03 Sets and Functions

CS201 Discrete Mathematics

Instructor: Shan Chen

Russell's Paradox

• Let $S = \{x \mid x \notin x\}$ be a set of sets that are not members of themselves.

Paradox:

- If P is a property, then the set { x | P(x) } exists (naive set theory): S must exist
- S ∈ S?
 S does not satisfy the property, so S ∉ S.
- S ∉ S?
 S is included in the set S, so S ∈ S.
- $S \in S \leftrightarrow S \notin S$: S does not exist

^{*} out of scope of this course

Bertrand Russell (1872-1970) Cambridge, UK Nobel Prize Winner

Sets

Sets

- A set is an unordered collection of objects. These objects are called elements or members.
- Two sets A, B are equal if and only if $\forall x \ (x \in A \leftrightarrow x \in B)$.
- Many discrete structures are built with sets:
 - Combinations (counting)
 - Relations
 - Graphs
 - •

Sets

- A set is an unordered collection of objects. These objects are called elements or members.
- Examples:
 - $S = \{2, 3, 5, 7\}$
 - $A = \{1, 2, 3, ..., 100\}$
 - $B = \{a \ge 2 \mid a \text{ is a prime}\}$
 - $C = \{2n \mid n = 0, 1, 2, \dots \}$
- Different ways to represent a set:
 - Listing (enumerating) the elements
 - Using ellipses "..." if enumeration is hard
 - Set builder: { x | x has property P } or { x | P(x) }

Important Sets

$$N = \{ 0, 1, 2, 3, \dots \}$$

$$Z = \{ ..., -2, -1, 0, 1, 2, ... \}$$

$$Z^+ = \{ 1, 2, 3, \dots \}$$

$$Q = \{ p/q \mid p, q \in Z, q \neq 0 \}$$

$$C = \{ a + bi \mid a, b \in R \}$$

Interval Notation

$$\circ [a, b] = \{ x \mid a \le x \le b \}$$

$$\circ$$
 [a, b) = { x | a \le x < b }

$$\circ$$
 (a, b] = { x | a < x \le b }

$$\circ$$
 (a, b) = { x | a < x < b }

Special Sets and Venn Diagrams

- Universal set: the set of all objects under consideration, denoted by U.
- Empty set: the set of no object, denoted by Ø or {}.
 - Note that Ø ≠ {Ø}

Sets can be visualized using Venn diagrams.

John Venn (1834-1923) Cambridge, UK

Subsets and Proper Subsets

- A set A is called a subset of B, denoted by $A \subseteq B$, if and only if every element of A is also an element of B: $\forall x \ (x \in A \rightarrow x \in B)$
- If $A \subseteq B$ but $A \ne B$, then we say A is a proper subset of B, denoted by $A \subset B$, i.e., $\forall x \ (x \in A \rightarrow x \in B) \land \exists x \ (x \in B \land x \notin A)$

Two sets are equal if and only if each is a subset of the other

$$A = B$$
 if and only if $A \subseteq B$ and $B \subseteq A$

$$\forall x \ (x \in A \leftrightarrow x \in B) \leftrightarrow (\forall x \ (x \in A \rightarrow x \in B) \land \forall x \ (x \in B \rightarrow x \in A))$$

Subset Properties

- Theorem: Ø ⊆ S
- Proof: By definition, we need to prove $\forall x (x \in \emptyset \rightarrow x \in S)$. Since \emptyset does not contain any element, $x \in \emptyset$ is always false. Then the implication is always true. * vacuous proof

- \circ Theorem: $S \subseteq S$
- Proof: By definition, we need to prove $\forall x (x \in S \rightarrow x \in S)$, which is obviously true.

Set Operations

• **Union:** The union of sets A and B, denoted by $A \cup B$, is the set $\{x \mid x \in A \lor x \in B\}$.

• **Intersection:** The intersection of sets A and B, denoted by $A \cap B$, is the set $\{x \mid x \in A \land x \in B\}$. Two sets A and B are called disjoint if their intersection is empty, i.e., $A \cap B = \emptyset$.

Set Operations

○ **Difference:** The difference of sets A and B, denoted by A - B, is the set that contains all the elements of A that are not in B, i.e., $A - B = \{x \mid x \in A \land x \notin B\}$.

○ **Complement:** The complement of set A (w.r.t. universal set U), denoted by \bar{A} is the set U - A, i.e., $\bar{A} = \{x \in U \mid x \notin A\}$.

