NDCONS*(NDCCNS+2)    INOU 661
    REPRODUCIBILITY OF THE
    ORIGINAL PAGE IS POOR
C PRINT G'OPOTENTIAL COEFFICIENTS & EARTH MODEL    INOU 662
    CALL COEFL(CUTP,NRMCF)
    PPNF=1.00/FLAT          INOU 663
    WRITE(OLTP,10153) (DASH,I=1,11),/L,PPNF,GM    INOU 664
    IF (IND.LT.0) GO TO 640      INOU 665
    NAFJ=INDENST-NDCONS      INOU 666
    IF(NAFJ.LT.0) AND(NCONST.GT.0) CALL ERRDR(16,CARFCIE)    INOU 667
C PRINT SURFACE DENSITIES          INOU 668
    CALL PDGM1                INOU 669
C WRITE SURFACE DENSITY INFORMATION ON SCRATCH FILE    INOU 670

```

```

      DO 630 I1=1,4050,450          INOU 672
      I2=MING(I1+449,4050)          INOU 673
  630 WRITE(SCRC) (ISURF(I),I=I1,I2)    INOU 674
      DO 635 I1=1,2026,450          INOU 675
      I2=MING(I1+449,2026)          INOU 676
  635 WRITE(SCRC) (SU(I),I=I1,I2)        INOU 677
  640 CONTINUE                      INOU 678
      IF(NCSST.LE.0) RETURN         INOU 679
C WRITE ADJUSTED GEOPOTENTIAL A PRIORI VALUES ON SCRATCH FILE
      DO 650 I1=1,NCSST,225          INOU 680
      I2=MING(NCSST,I1+224)          INOU 681
  650 WRITE(SCRC) (GPVAL0(I),I=I1,I2)    INOU 682
      FTURN                         INOU 683
      INOU 684
C DETERMINE NUMBER OF ARC FORCE MODEL EQUATIONS EXCEPT ADJUSTED
C GEOPOTENTIAL COEFFICIENTS
  700 NEON(1)=0                     INOU 685
      NEON(2)=0                     INOU 686
      IF(DRBTEN) GO TO 702          INOU 687
      INPAFI=6*NSAT                INOU 688
      J=INPAFI                      INOU 689
      DO 704 I=1,NSAT              INOU 690
      IF(ASAT(I).LE.0.0001.D0) GO TO 704
      IF(DRAGSG(I).LE.0.0001) GO TC 701
      NEON(I)=NEON(I)+1            INOU 691
      INPAFI=INPAFI+1              INOU 692
      ADDP(I)=INPAFI-J             INOU 693
  701 IF(DRAGSG(I).LE.0.0001) GO TC 703
      NEON(I)=NEON(I)+1            INOU 694
      INPAFI=INPAFI+1              INOU 695
      ADDP(I)=INPAFI-J             INOU 696
  703 IF(EMISSE(I).LE.0.0001) GO TC 704
      NEON(I)=NEON(I)+1            INOU 697
      INPAFI=INPAFI+1              INOU 698
      SPAC(I)=INPAFI-J             INOU 699
      INOU 700
  704 CONTINUE                      INOU 701
C PRINT ARC DESCRIPTION
  705 WRITE(OLTP,10302) ARCHO,(DASH,I=1,22)    INOU 702
      IF(ISATIC(1).GT.0) WRITE(OLTP,20080) (I,ISATIC(I),I=1,NSAT)
      WRITE(OLTP,10303) TITLE          INOU 703
      WRITE(OLTP,10150) (DASH,I=1,8)    INOU 704
      IF(DRBTEN) GO TO 705
      WRITE(OLTP,10151) INNMAX,CONVPG,INNMIN
      WRITE(OLTP,10102)
      WRITE(OLTP,10102)
      GO TO 710
      REPRODUCIBILITY OF THE
      ORIGINAL PAGE IS POOR
  706 WRITE(OLTP,10152)                  INOU 705
C PRINT ARC FORCE MODEL DESCRIPTION
  710 J=INDEX1-1                      INOU 706
      K=INDEX2-1                      INOU 707
      WRITE(OLTP,10149) (DASH,I=1,11),J,K    INOU 708
      IF(NDXOLG.GT.J) CALL ERFCI(12,CARCI0)
      IF(NDXOF0.GT.K) CALL ERFCP(13,CARCI0)
      GO 725 I=1,6
      IF(I.GT.NACTY) GO TC 715
      IF(MDCY(I).GT.0.0001) GO TC 720
  715 WRITE(OLTP,10154) I,SCIF(S(I))    INOU 709
      INOU 710
      INOU 711
      INOU 712
      INOU 713
      INOU 714
      INOU 715
      INOU 716
      INOU 717
      INOU 718
      INOU 719
      INOU 720
      INOU 721
      INOU 722
      INOU 723
      INOU 724
      INOU 725
      INOU 726
      INOU 727

```

```

GO TO 725                                INOU 728
720 WRITE(DLTP,10155) I,(BODIES(I),J=1,2),MBODY(I)    INOU 729
725 CONTINUE
  IF((LOVE(1),EQ.0.CD0.AND.LOVE(2).EQ.0.CD0).CF.(MBODY(1).EQ.0.CD0) INOU 731
  .A 0.MBODY(2).EQ.0.CD0)) GO TC 850          INOU 732
  IF(MBODY(1).TO.0.CD0) WRITE(CUTP,11002) (TIDES(I),I=3,7)   INOU 733
  IF(MBODY(2).TO.0.CD0) WRITE(CUTP,11002) TIDES(1),(TIDES(I),I=4,7) INOU 734
  IF(MBODY(1).NE.0.CD0.AND.MBODY(2).NE.0.CD0) WRITE(OUTP,11002)TIDESINOU 735
  WRITE(DLTP,11003) LOVE.                  INOU 736
  GO TO 860                                INOU 737
850 WRITE(DLTP,11001)                      INOU 738
860 DO 743 I=1,NSAT                      INOU 739
  NCPRTN=ASAT(I).GT.0.CD0.AND.MSAT(I).GT.0.CD0    INOU 740
  WRITE(DLTP,10156) I
  IF(CD(I).GT.0.CD0.AND.NCPRTN) GC TO 730        INOU 741
  WRITE(DLTP,10158)
  GO TO 735                                INOU 742
730 IF(ADDR(I).EQ.0) WRITE(CUTP,10159) CD(I)      INOU 743
  IF(ADDR(I).GT.0) WRITE(CUTP,10504) CD(I),DRAGSG(I) INOU 744
  IF(ADDR(I).LT.0.AND.CD(I).GT.0.CD0) WRITE(OUTP,10157) CD(I) INOU 745
  IF(ADDR(I).GT.0) WRITE(CUTP,10502) CD(I),DRGESS(I) INOU 746
735 IF(EMISS(I).GT.0.CD0.AND.NCPRTN) GO TC 740    INOU 747
  WRITE(DLTP,10160)
  GO TO 745                                INOU 748
740 IF(SPAD(I).EQ.0) WRITE(CUTP,10161) PPFESS,EMISS(I) INOU 749
  IF(SPAD(I).GT.0) WRITE(CUTP,10503) PPFESS,EMISS(I),EMISSG(I) INOU 750
745 IF(NCPRTN) WRITE(CUTP,10504) ASAT(I),MSAT(I)    INOU 751
  WRITE(DLTP,10102)
  WRITE(DLTP,10118) (DASH,I=1,21)              INOU 752
  DO 750 I=1,NSAT
  WRITE(DLTP,10117) I,(OPFLR(I,J),(EONINT(K,J),K=1,3),J=1,2) INOU 753
  IF(.NOT.VARSTP(I)) WRITE(CUTP,10119) (STEPSZ(I,J),(EONINT(<,J),
  .K=1,3),J=1,2)                            INOU 754
  IF(VARSTP(I)) WRITE(CUTP,10121)
  IF(VARSTP(I)) WRITE(CUTP,10120) (EONINT(K,1),K=1,3),STEPSZ(I,1),
  .STEPUP(I),STPLCW(I),DELETEP(I),HLVFB(I),(EONINT(K,2),K=1,3),
  .STEP SZ(I,2)
  RTOL(I)=RTOL(I)**2                         INOU 755
  CTOL(I)=CTOL(I)**2                         INOU 756
  HLVFB(I)=HLVFB(I)**2                       INOU 757
  750 DELETEP(I)=DELETEP(I)**2                 INOU 758
C PRINT OUTPUT REQUESTS
  JJ=INSUPP
  IF(DR81.LT.0.CD0.AND.JJ.LE.0.AND..NOT.(PLTLSW,DR,XYZFSW,DR,XYZLSW) INOU 759
  .OR.GPF(S*)) GO TO 765                     INOU 760
  WRITE(DLTP,10162) (DASH,I=1,23)             INOU 761
  IF(PLTLSW) WRITE(OUTP,10164)(ITNMS(I),I=2,4)   INOU 762
755 IF(DR81.LT.0.CD0) GO TC 756               INOU 763
  CALL DATA(EOP81,IYMD,IMM,SEC)                INOU 764
  CALL DATA(S1,EOP81,IYMD,IMM,SEC)
  WRITE(DLTP,20010) IYMD,IMM,SEC,IYMD,IMM,SEC
  DT1=DR81*8.6404
  WRITE(DLTP,10165) DT1
  IF(.NOT.TCH(F)) GO TC 756                   INOU 765
  WRITE(DLTP,21002)
  WRITE(DLTP,21003)

