Constraint Satisfaction Problems (CSPs)

Outline

- CSP?
- Backtracking search for CSPs
- Inference in CSPs
- Local search for CSPs
- Problem structure

Constraint satisfaction problems

- What is a CSP?
 - Finite set of variables V_1 , V_2 , ..., V_n
 - Nonempty domain of possible values for each variable $D_{V1},\ D_{V2},\ \dots\ D_{Vn}$
 - Finite set of constraints C_1 , C_2 , ..., C_m
 - Each constraint C_i specifies allowable combinations of values for subsets of variables, e.g., $V_1 \neq V_2$
 - A solution is an assignment of values to all variables that satisfies all constraints.
 - Some CSPs require a solution that maximizes an objective function
 → constrained optimization problems

3

CSP example: map coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: $D_i = \{red, green, blue\}$
- Constraints: adjacent regions must have different colors.
 - E.g. WA ≠ NT, or (WA,NT) ∈ {(red,green),(red,blue),(green,red),...}

CSP example: map coloring

 Solutions are assignments satisfying all constraints, e.g. {WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue, T=green}

5

Varieties of CSPs

- Discrete variables
 - Finite domains
 - n variables with domain size $d \Rightarrow O(d^n)$ complete assignments.
 - E.g. Boolean CSPs, incl. Boolean satisfiability (NP-complete).
 - Infinite domains (integers, strings, etc.)
 - E.g. job scheduling, variables are start/end days for each job
- Continuous variables
 - e.g. start/end times for Hubble Telescope observations.
 - Linear programming

We consider finite domains

Varieties of constraints

- Unary constraints involve a single variable.
 - e.g. *SA* ≠ *green*
 - Can be eliminated
- Binary constraints involve pairs of variables.
 - e.g. SA ≠ WA
- Higher-order constraints involve 3 or more variables.
 - e.g. cryptarithmetic column constraints.

7

Constraint graph

- **Binary CSP**: each constraint relates two variables
- Constraint graph = nodes are variables, edges show constraints.

- CSP algorithms can make use of the graph structures
 - •e.g. Tasmania is an independent subproblem.

Example; cryptarithmetic

 $\begin{aligned} & \text{Variables: } F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3 \\ & \text{Domains: } \{0,1,2,3,4,5,6,7,8,9\} \\ & \text{Constraints} \\ & \textit{alldiff}(F,T,U,W,R,O) \\ & O + O = R + 10 \cdot X_1 \text{, etc.} \end{aligned}$

Higher-order constraints can be represented in a constraint hypergraph

9

Real-world CSPs

- Timetabling problems
 - e.g., class scheduling: which class is offered when and where by whom?
- Transportation scheduling
- Factory scheduling
- Floor planning, VLSI design
- Graph coloring, Map coloring

CSP benefits

- Standard representation with generic goal and actions
 - A state is an assignment of values to some or all variables.
 - Incremental vs. complete-state
 - Systematical vs. local search
- General purpose heuristics (no problem-specific expertise required).
- Can take advantage of the structure of constraint graph

11

CSP as a standard search problem

- A CSP can be easily expressed as a standard search problem.
- Incremental formulation
 - A state is an assignment of values to some or all variables.
 - Initial State: the empty assignment {}.
 - Actions: Assign value to an unassigned variable provided that there is not conflict.
 - Goal test: the current assignment is complete.
 - Path cost: irrelevant
- This is the same for all CSP's!

CSP as a standard search problem

- Solution is found at depth n (if there are n variables).
 - Hence depth first search can be used.
- Branching factor b at the top level is nd. b=(n-l)d at depth l, hence n!dⁿ leaves!
- But only d^n complete assignments.

13

Commutativity

- Variable assignments are commutative.
 - The order of any given set of actions has no effect on the outcome.
 - Example: choose colors for Australian territories one at a time
 - [WA=red then NT=green] same as [NT=green then WA=red]
- CSP search algorithms consider a single variable assignment at a time, $b=d \Rightarrow$ there are d^n leaves.

Backtracking search

- Depth-first search
- Chooses values for one variable at a time and backtracks when a variable has no legal values left to assign, called backtracking search

15

Backtracking search

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) **return** a solution or failure

if assignment is complete then return assignment
var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to
CONSTRAINTS[csp] then

add {var=value} to assignment
result ← RRECURSIVE-BACTRACKING(assignment, csp)
if result ≠ failure then return result
remove {var=value} from assignment

return failure

Improving backtracking efficiency

- Uninformed algorithm
 - general performance not good
 - Can solve *n*-queens for $n \approx 25$
- Previously → introduce problem-specific heuristics to improve uninformed search
- General-purpose methods without problemspecific knowledge can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Interleaving *inference* and Search (e.g. Sudoku)
 - Intelligent backtracking (Chapter 6.3.3)

21

Minimum remaining values (MRV)

Which variable shall we try next?

