Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to Arm's customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with @ or $^{\text{m}}$ are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at http://www.arm.com/company/policies/trademarks.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

 $\begin{array}{c} \text{Internal version only: isa } \ \text{v01_06} \\ \hline \text{v01_03}, \ \text{pseudocode } \ \text{v2019-12_rc3_1} \\ \hline \text{v2019-09_re2_1}, \ \text{sve } \ \text{v2019-12_rc3} \\ \hline \text{v2019-12-12T1} \\ \hline \text{v2019-09_30T07: } \\ \hline \text{3440} \\ \hline \end{array}$

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AArch32 -- Base Instructions (alphabetic order)

ADC, ADCS (immediate): Add with Carry (immediate).

ADC, ADCS (register): Add with Carry (register).

ADC, ADCS (register-shifted register): Add with Carry (register-shifted register).

ADD (immediate, to PC): Add to PC: an alias of ADR.

ADD, ADDS (immediate): Add (immediate).

ADD, ADDS (register): Add (register).

ADD, ADDS (register-shifted register): Add (register-shifted register).

ADD, ADDS (SP plus immediate): Add to SP (immediate).

ADD, ADDS (SP plus register): Add to SP (register).

ADR: Form PC-relative address.

AND, ANDS (immediate): Bitwise AND (immediate).

AND, ANDS (register): Bitwise AND (register).

AND, ANDS (register-shifted register): Bitwise AND (register-shifted register).

ASR (immediate): Arithmetic Shift Right (immediate): an alias of MOV, MOVS (register).

ASR (register): Arithmetic Shift Right (register): an alias of MOV, MOVS (register-shifted register).

ASRS (immediate): Arithmetic Shift Right, setting flags (immediate): an alias of MOV, MOVS (register).

ASRS (register): Arithmetic Shift Right, setting flags (register): an alias of MOV, MOVS (register-shifted register).

B: Branch.

BFC: Bit Field Clear.

BFI: Bit Field Insert.

BIC, BICS (immediate): Bitwise Bit Clear (immediate).

BIC, BICS (register): Bitwise Bit Clear (register).

BIC, BICS (register-shifted register): Bitwise Bit Clear (register-shifted register).

BKPT: Breakpoint.

BL, BLX (immediate): Branch with Link and optional Exchange (immediate).

BLX (register): Branch with Link and Exchange (register).

BX: Branch and Exchange.

BXJ: Branch and Exchange, previously Branch and Exchange Jazelle.

CBNZ, CBZ: Compare and Branch on Nonzero or Zero.

CLREX: Clear-Exclusive.

CLZ: Count Leading Zeros.

CMN (immediate): Compare Negative (immediate).

CMN (register): Compare Negative (register).

CMN (register-shifted register): Compare Negative (register-shifted register).

CMP (immediate): Compare (immediate).

CMP (register): Compare (register).

CMP (register-shifted register): Compare (register-shifted register).

CPS, CPSID, CPSIE: Change PE State.

CRC32: CRC32.

CRC32C: CRC32C.

CSDB: Consumption of Speculative Data Barrier.

DBG: Debug hint.

DCPS1: Debug Change PE State to EL1.

DCPS2: Debug Change PE State to EL2.

DCPS3: Debug Change PE State to EL3.

DMB: Data Memory Barrier.

DSB: Data Synchronization Barrier.

EOR, EORS (immediate): Bitwise Exclusive OR (immediate).

EOR, EORS (register): Bitwise Exclusive OR (register).

EOR, EORS (register-shifted register): Bitwise Exclusive OR (register-shifted register).

ERET: Exception Return.

ESB: Error Synchronization Barrier.

HLT: Halting Breakpoint.

HVC: Hypervisor Call.

ISB: Instruction Synchronization Barrier.

IT: If-Then.

LDA: Load-Acquire Word.

LDAB: Load-Acquire Byte.

LDAEX: Load-Acquire Exclusive Word.

LDAEXB: Load-Acquire Exclusive Byte.

LDAEXD: Load-Acquire Exclusive Doubleword.

LDAEXH: Load-Acquire Exclusive Halfword.

LDAH: Load-Acquire Halfword.

LDC (immediate): Load data to System register (immediate).

LDC (literal): Load data to System register (literal).

LDM (exception return): Load Multiple (exception return).

LDM (User registers): Load Multiple (User registers).

LDM, LDMIA, LDMFD: Load Multiple (Increment After, Full Descending).

LDMDA, LDMFA: Load Multiple Decrement After (Full Ascending).

LDMDB, LDMEA: Load Multiple Decrement Before (Empty Ascending).

LDMIB, LDMED: Load Multiple Increment Before (Empty Descending).

LDR (immediate): Load Register (immediate).

LDR (literal): Load Register (literal).

LDR (register): Load Register (register).

LDRB (immediate): Load Register Byte (immediate).

LDRB (literal): Load Register Byte (literal).

LDRB (register): Load Register Byte (register).

LDRBT: Load Register Byte Unprivileged.

LDRD (immediate): Load Register Dual (immediate).

LDRD (literal): Load Register Dual (literal).

LDRD (register): Load Register Dual (register).

LDREX: Load Register Exclusive.

LDREXB: Load Register Exclusive Byte.

LDREXD: Load Register Exclusive Doubleword.

LDREXH: Load Register Exclusive Halfword.

LDRH (immediate): Load Register Halfword (immediate).

LDRH (literal): Load Register Halfword (literal).

LDRH (register): Load Register Halfword (register).

LDRHT: Load Register Halfword Unprivileged.

LDRSB (immediate): Load Register Signed Byte (immediate).

LDRSB (literal): Load Register Signed Byte (literal).

LDRSB (register): Load Register Signed Byte (register).

LDRSBT: Load Register Signed Byte Unprivileged.

LDRSH (immediate): Load Register Signed Halfword (immediate).

LDRSH (literal): Load Register Signed Halfword (literal).

LDRSH (register): Load Register Signed Halfword (register).

LDRSHT: Load Register Signed Halfword Unprivileged.

LDRT: Load Register Unprivileged.

LSL (immediate): Logical Shift Left (immediate): an alias of MOV, MOVS (register).

LSL (register): Logical Shift Left (register): an alias of MOV, MOVS (register-shifted register).

LSLS (immediate): Logical Shift Left, setting flags (immediate): an alias of MOV, MOVS (register).

LSLS (register): Logical Shift Left, setting flags (register): an alias of MOV, MOVS (register-shifted register).

LSR (immediate): Logical Shift Right (immediate): an alias of MOV, MOVS (register).

LSR (register): Logical Shift Right (register): an alias of MOV, MOVS (register-shifted register).

LSRS (immediate): Logical Shift Right, setting flags (immediate): an alias of MOV, MOVS (register).

LSRS (register): Logical Shift Right, setting flags (register): an alias of MOV, MOVS (register-shifted register).

MCR: Move to System register from general-purpose register or execute a System instruction.

MCRR: Move to System register from two general-purpose registers.

MLA, MLAS: Multiply Accumulate.

MLS: Multiply and Subtract.

MOV, MOVS (immediate): Move (immediate).

MOV, MOVS (register): Move (register).

MOV, MOVS (register-shifted register): Move (register-shifted register).

MOVT: Move Top.

MRC: Move to general-purpose register from System register.

MRRC: Move to two general-purpose registers from System register.

MRS: Move Special register to general-purpose register.

MRS (Banked register): Move Banked or Special register to general-purpose register.

MSR (Banked register): Move general-purpose register to Banked or Special register.

MSR (immediate): Move immediate value to Special register.

MSR (register): Move general-purpose register to Special register.

MUL, MULS: Multiply.

MVN, MVNS (immediate): Bitwise NOT (immediate).

MVN, MVNS (register): Bitwise NOT (register).

MVN, MVNS (register-shifted register): Bitwise NOT (register-shifted register).

NOP: No Operation.

ORN, ORNS (immediate): Bitwise OR NOT (immediate).

ORN, ORNS (register): Bitwise OR NOT (register).

ORR, ORRS (immediate): Bitwise OR (immediate).

ORR, ORRS (register): Bitwise OR (register).

ORR, ORRS (register-shifted register): Bitwise OR (register-shifted register).

PKHBT, PKHTB: Pack Halfword.

PLD (literal): Preload Data (literal).

PLD, PLDW (immediate): Preload Data (immediate).

PLD, PLDW (register): Preload Data (register).

PLI (immediate, literal): Preload Instruction (immediate, literal).

PLI (register): Preload Instruction (register).

POP: Pop Multiple Registers from Stack.

POP (multiple registers): Pop Multiple Registers from Stack: an alias of LDM, LDMIA, LDMFD.

POP (single register): Pop Single Register from Stack: an alias of LDR (immediate).

PSSBB: Physical Speculative Store Bypass Barrier.

PUSH: Push Multiple Registers to Stack.

PUSH (multiple registers): Push multiple registers to Stack: an alias of STMDB, STMFD.

PUSH (single register): Push Single Register to Stack: an alias of STR (immediate).

QADD: Saturating Add.

QADD16: Saturating Add 16.

QADD8: Saturating Add 8.

QASX: Saturating Add and Subtract with Exchange.

QDADD: Saturating Double and Add.

QDSUB: Saturating Double and Subtract.

QSAX: Saturating Subtract and Add with Exchange.

QSUB: Saturating Subtract.

QSUB16: Saturating Subtract 16.

QSUB8: Saturating Subtract 8.

RBIT: Reverse Bits.

REV: Byte-Reverse Word.

REV16: Byte-Reverse Packed Halfword.

REVSH: Byte-Reverse Signed Halfword.

RFE, RFEDA, RFEDB, RFEIA, RFEIB: Return From Exception.

ROR (immediate): Rotate Right (immediate): an alias of MOV, MOVS (register).

ROR (register): Rotate Right (register): an alias of MOV, MOVS (register-shifted register).

RORS (immediate): Rotate Right, setting flags (immediate): an alias of MOV, MOVS (register).

RORS (register): Rotate Right, setting flags (register): an alias of MOV, MOVS (register-shifted register).

RRX: Rotate Right with Extend: an alias of MOV, MOVS (register).

RRXS: Rotate Right with Extend, setting flags: an alias of MOV, MOVS (register).

RSB, RSBS (immediate): Reverse Subtract (immediate).

RSB, RSBS (register): Reverse Subtract (register).

RSB, RSBS (register-shifted register): Reverse Subtract (register-shifted register).

RSC, RSCS (immediate): Reverse Subtract with Carry (immediate).

RSC, RSCS (register): Reverse Subtract with Carry (register).

RSC, RSCS (register-shifted register): Reverse Subtract (register-shifted register).

SADD16: Signed Add 16.

SADD8: Signed Add 8.

SASX: Signed Add and Subtract with Exchange.

SB: Speculation Barrier.

SBC, SBCS (immediate): Subtract with Carry (immediate).

SBC, SBCS (register): Subtract with Carry (register).

SBC, SBCS (register-shifted register): Subtract with Carry (register-shifted register).

SBFX: Signed Bit Field Extract.

SDIV: Signed Divide.

SEL: Select Bytes.

SETEND: Set Endianness.

SETPAN: Set Privileged Access Never.

SEV: Send Event.

SEVL: Send Event Local.

SHADD16: Signed Halving Add 16.

SHADD8: Signed Halving Add 8.

SHASX: Signed Halving Add and Subtract with Exchange.

SHSAX: Signed Halving Subtract and Add with Exchange.

SHSUB16: Signed Halving Subtract 16.

SHSUB8: Signed Halving Subtract 8.

SMC: Secure Monitor Call.

SMLABB, SMLABT, SMLATB, SMLATT: Signed Multiply Accumulate (halfwords).

SMLAD, SMLADX: Signed Multiply Accumulate Dual.

SMLAL, SMLALS: Signed Multiply Accumulate Long.

SMLALBB, SMLALBT, SMLALTB, SMLALTT: Signed Multiply Accumulate Long (halfwords).

SMLALD, SMLALDX: Signed Multiply Accumulate Long Dual.

SMLAWB, SMLAWT: Signed Multiply Accumulate (word by halfword).

SMLSD, SMLSDX: Signed Multiply Subtract Dual.

SMLSLD, SMLSLDX: Signed Multiply Subtract Long Dual.

SMMLA, SMMLAR: Signed Most Significant Word Multiply Accumulate.

SMMLS, SMMLSR: Signed Most Significant Word Multiply Subtract.

SMMUL, SMMULR: Signed Most Significant Word Multiply.

SMUAD, SMUADX: Signed Dual Multiply Add.

 $SMULBB,\,SMULBT,\,SMULTB,\,SMULTT:\,Signed\,\,Multiply\,\,(halfwords).$

SMULL, SMULLS: Signed Multiply Long.

SMULWB, SMULWT: Signed Multiply (word by halfword).

SMUSD, SMUSDX: Signed Multiply Subtract Dual.

SRS, SRSDA, SRSDB, SRSIA, SRSIB: Store Return State.

SSAT: Signed Saturate.

SSAT16: Signed Saturate 16.

SSAX: Signed Subtract and Add with Exchange.

SSBB: Speculative Store Bypass Barrier.

SSUB16: Signed Subtract 16.

SSUB8: Signed Subtract 8.

STC: Store data to System register.

STL: Store-Release Word.

STLB: Store-Release Byte.

STLEX: Store-Release Exclusive Word.

STLEXB: Store-Release Exclusive Byte.

STLEXD: Store-Release Exclusive Doubleword.

STLEXH: Store-Release Exclusive Halfword.

STLH: Store-Release Halfword.

STM (User registers): Store Multiple (User registers).

STM, STMIA, STMEA: Store Multiple (Increment After, Empty Ascending).

STMDA, STMED: Store Multiple Decrement After (Empty Descending).

STMDB, STMFD: Store Multiple Decrement Before (Full Descending).

STMIB, STMFA: Store Multiple Increment Before (Full Ascending).

STR (immediate): Store Register (immediate).

STR (register): Store Register (register).

STRB (immediate): Store Register Byte (immediate).

STRB (register): Store Register Byte (register).

STRBT: Store Register Byte Unprivileged.

STRD (immediate): Store Register Dual (immediate).

STRD (register): Store Register Dual (register).

STREX: Store Register Exclusive.

STREXB: Store Register Exclusive Byte.

STREXD: Store Register Exclusive Doubleword.

STREXH: Store Register Exclusive Halfword.

STRH (immediate): Store Register Halfword (immediate).

STRH (register): Store Register Halfword (register).

STRHT: Store Register Halfword Unprivileged.

STRT: Store Register Unprivileged.

SUB (immediate, from PC): Subtract from PC: an alias of ADR.

SUB, SUBS (immediate): Subtract (immediate).

SUB, SUBS (register): Subtract (register).

SUB, SUBS (register-shifted register): Subtract (register-shifted register).

SUB, SUBS (SP minus immediate): Subtract from SP (immediate).

SUB, SUBS (SP minus register): Subtract from SP (register).

SVC: Supervisor Call.

SXTAB: Signed Extend and Add Byte.

SXTAB16: Signed Extend and Add Byte 16.

SXTAH: Signed Extend and Add Halfword.

SXTB: Signed Extend Byte.

SXTB16: Signed Extend Byte 16.

SXTH: Signed Extend Halfword.

TBB, TBH: Table Branch Byte or Halfword.

TEQ (immediate): Test Equivalence (immediate).

TEQ (register): Test Equivalence (register).

TEQ (register-shifted register): Test Equivalence (register-shifted register).

TSB CSYNC: Trace Synchronization Barrier.

TST (immediate): Test (immediate).

TST (register): Test (register).

TST (register-shifted register): Test (register-shifted register).

UADD16: Unsigned Add 16.

UADD8: Unsigned Add 8.

UASX: Unsigned Add and Subtract with Exchange.

UBFX: Unsigned Bit Field Extract.

UDF: Permanently Undefined.

UDIV: Unsigned Divide.

UHADD16: Unsigned Halving Add 16.

UHADD8: Unsigned Halving Add 8.

UHASX: Unsigned Halving Add and Subtract with Exchange.

UHSAX: Unsigned Halving Subtract and Add with Exchange.

UHSUB16: Unsigned Halving Subtract 16.

UHSUB8: Unsigned Halving Subtract 8.

UMAAL: Unsigned Multiply Accumulate Accumulate Long.

UMLAL, UMLALS: Unsigned Multiply Accumulate Long.

UMULL, UMULLS: Unsigned Multiply Long.

UQADD16: Unsigned Saturating Add 16.

UQADD8: Unsigned Saturating Add 8.

UQASX: Unsigned Saturating Add and Subtract with Exchange.

UQSAX: Unsigned Saturating Subtract and Add with Exchange.

UQSUB16: Unsigned Saturating Subtract 16.

UQSUB8: Unsigned Saturating Subtract 8.

USAD8: Unsigned Sum of Absolute Differences.

USADA8: Unsigned Sum of Absolute Differences and Accumulate.

USAT: Unsigned Saturate.

USAT16: Unsigned Saturate 16.

USAX: Unsigned Subtract and Add with Exchange.

USUB16: Unsigned Subtract 16.

USUB8: Unsigned Subtract 8.

UXTAB: Unsigned Extend and Add Byte.

UXTAB16: Unsigned Extend and Add Byte 16.

UXTAH: Unsigned Extend and Add Halfword.

UXTB: Unsigned Extend Byte.

UXTB16: Unsigned Extend Byte 16.

UXTH: Unsigned Extend Halfword.

WFE: Wait For Event.

WFI: Wait For Interrupt.

YIELD: Yield hint.

 $Internal \ version \ only: is a \ {\color{red}v01_06} \\ {\color{red}v01_03}, \ pseudocode \ {\color{red}v2019-12_rc3_1} \\ {\color{red}v2019-09_re2_1}, \ sve \ {\color{red}v2019-12_rc3} \\ {\color{red}v2019-12_rc3}; \ Build \ timestamp: \\ {\color{red}2019-12_12T172019-09_30T07}; \ {\color{red}3440} \\ {\color{red}34400} \\ {\color{red}3440$

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DSB

Data Synchronization Barrier is a memory barrier that ensures the completion of memory accesses, see *Data Synchronization Barrier (DSB)*.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1).

A1

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	0	1	0	1	0	1	1	1	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(0)	(0)	(0)	(0)	0	1	0	0	_:	= C	x0($\overline{)}$
																													opt	ion	

A1

```
DSB{<c>}{<q>} {<option>}
// No additional decoding required
```

T1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	0	0	1	1	1	0	1	1	(1)	(1)	(1)	(1)	1	0	(0)	0	(1)	(1)	(1)	(1)	0	1	0	0	!	= 0)0x)
•																													opt	ion	

T1

```
DSB{<c>}{<q>} {<option>}
```

// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior, see *Architectural Constraints on UNPREDICTABLE behaviors*.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<option> Specifies an optional limitation on the barrier operation. Values are:

SY

Full system is the required shareability domain, reads and writes are the required access types, both before and after the barrier instruction. Can be omitted. This option is referred to as the full system barrier. Encoded as option = 0b1111.

ST

Full system is the required shareability domain, writes are the required access type, both before and after the barrier instruction. SYST is a synonym for ST. Encoded as option = 0b1110.

LD

Full system is the required shareability domain, reads are the required access type before the barrier instruction, and reads and writes are the required access types after the barrier instruction. Encoded as option = 0b1101.

ISH

Inner Shareable is the required shareability domain, reads and writes are the required access types, both before and after the barrier instruction. Encoded as option = 0b1011.

DSB Page 11

ISHST

Inner Shareable is the required shareability domain, writes are the required access type, both before and after the barrier instruction. Encoded as option = 0b1010.

ISHLD

Inner Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads and writes are the required access types after the barrier instruction. Encoded as option = 0b1001.

NSH

Non-shareable is the required shareability domain, reads and writes are the required access, both before and after the barrier instruction. Encoded as option = 0b0111.

NSHST

Non-shareable is the required shareability domain, writes are the required access type both before and after the barrier instruction. Encoded as option = 0b0110.

NSHLD

Non-shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads and writes are the required access types after the barrier instruction. Encoded as option = 0b0101.

OSH

Outer Shareable is the required shareability domain, reads and writes are the required access types, both before and after the barrier instruction. Encoded as option = 0b0011.

OSHST

Outer Shareable is the required shareability domain, writes are the required access type, both before and after the barrier instruction. Encoded as option = 0b0010.

OSHLE

Outer Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads and writes are the required access types after the barrier instruction. Encoded as option = 0b0001.

For more information on whether an access is before or after a barrier instruction, see *Data Synchronization Barrier (DSB)*. All other encodings of option are reserved, other than the values 0b0000 and 0b0100.reserved. All unsupported and reserved options must execute as a full system DSB operation, but software must not rely on this behavior.

The value 0b0000 is used to encode SSBB and the value 0b0100 is used to encode PSSBB.

The instruction supports the following alternative <option> values, but Arm recommends that software does not use these alternative values:

- SH as an alias for ISH.
- SHST as an alias for ISHST.
- · UN as an alias for NSH.
- · UNST as an alias for NSHST.

DSB Page 12

Operation

```
if ConditionPassed() then
    EncodingSpecificOperations();
    case option of
        when '0001'
                       domain = MBReqDomain OuterShareable;
                                                                types = MBReqTypes Reads;
        when '0010'
                      domain = MBReqDomain OuterShareable;
                                                                 types = MBReqTypes Writes;
        when '0011'
                      domain = MBReqDomain_OuterShareable;
                                                                 types = MBReqTypes_All;
        when '0101'
                      domain = MBReqDomain_Nonshareable;
                                                                 types = MBReqTypes_Reads;
        when '0110'
                      domain = MBReqDomain_Nonshareable;
                                                                 types = MBReqTypes_Writes;
        when '0111'
when '1001'
when '1010'
when '1011'
                       domain = MBReqDomain_Nonshareable;
                                                                 types = MBReqTypes_All;
                                                                types = MBReqTypes_Reads;
                      domain = MBReqDomain_InnerShareable;
                                                                 types = MBReqTypes_Writes;
                       domain = MBReqDomain InnerShareable;
                       domain = MBReqDomain InnerShareable;
                                                                 types = MBReqTypes All;
        when '1101'
                       domain = MBReqDomain_FullSystem;
                                                                 types = MBReqTypes_Reads;
        when '1110'
                       domain = MBReqDomain FullSystem;
                                                                 types = MBReqTypes Writes;
        otherwise
                       option == '0000' then SEE "SSBB";
             if
                       option == '0100' then SEE "PSSBB";
             elsif
                                                                types = MBReqTypes All;
             else
                       domain = MBReqDomain FullSystem;
    if PSTATE.EL IN \{\underline{\mathsf{EL0}},\ \underline{\mathsf{EL1}}\} && \underline{\mathsf{EL2Enabled}}() then
        if HCR.BSU == '11' then
             domain = MBReqDomain_FullSystem;
        if HCR.BSU == '10' && domain != MBReqDomain FullSystem then
             domain = MBReqDomain_OuterShareable;
        if HCR.BSU == '01' && domain == MBReqDomain_Nonshareable then
             domain = MBReqDomain_InnerShareable;
    DataSynchronizationBarrier(domain, types);
```

Internal version only: isa $v01_06v01_03$, pseudocode $v2019-12_rc3_1v2019-09_re2_1$, sve $v2019-12_rc3_v2019-09_re3$; Build timestamp: 2019-12-127172019-09-30707; 3440

 $\textbf{Copyright} © \textbf{2010-2019} \textbf{ Arm Limited or its affiliates. All rights reserved. This document is \textbf{Non-Confidential}. \\$

(old) htmldiff from- (new)

DSB Page 13

AArch32 -- SIMD&FP Instructions (alphabetic order)

AESD: AES single round decryption.

AESE: AES single round encryption.

AESIMC: AES inverse mix columns.

AESMC: AES mix columns.

FLDM*X (FLDMDBX, FLDMIAX): FLDM*X.

FSTMDBX, FSTMIAX: FSTMX.

SHA1C: SHA1 hash update (choose).

SHA1H: SHA1 fixed rotate.

SHA1M: SHA1 hash update (majority).

SHA1P: SHA1 hash update (parity).

SHA1SU0: SHA1 schedule update 0.

SHA1SU1: SHA1 schedule update 1.

SHA256H: SHA256 hash update part 1.

SHA256H2: SHA256 hash update part 2.

SHA256SU0: SHA256 schedule update 0.

SHA256SU1: SHA256 schedule update 1.

VABA: Vector Absolute Difference and Accumulate.

VABAL: Vector Absolute Difference and Accumulate Long.

VABD (floating-point): Vector Absolute Difference (floating-point).

VABD (integer): Vector Absolute Difference (integer).

VABDL (integer): Vector Absolute Difference Long (integer).

VABS: Vector Absolute.

VACGE: Vector Absolute Compare Greater Than or Equal.

VACGT: Vector Absolute Compare Greater Than.

VACLE: Vector Absolute Compare Less Than or Equal: an alias of VACGE.

VACLT: Vector Absolute Compare Less Than: an alias of VACGT.

VADD (floating-point): Vector Add (floating-point).

VADD (integer): Vector Add (integer).

VADDHN: Vector Add and Narrow, returning High Half.

VADDL: Vector Add Long.

VADDW: Vector Add Wide.

VAND (immediate): Vector Bitwise AND (immediate): an alias of VBIC (immediate).

VAND (register): Vector Bitwise AND (register).

VBIC (immediate): Vector Bitwise Bit Clear (immediate).

VBIC (register): Vector Bitwise Bit Clear (register).

VBIF: Vector Bitwise Insert if False.

VBIT: Vector Bitwise Insert if True.

VBSL: Vector Bitwise Select.

VCADD: Vector Complex Add.

VCEQ (immediate #0): Vector Compare Equal to Zero.

VCEQ (register): Vector Compare Equal.

VCGE (immediate #0): Vector Compare Greater Than or Equal to Zero.

VCGE (register): Vector Compare Greater Than or Equal.

VCGT (immediate #0): Vector Compare Greater Than Zero.

VCGT (register): Vector Compare Greater Than.

VCLE (immediate #0): Vector Compare Less Than or Equal to Zero.

VCLE (register): Vector Compare Less Than or Equal: an alias of VCGE (register).

VCLS: Vector Count Leading Sign Bits.

VCLT (immediate #0): Vector Compare Less Than Zero.

VCLT (register): Vector Compare Less Than: an alias of VCGT (register).

VCLZ: Vector Count Leading Zeros.

VCMLA: Vector Complex Multiply Accumulate.

VCMLA (by element): Vector Complex Multiply Accumulate (by element).

VCMP: Vector Compare.

VCMPE: Vector Compare, raising Invalid Operation on NaN.

VCNT: Vector Count Set Bits.

VCVT (between double-precision and single-precision): Convert between double-precision and single-precision.

VCVT (between floating-point and fixed-point, Advanced SIMD): Vector Convert between floating-point and fixed-point.

VCVT (between floating-point and fixed-point, floating-point): Convert between floating-point and fixed-point.

VCVT (between floating-point and integer, Advanced SIMD): Vector Convert between floating-point and integer.

VCVT (between half-precision and single-precision, Advanced SIMD): Vector Convert between half-precision and single-precision.

VCVT (floating-point to integer, floating-point): Convert floating-point to integer with Round towards Zero.

