Formális nyelvek - 4.

Csuhaj Varjú Erzsébet

Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c

E-mail: csuhaj@inf.elte.hu

Aktív, elérhető nemterminálisok

Definíció

A környezetfüggetlen grammatika egy nemterminálisát **aktívnak** nevezzük, ha levezethető belőle terminális szó; egyébként **inaktívnak** vagy **nem aktívnak** mondjuk.

A környezetfüggetlen grammatika egy nemterminálisát **elérhetőnek** nevezzük, ha legalább egy olyan mondatformában előfordul, amely a kezdőszimbólumból levezethető; egyébként **nem elérhetőnek** mondjuk.

Hasznos/nem hasznos nemterminálisok

Definíció

Egy nemterminálist **hasznosnak** nevezünk, ha aktív és elérhető, egyébként **nem hasznos**.

(Egy nemterminális nem hasznos, ha vagy inaktív, vagy nem elérhető, vagy mindkét tulajdonság teljesül rá.)

Redukált grammatika

Definíció

Egy környezetfüggetlen grammatika redukált, ha minden nemterminálisa aktív és elérhető.

Redukált grammatika - folytatás

Tétel

Minden környezetfüggetlen grammatikához meg tudunk konstruálni egy vele ekvivalens redukált környezetfüggetlen grammatikát.

Megjegyzés:

A nem elérhető és a nem aktív nemterminálisok, valamint azok a szabályok, amelyekben előfordulnak, meghatározhatók és eliminálhatók anélkül, hogy a generált nyelv megváltozna.

Bizonyításvázlat:

Legyen G=(N,T,P,S) egy környezetfüggetlen grammatika. Tekintsük az alábbi halmazokat:

$$A_1 = \{ X \mid X \to u \in P, u \in T^* \},$$

$$A_{i+1} = A_i \cup \{ X \mid X \to w \in P, w \in (T \cup A_i)^* \}, i = 1, 2, \dots$$

Nyilvánvaló, hogy az A_i , $i=1,2,\ldots$, halmazok nemcsökkenő hierarchiát alkotnak a tartalmazásra nézve. Így létezik olyan k szám, hogy $A_k=A_l$ teljesül minden $l\geq k$ -ra. Ekkor A_k a G grammatika aktív nemterminálisainak halmaza.

Bizonyításvázlat - folytatás:

Ezután tekintsük az

$$R_1 = \{S\},$$

 $R_{i+1} = R_i \cup \{Y \mid X \to uYw \in P, X \in R_i, u, w \in (N \cup T)^*\}, i = 1, 2, \dots$ halmazokat.

Az R_i , $i=1,2,\ldots$, halmazok a tartalmazásra nézve nemcsökkenő hierarchiát alkotnak. Így létezik olyan m szám, hogy $R_m=R_l$ minden $l\geq m$ esetben. Könnyen látható, hogy az R_m halmaz G elérhető nemterminálisainak halmaza.

Az A_k és az R_m halmazok kiszámolása után eliminálunk minden olyan nemterminálist, amely nem eleme az $A_k \cap R_m$ halmaznak együtt azokkal a szabályokkal amelyekben előfordulnak. A fenti procedúrát megismételjük mindaddig, amíg egy redukált grammatikát nem kapunk.

Környezetfüggetlen grammatikák - levezetési fa

A környezetfüggetlen grammatikák levezetéseit ún. levezetési fákkal is jellemezhetjük.

A levezetési fa a szó előállításának lehetőségeiről ad információkat.

A levezetési fa egy irányított gráf, amely speciális tulajdonságoknak tesz eleget.

Levezetési fa - folytatás

Legyen V véges nemüres halmaz, amelynek elemeit **csúcsoknak** nevezzük.

Az **élek** E halmaza csúcsok rendezett párjaiból álló halmaz, azaz, $E \subseteq V \times V$.

Minden $e=(n_1,n_2)$ élre $s(e)=n_1$ az él kiindulási csúcsa és $t(e)=n_2$ a végcsúcsa.

