OUTSOURCE FLUID SOLUTIONS LLC.

0.3°

208' TVD

TEL: (337) 394-1078

Operator MAG	NOLIA (OII & G	242	Contractor	TERS	ON	County / Parish /	Block YETTE		Engineer S	Start Date 5/09/2	24 hı	ftg. 3,03	13 ft	1	Drilled D	epth 3,03	3 ft	
Well Name and No				Rig Name an		511	State			Spud Date			ent ROP	, J II	,	Activity	5,05	J 11	
	AINIER	A-1H			248			EXAS			5/13/2 ⁻		0 ft				TOC		
Report for Jesse Co	llinson	/.lim Ha	arrison	Report for	ol Pus	her	Field / OCS-G #	DINGS		Fluid Type	WBM	Circu	lating Rate		(Circulati	_	ssure Si	
00000 00			TY SPECIF					LUME (BE	RI)		UMP #1		PUM	_		RISE		OOST	ŒR
Weight	PV	YP	GELS	рН	API fl	% Solids	In Pits		5 bbl	Liner S			er Size	5.2	25	Liner		5.2	
8.4-9.2	0-10	0-10	<5 <10	6.8-8	<25	2-10	In Hole		2 bbl	Stroke			troke	12		Strol		12	
				5/14/21			Active	805	5 bbl	bbl/st	:k 0.	0763 b	bl/stk	0.07	763	bbl/s	stk	0.07	763
Time Sample	Taken			2:00			Storage			stk/mi			k/min			stk/n	nin		
Sample Locati				Suction			Tot. on Lo	cation 135	7 bbl	gal/m	in	0 ga	al/min	0		gal/n	nin	0)
Flowline Temp	perature °F	=		86 °F				PHHP = 0			CIRCU	LATION D	ATA			n = 0.	415	K = 22	9.946
Depth (ft)				3,026'			Bit	Depth = 20	08 '		Was	hout = 5%		F	ump	Efficie	ncy =	95%	,
Mud Weight (p	opg)			9.1			Drill String	Volume	to Bit	2.0 bl	bl s	Strokes To B	it		7	Time T	o Bit		
Funnel Vis (se	ec/qt)		@ 83 °F	36			Disp.	Bottoms U	p Vol.	48.2 b	obl Bo	tomsUp Stk	s		Botton	nsUp ⁻	Γime		
600 rpm				8			7.3 bbl	Riser Anı	n. Vol.	28.7 b	obl	Riser Stroke	s		Riser	Circ.	Γime		
300 rpm				6				DRILLIN	G ASS	EMBLY	DATA			SC	DLIDS	CON	TRO	L	-
200 rpm				5			Tubulars	OD (in.)	ID	(in.)	Length	Тор		Unit		Scree	ens	Hou	urs
100 rpm				3			Drill Pipe	5.000	4.7	760	0'	0'	Sh	naker	1	14	0	10	.5
6 rpm				2			Hevi Wt	5.000	3.0	000	88'	0'	Sł	naker	2	14	0	10	.5
3 rpm				1			Collars	7.750	3.2	250	81'	88'	Sł	naker	3	14	0	10	.5
Plastic Viscos	ity (cp)		@ 120 °F	2			Dir. BHA	7.938	3.1	170	39'	169'	NO	V Drye	ers	14	0	10	.5
Yield Point (lb.	/100 ft²)		T0 = 0	4				CASIN	IG & H	IOLE D	ATA		Desan	der/ De	esilter			10	.5
Gel Strength (lb/100 ft²)	10	sec/10 min	2/3			Casing	OD (in.)	ID	(in.)	Depth	Тор	Cer	ntrifuge	e 1			10	.5
Gel Strength (lb/100 ft ²)		30 min	5			Riser	20	19.	000	108'		VC	LUM	E AC	COUN	TING	(bbl	s)
API Filtrate / C	Cake Thick	ness		25/3			Surface					108'	Pr	rev. To	otal or	n Loca	ition		0.0
HTHP Filtrate	/ Cake Th	ickness	@ 0 °F				Int. Csg.					108'	Tra	ansfer	rred Ir	n(+)/O	ut(-)		
Retort Solids (Content			5.7%			Washout 1								Oil	Added	d (+)		0.0
Retort Oil Con	itent						Washout 2							Е	Barite .	Added	d (+)		0.0
Retort Water	Content			94.3%			Oper	n Hole Size	14.	175	3,033'		Oth	er Pro	duct	Usage	(+)		2.4
Sand Content				0.3%			AN	NULAR GE	OME	FRY & F	RHEOLO	GY		V	Vater .	Added	d (+)	29	975.1
M.B.T. (Methy	lene Blue	Capacity)	(ppb)				annula		eas.	veloci	•			Lef	t on C	utting	s (-)	-5	592.0
рН				7.3			section	de de	pth	ft/mii	n reg	g lb/gal	SAND	TRA	P/ DE	SAND	ER	-7	796.0
Alkalinity, Muc	l Pm						19x5	8	88'	0.0	lan	9.10	DU	JMP N	/W C	ONTR	OL	-2	233.0
Alkalinities, Fi	Itrate Pf/M	f					19x7.7	5 1	08'	0.0	lan	9.10	E	Est. To	otal or	n Loca	ition _	13	356.5
Chlorides (mg	/L)			300			14.175x7	.75 1	69'	0.0	lan	9.10	Est	. Loss	es/Ga	ains (-)/(+)		0.0
Calcium (ppm)			40			14.175x7.	938 2	08'	0.0	lan	9.10		BIT I	IYDR	AULI	CS D	ATA	
Excess Lime (lb/bbl)												Bit H	I.S.I.	Bit A	ΔΡ	Nozzl	es (32	?nds)
Average Spec	ific Gravity	y of Solids	3	2.60	2.60	2.60							0.0	00	p	si	14	14	14
Percent Low 0		lids		5.6%									Bit Im		Noz Velo		14	14	14
Percent Drill S	Solids			5.6%					1				For	ce	(ft/se	ec)	14	14	14
PPA Spurt / T	otal (ml) @	0	@ 0 °F				BIT D	l		nuf./Typ		TERA 616	0 11		0				
Estimated Tot	al LCM in	System	ppb				Size	Depth In			Footage		r Mot	tor/MV	VD	Calc.	Circ.	Press	sure
Sample Taker				R. Bowlin			13 1/2	108 ft	9	.0	2,925 ft	325.0	<u> </u>						
Remarks/Reco	mmendation	ons:					Rig Activity:												

OBM RECEIVED: 1860bbls @ \$65.00_665bbls @ \$10.00

Pump Rate @ 883-GPM

MWD Temp: 109 Degress

Finalized rigging up and performing operational checks. PU the 13.5" directional BHA and spud in. Pretreated the active with SAPP and detergent, built SAPP and detergent laden sweeps and pumped the same every stand for the first 1,000' and every other from 1,000'MD to 2,700'MD. Soap and SAPP sticks down the DP every connection after 500'MD. Maintained the density at 8.5-8.7ppg until 2,700'MD at this depth allowed to density to increase to 9.1-9.2ppg and viscosity at 36-38 seconds. At TD pumped (2) 30BBL SAPP/ detergent sweeps as the clean up cycle. Observed trace amounts of reactive clays (GUMBO). TD surface at 3,033'MD. At the time of the am report TOOH.

Е	ng. 1:	Mil	ke Wa	ashbu	ırn	Er	ng. 2:	Rob	Bowlin	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
	hone: P 1			5-577 G 1				956-8 C 0	carefully	and may be		o elects, however,	, no representati	as been prepared on is made as to the	\$4,272.92	\$16,774.78
												INCLUDI	NG 3RD PAR	TY CHARGES	\$4,272.92	\$16,774.78

Report #3

TEL: (337) 394-1078

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

0.0° 0' TVD

Operator MAG	NOLIA	OIL & G	SAS	Contractor PA	TERSO	ON .	County / Parish /	Block		Engineer Start	Date 09/21	24 hr f	tg. Oft		Drilled	Depth 3,03	3 ft
Well Name and No				Rig Name ar			State			Spud Date		Currer	nt ROP		Activity		
Report for	AINIER	R A-1H		Report for	248		Field / OCS-G #	EXAS		05/ ² Fluid Type	13/21	Circula	0 ft/hr			sting ting Pres	BOP's
Brandon	Parks/	/ Bobby	Gwin		ol Pusi	ner		DINGS			вм		0 gpm			3	
	MUD	PROPER	TY SPECIF	ICATION	S		MUD VO	LUME (B	BL)	PUI	MP #1		PUMP #2	2	RIS	ER BO	OOSTER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	63	3 bbl	Liner Size	5.2	5 Line	r Size 5	5.25	Liner	Size	5.25
8.5-9.8	5-16	8-12	>400	±275K	<10 <15	<8	In Hole	28	ldd 0	Stroke	12	Str	oke	12	Stro	ke	12
	l			5/14/21			Active	63	3 bbl	bbl/stk	0.07	63 bb	l/stk 0.0	0763	bbl	/stk	0.0763
Time Sample	Taken			1:00			Storage	e <u>16</u>	12 bbl	stk/min		stk	/min		stk/	min	
Sample Locati	ion			storage			Tot. on Lo	cation 25	25 bbl	gal/min	0	gal	/min	0	gal/	min	0
Flowline Temp	perature °	F						PHHP = ()	C	CIRCULA	ATION DA	ΛTA		n = 0	.547	K = 218.115
Depth (ft)				3,033'							Washo	ut = 2%		Pump	Effici	ency =	95%
Mud Weight (բ	opg)			8.9			Drill String	Volum	e to Bit	0.0 bbl	Stro	kes To Bit			Time	To Bit	
Funnel Vis (se	ec/qt)		@ 82 °F	45			Disp.	Bottoms I	Jp Vol.	0.0 bbl	Bottor	nsUp Stks		Botto	msUp	Time	
600 rpm				19			0.0 bbl	Riser Ar	n. Vol.	0.0 bbl	Ris	er Strokes		Rise	er Circ.	Time	
300 rpm				13				DRILLIN	IG AS	SEMBLY D	ATA		,	SOLID	s co	NTRO	L
200 rpm				12			Tubulars	OD (in.)	ID	(in.) Le	ength	Тор	Uni	t	Scre	ens	Hours
100 rpm				8							0'	0'	Shake	er 1	14	10	
6 rpm				4								0'	Shake	er 2	14	10	
3 rpm				3								0'	Shake	er 3	14	10	
Plastic Viscos	ity (cp)		@ 150 °F	6								0'	NOV Di	yers	14	10	
Yield Point (lb.	/100 ft²)		T0 = 2	7				CASI	NG & I	HOLE DAT	A						
Gel Strength (lb/100 ft²)	10	sec/10 min	3/5			Casing	OD (in.)	ID	(in.)	epth	Тор	Centrifu	ige 1			
Gel Strength (lb/100 ft ²)	ı	30 min	7			Riser	20			108'		VOLU	ME AC	COU	NTING	(bbls)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	10.0			Surface	10 3/4	9.	.950 3	,018'	108'	Prev.	Total o	on Loc	ation	1356.5
HTHP Cake T	hickness	(32nds)		2.0			Int. Csg.					108'	Transf	erred	In(+)/0	Out(-)	2525.0
Retort Solids (Content			8%			Washout 1							Oi	l Adde	d (+)	0.0
Corrected Sol	ids (vol%)	ı		6.2%			Washout 2							Barite	Adde	d (+)	0.0
Retort Oil Con	itent			70.5%			Oper	n Hole Size	e 0.	.000 3	,033'		Other F	roduct	t Usag	e (+)	0.0
Retort Water	Content			21.5%			ANI	NULAR G	EOME	TRY & RH	EOLOG	Y		Water	r Adde	d (+)	
O/W Ratio				77:23			annulai		eas.	velocity	flow	ECD	L	eft on	Cuttin	gs (-)	0.0
Whole Mud C	hlorides (r	mg/L)		45,000			section	n d	epth	ft/min	reg	lb/gal					
Water Phase	Salinity (p	pm)		247,103									WBM	Sent to	o Disp	osal	-1356.5
Whole Mud Al	kalinity, P	om		0.9									Est.	Total o	on Loc	ation _	2525.0
Excess Lime (lb/bbl)			1.2 ppb									Est. Los	sses/G	ains (-)/(+)	0.0
Electrical Stab	ility (volts)		278 v									ВІТ	HYDI	RAUL	CS D	ATA
Average Spec	ific Gravit	y of Solids	5	3.06									Bit H.S.I.	Bit	ΔΡ	Nozzl	es (32nds)
Percent Low 0	Gravity So	lids		3.7%													
ppb Low Grav	ity Solids			31 ppb									Bit Impac	t I	zzle ocity		
Percent Barite)			2.5%									Force		sec)		
ppb Barite				36 ppb			BIT D	ATA	Ма	anuf./Type	ULTE	RA 616					
Estimated Tot	al LCM in	System	ppb				Size	Depth In	H	ours Fo	ootage	ROP ft/hr	Motor/N	MMD	Calc	. Circ.	Pressure
Sample Taker	п Ву			R. Bowlin	0	0											
Remarks/Reco	mmendati	ons:					Rig Activity:										

OBM RECEIVED: 1860bbls @ \$65.00_665bbls @ \$10.00

OBM on surface/ storage 2245bbls

Testing BOP's

Made a wiper trip while waiting on Franks casing crew to arrive on location. $\,RU\,$ Franks and ran the 10.75" surface casing to bottom setting the shoe at 3,018'MD. RU Nine cementers and cemented the surface casing in good fashion, observed cement back to surface dumping 40bbls of spacer and 130bbls of excess cement.

Displaced cement with 8.9-9.0ppg OBM. Cleaned rig pits and filled the same with

8.9ppg OBM, this volume is currently being reconditioned with CaCl2 to maintain the WPS of the H2O used to wash on top of the surface plug. Additions of Lime, Mul, Wet, Bentone 38/990 and Opti-G are currently being made for upcoming fast hole operation's. The mud check was on the frac volume absent of good circulation and no shear.

Er	ng. 1:	N	latt M	eeha	n	Er	ng. 2:	Rob	Bowlin	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Pl	none:					Pł	none:	956-8	321-9994	Phone:	432-686-7361					
W 1	P 1	Y 0	E 0	C 0	g 1	G 1	H 2	O 1	carefully	and may be		o elects, however,	, no representation	as been prepared on is made as to the	\$2,040.00	\$18,814.78
												INCLUDI	NG 3RD PAR	TY CHARGES	\$2,040.00	\$18,814.78

OUTSOURCE FLUID SOLUTIONS LLC.

12.3°

4,432' TVD

TEL: (337) 394-1078

	NOLIA (OIL &	GAS		TTERSO	ON		Block YETTE			Date)9/21	24 hr f	1,471 ft	:		^h 504	ft
Well Name and No.	AINIER	R A-1H	I	Rig Name ar	nd No. 248		State TE	EXAS		Spud Date 05/1	3/21	Currer	350 ft/h		Activity D r	illin	ıg
Report for				Report for			Field / OCS-G #			Fluid Type			ating Rate		Circulating		
Brandon					ol Push	ner		DINGS			BM		603 gpn				psi
		_	ERTY SPECIF	1	_			LUME (BI	•		/IP #1		PUMP #2				OSTER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		60 bbl	Liner Size	5.25			.25	Liner Siz	е	5.25
8.5-9.8	5-16	8-12	2 >400	±275K	<10 <15	<8	In Hole		84 bbl	Stroke	12			12	Stroke		12
				5/14/21		5/14/21	Active		34 bbl	bbl/stk	0.076			0763	bbl/stk		0.0763
Time Sample				2:30		11:00	Storage		68 bbl	stk/min	94			94	stk/min		94
Sample Locati				Suction		suction	Tot. on Loc			gal/min	301			01	gal/mir		301
Flowline Temp	erature °F			123 °F				PHHP = 16		C	IRCULAT						= 239.066
Depth (ft)				3,907'		3,033'	Bit I	Depth = 4,			Washou				Efficiend		
Mud Weight (p	,			8.9		8.9	Drill String Disp.		e to Bit			es To Bit	,		ime To I		5 min
Funnel Vis (se	ec/qt)		@ 105 °F	42		46				307.1 bbl		SUp Stks	,		nsUp Tin		14 min
600 rpm				27		22	37.1 bbl	Riser Ar				Strokes			Circ. Tin		0 min
300 rpm	•			18		15				SEMBLY D					CONT		
200 rpm				12		13	Tubulars	,		` '	ength	Тор	Unit		Screen	S	Hours
100 rpm				8		9	Drill Pipe	5.000	4.:	•	117'	0'	Shake	r 1	170		5.5
6 rpm				5		5	Hevi Wt	5.000	3.	000 2	277'	4,117'	Shake	r 2	170		5.5
3 rpm				4		4	Collars	8.000	3.	250	71'	4,394'	Shake	r 3	170		5.5
Plastic Viscos	ity (cp)		@ 150 °F	9		7	Dir. BHA	8.000	2.:	250	39'	4,465'	NOV Dr	yers	170		5.5
Yield Point (lb.	/100 ft²)		T0 = 3	9		8		CASI	NG & F	HOLE DATA	A						
Gel Strength (lb/100 ft ²)		10 sec/10 min	4/7		4/7	Casing	OD (in.)	ID	(in.) D	epth	Тор	Centrifu	ge 1			2.0
Gel Strength (lb/100 ft ²)		30 min	9		8	Riser	20		1	108'		VOLUM	IE AC	COUNT	NG (bbls)
HTHP Filtrate	(cm/30 mi	in)	@ 250 °F	7.2		8.0	Surface	10 3/4	9.	950 3,	018'	108'	Prev.	Total or	Location	n	2525.1
HTHP Cake T	hickness ((32nds)	1	2.0		2.0	Int. Csg.					108'	Transfe	erred In	ı(+)/Out	-)	
Retort Solids (Content			8.6%		8%	Washout 1							Oil	Added (+)	38.2
Corrected Soli	ds (vol%)			6.4%		6.2%	Washout 2							Barite	Added (+)	13.0
Retort Oil Con	tent			65.4%		70.5%	Oper	Hole Size	e 9.	875 4,	504'		Other P	roduct	Usage (+)	15.2
Retort Water (Content			26%		21.5%	ANI	NULAR G	EOME.	TRY & RHE	OLOGY			Water	Added (+)	60.0
O/W Ratio				72:28		77:23	annular		eas.	velocity	flow	ECD	Le	eft on C	uttings	-)	-125.4
Whole Mud Cl	nlorides (n	ng/L)		55,000		46,000	section	d d	epth	ft/min	reg	lb/gal	Eva	p/ Cent	/ Shake	rs	-24.5
Water Phase	Salinity (p	pm)		249,086		251,215	0x5	1	108'	-886.1		9.16					
Whole Mud Al	kalinity, P	om		2.0		2.5	9.95x5	3,	,018'	199.6	lam	9.35	Est.	Total or	Location	n	2501.5
Excess Lime (lb/bbl)			2.6 ppb		3.3 ppb	9.875x5	5 4,	,117'	203.7	lam	9.55	Est. Los	ses/Ga	ains (-)/(+)	0.0
Electrical Stab	ility (volts))		388 v		356 v	9.875x5	5 4,	,394'	203.7	lam	9.80	BIT	HYDR	AULICS	DAT	ſΑ
Average Spec	ific Gravity	y of Sol	ids	2.68		3.04	9.875x8	3 4,	,465'	440.6	turb	10.08	Bit H.S.I.	Bit 4	ΔP No	zzles	(32nds)
Percent Low 0	Gravity Sol	lids		5.2%		3.8%	9.875x8	3 4,	,504'	440.6	turb	10.35	0.61	134	psi 1	6 1	16 16
ppb Low Grav	ity Solids			43 ppb		31 ppb							Bit Impact	Noz: Velo		1 1	14 14
Percent Barite	,			1.2%		2.5%							Force	(ft/se	-	1 1	14 14
ppb Barite				17 ppb		35 ppb	BIT D	ATA	Ма	anuf./Type	ULTER	RA 613	360 lbs	13	0		
Estimated Tot	al LCM in	System	n ppb				Size	Depth In	Н	ours Fo	otage R	OP ft/hr	Motor/M	WD	Calc. C	rc. P	ressure
Sample Taker	ı Ву			R. Bowlin	0	M.Meehan	9 7/8	2,938 ft	5	5.5 1,5	566 ft	284.7	3,800	psi	4,	532 p	osi
Domorko/Doo							Dia Activity		•		-						

Remarks/Recommendations:

OBM RECEIVED: 1860bbls @ \$65.00_665bbls @ \$10.00

OBM on surface/ storage 2118bbls

OBM LOST_ DAILY 24bbls_TOTAL 24bbls

Pump Rate 900GPM

MWD Temp: 162 Degrees

Rig Activity:

Completed testing BOP's, PU 9.875" directional BHA TIH to float equipment at 2,938'MD. Drilled the shoe track plus 10' of new formation and performed a FIT to 11.6ppg EMW with a 8.8ppg MW at 1,500PSI. Pumping LCM laden sweeps every 300' drilled down, diesel dilutions at 7BPH. Fluid very responsive to the initial treatments, observing minimal shaker runoff when sweeps are back to surface. Currently dusting the MW in 1/10th increments every 1,000' with a target MW of 9.2-9.3ppg by 8,000'MD and an interval final density of 9.6-9.8ppg. Drilling ahead at 4,504'MD at the time of the morning report.

Eng	g. 1:	M	att M	eeha	n	Er	ng. 2:	Rob	Bowlin	WH 1:	MIDLAN	ID	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Pho	one:					Pł	none:	956-8	321-9994	Phone:	432-686-7						
W 1	P 1	Y 1	E 0	C 0	g 1	G 1	H 1	O 1	carefully	and may be		ser so elec	as been prepared on is made as to the	\$12,921.15	\$31,735.93		
	INCLUDING 3RD PARTY CHARGE													TY CHARGES	\$16,118.19	\$34,932.97	

110 Old Market St.

St Martinville, LA 70582

TEL: (337) 394-1078

11.7° 6,171' TVD

Operator		Contractor			County / Parish	h / Block		Engineer	Start Date	24 hr	fta		Drilled I	Denth		
MAGNOLIA OIL	& GAS		TERSO	N	-	YETTE			5/09/21	24111	1,777	ft		6,28	31 ft	t
Well Name and No.		Rig Name ar			State			Spud Dat		Curre	ent ROP		Activity			
RAINIER A-	1H	Report for	248		T Field / OSC-G	EXAS		O Fluid Typ	5/13/21	Circu	348 ft/	nr	Circulat	Dril		
Brandon Parks/ Bo	bbv Gwin	•	ol Push	ner		# DDINGS		Fluid Typ	ОВМ	Circu	603 gp	m		iiig Pie 1,537		
	PERTY SPECI					DLUME (B	BL)	F	PUMP #1		PUMP #			ER B		
Weight PV	YP E.S.	CaCl2	GELS	HTHP	In Pits	•) D bbl	Liner S	Size 5.2	25 Line	er Size	5.25	Liner	Size	5	5.25
8.5-9.8 5-16 8	3-12 >400	±275K	<10 <15	<8	In Hole	e 540) bbl	Strok	e 1	2 S1	troke	12	Stro	ke		12
MUD	PROPERTIES				Active	118	ldd 0	bbl/s	tk 0.0	763 bl	bl/stk 0	.0763	bbl/	stk	0.0	0763
Time Sample Taken		2:30		11:00	Storage	e <u>126</u>	8 bbl	stk/m	in 9	4 st	k/min	94	stk/	min	,	94
Sample Location		Suction		suction	Tot. on Loc	cation 244	-8 bbl	gal/m	in 30)1 ga	al/min	301	gal/	min	3	301
Flowline Temperature °F		123 °F		152 °F	Mud Wt. =	= 8.9 P\	V=9	YP=	9 CIF	RCULATI	ON DATA		n = 0	.585	K =	239.1
Depth (ft)		3,907'		6,281'	Bit [Depth = 6,2	281 '		Wash	out =		Pump	Efficie	ency :	= 959	%
Mud Weight (ppg)		8.9		9.1	Drill String	Volume	to Bit	108.0	bbl Str	okes To B	it 1,416		Time 1	Γο Bit	8	min
Funnel Vis (sec/qt)	@ 105 °F	42		42	Disp.	Bottoms U	Jp Vol.	432.3	bbl Botto	msUp Stk	s 5,665	Botto	omsUp	Time	20) min
600 rpm		27		29	48.7 bbl	Riser An	n. Vol.	-2.6 b	bbl Ri	ser Stroke	s -34	Rise	er Circ.	Time	0	min
300 rpm		18		19		DRILLIN	G ASS	SEMBL	Y DATA			SOLID	s col	NTRO	L	
200 rpm		12		14	Tubulars	OD (in.)	ID	(in.)	Length	Тор	Ur	it	Scre	ens	Н	ours
100 rpm		8		10	Drill Pipe	5.000	4.2	276	5,894'		Shak	er 1	17	0	1	2.0
6 rpm		5		5	Hevi Wt	5.000	3.0	000	277'	5,894'	Shak	er 2	17	0	1	2.0
3 rpm		4		4	Collars	8.000	3.2	250	71'	6,171'	Shak	er 3	17	0	1	2.0
Plastic Viscosity (cp)	@ 150 °F	9		10	Dir. BHA	8.000	2.2	250	39'	6,242'	NOV [ryers	17	0	1	2.0
Yield Point (lb/100 ft²)	T0 = 3	9		9		CASI	NG & I	HOLE [DATA							
Gel Strength (lb/100 ft²)	10 sec / 10 min	4/7		5/8	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centri	uge 1			1	1.0
Gel Strength (lb/100 ft2)	30 min	9		10	Riser	20			108'		VOL	JME A	cou	NTING	G (bb	ols)
HTHP Filtrate (cm/30 min)	@ 250 °F	7.2		8.0	Surface	10 3/4	9.9	950	3,018'	108'	Prev	Total	on Loc	ation	2	2501.5
HTHP Cake Thickness (32r	nds)	2.0		2.0	Int. Csg.					108'	Trans	ferred	In(+)/C	Out(-)		
Retort Solids Content		8.6%		10%	Washout 1							Oi	I Adde	d (+)		108.6
Corrected Solids (vol%)		6.4%		7.9%	Washout 2							Barite	e Adde	d (+)		
Retort Oil Content		65.4%		66%	Open	Hole Size	9.8	375	6,281'		Other	Produc	t Usag	e (+)		
Retort Water Content		26%		24%	ANI	NULAR GI	EOME	TRY &	RHEOLO	GY		Wate	r Adde	d (+)		
O/W Ratio		72:28		73:27	annula	ar de	epth	veloc	ity flow	ECD		_eft on	Cutting	gs (-)	-	-151.5
Whole Mud Chlorides (mg/l	L)	55,000		54,000	section	n de	pui	ft/mi	n reg	lb/gal	Ev	ap/ Ce	nt/ Sha	kers		-10.3
Water Phase Salinity (ppm))	249,086		260,803	0x5	1	08'	-886	.1	9.16						
Whole Mud Alkalinity, Pom		2.0		2.6	9.95x5	5 3,0	018'	199.	6 lam	9.35	Est	Total	on Loc	ation	2	2448.3
Excess Lime (lb/bbl)		2.6 ppb		3.4 ppb	9.875x	5,5	894'	203.	7 lam	9.49	Est. Le	sses/G	ains (-)/(+)		0.0
Electrical Stability (volts)		388 v		404 v	9.875x	.5 6,°	171'	203.	7 lam	9.74	В	T HYD	RAULI	CS D	ATA	
Average Specific Gravity of	Solids	2.68		2.70	9.875x	8 6,2	242'	440.	6 turb	10.02	Bit H.S.	I. Bit	tΔP	Nozz	les (3	32nds)
Percent Low Gravity Solids		5.2%		6.3%	9.875x	8 6,2	281'	440.	6 turb	10.29	0.61	134	l psi	16	16	16
ppb Low Gravity Solids		43 ppb		52 ppb							Bit Impa	∩t I	zzle ocity	14	14	14
Percent Barite		1.2%		1.6%							Force		sec)	14	14	14
ppb Barite		17 ppb		23 ppb	BIT D	DATA	Ма	nuf./Typ	pe ULT	ERA 613	360 lbs	1	30			
Estimated Total LCM in Sys	stem				Size	Depth In	Но	ours	Footage	ROP ft/h	r Motor/	MWD	Calc	. Circ	Pre	ssure

Afternoon Remarks/Recommendations:

Pump a 10 bbl sweep every 300 ft. Sweep Contains:

10 ppb NewCarb, 10 ppb Newphalt and 10 ppb Magnafiber fine

Afternoon Rig Activity:

Drilling ahead and sliding as needed in the vertical section. Pumping a 10 bbl LCM sweep every 300 ft. Increased the mud wt. to 9.1 ppg, Adding Lime and Optimul to maintian the emulsion. Increased the chlorides content with additions of CaCL2. Adding increased amounts of diesel and whole mud to maintain the volume due to rapid ROP.

OUTSOURCE FLUID SOLUTIONS LLC.

11.0°

7,542' TVD

TEL: (337) 394-1078

Operator				Contractor			County / Parish /			Engineer Star		24 hr f	-		Drilled Depth		
MAG Well Name and No	NOLIA (OIL & G	SAS	PA Rig Name ar	TTERSO	ON	FA'	YETTE		05/0 Spud Date	09/21	Currer	3,176 ft		7,6	80 ft	í .
	RAINIER	A-1H		rug rumo u	248		TI	EXAS		05/	13/21		43 ft/hr		Dri	lling	
Report for Brandon	Darke/	Bobby	. Gwin	Report for	ol Pusi	nor	Field / OCS-G #	DINGS		Fluid Type	вм		iting Rate 596 gpm		Circulating Pr 4,58		
Brandon			TY SPECIF			ICI		LUME (BE	RI V		MP #1		PUMP #2	'	RISER E		
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		1 bbl	Liner Size		Line		25	Liner Size		5.25
8.5-9.8	5-16	8-12	>400	±250K	<10 <15	<8	In Hole		4 bbl	Stroke	12	Str		2	Stroke		12
0.0 0.0	0.0	0 .2	7 100	5/16/21	110 110	5/15/21	Active		85 bbl	bbl/stk	0.076			763	bbl/stk		0763
Time Sample	Taken			2:30		11:00	Storage		85 bbl	stk/min	93			13	stk/min		93
Sample Locat				Suction		suction		cation 277		gal/min	298			98	gal/min		298
Flowline Temp		=		166 °F		152 °F		PHHP = 159			CIRCULA	ŭ			n = 0.556	K = 2	269.819
Depth (ft)				7,661'		6,281'	Bit I	Depth = 7,0	680 '		Washou		<u> </u>	Pump E	Efficiency	= 95%	%
Mud Weight (ppg)			9.1		9.1	Delli Orde	Volume	e to Bit	132.9 bb	l Strol	es To Bit	1,741	т	ime To Bi	t 9	min
Funnel Vis (se	ec/qt)		@ 146 °F	40		42	Drill String Disp.	Bottoms U	Jp Vol.	530.8 bb	I Bottom	sUp Stks	6,956	Bottom	nsUp Time	25	min
600 rpm	.,			25		29	57.8 bbl	Riser An	n. Vol.	-2.6 bbl	Rise	r Strokes	-34	Riser	Circ. Time	. 0	min
300 rpm				17		19		DRILLIN	G ASS	EMBLY D	ATA		s	OLIDS	CONTR	OL.	
200 rpm				13		14	Tubulars	OD (in.)	ID	(in.) L	ength	Тор	Unit		Screens	Н	ours
100 rpm				9		10	Drill Pipe	5.000	4.:	276 7	,293'	0'	Shaker	1	170	2:	2.0
6 rpm				5		5	Hevi Wt	5.000	3.	000	277'	7,293'	Shaker	2	170	2:	2.0
3 rpm				4		4	Collars	8.000	3.:	250	71'	7,570'	Shaker	3	170	2:	2.0
Plastic Viscos	ity (cp)		@ 150 °F	8		10	Dir. BHA	8.000	2.	250	39'	7,641'	NOV Dry	ers	170	2	2.0
Yield Point (lb	/100 ft²)		T0 = 3	9		9		CASI	NG & H	IOLE DAT	Ά						
Gel Strength ((lb/100 ft²)	10	sec/10 min	4/6		5/8	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifuç	je 1		5	5.0
Gel Strength ((lb/100 ft ²)		30 min	10		10	Riser	20			108'		VOLUM	IE ACC	COUNTIN	G (bb	ols)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	7.6		8.0	Surface	10 3/4	9.	950 3	,018'	108'	Prev. T	otal on	Location	2	2501.5
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.					108'	Transfe	erred In	(+)/Out(-)	300.0
Retort Solids	Content			10.1%		10%	Washout 1							Oil A	Added (+))	392.8
Corrected Sol	ids (vol%)			8.3%		7.9%	Washout 2							Barite /	Added (+))	12.9
Retort Oil Cor	ntent			68.9%		66%	Oper	n Hole Size	9.	875 7	',680'		Other Pr	oduct l	Usage (+)	13.8
Retort Water	Content			21%		24%	AN	NULAR GI	EOME.	TRY & RH	EOLOGY	,	,	Nater A	Added (+))	
O/W Ratio				77:23		73:27	annula	r m	eas.	velocity	flow	ECD	Le	ft on C	uttings (-	-	-300.9
Whole Mud C	hlorides (n	ng/L)		45,000		54,000	section	de	epth	ft/min	reg	lb/gal	Evap	o/ Cent	/ Shakers		-100.5
Water Phase	Salinity (p	pm)		251,507		260,803	0x5	1	08'	-876.7		9.13	S	Seepag	e Losses		-50.1
Whole Mud A	lkalinity, P	om		2.0		2.6	9.95x5	3,	018'	197.4	lam	9.30	Est. T	otal on	Location	2	2769.7
Excess Lime ((lb/bbl)			2.6 ppb		3.4 ppb	9.875x	5 7,	293'	201.5	lam	9.32	Est. Los	ses/Ga	ins (-)/(+)	0.0
Electrical Stat	oility (volts)		438 v		404 v	9.875x	5 7,	570'	201.5	lam	9.35	ВІТ	HYDR	AULICS	DATA	
Average Spec	cific Gravit	y of Solids	S	2.80		2.70	9.875x8	3 7,	641'	435.9	turb	9.40	Bit H.S.I.	Bit ∆	∆P Noz	zles (3	32nds)
Percent Low (Gravity So	lids		6.2%		6.3%	9.875x8	3 7,	680'	435.9	turb	9.44	0.61	134	psi 16	16	16
ppb Low Grav	rity Solids			51 ppb		52 ppb							Bit Impact	Nozz Veloc		14	14
Percent Barite	•			2.1%		1.6%							Force	(ft/se	-	14	14
ppb Barite				30 ppb		23 ppb	BIT D	ATA	Ма	nuf./Type	ULTE	RA 613	360 lbs	128	8		
Estimated Tot	al LCM in	System	ppb				Size	Depth In	Н	ours Fo	ootage	OP ft/hr	Motor/M	WD	Calc. Cir	c. Pre	ssure
Sample Taker	n By			R. Bowlin	0	M.Meehan	9 7/8	2,938 ft	2	7.5 4,	742 ft	172.4	3,500	osi	4,48	33 psi	Í
Remarks/Reco	ommendatio	ons:					Rig Activity:										

OBM RECEIVED: 2160bbls @ \$65.00_665bbls @ \$10.00

OBM on surface/ storage 2136bbls

Pump Rate 900GPM

MWD Temp: 205 Degrees

Continued drilling ahead from 4,504'MD to 7,680'MD at the time of the am report. Pumping LCM laden sweeps every other connection until 6,920'MD, began pumping 10bbls every connection. Decreased the active density from 9.1ppg to 8.9ppg in an attempt to help during slides, observed no change in drilling parameters. Hole continued to drill erratically, stacking weight during slides. Torque 8-22K, ROP 486'hr, 80 Rotary. Active density currently at 9.1ppg, making aggressive dilutions with diesel at 30BPH. Began drill H2O additions at 2BPH, CaCl2 additions will be made aty a proportional rate to maintain WPS @ 250k. Processing the active at a slow rate with the NOV centrifuge to remove/ maintain low gravity solids percentage.

En	g. 1:	N	latt M	eeha	n	Er	ng. 2:	Rob	Bowlin	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Ph	one:					Pł	none:	956-8	321-9994	Phone:	432-686-7361					
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	used if the user		r, no representati	nas been prepared on is made as to the	\$10,272.61	\$42,008.54
												INCLUD	ING 3RD PAR	TY CHARGES	\$48,274.91	\$83,207.88

Report #6

TEL: (337) 394-1078

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

11.0° 9,353' TVD

	NOLIA (OIL & (GAS		TTERSO	ON		Block YETTE			Date)9/21	24 hr f	1,941 ft			21 ft	
Well Name and No.	AINIER	Δ-1Η		Rig Name ar	1d No.		State TF	EXAS		Spud Date 05/1	13/21	Currer	0 ft/hr		tivity hange	Rot H	lead
Report for		- A III		Report for	240		Field / OCS-G #	-//-		Fluid Type	10/21	Circula	ating Rate		culating Pro		
Brandon	Parks/	Bobb	y Gwin	То	ol Pusi	ner	GID	DINGS		O	вм		0 gpm		ı	osi	
	MUD	PROPE	RTY SPECIF	ICATION	S		MUD VO	LUME (BE	BL)	PUN	/IP #1		PUMP #2	1	RISER E	OOST	ſER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	64	6 bbl	Liner Size	5.25	Line	r Size 5.	25 L	iner Size	5.2	25
8.5-9.8	5-16	8-12	>400	±250K	<10 <15	<8	In Hole	86	1 bbl	Stroke	12	Str	oke 1	2	Stroke	12	2
			I	5/17/21	5/16/21	5/16/21	Active	149	97 bbl	bbl/stk	0.076	3 bb	l/stk 0.0	763	bbl/stk	0.07	763
Time Sample	Taken			2:30	18:46	11:30	Storage	107	75 bbl	stk/min		stk	/min		stk/min		
Sample Locati	on			Suction	Shaker	suction	Tot. on Loc	cation 258	32 bbl	gal/min	0	gal	/min	0	gal/min	0)
Flowline Temp	erature °F	=		192 °F	201 °F	168 °F		PHHP = 0)	С	IRCULA	TION DA	ATA	n	= 0.657	K = 22	20.195
Depth (ft)				9,549'	9,148'	8,599'	Bit [Depth = 9,	525 '		Washou	t = 2%		Pump E	ficiency	= 95%	,
Mud Weight (p	opg)			9.5	9.3	9.0	Drill String	Volume	e to Bit	165.6 bbl	Strok	es To Bit	i	Tir	ne To Bit		
Funnel Vis (se	ec/qt)		@ 168 °F	43	39	40	Disp.	Bottoms U	Jp Vol.	685.7 bbl	Bottom	sUp Stks	i	Bottoms	Up Time		
600 rpm				41	35	26	69.8 bbl	Riser An	ın. Vol.	-2.6 bbl	Rise	r Strokes	i	Riser C	irc. Time		
300 rpm				26	22	17		DRILLIN	G ASS	SEMBLY D	ATA		S	OLIDS	CONTRO	DL	
200 rpm				21	18	13	Tubulars	OD (in.)	ID	(in.) Le	ength	Тор	Unit	5	Screens	Hou	urs
100 rpm			14	13	10	Drill Pipe	5.000	4.	276 9,	,138'	0'	Shaker	1	170	23	.0	
6 rpm				7	6	5	Hevi Wt	5.000	3.	.000 2	277'	9,138'	Shaker	2	170	23	.0
3 rpm				6	5	4	Collars	8.000	3.	250	71'	9,415'	Shaker	. 3	170	23	.0
Plastic Viscosi	ity (cp)		@ 150 °F	15	13	9	Dir. BHA	8.000	2.	250	39'	9,486'	NOV Dry	ers/	170	23	.0
Yield Point (lb/	/100 ft²)		T0 = 5	11	9	8		CASI	NG & I	HOLE DATA	A						
Gel Strength (lb/100 ft²)	10) sec/10 min	7/10	6/9	4/7	Casing	OD (in.)	ID	(in.) D	epth	Тор	Centrifuç	ge 1		6.	.0
Gel Strength (lb/100 ft ²)		30 min	13	12	10	Riser	20		1	108'		VOLUN	IE ACC	DUNTIN	G (bbl	s)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	8.0	8.0	7.6	Surface	10 3/4	9.	950 3,	,018'	108'	Prev. 7	otal on	ocation	27	769.7
HTHP Cake T	hickness	(32nds)		2.0	2.0	2.0	Int. Csg.					108'	Transfe	erred In(+)/Out(-)		
Retort Solids (Content			11.7%	11.5%	9.8%	Washout 1							Oil A	dded (+)	1	157.5
Corrected Soli	ds (vol%)			9.6%	9.8%	7.9%	Washout 2							Barite A	dded (+)		18.8
Retort Oil Con	tent			66%	67.2%	68.2%	Open	Hole Size	10	.073 9,	,621'		Other Pr	roduct U	sage (+)		17.9
Retort Water (Content			22.3%	21.3%	22%	ANI	NULAR GI	EOME	TRY & RHE	EOLOGY		,	Water A	dded (+)		70.2
O/W Ratio				75:25	76:24	76:24	annular		eas.	velocity	flow	ECD	Le	ft on Cu	ttings (-)	-1	191.3
Whole Mud Ch	nlorides (n	ng/L)		53,000	44,000	48,000	section	de	epth	ft/min	reg	lb/gal	Eva	o/ Cent/	Shakers	-1	177.8
Water Phase	Salinity (p	pm)		271,500	244,669	254,914	0x5	1	08'	0.0		9.50	8	Seepage	Losses	-	-83.1
Whole Mud Al	kalinity, P	om		1.8	1.7	2.5	9.95x5	3,	018'	0.0	lam	9.50	Est. T	otal on	Location	25	581.9
Excess Lime (lb/bbl)			2.3 ppb	2.2 ppb	3.3 ppb	10.073x	5 9,	138'	0.0	lam	9.50	Est. Los	ses/Gair	ns (-)/(+)		0.0
Electrical Stab	ility (volts)		448 v	411 v	447 v	10.073x	5 9,	415'	0.0	lam	9.50	BIT	HYDRA	ULICS	ATA	
Average Spec	ific Gravit	y of Solid	ls	2.92	2.75	2.67	10.073x	8 9,	486'	0.0	lam	9.50	Bit H.S.I.	Bit ∆l	Noz	zles (32	2nds)
Percent Low G	Gravity So	lids		6.4%	7.5%	6.5%	10.073x	8 9,	525'	0.0	lam	9.50	0.00	psi	16	16	16
ppb Low Grav	ity Solids			53 ppb	62 ppb	53 ppb							Bit Impact	Nozzl Veloci		14	14
Percent Barite	!			3.1%	2.3%	1.5%			1				Force	(ft/sec	-	14	14
ppb Barite				45 ppb	32 ppb	21 ppb	BIT D	ATA	Ma	anuf./Type	ULTE	RA 613	0 lbs	0			
Estimated Total	al LCM in	System	ppb				Size	Depth In	H	ours Fo	otage R	OP ft/hr	Motor/M	WD C	alc. Circ	. Pres	sure
Sample Taken	в Ву			R. Bowlin	R. Bowlin	M.Meehan	9 7/8	2,938 ft	5	6,6	683 ft	132.3	psi				
Remarks/Reco	mmondoti						Ria Activity:										

OBM RECEIVED: 2160bbls @ \$65.00_665bbls @ \$10.00

OBM on surface/ storage 1721bbls

Pump Rate 800GPM

MWD Temp: 234 Degrees

Rig Activity:

Continued to drill ahead on the intermediate section from 7,680'MD to MD at the time of the morning report. Pumping 10bbl/12.5PPB LCM laden sweeps every stand, sweeps consist of MagmaFiber Fine, NewCarb Med, NewPhalt and Opti-G. Increased the active density to 9.4ppg due to observed sloughing, at 9,160"MD. Made drill H2O additions at 2BPH for 12 hours and increased to 4BPH at 20:00hrs, proportional additions of CaCl2 are being made to maintain water phase salinity at 250,000. At 9,077'MD began back ground LCM additions of First Response and NewCarb M. at 5-sx hr due to observed seepage losses. No losses at the time of the report.

Er	ng. 1:	N	latt M	leeha	n	Er	ng. 2:	Rob	Bowlin	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Pł	none:					Pł	none:	956-8	321-9994	Phone:	432-686-7361					
W 1	P 1	Y 1	E 1	C 2	g 1	G 1	H 2	O 1	carefully	and may be		o elects, however	, no representation	has been prepared on is made as to the	\$20,315.62	\$62,324.16
												INCLUDI	NG 3RD PAR	TY CHARGES	\$36,818.77	\$120,026.65

Report 6 pm

TEL: (337) 394-1078

6.2° 10,201' TVD

Operator				Contractor			County / Parisl	h / Block		Enginee	er Start Date	24 hi	ftg.		Drilled D	epth		
MAGN	IOLIA (OIL & (GAS	PAT	TERSO	N	FA	YETTE		(05/09/21		765 ft		1	0,38	36 ft	
Well Name and No.				Rig Name ar			State	=>/ 4 0		Spud Da			ent ROP		Activity			
Report for	AINIER	A-1H		Report for	248		Field / OSC-G	EXAS		Fluid Ty	05/13/21 pe		235 ft/hi		Circulati	Drilli	J	
Brandon	Parks/	Bobb	y Gwin		ol Pusł	ner	GIE	DINGS		,	ОВМ		577 gpm			,651		i
	MUD	PROPE	RTY SPECI	FICATION	IS		MUD VO	DLUME (BE	BL)		PUMP #1		PUMP #2		RISE	R BC	OST	ER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	627	bbl	Liner	Size 5.	25 Lin	er Size 5.	25	Liner	Size	5.2	25
8.5-9.8	5-16	8-12	>400	±250K	<10 <15	<8	In Hole	e 931	bbl	Stro	ke 1	2 S	troke 1	2	Stro	кe	12	2
	М	UD PRO	PERTIES		-		Active	155	8 bbl	bbl/s	stk 0.0	763 b	bl/stk 0.0	763	bbl/s	stk	0.07	763
Time Sample	Taken			2:30	18:46	12:00	Storage	e <u>107</u>	5 bbl	stk/r	min 9	0 st	k/min 9	90	stk/n	nin	90	0
Sample Locati	on			Suction	Shaker	suction	Tot. on Loc	cation 263	3 bbl	gal/r	min 28	38 ga	al/min 2	88	gal/r	nin	288	18
Flowline Temp	erature °	F		192 °F	201 °F	195 °F	Mud Wt. =	= 9.5 PV	=15	YP=	:11 CI I	RCULATI	ON DATA	Į.	n = 0.	657	K = 22	20.2
Depth (ft)				9,549'	9,148'	10,386'	Bit D	Depth = 10,	386 '		Wash	out = 2%		Pump	Efficie	ncy =	95%	,
Mud Weight (p	ppg)			9.5	9.3	9.5	Drill String	Volume	to Bit	180.9	bbl Sti	okes To B	it 2,371		Time T	o Bit	13 m	min
Funnel Vis (se	c/qt)		@ 168 °F	43	39	44	Disp.	Bottoms U	p Vol.	749.7	bbl Botto	msUp Stk	s 9,825	Botto	msUp ⁻	Γime	36 m	min
600 rpm				41	35	40	75.5 bbl	Riser Anr	n. Vol.	-2.6	bbl R	ser Stroke	s -34	Rise	r Circ.	Γime	0 m	nin
300 rpm				26	22	25		DRILLING	G ASS	SEMBI	LY DATA		s	OLID	S CON	TROI	L	
200 rpm				21	18	19	Tubulars	OD (in.)	ID ((in.)	Length	Тор	Unit		Scre	ens	Hou	urs
100 rpm	•				13	15	Drill Pipe	5.000	4.2	276	9,999'		Shake	r 1	17	0	12.	.0
6 rpm	rpm				6	7	Hevi Wt	5.000	3.0	000	277'	9,999'	Shake	r 2	17	0	12.	.0
3 rpm					5	6	Collars	8.000	3.2	250	71'	10,276'	Shake	r 3	17	0	12.	.0
Plastic Viscosi	ity (cp)		@ 150 °F	15	13	15	Dir. BHA	8.000	2.2	250	39'	10,347'	NOV Dr	yers	17	0	12.	.0
Yield Point (lb/	/100 ft²)		T0 = 5	11	9	10		CASIN	IG & I	HOLE	DATA							
Gel Strength (lb/100 ft²)) 10	sec / 10 min	7/10	6/9	7/10	Casing	OD (in.)	ID ((in.)	Depth	Тор	Centrifu	ge 1			1.0	0
Gel Strength (lb/100 ft2	2)	30 min	13	12	13	Riser	20			108'		VOLUN	IE AC	COUN	TING	(bbls	s)
HTHP Filtrate	(cm/30 m	nin)	@ 250 °F	8.0	8.0	8.0	Surface	10 3/4	9.9	950	3,018'	108'	Prev. 7	otal o	n Loca	ıtion	258	81.9
HTHP Cake TI	hickness	(32nds)		2.0	2.0	2.0	Int. Csg.					108'	Transfe	erred li	n(+)/O	ut(-)	{	82.0
Retort Solids (Content			11.7%	11.5%	11.9%	Washout 1							Oil	Added	(+) t	(93.1
Corrected Soli	ds (vol%))		9.6%	9.8%	9.9%	Washout 2							Barite	Added	(+)		
Retort Oil Con	tent			66%	67.2%	66.1%	Open	Hole Size	10.	073	10,386'		Other Pi	oduct	Usage	÷ (+)		
Retort Water 0	Content			22.3%	21.3%	22%	AN	NULAR GE	ОМЕ	TRY 8	RHEOLO	GY	,	Water	Added	(+)		
O/W Ratio				75:25	76:24	75:25	annula	ar	41-	velo	city flow	ECD	Le	ft on C	Cutting	s (-)	-7	75.4
Whole Mud Ch	nlorides (mg/L)		53,000	44,000	51,000	section	ue	pth	ft/m	,	lb/gal	Eva	o/ Cen	t/ Sha	kers		-9.9
Water Phase S	Salinity (p	opm)		271,500	244,669	266,599	0x5	10	08'	-848	3.4	9.68	s	Seepag	ge Los	ses	-(39.0
Whole Mud Al	kalinity, F	Pom		1.8	1.7	2.2	9.95x	5 3,0	18'	191	.1 lam	9.90	Est. 7	otal o	n Loca	ıtion	263	32.7
Excess Lime (lb/bbl)			2.3 ppb	2.2 ppb	2.9 ppb	10.073	x5 9,9	99'	184	l.9 lam	9.96	Est. Los	ses/G	ains (-)/(+)		0.0
Electrical Stab	ility (volts	s)		448 v	411 v	420 v	10.073	x5 10,	276'	184	l.9 lam	10.14	ВІТ	HYDR	AULI	CS DA	λTA	
Average Spec	ific Gravi	ty of Sol	ids	2.92	2.75	2.88	10.073	x8 10,	347'	377	'.4 turb	10.33	Bit H.S.I.	Bit	ΔΡ	Nozzle	es (32)	nds)
Percent Low G	verage Specific Gravity of Solids ercent Low Gravity Solids			6.4%	7.5%	6.9%	10.073	x8 10,	386'	377	.4 turb	10.52	0.58	131	psi	16	16	16
ppb Low Gravi	ob Low Gravity Solids				62 ppb	57 ppb							Bit Impact	Noz		14	14	14
Percent Barite	Percent Barite				2.3%	3%							Force	Velo (ft/s	,	14	14	14
ppb Barite	pb Barite				32 ppb	43 ppb	BIT D	DATA	Mai	nuf./Ty	pe ULT	ERA 613	352 lbs	12	24			
Estimated Total LCM in System							Size	Depth In	Но	ours	Footage	ROP ft/h	r Motor/M	WD	Calc.	Circ.	Press	sure
Sample Taken By				R. Bowlin	R. Bowlin	M.Meehan	9 7/8	2,938 ft	59	9.5	7,448 ft	125.2				1,367	psi	
Afternoon Rema	arks/Reco	mmenda	tions:				Afternoon R	Rig Activity:				-	·					

Pump a 10 bbl sweep every 300 ft. Sweep Contains:

10 ppb NewCarb, 10 ppb Newphalt and 10 ppb Magnafiber fine

Drilling ahead and sliding as needed in the vertical section. Pumping a 10 bbl LCM sweep every connection. Raised the mud wt. to 9.5 ppg. Adding Lime to maintian the alkalinity. Maintianing the chlorides content with additions of CaCL2. Added Opti-G to maintain the HTHP fluid loss. Changed 3 worn shale shaker screens. Adding First Response and NewCarb directly to the system to prevent seepage losses.

OUTSOURCE FLUID SOLUTIONS LLC.

3.9°

11,149' TVD

TEL: (337) 394-1078

Operator MAG Well Name and No	NOLIA	OIL &	GAS	Contractor PAT Rig Name ar	TTERSO	ON	County / Parish / FA' State	YETTE		Engineer S OS Spud Date	5/09/2 ⁻	1	1,716 rent ROP	ft	Drilled D		37 ft
	RAINIER	2 Δ-1H		Rig Name ar	1d No. 248			EXAS		l -	· 5/13/2 [·]		rent ROP 21 ft/h	r	,	Drill	ina
Report for		. ,		Report for			Field / OCS-G #			Fluid Type			culating Rate		Circulati		
Brandon	Parks/	Bobb	y Gwin	To	ol Pusi	ner	GID	DINGS			OBM		673 gp	m	3	,827	psi
	MUD	PROPE	RTY SPECIF	ICATION	S		MUD VO	LUME (B	BL)	F	PUMP #1		PUMP #	2	RISE	ER B	OOSTER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	65	54 bbl	Liner S	Size !	5.25 Li	ner Size	5.25	Liner	Size	5.25
8.5-9.8	5-16	8-12	>400	±250K	<10 <15	<8	In Hole	10	29 bbl	Strok	е	12	Stroke	12	Stro	ke	12
				5/18/21		5/17/21	Active	16	83 bbl	bbl/st	tk 0.	0763	obl/stk 0	.0763	bbl/s	stk	0.0763
Time Sample	Taken			2:30		12:00	Storage	<u>13</u>	41 bbl	stk/m	in	105	stk/min	105	stk/r	nin	0
Sample Locat	ion			Suction		suction	Tot. on Lo	cation 30	24 bbl	gal/m	in :	337	gal/min	337	gal/r	nin	0
Flowline Temp	perature °	F		198 °F		195 °F	ı	PHHP = 15	503	•	CIRCU	ILATION I	DATA		n = 0	.624	K = 249.11
Depth (ft)				11,327'		10,386'	Bit D	Depth = 11	1,337 '		Was	shout = 2%	ó	Pump	Efficie	ency =	: 95%
Mud Weight (opg)			9.6		9.5	Drill String	Volum	ne to Bit	197.8	bbl S	Strokes To	Bit 2,593		Time T	o Bit	12 min
Funnel Vis (se	ec/qt)		@ 161 °F	44		44	Disp.	Bottoms	Up Vol.	830.7	bbl Bo	ttomsUp St	ks 10,886	Botto	msUp	Time	52 min
600 rpm				37		40	81.7 bbl	TotalC	Circ.Vol.	1682.6	bbl	ΓotalCirc.St	ks 22,049	Tota	al Circ.	Time	105 min
300 rpm				24		25		DRILLIN	NG ASS	SEMBLY	/ DATA			SOLID	S CON	ITRO	L
200 rpm				17		19	Tubulars	OD (in.)	ID	(in.)	Length	Тор	Ur	nit	Scre	ens	Hours
100 rpm				15		15	Drill Pipe	5.000	4.	276	10,950'	0'	Shak	er 1	17	0	23.0
6 rpm				7		7	Hevi Wt	5.000	3.	000	277'	10,950) Shak	er 2	17	0	23.0
3 rpm				6		6	Collars	8.000	3.	250	71'	11,227	" Shak	er 3	17	0	23.0
Plastic Viscos	ity (cp)		@ 150 °F	13		15	Dir. BHA	8.000	2.	250	39'	11,298	NOV E	Oryers	17	0	23.0
Yield Point (lb	/100 ft²)		T0 = 5	11		10		CASI	NG & F	HOLE D	ATA						
Gel Strength (lb/100 ft²)	10	0 sec/10 min	5/7		7/10	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrif	uge 1			6.0
Gel Strength ((lb/100 ft ²))	30 min	12		13	Riser						VOLU	JME AC	COUN	ITING	(bbls)
HTHP Filtrate	(cm/30 m	in)	@ 300 °F	8.0		8.0	Surface	10 3/4	9.	950	3,018'	0'	Prev	. Total c	on Loca	ation	2581.9
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.					0'	Trans	sferred	In(+)/O	ut(-)	479.0
Retort Solids	Content			12.3%		11.9%	Washout 1							Oi	I Adde	(+) b	213.
Corrected Sol	ids (vol%))		10.1%		9.9%	Washout 2							Barite	e Adde	(+) b	0.0
Retort Oil Cor	ntent			64.7%		66.1%	Oper	n Hole Siz	e 10	.073	11,337'		Other	Product	t Usage	e (+)	12.9
Retort Water	Content			23%		22%	ANI	NULAR G	EOME	TRY & F	RHEOLO	GY		Water	r Adde	(+) b	83.0
O/W Ratio				74:26		75:25	annulai	r m	neas.	veloc	ity flov	v ECD		Left on	Cutting	ıs (-)	-135.3
Whole Mud C	hlorides (r	mg/L)		54,000		51,000	section	n d	lepth	ft/mii	n reg	g lb/gal		E	Evap/ C	Cent	-119.6
Water Phase	Salinity (p	pm)		269,091		266,599								Seepa	ige Los	ses	-91.8
Whole Mud A	lkalinity, P	om		1.7		2.2	9.95x5	3	,018'	222.	9 lan	n 9.85	Est	. Total o	on Loca	ation	3023.6
Excess Lime ((lb/bbl)			2.2 ppb		2.9 ppb	10.073x	:5 10	0,950'	215.	7 lan	n 9.85	Est. Lo	osses/G	ains (-)/(+)	0.0
Electrical Stat	oility (volts	s)		423 v		420 v	10.073x	:5 11	1,227'	215.	7 lan	n 9.88	ВІ	T HYDI	RAULI	CS D	ATA
Average Spec	ific Gravit	y of Solid	ds	2.90		2.88	10.073x	:8 11	1,298'	440.	3 turl	9.91	Bit H.S.	I. Bit	ΔΡ	Nozzl	es (32nds
Percent Low 0	Gravity So	lids		6.9%		6.9%	10.073x	:8 11	1,337'	440.	3 turl	9.94	0.92	180) psi	16	16 16
ppb Low Grav	ity Solids			57 ppb		57 ppb							Bit Impa	Ct I	zzle ocity	14	14 14
Percent Barite)			3.2%		3%							Force		sec)	14	14 14
ppb Barite				46 ppb		43 ppb	BIT D	ATA	Ma	anuf./Typ	oe UL	TERA 61	3 485 lbs	1-	45		
Estimated Total LCM in System ppb							Size	Depth In	n Ho	ours	Footage	ROP ft/	hr Motor/	MWD	Calc.	Circ.	Pressure
Sample Taken By				R. Bowlin	0	M.Meehan	9 7/8	2,938 ft	7	3.0	8,499 ft	116.4	2,000) psi		3,835	psi
Remarks/Reco	mmendati	ions:					Rig Activity:										

OBM RECEIVED: 2460bbls @ \$65.00_665bbls @ \$10.00

OBM on surface/ storage 1995bbls

Pump Rate 674GPM

MWD Temp: 237 Degrees

Continued to drill ahead on the intermediate section from 9,621'MD to 11,337' MD at the time of the morning report. Pumping 10bbl/12.5PPB LCM laden sweeps every stand, sweeps consist of MagmaFiber Fine, NewCarb Med, NewPhalt and Opti-G. Increased the active density to 9.6ppg as per wll plan. Made drill H2O additions at 4BPH for 15.5 hours and decreased to 2BPH at 19:30hrs, proportional additions of CaCl2 have been made to maintain water phase salinity at 250K-275K. When $\,$ seepage losses are observed back ground LCM additions are made at the suction of First Response and NewCarb M. at 3-sx hr. Drilling with two mud pumps while pump #2 is being repaired. Interval TD will be at +/- 11,997'MD

Er	ng. 1:	N	latt M	leeha	n	Er	ng. 2:	Rob	Bowlin	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Pł	none:					Pł	none:	956-8	321-9994	Phone:	432-686-7361	Phone:	-			
W 1	P 1	Y 1	E 1	C 2	g 1	G 1	H 2	O 1	carefully	and may be		o elects, however,	, no representation	as been prepared on is made as to the	\$7,029.51	\$69,353.67
												INCLUDI	NG 3RD PAR	TY CHARGES	\$28,973.06	\$148,999.71

110 Old Market St.

St Martinville, LA 70582

TEL: (337) 394-1078

3.9° 11,421' TVD

	IOLIA (OIL &	GAS		TERSO)N		YETTE			art Date /09/21	24 hr f	273 ft			610 ft	
Well Name and No.	AINIER	A-1H		Rig Name ar	1d No. 248		State T	EXAS		Spud Date 05/	/13/21	Currer	11 ROP 236 ft/hr		ctivity Dr i	lling	
Report for				Report for			Field / OSC-G			Fluid Type			ating Rate		Circulating P		
Brandon					ol Push	ner		DINGS			BM		561 gpm			8 psi	
		1	RTY SPECI					DLUME (B			MP #1		PUMP #2		RISER I		
Weight	PV	YP		CaCl2	GELS	HTHP	In Pits		3 bbl	Liner Size					Liner Size		
8.5-9.8	5-16	8-12		±250K	<10 <15	<8	In Hole		4 bbl	Stroke	12			2	Stroke	12	
		UD PRO	OPERTIES				Active		7 bbl	bbl/stk	0.07			763	bbl/stk	0.07	
Time Sample				2:30		12:00	Storage		1 bbl	stk/min	87			88	stk/min	84	4
Sample Locati				Suction		suction	Tot. on Loc			gal/min	279	gal	/min 28	82	gal/min		
Flowline Temp	erature °	F		198 °F		195 °F	Mud Wt. =		/=13	YP=11	CIR	CULATIC			n = 0.624		
Depth (ft)				11,327'		11,610'	Bit D	epth = 11	,610 '		Washo	ut = 2%		Pump E	Efficiency	= 95%)
Mud Weight (p	opg)			9.6		9.6	Drill String Disp.	Volume	to Bit	202.7 bb	ol Stro	kes To Bit	2,656	Т	ime To Bi	t 15 r	min
Funnel Vis (se	ec/qt)		@ 161 °F	44		44	ызр.	Bottoms U	Jp Vol.	851.0 bb	ol Bottor	nsUp Stks	16,505	Bottom	sUp Time	e 64 r	min
600 rpm				37		40	83.4 bbl	TotalCi	rc.Vol.	1666.7 bl	bl Tota	alCirc.Stks	21,841	Total	Circ. Time	125	min
300 rpm				24		25		DRILLIN	G ASS	SEMBLY	DATA		S	OLIDS	CONTR	OL	
200 rpm				17		18	Tubulars	OD (in.)	ID	(in.) Le	ength	Top	Unit		Screens	Hou	urs
100 rpm				15		14	Drill Pipe	5.000	4.2	276 11	1,223'		Shaker	· 1	170	12	.0
6 rpm				7		6	Hevi Wt	5.000	3.0	000	277'	11,223'	Shaker	2	170	12	.0
3 rpm				6		5	Collars	8.000	3.2	250	71'	11,500'	Shaker	. 3	170	12	.0
Plastic Viscos	ity (cp)		@ 150 °F	13		15	Dir. BHA	8.000	2.2	250	39'	11,571'	NOV Dry	ers/	170	12	0
Yield Point (lb.	/100 ft²)		T0 = 5	11		10		CASI	NG & I	HOLE DA	TA						
Gel Strength (lb/100 ft²)) 10	0 sec / 10 min	5/7		6/9	Casing	OD (in.)	ID	(in.)	epth	Тор	Centrifuç	ge 1		1.	.0
Gel Strength (lb/100 ft2)	30 min	12		12	Riser						VOLUM	IE ACC	OUNTIN	IG (bbl	s)
HTHP Filtrate	(cm/30 m	iin)	@ 300 °F	8.0		8.0	Surface	10 3/4	9.9	950 3	,018'		Prev. T	otal on	Location	30	23.6
HTHP Cake T	hickness	(32nds))	2.0		2.0	Int. Csg.						Transfe	erred In	(+)/Out(-)	
Retort Solids (Content			12.3%		12.3%	Washout 1							Oil A	Added (+)	56.2
Corrected Soli	ds (vol%))		10.1%		10.3%	Washout 2						!	Barite A	Added (+)	
Retort Oil Con	tent			64.7%		65.7%	Open	Hole Size	10.	073 11	1,610'		Other Pr	oduct (Jsage (+)	
Retort Water (Content			23%		22%	ANI	NULAR G	EOME	TRY & R	HEOLO	3Y	١ ،	Water A	Added (+)	
O/W Ratio				74:26		75:25	annula	r .		velocity	flow	ECD	Le	ft on C	uttings (-) -	-21.5
Whole Mud Cl	nlorides (r	mg/L)		54,000		51,000	section	i de	epth	ft/min	reg	lb/gal		Ev	ap/ Cent	-	-10.6
Water Phase	Salinity (p	pm)		269,091		266,599		!		Į.			S	Seepage	e Losses	-	-40.0
Whole Mud Al	kalinity, P	om		1.7		2.2	9.95x5	5 3,0	018'	185.8	lam	10.18	Est. T	otal on	Location	30	07.7
Excess Lime (lb/bbl)			2.2 ppb		2.9 ppb	10.073>	κ5 11,	,223'	179.8	lam	10.28	Est. Los	ses/Ga	ins (-)/(+)	0.0
Electrical Stab	ility (volts	s)		423 v		454 v	10.073	κ5 11,	500'	179.8	lam	10.63	BIT	HYDRA	AULICS	DATA	
Average Spec	ific Gravit	ty of So	lids	2.90		2.92	10.073>	κ8 11,	571'	366.9	turb	10.98	Bit H.S.I.	Bit Δ	AP Noz	zles (32	2nds)
Percent Low C	Gravity So	olids		6.9%		6.9%	10.073>	κ8 11,	610'	366.9	turb	11.33	0.53	125		16	16
ppb Low Grav				57 ppb		57 ppb							Bit Impact	Nozz		14	14
Percent Barite				3.2%		3.3%							Force	Veloc (ft/se		14	14
ppb Barite				46 ppb		48 ppb	BIT D	DATA	Ма	nuf./Type	ULTE	RA 613	337 lbs	121	· —	\dagger	
	Estimated Total LCM in System						Size	Depth In				ROP ft/hr	-		Calc. Cir	c. Pres	sure
Sample Taken By				R. Bowlin		M.Meehan	9 7/8	2,938 ft			672 ft	105.8	4,200			38 psi	
Atternees Dem								,			-		,		-,,,	1	

Afternoon Remarks/Recommendations:

Pump a 10 bbl sweep every 300 ft. Sweep Contains:

10 ppb NewCarb, 10 ppb Newphalt and 10 ppb Magnafiber fine

10 ppb Graphite

Afternoon Rig Activity:

Drilling ahead and sliding as needed in the vertical section. Pumping a 10 bbl LCM sweep every connection. Added 10 ppb Graphite to the sweeps to improve lubricity. Raised the mud wt. to 9.6 ppg. Adding Lime to maintian the alkalinity. Maintianing the chlorides content with additions of CaCL2. Changed 2 worn shale shaker screens. Completed repairs to the mud pumps.

OUTSOURCE FLUID SOLUTIONS LLC.