VCVT (from single-precision to BFloat16, Advanced SIMD): Vector Convert from single-precision to BFloat16.

VCVT (integer to floating-point, floating-point): Convert integer to floating-point.

<u>VCVTA (Advanced SIMD)</u>: Vector Convert floating-point to integer with Round to Nearest with Ties to Away.

VCVTA (floating-point): Convert floating-point to integer with Round to Nearest with Ties to Away.

VCVTB: Convert to or from a half-precision value in the bottom half of a single-precision register.

VCVTB (BFloat16): Converts from a single-precision value to a BFloat16 value in the bottom half of a single-precision register.

VCVTM (Advanced SIMD): Vector Convert floating-point to integer with Round towards -Infinity.

VCVTM (floating-point): Convert floating-point to integer with Round towards -Infinity.

VCVTN (Advanced SIMD): Vector Convert floating-point to integer with Round to Nearest.

VCVTN (floating-point): Convert floating-point to integer with Round to Nearest.

VCVTP (Advanced SIMD): Vector Convert floating-point to integer with Round towards +Infinity.

VCVTP (floating-point): Convert floating-point to integer with Round towards +Infinity.

VCVTR: Convert floating-point to integer.

VCVTT: Convert to or from a half-precision value in the top half of a single-precision register.

VCVTT (BFloat16): Converts from a single-precision value to a BFloat16 value in the top half of a single-precision register..

VDIV: Divide.

VDOT (by element): BFloat16 floating-point indexed dot product (vector, by element).

VDOT (vector): BFloat16 floating-point (BF16) dot product (vector).

VDUP (general-purpose register): Duplicate general-purpose register to vector.

VDUP (scalar): Duplicate vector element to vector.

VEOR: Vector Bitwise Exclusive OR.

VEXT (byte elements): Vector Extract.

VEXT (multibyte elements): Vector Extract: an alias of VEXT (byte elements).

VFMA: Vector Fused Multiply Accumulate.

VFMAB, VFMAT (BFloat16, by scalar): BFloat16 floating-point widening multiply-add long (by scalar).

VFMAB, VFMAT (BFloat16, vector): BFloat16 floating-point widening multiply-add long (vector).

VFMAL (by scalar): Vector Floating-point Multiply-Add Long to accumulator (by scalar).

VFMAL (vector): Vector Floating-point Multiply-Add Long to accumulator (vector).

VFMS: Vector Fused Multiply Subtract.

VFMSL (by scalar): Vector Floating-point Multiply-Subtract Long from accumulator (by scalar).

VFMSL (vector): Vector Floating-point Multiply-Subtract Long from accumulator (vector).

VFNMA: Vector Fused Negate Multiply Accumulate.

VFNMS: Vector Fused Negate Multiply Subtract.

VHADD: Vector Halving Add.

VHSUB: Vector Halving Subtract.

VINS: Vector move Insertion.

VJCVT: Javascript Convert to signed fixed-point, rounding toward Zero.

VLD1 (multiple single elements): Load multiple single 1-element structures to one, two, three, or four registers.

VLD1 (single element to all lanes): Load single 1-element structure and replicate to all lanes of one register.

VLD1 (single element to one lane): Load single 1-element structure to one lane of one register.

VLD2 (multiple 2-element structures): Load multiple 2-element structures to two or four registers.

VLD2 (single 2-element structure to all lanes): Load single 2-element structure and replicate to all lanes of two registers.

VLD2 (single 2-element structure to one lane): Load single 2-element structure to one lane of two registers.

VLD3 (multiple 3-element structures): Load multiple 3-element structures to three registers.

VLD3 (single 3-element structure to all lanes): Load single 3-element structure and replicate to all lanes of three registers.

VLD3 (single 3-element structure to one lane): Load single 3-element structure to one lane of three registers.

VLD4 (multiple 4-element structures): Load multiple 4-element structures to four registers.

VLD4 (single 4-element structure to all lanes): Load single 4-element structure and replicate to all lanes of four registers.

VLD4 (single 4-element structure to one lane): Load single 4-element structure to one lane of four registers.

VLDM, VLDMDB, VLDMIA: Load Multiple SIMD&FP registers.

VLDR (immediate): Load SIMD&FP register (immediate).

VLDR (literal): Load SIMD&FP register (literal).

VMAX (floating-point): Vector Maximum (floating-point).

VMAX (integer): Vector Maximum (integer).

VMAXNM: Floating-point Maximum Number.

VMIN (floating-point): Vector Minimum (floating-point).

VMIN (integer): Vector Minimum (integer).

VMINNM: Floating-point Minimum Number.

VMLA (by scalar): Vector Multiply Accumulate (by scalar).

VMLA (floating-point): Vector Multiply Accumulate (floating-point).

VMLA (integer): Vector Multiply Accumulate (integer).

VMLAL (by scalar): Vector Multiply Accumulate Long (by scalar).

VMLAL (integer): Vector Multiply Accumulate Long (integer).

VMLS (by scalar): Vector Multiply Subtract (by scalar).

VMLS (floating-point): Vector Multiply Subtract (floating-point).

VMLS (integer): Vector Multiply Subtract (integer).

VMLSL (by scalar): Vector Multiply Subtract Long (by scalar).

VMLSL (integer): Vector Multiply Subtract Long (integer).

VMMLA: BFloat16 floating-point matrix multiply-accumulate.

VMOV (between general-purpose register and half-precision): Copy 16 bits of a general-purpose register to or from a 32-bit SIMD&FP register.

VMOV (between general-purpose register and single-precision): Copy a general-purpose register to or from a 32-bit SIMD&FP register.

VMOV (between two general-purpose registers and a doubleword floating-point register): Copy two general-purpose registers to or from a SIMD&FP register.

VMOV (between two general-purpose registers and two single-precision registers): Copy two general-purpose registers to a pair of 32-bit SIMD&FP registers.

VMOV (general-purpose register to scalar): Copy a general-purpose register to a vector element.

VMOV (immediate): Copy immediate value to a SIMD&FP register.

VMOV (register): Copy between FP registers.

VMOV (register, SIMD): Copy between SIMD registers: an alias of VORR (register).

VMOV (scalar to general-purpose register): Copy a vector element to a general-purpose register with sign or zero extension.

VMOVL: Vector Move Long.

VMOVN: Vector Move and Narrow.

VMOVX: Vector Move extraction.

VMRS: Move SIMD&FP Special register to general-purpose register.

VMSR: Move general-purpose register to SIMD&FP Special register.

VMUL (by scalar): Vector Multiply (by scalar).

VMUL (floating-point): Vector Multiply (floating-point).

VMUL (integer and polynomial): Vector Multiply (integer and polynomial).

VMULL (by scalar): Vector Multiply Long (by scalar).

VMULL (integer and polynomial): Vector Multiply Long (integer and polynomial).

VMVN (immediate): Vector Bitwise NOT (immediate).

VMVN (register): Vector Bitwise NOT (register).

VNEG: Vector Negate.

VNMLA: Vector Negate Multiply Accumulate.

VNMLS: Vector Negate Multiply Subtract.

VNMUL: Vector Negate Multiply.

VORN (immediate): Vector Bitwise OR NOT (immediate): an alias of VORR (immediate).

VORN (register): Vector bitwise OR NOT (register).

VORR (immediate): Vector Bitwise OR (immediate).

VORR (register): Vector bitwise OR (register).

VPADAL: Vector Pairwise Add and Accumulate Long.

VPADD (floating-point): Vector Pairwise Add (floating-point).

VPADD (integer): Vector Pairwise Add (integer).

VPADDL: Vector Pairwise Add Long.

VPMAX (floating-point): Vector Pairwise Maximum (floating-point).

VPMAX (integer): Vector Pairwise Maximum (integer).

VPMIN (floating-point): Vector Pairwise Minimum (floating-point).

VPMIN (integer): Vector Pairwise Minimum (integer).

VPOP: Pop SIMD&FP registers from Stack: an alias of VLDM, VLDMDB, VLDMIA.

VPUSH: Push SIMD&FP registers to Stack: an alias of VSTM, VSTMDB, VSTMIA.

VQABS: Vector Saturating Absolute.

VQADD: Vector Saturating Add.

VQDMLAL: Vector Saturating Doubling Multiply Accumulate Long.

VQDMLSL: Vector Saturating Doubling Multiply Subtract Long.

VODMULH: Vector Saturating Doubling Multiply Returning High Half.

VQDMULL: Vector Saturating Doubling Multiply Long.

VQMOVN, VQMOVUN: Vector Saturating Move and Narrow.

VQNEG: Vector Saturating Negate.

VQRDMLAH: Vector Saturating Rounding Doubling Multiply Accumulate Returning High Half.

VQRDMLSH: Vector Saturating Rounding Doubling Multiply Subtract Returning High Half.

VQRDMULH: Vector Saturating Rounding Doubling Multiply Returning High Half.

VQRSHL: Vector Saturating Rounding Shift Left.

VQRSHRN (zero): Vector Saturating Rounding Shift Right, Narrow: an alias of VQMOVN, VQMOVUN.

VQRSHRN, VQRSHRUN: Vector Saturating Rounding Shift Right, Narrow.

VQRSHRUN (zero): Vector Saturating Rounding Shift Right, Narrow: an alias of VQMOVN, VQMOVUN.

VQSHL (register): Vector Saturating Shift Left (register).

VQSHL, VQSHLU (immediate): Vector Saturating Shift Left (immediate).

VQSHRN (zero): Vector Saturating Shift Right, Narrow: an alias of VQMOVN, VQMOVUN.

VQSHRN, VQSHRUN: Vector Saturating Shift Right, Narrow.

VQSHRUN (zero): Vector Saturating Shift Right, Narrow: an alias of VQMOVN, VQMOVUN.

VQSUB: Vector Saturating Subtract.

VRADDHN: Vector Rounding Add and Narrow, returning High Half.

VRECPE: Vector Reciprocal Estimate.

VRECPS: Vector Reciprocal Step.

VREV16: Vector Reverse in halfwords.

VREV32: Vector Reverse in words.

VREV64: Vector Reverse in doublewords.

VRHADD: Vector Rounding Halving Add.

VRINTA (Advanced SIMD): Vector Round floating-point to integer towards Nearest with Ties to Away.

VRINTA (floating-point): Round floating-point to integer to Nearest with Ties to Away.

VRINTM (Advanced SIMD): Vector Round floating-point to integer towards -Infinity.

VRINTM (floating-point): Round floating-point to integer towards -Infinity.

VRINTN (Advanced SIMD): Vector Round floating-point to integer to Nearest.

VRINTN (floating-point): Round floating-point to integer to Nearest.

VRINTP (Advanced SIMD): Vector Round floating-point to integer towards +Infinity.

VRINTP (floating-point): Round floating-point to integer towards +Infinity.

VRINTR: Round floating-point to integer.

VRINTX (Advanced SIMD): Vector round floating-point to integer inexact.

VRINTX (floating-point): Round floating-point to integer inexact.

VRINTZ (Advanced SIMD): Vector round floating-point to integer towards Zero.

VRINTZ (floating-point): Round floating-point to integer towards Zero.

VRSHL: Vector Rounding Shift Left.

VRSHR: Vector Rounding Shift Right.

VRSHR (zero): Vector Rounding Shift Right: an alias of VORR (register).

VRSHRN: Vector Rounding Shift Right and Narrow.

VRSHRN (zero): Vector Rounding Shift Right and Narrow: an alias of VMOVN.

VRSQRTE: Vector Reciprocal Square Root Estimate.

VRSQRTS: Vector Reciprocal Square Root Step.

VRSRA: Vector Rounding Shift Right and Accumulate.

VRSUBHN: Vector Rounding Subtract and Narrow, returning High Half.

VSDOT (by element): Dot Product index form with signed integers..

VSDOT (vector): Dot Product vector form with signed integers..

VSELEQ, VSELGE, VSELGT, VSELVS: Floating-point conditional select.

VSHL (immediate): Vector Shift Left (immediate).

VSHL (register): Vector Shift Left (register).

VSHLL: Vector Shift Left Long.

VSHR: Vector Shift Right.

VSHR (zero): Vector Shift Right: an alias of VORR (register).

VSHRN: Vector Shift Right Narrow.

VSHRN (zero): Vector Shift Right Narrow: an alias of VMOVN.

VSLI: Vector Shift Left and Insert.

VSMMLA: Widening 8-bit signed integer matrix multiply-accumulate into 2x2 matrix.

VSQRT: Square Root.

VSRA: Vector Shift Right and Accumulate.

VSRI: Vector Shift Right and Insert.

VST1 (multiple single elements): Store multiple single elements from one, two, three, or four registers.

VST1 (single element from one lane): Store single element from one lane of one register.

VST2 (multiple 2-element structures): Store multiple 2-element structures from two or four registers.

VST2 (single 2-element structure from one lane): Store single 2-element structure from one lane of two registers.

VST3 (multiple 3-element structures): Store multiple 3-element structures from three registers.

VST3 (single 3-element structure from one lane): Store single 3-element structure from one lane of three registers.

VST4 (multiple 4-element structures): Store multiple 4-element structures from four registers.

VST4 (single 4-element structure from one lane): Store single 4-element structure from one lane of four registers.

VST4 (single 4-element structure from one lane): Store single 4-element structure from one lane of four registers.

VSTM, VSTMDB, VSTMIA: Store multiple SIMD&FP registers.

VSTR: Store SIMD&FP register.

VSUB (floating-point): Vector Subtract (floating-point).

VSUB (integer): Vector Subtract (integer).

VSUBHN: Vector Subtract and Narrow, returning High Half.

VSUBL: Vector Subtract Long.

VSUBW: Vector Subtract Wide.

VSUDOT (by element): Dot Product index form with signed and unsigned integers (by element).

VSWP: Vector Swap.

VTBL, VTBX: Vector Table Lookup and Extension.

VTRN: Vector Transpose.

VTST: Vector Test Bits.

VUDOT (by element): Dot Product index form with unsigned integers..

VUDOT (vector): Dot Product vector form with unsigned integers..

VUMMLA: Widening 8-bit unsigned integer matrix multiply-accumulate into 2x2 matrix.

VUSDOT (by element): Dot Product index form with unsigned and signed integers (by element).

VUSDOT (vector): Dot Product vector form with mixed-sign integers.

VUSMMLA: Widening 8-bit mixed integer matrix multiply-accumulate into 2x2 matrix.

VUZP: Vector Unzip.

VUZP (alias): Vector Unzip: an alias of VTRN.

VZIP: Vector Zip.

VZIP (alias): Vector Zip: an alias of VTRN.

Internal version only: isa $v01_06v01_03$, pseudocode $v2019-12_rc3_1v2019-09_rc2_1$, sve $v2019-12_rc3_2v2019-09_rc3_1$; Build timestamp: $v2019-12_rc3_1v2019-09_rc3_1$; Build timestamp: $v2019-12_rc3_1v2019-09_rc3_1v$

 $\textbf{Copyright} @ \ 2010\text{-}2019 \ \textbf{Arm Limited or its affiliates}. \ \textbf{All rights reserved}. \ \textbf{This document is Non-Confidential}.$

(old) htmldiff from- (new)

VCVTA (Advanced SIMD)

Vector Convert floating-point to integer with Round to Nearest with Ties to Away converts each element in a vector from floating-point to integer using the Round to Nearest with Ties to Away rounding mode, and places the results in a second vector.

The operand vector elements are floating-point numbers.

The result vector elements are integers, 32-bit and the same size as the operand vector elements. integers. Signed and unsigned integers are distinct.

Depending on settings in the *CPACR*, *NSACR*, *HCPTR*, and *FPEXC* registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support*.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1).

A1

_31	30	29	28	27	26	25	24	23	22	21	20	19 18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	0	0	1	1	1	D	1	1	size	1	1		Vo	d		0	0	0	0	ор	Q	М	0		٧	m	
															RM															

64-bit SIMD vector (Q == 0)

```
VCVTA{<q>}.<dt>.<dt2> <Dd>, <Dm>
```

128-bit SIMD vector (Q == 1)

```
VCVTA{<q>}.<dt>.<dt>< <Qd>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '1');
case size of
   when '01' esize = 16; elements = 4;
   when '10' esize = 32; elements = 2;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
```

T1

64-bit SIMD vector (Q == 0)

```
VCVTA{<q>}.<dt>.<dt2> <Dd>, <Dm>
```

128-bit SIMD vector (Q == 1)

```
VCVTA{<q>}.<dt>.<dt>< <Qd>, <Qm>
if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '1');
case size of
   when '01' esize = 16; elements = 4;
   when '10' esize = 32; elements = 2;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
```

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the destination, encoded in "op:size":

op	size	<dt></dt>
0	01 <mark>532</mark>	S16
01	10 U32	S32
1	01	U16
1	10	U32

<dt2>
Is the data type for the elements of the source vector, encoded in "size":

size	<dt2></dt2>
01	F16
10	F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

Internal version only: isa $v01_06v01_03$, pseudocode $v2019-12_rc3_1v2019-09_re2_1$, sve $v2019-12_rc3\underbrace{v2019-09_re3}_{2019-12-12T172019-09-30T07}$; Build timestamp:

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

VCVTM (Advanced SIMD)

Vector Convert floating-point to integer with Round towards -Infinity converts each element in a vector from floating-point to integer using the Round towards -Infinity rounding mode, and places the results in a second vector.

The operand vector elements are floating-point numbers.

The result vector elements are integers, 32-bit and the same size as the operand vector elements. integers. Signed and unsigned integers are distinct.

Depending on settings in the *CPACR*, *NSACR*, *HCPTR*, and *FPEXC* registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support*.

It has encodings from the following instruction sets: A32 ($\frac{A1}{1}$) and T32 ($\frac{T1}{1}$).

A1

```
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9
                                                                           6
                                                                    8
                                                                        7
                                                                                       2
                          D 1
                                             1
                                                    Vd
                                                            0
                                                              0
                                                                  1
                                                                     1 |op| Q | M
                                                                                 0
                                 1
                                    size
                                                                                        Vm
                                                                   RM
```

64-bit SIMD vector (Q == 0)

```
VCVTM{<q>}.<dt>.<dt2> <Dd>, <Dm>
```

128-bit SIMD vector (Q == 1)

```
VCVTM{<q>}.<dt>.<dt><Qd>, <Qm>
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '1');
case size of
   when '01' esize = 16; elements = 4;
   when '10' esize = 32; elements = 2;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
```

T1

_15	14	13	12	11	10	9	8	7	6	5	4	3 2	1	0	15	14 13	12	11	10	9	8	7	6	5	4	3	2	1	_0_
1	1	1	1	1	1	1	1	1	D	1	1	size	1	1		Vd		0	0	1	1	ор	Q	М	0		٧	m	
																				R	М								

64-bit SIMD vector (Q == 0)

```
VCVTM{<q>}.<dt>.<dt2> <Dd>, <Dm>
```

128-bit SIMD vector (Q == 1)

```
VCVTM{<q>}.<dt>.<dt>< Qd>, <Qm>
if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '1');
case size of
   when '01' esize = 16; elements = 4;
   when '10' esize = 32; elements = 2;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
```

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the destination, encoded in "op:size":

ор	size	<dt></dt>
0	01 <mark>532</mark>	S16
01	10 U32	S32
1	01	U16
1	10	U32

<dt2>
Is the data type for the elements of the source vector, encoded in "size":

size	<dt2></dt2>
01	F16
10	F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

VCVTN (Advanced SIMD)

Vector Convert floating-point to integer with Round to Nearest converts each element in a vector from floating-point to integer using the Round to Nearest rounding mode, and places the results in a second vector.

The operand vector elements are floating-point numbers.

The result vector elements are integers, 32-bit and the same size as the operand vector elements. integers. Signed and unsigned integers are distinct.

Depending on settings in the *CPACR*, *NSACR*, *HCPTR*, and *FPEXC* registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support*.

It has encodings from the following instruction sets: A32 ($\frac{A1}{1}$) and T32 ($\frac{T1}{1}$).

A1

```
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9
                                                                          6
                                                                    8
                                                                       7
                          D
                             1
                                             1
                                                    Vd
                                                            0
                                                              0
                                                                 0
                                                                    1 |op| Q | M
                                                                                0
                                 1
                                    size
                                                                                       Vm
                                                                  RM
```

64-bit SIMD vector (Q == 0)

```
VCVTN{<q>}.<dt>.<dt2> <Dd>, <Dm>
```

128-bit SIMD vector (Q == 1)

```
VCVTN{<q>}. <dt>. <dt> <Qd>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;

rounding = FPDecodeRM(RM); unsigned = (op == '1');

case size of
   when '01' esize = 16; elements = 4;
   when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
```

T1

```
15 14 13 12 11 10
1
      1
         D
            1
               1
                   size
                                   Vd
                                            0
                                               0
                                                  0
                                                     1
                                                       |op| Q |
                                                              М
                                                                         Vm
                                                   RM
```

64-bit SIMD vector (Q == 0)

```
VCVTN{<q>}.<dt>.<dt2> <Dd>, <Dm>
```

128-bit SIMD vector (Q == 1)

```
VCVTN{<q>}.<dt>.<dt>< Qd>, <Qm>

if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '1');
case size of
    when '01' esize = 16; elements = 4;
    when '10' esize = 32; elements = 2;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
```

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the destination, encoded in "op:size":

ор	size	<dt></dt>
0	01 <mark>532</mark>	S16
01	10 U32	S32
1	01	U16
1	10	U32

<dt2>
Is the data type for the elements of the source vector, encoded in "size":

<dt2></dt2>
F16
F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

VCVTP (Advanced SIMD)

Vector Convert floating-point to integer with Round towards +Infinity converts each element in a vector from floating-point to integer using the Round towards +Infinity rounding mode, and places the results in a second vector.

The operand vector elements are floating-point numbers.

The result vector elements are integers, 32-bit and the same size as the operand vector elements. integers. Signed and unsigned integers are distinct.

Depending on settings in the *CPACR*, *NSACR*, *HCPTR*, and *FPEXC* registers, and the Security state and PE mode in which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more information see *Enabling Advanced SIMD and floating-point support*.

It has encodings from the following instruction sets: A32 ($\frac{A1}{1}$) and T32 ($\frac{T1}{1}$).

A1

```
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9
                                                                           6
                                                                    8
                                                                       7
                          D
                             1
                                             1
                                                    Vd
                                                            0
                                                              0
                                                                  1
                                                                     0 |op| Q | M
                                                                                 0
                                 1
                                    size
                                                                                       Vm
                                                                   RM
```

64-bit SIMD vector (Q == 0)

```
VCVTP{<q>}.<dt>.<dt2> <Dd>, <Dm>
```

128-bit SIMD vector (Q == 1)

```
VCVTP{<q>}. <dt>. <dt> <Qd>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;

rounding = FPDecodeRM(RM); unsigned = (op == '1');

case size of
   when '01' esize = 16; elements = 4;
   when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
```

T1

64-bit SIMD vector (Q == 0)

```
VCVTP{<q>}.<dt>.<dt2> <Dd>, <Dm>
```

128-bit SIMD vector (Q == 1)

```
VCVTP{<q>}.<dt>.<dt>< <Qd>, <Qm>

if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '1');
case size of
    when '01' esize = 16; elements = 4;
    when '10' esize = 32; elements = 2;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
```

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

- The instruction is UNDEFINED.
- The instruction executes as if it passes the Condition code check.
- The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the destination, encoded in "op:size":

op	size	<dt></dt>
0	01 <mark>532</mark>	S16
01	10 U32	S32
1	01	U16
1	10	U32

<dt2>
Is the data type for the elements of the source vector, encoded in "size":

size	<dt2></dt2>
01	F16
10	F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

Internal version only: isa $v01_06v01_03$, pseudocode $v2019-12_rc3_1v2019-09_re2_1$, sve $v2019-12_rc3\underbrace{v2019-09_re3}_{2019-12-12T172019-09-30T07}$; Build timestamp:

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

Top-level encodings for A32

31 30 29 28	27 26 25	24 23 22 2	21 20 19 1	18 17 16 15	14 13 12 11 10 9	8 7 6 5	4 3 2 1	0_
cond	op0						op1	

Deco	de fields		Instruction details
cond	op0	op1	instruction details

!= 1111	00x		Data-processing and miscellaneous instructions
!= 1111	010		Load/Store Word, Unsigned Byte (immediate, literal)
!= 1111	011	0	Load/Store Word, Unsigned Byte (register)
!= 1111	011	1	Media instructions
	10×		Branch, branch with link, and block data transfer
	11x		System register access, Advanced SIMD, floating-point, and Supervisor call
1111	0xx		<u>Unconditional instructions</u>

Data-processing and miscellaneous instructions

These instructions are under the top-level.

31 30 29 28	27 26 25	24 23 22 21 20	19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0
!= 1111	00 op0	op1	op2 op3 op4	

Decode fields Instruction details op1 op2 op3 op4

op0	op1	op2 op3		op4	Instruction details						
0		1	!= 00	1	Extra load/store						
0	0xxxx	1	00	1	Multiply and Accumulate						
0	1xxxx	1	00	1	Synchronization primitives and Load-Acquire/Store-Release						
0	10xx0	0			Miscellaneous						
0	10xx0	1		0	Halfword Multiply and Accumulate						
0	!= 10xx0			0	Data-processing register (immediate shift)						
0	!= 10xx0	0		1	Data-processing register (register shift)						
1					<u>Data-processing immediate</u>						

Extra load/store

These instructions are under <u>Data-processing and miscellaneous instructions</u>.

31 30 29 28 27 26 2	5 24 23 22 21 20	19 18 17 16 15 14 13 12 11 10 9	8	7 6	5 4	3 2	1 0
!= 1111 000	op0			1 !=	= 00 1		

Decode fields op0	Instruction details
----------------------	---------------------

OPO	
0	Load/Store Dual, Half, Signed Byte (register)
1	Load/Store Dual, Half, Signed Byte (immediate, literal)

Load/Store Dual, Half, Signed Byte (register)

These instructions are under **Extra load/store**.

31 30 29 28	27	26	25	24	23	22	21	20	19	18 17	16	15	14 13	12	11	10	9	8	7	6	5	4	3	2	1	0_
!= 1111	0	0	0	Р	U	0	8	o1		Rn			Rt		(0)	(0)	(0)	(0)	1	!=	00	1		Rr	n	
cond																				op)2					

The following constraints also apply to this encoding: cond !=1111 && op2 !=00 && cond !=1111 && op2 !=00

	Deco	de fiel	ds	Instruction Details						
_P	W	о1	op2	Instruction Details						
0	0	0	01	STRH (register) — post-indexed						
0	0	0	10	LDRD (register) — post-indexed						
0	0	0	11	STRD (register) — post-indexed						
0	0	1	01	LDRH (register) — post-indexed						
0	0	1	10	LDRSB (register) — post-indexed						
0	0	1	11	LDRSH (register) — post-indexed						
0	1	0	01	STRHT						
0	1	0	10	UNALLOCATED						
0	1	0	11	UNALLOCATED						
0	1	1	01	LDRHT						
0	1	1	10	LDRSBT						
0	1	1	11	LDRSHT						
1		0	01	STRH (register) — pre-indexed						
1		0	10	LDRD (register) — pre-indexed						
1		0	11	STRD (register) — pre-indexed						
1		1	01	LDRH (register) — pre-indexed						
1		1	10	LDRSB (register) — pre-indexed						
1		1	11	LDRSH (register) — pre-indexed						

Load/Store Dual, Half, Signed Byte (immediate, literal)

These instructions are under **Extra load/store**.