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0 - 329

9.0 720

```

756 IF(.NJT,(XYZFSW,OR,XYZLSW)) GO TO 7057           INOU 784
    IF(TOREFT) WRITE(CUTP,20064)
    IF(TOREFT) WRITE(CUTP,20060)
    IF(XYZLEK,ANL,XYZFSW) GO TO 757                   INOU 785
    IF(XYZFSK) WRITE(CUTP,10165) ITNMS(1),(ITNMS(1),I=3,4) INOU 786
    IF(XYZLSW) WRITE(CUTP,10165) (ITNMS(1),I=2,4)        INOU 787
    GO TO 7056                                         INOU 788
    WRITE(DLTP,10165) ITNMS(1),(ITNMS(1),I=3,5),(ITNMS(1),I=2,4) INOU 789
7056 IF(OB3TSK) GO TO 7057                         INOU 790
    IF(FATL,GT,C.) WRITE(CUTP,20025) RATE
    WRITE(DLTP,10167)                                     INOU 791
7057 IF(.NJT,OFF,ISW) GO TO 758                     INOU 792
    CALL DATA$DGBIT,IYMD,IHME,SEC)
    CALL DATA$D4YEND,IYMDL,IHMLE,SEC)
    WRITE(DLTP,20020) IYMD,IHME,SEC,IYMDL,IHMLE,SEC
    WRITE(DLTP,10166) RATE                            INOU 793
    IF(RVTP,GT,C) WRITE(CUTP,20030)                  INOU 794
758 IF(GPJFSW) WRITE(CUTP,30162) ITNMS(1),(ITNMS(1),I=3,4) INOU 795
760 IF(OB3TSK,OR,JJ,LE,C) GO TO 765                 INOU 796
    WRITE(DLTP,20040)                                     INOU 797
    IF(MOD(JJ,2).EQ.1) WRITE(DLTP,20041)              INOU 798
    IF(JJ.EC,3) WRITE(CUTP,20042)                      INOU 799
    IF(MOD(JJ,4).GT.1) WRITE(CUTP,20043)              INOU 800
    IF(JJ.EQ.4) WRITE(CUTP,20044)                      INOU 801
C PRINT NOMINAL ODBIT
765 DO 769 I=1,NSAT                                INOU 802
    WRITE(DLTP,10166) I,(DASH,J=1,28)                INOU 803
    IF(ELA4,GT,C) WRITE(CUTP,20110) IELA4
    WRITE(DLTP,20100) IYREF,IYHMD,IYHMM,EPSEC,(ELFMIN(J,1),J=1,6),
      ,(ORBIL(J,1),J=1,6)                           INOU 804
.769 IF(.NJT,OFF,TSK) WRITE(CUTP,10173) ((VARCOV(J,K,1),K=1,6),J=1,6) INOU 805
    IF(TOREFC) CREFRT=ORBRT+1.000
    DO 767 K=1,NSAT
    I1=1
    DO 766 I=1,6
    DO 765 J=1,6
    SUM1(I1)=VARCOV(J,I,K)                         INOU 806
766 I1=I1+1
    CALL SYMINV(SUM1,6,6,VARCOV(1,:,K))
    I1=1
    DO 767 I=1,6
    DO 767 J=1,6
    VARCOV(J,I,K)=SUM1(I1)                         INOU 807
    VARCOV(I,J,K)=SUM1(I1)
767 I1=I1+1
C PRINT SUMMARY OF PREPROCESSING INSTRUCTIONS
    IF(NOPRPF,NO,C) CALL PRNTPR(CUTP,1TYPE)          INOU 808
C PRINT NUMBERS OF MEASUREMENTS WHICH ARE TO BE CULLED
    IF(NCULL,LE,C) GO TO 770                         INOU 809
    DO 769 J=1,NCULL
768 IF(CULL(2,J).LE.C) CULL(2,J)=CULL(1,J)          INOU 810
    WRITE(DLTP,20070)((CULL(I,J),I=1,2),J=1,NCULL)   INOU 811
C PRINT SIGMAS TO FILE FOR MEASUREMENTS
770 WRITE(DLTP,10000)
    WRITE(DLTP,10610) ATYPE(2),SGPNT(2)
    WRITE(DLTP,10620) UNITS(3)                        INOU 812

```

INOUP
Page 17 of 25
October 1972

```

      WRITE(OLTP,10610) ATYPE(3),SGPNT(3)           INOU 840
      WRITE(OLTP,10630)                               INOU 841
      WRITE(OLTP,10670) ATYPE(4),SGPNT(4),UNITS(3),ATYPE(11),SGPNT(11) INOU 842
      WRITE(OLTP,10630)                               INOU 843
      DO 780 I=1,7                                INOU 844
      IF(I.GT.1.AND.I.LT.5) GO TO 780               INOU 845
      WRITE(OLTP,10610) ATYPE(1),SGPNT(1)           INOU 846
      IF(I.NE.5) WRITE(OUTP,10620) UNITS(1)         INOU 847
      IF(I.EQ.5) WRITE(OUTP,10625)                  INOU 848
      WRITE(OLTP,10610) ATYPE(I+7),SGPNT(I+7)       INOU 849
      IF(I.EQ.5) WRITE(OUTP,10625)                  INOU 850
      IF(I.NE.5) WRITE(OUTP,10620) UNITS(1)         INOU 851
    780 CONTINUE
      IF(IGCS.E.GT.2) WRITE(OUTP,10640) (ATYPE(I),SGPNT(I),I=15,26) INOU 853
      K=(IGCS+1)/2-IGCS/4                         INOU 854
      IF(K.EQ.1) WRITE(OUTP,10680) (ATYPE(I),SGPNT(I),I=27,30) INOU 855
      IF(NSIG.EQ.0) GO TO 784                     INOU 856
      DO 783 I=1,NSIG                            INOU 857
      IF(ISTNC(I).EQ.0) GO TO 783                INOU 858
      I1=IMTYPE(1)                                INOU 859
      IF(I1.LE.0) I1=31                           INOU 860
      MTYPE=IMTYPE(1)-(IMTYPE(1)/8)*7             INOU 861
      WRITE(OLTP,10610) ATYPE(I1),SIGCHG(I)        INOU 862
      WRITE(OLTP,10650) ISTNO(I)                  INOU 863
      IF(MTYPE.EQ.5) WRITE(OUTP,10625)            INOU 864
      IF(MTYPE.EQ.2) WRITE(OUTP,10620) UNITS(3)     INOU 865
      IF(MTYPE.EQ.3.DR\MTYPE.GT.28) WRITE(OUTP,10620) INOU 866
      IF(MTYPE.EQ.27) WRITE(OUTP,10660)            INOU 867
      IF(MTYPE.EQ.28) WRITE(OUTP,10690)            INOU 868
      IF(MTYPE.EQ.1.DF,MTYPE.GT.5) WRITE(OUTP,10620) UNITS(1) INOU 869
      IF(IMTYPE(1).GT.26) MTYPE=11                 INOU 870
    783 CONTINUE
    784 MTYPE=IGCS                                INOU 871
C WRITE ELECTRONIC BIAS INFORMATION ON SCRATCH FILE
      WRITE(SCFC) BESTNO                          INOU 873
      WRITE(SCFC) RETYPE                          INOU 874
      IF(.NOT.SCALEN) GO TO 895                  INOU 875
      DO 890 I=1,4                                INOU 876
      ITAPE=KTAPE(I)                            INOU 877
      IF(ITAPE.EQ.5) GO TO 890                  INOU 878
      IF(ITAPE.EQ.1)IAARRAY(I)) GC TO 890       INOU 879
      IF(ITAPE.NE.0) REWIND ITAPE                INOU 880
    890 CONTINUE
    895 IF(URATEV) RETURN                        INOU 882
      IF(NBIASH.LT.0) GO TO 880                  INOU 883
C PRINT ELECTRONIC BIASES TO BE EXTRACTED
      WRITE(OLTP,44700) (BESTNC(I),BTYPE(I),I=1,NBIAS) INOU 884
      WRITE(OLTP,44710) (BESTNC(I),BTYPE(I),I=1,NBIAS) INOU 885
      WRITE(OLTP,44720) (BESTNC(I),BTYPE(I),I=1,NBIAS) INOU 886
      880 I1=IGCS+1                                INOU 887
C CALL SUBROUTINE TO FCAD DATA
      GO TO (785,786,786,737,788),I1          INOU 888
      WRITE(OLTP,44620) IGCS                      INOU 889
      CALL _FFOR(7,CAFID)                         INOU 890
      RTURN
    785 CALL DOLORG(MSTARD)                     INOU 891
      GO TO 790                                    INOU 892
      790 CONTINUE
      795 IF(URATEV) RETURN                        INOU 893
      800 IF(URATEV) RETURN                        INOU 894
      805 IF(URATEV) RETURN                        INOU 895