Exercise (1 min)

- Let U = { 0, 1, ..., 10 }, A = { 1, 2, 3, 4, 5 }, B = { 4, 5, 6, 7, 8 }.
 Compute the following:
- o A U B
- $\circ A \cap B$
- o Ā
- OB
- 0 A B
- $\circ B A$

Exercise (1 min)

Let U = { 0, 1, ..., 10 }, A = { 1, 2, 3, 4, 5 }, B = { 4, 5, 6, 7, 8 }.
 Compute the following:

$$\circ A \cap B$$

$$\circ A - B$$

Union and Intersection (Generalized)

- The union of a collection of sets: the set that contains those elements that are members of at least one set in the collection: $\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \cdots \cup A_n.$
- The intersection of a collection of sets: the set that contains those elements that are members of all sets in the collection:

$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \cdots \cap A_n.$$

Set Identities

- Identity laws
 - $A \cup \emptyset = A$
 - $A \cap U = A$
- Domination laws
 - $A \cup U = U$
 - $A \cap \emptyset = \emptyset$
- Idempotent laws
 - $A \cup A = A$
 - $A \cap A = A$

- Commutative laws
 - $A \cup B = B \cup A$
 - $A \cap B = B \cap A$
- Associative laws
 - $A \cup (B \cup C) = (A \cup B) \cup C$
 - $A \cap (B \cap C) = (A \cap B) \cap C$
- Distributive laws
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Set Identities

- Absorption laws
 - $A \cup (A \cap B) = A$
 - $A \cap (A \cup B) = A$
- Complement laws
 - $A \cup \bar{A} = U$
 - $A \cap \bar{A} = \emptyset$

De Morgan's laws

•
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

•
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

Complementation laws

•
$$\bar{\bar{A}} = A$$

How do we prove these laws?

Let's see the first De Morgan's law for example...

Proofs of $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Using membership tables: * requires tedious calculations

Α	В	Ā	\overline{B}	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0	0	0
1	0	0	1	1	1
0	1	1	0	1	1
0	0	1	1	1	1

Proofs of $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Using set builder notation and logical equivalences:

$$\overline{A \cap B} = \{x \mid x \in \overline{A \cap B}\}$$
 Definition
$$= \{x \mid x \notin A \cap B\}$$
 Definition of complement
$$= \{x \mid \neg (x \in (A \cap B))\}$$
 Definition
$$= \{x \mid \neg (x \in A \land x \in B)\}$$
 Definition of intersection
$$= \{x \mid \neg (x \in A) \lor \neg (x \in B)\}$$
 Definition
$$= \{x \mid x \notin A \lor x \notin B\}$$
 Definition
$$= \{x \mid x \in \overline{A} \lor x \in \overline{B}\}$$
 Definition of complement
$$= \{x \mid x \in \overline{A} \lor \overline{B}\}$$
 Definition of union
$$= \overline{A} \cup \overline{B}$$
 Definition

- Using logical equivalence without set builders: * less elegant
 - Prove $\forall x(x \in \overline{A \cap B} \leftrightarrow x \in \overline{A} \cup \overline{B})$ is a tautology. * see textbook

Cardinality

- Let S be a set. If there are exactly n distinct elements in S, where
 n is a nonnegative integer, we say that S is a finite set and n is
 the cardinality of S, denoted by |S|.
- A set S is infinite if it is not finite.
- Examples:

•
$$A = \{ 1, 2, 3, ..., 20 \}$$
 $|A| = 20$

•
$$B = \{ 1, 2, 3, ... \}$$
 infinite

•
$$\varnothing$$

- Cardinality of the union: $|A \cup B| = |A| + |B| |A \cap B|$
 - |A ∩ B| counted twice in |A| + |B|
 - Known as the inclusion-exclusion principle for 2 sets

Tuples

- An *n*-tuple $(a_1, a_2, ..., a_n)$ is an ordered collection that has a_1 as its first element, a_2 as its second element, and so on, until a_n as its last element.
- Example: coordinates of a point in the 2-D plane are 2-tuples

Cartesian Product

• Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all 2-tuples (a, b), for $a \in A$ and $b \in B$:

$$A \times B = \{ (a, b) | a \in A \land b \in B \}$$

- Example: A = { 1, 2 }, B = { a, b, c }
 - $A \times B = \{ (1, a), (1, b), (1, c), (2, a), (2, b), (2, c) \}$

- Properties:
 - $A \times B \neq B \times A$ * order matters
 - $|A \times B| = |A| \times |B|$ if A, B are finite sets

Cartesian Product (Generalized)

• In general, the Cartesian product of sets A_1 , A_2 , ..., A_n , denoted by $A_1 \times A_2 \times ... \times A_n$, is defined as:

$$A_1 \times A_2 \times \cdots \times A_n = \{ (a_1, a_2, ..., a_n) \mid a_i \in A_i \text{ for } i = 1, 2, ..., n \}$$

- Example: $A = \{0, 1\}, B = \{1, 2\}, C = \{0, 1, 2\}$
 - $A \times B \times C = \{ (0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0)$ $(1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2) \}$

Power Sets

- Given a set S, the power set of S is the set of all subsets of the set S, denoted by $\mathcal{P}(S)$.
- Examples:

•
$$\varnothing$$
 $\mathscr{P}(\varnothing) = \{\varnothing\}$

•
$$\{1\}$$
 $\mathcal{P}(\{1\}) = \{\emptyset, \{1\}\}$

•
$$\{1, 2\}$$
 $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$

•
$$\{1, 2, 3\}$$
 $\mathcal{P}(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, \{1,2,3\}\}$

