Package 'metaboPipe'

May 28, 2024

Title Create a pipeline for metabolomics data analysis

Version 0.0.0.9000

Description

The package provides a pipeline for metabolomics data analysis. It includes functions for data preprocessing like filtering of missing values and outliers, normalization, missing value imputation and batch correction. The pipeline is implemented using the 'targets' package.

```
License CC BY NC SA 4.0
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.1
Suggests knitr,
     rmarkdown
VignetteBuilder knitr
Imports caret,
     impute,
     imputeLCMD,
     missForest,
     pcaMethods,
     structToolbox,
     SummarizedExperiment,
      VIM,
     tidyverse,
     MetaboAnalystR (>= 4.0.0),
     tinytex,
     HotellingEllipse,
     ggforce,
     tools,
     cowplot,
     targets,
     tarchetypes,
     crew,
     pmp,
     fst,
     shiny
Remotes xia-lab/MetaboAnalystR
Depends R (>= 2.10)
LazyData true
```

R topics documented:

atch_correct	. 3
atch_plot	. 4
a_plot	. 5
reate_experiment	. 5
reate_pipeline	. 6
ata.extract	. 6
ata.modify	. 7
listribution_boxplot	. 7
xport_data	. 8
xtract_names	. 8
actorize_cols	. 9
ilter_blanks	. 9
ilter_MV	. 10
ilter_outliers	. 11
ilter_step	. 11
mpute	. 12
mpute_bpca	. 13
mpute_kNN	
mpute_mean	
mpute_median	
mpute_ppca	
mpute_QRILC	
mpute_RF	
mpute SVD	
mpute_warper	
pad_data	
netaboNorm	
nissing_values_plot	
ormalize	
ormalize_csn	
ormalize_metab	
ormalize_pqn	
ormalize_vln	
ipePliers	
lot_boxplots	
lot density single with legend	
lot_heatmap	
lot_hotelling_obs	
lot_hotelling_pca	
lot_outliers	
llot_pca	
ample.data.extract	
ample.data.modify	
ave_metabo	
ave_plot	
ort_by_sample_id	
T000284	
oMetaboAnalyst	
ariable.data.extract	. 31
uiiuoiviuuuivAlluvt	. 21

 batch_correct
 3

 variable.data.modify
 32

 warper_batch_correction
 32

 warper_createExperiment
 33

 warper_factor_sample_col
 33

 zero_to_na
 34

 Index
 35

Description

Batch correction

Usage

batch_correct(output_name, input_name, order_col, batch_col, qc_col, qc_label)

Arguments

output_name The name of the output target.
input_name The name of the input data.

order_col The order column.

batch_col The batch column.

qc_col The QC column.

The QC label.

Value

A target to perform batch correction.

See Also

warper_batch_correction()

Examples

batch_correct(BatchCorrected_experiment, input_experiment, order_col = "Order", batch_col = "Batch", qc_col =

4 batch_plot

batch_plot

Generate a batch plot

Description

This function generates a batch plot showing the relationship between a feature and run order, stratified by batches and quality control (QC) samples.

Usage

```
batch_plot(
  dataset_experiment,
  order_col,
  batch_col,
  qc_col,
  qc_label,
  colour_by_col,
  feature_to_plot,
  ylab = "Peak area",
  title = "Feature vs run_order"
)
```

Arguments

dataset_experiment

The dataset for which the batch plot will be generated.

order_col The column representing run order.

batch_col The column representing batches.

qc_col The column representing QC samples.

qo_ooz

qc_label The label for QC samples.

colour_by_col The column used for coloring in the plot.

feature_to_plot

The feature to be plotted.

ylab The label for the y-axis. title The title of the plot.

Value

A ggplot object displaying the batch plot.

```
batch_plot(dataset_experiment = my_dataset, order_col = "order", batch_col = "batch", qc_col = "qc", qc_label =
```

ba_plot 5

ba_plot	Generate a	before-after	plot
~ - - - - - - - - - - 	ocher en en	cojo.c cijic.	p

Description

This function generates a before-after plot comparing distributions before and after a certain process or treatment.

Usage

```
ba_plot(DE_before, DE_after, factor_name = "sample_type")
```

Arguments

DE_before The dataset before the process or treatment.

