Lecture 23. Recursive Data Structure: Algorithm Complexity

Efficiency by Complexity of Algorithms

 Apparently, the BSearch function takes less work (and time) to evaluate than the ASearch function. How much better is it?

Efficiency by Complexity of Algorithms

- Apparently, the BSearch function takes less work (and time) to evaluate than the ASearch function. How much better is it?
- Let's count the number of occurrences of the most time-consuming operation, the comparisons t = x and t > r.
 - ASearch function $\Theta(n)$ for n elements in a list.
 - **BSearch function** $\Theta(\log_2 n)$ for *n* elements in a list.
 - As the size of the list gets large, BSearch becomes a much better alternative to ASearch. For example, a list containing 1,048,576 elements requires 1,048,576 comparisons using ASearch, but only 21 comparisons using BSearch.

• Let C(n) be the number of times the comparison t = x is done when searching a list of n elements.

- Let C(n) be the number of times the comparison t = x is done when searching a list of n elements.
- With a Slist of the depth p, $n = 2^p$. So, we may set $C(n) = \tilde{C}(p)$

- Let C(n) be the number of times the comparison t = x is done when searching a list of n elements.
- With a Slist of the depth p, $n=2^p$. So, we may set $C(n)=\tilde{C}(p)$
- If p = 0, then the list contains only a single item so that the base case **B** of the definition gets used and one comparison is made. Therefore, $\tilde{C}(0) = 1$.

- Let C(n) be the number of times the comparison t = x is done when searching a list of n elements.
- With a Slist of the depth p, $n=2^p$. So, we may set $C(n)=\tilde{C}(p)$
- If p = 0, then the list contains only a single item so that the base case **B** of the definition gets used and one comparison is made. Therefore, $\tilde{C}(0) = 1$.
- Now suppose the ASearch function is evaluated on a list of depth p for some p > 0. Then the recursive case \mathbf{R} of the definition gets used, and the ASearch function is executed twice on a list of depth p-1.

- Let C(n) be the number of times the comparison t = x is done when searching a list of n elements.
- With a Slist of the depth p, $n=2^p$. So, we may set $C(n)=\tilde{C}(p)$
- If p=0, then the list contains only a single item so that the base case **B** of the definition gets used and one comparison is made. Therefore, $\tilde{C}(0)=1$.
- Now suppose the ASearch function is evaluated on a list of depth p for some p > 0. Then the recursive case \mathbf{R} of the definition gets used, and the ASearch function is executed twice on a list of depth p-1.
- ullet Each of these two recursive calls uses $ilde{C}(p-1)$ comparisons.

- Let C(n) be the number of times the comparison t = x is done when searching a list of n elements.
- With a Slist of the depth p, $n = 2^p$. So, we may set $C(n) = \tilde{C}(p)$
- If p=0, then the list contains only a single item so that the base case **B** of the definition gets used and one comparison is made. Therefore, $\tilde{C}(0)=1$.
- Now suppose the ASearch function is evaluated on a list of depth p for some p > 0. Then the recursive case \mathbf{R} of the definition gets used, and the ASearch function is executed twice on a list of depth p-1.
- Each of these two recursive calls uses $\tilde{C}(p-1)$ comparisons.
- Hence $\tilde{C}(p)$ must satisfy the following recurrence relation

$$\tilde{C}(p) = \left\{ egin{array}{ll} 1 & ext{if} & p = 0 \\ 2\tilde{C}(p-1) & ext{if} & p > 0 \end{array} \right.$$

• The closed-form solution of the recurrence relation is $\tilde{C}(p) = 2^p$.

- The closed-form solution of the recurrence relation is $\tilde{C}(p) = 2^p$.
- So, a list of 2^p requires approximately 2^p comparisons, in the worst case.

- The closed-form solution of the recurrence relation is $\tilde{C}(p) = 2^p$.
- So, a list of 2^p requires approximately 2^p comparisons, in the worst case.
- In general, if a list has n elements, then C(n) = n since $n = 2^p$. So we can approximate the worst-case complexity of this algorithm as $\Theta(n)$.

- Let D(n) be the number of times the comparison t > r is done when searching a list of n elements.
- In this case of Slists, $n=2^p$. So, let $D(n)=\tilde{D}(p)$
- If p=0, then the list contains only a single item so that the base case **B** of the definition gets used and one comparison is made. Therefore, $\tilde{D}(0)=1$.

