Curso Estruturas de Dados e Algoritmos Expert

Prof. Nelio Alves

Grafos (parte 2)

1

Representações de grafos em memória

https://devsuperior.com.br

Prof. Dr. Nelio Alves

Representações de grafos

Como escolher uma estrutura de dados para representar um grafo?

A escolha da estrutura terá impacto no desempenho dos algoritmos!

Há algumas opções:

- Lista de arestas
- Matriz de adjacência
- Lista de adjacência

3

Lista de arestas

Lista de tamanho N = |A|, em que cada posição possui uma aresta (i, j).

 $\{(0, 1), (0, 2), (0, 3), (1, 3), (2, 3), (3, 4)\}$

Lista de arestas - Características

- Representação super simples
- Geralmente é a forma na qual a entrada é dada
- Propriedades
 - Custo de representação em memória: O(|A|) = O(n)
 - Custo para consultar aresta (i, j) = O(n)
 - Custo para verificar grau de vértice = O(n)
- Útil quando precisamos percorrer somente as arestas, mas deixar a desejar nas consultas.

5

Matriz de adjacência

Criar matriz NxN, onde N = |V|, seguindo a seguinte regra:

$$A_{ij} = \begin{cases} 1 \text{ se houver aresta (i, j)} \\ 0 \text{ caso contrário} \end{cases}$$

	0	1	2	3	4
0	0	1	1	1	0
1	1	0	0	1	0
2	1	0	0	1	0
3	1	1	1	0	1
4	0	0	0	1	0

Matriz de adjacência

Para grafos <u>não-direcionados</u>, a matriz será simétrica.

$$A_{ij} = \begin{cases} 1 \text{ se houver aresta (i, j)} \\ 0 \text{ caso contrário} \end{cases}$$

	0	1	2	3	4
0	ď	1	1	1	0
1	1	Ö	0	1	0
2	1	0	0	1	0
3	1	1	1	စ်	1
4	0	0	0	1	ø

7

Matriz de adjacência

Para grafos direcionados, uma aresta (i, j) indica que ela é divergente de i e convergente a j, isto é i \rightarrow j.

$$A_{ij} = \begin{cases} 1 \text{ se houver aresta (i, j)} \\ 0 \text{ caso contrário} \end{cases}$$

	0	1	2	3	4
0	0	0	1	1	0
1	1	0	0	1	0
2	0	0	0	0	0
3	0	0	1	0	0
4	0	0	0	1	0

Matriz assimétrica

Matriz de adjacência

Para grafos direcionados ponderados, uma aresta (i, j, k) indica que ela é divergente de i e convergente a j, isto é i \rightarrow j, com peso k.

$$A_{ij} = \begin{cases} k \text{ se houver aresta (i, j)} \\ -1 \text{ caso contrário} \end{cases}$$

	0	1	2	3	4
0	-1	-1	50	7	-1
1	10	-1	-1	12	-1
2	-1	-1	-1	-1	-1
3	-1	-1	14	-1	-1
4	-1	-1	-1	10	-1

9

Matriz de adjacência - Características

- Representação mais simples
- Propriedades
 - Custo de representação em memória: O(|V|²) = O(n²)
 - O Custo para consultar aresta (i, j) = O(1)
- É uma boa estrutura quando precisamos:
 - o representar grafos densos
 - consultar arestas rapidamente (tempo constante)
 - inserir/remover arestas rapidamente (tempo constante)
- É ruim quando precisamos:
 - o representar grafos esparsos
 - o percorrer toda a matriz $O(|V|^2) = O(n^2)$

Matriz de adjacência - Implementação

- 1) Implementar uma classe Graph, utilizando uma matriz de adjacência para representar um grafo não direcionado e não ponderado. A classe deve conter as seguintes operações:
- constructor(numVertices)
 - o inicializa a estrutura de representação com tamanho numVertices
- addEdge(v1, v2)
 - o adiciona aresta entre os vértices v1 e v2
- removeEdge(v1, v2)
 - o remove aresta entre os vértices v1 e v2
- printGraph()
 - mostra no console o estado atual da matriz

