Corrigé MP Physique

Problème 1 (35 pts)

I-		Etude des trous d'Young	
1	-	Deux sources indépendantes sont incohérentes car la différence de phase entre les deux ondes dépend	1
		du temps et par conséquent on ne peut pas obtenir un phénomène d'interférences	
2.	-	C'est un dispositif à division de front d'onde car il sépare spatialement le faisceau provenant de la source principale en deux faisceaux.	1
		a- La vibration résultante $\underline{S} = \underline{S}_1 + \underline{S}_2 \rightarrow \underline{S} = S_0 e^{i(\alpha t - \varphi_2)} \left[1 + e^{-i(\varphi_2 - \varphi_1)} \right] = S_0 e^{i(\alpha t - \varphi_2)} \left[1 + e^{-i\varphi} \right]$	1
		b-L'intensité au point M est $I = \underline{S} \cdot \underline{S}^* = S_0^2 \left[1 + e^{-i\varphi} \right] \left[1 + e^{i\varphi} \right] = 2I_0 \left[1 + \cos \varphi \right]$	1
		c- La différence de marche $\delta = (S_2M) - (S_1M) = \frac{ax}{D}$ donc $\varphi = \frac{2\pi\delta}{\lambda} = \frac{2\pi ax}{\lambda D}$	1
-		d-Les franges d'interférences sont des segments de droite parallèles à l'axe Oy car I ne dépend que de x.	1
3-	-	e- Franges brillantes: $I = I_{max} = 4I_0 \rightarrow \varphi = 2n\pi$ avec $n \in \mathbb{Z}$ d'où $x_n = \frac{n\lambda D}{a}$ Franges obscures:	1
		$I = I_{\min} = 0 \rightarrow \varphi = (2m+1)\pi \text{ avec } m \in \mathbb{Z} \text{ d'où } : x_m = \frac{(2m+1)\lambda D}{2a}.$	1
		f- L'interfrange $i = x_{n+1} - x_n = \frac{\lambda D}{a}$. AN: $i = \frac{\lambda D}{a} = \frac{0.510^{-3} \cdot 10^3}{0.5} = 1mm$	1
		g- La frange centrale est caractérisée par $\delta = 0 \rightarrow x = 0$. C'est une frange brillante.	1
4		La figure reste inchangée car la différence de marche est inchangée.	1
5-	•	La fente fine peut être assimilée à une infinité de sources ponctuelles dont chacune va donner la même figure d'interférences par conséquent les intensités vont s'ajouter. Il en résulte alors une augmentation de la luminosité des franges brillantes.	1
		a- $\delta' = (S'S_2M) - (S'S_1M) = \frac{ax}{D} + \frac{ax'}{d}$. La frange centrale est tel que $\delta = 0 \rightarrow x_0 = -\frac{Dx'}{d}$	2
. Hime		b- Franges brillantes: $\delta = n\lambda = \frac{ax_n}{D} + \frac{ax'}{d} \Rightarrow x_n = \frac{n\lambda D}{a} - \frac{x'D}{d}$ d'où l'interfrange	1
6-		$i'=x_{n+1}-x_n=\frac{\lambda D}{a}$. Le déplacement de la source S ne modifie pas la valeur de l'interfrange mais	1
		seulement la position de la frange centrale. Le déplacement de la source S suivant la direction des x déplace en bloc la figure d'interférence dans le sens opposé.	1
1	u-	Influence de la largeur de la fente source : Cohérence spatiale	
		a-la fente de largeur ℓ contribue par une intensité lumineuse I_0 donc la fente élémentaire de largeur	
		dx' va contribuer par intensité élémentaire $dI_0 = I_0 \frac{dx'}{\ell}$. En utilisant (3-b et 5a):	1
		$dI = 2dI_0 \left[1 + \cos \varphi \right] = 2I_0 \left[1 + \cos \varphi \right] \frac{dx'}{\ell} \text{ avec } \varphi = \frac{2\pi\delta'}{\lambda} = \frac{2\pi}{\lambda} \left(\frac{ax}{D} + \frac{ax'}{D'} \right).$	1
		b -1'intensité totale I au point $M: I = \int_{0}^{\frac{\pi}{2}} 2I_0 \left[1 + \cos(\frac{2\pi}{\lambda}(\frac{ax}{D} + \frac{ax'}{d}))\right] \frac{dx'}{\ell}$	1 M
7.		$I = \frac{2I_0}{\ell} \left[\ell + \frac{\lambda d}{2\pi a} \sin\left(\frac{2\pi a}{\lambda} \left(\frac{x}{D} + \frac{\ell}{2d}\right)\right) - \sin\left(\frac{2\pi a}{\lambda} \left(\frac{x}{D} - \frac{\ell}{2d}\right)\right) \right] = 2I_0 \left[1 + \frac{\sin\left(\frac{\pi a\ell}{\lambda d}\right)}{\frac{\pi a\ell}{\lambda d}} \cos\left(\frac{2\pi ax}{\lambda D}\right) \right]$	2
'		. The state of th	1

	$I = 2I_0[1 + V(\ell)\cos(\frac{2\pi\alpha x}{\lambda D})], \ V(\ell) = \sin c(\frac{\pi a \ell}{\lambda d}). \ V(\ell)$ est le facteur visibilité.	
