Lesson 6.1.2

- 6-10. a. mean = 10, median = 9.8, standard deviation = 2.2
 - b. mean = 24, variance = 43.56
 - c. mean = 13, standard deviation = 4.4
- 6-11. a. The mean and standard deviation doubled. The variance quadrupled. E(X) = 3.9 and E(2X) = 7.8; Var(X) = 1.69 and Var(2X) = 6.76; StDev(X) = 1.3 and StDev(2X) = 2.6.
 - b. The mean went up by 5. The variance and standard deviation did not change. E(X + 5) = 8.9, Var(X + 5) = 1.69, Var(X + 5) = 1.3.
 - c. The mean is doubled and five higher. The variance is quadrupled. The standard deviation is doubled. E(2X + 5) = 12.8, Var(2X + 5) = 6.76, StDev(2X + 5) = 2.6.
- 6-12. a. The spins are independent. $P(A \cap B) = P(A) \cdot P(B)$
 - b. See answers in table below in bold.

Probability Distribution for $X + X$		First Spin		
		2 0.3	4 0.2	5 0.5
Second Spin	2 0.3	4 0.09	6 0.06	7 0.15
	4 0.2	6 0.06	8 0.04	9 0.10
	5 0.5	7 0.15	9 0.10	10 0.25

The mean, E(X + X), is E(X) + E(X) = 7.80. The variance, Var(X + X), is Var(X) + Var(X) = 3.38. The standard deviation for X + X is $\sqrt{Var(X) + Var(X)} = 1.838$.

- 6-13. To observe 2X, you would spin the spinner once and double the number that you see. To observe X + X, you would observe X once, observe X again, and add the two outcomes. Physically these are very different things.
- 6-14. a. $\mu_Y = 6$, $\sigma^2_Y = 4$, $\sigma_Y = 2$
 - b. See answers in table below in bold. The mean, E(X + Y), is E(X) + E(Y) = 9.9. The variance, Var(X + Y), is Var(X) + Var(Y) = 5.69. The standard deviation for X + Y is $\sqrt{Var(X) + Var(Y)} = 2.385$

Probability Distribution for $X + Y$		Spin		
		2 0.3	4 0.2	5 0.5
Flip	4 0.5	6 0.15	8 0.1	9 0.25
	8 0.5	10 0.15	12 0.1	13 0.25

6-15. a.
$$\mu_C = 20$$
, $\sigma_c^2 = 18$, and $\sigma_C = \sqrt{18}$

b.
$$\mu_C = 28$$
, $\sigma_C^2 = 34$, and $\sigma_C = \sqrt{34}$

c.
$$\mu_C = 28$$
, $\sigma_c^2 = 52$, and $\sigma_C = \sqrt{52}$

d.
$$\mu_C = 20$$
, $\sigma_c^2 = 25$, and $\sigma_C = 5$

6-16.
$$\mu_X = 9.1$$
, $\sigma_X^2 = 13.89$, $\sigma_X = 3.727$

6-17.
$$\mu_Z = 8$$
, $\sigma_Z = \sqrt{52}$

6-18. a.
$$\mu_Z = 160$$
 and $\sigma_Z = 10$

- b. It represents the sum of four independent observations of the random variable *X*.
- c. It represents the mean of four independent observations of the random variable X.

d.
$$\mu_{\frac{1}{4}Z} = 40 \text{ and } \sigma_{\frac{1}{4}Z} = 2.5$$

6-19. a.
$$\mu_{X+X} = \$82$$
 and $\sigma_{X+X} = \$\sqrt{200}$

- b. Using the normal distribution cdf and the results from part (a): P(X + X < 80) = 0.4438
- 6-20. See possible diagram below. The test will indicate a person has the disease (positive result) in events A or D from the diagram, making the associated probability 0.0002997 + 0.0009997 = 0.0012994. Of the probability of a positive test result, only in event A does the person have the disease. So if a person has a positive test result the probability they have the disease is only $\frac{0.0002997}{0.0012994} = 0.231$.

	Person has disease 0.0003	Person does not have disease 0.9997
Test is correct 0.999	A 0.0002997	B 0.9987003
Test is <i>not</i> correct 0.001	C 0.0000003	D 0.0009997 false positives