	31 30 29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	!= 1111	0	0	0	Р	U	1	W	o1		R	n			R	Rt			imn	ո4H		1	!=	00	1		imn	n4L	
•	cond																						or	o2					

The following constraints also apply to this encoding: cond !=1111 && op2 !=00 && cond !=1111 && op2 !=00

	Deco	de fields		Instruction Details
P:W	o1	Rn	op2	instruction betans
	0	1111	10	LDRD (literal)
!= 01	1	1111	01	LDRH (literal)
!= 01	1	1111	10	LDRSB (literal)
!= 01	1	1111	11	LDRSH (literal)
00	0	!= 1111	10	LDRD (immediate) — post-indexed
00	0		01	STRH (immediate) — post-indexed
00	0		11	STRD (immediate) — post-indexed
00	1	!= 1111	01	LDRH (immediate) — post-indexed
00	1	!= 1111	10	LDRSB (immediate) — post-indexed
00	1	!= 1111	11	LDRSH (immediate) — post-indexed
01	0	!= 1111	10	UNALLOCATED
01	0		01	STRHT
01	0		11	UNALLOCATED
01	1		01	LDRHT
01	1		10	LDRSBT
01	01 1			LDRSHT
10	0	!= 1111	10	LDRD (immediate) — offset

	Deco	de fields		Instruction Details
P:W	o1	Rn	op2	instruction Details
10	0		01	STRH (immediate) — offset
10	0		11	STRD (immediate) — offset
10	1	!= 1111	01	LDRH (immediate) — offset
10	1	!= 1111	10	LDRSB (immediate) — offset
10	1	!= 1111	11	LDRSH (immediate) — offset
11	0	!= 1111	10	LDRD (immediate) — pre-indexed
11	0		01	STRH (immediate) — pre-indexed
11	0		11	STRD (immediate) — pre-indexed
11	1	!= 1111	01	LDRH (immediate) — pre-indexed
11	1	!= 1111	10	LDRSB (immediate) — pre-indexed
11	1	!= 1111	11	LDRSH (immediate) — pre-indexed

Multiply and Accumulate

These instructions are under <u>Data-processing and miscellaneous instructions</u>.

31 30 29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	0	0	0	0		орс		S		Ro	iHk			Rd	lLo			R	m		1	0	0	1		R	n	
cond																												

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode :	fields S	Instruction Details
000		MUL, MULS
001		MLA, MLAS
010	0	UMAAL
010	1	UNALLOCATED
011	0	MLS
011	1	UNALLOCATED
100		UMULL, UMULLS
101		UMLAL, UMLALS
110		SMULL, SMULLS
111		SMLAL, SMLALS

Synchronization primitives and Load-Acquire/Store-Release

These instructions are under $\underline{\text{Data-processing and miscellaneous instructions}}$.

31 30 29 28	27 26 25	24 23 22 23	21 20 19 18 17 16 15	14 13 12 11 10	9 8	7 6 5 4	3 2 1 0
!= 1111	0001	op0		11		1001	

Decode fields op0	Instruction details
0	UNALLOCATED
1	Load/Store Exclusive and Load-Acquire/Store-Release

Load/Store Exclusive and Load-Acquire/Store-Release

These instructions are under <u>Synchronization primitives and Load-Acquire/Store-Release</u>.

31 30 29 28	27 26 2	5 24 23	22 21 2	20 1	19 18 17 16	15 14 13 12	11 10	9 8	7	6	5	4	3	2	1 0
!= 1111	0 0 0	1 1	size	L	Rn	xRd	(1) (1)	ex ord	1	0	0	1		xRt	:

cond

The following constraints also apply to this encoding: cond !=1111 && cond !=1111

D	ecod	e field	Instruction Details					
size	L	ex	ord	Instruction Details				
00	0	0	0	STL				
00	0	0	1	UNALLOCATED				
00	0	1	0	STLEX				
00	0	1	1	STREX				
00	1	0	0	LDA				
00	1	0	1	UNALLOCATED				
00	1	1	0	LDAEX				
00	1	1	1	LDREX				
01	0	0		UNALLOCATED				
01	0	1	0	STLEXD				
01	0	1	1	STREXD				
01	1	0		UNALLOCATED				
01	1	1	0	LDAEXD				
01	1	1	1	LDREXD				
10	0	0	0	STLB				
10	0	0	1	UNALLOCATED				
10	0	1	0	STLEXB				
10	0	1	1	STREXB				
10	1	0	0	LDAB				
10	1	0	1	UNALLOCATED				
10	1	1	0	LDAEXB				
10	1	1	1	LDREXB				
11	0	0	0	STLH				
11	0	0	1	UNALLOCATED				
11	0	1	0	STLEXH				
11	0	1	1	STREXH				
11	1	0	0	LDAH				
11	1	0	1	UNALLOCATED				
11	1	1	0	LDAEXH				
11	1	1	1	LDREXH				

Miscellaneous

These instructions are under <u>Data-processing and miscellaneous instructions</u>.

31 30 29 28	27 26 25 24 23	22 21 20	9 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4	3 2 1 0
!= 1111	00010	op0 0	0 op1	

Decodo op0	e fields op1	Instruction details
00	001	UNALLOCATED
00	010	UNALLOCATED
00	011	UNALLOCATED
00	110	UNALLOCATED

01	001	BX
01	010	ВХЈ
01	011	BLX (register)
01	110	UNALLOCATED
10	001	UNALLOCATED
10	010	UNALLOCATED
10	011	UNALLOCATED
10	110	UNALLOCATED
11	001	CLZ
11	010	UNALLOCATED
11	011	UNALLOCATED
11	110	ERET
	111	Exception Generation
	000	Move special register (register)
	100	Cyclic Redundancy Check
	101	Integer Saturating Arithmetic

Exception Generation

These instructions are under $\underline{\text{Miscellaneous}}$.

31 30 29 28	27	26	25	24	23	22 21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	0	0	0	1	0	орс	0						imr	n12)					0	1	1	1		imi	m4	
cond																											

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields opc	Instruction Details
00	HLT
01	BKPT
10	HVC
11	SMC

Move special register (register)

These instructions are under Miscellaneous.

31 30 29 28	27	26	25	24	23	22 21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	0	0	0	1	0	орс	0		ma	ask			R	.d		(0)	(0)	В	m	0	0	0	0		R	n	
cond																											

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode opc	fields B	Instruction Details
x0	0	MRS
x0	1	MRS (Banked register)
x1	0	MSR (register)
x1	1	MSR (Banked register)

Cyclic Redundancy Check

These instructions are under Miscellaneous.

31 30 29 28	27	26	25	24	23	22 21	20	19	18 1	17 1	6 1	5 14	1 13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	0	0	0	1	0	SZ	0		Rn)			Rd		(0)	(0)	С	(0)	0	1	0	0		R	m	
cond																										

cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode	fields	Instruction Details
SZ	C	instruction Details
00	0	CRC32 — CRC32B
00	1	CRC32C — CRC32CB
01	0	CRC32 — CRC32H
01	1	CRC32C — CRC32CH
10	0	CRC32 — CRC32W
10	1	CRC32C — CRC32CW
11		CONSTRAINED UNPREDICTABLE

The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in *CONSTRAINED UNPREDICTABLE behavior for A32 and T32 instruction encodings*

Integer Saturating Arithmetic

These instructions are under Miscellaneous.

31 30 29 28	27	26	25	24	23	22 21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	0	0	0	1	0	орс	0		R	n			R	.d		(0)	(0)	(0)	(0)	0	1	0	1		Rı	n	
cond																											

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields opc	Instruction Details
00	QADD
01	QSUB
10	QDADD
11	QDSUB

Halfword Multiply and Accumulate

These instructions are under <u>Data-processing</u> and <u>miscellaneous instructions</u>.

31 30 29 28	27	26	25	24	23	22 21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0_
!= 1111	0	0	0	1	0	орс	0		R	.d			R	la			Rı	m		1	М	N	0		F	≀n	
cond																											

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Deco	ode fie	lds	Instruction Details
opc	\mathbf{M}	\mathbf{N}	instruction Details
00			SMLABB, SMLABT, SMLATB, SMLATT
01	0	0	SMLAWB, SMLAWT — SMLAWB
01	0	1	SMULWB, SMULWT — SMULWB

Deco	de fie	lds	Instruction Details
opc	\mathbf{M}	N	instruction Details
01	01 1 0		SMLAWB, SMLAWT — SMLAWT
01 1 1		1	SMULWB, SMULWT — SMULWT
10			SMLALBB, SMLALBT, SMLALTB, SMLALTT
11			SMULBB, SMULBT, SMULTB, SMULTT

Data-processing register (immediate shift)

These instructions are under <u>Data-processing</u> and <u>miscellaneous instructions</u>.

31 30 29 28 2	27 26 25	24 23	22 21	20 1	.9 18	17	16 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	000	op0	C	op1														0				

The following constraints also apply to this encoding: op0:op1 !=100

Decod	e fields	Instruction details
op0	op1	instruction details
0×		Integer Data Processing (three register, immediate shift)
10	1	Integer Test and Compare (two register, immediate shift)
11		Logical Arithmetic (three register, immediate shift)

Integer Data Processing (three register, immediate shift)

These instructions are under <u>Data-processing register (immediate shift)</u>.

31 30 29 28	27	26	25	24	23 2	22 21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0_
!= 1111	0	0	0	0	0	рс	S		R	n			R	.d			ir	nm	5		sty	/pe	0		Rı	n	
cond																											

The following constraints also apply to this encoding: cond !=1111 && cond !=1111

Decode fields			Instruction Details
opc	S	Rn	Instruction Details
000			AND, ANDS (register)
001			EOR, EORS (register)
010	0	!= 1101	SUB, SUBS (register) — SUB
010	0	1101	SUB, SUBS (SP minus register) — SUB
010	1	!= 1101	SUB, SUBS (register) — SUBS
010	1	1101	SUB, SUBS (SP minus register) — SUBS
011			RSB, RSBS (register)
100	0	!= 1101	ADD, ADDS (register) — ADD
100	0	1101	ADD, ADDS (SP plus register) — ADD
100	1	!= 1101	ADD, ADDS (register) — ADDS
100	1	1101	ADD, ADDS (SP plus register) — ADDS
101			ADC, ADCS (register)
110			SBC, SBCS (register)
111			RSC, RSCS (register)

Integer Test and Compare (two register, immediate shift)

These instructions are under <u>Data-processing register (immediate shift)</u>.

31 30 29 28	3 27	26	25	24	23	22 21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	0	0	0	1	0	орс	1		R	ln		(0)	(0)	(0)	(0)		ir	nm	5		sty	/pe	0		Rı	m	
cond																											

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields opc	Instruction Details
00	TST (register)
01	TEQ (register)
10	CMP (register)
11	CMN (register)

Logical Arithmetic (three register, immediate shift)

These instructions are under <u>Data-processing register (immediate shift)</u>.

31 30 29 28	27 26	25	24	23	22 21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	0 0	0	1	1	орс	S		R	n			R	ld			ir	nm	5		sty	/pe	0		R	m	
cond																										

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields opc	Instruction Details
00	ORR, ORRS (register)
01	MOV, MOVS (register)
10	BIC, BICS (register)
11	MVN, MVNS (register)

Data-processing register (register shift)

These instructions are under <u>Data-processing and miscellaneous instructions</u>.

31 30 29 28	27 26 25	24 23 22 2	1 20 1	19 18 17	16 15 14 1	3 12 11 10	9 8	7 (6 5	4	3	2	1	0
!= 1111	000	op0	op1					0		1				

The following constraints also apply to this encoding: op0:op1 != 100

	Decode op0	e fields op1	Instruction details
	0x		Integer Data Processing (three register, register shift)
	10	1	Integer Test and Compare (two register, register shift)
ſ	11		Logical Arithmetic (three register, register shift)

Integer Data Processing (three register, register shift)

These instructions are under <u>Data-processing register (register shift)</u>.

31 30 29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	0	0	0	0		opc		S		R	ln			R	d			R	S		0	sty	γpe	1		Rı	n	
cond																												

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields	Instruction Details
орс	instruction Details
000	

opc	
000	AND, ANDS (register-shifted register)
001	EOR, EORS (register-shifted register)
010	SUB, SUBS (register-shifted register)
011	RSB, RSBS (register-shifted register)
100	ADD, ADDS (register-shifted register)
101	ADC, ADCS (register-shifted register)
110	SBC, SBCS (register-shifted register)
111	RSC, RSCS (register-shifted register)

Integer Test and Compare (two register, register shift)

These instructions are under <u>Data-processing register (register shift)</u>.

31 30 29 28	27 2	5 25	24	23	22 21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0_
!= 1111	0 0	0	1	0	орс	1		R	n		(0)	(0)	(0)	(0)		R	S		0	sty	/pe	1		R	m	
cond																										

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields opc	Instruction Details
00	TST (register-shifted register)
01	TEQ (register-shifted register)
10	CMP (register-shifted register)
11	CMN (register-shifted register)

Logical Arithmetic (three register, register shift)

These instructions are under <u>Data-processing register (register shift)</u>.

	31 30 29 28	27	26	25	24	23	22 2	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	!= 1111	0	0	0	1	1	opo	0	S		R	n			R	ld			R	S		0	sty	γре	1		R	m	
Ī	cond																												

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields opc	Instruction Details
00	ORR, ORRS (register-shifted register)
01	MOV, MOVS (register-shifted register)
10	BIC, BICS (register-shifted register)
11	MVN, MVNS (register-shifted register)

Data-processing immediate

These instructions are under $\underline{\text{Data-processing and miscellaneous instructions}}$.

31 30 29 28	27 26 25	24 23 22	21 20	19 18	17 16	15 14	13	12	11 10	9	8	7	6	5	4	3	2	1	0
!= 1111	001	op0	op1																

Decode fields	Instruction details
op0 op1	instruction details

0x		Integer Data Processing (two register and immediate)
10	00	Move Halfword (immediate)
10	10	Move Special Register and Hints (immediate)
10	x1	Integer Test and Compare (one register and immediate)
11		Logical Arithmetic (two register and immediate)

Integer Data Processing (two register and immediate)

These instructions are under **Data-processing immediate**.

!= 1111 0 0 1 0 opc S Rn Rd imm12	31	30 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		!= 111	.1	0	0	1	0		opc	<u>;</u>	5		R	n			R	d							imn	n12	<u> </u>				

cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

D	ecod	e fields	Instruction Details
opc	S	Rn	mstruction Details
000			AND, ANDS (immediate)
001			EOR, EORS (immediate)
010	0	!= 11x1	SUB, SUBS (immediate) — SUB
010	0	1101	SUB, SUBS (SP minus immediate) — SUB
010	0	1111	ADR — A2
010	1	!= 1101	SUB, SUBS (immediate) — SUBS
010	1	1101	SUB, SUBS (SP minus immediate) — SUBS
011			RSB, RSBS (immediate)
100	0	!= 11x1	ADD, ADDS (immediate) — ADD
100	0	1101	ADD, ADDS (SP plus immediate) — ADD
100	0	1111	ADR — A1
100	1	!= 1101	ADD, ADDS (immediate) — ADDS
100	1	1101	ADD, ADDS (SP plus immediate) — ADDS
101			ADC, ADCS (immediate)
110			SBC, SBCS (immediate)
111	·		RSC, RSCS (immediate)

Move Halfword (immediate)

These instructions are under <u>Data-processing immediate</u>.

'= 1111 0 0 1 1 0 H 0 0 imm4 Rd imm12	3 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	
: 1111 0 0 1 1 0 11 0 0 111111	0 H 0 0 imm4 Rd imm12	

cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields H	Instruction Details
0	MOV, MOVS (immediate)
1	MOVT

Move Special Register and Hints (immediate)

These instructions are under <u>Data-processing immediate</u>.

31 30 29 28	27 2	6 25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	0 () 1	1	0	R	1	0		imı	m4		(1)	(1)	(1)	(1)						imr	n12	<u>-</u>				

cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Dec R:imm4	ode fields imm12	Instruction Details	Architecture Version						
!= 00000	111111112	MSR (immediate)	-						
00000	xxxx00000000	NOP	-						
00000	xxxx00000001	YIELD	-						
00000	xxxx00000010	WFE	-						
00000	xxxx00000011	WFI	-						
00000	xxxx00000100	SEV	-						
00000	xxxx00000101	SEVL	-						
00000	xxxx0000011x	Reserved hint, behaves as NOP	-						
00000	xxxx00001xxx	Reserved hint, behaves as NOP	-						
00000	xxxx00010000	ESB	Armv8.2						
00000	xxxx00010001	Reserved hint, behaves as NOP	-						
00000	xxxx00010010	TSB CSYNC	Armv8.4						
00000	xxxx00010011	Reserved hint, behaves as NOP	-						
00000	xxxx00010100	CSDB	-						
00000	xxxx00010101	Reserved hint, behaves as NOP	-						
00000	xxxx00011xxx	Reserved hint, behaves as NOP	-						
00000	xxxx0001111x	Reserved hint, behaves as NOP	-						
00000	xxxx001xxxxx	Reserved hint, behaves as NOP	-						
00000	xxxx01xxxxxx	Reserved hint, behaves as NOP	-						
00000	xxxx10xxxxxx	Reserved hint, behaves as NOP	-						
00000	xxxx110xxxxx	Reserved hint, behaves as NOP	-						
00000	xxxx1110xxxx	Reserved hint, behaves as NOP	-						
00000	xxxx1111xxxx	DBG	-						

Integer Test and Compare (one register and immediate)

These instructions are under <u>Data-processing immediate</u>.

31 30 29 28 27	26 25	24 23	22 21	20	19 18 17	16 15 14	13 12 1	1 10	9 8	3 7	6	5	4	3	2	1	0
!= 1111 0	0 1	1 0	орс	1	Rn	(0)(0)	(0)(0)				imr	n12	2				

cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields opc	Instruction Details
00	TST (immediate)
01	TEQ (immediate)
10	CMP (immediate)
11	CMN (immediate)

Logical Arithmetic (two register and immediate)

These instructions are under <u>Data-processing immediate</u>.

31 30 29 28	27 2	6 25	24	23	22 21	20	19 18	3 17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	0 0) 1	1	1	орс	S		Rn			R	.d							imn	n12	2				

cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields opc	Instruction Details
00	ORR, ORRS (immediate)
01	MOV, MOVS (immediate)
10	BIC, BICS (immediate)
11	MVN, MVNS (immediate)

Load/Store Word, Unsigned Byte (immediate, literal)

31 30 29 28 27 26 25	24 23 22 21 20	19 18 17 16 15 14 13 12	11 10 9 8 7 6 5 4 3 2 1 0
!= 1111 0 1 0	P U 02 W 01	Rn Rt	imm12

cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

	Deco	de fiel	ds	Instruction Details
P:W	ο2	o1	Rn	Instruction Details
!= 01	0	1	1111	LDR (literal)
!= 01	1	1	1111	LDRB (literal)
00	0	0		STR (immediate) — post-indexed
00	0	1	!= 1111	LDR (immediate) — post-indexed
00	1	0		STRB (immediate) — post-indexed
00	1	1	!= 1111	LDRB (immediate) — post-indexed
01	0	0		STRT
01	0	1		LDRT
01	1	0		STRBT
01	1	1		LDRBT
10	0	0		STR (immediate) — offset
10	0	1	!= 1111	LDR (immediate) — offset
10	1	0		STRB (immediate) — offset
10	1	1	!= 1111	LDRB (immediate) — offset
11	0	0		STR (immediate) — pre-indexed
11	0	1	!= 1111	LDR (immediate) — pre-indexed
11	1	0		STRB (immediate) — pre-indexed
11	1	1	!= 1111	LDRB (immediate) — pre-indexed

Load/Store Word, Unsigned Byte (register)

31 30 29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	0	1	1	Р	U	02	W	o1		R	ln			F	₹t			ir	nm	5		sty	рe	0		R	m	

cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

	Decod	e field	ls	Instruction Details
P	o2	\mathbf{W}	o1	Instruction Details
0	0	0	0	STR (register) — post-indexed

	Decod	e field	ls	Instruction Details
P	ο2	\mathbf{W}	o1	instruction Details
0	0	0	1	LDR (register) — post-indexed
0	0	1	0	STRT
0	0	1	1	LDRT
0	1	0	0	STRB (register) — post-indexed
0	1	0	1	LDRB (register) — post-indexed
0	1	1	0	STRBT
0	1	1	1	LDRBT
1	0		0	STR (register) — pre-indexed
1	0		1	LDR (register) — pre-indexed
1	1	·	0	STRB (register) — pre-indexed
1	1		1	LDRB (register) — pre-indexed

Media instructions

These instructions are under the top-level.

31 30 29 28	27 26 25	24 23 22 21 20	19 18 17 16 15 14 13 12 11 10 9 8	7 6 5 4	3 2 1 0
!= 1111	011	0до		op1 1	

Decode op0	fields op1	Instruction details									
00xxx		Parallel Arithmetic									
01000	101	SEL									
01000	001	UNALLOCATED									
01000	xx0	РКНВТ, РКНТВ									
01001	×01	UNALLOCATED									
01001	xx0	UNALLOCATED									
0110x	×01	UNALLOCATED									
0110x	xx0	UNALLOCATED									
01×10	001	Saturate 16-bit									
01×10	101	UNALLOCATED									
01×11	×01	Reverse Bit/Byte									
01x1x	xx0	Saturate 32-bit									
01xxx	111	UNALLOCATED									
01xxx	011	Extend and Add									
10xxx		Signed multiply, Divide									
11000	000	<u>Unsigned Sum of Absolute Differences</u>									
11000	100	UNALLOCATED									
11001	×00	UNALLOCATED									
1101x	×00	UNALLOCATED									
110xx	111	UNALLOCATED									
1110x	111	UNALLOCATED									
1110x	×00	Bitfield Insert									
11110	111	UNALLOCATED									
11111	111	Permanently UNDEFINED									
1111x	×00	UNALLOCATED									
11x0x	×10	UNALLOCATED									
11x1x	x10	Bitfield Extract									

11xxx	011	UNALLOCATED
11xxx	x01	UNALLOCATED

Parallel Arithmetic

These instructions are under Media instructions.

31 30 29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0_
!= 1111	0	1	1	0	0		op1			R	ln			R	.d		(1)	(1)	(1)	(1)	В	op	2	1		R	n	
cond																												

The following constraints also apply to this encoding: cond !=1111 && cond !=1111

	ode fi		Instruction Details						
op1	В	op2							
000	_	0.0	UNALLOCATED						
001	0	00	SADD16						
001	0	01	SASX						
001	0	10	SSAX						
001	0	11	SSUB16						
001	1	00	SADD8						
001	1	01	UNALLOCATED						
001	1	10	UNALLOCATED						
001	1	11	SSUB8						
010	0	00	QADD16						
010	0	01	QASX						
010	0	10	QSAX						
010	0	11	QSUB16						
010	1	00	QADD8						
010	1	01	UNALLOCATED						
010	1	10	UNALLOCATED						
010	1	11	QSUB8						
011	0	00	SHADD16						
011	0	01	SHASX						
011	0	10	SHSAX						
011	0	11	SHSUB16						
011	1	00	SHADD8						
011	1	01	UNALLOCATED						
011	1	10	UNALLOCATED						
011	1	11	SHSUB8						
100			UNALLOCATED						
101	0	00	UADD16						
101	0	01	UASX						
101	0	10	USAX						
101	0	11	USUB16						
101	1	00	UADD8						
101	1	01	UNALLOCATED						
101	1	10	UNALLOCATED						
101	1	11	USUB8						
110	0	00	UQADD16						

Dec	ode fi	elds	Instruction Details
op1	В	op2	Instruction Details
110	0	01	UQASX
110	0	10	UQSAX
110	0	11	UQSUB16
110	1	00	UQADD8
110	1	01	UNALLOCATED
110	1	10	UNALLOCATED
110	1	11	UQSUB8
111	0	00	UHADD16
111	0	01	UHASX
111	0	10	UHSAX
111	0	11	UHSUB16
111	1	00	UHADD8
111	1	01	UNALLOCATED
111	1	10	UNALLOCATED
111	1	11	UHSUB8

Saturate 16-bit

These instructions are under **Media instructions**.

31 30 29 28	27	26	25	24	23	22	21	20	19 18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	0	1	1	0	1	U	1	0	sat	imr	n		Ro	t		(1)	(1)	(1)	(1)	0	0	1	1		R	n	
cond																											

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields U	Instruction Details
0	SSAT16
1	USAT16

Reverse Bit/Byte

These instructions are under Media instructions.

31 30 29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	0	1	1	0	1	ο1	1	1	(1)	(1)	(1)	(1)		R	d		(1)	(1)	(1)	(1)	02	0	1	1		Rı	m	
cond																												

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode	e fields	Instruction Details
o1	o2	instruction Details
0	0	REV
0	1	REV16
1	0	RBIT
1	1	REVSH

Saturate 32-bit

These instructions are under Media instructions.

31 30 29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	0	1	1	0	1	U	1		sa	t_in	ηm			R	d			ir	nm	5		sh	0	1		R	n	

cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields U	Instruction Details
0	SSAT
1	USAT

Extend and Add

These instructions are under Media instructions.

!= 1111 0 1 1 0 1 U op Rn Rd rotate (0) (0) 0 1 1 1 Rm	31 30 29 28	27	26	25	24	23	22	21 2	0 19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	!= 1111	0	1	1	0	1	U	ор		F	≀n			R	ld		rot	ate	(0)	(0)	0	1	1	1		R	m	

cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

	Decod	le fields	Instruction Details
U_	op	Rn	instruction Details
0	00	!= 1111	SXTAB16
0	00	1111	SXTB16
0	10	!= 1111	SXTAB
0	10	1111	SXTB
0	11	!= 1111	SXTAH
0	11	1111	SXTH
1	00	!= 1111	UXTAB16
1	00	1111	UXTB16
1	10	!= 1111	UXTAB
1	10	1111	UXTB
1	11	!= 1111	UXTAH
1	11	1111	UXTH

Signed multiply, Divide

These instructions are under **Media instructions**.