	c- Pour $\ell \to 0$ on a $I \to 2I_0[1+\cos(\frac{2\pi\alpha x}{\lambda D})]$ on retrouve l'intensité d'une fente très fine.	1
-	$\mathbf{d} - \mathbf{V}(\ell) = 0 \text{ si}$ $\sin(\frac{\pi a \ell}{\lambda d}) = 0 \to \frac{\pi a \ell_k}{\lambda d} = k\pi$ $\to \ell_k = \frac{k \lambda d}{\pi} \text{ avec } k \in \mathbb{N}^{\bullet}$	1
		1
	e- La longueur de cohérence spatiale est $L_s = \ell_0 = \frac{\lambda d}{a}$ A.N.: $L_s = 0.5 mm$	1
	f- $V(\ell = L_s) = 0 \rightarrow I = 2I_0$ Ainsi on obtient un éclairement uniforme de l'écran. Brouillage des franges d'interférences.	1
Ш-	Influence de la largeur spectrale d'une raie : Cohérence temporelle	,
	a- $I = \int_{v_1}^{v_2} 2I_0 \left[1 + \cos(\frac{2\pi\delta v}{c})\right] \frac{dv}{\Delta v} = 2I_0 \left[1 + \operatorname{sinc}\left(\frac{\pi\delta\Delta v}{c}\right)\cos(\frac{2\pi\delta v_0}{c})\right]$ $I = 2I_0 \left[1 + V(\beta')\cos(\frac{2\pi\delta v_0}{c})\right] \to V(\beta') = \sin c(\frac{\pi\delta\Delta v}{c})$ et $\beta' = \frac{\pi\delta\Delta v}{c}$	2
	b- Si $\Delta \nu \to 0$ $V(\beta') = \text{sinc}(\frac{\pi \delta \Delta \nu}{c}) \to 1$, on obtient : $I = 2I_0[1 + \cos(\frac{2\pi \delta \nu_0}{c})]$, on retrouve 1'expression de l'intensité pour une raie monochromatique	0,5
	$\mathbf{c} \cdot \mathbf{V}(\boldsymbol{\beta}') = 0 \rightarrow \boldsymbol{\beta}' = n\pi , n \in \mathbb{N}^*$ $\begin{array}{c} 1.2 \cdot \mathbf{V}(\boldsymbol{\beta}') \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \end{array}$	1
8 -	0.0	
	d- La première valeur qui annule $V(\beta')$ est $\beta' = \pi \to L_t = \delta = \frac{c}{\Delta V}$.	1
	d- La première valeur qui annule $V(\beta')$ est $\beta' = \pi \to L_t = \delta = \frac{c}{\Delta \nu}$. e- Pour la lumière blanche on a $\Delta \nu = \nu_1 - \nu_2 = \frac{c}{\lambda_1} - \frac{c}{\lambda_2} = \frac{c(\lambda_2 - \lambda_1)}{\lambda_1 \lambda_2}$	2.1
	A.N: Pour la lumière blanche $\Delta v = 3,75 \ 10^{14} \ Hz$ et $L_t = \delta = \frac{c}{\Delta v} = 0,8 \mu m$. Pour le laser $L_t = \frac{c}{\Delta v} = \frac{310^8}{10^8} = 3 m$. Plus Δv augmente plus la longueur de cohérence temporelle L_t diminue.	1
	La longueur de cohérence la plus grande est c'est celle qui correspond aux raies les plus monochromatiques tel que les lasers. Il est difficile d'observer le phénomène d'interférence avec la lumière blanche alors que c'est facile avec le laser.	1
	f- II faut que $\ell < \ell_0 = \frac{\lambda D'}{a}$ et $\Delta \nu < \frac{c}{\delta}$.	1

Problème 2 (65 pts)

I-	Partie préliminaire	
1-	$\rho(x) = \Psi(x,t) ^2$ est la densité de probabilité de présence de la particule. La probabilité de trouver la	1
	particule dans l'espace tout entier est égale à 1 donc : $\int_{-\infty}^{+\infty} \Psi(x,t) ^2 dx = 1. \Psi(x,t) \text{ est } L^{\frac{1}{2}}.$	
-		1
	a-On a $\rho(x) = \Psi(x,t) ^2 = \varphi(x) ^2$ est indépendant du temps donc l'état est stationnaire. La fonction	ı
	φ vérifie l'équation : $-\frac{\hbar^2}{2m}\frac{d^2\varphi(x)}{dx^2} + V(x) \varphi(x) = E\varphi(x)$	1
	b- Si $V(x) = V_0$ l'équation devient : $\frac{d^2 \varphi(x)}{dx^2} + \frac{2m}{\hbar^2} (E - V_0) \varphi(x) = 0$	-
2-	• Si $E > V_0$ la solution de cette équation est de la forme $\varphi(x) = Ae^{ikx} + Be^{-ikx}$ où A et B	1
	deux constantes complexes et $k = \sqrt{\frac{2m(E-V_0)}{\hbar^2}}$.	
1	• Si $E < V_0$ la solution est de la forme $\varphi(x) = A^{\dagger} e^{qx} + B^{\dagger} e^{-qx}$, où A' et B' deux constantes	1
	complexes et $q = \sqrt{\frac{2m(V_0 - E)}{\hbar^2}}$.	
П-	Particule Libre	-
3-	.2	1
	La particule est libre donc $V(x)=0$, son énergie totale est égale son énergie cinétique $E=E_c=\frac{p^2}{2m}$	
4-	$\varphi(x) = Ae^{ikx} + Be^{-ikx}$ avec A et B deux constantes complexes et $k = \sqrt{\frac{2mE}{\hbar^2}}$, on a	
	$\varphi(x) = He^{-\frac{1}{2}} \int_{-\pi}^{\pi} dt B deux constantes complexes ct x = \sqrt{\frac{\pi}{\hbar^2}}$, on a	. 1
	$\Psi(x,t) = \varphi(x) e^{-i\frac{E}{\hbar}t} \text{donc} : \Psi(x,t) = Ae^{-i(\frac{E}{\hbar}t - kx)} + Be^{-i(\frac{E}{\hbar}t + kx)} \rightarrow$. 2 1 44 4 1
	$\Psi(x,t) = A e^{-i(\omega t - kx)} + B e^{-i(\omega t + kx)} \text{Donc } \omega = \frac{E}{\hbar} \text{ et } k = \sqrt{\frac{2mE}{\hbar^2}}$	
5-	La solution de l'équation de $\Psi(x,t)$ est une somme de deux ondes planes, le premier terme correspond à	1
	une O.P.P.H qui se propage dans le sens des x croissants. Le deuxième terme correspond à une O.P.P.H	
	qui se propage dans les sens inverse. On a $k^2 = \frac{2mE}{\hbar^2}$ et $\frac{E}{\hbar} = \omega$ ce qui donne la relation de dispersion	
	$\omega(k) = \frac{\hbar k^2}{2m}. E = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m} \rightarrow p = \hbar k = \hbar \frac{2\pi}{\lambda} = \frac{h}{\lambda}. \text{ Cette relation est appelée relation de De}$	1 1
	Broglie: En MQ à chaque particule d'impulsion p on associe une onde de longueur d'onde $\lambda = \frac{h}{p}$.	1
6-	$\rho(x) = \left(\sqrt{\rho_1}e^{i\theta_1} \cdot e^{-i(\alpha t - kx)} + \sqrt{\rho_2}e^{i\theta_2} \cdot e^{-i(\alpha t + kx)}\right) \times \left(\sqrt{\rho_1}e^{-i\theta_1} \cdot e^{i(\alpha t - kx)} + \sqrt{\rho_2}e^{-i\theta_2} \cdot e^{i(\alpha t + kx)}\right)$	1
	$\rightarrow \rho(x) = \rho_1 + \rho_2 + 2\sqrt{\rho_1 \rho_2} \cos(2kx + \theta_1 - \theta_2)$	
7-	$\rho_{\min} = \rho_1 + \rho_2 - 2\sqrt{\rho_1 \rho_2}$	1
ALL PROPERTY OF THE PERSON AND PE	$\rho_{\text{max}} = \rho_1 + \rho_2 + 2\sqrt{\rho_1 \rho_2}$	
	La densité de probabilité varie de façon sinusoïdale il y a	
	des zones où elle est maximale $\rho = \rho_{\text{max}}$ et des zones où	
	elle est minimale $\rho = \rho_{\min}$, le phénomène d'interférences	•
	entre l'onde qui se propage dans le sens des x croissants et celle qui se propage dans le sens inverse.	1

8-	$r = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2$	T .
