Física Estatística e Computacional: práticas computacionais

10 de Junho de 2009

1 Ambiente de trabalho

Existem vários ambientes de trabalho para o Python. O que foi usado para preparar estas sessões é descrito nesta secção e é apropriado para sessões interactivas.

Shell Foi usado o ipyhton, iniciado com a seguinte linha de comando:

\$ ipython -pylab -p scipy

In [1]:

O ipython tem várias funcionalidades úteis—mantém história de comando anteriores a que se acede com as setas teclas ↑ e ↓, completa comandos com a tecla tab— e além disso, iniciado desta maneira, carrega um conjunto de módulos do scipy (incluíndo o numpy) e inicializa a bilioteca gráfica matplotlib, resolvendo questões de compatibilidade entre a linha de comando e as janelas onde surgem os gráficos da matplotlib. Com esta inicialização, uma chamada a uma função da matplotlib abre uma janela adicional, com o gráfico respectivo (ver fig. 1).

Editor O modo interactivo do **ipython** é muito útil para construir programas, mas está limitado a edição por linhas. Em qualquer trabalho sério é necessário manter o código em ficheiros editáveis. Uma maneira simples de trabalhar é manter o editor aberto (por exemplo: **emacs**); sempre que queremos executar o ficheiro que editámos basta escrever na shell do **ipython**

In [1]: %run nome_ficheiro.py

O código correspondente é executado na sessão do ipython. Nota: o ficheiro deve estar na directoria onde foi iniciado o ipython.

2 Gerador de números (pseudo) aleatórios do numpy

A biblioteca numpy, incluída no scipy, tem um conjunto de funções associadas à geração de números pseudo-aleatórios (n.p.a.) com densidades de probabilidade (discretas e contínuas) muito variadas. Estas funções encontam-se no módulo random (ver listagem 1).

Para obter mais informações sobre este módulo consultar http://www.scipy.org/Numpy_Functions_by_Category onde a documentação sobre o módulo está ligada com exemplos. A instrução help(random) gera uma lista das distribuições disponíveis, com a forma de chamada respectiva.

plot(arange(0,6,.1),exp(-arange(0,6,.1)))

Figura 1: Exemplo de gráfico da matplotlib.

Algorithm 1 Função rand() gera n.p.a. com distribuição uniforme em [0,1).

```
In [1]: from numpy import *
In [2]: random.rand(10)
Out[2]:
                     0.13031387, 0.15998715,
array([ 0.8648737 ,
                                                 0.85403508,
                     0.78582497,
                                  0.27344148,
0.95941483,
                                                0.79753292,
0.57451419,
             0.10908469])
```

2.1Testes

2.1.1 Histograma

Dada uma série de dados $x_1, \dots x_N$, para obter um histograma organizamos os dados por categorias e contamos o número de entradas por categoria. Para variáveis reais as categorias são em geral intervalos (bins) $[a_i, a_{i+1})$. A variável que conta as entradas no bin i de um histograma pode ser escrita na forma

$$X_i = \xi_1 + \ldots + \xi_N \tag{1}$$

em que $\xi_r = 1$ se $x_r \in [a_i, a_{i+1})$ (bin i) e $\xi_r = 0$ se $x_r \notin [a_i, a_{i+1})$. Desigando por p_i a probabilidade de ξ ser 1,

$$\langle X_i \rangle = N \langle \xi \rangle = N p_i \tag{2}$$

$$\langle X_i \rangle = N \langle \xi \rangle = N p_i$$
 (2)
 $\Delta X_i^2 = N \Delta \xi^2 = N p_i (1 - p_i)$ (3)

Pelo teorema do limite central, a variável X_i tem uma distribuição gaussiana no limite $N \to \infty$. Podemos também definir histogramas normalizados em que as entradas são $h_i = X_i/N$ ($\sum_i h_i =$ 1).

$$\langle h_i \rangle = \langle \xi \rangle = p_i \tag{4}$$

$$\Delta h_i^2 = \frac{1}{N} \Delta \xi^2 = \frac{p_i (1 - p_i)}{N} \tag{5}$$

Actividade 1: histogramas de sequências de n.p.a Um histograma de uma sequência de n.p.a. permite uma inspecção visual da densidade de probabilidade com que os valores estão a ser gerados.

