CS 839 Systems Verification Lecture 3: Induction

PATREON.COM/ZACHWEINERSMITH

SMBC-COMICS.COM

Learning outcomes

- 1. Informally reason about disjunction and exists
- 2. Appreciate the nuances of induction

Rocq demo: Disjunctions	
	ocq demo: Disjunct

Safe vs unsafe tactics

Recall some tactics:

- intros
- destruct
- left
- right
- reflexivity
- simpl

Which of these are safe?

Define a *safe tactic* as one that if the goal is true, creates only true goals.

Short exercise, just gets them thinking about the semantics of each tactic.

Transition to digital whiteboard

First example: sum of 1..n

$$1+2+\cdots+n=n(n+1)/2$$

Principle of induction

Have some $P: \mathrm{nat} o \mathrm{Prop}$

 $\operatorname{Show} P(0)$

Show orall k, P(k)
ightarrow P(k+1)

Derive $\forall n, P(n)$

Another example

Imagine a 2D plane

There is a hole of radius 3 at the origin

Crawler dynamics

Correctness

Want $\forall i$, safe(e(i))

 $e=\sigma_0,\sigma_1,\sigma_2,\dots$

Exercise: finite example

transitions tr(i,j)

(e.g., $tr(1,2)={
m true}$, $tr(2,4)={
m false}$)

To prove: orall i, e(i)
eq 6

