Deep VLA Observations of M31* and M32*: Whisper of The Hidden Monster

Yang Yang (Nanjing University)
Collaborators: Zhiyuan Li (NJU), Lorant O Sjouwerman (NRAO), Feng Yuan (SHAO)

Background

- Low luminosity AGN: $L_{bol}/L_{Edd} \leq 10^{-2}$
- In local universe, most SMBHs are radiatively quiescent, LLAGN, such as Sgr A*, M31* and M32*.
- Before 2010, Sgr A* has remained the only LLAGN found to exhibit flares.
- Li et al. 2011 reported M31* shows similar X-ray flares since 2006.

- Outburst is ~100 times the quiescent level; the long-term average flux ~10 times after the outburst.
- Outburst in M31* and Sgr A* are >100 times the quiescent level.
- Same physical origin with the Sgr A* flares?
- A comparative study of the two SMBHs should yield important constraints to the flare modeling.

	M31*	M32*	5
Mass	$1.4^{+0.9}_{-0.3} \times 10^8 \mathrm{M}_{\odot}$	$2.5{ imes}10^6{ m M}_{\odot}$	$4.1 \times 10^{6} M$
Distance	780 Kpc	780 Kpc	8.6 Kpc
Flare	Exhibit in X-ray	Null	Exhibit in
L_X	$\sim 4.8 \times 10^{36} erg \ s^{-1} (0.5-8 \ {\rm keV})$	$\sim 9.4 \times 10^{35} \ ergs^{-1} (2\text{-}10 \ \text{keV})$	2.2×10^{33} e
$L_R(5-6 \text{ GHz})$	16uJy	7.4uJy	$0.71 \mathrm{~Jy}$
L_{bol}/L_{Edd}	$\sim 3 \times 10^{-9}$	$\sim 3 \times 10^{-8}$	$\sim 3 \times 10^{-1}$

VLA observations of M31* and M32*

PI: Li Zhiyuan, Lorant Sjouwerman

- Based on deep, multi-band EVLA to observe M31* in 19 epoch in 2011 and 2012.
- Each epoch at two frequencies (except two epochs) to get its simultaneous spectral index over the range of 5 to 20 GHz (C, X, Ku, K band).
- First time to observe M31* at Ku and K band.
- First time to get the simultaneous spectral index.
- Based on deep EVLA to detect M32* for 3 epochs at C band (6 GHz) in B configuration.

M31*

M32*

Results of monitoring M31*

	1"/3.8 pc	0
band	The said	K band
	OWNERS OF	
<u> </u>	Γ	
		•
		C_band *
		C_band * X_band ◊
		X_band \Diamond
	Γ	X_band ◇ Ku_band △
		X_band ◇ Ku_band △

	Freq (GHz)	Flux (µJy/beam)	Flux err(µJy/ beam)
C band	6.0	15.9	1.3
X band	10	10.6	1.6
Ku band	15	9.2	1.2
K band	20	6.8	1.8

- Pointlike and no sign of jet.
- The average C band flux density between 2002-2005 (Garcia et al. 2010) is ~ 3 times higher than between 2011-2012.
- Li et al. 2011 reported M31* has an X-ray flux increase since 2006; associated with the radio flux decrease?

Results of monitoring M31*

Show no significant variability between 2011-2012.

Average simultaneous spectral index $\sim -0.60 \pm 0.15$.

VLBA+TM65 proposal

Figure 2: VLA images of M31* in the C, X, Ku and K bands. Contour levels are at [3, 5, 10, 16] \times RMS, [3, 5, 8, 10] \times RMS, [3, 5, 8, 11] \times RMS, [3, 4] \times RMS (RMS are 1.6, 2.0, 1.4 and 4.1 μ Jy/beam in the four bands, respectively). M31* appears a compact source at all frequencies, although there is some hint of a weak plume extending toward a position angle of \sim 20 degree (east from north), in particular in the C and Ku bands.

Results of monitoring M32*

- First detection of a faint radio source coincident with the nucleus of M32. contours level at [-3,-2,4,5,7,8] x rms.
- Extended, S_{6.6GHz} = 47.3 ± 6.1 uJy (IMFIT R1 FWHM ≈ 2.8×1.8 and a PA of 130.1 ±1.9).
- First detection of three planetary nebulae's radio counterparts.