DE_after The dataset after the process or treatment.

factor_name The name of the factor variable for stratification.

Value

A ggplot object displaying the before-after plot.

Examples

```
ba_plot(DE_before = before_data, DE_after = after_data, factor_name = "sample_type")
```

create_experiment

Create DatasetExperiment object

Description

Create DatasetExperiment object

Usage

```
create_experiment(
  output_name,
  data,
  experiment_name = "Name",
  experiment_description = "Description"
)
```

Arguments

```
output_name The name of the output target.

data The target name of the data with the data as data frames.

experiment_name
The name of the experiment (default is "Name").

experiment_description
The description of the experiment (default is "Description").
```

6 data.extract

Value

A target to create a DatasetExperiment object.

See Also

```
warper_createExperiment()
```

Examples

create_experiment(experiment, data, experiment_name = "Metabolomic Assay for nutrition", experiment_descripti

create_pipeline

Create Pipeline Function

Description

This function generates the code for a targets pipeline in an _targets.R file and saves it to the working directory.

Usage

```
create_pipeline()
```

Value

Nothing is returned. The function creates an _targets.R file in the specified directory.

Examples

```
create_pipeline()
```

data.extract

Function to extract data matrix from a DatasetExperiment object

Description

This function extracts the data matrix from a SummarizedExperiment object.

Usage

```
data.extract(dataset_exp)
```

Arguments

dataset_exp A DatasetExperiment object.

Value

Data matrix.

data.modify 7

Examples

```
data.extract(dataset_exp)
```

data.modify

Function to modify data matrix of a DatasetExperiment object

Description

This function replaces the data matrix in a SummarizedExperiment object with new data.

Usage

```
data.modify(dataset_exp, data)
```

Arguments

 ${\tt dataset_exp} \qquad A \ Dataset Experiment \ object.$

data New data matrix.

Value

A DatasetExperiment object with modified data matrix.

Examples

```
data.modify(dataset_exp, data)
```

distribution_boxplot Generate a distribution boxplot

Description

This function generates a distribution boxplot for a specified factor in the dataset.

Usage

```
distribution_boxplot(dataset_experiment, factor_name, per_class = FALSE)
```

Arguments

dataset_experiment

The dataset for which the boxplot will be generated.

factor_name The name of the factor variable.

factor.

Value

A ggplot object displaying the distribution boxplot.

```
distribution_boxplot(dataset_experiment = my_dataset, factor_name = "factor", per_class = TRUE)
```

8 extract_names

export_data

Export Data

Description

Exports a dataset to a specified directory with a given name.

Usage

```
export_data(dataset_exp, out_dir, out_name)
export_data(dataset_exp, out_dir, out_name)
```

Arguments

dataset_exp A DatasetExperiment object

out_dir The output directory

out_name The output name of the files

input_name The name of the input dataset to be exported.

Value

A list containing the target for exporting the dataset.

Nothing

Examples

```
export_data("exported_dataset.csv", my_dataset, "output_directory/")
export_data(dataset_exp, out_dir, out_name)
```

 $\verb"extract_names"$

Function to extract names

Description

Function to extract names

Usage

```
extract_names(data)
```

Arguments

data

Value

The variableMetadata dataset for the DatasetExperiment object

factorize_cols 9

Examples

```
extract_names(data)
```

factorize_cols

Factorize columns in sample metadata

Description

Factorize columns in sample metadata

Usage

```
factorize_cols(output_name, input_name, cols)
```

Arguments

output_name The name of the output target.
input_name The name of the input data.
cols The columns to factorize.

Value

A target to factorize columns in sample metadata.

See Also

```
warper_factor_sample_col()
```

Examples

```
factorize_cols(factorized_experiment, input_name = experiment, cols = c("Col1", "Col2"))
```

 ${\tt filter_blanks}$

Filter Blanks

Description

Filter blanks from the dataset experiment.

Usage

```
filter_blanks(
  dataset_experiment,
  fold_change = 20,
  blank_label = "blank",
  qc_label = "QC",
  factor_name = "sample_type",
  fraction_in_blank = 0
)
```

10 filter_MV

Arguments

dataset_experiment

The dataset experiment object.

fold_change The fold change threshold for blank filtering.

blank_label The label for blanks.

qc_label The label for quality control samples.

factor_name The factor column name.

fraction_in_blank

The fraction of values in blank (default is 0).

