Министерство образования Республики Беларусь УО «Полоцкий государственный университет»

Факультет информационных технологий Кафедра технологий программирования

Методы численного анализа
Лабораторная работа №8
На тему: «Методы решения граничных задач для нестационарного уравнения теплопроводности»

Название: «Методы решения граничных задач для нестационарного уравнения теплопроводности».

Цель работы: Научиться находить решения задач для нестационарного уравнения теплопроводности используя явную, чисто неявную и симметричную схему.

Теоретическая часть:

Постановка задачи

Будем рассматривать <u>смешанную задачу</u> для уравнения теплопроводности с постоянными коэффициентами в стержне единичной длины, т.е. в области $D=\{0\le x\le 1;\ 0\le t\le T\}$. Нужно найти непрерывное решение u=u(x,t) смешанной задачи, которая записывается следующим образом:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + f(x, t) \qquad 0 \le x \le 1 \qquad 0 \le t \le T$$
 (1)

$$u(x,0)=u0(x)$$
 начальное условие (2)

$$u(0,t)=u1(t)$$
 граничное условие слева (3)

$$u(1,t)=u2(t)$$
 граничное условие справа (4).

Все функции u0(x), u1(t),u2(t) предполагаются заданными. Начальные и граничные условия должны быть согласованы, т.е. должны выполняться условия:

$$u(0;0)=u0(0)=u1(0)$$
 $u(1;0)=u0(1)=u2(0)$.

Явная схема

Пусть имеем смешанную задачу (1)-(4). Для решения применим метод сеток. Для этого:

- 1. В области, ограниченной отрезками $0 \le x \le 1$ и $0 \le t \le T$ построим пространственновременную прямоугольную сетку $\omega_{h,\tau} = \omega_h \times \omega_{\tau}$;
 - 2. в узлах сетки определим сеточные функцию $y_i^j = y(x_i, t_j)$;
- 3. для выбора соотношений, аппроксимирующие производные, зададим <u>4-х точечный</u> <u>шаблон</u> вида:

4. В соответствие с выбранным шаблоном запишем конечно-разностную производную по времени: $\frac{\partial u}{\partial t} \approx \frac{y_i^{j+1} - y_i^{j}}{\tau} \tag{5}$

- 5. вторую производную по параметру x аппроксимируем как: $\frac{\partial^2 u}{\partial x^2} \approx \frac{y_{i+1}^j 2y_i^j + y_{i-1}^j}{h^2}$ (6)
- 6. функцию источника заменим сеточной функцией вида $\varphi_i^j = f(x_i, t_j)$;

7. В результате имеем разностное уравнение, которое аппроксимирует исходное дифференциальное уравнение в узле (x_i,t_j) с первым порядком по τ и вторым по h при условии, что разность $\varphi_i^j - f(x_i,t_j)$ имеет тот же порядок малости. И для завершения построения разностной схемы распространим разностное уравнение на все внутренние точки сетки $\omega_{h,\tau} = \omega_h \times \omega_\tau$ и учтем начальные и граничные условия. Получим:

$$\frac{y_i^{j+1} - y_i^j}{\tau} = \frac{y_{i+1}^j - 2y_i^j + y_{i-1}^j}{h^2} + \varphi_i^j \qquad i = 1, ..., n-1; \quad j = 1, ..., K-1$$
 (8)

$$y_i^0 = u0(x_i)$$
 $i = 0,1,...,n;$ (9)

$$y_0^j = u1(t_j)$$
 $y_n^j = u2(t_j)$ $j = 0,1,...,K$ (10)

Эта схема (8)-(10) представляет собой систему линейных алгебраических уравнений, число которых совпадает с числом неизвестных. Следовательно, система имеет единственное решение, находить которое нужно по слоям. Решение на нулевом слое задается начальным условием (9) вида $y_i^0 = u0(x_i)$ i = 0,1,...,n. Если решение на j-том слое уже найдено, то на j+1 слое решение находится по явной формуле вида: $y_i^{j+1} = y_i^j + \tau(\frac{y_{i+1}^j - 2y_i^j + y_{i-1}^j}{h^2} + \varphi_i^j)$ i = 1,...,n-1 (11), а значения $y_0^{j+1} = u1(t_{j+1})$, $y_n^{j+1} = u2(t_{j+1})$ j = 0,1,...,K-1 доопределяются из граничных условий. Именно из-за существования формулы (11) схема (8)-(10) называется явной разностной схемой.

