LAPORAN PRAKTIKUM METODE NUMERIK

DISUSUN OLEH:

NAMA : Ammar

NIM : 2024573010129

KELAS : TI 2B

PROGRAM STUDI TEKNIK INFORMATIKA JURUSAN TEKNOLOGI INFORMASI DAN KOMPUTER POLITEKNIK NEGERI LHOKSEUMAWE 2025/2026

LAPORAN PENGESAHAN

Nomor Praktikum : 02

Judul Praktikum : Metode Numerik Tertutup

Nama Praktikan : Ammar

NIM : 2024573010129

Jurusan : Teknologi Informasi dan Komputer

Prodi : Teknik Informatika

Tanggal Praktikum : 8 Oktober 2025

Tanggal Penyerahan : 29 Oktober 2025

Nilai :

Keterangan :

Buket Rata, 29 Oktober 2025

Dosen pengajar

Radhiyatammardhiyah, SST, M.Sc

NIP.197008021999031001

DAFTAR ISI

LAPORAN PENGESAHAN	ii
DAFTAR ISI	iii
PENDAHULUAN	iv
BAB I DAFTAR TEORI	1
1.1 Metode Tertutup	1
1.2 Metode Biseksi	1
1.3 Metode Regula Falsi	2
1.4 Perbandingan Singkat	2
BAB II HASIL	3
2.1 Biseksi Selang kiri [-4, 0]	3
2.1.1 Program	3
2.1.2 Output	4
2.1.3 Analisis	5
2.2 Biseksi Selang Kanan [0, 4]	5
2.2.1 Program	5
2.2.2 Output	7
2.2.3 Analisis	7
2.3 Regula falsi Selang kiri [-4, 0]	8
2.3.1 Program	8
2.3.2 Output	9
2.3.3 Analisis	10
2.4 Regula falsi Selang kanan [0, 4]	10
2.4.1 Program	10
2.4.2 Program	12
2.4.3 Analisis	12
BAB III PENUTUP	13
3.1 Kesimpulan	13
3.2 Daftar Pustaka	13
3.2.1 Chapra, Steven C. dan Raymond P. Canale. <i>Numerical Methods for Engineers</i> , 8th Edition, New York: McGraw-Hill Education, 2020	13

PENDAHULUAN

Dalam penyelesaian persoalan matematis, khususnya pencarian akar persamaan non-linear, sering kali metode analitik tidak dapat digunakan karena bentuk fungsi yang kompleks atau tidak memiliki solusi eksak. Oleh karena itu, dibutuhkan pendekatan numerik yang dapat memberikan hasil hampiran dengan tingkat ketelitian tertentu.

Metode numerik tertutup merupakan salah satu pendekatan yang digunakan untuk mencari akar fungsi dalam suatu interval tertentu dengan asumsi bahwa fungsi tersebut kontinu dan terdapat perubahan tanda nilai fungsi pada batas intervalnya. Dua metode tertutup yang paling umum digunakan adalah **metode Biseksi** dan **metode Regula Falsi**.

Metode Biseksi bekerja dengan cara membagi dua interval secara berulang untuk mempersempit daerah yang mengandung akar, sedangkan metode Regula Falsi memanfaatkan garis secant yang menghubungkan dua titik pada kurva fungsi untuk memperkirakan posisi akar yang lebih cepat mendekati nilai sebenarnya.

Dengan memanfaatkan metode tertutup ini, diharapkan pengguna dapat memperoleh pemahaman mengenai prinsip dasar pendekatan numerik dalam menentukan akar fungsi serta perbandingan efisiensi antara metode Biseksi dan Regula Falsi dalam hal konvergensi terhadap akar sebenarnya.

Buket Rata, 28 Oktober 2025

Ammar

BAB I DAFTAR TEORI

1.1 Metode Tertutup

Metode tertutup merupakan metode pencarian akar persamaan yang dilakukan pada suatu interval tertentu [a, b] dengan syarat fungsi kontinu dan memiliki tanda yang berlawanan pada kedua ujung intervalnya, yaitu f(a) * f(b) < 0. Hal ini menunjukkan bahwa di antara titik a dan b terdapat minimal satu akar fungsi.