Value

A dataset experiment object with blanks filtered out.

Examples

```
filtered_data <- filter_blanks(dataset_experiment, fold_change = 20, blank_label = "blank", qc_label = "QC", fa</pre>
```

filter_MV

Filter Missing values

Description

Filter the missing values in a dataset experiment.

Usage

```
filter_MV(dataset_exp, threshold = 0.8)
```

Arguments

dataset_exp The dataset experiment object to filter missing values from. threshold The threshold for filtering missing values (default is 0.8).

Value

A dataset experiment object with missing values filtered out.

```
filtered_data <- filter_MV(dataset_exp, threshold = 0.8)</pre>
```

filter_outliers 11

filter_outliers

Filter Outliers

Description

Filter outliers from the dataset experiment using a Hotelling's T2 distribution ellipse.

Usage

```
filter_outliers(dataset_experiment, nPCs = 5, conf.limit = c("0.95", "0.99"))
```

Arguments

```
dataset_experiment
```

The dataset experiment object.

nPCs The number of principal components for PCA.

conf.limit The confidence limit for outlier detection. Either 0.95 or 0.99.

Value

A dataset experiment object with outliers filtered out.

Examples

```
filtered_data <- filter_outliers(dataset_experiment, nPCs = 5, conf.limit = "0.95")</pre>
```

filter_step

Filter data by missing value threshold

Description

Filter data by missing value threshold

Usage

```
filter_step(
  output_name,
  input_name,
  threshold,
  filter_outliers = TRUE,
  conf.limit = "0.95",
  out_dir
)
```

12 impute

Arguments

output_name The name of the output target.
input_name The name of the input data.
threshold The threshold for missing values.

filter_outliers

Logical indicating whether to filter outliers (default is TRUE).

conf.limit Confidence limit for outlier detection (default is "0.95").

out_dir The directory to save plots (optional).

Value

A list of targets to filter data by missing value threshold.

See Also

```
filter_MV(), filter_outliers(), zero_to_na(), missing_values_plot(), plot_outliers()
```

Examples

```
filter_step(filtered_experiment, input_experiment, threshold = 0.2, filter_outliers = TRUE, conf.limit = "0.95"
```

impute

Impute missing values

Description

Impute missing values

Usage

```
impute(output_name, input_name, method, k = 5)
```

Arguments

output_name The name of the output target.
input_name The name of the input data.
method The imputation method.

k The number of neighbors for KNN imputation (default is 5).

Value

A target to impute missing values.

See Also

```
impute_warper()
```

```
impute(imputed_experiment, input_experiment, method = "knn", k = 3)
```

impute_bpca 13

impute_bpca

Impute BPCA

Description

Impute missing values in a dataset experiment using BPCA.

Usage

```
impute\_bpca(dataset\_experiment, nPCs = k, ...)
```

Arguments

```
dataset_experiment
```

The dataset experiment object.

nPCs

The number of principal components for BPCA.

Value

The dataset experiment object with missing values imputed using BPCA.

Examples

```
DE <- ST000284
imputed <- impute_bpca(DE, nPCs = 5)
summary(imputed)</pre>
```

impute_kNN

Impute kNN

Description

Impute missing values in a dataset experiment using kNN.

Usage

```
impute_kNN(dataset_experiment, k = k)
```

Arguments

```
dataset_experiment
```

The dataset experiment object.

k

The number of neighbors for kNN imputation.

Value

The dataset experiment object with missing values imputed using kNN.

```
DE <- ST000284
imputed <- impute_kNN(DE, k = 5)
summary(imputed)</pre>
```

14 impute_median

impute_mean

Impute Mean

Description

Impute missing values in a dataset experiment using the mean.

Usage

```
impute_mean(dataset_experiment)
```

Arguments

```
dataset_experiment
```

The dataset experiment object.

Value

The dataset experiment object with missing values imputed using the mean.

Examples

```
DE <- ST000284
imputed <- impute_mean(DE)
summary(imputed)</pre>
```

impute_median

Impute Median

Description

Impute missing values in a dataset experiment using the median.