```

INOUP
Page 18 of 25
October 1972

```

786 CALL SCCSRD(NSTARD)           INOU 896
    GO TO 790
787 CALL PCERD                  INOU 897
    GO TO 790
788 CALL SINEC(NSTARD)          INOU 898
790 IF(SQQUEEN) GO TO 794        INOU 899
    DO 792 I=1,4
    ITAPE=IARRAY(I)
    IF(ITAPE.GT.0) REWIND ITAPE
792 CONTINUE                      INOU 900
    GO TO 798
794 DO 796 I=1,4                INOU 901
795 ITAPE=S(1)=IARRAY(I)          INOU 902
796 IF(NBIAE.EQ.0) RETURN        INOU 903
C PRINT ADJUSTED BIAS INFORMATION
    LINES=0                         INOU 904
    WRITE(CUTP,10410)               INOU 905
    DO 801 I=1,NBIAS              INOU 906
    II=ISTAND(I)
    BSTAND(1)=NUMBER2(II,ISTAND,NSTA)
    II=ISTAND(I)
    IF(II.EC.0) GO TO 801
    T2=TIMING                     INOU 907
    I2=ATYPE(I)
    IF(I2.GT.0) T2=ATYPE(I2)
    I2=I2+1
    IF(II.LT.15) UNIT=UNITS(I2)
    IF(II.EQ.27) UNIT=UNITS(1)
    IF(II.EQ.28) UNIT=HEFTZ
    IF(II.GT.28) UNIT=UNITS(4)
    IF(MOD(LINES,5).EQ.0) WRITE(CUTP,10102)
    LINES=LINES+1
    WRITE(CUTP,10411) ISTAND(II),T2,FIASC(I),UNIT,BIASSG(I)
    IF(BSEND(1).LE.BSTET(1)) WRITE(CUTP,10413)
    IF(BSEND(1).LE.BSTET(1)) GO TO 801
    CALL DATE(SUPSTAT(1),IYMD1,IHM1,SEC)
    CALL DATE(BSEND(1),IYMD2,IHM2,SEC)
    WRITE(CUTP,10412) IYMD1,IHM1,IYMC2,IHM2
801 CONTINUE                      INOU 908
    RETURN                         INOU 909
C IF END OF FILE ENCOUNTERED WITHOUT A PRECEDING DATA CARD, TERMINATE
900 CALL ERROR(6,CARDIE)          INOU 910
    STOP                           INOU 911
C FORMAT STATEMENTS
10003 FORMAT( E12.6)              INOU 912
10182 FORMAT( /1H4.5X$2HSATELLITE X,Y,Z AND GROUND-TRACK PLOT REQUESTED
    .FOR,2A6,A3,F4.2A6,A3)        INOU 913
10004 FORMAT(A6,4I1,4F15.3,0I0,8)  INOU 914
1041C FORMAT(1H1,28X,4SHNOMINAL ESTIMATES OF ADJUSTED BIAS PARAMETERS/
    . 1H6,18X,7HSTATION,5X,9HPARAMETER,12X,15HA PH-ICPI VALUES,12X,
    . 2HCCVVERAGL ----- YMMDD HHMM/1X,0HNUMBER,7X,4HTYPE,
    . 3 11X,4HBIAS,14X,0HSIGMA,11X,5H-SIGN,13X,0HNC)
10411 FORMAT(19X,1C,5X,A1,5H BIAS,2X,1FH,11.3+2X,7U,0I1.3)
10412 FORMAT(1H+,78X,10+15.6X,1G,15)
10413 FORMAT(1H+,78X,2H( DIFFERENT BIAS FOR EACH PASS))
10100 FORMAT(1X)                   INOU 915

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

INOUP
Page 19 of 25
October 1972

10117 FORMAT(1H0,5X,'COWELL PREDICTOR-CORRECTOR FOR SAT. NO.',I2,	INDU 952
• 21/10X,I2,' TH ORDER FOR ',2A8,AS1)	INDU 953
10118 FORMAT(1H1,5X,21HNUNERICAL INTEGRATION/GX,21A1)	INDU 954
10119 FORMAT(5X,F6.1,' SECOND FIXED STEP FOR ',2A8,AS1)	INDU 955
10120 FORMAT(1CX,1FCR ',2A8,AS/15X,OPF6.1,' INITIAL STEP SIZE'/	INDU 956
• 15X,F6.1,' MAXIMUM STEP SIZE'/15X,F6.1,' MINIMUM STEP SIZE'/	INDU 957
• 5X,'STEP SIZE INCREASE FOR PREDICTOR-CORRECTOR DIFFERENCE ',INDU 958	
• 'LESS THAN ',1PD7.1,' METERS'/15X,'STEP SIZE INCREASED FOR ',INDU 959	
• 'PREDICTOR-CORRECTOR DIFFERENCE GREATER THAN ',1PD7.1,' METERS')INDU 960	
10121 FORMAT(5X,'VARIABLE STEP INTEGRATION USED')	INDU 961
10150 FORMAT(1H0,5X,8HRUN TYPE//6X,BA1)	INDU 962
10151 FORMAT(1H0,5X,'DATA REDUCTION -',I3,' ITERATIONS OR CONVERGENCE ',INDU 963	
1 'WITHIN',2PF4.1,' PER CENT'/1H ,7X,'WITH A MINIMUM OF ',12,INDU 964	
2 'ITERATIONS')	INDU 965
10152 FORMAT(1H0 5X15HORBIT GENERATOR FUN //)	INDU 966
10149 FORMAT (1H0,5X11HFORCE MULL / 5X11A1 // 6X	INDU 967
• 28HA. GEOPOTENTIAL COEFFICIENTS /	INDU 968
• 10X,'LISTED COEFFICIENTS THROUGH DEGREE',I3,' AND ORDER',I3//6X,	INDU 969
• 22HE. (THER PERTURBATIONS)	INDU 970
10153 FORMAT(1H05X11HEARTH MODEL/ 6X11A1// 6X15+SEMI MAJOR AXIS 4X	INDU 971
• 1CH=FLATTENING 4X 22HGFATITATIONAL CONSTANT / 9X8H(METERS)	INDU 972
• 22X,22H(METERS**3/SECONDS**2) //8X,F11.2,7X,3H1./,F7.3,7X,	INDU 973
• 1PC14.8 //)	INDU 974
10154 FORMAT(1H ,EX,I1,2H, ,A7,' GRAVITATION NOT APPLIED')	INDU 975
10155 FORMAT(1H ,EX,I1,2H, ,A7,' GRAVITATION APPLIED - RATIO OF ',A7,	INDU 976
• ' MESES TO MASS OF EARTH =',1PC13.6)	INDU 977
10156 FORMAT(1H0,EX,'SAT. NO.',I2,' PERTURBATIONS')	INDU 978
10158 FORMAT(10X,1B, DRAG NOT APPLIED')	INDU 979
10157 FORMAT(10X,1B, DRAG COEFFICIENT RATE =',F7.4)	INDU 980
10159 FORMAT(10X,1B, DRAG APPLIED//15X,' DRAG COEFFICIENT =',F7.4)	INDU 981
10160 FORMAT(10X,1B, SOLAR RADIATION PRESSURE NOT APPLIED')	INDU 982
10161 FORMAT(10X,1B, SOLAR RADIATION PRESSURE APPLIED//15X,' SOLAR ',	INDU 983
• 'RADIATION PRESSURE (NEWTONS/METER**2) =',1PD10.3/15X,	INDU 984
• 15H- REFLECTIVITY =,OPF7.3)	INDU 985
10502 FORMAT(15X,'- A PRIORI DRAG COEFFICIENT RATE =',F8.4/15X,	INDU 986
• ' STANDARD DEVIATION OF A PRIORI DRAG COEFFICIENT RATE =',	INDU 987
• F8.4)	INDU 988
10503 FORMAT(1H ,5X,44H9, ADJUSTED SOLAR RADIATION PRESSURE APPLIED//15X,INDU 989	
• 47H- SOLAR RADIATION PRESSURE (NEWTONS/METER**2) =,1PD10.3/15X,	INDU 990
• 25H- A PRIORI REFLECTIVITY =,OPF7.3/15X,	INDU 991
• 44H- A PRIORI REFLECTIVITY STANDARD DEVIATION =,F7.3)	INDU 992
10504 FORMAT(10X,46H8, DRAG APPLIED WITH DRAG COEFFICIENT ADJUSTED/	INDU 993
• 15X,29H- A PRIORI DRAG COEFFICIENT =,F8.3/	INDU 994
• 15X,51H- STANDARD DEVIATION OF A PRIORI DRAG COEFFICIENT =,F8.3)INDU 995	
10514 FORMAT(15X,46H- SATELLITE CROSS SECTIONAL AREA (METERS**2) =,	INDU 996
• 1PD10.3/15X,30H- SATELLITE MASS (KILOGRAMS) =,D10.3)	INDU 997
10162 FORMAT(1H0,5X,'SPECIAL OUTPUT REQUESTS'/1H ,EX,23A1//)	INDU 998
10164 FORMAT(1H0,5X,35H1INARY RESIDUAL TABLE REQUESTED FOR ,2A6,A3,A4,	INDU 999
1 2A6,A3)	INDU1000
10165 FORMAT(1H : 5X47HSATELLITE X,Y,Z AND GROUND TRACK REQUESTED FOR	INDU1001
• 2A6,A3,A4,2A6,A3)	INDU1002
10166 FORMAT(5X,5H,MLRY,PF,3,8H SECONDS/1H0)	INDU1003
10167 FORMAT(1H 7X14HAT DATA POINTS //)	INDU1004
10173 FORMAT(1H0,5X,26HVAFAINC/CCVAFIANCE MATRIX //	INDU1005
• 18X1HX 14X1HY 14X1HZ 13X4HXDOT 11X4HYDOT 11X4HZDOT //	INDU1006
• 7X,1HX,2X,1PD615.7/7X,1HY,2X,4(15.7/7X,1HZ,2X,6E15.7/	INDU1007

8.0-333

• 6X,4HXCOT,6E15.7/6X,4HYDCT,6E15.7/6X,4HZCOT,6E15.7)	INOU1008
10168 FORMAT(1H1,6X,'NOMINAL ORBIT FCF SAT. NO.',1,12/6X,28A1)	INOU1009
• 1C005 FORMAT(A6,14,D15.3,3CX,A1)	INOU1010
10302 FORMAT(1H1,1CX,3HARC,13,' FUN DESCRIPTION'//1H ,1CX,22A1)	INOU1011
10303 FORMAT(1X/3(11X,10A8/))	INOU1012
11001 FORMAT(7X,3H7,' , 'EARTH TIDES NOT APPLIED')	INOU1013
11002 FORMAT(7X,3H7,' , 'EARTH TIDES APPLIED - ',7A5)	INOU1014
11003 FORMAT(1CX,'- K2 =',E9.3/1CX,'- K3 =',E9.3/1CX,'- PHASE ANGLE =', • F7.2,' DEGREES')	INOU1015
10600 FORMAT(1H1,47X,31HMEASUREMENT STANDARD DEVIATIONS/1H),50X,	INOU1016
• 7HSTATION,13X,5HSIGMA/1H ,47X,5HNUMBER,3X,4HTYPE,6X,	INOU1017
• 5H VALUE,2X,5HUNITS/)	INOU1018
10610 FORMAT(1H ,6SX,A6,F10.1)	INOU1019
10620 FORMAT(1H+,73X,A6)	INOU1020
10625 FORMAT(1H+,73X,4HMILS)	INOU1021
10630 FORMAT(1H1 ,72X,6HCM/SEC)	INOU1022