- Escrever uma função para fazer um histograma de uma série de dados com especificação dos valores limites e número de caixas (bins).
- Teste a função, calculando as entradas de um histograma de uma série 10000 n.p.a. gerados com a função random.rand() (sugerem-se 50 bins). Para uma distribuição gaussiana, é de esperar cerca de 1/3 da vezes desvios da média superiores a um desvio padrão.
- Usando a função hist do matplotlib (ver fig. 2), represente um histograma da série de dados x_i, \ldots, x_N e das entradas do histograma $h_i, \ldots h_{nbins}$. Note que as entradas de um histograma devem ter uma distribuição gaussiana. No caso presente, as entradas dos diferentes bins têm o mesmo valor médio e variância.

Notas:

• É um erro comum calcular um histograma usando condições if; é muito mais eficiente usar o valor da varíável x para determinar o *índice* r da entrada h_r do histograma que deve ser incrementada.

In [1]: dados = random.rand(1000)

In [2]: pylab.hist(dados,10,1) #third argument 1 for normalized histogram

Figura 2: Exemplo da função hist

Actividade 2: momentos Para uma distribuição uniforme no intervalo [0,1) os momentos são (prove-o!)

$$\langle x^k \rangle = \frac{1}{k+1} \tag{6}$$

e a respectiva variância

$$\Delta(x^k)^2 = \langle x^{2k} \rangle - \langle x^k \rangle^2 = \frac{k^2}{(k+1)^2(2k+1)}$$
 (7)

- Use o gerador random.rand() para gerar uma amostra com N=1000 n.p.a; calcule a médias de x^k da amostra e compare graficamente com as previsões aqui indicadas (a matplotlib dispõe de uma função errorbar(x,y,dy), que permite representar a lista y em função da lista x com barras de erro dadas pela terceira lista dy: investigue esta função).
- Experimente calcular os momentos com k diferentes com uma só sequência de n.p.a ou com sequências "frescas" para cada k. Que diferença nota nos gráficos?

Algorithm 2 Removendo o primeiro ou último elemento de uma lista

```
In [6]: a=range(5)
In [7]: a[1:]
Out[7]: [1, 2, 3, 4]
In [8]: a[:-1]
Out[8]: [0, 1, 2, 3]
```

Actividade 3: Scatter plot Um modo visual de procurar correlações entre valores de uma sequência de n.p.a x_1, \ldots, x_N consiste em representar gráficos de dispersão de pares $(x_i, x_{i+1}), i = 1, \ldots, N-1$ ou triplos $(x_i, x_{i+1}, x_{i+2}), i = 1, \ldots, N-2$. Gere uma sequência de N = 1000 n.p.a e faça uma representação gráfica dos pontos $(x_i, x_{i+1}), i = 1, \ldots, N-1$.

Nota: investige a função scatter do matplotlib; confira o código da listagem 2.

3 Amostragem (sampling)

3.1 Conceito

3.1.1 Caso Discreto

Dado um conjunto de eventos $\{e_1, \ldots, e_n\} = \{\mathbf{e}\}$, com probabilidades $\{p_1, \ldots, p_n\}$, pretendemos gerar uma sequência, sem correlações, em que cada evento e_i ocorra com a respectiva probabilidade p_i .

3.1.2 Caso contínuo

Dada uma variável aleatória com densidade de probabilidade p(x) pretendemos gerar uma sequência de valores x_1, x_2, \dots cuja densidade de probabilidade seja p(x), e em que os valores sejam independentes (densidade de probabilidade de uma sequência determinada= $p(x_1)p(x_2)\dots$)

3.2 Método de inversão

Admitimos que dispomos de um gerador de números (pseudo) aleatórios que gera r com distribuição de probabilidade uniforme (d.p.u.) entre [0,1).

Exemplos:

- random.rand(), intervalo [0,1);
- random.randint(0,n); inteiros $0,1,\ldots,n-1$ com igual probabilidade.

