Circuitos Electricos II

Roberto Sanchez Figueroa

brrsanchezfi@unal.edu.co

Soluciones propuestas para los ejercicios del taller 8

Table of Contents

Circuitos Electricos II	
Soluciones propuestas para los ejercicios del taller 8	1
Problema 1	1
Cálculo parámetro z	2
Cálculo parámetro h	
Problema 2	4
A) Parametro z	4
B) Asignacion de valores	4
C) parametro Y (impedancia)	
D) Corrientes de entrada y salida	
Simulacion	

Problema 1

Problema 1

Hallar los parámetros z para la red mostrada, con la tabla de equivalencias hallar los parámetros h.

Figure: Red resistiva.

$$\mathbf{z}_{11} = \frac{\mathbf{V}_1}{\mathbf{I}_1} \bigg|_{\mathbf{I}_2 = 0}, \qquad \mathbf{z}_{12} = \frac{\mathbf{V}_1}{\mathbf{I}_2} \bigg|_{\mathbf{I}_1 = 0}$$

$$\mathbf{z}_{21} = \frac{\mathbf{V}_2}{\mathbf{I}_1} \bigg|_{\mathbf{I}_2 = 0}, \qquad \mathbf{z}_{22} = \frac{\mathbf{V}_2}{\mathbf{I}_2} \bigg|_{\mathbf{I}_1 = 0}$$

```
syms z_11 z_12 z_21 z_22...
V_1 V_2...
I_1 I_2...
R
```

Cálculo parámetro z

Para cada puerto conectamos una fuente de corriente

z_11

$$z_11 = R + paralelo(R,R+R)$$

$$z_{11} = 1.6667 R$$

z_21

Divisor de corriente y caida de tension en R

$$z_{21} = (R/(R+2*R))*R$$

$$z_21 = 0.3333 R$$

z_22

 $z_22 = paralelo(R,R+R)$

$$z_22 = 0.6667 R$$

z_12

 $z_{12} = (R/(R+2*R))*R$

 $z_{12} = 0.3333 R$

Cálculo parámetro h

b		$ \frac{Z_{12}}{Z_{22}} \\ \frac{1}{Z_{22}} $
---	--	---

Delta z

$$\Delta Z = Z_{11}Z_{22} - Z_{12}Z_{21},$$

$$D_z = z_11*z_2-z_12*z_21$$

 $D_z = R^2$

$$h = [D_z/z_22 z_12/z_22; -z_21/z_22 1/z_22]$$

h =

$$\begin{pmatrix} 1.5000 R & 0.5000 \\ -0.5000 & \frac{1.5000}{R} \end{pmatrix}$$

Problema 2

Problema 2

Figure: Circuito de dos puertos magnéticamente acoplado.

Verificar que el circuito mostrado cumple lo siguiente,

$$\begin{bmatrix} V_1(s) \\ V_2(s) \end{bmatrix} = \begin{bmatrix} z_{11}(s) & z_{12}(s) \\ z_{21}(s) & z_{22}(s) \end{bmatrix} \begin{bmatrix} I_1(s) \\ I_2(s) \end{bmatrix} = z(s) \begin{bmatrix} I_1(s) \\ I_2(s) \end{bmatrix}$$
$$z(s) = \begin{bmatrix} R_1 + sL_1 & Ms \\ Ms & R_2 + sL_2 \end{bmatrix}$$

- Proponga valores para los elementos.
- Hallar y(s),

$$\begin{bmatrix} I_1(s) \\ I_2(s) \end{bmatrix} = y(s) \begin{bmatrix} V_1(s) \\ V_2(s) \end{bmatrix}$$

Dibujar las corrientes si la entrada uno es un escalón unitario y la entrada dos es un corto circuito, condiciones iniciales cero.

A) Parametro z

```
syms R1 R2 L1 L2 M s
z=[R1+s*L1 s*M;
s*M (s*L2+R2)]
```

$$\begin{pmatrix} R_1 + L_1 s & M s \\ M s & R_2 + L_2 s \end{pmatrix}$$

B) Asignacion de valores

```
L_2 = 1;
k = 0.5;
M_1 = sqrt(L_1*L_2)*k
```

 $M_1 = 0.5000$

z = subs(z,[R1 R2 L1 L2 M],[R_1 R_2 L_1 L_2 M_1])

 $z = \begin{pmatrix} s+1 & 0.5000 \, s \\ 0.5000 \, s & s+1 \end{pmatrix}$

C) parametro Y (impedancia)

%Determinante

D_z=det(z)

 $D_z = 0.7500 s^2 + 2 s + 1$

$$y = simplify([(R_2+s*L_2)/D_z - (s*M_1)/D_z; %por medio de la formula -(s*M_1)/D_z (s*L_1+R_1)/D_z])$$

 $y = \begin{cases} \frac{4(s+1)}{3s^2 + 8s + 4} & -\frac{2s}{3s^2 + 8s + 4} \\ -\frac{2s}{3s^2 + 8s + 4} & \frac{4(s+1)}{3s^2 + 8s + 4} \end{cases}$

y = (inv(z)) %aplicando el metodo inv() de matlab

 $\begin{pmatrix}
\frac{4(s+1)}{3s^2+8s+4} & -\frac{2s}{3s^2+8s+4} \\
-\frac{2s}{3s^2+8s+4} & \frac{4(s+1)}{3s^2+8s+4}
\end{pmatrix}$

D) Corrientes de entrada y salida

Simulacion


```
function x = paralelo(n1,n2)

x = (n1*n2)/(n1+n2);

end
```