Explore Trends of Snow Cover Related Indicators

AJ Perez-Luque (@ajpelu); FJ Bonet; J Herrero and R. Perez-Perez 2016 March

Prepare Data

- 1. Read data of Mann-Kendal Sen-Slope for each pixels and snow-cover related indicators (scd, scod, scmd, scmc).
- 2. Read data of topographic variable:
 - Convert radian to deg.
 - Create categorical variable for elevation (250 m)
 - Classify aspect into 8 categories
- 3. Read data from hydrological basin
- 4. Read spatial data:
 - Select only centroides of interest
- 5. Create two dataframes:
 - Full Dataframe with all variables and all pixels (fulldf)
 - Filter dataframe with all variables and filter by pixels above 1250 m.a.s.l. (fulldf1250)

```
# Trend analysis data
# Define name of indicators (see variables names)
indicadores <- c("scd", "scod", "scmd", "scmc")</pre>
# Loop to read files
for (j in indicadores){
  aux <- read.csv(file=paste(di, "/data/derived/", j, ".csv", sep= ""),</pre>
              header = TRUE,
              sep = ',')
  assign(j, aux)
}
# Define pixels of interes
pixels_interes <- scd$nie_malla_modi_id</pre>
# Read Topographic data
rawtopo <- read.csv(file=paste(di, "/data/topo_nie_malla_modis.csv", sep=""),</pre>
                     header=TRUE,
                     sep = ",")
# function to convert radian to degree
rad2deg <- function(rad) {(rad * 180) / (pi)}</pre>
topo <- rawtopo %>%
  filter(id %in% pixels_interes) %>%
  mutate(nie_malla_modi_id = id,
         slope50mean_deg = rad2deg(slope50mean),
```

```
slope50median_deg = rad2deg(slope50median),
         aspect50mean_deg = rad2deg(aspect50mean),
         aspect50median_deg = rad2deg(aspect50median)) %>%
  dplyr::select(nie_malla_modi_id, dem50mean, dem50median, slope50mean_deg,
                slope50median_deg, aspect50mean_deg, aspect50median_deg)
## Create interval variables (250 m) for dem; and classify aspect into 8 categories
topo <- topo %>%
  mutate(dem50mean_group = cut(dem50mean,
                         breaks = seq(from=0, to=3500, by=250),
                         labels = c("0-250", "251-500", "501-750", "751-1000",
                                     "1001-1250", "1251-1500", "1501-1750", "1751-2000",
                                     "2001-2250", "2251-2500", "2501-2750", "2751-3000",
                                     "3001-3250", "3251-3500")),
         aspect50mean_deg_group = cut(aspect50mean_deg,
                                       breaks= c(22.5, 67.5, 112.5, 157.5, 202.5, 247.5, 292.5, 337.5, 3
                                       labels = c("N", "NE", "E", "SE", "S", "SW", "W", "NW")))
# --
# Read spatial data and Get lat/long
centroides <- rgdal::readOGR(dsn=paste(di, "/data/geoinfo", sep=""),</pre>
                             layer = "centroides_selected", verbose = FALSE)
# Select only attributes of interest and rename them
centroides <- centroides[c("id")]</pre>
# Create lat/lng by id
xycentroides <- cbind(centroides@data, coordinates(centroides))</pre>
names(xycentroides) <- c("nie_malla_modi_id", "lon","lat")</pre>
xycentroides <- filter(xycentroides, nie_malla_modi_id %in% pixels_interes)</pre>
# --
# Hydrological basin
basin <- read.csv(file=paste(di, "/data/derived/pixel_region.csv", sep=""),</pre>
                    header=TRUE,
                    sep = ",")
# --
# Create un dataframe con todos los datos
fulldf <- topo %>%
  inner_join(scod, by=c("nie_malla_modi_id")) %>%
  inner_join(scd, by=c("nie_malla_modi_id")) %>%
  inner_join(scmd, by=c("nie_malla_modi_id")) %>%
  inner_join(scmc, by=c("nie_malla_modi_id")) %>%
  inner_join(xycentroides, by="nie_malla_modi_id") %>%
  inner_join(basin, by="nie_malla_modi_id")
# Create subset of pixels above 1250
fulldf1250 <- fulldf %>%
 filter(dem50mean > 1250)
```