Usage

```
impute_median(dataset_experiment)
```

Arguments

```
dataset_experiment
```

The dataset experiment object.

Value

The dataset experiment object with missing values imputed using the median.

```
DE <- ST000284
imputed <- impute_median(DE)
summary(imputed)</pre>
```

impute_ppca 15

impute_ppca

Impute PPCA

Description

Impute missing values in a dataset experiment using PPCA.

Usage

```
impute\_ppca(dataset\_experiment, nPCs = k, ...)
```

Arguments

```
dataset_experiment
```

The dataset experiment object.

nPCs

The number of principal components for PPCA.

Value

The dataset experiment object with missing values imputed using PPCA.

Examples

```
DE <- ST000284
imputed <- impute_ppca(DE, nPCs = 5)
summary(imputed)</pre>
```

impute_QRILC

Impute QRILC

Description

Impute missing values in a dataset experiment using QRILC.

Usage

```
impute_QRILC(dataset_experiment)
```

Arguments

```
dataset_experiment
```

The dataset experiment object.

Value

The dataset experiment object with missing values imputed using QRILC.

```
DE <- ST000284
imputed <- impute_QRILC(DE)
summary(imputed)</pre>
```

impute_SVD

impute_RF

Impute Random Forest

Description

Impute missing values in a dataset experiment using random forest.

Usage

```
impute_RF(dataset_experiment)
```

Arguments

```
dataset_experiment
```

The dataset experiment object.

Value

The dataset experiment object with missing values imputed using random forest.

Examples

```
DE <- ST000284
imputed <- impute_RF(DE)
summary(imputed)</pre>
```

impute_SVD

Impute SVD

Description

Impute missing values in a dataset experiment using SVD.

Usage

```
impute_SVD(dataset_experiment, nPCs = k, center = TRUE, ...)
```

Arguments

```
dataset_experiment
```

The dataset experiment object.

 nPCs

The number of principal components for SVD.

Value

The dataset experiment object with missing values imputed using SVD.

```
DE <- ST000284
imputed <- impute_SVD(DE, nPCs = 5)
summary(imputed)</pre>
```

impute_warper 17

impute_warper

Impute Missing Values

Description

Impute missing values in a dataset experiment using various methods.

Usage

```
impute\_warper(dataset\_experiment, method, k = 5)
```

Arguments

```
dataset_experiment
```

The dataset experiment object.

method The imputation method to use.

k The parameter for some imputation methods (default: 5).

Value

The dataset experiment object with missing values imputed.

Examples

```
DE <- ST000284
imputed <- impute_warper(DE, method = "mean")
summary(imputed)</pre>
```

load_data

Load data from files into data frames

Description

Load data from files into data frames

Usage

```
load_data(
  output_name,
  dataMatrixFile,
  sampleMetadataFile,
  variableMetadataFile = NULL,
  dataSep = ",",
  sampleSep = ",",
  variableSep = ","
)
```

Arguments

output_name The name of the output target.
dataMatrixFile Path to the data matrix file.
sampleMetadataFile

Path to the sample metadata file.

variableMetadataFile

Path to the variable metadata file (optional).

dataSep The separator used in the dataMatrixfile (default is ",").

sampleSep The separator used in the sampleMetadataFile (default is ",").

variableSep The separator used in the variableMetadataFile (default is ",").

Value

A list of targets to load and read data matrix and sample metadata.

Examples

```
load_data(data_loaded, "Data/data.csv", "Data/metadata.csv", "Data/variable_metadata.csv", separator = ",")
```

MetaboAnalyst_load_data

Function to load the previously saved MetaboAnalystData.csv data into MetaboAnalyst from the TempData directory

Description

Function to load the previously saved MetaboAnalystData.csv data into MetaboAnalyst from the TempData directory

Usage

```
MetaboAnalyst_load_data()
```

Value

MetaboAnalyst data object (mSet).

```
MetaboAnalyst_load_data()
```

metaboNorm 19

IIIE LADONOI III — — I' unction to normatize metaboAnativsi aata	metaboNorm	Function to normalize MetaboAnalyst data
--	------------	--

Description

This function performs row-wise normalization, transformation, and scaling of the metabolomic data.