Distribuição de probabilidade cumulativa:

- $c_i = \sum_{j < i} p_j \Rightarrow p_i = c_i c_{i-1} \quad (c_0 \equiv 0, c_n = 1);$
- geramos r número aleatório com d.p.u. em [0,1) e, se $c_{i-1} \leq r \leq c_i$, seleccionamos e_i . A probabilidade de r ocorrer neste intervalo é $c_i c_{i-1} = p_i$.
- O método é inconveniente se em cada passo de uma simulação os p_i variarem (necessário recalcular os c_i , $i=1,\ldots,n$).

3.2.1 Método rejeição de Von Neumann (proposta/aceitação-recusa)

O método:

- proposta: escolher uniformemente (probabilidade 1/n) um evento e_i ;
- Aceitação-recusa: gerar n.p.a. r com d.p.u em [0,1);
 - Se $r \leq p_i$, aceitar e_i ;
 - Se $r > p_i$, recusar e_i ; nova proposta.

Sequência de eventos aceites tem a distribuição de probabilidade correcta.

Notas:

- O segundo passo é um exemplo de método de inversão, com dois eventos apenas:
 - $-e_i$: probabilidade p_i ;
 - recusa: probabilidade $1 p_i$.

As probabilidades cumulativas, são $c_0 = 0$, $c_1 = p_i$, $c_2 = 1$.

• Método gera cadeia de n+1 eventos possíveis, $e_1, \ldots, e_n, R, R = \texttt{recusa}$. Na cadeia completa, com recusas, as probabilidades dos eventos são:

$$p_c(e_i) = \frac{1}{n} \times p_i$$
 (prob. proposta × prob. aceitação) (8)

o que dá

$$\sum_{i=1}^{n} p_c(e_i) = \frac{1}{n}.$$
(9)

1/n é a probabilidade de uma proposta ser aceite. A probabilidade de recusa é, $p_c(R)=1-1/n$, que para n elevado ≈ 1 . Método muito ineficiente. A maior parte dos n.p.a. gerados não dão origem a eventos da cadeia de eventos aceites.

Ao restringirmos apenas aos eventos aceites, temos probabilidades condicionadas (a probabilidade na cadeia dos eventos aceites é proporcional ao número de vezes que um evento ocorre a dividir pelo número total de aceitações):

$$p(e_i|\text{aceite}) = \frac{p_c(e_i)}{p(\text{aceita}\tilde{\text{aoo}})} = \frac{p_i/n}{1/n} = p_i$$

• No segundo passo podemos substituir $p_i \to f_i$ em que $f_i = \lambda p_i$ desde que $0 \le f_i \le 1$ $(\lambda \le \max\{p_i\})$. Por normalização

$$p_i = \frac{f_i}{\sum_i f_i} \tag{10}$$

Se aceitarmos no segundo passo com f_i em vez de p_i , na cadeia sem recusas temos probabilidades

$$p(e_i|\text{aceite}) = \frac{p_c(e_i)}{p(\text{aceitação})}$$
 (11)

$$= \frac{f_i \times 1/n}{\sum_i f_i \times 1/n} = \frac{f_i}{\sum_i f_i} = p_i$$
 (12)

Note-se que mesmo assim,

$$p(\text{recusa}) = 1 - \frac{1}{n} \sum_{i} f_i = 1 - \frac{\lambda}{n}.$$
 (13)

Se as probabilidades p_i forem da mesma ordem de grandeza $p_i \sim O(1/n)$ podemos ter $\lambda \sim O(n)$ e $p(\text{aceitação}) \sim O(1)$. Se uma das probabilidades $p_i \sim O(1)$ dominar, $p(\text{aceitação}) \sim O(1/n)$.

3.2.2 Generalização do método proposta aceitação/recusa: método misto

Proposta não tem que ser feita uniformemente; pode ser feita com probabilidades q_i (por exemplo, método de inversão) e a aceitação/recusa com f_i . Neste caso para a cadeia com recusas incluídas:

$$p_c(e_i) = f_i \times q_i. \tag{14}$$

O eventos aceites têm probabilidades de ocorrência:

$$p(e_i|\text{aceite}) = \frac{f_i q_i}{\sum f_i q_i} \equiv p_i.$$
 (15)

Este método é conhecido como método misto quando usa o método da dist. prob. cumulativa no primeiro passo.