	La probabilité totale est $\neq 1$ car $\int_{-\infty}^{+\infty} \rho(x) dx = \int_{-\infty}^{+\infty} (\rho_1 + \rho_2 + 2\sqrt{\rho_1 \rho_2} \cos(2kx + \theta_1 - \theta_2)) dx$ diverge, ce qui n'est pas acceptable physiquement, la particule libre ne peut pas être présentée par une onde plane.	1
	Il faut décrire la particule par un paquet d'ondes (superposition d'ondes planes de pulsations différentes).	•
	$\mathbf{a-} \Psi(x,0) = \frac{1}{\sqrt{2\pi\Delta k}} \int_{k_0 - \frac{\Delta k}{2}}^{k_0 + \frac{\Delta k}{2}} e^{ikx} dk = \sqrt{\frac{\Delta k}{2\pi}} \operatorname{sinc}\left(\frac{\Delta k}{2}x\right) e^{ik_0x}$	2
	$\mathbf{b} - \rho(x) = \frac{\Delta k}{2\pi} \operatorname{sinc}^2\left(\frac{\Delta kx}{2}\right)$	1
	$\rho(x) = 0 \to x_n = \frac{2n\pi}{\Lambda k} n \in \mathbb{Z}^*$	1
	$ \rho_0 = \rho(0) = \frac{\Delta k}{2\pi} $ 0.047 0.016	1
-9:	$-4\pi/\Delta k$ $-2\pi/\Delta k$ 0 $2\pi/\Delta k$ $4\pi/\Delta k$ χ	
9-	b- $\int_{-\infty}^{+\infty} \Psi(x,t) ^2 dx$ ne diverge pas on vérifie bien qu'il est égal à 1. En effet :	
	$c^{+\infty}\Delta k$, $2(\Delta kx)$, $2^{+\infty}$, $2(\Delta kx)$, Δkx	1
	$\int_{-\infty}^{+\infty} \frac{\Delta k}{2\pi} \operatorname{sinc}^2\left(\frac{\Delta kx}{2}\right) dx = \frac{2}{\pi} \int_{0}^{+\infty} \operatorname{sinc}^2(u) du = 1 \text{ avec } u = \frac{\Delta kx}{2}. \text{ Donc le paquet d'onde peut}$	1
	représenter l'état d'une particule libre puisqu'il est normalisable.	
	c- $\Delta x = x_1 - x_{-1} = \frac{4\pi}{\Delta k} \rightarrow \Delta x \cdot \Delta k = 4\pi \rightarrow \Delta x \cdot \Delta p = 4\pi\hbar \rightarrow \Delta x = \frac{4\pi\hbar}{\Delta p} \rightarrow \text{On ne peut pas mesurer}$	1
	simultanément avec autant de précision que l'on veut la position et la vitesse de la particule. Ceci est	
, 	compatible avec l'inégalité de Heisenberg : $\Delta x \cdot \Delta p \ge \frac{\hbar}{2}$	1
10-	On a: $\omega = \frac{\hbar k^2}{2m} \rightarrow v_g = \frac{d\omega}{dk} = \frac{\hbar k}{m}$ et $v_\varphi = \frac{\omega}{k} = \frac{\hbar k}{2m} = \frac{v_g}{2}$. $p = \hbar k = mv_g = mv \rightarrow v_g = v$ où v	1
	zm uk m k zm z	
	est la vitesse de la particule en mécanique classique. Donc le paquet d'onde qui se propage à la vitesse v _o représente bien la particule libre.	1
Ш-	Effet tunnel	:-
11-	La résolution des équations de Schrödinger dans les trois régions donne :	
	- Région I : $\varphi_I(x) = A_I e^{ikx} + B_I e^{-ikx}$ avec A_I et B_I deux constantes complexes.	1
-	- Région II : $\varphi_{II}(x) = A_{II}e^{qx} + B_{II}e^{-qx}$ avec A_{II} et B_{II} deux constantes complexes.	1
	- Région III : $\varphi_{III}(x) = A_{III}e^{ikx}$ avec A_{II} est une constante complexe.	1
12-	La fonction d'onde ainsi que sa dérivée première par rapport à x sont continues en $x=0$ et $x=a$ ce qui donne un système de 4 équations à 5 inconnues (les constates d'intégrations).	