31 30 29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	0	1	1	1	0		op1			R	d			R	la			Rı	m			op2	<u> </u>	1		R	n	
cond																												

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

	Decode fiel	ds	Instruction Details
op1	Ra	op2	instruction Details
000	!= 1111	000	SMLAD, SMLADX — SMLAD
000	!= 1111	001	SMLAD, SMLADX — SMLADX
000	!= 1111	010	SMLSD, SMLSDX — SMLSD
000	!= 1111	011	SMLSD, SMLSDX — SMLSDX
000		1xx	UNALLOCATED
000	1111	000	SMUAD, SMUADX — SMUAD

	Decode fiel	ds	In street day Date (Is
op1	Ra	op2	Instruction Details
000	1111	001	SMUAD, SMUADX — SMUADX
000	1111	010	SMUSD, SMUSDX — SMUSD
000	1111	011	SMUSD, SMUSDX — SMUSDX
001		000	SDIV
001		!= 000	UNALLOCATED
010			UNALLOCATED
011		000	UDIV
011		!= 000	UNALLOCATED
100		000	SMLALD, SMLALDX — SMLALD
100		001	SMLALD, SMLALDX — SMLALDX
100		010	SMLSLD, SMLSLDX — SMLSLD
100		011	SMLSLD, SMLSLDX — SMLSLDX
100		1xx	UNALLOCATED
101	!= 1111	000	SMMLA, SMMLAR — SMMLA
101	!= 1111	001	SMMLA, SMMLAR — SMMLAR
101		01x	UNALLOCATED
101		10x	UNALLOCATED
101		110	SMMLS, SMMLSR — SMMLS
101		111	SMMLS, SMMLSR — SMMLSR
101	1111	000	SMMUL, SMMULR — SMMUL
101	1111	001	SMMUL, SMMULR — SMMULR
11x			UNALLOCATED

Unsigned Sum of Absolute Differences

These instructions are under Media instructions.

31 30 29 2	8 27	26	25	24	23	22	21	20	19	18 1	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0_
!= 1111	0	1	1	1	1	0	0	0		Rd	ł			Ra	ì			Rr	n		0	0	0	1		Rı	า	
cond																												

The following constraints also apply to this encoding: cond !=1111 && cond !=1111

Decode fields Ra	Instruction Details
!= 1111	USADA8
1111	USAD8

Bitfield Insert

These instructions are under Media instructions.

31 30 29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	0	1	1	1	1	1	0		1	msk)			R	d				lsb			0	0	1		R	n	
cond																												

The following constraints also apply to this encoding: cond !=1111 && cond !=1111

Decode fields Rn	Instruction Details
!= 1111	BFI

Decode R	e fields n	Instruction Details
11	11	BFC

Permanently UNDEFINED

These instructions are under Media instructions.

31 30 29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	0	1	1	1	1	1	1	1						imr	n12	<u>-</u>					1	1	1	1		im	m4	
cond																												

cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields cond	Instruction Details
0xxx	UNALLOCATED
10xx	UNALLOCATED
110x	UNALLOCATED
1110	UDF

Bitfield Extract

These instructions are under Media instructions.

31 30 29 2	8 27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	0	1	1	1	1	U	1		wic	dthi	m1			R	d				lsb			1	0	1		R	n	
cond																												

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields U	Instruction Details
0	SBFX
1	UBFX

Branch, branch with link, and block data transfer

These instructions are under the top-level.

31 30 29 28	27 26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
cond	10	op0																									

Decode fi	elds	Instruction details
cond	op0	instruction details
1111	0	Exception Save/Restore
!= 1111	0	Load/Store Multiple
	1	Branch (immediate)

Exception Save/Restore

These instructions are under Branch, branch with link, and block data transfer.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	0	0	Р	U	S	W	L		R	n							ор							n	nod	e	

\mathbf{D}	ecode	e field	ls	Instruction Details
D	TT	6	т	Instruction Details

		0	0	UNALLOCATED
0	0	0	1	RFE, RFEDA, RFEDB, RFEIA, RFEIB — Decrement After
0	0	1	0	SRS, SRSDA, SRSDB, SRSIA, SRSIB — Decrement After
0	1	0	1	RFE, RFEDA, RFEDB, RFEIA, RFEIB — Increment After
0	1	1	0	SRS, SRSDA, SRSDB, SRSIA, SRSIB — Increment After
1	0	0	1	RFE, RFEDA, RFEDB, RFEIA, RFEIB — Decrement Before
1	0	1	0	SRS, SRSDA, SRSDB, SRSIA, SRSIB — Decrement Before
		1	1	UNALLOCATED
1	1	0	1	RFE, RFEDA, RFEDB, RFEIA, RFEIB — Increment Before
1	1	1	0	SRS, SRSDA, SRSDB, SRSIA, SRSIB — Increment Before

Load/Store Multiple

These instructions are under Branch, branch with link, and block data transfer.

31 30 29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	1	0	0	Р	J	ор	W	Ш		R	ln								reg	gist	er_l	list						
cond																												

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

			Dece	ode fields	Instruction Details
_ P	U	op	L	register_list	Instruction Details
0	0	0	0		STMDA, STMED
0	0	0	1		LDMDA, LDMFA
0	1	0	0		STM, STMIA, STMEA
0	1	0	1		LDM, LDMIA, LDMFD
		1	0		STM (User registers)
1	0	0	0		STMDB, STMFD
1	0	0	1		LDMDB, LDMEA
		1	1	0xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	LDM (User registers)
1	1	0	0		STMIB, STMFA
1	1	0	1		LDMIB, LDMED
		1	1	1xxxxxxxxxxxxxxx	LDM (exception return)

Branch (immediate)

These instructions are under Branch, branch with link, and block data transfer.

31 30 29 28	27 26	25	24	23 2	2 21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
cond	1 0	1	Н											imr	n24											

Decode fie cond	lds H	Instruction Details
!= 1111	0	В
!= 1111	1	BL, BLX (immediate) — A1
1111		BL, BLX (immediate) — A2

System register access, Advanced SIMD, floating-point, and Supervisor call

These instructions are under the top-level.

31 30 29 28	27 26	25 24	23 22	2 21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
cond	11	op0													op1						op2				\Box

De	ecode fi	ields		Instruction details
cond	op0	op1	op2	instruction details
	0x	111		System register load/store and 64-bit move
	10	10×	0	Floating-point data-processing
	10	111	1	System register 32-bit move
	11			Supervisor call
1111	0x	1x0		Advanced SIMD three registers of the same length extension
1111	10	1x0		Advanced SIMD two registers and a scalar extension
!= 1111	0x	10×		Advanced SIMD load/store and 64-bit move
!= 1111	10	10x	1	Advanced SIMD and floating-point 32-bit move

System register load/store and 64-bit move

These instructions are under System register access, Advanced SIMD, floating-point, and Supervisor call.

31 30 29 28	27 26 25	24 23 22 21	20 19 18	17 16 15 14 13 12	11 10 9	8 7 6 5 4 3 2 1	0
	110	op0			111		

Decode fields op0	Instruction details
00×0	System register 64-bit move
!= 00x0	System register load/store

System register 64-bit move

These instructions are under <u>System register load/store and 64-bit move</u>.

3	30 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Г	cond		1	1	0	0	0	D	0	L		Rt2	2			F	₹t		1	1	1	cp15		ор	c1			CF	lm	

Decode	fields	3	Instruction Details
cond	D	L	instruction Details
!= 1111	1	0	MCRR
!= 1111	1	1	MRRC
	0		UNALLOCATED
1111	1		UNALLOCATED

System register load/store

These instructions are under <u>System register load/store and 64-bit move</u>.

31 30 29 28	27 26 25	24 23	22 21	20	19 18 17 16	15 14 13 12	11 10	0 9	8 7	7 6	5 4	3	2	. 0
cond	1 1 0	P U	D W	L	Rn	CRd	1 1	1	cp15		im	m8		

The following constraints also apply to this encoding: P:U:D:W != 00x0

		D	ecoae	e neias			Instruction Details
cond	P:U:W	D	L	Rn	CRd	cp15	Instruction Details
!= 1111	!= 000	0			!= 0101	0	UNALLOCATED
!= 1111	!= 000	0	1	1111	0101	0	LDC (literal)
!= 1111	!= 000					1	UNALLOCATED
!= 1111	!= 000	1			0101	0	UNALLOCATED

		\mathbf{D}	ecodo	e fields			Instruction Details
cond	P:U:W	D	L	Rn	CRd	cp15	Instruction Details
!= 1111	0x1	0	0		0101	0	STC — post-indexed
!= 1111	0x1	0	1	!= 1111	0101	0	LDC (immediate) — post-indexed
!= 1111	010	0	0		0101	0	STC — unindexed
!= 1111	010	0	1	!= 1111	0101	0	LDC (immediate) — unindexed
!= 1111	1x0	0	0		0101	0	STC — offset
!= 1111	1x0	0	1	!= 1111	0101	0	LDC (immediate) — offset
!= 1111	1x1	0	0		0101	0	STC — pre-indexed
!= 1111	1x1	0	1	!= 1111	0101	0	LDC (immediate) — pre-indexed
1111	!= 000						UNALLOCATED

Floating-point data-processing

These instructions are under System register access, Advanced SIMD, floating-point, and Supervisor call.

31 30 29 28	27 26 25 24	23 22 21 20	19 18 17 16	15 14 13 12 11 1	0 9 8	7 6 5	4	3	2	1	0
cond	1110	op0	op1	10	op2	op3	0				\Box

	Decode	e fields			Instruction details
cond	op0	op1	op2	op3	instruction details
1111	0xxx		!= 00	0	Floating-point conditional select
1111	1×00		!= 00		Floating-point minNum/maxNum
1111	1x11	0000	!= 00	1	Floating-point extraction and insertion
1111	1x11	1xxx	!= 00	1	Floating-point directed convert to integer
!= 1111	1x11			1	Floating-point data-processing (two registers)
!= 1111	1x11			0	Floating-point move immediate
!= 1111	!= 1×11				Floating-point data-processing (three registers)

Floating-point conditional select

These instructions are under Floating-point data-processing.

31	30	29	28	27	26	25	24	23	22	21 20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	1	1	0	0	D	СС		٧	'n			٧	'd		1	0	!=	00	Ν	0	М	0		٧	m	
																					si	ze								

The following constraints also apply to this encoding: size != 00 && size != 00

Deco	de fields	Instruction Details
CC	size	instruction Details
00		VSELEQ, VSELGE, VSELGT, VSELVS — VSELEQ
01		VSELEQ, VSELGE, VSELGT, VSELVS — VSELVS
	01	UNALLOCATED
10		VSELEQ, VSELGE, VSELGT, VSELVS — VSELGE
11		VSELEQ, VSELGE, VSELGT, VSELVS — VSELGT

Floating-point minNum/maxNum

These instructions are under Floating-point data-processing.

31												 		 													0
1	1	1	1	1	1	1	0	1	D	0	0	٧	'n		٧	/d	1	0	!=	00	Ν	ор	Μ	0	Vı	n	

The following constraints also apply to this encoding: size !=00 && size !=00

Decode	fields	Instruction Details
size	op	mstruction betans
	0	VMAXNM
01		UNALLOCATED
	1	VMINNM

Floating-point extraction and insertion

These instructions are under Floating-point data-processing.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14 13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	1	1	0	1	О	1	1	0	0	0	0		Vd		1	0	!=	00	ор	1	М	0		V	m	
																					- i									

size

The following constraints also apply to this encoding: size != 00 && size != 00

Decode	fields	Instruction Details	Architecture Version
size	op	instruction Details	Architecture version
01		UNALLOCATED	-
10	0	VMOVX	Armv8.2
10	1	VINS	Armv8.2
11		UNALLOCATED	-

Floating-point directed convert to integer

These instructions are under Floating-point data-processing.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	1	1	0	1	Δ	1	1	1	01	R	М		V	'd		1	0	!=	00	ор	1	М	0		٧	m	
																•															

size

The following constraints also apply to this encoding: size != 00 && size != 00

De	code fi	elds	Instruction Details
o1	RM	size	Instruction Details
0	00		VRINTA (floating-point)
0	01		VRINTN (floating-point)
		01	UNALLOCATED
0	10		VRINTP (floating-point)
0	11		VRINTM (floating-point)
1	00		VCVTA (floating-point)
1	01		VCVTN (floating-point)
1	10		VCVTP (floating-point)
1	11		VCVTM (floating-point)

Floating-point data-processing (two registers)

These instructions are under Floating-point data-processing.

!= 1111 1	31 30 29 28	27	26	25	24	23	22	21	20	19	18 17	16	15	14 1	3 1	2 11	10	9	8	7	6	5	4	3	2	1	0
	!= 1111	1	1	1	0	1	D	1	1	ο1	opo	:2		Vd		1	0	siz	ze	о3	1	М	0		٧ı	n	

cond

The following constraints also apply to this encoding: cond !=1111 && cond !=1111

о1	Decode opc2	fields size	о3	Instruction Details	Architecture Version
		00		UNALLOCATED	-
0	000	01	0	UNALLOCATED	-
0	000		1	VABS	-
0	000	10	0	VMOV (register) — single-precision scalar	-
0	000	11	0	VMOV (register) — double-precision scalar	-
0	001		0	VNEG	-
0	001		1	VSQRT	-
0	010		0	VCVTB — half-precision to double-precision	-
0	010	01		UNALLOCATED	-
0	010		1	VCVTT — half-precision to double-precision	-
0	011	01	0	VCVTB (BFloat16)	Armv8.6
0	011	01	1	VCVTT (BFloat16)	Armv8.6
0	011	10	0	VCVTB — single-precision to half-precision	-
0	011	10	1	VCVTT — single-precision to half-precision	-
0	011	11	0	VCVTB — double-precision to half-precision	-
0	011	11	1	VCVTT — double-precision to half-precision	-
0	100		0	VCMP — A1	-
0	100		1	VCMPE — A1	-
0	101		0	VCMP — A2	-
0	101		1	VCMPE — A2	-
0	110		0	VRINTR	-
0	110		1	VRINTZ (floating-point)	-
0	111		0	VRINTX (floating-point)	-
0	111	01	1	UNALLOCATED	-
0	111	10	1	VCVT (between double-precision and single-precision) — single-precision to double-precision	-
0	111	11	1	VCVT (between double-precision and single-precision) — double-precision to single-precision	-
1	000			VCVT (integer to floating-point, floating-point)	-
1	001	01		UNALLOCATED	-
1	001	10		UNALLOCATED	-
1	001	11	0	UNALLOCATED	-
1	001	11	1	VJCVT	Armv8.3
1	01x			VCVT (between floating-point and fixed-point, floating-point)	-
1	100		0	VCVTR	-
1	100		1	VCVT (floating-point to integer, floating-point)	-
1	101		0	VCVTR	-
1	101		1	VCVT (floating-point to integer, floating-point)	-
1	11x			VCVT (between floating-point and fixed-point, floating-point)	-

Floating-point move immediate

These instructions are under <u>Floating-point data-processing</u>.

31 30 29 28	27	26	25	24	23	22	21	20	19	18 1	L7 10	5 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	1	1	1	0	1	D	1	1	ir	nm4	4H		٧	/d		1	0	siz	ze	(0)	0	(0)	0		imn	n4L	
cond																											

The following constraints also apply to this encoding: cond !=1111 && cond !=1111

Decode fields size	Instruction Details	Architecture Version
00	UNALLOCATED	-
01	VMOV (immediate) — half-precision scalar	Armv8.2
10	VMOV (immediate) — single-precision scalar	-
11	VMOV (immediate) — double-precision scalar	-

Floating-point data-processing (three registers)

These instructions are under <u>Floating-point data-processing</u>.

31 30 29 28	27	26	25	24	23	22	21 20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	1	1	1	0	о0	Δ	o1		٧	'n			V	'd		1	0	siz	ze	Ν	о2	М	0		٧	n	
cond																											

The following constraints also apply to this encoding: cond !=1111 && o0:D:o1 !=1x11 && cond !=1111

Deco	de fields	6	Instruction Details
o0:o1	size	ο2	instruction Details
!= 111	00		UNALLOCATED
000		0	VMLA (floating-point)
000		1	VMLS (floating-point)
001		0	VNMLS
001		1	VNMLA
010		0	VMUL (floating-point)
010		1	VNMUL
011		0	VADD (floating-point)
011		1	VSUB (floating-point)
100		0	VDIV
101		0	VFNMS
101		1	VFNMA
110		0	VFMA
110		1	VFMS

System register 32-bit move

These instructions are under <u>System register access</u>, <u>Advanced SIMD</u>, <u>floating-point</u>, <u>and Supervisor call</u>.

	31 30 29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
ſ	cond	1	1	1	0	0	pc:	1	L		CI	Rn			P	₹t		1	1	1	cp15		pci	2	1		CF	lm	\Box	

Decode fie cond	lds L	Instruction Details
!= 1111	0	MCR
!= 1111	1	MRC
1111		UNALLOCATED

Supervisor call

These instructions are under <u>System register access</u>, <u>Advanced SIMD</u>, <u>floating-point</u>, <u>and Supervisor call</u>.

31 30 29 28	27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 9	8 7 6 5 4 3 2 1 0
cond	1111			

Decode fields cond	Instruction details
1111	UNALLOCATED
!= 1111	SVC

Advanced SIMD three registers of the same length extension

These instructions are under **System register access**, Advanced SIMD, floating-point, and Supervisor call.

31	. 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	1	0	op	o1	D	O	ວ2		V	'n			V	'd		1	ор3	0	op4	N	Q	М	С		Vı	n	

op1	D op2	ecode f	ields op4	Q	U	Instruction Details	Architecture Version
x1	0x	0	0	$\widetilde{0}$	0	VCADD — 64-bit SIMD vector	Armv8.3
x1	0×	0	0	0	1	UNALLOCATED	-
x1	0x	0	0	1	0	VCADD — 128-bit SIMD vector	Armv8.3
x1	0x	0	0	1	1	UNALLOCATED	-
00	0x	0	0			UNALLOCATED	-
00	0x	0	1			UNALLOCATED	-
00	00	1	0	0	0	UNALLOCATED	-
00	00	1	0	0	1	UNALLOCATED	-
00	00	1	0	1	0	VMMLA	Armv8.6
00	00	1	0	1	1	UNALLOCATED	-
00	00	1	1	0	0	VDOT (vector) — 64-bit SIMD vector	Armv8.6
00	00 1 00 1 00 1 01 1 01 1			0	1	UNALLOCATED	-
00	00 1 00 1 01 1 01 1			1	0	VDOT (vector) — 128-bit SIMD vector	Armv8.6
00	00 1 00 1 01 1 01 1			1	1	UNALLOCATED	-
00	00 1 00 1 01 1 01 1 10 0					UNALLOCATED	-
00	00 1 00 1 01 1 01 1 10 0					UNALLOCATED	-
00	00 1 00 1 01 1 01 1 10 0 10 0				1	VFMAL (vector)	Armv8.2
00	10	0	1			UNALLOCATED	-
00	10	1	0	0		UNALLOCATED	-
00	10	1	0	1	0	VSMMLA	Armv8.6
00	10	1	0	1	1	VUMMLA	Armv8.6
00	10	1	1	0	0	VSDOT (vector) — 64-bit SIMD vector	Armv8.2
00	10	1	1	0	1	VUDOT (vector) — 64-bit SIMD vector	Armv8.2
00	10	1	1	1	0	VSDOT (vector) — 128-bit SIMD vector	Armv8.2
00	10	1	1	1	1	VUDOT (vector) — 128-bit SIMD vector	Armv8.2
00	11	0	0		_ 1	VFMAB, VFMAT (BFloat16, vector)	Armv8.6
00	11	0	1			UNALLOCATED	-
00	11	1	0			UNALLOCATED	-
00	11	1	1			UNALLOCATED	-
01	10	0	0		1	VFMSL (vector)	Armv8.2
01	10	0	1			UNALLOCATED	-
01	10	1	0	0		UNALLOCATED	-
01	10	1	0	1	0	VUSMMLA	Armv8.6
01	10	1	0	1	_ 1	UNALLOCATED	-
01	10	1	1	0	0	VUSDOT (vector) — 64-bit SIMD vector	Armv8.6
01	10	1	1		1	UNALLOCATED	-
01	10	1	1	1	0	VUSDOT (vector) — 128-bit SIMD vector	Armv8.6

	D	ecode f	ìelds			Instruction Details	Architecture Version
op1	op2	op3	op4	Q	U	instruction Details	Architecture version
01	11					UNALLOCATED	-
	1x	0	0		0	VCMLA	Armv8.3
10	11					UNALLOCATED	-
11	11					UNALLOCATED	-

Advanced SIMD two registers and a scalar extension

These instructions are under <u>System register access</u>, <u>Advanced SIMD</u>, <u>floating-point</u>, <u>and Supervisor call</u>.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	1	1	0	op1	D	op	2		٧	'n			٧	′d		1	ор3	0	op4	N	Q	М	С		Vı	m	

		ecode f				Instruction Details	Architecture
op1	op2	op3	op4	Q	U		Version
0		0	0		0	VCMLA (by element) — half-precision scalar	Armv8.3
0	00	0	0		1	VFMAL (by scalar)	Armv8.2
0	00	0	1			UNALLOCATED	-
0	00	1	0			UNALLOCATED	-
0	00	1	1	0	0	VDOT (by element) — 64-bit SIMD vector	Armv8.6
0	00	1	1		1	UNALLOCATED	-
0	00	1	1	1	0	VDOT (by element) — 128-bit SIMD vector	Armv8.6
0	01	0	0		0	UNALLOCATED	-
0	01	0	0	0	1	VFMSL (by scalar) — 64-bit SIMD vector	Armv8.2
0	01	0	0	1	1	VFMSL (by scalar) — 128-bit SIMD vector	Armv8.2
0	01	0	1			UNALLOCATED	-
0	01	1	0			UNALLOCATED	-
0	10	0				UNALLOCATED	-
0	10	1	0			UNALLOCATED	-
0	10	1	1	0	0	VSDOT (by element) — 64-bit SIMD vector	Armv8.2
0	10	1	1	0	1	VUDOT (by element) — 64-bit SIMD vector	Armv8.2
0	10	1	1	1	0	VSDOT (by element) — 128-bit SIMD vector	Armv8.2
0	10	1	1	1	1	VUDOT (by element) — 128-bit SIMD vector	Armv8.2
0	11	0	0		0	UNALLOCATED	-
0	11	0	0		1	VFMAB, VFMAT (BFloat16, by scalar)	Armv8.6
0	11	0	1			UNALLOCATED	-
0	11	1				UNALLOCATED	-
1		0	0		0	VCMLA (by element) — single-precision scalar	Armv8.3
1	00	1	1	0	0	VUSDOT (by element) — 64-bit SIMD vector	Armv8.6
1	00	1	1	0	1	VSUDOT (by element) — 64-bit SIMD vector	Armv8.6
1	00	1	1	1	0	VUSDOT (by element) — 128-bit SIMD vector	Armv8.6
1	00	1	1	1	1	VSUDOT (by element) — 128-bit SIMD vector	Armv8.6
1		1			UNALLOCATED	-	
1	01	1	1			UNALLOCATED	-
1	1x	1	1			UNALLOCATED	-
1		1	0			UNALLOCATED	-

Advanced SIMD load/store and 64-bit move

These instructions are under <u>System register access</u>, <u>Advanced SIMD</u>, <u>floating-point</u>, <u>and Supervisor call</u>.

31 30 29 28	27 26 25	24 23 22 21	20 19 18	8 17 16 15	14 13 12	11 10	9 8	7	6	5	4	3	2	1	0
!= 1111	110	op0				10									

Decode fields op0	Instruction details
00×0	Advanced SIMD and floating-point 64-bit move
!= 00×0	Advanced SIMD and floating-point load/store

Advanced SIMD and floating-point 64-bit move

These instructions are under Advanced SIMD load/store and 64-bit move.

31 30 29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	1	1	0	0	0	D	0	ор		Rt	t2			P	₹t		1	0	si	ze	ор	c2	М	о3		V	m	
cond																												

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

D	D op	ecode f size	ields opc2	о3	Instruction Details
0					UNALLOCATED
1				0	UNALLOCATED
1		0×	00	1	UNALLOCATED
1		0 10 00			UNALLOCATED
1	0	0 10 00			VMOV (between two general-purpose registers and two single-precision registers) — from general-purpose registers
1	0	11	00	1	VMOV (between two general-purpose registers and a doubleword floating- point register) — from general-purpose registers
1			1x		UNALLOCATED
1	1	10	00	1	VMOV (between two general-purpose registers and two single-precision registers) — to general-purpose registers
1	1	11	00	1	VMOV (between two general-purpose registers and a doubleword floating- point register) — to general-purpose registers

Advanced SIMD and floating-point load/store

These instructions are under Advanced SIMD load/store and 64-bit move.

_	31 30 29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	!= 1111	1	1	0	Р	U	D	W	L		R	n			٧	′d		1	0	si	ze				im	m8			
	cond																												

The following constraints also apply to this encoding: cond != 1111 && P:U:D:W != 00x0 && cond != 1111

				Decode field			Instruction Details
P	U	W	L	Rn	size	imm8	mon donon betans
0	0	1					UNALLOCATED
0	1				0×		UNALLOCATED
0	1		0		10		VSTM, VSTMDB, VSTMIA
0	1		0		11	xxxxxxx0	VSTM, VSTMDB, VSTMIA
0	1		0		11	xxxxxxx1	FSTMDBX, FSTMIAX — Increment After
0	1		1		10		VLDM, VLDMDB, VLDMIA

				Decoue neru	•		Instruction Details
_ P	U	W	L	Rn	size	imm8	Instruction Details
0	1		1		11	xxxxxxx0	VLDM, VLDMDB, VLDMIA
0	1		1		11	xxxxxxx1	FLDM*X (FLDMDBX, FLDMIAX) — Increment After
1		0	0				VSTR
1		0			00		UNALLOCATED
1		0	1	!= 1111			VLDR (immediate)
1	0	1			0×		UNALLOCATED
1	0	1	0		10		VSTM, VSTMDB, VSTMIA
1	0	1	0		11	xxxxxxx0	VSTM, VSTMDB, VSTMIA
1	0	1	0		11	xxxxxxx1	FSTMDBX, FSTMIAX — Decrement Before
1	0	1	1		10		VLDM, VLDMDB, VLDMIA
1	0	1	1		11	xxxxxxx0	VLDM, VLDMDB, VLDMIA
1	0	1	1		11	xxxxxxx1	FLDM*X (FLDMDBX, FLDMIAX) — Decrement Before
1		0	1	1111			VLDR (literal)
1	1	1					UNALLOCATED

Advanced SIMD and floating-point 32-bit move

Decode fields

These instructions are under System register access, Advanced SIMD, floating-point, and Supervisor call.

31 30 29 28	27 26 25 24	23 22 21	20 19	18 17	16 1	15 14	13	12	11 10	9 8	7	6	5	4	3	2	1	0
!= 1111	1110	op0							10	op1					1	111	.1	

Decode	e fields	Instruction details	Architecture version
op0	op1	instruction details	Architecture version
000	01	VMOV (between general-purpose register and half-precision)	Armv8.2
000	10	VMOV (between general-purpose register and single-precision)	-
111	10	Floating-point move special register	-
	11	Advanced SIMD 8/16/32-bit element move/duplicate	-

Floating-point move special register

These instructions are under Advanced SIMD and floating-point 32-bit move.

31 30 29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	1	1	1	0	1	1	1	L		re	g			R	₹t		1	0	1	0	(0)	(0)	(0)	1	(0)	(0)	(0)	(0)
cond																												

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields L	Instruction Details
0	VMSR
1	VMRS

Advanced SIMD 8/16/32-bit element move/duplicate

These instructions are under <u>Advanced SIMD and floating-point 32-bit move</u>.

