ML For Diamond Cut Classification

LAB-P3 - 2 GABRIEL LEE JUN RONG, 2301906 QUAH YONG YAO, 2302009 SUDIPTA KANTI BISWAS, 2303435

ML in Gemology & Diamond Classification

Machine learning has been applied in gemology for tasks such as origin, gemstone determination and grading tasks.

• GIA found that ML algorithms can complement traditional spectral analysis, achieving classification error rates as low as ~5%.

ML in Gemology & Diamond Classification

Al-based systems are emerging for the "4 Cs" grading:

• Cut, Carat, Color, Clarity

Automated ML graders have been trained on tens of thousands of diamonds:

Sarine Clarity

Traditionally done by human graders who measures the proportions and visually assessing light performance.

CLARITY

Clarity grades assess the number, size, relief, and position of inclusions and blemishes.

COLOR

The less color, the higher the grade. Even the slightest hint can make a dramatic difference in value.

CUT

Cut (proportions, symmetry, and polish) is a measure of how a diamond's facets interact with light.

CARAT WEIGHT

.00 ct. 2.00 ct. 5.00 ct.

Rarity means larger diamonds of the same quality are worth more per carat.

The 4 Cs of Grading:

• Clarity, Color, Cut, Carat

Problem Statement:

"Determine a given diamond's **cut quality grade** from its attributes using ML."

We aim to **bring objectivity, speed and consistency** to this process with the use of ML.

Dataset Overview

Sample Size: 53,940

Carat	Cut	Color	Depth	Table	Price	х	у	Z	Clarity
0.23	Ideal	Е	61.5	55	326	3.95	3.98	2.43	SI2

"Cut" Distribution:

Ideal (40%) Fair (3%) Premium (26%) Very Good (22%) Good (9%)

This imbalance suggests the model must be careful not to simply favor the majority class

Patterns in the data:

• Fair-cut diamonds tend to be larger on average (mean ~1.04 carats) whereas Ideal cuts are smaller (mean ~0.70 ct) - indicates a trade-off between retaining weight versus achieving top cut quality.

Challenges:

Class imbalance and multicollinearity (e.g. the high correlation between x, y, z dimensions).

Model Training

5 Different Algorithms were trained.

Logistic Regression	KNN	Random Forest	XGBoost	SKLearn Gradient Boost
---------------------	-----	---------------	---------	------------------------

Approach:

- Each model was trained on an 80% training split (with stratification) and evaluated on the 20% holdout test set.
- Employed 5-fold cross-validation on the training data for hyperparameter tuning and model selection.
- Early stopping was used to prevent overfitting in boosting iterations.

Experimentation Tweaking:

- Number of neighbours in KNN
- Regularization strength in Logistic Regression

Extra Experimental Models:

- Hyperparameter Fine-Tuned XGBoost
- Weighted XGBoost Approach
 - 1. Identify which classes are often misclassified
 - 2. Upweighting those classes by a factor of 1.1x
- Model Ensembling (Stacking & Voting)

Model Performance & Comparison

Worst - Best (Accuracy)	KNN	Logistic Regression	Random Forest	SKLearn Gradient Boost	XGBoost	Fine-Tuned XGBoost	Voting (WXGB + GB)	Weighted XGBoost	Stacking (WXGB + GB)
Accuracy	64.4%	65.3%	73.6%	80.1%	80.7%	81.2%	81.2%	81.4%	81.5%
Cohen's Kappa	0.659	0.546	0.787	0.826	0.832	0.834	0.830	0.844	0.833
F1	0.556	0.551	0.708	0.794	0.800	0.805	0.811	0.810	0.800

Given class imbalance, we computed Cohen's Kappa

• Which measures agreement with the true labels adjusted for chance.

Confusion Matrix (For XGBoost):

- Ideal and Premium cuts had the highest individual precision and recall.
- Most misclassifications occurred between adjacent grades.

Misclassification Rates:

The Weighted XGBoost misclassifies 7.96% of the time.

Final Model Selection

	XGBoost	Hyperparameter Fine-Tuned XGBoost	Weighted XGBoost	Stacking (Weighted XGBoost + GB)	Voting (Weighted XGBoost + GB)
Accuracy	80.7%	81.2%	81.4%	81.5%	81.2%
Misclassification Rate	14.00%	11.86%	7.96%	9.97%	11.01%

Chosen because it's **not worth sacrificing ~2% Misclassification rate for a 0.1% improvement** than the Stacking model.

The choice was not based solely on accuracy:

- XGBoost **provides rich feature importance feedback** and worked very well with SHAP analysis, allowing us to verify that its predictions were driven by logical factors.
- Training and Evaluation is faster than other models.

References

https://www.gia.edu/doc/fall-2024-machine-learning.pdf

https://nationaljeweler.com/articles/11975-state-of-the-diamond-industry-ai-and-the-future-of-diamond-grading

https://pmc.ncbi.nlm.nih.gov/articles/PMC10570374/

https://ieeexplore.ieee.org/document/10817052

https://www.kaggle.com/datasets/shivam2503/diamonds

Video Presentation Link

https://youtu.be/6LVVXqL1Le4