Explore Snow-Cover trends by basin

We explore the pattern of snow-cover indicators trends by hydrological basin.

```
## Summary statistics
misvariables <- c('tau_scd', 'sen_slope_scd', 'tau_scod', 'sen_slope_scod',
                  'tau_scmd', 'sen_slope_scmd', 'tau_scmc', 'sen_slope_scmc')
variable_agrupa <- 'basin_name'</pre>
prefijo <- 'basin_'</pre>
df <- fulldf1250
stats_basin <- data.frame()</pre>
for (i in misvariables){
  vnames <- c(variable_agrupa, i)</pre>
  aux <- df %>%
    dplyr::select(one_of(vnames)) %>%
    mutate_(vinterest = i) %>%
    group_by_(.dots=variable_agrupa) %>%
    summarise(mean=mean(vinterest),
              sd = sd(vinterest),
              se = sd / sqrt (length(vinterest)))
  aux <- aux %>%
    mutate(variable = i)
  stats_basin <- rbind(stats_basin, aux)</pre>
  # assign(pasteO(prefijo,i), aux)
```

Snow cover duration

```
df_letter_aux <- data.frame()
df <- fulldf1250

# Tau scd
# ANOVA
variable <- 'tau_scd'
my_ylab <- 'Tau Snow cover duration'
mod <- aov(tau_scd ~ basin_name, data=df)
pander(tidy(mod), caption= my_ylab)</pre>
```

Table 1: Tau Snow cover duration

term	df	sumsq	meansq	statistic	p.value
basin_name	4	2.326	0.5814	25.07	1.239e-20
Residuals	6385	148.1	0.02319	NA	NA


```
# Sen scd
# ANOVA
variable <- 'sen_slope_scd'
my_ylab <- 'Sen slope Snow cover duration'
mod <- aov(sen_slope_scd ~ basin_name, data=df)
pander(tidy(mod), caption= my_ylab)</pre>
```

Table 2: Sen slope Snow cover duration

term	df	sumsq	meansq	statistic	p.value
basin_name	4	$369.5 \\ 14503$	92.38	40.67	1.056e-33
Residuals	6385		2.271	NA	NA

Snow cover onset date

```
# Tau scod
# ANOVA
variable <- 'tau_scod'
my_ylab <- 'Tau Snow cover onset date'
mod <- aov(tau_scod ~ basin_name, data=df)
pander(tidy(mod), caption= my_ylab)</pre>
```

Table 3: Tau Snow cover onset date

term	df	sumsq	meansq	statistic	p.value
basin_name	4	6.29	$1.573 \\ 0.02827$	55.62	3.55e-46
Residuals	6385	180.5		NA	NA


```
# Sen scod
# ANOVA
variable <- 'sen_slope_scod'
my_ylab <- 'Sen slope Snow cover onset date'
mod <- aov(sen_slope_scod ~ basin_name, data=df)
pander(tidy(mod), caption= my_ylab)</pre>
```

Table 4: Sen slope Snow cover onset date

term	df	sumsq	meansq	statistic	p.value
basin_name	4	334	83.49	26.76	4.745e-22
Residuals	6385	19919	3.12	NA	NA

Snow cover melting date

```
# Tau scmd
# ANOVA
variable <- 'tau_scmd'
my_ylab <- 'Tau Snow cover melting date'
mod <- aov(tau_scmd ~ basin_name, data=df)
pander(tidy(mod), caption= my_ylab)</pre>
```

Table 5: Tau Snow cover melting date

term	df	sumsq	meansq	statistic	p.value
basin_name	4	5.153	1.288	47.14	4.112e-39
Residuals	6385	174.5	0.02733	NA	NA

```
## Multiple comparisons
tuk <- glht(mod, linfct = mcp(basin_name = "Tukey"))</pre>
```



```
# Sen scmd
# ANOVA
variable <- 'sen_slope_scmd'
my_ylab <- 'Sen slope Snow cover melting date'
mod <- aov(sen_slope_scmd ~ basin_name, data=df)
pander(tidy(mod), caption= my_ylab)</pre>
```

Table 6: Sen slope Snow cover melting date

term	df	sumsq	meansq	statistic	p.value
basin_name Residuals	$4\\6385$	555.2 22638	138.8 3.545	39.15 NA	1.982e-32 NA