Minimum remaining values (MRV)

- A.k.a. most constrained variable heuristic
- Rule: choose variable with the fewest legal values

23

Degree heuristic

- Rule: select variable that is involved in the largest number of constraints on other unassigned variables. (Most constraining variable)
- Degree heuristic is very useful as a tie breaker among MRV variables.
- In what order should its values be tried?

Least constraining value

- Least constraining value heuristic
- Rule: given a variable choose the least constraining value,
 - i.e. the one that rules out the fewest values in the remaining variables

25

Forward checking

- Can we detect inevitable failure early?
- Forward checking idea: keep track of remaining legal values for unassigned variables.
 - Whenever a variable is assigned, delete from neighbors' domain any inconsistent value
 - Terminate search when any variable has no legal values.
- Provides an efficient way to incrementally compute the information that the MRV heuristic needs

Forward checking

- Assign {WA=red}
- Effects on other variables connected by constraints with WA
 - NT can no longer be red
 - SA can no longer be red

27

Forward checking

- Assign {Q=green}
- Effects on other variables connected by constraints with WA
 - NT can no longer be green
 - NSW can no longer be green
 - SA can no longer be green

(MRV heuristic will automatically select NT or SA next)

- If V is assigned blue
- Effects on other variables connected by constraints with WA
 - SA is empty
 - NSW can no longer be blue
- FC has detected that partial assignment is *inconsistent* with the constraints and backtracking can occur.
- Combining these heuristics makes 1000 queens feasible

29

Constraint propagation

- FC propagates information from assigned to unassigned variables but does not provide early detection for all failures.
 - NT and SA cannot both be blue!
- Inference in CSPs: Constraint propagation repeatedly enforces constraints locally to reduce the number of legal values for variables

- CSPs could be solved by inference. E.g., Sudoku

 repeatedly enforces constraints locally to reduce the number of legal values for variables

	1	2	3	4	5	6	7	8	9
Α			3		2		6		
В	9			3		5			1
С			1	8		6	4		
D			8	1		2	9		П
Е	7								8
F			6	7		8	2		
G			2	6		9	5		П
Н	8			2		3			9
-(5		1		3		
					(a)				

	1	2	3	4	5	6	7	8	9
Α	4	8	3	9	2	1	6	5	7
В	9	6	7	3	4	5	8	2	1
С	2	5	1	8	7	6	4	9	3
D	5	4	8	1	3	2	9	7	6
Е	7	2	9	5	6	4	1	3	8
F	1	3	6	7	9	8	2	4	5
G	3	7	2	6	8	9	5	1	4
Н	8	1	4	2	5	3	7	6	9
Τ	6	9	5	4	1	7	3	8	2
	(b)								

31

Inference in CSPs

- CSPs could be solved by inference.
 - repeatedly enforces constraints locally to reduce the number of legal values for variables
- Enforcing local consistency
 - Node consistency: all the values in the variable's domain satisfy unary constraints
 - Arc consistency
 - Path consistency
 - K-consistency
 - Problem-specific inference?
- Intertwined with search, or done as a preprocessing step

Arc consistency

- Makes each arc consistent (in constraint graph)
- X → Y is consistent iff for every value x of X there is some allowed y
- $SA \rightarrow NSW$ is consistent?

33

Arc consistency

- X → Y is consistent iff
 for every value x of X there is some allowed y
- *NSW* → *SA* is consistent?

Arc can be made consistent by removing blue from NSW

Arc consistency

- Arc can be made consistent by removing blue from NSW
- If X loses a value, neighbors of X need to be rechecked
- RECHECK neighbours of NSW!!
 - Remove red from V

35

Arc consistency algorithm

function AC-3(csp) return false if an inconsistency is found and true otherwise inputs: csp, a binary csp with variables $\{X_1, X_2, ..., X_n\}$ local variables: queue, a queue of arcs, initially the arcs in csp while queue is not empty do $(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(\text{queue})$ if REMOVE-INCONSISTENT-VALUES(csp, X_i, X_j) then
if size of D=0 then return false

if size of $D_i=0$ then return false for each X_k in NEIGHBORS[X_i] – $\{X_j\}$ do add (X_k, X_i) to queue

return true

 $removed \leftarrow false$

for each x in DOMAIN[X_i] do

if no value y in $\mathsf{DOMAIN}[X_j]$ allows (x,y) to satisfy the constraints between X_i and X_i

then delete x from DOMAIN[X_i]; removed \leftarrow true return removed

Time complexity: O(cd³)

K-consistency

- Path consistency (3-consistency): a two-variable set {X,Y} is path consistent with respect to a third variable Z if, for every consistent assignment to {X,Y}, there is an assignment to Z that satisfies the constraints.
- K-consistency: a CSP is k-consistent if, for any set of k-1 variables and for any consistent assignment to those variables, a consistent value can be assigned to any kth variable
- Can be run as a preprocessing step or after each assignment during search
 - Much more expensive than FC, the extra cost is worthwhile?

