

Machine Learning

 Chapter 2
 지도학습

 (일반화, 과대적합, 과소적합, KNN, Iris 실습)

학습목표

- 일반화, 과대적합, 과소적합을 이해 할 수 있다.
- KNN 알고리즘을 이해 할 수 있다.
- 하이퍼파라미터 튜닝을 할 수 있다.
- KNN 회귀에 대해 이해할 수 있다

일반화, 과대적합, 과소적합

아이에게 공이 무엇인지 알려주자

공이라는 것은..

둥글게 생겼다. 오각형이 여러 개 붙어있다. 검은색과 흰색으로 구성된다. 반짝반짝 광이 난다.

과대적합

공이라는 것은..

둥글게 생겼다.

과소적합

일반화, 과대적합, 과소적합

일반화 (Generalization)

 훈련 세트로 학습한 모델이 테스트 세트에 대해 정확히 예측 하도록 하는 것 .

과대적합 (Overfitting)

• 훈련 세트에 너무 맞추어져 있어 테스트 세트의 성능 저하.

과소적합 (Underfitting)

 훈련 세트를 충분히 반영하지 못해 훈련 세트, 테스트 세트에서 모두 성능이 저하.

일반화 성능이 최대화 되는 모델을 찾는 것이 목표

과대적합 (Overfitting)

 너무 상세하고 복잡한 모델링을 하여 훈련데이터에만 과도하게 정확히 동작하는 모델.

과소적합 (Underfitting)

• 모델링을 너무 간단하게 하여 성능이 제대로 나오지 않는 모델.

일반화, 과대적합, 과소적합

모델 복잡도 곡선

모델 복잡도

일반화, 과대적합, 과소적합

해결방법

- 주어진 훈련데이터의 다양성 보장 → 다양한 데이터포인트를 골고루 나타내야 한다.
- 일반적으로 데이터 양이 많으면 일반화에 도움이 된다.
- 하지만 편중된 데이터를 많이 모으는 것은 도움이 되지 않는다.
- 규제(Regularization)을 통해 모델의 복잡도를 적정선으로 설정한다.

BMI 데이터에서 성별 특성을 추가하여 과소적합을 해소해보자

- 새로운 데이터 포인트와 가장 가까운 훈련 데이터셋의 데이터 포인트를 찾아 예측
- k 값에 따라 가까운 이웃의 수가 결정
- 분류와 회귀에 모두 사용 가능

- 결정경계 (Decision Boundary) : 클래스 분류하는 경계
 - 이웃이 적을수록 모델의 복잡도 상승 → 과대적합
 - 이웃이 전체 데이터 개수와 같아지면 항상 가장 많은 클래스로 예측 → 과소적합

k-최근접 이웃 알고리즘

적은 이웃 → 과대 적합

데이터가 살짝만 달라져도 결정 경계가 달라져서 정확도가 떨어짐

많은 이웃 → 과소 적합

데이터가 달라져도 결정 경계가 변하지 않아서 정확도가 올라감

데이터 포인트(sample) 사이 거리 값 측정 방법

$$a^2+b^2=c^2$$
 (피타고라스의 정리)

Feature 1

데이터 포인트(sample) 사이 거리 값 측정 방법

$$\sqrt{(p_1-q_1)^2+(p_2-q_2)^2+\cdots+(p_n-q_n)^2}=\sqrt{\sum_{i=1}^n(p_i-q_i)^2}$$

유클리디언 거리공식 (Euclidean Distance)

주요 매개변수(Hyperparameter)

• 거리측정 방법, 이웃의 수, 가중치 함수

KNeighborsClassifier(n_neighbors = ?, P = ?, weight = ?)

P: 거리 계산 방법

- 1 : 맨하튼 방식

- 2: 유클리디언 방식

n_neighbors: 이웃의 수

weight : 가중치 함수

- uniform: 가중치를 동등하게 설정.

- distance : 가중치를 거리에 반비례하도록 설정

장단점

- 이해하기 매우 쉽고 조정 없이도 좋은 성능을 발휘하는 모델
- 훈련 데이터 세트가 크면(특성,샘플의 수) 예측이 느려진다
- 수백 개 이상의 많은 특성을 가진 데이터 세트와 특성 값 대부분이 00인 희소(sparse)한 데이터 세트에는 잘 동작하지 않는다
- 거리를 측정하기 때문에 같은 scale을 같도록 정규화 필요
- 전처리 과정이 중요, 잘 쓰이지는 않음

iris 데이터를 이용한 KNN 분류 실습

붓꽃(iris) 데이터셋

붓꽃(iris) 데이터셋

- 150개의 데이터
- 4개의 특성과 1개의 클래스(3개의 품종)로 구성

	sepal_length	sepal_width	petal_length	petal_width	species
	꽃받침 길이	꽃받침 넓이	꽃잎 길이	꽃잎 넓이	품종
1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9	3.0	1.4	0.2	
3	4.7	3.2	1.3	0.2	
•••					
150	5.9	3.0	5.1	1.8	Iris-virginica

train_test_split() 함수

- 데이터 셋에서 훈련데이터와 테스트데이터로 분리하는 기능

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state=0)

X : 특성 데이터

y: 라벨 데이터

test_size: 테스트 셋의 비율

random_state : 선택할 데이터 시드