|        |       | Sum of  |                 |         |
|--------|-------|---------|-----------------|---------|
| Source | DF    | squares | Mean square     | F       |
| Model  | 1     | SSM     | MSM = SSM / DFM | F = MSM |
| Error  | n - 2 | SSE     | MŞE = SSE / DFE | / MSE   |
| Total  | n - 1 | SST     | MST = SST / DFT |         |

- This is the ANOVA table for simple linear regression
- Recall our estimate of σ<sup>2</sup> (variance of the residuals) was

$$MSE = s^{2} = \frac{SSE}{DFE} = \frac{\sum_{i=1}^{n} (y_{i} - \hat{y})^{2}}{n-2}$$

#### "Step-up" approach to regression modeling

- · Start with most significant variable in the simple (1 X) regression model (largest r2, smallest t-test P-value) Wt  $r^2 = 0.819$ , F(1.80) = 362 and t = -19 (P < 0.0001)
- · Vehicle weight (Wt) enters the model in the 1st step up
- · To the model already containing Wt, add each of the remaining X variables one at a time looking at the additional contribution (r2 and P-value)

Cab  $r^2 = 0.820$ , F = 180 and t = -0.46 (P = 0.65)  $r^2 = 0.824$ , F = 184 and t = -1.40 (P = 0.166) Speed  $r^2 = 0.829$ , F = 192 and t = -2.18 (P = 0.033)

- Addition of Speed to the model gives the largest r<sup>2</sup> and the most significant t-test result
- Speed is 2<sup>nd</sup> predictor variable to enter the step-up model

## Visualization of decomposition of variances associated with ANOVA

 $\sum (y_{i_{i}} - y)^{2} = \sum (\hat{y}_{i_{i}} - y)^{2} + \sum (y_{i_{i}} - \hat{y}_{i_{i}})^{2}$ MŠT MŠM MSE



Recall the linkage

As  $\beta$ , nears 0, MSM becomes small and MSE nears MST But the key is the size of MSM relative to MSE (noise),

In the 2<sup>nd</sup> step the model contains Wt and Speed

additional contribution (r2 and P-value)

most significant t test result

"Step-up" approach to regression modeling

To the model already containing Wt and Speed add each

of the remaining X variables one at a time looking at the

Cab  $r^2 = 0.835$ , F = 132 and t = -1.64 (P = 0.106)

HP  $r^2 = 0.873$ , F = 178 and t = 5.13 (P < 0.0001)

Addition of HP to the model gives the largest r<sup>2</sup> and the

Does HP provide significant (P < 0.05) additional</li>

prognostic information?
• Yes (P < 0.0001), so we continue the step-up process

HP is 3<sup>rd</sup> predictor variable to enter the step-up model

# Testing the strength of the model · The main test is whether or not the model works

- · In the case of simple linear regression this is the test of  $H_0$ :  $\beta_1 = 0$  versus  $H_a$ :  $\beta_1 \neq 0$ , which uses the F statistic

$$F = \frac{MSM}{MSE}$$

has an F distribution with 1 and n-2 degrees of freedom when  $H_0$ :  $\beta_1 = 0$  is true

- When we get to more complicated models, this will be expanded (e.g.  $H_0$ :  $\beta_1 = \beta_2 = \beta_3 = 0$ )
- · If the model variation (MSM) is large compared to error (residual) variation (MSE), then there is strong evidence in favor of the model

### "Step-up" approach to regression modeling

- In the 3<sup>rd</sup> step the model contains Wt, Speed & HP
- · To the model already containing Wt, Speed & HP add the remaining X variable to see if it is needed in the model Cab  $r^2 = 0.873$ , F = 133 and t = -0.69 (P = 0.50)
- Cab does not provide significant additional prognostic information so the final model contains only MPG (y) plus Wt. Speed, HP [plus the constant]
- The final model is

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3$$
 or

 $\hat{y}(MPG) = 194.1 - 1.92(Wt) - 1.32(Speed) + 0.41(HP)$ 

· Check the regression assumptions for the final model

# One-way ANOVA table

| Source | DF    | Sum of<br>squares | Mean square         | -         |  |
|--------|-------|-------------------|---------------------|-----------|--|
| Source | Dr    | oquares           | Mean square         | Г         |  |
| Groups | I - 1 | SSG               | $s_B^2 = SSG / DFG$ | F = MSG / |  |
| Error  | N - I | SSE               | $s_w^2 = SSE / DFE$ | MSE       |  |
| Total  | N - 1 | SST               | SST / DFT           |           |  |

- · The F statistic tests if there is a difference among the I population means
- MSE is still our estimate of σ<sup>2</sup> (variance of the residuals)

