Andre Gouws

704-999-0054

Education

MS | Mechanical Engineering

UT Austin | 2018-2020 (Expected)

- Research: Selective laser flash sintering of ceramics
- Advisor: Dr. Desiderio Kovar
- GPA: 3.8

BS | Mechanical Engineering

NC State University | 2018

- Minor in Physics
- Graduated magna cum laude
- GPA: 3.62

Technical Skills

Languages

Experienced
Python • HTML/CSS• Matlab
Proficient
C++ • SQL • Java

Software

LaTeX • LabVIEW • Simulink • Solidworks

General

Machine Learning • Finite Element Modeling • Data Analysis • UNIX Systems • CAD Modeling

Academic Projects

Drone Controller

Designed control system for quadcopter with disturbance rejection, w/ frequency response & root locus methods

Nuclear Reactor Probe

Light-detecting probe to determine power output of PULSTAR reactor by measuring cherenkov radiation output

Consumer Bike Products

Consumer facing design project to construct and test a spooled bike cable lock and U-bolt holder

Laminar Water Turret

Senior design project to modify existing laminar water jet from PENTAIR to allow for 90 degrees of controlled rotation

Experience

Los Alamos National Laboratory

Materials Characterization

Los Alamos, NM

Summer 2019

- Conducted selective laser flash sintering (SLFS) of aluminum nitride ceramics, allowing for the additive manufacturing of uranium nitride nuclear fuels
- Used electron microscopy techniques to analyze microstructure of ceramics in response to varying electrical and heating regimes

Oak Ridge National Laboratory

Oak Ridge, TN

Machine Learning

Summer 2018

- Developed machine learning tools to characterize mechanical properties of thin films using fragmentary data sets, reduced experimental test load by 90%
- Used artificial neural networks & decision tree forests to bridge relationship between electrical and mechanical properties of thin films

Sandia National Laboratories

Albuquerque, NM

Device Development & Rapid Prototyping Summer 2016 - Spring 2018

- Created, verified & validated finite element models of hermetic seals and embedded fiber sensors
- Developed fiber bragg sensor for predicting multiaxial strains while embedded in host materials & created mathematical model for embedded strain prediction to be used in B61-12 tactical nuclear weapons
- Designed, prototyped and tested multi-material additively manufactured shock failsafe device to be deployed in high-consequence aircraft munitions

Two Phase Flow Group

NC State University

Data Visualization & High Performance Computing Fall 2016 - Spring 2018

- Developed interactive visualizations and data postprocessing tools to diagnose bugs and identify malformed flow patterns in direct numerical flow simulations
- Optimized parallel processing regime to improve computational efficiency of high-performance multiphase flow simulations

Two Phase Flow Lab / NC State BLAST Lab

NC State University

Data Analysis & Composites Testing

Fall 2015 – Spring 2016

- Designed LabVIEW virtual instruments to conduct data collection of flame coflow experiments
- Setup and operated gas cannon impact testing of composites

Community

Graduate Teaching Assistant

Fall 2019 - Present

- Prepared lectures and projects for students to introduce them to engineering concepts such as energy, work, mechanics, and more
- Led seminar discussions to relate engineering concepts to student experiences

University Honors Fellow

Spring 2015 - Spring 2017

- Co-taught course on Diversity & Ecological Justice and led community events where students critically engaged with local issues in food distribution
- Organized cultural and research engagement events with students in honors community and with professors & lecturers in business and academia

VP of NC State Astronomy Club

Spring 2015 - Spring 2017

- Renovated local observatory and restored a collection of damaged/inoperable telescopes to working conditions
- Hosted community events where students, children, and adults could learn about celestial phenomena