

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC154629 Page: 1 of 89

FCC Radio Test Report FCC ID: 2AJWO-P4001

Original Grant

Report No. : TB-FCC154629

Applicant: Pred Technologies USA, Inc.

Equipment Under Test (EUT)

EUT Name : PRED Smart Earbuds

Model No. : P4001

Series Model No. : N/A

Brand Name : PRED

Receipt Date : 2017-06-23

Test Date : 2017-06-24 to 2017-07-05

Issue Date : 2017-07-06

Standards : FCC Part 15: 2016, Subpart C(15.247)

Test Method : ANSI C63.10: 2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer :

Approved& Authorized :

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	
	1.8 Test Facility	8
2.	TEST SUMMARY	9
3.	TEST EQUIPMENT	10
4.	CONDUCTED EMISSION TEST	11
	4.1 Test Standard and Limit	
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	
	4.5 Test Data	
5.	RADIATED EMISSION TEST	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	
	5.5 Test Data5	17
6.	RESTRICTED BANDS REQUIREMENT	39
	6.1 Test Standard and Limit	39
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 EUT Operating Condition	40
	6.5 Test Data	40
7.	NUMBER OF HOPPING CHANNEL	59
	7.1 Test Standard and Limit	59
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	
	7.5 Test Data	
8.	AVERAGE TIME OF OCCUPANCY	
	8.1 Test Standard and Limit	
	8.2 Test Setup	

Page: 3 of 89

21	0.0 T (D)	
	8.3 Test Procedure	62
	8.4 EUT Operating Condition	
	8.5 Test Data	63
9.	CHANNEL SEPARATION AND BANDWIDTH TEST	69
	9.1 Test Standard and Limit	69
	9.2 Test Setup	69
	9.3 Test Procedure	69
	9.4 EUT Operating Condition	69
	9.5 Test Data	
10.	PEAK OUTPUT POWER TEST	82
	10.1 Test Standard and Limit	
	10.2 Test Setup	82
	10.3 Test Procedure	82
	10.4 EUT Operating Condition	82
	10.5 Test Data	
11.	ANTENNA REQUIREMENT	89
	11.1 Standard Requirement	89
	11.2 Antenna Connected Construction	
	11.3 Result	

Page: 4 of 89

1. General Information about EUT

1.1 Client Information

Applicant: Pred Technologies USA, Inc.

Address : 7855 Fay Avenue, suite 310 La Jolla, California 92037 USA

Manufacturer : Sunstar Digi (H.K.) Co.,Ltd.

Address : 2-3 Floor F Building, Guanlong 1st Industrial Zone, Xili Town,

Nanshan District, Shenzhen, Guangdong, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	PRED Smart Earbuds			
Models No.	4	P4001	P4001		
Model Difference	:	N/A			
4000		Operation Frequency:	Bluetooth 4.0: 2402~2480 MHz		
		Number of Channel:	Bluetooth: 79 Channels see Note 2		
Product		Max Peak Output Power:	Bluetooth: 1.150 dBm(GFSK)		
Description		Antenna Gain: 1.3 dBi PCB Antenna			
		Modulation Type:	GFSK (1 Mbps)		
		133	π /4-DQPSK (2 Mbps)		
	1		8-DPSK (2 Mbps)		
Power Supply	:	DC Voltage supplied by USB.			
		DC Voltage supplied by Li-ion battery.			
Power Rating		DC 5V by USB Cable.			
Connecting I/O		DC 3.7V by 55mAh Li-ion battery.			
		Please refer to the User's Manual			
Port(S)					

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(2) Channel List:

	Bluetooth Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
00	2402	27	2429	54	2456		
01	2403	28	2430	55	2457		
02	2404	29	2431	56	2458		
03	2405	30	2432	57	2459		
04	2406	31	2433	58	2460		

Page: 5 of 89

05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454	(8	Miles
26	2428	53	2455	1	

⁽³⁾ The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

Charging + TX Mode

TX Mode

Page: 6 of 89

1.4 Description of Support Units

Equipment Information								
Name Model FCC ID/VOC Manufacturer Used "√"								
AC/DC Adapter	TEKA014	VOC	VOC TEKA					
AC/DC Adapter:	AC/DC Adapter: Input:100~120V, 50/60Hz, 0.2A. Output: 5V, 1A							
	Cable Information							
Number Shielded Type Ferrite Core Length Note								
Cable 1	NO	NO	0.4M	000				

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test					
Final Test Mode Description					
Mode 1	Charging + TX Mode				

For Radiated Test				
Final Test Mode	Description			
Mode 1	TX GFSK Mode			
Mode 2	TX Mode(GFSK) Channel 00/39/78			
Mode 3	TX Mode(π /4-DQPSK) Channel 00/39/78			
Mode 4	TX Mode(8-DPSK) Channel 00/39/78			
Mode 5	Hopping Mode(GFSK)			
Mode 6	Hopping Mode(π /4-DQPSK)			
Mode 7	Hopping Mode(8-DPSK)			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test modes above.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)

