F	Р	S	Α	C	0	7	F	Р	S	Α	C	0	7	F	P	S	Α	C	0	7	F	Р	S	Α	C	0	7	F	Р	S	Α	C	0 7	7
F	P	S	Α	C	0	7	F	P	S	Α	C	0	7	F	P	S	Α	C	0	7	F	Р	S	Α	C	0	7	F	Р	S	Α	C	0 7	7
F	P	S	Α	C	0	7	F	P	S	Α	C	0	7	F	P	S	Α	C	0	7	F	Р	S	Α	C	0	7	F	Р	S	Α	C	0 7	7
F	P	S	Α	C	0	7	F	P	S	Α	C	0	7	F	Р	S	Α	C	0	7	F	P	S	Α	C	0	7	F	P	S	Α	C	0 7	7
F	P	S	Α	C	0	7	F	Р	S	Α	C	0	7	F	Р	S	Α	C	0	7	F	Р	S	Α	C	0	7	F	P	S	Α	C	0 7	7
F	P	S	Α	C	0	7	F	Р	S	Α	C	0	7	F	Р	S	Α	C	0	7	F	Р	S	Α	C	0	7	F	P	S	Α	C	0 7	7
F	P	S	Α	C	0	7	F	P	S	Α	C	0	7	F	P	S	Α	C	0	7	F	P	S	Α	C	0	7	F	P	S	Α	C	0 7	7
F	P	S	Α	C	0	7	F	P	S	Α	C	0	7	F	P	S	Α	C	0	7	F	P	S	Α	C	0	7	F	P	S	Α	C	0 7	7
F	P	S	Α	C	0	7	F	Р	S	A	C	0	7	F	P	S	A	C	0	7	F	P	S	Α	C	0	7	F	P	S	A	C	0 7	7
F	P	S	A	C	0	7	F	P	S	Α	C	0	7	F	P	S	Α	C	0	7	F	P	S	Α	C	0	7	F	P	S	Α	C	0 7	7
F	P	S	Α	C	0	7	F	P	S	A	C	0	7	F	P	S	Α	C	0	7	F	P	S	Α	C	0	7	F	P	S	Α	C	0 7	7
F	P	S	A	C	0	7	F	P	S	Α	C	0	7	F	P	S	Α	C	0	7	F	P	S	Α	C	0	7	F	P	S	Α	C	0 7	7
F	P	S	Α	C	0	7	F	P	S	A	C	0	7	F	P	S	Α	C	0	7	F	P	S	Α	C	0	7	F	P	S	Α	C	0 7	7
F	P	S	A	C	0	7	F	P	S	A	C	0	7	F	P	S	A	C	0	7	F	P	S	A	C	0	7	F	P	S	A	C	0 7	7
				_	-														-							-						C	-	
F	P	S	A	C	0	7	F	P	S	A	C	0	7	F	P	S	A	C	0	7	F	P	S	A	C	0	7	F	P	S	A	C	0 7	7
																			-							-						C	-	
																																C	0 7	7
F	Р	S	Α	C	0	7	F	Р	S	Α	C	0	7	F	Р	S	Α	C	0	7	F	Р	S	Α	C	0	7	F	Р	S	Α	C	0 7	7

Quiver coefficients

Anders Buch (Rutgers)

http://math.rutgers.edu/~asbuch/papers/quivcoef.pdf

Collaborators on subject:

```
Fehér, Fomin, Fulton, Kresch, Rimányi, Shimozono, Sottile, Tamvakis, Yong
```

FPSAC 2007, Nankai University, Tianjin, China

Classes of quiver cycles

Q quiver (finite directed graph)
$$1 \longrightarrow 2 \longleftarrow 3 \longrightarrow 4$$
Vertex set: $[n] = \{1, 2, \dots, n\}$

Vertex set: $[n] = \{1, 2, ..., n\}$

Dimension vector:
$$e = (e_1, \ldots, e_n) \in \mathbb{N}^n$$

Set $E_i = \mathbb{F}^{e_i}$, where \mathbb{F} is a field.

Representation space:
$$X = \bigoplus_{i \to j} \operatorname{Mat}(e_j \times e_i) = \bigoplus_{i \to j} \operatorname{Hom}_{\mathbb{F}}(E_i, E_j)$$

Classes of quiver cycles

Q quiver (finite directed graph)

$$1 \longrightarrow 2 \longleftarrow 3 \xrightarrow{\longrightarrow} 4$$

Vertex set: $[n] = \{1, 2, ..., n\}$

Dimension vector:
$$e = (e_1, \ldots, e_n) \in \mathbb{N}^n$$

Set $E_i = \mathbb{F}^{e_i}$, where \mathbb{F} is a field.

Representation space:
$$X = \bigoplus_{i \to j} \operatorname{Mat}(e_j \times e_i) = \bigoplus_{i \to j} \operatorname{Hom}_{\mathbb{F}}(E_i, E_j)$$

Group action:
$$G = \operatorname{GL}(E_1) \times \cdots \times \operatorname{GL}(E_n)$$
 acts on X by $(g_1, \dots, g_n).(\phi_{i \to j}) = (g_j \phi_{i \to j} g_i^{-1})$

Def: A quiver cycle is a *G*-stable closed subvariety $\Omega \subset X$

Problem: Describe the cohomology class $[\Omega]$ and Grothendieck class $[\mathcal{O}_{\Omega}]$

Write $E_i = E_{i,1} \oplus \cdots \oplus E_{i,e_i}$ where $E_{i,s} \cong \mathbb{F}$

 $T(E_i) := GL(E_{i,1}) \times \cdots \times GL(E_{i,e_i}) \subset GL(E_i)$ diagonal matrices Set $T = T(E_1) \times \cdots \times T(E_n) \subset G$

Write $E_i = E_{i,1} \oplus \cdots \oplus E_{i,e_i}$ where $E_{i,s} \cong \mathbb{F}$ $T(E_i) := GL(E_{i,1}) \times \cdots \times GL(E_{i,e_i}) \subset GL(E_i)$ diagonal matrices

$$T(E_i) := \operatorname{GL}(E_{i,1}) \times \cdots \times \operatorname{GL}(E_{i,e_i}) \subset \operatorname{GL}(E_i)$$
 diagonal matrices
Set $T = T(E_1) \times \cdots \times T(E_n) \subset G$

 $\mathcal{O}_{\Omega} = \mathbb{F}[X]/\mathcal{I}(\Omega)$ where $\mathcal{I}(\Omega) = \{ p \in \mathbb{F}[X] : p(\phi) = 0 \ \forall \phi \in \Omega \}$

T acts on $\mathbb{F}[X]$ by $(t.p)(\phi) = p(t^{-1}.\phi)$

Set
$$T = T(E_1) \times \cdots \times T(E_n) \subset G$$

 $\mathbb{F}[X] = \{ \text{ polynomial functions } p : X \to \mathbb{F} \}$

 $T(E_i) := GL(E_{i,1}) \times \cdots \times GL(E_{i,e_i}) \subset GL(E_i)$ diagonal matrices

