A very short introduction to neurons

Daniela Pamplona

U2IS - ENSTA - IPParis

ecampus moodle: MI210 - Modèles neuro-computationnels de la vision (P4 - 2020-21)

daniela.pamplona@ensta.fr

Contents

- 1. The nervous system: basic anatomy
- 2. Biological neurons
- 3. Biological intelligence vs Artificial intelligence

Contents

- 1. The nervous system: basic anatomy
- 2. Biological neurons
- 3. Biological intelligence vs artificial intelligence

Nervous System Components

• Central: brain and spinal cord. Combines information and controls activity across the whole organism.

• Peripheral: cranial and spinal nervs. Relay between Central Nervous System and the rest of the body

Brain regions classification methods

- Anatomical: Microscopy
- Functional: Functional/Diffusion Magnetic Resonance Imaging, Magnetoencephalography, neural recordings
- Evolutionary: Microscopy
- Developmental: Microscopy

Brain regions

- Cerebrum: Performs higher functions: sensing, speech, reasoning, emotions, learning, and fine control of movement.
- Cerebellum: Coordinates muscle movements, maintain posture, and balance.
- Diencephalon: Relays sensory information and controls many PNS autonomic functions.
- Brainstem: CNS relay center. Performs automatic functions: breathing, heart rate, body temperature, cyrcadian cycles, digestion, sneezing...

Visualization proposals

https://www.brainfacts.org/ 3D-Brain#intro=true

Cerebrum areas

- Cortex: Perception, motor (planning, control and execution), language
- Hippocampus: Memory consolidation
- Basal ganglia: Control of voluntary motor movements, procedural learning, habit learning, eye movements, cognition and emotion
- Olfactory bulb: Olfactory processing

Cortical areas

• Hemispheres: Right, left. The right receives information and controls the left part of the body and vice-versa. Mostly common functions, but also specialised

• Lobes:

- Frontal: Reward, attention, short-term memory tasks, planning, and motivation
- Parietal: Sensory information integration, visuospatial processing
- Occipital: Vision (visual cortex)
- Temporal lobe: Sensory processing, language recognition

https://en.wikipedia.org/wiki/Cerebrum

Visual Cortex

- 1. Main center of visual processing, the larger area in the brain
- 2. The visual information arrives to V1 (striate cortex) that connects to V2-V6
- 3. Each area processes a specific feature: edge, color, shape, motion, depth of visual field...or control of eye movements
- 4. Each area has different neuronal properties

Contents

- 1. The nervous system: basic anatomy
- 2. Biological neurons
 - 1. What is a spike?
 - 2. Spiking data analysis
 - 3. The simplest spiking neuron model: Leaky integrate and fire
- 3. Biological intelligence vs artificial Intelligence

Neurons

Neurons: primary components of the central nervous system

- Dendrites: receive information (also basic processing)
- **Soma:** (cell body) process information
- axon: send information

Neuron types

- Morphology (anatomy, microscope)
- Function (calcium imaging, recordings)

1.3 Pyramidal brain cell

Microscopic enlargement of a slice of rat brain stained to show a large neuron called a *pyramidal cell*. The long thick fiber is a dendrite that collects messages from other cells. The axon is the output fiber. (*Note* Some other types of neurons have thicker axons.) Brain neurons are highly interconnected: it has been estimated that there are more connections in the human brain than there are stars in the

Neuron types

- Morphology (anatomy, microscope)
 - Bipolar: 1 axon and 1 dendrite
 - Multipolar: 1 axon and 2 or more dendrites
 - Anaxonic: where the axon cannot be distinguished from the dendrite(s).
 - ...
- Function (calcium imaging, recordings)

- (A) Pyramidal cell from cortex.
- (B) A Purking cell from cerebellum
- (C) A Stellate cell from cortex

Neuron types

- Morphology (anatomy, microscope)
- Function (calcium imaging, recordings)
 - Direction
 - sensory neurons
 - motor neurons
 - Interneurons
 - Action on other neurons
 - Inhibitory
 - Excitatory
 - Discharge patterns
 - Tonic or regular spiking
 - Phasic or bursting spiking
 - Fast spiking

Circuit Theory Review

- <u>Potencial (difference)/ Voltage (V):</u> measure of the work required to move a charge from one point to another in a electric field. Unit: Volt (V).
- Current (I): measure of the flow of charge. Unit: Amperes (A)
- Resistance (R): opposition to the flow of charge through an electrical circuit . Unit Ohm (Ω)

Ohm's Law R = V/I

- <u>Capacitor</u> (condenser or condensator): passive two-terminal electronic component that stores electrical energy in an electric field.
- <u>Capacitance (C)</u>: measure of the storage capacity of a capacitor. Unit: Fahrad (F)

Spiking neurons

- Membrane Potential: Voltage difference between the interior and exterior of a cell (most cells have it different of zero, but constant)
- Action Potential: Voltage fluctuation inside of the cell (only valid in electrically active cells like neurons and muscles)
- **Spike:** release of an action potential (because of the shape of the curve of the membrane potential)

 A very short introduction to neurons Daniela

Pamplona

Membrane potential recorded intracellularly from a cultured rat cortical pyramidal cell.

