Name:	
Signature: School	•••••
P525/1	
Chemistry	S. 5
Paper 1	
AUGUST-SEPT 2024	
2 ¾ hours	

UGANDA ADVANCED CERTIFICATE OF EDUCATION CHEMISTRY END OF TERM 2 SENIOR FIVE.

Paper 1

2 ¾ hours

INSTRUCTIONS TO CANDIDATES:

- Answer all questions in section A and any six questions in section B
- All questions must be answered in the spaces provided; no answer sheet must be attached.
- The Periodic Table, with relative atomic masses, is supplied.
- Mathematical tables are adequate or non-programmable scientific electronic calculators may be used
- Illustrate your answers with equations where applicable.
- Where necessary, use the following:
 Molar gas constant R = 8.31 JK -1 mol -1
 Molar volume of a gas at s.t.p is 22400cm³
 Standard temperature = 273 K

Standard pressure = 101325 N m⁻²

	For F	Exami	ners'	use O	nly											
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

SECTION A. (46 marks)

Attempt all questions in this section.

1. The boiling point elevation value and relative molecular mass of ethanoic acid is affected by its association in solution.			
(a) What is meant by the term association?	(01 mark)		
(b) Explain how association of ethanoic acid in solution affects the boiling elevation value and its relative molecular mass.	ng point (03 marks)		
(c) 0.53g of an organic compound A with a simplest formula of C ₈ H ₈ O i ethanoic acid lowered the freezing point of ethanoic acid by 0.78K. The ethanoic acid is 3.89Kmol ⁻¹ kg ⁻¹ . Determine the molecular formula of A	kf for		

 Beryllium like aluminium re (II) elements do not. 	eacts with sodium hydroxide solu	ation but other group
(a) State reasons why;		
(i) Both beryllium and aluming	ium react with sodium hydroxide	e solution. (02 marks)
(ii) Other group (II) elements of beryllium does.	do not react with sodium hydrox	ide solution but (02 marks)
(b) Write an equation for the re	eaction of Beryllium with sodium	n hydroxide solution. (01 mark)
3. (a) Complete the equation b	below and Give the IUPAC name	e of the major product.
or (a) complete the equation of		(01 mark)
(CH ₃) ₂ CHCH=CHCOOH	NaOH(s)/ CaO (s) Heat	
The IUPAC name of the major	r product	
	as reacted with hydrogen bromic nd H was formed. Write the IUP	•

(i)	Structural	[formii]	la H ∙
•	1,	Suuctura	i i Oi ii iu.	ıu II,

(01 mark)

(ii) IUPAC name of **H**;

(01 mark)

(c) Write **an** equation and mechanism for the reaction that shows the conversion of the major product to 3-Methylbutan-2-ol. (03 marks)

4. (a) Complete the following equations for nuclear reaction. (02 marks)

(i)
$$^{250}_{98}Cf$$
 + _____ \rightarrow $^{257}_{103}LW$ + $^{41}_{0}n$

(ii)
$$\longrightarrow$$
 $\stackrel{234}{=}Th$ + \propto

(b) The diagram below demonstrates the behavior of radioactive particles.

Giving a reason i (i) Letter T	n each case, state which group of ra	diations is represented by: (01 mark)
(ii) Letter D		(01 mark)
(iii) Letter W.		(01 mark)
5. Complete the foccurs.	following equations and write a mec	hanism for the reaction that
(a)	$\xrightarrow{\text{Conc. H}_2\text{SO}_4} \rightarrow \xrightarrow{\text{Heat}}$	(2 ¹ / ₂ marks)

(b) CH ₃ CH ₂ Cl	NaOH ((aq)		$(2\frac{1}{2})$	marks)
_	Heat			Z	
6. The table below s	shows the solub	oility (gdm ⁻³) o	f the hydroxid	es of group (II)	
elements. Use the in	nformation to a	nswer the ques	tions below.		
Compound	Mg(OH) ₂	Ca(OH) ₂	Sr(OH) ₂	Ba(OH) ₂	
Solubility (gdm ⁻³)	0.10	1.50	8.90	33.20	
(a) State the trend in	the solubility	of group (II) h	ydroxides.	$(0\frac{1}{2}$	 Mark)
(b) Explain the trend	d in (a) above.			$(2\frac{1}{2}$ r	narks)

al formula and name etural formula of tional group	of the functional group for the (03 marks) Name of functional group
ctural formula of	(03 marks
ctural formula of	(03 marks
	Name of functional group
· ·	inctional group in ${ m C_3H_6O_2}$ and state where the function group given. (01 mark)
ow how one isomer o	of C ₄ H ₆ can be converted to
	(02 marks
	gent is reacted with t

8. (a) What is meant by the term steam distillation.	(01mark)
(b) When Bromo benzene was steam distilled at normal atmosph 760mmHg, the distillation temperature was found to be 95.7°C. temperature, the vapour pressure of water was 640mmHg. Calcu composition of Bromobenzene in the distillate.	At the same
9. Explain the following observations.	
(a) Alkanes are generally unreactive organic compounds.	(02 marks)

(b) The first ionization energy of Aluminium is less than that of Ma	gnesium.
	(02 marks)
SECTION B. (54 Marks)	
Attempt any six questions from this section.	
10. (a) An organic compound Y when ozonolysed followed by hydroin presence of metallic zinc and ethanoic acid, CH ₃ CH ₂ COCH ₃ and formed.	•
(i) Write the structural formulae and IUPAC name of Y.	(01 mark)
(ii) State what is observed when Y is treated with sodium hydrogen c	earbonate
solution.	(01 mark)
(b) Write equations to show how;	
(i) Compound Y can be converted to 3-methylpentan-2-ol.	(02 marks)

(ii) CH₃CH₂COCH₃ can be converted to 3-Bromobutan-2-ol.	(03 marks)
(c) Write an equation and a mechanism for the reaction that occurs who	_
Y is reacted with bromine in presence of carbon tetrachloride.	(02 marks)
11. Miscible liquids form solutions that are either ideal or non-ideal.	
(a) Explain what is meant by an ideal solution .	(02 marks)
(b) When water and nitric acid (86°C) are mixed, they form a miscible that deviates positively from Raoult's law.	liquid mixture

(i) Explain why the mixture deviates from Raoult's law positively.	(03 marks)
(ii) Draw a well labelled temperature-composition diagram for the mixt (Azeotropic mixture composition and boiling point are 86% nitric acid a	
	(02 marks)

(iii) Explain what happens when 80% of the solution containing nitric fractionally distilled.	acid is (02 marks)
12. When 0.155g of an organic compound W was burnt in oxygen, 0.22 dioxide and 0.135g of water were formed.	0g of carbon
(a) Determine the empirical formula of W .	(02 marks)
(b) When 0.225g of W was vapourised at 127 °C and 760mmHg , it occur of 119.11cm ³ .	pied a volum
(i) Determine the molecular formula of W.	(03 marks)

(ii) Compound W evolved. Write th					_
(c) Write equation	s to show	how compou	ınd W can be	obtained from	n chloroethane.
					(03 marks)
13. (a) Define the	term Ele	ctronegativit	y.		(01 mark)
(b) The table beloweriodic table.	w shows t	he electroneg	ativity values	of elements of	of group (II) of the
Element	Be	Mg	Ca	Sr	Ba
Electronegativity	1.57	1.31	1.00	0.95	0.89
State the trend in	the electro	onegativity va	alues of the el	ements.	(01 mark)
(c) Explain;					

(i) Why beryllium has the highest electronegativity value.	(02 marks)
(ii) The trend stated above in (b).	(03 marks)
(d) Explain why the first electron affinity of oxygen is -141.4KJmol ⁻¹ electron affinity is +844 KJmol ⁻¹ .	while the second (02 marks)
14. (a) Write the formula of one functional group that can be identifully following reagents. In each case state what was observed and write a thee reaction that occurs.	_
(i) Alkaline potassium manganate (VII) solution.	(03 marks)

(ii) Ammoniacal silver nitrate solution.	(03 marks)
(b) When butan-1-ol and Butan-2-ol are dehydrated with concentrated s at 170°C, they yield the same principal product .	sulphuric acid
(i) Write the structural formula and name of the principal product formed	d. (01 mark)
(ii) Explain why dehydration of both alcohols gives the same product.	(02 marks)
15 () 0, + 0, 1	(01 1)
15. (a) State Graham's law of diffusion.	(01 mark)
(b) Two pieces of cotton wool were each soaked separately in concentral solution and concentrated hydrochloric acid respectively and simultaneous into opposite ends of a horizontal wide glass tube. After a short time a whole formed across the tube. If the distance between the inner surfaces of the oplugs is 50cm.	usly inserted hite ring was

(i) Name the white ring.	(01mark)
(ii) Write the equation leading to formation of the white ring.	(01mark)
(iii) With a reason, state to which end of the horizontal wide glass tube ving nearer.	vas the white (02 marks)
(c) Determine how far from the ammonia plug the white ring is formed.	(04 marks)
16. Compare the reaction of;	
(a) Sodium and magnesium with water.	(03 marks)

(b) Beryllium carbide and	calciur	n carbide	with wa	ater.			(03 ma	rks)
b) Aluminium and sodiur	n with	sodium h	ydroxide	e solutio	on.		(03 mar	rks)
17. (a) State what is mean	t by the	e followin	g terms	•				
(i) Cryoscopy							(01 mar	·k)
(ii) Colligative property						((01 mar	-k)
(b) The table below show	s the fr	eezing po	oint of v	arious c	oncentra	ations of	f a non-	
volatile solute T in water a	at 1 atm	nosphere.						
Concentration/ gdm ⁻³	0	20	40	60	80	100	120	140
Freezing point /ºC	0	-0.11	-0.22	-0.32	-0.43	-0.54	-0.65	-0.76

(i) Plot a graph of freezing point depression against concentration.

(04marks)

Using the graph above determine the relative molecular $(Kf \text{ for water} = 1.86^{0} \text{Cmol}^{-1} \text{ kg}^{-1})$	(03 marks)

THE PERIODIC TABLE

											All the			3.8		Quite.	
1	2											3	4	5	6	7	8
1.0 H 1									Z. 2					-		1.0 H 1	4.0 H
6.9 Li 3	9.0 Be 4		, ·									10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 No 10
	24.3 Mg 12	-										27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 Cl 17	40.0 Ar 18
39.1 K 19	40.1 Ca 20	45.0 Sc 21	47.9 Ti 22	50.9 V 23	52.0 Cr 24	1	55.8 Fe 26	1			65.7 Zn 30				79.0 Se 34	79.9 Br 35	83.8 Kr 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40	92.9 Nb 41	95.9 Mo 42	98.9 Tc 43	101 Ru 44	103 Rh 45	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75		192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89							23:2						7	I	
17.8	DIV)	t ha	139 La 57	140 Ce 58	141 Pr 59	144 Nd 60		150 Sm 62	152 Eu 63						169 Tm 69	173 Yb 70	175 Lu 71
		,	227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93	244 Pu 94	243 Am 95	100000			254 Es 99		Md	CARL (6800) (2000)	260 Lw 103

END
WISH YOU SUCCESS AND NICE HOLIDAYS