الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات

دورة: 2023

امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات، تقني رياضي

اختبار في مادة: العلوم الفيزيائية المحتبار في مادة: 04 سا و 30 د

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع على (05) صفحات (من الصفحة 01 من 10 إلى الصفحة 05 من 10)

الجزء الأول: (14 نقطة)

التمرين الأول: (04 نقاط)

في 26 أفريل 1986، أدّى خطأ في تشغيل أنظمة تبريد اليورانيوم إلى انفجار في المفاعل النّووي (تشرنوبيل)، نتج عنه تسرّب أنوية مشعّة خطيرة إلى الغلاف الجوّي من بينها أنوية السّيزيوم 137، التي تنتشر في جميع أنحاء جسم الإنسان عند انتقالها إليه عن طريق الهواء، الغذاء، الماء وتتسبب في خطر الإصابة بداء السرطان. بعد مرور حوالي سبعة وثلاثين عاما عن هذه الحادثة، بيّنت القياسات، أن بعض النّظائر المشعّة المتسرّبة لا تزال متواجدة، في حين أن بعضها قد اندثر واختفى كليّا.

يهدف التمرين إلى دراسة التّفكك الإشعاعي لأنوية السّيزيوم 137 المُشعّة.

معطیات:

$$N_A = 6.02 \times 10^{23} mol^{-1}$$
 $(M(^{137}Cs) = 137g mol^{-1} (1an = 31557600s)$

- 1. عرّف النّواة المشعّة، واذكر خصائص النّشاط الإشعاعي.
- $^{137}_{55}Cs \longrightarrow ^{A}_{Z}X + ^{0}_{-1}e$: تتفكك نواة السّيزيوم 137 وفق معادلة التّحول النّووي التّالية: $^{27}_{55}Cs \longrightarrow ^{137}_{Z}X + ^{0}_{-1}e$
- 1.2. بتطبيق قانوني انحفاظ صودي، جد كلا من A و Z محدّداً النّواة النّاتجة بالاعتماد على السَّنَد التّالي:

			•	
رمز النّواة	¹³² ₅₄ Xe	¹³⁴ ₅₅ Cs	¹³⁸ ₅₆ Ba	¹³⁷ ₅₇ La

- 2.2. اذكر نمط التّفكك وفسر كيفيّة حدوثه.
- 3.2. مثّل هذا التّحول النّووي في المخطّط (N,Z) (الشكل (1)).
- m_0 مولر عيّنة مشعّة من السّيزيوم 137 كتاتها m_0 أمام عدّاد جيجر مولر الذي يقيس النشاط A للعيّنة، فنحصل على المنحنى البياني الممثّل لتغيّرات النّشاط M للعيّنة بدلالة الزّمن M (الشّكل M) انظر الصفحة M).
 - 1.3. حَدِّد زمن نصف عمر السيزيوم 137.

- مشعة، عبارة قانون تناقص النشاط (A(t) لعينة مشعة،
- $\lambda = rac{\ln 2}{t_{1/2}}$: وبيّن أنّ ثابت التّفكك الاشعاعي λ يكتب على الشّكل
 - m_0 الابتدائية m_0 . احسب قيمة كتلة السّيزبوم الابتدائية
- 4. احسب المدّة الزمنيّة اللازمة لتفكّك % 99 من أنوية السّيزيوم 137 الابتدائية والكافية للتّخلص من الآثار السلبيّة لتفككه.
- 5. هل أصبحت المنطقة التي حصل فيها الانفجار النووي آمنة من أخطار هذا النشاط الإشعاعي في وقتنا الحالي؟

التّمرين الثاني: (04 نقاط)

تُعرف رياضة رمي الجلّة عند الرّجال على أنّها إحدى منافسات ألعاب القوى التي يرمي خلالها اللاّعب كرة معدنيّة تقيلة من الحديد الصّلب. يتم تنفيذ رمي الكرة المعدنيّة من دائرة الرّمي، ليتمّ قياس المسافة الأفقيّة المحققّة، من حافّة الدّائرة المُعَلَّمة إلى غاية اصطدامها بأرضيّة الملعب.

في حصّة تدريبيّة، حاول رياضي البحث عن الزّاوية التي يرسل بها الكرة المعدنيّة حتّى يُحقّق أبعد مسافة أفقيّة.

I- تحليل ودراسة فيديو حركة قذف الكرة المعدنية:

يرمي الرّياضي الكرة من موضع M_0 منطبق على مركز عطالة الكرة، احداثيّتيه ($v_0 = 0.5m$; $v_0 = 2.1m$)، في الرّياضي الكرة من موضع M_0 منطبق على مركز عطالة الكرة، احداثيّتيه (v_{0x} ; v_{0y})، ويصنع لحظة نعتبرها مبدأ للأزمنة (v_{0x} ; v_{0y}) بيرمي الأفق.

لدراسة حركة مركز عطالة الكرة، نختار معلماً متعامداً ومتجانسا (دراسة حركة مركز عطالة الأرض نعتبره غاليلياً (الشكل (a,i,j)).

المعطيات:

- $g = 9.8 \, \text{m s}^{-2}$: تسارع الجاذبيّة الأرضيّة
- $. \rho_0 = 1,3 \, kg \, .m^{-3} :$ الكتلة الحجميّة للهواء
 - خصائص الكرة المعدنيّة:

. $ho = 8000\,kg$. m^{-3} : الكتلة الحجمية ، m = 7,27kg

- 1. اكتب في المعلم (\vec{i} , \vec{j}) في اللّحظة الابتدائيّة t=0 العبارات الشعاعيّة لـ:
 - $\overrightarrow{OM_0}$ شعاع الموضع .1.1
 - lpha بدلالة. lpha بدلالة السّرعة الابتدائية.
 - 2. من أجل احصاء القوى الخارجية المؤثّرة على الكرة المعدنيّة:
 - 1.2. بين أنّ شدة دافعة أرخميدس مهملة أمام ثقل الكرة.
- 2.2. باعتبار أن قوة احتكاك الكرة مع الهواء تُعطى بالعبارة $f=0,003.v^2$ ، حيث لا تتجاوز سرعة مركز عطالة الكرة القيمة $v=15m.s^{-1}$ المام ثقل الكرة.

- 3. بتطبيق القانون الثّاني لنيوتن، جد:
- (o, \vec{i}, \vec{j}) العبارة الشّعاعية، لشعاع تسارع مركز عطالة الكرة من المعلم الشّعاعية، الشعاعية، المعلم ا
- .2.3. المعادلتان الزّمنيتان اللّتان تُحقّقهما السّرعتين ($v_x(t)$ و ($v_x(t)$ لحركة مركز عطالة الكرة.
 - 3.3. المعادلتان الزّمنيتان اللّتان تُحقّقهما الاحداثيتين (x(t) و x(t) لمركز عطالة الكرة.

المحققة: lpha البراز تأثير زاوية القذف lpha على المسافة المُحققة:

باستعمال برنامج معلوماتي مناسب، تمّ الحصول على المنحنى البياني (الشكل(4)) المُمَثِّلَ لتغيّرات المسافة المنحنى البياني $OM = x_M$ بدلالة زاوية القذف α ، حيث α هو موضع اصطدام الكرة بأرضية الملعب، والزّاوية α محصورة بين 35° و 35° .

بالاعتماد على المنحنى البياني، جدد:

- . قيمة الزّاوية lpha التي تُحقّق إنجازاً مهمّاً للرياضي.
 - 2. قيمة x_M الموافقة في هذه الحالة.

التّمرين الثّالث: (06 نقاط)

المَغْنيزيوم من المعادن المُرْجِعَة التي تستعمل في الصّناعات التّحويليّة لحماية علب المصبّرات من التآكل. يتفاعل معدن المغنيزيوم مع محلول حمض كلور الهيدروجين، ويرافق التّفاعل انطلاق غاز ثنائي الهيدروجين. يهدف التّمرين إلى دراسة حركيّة هذا التّحول.

 $M\left(Mg\right)=24g\ mo\ell^{-1}$. الكتلة المولية للمغنيزيوم:

- $V_{\scriptscriptstyle M}=24L$.mo ℓ^{-1} :الحجم المولي للغاز في شروط التّجربة -
- نعتبر أن حجم المزيج التفاعلي يبقى ثابتا خلال مدة التحول، وأن الغاز المنطلق غاز مثالي.