TX Mode: π /4-DQPSK (2 Mbps)
TX Mode:8-DPSK (3 Mbps)

Page: 7 of 89

(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version		AppoTech RF Control Ki	t
Frequency	2402 MHz	2441MHz	2480 MHz
GFSK	DEF	DEF	DEF
π /4-DQPSK	DEF	DEF	DEF
8-DPSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.42 dB ±3.42 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 8 of 89

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 9 of 89

2. Test Summary

FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 1					
Standard S	ection				
FCC	IC	Test Item	Judgment	Remark	
15.203	3	Antenna Requirement	PASS	N/A	
15.207	RSS-GEN 7.2.2	Conducted Emission	PASS	N/A	
15.205	RSS-Gen 7.2.3	Restricted Bands	PASS	N/A	
15.247(a)(1)	RSS 247 5.1 (2)	Hopping Channel Separation	PASS	N/A	
15.247(a)(1)	RSS 247 5.1 (4)	Dwell Time	PASS	N/A	
15.247(b)(1)	RSS 247 5.4 (2)	Peak Output Power	PASS	N/A	
15.247(b)(1)	RSS 247 5.1 (4)	Number of Hopping Frequency	PASS	N/A	
15.247(d)	RSS 247 5.5	Band Edge	PASS	N/A	
15.247(c)& 15.209	RSS 247 5.5	Radiated Spurious Emission	PASS	N/A	
15.247(a)	RSS 247 5.1 (1)	99% Occupied Bandwidth & 20dB Bandwidth	PASS	99%OBW GFSK:984.4329kHz π/4-DQPSK: 1147.30kHz 8-DPSK: 1130.40kHz	

Note: N/A is an abbreviation for Not Applicable.

Report No.: TB-FCC154629

10 of 89 Page:

3. Test Equipment

AC Main C	onducted Emis	sion			
Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
EMI Test Receiver	ROHDE& SCHWARZ	ESCI	100321	Jul. 22, 2016	Jul. 21, 2017
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 22, 2016	Jul. 21, 2017
L.I.S.N	Rohde & Schwarz	ENV216	101131	Jul. 22, 2016	Jul. 21, 2017
L.I.S.N	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 22, 2016	Jul. 21, 2017
Description	Spurious Emiss Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 22, 2016	Jul. 21, 2017
EMI Test Receiver	Rohde & Schwarz	ESPI	10P40010/007	Jul. 22, 2016	Jul. 21, 2017
Bilog Antenna	ETS-LINDGREN	3142E	P400117537	Mar.25, 2017	Mar. 24, 2018
Horn Antenna	ETS-LINDGREN	3117	P400143207	Mar.24, 2017	Mar. 23, 2018
Pre-amplifier	Sonoma	310N	185903	Mar.24, 2017	Mar. 23, 2018
Pre-amplifier	HP	8449B	3008A00849	Mar.24, 2017	Mar. 23, 2018
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.24, 2017	Mar. 23, 2018
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna C	onducted Emis	sion			
Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 22, 2016	Jul. 21, 2017
Spectrum Analyzer	Rohde & Schwarz	ESPI	100321	Jul. 22, 2016	Jul. 21, 2017

Page: 11 of 89

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Eroguanov	Maximum RF Line	e Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 12 of 89

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Test data please refer the following pages.

EUT: PRED Smart Earbuds Model Name: P4001

Temperature: 25℃ Relative Humidity: 55%

Test Voltage: AC 120V/60 Hz

Terminal: Line

Test Mode: USB Charging Mode

Remark: Only worse case is reported

No. I	Иk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBu∀	dBu∀	dB	Detector
1		0.1660	31.31	9.95	41.26	65.15	-23.89	QP
2		0.1660	13.20	9.95	23.15	55.15	-32.00	AVG
3		0.2366	26.72	10.02	36.74	62.21	-25.47	QP
4		0.2366	10.43	10.02	20.45	52.21	-31.76	AVG
5		0.2940	22.45	10.02	32.47	60.41	-27.94	QP
6		0.2940	8.27	10.02	18.29	50.41	-32.12	AVG
7		0.5660	18.68	10.05	28.73	56.00	-27.27	QP
8	*	0.5660	13.77	10.05	23.82	46.00	-22.18	AVG
9		0.9740	8.81	10.07	18.88	56.00	-37.12	QP
10		0.9740	2.46	10.07	12.53	46.00	-33.47	AVG
11		6.7260	6.55	10.05	16.60	60.00	-43.40	QP
12		6.7260	0.01	10.05	10.06	50.00	-39.94	AVG

Report No.: TB-FCC154629 Page: 14 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60 Hz	MILLER	
Terminal:	Neutral		1:33
Test Mode:	USB Charging Mode	TO TO	
Remark:	Only worse case is reported		2 110