Доказывается, что схема (8)-(10) имеет сходимость первого порядка по т и второго по h, но использовать эту схему можно при выполнении условия: $\tau \leq \frac{h^2}{2}$ (12), т.е. только в этом случае решение будет <u>устойчивым</u>. Разностные схемы, устойчивые лишь при некотором ограничении на отношение шагов по пространству и времени, называются <u>условно устойчивыми</u>. Т.о. схема (8)-(10) является условно устойчивой, причем условие устойчивости имеет вид: $\frac{\tau}{h^2} \leq \frac{1}{2}$ (13).

Чисто неявная схема

Пусть имеем смешанную задачу (1)-(4). Будем решать задачу **методом сеток**. В области, ограниченной отрезками $0 \le x \le 1$ и $0 \le t \le T$ построим пространственно-временную прямоугольную сетку $\omega_{h,\tau} = \omega_h \times \omega_\tau$, в узлах которой определим сеточную функцию $y_i^j = y(x_i,t_j)$.

Чисто неявной разностной схемой (иначе — *схемой с опережением*) для одномерного уравнения теплопроводности (1) называется разностная схема, которая использует $\underline{4-x}$ точечный шаблон вида:

Функцию источника заменим сеточной функцией: $\varphi_i^j = f(x_i, t_j) + O(\tau + h^2)$.

В результате получим чисто неявное конечно- разностное уравнение, которое аппроксимирует исходное дифференциальное уравнение в узле (x_i,t_j) с первым порядком по τ и вторым по h, т.к. оговорили, что разность $\varphi_i^j-f(x_i,t_j)$ имеет тот же порядок малости.

Для завершения построения разностной схемы распространим уравнение (7) на все внутренние узлы сетки $\omega_{h,\tau} = \omega_h \times \omega_{\tau}$ и учтем начальные и граничные условия. Получаем:

$$\frac{y_i^{j+1} - y_i^j}{\tau} = \frac{y_{i+1}^{j+1} - 2y_i^{j+1} + y_{i-1}^{j+1}}{h^2} + \varphi_i^j \quad i = 1, ..., n-1; \quad j = 1, ..., K-1$$
(8)

$$y_i^0 = u0(x_i)$$
 $i = 0,1,...,n;$ (9)

$$y_0^{j+1} = u1(t_{j+1})$$
 $y_n^{j+1} = u2(t_{j+1})$ $j = 0,1,...,K-1$ (10)

Основное отличие построенной *неявной конечно-разностной схемы* от *явной* состоит в том, что в правой части системы уравнений (8) имеем значения сеточной функции на j+1 слое, т.е неизвестное значение искомой функции $y_i^{j+1} = y(x_i, t_{j+1})$. Система уравнений (8)-(10) - это система линейных уравнений, и решать ее, как и в случае явной схемы, нужно по слоям, начиная с *первого слоя*. На нулевом слое решение этой системы задается начальным условием $y_i^0 = u0(x_i)$ i = 0,1,...,n. В явной схеме мы могли для нахождения неизвестных значений сеточной функции на j+1 слое построить явные формулы на основе значений этой функции на j-ом слое. Здесь же, в отличие от явной схемы для нахождения значения y_i^{j+1} по уже известному значению y_i^j требуется решить систему уравнений вида:

$$\gamma y_{i+1}^{j+1} - (1+2\gamma) y_i^{j+1} + \gamma y_{i-1}^{j+1} = -F_i^j$$
 $i = 1, ..., n-1;$ (11)

$$y_0^{j+1} = u1(t_{j+1})$$
 $y_n^{j+1} = u2(t_{j+1})$ $j = 0,1,...,K-1$ (12).