يُنَمْذَجُ التّحول الكيميائي التّام والبطيء الذي يحدث بين معدن المغنيزيوم Mg(s) ومحلول حمض كلور الهيدروجين $(H_3O^+(aq)+Cl^-(aq))$

$$Mg(s)+2H_{3}O^{+}(aq)=Mg^{2+}(aq)+H_{2}(g)+2H_{2}O(\ell)$$

- $V_0 = 10mL$ وحجما ، m_0 وحجما مغنيزيوم كتلته m_0 وحجما الدراسة هذا التحول الكيميائي، ندخل عند اللحظة c_0 في دورق، شريط مغنيزيوم كتلته وحجم المحلول الممدّد من محلول حمض كلور الهيدروجين ذي التركيز المولي c_0 . ثم نضيف الماء المقطر حتى يصبح حجم المحلول الممدّد $V_T = 25mL$. نغلق الدّورق بسدّادة مزودة بأنبوب انطلاق موصول إلى أنبوب مدرج ومُنكّس في حوض مائي.
 - 1.1. استنتج الثّنائيتين (ox /red) المشاركتين في التفاعل.
 - 2.1. أنجز جدولا يصف تقدّم التّفاعل.

2. مكّنت القياسات التجريبية، الحصول على المنحنى البياني الممثّل لتغيّرات كتلة المغنيزيوم m_{Mg} المتبقي بدلالة الزّمن(الشكل(5))، والمنحنى البياني الممثّل لتغيّرات $H_3O^+(aq)$ بدلالة تقدّم التّفاعل x (الشكل(6)).

- 1.2. حدّد المتفاعل المُحِدّ، ثم استنتج m_0 كتلة المغنيزيوم المستعملة، و $V_f(H_2)$ حجم ثنائي الهيدروجين النهائي.
 - $m_{Mg}=f\left(t
 ight)$ الممثّل في الشكل (2).
 - .3.2 جِدْ قيمة التّركيز المولى c_0 لمحلول حمض كلور الهيدروجين المستعمل.
 - $t_{1/2}$ حدّد زمن نصف التّفاعل 4.2
 - $v_{vol} = -rac{1}{V_T.M\left(Mg
 ight)} imes rac{dm_{Mg}}{dt}$:ھين أنّ عبارة السّرعة الحجميّة للتّفاعل ھي3.2
 - $mol.L^{-1}.min^{-1}$ ب t=0 المنه في اللحظة –
 - استنتج السّرعة الحجميّة الختفاء شوارد الهيدرونيوم عند نفس اللّحظة.

الجزء الثاني: (06 نقاط)

التّمرين التّجريبي: (06 نقاط)

لِأَجْلِ سلامة مستعملي الطُّرقات ومراقبة السيّارات التي تتجاوز السّرعة المسموحة، تُستعمل أجهزة الرّادار التي تلتقط صورتين للسّيارات المخالفة للسّرعة المسموحة. الصّورة الأولى تستهدف الأشخاص داخل السيّارة والتّانية تستهدف لوحة التّرقيم، يُصاحب التقاطهما إصدار ومضتين ضوئيتين(flash) بينهما فارق زمني صغير.

نُنَمْذِجُ الومّاض الضّوئي بالدّارة الكهربائيّة الممثّلة في (الشّكل (٦))،

 \bigvee والمتكونة من: مولّد مثالي للتوتّر قوّته المحرّكة الكهربائيّة E، ناقل أومي مقاومته $R=47\,\Omega$ ، مكثّفة فارغة سعّتها C،

صمّام ثنائي ضوئي (مركّب الكتروضوئي)، وبادلة X.

يهدف التّمرين إلى دراسة تطوّر التّوتّر الكهربائي بين طرفي المكثّفة ($u_c(t)$ خلال عمليتي الشّحن والتّغريغ.

البادلة في الوضع (): تُشحن المكثّفة لمّا تكون البادلة في الوضع ().

- 1. اذكر كيف يمكن عملياً متابعة تطوّر التّوتر الكهربائي بين طرفي المكثّفة خلال عمليّة الشّحن بدلالة الزّمن.
 - 2. متابعة تطوّر التوتّر الكهربائي بين طرفي المكثّفة، سمح بالحصول على النّتائج التّالية:

t (ms)	0	15	25	35	45	55	65	75	85	95	100
$u_c(V)$	0,00	3,00	4,00	4,80	5,20	5,50	5,70	5,80	5,90	6,00	6,00

- 1cm
 ightarrow 0,5V , 1cm
 ightarrow 10ms : مستعملا السلّم: $u_c = f(t)$ ارسم المنحنى البياني $u_c = f(t)$ مستعملا السلّم:
 - $u_{c}(t)$ بتطبيق قانون جمع التوترات، جد المعادلة التّفاضلية لتطوّر التّوتّر الكهريائي 2.2
- يُعطى حلّ المعادلة النفاضليّة بالشّكل $u_c(t) = A(1-e^{-rac{t}{lpha}})$ حيث a و a ثابتان يُطلب تحديد عِبَارَتَيْهِمَا بدلالة المقادير المُميّزة للدّارة.
 - 4.2. عين بيانياً قيمة ثابت الزّمن 7، مع تحديد طريقة تعيينه.
 - C استنتج قيمة سعة المكثّفة.

البادلة في الوضع (عن المكثّفة لمّا تكون البادلة في الوضع (عن البادلة في الوضع المكثّفة لمّا تكون البادلة في الوضع (عن البادلة في الوضع المكثّفة لمّا تكون البادلة في الوضع (عن البادلة في البادلة في الوضع (عن البادلة في البادل

الصّمام الالكتروضوئي يصدر ضَوْءًا بمرور التيّار الكهربائي فيه، وينطفئ عندما يبلغ التّوتّر بين طرفيه القيمة U_s فتتحوّل البادلة آلياً إلى الوضع وتشحن المكثفة من جديد لتسمح للصمام بإصدار الومضة التّانية خلال تغريغها. الشكل (8)، يُمثّل بيان تطوّر التّوتّر الكهربائي بين طرفي المكثّفة خلال مرحلة التّفريغ التي تستغرق مدّة زمنيّة Δt قبل

أن تشحن من جديد. (المستقيم (Δ))، يمثل مماس منحى التغريغ في اللحظة (t=0)

اعتمادا على البيان:

- 1. استنتج المدّة الزّمنيّة ∆t اللاّزمة لتفريغ المكثّفة قبل شحنها من جديد.
 - au عين ثابت الزّمن au الموافق لعمليّة التّفريغ، ثم قارن بين au و au
 - . U_s مدّد قيمة التّوتّر U_s

احسب التغير في الطّاقة الكهربائية المخزّنة في المكثّفة بين لحظة اشتعال الومّاض ولحظة انطفائه، على أيّ شكل تُستهلك هذه الطّاقة. برّر إجابتك.

الموضوع الثانى

يحتوي الموضوع على (05) صفحات (من الصفحة 06 من 10 إلى الصفحة 10 من 10)

الجزء الأول: (14 نقطة)

التمرين الأول: (04 نقاط)

تتطلّب تفاعلات الاندماج النّووي درجة حرارة عالية جدّا، تماما كما يحدث في مركز الشّمس والنّجوم، حيث درجة الحرارة تكون عظيمة والضّغط كبيرا جدّا. ولا تزال تفاعلات الاندماج النّووي وسبل التّحكم فيها، أحد أكبر تحدّيات علماء الفيزياء في عصرنا الحالي، من أجل توفير الطّاقة مستقبلا بالنّظر للطّاقة الهائلة المحرّرة منها.

يهدف هذا التّمرين إلى دراسة تفاعل الاندماج النّووي محلّ الدّراسات الحاليّة، والأكثر احتمالا مستقبلا، بين نظيري عنصر الهيدروجين (الدّيتيريوم $\binom{3}{1}$) والتريتيوم $\binom{3}{1}$).

 $E = 931,5\,MeV$: الذرية: طاقة الكتلة لوحدة الكتل الذرية:

 $u = 1,66.10^{-27} kg$

1. تفاعل الاندماج بين الدّيتيريوم والتريتيوم:

يؤدي تفاعل اندماج الدّيتيريوم مع التريتيوم إلى تكوّن الهيليوم 4_2He ، وانبعاث جُسيم، مع تحرير طاقة.

- 1.1. أعط تركيب نواتي الديتيريوم والتريتيوم. لماذا ندعوهما بنظيري عنصر الهيدروجين؟
- 2.1. اكتب معادلة تفاعل الاندماج النّووي الحادث، مذكّرا بالقوانين المستعملة. ما اسم الجُسيم المنبعث؟
 - 3.1. اشرح لماذا يتطلّب الاندماج النّووي درجة حرارة عاليّة وضغط كبير.

