Very Very Simple File System (VVSFS)

Jack Kilrain (u6940136) Daniel Herald (u7480080) Angus Atkinson (u7117106)

22 October 2023

Contents

1	Overview	1
2	Baseline	1
	2.1 Unlink Dentries and Removing Directories	1
	2.1.1 Unlink	1
	2.1.2 Directory Removal	3
	2.2 Renaming	
	2.3 Inode Attributes	4
	2.4 Supporting FS Stats	4
3	Advanced	Į.
	3.1 Indirect Blocks	-
4	Extensions	7
	4.1 Hardlinks and Symbolic Links	7
	4.2 Special Devices	7
5	Testing	7

1 Overview

This report discusses the implementation of several operations into VVSFS, the Very Very Simple File System. Our group completed all four baseline requirements (unlinking, renaming, inode stats, filesystem stats), the advanced task (indirect blocks), and two extensions (hard/soft links and block/character devices).

2 Baseline

2.1 Unlink Dentries and Removing Directories

2.1.1 Unlink

Supporiting unlinking of dentries requires consideration around the behaviour of evicting entries from data blocks and potentially data blocks themselves. In order to make this achievable, the unlink is split into two stages: 1. Find the dentry 2. Remove the dentry

Supporting find and remove operations is the struct bufloc_t implementation which stores block and dentry indices for ease of use. In addition to this, this structure also has provisions to allow for

the retention of the buffer object and dentry object (dependently) to aid in reducing the need for re-indexing into buffers later (handled by flags BL_PERSIST_BUFFER and BL_PERSIST_DENTRY). These can also be resolved at a later time if necessary.

The method vvsfs_find_dentry is used to search through the data blocks and saturate a bufloc_t instance with the relevant information. This is then forwarded to the vvsfs_delete_entry method to perform the actual removal. Search operations is merely a linear traversal of the blocks bound to the inode, attempting to match the name and parent inode of a dentry to the target one.

Removing a dentry requires care to be taken around several cases for where the dentry is:

- 1. Last dentry in the last block
- 2. Non-last dentry in last block
- 3. Any position dentry in non-last block

In the first case, we can simply evict the dentry (by zeroing it) and we are done. After that we consider if there are dentries left, if so we deallocate the block and remove it from the inode->i_data array.

Figure 1: Last block last dentry

The second case requires moving the last dentry in the last block to fill the hole of the one being evicted. We do this with a memmove to overwrite the target dentry, then zero the old location of the last dentry in the last block.

Figure 2: Last block non-last dentry

In the last case, we need to move the last dentry from the last block to our current block to fill the hole. This requires multiple buffer locations to be open at once, ensuring we move and then zero the old location of the last dentry in the last block.

Figure 3: Non-last block non-last dentry

Once all shifting and operations have been performed with dentries and blocks, the inode matching the dentry is deallocated and returned to the available pool (bitmap).

2.1.2 Directory Removal

In order to perform directory removal, we rely on the vvsfs_unlink operation implemented as detailed in the above section. But before performing an arbitrary unlink on the dentry matching the directory there are checks needed. Specifically, we need to ensure that the dentry is a directory it is empty, this is done by traversing the dentries within the directory and verifying that it is empty (only contains reserved entries). Reserved implies any of the following:

- 1. Is either a . or . . entry (not supported on disk, so not a problem but checked regardless), in the . . case, we also verify that the parent inode matches the inode stored in the dentry.
- 2. Reseved inode number, specifically 0 as the root.

If any of these checks fail, we return -ENOTDIR when not a directory and -ENOTEMPTY when it is not empty. Assuming these pass, we forward to the vvsfs_unlink call targetting the dentry associated with the directory to be removed.

2.2 Renaming

We implement rename operations for files and directories via the vvsfs_rename method. Whenever a user runs the mv command in their shell, it issues a renameat2() syscall, which the VFS resolves to our vvsfs_rename method via the .rename entry in the vvsfs_dir_inode_operations struct.

There are two main cases for the rename operation: those where the destination dentry exists (because there is already a file/folder with the same name in the destination folder), and those where the destination does not exist.