	$A_I + B_I = A_{II} + B_{II}$	2
• • • • • • • • • • • • • • • • • • • •	$\begin{cases} ik(A_I - B_I) = q(A_{II} - B_{II}) \\ A_{II}e^{qa} + B_{II}e^{-qa} = A_{III}e^{ika} \\ q(A_{II}e^{qa} - B_{II}e^{-qa}) = ikA_{III}e^{-ika} \end{cases}$	L
	$A_{II}e^{i} + B_{II}e^{i} = A_{III}e$ $a(A e^{qa} - R e^{-qa}) = ikA e^{-ika}$	_
13-		1
	En utilisant la définition : $\vec{j}_i = \Psi_i ^2 \frac{\hbar \vec{k}}{m} = A_I ^2 \frac{\hbar \vec{k}}{m}$, $\vec{j}_r = \Psi_r ^2 \frac{\hbar \vec{k}_r}{m} = - B_I ^2 \frac{\hbar \vec{k}}{m}$ et	
	$\vec{j}_{t} = \Psi_{III} ^{2} \frac{\hbar \vec{k}}{m} = A_{III} ^{2} \frac{\hbar \vec{k}}{m} \rightarrow R = \frac{ B_{I} ^{2}}{ A_{I} ^{2}} \text{ et } T = \frac{ A_{III} ^{2}}{ A_{I} ^{2}}$	1
	R représente la probabilité de réflexion de la particule sur la barrière et T la probabilité de transmission de la particule à travers la barrière de potentiel ou probabilité pour que la particule franchit la barrière.	1

	On doit avoir $R+T=1$, puisque la particule est soit réfléchie soit transmise : la somme des probabilités = 1.	
14	Pour l'électron on obtient $T=0.78$ qui représente une probabilité de passage de ~ 80 %. Donc l'électron est délocalisé dans l'atome et peut franchir la barrière de potentiel atomique. Dans les mêmes	1
	conditions, un proton a une probabilité $T \approx 10^{-19}$. Cette probabilité est très faible à cause de l'effet de masse. Autrement dit, un proton ou un noyau occupent un site bien déterminé (figé) dans un atome ou une molécule.	1
	$ \mathbf{a}-(V_0-E)>0 \text{ et } (V_0-2E)^2 \ge 0$ Donc $\frac{V_0^2}{AE(V_0-E)} \sinh^2(qa) \gg 1$	
	$\Rightarrow V_0^2 \ge 4E(V_0 - E) \Rightarrow \frac{V_0^2}{4E(V_0 - E)} \ge 1$ $qa \gg 1 \Rightarrow \sinh^2(qa) = \frac{e^{2qa}}{4} \gg 1$ $ainsi T = \left(\frac{V_0^2}{4E(V_0 - E)} \sinh^2(qa)\right)^{-1}$ $E(V - E)$	1
	$qa \gg 1 \to \sinh^{-1}(qa) \simeq \frac{1}{4} \gg 1$ soit $T \simeq 16 \frac{E(V_0 - E)}{V_0^2} e^{-2qa} = T_0 e^{-2qa}$	
	b- $T_0(E) = 16 \frac{E(V_0 - E)}{V_0^2} \rightarrow \frac{dT_0}{dE} = 0 \rightarrow E = \frac{V_0}{2}$	1
15-		
	pas la barrière puisqu'elle est immobile. Pour $E = V_0$ on	
	obtient $T_0 = 0$, mais l'approximation de la barrière épaisse	1
	n'est plus valable en revenant à l'expression initiale de T on trouve $T \rightarrow 1$ et c'est normal la particule passe avec une probabilité proche de 1.	georgia de la companya de la company
	$\left \langle T_0 \rangle = \frac{1}{V_0} \int_0^{V_0} \left 16 \frac{E}{V_0} - 32 \left(\frac{E}{V_0} \right) \right dE = \frac{8}{3} \approx 2,7$	GEOGRAPHICA ST. S.