Snow cover melting cycles

```
# Tau scmc
# ANOVA
variable <- 'tau_scmc'
my_ylab <- 'Tau Snow cover melting cycles'
mod <- aov(tau_scmc ~ basin_name, data=df)
pander(tidy(mod), caption= my_ylab)</pre>
```

Table 7: Tau Snow cover melting cycles

term	df	sumsq	meansq	statistic	p.value
basin_name	4	4.83	$1.207 \\ 0.02216$	54.49	3.053e-45
Residuals	6385	141.5		NA	NA


```
# Sen scmc
# ANOVA
variable <- 'sen_slope_scmc'
my_ylab <- 'Sen slope Snow cover melting cycles'
mod <- aov(sen_slope_scmc ~ basin_name, data=df)
pander(tidy(mod), caption= my_ylab)</pre>
```

Table 8: Sen slope Snow cover melting cycles

term	df	sumsq	meansq	statistic	p.value
basin_name Residuals	$4\\6385$	2.331 47.83	0.5827 0.007492	77.78 NA	1.63e-64 NA

Tau Snow cover duration

pander(filter(df_basin_tau, variable=="tau_scd"))

basin_name	mean	sd	se	variable	tukey_basin_name
Adra	-0.1539916	0.1299276	0.004217628	tau_scd	b
Andarax	-0.1781580	0.1347095	0.003958622	tau_scd	a
Fardes	-0.1509319	0.1552694	0.004588631	tau_scd	b
Genil	-0.1164561	0.1748347	0.005312675	tau_scd	c
Guadalfeo	-0.1614019	0.1566468	0.003455537	tau_scd	b

Sen Slope Snow cover duration

pander(filter(df_basin_sen, variable=="sen_slope_scd"))

basin_name	mean	sd	se	variable	tukey_basin_name
Adra	-1.212126	1.330570	0.04319214	sen_slope_scd	b
Andarax	-1.165116	1.187804	0.03490522	sen_slope_scd	b
Fardes	-1.256298	1.450748	0.04287353	sen_slope_scd	b
Genil	-1.227084	1.616166	0.04911019	sen_slope_scd	b
Guadalfeo	-1.726302	1.703237	0.03757242	sen_slope_scd	a

Tau Snow cover onset date

pander(filter(df_basin_tau, variable=="tau_scod"))

basin_name	mean	sd	se	variable	tukey_basin_name
Adra	0.13508641	0.1661481	0.005393396	tau_scod	c
Andarax	0.16170725	0.1799857	0.005289125	tau_scod	d
Fardes	0.08508559	0.1760358	0.005202333	tau_scod	a
Genil	0.17786334	0.1532622	0.004657156	tau_scod	d
Guadalfeo	0.11700681	0.1651432	0.003642962	tau_scod	b

Sen Slope Snow onset date

pander(filter(df_basin_sen, variable=="sen_slope_scod"))

basin_name	mean	sd	se	variable	tukey_basin_name
Adra	1.3561486	1.880254	0.06103564	sen_slope_scod	c
Andarax	1.2622073	2.081075	0.06115520	sen_slope_scod	c
Fardes	0.7328856	1.579219	0.04667019	sen_slope_scod	a
Genil	1.3788957	1.519216	0.04616421	sen_slope_scod	c
Guadalfeo	1.0376273	1.738225	0.03834423	sen_slope_scod	b

Tau Snow cover melting date

pander(filter(df_basin_tau, variable=="tau_scmd"))

basin_name	mean	sd	se	variable	tukey_basin_name
Adra	-0.1833962	0.1688657	0.005481613	tau_scmd	b
Andarax	-0.1440147	0.1583987	0.004654762	tau_scmd	c
Fardes	-0.2067694	0.1745326	0.005157911	tau_scmd	a
Genil	-0.1384146	0.1364387	0.004145942	tau_scmd	c
Guadalfeo	-0.2016161	0.1757420	0.003876768	tau_scmd	a

Sen Slope Snow melting date

pander(filter(df_basin_sen, variable=="sen_slope_scmd"))

basin_name	mean	sd	se	variable	tukey_basin_name
Adra	-1.632706	1.907522	0.06192079	sen_slope_scmd	b
Andarax	-1.399011	1.984965	0.05833088	sen_slope_scmd	c
Fardes	-1.968318	2.106212	0.06224426	sen_slope_scmd	a
Genil	-1.111770	1.399082	0.04251370	sen_slope_scmd	d
Guadalfeo	-1.817089	1.902809	0.04197486	sen_slope_scmd	ab

