Institut für Analysis

Prof. Dr. Wolfgang Reichel

M.Sc. Lukas Bengel

7. Übungsblatt zur Vorlesung Analysis I

Abgabe bis Freitag, 16.12.2022, 12 Uhr

T Aufgabe 19

Überprüfen Sie, welche der rekursiv definierten Folgen konvergieren und bestimmen Sie gegebenenfalls ihren Grenzwert.

a)
$$a_1 = 2$$
, $a_{n+1} = \frac{1 + a_n^2}{4}$ $(n \in \mathbb{N})$

b)
$$a_1 = 5$$
, $a_{n+1} = \frac{1 + a_n^2}{4}$ $(n \in \mathbb{N})$.

c)
$$a_1 = 2$$
, $a_{n+1} = \frac{a_n}{\sqrt{2 + a_n} + 2}$ $(n \in \mathbb{N})$.

T Aufgabe 20

- a) Seien (a_n) , (b_n) und (c_n) Folgen. Zeigen Sie:
 - (i) (a_n) ist eine Teilfolge von (a_n) .
 - (ii) Ist (b_n) eine Teilfolge von (a_n) und (c_n) eine Teilfolge von (b_n) , so ist (c_n) eine Teilfolge von (a_n) .
 - (iii) Es existieren Folgen (a_n) und (b_n) , so dass (b_n) Teilfolge von (a_n) ist, aber (a_n) keine Teilfolge von (b_n) ist.
- b) Finden Sie zwei Folgen (a_n) und (b_n) , welche nicht identisch sind und für die gilt, dass (a_n) eine Teilfolge von (b_n) und (b_n) eine Teilfolge von (a_n) ist.

T Aufgabe 21

Seien $a \in (0, \infty)$ und b, c > 1. Zeigen Sie $\log_c a = \frac{\log_b a}{\log_b c}$

T Aufgabe 22

Babylonisches Wurzelziehen: Für ein x > 0 sei die Folge $(a_n)_{n \in \mathbb{N}}$ definiert durch

$$a_1 > 0,$$
 $a_{n+1} = \frac{1}{2} \left(a_n + \frac{x}{a_n} \right) \quad (n \in \mathbb{N}).$

Zeigen Sie, dass die Folge $(a_{n+1})_{n\in\mathbb{N}}$ monoton ist sowie $\lim_{n\to\infty} a_n = \sqrt{x}$.

K Aufgabe 13 (6 Punkte)

a) Zeigen Sie, dass die folgende rekursiv definierte Folge konvergiert und bestimmen Sie deren Grenzwert.

$$a_1 = 1, \ a_{n+1} = \sqrt{2 + a_n}.$$

b) Zu einer Folge (a_n) definiert man die Folge der $Ces\`{a}ro-Mittel$ durch

$$c_n := \frac{1}{n} \sum_{k=1}^n a_k$$
 für $n \in \mathbb{N}$.

- (i) Zeigen Sie: Konvergiert (a_n) gegen ein $a \in \mathbb{R}$, dann konvergiert auch (c_n) gegen a.
- (ii) Geben Sie eine divergente Folge (a_n) an deren Folge von Cesàro-Mitteln konvergiert. Beweisen Sie die Konvergenz.

K Aufgabe 14 (6 Punkte)

- a) Sei (a_n) eine unbeschränkte Folge reeller Zahlen. Zeigen Sie, dass eine Teilfolge (b_n) von (a_n) existiert, so dass $\lim_{n\to\infty}\frac{1}{b_n}=0$ gilt.
- b) Sei (a_n) eine Folge mit der Eigenschaft, dass jede der Teilfolgen (a_{2k}) , (a_{2k+1}) und (a_{3k}) konvergiert. Zeigen Sie, dass dann auch (a_n) konvergiert. Zeigen Sie ferner, dass die Behauptung falsch ist, wenn nur die Teilfolgen (a_{2k}) , (a_{2k+1}) , aber nicht (a_{3k}) als konvergent angenommen werden.