Set
$$T = T(E_1) \times \cdots \times T(E_n) \subset G$$

$$\mathbb{F}[X] = \{ \text{ polynomial functions } p : X \to \mathbb{F} \}$$

$$T \text{ acts on } \mathbb{F}[X] \text{ by } (t.p)(\phi) = p(t^{-1}.\phi)$$

$$\mathcal{O}_{\Omega} = \mathbb{F}[X]/\mathcal{I}(\Omega) \text{ where } \mathcal{I}(\Omega) = \{ p \in \mathbb{F}[X] : p(\phi) = 0 \ \forall \phi \in \Omega \}$$

Note: $F_i/\mathfrak{m}F_i$ is a T-representation, $\mathfrak{m} = \mathcal{I}(\{0\}) \subset \mathbb{F}[X]$

Write $E_i = E_{i,1} \oplus \cdots \oplus E_{i,e_i}$ where $E_{i,s} \cong \mathbb{F}$

$$\mathcal{O}_{\Omega} = \mathbb{F}[X]/\mathcal{I}(\Omega) \quad \text{where} \quad \mathcal{I}(\Omega) = \{p \in \mathbb{F}[X] : p(\phi) = 0 \ \forall \phi \in \Omega\}$$

T-equivariant resolution:
$$0 \to F_k \to \cdots \to F_0 \to \mathcal{O}_\Omega \to 0$$
 where F_i is a free

$$T$$
-equivariant resolution: $0 \to F_k \to \cdots \to F_0 \to \mathcal{O}_{\Omega} \to 0$ where F_i is a free $\mathbb{F}[X]$ -module with linear T -action, s.t. $t.(pm) = (t.p)(t.m)$ for all $m \in F_i$

Write $E_i = E_{i,1} \oplus \cdots \oplus E_{i,e_i}$ where $E_{i,s} \cong \mathbb{F}$ $T(E_i) := GL(E_{i,1}) \times \cdots \times GL(E_{i,e_i}) \subset GL(E_i)$ diagonal matrices Set $T = T(E_1) \times \cdots \times T(E_n) \subset G$

$$\mathbb{F}[X] = \{ \text{ polynomial functions } p: X \to \mathbb{F} \}$$
 $T \text{ acts on } \mathbb{F}[X] \text{ by } (t.p)(\phi) = p(t^{-1}.\phi)$

$$\mathcal{O}_{\Omega} = \mathbb{F}[X]/\mathcal{I}(\Omega) \quad \text{where} \quad \mathcal{I}(\Omega) = \{p \in \mathbb{F}[X] : p(\phi) = 0 \ \forall \phi \in \Omega\}$$

$$T$$
-equivariant resolution: $0 \to F_k \to \cdots \to F_0 \to \mathcal{O}_\Omega \to 0$ where F_i is a free $\mathbb{F}[X]$ -module with linear T -action, s.t. $t.(p m) = (t.p)(t.m)$ for all $m \in F_i$

Note:
$$F_i/\mathfrak{m}F_i$$
 is a T -representation, $\mathfrak{m} = \mathcal{I}(\{0\}) \subset \mathbb{F}[X]$

Def:
$$K_T(X) =$$
 "ring of virtual representations of T " = $\mathbb{Z}\left[E_{i,s}^{\pm 1}\right]$
Grothendieck class: $[\mathcal{O}_{\Omega}] = \sum_{i>0} (-1)^i [F_i/\mathfrak{m}F_i] \in K_T(X)$

Note:
$$K_T(X) \subset \mathbb{Z}[[x_{i,s}]]$$
 where $x_{i,s} = 1 - E_{i,s}^{-1}$ Chern roots $H_T(X) := \mathbb{Z}[x_{i,s}]$; $[\Omega] = \text{leading term of } [\mathcal{O}_{\Omega}]$

Example: $Q = \{1 \rightarrow 2\}$

$$\mathsf{GL}(E_1) imes \mathsf{GL}(E_2)$$
 acts on $X = \mathsf{Hom}_{\mathbb{F}}(E_1, E_2)$ by $(g_1, g_2).\phi = g_2 \, \phi \, g_1^{-1}$

$$\Omega = \Omega_r = \{ \phi \in X \mid \mathsf{rank}(\phi) \le r \}$$

Thom—Porteous:
$$[\Omega] = S_{\lambda}(E_2 - E_1) = S_{\lambda}(x_{2,1}, \dots, x_{2,e_2}; x_{1,1}, \dots, x_{1,e_1})$$
 where $\lambda = (e_1 - r)^{e_2 - r} = \bigoplus_{\Omega \in \mathcal{I}} e_2 - r$

Theorem (B)
$$[\mathcal{O}_{\Omega}] = \mathcal{G}_{\lambda}(E_2 - E_1) \in \mathcal{K}_T(X)$$

where $\mathcal{G}_{\lambda} = \text{stable Grothendieck poly}$

where $\mathcal{G}_{\lambda} =$ stable Grothendieck polynomial for λ

$$\mathcal{T} = \begin{bmatrix} 1,3 & 3 & 4,5 & 5,6,8 \\ 4 & 5,8 & & & \\ 6,7 & & & & \end{bmatrix}$$

$$T = \begin{bmatrix} 1,3 & 3 & 4,5 & 5,6,8 \\ 4 & 5,8 & & & \\ 6,7 & & & & |T| = & \text{deg}(x^T) = 13 \end{bmatrix} x_i^{\# \text{ boxes } \ni i} = x_1 x_3^2 x_4^2 x_5^3 x_6^2 x_7 x_8^2$$

Define:
$$\mathcal{G}_{\lambda}(x) = \sum_{\mathsf{shape}(\mathcal{T})=\lambda} (-1)^{|\mathcal{T}|-|\lambda|} x^{\mathcal{T}}$$

$$T = \begin{bmatrix} 1,3 & 3 & 4,5 & 5,6,8 \\ 4 & 5,8 & & & \\ 6,7 & & & & |T| = & deg(x^T) = 13 \end{bmatrix} = x_1 x_3^2 x_4^2 x_5^3 x_6^2 x_7 x_8^2$$

Define:
$$\mathcal{G}_{\lambda}(x) = \sum_{\mathsf{shape}(\mathcal{T})=\lambda} (-1)^{|\mathcal{T}|-|\lambda|} x^{\mathcal{T}}$$

Bialgebra of stable Groth. polys.
$$\Gamma = \bigoplus_{\lambda} \mathbb{Z} \cdot \mathcal{G}_{\lambda} \subset \mathbb{Z}[[x_1, x_2, \dots]]$$

$$T = \begin{bmatrix} 1,3 & 3 & 4,5 & 5,6,8 \\ 4 & 5,8 & & & \\ 6,7 & & & & | T| = \end{bmatrix} \begin{bmatrix} x_i^{\# \text{ boxes } \ni i} & = x_1 x_3^2 x_4^2 x_5^3 x_6^2 x_7 x_8^2 \\ & & & |T| & = \deg(x^T) & = 13 \end{bmatrix}$$

Define:
$$\mathcal{G}_{\lambda}(x) = \sum_{\mathsf{shape}(\mathcal{T})=\lambda} (-1)^{|\mathcal{T}|-|\lambda|} x^{\mathcal{T}}$$