Tau Snow cover melting cycles

pander(filter(df_basin_tau, variable=="tau_scmc"))

basin_name	mean	sd	se	variable	tukey_basin_name
Adra	-0.1399842	0.1235027	0.004009066	tau_scmc	d
Andarax	-0.1745829	0.1393072	0.004093732	tau_scmc	c
Fardes	-0.1879328	0.1565802	0.004627370	tau_scmc	c
Genil	-0.2266741	0.1757618	0.005340850	tau_scmc	a
Guadalfeo	-0.2089504	0.1448464	0.003195228	tau_scmc	b

Sen Slope Snow melting date

pander(filter(df_basin_sen, variable=="sen_slope_scmc"))

basin_name	mean	sd	se	variable	tukey_basin_name
Adra	-0.04459536	0.06725779	0.002183280	sen_slope_scmc	c
Andarax	-0.05264162	0.07425655	0.002182129	sen_slope_scmc	c
Fardes	-0.07982009	0.09181152	0.002713279	sen_slope_scmc	b
Genil	-0.09900277	0.10182727	0.003094211	sen_slope_scmc	\mathbf{a}
Guadalfeo	-0.08545109	0.08909295	0.001965339	sen_slope_scmc	b

Explore Snow-Cover trends by elevation

Taus

```
## Family: gaussian
## Link function: identity
##
## Formula:
## tau_scd ~ s(dem50mean)
##
## Approximate significance of smooth terms:
```

```
##
                  edf Ref.df
                                 F p-value
## s(dem50mean) 8.263 8.854 410.4 <2e-16
mygam_summ <- summary(modgam)</pre>
mygam_summ
##
## Family: gaussian
## Link function: identity
##
## Formula:
## tau scd ~ s(dem50mean)
##
## Parametric coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.153844   0.001532   -100.4   <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
                  edf Ref.df
                                 F p-value
## s(dem50mean) 8.263 8.854 410.4 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
                         Deviance explained = 36.3%
## R-sq.(adj) = 0.363
## GCV = 0.015024 Scale est. = 0.015002 n = 6390
# Plot GAM
a <-ggplot(df, aes_string(x='dem50mean', y=myvariable)) + geom_point(col='grey') +
  geom_smooth(method="gam", formula = y ~ s(x), fill='red', col='red') +
  annotate("text", x = 3000, y=0.3,
           label= paste0("Dev. exp. = ", round((mygam_summ$dev.expl)*100, 2), " %")) +
  mythemeggplot +
  xlab('Elevation') + ylab(myylab)
myvariable <- 'tau_scod'</pre>
myylab <- 'Tau Snow Cover Onset Date'
# GAM
myformula <- formula(paste(myvariable, '~ s(dem50mean)', sep=''))</pre>
modgam <- mgcv::gam(formula = myformula,</pre>
                    data= df)
anova (modgam)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## tau_scod ~ s(dem50mean)
```

```
##
## Approximate significance of smooth terms:
                  edf Ref.df
                                 F p-value
## s(dem50mean) 8.282 8.861 52.02 <2e-16
mygam_summ <- summary(modgam)</pre>
mygam_summ
##
## Family: gaussian
## Link function: identity
##
## Formula:
## tau_scod ~ s(dem50mean)
##
## Parametric coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.132387   0.002066   64.07   <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                  edf Ref.df
## s(dem50mean) 8.282 8.861 52.02 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.0671 Deviance explained = 6.83%
## GCV = 0.02732 Scale est. = 0.027281 n = 6390
# Plot GAM
b <- ggplot(df, aes_string(x='dem50mean', y=myvariable)) + geom_point(col='grey') +