2. طاقة تماسك (ترابط) النّواة:

. (A) بدلالة عدد النويّات ($-\frac{E_I({}_z^AX)}{A}$) بدلالة عدد النويّات (A) يمثل المنحنى الموضّح بالشّكل (1) تغيّرات عكس طاقة الرّبط لكل نويّة

- 2.2. عرّف تفاعل الاندماج النّووي.
- 3.2. ربّب تصاعديّا الأنوية الموضّحة

بالمنحنى من حيث استقرارها. علّل اجابتك.

في اطار النّظرية النسبيّة، اقترح إنشتاين في بداية القرن 20 أنّ كلّ كتلة تكافئها طاقة كتلة، يُعَبّر عنها بعلاقة تكافؤ بين الكتلة والطّاقة.

- 1.3. اكتب علاقة التّكافؤ: كتلة-طاقة لإنشتاين.
- 2.3. تحقّق أنّ الطّاقة المحرّرة من تفاعل الاندماج النّووي السّابق تساوي 17,6 MeV.
- (g) النقص في كتلة الجملة المُعبِّرة عن تفاعل الاندماج السّابق (بوحدة الغرام Δm).

التمرين الثاني: (04 نقاط)

تتعدّد أنواع الحركات التي تخضع لها الجمل الميكانيكيّة، وترتبط بالشّروط الابتدائيّة وبالقوى الخارجيّة المؤثّرة عليها. حيث تُمكِّن قوانين نيوتن من دراسة تطوّر بعض المقادير التّحريكيّة والحركيّة المميّزة لها.

يهدف التمرين إلى دراسة حركة انسحابيّة شاقوليّة لجملة ميكانيكيّة S متمثّلة في مظلّي ولوازمه، مركز عطالتها S يسقط مظلي مصحوبا بلوازمه بدون سرعة ابتدائيّة من طائرة مروحيّة متوقّفة على ارتفاع S من سطح الأرض، سقوطا شاقوليّا. ندرس حركة مركز عطالة الجملة S في معلم S نعتبره غاليليا، مرتبط بسطح الأرض، شاقولي وموجّه نحو الأسفل، في لحظة نعتبرها مبدأ للأزمنة S (الشكل S)).

 $m=80\,kg$ (المظلي ولوازمه) معطيات - كتلة الجملة المدروسة

 $g=9.8\,m\,s^{-2}$ نعتبر تسارع الجاذبيّة الأرضيّة ثابت –

- تأثير دافعة ارخميدس مهمل أمام القوى الأخرى.

*بفرض اهمال مقاومة الهواء \overrightarrow{f} المؤثّرة على الجملة S، أمام ثقل المظلّي و لوازمه \overrightarrow{f} .

- 1. ماذا نسمّى هذا السّقوط؟
- 2. بتطبيق القانون الثّاني لنيوتن، حدّد طبيعة حركة مركز عطالة الجملة 3.
- 3. احسب عندئذ سرعة مركز العطالة G، لحظة اصطدام المظلّي بسطح الأرض بوحدة $km.h^{-1}$. عَلِق على القيمة. *في الحقيقة تخضع الجملة أثناء السّقوط إضافة إلى ثقلها \overrightarrow{P} ، إلى مقاومة الهواء، وتتمّ حركة سقوطها في مرحلتين:

I- المرحلة الأولى:

خلال المرحلة الأولى، لا يفتح المظلي مظلّته. فتخضع الجملة S إلى قوّة مقاومة الهواء التي ننمذجها بالعبارة $k=0,28\,kg\,m^{-1}$ معامل ثابت قيمته $k=0,28\,kg\,m^{-1}$ ، و $k=0,28\,kg\,m^{-1}$.

- 1. بتطبيق القانون الثّاني لنيوتن، جِد المعادلة التفاضليّة التي تحقّقها سرعة مركز عطالة الجملة بدلالة الزّمن.
 - 2. استنتج عبارة السّرعة الحديّة $v_{
 m lim}$ لمركز العطالة G، ثم احسب قيمتها.
 - إنّ بيان تغيّر سرعة مركز عطالة الجملة بدلالة الزّمن خلال هذه المرحلة، ممثّل في الشّكل (3).
 - كم من نظام يُظْهره البيان؟ حدّد طبيعة الحركة عندئذ.

II- المرحلة الثّانية:

خلال المرحلة الثّانية من السّقوط، يفتح المظلّي مظلّته عند اللّحظة t=12s، لكبح حركته حتى يتمكّن من الوصول إلى سطح الأرض بسلام، فتتخفض السّرعة حتى تثبت عند قيمتها الحديّة $\Delta t=4s$ من فتح المظلّة.

 $f'=k'.v^2$ الشّكل عبير قوة الاحتكاك المطبّقة من طرف الهواء فتصبح من الشّكل. 1

الشكل(4)

اختبار في مادة: العلوم الفيزيائية / الشعبة: رياضيات، تقنى رياضي / بكالوريا 2023

- بالاستعانة بالعبارة الحرفيّة للسّرعة الحديّة، حدّد قيمة $\,\,$
- 2. مثّل بشكل كيفي على الشّكل (3)، الذي يجب أن يرفق بورقة الإجابة، تطوّر سرعة مركز عطالة الجملة، خلال الزّمن لكامل السّقوط.

التّمرين الثّالث: (06 نقاط)

المكتّفات والوشائع ثنائيّات قطب تستعمل في كثير من الدّارات الكهربائيّة التي تدخل في تركيب الأجهزة الإلكترونيّة المستخدمة في حياتنا اليوميّة. يتعلّق سلوك الدّارة الكهربائيّة أو الإلكترونيّة بطبيعة ثنائيّات القطب المتواجدة فيها، كما يمكنها أن تتأثر بالمقادير الفيزيائيّة المميّزة لكل ثنائي قطب.

يهدف هذا التمرين إلى ابراز مدى تأثير المكتفة والوشيعة على شدة التيّار المارّ في دارة كهربائيّة وتحديد قيم المقادير الفيزبائيّة المميّزة لكل ثنائي قطب.

- مكثّفة فارغة سعّتها C
- .L وشيعة تحريضيّة مقاومتها r وذاتيّتها

فنحصل على الدارتين (RC) و (RL) على التوالي (حيث Rهي المقاومة المكافئة لكل دارة). لمعاينة تطوّر شدّة التيّار المارّ في كل دارة كهربائيّة بدلالة الزّمن، نربط راسم اهتزاز ذو ذاكرة كما في الشكل (4).

نغلق القاطعة K في لحظة نعتبرها مبدأ للأزمنة t=0، فنشاهد المنحنيين (a) و (b) الممثلين في الشكل (5).

1. فسّر لماذا متابعة تطوّر التوتّر الكهربائي بين طرفي النّاقل الأومي $u_{R_0}(t)$ تمكّننا من معرفة تطوّر شدّة التيّار.

- $I_{\text{max}} = \frac{E}{R}$: تعطى عبارة شدّة التيّار الأعظميّة في كلّ دارة كهربائيّة بالشّكل: 2
 - 1.2. اكتب عبارة المقاومة المكافئة R في كل دارة.
- $I_{
 m max}$ عبارة $I_{
 m max}$ وحساب قيمتها في كل دارة، ارفق كل منحنى بالدّارة الموافقة.
 - 3. يُظهر المنحنيان نظامين (انتقالي ودائم).
 - ابرز ما تأثير المكثّفة والوشيعة على شدّة التيّار المار في الدّارة الكهربائيّة.
- 4. بتطبيق قانون جمع التوترات، بيّن أنّ المعادلة التفاضليّة التي تحقّقها شدّة التيّار المار في كلّ دارة تكتب بالشّكل:
 - رحيث: I_P شدّة التيّار المار في النّظام الدّائم، au ثابت الزّمن المميّز للدّارة). au
 - I_P قيمة au دارة كهربائية: عبارة au ، وقيمة au
 - au. إذا علمت أنّ فاصلة نقطة تقاطع الخطّ المقارب الأفقي مع مماس كلّ منحنى في t=0 تمثّل ثابت الزّمن au.
- باستثمار المنحنيين (a) و (b) ، جد قيمة (b) و قيم المقادير المميزة لكل من المكثفة (C) ، والوشيعة

الجزء الثاني: (06 نقاط)

التمرين التجريبي: (06 نقاط)

توجد الأسترات في حياتنا اليوميّة، حيث نجدها في الفواكه، الخضر، الأزهار، العطور، وفي المواد الغذائيّة. كما يمكن اصطناعها في المخبر من الكحولات والأحماض الكربوكسيليّة.