1.2 Metode Biseksi

Metode Biseksi adalah metode numerik sederhana yang mencari akar fungsi dengan cara membagi dua interval [a, b] secara berulang. Langkah dasarnya:

- a) Tentukan dua titik awal a dan b sehingga f(a) dan f(b) memiliki tanda yang berlawanan.
- b) Hitung titik tengah c = (a + b) / 2.
- c) Hitung nilai f(c).
- d) Jika f(a) * f(c) < 0, maka akar berada pada interval [a, c]; jika tidak, akar berada pada [c, b].
- e) Proses ini diulangi sampai perbedaan antara a dan b (atau nilai f(c)) berada di bawah batas toleransi.

Kelebihan metode ini adalah **kesederhanaan dan kepastian konvergensi**, sedangkan kekurangannya adalah **konvergensi yang relatif lambat** dibanding metode lain.

1.3 Metode Regula Falsi

Metode Regula Falsi (False Position) juga mencari akar fungsi dalam interval <code>[a, b]</code>, tetapi menggunakan pendekatan garis lurus (secant) yang menghubungkan titik <code>(a, f(a))</code> dan <code>(b, f(b))</code>. Persamaan garis secant digunakan untuk memperkirakan posisi akar:

$$c = b - \frac{f(b)(b-a)}{f(b) - f(a)}$$

Langkah-langkahnya mirip dengan metode Biseksi, tetapi perkiraan titik akar c diambil dari hasil perpotongan garis secant, bukan titik tengah.

Kelebihan metode Regula Falsi adalah konvergensi yang lebih cepat dibanding Biseksi pada fungsi tertentu, namun dalam beberapa kasus bisa melambat jika salah satu sisi interval tidak banyak berubah.

1.4 Perbandingan Singkat

Aspek	Biseksi	Regula Falsi
Pendekatan	Titik tengah interval	Garis secant (interpolasi linear)
Konvergensi	Pasti konvergen tapi lambat	Lebih cepat, tapi tidak selalu stabil
Syarat awal	f(a) * f(b) < 0	f(a) * f(b) < 0
Kompleksitas	Sederhana	Sedikit lebih kompleks

BAB II HASIL

2.1 Biseksi Selang kiri [-4, 0]

2.1.1 Program

```
from .. import abc
def f(x):
    return 2*x**2 + 3*x - 4 # Fungsi f(x)
# input awal interval
a = -4
b = 0
c = (a + b) / 2
toleransi = 0.00001
iterasi = 1
x2 = abc.x[1]
c pref = 0
Era = 100
fa = f(a)
fb = f(b)
fc = f(c)
# Pastikan ada akar di antara a dan b
if f(a) * f(b) > 0:
    print("Tidak ada akar di antara interval [a,b]")
else:
    print("="*45 + "BISEKSI" + "="*45)
    print(f"{'Iterasi':<8}{'a':<10}{'b':<10}{'c':<13}{'f(a)':<10}{'f(b)':<10}{</pre>
'f(c)':<10}{'Interval baru':<18}{'Era'}")
    print("-"*98)
    print(f"{iterasi:<8}{a:<10.3f}{b:<10.3f}{c:<13.5f}{fa:<10.3f}{fb:<10.3f}{f</pre>
c:.5f}")
    while Era > toleransi:
        c = (a + b) / 2
        fa = f(a)
        fb = f(b)
        fc = f(c)
```

```
tanda = f(a) * f(c)
        if tanda < 0:</pre>
            b = c
            interval = f"[{a:.3f}, {c:.3f}]"
            # interval = "[a, c]"
       else:
            a = c
            interval = f"[{c:.3f}, {b:.3f}]"
            # interval = "[c, b]"
       if c != 0:
            Era = abs((c - c_pref) / c)
       c_pref = c
       print(f"{iterasi:<8}{a:<10.3f}{b:<10.3f}{c:<13.5f}{fa:<10.3f}{fb:<10.3</pre>
f}{fc:<10.3f}{interval:<18}{Era:.6f}")
        iterasi += 1
   print("-"*98)
   akar = (a + b) / 2
   print(f"\nAkar hampiran = {akar:.6f}")
   print(f"Nilai Asli = {x2:.6f}")
```