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBu∀	dBu∀	dB	Detector
1	*	0.1500	32.37	10.12	42.49	65.99	-23.50	QP
2		0.1500	13.59	10.12	23.71	55.99	-32.28	AVG
3		0.1965	29.55	10.12	39.67	63.75	-24.08	QP
4		0.1965	11.41	10.12	21.53	53.75	-32.22	AVG
5		0.2521	25.75	10.10	35.85	61.68	-25.83	QP
6		0.2521	8.60	10.10	18.70	51.68	-32.98	AVG
7		0.3300	20.17	10.08	30.25	59.45	-29.20	QP
8		0.3300	4.65	10.08	14.73	49.45	-34.72	AVG
9		0.5660	20.35	10.02	30.37	56.00	-25.63	QP
10		0.5660	7.63	10.02	17.65	46.00	-28.35	AVG
11		0.8740	9.03	10.10	19.13	56.00	-36.87	QP
12		0.8740	-1.86	10.10	8.24	46.00	-37.76	AVG

Page: 15 of 89

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limit (9 kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distand (meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

Radiated Emission Limit (Above 1000MHz)

Frequency	Class B (dBu	ıV/m)(at 3m)
(MHz)	Peak	Average
Above 1000	74	54

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)

Page: 16 of 89

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 17 of 89

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power in TX mode.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Page: 18 of 89

Test data please refer the following pages.

Page: 19 of 89

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz~1GHz

EUT:	PRED	Smart Earl	ouds	Model Na	ame :	P4001	17
Temperature:	25℃	CHINO:		Relative F	lumidity:	55%	
est Voltage:	AC 12	20V/60Hz			CHILL		l.
Ant. Pol.	Horiz	ontal	13	1111	1	CITI'S	9
Test Mode:	TX G	FSK Mode 2	402MHz	1411		6	
Remark:	Only	worse case i	s reported	6	11100		A
80.0 dBuV/m							
					(RF)FCC 15C	3M Radiation	
						Margin -6 dB	_{
					4 75		
30		 	1 X	2 	3 7 6		
		/ / / / / / / / / / / / / / / / / / /	VVV Marineto	/ Morrhall	white the same of	White was an annual work of the same of th	hus
Λ			- March	114/	hk, , ,	And are .	
Many May							
- Qu	Ψ.						
-20							
	0 60 70	80	(MHz)	300	400 500	600 700 1	000.00
		Reading	Correct	Measure-			
No. Mk.	Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB De	etecto
1 12	7.6645	52.33	-22.16	30.17	43.50	-13.33	QΡ
2 23	9.1473	51.36	-18.23	33.13	46.00	-12.87	QΡ
3 43	1.0316	44.79	-12.34	32.45	46.00	-13.55	QΡ
	3.9094	51.14	-11.14	40.00	46.00		QΡ
	4.7062	48.30	-10.90	37.40	46.00		QP
							QP
6 52	6.3967	42.32	-9.58	32.74	46.00	-1.3 /n L	JP

Page: 20 of 89

		A V II. VII.	
EUT:	PRED Smart Earbuds	Model Name:	P4001
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz		133
Ant. Pol.	Vertical		THE REAL PROPERTY.
Test Mode:	TX GFSK Mode 2402MHz	WUR I	DIO.
Remark:	Only worse case is reported		3 6
80.0 dBuV/m			

								(RF)FCC	15C 3M	Radiation	1
										Margin -6	dB
	2			5	6						
30 <u>1</u>	/×	w.	Ň		\			الاش	MM.	179000 March 1800 March	Carrenter March
No American		M 1	<i>{</i>		My MAN	Married Market	Helanographyddidd	dipodul	Toop	//physioleten	
					"						

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		32.1795	41.39	-15.49	25.90	40.00	-14.10	QP
2		45.2166	54.02	-22.49	31.53	40.00	-8.47	QP
3		74.1351	53.46	-23.55	29.91	40.00	-10.09	QP
4	*	87.7248	59.97	-22.87	37.10	40.00	-2.90	QP
5		98.8326	58.51	-21.95	36.56	43.50	-6.94	QP
6		159.2251	51.30	-20.34	30.96	43.50	-12.54	QP

^{*:}Maximum data x:Over limit !:over margin

Page: 21 of 89

Above 1GHz(Only worse case is reported)

EUT:	PRED Smart Earbuds	Model Name :	P4001
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		13.5
Ant. Pol.	Horizontal		1000
Test Mode:	TX GFSK Mode 2402MHz	WURR I	
Remark:	No report for the emission wh prescribed limit.	ich more than 10 dB be	elow the

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4802.605	44.19	13.43	57.62	74.00	-16.38	peak
2	*	4804.414	30.16	13.44	43.60	54.00	-10.40	AVG

Page: 22 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001			
Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	TX GFSK Mode 2402MHz	MURA				
Remark:	No report for the emission prescribed limit.	which more than 10 dE	3 below the			

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.958	42.11	13.44	55.55	74.00	-18.45	peak
2	*	4803.958	30.25	13.44	43.69	54.00	-10.31	AVG

Page: 23 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Horizontal						
Test Mode:	TX GFSK Mode 2441MHz	WUR T					
Remark:	No report for the emission which more than 10 dB below the						
	prescribed limit.						