10640 FORMAT(3(49X,4HACNL,3X,A6,F10.1,2X,6HMETERS/),3(49X,4HNONE,3X, • A5,F10.1,2X,6HCM/SEC/),49X,4HNONE,2X,A6,F10.1,2X,6HMETERS/ • 49X,4HACNL,3X,A6,F10.1,2X,4HE-05/4 (49X,4HNONE,3X,A6,F10.1, • 2X,7HSELCNDS/))	INOU1023
10650 FORMAT(1H+,47X,15)	INOU1024
10660 FORMAT(1H+,73X,7HNANOSEC)	INOU1025
10670 FORMAT(48X,6HALTYTF,2X,A6,F10.1,2X,F5)	INOU1026
10680 FORMAT(49X,3HALL,4X,A6,F10.1,2X,7HNANOSEC/ • 49X,3HALL,4X,A6,F10.1,2X,1CHMICFCHERTZ/ • 49X,2HALL,4X,A6,F10.1,2X,6HCM/SEC,2X,7HTWC-WAY/ • 49X,3HALL,4X,A6,F10.1,2X,6HCM/SEC,2X,9HTREC-WAY)	INOU1027
10690 FORMAT(1H+,73X,1CHMICFCHERTZ)	INOU1028
20010 FORMAT(1HC,5X,2SHDRB1 TAPE REQUESTED FROM ,216,F7.4,4H TO ,216, 1 F7.4)	INOU1029
20020 FORMAT(1HC,5X,4HSATELLITE X,Y,Z AND GROUND TRACK REQUESTED FROM , • 216,F7.4,4H TO ,216,F7.4)	INOU1030
20025 FORMAT(1H ,7X,5HEVERY,F10.2,12H SECONDS AND)	INOU1031
20030 FORMAT(1HC,5X,37HRV TAPE REQUESTED FOR FIRST ITERATION)	INOU1032
20040 FORMAT(1HC,5X,'RESIDUAL PRINTING HAS BEEN REQUESTED FOR')	INOU1033
20041 FORMAT(1H+,46X,'THE FIRST INNER ITERATION ON THE FIRST OUTER ', • 'ITERATION'//)	INOU1034
20042 FORMAT(1H+,42X,'AND ')	INOU1035
20043 FORMAT(1H+,46X,'THE LAST INNER ITERATION ON THE LAST OUTER ', • 'ITERATION'//)	INOU1036
20044 FORMAT(1H+,46X,'ALL ITERATIONS'//)	INOU1037
20050 FORMAT(1H ,6X,22HOUTPUT REQUESTED EVERY,F9.3,8H SECONDS)	INOU1038
20060 FORMAT(1H+,15X,42HREFERENCE TO TRUE EQUATOR AND EQUINOX OF , 1 14HREFERENCE TIME)	INOU1039
20062 FORMAT(1HC,5X,9HDRB1 TAPE)	INOU1040
20064 FORMAT(1HC,5X,9HEPHYMERIS)	INOU1041
20070 FORMAT(1H1,37X,3HINDIVIDUAL MEASUREMENTS MANUALLY CULLED, 1 1X,17HRCM THE SOLUTION/1HC,32X,4(1EHM)ASUREMENT ,6X)/ 2 1H ,3EX,4(7HNUMBER,11X)/1H /25(1H ,32X,4(15,3H TO,15,5X))/))	INOU1042
20080 FORMAT(1X/(11X, 'SATELLITE ID FCF SAT. NO.',1,12,' IS ',18))	INOU1043
20100 FORMAT(1HC,5X, • 'REFERENCE TIME' - YEAR,MONTH,DAY ',16/ • 1HC,5X,2CH(PECH OF ELEMENTS - , • 1X15HYEAR,MONTH,DAY 16,4X16HMIN,MINUTE,SECOND I4,F7.3//6X • 32HRECTANGULAR COORDINATES/1HC, • 16X1HX26X(HY26X1HZ/16X,3H(N),24X,3H(N)),24X,3H(N)//	INOU1044

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

INOUTP
Page 21 of 25
October 1972

• 2X,7F2D28,10//15X4HXDOT,23X4HYCDOT,23X4HZDOT/ INOU1064
• 15X5H(M/S),22X5H(M/S),22X5H(M/S)//2X,4F3D28,13 INOU1065
• /1HC5X18HKEPLLFIAN ELEMENTS/1H0,11X,1HA,12X,1HE,12X,1HI,7X, INOU1066
• 3FHRA ASC NCDE ARG PERIGEE MEAN ANOMALY/SX,3F(METERS), INOU1067
• 13X,4(4X,9H(DGREES))/1H0,4PF16,1,F13,9,4F13,6) INOU1068
20110 FORMAT(1H0,5X,'CCDS DATA BASE ELEMENT SET',15,' USFC') INOU1069
44447 FORMAT(1H1,20(/),1UX,'MULTI-ARC GRODYN RUN USING DATA FROM', INOU1070
1 13,' SATELLITE ARCS') INOU1071
44448 FORMAT(1H ,12X,'WITH THE ADJUSTMENT OF',13,' STATION POSITIONS') INOU1072
44449 FORMAT(1H0/10X,'RUN DESCRIPTION'/10X,15A1//3(10X,15A5//)/10X,12, INOU1073
1 ' CITER ITERATIONS OR CONVERGENCE WITHIN',2PF4,1,' PER CENT' INOU1074
2 /12X,'WITH A MINIMUM OF',12,' CITER ITERATIONS') INOU1075
44600 FORMAT(1H1,20X,'ILLEGAL OPTION CARD INPUT'/1H0,15X,'EXPLANATION : INOU1076
• THE OPTION CARD ',A6,' IS ILLEGAL IN CONTROL SET',12,1H,/1H0,15X, INOU1077
• 'PROGRAM ACTION : CARD IGNORED -- EXECUTION CONTINUING.'/) INOU1078
44610 FORMAT(1H1,20X,'ILLEGAL OPTION CARD INPUT'/1H0,15X,'EXPLANATION : INOU1079
• THE OPTION CARD ',A6,' IN CONTROL SET 2 APC',13,' REQUESTS THE ',/ INOU1080
• 21X,'ADJLSTMENT OF A COMMON ARC PARAMETER.',/1H0,15X,'PROGRAM ',INOU1081
• 'ACTION : THE REQUESTED COMMON PARAMETER ADJUSTMENT WILL NOT BE',INOU1082
• 'PERFORMED -- ',/21X,'EXECUTION CONTINUING.'/) INOU1083
44620 FORMAT(1H1,20X,'EXECUTION TERMINATED DUE TO IMPCORR SETUP.',// INOU1084
• 16X,'EXPLANATION: DATA TYPE INDICATOR ON EPOCH CARD =',12, INOU1085
• ' GREATER THAN 4 ') INOU1086
44700 FORMAT(1H1,28X,'MEASUREMENTS FOR WHICH ELECTRONIC BIASES WILL ', INOU1087
• 'BE REMOVED'/1H0,7(13HSTATION MEAS,4X),13HSTATION MEAS/ INOU1088
• 7(3X,3HNC,4X,4HTYPE,3X),3X,3HNQ,4X,4HTYPE/) INOU1089
44710 FORMAT(16,17,11C,17,11C,17,110,17,110,17,110,17,11C,17,110,17) INOU1090
END INOU1091

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0-335

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0 - 337
N 777

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0 - 338 [C]

NAME. INTRP
 PURPOSE INTERPOLATION SUBROUTINE
 CALLING SEQUENCE CALL INTRP(S,H,ICRDER,NN,X,FCT,M,SUM)
 SYMBOL TYPE DESCRIPTION
 S DP INPUT - DESIRED OUTPUT TIME IN FRACTIONS OF A
 STEP SIZE FROM TIME POINT OF SUM ARRAY
 H DP INPUT - STEPSIZE
 IORDER I INPUT - ORDER
 NN I INPUT - NUMBER OF EQUATIONS TO BE INTEGRATED
 X (6,1) DP OUTPUT - COUTPUT ARRAY
 FCT (3,1) DP INPUT - ARRAY OF ACCELERATION EACH VALUES
 M I INPUT - DISPLACEMENT INDEX SET BY COWELL
 SUM DP INPUT - SUM ARRAY UPDATED BY INTEGRATOR
 SUBROUTINES USED COEF
 COMMON BLOCKS NONE
 INPUT FILES NONE
 OUTPUT FILES NONE

SUBROUTINE INTRP(S,H,ICRDER,NN,X,FCT,M,SUM)	INTP	39
IMPLICIT REAL*8 (A-H,C-Z)	INTR	40
DIMENSION AF(20),AV(20),X(6,1),FCT(3,1),SUM(2,3,1)	INTR	41
DATA S1/C,C/C/,ICR/C/	INTP	42
IF(S.EQ.S1.AND.ICR.EQ.IORDER) GC TO 1	INTR	43
S1=S	INTP	44
IOR=IORDER	INTR	45
C DETERMINE INTERPOLATION COEFFICIENTS	INTR	46
CALL COEF(S,IOR,AP,AV)	INTR	47
IOL2=IORDER-2	INTP	48
IOL1=IOL2+1	INTP	49
DO 100 N=1,NN	INTP	50
K0=N*M+1	INTP	51
DO 100 J=1,3	INTP	52
A=0.00	INTP	53
B=0.00	INTP	54
DO 100 K=1,IOL2	INTP	55

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

KK=K>K	INTR 56
A=A+AV(K)*FCT(J,KK)	INTR 57
10 B=B+AP(K)*FCT(J,KK)	INTR 58
A=A+AV(10L1)*FCT(J,K0-IOL1)	INTR 59
A=A+SUM(1,J,N)	INTR 60
B=B+SUM(1,J,N)*(S-1,DC)+SUM(2,J,N)	INTR 61
X(J,N)=B*H**2	INTR 62
X(J+3,N)=A*H	INTR 63
100 CONTINUE	INTR 64
RETURN	INTR 65
END	INTR 66

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0 - 341

JANTHG

DESCRIPTION

JANTHG is a subroutine specifically designed for the GEODYN system. Its functions are to

- Recover the Greenwich mean sidereal time on Jan 0.0 of the reference year (θ_{g0}), and
- Set up the solar flux and geomagnetic activity variation tables,

for each arc.

Note that this routine computes the 81 day (3 solar rotations) midpoint average of solar flux values for each arc.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME JANTHG

PURPOSE TO SELECT GREENWICH MEAN SIDEREAL TIME ON JAN C.O OF THE REFERENCE YEAR FOR EACH ARC AND SELECT FLUX DATA FOR EACH ARC FROM BLOCK DATA STORAGE AND COMPUTE AVERAGE SOLAR FLUX VALUES FOR EACH ARC

CALLING SEQUENCE JANTHG(IEPYMD,IY,SFLUX,MGFLUX,MYMD,LYMD)

SYMBOL	TYPE	DESCRIPTION	
IEPYMD	I	INPUT -- EPOCH YEAR, MONTH, AND DAY	
IY	I	INPUT - LAST 2 DIGITS OF REFERENCE YEAR	
SFLUX	I*2	INPUT - SOLAR FLUX DATA (1)	
MGFLUX	I*2	INPUT - MAGNETIC FLUX DATA (1)	
MYMD	I	INPUT - START DATE FOR FLUX DATA	
LYMD	I	INPUT - STOP DATE FOR FLUX DATA	
SUBROUTINES USED	DIFF		
COMMON BLOCKS	CGEOS	CONSTS	FLXBLK
INPUT FILES	NONE		
OUTPUT FILES	NONE		