2.1.2 Output

======		=======	========	====BISEK	SI=====			=======
Iterasi	a	b	С	f(a)	f(b)	f(c)	Interval baru	Era
1	-4.000	0.000	-2.00000	16.000	-4.000	-2.00000		
1	-4.000	-2.000	-2.00000	16.000	-4.000	-2.000	[-4.000, -2.000]	1.000000
2	-3.000	-2.000	-3.00000	16.000	-2.000	5.000	[-3.000, -2.000]	0.333333
3	-2.500	-2.000	-2.50000	5.000	-2.000	1.000	[-2.500, -2.000]	0.200000
4	-2.500	-2.250	-2.25000	1.000	-2.000	-0.625	[-2.500, -2.250]	0.111111
5	-2.375	-2.250	-2.37500	1.000	-0.625	0.156	[-2.375, -2.250]	0.052632
6	-2.375	-2.312	-2.31250	0.156	-0.625	-0.242	[-2.375, -2.312]	0.027027
7	-2.375	-2.344	-2.34375	0.156	-0.242	-0.045	[-2.375, -2.344]	0.013333
8	-2.359	-2.344	-2.35938	0.156	-0.045	0.055	[-2.359, -2.344]	0.006623
9	-2.352	-2.344	-2.35156	0.055	-0.045	0.005	[-2.352, -2.344]	0.003322
10	-2.352	-2.348	-2.34766	0.005	-0.045	-0.020	[-2.352, -2.348]	0.001664
11	-2.352	-2.350	-2.34961	0.005	-0.020	-0.007	[-2.352, -2.350]	0.000831
12	-2.352	-2.351	-2.35059	0.005	-0.007	-0.001	[-2.352, -2.351]	0.000415
13	-2.351	-2.351	-2.35107	0.005	-0.001	0.002	[-2.351, -2.351]	0.000208
14	-2.351	-2.351	-2.35083	0.002	-0.001	0.000	[-2.351, -2.351]	0.000104
15	-2.351	-2.351	-2.35071	0.000	-0.001	-0.000	[-2.351, -2.351]	0.000052
16	-2.351	-2.351	-2.35077	0.000	-0.000	-0.000	[-2.351, -2.351]	0.000026
17	-2.351	-2.351	-2.35080	0.000	-0.000	0.000	[-2.351, -2.351]	0.000013
18	-2.351	-2.351	-2.35078	0.000	-0.000	0.000	[-2.351, -2.351]	0.000006
Akar hampiran = -2.350777								
Akai Halipti ali – -2.330777								

2.1.3 Analisis

2.2 Biseksi Selang Kanan [0, 4]

2.2.1 Program

```
from .. import abc
def f(x):
    return 2*x**2 + 3*x - 4 # Fungsi f(x)
# input awal interval
a = 0
b = 4
c = (a + b) / 2
toleransi = 0.00001
iterasi = 1
x1 = abc.x[0]
c_pref = 0
Era = 100
fa = f(a)
fb = f(b)
fc = f(c)
# Pastikan ada akar di antara a dan b
if f(a) * f(b) > 0:
    print("Tidak ada akar di antara interval [a,b]")
```

```
else:
    print("="*45 + "BISEKSI" + "="*45)
    print(f"{'Iterasi':<8}{'a':<10}{'b':<10}{'c':<13}{'f(a)':<10}{'f(b)':<10}{</pre>
'f(c)':<10}{'Interval baru':<18}{'Era'}")
    print("-"*98)
    print(f"{iterasi:<8}{a:<10.3f}{b:<10.3f}{c:<13.5f}{fa:<10.3f}{fb:<10.3f}{f</pre>
c:.5f}")
    while Era > toleransi:
        c = (a + b) / 2
        fa = f(a)
        fb = f(b)
        fc = f(c)
        tanda = f(a) * f(c)
        if tanda < 0:</pre>
            interval = f''[{a:.3f}, {c:.3f}]''
            # interval = "[a, c]"
            b = c
        else:
            interval = f"[{c:.3f}, {b:.3f}]"
            # interval = "[c, b]"
            a = c
        if c != 0:
            Era = abs((c - c_pref) / c)
        c_pref = c
        print(f"{iterasi:<8}{a:<10.3f}{b:<10.3f}{c:<13.5f}{fa:<10.3f}{fb:<10.3</pre>
f}{fc:<10.3f}{interval:<18}{Era:.6f}")
        iterasi += 1
    print("-"*98)
    akar = (a + b) / 2
    print(f"\nAkar hampiran = {akar:.4f}")
    print(f"Nilai Asli = {x1:.4f}")
```