Здесь
$$\gamma = \tau / h^2$$

$$F_i^{\ j} = y_i^{\ j} + \tau \varphi_i^{\ j}.$$

Матрица системы (11)-(12) является <u>трехдиагональной</u>, значит эту систему можно решать *методом прогонки*, т.к. условия устойчивости метода прогонки выполняются.

Доказывается, что чисто неявная разностная схема (8)-(10) является абсолютно устойчивой. Следовательно, чтобы не иметь больших погрешностей численного решения, при выборе шагов τ и h неявной схемы следует придерживаться соотношения: $\tau \sim ch^2$.

Симметричная неявная схема (Схема Кранка-Николсона)

Эта схема является по существу усреднением явного и неявного методов.

Пусть имеем смешанную задачу (1)-(4). Как и в предыдущих случаях в области, ограниченной отрезками $0 \le x \le 1$ и $0 \le t \le T$ построим пространственно-временную прямоугольную сетку $\omega_{h,\tau} = \omega_h \times \omega_\tau$, в узлах которой определим сеточную функцию $y_i^j = y(x_i, t_i)$. Замену граничных и начальных условий проведем, как и для явной схемы.

Для построения разностной схемы выберем 6-ти точечный шаблон вида:

Функцию источника заменим сеточной функцией вида $\varphi_i^j = f(x_i,t_j) + O(\tau^2 + h^2)$.

В результате получим *симметричное конечно- разностное уравнение*.

Для завершения построения разностной схемы распространим уравнение, на все внутренние узлы сетки $\omega_{h,\tau} = \omega_h \times \omega_{\tau}$ и учтем начальные и граничные условия. Получаем:

$$\frac{y_i^{j+1} - y_i^j}{\tau} = \frac{1}{2} \left(\frac{y_{i+1}^j - 2y_i^j + y_{i-1}^j}{h^2} + \frac{y_{i+1}^{j+1} - 2y_i^{j+1} + y_{i-1}^{j+1}}{h^2} \right) + \varphi_i^j$$
 (8)

$$i = 1,..., n-1;$$
 $j = 1,..., K-1$

$$y_i^0 = u0(x_i)$$
 $i = 0,1,...,n;$ (9)

$$y_0^{j+1} = u1(t_{j+1})$$
 $y_n^{j+1} = u2(t_{j+1})$ $j = 0,1,...,K-1$ (10)

Эта схема имеет <u>второй порядок</u> аппроксимации по пространству и времени, т.е. $O(\tau^2 + h^2)$. Эта схема является <u>абсолютно устойчивой</u>.

Система уравнений (8)-(10) - это система линейных уравнений, и решать ее, как и в предыдущих случаях, нужно по слоям, начиная с *первого слоя*. На нулевом слое решение этой системы задается начальным условием $y_i^0 = u0(x_i)$ i = 0,1,...,n. Значения численного решения функции $y_i^{j+1} = y(x_i,t_{j+1})$ на каждом слое находятся из решения системы уравнений вида:

$$\frac{\gamma}{2} y_{i+1}^{j+1} - (1+\gamma) y_i^{j+1} + \frac{\gamma}{2} y_{i-1}^{j+1} = -F_i^j \qquad i = 1, ..., n-1;$$
 (11)

$$y_0^{j+1} = u1(t_{j+1})$$
 $y_n^{j+1} = u2(t_{j+1})$ $j = 0,1,...,K-1$ (12).

Здесь
$$\gamma = \tau/h^2$$

$$F_i^{\ j} = (1-\gamma)y_i^{\ j} + \frac{\gamma}{2}(y_{i-1}^{\ j} + y_{i+1}^{\ j}) + \tau \varphi_i^{\ j}.$$

Метод (11)-(12) опять сводится к решению на каждом шаге по времени <u>трехдиагональной</u> системы уравнений.