Usage

```
metaboNorm(
   mSet,
   rowNorm = "NULL",
   transNorm = "NULL",
   scaleNorm = "NULL",
   ref = NULL,
   ratio = FALSE,
   ratioNum = 20,
   out_dir
)
```

Arguments

mSet	The MetaboAnalyst data object.
rowNorm	The row normalization method.
transNorm	The transformation normalization method.
scaleNorm	The scaling normalization method.
ref	Input the name of the reference sample or the reference feature, use " " around the name.
ratio	This option is only for biomarker analysis.
ratioNum	Relevant only for biomarker analysis.
out_dir	The output directory for the plots.

Value

The normalized MetaboAnalyst data object.

```
metaboNorm(mSet, rowNorm = "NULL", transNorm = "NULL", scaleNorm = "NULL", ref = NULL, ratio = FALSE, ratioNum =
```

20 normalize

missing_values_plot Generate a missing values plot

Description

This function generates a missing values plot using the VIM package's aggr function and saves the plot to a specified directory with a given filename.

Usage

```
missing_values_plot(dataset_experiment, out_dir, out_name)
```

Arguments

```
dataset_experiment
```

The dataset for which the missing values plot will be generated.

out_dir The directory where the plot will be saved.

out_name The filename for the saved plot.

Examples

```
missing_values_plot(dataset_experiment = my_dataset, out_dir = "output", out_name = "missing_plot.png")
```

normalize

Normalize data

Description

Normalize data

Usage

```
normalize(
  output_name,
  input_name,
  factor_col,
  sample_id_col,
  rowNorm = "NULL",
  transNorm = "NULL",
  scaleNorm = "NULL",
  ref = NULL,
  out_dir
)
```

normalize_csn 21

Arguments

output_name The name of the output target. input_name The name of the input data.

factor_col The factor column. sample_id_col The sample ID column.

rowNorm The row normalization method (optional). One of: "QuantileNorm", "CompNorm",

"SumNorm", "MedianNorm", "SpecNorm", or NULL.

transNorm The transformation normalization method (optional). One of: "LogNorm", "CrNorm",

or NULL.

scaleNorm The scaling normalization method (optional). One of: "MeanCenter", "AutoNorm",

"ParetoNorm", "RangeNorm", or NULL.

ref The reference group for normalization (optional).

out_dir The directory to save plots (optional).

Value

A list of targets to normalize data.

See Also

```
normalize_metab()
```

Examples

normalize(normalized_data, input_data, factor_col = "Group", sample_id_col = "Sample", rowNorm = "CompNorm", t

normalize_csn

Perform Constant Sum Normalization (CSN)

Description

Perform Constant Sum Normalization (CSN)

Usage

```
normalize_csn(dataset_experiment, scaling_factor = 1)
```

Arguments

dataset_experiment

A DatasetExperiment object scaling_factor Scaling factor for normalization

Value

Normalized A DatasetExperiment object

```
normalize_csn(dataset_experiment, scaling_factor = 1)
```

22 normalize_metab

normalize_metab

 $Normalize\ A\ {\tt DatasetExperiment}\ object\ using\ MetaboAnalystR$

Description

Normalize A DatasetExperiment object using MetaboAnalystR

Usage

```
normalize_metab(
  dataset_experiment,
  factor_col,
  sample_id_col,
  rowNorm = "NULL",
  transNorm = "NULL",
  scaleNorm = "NULL",
  ref = NULL,
  ratio = FALSE,
  ratioNum = 20,
  out_dir
)
```

Arguments

dataset_experiment

A DatasetExperiment object

factor_col Column containing factor information for normalization

sample_id_col Column containing sample IDs

rowNorm Type of row normalization (options: "QuantileNorm", "CompNorm", "Sum-

Norm", "MedianNorm", "SpecNorm", or "NULL")

transNorm Type of transformation normalization (options: "LogNorm", "CrNorm", or "NULL") scaleNorm Type of scaling normalization (options: "MeanCenter", "AutoNorm", "ParetoNorm",