N	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4883.113	44.16	13.91	58.07	74.00	-15.93	peak
2	*	4883.113	29.55	13.91	43.46	54.00	-10.54	AVG

Page: 24 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Vertical		TO THE				
Test Mode:	TX GFSK Mode 2441MHz	WUR T	BIU				
Remark:	No report for the emission who prescribed limit.	nich more than 10 dB b	elow the				

No.	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4882.861	42.79	13.90	56.69	74.00	-17.31	peak
2	*	4882.969	29.92	13.90	43.82	54.00	-10.18	AVG

Page: 25 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001					
Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V	DC 3.7V						
Ant. Pol.	Horizontal		1000					
Test Mode:	TX GFSK Mode 2480MHz	mn BB	DIO.					
Remark:	No report for the emission who prescribed limit.	ich more than 10 dB be	elow the					

No.	. Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.826	44.08	14.36	58.44	74.00	-15.56	peak
2	*	4959.826	29.80	14.36	44.16	54.00	-9.84	AVG

Page: 26 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001			
Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	TX GFSK Mode 2480MHz	WURD I	a live			
Remark:	No report for the emission v prescribed limit.	vhich more than 10 dB	below the			

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4958.866	43.78	14.35	58.13	74.00	-15.87	peak
2	*	4961.497	30.58	14.38	44.96	54.00	-9.04	AVG

Page: 27 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001			
Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal					
Test Mode:	TX π /4-DQPSK Mode 2402	MHz	a live			
Remark:	Remark: No report for the emission which more than 10 dB below the prescribed limit.					

No	. Mk.	Freq.	_		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.862	43.94	13.44	57.38	74.00	-16.62	peak
2	*	4804.594	29.71	13.44	43.15	54.00	-10.85	AVG

Page: 28 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical						
Test Mode:	TX π /4-DQPSK Mode 240	2MHz	A PULL				
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

N	lo. Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.417	43.09	13.44	56.53	74.00	-17.47	peak
2	*	4804.957	29.70	13.44	43.14	54.00	-10.86	AVG

Page: 29 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal						
Test Mode:	TX π /4-DQPSK Mode 2441	MHz	a live				
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4881.262	29.47	13.90	43.37	54.00	-10.63	AVG
2)		4881.712	43.60	13.90	57.50	74.00	-16.50	peak

Page: 30 of 89

EUT:	PRED Smart Earbuds Model Name :		P4001				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical						
Test Mode:	TX π /4-DQPSK Mode 2441	MHz	a live				
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

No.	Mk.	Freq.	_		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.550	43.92	13.90	57.82	74.00	-16.18	peak
2	*	4881.976	29.92	13.90	43.82	54.00	-10.18	AVG

Page: 31 of 89

EUT:	EUT: PRED Smart Earbuds		P4001				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal						
Test Mode:	TX π /4-DQPSK Mode 2480M	Hz	O TO				
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

No.	. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.256	44.17	14.36	58.53	74.00	-15.47	peak
2	*	4960.816	30.48	14.36	44.84	54.00	-9.16	AVG

Page: 32 of 89

EUT: PRED Smart Earbuds		Model Name :	P4001				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical						
Test Mode:	TX π /4-DQPSK Mode 2480M	Hz	OND:				
Remark:	Remark: No report for the emission which more than 10 dB below the prescribed limit.						

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4960.633	43.56	14.36	57.92	74.00	-16.08	peak
2	*	4960.756	30.52	14.36	44.88	54.00	-9.12	AVG

Page: 33 of 89

EUT:	PRED Smart Earbuds	P4001					
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal						
Test Mode:	TX 8-DPSK Mode 2402MHz		a live				
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

N	No.	Mk.	Freq.			Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4803.736			43.21	54.00	-10.79	AVG
2			4804.270	44.58	13.44	58.02	74.00	-15.98	peak

Page: 34 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001			
Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	TX 8-DPSK Mode 2402MHz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.						

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.775	43.64	13.44	57.08	74.00	-16.92	peak
2	*	4804.741	29.71	13.44	43.15	54.00	-10.85	AVG

Page: 35 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001			
Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal					
Test Mode:	TX 8-DPSK Mode 2441MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4882.201	42.44	13.90	56.34	74.00	-17.66	peak
2	*	4882.447	29.57	13.90	43.47	54.00	-10.53	AVG

Page: 36 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical						
Test Mode:	TX 8-DPSK Mode 2441MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No	o. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4882.591	29.52	13.90	43.42	54.00	-10.58	AVG
2		4883.458	44.38	13.92	58.30	74.00	-15.70	peak

Page: 37 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V		13.9				
Ant. Pol.	Horizontal						
Test Mode:	TX 8-DPSK Mode 2480MHz	WURDS.	OHU:				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No.	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.328	44.23	14.36	58.59	74.00	-15.41	peak
2	*	4959.892	30.45	14.36	44.81	54.00	-9.19	AVG

Page: 38 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V		33				
Ant. Pol.	Vertical		TO THE				
Test Mode:	TX 8-DPSK Mode 2480MHz	WILLIAM STATE	A PULL				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

N	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4960.117	30.58	14.36	44.94	54.00	-9.06	AVG
2			4961.068	44.34	14.37	58.71	74.00	-15.29	peak

Page: 39 of 89

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

6.1.2 Test Limit

Class B (dE	BuV/m)(at 3m)
Peak	Average
74	54
74	54
	Peak 74

Note: All restriction bands have been tested, only the worst case is reported.

