F. FAGNANI, A. TABACCO E P. TILLI

Introduzione all'Analisi Complessa e Teoria delle distribuzioni

8 marzo 2006

Indice

1	Nu	meri complessi e funzioni elementari	1
	1.1	Numeri complessi	1
		1.1.1 Operazioni algebriche	1
		1.1.2 Coordinate cartesiane	3
		1.1.3 Forma trigonometrica e forma esponenziale	5
		1.1.4 Equazioni algebriche	
	1.2	Elementi di topologia	10
		1.2.1 Il punto all'infinito	12
	1.3	Funzioni elementari	13
	1.4	Limiti e continuità	19
		1.4.1 Continuità	21
	1.5	Esercizi	21
		1.5.1 Soluzioni	23
2	Fun	nzioni analitiche	29
	2.1	Derivabilità	
	2.2	Condizioni di Cauchy-Riemann	32
	2.3	Funzioni analitiche e armoniche	38
	2.4	Richiami su archi e cammini	40
	2.5	Integrali di linea	45
	2.6	Teorema di Cauchy-Goursat	52
	2.7	Formula integrale di Cauchy	55
	2.8	Risultati globali	57
	2.9	Esercizi	59
		2.9.1 Soluzioni	61
3	Ser	ie di Taylor e di Laurent. Residui	67
	3.1	Successioni e serie di numeri complessi	67
		3.1.1 Serie di potenze	70
	3.2	Serie di Taylor	76
	3.3	Serie di Laurent	79

VI	Iı	ndice			
	3.4	Singolarità isolate	83		
	3.5	Residui e loro calcolo			
		3.5.1 Calcolo dei residui	87		
	3.6	Esercizi	87		
		3.6.1 Soluzioni	89		
4	Inti	roduzione alle distribuzioni	01		
4	4.1	Introduzione e motivazioni.			
	4.2	Lo spazio delle funzioni test.	-		
	4.3	Distribuzioni: definizione ed esempi			
	4.4	Le proprietà fondamentali delle distribuzioni			
		4.4.1 La traslazione			
		4.4.2 Il riscalamento			
		4.4.3 La moltiplicazione			
		4.4.4 La derivazione			
	4.5	Convergenza di distribuzioni	110		
	4.6	Supporto di una distribuzione			
		4.6.1 Distribuzioni a supporto compatto			
	4.7	Convoluzione di distribuzioni	118		
	4.8	Esercizi			
		4.8.1 Soluzioni	127		
5	Tra	sformata di Fourier	129		
•	5.1	Introduzione	129		
	5.2	Trasformata di Fourier di funzioni			
	5.3	Trasformata di Fourier di distribuzioni a supporto compatto			
	5.4	Distribuzioni temperate			
	5.5	Trasformata di Fourier di distribuzioni temperate			
	5.6	Altri esempi			
		5.6.1 La trasformata di Fourier della funzione di Heaviside	139		
		5.6.2 La trasformata di Fourier del treno di impulsi	140		
	5.7	Esercizi	144		
		5.7.1 Soluzioni	144		
6	Trasformata di Laplace				
		Introduzione			
		Trasformata di Laplace di funzioni			
	6.3	Trasformata di Laplace di distribuzioni			
	6.4	Legami tra la trasformata di Fourier e la trasformata di Laplace .			
	6.5	Esercizi			
		6.5.1 Soluzioni	153		
7	A 223	plicazioni a modelli fisici e ingegneristici	155		
•	7.1	Esercizi			
	1.1	7.1.1 Soluzioni			

	Indice
8	Funzioni e integrali: alcuni preliminari
	8.1.1 La norma infinito
	8.2.1 La classe delle funzioni \mathcal{R}^1
	8.2.2 La classe delle funzioni \mathbb{R}^2
	8.3 L'operazione di convoluzione
	8.4.1 Funzioni a valori complessi
	8.5 Esercizi
	Λ
	(7)