14.1°

11,749' TVD

TEL: (337) 394-1078

Operator MAGI Well Name and No.	NOLIA (OIL &	GAS	Contractor PAT Rig Name ar	TTERSO	ON	County / Parish / FA' State	Block YETTE		Engineer S O: Spud Date	5/09		24 hr ftg	640 ft		Drilled D Activity		77 ft
	AINIER	Δ-1Η	ı	Rig Name ar	248			EXAS			5/13	/21		37 ft/hr		•	lina	Curve
Report for		- A III	•	Report for	240		Field / OCS-G #	-//-		Fluid Type		/= 1	Circulati			Circulatir	_	
Brandon	Parks/	Bobb	oy Gwin	То	ol Pusi	ner	GID	DINGS			ові	M	7	705 gpm	1	3,	,676	psi
	MUD	PROPI	ERTY SPECIF	ICATION	S		MUD VO	LUME (BE	BL)	P	PUMP	#1		PUMP #2		RISE	R B	OOSTER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	659	9 bbl	Liner S	Size	5.25	Liner	Size 5.	25	Liner	Size	5.25
8.5-9.8	5-16	8-12	>400	±250K	<10 <15	<8	In Hole	108	7 bbl	Strok	е	12	Strol	ke 1	2	Strok	ke	12
	l	1		5/19/21		5/18/21	Active	174	6 bbl	bbl/st	tk	0.0763	bbl/s	stk 0.0	763	bbl/s	stk	0.0763
Time Sample	Taken			2:00		12:00	Storage	<u>115</u>	64 bbl	stk/m	in	110	stk/n	min 1	10	stk/m	nin	
Sample Locati	on			Suction		suction	Tot. on Loc	cation 290	00 bbl	gal/m	in	353	gal/r	min 3	53	gal/m	nin	0
Flowline Temp	erature °F	F		190 °F		195 °F	F	PHHP = 151	12		CIR	CULATIO	N DAT	ГА		n = 0.	678	K = 185.783
Depth (ft)				11,593'		11,610'	Bit D	Depth = 11,	977 '		V	/ashout =	2%		Pump	Efficie	ncy =	: 95%
Mud Weight (p	ppg)			9.7		9.6	Drill String	Volume	to Bit	209.2	bbl	Strokes	To Bit	2,741		Time T	o Bit	12 min
Funnel Vis (se	ec/qt)		@ 171 °F	45		44	Disp.	Bottoms U	Jp Vol.	878.3	bbl	BottomsU	Stks	11,509	Bottor	msUp 1	Гime	52 min
600 rpm				40		40	85.8 bbl	TotalCi	rc.Vol.	1746.5	bbl	TotalCir	c.Stks	22,887	Tota	l Circ. 1	Γime	104 min
300 rpm				25		25		DRILLIN	G ASS	SEMBLY	/ DAT	'A		s	OLIDS	S CON	ITRO	L
200 rpm				17		18	Tubulars	OD (in.)	ID	(in.)	Lenç	gth T	ор	Unit		Scree	ens	Hours
100 rpm				15		14	Drill Pipe	5.000	4.:	276	11,5	90'	0'	Shaker	1	170	0	22.0
6 rpm				6		6	Hevi Wt	5.000	3.	000	277	7' 11,	590'	Shaker	2	170	0	22.0
3 rpm				5		5	Collars	8.000	3.	250	71	' 11,	867'	Shaker	. 3	170	0	22.0
Plastic Viscosi	ity (cp)		@ 150 °F	15		15	Dir. BHA	8.000	2.	250	39	' 11,	938'	NOV Dry	ers/	170	0	22.0
Yield Point (lb/	/100 ft²)		T0 = 4	10		10		CASIN	NG & H	HOLE D	АТА							
Gel Strength (lb/100 ft²)	,	10 sec/10 min	5/9		6/9	Casing	OD (in.)	ID	(in.)	Dep	th T	ор	Centrifuç	ge 1			2.0
Gel Strength (lb/100 ft ²)		30 min	12		12	Riser							VOLUM	IE AC	COUN	ITING	(bbls)
HTHP Filtrate	(cm/30 m	in)	@ 300 °F	8.0		8.0	Surface	10 3/4	9.	950	3,01	8'	0'	Prev. T	otal o	n Loca	ation	3023.6
HTHP Cake T	hickness	(32nds)	1	2.0		2.0	Int. Csg.					(0'	Transfe	erred In	n(+)/O	ut(-)	
Retort Solids (Content			12.5%		12.3%	Washout 1								Oil	Added	d (+)	174.3
Corrected Soli	ds (vol%)			10.4%		10.3%	Washout 2								Barite	Added	d (+)	3.1
Retort Oil Con	tent			64.7%		65.7%	Oper	Hole Size	10	.073	11,9	77'		Other Pr	roduct	Usage	e (+)	8.6
Retort Water (Content			22.8%		22%	ANI	NULAR GE	EOME.	TRY & F	RHEO	LOGY		,	Water	Added	(+)	37.4
O/W Ratio				74:26		75:25	annular	r me	eas.	veloci	ity	flow E	CD	Le	ft on C	Cutting	s (-)	-63.1
Whole Mud Cl	nlorides (n	ng/L)		52,000		51,000	section	de	epth	ft/mii	n	reg lb/	gal	Non-Red	covera	ble Vo	l. (-)	-149.5
Water Phase	Salinity (p	pm)		263,424		266,599								S	Seepag	ge Los	ses	-133.9
Whole Mud Al	kalinity, P	om		1.9		2.2	9.95x5	3,0	018'	233.	5	lam 9.	95	Est. T	otal o	n Loca	ation _	2900.5
Excess Lime (lb/bbl)			2.5 ppb		2.9 ppb	10.073x	5 11,	,590'	226.	0	lam 9.	96	Est. Los	ses/G	ains (-))/(+)	0.0
Electrical Stab	ility (volts)		448 v		454 v	10.073x	5 11,	,867'	226.	0	lam 10	.01	BIT	HYDR	AULIC	CS D	ATA
Average Spec	ific Gravit	y of Sol	ids	2.98		2.92	10.073x	8 11,	,938'	461.	3	turb 10	.06	Bit H.S.I.	Bit	ΔΡ	Nozzl	es (32nds)
Percent Low G	Gravity So	lids		6.6%		6.9%	10.073x	8 11,	,977'	461.	3	turb 10	.11	1.07	200	psi	16	16 16
ppb Low Grav	ity Solids			55 ppb		57 ppb							ı	Bit Impact	Noz Velo		14	14 14
Percent Barite	1			3.8%		3.3%								Force	(ft/s		14	14 14
ppb Barite				54 ppb		48 ppb	BIT D	ATA	Ма	anuf./Typ	ре	ULTERA	613	538 lbs	15	52		
Estimated Total	al LCM in	System	n ppb				Size	Depth In	Но	ours	Foota	age ROF	ft/hr	Motor/M	WD	Calc.	Circ.	Pressure
Sample Taker	Ву			R. Bowlin	0	M.Meehan	9 7/8	2,938 ft	9:	5.0	9,039	9 ft 9	5.1	1,550	psi	;	3,685	psi
							· ·											

Remarks/Recommendations:

OBM RECEIVED: 2460bbls @ \$65.00_665bbls @ \$10.00

OBM on surface/ storage 1813bbls

Averaged 5.5bbls/Hr lost to Seepage

Mud Pump #3 Down

MWD Temp: 237 Degrees

Rig Activity:

Drill the intermediate section from 11,337'MD to KOP at 11,700'MD 11,511'TVD. Drilling/ sliding on the build section to 11,977'MD at rpt time. Pumped 10bbl LCM laden sweeps every stand, sweeps consisted of 2.5-ppb MagmaFiber Fine, NewCarb Med, NewPhalt and Graphite was also added to aide in lubricity. Diesel and H2O as needed to maintain MW at 9.6ppg, offset evaporation and ROC. Began pumping 10bbls of active whole mud laden with 6-ppb Graphite hourly for lubricity. Had to space out and shut the well in to take shelter for one hour due to weather in the area at 19:22hrs.

Er	ng. 1:	N	1att M	eeha	n	Er	ng. 2:	Rob	Bowlin	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Pl	none:					Ph	none:	956-8	21-9994	Phone:	432-686-7361	Phone:	-			
W 1	P 1	Y 1	E 1	C 2	g 1	G 1	H 2	0	carefully	and may be	ecommendation, ex sused if the user so ation, and this is a	elects, however	, no representation	nas been prepared on is made as to the	\$12,427.39	\$81,781.06
												INCLUDI	NG 3RD PAR	TY CHARGES	\$30,187.19	\$179,186.90

TEL: (337) 394-1078

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

10.6° 5,639' TVD

Operator MAGI	NOLIA (OIL & G	BAS	Contractor PA1	TERSO	NC	County / Parish /	Block YETTE		Engineer St	art Date 5/09/21	24 hr	ftg. 8 ft		Drilled D	Depth 11,98	85 ft	t
Well Name and No.	AINIER	A-1H		Rig Name ar	d No. 248			EXAS		Spud Date	5/13/21		oft/hr			ın C		ıg
Report for	Danlas	Dabba	. 0	Report for	al Dual		Field / OCS-G #	DINIOC		Fluid Type	0014	Circul	ating Rate		Circulati	ing Pres	ssure	
Brandon					ol Pusi	ner		DINGS			OBM UMP #1		0 gpm PUMP #2		DICE		000	TED
\\\oight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	LUME (BE	0 bbl	Liner Siz		25 Line		.25	Liner	ER B		25
Weight 8.5-11	5-20	8-12	>400	±250K	<10 <15		In Hole		ldd 8l	Stroke				12	Stro			25
0.3-11	3-20	0-12	>400	5/19/21	<10 <15	5/19/21	Active		89 bbl	bbl/stk				0763	bbl/s			763
Time Sample	 Taken			2:00		12:00	Storage		95 bbl	stk/mir			d/min	7703	stk/n		0.0	703
Sample Locati				Suction		suction		cation 287		gal/mir				0	gal/r		(0
Flowline Temp		<u> </u>		190 °F		195 °F	100.01120	PHHP = 0		gaviiii		ATION D			n = 0.			
Depth (ft)				11,593'		11,985'	Bit	Depth = 5,1				out = 4%		Pump				
Mud Weight (p	(pq			9.9		9.7		·		263.6 b		rokes To Bi		· ·	Time T			
Funnel Vis (se			@ 111 °F	54		47	Drill String Disp.	Bottoms L				omsUp Stks			msUp ⁻			
600 rpm				43		41	60.6 bbl			1138.6 l		talCirc.Stks	3		I Circ. ⁻			
300 rpm				26		25		DRILLIN	G ASS	SEMBLY	DATA		S	OLIDS	S CON	NTRO	L	
200 rpm				20		18	Tubulars	OD (in.)	ID	(in.)	Length	Тор	Unit	:	Scre	ens	Но	ours
100 rpm				17		14	Casing	7.625	6.	875	5,740'	0'	Shake	r 1	17	' 0	12	2.0
6 rpm				6		6						5,740'	Shake	r 2	17	' 0	12	2.0
3 rpm				5		5						5,740'	Shake	r 3	17	' 0	12	2.0
Plastic Viscosi	ty (cp)		@ 150 °F	17		16						5,740'	NOV Dr	yers	17	'0	12	2.0
Yield Point (lb/	100 ft²)		T0 = 4	9		9		CASI	NG & I	HOLE DA	ATA .							
Gel Strength (b/100 ft ²)	10	sec/10 min	6/9		6/9	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifu	ge 1				
Gel Strength (l	b/100 ft ²)		30 min	11		12	Riser						VOLUM	ME AC	COUN	NTINC	G (bb	ls)
HTHP Filtrate	(cm/30 mi	in)	@ 300 °F	8.0		8.0	Surface	10 3/4	9.	950	3,018'	0'	Prev.	Total o	n Loca	ation	29	900.5
HTHP Cake T	nickness ((32nds)		2.0		2.0	Int. Csg.					0'	Transf	erred li	n(+)/O	out(-)		
Retort Solids (Content			13.3%		12.5%	Washout 1							Oil	Added	d (+)		25.5
Corrected Soli	ds (vol%)			11.2%		10.5%	Washout 2							Barite	Added	d (+)		6.1
Retort Oil Con	tent			63.5%		64.5%	Oper	n Hole Size	10	.270	11,985'		Other P	roduct	Usage	e (+)		0.0
Retort Water 0	Content			23.2%		23%	AN	NULAR GI	EOME	TRY & R	HEOLOG	3Y		Water	Added	d (+)		
O/W Ratio				73:27		74:26	annula	r me	eas.	velocit	-	ECD	Le	eft on C	Cutting	js (-)		-0.8
Whole Mud Ch	ılorides (n	ng/L)		52,000		52,000	section	n de	epth	ft/min	reg	lb/gal	Non-Red	covera	ble Vo	ol. (-)		-32.8
Water Phase S	Salinity (pr	pm)		260,063		261,733								Seepa	ge Los	ses		-25.0
Whole Mud Al	kalinity, P	om		1.7		2.0	9.95x7.6	25 3,	018'	0.0	lam	9.90	Est.	Total o	n Loca	ation	28	873.5
Excess Lime (b/bbl)			2.2 ppb		2.6 ppb	10.27x7.6	525 5,	740'	0.0	lam	9.90	Est. Los	sses/G	ains (-	·)/(+)		0.0
Electrical Stab	ility (volts))		436 v		450 v							ВІТ	HYDR	AULI	CS D	ATA	
Average Spec	fic Gravity	y of Solids	s	3.04		2.97							Bit H.S.I.	Bit	ΔΡ	Nozzl	les (32	2nds)
Percent Low G	ravity Sol	lids		6.8%		6.7%							0.00	p	si	16	16	16
ppb Low Gravi	ty Solids			56 ppb		55 ppb							Bit Impact	Noz Velc		14	14	14
Percent Barite				4.4%		3.7%							Force	(ft/s	-	14	14	14
ppb Barite				63 ppb		53 ppb	BIT D	ATA	Ma	anuf./Type	e ULT	ERA 613	0 lbs	(
Estimated Total		System	ppb				Size	Depth In			Footage	ROP ft/hi			Calc.	. Circ.	Pres	sure
Sample Taken				R. Bowlin	0	M.Meehan	9 7/8	2,938 ft	9	6.0	9,047 ft	94.2	psi					
Remarks/Reco	mmendatio	ons:					Rig Activity:											

OBM RECEIVED: 2460bbls @ \$65.00_665bbls @ \$10.00

OBM on surface/ storage 1725bbls

Drilled to intermediate section TD at 11,985'MD. Pumped (2) 30bbl LCM laden sweeps as the clean-up cycle. Pumped slug and TOOH laying down the 5" drill string. RU Express casing crew and ran the 7.625" casing to 5,740'MD at the time of the am report. Reserve OBM 9.5ppg has been ordered and will be received today.

Е	ng. 1:	N	latt M	eeha	n	Er	ng. 2:	Rob	Bowlin	WH 1:	MIDLA	.ND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Р	none:					Pł	none:	956-8	21-9994	Phone:	432-686-	-7361	Phone:	-			
W 1	P 1	Y 1	E 1	C 2	g 1	G 1	H 2	O 1	carefully	and may be	used if the	user so		no representation	nas been prepared on is made as to the	\$4,411.00	\$86,192.06
													INCLUDIN	NG 3RD PAR	TY CHARGES	\$6,885.01	\$186,071.91

TEL: (337) 394-1078

13.9° 11,747' TVD

Operator	Contractor			County / Parish	n / Block		Engine	er Start Date	24 hi	ftg.		Drilled	Depth		
MAGNOLIA OIL & GAS	PA	TTERSO	N	FA	YETTE			05/09/21					11,98	35 ft	
Well Name and No. RAINIER A-1H	Rig Name a	nd No. 248		State	EXAS		Spud D	oate 05/13/21		ent ROP		Activity		ntin	<u> </u>
Report for	Report for	240		Field / OSC-G			Fluid Ty			lating Rate			ting Pres		y
Brandon Parks/ Bobby Gwi	n To	ool Pusi	ner	GID	DINGS			OBM							
MUD PROPERTY SP	ECIFICATIO	NS		MUD VC	LUME (BE	BL)		PUMP #1		PUMP #2	2	RIS	ER BO	OOST	ER
Weight PV YP E.S	S. CaCl2	GELS	HTHP	In Pits	630	bbl	Liner	Size 4.	75 Lin	er Size 4	.75	Liner	Size	4.7	75
8.5-11 5-20 8-12 >40	0 ±250K	<10 <15	<8	In Hole	1083	3 bbl	Stro	oke 1	2 S	troke	12	Stro	oke	12	2
MUD PROPERTIE	s	ļ	<u>!</u>	Active	1711	1 bbl	bbl/	/stk 0.0	625 b	bl/stk 0.0	0625	bbl	/stk	0.06	325
Time Sample Taken	2:00		11:00	Storage	e <u>1095</u>	5 bbl	stk/	min	st	k/min		stk/	min		ļ
Sample Location	Suction		suction	Tot. on Loc	cation 2808	3 bbl	gal/	min	ga	al/min		gal	min		
Flowline Temperature °F				Mud Wt. =	9.9 PV=	=17	ΥP	2 =9 C II	RCULATI	ON DATA		n = 0).726	K = 1	43.5
Depth (ft)	11,985'		11,985'	Bit D	epth = 11,9	974 '		Wash	out = 4%		Pump	Effici	ency =	95%)
Mud Weight (ppg)	9.9		9.8	Drill String	Volume	to Bit	549.8	8 bbl Str	okes To B	it		Time '	To Bit		
Funnel Vis (sec/qt) @ 11	1 °F 54		50	Disp.	Bottoms Up	o Vol.	531.0	6 bbl Botto	msUp Stk	S	Botto	msUp	Time		
600 rpm	43		42	126.5 bbl	TotalCirc	c.Vol.	1711.	.5 bbl To	talCirc.Stk	S	Tota	al Circ.	Time		ļ
300 rpm	26		26		DRILLING	S ASS	SEMB	LY DATA			SOLID	s co	NTRO	L	
200 rpm	20		19	Tubulars	OD (in.)	ID ((in.)	Length	Тор	Unit	t	Scre	ens	Hou	urs
100 rpm	17		16	Casing	7.625	6.8	375	11,974'		Shake	er 1	20	00		ļ
6 rpm	6		6						11,974'	Shake	er 2	20	00		ļ
3 rpm	5		5						11,974'	Shake	er 3	20	00		
Plastic Viscosity (cp) @ 15) °F 17		16						11,974'	NOV Dr	yers	17	70		
Yield Point (lb/100 ft²) T0 =	4 9		10		CASIN	G & F	HOLE	DATA							
Gel Strength (lb/100 ft²) 10 sec / 10	min 6/9		6/9	Casing	OD (in.)	ID ((in.)	Depth	Тор	Centrifu	ge 1				
Gel Strength (lb/100 ft2) 30	min 11		12	Riser						VOLUI	ME AC	cou	NTING	(bbl	s)
HTHP Filtrate (cm/30 min) @ 30	0°F 8.0		8.0	Surface	10 3/4	9.9	950	3,018'		Prev.	Total c	n Loc	ation	28	373.5
HTHP Cake Thickness (32nds)	2.0		2.0	Int. Csg.						Transf	erred I	n(+)/0	Out(-)		
Retort Solids Content	13.3%		13%	Washout 1							Oil	Adde	ed (+)		
Corrected Solids (vol%)	11.2%		11%	Washout 2							Barite	Adde	ed (+)		
Retort Oil Content	63.5%		64%	Open	Hole Size	10.2	270	11,985'		Other P	roduct	Usag	je (+)		
Retort Water Content	23.2%		23%	ANI	NULAR GE	ОМЕ	TRY 8	& RHEOLO	GY		Water	Adde	ed (+)		
O/W Ratio	73:27		74:26	annula	r dos	oth	velo	ocity flow	ECD	Le	eft on (Cuttin	gs (-)		
Whole Mud Chlorides (mg/L)	52,000		52,000	section	der	ptri	ft/n	nin reg	lb/gal	Non-Re	covera	ble V	ol. (-)		
Water Phase Salinity (ppm)	260,063		261,733		•			•		,	Seepa	ge Lo	sses	-	-65.9
Whole Mud Alkalinity, Pom	1.7		1.7	9.95x7.6	25 3,0	18'		lam	9.90	Est.	Total c	n Loc	ation	28	307.6
Excess Lime (lb/bbl)	2.2 ppb		2.2 ppb	10.27x7.6	625 11,9	974'		lam	9.90	Est. Los	sses/G	ains (-)/(+)		0.0
Electrical Stability (volts)	436 v		424 v							BIT	HYDF	RAUL	ICS DA	ATA	
Average Specific Gravity of Solids	3.04		2.98							Bit H.S.I.	Bit	ΔΡ	Nozzl	es (32	2nds)
Percent Low Gravity Solids	6.8%		7%										16	16	16
ppb Low Gravity Solids	56 ppb		57 ppb							Bit Impac	+ 1	zzle ocity	14	14	14
Percent Barite	4.4%		4%							Force		sec)	14	14	14
ppb Barite	63 ppb		57 ppb	BIT D	ATA	Mai	nuf./T	ype ULT	ERA 613						
Estimated Total LCM in System				Size	Depth In	Но	urs	Footage	ROP ft/h	r Motor/M	1WD	Calc	. Circ.	Press	sure
Sample Taken By	R. Bowlin		M.Meehan	9 7/8	2,938 ft	96	6.0	9,047 ft	94.2			L	211	psi	
Afternoon Remarks/Recommendations:				Afternoon R	ig Activity:										

Pump a 10 bbl sweep every 300 ft. Sweep Contains:

10 ppb NewCarb, 10 ppb Newphalt and 10 ppb Magnafiber fine

Ran casing to bottom. Circulated the casing. Rigged up cementers. Cementing in casing. Receiving OBM from the Madisonville warehouse. Received mud chemicals for the next hole section. Reduced pump liners to 4.75. Changed shale shaker screens to 200 mesh.

OUTSOURCE FLUID SOLUTIONS LLC.

8.0° 2,987' TVD

Operator MAGI	NOLIA (OIL & G	AS	Contractor PA	TERSO	ON	County / Parish /	/ Block		Engineer S	Start Date 5/09/21	24 hr	ftg. Oft	I	Drilled [35 ft	
Well Name and No.	AINIER	2 A-1H		Rig Name ar	nd No. 248		State TI	EXAS		Spud Date	5/13/21	Curre	0 ft/hr	,	Activity Pi	ck L	Jp D	Р
Report for				Report for			Field / OCS-G #			Fluid Type		Circul	ating Rate		Circulat	ing Pres	ssure	
Brandon	Parks/	Bobby	Gwin	То	ol Pusi	ner	GID	DINGS			ОВМ		0 gpm					
	MUD	PROPER	TY SPECIF	ICATION	S	ı	MUD VO	LUME (B	BL)	Р	UMP #1		PUMP #2		RISI	ER BO	OOST	ER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	78	34 bbl	Liner Si	ize 4	75 Line	r Size 4.	.75	Liner	Size	4.7	75
8.5-11	5-20	8-12	>400	±250K	<10 <15	<8	In Hole	53	31 bbl	Stroke	e ´	12 Sti	oke 1	12	Stro	ke	12	2
				5/21/21		5/20/21	Active	90	04 bbl	bbl/stl	k 0.0	625 bb	ol/stk 0.0	625	bbl/	stk	0.06	325
Time Sample	Taken			2:30		11:00	Storage	e <u>18</u>	74 bbl	stk/mi	in	stk	/min		stk/r	nin		
Sample Locati	on			Suction		suction	Tot. on Lo	cation 31	89 bbl	gal/mi	in	0 ga	l/min	0	gal/ı	min	0)
Flowline Temp	erature °l	F						PHHP =	0		CIRCUI	ATION DA	ATA		n = 0	.727	K = 15	8.853
Depth (ft)				11,985'		11,985'	Bit	Depth = 3	,030 '		Wash	out = 2%		Pump	Efficie	ency =	95%	,
Mud Weight (p	opg)			10.0		9.8	Drill String	Volum	ne to Bit	41.5 b	obl St	rokes To Bi	t		Time 1	o Bit		
Funnel Vis (se	c/qt)		@ 104 °F	60		50	Disp.	Bottoms	Up Vol.	78.3 b	bbl Bott	omsUp Stks	i	Bottor	nsUp	Time		
600 rpm				48		42	19.3 bbl	TotalC	Circ.Vol.	903.5 k	bbl To	otalCirc.Stks	i .	Total	Circ.	Time		
300 rpm				29		26		DRILLI	NG ASS	SEMBLY	DATA		S	OLIDS	(O)	ITRO	L	
200 rpm				21		19	Tubulars	OD (in.)) ID	(in.)	Length	Тор	Unit		Scre	ens	Hou	urs
100 rpm				18		16	Drill Pipe	4.500	3.	826	2,844'	0'	Shaker	r 1	20	0	12	0
6 rpm				7		6	Agitator	5.250	2.	250	46'	2,844'	Shaker	r 2	20	0	12	0
3 rpm				6		5	Collars	5.250	2.	750	92'	2,890'	Shakei	r 3	20	0	12	0
Plastic Viscosi	ity (cp)		@ 150 °F	19		16	Dir. BHA	5.000	2.	000	48'	2,982'	NOV Dry	yers	17	0	12	0
Yield Point (lb/	/100 ft²)		T0 = 5	10		10		CASI	ING & I	HOLE DA	ATA							
Gel Strength (lb/100 ft²)	10	sec/10 min	7/10		6/9	Casing	OD (in.)) ID	(in.)	Depth	Тор	Centrifuç	ge 1				
Gel Strength (lb/100 ft ²)		30 min	13		12	Riser						VOLUN	IE AC	COU	ITING	(bbl	s)
HTHP Filtrate	(cm/30 m	in)	@ 300 °F	8.0		8.0	Surface	10 3/4			3,018'	0'	Prev. T	Total or	n Loca	ation	28	373.5
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875	11,974'	0'	Transfe	erred Ir	n(+)/C	ut(-)	4	107.0
Retort Solids (Content			13.8%		13%	Washout 1							Oil	Adde	d (+)		4.0
Corrected Soli	ds (vol%)			11.7%		11%	Washout 2							Barite	Adde	d (+)		0.0
Retort Oil Con	tent			62.7%		64%	Oper	n Hole Siz	e 6.	885	11,985'		Other Pi	roduct	Usag	e (+)		0.0
Retort Water (Content			23.5%		23%	AN	NULAR G	EOME	TRY & R	RHEOLO	3Y		Water	Adde	d (+)		
O/W Ratio				73:27		74:26	annula	r n	neas.	veloci	ty flow	ECD	Le	eft on C	Cutting	js (-)		0.0
Whole Mud Ch	nlorides (r	ng/L)		53,000		52,000	section	ח מ	lepth	ft/mir	n reg	lb/gal	Non-Red	coveral	ole Vo	ol. (-)	-	-22.1
Water Phase	Salinity (p	pm)		261,258		261,733							S	Seepag	je Los	ses	-	-72.5
Whole Mud Al	kalinity, P	om		1.6		1.7	6.875x4	.5 2	2,844'	0.0	lam	10.00	Est. 7	Γotal οι	n Loc	ation	31	189.9
Excess Lime (lb/bbl)			2.1 ppb		2.2 ppb	6.875x5.	25 2	2,890'	0.0	lam	10.00	Est. Los	ses/Ga	ains (-)/(+)		-1.2
Electrical Stab	ility (volts)		408 v		424 v	6.875x5.	25 2	,982'	0.0	lam	10.00	BIT	HYDR	AULI	CS D	ATA	
Average Spec	ific Gravit	y of Solids	;	3.04		2.98	6.875x	5 3	3,030'	0.0	lam	10.00	Bit H.S.I.	Bit A	ΔΡ	Nozzl	es (32	2nds)
Percent Low G	Fravity So	lids		7.1%		7%							0.00	р	si	18	18	18
ppb Low Grav	ity Solids			58 ppb		57 ppb							Bit Impact	Noz		18	18	18
Percent Barite				4.6%		4%							Force	Velo (ft/s	-			
ppb Barite				66 ppb		57 ppb	BIT D	DATA	Ma	anuf./Typ	e S	EC 64M	0 lbs	0	,			
Estimated Total	al LCM in	System	ppb				Size	Depth Ir	n He	ours	Footage	ROP ft/hr	Motor/M	WD	Calc	Circ.	Press	sure
Sample Taker	в Ву			R. Bowlin	0	M.Meehan	6 3/4	11,985 f	it				psi					
Remarks/Reco	mmendati	ons:					Rig Activity:					•	•					

OBM RECEIVED: 3046bbls @ \$65.00_665bbls @ \$10.00

OBM on surface/ storage 2655bbls

Ran casing to bottom without issue, no tight hole or drag observed, wash the landing joint setting the shoe at 11,974'MD. RU Nine while circ the casing vol to ensure the well was free of solids. Cemented with full returns, observed 40bbls of spacer and 39bbls of cement back to surface. Redressed the rig shakers with API-200's. PU the 6.75" directional BHA, began to pick up the 4.5" drill string and run in the hole. Running in the hole at 3,030'MD at RPT time. Received 407bbls of 9.5ppg as res vol for the lateral section. Any adjustments to the MW will be made while circulating. Chemical treatments will be made to maintain the drilling fluid while circ.

Е	ng. 1:	N	1att M	leeha	n	Er	ng. 2:	Rob	Bowlin	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Р	hone:					Pł	none:	956-8	321-9994	Phone:	432-686-7361	Phone:	-			
W 1	P 1	Y 1	E 1	C 2	g 1	G 1	H 2	O 1	carefully	and may be		o elects, however	, no representation	has been prepared on is made as to the	\$9,149.64	\$95,341.70
												INCLUDI	NG 3RD PAR	TY CHARGES	\$9,540.03	\$195,611.94

OUTSOURCE FLUID SOLUTIONS LLC.

33.1° 12,217' TVD

Operator MAGI Well Name and No.	NOLIA (OIL & (GAS	Contractor PAT Rig Name ar	TTERSO	ON	County / Parish / FA	Block YETTE		Engineer Sta 05/ Spud Date	rt Date /09/21	24 hr f	538 ft	Drille	12,5	23 f	t
	AINIER	A-1H		itig ivallie al	248			EXAS		-	/13/21	Curren	141 ft/hr		rilling	Cu	rve
Report for				Report for			Field / OCS-G #			Fluid Type			ating Rate		ulating Pre		
Brandon					ol Pusi	ner		DINGS		_	DBM		404 gpm		5,580		
	1		RTY SPECIF	1	ı			LUME (BB			IMP #1		PUMP #2		ISER B		
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		5 bbl	Liner Siz					er Size		.75
8.5-11	5-20	8-12	>400	±275K	<10 <15	<6	In Hole		4 bbl	Stroke	1:				troke		12
				5/22/21		5/21/21	Active		9 bbl	bbl/stk	0.06				bl/stk	0.0	0625
Time Sample				1:30		11:00	Storage		4 bbl	stk/min					tk/min		
Sample Locati				Suction		suction	Tot. on Loc	cation 322	3 bbl	gal/min	20	2 ga	/min 20		al/min		0
Flowline Temp	erature °l	F		170 °F			F	PHHP = 131	17	-	CIRCUL	ATION DA	ATA	n =	0.692	K = 1	77.275
Depth (ft)				12,350'		11,985'	Bit C	Depth = 12,	523 '		Wash	out = 2%		Pump Eff	ciency	= 95%	6
Mud Weight (p	opg)			9.7		10.0	Drill String	Volume	to Bit	176.5 bb	ol Str	okes To Bit	2,826	Tim	e To Bit	18	min
Funnel Vis (se	ec/qt)		@ 152 °F	52		57	Disp.	Bottoms U	lp Vol.	327.5 bb	ol Botto	msUp Stks	5,243	Bottomsl	Jp Time	34	min
600 rpm				42		46	71.0 bbl	TotalCir	rc.Vol.	1349.4 b	bl To	alCirc.Stks	21,603	Total Ci	c. Time	140) min
300 rpm				26		28		DRILLING	G ASS	SEMBLY [DATA		S	OLIDS C	ONTRO	L	
200 rpm				18		20	Tubulars	OD (in.)	ID	(in.) L	-ength	Тор	Unit	So	reens	Ho	ours
100 rpm				13		16	Drill Pipe	4.500	3.	826 1	2,337'	0'	Shaker	1	200	1	3.0
6 rpm				6		6	Agitator	5.250	2.	250	46'	12,337'	Shaker	2	200	1:	3.0
3 rpm				5		5	Collars	5.250	2.	750	92'	12,383'	Shaker	3	200	1	3.0
Plastic Viscos	ity (cp)		@ 150 °F	16		18	Dir. BHA	5.000	2.	000	48'	12,475'	NOV Dry	ers/	170	1	3.0
Yield Point (lb.	/100 ft ²)		T0 = 4	10		10		CASIN	IG & I	HOLE DAT	ГА						
Gel Strength (lb/100 ft²)	10) sec/10 min	6/9		7/10	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifug	ge 1		3	3.0
Gel Strength (lb/100 ft ²)		30 min	11		13	Riser						VOLUN	IE ACCO	UNTIN	G (bb	ıls)
HTHP Filtrate	(cm/30 m	in)	@ 300 °F	6.8		7.2	Surface	10 3/4		;	3,018'	0'	Prev. T	otal on L	ocation	3	189.9
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875 1	1,974'	0'	Transfe	erred In(+	/Out(-)		
Retort Solids (Content			12.3%		13.5%	Washout 1							Oil Ad	ded (+)		78.0
Corrected Soli	ids (vol%)			10%		11.4%	Washout 2							Barite Ad	ded (+)		0.0
Retort Oil Con	itent			62.3%		63%	Open	Hole Size	6.	885 1	2,523'		Other Pr	oduct Us	age (+)		15.1
Retort Water (Content			25.4%		23.5%	ANI	NULAR GE	ОМЕ	TRY & RF	IEOLOG	Y	\	Water Ad	ded (+)		
O/W Ratio				71:29		73:27	annular	r me	eas.	velocity	flow	ECD	Le	ft on Cutt	ings (-)		-24.8
Whole Mud Cl	hlorides (r	ng/L)		57,000		53,000	section	de	epth	ft/min	reg	lb/gal	Non-Rec	overable	Vol. (-)		-34.9
Water Phase	Salinity (p	pm)		260,296		261,258		•									
Whole Mud Al	kalinity, P	om		1.6		1.7	6.875x4.	.5 11,	974'	366.6	turb	10.82	Est. T	otal on L	ocation	3	223.4
Excess Lime (lb/bbl)			2.1 ppb		2.2 ppb	6.885x4.	.5 12,	337'	364.7	turb	10.98	Est. Los	ses/Gains	s (-)/(+)		0.0
Electrical Stab	oility (volts)		365 v		425 v	6.885x5.2	25 12,	383'	499.1	turb	11.13	BIT	HYDRAU	LICS D	АТА	
Average Spec	ific Gravit	y of Solic	ls	2.96		3.09	6.885x5.2	25 12,	475'	499.1	turb	11.28	Bit H.S.I.	Bit ∆P	Nozz	des (3	32nds)
Percent Low 0	ercent Low Gravity Solids					6.6%	6.885x5	5 12,	523'	442.0	turb	11.42	0.43	66 psi	18	18	18
ppb Low Grav	ity Solids			53 ppb		54 ppb							Bit Impact	Nozzle		18	18
Percent Barite)			3.5%		4.8%							Force	Velocity (ft/sec)			
opb Barite				50 ppb		69 ppb	BIT D	ATA	Ma	anuf./Type	SE	C 64M	176 lbs	87			
Estimated Total LCM in System ppb							Size	Depth In	Н	ours F	ootage	ROP ft/hr	Motor/M	WD Ca	ılc. Circ	. Pre	ssure
Sample Taken By				R. Bowlin	0	M.Meehan	6 3/4	11,878 ft	1	3.0	645 ft	49.6	3,500 p	osi	5,53	9 psi	i
Remarks/Reco	mmondati	ono:		I	I	1	Ria Activity:	1	1	I			1	I			

OBM RECEIVED: 3046bbls @ \$65.00_665bbls @ \$10.00

OBM on surface/ storage 2719bbls

MWD Temp: 275 Degrees

Rig Activity:

4.5" DP running in the hole, tag float at 11,878'MD, drilled the shoe track plus 10' of new formation. Perf a FIT to 12.6ppg EMW with 9.9ppg MW at 1,660PSI. Drilled the build section to 12523MD at the time of the am report. Made the necessary chemical additions to the drilling fluid reconditioning to within the recommended lateral parameters. No LCM laden sweeps while drilling the build section, planned sweeps to resume once landed at 10bbls every other stand. Making additions of CaCl2 to increase the WPS, no H2O additions currently due to increased H2O % from incorporated H2O from the cement job. MW at 9.65ppg Increasing to 9.8ppg due to 10bbl influx

Е	ng. 1:	N	latt M	eeha	n	Er	ng. 2:	Rob	Bowlin	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
F	hone:					Ph	one:	956-8	21-9994	Phone:	432-686-7361	Phone:	-			
W 1	P 1	Y 1	E 0	C 0	g 1	G 1	H 2	O 1	carefully	and may be		o elects, however	, no representati	nas been prepared on is made as to the	\$4,494.28	\$99,835.98
												INCLUDI	NG 3RD PAR	TY CHARGES	\$11,722.91	\$207,334.85

110 Old Market St.

St Martinville, LA 70582

33.1° 12,231' TVD

Operator				Contractor			County / Paris	h / Block		Engineer S	Start Date	24 hr	ftg.	Dr	illed Depth		
MAGN	NOLIA C	OIL & C	GAS	PAT	TERSO	N	FA	YETT	E	05	5/09/21		17 ft		12,5	40 ft	
Well Name and No		A 411		Rig Name ar			State	EVAC		Spud Date		Curre	nt ROP	Ac	ctivity		
Report for	AINIER	A-1H		Report for	248		Field / OSC-G	EXAS		Fluid Type	5/13/21	Circu	lating Rate	Cir	rculating Pre	ulate	
Brandon	Parks/	Bobby	y Gwin	То	ol Push	ner	GIE	DING	S		ОВМ		391 gpn	n	4,400	6 psi	
	MUD	PROPE	RTY SPECI	FICATION	IS		MUD V	DLUME	(BBL)	P	UMP #1		PUMP #2	1 1	RISER B	OOSTE	:R
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	s 6	831 bbl	Liner Si	ze 4.	75 Line	er Size 4	.75 L	iner Size	4.75	5
8.5-11	5-20	8-12	>400	±275K	<10 <15	<6	In Hole	е :	505 bbl	Stroke	· 1	2 St	roke	12	Stroke	12	
	MU	UD PRO	PERTIES	<u> </u>	<u> </u>		Active	e 1	336 bbl	bbl/stl	× 0.0	625 bb	ol/stk 0.0	0625	bbl/stk	0.062	25
Time Sample	Taken			1:30		13:00	Storag	e <u>1</u>	874 bbl	stk/mii	n 7	2 stl	c/min	77	stk/min		
Sample Locat	ion			Suction		suction	Tot. on Lo	cation 3	3210 bbl	gal/mii	n 18	39 ga	ıl/min 2	:02	gal/min		
Flowline Temp	perature °l	F		170 °F		170 °F	Mud Wt. :	= 9.7	PV=16	YP=1	O CII	RCULATIO	ON DATA	n	= 0.692	K = 17	7.3
Depth (ft)				12,350'		12,540'	Bit [Depth =	12,540 '		Wash	out = 2%		Pump E	fficiency	= 95%	
Mud Weight (p	ppg)			9.7		11.0	Drill String	Volu	ıme to Bit	176.8 b	obl Str	okes To Bi	t 2,830	Tir	me To Bit	19 mi	in
Funnel Vis (se	ec/qt)		@ 152 °F	52		53	Disp.	Bottom	s Up Vol.	328.0 b	bl Botto	msUp Stk	5,250	Bottoms	sUp Time	35 mi	in
600 rpm				42		50	71.1 bbl	Tota	lCirc.Vol.	1335.7	bbl To	talCirc.Stk	21,383	Total C	Circ. Time	144 m	nin
300 rpm	·					30		DRILL	ING AS	SEMBLY	DATA		8	OLIDS	CONTRO)L	
200 rpm	•					22	Tubulars	OD (ir	n.) ID	(in.) I	Length	Тор	Unit	: 5	Screens	Hour	'S
100 rpm	0 rpm					17	Drill Pipe	4.500	3.8	326 1	12,354'		Shake	r 1	200		
6 rpm				6		7	Agitator	5.250	2.2	250	46'	12,354'	Shake	r 2	200		
3 rpm				5		6	Collars	5.250	2.7	750	92'	12,400'	Shake	r 3	200		
Plastic Viscos	sity (cp)		@ 150 °F	16		20	Dir. BHA	5.000) 2.0	000	48'	12,492'	NOV Dr	yers	170		
Yield Point (lb.	/100 ft²)		T0 = 4	10		10		CA	SING &	HOLE D	ATA						
Gel Strength ((lb/100 ft²)	10	sec / 10 min	6/9		7/10	Casing	OD (ir	n.) ID	(in.)	Depth	Тор	Centrifu	ge 1			
Gel Strength ((lb/100 ft2))	30 min	11		13	Riser						VOLU	ME ACC	OUNTIN	G (bbls))
HTHP Filtrate	(cm/30 m	in)	@ 300 °F	6.8		6.8	Surface	10 3/-	4		3,018'		Prev.	Γotal on	Location	322	3.4
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	375 1	11,974'		Transfe	erred In(+)/Out(-)		
Retort Solids (Content			12.3%		17%	Washout 1							Oil A	dded (+)		
Corrected Soli	ids (vol%))		10%		14.8%	Washout 2							Barite A	dded (+)	80	6.8
Retort Oil Con	ntent			62.3%		58%	Oper	Hole S	ize 6.8	385 1	12,540'		Other P	roduct U	sage (+)		
Retort Water (Content			25.4%		25%	AN	NULAR	GEOME	TRY & F	RHEOLO	GY		Water A	dded (+)		
O/W Ratio				71:29		70:30	annula	ar	depth	velocit	ty flow	ECD	Le	eft on Cu	ıttings (-)	-(0.8
Whole Mud Cl	hlorides (r	mg/L)		57,000		57,000	sectio	n	deptin	ft/min	reg	lb/gal	Non-Red	coverable	e Vol. (-)		
Water Phase	Salinity (p	pm)		260,296		263,364		•						Lost Re	eturns (-)	-99	9.8
Whole Mud Al	lkalinity, P	om		1.6		1.7	6.875x4	1.5	11,974'	354.7	turb	10.63	Est.	Γotal on	Location	320	9.7
Excess Lime ((lb/bbl)			2.1 ppb		2.2 ppb	6.885x4	1.5	12,354'	352.9	turb	10.65	Est. Los	ses/Gai	ns (-)/(+)	(0.0
Electrical Stab	oility (volts	5)		365 v		402 v	6.885x5	.25	12,400'	482.9	turb	10.66	BIT	HYDRA	ULICS D	ATA	
Average Spec	verage Specific Gravity of Solids			2.96		3.35	6.885x5	.25	12,492'	482.9	turb	10.67	Bit H.S.I.	Bit ∆l	P Nozz	les (32nd	ıds)
Percent Low 0	ercent Low Gravity Solids			6.5%		6.4%	6.885x	(5	12,540'	427.7	turb	10.67	0.39	61 ps	si 18	18 1	18
ppb Low Grav	pb Low Gravity Solids					52 ppb							Bit Impact	Nozzl		18 1	18
Percent Barite				3.5%		8.4%							Force	Veloci (ft/sed	-		
opb Barite				50 ppb		120 ppb	BIT I	DATA	Ма	nuf./Typ	e SI	EC 64M	165 lbs	84			
Estimated Total LCM in System							Size	Depth	In Ho	urs F	ootage	ROP ft/h	r Motor/M	IWD C	Calc. Circ	. Pressu	ure
Sample Taken By				R. Bowlin		M.Meehan	6 3/4	11,878	3 ft 25	5.0	662 ft	26.5	2,500	psi	4,42	6 psi	
Afternoon Rem			_				Afternoon F							J.			

Afternoon Remarks/Recommendations:

Pump a 10 bbl sweep every 300 ft. Sweep Contains:

10 ppb NewCarb, 10 ppb Newphalt and 10 ppb Magnafiber fine

Afternoon Rig Activity:

Continue circulating and weighting up the mud in increments from 9.6ppg to 11.0 ppg. Pullled up to the shoe. Circulating and mixing the mud cap to spot at the shoe prior to POOH to change the assembly.

Report #12 TEL: (337) 394-1078

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

8.5° 2,912' TVD

MAGNOLIA OIL & GAS PATTERSON FAYETTE 05/09/21 17 ft 12,540 ft Well Name and No Name and No. **RAINIER A-1H** 248 **TEXAS** 05/13/21 0 ft/hr TOOH Field / OCS-G # luid Type irculating Rate irculating Pressure **Brandon Parks/ Bobby Gwin Tool Pusher GIDDINGS OBM** 0 qpm psi MUD PROPERTY SPECIFICATIONS PUMP #1 PUMP #2 RISER BOOSTER MUD VOLUME (BBL) Weight CaCl2 **GELS** In Pits 720 bbl Liner Size 4.75 Liner Size 4.75 Liner Size 4.75 8.5-11 8-12 >400 ±275K <10 <15 <6 In Hole 557 bbl Stroke 12 Stroke 12 Stroke 12 5/23/21 5/22/21 837 bbl 0.0625 bbl/stk 0.0625 bbl/stk 0.0625 0 0 Time Sample Taken 1:00 13:00 2014 bbl stk/min stk/min stk/min gal/min gal/min Sample Location Suction suction Tot. on Location 3291 bbl gal/min Λ 0 O n = 0.728 K = 174.263 Flowline Temperature °F 170 °F PHHP = 0**CIRCULATION DATA** Depth (ft) 12 540' 12 540 Bit Depth = 2,955 ' Washout = 2% Pump Efficiency = 95% Mud Weight (ppg) 11.0 11.0 Volume to Bit 40.5 bbl Strokes To Bit Time To Bit **Drill String** Disp. Funnel Vis (sec/qt) @ 118 °F 56 53 Bottoms Up Vol. 76.3 bbl BottomsUp Stks BottomsUp Time 50 600 rpm 53 18.9 bbl TotalCirc Vol. 836.8 bbl TotalCirc Stks Total Circ. Time **DRILLING ASSEMBLY DATA SOLIDS CONTROL** 300 rpm 32 30 24 22 OD (in.) Unit 200 rpm **Tubulars** ID (in.) Length Top Screens Hours 16 17 0' Shaker 1 200 24.0 100 rpm Drill Pipe 4.500 3.826 2,769 6 5.250 2.250 46' 2,769 Shaker 2 200 Agitator 24.0 6 rpm 5 6 Collars 5.250 2.750 92 2,815' Shaker 3 200 24.0 3 rpm 20 Dir. BHA 5.000 2.907 **NOV Drvers** 170 Plastic Viscosity (cp) Yield Point (lb/100 ft²) T0 = 11 10 **CASING & HOLE DATA** 7/10 Casing OD (in.) ID (in.) 2.0 Gel Strength (lb/100 ft²) 10 sec/10 min 6/9 Depth Top Centrifuge 1 30 min 12 13 Riser **VOLUME ACCOUNTING (bbls)** Gel Strength (lb/100 ft2) Surface @ 300 °F 6.4 6.8 10 3/4 3.018 0' 3223.4 HTHP Filtrate (cm/30 min) Prev. Total on Location HTHP Cake Thickness (32nds) 2.0 2.0 Int. Csg. 7 5/8 6.875 11,974 Transferred In(+)/Out(-) 0' Retort Solids Content 16 9% 17% Washout 1 Oil Added (+) 17.5 Corrected Solids (vol%) 14.7% 14.8% Washout 2 Barite Added (+) 141.6 Retort Oil Content 58.2% 58% Open Hole Size 6.885 12.540 Other Product Usage (+) 4.8 **ANNULAR GEOMETRY & RHEOLOGY** Retort Water Content 24.9% 25% Water Added (+) O/W Ratio 70:30 70:30 Left on Cuttings (-) -0.8 annular meas velocity flow ECD section depth ft/min reg lb/gal 55.000 57.000 -27.5 Whole Mud Chlorides (ma/L) Non-Recoverable Vol. (-) 257,259 263,364 Water Phase Salinity (ppm) -68.2 Seepage Whole Mud Alkalinity, Pom 1.0 1.7 6.875x4.5 2.769 0.0 11.00 3291.0 lam Est. Total on Location 1.3 ppb 2.2 ppb 6.875x5.25 2,815 0.0 11.00 Est. Losses/Gains (-)/(+) 0.0 Excess Lime (lb/bbl) lam 358 v 402 v 6.875x5.25 **BIT HYDRAULICS DATA** Electrical Stability (volts) 2,907 0.0 lam 11.00 3.37 3.35 6.875x5 2.955' 0.0 Bit H.S.I. Average Specific Gravity of Solids lam 11.00 Bit ΔP Nozzles (32nds) 6.1% 6.4% Percent Low Gravity Solids 0.00 18 18 18 ppb Low Gravity Solids Nozzle 18 18 50 ppb 52 ppb 18 Bit Impact Velocity Force Percent Barite 8.6% 8.4% ppb Barite 123 ppb 120 ppb **BIT DATA** Manuf./Type SEC 64M 0 lbs 0 ROP ft/hr Estimated Total LCM in System Size Depth In Hours Footage Motor/MWD Calc. Circ. Pressure 11.878 ft 662 ft Sample Taken By R. Bowlin M.Meehan 6 3/4 14.0 47.3 psi

Remarks/Recommendations:

OBM RECEIVED: 3046bbls @ \$65.00_665bbls @ \$10.00

OBM on surface/ storage 2734bbls

Max Drill Gas 2766 units

Last Recorded MWD Temp: 275 Degrees

Rig Activity:

Circ out the influx increasing the MW to 10.3-10.5-10.7ppg a final MW @ 11.0ppg to control the formation pressures. The decision was made to make a BHA trip due to current BHA not yielding the necessary build rates, projections would have placed lateral positioning 40' below targeted landing. Stripped out of the hole to 11,700'MD and spotted 143bbls of 16.5ppg kill mud. Stripped out of the hole to 8,590'MD, performed a flow check, no flow pumped the slug. TOOH to 7,160'MD the hole was indicating flow not taking fill. Stripped back in the hole to 8,537', circ out kill/slug. Lost 32bbls while circulating the kill mud out, diverted 99.6bbls to the open tops 11.4-13.1ppg. Building 18.0ppg kill.

E	ng. 1:	М	att M	eehaı	n	Er	ng. 2:	Rob	Bowlin	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
PI	none:					Pł	none:	956-8	21-9994	Phone:	432-686-7361	Phone:	-			
W	Р	Υ	Е	С	g	G	Н	0						nas been prepared on is made as to the	\$17,811.63	\$117,647.61
1	1	1	0	0	1	1	2	1			ation, and this is a			on is made as to the		
												INCLUDI	NG 3RD PAR	TY CHARGES	\$19,270.21	\$226,605.06

952' TVD

110 Old Market St. St Martinville, LA 70582

TEL: (337) 394-1078

7.4°

Operator		Contractor			County / Parisl	n / Block		Engine	er Start Date	24	nr ftg.		Dr	illed Depth		
MAGNOLIA OIL & G	SAS	PAT	TERSO	N	FA	YETTE			05/09/2 ⁻	1				12,5	40 f	t
Well Name and No.		Rig Name ar			State	EVAC		Spud D	ate 05/13/2 [,]		rent ROP		Ac	ctivity	ВШ	
RAINIER A-1H Report for		Report for	248		Field / OSC-G	EXAS		Fluid Ty			ulating Rate		Ci	M/U		-
Brandon Parks/ Bobby	Gwin	То	ol Push	ner	GIE	DINGS			ОВМ							
MUD PROPER	TY SPECI	FICATION	IS		MUD VO	DLUME (BI	BL)		PUMP #1		PUMP	#2		RISER B	oos	TER
Weight PV YP	E.S.	CaCl2	GELS	HTHP	In Pits	699) bbl	Liner	Size 4	.75 Lii	ner Size	4.75	5 L	iner Size	4.	.75
8.5-11 5-25 8-12	>400	±275K	<10 <15	<6	In Hole	e 568	3 bbl	Stro	ke	12	Stroke	12		Stroke		12
MUD PRO	PERTIES	ļ			Active	735	5 bbl	bbl/	/stk 0.0	0625	obl/stk	0.062	25	bbl/stk	0.0	0625
Time Sample Taken		1:00		11:00	Storag	e <u>201</u>	4 bbl	stk/i	min	5	tk/min			stk/min		
Sample Location		Suction		suction	Tot. on Loc	cation 328	1 bbl	gal/	min	g	al/min			gal/min		
Flowline Temperature °F					Mud Wt. =	11.0 PV	=21	YP=	=11 C	IRCULAT	ION DAT	A	n	= 0.728	K =	174.3
Depth (ft)		12,540'		12,540'	Bit	Depth = 9	53 '		Wasl	nout = 2%	, D	Pu	ımp E	fficiency	= 95%	%
Mud Weight (ppg)		11.0		11.0	Drill String	Volume	to Bit	12.0	bbl S	trokes To I	Bit		Tir	me To Bit		
Funnel Vis (sec/qt)	@ 118 °F	56		55	Disp.	Bottoms U	p Vol.	23.8	bbl Bott	omsUp St	ks	В	ottoms	sUp Time		
600 rpm		53		53	8.0 bbl	TotalCir	rc.Vol.	734.8	B bbl T	otalCirc.St	ks	1	Total C	Circ. Time		
300 rpm		32		32		DRILLING	G ASS	SEMB	LY DATA			soı	LIDS	CONTRO)L	
200 rpm		24		23	Tubulars	OD (in.)	ID	(in.)	Length	Тор	ι	Jnit		Screens	Но	ours
100 rpm		16		16	Drill Pipe	4.500	3.8	326	767'		Sha	aker 1		200		
6 rpm		6		6	Agitator	5.250	2.2	250	46'	767'	Sha	aker 2		200		
3 rpm		5		5	Collars	5.250	2.7	750	92'	813'	Sha	aker 3		200		
Plastic Viscosity (cp)	@ 150 °F	21		21	Dir. BHA	5.000	2.0	000	48'	905'	NOV	Dryer	rs	170		
Yield Point (lb/100 ft²)	T0 = 4	11		11		CASIN	IG & I	HOLE	DATA							
Gel Strength (lb/100 ft²) 10	sec / 10 min	6/9		7/10	Casing	OD (in.)	ID	(in.)	Depth	Тор	Cent	rifuge	1			
Gel Strength (lb/100 ft2)	30 min	12		13	Riser						VOI	LUME	ACC	OUNTIN	G (bb	ıls)
HTHP Filtrate (cm/30 min)	@ 300 °F	6.4		6.4	Surface	10 3/4			3,018'		Pre	v. Tot	al on	Location	3	291.0
HTHP Cake Thickness (32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	375	11,974'		Tra	nsferre	ed In(+)/Out(-)		
Retort Solids Content		16.9%		17%	Washout 1								Oil A	dded (+)		
Corrected Solids (vol%)		14.7%		14.8%	Washout 2							Ва	arite A	dded (+)		
Retort Oil Content		58.2%		58%	Open	Hole Size	6.8	385	12,540'		Othe	r Prod	duct U	sage (+)		
Retort Water Content		24.9%		25%	AN	NULAR GE	ОМЕ	TRY 8	& RHEOL	OGY		Wa	ater A	dded (+)		
O/W Ratio		70:30		70:30	annula	ır do	pth	velo	ocity flow	ECD		Left o	on Cu	ttings (-)		
Whole Mud Chlorides (mg/L)		55,000		57,000	sectio	n ue	pui	ft/n	nin reg	lb/gal	Non-	Recov	erabl/	e Vol. (-)		-10.1
Water Phase Salinity (ppm)		257,259		263,364		•		-	•	•			S	Seepage		
Whole Mud Alkalinity, Pom		1.0		2.5	6.875x4	1.5 70	67'		lam	11.00	Es	st. Tot	al on	Location	3	280.9
Excess Lime (lb/bbl)		1.3 ppb		3.3 ppb	6.875x5	.25 8	13'		lam	11.00	Est.	Losse	s/Gai	ns (-)/(+)		0.0
Electrical Stability (volts)		358 v		397 v	6.875x5	.25 90	05'		lam	11.00	ı	BIT H	YDRA	ULICS [ATA	
Average Specific Gravity of Solid	ds	3.37		3.35	6.875x	5 9	53'		lam	11.00	Bit H.	S.I.	Bit Δ	P Nozz	des (3	32nds)
Percent Low Gravity Solids		6.1%		6.4%										18	18	18
ppb Low Gravity Solids		50 ppb		52 ppb							Bit Imp	Nact I	Nozzl Veloci		18	18
Percent Barite		8.6%		8.4%							Forc	e	(ft/sed	-		
ppb Barite		123 ppb		120 ppb	BIT D	DATA	Ма	nuf./T	ype S	SEC 64M						
Estimated Total LCM in System					Size	Depth In	Но	urs	Footage	ROP ft/	hr Moto	r/MW	D C	Calc. Circ	. Pres	ssure
Sample Taken By		R. Bowlin		M.Meehan	6 3/4	12,540 ft								24	psi	
Afternoon Remarks/Recommendati	ons:				Afternoon R	Rig Activity:					· ·		_			

Pump a 10 bbl sweep every 300 ft. Sweep Contains:

10 ppb NewCarb, 10 ppb Newphalt and 10 ppb Magnafiber fine

Continue to POOH. Laid down BHA. The bit was left downhole. Making up sidetrack assembly to sidetrack the well. Mixed kill mud and transferred it to frac tanks for later use. Treated the system with Optimul and Lime to increase the emulsion and alkalinity.

OUTSOURCE FLUID SOLUTIONS LLC.

9.7° 11,932' TVD

Operator MAGI	NOLIA (OIL &	GAS	Contractor PA	TTERSO	ON	County / Parish /	Block /ETTE		Engineer	Start D		24 hr ft	7 ft		Drilled	•	97 ft
Well Name and No.				Rig Name ar			State			Spud Dat			Curren			Activity		
	NIER A-	1H ST	-01		248			EXAS			05/13	3/21		3 ft/hr			_	ghing
Report for Brandon	Darke/	Robb	v Gwin	Report for	ol Pusi	hor	Field / OCS-G #	DINGS		Fluid Typ	ОВ	м		ating Rate		Circula	•	ssure 3 psi
Brandon			-			IICI					PUMI			247 gpm PUMP #2				OOSTER
Woight	PV	YP	E.S.	CaCl2	GELS	НТНР	In Pits	LUME (BE	bbl	Liner		4.75	Lino		.75	Liner		4.75
Weight 8.5-11	5-25	8-12	>400	±275K	<10 <15	<6	In Hole		3 bbl	Stro		12			12	Stro		12
0.5-11	3-23	0-12	>400	5/24/21	<10 <15	5/23/21	Active		3 bbl	bbl/s		0.0625			12	bbl		0.0625
Time Sample	Taken			2:00		11:00	Storage		3 bbi 1 bbl	stk/r		47			17	stk/		0.0025
Sample Locati				Suction		suction		227 cation 339		gal/r		123			23	gal/		0
Flowline Temp		=		149 °F		Guotion		PHHP = 40		guri		RCULATI				·		K = 154.411
Depth (ft)	- Crataro 1			11,994'		12,540'		epth = 11,				Nashout:			Pump			= 95%
Mud Weight (p	na)			11.0		11.0		•		169.0		Stroke			· ·	Time		
Funnel Vis (se			@ 126 °F	50		55	Drill String Disp.	Bottoms U				Bottomsl		,		msUp		
600 rpm	9,917			50		53	68.2 bbl	TotalCi				TotalC				·		191 min
300 rpm				30		32		DRILLING						1	OLID			
200 rpm				21		23	Tubulars	OD (in.)	ID	(in.)	Len	gth	Гор	Unit		Scre	ens	Hours
100 rpm				13		16	Drill Pipe	4.500	3.	826	11,8	311'	0'	Shakei	r 1	20	00	20.0
6 rpm				6		6	Agitator	5.250	2.	250	4	6' 1 1	,811'	Shaker	r 2	20	00	20.0
3 rpm	n n			5		5	Collars	5.250	2.	750	9:	2' 1 1	,857'	Shaker	r 3	20	00	20.0
Plastic Viscosi	ity (cp)		@ 150 °F	20		21	Dir. BHA	5.000	2.	000	4	8' 1 1	,949'	NOV Dry	yers	17	70	20.0
Yield Point (lb/	/100 ft²)		T0 = 4	10		11		CASIN	IG & F	HOLE [DATA							
Gel Strength (lb/100 ft²)	10	0 sec/10 min	5/9		7/10	Casing	OD (in.)	ID	(in.)	De	pth	Гор	Centrifuç	ge 1			1.0
Gel Strength (lb/100 ft ²)		30 min	11		13	Riser							VOLUN	ME AC	COU	NTING	G (bbls)
HTHP Filtrate	(cm/30 mi	in)	@ 300 °F	6.0		6.4	Surface	10 3/4			3,0	18'	0'	Prev. T	otal o	n Loc	ation	3291.0
HTHP Cake T	hickness ((32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875	11,9	974'	0'	Transfe	erred I	n(+)/C	Out(-)	
Retort Solids (Content			17.3%		17%	Washout 1								Oil	Adde	d (+)	101.1
Corrected Soli	ds (vol%)			15.1%		14.8%	Washout 2								Barite	Adde	d (+)	58.9
Retort Oil Con	tent			60.4%		58%	Oper	Hole Size	6.	885	11,9	997'		Other Pr	roduct	Usag	e (+)	11.5
Retort Water (Content			22.3%		25%	ANI	NULAR GE	OME	TRY &	RHE	DLOGY		,	Water	Adde	d (+)	
O/W Ratio				73:27		70:30	annular	me	eas.	velo	city	flow E	CD	Le	eft on (Cutting	gs (-)	-0.3
Whole Mud Ch	nlorides (n	ng/L)		54,000		57,000	section	de	pth	ft/m	nin	reg II	o/gal	Non-Red	covera	ble V	ol. (-)	-15.4
Water Phase	Salinity (p	pm)		275,213		263,364										Seep	age	-52.3
Whole Mud Al	kalinity, P	om		2.3		2.5	6.875x4.	5 11,	811'	223	3.7	lam 1	1.55	Est. T	Total o	n Loc	ation	3394.4
Excess Lime (lb/bbl)			3 ppb		3.3 ppb	6.875x5.2	25 11,	857'	306	8.8	turb 1	1.55	Est. Los	ses/G	ains (-)/(+)	0.0
Electrical Stab	ility (volts))		402 v		397 v	6.875x5.2	25 11,	949'	306	8.8	turb 1	1.56	ВІТ	HYDR	RAULI	CS D	ATA
Average Spec	ific Gravity	y of Solid	ds	3.34		3.35	6.875x5	5 11,	974'	271	.5	turb 1	1.56	Bit H.S.I.	Bit	ΔΡ	Nozz	les (32nds)
Percent Low G	Gravity Sol	lids		6.6%		6.4%	6.885x5	5 11,	997'	269	8.8	turb 1	1.56	0.11	28	psi	18	18 18
ppb Low Grav	pb Low Gravity Solids			54 ppb		52 ppb								Bit Impact	Noz Velo		18	18 18
Percent Barite	Percent Barite			8.6%		8.4%								Force	(ft/s	•		
ppb Barite				123 ppb		120 ppb	BIT D	ATA	Ma	anuf./Ty	/ре	SEC 6	64M	75 lbs	5	3		
Estimated Total	stimated Total LCM in System ppb						Size	Depth In	Н	ours	Foot	tage RC	P ft/hr	Motor/M	WD	Calc	. Circ	. Pressure
Sample Taken	•			R. Bowlin	0	M.Meehan	6 3/4	11,990 ft	6	6.0	7	ft	1.2	1,500	psi		2,496	6 psi

Remarks/Recommendations:

OBM RECEIVED: 3046bbls @ \$65.00_665bbls @ \$10.00

OBM on surface/ storage 2911bbls

Began Drill H2O at 1.97bbls 04:00hrs

MWD Temp: 250 Degrees

Rig Activity:

Tripped out of the hole, once at surface realized that the mud motor had parted at the power section leaving +/- 15' of the motor and the bit down hole. PU the 2.0 sidetrack assembly and TIH to 8,700'MD and circulated out a portion of the mud cap. Diverted 70bbls of 11.3-13.3ppg and transferred the same to frac storage for reuse. Stripped in the hole to 12,000'MD and circulated out the remaining mud cap, lost 28bbls while bring the same to surface. Diverted 144.7bbls of 11.8-14.8ppg to frac storage for reuse. Began troughing from 11,974'MD to 11,990'MD and began sidetracking the well at 1' per hour. Currently time drilling at 3'hr at 11,997'MD Active density maintained at 11.0ppg

Eı	ng. 1:	N	1att M	leeha	n	Er	ng. 2:	Rob	Bowlin	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
PI	none:					Ph	none:	956-8	21-9994	Phone:	432-686-736	1 Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 2	O 1	carefully	and may be	used if the user	so elects, howeve	r, no representati		\$8,784.50	\$126,432.11
							.9.2		INCLUD	ING 3RD PAR	TY CHARGES	\$18,551.86	\$245,156.92			

TEL: (337) 394-1078

10.8° 12,015' TVD

Operator				Contractor			County / Parish	h / Block		Enginee	er Start Date	24 hı	ftg.		Drilled D	epth		
MAGN	IOLIA (OIL & G	SAS	PAT	TERSO	N	FA	YETTE		(05/09/21		23 ft		1	2,02	0 ft	
Well Name and No.	UED 4	411.07	0.4	Rig Name ar			State	EV.4.0		Spud Da		Curre	ent ROP		Activity	_		
RAIN Report for	IIER A-	1H ST-	U1	Report for	248		Field / OSC-G	EXAS		Fluid Ty	05/13/21 pe	Circu	18 ft/hr		Side Circulatin			ng
Brandon	Parks/	Bobby	Gwin	То	ol Push	ner	GIE	DINGS			ОВМ		247 gpm	1	2,	748	ps	i
	MUD	PROPER	TY SPECI	FICATION	IS		MUD VC	DLUME (BE	BL)		PUMP #1		PUMP #2		RISE	R BC	OST	ſER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	663	bbl	Liner	Size 4.	75 Lin	er Size 4.	75	Liner S	Size	4.7	75
8.5-11.3	5-25	8-12	>400	±275K	<10 <15	<6	In Hole	e 484	bbl	Stro	ke 1	2 S	troke 1	2	Strok	e	1:	2
	М	UD PROI	PERTIES				Active	1147	7 bbl	bbl/s	stk 0.0	625 b	bl/stk 0.0	625	bbl/s	tk	0.06	625
Time Sample	Taken			2:00		12:00	Storage	e <u>227</u>	1 bbl	stk/r	min 4	7 st	k/min 4	17	stk/m	iin		
Sample Locati	on			Suction		suction	Tot. on Loc	cation 3418	8 bbl	gal/r	min 12	23 ga	al/min 1:	23	gal/m	iin		ļ
Flowline Temp	erature °	F		149 °F		150 °F	Mud Wt. =	11.0 PV:	=20	YP=	:10 CI I	RCULATI	ON DATA		n = 0.	737 I	< = 1	54.4
Depth (ft)				11,994'		12,020'	Bit D	Depth = 12,0	020 '		Wash	out = 2%		Pump	Efficie	ncy =	95%	, D
Mud Weight (p	ppg)			11.0		11.3	Drill String	Volume	to Bit	169.4	bbl Str	okes To B	it 2,711	٦	Γime Τα	Bit	29 r	min
Funnel Vis (se	c/qt)		@ 126 °F	50		47	Disp.	Bottoms U	p Vol.	314.3	B bbl Botto	msUp Stk	s 5,031	Bottor	nsUp T	ïme	54 r	min
600 rpm				50		52	68.3 bbl	TotalCir	c.Vol.	1146.0	6 bbl To	talCirc.Stk	s 18,356	Total	Circ. T	ïme	195	min
300 rpm				30		31		DRILLING	3 ASS	SEMBI	LY DATA		s	OLIDS	CON	TROL		
200 rpm				21		21	Tubulars	OD (in.)	ID ((in.)	Length	Тор	Unit		Scree	ens	Hou	urs
100 rpm				13		14	Drill Pipe	4.500	3.8	326	11,834'		Shaker	1	200)	12	.0
6 rpm				6		6	Agitator	5.250	2.2	250	46'	11,834'	Shaker	2	200)	12	2.0
3 rpm				5		5	Collars	5.250	2.7	750	92'	11,880'	Shaker	. 3	200)	12	2.0
Plastic Viscosi	ity (cp)		@ 150 °F	20		21	Dir. BHA	5.000	2.0	000	48'	11,972'	NOV Dry	ers/	170)	12	2.0
Yield Point (lb/	/100 ft²)		T0 = 4	10		10		CASIN	IG & I	HOLE	DATA							ļ
Gel Strength (lb/100 ft²)) 10:	sec / 10 min	5/9		6/9	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifuç	ge 1				ļ
Gel Strength (lb/100 ft2	.)	30 min	11		11	Riser						VOLUM	IE AC	COUN	TING	(bbl	s)
HTHP Filtrate	(cm/30 m	nin)	@ 300 °F	6.0		6.0	Surface	10 3/4			3,018'		Prev. T	otal or	n Loca	tion	33	394.4
HTHP Cake TI	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	375	11,974'		Transfe	erred Ir	n(+)/Oı	ut(-)		
Retort Solids (Content			17.3%		18.3%	Washout 1							Oil	Added	(+)		34.3
Corrected Soli	ds (vol%))		15.1%		16.1%	Washout 2							Barite	Added	(+)		
Retort Oil Con	tent			60.4%		59.7%	Open	Hole Size	6.8	385	12,020'		Other Pr	oduct	Usage	(+)		
Retort Water 0	Content			22.3%		22%	ANI	NULAR GE	ОМЕ	TRY 8	RHEOLO	GY	,	Water	Added	(+)		ļ
O/W Ratio				73:27		73:27	annula	ar	41-	velo	city flow	ECD	Le	ft on C	Cuttings	s (-)		-1.1
Whole Mud Ch	nlorides (mg/L)		54,000		55,000	section	ı ue	pth	ft/m	-	lb/gal	Non-Red	overal	ole Vol	. (-)	-	-10.0
Water Phase S	Salinity (p	ppm)		275,213		281,620									Seepa	ige		
Whole Mud Al	kalinity, F	Pom		2.3		2.7	6.875x4	1.5 11,8	834'	223	3.7 lam	11.57	Est. T	otal or	n Loca	tion	34	117.6
Excess Lime (lb/bbl)			3 ppb		3.5 ppb	6.875x5.	.25 11,8	880'	306	3.8 turb	11.60	Est. Los	ses/Ga	ains (-)	/(+)		0.0
Electrical Stab	ility (volts	s)		402 v		396 v	6.875x5.	.25 11,9	972'	306	3.8 turb	11.62	ВІТ	HYDR	AULIC	S DA	ΤA	
Average Spec	ectrical Stability (volts) verage Specific Gravity of Solids					3.41	6.875x	5 11,9	974'	271	.5 turb	11.65	Bit H.S.I.	Bit .	ΔΡΙ	Nozzle	es (32	2nds)
Percent Low G	ercent Low Gravity Solids			6.6%		6.4%	6.885x	5 12,0	020'	269	.8 turb	11.67	0.11	28	psi	18	18	18
ppb Low Gravi	pb Low Gravity Solids					52 ppb							Bit Impact	Noz		18	18	18
Percent Barite				8.6%		9.7%							Force	Velo (ft/s	-			
ppb Barite				123 ppb		140 ppb	BIT C	DATA	Ма	nuf./Ty	/pe SI	EC 64M	75 lbs	53	3			
Estimated Total LCM in System							Size	Depth In	Но	urs	Footage	ROP ft/h	r Motor/M	WD	Calc.	Circ.	Pres	sure
Sample Taken By				R. Bowlin		M.Meehan	6 3/4	11,990 ft	16	6.0	30 ft	1.9	1,750	osi	2	2,748	psi	ļ
Afternoon Rema	arks/Reco	mmendati	ons:				Afternoon R	Rig Activity:					•	J				

Pump a 10 bbl sweep every 300 ft. Sweep Contains:

10 ppb NewCarb, 10 ppb Newphalt and 10 ppb Magnafiber fine

Continue to side track the well. Raised the mud wt.to 11.3 ppg. Adding increased amounts of Lime to maintain the alkalinity, Raised the chlorides to 280k with CaCL2.

