고태훈 (taehoonko@dm.snu.ac.kr)

Example: Predict a baby's weight(kg)

Age	Actual Weight(y)	Predicted Weight(\hat{y})
1	5.6	6.0
2	6.9	6.4
3	10.4	10.9
4	13.7	12.4
5	17.4	15.6
6	20.7	21.5
7	23.5	23.0

Average error

Indicate whether the predictions are on average over- or underpredicted.

Average error =
$$\frac{1}{n} \sum_{i=1}^{n} (y - \hat{y})$$
$$= 0.342$$

Age	Actual Weight(y)	Predicted Weight (\hat{y})
1	5.6	6.0
2	6.9	6.4
3	10.4	10.9
4	13.7	12.4
5	17.4	15.6
6	20.7	21.5
7	23.5	23.0

Mean absolute error (MAE)

Gives the magnitude of the average error

MAE =
$$\frac{1}{n} \sum_{i=1}^{n} |y - \hat{y}| = 0.829$$

Age	Actual Weight(y)	Predicted Weight (\hat{y})
1	5.6	6.0
2	6.9	6.4
3	10.4	10.9
4	13.7	12.4
5	17.4	15.6
6	20.7	21.5
7	23.5	23.0

Mean absolute percentage error (MAPE)

Gives a percentage score of how predictions deviate (on average)
from the actual values.

MAPE =
$$100\% \times \frac{1}{n} \sum_{i=1}^{n} \frac{|y - \hat{y}|}{|y|}$$

= 6.43%

Age	Actual Weight(y)	Predicted Weight(\hat{y})
1	5.6	6.0
2	6.9	6.4
3	10.4	10.9
4	13.7	12.4
5	17.4	15.6
6	20.7	21.5
7	23.5	23.0

Mean squared error (MSE) and root MSE (RMSE)

- MSE: Standard error of estimate.
- RMSE: Same units as the variable predicted.

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y - \hat{y})^2$$

= 0.926
RMSE = $\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y - \hat{y})^2}$

=0.962

Age	Actual Weight(y)	Predicted Weight(\widehat{y})
1	5.6	6.0
2	6.9	6.4
3	10.4	10.9
4	13.7	12.4
5	17.4	15.6
6	20.7	21.5
7	23.5	23.0

Train error

- ▶ Regression model이 데이터에 얼마나 적합하였는가?
- Goodness-of-fit

Validation error (or Test error)

- ▶ Regression model의 예측 성능이 어느 정도인가?
- Predictive performance

Train error and test error

Evaluation of regression model in statistics

- Akaike Information Criteria (AIC)
- Bayesian Information Criteria (BIC)

Adjusted-R²: 기존의 R²에 변수의 수를 고려
$$AIC = n \cdot ln(\frac{SSE_k}{n}) + 2k$$

Mallow's C_k

$$BIC = n \cdot \ln(\frac{SSE_k}{n}) + k \cdot \ln(n)$$

Adjusted-
$$R^2 = 1 - \left(\frac{n-1}{n-k-1}\right)(1-R^2)$$
 $C_k = \frac{SSE_k}{s^2} - (n-2k)$

n : number of samples

k: number of selected variables

 SSE_k : sum of squared error of regression model with k variables

s: sum of squared error of full regression model