Algebra General Exam - August 2022

Your UVa ID Number:

- Please show all your work and justify any statements that you make.
- State clearly and fully any theorem you use.
- Vague statements and hand-waving arguments will not be appreciated.
- You may assume the statement in an earlier part proven in order to do a later part.

DO EACH PROBLEM ON A SEPARATE SHEET OF PAPER, AND STAPLE THEM TOGETHER IN THE CORRECT ORDER BEFORE TURNING THE EXAM IN.

Sign below the pledge:

"On my honor, I pledge that I have neither given nor received help on this assignment."

- 1. Let R denote the commutative ring $\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}.$
- (a) (6 points) Construct two nonassociated factorizations of 6 into products of irreducible elements (you need to verify that all elements involved in these factorizations are indeed irreducible and the two factorizations are indeed nonassociated).
- (b) (5 points) Using the factorizations from (a), construct an ideal $\mathfrak{a} \subset R$ which is **not** principal.
- (c) (6 points) Show that the square $\mathfrak{a}^2 = \mathfrak{a}\mathfrak{a}$ of the ideal from part (b) is principal.
- 2. For a complex $n \times n$ -matrix $A = (a_{ij})$ we let \overline{A} denote the matrix (\overline{a}_{ij}) where the bar denotes the complex conjugation. Also, we let χ_A denote the characteristic polynomial of A.
- (a) (4 points) If A and \overline{A} are conjugate, prove that the characteristic polynomial χ_A has real coefficients.
- (b) (7 points) Conversely, if A is diagonalizable and χ_A has real coefficients then A and \overline{A} are conjugate.
- (c) (5 points) Give an example of a nondiagonalizable complex matrix A such that χ_A has real coefficients but A and \overline{A} are **not** conjugate.
- 3. (a) (7 points) Let G be a group, and $H \subset G$ be a normal subgroup. Assume that the center Z(H) is $\{e\}$ and that every automorphism of H is inner. Show that G is the direct product $H \times C_G(H)$ where $C_G(H)$ is the centralizer of H in G. (Hint. Consider the action of G on H by inner automorphisms.)
- (b) (8 points) Show that there is no group G such that the commutator subgroup [G, G] is isomorphic to the symmetric group S_3 . (You can assume without proof that S_3 satisfies the assumptions on H made in part (a).)
- 4. Let R be a commutative ring with identity. We say that a finitely generated R-module P is projective if P is a direct summand of a free R-module. That is, there is some $d \ge 1$ and another R-module Q such that $P \bigoplus Q \simeq R^d$ as R-modules.

- (a) (6 points) Suppose P is a finitely generated projective R-module. Show that for every epimorphism of R-modules $\varphi \colon M \to N$, an arbitrary R-module homomorphism $\alpha \colon P \to N$ lifts to a homomorphism $\beta \colon P \to M$ such that $\varphi \circ \beta = \alpha$.
- (b) (5 points) Show that if P_1 and P_2 are finitely generated projective modules then their tensor product $P_1 \otimes_R P_2$ is also a finitely generated projective R-module.
- 5. (a) (7 points) Let V and W be vector spaces over a field K, and let $v_1, \ldots, v_n \in V$ be linearly independent vectors. Show that if $w_1, \ldots, w_n \in W$ are such that $v_1 \otimes w_1 + \cdots + v_n \otimes w_n = 0$ in $V \otimes_K W$ then $w_1 = \cdots = w_n = 0$.
- (b) (7 points) Again, let V and W be vector spaces over a field K, and let $x \in V \otimes_K W$. If $x = v_1 \otimes w_1 + \cdots + v_n \otimes w_n$ is a shortest presentation of x as a sum of simple tensors (i.e., x cannot be written as $v_1' \otimes w_1' + \cdots + v_m' \otimes w_m'$ with m < n) then the vectors v_1, \ldots, v_n (and likewise w_1, \ldots, w_n) are linearly independent. Note: Make sure you clearly state which properties of the tensor product you are using in both parts of this problem.
- 6. (8 points) Let α be a complex number satisfying $\alpha^6 + 3 = 0$. Show that $\mathbb{Q}(\alpha)/\mathbb{Q}$ is a Galois extension, and determine its Galois group. (*Hint*. The same is not true if 3 is replaced by 2.)
- 7. Assume that p is a prime number and $A \in GL_5(\mathbb{F}_p)$ is a matrix that satisfies $A^3 = 1$.
- (a) (4 points) If $p \equiv 1 \mod 3$, show that A is diagonalizable.
- (b) (7 points) Let p = 11. Classify all conjugacy classes of such matrices A.
- 8. (8 points) Let K be a subfield of \mathbb{R} , let $f(x) \in K[x]$ be an irreducible polynomial, and let L be the splitting field of f over K (i.e., the field obtained by adjoining to K all complex roots of f). Assume that the Galois group Gal(L/K) is abelian. Show that if one root of f is real then all roots are real.