من أجل تحضير أستر بنكهة فاكهة، وجد أستاذ مادة العلوم الفيزيائية في مخبر الثّانوية قارورة حمض كربوكسيلي نقي ملصقتها مُتلفة، فلزم عليه أولا التّعرف على صيغة واسم هذا الحمض ومن ثمّ اصطناع أستر بمردود جيد.

I- التّعرف على صيغة واسم الحمض الكربوكسيلى:

للتّعرف على اسم وصيغة هذا الحمض النّقي، كلّف الأستاذ فوجاً من التّلاميذ بتحضير محلول S_1 انطلاقاً من هذا

- الحمض، ثم معايرة حجم قدره $V_1=10mL$ من الحمض، ثم معايرة حجم قدره S_1 بواسطة المحلول S_1 عن طريق قياس الـ S_1 بواسطة محلول هيدروكسيد الصوديوم (S_1 المولى المولى S_1 المولى المولى S_2 المولى تركيزه المولى S_1
 - 1. اكتب الصيغة المجملة للأحماض الكربوكسيلية.
 - ارسم مخطّط التَّركيب التَّجريبي لعمليّة المعايرة، مع ذِكر البيانات الكافية.
 - 3. اكتب معادلة تفاعل المعايرة.
 - 4. سمحت المعايرة بالحصول على منحنى تغيرات
- الـ V_b بدلالة حجم الصود المضاف V_b (الشّكل pH)).
- $.S_1$ للمحلول c_1 للمركيز المولى التّكافؤ، ثمّ استنتج التّركيز المولى .1.4

 $V_h(mL)$

2.4. مستعيناً بالجدول الآتي، استنتج الصّيغة الجزيئية المجملة للحمض المجهول واذكر اسمه إذا علمت أنّ سلسلته الفحمية غير متفرعة.

$(C_7H_6O_3/C_7H_5O_3^-)$	$(C_3H_7CO_2H/C_3H_7CO_2^-)$	(HCO_2H / HCO_2^-)	(NH_4^+/NH_3)	الثنائية (<i>HA / A</i> –)
2,92	4,82	3,80	9,20	pk _a

II- تحضير أستر بنكهة الأناناس:

 $M(H) = 1g\ mol^{-1}\ , M(C) = 12g\ mol^{-1}\ , M(O) = 16g\ mol^{-1}$: تعطى الكتل المولية الذرية التالية: $n_0 = 0,1mol$ ، هغطيات: تعطى الكربوكسيلي المجهول، أخذ الأستاذ من قارورة هذا الحمض كمية مادة مادة $n_0 = 0,1mol$ ، مع إضافة وأضاف لها نفس كميّة المادة من كحول نقيّ R = 0,1mol (حيث R جذر ألكيلي صيغته: $(-C_nH_{2n+1})$ مع إضافة قطرات من حمض الكبريت المركز ، فكانت كتلة الحمض الكربوكسيلي المتبقّى عند التّوازن m = 2,9g

- 1. ما هو دور حمض الكبريت المركز؟
- 2. اكتب معادلة التّفاعل الحادث، ثم اذكر مميزاته.
- 3. أنجز جدولا يصف تقدم التفاعل، ثم استنتج مردود التفاعل r .
- K . K التّركيب المولى للمزيج عند نهاية التفاعل، ثمّ احسب ثابت التّوازن K
- 5. إذا علمت أن الكتلة الموليّة الجزيئيّة للأستر المتشكل هي $^{-116g\ mol}=M$ ، استنتج الصّيغة الجزيئيّة نصف المفصلّة للأستر واذكر اسمه.
 - 6. لتحسين مردود تفاعل الأسترة، قدّم التّلاميذ الاقتراحات التّالية:
 - * رفع درجة حرارة الوسط التّفاعلي.
 - * تعويض الحمض الكربوكسيلي بكلور البوتانويل.
 - * إضافة الماء.
 - * نزع الأستر المتشكل.
 - حدّد كل اقتراح صحيح، معلّلا إجابتك.

العلامة		/ * £ * *	
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	
		التمرين الأول: (04 نقاط)	
		1 تعريف النواة المشعة:	
00,5	0,25	النواة المشعة هي نواة غير مستقرة تتفكك تلقائيا لتكون نواة أكثر استقرار مع إصدار اشعاعات.	
	0,25	*خصائص النشاط الاشعاعي:	
	3,23	تلقائي، عشوائي ، حتمي.	
		1.2. إيجاد كلا من A و Z مع تحديد النواة الناتجة:	
01,50	0,25x2	Z=56 ، $A=137$ بتطبيق قانوني الانحفاظ نجد: $A=137$	
	0,25	النواة الناتجة هي: ¹³⁷ ₅₆ Ba	
	0,25	2.2. نمط التفكك و تفسير كيفية حدوثه:	
	0.25	. eta^- تفکك $^-$	
	0,25	-1 $P+{}_{1}^{0}e$:	
	0,25	$N = \frac{N}{N}$.3.2 $N = \frac{N}{N}$	
01 50		82 $\begin{array}{c} {}^{137}_{55}Cs \longrightarrow {}^{137}_{56}Ba + {}^{0}_{1-}e \\ \vdots t_{1/2} \text{ bat item} \end{array}$ $: t_{1/2}$	
01,50	0,25	81	
	0,25	36.2. قانون تناقص النشاط (A(t):	
	0,23	53 54 55 56 Z $A(t) = A_0 e^{-\lambda t}$	
	0,25	$\lambda = \frac{\ln 2}{t_{1/2}}$ العبارة $\lambda = \frac{\ln 2}{t_{1/2}}$	
	3,23	$\lambda = \frac{\ln 2}{t_{1/2}}$ الما $\lambda = \frac{\ln 2}{2}$ فإن $A(t_{1/2}) = \frac{A_0}{2}$ بالتعويض بعبارة $A(t)$ بالتعويض بعبارة المطلوبة فإن $A(t_{1/2}) = \frac{A_0}{2}$ فإن $A(t_{1/2}) = \frac{A_0}{2}$ فإن $A(t_{1/2}) = \frac{A_0}{2}$ بالتعويض بعبارة المطلوبة في المحافظة	
	0,25x3	$: m_0(^{137}Cs)$ عساب كتلة السيزيوم الابتدائية (3.3 مساب كتلة السيزيوم الابتدائية (3.4 مساب كتلة السيزيوم الابتدائية (3.4 مساب كتلة السيزيوم الابتدائية (3.5 مساب كتلة المساب كتلة المساب كتلة (3.5 مساب كتلة المساب كتلة المساب كتلة (3.5 مساب كت	
		$m_0 = rac{A_0 M}{N_A \lambda} = rac{A_0 . M . t_{1/2}}{N_A . \ln 2}$: و هنه $N_0 = rac{m_0}{M} N_A$ و $A_0 = \lambda . N_0$	
		$m_0 = 9,39 \times 10^{-3} g$ نجد $m_0 = \frac{3 \times 10^{10} \times 137 \times (30,2 \times 31557600)}{6,02.10^{23} \times 0,693}$: (تطبیق عددي)	
00,25	0,25	4. حساب المدة الزمنية لتفكك $\frac{99\%}{6}$ من السيزيوم $\frac{137}{6}$ للتخلص من الأثار السلبية:	
		$t \approx 200,5 \ ans \ \ i = \frac{t_{1/2}}{Ln2}.Ln100 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	