Élek egy e_0, e_1, \ldots, e_k sorozatát az $s(e_0)$ -ból kiinduló $t(e_k)$ -ig vezető k hosszúságú **irányított útnak** nevezzük, ha $s(e_{i+1}) = t(e_i)$, ahol $i = 0, 1, \ldots, k-1$.

Levezetési fa - folytatás

A (V, E) rendezett párt **irányított fának** nevezzük, ha van olyan $r \in V$ **csúcs**, amelyre teljesülnek a következők:

- 1. Az E halmaz egyetlen élének végcsúcsa sem azonos r-rel.
- 2. Minden r-től különböző csúcshoz V-ben létezik egy r-ből kiinduló irányított út.

Az r csúcsot a fa gyökerének nevezzük. Minden fának egyetlen gyökere van.

A fa minden csúcsa gyökere a fa valamely részfájának.

Az n csúcs leszármazottjainak azokat az n' csúcsokat nevezzük, amelyekre $(n, n') \in E$ (azaz, (n, n') él).

Azokat a csúcsokat, amelyeknek nincs leszármazottjuk, levélnek mondjuk.

Levezetési fa

A környezetfüggetlen grammatikák levezetéseit fákkal is leírhatjuk.

A G=(N,T,P,S) grammatika feletti egy **levezetési fának** nevezünk egy fát, ha teljesülnek a következők:

- A levezetési fa gyökerének címkéje S.
- Minden további csúcs címkéje $(N \cup T \cup \{\epsilon\})$ valamely eleme.
- Ha egy csúcs címkéje X és leszármazottjainak címkéi balról jobbra olvasva rendre $X_1, \ldots X_m, \ m \ge 1$, akkor $X \to X_1 \ldots X_m \in P$.
- Minden **levél címkéje** a $T \cup \{\varepsilon\}$ halmaz valamely eleme, és ha egy csúcsnak leszármazottja ε , akkor ennek a csúcsnak ez az **egyetlen leszármazottja** van.

A levezetési fa levelei címkéinek sorozata a levezetési fa határa.

Levezetési fa - folytatás

Minden, a G grammatikában történő **levezetéshez** hozzá tudunk rendelni egy **levezetési fát**.

A levezetési fa **nem minden esetben** adja meg a levezetés során alkalmazott **szabályok sorrendjét**.

Két levezetés lényegében azonos, ha csak a szabályok alkalmazásának sorrendjében különbözik, azaz, ugyanahhoz a levezetési fához tartozik.

Legbaloldalibb levezetés

Egy környezetfüggetlen grammatika feletti levezetési fa egy egyetlen legbaloldalibb levezetést határoz meg.

A **legbaloldalibb levezetés** során minden levezetési lépésben arra a nemterminálisra kell szabályt alkalmazni, amely a levezetési lépéshez tartozó mondatformában balról a legelső.

(Példa: Ha $u_1A_1u_2A_2...A_nu_{n+1}$, $u_i \in T^*$, $1 \le i \le n+1$, $A_j \in N$, $1 \le j \le n$, mondatforma a G = (N, T, P, S) grammatikában, akkor legbaloldalibb levezetés esetén az A_1 nemterminálist kell helyettesíteni.)

A környezetfüggetlen grammatika által generált nyelv üres volta

Tétel

Minden környezetfüggetlen grammatikáról eldönthető, hogy az általa generált nyelv az üres nyelv-e vagy sem.

Bizonyításvázlat:

Legyen G=(N,T,P,S) környezetfüggetlen grammatika. Az általánosság megszorítása nélkül feltehetjük, hogy G ε -mentes.

Legyen n a G nemterminális szimbólumainak száma.

Tegyük fel, hogy létezik egy $S \Longrightarrow_G^* u$ levezetés G-ben, ahol $u \in T^*$.

Tekintsük az ezen levezetéshez tartozó levezetési fát.

Ha a leghosszabb út hossza ebben a levezetési fában nagyobb, mint n, akkor van olyan v szó L(G)-ben, amely levezetési fájában a leghosszabb út hossza nem nagyobb, mint n.