2.2.2 Output

======				====BISEK	SI=====			=======
Iterasi	a	b	С	f(a)	f(b)	f(c)	Interval baru	Era
1	0.000	4.000	2.00000	-4.000	40.000	10.00000		
1	0.000	2.000	2.00000	-4.000	40.000	10.000	[0.000, 2.000]	1.000000
2	0.000	1.000	1.00000	-4.000	10.000	1.000	[0.000, 1.000]	1.000000
3	0.500	1.000	0.50000	-4.000	1.000	-2.000	[0.500, 1.000]	1.000000
4	0.750	1.000	0.75000	-2.000	1.000	-0.625	[0.750, 1.000]	0.333333
5	0.750	0.875	0.87500	-0.625	1.000	0.156	[0.750, 0.875]	0.142857
6	0.812	0.875	0.81250	-0.625	0.156	-0.242	[0.812, 0.875]	0.076923
7	0.844	0.875	0.84375	-0.242	0.156	-0.045	[0.844, 0.875]	0.037037
8	0.844	0.859	0.85938	-0.045	0.156	0.055	[0.844, 0.859]	0.018182
9	0.844	0.852	0.85156	-0.045	0.055	0.005	[0.844, 0.852]	0.009174
10	0.848	0.852	0.84766	-0.045	0.005	-0.020	[0.848, 0.852]	0.004608
11	0.850	0.852	0.84961	-0.020	0.005	-0.007	[0.850, 0.852]	0.002299
12	0.851	0.852	0.85059	-0.007	0.005	-0.001	[0.851, 0.852]	0.001148
13	0.851	0.851	0.85107	-0.001	0.005	0.002	[0.851, 0.851]	0.000574
14	0.851	0.851	0.85083	-0.001	0.002	0.000	[0.851, 0.851]	0.000287
15	0.851	0.851	0.85071	-0.001	0.000	-0.000	[0.851, 0.851]	0.000143
16	0.851	0.851	0.85077	-0.000	0.000	-0.000	[0.851, 0.851]	0.000072
17	0.851	0.851	0.85080	-0.000	0.000	0.000	[0.851, 0.851]	0.000036
18	0.851	0.851	0.85078	-0.000	0.000	0.000	[0.851, 0.851]	0.000018
19	0.851	0.851	0.85078	-0.000	0.000	-0.000	[0.851, 0.851]	0.000009
Akar hampiran = 0.850780								
Nilai A	sli = 0.85	0781						