Report #14 TEL: (337) 394-1078

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

10.8° 12,015' TVD

	NOLIA (OIL &	GAS		TTERSO	ON		Block YETTE			Date)9/21	24 hr f	30 ft			31 ft
Well Name and No.	NIER A-	.1L ST	-01	Rig Name ar	nd No. 248		State	EXAS		Spud Date	13/21	Currer	1 ft/hr		ivity Side T	racking
Report for	VIEN A-	111 31	-01	Report for	240		Field / OCS-G #			Fluid Type	13/21	Circula	ating Rate		culating Pr	
Brandon	Parks/	Bobb	y Gwin	To	ol Pusi	ner	GID	DINGS		O	вМ		247 gpm	1	2,63	1 psi
	MUD	PROPE	RTY SPECIF	CATION	S		MUD VO	LUME (BB	L)	PUN	/IP #1		PUMP #2	F	RISER E	OOSTER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	800	bbl	Liner Size	4.75	Line	r Size 4.	75 Li	ner Size	4.75
8.5-12	5-25	8-12	>400	±275K	<10 <15	<6	In Hole	492	bbl	Stroke	12	Str	oke 1	2	Stroke	12
				5/25/21		5/24/21	Active	1292	2 bbl	bbl/stk	0.0625	bb	l/stk 0.0	625	bbl/stk	0.0625
Time Sample	Taken			1:40		12:00	Storage	e <u>227</u>	1 bbl	stk/min	47	stk	/min 4	7	stk/min	
Sample Locati	on			Suction		suction	Tot. on Lo	cation 3563	3 bbl	gal/min	123	gal	/min 12	23	gal/min	0
Flowline Temp	erature °I	=		155 °F		150 °F		PHHP = 379)	С	IRCULAT	ION DA	ιΤΑ	n	= 0.708	K = 185.191
Depth (ft)				12,231'		12,020'	Bit D	Depth = 12,2	231 '		Washout	= 2%		Pump Ef	ficiency	= 95%
Mud Weight (p	pg)			11.8		11.3	Drill String	Volume	to Bit	172.4 bbl	Stroke	s To Bit	2,759	Tir	ne To Bit	29 min
Funnel Vis (se	c/qt)		@ 140 °F	53		47	Disp.	Bottoms U	o Vol.	319.8 bbl	Bottoms	Up Stks	5,120	Bottoms	Up Time	54 min
600 rpm				49		52	69.4 bbl	TotalCir	c.Vol.	1292.2 bb	Total0	irc.Stks	20,686	Total C	irc. Time	220 min
300 rpm				30		31		DRILLING	S ASS	SEMBLY D	ATA		s	OLIDS (CONTRO	DL
200 rpm				21		21	Tubulars	OD (in.)	ID	(in.) Le	ength	Тор	Unit	S	Screens	Hours
100 rpm				14		14	Drill Pipe	4.500	3.	826 12	2,045'	0'	Shaker	1	200	24.0
6 rpm				6		6	Agitator	5.250	2.	250	46' 1	2,045'	Shaker	2	200	24.0
3 rpm				5		5	Collars	5.250	2.	750	92' 1	2,091'	Shaker	3	200	24.0
Plastic Viscosi	ity (cp)		@ 150 °F	19		21	Dir. BHA	5.000	2.	000	48' 1	2,183'	NOV Dry	ers	170	24.0
Yield Point (lb/	/100 ft²)		T0 = 4	11		10		CASIN	G & F	HOLE DAT	A					
Gel Strength (lb/100 ft²)	1	0 sec/10 min	5/9		6/9	Casing	OD (in.)	ID	(in.) D	epth	Тор	Centrifug	je 1		2.0
Gel Strength (lb/100 ft ²)		30 min	12		11	Riser						VOLUN	IE ACC	DUNTIN	G (bbls)
HTHP Filtrate	(cm/30 m	in)	@ 300 °F	6.4		6.0	Surface	10 3/4		3,	,018'	0'	Prev. T	otal on I	_ocation	3394.4
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875 11	,974'	0'	Transfe	rred In(-	+)/Out(-)	
Retort Solids (Content			20.2%		18.3%	Washout 1							Oil A	dded (+)	95.3
Corrected Soli	ds (vol%)			18%		16.1%	Washout 2						ı	Barite A	dded (+)	61.8
Retort Oil Con	tent			57.8%		59.7%	Oper	Hole Size	6.	885 12	2,231'		Other Pr	oduct U	sage (+)	10.2
Retort Water (Content			22%		22%	ANI	NULAR GE	OME	TRY & RHE	EOLOGY		\	Water A	dded (+)	58.0
O/W Ratio				72:28		73:27	annulai			velocity		ECD	Le	ft on Cu	ttings (-)	-1.4
Whole Mud Ch	nlorides (r	ng/L)		54,000		55,000	section	de _l	oth	ft/min	reg	b/gal	Non-Rec	overable	e Vol. (-)	-41.2
Water Phase	Salinity (p	pm)		277,923		281,620								S	eepage	-13.9
Whole Mud Al	kalinity, P	om		2.5		2.7	6.875x4	.5 11,9	974'	223.7	lam	12.36	Est. T	otal on I	_ocation	3563.2
Excess Lime (lb/bbl)			3.3 ppb		3.5 ppb	6.885x4	.5 12,0	045'	222.6	lam	12.36	Est. Los	ses/Gair	ns (-)/(+)	0.0
Electrical Stab	ility (volts)		382 v		396 v	6.885x5.	25 12,0	091'	304.7	turb	12.36	BIT	HYDRA	ULICS [ATA
Average Spec	ific Gravit	y of Solid	ds	3.47		3.41	6.885x5.	25 12, ²	183'	304.7	turb	12.39	Bit H.S.I.	Bit ∆F	Noz	zles (32nds)
Percent Low G	Gravity So	lids		6.4%		6.4%	6.885x5	5 12,2	231'	269.8	turb	12.39	0.12	30 ps	_	18 18
ppb Low Grav	ity Solids			53 ppb		52 ppb							Bit Impact	Nozzle Veloci		18 18
Percent Barite				11.6%		9.7%							Force	(ft/sec	-	
pb Barite				166 ppb		140 ppb	BIT D	ATA	Ма	anuf./Type	SEC	64M	80 lbs	53		
Estimated Total LCM in System ppb							Size	Depth In				OP ft/hr	Motor/M			. Pressure
Sample Taken				R. Bowlin	0	M.Meehan	6 3/4	11,990 ft	2	8.0	30 ft	1.1	1,750 բ	osi	2,80	6 psi
Remarks/Reco	mmandati						Ria Activity:									

OBM RECEIVED: 3046bbls @ \$65.00_665bbls @ \$10.00

OBM on surface/ storage 3071bbls

Rig Activity:

Unsuccessful in the first attempt to sidetrack the well bore, second attempt began troughing at 12,195'MD to 12,225'MD. At the time of the morning report time drilling at 12,231'MD. Continued diesel and drill H2O dilutions to maintain volume, cool the drilling fluid and maintain drill solids. Gradually increased the active density from $\,$ 11.0-11.8ppg throughout the day tour. Minimal chemical treatments have been made to maintain the drilling fluid within the recommended parameters. LCM laden sweeps will resume once the build section has been landed.

MWD Temp: 243 Degrees

Er	ng. 1:	M	latt M	eeha	n	Er	ng. 2:	Rob	Bowlin	WH 1:	MIDLA	ND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Pl	none:					Pł	none:	956-8	321-9994	Phone:	432-686-	-7361	Phone:	-			
W 1	P 1	Y 1	E 0	C 1	g 1	G 1	H 2	O 1	carefully	and may be	used if the	user so e		, no representation	as been prepared on is made as to the	\$2,193.71	\$128,625.82
													INCLUDI	NG 3RD PAR	TY CHARGES	\$11,518.37	\$256,675.29

10.8° 12,015' TVD

Operator MAGNOLIA OIL & GAS		TTERSO	ON		YETTE		0	Start Date 5/09/21		19 ft			250 f	t
Well Name and No.	Rig Name a	nd No. 248		State	EXAS		Spud Da	^{te})5/13/21	Curr	ent ROP 3 ft/hr	1	Activity	" l-	
RAINIER A-1H ST-01	Report for	240		Field / OSC-G :			Fluid Typ		Circ	ulating Rate	(Side T		ing
Brandon Parks/ Bobby Gwin	To	ol Push	ner	GID	DINGS	;		ОВМ		247 gpr		2,84		3i
MUD PROPERTY SPE	CIFICATION	NS		MUD VO	LUME (E	BBL)	F	PUMP #1		PUMP #2	2	RISER E	oos	TER
Weight PV YP E.S	CaCl2	GELS	HTHP	In Pits	81	2 bbl	Liner S	Size 4.	75 Lin	er Size 4	.75	Liner Size	4.	.75
8.5-12 5-25 8-12 >400	±275K	<10 <15	<6	In Hole	49	3 bbl	Strok	ke 1	2 S	troke	12	Stroke	1	12
MUD PROPERTIES	 }	ļ		Active	13	05 bbl	bbl/s	tk 0.0	625 b	bl/stk 0.0	0625	bbl/stk	0.0	0625
Time Sample Taken	1:40		11:00	Storage	e <u>22</u>	71 bbl	stk/m	nin 4	7 s	tk/min	47	stk/min		
Sample Location	Suction		suction	Tot. on Loc	ation 35	76 bbl	gal/m	nin 12	23 g	al/min 1	123	gal/min		
Flowline Temperature °F	155 °F		158 °F	Mud Wt. =	11.8 P	V=19	YP=	11 CII	RCULAT	ON DATA		n = 0.708	K =	185.2
Depth (ft)	12,231'		12,250'	Bit D	epth = 12	2,250 '		Wash	out = 2%		Pump I	Efficiency	= 95%	%
Mud Weight (ppg)	11.8		11.8	Drill String	Volum	e to Bit	172.6	bbl Str	okes To E	Bit 2,764	Т	ime To Bi	29	min
Funnel Vis (sec/qt) @ 140	°F 53		55	Disp.	Bottoms	Up Vol.	320.3	bbl Botto	msUp Stł	s 5,128	Botton	nsUp Time	55	min
600 rpm	49		52	69.5 bbl	TotalC	irc.Vol.	1305.0	bbl To	talCirc.Stl	s 20,891	Total	Circ. Time	222	2 min
300 rpm	30		31		DRILLI	NG AS	SEMBL	Y DATA			SOLIDS	CONTR	DL	
200 rpm	21		21	Tubulars	OD (in.)	ID	(in.)	Length	Тор	Uni	t	Screens	Но	ours
100 rpm	14		14	Drill Pipe	4.500	3.8	826	12,064'		Shake	er 1	200	12	2.0
6 rpm	6		6	Agitator	5.250	2.2	250	46'	12,064	Shake	er 2	200	12	2.0
3 rpm	5		5	Collars	5.250	2.	750	92'	12,110	Shake	er 3	200	12	2.0
Plastic Viscosity (cp) @ 150	°F 19		21	Dir. BHA	5.000	2.0	000	48'	12,202	NOV Dr	yers	170	12	2.0
Yield Point (lb/100 ft²) T0 =	4 11		10		CAS	NG &	HOLE [DATA						
Gel Strength (lb/100 ft²) 10 sec / 10 r	in 5/9		6/9	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifu	ge 1			
Gel Strength (lb/100 ft2) 30 n	in 12		12	Riser						VOLUI	ME AC	COUNTIN	G (bb	ols)
HTHP Filtrate (cm/30 min) @ 300	°F 6.4		6.4	Surface	10 3/4			3,018'		Prev.	Total or	Location	3	563.2
HTHP Cake Thickness (32nds)	2.0		2.0	Int. Csg.	7 5/8	6.8	875	11,974'		Transf	erred In	n(+)/Out(-)		
Retort Solids Content	20.2%		20%	Washout 1							Oil	Added (+)		23.9
Corrected Solids (vol%)	18%		17.8%	Washout 2							Barite /	Added (+)		
Retort Oil Content	57.8%		58%	Open	Hole Siz	e 6.8	885	12,250'		Other P	roduct l	Usage (+)		
Retort Water Content	22%		22%	ANI	NULAR G	EOME	TRY &	RHEOLO	GY		Water	Added (+)		
O/W Ratio	72:28		73:27	annula	r d	epth	veloc	,	ECD	Le	eft on C	uttings (-)		-0.9
Whole Mud Chlorides (mg/L)	54,000		55,000	section	ו י		ft/mi	in reg	lb/gal	Non-Re	coverat	ole Vol. (-)		-10.2
Water Phase Salinity (ppm)	277,923		281,620									Seepage		
Whole Mud Alkalinity, Pom	2.5		2.5	6.875x4	.5 1′	,974'	223.	.7 lam	12.36	Est.	Total or	Location	3	576.0
Excess Lime (lb/bbl)	3.3 ppb		3.3 ppb	6.885x4	.5 12	2,064'	222.	.6 lam	12.36	Est. Los	sses/Ga	ains (-)/(+)		0.0
Electrical Stability (volts)	382 v		408 v	6.885x5.	25 12	2,110'	304.	.7 turb	12.37	ВІТ	HYDR	AULICS I	ATA	
Average Specific Gravity of Solids	3.47		3.50	6.885x5.	25 12	2,202'	304.	.7 turb	12.40	Bit H.S.I.	Bit /	AP Noz	zles (3	32nds)
Percent Low Gravity Solids	6.4%		6.1%	6.885x	5 12	2,250'	269.	.8 turb	12.40	0.12	30	psi 18	18	18
ppb Low Gravity Solids	53 ppb		50 ppb							Bit Impac	t Noz		18	18
Percent Barite	11.6%		11.7%							Force	(ft/se	,		<u> </u>
ppb Barite	166 ppb		168 ppb	BIT D	ATA	Ма	ınuf./Ty	pe SI	EC 64M	80 lbs	53	3		
Estimated Total LCM in System				Size	Depth Ir	H H	ours	Footage	ROP ft/h	nr Motor/N	1WD	Calc. Circ	. Pres	ssure
Sample Taken By	R. Bowlin		M.Meehan	6 3/4	11,990 f	t 48	8.0	49 ft	1.0	1,750	psi	2,80	7 psi	j

Afternoon Remarks/Recommendations:

Pump a 10 bbl sweep every 300 ft. Sweep Contains:

10 ppb NewCarb, 10 ppb Newphalt and 10 ppb Magnafiber fine

Afternoon Rig Activity:

Continue to side track the well. Maintain the mud wt.at 11.8 ppg. Maintain the chlorides at 280k with CaCL2. Added Optimul to increase the electrical stability and emulsion.

Report #15 TEL: (337) 394-1078

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

828' TVD

5.6°

Operator	NOLIA	011 0 0		Contractor	TEDO/		County / Parish /			Engineer Star		24 hr f	-	Drille	ed Depth	0F 44	
Well Name and No	NOLIA	OIL & G	JAS	Rig Name ar	TTERSO	N	State FA	YETTE		Spud Date	09/21	Currer	74 ft	Activ	12,3	US II	·
	NIER A-	1H ST-	01		248			EXAS			13/21	0: 1	0 ft/hr		PU I		
Report for Brandon	Parks/	Bobby	Gwin	Report for	ol Pusi	her	Field / OCS-G #	DINGS	6	Fluid Type	ВМ	Circui	ating Rate 0 gpm	Circ	ulating Pre	ssure	
			RTY SPECIF	CATION	s		MUD VO	LUME (E	BBL)	PU	MP #1		PUMP #2	R	ISER B	0081	 ΓER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		04 bbl	Liner Size	e 4.	75 Line	r Size 4.	75 Lin	er Size	4.7	75
8.5-12	5-25	8-12	>400	±275K	<10 <15	<6	In Hole	5	58 bbl	Stroke	1	2 Str	oke 1	2 S	troke	1.	2
		1		5/26/21		5/25/21	Active	8	36 bbl	bbl/stk	0.0	625 bb	l/stk 0.0	625 b	bl/stk	0.0	625
Time Sample	Taken			1:00		11:00	Storage	e <u>2:</u>	232 bbl	stk/min		stk	/min	s	tk/min		
Sample Locati	ion			Suction		suction	Tot. on Lo	cation 3	595 bbl	gal/min	(0 gal	l/min (0 g	al/min	C)
Flowline Temp	perature °I	F				158 °F		PHHP =	0		CIRCUL	ATION DA	ATA	n =	= 0.700	K = 20)6.840
Depth (ft)				12,305'		12,250'	Bit	Depth =	829 '		Wash	out = 2%		Pump Eff	iciency	= 95%	, D
Mud Weight (p	opg)			11.8		11.8	Drill String	Volur	ne to Bit	10.5 bbl	l St	rokes To Bit		Tim	e To Bit		
Funnel Vis (se	ec/qt)		@ 121 °F	55		55	Disp.	Bottoms	Up Vol.	20.7 bbl	Botto	omsUp Stks		Bottomsl	Jp Time		
600 rpm				52		52	6.9 bbl	Total	Circ.Vol.	835.6 bb	ol To	talCirc.Stks		Total Cir	c. Time		
300 rpm				32		31		DRILLI	NG AS	SEMBLY D	DATA		s	OLIDS C	ONTRO)L	
200 rpm				21		21	Tubulars	OD (in	.) ID	(in.) L	ength.	Тор	Unit	Sc	creens	Но	urs
100 rpm				15		14	Drill Pipe	4.500	3	.826	667'	0'	Shaker	1	200	24	1.0
6 rpm				6		6	Agitator	5.250	2	.250	24'	667'	Shaker	2	200	24	1.0
3 rpm				5		5	Collars	5.250	2	.750	106'	691'	Shaker	. 3	200	24	1.0
Plastic Viscos	ity (cp)		@ 150 °F	20		21	Dir. BHA	5.000	2	.000	32'	797'	NOV Dry	ers/	170	24	1.0
Yield Point (lb.	/100 ft²)		T0 = 4	12		10		CAS	ING &	HOLE DAT	ГА						
Gel Strength (Ib/100 ft²)	10	sec/10 min	6/9		6/9	Casing	OD (in	.) ID	(in.) [Depth	Тор	Centrifuç	ge 1		2.	.0
Gel Strength ((lb/100 ft ²)		30 min	12		12	Riser						VOLUM	IE ACCO	UNTIN	G (bbl	is)
HTHP Filtrate	(cm/30 m	in)	@ 300 °F	6.4		6.4	Surface	10 3/4		3	3,018'	0'	Prev. T	otal on L	ocation	35	563.2
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6	.875 1	1,974'	0'	Transfe	erred In(+))/Out(-)		
Retort Solids (Content			20%		20%	Washout 1							Oil Ad	ded (+)		25.2
Corrected Sol	ids (vol%)			17.8%		17.8%	Washout 2							Barite Ad	ded (+)		20.5
Retort Oil Con	ntent			58%		58%	Oper	n Hole Si	ze 6	.885 1	2,305'		Other Pr	oduct Us	age (+)		3.2
Retort Water	Content			22%		22%	AN	NULAR (GEOME	TRY & RH	IEOLOG	ΞY	,	Water Ad	ded (+)		9.0
O/W Ratio				73:27		73:27	annula	r i	neas.	velocity	flow	ECD	Le	ft on Cutt	ings (-)		-3.4
Whole Mud C	hlorides (r	ng/L)		54,500		55,000	section	1	depth	ft/min	reg	lb/gal	Non-Red	overable	Vol. (-)		-23.0
Water Phase	Salinity (p	pm)		279,776		281,620											
Whole Mud Al	lkalinity, P	om		2.3		2.5	6.875x4	.5	667'	0.0	lam	11.80	Est. T	otal on L	ocation	35	594.6
Excess Lime ((lb/bbl)			3 ppb		3.3 ppb	6.875x5.	25	691'	0.0	lam	11.80	Est. Los	ses/Gains	s (-)/(+)		0.0
Electrical Stab	oility (volts)		415 v		408 v	6.875x5.	25	797'	0.0	lam	11.80	BIT	HYDRAU	LICS	ATA	
Average Spec	verage Specific Gravity of Solids					3.50	6.875xt	5	829'	0.0	lam	11.80	Bit H.S.I.	Bit ∆P	Nozz	les (32	2nds)
Percent Low 0	ercent Low Gravity Solids			6%		6.1%							0.00	psi	18	18	18
ppb Low Grav	pb Low Gravity Solids			50 ppb		50 ppb							Bit Impact	Nozzle Velocity		18	18
Percent Barite				11.7%		11.7%							Force	(ft/sec)			
ppb Barite				168 ppb		168 ppb	BIT D	ATA	M	anuf./Type	S	EC 64M	0 lbs	0			
Estimated Total LCM in System ppb							Size	Depth I	n H	ours F	ootage	ROP ft/hr	Motor/M	WD Ca	alc. Circ	Pres	sure
Sample Taken By				R. Bowlin	0	M.Meehan	6 3/4	12,305	ft								
Remarks/Reco	mmendati	one:					Ria Activity:				-				-		

OBM RECEIVED: 3046bbls @ \$65.00_665bbls @ \$10.00

OBM on surface/ storage 3036bbls

Rig Activity:

Drilled sidetrack to 12,305'MD, stripped out to 11,983'MD circulated a bottoms up and recorded SICP at 298PSI. Spotted 77bbls of 18.0ppg kill mud, zero casing pressure observed, strip out to the top of the mud cap at 10,308'MD, flow check, SICP Zero and pumped slug 40bbls/ 14.8ppg. Trip out conventionally without issue. At the time of the morning report swap out the 2.5 deg motor for a 2.25 deg motor and bit.

Е	ng. 1:	N	1att M	leeha	n	Er	ng. 2:	Rob	Bowlin	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Р	none:					Ph	none:	956-8	21-9994	Phone:	432-686-7361	1 Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 2	O 1	carefully	and may be	used if the user	so elects, howeve	r, no representati		\$5,403.68	\$134,029.50
							Phone: 956-821-9994 Phone: 432-686-7361 Phone: - G H O Any opinion and or recommendation, expressed orally or written herein, has been prepared carefully and may be used if the user so elects, however, no representation is made as to the validity of this information, and this is a recommendation only. \$5,403.68\$			\$264,413.63						

OUTSOURCE FLUID SOLUTIONS LLC.

	IOLIA C	IL & G	AS		TERSO	N		YETTE		0	Start Date 5/09/21		hr ftg.	_			12,30	5 ft	
Well Name and No.	IER A-1	H ST-0)1	Rig Name ar	248		State T	EXAS		Spud Dat	。 5/13/21		rrent ROP			Activity (Circu	late	,
Report for	,			Report for			Field / OSC-G			Fluid Type		Circ	culating Ra				ting Press		
Brandon					ol Push	ner		DINGS			OBM		344				1,247	•	
Mojaht	PV	YP	TY SPECI	1	GELS	HTHP		DLUME (BI		Liner S	PUMP #1	75 Li		1P #2	.75		ER BO		
Weight 8.5-12	5-25	8-12	E.S. >400	CaCl2 ±275K	<10 <15	<6	In Pits In Hole		bbl bbl	Strok			ner Size Stroke		.75 12	Liner		4.7	
0.5-12		JD PROP		±2/3K	<10 <15	<0	Active		0 bbl	bbl/st			bbl/stk		12	bbl		0.06	
Time Sample		D FROF	LIVIILO	1:00		14:30	Storage		2 bbl	stk/m			stk/min		67	stk/		0.00	,20
Sample Locati				Suction		shaker	J	cation 353		gal/m			gal/min		76	gal/			
Flowline Temp				Oddion		151 °F	Mud Wt. =			YP=1		RCULAT			,,		0.700 ł	< = 2	06.8
Depth (ft)				12,305'		12,305'		Depth = 12,				out = 2%		1	Pump		ency =		
Mud Weight (p	(pac			11.8		11.8				173.7		rokes To		780	1		Γο Bit		
Funnel Vis (se			@ 110 °F			56	Drill String Disp.	Bottoms U						152	Bottoi			39 r	
600 rpm				52		51	69.4 bbl			1299.9		otalCirc.St		810			Time		
300 rpm				32		31		DRILLING					1				NTROL		
200 rpm				21		22	Tubulars	OD (in.)	ID	(in.)	Length	Тор		Unit		Scre	ens	Hou	urs
100 rpm				15		14	Drill Pipe	4.500	3.8	326	12,141'	·	s	hakei	r 1	20	00		
6 rpm				6		6	Agitator	5.250	2.2	250	24'	12,141	ı' s	hakeı	r 2	20	00		
3 rpm				5		5	Collars	5.250	2.7	750	106'	12,165	5' S	hakeı	r 3	20	00		
Plastic Viscosi	ty (cp)		@ 150 °F	20		20	Dir. BHA	5.000	2.0	000	32'	12,271	ı' NC	V Dry	yers	17	70		
Yield Point (lb/	′100 ft²)		T0 = 4	12		11		CASIN	IG & I	HOLE D	DATA								
Gel Strength (b/100 ft ²)	10 s	ec / 10 min	6/9		6/10	Casing	OD (in.)	ID	(in.)	Depth	Тор	Ce	ntrifuç	ge 1				
Gel Strength (b/100 ft2)		30 min	12		12	Riser						V	OLUN	/IE AC	COU	NTING	(bbl	s)
HTHP Filtrate	(cm/30 m	n)	@ 300 °F	6.4		6.2	Surface	10 3/4			3,018'		Р	rev. T	otal o	n Loc	ation	35	94.6
HTHP Cake TI	nickness (32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	375	11,974'		Т	ransfe	erred li	n(+)/C	Out(-)		
Retort Solids (Content			20%		20.5%	Washout 1								Oil	Adde	d (+)		
Corrected Soli	ds (vol%)			17.8%		18.4%	Washout 2								Barite	Adde	d (+)		
Retort Oil Con	tent			58%		58.5%	Open	Hole Size	6.8	385	12,305'		Oth	ner Pr	roduct	Usag	e (+)		
Retort Water (Content			22%		21%	AN	NULAR GE	ОМЕ	TRY &	RHEOLO	OGY		,	Water	Adde	d (+)		
O/W Ratio				73:27		74:26	annula	ır do	pth	veloc	ity flow	ECD		Le	ft on C	Cutting	gs (-)		
Whole Mud Ch	nlorides (r	ng/L)		54,500		53,000	section	n de	pui	ft/mi	n reg	lb/gal	Noi	n-Red	covera	ble Vo	ol. (-)		
Water Phase S	Salinity (p	om)		279,776		283,542		·			·								
Whole Mud Al	kalinity, P	om		2.3		3.0	6.875x4	1.5 11,	974'	311.	8 turb			Est. T	otal o	n Loc	ation _	35	94.6
Excess Lime (lb/bbl)			3 ppb		3.9 ppb	6.885x4	1.5 12,	141'	310.	2 turb		Es	t. Los	ses/G	ains (-)/(+)	-	-62.5
Electrical Stab	ility (volts)		415 v		457 v	6.885x5	.25 12,	165'	424.	6 turb			BIT	HYDR	AULI	CS DA	TA	
Average Spec	ific Gravit	y of Solid	S	3.50		3.44	6.885x5	.25 12,	271'	424.	6 turb		Bit H	H.S.I.	Bit	ΔΡ	Nozzle	es (32	nds)
Percent Low G	Gravity So	ids		6%		6.9%	6.885x	5 12,	303'	376.	0 turb		0.	32	58	psi	18	18	18
ppb Low Gravi	ty Solids			50 ppb		57 ppb								npact	Noz Velc		18	18	18
Percent Barite				11.7%		11.4%			ı				Fo	rce	(ft/s	,			
ppb Barite				168 ppb		164 ppb	BIT [DATA	Ма	nuf./Typ	oe S	EC 64M	155	5 lbs	7	4			
Estimated Total	al LCM in	System					Size	Depth In	Но	ours	Footage	ROP ft/	hr Mo	tor/M	WD	Calc	. Circ.		sure
Sample Taken				R. Bowlin		M.Meehan	6 3/4	12,305 ft				<u> </u>					1,809	psi	
Afternoon Rema	arks/Recor	nmendatio	ons:				Afternoon R	tig Activity:											
							cap. for re curve	in hole wit Capture 1 e-use. Cur e section. e is landed	43 bl rently Main	ols of 1. / circula	2.7# to 1 ating at 1	15.5# an 12303 be	d transfefore co	fer sa ontinu	ame to iing to	stor	age fra sidetra	ac ta ack /	inks

OUTSOURCE FLUID SOLUTIONS LLC.

11.9° 12,100' TVD

Operator MAGI Well Name and No.	NOLIA (OIL & (GAS	Contractor PAT Rig Name ar	TERSO	ON	County / Parish / FA` State	Block YETTE		Engineer Start 05/0 Spud Date	Date 09/21	24 hr fi	420 ft		Drilled Dep	, 725	ft
	NIER A-	·1H ST·	-01	Rig Name ar	248			EXAS		-	13/21	Curren	44 ft/hr	F	•	OOF	.
Report for				Report for			Field / OCS-G #			Fluid Type		Circula	ating Rate	C	Circulating		
Jim Ha	arrison/	James	Dyer	To	ol Pusi	ner	GID	DINGS		0	ВМ		341 gpm	1	4,2	47 p	si
	MUD	PROPER	RTY SPECIF	ICATION	s		MUD VO	LUME (BB	BL)	PUN	/IP #1		PUMP #2		RISER	воо	STER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	753	3 bbl	Liner Size	4.7	75 Line	r Size 4.	75	Liner Siz	.e	4.75
8.5-12	5-25	8-12	>400	±290K	<10 <15	<8	In Hole	515	5 bbl	Stroke	12	2 Str	oke 1	2	Stroke		12
				5/27/21		5/26/21	Active	123	6 bbl	bbl/stk	0.06	625 bb	/stk 0.00	625	bbl/stk	0	.0625
Time Sample	Taken			2:00		14:30	Storage	218	7 bbl	stk/min	65	5 stk	/min 6	55	stk/min		
Sample Locati	on			Suction		shaker	Tot. on Loc	cation 345	5 bbl	gal/min	17	1 gal	/min 17	71	gal/min		0
Flowline Temp	erature °F	F		150 °F		151 °F		PHHP = 84	5	С	IRCUL	ATION DA	TA		n = 0.70	8 K=	185.191
Depth (ft)				12,725'		12,305'	Bit C	epth = 12,	000 '		Washo	out = 0%	F	Pump I	Efficienc	y = 95	5%
Mud Weight (p	opg)			11.9		11.8	Drill String	Volume	to Bit	169.4 bbl	Stro	okes To Bit	2,711	Т	ime To I	3it 2	.1 min
Funnel Vis (se	c/qt)		@ 130 °F	47		56	Disp.	Bottoms U	lp Vol.	313.8 bbl	Botto	msUp Stks	5,024	Botton	nsUp Tin	ie 3	9 min
600 rpm				49		51	67.8 bbl	TotalCir	rc.Vol.	1236.2 bb	l Tot	alCirc.Stks	19,790	Total	Circ. Tin	ne 1	52 min
300 rpm				30		31		DRILLING	G ASS	SEMBLY D	ATA		S	OLIDS	CONTI	₹OL	
200 rpm	·			22		22	Tubulars	OD (in.)	ID	(in.) Le	ength	Тор	Unit		Screen	s ł	Hours
100 rpm	•			15		14	Drill Pipe	4.500	3.	826 11	,838'	0'	Shaker	1	200		24.0
6 rpm	•			7		6	Agitator	5.250	2.	250	24'	11,838'	Shaker	2	200		24.0
3 rpm				5		5	Collars	5.250	2.	750 <i>′</i>	106'	11,862'	Shaker	3	200		24.0
Plastic Viscos	ity (cp)		@ 150 °F	19		20	Dir. BHA	5.000	2.	000	32'	11,968'	NOV Dry	ers	170		24.0
Yield Point (lb.	/100 ft²)		T0 = 3	11		11		CASIN	IG & F	HOLE DAT	A						
Gel Strength (lb/100 ft²)	10	sec/10 min	6/11		6/10	Casing	OD (in.)	ID	(in.) D	epth	Тор	Centrifug	je 1			4.0
Gel Strength (lb/100 ft ²)		30 min	14		12	Riser						VOLUM	IE ACC	COUNTI	NG (t	bls)
HTHP Filtrate	(cm/30 m	in)	@ 300 °F	6.0		6.2	Surface	10 3/4		3.	,018'	0'	Prev. T	otal or	Location	'n	3594.6
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875 11	,974'	0'	Transfe	erred In	(+)/Out(-)	
Retort Solids (Content			21%		20.5%	Washout 1							Oil /	Added (+)	11.2
Corrected Soli	ids (vol%)			18.8%		18.4%	Washout 2							Barite /	Added (+)	13.8
Retort Oil Con	itent			59%		58.5%	Oper	Hole Size	6.	750 12	2,725'		Other Pr	oduct l	Usage (+)	0.7
Retort Water (Content			20%		21%	ANI	NULAR GE	OME.	TRY & RHI	EOLOG	Υ	١	Nater A	Added (+)	0.0
O/W Ratio				75:25		74:26	annular	r me	eas.	velocity	flow	ECD	Lei	ft on C	uttings (-)	-18.6
Whole Mud Cl	hlorides (n	ng/L)		54,000		53,000	section	de	pth	ft/min	reg	lb/gal	Non-Rec	overab	ole Vol. (-)	-96.4
Water Phase	Salinity (p	pm)		297,448		283,542								Cent/	Evap/Tr	ip	-50.0
Whole Mud Al	kalinity, P	om		3.0		3.0	6.875x4.	.5 11,	838'	309.4	turb	12.85	Est. T	otal or	Location	n	3455.2
Excess Lime (lb/bbl)			3.9 ppb		3.9 ppb	6.875x5.2	25 11,	862'	424.3	turb	12.89	Est. Loss	ses/Ga	ins (-)/(+)	0.0
Electrical Stab	ility (volts)		490 v		457 v	6.875x5.2	25 11,	968'	424.3	turb	12.92	BIT	HYDR	AULICS	DAT	Α
Average Spec	ific Gravit	y of Solid	s	3.45		3.44	6.875x5	5 11,	974'	375.4	turb	12.96	Bit H.S.I.	Bit /	VP No	zzles	(32nds)
Percent Low C	3ravity So	lids		7%		6.9%	6.75x5	12,	000'	406.5	turb	13.00	0.32	57 p	osi 1	3 18	3 18
ppb Low Grav	ity Solids			57 ppb		57 ppb							Bit Impact	Nozz		3 18	3 18
Percent Barite	,			11.8%		11.4%							Force	Veloc (ft/se	-		
ppb Barite				169 ppb		164 ppb	BIT D	ATA	Ма	anuf./Type	SE	C 64M	154 lbs	73	3		
Estimated Tot	Estimated Total LCM in System ppb						Size	Depth In	Но	ours Fo	otage	ROP ft/hr	Motor/M\	WD	Calc. C	rc. Pr	essure
Sample Taken By				A.ROMAN	0	M.Meehan	6 3/4	12,305 ft							1,7	736 p	si
Remarks/Reco	mmendati	ons:					Rig Activity:		•				•				

OBM RECEIVED: 3046bbls @ \$65.00_665bbls @ \$10.00

OBM on surface/ storage 2940bbls

Drilled sidetrack to 12,725'MD, 12,306'TVD. 70deg. Circulate BU and stripped out to 11,981'MD circulated a bottoms up with Zero casing pressure. Spotted 50bbls of 18.0ppg kill mud out the bit and start POOH conventionally. zero casing pressure observed, while POOH. Trip out conventionally without issue. At the time of the morning report continue Pulling Out of the Hole passing 10,400'.

Er	ng. 1:	N	∕latt M	leeha	n	Er	ng. 2:	Rob	Bowlin	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Pł	none:					Ph	none:	956-8	321-9994	Phone:	432-686-7361	Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be		elects, however	no representation	nas been prepared on is made as to the	\$5,187.52	\$139,217.02
												INCLUDI	NG 3RD PAR	TY CHARGES	\$6,282.62	\$270,696.25

MATERIAL CONSUMPTION

Date 05/27/21	Operator MAG I	NOLIA OIL		Well Name a	and No. IIER A-1H S	ST-01	Rig Name and 24	Report No. Repo	rt #16
	l .	USAGE 8		I			ı		LATIVE
		1	Previous		Closing	Daily		Cum	
Item	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost	Usage	Cum Cost
SAPP (50)	50# sk	\$44.56	10		10			32	\$1,425.92
PHPA LIQUID (pail)	5 gal	\$41.36	32		32				
EVO-LUBE	gal	\$14.00							
NEW GEL (PREMIUM)									
ALUMINUM TRISTEARATE									
CACL2 (50)	50# sk	\$14.32	168		168			616	\$8,821.12
LIME (50)	50# sk	\$5.00	200		200			440	\$2,200.00
OPTI - G	50# sk	\$30.59	106		106			154	· '
BENTONE 38 (50)	50# sk	\$163.94	30		22	8	\$1,311.52	43	\$7,049.42
BENTONE 910 (50)	50# sk	\$59.40	15		15				
BENTONE 990 (50)	50# sk	\$83.59	20		20			54	
OPTI - MUL OPTI - WET	gal	\$10.75	165		165			440	\$4,730.00
NEW PHALT	gal 50# sk	\$8.34 \$38.72	385 55		385 55			385 65	· '
OIL SORB (25)	25# sk	\$4.75	19		19			21	\$99.75
J. 2 JONE (20)	20# SR	ψ+./3	19		19			۷1	ψυσ.10
NEW CARB (M)	50# sk	\$5.25	111		111			99	\$519.75
CYBERSEAL	25# sk	\$21.47							
MAGMAFIBER F (25)	25# sk	\$28.05	86		86			58	\$1,626.90
MAGMAFIBER R (30)	30# sk	\$28.05							
VARISEAL									
FIBER PLUG	30# sk	\$30.37							
NUT PLUG M (50)	50# sk	\$12.04	25		25			9	\$108.36
MICA F (50)	50# sk	\$10.28	40		40				
GRAPHITE - FINE (50)	50# sk	\$24.14	80		80				
CIONTIFE TIME (50)	30# 3K	Ψ24.14	- 00		00				
NEW WATE (SACK BARITE)	100# sk	\$11.50	150		150				
BARITE BULK (100)	100# sk	\$7.00	1248		1050	198	\$1,386.00	5036	\$35,252.00
	+								
		1							
OPTI DRILL (OBM)	bbl	\$65.00	2994		2994			52	\$3,380.00
DISCOUNTED OBM	bbl	\$15.00	600		600			65	\$975.00
		-							
		-							
		<u> </u>							
		1							
ENGINEERING (24 HR)	each	\$990.00				2	\$1,980.00	40	\$39,600.00
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00		\$1,200.00
ENGINEERING (MILES)	each	\$1.00				450	\$450.00	1049	
SCALE TICKET	EACH	\$15.00						12	\$180.00
TRUCKING (cwt)	each	\$1.98							\$13,715.38
TRUCKING (min)	each	\$650.00							\$1,300.00
PALLETS (ea)	each	\$12.00						44	\$528.00
SHRINK WRAP (ea)	each	\$12.00						42	\$504.00
		Daily S	ub-Total \$5	5,187.52	Cumulation	ve Total \$1	39,217.02	\$139	217.02
				, 		Ψ1	-, 	Ţ.00,i	

THIRD PARTY COST SHEET

Date	Operator			Well Name a	ind No.		Rig Name ar	id No.	Report No.	
05/27/21	MAG	NOLIA OIL	& GAS	RAIN	IIER A-1H	ST-01	2	48	Repo	rt #16
	DAILY	USAGE 8	& COST						CUMUI	LATIVE
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	332		332				68	\$2,839.00
TURBO CHEM SYNSEAL	25# sk	\$85.00	196		196					
OBM-D 5_12_21	gal	\$2.31								\$32,349.24
OBM-D 5_15_21	gal	\$2.35								\$16,920.00
OBM-D 5/16/21	gal	\$2.35								\$33,840.00
OBM-D 5/17/21	gal	\$2.31								\$16,632.00
OBM-D 5/19/21	gal	\$2.33			2000		\$1,095.10		12403	\$28,898.99
OBM-D 5/24/21	gal	\$2.24	7202		7202					
							1			
							1			
							1			
							1			
							1			
		<u> </u>					<u> </u>			
					Daily S	ub-Total \$	1,095.10		\$131,4	479.23
	-					1		-		
	Cumu	ılative Total	I AES & 3rd	Party \$270	,696.25					

FLUID VOLUME ACCOUNTING

Operator: Rig Name: Well Name: MAGNOLIA OIL & GAS

248

RAINIER A-1H ST-01

		WEEK 1 WEEK 2 WEEK 3 5/14/21 5/15/21 5/16/21 5/17/21 5/18/21 5/19/21 5/20/21 5/21/21 5/23/21 5/23/21 5/25/21 5/26/21 5/27/21 5/28/21 5/29/21 5/30/21 5/31/21 6/1/21 Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue																				
	Date	5/14/21	5/15/21	5/16/21	5/17/21	5/18/21	5/19/21	5/20/21	5/21/21	5/22/21	5/23/21	5/24/21	5/25/21	5/26/21	5/27/21	5/28/21	5/29/21	5/30/21	5/31/21	6/1/21	6/2/21	6/3/21
																					Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4							
Grand	Starting Depth	108	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725						
Totals	Ending Depth	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	,0						
	· ·	+		· ·			640	<u> </u>		538			234									
-,		2,925	1,471	3,176	1,941	1,716		8	-		17			19	475	-	-	-	-		-	-
1,182	New Hole Vol.	277	139	301	184	163	61	- '	_	24	1		10	_ '	21						_	
	Starting System Volume	2,525	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,455	3,455	3,455	3,455	3,455	3,455
	Chemical Additions		15	14	18	13	9			15	5	12	10	3	1							
	Base Fluid Added		38	392	158	214	174	26	4	78	18	101	95	25	11							
	Barite Increase		13		19	470	3	6	407		142	59	62	21	14							
				300		479			407						-							
- 247	Slurry Added		60		70	02	37						58	0	-							
	Water Added Added for Washout	1	60		70	83	8						58	9	-							
															-							
3,309	Total Additions	-	126	719	264	788	231	32	411	93	164	172	225	58	26	-	-	-	-	-	-	-
	Surface Losses		3		119	105	105	11	10	23	21	12	35	17	-							
				50	83	92	134	25	73		68	28	14		99							
	Mud Loss to Cuttings		125	301	191	135	63	1		25	1			4	19							
	Unrecoverable Volume		17	40	35		45	22	10			24			25							
128	Centrifuge Losses		4	20	24	15	6			12	7	3	6	6	25							
2,379	Total Losses	-	149	453	452	346	353	59	93	60	97	68	55	27	168	-	-	-	-	-	-	-
-	Mud Transferred Out																					
3,455																						
0,700	Ending System Volume	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,455	3,455	3,455	3,455	3,455	3,455	3,455
-	Ending System Volume Mud Recovered	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,455	3,455	3,455	3,455	3,455	3,455	3,455
-		2,525	2,502		2,580 comment	,	2,900	2,873	3,191	3,225	,	3,396 omment	,	3,597	3,455	3,455	3,455		3,455 omment	,	3,455	3,455
-		2,525 5/14/21	Cemented Cleaned ri		comment good fashi	s: on with cen	nent back t	to surface.	5/21/21	Cemented spacer and	Co with good of 39bbls ce	omment: returns dun ment. Losi	,	ls interface e while riur	, 40bbls	3,455 5/28/21	3,455		,	,	3,455	3,455
3,711			Cemented Cleaned ri recondition	C surface in ig pit, NU B	good fashi good fashi OP and tes me. Testin	s: on with cen sted the sar g BOP at r d lost to Ev.	nent back t me. Filled pt time.	o surface.	5/21/21	Cemented spacer and casing 72.	with good of 39bbls ce	omment: returns dun ment. Losi o 10.1bbls a	s: mping 10bb t to seepag	ls interface e while riur ce 10bbls	40bbls		3,455		,	,	3,455	3,455
-		5/14/21	Cemented Cleaned ri recondition Drilling ah Shakers 1 Daily Loss	d surface in ig pit, NU B ning the sar	good fashio GOP and tes me. Testin 04'MD. Muc cutting 125b	s: on with cented the sar g BOP at rpd lost to Evobbls	nent back t me. Filled pt time. ap 3bbls, C	o surface. pit and Cent 4bbls,	5/21/21	Cemented spacer and casing 72.	with good it 39bbls cestibbls, Evapor cuttings 24	omment: returns dun ment. Lost o 10.1bbls a 4.8bbls, Ev	s: nping 10bb t to seepag and Interface	ls interface e while riur ce 10bbls ols and Cer	40bbls aning	5/28/21	3,455		,	,	3,455	3,455
-		5/14/21	Cemented Cleaned ri recondition Drilling ah Shakers 1 Daily Loss Seepage 9	d surface in ig pit, NU B ning the salead at 4,507 bbls and coses: Evap 4 50bbls and the change 6, Evap 118.	good fashi OP and tes me. Testin 04'MD. Muc cutting 125h 2bbls. Cen Cuttings 30 out rot Hea	s: on with censted the sar g BOP at rp d lost to Evobbls t 20bbls, Si 0.9. Drille d. Mud los	nent back t me. Filled of time. ap 3bbls, C hakers 40b d to 7,680'	o surface. pit and Cent 4bbls, bbls, MD.	5/21/21 5/22/21 5/23/21	Cemented spacer and casing 72.: Mud lost to Mud lost to and Cent 7	cuttings 2- formation bbls Previous w	omment: returns dun ment. Lost o 10.1bbls : 4.8bbls, Ev due to wei	s: mping 10bb t to seepag and Interfact vap 22.87bb	Is interface e while riur ce 10bbls ols and Cer bbls, Evap	, 40bbls nning at 12bbls 20.5bbls	5/28/21	3,455		,	,	3,455	3,455
-		5/14/21 5/15/21 5/16/21	Cemented Cleaned ri recondition Drilling ah Shakers 1 Daily Loss Seepage 9 At RPT tin 191.3bbls Seepage 8	d surface in ig pit, NU B ning the sai lead at 4,50 7bbls and coses: Evap 4 50bbls and me change 4, Evap 118.83bbls to Cuttings	good fashio OP and tee me. Testin 04'MD. Muc cutting 125b 22bbls. Cen Cuttings 30 out rot Hea 8bbls, Cen	S: on with cented the sard g BOP at rp d lost to Evolbis t 20bbls, Si 0.9. Drille d. Mud los t 24bbls, S	nent back t me. Filled of time. ap 3bbls, C hakers 40b d to 7,680' t to Cutting hakers 35b	o surface. pit and Cent 4bbls, bbls, MD.	5/21/21 5/22/21 5/23/21 5/24/21	Cemented spacer and casing 72 Mud lost to and Cent 7 Mud left in 12.4bbls, 0 Mud lost to and Cent 7	with good of 39bbls cessibles, Evapor cuttings 2-1 formation bbls Previous we cent 3bbls a	omment: returns dun ment. Lost o 10.1bbls a 4.8bbls, Ev due to wei vell bore 24 and seepag 13.9bbls, C	s: mping 10bb t to seepag and Interface vap 22.87bb ght up 68.2	Is interface e while riur ce 10bbls ols and Cer bbls, Evap flud lost to I nud 28bbls	, 40bbls nning at 12bbls 20.5bbls	5/28/21 5/29/21 5/30/21	3,455		,	,	3,455	3,455
-		5/14/21 5/15/21 5/16/21	Cemented Cleaned ri recondition Drilling ah Shakers 1 Daily Loss Seepage 8 At RPT tin 191.3bbls Seepage 8 Mud Lost Seepage 9	d surface in ig pit, NU B ning the sai lead at 4,50 7bbls and coses: Evap 4 50bbls and me change 4, Evap 118.83bbls to Cuttings	good fashio OP and tesme. Testin 04'MD. Muc cutting 125t 2bbls. Cen Cuttings 30 out rot Hea 8bbls, Cen 135bbls, E	s: on with centre ted the sar g BOP at rq d lost to Evobls t 20bbls, Si 0.9. Drille d. Mud los t 24bbls, S vap 104.6bb	nent back to me. Filled on time. ap 3bbls, Cohakers 40b do 7,680° to Cutting hakers 35b bbls, Cent 1	co surface. pit and Cent 4bbls, MD. Subbls and Subbls and	5/21/21 5/22/21 5/23/21 5/24/21 5/25/21	Cemented spacer and casing 72 Mud lost to Mud lost to and Cent 7 Mud left in 12.4bbls, 0 Mud lost to Attempting	with good if a 39bbls cersobbls, Evapor cuttings 2- cu	omment: returns dun ment. Losi o 10.1bbls i 4.8bbls, Ev due to wei vell bore 24 and seepag 13.9bbls, C	s: mping 10bb t to seepag and Interfac vap 22.87bb ght up 68.2 4.34bbls. N ge circ kill r	Is interface e while riur ce 10bbls ols and Cer bbls, Evap flud lost to land 28bbls and Evap 3	, 40bbls nning at 12bbls 20.5bbls Evap	5/28/21 5/29/21 5/30/21 5/31/21	3,455		,	,	3,455	3,455

OUTSOURCE FLUID SOLUTIONS LLC.

4.0° 734' TVD

Operator MAGN	IOLIA C	IL & G	AS	Contractor PA	TERSO)N	County / Paris	n / Block		_	er Start Date		24 hr ft	g.		Drilled	Depth	25 ft	
Well Name and No.	IIER A-1			Rig Name ar			State	EXAS		Spud D			Current	ROP		Activity			
Report for			<u> </u>	Report for			Field / OSC-G			Fluid Ty			Circulat	ting Rate			ting Pre		
Jim Ha	rrison/J	lames I	Oyer	To	ol Pusi	ner	GIE	DINGS			OBM								
	MUD F	PROPER	TY SPECI	FICATION	IS		MUD V	DLUME (B	BL)		PUMP #1			PUMP #2		RIS	ER B	oos	ΓER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	753	bbl	Liner	Size 4	.75	Liner	Size 4.7	75	Liner	Size	4.	75
8.5-12	5-25	8-12	>400	±290K	<10 <15	<8	In Hole	e 577	bbl '	Stro	oke '	12	Stro	oke 1	2	Stro	oke	1	2
	MU	JD PROP	ERTIES				Active	780	bbl	bbl/	/stk 0.0	625	bbl	/stk 0.06	625	bbl	/stk	0.0	625
Time Sample	Taken			2:00		14:30	Storag	e <u>218</u>	7 bbl	stk/i	min		stk/	min		stk/	min		
Sample Locati	on			Suction		suction	Tot. on Lo	cation 351	7 bbl	gal/	min		gal/	min		gal	min		
Flowline Temp	erature °F	=		150 °F			Mud Wt. =	11.9 PV	=19	YP=	=11 CI	RCUL	ATIO	N DATA		n = 0	0.708	K = 1	185.2
Depth (ft)				12,725'		12,725'	Bit	Depth = 7	34 '		Wash	nout =		F	Pump	Effici	ency :	= 95%	ó
Mud Weight (p	pg)			11.9		11.9	Drill String	Volume	to Bit	9.2	bbl St	rokes 1	Γο Bit			Time '	To Bit		
Funnel Vis (se	c/qt)		@ 122 °F	47		49	Disp.	Bottoms U	p Vol.	18.2	2 bbl Bott	omsUp	Stks		Botto	msUp	Time		
600 rpm				49		50	6.3 bbl	TotalCii	c.Vol.	780.4	4 bbl To	otalCirc	.Stks		Tota	l Circ.	Time		
300 rpm				30		31		DRILLIN	G AS	SEMB	LY DATA			S	OLID	s co	NTRO	L	
200 rpm				22		21	Tubulars	OD (in.)	ID	(in.)	Length	To	р	Unit		Scre	ens	Но	urs
100 rpm	•					15	Drill Pipe	4.500	3.8	826	572'			Shaker	1	20	00		
6 rpm	•			7		7	Agitator	5.250	2.2	250	24'	57	'2'	Shaker	2	20	00		
3 rpm				5		6	Collars	5.250	2.7	750	106'	59	6'	Shaker	3	20	00		
Plastic Viscos	rpm stic Viscosity (cp) @ 15			19		19	Dir. BHA	5.000	2.0	000	32'	70	12'	NOV Dry	ers	17	70		
Yield Point (lb.	/100 ft²)		T0 = 3	11		12		CASIN	IG &	HOLE	DATA								
Gel Strength (lb/100 ft²)	10 s	ec / 10 min	6/11		6/11	Casing	OD (in.)	ID	(in.)	Depth	To	pp	Centrifug	e 1				
Gel Strength (lb/100 ft2))	30 min	14		13	Riser							VOLUM	E AC	COU	NTING	dd) e	ls)
HTHP Filtrate	(cm/30 m	in)	@ 300 °F	6.0		6.0	Surface	10 3/4			3,018'			Prev. T	otal o	n Loc	ation	34	455.3
HTHP Cake T	hickness ((32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	875	11,974'			Transfe	rred I	n(+)/0	Out(-)		
Retort Solids (Content			21%		21%	Washout 1								Oil	Adde	ed (+)		
Corrected Soli	ds (vol%)			18.8%		18.9%	Washout 2							E	Barite	Adde	ed (+)		
Retort Oil Con	tent			59%		58%	Oper	Hole Size	6.7	750	12,725'			Other Pro	oduct	Usaç	je (+)		
Retort Water (Content			20%		21%	AN	NULAR G	ОМЕ	TRY 8	& RHEOLO	OGY		V	Vater	Adde	ed (+)		
O/W Ratio				75:25		73:27	annula	ır	nth	velo	ocity flow	EC	D	Lef	t on C	Cuttin	gs (-)		
Whole Mud Cl	nlorides (r	ng/L)		54,000		53,000	section	n de	pth	ft/n	nin reg	lb/g	gal	Non-Reco	overa	ble V	ol. (-)		
Water Phase	Salinity (p	pm)		297,448		283,542		•			•	•			Cent	/Evap	/Trip		
Whole Mud Al	kalinity, P	om		3.0		3.0	6.875x4	1.5 5	72'		lam	11.	90	Est. T	otal o	n Loc	ation	34	455.3
Excess Lime (lb/bbl)			3.9 ppb		3.9 ppb	6.875x5	.25 5	96'		lam	11.	90	Est. Loss	ses/G	ains (-)/(+)		61.4
Electrical Stab	ility (volts)		490 v		495 v	6.875x5	.25 7)2'		lam	11.	90	BIT I	HYDR	RAUL	ICS D	ATA	
Average Spec	ific Gravit	y of Solid	s	3.45		3.43	6.875x	5 7	34'		lam	11.	90	Bit H.S.I.	Bit	ΔΡ	Nozz	les (32	2nds)
Percent Low C	Gravity So	lids		7%		7.2%											18	18	18
ppb Low Grav	ty Solids			57 ppb		59 ppb							•	Bit Impact	Noz		18	18	18
Percent Barite				11.8%		11.7%								Force	Velo (ft/s	•			
ppb Barite				169 ppb		168 ppb	BIT [DATA	Ма	nuf./T	ype G	TD64N	М						
Estimated Total	al LCM in	System					Size	Depth In	Но	ours	Footage	ROP	ft/hr	Motor/M\	ND	Calc	. Circ.	Pres	sure
Sample Taker	Ву			A.ROMAN		M Washburn	6 3/4	12,275 ft									19	psi	
Afternoon Rema	arks/Recor	nmendatio	ons:				Afternoon R	ig Activity:	•			•	!						
	iour remarks/recommendations.							g propper pump 30 8970 to 6 k - negati	mud bbls o 492 f /e, co at tim	displated of 18.0 display disp	acement. 0# slug do annulus w e pull out	Pump own D vith 18 of hol	89 b P. Flo .0# a e, lay	ng trip tank ibls of 11.9 ow check, t calculate out BHA ing 17.0# I)# dri no flo d dis #5 ar	II strii ow. S place nd ma	ng ca trip o ment ake up	pacity ut of . Flov	y hole w

Report #17 TEL: (337) 394-1078

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

73.0° 12,315' TVD

Operator MAGI Well Name and No.	NOLIA (OIL &	GAS	Contractor PAT Rig Name ar	TTERSO	ON	County / Parish / FA	Block YETTE		Engineer S OS Spud Date	Start Date 5/09/2		of ftg. Oft ent ROP		Drilled De		5 ft
	NIER A-	1H S	Т-01	Rig Name ar	248			EXAS		-	5/13/2		0 ft/hr		•	w/ B	HA #6
Report for		_	_	Report for			Field / OCS-G #			Fluid Type		Circu	ulating Rate		Circulatin	_	
Jim Ha	rrison/				ol Pusi	ner		DINGS			ОВМ		341 gpr	-			psi
		ı — —	ERTY SPECIF	l		T	MUD VO	•			UMP #1		PUMP #2				OSTER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		27 bbl	Liner Si				1.75	Liner S		4.75
8.5-12	5-25	8-12	2 >400	±290K	<10 <15	<8	In Hole		I2 bbl	Stroke				12	Strok		12
				5/28/21		5/27/21	Active		36 bbl	bbl/stl				0625	bbl/st		0.0625
Time Sample				2:00		14:30	Storage		05 bbl	stk/mi				65	stk/m		_
Sample Locati				Suction		suction	Tot. on Loc			gal/mi				171	gal/m		0
Flowline Temp	erature °F	-		125 °F				PHHP = 9				LATION D					(= 179.335
Depth (ft)				12,725'		12,725'	Bit D	epth = 12			- 1	hout = 0%		Pump			
Mud Weight (p	ppg)			11.9		11.9	Drill String Disp.			178.7 k		Strokes To E	,				22 min
Funnel Vis (se	c/qt)		@ 100 °F	59		49		Bottoms	Up Vol.	329.9 k	obl Bo	tomsUp Stk	s 5,282		nsUp T		41 min
600 rpm				51		50	71.3 bbl			1135.6		otalCirc.Stk	1				140 min
300 rpm				31		31		DRILLIN	NG ASS	SEMBLY	DATA		;	SOLIDS	CON	TROL	-
200 rpm	·			22		21	Tubulars	OD (in.)	ID	(in.)	Length	Тор	Uni	t	Scree	ns	Hours
100 rpm	•			15		15	Drill Pipe	4.500	3.	.826	12,493'	0'	Shake	er 1	200)	12.0
6 rpm	•			7		7	Agitator	5.250	2.	.250	24'	12,493'	Shake	er 2	200)	12.0
3 rpm				6		6	Collars	5.250	2.	.750	106'	12,517'	Shake	er 3	200)	12.0
Plastic Viscosi	ity (cp)		@ 150 °F	20		19	Dir. BHA	5.000	2.	.000	32'	12,623'	NOV D	ryers	170)	12.0
Yield Point (lb/	/100 ft²)		T0 = 5	11		12		CASI	NG & I	HOLE DA	ATA						
Gel Strength (lb/100 ft²)		10 sec/10 min	7/14		6/11	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifu	ige 1			2.0
Gel Strength (lb/100 ft ²)		30 min	18		13	Riser						VOLU	ME AC	COUN	TING	(bbls)
HTHP Filtrate	(cm/30 mi	in)	@ 250 °F	6.0		6.0	Surface	10 3/4			3,018'	0'	Prev.	Total or	n Locat	tion	3455.3
HTHP Cake T	hickness ((32nds)	1	2.0		2.0	Int. Csg.	7 5/8	6.	.875	11,974	0'	Transf	ferred Ir	n(+)/Ou	ıt(-)	250.0
Retort Solids (Content			21%		21%	Washout 1							Oil	Added	(+)	3.0
Corrected Soli	ds (vol%)			18.9%		18.9%	Washout 2							Barite	Added	(+)	7.2
Retort Oil Con	tent			59%		58%	Open	Hole Siz	e 6.	.750	12,725'		Other F	Product	Usage	(+)	0.0
Retort Water (Content			20%		21%	ANI	NULAR G	EOME	TRY & R	HEOLO	GY		Water	Added	(+)	
O/W Ratio				75:25		73:27	annular	· m	neas.	veloci	ty flov	v ECD	L	eft on C	Cuttings	s (-)	0.0
Whole Mud Ch	nlorides (n	ng/L)		52,000		53,000	section	d	lepth	ft/mir	n re	lb/gal		Lost to	Format	tion	-50.0
Water Phase	Salinity (p	pm)		289,622		283,542								Cent/	Evap/	Ггір	-21.7
Whole Mud Al	kalinity, P	om		2.5		3.0	6.875x4.	5 11	1,974'	309.4	4 tur	12.80	Est.	Total or	n Locat	tion	3643.7
Excess Lime (lb/bbl)			3.3 ppb		3.9 ppb	6.75x4.5	5 12	2,493'	330.2	2 tur	12.83	Est. Lo	sses/Ga	ains (-)	/(+)	0.0
Electrical Stab	ility (volts))		485 v		495 v	6.75x5.2	5 12	2,517'	464.4	4 tur	12.83	ВІТ	HYDR	AULIC	S DA	·ΤΑ
Average Spec	ific Gravity	y of Sol	ids	3.45		3.43	6.75x5.2	5 12	2,623'	464.4	4 tur	12.86	Bit H.S.I.	. Bit A	ΔP	Nozzle	es (32nds)
Percent Low G	Gravity Sol	lids		7%		7.2%	6.75x5	12	2,655'	406.5	5 tur	12.86	0.32	57	psi	18	18 18
ppb Low Grav	ity Solids			58 ppb		59 ppb							Bit Impac	Noz		18	18 18
Percent Barite	. ,			11.9%		11.7%							Force	Velo (ft/se	-		
ppb Barite				170 ppb		168 ppb	BIT D	ATA	Ma	anuf./Typ	е	GTD64M	154 lbs	73	3	1	
			n ppb				Size	Depth In) H	ours	Footage	ROP ft/h	r Motor/N	/WD	Calc.	Circ.	Pressure
Sample Taken By				A.ROMAN	0	M Washburn	6 3/4	12,275 f	t				1,250	psi	3	3,106	psi
				l			Dia Activity		-1	1		1	1				

Remarks/Recommendations:

OBM RECEIVED: 250bbls @ \$65.00 /

OBM on surface/ storage 3132bbls

Rig Activity:

Finish POOH and change out BHA. TIH to 6400', perform Rig Service and slip and cut Drill line. Continue TIH down to 11,964' and set circulation. Circulate BU at this point, Capture Heavy OBM from well in the trip tanks and transfer same to storage, heaviest mud returned 14.5ppg. Losses calculated at 61bbls while TIH and circulation of heavy mud out of the hole, resume TIH to Side track starting depth, orient directional tools and start Washing and Reaming down to 12725'. Maintain MW in the active system at 11.9ppg with Diesel and Centrifuge applications. At the time of report: Bit passing 12630'. Zero casing pressure observed, while making connection.

