Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning algorithm used for classification and regression tasks. The main idea behind SVM is to find a boundary (or "hyperplane") that best separates different classes of data points.

- Key Concepts of SVM
- 1. **Hyperplane**: The line (or plane in higher dimensions) that separates different classes.
- 2. **Support Vectors**: The closest points to the hyperplane from each class. These are the most important points in SVM because they define the position and orientation of the hyperplane.
- 3. Margin: The distance between the hyperplane and the nearest support vector from each class. SVM tries to maximize this margin.

- Class +1
- Class -1

How would you classify this data?

$$f(x, w, b) = sign(w. x - b)$$

How would you classify this data?

- Class +1
- Class -1

f(x, w, b) = sign(w, x - b)

Deep Knowledg

How would you classify this data?

f yest

- Class +1
- Class -1

f(x, w, b) = sign(w, x - b)

Deep Knowledg

How would you classify this data?

Class -1

Classifier Margin

- Class +1
- Class -1

f(x, w.b) = sign(w. x - b)

Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a datapoint.

Maximum Margin

- Class +1
- Class -1

Maximum Margin

- Class +1
- Class -1

Support Vectors

are those datapoints that the margin pushes up against

Example

Point (Rows)	X1 (Feature1)	X2 (Feature2)	Class
Α	2	3	+1 (Class 1)
В	3	3	+1 (Class 1)
С	6	5	-1 (Class 2)
D	7	8	-1 (Class 2)

•X-axis: Feature 1 (X1)

•Y-axis: Feature 2 (X2)

•Class 1 (+1) points: A and B

•Class 2 (-1) points: C and D

▶ Binary classification can be viewed as the task of separating classes in feature space:

Dataset

Let's use a small dataset with two classes (+1 and -1) and two features (X1 and X2):

Point	X1	X2	Class
A	2	3	+1
В	4	1	+1
С	1	6	-1
D	2	7	-1

Hyperparameters

- Learning rate (learning_rate): 0.01
- Regularization strength (regularization_strength): 0.01
- Number of epochs: 2 (we'll demonstrate only one or two)

Initialize Parameters

- Weights: Start with weights as [0, 0] (for X1 and X2).
- Bias: Start with bias as 0.

Step-by-Step Example (Epochs 1 and 2)

Step 1: Initial Setup

- Initial Weights: [0, 0]
- Initial Bias: 0

Epoch 1

- 1. Point A (X1 = 2, X2 = 3, Class = +1)
 - Calculate Decision Function:

condition = Class
$$\times$$
 (weights · features + bias) = $+1 \times ((0 \times 2) + (0 \times 3) + 0) = 0$

- Update Weights and Bias:
 - Since condition < 1, Point A is misclassified.
 - Apply updates:
 - Weight Update:

$$weights = weights - learning \ rate \times (2 \times regularization \ strength \times weights - Class \times features)$$
 Substituting values:

weights =
$$[0,0] - 0.01 \times (2 \times 0.01 \times [0,0] - (+1) \times [2,3]) = [0.02,0.03]$$

• Bias Update:

$$bias = bias - learning rate \times (-Class)$$

Substituting values:

bias =
$$0 - 0.01 \times (-1) = 0.01$$

- Updated Parameters:
 - Weights: [0.02, 0.03]
 - Bias: 0.01

Dataset

Let's use a small dataset with two classes (+1 and -1) and two features (X1 and X2):

Point	X1	X2	Class
A	2	3	+1
В	4	1	+1
С	1	6	-1
D	2	7	-1

Hyperparameters

- Learning rate (learning_rate): 0.01
- Regularization strength (regularization_strength): 0.01
- Number of epochs: 2 (we'll demonstrate only one or two)

Initialize Parameters

- Weights: Start with weights as [0, 0] (for X1 and X2).
- Bias: Start with bias as 0.