"RangeNorm", or "NULL")

ref Reference feature for 'CompNorm' normalization

ratio Boolean indicating whether to apply ratio normalization

ratioNum Number of samples for ratio normalization

out_dir Output directory for saving files

Value

Normalized A DatasetExperiment object

```
normalize_metab(dataset_experiment, factor_col, sample_id_col, rowNorm = NULL, transNorm = NULL, scaleNorm = N
```

normalize_pqn 23

normalize_pqn

Perform Probabilistic Quotient normalization (PQN)

Description

Perform Probabilistic Quotient normalization (PQN)

Usage

```
normalize_pqn(dataset_experiment, qc_label, factor_name)
```

Arguments

dataset_experiment

 $A \; {\tt DatasetExperiment} \; object \\$

qc_label Label for quality control samples

factor_name Name of the factor to use for normalization

Value

Normalized A DatasetExperiment object

Examples

```
normalize_pqn(dataset_experiment, qc_label, factor_name)
```

normalize_vln

Perform Vector Length Normalization (VLN)

Description

Perform Vector Length Normalization (VLN)

Usage

```
normalize_vln(dataset_experiment)
```

Arguments

```
dataset_experiment
```

A DatasetExperiment object

Value

 $Normalized\ A\ {\tt DatasetExperiment}\ object$

```
normalize_vln(dataset_experiment)
```

24 plot_boxplots

pipePliers

Run Shiny App

Description

This function launches the Shiny app included with the package.

Usage

```
pipePliers()
```

Examples

```
pipePliers()
```

plot_boxplots

Plot boxplots for multiple columns

Description

This function generates vertical boxplots for multiple columns of a dataset.

Usage

```
plot_boxplots(data, title = "Boxplot of Columns")
```

Arguments

data The dataset containing the columns to be plotted.

title The title of the plot.

Value

A ggplot object displaying the boxplots.

```
plot_boxplots(data = my_data, title = "Boxplot of Columns")
```

Description

This function generates density plots for one variable, comparing the original and imputed data, with a legend indicating the data source.

Usage

```
plot_density_single_with_legend(original_var, imputed_var)
```

Arguments

```
original_var The original variable data.
imputed_var The imputed variable data.
```

Value

A ggplot object displaying the density plots.

Examples

```
plot_density_single_with_legend(original_var = data$original_var, imputed_var = data$imputed_var)
```

plot_heatmap

Plot a heatmap of the data

Description

This function generates a heatmap of the provided dataset.

Usage

```
plot_heatmap(dataset_experiment, na_colour = "#FF00E4")
```

Arguments

```
dataset_experiment
```

The dataset for which the heatmap will be generated.

na_colour

The color to represent missing values in the heatmap.

Value

A ggplot object displaying the heatmap.

```
plot_heatmap(dataset_experiment = my_dataset, na_colour = "#FF00E4")
```

26 plot_hotelling_pca

plot_hotelling_obs

Generate a PCA Hotelling's T-squared observations plot

Description

This function generates a PCA Hotelling's T-squared observations plot showing the T-squared values for each observation.

Usage

```
plot_hotelling_obs(dataset_experiment, nPCs = 5, nPCs_to_plot = 2)
```

Arguments

dataset_experiment

The dataset for which the plot will be generated.

nPCs The number of principal components to include in the analysis. nPCs_to_plot The number of principal components to plot the ellipses for.

Value

A ggplot object displaying the PCA Hotelling's T-squared observations plot.

Examples

```
plot_hotelling_obs(dataset_experiment = my_dataset, nPCs = 5, nPCs_to_plot = 2)
```

plot_hotelling_pca

Generate a PCA Hotelling's T-squared plot

Description

This function generates a PCA Hotelling's T-squared plot showing the principal component scores and confidence ellipses.

Usage

```
plot_hotelling_pca(dataset_experiment, nPCs = 5)
```

Arguments

dataset_experiment

The dataset for which the plot will be generated.

 nPCs

The number of principal components to include in the analysis.

Value

A ggplot object displaying the PCA Hotelling's T-squared plot.

```
plot_hotelling_pca(dataset_experiment = my_dataset, nPCs = 5)
```

plot_outliers 27

plot_outliers Generate an outliers plot	
---	--

Description

This function generates a plot showing outliers detected using Hotelling's T-squared statistic in PCA.