		تابع الإجابة النموذجية لموضوع امتحان شهادة البكالوريا دورة: 2023	
ات و30د	المدة: 4ساعا	يائية الشعبة: رياضيات + تقني رياضي	اختبار مادة: علوم فيز
00,25	0,25	نطقة آمنة في الوقت الحالي؟	5. هل اصبحت الم
		من أخطار النشاط الاشعاعي 200,5 ans ، بالمقارنة مع 37 ans فالمنطقة	ط1)- مدة التخلص
		ر الانفجار. (في حدود 2183م تصبح المنطقة آمنة).	غير آمنة من أخطار
		ل العينة بعد مرور 37 سنة من حدوث الانفجار تكون نسبة نشاط العينة:	ط2)- بحساب نشاه
		. و بالتالي مازالت المنطقة غير آمنة من أخطار الانفجار $rac{A(37ans)}{A_0}=$	$e^{-\frac{Ln2}{30,2}(37)} = 43\%$
			التمرين الثاني:(1
		يديو حركة قذف الكرة المعدنية:	I <u>تحليل ودراسة ف</u>
00,75	0,25	$: \overrightarrow{OM_0}$ لموضع	1.1. عبارة شعاع ا
		$\overrightarrow{OM_0} = x_0 \overrightarrow{i} + y_0 \overrightarrow{j} \Rightarrow \overrightarrow{OM_0} = \overrightarrow{i}$	$=0,5\vec{i}+2,1\vec{j}$
	0,25X2	$\overrightarrow{v_0}$ الابتدائية: $\overrightarrow{v_0}$	2.1. عبارة شعاع ا
		$v_{0y} = v_0 \sin \alpha$ و $v_{0x} = v_0 \cos \alpha$ حيث	$\overrightarrow{v_0} = v_{0x}\overrightarrow{i} + v_{0y}\overrightarrow{j}$
			\vec{i} + 12,9 sin $\alpha \vec{j}$
00,75	0,25X2	لة أرخميدس مهملة أمام قوة الثقل:	
		و منه دافعة ارخميدس مهملة أمام قوة الثقل $rac{P}{\Pi}=6154$ خجد	-
	0,25	الاحتكاك مع الهواء مهملة أمام قوة الثقل: -	
		يان قوة الاحتكاك مهملة أمام قوة الثقل. $rac{P}{f} = rac{m.g}{0,003v^2} = rac{7,}{0,00}$	$\frac{27 \times 9,8}{03 \times (15)^2} = 105,5$
02.00	0,25X4	$\overrightarrow{a_G}$ قباره عباره عباره عباره ایم نیوتن، ایم ایم ایم نیوتن، ایم ایم ایم نیوتن، ایم ایم ایم نیوتن، ایم	1.3. بتطبيق قانو <u>ن</u>
02,00	0,2374	$\overrightarrow{P}=m\overrightarrow{a_{G}}$: نيوتن	بتطبيق القانون الثانم
		$0 = ma_x \Rightarrow a_x = 0$	بالاسقاط على Ox:
		$-mg = ma_y \Rightarrow a_y = -g$	بالاسقاط على Oy:
		$\overrightarrow{a_G}(t) = a_x \overrightarrow{i} + a_y \overrightarrow{j} = -g \overrightarrow{j} = -9.8 \overrightarrow{j}$ ومنه عبارة)
	0,25X2	$v_y(t)$ و $v_x(t)$ بنیتان	2.3. المعادلتان الزر
		$a_x = \frac{dv_x}{dt} = 0 \Rightarrow v_x$	$(t) = v_0 \cos \alpha$
		$a_{y} = \frac{dv_{y}}{dt} = -g \Rightarrow v_{y}(t) = 0$	$-gt + v_0 \sin \alpha$
	0,25X2	y(t) و $x(t)$ عنیتان	
		$v_x = \frac{dx}{dt} = v_0 \cos \alpha \implies x(t) = 0$	$= v_0(\cos\alpha)t + x_0$
		$v_y = \frac{dy}{dt} = -gt + v_0 \sin \alpha \implies y(t) = -\frac{1}{2}gt^2$	$+v_0(\sin\alpha)t+y_0$

تابع الإجابة النموذجية لموضوع امتحان شهادة البكالوريا دورة: 2023 المدة: 4ساعات و30د الشعبة: رياضيات + تقني رياضي اختبار مادة: علوم فيزيائية الراز تأثير زاوية القذف α على المسافة المُحققة: 00,25 0,25 $\alpha = 42^{\circ}$ من المنحنى البياني $\lceil 41^0 - 43^0 \rceil$ ملاحظة: تقبل قيم α في المجال 00,25 0,25 $: x_M$ ايجاد قيمة. $x_{M} = 19,47m$: من المنحنى البيانى

التمرين الثالث: (06 نقاط)

1.1. استنتاج الثنائيتين المشاركتين في التفاعل:

 $(H_3O^+(aq)/H_2(g)) \cdot (Mg^{2+}(aq)/Mg(s))$

التفاعل عدما والتفاعل على على التفاعل التفاعل التفاعل على التفاعل التف

					قدم النفاعل.	2.1. جدول نه
فاعل	معادلة الت	Mg(s) +	$2H_3O^+(aq)$	$= Mg^{2+}(aq^{2+})$	$H_2(g)$	$+2H_2O(l)$
حالة الجملة	x تقدم التفاعل			كمية المادة		
الابتدائية	0	n ₀ (Mg)=m ₀ /M	$n_0 = c_0 V_0$	0	0	بوفرة
الانتقالية	X	n ₀ (Mg)-x	c_0V_0 -2x	х	х	بوفرة
النهائية	$X_f = X_{\text{max}}$	n ₀ (Mg)-X _f	c_0V_0 -2 X_f	X_{f}	X_{f}	بوفرة

1.2. تحديد المتفاعل المحد:

من بيان الشكل (6)، وعند نهاية التفاعل 0 \neq 0 لتحول تام فإن التحول تام فإن

. هو المتفاعل المحّد Mg(s)

 $: m_0(Mg) *$ استتاج*

 $n_f(Mg) = n_0(Mg) - X_f = \frac{m_0(Mg)}{M(Mg)} - X_f = 0$: متفاعل المحّد Mg(s)

. $m_0(Mg) = M(Mg) \times X_f$ و منه

 $X_f = 1.5 \ mmol = 1.5.10^{-3} \ mol$ (6) من بيان الشكل

 $m_0(Mg) = 0.036 \ g = 36 \ mg$ نجد $m_0(Mg) = 24 \times 1, 5.10^{-3} \ mol$ (تطبیق عددي)

 $V_f(H_2)$ قيمة *استنتاج

 $V_f(H_2) = V_M.X_f$ من جدول التقدم $n_f(H_2) = \frac{V_f(H_2)}{V_L} = X_f$ من جدول التقدم

 $V_f(H_2) = 0.036 L = 36 \, mL$ نجد $V_f(H_2) = 24 \times 1.5 \cdot 10^{-3}$:(تطبیق عددي)

2.2. استنتاج سلم الرسم:

 $1 cm \rightarrow 9 mg$ و منه يكون سلم الرسم $\frac{36}{4}$: و منه يكون سلم الرسم $m_0(Mg) = 36 mg$

0,25x2

0,25X2

0,25X3

04,75

01,25

0,25x3

0.25X2

0,25

		لإجابة النموذجية لموضوع امتحان شهادة البكالوريا دورة: 2023	تابع ا
ات و30د	المدة: 4ساع	الشعبة: رياضيات + تقني رياضي	اختبار مادة: علوم فيزيائية
	0,25X2		3.2. إيجاد قيمة ₋
		$\left[H_3O^+(aq)\right]_0 = \frac{c_0V_0}{V_T}$	$\Rightarrow c_0 = \frac{V_T \cdot \left[H_3 O^+(aq) \right]_0}{V_0}$
			ومن بيان الشكل (6): nol.L ⁻¹ :
			$=\frac{25\times30.10^{-2}}{10}$: (تطبیق عددي)
	0,25X2	: t _{1/2} <u>U</u>	4.2. تحديد زمن نصف التفاع
		$t_{1/2}=5~{ m min}$ بالإسقاط نجد $m(Mg)=rac{m_0}{2}=rac{36}{2}=18~mg$ فإن $t=1$	$t_{1/2}$ ومن بيان الشكل (5)، لما
	0,25x3		5.2. اثبات عبارة السرعة الح
		أي $a_{(Mg)} = \frac{m_0 - m(t)}{M (Mg)}$ بالتعويض $n_{(Mg)}(t) = n_0$	$-x(t) = \frac{1}{V_{Vol}} = \frac{1}{V_T} \frac{dx}{dt}$
		و هي العبارة المطلوبة $v_{Vol} = rac{1}{V_T} rac{d(rac{m}{V_T})}{v_{Vol}}$	ar v _T avi
	0,25X2		*حساب قيمتها بوحدة _
		$\frac{dm}{dt}\big _{t=0} = -\frac{36}{5}$	$\frac{.10^{-3}}{7,5} = -4,8.10^{-3} \text{g.min}^{-1}$
		$v_{Vol(t=0)} = 8.10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-1} \implies v_{Vol(t=0)} = -\frac{1}{25.10^{-3} \times 24} \times 10^{-3} mol. L^{-1}. min^{-$	(تطبیق عددي): (-4,8.10 عددي)
	0,25X2	ية لاختفاء شوارد الهيدرونيوم عند اللحظة نفسها:	*استنتاج قيمة السرعة الحجم
		$v_{Vol}(H_3O^+) = 2 \times 8.10^{-3}$:(تطبیق عددي) $v_{Vol}(H_3O^+) = 2 \times v_{Vol}(H_3O^+)$	حسب معادلة التفاعل فإن:
		$v_{Vol}(H_3O^+) =$	$16.10^{-3} mol.L^{-1}.min^{-1}$ نجد
		ناط)	التمرين التجريبي: (06 نة
		↑ Uc(V	البادلة في الوضع (1):
00,50	0,50	وتر	1. المتابعة العملية لتطور الت
			الكهربائي بين طرفي المكثفة
		ضتين السالا	بما أن الفارق الزمني بين ومع
		اهتزاز المالم	صغير، يمكن استعمال راسم
			ذ <i>ي</i> ذاكرة أو ExAO
03,25	0,50	\mathcal{L}_{c}	1.2. رسم المنحنى البياني
			2.2. بتطبيق قانون جمع التو
	0,25x3		2.2. بنطبیق تانون جمع اسو