  geom_smooth(method="gam", formula = y ~ s(x), fill='red', col='red') +
  annotate("text", x = 3000, y=0.6,
           label= paste0("Dev. exp. = ", round((mygam_summ$dev.expl)*100, 2), " %")) +
  mythemeggplot +
  xlab('Elevation') + ylab(myylab)
myvariable <- 'tau_scmd'
myylab <- 'Tau Snow Cover Melting Date'
myformula <- formula(paste(myvariable, '~ s(dem50mean)', sep=''))</pre>
modgam <- mgcv::gam(formula = myformula,</pre>
                    data= df)
anova(modgam)
##
## Family: gaussian
## Link function: identity
## Formula:
```

```
## tau_scmd ~ s(dem50mean)
##
## Approximate significance of smooth terms:
                edf Ref.df
                              F p-value
## s(dem50mean) 8.597 8.954 193.7 <2e-16
mygam_summ <- summary(modgam)</pre>
mygam_summ
##
## Family: gaussian
## Link function: identity
## Formula:
## tau_scmd ~ s(dem50mean)
## Parametric coefficients:
              Estimate Std. Error t value Pr(>|t|)
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
##
                 edf Ref.df
                              F p-value
## s(dem50mean) 8.597 8.954 193.7 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.213 Deviance explained = 21.4\%
## GCV = 0.02215 Scale est. = 0.022116 n = 6390
# Plot GAM
c <- ggplot(df, aes_string(x='dem50mean', y=myvariable)) + geom_point(col='grey') +</pre>
 geom_smooth(method="gam", formula = y ~ s(x), fill='red', col='red') +
 annotate("text", x = 3000, y=0.4,
          label= paste0("Dev. exp. = ", round((mygam_summ$dev.expl)*100, 2), " %")) +
 mythemeggplot +
 xlab('Elevation') + ylab(myylab)
myvariable <- 'tau_scmc'</pre>
myylab <- 'Tau Snow Cover Melting Cycles'
# GAM
myformula <- formula(paste(myvariable, '~ s(dem50mean)', sep=''))</pre>
modgam <- mgcv::gam(formula = myformula,</pre>
                   data= df)
anova(modgam)
##
## Family: gaussian
## Link function: identity
##
```

```
## Formula:
## tau_scmc ~ s(dem50mean)
## Approximate significance of smooth terms:
                 edf Ref.df
                               F p-value
## s(dem50mean) 8.211 8.834 104.2 <2e-16
mygam_summ <- summary(modgam)</pre>
mygam_summ
##
## Family: gaussian
## Link function: identity
## Formula:
## tau_scmc ~ s(dem50mean)
##
## Parametric coefficients:
              Estimate Std. Error t value Pr(>|t|)
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                 edf Ref.df
                               F p-value
## s(dem50mean) 8.211 8.834 104.2 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.126 Deviance explained = 12.7%
## GCV = 0.020053 Scale est. = 0.020024 n = 6390
# Plot GAM
d <- ggplot(df, aes_string(x='dem50mean', y=myvariable)) + geom_point(col='grey') +</pre>
  geom_smooth(method="gam", formula = y ~ s(x), fill='red', col='red') +
  annotate("text", x = 3000, y=0.4,
          label= paste0("Dev. exp. = ", round((mygam_summ$dev.expl)*100, 2), " %")) +
 mythemeggplot +
 xlab('Elevation') + ylab(myylab)
grid.arrange(a, d, b, c, nrow=2)
```