- Let D(n) be the number of times the comparison t > r is done when searching a list of n elements.
- In this case of Slists, $n=2^p$. So, let $D(n)=\tilde{D}(p)$
- If p=0, then the list contains only a single item so that the base case **B** of the definition gets used and one comparison is made. Therefore, $\tilde{D}(0)=1$.
- Now suppose the BSearch function is evaluated on a list of depth p for some p>0. Then the recursive part **R** first makes one comparison, and then calls the BSearch function on a list of depth p-1, which uses a $\tilde{D}(p-1)$ comparisons.

- Let D(n) be the number of times the comparison t > r is done when searching a list of n elements.
- In this case of Slists, $n=2^p$. So, let $D(n)=\tilde{D}(p)$
- If p=0, then the list contains only a single item so that the base case **B** of the definition gets used and one comparison is made. Therefore, $\tilde{D}(0)=1$.
- Now suppose the BSearch function is evaluated on a list of depth p for some p > 0. Then the recursive part **R** first makes one comparison, and then calls the BSearch function on a list of depth p 1, which uses a $\tilde{D}(p 1)$ comparisons.
- Hence $\tilde{D}(p)$ must satisfy the following recurrence relation

$$ilde{D}(p) = \left\{ egin{array}{ll} 1 & ext{if} & p=0 \ 1+ ilde{D}(p-1) & ext{if} & p>0 \end{array}
ight.$$

• The closed-form solution of the recurrence relation is $\tilde{D}(p) = p + 1$.

- The closed-form solution of the recurrence relation is $\tilde{D}(p) = p + 1$.
- So, we only need p+1 comparisons to find an element in a list of size 2^p .
- So, a list of 2^p requires approximately p+1 comparisons, in the worst case.
- Substituting $p = \log_2 n$ for some p, we get $D(n) = \log_2 n + 1$, so we can approximate the worst-case complexity of this algorithm as $\Theta(\log_2 n)$.

Activity 23.1. Let L be an SList. Define a recursive function Wham as follows.

B. Suppose L = x. Then Wham(L) = $x \cdot x$.

R. Suppose L = (X, Y). Then, Wham(L) = Wham(X) + Wham(Y).

- (a) Evaluate Wham(((1,2), (4,5))), showing all steps.
- (b) Give a recurrence relation for S(p), the number of + operations performed by Whom on an SList of depth p, for p > 0.
- (c) Give a recurrence relation for M(p), the number of \cdot operations performed by Whom on an SList of depth p, for p > 0.

Exercise. The following is an recursive binary search algorithm

Algorithm 5.4 Binary Search (recursive).

```
Preconditions: The set U is totally ordered by <, and X = \{x_1, x_2, \dots, x_n\} \subseteq U,
     with n > 1.
                                      x_1 < x_2 < \cdots < x_n
     and t \in U. Also, 1 \le l \le r \le n.
Postconditions: BinSearch(t,X,l,r) = (t \in \{x_1,x_{l+1},...,x_r\})
     function BinSearch(t \in U.
                                   X = \{x_1, x_2, \dots, x_n\} \subseteq U
                                   l, r \in \{1, 2, \dots, n\}
          i \leftarrow \lfloor (l+r)/2 \rfloor
          if t = x_i then
               return true
          else
              \lceil if (t < x_i) \land (l < i) then
                      return BinSearch(t, X, l, i-1)
                  else
                      \lceil \text{ if } (t > x_i) \land (i < r) \text{ then } \rceil
                              return BinSearch (t, X, i+1, r)
                         else
                              return false
```

(Continue to the next page)

A typical call to this function would look like this:

```
if BinSearch(t,{3,6,9,12,15},1,n) then
   print Element t was found.
else
   print Element t was not found.
```

The choice of 1 and n for the last two parameters tell the function to search the whole array. The following top-down evaluation of the recursive binary search looks for the target value 21 in the array $X = \{3, 6, 9, 12, 15, 18, 21, 24, 27, 30\}$.

```
\begin{array}{ll} \text{BinSearch}(21,X,1,10) &=& \text{BinSearch}(21,X,6,10) \\ &=& \text{BinSearch}(21,X,6,7) \\ &=& \text{BinSearch}(21,X,7,7) \\ &=& \text{true} \end{array}
```

- (a) Evaluate BinSearch(3,X,1,10) using a top-down evaluation. (Write all the steps of evaluation.)
- (b) Approximate the best- and worst-case complexity of the recursive binary search function.