37

Backtracking search

function BACKTRACKING-SEARCH(csp) return a solution or failure
 return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or failure

if assignment is complete then return assignment var ← SELECT-UNASSIGNED-VARIABLE(assignment,csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do if value is consistent with assignment then

add {var=value} to assignment

 $inferences \leftarrow \mathsf{INFERENCE}(csp, var, value)$

if inferences ≠ failure then
 add inferences to assignment

 $result \leftarrow RRECURSIVE$ -BACTRACKING(assignment, csp) if $result \neq failure$ then return result

remove {var=value} and inferences from assignment return failure

Local search for CSP

- Typically use complete-state representation
- For CSPs
 - A state is an assignment of values to all variables allow unsatisfied constraints
 - operators change the value of one variable at a time
- Min-conflicts algorithm
 - Variable selection: randomly select any conflicted variable
 - Value selection: min-conflicts heuristic
 - Select new value that results in a minimum number of conflicts with the other variables
 - hill-climb with h(n) = total number of violated constraints

39

Local search for CSP

function MIN-CONFLICTS(csp, max_steps) return solution or failure

inputs: csp, a constraint satisfaction problem
 max_steps, the number of steps allowed before giving up

 $current \leftarrow$ an initial complete assignment for csp for i = 1 to max_steps do

if current is a solution for csp then return current
var ← a randomly chosen conflicted variable
value ← the value v for var that minimize
CONFLICTS(var, v, current, csp)
set var = value in current

return failure

Min-conflicts example

- A two-step solution for an 8-queens problem using minconflicts heuristic.
- At each stage a queen is chosen for reassignment in its column.
- The algorithm moves the queen to the min-conflict square breaking ties randomly.

41

Advantages of local search

- Min-conflicts is surprisingly effective for many CSPs
 - Used to schedule observations for the Hubble Space Telescope
- Given random initial state, can solve nqueens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)
 - Solving the millions-queen problem in an average of 50 steps.

Problem structure

- How can the problem structure help to find a solution quickly?
- Subproblem identification is important:
 - Coloring Tasmania and mainland are independent subproblems
 - Identifiable as connected components of constraint graph.
- Improves performance

43

Problem structure

- Suppose each subproblem has c variables out of a total of n.
- Worst case solution cost is O(n/c d^c)
 - Instead of O(dⁿ)
- E.g. n=80, c=20, d=2
 - $2^{80} = 4$ billion years at 1 million nodes/sec.
 - 4 * 2²⁰ = .4 second at 1 million nodes/sec

Tree-structured CSPs

- Theorem: if the constraint graph has no loops then CSP can be solved in O(nd²) time
- Compare difference with general CSP, where worst case is O(d ⁿ)

45

Tree-structured CSPs

- 1. Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering. (label variables from X_1 to X_n)
- 2. For j from n down to 2, apply arc consistency to $\operatorname{Parent}(X_j) \to X_j$ removing values from domain of $\operatorname{Parent}(X_j)$ as necessary
- 3. For j from 1 to n assign X_j consistently with Parent(X_j)

Nearly tree-structured CSPs

- One idea: assign values to some variables so that the remaining variables form a tree.
- Assume that we assign $\{SA=x\} \leftarrow cycle\ cutset$
 - And remove any values from the other variables that are inconsistent.
 - The selected value for SA could be the wrong one so we have to try all of them

47

Nearly tree-structured CSPs

- This approach is worthwhile if cycle cutset is small.
 - O(d^c (n-c)d²)
- Finding the smallest cycle cutset is NP-hard
 - Approximation algorithms exist
- This approach is called *cutset conditioning*.

Problem structure

- Join tree algorithm
- Construct a tree decomposition of the constraint graph into a set of connected subproblems.
- Each subproblem is solved independently
- Resulting solutions are combined.
- Width w: the size of the largest subproblem
 - O(ndw)
- Finding minimum width (tree width) is NP-hard

49

Summary

- CSPs are a special kind of problem: states defined by values of a fixed set of variables, goal test defined by constraints on variable values
- Backtracking=depth-first search with one variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that lead to failure.
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies.
- Min-conflicts local search is usually effective in practice.
- The CSP representation allows analysis of problem structure.
 - Tree structured CSPs can be solved in linear time.