Actividade 4: passeio aleatório em 2D Gere um passeio aleatório discreto, numa rede quadrada, com saltos apenas para primeiros vizinhos, com probabilidades p_1, p_2, p_3 e p_4 , não necessáriamente iguais, usando o método directo e o método de rejeição de Von-Neumann. Conte quantos n.p.a. gera em média por passo pelos dois métodos para diferentes valores das probabilidades. Represente graficamente algumas das trajectórias, e veja o efeito do enviesamento (bias) das probabilidades.

4 Distribuições contínuas

4.1 Método de inversão

x, variável aleatória (v.a.) com densidade de probabilidade (d.p.) p(x), no intervalo [a,b]. Como gerar um sequência x_1 , x_2 que constitua uma amostragem desta densidade?

• Distribuição de probabilidade cumulativa (d.p.c.)

$$c(s) = \int_{a}^{s} p(x)dx = (\text{prob. de } x < s)$$
 (16)

• c(a) = 0; c(b) = 1 e , como $p(x) \ge 0$, c(x) é monótona crescente:

$$c(s+ds) - c(s) = p(s)ds \Rightarrow p(s) = \frac{dc(s)}{ds}.$$
 (17)

Seja $y \equiv c(x)$; qual é a densidade de probabilidade da v.a. y?

y tem valores no intervalo [0,1]; probabilidade de $x \le s$ é c(s); Ora, se $x \le s$, $y \le c(s)$ pois c(s) é monótona crescente. Por isso a probabilidade de $y \le c(s)$ é c(s).; ou seja, y tem uma distribuição uniforme no intervalo [0,1].Conclusão:

Sendo y uma v.a. com d.p.u. em $[0,1], x=c^{-1}(y)$ é uma v.a. com densidade p(x)=dc(x)/dx.

O método de inversão depende da possibilidade de calcular o inverso da d.p.c., $c^{-1}(x)$.

• gerar r com d.p.u. em [0,1) e calcular $x=c^{-1}(r)$.

Exemplo Para uma distribuição exponencial

$$\rho(x) = \lambda e^{-\lambda x} \tag{18}$$

a distribuição de probabilidade cumulativa é

$$c(x) = \int_0^x dy \lambda \exp(-\lambda y) = 1 - e^{-\lambda x}$$
(19)

Se $y = 1 - e^{-\lambda x}$,

$$x = -\frac{1}{\lambda}\log(1-y) \tag{20}$$

Assim, se y tiver uma distribuição uniforme no intervalo [0,1), x tem densidade de probabilidade exponencial.

Actividade 5: teste do método de inversão. Usando este método de inversão, gere uma sequência de de n.p.a com a distribuição exponencial e inspecione um histograma dos resultados obtidos.

4.2 Integral por Monte-Carlo com importance sampling.

Considere o integral

$$I = \int_{a}^{b} dx f(x) \tag{21}$$

Este integral pode ser expresso em termos do valor médio $\langle f(x) \rangle = \int_{-\infty}^{+\infty} dx w(x) f(x)$ em que w(x) é a distribuição uniforme no intervalo [a,b):

$$w(x) = \begin{cases} \frac{1}{b-a} & \text{se} \quad a \le x < b \\ 0 & \text{se} \quad x < a \text{ ou } x > b \end{cases}$$
 (22)

O método de Monte-Carlo consiste em estimar este valor médio gerando uma amostra de valores x_i com distribuição uniforme, e usando a média da amostra como estimador do valor médio:

$$I = (b - a)\langle f(x)\rangle \approx \frac{b - a}{M} \sum_{i=1}^{M} f(x_i)$$

Mas suponhamos, por exemplo, que o integral que queremos calcular é

$$I = \int_0^\infty dx \exp(-x^2/2);$$

podemos aproximá-lo introduzindo um cutoff , L=50; o resultado é na prática o mesmo,

$$I \approx \int_0^L dx \exp(-x^2/2). \tag{23}$$

Contudo, se usarmos o método referido acima a convergência será muito lenta. A maior parte dos valores de uma amostra uniforme no intervalo [0, L) quase não contribui para o cálculo da média; a função integranda é picada junto à origem na região de integração.