In the simple case, where the destination dentry is not pre-existing, we can simply add a new dentry to the destination folder (setting the inode number to be that of the file to rename), and deallocate the old dentry from the source folder. Since these operations of finding, adding and removing dentries from folders are the same as those needed for the vvsfs_unlink function, we reuse many of the helper functions which were previously defined (vvsfs_find_entry, vvsfs_delete_entry_bufloc, etc). This eliminates code duplication and reduces the chance of bugs, as the dentry addition/removal logic is now tested via a wider variety of usage patterns.

Additional complications can emerge when the destination dentry already exists. There are many rules which govern whether a rename operation is allowed to overwrite an existing file or directory (e.g. depending on whether the destination directoy is empty). We consulted the man page for rename() and Michael Kerrisk's book "The Linux Programming Interface" to gain a deep understanding of these requirements, and carefully implemented checks to prevent invalid renames. The process of actually renaming the file is relatively similar to beforehand, with the one exception being that it is also necessary to decrement the link count in the existing file's inode. If the destination dentry was they only hard link to the existing file, it's link count will now be zero, which will cause the file to be deleted. This process is illustrated in Figure 1 below.

Figure 4: Renaming a file to overwrite an existing file at the destination

2.3 Inode Attributes

We added support for storing GID / UID / atime / ctime / mtime. We acheived this by:

- 1. Adding the fields to the vvsfs_inode structure.
- 2. Loading the data within the vvsfs_iget method.
 - Following Minix / EXT2's lead we set the tv nsec time to zero.
- 3. Syncing the data to disk within the vvsfs_write_inode method.
- 4. We chose to not implement setattr / getattr at this time since we didn't have anything meanful to change from the generic default function provided by the VFS.

Challenges implementing this feature:

- 1. During initial development it was discovered that the filesystem was somehow relying on the order of the inital fields in the vvsfs_inode. Instead of properly resolving this issue we decided to store the new fields at the end of the struct.
- 2. During testing it was discovered that the Linux kernel has measures to prevent disk trashing by not updating an inodes atime all the time. To override this and force the kernel to always update the times we added strictatime to our test mount script.

2.4 Supporting FS Stats

The struct kstatfs layout details many fields that are normally somewhat flexible with creation and mounting options for file systems. However, VVSFS is very simple, as the name implies and consequently

almost all of the fields are static values that can be assigned directly. Specifically, all of the following fields are statically defined in VVSFS:

- f_blocks = VVSFS_MAXBLOCKS, we always configure the FS with the same block count, irrespective of creation configuration
- f_files = VVSFS_IMAP_SIZE * VVSFS_IMAP_INODES_PER_ENTRY, since the bitmaps are 8 bit, using each bit for an inode, this is fixed based on imap size
- f_namelen = VVSFS_MAXNAME, constant for any configuration of VVSFS
- f_type = VVSFS_MAGIC, constant for any configuration of VVSFS
- f_bsize = VVSFS_BLOCKSIZE, static value that is not configurable on mount or creation

The key fields are f_bfree (also f_bavail since we have no non-superuser scoped blocks) and f_ffree which are saturated by traversing the bitmaps to count how many bits are set. This is done with bitmasking and counting while traversing with the map dimensions. It is also possible to do this more efficiently with compiler (e.g. GCC __popcountdi2) or hardware intrinsics (e.g. x86 popcnt) for counting the bits in a fixed sized integer, in this case 8 bits. However, these are not easy to manage within Kernel modules and don't add any significant speedups for an uncommon call.

3 Advanced

3.1 Indirect Blocks

There are three main areas that need to change to support indirect blocks, listing dentries, adding a new dentry and unlinking a dentry. In the first case of listing dentries, this is the most straight forward. Instead of previously iterating over all the blocks in i_data, we traverse only the first 14 and load the dentries into memory, then we check if a 15th exists (indicating indirect blocks are present), which is then buffered. Then we perform the same iteration over the block addresses within the indirect block (via offset using sizeof(uint32_t) * <iteration count>). The iteration count (inclusive) is determined by subtracting 15 from the total block count. We then traverse all dentries within each block, iterating 8 (dentries per block) times per block until the last entry where we use the total dentry cout modulo 8 as the limit. Note that due to the conventions of the code, there will never be a case where the indirect block is allocated with zero block entries within it.