31 30 29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
!= 1111	1	1	1	0	0	рс1	_	L		٧	'n			R	₹t		1	0	1	1	N	ор	c2	1	(0)	(0)	(0)	(0)
cond																												

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Dece	ode fi	elds	Instruction Details
opc1	L	opc2	instruction Details
0xx	0		VMOV (general-purpose register to scalar)
	1		VMOV (scalar to general-purpose register)
1xx	0	0x	VDUP (general-purpose register)
1xx	0	1x	UNALLOCATED

Unconditional instructions

These instructions are under the top-level.

31 30 29 28 27 2	26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11110	op0	pp1

Decod op0	e fields op1	Instruction details
00		Miscellaneous
01		Advanced SIMD data-processing
1x	1	Memory hints and barriers
10	0	Advanced SIMD element or structure load/store
11	0	UNALLOCATED

Miscellaneous

These instructions are under <u>Unconditional instructions</u>.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		11	110	00					op0)															op	1					

Decode op0	fields op1	Instruction details	Architecture version
0xxxx		UNALLOCATED	-
10000	xx0x	<u>Change Process State</u>	-
10001	1000	UNALLOCATED	-
10001	×100	UNALLOCATED	-
10001	xx01	UNALLOCATED	-
10001	0000	SETPAN	Armv8.1
1000x	0111	UNALLOCATED	-
10010	0111	CONSTRAINED UNPREDICTABLE	-
10011	0111	UNALLOCATED	-
1001x	xx0x	UNALLOCATED	-
100xx	0011	UNALLOCATED	-
100xx	0×10	UNALLOCATED	-
100xx	1x1x	UNALLOCATED	-
101xx		UNALLOCATED	-
11xxx		UNALLOCATED	-

The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in ${\it CONSTRAINED}$ UNPREDICTABLE behavior for A32 and T32 instruction encodings

Change Process State

These instructions are under Miscellaneous.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	0	0	0	1	0	0	0	0	im	od	М	qo	(0)	(0)	(0)	(0)	(0)	(0)	Е	Α	П	F	0		n	nod	e	\Box

	Decod	le field	ls	Instruction Details
imod	\mathbf{M}	op	mode	instruction Details
		1	0xxxx	SETEND
		0		CPS, CPSID, CPSIE
		1	1xxxx	UNALLOCATED

Advanced SIMD data-processing

These instructions are under <u>Unconditional instructions</u>.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		11	110	01				op0																			op1				

Decodo op0	e fields op1	Instruction details
0		Advanced SIMD three registers of the same length
1	0	Advanced SIMD two registers, or three registers of different lengths
1	1	Advanced SIMD shifts and immediate generation

Advanced SIMD three registers of the same length

These instructions are under Advanced SIMD data-processing.

31	3	0 2	29	28	27	26	25	24	23	22	21 20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	L	1	1	0	0	1	כ	0	D	size		٧	'n			٧	'd			op	C		Ζ	Q	М	01		V	m	

	Dec	code field	ds		Instruction Details	Architecture Version
U	size	орс	Q	о1	Instruction Details	Arcintecture version
0	0x	1100		1	VFMA	-
0	0x	1101		0	VADD (floating-point)	-
0	0x	1101		1	VMLA (floating-point)	-
0	0x	1110		0	VCEQ (register) — A2	-
0	0x	1111		0	VMAX (floating-point)	-
0	0x	1111		1	VRECPS	-
		0000		0	VHADD	-
0	00	0001		1	VAND (register)	-
		0000		1	VQADD	-
		0001		0	VRHADD	-
0	00	1100		0	SHA1C	-
		0010		0	VHSUB	-
0	01	0001		1	VBIC (register)	-
		0010		1	VQSUB	-
		0011		0	VCGT (register) — A1	-
		0011		1	VCGE (register) — A1	-
0	01	1100		0	SHA1P	-
0	1x	1100		1	VFMS	-
0	1x	1101		0	VSUB (floating-point)	-

U	Dec size	code field opc	ds Q	о1	Instruction Details	Architecture Version
0	1x	1101		1	VMLS (floating-point)	
0	1x	1110		0	UNALLOCATED	-
0	1x	1111		0	VMIN (floating-point)	_
0	1x	1111		1	VRSQRTS	
├	17	0100		0	VSHL (register)	
0		1000		0	VADD (integer)	-
0	10	0001		1	VADD (integer) VORR (register)	
0	10	1000		1	VTST	
├		0100		1	VQSHL (register)	-
0		1001		0	VMLA (integer)	_
		0101		0	VRSHL	_
		0101		1	VQRSHL	_
0		1011		0	VQDMULH	-
0	10	1100		0	SHA1M	
0	10	1011		1	VPADD (integer)	-
		0110		0	VMAX (integer)	_
0	11	0001		1	VORN (register)	_
		0110		1	VMIN (integer)	_
		0111		0	VABD (integer)	_
		0111		1	VABA	_
0	11	1100		0	SHA1SU0	_
1	0x	1101		0	VPADD (floating-point)	_
1	0x	1101		1	VMUL (floating-point)	_
1	0x	1110		0	VCGE (register) — A2	_
1	0x	1110		1	VACGE	-
1	0x	1111	0	0	VPMAX (floating-point)	-
1	0×	1111		1	VMAXNM	-
1	00	0001		1	VEOR	-
		1001		1	VMUL (integer and polynomial)	-
1	00	1100		0	SHA256H	-
		1010	0	0	VPMAX (integer)	-
1	01	0001		1	VBSL	-
		1010	0	1	VPMIN (integer)	-
		1010	1		UNALLOCATED	-
1	01	1100		0	SHA256H2	-
1	1x	1101		0	VABD (floating-point)	-
1	1x	1110		0	VCGT (register) — A2	-
1	1x	1110		1	VACGT	-
1	1x	1111	0	0	VPMIN (floating-point)	-
1	1x	1111		1	VMINNM	-
1		1000		0	VSUB (integer)	-
_ 1	10	0001		1	VBIT	-
_ 1		1000		_ 1	VCEQ (register) — A1	-
1		1001		0	VMLS (integer)	-
1		1011		0	VQRDMULH	-
1	10	1100		0	SHA256SU1	-
1		1011		1	VQRDMLAH	Armv8.1

	De	c <mark>ode fiel</mark>	ds		Instruction Details	Architecture Version
U	size	opc	Q	o1	instruction Details	Architecture version
1	11	0001		1	VBIF	-
1		1100		1	VQRDMLSH	Armv8.1
1		1111	1	0	UNALLOCATED	-

Advanced SIMD two registers, or three registers of different lengths

These instructions are under Advanced SIMD data-processing.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		11	110	01			op0	1		o	o1									op	o2				ор3		0				

_op0	Decode op1	fields op2	op3	Instruction details
0	11			VEXT (byte elements)
1	11	0x		Advanced SIMD two registers misc
1	11	10		VTBL, VTBX
1	11	11		Advanced SIMD duplicate (scalar)
	!= 11		0	Advanced SIMD three registers of different lengths
	!= 11		1	Advanced SIMD two registers and a scalar

Advanced SIMD two registers misc

These instructions are under <u>Advanced SIMD two registers</u>, or three registers of different lengths.

_3	31	30	29	28	27	26	25	24	23	22	21	20	19 18	3 17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Г	1	1	1	1	0	0	1	1	1	D	1	1	size	O	oc1		V	′d		0		op	c2		Q	М	0		V	m	

	Decode			Instruction Details	Architecture
size	opc1	opc2	Q	mistraction Details	Version
	00	0000		VREV64	-
	00	0001		VREV32	-
	00	0010		VREV16	-
	00	0011		UNALLOCATED	-
	00	010x		VPADDL	-
	00	0110	0	AESE	-
	00	0110	1	AESD	-
	00	0111	0	AESMC	-
	00	0111	1	AESIMC	-
	00	1000		VCLS	-
00	10	0000		VSWP	-
	00	1001		VCLZ	-
	00	1010		VCNT	-
	00	1011		VMVN (register)	-
00	10	1100	1	UNALLOCATED	-
	00	110x		VPADAL	-
	00	1110		VQABS	-
	00	1111		VQNEG	-
	01	×000		VCGT (immediate #0)	-
	01	x001		VCGE (immediate #0)	-
	01	×010		VCEQ (immediate #0)	-

size	Decode opc1	fields opc2	Q	Instruction Details	Architecture Version
	01	x011		VCLE (immediate #0)	-
	01	×100		VCLT (immediate #0)	-
	01	×110		VABS	-
	01	x111		VNEG	-
	01	0101	1	SHA1H	-
01	10	1100	1	VCVT (from single-precision to BFloat16, Advanced SIMD)	Armv8.6
	10	0001		VTRN	-
	10	0010		VUZP	-
	10	0011		VZIP	-
	10	0100	0	VMOVN	-
	10	0100	1	VQMOVN, VQMOVUN — VQMOVUN	-
	10	0101		VQMOVN, VQMOVUN — VQMOVN	-
	10	0110	0	VSHLL	-
	10	0111	0	SHA1SU1	-
	10	0111	1	SHA256SU0	-
	10	1000		VRINTN (Advanced SIMD)	-
	10	1001		VRINTX (Advanced SIMD)	-
	10	1010		VRINTA (Advanced SIMD)	-
	10	1011		VRINTZ (Advanced SIMD)	-
10	10	1100	1	UNALLOCATED	-
	10	1100	0	VCVT (between half-precision and single-precision, Advanced SIMD) — single-precision to half-precision	-
	10	1101		VRINTM (Advanced SIMD)	-
	10	1110	0	VCVT (between half-precision and single-precision, Advanced SIMD) — half-precision to single-precision	-
	10	1110	1	UNALLOCATED	-
	10	1111		VRINTP (Advanced SIMD)	-
	11	000x		VCVTA (Advanced SIMD)	-
	11	001x		VCVTN (Advanced SIMD)	-
	11	010x		VCVTP (Advanced SIMD)	-
	11	011x		VCVTM (Advanced SIMD)	-
	11	10×0		VRECPE	-
	11	10×1		VRSQRTE	-
11	10	1100	1	UNALLOCATED	-
	11	11xx		VCVT (between floating-point and integer, Advanced SIMD)	-

Advanced SIMD duplicate (scalar)

These instructions are under Advanced SIMD two registers, or three registers of different lengths.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0_
1	1	1	1	0	0	1	1	1	D	1	1		im	m4			٧	′d		1	1		орс		Q	М	0		V	m	

Decode fields opc	Instruction Details
000	VDUP (scalar)
001	UNALLOCATED
01x	UNALLOCATED
1xx	UNALLOCATED

Advanced SIMD three registers of different lengths

These instructions are under Advanced SIMD two registers, or three registers of different lengths.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	0	0	1	J	1	D	!=	11		V	'n			V	'd			op	C		N	0	М	0		V	n	

size

The following constraints also apply to this encoding: size != 11 && size != 11

Deco	de fields	Instruction Details
\mathbf{U}	opc	instruction Details
	0000	VADDL
	0001	VADDW
	0010	VSUBL
0	0100	VADDHN
	0011	VSUBW
0	0110	VSUBHN
0	1001	VQDMLAL
	0101	VABAL
0	1011	VQDMLSL
0	1101	VQDMULL
	0111	VABDL (integer)
	1000	VMLAL (integer)
	1010	VMLSL (integer)
1	0100	VRADDHN
1	0110	VRSUBHN
	11x0	VMULL (integer and polynomial)
1	1001	UNALLOCATED
1	1011	UNALLOCATED
1	1101	UNALLOCATED
	1111	UNALLOCATED

Advanced SIMD two registers and a scalar

These instructions are under <u>Advanced SIMD two registers</u>, or three registers of different lengths.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	0	0	1	Q	1	D	!=	11		V	'n			٧	′d			op	С		N	1	М	0		٧	m	
										si	ze																				

•

The following constraints also apply to this encoding: size != 11 && size != 11

Deco Q	ode fields opc	Instruction Details	Architecture Version
	000x	VMLA (by scalar)	-
0	0011	VQDMLAL	-
	0010	VMLAL (by scalar)	-
0	0111	VQDMLSL	-
	010x	VMLS (by scalar)	-
0	1011	VQDMULL	-
	0110	VMLSL (by scalar)	-
	100x	VMUL (by scalar)	-

Deco O	ode fields opc	Instruction Details	Architecture Version
1	0011	UNALLOCATED	-
	1010	VMULL (by scalar)	-
1	0111	UNALLOCATED	-
	1100	VQDMULH	-
	1101	VQRDMULH	-
1	1011	UNALLOCATED	-
	1110	VQRDMLAH	Armv8.1
	1111	VQRDMLSH	Armv8.1

Advanced SIMD shifts and immediate generation

These instructions are under Advanced SIMD data-processing.

31 30 29 28 27 26 25	24 23 22	21 20 19 18 17 16 15 14 13 12 11 10 9 8 7	6 5 4 3 2 1 0
1111001	1	op0	1

Decode fields op0	Instruction details
000xxxxxxxxxx0	Advanced SIMD one register and modified immediate
!= 000xxxxxxxxxxx	Advanced SIMD two registers and shift amount

Advanced SIMD one register and modified immediate

These instructions are under Advanced SIMD shifts and immediate generation.

3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1	1	0	0	1	i	1	D	0	0	0	ir	nm	3		V	'd			cmo	ode		0	Q	ор	1		imi	m4	

Decode f cmode	ields op	Instruction Details
0xx0	0	VMOV (immediate) — A1
0xx0	1	VMVN (immediate) — A1
0xx1	0	VORR (immediate) — A1
0xx1	1	VBIC (immediate) — A1
10×0	0	VMOV (immediate) — A3
10×0	1	VMVN (immediate) — A2
10×1	0	VORR (immediate) — A2
10×1	1	VBIC (immediate) — A2
11xx	0	VMOV (immediate) — A4
110x	1	VMVN (immediate) — A3
1110	1	VMOV (immediate) — A5
1111	1	UNALLOCATED

Advanced SIMD two registers and shift amount

These instructions are under <u>Advanced SIMD shifts and immediate generation</u>.

31	30	29	28	27	26	25	24	23	22	21 20 19	18 17 16	15 14 13 1	L2	11 10 9	8 (7	6	5	4	3	2	1	0
1	1	1	1	0	0	1	J	1	О	imm3H	imm3L	Vd		орс		L	Q	М	1		Vr	n	

The following constraints also apply to this encoding: imm3H:imm3L:Vd:opc:L != 000xxxxxxxxxxx0

	Dec	ode fields			Instruction Details
U_	imm3H:L	imm3L	орс	Q	Instruction Details
	!= 0000		0000		VSHR
	!= 0000		0001		VSRA
	!= 0000	000	1010	0	VMOVL
	!= 0000		0010		VRSHR
	!= 0000		0011		VRSRA
	!= 0000		0111		VQSHL, VQSHLU (immediate) — VQSHL
	!= 0000		1001	0	VQSHRN, VQSHRUN — VQSHRN
	!= 0000		1001	1	VQRSHRN, VQRSHRUN — VQRSHRN
	!= 0000		1010	0	VSHLL
	!= 0000		11xx		VCVT (between floating-point and fixed-point, Advanced SIMD)
0	!= 0000		0101		VSHL (immediate)
0	!= 0000		1000	0	VSHRN
0	!= 0000		1000	1	VRSHRN
1	!= 0000		0100		VSRI
1	!= 0000		0101		VSLI
1	!= 0000		0110		VQSHL, VQSHLU (immediate) — VQSHLU
1	!= 0000	_	1000	0	VQSHRN, VQSHRUN — VQSHRUN
1	!= 0000		1000	1	VQRSHRN, VQRSHRUN — VQRSHRUN

Memory hints and barriers

These instructions are under <u>Unconditional instructions</u>.

31 30 29 28 27 26	25 24 23 22 21	20	19 18	17 10	6 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0_
111101	op0	1														op1				

Decode op0	fields op1	Instruction details
00xx1		CONSTRAINED UNPREDICTABLE
01001		CONSTRAINED UNPREDICTABLE
01011		<u>Barriers</u>
011x1		CONSTRAINED UNPREDICTABLE
0xxx0		Preload (immediate)
1xxx0	0	Preload (register)
1xxx1	0	CONSTRAINED UNPREDICTABLE
1xxxx	1	UNALLOCATED

The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in CONSTRAINED UNPREDICTABLE behavior for A32 and T32 instruction encodings

Barriers

These instructions are under Memory hints and barriers.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	0	1	0	1	0	1	1	1	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(0)	(0)	(0)	(0)		орс	ode	,		opt	ion	

Decod	le fields	Instruction Details
opcode	option	instruction Details
0000		CONSTRAINED UNPREDICTABLE

Decod	le fields	Instruction Details
opcode	option	instruction Details

0001		CLREX
001x		CONSTRAINED UNPREDICTABLE
0100	!= 0×00	DSB
0100	0000	SSBB
0100	0100	PSSBB
0101		DMB
0110		ISB
0111		SB
1xxx		CONSTRAINED UNPREDICTABLE

The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in CONSTRAINED UNPREDICTABLE behavior for A32 and T32 instruction encodings

Preload (immediate)

These instructions are under Memory hints and barriers.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	0	1	0	О	U	R	0	1		R	ln		(1)	(1)	(1)	(1)						imn	n12)				

]	Deco	de fields	Instruction Details								
D	R	Rn	instruction Details								
0	0		Reserved hint, behaves as NOP								
0	1		PLI (immediate, literal)								
1		1111	PLD (literal)								
1	۵	I_ 1111	DID DIDIM (increased in the)								

T		1111	PLD (literal)
1	0	!= 1111	PLD, PLDW (immediate) — preload write
1	1	!= 1111	PLD, PLDW (immediate) — preload read

Preload (register)

These instructions are under Memory hints and barriers.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	0	1	1	Δ	U	ο2	0	1		R	n		(1)	(1)	(1)	(1)		ir	nm	5		sty	/pe	0		R	m	

Decod D	le fields o2	Instruction Details
0	0	Reserved hint, behaves as NOP
0	1	PLI (register)
1	0	PLD, PLDW (register) — preload write
1	1	PLD, PLDW (register) — preload read

Advanced SIMD element or structure load/store

These instructions are under <u>Unconditional instructions</u>.

31 30 29 28 27 26 25 24	23 22 21 2	20 19 18 17 16 15 14 13 12 1	1 10 9 8 7 6 5 4 3 2 1 0
11110100	op0	0	pp1

Deco op0	de fields op1	Instruction details
0		Advanced SIMD load/store multiple structures

1	11	Advanced SIMD load single structure to all lanes
1	!= 11	Advanced SIMD load/store single structure to one lane

Advanced SIMD load/store multiple structures

These instructions are under Advanced SIMD element or structure load/store.

_3:	1 3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1		1	1	1	0	1	0	0	0	D	L	0		R	ln			٧	′d			ity	pe		si	ze	ali	gn		R	m	

Dece	ode fields	Instruction Details
L	itype	mstruction Details
0	000x	VST4 (multiple 4-element structures)
0	0010	VST1 (multiple single elements) — A4
0	0011	VST2 (multiple 2-element structures) — A2
0	010x	VST3 (multiple 3-element structures)
0	0110	VST1 (multiple single elements) — A3
0	0111	VST1 (multiple single elements) — A1
0	100x	VST2 (multiple 2-element structures) — A1
0	1010	VST1 (multiple single elements) — A2
1	000x	VLD4 (multiple 4-element structures)
1	0010	VLD1 (multiple single elements) — A4
1	0011	VLD2 (multiple 2-element structures) — A2
1	010x	VLD3 (multiple 3-element structures)
	1011	UNALLOCATED
1	0110	VLD1 (multiple single elements) — A3
1	0111	VLD1 (multiple single elements) — A1
	11xx	UNALLOCATED
1	100x	VLD2 (multiple 2-element structures) — A1
1	1010	VLD1 (multiple single elements) — A2

Advanced SIMD load single structure to all lanes

These instructions are under <u>Advanced SIMD element or structure load/store</u>.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	0	1	0	0	1	D	L	0		R	₹n			٧	⁄d		1	1	١	1	si	ze	Т	а		R	m	

Dec L	ode fie N	elds a	Instruction Details
0			UNALLOCATED
1	00		VLD1 (single element to all lanes)
1	01		VLD2 (single 2-element structure to all lanes)
1	10	0	VLD3 (single 3-element structure to all lanes)
1	10	1	UNALLOCATED
1	11		VLD4 (single 4-element structure to all lanes)

Advanced SIMD load/store single structure to one lane

These instructions are under Advanced SIMD element or structure load/store.

3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1	1	0	1	0	0	1	D	ш	0		R	ln			V	d		!=	11	١	1	ind	lex	ali	gn		Rı	n	
																					si	ze										

The following constraints also apply to this encoding: size != 11 && size != 11

Decode fields size N Rm Instruction Details

size	N	Km	
00	00		VST1 (single element from one lane) $-$ A1
00	01		VST2 (single 2-element structure from one lane) — A1
00	10		VST3 (single 3-element structure from one lane) — A1
00	11		VST4 (single 4-element structure from one lane)
01	00		VST1 (single element from one lane) — A2
01	01		VST2 (single 2-element structure from one lane) — A2
01	10		VST3 (single 3-element structure from one lane) — A2
01	11		VST4 (single 4-element structure from one lane)
10	00		VST1 (single element from one lane) — A3
10	01		VST2 (single 2-element structure from one lane) — A3
10	10		VST3 (single 3-element structure from one lane) — A3
10	11	!= 11x1	VST4 (single 4-element structure from one lane)
10	11	1101	VST4 (single 4-element structure from one lane)
10	11	1111	VST4 (single 4-element structure from one lane)
00	00		VLD1 (single element to one lane) $-$ A1
00	01		VLD2 (single 2-element structure to one lane) — A1
00	10		VLD3 (single 3-element structure to one lane) $-$ A1
00	11		VLD4 (single 4-element structure to one lane) — A1
01	00		VLD1 (single element to one lane) — A2
01	01		VLD2 (single 2-element structure to one lane) — A2
01	10		VLD3 (single 3-element structure to one lane) — A2
01	11		VLD4 (single 4-element structure to one lane) — A2
10	00		VLD1 (single element to one lane) — A3
10	01		VLD2 (single 2-element structure to one lane) — A3
10	10		VLD3 (single 3-element structure to one lane) — A3
10	11		VLD4 (single 4-element structure to one lane) — A3
	00 00 00 01 01 01 01 10 10 10 10 00 00 0	00 00 00 01 00 10 00 11 01 01 01 01 01 10 01 11 10 10 10 11 10 11 10 11 00 00 00 01 00 10 01 01 01 10 01 11 10 01 10 01 10 01 10 01 10 01 10 01 10 01 10 01 10 01 10 01 10 10	00 00 00 01 00 10 00 11 01 00 01 01 01 10 01 11 10 01 10 11 10 11 10 11 10 11 10 11 10 11 11 111 00 00 00 01 00 10 00 11 01 00 01 10 01 10 01 11 10 01 10 01 10 01 10 01 10 10

 $\begin{array}{c} \text{Internal version only: isa } \textcolor{red}{\text{v01_06}} \textcolor{blue}{\text{v01_06}} \textcolor{blue}{\text{v01_03}} \text{, pseudocode } \textcolor{blue}{\text{v2019-12_rc3_1}} \textcolor{blue}{\text{v2019-09_rc2_1}} \text{, sve } \textcolor{blue}{\text{v2019-12_rc3}} \textcolor{blue}{\text{v2019-12_rc3}} \textcolor{blue}{\text{v2019-09_re3}} \text{; Build timestamp: } \textcolor{blue}{\text{2019-12-12T17}} \textcolor{blue}{\text{v2019-09_rc3}} \textcolor{blue}{\text{v2019-12_rc3}} \textcolor{blue}{\text{v2019-09_rc3}} \text{; Build timestamp: } \textcolor{blue}{\text{v2019-12_rc3}} \textcolor{blue}{\text{v2019-09_rc3}} \text{; Build timestamp: } \textcolor{blue}{\text{v2019-09_rc3}} \textcolor{blue}{\text{v2019-09_rc3}} \text{; Build timestamp: } \textcolor{blue}{\text{v201$

 $Copyright @ 2010-2019 \ Arm \ Limited \ or \ its \ affiliates. \ All \ rights \ reserved. \ This \ document \ is \ Non-Confidential.$

(old) htmldiff from- (new)

(old) htmldiff from-(new)

Top-level encodings for T32

 $15 \ 14 \ 13 \ 12 \ 11 \ 10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1 \ 0 \ 15 \ 14 \ 13 \ 12 \ 11 \ 10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1 \ 0$

Decode op0	fields op1	Instruction details
!= 111		<u>16-bit</u>
111	00	B — T2
111	!= 00	<u>32-bit</u>

16-bit

These instructions are under the top-level.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		op	о0												

The following constraints also apply to this encoding: op0<5:3>!= 111

Decode fields	Instruction details
on()	Instruction details

ОРО	
00xxxx	Shift (immediate), add, subtract, move, and compare
010000	Data-processing (two low registers)
010001	Special data instructions and branch and exchange
01001x	LDR (literal) — T1
0101xx	<u>Load/store (register offset)</u>
011xxx	Load/store word/byte (immediate offset)
1000xx	Load/store halfword (immediate offset)
1001xx	<u>Load/store (SP-relative)</u>
1010xx	Add PC/SP (immediate)
1011xx	Miscellaneous 16-bit instructions
1100xx	Load/store multiple
1101xx	Conditional branch, and Supervisor Call

Shift (immediate), add, subtract, move, and compare

These instructions are under 16-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 00 op0 op1 op2

Decode	fields
--------	--------

ש	ecoae ner	us	Instruction details
op0	op1	op2	instruction details
0	11	0	Add, subtract (three low registers)
0	11	1	Add, subtract (two low registers and immediate)
0	!= 11		MOV, MOVS (register) — T2
1			Add, subtract, compare, move (one low register and immediate)

Add, subtract (three low registers)

These instructions are under Shift (immediate), add, subtract, move, and compare.

1	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
П)	0	0	1	1	0	S		Rm			Rn			Rd	

Decode fields S	Instruction Details
0	ADD, ADDS (register)
1	SUB, SUBS (register)

Add, subtract (two low registers and immediate)

These instructions are under Shift (immediate), add, subtract, move, and compare.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	1	1	1	S	ir	nm	3		Rn			Rd	

Decode fields S	Instruction Details
0	ADD, ADDS (immediate)
1	SUB, SUBS (immediate)

Add, subtract, compare, move (one low register and immediate)

These instructions are under Shift (immediate), add, subtract, move, and compare.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	1	O	р		Rd					imi	m8			

Decode fields op	Instruction Details
00	MOV, MOVS (immediate)
01	CMP (immediate)
10	ADD, ADDS (immediate)
11	SUB, SUBS (immediate)

Data-processing (two low registers)

These instructions are under 16-bit.

