Exame de Mecânica Newtoniana

Licenciatura em Física e Mestrado Integrado em Engenharia Física Universidade do Minho — 23 de Junho de 2016

I

1- Um planeta do sistema solar move-se em torno do Sol numa órbita que aqui se considera ser circular e de raio r, a qual obedece à equação,

$$\frac{r}{r_T} = \sin \theta_m \,,$$

onde r_T é o raio da órbita da Terra em torno do Sol.

- (a) Como se denomina e qual o significado físico da quantidade θ_m ?
- (b) Com base na informação acima fornecida, diga se o planeta em questão poderá ser Vénus ou Júpiter? Justifique a sua resposta.
- (c) Escreva uma equação correspondente à acima dada para o raio r do planeta da alínea anterior que na sua resposta não foi o escolhido e indique qual o significado físico das quantidades que nela aparecem.
- (d) Defina com a ajuda de uma figura epiciclo e deferente para o movimento do planeta considerado na alínea (b) enquanto observado da Terra e indique quanto tempo o centro do epiciclo demora a dar uma volta em torno do deferente.
- 2- Duas massas m_1 e m_2 movem-se inicialmente com velocidades \vec{v}_1 e \vec{v}_2 , respetivamente. Considere que se deu uma colisão entre as duas massas em que o momento linear do sistema formado por ambas se conservou, sendo \vec{u}_1 e \vec{u}_2 , respetivamente, as suas velocidades após a colisão. Sejam K_i e K_i' a energia cinética total do sistema antes da colisão no referencial do laboratório e no referencial de momento zero, respetivamente, e K_f e K_f' a energia cinética após a colisão nesses dois referenciais.
- (a) Expresse $(K_i K_i')$, $(K_f K_f')$, $(K_i K_f)$ e $(K_i' K_f')$ em termos de quantidades normalmente denominadas M, μ , \vec{v} , $\vec{v}_{\rm rel}$ e $\vec{u}_{\rm rel}$ e defina estas últimas quantidades em termos de m_1 , m_2 , \vec{v}_1 , \vec{v}_2 , \vec{u}_1 e \vec{u}_2 . Justifique as suas respostas.
- (b) Durante uma outra uma colisão, foi aplicada uma força $\vec{F_1}$ à massa m_1 e uma força $\vec{F_2}$ à massa m_2 . Expresse a resposta do sistema à força total $\vec{F_1} + \vec{F_2}$ em termos de M e \vec{v} . Justifique a sua resposta.
- (c) O momento linear do sistema formado por ambas as massas conservou-se na colisão considerada na alínea anterior? Justifique a sua resposta.

1. Um prato de massa 250g deslocava-se no chão com aceleração $\vec{a}=2\,\hat{i}+3\,t\,\hat{j}$ (m/s²). Em t=2s ele atingiu a origem ($\vec{r}=\vec{0}$) com velocidade $\vec{v}_{2s}=2\,\hat{i}+3\,\hat{j}$, partindo-se em dois bocados nesse instante. Sabendo que a massa do 1º bocado é 200g e que a massa do segundo bocado é 50g, determine:

- a) A posição do prato em qualquer instante do tempo, antes de se partir.
- b) A distância percorrida pelos bocados 3 segundos após o prato se partir, sabendo que eles se deslocaram em sentidos opostos com a mesma velocidade.
- 2. A bola do pêndulo da figura é largada do repouso em \underline{A} e o seu fio vai embater na barreira \underline{B} , descrevendo a trajetória mostrada. Determine:
- a) A tensão no fio, quando a bola se encontra no ponto mais baixo da trajetória.
- b) O menor valor do comprimento \underline{d} tal que a bola descreva uma trajetória circular após o fio embater em \underline{B} .
- 3. Marte tem dois satélites: Fobos, que se move em órbita circular de raio 10000 km e período 3×10^4 s, e Deimos, que tem órbita circular de raio 24000 km (G = 6.673×10^{-11} Nm²kg⁻², diâmetro Marte = 6900km). A aceleração gravítica na superfície de Marte é $g_M = 3.71$ m/s². Determine o período de Deimos e a aceleração gravítica a que Fobos se encontra sujeito.
- 4. Uma placa de madeira, homogénea, de comprimento L=2 m e massa m=50 kg está apoiada em dois cavaletes de suporte, como se mostra na figura. O primeiro cavalete encontra-se na

extremidade esquerda da placa e o segundo cavalete encontra-se à distância de 0.5 m da extremidade direita da placa. Pretende-se colocar sobre a placa uma bigorna de massa M=200 kg, situada o mais à direita possível (entre o segundo cavalete e a

2.5kg A

extremidade direita), mas de modo que o sistema permaneça em equilíbrio. Determine a distância mínima da extremidade direita a que pode colocar-se a bigorna e a força exercida pelo cavalete 2 sobre a placa de madeira nessa situação.