Câu 1:

Địa chỉ 0AA:

Nội dung: 010FA210FB

Xét lệnh trái: 010FA có opcode là 01 và địa chỉ 0FA

 \rightarrow LOAD M(0FA)

Xét lệnh phải: 210FB có opcode 21 và địa chỉ 0FB

-> STOR M(0FB)

Địa chỉ 0AB:

Nội dụng: 010FA0F0AE

Xét lệnh trái: 010FA có opcode là 01 và địa chỉ 0FA

-> LOAD M(0FA)

Xét lệnh phải: 0F0AE có opcode là 0F và đia chỉ 0AE

-> JUMP +M(0AE, 0:19)

Địa chỉ 0AC:

Nội dung: 020FB210FC

Xét lệnh trái: 020FB có opcode 02 và địa chỉ 0FB

-> LOAD -M(0FB)

Xét lệnh phải: 210FC có opcode 21 và địa chỉ 0FC

-> STOR M(0FC)

Địa chỉ 0AD

Nội dung: 010FC210FD

Xét lệnh trái: 010FC có opcode 01 và địa chỉ 0FC

-> LOAD M(0FC)

Xét lệnh phải: 210FD có opcode 21 và địa chỉ 0FD

-> STOR M(0FD)

Câu 2: A)

t	0	1	2	3	4	5	6	7	8	9
R	0	1	1	1	1	1	0	1	0	1
S	1	1	0	1	0	1	1	1	0	0
Q_{n+1}	0	Cấm	1	Cấm	1	Cấm	0	Cấm	Q _n	1

B)

Bản đồ Karnaugh của J_A

		1	4
		0	1
	00	0	X
DC	01	0	X
BC	11	1	X
	10	0	X

Ta có: J_A = BC

Bản đồ Karnaugh của K_A

Duil ac Hallian					
		Α	1		
		0	1		
	00	X	0		
DC	01	X	0		
BC	11	X	1		
	10	X	0		

 $Ta có K_A = BC$

Bản đồ Karnaugh của J_B

Buil de Harnaugh eau JB						
		1	4			
		0	1			
BC	00	0	0			

01	1	1
11	X	X
10	X	X

Ta có: $J_B = C$

Bản đồ Karnaugh của K_B

		F	A
		0	1
DC	00	X	X
	01	X	X
BC	11	1	1
	10	0	0

Ta có: $K_B = C$

Bản đồ Karnaugh của J_C

		A	A
		0	1
	00	1	1
DC	01	X	X
BC	11	X	X
	10	1	1

Ta có: $J_C = 1$

Bản đồ Karnaugh của K_C

		A	A
		0	1
ВС	00	X	X
	01	1	1
	11	1	1
	10	X	X

Ta có: $K_C = 1$

Câu 3:

-
$$f = 80MHz = 80 * 10^6$$
 (Hz)

$$-I_c = 150000 \text{ (lệnh)}$$

$$-t = \frac{1}{f} = \frac{1}{80 * 10^6} = 1,25 * 10^{-8} (s) = 12,5 (ns)$$

- Tính CPI hiệu dụng:

$$CPI = \frac{75000 * 1 + 32000 * 2 + 15000 * 4 + 28000 * 2}{150000} = 1,7 \left(\frac{chu \, k\dot{y}}{l\hat{e}h}\right)$$

- Tính tốc độ MIPS:

MIPS =
$$\frac{f}{CPI * 10^6} = \frac{80}{1.7} = 47,05 \left(\frac{tri \hat{e}u \, l \hat{e}nh}{s} \right)$$

- Tính thời gian thực thi T:

T =
$$I_c$$
 * CPI * t = 150000 * 1,7 * 1,25 * 10^{-8}
= 3,1875 * 10^{-3} (s) = 3.19 (ms)

Câu 4:

A)

, ,,													
	1	2	3	4	5	6	7	8	9	10	11	12	13
Ins 1	FI	DI	FO	EI									
Ins 2		FI	DI	FO	EI								
Ins 3			FI	DI	FO	EI							
Ins 4				FI	DI	FO	EI						
Ins 5					FI	DI	FO	EI					
Ins 6						FI	DI	FO	EI				
Ins 7							FI	DI	FO				
Ins 8								FI	DI				
Ins 9									FI				
12										FI	DI	FO	EI

$$f = 64 * 10^6 \text{ (Hz)}$$

$$-t = \frac{1}{f} = 1,5625 * 10^{-8} (s) = 15,63 (ps)$$

- Có bus dữ liệu là 32 bit suy ra mỗi lần chuyển sẽ chuyển 4 byte
- Tốc độ tối đa mà để chuyển dữ liệu qua bus này là:

Tốc độ tối đa =
$$\frac{4}{3*t}$$
 = 85333333 (byte/s) = 85,33 (MB/s)

Câu 5:

A)

- 8 trang ảo cho nên $8=2^3$. Vậy sẽ cần 3 bit để chứa số hiệu trang ảo.
- Kích thước mỗi trang là 4KB = $4096 = 2^{12}$. Vậy sẽ cần 12 bit để chứa địa chỉ độ dời.
- -> Suy ra sẽ cần 3 + 12 = 15bit cho 1 địa chỉ ảo

B)

Địa chỉ ảo hệ	Số hiệu trang	Độ	Địa chỉ ảo hệ 2 (15
10	ảo	dời	bit)
1023	0	1023	000 0011 1111 1111
1024	0	1024	001 0100 0000 0000
4097	1	1	001 0000 0000 0001
8191	1	4095	001 1111 1111 1111
8192	2	0	010 0000 0000 0000
12289	3	1	011 0000 0000 0001

Câu 6:

LOAD IMMEDIATE 60 -> giá trị toán hạng = 60

LOAD DIRECT 10 -> giá trị toán hạng = 20

LOAD INDIRECT 20 -> giá trị toán hạng = 20

LOAD REGISTER X -> giá trị toán hạng = 30

LOAD REGISTER INDIRECT X -> giá trị toán hạng = 40

LOAD INDEX X, 20 -> giá trị toán hạng = 40