Ez nyilvánvaló, hiszen ha az út hossza nagyobb, mint n, akkor legalább egy nemterminális szimbólum legalább kétszer fordul elő ezen az úton.

Bizonyításvázlat - folytatás:

Tekintsünk két azonos címkéjű csúcsot az úton és helyettesítsük a fa gyökeréhez közelebb eső csúcshoz tartozó részfát a másik csúcshoz tartozó részfával. Akkor továbbra is terminális szót kapunk.

Megismételve ezt az eljárást annyiszor, ahányszor szükséges, addig csökkenthetjük az út hosszát, amíg legfeljebb n hosszúságú utat kapunk.

Ebből következően, ha L(G) nem üres, akkor léteznie kell egy szónak a nyelvben, amelyhez tartozó levezetési fában a leghosszabb út nem hosszabb, mint n.

Minthogy azokat a levezetési fákat, amelyekre az igaz, meg tudjuk határozni, a kérdést el tudjuk dönteni.

Korollárium

Az, hogy egy G = (N, T, P, S) környezetfüggetlen grammatika A nemterminálisa inaktív-e, eldönthető.

A probléma ekvivalens azzal a problémával, hogy a $G_A=(N,T,P,A)$ grammatika által generált nyelv üres-e. Ha $L(G_A)$ üres, akkor A nem aktív.

Korollárium

Az, hogy egy G=(N,T,P,S) környezetfüggetlen grammatika A nemterminálisa elérhető-e, eldönthető.

Bizonyításvázlat:

Távolítsunk el a P szabályhalmazból minden szabályt, amelynek A van a baloldalán. Jelöljük az így kapott szabályhalmazt P_1 -gyel. Tekintsük a

$$G_A^{\varepsilon} = ((N - \{A\} \cup T, \{A\}, P_1 \cup \{X \rightarrow \varepsilon \mid X \in (N - \{A\} \cup T)\}, S))$$

grammatikát.

Ha A nem elérhető, akkor $L(G_A^\varepsilon)=\{\varepsilon\}$, máskülönben tartalmaznia kell egy olyan szót, amelyben A legalább egyszer előfordul. Megkonstruáljuk a G' környezetfüggetlen grammatikát, amelyre $L(G')=L(G_A^\varepsilon)-\{\varepsilon\}$. Minthogy el tudjuk dönteni, hogy L(G') üres-e vagy sem, el tudjuk dönteni A elérhetőségét is G-ben.

Bar-Hillel vagy pumpáló lemma

Tétel

Minden L környezetfüggetlen nyelvhez meg tudunk adni két p és q természetes számot úgy, hogy minden olyan szó L-ben, amely hosszabb, mint p

alakú, ahol $|xwy| \leq q, xy \neq \varepsilon$, továbbá minden

$$ux^iwy^iz$$

alakú szó is benne van az L nyelvben minden $i \geq 0$ egész számra $(u, x, w, y, z \in T^*)$.

Bizonyításvázlat:

Legyen L ε -mentes nyelv, amelyet a G=(N,T,P,S) Chomsky-normálformájú grammatika generál.

Tegyük fel, hogy G nemterminálisainak száma n és legyen $p=2^n$, valamint legyen $q=2^{n+1}$.

Ha $|\beta| > p$ valamely β szóra L-ben, akkor a β levezetési fájában a leghosszabb út hossza nagyobb, mint n. (A fa bináris fa, azaz minden csúcsából legfeljebb két csúcs származik és, ha a bináris fában a leghosszabb út hossza k, akkor a leveleinek száma legfeljebb 2^k .)

Tekintsük az utolsó n+1 élét a leghosszabb útnak. Akkor lennie kell egy A nemterminálisnak, amely ezen az úton legalább kétszer előfordul.

