Definizioni

Agostino Cesarano

January 2024

Part VI Serie

Una **serie** è una successione di numeri che si ottiene sommando i termini di una successione

Sia $\{a_n\}$ una successione. Si definisce **serie** di termine generale a_n la successione $\{s_n\}$ definita come la successione delle **somme parziali**:

$$s_n = a_1 + a_2 + \dots + a_n = \sum_{k=1}^n a_k$$

- Se la successione $\{s_n\}$ converge ad un limite finito, allora la serie è detta **convergente**.
- Se la successione $\{s_n\}$ diverge a $+\infty$, allora la serie è detta **divergente** a $+\infty$.
- Se la successione $\{s_n\}$ diverge a $-\infty$, allora la serie è detta **divergente** a $-\infty$.
- Se il limite della successione $\{s_n\}$ non esiste, allora la serie è detta **indeterminata**.

Il carattere di una serie è la proprietà di essere convergente, o divergente oppure indeterminata.

Una serie è detta **regolare** se la successione $\{a_n\}$ è convergente o divergente.

Condizione necessaria per la convergenza di una serie

Se la serie $\sum_{n=1}^{\infty} a_n$ è convergente, allora $\lim_{n\to\infty} a_n = 0$. Esiste anche il viceversa? No, la condizione è necessaria ma non sufficiente.

Esempio

La serie $\sum_{n=1}^{\infty} \frac{1}{n}$ è divergente, ma $\lim_{n\to\infty} \frac{1}{n} = 0$.

Proprietà delle serie

Se le serie a termini generali a_n e b_n sono regolari allora la serie a termini generali a_n+b_n è regolare e risulta

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

Analogamente, se le serie a termini generali a_n e b_n sono regolari allora la serie a termini generali a_n-b_n è regolare e risulta

$$\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$$

Se la serie a termini generali a_n è regolare e c è un numero reale, allora la serie a termini generali $c \cdot a_n$ è regolare e risulta

$$\sum_{n=1}^{\infty} c \cdot a_n = c \cdot \sum_{n=1}^{\infty} a_n$$

Serie a termini non negativi

Una serie $\sum_{n=1}^{\infty} a_n$ è detta a termini non negativi se $a_n \geq 0$ per ogni $n \in \mathbb{N}$.

Una successione a termini non negativi non può essere indeterminata. É quindi convergente oppure divergente a $+\infty$.

Serie a termini positivi

Una serie $\sum_{n=1}^{\infty} a_n$ è detta **a termini positivi** se $a_n > 0$ per ogni $n \in \mathbb{N}$.

Serie geometrica

La serie geometrica è una serie della forma

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n$$

dove x è un numero reale detto **ragione** della serie. Il carattere della serie geometrica dipende dal valore di x

• Se -1 < x < 1, allora la serie è convergente e risulta

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

- Se $x \ge 1$, allora la serie è divergente.
- Se $x \le -1$, allora la serie è indeterminata.

Serie armonica

La serie armonica è una serie della forma

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

La serie armonica è divergente.

Serie armonica generalizzata

La serie armonica generalizzata è una serie della forma

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p}$$

Il carattere della serie armonica generalizzata dipende dal valore di p

- Se p > 1, allora la serie è convergente.
- Se $p \leq 1$, allora la serie è divergente.

Criteri di convergenza

Criterio del confronto

Siano a_n e b_n due successioni a termini non negativi tali che $a_n \leq b_n$ per ogni $n \in \mathbb{N}$.

• Se la serie $\sum_{n=1}^{\infty} b_n$ è convergente, allora la serie $\sum_{n=1}^{\infty} a_n$ è convergente.

Se la serie più grande converge anche la serie più piccola converge.

• Se la serie $\sum_{n=1}^{\infty} a_n$ è divergente, allora la serie $\sum_{n=1}^{\infty} b_n$ è divergente.

Se la serie più piccola diverge anche la serie più grande diverge.

Criterio del confronto asintotico

Siano a_n e b_n due successioni a termini non negativi con $b_n \neq 0$

- Se $\lim_{n\to\infty} \frac{a_n}{b_n} = l > 0$, allora la serie $\sum_{n=1}^{\infty} a_n$ e la serie $\sum_{n=1}^{\infty} b_n$ hanno lo stesso carattere.
- Se $\lim_{n\to\infty} \frac{a_n}{b_n}=0$ e la serie $\sum_{n=1}^\infty b_n$ è convergente, allora la serie $\sum_{n=1}^\infty a_n$ è convergente.
- Se $\lim_{n\to\infty}\frac{a_n}{b_n}=+\infty$ e la serie $\sum_{n=1}^\infty b_n$ è divergente, allora la serie $\sum_{n=1}^\infty a_n$ è divergente.

Criterio degli infinitesimi

Sia a_n una successione a termini non negativi.

- Se $\lim_{n\to\infty} n^p \cdot a_n = l > 0$, allora la serie
 - Se p > 1, allora la serie $\sum_{n=1}^{\infty} a_n$ è convergente.
 - Se $p \leq 1$, allora la serie $\sum_{n=1}^{\infty} a_n$ è divergente.
- Se $\lim_{n\to\infty} n^p \cdot a_n = 0$, allora la serie

Se p > 1, allora la serie $\sum_{n=1}^{\infty} a_n$ è convergente.

- Se $\lim_{n\to\infty} n^p \cdot a_n = +\infty$, allora la serie
 - Se $p \leq 1$, allora la serie $\sum_{n=1}^{\infty} a_n$ è divergente.

Criterio della radice

Sia a_n una successione a termini positivi.

- Se $\lim_{n\to\infty} \sqrt[n]{a_n} = l < 1$, allora la serie $\sum_{n=1}^{\infty} a_n$ è convergente.
- Se $\lim_{n\to\infty} \sqrt[n]{a_n} = l > 1$, allora la serie $\sum_{n=1}^{\infty} a_n$ è divergente.
- Se $\lim_{n\to\infty} \sqrt[n]{a_n}=1,$ allora la serie è indeterminata.

Criterio del rapporto

Sia a_n una successione a termini positivi.

- Se $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l < 1$, allora la serie $\sum_{n=1}^{\infty} a_n$ è convergente.
- Se $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=l>1$, allora la serie $\sum_{n=1}^\infty a_n$ è divergente.
- Se $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$, allora la serie è indeterminata.

Serie a termini alterni

Una serie è detta **a termini alterni** se è del tipo

$$\sum_{n=1}^{\infty} (-1)^{n-1} \cdot a_n = a_1 - a_2 + a_3 - a_4 + \dots + (-1)^{n-1} \cdot a_n$$

Criterio di convergenza per le serie alternate

Sia a_n una successione a termini positivi e decrescente quindi $a_{n+1} \leq a_n$ ed è infinitesima quindi $\lim_{n\to\infty} a_n = 0$. Allora la serie è convergente.

Criterio di convergenza assoluta

Sia $\sum_{n=1}^{\infty} a_n$ una serie.

• Se la serie $\sum_{n=1}^{\infty} |a_n|$ è convergente, allora la serie $\sum_{n=1}^{\infty} a_n$ è convergente.