	$c-\ln\langle T_0\rangle \simeq \ln(T_0) \simeq 1 \to \ln(T) \simeq \ln(T_0) - 2qa \simeq 1 - 2qa$, puisque $qa \gg 1 \to \ln(T) \simeq -2qa$	1
IV-	Radioactivité a	1
	a- La solution de l'équation $\frac{d^2 \varphi(r)}{dr^2} + \frac{2m}{\hbar^2} (E + V_0) \varphi(r) = 0 \text{ est } : \varphi(r) = Ae^{ikr} + Be^{-ikr}$	
		1
16-	2- La solution de l'équation $\frac{d^2 \varphi(r)}{dr^2} + \frac{2m}{\hbar^2} (E + V_0) \varphi(r) = 0 \text{ est } : \varphi(r) = Ae^{ikr} + Be^{-ikr}$ $k = \sqrt{\frac{2m(E + V_0)}{\hbar^2}} \text{ Condition aux limites } : \varphi(r = 0) = 0 \rightarrow A + B = 0 \text{ Ce qui donne } :$	1
16-	2- La solution de l'équation $\frac{d^2\varphi(r)}{dr^2} + \frac{2m}{\hbar^2}(E+V_0)\varphi(r) = 0 \text{ est : } \varphi(r) = Ae^{ikr} + Be^{-ikr}$ $k = \sqrt{\frac{2m(E+V_0)}{\hbar^2}} \text{ Condition aux limites : } \varphi(r=0) = 0 \rightarrow A+B=0 \text{ . Ce qui donne :}$ $\varphi(x) = D\sin(kx) \text{ . La normalisation de } \varphi : \int_0^{r_0} \varphi(r) ^2 dr = 1 \rightarrow D ^2 \frac{r_0}{2} = 1 \rightarrow D = \sqrt{\frac{2}{r_0}}$ b- La condition $\varphi(r=r_0) = 0 \rightarrow \sin(kr_0) = 0 \text{ donc } k_n = \frac{n\pi}{r_0}, n \in \mathbb{N}^*$	
16-	2- La solution de l'équation $\frac{d^2\varphi(r)}{dr^2} + \frac{2m}{\hbar^2}(E+V_0)\varphi(r) = 0 \text{ est : } \varphi(r) = Ae^{ikr} + Be^{-ikr}$ $k = \sqrt{\frac{2m(E+V_0)}{\hbar^2}} \text{ Condition aux limites : } \varphi(r=0) = 0 \rightarrow A+B=0 \text{ . Ce qui donne :}$ $\varphi(x) = D\sin(kx) \text{ . La normalisation de } \varphi : \int_0^{r_0} \varphi(r) ^2 dr = 1 \rightarrow D ^2 \frac{r_0}{2} = 1 \rightarrow D = \sqrt{\frac{2}{r_0}}$ b- La condition $\varphi(r=r_0) = 0 \rightarrow \sin(kr_0) = 0 \text{ donc } k_n = \frac{n\pi}{r_0}, n \in \mathbb{N}^*$	1
16-	a - La solution de l'équation $\frac{d^2\varphi(r)}{dr^2} + \frac{2m}{\hbar^2}(E + V_0)\varphi(r) = 0$ est : $\varphi(r) = Ae^{ikr} + Be^{-ikr}$ $k = \sqrt{\frac{2m(E + V_0)}{\hbar^2}} \text{ Condition aux limites : } \varphi(r = 0) = 0 \rightarrow A + B = 0 \text{ Ce qui donne :}$ $\varphi(x) = D\sin(kx) \text{ La normalisation de } \varphi : \int_0^{r_0} \varphi(r) ^2 dr = 1 \rightarrow D ^2 \frac{r_0}{2} = 1 \rightarrow D = \sqrt{\frac{2}{r_0}}$ b - La condition $\varphi(r = r_0) = 0 \rightarrow \sin(kr_0) = 0$ donc $k_n = \frac{n\pi}{r_0}$, $n \in \mathbb{N}^*$ $E_n = \frac{\hbar^2 k^2}{2m} - V_0 = \frac{\hbar^2 n^2 \pi^2}{2m r_0^2} - V_0 \text{ L'énergie de la particule est quantifiée}$ a -La particule α peut franchir la barrière par effet tunnel.	1
