Written Exam for M.Sc. in Economics 2010-I

Advanced Microeconomics

23. February 2010

Master course

3 hours written exam. Closed books. All questions should be clearly and briefly answered. Calculations and figures should be clear and understandable. Calculations and figures should be explained.

Exercise 1

Consider an economy with private ownership where there are two goods, two consumers and one firm. The first consumer is described by $X_1 = \mathbb{R}^2_{++}$, $\omega_1 = (10,0)$, $u_1(x) = \ln x^1 + \ln x^2$ and $\theta_1 = 0.5$. The second consumer is described by $X_2 = \mathbb{R}^2_{++}$, $\omega_1 = (0,10)$, $u_2(x) = \ln x^1 + \ln x^2$ and $\theta_2 = 0.5$. The firm is described by

$$Y = \{ y \in \mathbb{R}^2 | y^1, y^2 < 1 \text{ and } y^2 \le \frac{y^1}{y^1 - 1} \}.$$

Let $p \in \mathbb{R}^2_{++}$ denote the price vector.

1.1 State the problems of the consumers and state the problem of the firm.

- 1.2 Draw Y, solve the problem of the firm and find the profit.
- 1.3 Find a Walrasian equilibrium.

Exercise 2

Consider an economy with private ownership

$$\mathcal{E}^{P} = ((X_{i}, u_{i})_{i=1}^{I}, (Y_{j})_{i=1}^{J}, (\omega_{i}, \theta_{i1}, \dots, \theta_{iJ})_{i=1}^{I}).$$

Suppose that $X_i = \mathbb{R}_+^L$ and $u_i : X_i \to \mathbb{R}$ is continuous representing a monotone and convex preference relation. Suppose that Y_j is closed, $0 \in Y_j$ and Y_j is strictly convex. Suppose that $\omega_i \in \mathbb{R}_{++}^L$ and $\theta_{ij} \in [0,1]$ for all i and $\sum_i \theta_{ij} = 1$ for all j. Let $p \in \mathbb{R}_{++}^L$ denote the price vector.

- 2.1 State the utility maximization problem (UMP) of consumer i.
- 2.2 Show that (UMP) has at least one solution.
- 2.3 Does the utility function $u(x) = b^1 x^1 + \ldots + b^L x^L$, where $b^1, \ldots, b^L \ge 0$ and $\sum_{\ell} b^{\ell} > 0$, represents a preference relation that is monotone and convex?
- 2.4 Define a Walrasian equilibrium for the economy and illustrate it for $L=2,\ I=1$ and J=1.
- 2.5 Define Pareto optimality and show that if $(\bar{p}, (\bar{x}, \bar{y}))$ is a Walrasian equilibrium, then (\bar{x}, \bar{y}) is Pareto optimal.
- 2.6 Suppose that J=1 and

$$Y = \{ y \in \mathbb{R}^L | y^1, \dots, y^{L-1} \le 0 \text{ and } y^L \le -\max\{a^1 y^1, \dots, a^{L-1} y^{L-1}\} \}$$

where $a^1, \ldots, a^{L-1} > 0$. Show that if $(\bar{p}, (\bar{x}, \bar{y}))$ is a Walrasian equilibrium, then

$$\bar{p}_L \leq \frac{\bar{p}_1}{a^1} + \ldots + \frac{\bar{p}_{L-1}}{a^{L-1}}.$$

Exercise 3

Consider an overlapping generation economy. Time extends from $-\infty$ to ∞ , there is one good at every date and there is one consumer, who is alive at two dates, in every generation. Consumers are described by their identical consumption sets $X = \mathbb{R}^2_+$, endowment vectors $\omega_t = (\omega_t^y, \omega_t^o) \in X$ and utility functions $u_t : X \to \mathbb{R}$, which are differentiable and represent strongly monotone and convex preference relations.

- 3.1 Define strong Pareto optimality and discuss other forms of Pareto optimality.
- 3.2 Define an equilibrium with spot markets and a Walrasian equilibrium.
- 3.3 Show that if $((p_t)_{t\in\mathbb{Z}}, (x_t)_{t\in\mathbb{Z}})$ is an equilibrium with spot markets, then it is also a Walrasian equilibrium.

Suppose that $\omega_t = (4,11)$ and $u_t(x) = x^y + 2x^o$, for all t.

- 3.4 Show that $(x_t)_{t\in\mathbb{Z}}$, where $x_t = (4,11)$ for all t, is an equilibrium allocation and show that the equilibrium allocation is not strongly Pareto optimal.
- 3.5 Show that $(x_t)_{t\in\mathbb{Z}}$, where $x_t=(0,15)$ for all t, is a strongly Pareto optimal allocation.
- 3.6 Show that $(x_t)_{t\in\mathbb{Z}}$, where $x_t = (0, 15)$ for all t, is an equilibrium allocation.