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	0	0	0	0		0	р			Rs			Rd	

Decode fields op Instruction Details

0000	AND, ANDS (register)
0001	EOR, EORS (register)
0010	MOV, MOVS (register-shifted register) — logical shift left
0011	MOV, MOVS (register-shifted register) — logical shift right
0100	MOV, MOVS (register-shifted register) — arithmetic shift right
0101	ADC, ADCS (register)
0110	SBC, SBCS (register)
0111	MOV, MOVS (register-shifted register) — rotate right
1000	TST (register)

Decode fields op

Instruction Details

1001	RSB, RSBS (immediate)
1010	CMP (register)
1011	CMN (register)
1100	ORR, ORRS (register)
1101	MUL, MULS
1110	BIC, BICS (register)
1111	MVN, MVNS (register)

Special data instructions and branch and exchange

These instructions are under 16-bit.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	(010	001	L		or	00								

5 1 6 11	
Decode fields	Instruction details
on0	msu ucuvn uetans

11	Branch and exchange
!= 11	Add, subtract, compare, move (two high registers)

Branch and exchange

These instructions are under **Special data instructions** and **branch and exchange**.

15									 		 		
0	1	0	0	0	1	1	1	L	R	m	(0)	(0)	(0)

Decode fields	Instruction Details
т	instruction Details

0	BX
1	BLX (register)

Add, subtract, compare, move (two high registers)

These instructions are under **Special data instructions** and **branch and exchange**.

The following constraints also apply to this encoding: op != 11 && op != 11

Decode fields
D:Rd

Instruction Details	,

op	D:Rd	Rs	instruction Details
00	!= 1101	!= 1101	ADD, ADDS (register)
00		1101	ADD, ADDS (SP plus register) — T1
00	1101	!= 1101	ADD, ADDS (SP plus register) — T2
01			CMP (register)
10			MOV, MOVS (register)

Load/store (register offset)

These instructions are under 16-bit.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	1	L	В	Н		Rm			Rn			Rt	

Dec L	ode fi B	elds H	Instruction Details
0	0	0	STR (register)
0	0	1	STRH (register)
0	1	0	STRB (register)
0	1	1	LDRSB (register)
1	0	0	LDR (register)
1	0	1	LDRH (register)
1	1	0	LDRB (register)
1	1	1	LDRSH (register)

Load/store word/byte (immediate offset)

These instructions are under 16-bit.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	1	В	L		ir	nm	5			Rn			Rt	

Decode B	e fields L	Instruction Details
0	0	STR (immediate)
0	1	LDR (immediate)
1	0	STRB (immediate)
1	1	LDRB (immediate)

Load/store halfword (immediate offset)

These instructions are under 16-bit.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	L		imm5					Rn			Rt	

Decode fields L	Instruction Details							
0	STRH (immediate)							
1	LDRH (immediate)							

Load/store (SP-relative)

These instructions are under 16-bit.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	1	L	Rt		imm8								

Decode fields L	Instruction Details					
0	STR (immediate)					
1	LDR (immediate)					

Add PC/SP (immediate)

These instructions are under 16-bit.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	0	SP		Rd					imi	m8			

Decode fields SP	Instruction Details
0	ADR
1	ADD, ADDS (SP plus immediate)

Miscellaneous 16-bit instructions

These instructions are under 16-bit.

15141312	111098	7 6	5	43210	
1011	op0	op1	op2	op3	

	Decod	le fields	3	Instruction details	Architecture version
op0	op1	op2	ор3	instruction details	Architecture version
0000				Adjust SP (immediate)	-
0010				<u>Extend</u>	-
0110	00	0		SETPAN	Armv8.1
0110	0110 00 1			UNALLOCATED	-
0110	01			Change Processor State	-
0110	1x			UNALLOCATED	-
0111				UNALLOCATED	-
1000				UNALLOCATED	-
1010	10			HLT	-
1010	!= 10			Reverse bytes	-
1110				BKPT	-
1111			0000	<u>Hints</u>	-
1111			!= 0000	IT	-
x0x1	×0×1			CBNZ, CBZ	-
x10x			Push and Pop	-	

Adjust SP (immediate)

These instructions are under Miscellaneous 16-bit instructions.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
1	0	1	1	0	0	0	0	S	imm7							

Decode fields S	Instruction Details
0	ADD, ADDS (SP plus immediate)
1	SUB, SUBS (SP minus immediate)

Extend

These instructions are under Miscellaneous 16-bit instructions.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	1	0	0	1	0	\Box	В	Rm			Rd		

Decode	e fields	Instruction Details
U	В	Instruction Details
0	0	SXTH
0	1	SXTB
1	0	UXTH
1	1	UXTB

Change Processor State

These instructions are under Miscellaneous 16-bit instructions.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	1	0	1	1	0	0	1	op		f	lag	S	

Deco	de fields	Instruction Details
op	flags	instruction Details
0		SETEND
1		CPS, CPSID, CPSIE

Reverse bytes

These instructions are under Miscellaneous 16-bit instructions.

The following constraints also apply to this encoding: op !=10 && op !=10

Decode fields op	Instruction Details
00	REV
01	REV16
11	REVSH

Hints

These instructions are under <u>Miscellaneous 16-bit instructions</u>.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	1	1	1	1	1	hint		0	0	0	0		

Decode fields hint	Instruction Details			
0000	NOP			
0001	YIELD			
0010	WFE			
0011	WFI			
0100	SEV			
0101	SEVL			
011x	Reserved hint, behaves as NOP			
1xxx	Reserved hint, behaves as NOP			

Push and Pop

These instructions are under Miscellaneous 16-bit instructions.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	1	L	1	0	Р			red	gist	er	list		

Decode fields L	Instruction Details
0	PUSH
1	POP

Load/store multiple

These instructions are under 16-bit.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	0	0	L		Rn				re	gist	er	list		

Decode fields L	Instruction Details				
0	STM, STMIA, STMEA				
1	LDM, LDMIA, LDMFD				

Conditional branch, and Supervisor Call

These instructions are under 16-bit.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1101 op0														

Decode fields op0	Instruction details				
111x	Exception generation				
!= 111x	B — T1				

Exception generation

These instructions are under Conditional branch, and Supervisor Call.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	0	1	1	1	1	S				imi	m8			

Decode fields S	Instruction Details			
0	UDF			
1	SVC			

32-bit

These instructions are under the top-level.

15 14 13	12 11 10 9	8 7 6 5 4	3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0
111	op0	op1	l lop3	

The following constraints also apply to this encoding: op0<3:2>!=00

Decode fields
op0 op1 op3

Instruction details

<u> </u>	Opi	opo		
x11x			System register access, Advanced SIMD, and floating-point	
0100	xx0xx		Load/store multiple	
0100	xx1xx		Load/store dual, load/store exclusive, load-acquire/store-release, and table branch	
0101			Data-processing (shifted register)	
10xx		1	Branches and miscellaneous control	
10×0		0	<u>Data-processing (modified immediate)</u>	
10×1		0	Data-processing (plain binary immediate)	
1100	1xxx0		Advanced SIMD element or structure load/store	
1100	!= 1xxx0		<u>Load/store single</u>	
1101	0xxxx		Data-processing (register)	
1101	10xxx		Multiply, multiply accumulate, and absolute difference	
1101	11xxx		Long multiply and divide	

System register access, Advanced SIMD, and floating-point

These instructions are under 32-bit.

15 14 13 12 11 10	9 8 7 6 5 4 3 2 1 0 15 14 13 12	11 10 9 8 7 6 5 4 3 2 1 0
111 op0 11	op1	op2 op3

	Decode	e fields		Instruction details
op0	op1	op2	op3	instruction details
	0x	111		System register load/store and 64-bit move
	10	10x	0	Floating-point data-processing
	10	111	1	System register 32-bit move
	11			Advanced SIMD data-processing
0	0x	10x		Advanced SIMD load/store and 64-bit move
0	10	10x	1	Advanced SIMD and floating-point 32-bit move
1	0x	1x0		Advanced SIMD three registers of the same length extension
1	10	1x0	·	Advanced SIMD two registers and a scalar extension

System register load/store and 64-bit move

These instructions are under System register access, Advanced SIMD, and floating-point.

15 14 13	12	11 10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
111		110			op	0												111										

Decode fields op0	Instruction details
00×0	System register 64-bit move
!= 00x0	System register Load/Store

System register 64-bit move

These instructions are under <u>System register load/store and 64-bit move</u>.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	о0	1	1	0	0	0	D	0	L		R	t2			F	₹t		1	1	1	cp15		ор	c1			CR	lm	

Dec	ode fie	elds	Instruction Details
00	D	L	instruction Details
0	0		UNALLOCATED
0	1	0	MCRR
0	1	1	MRRC
1	0		UNALLOCATED
1	1		UNALLOCATED

System register Load/Store

These instructions are under **System register load/store and 64-bit move**.

_	_						-	-	-	-	_	-	_	_	_	-	 		 		-	8	-	-	5	4	3	2	1	0
	1	1	1	о0	1	1	0	Р	U	D	W	L		R	n		CI	Rd	1	1	1	cp15				imi	m8			

The following constraints also apply to this encoding: P:U:D:W != 00x0

			Dec	ode fields			Instruction Details
_00	P:U:W	D	L	Rn	CRd	cp15	mstruction Details
	!= 000				!= 0101	0	UNALLOCATED
	!= 000					1	UNALLOCATED
	!= 000	1			0101	0	UNALLOCATED
0	!= 000	0	1	1111	0101	0	LDC (literal)
0	0×1	0	0		0101	0	STC — post-indexed
0	0×1	0	1	!= 1111	0101	0	LDC (immediate) — post-indexed
0	010	0	0		0101	0	STC — unindexed
0	010	0	1	!= 1111	0101	0	LDC (immediate) — unindexed
0	1x0	0	0		0101	0	STC — offset
0	1x0	0	1	!= 1111	0101	0	LDC (immediate) — offset
0	1x1	0	0		0101	0	STC — pre-indexed
0	1x1	0	1	!= 1111	0101	0	LDC (immediate) — pre-indexed
1	!= 000	0			0101	0	UNALLOCATED

Floating-point data-processing

These instructions are under <u>System register access</u>, <u>Advanced SIMD</u>, and <u>floating-point</u>.

15 14 13 12	11 10 9 8	7 6 5 4	3 2 1 0	15 14 13 12 1	11 10 9 8	7 6 5	4 3 2 1 0
111 op0	1110	op1	op2		10 op3	op4	0

	Dec	ode field	ls		Instruction details
op0	op1	op2	op3	op4	instruction details
0	1x11			1	Floating-point data-processing (two registers)
0	1x11			0	Floating-point move immediate
0	!= 1x11				Floating-point data-processing (three registers)
1	0xxx		!= 00	0	Floating-point conditional select
1	1×00		!= 00		Floating-point minNum/maxNum
1	1×11	0000	!= 00	1	Floating-point extraction and insertion
1	1x11	1xxx	!= 00	1	Floating-point directed convert to integer

Floating-point data-processing (two registers)

These instructions are under Floating-point data-processing.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	1	1	1	0	1	1	1	0	1	D	1	1	01		מסכ	2		V	ď		1	0	siz	ze	о3	1	М	0		V	m	

о1	Decode opc2	fields size	о3	Instruction Details	Architecture Version
		00		UNALLOCATED	-
0	000	01	0	UNALLOCATED	-
0	000		1	VABS	-
0	000	10	0	VMOV (register) — single-precision scalar	-
0	000	11	0	VMOV (register) — double-precision scalar	-
0	001		0	VNEG	-
0	001		1	VSQRT	-
0	010		0	VCVTB — half-precision to double-precision	-
0	010	01		UNALLOCATED	-
0	010		1	VCVTT — half-precision to double-precision	-
0	011	01	0	VCVTB (BFloat16)	Armv8.6
0	011	01	1	VCVTT (BFloat16)	Armv8.6
0	011	10	0	VCVTB — single-precision to half-precision	-
0	011	10	1	VCVTT — single-precision to half-precision	-
0	011	11	0	VCVTB — double-precision to half-precision	-
0	011	11	1	VCVTT — double-precision to half-precision	-
0	100		0	VCMP - T1	-
0	100		1	VCMPE — T1	-
0	101		0	VCMP - T2	-
0	101		1	VCMPE — T2	-
0	110		0	VRINTR	-
0	110		1	VRINTZ (floating-point)	-
0	111		0	VRINTX (floating-point)	-
0	111	01	1	UNALLOCATED	-
0	111	10	1	VCVT (between double-precision and single-precision) — single-precision to double-precision	-
0	111	11	1	VCVT (between double-precision and single-precision) — double-precision to single-precision	-
1	000			VCVT (integer to floating-point, floating-point)	-
1	001	01		UNALLOCATED	-
1	001	10		UNALLOCATED	-
1	001	11	0	UNALLOCATED	-
1	001	11	1	VJCVT	Armv8.3
1	01x			VCVT (between floating-point and fixed-point, floating-point)	-
1	100		0	VCVTR	-
1	100		1	VCVT (floating-point to integer, floating-point)	-
1	101		0	VCVTR	-
1	101		1	VCVT (floating-point to integer, floating-point)	-
1	11x	_		VCVT (between floating-point and fixed-point, floating-point)	-

Floating-point move immediate

These instructions are under $\underline{Floating-point\ data-processing}$.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	0	1	1	1	0	1	D	1	1		imn	n4H			٧	'd		1	0	si	ze	(0)	0	(0)	0		imr	n4L	.]

Decode fields size	Instruction Details	Architecture Version
00	UNALLOCATED	-
01	VMOV (immediate) — half-precision scalar	Armv8.2
10	VMOV (immediate) — single-precision scalar	-
11	VMOV (immediate) — double-precision scalar	-

Floating-point data-processing (three registers)

These instructions are under <u>Floating-point data-processing</u>.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	0	1	1	1	0	о0	D	0	1		٧	/n			٧	⁄d		1	0	si	ze	N	02	М	0		V	m	

The following constraints also apply to this encoding: o0:D:o1 != 1x11

Deco	de fields	6	Instruction Details
o0:o1	size	o2	instruction Details
!= 111	00		UNALLOCATED
000		0	VMLA (floating-point)
000		1	VMLS (floating-point)
001		0	VNMLS
001		1	VNMLA
010		0	VMUL (floating-point)
010		1	VNMUL
011		0	VADD (floating-point)
011		1	VSUB (floating-point)
100		0	VDIV
101		0	VFNMS
101		1	VFNMA
110		0	VFMA
110		1	VFMS

Floating-point conditional select

Decode fields

These instructions are under **Floating-point data-processing**.

The following constraints also apply to this encoding: size !=00 && size !=00

CC	size	Instruction Details
00		VSELEQ, VSELGE, VSELGT, VSELVS — VSELEQ
01		VSELEQ, VSELGE, VSELGT, VSELVS — VSELVS
	01	UNALLOCATED
10		VSELEQ, VSELGE, VSELGT, VSELVS — VSELGE
11		VSELEQ, VSELGE, VSELGT, VSELVS — VSELGT

Floating-point minNum/maxNum

These instructions are under Floating-point data-processing.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	1	1	0	1	D	0	0		V	n			٧	'd		1	0	<u></u>	00	N	ор	М	0		V	m	
																						siz	ze								

The following constraints also apply to this encoding: size != 00 && size != 00

Decode	fields	Instruction Details
size	op	instruction betains
	0	VMAXNM
01		UNALLOCATED
	1	VMINNM

Floating-point extraction and insertion

These instructions are under Floating-point data-processing.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14 13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	1	1	0	1	D	1	1	0	0	0	0		Vd		1	0	!=	00	ор	1	М	0		V	m	
																					si	ze								

The following constraints also apply to this encoding: size != 00 && size != 00

Decode	fields	Instruction Details	Architecture Version
size	op	instruction Details	Architecture version
01		UNALLOCATED	-
10	0	VMOVX	Armv8.2
10	1	VINS	Armv8.2
11		UNALLOCATED	-

Floating-point directed convert to integer

These instructions are under Floating-point data-processing.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	1	1	0	1	Δ	1	1	1	o1	R۱	1		V	d		1	0	!=	00	ор	1	М	0		٧	m	
																						si	ze								

The following constraints also apply to this encoding: size != 00 && size != 00

De o1	code fi	elds size	Instruction Details
0	00		VRINTA (floating-point)
0	01		VRINTN (floating-point)
		01	UNALLOCATED
0	10		VRINTP (floating-point)
0	11		VRINTM (floating-point)
1	00		VCVTA (floating-point)
1	01		VCVTN (floating-point)
1	10		VCVTP (floating-point)
1	11		VCVTM (floating-point)

System register 32-bit move

These instructions are under **System register access**, Advanced SIMD, and floating-point.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Γ	1	1	1	00	1	1	1	0	(opc:	1	Г		CF	₹n			F	\t		1	1	1	cp15		pci	2	1		CF	m	

Decode o0	fields L	Instruction Details
0	0	MCR
0	1	MRC
1		UNALLOCATED

Advanced SIMD data-processing

These instructions are under **System register access**, Advanced SIMD, and floating-point.

15 14 13	12	11 10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
111		11	11		op0																			op1				\Box

Decodo op0	e fields op1	Instruction details
0		Advanced SIMD three registers of the same length
1	0	Advanced SIMD two registers, or three registers of different lengths
1	1	Advanced SIMD shifts and immediate generation

Advanced SIMD three registers of the same length

These instructions are under Advanced SIMD data-processing.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
1	1	1	U	1	1	1	1	0	D	si	ze.		V	/n			V	/d			or)C		N	C	М	o1		V	m		

	Dec	code field	ds		Instruction Details	Architecture Version
_ U _	size	орс	Q	о1	instruction Details	Architecture version
0	0x	1100		1	VFMA	-
0	0x	1101		0	VADD (floating-point)	-
0	0x	1101		1	VMLA (floating-point)	-
0	0x	1110		0	VCEQ (register) — T2	-
0	0x	1111		0	VMAX (floating-point)	-
0	0x	1111		1	VRECPS	-
		0000		0	VHADD	-
0	00	0001		1	VAND (register)	-
		0000		1	VQADD	-
		0001		0	VRHADD	-
0	00	1100		0	SHA1C	-
		0010		0	VHSUB	-
0	01	0001		1	VBIC (register)	-
		0010		1	VQSUB	-
		0011		0	VCGT (register) — T1	-
		0011		1	VCGE (register) — T1	-
0	01	1100		0	SHA1P	-
0	1x	1100		1	VFMS	-
0	1x	1101		0	VSUB (floating-point)	-

U	Dec size	code field	ds Q	о1	Instruction Details	Architecture Version
0	1x	орс 1101		1	VMLS (floating-point)	
0	1x	1110		0	UNALLOCATED	-
0	1x	1111		0	VMIN (floating-point)	-
0	1x	1111		1	VRSQRTS	-
	17	0100		0		-
0		1000		0	VSHL (register) VADD (integer)	-
0	10	0001		1		-
0	10	1000		1	VORR (register) VTST	-
0		0100		1		-
0		1001		0	VQSHL (register)	-
0		0101		0	VMLA (integer) VRSHL	-
		0101		1		-
0		1011		0	VQRSHL	-
0	10	1100		0	VQDMULH	-
0	10	1011		1	SHA1M	-
<u> </u>		0110		0	VPADD (integer)	-
	11			1	VMAX (integer)	-
0	11	0001		1	VORN (register)	-
		0111			VMIN (integer)	-
				0	VABD (integer)	-
	11	0111			VABA	-
0		1100		0	SHA1SU0	-
	0x	1101		0	VPADD (floating-point)	-
1	0x	1101		1	VMUL (floating-point)	-
	0x	1110		0	VCGE (register) — T2	-
1	0x	1110	0	1	VACGE	-
1	0x	1111	0	0	VPMAX (floating-point)	-
1	0x	1111		1	VMAXNM	-
<u> </u>	00	0001			VEOR	-
1	00	1001		1	VMUL (integer and polynomial)	-
1	00	1100 1010	0	0	SHA256H	-
1	01		0	0	VPMAX (integer)	-
1	01	0001	0	1	VBSL	-
		1010	0	1	VPMIN (integer)	-
1	01	1010	1	0	UNALLOCATED	-
1		1100 1101		0	SHA256H2	-
1	1x	1110		0	VABD (floating-point)	-
1	1x 1x	1110		 	VCGT (register) — T2	-
1		1111	0	0	VACGT	-
1	1x	1111	ט	 	VPMIN (floating-point)	-
1	1x			0	VMINNM	-
1	10	1000			VSUB (integer)	-
1	10	1000		1	VBIT	-
1		1000			VCEQ (register) — T1	-
		1001		0	VMLS (integer)	-
1	10	1011		0	VQRDMULH	-
1	10	1100		0	SHA256SU1	-
1		1011		1	VQRDMLAH	Armv8.1

	De	c <mark>ode fiel</mark>	ds		Instruction Details	Architecture Version
U	size	opc	Q	o1	instruction Details	Architecture version
1	11	0001		1	VBIF	-
1		1100		1	VQRDMLSH	Armv8.1
1		1111	1	0	UNALLOCATED	-

Advanced SIMD two registers, or three registers of different lengths

These instructions are under Advanced SIMD data-processing.

15 14 13	3 12 1	11 10	9 8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
111	op0	11	111			op	1									op	02				ор3		0				

op0	Decode op1	fields op2	ор3	Instruction details
0	11			VEXT (byte elements)
1	11	0x		Advanced SIMD two registers misc
1	11	10		VTBL, VTBX
1	11	11		Advanced SIMD duplicate (scalar)
	!= 11		0	Advanced SIMD three registers of different lengths
	!= 11		1	Advanced SIMD two registers and a scalar

Advanced SIMD two registers misc

These instructions are under <u>Advanced SIMD two registers</u>, or three registers of different lengths.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	1	1	1	1	D	1	1	siz	ze	ор	c1		V	'd		0		ор	c2		Q	М	0		٧	m	

	Decode			Instruction Details	Architecture
size	opc1	opc2	Q	mistraction Details	Version
	00	0000		VREV64	-
	00	0001		VREV32	-
	00	0010		VREV16	-
	00	0011		UNALLOCATED	-
	00	010x		VPADDL	-
	00	0110	0	AESE	-
	00	0110	1	AESD	-
	00	0111	0	AESMC	-
	00	0111	1	AESIMC	-
	00	1000		VCLS	-
00	10	0000		VSWP	-
	00	1001		VCLZ	-
	00	1010		VCNT	-
	00	1011		VMVN (register)	-
00	10	1100	1	UNALLOCATED	-
	00	110x		VPADAL	-
	00	1110		VQABS	-
	00	1111		VQNEG	-
	01	×000		VCGT (immediate #0)	-
	01	x001		VCGE (immediate #0)	-
	01	×010		VCEQ (immediate #0)	-

size	Decode opc1	fields opc2	Q	Instruction Details	Architecture Version
	01	×011		VCLE (immediate #0)	-
	01	×100		VCLT (immediate #0)	-
	01	×110		VABS	-
	01	x111		VNEG	-
	01	0101	1	SHA1H	-
01	10	1100	1	VCVT (from single-precision to BFloat16, Advanced SIMD)	Armv8.6
	10	0001		VTRN	-
	10	0010		VUZP	-
	10	0011		VZIP	-
	10	0100	0	VMOVN	-
	10	0100	1	VQMOVN, VQMOVUN — VQMOVUN	-
	10	0101		VQMOVN, VQMOVUN — VQMOVN	-
	10	0110	0	VSHLL	-
	10	0111	0	SHA1SU1	-
	10	0111	1	SHA256SU0	-
	10	1000		VRINTN (Advanced SIMD)	-
	10	1001		VRINTX (Advanced SIMD)	-
	10	1010		VRINTA (Advanced SIMD)	-
	10	1011		VRINTZ (Advanced SIMD)	-
10	10	1100	1	UNALLOCATED	-
	10	1100	0	VCVT (between half-precision and single-precision, Advanced SIMD) — single-precision to half-precision	-
	10	1101		VRINTM (Advanced SIMD)	-
	10	1110	0	VCVT (between half-precision and single-precision, Advanced SIMD) — half-precision to single-precision	-
	10	1110	1	UNALLOCATED	-
	10	1111		VRINTP (Advanced SIMD)	-
	11	000x		VCVTA (Advanced SIMD)	-
	11	001x		VCVTN (Advanced SIMD)	-
	11	010x		VCVTP (Advanced SIMD)	-
	11	011x		VCVTM (Advanced SIMD)	-
	11	10×0		VRECPE	-
	11	10×1		VRSQRTE	-
11	10	1100	1	UNALLOCATED	-
	11	11xx		VCVT (between floating-point and integer, Advanced SIMD)	-

Advanced SIMD duplicate (scalar)

These instructions are under Advanced SIMD two registers, or three registers of different lengths.

_15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	1	1	1	1	О	1	1		im	m4			٧	/d		1	1		орс		Q	М	0		V	m	

Decode fields opc	Instruction Details
000	VDUP (scalar)
001	UNALLOCATED
01x	UNALLOCATED
1xx	UNALLOCATED

Advanced SIMD three registers of different lengths

These instructions are under Advanced SIMD two registers, or three registers of different lengths.

size

The following constraints also apply to this encoding: size != 11 && size != 11

Deco	de fields	Instruction Details
U	opc	instruction Details
	0000	VADDL
	0001	VADDW
	0010	VSUBL
0	0100	VADDHN
	0011	VSUBW
0	0110	VSUBHN
0	1001	VQDMLAL
	0101	VABAL
0	1011	VQDMLSL
0	1101	VQDMULL
	0111	VABDL (integer)
	1000	VMLAL (integer)
	1010	VMLSL (integer)
1	0100	VRADDHN
1	0110	VRSUBHN
	11x0	VMULL (integer and polynomial)
1	1001	UNALLOCATED
1	1011	UNALLOCATED
1	1101	UNALLOCATED
	1111	UNALLOCATED

Advanced SIMD two registers and a scalar

These instructions are under Advanced SIMD two registers, or three registers of different lengths.

15 14 13 12 11 10	9 8	7 6	5 4	3 2 1 0	15 14 13 12	11 10 9 8	7	6 5	4	3	2 1	0
1 1 1 Q 1 1	1 1	1 D	!= 11	Vn	Vd	орс	N	1 M	0		Vm	

size

The following constraints also apply to this encoding: size != 11 && size != 11

Deco	de fields	Instruction Details	Architecture Version
Q	орс		
	000x	VMLA (by scalar)	-
0	0011	VQDMLAL	-
	0010	VMLAL (by scalar)	-
0	0111	VQDMLSL	-
	010x	VMLS (by scalar)	-
0	1011	VQDMULL	-
	0110	VMLSL (by scalar)	-
	100x	VMUL (by scalar)	-

Deco O	ode fields opc	Instruction Details	Architecture Version
1	0011	UNALLOCATED	-
	1010	VMULL (by scalar)	-
1	0111	UNALLOCATED	-
	1100	VQDMULH	-
	1101	VQRDMULH	-
1	1011	UNALLOCATED	-
	1110	VQRDMLAH	Armv8.1
	1111	VQRDMLSH	Armv8.1

Advanced SIMD shifts and immediate generation

These instructions are under Advanced SIMD data-processing.