Е	ng. 1:	Mi	ke W	ashbı	urn	Er	ng. 2:	Adolfo	A. Roman	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Р	hone:	3	61-94	5-57	77	Pł	none:	956-8	321-9994	Phone:	432-686-736	1 Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	used if the user		er, no representa	has been prepared tion is made as to the	\$7,538.94	\$146,755.96
												INCLUI	DING 3RD PAI	RTY CHARGES	\$7,827.86	\$278,524.11

MATERIAL CONSUMPTION

Date 05/28/21	Operator MAG I	NOLIA OIL		Well Name a RAIN	ind No. I IER A-1H S		Rig Name an		o. port #17
	DAILY	USAGE 8	& COST						IULATIVE
			Previous		Closing	Daily		Cum	
Item	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost	Usage	Cum Cost
SAPP (50)	50# sk	\$44.56	10		10				32 \$1,425.92
PHPA LIQUID (pail)	5 gal	\$41.36	32		32				
EVO-LUBE NEW GEL (PREMIUM)	gal	\$14.00							
ALUMINUM TRISTEARATE									
ALCOMINOM THIS I LANGUE									
CACL2 (50)	50# sk	\$14.32	168		168			6	16 \$8,821.12
LIME (50)	50# sk	\$5.00	200		200				40 \$2,200.00
OPTI - G	50# sk	\$30.59	106		106				54 \$4,710.86
BENTONE 38 (50) BENTONE 910 (50)	50# sk	\$163.94 \$59.40	22 15		22 15				43 \$7,049.42
BENTONE 990 (50)	50# sk	\$83.59	20		20				54 \$4,513.86
OPTI - MUL	gal	\$10.75	165		165				40 \$4,730.00
OPTI - WET	gal	\$8.34	385		385			3	85 \$3,210.90
NEW PHALT	50# sk	\$38.72	55		55				65 \$2,516.80
OIL SORB (25)	25# sk	\$4.75	19		19				21 \$99.75
							-		
NEW CARB (M)	50# sk	\$5.25	111		111				99 \$519.75
CYBERSEAL MAGMAFIBER F (25)	25# sk 25# sk	\$21.47 \$28.05	86		86				58 \$1,626.90
MAGMAFIBER R (30)	30# sk	\$28.05	80		00				36 \$1,020.90
VARISEAL	oon on	Ψ20.00							
FIBER PLUG	30# sk	\$30.37							
NUT PLUG M (50)	50# sk	\$12.04	25		25				9 \$108.36
MICA F (50)	50# sk	\$10.28	40		40				
GRAPHITE - FINE (50)	50# sk	\$24.14	80		80				
CION THIE THE (00)	30# 3K	Ψ24.14	00		00				
NEW WATE (SACK BARITE)	100# sk	\$11.50	150		150				
BARITE BULK (100)	100# sk	\$7.00	1050	403	1350	103	\$721.00	51	39 \$35,973.00
OPTI DRILL (OBM)	bbl	\$65.00	2994	250	3183	61	\$3,965.00		13 \$7,345.00
OF IT DRILL (OBM)	DDI	\$05.00	2994	250	3103	01	φ3,903.00	'	13 \$7,343.00
DISCOUNTED OBM	bbl	\$15.00	600		600				65 \$975.00
							il .		
ENGINEERING (24 UP)	occh	\$000.00					\$1,000,00		42 \$44 500 00
ENGINEERING (24 HR) ENGINEERING (DIEM)	each	\$990.00					\$1,980.00 \$60.00		42 \$41,580.00 42 \$1,260.00
ENGINEERING (24 HR) ENGINEERING (DIEM) ENGINEERING (MILES)	-	\$990.00 \$30.00 \$1.00				2 2	\$1,980.00		42 \$41,580.00 42 \$1,260.00 49 \$1,049.00
ENGINEERING (DIEM)	bbl	\$30.00					- ' '		42 \$1,260.00
ENGINEERING (DIEM) ENGINEERING (MILES)	bbl each	\$30.00 \$1.00				2	\$60.00	10	42 \$1,260.00 49 \$1,049.00
ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET	bbl each EACH	\$30.00 \$1.00 \$15.00				1	\$60.00 \$15.00	10	42 \$1,260.00 49 \$1,049.00 13 \$195.00
ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET TRUCKING (cwt)	bbl each EACH each	\$30.00 \$1.00 \$15.00 \$1.98				2	\$60.00	10	42 \$1,260.00 49 \$1,049.00 13 \$195.00 30 \$14,513.32
ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET TRUCKING (cwt) TRUCKING (min)	EACH each each	\$30.00 \$1.00 \$15.00 \$1.98 \$650.00				1	\$60.00 \$15.00	73	42 \$1,260.00 49 \$1,049.00 13 \$195.00 30 \$14,513.32 2 \$1,300.00
ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET TRUCKING (cwt)	bbl each EACH each	\$30.00 \$1.00 \$15.00 \$1.98				1	\$60.00 \$15.00	73	42 \$1,260.00 49 \$1,049.00 13 \$195.00 30 \$14,513.32
ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET TRUCKING (cwt) TRUCKING (min) PALLETS (ea)	EACH each each each each	\$30.00 \$1.00 \$15.00 \$1.98 \$650.00 \$12.00	ub-Total \$7			1	\$60.00 \$15.00	73	42 \$1,260.00 49 \$1,049.00 13 \$195.00 30 \$14,513.32 2 \$1,300.00 44 \$528.00

THIRD PARTY COST SHEET

Date	Operator			Well Name a	ınd No.		Rig Name an	id No.	Report No.	
05/28/21	MAGI	NOLIA OIL	& GAS	RAIN	IIER A-1H	ST-01	2	48	Repo	rt #17
	DAILY	USAGE 8	k COST						СПМП	LATIVE
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	332		332				68	\$2,839.00
TURBO CHEM SYNSEAL	25# sk	\$85.00	196		196					
OBM-D 5_12_21	gal	\$2.31								\$32,349.24
OBM-D 5_15_21	gal	\$2.35								\$16,920.00
OBM-D 5/16/21	gal	\$2.35								\$33,840.00
OBM-D 5/17/21	gal	\$2.31								\$16,632.00
OBM-D 5/19/21	gal	\$2.33			1876		\$288.92		12527	\$29,187.91
OBM-D 5/24/21	gal	\$2.24	7202	7000	7202					
Mud Diesel 5/27/21	gal	\$2.25		7200	7200					
							-			
							-			
							1			
							 			
							 			
							<u> </u>			
	1	<u> </u>		<u>I</u>	Delle	Sub Total 1	200 02		6404	760 1E
					Daily	Sub-Total \$	9∠00. 9 ∠		\$131,7	100.13
					1					
	Cum	ulative Total	AES & 3rd	Party \$278	3,524.11					
	<u> </u>					l 				

FLUID VOLUME ACCOUNTING

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name: MAGNOLIA OIL & GAS

Rig Name: 248
Well Name: RAIN

RAINIER A-1H ST-01

					WEEK 1							WEEK 2							WEEK 3			
	Date	5/14/21	5/15/21	5/16/21	5/17/21	5/18/21	5/19/21	5/20/21	5/21/21	5/22/21	5/23/21	5/24/21	5/25/21	5/26/21	5/27/21	5/28/21	5/29/21	5/30/21	5/31/21	6/1/21	6/2/21	6/3/21
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4						
Grand	Starting Depth	108	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725					
Totals	Ending Depth	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725						
	Footage Drilled	2,925	1,471	3,176	1,941	1,716	640	. 8	-	538	17	-	234	19	475		_	_	-	-	_	-
	New Hole Vol.	277	139	301	184	163	61	1	-	24	1	-	10	1	21	-	-	_	-	_	-	-
.,	Starting System Volume	2,525	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3.644	3,644	3.644	3,644	3,644
115	Chemical Additions	2,020	15	14	18	13	9	2,000	2,0.0	15	5	12	10	3	1	-	0,011	0,011	0,011	0,011	0,011	0,011
	Base Fluid Added		38	392	158	214	174	26	4	78	18	101	95	25	11	3						
358	Barite Increase	1	13	13	19	217	3	6		70	142	59	62	21	14	7						
1,436			10	300	10	479	Ū	Ŭ	407			- 00	02		-	250						
,	Slurry Added			000		170			107						_	-						
317	Water Added		60		70	83	37						58	9	-	-						
	Added for Washout						8								-	-						
3,570	Total Additions	1 .	126	719	264	788	231	32	411	93	164	172	225	58	26	260	_	_	_		_	
	Surface Losses	+														200		_	_	_	_	
715		1	3	42 50	119 83	105 92	105 134	11 25	10 73	23	21 68	12 28	35 14	17	99	- 50				-		
865			125	301	191	135	63	1	73	25	1	20	14	4	19	-						
	Unrecoverable Volume		17	40	35	133	45	22	10	25	- 1	24		4	25	-						
150	Centrifuge Losses		4	20	24	15	6		10	12	7	3	6	6	25	22						
130	Centinuge Losses		4	20	24	10	0			12	- 1	3	U	U	23	22						
2,451	Total Losses	-	149	453	452	346	353	59	93	60	97	68	55	27	168	72	-	-	-	-	-	-
-	Mud Transferred Out																					
3,644	Ending System Volume	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,644	3,644	3,644	3,644	3,644	3,644
-	Mud Recovered																					
	•			С	omment	s:					С	omment	s:					С	omment	s:		
	_	5/14/21	Cleaned ri	I surface in g pit, NU B ning the sar	OP and tes	ted the sar	ne. Filled		5/21/21	spacer and	d 39bbls ce	ment. Los	nping 10bbl t to seepag and Interfac	e while riur		5/28/21	TIH with n resume dr	new BHA, W rilling.	/ash and R	eam from 1	2150 to bo	ttom and
3,961		5/15/21		ead at 4,50 7bbls and c			ap 3bbls, C	Cent 4bbls,	5/22/21	Mud lost to	cuttings 2	4.8bbls, Ev	/ap 22.87bb	ls and Cer	nt 12bbls	5/29/21						
	-	5/16/21		ses: Evap 42 50bbls and					5/23/21	Mud lost to and Cent 7		due to wei	ght up 68.2	bbls, Evap	20.5bbls	5/30/21						
		At RPT time change out rot Head. Mud lost to Cuttin 5/17/21 191.3bbls, Evap 118.8bbls, Cent 24bbls, Shakers 35 Seepage 83bbls							5/24/21				1.34bbls. N ge circ kill n			5/31/21						
		5/18/21 Mud Lost to Cuttings 135bbls, Evap 104.6bbls, Cent 1 Seepage 91.8bbls							5/25/21	Mud lost to Attempting			Cent 6bbls a	ınd Evap 3	5.2bbls.	6/1/21						
		5/19/21		to Cuttings 8bbls, Rota					5/26/21	Mud lost to	Cuttings (3.4bbls, Ce	nt 6bbls and	d Evap 17.:	2bbls	6/2/21						
		5/20/21	Mud Lost t Seepage 2	to Cuttings 25bbls	1bbl, Evap	10.8bbls, 1	Fripping 22	bbls and	5/27/21	Drilled Sid BhA.	e track to 1	2725'/ Cir	culate and I	POOH to la	ay down	6/3/21						

110 Old Market St.

St Martinville, LA 70582

87.0° 12,393' TVD

Operator				Contractor			County / Parisl	h / Block		Engine	er Start Date	24	nr ftg.		Drilled	l Depth		
MAGN	NOLIA (OIL & C	SAS	PAT	TERSO	N	-	YETTE		_	05/09/21		Ü			13,3	38 ft	<u> </u>
Well Name and No				Rig Name ar			State			Spud [rent ROP		Activit	•		
	IIER A-	1H ST-	-01	Report for	248		T Field / OSC-G	EXAS			05/13/21		175 ft	/hr		LG L		RAL
Report for Jim Ha	rrison/.	James	Dyer		ol Pusł	ner		# DDINGS		Fluid T	OBM	Circ	ulating Rate 404 gr	om		ating Pre 6,099		i i
			RTY SPECI					DLUME (B	BL)		PUMP #1		PUMP		+	SER B		
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	62	7 bbl	Line	Size 4.	.75 Lii	ner Size	4.75	Line	r Size	4.	75
8.5-12	5-25	8-12	>400	±290K	<10 <15	<8	In Hole	e 539	5 bbl	Stre	oke 1	12 5	Stroke	12	Str	oke	1:	2
	М	UD PRO	PERTIES				Active	116	2 bbl	bbl	/stk 0.0	625	obl/stk	0.0625	bb	l/stk	0.06	625
Time Sample	Taken			2:00		14:30	Storage	e <u>250</u>	5 bbl	stk	min 7	77 s	stk/min	77	stk	/min		
Sample Locati	ion			Suction		suction	Tot. on Loc	cation 366	7 bbl	gal	min 2	02 g	jal/min	202	gal	/min		
Flowline Temp	perature °	F		125 °F		155 °F	Mud Wt. =	11.9 PV	′=20	YP	=11 CI	RCULAT	ION DATA	١	n =	0.718	K = 1	179.3
Depth (ft)				12,725'		13,340'	Bit C	Depth = 13	,338 '		Wash	out =		Pum	p Effic	iency =	= 95%	6
Mud Weight (p	ppg)			11.9		11.5	Drill String	Volume	to Bit	188.	4 bbl St	rokes To I	Bit 3,016	6	Time	To Bit	20 ו	min
Funnel Vis (se	ec/qt)		@ 135 °F	59		51	Disp.	Bottoms L	Jp Vol.	346.	7 bbl Bott	omsUp St	ks 5,550	Bott	omsUp	Time	36 ı	min
600 rpm				51		43	75.1 bbl	TotalCi	rc.Vol.	1162	.1 bbl To	otalCirc.St	ks 18,60	4 To	tal Circ	. Time	121	min
300 rpm				31		27		DRILLIN	G AS	SEMB	LY DATA			SOLII	os co	NTRO	L	
200 rpm				22		17	Tubulars	OD (in.)	ID	(in.)	Length	Тор	U	nit	Scr	eens	Ho	urs
100 rpm	•			15		13	Drill Pipe	4.500	3.8	826	13,176'		Sha	ker 1	2	00		
6 rpm				7		6	Agitator	5.250	2.2	250	24'	13,176	5' Sha	ker 2	2	00		
3 rpm	·			6		5	Collars	5.250	2.7	750	106'	13,200) Sha	ker 3	2	00		
Plastic Viscos	ity (cp)		@ 150 °F	20		16	Dir. BHA	5.000	2.0	000	32'	13,306	s' NOV	Dryers	1	70		ļ
Yield Point (lb.	/100 ft²)		T0 = 5	11		11		CASI	NG &	HOLE	DATA							
Gel Strength ([lb/100 ft ²]) 10	sec / 10 min	7/14		5/9	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centr	ifuge 1				ļ
Gel Strength ((lb/100 ft2	?)	30 min	18		12	Riser						VOL	UME A	ccou	INTING	idd) €	is)
HTHP Filtrate	(cm/30 m	nin)	@ 250 °F	6.0		6.0	Surface	10 3/4			3,018'		Prev	/. Total	on Lo	cation	36	643.7
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	875	11,974'		Tran	sferred	In(+)/	Out(-)		
Retort Solids (Content			21%		19.5%	Washout 1							С	il Add	ed (+)		ļ
Corrected Soli	ids (vol%)		18.9%		17.2%	Washout 2							Barit	e Add	ed (+)		
Retort Oil Con	ntent			59%		59.5%	Open	Hole Size	6.7	750	13,338'		Other	Produc	ct Usa	ge (+)		
Retort Water (Content			20%		21%	AN	NULAR GI	EOME	TRY	& RHEOLO	OGY		Wate	er Adde	ed (+)		
O/W Ratio				75:25		74:26	annula	ar de	epth	velo	ocity flow	ECD		Left on	Cuttin	ngs (-)		
Whole Mud Cl	hlorides (mg/L)		52,000		56,000	section	n uc	ж	ft/r	min reg	lb/gal		Lost t	o Form	nation		
Water Phase	Salinity (p	opm)		289,622		294,859								Ce	nt/Eva	p/Trip		ļ
Whole Mud Al	lkalinity, F	Pom		2.5		3.0	6.875x4	l.5 11,	974'	36	6.6 turb	13.24	Es	t. Total	on Lo	cation	36	643.7
Excess Lime ((lb/bbl)			3.3 ppb		3.9 ppb	6.75x4	.5 13,	176'	39	1.2 turb	13.48	Est. L	osses/	Gains	(-)/(+)		23.4
Electrical Stab	oility (volts	s)		485 v		550 v	6.75x5.	25 13,	200'	55	0.1 turb	13.62	В	IT HYD	RAUL	ICS D	ATA	
Average Spec	ific Gravi	ty of Soli	ds	3.45		3.38	6.75x5.	25 13,	306'	55	0.1 turb	13.79	Bit H.S	S.I. B	it ∆P	Nozz	les (32	2nds)
Percent Low 0	Gravity So	olids		7%		7.1%	6.75x	5 13,	,338'	48	1.6 turb	13.93	0.53	80) psi	18	18	18
ppb Low Grav	ity Solids			58 ppb		58 ppb							Bit Impa	act Ve	ozzle locity	18	18	18
Percent Barite)			11.9%		10.2%			1				Force	,	/sec)			
ppb Barite				170 ppb		146 ppb	BIT D	DATA	Ма	ınuf./T	ype G	TD64M	217 lb	s	87			
Estimated Tot	Estimated Total LCM in System						Size	Depth In	Но	ours	Footage	ROP ft/	hr Motor	/MWD	Cald	c. Circ.	Pres	sure
Sample Taken By				A.ROMAN		M Washburn	6 3/4	12,725 ft					1,25	0 psi		3,880) psi	
Afternoon Rema	arks/Reco	mmendat	ions:				Afternoon R	Rig Activity:										

Finish trip in hole with BHA #6, continue drilling curve and landed at 12,962 MD, 12373 TVD and 86.5 deg INCL. Reduce mud wt from 11.9 to 11.5 gradually over several circulations with application of centrifuge, diesel and water additions. BGG while drilling is 200 - 400 units, connection gas 500 - 600 units, no mud cut observed at flow line. Resume pumping 10 bbls LCM sweeps every 300' while drilling in lateral. Samples at 13338 are 100% AC.MWD temp 300 deg F. No downhole mud losses since AM report.

OUTSOURCE FLUID SOLUTIONS LLC.

88.4° 12,456' TVD

Operator MAGI Well Name and No.	GAS	Contractor PA Rig Name ar	TTERSO	ON	County / Parish / FA	Block YETTE		Engineer S	5/09		24 hr ftg	1,866 ft		Drilled D	epth 4,59	91 ft	t		
	NIER A-	1H S	T-01	rag ramo a	248		TEXAS			05/13/21				93 ft/hr		DRLG LATERAL		RAL	
Report for				Report for			Field / OCS-G #						Circulat	Circulating Rate		Circulating Pressure			
Jim Ha	s Dyer	Tool Pusher			GIDDINGS			ОВМ			;	346 gpm		5,129 psi		i			
	ERTY SPECIF	ICATION	S		MUD VO	LUME (BE	BL)	PUMP #1			PUMP #2			RISER BOOSTER		ΓER			
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	687	7 bbl	Liner S	Size	4.75	Liner	Size 4.	75	Liner	Size	4.	75
8.5-12	5-25	8-12	>400	±290K	<10 <15	<8	In Hole	584	4 bbl	Strok	ке	12	Stro	oke 1	2	Stro	ke	1	2
				5/29/21		5/28/21	Active	127	1 bbl	bbl/s	tk	0.0625	bbl/	/stk 0.0	625	bbl/s	stk	0.0	625
Time Sample	Taken			2:00		14:30	Storage	<u>186</u>	7 bbl	stk/m	nin	66	stk/i	min 6	66	stk/min			
Sample Locati	on			Suction		suction	Tot. on Loc	cation 313	8 bbl	gal/m	nin	173	gal/i	min 1	73	gal/r	nin	(0
Flowline Temp	erature °F	=		155 °F		155 °F	F	PHHP = 103	36	CIRCULATION DA				TA		n = 0	670	K = 17	72.089
Depth (ft)				14,343'		13,340'	Bit D	epth = 14,	591 '		١	Washout =	0%		Pump	Efficie	ncy =	95%	ó
Mud Weight (p	pg)			10.8		11.5	Drill String	Volume	to Bit	206.2	bbl	Strokes	To Bit	3,301		Time T	o Bit	25	min
Funnel Vis (se	c/qt)		@ 100 °F	11		51	Disp.	Bottoms U	lp Vol.	377.5	bbl	BottomsU	p Stks	6,044	Botto	msUp [·]	Time	46	min
600 rpm				35		43	81.9 bbl	TotalCi	rc.Vol.	1270.7	bbl 7	TotalCir	c.Stks	20,343	Tota	l Circ.	Time	154	min
300 rpm				22		27	-	DRILLING	G ASS	SEMBLY	Y DA	ГА		s	OLIDS	S CON	ITRO	L	
200 rpm				16		17	Tubulars	OD (in.)	ID	(in.)	Len	gth T	ор	Unit		Scre	ens	Но	ours
100 rpm				10		13	Drill Pipe	4.500	3.	826	14,4	129'	0'	Shaker	1	20	0	24	4.0
6 rpm				6		6	Agitator	5.250	2.	250	2	4' 14	429'	Shaker	2	20	0	24	4.0
3 rpm				5		5	Collars	5.250	2.	750	10	6' 14	453'	Shaker	. 3	20	0	24	4.0
Plastic Viscosity (cp) @ 150 °F		13		16	Dir. BHA	5.000	2.	000	32	2' 14	559'	NOV Dry	ers/	17	0	24	4.0		
Yield Point (lb.	/ield Point (lb/100 ft²)		9		11		CASING & HOLE DATA												
Gel Strength (lb/100 ft²)	,	10 sec/10 min	6/10		5/9	Casing	OD (in.)	ID	(in.)	De	pth T	ор	Centrifuç	ge 1			8	.0
Gel Strength (lb/100 ft ²)		30 min	15		12	Riser						•	VOLUM	IE AC	COUN	ITING	(bb	ls)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	6.0		6.0	Surface	10 3/4			3,0	18'	0'	Prev. T	otal o	n Loca	ation	36	643.7
HTHP Cake T	hickness	(32nds))	2.0		2.0	Int. Csg.	7 5/8	6.	875	11,9	974'	0'	Transfe	erred li	n(+)/O	ut(-)		
Retort Solids (Content			18%		19.5%	Washout 1								Oil	Adde	(+)	,	168.5
Corrected Soli	ds (vol%)			15.9%		17.2%	Washout 2								Barite	Adde	(+)		0.0
Retort Oil Con	tent			62%		59.5%	Open	Hole Size	6.	750	14,5	591'		Other Pr	roduct	Usage	e (+)		12.5
Retort Water (Content			20%		21%	ANI	NULAR GE	ОМЕ	TRY & I	RHE	DLOGY		,	Water	Adde	(+)		
O/W Ratio				76:24		74:26	annular	. me	eas.	veloc	city	flow E	CD	Le	ft on C	Cutting	s (-)		-82.6
Whole Mud Cl	nlorides (n	ng/L)		51,000		56,000	section		epth	ft/mi	-		/gal	L	ost to	Forma	ation	-5	554.4
Water Phase	Salinity (p	pm)		285,644		294,859				ı	I	·			Cent	/Evap	Trip		-50.0
Whole Mud Al	kalinity, P	om		4.5		3.0	6.875x4.	5 11,	974'	314.	.2	turb 11	.71	Est. T	otal o	n Loca	ation	3′	137.7
Excess Lime (lb/bbl)			5.9 ppb		3.9 ppb	6.75x4.5	5 14,	429'	335.	.3	turb 11	.96	Est. Los	ses/G	ains (-	-)/(+)		0.0
Electrical Stab	ility (volts)		566 v		550 v	6.75x5.2	5 14,	453'	471.	.6	turb 12	2.05	BIT	HYDR	RAULI	CS D	ATA	
Average Spec	ific Gravit	y of Sol	lids	3.14		3.38	6.75x5.2	5 14,	559'	471.	.6	turb 12	2.17	Bit H.S.I.	Bit	ΔΡ	Nozzl	es (32	2nds)
Percent Low 0	Gravity So	lids		8.7%		7.1%	6.75x5	14,	591'	412.	.8	turb 12	2.27	0.30	54	psi	18	18	18
ppb Low Grav	ity Solids			72 ppb		58 ppb							ŀ	Bit Impact	Noz		18	18	18
Percent Barite				7.2%		10.2%								Force	Velo	-			
ppb Barite				103 ppb		146 ppb	BIT D	ATA	Ma	anuf./Ty	ре	GTD64	M	145 lbs	7	·			
Estimated Tot	al LCM in	System	n ppb				Size	Depth In	Н	ours	Foot	age ROI	P ft/hr	Motor/M	WD	Calc.	Circ.	Pres	ssure
Sample Taker	Ву			A.ROMAN	0	M Washburn	6 3/4	12,725 ft	2	0.0	1,86	66 ft 9	3.3	1,250	osi		3,087	' psi	
	•			<u> </u>	l													•	

Remarks/Recommendations:

OBM RECEIVED: 250bbls @ \$65.00 /

OBM on surface/ storage 2554bbls

Rig Activity:

In the past 24hrs: Continue drilling ahead on lateral section with 11.8ppg OBM; @13693' well start taking mud, decrease density to 11.5ppg and continue decreasing to 10.6ppg. Increase and Continue with Sweep program and start pumping 1sweep every stand (20bbls LCM) transfer OBM as needed to maintain volume in the active system. Losses decreasd @14366' to 21bbls/hr. Diesel and Centrifuge applications used to cut MW back while drilling, Intruduction of lighter mud from storage to maintain volume and lower MW as needed. Additions of chemicals to maintain properties. At the time of report: Bit passing 14,638'. Zero casing pressure.

Е	ng. 1:	Mi	ke W	ashbı	urn	Er	ng. 2:	Adolfo	A. Roman	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Р	hone:	3	61-94	5-57	77	Pł	none:	956-8	321-9994	Phone:	432-686-7361	Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be		o elects, however	, no representati	nas been prepared on is made as to the	\$44,536.16	\$191,292.12
												INCLUDI	NG 3RD PAR	TY CHARGES	\$61,812.22	\$340,336.33

MATERIAL CONSUMPTION

Date 05/29/21	Operator MAGI	NOLIA OIL	& GAS	Well Name a RAIN	and No. IIER A-1H S		Rig Name and 24		ort #18
	DAILY	USAGE 8	k COST					CUM	JLATIVE
M	11-2	11-11 01	Previous	D i d	Closing	Daily	Daile Cart	Cum	
Item	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost	Usage	Cum Cost
SAPP (50)	50# sk	\$44.56	10		10			;	2 \$1,425.92
PHPA LIQUID (pail)	5 gal	\$41.36	32		32				
EVO-LUBE NEW GEL (PREMIUM)	gal	\$14.00							
ALUMINUM TRISTEARATE									
ALOWINOW TRISTEARATE									
CACL2 (50)	50# sk	\$14.32	168		140	28	\$400.96	64	4 \$9,222.08
LIME (50)	50# sk	\$5.00	200		150	50	\$250.00	49	0 \$2,450.00
OPTI - G	50# sk	\$30.59	106		80	26	\$795.34	18	0 \$5,506.20
BENTONE 38 (50)	50# sk	\$163.94	22		20	2	\$327.88		5 \$7,377.30
BENTONE 910 (50)	50# sk	\$59.40	15		15				
BENTONE 990 (50)	50# sk	\$83.59	20		18	2	\$167.18		6 \$4,681.04
OPTI - MUL	gal	\$10.75	165		165			44	
OPTI - WET	gal	\$8.34	385		385			38	
NEW PHALT	50# sk	\$38.72	55		40	15	\$580.80		0 \$3,097.60
OIL SORB (25)	25# sk	\$4.75	19		19				1 \$99.75
								<u> </u>	1
								<u> </u>	1
								<u> </u>	
NEW CARR (A)	FC	* -					0.155.50	<u> </u>	0 20== :=
NEW CARB (M)	50# sk	\$5.25	111		81	30	\$157.50	12	9 \$677.25
CYBERSEAL	25# sk	\$21.47	0.0		50	20	C044 F0	<u> </u>	0 60 400 40
MAGMAFIBER F (25) MAGMAFIBER R (30)	25# sk	\$28.05	86		56	30	\$841.50	<u> </u>	8 \$2,468.40
VARISEAL	30# sk	\$28.05						-	
FIBER PLUG	30# sk	\$30.37						-	
NUT PLUG M (50)	50# sk	\$12.04	25		25				9 \$108.36
MICA F (50)	50# sk	\$10.28	40		40				9 \$100.30
WICA ((30)	30# 3K	ψ10.20	40		40				
GRAPHITE - FINE (50)	50# sk	\$24.14	80		80				
0.0 (00)	00.11 0.11	Ψ=							
NEW WATE (SACK BARITE)	100# sk	\$11.50	150		150				
BARITE BULK (100)	100# sk	\$7.00	1350		1350			51:	9 \$35,973.00
					<u> </u>				
		<u> </u>							
OPTI DRILL (OBM)	bbl	\$65.00	3183		2597	586	\$38,090.00	69	9 \$45,435.00
DICCOLINITED COM		* 4= *-					#00F **		4 64 000 7
DISCOUNTED OBM	bbl	\$15.00	600		541	59	\$885.00	12	4 \$1,860.00
		-						<u> </u>	+
		-						<u> </u>	+
		-						 	+
		-						 	+
		+						 	+
								 	
		<u> </u>						-	+
ENGINEERING (24 HR)	each	\$990.00				2	\$1,980.00	,	4 \$43,560.00
	bbl	\$30.00				2	\$60.00		4 \$1,320.00
	each	\$1.00						104	-
ENGINEERING (DIEM)	Cacii	İ							
ENGINEERING (DIEM)	eacii								+
ENGINEERING (DIEM)	Gacii						!	l	
ENGINEERING (DIEM) ENGINEERING (MILES)	EACH	\$15.00						<u> </u>	3 \$195.00
ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET		\$15.00 \$1.98							3 \$195.00 0 \$14,513.32
ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET TRUCKING (cwt) TRUCKING (min)	EACH	1							
ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET TRUCKING (cwt)	EACH each	\$1.98						73:	0 \$14,513.32
ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET TRUCKING (cwt) TRUCKING (min)	EACH each each	\$1.98 \$650.00						733	0 \$14,513.32 2 \$1,300.00

THIRD PARTY COST SHEET

Date	Operator			Well Name a	ind No.		Rig Name ar	id No.	Report No.		
05/29/21	MAGI	NOLIA OIL	& GAS	RAIN	IIER A-1H	ST-01	2	48	Repo	rt #18	
	DAILY	DAILY USAGE & COST							CUMULATIVE		
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost	
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	332		302	30	\$1,252.50		98	\$4,091.50	
TURBO CHEM SYNSEAL	25# sk	\$85.00	196		196						
OBM-D 5_12_21	gal	\$2.31								\$32,349.24	
OBM-D 5_15_21	gal	\$2.35								\$16,920.00	
OBM-D 5/16/21	gal	\$2.35							-	\$33,840.00	
OBM-D 5/17/21	gal	\$2.31							———	\$16,632.00	
OBM-D 5/19/21	gal	\$2.33					\$4,371.08	ł	———	\$33,558.99	
OBM-D 5/24/21	gal	\$2.24	7202		2000		\$11,652.48		5202	\$11,652.48	
Mud Diesel 5/27/21	gal	\$2.25	7200		7200						
					Daily Su	ıb-Total \$1	7,276.06		\$149,0	044.21	
								I			
	Cumi	ulative Tota	I AES & 3rd	Party \$340	,336.33						

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name:

Well Name:

MAGNOLIA OIL & GAS

ne: 248

RAINIER A-1H ST-01

					WEEK 1							WEEK 2							WEEK 3			
	Date	5/14/21	5/15/21	5/16/21	5/17/21	5/18/21	5/19/21	5/20/21	5/21/21	5/22/21	5/23/21	5/24/21	5/25/21	5/26/21	5/27/21	5/28/21	5/29/21	5/30/21	5/31/21	6/1/21	6/2/21	6/3/21
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4					
Grand	Starting Depth	108	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591				
Totals	Ending Depth	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591					
15.026	Footage Drilled	2,925	1,471	3,176	1,941	1,716	640	8	_	538	17	_	234	19	475	-	1,866	_	_	_	_	-
,	New Hole Vol.	277	139	301	184	163	61	1	-	24	1	-	10	1	21	-	83	-	-	-	-	-
-,	Starting System Volume	2,525	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,138	3,138	3,138	3,138
127	Chemical Additions	,	15	14	18	13	9	,	,	15	5	12	10	3	1		13	-,	-,	-,	-,	-,
	Base Fluid Added		38	392	158	214	174	26	4	78	18	101	95	25	11	3	169					
, , , , , , , , , , , , , , , , , , , ,	Barite Increase		13	13	19		3	6		,,,	142	59	62	21	14	7	-					
	Weighted Mud Added			300		479	ŭ	Ĭ	407				02			250	-					
	Slurry Added														-	-	_					
	Water Added		60		70	83	37						58	9	-	-	_					
	Added for Washout		"		.,	33	8						- 55	<u> </u>	-	_	_					
	Total Additions	_	126	719	264	788	231	32	411	93	164	172	225	58	26	260	181	_	_	_	_	_
•			_				_								_			-		-		-
	Surface Losses		3	42	119	105	105	11	10	23	21	12	35	17	-	-	-					
	Formation Loss			50	83	92	134	25	73		68	28	14		99	50	554					
			125	301	191	135	63	1		25	1			4	19	-	83					
	Unrecoverable Volume		17	40	35		45	22	10			24			25	-	-					
200	Centrifuge Losses		4	20	24	15	6			12	7	3	6	6	25	22	50					
3,138	Total Losses	-	149	453	452	346	353	59	93	60	97	68	55	27	168	72	687	-	-	-	-	-
-	Mud Transferred Out																					
3,138	Ending System Volume	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,138	3,138	3,138	3,138	3,138
-	Mud Recovered																					
				С	omment	s:					C	omment	s:					С	omment	s:		
	1	5/14/21	Cleaned ri	I surface in ig pit, NU B ning the sa	OP and tes	sted the sa	me. Filled		5/21/21	spacer and	with good i d 39bbls ce 5bbls, Evap	ment. Los	t to seepag	e while riur		5/28/21	TIH with n resume dr		ash and R	eam from 1	2150 to bo	ottom and
3,961		5/15/21		ead at 4,50 7bbls and o			ap 3bbls, 0	Cent 4bbls,	5/22/21	Mud lost to	cuttings 24	4.8bbls, Ev	/ap 22.87bl	ols and Cer	it 12bbls	5/29/21		ead, Well s Continue di		mud at 136	93. lower	MW to
		5/16/21		ses: Evap 4 50bbls and						Mud lost to and Cent 7	formation bbls	due to wei	ght up 68.2	bbls, Evap	20.5bbls	5/30/21						
		At RPT time change out rot Head. Mud lost to Cutting 191.3bbls, Evap 118.8bbls, Cent 24bbls, Shakers 35bbls Seepage 83bbls									Previous w Cent 3bbls a					5/31/21						
		5/18/21 Mud Lost to Cuttings 135bbls, Evap 104.6bbls, Cent 15b Seepage 91.8bbls									Seepage 2nd sidetra		Cent 6bbls a	and Evap 3	5.2bbls.	6/1/21						
		5/19/21		to Cuttings 8bbls, Rota			ols, Cent 6b I seepage		5/26/21	Mud lost to	Cuttings 3	3.4bbls, Ce	nt 6bbls an	d Evap 17.	2bbls	6/2/21						

110 Old Market St.

St Martinville, LA 70582

88.0° 12,477' TVD

IOLIA (OIL & G	AS	Contractor PA1	TERSO	N	County / Parish	YETTE			Start Date 5/09/21	24 hr	ftg.		Orilled Dept	՝ 494 ք	ft
			Rig Name ar	nd No.		State			l '		Curre	nt ROP	,	Activity		
			Report for								Circu	-		Circulating I	Pressure	1
rrison/、	James [Oyer	То	ol Push	ner	GIE	DINGS			ОВМ		378 gpn	n	4,4	57 p	si
MUD	PROPERT	TY SPECII	FICATION	IS		MUD VC	DLUME (BE	BL)	Р	UMP #1		PUMP #2	2	RISER	B009	STER
PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	687	bbl	Liner S	ize 4.	75 Line	er Size 4	.75	Liner Siz	e 4	1.75
5-25	8-12	>400	±290K	<10 <15	<8	In Hole	620	bbl	Stroke	e 1	2 St	roke	12	Stroke		12
M	JD PROP	ERTIES				Active	1294	4 bbl	bbl/st	k 0.0	625 bl	ol/stk 0.0	0625	bbl/stk	0.0	0625
Taken			2:00		14:30	Storage	e <u>1867</u>	7 bbl	stk/mi	in 7	2 st	c/min	72	stk/min		
			Suction		suction				gal/mi	in 18	39 ga	l/min 1	189	gal/min		
erature °	F		155 °F						YP=9	9 CII	RCULATION	ON DATA				
			14,343'		15,479'	Bit D	epth = 15,	191 '		Wash	out =		Pump I	Efficienc	y = 95	%
ppg)			10.8		10.4	Drill String	Volume	to Bit	214.7	bbl Str	okes To B	t 3,438	Т	ime To E	it 24	i min
c/qt)		@ 100 °F	41		44	ызр.	Bottoms Up	p Vol.	392.3	bbl Botto	msUp Stk	6,280	Botton	nsUp Tim	e 44	1 min
			35		34	85.2 bbl	TotalCire	c.Vol.	1294.0	bbl To	talCirc.Stk	20,716	Total	Circ. Tim	e 14	4 min
			22		22			3 ASS	SEMBL	Y DATA			SOLIDS	CONTE	OL	
			16		15	Tubulars	OD (in.)	ID ((in.)	Length	Тор	Unit	t		з Н	ours
0 rpm 6 rpm			10		11	Drill Pipe	4.500			,						
•						Agitator										
3 rpm			5		5	Collars	5.250			106'	15,053'			200		
		@ 150 °F	13		12	Dir. BHA				32'	15,159'	NOV Dr	yers	170		
/100 ft²)		T0 = 4								ATA						
lb/100 ft²)	10 se					Casing	OD (in.)	ID ((in.)	Depth	Тор					
		30 min	15		13	Riser						VOLUI	ME AC	COUNTI		
(cm/30 m	in)	@ 250 °F	6.0		6.0		10 3/4			3,018'		Prev.	Total or	Locatio	n 3	3137.7
	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	375	11,974'		Transf	erred In	n(+)/Out(-)	
			18%		15%	Washout 1							Oil	Added (-	-)	
ds (vol%)			15.9%		12.9%	Washout 2							Barite /	Added (-	-)	
tent			62%		63%					·		Other P	roduct l	Usage (-	-)	
Content			20%		22%	ANI	NULAR GE	OME	TRY &	RHEOLO	GY		Water	Added (-	-)	
			76:24		74:26		a dei	pth		-	ECD	Le	eft on C	uttings (-)	
•			51,000		53,000	section	1		ıt/mir	reg	ıb/gal	_ L				
Salinity (p	pm)		285,644		274,187									·	•	
kalinity, F	om							974'	342.8	8 turb	11.74	Est.	Total or	Locatio	n 3	3137.7
lb/bbl)			5.9 ppb		3.4 ppb		·		365.8	8 turb	11.97			.,,		36.7
ility (volts	5)		566 v		580 v						11.98		1			
		S	3.14		3.23		·				12.01	Bit H.S.I.			zzles (32nds
Gravity Sc	lids		8.7%		6.4%	6.75x5	5 15,1	191'	450.3	3 turb	12.01	0.39	 	<u> </u>	-	18
pb Low Gravity Solids			72 ppb		53 ppb								+ 1		18	18
ercent Barite					6.5%							4	,	·		+
bb Barite					93 ppb							172 lbs	1			
stimated Total LCM in System						Size	Depth In			ŭ						
ample Taken By					M Washburn	6 3/4	12,725 ft	20	0.0	1,866 ft	93.3	1,250	psi	3,4	76 ps	.i
ernoon Remarks/Recommendations:							ig Activity: 6-3/4" late									
	IIER A- rrison/s MUD I PV 5-25 MI Taken on perature ° l ppg) pc/qt) lity (cp) /100 ft²) lb/100 ft²) lb/100 ft² lb/100 ft² content ds (vol%) tent Content content content content ds (vol%) ity (pi IIER A-1H ST-0 INTISON/James I MUD PROPERT PV YP 5-25 8-12 MUD PROP Taken fon perature °F POP9) POP(1) POP(### Total	Report for MUD PROPERTY SPECIFICATION PV	No content No	Right No. 248 Report for Tool Pusher No. 248 Report for Tool Pusher No. N	Report For Field / OSC-6 Field / OSC-6	TEXA	Trison/James Dyer Properties Proper	Rep Name and 16. 248	Part Part		TEXAS	Trison James Ja	Part	Trisont/James Dyer	

to less than 20 FPH, samples at 15494 contained 4% calcite, 96% AC and trace to less than 20 FPH, samples at 15494 contained 4% calcite, 96% AC and trace amounts of pyrite. While drilling mud losses were up to 40 bbls/hr, reduce mud wt from 10.6# to 10.4# losses were less than 10 bbls/hr. While drilling adding First Response at 12 sacks / hr, and pump 20 bbls LCM sweeps every 100' (20 PPB LCM) reduce sweep volume to 10 bbls every 100' after losses were controlled. Blending reserve mud volume with diesel to replace downhole losses. Ordered 120 bbls 8.2# OBM slurry from Newpark Madisonville.

Report #19 TEL: (337) 394-1078

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

0.6° 500' TVD

	NOLIA (OIL & C	GAS		TERSO	ON		Block YETTE			Date 19/21	24 hr f	903 ft			494	ft
Well Name and No	NIER A-	·1H ST-	-01	Rig Name ar	d No. 248		State T E	EXAS		Spud Date 05/1	3/21	Currer	nt ROP 100 ft/hr		ctivity	ГІН	
Report for				Report for			Field / OCS-G #			Fluid Type		Circula	ating Rate		irculating F		
Jim Ha	rrison/	James	Dyer	To	ol Pusi	ner	GID	DINGS		OI	3M		0 gpm			psi	
	MUD	PROPER	RTY SPECIF	ICATION	s		MUD VO	LUME (BI	BL)	PUN	IP #1		PUMP #2		RISER	воо	STER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	46	5 bbl	Liner Size	4.75	Line	r Size 4.	75	Liner Size	9 4	4.75
8.5-12	5-25	8-12	>400	±280K	<10 <15	<8	In Hole	70	1 bbl	Stroke	12	Str	oke 1	2	Stroke		12
				5/30/21		5/29/21	Active	48	3 bbl	bbl/stk	0.062	25 bb	l/stk 0.0	625	bbl/stk	0.	0625
Time Sample	Taken			2:00		14:30	Storage	184	45 bbl	stk/min	0	stk	/min ()	stk/min		
Sample Locati	ion			Suction		suction	Tot. on Loc	cation 30°	11 bbl	gal/min	0	gal	/min ()	gal/min		0
Flowline Temp	oerature °l	F						PHHP = ()	С	IRCULA	TION DA	ιΤΑ	ı	า = 0.63	2 K=	197.766
Depth (ft)				15,494'		15,479'	Bit	Depth = 5	500 '		Washou	ut = 0%	I	Pump E	Efficiency	/ = 95	%
Mud Weight (բ	opg)			10.5		10.4	Drill String	Volum	e to Bit	5.8 bbl	Strol	kes To Bit		Т	ime To B	it	
Funnel Vis (se	ec/qt)		@ 90 °F	48		44	Disp.	Bottoms l	Jp Vol.	12.1 bbl	Bottom	sUp Stks		Bottom	sUp Tim	е	
600 rpm				31		34	5.1 bbl	TotalC	irc.Vol.	482.9 bbl	Tota	lCirc.Stks		Total	Circ. Tim	е	
300 rpm				20		22		DRILLIN	IG ASS	SEMBLY DA	ATA		S	OLIDS	CONTR	OL	
200 rpm				14		15	Tubulars	OD (in.)	ID	(in.) Le	ngth	Тор	Unit		Screens	Н	lours
100 rpm				10		11	Drill Pipe	4.500	3.	826 3	38'	0'	Shaker	1	200	2	24.0
6 rpm	-			6		6	Agitator	5.250	2.	250	24'	338'	Shaker	2	200	2	24.0
3 rpm	•			5		5	Collars	5.250	2.	750 1	06'	362'	Shaker	3	200	2	24.0
Plastic Viscos	ity (cp)		@ 150 °F	11		12	Dir. BHA	5.000	2.	.000	32'	468'	NOV Dry	ers	170	2	24.0
Yield Point (lb.	/100 ft ²)		T0 = 4	9		10		CASI	NG & I	HOLE DATA	A						
Gel Strength (lb/100 ft²)	10	sec/10 min	6/9		5/9	Casing	OD (in.)	ID	(in.) De	epth	Тор	Centrifug	je 1			4.0
Gel Strength (lb/100 ft ²)	ı	30 min	14		13	Riser						VOLUM	IE ACC	OUNTI	VG (b	bls)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	6.0		6.0	Surface	10 3/4		3,	018'	0'	Prev. T	otal on	Locatio	n :	3137.7
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875 11	,974'	0'	Transfe	rred In	(+)/Out(-)	127.0
Retort Solids (Content			16%		15%	Washout 1							Oil A	Added (+)	228.6
Corrected Sol	ids (vol%)			13.9%		12.9%	Washout 2						ı	Barite A	Added (+)	10.4
Retort Oil Con	itent			63%		63%	Oper	Hole Size	e 6.	750 15	,494'		Other Pr	oduct l	Jsage (+)	5.9
Retort Water (Content			21%		22%	ANI	NULAR G	EOME	TRY & RHE	OLOGY	7	\	Nater A	Added (+)	
O/W Ratio				75:25		74:26	annulai	r m	ieas.	velocity	flow	ECD	Le	ft on C	uttings (-)	-40.0
Whole Mud C	hlorides (r	mg/L)		52,000		53,000	section	d	epth	ft/min	reg	lb/gal	L	ost to F	ormatio	า	-384.0
Water Phase	Salinity (p	pm)		279,688		274,187								Cent/l	≣vap/Tri	0	-75.2
Whole Mud Al	kalinity, P	om		3.0		2.6	6.875x4	.5 3	338'	0.0	lam	10.50	Est. T	otal on	Locatio	n :	3010.5
Excess Lime (lb/bbl)			3.9 ppb		3.4 ppb	6.875x5.	25 3	362'	0.0	lam	10.50	Est. Los	ses/Ga	ins (-)/(+)	0.0
Electrical Stab	ility (volts)		565 v		580 v	6.875x5.	25 4	168'	0.0	lam	10.50	BIT	HYDR	AULICS	DATA	4
Average Spec	ific Gravit	y of Solid	s	3.16		3.23	6.875x5	5 5	500'	0.0	lam	10.50	Bit H.S.I.	Bit A	P No:	zzles (32nds)
Percent Low 0	Gravity So	lids		7.4%		6.4%							0.00	ps	si 18	18	18
ppb Low Grav	opb Low Gravity Solids			61 ppb		53 ppb							Bit Impact	Nozz Veloc		18	18
Percent Barite				6.4%		6.5%							Force	(ft/se	-		
ppb Barite				92 ppb		93 ppb	BIT D	ATA	Ма	anuf./Type	GTI	D64M	0 lbs	0			
Estimated Total LCM in System ppb							Size	Depth In	Н	ours Fo	otage F	ROP ft/hr	Motor/M\	WD	Calc. Ci	c. Pre	essure
Sample Taken By				A.ROMAN	0	M Washburn	6 3/4	12,725 ft	2	9.0 2,7	769 ft	95.5	1,250 բ	osi			
Remarks/Reco	mmendati	ons:					Rig Activity:										

OBM RECEIVED: 127bbls @ \$65.00 /

OBM on surface/ storage 2554bbls

In the past 24hrs: Continue drilling ahead on lateral section with 10.6ppg OBM; Hole continues to take mud into formation, decrease density to 10.4ppg and continue drilling. Increase Sweeps to 10bbls every 30' and maintain 12sxs/hr of First response into active system, with 10.4ppg losses to formation reduced to 10-15bbls/hr. ROP droped from 170FPH to 20fph. Decision made to POOH and change out BHA. Circulate BU and start to Back ream up to the shoe. At the shoe, circulated BU and Pump 30bbls 15.8ppg Slug and start POOH in normal fashion, fill up on back side with 18ppg Kill mud. Well in static conditions, Zero Casing pressure. Additions of chemicals to maintain properties while drilling. At the time of report: Lay down BHA

										ТСР	on. Lay dow	חוםוו			
Eng.	1:	Mike V	√ashb	urn	Er	ng. 2:	Adolfo	A. Roman	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Phor	ne:	361-9	45-57	77	Pł	none:	956-8	21-9994	Phone:	432-686-7361	Phone:	-			
W I	P \	Y E 1 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	ecommendation, expused if the user so ation, and this is a re	elects, however,	no representati	nas been prepared on is made as to the	\$21,290.37	\$212,582.49
							•	•	•		INCLUDI	NG 3RD PAR	TY CHARGES	\$47,370.37	\$387,706.70

MATERIAL CONSUMPTION

Date 05/30/21	Operator MAG I	NOLIA OIL		Well Name a RAIN	IND NO. IIER A-1H S	ST-01	Rig Name an		eport No. Repo	rt #19
	DAILY	USAGE 8	k COST						CUMUI	
			Previous		Closing	Daily			Cum	
Item	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost		Usage	Cum Cos
SAPP (50)	50# sk	\$44.56	10		10				32	\$1,425.92
PHPA LIQUID (pail)	5 gal	\$41.36	32		32					
EVO-LUBE	gal	\$14.00								
NEW GEL (PREMIUM) ALUMINUM TRISTEARATE										
ALUMINUM TRISTEARATE										
								_		
CACL2 (50)	50# sk	\$14.32	140		112	28	\$400.96		672	- '
LIME (50) OPTI - G	50# sk	\$5.00 \$30.59	150 80		125 80	25	\$125.00		515 180	· '
BENTONE 38 (50)	50# sk	\$163.94	20		18	2	\$327.88		47	\$5,506.20 \$7,705.18
BENTONE 910 (50)	50# sk	\$59.40	15		15		φοΣ1.00			ψ1,100.10
BENTONE 990 (50)	50# sk	\$83.59	18		16	2	\$167.18		58	\$4,848.22
OPTI - MUL	gal	\$10.75	165		165				440	
OPTI - WET	gal	\$8.34	385		385				385	\$3,210.90
NEW PHALT	50# sk	\$38.72	40		30	10	\$387.20		90	. ,
OIL SORB (25)	25# sk	\$4.75	19		19				21	\$99.75
NEW CARB (M)	50# sk	\$5.25	81		70	11	\$57.75	-	140	\$735.00
CYBERSEAL	25# sk	\$21.47								
MAGMAFIBER F (25)	25# sk	\$28.05	56		48	8	\$224.40		96	\$2,692.80
MAGMAFIBER R (30)	30# sk	\$28.05								
VARISEAL										
FIBER PLUG	30# sk	\$30.37	05		0.5					* 400.00
NUT PLUG M (50)	50# sk	\$12.04 \$10.28	25 40		25 40				9	\$108.36
MICA F (50)	50# SK	\$10.20	40		40					
GRAPHITE - FINE (50)	50# sk	\$24.14	80		80			_		
GRAFIITE - FINE (30)	30# SK	φ24.14	80		80					
NEW WATE (SACK BARITE)	100# sk	\$11.50	150		150			-		
BARITE BULK (100)	100# sk	\$7.00	1350		1200	150	\$1,050.00		5289	\$37,023.00
OPTI DRILL (OBM)	bbl	\$65.00	2597	127	2470	254	\$16,510.00		953	\$61,945.00
								 		A4 000 00
DISCOUNTED OBM	bbl	\$15.00	541		541			<u> </u>	124	\$1,860.00
DISCOUNTED OBM	bbl	\$15.00	541		541				124	\$1,860.00
DISCOUNTED OBM	bbl	\$15.00	541		541			- - -	124	\$1,860.00
DISCOUNTED OBM	bbl	\$15.00	541		541			-	124	\$1,860.00
DISCOUNTED OBM	bbl	\$15.00	541		541				124	\$1,860.00
DISCOUNTED OBM	bbl	\$15.00	541		541				124	\$1,860.00
DISCOUNTED OBM	bbl	\$15.00	541		541				124	\$1,860.00
					541		\$1,000,00			
ENGINEERING (24 HR)	each	\$990.00			541		\$1,980.00		46	\$45,540.00
ENGINEERING (24 HR)					541	2 2	\$1,980.00		46	\$45,540.00
ENGINEERING (24 HR) ENGINEERING (DIEM)	each bbl	\$990.00			541				46	\$45,540.00 \$1,380.00
ENGINEERING (24 HR) ENGINEERING (DIEM) ENGINEERING (MILES)	each bbl each	\$990.00 \$30.00 \$1.00			541				46 46 1049	\$45,540.00 \$1,380.00 \$1,049.00
ENGINEERING (24 HR) ENGINEERING (DIEM) ENGINEERING (MILES)	each bbl each	\$990.00 \$30.00 \$1.00			541				46 46 1049	\$45,540.00 \$1,380.00 \$1,049.00
ENGINEERING (24 HR) ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET TRUCKING (Cwt)	each bbl each EACH each	\$990.00 \$30.00 \$1.00 \$15.00 \$1.98			541				46 46 1049 13 7330	\$45,540.00 \$1,380.00 \$1,049.00 \$14,513.32
ENGINEERING (24 HR) ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET TRUCKING (Cwt)	each bbl each	\$990.00 \$30.00 \$1.00			541				46 46 1049 13 7330	\$45,540.00 \$1,380.00 \$1,049.00 \$195.00 \$14,513.32 \$1,300.00
ENGINEERING (24 HR) ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET TRUCKING (cwt) TRUCKING (min)	each bbl each EACH each each	\$990.00 \$30.00 \$1.00 \$15.00 \$1.98			541				46 46 1049 13 7330 2	\$45,540.00 \$1,380.00 \$1,049.00 \$195.00 \$14,513.32 \$1,300.00

THIRD PARTY COST SHEET

Date	Operator			Well Name a	ind No.		Rig Name an	d No.	Report No.	
05/30/21	MAG	NOLIA OIL	& GAS	RAIN	IIER A-1H	ST-01	2	48	Repo	rt #19
	DAILY	USAGE 8	& COST						CUMUI	LATIVE
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	302		302				98	\$4,091.50
TURBO CHEM SYNSEAL	25# sk	\$85.00	196		196					
OBM-D 5_12_21	gal	\$2.31								\$32,349.24
OBM-D 5_15_21	gal	\$2.35								\$16,920.00
OBM-D 5/16/21 OBM-D 5/17/21	gal	\$2.35 \$2.31								\$33,840.00 \$16,632.00
OBM-D 5/19/21	gal gal	\$2.33								\$33,558.99
OBM-D 5/24/21	gal	\$2.24	2000			2000	\$4,480.00			\$16,132.48
Mud Diesel 5/27/21	gal	\$2.25					\$16,200.00			\$16,200.00
Diesel Received 5/29/21	gal	\$2.25		7200	4800					\$5,400.00
Diesel Received 5/29/21	gal	\$2.25		7200						
			l	l	D-11 C	.b. T **	0.000.00		A	104.04
					Daily St	ıb-Total \$2	ი,∪ၓՍ.ՍՍ		\$175, [,]	124.21
						İ				
	Cumu	ılative Total	I AES & 3rd	Party \$387	,706.70					
						I				

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name: MAGNOLIA OIL & GAS

Rig Name: 248
Well Name: RAIN

RAINIER A-1H ST-01

					WEEK 1							WEEK 2							WEEK 3			
	Date	5/14/21	5/15/21	5/16/21	5/17/21	5/18/21	5/19/21	5/20/21	5/21/21	5/22/21	5/23/21	5/24/21	5/25/21	5/26/21	5/27/21	5/28/21	5/29/21	5/30/21	5/31/21	6/1/21	6/2/21	6/3/21
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4				
Grand	Starting Depth	108	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494			
Totals	Ending Depth	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494				
	Footage Drilled	2,925	1,471	3,176	1,941	1,716	640	. 8	-	538	17		234	19	475		1,866	903	-	_	-	-
- ,	New Hole Vol.	277	139	301	184	163	61	1		24	1	_	10	1	21		83	40	_	_	_	_
1,004	Starting System Volume	2,525	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,011	3,011	3,011
122	Chemical Additions	2,020	15	14	18	13	9	2,300	2,070	15	5	12	10	3	0,001		13	6	3,011	3,011	3,011	3,011
	Base Fluid Added		38	392	158	214	174	26	4	78	18	101	95	25	11	3	169	229				
	Barite Increase		13	13	19	217	3	6		70	142	59	62	21	14	7	103	10				
1.563	Weighted Mud Added		10	300	10	479			407		172	- 00	02		-	250	_	127				
-	Slurry Added	1		500		473			407						_	-	_	-				
	Water Added		60		70	83	37						58	9	_	_	_	_				
	Added for Washout		- 00		- 10	- 00	8						- 00		_	_	_	_				
4,123	Total Additions	<u> </u>	126	719	264	788	231	32	411	93	164	172	225	58	26	260	181	372	_	_	_	
																	101			-	-	_
	Surface Losses	1	3	42	119	105	105	11	10	23	21	12	35	17	-	-	-	25				
1,654	Formation Loss	-	405	50	83	92	134	25	73	05	68	28	14		99	50	554	384				
987	Mud Loss to Cuttings		125	301	191	135	63	1	40	25	1	0.4		4	19	-	83	40				
	Unrecoverable Volume	1	17	40	35	45	45	22	10	40	-	24			25	-	-	-				
250	Centrifuge Losses		4	20	24	15	6			12	7	3	6	6	25	22	50	50				
3,637	Total Losses	-	149	453	452	346	353	59	93	60	97	68	55	27	168	72	687	499	-	-	-	-
-	Mud Transferred Out																					
3,011	Ending System Volume	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,011	3,011	3,011	3,011
-	Mud Recovered																					
				С	omment	s:					С	omment	s:					С	omment	s:		
		5/14/21	Cleaned ri	I surface in g pit, NU Boning the sar	OP and tes	ted the sar	ne. Filled		5/21/21	spacer and	d 39bbls ce	ment. Los	nping 10bbl t to seepaga and Interfac	e while riur		5/28/21	TIH with n resume dr	ew BHA, W illing.	ash and R	eam from 1	2150 to bo	ottom and
4,088		5/15/21		ead at 4,50 7bbls and c			ap 3bbls, C	Cent 4bbls,	5/22/21	Mud lost to	cuttings 2	4.8bbls, Ev	ap 22.87bb	ols and Cer	nt 12bbls	5/29/21		ead, Well s Continue dr		mud at 136	93. lower	MW to
	-	5/16/21		ses: Evap 42 50bbls and					5/23/21	Mud lost to and Cent 7		due to wei	ght up 68.2	bbls, Evap	20.5bbls	5/30/21		ead, to 1549 If to change		ecreased to	o 20fph. Ci	irculate
		At RPT time change out rot Head. Mud lost to Cut 5/17/21 191.3bbls, Evap 118.8bbls, Cent 24bbls, Shakers Seepage 83bbls							5/24/21				1.34bbls. N ge circ kill n			5/31/21						
		5/18/21 Mud Lost to Cuttings 135bbls, Evap 104.6bbls, Cent 15bb Seepage 91.8bbls							5/25/21	Mud lost to Attempting			Cent 6bbls a	and Evap 3	5.2bbls.	6/1/21						
		5/19/21 Mud Lost to Cuttings 63bbls, Evap 104.6bbls, Cent 6bbls Shakers 18bbls, Rotating Head 27bbls and seepage 133.							5/26/21	Mud lost to	Cuttings (3.4bbls, Ce	nt 6bbls and	d Evap 17.:	2bbls	6/2/21						
		5/20/21	Mud Lost t Seepage 2	to Cuttings 25bbls	1bbl, Evap	10.8bbls, 7	Γripping 22	bbls and	5/27/21	Drilled Sid BhA.	e track to 1	2725'/ Cir	culate and I	POOH to la	ay down	6/3/21						

11,269' TVD

TEL: (337) 394-1078

2.4°

MAGNOLIA OIL & GAS PATTERSON FAYETTE 05/09/21 15.494 ft Current ROP **RAINIER A-1H ST-01** 05/13/21 STAGE IN HOLE 248 **TEXAS** Report fo ield / OSC-G # Fluid Type irculating Rate Report for Jim Harrison/James Dyer **Tool Pusher GIDDINGS** OBM **MUD PROPERTY SPECIFICATIONS** MUD VOLUME (BBL) PUMP #1 PUMP #2 RISER BOOSTER P\/ E.S. CaCl2 **GELS** In Pits 465 bbl 4.75 Liner Size 4.75 Weight ΥP HTHP Liner Size 4.75 Liner Size 8.5-12 5-25 8-12 >400 ±280K <10 <15 <8 In Hole 643 bbl Stroke 12 Stroke 12 Stroke 12 **MUD PROPERTIES** 929 bbl bbl/stk 0.0625 0.0625 0.0625 bbl/stk bbl/stk Active 2:00 Time Sample Taken 14:30 1845 bbl Storage stk/min stk/min stk/min Suction Tot on Location 2953 bbl Sample Location suction gal/min gal/min gal/min YP=9 Flowline Temperature °F Mud Wt = 10.5PV=11 **CIRCULATION DATA** n = 0.632 K = 197.8 Depth (ft) 15.494 15.494 Bit Depth = 11.457 Pump Efficiency = 95% Washout = Mud Weight (ppg) 10.5 10.4 Volume to Bit 162.9 bbl Strokes To Bit Time To Bit Drill String @ 90 °F 48 42 Bottoms Up Vol. 300.7 bbl Funnel Vis (sec/qt) BottomsUp Stks BottomsUp Time 29 600 rpm 31 62.5 bbl TotalCirc.Vol. 928.6 bbl TotalCirc.Stks Total Circ. Time DRILLING ASSEMBLY DATA SOLIDS CONTROL 300 rpm 20 19 200 rpm 14 14 Tubulars OD (in.) ID (in.) Length Top Unit Screens Hours 100 rpm 10 9 Drill Pipe 4.500 3.826 11,457 Shaker 1 200 6 5 Agi/DP/Agi 4.500 3.826 11,457' Shaker 2 200 6 rpm 5 4 4.500 3.826 11,457 3 rpm /Ream/DP Shaker 3 200 @ 150 °F 11 10 Dir. BHA 5.000 2.000 11,457 **NOV Dryers** 170 Plastic Viscosity (cp) 9 9 **CASING & HOLE DATA** Yield Point (lb/100 ft2) T0 = 5/8 OD (in.) Gel Strength (lb/100 ft2) 10 sec / 10 min 6/9 Casing ID (in.) Depth Top Centrifuge 1 **VOLUME ACCOUNTING (bbls)** 30 min 14 12 Gel Strength (lb/100 ft2) Riser HTHP Filtrate (cm/30 min) @ 250 °F 6.0 6.0 Surface 10 3/4 3.018 3012.9 Prev. Total on Location 2.0 2.0 7 5/8 6.875 11,974' HTHP Cake Thickness (32nds) Int. Csg. Transferred In(+)/Out(-) Retort Solids Content 16% 15% Washout 1 Oil Added (+) 13.9% 12.9% Corrected Solids (vol%) Washout 2 Barite Added (+) 63% 63% Retort Oil Content 15,494 Open Hole Size 6.750 Other Product Usage (+) 21% 22% **ANNULAR GEOMETRY & RHEOLOGY** Retort Water Content Water Added (+) 74.26 O/W Ratio 75:25 Left on Cuttings (-) ECD annular velocity depth section ft/min reg lb/gal Whole Mud Chlorides (mg/L) 52.000 53,000 Lost to Formation 279,688 274,187 Cent/Evap/Trip Water Phase Salinity (ppm) 3.0 2.5 6.875x4.5 11,457 10.50 3012.9 Whole Mud Alkalinity, Pom Est. Total on Location lam Excess Lime (lb/bbl) 3.9 ppb 3.3 ppb Est. Losses/Gains (-)/(+) -59.7 565 v 595 v **BIT HYDRAULICS DATA** Electrical Stability (volts) 3.16 3.23 Bit H.S.I. Nozzles (32nds) Average Specific Gravity of Solids Bit ΛP Percent Low Gravity Solids 7.4% 6.4% 18 18 18 ppb Low Gravity Solids 61 ppb 53 ppb Nozzle 18 18 18 Bit Impact Velocitv Force Percent Barite 6.4% 6.5% (ft/sec) ppb Barite **BIT DATA** GTD64M 92 ppb 93 ppb Manuf./Type Estimated Total LCM in System Size Depth In Hours ROP ft/hi Motor/MWD Calc. Circ. Pressure Footage A.ROMAN M Washburi 2,769 ft #DIV/0! Sample Taken By 6 3/4 15,494 ft 1,250 psi 1,467 psi Afternoon Remarks/Recommendations: Afternoon Rig Activity: Trip in hole with BHA #7 to 2822, pick up agitator, fill pipe, test MWD and circ. B/U with full returns, trip in hole to 6000, pick up 2'nd agitator, trip in hole to 10289, pump 90 bbls of 9.8# mud down DP, circulate B/U and capture 70 bbls of 12.5# to 14.5# heavy mud cap and divert to storage for future use, currently trip in hole to 12000' to circulate, bit at 11900'. Receiving 270 bbls of 8.2 OBM

slurry from Newpark. Madisonville.

OUTSOURCE FLUID SOLUTIONS LLC.