```

DOUBLE PRECISION FUNCTION JANTHG(IEPYMD,IY,SFLUX,MGFLUX,MYMD,LYMD)JANT 17
DOUBLE PRECISION THETG0,CRAD,OTWCPI,AVFLX,DFLX,KP
INTEGER*2 MGFLUX(1),SFLUX(1)
COMMON/CGEOS/GG(2),THETG0(15),GC(423)
COMMON/CONSTS/EP(2),OTWCPI,CRAD,CRSI,C(2)
COMMON/FLXBLK/AVFLX(675),CFLX(675),KP(675)
C RIGHT ASCENSION OF GREENWICH FOR REFERENCE JAN C.O JANT 38
JANTHG=THETG0(IY-57)*CRAD
CALL DIFF(MYMD,0,IEPYMD,0,1DAY,1SEC)
CALL DIFF(MYMD,0,LYMD,0,1DAY1,1SEC)
C FLUX VALUES ARE FOR 12 HRS. GNT OF TABULAR DATE JANT 47
C NEED FLUX VALUES 1.5 DAYS BEFORE EARLIEST DATE FOR INTEGRATION JANT 48
1DAY=1DAY+2 JANT 49
1DAY2=1DAY JANT 50
IF(1DAY2.LT.1) 1DAY2=0 JANT 51
IF(1DAY.LT.4) 1DAY=4 JANT 52
1DAY1=1DAY1+1 JANT 53
DO 20 I=1,675 JANT 54
II=I+1DAY2 JANT 55

```

```
IF(I1.GT.IDAY1) I1=IDAY1 JANT 56
KP(I)=MGFLUX(I1)*1.0E-1 JANT 57
DFLX(I)=SFLUX(I1)*1.0E-1 JANT 58
I2=I+IDAY+40 JANT 59
IF(I2.GT.IDAY1) I2=IDAY1 JANT 60
I1=I2-60 JANT 61
AVFLX(I)=0.000 JANT 62
C COMPUTE FLUX AVERAGE JANT 63
DO 15 J=I1,I2 JANT 64
15 AVFLX(I)=AVFLX(I)+SFLUX(J) JANT 65
20 AVFLX(I)=AVFLX(I)/810.000 JANT 66
RETURN JANT 67
END JANT 68
DOUBLE PRECISION THETGO,ERAD,DTWCPI,AVFLX,DFLX,AP JANT 69
INTEGER#2 MGFLUX(1),SFLUX(1) JANT 70
COMMON/CGEO5/G5(2),THETGO(15),GC(423) JANT 71
COMMON/CONSTS/DP1(2),DTWCPI,ERAD,DRSEC(2) JANT 72
COMMON/VFLXBLK/AVFLX(675),CFLX(675),AP(675) JANT 73
JANTH=THETGO(1Y-57)*CRAD JANT 74
CALL DIFF(MYMO,0,LYMO,0,1DAY,ISLC) JANT 75
CALL DIFF(MYMO,0,LYMO,0,1DAY1,ISEC) JANT 76
IDAY2=IDAY JANT 77
IF(IDAY2.LT.0) IDAY2=0 JANT 78
IF(IDAY.LT.54) IDAY=54 JANT 79
IDAY1=IDAY1+1 JANT 80
DO 20 I=1,675 JANT 81
I1=I+IDAY2 JANT 82
IF(I1.GT.IDAY1) I1=IDAY1 JANT 83
AP(I)=MGFLUX(I1) JANT 84
DFLX(I)=SFLUX(I1)*1.0E-1 JANT 85
I2=I+IDAY JANT 86
IF(I2.GT.IDAY1) I2=IDAY1 JANT 87
I1=I2-54 JANT 88
AVFLX(I)=0.000 JANT 89
DO 15 J=I1,I2 JANT 90
15 AVFLX(I)=AVFLX(I)+SFLUX(J) JANT 91
20 AVFLX(I)=AVFLX(I)/550.00 JANT 92
RETURN JANT 93
END JANT 94
```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NAME MULMAT
PURPOSE TO MULTIPLY THREE 3X3 MATRICES
CALLING SEQUENCE CALL MULMAT(X,X1,X2,X3)
SYMBOL TYPE DESCRIPTION
X1 DP INPUT - MATRIX OF DIMENSION 3X3
(3,3)
X2 DP INPUT - MATRIX OF DIMENSION 3X3
(3,3)
X3 DP INPUT - MATRIX OF DIMENSION 3X3
(3,3)
X DP OUTPUT - PRODUCT OF THE THREE 3X3 MATRICES
(3,3)
SUBROUTINES USED NONE
COMMON BLOCKS NONE
INPUT FILES NONE
OUTPUT FILES NONE

SUBROUTINE MULMAT(X,X1,X2,X3)	MULM	32
REAL*8 X(3,3),X1(3,3),X2(3,3),X3(3,3),SUM	MULM	33
DO 40 J=1,3	MULM	34
DO 10 I=1,3	MULM	25
10 X(I,J)=0.00	MULM	36
DO 40 K=1,3	MULM	37
SUM=0.00	MULM	38
DO 20 L=1,3	MULM	39
20 SUM=SUM+X2(K,L)*X3(L,J)	MULM	40
DO 40 I=1,3	MULM	41
40 X(I,J)=X(I,J)+SUM*X1(I,K)	MULM	42
RETURN	MULM	43
END	MULM	44

NAME NEWARC
 PURPOSE TO INITIALIZE SWITCHES AND CONSTANTS FOR EACH ARC
 CALLING SEQUENCE CALL NEWARC
 SUBROUTINES USED CLEAR
 COMMON BLOCKS APARAM CELEM CGEOS CONSTS CTIME
 FLXSLK FMCLBL INITBK INTPLK PREBLK
 PRIORI TPLBLK VRELCK
 INPUT FILES NONE
 OUTPUT FILES NONE

SUBROUTINE NEWARC	NEWA	20
IMPLICIT REAL*8 (A-H,O-Z)	NEWA	21
LOGICAL NCTIST,TREFT	NEWA	22
INTEGER XYZTP,FVTP,SCRA,SCRC,FLTF,PLCTP,CATP,CJTP,ZSTSTA,GRDTP	NEWA	23
REAL RMSTGT,VARCOV,EDITN	NEWA	24
DOUBLE PRECISION MODEL,LOVE	NEWA	25
DIMENSION SHDDY(6),STEP(20)	NEWA	26
COMMON/APARAM/INPAR,IAPARI,NIAS,ZESTSTA,NSAT,VNPARC,NURECIVNPARAM,NEWA	NEWA	27
• N3IAS,MAXPAR	NEWA	28
COMMON/CELEM/ELMNST(24),XNU,FC,FNSTGT	NEWA	29
COMMON/CGEOS/ISATID(252),NCFFPR(203)	NEWA	30
COMMON/CONSTS/DPI,DTWCP,DRAF,DPSEC	NEWA	31
COMMON/CTIME/DATASP(3),DAYSTP,DAYINT,DOFBIT,DAYEND,DFATE,DOFB1,	NEWA	32
• DORB1E(2),IY	NEWA	33
COMMON/FLXSLK/ISTGFE(450,9)	NEWA	34
COMMON/FMCLBL/INDEX1,INDEX2,INDEX3,INDEX4,CS(30,33),MDRL(8)	NEWA	35
COMMON/INITBK/IG1(57)	NEWA	36
COMMON/INITBLK/THDCT1,THDCT2,THDT25,IG2(50),FODIFS(6),STEPSZ(24),	NEWA	37
• IFRN(8),LOVE(3),TORIFT,NBEGY	NEWA	38
COMMON/PREBLK/DAYSTA,JCHS(15)	NEWA	39
COMMON/PRIOKI/LEMIN(12),VARCOV(6,5,2),TITLE(30),DRAG(18)	NEWA	40
COMMON/TPLBLK/INTP,OUTP,DATP,XYZTP,KFTAP,RVTP,FLOTP,JOBS,SCRA,	NEWA	41
• SCRC,FLTF,GRDTP	NEWA	42
COMMON/VRELCK/JSTCRF(450,5)	NEWA	43
EQUIVALENCE (EDITN,IG1(33))	NEWA	44
DATA NO1ST/.FALSE./	NEWA	45
DO ITN=3,5	NEWA	46
CALL CLEAR(IG1(34),24,1)	NEWA	47
IF(NOT1ST) GO TO 20	NEWA	48
C SAVE DEFAULT CONSTANTS USED FOR ALL AFCS	NEWA	49
NO1ST=.TRUE.	NEWA	50
INDEX1=INDEX1	NEWA	51
INDEX3=INDEX3	NEWA	52
NCDYS=NCDY	NEWA	53
DO S I=1,E	NEWA	54
S SECUY(I)=FODITS(I)	NEWA	55