When adding a new dentry, we first calculate the new block position and dentry offset using the following:

```
uint32_t dentry_count = inode->i_size / VVSFS_DENTRYSIZE;
uint32_t new_dentry_block_pos = dentry_count / VVSFS_N_DENTRY_PER_BLOCK;
uint32_t new_dentry_block_off = dentry_count % VVSFS_N_DENTRY_PER_BLOCK;
```

If the new_dentry_block_pos is greater or equal to the current block count, we need to allocate a new block. This is done via vvsfs_assign_data_block, which first determines if we are allocating a direct block, in which case it does and returns the new block address. If we are allocating an indirect block, we first check if we have an indirect block allocated already, if we don't then it is created. Next we create a new block to store as the first indirect block and put it's address in the indirect block. Lastly we return the first indirect block address.

If we don't need a new block, we call to vvsfs_index_data_block to get retrieve the data block address for the block associated with new_dentry_block_pos. After this, we buffer the block, and write the dentry to the offset denoted by new_dentry_block_off which is guaranteed to be free, semantically guaranteed by the logic flow that is.

From here on out, we initialise the dentry with the required data as necessary, name, inode number, etc.

Lastly, unlinking a dentry is a somewhat interesting set of changes. We need to extend the shifting

behaviour to work with so-called spatially-disconnected contiguous arrays. That is, the indirect and direct blocks are continuous notionally, as an array, whereby the indirect blocks require more calculation and logic to index into. We need to support three main cases for dentry movement using indirect blocks:

- 1. Direct only (using previous logic)
- 2. Indirect only, dentry moves between indirect blocks
- 3. Indirect to direct, dentry moves between indirect and direct blocks.

The first case is straightforward, as we can check the block count, if it is less than 15, we delegate to the old logic. In the second case, we check that the block index (stored in struct bufloc_t passed as an argument from vvsfs_find_entry), is greater than or equal to 15, in which case we are only moving dentries within indirect blocks. From here we apply the same logic as the first case, but operate over indirect blocks instead of direct blocks. In the third case, we need to apply the same logic from the old direct-only implementation, but buffer both direct and indrect blocks at the same time.

Figure 5: Indirect to indirect

In the case and thirs cases, a situation exists where the only dentry of the last (but not only) indirect block is moved, requiring deallocation of that indirect block but not the indirect addresses block.

Figure 6: Indirect to direct

Again for the second and third cases, one last point of complexity is checking if we are moving the only dentry in the only indirect block to a direct block. In this case we deallocate the first indirect block and the last direct block (indirect addresses block).

Figure 7: Indirect last to direct

4 Extensions

4.1 Hardlinks and Symbolic Links

TODO

4.2 Special Devices

TODO

5 Testing

- We created our own test suite (vvsfs/vvsfs tests)
 - We used a test driven development methodology, where we would create tests for expected behaviour and build new features to make them pass.
 - Additionally we utilised this as a regression test suite to ensure that new code didn't break existing functionality. Furthermore, whenever we fixed problems that were discoved, we built a test to ensure that we didn't break it again.
 - The suite is composed of a set of helper scripts that provide automatic generation of a test environment, and an assertion framework to provide nice error messages.
- We used the pjdfstest filesystem test suite to check our implentation for POSIX compliance and various other edge cases. By the end we passed all tests with the following exceptions:
 - 1. The tests for large files (2gb) files.
 - 2. The filesystem does not keep track of the . & . . files in directories. As such, we failed the test that checks whether folder link counts are incremented correctly. We chose to ignore this due to a note posted by Alwen on the course Ed forum.
 - 3. The filesystem does not correctly update ctime on truncate. (TODO: Does anyone want to fix this?)
 - 4. The filesystem does not store high presision time, only seconds like minix & ext2. (TODO: Does anyone want to fix this?)

 $\bullet\,$ TODO: Should we discuss the rename bug?