Bizonyításvázlat - folytatás:

Feleljen meg az a részfa, amely az A első előfordulásához tartozik ezen az úton (abból indul ki) az $S \Longrightarrow^* \alpha$, $\alpha \in T^*$ levezetésnek, az A második előfordulásához tartozó részfa pedig feleljen meg az $A \Longrightarrow^* w$, $w \in T^*$ levezetésnek.

Mivel A kétszer fordult elő az úton, van két olyan $x, y \in T^*$ szó, hogy $\alpha = xwy$ és $A \Longrightarrow^* xAy$.

Ezen kívül

$$S \Longrightarrow^* uAz \Longrightarrow^* uxAyz \Longrightarrow^* uxwyz = u\alpha z = \beta.$$

Az A nemterminális adott előfordulásainak pozíciójából $|\alpha| \leq 2^{n+1}$ következik. Továbbá, az $A \Longrightarrow^* xAy$ levezetéshez során legalább egy $B \to CD$ alakú szabály alkalmazása szükséges, így $|xy| \neq \varepsilon$.

Láthatjuk, hogy $S \Longrightarrow^* uwz$ és $S \Longrightarrow^* ux^iwy^iz$, $i \ge 1$, levezetések G-ben.

Következmény

Léteznek nem környezetfüggetlen mondatszerkezetű nyelvek.

Ilyen például az $L = \{a^n b^n c^n | n \ge 1\}.$

Következmény - folytatás

Megmutatjuk, hogy L nem környezetfüggetlen. Tegyük fel az ellenkezőjét. Legyen $w=a^qb^qc^q\in L$, ahol p,q a Bar-Hillel lemmának megfelelő konstansok. Nyilvánvaló, hogy |w|>q>p. (Lásd a lemma bizonyítását.) Ekkor bármely $u,v,x,y,z\in\{a,b,c\}^*$ -ra, amelyre w=uxvyz, $|xvy|\leq q$, |xy|>0, a lemma alapján fennáll, hogy $uvz\in L$. Viszont, mivel xy az $\{a,b,c\}$ -ből legalább egy betűt nem tartalmaz, így uvz nem lehet L eleme, és így a nyelv nem teljesíti a Bar-Hillel lemma feltételeit, vagyis a nyelv nem környezetfüggetlen.

Következmény

Tétel

Eldönthető, hogy egy környezetfüggetlen grammatika végtelen nyelvet generál-e vagy sem.

Bizonyításvázlat:

Csak ε -mentes G=(N,T,P,S) grammatikával foglalkozunk. Megmutatjuk, hogy L(G) akkor és csak akkor végtelen, ha tartalmaz olyan β szót, hogy $p<|\beta|\leq p+q$ teljesül.

- 1) Ha G rendelkezik ezzel a tulajdonsággal, akkor a Bar-Hillel lemma alapján az állítás fennáll.
- 2) Megmutatjuk, hogy a fordított állítás is teljesül. Ha L(G) végtelen, akkor tartalmaznia kell egy β szót, amelyre $p < |\beta|$. Megmutatjuk, hogy ekkor tartalmaz egy szót, amelyre $p < |\beta| \le p + q$ fennáll.

Bizonyításvázlat - folytatás:

Tegyük fel az ellenkezőjét, azaz, azt, hogy minden β szóra, ahol $p<|\beta|$, az teljesül, hogy $p+q<|\beta|$.

De ha $p < |\beta|$, akkor β alakja uxwyz, ahol $uwz \in L(G)$ és $|uwz| < |\beta|$, mivel $xy \neq \varepsilon$.

Ha p < |uwz|, akkor a fenti érvelés megismételhető mindaddig, amíg egy $\beta' = u'x'w'y'z'$ szót kapunk, amelyre $p < |\beta'|$ és $|u'w'z'| \le q$ teljesül.

Ekkor, mivel $|x'w'y'| \le q$, a Bar-Hillel lemma alapján a $p < |u'x'w'y'z'| \le p + q$ egyenlőtlenséget kapjuk, amely ellentmond feltételezésünknek.

(A p+q felső korlát alapján a megfelelő levezetési fa megkereshető.)