Source (1)	RA (2)	47.	3±6.	1 (0)	$L_{6.6}$ (6)	$L_{ m [OIII]} \ (7)$
R1	$00^{h}42^{m}41.838$	+40°51′54″98	10.7±1.2	47.3±6.1	22.7	< 4.3
R2	$00^{h}42^{m}41.891$	$+40^{\circ}51'58''41$	$6.6 {\pm} 1.2$	$3.5 {\pm} 1.2$	1.7	11.1
R3	$00^{h}42^{m}42^{s}.563$	$+40^{\circ}51'56''52$	$6.6 {\pm} 1.2$	$3.4 {\pm} 1.2$	1.6	7.0
R4	$00^{h}42^{m}42^{s}659$	$+40^{\circ}51'56''41$	$6.8 {\pm} 1.2$	$3.5 {\pm} 1.2$	1.7	5.6

What's the Nature of this radio source

- Core-collapse supernovae? no on-going star formation.
- Type Ia supernovae? expected rate is too low. $\lesssim 10^{-8}~\rm{yr}^{-1}$
- SF activities? upper limit is lower than observed.

Caplan & Della
$$\lesssim 2 \times 10^{36} \ {\rm erg \ s^{-1}}$$

$$\left[\frac{F({\rm H}\alpha)}{10^{-12} \ {\rm erg \ cm^{-2} \ s^{-1}}}\right] \sim 0.8 \left(\frac{T_e}{10^4 {\rm K}}\right)^{-0.52} \left(\frac{\nu}{{\rm GHz}}\right)^{0.1} \left(\frac{S_{\rm ff}}{{\rm mJy}}\right)$$

$$S_{\rm ff, 6.6 \ GHz} < 28.4 \ \mu {\rm Jy.}$$
 v.s. obs $S_{\rm ff, 6.6 \ GHz} = 47.3 \ \mu {\rm Jy}$

What's the Nature of this radio source

- Core-collapse supernovae? no on-going star formation.
- Type Ia supernovae? expected rate is too low. $\lesssim 10^{-8} \ \mathrm{yr}^{-1}$
- SF activities? upper limit is lower than observed.
- BHBs? if so,
 - should be in low/hard state, (L_X~10³⁶ erg s⁻¹)
 - but inconsistent X-ray photon index (2.4 v.s. 1.5-2.0)
 - inconsistent with the "fundamental plane of BH activity" (Gueltekin et al., 2009)

$$\log L_{\rm R} = (4.80 \pm 0.24) + (0.78 \pm 0.27) \log M_{\rm BH} + (0.67 \pm 0.12) \log L_{\rm X}$$

$$L_{\rm 5GHz} \sim 5 \times 10^{29} \text{ erg s}^6 \text{ v.s. obs } L_{\rm 6.6GHz} = 2.3 \times 10^{31} \text{ erg s}^{-1}$$

What's the Nature of this radio source

- Core-collapse supernovae? no on-going star formation.
- Type Ia supernovae? expected rate is too low. $\lesssim 10^{-8} \ \mathrm{yr}^{-1}$
- SF activities? upper limit is lower than observed.
- BHBs? unlikely a stellar BH
- SMBH!

$$M_{\rm BH} = 2.5 \times 10^6 \ M_{\odot}$$

• Fundamental Plane for LLAGN (Yuan et al. 20):

$$\log L_{\rm R} = 1.29(\pm 0.03) \log L_{\rm X} + 0.11(\pm 0.04) \log M_{\rm BH} - 14.1$$

$$L_{5\text{GHz}} \sim 1.1 \times 10^{33} \text{ erg s}^6 \text{ v.s. obs } L_{6.6\text{GHz}} = 2.3 \times 10^{32} \text{ erg s}^{-1}$$

Summary

- M31* show no significant variability between 2011-2012.
- The average C band flux density between 2002-2005 (Garcia et al. 2010) is ~ 3 times higher than between 2011-2012.
- The average C band flux density between 2002-2005 is ~ 3 times higher than between 2011-2012.
- We get an average simultaneous spectral index ~ -0.60 ± 0.15.
- A probable radio counterpart of M32* is detected for the first time
- · First detection of three planetary nebulae's radio counterparts.

Thank you

