CI603 Data Mining

Classification

Tutorial 5

(Solution)

1. The table below shows a data sample where each item has three attributes and there are two classes 'Small' and 'Large'. Attribute 1 is binary with values 'yes' or 'no'; attribute 2 is categorical with values 'A', 'B' or 'C'; attribute 3 is continuous.

ID	Attribute 1 binary	Attribute 2 categorical	Attribute 3 continuous	Class
1	No	Α	30	Large
2	Yes	В	40	Small
3	No	С	50	Large
4	Yes	В	40	Small
5	Yes	Α	40	Small
6	No	В	50	Large
7	No	С	40	Small
8	Yes	Α	30	Small
9	Yes	Α	40	Large
10	No	Α	50	Large

The aim here is to construct a **binary decision tree** using **entropy** to measure impurity (in a binary tree each non-leaf node has two children)

a) Calculate the entropy of the parent node, using the entropy formula $Entropy = -P(small) log_2 P(small) - P(large) log_2 P(large)$

Answer:

Root node: Small: 5; Large: 5

$$Entropy = -\frac{5}{10}\log_2\frac{5}{10} - \frac{5}{10}\log_2\frac{5}{10} = 1$$

- b) Calculate the information gain for each of the following four possible 2-way splits:
 - Attribute 1: 'Yes' or 'No';
 - Attribute 2: 'A' or 'B/C';
 - Attribute 3: '≤ 35' or '> 35';
 - Attribute 3: '≤ 45' or '> 45'.

Hence, draw level 1 of the decision tree. Are either of the nodes leaf nodes?

Answer:

1) Splitting on **Attribute 1**:

$$I(Attribute\ 1 = Yes) = -\frac{4}{5}\log_2\frac{4}{5} - \frac{1}{5}\log_2\frac{1}{5} = 0.7219$$

$$I(Attribute\ 1 = No) = -\frac{1}{5}log_2\frac{1}{5} - \frac{4}{5}log_2\frac{4}{5} = 0.7219$$

$$I(Attribute) = \frac{5}{10} \times 0.7219 + \frac{5}{10} \times 0.7219 = 0.7219$$
 ((Weighted entropy)

 $Information\ gain = 1 - 0.7219 = 0.2781$

2) Splitting on **Attribute 2**: binary split {A, B/C}

$$I(Attribute\ 2=A) = -\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5} = 0.9710$$

$$I(Attribute\ 2 = B/C) = -\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5} = 0.9710$$

$$I(Attribute) = \frac{5}{10} \times 0.9710 + \frac{5}{10} \times 0.9710 = 0.9710$$
 ((Weighted entropy)

 $Information\ gain = 1 - 0.9710 = 0.0290$

3) Splitting on **Attribute 2**: binary split {A, B/C}

$$I(Attribute\ 3 \le 35) = -\frac{1}{2}log_2\frac{1}{2} - \frac{1}{2}log_2\frac{1}{2} = 1$$

$$I(Attribute 3 > 35) = -\frac{4}{8}log_2\frac{4}{8} - \frac{4}{8}log_2\frac{4}{8} = 1$$

$$I(Attribute\ 35) = \frac{2}{10} \times 1 + \frac{8}{10} \times 1 = 1$$
 ((Weighted entropy)

Information gain = 1 - 1 = 0

4) Splitting on **Attribute 2**: binary split {A, B/C}

$$I(Attribute \ 3 \le 45) = -\frac{5}{7} \log_2 \frac{5}{7} - \frac{2}{7} \log_2 \frac{2}{7} = 0.8631$$

I(Attribute 3 > 45) = 0

$$I(Attribute\ 45) = \frac{7}{10} \times 0.8631 + \frac{3}{10} \times 0 = 0.6042$$
 ((Weighted entropy)

Information gain = 1 - 0.6042 = 0.3958

The largest **information gain** is when splitting on **Attribute 3**: \leq **45**, >**45**. This gives the following level 1 tree where the node following '> 45' is a leaf node.

c) Complete level 2 of the decision tree. That is, for each non-leaf node at level 1, consider the possible 2-way splits as identified in part (b) and choose the split with the largest **information gain**.

Answer:

For the node 1 we have the following data:

ID	Attribute 1	Attribute 2	Class
1	No	Α	Large
2	Yes	В	Small
4	Yes	В	Small
5	Yes	Α	Small
7	No	С	Small
8	Yes	Α	Small
9	Yes	Α	Large

The entropy of this as a parent node is:

Node 1: Small: 5; Large: 2

$$Entropy = -\frac{5}{7}\log_2\frac{5}{7} - \frac{2}{7}\log_2\frac{2}{7} = 0.8631$$

1) Splitting on **Attribute 1**:

$$I(Attribute\ 1 = Yes) = -\frac{4}{5}\log_2\frac{4}{5} - \frac{1}{5}\log_2\frac{1}{5} = 0.7219$$

$$I(Attribute 1 = No) = 1$$

$$I(Attribute) = \frac{5}{7} \times 0.7219 + \frac{2}{7} \times 1 = 0.8014$$
 ((Weighted entropy)

$$Information\ gain = 0.8631 - 0.8014 = 0.0617$$

2) Splitting on **Attribute 2**: binary split {A, B/C}

$$I(Attribute 2 = A) = 1$$

$$I(Attribute \ 2 = B/C) = 0$$

$$I(Attribute) = \frac{4}{7} \times 1 + \frac{3}{7} \times 0 = 0.5714$$
 ((Weighted entropy)

$$Information\ gain = 0.8631 - 0.5714 = 0.2917$$

The largest **information gain** is when splitting on Attribute 2: {A, B/C}. This gives the following level 2 tree where the node following 'B/C' is a leaf node.

d) Calculate the information gain for each of the following four possible 2-way splits:

Answer:

For node 2 we have the following data:

ID	Attribute 1	Class
1	No	Large
5	Yes	Small
8	Yes	Small
9	Yes	Large

The entropy of this as a parent node is:

Node 2: Small: 2; Large: 2

$$Entropy = -\frac{2}{4}log_2\frac{2}{4} - \frac{2}{4}log_2\frac{2}{4} = 1$$

1) Splitting on **Attribute 1**:

Splitting on **Attribute 1** gives the following completed decision tree.

- ► The node following 'No' is a **leaf node**.
- For the node following 'Yes' all the attribute values are **identical** so the **splitting stops** and node 3 becomes a **leaf node**. Since 2/3 of the data at **node 3** are in the 'Small' class, we would classify data at this node as 'Small'.
- e) Complete the decision tree.

Answer:

