Aprendizagem 2022

Homework III - Group 019

Diogo Gaspar 99207, Rafael Oliveira 99311

Part I: Pen and paper

1. Consider the basis function, $\phi_j(x) = x^j$, for performing a 3-order polynomial regression,

$$\hat{z}(x,w) = \sum_{j=0}^{3} w_j \phi_j(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3.$$

Learn the Ridge regression (l_2 regularization) on the transformed data space using the closed-form solution with $\lambda=2$.

 $2. \ \, \textbf{Compute the training RMSE for the learnt regression model.}$

3. Consider a multi-layer perceptron characterized by one hidden layer with 2 nodes. Using the activation function $f(x) = e^{0.1x}$ on all units, all weights initialized as 1 (including biases), and the half squared error loss, perform one batch gradient descent update (with learning rate $\eta = 0.1$) for the first three observations (0.8), (1) and (1.2).

Part II: Programming and critical analysis

The code utilized to answer the following questions is available in this report's appendix.

4. Compute the MAE of the three regressors: linear regression, MLP_1 and MLP_2 .

We opted to utilize sklearn's mean_absolute_error function to compute the MAE of the three regressors. The regressors were created as shown in the appendix (using Ridge and MLPRegressor with the respective parameters).

We gathered the following results:

Regressor	MAE
Linear Regression (Ridge)	
MLP_1	0.06804 0.09781
MLP_2	0.09781

Table 1: Gathered Mean Absolute Errors for each specified regressor

5. Plot the residues (in absolute value) using two visualizations: boxplots and histograms.

Each regressor's residues, calculated as the absolute difference between the predicted and actual values, were plotted using both boxplots and histograms (using, respectively, seaborn's boxplot and histplot functions), as shown in this report's appendix (figures after the code).

6. How many iterations were required for MLP_1 and MLP_2 to converge?

Calling the print_regressor method for each regressor shows us not only the MAE, but also the number of iterations required for each of the MLP regressors to converge. In this case, the number of iterations required for MLP_1 (MLP with early stopping) to converge was 452, while MLP_2 (MLP without early stopping) required only 77.

7. What can be motivating the unexpected differences on the number of iterations? Hypothetize one reason underlying the observed performance differences between the MLPs.

Appendix

```
1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 from scipy.io.arff import loadarff
6 from sklearn.linear_model import Ridge
7 from sklearn.model_selection import train_test_split
8 from sklearn.metrics import mean_absolute_error
9 from sklearn.neural_network import MLPRegressor
10 sns.set_style('darkgrid')
12 # Load data
13 data = loadarff('data/kin8nm.arff')
14 df = pd.DataFrame(data[0])
16 X = df.drop('y', axis=1).values
y = df['y'].values
19 X_train, X_test, y_train, y_test = train_test_split(
   Х, у,
    test_size=0.3,
21
    random_state=0
23 )
24
25 def predict(regressor):
    regressor.fit(X_train, y_train)
    return regressor.predict(X_test)
28
29 def plot_regressor_residues(regressor, description, y_pred):
    """Utilized for answering question 2."""
30
    residues = np.abs(y_test - y_pred)
31
32
33
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
    sns.histplot(data=residues, ax=ax1)
34
35
    ax1.set_title('Residues histogram')
    ax1.set_xlabel('Residues')
36
    sns.boxplot(data=residues, ax=ax2, orient='h')
37
    ax2.set_title('Residues boxplot')
38
    ax2.set_xlabel('Residues')
39
    plt.suptitle(description)
40
    plt.show()
41
43 def print_regressor(regressor, description, y_pred):
    """Utilized for answering questions 1. and 3."""
44
    print(description)
45
    print('MAE: {:.5f}'.format(mean_absolute_error(y_test, y_pred)))
    if "MLP" in description:
47
      print('Iterations: {}'.format(regressor.n_iter_))
49
50 regressors = {
    "Ridge Regression": Ridge(alpha=0.1),
51
52
    "MLP 1": MLPRegressor(
      hidden_layer_sizes=(10, 10),
53
      activation='tanh',
54
```

```
max_iter=500,
55
      random_state=0,
56
      early_stopping=True
57
58
    "MLP 2": MLPRegressor(
59
      hidden_layer_sizes=(10, 10),
60
      activation='tanh',
61
      max_iter=500,
      random_state=0
63
    )
64
65 }
  for description, regressor in regressors.items():
67
    y_pred = predict(regressor)
    print_regressor(regressor, description, y_pred)
69
    plot_regressor_residues(regressor, description, y_pred)
```


Figure 1: Ridge regression's residue plotting

Figure 2: MLP_1 regression's residue plotting

Figure 3: *MLP*² regression's residue plotting