Linear Algebra Spring 23 Exercise 6 Solutions

Ali Muhammad Asad

February 11, 2023

Chapter 1: Linear Equations and Matrices

Ex Set 1.6: Further Results on Systems of Equations and Invertibility

Question 16 Find the conditions that the b's must satisfy for the system to be consistent.

$$6x_1 - 4x_2 = b_1$$
$$3x_1 - 2x_2 = b_2$$

Solution:
$$\begin{bmatrix} 6 & -4 & b_1 \\ 3 & -2 & b_2 \end{bmatrix}$$
 $R_1 - 2R_2 \begin{bmatrix} 0 & 0 & b_1 - b_2 \\ 3 & -2 & b_2 \end{bmatrix}$

We can see that the first row gets a row of zeroes, then it must be consistent for $b_1 = 2b_2$

Question 23 Let Ax = 0 be a homogenous system of n linear equations in n unknowns that has only the trivial solution. Show that if k is any positive integer, then the system $A^kx = 0$ also has only the trivial solution.

Solution:

Since Ax = 0 has only the trivial solution, then theorem 1.6.4 guarantees that A is invertible. Then by Theorem 1.4.8 (b), A^k is also invertible. Then $(A^k)^{-1} = (A^{-1})^k$

We can note that
$$\underbrace{A^{-1}A^{-1}A^{-1}\cdots A^{-1}}_{\text{k factors}}\underbrace{AAA\cdots A}_{\text{k factors}}=I$$

Since A^k is invertible, therefore, by theorem 1.6.4 we can conclude that $A^k x = 0$ also only has the trivial solution.

Question 24 Let Ax = 0 be a homogenous system of n linear equations, in n unknowns, and let Q be an invertible $n \times n$ matrix. Show that Ax = 0 has the trivial solution if and only if (QA)x = 0 has just the trivial solution.

```
Solution: Let Ax=0 hold true. Then Q(Ax)=Q0 \Longrightarrow (QA)x=0. Associative Law Now let (QA)x=0 hold true, [as shown above]. Then Q^{-1}(QA)x=Q^{-1}0 \Longrightarrow (Q^{-1}Q)Ax=Q^{-1}0. Associative Law \Longrightarrow IAx=0 \Longrightarrow Ax=0 Hence proved.
```

Question 25 Let Ax = b be any consistent system of linear equations, and let x_1 be a fixed solution. Show that every solution to the system can be written in the form $x = x_1 + x_0$ where x_0 is a solution Ax = 0. Show that every matrix of this form is a solution.

Solution: Suppose that x_1 is a fixed matrix which satisfies the equation $Ax_1 = b$. Further let x be any matrix whatsoever which satisfies the equation Ax = b. We must show that there is a matrix x_0 which satisfies both of the equations $x = x_1 + x_0$ and $Ax_0 = 0$. Show that every matrix of this form is a solution.

Then the first equation implies that $x_0 = X - X_1$.

This candidate for x_0 will satisfy the second equation because $Ax_0 = A(x - x_1) = Ax - Ax_1 = b - b = 0$

We must also show that if both $Ax_1 = b$ and $Ax_0 = 0$, then $A(x_1 + x_0) = b$. But $A(x_1 + x_0) = Ax_1 + Ax_0 = b + 0 = b$

Question 26 Let A be a square matrix.

- (a) If B is a square matrix satisfying BA = I, then $B = A^{-1}$
- (b) If B is a square matrix satisfying AB = I, then $B = A^{-1}$

Use part (a) to prove part (b)

```
Solution: For B = A^{-1} [from (a)].
Given that AB = I, and BA = I.
Hence AB = BA = I \implies B = A^{-1} for AB = I.
Another thing can be seen is A^{-1}A = AA^{-1} = I
```