The 2-Party Discrepency Method

Max von Hippel

April 4, 2021

1 Introduction

When we partition M(f) into some number of rectangles, the sizes of the rectangles must add up to the size of M(f). Hence, if $\chi(f) \le K$ for some integer K, then M(f) must have a monochromatic rectangle containing at least $2^n * 2^n/K$ entries.

Proof. Suppose that $\chi(f) \le K$ for some integer K. If $\chi(f) = K$ then there exists a partioning of M(f) into K monochromatic rectangles, in which case at least one of those rectangles must have size $\ge |M(f)|/K$, i.e., $2^n * 2^n/K$. On the other hand if $\chi(f) < K$ then $\chi(f) = K'$ for some K' < K and then M(f) can be partitioned into K' monochromatic rectangles, at least of which has size $\ge |M(f)|/K'$, which is strictly larger than |M(f)|/K. So in either case the result holds and we are done.

Now, suppose that M(f) contains a monochromatic rectangle $A \times B$ having at least $2^n \times 2^n/K$ entries. Since $A \times B$ is monochromatic, this implies that:

$$\sum_{a \in A, b \in B} (-1)^{M_{a,b}} = \begin{cases} -1 * \text{ the size of the rectangle } A \times B & \text{if it's colored } 1 \\ 1 * \text{ the size of the rectangle } A \times B & \text{if it's colored } 0 \end{cases}$$

So if we wrap an absolute value above our sum, we get:

$$\left|\sum_{a \in A, b \in B} (-1)^{M_{a,b}}\right|$$
 = the size of the rectangle $A \times B$

But we already assumed that $A \times B$ has at least $2^n \times 2^n/K$ entries, hence:

$$\left|\sum_{a\in A,b\in B} (-1)^{M_{a,b}}\right|$$
 = the size of the rectangle $A\times B\geq 2^n\times 2^n/K$

Let's divide both size by $2^n * 2^n$, for fun and profit.

$$\frac{1}{2^n * 2^n} \Big| \sum_{a \in A, b \in B} (-1)^{M_{a,b}} \Big| \ge 1/K$$

We are mathematicians, and mathematicians like to name things. Let's do that.

Definition 1 (Discrepency). The discrepency of a rectangle $A \times B$ of M(f) is exactly the following.

Disc
$$(A \times B) = \frac{1}{2^n \times 2^n} |\sum_{a \in A, b \in B} (-1)^{M_{a,b}}|$$

The discrency of M(f) is the maximum discrepency among all its rectangles.

Now that we've named this thing, let's re-write our inequality.

$$Disc(A \times B) \ge 1/K$$

Taking inverses:

$$\frac{1}{Disc(A \times B)} \leq K$$

Certainly $\chi(f) \le \chi(f)$, so supplanting $\chi(f)$ for K in the statement, we get:

$$\frac{1}{Disc(A \times B)} \le \chi(f) \tag{1}$$

This result generalizes as follows.

Lemma 1 (2-Party Discrepency Method). Suppose $f: \mathbb{B}^n \times \mathbb{B}^n \to \mathbb{B}$ is a function. Then Equation 1 holds.