

a characterization of the radical of an ideal

 ${\bf Canonical\ name} \quad {\bf ACharacterization Of The Radical Of An Ideal}$

Date of creation 2013-03-22 18:04:50 Last modified on 2013-03-22 18:04:50

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771)
Entry type Derivation
Classification msc 16N40
Classification msc 13-00
Classification msc 14A05

Proposition 1. Let I be an ideal in a ring R, and \sqrt{I} be its radical. Then \sqrt{I} is the intersection of all prime ideals containing I.

Proof. Suppose $x \in \sqrt{I}$, and P is a prime ideal containing I. Then R-P is an http://planetmath.org/MSystemm-system. If $x \in R-P$, then $(R-P) \cap I \neq \emptyset$, contradicting the assumption that $I \subseteq P$. Therefore $x \notin R-P$. In other words, $x \in P$, and we have one of the inclusions.

Conversely, suppose $x \notin \sqrt{I}$. Then there is an m-system S containing x such that $S \cap I = \emptyset$. Enlarge I to a prime ideal P disjoint from S, so that $x \notin P$ (we can do this; for a proof, see the second remark in http://planetmath.org/MSystemthis entry). By contrapositivity, we have the other inclusion.

Remark. This shows that every prime ideal is a radical ideal: for \sqrt{P} is the intersection of all prime ideals containing P, and if P is itself prime, then $P = \sqrt{P}$.