Usage

```
plot_outliers(dataset_experiment, nPCs = 5, out_dir, out_name)
```

Arguments

dataset_experiment

The dataset for which the outliers plot will be generated.

nPCs The number of principal components to include in the analysis.

out_dir The directory where the plot will be saved.

out_name The filename for the saved plot.

Examples

```
plot_outliers(dataset_experiment = my_dataset, nPCs = 5, out_dir = "output", out_name = "outliers_plot.png")
```

plot_pca

Generate a PCA plot

Description

This function generates a PCA plot showing the principal component scores colored by a specified factor.

Usage

```
plot_pca(dataset_experiment, factor_name = "sample_type", nPCs = 5)
```

Arguments

dataset_experiment

The dataset for which the PCA plot will be generated.

factor_name The name of the factor variable used for coloring.

nPCs The number of principal components to include in the analysis.

Value

A ggplot object displaying the PCA plot.

```
plot_pca(dataset_experiment = my_dataset, factor_name = "sample_type", nPCs = 5)
```

28 sample.data.modify

sample.data.extract

Function to extract sample metadata from a DatasetExperiment object

Description

This function extracts the sample metadata from a SummarizedExperiment object.

Usage

```
sample.data.extract(dataset_exp)
```

Arguments

dataset_exp A DatasetExperiment object.

Value

Sample metadata dataframe.

Examples

```
sample.data.extract(dataset_exp)
```

sample.data.modify

Function to modify sample metadata of a DatasetExperiment object

Description

This function replaces the sample metadata in a SummarizedExperiment object with new metadata.

Usage

```
sample.data.modify(dataset_exp, sample_meta)
```

Arguments

```
dataset_exp A DatasetExperiment object.
sample_meta New sample metadata dataframe.
```

Value

A DatasetExperiment object with modified sample metadata.

```
sample.data.modify(dataset_exp, sample_meta)
```

save_metabo 29

save_metabo

Function to export MetaboAnalyst data

Description

Function to export MetaboAnalyst data

Usage

```
save_metabo(mSet)
```

Arguments

mSet

The MetaboAnalyst data object

Value

Nothing

Examples

```
save_metabo(mSet)
```

save_plot

Function to save plots

Description

Function to save plots

Usage

```
save_plot(plt, output_dir, output_name)
```

Arguments

plt The plot object

output_dir The output directory

output_name The output name for the plot file

Value

Nothing

```
save_plot(plt, output_dir, output_name)
```

30 ST000284

sort_by_sample_id

Sort by sample_id

Description

Sort by sample_id

Usage

```
sort_by_sample_id(df)
```

Arguments

df

A dataframe with a sample_id column.

Value

A data frame sorted by sample_id.

Examples

```
sort_by_sample_id(data)
```

ST000284

ST000284 Dataset

Description

This dataset is used as an example in the package.

Usage

ST000284

Format

 $A \; {\tt DatasetExperiment} \; object \\$

Source

https://www.metabolomicsworkbench.org/data/DRCCMetadata.php? Mode=Study & Study ID=ST000284 & Study Type=Mode=Study & Study Type=Mode=St

toMetaboAnalyst 31

toMetaboAnalyst

Function to create a dataSet for MetaboAnalyst

Description

Function to create a dataSet for MetaboAnalyst

Usage

```
toMetaboAnalyst(
  dataset_exp,
  class_col = "sample_type",
  sample_id = "sample_id"
)
```

Arguments

```
dataset_exp A DatasetExperiment object.
class_col Column to be used as class.
sample_id Column to be used as sample ID.
```

Value

Nothing.

Examples

```
toMetaboAnalyst(dataset_exp, class_col = "sample_type", sample_id = "sample_id")
```

variable.data.extract Function to extract variable metadata from a DatasetExperiment object

Description

This function extracts the variable metadata from a SummarizedExperiment object.

Usage

```
variable.data.extract(dataset_exp)
```

Arguments

```
dataset_exp A DatasetExperiment object.
```

Value

Variable metadata dataframe.

```
variable.data.extract(dataset_exp)
```

variable.data.modify Function to modify variable metadata of a DatasetExperiment object

Description

This function replaces the variable metadata in a SummarizedExperiment object with new metadata.

Usage

```
variable.data.modify(dataset_exp, variable_meta)
```

Arguments

```
dataset_exp A DatasetExperiment object. variable_meta New variable metadata.
```

Value

A DatasetExperiment object with modified variable metadata.