t(ms

 $u_c(t)$ المعادلة التفاضلية لـ $u_c(t) + u_c(t) = E$

.20 *.1	ران تار ا	تابع الإجابة النموذجية لموضوع امتحان شهادة البكالوريا دورة: 2023
ات و 30 د	المدة: 4ساع	اختبار مادة: علوم فيزيائية الشعبة: رياضيات + تقني رياضي
		$u_R(t) = RC \frac{du_C}{dt}$
		التعويض في قانون جمع التوترات نجد
		$(rac{du_{C}(t)}{dt}+rac{1}{RC}u_{c}(t))=rac{E}{RC}$: يمكن كتابتها على الشكل) $RCrac{du_{C}(t)}{dt}+u_{c}(t)=E$
	0,25x4	lpha عبارتي الثابتين $lpha$ د $lpha$:
	- 4 -	$rac{du_c(t)}{dt}=rac{A}{lpha}e^{-rac{t}{lpha}}$ بالاشتقاق نجد $u_c(t)=A(1-e^{-rac{t}{lpha}})$ بالتعويض نجد
		: و عليه $Ae^{-\frac{t}{\alpha}}(\frac{RC}{\alpha}-1)+A=E \iff RC\frac{A}{\alpha}e^{-\frac{t}{\alpha}}+A-Ae^{-\frac{t}{\alpha}}=E$
		$A=E$ ، $lpha=RC$ و منه $(rac{RC}{lpha}-1)=0$
	0,25x2	مع تحديد طريقة تعيينه: $ au$ عند الزمن الزمن عنديد طريقة تعيينه:
	0,2372	$u_c(t)$ استخدام طريقة حساب u_c لما $ au= au$ ، حيث من المعادلة الزمنية
		$ au \simeq 23~ms$ بالإسقاط على المنحنى البياني نجد: $u_c(au) = 0,63 \times E = 0,63 \times 6 = 3,78~V$
		[21s-24s] ، وتقبل قيم $ au$ في مجال المنحنى لما $t=0$ ، المنحنى لما المنحنى ال
	0,25x2	5.2. استنتاج قيمة سعة المكثفة:
		$C=4,89.10^{-4}F\simeq 490~\mu F$ نجد $C=rac{23.10^{-3}}{47}$: (تطبیق عددي) $C=rac{ au}{R} \Leftarrow au=RC$
		$\left[450\mu F-500\mu F ight]$ في مجال C في مجال الأحظة: تقبل قيم
		لبادلة في الوضع(2):
00,25	0,25	الكرمة النهاء المدامية Δt المرامة المرامة المرامة المرامع المكثفة.
		$\Delta t = 8 \ ms$ یانیا نجد
00.50	0,25	تعيين ثابت الزمن $ au'$ الموافق لعملية التفريغ:
00,50	0,23	$ au' \simeq 12~ms$ بتمدید مماس منحنی التفریغ لما $t=0$ نجد
	0,25	auمقارنة $ au'$ و $ au$:
		مقاومة دارة التفريغ أصغر من مقاومة دارة الشحن) $ au> au$
00,25	0,25	$:U_{S}$ تحديد قيمة التوتر $:U_{S}$
	,	$U_{\scriptscriptstyle S}=3,3V$ يانيا نجد
01,25		2. *حساب التغير في الطاقة الكهربائية:
01,20	0,25x3	$E_C(t=0) = \frac{1}{2}CE^2 = \frac{1}{2} \times 490 \times 10^{-6} \times 6^2$, $E_C(t=0) = 8, 8.10^{-3}J$
		$E_C(t=8) = \frac{1}{2}C u_C^2(t=8) = \frac{1}{2} \times 490 \times 10^{-6} \times (3,3)^2$, $E_C(t=8) = 2,7.10^{-3} J$
		$\Delta E_C = E_C (t = 8) - E_C (t = 0) \simeq -6 \times 10^{-3} J$
		[9.10 ⁻³ I 0.10 ⁻³ I] the size (4.0) sixting N

$$\left[8.10^{-3}\ J-9.10^{-3}J
ight]$$
 في مجال $E_{C}\left(t=0
ight)$ في مجال $E_{C}\left(t=0
ight)$ في مجال $E_{C}\left(t=8
ight)$ في مجال أن مجال أ

ات و30د	المدة: 4ساع	الشعبة: رياضيات + تقني رياضي	اختبار مادة: علوم فيزيائية
			*شكل الطاقة المستهلكة:
	0,50	ورارة وضوء لأن الصمام الثنائي له مقاومة، غير مثالي.	تستهلك هذه الطاقة على شكل د
	0,50	***************************************	
		<u>الموضوع الثاني</u>	(h 2.4)
			التمرين الأول: (04 نقاط)
			1. تفاعل الاندماج بين الديتيريو
01,50	0,25x2		1.1* تركيب نواتي الديتيريوم و
		N=1:ات: $Z=1$ ، عدد النترونات	- , ,
		N=2: عدد النترونات: $Z=1$	نواة التريتيوم $H_1^{\rm s}$: عدد البروتوناد
	0,25	Aروجين لأن لهما نفس الرقم الذري Z ويختلفان في العدد الكتلي	
	0,25x2		2.1. معادلة تفاعل الاندماج:
		Z=0 ، انحفاظ الشحنة الكهربائية: $A=1$	
		م الجسيم: نترون	$i {}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$
	0,25	ج النووي حرارة عالية وضغط كبير:	=
		الية وضغط كبير من أجل التغلب على التنافر الكهربائي بين	يتطلب الاندماج النووي حرارة عا
			النواتين المندمجتين.
			2. طاقة تماسك (ترابط) النواة:
01,25	0,25		1.2. اسم المنحنى والفائدة منه:
	·	منحنی أستون: $(-rac{E_{_{l}}({_{Z}}^{n}X)}{A}$	$\frac{f}{dr} = f(A)$ يسمى المنحنى –
	0,25	بط لكل نوية لمختلف الأنوية.	- الفائدة منه: - يحدّد طاقة الرب
	0,23	(ستقرار، ومنطقة الأنوية التي يحدث لها انشطار أو اندماج نووي.	– يحدد منطقة الا
	0,25	ووي:	2.2. تعريف تفاعل الاندماج الن
	0,23	لنواتين خفيفتين بتوفير طاقة عالية، لتشكيل نواة أكثر استقرار	الاندماج هو تحول نووي مفتعل
		يرة.	وأثقل منهما، مع تحرير طاقة كب
	2x0,25	لموضحة في المنحنى حسب استقرارها:	3.2. ترتيب تصاعدي للأنوية ا
	240,23	$rac{E_l({}_1^1H)}{A}\langlerac{E_l({}_1^2H)}{A}\langlerac{E_l({}_1^3H)}{A}\langlerac{E_l({}_1^3H)}{A}\langlerac{E_l({}_2^4He)}{A}\ranglerac{4}{2}He$ ثم ${}_1^3H$ ثم ${}_2^4He$	النواة H_1^1 أقل استقرار ، ثم H_1^2 نا
		ة كبيرة، كلما كانت النواة أكثر استقرارا.	فكلما كانت طاقة الربط لكل نويا
		<u>زندماج النووي:</u>	3. الطاقة المحررة من تفاعل الا
01,25	0,25		1.3. علاقة تكافؤ: كتلة-طاقة:
			$E = m \times c^2$

