Deep Learning

WEEK 8

Outline

Neural network introduction

Typical deep learning architecture

Neurons & mathematic abstraction

Deep neural network

Key concepts

Components

Objectives

Layers

Activation

Optimizer

Regularization

Callback

Activation

11/1/2017 5

Optimizers

Dropout

(a) Standard Neural Net

(b) After applying dropout.

Convolutional neural networ

Center element of the kernel is placed over the

source pixel. The source pixel is then replaced

with a weighted sum of itself and nearby pixels.

(4 x 0) (0 x 0)

 (0×0)

 (0×0)

(0 x 1)

Pooling

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

How many parameters needed?

200X200 pixel image? If using full connected network, 1 layer

200X200 pixel image? If using full connected network, 2 layer, hidden layer with 10 units?

Conv Net: 10 features (size=5) for 3 conv layers + FC (10 unit)?

Recurrent neural network

Standard RNN

LSTM (Long-Short-Term-Memory)

