ACH 2147 — Desenvolvimento de Sistemas de Informação Distribuídos

Aula 04: Arquiteturas (02)

Prof. Renan Alves

Escola de Artes, Ciências e Humanidades — EACH — USP

08/03/2024

Arquiteturas Middleware e sistemas distribuídos

Middleware: o SO dos sistemas distribuídos

Paralelo com SO:

- Gerenciador de recursos: comunicação entre aplicações, serviços de segurança, mascaramento e recuperação de falhas
- Contém componentes e funções comumente utilizados que não precisam ser implementados separadamente pelas aplicações.

Usando componentes legados para construir um middleware

Premissa

Construção de um sistema a partir da junção de componentes pré-existentes.

Problema

As interfaces oferecidas por um componente legado provavelmente não são adequadas para todas as aplicações.

Solução

Um wrapper ou adaptador oferece uma interface compreensível pela aplicação cliente. Suas funções são transformadas nas disponíveis no componente.

Exemplo

Usar uma "casca" RESTful

Organizando wrappers

Duas soluções: 1-para-1 ou através de um broker

Complexidade com *N* aplicações/componentes

- 1-para-1: requer $N \times (N-1) = \mathcal{O}(N^2)$ wrappers
- broker: requer $2N = \mathcal{O}(N)$ wrappers

Middleware e sistemas distribuídos

Desenvolvendo middleware com interceptadores

Interceptador

- Elemento de software introduzido no fluxo de execução de um programa
- Permite alteração do comportamento
- Ferramenta que pode permitir agregar funcionalidades sem modificar direramente o middleware

Organização do middleware 08/03/2024 5 /

Interceptar o fluxo de controle usual

Arquiteturas Middleware e sistemas distribuídos

Interceptar o fluxo de controle usual

Organização do middleware

Arquiteturas Middleware e sistemas distribuídos

Interceptar o fluxo de controle usual

E se B estiver replicado? E se val for grande?

Middleware adaptável

Necessidade de adaptação:

Mudanças no ambiente: mobilidade, falhas de rede e hardware.

Mudanças em tempo de execução:

 Alguns sistemas não podem ser desligados: requer adaptação dinâmica.

Como resolver?

Uso de configuração dinâmica, late binding e dynamic loading.

Desafios em sistemas distribuídos:

- Aumenta responsabilidade do middleware.
- Dificuldade em manter estado coerente
- Dependência complexa entre componentes.

Middleware modificavel 08/03/2024

Arquiteturas centralizadas

Modelo Cliente-Servidor Básico

Características:

- Há processos que oferecem serviços (servidores)
- Há processos que usam serviços (clientes)
- Clientes e servidores podem estar em máquinas diferentes
 - UDP vs TCP
- Clientes seguem o modelo de requisição/resposta ao usar os serviços

Arquiteturas centralizadas

Modelo Cliente-Servidor Básico

Características:

- Há processos que oferecem serviços (servidores)
- Há processos que usam serviços (clientes)
- Clientes e servidores podem estar em máquinas diferentes
 - UDP vs TCP
 - Clientes seguem o modelo de requisição/resposta ao usar os serviços

Mas...

A distinção entre cliente e servidor nem sempre é óbvia

Arquiteturas centralizadas em várias camadas

Algumas organizações tradicionais

- De uma camada: configuração de terminal burro/mainframe
- De duas camadas: configuração cliente/servidor único
- De três camadas: cada camada em uma máquina separada

Configurações tradicionais de duas camadas

Arquiteturas em camadas 08/03/2024 9

Arquiteturas centralizadas em várias camadas

Algumas organizações tradicionais

- De uma camada: configuração de terminal burro/mainframe
- De duas camadas: configuração cliente/servidor único
- De três camadas: cada camada em uma máquina separada

Configurações tradicionais de duas camadas (qual é melhor?)

Arquiteturas em camadas 08/03/2024 9

Sendo cliente e servidor ao mesmo tempo

Arquitetura de três camadas

Exemplo

Transaction Processing Monitor (TPM)

Exemplo: Sistemas de Arquivos em Rede

Fundamentos

Cada servidor NFS (Network File System) fornece uma visualização padronizada de seu sistema de arquivos local: cada servidor suporta o mesmo modelo, independentemente da implementação do sistema de arquivos.

O modelo de acesso remoto do NFS

Acesso remoto

Upload/download

Nota

O FTP é um modelo típico de upload/download. O mesmo pode ser dito para sistemas como o Dropbox.

Arquitetura do NFS

Exemplo: Servidores Web simples

Voltando aos velhos tempos...

...a vida era simples:

- Um site consistia em uma coleção de arquivos HTML
- Os arquivos HTML podiam se referir uns aos outros por um hiperlink
- Um servidor Web basicamente precisava apenas de um hiperlink para encontrar um arquivo
- Um navegador se encarregava de renderizar corretamente o conteúdo de um arquivo

Exemplo: A Web 08/03/2024 13

Exemplo (continuação): Servidores Web menos simples

Ainda nos velhos tempos...

...a vida ficou um pouco mais complicada:

- Um site foi construído em torno de um banco de dados com conteúdo
- Uma página da Web ainda poderia ser referenciada por um hiperlink
- Um servidor Web basicamente precisava apenas de um hiperlink para buscar um arquivo
- Um programa separado (Common Gateway Interface (CGI)) compunha uma página
- Um navegador se encarregava de renderizar corretamente o conteúdo de um arquivo

Exemplo: A Web 08/03/2024 14