- If S is a set with |S| = n, then $|\mathcal{P}(S)| = ?$
 - $|\mathcal{P}(S)| = 2^n$ Hint: each element is either in the subset or not in it

Computer Representation of Sets

- Question: How to represent sets in a computer?
 - Naive solution: explicitly store the elements of a set in a list
 - **Better solution:** (to store many sets w.r.t. the same universal set) assign a bit in a bit string to each element in the universal set and set the bit to 1 if the element is in the set and set it to 0 if otherwise
- Example: $U = \{ 1, 2, 3, 4, 5 \}, A = \{ 2, 5 \}, B = \{ 1, 5 \}$
 - Sets as bit strings: A = 01001, B = 10001
 - Union: $A \text{ or } B = 11001 = \{ 1, 2, 5 \}$
 - Intersection: A and B = 00001 = { 5 }
 - Complement: A xor 111111 = 10110 = { 1, 3, 4 }

^{*} set operations converted to bitwise operations of Boolean algebra

Functions

Functions

- Let A and B be two sets. A function from A to B, denoted by $f: A \rightarrow B$, is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.
 - Also called a mapping or transformation.

Representing Functions

- \circ Representing functions $f: A \to B$:
 - explicitly state the assignments between elements from A to B
 - use a formula

• Examples:

```
    A = {1, 2, 3}, B = {a, b, c}
    f is defined as 1 → c, 2 → a, 3 → c. Is f a function?
    Yes
    g is defined as 1 → c, 1 → b, 2 → a, 3 → c. Is g a function?
    No
```


Important Sets of Functions

- Let f be a function from A to B. We say that A is the domain of f and B is the codomain of f. If f(a) = b, b is called the image of a and a is a preimage of b. The range of f is the set of all images of elements of A, denoted by f(A). We also say f maps A to B.
- \circ Example: $f: \{1, 2, 3\} \rightarrow \{a, b, c\}$ shown in the following figure
 - the image of 1 is c
 - 2 is a preimage of a
 - the domain of *f* is {1, 2, 3}
 - the codomain of f is {a, b, c}
 - the range of *f* is {*a*, *c*}

Image of a Subset

○ For a function $f: A \to B$ and $S \subseteq A$, the image of S is a subset of B that consists of the images of elements in S, denoted by f(S), i.e., $f(S) = \{ f(x) \mid x \in S \}$.

- \circ Example: Let $S = \{1, 3\}$, what is f(S)?
 - $f(S) = \{c\}$

Injective (One-to-One) Functions

- A function f is called one-to-one or injective, if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. In this case, f is called an injection.
- Alternatively: A function is one-to-one or injective if and only if $x \neq y$ implies $f(x) \neq f(y)$. * contrapositive!

Not injective

Injective function

Injective (One-to-One) Functions

• Examples:

- Let f: {1, 2, 3} → {a, b, c}, where 1 → c, 2 → a, 3 → c. Is f injective?
 No
- Let $g: \mathbb{Z} \to \mathbb{Z}$, where g(x) = 2x 1. Is g one-to-one? **Yes**
- Let $h: \mathbb{Z} \to \mathbb{Z}$, where $h(x) = x^2 + 1$. Is h injective? No

Surjective (Onto) Functions

- A function f is called onto or surjective, if and only if for every b ∈ B there is an element a ∈ A such that f(a) = b.
 In this case, f is called a surjection.
- Alternatively: A function is onto or surjective if and only if all codomain elements are covered, i.e., f(A) = B.

Surjective (Onto) Functions

• Examples:

- Let f: {1, 2, 3} → {a, b, c}, where 1 → c, 2 → a, 3 → c. Is f onto?
 No
- Let $g: \mathbb{Z} \to \mathbb{Z}$, where g(x) = 2x 1. Is g surjective? **No**
- Let $h: \{1, 2, 3, 4\} \rightarrow \{0, 1, 2\}$, where $h(x) = x \mod 3$. Is h onto? **Yes**

Bijective Functions

- A function f is called bijective, if and only if it is both one-to-one and onto, i.e., both injective and surjective.
 In this case, f is called a bijection.
 - Also known as a one-to-one correspondence.

Bijective Functions

• Examples:

- Let f: {1, 2, 3} → {a, b, c}, where 1 → c, 2 → a, 3 → b. Is f bijective?
 Yes
- Let g: N → N, where g(x) = [x/2] (floor function). Is g bijective?
 No (not injective)
- The identity function on set A is the function $I_A : A \rightarrow A$ such that $I_A(a) = a$ for all $a \in A$, i.e., it assigns each element to itself. Identity functions are bijective functions.

Relevant Proof Strategy

 \circ Consider a function $f: A \to B$.