```

THDOUT1=THDOUT1+0 RAD
THDOUT2=THDOUT1+0 TWCP1
THDT2S=THDOUT2/8.64E4
DO 10 I=1,20
10 STEP1(I)=STEP1S(I)
20 DO 25 I=1,20
25 STEP1S(I)=STEP1(I)
NBOD Y=NBCDYS
DO 26 I=1,6
26 BODIIS(I)=SBODY(I)
CALL CLEAR(NC CN,8,1)
TORCFT=.FALSE.
DDATE=959.000
DORBIT=C.000
DAYEND=C.000
DAYSTA=599.000
DAYSTP=599.000
DORB1=-1.000
RMETOT=200.
CALL CLEAR(VARCOV,84,2)
CALL CLEAR(ISTORE,450,9)
CALL CLEAR(JSTORE,450,5)
DO 30 I=1,6
VARCOV(I,I,1)=1.00E14
30 VARCOV(I,I,2)=1.00E14
INPAR=0
NSTSTA=C
NPARAM=C
NEBIA S=C
MAXPAR=C
NBIAS=0
INPA RI=C
DRAG(17)=1.500
DRAG(18)=1.500
CALL CLEAR(NOPFFR,3,1)
INDEX1=INDS1
INDEX3=INDS3
KPTAP=S
NDREC1=C
NGPARC=S0C
NSAT=1
IDRS=20
XYZTP=8
FYP=0
RETURN
END
NEWA 56
NEWA 57
NEWA 58
NEWA 59
NEWA 60
NEWA 61
NEWA 62
NEWA 63
NEWA 64
NEWA 65
NEWA 66
NEWA 67
NEWA 68
NEWA 69
NEWA 70
NEWA 71
NEWA 72
NEWA 73
NEWA 74
NEWA 75
NEWA 76
NEWA 77
NEWA 78
NEWA 79
NEWA 80
NEWA 81
NEWA 82
NEWA 83
NEWA 84
NEWA 85
NEWA 86
NEWA 87
NEWA 88
NEWA 89
NEWA 90
NEWA 91
NEWA 92
NEWA 93
NEWA 94
NEWA 95
NEWA 96
NEWA 97
NEWA 98
NEWA 99
NEWA 100
NEWA 101
NEWA 102

```


NAME NUMBR2

PURPOSE TO SEARCH AN ARRAY TO DETERMINE IF THE ARRAY
 CONTAINS AN ENTRY WHICH MATCHES GIVEN OUTPUT NUMBER
 IF FOUND THE INDEX NUMBER OR LOCATION IN THE
 ARRAY 'IA' IS RETURNED. 0 IS RETURNED IF NO MATCH
 IS FOUND

CALLING SEQUENCE X=NUMBR2(K,IA,ID)

SYMBOL	TYPE	DESCRIPTION
K	I	INPUT - NUMBER OR EIT CONFICURATION TO BE LOCATED IN ARRAY
IA	I*2	INPUT - ARRAY TO BE SEARCHED
(ID)		
ID	I	INPUT - NUMBER OF INTFIES IN ARRAY 'IA'
NUMBR2	I	OUTPUT - THE NUMBER OF ENTRY THAT MATCHED THE GIVEN INPUT NUMBER

SUBROUTINES USED NONE

COMMON BLOCKS NONE

INPUT FILES NONE

OUTPUT FILES NONE

```
INTEGER FUNCTION NUMBR2(K,IA,ID)
INTEGER*2 IA(ID)
NUMBR2=C
IF(ID.LT.1) RETURN
DO 10 I=1,1D
IF(K.EQ.IA(I)) GO TO 20
10 CONTINUE
RETURN
20 NUMBR2=I
RETURN
END
```

NUMB	35
NUMB	36
NUMB	37
NUMB	38
NUMB	39
NUMB	40
NUMB	41
NUMB	42
NUMB	43
NUMB	44
NUMB	45

NAME NUMBR4

PURPOSE TO SEARCH AN ARRAY TO DETERMINE IF THE ARRAY CONTAINS AN ENTRY WHICH MATCHES A GIVEN INPUT NUMBER. IF FOUND THE INDEX NUMBER OR LOCATION IN THE ARRAY 'IA' IS RETURNED. 0 IS RETURNED IF NO MATCH IS FOUND

CALLING SEQUENCE NUMBR4(K,IA,ID)

SYMBOL	TYPE	DESCRIPTION
K	I	INPUT - NUMBER OR EIT CONFIGURATION TO BE LOCATED IN 'IA' ARRAY
IA	I	INPUT - ARRAY TO BE SEARCHED
(ID)		
ID	I	INPUT - NUMBER OF ENTRIES IN 'IA' ARRAY
NUMBR4	I	OUTPUT - INDEX NUMBER OF THE MEMBER OF 'IA' ARRAY WHICH CONTAINS THE ENTRY WHICH MATCHES K

SUBROUTINES USED NONE

COMMON BLOCKS NONE

INPUT FILES NONE

OUTPUT FILES NONE

```
INTEGER FUNCTION NUMBR4(K,IA,ID)
INTEGER#4 IA(ID)
NUMBR4=0
IF(K.LT.1) RETURN
DO 10 I=1,ID
  IF(K.EQ.IA(I)) GO TO 20
10 CONTINUE
RETURN
20 NUMBR4=I
RETURN
END
```

NUMB	35
NUMB	36
NUMB	37
NUMB	38
NUMB	39
NUMB	40
NUMB	41
NUMB	42
NUMB	43
NUMB	44
NUMB	45

NAME NUMLOC

PURPOSE TO SEARCH AN ARRAY TO DETERMINE IF THE ARRAY CONTAINS ENTRIES WHICH MATCH GIVEN INPUT NUMBER. IF FOUND THE INDEX NUMBERS OF LOCATIONS IN THE ARRAY 'IA' AND THE NUMBER OF SUCH MATCHING ENTRIES FOUND ARE RETURNED

CALLING SEQUENCE NUMLOC(NO,IA,NT,LCC)

SYMBOL	TYPE	DESCRIPTION
NO	I	INPUT - NUMBER OR EIT CONFIGURATION TO BE LOCATED IN ARRAY
IA	I*2	INPUT - ARRAY TO BE SEARCHED
(1)		
NT	I	INPUT - NUMBER OF ENTRIES IN 'IA' ARRAY
LOC	I*2	OUTPUT - THE INDEX NUMBERS OF THE MEMBERS OF 'IA' ARRAY WHICH MATCH 'NO'
(1)		
NUMLOC	I	OUTPUT - THE NUMBER OF ENTRIES THAT MATCH THE GIVEN INPUT NUMBER
SUBROUTINES USED	NUMBR2	
COMMON BLOCKS	NCNE	
INPLT FILES	NCNE	
OUTPLT FILES	NCNE	REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