Bialgebra of stable Groth. polys. $\Gamma = \bigoplus_{\lambda} \mathbb{Z} \cdot \mathcal{G}_{\lambda} \subset \mathbb{Z}[[x_1, x_2, \dots]]$

$$\begin{array}{ll} \textbf{LR-rule (B)}: & \mathcal{G}_{\lambda} \cdot \mathcal{G}_{\mu} = \sum_{\nu} c_{\lambda \mu}^{\nu} \, \mathcal{G}_{\nu} & \text{where } |\nu| \geq |\lambda| + |\mu| \text{ and } \\ c_{\lambda \mu}^{\nu} = (-1)^{|\nu| - |\lambda| - |\mu|} \cdot \# \text{ certain set-valued } \mathcal{T} \end{array}$$

$$T = \begin{bmatrix} 1.3 & 3 & 4.5 & 5.6.8 \\ 4 & 5.8 & & & \\ 6.7 & & & & | T & = \end{bmatrix} \begin{bmatrix} x_i^{\# \text{ boxes } \ni i} & = & x_1 x_3^2 x_4^2 x_5^3 x_6^2 x_7 x_8^2 \\ & & & & |T| & = & \text{deg}(x^T) & = 13 \end{bmatrix}$$

Define:
$$\mathcal{G}_{\lambda}(x) = \sum_{\mathsf{shape}(\mathcal{T})=\lambda} (-1)^{|\mathcal{T}|-|\lambda|} x^{\mathcal{T}}$$

Bialgebra of stable Groth. polys. $\Gamma = \bigoplus_{\lambda} \mathbb{Z} \cdot \mathcal{G}_{\lambda} \subset \mathbb{Z}[[x_1, x_2, \dots]]$

$$\begin{array}{lll} \textbf{LR-rule (B)}: & \mathcal{G}_{\lambda} \cdot \mathcal{G}_{\mu} = \sum_{\nu} c_{\lambda\mu}^{\nu} \, \mathcal{G}_{\nu} & \text{where } |\nu| \geq |\lambda| + |\mu| & \text{and} \\ & c_{\lambda\mu}^{\nu} = (-1)^{|\nu| - |\lambda| - |\mu|} \cdot \# & \text{certain set-valued } \mathcal{T} \\ \end{array}$$

Notation:

Given a rational T-rep. U, write $U = U_1 \oplus \cdots \oplus U_p$, dim $U_i = 1$

Set
$$\mathcal{G}_{\lambda}(U) = \mathcal{G}_{\lambda}(1 - U_1^{-1}, \dots, 1 - U_p^{-1}, 0, 0, \dots) \in \mathcal{K}_{\mathcal{T}}(X)$$

Definition Given two rational T-representations U and V, set

Definition Given two rational
$$I$$
-representations U and V , set $\mathcal{G}_{\nu}(U-V) = \sum_{\lambda,\mu} d^{\nu}_{\lambda\mu} \, \mathcal{G}_{\lambda}(U) \cdot \mathcal{G}_{\mu'}(V^*) \in \mathcal{K}_{T}(X)$

Note: $S_{\nu}(U-V) \in H_T(X)$ is the leading term of $G_{\nu}(U-V)$

Equioriented quiver of type A: $Q = \{1 \rightarrow 2 \rightarrow \cdots \rightarrow n\}$

$$X = \{ (\phi_1, \dots, \phi_{n-1}) : E_1 \xrightarrow{\phi_1} E_2 \xrightarrow{\phi_2} \dots \to E_{n-1} \xrightarrow{\phi_{n-1}} E_n \}$$

Any quiver cycle is given by rank conditions $r = \{r_{i,i}\}$, $1 \le i < j \le n$

Any quiver cycle is given by rank conditions
$$r = \{r_{ij}\}$$
, $1 \le i < j \le r$

$$\Omega_r = \{\phi \in X \mid \operatorname{rank}(E_i \xrightarrow{\phi_{j-1}...\phi_i} E_j) \le r_{ij} \ \forall i < j\}$$

Equioriented quiver of type A: $Q = \{1 \rightarrow 2 \rightarrow \cdots \rightarrow n\}$

$$X = \{(\phi_1, \dots, \phi_{n-1}) : E_1 \xrightarrow{\phi_1} E_2 \xrightarrow{\phi_2} \dots \to E_{n-1} \xrightarrow{\phi_{n-1}} E_n\}$$

Any quiver cycle is given by rank conditions $r = \{r_{ij}\}$, $1 \le i < j \le n$

$$\Omega_r = \{ \phi \in X \mid \mathsf{rank}(E_i \xrightarrow{\phi_{j-1} \dots \phi_i} E_j) \le r_{ij} \ \forall i < j \}$$

Thm (B–Fulton): Formula for $[\Omega_r] \in H_T^*(X)$

for which $\sum |\mu_i| \ge \operatorname{codim}(\Omega_r)$

Thm (B)
$$[\mathcal{O}_{\Omega_r}] = \sum c_{\mu}(r) \mathcal{G}_{\mu_1}(E_2 - E_1) \mathcal{G}_{\mu_2}(E_3 - E_2) \cdots \mathcal{G}_{\mu_{n-1}}(E_n - E_{n-1})$$

sum over sequences $\mu = (\mu_1, \dots, \mu_{n-1})$ of partitions $\mu_i = \square$

 $c_{\mu}(r) \in \mathbb{Z}$ is an (equioriented) quiver coefficient

 $c_{\mu}(r)$ is a cohomological quiver coefficient if $\sum |\mu_i| = \operatorname{\mathsf{codim}}(\Omega_r)$

Equioriented quiver of type A: $Q = \{1 \rightarrow 2 \rightarrow \cdots \rightarrow n\}$

$$X = \{ (\phi_1, \ldots, \phi_{n-1}) : E_1 \xrightarrow{\phi_1} E_2 \xrightarrow{\phi_2} \cdots \rightarrow E_{n-1} \xrightarrow{\phi_{n-1}} E_n \}$$

Any quiver cycle is given by rank conditions $r = \{r_{ij}\}$, $1 \le i < j \le n$ $\Omega_r = \{\phi \in X \mid \text{rank}(E_i \xrightarrow{\phi_{j-1}...\phi_i} E_i) \le r_{ij} \ \forall i < j\}$

Thm (B–Fulton): Formula for
$$[\Omega_r] \in H_T^*(X)$$

Time (B-Fulcon): Formula for $[\Omega_r] \in H_T(X)$

Thm (B)
$$[\mathcal{O}_{\Omega_r}] = \sum c_{\mu}(r) \mathcal{G}_{\mu_1}(E_2 - E_1) \mathcal{G}_{\mu_2}(E_3 - E_2) \cdots \mathcal{G}_{\mu_{n-1}}(E_n - E_{n-1})$$

sum over sequences $\mu = (\mu_1, \dots, \mu_{n-1})$ of partitions $\mu_i = \square$ for which $\sum |\mu_i| \ge \operatorname{codim}(\Omega_r)$