2.4° 11,269' TVD

Operator				Contractor			County / Parish /			Engineer			24 hr ftg.			Drilled E			
Well Name and No.	NOLIA (OIL &	GAS	PA Rig Name ar	TTERSO	ON	FA'	/ETTE		Spud Date	5/09/		Current R	725 ft		Activity	16,2	19 ft	
	NIER A-	1H ST	Γ-01	ING Name a	248			EXAS			5/13/			31 ft/hr		•	ling	Later	ral
Report for				Report for			Field / OCS-G #			Fluid Type	9		Circulatin	•		Circulati	_		
Jim Ha	rrison/	James	s Dyer	То	ol Pusi	ner	GID	DINGS			OBN	1	3	70 gpm	1	5	,060	psi	
	MUD	PROPE	ERTY SPECIF	ICATION	S	1	MUD VO	LUME (BE	BL)	F	PUMP	#1	F	PUMP #2		RISI	ER B	OOSTE	ER
Weight	PV	ΥP	E.S.	CaCl2	GELS	HTHP	In Pits	632	2 bbl	Liner S	Size	4.75	Liner S	Size 4.	75	Liner	Size	4.75	5
8.5-12	5-25	8-12	>400	±280K	<10 <15	<8	In Hole	673	3 bbl	Strok	е	12	Strok	e 1	2	Stro	ke	12	
				5/31/21		5/30/21	Active	109	3 bbl	bbl/s	tk	0.0625	bbl/s	tk 0.0	625	bbl/	stk	0.062	25
Time Sample	Taken			2:00		14:30	Storage	<u>187</u>	3 bbl	stk/m	nin	69	stk/m	in 7	72	stk/r	min		
Sample Locati	on			Suction		suction	Tot. on Loc	cation 317	8 bbl	gal/m	nin	181	gal/m	in 18	89	gal/r	min	0	
Flowline Temp	erature °F	=		150 °F			F	PHHP = 109	92		CIR	CULATIO	N DAT	A		n = 0	.585	K = 239.	.066
Depth (ft)				16,150'		15,494'	Bit C	epth = 11,	457 '		W	ashout =	0%		Pump	Efficie	ency =	= 95%	
Mud Weight (p	pg)			10.1		10.4	Drill String	Volume	to Bit	161.5	bbl	Strokes	Го Bit	2,585		Time T	o Bit	18 m	nin
Funnel Vis (se	c/qt)		@ 90 °F	40		42	Disp.	Bottoms U	lp Vol.	300.0	bbl E	BottomsUp	Stks	4,803	Bottor	msUp	Time	34 m	nin
600 rpm				27		29	64.5 bbl	TotalCi	rc.Vol.	1093.5	bbl	TotalCirc	.Stks	17,506	Tota	l Circ.	Time	124 m	nin
300 rpm				18		19		DRILLIN	G ASS	SEMBLY	Y DAT	A		S	OLIDS	S CON	NTRO	L	
200 rpm				12		14	Tubulars	OD (in.)	ID	(in.)	Leng	th To	р	Unit		Scre	ens	Hour	rs
100 rpm	·			9		9	Drill Pipe	4.500	3.	826	5,48	5' C)'	Shaker	1	20	0	24.0	0
6 rpm	•			6		5	Agi/DP/Agi	4.500	3.	826	3,18	3' 5,4	85'	Shaker	2	20	0	24.0	0
3 rpm				4		4	DP/Ream/DP	4.500	3.	826	2,64	9' 8,6	68'	Shaker	. 3	20	0	24.0	0
Plastic Viscos	ity (cp)		@ 150 °F	9		10	Dir. BHA	5.000	2.	000	140	' 11,3	317'	NOV Dry	ers/	17	0	24.0	0
Yield Point (lb.	/100 ft²)		T0 = 2	9		9		CASIN	IG & F	HOLE D	ATA								
Gel Strength (lb/100 ft²)	1	10 sec/10 min	6/9		5/8	Casing	OD (in.)	ID	(in.)	Dept	th To	ор	Centrifug	ge 1			12.0	0
Gel Strength (lb/100 ft ²)		30 min	12		12	Riser							VOLUM	IE AC	COUN	NTING	(bbls	;)
HTHP Filtrate	(cm/30 mi	in)	@ 250 °F	7.0		6.0	Surface	10 3/4			3,01	8' C)'	Prev. T	otal o	n Loca	ation	301	12.9
HTHP Cake T	hickness ((32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875	11,97	74' C)'	Transfe	erred Ir	n(+)/O	ut(-)	78	38.0
Retort Solids (Content			14%		15%	Washout 1								Oil	Adde	d (+)	19	90.5
Corrected Soli	ds (vol%)			12%		12.9%	Washout 2							I	Barite	Adde	d (+)		0.0
Retort Oil Con	tent			66%		63%	Oper	Hole Size	6.	750	16,21	19'		Other Pr	oduct	Usag	e (+)	1	10.5
Retort Water (Content			20%		22%	ANI	NULAR GE	OME	TRY & I	RHEO	LOGY		١	Water	Adde	d (+)		
O/W Ratio				77:23		74:26	annular	me	eas.	veloc	itv f	low EC	CD	Le	ft on C	Cutting	js (-)	-3	32.1
Whole Mud Cl	nlorides (n	ng/L)		50,000		53,000	section		pth	ft/mi		reg lb/g		L	ost to	Forma	ation	-69	91.0
Water Phase	Salinity (p	pm)		281,620		274,187		<u> </u>		I		I			Cent	/Evap	/Trip	-10	00.6
Whole Mud Al	kalinity, P	om		1.8		2.5	6.875x4.	5 5,4	485'	335.	.6 t	urb 10.	.95	Est. T	otal o	n Loca	ation	317	78.1
Excess Lime (lb/bbl)			2.3 ppb		3.3 ppb	6.875x4.	5 8,6	668'	335.	.6 t	urb 11.	.04	Est. Los	ses/G	ains (-	·)/(+)		0.0
Electrical Stab	ility (volts))		586 v		595 v	6.875x4.	5 11,	317'	335.	.6 t	urb 11.	.11	ВІТ	HYDR	RAULI	CS D	ATA	
Average Spec	ific Gravity	y of Soli	ids	3.17		3.23	6.875x5	5 11,	457'	407.	.2 t	urb 11.	.19	Bit H.S.I.	Bit	ΔΡ	Nozz	es (32n	nds)
Percent Low 0	Average Specific Gravity of Solids Percent Low Gravity Solids			6.4%		6.4%								0.35	57	psi	18	18	18
ppb Low Grav	opb Low Gravity Solids					53 ppb								Bit Impact	Noz		18	18	18
Percent Barite						6.5%								Force	Velo (ft/s	-			\dashv
opb Barite				80 ppb		93 ppb	BIT D	ATA	Ma	anuf./Ty	ре	GTD64	M	154 lbs	. 8	o			$\overline{}$
Estimated Total LCM in System ppb							Size	Depth In	Н	ours	Foota	ge ROP	ft/hr	Motor/M	WD	Calc.	Circ.	Pressu	ure
Sample Taker	Sample Taken By				0	M Washburn	6 3/4	15,494 ft	9	9.0	725	ft 80	0.6	1,100 բ	osi		2,606	s psi	
	-			l	l				1										

Remarks/Recommendations:

OBM RECEIVED: 788bbls @ \$65.00 /

OBM on surface/ storage 2205bbls

Ria Activity:

In the past 24hrs: Reach bottom with new BHA, and resume drilling on lateral section with 10.4ppg OBM; While staging in the hole, recover heavy mud from well and transfer same to storage for re-use. Well taking mud 100-120bbls/hr. Pump light mud (9.8ppg) as sweeps and start decreasing MW to 10.3ppg and continue to 10.1ppg. With 10.1ppg losses decreased to normal 11-12bbl/hr. 370' drilled at 340gpm. Pump rate increased to 370gpm Formation losses increased to 30bbl/hr. Continue to pump 20bbls (15ppb LCM) sweeps every connection. Agressive diesel additions to reduce MW and use of centrifuge to assist. Continue with additions of chemicals to maintain properties. At the time of report: Drilling 16221' ROP=200ft/hr-Rotation / 20-35ft/hr--Slide.

Е	ng. 1:	Mi	ke W	ashbı	urn	Er	ng. 2:	Adolfo	A. Roman	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
F	hone:	3	61-94	5-57	77	Pł	hone:	956-8	321-9994	Phone:	432-686-736	1 Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	used if the use		er, no representat	has been prepared ion is made as to the	\$46,286.66	\$258,869.15
												INCLUE	ING 3RD PAR	TY CHARGES	\$66,457.66	\$454,164.36

MATERIAL CONSUMPTION

ote 05/31/21	Operator MAG	NOLIA OIL		Well Name a	ina No. IIER A-1H S	ST-01	Rig Name ar 2	48	eport No. Repo	rt #20
	1	USAGE 8					•			LATIVE
Item	Unit	Unit Cost	Previous	Received	Closing	Daily	Daily Cost		Cum	Cum Cos
			Inventory	Received	Inventory	Usage	Daily Cost	<u> </u>	Usage	
APP (50)	50# sk	\$44.56			10				32	\$1,425.92
HPA LIQUID (pail) /O-LUBE	5 gal	\$41.36 \$14.00			32					
EW GEL (PREMIUM)	gal	\$14.00						-		
LUMINUM TRISTEARATE										
LOWING TRIOTEZHANE								-		
ACL2 (50)	50# sk	\$14.32	112		112				672	\$9,623.04
ME (50)	50# sk	\$5.00	125		100	25	\$125.00		540	\$2,700.0
PTI - G	50# sk	\$30.59	80		60	20	·		200	\$6,118.00
ENTONE 38 (50)	50# sk	\$163.94	18		15	3		_	50	
ENTONE 910 (50)	50# sk	\$59.40	15		10	5		_	5	·
ENTONE 990 (50)	50# sk	\$83.59	16		10	6	\$501.54		64	. ,
PTI - MUL	gal	\$10.75	165		165				440	<u> </u>
PTI - WET	gal	\$8.34	385		385			<u> </u>	385	
EW PHALT	50# sk	\$38.72	30			30	\$1,161.60		120	
IL SORB (25)	25# sk	\$4.75	19		19			<u> </u>	21	\$99.75
	1							<u> </u>		
	1							<u> </u>		
	1							<u> </u>		
	<u> </u>	<u> </u>						<u> </u>		
EW CARB (M)	50# sk	\$5.25	70		40	30	\$157.50	<u> </u>	170	\$892.50
YBERSEAL	25# sk	\$21.47					A			AC :=:
AGMAFIBER F (25)	25# sk	\$28.05	48		20	28	\$785.40		124	\$3,478.20
AGMAFIBER R (30)	30# sk	\$28.05								
ARISEAL	60	A-1-								
BER PLUG	30# sk	\$30.37								
UT PLUG M (50)	50# sk	\$12.04	25		25				9	\$108.36
ICA F (50)	50# sk	\$10.28	40		40					
		-								
DADLUTE FINE (50)	F0" :	0000								
RAPHITE - FINE (50)	50# sk	\$24.14	80		80					
EW WATE (CAOK DARITE)	100"	644 ===	450		1-0					
EW WATE (SACK BARITE)	100# sk	\$11.50			150				F055	фо л сос -
ARITE BULK (100)	100# sk	\$7.00	1200		1200				5289	\$37,023.00
	-				 					
		1						-		
	+							-		
								-		
								<u> </u>		
	+							-		
								-		
								-		
		1			 			-		
		1			 			-		
		1			 			-		
	1	1								
PTI DRILL (OBM)	bbl	\$65.00	2470	788	2642	616	\$40,040.00	 	1560	\$101,985.00
	561	Ψ00.00	2410	700	2042	010	¥ .0,0+0.00		1303	ψ. σ 1,σοσ.00
SCOUNTED OBM	bbl	\$15.00	541		536	5	\$75.00		129	\$1,935.00
	561	Ψ10.00	341		330		ψ1 J.00		123	\$ 1,000.0C
								 		
	1							 		
	1							 		
								-		
	1	1						-		
					1					
NGINEERING (24 HR)	each	\$990.00				2	\$1,980.00	-	48	\$47,520.00
NGINEERING (DIEM)	bbl	\$30.00				2		-		\$1,440.00
NGINEERING (MILES)	each	\$1.00					Ş00.00		1049	
TO THE CONTRACT OF THE CONTRAC	Jaon	Ψ1.00							1048	ψ1,043.00
								-		
CALE TICKET	EACH	\$15.00						-	13	\$195.00
RUCKING (cwt)	each	\$1.98								\$14,513.32
RUCKING (cwt)	1	\$650.00								\$14,513.32
ALLETS (ea)	each each	\$650.00						-	44	
HRINK WRAP (ea)		1						-	44	\$528.00 \$504.00
	Cacii	Ψ12.00	<u>I</u>	l			<u>I</u>	<u> </u>	42	ψυυ-4.00
INIINN WRAF (69)	each	\$12.00 Daily St	ub-Total \$4	6,286.66	Cumulativ	ve Total \$2	258,869.15			42 \$258 ,

THIRD PARTY COST SHEET

Date	Operator			Well Name a	and No.		Rig Name ar	id No.	Report No.	
05/31/21	MAG	NOLIA OIL	& GAS	RAIN	IIER A-1H	ST-01	2	48	Repo	rt #20
	DAILY	USAGE 8	k COST						СПМП	LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	302		250	52	\$2,171.00		150	\$6,262.50
TURBO CHEM SYNSEAL	25# sk	\$85.00	196		196					
OBM-D 5_12_21	gal	\$2.31								\$32,349.24
OBM-D 5_15_21	gal	\$2.35							-	\$16,920.00
OBM-D 5/16/21	gal	\$2.35								\$33,840.00
OBM-D 5/17/21	gal	\$2.31								\$16,632.00
OBM-D 5/19/21	gal	\$2.33							-	\$33,558.99
OBM-D 5/24/21	gal	\$2.24							-	\$16,132.48
Mud Diesel 5/27/21 Diesel Received 5/29/21	gal	\$2.25 \$2.25	4800			4900	\$10,800.00			\$16,200.00 \$16,200.00
Diesel Received 5/29/21	gal gal	\$2.25	7200		4000		\$7,200.00	l .	-	\$7,200.00
Diesei Received 5/29/21	yaı	Ψ2.25	7200		4000	3200	\$7,200.00		3200	\$7,200.00
					1					
									-	
									-	
		<u> </u>								
					Daily Su	ub-Total \$2	0,171.00		\$195,	295.21
	-					1		-		
	Cumu	ılative Total	AES & 3rd	Party \$454	,164.36					

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name: MAGNOLIA OIL & GAS

Rig Name: 248
Well Name: RAIN

RAINIER A-1H ST-01

					WEEK 1							WEEK 2							WEEK 3			
	Date	5/14/21	5/15/21	5/16/21	5/17/21	5/18/21	5/19/21	5/20/21	5/21/21	5/22/21	5/23/21	5/24/21	5/25/21	5/26/21	5/27/21	5/28/21	5/29/21	5/30/21	5/31/21	6/1/21	6/2/21	6/3/21
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4			
Grand	Starting Depth	108	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219		
Totals	Ending Depth	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219			
16.654	Footage Drilled	2,925	1,471	3,176	1,941	1,716	640	8		538	17	-	234	19	475		1,866	903	725	-	_	_
	New Hole Vol.	277	139	301	184	163	61	1		24	1		10	1	21		83	40	32	_	_	_
	Starting System Volume	2,525	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,178	3,178	3,178
	Chemical Additions	_,0_0	15	14	18	13	9	_,000	_,0.0	15	5	12	10	3	1	-	13	6	12	0,	0,	5,
	Base Fluid Added	1	38	392	158	214	174	26	4	78	18	101	95	25	11	3	169	229	191			
	Barite Increase		13	13	19		3		•		142	59	62	21	14	7	-	10	-			
	Weighted Mud Added		10	300	10	479			407			00	- OL			250	-	127	788			
	Slurry Added			000		110			107						-	-	_	-	-			
	Water Added		60		70	83	37						58	9	-	_	_	_	_			
	Added for Washout						8								-	_	-	_	_			
	Total Additions	<u> </u>	126	719	264	788	231	32	411	93	164	172	225	58	26	260	181	372	991	_	_	_
	Surface Losses	 	3				105		10	23							101		25	-	-	_
	Formation Loss		3	42 50	119 83	105	134	11	73	23	21	12 28	35 14	17	99	- 50	- 554	25 384	691			
,			125			92	63	25 1	73	0.5	68 1	28	14	4	19	- 50	83		32			
,	Mud Loss to Cuttings	1		301	191	135	45	22	10	25	1	0.4		4	25		- 83	40	32			
	Unrecoverable Volume		17	40 20	35 24	15	45		10	40	7	24 3	6	6	25	- 22	50	- 50	- 75			
325	Centrifuge Losses		4	20	24	15	6			12	7	3	0	ь	25	22	50	50	75			
4,460	Total Losses	-	149	453	452	346	353	59	93	60	97	68	55	27	168	72	687	499	823	-	-	-
-	Mud Transferred Out																					
3,178	Ending System Volume	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,178	3,178	3,178	3,178
-	Mud Recovered																					
				С	omment	s:					С	omment	s:					С	omment	s:		
		5/14/21	Cleaned ri	g pit, NU B	good fashio OP and tes ne. Testin	sted the sar	me. Filled		5/21/21	spacer and	d 39bbls ce	ment. Los	nping 10bb t to seepag and Interfac	e while riur		5/28/21	TIH with n	new BHA, W rilling.	ash and R	eam from 1	2150 to bo	ottom and
4,876		5/15/21			4'MD. Muc cutting 125b		ap 3bbls, C	Cent 4bbls,	5/22/21	Mud lost to	cuttings 2	4.8bbls, Ev	/ap 22.87bl	ols and Cer	it 12bbls	5/29/21		nead, Well s Continue di		mud at 136	93. lower	MW to
	J	5/16/21			2bbls. Cent Cuttings 30				5/23/21	Mud lost to and Cent 7		due to wei	ght up 68.2	bbls, Evap	20.5bbls	5/30/21		ead, to 1549 H to change		ecreased to	o 20fph. C	irculate
		Seepage 50bbls and Cuttings 300.9. Drilled to 7,680'MD. At RPT time change out rot Head. Mud lost to Cutting 191.3bbls, Evap 118.8bbls, Cent 24bbls, Shakers 35bbls a Seepage 83bbls							5/24/21				1.34bbls. M ge circ kill r			5/31/21	and cut m	he hole, wel w down to 1 n start lossir	0.1ppg. w/	340gpm lo		
		5/18/21 Mud Lost to Cuttings 135bbls, Evap 104.6bbls, Cent 15bb Seepage 91.8bbls							5/25/21		Seepage 2nd sidetr		Cent 6bbls a	and Evap 3	5.2bbls.	6/1/21						
		5/19/21			63bbls, Eva				5/26/21	Mud lost to	Cuttings 3	3.4bbls, Ce	nt 6bbls an	d Evap 17.	2bbls	6/2/21						
		5/20/21	Mud Lost t Seepage 2		1bbl, Evap	10.8bbls,	Tripping 22	bbls and	5/27/21	Drilled Sid BhA.	e track to 1	2725'/ Cir	culate and	POOH to la	y down	6/3/21						

110 Old Market St. St Martinville, LA 70582

88.6° 12,526' TVD

	IOLIA C	OIL & G	AS		TTERSO	ON		h / Block		C	or Start Date	ı	4 hr ft	-			Depth 16,989	9 ft	
Well Name and No.	IER A-	1H ST-0)1	Rig Name a	nd No. 248		State T	EXAS		Spud Da	ate 05/13/2 1		Current	132 ft/hr		Activity D	RILL	ING	;
Report for				Report for			Field / OSC-G			Fluid Typ		С		ting Rate			ing Press		
Jim Ha					ol Pusi	ner		DINGS			OBM		;	378 gpm	1		,161	-	
		l	TY SPECII	l		T		DLUME (B			PUMP #1			PUMP #2			ER BO		
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		8 bbl	Liner				Size 4.7		Liner		4.7	
8.5-12	5-25	8-12	>400	±280K	<10 <15	<8	In Hole		7 bbl	Strok		12	Stro			Stro		12	
		JD PROP	ERTIES		l		Active		5 bbl	bbl/s		0625	bbl/			bbl/s		0.06	i25
Time Sample				2:00		14:30	Storag		'3 bbl	stk/n		72	stk/			stk/r			
Sample Locati				Suction		shaker		cation 320		gal/n		89	gal/			gal/r			
Flowline Temp	erature °I			150 °F		150 °F	Mud Wt. =		V=9	YP=			ATIO	N DATA			.585 K		
Depth (ft)				16,150'		16,989'	Bit L	Depth = 16	-			nout =					ency =		
Mud Weight (p			0.00.5	10.1		10.0	Drill String Disp.			240.1		rokes To		3,844			o Bit		
Funnel Vis (se	c/qt)		@ 90 °F	40		44		Bottoms U				omsUp \$		6,994	Botton			49 r	
600 rpm				27		30	94.7 bbl			1335.0		otalCirc.	Stks	·			Time		mın
300 rpm				18		20	Total				_Y DATA	<u> </u>			OLIDS		ITROL		
200 rpm				12		13	Tubulars	,		(in.)	Length	Тор	0	Unit		Scre		Ηοι	ırs
100 rpm				9		9	Drill Pipe			826	11,017'	44.04	471	Shaker		20			
6 rpm				6		6	Agi/DP/Agi	4.500		826	3,183'	11,01		Shaker		20			
3 rpm			@ 450 °F	4		5	P/Ream/DP	4.500		826	2,649'	14,20		Shaker NOV Dry		20			
Plastic Viscosi	,		@ 150 °F	9		10	Dir. BHA	5.000		000 HOLE I	140'	16,84	49	NOV DIY	ers	17	U		
Yield Point (lb/		10.5	T0 = 2	6/9			0					Tor		Centrifug	ıo 1				
Gel Strength (ec / 10 min 30 min			5/8 11	Casing	OD (in.)	טו	(in.)	Depth	Тор	J	VOLUM		2011	ITING	/hhl	c)
Gel Strength (@ 250 °F			6.5	Riser	10 3/4			3,018'			Prev. To				•	78.2
HTHP Filtrate HTHP Cake TI			@ 230 T	2.0		2.0	Int. Csg.	7 5/8	6.9	875	11,974'			Transfe				31	10.2
Retort Solids ((321103)		14%		14%	Washout 1	7 3/0	0.0	575	11,574			Hallsie		Adde	. ,		
Corrected Soli				12%		11.8%	Washout 2							F	Barite .		()		
Retort Oil Con	,			66%		64%		Hole Size	. 67	750	16,989'			Other Pro			. ,		
Retort Water (20%		22%		NULAR G			·	OGY			Vater /				
O/W Ratio				77:23		74:26							_		ft on C		. ,		
Whole Mud Ch	nlorides (r	ma/L)		50,000		55,000	annula sectio	1 (16	epth	veloo ft/m	-				ost to I	_			
Water Phase S	•			281,620		281,620					ļ	ļ			Cent/				
Whole Mud Al				1.8		2.6	6.875x4	l.5 11	,017'	342	8 turb	11.0)2	Est. To		·	•	31	78.2
Excess Lime (2.3 ppb		3.4 ppb	6.875x4	l.5 11	,974'	342			13	Est. Loss					29.9
Electrical Stab		.)		586 v		610 v	6.75x4	.5 14	,200'	365			13				CS DA	TA	
Average Spec		<u> </u>	S	3.17		3.02	6.75x4	.5 16	,849'	365	i.8 turb	11.7	⁷ 8	Bit H.S.I.	Bit 2	ΔP	Nozzle	s (32	nds)
Percent Low G		-		6.4%		7.3%	6.75x		,989'	450				0.37	60	-		18	18
ppb Low Gravi				52 ppb		60 ppb									Noz	zle	-	18	18
Percent Barite				5.6%		4.5%								Bit Impact Force	Velo	,			
ppb Barite				80 ppb		65 ppb	BIT I	DATA	Ма	nuf./Ty	rpe G	TD64M	1	161 lbs	81	´ -		\dashv	
Estimated Total	al LCM in	System					Size	Depth In	Нс	ours	Footage	ROP f	ft/hr	Motor/M\	WD	Calc.	Circ. F	Pres	sure
Sample Taken	Ву			A.ROMAN		M Washburn	6 3/4	15,494 ft	9	0.0	725 ft	80.6	6	1,100 p	osi		3,342	psi	
Afternoon Rema	-	nmendatio	ns:	<u> </u>	<u>I</u>	<u> </u>	Afternoon F	Rig Activity:				ļ		<u> </u>					
			Curr 1009 Cont and cher	ently mud % AC. Fro tinue to pousing cen	losse m 16 ump 2 trifuge	es are : 100 - 1 0 bbls e to co	stabalize 16350 sa LCM sw entrol mud	d with I mples o eep eve d densi	less conta ery s ty. C	om 10.1# t than 10 bl ained up to stand (15 p Continue w dditional C	bls / h o 20% opb L0 ith ad	r, sar Eag CM). dition	mples leford Adding is of	are Sha g die	ıle.				

12,509' TVD

OUTSOURCE FLUID SOLUTIONS LLC.

TEL: (337) 394-1078

92.2°

Operator MAGI Well Name and No.	NOLIA (OIL &	GAS	Contractor PAT	TTERSO	ON	County / Parish / FA' State	Block YETTE		Engineer Star 05/ Spud Date	t Date	24 hr f	tg. 1,447 ft		Drilled Depti	666	ft
	NIER A-	1H S	T-01	rag ramo a	248			EXAS		•	13/21	Garre	72 ft/hr		DRI	LLII	١G
Report for				Report for			Field / OCS-G #			Fluid Type			ating Rate		Circulating F		
Jim Ha	rrison/				ol Pusi	ner		DINGS			BM		373 gpn		5,2	-	
	1		ERTY SPECIF			T		LUME (BI			MP #1		PUMP #2		RISER		
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		8 bbl	Liner Size					Liner Siz	9	4.75
8.5-12	5-25	8-12	2 >400	±290K	<10 <15	<8	In Hole		3 bbl	Stroke	1			12	Stroke		12
				6/1/21		5/31/21	Active		01 bbl	bbl/stk	0.0			0625	bbl/stk	0	.0625
Time Sample				2:00		14:30	Storage		11 bbl	stk/min	7			71	stk/min		
Sample Locati				Suction		shaker	Tot. on Loc			gal/min	18	ŭ		86	gal/min		0
Flowline Temp	erature °F	F		150 °F		150 °F		PHHP = 11				ATION DA			n = 0.60		
Depth (ft)				17,540'		16,989'	Bit D	Depth = 17	-			out = 0%		· ·	Efficienc		
Mud Weight (p				10.2		10.0	Drill String Disp.			249.8 bb		okes To Bit	,		ime To E	-	
Funnel Vis (se	ec/qt)		@ 70 °F	48		44				453.6 bb		msUp Stks	,		nsUp Tim		1 min
600 rpm				32		30	98.4 bbl			1201.3 bl		talCirc.Stks	1	<u> </u>	Circ. Tim		35 min
300 rpm				21		20				SEMBLY D					CONTR		
200 rpm				15		13	Tubulars	, ,		` '	ength	Тор	Unit		Screens		Hours
100 rpm	·			10		9	Drill Pipe	4.500			1,694'	0'	Shake		200		24.0
6 rpm				7		6	Agi/DP/Agi	4.500	3.	826 3	3,183'	11,694'	Shake	r 2	200		24.0
3 rpm				5		5	DP/Ream/DP	4.500	3.	826 2	2,649'	14,877'	Shake		200		24.0
Plastic Viscos	ity (cp)		@ 150 °F	11		10	Dir. BHA	5.000	2.	000	140'	17,526'	NOV Dr	yers	170		24.0
Yield Point (lb.	/100 ft ²)		T0 = 3	10		10		CASII	NG & I	HOLE DAT	Α						
Gel Strength (lb/100 ft ²)	,	10 sec/10 min	6/10		5/8	Casing	OD (in.)	ID	(in.) [Depth	Тор	Centrifu	ge 1			5.0
Gel Strength (lb/100 ft ²)		30 min	13		11	Riser						VOLUM	ME ACC	COUNTI	NG (b	bls)
HTHP Filtrate	(cm/30 mi	in)	@ 250 °F	6.0		6.5	Surface	10 3/4		3	3,018'	0'	Prev.	Γotal on	Locatio	n	3178.2
HTHP Cake T	hickness ((32nds))	2.0		2.0	Int. Csg.	7 5/8	6.	875 1	1,974'	0'	Transfe	erred In	(+)/Out(·)	804.0
Retort Solids (Content			15%		14%	Washout 1							Oil A	Added (+	·)	95.2
Corrected Soli	ds (vol%)			12.8%		11.8%	Washout 2							Barite A	Added (+	·)	20.9
Retort Oil Con	tent			64%		64%	Oper	Hole Size	e 6.	750 1	7,666'		Other P	roduct l	Jsage (+	·)	9.6
Retort Water (Content			21%		22%	ANI	NULAR G	EOME	TRY & RH	EOLOG	Υ		Water A	Added (+	·)	30.0
O/W Ratio				75:25		74:26	annular	l l	eas.	velocity	flow	ECD	Le	eft on C	uttings (·)	-64.0
Whole Mud Cl	nlorides (n	ng/L)		54,000		55,000	section	de de	epth	ft/min	reg	lb/gal	L	ost to F	ormatio	n	-386.0
Water Phase	Salinity (p	pm)		287,354		281,620								Cent/l	Evap/Tri	р	-75.5
Whole Mud Al	kalinity, P	om		2.5		2.6	6.875x4.	.5 11	,694'	338.0	turb	11.09	Est.	Γotal on	Locatio	n	3612.3
Excess Lime (lb/bbl)			3.3 ppb		3.4 ppb	6.875x4.	.5 11	,974'	338.0	turb	11.15	Est. Los	ses/Ga	ins (-)/(+	·)	0.0
Electrical Stab	Electrical Stability (volts)			599 v		610 v	6.75x4.	5 14	,877'	360.7	turb	11.45	BIT	HYDR	AULICS	DAT	Α
Average Spec	verage Specific Gravity of Solids			3.06		3.02	6.75x4.	5 17	,526'	360.7	turb	11.75	Bit H.S.I.	Bit ∆	No No	zzles	(32nds)
Percent Low Gravity Solids				7.6%		7.3%	6.75x5	17	,666'	444.1	turb	11.85	0.36	59 p	osi 18	18	3 18
ppb Low Grav	opb Low Gravity Solids			62 ppb		60 ppb							Bit Impact	Nozz		18	3 18
Percent Barite	Percent Barite					4.5%							Force	Veloc (ft/se	-		
ppb Barite	ppb Barite			75 ppb		65 ppb	BIT D	ATA	Ma	anuf./Type	G	TD64M	158 lbs	80	,		
Estimated Tot	al LCM in	System	n ppb				Size	Depth In	Н	ours Fo	ootage	ROP ft/hr	Motor/M	WD	Calc. Ci	c. Pr	essure
Sample Taken By				A.ROMAN	0	M Washburn	6 3/4	15,494 ft	2	9.0 2	,172 ft	74.9	1,100	psi	3,5	00 р	si
				•		·	Dia Astivity	·					•				

Remarks/Recommendations:

OBM RECEIVED: 804bbls @ \$65.00 /

OBM on surface/ storage 2909bbls

Rig Activity:

In the past 24hrs: Drilling on lateral section with 10.1ppg OBM; Well taking mud 30bbls/hr. Reduce density to 10ppg, With 10.ppg losses decreased to normal 11-12bbl/hr. Pump Rate 370gpm. Continue to pump 20bbls (15ppb LCM) sweeps every connection. Increased Gas on returns, close well in and circulate BU, while increasing Density to 10.2ppg. With 10.2ppg in and out, losses maintained around 12-20bph while continue drilling ahead. Diesel and water additions for dilution. Use of Centrifuge to assit on same. Change out Shakers screens, due to wear and tear. Continue with additions of chemicals to maintain properties. At the time of report: Drilling 17,666' ROP=125ft/hr--Rotation / 10-30ft/hr--Slide. MWD Temp: 334 F*

Е	ng. 1:	Mi	ke W	ashb	urn	Er	ng. 2:	Adolfo	A. Roman	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Р	hone:	36	61-94	5-57	77	Pł	none:	956-8	321-9994	Phone:	432-686-7361	Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be		o elects, however	, no representati	nas been prepared on is made as to the	\$30,144.69	\$289,013.84
												INCLUDI	NG 3RD PAR	TY CHARGES	\$40,814.69	\$494,979.05

MATERIAL CONSUMPTION

PRIVATE DIAGNOSTIC 1991 1992 1993 1994 1995	Date 06/01/21	Operator MAGI	NOLIA OIL	& GAS	Well Name a RAIN	ind No. IIER A-1H S	ST-01	Rig Name and No. 248		ort #21
### OFFICE OFFIC		DAILY	USAGE 8	COST					СПМП	LATIVE
### OFFICE OFFIC				Previous		Closing	Daily		Cum	
PRIPAD LOUR DRAPY OWN CAURE OWN CAURE OWN CAURAGE OWN	Item	Unit	Unit Cost		Received	_	-	Daily Cost		Cum Cost
EVOLUES (1987) ALLAMBIQUE TREST-EARLATE AL	, ,								32	\$1,425.92
NEW CLEAR PREMIUM	* *			32		32				
ALLIANDIMAN TRIST-RABATE		gai	\$14.00							
CACLZ (50)										
IMPE (00)	ALOMINOM TRIOTE, WATE									
IMPE (00)										
IMPE (00)										
SPITE SPIT	CACL2 (50)			112			32			1
BENTONE 910/09	. ,							1		<u> </u>
ERITTORS 901 (90) 50 val. \$50.00 val. \$50								1		
BENTONE 990 (50)							5	\$819.70	-	
OPT1 - MUL 94 \$10.75 165 165 165 165 166 165 166 165 166 165 166 165 166 165 166 165 166 165 166 165 165							5	\$417.95		1
OPTI - WET		+						ψ+17.55		<u> </u>
NEW PHACE OIL SORRE (2F) 259 sb. 154.75 19 19 19 19 19 19 19 10 10 10										1
NEW CARB M) SEP 94 S 5.55 40 20 20 \$105.00 190 \$597.5 SEP 95 S 5.21 47										
CYBERSEAL 258 94 S21.47 MAGMAPEIBER (25) 258 94 S28.05 MAGMAPEIBER R (20) 308 94 S28.05 MAGMAPEIBER R (20) 309 94 S28.05 MAGMAPEIBER R (20) 309 94 S28.05 MAGMAPEIBER R (20) 309 94 S28.05 MAGMAPEIBER R (20) 309 94 S28.05 MAGA R (50) 509 94 S22.04 25	OIL SORB (25)	25# sk	\$4.75	19		19			21	\$99.75
CYBERSEAL 258 94 S21.47 MAGMAPEIBER (25) 258 94 S28.05 MAGMAPEIBER R (20) 308 94 S28.05 MAGMAPEIBER R (20) 309 94 S28.05 MAGMAPEIBER R (20) 309 94 S28.05 MAGMAPEIBER R (20) 309 94 S28.05 MAGMAPEIBER R (20) 309 94 S28.05 MAGA R (50) 509 94 S22.04 25										
CYBERSEAL 258 94 S21.47 MAGMAPEIBER (25) 258 94 S28.05 MAGMAPEIBER R (20) 308 94 S28.05 MAGMAPEIBER R (20) 309 94 S28.05 MAGMAPEIBER R (20) 309 94 S28.05 MAGMAPEIBER R (20) 309 94 S28.05 MAGMAPEIBER R (20) 309 94 S28.05 MAGA R (50) 509 94 S22.04 25										
CYBERSEAL 258 94 S21.47 MAGMAPEIBER (25) 258 94 S28.05 MAGMAPEIBER R (20) 308 94 S28.05 MAGMAPEIBER R (20) 309 94 S28.05 MAGMAPEIBER R (20) 309 94 S28.05 MAGMAPEIBER R (20) 309 94 S28.05 MAGMAPEIBER R (20) 309 94 S28.05 MAGA R (50) 509 94 S22.04 25	NEW CARB (M)	50# sk	\$5.25	40		20	20	\$105.00	190	\$997.50
MAGNARBERR (30) 30 s sk \$28.05	CYBERSEAL	25# sk	\$21.47							
VARISEAL FIRE PLUG Sup sk S30.37 NUT PLUG M (60) S0# sk S12.04 25 25 25 25 30 MICA F (60) S0# sk S12.08 40 40 40 S0# sk S24.14 80 80 SAPHITE - FINE (50) S0# sk S24.14 80 80 SAPHITE - FINE (50) S0# sk S24.14 80 SAPHITE - FINE (50) S0# sk S24.14 80 S0# sk S24.14	MAGMAFIBER F (25)	25# sk	\$28.05	20		20			124	\$3,478.20
FIBER PLUG 309 sk \$30.97 NLT PLUG M (50) 508 sk \$12.04 25 25 25 25 308 sk \$10.28 40 40 40 508 sk \$24.14 80 80 80 80 80 80 80 80 80 8	MAGMAFIBER R (30)	30# sk	\$28.05							
NUT PLUG M (50) 508 sk \$10.28 40 40 40 50 50 50 50 50 50 50 50 50 50 50 50 50	VARISEAL									
MICA F (50) 50# sk \$10.28 40 40 40										
GRAPHITE - FINE (50) GRAPHITE - FINE (50) SOW Sk \$24.14 80 80 80 80 80 80 80 80 80 8						l			9	\$108.36
NEW WATE (SACK BARITE) 100# sk \$7.00 150 150 589 339,123.6 BARITE BULK (100) 100# sk \$7.00 1200 400 1300 300 \$2,100.00 5589 \$39,123.6 100# sk \$7.00 1200 400 1300 300 \$2,100.00 5589 \$39,123.6 100# sk \$7.00 1200 400 1300 300 \$2,100.00 5589 \$39,123.6 100# sk \$7.00 1200 400 1300 300 \$2,100.00 5589 \$39,123.6 100# sk \$7.00 1200 400 1300 300 \$2,100.00 5589 \$39,123.6 100# sk \$7.00 1200 400 1300 300 \$2,100.00 5589 \$39,123.6 100# sk \$7.00 1200 400 1300 300 \$2,100.00 50 \$450.00 50 \$1,000.6 100# sk \$7.00 1200 400 1300 300 \$2,100.00 50 \$450.00 50 \$1,000.6 100# sk \$7.00 1200 400 1300 300 \$2,100.00 50 \$450.00 50 \$1,000.6 100# sk \$7.00 1200 400 1300 300 \$2,100.00 50 \$450.00 50 \$1,000.6 100# sk \$7.00 1200 400 1300 300 \$2,100.00 50 \$450.00 50 \$1,000.6 100# sk \$7.00 1200 400 1300 300 50 \$1,000.6 100# sk \$7.00 1200 400 1300 300 50 \$1,000.6 100# sk \$7.00 1200 400 1300 300 50 \$1,000.6 100# sk \$7.00 1200 400 1300 300 50 \$1,000.6 100# sk \$7.00 1200 400 1300 300 50 \$1,000.6 100# sk \$7.00 1200 400 1300 300 50 \$1,000.6 100# sk \$7.00 1200 400 1300 300 50 \$1,000.6 100# sk \$7.00 1200 400 1300 300 50 \$1,000.6 100# sk \$7.00 1200 400 1300 300 50 \$1,000.6 100# sk \$7.00 1200 400 1300 300 50 \$1,000.6 100# sk \$7.00 1200 400 1300 300 50 \$1,000.6 100# sk \$7.00 1200 400 1300 300 50 \$1,000.6 100# sk \$7.00 1200 400 1300 300 50 \$1,000.6 100# sk \$7.00 1200 400 1300 300 50 \$1,000.6 100# sk \$7.00 1200 400 1300 50 \$1,000.6 10	MICA F (50)	50# sk	\$10.28	40		40				
BARITE BULK (100)	GRAPHITE - FINE (50)	50# sk	\$24.14	80		80				
BARITE BULK (100)	NEW WATE (SACK BARITE)	100# sk	\$11.50	150		150				
					400	l	300	\$2.100.00	5589	\$39.123.00
DISCOUNTED OBM bbi \$15.00 536 506 30 \$450.00 159 \$2,385.00	, ,									. ,
DISCOUNTED OBM bbi \$15.00 536 506 30 \$450.00 159 \$2,385.00										
DISCOUNTED OBM bbi \$15.00 536 506 30 \$450.00 159 \$2,385.00										
DISCOUNTED OBM bbi \$15.00 536 506 30 \$450.00 159 \$2,385.00										
DISCOUNTED OBM bbi \$15.00 536 506 30 \$450.00 159 \$2,385.00										
DISCOUNTED OBM bbi \$15.00 536 506 30 \$450.00 159 \$2,385.00										
DISCOUNTED OBM bbi \$15.00 536 506 30 \$450.00 159 \$2,385.00										
DISCOUNTED OBM bbi \$15.00 536 506 30 \$450.00 159 \$2,385.00										
DISCOUNTED OBM bbi \$15.00 536 506 30 \$450.00 159 \$2,385.00										
DISCOUNTED OBM bbi \$15.00 536 506 30 \$450.00 159 \$2,385.00										
DISCOUNTED OBM bbi \$15.00 536 506 30 \$450.00 159 \$2,385.00										
ENGINEERING (24 HR) each \$990.00 2 \$1,980.00 50 \$49,500.0 ENGINEERING (MILES) each \$1.00 1049 \$1,049.0 TRUCKING (cwt) each \$1.98 400 \$792.00 7730 \$15,305.3 TRUCKING (min) each \$650.00 1049 \$12.00 \$149.500.0 TRUCKING (min) each \$12.00 1049 \$12.00 1049 \$13.00.0 1049 \$13.00.0 1049 \$13.00.0 1049 \$13.00.0 1049 \$10	OPTI DRILL (OBM)	bbl	\$65.00	2642	804	3106	340	\$22,100.00	1909	\$124,085.00
ENGINEERING (DIEM) bbl \$30.00	DISCOUNTED OBM	bbl	\$15.00	536		506	30	\$450.00	159	\$2,385.00
ENGINEERING (DIEM) bbl \$30.00										
ENGINEERING (DIEM) bbl \$30.00										
ENGINEERING (DIEM) bbl \$30.00										
ENGINEERING (DIEM) bbl \$30.00										
ENGINEERING (DIEM) bbl \$30.00										
ENGINEERING (DIEM) bbl \$30.00										
ENGINEERING (MILES)										
SCALE TICKET EACH \$15.00		+					2	\$60.00		1
TRUCKING (cwt) each \$1.98 400 \$792.00 7730 \$15,305.3 TRUCKING (min) each \$650.00 2 \$1,300.0 2 \$1,300.0 44 \$528.0 SHRINK WRAP (ea) each \$12.00 3 3 42 \$504.0	ENGINEERING (MILES)	each	\$1.00						1049	\$1,049.00
TRUCKING (cwt) each \$1.98 400 \$792.00 7730 \$15,305.3 TRUCKING (min) each \$650.00 2 \$1,300.0 2 \$1,300.0 44 \$528.0 SHRINK WRAP (ea) each \$12.00 3 3 42 \$504.0									-	
TRUCKING (cwt) each \$1.98 400 \$792.00 7730 \$15,305.3 TRUCKING (min) each \$650.00 2 \$1,300.0 2 \$1,300.0 44 \$528.0 SHRINK WRAP (ea) each \$12.00 3 3 42 \$504.0	SCALE TICKET	FACH	\$15.00						12	\$195.00
TRUCKING (min) each \$650.00 2 \$1,300.0 PALLETS (ea) each \$12.00 3 44 \$528.0 SHRINK WRAP (ea) each \$12.00 3 42 \$504.0		+					400	\$792.00		
PALLETS (ea)							+00	ψ1 02.00		
SHRINK WRAP (ea) each \$12.00 42 \$504.0									-	
										1
		·								

THIRD PARTY COST SHEET

Date	Operator			Well Name a	ind No.		Rig Name ar	id No.	Report No.	
06/01/21	MAG	NOLIA OIL	& GAS	RAIN	IIER A-1H	ST-01	2	48	Repo	rt #21
	DAILY	USAGE 8	& COST						сими	LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	250		210	40	\$1,670.00		190	\$7,932.50
TURBO CHEM SYNSEAL	25# sk	\$85.00	196		196					
OBM-D 5_12_21	gal	\$2.31								\$32,349.24
OBM-D 5_15_21	gal	\$2.35								\$16,920.00
OBM-D 5/16/21	gal	\$2.35								\$33,840.00
OBM-D 5/17/21	gal	\$2.31								\$16,632.00
OBM-D 5/19/21	gal	\$2.33								\$33,558.99
OBM-D 5/24/21	gal	\$2.24							-	\$16,132.48
Mud Diesel 5/27/21	gal	\$2.25								\$16,200.00
Diesel Received 5/29/21 Diesel Received 5/29/21	gal	\$2.25 \$2.25				4000	\$9,000.00			\$16,200.00 \$16,200.00
Diesel Received 5/31/21	gal	\$2.25		14409	14409		\$9,000.00		7200	\$16,200.00
Dieser Received 3/31/21	gal	φ2.25		14409	14409					
					Daily Su	ıb-Total \$1	0,670.00		\$205,9	965.21
								•	-	
	Cumi	ılative Total	I AES & 3rd	Party \$494	,979.05					

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name: MAGNOLIA OIL & GAS

Rig Name: 248
Well Name: RAIN

RAINIER A-1H ST-01

					WEEK 1							WEEK 2							WEEK 3			
	Date	5/14/21	5/15/21	5/16/21	5/17/21	5/18/21	5/19/21	5/20/21	5/21/21	5/22/21	5/23/21	5/24/21	5/25/21	5/26/21	5/27/21	5/28/21	5/29/21	5/30/21	5/31/21	6/1/21	6/2/21	6/3/21
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4		
Grand	Starting Depth	108	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219	17,666	
Totals	Ending Depth	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219	17,666		
18,101	Footage Drilled	2,925	1,471	3,176	1,941	1,716	640	8	-	538	17	-	234	19	475	-	1,866	903	725	1,447		-
1,401	New Hole Vol.	277	139	301	184	163	61	1	-	24	1	-	10	1	21	-	83	40	32	64	-	-
	Starting System Volume	2,525	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,178	3,612	3,612
155	Chemical Additions	Ì	15	14	18	13	9			15	5	12	10	3	1	-	13	6	12	10		
2,018	Base Fluid Added		38	392	158	214	174	26	4	78	18	101	95	25	11	3	169	229	191	95		
390	Barite Increase		13	13	19		3	6			142	59	62	21	14	7	-	10	-	21		
3,155	Weighted Mud Added			300		479			407						-	250	-	127	788	804		
-	Slurry Added														-	-	-	-	-	-		
347	Water Added		60		70	83	37						58	9	-	-	-	-	-	30		
8	Added for Washout						8								-	-	-	-	-	-		
6,073	Total Additions	-	126	719	264	788	231	32	411	93	164	172	225	58	26	260	181	372	991	960	-	-
	Surface Losses	Ì	3	42	119	105	105	11	10	23	21	12	35	17	-	-	-	25	25	-		
	Formation Loss			50	83	92	134	25	73		68	28	14		99	50	554	384	691	386		
	Mud Loss to Cuttings		125	301	191	135	63	1		25	1			4	19	-	83	40	32	64		
218	Unrecoverable Volume		17	40	35		45	22	10			24			25	-	-	-	-	-		
400	Centrifuge Losses		4	20	24	15	6			12	7	3	6	6	25	22	50	50	75	76		
4,985	Total Losses	-	149	453	452	346	353	59	93	60	97	68	55	27	168	72	687	499	823	526	-	-
	Mud Transferred Out																					
3,612	Ending System Volume	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,178	3,612	3,612	3,612
-	Mud Recovered																					
					omment	٠.	•				C	omment	٠.						omment	c ·		
			0					,							401.1.1				Omment	3.		
		5/14/21	Cleaned ri	g pit, NU B	good fashion of the second of	ted the sar	ne. Filled		5/21/21	spacer and	d 39bbls ce	ment. Los	nping 10bb t to seepag and Interfac	e while riur		5/28/21	TIH with n resume dr	ew BHA, W illing.	ash and R	eam from 1	2150 to bo	ttom and
5,680		5/15/21			4'MD. Muc cutting 125b		ap 3bbls, C	Cent 4bbls,	5/22/21	Mud lost to	cuttings 2	4.8bbls, Ev	/ap 22.87bl	ols and Cer	it 12bbls	5/29/21		ead, Well s Continue d		mud at 136	93. lower	MW to
	I	5/16/21			2bbls. Cent Cuttings 30				5/23/21	Mud lost to and Cent 7		due to wei	ght up 68.2	bbls, Evap	20.5bbls	5/30/21		ead, to 1549 H to change		ecreased to	20fph. C	rculate
		At RPT time change out rot Head. Mud lost to Cuttin 5/17/21 191.3bbls, Evap 118.8bbls, Cent 24bbls, Shakers 38 Seepage 83bbls											1.34bbls. N ge circ kill r			5/31/21	and cut m	ne hole, we w down to ' n start lossir	10.1ppg. w/	340gpm lo		
		5/18/21	Mud Lost t Seepage S		135bbls, E	vap 104.6b	bls, Cent 1	5bbls and	5/25/21		Seepage 2nd sidetr		Cent 6bbls a	and Evap 3	5.2bbls.	6/1/21		ead, well coery connect		ing mud, 20	Obbls /hr. F	Pump
		5/19/21			63bbls, Eva				5/26/21	Mud lost to	Cuttings 3	3.4bbls, Ce	nt 6bbls an	d Evap 17.	2bbls	6/2/21						
		5/20/21 Mud Lost to Cuttings 1bbl, Evap 10.8bbls, Tripping 22bbls and Seepage 25bbls 5/27/21 Drilled Side track to 12725/ Circulate and POOH to lay do BhA.											y down	6/3/21								

110 Old Market St. St Martinville, LA 70582

TEL: (337) 394-1078

86.3° 12,527' TVD

Operator MAGN	IOLIA C	OIL & G	BAS	Contractor PA	TERSO)N	County / Parisl	n / Block		_	er Start Date 05/09/21		nr ftg.		Drilled	Depth 17,9 3	37 ft	
Well Name and No.	IIER A-1	IH ST-	01	Rig Name ar	nd No.		State T	EXAS		Spud D	oate 05/13/21		rent ROP 17 ft/hr		Activity	Drill	ing	
Report for				Report for			Field / OSC-G			Fluid Ty		Circ	ulating Rate			ting Pres		
Jim Ha					ol Push	ner		DINGS			ОВМ		370 gpm	1		5,794	-	
			TY SPECI		- 		MUD VO	DLUME (BE	3L)		PUMP #1		PUMP #2		RIS	ER BO	OOST	ER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	498	bbl	Liner	Size 4.	75 Liı	ner Size 4.	75	Liner	Size	4.	75
8.5-12	5-25	8-12	>400	±290K	<10 <15	<8	In Hole	e 714	bbl	Stro	oke 1	2 8	Stroke	2	Stro	ke	1.	2
		JD PROI	PERTIES				Active			bbl/				625	bbl/		0.0	325
Time Sample				2:00		14:30	Storage			stk/ı				0	stk/			
Sample Locati				Suction		shaker		cation 3623		gal/ı				84	gal/			
Flowline Temp	erature °F			150 °F		99 °F		10.2 PV=		YP=			ION DATA			.608		
Depth (ft)				17,540'		17,900'	Bit D	epth = 17,9			Wash			Pump I				
Mud Weight (p	,			10.2		10.7	Drill String Disp.	Volume				rokes To I	,			Γο Bit		
Funnel Vis (se	c/qt)		@ 70 °F	48		44		Bottoms Up				omsUp St			msUp		52 1	
600 rpm				32		29	99.9 bbl	TotalCire				otalCirc.St	1			Time		min
300 rpm				21		20		DRILLING						OLID				
200 rpm				15		16	Tubulars	,		(in.)	Length	Тор	Unit		Scre		Ho	urs
100 rpm				10		11	Drill Pipe	4.500		326	11,965'		Shake		20			
6 rpm				7		6	Agi/DP/Agi	4.500		326	3,183'	11,965			20			
3 rpm			0.450.5	5		5	P/Ream/DP	4.500		326	2,649'	15,148			20			
Plastic Viscos	,		@ 150 °F	11		9	Dir. BHA	5.000		000	140'	17,797	NOV Dr	/ers	17	0		
Yield Point (lb.			T0 = 3	10		11		CASIN				T	0	4				
Gel Strength (sec / 10 min	6/10		5/9	Casing	OD (in.)	י טו	(in.)	Depth	Тор	Centrifu			NITING	· /LL	۱-۱
Gel Strength (30 min	13		12	Riser	40.0/4			0.040		VOLUM				<u> </u>	,
HTHP Filtrate			@ 250 °F	6.0		6.0		10 3/4		75	3,018'		Prev. 1				30	612.3
HTHP Cake T		(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	375	11,974'		Transfe		` ,	` ,		
Retort Solids (15%		16%	Washout 1								Adde	()		
Corrected Soli				12.8% 64%		13.8% 62%	Washout 2	Llolo Cino	6.7	750	17 027			Barite		()		
Retort Oil Con				21%		22%		Hole Size			17,937'	nev	Other Pi	Vater	Ū	` ,		
O/W Ratio	Joniteni			75:25		74:26	AN	NOLAK GE	OIVIE	INIC	x KHEOL			rvater ft on C		. ,		
Whole Mud Cl	aloridos (r	ma/L)		54,000		56,000	annula section	ı dei	pth	velo ft/m	-	ECD lb/gal		ost to	•	, ,		
Water Phase		- ,		287,354		285,280							-		/Evap			
Whole Mud Al		. ,		2.5		1.7	6.875x4	l.5 11,9	265'	335	5.6 turb	11.01	Ect 7	otal o	•	•	36	312.3
Excess Lime (OIII		3.3 ppb		2.2 ppb	6.875x4	·		335		11.03				=		10.5
Electrical Stab		`		599 v		505 v	6.75x4	•		358		11.30		HYDR			ΔΤΔ	10.0
Average Spec		•	de de	3.06		3.31	6.75x4	•		358		11.55			ΔΡ	Nozzl		2nds)
Percent Low G				7.6%		6.2%	6.75x4	·		44(11.59		58	ŀ	18	18	18
				62 ppb		51 ppb	0.700	. 17,5			o.o tuib	11.09		Noz		18	18	18
Percent Barite	Low Gravity Solids					7.6%							Bit Impact Force	Velc (ft/s	ocity	.5	10	-10
ppb Barite				5.2% 75 ppb		109 ppb	BIT D	DATA	Mai	nuf./T	ype G	TD64M	156 lbs	`	0			
Estimated Total	al LCM in	System		- FF~			Size	Depth In		urs	Footage	ROP ft/		l		. Circ.	Pres	sure
Sample Taker		<i>y</i> 		A.ROMAN		M Washburn	6 3/4	15,494 ft		9.0	2,172 ft	74.9	1,100			3,505		
Afternoon Rema		nmendati	ons:		<u> </u>		Afternoon R					<u> </u>	,				• ***	
							Drill read 10% Mud 10.7	6-3/4" laterings, incre EF, 5% as losses to f	ase ii sh, ar forma arou	n gas nd 4% ation v nd. C	influx, cu calcite. I were initia ontinue ro	ttings sa ncrease Ily 20 bb otate and	DP decrease mples at this mud wt grad Is/hr increas I sliding, dep temperature	dually ed to th at	th we from 60 bl	re 81° 10.2 ols/hr of rep	% AC to 10 with).7.

12,545' TVD

OUTSOURCE FLUID SOLUTIONS LLC.

TEL: (337) 394-1078

86.0°

Operator				Contractor			County / Parish /	Block		Engineer St	art Date	24 hr f	ita		Drilled	Denth		
•	NOLIA (OIL &	GAS		TERSO	ON	-	/ETTE		_	5/09/21	241111	774 ft			18,4	40 fi	t
Well Name and No.				Rig Name an			State			Spud Date		Currer	nt ROP		Activity			
RAIN Report for	NIER A-	1H S1	Γ-01	Report for	248		TE Field / OCS-G #	EXAS		05 Fluid Type	5/13/21	Circula	39 ft/hr	,		Drill ting Pre	J	
· ·	rrison/	James	s Dyer		ol Pusi	ner		DINGS			ОВМ		325 gpn	n		5,794		si .
			ERTY SPECIF	ICATION	 S		MUD VO	LUME (BE	BL)	Pl	UMP #1		PUMP #2		RIS	ER B	008	TER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	922	2 bbl	Liner Siz	ze 4.	75 Line	r Size 4	.75	Liner	Size	4.	.75
8.5-12	5-25	8-12	>400	±280K	<10 <15	<8	In Hole	733	3 bbl	Stroke	1	2 Str	oke	12	Stro	oke	1	12
		l		6/2/21		6/1/21	Active	165	5 bbl	bbl/stk	0.0	625 bb	l/stk 0.0	0625	bbl	/stk	0.0	0625
Time Sample	Taken			2:00		14:30	Storage	<u>178</u>	6 bbl	stk/mir	ո 6	3 stk	/min	61	stk/	min		
Sample Locati	on			Suction		shaker	Tot. on Loc	cation 344	1 bbl	gal/mir	n 16	65 gal	l/min 1	60	gal/	min		0
Flowline Temp	erature °F	F		150 °F		99 °F	F	PHHP = 110	00	I	CIRCUL	ATION DA	ATA		n = 0	0.632	K = 19	97.766
Depth (ft)				18,383'		17,900'	Bit C	epth = 18,	440 '		Wash	out = 0%		Pump	Effici	ency :	= 95%	6
Mud Weight (p	ppg)			10.7		10.7	Drill String	Volume	to Bit	260.8 b	obl Sti	rokes To Bit	4,175		Time '	To Bit	34	min
Funnel Vis (se	c/qt)		@ 70 °F	45		44	Disp.	Bottoms U	lp Vol.	472.6 b	bl Botto	omsUp Stks	7,566	Botto	msUp	Time	61	min
600 rpm				31		29	102.6 bbl	TotalCi	rc.Vol.	1655.4 b	obl To	talCirc.Stks	26,500	Tota	ıl Circ.	Time	214	· min
300 rpm				20		20		DRILLIN	G ASS	SEMBLY	DATA		S	OLID	s co	NTRO	L	
200 rpm				15		16	Tubulars	OD (in.)	ID	(in.)	Length	Тор	Unit		Scre	ens	Но	ours
100 rpm				9		11	Drill Pipe	4.500	3.	826	12,468'	0'	Shake	r 1	20	00	24	4.0
6 rpm	•			6		6	Agi/DP/Agi	4.500	3.	826	3,183'	12,468'	Shake	r 2	20	00	24	4.0
3 rpm	•			4		5	DP/Ream/DP	4.500	3.	826	2,649'	15,651'	Shake	r 3	20	00	24	4.0
Plastic Viscosi	ity (cp)		@ 150 °F	11		9	Dir. BHA	5.000	2.	000	140'	18,300'	NOV Dr	yers	17	70	24	4.0
Yield Point (lb/	/100 ft²)		T0 = 2	9		11		CASIN	IG & H	HOLE DA	TΑ							
Gel Strength (l	lb/100 ft²)	1	10 sec/10 min	6/10		5/9	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifu	ge 1			2	2.0
Gel Strength (l	lb/100 ft ²)		30 min	12		12	Riser						VOLU	/IE AC	cou	NTING	dd) e	ls)
HTHP Filtrate	(cm/30 mi	in)	@ 250 °F	6.0		6.0	Surface	10 3/4			3,018'	0'	Prev.	Γotal o	n Loc	ation	30	612.3
HTHP Cake T	hickness ((32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875	11,974'	0'	Transf	erred I	n(+)/C	Out(-)		52.0
Retort Solids (Content			16.5%		16%	Washout 1							Oil	Adde	ed (+)		86.4
Corrected Soli	ds (vol%)			14.5%		13.8%	Washout 2							Barite	Adde	ed (+)		27.9
Retort Oil Con	tent			63.5%		62%	Open	Hole Size	6.	750	18,440'		Other P	roduct	Usag	je (+)		13.4
Retort Water 0	Content			20%		22%	ANI	NULAR GE	OME	TRY & R	HEOLOG	SY.		Water	Adde	ed (+)		50.0
O/W Ratio				76:24		74:26	annular	me	eas.	velocit	y flow	ECD	Le	eft on (Cutting	gs (-)		-34.3
Whole Mud Ch	nlorides (n	ng/L)		50,000		56,000	section	de	epth	ft/min	reg	lb/gal	ι	ost to	Form	ation	-:	316.4
Water Phase S	Salinity (p	pm)		281,620		285,280								Cent	/Evap	/Trip		-50.0
Whole Mud All	kalinity, P	om		2.0		1.7	6.875x4.	5 11,	974'	295.1	turb	11.44	Est.	Total o	n Loc	ation	34	441.4
Excess Lime (lb/bbl)			2.6 ppb		2.2 ppb	6.75x4.5	5 12,	468'	315.0	turb	11.50	Est. Los	ses/G	ains (-)/(+)		0.0
Electrical Stability (volts)			575 v		505 v	6.75x4.5	5 15,	651'	315.0	turb	11.77	ВІТ	HYDF	RAUL	ICS D	ATA		
Average Spec	ific Gravity	y of Soli	ids	3.30		3.31	6.75x4.5	5 18,	300'	315.0	turb	12.00	Bit H.S.I.	Bit	ΔΡ	Nozz	les (3	2nds)
Percent Low Gravity Solids			6.6%		6.2%	6.75x5	18,	440'	387.8	turb	12.06	0.25	47	psi	18	18	18	
ppb Low Gravity Solids				55 ppb		51 ppb							Bit Impact	Noz Velo		18	18	18
Percent Barite				7.8%		7.6%							Force	(ft/s	•			
ppb Barite				112 ppb		109 ppb	BIT D	ATA	Ма	anuf./Type	e G	TD64M	127 lbs	7	0			
Estimated Total LCM in System ppb			n ppb				Size	Depth In	Н	ours F	ootage	ROP ft/hr	Motor/M	WD	Calc	. Circ	Pres	ssure
Sample Taken By				A.ROMAN	0	M Washburn	6 3/4	15,494 ft	4	9.0	2,946 ft	60.1	1,100	psi		3,148	3 psi	

Remarks/Recommendations:

OBM RECEIVED: 52bbls @ \$65.00 /

OBM on surface/ storage 2708bbls

Ria Activity:

In the past 24hrs: Drilling on lateral section with 10.1ppg OBM; Gas influx the well, start well control operations. Increase MW to 10.4ppg and continue drilling increasing MW up to 10.7ppg with fresh barite and heavy mud from storage. Continue to pump 20bbls (15ppb LCM) sweeps every connection. While continue drilling ahead, passing 18380, influx from down hole noted on Volume increase. (60bbls), set well control and circulate kick out. Mud Cut noted 10.4ppg. Maintain Diesel and water additions for dilution. Use of Centrifuge to process recovered mud from shakers. Continue with additions of chemicals to maintain properties. At the time of report: Drilling 18,442' ROP=55ft/hr--Rotation / 10ft/hr--Slide. / Torque: 16-25k MWD Temp: 344 F*

												ZOK IVIV	VD ICI	пр. отт г			
Eng	g. 1:	Mike	Wa:	shbu	rn	En	ıg. 2:	Adolfo	A. Roman	WH 1:	MIDLAN	D	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Pho	one:	361	-945	-577	7	Ph	one:	956-8	21-9994	Phone:	432-686-7	361 F	Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be		ser so elects	s, howeve		nas been prepared on is made as to the	\$24,038.43	\$313,052.27
													NCLU	DING 3RD PAR	TY CHARGES	\$34,708.68	\$529,687.73

MATERIAL CONSUMPTION

Date 06/02/21	Operator MAG I	NOLIA OIL	& GAS	Well Name a	ind No. IIER A-1H S		Rig Name and I 248		ort #22
	'	USAGE 8							JLATIVE
			Previous		Closing	Daily		Cum	
ltem	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost	Usage	Cum Cost
SAPP (50)	50# sk	\$44.56	10		10				2 \$1,425.92
PHPA LIQUID (pail)	5 gal	\$41.36	32		32				
EVO-LUBE	gal	\$14.00							
NEW GEL (PREMIUM) ALUMINUM TRISTEARATE									
ALUMINUM TRISTEARATE									
CACL2 (50)	50# sk	\$14.32	80		56	24	\$343.68	72	8 \$10,424.96
LIME (50)	50# sk	\$5.00	50	200	100	150	\$750.00	74	
OPTI - G	50# sk	\$30.59	40	80				22	
BENTONE 38 (50)	50# sk	\$163.94	10	40	40	10			5 \$10,656.10
BENTONE 910 (50)	50# sk	\$59.40	10	40	5	5	\$297.00		0 \$594.00
BENTONE 990 (50)	50# sk	\$83.59	5	40		5	\$417.95		4 \$6,185.66
OPTI - MUL OPTI - WET	gal	\$10.75 \$8.34	165 385		165 385			38	
NEW PHALT	gal 50# sk	\$38.72	363	40				12	_
OIL SORB (25)	25# sk	\$4.75	19	40	19				1 \$99.75
0.12 00.1.2 (20)	20% 010	ψσ						-	400.70
		1							
NEW CARB (M)	50# sk	\$5.25	20	60	70	10	\$52.50	20	0 \$1,050.00
CYBERSEAL	25# sk	\$21.47							
MAGMAFIBER F (25)	25# sk	\$28.05	20	48	58	10	\$280.50	13	4 \$3,758.70
MAGMAFIBER R (30)	30# sk	\$28.05							
VARISEAL		***							
FIBER PLUG	30# sk	\$30.37	05		0.5				0 0400 00
NUT PLUG M (50)	50# sk	\$12.04	25		25 40				9 \$108.36
MICA F (50)	50# SK	\$10.28	40		40			-	
GRAPHITE - FINE (50)	50# sk	\$24.14	80		80				
									
NEW WATE (SACK BARITE)	100# sk	\$11.50	150		150				
BARITE BULK (100)	100# sk	\$7.00	1300	801	1700	401	\$2,808.40	599	0 \$41,931.40
		<u> </u>			+				
		1							
OPTI DRILL (OBM)	bbl	\$65.00	3106	52	2935	223	\$14,495.00	213	2 \$138,580.00
DISCOUNTED OBM	bbl	\$15.00	506		506			15	9 \$2,385.00
					<u> </u>				
		1						<u> </u>	
		 						<u> </u>	
								<u> </u>	-
	+							-	
	+	1							
ENGINEERING (24 HR)	each	\$990.00			+	2	\$1,980.00		2 \$51,480.00
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00		2 \$1,560.00
()	each	\$1.00					\$55.00	104	
ENGINEERING (MILES)	53011	ψσο							Ç.,0.0.00
ENGINEERING (MILES)	ı	+							
ENGINEERING (MILES)									_
	EACH	\$15.00						•	3 \$195.00
SCALE TICKET	EACH each	\$15.00 \$1.98							
SCALE TICKET TRUCKING (cwt)		1				1	\$650.00		3 \$195.00 0 \$15,305.32 3 \$1,950.00
SCALE TICKET TRUCKING (cwt) TRUCKING (min)	each	\$1.98				1 11	\$650.00 \$132.00	773	0 \$15,305.32
SCALE TICKET TRUCKING (cwt) TRUCKING (min) PALLETS (ea) SHRINK WRAP (ea)	each each	\$1.98 \$650.00						773	0 \$15,305.32 3 \$1,950.00

THIRD PARTY COST SHEET

Date	Operator			Well Name a	ind No.		Rig Name ar	id No.	Report No.	
06/02/21	MAG	NOLIA OIL	& GAS	RAIN	IIER A-1H	ST-01	2	48	Repo	rt #22
	DAILY	USAGE 8	& COST						сими	_ATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	210		150	60	\$2,505.00		250	\$10,437.50
TURBO CHEM SYNSEAL	25# sk	\$85.00	196		196					
OBM-D 5_12_21	gal	\$2.31								\$32,349.24
OBM-D 5_15_21	gal	\$2.35								\$16,920.00
OBM-D 5/16/21	gal	\$2.35								\$33,840.00
OBM-D 5/17/21	gal	\$2.31								\$16,632.00
OBM-D 5/19/21	gal	\$2.33								\$33,558.99
OBM-D 5/24/21	gal	\$2.24							-	\$16,132.48
Mud Diesel 5/27/21	gal	\$2.25								\$16,200.00
Diesel Received 5/29/21 Diesel Received 5/29/21	gal	\$2.25 \$2.25								\$16,200.00 \$16,200.00
Diesel Received 5/29/21 Diesel Received 5/31/21	gal	\$2.25			10780	3629	\$8,165.25		3629	
Dieser Received 3/31/21	gal	φ2.23	14409		10780	3029	φο, 103.23		3029	φο, 105.25
			<u> </u>							
					Daily Su	ıb-Total \$1	0,670.25		\$216,0	635.46
						1		-		
	Cumu	ulative Tota	I AES & 3rd	Party \$529	,687.73					

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name: MAGNOLIA OIL & GAS

Rig Name: 248
Well Name: RAIN

RAINIER A-1H ST-01

					WEEK 1							WEEK 2							WEEK 3			
	Date	5/14/21	5/15/21	5/16/21	5/17/21	5/18/21	5/19/21	5/20/21	5/21/21	5/22/21	5/23/21	5/24/21	5/25/21	5/26/21	5/27/21	5/28/21	5/29/21	5/30/21	5/31/21	6/1/21	6/2/21	6/3/21
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	
Grand	Starting Depth	108	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219	17,666	18,440
Totals	Ending Depth	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219	17,666	18,440	
18.875	Footage Drilled	2,925	1,471	3,176	1,941	1,716	640	8	-	538	17	_	234	19	475	-	1,866	903	725	1,447	774	_
	New Hole Vol.	277	139	301	184	163	61	1	-	24	1	-	10	1	21	-	83	40	32	64	34	_
	Starting System Volume	2,525	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,178	3,612	3,441
168	Chemical Additions		15	14	18	13	9			15	5	12	10	3	1	-	13	6	12	10	13	
2,104	Base Fluid Added		38	392	158	214	174	26	4	78	18	101	95	25	11	3	169	229	191	95	86	
418	Barite Increase		13	13	19		3	6			142	59	62	21	14	7	-	10	-	21	28	
3,207	Weighted Mud Added			300		479			407						-	250	-	127	788	804	52	
-	Slurry Added														-	-	-	-	-	-	-	
397	Water Added		60		70	83	37						58	9	-	-	-	-	-	30	50	
8	Added for Washout						8								-	-	-	-	-	-	-	
6,302	Total Additions	-	126	719	264	788	231	32	411	93	164	172	225	58	26	260	181	372	991	960	230	-
	Surface Losses	Ì	3	42	119	105	105	11	10	23	21	12	35	17	-	-	-	25	25	-	25	
	Formation Loss			50	83	92	134	25	73		68	28	14		99	50	554	384	691	386	316	
	Mud Loss to Cuttings		125	301	191	135	63	1		25	1			4	19	-	83	40	32	64	34	
218	Unrecoverable Volume		17	40	35		45	22	10			24			25	-	-	-	-	-	-	
425	Centrifuge Losses		4	20	24	15	6			12	7	3	6	6	25	22	50	50	75	76	25	
5,386	Total Losses	-	149	453	452	346	353	59	93	60	97	68	55	27	168	72	687	499	823	526	401	-
-	Mud Transferred Out																					
3,441	Ending System Volume	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,178	3,612	3,441	3,441
-	Mud Recovered																					
	<u> </u>			С	omment	s:					С	omment	s:					С	omment	s:		
	_	5/14/21	Cleaned ri	g pit, NU B	good fashio OP and tes me. Testing	sted the sar	me. Filled		5/21/21	spacer and	d 39bbls ce	ment. Los	mping 10bb t to seepag and Interfac	e while riur		5/28/21	TIH with n resume dr	ew BHA, W illing.	ash and R	eam from 1	2150 to bo	ottom and
5,732		5/15/21			4'MD. Muc cutting 125b		ap 3bbls, C	Cent 4bbls,	5/22/21	Mud lost to	cuttings 2	4.8bbls, Ev	/ap 22.87bl	ols and Cer	nt 12bbls	5/29/21		ead, Well s Continue di		mud at 136	93. lower	MW to
	-	5/16/21			2bbls. Cent Cuttings 30				5/23/21	Mud lost to and Cent 7		due to wei	ght up 68.2	bbls, Evap	20.5bbls	5/30/21		ead, to 1549 If to change		ecreased to	20fph. C	irculate
		t to Cutting hakers 35b		5/24/21				4.34bbls. N ge circ kill r			5/31/21	and cut m	ne hole, wel w down to 1 n start lossir	10.1ppg. w/	340gpm lo							
		5/18/21	Mud Lost t Seepage 9		135bbls, E	vap 104.6b	bls, Cent 1	5bbls and	5/25/21		o Seepage g 2nd sidetr		Cent 6bbls a	and Evap 3	5.2bbls.	6/1/21		ead, well co		ing mud, 20	Obbls /hr. I	Pump
		5/19/21			63bbls, Eva				5/26/21	Mud lost to	o Cuttings 3	3.4bbls, Ce	nt 6bbls an	d Evap 17.	2bbls	6/2/21	Drilling ah Resume d	ead, circula Irilling	ate Well co	ntrol Issues	s, 60bbl inf	ux .
		5/20/21 Mud Lost to Cuttings 1bbl, Evap 10.8bbls, Tripping 22bbls and Seepage 25bbls 5/27/21 Drilled Side track to 12725'/ Circulate and POOH to lay do BhA.												ay down	6/3/21							

110 Old Market St. St Martinville, LA 70582 TEL: (337) 394-1078

86.6° 12,499' TVD

Operator MAGN	IOLIA C	OIL & G	AS	Contractor PA1	TERSO	N	County / Parish	YETTE		_	er Start Date 05/09/21	24 hr	ftg.		Drilled	Depth 18,57	77 ft	:
Well Name and No.	IIER A-	IH ST-0)1	Rig Name ar	nd No. 248		State T	EXAS		Spud D	ate 05/13/21		ent ROP		Activity	krean	n / PC	оон
Report for		lamaa [)	Report for	al Duak		Field / OSC-G			Fluid Ty	•	Circu	lating Rate	_		ting Pres		
Jim Ha					ol Push	ier		DINGS			OBM PUMP #1		357 gpr			1,757 ER BO		
Woight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	DLUME (BE	bbl	Liner		75 Line		.75		Size	4.7	
Weight 8.5-12	5-25	8-12	>400	±280K	<10 <15	<8			bbl					12			4.7	
0.5-12		JD PROP		±20UK	<10 <15	<0	In Hole		3 bbl	Stro bbl/				0625	Str		0.06	
Time Comple		JD PKOP	EKIIES	2:00		14:30	Active									/stk	0.00	525
Time Sample							Storage		6 bbl	stk/ı				68		min		
Sample Locati		_		Suction		shaker 100 °F		cation 3462		gal/i		3		178	_	min	L 1	107.0
Flowline Temp	perature *i	-		150 °F			Mud Wt. =			YP			ON DATA	D		0.632		
Depth (ft)				18,383'		18,577'	BIT L	Depth = 15,		200.6	Wash		0.575			ency =		
Mud Weight (p			0.70.05	10.7		11.0	Drill String Disp.	Volume				rokes To B	,			To Bit		
Funnel Vis (se	ec/qt)		@ 70 °F	45		44	·	Bottoms U				omsUp Stk	,		msUp		48 r	
600 rpm				31		34	88.3 bbl	TotalCir				talCirc.Stk	1			Time		min
300 rpm				20		22		DRILLING								NTRO		
200 rpm				15		16	Tubulars	,		(in.)	Length	Тор	Uni			eens	Hou	urs
100 rpm				9		12	Drill Pipe	4.500		326	9,834'		Shake			00		
6 rpm				6		6	Agi/DP/Agi	4.500		326	3,183'	9,834'	Shake			00		
3 rpm				4			P/Ream/DP	4.500		326	2,649'	13,017'	Shake			00		
Plastic Viscos	ity (cp)		@ 150 °F	11		12	Dir. BHA	5.000		000	140'	15,666'	NOV D	ryers	1	70		
Yield Point (lb.	/100 ft²)		T0 = 2	9		10		CASIN	IG & I	HOLE	DATA							
Gel Strength (lb/100 ft²)	10 s	ec / 10 min	6/10		6/9	Casing	OD (in.)	ID ((in.)	Depth	Тор	Centrifu	ige 1				
Gel Strength (lb/100 ft2)	30 min	12		11	Riser						VOLU	ME AC	COU	NTING	i (bbl	s)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	6.0		6.0	Surface	10 3/4			3,018'		Prev.	Total o	n Loc	ation	34	141.4
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	375	11,974'		Transf	erred	ln(+)/0	Out(-)		
Retort Solids (Content			16.5%		17.5%	Washout 1							Oi	l Adde	ed (+)		
Corrected Soli				14.5%		15.3%	Washout 2							Barite	Adde	ed (+)		
Retort Oil Con	tent			63.5%		61.5%	Open	Hole Size	6.7	750	18,577'		Other F	roduc	t Usaç	je (+)		
Retort Water (Content			20%		21%	ANI	NULAR GE	OME	TRY 8	RHEOLO	GY		Wate	Adde	ed (+)		
O/W Ratio				76:24		75:25	annula	ı ae	pth	velo		ECD	L	eft on	Cuttin	gs (-)		
Whole Mud Cl	hlorides (r	ng/L)		50,000		54,000	section	n		ft/m	nin reg	lb/gal		Lost to	Form	ation		
Water Phase	Salinity (p	pm)		281,620		287,354								Cen	t/Evap	/Trip		
Whole Mud Al	kalinity, P	om		2.0		2.0	6.875x4	1.5 9,8	34'	323	3.7 turb	11.53	Est.	Total o	n Loc	ation _	34	141.4
Excess Lime (lb/bbl)			2.6 ppb		2.6 ppb	6.875x4	11,9	974'	323	3.7 turb	11.54	Est. Lo	sses/G	ains	-)/(+)		20.4
Electrical Stab	ility (volts)		575 v		505 v	6.75x4.	.5 13,0	017'	345	5.5 turb	11.60	ВІТ	HYDI	RAUL	ICS D	ΔТА	
Average Spec	ific Gravit	y of Solid	S	3.30		3.32	6.75x4.	.5 15,0	666'	345	5.5 turb	11.83	Bit H.S.I	Bit	ΔΡ	Nozzl	es (32	2nds)
Percent Low C	Gravity So	lids		6.6%		6.8%	6.75x5	5 15,8	806'	425	5.3 turb	11.85	0.33	57	psi	18	18	18
ppb Low Grav	ity Solids			55 ppb		56 ppb							Bit Impac	† I	zzle ocity	18	18	18
Percent Barite				7.8%		8.5%							Force		sec)			
ppb Barite				112 ppb		122 ppb	BIT C	DATA	Ма	nuf./Ty	/pe G	TD64M	152 lbs	7	77			
Estimated Tot	al LCM in	System					Size	Depth In	Но	urs	Footage	ROP ft/h	r Motor/N	/WD	Calc	. Circ.	Pres	sure
Sample Taker	Ву			A.ROMAN		M Washburn	6 3/4	15,494 ft	49	9.0	2,946 ft	60.1	1,100	psi	L	3,185	psi	
Afternoon Rem	arks/Recor	nmendatio	ns:				Afternoon R	Rig Activity:				-	-					

5

Drill to 18577 increase mud wt. from 10.7 to 11.0 in resonse to gas influx from anticipated fault structures. Samples from 18577 were 100% AC. Experiencing excessive drilling torque while rotating and loss of differential pressure. Wash and ream out of hole depth at time of report is 15807. Forward plans are to pull up to 13000, circulate B/U, then pull or wash up to 12000, spot 17.0# mud cap, pull out of hole pick up packer, set at 2000' then start laying down drillpipe and replacing with stronger schedule pipe due to high torque in lateral.

