DLM

2023-04-21

```
library(tidyverse)
## -- Attaching packages -----
                                                   ----- tidyverse 1.3.2 --
                               0.3.4
## v ggplot2 3.3.6
                     v purrr
## v tibble 3.1.8
                               1.0.9
                     v dplyr
           1.2.0
## v tidyr
                     v stringr 1.4.0
## v readr
            2.1.2
                     v forcats 0.5.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
library(lubridate)
##
## Attaching package: 'lubridate'
##
## The following objects are masked from 'package:base':
##
##
      date, intersect, setdiff, union
library('MARSS')
Sys.setlocale(locale = "es_ES.UTF-8")
```

[1] "es_ES.UTF-8/es_ES.UTF-8/es_ES.UTF-8/C/es_ES.UTF-8/en_US.UTF-8"

Variables

En la literatura se menciona que se utilizan variables de escala, como el PIB, y variables de costo de oportunidad, como tasas de interés. La relación entre el PIB y la demanda de efectivo es bastante clara, ambas variables tienen una tendencia creciente con incrementos en los cuartos trimestres:

```
datos_pib <- read_rds('cache/variables/pib.rds') %>%
  filter(fecha <= 2011.75) %>%
  mutate(pib = log(pib))

ggplot(read_rds('cache/variables/last/efectivo_last.rds'), aes(fecha, efectivo)) +
  geom_line() +
  theme_classic() +
  xlab("Año") +
  ylab("Efectivo")
```

Don't know how to automatically pick scale for object of type yearqtr. Defaulting to continuous.


```
ggplot(read_rds('cache/variables/pib.rds'), aes(fecha, pib)) +
  geom_line() +
  theme_classic() +
  xlab("Año") +
  ylab("PIB")
```

Don't know how to automatically pick scale for object of type yearqtr. Defaulting to continuous.

Sin embargo, la TIIE tiene un comportamiento muy diferente:

```
ggplot(read_rds('cache/variables/last/tiie_last.rds'), aes(fecha, tiie)) +
  geom_line() +
  theme_classic() +
  xlab("Año") +
  ylab("TIIE")
```

Don't know how to automatically pick scale for object of type yearqtr. Defaulting to continuous.

Tiene caídas y subidas muy bruscas que en nada parecen afectar a la demanda de efectivo. Además, cuando considero la TIIE el modelo empeora mucho, por esto decidí no incluir la TIIE en el modelo a pesar de que en la literatura se suele incluir una variable de costo de oportunidad.

Por lo tanto, en el modelo incluí un intercepto, el PIB y una variable dummy que vale 1 en los cuartos trimestres y 0 en los otros trimestres.

En los modelos, todas las variables están en logaritmos.

Problema de pronosticar con MARSS

MARSS utiliza máxima verosimilitud para estimar los valores desconocidos como ${\bf G}$ o ${\bf W}$. El problema es que utiliza toda la información disponible para hacer la estimación. Entonces, cuando corre el filtro de Kalman, en cada pronóstico a un paso no está considerando únicamente la información anterior, debido a que en las estimaciones de ${\bf G}$ o ${\bf W}$ se tomó en cuenta toda la información de toda la serie. Por esto, lo ideal sería estimar ${\bf G}$ y ${\bf W}$ únicamente con información pasada para ver el verdadero poder predictivo del DLM.

Enfoque 1: estimar G, W y V como constantes.

En el enfoque 1 se utilizar los datos del 2001 al 2011 para estimar los valores constantes de \mathbf{G} , \mathbf{W} y V que se utilizarán para el periodo 2012-2022. Estos valores se obtuvieron con ayuda del paquete MARSS, que utiliza máxima verosimilitud para estimarlos. Los valores obtenidos para \mathbf{G} son:

read rds('cache/outputs modelos/G.rds')

```
## [,1] [,2] [,3]
## [1,] 0.971105 0.000000 0
## [2,] 0.000000 1.002675 0
## [3,] 0.000000 0.000000 1
```

