Q CONCEPTS 10. More on Process Models Knowledge Get learning questions answered Student Hub

Chat with peers and mentors

More on Process Models

Later in the lesson I'm going to ask you to read a paper titled "A comparative stud algorithms for maneuvering target tracking" but for now I'd like you to take a look 3.2 only. This section, titled MM Tracking Algorithms' Design, discusses the 9 proc the earlier part of the paper.

Before you read the section, I'll explain some of the uncommon notation you will s

Notes on Notation

1. Matrix Notation

When you see something like the following:

$$F_{CV} = ext{diag}[F_2, F_2], F_2 = egin{bmatrix} 1 & T \ 0 & 1 \end{bmatrix}$$

More on Process Models

it means that F is a 4x4 matrix, with F_2 as blocks along the diagonal. Written out

$$F_{CV} = egin{bmatrix} 1 & T & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & T \ 0 & 0 & 0 & 1 \end{bmatrix}$$

2. State Space

The process models all use cartesian coordinates. The state space is

$$\mathbf{x} = egin{bmatrix} \dot{x} \ \dot{x} \ \dot{y} \ \dot{y} \end{bmatrix}$$

3. Variables

The equation $x_k = Fx_{k-1} + Gu_{k-1} + Gw_k, \;\; w_k \sim \mathcal{N}(0,Q)$ should be read as

the predicted state at time k (x_k) is given by evolving (F) the previous state (x_{k-1}) the controls (u_{k-1}) given at the previous time step, and adding normally distri

The Paper

You can find the paper here: A comparative study of multiple-model algorithms fo tracking

Supporting Materials

Search or ask questions in **Knowledge**.

Ask peers or mentors Student Hub.