ات و30د	المدة: 4ساعا	الشعبة: رياضيات + تقني رياضي	اختبار مادة: علوم فيزيائية
	0,25x2	<u> </u>	2.3. التحقق من قيمة الطاقة المح
	- , -	$E_{lib} = (7,07 \times 4) - (1,11 \times 2) - (2,82 \times 3)$: (تطبیق عددي) E_{lib}	$= E_{l}({}_{2}^{4}He) - E_{l}({}_{1}^{2}H) - E_{l}({}_{1}^{3}H)$
			$E_{lib} = 17,6 MeV$ نجد
	0,25x2	:(g)	استنتاج قيمة Δm بوحدة الـ Δm
	ŕ	$\Delta m\left(u ight)=rac{E_{lib}\left(MeV ight)}{931,5}$ منه	$E_{lib}(MeV) = \Delta m(u) \times 931,5$
		$\Delta m = 3,14.10^{-26} \ g$ نجد $\Delta m = \frac{17}{2}$	$\frac{7,6\times1,66.10^{-24}}{931,5}$ (تطبیق عددي)
			التمرين الثاني: (04 نقاط)
			*بفرض اهمال مقاومة الهواء:
00,25	0,25		1. اسم حركة السقوط:
		ط، فنسمي هذا السقوط بـ السقوط الحر	الجملة (S) خاضعة لثقلها (\vec{P}) فق
00,50	0,25x2		(S) <u>تحدید طبیعة حرکة</u> (S) <u>بتطبیق</u>
00,00		$mg = m \times a_G$ بالاسقاط على محور الحركة (oz) نجد	$\vec{P} = m \times \vec{a}_G$ \cdot $\sum \vec{F}_{ext} = m \times \vec{a}_G$
		الجملة ثابت و المسار مستقيم ⇒الحركة مستقيمة متغيرة بانتظام	تسارع مرکز عطالة $a_G = g \leftarrow$
			و هي متسارعة.
00,75	0,25x3	$km.h^{-1}$ لأرض بـ	3. حساب v <u>لحظة الاصطدام بسو</u>
		$v^2=2.g.h$ شروط الابتدائية للحركة تصبح	
		$v = 140 \text{ m.s}^{-1} = 504 \text{ km.h}^{-1}$ $v = \sqrt{2 \times 9,8 \times 1000}$	
		بيرة جدا و خطيرة على المظلي لحظة اصطدامه بسطح الأرض	
		ط.	اذا كان سقوطه تحت تأثير ثقله فق
			*السقوط بوجود مقاومة الهواء:
			I- <u>المرحلة</u> الأولى:
00,75	0,25x3	ة مركز عطالة الجملة (S)، بتطبيق القانون الثاني لنيوتن:	1. إيجاد المعادلة التفاضلية لسرعا
		$mg-f=m imesrac{dv}{dt}$ بالإسقاط على محور الحركة $ar{o}z$ نجد $ar{f}$	$\vec{F} + \vec{f} = m \times \vec{a}_G \cdot \sum \vec{F}_{ext} = m \times \vec{a}_G$
			$\frac{dv}{dt} + \frac{k}{m}v^2 = g : a$ و منه
00,50	0,25x2	المركز عطالة (S) ، وحساب قيمتها:	
		$v_{\text{lim}}^2 = \frac{mg}{k}$ بالتعويض نجد بالتعويض نجد بالتعويض نجد	
		$v_{\text{lim}} = 52,9 \text{ m.s}^{-1}$ نجد $v_{\text{lim}} = \sqrt{\frac{80 \times 9,8}{0,28}}$ (چ	و منه $\frac{mg}{k}$ ، $v_{\text{lim}} = \sqrt{\frac{mg}{k}}$ عدد

ات و30د	المدة: 4ساعا	الشعبة: رياضيات + تقني رياضي	اختبار مادة: علوم فيزيائية
00,50	0,25x2	البياني $v = f(t)$ وطبيعة الحركة:	3. الأنظمة التي يبرزها المنحنى
		ام الانتقالي:	البيان يظهر نظام واحد وهو النظ
		الة (S) عند $t=12s$ هي $t=12s$ وهي أقل من قيمة	بيانيا آخر قيمة لسرعة مركز عط
			$v_{\rm lim} = 52.9 \ m.s^{-1}$ السرعة الحدية
) بدون انتظام.	الحركة مستقيمة متغيرة (متسارعة
			II- المرحلة الثانية:
00,25	0,25		k' تحدید قیمة .1
			بعد فتح المظلي مظلته تصبح الج
		$k' \simeq 38,7 \ kg.m^{-1}$ نجد $k' = \frac{80 \times 9,8}{4,5^2}$ (طبیق عددي	يّ) $k' = \frac{mg}{v_{\lim}^{'2}}$ ومنه $v_{\lim}^{'2} = \frac{mg}{k'}$
00,50	0,50	كامل السقوط:	v = f(t) يمثيل كيفي لبيان $v = f(t)$ 1.
		v(m.s ⁻¹)	
		52.9	
		10	
		4,5	
		0 4 12 16	t(s)
			(A
			التمرين الثالث: (06 نقاط)
00,25	0,25		$iu_{R0}(t)$ من $i(t)$ من $i(t)$
		ومنه $u_{R0}(t)=i(t)$ أي أن $i(t)$ و $i(t)=\frac{u_{R0}(t)}{R_0}$ ومنه $i(t)=\frac{u_{R0}(t)}{R_0}$	
			و منه تغيرات $i(t)$ هي نفسها تغب
01,75	0,25x2	_ 	1.2. عبارة المقاومة المكافئة في
		$R = R_0 + r$: (RL) الدارة	-
			2.2. <u>ارفاق كل منحنى بالدارة الو</u>
	0,25	$I_{\text{max}} = \frac{E}{R_0 + r}$: (RL) الدارة	U
		الموافق لكل منحنى: $I_{ m max}$ الموافق الكل منحنى:	$(RC) angle I_{\max}(RL)$ نلاحظ أن

المدة: 4ساعات و30د	الشعبة: رياضيات + تقني رياضي	اختبار مادة: علوم فيزيائية
•		" "J" J

ات و300	المده: 4ساعا	الشعبة: رياضيات + تفني رياضي	احتبار ماده: علوم فيزيانيه			
	0,25	$I_{\text{max}} = \frac{U_{R0}}{R_0}$	$=\frac{10}{10}=1 A$:(a) بالنسبة للمنحنى			
	0,25	$I_{ m max} = rac{U_{R0}}{R_0} = rac{1}{R_0}$	$\frac{5}{10} = 0.5 A$:(b) بالنسبة للمنحنى			
	0,25x2	(RL) والمنحنى (b) يوافق الدارة (RC)	و منه : المنحنى (a) يوافق الدارة			
00,50		ى تغيرات شدة التيار _:	3. ابراز تأثير المكثفة والوشيعة عل			
	0,25	في النظام الانتقالي تكون شدة التيار أعظمية لحظة غلق	- بالنسبة لدارة تحتوي على مكثفة:			
		رتيب حتى تنعدم، وفي النظام الدائم تبقى شدة التيار منعدمة.	الدارة $i(0)=I_{ m max}$ الدارة			
0,25		نسبة لدارة تحتوي على وشيعة تحريضية: في النظام الانتقالي تكون شدة التيار منعدمة				
	,	. بشكل رتيب حتى تبلغ قيمة أعظمية، وفي النظام الدائم تبقى	لحظة غلق الدارة $i(0)=0$ ، لتتزايد			
		ية.	شدة التيار ثابتة عند القيمة الأعظم			
01,25		بتطبيق قانون جمع التوترات:	4. المعادلة التفاضلية لشدة التيار،			
	0,25x3	:باشتقاق العبارة نجد $R_0i(t)+rac{1}{C}q=E$ باشتقاق العبارة نجد $u_{R0}(t)+u$	$_{C}(t) = E$: (RC) جالنسبة للدارة			
		$R_0C\frac{di(t)}{dt} + i(t) = 0$ نجد: (C) يالمقدار	ui C			
	0,25x2	$L\frac{di(t)}{dt} + ri(t) + R_0 i(t) = E$ أي $u_b(t) + u_b$				
		بالقسمة على المقدار (R_0+r) نجد:	ai.			
			$\frac{L}{(R_0+r)}\frac{di(t)}{dt} + i(t) = \frac{E}{(R_0+r)}$			
01,00			ا استنتاج عبارة $ au$ وقيمة I_p لكل الكل			
02,00		$ au rac{di(}{di}$	$\frac{t}{t} + i(t) = I_P$ بالتطابق مع العلاقة:			
	0,25x2	•	$=R_0C$:(RC) بالنسبة للدارة –			
	0,25x2	$I_P = I_{\text{max}} = 0.5 A$ τ	$=\frac{L}{R_0+r}$: (RL) بالنسبة للدارة –			
01.25		:L و r	6. إيجاد قيمة كل من: C ، E .			
01,25	0,25x2	$E = 10 V \iff u_{R0}(0) = E$ نعلم أن $t = 0$,			
	,	$C=10^{-3}F$ نجد $C=\frac{0.01}{10}$ (تطبیق عددي) $C=\frac{ au}{R_0}$	$ au=R_{\scriptscriptstyle 0}C$ و $ au=0,01s$ بيانيا –			
	0,50	- حسب قانون جمع التوترات في النظام الدائم لدينا:	من المنحنى (b) (الدارة (RL)):			
		$rI_{ m max}=E-R_0I_{ m max}=10-5=5V$ و منه $R_0I_{ m max}$	$+rI_{\max}=E$ أي $U_{R0}+U_{b}=E$			
			$r = R_0 = 10 \Omega $ \Leftarrow			
		$L\!=\!0,01(10\!+\!10)$ (تطبیق عددي) $L\!=\! au(R_{\scriptscriptstyle 0}\!+\!r) eq au$	$=\frac{L}{R_0+r}$ و $ au=0.01s$ بيانيا -			
1	ĺ					