# Two-way ANOVA - the model

- SRSs of size n<sub>ii</sub> from each of I x J normal populations
- The population means  $\mu_{ij}$  may differ, but all populations have the same SD - σ
- Let  $x_{iik}$  be the  $k^{th}$  observation from the population having factor A at level i and factor B at level j
- The two-way ANOVA model is

$$x_{ijk} = \mu_{ij} + \varepsilon_{ijk}$$

for i = 1, 2, ..., I and j = 1, 2, ..., J and  $k = 1, 2, ..., n_{ij}$ where the deviations  $\epsilon_{iik}$  are assumed to be  $\sim N(0,\sigma)$ 

Model parameters are μ<sub>ii</sub> and σ

## Two-way ANOVA

- In one-way ANOVA the sum of squares are decomposed SST = SSG + SSE
- In two-way ANOVA the sum of squares are decomposed SST = SSA + SSB + SSAB + SSE where

SSA - main effect for A SSB - main effect for B

SSAB - AB interaction

SSE - usual term for error (residuals)

Degrees of freedom are now partitioned

$$DFT = DFA + DFB + DFAB + DFE$$
  
 $(N-1) = (I-1) + (J-1) + (I-1)(J-1) + (N-IJ)$ 

Mean squares (MS) are formed the usual way

## Two-way ANOVA table

| Source | DF         | Sum of<br>squares | Mean square | F        |
|--------|------------|-------------------|-------------|----------|
| A      | I - 1      | SSA               | SSA/DFA     | MSA/MSE  |
| В      | J - 1      | SSB               | SSB/DFB     | MSB/MSE  |
| AB     | (I-1)(J-1) | SSAB              | SSAB/DFAB   | MSAB/MSE |
| Error  | N - IJ     | SSE               | SSĘ/DFE     |          |
| Total  | N - 1      | SST               | SS/T/DFT    |          |

- F tests for main effect A, main effect B and interaction AB (note all are divided by MSE)
- MSE is still our estimate of  $\sigma^2$  (variance of the residuals)

Let μ<sub>d</sub> be the mean of the difference in admissions between Friday 13<sup>th</sup> and Friday 20<sup>th</sup> Note: this is a 1-sided test of hypothesis

 $\mathbf{H}_0$ :  $\mu_d = \mathbf{0}$  versus  $\mathbf{H}_a$ :  $\mu_d > \mathbf{0}$ 

 $t = (\bar{\mathbf{x}}_{d} - \mu_{o}) / [s_{d}/\sqrt{n}] = (3.4 - 0) / [4.3/\sqrt{10}] = 2.50$ 

The degrees of freedom are n - 1 = 10 - 1 = 9

Reject  $H_0$  if  $t > t_{0.05,9} = 1.833$  $P(t \ge 2.50)$  is between 0.01 and 0.02 so 0.01  $\le P \le 0.02$ 

We reject Ho We conclude that hospitalizations due to accidents were higher on Friday the 13<sup>th</sup> as compared

to Friday the 20<sup>th</sup>

Let X be the number of times there are more hospital admissions due to accidents on Friday the  $13^{\rm th}$  as compared to Friday  $20^{\rm th}$   $H_0$ ; p=0.5 versus  $H_1$ ; p>0.5 Note: this is a 1-sided test of hypothesis We can use the binomial distribution [B(10,0.5)] to conduct this sign test. We observed X=8. The P value would be the sum of the probabilities P(X=8, 9 or 10).

Because this is a binomial distribution, we can calculate the P value using the binomial

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 or in this case  $P(X=k) = \binom{10}{k} (1/2)^{10}$ 

$$P(X=10) = {10 \choose 10} (1/2)^{10} = 1(0.0009766) = 0.0009766$$

$$P(X=9) = {10 \choose 9} (1/2)^{10} = 10(0.0009766) = 0.009766$$

$$P(X = 8) = {10 \choose 8} (1/2)^{10} = 45(0.0009766) = 0.043947$$

Thus P(X = 8, 9 or 10) = 0.043947 + 0.009766 + 0.0009766 = 0.0547 So P = 0.0547

So P = 0.0547
We have insufficient evidence to reject H<sub>0</sub>
We have insufficient evidence to conclude that hospitalizations due to accidents were higher on
Friday the 13<sup>th</sup> as compared to Friday the 20<sup>th</sup>.

The t-test conducted in part (a) involved a small sample size and thus depended upon a normal distribution of the data. The normal probability plot showed that the data were not normally distributed. A large outlier value (13) appears to have dominated the results of the t-test. The sign test is a non-parametric procedure and doesn't need any such assumptions. Therefore the sign test result should be trusted more in this instance.