Podemos, no entanto, usar uma amostra com distribuição arbitrária w(x), se notarmos que

$$I = \int_0^\infty dx f(x) = \int_0^\infty dx w(x) \frac{f(x)}{w(x)} = \langle \frac{f(x)}{w(x)} \rangle$$

O método será mais eficiente se a função cuja média estamos a fazer, f(x)/w(x), não for tão picada numa fracção pequena do intervalo. Os valores da amostra, x_i , são gerados com a densidade de probabilidade w(x), e

$$I \approx \frac{1}{M} \sum_{i=1}^{M} \frac{f(x_i)}{w(x_i)}; \tag{24}$$

esta é a base da técnica de *importance sampling*. Em aplicações de Física Estatística, com espaços de fase de elevada dimensão, é essencial.

Actividade 6: ilustração da amostragem por importância Estime o integral da eq. 23 usando:

- 1. uma distribuição uniforme no intervalo [0, L) com L = 50.
- 2. a distribuição exponencial $w(x) = \exp(-x)$ para fazer importance sampling. Use o método de inversão para gerar uma amostra com a densidade de probabilidade w(x).

Compare a convergência dos dois métodos em função de M.

5 Decaímento radioactivo como fenómeno estocástico

A lei de decaímento radioactivo

$$N(t) = N_0 e^{-t/\tau}$$

é, na realidade, uma lei de valores médios, já que o processo de decaímento é estocástico. Num intervalo de tempo Δt , um núcleo tem uma probabilidade de sobrevivência $P_0(\Delta t) = \exp(-\Delta t/\tau)$ e de ter decaído $1 - P_0(\Delta t)$.

Actividade 7

- Construa uma simulação do processo de decaímento do seguinte modo. Escolha um passo de tempo menor que τ e um dado número inicial de núcleos; em cada passo de tempo decida probabilisticamente, para cada núcleo, se sobreviveu; represente graficamente os valores de N(t) de núcleos sobreviventes em cada instante. Compare com a curva de decaímento exponencial. Varie o número inicial de núcleos.
- Em alternativa pode usar o método de inversão para gerar para cada núcleo (com uma chamada ao gerador de n.p.a.) o instante em que decaiu. Com estes dados pode reconstruir o valor de N(t).

Algorithm 3 OOP em python. A classe particle define um objecto com duas propriedades, position e velocity.

```
class particle:
     def __init__(self,p,v):
     self.position = p
     self.velocity = v
     def translate(self,s)
     def rotate(self, theta)
pos=array([0.,0.])
vel=array([1.,0.])
p1=particle(pos, vel)
                         # creates an instance of particle
z = 2.0
theta=pi/4.
p.translate(z)
                         \# moves the particle: adds z*p.velocity
                         # to p.position
p.rotate(theta)
                         # rotates particle.velocity
```

6 Passeio aleatório contínuo

Nesta secção consideramos a propagação de uma partícula energética num meio. Supomos que a partícula se move com velocidade uniforme entre colisões; ao colidir, a sua direcção de movimento é alterada. Em duas dimensões podemos rodar a sua velocidade de um ângulo obtido de uma distribuição de probabilidade dada. A distância percorrida entre colisões é determinada pela probabilidade de colisão por unidade de comprimento, μ : a probabilidade de a partícula sofrer uma colisão entre z e z+dz na direcção de movimento é μdz . Se $P_0(z)$ for a probabilidade de sobrevivência,

$$P_0(z+dz) = P_0(z) (1 - \mu dz) \Rightarrow P_0(z) = e^{-\mu z}.$$

A densidade de probabilidade da distância à proxima colisão é a distribuição exponencial

$$p(z) = \mu P_0(z) = \mu e^{-\mu z}. (25)$$

Este problema oferece uma oportunidade para usar as características OOP (object oriented programming) de Python.

Podemos definir uma classe particle cujos objectos têm duas propriedades, position e velocity. O passeio aleatório pode ser construído definindo *métodos* que transladam a partícula (translate) na direcção da sua velocidade de um valor gerado com a densidade da eq.(25) e rodem a respectiva velocidade (rotate, ver listagem 3).

Actividade 8 Escreva um programa para gerar trajectórias estocásticas de partículas em duas dimensões, de acordo com este modelo. Use velocidade de módulo constante unitário. Eis algumas sugestões de exploração.