المدة: 4ساعات و30د		الشعبة: رياضيات + تقني رياضي	اختبار مادة: علوم فيزيائية
	0,25		نجد L=0,2 H نجد
		(L	التمرين التجريبي: (06 نقا
		حمض الكربوكسيلي:	I- التعرف على صيغة واسم الـ
00,25	0,25	الكربوكسيلية:	1. الصيغة المجملة للأحماض
00,25	0,23		$C_nH_{2n+1}-COOH$
00,50		$R\!-\!COOH$, $C_n H_{2n} O_2$ الكربوكسيلية الآتية:	ملاحظة: تقبل صيغ الأحماض
	0,50	مملية المعايرة مع ذِكر البيانات الكافية:	2. مخطط التركيب التجريبي ك
		المحلول المعاير —	
		سحاحة	
00,25	0,25		3. معادلة تفاعل المعايرة:
		$C_n H_{2n+1} - COOH + HO$ المحلول المعايَر	$^{-} = C_n H_{2n+1} - COO^{-} + H_2 O$
01,25			1.4. *احداثيي نقطة التكافؤ
		ايرة نجد احداثيي نقطة التكافؤ E:	عن طريق مماسي منحنى المع
		جهاز الـpH – متر	$(V_{bE} = 12 \ mL \ , \ pH_E = 8,4)$
		المجال: [8,0-8,6]	ملاحظة: تقبل قيمة $pH_{\scriptscriptstyle E}$ في
	2x0,25		: c_1 استنتاج التركيز المولي *
		$c_{_1}=rac{c_{_b}V_{_{bE}}}{V_{_1}}$ نسب ستوكيومترية أي $c_{_1}V_{_1}=c_{_b}V_{_{bE}}$ و منه	عند التكافؤ، يكون المتفاعلين ب
		$c_1 = 2, 4.10^{-2} \ mol.L^{-1}$ نجد $c_1 = 2, 4.10^{-2} \ mol.L^{-1}$	$=\frac{2.10^{-2}\times12}{10}$ (تطبیق عددي)
	2x0,25	: للحمض واسمه:	2.4. استنتاج الصيغة الجزيئية
	240,23	المتواجدة بالمزيج $(C_n H_{2n+1} - COOH(aq) / C_n H_{2n+1} - COO^{-1})$	(aq)) نحدد أولا pK_A الثنائية
		$pH = pK_{A} = 4.8$ بالإسقاط نجد $V_{b} = \frac{V_{bE}}{2} = \frac{12}{2} = 6 \ mL$	حيث عند نصف التكافؤ يكون
		$C_3H_7CO_2H$ وافق، صيغته الجزيئية المجملة	و حسب الجدول، فالحمض الم
		متفرعة، فيكون اسم الحمض: حمض البوتانويك الموافق للصيغة	و بما أن سلسلته الفحمية غير
		$\cdot CH_3 - CH_2 - CH_2$	CH_2 – $COOH$: نصف منشورة
		<u>.</u> ن	II- <u>تحضير</u> أستر بنكهة الأنانا،
00,25	0,25	: <u>·</u>	1. دور حمض الكبريت المركز
		تسريع التفاعل، فهو عبارة عن وسيط للتفاعل.	دور حمض الكبريت المركز هو

المدة: 4ساعات و30د

الشعبة: رياضيات + تقني رياضي

اختبار مادة: علوم فيزيائية

		ا عبدر مدن. عبره غيرينيد						
00,50	0,25	"معادلة التفاعل الحادث:				2. *معادلة ال		
		$C_3H_7COOH(l) + R - OH(l) = C_3H_7COOR(l) + H_2O(l)$						
	0,25	*مميزات التفاعل الأسترة: بطيء ، محدود(غير تام، عكوس)، لا حراري.						
01,00	0,50	3. *جدول تقدم التفاعل:						
		تفاعل	معادلة الن	$C_3H_7COOH(l)$ + $R-OH(l)$ = $C_3H_7COOR(l)$ + $H_2O(l)$				
		حالة الجملة	x تقدم التفاعل	كمية المادة (mol)				
		الابتدائية	0	$n_0 = 0, 1$	$n_0 = 0,1$	0	0	
		الانتقالية	х	$n_0 - x$	$n_0 - x$	х	х	
		النهائية	X_f	$n_0 - X_f$	$n_0 - X_f$	X_f	X_f	
	2x0,25	r استنتاج مردود التفاعل r :						
		$X_{\text{max}} = n_0$	= 0,1 <i>mol</i>	$r = \frac{X_f}{V} \times 100\%$	التفاعل بالعبارة:	اعل، يعطى مردود	عند نهاية التف	
		$X_{\max}=n_0=0,1mol$ عند نهاية التفاعل، يعطى مردود التفاعل بالعبارة: $x=\frac{X_f}{X_{\max}} imes 100\%$ عند نهاية التفاعل، يعطى مردود التفاعل بالعبارة: $x=\frac{X_f}{X_{\max}} imes 100\%$						
		ولدينا $X_f = n_0 - \frac{m_f(\mathit{Acide})}{M(\mathit{Acide})}$ ومنه $n_f(\mathit{Acide}) = n_0 - X_f = \frac{m_f(\mathit{Acide})}{M(\mathit{Acide})}$ ولدينا						
		$X_f = 0,067 \ mol$ نجد $X_f = 0,1 - \frac{2,9}{88}$: (تطبیق عددي) $M_{(Acide)} = 88 \ g.mol^{-1}$						
		00						
00.75		$r=67~\%$ نجد $r=rac{0.067}{0.1}$ نجد $r=67~\%$						
00,75	0,25x2		4. *التركيب المولي للمزيج عند نهاية التفاعل:					
			$n(ester) = n(eau) = X_f = 0.067 mol$					
			$n(Acide) = n(Alcool) = n_0 - X_f = 0.033mol$					
	0,25	*حساب قيمة ثابت التوازن K:						
		$K = 4,12$ نجد $K = \frac{\left[\text{Ester}\right] \times \left[\text{eau}\right]}{\left[\text{Acide}\right] \times \left[\text{Alcool}\right]} = \frac{n_f(\text{Ester}) \times n_f(\text{Ester})}{n_f(\text{Acide}) \times n_f(\text{Alcool})} = \frac{(0,033)^2}{(0,067)^2}$						
		5. استنتاج الصيغة نصف المفصلة للأستر واسمه:						
00,75	3x0,25	حديغة الأستر العامة: $C_3H_7COOC_nH_{2n+1}$ كتلته المولية:						
	$n=2$ ومنه $M(C_3H_7COOC_nH_{2n+1})=14n+88=1$							
		فتكون صيغة الأستر نصف مفصلة: $CH_3CH_2COOCH_2CH_3$ يكون اسمه: بوتانوات الإيثيل						
00,50	2x0,25			6. تحديد الاقتراحات الصحيحة مع التعليل:				
		- تعويض الحمض الكربوكسيلي بكلور البوتانويل لأنه يجعل تفاعل الأسترة تاما و بتالي المردود						
		يقترب من 100%						
		- نزع الأستر المتشكل يجعل التفاعل ينزاح باستمرار في جهة تحسين مردود الأسترة						
		لرع الانسر المسكل يجعل التعامل يتراح بالسمرار في جها فلسي مردود الاسترد						