To show that f is injective (one-to-one)	Show that for all $x, y \in A$ if $x \neq y$ then $f(x) \neq f(y)$
To show that f is not injective	Find specific $x, y \in A$ such that $x \neq y$ and $f(x) = f(y)$
To show that f is surjective (onto)	Show that for all $y \in B$ there exists $x \in A$ such that $f(x) = y$
To show that f is not surjective	Find a specific $y \in B$ such that $f(x) \neq y$ for all $x \in A$

Exercise (3 mins)

○ **Theorem:** For an arbitrary function $f: A \rightarrow B$ with |A| = |B| = n, f is one-to-one if and only if f is onto. Hint: prove "if" and "only if"

To show that f is injective (one-to-one)	Show that for all $x, y \in A$ if $x \neq y$ then $f(x) \neq f(y)$
To show that f is not injective	Find specific $x, y \in A$ such that $x \neq y$ and $f(x) = f(y)$
To show that f is surjective (onto)	Show that for all $y \in B$ there exists $x \in A$ such that $f(x) = y$
To show that f is not surjective	Find a specific $y \in B$ such that $f(x) \neq y$ for all $x \in A$

Exercise (3 mins)

• Theorem: For an arbitrary function f: A → B with |A| = |B| = n, f is one-to-one if and only if f is onto. Hint: prove "if" and "only if"

• Proof:

"only if" part:

Suppose that f is one-to-one. Let's do direct proof. Let $\{x_1, x_2, ..., x_n\}$ be the n elements of A. Then since f is one-to-one, $f(x_i) \neq f(x_j)$ for $i \neq j$. Therefore, $|f(A)| = |\{f(x_1), ..., f(x_n)\}| = n$. Since |B| = n and $f(A) \subseteq B$, we have f(A) = B.

• "if" part:

Suppose that f is onto. Let's use proof by contradiction. Let $A = \{x_1, x_2, ..., x_n\}$. If f is not injective, then there exist $x_i \neq x_j$ such that $f(x_i) = f(x_j)$. Then, $|f(A)| = |f(x_1), ..., f(x_n)| | \leq n - 1$. However, this contradicts with "f is onto" (i.e., f(A) = B, which implies |f(A)| = |B| = n). Therefore, f is one-to-one.

Note

- Claim: For an arbitrary function f: A → A, f is one-to-one if and only if f is onto. * what about this claim? still true?
- No! Set A must be finite for the above Claim to be true.
 - Counterexample: $f: N \to N$, f(x) = 2x. Here f is one-to-one but not onto, e.g., 1 has no preimage.

Operations of Real-Valued Functions

• Let f_1 and f_2 be functions from A to R. Their sum $f_1 + f_2$ and product f_1f_2 are also functions from A to R defined for all $x \in A$:

•
$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

- $(f_1f_2)(x) = f_1(x)f_2(x)$
- Example: $f_1 = x 1$, $f_2 = x^3 + 1$

•
$$(f_1 + f_2)(x) = (x - 1) + (x^3 + 1) = x^3 + x$$

•
$$(f_1f_2)(x) = (x-1)(x^3+1) = x^4-x^3+x-1$$

○ Let $f: A \to B$ be a bijection. The inverse of f is the function that assigns to $b \in B$ the unique element $a \in A$ such that f(a) = b, denoted by f^{-1} . Hence, $f^{-1}(b) = a$ when f(a) = b. In this case, f is called invertible.

- Theorem: If f is not a bijection, then it is impossible to define the inverse function of f.
- Proof by cases:
 - Case 1: f is not injective

The inverse is not a function: at least one element of *B* is mapped to two different elements of *A*

- **Theorem:** If *f* is not a bijection, then it is impossible to define the inverse function of *f*.
- Proof by cases:
 - Case 2: f is not surjective

The inverse is not a function: at least one element of *B* is not mapped to any element of A

- Example 1:
 - $f: \mathbb{R} \to \mathbb{R}$, where f(x) = 2x 1
 - What is the inverse function f^{-1} ?

$$f^{-1}(x) = (x + 1)/2$$

- Example 2:
 - $f: \mathbb{Z} \to \mathbb{Z}$, where f(x) = 2x 1
 - Is f invertible?

No, because *f* is not onto, e.g., 2 has no preimage.

Composition of Functions

○ Consider two functions $f: B \to C$ and $g: A \to B$. The composition of the functions f and g, denoted by $f \circ g$, is defined as $(f \circ g)(x) = f(g(x))$.

Composition of Functions

- Example 1: $A = \{1, 2, 3\}$ and $B = \{a, b, c, d\}$
 - $f: A \rightarrow B$ where $1 \mapsto b$, $2 \mapsto a$, $3 \mapsto d$
 - $g: A \rightarrow A$ where $1 \mapsto 3$, $2 \mapsto 1$, $3 \mapsto 2$
 - What is f ∘ g?
 f ∘ g : A → B where 1 ↦ d, 2 ↦ b, 3 ↦ a
- Example 2:
 - $f: \mathbb{Z} \to \mathbb{Z}$ where f(x) = 2x
 - $g: \mathbb{Z} \to \mathbb{Z}$ where $g(x) = x^2$
 - What are $f \circ g$ and $g \circ f$?

$$(f \circ g)(x) = 2x^2$$
 $(g \circ f)(x) = 4x^2$ * order of composition matters

