Theorem (3.2.7d). Let f be the function defined by $f(x) = \frac{x^4 + 5 \log x}{x^4 + 1}$. f(x) is $\mathcal{O}(1)$.

Proof. Let g be the function defined by g(x) = 1. If $x \ge 1$, then

$$\left(\frac{x^4 + 5\log x}{x^4 + 1}\right) = \left(\frac{x^4}{x^4 + 1} + \frac{5\log x}{x^4 + 1}\right) \le \left(1 + \frac{5\log x}{x^4 + 1}\right) \le \left(1 + \frac{5x}{x^4}\right) \le \left(1 + \frac{5}{x^3}\right).$$

The function $1 + \frac{5}{x^3}$ is strictly decreasing with respect to g(x), and never exceeding 2. Therefore, $|f(x)| \leq 2|g(x)|$, for all x > 1. Thus, f(x) is $\mathcal{O}(1)$ with constant witnesses C = 2, and k = 1.