Mientras que los de W son:

```
read_rds('cache/outputs_modelos/W.rds')
```

```
## [,1] [,2] [,3]
## [1,] 2.233301e-07 0.000000e+00 0
## [2,] 0.000000e+00 1.903777e-11 0
## [3,] 0.000000e+00 0.000000e+00 0
```

Por último, el valor de V es

```
read_rds('cache/outputs_modelos/V.rds')
```

```
## Y1 0.001240637
```

El problema con este enfoque es que hubo cambios en la estructura de la demanda de efectivo en el periodo 2012-2022 comparado con el periodo 2001-2011. Al utilizar los valores constantes obtenidos, el DLM funciona bien en los primeros trimestres de 2012-2022, pero después se ve claramente que el modelo no es adecuado.

```
datos_pib <- read_rds('cache/variables/pib.rds') %>%
    filter(fecha >=2012.0) %>%
    mutate(pib = log(pib))

datos_efectivo <- read_rds('cache/variables/last/efectivo_last.rds') %>%
    filter(fecha >=2012.0) %>%
    mutate(efectivo = log(efectivo))

datos_estacionalidad <- datos_efectivo %>%
    mutate(Q4 = ifelse(fecha - floor(fecha) == 0.75,1,0))

#Leo las funciones que hice para el dlm
source('src/funciones/funciones_dlm.R')
```

```
##
## Attaching package: 'LaplacesDemon'
## The following objects are masked from 'package:lubridate':
##
## dst, interval
## The following object is masked from 'package:purrr':
##
## partial
```

Ahora graficaré los pronósticos a un paso del modelo lineal dinámico. Aquí se nota que el modelo no logra capturar adecuadamente los cambios de la serie después del 2016, y empeora en el 2020 con los cambios provocados por la pandemia.

```
df_graficas <- data.frame("fecha" = datos_efectivo %>% dplyr::select(fecha),
                          "y_real" = datos_efectivo$efectivo,
                          "y_pronostico" = dlm_constantes$ft %>% unlist(),
                          "CI_inf" = dlm_constantes$CI_inf %>% unlist(),
                          "CI_sup" = dlm_constantes$CI_sup %>% unlist()) %>%
  mutate(fecha = as.numeric(fecha))
ggplot(data = df_graficas, aes(x = fecha)) +
  geom_point(aes(y = y_real, shape = "Observaciones"), size = 2) +
  geom_line(aes(y = y_pronostico, color = 'Pronósticos'), size = 1) +
  geom_line(aes(y = CI_inf), color = "blue", alpha = 0.3) +
  geom_line(aes(y = CI_sup), color = "blue", alpha = 0.3) +
  geom_ribbon(aes(ymax = CI_sup, ymin = CI_inf, fill = 'Intervalo al 95%'), alpha = 0.3) +
  theme_bw() +
  scale_colour_manual(
   name = "", values = c("Intervalo al 95%" = "transparent",
                          "Pronósticos" = "black")) +
  scale_fill_manual(
   name = "", values = c("Intervalo al 95%" = "blue",
                           "Pronósticos" = "transparent")) +
  theme(legend.position = "bottom") +
  labs(shape = "") +
  ylab('Circulación') +
  xlab('Fecha') +
  theme(axis.text.x = element_text(size = 20),
       axis.text.y = element_text(size = 20),
```

axis.title = element_text(size = 22),
legend.text = element text(size=20))

Observaciones Intervalo al 95% — Pronóst

El hecho de que G, W y V sean constantes limita mucho el modelo, por lo que decidí aplicar otro enfoque que al final funcionó mucho mejor.

Enfoque 2: estimar G_t y W_t diferentes en cada periodo.