Composition of Functions

Theorem: Suppose f is a bijection from A to B and let I_A and I_B respectively denote the identity functions on the sets A and B. Then,

•
$$f^{-1} \circ f = I_A$$

•
$$f \circ f^{-1} = I_{B}$$

 \circ Proof: Consider any a, b such that f(a) = b

•
$$(f^{-1} \circ f)(a) = f^{-1}(f(a)) = f^{-1}(b) = a$$

•
$$(f \circ f^{-1})(b) = f(f^{-1}(b)) = f(a) = b$$

Some Important Functions

- The floor function assigns a real number x the largest integer that is ≤ x, denoted by [x].
- The ceiling function assigns a real number x the smallest integer that is ≥ x, denoted by [x].
- The factorial function f
 assigns a non-negative
 integer the product of the
 first n positive integers,
 denoted by f(n) = n!.
 - 0! = 1!/1 = 1

TABLE 1 Useful Properties of the Floor and Ceiling Functions.

(n is an integer, x is a real number)

(1a)
$$\lfloor x \rfloor = n$$
 if and only if $n \le x < n + 1$

(1b)
$$\lceil x \rceil = n$$
 if and only if $n - 1 < x \le n$

(1c)
$$\lfloor x \rfloor = n$$
 if and only if $x - 1 < n \le x$

(1d)
$$\lceil x \rceil = n$$
 if and only if $x \le n < x + 1$

(2)
$$x-1 < |x| \le x \le \lceil x \rceil < x+1$$

(3a)
$$\lfloor -x \rfloor = -\lceil x \rceil$$

(3b)
$$[-x] = -\lfloor x \rfloor$$

$$(4a) \quad \lfloor x + n \rfloor = \lfloor x \rfloor + n$$

(4b)
$$\lceil x + n \rceil = \lceil x \rceil + n$$

Exercise (3 mins)

• Theorem: If x is a real number, then $\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + 1/2 \rfloor$. Hint: notice that $x = \lfloor x \rfloor + y$ for $0 \le y < 1$ and prove it by cases

TABLE 1 Useful Properties of the Floor and Ceiling Functions.

(n is an integer, x is a real number)

(1a)
$$\lfloor x \rfloor = n$$
 if and only if $n \le x < n+1$

(1b)
$$\lceil x \rceil = n$$
 if and only if $n - 1 < x \le n$

(1c)
$$\lfloor x \rfloor = n$$
 if and only if $x - 1 < n \le x$

(1d)
$$\lceil x \rceil = n$$
 if and only if $x \le n < x + 1$

(2)
$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

(3a)
$$\lfloor -x \rfloor = -\lceil x \rceil$$

(3b)
$$[-x] = -\lfloor x \rfloor$$

$$(4a) \quad \lfloor x + n \rfloor = \lfloor x \rfloor + n$$

(4b)
$$\lceil x + n \rceil = \lceil x \rceil + n$$

Exercise (3 mins)

- **Theorem:** If x is a real number, then $\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + 1/2 \rfloor$. Hint: notice that $x = \lfloor x \rfloor + y$ for $0 \le y < 1$ and prove it by cases
- Proof by cases:
 - By definition of floor function, $x = \lfloor x \rfloor + y$ where $0 \le y < 1$.
 - Case 1: $0 \le y < 1/2$

We have
$$0 \le 2y < 1$$
 and $0 \le y + 1/2 < 1$, so $\lfloor 2x \rfloor = \lfloor 2\lfloor x \rfloor + 2y \rfloor = 2\lfloor x \rfloor + \lfloor 2y \rfloor = 2\lfloor x \rfloor$ $\lfloor x + 1/2 \rfloor = \lfloor \lfloor x \rfloor + y + 1/2 \rfloor = \lfloor x \rfloor + \lfloor y + 1/2 \rfloor = \lfloor x \rfloor$

• Case 2: $1/2 \le y < 1$

We have
$$1 \le 2y < 2$$
 and $1 \le y + 1/2 < 2$, so $\lfloor 2x \rfloor = \lfloor 2\lfloor x \rfloor + 2y \rfloor = 2\lfloor x \rfloor + \lfloor 2y \rfloor = 2\lfloor x \rfloor + 1$ $\lfloor x + 1/2 \rfloor = \lfloor \lfloor x \rfloor + y + 1/2 \rfloor = \lfloor x \rfloor + \lfloor y + 1/2 \rfloor = \lfloor x \rfloor + 1$

Sequences and Summations

Sequences

 A sequence is a function from a subset of the set of integers (usually {0, 1, 2,} or {1, 2, 3,}) to a set S.

Notations:

- a_n denotes the image of the integer n
- {a_n} denotes the sequence a₀, a₁, a₂, ... or a₁, a₂, a₃, ...
 * note that here {a_n} is not a set!

Defining Sequences

 A sequence {a_n} can be defined by providing explicit formulas for their terms, also called closed formulas.