• Estude a evolução da densidade de probabilidade de posição para um conjunto de partículas com distribuição de velocidades iniciais isotrópica. Estude a rapidez com que evolui para

uma gaussiana. Varie a distribuição de probabilidade do ângulo de rotação da velocidade em cada colisão; pode variar desde difusão isotrópica (ângulo de rotação uniforme em $[0, 2\pi)$ até colisões dominada por pequenos ângulos (por exemplo distribuição uniforme em $[-\theta_1, +\theta_1]$.

- Meça a distância média quadrática $\langle R^2(t) \rangle$ e relacione-a com μ . Qual é a distância média entre colisões?
- Assuma um feixe inicial de partículas com a mesma direcção de propagação. Meça a variação da velocidade média das partículas com o tempo. Estude as variações temporais de $\langle x(t) \rangle$, $\langle \Delta x^2(t) \rangle$, $\langle y(t) \rangle$, $\langle y(t) \rangle$, direcções paralelas e perpendiculares à velocidade inicial do feixe). No caso da coordenada na direcção de movimento inicial do feixe deve observar uma passagem entre um regime balístico e difusivo. Porquê?

7 Partículas num potencial V(x): método de Metropolis-Hastings

Considere um gás de partículas colocadas num potencial V(x). A densidade de probabilidade de equilíbrio de posições é

$$\rho(x) = \rho_0 \exp(-\beta V(x))$$

em que $\beta = 1/k_BT$.

O algoritmo de Metropolis-Hastings permite gerar um sequência de posições que tende **assimptóticamente** para a distribuição $\rho(x)$. O processo é o seguinte:

- 1. Gera-se uma posição inicial x_0 .
- 2. Propõe-se uma transição

$$x_0 \to x_1 = x_0 + \Delta x$$
.

em que Δx tem uma distribuição uniforme num intervalo $[-\Delta, +\Delta]$

3. Calcula-se a probabilidade

$$p = \min[1, \exp(-\beta V(x_1)) / \exp(-\beta V(x_0))].$$

- 4. Aceita-se a transição ($x_0 = x_1$) com probabilidade p e rejeita-se ($x_0 = x_0$) com probabilidade 1 p (método de aceitação/rejeição de Von-Neumann).
- 5. Volta-se a 2.

A sequência de valores assim gerados tem uma distribuição **assimptótica** dada por $\rho(x)$.

Actividade 9 Use este algoritmo para gerar a distribuição correspondente a um potencial de oscilador harmónico, $V(x) = kx^2/2$. Represente um histograma da posições obtidas. Verifique se a variação da temperatura conduz ao resultado esperado.

Estude o número de iterações requeridas para convergir para a distribuição assimptótica e o efeito da escolha de Δ , quer na convergência, quer no número de recusas. O que acontece se Δ não for escolhido convenientemente (demasiado grande ou demasiado pequeno)? Pode escolher sempre o mesmo Δ independentemente de β ?

Sugestão de exploração Imagine que o potencial é um duplo poço

$$V(x) = \frac{1}{2}k(x^2 - 1)^2$$

e $k_BT\ll k$. O que pode acontecer quando a coordenada se aproximar de um dos mínimos, $x=\pm 1$? Experimente!

8 Simulação do Modelo de Ising

O modelo de Ising é um modelo de variáveis binárias $s_i = \pm 1$ (spins), dispostas nos nodos de uma rede, com uma energia que depende da configuração relativa de vizinhos na rede:

$$E(\mathbf{s}) = -\sum_{\langle ij\rangle} s_i s_j$$

A soma $\langle ij \rangle$ é sobre vizinhos na rede. Cada par de spins vizinhos com o mesmo valor contribui $s_i s_j = -1$ para a energia total, e com valores opostos com $s_i s_j = +1$. Por isso, o sistema tem dois estados fundamentais $\{s_i = 1, i = 1, \dots N\}$ e $\{s_i = -1, i = 1, \dots N\}$. A função de partição é dada por

$$\mathcal{Z} = \sum_{\{\mathbf{s}\}} \exp\left(-E(\mathbf{s})/k_B T\right),\,$$

e o valor médio de qualquer variável do espaço de fase, $A(\mathbf{s})$,

$$\langle A \rangle = \frac{1}{\mathcal{Z}} \sum_{\{\mathbf{s}\}} A(\mathbf{s}) \exp\left(-E(\mathbf{s})/k_B T\right).$$