La idea es tomar en cuenta los últimos 12 periodos para estimar \mathbf{G}_t y \mathbf{W}_t mediante máxima verosimilitud. Por ejemplo, si nos encontramos en el periodo j, entonces se utilizan los periodos ya observados de j-12 a j-1 para estimar \mathbf{G}_j y \mathbf{W}_j . Para estimar por máxima verosimilitud, MARSS necesita que yo indique los valores de la esperanza y varianza de la distribución de parámetros θ_{j-13} para iniciar el filtro de Kalman para el periodo de j-12 a j-1 y estimar \mathbf{G}_j y \mathbf{W}_j . La distribución de parámetros de θ_{j-13} que yo meto a MARSS para que pueda iniciar es $(\theta_{j-13}|D_{j-13}) \sim N[\mathbf{m}_{j-13}, \mathbf{C}_{j-13}]$ que yo obtengo con mi modelo.

Utilizo los primeros 12 periodos, de 2001 a 2003, para estimar los valores iniciales con MARSS de 2004. Después corro el filtro de Kalman usual de 2004 a 2022, y solo utilizo MARSS para obtener \mathbf{G}_t y \mathbf{W}_t en cada periodo.

El código por ahora está muy desordenado, tengo que limpiarlo y simplificarlo, realmente lo que me interesa es mostrarte el modelo a ver qué te parece.

Modelo 1.

En este modelo se estiman \mathbf{G}_t , \mathbf{W}_t y V_t por máxima verosimilitud en cada periodo, con el mecanismo que se describió anteriormente.

```
datos_pib <- read_rds('cache/variables/pib.rds') %>%
  mutate(pib = log(pib))
# Datos efectivo ----
datos_efectivo <- read_rds('cache/variables/last/efectivo_last.rds') %>%
  mutate(efectivo = log(efectivo))
# Estacionalidad -----
datos estacionalidad <- datos efectivo %>%
  mutate(Q4 = ifelse(fecha - floor(fecha) == 0.75,1,0))
# Inputs para MARSS
## number of periods of data
TT <- length(datos_efectivo$efectivo)
## get predictor variable
pib <- matrix(datos_pib$pib, nrow=1)</pre>
q4 <- matrix(datos_estacionalidad$Q4, nrow = 1)
## number of regr params (slope + intercept)
m <- 3
## se definen los valores de G a estimar.
G <- matrix(list(0), m, m)
G[1,1] \leftarrow 'G.1'
G[2,2] \leftarrow 'G.2'
G[3,3] <- 1
#Se definen los valores de W a estimar
W <- matrix(list(0), m, m) ## 2x2; all 0 for now #Es Wt
W[1,1] \leftarrow 'W.1'
W[2,2] \leftarrow W.2
W[3,3] <- 0
## for observation eqn
F <- array(NA, c(1, m, TT)) ## NxMxT; empty for now #Es Ft transpuesta
F[1, 1, ] <- rep(1, TT) ## Nx1; 1's for intercept
F[1, 2, ] <- pib ## Nx1; predictor variable
F[1, 3, ] \leftarrow q4 ## Nx1; predictor variable
y_hist <- matrix(datos_efectivo$efectivo, nrow = 1)</pre>
#Leo las funciones que hice para el DLM
source('src/funciones/funciones_sin_tiie.R')
```

```
Vt <- matrix("v")</pre>
CO <- read_rds('cache/outputs_modelos/12_periodos/sin tiie/CO.rds')</pre>
m0 <- read_rds('cache/outputs_modelos/12_periodos/sin tiie/m0.rds')</pre>
datos_F <- datos_pib %>%
 filter(fecha >= 2004) %>%
  left_join(datos_estacionalidad %>%
              filter(fecha >= 2004)) %>%
  mutate(intercept = 1) %>%
 dplyr::select(5,2,4)
## Joining, by = "fecha"
datos_efectivo_y <- datos_efectivo %>%
  filter(fecha >= 2004)
dlm_1 <- actualizacion_dlm_estima_G_W(y = datos_efectivo_y$efectivo, variables_F = datos_F,
                                       y_hist = y_hist, variables_F_hist = F, inicio = 12,
                                       mO = mO, CO = CO, G_forma = G, W_forma = W, V_forma = Vt,
                                       lista_interv = list())
```