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

Page: 40 of 89

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with AVG Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

All restriction bands have been tested, only the worst case is reported.

Page: 41 of 89

(1) Radiation Test

EUT:	PRED Smart Earbuds	Model Name :	P4001
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Ant. Pol.	Horizontal		
Test Mode:	TX GFSK Mode 2402MHz		
Remark:	Only worse case is reported	ed	57

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2370.200	43.71	0.69	44.40	54.00	-9.60	AVG
2		2370.300	51.99	0.69	52.68	74.00	-21.32	peak
3		2390.000	42.75	0.77	43.52	74.00	-30.48	peak
4		2390.000	31.53	0.77	32.30	54.00	-21.70	AVG
5	X	2402.000	85.65	0.82	86.47	Fundamental I	requency	peak
6	*	2402.000	81.81	0.82	82.63	Fundamental F	requency	AVG

Page: 42 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001					
Temperature: 25℃ Re		Relative Humidity:	55%					
Test Voltage:	DC 3.7V							
Ant. Pol.	Vertical		CONTRACT OF					
Test Mode:	TX GFSK Mode 2402MHz	Miles	J. HILL					
Remark:	Only worse case is reported							

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2370.000	49.96	0.69	50.65	74.00	-23.35	peak
2		2370.000	42.38	0.69	43.07	54.00	-10.93	AVG
3		2390.000	41.91	0.77	42.68	74.00	-31.32	peak
4		2390.000	32.04	0.77	32.81	54.00	-21.19	AVG
5	Χ	2402.000	84.15	0.82	84.97	Fundamental	Frequency	peak
6	*	2402.100	79.58	0.82	80.40	Fundamental	Frequency	AVG

Page: 43 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001					
Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V							
Ant. Pol.	Horizontal							
Test Mode:	TX GFSK Mode 2480 MHz	TX GFSK Mode 2480 MHz						
Remark:	Only worse case is reported	and it	3 ~ 6					

1	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		X	2480.000	81.81	1.15	82.96	Fundamenta	I Frequency	peak
2		*	2480.100	78.86	1.15	80.01	Fundamenta	I Frequency	AVG
3			2483.500	46.04	1.17	47.21	74.00	-26.79	peak
4			2483.500	39.10	1.17	40.27	54.00	-13.73	AVG
5			2512.000	38.93	1.31	40.24	54.00	-13.76	AVG
6			2512.100	46.36	1.32	47.68	74.00	-26.32	peak

Page: 44 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical		
Test Mode:	TX GFSK Mode 2480 MHz	WURR I	BIU
Remark:	Only worse case is reported		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2479.800	81.27	1.15	82.42	Fundamenta	al Frequency	AVG
2	Χ	2480.000	84.26	1.15	85.41	Fundamenta	I Frequency	peak
3		2483.500	48.24	1.17	49.41	74.00	-24.59	peak
4		2483.500	42.49	1.17	43.66	54.00	-10.34	AVG
5		2512.000	46.96	1.31	48.27	74.00	-25.73	peak
6		2512.000	39.75	1.31	41.06	54.00	-12.94	AVG

Page: 45 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001					
Temperature:	25℃	55%						
Test Voltage:	DC 3.7V	DC 3.7V						
Ant. Pol.	Horizontal		100					
Test Mode:	TX π /4-DQPSK Mode 2402	TX π /4-DQPSK Mode 2402MHz						
Remark:	Remark: Only worse case is reported							

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2370.000	48.27	0.69	48.96	74.00	-25.04	peak
2		2370.200	39.16	0.69	39.85	54.00	-14.15	AVG
3		2390.000	43.35	0.77	44.12	74.00	-29.88	peak
4		2390.000	31.32	0.77	32.09	54.00	-21.91	AVG
5	X	2401.900	81.85	0.82	82.67	Fundamenta	Frequency	peak
6	*	2402.000	78.13	0.82	78.95	Fundamental	Frequency	AVG

Page: 46 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001						
Temperature:	25℃	25℃ Relative Humidity:							
Test Voltage:	DC 3.7V	DC 3.7V							
Ant. Pol.	Vertical								
Test Mode:	TX π /4-DQPSK Mode 2402M	IHz	J. Hilliam						
Remark:	mark: Only worse case is reported								