15 14 13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
111			1:	111	.1										op0)									1				

Decode fields op0	Instruction details
000xxxxxxxxxx0	Advanced SIMD one register and modified immediate
!= 000xxxxxxxxxxx	Advanced SIMD two registers and shift amount

Advanced SIMD one register and modified immediate

These instructions are under Advanced SIMD shifts and immediate generation.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Γ	1	1	1	i	1	1	1	1	1	D	0	0	0	iı	mm	13			'd			cmo	nde		0	0	on	1		imı	<u>m4</u>	\Box

Decode f cmode	ields op	Instruction Details
0xx0	0	VMOV (immediate) — T1
0xx0	1	VMVN (immediate) — T1
0xx1	0	VORR (immediate) — T1
0xx1	1	VBIC (immediate) — T1
10×0	0	VMOV (immediate) — T3
10×0	1	VMVN (immediate) — T2
10x1	0	VORR (immediate) — T2
10×1	1	VBIC (immediate) — T2
11xx	0	VMOV (immediate) — T4
110x	1	VMVN (immediate) — T3
1110	1	VMOV (immediate) — T5
1111	1	UNALLOCATED

Advanced SIMD two registers and shift amount

These instructions are under <u>Advanced SIMD shifts and immediate generation</u>.

15 14	4 13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1 1	1	U	1	1	1	1	1	О	im	nm3	ВН	in	nm3	3L		٧	′d			op	C		L	Q	М	1		٧ı	n	

The following constraints also apply to this encoding: imm3H:imm3L:Vd:opc:L != 000xxxxxxxxxxx0

\mathbf{U}	imm3H:L	imm3L	opc	Q	Instruction Details			
	!= 0000		0000		VSHR			
	!= 0000		0001		VSRA			
	!= 0000	000	1010	0	VMOVL			
	!= 0000		0010		VRSHR			
	!= 0000		0011		VRSRA			
	!= 0000		0111		VQSHL, VQSHLU (immediate) — VQSHL			
	!= 0000		1001	0	VQSHRN, VQSHRUN — VQSHRN			
	!= 0000		1001	1	VQRSHRN, VQRSHRUN — VQRSHRN			
	!= 0000		1010	0	VSHLL			
	!= 0000		11xx		VCVT (between floating-point and fixed-point, Advanced SIMD)			
0	!= 0000		0101		VSHL (immediate)			
0	!= 0000		1000	0	VSHRN			
0	!= 0000		1000	1	VRSHRN			
1	!= 0000		0100		VSRI			
1	!= 0000		0101		VSLI			
1	!= 0000		0110		VQSHL, VQSHLU (immediate) — VQSHLU			
1	!= 0000		1000	0	VQSHRN, VQSHRUN — VQSHRUN			
1 -	I	ı			'			

Advanced SIMD load/store and 64-bit move

!= 0000

Decode fields

These instructions are under System register access, Advanced SIMD, and floating-point.

1000 0 1000

15 14 13 12 11 10 9	8 7 6 5	4 3 2 1 0 15 14 13 12	11 10 9 8 7 6 5 4 3 2 1 0
1110110	op0		10

VQRSHRN, VQRSHRUN — VQRSHRUN

Decode neids op0	Instruction details
00×0	Advanced SIMD and floating-point 64-bit move
!= 00x0	Advanced SIMD and floating-point load/store

Advanced SIMD and floating-point 64-bit move

These instructions are under Advanced SIMD load/store and 64-bit move.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14											1	0
1	1	1	0	1	1	0	0	0	D	0	op		R	t2			P	₹t	1	0	si	ze	ор	c2	М	о3	Vı	m	

	D	ecode f	ields		Instruction Details
_ D	op	size	opc2	о3	instruction Details
0					UNALLOCATED
1				0	UNALLOCATED
1		0×	00	1	UNALLOCATED
1			01		UNALLOCATED
1	0	10	00	1	VMOV (between two general-purpose registers and two single-precision registers) — from general-purpose registers
1	0	11	00	1	VMOV (between two general-purpose registers and a doubleword floating- point register) — from general-purpose registers
1			1x		UNALLOCATED
1	1	10	00	1	VMOV (between two general-purpose registers and two single-precision registers) — to general-purpose registers

	D	ecode f	ields		Instruction Details
D	op	size	opc2	о3	instruction Details
1	1	11	00	1	VMOV (between two general-purpose registers and a doubleword floating-
					point register) — to general-purpose registers

Advanced SIMD and floating-point load/store

These instructions are under Advanced SIMD load/store and 64-bit move.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0_
1	1	1	0	1	1	0	Р	U	D	W	L		P	ln			٧	/d		1	0	si	ze				im	m8			

The following constraints also apply to this encoding: P:U:D:W != 00x0

				Decode field:	S		Instruction Details
_ P	U	W	L	Rn	size	imm8	Instruction Details
0	0	1					UNALLOCATED
0	1				0x		UNALLOCATED
0	1		0		10		VSTM, VSTMDB, VSTMIA
0	1		0		11	xxxxxxx0	VSTM, VSTMDB, VSTMIA
0	1		0		11	xxxxxxx1	FSTMDBX, FSTMIAX — Increment After
0	1		1		10		VLDM, VLDMDB, VLDMIA
0	1		1		11	xxxxxxx0	VLDM, VLDMDB, VLDMIA
0	1		1		11	xxxxxxx1	FLDM*X (FLDMDBX, FLDMIAX) — Increment After
1		0	0				VSTR
1		0			00		UNALLOCATED
1		0	1	!= 1111			VLDR (immediate)
1	0	1			0x		UNALLOCATED
1	0	1	0		10		VSTM, VSTMDB, VSTMIA
1	0	1	0		11	xxxxxxx0	VSTM, VSTMDB, VSTMIA
1	0	1	0		11	xxxxxxx1	FSTMDBX, FSTMIAX — Decrement Before
1	0	1	1		10		VLDM, VLDMDB, VLDMIA
1	0	1	1		11	xxxxxxx0	VLDM, VLDMDB, VLDMIA
1	0	1	1		11	xxxxxxx1	FLDM*X (FLDMDBX, FLDMIAX) — Decrement Before
1		0	1	1111			VLDR (literal)
1	1	1					UNALLOCATED

Advanced SIMD and floating-point 32-bit move

These instructions are under **System register access**, Advanced SIMD, and floating-point.

15 14 13 12 11 10 9 8	7 6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
11101110	იი()											101		on1					1	111	1	\neg

Decode	e nelas	Instruction details
op0	op1	instruction details
000	0	VMOV (between general-purpose register and single-precision)
111	0	Floating-point move special register
	1	Advanced SIMD 8/16/32-bit element move/duplicate

Floating-point move special register

These instructions are under <u>Advanced SIMD and floating-point 32-bit move</u>.

15												 		 			 											
1	1	1	0	1	1	1	0	1	1	1	L	re	eg .		F	₹t	1	0	1	0	(0)	(0)	(0)	1	(0)	(0)	(0)	(0)

Decode fields L	Instruction Details
0	VMSR
1	VMRS

Advanced SIMD 8/16/32-bit element move/duplicate

These instructions are under Advanced SIMD and floating-point 32-bit move.

15	14	1 13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	0	1	1	1	0		pc1	L	L			'n			R	t		1	0	1	1	Ν	оp	c2	1	(0)	(0)	(0)	(0)

Dec	oae n	lelas	Instruction Details
opc1	L	opc2	instruction Details
0xx	0		VMOV (general-purpose register to scalar)
	1		VMOV (scalar to general-purpose register)
1xx	0	0x	VDUP (general-purpose register)
1xx	0	1x	UNALLOCATED

Advanced SIMD three registers of the same length extension

These instructions are under **System register access**, Advanced SIMD, and floating-point.

_15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	1	0	op	1	О	op	2		٧	'n			٧	ď		1	ор3	0	op4	Ν	Q	М	U		Vı	m	

	D	ecode f	ìelds			Instruction Details	Architecture Version
op1	op2	ор3	op4	Q	U	mstruction Details	Architecture version
x1	0x	0	0	0	0	VCADD — 64-bit SIMD vector	Armv8.3
x1	0x	0	0	0	1	UNALLOCATED	-
x1	0x	0	0	1	0	VCADD — 128-bit SIMD vector	Armv8.3
x1	0×	0	0	1	1	UNALLOCATED	-
00	0x	0	0			UNALLOCATED	-
00	0x	0	1			UNALLOCATED	-
00	00	1	0	0	0	UNALLOCATED	-
00	00	1	0	0	1	UNALLOCATED	-
00	00	1	0	1	0	VMMLA	Armv8.6
00	00	1	0	1	1	UNALLOCATED	-
00	00	1	1	0	0	VDOT (vector) — 64-bit SIMD vector	Armv8.6
00	00	1	1	0	1	UNALLOCATED	-
00	00	1	1	1	0	VDOT (vector) — 128-bit SIMD vector	Armv8.6
00	00	1	1	1	1	UNALLOCATED	-
00	01	1	0			UNALLOCATED	-
00	01	1	1			UNALLOCATED	-
00	10	0	0	0	1	VFMAL (vector) — 64-bit SIMD vector	Armv8.2
00	10	0	1			UNALLOCATED	-
00	10	1	0	0		UNALLOCATED	-
00	10	1	0	1	0	VSMMLA	Armv8.6
00	10	1	0	1	1	VUMMLA	Armv8.6
00	10	1	1	0	0	VSDOT (vector) — 64-bit SIMD vector	Armv8.2
00	10	1	1	0	1	VUDOT (vector) — 64-bit SIMD vector	Armv8.2

	D	ecode f	ields			Instruction Details	Architecture Version
op1	op2	ор3	op4	Q	U	Instruction Details	Architecture version
00	10	1	1	1	0	VSDOT (vector) — 128-bit SIMD vector	Armv8.2
00	10	1	1	1	1	VUDOT (vector) — 128-bit SIMD vector	Armv8.2
00	11	0	0		1	VFMAB, VFMAT (BFloat16, vector)	Armv8.6
00	11	0	0	1	1	VFMAL (vector) — 128-bit SIMD vector	Armv8.2
00	11	0	1			UNALLOCATED	-
00	11	1	0			UNALLOCATED	-
00	11	1	1			UNALLOCATED	-
01	10	0	0		1	VFMSL (vector)	Armv8.2
01	10	0	1			UNALLOCATED	-
01	10	1	0	0		UNALLOCATED	-
01	10	1	0	1	0	VUSMMLA	Armv8.6
01	10	1	0	1	1	UNALLOCATED	-
01	10	1	1	0	0	VUSDOT (vector) — 64-bit SIMD vector	Armv8.6
01	10	1	1		1	UNALLOCATED	-
01	10	1	1	1	0	VUSDOT (vector) — 128-bit SIMD vector	Armv8.6
01	11					UNALLOCATED	-
	1x	0	0		0	VCMLA	Armv8.3
10	11					UNALLOCATED	
11	11					UNALLOCATED	-

Advanced SIMD two registers and a scalar extension

These instructions are under **System register access**, Advanced SIMD, and floating-point.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	1	1	0	op1	D	or	<u> </u>		V	n/n			V	'd		1	Ego	0	op4	N	Q	М	U		Vı	m	

an1		ecode f		0	U	Instruction Details	Architecture Version
op1	op2	op3	op4	Q			
0		0	0		0	VCMLA (by element) — half-precision scalar	Armv8.3
0	00	0	0		1	VFMAL (by scalar)	Armv8.2
0	00	0	1			UNALLOCATED	-
0	00	1	0			UNALLOCATED	-
0	00	1	1	0	0	VDOT (by element) — 64-bit SIMD vector	Armv8.6
0	00	1	1		1	UNALLOCATED	-
0	00	1	1	1	0	VDOT (by element) — 128-bit SIMD vector	Armv8.6
0	01	0	0		0	UNALLOCATED	-
0	01	0	0	0	1	VFMSL (by scalar) — 64-bit SIMD vector	Armv8.2
0	01	0	0	1	1	VFMSL (by scalar) — 128-bit SIMD vector	Armv8.2
0	01	0	1			UNALLOCATED	-
0	01	1	0			UNALLOCATED	-
0	10	0				UNALLOCATED	-
0	10	1	0			UNALLOCATED	-
0	10	1	1	0	0	VSDOT (by element) — 64-bit SIMD vector	Armv8.2
0	10	1	1	0	1	VUDOT (by element) — 64-bit SIMD vector	Armv8.2
0	10	1	1	1	0	VSDOT (by element) — 128-bit SIMD vector	Armv8.2
0	10	1	1	1	1	VUDOT (by element) — 128-bit SIMD vector	Armv8.2
0	11	0	0		0	UNALLOCATED	-
0	11	0	0		1	VFMAB, VFMAT (BFloat16, by scalar)	Armv8.6

		D	ecode f	ields			Instruction Dataile	Architecture
	op1	op2	op3	op4	Q	U	Instruction Details	Version
	0	11	0	1			UNALLOCATED	-
	0	11	1				UNALLOCATED	-
	1		0	0		0	VCMLA (by element) — single-precision scalar	Armv8.3
	1	00	1	1	0	0	VUSDOT (by element) — 64-bit SIMD vector	Armv8.6
	1	00	1	1	0	1	VSUDOT (by element) — 64-bit SIMD vector	Armv8.6
	1	00	1	1	1	0	VUSDOT (by element) — 128-bit SIMD vector	Armv8.6
	1	00	1	1	1	1	VSUDOT (by element) — 128-bit SIMD vector	Armv8.6
	1		0	1			UNALLOCATED	-
	1	01	1	1			UNALLOCATED	-
ſ	1	1x	1	1			UNALLOCATED	-
ſ	1		1	0			UNALLOCATED	-

Load/store multiple

These instructions are under 32-bit.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	0	1	0	0	or	oc	0	W	Ш		R	n		Р	М						reg	gist	er l	ist					

Decode	-	Instruction Details
opc	L	
00	0	SRS, SRSDA, SRSDB, SRSIA, SRSIB — T1
00	1	RFE, RFEDA, RFEDB, RFEIA, RFEIB — T1
01	0	STM, STMIA, STMEA
01	1	LDM, LDMIA, LDMFD
10	0	STMDB, STMFD
10	1	LDMDB, LDMEA
11	0	SRS, SRSDA, SRSDB, SRSIA, SRSIB — T2
11	1	RFE, RFEDA, RFEDB, RFEIA, RFEIB — T2

Load/store dual, load/store exclusive, load-acquire/store-release, and table branch

These instructions are under 32-bit.

15 14 13 12 11 10 9	8 7 6 5	4 3 2 1 0	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
1110100	op0	op1 op2		op3

The following constraints also apply to this encoding: op0<1> == 1

	Decode	e fields		Instruction details
op0	op1	op2	op3	mstruction details
0010				<u>Load/store exclusive</u>
0110	0		000	UNALLOCATED
0110	1		000	TBB, TBH
0110			01x	Load/store exclusive byte/half/dual
0110			1xx	<u>Load-acquire / Store-release</u>
0×11		!= 1111		Load/store dual (immediate, post-indexed)
1×10		!= 1111		Load/store dual (immediate)

1x11	!= 1111	Load/store dual (immediate, pre-indexed)
!= 0xx0	1111	LDRD (literal)

Load/store exclusive

These instructions are under Load/store dual, load/store exclusive, load-acquire/store-release, and table branch.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	0	1	0	0	0	0	1	0	L		P	₹n			F	₹t			R	.d					im	m8			

Decode fields L	Instruction Details
0	STREX
1	LDREX

Load/store exclusive byte/half/dual

These instructions are under Load/store dual, load/store exclusive, load-acquire/store-release, and table branch.

_15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	0	1	0	0	0	1	1	0	L		R	ln			F	₹t			Rt	2		0	1	S	Z		R	d	

Decod	le fields	Instruction Details
L	SZ	Instruction Details
0	00	STREXB
0	01	STREXH
0	10	UNALLOCATED
0	11	STREXD
1	00	LDREXB
1	01	LDREXH
1	10	UNALLOCATED
1	11	LDREXD

Load-acquire / Store-release

These instructions are under Load/store dual, load/store exclusive, load-acquire/store-release, and table branch.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	0	1	0	0	0	1	1	0	L		Rn	1			Rt	t			Rt	:2		1	ор	S	Z		R	d	

Dec	code fi	elds	Instruction Details
L_	op	SZ	instruction Details
0	0	00	STLB
0	0	01	STLH
0	0	10	STL
0	0	11	UNALLOCATED
0	1	00	STLEXB
0	1	01	STLEXH
0	1	10	STLEX
0	1	11	STLEXD
1	0	00	LDAB
1	0	01	LDAH
1	0	10	LDA

Dec	code fi	elds	Instruction Details
L	op	SZ	instruction Details
1	0	11	UNALLOCATED
1	1	00	LDAEXB
1	1	01	LDAEXH
1	1	10	LDAEX
1	1	11	LDAEXD

Load/store dual (immediate, post-indexed)

These instructions are under Load/store dual, load/store exclusive, load-acquire/store-release, and table branch.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	0	1	0	0	0	U	1	1	L	-	= 1	.11:	L		P	Rt			Rt	2					im	m8			
													R	n																	

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode fields L	Instruction Details
0	STRD (immediate)
1	LDRD (immediate)

Load/store dual (immediate)

These instructions are under Load/store dual, load/store exclusive, load-acquire/store-release, and table branch.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	0	1	0	0	1	U	1	0	L	!	= 1	111	1		P	lt.			Rt	2					im	m8			
													R	n																	

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode fields L	Instruction Details
0	STRD (immediate)
1	LDRD (immediate)

Load/store dual (immediate, pre-indexed)

These instructions are under Load/store dual, load/store exclusive, load-acquire/store-release, and table branch.

_15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	0	1	0	0	1	U	1	1	L		= 1	.11:	L		P	₹t			R	t2					im	m8			
													D	n																	

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode fields L	Instruction Details
0	STRD (immediate)
1	LDRD (immediate)

Data-processing (shifted register)

These instructions are under 32-bit.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	0	1	0	1		or	o1		S		R	ln		(0)		mm	3		R	d		im	m2	sty	pe		R	m	

op1	s	Rn	Decode fields imm3:imm2:stype	Rd	Instruction Details
0000	0				AND, ANDS (register) — AND, rotate right with extend
0000	1		!= 0000011	!=	AND, ANDS (register) — ANDS, shift or rotate by
				1111	value
0000	1		!= 0000011	1111	TST (register) — shift or rotate by value
0000	1		0000011	!= 1111	AND, ANDS (register) — ANDS, rotate right with extend
0000	1		0000011	1111	TST (register) — rotate right with extend
0001					BIC, BICS (register)
0010	0	!= 1111			ORR, ORRS (register) — ORR
0010	0	1111			MOV, MOVS (register) — MOV
0010	1	!= 1111			ORR, ORRS (register) — ORRS
0010	1	1111			MOV, MOVS (register) — MOVS
0011	0	!=			ORN, ORNS (register) — not flag setting
		1111			
0011	0	1111			MVN, MVNS (register) — MVN
0011	1	!= 1111			ORN, ORNS (register) — flag setting
0011	1	1111			MVN, MVNS (register) — MVNS
0100	0				EOR, EORS (register) — EOR, rotate right with extend
0100	1		!= 0000011	!= 1111	EOR, EORS (register) — EORS, shift or rotate by value
0100	1		!= 0000011	1111	TEQ (register) — shift or rotate by value
0100	1		0000011	!= 1111	EOR, EORS (register) — EORS, rotate right with extend
0100	1		0000011	1111	TEQ (register) — rotate right with extend
0101					UNALLOCATED
0110	0		xxxxx00		РКНВТ, РКНТВ — РКНВТ
0110	0		xxxxx01		UNALLOCATED
0110	0		xxxxx10		РКНВТ, РКНТВ — РКНТВ
0110	0		xxxxx11		UNALLOCATED
0111					UNALLOCATED
1000	0	!= 1101			ADD, ADDS (register) — ADD
1000	0	1101			ADD, ADDS (SP plus register) — ADD
1000	1	!=		!=	ADD, ADDS (register) — ADDS
		1101		1111	
1000	1	1101		!= 1111	ADD, ADDS (SP plus register) — ADDS
1000	1			1111	CMN (register)
1001					UNALLOCATED

	_		ecode fields		Instruction Details
op1	<u>_S</u> _	Rn	imm3:imm2:stype	Rd	
1010					ADC, ADCS (register)
1011					SBC, SBCS (register)
1100					UNALLOCATED
1101	0	!=			SUB, SUBS (register) — SUB
		1101			
1101	0	1101			SUB, SUBS (SP minus register) — SUB
1101	1	!=		!=	SUB, SUBS (register) — SUBS
		1101		1111	
1101	1	1101		!=	SUB, SUBS (SP minus register) — SUBS
				1111	
1101	1			1111	CMP (register)
1110					RSB, RSBS (register)
1111					UNALLOCATED

Branches and miscellaneous control

These instructions are under 32-bit.

15 14 13 12	11 10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
11110	op0		op	o1		0	o2					1		ор3	}		(ор4				op5					

		Decode	fields			Instruction details
op0	op1	op2	ор3	op4	op5	mstruction details
0	1110	0x	0x0		0	MSR (register)
0	1110	0×	0×0		1	MSR (Banked register)
0	1110	10	0×0	000		<u>Hints</u>
0	1110	10	0×0	!= 000		Change processor state
0	1110	11	0×0			Miscellaneous system
0	1111	00	0×0			BXJ
0	1111	01	0×0			Exception return
0	1111	1x	0×0		0	MRS
0	1111	1x	0×0		1	MRS (Banked register)
1	1110	00	000			<u>DCPS</u>
1	1110	00	010			UNALLOCATED
1	1110	01	0×0			UNALLOCATED
1	1110	1x	0×0			UNALLOCATED
1	1111	0×	0×0			UNALLOCATED
1	1111	1x	0×0			Exception generation
	!= 111x		0×0			В — ТЗ
			0×1			B — T4
			1x0			BL, BLX (immediate) — T2
			1x1			BL, BLX (immediate) — T1

Hints

These instructions are under **Branches and miscellaneous control**.

						-	-	-	-	_	-	_	_		-							-	-	-	-	_	-	_	_	_	0
1	1	1	1	0	0	1	1	1	0	1	0	(1)	(1)	(1)	(1)	1	0	(0)	0	(0)	0	0	0		hi	nt			opt	ion	

Decod	le fields	Instruction Details	Architecture Version
hint	option	mstruction Details	Architecture version
0000	0000	NOP	-
0000	0001	YIELD	-
0000	0010	WFE	-
0000	0011	WFI	-
0000	0100	SEV	-
0000	0101	SEVL	-
0000	011x	Reserved hint, behaves as NOP	-
0000	1xxx	Reserved hint, behaves as NOP	-
0001	0000	ESB	Armv8.2
0001	0001	Reserved hint, behaves as NOP	-
0001	0010	TSB CSYNC	Armv8.4
0001	0011	Reserved hint, behaves as NOP	-
0001	0100	CSDB	-
0001	0101	Reserved hint, behaves as NOP	-
0001	011x	Reserved hint, behaves as NOP	-
0001	1xxx	Reserved hint, behaves as NOP	-
001x		Reserved hint, behaves as NOP	-
01xx		Reserved hint, behaves as NOP	-
10xx		Reserved hint, behaves as NOP	-
110x		Reserved hint, behaves as NOP	-
1110		Reserved hint, behaves as NOP	-
1111		DBG	-

Change processor state

These instructions are under <u>Branches and miscellaneous control</u>.

					10	-	-	-	-	_	-	_	_		-							-	-	-	-	_	-	_	_	_	-
1	1	1	1	0	0	1	1	1	0	1	0	(1)	(1)	(1)	(1)	1	0	(0)	0	(0)	im	od	М	Α	Ι	F		n	nod	e	

The following constraints also apply to this encoding: imod:M != 000

Decode imod	fields M	Instruction Details
00	1	CPS, CPSID, CPSIE — CPS
01		UNALLOCATED
10		CPS, CPSID, CPSIE — CPSIE
11		CPS, CPSID, CPSIE — CPSID

Miscellaneous system

These instructions are under **Branches and miscellaneous control**.

						-	_	-	-	_	-	_			-						10	-	-	-	-	_	_	_	_	-
1	1	1	1	0	0	1	1	1	0	1	1	(1)	(1)	(1)	(1)	1	0	(0)	0	(1)	(1)	(1)	(1)		o	oc		opt	ion	

Deco	de fields	Instruction Details
opc	option	instruction Details
000x		UNALLOCATED
0010		CLREX

Deco	ode fields	Instruction Details
opc	option	instruction Details
0011		UNALLOCATED
0100	!= 0×00	DSB
0100	0000	SSBB
0100	0100	PSSBB
0101		DMB
0110		ISB
0111		SB
1xxx		UNALLOCATED

Exception return

These instructions are under **Branches** and miscellaneous control.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	0	0	1	1	1	1	0	1		R	ln		1	0	(0)	0	(1)	(1)	(1)	(1)				im	m8			

D	ecode fields	Instruction Details
Rn	imm8	instruction Details
	!= 00000000	SUB, SUBS (immediate)
1110	00000000	ERET

DCPS

These instructions are under Branches and miscellaneous control.

_15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	0	1	1	1	1	0	0	0		im	m4		1	0	0	0					imn	n10)				0	pt

	Decode fields		Instruction Details
imm4	imm10	opt	instruction Details
!= 1111			UNALLOCATED
1111	!= 0000000000		UNALLOCATED
1111	0000000000	00	UNALLOCATED
1111	000000000	01	DCPS1
1111	000000000	10	DCPS2
1111	000000000	11	DCPS3

Exception generation

These instructions are under **Branches and miscellaneous control**.

1	L5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Г	1	1	1	1	0	1	1	1	1	1	1	o1		imı	m4		1	0	02	0						imn	n12					

Decode o1	e fields o2	Instruction Details
0	0	HVC
0	1	UNALLOCATED
1	0	SMC
1	1	UDF

Data-processing (modified immediate)

These instructions are under 32-bit.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	0	i	0		or	<u> 1</u>		S		R	ln		0	ir	nm:	3		R	d					im	m8			

_		Decode fields		Instruction Details
op1	S	Rn	Rd	
0000	0			AND, ANDS (immediate) — AND
0000	1		!= 1111	AND, ANDS (immediate) — ANDS
0000	1		1111	TST (immediate)
0001				BIC, BICS (immediate)
0010	0	!= 1111		ORR, ORRS (immediate) — ORR
0010	0	1111		MOV, MOVS (immediate) — MOV
0010	1	!= 1111		ORR, ORRS (immediate) — ORRS
0010	1	1111		MOV, MOVS (immediate) — MOVS
0011	0	!= 1111		ORN, ORNS (immediate) — not flag setting
0011	0	1111		MVN, MVNS (immediate) — MVN
0011	1	!= 1111		ORN, ORNS (immediate) — flag setting
0011	1	1111		MVN, MVNS (immediate) — MVNS
0100	0			EOR, EORS (immediate) — EOR
0100	1		!= 1111	EOR, EORS (immediate) — EORS
0100	1		1111	TEQ (immediate)
0101				UNALLOCATED
011x				UNALLOCATED
1000	0	!= 1101		ADD, ADDS (immediate) — ADD
1000	0	1101		ADD, ADDS (SP plus immediate) — ADD
1000	1	!= 1101	!= 1111	ADD, ADDS (immediate) — ADDS
1000	1	1101	!= 1111	ADD, ADDS (SP plus immediate) — ADDS
1000	1		1111	CMN (immediate)
1001				UNALLOCATED
1010				ADC, ADCS (immediate)
1011				SBC, SBCS (immediate)
1100				UNALLOCATED
1101	0	!= 1101		SUB, SUBS (immediate) — SUB
1101	0	1101		SUB, SUBS (SP minus immediate) — SUB
1101	1	!= 1101	!= 1111	SUB, SUBS (immediate) — SUBS
1101	1	1101	!= 1111	SUB, SUBS (SP minus immediate) — SUBS
1101	1		1111	CMP (immediate)
1110				RSB, RSBS (immediate)
1111				UNALLOCATED

Data-processing (plain binary immediate)

These instructions are under 32-bit.