How are spikes generated?

- 1. Chemical/Current input from dendrides
- 2. If membrane potential at soma is above a treshold an action potential is released
- 3. Spike goes trought the axon until the terminal

Two simulated recordings from a neuron.

Interesting videos

- The Cockroach Beatbox
- https://www.youtube.com/watch?v=tr4gWi9Jf6k
- Recording Axon with a Multi-Electrode Array
- https://youtu.be/d4IE10zOM3U

How does the neurons comunicate? Synapses

Synapses: permit neurons to pass an electrical or chemical signal to other neurons

Chemical:

- 1. electrical activity in the presynaptic neuron
- 2. convertion into a chemical signal: the neurotransmitter
- 3. the neurotransmiter is released
- 4. the neurotransmister is recieved by receptors in the plasma membrane of the postsynaptic cell

Electrical:

- 1. electrical activity in the presynaptic neuron
- 2. special channels in both membranes, gap junctions, that are capable of passing electric current
- 3. electrical activity in the postsynaptic neurons Daniela

Lets summarize

If you are curious, see part I, II, III of:

https://www.youtube.com/watch?v=qPix_X-9t7E

Contents

- 1. The nervous system: basic anatomy
- 2. Biological Neurons
 - 1. What is a spike?
 - 2. Spiking data analysis
 - 3. The simplest spiking neuron model: Leaky integrate and fire
- 3. Biological Intelligence vs Artificial Intelligence

Why bursts?

- Bursts are more reliable and have higher signal-to-noise ratio
- Bursts evoke long-term potentiation and hence affect synaptic plasticity much greater, or differently than single spikes (Lisman 1997).
- Bursts can resonate with short-term synaptic plasticity making a synapse a band-pass filter (Izhikevich et al. 2003).
- Bursts encode different features of sensory input than single spikes (Gabbiani et al. 1996, Oswald et al. 2004).

Why sparseness?

- To highlight bursts
- To save energy
- Others (population coding)

Neural data analysis

Simple tools:

- Average spike rate: Measure of neural activity
- Inter-spike interval: Measure the presence of brusts and sparseness
- <u>Autocorrelation</u>: Measure the presence of brusts, repetivite patterns, frequency analysis (if process is stationary)

Neural data analysis

$$s(t) = \begin{cases} 1, & if \ spike \\ 0, & o. \ w. \end{cases}$$

 $\langle f(t) \rangle$ = average over time of f

Possible measures

- Average spike rate (Hz): $\rho = \langle s(t) \rangle = sum(s(t))/T$
- Inter-spike interval: $P(s(t_2) = 1 | s(t_1) = 1; s(t_1+1) = 0;..., s(t_1+t_2-1) = 0)$
 - 1. spike_interval = $\{t_2-t_1 | s(t_2) = 1; s(t_1) = 1; s(t)=0, t_1 < t < t_2\}$
 - 2. Hist(spike interval)
- Autocorrelation: $C(\tau) = \langle s(t)s(t+\tau) \rangle = sum(s(t)s(t+\tau))/T; -\tau_{max} \langle \tau \langle \tau_{max} \rangle$

Neural data analysis: average spike rate

Average spike rate (Hz): 42.1053Hz

Interspike interval detail

Inter-spike interval: $P(s(\tau) = 1 | s(t) = 1; s(t+1) = 0;..., s(t+\tau-1) = 0)$

100 ms

Interspike interval detail

Inter-spike interval: $P(s(t_2) = 1 | s(t_1) = 1; s(t_1+1) = 0;..., s(t_1+t_2-1) = 0)$

Autocorrelation detail

Autocorrelation: $C(\tau) = \langle s(t)s(t+\tau) \rangle$

Autocorrelation detail

Autocorrelation detail

Neural data analysis Global or local measurements

Time	Mean firing rate
0-2000	30.5556
2000-3000	82.3232
3000-4000	25.7576
0-4000	42.1053

Neural data analysis Global or local measurements

Neural data analysis Global or local measurements

Contents

- 1. The nervous system: basic anatomy
- 2. Biological Neurons
 - 1. What is a spike?
 - 2. Spiking data analysis
 - 3. The simplest spiking neuron model: Leaky integrate and fire
- 3. Biological Intelligence vs Artificial Intelligence

Why do we build models?