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2370.000	40.15	0.69	40.84	54.00	-13.16	AVG
2		2370.200	48.52	0.69	49.21	74.00	-24.79	peak
3		2390.000	42.50	0.77	43.27	74.00	-30.73	peak
4		2390.000	31.53	0.77	32.30	54.00	-21.70	AVG
5	X	2402.000	83.50	0.82	84.32	Fundamenta	I Frequency	peak
6	*	2402.000	78.39	0.82	79.21	Fundamenta	l Frequency	AVG

Page: 47 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001				
Temperature:	25℃	55%					
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal						
Test Mode:	TX π /4-DQPSK Mode 2480M	IHz	J. Harris				
Remark: Only worse case is reported							

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2479.700	82.06	1.15	83.21	Fundamenta	al Frequency	peak
2	*	2479.900	79.07	1.15	80.22	Fundamenta	al Frequency	, AVG
3		2483.500	45.38	1.17	46.55	74.00	-27.45	peak
4		2483.500	39.66	1.17	40.83	54.00	-13.17	AVG
5		2512.100	37.34	1.32	38.66	54.00	-15.34	AVG
6		2512.300	46.19	1.32	47.51	74.00	-26.49	peak

Report No.: TB-FCC154629 Page: 48 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001					
Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V							
Ant. Pol.	Vertical							
Test Mode:	TX π /4-DQPSK Mode 2480	MHz	A MILL					
Remark:	ark: Only worse case is reported							

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2479.800	80.09	1.15	81.24	Fundamenta	l Frequency	peak
2	*	2479.900	76.60	1.15	77.75	Fundamenta	I Frequency	AVG
3		2483.500	45.70	1.17	46.87	74.00	-27.13	peak
4		2483.500	37.38	1.17	38.55	54.00	-15.45	AVG
5		2511.900	36.30	1.31	37.61	54.00	-16.39	AVG
6		2512.000	46.58	1.31	47.89	74.00	-26.11	peak

Report No.: TB-FCC154629 Page: 49 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001				
Temperature:	25°C Relative Humidity:		55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal						
Test Mode:	TX 8-DPSK Mode 2402MHz	z	7				
Remark: Only worse case is reported							

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2369.900	39.32	0.68	40.00	54.00	-14.00	AVG
2		2370.000	47.96	0.69	48.65	74.00	-25.35	peak
3		2390.000	42.91	0.77	43.68	74.00	-30.32	peak
4		2390.000	31.44	0.77	32.21	54.00	-21.79	AVG
5	X	2402.100	81.83	0.82	82.65	Fundamenta	I Frequency	peak
6	*	2402.100	76.45	0.82	77.27	Fundamenta	l Frequency	AVG

Page: 50 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	Itage: DC 3.7V						
Ant. Pol.	Vertical						
Test Mode:	TX 8-DPSK Mode 2402MHz	THE PARTY OF	A RIVER				
Remark:	Only worse case is reported	and it	3 2 8				

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2369.900	40.32	0.68	41.00	54.00	-13.00	AVG
2		2370.000	48.90	0.69	49.59	74.00	-24.41	peak
3		2390.000	43.31	0.77	44.08	74.00	-29.92	peak
4		2390.000	31.44	0.77	32.21	54.00	-21.79	AVG
5	X	2402.100	82.31	0.82	83.13	Fundamenta	I Frequency	peak
6	*	2402.100	76.95	0.82	77.77	Fundamenta	l Frequency	AVG

Report No.: TB-FCC154629 Page: 51 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001			
Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal	Horizontal				
Test Mode:	TX 8-DPSK Mode 2480MHz					
Remark:	Only worse case is reported	and it	3 ~ 6			

No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2480.000	79.89	1.15	81.04	Fundamenta	I Frequency	peak
2	*	2480.000	74.54	1.15	75.69	Fundamenta	I Frequency	AVG
3		2483.500	44.88	1.17	46.05	74.00	-27.95	peak
4		2483.500	36.10	1.17	37.27	54.00	-16.73	AVG
5		2511.800	46.06	1.31	47.37	74.00	-26.63	peak
6		2512.100	35.76	1.32	37.08	54.00	-16.92	AVG

Page: 52 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001			
Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	TX 8-DPSK Mode 2480MHz					
Remark:	Only worse case is reported					

No	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	X	2479.900	82.07	1.15	83.22	Fundamental	Frequency	peak
2	*	2480.000	76.60	1.15	77.75	Fundamental	Frequency	AVG
3		2483.500	45.76	1.17	46.93	74.00	-27.07	peak
4		2483.500	37.48	1.17	38.65	54.00	-15.35	AVG
5		2511.900	37.09	1.31	38.40	54.00	-15.60	AVG
6		2512.200	46.96	1.32	48.28	74.00	-25.72	peak

Page: 53 of 89

(2) Conducted Test

EUT: **PRED Smart Earbuds Model Name:** P4001 Temperature: 25℃ **Relative Humidity:** 55% DC 3.7V **Test Voltage: Test Mode: GFSK Hopping Mode** Remark: Only worse case is reported * Agilent 23:06:53 Jul 5, 2017 Mkr1 2.40400 GHz -0.781 dBm Atten 20 dB