 $c_{\mu}(r) \in \mathbb{Z}$ is an (equioriented) quiver coefficient

 $c_{\mu}(r)$ is a cohomological quiver coefficient if $\sum |\mu_i| = \operatorname{codim}(\Omega_r)$ **Conjecture** (B–Fulton) , **Theorem** (Knutson–Miller–Shimozono, B, Miller)

Conjecture (B–Fulton), Theorem (Knutson–Miller–Shimozono, B, Miller) Quiver coefs. have alternating signs: $(-1)^{\sum |\mu_i|-\operatorname{codim}(\Omega_r)}c_{\mu}(r)\geq 0$

Stable Grothendieck polynomials

Fomin–Kirillov: Defined $\mathcal{G}_w(x)$ for any permutation $w \in S_N$ B: $\mathcal{G}_w = \sum a_{w,\lambda} \mathcal{G}_{\lambda}$, $a_{w,\lambda} =$ quiver coefficient

Lascoux: $(-1)^{|\lambda|-\ell(w)} \cdot a_{w,\lambda} \geq 0$

Stable Grothendieck polynomials

Fomin-Kirillov: Defined $\mathcal{G}_w(x)$ for any permutation $w \in S_N$

B: $\mathcal{G}_w = \sum a_{w,\lambda} \, \mathcal{G}_{\lambda}$, $a_{w,\lambda} = \text{quiver coefficient}$ Lascoux: $(-1)^{|\lambda|-\ell(w)} \cdot a_{w,\lambda} \, \geq \, 0$

Def. (BKSTY) A decreasing tableau is a Young $T = \begin{bmatrix} 5 & 4 & 3 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ tableau with strictly decreasing rows and columns

Define $w(T) := s_2 \cdot s_3 \cdot s_1 \cdot s_5 \cdot s_4 \cdot s_3 \cdot s_1$ where $s_i = (i, i+1)$, using

Hecke product of permutations: $w \cdot s_i := \begin{cases} w \, s_i & \text{if } \ell(w \, s_i) > \ell(w) \\ w & \text{otherwise} \end{cases}$

Stable Grothendieck polynomials

Fomin–Kirillov: Defined $G_w(x)$ for any permutation $w \in S_N$ B: $G_w = \sum a_w \setminus G_v$ $a_w \setminus G_v$ and $G_w = G_w$

B:
$$\mathcal{G}_w = \sum a_{w,\lambda} \mathcal{G}_{\lambda}$$
, $a_{w,\lambda} = \text{quiver coefficient}$
Lascoux: $(-1)^{|\lambda| - \ell(w)} \cdot a_{w,\lambda} \geq 0$

Def. (BKSTY) A decreasing tableau is a Young tableau with strictly decreasing rows and columns. $T = \begin{bmatrix} 5 & 4 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}$

Define
$$w(\mathcal{T}) := s_2 \cdot s_3 \cdot s_1 \cdot s_5 \cdot s_4 \cdot s_3 \cdot s_1$$
 where $s_i = (i, i+1)$, using

Hecke product of permutations: $w \cdot s_i := \begin{cases} w \ s_i & \text{if } \ell(w \ s_i) > \ell(w) \\ w & \text{otherwise} \end{cases}$

 $a_{w,\lambda}=(-1)^{|\lambda|-\ell(w)}\cdot \#$ decreasing $\mathcal T$ of shape λ such that $w(\mathcal T)=w$.

Example:
$$w = 2143 = s_1 \cdot s_3$$
 3 3 1

Example:
$$w = 2143 = s_1 \cdot s_3$$
 $\mathcal{G}_w = \mathcal{G}_{\square} + \mathcal{G}_{\square} - \mathcal{G}_{\square}$

Component formula for $[\Omega_r] \in H_T^*(X)$ in terms of minimal lace diagrams. Implies positivity of cohomological quiver coefficients.

Component formula for $[\Omega_r] \in H_T^*(X)$ in terms of minimal lace diagrams. Implies positivity of cohomological quiver coefficients.

$$W_{ij}(p) = \begin{cases} p + r_{i,j-1} - r_{i,j} & \text{if } r_{i,j}$$

Component formula for $[\Omega_r] \in H_T^*(X)$ in terms of minimal lace diagrams. Implies positivity of cohomological quiver coefficients.

$$W_{ij}(p) = \begin{cases} p + r_{i,j-1} - r_{i,j} & \text{if } r_{i,j}$$

Permutation diagram:
$$(n = 4)$$
 W_{12} W_{23} W_{34}
 W_{13} W_{24}
 W_{14}

Component formula for $[\Omega_r] \in H_T^*(X)$ in terms of minimal lace diagrams. Implies positivity of cohomological quiver coefficients.

$$W_{ij}(p) = \begin{cases} p + r_{i,j-1} - r_{i,j} & \text{if } r_{i,j}$$

Permutation diagram:
$$(n=4)$$
 Factorize: W_{12} W_{23} W_{34} $W_{14}=\alpha\cdot\beta$ W_{14}

Component formula for $[\Omega_r] \in H_T^*(X)$ in terms of minimal lace diagrams. Implies positivity of cohomological quiver coefficients.

$$W_{ij}(p) = \begin{cases} p + r_{i,j-1} - r_{i,j} & \text{if } r_{i,j}$$

Permutation diagram:
$$(n=4)$$
 Factorize: W_{12} W_{23} W_{34} $W_{14}=\alpha\cdot M_{14}$

Component formula for $[\Omega_r] \in H_T^*(X)$ in terms of minimal lace diagrams. Implies positivity of cohomological quiver coefficients.

$$W_{ij}(p) = \begin{cases} p + r_{i,j-1} - r_{i,j} & \text{if } r_{i,j}$$

Permutation diagram:
$$(n = 4)$$
 Factorize: W_{12} W_{23} W_{34} $W_{14} = \alpha \cdot \beta$ $W_{13} \cdot \alpha$ $\beta \cdot W_{24}$

$$\beta \cdot VV_{24}$$

Component formula for $[\Omega_r] \in H_T^*(X)$ in terms of minimal lace diagrams. Implies positivity of cohomological quiver coefficients.

$$W_{ij}(p) = \begin{cases} p + r_{i,j-1} - r_{i,j} & \text{if } r_{i,j}$$

Permutation diagram:
$$(n=4)$$
 Factorize: W_{12} W_{23} W_{34} $W_{14} = \alpha \cdot \beta$ $W_{13} \cdot \alpha = \sigma_2 \cdot \tau_2$ $\beta \cdot W_{24} = \sigma_3 \cdot \tau_3$

Component formula for $[\Omega_r] \in H_T^*(X)$ in terms of minimal lace diagrams. Implies positivity of cohomological quiver coefficients.

$$W_{ij}(p) = \begin{cases} p + r_{i,j-1} - r_{i,j} & \text{if } r_{i,j}$$

Permutation diagram:
$$(n=4)$$
 Factorize: W_{12} W_{23} W_{34} $W_{14} = \alpha \cdot \beta$ $W_{13} \cdot \alpha = \sigma_2 \cdot \tau_2$ $\beta \cdot W_{24} = \sigma_3 \cdot \tau_3$

Component formula for $[\Omega_r] \in H_T^*(X)$ in terms of minimal lace diagrams. Implies positivity of cohomological quiver coefficients.

$$W_{ij}(p) = \begin{cases} p + r_{i,j-1} - r_{i,j} & \text{if } r_{i,j}$$

Permutation diagram:
$$(n=4)$$
 Factorize: $W_{12} \cdot \sigma_2 \quad \tau_2 \cdot W_{23} \cdot \sigma_3 \quad \tau_3 \cdot W_{34}$ $W_{14} = \alpha \cdot \beta$ $W_{13} \cdot \alpha = \sigma_2 \cdot \tau_2$ $\beta \cdot W_{24} = \sigma_3 \cdot \tau_3$

Component formula for $[\Omega_r] \in H_T^*(X)$ in terms of minimal lace diagrams. Implies positivity of cohomological quiver coefficients.