Sen

##

```
## Family: gaussian
## Link function: identity
##
## Formula:
## sen_slope_scd ~ s(dem50mean)
## Approximate significance of smooth terms:
##
                  edf Ref.df
                               F p-value
## s(dem50mean) 8.592 8.953 1115 <2e-16
mygam_summ <- summary(modgam)</pre>
mygam_summ
##
## Family: gaussian
## Link function: identity
##
## Formula:
## sen_slope_scd ~ s(dem50mean)
## Parametric coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.37941
                          0.01193 -115.7 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                  edf Ref.df
                                F p-value
## s(dem50mean) 8.592 8.953 1115 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.61
                        Deviance explained =
## GCV = 0.91018 Scale est. = 0.90881
# Plot GAM
a <-ggplot(df, aes_string(x='dem50mean', y=myvariable)) + geom_point(col='grey') +
  geom_smooth(method="gam", formula = y ~ s(x), fill='red', col='red') +
  annotate("text", x = 3000, y=2,
           label= paste0("Dev. exp. = ", round((mygam_summ$dev.expl)*100, 2), " %")) +
  mythemeggplot +
  xlab('Elevation') + ylab(myylab)
myvariable <- 'sen_slope_scod'
myylab <- 'Sen Slope Snow Cover Onset Date'
# GAM
myformula <- formula(paste(myvariable, '~ s(dem50mean)', sep=''))</pre>
modgam <- mgcv::gam(formula = myformula,</pre>
                    data= df)
anova (modgam)
```

```
##
## Family: gaussian
## Link function: identity
##
## Formula:
## sen_slope_scod ~ s(dem50mean)
## Approximate significance of smooth terms:
##
                  edf Ref.df
                                F p-value
## s(dem50mean) 6.788 7.914 87.92 <2e-16
mygam_summ <- summary(modgam)</pre>
mygam_summ
##
## Family: gaussian
## Link function: identity
##
## Formula:
## sen_slope_scod ~ s(dem50mean)
## Parametric coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.12886
                        0.02114
                                   53.4 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                 edf Ref.df
                                 F p-value
## s(dem50mean) 6.788 7.914 87.92 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.0993 Deviance explained =
## GCV = 2.8587 Scale est. = 2.8552
# Plot GAM
b <- ggplot(df, aes_string(x='dem50mean', y=myvariable)) + geom_point(col='grey') +</pre>
  geom_smooth(method="gam", formula = y ~ s(x), fill='red', col='red') +
  annotate("text", x = 3000, y=5,
           label= paste0("Dev. exp. = ", round((mygam_summ$dev.expl)*100, 2), " %")) +
 mythemeggplot +
 xlab('Elevation') + ylab(myylab)
myvariable <- 'sen_slope_scmd'
myylab <- 'Sen slope Snow Cover Melting Date'
# GAM
myformula <- formula(paste(myvariable, '~ s(dem50mean)', sep=''))</pre>
modgam <- mgcv::gam(formula = myformula,</pre>
                    data= df)
anova (modgam)
```

```
##
## Family: gaussian
## Link function: identity
##
## Formula:
## sen_slope_scmd ~ s(dem50mean)
## Approximate significance of smooth terms:
##
                 edf Ref.df
                                F p-value
## s(dem50mean) 8.444 8.915 125.8 <2e-16
mygam_summ <- summary(modgam)</pre>
mygam_summ
##
## Family: gaussian
## Link function: identity
##
## Formula:
## sen_slope_scmd ~ s(dem50mean)
## Parametric coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                 edf Ref.df
                                F p-value
## s(dem50mean) 8.444 8.915 125.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.149 Deviance explained =
## GCV = 3.0936 Scale est. = 3.089
# Plot GAM
c <- ggplot(df, aes_string(x='dem50mean', y=myvariable)) + geom_point(col='grey') +</pre>
  geom_smooth(method="gam", formula = y ~ s(x), fill='red', col='red') +
  annotate("text", x = 3000, y=5,
          label= paste0("Dev. exp. = ", round((mygam_summ$dev.expl)*100, 2), " %")) +
 mythemeggplot +
 xlab('Elevation') + ylab(myylab)
myvariable <- 'sen_slope_scmc'</pre>
myylab <- 'Sen Slope Snow Cover Melting Cycles'
# GAM
myformula <- formula(paste(myvariable, '~ s(dem50mean)', sep=''))</pre>
modgam <- mgcv::gam(formula = myformula,</pre>
                   data= df)
anova (modgam)
```

```
##
## Family: gaussian
## Link function: identity
##
## Formula:
## sen_slope_scmc ~ s(dem50mean)
## Approximate significance of smooth terms:
##
                 edf Ref.df
                               F p-value
## s(dem50mean) 7.828 8.651 137.6 <2e-16
mygam_summ <- summary(modgam)</pre>
mygam_summ
##
## Family: gaussian
## Link function: identity
## Formula:
## sen_slope_scmc ~ s(dem50mean)
## Parametric coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
                 edf Ref.df
                               F p-value
## s(dem50mean) 7.828 8.651 137.6 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.157 Deviance explained = 15.8%
## GCV = 0.0066283 Scale est. = 0.0066191 n = 6390
# Plot GAM
d <- ggplot(df, aes_string(x='dem50mean', y=myvariable)) + geom_point(col='grey') +</pre>
 geom_smooth(method="gam", formula = y ~ s(x), fill='red', col='red') +
 annotate("text", x = 3000, y=0.1,
          label= paste0("Dev. exp. = ", round((mygam_summ$dev.expl)*100, 2), " %")) +
 mythemeggplot +
 xlab('Elevation') + ylab(myylab)
grid.arrange(a, d, b, c, nrow=2)
```