EUT: **PRED Smart Earbuds Model Name:** P4001 Temperature: 25℃ **Relative Humidity:** 55% **Test Voltage:** DC 3.7V **Test Mode:** TX π /4-DQPSK Mode 2402MHz/2480 MHz Remark: Only worse case is reported * Agilent 23:01:44 Jul 5, 2017 Mkr1 2.40200 GHz -3.331 dBm Ref 10 dBm Peak Log 10 dB/ Offst Dis Atten 20 dB Display Line 1 dB -23.52 dBm DI -23.5 dBm Center 2.362 GHz #Res BW 100 kHz Span 100 MHz Sweep 10.36 ms (401 pts) #VBW 300 kHz Marker

Page: 56 of 89

 EUT:
 PRED Smart Earbuds
 Model Name:
 P4001

 Temperature:
 25°C
 Relative Humidity:
 55%

 Test Voltage:
 DC 3.7V

 Test Mode:
 TX 8-DPSK Mode 2402MHz/2480 MHz

 Remark:
 Only worse case is reported

EUT: PRED Smart Earbuds Model Name: P4001

Temperature: 25℃ Relative Humidity: 55%

Test Voltage: DC 3.7V

Test Mode: 8-DPSK Hopping Mode

Remark: Only worse case is reported

Page: 59 of 89

7. Number of Hopping Channel

7.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247 (a)(1)

6.1.2 Test Limit

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=100 KHz, Sweep time= Auto.

7.4 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

7.5 Test Data

Page: 60 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		

Test Mode: Hopping Mode

Frequency Range	Test Mode	Quantity of Hopping Channel	Limit
	GFSK	79	
2402MHz~2480MHz	π /4-DQPSK	79	>15
	8-DPSK	79	

GFSK Mode

π/4-DQPSK Mode

Page: 61 of 89

Page: 62 of 89

8. Average Time of Occupancy

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(1)

8.1.2 Test Limit

Section	Test Item	Limit	
15.247(a)(1)/ RSS-210	Average Time of	0.4 sec	
Annex 8(A8.1d)	Occupancy	0.4 Sec	

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=1MHz, VBW=1MHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

8.4 EUT Operating Condition

The average time of occupancy on any channel within the Period can be calculated with formulas:

 $\{Total \ of \ Dwell\} = \{Pulse \ Time\} * (1600 / X) / \{Number \ of \ Hopping \ Frequency\} * \{Period\} = 0.4s * \{Number \ of \ Hopping \ Frequency\}$

Note: X=2 or 4 or 6 (1DH1=2, 1DH3=4, 1DH5=6. 2DH1=2, 2DH3=4, 2DH5=6. 3DH1=2,3DH3=4, 3DH5=6)

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

The EUT was set to the Hopping Mode by the Customer.

Page: 63 of 89

8.5 Test Data

EUT:	PRED Smart Earbuds	Model Name :	P4001
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		TO RE

Test Mode: Hopping Mode (GFSK)

Test	Channel	Pulse	Total of Dwell	Period Time	Limit	Result
Mode	(MHz)	Time (ms)	(ms)	(s)	(ms)	Result
1DH1	2441	0.520	166.40	31.60	400	PASS
1DH3	2441	1.780	284.80	31.60	400	PASS
1DH5	2441	3.120	332.80	31.60	400	PASS

1DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79

1DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79

1DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

GFSK Hopping Mode 1DH1

64 of 89 Page:

Page: 65 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		18.0

Test Mode: Hopping Mode (π /4-DQPSK)

Test	Channel	Pulse	Total of Dwell	Period Time	Limit	Result
Mode	(MHz)	Time (ms)	(ms)	(s)	(ms)	Result
2DH1	2441	0.520	166.40	31.60	400	PASS
2DH3	2441	1.780	284.80	31.60	400	PASS
2DH5	2441	3.060	326.40	31.60	400	PASS

2DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79

2DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79

2DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

π /4-DQPSK Hopping Mode 2DH1

66 of 89 Page:

Page: 67 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		189

Test Mode: Hopping Mode (8-DPSK)

Test	Channel	Pulse	Total of Dwell	Period Time	Limit	Result
Mode	(MHz)	Time (ms)	(ms)	(s)	(ms)	Result
3DH1	2441	0.520	166.40	31.60	400	PASS
3DH3	2441	1. 800	288.00	31.60	400	PASS
3DH5	2441	3.090	329.60	31.60	400	PASS

2DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79

2DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79

2DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

8-DPSK Hopping Mode 3DH1

68 of 89 Page:

Page: 69 of 89

9. Channel Separation and Bandwidth Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)	
Bandwidth	<=1 MHz (20dB bandwidth)	2400~2483.5	
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5	

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Channel Separation: RBW=30 kHz, VBW=100 kHz.

Bandwidth: RBW=30 kHz, VBW=100 kHz.

- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
 - (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

9.4 EUT Operating Condition

The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.