Step-by-Step Example (Epochs 1 and 2)

Step 1: Initial Setup

• Updated Parameters:

- Weights: [0.02, 0.03]
- Bias: 0.01

- 2. Point B (X1 = 4, X2 = 1, Class = +1)
 - Calculate Decision Function:

condition =
$$+1 \times ((0.02 \times 4) + (0.03 \times 1) + 0.01) = 0.12$$

- Update Weights and Bias:
 - Since condition < 1, Point B is misclassified.
 - Apply updates:
 - Weight Update:

weights =
$$[0.02, 0.03] - 0.01 \times (2 \times 0.01 \times [0.02, 0.03] - (+1) \times [4, 1]) = [0.06, 0.04]$$

Bias Update:

bias =
$$0.01 - 0.01 \times (-1) = 0.02$$

- Updated Parameters:
 - Weights: [0.06, 0.04]
 - Bias: 0.02

Dataset

Let's use a small dataset with two classes (+1 and -1) and two features (X1 and X2):

Point	X1	X2	Class
A	2	3	+1
В	4	1	+1
С	1	6	-1
D	2	7	-1

Hyperparameters

- Learning rate (learning_rate): 0.01
- Regularization strength (regularization_strength): 0.01
- Number of epochs: 2 (we'll demonstrate only one or two)

Initialize Parameters

- Weights: Start with weights as [0, 0] (for X1 and X2).
- Bias: Start with bias as 0.

Step-by-Step Example (Epochs 1 and 2)

- Updated Parameters:
 - Weights: [0.06, 0.04]
 - Bias: 0.02

- 3. Point C (X1 = 1, X2 = 6, Class = -1)
 - Calculate Decision Function:

condition =
$$-1 \times ((0.06 \times 1) + (0.04 \times 6) + 0.02) = -0.34$$

- Update Weights and Bias:
 - Since condition < 1, Point C is misclassified.
 - Apply updates:
 - Weight Update:

weights =
$$[0.06, 0.04] - 0.01 \times (2 \times 0.01 \times [0.06, 0.04] - (-1) \times [1, 6]) = [0.07, 0.10]$$

• Bias Update:

bias =
$$0.02 - 0.01 \times (+1) = 0.01$$

- Updated Parameters:
 - Weights: [0.07, 0.10]
 - Bias: 0.01

- 3. Point C (X1 = 1, X2 = 6, Class = -1)
 - Calculate Decision Function:

condition =
$$-1 \times ((0.06 \times 1) + (0.04 \times 6) + 0.02) = -0.34$$

- Update Weights and Bias:
 - Since condition < 1, Point C is misclassified.
 - Apply updates:
 - Weight Update:

$$weights = [0.06, 0.04] - 0.01 \times (2 \times 0.01 \times [0.06, 0.04] - (-1) \times [1, 6]) = [0.07, 0.10]$$

Bias Update:

bias =
$$0.02 - 0.01 \times (+1) = 0.01$$

- Updated Parameters:
 - Weights: [0.07, 0.10]
 - Bias: 0.01
- 4. Point D (X1 = 2, X2 = 7, Class = -1)
 - Calculate Decision Function:

condition =
$$-1 \times ((0.07 \times 2) + (0.10 \times 7) + 0.01) = -0.78$$

- Update Weights and Bias:
 - Since condition < 1 , Point D is misclassified.
 - Apply updates:
 - Weight Update:

$$weights = [0.07, 0.10] - 0.01 \times (2 \times 0.01 \times [0.07, 0.10] - (-1) \times [2, 7]) = [0.09, 0.17]$$

Bias Update:

$$bias = 0.01 - 0.01 \times (+1) = 0.0$$

- Updated Parameters:
 - Weights: [0.09, 0.17]
 - Bias: 0.0

Epoch 2

Repeat the same steps for each point again, using the updated weights and bias from Epoch 1. Here's a summary:

1. Point A:

- Condition: $+1 \times ((0.09 \times 2) + (0.17 \times 3) + 0) = 0.77$ (misclassified).
- Updated Weights: [0.11, 0.20]
- Updated Bias: 0.01

2. Point B:

- Condition: $+1 \times ((0.11 \times 4) + (0.20 \times 1) + 0.01) = 0.66$ (misclassified).
- Updated Weights: [0.15, 0.21]
- Updated Bias: 0.02

3. Point C:

- Condition: $-1 \times ((0.15 \times 1) + (0.21 \times 6) + 0.02) = -1.33$ (correctly classified).
- No update needed for weights or bias.

4. Point D:

- Condition: $-1 \times ((0.15 \times 2) + (0.21 \times 7) + 0.02) = -1.79$ (correctly classified).
- · No update needed for weights or bias.

Final Parameters After Epoch 2

- Weights: [0.15, 0.21]
- Bias: 0.02