UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i MAT1110 — Kalkulus og lineær algebra

Eksamensdag: Fredag 13. juni 2008

Tid for eksamen: 09.00-12.00

Oppgavesettet er på 3 sider.

Vedlegg: Formelark

Tillatte hjelpemidler: Godkjent lommeregner

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Under sensureringen teller i utgangspunktet alle deloppgaver (1a, 1b, 2, 3a osv.) 10 poeng hver. Du må begrunne alle svar, og du må vise nok mellomregninger til at man lett kan følge argumentene dine.

Oppgave 1

a) Finn den inverse matrisen til

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & 0 & -2 \end{array}\right)$$

(Inverteringen skal gjøres for hånd og ikke ved hjelp av et ferdig kalkulatorprogram, men du har selvsagt rett til å bruke kalkulatoren til tallregning og kontroll.)

b) Finn Jacobi-matrisen til funksjonen $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ når

$$\mathbf{F}(x,y,z) = \begin{pmatrix} x+z \\ x^2 + \frac{1}{2}y^2 + z \\ x+z^2 \end{pmatrix}$$

Vis at **F** har en omvendt funksjon **G** definert i en omegn rundt $(0, \frac{1}{2}, 2)$ slik at $\mathbf{G}(0, \frac{1}{2}, 2) = (1, 1, -1)$. Finn $\mathbf{G}'(0, \frac{1}{2}, 2)$.

Oppgave 2

Forklar at funksjonen f(x,y) = 2x + 4y har maksimums- og minimumspunkter under bibetingelsen $\{(x,y) \in \mathbf{R}^2 \mid x^2 + y^2 = 4\}$. Finn disse maksimums- og minimumspunktene.

(Fortsettes på side 2.)

Oppgave 3

- a) Finn egenverdiene og egenvektorene til matrisen $A = \begin{pmatrix} 1.1 & -0.2 \\ 0.1 & 0.8 \end{pmatrix}$ (Oppgaven skal løses for hånd og ikke ved hjelp av et ferdig kalkulatorprogram, men du har selvsagt rett til å bruke kalkulatoren til tallregning og kontroll.)
- b) To dyreslag bor i det samme området. Dersom det er x_n og y_n dyr av hvert slag ett år, vil det året etter være

$$x_{n+1} = 1.1x_n - 0.2y_n$$
$$y_{n+1} = 0.1x_n + 0.8y_n$$

dyr av hvert slag. Finn uttrykk for x_n og y_n dersom $x_0 = 3000$, $y_0 = 1000$. Hva skjer med bestandene når n går mot uendelig?

Oppgave 4

- a) Finn konvergensområdet til rekken $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{n+1}$.
- b) Finn summen til rekken.

Oppgave 5

Regn ut trippelintegralet $\iiint_S (x^2+y^2)\ dxdydz$ der S er området over xy-planet mellom kjegleflaten $z^2=x^2+y^2$ og kuleflaten $x^2+y^2+z^2=4$.

Oppgave 6

Dersom du i MATLAB taster inn kommandoene

```
>> t=linspace(0,pi,100);
>> x=exp(t).*sin(t);
>> y=exp(-t).*sin(t);
>> plot(x,y)
>> axis('equal')
```

får du figuren nedenfor. Finn arealet til området avgrenset av kurven.

(Fortsettes på side 3.)

Oppgave 7

Vis at dersom A er en $m \times m$ -matrise og $\{\mathbf{x}_n\}$ er en følge i \mathbb{R}^m som konvergerer mot $\mathbf{0}$, så konvergerer også $\{A\mathbf{x}_n\}$ mot $\mathbf{0}$.

Vis at dersom B er en inverterbar $m \times m$ -matrise og følgen $\{B\mathbf{x}_n\}$ konvergerer mot $\mathbf{0}$, så konvergerer også $\{\mathbf{x}_n\}$ mot $\mathbf{0}$.

Vis til slutt at dersom C er en ikke-inverterbar $m \times m$ -matrise, så finnes det alltid en følge $\{\mathbf{x}_n\}$ i \mathbb{R}^m slik at $\{C\mathbf{x}_n\}$ konvergerer mot $\mathbf{0}$, mens $\{\mathbf{x}_n\}$ ikke konvergerer mot $\mathbf{0}$.

Slutt