Ahora grafiquemos el resultado de este modelo.

```
df_graficas <- data.frame("fecha" = datos_efectivo_y %>% dplyr::select(fecha),
                          "y_real" = datos_efectivo_y$efectivo,
                          "y_pronostico" = dlm_1$ft %>% unlist(), "CI_inf" = dlm_1$CI_inf %>% unlist(),
                          "CI_sup" = dlm_1$CI_sup %>% unlist()) %>%
  mutate(fecha = as.numeric(fecha))
ggplot(data = df_graficas, aes(x = fecha)) +
  geom_point(aes(y = y_real, shape = "Observaciones"), size = 2) +
  geom_line(aes(y = y_pronostico, color = 'Pronósticos'), size = 1) +
  geom_line(aes(y = CI_inf), color = "blue", alpha = 0.3) +
  geom_line(aes(y = CI_sup), color = "blue", alpha = 0.3) +
  geom_ribbon(aes(ymax = CI_sup, ymin = CI_inf, fill = 'Intervalo al 95%'), alpha = 0.3) +
  theme_bw() +
  scale_colour_manual(
   name = "", values = c("Intervalo al 95%" = "transparent",
                          "Pronósticos" = "black")) +
  scale_fill_manual(
   name = "", values = c("Intervalo al 95%" = "blue",
                           "Pronósticos" = "transparent")) +
  theme(legend.position = "bottom") +
  labs(shape = "") +
  ylab('Circulación') +
  xlab('Fecha') +
  theme(axis.text.x = element_text(size = 20),
       axis.text.y = element_text(size = 20),
       axis.title = element text(size = 22),
       legend.text = element_text(size=20))
```


Observaciones Intervalo al 95% — Pronóstico

La mejora en comparación con el modelo del enfoque 1 es evidente. Sin embargo, en los años 2016 y 2017 los pronósticos se quedaron por debajo de lo que en realidad pasó. Intenté mejorar esto con otro modelo.

Modelo 2.

Es muy parecido al modelo anterior, la única diferencia es que en este modelo no se estima V_t por máxima verosimilitud. Aquí utilizo la versión del DLM en la que V es una constante desconocida, y su valor estimado se va actualizando dentro del filtro de Kalman, no por máxima verosimilitud.

```
geom_line(aes(y = CI_sup), color = "blue", alpha = 0.3) +
geom_ribbon(aes(ymax = CI_sup, ymin = CI_inf, fill = 'Intervalo al 95%'), alpha = 0.3) +
theme_bw() +
scale_colour_manual(
 name = "", values = c("Intervalo al 95%" = "transparent",
                        "Pronósticos" = "black")) +
scale_fill_manual(
 name = "", values = c("Intervalo al 95%" = "blue",
                         "Pronósticos" = "transparent")) +
theme(legend.position = "bottom") +
labs(shape = "") +
ylab('Circulación') +
xlab('Fecha') +
theme(axis.text.x = element_text(size = 20),
      axis.text.y = element_text(size = 20),
      axis.title = element_text(size = 22),
      legend.text = element_text(size=20))
```


Observaciones Intervalo al 95% — Pronóstico

Este modelo funciona mucho mejor. Podemos ver cómo evolucionaron los parámetros a lo largo del tiempo:

Modelo 3

El modelo 2 funciona bien, pero veo que a partir del 2016 los pronósticos en los cuartos trimestres superan a la realidad, por lo que el coeficiente de Q4 debe estar muy alto. Un modelador que se encuentra en el 2018 pudo haber notado este problema en 2016 y 2017, entonces en 2018 decidió intervenir el modelo para corregir esto. La intervención consiste en disminuir el coeficiente de la variable Q4 en 2018 T4 (t=60).