2.2.3 Analisis

2.3 Regula falsi Selang kiri [-4, 0]

2.3.1 Program

```
from .. import abc
def f(x):
    return 2*x**2 + 3*x - 4 # Fungsi f(x)
# input awal interval
a = -4
b = 0
\# c = a + b / 2
toleransi = 0.00001
iterasi = 1
x2 = abc.x[1]
c pref = 0
Era = 100
fa = f(a)
fb = f(b)
c = b - (fb * (b - a)) / (fb - fa)
fc = f(c)
# Pastikan ada akar di antara a dan b
if f(a) * f(b) > 0:
    print("Tidak ada akar di antara interval [a,b]")
else:
    print("="*45 + "REGULAFALSI" + "="*45)
    print(f"{'Iterasi':<8}{'a':<10}{'b':<10}{'c':<13}{'f(a)':<10}{'f(b)':<10}{</pre>
'f(c)':<10}{'Interval baru':<18}{'Era'}")
    print("-"*98)
    print(f"{iterasi:<8}{a:<10.3f}{b:<10.3f}{c:<13.5f}{fa:<10.3f}{fb:<10.3f}{f
c:.5f}")
    while Era > toleransi:
        fa = f(a)
        fb = f(b)
        c = b - (fb * (b - a)) / (fb - fa)
        fc = f(c)
        tanda = f(a) * f(c)
        if tanda < 0:</pre>
            interval = f''[{a:.3f}, {c:.3f}]''
            # interval = "[a, c]"
            b = c
```

```
else:
    interval = f"[{c:.3f}, {b:.3f}]"
    # interval = "[c, b]"
    a = c

if c != 0:
    Era = abs((c - c_pref) / c)
    c_pref = c

print(f"{iterasi:<8}{a:<10.3f}{b:<10.3f}{c:<13.5f}{fa:<10.3f}{fb:<10.3}{fb:<10.3f}{fo:<10.3f}{interval:<18}{Era:.6f}")
    iterasi += 1

print("-"*98)
    akar = b - (fb * (b - a)) / (fb - fa)
    print(f"\nAkar hampiran = {akar:.6f}")
    print(f"\nAkar hampiran = {x2:.6f}")</pre>
```

2.3.2 Output

======				====REGUL	AFALSI====			
Iterasi	a	b	С	f(a)	f(b)	f(c)	Interval baru	Era
1	-4.000	0.000	-0.80000	16.000	-4.000	-5.12000		
1	-4.000	-0.800	-0.80000	16.000	-4.000	-5.120	[-4.000, -0.800]	1.000000
2	-4.000	-1.576	-1.57576	16.000	-5.120	-3 .761	[-4.000, -1.576]	0.492308
3	-4.000	-2.037	-2.03717	16.000	-3.761	-1.811	[-4.000, -2.037]	0.226499
4	-4.000	-2.237	-2.23679	16.000	-1.811	-0.704	[-4.000, -2.237]	0.089241
5	-4.000	-2.311	-2.31109	16.000	-0.704	-0.251	[-4.000, -2.311]	0.032151
6	-4.000	-2.337	-2.33718	16.000	-0.251	-0.087	[-4.000, -2.337]	0.011160
7	-4.000	-2.346	-2.34614	16.000	-0.087	-0.030	[-4.000, -2.346]	0.003822
8	-4.000	-2.349	-2.34920	16.000	-0.030	-0.010	[-4.000, -2.349]	0.001303
9	-4.000	-2.350	-2.35024	16.000	-0.010	-0.003	[-4.000, -2.350]	0.000443
10	-4.000	-2.351	-2.35060	16.000	-0.003	-0.001	[-4.000, -2.351]	0.000151
11	-4.000	-2.351	-2.35072	16.000	-0.001	-0.000	[-4.000, -2.351]	0.000051
12	-4.000	-2.351	-2.35076	16.000	-0.000	-0.000	[-4.000, -2.351]	0.000017
13	-4.000	-2.351	-2.35077	16.000	-0.000	-0.000	[-4.000, -2.351]	0.000006
Akar hampiran = -2.350788								
Nilai A	sli = -2.3	50781						