Generalization: For $1 \le i < j \le n$, define permutation W_{ij} by

$$W_{ij}(p) = \begin{cases} p + r_{i,j-1} - r_{i,j} & \text{if } r_{i,j}$$

Permutation diagram:
$$(n=4)$$
 Factorize:
$$W_{12} \cdot \sigma_2 \quad \tau_2 \cdot W_{23} \cdot \sigma_3 \quad \tau_3 \cdot W_{34} \qquad W_{14} = \alpha \cdot \beta$$

$$W_{13} \cdot \alpha = \sigma_2 \cdot \tau_2$$

$$\beta \cdot W_{24} = \sigma_3 \cdot \tau_3$$

Def (B) A KMS-factorization is a sequence of permutations of the form $(W_{12} \cdot \sigma_2 , \tau_2 \cdot W_{23} \cdot \sigma_3 , \tau_3 \cdot W_{3,4})$

Theorem (B, Miller)

$$[\mathcal{O}_{\Omega_r}] = \sum_{i=1}^{n} (-1)^{\sum \ell(w_i) - \operatorname{codim}(\Omega_r)} \mathcal{G}_{w_1}(E_2 - E_1) \cdots \mathcal{G}_{w_{n-1}}(E_n - E_{n-1})$$

sum over all KMS-factorizations (w_1, \dots, w_{n-1}) .

Corollary Equioriented quiver coefficients have alternating signs.

$$\textbf{Formula} \ (\textbf{B-Kresch-Shimozono-Tamvakis-Yong})$$

$$c_{\mu}(r)=\pm \#$$
 sequences $(\mathcal{T}_1,\ldots,\mathcal{T}_{n-1})$ of decreasing tableaux of shapes μ for which $(w(\mathcal{T}_1),\ldots,w(\mathcal{T}_{n-1}))$ is a KMS-factorization.

Non-equioriented quiver of type A: $Q = \{ 1 \rightarrow 2 \leftarrow 3 \leftarrow 4 \rightarrow 5 \rightarrow 6 \}$

B-Rimányi: Positive formula for $[\Omega]$

Alternating conjecture for $[\mathcal{O}_{\Omega}]$

Non-equioriented quiver of type A: $Q = \{1 \rightarrow 2 \leftarrow 3 \leftarrow 4 \rightarrow 5 \rightarrow 6\}$

B-Rimányi: Positive formula for $[\Omega]$

Alternating conjecture for $[\mathcal{O}_{\Omega}]$

Quiver of Dynkin type:
$$Q = \left\{1 \leftarrow 2 \rightarrow 3 \rightarrow 4 \stackrel{\checkmark}{\searrow}_{6}^{5}\right\}$$

Gabriel: Classification of orbit closures.

Fehér–Rimányi: Equations for $[\Omega] \in H_T^*(X)$

Bobiński–Zwara: Rational singularities for quivers of types A and D

Reineke: Explicit desingularization of Ω

Knutson–Shimozono: Formula for $[\mathcal{O}_{\Omega}]$ based on Demazure operators

B: Formula for $[\mathcal{O}_{\Omega}]$ based on quiver coefficients

Generalized Quiver coefficients

Q quiver without oriented loops. Let $\Omega \subset X$ be a quiver cycle.

For $i \in [n]$ set $M_i = \bigoplus_{i \to i} E_j$

Example: $Q = \{ \mathbf{1} \xrightarrow{\longrightarrow} \mathbf{2} \leftarrow \mathbf{3} \}$ gives $M_2 = E_1 \oplus E_1 \oplus E_3$

Generalized Quiver coefficients

Q quiver without oriented loops. Let $\Omega \subset X$ be a quiver cycle.

For
$$i \in [n]$$
 set $M_i = \bigoplus_{i \to i} E_j$

Example:
$$Q = \{ \mathbf{1} \xrightarrow{\longrightarrow} \mathbf{2} \leftarrow \mathbf{3} \}$$
 gives $M_2 = E_1 \oplus E_1 \oplus E_3$

Define: The quiver coefficients for Ω are the unique $c_{\mu}(\Omega) \in \mathbb{Z}$ for which

$$[\mathcal{O}_{\Omega}] = \sum c_{\mu}(\Omega) \, \mathcal{G}_{\mu_1}(E_1 - M_1) \cdots \mathcal{G}_{\mu_n}(E_n - M_n) \in \mathcal{K}_T(X)$$

sum over sequences $\mu=(\mu_1,\ldots,\mu_n)$ of partitions with $\ell(\mu_i)\leq e_i$

Generalized Quiver coefficients

Q quiver without oriented loops. Let $\Omega \subset X$ be a quiver cycle.

For
$$i \in [n]$$
 set $M_i = \bigoplus_{i \to i} E_j$

Example:
$$Q = \{ \mathbf{1} \xrightarrow{\longrightarrow} \mathbf{2} \leftarrow \mathbf{3} \}$$
 gives $M_2 = E_1 \oplus E_1 \oplus E_3$

Define: The quiver coefficients for Ω are the unique $c_{\mu}(\Omega) \in \mathbb{Z}$ for which

$$[\mathcal{O}_{\Omega}] = \sum c_{\mu}(\Omega) \, \mathcal{G}_{\mu_1}(E_1 - M_1) \cdots \mathcal{G}_{\mu_n}(E_n - M_n) \in \mathcal{K}_T(X)$$

sum over sequences $\mu=(\mu_1,\ldots,\mu_n)$ of partitions with $\ell(\mu_i)\leq e_i$

Short-hand:
$$[\mathcal{O}_{\Omega}] = \sum_{\mu} c_{\mu}(\Omega) \ \mathcal{G}_{\mu_1} \otimes \mathcal{G}_{\mu_2} \otimes \cdots \otimes \mathcal{G}_{\mu_n}$$

Note: sum may be infinite!!