16-	a - La solution de l'équation $\frac{d^2\varphi(r)}{dr^2} + \frac{2m}{\hbar^2}(E + V_0)\varphi(r) = 0$ est : $\varphi(r) = Ae^{ikr} + Be^{-ikr}$ $k = \sqrt{\frac{2m(E + V_0)}{\hbar^2}} \text{ Condition aux limites : } \varphi(r = 0) = 0 \rightarrow A + B = 0 \text{ Ce qui donne :}$ $\varphi(x) = D\sin(kx) \text{ La normalisation de } \varphi : \int_0^{r_0} \varphi(r) ^2 dr = 1 \rightarrow D ^2 \frac{r_0}{2} = 1 \rightarrow D = \sqrt{\frac{2}{r_0}}$ b - La condition $\varphi(r = r_0) = 0 \rightarrow \sin(kr_0) = 0$ donc $k_n = \frac{n\pi}{r_0}$, $n \in \mathbb{N}^*$ $E_n = \frac{\hbar^2 k^2}{2m} - V_0 = \frac{\hbar^2 n^2 \pi^2}{2m r_0^2} - V_0 \text{ L'énergie de la particule est quantifiée}$ a -La particule α peut franchir la barrière par effet tunnel.	1 1 1
	a- La solution de l'équation $\frac{d^2\varphi(r)}{dr^2} + \frac{2m}{\hbar^2}(E+V_0)\varphi(r) = 0 \text{ est : } \varphi(r) = Ae^{ikr} + Be^{-ikr}$ $k = \sqrt{\frac{2m(E+V_0)}{\hbar^2}} \text{ Condition aux limites : } \varphi(r=0) = 0 \rightarrow A+B = 0 \text{ . Ce qui donne :}$ $\varphi(x) = D\sin(kx) \text{ . La normalisation de } \varphi : \int_0^{r_0} \varphi(r) ^2 dr = 1 \rightarrow D ^2 \frac{r_0}{2} = 1 \rightarrow D = \sqrt{\frac{2}{r_0}}$ b- La condition $\varphi(r=r_0) = 0 \rightarrow \sin(kr_0) = 0 \text{ donc } k_n = \frac{n\pi}{r_0}, n \in \mathbb{N}^*$ $E_n = \frac{\hbar^2 k^2}{2m} - V_0 = \frac{\hbar^2 n^2 \pi^2}{2m r_0^2} - V_0 \text{ . L'énergie de la particule est quantifiée}$	1 1 1
	a - La solution de l'équation $\frac{d^2\varphi(r)}{dr^2} + \frac{2m}{\hbar^2}(E + V_0)\varphi(r) = 0$ est : $\varphi(r) = Ae^{ikr} + Be^{-ikr}$ $k = \sqrt{\frac{2m(E + V_0)}{\hbar^2}} \text{ Condition aux limites : } \varphi(r = 0) = 0 \rightarrow A + B = 0 \text{ Ce qui donne :}$ $\varphi(x) = D\sin(kx) \text{ La normalisation de } \varphi : \int_0^{r_0} \varphi(r) ^2 dr = 1 \rightarrow D ^2 \frac{r_0}{2} = 1 \rightarrow D = \sqrt{\frac{2}{r_0}}$ b - La condition $\varphi(r = r_0) = 0 \rightarrow \sin(kr_0) = 0$ donc $k_n = \frac{n\pi}{r_0}$, $n \in \mathbb{N}^*$ $E_n = \frac{\hbar^2 k^2}{2m} - V_0 = \frac{\hbar^2 n^2 \pi^2}{2m r_0^2} - V_0 \text{ L'énergie de la particule est quantifiée}$ a -La particule α peut franchir la barrière par effet tunnel.	1 1 1 1

	$dr \text{ qui est } \sim e^{-2qdr}$ $\to T(r+dr) \simeq T(r)e^{-2qdr} \to \ln(T(r+dr)) = \ln(T(r)) - 2qdr.$	
	b- $\ln(T(r+dr)) - \ln(T(r)) = -2qdr \rightarrow \frac{d \ln T}{dr} = -2q$ on a $q = \sqrt{\frac{2m_{\alpha}(V(r) - E)}{h^2}}$	
	$q = \frac{1}{\hbar} \sqrt{2m_{\alpha} \left(\frac{K}{4\pi\varepsilon_{0}r} - E\right)} \rightarrow \frac{d \ln T}{dr} = -\frac{2}{\hbar} \sqrt{2m_{\alpha} \left(\frac{K}{4\pi\varepsilon_{0}r} - E\right)}$ En intégrant sur toute la barrière :	2