Матрица коэффициентов этой системы совпадает с матрицей чисто неявной разностной схемы. <u>Преимущества</u> этого метода состоят в том, что <u>схема безусловно устойчива и имеет второй порядок точности по обеим координатам. τ и h, а поэтому является наиболее используемой для параболических уравнений.</u>

Рассмотрим пример. Найти решение следующей задачи:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
 $x \in [0,1]$ при $t=0.08$, т.е. $t \in [0,0.08]$

 $u(x,0)=x^2/2$ начальное условие

u(0,t)=t граничное условие слева

u(1,t)=0.5+t граничное условие справа

Прежде всего, необходимо проверить согласованность условий. Краевые условия на левом конце отрезка и начальное условия должны иметь одинаковое значение, а также значения краевого условия на правом конце отрезка и начальные условия должны совпадать.

Слева
$$u(0,0) = u(0,t)_{t=0} = t = 0$$
 $u(0,0) = u(x,0)_{x=0} = \frac{x^2}{2} = 0$ - выполняется.

Справа
$$u(1,0) = u(1,t)_{t=0} = 0.5 + t = 0.5$$
 $u(1,0) = u(x,0)_{x=1} = \frac{x^2}{2} = 0.5$ - выполняется.

Будем искать решение по явной разностной схеме. Выберем шаг по пространственной координате h=0.2, тогда из условия устойчивости $\frac{\tau}{h^2} \leq \frac{1}{2}$ будем иметь шаг по времени $\tau = 0.2^2 * \frac{1}{2} = 0.02$. Таким образом, получаем пространственно-временную сетку, в узлах которой определяем сеточную функцию $y_i^j = y(x_i, t_j)$, i=0,1,2,3,4,5; j=0,1,2,3,4, которая аппроксимирует искомое решение в узлах сетки. Запишем выражения для сеточной по явной разностной схеме: $y_i^{j+1} = y_i^j + \tau(\frac{y_{i+1}^j - 2y_i^j + y_{i-1}^j}{h^2})$ i=1,...,5 j=1,...,4 с учетом $\frac{\tau}{h^2} = \frac{1}{2}$, получаем $y_i^{j+1} = y_i^j + \frac{y_{i+1}^j - 2y_i^j + y_{i-1}^j}{2}$, в начальных и краевых узлах рассчитываем значение сеточной функции по формулам $y_i^0 = \frac{x_i^2}{2}$, $y_0^j = t_j$, $y_1^j = 0.5 + t_j$.

Проведем вычисления по слоям. На первом слое значения сеточной функции определяются начальными условиями $y_i^0 = \frac{x_i^2}{2}$.

$$y_0^0 = \frac{x_0^2}{2} = \frac{0}{2} = 0$$
 $y_1^0 = \frac{x_1^2}{2} = \frac{0.2^2}{2} = 0.02$ $y_2^0 = 0.08$ $y_3^0 = 0.18$ $y_4^0 = 0.32$ $y_5^0 = 0.5$

Сразу же рассчитываем значение функции в краевых узлах.

$$y_0^j=t_j, \qquad y_1^j=0.5+t_j, \ j=1,2,3,4$$

$$y_0^1=t_1=0.02, \qquad y_5^1=0.5+t_1=0.5+0.02=0.52 \qquad y_0^2=0.04, \qquad y_5^2=0.5+t_2=0.5+0.04=0.54$$

$$y_0^3=0.06, \qquad y_5^3=0.5+t_3=0.5+0.06=0.56 \qquad y_0^4=0.08, \qquad y_5^4=0.5+t_4=0.5+0.08=0.58$$
 Получили таблицу следующего вида:

	i	0	1	2	3	4	5
j	x	0	0.2	0.4	0.6	0.8	1
0	0	0	0.02	0.08	0.18	0.32	0.50
1	0.02	0.02					0.52
2	0.04	0.04					0.54
3	0.06	0.06					0.56
4	0.08	0.08					0.58

А затем приступаем к поиску решения во всех внутренних узлах сетки.