Example

$$Q = \{ \mathbf{1} \stackrel{\longrightarrow}{\to} \mathbf{2} \}$$
, dimension vector $e = (3,3)$
 $\Omega = \overline{G.\phi} \subset X$; $\phi = \left(\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \right)$

Zwara : Ω has bad singularities.

$$[\Omega] = 3 \otimes S_{3,1} + 4 S_1 \otimes S_3 + 1 \otimes S_{2,2} + 2 S_1 \otimes S_{2,1} + 3 S_2 \otimes S_2 + S_2 \otimes S_{1,1} + 2 S_3 \otimes S_1 + S_4 \otimes 1$$

Grothendieck class:

$$\begin{split} [\mathcal{O}_{\Omega}] &= 3 \otimes \mathcal{G}_{3,1} + 4 \, \mathcal{G}_{1} \otimes \mathcal{G}_{3} + 1 \otimes \mathcal{G}_{2,2} + 2 \, \mathcal{G}_{1} \otimes \mathcal{G}_{2,1} + 3 \, \mathcal{G}_{2} \otimes \mathcal{G}_{2} + \mathcal{G}_{2} \otimes \mathcal{G}_{1,1} \\ &+ 2 \, \mathcal{G}_{3} \otimes \mathcal{G}_{1} + \mathcal{G}_{4} \otimes 1 \\ &- 3 \otimes \mathcal{G}_{3,2} - 8 \, \mathcal{G}_{1} \otimes \mathcal{G}_{3,1} - 6 \, \mathcal{G}_{2} \otimes \mathcal{G}_{3} - 2 \, \mathcal{G}_{1} \otimes \mathcal{G}_{2,2} - 5 \, \mathcal{G}_{2} \otimes \mathcal{G}_{2,1} - 4 \, \mathcal{G}_{3} \otimes \mathcal{G}_{2} \\ &- 2 \, \mathcal{G}_{3} \otimes \mathcal{G}_{1,1} - 2 \, \mathcal{G}_{4} \otimes \mathcal{G}_{1} \\ &- 1 \otimes \mathcal{G}_{4,2} - 3 \otimes \mathcal{G}_{4,1,1} - 6 \, \mathcal{G}_{1} \otimes \mathcal{G}_{4,1} - 3 \, \mathcal{G}_{2} \otimes \mathcal{G}_{4} - 6 \, \mathcal{G}_{1,1} \otimes \mathcal{G}_{4} + 4 \, \mathcal{G}_{1} \otimes \mathcal{G}_{3,2} \\ &+ 7 \, \mathcal{G}_{2} \otimes \mathcal{G}_{3,1} + 2 \, \mathcal{G}_{3} \otimes \mathcal{G}_{3} + \mathcal{G}_{2} \otimes \mathcal{G}_{2,2} + 4 \, \mathcal{G}_{3} \otimes \mathcal{G}_{2,1} + \mathcal{G}_{4} \otimes \mathcal{G}_{2} + \mathcal{G}_{4} \otimes \mathcal{G}_{1,1} \\ &+ 1 \otimes \mathcal{G}_{4,3} + 5 \otimes \mathcal{G}_{4,2,1} + 10 \, \mathcal{G}_{1} \otimes \mathcal{G}_{4,2} + 10 \, \mathcal{G}_{1} \otimes \mathcal{G}_{4,1,1} + 14 \, \mathcal{G}_{2} \otimes \mathcal{G}_{4,1} \\ &+ 15 \, \mathcal{G}_{1,1} \otimes \mathcal{G}_{4,1} + 4 \, \mathcal{G}_{3} \otimes \mathcal{G}_{4} + 12 \, \mathcal{G}_{2,1} \otimes \mathcal{G}_{4} - \mathcal{G}_{2} \otimes \mathcal{G}_{3,2} \\ &- 2 \, \mathcal{G}_{3} \otimes \mathcal{G}_{3,1} - \mathcal{G}_{4} \otimes \mathcal{G}_{2,1} \\ &- 2 \otimes \mathcal{G}_{4,3,1} - 4 \, \mathcal{G}_{1} \otimes \mathcal{G}_{4,3} - 1 \otimes \mathcal{G}_{4,2,2} - 16 \, \mathcal{G}_{1} \otimes \mathcal{G}_{4,2,1} - 16 \, \mathcal{G}_{2} \otimes \mathcal{G}_{4,2} \\ &- 12 \, \mathcal{G}_{1,1} \otimes \mathcal{G}_{4,2} - 12 \, \mathcal{G}_{2} \otimes \mathcal{G}_{4,1,1} - 10 \, \mathcal{G}_{1,1} \otimes \mathcal{G}_{4,1,1} - 10 \, \mathcal{G}_{3} \otimes \mathcal{G}_{4,1} \\ &- 29 \, \mathcal{G}_{2,1} \otimes \mathcal{G}_{4,1} - \mathcal{G}_{4} \otimes \mathcal{G}_{4} - 7 \, \mathcal{G}_{3,1} \otimes \mathcal{G}_{4} - 3 \, \mathcal{G}_{2,2} \otimes \mathcal{G}_{4} \\ &+ \cdots \end{split}$$

 $-\mathcal{G}_{2.1}\otimes\mathcal{G}_{4.3.2}-2\,\mathcal{G}_{3.1}\otimes\mathcal{G}_{4.3.1}-\mathcal{G}_{4.1}\otimes\mathcal{G}_{4.2.1}-3\,\mathcal{G}_{3.2}\otimes\mathcal{G}_{4.2.1}$

Conjecture:

- (1) There are finitely many non-zero quiver coefficients $c_{\mu}(\Omega)$ for each Ω .
- (2) Cohomological quiver coefficients are non-negative, i.e. $\sum |\mu_i| = \operatorname{codim}(\Omega) \Rightarrow c_{\mu}(\Omega) \geq 0$
- (3) If Ω has rational singularities, then the quiver coefficients for Ω have alternating signs, i.e. $(-1)^{\sum |\mu_i| \operatorname{codim}(\Omega)} c_{\mu}(\Omega) \geq 0$

Conjecture:

- (1) There are finitely many non-zero quiver coefficients $c_{\mu}(\Omega)$ for each Ω .
- (2) Cohomological quiver coefficients are non-negative, i.e. $\sum |\mu_i| = \operatorname{codim}(\Omega) \Rightarrow c_u(\Omega) \geq 0$
- (3) If Ω has rational singularities, then the quiver coefficients for Ω have alternating signs, i.e. $(-1)^{\sum |\mu_i| \operatorname{codim}(\Omega)} c_{\mu}(\Omega) \geq 0$
- **Analogy:** Y = G/P flag variety, $\Omega \subset Y$ closed subvariety.
- (2) $[\Omega] \in H^*(Y)$ is a non-negative combination of Schubert classes.
- (3) Brion: If Ω has rational singularities, then $[\mathcal{O}_{\Omega}] \in \mathcal{K}(Y)$ is an alternating combination of Schubert classes.

Conjecture:

- (1) There are finitely many non-zero quiver coefficients $c_{\mu}(\Omega)$ for each Ω .
- (2) Cohomological quiver coefficients are non-negative, i.e. $\sum |\mu_i| = \operatorname{codim}(\Omega) \Rightarrow c_u(\Omega) \geq 0$
- (3) If Ω has rational singularities, then the quiver coefficients for Ω have alternating signs, i.e. $(-1)^{\sum |\mu_i| \operatorname{codim}(\Omega)} c_{\mu}(\Omega) \geq 0$

Analogy: Y = G/P flag variety, $\Omega \subset Y$ closed subvariety.