Page: 70 of 89

9.5 Test Data

EUT: PRE		Smart Earbuds	Model Name :	P4001
Temperature: 25°		100	Relative Humidity:	55%
Test Voltage: DC		V		
Test Mode: TX		de (GFSK)		3
Channel frequer	псу	99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)
2402		984.4329	1048.00	698.67
2441		982.9244	1048.00	698.67

GFSK TX Mode

71 of 89 Page:

GFSK TX Mode

Page: 72 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		1:13
Test Mode:	TX Mode (π/4-DQPSK)	W 13	

Channel frequency (MHz)	99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)
2402	1145.40	1242.00	
2441	1147.00	1246.00	830.67
2480	1147.30	1241.00	827.33

π/4-DQPSK TX Mode

Transmit Freq Error

x dB Bandwidth

-2.318 kHz

1.241 MHz

Report No.: TB-FCC154629

Page: 73 of 89

* Agilent 22:39:40 Jul 5, 2017 Ref 10 dBm Atten 20 dB #Peak Log 10 dB/ Center Offst 1 dB 2.480000000 GHz Center 2.48 GHz Span 3 MHz #Res BW 30 kHz **#VBW 100 kHz** Sweep 5 ms (401 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % x dB -20.00 dB 1.1473 MHz

Report No.: TB-FCC154629 Page: 74 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001	
Temperature:	25 ℃	Relative Humidity:	55%	
Test Voltage:	DC 3.7V			
Test Mode:	TX Mode (8-DPSK)	1000	CHI I	

Channel frequency (MHz)	99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)
2402	1127.30	1220.00	813.33
2441	1129.10	1219.00	812.67
2480	1130.40	1222.00	814.67

8-DPSK TX Mode

Report No.: TB-FCC154629 Page: 75 of 89

Page: 76 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001	
Temperature:	25℃	Relative Humidity:	55%	
Test Voltage:	DC 3.7V			
Test Mode:	Hopping Mode (GFSK)			

rost mode.	riopping me	346 (31 511)	
Channel frequ	iency	Separation Read Value	Separation Limit
(MHz)		(kHz)	(kHz)
2402		997.50	698.67
2441		1005.00	698.67
2480		997.50	696.00

GFSK Hopping Mode

Page: 77 of 89

GFSK Hopping Mode 2480 MHz

Page: 78 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		

Test Mode: Hopping Mode (π/4-DQPSK)

Channel frequency	Separation Read Value	Separation Limit		
(MHz)	(kHz)	(kHz)		
2402	990.00	828.00		
2441	1005.00	830.67		
2480	997.50	827.33		

π /4-DQPSK Hopping Mode

79 of 89 Page:

Page: 80 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	JULY A WY	

Test Mode: Hopping Mode (8-DPSK)

Channel frequency	Separation Read Value	Separation Limit		
(MHz)	(kHz)	(kHz)		
2402	1005.00	813.33		
2441	997.50	812.67		
2480	1005.00	814.67		

8-DPSK Hopping Mode

81 of 89 Page:

Page: 82 of 89

10. Peak Output Power Test

10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (b) (1)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	Hopping Channels>75 Power<1W(30dBm)	2400~2483.5
	Other <125 mW(21dBm)	

10.2 Test Setup

10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW=3 MHz for bandwidth more than 1MHz.

10.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

Page: 83 of 89

10.5 Test Data

EUT:	PRED Sm	nart Earbuds	Model Nam	1е :	P4001
Temperature:	25 ℃	AMO.	Relative Hur	nidity:	55%
Test Voltage:	DC 3.7V				2 1111
Test Mode:	TX Mode	(GFSK)			
Channel frequency (MHz) Test Resul		Test Result	(dBm)	L	imit (dBm)
2402		0.904			
2441		1.150			21
2480		0.207			
		GFSK TX	Mode		

Page: 84 of 89

GFSK TX Mode

2441 MHz

GFSK TX Mode

Page: 85 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
	-1/14 / //		I have been a second as

Channel frequen	(NALL-)	Tost Posul
rest mode:	I X Mode	(π /4-DQPSK)

Channel frequency (MHz)	Test Result (dBm)	Limit (dBm)
2402	0.428	
2441	-0.285	21
2480	-1.173	
		1

π /4-DQPSK TX Mode

Page: 86 of 89

π /4-DQPSK TX Mode

2441 MHz

π /4-DQPSK TX Mode

Page: 87 of 89

EUT:	PRED Smart Earbuds	Model Name :	P4001
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	The same	CE:13

Test Mode: TX Mode (8-DPSK)

Channel frequency (MHz)	Test Result (dBm)	Limit (dBm)
2402	0.435	
2441	-0.247	21
2480	-1.112	

8-DPSK TX Mode

Page: 88 of 89

8-DPSK TX Mode

2441 MHz

8-DPSK TX Mode

Page: 89 of 89

11. Antenna Requirement

11.1 Standard Requirement

11.1.1 Standard FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 1.3 dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.3 Result

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

Antenna Type		
⊠Permanent attached antenna		
Unique connector antenna	000	
☐Professional installation antenna	MADO	

----END OF REPORT----