• Examples:

- $a_n = n^2$, where n = 1, 2, 3, ...
- $a_n = (-1)^n$, where n = 0, 1, 2, ...
- Alternatively, the n-th element a_n can be defined recursively in terms of one or more previous elements. Such a recurrence relation together with initial conditions defines sequence $\{a_n\}$.

• Examples:

- $a_n = a_{n-1} + 2$ for $n \ge 1$ and $a_0 = 1$
- $f_n = f_{n-1} + f_{n-2}$ for $n \ge 2$ and $f_0 = 0$, $f_1 = 1$ * Fibonacci sequence

Arithmetic/Geometric Progression

- Arithmetic progression: a sequence of the form
 - a, a + d, a + 2d, ..., a + nd, ...

where the initial term a and common difference d are real numbers.

- ° Example: $a_n = -1 + 4n$, where n = 0, 1, 2, 3, ...
- **Geometric progression:** a sequence of the form $a, ar, ar^2, ..., ar^n, ...$

where the initial term a and common ratio r are real numbers.

O Example: $a_n = 3 \cdot (\frac{1}{2})^n$, where n = 0, 1, 2, 3, ...

Summations

The summation of terms of a sequence is denoted by

$$\sum_{j=m}^{n} a_j = a_m + a_{m+1} + \dots + a_n$$

- The variable j is referred to as the index of summation and the choice of the letter j is arbitrary.
 - m is the lower limit of the summation
 - *n* is the upper limit of the summation
- Useful summation identities:

$$\sum_{j=m}^{n} (ax_j + by_j) = a \sum_{j=m}^{n} x_j + b \sum_{j=m}^{n} y_j \qquad \sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_j = \sum_{i=1}^{m} a_i \sum_{j=1}^{n} b_j = \sum_{j=1}^{n} b_j \sum_{i=1}^{m} a_i$$

Summations

• The sum from the *0-th* term to the *n-th* term of the arithmetic progression a, a + d, a + 2d, ..., a + nd is

$$\sum_{j=0}^{n} (a+jd) = (n+1)a + d\sum_{j=0}^{n} j = (n+1)a + d\frac{n(n+1)}{2}$$

• The sum from the 0-th term to the n-th term of of the geometric progression $a, ar, ar^2, ..., ar^n$ is

$$\sum_{j=0}^{n} (ar^{j}) = a \sum_{j=0}^{n} r^{j} = a \frac{r^{n+1} - 1}{r - 1}$$

What about the sum from the m-th term to the n-th term?

Summations

• The sum from the m-th term to the n-th term of the arithmetic progression a + md, a + (m + 1)d, ..., a + nd is

$$\sum_{j=m}^{n} (a+jd) = (n-m+1)a + d\frac{(m+n)(n-m+1)}{2}$$

• The sum from the m-th term to the n-th term of the geometric progression $ar^m, ar^{m+1}, \dots, ar^n$ is

$$\sum_{j=m}^{n} (ar^{j}) = a \sum_{j=m}^{n} r^{j} = a \frac{r^{n+1} - r^{m}}{r - 1}$$

Hint: can be proved directly or using $\sum_{j=m}^{n} = \sum_{j=0}^{n} - \sum_{j=0}^{m-1}$

Exercise (2 mins)

Calculate the following summations:

$$\sum_{j=m}^{n} (a+jd) = (n-m+1)a + d\frac{(m+n)(n-m+1)}{2} \qquad \sum_{j=m}^{n} (ar^{j}) = a\frac{r^{n+1} - r^{m}}{r-1}$$

Exercise (2 mins)

Calculate the following summations:

$$\diamond S = \sum_{i=1}^{4} \sum_{j=1}^{2} (2i - j)$$
 28

$$\diamond S = \sum_{j=0}^{3} 2(5)^{j}$$
 312

$$\diamond S = \sum_{i=1}^{4} \sum_{j=1}^{3} ij$$
 60

$$\sum_{j=m}^{n} (a+jd) = (n-m+1)a + d\frac{(m+n)(n-m+1)}{2} \qquad \sum_{j=m}^{n} (ar^{j}) = a\frac{r^{n+1} - r^{m}}{r-1}$$

Infinite Series

• An infinite geometric series can be computed in the closed form for |x| < 1.

$$\sum_{k=0}^{\infty} x^k = \lim_{n \to \infty} \sum_{k=0}^{n} x^k = \lim_{n \to \infty} \frac{x^{n+1} - 1}{x - 1} = \frac{0 - 1}{x - 1} = \frac{1}{1 - x}$$

Oifferentiating the above formula on both sides:

$$\sum_{k=0}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2}$$

* proved true for |x| < 1 by a calculus theorem about infinite series

Proof without calculus:

Let
$$S_n = 1 + 2x + ... + nx^{n-1}$$

 $(1 - x)S_n = S_n - xS_n = 1 + x + ... + x^{n-1} - nx^n = (1 - x^n)/(1 - x) - nx^n$
 $S_n = (1 - x^n)/(1 - x)^2 - nx^n/(1 - x) \rightarrow 1/(1 - x)^2$ (if $n \rightarrow \infty$) * L'Hôpital's