- (2) $[\Omega] \in H^*(Y)$ is a non-negative combination of Schubert classes.
- (3) Brion: If Ω has rational singularities, then $[\mathcal{O}_{\Omega}] \in K(Y)$ is an alternating combination of Schubert classes.

Status of Conjecture:

- True if *Q* is equioriented of type A
- True if Q is any quiver of type A₃
- (1) is true if Q is of Dynkin type and Ω has rational singularities.

Outbound quiver of type A_3 : $Q = \{1 \leftarrow 2 \rightarrow 3\}$

$$X = \operatorname{\mathsf{Hom}}(E_2, E_1) \oplus \operatorname{\mathsf{Hom}}(E_2, E_3)$$

Orbit closures $\Omega \subset X$ correspond to vectors $(m_{11}, m_{22}, m_{33}, m_{12}, m_{23}, m_{13}) \in \mathbb{N}^6$

$$(m_{11}, m_{22}, m_{33}, m_{12}, m_{23}, m_{13}) \in \mathbb{N}^6$$

for which $e_k = \sum_{i=1}^k m_{ij}$ for k = 1, 2, 3.

Outbound quiver of type A_3 : $Q = \{1 \leftarrow 2 \rightarrow 3\}$

$$X = \operatorname{\mathsf{Hom}}(E_2, E_1) \oplus \operatorname{\mathsf{Hom}}(E_2, E_3)$$

Orbit closures $\Omega \subset X$ correspond to vectors $(m_{11}, m_{22}, m_{33}, m_{12}, m_{23}, m_{13}) \in \mathbb{N}^6$ for which $e_k = \sum_{i \leq k \leq j} m_{ij}$ for k = 1, 2, 3.

• m_{11} • m_{22} • m_{33}

$$\Omega = \{ (\phi_1, \phi_3) \in X \mid \mathsf{rank}(\phi_1) \leq m_{12} + m_{13} , \; \mathsf{rank}(\phi_3) \leq m_{23} + m_{13} , \\ \mathsf{rank}(\phi_1 \oplus \phi_3 : E_2 \to E_1 \oplus E_3) \leq m_{12} + m_{23} + m_{13} \}$$

Outbound quiver of type A_3 : $Q = \{1 \leftarrow 2 \rightarrow 3\}$

$$X=\mathsf{Hom}(\mathit{E}_{2},\mathit{E}_{1})\oplus\mathsf{Hom}(\mathit{E}_{2},\mathit{E}_{3})$$

Orbit closures $\Omega \subset X$ correspond to vectors $(m_{11}, m_{22}, m_{33}, m_{12}, m_{23}, m_{13}) \in \mathbb{N}^6$ for which $e_k = \sum_{i \in I} m_{ij}$ for k = 1, 2, 3.

• m_{11} • m_{22} • m_{33}

$$\Omega = \{ (\phi_1, \phi_3) \in X \mid \mathsf{rank}(\phi_1) \le m_{12} + m_{13} , \; \mathsf{rank}(\phi_3) \le m_{23} + m_{13} , \; \mathsf{rank}(\phi_1 \oplus \phi_3 : E_2 \to E_1 \oplus E_3) \le m_{12} + m_{23} + m_{13} \}$$

Set
$$R=(m_{22})^{m_{13}}$$
. Write $\Delta^2(\mathcal{G}_R)=\sum_{\lambda,\mu,\nu}d^R_{\lambda,\mu,\nu}\,\mathcal{G}_\lambda\otimes\mathcal{G}_\mu\otimes\mathcal{G}_
u$

Thm:
$$[\mathcal{O}_{\Omega}] = \sum_{\lambda,\mu,\nu} d^R_{\lambda,\mu,\nu} \; \mathcal{G}_{(m_{22}+m_{23})^{m_{11}},\lambda} \otimes \mathcal{G}_{\mu} \otimes \mathcal{G}_{(m_{22}+m_{12})^{m_{33}},\nu}$$

Inbound quiver of type A_3 : $Q = \{1 \rightarrow 2 \leftarrow 3\}$

 $X = \operatorname{\mathsf{Hom}}(E_1, E_2) \oplus \operatorname{\mathsf{Hom}}(E_3, E_2)$

$$\Omega = \{ (\phi_1, \phi_3) \in X \mid \operatorname{rank}(\phi_1) \le m_{12} + m_{13} , \operatorname{rank}(\phi_3) \le m_{23} + m_{13} , \operatorname{rank}(\phi_1 + \phi_3 : E_1 + E_3 \to E_2) \le m_{12} + m_{23} + m_{13} \}$$

Define: $c_{\lambda,\mu,\nu} = \sum_{\sigma,\tau} d_{\lambda,\sigma}^{(m_{33})^{m_{12}}} d_{\tau,\mu}^{(m_{11})^{m_{23}}} c_{\sigma\tau}^{\mu}$

Thm:
$$[\mathcal{O}_{\Omega}] = \sum_{\lambda,\mu,\nu} c_{\lambda,\mu,\nu} \ \mathcal{G}_{\lambda} \otimes \mathcal{G}_{(m_{11}+m_{13}+m_{33})^{m_{22}},\mu} \otimes \mathcal{G}_{\nu}$$

Inbound quiver of type A_3 : $Q = \{1 \rightarrow 2 \leftarrow 3\}$

$$X=\mathsf{Hom}(E_1,E_2)\oplus\mathsf{Hom}(E_3,E_2)$$

$$\Omega = \{ (\phi_1, \phi_3) \in X \mid \operatorname{rank}(\phi_1) \leq m_{12} + m_{13} , \operatorname{rank}(\phi_3) \leq m_{23} + m_{13} , \\ \operatorname{rank}(\phi_1 + \phi_3 : E_1 + E_3 \to E_2) \leq m_{12} + m_{23} + m_{13} \}$$

Define: $c_{\lambda,\mu,\nu} = \sum_{\sigma, au} d_{\lambda,\sigma}^{(m_{33})^{m_{12}}} d_{ au,\mu}^{(m_{11})^{m_{23}}} c_{\sigma au}^{\mu}$

Thm:
$$[\mathcal{O}_{\Omega}] = \sum_{\lambda,\mu,\nu} c_{\lambda,\mu,\nu} \ \mathcal{G}_{\lambda} \otimes \mathcal{G}_{(m_{11}+m_{13}+m_{33})^{m_{22}},\mu} \otimes \mathcal{G}_{\nu}$$

Open problem: Show combinatorially that the inbound and outbound formulas are equivalent, i.e.

$$\sum_{\lambda,\mu,\nu} d_{\lambda,\mu,\nu}^{(m_{13})^{m_{22}}} \, \mathcal{G}_{(m_{11})^{(m_{22}+m_{23})}+\lambda}(E_2-E_1) \cdot \mathcal{G}_{\mu}(-E_2) \cdot \mathcal{G}_{(m_{33})^{(m_{22}+m_{12})}+\nu}(E_2-E_3)$$

$$c_{\lambda,\mu,
u} = \sum_{\lambda,\mu,
u} c_{\lambda,\mu,
u} \; \mathcal{G}_{\lambda}(\mathsf{E}_{1}) \cdot \mathcal{G}_{(m_{11}+m_{13}+m_{33})^{m_{22}},\mu}(\mathsf{E}_{2}-\mathsf{E}_{1} \oplus \mathsf{E}_{3}) \cdot \mathcal{G}_{
u}(\mathsf{E}_{3})$$

