

Assessing Demographic Variability in Machine Learning Model Performance to Predict Alcohol Lapses

Jiachen Yu, Kendra Wyant, Sarah Sant'Ana, Gaylen Fronk, John Curtin. (Department of Psychology)

OVERVIEW AND GOALS

Alcohol Lapse Prediction

- Developed an XGBoost machine learning model to predict alcohol lapses in the next 24 hours using ecological momentary assessments (EMA) (INSERT REF)
- Model has exceptional performance when predicting lapses for new (held-out) individuals
- Locally important features can identify the factors that contribute to lapse risk for any specific person and moment in time
- A "smart" digital therapeutic (smart DTx) could use algorithms based on this model to monitor lapse risk and recommend personalized, optimal interventions and other supports for momentary risks

Algorithmic Bias

- Less privileged, marginalized groups display mental health treatment disparities due to barriers related to affordability, accessibility, availability, and acceptability of mental healthcare
- Smart DTx can partially address these barriers by providing 24/7/365, affordable, personalized support
- However, if embedded algorithms perform relatively worse for less privileged groups, their use may exacerbate rather than reduce treatment disparities

GOAL: Evaluate potential algorithmic bias across historically privileged and unprivileged groups

Methods

Participants

- N = 151
- Early remission from Alcohol Use Disorder
- Endorsed abstinence goal

Procedure

- Personal sensing via smartphone for up to 3 months
- 4x daily (craving, affect, efficacy, risky situations, stressful events, pleasant events)
- Self-reported lapses back to alcohol use

Machine Learning Model

- XGBoost classification model
- Features based on previous EMA
- Provides hour-by-hour probability for future (next 24 hour) lapse

Sensitive Attributes

- Sex: Female vs. Male
- Race/Ethnicity: Non-hispanic White vs. People of Color
- income: 50% of median personal income in Madison (\$15k)
- age: 55 or older

Performance Metrics

auROC, auPRC, PPV, sensitivity, specificity

Statistical Analysis

- 30 held-out performance estimates (from nested k-fold cross validation) for each metric
- Posterior probabilities of group differences estimated using Bayesian generalized mixed effect models

RESULTS

Privileged (Age 55 or older) unprivileged (Below 55)

- auROCs are higher for males than females, probably primarily driven by specificity.
- Models perform systematically better for White individuals than People of Color.
- Both auROCs and auPRs are higher in people with higher income, probably due to significant differences in sensitivity.
- auROCs, sensitivity, and specificity are significantly higher for younger population. auPRs are not significantly different between the two groups, but ppv is higher in younger people.

Conclusions

- Substantially poorer model performance for people of color
- Modestly poorer model performance for groups defined by sex, income, and age
- Representation in training data is clearly important
- Bias may also result from selection of features using domain expertise based on decades of research focused on predominately white men

NEXT STEPS

- Evaluate methods to reduce algorithmic bias
- More representative training data (NIDA project)
- Resampling to increase representation

https://posit.co/conference/ abc@example.com

- Modified cost functions to differential penalize errors based on privilege
- Control for privilege when predicting
- More representative features
- Expand evaluation of privilege
- Rural group
- Education
- Intersectional analyses
- Bias in treatment/support recommendations