Useful Summation Formulas

TABLE 2 Some Useful Summation Formulae.		
Sum	Closed Form	
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$	
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$	
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$	
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$	
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$	
$\sum_{k=1}^{\infty} kx^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$	

Cardinality of Infinite Sets

Cardinality of Sets

- Recall that the cardinality of a finite set S is defined by the number of the elements in S, denoted by |S|.
- **Definition:** Sets A and B have the same cardinality if there is a one-to-one correspondence (bijection) between A and B, denoted by |A| = |B|.
 - Cardinality of infinite sets may be counter-intuitive, e.g., |N| = |Z|.
- **Definition:** If there exists a one-to-one (injective) function from A to B, then we say the cardinality of A is less than or equal to the cardinality of B, denoted by $|A| \le |B|$. Moreover, if $|A| \le |B|$ and A and B have different cardinalities, we say that the cardinality of A is less than the cardinality of B, denoted by |A| < |B|.

Schröder-Bernstein Theorem

- **Theorem:** If A and B are sets with $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|. That is, if there are injective functions $f: A \to B$ and $g: B \to A$, then there exists a bijective function between A and B. (Note that sets A and B can be infinite.)
 - The proof is tricky and complicated so omitted here, but you can refer to the textbook [Exercise 41, page 187] if you are interested.
- \circ Example of its application: show that |(0, 1)| = |(0, 1)|
 - Proof:

Construct two one-to-one functions:

```
f: (0, 1) \to (0, 1], f(x) = x * this means | (0, 1) | \le | (0, 1] |
g: (0, 1] \to (0, 1), g(x) = x/2 * this means | (0, 1) | \le | (0, 1) |
```


Countable and Uncountable Sets

- Definition: A set that either is finite or has the same cardinality as Z+ is called countable, otherwise, it is called uncountable.
 - A countable set S can be infinite, but there must exist a bijection between Z+ and S.
- Intuitively, the cardinality of a countable set is less than that of any uncountable set. * formal proof requires the axiom of choice
- Why the name "countable"?
 - All elements in the countable set can be enumerated and listed just like listing positive numbers 1, 2, 3, ...
 - There exists a list that can count any element in a countable set within finite steps.

Hilbert's Grand Hotel

- The Grand Hotel has countably infinite number of rooms, with each room occupied by a guest. We can always accommodate a new guest at this hotel.
 - This seems impossible because all rooms are already occupied.
 How can we accommodate the new guest?

Actually, you can even accommodate countably many new guests.
 How? * this is left as an assignment problem

- Example: $A = \{0, 2, 4, 6, ...\}$ * is this set countable?
 - (By definition) Is there a bijection between Z+ and A?
- Proof:
 - Define a function $f: \mathbb{Z}^+ \to A$, where $x \mapsto 2x 2$.
 - Show f is a bijection!
 - **one-to-one:** if f(x) = 2x 2 = 2y 2 = f(y), then x = y
 - onto: $\forall x \in A$, it has a preimage (x + 2)/2 in **Z**+
 - Therefore, A is countable.

- Theorem: "The set of integers Z is countable."
- Proof:
 - (Directly) List a sequence: 0, 1, -1, 2, -2, 3, -3, ...
 - (Alternatively) Define a bijection from Z+ to Z:

```
when n is even: f(n) = n/2
```

when *n* is odd: f(n) = -(n - 1)/2

- Theorem: "The set of rational numbers is countable."
- \circ Proof: (rational numbers are of the form p/q)
 - List all positive rational numbers:
 - 1. list p/q with p + q = 2
 - 2. list p/q with p + q = 31/2, 2/1
 - 3. list p/q with p + q = 43/1, $\frac{2}{2}$, 1/3

. . .

- Skip repeated (uncircled) numbers
- Add 0 and negative numbers to the list

 Theorem: "The set of finite strings S over a finite alphabet A is countable."

• Proof:

- Define your favorite alphabetical order for symbols in A
- We show that the finite strings in S can be listed in a sequence:
 - 1. list all the strings of length 0 in alphabetical order
 - 2. list all the strings of length 1 in alphabetical order
 - 3. list all the strings of length 2 in alphabetical order

. . .

• This implies a bijection from Z+ to S.

Exercise (3 mins)

Theorem: "The set of all Java programs is countable."

- Theorem: "The set of finite strings S over a finite alphabet A is countable."
- Proof:
 - Define your favorite alphabetical order for symbols in A
 - We show that the finite strings in S can be listed in a sequence:
 - 1. list all the strings of length 0 in alphabetical order
 - 2. list all the strings of length 1 in alphabetical order
 - 3. list all the strings of length 2 in alphabetical order

...

This implies a bijection from Z+ to S.

Exercise (3 mins)

Theorem: "The set of all Java programs is countable."