Contudo, estas somas têm 2^N termos e são impossíveis de fazer por enumeração exaustiva de estados para sistemas com um número aceitável de spins. Somos levados a usar um método de amostragem da soma, gerando uma sequência de M estados \mathbf{s}_r com uma probabilidade de ocorrência $\propto \exp\left(-E(\mathbf{s}_r)/k_BT\right)$, e aproximando

$$\langle A \rangle \approx \frac{1}{M} \sum_{r=1}^{M} A(\mathbf{s}_r).$$

O algoritmo de Metropolis é usado para gerar esta cadeia:

- 1. É gerada uma configuração inicial de spin \mathbf{s}_0 ;
- 2. É escolhido à sorte um spin i; é calculada a variação de energia ΔE na transformação $s_i \rightarrow -s_i$:
- 3. Se $\Delta E \leq 0$ a inversão $s_i \to -s_i$ é realizada; se $\Delta E > 0$,o spin i é invertido com probabilidade $\exp(-\Delta E/k_BT)$, usando o método de rejeição de Von Neumann.
- 4. Volta-se a 2.

Na cadeia de estados assim obtida, uma configuração de spin s tem, assimpóticamente, uma probabilidade de ocorrência $\propto \exp(-E(\mathbf{s})/k_BT)$.

A listagem 4 mostra uma programa completo de simulação, com um varrimento de uma gama de temperaturas, e com o cálculo da energia e da magnetização por spin:

$$\epsilon = \frac{1}{N} \langle E(\mathbf{s_r}) \rangle$$

$$m = \frac{1}{N} \langle \sum_{i} s_i \rangle.$$

Algorithm 4 Listagem de ising_simulation.py, para simulação do modelo de Ising.

```
Ising Model simulation
#-----
                 Main Parameters
#
from ising import *
MCS = 4000
                                  # Monte Carlo Steps
MCSTHERMAL=400
                                  # Thermalization steps
N = 32
                                  # Linear Lattice size
temperatures= arange(2.,3.,.05)
                                 # Temperatures of simulation
f = open("teste.dat","w")
                                  # Output file
#
                   Temperature cycle
for t in temperatures:
    avgMag=0.0
                                  # accumulates magnetization
    avgEnerg=0.0
                                  # accumulates energy
    Create a list of N*N spins
    spin = createState(N,'ferro')
    Tabulate Boltzmann wheights
    bws=boltzmanWeights(t)
#
#
    Create an instance of Lattice class
    s1=Lattice(N, spin, energy(spin, N), mag(spin))
#
#
                    Monte Carlo cycle
#
#
    Thermalize
    for r in range(MCSTHERMAL*N*N):
        s1.update(bws)
    Measure
    for r in range(MCS*N*N):
        s1.update(bws)
        avgMag += s1.mag/float(N*N)
        avgEnerg += s1.energy/float(2.*N*N)
#
#
                   normalize and print
    avgMag /= float(MCS*N*N)
    avgEnerg/=float(MCS*N*N)
    f.write(\%6.2f\t\%6.2f\t\%6.2f\n\% (t,avgMag,avgEnerg))
f.close()
```

A estrutura deste programa é simples:

- Fixa os parâmetros da simulação: número de passos de Monte-Carlo por spin (MCS); o número de passos de termalização (MCSTHERMAL) para garantir que a distribuição dos estados da cadeia usados para cálculo de médias é a distribuição assimptótica, $\propto \exp{(-E(\mathbf{s}_r)/k_BT)}$; tamanho linear da rede (N); gama de temperaturas (temperatures).
- Faz um ciclo sobre as temperaturas (uma cópia da simulação para cada temperatura).
- Faz o ciclo da Monte-Carlo para cada temperatura, acumulando a magnetização (avgMag) e energia (avgEnerg).