```

INTEGER FUNCTION NUMLOC(NO,IA,NT,LOC)
INTEGER*2 LCC(1),IA(1)
NUMLOC=0
I1=NUMBR2(NO,IA,NT)
IF(I1.EQ.0) RETURN
N2=NT-I1
NUMLOC=1
LOC(1)=I1
DO 20 I=1,NT
J1=LCC(NUMLOC)+1
I1=NUMBR2(NO,IA(J1),N2)
IF(I1.EQ.0) RETURN
NUMLOC=NUMLOC+1
LOC(NUMLOC)=I1+J1-1
20 N2=N2-I1
RETURN
END

```

NUTATE

DESCRIPTION

Subroutine NUTATE generates the rotation matrix to nutate a vector from true to mean equator and equinox of date.

EQN is invoked to compute the nutation in longitude, the nutation in obliquity; and the true obliquity of the ecliptic. The rotation matrices are constructed by ROTMAT; MULMAT evaluates the output rotation matrix as a product of the three input rotation matrices.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

NUTATE
Page 2 of 2
October 1972

NAME NUTATE
PURPOSE TO GENERATE NUTATION ANGLES TO TRANSFORM FROM
TRUE EQUATOR AND EQUINOX TO MEAN EQUATOR AND
EQUINOX
CALLING SEQUENCE CALL NUTATE(DAY,X)
SYMBOL TYPE DESCRIPTION
DAY DP INPUT - TIME FOR ANGLES
X DP OUTPUT - NUTATION MATRIX
(3,3)
SUBROUTINES USED ROTMAT MULMAT EON YMAY
COMMON BLOCKS INITBK
INPUT FILES NONE
OUTPUT FILES NONE
REFERENCES *GEODYN SYSTEMS DESCRIPTION*
VOLUME 1 - GEODYN DOCUMENTATION

SUBROUTINE NUTATE(DAY,X)	NUTA	30
DOUBLE PRECISION DAY,X(3,3),DJBASE,DELPsi,DJ,DEPS,EPS,YMDAY	NUTA	31
REAL*3 X1(3,3),X2(3,3),X3(3,3)	NUTA	32
COMMON/INITBK/IG1(52),NCTIST,IG2(4)	NUTA	33
LOGICAL NCTIST	NUTA	34
IF(NCTIST) GO TO 10	NUTA	35
DJBASE=2433281.500-YMDAY(500100,0,0,0)	NUTA	36
NCTIST=.TRUE.	NUTA	37
10 DJ=DJBASE+DAY	NUTA	38
G=EON(DJ,DELPsi,DEPS,EPS)	NUTA	39
CALL ROTMAT(EPS,1,X1)	NUTA	40
CALL ROTMAT(+DELPsi,3,X2)	NUTA	41
CALL ROTMAT(-EPS+DEPS,1,X3)	NUTA	42
CALL MULMAT(X,X3,X2,X1)	NUTA	43
RETURN	NUTA	44
END	NUTA	45

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0-353

R A-753

OBSDOT

DESCRIPTION

Subroutine OBSDOT calculates the time derivatives of the computed observations. The measurement types implemented are:

1. Right ascension and declination
2. Range
3. Range Rate
4. Not used
5. ℓ and m direction cosines
6. X and Y angles
7. Azimuth and elevation

Note that the functions XEFIX and YEFIX are treated as transformations. When applied to the velocity vector, the output of these transformations differs from the Earth fixed velocity by a term involving the rotation rate of the Earth.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0-354

NAME OBSDOT
ENTRY POINT PURPOSE
OBSDT1 INITIALIZATION
OBSDOT TO CALCULATE THE TIME DERIVATIVES OF COMPUTED
OBSERVATIONS

CALLING SEQUENCE: OBSDT1(EHAT,NHAT,ZHAT)

SYMBOL	TYPE	DESCRIPTION
EHAT	DP	INPUT - STATION UNIT EAST VECTOR (3x1)
NHAT	DP	INPUT - STATION UNIT NORTH VECTOR (3x1)
ZHAT	DP	INPUT - STATION UNIT VERTICAL VECTOR (3x1)

CALLING SEQUENCE: OBSDOT(MTYPE,ISTA,OBSDT2)

SYMBOL	TYPE	DESCRIPTION
MTYPE	I	INPUT - MEASUREMENT TYPE
ISTA	I	INPUT - INTERNAL STATION NUMBER
OBSDT2	DP	OUTPUT - TIME DERIVATIVE OF SECOND MEASUREMENT
OBSDOT	DP	OUTPUT - TIME DERIVATIVE OF FIRST MEASUREMENT

SUBROUTINES USED YFFIX DCTPRD XEFIX
COMMON BLOCKS CUVECT INTRLK PREPLK XYZOUT

INPUT FILES NONE

OUTPUT FILES NONE

RESTRICTIONS COMPUTE THE TIME DERIVATIVES OF MEASUREMENT TYPES:
RIGHT ASCENSION AND DECLINATION, RANGE, RANGE
RATE, L AND N DIRECTION COSINES, X AND Y ANGLES,
AZIMUTH AND ELEVATION

REFERENCES GEODYN SYSTEMS DESCRIPTION
VOLUME 1 - GEODYN DOCUMENTATION REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

DOUBLE PRECISION FUNCTION OBSDT1(EHAT,NHAT,ZHAT)
IMPLICIT REAL*8 (A-H,C-Z)

OBSO E8
OBSO E5

```

INTEGIF #2, ISAT,PRETYP          DBSD 56
DOUBLE PRECISION NHAT           DBSD 57
DIMENSION UHAT(3,1),NHAT(3,1),ZHAT(3,1),DLFDOT(3),DRLFDOT(3)    DBSD 58
COMMON/CCV/CT/UHAT(3,2),XYZ(3,2),RXYZ(3,2),F(2),RSO(2),      DBSD 59
      XYZ(2)                   DBSD 60
COMMON/INBLK/THTG(2),THLT2S,GM,AY(62)                         DBSD 61
COMMON/FFELK/DAYSTA(7),ISAT,PRETYP(5)                         DBSD 62
COMMON/XYZOUT/XYZI(6,4)                                         DBSD 63
RETURN
EN1FY DBSDOT(MTYPE,ISTA,CRSDOT2)
C CALCULATE SATELLITE EARTH-FIXED VELOCITY VECTOR
DBSDOT2=C,0.000
DBSDOT=C,0.000
IF(MTYPE.GT.7) RETURN
DELCOT(1)=XUFIX(XYZI(4,ISAT),XYZI(5,ISAT))
DFLFDOT(2)=YUFIX(XYZI(4,ISAT),XYZI(5,ISAT))
DRLFDOT(3)=XYZI(6,ISAT)
IF(MTYPE.NE.3) GO TO 50
C COMPUTE TIME RATE OF CHANGE OF...
C
C ...FANGE RATE
R1SQ=DC1PFD(XYZI(1,ISAT),XYZI(1,ISAT))
R1=DSDOT(R1SQ)
C4=GM/(R1SQ*R1)
C=5.0D*(XYZI(3,ISAT)/R1)**2-1.0D
C2=C-2.0D
C3=6.50646719/R1SQ
C1=(2.0D-C+C3)*C4
DELDOT(1)=-C*XYZ(1,ISAT)+THLT2S*DRLFDOT(2)
DELDOT(2)=-C*XYZ(2,ISAT)-THLT2S*DFLFDOT(1)
DELDOT(3)=-(1.0D-C2+C3)*C4*XYZ(3,ISAT)
DELDOT(1)=DELDOT(1)+THLT2S*XYZ(2,ISAT)
DELDOT(2)=DELDOT(2)-THLT2S*XYZ(1,ISAT)
DELDOT(1)=DELDOT(1)+THLT2S*DRLFDOT(2)
DELDOT(2)=DELDOT(2)-THLT2S*DFLFDOT(1)
FRCT=DC1PFD(DELCOT,UHAT(1,ISAT))
DESDOT=DELDPFD(DELCOT,DELDOT)/R(1SAT)+COTPRC(UHAT(1,ISAT),DELDOT)
      -R007**2/R(1SAT)
RETURN
50:DELDOT(1)=DELDOT(1)+THLT2S*XYZ(2,ISAT)
DELDOT(2)=DELDOT(2)-THLT2S*XYZ(1,ISAT)
RFCT=DC1PFD(DELCOT,UHAT(1,ISAT))
GO TO(100,200,700,700,500,600,600),MTYP
C ...OPTICAL
100 C=1.0L-UHAT(3,ISAT)**2
      DSOT=T2*(XYZI(6,ISAT)-UHAT(3,ISAT))+FOT/(F(1SAT)*DSOT(C))
      DESDOT=(UHAT(1,ISAT)*DELDOT(2)-UHAT(2,ISAT)*DELDOT(1))/(F(1SAT)*C)
RETURN
C ...RANGE
200 DSOT=DELDOT*(DELDOT+UHAT(1,ISAT))-FNV(1,ISAT)*FOT/R(1SAT)
      DSOT=(DELDOT*(DELDOT+UHAT(1,ISAT))-FNV(2,ISAT)*FOT)/R(1SAT)
RETURN
C ...X-Y ANGLES

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```
600 C=1.000-RENV(2,ISAT)**2          DBSD 112
    OBSDOT=(RENV(3,ISAT)*COTPRD(DELGCT,ZHAT(1,ISTA))-RENV(1,ISAT)*
    * COTPRD(DELGCT,ZHAT(1,ISTA)))/(C**F(ISAT))
    OBSDOT2=(COTPRD(DELGCT,NHAT(1,ISTA))-COT*RENV(2,ISAT))/(F(ISAT)*
    * DSORT(C))
    RETURN
C ...AZIMUTH AND ELEVATION
605 C=1.000-RENV(3,ISAT)**2          DBSD 113
    OBSDOT=(RENV(2,ISAT)*COTPRD(DELGCT,ZHAT(1,ISTA))-RENV(1,ISAT)*
    * COTPRD(DELGCT,NHAT(1,ISTA)))/(C**F(ISAT))
    OBSDOT2=(COTPRD(DELGCT,ZHAT(1,ISTA))-COT*RENV(3,ISAT))/(F(ISAT)*
    * DSORT(C))
700 RETURN
END                                     DBSD 114
                                         DBSD 115
                                         DBSD 116
                                         DBSD 117
                                         DBSD 118
                                         DBSD 119
                                         DBSD 120
                                         DBSD 121
                                         DBSD 122
                                         DBSD 123
                                         DBSD 124
                                         DBSD 125
```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0-359

NAME ORBI

PURPOSE TO GENERATE A SATELLITE EPHEMERIS TAPE IN ORBI
TAPE FORMAT

CALLING SEQUENCE CALL ORBI(ORB1RT)

SYMBOL	TYPE	DESCRIPTION			
CRB1RT	DP	INPUT -- CRB1 TAPE OUTPUT RATE IN INTEGRAL SECONDS			
SUBROUTINES USED	ORBIT EON	DAYEAR DJUL	ELEM OCTPRD	DATES	ERROR
COMMON BLOCKS	CCNSTS INTBLK	FMDTLL PRIORI	CELEM XYZOUT	CGEOS CTIME	CRB1
INPUT FILES	NONE				
OUTPUT FILES	22 - CRB1 FILE				
REFERENCE	IGEDDYN PROGRAM OPERATIONS DESCRIPTION - APPENDIX C VOLUME 3 -- GEODYN DOCUMENTATION				