Otro fallo sucedió al inicio de la pandemia, en 2020. Esto era de esperarse, debido a que el PIB tuvo una fuerte caída, pero la demanda de efectivo comenzó a subir por la incertidumbre generada por la pandemia, la gente quería liquidez en caso de perder sus trabajos o de enfermarse. Este es un ejemplo perfecto de conocimiento externo que no está incluído en el modelo. Realizaré una intervención en 2020 T2 (t=66), subiré el valor de la ordenada al origen.

```
matrix(c(3.7,
                                                                     0.3857346,
                                                                     0.09), nrow=3)),
                    "Rt_int" = list(dlm_2$Rt[[60]], dlm_2$Rt[[66]]))
dlm_3 <- actualizacion_dlm_V_desc_estima_G_W(y = datos_efectivo_y$efectivo,
                                             variables_F = datos_F,
                                             y_hist = y_hist, variables_F_hist = F, inicio = 12,
                                             mO = mO, CO = CO, G_forma = G, W_forma = W,
                                             lista_interv = list_interv, S0 = as.numeric(0.00006940448)
df_graficas3 <- data.frame("fecha" = datos_efectivo_y %>% dplyr::select(fecha),
                           "y_real" = datos_efectivo_y$efectivo,
                           "y_pronostico" = dlm_3$ft %>% unlist(), "CI_inf" = dlm_3$CI_inf %>% unlist()
                           "CI_sup" = dlm_3$CI_sup %>% unlist()) %>%
  mutate(fecha = as.numeric(fecha))
ggplot(data = df_graficas3, aes(x = fecha)) +
  geom_point(aes(y = y_real, shape = "Observaciones"), size = 2) +
  geom_line(aes(y = y_pronostico, color = 'Pronósticos'), size = 1) +
  geom_line(aes(y = CI_inf), color = "blue", alpha = 0.3) +
  geom_line(aes(y = CI_sup), color = "blue", alpha = 0.3) +
  geom_ribbon(aes(ymax = CI_sup, ymin = CI_inf, fill = 'Intervalo al 95%'), alpha = 0.3) +
  theme_bw() +
  scale colour manual(
   name = "", values = c("Intervalo al 95%" = "transparent",
                          "Pronósticos" = "black")) +
  scale_fill_manual(
   name = "", values = c("Intervalo al 95%" = "blue",
                          "Pronósticos" = "transparent")) +
  theme(legend.position = "bottom") +
  labs(shape = "") +
  ylab('Circulación') +
  xlab('Fecha') +
  theme(axis.text.x = element_text(size = 20),
       axis.text.y = element_text(size = 20),
       axis.title = element_text(size = 22),
       legend.text = element_text(size=20))
```


Observaciones Intervalo al 95% — Pronóstico

Con esto ya se corrigieron estos problemas. El efecto de las intervenciones se pueden notar en las gráficas de los coeficientes:

Gráfica final.

Como mencioné al principio, el PIB y la demanda de efectivo en los modelos están en logaritmos. Voy a convertir los resultados del modelo a la escala original para ver cómo resulta el modelo:

```
ggplot(data = df_graficas3 %>%
         mutate(across(y_real:CI_sup, ~exp(.))), aes(x = fecha)) +
  geom_point(aes(y = y_real, shape = "Observaciones"), size = 2) +
  geom_line(aes(y = y_pronostico, color = 'Pronósticos'), size = 1) +
  geom_line(aes(y = CI_inf), color = "blue", alpha = 0.3) +
  geom_line(aes(y = CI_sup), color = "blue", alpha = 0.3) +
  geom_ribbon(aes(ymax = CI_sup, ymin = CI_inf, fill = 'Intervalo al 95%'), alpha = 0.3) +
  theme_bw() +
  scale_colour_manual(
   name = "", values = c("Intervalo al 95%" = "transparent",
                          "Pronósticos" = "black")) +
  scale_fill_manual(
   name = "", values = c("Intervalo al 95%" = "blue",
                           "Pronósticos" = "transparent")) +
  theme(legend.position = "bottom") +
  labs(shape = "") +
  ylab('Circulación') +
  xlab('Fecha') +
  theme(axis.text.x = element_text(size = 20),
        axis.text.y = element_text(size = 20),
```

```
axis.title = element_text(size = 22),
legend.text = element_text(size=20))
```


Observaciones Intervalo al 95% — Pronós