Numeri complessi e funzioni elementari

1.1 Numeri complessi

È ben noto che non tutte le equazioni algebriche

$$p(x) = 0$$

(dove p è un polinomio di grado n nella variabile x) ammettono soluzioni in campo reale. Ad esempio la semplice equazione

$$x^2 = -1\,, (1.1)$$

corrispondente all'estrazione della radice quadrata del numero negativo -1, non è risolubile in \mathbb{R} ; lo stesso accade per la generica equazione di secondo grado

$$ax^2 + bx + c = 0 ag{1.2}$$

qualora il discriminante $\Delta=b^2-4ac$ sia negativo. Tanto nella matematica pura quanto in quella applicata, risulta utile poter garantire l'esistenza di una soluzione, opportunamente definita, di ogni equazione algebrica. A tale scopo, l'insieme dei numeri reali dotato delle operazioni di somma e prodotto può essere ampliato, introducendo il cosiddetto insieme dei numeri complessi, estendendo nel contempo tali operazioni e conservandone le proprietà formali. È rimarchevole il fatto che è sufficiente effettuare tale ampliamento in modo da garantire la risolubilità dell'equazione (1.1) per ottenere, attraverso un profondo risultato noto come Teorema Fondamentale dell'Algebra, la risolubilità di ogni equazione algebrica.

1.1.1 Operazioni algebriche

Un numero complesso z può essere definito come una coppia ordinata z=(x,y) di numeri reali x e y. Indicheremo con \mathbb{C} tale insieme di coppie che quindi può essere identificato con l'insieme \mathbb{R}^2 . I numeri reali x e y sono detti rispettivamente parte reale e parte immaginaria di z e indicati con

$$x = \mathcal{R}e z$$
 e $y = \mathcal{I}m z$.

Il sottoinsieme dei numeri complessi della forma (x,0) può essere identificato con l'insieme dei numeri reali \mathbb{R} , in tal senso scriviamo $\mathbb{R} \subset \mathbb{C}$. Numeri complessi della forma (0, y) sono invece detti **immaginari puri**.

Diremo che due numeri complessi $z_1 = (x_1, y_1)$ e $z_2 = (x_2, y_2)$ sono uguali se hanno le stesse parti reali e immaginarie, ossia

$$z_1 = z_2 \iff x_1 = x_2 \quad \text{e} \quad y_1 = y_2$$
.

In \mathbb{C} , definiamo le operazioni di somma e prodotto come

$$z_1 + z_2 = (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$
(1.3)

$$z_1 z_2 = (x_1, y_1)(x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1). \tag{1.4}$$

Osserviamo che

$$(x,0) + (0,y) = (x,y)$$
, $(0,1)(y,0) = (0,y)$
 $(x,y) = (x,0) + (0,1)(y,0)$.

e quindi

$$(x,y) = (x,0) + (0,1)(y,0).$$
 (1.5)

Inoltre le (1.3) e (1.4) diventano le usuali operazioni di somma e prodotto quando ristrette ai numeri reali:

$$(x_1,0) + (x_2,0) = (x_1 + x_2,0)$$
 e $(x_1,0)(x_2,0) = (x_1 x_2,0)$.

In tal senso, l'insieme dei numeri complessi è un'estensione naturale dell'insieme dei numeri reali.

Denotiamo con i il numero immaginario puro (0,1). Identificando il numero complesso (r,0) con il numero reale r, possiamo riscrivere la (1.5) nella forma

$$z = (x, y) = x + iy,$$

detta forma cartesiana o algebrica del numero complesso z.

Osserviamo che

$$i^2 = (0,1)(0,1) = (-1,0) = -1,$$

e quindi il numero complesso i è soluzione dell'equazione (1.1). Usando la forma cartesiana di un numero complesso, le operazioni di (1.3) e (1.4) diventano

$$z_1 + z_2 = (x_1 + iy_1) + (x_2 + iy_2) = x_1 + x_2 + i(y_1 + y_2),$$

$$(1.6)$$

$$z_1 z_2 = (x_1 + iy_1)(x_2 + iy_2) = x_1 x_2 - y_1 y_2 + i(x_1 y_2 + x_2 y_1);$$
 (1.7)

come si vede è sufficiente operare con le usuali regole dell'algebra, tenendo conto della relazione $i^2 = -1$.