```

SUBROUTINE ORBI(CRB1RT)
COMMON/CTIME/CTAOTP(2),DAYFF,ESTAFT,DAYSTP(IC),DCKB1,DOFB1E,      0FB1 28
      ORB1T(2),IYBEG
REAL*8,ELEMIN,CE,CDD,EMISS,SEC
COMMON/CCNSTS/DPI,DTWCPI,EFAD,DFSEC(2)                         0FB1 31
      FCAL*3 MODULCS
COMMON/FMCDELV/INDEX1,NOLX2,INDEX3,INDEX4,CS(30,33),MODEL(8)      0FB1 32
      REAL*8 DRGPAR,MMOON,MSUN,ASAT,MSAT
      REAL*3 BLF(350),LBUF(6,50),DCRE1,LORB1,CRE1RT,XYZEND,DTOPRD
      DAYFF,THETGC,THDCT1,ZON,DJUL,G1,G2,CREELA,FLNST,AE,GM,      0FB1 33
      CPI,DTWOP1,EFAD,AE,ESTAFT,DAYSTP,GM,XNU,LC,PFC,APHT,PLPHT, 0FB1 34
      RANDT,PLRDOT,THDCT2,G3
COMMON/CELEM/ELFMST(12),CRBELA(12),XNU,EC,FMSTOT                  0FB1 35
COMMON/CGEOS/ISATID,G4(454)                                         0FB1 36
COMMON/CPBP1/KANDOT(2),PKRCT(2),PKPHT(2),PKHT(2),PKP(2)        0FB1 37
COMMON/INTBLK/THDCT1,THDCT2(2),THET2S,GM,AE,ALSO(44),THETGO,
      MMON,MSUN,MMDOY(44),ASAT(2),NEUT(2),MAFSTP(2)             0FB1 38
COMMON/PRIORI/ELEMIN(9),CD(2),CLF(2),EMISS(2)                      0FB1 39
COMMON/XYZDCT/XYZDNC(12),DRGEAR(12)
      REAL*8 NINLS/99999999,DC/
      INTEGER TCRB1/22/,NFILES/0/
      EQUIVALENCE (BLF(6),LBUF(1,1))
C OBTAIN ORBIT FOR BEGINNING OF ORBI TAPE
      CALL ORBIT(CORB1)
C SET UP HEADER FOR ORB1
      DO 10 I=1,350
      10 BLF(I)=0.0
      BLF(1)=76756251.00

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

BUF(2)=ISATID          DBR1 56
CALL DAYEAR(DORB1,IYMD,IDAY,ISEC)    DBR1 57
BUF(4)=IYMD            DRB1 58
BLF(5)=IDAY            DBR1 59
BLF(6)=ISEC            DRB1 60
CALL DAYYEAR(DRB1,IYMD,IDAY,ISEC)    DRB1 61
BUF(7)=IYMD            DBR1 62
BUF(8)=IDAY            DRB1 63
BUF(9)=ISEC            DBR1 64
DT=IDINT(CRB1*RT*86400.00+.500)      DRB1 65
BLF(10)=DT              DRB1 66
CALL DAYYEAR(DAYREF,IYMD,IDAY,ISEC)  DBR1 67
BLF(27)=IYMD            DRB1 68
BLF(28)=IDAY            DBR1 69
BLF(29)=THE TG+IDINT(DAYREF)*THDCT1+EON(CJUL(DAYREF),G1,G2,G3) DBR1 70
CUL=AE                  DRB1 71
BLF(37)=-1.ED0*CS(2,1)*CUL**2        DBR1 72
BLF(38)=-2.5D0*CS(3,1)*CUL**2        DRB1 73
BLF(39)=+3.75D0*CS(4,1)*CUL**4       DBR1 74
BLF(40)=+1.E(CS(5,1)*CUL**5         DBR1 75
CLT=1-SORT(AE*3/GM)                 DBR1 76
BLF(80)=CD(1)                   DRB1 77
BLF(81)=ASAT(1)*1.004             DBR1 78
BLF(82)=MEAT(1)*1.003             DBR1 79
IF(MMJON.GT.0.000) BUF(91)=1.000     DRB1 80
IF(MSNR.GT.0.000) BUF(92)=1.000     DRB1 81
CALL ELEM(ELEMST,CRB1,LA,1.,TRUE.)   DRB1 82
BLF(101)=(DSTART-DAYREF)*86400.00/CUT DBR1 83
BLF(102)=CRB1,LA(1)/CUL             DRB1 84
BUF(103)=CRB1,LA(2)                DBR1 85
BUF(104)=XNU                      DBR1 86
DO 15 I=1,6                         DRB1 87
15 BLF(104+I)=ELEMST(I)/CUL        DRB1 88
DO 20 I=4,6                         DRB1 89
20 BLF(104+I)=BUF(104+I)*CUT       DRB1 90
BUF(111)=CSORT(DCTPAC(BUF(105),BUF(105)))  DRB1 91
BUF(112)=CSORT(DCTPAC(BUF(106),BUF(106)))  DRB1 92
BLF(114)=CFEL,LA(6)                DRB1 93
BLF(116)=CFEL,LA(5)                DRB1 94
BUF(117)=CFEL,LA(3)                DRB1 95
BLF(118)=CFEL,LA(4)                DRB1 96
BUF(120)=CTWOP1/PFC(1)             DRB1 97
BLF(121)=EC                        DRB1 98
BLF(122)=FAD,DT(1)*CPAD*CUT/8.64D4 DBR1 99
BUF(123)=FAD,DT(1)*CFAD*CUT/8.64D4 DRB1 100
BUF(124)=PFL(1)/CUT               DRB1 101
BLF(125)=PFLHT(1)*1.CD3/CUL       DRB1 102
BLF(126)=APHT(1)*1.00+3/CUL       DRB1 103
CALL DATE SEC(START,IYMD,IMM,SEC)  DRB1 104
IYE=IYMD/10000                     DBR1 105
ICM=IYMD-IYI.*10000                DPP1 106
IMI=ICM/100                        DRB1 107
ICE=ICM-IMI*100                    DRB1 108
IMH=IMH/100                        DRB1 109
IM=IMH-IMI*100                    DRB1 110
BUF(151)=IYE                        DRB1 111

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

```

BUF(192)=IME          DRB1 112
BUF(193)=IDE          DRB1 113
BLF(194)=IH           DRB1 114
BLF(195)=IM           DRB1 115
BLF(196)=IDINT(SEC*1000.00+.500) DRB1 116
BLF(200)=2.00          DRB1 117
C WRITE HEADER AND DATA RECORDS
25   WRITE(TCRE1)BUF          DRB1 118
      DO 26 I=1,350          DRB1 119
26   BLF(I)=C.00          DRB1 120
C FILL RECORDS WITH ELEMENTS UNTIL FULL
30   CALL DAYMAP(DORB1,IYMD,ICAY,ISEC) DRB1 121
      BLF(1)=IYMD          DRB1 122
      BLF(2)=ICAY          DRB1 123
      BLF(3)=ISEC          DRB1 124
      BLF(4)=DT            DRB1 125
      IBUF=1               DRB1 126
40   DO 50 I=1,6          DRB1 127
50   IBUF(1,IBUF)=XYZEND(I)*1.D-3 DRB1 128
      IF(DORB1.GE.DORB1E) GO TO 60
      DAYD=DORB1
      DORB1=DORB1+DORB1RT
      CALL ORB1T(DORB1)
      IBUF=IBUF+1
      IF(IBUF.LE.50) GO TO 40
      GO TO 25
C WRITE LAST RECORD
60   IF(IDBUF.LT.50) GO TO 60
      WRITE(TCRB1)BUF          DRB1 139
      IBUF=1
      DO 70 I=1,8          DRB1 140
70   BUF(I)=NINES          DRB1 141
C TERMINATE TAPE WITH 9'S
80   DO 90 I=1,6          DRB1 142
90   CBLF(1,IBUF)=NINES          DRB1 143
      WRITE(TCRB1)BUF          DRB1 144
      WRITE(TCRB1)(NINES,I=1,350) DRB1 145
      WRITE(TCRB1)(NINES,I=1,350) DRB1 146
      ENDFILE TCRB1          DRB1 147
      NFILES=NFILES+1          DRB1 148
      RRINT 100,NFILES,TORB1          DRB1 149
      CALL ERROR(10,NINES)          DRB1 150
      RETURN                      DRB1 151
100  FORMAT(1H1,20X,*FOR THE ARC JUST COMPLETED AN ORB1 TAPE HAS BEEN*/DRB1 152
     * 23X,*SUCCESSFULLY WRITTEN ON FILE*,14,* OF UNIT*,13,1H,/) DRB1 153
     END                         DRB1 154
                                         DRB1 155
                                         DRB1 156
                                         DRB1 157

```

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.0-363

8.0-364