$$\begin{aligned} y_i^{j+1} &= y_i^j + \frac{y_{i+1}^j - 2y_i^j + y_{i-1}^j}{2}, i = 1,2,3,4; j = 1,2,3,4 \\ y_1^1 &= y_1^0 + \frac{y_2^0 - 2y_1^0 + y_0^0}{2} = 0.02 + \frac{1}{2} \big(0.08 - 2 \cdot 0.02 + 0 \big) = 0.04 \\ y_2^1 &= y_2^0 + \frac{y_3^0 - 2y_2^0 + y_1^0}{2} = 0.08 + \frac{1}{2} \big(0.18 - 2 \cdot 0.08 + 0.02 \big) = 0.10 \; \text{и т.д.} \end{aligned}$$

Все вычисления отражены в таблице.

	i	0	1	2	3	4	5
j	x	0	0.2	0.4	0.6	0.8	1
0	t 0	0	0.02	0.08	0.18	0.32	0.50
1	0.02	0.02	0.04	0.10	0.20	0.34	0.52
2	0.04	0.04	0.06	0.12	0.22	0.36	0.54
3	0.06	0.06	0.08	0.14	0.24	0.38	0.56
4	0.08	0.08	0.1	0.16	0.26	0.40	0.58

Приведем решение этой же задачи по неявной схеме.

Выберем шаг по пространственной координате h=0.2. Неявная схема является абсолютно устойчивой, поэтому по времени возьмем шаг τ = 0.08 . Краевые и начальное условия можем рассчитать как в предыдущем случае и занести в таблицу. Имеем:

	i	0	1	2	3	4	5
j	x	0	0.2	0.4	0.6	0.8	1
0	0	0	0.02	0.08	0.18	0.32	0.50
1	0.08	0.08	į				0.58

Запишем систему уравнений для всех внутренних точек:

$$\frac{y_i^{j+1} - y_i^j}{\tau} = \frac{y_{i+1}^{j+1} - 2y_i^{j+1} + y_{i-1}^{j+1}}{h^2} \qquad i = 1, 2, 3, 4; j = 0$$

Сгруппируем подобные и получаем:

$$\frac{\tau}{h^2} y_{i+1}^{j+1} - (1 + 2\frac{\tau}{h^2}) y_i^{j+1} + \frac{\tau}{h^2} y_{i-1}^{j+1} = -y_i^j \qquad i = 1, 2, 3, 4; j = 0$$

Учтем, что $\frac{\tau}{h^2} = \frac{0.08}{0.2^2} = 2$ $y_i^0 = \frac{x_i^2}{2}$, получим систему уравнений:

$$i = 1$$
 $2y_2^1 - 5y_1^1 + 2y_0^1 = -0.02$ $i = 2$ $2y_3^1 - 5y_2^1 + 2y_1^1 = -0.08$

$$i = 3$$
 $2y_4^1 - 5y_3^1 + 2y_2^1 = -0.18$ $i = 4$ $2y_5^1 - 5y_4^1 + 2y_3^1 = -0.32$

$$y_0^1 = 0.02$$
 $y_5^1 = 0.58$

Решаем систему методом прогонки и получаем:

	i	0	1	2	3	4	5
j	x	0	0.2	0.4	0.6	0.8	1
0	t 0	0	0.02	0.08	0.18	0.32	0.50
1	0.08	0.08	0.10	0.16	0.26	0.40	0.58

Контрольные вопросы:

- 1. Какую сетку необходимо ввести для рассматриваемой смешанной задачи, в основе которой лежит нестационарное уравнение теплопроводности? Как она задается?
 - 2. Какой метод применяется для нахождения решения такой смешанной задачи?
- 3. Какой шаблон для аппроксимации производной второго порядка используется в явной, чисто неявной схеме, а также в симметрической неявной схеме?
 - 4. Когда решение по явной схеме будет устойчивым, а когда условно устойчивым?
- 5. Чисто неявная схема является устойчивой, условно устойчивой или абсолютно устойчивой?
 - 6. Какой порядок точности по координатам τ и h имеет симметричная неявная схема?
 - 7. Как иначе называется симметричная неявная схема?

