第十章作业题解答

1.找一个半群,它有n个左单位元。

【解】
$$S = \{ \begin{bmatrix} ab \\ 00 \end{bmatrix} | a, b \in Z_n \}$$
, Z_n 是整数的模 n 同余类的集合。 $\forall b \in Z_n$, $\begin{bmatrix} 1 & b \\ 0 & 0 \end{bmatrix}$ 是

半群(S, \bullet)的左单位元,共有n个。

2.证明:有限半群中有一个元素 a 使得 $a \cdot a = a$ 。

【证明】假设(S,•)是一个有限半群,任取 $b \in S$,对于b, b^2 ,…, b^n ,…,必然存在j > i 使得 $b^i = b^j$,否则S为无限群。设j = i + k,则 $b^j = b^{i+k}$ 。容易验证 $\forall r \ge 0$, $b^j = b^{i+k}$ 。取 $r \notin rk \ge i$,则

(1)如果 rk = i , 则 $b^{rk} = b^{rk+rk} = b^{rk} \cdot b^{rk}$:

(2)如果rk > i,则 $b^{rk-i} \cdot b^i = b^{rk-i} \cdot b^{rk+i} = b^{2rk}$,即 $b^{rk} = b^{2rk} = b^{rk} \cdot b^{rk}$ 。

3.设 (S,\circ) 是一个半群, $a \in S$ 称为左消去元,如果 $\forall x, y \in S$,有 $a \circ x = a \circ y$,则一定有 x = y 。试证:如果 $a \cap b$ 均为左消去元,则 $a \circ b$ 也是左消去元。

【证明】 $\forall x, y \in S$, 如果 $(a \circ b) \circ x = (a \circ b) \circ y$, 则根据结合律有

 $a \circ (b \circ x) = a \circ (b \circ y)$,因为a是左消去元,所以 $b \circ x = b \circ y$,又因为b也是左消去元,故x = y,因此, $a \circ b$ 是左消去元。

4.设(M, $^{\circ}$,e)是一个幺半群, $a \in M$ 称为幂等元,如果 $a \circ a = a$ 。证明:如果 M 是可交换的幺半群,则 M 的所有幂等元之集是 M 的一个子幺半群。

【证明】设M的所有幂等元形成的集合为P, $\forall a,b \in P$,

因为 $(a \circ b) \circ (a \circ b) = (a \circ (b \circ a) \circ b) = (a \circ (a \circ b) \circ b) = (a \circ a) \circ (b \circ b) = a \circ b$,

所以 $a \circ b \in P$,说明。在P上是封闭的。又因为 $e \circ e = e$,所以 $e \in P$,因此, $P \not\in M$ 的一个子幺半群。

5.试证:两个半群同态的合成还是半群同态。

【证明】设(S_1 , \circ)、(S_2 ,*)、(S_3 , \bullet)是三个半群, φ_1 , φ_2 是 S_1 到 S_2 和 S_2 到 S_3 的同态,往证 $\varphi_2 \circ \varphi_1$ 是 S_1 到 S_3 的同态。 $\forall a,b \in S_1$,

 $\varphi_2 \circ \varphi_1(a \circ b) = \varphi_2(\varphi_1(a) * \varphi_1(b)) = \varphi_2(\varphi_1(a)) \bullet \varphi_2(\varphi_1(b)) = \varphi_2 \circ \varphi_1(a) \bullet \varphi_2 \circ \varphi_1(b)$,因此 $\varphi_2 \circ \varphi_1 \not\equiv S_1 \not\equiv S_3 \not\equiv S$

6.设 $S=\{a,b,c\}$, 。是 S 上的二元运算,且: $a\circ a=b$, $b\circ b=c$, $c\circ c=a$ 。问: (S,\circ) 能否构成一个半群?

【解】假设 (S, \circ) 能构成一个半群,则。运算在S上封闭且满足结合律,于是, $a \circ b = a \land a \circ b = b$ 和 $a \circ b = c$ 必有一个成立。

(1)如果 $a \circ b = a$,则左边同乘以 a 得 $a \circ (a \circ b) = a \circ a$,因为。满足结合律,所以 $(a \circ a) \circ b = b \circ b = c = a \circ a = b$,即 b = c,这是不可能的。

(2)如果 $a\circ b=b$,则右边同乘以 b 得 $(a\circ b)\circ b=b\circ b$,因为。满足结合律,所以 $a\circ (b\circ b)=a\circ c=b\circ b=c$,即 $a\circ c=c$,再在右边同乘以 c 得 $(a\circ c)\circ c=c\circ c$,从而有 $a\circ (c\circ c)=a\circ a=b=c\circ c=a$,即 b=a,这是不可能的。

(3)如果 $a\circ b=c$,则左边同乘以 a 得 $a\circ (a\circ b)=a\circ c$,因为。满足结合律,所以 $(a\circ a)\circ b=b\circ b=c=a\circ c$,即 $a\circ c=c$,再在右边同乘以 c 得 $(a\circ c)\circ c=c\circ c$,从而有 $a\circ (c\circ c)=a\circ a=b=c\circ c=a$,即 b=a,这是不可能的。

综上可知,。在S上不封闭或者。不满足结合律,即(S, \circ)不能构成一个半群。