	$\Rightarrow \ln T = -\frac{2}{\hbar} \int_{r_0}^{r_0} \sqrt{2m_{\alpha} \left(\frac{K}{4\pi\varepsilon_0 r} - E\right)} dr = -\frac{2}{\hbar} \sqrt{2m_{\alpha} E} \int_{r_0}^{r_0} \sqrt{\left(\frac{K}{4\pi\varepsilon_0 E r} - 1\right)} dr$	
	c- On a $r_1 = \frac{K}{4\pi\varepsilon_0 E}$ $\rightarrow \ln T = -\frac{2}{\hbar}\sqrt{2m_\alpha E}\int_{r_0}^{r_1}\sqrt{\frac{r_1}{r}-1} dr = -\frac{2}{\hbar}\sqrt{2m_\alpha E}\cdot r_1\left(\frac{\pi}{2}-2\sqrt{\frac{r_0}{r_1}}\right) \rightarrow$	1
	$-\ln T = \frac{2}{\hbar} \sqrt{\frac{2m_{\alpha}r_{0}K}{\pi\varepsilon_{0}}} - \frac{K\sqrt{2m_{\alpha}}}{4\varepsilon_{0}\hbar} - \frac{1}{\sqrt{E}} = a - \frac{b}{\sqrt{E}}; \rightarrow a = \frac{2}{\hbar} \sqrt{\frac{2m_{\alpha}r_{0}K}{\pi\varepsilon_{0}}} \text{ et } b = \frac{K\sqrt{2m_{\alpha}}}{4\varepsilon_{0}\hbar}$	1
	a- On a $E = \frac{1}{2} m_{\alpha} v^{2} \rightarrow v = \sqrt{\frac{2E}{m_{\alpha}}}$. A.N: =1,38×10 ⁷ $m.s^{-1} \sim 10^{7} m.s^{-1}$	1
	b -Entre deux rebonds la particule parcourt la distance $2r_0$ donc $t_m = \frac{2r_0}{V} = r_0 \sqrt{\frac{2m_\alpha}{E}} = 5 \times 10^{-22} s$ donc	0,5
19-	$n = \frac{1}{t_m} = \frac{1}{r_0} \sqrt{\frac{E}{2m_\alpha}} \simeq 2 \times 10^{21}$	0,5 0,5
	c- Dans une seconde la particule effectue n rebonds sur la barrière d'énergie potentielle à chaque rebond elle a une probabilité T de sortir du noyau. Donc pendant une seconde elle a une probabilité nT , d'où la probabilité par unité de temps d'émettre une particule α est $\beta = nT$	i
	a- Le nombre de désintégration par seconde pour un noyau est $\beta = n \cdot T$. Donc le nombre de noyaux	
	$N(t)$ diminue de $\beta N(t) dt$ pendant une durée dt ce qui donne : $N(t+dt) - N(t) = -\beta N(t) dt$ $\rightarrow \frac{dN}{dt} = -\beta N(t)$	1 -
	at $\beta = n \times T = 2 \times 10^{21} \times 2 \times 10^{-39} = 4 \times 10^{-18} \text{ s}^{-1} \text{ . Cette valeur est de même ordre que la valeur}$	1
	expérimentale ce qui valide le modèle de Gamow.	
20-	b- L'intégration de l'équation précédente : donne $N(t) = N_0 e^{-\beta t}$. $N(t_1) = \frac{N(0)}{2} \rightarrow$	
20-	$N_0 e^{-\beta t_1} = \frac{N_0}{2} \to \beta t_1 = \ln 2 \to t_1 = \frac{\ln 2}{\beta}$	1
	$c - \ln\left(\frac{t_1}{t_m}\right) = \ln\left(\frac{\ln 2}{\beta}n\right) = \ln\left(\ln 2\right) - \ln\left(T\right) = \ln\left(\ln 2\right) - a + \frac{b}{\sqrt{E}}$	1
	La loi de demi-vie obtenue précédemment indique qu'elle est proportionnelle à $E^{-\frac{1}{2}}$ ce qui est prouvé expérimentalement.	0,5