8,051' TVD

OUTSOURCE FLUID SOLUTIONS LLC.

TEL: (337) 394-1078

11.7°

Operator MAGI Well Name and No.	NOLIA (OIL &	GAS	Contractor PA Rig Name ar	TTERS(ON	County / Parish / FA' State	Block YETTE		Engineer Sta 05 Spud Date	art Date	24 hr	137 ft		Drilled I	18,5	77 ft	t
	NIER A-	1H S1	Γ-01	Rig Name ar	248			EXAS			/13/21	Curre	27 ft/hr		Activity	РО	ОН	
Report for				Report for			Field / OCS-G #			Fluid Type	, 10, 21	Circul	ating Rate		Circulat	ting Pre		\dashv
Jim Ha	rrison/	Jame	s Dyer	To	ol Pusl	ner	GID	DINGS		(OBM		0 gpm			p	si	
	MUD	PROPE	ERTY SPECIF	ICATION	s		MUD VO	LUME (BE	BL)	PU	JMP #1		PUMP #2		RIS	ER B	oost	ΓER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	772	2 bbl	Liner Siz	ze 4.	75 Line	r Size 4.	.75	Liner	Size	4.7	75
8.5-12	5-25	8-12	>400	±280K	<10 <15	<8	In Hole	79	5 bbl	Stroke	1	2 Str	oke 1	12	Stro	oke	12	2
	I	1	.	6/3/21		6/2/21	Active	110	2 bbl	bbl/stk	0.0	625 bb	l/stk 0.0	625	bbl/	/stk	0.06	625
Time Sample	Taken			2:00		14:30	Storage	<u>165</u>	3 bbl	stk/min	n (O stk	:/min	0	stk/	min		
Sample Locati	on			Suction		shaker	Tot. on Lo	cation 322	ldd 0	gal/min	1	0 ga	l/min	0	gal/	min	0)
Flowline Temp	erature °F	F				100 °F		PHHP = 0	ı	•	CIRCUL	ATION DA	ATA		n = 0	0.646	K = 20)8.293
Depth (ft)				18,577'		18,577'	Bit I	Depth = 8,2	200 '		Wash	out = 0%		Pump	Effici	ency :	= 95%	O
Mud Weight (բ	ppg)			11.1		11.0	Drill String	Volume	e to Bit	115.2 b	bl St	rokes To Bi	t .		Time	To Bit		
Funnel Vis (se	c/qt)		@ 70 °F	48		44	Disp.	Bottoms U	Jp Vol.	214.6 b	bl Botto	omsUp Stks	;	Botto	msUp	Time		
600 rpm				36		34	46.8 bbl	TotalCi	rc.Vol.	1101.7 b	obl To	talCirc.Stks	i	Tota	l Circ.	Time		
300 rpm				23		22		DRILLIN	G ASS	SEMBLY	DATA		S	OLID	s coi	NTRC	L	
200 rpm				17		16	Tubulars	OD (in.)	ID	(in.)	Length	Тор	Unit		Scre	eens	Hou	urs
100 rpm				11		12	Drill Pipe	4.500	3.	826	2,228'	0'	Shake	r 1	20	00	24	.0
6 rpm				6		6	Agi/DP/Agi	4.500	3.	826	3,183'	2,228'	Shake	r 2	20	00	24	.0
3 rpm				5		5	DP/Ream/DP	4.500	3.	826	2,649'	5,411'	Shake	r 3	20	00	24	.0
Plastic Viscos	ity (cp)		@ 150 °F	13		12	Dir. BHA	5.000	2.	000	140'	8,060'	NOV Dr	yers	17	70	24	.0
Yield Point (lb.	/100 ft²)		T0 = 4	10		10		CASI	NG & I	HOLE DA	TA							
Gel Strength (lb/100 ft²)	1	10 sec/10 min	7/11		6/9	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifuç	ge 1			2.	.0
Gel Strength (lb/100 ft ²)		30 min	14		11	Riser						VOLUN	IE AC	COU	NTING	G (bbl	is)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	6.0		6.0	Surface	10 3/4			3,018'	0'	Prev. 1	otal o	n Loc	ation	34	141.4
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875	11,974'	0'	Transfe	erred I	n(+)/C	Out(-)		
Retort Solids (Content			18%		17.5%								Oil	Adde	ed (+)		23.0
Corrected Soli	ds (vol%)			15.9%		15.3%								Barite	Adde	ed (+)		63.3
Retort Oil Con	tent			62%		61.5%	Oper	n Hole Size	6.	750	18,577'		Other P	roduct	Usag	je (+)		4.3
Retort Water (Content			20%		21%	ANI	NULAR GE	EOME	TRY & RI	HEOLOG	¥Υ	,	Water	Adde	ed (+)		
O/W Ratio				76:24		75:25	annulai	r me	eas.	velocity	y flow	ECD	Le	eft on (Cutting	gs (-)		-6.1
Whole Mud Cl	nlorides (n	ng/L)		51,000		54,000	section	de	epth	ft/min	reg	lb/gal	L	ost to	Form	ation	-2	255.6
Water Phase	Salinity (p	pm)		285,644		287,354		•			•			Cent	/Evap	/Trip	-	-50.0
Whole Mud Al	kalinity, P	om		1.8		2.0	6.875x4	.5 2,	228'	0.0	lam	11.14	Est. 7	otal o	n Loc	ation	32	220.3
Excess Lime (lb/bbl)			2.3 ppb		2.6 ppb	6.875x4	.5 5,	411'	0.0	lam	11.14	Est. Los	ses/G	ains (-)/(+)		0.0
Electrical Stab	ility (volts))		550 v		505 v	6.875x4	.5 8,	060'	0.0	lam	11.14	BIT	HYDR	RAULI	ICS D	ATA	
Average Spec	ific Gravit	y of Sol	ids	3.37		3.32	6.875x5	5 8,	200'	0.0	lam	11.14	Bit H.S.I.	Bit	ΔΡ	Nozz	les (32	2nds)
Percent Low 0	Gravity So	lids		6.7%		6.8%							0.00	p	osi	18	18	18
ppb Low Grav	ity Solids			55 ppb		56 ppb							Bit Impact	Noz Velo		18	18	18
Percent Barite				9.3%		8.5%							Force	(ft/s	-			
ppb Barite				133 ppb		122 ppb	BIT D	ATA	Ma	anuf./Type	e G	TD64M	0 lbs)			
Estimated Tot	al LCM in	System	n ppb				Size	Depth In	Н	ours F	ootage	ROP ft/hr	Motor/M	WD	Calc	. Circ	Pres	sure
Sample Taker	Ву			A.ROMAN	0	M Washburn	6 3/4	15,494 ft	5	4.0	3,083 ft	57.1	1,100	psi				_
_	-							-		_								

Remarks/Recommendations:

OBM RECEIVED: bbls @ \$65.00 /

OBM on surface/ storage 2425bbls

Rig Activity:

In the past 24hrs: Drilled lateral section to 18577'; cross fault on formation resulting in gas influx. Max Gas noted 2900units / 10.5ppg Mud cut. Increase density to 11ppg. Resume drilling. Loss of Differential pressure, excessive Torque, and poor ROP, call made to POOH. Circulate BU and start to wash and ream out of lateral seciton up to the shoe. Circulate BU at the shoe and spot 150bbls 17ppg Mud cap. and POOH to top of Mud Cap. Perform flow ck and pump slug. Start to Lay down DP. Will lay down BHA and secure well for upcoming BOP test. At the time of report: Lay down DP passing 8200'. Repairs to ST-80.

Е	ng. 1:	Mi	ke W	ashbı	urn	E	ng. 2:	Adolfo	A. Roman	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Р	hone:	3	61-94	5-57	77	PI	hone:	956-8	321-9994	Phone:	432-686-736	1 Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	used if the user		er, no representat	has been prepared ion is made as to the	\$27,607.22	\$340,659.49
												INCLUE	ING 3RD PAR	TY CHARGES	\$29,824.72	\$559,512.45

MATERIAL CONSUMPTION

Date 06/03/21	Operator MAG I	NOLIA OIL		Well Name a	IIER A-1H S	ST-01	Rig Name ar 2
		USAGE 8					
H			Previous	Deschool	Closing	Daily	D-11- 01
Item	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost
SAPP (50)	50# sk	\$44.56	10		10		
PHPA LIQUID (pail)	5 gal	\$41.36	32		32		
EVO-LUBE	gal	\$14.00					
NEW GEL (PREMIUM) ALUMINUM TRISTEARATE	+						
ALOWINOW TRISTEARATE							
CACL2 (50)	50# sk	\$14.32	56		56		
LIME (50)	50# sk	\$5.00	100		50	50	\$250.00
OPTI - G	50# sk	\$30.59	120		120		
BENTONE 38 (50)	50# sk	\$163.94	40		40		
BENTONE 910 (50)	50# sk	\$59.40	5			5	\$297.00
BENTONE 990 (50)	50# sk	\$83.59	40		40		
OPTI - MUL	gal	\$10.75	165		110	55	\$591.25
OPTI - WET	gal	\$8.34	385		275	110	\$917.40
NEW PHALT	50# sk	\$38.72	40		40		
OIL SORB (25)	25# sk	\$4.75	19		19		
NEW CARB (M)	50# sk	\$5.25	70		60	10	\$52.50
CYBERSEAL	25# sk	\$21.47					4
MAGMAFIBER F (25)	25# sk	\$28.05	58		48	10	\$280.50
MAGMAFIBER R (30)	30# sk	\$28.05					
VARISEAL		_					
FIBER PLUG	30# sk	\$30.37					
NUT PLUG M (50)	50# sk	\$12.04	25		25		
MICA F (50)	50# sk	\$10.28	40		40		
ODADUHTE TOTAL		A					
GRAPHITE - FINE (50)	50# sk	\$24.14	80		80		
NEW WATE (CACK BARITE)	400"	044 = 2	1=0		450		
NEW WATE (SACK BARITE)	100# sk	\$11.50 \$7.00		440	150	040	¢6 270 00
BARITE BULK (100)	100# sk	\$7.00	1700	410	1200	910	\$6,370.00
	- 						
	+						
	+						
	+						
	+						
	+						
	+						
	 						
	1						
OPTI DRILL (OBM)	bbl	\$65.00	2935		2714	221	\$14,365.00
, ,							,
DISCOUNTED OBM	bbl	\$15.00	506		506		
	1	 					
			1		 		
ENGINEERING (24 HR)	each	\$990.00				2	\$1,980.00
	each bbl	\$990.00				2 2	\$1,980.00
ENGINEERING (DIEM)							
ENGINEERING (DIEM)	bbl	\$30.00					
ENGINEERING (DIEM)	bbl	\$30.00					
ENGINEERING (DIEM) ENGINEERING (MILES)	bbl	\$30.00					\$60.00
ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET	bbl each	\$30.00 \$1.00				2	\$60.00 \$45.00
ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET TRUCKING (cwt)	bbl each EACH	\$30.00 \$1.00 \$15.00				3	\$60.00 \$45.00
ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET TRUCKING (cwt) TRUCKING (min)	bbl each EACH each	\$30.00 \$1.00 \$15.00 \$1.98				3	\$60.00 \$45.00
ENGINEERING (24 HR) ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET TRUCKING (cwt) TRUCKING (min) PALLETS (ea) SHRINK WRAP (ea)	EACH each each	\$30.00 \$1.00 \$15.00 \$1.98 \$650.00				3	\$60.00 \$45.00

THIRD PARTY COST SHEET

Date	Operator			Well Name a	nd No.		Rig Name ar	id No.	Report No.	
06/03/21	MAGI	NOLIA OIL	& GAS	RAIN	IER A-1H	ST-01	2	48	Repo	rt #23
	DAILY	USAGE 8	& COST						СПМП	LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	150		140	10	\$417.50		260	\$10,855.00
TURBO CHEM SYNSEAL	25# sk	\$85.00	196		196					
OBM-D 5_12_21	gal	\$2.31								\$32,349.24
OBM-D 5_15_21	gal	\$2.35								\$16,920.00
OBM-D 5/16/21	gal	\$2.35								\$33,840.00
OBM-D 5/17/21	gal	\$2.31							-	\$16,632.00
OBM-D 5/19/21	gal	\$2.33							-	\$33,558.99
OBM-D 5/24/21	gal	\$2.24					1		-	\$16,132.48
Mud Diesel 5/27/21	gal	\$2.25								\$16,200.00
Diesel Received 5/29/21 Diesel Received 5/29/21	gal	\$2.25 \$2.25								\$16,200.00 \$16,200.00
Diesel Received 5/29/21 Diesel Received 5/31/21	gal	\$2.25 \$2.25			9980	900	\$1,800.00		4429	
Diesel Received 6/2/21	gal gal	\$2.23		6400	6400		\$1,800.00		4429	φ9,905.25
Diesel Necelved 0/2/21	yaı	Ψ2.30		0400	0400					
							ļ			
							1			
							-			
							1			
							1			
		<u> </u>	<u> </u>	<u> </u>			<u> </u>			
					Daily S	ub-Total \$2	2,217.50		\$218,8	352.96
	-					1		-		
	Cum	ulative Tota	I AES & 3rd	Party \$559	,512.45					
						l				
<u> </u>										

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name: MAGNOLIA OIL & GAS

Rig Name: 248
Well Name: RAIN

RAINIER A-1H ST-01

					WEEK 1							WEEK 2							WEEK 3					
	Date	5/14/21	5/15/21	5/16/21	5/17/21	5/18/21	5/19/21	5/20/21	5/21/21	5/22/21	5/23/21	5/24/21	5/25/21	5/26/21	5/27/21	5/28/21	5/29/21	5/30/21	5/31/21	6/1/21	6/2/21	6/3/21		
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu		
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4		
Grand	Starting Depth	108	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219	17,666	18,440		
Totals	Ending Depth	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219	17,666	18,440	18,577		
	Footage Drilled	2,925	1,471	3,176	1,941	1,716	640	8		538	17		234	19	475	-	1,866	903	725	1,447	774	137		
	New Hole Vol.	2,923	139	3,176	1,941	163	61	1	-	24	17	-	10	19	21	-	83	40	32	64	34	137		
1,441	Starting System Volume	2.525	2,525	2,502	2,768	2,580	3.022	2.900	2,873	3,191	3.225	3,292	3.396	3,566	3,597	3,455	3.644	3,138	3.011	3,178	3,612	3,441		
472	Chemical Additions	2,323	2,323	14	18	13	3,022	2,900	2,013	15	3,223	12	10	3,366	3,397	3,433	13	3,136	12	10	13	3,441		
	Base Fluid Added		38	392	158	214	174	26	4	78	18	101	95	25	11	3	169	229	191	95	86	23		
	Barite Increase		13	13	19	214	3	6	4	70	142	59	62	21	14	7	109	10	-	21	28	63		
	Weighted Mud Added		13	300	13	479	3	0	407		172	55	02	21	-	250	-	127	788	804	52	-		
3,207	Slurry Added			300		713			407						-	-	_	-	-	-	-	_		
397	Water Added		60		70	83	37						58	9	-	-	-	_	_	30	50	_		
	Added for Washout						8							Ť	-	-	-	-	_	-	-	_		
6.393	Total Additions	-	126	719	264	788	231	32	411	93	164	172	225	58	26	260	181	372	991	960	230	91		
-,	Surface Losses		3		119	105	105	11	10	23	21	12	35	17		-	-	25	25	-	25	25		
	Formation Loss		3	50	83	92	134	25	73	23	68	28	14	17	99	50	554	384	691	386	316	256		
- ,	Mud Loss to Cuttings		125	301	191	135	63	1	70	25	1	20	17	4	19	-	83	40	32	64	34	6		
	Unrecoverable Volume		17	40	35		45	22	10		·	24			25	_	-	-	-	-	-	_		
	Centrifuge Losses		4	20	24	15	6			12	7		6	6	25	22	50	50	75	76	25	25		
5,698	Total Losses	_	149	453	452	346	353	59	93	60	97	68	55	27	168	72	687	499	823	526	401	312		
.,	Maria Transactions at Oast						1	1									1					I		
	Mud Transferred Out																							
3,220	Ending System Volume	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,178	3,612	3,441	3,220		
-	Mud Recovered																							
				С	omment	s:					С	omment	s:					С	omments	s <i>:</i>				
		5/14/21	Cleaned r	d surface in ig pit, NU B ning the sar	OP and tes	sted the sar	me. Filled p		5/21/21	spacer and	d 39bbls ce		t to seepag	ols interface ge while riun ce 10bbls		5/28/21	TIH with n resume dr		ash and Re	eam from 1	2150 to bo	ttom and		
5,732		5/15/21		ead at 4,50 7bbls and c			ap 3bbls, C	Cent 4bbls,	5/22/21	Mud lost to	cuttings 2	24.8bbls, E∖	vap 22.87b	bls and Cer	t 12bbls	5/29/21		ead, Well s Continue d	start taking r rilling'	mud at 136	93. lower	MW to		
	-	5/16/21		ses: Evap 4 50bbls and					5/23/21	Mud lost to and Cent 7		due to wei	ight up 68.2	2bbls, Evap	20.5bbls	5/30/21		ead, to 1549 If to change	94', ROP de out BHA.	ecreased to	20fph. Ci	rculate		
		5/17/21		ne change o , Evap 118. 83bbls					5/24/21					Mud lost to E mud 28bbls		5/31/21		nr. Resume sses back t						
		5/18/21	Mud Lost Seepage	to Cuttings 91.8bbls	135bbls, E	vap 104.6b	bls, Cent 1	5bbls and	5/25/21		Seepage 2nd sideti		Cent 6bbls	and Evap 3	5.2bbls.	6/1/21	Drilling ahead, well continue taking mud, 20bbls /hr. Posweep every connection.							
		5/19/21		to Cuttings 8bbls, Rota					5/26/21	Mud lost to	Cuttings (3.4bbls, Ce	ent 6bbls an	id Evap 17.2	2bbls	6/2/21	Drilling ah Resume d		ate Well cor	ntrol Issues	, 60bbl infl	ux .		
		5/20/21	Mud Lost	to Cuttings 25bbls	1bbl, Evap	10.8bbls, ⁻	Tripping 22	bbls and	5/27/21	Drilled Sid BhA.	e track to 1	12725'/ Cir	culate and	POOH to la	y down	6/3/21		t BHA and	st differentia Test BOP's					

TEL: (337) 394-1078

110 Old Market St. **OUTSOURCE FLUID SOLUTIONS LLC.** St Martinville, LA 70582

> 10.7° 5,868' TVD

	IOLIA (OIL &	GAS		TERSO)N	County / Parisi	h / Block			/09/21	24 hr				18,57	77 ft	t
Well Name and No.	IIER A-	1H S1	Γ-01	Rig Name ar	nd No. 248		State T	EXAS		Spud Date 05	5/13/21	Curre	ent ROP		Activity L/D	DRII	LLP	IPE
Report for				Report for			Field / OSC-G			Fluid Type		Circu	lating Rate			iting Pres		
Jim Ha	rrison/、	Jame	s Dyer	То	ol Push	ner	GIE	DINGS	j	(OBM							
	MUD	PROPE	RTY SPECI	FICATION			MUD VO	OLUME (E	BBL)	Pl	JMP #1		PUMP #	2	RIS	ER BO	os	ΓER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	5 77	2 bbl	Liner Siz	ze 4.	75 Line	er Size	4.75	Line	Size		75
8.5-12	5-25	8-12		±280K	<10 <15	<8	In Hole		7 bbl	Stroke			roke	12	Str	oke		2
	M	UD PR	OPERTIES				Active	94	1 bbl	bbl/stk	0.0	625 bl	ol/stk 0	.0625	bbl	/stk	0.0	625
Time Sample	Taken			2:00		14:30	Storag	e <u>16</u>	53 bbl	stk/mir	1	st	k/min		stk	/min		
Sample Locati	ion			Suction		suction	Tot. on Loc	cation 32	32 bbl	gal/mir	1	ga	ıl/min		gal	/min		
Flowline Temp	erature °	F					Mud Wt. =	: 11.1 P	V=13	YP=10) CII	RCULATION	ON DATA		n = (0.646	K = 2	208.3
Depth (ft)				18,577'		18,577'	Bit I	Depth = 1	,017 '		Wash	out =		Pump	Effici	ency =	95%	6
Mud Weight (p	opg)			11.1		11.1	Drill String	Volum	e to Bit	13.0 bl	ol Str	okes To B	it		Time	To Bit		
Funnel Vis (se	ec/qt)		@ 70 °F	48		47	Disp.	Bottoms	Up Vol.	156.1 b	bl Botto	msUp Stk	S	Botto	omsUp	Time		
600 rpm				36		35	34.6 bbl	TotalC	irc.Vol.	941.1 b	bl To	talCirc.Stk	s	Tota	al Circ.	Time		
300 rpm				23		23		DRILLIN	IG AS	SEMBLY	DATA			SOLID	s co	NTRO	L	
200 rpm				17		17	Tubulars	OD (in.)	ID	(in.) L	ength	Тор	Un	it	Scre	eens	Но	urs
100 rpm				11		12	Drill Pipe	4.500	3.8	326 -	4,955'		Shak	er 1	20	00		
6 rpm				6		6	Agi/DP/Agi	4.500	3.8	326	3,183'	-4,955'	Shak	er 2	2	00		
3 rpm				5		5	P/Ream/DP	4.500	3.8	326	2,649'	-1,772'	Shak	er 3	2	00		
Plastic Viscos	ity (cp)		@ 150 °F	13		12	Dir. BHA	5.000	2.0	000	140'	877'	NOV D	ryers	1	70		
Yield Point (lb.	/100 ft ²)		T0 = 4	10		11		CASI	NG &	HOLE D	ATA							
Gel Strength (lb/100 ft²)) 1	0 sec / 10 min	7/11		6/8	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrif	uge 1				
Gel Strength (lb/100 ft2	2)	30 min	14		12	Riser						VOLU	ME A	ccou	NTING	(bb	ls)
HTHP Filtrate	(cm/30 m	nin)	@ 250 °F	6.0		6.0	Surface	10 3/4		;	3,018'		Prev.	Total	on Loc	ation	32	220.2
HTHP Cake T	hickness	(32nds)	2.0		2.0	Int. Csg.	7 5/8	6.8	375 1	1,974'		Trans	ferred	In(+)/0	Out(-)		
Retort Solids (Content			18%		18%								Oi	l Adde	ed (+)		
Corrected Soli	ids (vol%))		15.9%		15.9%								Barite	e Adde	ed (+)		
Retort Oil Con	tent			62%		61%	Oper	Hole Size	e 6.	750 1	8,577'		Other I	Produc	t Usag	ge (+)		
Retort Water (Content			20%		21%	AN	NULAR G	EOME	TRY & F	RHEOLO	GY		Wate	r Adde	ed (+)		
O/W Ratio				76:24		74:26	annula	ar "	a.m.4la	velocit	y flow	ECD	L	eft on	Cuttin	gs (-)		
Whole Mud Cl	hlorides (mg/L)		51,000		53,000	section	n d	epth	ft/min		lb/gal		Lost to	Form	ation		
Water Phase	Salinity (p	opm)		285,644		283,542		*			•			Cen	t/Evap	o/Trip		
Whole Mud Al	kalinity, F	Pom		1.8		1.9	6.875x4	1.5 3	,183'		lam	11.14	Est.	Total	on Loc	ation	32	220.2
Excess Lime (lb/bbl)			2.3 ppb		2.5 ppb	6.875x4	1.5 5	,832'		lam	11.14	Est. Lo	sses/G	ains (_ (-)/(+)		12.1
Electrical Stab	ility (volts	s)		550 v		524 v	6.875x	5 5	,972'		lam	11.14	BI	T HYD	RAUL	ICS D	ATA	
Average Spec	ific Gravi	ty of Sc	olids	3.37		3.32							Bit H.S.	. Bit	tΔP	Nozzl	es (32	2nds)
Percent Low G	Gravity Sc	olids		6.7%		7.1%										18	18	18
ppb Low Grav	ity Solids			55 ppb		58 ppb							Bit Impa	7† I	zzle	18	18	18
Percent Barite)			9.3%		8.8%							Force	vei	ocity sec)			
ppb Barite				133 ppb		126 ppb	BIT (DATA	Ма	nuf./Type	e G	TD64M						
Estimated Total	al LCM in	Syster	m				Size	Depth In	Нс	ours F	ootage	ROP ft/h	r Motor/l	MWD	Calc	. Circ.	Pres	sure
Sample Taker	n By			A.ROMAN		M Washburn	6 3/4	15,494 f	t 54	4.0 3	3,083 ft	57.1	1,100	psi		1,227	psi	
Afternoon Rema	orko/Boso		_4!	1		<u> </u>	Afternoon R	l Na Astivituu		ļ			1		!			

Afternoon Rig Activity:

5

Continue pull out of hole after spotting mud cap at 12000' at 3179 shut in well, casing pressure at 240 PSI, pump 40 bbls 17.0# kill mud down annulus to kill well, check flow, well static. Continue to pull out racking stands in derrick. Ordered an additional 400 bbls kill mud from Newpark Madisonville. Weighting up reserve \$10 / bbl, high % LGS discount mud to 17.0# to pump down anulus in the event of casing pressure. Trip depth at time of report is 1017'.

0' TVD

OUTSOURCE FLUID SOLUTIONS LLC.

TEL: (337) 394-1078

0.0°

MAGNOLIA OIL & GAS PATTERSON FAYETTE 05/09/21 0 ft 18,577 ft Well Name and No Name and No I /D DRII I PIPF **RAINIER A-1H ST-01** 248 **TEXAS** 05/13/21 0 ft/hr Field / OCS-G # Report fo -luid Type irculating Rate Circulating Pressure **Tool Pusher GIDDINGS** Jim Harrison/James Dver **OBM** 0 gpm psi MUD PROPERTY SPECIFICATIONS PUMP #1 PUMP #2 RISER BOOSTER MUD VOLUME (BBL) Weight CaCl2 **GELS** In Pits 702 bbl Liner Size 4.75 Liner Size 4.75 Liner Size 4.75 8.5-12 8-12 >400 ±280K <10 <15 <8 In Hole 842 bbl Stroke 12 Stroke 12 Stroke 12 6/4/21 6/3/21 702 bbl bbl/stk 0.0625 bbl/stk 0.0625 bbl/stk 0.0625 0 0 Time Sample Taken 2:00 14:30 Storage 1801 bbl stk/min stk/min stk/min gal/min gal/min Sample Location Suction suction Tot. on Location 3345 bbl gal/min Λ 0 O n = 0.624 K = 249.114 Flowline Temperature °F PHHP = 0**CIRCULATION DATA** Depth (ft) 18.577 18.577 Bit Depth = Washout = 0% Pump Efficiency = 95% Mud Weight (ppg) 11.3 11.1 Volume to Bit 0.0 bblStrokes To Bit Time To Bit **Drill String** Disp. Funnel Vis (sec/qt) @ 70 °F 52 47 Bottoms Up Vol. 0.0 bbl BottomsUp Stks BottomsUp Time 35 600 rpm 37 0.0 bbl TotalCirc Vol. 702.0 bbl TotalCirc Stks Total Circ. Time **DRILLING ASSEMBLY DATA SOLIDS CONTROL** 24 300 rpm 23 19 17 OD (in.) Unit Screens 200 rpm **Tubulars** ID (in.) Length Top Hours 12 12 Drill Pipe 3.826 0 0' Shaker 1 200 18.0 100 rpm 4.500 6 Agi/DP/Agi 4.500 3.826 Shaker 2 200 0 18.0 6 rpm 5 5 DP/Ream/DP 4.500 3.826 0' Shaker 3 200 18.0 3 rpm 13 12 Dir. BHA 5.000 **NOV Drvers** 170 18.0 Plastic Viscosity (cp) Yield Point (lb/100 ft²) T0 = 11 11 **CASING & HOLE DATA** 7/11 6/8 Casing OD (in.) ID (in.) 0.0 Gel Strength (lb/100 ft²) 10 sec/10 min Depth Top Centrifuge 1 30 min 14 12 **VOLUME ACCOUNTING (bbls)** Riser Gel Strength (lb/100 ft2) @ 250 °F 6.0 6.0 Surface 10 3/4 3.018 0' 3220.2 HTHP Filtrate (cm/30 min) Prev. Total on Location HTHP Cake Thickness (32nds) 2.0 2.0 Int. Csg 7 5/8 6.875 11,974 0' Transferred In(+)/Out(-) 258.0 Retort Solids Content 19% 18% Oil Added (+) 18.1 Corrected Solids (vol%) 16.9% 15.9% Barite Added (+) 14.0 Retort Oil Content 61% 61% Open Hole Size 6.750 18.577 Other Product Usage (+) 0.0 **ANNULAR GEOMETRY & RHEOLOGY** Retort Water Content 20% 21% Water Added (+) 75:25 74:26 O/W Ratio Left on Cuttings (-) 0.0 annular meas velocity flow ECD section depth ft/min reg lb/gal 51,000 53.000 -140.3 Whole Mud Chlorides (ma/L) Lost to Formation 285,644 283,542 Cent/Evap/Trip -25.0 Water Phase Salinity (ppm) Whole Mud Alkalinity, Pom 1.8 1.9 Est. Total on Location 3345.0 2.3 ppb 2.5 ppb Est. Losses/Gains (-)/(+) 0.0 Excess Lime (lb/bbl) 534 v 524 v **BIT HYDRAULICS DATA** Electrical Stability (volts) 3.33 3.32 Bit H.S.I. Average Specific Gravity of Solids Βίτ ΔΡ Nozzles (32nds) 7.4% 7.1% Percent Low Gravity Solids 0.00 18 18 18 ppb Low Gravity Solids Nozzle 18 18 61 ppb 58 ppb 18 Bit Impact Velocity Force Percent Barite 9.5% 8.8% ppb Barite 136 ppb 126 ppb **BIT DATA** Manuf./Type GTD64M 0 lbs 0 ROP ft/hr Estimated Total LCM in System Size Depth In Hours Footage Motor/MWD Calc. Circ. Pressure 15.494 ft 3.083 ft 57.1 1.100 psi Sample Taken By A.ROMAN M Washburr 6 3/4 54.0 Remarks/Recommendations: Rig Activity: OBM RECEIVED: 258bbls @ \$65.00 / In the past 24hrs: POOH, Lay down 8600' of DP & BHA. Pick up bit sub and make OBM on surface/ storage 2503bbls up same with previous bit. TIH 30 stands of 4.5DP and make up Storm packer, run packer in the hole and set at 250' below well head. Continue to lay down DP (9977') racked back on the derrick. At the time of report: Well secure, and continue Lay down DP from the derrick in the mouse-hole. Mike Washburn Eng. 2: Adolfo A. Roman MIDLAND WH 2: WH #2 Rig Phone: Daily Total **Cumulative Cost** Eng. 1: 956-821-9994 432-686-7361 Phone: Phone: Phone Phone Any opinion and or recommendation, expressed orally or written herein, has been p carefully and may be used if the user so elects, however, no representation is made \$11,504.39 \$352,163,88 Р g 1 validity of this information, and this is a recommendation only **INCLUDING 3RD PARTY CHARGES** \$13,214.39 \$572,726.84

MATERIAL CONSUMPTION

Date 06/04/21	Operator MAG I	NOLIA OIL		Well Name a	ind No. IIER A-1H S	ST-01	Rig Name ar	na No. 48	Report No. Repo	rt #24
	I	USAGE 8					•			LATIVE
H			Previous	Deschool	Closing	Daily	D-11- 04	-	Cum	
ltem	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost		Usage	Cum Cost
SAPP (50)	50# sk	\$44.56			10				32	\$1,425.92
PHPA LIQUID (pail)	5 gal	\$41.36			32					
EVO-LUBE NEW GEL (PREMIUM)	gal	\$14.00							-	
ALUMINUM TRISTEARATE								-	-	
ALOWINOW TRISTEARATE										
								1		
CACL2 (50)	50# sk	\$14.32	56		56				728	\$10,424.96
LIME (50)	50# sk	\$5.00	50		50				790	\$3,950.00
OPTI - G	50# sk	\$30.59	120		120				220	. ,
BENTONE 38 (50)	50# sk	\$163.94	40		40				65	\$10,656.10
BENTONE 910 (50)	50# sk	\$59.40							15	
BENTONE 990 (50)	50# sk	\$83.59	40		40				74	
OPTI - MUL	gal	\$10.75	110		110				495	
OPTI - WET	gal	\$8.34	275		275				495	
NEW PHALT	50# sk	\$38.72	40		40		1	1	120	
OIL SORB (25)	25# sk	\$4.75	19		19		1	1	21	\$99.75
							-	1	<u> </u>	
							 	1		
	+							1		
NEW CARB (M)	50# sk	\$5.25	60		60		1	1	210	\$1,102.50
CYBERSEAL	25# sk	\$21.47								V 1,102.00
MAGMAFIBER F (25)	25# sk	\$28.05	48		48			1	144	\$4,039.20
MAGMAFIBER R (30)	30# sk	\$28.05								
VARISEAL										
FIBER PLUG	30# sk	\$30.37								
NUT PLUG M (50)	50# sk	\$12.04	25		25			1	9	\$108.36
MICA F (50)	50# sk	\$10.28	40		40			1		
GRAPHITE - FINE (50)	50# sk	\$24.14	80		80					
NEW WATE (SACK BARITE)	100# sk	\$11.50			150					
BARITE BULK (100)	100# sk	\$7.00	1200	801	1800	201	\$1,404.20		7101	\$49,705.60
								-		
								-		
	+				+			1		
					+		<u> </u>	1		
								1		
OPTI DRILL (OBM)	bbl	\$65.00	2714	258	2883	89	\$5,785.00	1	2442	\$158,730.00
•							1	1		
DISCOUNTED OBM	bbl	\$15.00	506		462	44	\$660.00	1	203	\$3,045.00
								1		
								1		
								1		
								1		
]		
]		
]		
ENGINEERING (24 HR)	each	\$990.00					\$1,980.00	-1		\$55,440.00
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00	1		\$1,680.00
ENGINEERING (MILES)	each	\$1.00					-		1049	\$1,049.00
							ļ	1		
		<u>.</u> .								
SCALE TICKET	EACH	\$15.00				2		-	18	
TRUCKING (cwt)	each .	\$1.98				801	\$1,585.19			\$19,289.08
TRUCKING (min)	each	\$650.00					1	1		\$1,950.00
, ,		. E40 00					1	1		\$660.00
PALLETS (ea)	each	\$12.00			 				55	
PALLETS (ea) SHRINK WRAP (ea)	each each	\$12.00						1	53	

THIRD PARTY COST SHEET

Date	Operator			Well Name a	ind No.		Rig Name an	d No.	Report No.	
06/04/21	MAGI	NOLIA OIL	& GAS	RAIN	IIER A-1H	ST-01	2	48	Repo	rt #24
	DAILY	USAGE 8	& COST						СПМП	LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	140		140				260	\$10,855.00
TURBO CHEM SYNSEAL	25# sk	\$85.00	196		196					
OBM-D 5_12_21	gal	\$2.31								\$32,349.24
OBM-D 5_15_21	gal	\$2.35								\$16,920.00
OBM-D 5/16/21	gal	\$2.35								\$33,840.00
OBM-D 5/17/21	gal	\$2.31								\$16,632.00
OBM-D 5/19/21	gal	\$2.33								\$33,558.99
OBM-D 5/24/21	gal	\$2.24								\$16,132.48
Mud Diesel 5/27/21 Diesel Received 5/29/21	gal	\$2.25								\$16,200.00
	gal	\$2.25								\$16,200.00 \$16,200.00
Diesel Received 5/29/21 Diesel Received 5/31/21	gal	\$2.25 \$2.25			9220	760	\$1,710.00			\$16,200.00 \$11,675.25
Diesel Received 6/2/21	gal gal	\$2.25			6400		\$1,710.00		5109	\$11,675.25
Diesel Nedelved 0/2/21	yaı	Ψ2.30	0400		0400					
		<u> </u>	<u> </u>	<u> </u>		. =	. = 46			
					Daily S	ub-Total \$	1,710.00		\$220,	562.96
	Cumi	ulative Tota	I AES & 3rd	Party \$572	2,726.84					

5/20/21 Mud Lost to Cuttings 1bbl, Evap 10.8bbls, Tripping 22bbls and Seepage 25bbls

OUTSOURCE FLUID SOLUTIONS LLC.

 Operator:
 MAGNOLIA OIL & GAS

 Rig Name:
 248

 Well Name:
 RAINIER A-1H ST-01

FLUID VOLUME ACCOUNTING

F

							_																				_	-	
					WEEK 1							WEEK 2							WEEK 3							WEEK 4			
	Date	5/14/21	5/15/21	5/16/21	5/17/21	5/18/21	5/19/21	5/20/21	5/21/21	5/22/21	5/23/21	5/24/21	5/25/21	5/26/21	5/27/21	5/28/21	5/29/21	5/30/21	5/31/21	6/1/21	6/2/21	6/3/21	6/4/21	6/5/21	6/6/21	6/7/21	6/8/21	6/9/21	6/10/2
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4						
Grand	Starting Depth	108	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219	17,666	18,440	18,577	18,577					
Totals	Ending Depth	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219	17,666	18,440	18,577	18,577						
19,012	Footage Drilled	2,925	1,471	3,176	1,941	1,716	640	8		538	17	-	234	19	475	-	1,866	903	725	1,447	774	137	-	-	-	-	-	-	
1,441	New Hole Vol.	277	139	301	184	163	61	1	-	24	1	-	10	1	21	-	83	40	32	64	34	6	-	-	-	-	-	-	-
	Starting System Volume	2,525	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,178	3,612	3,441	3,220	3,345	3,345	3,345	3,345	3,345	3,34
173	Chemical Additions		15	14	18	13	9			15	5	12	10	3	1	-	13	6	12	10	13	4	-						
2,146	Base Fluid Added		38	392	158	214	174	26	4	78	18	101	95	25	11	3	169	229	191	95	86	23	18						
495	Barite Increase		13	13	19		3	6			142	59	62	21	14	7	-	10	-	21	28	63	14						
3,465	Weighted Mud Added			300		479			407						-	250	-	127	788	804	52	-	258						
-	Slurry Added														-	-	-	-	-	-	-	-	-						
397	Water Added		60		70	83	37						58	9	-	-	-	-	-	30	50	-	-						
8	Added for Washout						8								-	-	-	-	-	-	-	-	-						
6,683	Total Additions	-	126	719	264	788	231	32	411	93	164	172	225	58	26	260	181	372	991	960	230	91	290	-	-	-	-	-	-
628	Surface Losses		3	42	119	105	105	11	10	23	21	12	35	17	-	-	-	25	25	-	25	25	25						
3,443	Formation Loss			50	83	92	134	25	73		68	28	14		99	50	554	384	691	386	316	256	140						
1,124	Mud Loss to Cuttings		125	301	191	135	63	1		25	1			4	19	-	83	40	32	64	34	6	-						
218	Unrecoverable Volume		17	40	35		45	22	10			24			25	-	-	-	-	-	-	-	-						
450	Centrifuge Losses		4	20	24	15	6			12	7	3	6	6	25	22	50	50	75	76	25	25	-						
5,863	Total Losses	-	149	453	452	346	353	59	93	60	97	68	55	27	168	72	687	499	823	526	401	312	165	-	-		-	-	-
-	Mud Transferred Out																												
3,345	Ending System Volume	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,178	3,612	3,441	3,220	3,345	3,345	3,345	3,345	3,345	3,345	3,34
	Mud Recovered																												
										ı			_																
		-			Comment							omment							Comment	s:						omment			
		5/14/21	Cleaned ri	g pit, NU B	OP and tes	on with cerr sted the sam g BOP at rp	ne. Filled p		5/21/21	spacer and		ment. Los	t to seepag	ols interface e while riun ce 10bbls		5/28/21	TIH with n resume dr		Vash and R	eam from 1	2150 to bo	ttom and	6/4/21		DP, Set sto DP below.				
5,990		5/15/21		ead at 4,50 7bbls and o		d lost to Eva	p 3bbls, Ce	ent 4bbls,	5/22/21	Mud lost to	cuttings 2	4.8bbls, Ev	ap 22.87bb	ols and Cen	t 12bbls	5/29/21		ead, Well s Continue d	start taking r rilling'	mud at 1369	93. lower N	MW to	6/5/21						
	•	5/16/21				t 20bbls, Sh 00.9. Drilled				Mud lost to and Cent 7		due to wei	ght up 68.2	bbls, Evap	20.5bbls	5/30/21		ead, to 1549 change out	94', ROP de BHA.	ecreased to	20fph. Cir	culate and	6/6/21						
		5/17/21				d. Mud lost hakers 35bb								Mud lost to E nud 28bbls		5/31/21	and cut my	w down to	II taking mu 10.1ppg. w/ ng 30bbl/hr				6/7/21						
		5/18/21	Mud Lost t Seepage 9		135bbls, E	vap 104.6bl	ols, Cent 15	ibbls and			o Seepage g 2nd sidetr		Cent 6bbls a	and Evap 3	5.2bbls.	6/1/21		ead, well co ery connect	ontinue taki tion.	ng mud, 20	bbls/hr. P	ump	6/8/21						
		5/19/21				ap 104.6bbi 27bbls and			5/26/21	Mud lost to	o Cuttings 3	.4bbls, Ce	nt 6bbls an	d Evap 17.2	2bbls	6/2/21	Drilling ah Resume d		ate Well cor	trol Issues,	, 60bbl influ	JX .	6/9/21						

Drilled Side track to 12725'/ Circulate and POOH to lay down BhA.

5/27/21

Drilled to 18577'. Lost differential and High torque, POOH to change out BHA and Test BOP's. Lay down DP after spotting Mud cap 17#

6/10/21

0' TVD

OUTSOURCE FLUID SOLUTIONS LLC.

0.0°

MAGNOLIA OIL & GAS PATTERSON FAYETTE 05/09/21 0 ft 18,577 ft Well Name and No Name and No **TEXAS RAINIER A-1H ST-01** 248 05/13/21 0 ft/hr **Testing BOP's** Field / OCS-G # Circulating Pressure Report fo luid Type irculating Rate **Tool Pusher GIDDINGS** Jim Harrison/James Dver **OBM** 0 gpm psi MUD PROPERTY SPECIFICATIONS PUMP #1 PUMP #2 RISER BOOSTER MUD VOLUME (BBL) Weight CaCl2 **GELS** In Pits 788 bbl Liner Size 4.75 Liner Size 4.75 Liner Size 4.75 8.5-12 8-12 >400 ±280K <10 <15 <8 In Hole 842 bbl Stroke 12 Stroke 12 Stroke 12 6/5/21 6/3/21 788 bbl bbl/stk 0.0625 bbl/stk 0.0625 bbl/stk 0.0625 0 0 Time Sample Taken 2:00 14:30 Storage 1801 bbl stk/min stk/min stk/min gal/min gal/min Sample Location Suction suction Tot. on Location 3431 bbl gal/min Λ 0 O n = 0.646 K = 208.293 Flowline Temperature °F PHHP = 0**CIRCULATION DATA** Depth (ft) 18.577 18.577 Bit Depth = Washout = 0% Pump Efficiency = 95% Mud Weight (ppg) 11.3 11.1 Volume to Bit 0.0 bblStrokes To Bit Time To Bit **Drill String** Disp. Funnel Vis (sec/qt) @ 70 °F 51 47 Bottoms Up Vol. 0.0 bbl BottomsUp Stks BottomsUp Time 35 600 rpm 36 0.0 bbl TotalCirc Vol. 788.0 bbl TotalCirc Stks Total Circ. Time **DRILLING ASSEMBLY DATA SOLIDS CONTROL** 23 300 rpm 23 19 17 OD (in.) Unit 200 rpm **Tubulars** ID (in.) Length Top Screens Hours 13 12 Drill Pipe 3.826 0 0' Shaker 1 200 0.0 100 rpm 4.500 6 Agi/DP/Agi 4.500 3.826 Shaker 2 200 0 0.0 6 rpm 6 5 DP/Ream/DP 4.500 3.826 0' Shaker 3 200 0.0 3 rpm 13 12 Dir. BHA 5.000 **NOV Drvers** 170 0.0 Plastic Viscosity (cp) Yield Point (lb/100 ft²) T0 = 10 11 **CASING & HOLE DATA** 7/11 6/8 Casing OD (in.) ID (in.) 0.0 Gel Strength (lb/100 ft²) 10 sec/10 min Depth Top Centrifuge 1 30 min 12 12 **VOLUME ACCOUNTING (bbls)** Riser Gel Strength (lb/100 ft2) @ 250 °F 6.0 6.0 Surface 10 3/4 3.018 0' 3345.0 HTHP Filtrate (cm/30 min) Prev. Total on Location HTHP Cake Thickness (32nds) 2.0 2.0 Int. Csg 7 5/8 6.875 11,974 0' Transferred In(+)/Out(-) 0.0 Retort Solids Content 19% 18% Oil Added (+) 0.0 Corrected Solids (vol%) 17% 15.9% Barite Added (+) 0.0 Retort Oil Content 61% 61% Open Hole Size 6.750 18.577 Other Product Usage (+) 0.0 **ANNULAR GEOMETRY & RHEOLOGY** Retort Water Content 20% 21% Water Added (+) 75:25 74:26 O/W Ratio Left on Cuttings (-) 0.0 annular meas velocity flow ECD section depth ft/min reg lb/gal 50,000 53.000 **OBM Recover** 86.0 Whole Mud Chlorides (ma/L) 281,620 283,542 Cent/Evap/Trip Water Phase Salinity (ppm) Whole Mud Alkalinity, Pom 1.5 1.9 Est. Total on Location 3431.0 2 ppb 2.5 ppb Est. Losses/Gains (-)/(+) 0.0 Excess Lime (lb/bbl) 530 v 524 v **BIT HYDRAULICS DATA** Electrical Stability (volts) 3.33 3.32 Bit H.S.I. Average Specific Gravity of Solids Bit ΔP Nozzles (32nds) 7.5% 7.1% Percent Low Gravity Solids 0.00 18 18 18 ppb Low Gravity Solids Nozzle 18 18 61 ppb 58 ppb 18 Bit Impact Velocity Force Percent Barite 9.5% 8.8% ppb Barite 136 ppb 126 ppb **BIT DATA** Manuf./Type GTD64M 0 lbs 0 ROP ft/hr Estimated Total LCM in System Size Depth In Hours Footage Motor/MWD Calc. Circ. Pressure 15.494 ft 3.083 ft 57.1 1.100 psi Sample Taken By A.ROMAN M Washburi 6 3/4 54.0 Remarks/Recommendations: Rig Activity: OBM RECEIVED: bbls @ \$65.00 / In the past 24hrs: Finish lay down of DP from the derrick. Make preparations to test OBM on surface/ storage 2589bbls BOP's. Change out Saver subs for new threads on CET-43 DP. While testing upper and lower ram's, test fail. Wait on new rams to arrive on location. Replace Rams and resume testing BOP's. At the time of report: Well secure, and continue to test BOP's. Recover 86bbls of OBM from Mud Cooling unit. Transfer same back to Active Mike Washburn Eng. 2: Adolfo A. Roman MIDLAND WH 2: WH #2 Rig Phone: Daily Total **Cumulative Cost** Eng. 1:

956-821-9994

Phone:

g 1

Phone

Р

432-686-7361

validity of this information, and this is a recommendation only

Phone

Any opinion and or recommendation, expressed orally or written herein, has been picarefully and may be used if the user so elects, however, no representation is made

en herein, has been prepared

INCLUDING 3RD PARTY CHARGES

\$2.040.00

\$2,040.00

\$354.203.88

\$574,766.84

Phone:

MATERIAL CONSUMPTION

Date 06/05/21	Operator MAG I	NOLIA OIL		Well Name a	ind No. IIER A-1H S	ST-01	Rig Name ar	nd No. 48	Report No. Repo	rt #25
	<u> </u>	USAGE 8					<u>.</u>			LATIVE
			Previous		Closing	Daily			Cum	
ltem	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost		Usage	Cum Cost
SAPP (50)	50# sk	\$44.56	10		10				32	\$1,425.92
PHPA LIQUID (pail)	5 gal	\$41.36	32		32					
EVO-LUBE NEW GEL (PREMIUM)	gal	\$14.00								
ALUMINUM TRISTEARATE										
ALOWINOW TRISTEARATE										
CACL2 (50)	50# sk	\$14.32	56		56				728	\$10,424.96
LIME (50)	50# sk	\$5.00	50		50				790	• •
OPTI - G	50# sk	\$30.59	120		120					\$6,729.80
BENTONE 38 (50)	50# sk	\$163.94	40		40		1			\$10,656.10
BENTONE 910 (50)	50# sk	\$59.40	40		40				15	\$891.00
BENTONE 990 (50)	50# sk	\$83.59	40		40		1		74	. ,
OPTI - MUL OPTI - WET	gal	\$10.75	110		110				495	
NEW PHALT	gal 50# sk	\$8.34 \$38.72	275 40		275 40		+	-	495 120	
OIL SORB (25)	25# sk	\$4.75	19		19		+	1	21	\$99.75
	2011 31	Ψ70	19		13		†	1		ψ00.70
							1	1		
					†		1	1		
]		
NEW CARB (M)	50# sk	\$5.25	60		60				210	\$1,102.50
CYBERSEAL	25# sk	\$21.47								
MAGMAFIBER F (25)	25# sk	\$28.05	48		48				144	\$4,039.20
MAGMAFIBER R (30)	30# sk	\$28.05								
VARISEAL										
FIBER PLUG	30# sk	\$30.37								
NUT PLUG M (50)	50# sk	\$12.04	25		25				9	\$108.36
MICA F (50)	50# sk	\$10.28	40		40		1			
GRAPHITE - FINE (50)	50# sk	\$24.14	80		80					
010 11 11 11 11 (00)	00# 010	Ψ21.11			00					
NEW WATE (SACK BARITE)	100# sk	\$11.50	150		150					
BARITE BULK (100)	100# sk	\$7.00	1800		1800				7101	\$49,705.60
							1			
							+	-		
							+			
					+		†	1		
							1	1		
OPTI DRILL (OBM)	bbl	\$65.00	2883		2883		1	1	2442	\$158,730.00
]		
DISCOUNTED OBM	bbl	\$15.00	462		462				203	\$3,045.00
							1			
							1			
							1	-		
							1	-	-	
							+	-	-	
							+	-	-	
	each	\$990.00					2 \$1,980.00	1	50	\$57,420.00
ENGINEERING (24 HR)	eacii	\$30.00				2	+ ' '	1		\$1,740.00
	hhl	Ψ00.00			+	2	_ ψου.ου	1	1049	
ENGINEERING (DIEM)	bbl each	\$1.00			1			1	10-13	+ .,5 15.00
ENGINEERING (DIEM)	bbl each	\$1.00								
ENGINEERING (DIEM)		\$1.00								
ENGINEERING (DIEM) ENGINEERING (MILES)		\$1.00 \$15.00							18	\$270.00
ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET	each									
ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET TRUCKING (cwt)	each	\$15.00							9742	\$270.00 \$19,289.08 \$1,950.00
ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET TRUCKING (cwt) TRUCKING (min)	each EACH each	\$15.00 \$1.98							9742	\$19,289.08
ENGINEERING (24 HR) ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET TRUCKING (cwt) TRUCKING (min) PALLETS (ea) SHRINK WRAP (ea)	EACH each each	\$15.00 \$1.98 \$650.00							9742	\$19,289.08 \$1,950.00

THIRD PARTY COST SHEET

Date	Operator			Well Name a	nd No.		Rig Name an	d No.	Report No.	
06/05/21	MAG	NOLIA OIL	& GAS	RAIN	IER A-1H	ST-01	24	48	Repo	rt #25
	DAILY	USAGE 8	k COST						СПМП	LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cos
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	140		140			-	260	\$10,855.0
TURBO CHEM SYNSEAL	25# sk	\$85.00	196		196			•		
								•		
								-		
								-		
								-		*
OBM-D 5_12_21	gal	\$2.31						-		\$32,349.2 \$16,920.0
OBM-D 5_15_21 OBM-D 5/16/21	gal gal	\$2.35 \$2.35						-		\$33,840.0
OBM-D 5/17/21	gal	\$2.31								\$16,632.0
OBM-D 5/19/21	gal	\$2.33						-		\$33,558.9
OBM-D 5/24/21	gal	\$2.24								\$16,132.4
Mud Diesel 5/27/21	gal	\$2.25								\$16,200.0
Diesel Received 5/29/21	gal	\$2.25						-		\$16,200.0
Diesel Received 5/29/21	gal	\$2.25						•		\$16,200.0
Diesel Received 5/31/21	gal	\$2.25	9220		9220			-	5189	\$11,675.2
Diesel Received 6/2/21	gal	\$2.38	6400		6400			-		
								•		
								•		
								•		
								•		
								•		
								•		
								-		
								-		
								i		
								-		
								-		
								-		
								-		
								-		
								-		
		<u> </u>	<u> </u>	<u> </u>			1		<u> </u>	
					<u></u>				\$220,	562.96
	1					1				
	I _	ulative Total	AEO 0 0I	D	700.04					

Mud Lost to Cuttings 1bbl, Evap 10.8bbls, Tripping 22bbls and

Seepage 25bbls

 Operator:
 MAGNOLIA OIL & GAS

 Rig Name:
 248

 Well Name:
 RAINIER A-1H ST-01

FLUID VOLUME ACCOUNTING

...

OOTOOOKOE	LOID SOLUTIONS LLC.				A000	OITIII					ILIX A 111	U. U.				J										7000	, O. W. I. II.	•	
		WEEK 1					WEEK 2					WEEK 3					WEEK 4												
	Date	5/14/21	5/15/21	5/16/21	5/17/21	5/18/21	5/19/21	5/20/21	5/21/21	5/22/21	5/23/21	5/24/21	5/25/21	5/26/21	5/27/21	5/28/21	5/29/21	5/30/21	5/31/21	6/1/21	6/2/21	6/3/21	6/4/21	6/5/21	6/6/21	6/7/21	6/8/21	6/9/21	6/10/2
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4					
Grand	Starting Depth	108	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219	17,666	18,440	18,577	18,577	18,577			1	
Totals	Ending Depth	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219	17,666	18,440	18,577	18,577	18,577				1	
19,012	Footage Drilled	2,925	1,471	3,176	1,941	1,716	640	8		538	17	-	234	19	475	-	1,866	903	725	1,447	774	137	-	-		-	-	-	-
1,441	New Hole Vol.	277	139	301	184	163	61	1	-	24	1	-	10	1	21	-	83	40	32	64	34	6	-	-	-	-	-	-	-
	Starting System Volume	2,525	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,178	3,612	3,441	3,220	3,345	3,431	3,431	3,431	3,431	3,431
173	Chemical Additions		15	14	18	13	9			15	5	12	10	3	1	-	13	6	12	10	13	4	-	-					1
2,146	Base Fluid Added		38	392	158	214	174	26	4	78	18	101	95	25	11	3	169	229	191	95	86	23	18	-					1
	Barite Increase		13	13	19		3	6			142	59	62	21	14	7	-	10	-	21	28	63	14	-					
	Weighted Mud Added			300		479			407						-	250	-	127	788	804	52	-	258	86				1	
	Slurry Added														-	-	-	-	-	-	-	-	-	-				<u> </u>	
	Water Added		60		70	83	37						58	9	-	-	-	-	-	30	50	-	-	-					
	Added for Washout						8								-	-	-	-	-	-	-	-	-	-					
6,769	Total Additions	-	126	719	264	788	231	32	411	93	164	172	225	58	26	260	181	372	991	960	230	91	290	86	-	-	-	-	-
	Surface Losses		3	42	119	105	105	11	10	23	21	12	35	17	-		-	25	25	-	25	25	25	-					
	Formation Loss			50	83	92	134	25	73		68	28	14		99	50	554	384	691	386	316	256	140	-					
	Mud Loss to Cuttings		125	301	191	135	63	1		25	1			4	19	-	83	40	32	64	34	6	-	-					
	Unrecoverable Volume		17	40	35		45	22	10			24			25	-	-	-	-	-	-	-	-	-					
450	Centrifuge Losses		4	20	24	15	6			12	7	3	6	6	25	22	50	50	75	76	25	25	-	-					
5,863	Total Losses	-	149	453	452	346	353	59	93	60	97	68	55	27	168	72	687	499	823	526	401	312	165	-	-	-	-	-	-
	Mud Transferred Out																												
3,431	Ending System Volume	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,178	3,612	3,441	3,220	3,345	3,431	3,431	3,431	3,431	3,431	3,431
	Mud Recovered			1				*				•											·						$\overline{}$
_		+												1										·	1				
		Comments:						Comments:				Comments:				Comments:													

Drilled Side track to 12725'/ Circulate and POOH to lay down

Cemented surface in good fashion with cement back to surface. Cemented with good returns dumping 10bbls interface, 40bbls Lay down DP, Set storm packer 200' below well head, with 30 TIH with new BHA, Wash and Ream from 12150 to bottom and 5/14/21 Cleaned rig pit, NU BOP and tested the same. Filled pit and spacer and 39bbls cement. Lost to seepage while riunning 5/28/21 6/4/21 stnads of DP below. Continue to Lay down DP racked back on resume drilling. reconditioning the same. Testing BOP at rpt time. casing 72.5bbls, Evap 10.1bbls and Interface 10bbls the derrick. Drilling ahead at 4,504'MD. Mud lost to Evap 3bbls, Cent 4bbls Drilling ahead, Well start taking mud at 13693. lower MW to Finish lay down DP. Start on testing BOP's. Recover 86bbls of 5/22/21 Mud lost to cuttings 24.8bbls, Evap 22.87bbls and Cent 12bbls Shakers 17bbls and cutting 125bbls 10.6ppg. Continue drilling' OBM from Mud Cooler, transfer same to Active system. Daily Losses: Evap 42bbls. Cent 20bbls, Shakers 40bbls, Mud lost to formation due to weight up 68.2bbls, Evap 20.5bbls Drilled ahead, to 15494', ROP decreased to 20fph. Circulate and Seepage 50bbls and Cuttings 300.9. Drilled to 7,680'MD. and Cent 7bbls POOH to change out BHA. At RPT time change out rot Head. Mud lost to Cutting 191.3bbls Stage in the hole, well taking mud, 100bbl/hr. Resume drilling Mud left in Previous well bore 24.34bbls. Mud lost to Evap 5/17/21 Evap 118.8bbls, Cent 24bbls, Shakers 35bbls and Seepage and cut mw down to 10.1ppg. w/340gpm losses back to normal, 6/7/21 12.4bbls, Cent 3bbls and seepage circ kill mud 28bbls w/370gpm start lossing 30bbl/hr. Mud Lost to Cuttings 135bbls, Evap 104.6bbls, Cent 15bbls and Mud lost to Seepage 13.9bbls, Cent 6bbls and Evap 35.2bbls. Drilling ahead, well continue taking mud, 20bbls /hr. Pump 6/8/21 Seepage 91.8bbls Attempting 2nd sidetrack. sweep every connection. Mud Lost to Cuttings 63bbls, Evap 104.6bbls, Cent 6bbls, Drilling ahead, circulate Well control Issues, 60bbl influx 5/26/21 Mud lost to Cuttings 3.4bbls, Cent 6bbls and Evap 17.2bbls 6/2/21 6/9/21 Shakers 18bbls, Rotating Head 27bbls and seepage 133.8bbls Drilled to 18577'. Lost differential and High torque, POOH to

change out BHA and Test BOP's. Lay down DP after spotting

Mud cap 17#

6/10/21

6,076

OUTSOURCE FLUID SOLUTIONS LLC.

