1 非对齐访存指令

非对齐访存指令共有 4 条: LWL/LWR、SWL/SWR。

一般 LWL/LWR 会配合使用,读取一个跨边界(4字节对齐处)的字。SWL/SWR 也是配合使用。

(1) 非对齐指令助记符中 Left 和 right:

所谓 left 和 right,都是对 32 位寄存器里的值而言的左侧、右侧。

所以 left 就是指从内存中读数据到寄存器左侧(**数据高位**),或写寄存器左侧(**数据高位**)到内存中right 就是指从内存中读数据到寄存器右侧(**数据低位**),或写寄存器右侧(**数据低位**)到内存中

(2) 读写左侧或右侧的数据,读写几字节呢?

就要用地址偏移去判断了。

left 是读写**数据高位**,所以是访存地址对应的 byte 对应寄存器中**最高字节**,从该 byte 开始向内存中**数据低位**索引直到**下边界**(4 字节对齐处,即地址低两位为 0),并完成读写

right 是读写**数据低位**,所以是访存地址对应的 byte 对应寄存器中**最低字节**,从该 byte 开始向内存中**数据高位**索引直到**上边界**(4 字节对齐处,即地址低两位为 11) ,并完成读写

(3) 尾端模式

寄存器中,左侧就是数据高位,右侧就是数据低位。但在内存中小地址处为高位还是低位,就是依据具体实现而不同了,有两种方式:

大尾端: **小**地址处为数据**高**位,**大**地址处为数据**低**位。如下表,则是数据 0x12 为数据最高字节。 如果我们大尾端下 load 0xbfc00000,则得到 0x12345678。

小尾端: **小**地址处为数据**低**位,**大**地址处为数据**高**位。如下表,则是数据 0x78 为数据最高字节。 如果我们小尾端下 load 0xbfc00000,则得到 0x78563412。

内存数据:

地址	0xbfc0000	0xbfc0001	0xbfc0002	0xbfc0003		
数据	0x12	0x34	0x56	0x78		

小尾端: 低字节 高字节

现在一般处理器中数据存储和处理实现为小尾端模式,lab5 实验中也是如此。因而我们只用实现小尾端下的非对齐访存。

(4) 小尾端下非对齐访存

left 是读写**高位**,从访存地址指示的 byte 开始向**内存中数据低位(也是小地址处)**索引直到**下边界**(4 字节对齐处,地址低两位为 0)

right 是读写**低位**,从访存地址指示的 byte 开始向**内存中数据高位(也是大地址处)**索引直到**上边界**(4 字节对齐处,地址低两位为 11)

假设内存中数据存放如下:

内存数据:

地址	0xbfc0000	0xbfc0001	0xbfc0002	0xbfc0003
数据	0x12	0x34	0x56	0x78
小尾端:	低字节			高字节

假设寄存器 R 中数据存放如下:

寄存器 R 中原有值

bit 位	[31:24]	[23:16]	[15:8]	[7:0]		
数据	0xa0	0xb0	0xc0	0xd0		

高字节

则执行结果如下:

注方地	方存地址低2位 load,只能			改寄存器R			store,只修改内存里数据										
切行地	411以27以	LWL	LWL执行结果(寄存器) LWR执行结果(寄存器)				器)	SWL执行结果(内存)				SWR 执行结果(<mark>内存</mark>)					
2'b00	指示位	[31:24]	[23:16]	[15:8]	[7:0]	[31:24]	[23:16]	[15:8]	[7:0]	2'b00	2'b01	2'b10	2'b11	2'b00	2'b01	2'b10	2'b11
2 000	结果	0x12	0xb0	0xc0	0xd0	0x78	0x56	0x34	0x12	0xa0	0x34	0x56	0x78	0xd0	ОхсО	0xb0	0xa0
2'b01	指示位	[31:24]	[23:16]	[15:8]	[7:0]	[31:24]	[23:16]	[15:8]	[7:0]	2'b00	2'b01	2'b10	2'b11	2'b00	2'b01	2'b10	2'b11
2 001	结果	0x34	0x12	0xc0	0xd0	0xa0	0x78	0x56	0x34	0xb0	0xa0	0x56	0x78	0x12	0xd0	ОхсО	0xb0
2'b10	指示位	[31:24]	[23:16]	[15:8]	[7:0]	[31:24]	[23:16]	[15:8]	[7:0]	2'b00	2'b01	2'b10	2'b11	2'b00	2'b01	2'b10	2'b11
2 010	结果	0x56	0x34	0x12	0xd0	0xa0	0xb0	0x78	0x56	ОхсО	0xb0	0xa0	0x78	0x12	0x34	0xd0	ОхсО
2'b11	指示位	[31:24]	[23:16]	[15:8]	[7:0]	[31:24]	[23:16]	[15:8]	[7:0]	2'b00	2'b01	2'b10	2'b11	2'b00	2'b01	2'b10	2'b11
2 011	结果	0x78	0x56	0x34	0x12	0xa0	0xb0	0xc0	0x78	0xd0	ОхсО	0xb0	0xa0	0x12	0x34	0x56	0xd0

通用表达如下: gpr[]表示读写的通用寄存器, mem[]表示内存:

访存地址低2位	load,只修	改寄存器R	store,只修改内存里数据			
	LWL执行结果(寄存器)	LWR执行结果(寄存器)	SWL执行结果(内存)	SWR执行结果(内存)		
2'b00	gpr[31:24] = mem[2'b00:00]	gpr[31:0] = mem[2'b00:11]	mem[2'b00:00]=gpr[31:24]	mem[2'b00:11]=gpr[31:0]		
2'b01	gpr[31:16] = mem[2'b01:00]	gpr[23:0] = mem[2'b01:11]	mem[2'b01:00]=gpr[31:16]	mem[2'b01:11]=gpr[23:0]		
2'b10	gpr[31:8] = mem[2'b10:00]	gpr[15:0] = mem[2'b10:11]	mem[2'b10:00]=gpr[31:8]	mem[2'b10:11]=gpr[15:0]		
2'b11	gpr[31:0] = mem[2'b11:00]	gpr[7:0] = mem[2'b11:11]	mem[2'b11:00]=gpr[31:0]	mem[2'b11:11]=gpr[7:0]		