UC San Diego

DSC 102 Systems for Scalable Analytics

Rod Albuyeh

Topic 3: Parallel and Scalable Data Processing

Part 2: Scalable Data Access

Ch. 9.4, 12.2, 14.1.1, 14.6, 22.1-22.3, 22.4.1, 22.8 of Cow Book Ch. 5, 6.1, 6.3, 6.4 of MLSys Book

Outline

- Basics of Parallelism
 - Task Parallelism; Dask
 - Single-Node Multi-Core; SIMD; Accelerators
- Basics of Scalable Data Access
 - Paged Access; I/O Costs; Layouts/Access Patterns
- Scaling Data Science Operations
- Data Parallelism: Parallelism + Scalability
 - Data-Parallel Data Science Operations
 - Optimizations and Hybrid Parallelism

Scaling Data Science Operations

- Scalable data access is used in key representative examples of programs/operations that are ubiquitous in data science:
- DB systems:
 - Non-deduplicating (as in, not avoiding duplication) project
 - Simple SQL aggregates (min, max, sum, etc)
 - SQL GROUP BY aggregates (agg group by key)
 - ML systems:
 - Matrix Sum of Squares
 - (Stochastic) Gradient Descent

Scaling to Disk: Non-dedup. Project

A	В	С	D	R SEL	ECT C	FROM R	
1 a	1b	1c	1d				
2a	2b	2c	2d	Row-store:	1a,1b,1c,	2a,2b,2c, 2d	3a,3b,3c,
3a	3b	3c	3d	Row-store.	1d	2d	3d
4a	4b	4c	4d				
5a	5b	5c	5d		4a,4b,4c, 4d	5a,5b,5c, 5d	6a,6b,6c, 6d
6a	6b	6c	6d		, G		

- Straightforward filescan data access pattern
 - Read one page at a time into DRAM; may need cache repl.
 - Drop unneeded columns from tuples on the fly
- I/O cost: 6 (read) + output # pages (write)

Scaling to Disk: Non-dedup. Project

Α	В	С	D	R SI	ELECT C	FROM	R	
1 a	1b	1c	1d					
2a	2b	2c	2d	Col-store:	1a,2a,3a, 4a	5a,6a	1b,2b,3b, 4b	5b,6b
3a	3b	3c	3d		44		40	
4a	4b	4c	4d		1c,2c,3c,		1d 2d 3d	
5a	5b	5c	5d		4c	5c,6c	1d,2d,3d, 4d	5d,6d
6a	6b	6c	6d					

- Since we only need col C, no need to read other pages!
- I/O cost: 2 (read) + output # pages (write)
- Big advantage for col-stores over row-stores for SQL analytics queries (projects, aggregates, etc.); popular in online analytical processing ("OLAP")
 - Rationale for col-store RDBMS (e.g., Vertica) and Parquet

Scaling to Disk: Simple Aggregates

Α	В	С	D	R SELE	ECT MAX	(A) FR	OM R
1a	1b	1c	1d				
2a	2b	2c	2d	Row-store:	1a,1b,1c,	2a,2b,2c, 2d	3a,3b,3c,
3a	3b	3c	3d	Row-store.	1d	2d	3d
4a	4b	4c	4d				
5a	5b	5c	5d		4a,4b,4c, 4d	5a,5b,5c, 5d	6a,6b,6c, 6d
6a	6b	6c	6d				

- Again, straightforward filescan data access pattern
 - Similar I/O behavior as non-deduplicating project
- I/O cost: 6 (read) + output # pages (write)

Scaling to Disk: Simple Aggregates

Α	В	С	D	R SE	LECT M	AX (A)	FROM R	
1 a	1b	1c	1d					
2a	2b	2c	2d	Col-store:	1a,2a,3a, 4a	5a,6a	1b,2b,3b, 4b	5b,6b
3a	3b	3c	3d		4a		40	·
4a	4b	4c	4d		1c 2c 3c		1d 2d 3d	
5a	5b	5c	5d		1c,2c,3c, 4c	5c,6c	1d,2d,3d, 4d	5d,6d
6a	6b	6c	6d					

- Similar to the non-dedup. project, we only need col A; no need to read other pages!
- I/O cost: 2 (read) + output # pages (write)