15 14 13 12 11	10 9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
11110	1	0g0		or	<u> 1</u>	0					0															

Decod	e fields	Instruction details
op0	op1	mstruction details
0	0x	Data-processing (simple immediate)

0	10	Move Wide (16-bit immediate)
0	11	UNALLOCATED
1		Saturate, Bitfield

Data-processing (simple immediate)

These instructions are under <u>Data-processing</u> (plain binary immediate).

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	0	i	1	0	01	0	о2	0		R	ln		0	ii	mm	3		R	d					im	m8			

	Decod	e fields	Instruction Details
 o1	ο2	Rn	mstruction Details
0	0	!= 11x1	ADD, ADDS (immediate)
0	0	1101	ADD, ADDS (SP plus immediate)
0	0	1111	ADR — T3
0	1		UNALLOCATED
1	0		UNALLOCATED
1	1	!= 11x1	SUB, SUBS (immediate)
1	1	1101	SUB, SUBS (SP minus immediate)
1	1	1111	ADR — T2

Move Wide (16-bit immediate)

These instructions are under <u>Data-processing</u> (plain binary immediate).

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	0	i	1	0	01	1	0	0		im	m4		0	i	mm	3		R	d					im	m8			

Decode fields o1	Instruction Details
0	MOV, MOVS (immediate)
1	MOVT

Saturate, Bitfield

These instructions are under <u>Data-processing</u> (plain binary immediate).

15 14	4 13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1 1	. 1	1	0	(0)	1	1		op1		0		R	n		0	i	mm	13		R	d		im	m2	(0)		wi	dthr	n1	

op1	Decode f Rn	ields imm3:imm2	Instruction Details
000			SSAT — logical shift left
001		!= 00000	SSAT — arithmetic shift right
001		00000	SSAT16
010			SBFX
011	!= 1111		BFI
011	1111		BFC
100			USAT — logical shift left
101		!= 00000	USAT — arithmetic shift right
101		00000	USAT16
110			UBFX

	Decode f	ields	Instruction Details
op1	Rn	imm3:imm2	Instruction Details
111			UNALLOCATED

Advanced SIMD element or structure load/store

These instructions are under 32-bit.

15 14 13 12 11 10 9	8 7 6 5	4	3 2 1	0 15 14 13 12 11 10	9 8 7 6 5 4 3 2 1 0
11111001	op0	0		op1	

Deco op0	de fields op1	Instruction details
0		Advanced SIMD load/store multiple structures
1	11	Advanced SIMD load single structure to all lanes
1	!= 11	Advanced SIMD load/store single structure to one lane

Advanced SIMD load/store multiple structures

These instructions are under <u>Advanced SIMD element or structure load/store</u>.

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Γ	1	1	1	1	1	0	0	1	0	D	Ш	0		R	n			V	ď			ity	pe		si	ze	ali	gn		R	m	

Dece L	ode fields itype	Instruction Details
0	000x	VST4 (multiple 4-element structures)
0	0010	VST1 (multiple single elements) — T4
0	0011	VST2 (multiple 2-element structures) $-$ T2
0	010x	VST3 (multiple 3-element structures)
0	0110	VST1 (multiple single elements) $-$ T3
0	0111	VST1 (multiple single elements) $-$ T1
0	100x	VST2 (multiple 2-element structures) — T1
0	1010	VST1 (multiple single elements) $-$ T2
1	000x	VLD4 (multiple 4-element structures)
1	0010	VLD1 (multiple single elements) — T4
1	0011	VLD2 (multiple 2-element structures) — T2
1	010x	VLD3 (multiple 3-element structures)
	1011	UNALLOCATED
1	0110	VLD1 (multiple single elements) $-$ T3
1	0111	VLD1 (multiple single elements) $-$ T1
	11xx	UNALLOCATED
1	100x	VLD2 (multiple 2-element structures) — T1
1	1010	VLD1 (multiple single elements) $-$ T2

Advanced SIMD load single structure to all lanes

These instructions are under <u>Advanced SIMD element or structure load/store</u>.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0_
1	1	1	1	1	0	0	1	1	О	Ш	0		R	ln			٧	ď		1	1	١	1	si	ze	Т	а		R	m	

Dec	ode fie	elds	Instruction Details
L_	N	a	mstruction Details
0			UNALLOCATED
1	00		VLD1 (single element to all lanes)
1	01		VLD2 (single 2-element structure to all lanes)
1	10	0	VLD3 (single 3-element structure to all lanes)
1	10	1	UNALLOCATED
1	11		VLD4 (single 4-element structure to all lanes)

Advanced SIMD load/store single structure to one lane

These instructions are under Advanced SIMD element or structure load/store.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	0	0	1	1	D	П	0		R	ln			٧	′d		!=	11	١	I	ind	dex	_ali	gn		R	m	
																				si	ze										

Instruction Details

The following constraints also apply to this encoding: size != 11 && size != 11

0	00	00	VST1 (single element from one lane) $-$ T1
0	00	01	VST2 (single 2-element structure from one lane) $-$ T1
0	00	10	VST3 (single 3-element structure from one lane) $-$ T1
0	00	11	VST4 (single 4-element structure from one lane) $-$ T1
0	01	00	VST1 (single element from one lane) — T2
0	01	01	VST2 (single 2-element structure from one lane) $-$ T2
0	01	10	VST3 (single 3-element structure from one lane) $-$ T2
0	01	11	VST4 (single 4-element structure from one lane) $-$ T2
0	10	00	VST1 (single element from one lane) — $T3$
0	10	01	VST2 (single 2-element structure from one lane) $-$ T3
0	10	10	VST3 (single 3-element structure from one lane) $-$ T3
0	10	11	VST4 (single 4-element structure from one lane) $-$ T3
1	00	00	VLD1 (single element to one lane) $-$ T1
1	00	01	VLD2 (single 2-element structure to one lane) — T1 $$
1	00	10	VLD3 (single 3-element structure to one lane) $-$ T1
1	00	11	VLD4 (single 4-element structure to one lane) $-$ T1
1	01	00	VLD1 (single element to one lane) $-$ T2
1	01	01	VLD2 (single 2-element structure to one lane) $-$ T2
1	01	10	VLD3 (single 3-element structure to one lane) $-$ T2
1	01	11	VLD4 (single 4-element structure to one lane) $-$ T2
1	10	00	VLD1 (single element to one lane) $-$ T3

Load/store single

10

10

10

1

1

Decode fields

These instructions are under 32-bit.

01

10

11

15 14 13 12 11 10 9	8 7 6 5 4	3 2 1 0 15 14 13 12	11 10 9 8 7 6	5 4 3 2 1 0
1111100	op0 op1	op2	op3	

VLD2 (single 2-element structure to one lane) — T3

VLD3 (single 3-element structure to one lane) — T3

VLD4 (single 4-element structure to one lane) — T3

The following constraints also apply to this encoding: op0<1>:op1 != 10

		ор3	Instruction details
-	!= 1111	000000	Load/store, unsigned (register offset)
	!= 1111	000001	UNALLOCATED
	!= 1111	00001x	UNALLOCATED
	!= 1111	0001xx	UNALLOCATED
	!= 1111	001xxx	UNALLOCATED
	!= 1111	01xxxx	UNALLOCATED
	!= 1111	10x0xx	UNALLOCATED
	!= 1111	10x1xx	Load/store, unsigned (immediate, post-indexed)
	!= 1111	1100xx	Load/store, unsigned (negative immediate)
	!= 1111	1110xx	Load/store, unsigned (unprivileged)
	!= 1111	11x1xx	Load/store, unsigned (immediate, pre-indexed)
	!= 1111		Load/store, unsigned (positive immediate)
	1111		Load, unsigned (literal)
1	!= 1111	000000	Load/store, signed (register offset)
1	!= 1111	000001	UNALLOCATED
1	!= 1111	00001x	UNALLOCATED
1	!= 1111	0001xx	UNALLOCATED
1	!= 1111	001xxx	UNALLOCATED
1	!= 1111	01xxxx	UNALLOCATED
1	!= 1111	10x0xx	UNALLOCATED
1	!= 1111	10x1xx	Load/store, signed (immediate, post-indexed)
1	!= 1111	1100xx	Load/store, signed (negative immediate)
1	!= 1111	1110xx	Load/store, signed (unprivileged)
	1 1 1 1 1 1 1 1	!= 1111 != 1111	op1 op2 op3 != 1111 000000 != 1111 000001x != 1111 00001xx != 1111 0001xxx != 1111 01xxxx != 1111 10x0xx != 1111 10x0xx != 1111 110xxx != 1111 11x1xx != 1111 11x1xx != 1111 000000 1 != 1111 00000x 1 != 1111 0001xx 1 != 1111 01xxxx 1 != 1111 10x0xx 1 != 1111 10x1xx 1 != 1111 10x0xx 1 != 1111 10x1xx 1 != 1111 10x0xx 1 != 1111 10x1xx 1 != 1111 10x0xx

Load/store, unsigned (register offset)

10 11

1x

1

1

These instructions are under **Load/store single**.

!= 1111

1111

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	0	0	0	0	siz	ze	L	!	= 1	11:	1		P	₹t		0	0	0	0	0	0	im	m2		R	m	
-													R	n																	

Load, signed (literal)

Load/store, signed (positive immediate)

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

D	ecod	e fields	Instruction Details
size	L	Rt	instruction Details
00	0		STRB (register)
00	1	!= 1111	LDRB (register)
00	1	1111	PLD, PLDW (register) — preload read
01	0		STRH (register)
01	1	!= 1111	LDRH (register)
01	1	1111	PLD, PLDW (register) — preload write
10	0		STR (register)
10	1		LDR (register)
11			UNALLOCATED

Load/store, unsigned (immediate, post-indexed)

These instructions are under Load/store single.

15	14	13	12	11	10	9	8	7	6 5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	0	0	0	0	size	L		!= 1	111	1		P	₹t		1	0	U	1				im	m8			
`												ם	-																	

Rn

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode i	fields L	Instruction Details
00	0	STRB (immediate)
00	1	LDRB (immediate)
01	0	STRH (immediate)
01	1	LDRH (immediate)
10	0	STR (immediate)
10	1	LDR (immediate)
11		UNALLOCATED

Load/store, unsigned (negative immediate)

These instructions are under Load/store single.

1	.5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1	1	1	0	0	0	0	siz	ze	L	-	= 1	.11	1		P	₹t		1	1	0	0				im	m8			
														R	n																	

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

D	ecod	e fields	Instruction Details
size	L	Rt	instruction Details
00	0		STRB (immediate)
00	1	!= 1111	LDRB (immediate)
00	1	1111	PLD, PLDW (immediate) — preload read
01	0		STRH (immediate)
01	1	!= 1111	LDRH (immediate)
01	1	1111	PLD, PLDW (immediate) — preload write
10	0		STR (immediate)
10	1		LDR (immediate)
11			UNALLOCATED

Load/store, unsigned (unprivileged)

These instructions are under **Load/store single**.

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode i size	fields L	Instruction Details
00	0	STRBT
00	1	LDRBT
01	0	STRHT
01	1	LDRHT
10	0	STRT
10	1	LDRT
11		UNALLOCATED

Load/store, unsigned (immediate, pre-indexed)

These instructions are under <u>Load/store single</u>.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	0	0	0	0	size	١٥	L		= 1	111	L		P	lt.		1	1	כ	1				imi	m8			
													R	n																	

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode i	fields L	Instruction Details
00	0	STRB (immediate)
00	1	LDRB (immediate)
01	0	STRH (immediate)
01	1	LDRH (immediate)
10	0	STR (immediate)
10	1	LDR (immediate)
11		UNALLOCATED

Load/store, unsigned (positive immediate)

These instructions are under **Load/store single**.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	0	0	0	1	siz	ze	L		= 1	11:	l		P	₹t							imr	n12	2				
													ח																		

Rn

The following constraints also apply to this encoding: Rn !=1111 && Rn !=1111

D	ecod	e fields	Instruction Details
size	L	Rt	Instruction Details
00	0		STRB (immediate)
00	1	!= 1111	LDRB (immediate)
00	1	1111	PLD, PLDW (immediate) — preload read
01	0		STRH (immediate)
01	1	!= 1111	LDRH (immediate)
01	1	1111	PLD, PLDW (immediate) — preload write
10	0		STR (immediate)
10	1		LDR (immediate)

Load, unsigned (literal)

These instructions are under **Load/store single**.

15	14	13	12	11	10	9	8	7	6 5	4	3	2	1	0	15	14 13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	0	0	0	U	size	L	1	1	1	1		Rt							imr	n12	<u>.</u>				

D	ecod	e fields	Instruction Details
size	L	Rt	instruction Details
0x	1	1111	PLD (literal)
00	1	!= 1111	LDRB (literal)
01	1	!= 1111	LDRH (literal)
10	1		LDR (literal)
11			UNALLOCATED

Load/store, signed (register offset)

These instructions are under **Load/store single**.

1	5	14	13	12	11	10	9	8	7	6 5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
_ 1	L	1	1	1	1	0	0	1	0	size	1	!	= 1	.11	1		R	₹t		0	0	0	0	0	0	im	m2		R	m	
													R	n																	

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

	Dece size	ode fields Rt	Instruction Details
١	00	!= 1111	LDRSB (register)
	00	1111	PLI (register)
	01	!= 1111	
	01	1111	LDRSH (register)
	01	1111	Reserved hint, behaves as NOP
	TX		UNALLOCATED

Load/store, signed (immediate, post-indexed)

These instructions are under **Load/store single**.

15	14	13	12	11	10	9	8	7	6 5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	0	0	1	0	size	1		!=]	111	1		F	₹t		1	0	כ	1				im	m8			
-												P	ln																	

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode fields size	Instruction Details
00	LDRSB (immediate)
01	LDRSH (immediate)
1x	UNALLOCATED

Load/store, signed (negative immediate)

These instructions are under $\underline{\text{Load/store single}}$.

_15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	0	0	1	0	siz	ze	1	!	= 1	111	1		F	₹t		1	1	0	0				im	m8			

Rn

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Dec	ode fields	Instruction Details
size	Rt	mstruction Details
00	!= 1111	LDRSB (immediate)
00	1111	PLI (immediate, literal)
01	!= 1111	LDRSH (immediate)
01	1111	Reserved hint, behaves as NOP
1x		UNALLOCATED

Load/store, signed (unprivileged)

These instructions are under <u>Load/store single</u>.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	0	0	1	0	siz	ze	1		= 1	111	1		P	₹t		1	1	1	0				im	m8			

Rn

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode fields size	Instruction Details
00	LDRSBT
01	LDRSHT
1x	UNALLOCATED

Load/store, signed (immediate, pre-indexed)

These instructions are under **Load/store single**.

15	14	13	12	11	10	9	8	7	6 5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	0	0	1	0	size	1		!= 1	111	1		F	₹t		1	1	כ	1				im	m8			
												D	'n																	

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode fields size	Instruction Details
00	LDRSB (immediate)
01	LDRSH (immediate)
1x	UNALLOCATED

Load/store, signed (positive immediate)

These instructions are under **Load/store single**.

15	14	13	12	11	10	9	8	7	6 5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	0	0	1	1	size	1	!	= 1	111	1		P	₹t							imn	n12					
,												R	ln																	

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Dec	ode fields	Instruction Details
size	Rt	instruction Details
00	!= 1111	LDRSB (immediate)

Dec	ode fields	Instruction Details
size	Rt	instruction Details
00	1111	PLI (immediate, literal)
01	!= 1111	LDRSH (immediate)
01	1111	Reserved hint, behaves as NOP

Load, signed (literal)

These instructions are under Load/store single.

15	14	13	12	11	10	9	8	7	6 5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	0	0	1	U	size	1	1	1	1	1		R	t							imr	n12)				

Dec size	ode fields Rt	Instruction Details
00	!= 1111	LDRSB (literal)
00	1111	PLI (immediate, literal)
01	!= 1111	LDRSH (literal)
01	1111	Reserved hint, behaves as NOP
1x		UNALLOCATED

Data-processing (register)

These instructions are under 32-bit.

15 14 13 12 11 10 9	8 7 6 5	4 3 2 1 0	15 14 13 12 11 10 9 8	7 6 5 4	3 2 1 0
11111010	op0		1111	op1	

Decod op0	le fields op1	Instruction details
0	0000	MOV, MOVS (register-shifted register) — T2, Flag setting
0	0001	UNALLOCATED
0	001x	UNALLOCATED
0	01xx	UNALLOCATED
0	1xxx	Register extends
1	0xxx	Parallel add-subtract
1	10xx	Data-processing (two source registers)
1	11xx	UNALLOCATED

Register extends

These instructions are under <u>Data-processing</u> (<u>register</u>).

_1	L5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Г	1	1	1	1	1	0	1	0	0	ор)1	С		R	ln		1	1	1	1		R	d		1	(0)	rot	ate		R	m	

	D	ecod	e fields	Instruction Details
_	op1	U	Rn	Instruction Details
	00	0	!= 1111	SXTAH
	00	0	1111	SXTH
ſ	00	1	!= 1111	UXTAH
	00	1	1111	UXTH
	01	0	!= 1111	SXTAB16
ſ	01	0	1111	SXTB16

D	ecod	e fields	Instruction Details					
op1	U	Rn	instruction Details					
01	1	!= 1111	UXTAB16					
01	1	1111	UXTB16					
10	0	!= 1111	SXTAB					
10	0	1111	SXTB					
10	1	!= 1111	UXTAB					
10	1	1111	UXTB					
11			UNALLOCATED					

Parallel add-subtract

These instructions are under <u>Data-processing (register)</u>.

	_									 				 				10								
1	L	1	1	1	1	0	1	0	1	op1	_	P	ln	1	1	1	1	R	d	0	U	Н	S	R	m	

De op1	code U	fields H	S	Instruction Details
000	0	0	0	SADD8
000	0	0	1	QADD8
000	0	1	0	SHADD8
000	0	1	1	UNALLOCATED
000	1	0	0	UADD8
000	1	0	1	UQADD8
000	1	1	0	UHADD8
000	1	1	1	UNALLOCATED
001	0	0	0	SADD16
001	0	0	1	QADD16
001	0	1	0	SHADD16
001	0	1	1	UNALLOCATED
001	1	0	0	UADD16
001	1	0	1	UQADD16
001	1	1	0	UHADD16
001	1	1	1	UNALLOCATED
010	0	0	0	SASX
010	0	0	1	QASX
010	0	1	0	SHASX
010	0	1	1	UNALLOCATED
010	1	0	0	UASX
010	1	0	1	UQASX
010	1	1	0	UHASX
010	1	1	1	UNALLOCATED
100	0	0	0	SSUB8
100	0	0	1	QSUB8
100	0	1	0	SHSUB8
100	0	1	1	UNALLOCATED
100	1	0	0	USUB8
100	1	0	1	UQSUB8
100	1	1	0	UHSUB8
100	1	1	1	UNALLOCATED

De	code	fields	3	Instruction Details
op1	U	H	S	Instruction Details
101	0	0	0	SSUB16
101	0	0	1	QSUB16
101	0	1	0	SHSUB16
101	0	1	1	UNALLOCATED
101	1	0	0	USUB16
101	1	0	1	UQSUB16
101	1	1	0	UHSUB16
101	1	1	1	UNALLOCATED
110	0	0	0	SSAX
110	0	0	1	QSAX
110	0	1	0	SHSAX
110	0	1	1	UNALLOCATED
110	1	0	0	USAX
110	1	0	1	UQSAX
110	1	1	0	UHSAX
110	1	1	1	UNALLOCATED
111				UNALLOCATED

Data-processing (two source registers)

These instructions are under <u>Data-processing (register)</u>.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1	1	1	0	1	0	1		op1	-		R	ln		1	1	1	1		R	d		1	0	or	ວ2		R	m	

Decode op1	e fields op2	Instruction Details
000	00	QADD
000	01	QDADD
000	10	QSUB
000	11	QDSUB
001	00	REV
001	01	REV16
001	10	RBIT
001	11	REVSH
010	00	SEL
010	01	UNALLOCATED
010	1x	UNALLOCATED
011	00	CLZ
011	01	UNALLOCATED
011	1x	UNALLOCATED
100	00	CRC32 — CRC32B
100	01	CRC32 — CRC32H
100	10	CRC32 — CRC32W
100	11	CONSTRAINED UNPREDICTABLE
101	00	CRC32C — CRC32CB
101	01	CRC32C — CRC32CH
101	10	CRC32C — CRC32CW
101	11	CONSTRAINED UNPREDICTABLE

Decode	e fields	Instruction Details
op1	op2	instruction Details
11x		UNALLOCATED

The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in CONSTRAINED UNPREDICTABLE behavior for A32 and T32 instruction encodings

Multiply, multiply accumulate, and absolute difference

These instructions are under 32-bit.

15 14 13 12 11 10 9 8 7	6 5 4 3 2 1 0 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
111110110		op0

Decode fields op0	Instruction details
00	Multiply and absolute difference
01	UNALLOCATED
1x	UNALLOCATED

Multiply and absolute difference

These instructions are under Multiply, multiply accumulate, and absolute difference.

-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Γ	1	1	1	1	1	0	1	1	0		op1			R	ln			R	la			R	d		0	0	or	<u>)2</u>		R	m	

]	Decode fields	1	Instruction Details
op1	Ra	op2	Instruction Details
000	!= 1111	00	MLA, MLAS
000		01	MLS
000		1x	UNALLOCATED
000	1111	00	MUL, MULS
001	!= 1111	00	SMLABB, SMLABT, SMLATB, SMLATT — SMLABB
001	!= 1111	01	SMLABB, SMLABT, SMLATB, SMLATT — SMLABT
001	!= 1111	10	SMLABB, SMLABT, SMLATB, SMLATT — SMLATB
001	!= 1111	11	SMLABB, SMLABT, SMLATB, SMLATT — SMLATT
001	1111	00	SMULBB, SMULBT, SMULTB, SMULTT — SMULBB
001	1111	01	SMULBB, SMULBT, SMULTB, SMULTT — SMULBT
001	1111	10	SMULBB, SMULBT, SMULTB, SMULTT — SMULTB
001	1111	11	SMULBB, SMULBT, SMULTB, SMULTT — SMULTT
010	!= 1111	00	SMLAD, SMLADX — SMLAD
010	!= 1111	01	SMLAD, SMLADX — SMLADX
010		1x	UNALLOCATED
010	1111	00	SMUAD, SMUADX — SMUAD
010	1111	01	SMUAD, SMUADX — SMUADX
011	!= 1111	00	SMLAWB, SMLAWT — SMLAWB
011	!= 1111	01	SMLAWB, SMLAWT — SMLAWT
011		1x	UNALLOCATED
011	1111	00	SMULWB, SMULWT — SMULWB
011	1111	01	SMULWB, SMULWT — SMULWT
100	!= 1111	00	SMLSD, SMLSDX — SMLSD

Dec	ode field	s	Instruction Details
	Ra	op2	Instruction Details

op1 Ra		op2	Instruction Details				
100	!= 1111	01	SMLSD, SMLSDX — SMLSDX				
100		1x	UNALLOCATED				
100	1111	00	SMUSD, SMUSDX — SMUSD				
100	1111	01	SMUSD, SMUSDX — SMUSDX				
101	!= 1111	00	SMMLA, SMMLAR — SMMLA				
101	!= 1111	01	SMMLA, SMMLAR — SMMLAR				
101		1x	UNALLOCATED				
101	1111	00	SMMUL, SMMULR — SMMUL				
101	1111	01	SMMUL, SMMULR — SMMULR				
110		00	SMMLS, SMMLSR — SMMLS				
110		01	SMMLS, SMMLSR — SMMLSR				
110		1x	UNALLOCATED				
111	!= 1111	00	USADA8				
111		01	UNALLOCATED				
111		1x	UNALLOCATED				
111	1111	00	USAD8				

Long multiply and divide

These instructions are under <u>32-bit</u>.

15	5 1	4 1	.3	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1		L	1	1	1	0	1	1	1		op1			F	₹n			Ro	lLo			Rd	lHi			op	ວ2			R	m	

Deco	de fields	Instruction Details
op1	op2	Instruction Details

_op1	op2	
000	!= 0000	UNALLOCATED
000	0000	SMULL, SMULLS
001	!= 1111	UNALLOCATED
001	1111	SDIV
010	!= 0000	UNALLOCATED
010	0000	UMULL, UMULLS
011	!= 1111	UNALLOCATED
011	1111	UDIV
100	0000	SMLAL, SMLALS
100	0001	UNALLOCATED
100	001x	UNALLOCATED
100	01xx	UNALLOCATED
100	1000	SMLALBB, SMLALBT, SMLALTB, SMLALTT — SMLALBB
100	1001	SMLALBB, SMLALBT, SMLALTB, SMLALTT — SMLALBT
100	1010	SMLALBB, SMLALBT, SMLALTB, SMLALTT — SMLALTB
100	1011	SMLALBB, SMLALBT, SMLALTB, SMLALTT — SMLALTT
100	1100	SMLALD, SMLALDX — SMLALD
100	1101	SMLALD, SMLALDX — SMLALDX
100	111x	UNALLOCATED
101	0xxx	UNALLOCATED
101	10xx	UNALLOCATED
101	1100	SMLSLD, SMLSLDX — SMLSLD
101	1101	SMLSLD, SMLSLDX — SMLSLDX

Deco	de fields	Instruction Details
on1	on?	Instruction Details

Opi	op2	
101	111x	UNALLOCATED
110	0000	UMLAL, UMLALS
110	0001	UNALLOCATED
110	001x	UNALLOCATED
110	010x	UNALLOCATED
110	0110	UMAAL
110	0111	UNALLOCATED
110	1xxx	UNALLOCATED
111		UNALLOCATED

 $\begin{array}{c} \text{Internal version only: isa } \textcolor{red}{\text{v01_06}} \textcolor{blue}{\text{v01_06}} \textcolor{blue}{\text{v01_03}} \text{, pseudocode } \textcolor{blue}{\text{v2019-12_rc3_1}} \textcolor{blue}{\text{v2019-09_rc2_1}} \text{, sve } \textcolor{blue}{\text{v2019-12_rc3}} \textcolor{blue}{\text{v2019-12_rc3}} \textcolor{blue}{\text{rc3}} \textcolor{blue}{\text{v2019-09_rc3}} \text{; Build timestamp:} \\ \textcolor{blue}{\text{2019-12-12T172019-09_30T07}} \textcolor{blue}{\text{3440}} \end{array}$

 $Copyright © 2010-2019 \ Arm \ Limited \ or \ its \ affiliates. \ All \ rights \ reserved. \ This \ document \ is \ Non-Confidential.$

(old) htmldiff from- (new)