Why do we build models?

Circuit Theory Review

- <u>Potencial (difference)/ Voltage (V):</u> measure of the work required to move a charge from one point to another in a electric field. Unit: Volt (V).
- Current (I): measure of the flow of charge. Unit: Amperes (A)
- Resistance (R): opposition to the flow of charge through an electrical circuit . Unit Ohm (Ω) $R = \frac{V}{I}$
- <u>Capacitor</u> (condenser or condensator): passive two-terminal electronic component that stores electrical energy in an electric field.
- <u>Capacitance (C)</u>: measure of the storage capacity of a capacitor. Unit: Fahrad (F)

A passive membrane model:

- 1. The neuron receives a (positive) input current
- 2. The electrical charge inside the cell increases
- 3. The cell membrane acts like a capacitor in parallel with a resistor which in series with a battery of potential u_{rest}

$$I(t) = I_R(t) + I_C(t)$$
 (parallel circuit)

$$I(t) = I_R(t) + I_C(t) \text{ (parallel circuit)}$$

$$I_R(t) = \frac{V(t) - V_{rest}}{R} \text{ (Ohm's law)}$$

$$I(t) = I_R(t) + I_C(t)$$
 (parallel circuit)
 $I_R(t) = \frac{V(t) - V_{rest}}{R}$ (Ohm's law)
 $I_C(t) = C \frac{dV}{dt}$ (definition)

$$\begin{split} I(t) &= I_R(t) + I_C(t) \text{ (parallel circuit)} \\ I_R(t) &= \frac{V(t) - V_{rest}}{R} \text{ (Ohm's law)} \\ I_C(t) &= C\frac{dV}{dt} \text{ (definition)} \\ I(t) &= \frac{V(t) - V_{rest}}{R} + C\frac{dV}{dt} \end{split}$$

$$I(t) = I_R(t) + I_C(t) \text{ (parallel circuit)}$$

$$I_R(t) = \frac{V(t) - V_{rest}}{R} \text{ (Ohm's law)}$$

$$I_C(t) = C\frac{dV}{dt} \text{ (definition)}$$

$$I(t) = \frac{V(t) - V_{rest}}{R} + C\frac{dV}{dt}$$

$$\text{define } \tau = RC \text{ (membrane time scale)}$$

$$\tau \frac{dV}{dt} = -(V(t) - V_{rest}) + RI(t)$$

The final model

$$V(t) = \begin{cases} V_{rest} & \text{if } V(t) = v_{th} \\ V_{rest} - \tau \frac{dV}{dt} + RI(t) & \text{o.w.} \end{cases}$$

50

The final model

Contents

- 1. The nervous system: basic anatomy
- 2. Biological neurons
- 3. Biological intelligence vs Artificial intelligence

Artificial Neurons: perceptron

Neurons

Neurons

Biological Neural Neurons	Artificial Neural Neurons
continuous input, discret output	discret input and output
large functional variability	low functional variability
large anatomical variability	no anatomical variability
asyncronous	syncronous

Networks

Biological Neural Networks	Artificial Neural Networks
Sparse connectivity	Not sparse connectivity
Preference for nearby neurons	Not defined spacial relations
Feedback connections	Feedfoward connections

Brains

Biological Brains	Artificial Brains
hardware and software co-development	hardware and software developed separatelly
energetic savings	no energy concerns
multifunctions parts	each part has its own function
capability of generalization	not solved
capability of adaptation	not solved
missing parts can partially be substituted by existing parts A very short introduction	missing parts can be easely substituted by new parts on to neurons - Daniela

Pamplona

Summary

Pamplona

Extra-slides

How can we separate the brain in areas?

- Cortical areas are defined by their function.
- Typically, they have different inputs and they project in different output
- They are defined by imaging: EEG, MEG, FMRI.

Layers of Visual Cortex

• Hemispheres: right, left (are they symmetric?)

• Lobes:

• frontal: reward, attention, short-term memorivation

• parietal: integration sensory information, v

occipital: vision (visual cortex)

• temporal lobe: sensory processing, language

General Properties of Spike Trains

The visual information tour

The leaky integrate and fire neuron

A Time course of the membrane potential of an integrate-and-fire neuron driven by constant input current I0=1.5. The voltage $\Delta u(t)=u$ —urest is normalized by the value of the threshold θ . Units of input current are chosen so that I0=1 corresponds to a trajectory that reaches the threshold for $t\to\infty$. After a spike, the potential is reset to ur=urest. B. Voltage response to a time-dependent input current.