Scaling to Disk: Group By Aggregate

В	С	D	R
1b	1c	4	
2b	2c	3	
3b	3c	5	
4b	4c	1	
5b	5c	10	
6b	6c	8	
	1b 2b 3b 4b 5b	1b 1c 2b 2c 3b 3c 4b 4c 5b 5c	1b 1c 4 2b 2c 3 3b 3c 5 4b 4c 1 5b 5c 10

Hash table (output)

Α	Running Info.
a1	17
a2	13
a3	1

SELECT A, SUM(D)
FROM R
GROUP BY A

- Now it is not straightforward due to the GROUP BY!
- Need to "collect" all tuples in a group and apply aggregation function to each
- Typically done with a hash table maintained in DRAM
 - Has 1 record per group and maintains "running information" for that group's aggregation function
 - Built on the fly during filescan of R; holds the output in the end

Scaling to Disk: Group By Aggregate

Α	В	С	D
a1	1b	1c	4
a2	2b	2c	3
a1	3b	3c	5
a3	4b	4c	1
a2	5b	5c	10
a1	6b	6c	8

SELECT A, SUM(D) FROM R GROUP BY A

Row-store:

R

Hash table in DRAM

Α	Running Info.
a1	4 -> 9 -> 17
a2	3 -> 13
а3	1

- Note that the sum for each group is constructed incrementally
- I/O cost: 6 (read) + output # pages (write); just one filescan again!

Q: But what if hash table > DRAM size?!

Scaling to Disk: Group By Aggregate

SELECT A, SUM(D) FROM R GROUP BY A

Q: But what if hash table > DRAM size?

Program might crash depending on backend implementation. OS may keep swapping pages of hash table to/from disk; aka "thrashing"

Q: How to scale to large number of groups?

- Divide and conquer! Split up R based on values of A
- HT for each split may fit in DRAM alone
- Reduce running info. size if possible

Scaling Data Science Operations

- Scalable data access for key representative examples of programs/operations that are ubiquitous in data science:
 - DB systems:
 - Relational select
 - Non-deduplicating project
 - Simple SQL aggregates
 - SQL GROUP BY aggregates
- ML systems:
 - Matrix Sum of Squares
 - (Stochastic) Gradient Descent

Scaling to Disk: Matrix Sum of Squares

2	1	0	0	M _{6x4}	I	$\ M\ _{2}^{2}$	
2	1	0	0				
0	1	0	2	Row-store:	2,1,	2,1	0,1,
0	0	1	2		0,0	0,0	0,2
3	0	1	0		0,0,	3,0,	3,0,
3	0	1	0		1,2	1,0	1,0

- Again, straightforward filescan data access pattern
 - Very similar to relational simple aggregate
 - Running info. in DRAM for sum of squares of cells

I/O cost: 6 (read) + output # pages (write)

Scalable Matrix/Tensor Algebra

In general, tiled partitioning is more common for matrix/tensor ops

- DRAM-to-disk scaling:
 - pBDR, SystemDS, and Dask Arrays for matrices
 - SciDB, Xarray for n-d arrays
- CUDA for DRAM-GPU caches scaling of matrix/tensor ops

Numerical Optimization in ML

- Many regression and classification models in ML are formulated as a (constrained) minimization problem
 - E.g., logistic and linear regression, linear SVM, etc.
 - Aka "Empirical Risk Minimization" (ERM) approach
 - Computes "loss" of predictions over labeled examples

$$\mathbf{w}^* = argmin_{\mathbf{w}} \sum_{i=1}^n l(y_i, f(\mathbf{w}, x_i))$$

Batch Gradient Descent for ML

$$L(\mathbf{w}) = \sum_{i=1}^{n} l(y_i, f(\mathbf{w}, x_i))$$

- In many cases, loss L() is convex;
- Closed-form minimization typically infeasible
- Batch Gradient Descent:
 - Iterative numerical procedure to find an optimal w
 - ❖ Initialize w to some value w⁽⁰⁾
 - * Compute gradient: $\nabla L(\mathbf{w}^{(k)}) = \sum_{i=1}^{n} \nabla l(y_i, f(\mathbf{w}^{(k)}, x_i))$
 - \star Descend along gradient: i=1 (Aka **Update Rule**) $\mathbf{w}^{(k+1)} \leftarrow \mathbf{w}^{(k)} \eta \nabla L(\mathbf{w}^{(k)})$
 - Repeat until we get close to w*, aka convergence

Batch Gradient Descent for ML

- Learning rate is a hyper-parameter selected by user or "AutoML" tuning procedures
- Number of epochs (iterations) of BGD also hyper-parameter

Data Access Pattern of BGD at Scale

- The data-intensive computation in BGD is the gradient
 - In scalable ML, dataset D may not fit in DRAM.
 - ❖ Model w is typically (but not always) small and DRAM-resident

$$\nabla L(\mathbf{w}^{(k)}) = \sum_{i=1}^{n} \nabla l(y_i, f(\mathbf{w}^{(k)}, x_i))$$

Q: What SQL operation is this reminiscent of?