Todos os detalhes da simulação estão escondidos no módulo ising.py, que proporciona:

- funções de criação de uma configuração inicial (createState); de medição da respectiva energia (energy) e magnetização (mag);
- uma função de inicialização dos pesos de Boltzmann requeridos pela simulação. Num modelo de Ising as variações de energia possíveis são discretas, e acelera muito a simulação tabelar $\exp(-\Delta E/k_BT)$ em vez de calcular exponenciais em cada passo.
- uma classe Lattice, que é o centro da simulação: esta classe tem como propriedades:
 - N, a dimensão **linear** da rede;
 - state, o estado dos spins;
 - energy, a energia;
 - mag, a magnetização total;

Tem um *método* update, que tem como argumento a lista de pesos de Boltzamnn, e que realiza um passo da simulação, actualizando as propriedades da instância de Lattice: o estado dos spins, as respectivas energia e magnetização.

Actividade 10 A tarefa desta actividade é escrever o módulo ising.py. As funções aí definidas estão documentadas na listagem 5. Neste caso foi implementado o modelo na rede quadrada. É mais simples começar por uma cadeia linear, embora esta só tenha estado ferromagnético a T=0.

Notas

- 1. Num passo de Monte-Carlo só varia um spin. Não é necessário recalcular a energia ou a magnetização de toda a rede: basta calcular a respectiva variação. Por essa razão, a energia e magnetização, são propriedades da classe Lattice. São actualizadas a partir das respectivas variações.
- 2. As condições fronteira periódicas são uma das questão mais delicadas da simulação. Numa rede linear, o spin s_i só interage com s_{i-1} e s_{i+1} . A energia (multiplicada por 2) pode ser obtida somando sobre i a expressão

$$s[i] * (s[i+1] + s[i-1]).$$

Contudo, esta expressão não funciona se i = 0 ou i = N - 1: os vizinhos de i = 0 são s_{N-1} e s_2 , e os de s_{N-1} são s_0 e s_{N-2} . Este facto corrige-se facilmente usando divisão de inteiros. Como i%j é o resto da divisão inteira de i por j,

$$s[i] * (s[(i+1)\%N] + s[(i-1+N)\%N])$$

Uma técnica inteiramente semelhante pode ser usada em qualquer rede quadrada, cúbica, ou hipercúbica em d dimensões.

Actividade 11 Use o programa que escreveu para explorar os resultados de uma simulação de Monte-Carlo.

- registe a evolução de energia a magnetização durante a simulação, para várias temperaturas; verifique se as flutuações dependem da temperatura.
- varie o estado inicial ('random' ou 'ferro')
- compare simulações de tamanho variável $(4 \times 4.8 \times 8, 16 \times 16, 32 \times 32)$

Referências

- [1] Física Estatística e Computacional, 2007, Aulas na Web, J. M. Nunes da Silva, http://elearning.fc.up.pt/aulasweb0607/file.php/109985/moddata/forum/250473/15023/PC-FEC-v3.tar.bz2
- [2] Física Estatística e Computacional, Notas das teóricas, 2008, Aulas na Web, J. M. Nunes da Silva http://elearning.fc.up.pt/aulasweb0607/mod/resource/view.php?id=411499
- [3] Statistical Mechanics: Entropy, Order Parameters and Complexity, James P. Sethna, Oxford Master Series in Condensed Matter, Oxforf University Press, 2006. Disponível online em http://pages.physics.cornell.edu/sethna/StatMech/

Algorithm 5 Listagem das docsctrings do módulo Ising.py

```
createState(N, type='random')
    Returns array of N*N spins +1 or -1
    if type='ferro' all spins +1
    if type='random' (default) equal probability
   +1 or -1
mag(state)
    returns unormalized magnetization of spin array
    M = s1 + \ldots + sN
energy(state, N)
    returns energy of \mathbb{N}*\mathbb{N} spins arranged in
    square lattice with periodic boundary
    conditions
    J = 1
boltzmanWeights(temperature)
    Returns array[exp(-4/temperature),exp(-8/temperature)]
    for Ising model in square lattice
    Delta_E=8,4,0,-4,-8.
    simulation requires only exp(-4/T), exp(-8/T)
class Lattice
    Methods defined here:
    __init__(self, N, state, energy, mag)
        Lattice is initialized with
        N -linear dimension
        state - chain of N*N spins
        energy = energy(state,N)
        mag= mag(state)
   update(self, bweights)
        performs one simulation update
 1
        with Metropolis algorithm
```