Report #26 TEL: (337) 394-1078

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

0.3° 200' TVD

	NOLIA (OIL &	GAS		TTERSO	ON	County / Parish /	Engineer Start Date 24 hr f 05/09/21				0 ft		Drilled Depth 18,577 ft					
Well Name and No.	NIER A-	.1H ST	-01	Rig Name ar	nd No. 248		State TE	Spud Date Curre 05/13/21				O ft/hr	P	Activity TIH					
Report for	AILIV A-	111 31	-01	Report for	240		Field / OCS-G #					ting Rate	C	Circulating Pressure					
Jim Ha	rrison/	James	Dyer	То	ol Pusi	ner	GID	ОВМ				0 gpm		psi					
	RTY SPECIF	ICATION	S		MUD VOLUME (BBL)			ı	PUMI	P #1		PUMP #2		RISER BOOSTER		ΈR			
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	7	75 bbl	Liner S	Liner Size 4.75		Liner	Size 4.	.75	Liner S	Size	4.7	75
8.5-12	5-25	8-12	>400	±280K	<10 <15	<8	In Hole	8	39 bbl	Strok	ке	12	Stro	oke 1	12	Strok	е	12	2
	l			6/6/21		6/5/21	Active	78	81 bbl	bbl/s	stk	0.0625	bbl	/stk 0.0	625	bbl/s	tk	0.06	325
Time Sample	Taken			2:00		13:00	Storage	e <u>17</u>	'42 bbl	stk/m	nin	0	stk/	min	0	stk/m	nin		
Sample Locati	on			Suction		suction	Tot. on Loc	cation 33	56 bbl	gal/m	nin	0	gal/	min	0	gal/m	nin	0)
Flowline Temp	erature °l	F						PHHP =	0	II.	CII	RCULATIO	ON DA	TA		n = 0.0	646	K = 20	8.293
Depth (ft)				18,577'		18,577'	Bit	Depth =	200 '		١	Vashout =	- 0%		Pump I	Efficie	ncy =	95%)
Mud Weight (բ	ppg)			11.3		11.3	Drill String	Volun	ne to Bit	1.4 b	obl	Strokes	To Bit	II.	Т	ime To	o Bit		
Funnel Vis (se	ec/qt)		@ 75 °F	51		49	Disp.	Up Vol.	4.6 bbl BottomsUp Stks				s Bottoms			nsUp Time			
600 rpm				36		37	3.2 bbl	Total	Circ.Vol.	781.0	bbl	TotalCi	rc.Stks		Total	Total Circ. Time			
300 rpm				23		24		DRILLII	NG AS	SEMBL	Y DA	ГА		S	OLIDS	CON	TRO	L	
200 rpm				19		17	Tubulars	OD (in.)) ID	(in.)	Len	gth 7	Гор	Unit		Scree	ens	Hou	urs
100 rpm				13		13	Drill Pipe	4.500	3.	.826	5	9'	0'	Shake	r 1	200)	4.0	0
6 rpm				7		7	HWDP	4.500	3.	.000			59'	Shake	r 2	200)	4.0	0
3 rpm				6		6	DP/Ream/Ag	4.500	3.	.826			59'	Shake	r 3	200)	4.0	0
Plastic Viscos	ity (cp)		@ 150 °F	13		13	Dir. BHA	5.000	2.	.000	14	1'	59'	NOV Dryers		170)	4.0	0
Yield Point (lb.	/100 ft²)		T0 = 5	10		11		CAS	ING &	HOLE D	ATA								
Gel Strength (lb/100 ft²)	10	0 sec/10 min	7/11		7/10	Casing	OD (in.) ID	(in.)	De	pth 7	Гор	Centrifuç	ge 1				
Gel Strength (lb/100 ft ²)		30 min	12		11	Riser							VOLUN	ME ACC	COUN	TING	(bbl	s)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	6.0		6.0	Surface	10 3/4			3,0	18'	0'	Prev. 7	Total or	Loca	tion	34	31.0
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	.875	11,9	974'	0'	Transfe	erred In	(+)/Ou	ut(-)		
Retort Solids (Content			19%		19%									Oil A	Added	l (+)		0.0
Corrected Soli	ds (vol%)			16.9%		17%									Barite /	Added	l (+)		0.0
Retort Oil Con	tent			60%		61%	Oper	n Hole Siz	e 6.	.750	18,5	577'		Other P	roduct l	Jsage	(+)		0.0
Retort Water (Content			21%		20%	ANI	NULAR G	EOME	TRY &	RHE	DLOGY		,	Water /	Added	l (+)		
O/W Ratio				74:26		75:25	annular		neas.	veloc	-		CD	Le	eft on C	uttings	s (-)		0.0
Whole Mud Cl	nlorides (r	ng/L)		51,000		51,000	section) (depth	ft/m	in	reg lb	/gal		Но	le Los	ses	-	-50.0
Water Phase	Salinity (p	pm)		275,793		285,644									Cent/	Evap/	Trip	-	-25.2
Whole Mud Al	kalinity, P	om		1.5		1.9	6.875x4.	.5	59'	0.0)	lam 1	1.34	Est. 7	Total or	Loca	tion_	33	855.8
Excess Lime (lb/bbl)			2 ppb		2.5 ppb	6.875x5	5	200'	0.0)	lam 1	1.34	Est. Los	ses/Ga	ins (-)	/(+)		0.0
Electrical Stab	ility (volts)		485 v		543 v								BIT	HYDR	AULIC	S D	ATA	
Average Spec	ific Gravit	y of Solid	ds	3.35		3.33								Bit H.S.I.	Bit /	1 A	Nozzle	es (32	!nds)
Percent Low 0	Fravity So	lids		7.3%		7.5%								0.00	ps	si	18	18	18
ppb Low Grav	ity Solids			60 ppb		62 ppb								Bit Impact	Nozz Veloc		18	18	18
Percent Barite				9.6%		9.5%								Force	(ft/se	-			
ppb Barite				138 ppb		136 ppb	BIT D	ATA	Ma	anuf./Ty	ре	GTD6	4M	0 lbs	0				
Estimated Tot	al LCM in	System	ppb				Size	Depth In	n H	ours	Foot	age RO	P ft/hr	Motor/M	WD	Calc.	Circ.	Press	sure
Sample Taker	в Ву			A.ROMAN	0	M Washburn	6 3/4	18,577	ft	0.0	0	ft #D	IV/0!	psi					
Remarks/Reco	mmandati						Ria Activity:												

OBM RECEIVED: bbls @ \$65.00 /

OBM on surface/ storage 2589bbls

Rig Activity:

In the past 24hrs: Pick up CET-43 DP 3000' and rack back on derrick. Make up BHA Test same on surface and rack back on derrick. Pick up 2 stands, TIH to retrieve Storm Packer, relese same, attempeted to pump on back side. Valves closed, trapping pressure on BOP's Kill line vale and Check Valve. Inside vale broke stem off while attempting to release pressure. Technician arrive on location to release pressure through grease fitting. Replace valve and re-test. TIH, latch on Packer, release same and Circulate BU. POOH with packer and 30stands. Casing pressure150psi Bullhead 30bbls 17ppg. Casng press. Zero. Latch on New BHA and start to TIH. At the time of report: Trip in the hole passing 200'.

Е	ng. 1:	Mi	ke W	ashbı	urn	Er	ng. 2:	Adolfo	A. Roman	WH 1: MIDLAND			WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
F	hone:	3	361-945-577		77	Pł	none:	956-8	21-9994	Phone: 432-686-736		7361	Phone: -				
W 1	P 1	Y E C g G H O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										\$2,040.00	\$356,243.88				
													INCLUDII	NG 3RD PAR	TY CHARGES	\$2,040.00	\$576,806.84

Date 06/06/21	Operator MAGI	NOLIA OIL		Well Name a RAIN	ind No. IIER A-1H S	ST-01	Rig Name an	d No. 18	Report No. Repo	rt #26
	l .	USAGE 8								LATIVE
		1	Previous		Closing	Daily			Cum	
Item	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost		Usage	Cum Cos
SAPP (50)	50# sk	\$44.56	10		10				32	\$1,425.92
PHPA LIQUID (pail)	5 gal	\$41.36	32		32					
EVO-LUBE	gal	\$14.00								
NEW GEL (PREMIUM)										
ALUMINUM TRISTEARATE										
CACL2 (50)	50# sk	\$14.32	56		56				728	\$10,424.96
LIME (50)	50# sk	\$5.00	50		50				790	
OPTI - G	50# sk	\$30.59	120		120				220	\$6,729.80
BENTONE 38 (50)	50# sk	\$163.94	40		40				65	\$10,656.10
BENTONE 910 (50)	50# sk	\$59.40							15	\$891.00
BENTONE 990 (50)	50# sk	\$83.59	40		40				74	. ,
OPTI - MUL	gal	\$10.75	110		110				495	. ,
OPTI - WET	gal	\$8.34	275		275				495	. ,
NEW PHALT	50# sk	\$38.72	40		40		1		120	<u> </u>
OIL SORB (25)	25# sk	\$4.75	19		19		1		21	\$99.75
	+						<u> </u>			
	+									
NEW CARB (M)	50# sk	\$5.25	60		60				210	\$1,102.50
CYBERSEAL	25# sk	\$21.47								, , , , , , , , , , , , , , , , , , , ,
MAGMAFIBER F (25)	25# sk	\$28.05	48		48				144	\$4,039.20
MAGMAFIBER R (30)	30# sk	\$28.05								
VARISEAL										
FIBER PLUG	30# sk	\$30.37								
NUT PLUG M (50)	50# sk	\$12.04	25		25				9	\$108.36
MICA F (50)	50# sk	\$10.28	40		40					
ODADUITE FINE (50)	50" 1	00444	20		20					
GRAPHITE - FINE (50)	50# sk	\$24.14	80		80					
NEW WATE (SACK BARITE)	100# sk	\$11.50	150		150					
BARITE BULK (100)	100# sk	\$7.00	1800		1800				7101	\$49,705.60
2, 2021 (100)	100 0.1	ψσσ	.000		1000					ψ 10,1 00.00
							ļ			
							ļ			
ODTI DDILL (ODM)		#05.00	0000		0000		1		0.115	#450 === :
OPTI DRILL (OBM)	bbl	\$65.00	2883		2883				2442	\$158,730.00
DISCOUNTED OBM	bbl	\$15.00	462		462				203	\$3,045.00
D.OOOOMILD ODW	551	ψ13.00	702		402				203	ψο,υ -1 υ.υ(
		İ								
		<u> </u>					ļ.,			
ENGINEERING (24 HR)	each	\$990.00				2				\$59,400.00
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00			\$1,800.00
ENGINEERING (MILES)	each	\$1.00							1049	\$1,049.00
										
SCALE TICKET	EVON	¢15.00							18	\$270.00
SCALE FICKET TRUCKING (cwt)	EACH	\$15.00 \$1.98								\$270.00
TRUCKING (cwt) TRUCKING (min)	each each	\$1.98 \$650.00								\$19,289.08
PALLETS (ea)	each	\$12.00							55	
	Cauii	Ψ12.00					1		1 33	Ψ000.00
SHRINK WRAP (ea)	each	\$12.00							53	\$636.00
	each		ub-Total \$2						53	\$636.00

Date	Operator			Well Name a	ind No.		Rig Name an	d No.	Report No.	
06/06/21	MAGI	NOLIA OIL	& GAS	RAIN	IIER A-1H	ST-01	24	48	Repo	rt #26
	DAILY	USAGE 8	k COST						CUMUI	LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cos
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	140		140				260	\$10,855.0
TURBO CHEM SYNSEAL	25# sk	\$85.00	196		196					
DBM-D 5_12_21	gal	\$2.31								\$32,349.2
DBM-D 5_15_21	gal	\$2.35								\$16,920.0
OBM-D 5/16/21	gal	\$2.35								\$33,840.0
OBM-D 5/17/21 OBM-D 5/19/21	gal	\$2.31 \$2.33								\$16,632.0 \$33,558.9
OBM-D 5/24/21	gal	\$2.33								\$16,132.4
Mud Diesel 5/27/21	gal gal	\$2.24								\$16,132.4
Diesel Received 5/29/21	gal	\$2.25								\$16,200.0
Diesel Received 5/29/21	gal	\$2.25								\$16,200.0
Diesel Received 5/31/21	gal	\$2.25			9220					\$11,675.2
Diesel Received 6/2/21	gal	\$2.38			6400					
				<u> </u>			1	l	*-	
									\$220,	562.96
	-					1		. '		
				Party \$576						

OUTSOURCE FLUID SOLUTIONS LLC.

 Operator:
 MAGNOLIA OIL & GAS

 Rig Name:
 248

 Well Name:
 RAINIER A-1H ST-01

FLUID VOLUME ACCOUNTING

H

	Date	E// //01			WEEK 1																		1			WEEK !			
	Date	=14.410.4										WEEK 2							WEEK 3							WEEK 4			
		5/14/21	5/15/21	5/16/21	5/17/21	5/18/21	5/19/21	5/20/21	5/21/21	5/22/21	5/23/21	5/24/21	5/25/21	5/26/21	5/27/21	5/28/21	5/29/21	5/30/21	5/31/21	6/1/21	6/2/21	6/3/21	6/4/21	6/5/21	6/6/21	6/7/21	6/8/21	6/9/21	6/10/21
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4				
Grand	Starting Depth	108	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219	17,666	18,440	18,577	18,577	18,577	18,577			1
Totals	Ending Depth	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219	17,666	18,440	18,577	18,577	18,577	18,577				
19,012	Footage Drilled	2,925	1,471	3,176	1,941	1,716	640	8	-	538	17	-	234	19	475	_	1,866	903	725	1,447	774	137	-	-	-	-	_	-	-
	New Hole Vol.	277	139	301	184	163	61	1	_	24	1	_	10	1	21	_	83	40	32	64	34	6	-	_	_		_		-
	Starting System Volume	2,525	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,178	3,612	3,441	3,220	3,345	3,431	3,356	3,356	3,356	3,356
	Chemical Additions	_,0_0	15	14	18	13	9	_,000	_,0.0	15	5	12	10	3	1	-	13	6	12	10	13	4	0,220	-	-	0,000	0,000	0,000	0,000
	Base Fluid Added		38	392	158	214	174	26	4	78	18	101	95	25	11	3	169	229	191	95	86	23	18		- 1				
-,	Barite Increase		13	13	19	217	3	6		- 10	142	59	62	21	14	7	-	10	-	21	28	63	14	-	-				
	Weighted Mud Added			300		479	Ť		407				02		-	250	-	127	788	804	52	-	258	86	-				†
	Slurry Added														-	-	-	-	-	-	-	-	-	-	-				
397	Water Added		60		70	83	37						58	9	-	-	-	-	-	30	50	-	-	-	-				
8	Added for Washout						8								-	-	-	-	-	-	-	-	-	-	-				
6,769	Total Additions		126	719	264	788	231	32	411	93	164	172	225	58	26	260	181	372	991	960	230	91	290	86	-			-	-
,	Surface Losses		3	42	119	105	105	11	10	23	21	12	35	17	_	-	-	25	25	-	25	25	25	-	25				
	Formation Loss		Ü	50	83	92	134	25	73		68	28	14		99	50	554	384	691	386	316	256	140	_	50				
-,	Mud Loss to Cuttings		125	301	191	135	63	1	10	25	1	20		4	19	-	83	40	32	64	34	6	-	-	-				†
	Unrecoverable Volume		17	40	35	.00	45	22	10			24		·	25	-	-	-	-	-	-	-	-	-	-				†
	Centrifuge Losses		4	20	24	15	6			12	7	3	6	6	25	22	50	50	75	76	25	25	-	-	-				1
				1							. 1																		_
5,938	Total Losses	-	149	453	452	346	353	59	93	60	97	68	55	27	168	72	687	499	823	526	401	312	165	-	75	-	-	-	<u> </u>
- 1	Mud Transferred Out																												
3,356	Ending System Volume	2,525	2.502	2.768	2.580	3.022	2.900	2.873	3,191	3.225	3.292	3.396	3.566	3,597	3,455	3.644	3,138	3,011	3.178	3,612	3.441	3,220	3.345	3,431	3.356	3.356	3.356	3,356	3,356
-	Mud Recovered																								1				
i						_																			_				
				C	omment	s:					Co	omment	s:					C	omments	s:					C	omments	s:		
		5/14/21	Cleaned ri	g pit, NU B	OP and test	on with ceme ted the sam g BOP at rpt	e. Filled p		5/21/21	spacer and	with good re d 39bbls cen 5bbls, Evap	nent. Lost	to seepage	e while riuni		5/28/21	TIH with ne resume dri		ash and Re	eam from 12	2150 to bot	ttom and	6/4/21		DP, Set stor DP below. (c.				
6,076		5/15/21		ead at 4,504 7bbls and c		l lost to Eva	p 3bbls, Ce	ent 4bbls,	5/22/21	Mud lost to	cuttings 24	.8bbls, Ev	ap 22.87bb	ls and Cent	t 12bbls	5/29/21	Drilling ahe			nud at 1369	3. lower N	MW to			down DP. S				
		5/16/21				t 20bbls, Sha				Mud lost to and Cent 7	formation o	due to weig	ght up 68.2b	obls, Evap 2	20.5bbls		Drilled ahe			creased to	20fph. Cire	culate and	OBM from Mud Cooler, transfer same t late and 6/6/21 Pull Storm packer, Casing press 150ps hole, Casing press Zero. Start TIH with I						
		At RPT time change out rot Head. Mud lost to Cutting 191.3 5/17/21 Evap 118.8bbls, Cent 24bbls, Shakers 35bbls and Seepage 83bbls									Previous wo				vap	5/31/21	Stage in th and cut mv w/370gpm	v down to 1	10.1ppg. w/	d, 100bbl/hr 340gpm los			6/7/21						
		5/18/21 Mud Lost to Cuttings 135bbls, Evap 104.6bbls, Cent 15bbls a Seepage 91.8bbls					bbls and			Seepage 1 2nd sidetra		ent 6bbls a	nd Evap 35	5.2bbls.		Drilling ahe			ng mud, 20k	obls /hr. Po	ump	6/8/21							
		5/19/21 Mud Lost to Cuttings 63bbls, Evap 104.6bbls, Cent 6bbls, Shakers 18bbls, Rotating Head 27bbls and seepage 133.8bbls						5/26/21	Mud lost to	Cuttings 3.	4bbls, Cer	nt 6bbls and	d Evap 17.2	bbls		Drilling ahe Resume dr		ite Well con	trol Issues,	60bbl influ	JX .	6/9/21							
		5/20/21	Mud Lost t Seepage 2		1bbl, Evap	10.8bbls, Ti	ripping 22b	bls and		Drilled Side BhA.	e track to 12	725'/ Circ	ulate and P	OOH to lay	down	6/3/21		BHA and		l and High t . Lay down			6/10/21						

OUTSOURCE FLUID SOLUTIONS LLC.

0.3°

200' TVD

Operator MAGI	NOLIA (OII & G	249	Contractor	TERSO) N	County / Parish /	Block		Engineer S	Start Date 5/09/21	24 hr	ftg.		Drilled [77 ft
Well Name and No.				Rig Name ar		-	State			Spud Date			ent ROP		Activity	10,5	
	NIER A-	1H ST-	01		248			EXAS			5/13/21		0 ft/hr			TI	
Report for	rrison/	lames	Dver	Report for	ol Pusl	her	Field / OCS-G #	DINGS	•	Fluid Type	ОВМ	Circu	lating Rate 0 gpm		Circulat	_	ssure Sİ
O.III TIG			TY SPECIF				MUD VO				UMP #1		PUMP #2	!	RISI		OOSTER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		75 bbl	Liner S	ize 4	.75 Line		.75	Liner		4.75
8.5-12	5-25	8-12	>400	±280K	<10 <15	<8	In Hole	8	39 bbl	Stroke	Э	12 St	roke	12	Stro	ke	12
				6/6/21		6/5/21	Active	7	81 bbl	bbl/st	k 0.	0625 bl	ol/stk 0.0	0625	bbl/	stk	0.0625
Time Sample	Taken			2:00		13:00	Storage	e <u>1</u> 7	742 bbl	stk/mi	in	0 st	k/min	0	stk/r	min	
Sample Locati	on			Suction		suction	Tot. on Loc	cation 33	356 bbl	gal/mi	in	0 ga	ıl/min	0	gal/r	min	0
Flowline Temp	erature °F	<u> </u>						PHHP =	0		CIRCU	LATION D	ATA		n = 0	.646	K = 208.29
Depth (ft)				18,577'		18,577'	Bit	Depth =	200 '		Was	hout = 0%		Pump	Efficie	ency =	95%
Mud Weight (p	ppg)			11.3		11.3	Drill String	Volur	ne to Bit	1.4 bl	bl S	trokes To B	it		Time T	o Bit	
Funnel Vis (se	c/qt)		@ 75 °F	51		49	Disp.	Bottoms	Up Vol.	4.6 bl	bl Bot	tomsUp Stk	S	Botto	msUp	Time	
600 rpm				36		37	3.2 bbl	Total	Circ.Vol.	781.0 I	bbl T	otalCirc.Stk	S	Tota	l Circ.	Time	
300 rpm				23		24		DRILLI	NG AS	SEMBLY	DATA		8	OLIDS	S CON	NTRO	L
200 rpm				19		17	Tubulars	OD (in.) ID	(in.)	Length	Тор	Unit		Scre	ens	Hours
100 rpm				13		13	Drill Pipe	4.500	3	.826	59'	0'	Shake	r 1	20	0	4.0
6 rpm				7		7	HWDP	4.500	3	.000		59'	Shake	r 2	20	0	4.0
3 rpm				6		6	DP/Ream/Ag	4.500	3	.826		59'	Shake	r 3	20	0	4.0
Plastic Viscosi	ity (cp)		@ 150 °F	13		13	Dir. BHA	5.000	2	.000	141'	59'	NOV Dr	yers	17	0	4.0
Yield Point (lb/	/100 ft²)		T0 = 5	10		11		CAS	ING &	HOLE D	ATA						
Gel Strength (lb/100 ft²)	10	sec/10 min	7/11		7/10	Casing	OD (in.) ID	(in.)	Depth	Тор	Centrifu	ge 1			
Gel Strength (lb/100 ft ²)		30 min	12		11	Riser						VOLU	ME AC	COUN	NTING	(bbls)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	6.0		6.0	Surface	10 3/4			3,018'	0'	Prev.	Total o	n Loca	ation	3431
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6	.875	11,974'	0'	Transf	erred li	n(+)/O	out(-)	
Retort Solids (Content			19%		19%								Oil	Adde	d (+)	0
Corrected Soli	ds (vol%)			16.9%		17%								Barite	Adde	d (+)	0.
Retort Oil Con	tent			60%		61%	Oper	n Hole Siz	ze 6	.750	18,577'		Other P	roduct	Usag	e (+)	0.
Retort Water (Content			21%		20%	ANI	NULAR (SEOME	TRY & R	RHEOLO	GY		Water	Adde	d (+)	
O/W Ratio				74:26		75:25	annulai		neas.	veloci	-		Le	eft on C	Cutting	gs (-)	0.
Whole Mud Ch	nlorides (n	ng/L)		51,000		51,000	section	1	depth	ft/mir	n reg	lb/gal		Н	ole Lo	sses	-50
Water Phase	Salinity (p	pm)		275,793		285,644								Cent	/Evap	/Trip	-25
Whole Mud Al	kalinity, P	om		1.5		1.9	6.875x4	.5	59'	0.0	lam	11.34	Est.	Total o	n Loca	ation	3355
Excess Lime (lb/bbl)			2 ppb		2.5 ppb	6.875x5	5	200'	0.0	lam	11.34	Est. Los	sses/G	ains (-	·)/(+)	0.
Electrical Stab	ility (volts)		485 v		543 v							ВІТ	HYDR	AULI	CS D	ATA
Average Spec	ific Gravit	y of Solids	S	3.35		3.33							Bit H.S.I.	Bit	ΔΡ	Nozzl	es (32nd:
Percent Low G	Gravity So	lids		7.3%		7.5%							0.00	p	osi	18	18 18
ppb Low Grav	ity Solids			60 ppb		62 ppb							Bit Impact	Noz Velc		18	18 18
Percent Barite	!			9.6%		9.5%			1				Force	(ft/s	-		
ppb Barite				138 ppb		136 ppb	BIT D	ATA	M	anuf./Typ	e (GTD64M	0 lbs	C)		
Estimated Total	al LCM in	System	ppb				Size	Depth I	n H	ours	Footage	ROP ft/h	r Motor/M	IWD	Calc.	Circ.	Pressur
Sample Taker	Ву			A.ROMAN	0	M Washburn	6 3/4	18,577	ft	0.0	0 ft	#DIV/0!	psi	İ			
Remarks/Reco	mmendati	ons:					Rig Activity:										

OBM RECEIVED: bbls @ \$65.00 /

OBM on surface/ storage 2589bbls

In the past 24hrs: Pick up CET-43 DP 3000' and rack back on derrick. Make up BHA Test same on surface and rack back on derrick. Pick up 2 stands, TIH to retrieve Storm Packer, relese same, attempeted to pump on back side. Valves closed, trapping pressure on BOP's Kill line vale and Check Valve. Inside vale broke stem off while attempting to release pressure. Technician arrive on location to release pressure through grease fitting. Replace valve and re-test. TIH, latch on Packer, release same and Circulate BU. POOH with packer and 30stands. Casing pressure150psi Bullhead 30bbls 17ppg. Casng press. Zero. Latch on New BHA and start to TIH. At the time of report: Trip in the hole passing 200'.

Е	ng. 1:	Mi	ke W	ashbı	urn	Er	ng. 2:	Adolfo	A. Roman	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
F	hone:	30	61-94	5-57	77	Pł	none:	956-8	321-9994	Phone:	432-686-7361	Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be		o elects, however	, no representation	nas been prepared on is made as to the	\$2,040.00	\$356,243.88
												INCLUDI	NG 3RD PAR	TY CHARGES	\$2,040.00	\$576,806.84

Date 06/06/21	Operator MAGI	NOLIA OIL		Well Name a RAIN	ind No. IIER A-1H S	ST-01	Rig Name an	d No. 18	Report No. Repo	rt #26
	l .	USAGE 8								LATIVE
		1	Previous		Closing	Daily			Cum	
Item	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost		Usage	Cum Cos
SAPP (50)	50# sk	\$44.56	10		10				32	\$1,425.92
PHPA LIQUID (pail)	5 gal	\$41.36	32		32					
EVO-LUBE	gal	\$14.00								
NEW GEL (PREMIUM)										
ALUMINUM TRISTEARATE										
CACL2 (50)	50# sk	\$14.32	56		56				728	\$10,424.96
LIME (50)	50# sk	\$5.00	50		50				790	
OPTI - G	50# sk	\$30.59	120		120				220	\$6,729.80
BENTONE 38 (50)	50# sk	\$163.94	40		40				65	\$10,656.10
BENTONE 910 (50)	50# sk	\$59.40							15	\$891.00
BENTONE 990 (50)	50# sk	\$83.59	40		40				74	. ,
OPTI - MUL	gal	\$10.75	110		110				495	. ,
OPTI - WET	gal	\$8.34	275		275				495	. ,
NEW PHALT	50# sk	\$38.72	40		40		1		120	<u> </u>
OIL SORB (25)	25# sk	\$4.75	19		19		1		21	\$99.75
	+						<u> </u>			
	+									
NEW CARB (M)	50# sk	\$5.25	60		60				210	\$1,102.50
CYBERSEAL	25# sk	\$21.47								, , , , , , , , , , , , , , , , , , , ,
MAGMAFIBER F (25)	25# sk	\$28.05	48		48				144	\$4,039.20
MAGMAFIBER R (30)	30# sk	\$28.05								
VARISEAL										
FIBER PLUG	30# sk	\$30.37								
NUT PLUG M (50)	50# sk	\$12.04	25		25				9	\$108.36
MICA F (50)	50# sk	\$10.28	40		40					
ODADUITE ENE (50)	50" 1	00444	20		20					
GRAPHITE - FINE (50)	50# sk	\$24.14	80		80					
NEW WATE (SACK BARITE)	100# sk	\$11.50	150		150					
BARITE BULK (100)	100# sk	\$7.00	1800		1800				7101	\$49,705.60
2, 2021 (100)	100 0.1	ψσσ	.000		1000					ψ 10,1 00.00
							ļ			
							ļ			
ODTI DDILL (ODM)		#05.00	0000		0000		1		0.115	#450 === :
OPTI DRILL (OBM)	bbl	\$65.00	2883		2883				2442	\$158,730.00
DISCOUNTED OBM	bbl	\$15.00	462		462				203	\$3,045.00
D.OOOOTTI ED ODIVI	551	ψ13.00	702		402				203	ψο,υ -1 υ.υ(
		İ								
		<u> </u>					ļ.,			
ENGINEERING (24 HR)	each	\$990.00				2				\$59,400.00
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00			\$1,800.00
ENGINEERING (MILES)	each	\$1.00							1049	\$1,049.00
										
SCALE TICKET	EVON	¢15.00							18	\$270.00
SCALE FICKET TRUCKING (cwt)	EACH	\$15.00 \$1.98								\$270.00
TRUCKING (cwt) TRUCKING (min)	each each	\$1.98 \$650.00								\$19,289.08
PALLETS (ea)	each	\$12.00							55	
	Cauii	Ψ12.00					1		1 33	Ψ000.00
SHRINK WRAP (ea)	each	\$12.00							53	\$636.00
	each		ub-Total \$2						53	\$636.00

Date	Operator			Well Name a	ind No.		Rig Name an	d No.	Report No.	
06/06/21	MAGI	NOLIA OIL	& GAS	RAIN	IIER A-1H	ST-01	24	48	Repo	rt #26
	DAILY	USAGE 8	k COST						CUMUI	LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cos
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	140		140				260	\$10,855.0
TURBO CHEM SYNSEAL	25# sk	\$85.00	196		196					
DBM-D 5_12_21	gal	\$2.31								\$32,349.2
DBM-D 5_15_21	gal	\$2.35								\$16,920.0
OBM-D 5/16/21	gal	\$2.35								\$33,840.0
OBM-D 5/17/21 OBM-D 5/19/21	gal	\$2.31 \$2.33								\$16,632.0 \$33,558.9
OBM-D 5/24/21	gal	\$2.33								\$16,132.4
Mud Diesel 5/27/21	gal gal	\$2.24								\$16,132.4
Diesel Received 5/29/21	gal	\$2.25								\$16,200.0
Diesel Received 5/29/21	gal	\$2.25								\$16,200.0
Diesel Received 5/31/21	gal	\$2.25			9220					\$11,675.2
Diesel Received 6/2/21	gal	\$2.38			6400					
				<u> </u>			1	l	*-	
									\$220,	562.96
	-					1		. '		
				Party \$576						

OUTSOURCE FLUID SOLUTIONS LLC.

 Operator:
 MAGNOLIA OIL & GAS

 Rig Name:
 248

 Well Name:
 RAINIER A-1H ST-01

FLUID VOLUME ACCOUNTING

H

	Date	E// //01			WEEK 1																		1			WEEK !			
	Date	=14.410.4										WEEK 2							WEEK 3							WEEK 4			
		5/14/21	5/15/21	5/16/21	5/17/21	5/18/21	5/19/21	5/20/21	5/21/21	5/22/21	5/23/21	5/24/21	5/25/21	5/26/21	5/27/21	5/28/21	5/29/21	5/30/21	5/31/21	6/1/21	6/2/21	6/3/21	6/4/21	6/5/21	6/6/21	6/7/21	6/8/21	6/9/21	6/10/21
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4				
Grand	Starting Depth	108	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219	17,666	18,440	18,577	18,577	18,577	18,577			1
Totals	Ending Depth	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219	17,666	18,440	18,577	18,577	18,577	18,577				
19,012	Footage Drilled	2,925	1,471	3,176	1,941	1,716	640	8	-	538	17	-	234	19	475	_	1,866	903	725	1,447	774	137	-	-	-	-	_	-	-
	New Hole Vol.	277	139	301	184	163	61	1	_	24	1	_	10	1	21	_	83	40	32	64	34	6	-	_	_		_		-
	Starting System Volume	2,525	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,178	3,612	3,441	3,220	3,345	3,431	3,356	3,356	3,356	3,356
	Chemical Additions	_,0_0	15	14	18	13	9	_,000	_,0.0	15	5	12	10	3	1	-	13	6	12	10	13	4	0,220	-	-	0,000	0,000	0,000	0,000
	Base Fluid Added		38	392	158	214	174	26	4	78	18	101	95	25	11	3	169	229	191	95	86	23	18		- 1				
-,	Barite Increase		13	13	19	217	3	6		- 10	142	59	62	21	14	7	-	10	-	21	28	63	14	-	-				
	Weighted Mud Added			300		479	Ť		407				02		-	250	-	127	788	804	52	-	258	86	-				†
	Slurry Added														-	-	-	-	-	-	-	-	-	-	-				
397	Water Added		60		70	83	37						58	9	-	-	-	-	-	30	50	-	-	-	-				
8	Added for Washout						8								-	-	-	-	-	-	-	-	-	-	-				
6,769	Total Additions		126	719	264	788	231	32	411	93	164	172	225	58	26	260	181	372	991	960	230	91	290	86	-			-	-
,	Surface Losses		3	42	119	105	105	11	10	23	21	12	35	17	_	-	-	25	25	-	25	25	25	-	25				
	Formation Loss		Ü	50	83	92	134	25	73		68	28	14		99	50	554	384	691	386	316	256	140	_	50				
-,	Mud Loss to Cuttings		125	301	191	135	63	1	10	25	1	20		4	19	-	83	40	32	64	34	6	-	-	-				†
	Unrecoverable Volume		17	40	35	.00	45	22	10			24		·	25	-	-	-	-	-	-	-	-	-	-				†
	Centrifuge Losses		4	20	24	15	6			12	7	3	6	6	25	22	50	50	75	76	25	25	-	-	-				1
				1							. 1																		_
5,938	Total Losses	-	149	453	452	346	353	59	93	60	97	68	55	27	168	72	687	499	823	526	401	312	165	-	75	-	-	-	<u> </u>
- 1	Mud Transferred Out																												
3,356	Ending System Volume	2,525	2.502	2.768	2.580	3.022	2.900	2.873	3,191	3.225	3.292	3.396	3.566	3,597	3,455	3.644	3,138	3,011	3.178	3,612	3.441	3,220	3.345	3,431	3.356	3.356	3.356	3,356	3,356
-	Mud Recovered																								1				
i						_																			_				
				C	omment	s:					Co	omment	s:					C	omments	s:					C	omments	s:		
		5/14/21	Cleaned ri	g pit, NU B	OP and test	on with ceme ted the sam g BOP at rpt	e. Filled p		5/21/21	spacer and	with good re d 39bbls cen 5bbls, Evap	nent. Lost	to seepage	e while riuni		5/28/21	TIH with ne resume dri		ash and Re	eam from 12	2150 to bot	ttom and	6/4/21		DP, Set stor DP below. (c.				
6,076		5/15/21		ead at 4,504 7bbls and c		l lost to Eva	p 3bbls, Ce	ent 4bbls,	5/22/21	Mud lost to	cuttings 24	.8bbls, Ev	ap 22.87bb	ls and Cent	t 12bbls	5/29/21	Drilling ahe			nud at 1369	3. lower N	MW to			down DP. S				
		5/16/21				t 20bbls, Sha				Mud lost to and Cent 7	formation o	due to weig	ght up 68.2t	obls, Evap 2	20.5bbls		Drilled ahe			creased to	20fph. Cire	culate and	OBM from Mud Cooler, transfer same t late and 6/6/21 Pull Storm packer, Casing press 150ps hole, Casing press Zero. Start TIH with I						
		At RPT time change out rot Head. Mud lost to Cutting 191.3 5/17/21 Evap 118.8bbls, Cent 24bbls, Shakers 35bbls and Seepage 83bbls									Previous wo				vap	5/31/21	Stage in th and cut mv w/370gpm	v down to 1	10.1ppg. w/	d, 100bbl/hr 340gpm los			6/7/21						
		5/18/21 Mud Lost to Cuttings 135bbls, Evap 104.6bbls, Cent 15bbls a Seepage 91.8bbls					bbls and			Seepage 1 2nd sidetra		ent 6bbls a	nd Evap 35	5.2bbls.		Drilling ahe			ng mud, 20k	obls /hr. Po	ump	6/8/21							
		5/19/21 Mud Lost to Cuttings 63bbls, Evap 104.6bbls, Cent 6bbls, Shakers 18bbls, Rotating Head 27bbls and seepage 133.8bbls						5/26/21	Mud lost to	Cuttings 3.	4bbls, Cer	nt 6bbls and	d Evap 17.2	bbls		Drilling ahe Resume dr		ite Well con	trol Issues,	60bbl influ	JX .	6/9/21							
		5/20/21	Mud Lost t Seepage 2		1bbl, Evap	10.8bbls, Ti	ripping 22b	bls and		Drilled Side BhA.	e track to 12	725'/ Circ	ulate and P	OOH to lay	down	6/3/21		BHA and		l and High t . Lay down			6/10/21						

110 Old Market St. St Martinville, LA 70582

4.2° 10,714' TVD

Operator MAGN	IOLIA O	IL &	GAS	Contractor PA	TERSO	ON_	County / Paris	YETTE		_	r Start Date 05/09/2	1	4 hr ftg			Drilled [Depth 18,57	7 ft	
Well Name and No.	IIER A-1	H S	T-01	Rig Name a	nd No. 248		State T	EXAS		Spud Dat	ote 05/13/2		Current	ROP		Activity P/	U ne	w D	Р
Report for Jim Ha i	rricon/ I	amo	e Dvor	Report for	ol Pusi	oor	Field / OSC-G	# DINGS		Fluid Typ	OBM	C	Circulati	ing Rate		Circulat	ing Pres	sure	
Jilli Hai				CIFICATION		ICI		DLUME (E		F	PUMP #1			PUMP #2		RIS	ER BC	OST	ER
Weight	PV	YP	-	CaCl2	GELS	HTHP	In Pits	•	5 bbl	Liner S		-	Liner		.75	Liner		4.7	
8.5-12	5-25	8-1:	2 >400	±280K	<10 <15	<8	In Hole	e 77	5 bbl	Strok	ке	12	Stro	ke ´	12	Stro	ke	12	2
	MU	JD PR	OPERTIES	_ ;			Active	12	08 bbl	bbl/s	stk 0.0	0625	bbl/s	stk 0.0	625	bbl/	stk	0.06	325
Time Sample	Taken			2:00		15:00	Storag	e <u>17</u>	42 bbl	stk/m	nin		stk/n	min		stk/ı	min		
Sample Locati	on			Suction		suction	Tot. on Loc	cation 32	92 bbl	gal/m	nin		gal/n	min		gal/ı	min		
Flowline Temp	erature °F	-					Mud Wt. =	11.3 P	/=13	YP=	10 C	IRCUL/	ATION	N DATA		n = 0	.646 I	< = 2	08.3
Depth (ft)				18,577'		18,577'	Bit D	epth = 10	,901 '		Wasl	nout =			Pump	Efficie	ency =	95%	
Mud Weight (p	pg)			11.3		11.0	Drill String	Volum	e to Bit	148.0	bbl S	trokes T	o Bit		-	Time T	o Bit		
Funnel Vis (se	c/qt)		@ 75	°F 51		49	Disp.	Bottoms	Jp Vol.	285.4	bbl Bott	tomsUp	Stks		Bottor	msUp	Time		
600 rpm				36		35	67.0 bbl	TotalC	irc.Vol.	1208.5	5 bbl T	otalCirc.	Stks		Total	Circ.	Time		
300 rpm				23		22		DRILLIN	IG ASS	SEMBL	Y DATA			S	OLIDS	S COI	NTROL	-	
200 rpm				19		18	Tubulars	OD (in.)	ID	(in.)	Length	Тој	р	Unit		Scre	ens	Ηοι	ırs
100 rpm				13		13	Drill Pipe	4.500	3.8	326	932'			Shake	r 1	20	0		
6 rpm				7		6	HWDP	4.500	3.0	000	1,006'	932	2'	Shake	r 2	20	0		
3 rpm				6		5	P/Ream/Ag	4.500	3.8	326	8,822'	1,93	88'	Shake	r 3	20	0		
Plastic Viscosi	ity (cp)		@ 150	°F 13		13	Dir. BHA	5.000	2.0	000	141'	10,70	60'	NOV Dr	yers	17	0		
Yield Point (lb/	/100 ft²)		T0 =	5 10		9		CASI	NG & I	HOLE [DATA								
Gel Strength (lb/100 ft²)	1	10 sec / 10 r	in 7/11		5/9	Casing	OD (in.)	ID	(in.)	Depth	Top	р	Centrifu	ge 1				
Gel Strength (lb/100 ft2)	ı	30 n	in 12		11	Riser							VOLU	ME AC	COU	NTING	(bbl	s)
HTHP Filtrate	(cm/30 mi	in)	@ 250	°F 6.0		6.0	Surface	10 3/4			3,018'			Prev.	Total o	n Loc	ation	33	55.8
HTHP Cake TI	hickness (32nds	s)	2.0		2.0	Int. Csg.	7 5/8	6.8	375	11,974'			Transfe	erred li	n(+)/C	out(-)		
Retort Solids (Content			19%		17.5%									Oil	Adde	d (+)		
Corrected Soli	ds (vol%)			16.9%		15.3%									Barite	Adde	d (+)		
Retort Oil Con	tent			60%		59.5%	Oper	Hole Size	e 6.7	750	18,577'			Other P	roduct	Usag	e (+)		
Retort Water (Content			21%		23%	AN	NULAR G	EOME	TRY &	RHEOL	OGY			Water	Adde	d (+)		
O/W Ratio				74:26		72:28	annula	ı u	epth	veloc	-			Le	ft on C	Cutting	js (-)		
Whole Mud Ch	nlorides (m	ng/L)		51,000		55,000	section	n		ft/mi	in reg	lb/g	aı			ole Lo			
Water Phase S	,			275,793		272,715										/Evap	·		
Whole Mud Al	kalinity, Po	om		1.5		2.0	6.875x4		932'		lam			Est. 7	Total o	n Loc	ation _		55.8
Excess Lime (2 ppb		2.6 ppb	6.875x4		938'		lam		-	Est. Los					63.8
Electrical Stab				485 v		495 v	6.875x4		,760'		lam		F		HYDR	1			
Average Spec			olids	3.35		3.29	6.875x	5 10	,901'		lam	11.3	34	Bit H.S.I.	Bit	ΔΡ	Nozzle		
Percent Low G		ids		7.3%		7.1%							_		Noz	l.a		18	18
ppb Low Gravi				60 ppb 9.6%		58 ppb 8.2%							I	Bit Impact Force	Velo	city	18	18	18
Percent Barite				138 ppb		118 ppb	DIT I	DATA	Ma	nuf./Typ	ne G	STD64N	1		(ft/s	ec)			
Estimated Total	al I CM in	System	m	136 ppb		116 ppb	Size	Depth In	-		Footage	ROP		Motor/M	WD	Calc	Circ.	Pros	OIII
Sample Taken		Jysie		A.ROMAN		M Washburn	6 3/4	18,577 f			. Joiage	#DIV		WIGIOI/IVI		Jail.	230		, u1 G
Afternoon Rema		nmend	lations:	CONIAN	<u> </u>	/ Gonduill	Afternoon F	•	ļ			יים ייי	, 5.				_00	P-01	
AIGHIOGH NGHI	arks/recon	mend	auons.				TIH to 59 pick pit, la Blen	with new 190, pick up DP ar ast 2 bbls	BHA, up agi nd run estab ol disc	tator, c in hole blished counted	circulate, to 8701 circulati d OBM w	pump , pump on. Coi ith ligh	25 b 86 b ntinue ter re	o CET 43 obls with a obls 10.2 e to pick eserve me	no retu # mud up DP ud to r	urns. from and mainta	Contir reser run in ain ac	nue to ve rio hole	o g

OUTSOURCE FLUID SOLUTIONS LLC.

94.6°

12,518' TVD

Operator MAGN	NOLIA (OIL & (GAS	Contractor PA1	TERSO	ON	County / Parish /	Block YETTE		-	Start Date)5/09/ 2		24 hr ftg.	0 ft		Drilled [Depth 18,57	77 ft	t
Well Name and No.	NIER A-	1H ST	-01	Rig Name an	d No.		State TE	EXAS		Spud Dat	e)5/13/:		Current RO	ft/hr		Activity	TII	Н	
Report for				Report for			Field / OCS-G #			Fluid Typ	e	C	Circulating I	Rate		Circulat	ing Pres	sure	
Jim Ha	rrison/	James	Dyer	То	ol Pusi	ner	GID	DINGS			OBN	1	28	9 gpm	1	3	,500	ps	i
	MUD	PROPE	RTY SPECIF	ICATION	S		MUD VO	LUME (BB	BL)		PUMP :	#1	PU	JMP #2		RISI	ER BO	OOST	ΓER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	740) bbl	Liner	Size	4.75	Liner Siz	e 4.	75	Liner	Size	4.	75
8.5-12	5-25	8-12	>400	±280K	<10 <15	<8	In Hole	739) bbl	Strol	ke	12	Stroke	1	2	Stro	ke	1	2
				6/7/21		6/6/21	Active	143	1 bbl	bbl/s	stk	0.0625	bbl/stk	0.0	625	bbl/	stk	0.0	625
Time Sample	Taken			2:00		15:00	Storage	161	3 bbl	stk/n	nin	55	stk/min	5	55	stk/r	min		
Sample Location	on			Suction		suction	Tot. on Loc	cation 309	2 bbl	gal/n	nin	144	gal/min	1	44	gal/ı	min	(0
Flowline Temp	erature °F	=		115 °F				PHHP = 589	9		CIRC	CULATION	N DATA			n = 0	.710	K = 13	33.560
Depth (ft)				18,577'		18,577'	Bit D	epth = 17,	500 '		W	ashout = (0%		Pump	Efficie	ency =	95%	ó
Mud Weight (p	pg)			11.2		11.0	Drill String	Volume	to Bit	241.9	bbl	Strokes T	o Bit	3,872		Time 1	Γο Bit	35 ו	min
Funnel Vis (se	c/qt)		@ 100 °F	44		49	Disp.	Bottoms U	p Vol.	449.5	bbl E	BottomsUp	Stks 7	7,195	Botto	msUp	Time	65 ו	min
600 rpm	e Location e Temperature °F ft) eight (ppg) Vis (sec/qt) @ n n n N Viscosity (cp) @ oint (lb/100 ft²) To ength (lb/100 ft²) 10 sec ength (lb/100 ft²) Filtrate (cm/30 min) @ Cake Thickness (32nds) Solids Content ted Solids (vol%) Dil Content Water Content			36		35	103.0 bbl	TotalCir	rc.Vol.	1431.3	3 bbl	TotalCirc.	Stks 2	2,914	Tota	l Circ.	Time	208	min
300 rpm	e Location e Temperature °F ft) eight (ppg) Vis (sec/qt) n n n N Viscosity (cp) oint (lb/100 ft²) rength (lb/100 ft²) Filtrate (cm/30 min) Cake Thickness (32nds) Solids Content red Solids (vol%) Dil Content Water Content			22		22		DRILLING	G ASS	SEMBL	Y DATA	4		s	OLID	S CON	NTRO	L	
200 rpm				16		18	Tubulars	OD (in.)	ID	(in.)	Lengt	th To	р	Unit		Scre	ens	Но	urs
100 rpm				12		13	Drill Pipe	4.500	3.	826	7,53	1' 0'		Shaker	1	20	00	24	4.0
6 rpm				6		6	HWDP	4.500	3.	000	1,006	6' 7,53	31'	Shaker	2	20	00	24	4.0
3 rpm				4		5	DP/Ream/Ag	4.500	3.	826	8,822	2' 8,53	37'	Shaker	. 3	20	00	24	1.0
Plastic Viscosi	ty (cp)		@ 150 °F	14		13	Dir. BHA	5.000	2.	000	141	17,3	59' N	NOV Dry	ers/	17	0	24	1.0
Yield Point (lb/	100 ft²)		T0 = 2	8		9		CASIN	IG & F	HOLE D	ATA								
Gel Strength (b/100 ft²)	10	sec/10 min	6/10		5/9	Casing	OD (in.)	ID	(in.)	Dept	h To	p C	Centrifuç	ge 1			4.	.0
Gel Strength (b/100 ft ²)		30 min	12		11	Riser							VOLUN	IE AC	COUN	NTING	(bbl	ls)
HTHP Filtrate	(cm/30 mi	in)	@ 250 °F	6.0		6.0	Surface	10 3/4			3,018	3' 0'		Prev. T	otal o	n Loc	ation	33	355.8
HTHP Cake T	hickness ((32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875	11,97	'4' 0'		Transfe	erred I	n(+)/C	Out(-)		
Retort Solids C	Content			19%		17.5%									Oil	Adde	d (+)		14.6
Corrected Soli	ds (vol%)			16.8%		15.3%									Barite	Adde	d (+)		0.0
Retort Oil Con	tent			59%		59.5%	Oper	n Hole Size	6.	750	18,57	7'	(Other Pr	roduct	Usag	e (+)		0.0
Retort Water (Content			22%		23%	ANI	NULAR GE	OME	TRY &	RHEOL	_OGY		,	Water	Adde	d (+)		
O/W Ratio				73:27		72:28	annular	r me	eas.	velo	rity fl	ow EC	D	Le	ft on (Cutting	gs (-)		0.0
Whole Mud Ch	nlorides (n	ng/L)		54,000		55,000	section	l l	pth	ft/m	,	eg lb/g			Н	ole Lo	sses	-2	228.4
Water Phase S	Salinity (p	pm)		277,923		272,715				I	I	<u> </u>			Cent	/Evap	/Trip		-50.0
Whole Mud All	kalinity, P	om		1.4		2.0	6.875x4.	.5 7,5	531'	261	.8 tı	urb 11.8	34	Est. T	otal o	n Loc	ation	30	092.0
Excess Lime (I	lb/bbl)			1.8 ppb		2.6 ppb	6.875x4.	.5 8,5	537'	261	.8 tı	urb 11.8	35 E	Est. Los	ses/G	ains (-	-)/(+)		0.0
Electrical Stab	ility (volts))		476 v		495 v	6.875x4.	.5 11,	974'	261	.8 tı	urb 11.8	36	BIT	HYDR	RAULI	CS D	ATA	=
Average Speci	ific Gravit	y of Solid	ls	3.26		3.29	6.75x4.5	5 17,	359'	279	.4 tı	urb 12.1	19 Bi	t H.S.I.	Bit	ΔΡ	Nozzl	es (32	2nds)
Percent Low G	Gravity Sol	lids		8%		7.1%	6.75x5	17,	500'	344	.0 tı	urb 12.2	21	0.18	39	psi	18	18	18
ppb Low Gravi	ty Solids			66 ppb		58 ppb							D;4	Impact	Noz		18	18	18
Percent Barite				8.8%		8.2%								orce	Velo	-			
ppb Barite				126 ppb		118 ppb	BIT D	ATA	Ma	anuf./Ty	ре	GTD64M	1 1	04 lbs	,	2			
Estimated Total	al LCM in	System	ppb				Size	Depth In	Н	ours	Foota	ge ROP	ft/hr N	/lotor/M	WD	Calc.	. Circ.	Pres	sure
Sample Taken	Ву	-	<u> </u>	A.ROMAN	0	M Washburn	6 3/4	18,577 ft	C	0.0	0 ft	#DIV	//0!	psi			1,840	psi	
•	mmendation						Rig Activity:	1											

OBM RECEIVED: bbls @ \$65.00 /

OBM on surface/ storage 2589bbls

In the past 24hrs: Continue to Pick up CET-43 DP from the ground. Circulate BU at the Casing shoe and at 13600'. Recover heavy OBM (13.8ppg Max) Max gas 3000units. Hole losses noted while circulating and TIH. Finish circulation and continue to pick up DP and TIH. Fill up every 3000', Monitor Casing press. whle TIH, steady at 260psi and dropping. Maintain MW in the active system at 11.1+ppg, with additions of Diesel and Centrifuge application, Heavy mud cross to active increaseing density up to 11.5ppg. Increasing our LGS in the system, will treat accordingly. Maintain 17ppg OBM in slug tanks as contingency for well control. Will transfer same to storage once Drilling resumed. At the time of report: Trip in the hole passing 17500'.

_																
E	ng. 1:	Mi	ke W	ashbı	urn	Er	ng. 2:	Adolfo	A. Roman	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
F	hone:	3	61-94	5-577	77	Ph	none:	956-8	21-9994	Phone:	432-686-7361	Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	ecommendation, exp used if the user so ation, and this is a r	elects, however	, no representation	as been prepared on is made as to the	\$2,040.00	\$358,283.88
												INCLUDI	NG 3RD PAR	TY CHARGES	\$3,417.00	\$580,223.84

Date 06/07/21	Operator MAG I	NOLIA OIL		Well Name a RAIN	ind No. IIER A-1H S	ST-01	Rig Name an	d No. 48	Report No. Repo	rt #27
	DAILY	USAGE 8	k COST							LATIVE
			Previous		Closing	Daily	D 11 O 1		Cum	
ltem	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost		Usage	Cum Cost
SAPP (50)	50# sk	\$44.56	10		10				32	\$1,425.92
PHPA LIQUID (pail)	5 gal	\$41.36	32		32					
EVO-LUBE NEW GEL (PREMIUM)	gal	\$14.00								
ALUMINUM TRISTEARATE										
ALOWINOW TRISTEARATE										
CACL2 (50)	50# sk	\$14.32	56		56				728	\$10,424.96
LIME (50)	50# sk	\$5.00	50		50				790	\$3,950.00
OPTI - G	50# sk	\$30.59	120		120				220	\$6,729.80
BENTONE 38 (50)	50# sk	\$163.94	40		40				65	\$10,656.10
BENTONE 910 (50)	50# sk	\$59.40							15	\$891.00
BENTONE 990 (50)	50# sk	\$83.59	40		40				74	\$6,185.66
OPTI - MUL	gal	\$10.75	110		110				495	\$5,321.25
OPTI - WET	gal	\$8.34	275		275				495	
NEW PHALT	50# sk	\$38.72	40		40				120	\$4,646.40
OIL SORB (25)	25# sk	\$4.75	19		19				21	\$99.75
									-	
VEW 0.155										
NEW CARB (M)	50# sk	\$5.25	60		60				210	\$1,102.50
CYBERSEAL	25# sk	\$21.47								# 4.005.55
MAGMAFIBER F (25)	25# sk	\$28.05	48		48				144	\$4,039.20
MAGMAFIBER R (30)	30# sk	\$28.05								
VARISEAL SIDER BLUG	00# -1-	#00.07								
FIBER PLUG	30# sk	\$30.37	0.5		05				-	# 400.00
NUT PLUG M (50)	50# sk	\$12.04	25		25				9	\$108.36
MICA F (50)	50# sk	\$10.28	40		40					
GRAPHITE - FINE (50)	50# sk	\$24.14	80		80					
GRAPHITE - PINE (50)	50# SK	φ 24.14	60		00					
NEW WATE (SACK BARITE)	100# sk	\$11.50	150		150					
BARITE BULK (100)	100# sk	\$7.00	1800		1800				7101	\$49,705.60
D. ((100)	100# 610	ψ1.00	1000		1000				7 101	ψ10,7 00.00
OPTI DRILL (OBM)	bbl	\$65.00	2883		2883				2442	\$158,730.00
•										
DISCOUNTED OBM	bbl	\$15.00	462		462				203	\$3,045.00
					†					
						_				
ENGINEERING (24 HR)	each	\$990.00				2	\$1,980.00		62	\$61,380.00
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00		62	\$1,860.00
ENGINEERING (MILES)	each	\$1.00							1049	\$1,049.00
					<u> </u>					
SCALE TICKET	EACH	\$15.00							18	
	each	\$1.98							9742	\$19,289.08
FRUCKING (cwt)										
TRUCKING (cwt) TRUCKING (min)	each	\$650.00							3	\$1,950.00
TRUCKING (min) PALLETS (ea)	each each	\$12.00							55	\$660.00
TRUCKING (min)								ı		

Date	Operator			Well Name a	and No.		Rig Name ar	d No.	Report No.	
06/07/21	MAGI	NOLIA OIL	& GAS	RAIN	IIER A-1H	ST-01	2	48	Repo	rt #27
	DAILY	USAGE 8	& COST						СПМП	_ATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	140		140				260	\$10,855.00
TURBO CHEM SYNSEAL	25# sk	\$85.00	196		196					
OBM-D 5_12_21	gal	\$2.31								\$32,349.24
OBM-D 5_15_21	gal	\$2.35								\$16,920.00
OBM-D 5/16/21	gal	\$2.35								\$33,840.00
OBM-D 5/17/21	gal	\$2.31								\$16,632.00
OBM-D 5/19/21	gal	\$2.33								\$33,558.99
OBM-D 5/24/21	gal	\$2.24								\$16,132.48
Mud Diesel 5/27/21 Diesel Received 5/29/21	gal	\$2.25					1			\$16,200.00 \$16,200.00
Diesel Received 5/29/21 Diesel Received 5/29/21	gal	\$2.25 \$2.25								\$16,200.00 \$16,200.00
Diesel Received 5/29/21 Diesel Received 5/31/21	gal gal	\$2.25			8608	610	\$1,377.00			\$15,200.00
Diesel Received 6/2/21	gal	\$2.23			6400		\$1,377.00		3601	\$13,032.23
Diesel Nedelved 0/2/21	yaı	Ψ2.30	0400		0400					
							1			
					1		1			
					1		1			
							1			
							1			
		<u> </u>	<u> </u>	<u> </u>		. =				
					Daily S	ub-Total \$	1,377.00		\$221,9	939.96
	Cumi	ulative Tota	I AES & 3rd	Party \$580	,223.84					

 Operator:
 MAGNOLIA OIL & GAS

 Rig Name:
 248

 Well Name:
 RAINIER A-1H ST-01

FLUID VOLUME ACCOUNTING

H

									l.	•																			
					WEEK 1							WEEK 2							WEEK 3							WEEK 4			
	Date	5/14/21	5/15/21	5/16/21	5/17/21	5/18/21	5/19/21	5/20/21	5/21/21	5/22/21	5/23/21	5/24/21	5/25/21	5/26/21	5/27/21	5/28/21	5/29/21	5/30/21	5/31/21	6/1/21	6/2/21	6/3/21	6/4/21	6/5/21	6/6/21	6/7/21	6/8/21	6/9/21	6/10/2
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4			
Grand	Starting Depth	108	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219	17,666	18,440	18,577	18,577	18,577	18,577	18,577		
Totals	Ending Depth	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219	17,666	18,440	18,577	18,577	18,577	18,577	18,577		<u> </u>	
19,012	Footage Drilled	2,925	1,471	3,176	1,941	1,716	640	8	-	538	17	-	234	19	475	-	1,866	903	725	1,447	774	137	-	-	-	-	-	-	-
1,441	New Hole Vol.	277	139	301	184	163	61	1	-	24	1	-	10	1	21	-	83	40	32	64	34	6	-	-	-	-		-	-
	Starting System Volume	2,525	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,178	3,612	3,441	3,220	3,345	3,431	3,356	3,092	3,092	3,092
173	Chemical Additions		15	14	18	13	9			15	5	12	10	3	1	-	13	6	12	10	13	4	-	-	-	-			
	Base Fluid Added		38	392	158	214	174	26	4	78	18	101	95	25	11	3	169	229	191	95	86	23	18	-	-	14			
495	Barite Increase		13	13	19		3	6			142	59	62	21	14	7	-	10	-	21	28	63	14	-	-	-			
3,551	Weighted Mud Added			300		479			407						-	250	-	127	788	804	52	-	258	86	-	-			
-	Slurry Added														-	-	-	-	-	-	-	-	-	-	-	-			
	Water Added		60		70	83	37						58	9	-	-	-	-	-	30	50	-	-	-	-	-		<u> </u>	
	Added for Washout						8								-	-	-	-	-	-	-	-	-	-	-	-			
	Total Additions	-	126	719	264	788	231	32	411	93	164	172	225	58	26	260	181	372	991	960	230	91	290	86	-	14	-	-	-
	Surface Losses		3	42	119	105	105	11	10	23	21	12	35	17	-	-	-	25	25	-	25	25	25	-	25	25			1
-,:-:				50	83	92	134	25	73		68	28	14		99	50	554	384	691	386	316	256	140	-	50	228		<u> </u>	
	Mud Loss to Cuttings		125	301	191	135	63	1		25	1			4	19	-	83	40	32	64	34	6	-	-	-	-		<u> </u>	
	Unrecoverable Volume		17	40	35		45	22	10			24			25	-	-	-	-	-	-	-	-	-	-	-		<u> </u>	
475	Centrifuge Losses		4	20	24	15	6			12	7	3	6	6	25	22	50	50	75	76	25	25	-	-	-	25		Щ	
6,216	Total Losses	-	149	453	452	346	353	59	93	60	97	68	55	27	168	72	687	499	823	526	401	312	165	-	75	278	-	-	-
	Mud Transferred Out																												T
2 002	For diver Constant Values	0.505	0.500	0.700	0.500	0.000	0.000	0.070	0.404	0.005	0.000	0.000	0.500	0.507	0.455	0.044	0.400	0.044	0.470	0.040	0.444	0.000	0.045	0.404	0.050	0.000	0.000	0.000	
3,092	Ending System Volume	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,178	3,612	3,441	3,220	3,345	3,431	3,356	3,092	3,092	3,092	3,092
-	Mud Recovered								, and the second		, and the second						,	·					, and the second						
	1	1			ommont						_	ommont	•-			t -			ommont	•-					_	ommont	•-		

6,076

OUTSOURCE FLUID SOLUTIONS LLC.

	•	Comments:		Comments:		Comments:		Comments:
5/1	4/21	Cemented surface in good fashion with cement back to surface.	5/21/21	Cemented with good returns dumping 10bbls interface, 40bbls spacer and 39bbls cement. Lost to seepage while riunning casing 72.5bbls, Evap 10.1bbls and Interface 10bbls	5/28/21	TIH with new BHA, Wash and Ream from 12150 to bottom and resume drilling.	6/4/21	Lay down DP, Set storm packer 200' below well head, with 30 stnads of DP below. Continue to Lay down DP racked back on the derrick.
5/1	5/21	Drilling ahead at 4,504'MD. Mud lost to Evap 3bbls, Cent 4bbls, Shakers 17bbls and cutting 125bbls	5/22/21	Mud lost to cuttings 24.8bbls, Evap 22.87bbls and Cent 12bbls	5/29/21	Drilling ahead, Well start taking mud at 13693. lower MW to 10.6ppg. Continue drilling'	6/5/21	Finish lay down DP. Start on testing BOP's. Recover 86bbls of OBM from Mud Cooler, transfer same to Active system.
5/1	6/21	Daily Losses: Evap 42bbls. Cent 20bbls, Shakers 40bbls, Seepage 50bbls and Cuttings 300.9. Drilled to 7,680'MD.	5/23/21	Mud lost to formation due to weight up 68.2bbls, Evap 20.5bbls and Cent 7bbls	5/30/21	Drilled ahead, to 15494', ROP decreased to 20fph. Circulate and POOH to change out BHA.	6/6/21	Pull Storm packer, Casing press 150psi. Bullhead 30bbls down hole, Casing prss Zero. Start TIH with new BHA and new DP.
5/1	7/21	At RPT time change out rot Head. Mud lost to Cutting 191.3bbls, Evap 118.8bbls, Cent 24bbls, Shakers 35bbls and Seepage 83bbls	5/24/21	Mud left in Previous well bore 24.34bbls. Mud lost to Evap 12.4bbls, Cent 3bbls and seepage circ kill mud 28bbls	5/31/21	Stage in the hole, well taking mud, 100bbl/hr. Resume drilling and cut mw down to 10.1ppg. w/340gpm losses back to normal, w/370gpm start lossing 30bbl/hr.	6/7/21	Continue to pick up DP from the ground. Circulate BU at the shoe and at 13600'. Hole losses noted. At this time passing 17500'.
5/1	8/21	Mud Lost to Cuttings 135bbls, Evap 104.6bbls, Cent 15bbls and Seepage 91.8bbls	5/25/21	Mud lost to Seepage 13.9bbls, Cent 6bbls and Evap 35.2bbls. Attempting 2nd sidetrack.	6/1/21	Drilling ahead, well continue taking mud, 20bbls /hr. Pump sweep every connection.	6/8/21	
5/1	9/21	Mud Lost to Cuttings 63bbls, Evap 104.6bbls, Cent 6bbls, Shakers 18bbls, Rotating Head 27bbls and seepage 133.8bbls	5/26/21	Mud lost to Cuttings 3.4bbls, Cent 6bbls and Evap 17.2bbls	6/2/21	Drilling ahead, circulate Well control Issues, 60bbl influx . Resume drilling	6/9/21	
5/2	20/21	Mud Lost to Cuttings 1bbl, Evap 10.8bbls, Tripping 22bbls and Seepage 25bbls	5/27/21	Drilled Side track to 12725'/ Circulate and POOH to lay down BhA.	6/3/21	Drilled to 18577'. Lost differential and High torque, POOH to change out BHA and Test BOP's. Lay down DP after spotting Mud cap 17#	6/10/21	

110 Old Market St.

St Martinville, LA 70582

86.1° 12,558' TVD

Operator MAGN	NOLIA (OIL & C	GAS	Contractor PA	TERSO)N	County / Parisi	h / Block		_	Start Date	24 h	r ftg.		Drilled D	epth 8,90)6 ft	 t
Well Name and No	NIER A-	1H ST-	·01	Rig Name ar	nd No.		State T	EXAS		Spud Da	te 05/13/21	Curr	ent ROP 191 ft/h i		Activity	Orilli	ng	
Report for			_	Report for			Field / OSC-G			Fluid Typ		Circu	lating Rate		Circulatir	-		_
Jim Ha					ol Push	ner		DINGS			OBM		338 gpm			860	•	
NA			RTY SPECI		_	LITLID		DLUME (BE	•		PUMP #1	- I	PUMP #2		RISE			
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		bbl	Liner S				.75	Liner			75
8.5-12	5-25	8-12	>400	±280K	<10 <15	<8	In Hole		bbl	Strok				12	Strok			2
Time Cample		UD PRO	PERTIES	2.00		2.20	Active		6 bbl	bbl/s				625	bbl/s		0.00	625
Time Sample				2:00		2:30	Storag			stk/m				64	stk/m			
Sample Locat				Suction		shaker		cation 2772		gal/m		3		68	gal/n			400.6
Flowline Temp	perature °	'F		115 °F		102 °F		11.2 PV:		YP=			ON DATA	<u> </u>	n = 0.			
Depth (ft)				18,577'		18,906'	Bit L	Depth = 18,9			Wash			·	Efficie			
Mud Weight (11.2		11.1	Drill String Disp.	Volume				okes To B			Time T			
Funnel Vis (se	ec/qt)		@ 100 °F	44		43		Bottoms Up				msUp Stk			msUp T		60 1	
600 rpm				36		34	110.7 bbl	TotalCir				talCirc.Stk	<u> </u>	<u> </u>	I Circ. T			min
300 rpm				22		22		DRILLING							S CON			
200 rpm				16		17	Tubulars	,		(in.)	Length	Тор	Unit		Scree		Ho	urs
100 rpm				12		13	Drill Pipe	4.500		326	8,937'		Shake		200			
6 rpm				6		6	HWDP	4.500		000	1,006'	8,937'	Shake		200			
3 rpm				4			P/Ream/Ag	4.500		326	8,822'	9,943'	Shake		200			
Plastic Viscos	,		@ 150 °F	14		12	Dir. BHA	5.000		000	141'	18,765'	NOV Dr	yers	170)		
Yield Point (lb			T0 = 2	8		10		CASIN										
Gel Strength (`	,	sec / 10 min	6/10		5/10	Casing	OD (in.)	ID ((in.)	Depth	Тор	Centrifu					
Gel Strength ((lb/100 ft2	2)	30 min	12		13	Riser						VOLUN	ME AC	COUN	TING	•	
HTHP Filtrate	(cm/30 m	nin)	@ 250 °F	6.0		6.0	Surface	10 3/4			3,018'		Prev. 1	Total o	n Loca	tion	30	092.0
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	375	11,974'		Transfe	erred li	n(+)/O	ut(-)		
Retort Solids	Content			19%		18%								Oil	Added	(+)		
Corrected Sol	ids (vol%)		16.8%		15.8%								Barite	Added	(+)		
Retort Oil Cor	ntent			59%		59%	Open	Hole Size	6.7	750	18,906'		Other Pi	roduct	Usage	(+)		
Retort Water	Content			22%		23%	AN	NULAR GE	OME	TRY &	RHEOLO	GY		Water	Added	(+)		
O/W Ratio				73:27		72:28	annula	ı ue	pth	veloc	-	ECD	Le	ft on C	Cutting	s (-)		
Whole Mud C	hlorides (mg/L)		54,000		55,000	section	n i		ft/mi	in reg	lb/gal		Н	ole Los	ses		
Water Phase	Salinity (p	opm)		277,923		272,715								Cent	/Evap/	Trip		
Whole Mud A	lkalinity, F	Pom		1.4		1.6	6.875x4	1.5 8,9	37'	307.	.0 turb	12.22	Est. 7	Total o	n Loca	tion _	30	092.0
Excess Lime	(lb/bbl)			1.8 ppb		2.1 ppb	6.875x4	1.5 9,9	943'	307.	.0 turb	12.40	Est. Los	ses/G	ains (-)	/(+)	-3	320.1
Electrical Stat	oility (volts	s)		476 v		525 v	6.875x4	1.5 11,9	974'	307.	.0 turb	12.52	BIT	HYDR	AULIC	S DA	ATA	
Average Spec	cific Gravi	ty of Soli	ds	3.26		3.29	6.75x4	.5 18,7	765'	327.	.7 turb	13.25	Bit H.S.I.	Bit	ΔΡ	Nozzle	es (32	2nds)
Percent Low 0	Gravity So	olids		8%		7.3%	6.75x	5 18,9	906'	403.	.4 turb	13.45	0.29	53	psi	18	18	18
ppb Low Grav	rity Solids			66 ppb		60 ppb							Bit Impact	Noz Velc		18	18	18
Percent Barite)			8.8%		8.5%			1				Force	(ft/s	-			
ppb Barite				126 ppb		122 ppb	BIT [DATA	Mai	nuf./Ty	pe G	ΓD64M	144 lbs	7	3			
Estimated Tot	al LCM ir	System					Size	Depth In	Но	urs	Footage	ROP ft/h	motor/M	WD	Calc.	Circ.	Pres	sure
Sample Taker	n By			A.ROMAN		M Washburn	6 3/4	18,577 ft				#DIV/0!			2	2,607	psi	
Afternoon Rem	arks/Reco	mmendat	ions:	_			Afternoon R	Rig Activity:	_		_	_		-	_			_

Currently drilling lateral, samples are 100% AC. Previously when wash and Currently drilling lateral, samples are 100% AC. Previously when wash and ream to 18577 incorporate heavy mud cap spotted in vertical hole section that had migrated into lower down dip open hole section, experience loss of circulation as this heavy mud was circulated up into the vertical section, losses were experienced until this mud was circulated out, and cut back from 15.5 to 11.1 with diesel and centrifuging, no more significant losses were encountered after this.. Prepare 100 bbls sweep / pill with 6 ppb graphite, receiving 8.2# OBM slurry from Newpark, currently raising mud wt to 11.2.