- Gradient is like SQL SUM over vectors (one per example)
- At each epoch, 1 filescan over D to get gradient
- Update of w happens normally in DRAM
- Monitoring across epochs for convergence needed
- Loss function L() is also just a SUM in a similar manner

I/O Cost of Scalable BGD

$$\nabla L(\mathbf{w}^{(k)}) = \sum_{i=1}^{n} \nabla l(y_i, f(\mathbf{w}^{(k)}, x_i))$$

Υ	X1	X2	Х3
0	1b	1c	1d
1	2b	2c	2d
1	3b	3c	3d
0	4b	4c	4d
1	5b	5c	5d
0	6b	6c	6d

Row-store:

0,1b,	1,2b,	1,3b,
1c,1d	2c,2d	3c,3d
0,4b,	1,5b,	0,6b,
4c,4d	5c,5d	6c,6d

- Straightforward filescan data access pattern for SUM
 - Similar I/O behavior as non-dedup. project and simple SQL aggregates
- I/O cost: 6 (read) + output # pages (write for final w)

Stochastic Gradient Descent for ML

- Two key cons of BGD:
 - Often, too many epochs to reach optimal
 - Each update of w needs full scan: costly I/Os, full design matrix in memory
- Stochastic GD (SGD) mitigates both cons
- Basic Idea: Use a sample (mini-batch) of D to approximate gradient instead of "full batch" gradient
 - Done without replacement
 - Randomly reorder/shuffle D before every epoch
 - Sequential pass: sequence of mini-batches
- Another big pro of SGD: works better for non-convex loss too, especially DL
- SGD often called the "workhorse" of modern ML/DL

Access Pattern of Scalable SGD

$$\mathbf{W}^{(t+1)} \leftarrow \mathbf{W}^{(t)} - \eta \nabla \tilde{L}(\mathbf{W}^{(t)}) \qquad \nabla \tilde{L}(\mathbf{W}) = \sum_{i \in B} \nabla l(y_i, f(\mathbf{W}, x_i))$$

Sample mini-batch from dataset without replacement

I/O Cost of (Very) Scalable SGD

- I/O cost of random shuffle is non-trivial; need so-called "external merge sort" (skipped in this course)
 - Typically amounts to 1 or 2 passes over file
- Mini-batch gradient computations: 1 filescan per epoch:
 - As filescan proceeds, count # examples seen, accumulate per-example gradient for mini-batch
 - Typical mini-batch sizes: 10s to 1000s
 - Orders of magnitude more model updates than BGD!
- Total I/O cost per epoch: 1 shuffle cost + 1 filescan cost
 - Often, shuffling only once upfront suffices
- Loss function L() computation is same as before (for BGD)

Outline

- Basics of Parallelism
 - Task Parallelism; Dask
 - Single-Node Multi-Core; SIMD; Accelerators
- Basics of Scalable Data Access
 - Paged Access; I/O Costs; Layouts/Access Patterns
 - Scaling Data Science Operations
- Data Parallelism: Parallelism + Scalability
 - Data-Parallel Data Science Operations
 - Optimizations and Hybrid Parallelism

Review Questions

- 1. What are the 4 main regimes of scalable data access?
- 2. Briefly explain 1 pro and 1 con of scaling with local disk vs scaling with remote reads.
- 3. Which is the best layout format for 2-D structured data?
- 4. Briefly explain 1 pro and 1 con of SGD vs BGD.
- 5. Suppose you use scalable SGD to train a DL model. The dataset has 100 mil examples. You use a mini-batch size of 50. How many iterations (number of model update steps) will SGD finish in 20 epochs?
- 6. What is the runtime tradeoff involved in shuffle-once-upfront vs shuffle-every-epoch for SGD? Assume a physical shuffle is necessary, not an index-based shuffle.