- degree(v)
 - o retorna o grau do vértice v
- listByDegree()
 - mostra no console os vértices agrupados em função de seus graus

11

Matriz de adjacência - Implementação

- **2)** Implementar uma classe Graph, utilizando uma matriz de adjacência para representar um grafo direcionado e ponderado. A classe deve conter as seguintes operações:
- constructor(numVertices)
 - o inicializa a estrutura de representação com tamanho numVertices
- addEdge(v1, v2, w)
 - o adiciona aresta entre os vértices v1 e v2 com peso w
- removeEdge(v1, v2)
 - o remove aresta entre os vértices v1 e v2
- printGraph()
 - mostra no console o estado atual da matriz

- lowestWeight()
 - o retorna a aresta de menor peso
- neighbours(v)
 - o retorna os vizinhos do vértice v

Conjunto de |V| = n listas, onde cada lista L(v) contém os vértices adjacentes ao vértice v.

13

Listas de adjacências

Para grafos direcionados, precisamos adicionar apenas uma vez cada aresta.

vezes uma mesma aresta.

Listas de adjacências

Para grafos direcionados ponderados, cada nó da lista é representado pelo vértice adjacente e pelo peso da aresta.

15

Listas de adjacências - Características

- Representação compacta, utilizada na maioria das vezes
- Propriedades
 - Custo de representação em memória: O(|V| + |A|) = O(n + m)
 - O Custo para consultar aresta (i, j) = O(d_i), sendo d_i o grau de i
- É uma boa estrutura quando:
 - o representamos grafos esparsos
 - |A| muito menor que |V²|
 - o percorrer todo o grafo O(|V| + |A|)
 - o determinar grau de um vértice rapidamente

- É ruim quando precisamos:
 - verificar se um vértice i é adjacente a outro vértice j, O(n)

Qual a melhor estrutura?

Tarefa	Melhor estrutura
Determinar se aresta (x, y) existe	Matriz de adjacências
Determinar o grau de um vértice	Listas de adjacências
Representar grafos esparsos	Listas de adjacências
Representar grafos densos	Matriz de adjacências
Inserção/remoção de arestas	Matriz: O(1) Listas: O(di)
Percorrer todo o grafo	Listas: $O(V + A)$ Matriz: $O(V ^2)$
Melhor na maioria dos problemas	Listas de adjacências

17

Listas de adjacências - Implementação

- 1) Implementar uma classe Graph, utilizando uma lista de adjacências para representar um grafo não direcionado e não ponderado. A classe deve conter as seguintes operações:
- constructor(numVertices)
 - o inicializa a estrutura de representação com tamanho numVertices
- addEdge(v1, v2)
 - o adiciona aresta entre os vértices v1 e v2
- removeEdge(v1, v2)
 - o remove aresta entre os vértices v1 e v2
- printGraph()
 - o mostra no console o estado atual da matriz

- degree(v)
 - o retorna o grau do vértice v
- listByDegree()
 - o mostra no console os vértices agrupados em função de seus graus

Listas de adjacências - Implementação

- **2)** Implementar uma classe Graph, utilizando uma lista de adjacências para representar um grafo direcionado e ponderado. A classe deve conter as seguintes operações:
- constructor(numVertices)
 - o inicializa a estrutura de representação com tamanho numVertices
- addEdge(v1, v2, w)
 - o adiciona aresta entre os vértices v1 e v2 com peso w
- removeEdge(v1, v2)
 - o remove aresta entre os vértices v1 e v2
- printGraph()
 - mostra no console o estado atual da matriz

- lowestWeight()
 - o retorna a aresta de menor peso
- neighbours(v)
 - o retorna os vizinhos do vértice v

19

Exercícios de Fixação

Dada a seguinte lista de arestas:

$$A = \{ (0, 1), (0, 2), (0, 4), (1, 2), (1, 3), (2, 3), (2, 4) \}$$

- Desenhe o grafo não-direcionado correspondente
- Desenhe a representação em matriz de adjacência
- Desenhe a representação em lista de adjacência

Exercícios de Fixação

Dado o seguinte grafo direcionado ponderado

- Represente-o com uma matriz de adjacência
- Represente-o com uma lista de adjacências