Validade de um argumento com regras de inferências

Aula 22

Relembrando...

Qual regra de inferência é usada no argumento abaixo.

"Se Londres não fica na Bélgica, então Paris não fica na França. Mas Paris fica na França. Logo, Londres fica na Bélgica".

Relembrando...

"Se Londres não fica na Bélgica, então Paris não fica na França. Mas Paris fica na França. Logo, Londres fica na Bélgica".

p: Londres fica na Bélgica

q: Paris fica na França

$$\sim p \rightarrow \sim q, q \mid p$$

 Com o auxilio das 10 regras de inferência podemos chegar a diversas conclusões.

1)
$$x=y \rightarrow x=z$$

- 2) $x=z \rightarrow x=1$
- 3) $x=0 \rightarrow x_{\pm}1$
- 4) <u>X=Y</u> .

1)
$$X=y \rightarrow X=Z$$

- 2) $x=z \rightarrow x=1$
- 3) $x=0 \rightarrow x_{\pm}1$
- 4) <u>X=Y</u> .
- 5) $x=y \to x=1$ 1,2 SH

1)
$$x=y \rightarrow x=z$$

2)
$$x=z \rightarrow x=1$$

3)
$$x=0 \rightarrow x_{\pm}1$$

5)
$$x=y \to x=1$$
 1,2 SH

6)
$$x=1$$
 4,5 MP

1)
$$x=y \rightarrow x=z$$

2)
$$x=z \rightarrow x=1$$

3)
$$x=0 \rightarrow x_{\pm}1$$

5)
$$x=y \to x=1$$
 1,2 SH

6)
$$x=1$$
 4,5 MP

7)
$$x \neq 0$$
 3,6 MT

 Podemos também utilizar as regras de inferência para demonstrar a validade de um grande número de argumentos mais complexos

 A validade mediante as regras de inferência é um método mais eficiente, o qual consiste em DEDUZIR a conclusão Q a partir das premissas P₁ ... P_n mediante o uso de certas regras de inferência.

$$p \rightarrow (q \rightarrow r), p \rightarrow q, p \mid --r$$

$$p \rightarrow (q \rightarrow r), p \rightarrow q, p \mid -r$$

- 1) $p \rightarrow (q \rightarrow r)$
- 2) p→q
- 3) D .

$$p \rightarrow (q \rightarrow r), p \rightarrow q, p \mid -r$$

- 1) $p \rightarrow (q \rightarrow r)$
- $p \rightarrow q$
- 3) <u>D</u> .
- 4) q 2,3 MP

$$p \rightarrow (q \rightarrow r), p \rightarrow q, p \mid -r$$

- 1) $p \rightarrow (q \rightarrow r)$
- 2) $p \rightarrow q$
- 3) <u>D</u>
- 4) q 2,3 MP
- 5) q→r 1,3 MP

$$p \rightarrow (q \rightarrow r), p \rightarrow q, p \mid -r$$

- 1) $p \rightarrow (q \rightarrow r)$
- 2) p→q
- 3) <u>D</u>
- 4) **q** 2,3 MP
- 5) **q→r** 1,3 MP
- 6) r 4,5 MP

 Demonstrar a validade do argumento: "Se estudo, então não sou reprovado em Fundamentos. Se não jogo futebol, então estudo. Mas fui reprovado em Fundamentos. Portanto, joguei futebol.".

• p : Eu estudo

q: Sou reprovado

r: Jogo futebol

- "Se estudo, então não sou reprovado em Fundamentos. Se não jogo futebol, então estudo. Mas fui reprovado em Fundamentos. Portanto, joguei futebol.".
- p : Eu estudo
- q: Sou reprovado em Fundamentos
- r: Jogo futebol
- $p \rightarrow \sim q$

- "Se estudo, então não sou reprovado em Fundamentos. Se não jogo futebol, então estudo. Mas fui reprovado em Fundamentos. Portanto, joguei futebol.".
- p : Eu estudo
- q: Sou reprovado em Fundamentos
- r: Jogo futebol
- $p \rightarrow \sim q, \sim r \rightarrow p$

- "Se estudo, então não sou reprovado em Fundamentos. Se não jogo futebol, então estudo. Mas fui reprovado em Fundamentos. Portanto, joguei futebol.".
- p : Eu estudo
- q: Sou reprovado em Fundamentos
- r: Jogo futebol
- $p \rightarrow \sim q, \sim r \rightarrow p, q$

- "Se estudo, então não sou reprovado em Fundamentos. Se não jogo futebol, então estudo. Mas fui reprovado em Fundamentos. Portanto, joguei futebol.".
- p : Eu estudo
- q: Sou reprovado em Fundamentos
- r: Jogo futebol
- $p \rightarrow \sim q, \sim r \rightarrow p, q \mid -r$

Demonstrando a validade do argumento
p → ~q, ~r → p , q |— r

- 1) $p \rightarrow \sim q$
- 2) $\sim r \rightarrow p$
- 3) <u>q</u> .

Demonstrando a validade do argumento
p → ~q, ~r → p , q |— r

1)
$$p \rightarrow \sim q$$

2)
$$\sim r \rightarrow p$$

1,3 Modus Tollens

•
$$p \rightarrow \sim q, \sim r \rightarrow p, q \mid -r$$

- 1) $p \rightarrow \sim q$
- 2) $\sim r \rightarrow p$
- 3) <u>q</u> .
- 4) ~p
- 5) r

- 1,3 Modus Tollens
- 2,4 Modus Tollens

Usar Regras de Inferência para Provar

- 1. $p \rightarrow q$, $p^q \rightarrow r$, $\sim (p^r) \mid \sim p$
 - 1. Dica: ABS, SH, ABS, MT
- 2. $p \vee q \rightarrow r, r \vee q \rightarrow (p \rightarrow (s \leftrightarrow t)), p \land s \mid --- s \leftrightarrow t$
 - 1. Dica: SIMP, AD, MP, AD, MP, MP
- 3. $p \wedge q, p \vee r \rightarrow s \mid -p \wedge s$
 - 1. Dica: SIMP, AD, MP, CONJ

Usar Regras de Inferência para Provar

- 1. $p \rightarrow \sim q$, $\sim p \rightarrow (r \rightarrow \sim q)$, $(\sim s \vee \sim r) \rightarrow \sim \sim q$, $\sim s \mid --- \sim r$
- 2. $p^q \rightarrow r, r \rightarrow s, t \rightarrow \sim u, t, \sim svu \mid -- \sim (p^q)$
- 3. $p \rightarrow q$, $(p \rightarrow r) \rightarrow s \vee q$, $p \land q \rightarrow r$, $\sim s \mid ----q \mid q \rightarrow r$
- 4. $p \rightarrow q$, $p \vee (r \wedge q)$, $s \rightarrow \sim r$, $\sim (p \wedge q) \mid --- \sim s \vee \sim q$
- 5. $p \rightarrow r, q \rightarrow s, \sim r, (pvq)^{(rvs)} s$
- 6. $p \rightarrow q$, $q \rightarrow r$, $r \rightarrow s$, $\sim s$, $pvt \mid -t$