Examples

```
variable.data.modify(dataset_exp, variable_meta)
```

```
warper_batch_correction
```

Signal drift and batch correction function

Description

This function performs signal drift and batch correction on a given DatasetExperiment object using the QC-RSC method.

Usage

```
warper_batch_correction(dataset_exp, order_col, batch_col, qc_col, qc_label)
```

Arguments

dataset_exp A DatasetExperiment object with samples and variables.

order_col Column indicating the order of samples. batch_col Column indicating batch information.

qc_col Column indicating quality control information.

qc_label Label for quality control.

Value

Corrected DatasetExperiment object.

```
warper_batch_correction(dataset_exp, order_col, batch_col, qc_label)
```

```
warper_createExperiment
```

Process the dataset to create the DatasetExperiment object

Description

Process the dataset to create the DatasetExperiment object

Usage

```
warper_createExperiment(
  dataMatrix,
  sampleMetadata,
  variableMetadata,
  experiment_name = "Name",
  experiment_description = "Description"
)
```

Arguments

```
dataMatrix A matrix with samples as rows and features as columns.

sampleMetadata A data frame with the sample metadata.

variableMetadata

A data frame with the variable metadata.

experiment_name

The name for the experiment.

experiment_description

The description for the experiment.
```

Value

A DatasetExperiment object.

Examples

```
warper_createExperiment(dataMatrix, sampleMetadata, variableMetadata, experiment_name = "Name", experiment_de
```

```
warper_factor_sample_col
```

Function to convert sample columns to factors

Description

This function converts specified columns in the sample metadata to factors.

Usage

```
warper_factor_sample_col(dataset_exp, col)
```

zero_to_na

Arguments

dataset_exp A DatasetExperiment object with sample metadata.

col Column(s) to be converted to factors.

Value

A DatasetExperiment object with specified columns converted to factors.

Examples

```
warper_factor_sample_col(dataset_exp, col)
```

zero_to_na

Make 0 as NA

Description

Replace 0 values with NA in a dataset experiment.

Usage

```
zero_to_na(dataset_exp)
```

Arguments

dataset_exp

The dataset experiment object.

Value

A dataset experiment object with 0 values replaced by NA.

```
modified_dataset <- zero_to_na(dataset_exp)</pre>
```

Index

* datasets	normalize_pqn, 23
ST000284, 30	normalize_vln, 23
h1-+ 5	ninoDliono 24
ba_plot, 5	pipePliers, 24
batch_correct, 3	plot_boxplots, 24
batch_plot, 4	plot_density_single_with_legend, 25
	plot_heatmap, 25
create_experiment, 5	plot_hotelling_obs, 26
create_pipeline, 6	plot_hotelling_pca, 26
data suturat C	plot_outliers, 27
data.extract, 6	plot_pca, 27
data.modify, 7	
distribution_boxplot,7	sample.data.extract,28
	sample.data.modify, 28
export_data, 8	save_metabo, 29
extract_names, 8	save_plot, 29
	sort_by_sample_id, 30
factorize_cols, 9	ST000284, 30
filter_blanks, 9	
filter_MV, 10	toMetaboAnalyst, 31
filter_outliers, 11	
filter_step, 11	variable.data.extract, 31
	variable.data.modify, 32
impute, 12	
<pre>impute_bpca, 13</pre>	warper_batch_correction, 32
<pre>impute_kNN, 13</pre>	warper_batch_correction(), 3
impute_mean, 14	<pre>warper_createExperiment, 33</pre>
<pre>impute_median, 14</pre>	warper_createExperiment(), 6
<pre>impute_ppca, 15</pre>	<pre>warper_factor_sample_col, 33</pre>
<pre>impute_QRILC, 15</pre>	warper_factor_sample_col(), 9
impute_RF, 16	
<pre>impute_SVD, 16</pre>	zero_to_na, 34
impute_warper, 17	
<pre>impute_warper(), 12</pre>	
load_data, 17	
MetaboAnalyst_load_data, 18	
metaboNorm, 19	
missing_values_plot, 20	
- , ,	
normalize, 20	
normalize_csn, 21	
normalize_metab, 22	
normalize metab().21	