Report #28 TEL: (337) 394-1078

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

85.1°

12,622' TVD

Operator MAG	NOLIA (OIL & (GAS	Contractor PA	TERSO	ON	County / Parish /	YETTE		Engineer S	5/09/21	24 hr	1,154 ft		Drilled Depth		ft
Well Name and No	NIER A-	1H ST	-01	Rig Name ar	nd No.		State T	EXAS		Spud Date	5/13/21		ent ROP 64 ft/hr		Activity Dri	lling	<u> </u>
Report for			-	Report for			Field / OCS-G #			Fluid Type			lating Rate		Circulating P	•	
Jim Ha	arrison/	James	Dyer	To	ol Pusi	ner	GID	DINGS			ОВМ		349 gpn	า	5,86	0 p	si
	MUD	PROPE	RTY SPECIF	ICATION	s		MUD VO	LUME (B	BL)	Р	PUMP #1		PUMP #2		RISER I	300	STER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	67	'6 bbl	Liner S	size 4	.75 Lin	er Size 4	.75	Liner Size		4.75
8.5-12	5-25	8-12	>400	±280K	<10 <15	<8	In Hole	77	'8 bbl	Stroke	e '	12 St	roke	12	Stroke		12
				6/8/21		6/7/21	Active	14	54 bbl	bbl/st	tk 0.0)625 b	ol/stk 0.0	625	bbl/stk	0	.0625
Time Sample	Taken			2:00		2:30	Storage	<u>14</u>	62 bbl	stk/mi	in (67 st	k/min (66	stk/min		
Sample Locati	ion			Suction		shaker	Tot. on Loc	cation 29	16 bbl	gal/mi	in 1	76 ga	al/min 1	73	gal/min		0
Flowline Temp	oerature °l	F		96 °F		102 °F	i	PHHP = 11	93		CIRCUI	ATION D	ATA		n = 0.652	2 K=	183.523
Depth (ft)				19,477'		18,906'	Bit D	Depth = 19	9,731 '		Wash	nout = 0%		Pump	Efficiency	= 95	5%
Mud Weight (p	opg)			11.3		11.1	Drill String	Volum	e to Bit	273.6 l	bbl Si	rokes To B	it 4,380	1	Time To B	t 3	3 min
Funnel Vis (se	ec/qt)		@ 82 °F	46		43	Disp.	Bottoms	Up Vol.	504.3 I	bbl Bott	omsUp Stk	s 8,074	Bottor	nsUp Time	9 6	1 min
600 rpm				33		34	115.2 bbl	TotalC	irc.Vol.	1453.9	bbl To	otalCirc.Stk	s 23,276	Total	Circ. Time	e 17	′5 min
300 rpm				21		22		DRILLIN	IG ASS	SEMBLY	DATA		S	OLIDS	CONTR	OL	
200 rpm				14		17	Tubulars	OD (in.)	ID	(in.)	Length	Тор	Unit		Screens	H	Hours
100 rpm				9		13	Drill Pipe	4.500	3.	826	9,762'	0'	Shake	r 1	200		24.0
6 rpm				6		6	HWDP	4.500	3.	000	1,006'	9,762'	Shake	r 2	200		24.0
3 rpm				5		5	DP/Ream/Ag	4.500	3.	826	8,822'	10,768'	Shake	r 3	200		24.0
Plastic Viscos	ity (cp)		@ 150 °F	12		12	Dir. BHA	5.000	2.	000	141'	19,590'	NOV Dr	yers	170		24.0
Yield Point (lb.	/100 ft²)		T0 = 4	9		10		CASI	NG & F	HOLE D	ATA						
Gel Strength ([lb/100 ft²)	10	0 sec/10 min	6/9		5/10	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifu	ge 1			4.0
Gel Strength ((lb/100 ft ²)	1	30 min	13		13	Riser						VOLUN	IE AC	COUNTIN	IG (b	bls)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	7.0		6.0	Surface	10 3/4			3,018'	0'	Prev.	Γotal o	n Location	1	3092.0
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875	11,974'	0'	Transfe	erred Ir	n(+)/Out(-)	449.0
Retort Solids (Content			19%		18%								Oil	Added (+)	130.2
Corrected Sol	ids (vol%)			17%		15.8%								Barite	Added (+)	52.4
Retort Oil Con	ntent			61%		59%	Oper	n Hole Size	e 6.	750	19,731'		Other P	roduct	Usage (+)	11.0
Retort Water	Content			20%		23%	ANI	NULAR G	EOME	TRY & R	RHEOLO	GY		Water	Added (+)	28.0
O/W Ratio				75:25		72:28	annulai	r m	neas.	veloci	ity flow	ECD	Le	eft on C	Cuttings (-)	-51.1
Whole Mud C	hlorides (r	mg/L)		50,000		55,000	section	n d	epth	ft/mir	n reg	lb/gal		Но	ole Losses	3	-745.7
Water Phase	Salinity (p	pm)		281,620		272,715								Cent	/Evap/Trip)	-50.0
Whole Mud Al	lkalinity, P	om		1.2		1.6	6.875x4	.5 9	,762'	316.6	6 turb	12.21	Est.	Γotal o	n Locatior	ı	2915.9
Excess Lime ((lb/bbl)			1.6 ppb		2.1 ppb	6.875x4	.5 10),768'	316.6	6 turb	12.28	Est. Los	ses/Ga	ains (-)/(+)	0.0
Electrical Stab	oility (volts)		486 v		525 v	6.875x4	.5 11	,974'	316.6	6 turb	12.32	ВІТ	HYDR	AULICS	DAT	4
Average Spec	cific Gravit	y of Solic	ds	3.36		3.29	6.75x4.	5 19	9,590'	337.9	9 turb	13.01	Bit H.S.I.	Bit .	ΔP Noz	zles ((32nds)
Percent Low 0	Gravity So	lids		7.2%		7.3%	6.75x5	19	9,731'	415.9	9 turb	13.09	0.33	57	psi 18	18	3 18
ppb Low Grav	ity Solids			59 ppb		60 ppb							Bit Impact	Noz Velo		18	3 18
Percent Barite)			9.8%		8.5%							Force	(ft/s	- 1		
ppb Barite				140 ppb		122 ppb	BIT D	ATA	Ma	anuf./Typ	pe G	TD64M	154 lbs	75	5		
Estimated Tot	al LCM in	System	ppb				Size	Depth In	Н	ours	Footage	ROP ft/h	r Motor/M	WD	Calc. Cir	c. Pr	essure
Sample Taker	п Ву			A.ROMAN	0	M Washburn	6 3/4	18,577 f	t 1	8.0	1,154 ft	64.1	2,300	psi	5,0	70 p:	зi
Remarks/Reco	mmendati	one:			<u> </u>		Rig Activity:										

OBM RECEIVED: 449bbls @ \$65.00 /

OBM on surface/ storage 2138bbls

In the past 24hrs: Wash and Ream last 500' to bottom; Resume drilling operations on lateral section. Heavy OBM from mud caps incorporated into the active system, unable to isolate due to well control issues. Additions of Diesel and Centrifuge application to maintain MW at 11.2ppg. Blend sweep with 6ppb Graphite and pump 10bbls every connection to slide. Maintain 16ppg OBM in slug tank as contingency for well control. Shut down drilling (19350') for 3hrs. due to rig repairs, Loosing mud down hole noted, while resume drilling well continue to take mud, 70bbls/hr W/350gpm. Diesel and water for dilution, maintain chemical additions to keep properties. At the time of report: Drilling ahead passing 19804'.

F	na. 1:	Mi	ke W	ashbu	ırn	Fr	Ju 5.	Adolfo	A. Roman	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
	hone:			5-577			5		321-9994	Phone:			-	g / 1101101	, , , , , , , , , , , , , , , , ,	2 2 2.3 0 0001
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	used if the user		r, no representati	has been prepared on is made as to the	\$63,425.30	\$421,709.18
												INCLUD	ING 3RD PAR	TY CHARGES	\$75,485.30	\$655,709.14

Date 06/08/21	Operator MAG I	NOLIA OIL		Well Name a	IIER A-1H S	ST-01	Rig Name an	18	Report No. Repo	rt #28
	DAILY	USAGE 8	& COST						CUMU	LATIVE
Item	Unit	Unit Cost	Previous	Received	Closing	Daily	Daily Cost		Cum	Cum Cos
			Inventory	Received	Inventory	Usage	Daily Cost		Usage	
SAPP (50)	50# sk	\$44.56			10			-	32	\$1,425.92
PHPA LIQUID (pail)	5 gal	\$41.36			32			-		
EVO-LUBE	gal	\$14.00						-		
NEW GEL (PREMIUM)								-		
ALUMINUM TRISTEARATE								-		
								-		
CACL2 (50)	50# sk	\$14.32	56		28	28	\$400.96		756	\$10,825.92
IME (50)	50# sk	\$5.00	50			50	\$250.00		840	\$4,200.00
OPTI - G	50# sk	\$30.59	120		80	40	\$1,223.60		260	\$7,953.40
BENTONE 38 (50)	50# sk	\$163.94	40		36	4	\$655.76		69	\$11,311.80
BENTONE 910 (50)	50# sk	\$59.40							15	\$891.00
BENTONE 990 (50)	50# sk	\$83.59	40		36	4	\$334.36		78	\$6,520.02
OPTI - MUL	gal	\$10.75	110		55	55	\$591.25		550	\$5,912.50
OPTI - WET	gal	\$8.34	275		220	55	\$458.70		550	
NEW PHALT	50# sk	\$38.72	40		40				120	
OIL SORB (25)	25# sk	\$4.75	19			19	\$90.25		40	\$190.00
								<u> </u>		<u> </u>
								<u> </u>		
								-		
IEW CARR (M)	50%	AF 0-	200		20			-	010	¢4.400.5
NEW CARB (M)	50# sk	\$5.25 \$21.47	60		60			-	210	\$1,102.50
	25# sk 25# sk	\$21.47	48		48			-	111	\$4,039.20
MAGMAFIBER F (25)			48		48			-	144	\$4,039.20
MAGMAFIBER R (30) /ARISEAL	30# sk	\$28.05						-		
FIBER PLUG	30# sk	\$30.37						-		
NUT PLUG M (50)	50# sk	\$12.04	25		25				9	\$108.36
MICA F (50)	50# sk	\$10.28	40		40				3	\$100.50
	00# 5K	ψ10.20	40		40			-		
								-		
GRAPHITE - FINE (50)	50# sk	\$24.14	80		68	12	\$289.68		12	\$289.68
• •										
								Ī		
NEW WATE (SACK BARITE)	100# sk	\$11.50	150		150			Ī		
BARITE BULK (100)	100# sk	\$7.00	1800	403	1450	753	\$5,272.40		7854	\$54,978.00
								-		
								-		
								-		
								-		
								-		
								-		
OPTI DRILL (OBM)	bbl	\$65.00	2883	449	2575	757	\$49,205.00	F	3199	\$207,935.00
- · · · - (· · ·)	551	Ψ.υυυ		110	20.0	101	, ,	ŀ	3100	, , , , , , , , , , , , , , , , , , ,
DISCOUNTED OBM	bbl	\$15.00	462		341	121	\$1,815.00	F	324	\$4,860.00
<u> </u>		, , 5, 50	.02		3		. ,	-	321	. ,,,,,,,,
								F		
								F		
·										
	1							_		
		\$990.00					\$1,980.00			\$63,360.00
	each					2	\$60.00		64	\$1,920.00
ENGINEERING (DIEM)	bbl	\$30.00						-		
NGINEERING (DIEM)								ļ	1049	\$1,049.00
NGINEERING (DIEM)	bbl	\$30.00						-	1049	\$1,049.00
NGINEERING (DIEM) NGINEERING (MILES)	bbl each	\$30.00 \$1.00						- - -		
ENGINEERING (DIEM) ENGINEERING (MILES) CALE TICKET	bbl each EACH	\$30.00 \$1.00 \$15.00						 - - -	18	\$270.00
ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET RUCKING (cwt)	each EACH each	\$30.00 \$1.00 \$15.00 \$1.98				403	\$798.34	-	18 10145	\$270.00 \$20,087.42
ENGINEERING (DIEM) ENGINEERING (MILES) ENGINEERING (MILES) ECALE TICKET ERUCKING (cwt) ERUCKING (min)	EACH each each	\$30.00 \$1.00 \$15.00 \$1.98 \$650.00				403	\$798.34	-	18 10145 3	\$270.00 \$20,087.42 \$1,950.00
ENGINEERING (24 HR) ENGINEERING (DIEM) ENGINEERING (MILES) SCALE TICKET FRUCKING (cwt) FRUCKING (min) PALLETS (ea) SHRINK WRAP (ea)	each EACH each	\$30.00 \$1.00 \$15.00 \$1.98				403	\$798.34		18 10145	\$270.00 \$20,087.42 \$1,950.00 \$660.00

Date	Operator			Well Name a	ind No.		Rig Name an	d No.	Report No.	
06/08/21	MAGI	NOLIA OIL	& GAS	RAIN	IIER A-1H	ST-01	2	48	Repo	rt #28
	DAILY	USAGE 8	& COST						СПМП	LATIVE
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	140		140				260	\$10,855.00
TURBO CHEM SYNSEAL	25# sk	\$85.00	196		196					
OBM-D 5_12_21	gal	\$2.31								\$32,349.24
OBM-D 5_15_21	gal	\$2.35								\$16,920.00
OBM-D 5/16/21	gal	\$2.35							-	\$33,840.00
OBM-D 5/17/21	gal	\$2.31							-	\$16,632.00
OBM-D 5/19/21	gal	\$2.33							-	\$33,558.99
OBM-D 5/24/21	gal	\$2.24							-	\$16,132.48
Mud Diesel 5/27/21 Diesel Received 5/29/21	gal	\$2.25								\$16,200.00
Diesel Received 5/29/21 Diesel Received 5/29/21	gal	\$2.25 \$2.25								\$16,200.00 \$16,200.00
Diesel Received 5/29/21 Diesel Received 5/31/21	gal	\$2.25			3248	F260	\$12,060.00		-	\$16,200.00
Diesel Received 6/2/21	gal gal	\$2.23			6400		\$12,000.00		11101	φ25,112.25
Dieser Neceived 0/2/21	yaı	Ψ2.30	0400		0400					
							<u> </u>			
					Daily Su	ıb-Total \$1	2,060.00		\$233,9	999.96
	-					1		<u>-</u>		
	Cumu	ulative Tota	I AES & 3rd	Party \$655	5,709.14					
<u> </u>										

 Operator:
 MAGNOLIA OIL & GAS

 Rig Name:
 248

 Well Name:
 RAINIER A-1H ST-01

FLUID VOLUME ACCOUNTING

F W

																•													
					WEEK 1							WEEK 2							WEEK 3							WEEK 4			_
	Date	5/14/21	5/15/21	5/16/21	5/17/21	5/18/21	5/19/21	5/20/21	5/21/21	5/22/21	5/23/21	5/24/21	5/25/21	5/26/21	5/27/21	5/28/21	5/29/21	5/30/21	5/31/21	6/1/21	6/2/21	6/3/21	6/4/21	6/5/21	6/6/21	6/7/21	6/8/21	6/9/21	6/10/21
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4		1
Grand	Starting Depth	108	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219	17,666	18,440	18,577	18,577	18,577	18,577	18,577	19,731	ı
Totals	Ending Depth	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219	17,666	18,440	18,577	18,577	18,577	18,577	18,577	19,731		1
20,166	Footage Drilled	2,925	1,471	3,176	1,941	1,716	640	8		538	17	-	234	19	475	-	1,866	903	725	1,447	774	137	-	-	-	-	1,154	-	-
1,492	New Hole Vol.	277	139	301	184	163	61	1	-	24	1	-	10	1	21	-	83	40	32	64	34	6	-	-	-	-	51	-	-
	Starting System Volume	2,525	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,178	3,612	3,441	3,220	3,345	3,431	3,356	3,092	2,916	2,916
184	Chemical Additions		15	14	18	13	9			15	5	12	10	3	1	-	13	6	12	10	13	4	-	-	-	-	11		
	Base Fluid Added		38	392	158	214	174	26	4	78	18	101	95	25	11	3	169	229	191	95	86	23	18	-	-	14	130		i
	Barite Increase		13	13	19		3	6			142	59	62	21	14	7	-	10	-	21	28	63	14	-	-	-	52		ı
4,000	Weighted Mud Added			300		479			407						-	250	-	127	788	804	52	-	258	86	-	-	449		1
-	Slurry Added														-	-	-	-	-	-	-	-	-	-	-	-	-		ı
	Water Added		60		70	83	37						58	9	-	-	-	-	-	30	50	-	-	-	-	-	28	,	-
	Added for Washout						8								-	-	-	-	-	-	-	-	-	-	-	-			-
, -	Total Additions	-	126	719	264	788	231	32	411	93	164	172	225	58	26	260	181	372	991	960	230	91	290	86	-	14	671	-	-
	Surface Losses		3	42	119	105	105	11	10	23	21	12	35	17	-	-	-	25	25	-	25	25	25	-	25	25	25		1
.,	Formation Loss			50	83	92	134	25	73		68	28	14		99	50	554	384	691	386	316	256	140	-	50	228	746		1
	Mud Loss to Cuttings		125	301	191	135	63	1		25	1			4	19	-	83	40	32	64	34	6	-	-	-	-	51		1
	Unrecoverable Volume		17	40	35		45	22	10			24			25	-	-	-	-	-	-	-	-	-	-	-	-	,	
500	Centrifuge Losses		4	20	24	15	6			12	7	3	6	6	25	22	50	50	75	76	25	25	-	-	-	25	25		
7,063	Total Losses	-	149	453	452	346	353	59	93	60	97	68	55	27	168	72	687	499	823	526	401	312	165	-	75	278	847	-	-
-	Mud Transferred Out																												
		—				I					1													· · · · · · · ·					
2,916	Ending System Volume	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,178	3,612	3,441	3,220	3,345	3,431	3,356	3,092	2,916	2,916	2,916
	Mud Recovered	i																											$\overline{}$

Comments: Comments: Comments: Comments: Cemented surface in good fashion with cement back to surface. Cemented with good returns dumping 10bbls interface, 40bbls Lay down DP, Set storm packer 200' below well head, with 30 TIH with new BHA, Wash and Ream from 12150 to bottom and Cleaned rig pit, NU BOP and tested the same. Filled pit and spacer and 39bbls cement. Lost to seepage while riunning 5/28/21 6/4/21 stnads of DP below. Continue to Lay down DP racked back on resume drilling. reconditioning the same. Testing BOP at rpt time. casing 72.5bbls, Evap 10.1bbls and Interface 10bbls the derrick. Drilling ahead at 4,504'MD. Mud lost to Evap 3bbls, Cent 4bbls Drilling ahead, Well start taking mud at 13693. lower MW to Finish lay down DP. Start on testing BOP's. Recover 86bbls of 5/22/21 Mud lost to cuttings 24.8bbls, Evap 22.87bbls and Cent 12bbls Shakers 17bbls and cutting 125bbls 10.6ppg. Continue drilling' OBM from Mud Cooler, transfer same to Active system. Pull Storm packer, Casing press 150psi. Bullhead 30bbls down Daily Losses: Evap 42bbls. Cent 20bbls, Shakers 40bbls, Mud lost to formation due to weight up 68.2bbls, Evap 20.5bbls Drilled ahead, to 15494', ROP decreased to 20fph. Circulate and hole, Casing prss Zero. Start TIH with new BHA and new DP. Seepage 50bbls and Cuttings 300.9. Drilled to 7,680'MD. and Cent 7bbls POOH to change out BHA. At RPT time change out rot Head. Mud lost to Cutting 191.3bbls Stage in the hole, well taking mud, 100bbl/hr. Resume drilling Continue to pick up DP from the ground. Circulate BU at the Mud left in Previous well bore 24.34bbls. Mud lost to Evap Evap 118.8bbls, Cent 24bbls, Shakers 35bbls and Seepage and cut mw down to 10.1ppg. w/340gpm losses back to normal, 6/7/21 shoe and at 13600'. Hole losses noted. At this time passing 12.4bbls, Cent 3bbls and seepage circ kill mud 28bbls w/370gpm start lossing 30bbl/hr. Mud Lost to Cuttings 135bbls, Evap 104.6bbls, Cent 15bbls and Mud lost to Seepage 13.9bbls, Cent 6bbls and Evap 35.2bbls. Drilling ahead, well continue taking mud, 20bbls /hr. Pump 5/18/21 6/8/21 Drilling ahead, well taking mud. 24hrs losses 745bbls. Seepage 91.8bbls Attempting 2nd sidetrack. sweep every connection. Mud Lost to Cuttings 63bbls, Evap 104.6bbls, Cent 6bbls, Drilling ahead, circulate Well control Issues, 60bbl influx 5/26/21 Mud lost to Cuttings 3.4bbls, Cent 6bbls and Evap 17.2bbls 6/2/21 6/9/21 Shakers 18bbls, Rotating Head 27bbls and seepage 133.8bbls Drilled to 18577'. Lost differential and High torque, POOH to Mud Lost to Cuttings 1bbl, Evap 10.8bbls, Tripping 22bbls and Drilled Side track to 12725'/ Circulate and POOH to lay down change out BHA and Test BOP's. Lay down DP after spotting 6/10/21 Seepage 25bbls

Mud cap 17#

6,525

OUTSOURCE FLUID SOLUTIONS LLC.

110 Old Market St. **OUTSOURCE FLUID SOLUTIONS LLC.** St Martinville, LA 70582

> 85.1° 12,696' TVD

Operator MAGN	IOLIA C	OIL & C	SAS	Contractor PA1	TERSO	N	County / Parish	YETTE		_	r Start Date 05/09/21		nr ftg.			Drilled I	Depth 20,6 0)2 ft	t
Well Name and No.				Rig Name ar	d No.		State			Spud Da	ate	Cur	rent ROP			Activity			
RAIN Report for	IIER A-	1H ST-	·01	Report for	248		T Field / OSC-G	EXAS		Fluid Ty)5/13/21 De		ulating Ra	ite			IRC (<u>D</u>
Jim Ha	rrison/.	lames	Dyer		ol Pusł	ner		DINGS		,	ОВМ		-	gpm	1		,580		si
	MUD	PROPER	RTY SPECII	FICATION	ıs		MUD VC	LUME (BE	BL)		PUMP #1		PUN	1P #2		RIS	ER BC	os	ΤER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	676	bbl	Liner	Size 4.	75 Liı	ner Size	4.	75	Liner	Size	4.	75
8.5-12	5-25	8-12	>400	±280K	<10 <15	<8	In Hole	812	bbl	Stro	ke 1	2 8	Stroke	1	2	Stro	ke	1	12
1	М	JD PRO	PERTIES				Active	1488	B bbl	bbl/s	stk 0.0	625 I	obl/stk	0.0	625	bbl/	/stk	0.0	625
Time Sample	Taken			2:00		2:30	Storage	e <u>1462</u>	2 bbl	stk/r	nin 6	60 s	tk/min	5	8	stk/	min		
Sample Locati	ion			Suction		shaker	Tot. on Loc	cation 2950	o bbl	gal/r	nin 1	57 g	al/min	15	52	gal/	min		
Flowline Temp	erature °l	F		96 °F		99 °F	Mud Wt. =	11.3 PV:	=12	YP:	=9 CI I	RCULAT	ION DA	ΤA		n = 0	.652 I	K = 1	183.5
Depth (ft)				19,477'		20,653'	Bit C	epth = 20,0	602 '		Wash	out =		F	Pump	Efficie	ency =	95%	6
Mud Weight (p	opg)			11.3		11.2	Drill String	Volume	to Bit	286.0	bbl Sti	rokes To I	Bit 4,	578		Time 1	Γο Bit	39	min
Funnel Vis (se	ec/qt)		@ 82 °F	46		43	Disp.	Bottoms U	p Vol.	525.7	bbl Botto	omsUp St	ks 8,4	417	Botto	msUp	Time	71	min
600 rpm				33		36	119.9 bbl	TotalCir	c.Vol.	1487.	7 bbl To	talCirc.St	ks 23,	817	Tota	l Circ.	Time	202	min
300 rpm				21		23		DRILLING	S AS	SEMBI	Y DATA			S	OLID	s coi	NTROL	_	
200 rpm				14		17	Tubulars	OD (in.)	ID	(in.)	Length	Тор		Unit		Scre	ens	Но	ours
100 rpm				9		11	Drill Pipe	4.500	3.8	326	10,633'		S	haker	1	20	00		
6 rpm				6		7	HWDP	4.500	3.0	000	1,006'	10,633	' s	haker	2	20	00		
3 rpm				5		6	P/Ream/Ag	4.500	3.8	326	8,822'	11,639	' s	haker	3	20	00		
Plastic Viscos	ity (cp)		@ 150 °F	12		13	Dir. BHA	5.000	2.0	000	141'	20,461	' NC	V Dry	ers	17	70		
Yield Point (lb.	/100 ft²)		T0 = 4	9		10		CASIN	IG & I	HOLE	DATA								
Gel Strength (lb/100 ft²)	10	sec / 10 min	6/9		6/10	Casing	OD (in.)	ID	(in.)	Depth	Тор	Се	ntrifug	je 1				
Gel Strength (lb/100 ft2)	30 min	13		13	Riser						V	OLUM	IE AC	COU	NTING	(bbl	ls)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	7.0		6.0	Surface	10 3/4			3,018'		Р	rev. T	otal o	n Loc	ation	29	915.9
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	375	11,974'		T	ransfe	rred I	n(+)/C	Out(-)		
Retort Solids (Content			19%		18.5%									Oil	Adde	d (+)		
Corrected Soli	ids (vol%)			17%		16.3%								E	Barite	Adde	d (+)		
Retort Oil Con	tent			61%		58.5%	Open	Hole Size	6.7	750	20,602'		Otl	her Pr	oduct	Usag	e (+)		
Retort Water (Content			20%		23%	ANI	NULAR GE	OME	TRY 8	RHEOLO	OGY		١	Vater	Adde	d (+)		
O/W Ratio				75:25		72:28	annula	ue	pth	velo		ECD		Let	ft on (Cutting	gs (-)		
Whole Mud Cl	hlorides (r	mg/L)		50,000		56,000	section	ו		ft/m	nin reg	lb/gal			Н	ole Lo	sses		
Water Phase	Salinity (p	pm)		281,620		276,303									Cent	/Evap	/Trip		
Whole Mud Al	kalinity, P	om		1.2		1.6	6.875x4	.5 10,6	633'	280	.9 turb	12.00		Est. T	otal o	n Loc	ation _	29	915.9
Excess Lime (lb/bbl)			1.6 ppb		2.1 ppb	6.875x4	.5 11,6	639'	280	.9 turb	12.00	Es	t. Loss	ses/G	ains (-)/(+)		33.8
Electrical Stab	ility (volts)		486 v		525 v	6.875x4	.5 11,9	974'	280	.9 turb	11.99		BIT	HYDF	RAULI	CS DA	ATA	
Average Spec	ific Gravit	y of Soli	ds	3.36		3.29	6.75x4.	5 20,4	461'	299	.8 turb	12.57	Bit H	H.S.I.	Bit	ΔΡ	Nozzle	es (32	2nds
Percent Low G	Bravity So	lids		7.2%		7.5%	6.75x5	20,6	602'	369	.0 turb	12.58	0.	.23	45	psi	18	18	18
ppb Low Grav	ity Solids			59 ppb		62 ppb										zzle ocity	18	18	18
Percent Barite	1			9.8%		8.7%		1					Force (f			sec)			
ppb Barite				140 ppb		125 ppb	BIT D	ATA	Ма	nuf./Ty	rpe G	TD64M	121	1 lbs	6	7			
Estimated Total	al LCM in	System					Size	Depth In	Но	ours	Footage	ROP ft/		otor/M\			. Circ.		
Sample Taker	n Ву			A.ROMAN		M Washburn	6 3/4	18,577 ft	18	3.0	1,154 ft	64.1	2,	,300 p	osi		4,634	psi	

Drill to TD at 20659, pump 2 X 30 bbls Hi - Visc sweeps in tandem, currently circulating at TD and decreasing mud wt from 11.2 to 11.1. Blended \$10/ bbl hi grav solids reserve mud with 8.5# slurry to make 400 bbls of 11.2# to maintain active system volume. Preparing 150 bbls 17.0# kill mud to spot in vertical hole

section when trip out to run production casing.

OUTSOURCE FLUID SOLUTIONS LLC.

87.7°

12,484' TVD

		OIL & C	GAS		TERSO	ON		Block YETTE			5/09/21	24 hr	928 ft			oth),659	ft
		-1H ST-	01	Rig Name ar	248			EXAS			5/13/21		nt ROP 133 ft/hi	r			&Ream
Report for Jim Ha	rrison/	lamos	Dyor	Report for	ol Pusi	or	Field / OCS-G #	DINGS		Fluid Type	ОВМ	Circu	ating Rate 310 gpn		Circulating	Pressur 580 p	
Jilli Ha			RTY SPECIF			ICI		LUME (BB	RI V		PUMP #1		PUMP #2			R BOO	
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		4 bbl	Liner S		75 Line			Liner S		4.75
8.5-12	5-25	8-12	>400	±280K	<10 <15	<8	In Hole		3 bbl	Stroke				12	Stroke		12
	0 20		7.00	6/9/21		6/8/21	Active		2 bbl	bbl/st				625	bbl/st		.0625
Time Sample	Taken			2:00		2:30	Storage		3 bbl	stk/mi	in 6	60 stl		58	stk/m		
Sample Locati				Suction		shaker	Tot. on Loc	cation 290		gal/mi	in 1:	57 ga	l/min 1	52	gal/m	n	0
Flowline Temp	erature °	 F		94 °F		99 °F		PHHP = 82°	7		CIRCUL	ATION D	ATA		n = 0.6	70 K=	172.089
Depth (ft)				20,659'		20,653'	Bit D	Depth = 15,	358 '		Wash	out = 0%		Pump	Efficier	cy = 9	5%
Mud Weight (p	pg)			11.3		11.2	Drill String	Volume	to Bit	211.4	bbl St	rokes To Bi	t 3,385	1	Time To	Bit 2	9 min
Funnel Vis (se	c/qt)		@ 80 °F	44		43	Disp.	Bottoms U	lp Vol.	396.8	bbl Botto	omsUp Stks	6,352	Botton	nsUp Ti	me 5	4 min
600 rpm				35		36	91.3 bbl	TotalCir	rc.Vol.	1242.2	bbl To	talCirc.Stk	19,886	Total	Circ. Ti	me 16	69 min
300 rpm				22		23		DRILLING	G ASS	SEMBLY	DATA		S	OLIDS	CONT	ROL	
200 rpm				15		17	Tubulars	OD (in.)	ID	(in.)	Length	Тор	Unit		Scree	ns H	Hours
100 rpm				10		11	Drill Pipe	4.500	3.	826	5,389'	0'	Shake	r 1	200		24.0
6 rpm				7		7	HWDP	4.500	3.	000	1,006'	5,389'	Shake	r 2	200		24.0
3 rpm				5		6	DP/Ream/Ag	4.500	3.	826	8,822'	6,395'	Shake	r 3	200		24.0
Plastic Viscosi	ity (cp)		@ 150 °F	13		13	Dir. BHA	5.000	2.	000	141'	15,217'	NOV Dr	yers	170		24.0
Yield Point (lb/	/100 ft²)		T0 = 3	9		10		CASIN	IG & I	HOLE D	ATA						
Gel Strength (lb/100 ft²)	10	sec/10 min	6/10		6/10	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifuç	ge 1			6.0
Gel Strength (lb/100 ft ²)		30 min	13		13	Riser						VOLUN	ME AC	COUNT	ING (b	bls)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	6.0		6.0	Surface	10 3/4			3,018'	0'	Prev. 7	Total or	n Locat	on	2915.9
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875	11,974'	0'	Transfe	erred In	n(+)/Ou	t(-)	160.0
Retort Solids (Content			19%		18.5%								Oil	Added	(+)	150.1
Corrected Soli	ds (vol%)	1		16.8%		16.3%								Barite .	Added	(+)	70.4
Retort Oil Con	tent			60%		58.5%	Open	n Hole Size	6.	750	20,659'		Other P	roduct	Usage	(+)	2.9
Retort Water (Content			21%		23%	ANI	NULAR GE	ОМЕ	TRY & R	RHEOLOG	¥Υ		Water	Added	(+)	50.0
O/W Ratio				74:26		72:28	annular	r me	eas.	veloci	ity flow	ECD	Le	eft on C	uttings	(-)	-41.1
Whole Mud Ch	nlorides (r	mg/L)		53,000		56,000	section	de	epth	ft/mir	n reg	lb/gal		Но	le Loss	es	-378.0
Water Phase	Salinity (p	pm)		283,542		276,303								Cent/	Evap/T	rip	-30.4
Whole Mud Al	kalinity, P	om		1.8		1.6	6.875x4.	.5 5,3	389'	280.9	9 turb	12.15	Est. 1	Total or	n Locat	on	2899.9
Excess Lime (lb/bbl)			2.3 ppb		2.1 ppb	6.875x4.	.5 6,3	395'	280.9	9 turb	12.29	Est. Los	ses/Ga	ains (-)/	(+)	0.0
Electrical Stab	ility (volts)		498 v		525 v	6.875x4.	.5 11,	974'	280.9	9 turb	12.32	BIT	HYDR	AULIC	S DAT	A
Average Spec	ific Gravit	y of Solid	S	3.35		3.29	6.75x4.5	5 15,	217'	299.8	8 turb	12.67	Bit H.S.I.	Bit /	ΔP N	ozzles	(32nds)
Percent Low G	Gravity So	lids		7.2%		7.5%	6.75x5	15,	358'	369.0	0 turb	12.83	0.23	45	psi ·	18 18	3 18
ppb Low Grav	ity Solids			60 ppb		62 ppb							Bit Impact	Noz: Velo		18 18	3 18
Percent Barite	!			9.6%		8.7%							Force	(ft/se	-		
ppb Barite				138 ppb		125 ppb	BIT D	ATA	Ma	anuf./Typ	oe G	TD64M	121 lbs	67	7		
Estimated Total	al LCM in	System	ppb				Size	Depth In	Н	ours	Footage	ROP ft/hi	Motor/M	WD	Calc. (Circ. Pr	essure
Sample Taken	Ву			A.ROMAN	0	M Washburn	6 3/4	18,577 ft	2	5.0	2,082 ft	83.3	2,300	psi	4	135 p	si
Remarks/Reco	mmendati	ons:					Rig Activity:										

OBM RECEIVED: 160bbls @ \$65.00 /

OBM on surface/ storage 2057bbls

In the past 24hrs: Drilled lateral section to TD 20,659'. Pump 3 (10.4ppg) sweeps and circulate hole clean. Upon completing circulations, start POOH. Wash and Ream up the hole Monitor Gas on BU. (2800units). Increase MW to 11.3ppg and circulate gas out. Casing pressure and flow level off, resume Wash & Ream out. Blend LCM sweep with 2ppb Graphite (First Response, Magma Fiber, NewCarb) to spot same at the bottom of the curve. Will POOH up to the shoe and will circulate BU, prior to spotting Mud Cap (17ppg). Mud losses noted once pass 17,400' (70bbls /hr). At the time of report: Continue POOH passing 14980'. Casing pressure 600psi, with pumps off.

Е	ng. 1:	Mi	ke W	ashbı	urn	Er	ng. 2:	Adolfo	A. Roman	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
F	hone:	3	61-94	5-57	77	Pł	none:	956-8	321-9994	Phone:	432-686-7361	Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be		o elects, however	, no representati	nas been prepared on is made as to the	\$27,605.68	\$449,314.86
												INCLUDI	NG 3RD PAR	TY CHARGES	\$42,888.68	\$698,597.82

PHPA LIQUID (pail) 5 gal \$41.36 3	Well Name RAII	and No. NIER A-1H \$	ST-01	Rig Name and No 248		ort #29
Nem	,				CUML	JLATIVE
New CARB (M)		Closing	Daily		Cum	
PHPA LIQUID (pail) PHPA LIQUID (pail) S gall \$14.06 SY41.36 SY41.36 SY41.36 SY41.36 SY41.36 SY41.36 SY41.36 SY41.36 SY41.36 SY41.36 SY41.30 ALUMINUM TRISTEARATE ALUMINUM TRISTEARATE	Received	Inventory	Usage	Daily Cost	Usage	Cum Cos
EVO-LUBE	0	10			32	2 \$1,425.92
NEW GEL (PREMIUM) ALUMINUM TRISTEARATE ALUMINUM TRISTEARATE CACL2 (50) 50# sk \$14.32 1.10	2	32				
ALUMINUM TRISTEARATE CACL2 (50) CACL2 (50) COM SK S14.32 CACL2 (50) S08 sK S50.00 S08 sK S50.00 S08 sK S50.00 S08 sK S50.00 S08 sK S50.40 BENTONE 910 (50) S08 sK S50.40 BENTONE 90 (50) S08 sK S50.40 BENTONE 90 (50) S08 sK S50.40 BENTONE 90 (50) S08 sK S50.40 S08 sK S50.40 S08 sK S50.40 S08 sK S50.40 S08 sK S50.40 S08 sK S50.40 S08 sK S50.40 S08 sK S4.75 S08 sK S4.75 S08 sK S4.75 S08 sK S4.75 S08 sK S4.75 S08 sK S4.75 S08 sK S4.75 S08 sK S4.75 S08 sK S2.26						
CACL2 (50)						
LIME (50)						
LIME (50)						
LIME (50)						
LIME (50)	8 168	3 168	28	\$400.96	784	4 \$11,226.88
BENTONE 38 (50)	300			710000	840	
BENTONE 910 (50)	0	80			260	\$7,953.40
BENTONE 990 (50)	6	36			69	9 \$11,311.80
OPTI - MUL OPTI - WET					15	5 \$891.00
OPTI - WET gal \$8.34 22 NEW PHALT 50# sk \$33.72 - OIL SORB (2S) 25# sk \$4.75 NEW CARB (M) 50# sk \$5.25 6 CYBERSEAL 25# sk \$21.47 - MAGMAFIBER R (25) 25# sk \$28.05 - VARISEAL - - - - NUT PLUG M (50) 50# sk \$10.24 - - MICA F (50) 50# sk \$12.04 -	6	36			78	\$6,520.02
NEW PHALT OIL SORB (25) 25# sk \$4.75 25# sk \$4.75 NEW CARB (M) 50# sk \$5.25 CYBERSEAL 25# sk \$21.47 MAGMAFIBER F (25) 25# sk \$28.05 MAGMAFIBER R (30) 30# sk \$28.05 VARISEAL FIBER PLUG 30# sk \$10.28 FIBER PLUG 30# sk \$10.28 GRAPHITE - FINE (50) 50# sk \$11.50 INEW WATE (SACK BARITE) 100# sk \$7.00 149 DISCOUNTED OBM DISCOUNTED OBM ENGINEERING (24 HR) ENGINEERING (21HR) ENGINEERING (MILES) ENGINEERING (MILES) EACH CYBERSEAL 25# sk \$4.75 S28.05 A30.37 NUT PLUG M (50) 50# sk \$10.28 \$1	5 220	+			550	
OIL SORB (25)		+	55	\$458.70	608	
NEW CARB (M) 50# sk \$5.25 (CYBERSEAL 25# sk \$21.47 (MAGMAFIBER F (25) 25# sk \$28.05 (MAGMAFIBER R (30) 30# sk \$28.05 (VARISEAL 45 (MAGMAFIBER R (30) 30# sk \$30.37 (MICA F (50) 50# sk \$12.04 (MICA F (50) 50# sk \$10.28 (MICA F (50) 50# sk \$10.28 (MICA F (50) 50# sk \$10.28 (MICA F (50) 50# sk \$10.28 (MICA F (50) 50# sk \$11.50 (MICA F (50) 50# sk \$1.50	0 40				120	
CYBERSEAL	50	50			40	\$190.00
CYBERSEAL		1				\perp
CYBERSEAL	0	50	10	\$52.50	220	\$1,155.00
MAGMAFIBER F (25)		50	10	φυζ.:00	220	ν (1,100.00
MAGMAFIBER R (30) VARISEAL FIBER PLUG 30# sk \$30.37 NUT PLUG M (50) 50# sk \$12.04 2 MICA F (50) 50# sk \$10.28 GRAPHITE - FINE (50) 50# sk \$24.14 (6) REW WATE (SACK BARITE) BARITE BULK (100) 100# sk \$7.00 148 0 OPTI DRILL (OBM) DISCOUNTED OBM bbl \$65.00 25 ENGINEERING (24 HR) ENGINEERING (DIEM) ENGINEERING (MILES) EACH \$15.00 SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 FRUCKING (min) SO# sk \$30.37 S0# sk \$30.37 S0# sk \$12.04 24 25 26 27 28 29 20 20 20 20 21 20 20 20 20 20	8	48			144	4 \$4,039.20
VARISEAL FIBER PLUG 30# sk \$30.37 NUT PLUG M (50) 50# sk \$12.04 30# sk \$12.04 30# sk \$10.28 30# sk \$12.04 30# sk \$10.28 30# sk \$12.04 30# sk \$10.28 30# sk \$10.28 30# sk \$10.28 30# sk \$10.28 30# sk \$10.28 30# sk \$10.28 30# sk \$10.28 30# sk \$10.28 30# sk \$10.28 30# sk \$10.28 30# sk \$10.28 30# sk \$10.28 30# sk \$10.28 30# sk \$10.28 30# sk \$10.28 30# sk \$10.28 30# sk \$10.28 30# sk \$10.28 30# sk \$12.04 30# sk \$10.28 30# sk \$12.04 30# sk \$12.04 30# sk \$10.28 30# sk \$12.04 30# sk \$12.04 30# sk \$12.04 30# sk \$12.04 30# sk \$12.04 30# sk \$12.04 30# sk \$12.04 30# sk \$12.04 30# sk \$12.04 30# sk \$12.04 30# sk \$12.04 30# sk \$12.04 30# sk \$12.04 30# sk \$12.04 30# sk \$12.04 30# sk \$10.28 30# sk \$12.04 30# sk \$10.28 30# sk \$12.04 30# sk \$10.28 30# sk \$10.28 30# sk \$12.04 30# sk \$10.28 30# sk	-	1				7 1,000
NUT PLUG M (50)						
MICA F (50) 50# sk \$10.28						
GRAPHITE - FINE (50) 50# sk \$24.14 (6) NEW WATE (SACK BARITE) 100# sk \$11.50 11/2 BARITE BULK (100) 100# sk \$7.00 14/2 DISCOUNTED OBM bbl \$65.00 25/2 DISCOUNTED OBM bbl \$15.00 3-2 ENGINEERING (24 HR) each \$990.00 ENGINEERING (DIEM) bbl \$30.00 ENGINEERING (MILES) each \$1.00 SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 EACH \$1.98 TRUCKING (cwt) each \$1.98 TRUCKING (cwt) each \$1.98 TRUCKING (cwt) each \$1.98 TRUCKING (cwt) each \$1.98 TRUCKING (cwt) each \$1.98 TRUCKING (cwt) each \$1.98 TRUCKING (cwt) each \$1.98 TRUCKING (cwt) each \$1.98 TRUCKING (cwt) each \$1.98 TRUCKING (cwt) each \$650.00	5	25				9 \$108.36
NEW WATE (SACK BARITE) BARITE BULK (100) 100# sk \$11.50 11 BARITE BULK (100) 100# sk \$7.00 144 100# sk \$11.50 144 100# sk \$11.50 144 100# sk \$11.50 144 100# sk \$11.50 144 100# sk \$11.00 144 100# sk \$1.00 144 100# sk \$1.	0	40				
BARITE BULK (100) 100# sk \$7.00 148	8	64	4	\$96.56	16	5 \$386.24
BARITE BULK (100) 100# sk \$7.00 148	n	150				
OPTI DRILL (OBM) bbl \$65.00 25: DISCOUNTED OBM bbl \$15.00 3- ENGINEERING (24 HR) each \$990.00 ENGINEERING (DIEM) bbl \$30.00 ENGINEERING (MILES) each \$1.00 SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00			1012	\$7,082.60	8866	6 \$62,060.60
DISCOUNTED OBM bbl \$15.00 3-4 DISCOUNTED OBM bbl \$15.00 3-4 ENGINEERING (24 HR) each \$990.00 ENGINEERING (DIEM) bbl \$30.00 ENGINEERING (MILES) each \$1.00 SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
DISCOUNTED OBM bbl \$15.00 3-4 DISCOUNTED OBM bbl \$15.00 3-4 ENGINEERING (24 HR) each \$990.00 ENGINEERING (DIEM) bbl \$30.00 ENGINEERING (MILES) each \$1.00 SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00						
DISCOUNTED OBM bbl \$15.00 3-4 DISCOUNTED OBM bbl \$15.00 3-4 ENGINEERING (24 HR) each \$990.00 ENGINEERING (DIEM) bbl \$30.00 ENGINEERING (MILES) each \$1.00 SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00						
DISCOUNTED OBM bbl \$15.00 3-4 DISCOUNTED OBM bbl \$15.00 3-4 ENGINEERING (24 HR) each \$990.00 ENGINEERING (DIEM) bbl \$30.00 ENGINEERING (MILES) each \$1.00 SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00						
DISCOUNTED OBM bbl \$15.00 3-4 DISCOUNTED OBM bbl \$15.00 3-4 ENGINEERING (24 HR) each \$990.00 ENGINEERING (DIEM) bbl \$30.00 ENGINEERING (MILES) each \$1.00 SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00						
DISCOUNTED OBM bbl \$15.00 3-4 DISCOUNTED OBM bbl \$15.00 3-4 ENGINEERING (24 HR) each \$990.00 ENGINEERING (DIEM) bbl \$30.00 ENGINEERING (MILES) each \$1.00 SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00						
DISCOUNTED OBM bbl \$15.00 3-4 DISCOUNTED OBM bbl \$15.00 3-4 ENGINEERING (24 HR) each \$990.00 ENGINEERING (DIEM) bbl \$30.00 ENGINEERING (MILES) each \$1.00 SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00						
DISCOUNTED OBM bbl \$15.00 3-4 DISCOUNTED OBM bbl \$15.00 3-4 ENGINEERING (24 HR) each \$990.00 ENGINEERING (DIEM) bbl \$30.00 ENGINEERING (MILES) each \$1.00 SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00						
DISCOUNTED OBM bbl \$15.00 3-4 DISCOUNTED OBM bbl \$15.00 3-4 ENGINEERING (24 HR) each \$990.00 ENGINEERING (DIEM) bbl \$30.00 ENGINEERING (MILES) each \$1.00 SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00						
DISCOUNTED OBM bbl \$15.00 34 34 34 34 34 34 34						
DISCOUNTED OBM bbl \$15.00 34 34 34 34 34 34 34						
ENGINEERING (24 HR) each \$990.00 ENGINEERING (DIEM) bbl \$30.00 ENGINEERING (MILES) each \$1.00 SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00	5 36	1 2760	176	\$11,440.00	3375	5 \$219,375.00
ENGINEERING (DIEM) bbl \$30.00 ENGINEERING (MILES) each \$1.00 SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00	1	140	201	\$3,015.00	525	5 \$7,875.00
ENGINEERING (DIEM) bbl \$30.00 ENGINEERING (MILES) each \$1.00 SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00						
ENGINEERING (DIEM) bbl \$30.00 ENGINEERING (MILES) each \$1.00 SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00						
ENGINEERING (DIEM) bbl \$30.00 ENGINEERING (MILES) each \$1.00 SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00						
ENGINEERING (DIEM) bbl \$30.00 ENGINEERING (MILES) each \$1.00 SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00					-	
ENGINEERING (DIEM) bbl \$30.00 ENGINEERING (MILES) each \$1.00 SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00						
ENGINEERING (DIEM) bbl \$30.00 ENGINEERING (MILES) each \$1.00 SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00				 		
ENGINEERING (DIEM) bbl \$30.00 ENGINEERING (MILES) each \$1.00 SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00			2	\$1,980.00	66	6 \$65,340.00
SCALE TICKET EACH \$15.00 TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00			2	\$60.00	66	\$1,980.00
TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00			450	\$450.00	1499	9 \$1,499.00
TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00				 		
TRUCKING (cwt) each \$1.98 TRUCKING (min) each \$650.00						0 070 0
TRUCKING (min) each \$650.00			212	¢4.007.00	1005	
			812			7 \$21,694.78 4 \$2,600.00
1 Mart 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+		13		68	
SHRINK WRAP (ea) each \$12.00			13		66	
(1	1	13	\$100.00	0,	Ψ102.00

Date	Operator			Well Name a	ind No.		Rig Name an	d No.	Report No.	
06/09/21	MAGN	NOLIA OIL	& GAS	RAIN	IIER A-1H	ST-01	24	48	Repo	rt #29
	DAILY	USAGE 8	& COST	ı			·		CUMUI	LATIVE
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	140		120	20	\$835.00		280	\$11,690.00
TURBO CHEM SYNSEAL	25# sk	\$85.00	196		196					
OBM-D 5_12_21	gal	\$2.31								\$32,349.24
OBM-D 5_15_21	gal	\$2.35								\$16,920.00
OBM-D 5/16/21	gal	\$2.35								\$33,840.00
OBM-D 5/17/21	gal	\$2.31								\$16,632.00
OBM-D 5/19/21	gal	\$2.33								\$33,558.99
OBM-D 5/24/21 Mud Diesel 5/27/21	gal	\$2.24 \$2.25								\$16,132.48 \$16,200.00
Diesel Received 5/29/21	gal gal	\$2.25								\$16,200.00
Diesel Received 5/29/21	gal	\$2.25								\$16,200.00
Diesel Received 5/31/21	gal	\$2.25				3248	\$7,308.00		-	\$32,420.25
Diesel Received 6/2/21	gal	\$2.38			3400		\$7,140.00			\$7,140.00
Diesel Received 6/9/21	gal	\$2.34		7000			41,11000			**,*******
					Daily Su	ub-Total \$1	5,283.00		\$249,2	282.96
	2	ulotines Terri	LAEC 9 0- '	Dorte 6000	E07.00	1				
	Cumu	ulative Tota	AES & SIG	гану \$698	,391.82					
1										

 Operator:
 MAGNOLIA OIL & GAS

 Rig Name:
 248

 Well Name:
 RAINIER A-1H ST-01

FLUID VOLUME ACCOUNTING

F

					WEEK 1							WEEK 2							WEEK 3							WEEK 4			
	Date	5/14/21	5/15/21	5/16/21	5/17/21	5/18/21	5/19/21	5/20/21	5/21/21	5/22/21	5/23/21	5/24/21	5/25/21	5/26/21	5/27/21	5/28/21	5/29/21	5/30/21	5/31/21	6/1/21	6/2/21	6/3/21	6/4/21	6/5/21	6/6/21	6/7/21	6/8/21	6/9/21	6/10/21
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	9 7/8	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	1
Grand	Starting Depth	108	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219	17,666	18,440	18,577	18,577	18,577	18,577	18,577	19,731	20,659
Totals	Ending Depth	3,033	4,504	7,680	9,621	11,337	11,977	11,985	11,985	12,523	12,540	11,997	12,231	12,250	12,725	12,725	14,591	15,494	16,219	17,666	18,440	18,577	18,577	18,577	18,577	18,577	19,731	20,659	1
21,094	Footage Drilled	2,925	1,471	3,176	1,941	1,716	640	8	-	538	17	-	234	19	475	-	1,866	903	725	1,447	774	137	-	-	-	-	1,154	928	-
1,533	New Hole Vol.	277	139	301	184	163	61	1		24	1	-	10	1	21		83	40	32	64	34	6	•	-	-	-	51	41	-
	Starting System Volume	2,525	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,178	3,612	3,441	3,220	3,345	3,431	3,356	3,092	2,916	2,900
186	Chemical Additions		15	14	18	13	9			15	5	12	10	3	1	-	13	6	12	10	13	4	-	-	-	-	11	3	
2,440	Base Fluid Added		38	392	158	214	174	26	4	78	18	101	95	25	11	3	169	229	191	95	86	23	18	-	-	14	130	150	
	Barite Increase		13	13	19		3	6			142	59	62	21	14	7	-	10	-	21	28	63	14	-	-	-	52	70	
4,160	Weighted Mud Added			300		479			407						-	250	-	127	788	804	52	-	258	86	-	-	449	160	
-	Slurry Added														1	-	-		-	-	-	-	-	-	-	-	-	-	
	Water Added		60		70	83	37						58	9	-	-	-	-	-	30	50	-	-	-	-	-	28	50	
8	Added for Washout						8								-	-	-	-	-	-	-	-	-	-	-	-	-		
7,887	Total Additions	-	126	719	264	788	231	32	411	93	164	172	225	58	26	260	181	372	991	960	230	91	290	86	-	14	671	433	-
703	Surface Losses		3	42	119	105	105	11	10	23	21	12	35	17	-	-	-	25	25	-	25	25	25	-	25	25	25	- 1	
	Formation Loss			50	83	92	134	25	73		68	28	14		99	50	554	384	691	386	316	256	140	-	50	228	746	378	
	Mud Loss to Cuttings		125	301	191	135	63	1		25	1			4	19	-	83	40	32	64	34	6	-	-	-	-	51	41	1
	Unrecoverable Volume		17	40	35		45	22	10			24			25	-	-	-	-	-	-	-	-	-	-	-	-	-	1
531	Centrifuge Losses		4	20	24	15	6			12	7	3	6	6	25	22	50	50	75	76	25	25	-	-	-	25	25	30	
7,512	Total Losses	-	149	453	452	346	353	59	93	60	97	68	55	27	168	72	687	499	823	526	401	312	165	-	75	278	847	450	-
-	Mud Transferred Out																												
2.900	Ending System Volume	2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,178	3,612	3,441	3,220	3,345	3,431	3,356	3,092	2,916	2,900	2,900
,												,	, , , , ,	, , ,	, , ,						•				, , , , , ,	,	**		
-	Mud Recovered																												

6,685

OUTSOURCE FLUID SOLUTIONS LLC.

2,525	2,502	2,768	2,580	3,022	2,900	2,873	3,191	3,225	3,292	3,396	3,566	3,597	3,455	3,644	3,138	3,011	3,178	3,612	3,441	3,220	3,345	3,431	3,356	3,092	2,916	2,900	2,900	
		С	omments	s:			Comments:							Comments:							Comments:							
5/14/21	Cemented : Cleaned rig reconditioni	pit, NU B	OP and test	ed the sam	ne. Filled pi		5/21/21	Cemented with good returns dumping 10bbls interface, 40bbls spacer and 39bbls cement. Lost to seepage while riunning casing 72.5bbls, Evap 10.1bbls and Interface 10bbls						5/28/21	TIH with ne resume dril	tom and	6/4/21	Lay down DP, Set storm packer 200' below well head, with 30 stnads of DP below. Continue to Lay down DP racked back o the derrick.										
	Drilling ahe Shakers 17				p 3bbls, Ce	ent 4bbls,	5/22/21	Mud lost to	cuttings 24	1.8bbls, Eva	ap 22.87bb	ls and Cen	t 12bbls	5/29/21	Drilling ahe 10.6ppg. C			mud at 1369	93. lower N	1W to			down DP. S Mud Coole					
	Daily Losse Seepage 50						5/23/21	Mud lost to and Cent 7		due to weig	ht up 68.2t	bbls, Evap	20.5bbls	5/30/21	Drilled ahea	ad, to 1549 hange out	94', ROP de BHA.	creased to	20fph. Circ	culate and	6/6/21		packer, Ca ng prss Zer					
5/17/21	At RPT time Evap 118.8 83bbls						5/24/21	Mud left in 12.4bbls, C					- 1	5/31/21	Stage in the and cut mw w/370gpm	down to 1	10.1ppg. w/	340gpm los			6/7/21		pick up Diat 13600'. F					
5/18/21	Mud Lost to Seepage 9	Cuttings 1.8bbls	135bbls, Ev	ap 104.6bb	ols, Cent 15	ibbls and	5/25/21	Mud lost to Attempting			ent 6bbls a	and Evap 3	5.2bbls.		Drilling ahe			ng mud, 20	bbls /hr. Pi	ump	6/8/21	Drilling ahe	ead, well tal	king mud. 2	4hrs losses	745bbls.		
	Mud Lost to Shakers 18						5/26/21	Mud lost to	Cuttings 3	.4bbls, Cen	it 6bbls and	d Evap 17.2	2bbls		Drilling ahe Resume dr		te Well con	trol Issues,	60bbl influ	x .			D 20659'. (Well taking		le clean, wa	ash and rea	am up to	
	Mud Lost to Seepage 25		1bbl, Evap	10.8bbls, T	ripping 22b	bls and	5/27/21	Drilled Side BhA.	e track to 12	2725'/ Circ	ulate and P	POOH to lag	/ down	6/3/21	Drilled to 18 change out Mud cap 17	BHA and					6/10/21							

TEL: (337) 394-1078

90.4° 12,527' TVD

MAGN Well Name and No.	IOLIA C	OIL & G	SAS	PAT Rig Name ar	TTERSO	ON	County / Parisi FA	YETTE		"	Start Date 05/09/21 te		24 hr fto			Drilled De 20 Activity), 65 9	ft
	· IIER A-′	IH ST-	01	rug rumo a	248			EXAS		l '	 5/13/21		ourron				sh/R	eam
Report for				Report for			Field / OSC-G			Fluid Typ		C		ing Rate		Circulating	,	
Kevin B			•		ol Push	ner		DINGS		_	ОВМ			210 gpm		-	471	
		1	TY SPECI					DLUME (BE			PUMP #1			PUMP #2			R BOC	
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits			Liner S			Liner		75	Liner S		4.75
8.5-12	5-25	8-12	>400	±280K	<10 <15	<8	In Hole			Strok		2	Stro		2	Strok		12
		JD PROF	PERTIES	l			Active			bbl/s		625	bbl/		625	bbl/st		0.0625
Time Sample				2:00		12:00	Storag			stk/m		80	stk/r			stk/m		
Sample Locat				Suction		shaker		cation 2014		gal/m		10	gal/r			gal/m		
Flowline Temp	erature °F	-		115 °F		150 °F		11.3 PV=		YP=			ATIOI	N DATA		n = 0.6		
Depth (ft)				20,659'		20,659'	Bit D	Depth = 16,4			Wash					Efficier		
Mud Weight (p	opg)			11.3		11.3	Drill String Disp.	Volume	to Bit	324.0	bbl St	rokes T	o Bit	5,186		Time To	Bit 6	65 mir
Funnel Vis (se	ec/qt)		@ 90 °F	46		47	ызр.	Bottoms Up	o Vol.	301.2	bbl Botto	omsUp	Stks	4,822	Botto	msUp Ti	me 6	30 mir
600 rpm				34		42	122.7 bbl	TotalCire	c.Vol.	1249.2	bbl To	talCirc.	Stks	19,997	Tota	al Circ. Ti	me 2	50 mi
300 rpm				21		26		DRILLING	S ASS	SEMBL	Y DATA			S	OLID	S CONT	ROL	
200 rpm				17		17	Tubulars	OD (in.)	ID	(in.)	Length	To	р	Unit		Scree	ns	Hours
100 rpm				11		12	Casing	5.500	4.6	670	9,250'			Shaker	r 1	200		12.0
6 rpm				6		7	Casing	5.000	4.2	278	7,199'	9,25	50'	Shaker	2	200		12.0
3 rpm				5		6	=					16,4	49'	Shaker	r 3	200		12.0
Plastic Viscos	ity (cp)		@ 150 °F	13		16						16,4	49'	NOV Dry	ers	170		12.0
Yield Point (lb.	/100 ft²)		T0 = 4	8		10		CASIN	G & I	HOLE [DATA							
Gel Strength (lb/100 ft²)	10 s	sec / 10 min	7/12		7/12	Casing	OD (in.)	ID	(in.)	Depth	To	р	Centrifuç	ge 1			
Gel Strength (lb/100 ft2))	30 min	14		14	Riser						_	VOLUM	IE AC	COUNT	ING (bbls)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	7.0		7.0	Surface	10 3/4			3,018'			Prev. T	otal o	on Locat	ion	2781
HTHP Cake T	hickness ((32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	875	11,974'			Transfe	erred	In(+)/Ou	t(-)	
Retort Solids (Content			18.5%		18.5%									Oi	l Added	(+)	
Corrected Soli	ids (vol%)			16.4%		16.4%									Barite	Added	(+)	
Retort Oil Con	tent			60.5%		60.5%	Oper	Hole Size	6.7	750	20,659'			Other Pr	oduc	t Usage	(+)	
Retort Water (Content			21%		21%	AN	NULAR GE	ОМЕ	TRY &	RHEOLO	GY		,	Wate	r Added	(+)	
O/W Ratio				74:26		74:26	annula	ar de	oth	veloc	ity flow	EC	D	Le	ft on	Cuttings	(-)	
Whole Mud Cl	hlorides (r	ng/L)		52,000		52,000	section	n do,	J.111	ft/mi	in reg	lb/g	jal		Н	lole Loss	ses	-766
Water Phase	Salinity (p	pm)		279,688		279,688									E,	VAP/ Tri	ps	
Whole Mud Al	kalinity, P	om		1.9		2.2	6.875x5	5.5 9,2	50'	302.	.3 turb	12.8	89	Est. T	otal o	on Locat	ion	2014
Excess Lime (lb/bbl)			2.5 ppb		2.9 ppb	6.875x	5 11,9	974'	231.	.0 turb	12.6	64	Est. Los	ses/G	Gains (-)/	(+)	0
Electrical Stab	ility (volts)		467 v		404 v	6.75x	5 16,4	149'	250.	.2 turb	12.8	87	BIT	HYDI	RAULIC	S DAT	Ά
Average Spec	ific Gravit	y of Solid	ds	3.43		3.39								Bit H.S.I.	Bit	ΔΡ Ν	lozzles	(32nd
Percent Low C	Gravity So	lids		6.3%		6.7%								#DIV/0!	#DI	IV/0!		
ppb Low Grav	ity Solids			52 ppb		55 ppb							ļ	Bit Impact		zzle		
Percent Barite	•			10.1%		9.7%								Force		ocity – sec)		
ppb Barite				145 ppb		140 ppb	BIT [DATA	Ма	ınuf./Typ	ре			#DIV/0!				
Estimated Tot	al LCM in	System					Size	Depth In	Но	ours	Footage	ROP	ft/hr	Motor/M	WD	Calc. 0	Circ. P	ressui
Sample Taker	п Ву			P. Blair		M.Meehan	6 3/4	20,659 ft									#DIV/C)!
Afternoon Rema	arks/Recor	nmendati	ons:	1			Afternoon R	Rig Activity:		<u> </u>		1						
							to RI reus	ning 5" cas H to 16282 e. Continu	2 ft. C e to v	Circulat wash a	ted out 1 nd ream	50 bbl to bot	of m	iud cap ai Adding ho	nd recourly	capture treatme	d it fo	r First

Response and SynSeal of 10 sacks per hour. Adding Optimul and Lime to increase the emulsion. Lowering the HTHP fluid loss with additions of Opti-G.