• Proof:

- Let S be the set of finite strings constructed from the finite alphabet that consists of all characters that may appear in a Java program.
 Define any alphabetical order for such characters. Then, as proved in the previous theorem, we can enumerate strings in S.
- For each enumerated string s, do the following:
 - feed s into a Java compiler
 - if the complier says YES (i.e., s is a syntactically correct Java program), we add s to the list, otherwise, skip it
 - move on to the next string
- This implies a bijection from Z+ to the set of all Java programs.

Uncountable Sets

- Theorem: "The set of real numbers R is uncountable."
- Proof by contradiction: (Cantor's diagonal argument)
 - Assume that *R* is countable.
 Then, every subset of *R* is countable (why?). In particular, interval [0, 1] is countable. This implies that there exists a list r₁, r₂, r₃, ... that can enumerate all elements in this set, where

```
r_1 = 0.d_{11}d_{12}d_{13}d_{14} \cdots
r_2 = 0.d_{21}d_{22}d_{23}d_{24} \cdots
r_3 = 0.d_{31}d_{32}d_{33}d_{34} \cdots
...

with d_{ij} \in \{0, 1, 2, ..., 9\} * note that 1 = 0.9999999\cdots
```

Construct a real number r that is not included in the above list:

$$r = 0.d_1d_2d_3d_4 \cdots$$
 where $d_i \neq d_{ii}$

Exercise (3 mins)

• **Theorem:** "The power set $\mathcal{P}(N)$ is uncountable."

Recall that $\mathcal{P}(\mathbf{N})$ contains all subsets of \mathbf{N}

- Theorem: "The set of real numbers R is uncountable."
- Proof by contradiction: (Cantor's diagonal argument)
 - Assume that **R** is countable. Then every subset of **R** is countable, in particular, the interval [0, 1] is countable. This implies that there exists a list r_1 , r_2 , r_3 , ... that can enumerate all elements of this set, where

```
r_1 = 0.d_{11}d_{12}d_{13}d_{14} \cdots
r_2 = 0.d_{21}d_{22}d_{23}d_{24} \cdots
r_3 = 0.d_{31}d_{32}d_{33}d_{34} \cdots
...
with d_{ij} \in \{0, 1, 2, ..., 9\}
Note that 1 = 0.9999999 \cdots
```

Construct a real number r that is not included in the above list:

```
r = 0.d_1d_2d_3d_4 \cdots where d_i \neq d_{ii}
```


Exercise (3 mins)

- **Theorem:** "The power set $\mathcal{P}(N)$ is uncountable."
- Proof by contradiction: (Cantor's diagonal argument)
 - Assume that $\mathcal{P}(N)$ is countable. This means that all elements of this set can be listed as S_0 , S_1 , S_2 , ..., where $S_i \in \mathcal{P}(N)$. Then, each $S_i \subseteq N$ can be represented by a bit string $b_{i0}b_{i1}b_{i2}\cdots$, where $b_{ij}=1$ if $j \in S_i$ and $b_{ij}=0$ if $j \notin S_i$:

```
S_0 = b_{00}b_{01}b_{02}b_{03} \cdots
S_1 = b_{10}b_{11}b_{12}b_{13} \cdots
S_2 = b_{20}b_{21}b_{22}b_{23} \cdots
with b_{ij} \in \{0, 1\} for i, j \in N
```

• Construct a set $S \in \mathcal{P}(N)$ that is not included in the above list:

$$S = b_0 b_1 b_2 b_3 \cdots$$
 where $b_i \neq b_{ii}$

Computable vs Uncomputable

- Definition: We say that a function is computable if there is a computer program in some programming language that finds the values of this function. If a function is not computable, we say it is uncomputable.
- Theorem: "There exist uncomputable functions." * very cool!
- Proof sketch:
 - Part 1: The set of all computer programs in all programming languages is countable. * why?
 - Part 2: The set of all functions from **Z**+ to {0, 1, ..., 9} is uncountable. * why?
 - Conclusion: there exists a function f*: Z+ → {0, 1, ..., 9} that cannot be computed by any computer program, i.e., f* is uncomputable. * proof by contradiction

The Continuum Hypothesis

- We know that $|N| < |\mathcal{P}(N)|$, because $|N| \le |\mathcal{P}(N)|$, N is countable while $\mathcal{P}(N)$ is uncountable.
 - Cantor's theorem: $|S| < |\mathcal{P}(S)|$ holds for any set S
- \circ **Q:** Is there a set A such that $|N| < |A| < |\mathcal{P}(N)|$?
- Continuum hypothesis: The above set A does not exist!
 - This is a very important open problem in mathematics.

04 Complexity of Algorithms

To be continued...

Assignment 2 and Quizzes

- Deadline for Assignment 2: Oct 25
- Quiz 1 will take place in class on Oct 12 and it captures materials from 02 Logic and Proofs to 03 Sets and Functions.
- We will have 2 open-book quizzes in total for this course:
 - 3~6 questions in ~20 minutes for each quiz.
 - Must attend the quizzes in person.
 - Please bring several pieces of paper to write your answers on.
 - No electronic device is allowed during the quiz.
 - After quiz, please take photos of your quiz answers and submit to Blackboard (you will have ~5 minutes after quiz to do this).