Содержание задания:

Дана смешанная задача для уравнения теплопроводности в области

$$\overline{D} = \{0 \le x \le 1; 0 \le t \le 0.01 \}; \qquad \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \alpha (x^2 - t^2) + btx - 0.378(c - 1.9)$$

$$u(x,0) = \alpha \sin \frac{\pi}{2} x + \beta \cos \frac{\pi}{2} x$$

$$u(0,t) = \beta(t+1)$$
 $u(1,t) = \alpha(t^2+1)$

Методом сеток решите эту задачу с шагами по пространству и времени. Соответственно $h=0,1,\, \tau=0,005.$ Ответы даются с округлением до третьего знака после запятой.

Для решения используйте:

- 1. Явную схему. (на 7-8)
- 2. Чисто неявную схему. (на 8-9)
- 3. Симметричную неявную схему. (на 9-10)

Сравните полученные решения. Значения параметров a, b, c, α и β приведены в таблице.

Варианты параметров:

Donwaya	Параметры							
Вариант	а	b	c	α	β			
1	-2,00	2,01	0,00	0,1	2,0			
2	-1,95	2,11	0,12	0,2	1,9			
3	-1,90	2,21	0,24	0,3	1,8			
4	-1,85	2,31	0,36	0,4	1,7			
5	-1,80	2,41	0,48	0,5	1,6			
6	-1,75	2,51	0,60	0,6	1,5			
7	-1,70	2,61	0,72	0,7	1,4			
8	-1,65	2,71	0,84	0,8	1,3			
9	-1,60	2,81	0,96	0,9	1,2			
10	-1,55	2,91	1,08	1,0	1,1			
11	-1,50	3,01	1,20	1,1	1,0			
12	-1,45	3,11	1,32	1,2	0,9			
13	-1.40	3,21	1,44	1,3	0,8			
14	-1.35	3.31	1.56	1.4	0.7			
15	-1.30	3.41	1.68	1.5	0.6			

Порядок выполнения работы:

- 1. Ознакомиться с теоретической частью по данной теме.
- 2. Ответить на контрольные вопросы к лабораторной работе.
- 3. Получить вариант задания у преподавателя.
- 4. Выполнить индивидуальное задание в соответствии с вариантом задания.
- 5. Составить отчёт о проделанной работе.
- 6. Показать программу и отчёт преподавателю.

Содержание отчёта:

- 1. Титульный лист (идентификация).
- 2. Тема и цель работы.
- 3. Краткие теоретические сведения.
- 4. Вариант и условие задания.
- 5. Анализ задания (алгоритм выполнения задания).

- 6. Основные и промежуточные результаты по каждому пункту хода выполнения работы (листинг программного кода, реализующий данный алгоритм; скриншот результатов выполнения программы; скриншоты результатов работы в математическом пакете Mathcad).
 - 7. Выводы о проделанной работе.

Защита лабораторной работы проводится индивидуально. Для сдачи работы студент должен предъявить программу, отчет, ответить на контрольные вопросы, дать пояснения по выполненной работе.

Дополнительное задание:

Дано уравнение параболического типа (уравнение теплопроводности): $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$

при заданных начальных условиях: u(x, 0) = f(x), $u(0, t) = \varphi(t)$, $u(0, 6, t) = \psi(t)$, где x принадлежит [0; 0,6].

Используя схему с весами, составьте решение для этой задачи при h=0,1 и t из отрезка [0;0,01] с четырьмя десятичными знаками, считая вес s=1/6.

Варианты задания:

Вариант	$u(x, \theta)$	$u\left(0,t\right)$	u (0,6; t)
1	cos 2x	1 – 6t	0,3624
2	x(x+1)	0	2t + 0.96
3	$1,2 + \lg (x + 0,4)$	0.8 + t	1,2
4	sin 2x	2t	0,932
5	3x(2-x)	0	t + 2,52
6	$1 - \lg (x + 0.4)$	1,4	t + 1
7	$\sin(0.55x + 0.03)$	t + 0.03	0,354
8	2x(1-x)+0.2	0,2	t + 0.68
9	$\sin x + 0.08$	0.08 + 2t	0,6446
10	$\cos{(2x+0.19)}$	0,932	0,1798
11	2x(x+0,2)+0,4	2t + 0,4	1,36
12	lg(x + 0.26) + 1	0,415 + t	0,9345