2.3.3 Analisis

2.4 Regula falsi Selang kanan [0, 4]

2.4.1 Program

```
from .. import abc
def f(x):
    return 2*x**2 + 3*x - 4 \# Fungsi f(x)
# input awal interval
a = 0
b = 4
\# c = a + b / 2
toleransi = 0.00001
iterasi = 1
x1 = abc.x[0]
c_pref = 0
Era = 100
fa = f(a)
fb = f(b)
c = b - (fb * (b - a)) / (fb - fa)
fc = f(c)
# Pastikan ada akar di antara a dan b
if f(a) * f(b) > 0:
    print("Tidak ada akar di antara interval [a,b]")
else:
    print("="*42 + "REGULAFALSI" + "="*45)
    print(f"{'Iterasi':<8}{'a':<10}{'b':<10}{'c':<13}{'f(a)':<10}{'f(b)':<10}{</pre>
'f(c)':<10}{'Interval baru':<18}{'Era'}")
```

```
print("-"*98)
    print(f"{iterasi:<8}{a:<10.3f}{b:<10.3f}{c:<13.5f}{fa:<10.3f}{fb:<10.3f}{f
c:.5f}")
    while Era > toleransi:
        fa = f(a)
        fb = f(b)
        c = b - (fb * (b - a)) / (fb - fa)
        fc = f(c)
        tanda = f(a) * f(c)
        if tanda < 0:</pre>
            interval = f"[{a:.3f}, {c:.3f}]"
            # interval = "[a, c]"
            b = c
        else:
            interval = f"[{c:.3f}, {b:.3f}]"
            # interval = "[c, b]"
            a = c
        if c != 0:
            Era = abs((c - c_pref) / c)
        c_pref = c
        print(f"{iterasi:<8}{a:<10.3f}{b:<10.3f}{c:<13.5f}{fa:<10.3f}{fb:<10.3</pre>
f}{fc:<10.3f}{interval:<18}{Era:.6f}")
        iterasi += 1
    print("-"*98)
    akar = b - (fb * (b - a)) / (fb - fa)
    print(f"\nAkar hampiran = {akar:.6f}")
    print(f"Nilai Asli = {x1:.6f}")
```

2.4.2 Program

======				==REGULAFA	LSI=====			=======
Iterasi	. a	b	С	f(a)	f(b)	f(c)	Interval baru	Era
1	0.000	4.000	0.36364	-4.000	40.000	-2.64463		
1	0.364	4.000	0.36364	-4.000	40.000	-2.645	[0.364, 4.000]	1.000000
2	0.589	4.000	0.58915	-2.645	40.000	-1.538	[0.589, 4.000]	0.382775
3	0.715	4.000	0.71547	-1.538	40.000	-0.830	[0.715, 4.000]	0.176557
4	0.782	4.000	0.78222	-0.830	40.000	-0.430	[0.782, 4.000]	0.085338
5	0.816	4.000	0.81641	-0.430	40.000	-0.218	[0.816, 4.000]	0.041880
6	0.834	4.000	0.83365	-0.218	40.000	-0.109	[0.834, 4.000]	0.020672
7	0.842	4.000	0.84226	-0.109	40.000	-0.054	[0.842, 4.000]	0.010229
8	0.847	4.000	0.84655	-0.054	40.000	-0.027	[0.847, 4.000]	0.005067
9	0.849	4.000	0.84868	-0.027	40.000	-0.013	[0.849, 4.000]	0.002511
10	0.850	4.000	0.84974	-0.013	40.000	-0.007	[0.850, 4.000]	0.001245
11	0.850	4.000	0.85026	-0.007	40.000	-0.003	[0.850, 4.000]	0.000617
12	0.851	4.000	0.85052	-0.003	40.000	-0.002	[0.851, 4.000]	0.000306
13	0.851	4.000	0.85065	-0.002	40.000	-0.001	[0.851, 4.000]	0.000152
14	0.851	4.000	0.85072	-0.001	40.000	-0.000	[0.851, 4.000]	0.000075
15	0.851	4.000	0.85075	-0.000	40.000	-0.000	[0.851, 4.000]	0.000037
16	0.851	4.000	0.85077	-0.000	40.000	-0.000	[0.851, 4.000]	0.000019
17	0.851	4.000	0.85077	-0.000	40.000	-0.000	[0.851, 4.000]	0.000009
Akar hampiran = 0.850781								
Nilai A	sli = 0.85	0781						

2.4.3 Analisis

BAB III PENUTUP

3.1 Kesimpulan

3.2 Daftar Pustaka

3.2.1 Chapra, Steven C. dan Raymond P. Canale. *Numerical Methods for Engineers*. 8th Edition. New York: McGraw-Hill Education, 2020.