Quiver coefficients of Dynkin type

Def: For $j \in [n]$, let $\psi_j : \Gamma^{\otimes n+1} \to \Gamma^{\otimes n+1}$ be the linear map

$$\psi_j(\mathcal{G}_{\mu_1}\otimes\cdots\otimes\mathcal{G}_{\mu_j}\otimes\cdots\otimes\mathcal{G}_{\mu_n}\otimes\mathcal{G}_{\lambda}) =$$

$$\sum_{\sigma,\nu} \left(\sum_{\tau} d_{\sigma,\tau}^{\mu_j} \, c_{\tau,\lambda}^{\nu} \right) \, \mathcal{G}_{\mu_1} \otimes \cdots \otimes \mathcal{G}_{\mu_{j-1}} \otimes \mathcal{G}_{\sigma} \otimes \mathcal{G}_{\mu_{j+1}} \otimes \cdots \otimes \mathcal{G}_{\mu_n} \otimes \mathcal{G}_{\nu}$$

- ullet apply coproduct Δ to \mathcal{G}_{μ_j}
- ullet then multiply one of the factors to \mathcal{G}_λ

Quiver coefficients of Dynkin type

Def: For $j \in [n]$, let $\psi_j : \Gamma^{\otimes n+1} \to \Gamma^{\otimes n+1}$ be the linear map

$$\psi_j(\mathcal{G}_{\mu_1} \otimes \cdots \otimes \mathcal{G}_{\mu_j} \otimes \cdots \otimes \mathcal{G}_{\mu_n} \otimes \mathcal{G}_{\lambda}) =$$

$$\sum_{\sigma,
u} \left(\sum_{ au} d^{\mu_j}_{\sigma, au} \ c^{
u}_{ au, \lambda}
ight) \ \mathcal{G}_{\mu_1} \otimes \cdots \otimes \mathcal{G}_{\mu_{j-1}} \otimes \mathcal{G}_{\sigma} \otimes \mathcal{G}_{\mu_{j+1}} \otimes \cdots \otimes \mathcal{G}_{\mu_n} \otimes \mathcal{G}_{
u}$$

Def: For $i \in [n]$ and R rectangle, $\mathcal{A}_{i,R} : \Gamma^{\otimes n+1} \to \Gamma^{\otimes n+1}$ is the linear map $\mathcal{A}_{i,R}(\mathcal{G}_{u_1} \otimes \cdots \otimes \mathcal{G}_{u_n} \otimes \mathcal{G}_{\nu}) = \mathcal{G}_{u_1} \otimes \cdots \otimes \mathcal{G}_{u_{i-1}} \otimes \mathcal{G}_{R+\nu,u_i} \otimes \mathcal{G}_{u_{i+1}} \otimes \cdots \otimes \mathcal{G}_{u_n} \otimes 1$

$$\begin{array}{c|c}
 & \downarrow \\
 & \downarrow \\
 & \downarrow \\
 & \mu_i
\end{array}$$

Quiver coefficients of Dynkin type

Def: For $j \in [n]$, let $\psi_j : \Gamma^{\otimes n+1} \to \Gamma^{\otimes n+1}$ be the linear map $\psi_j(\mathcal{G}_{\mu_1} \otimes \cdots \otimes \mathcal{G}_{\mu_j} \otimes \cdots \otimes \mathcal{G}_{\mu_n} \otimes \mathcal{G}_{\lambda}) = \sum_{\sigma,\nu} \left(\sum_{\tau} d_{\sigma,\tau}^{\mu_j} c_{\tau,\lambda}^{\nu} \right) \mathcal{G}_{\mu_1} \otimes \cdots \otimes \mathcal{G}_{\mu_{i-1}} \otimes \mathcal{G}_{\sigma} \otimes \mathcal{G}_{\mu_{i+1}} \otimes \cdots \otimes \mathcal{G}_{\mu_n} \otimes \mathcal{G}_{\nu}$

Def: For
$$i \in [n]$$
 and R rectangle, $\mathcal{A}_{i,R} : \Gamma^{\otimes n+1} \to \Gamma^{\otimes n+1}$ is the linear map

Def: For $i \in [n]$ and R rectangle, $\mathcal{A}_{i,R}: \mathbb{I}^{\otimes n+1} \to \mathbb{I}^{\otimes n+1}$ is the linear map $\mathcal{A}_{i,R}(\mathcal{G}_{\mu_1} \otimes \cdots \otimes \mathcal{G}_{\mu_n} \otimes \mathcal{G}_{\nu}) = \mathcal{G}_{\mu_1} \otimes \cdots \otimes \mathcal{G}_{\mu_{i-1}} \otimes \mathcal{G}_{R+\nu,\mu_i} \otimes \mathcal{G}_{\mu_{i+1}} \otimes \cdots \otimes \mathcal{G}_{\mu_n} \otimes \mathbb{I}$

Theorem

Let Q quiver of Dynkin type , $\Omega \subset X$ quiver cycle with rational sings.

Then
$$[\mathcal{O}_{\Omega}] \otimes 1 = \sum c_{\mu}(\Omega) \mathcal{G}_{\mu_1} \otimes \cdots \otimes \mathcal{G}_{\mu_n} \otimes 1$$

is obtained by applying an explicitly determined sequence of operators ψ_i and $\mathcal{A}_{i,R}$ to $1\otimes\cdots\otimes 1\in\Gamma^{\otimes n+1}$

Note: Choice of operators and proof is based Reineke's desingularization.

Open questions:

1) Q quiver of Dynkin type, $\Omega \subset X$ orbit closure.

Find reduced equations for Ω , i.e. generators for $\mathcal{I}(\Omega) \subset \mathbb{F}[X]$

Known for equioriented quivers of type A (Lakshmibai–Magyar)

Type A: Orbit closures defined by rank conditions (Abeasis–Del Fra).

Gives obvious guess in terms of minors of matrices.

Open questions:

- 1) Q quiver of Dynkin type, $\Omega \subset X$ orbit closure.
 - Find reduced equations for Ω , i.e. generators for $\mathcal{I}(\Omega) \subset \mathbb{F}[X]$
 - Known for equioriented quivers of type A (Lakshmibai–Magyar)

Type A: Orbit closures defined by rank conditions (Abeasis-Del Fra). Gives obvious guess in terms of minors of matrices.

- 2) Q general quiver (with loops), $\Omega \subset X$ quiver cycle, $M_i = \bigoplus_{j \to i} E_j$ Can we write $[\mathcal{O}_{\Omega}] = \sum_{\mu} c_{\mu}(\Omega) \mathcal{G}_{\mu_1}(E_1 - M_1) \cdots \mathcal{G}_{\mu_n}(E_n - M_n)$?
 - Can it be done with alternating signs ??
 - Note: Coefficients $c_{\mu}(\Omega)$ are not unique.
 - Examples suggest affirmative answer, e.g. equioriented cyclic quivers.