Elenchiamo di seguito alcune proprietà della somma e del prodotto, lasciando la facile verifica al lettore; per ogni $z_1, z_2, z_3 \in \mathbb{C}$ si ha

Figura 1.1. Coordinate cartesiane del numero complesso z = x + iy

$$z_1 + z_2 = z_2 + z_1,$$
 $z_1 z_2 = z_2 z_1,$ $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3),$ $(z_1 z_2) z_3 = z_1 (z_2 z_3),$ $z_1 (z_2 + z_3) = z_1 z_2 + z_1 z_3.$

I numeri 0=(0,0) e 1=(1,0) sono rispettivamente l'identità additiva e moltiplicativa, cioè

$$z + 0 = 0 + z = z$$
 e $z = 1 = 1$ $z = z$, $\forall z \in \mathbb{C}$.

L'opposto (additivo) di z=(x,y) è il numero -z=(-x,-y); ovvero si ha z+(-z)=0. Utilizzando tale nozione possiamo definire, per ogni $z_1,z_2\in\mathbb{C}$, la sottrazione:

$$z_1 - z_2 = z_1 + (-z_2)$$

ovvero

$$x_1 + iy_1 - (x_2 + iy_2) = x_1 - x_2 + i(y_1 - y_2)$$
.

Il **reciproco** (moltiplicativo) di un numero $z \neq 0$, indicato con $\frac{1}{z}$ oppure z^{-1} , è definito dalla relazione $zz^{-1} = 1$; non è difficile verificare che

$$\frac{1}{z} = z^{-1} = \frac{x}{x^2 + y^2} + i \frac{-y}{x^2 + y^2} \,.$$

Definiamo dunque la **divisione**, per ogni $z_1, z_2 \in \mathbb{C}$ con $z_2 \neq 0$, come

$$\frac{z_1}{z_2} = z_1 \ z_2^{-1} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2} \ .$$

Infine, sottolineiamo che l'usuale ordinamento dei numeri reali non è estendibile all'insieme dei numeri complessi.

1.1.2 Coordinate cartesiane

È naturale associare al numero z = (x, y) = x + iy il punto del piano cartesiano di coordinate x e y (si veda la Figura 1.1). Il numero z può anche essere pensato come il vettore dall'origine al punto (x, y). L'asse x è detto asse reale e l'asse y asse

4 F. Fagnani, A. Tabacco, P. Tilli

Figura 1.2. Rappresentazione grafica della somma, a sinistra, e della differenza, a destra, di due numeri complessi z_1 e z_2

immaginario. Osserviamo che, dati $z_1, z_2 \in \mathbb{C}$, la somma $z_1 + z_2$ corrisponde al vettore somma ottenuto mediante la regola del parallelogramma (si veda la Figura 1.2, a sinistra), mentre la differenza $z_1 - z_2$ è rappresentata dal differenza (si veda la Figura 1.2, a destra).

Il **modulo** o **valore assoluto** di z=x+iy, denotato con |z|, è il numero positivo

$$|z| = \sqrt{x^2 + y^2}$$

che rappresenta la distanza del punto (x,y) dall'origine; si osservi che tale definizione si riduce all'usuale valore assoluto quando y=0. Notiamo che, mentre l'affermazione $z_1 < z_2$ non ha in generale significato, la diseguaglianza $|z_1| < |z_2|$ significa che il punto corrispondente a z_1 è più vicino all'origine del punto corrispondente a z_2 . La distanza tra i punti corrispondenti a z_1 e z_2 è data da $|z_1-z_2|$.

Per ogni $z \in \mathbb{C}$, si ottengono facilmente le seguenti relazioni

$$\begin{aligned} |z| &\geq 0 \,; & |z| &= 0 \text{ se e solo se } z = 0 \,; \\ |z|^2 &= (\mathcal{R}e\,z)^2 + (\mathcal{I}m\,z)^2 \,, & |z| &\leq |\mathcal{R}e\,z| + |\mathcal{I}m\,z| \,; \\ |z| &\geq |\mathcal{R}e\,z| &\geq \mathcal{R}e\,z \,, & |z| &\geq |\mathcal{I}m\,z| &\geq \mathcal{I}m\,z \,; \\ ||z_1| &- |z_2|| &\leq |z_1 + z_2| &\leq |z_1| + |z_2| \,. \end{aligned}$$

Il complesso coniugato, o semplicemente il coniugato, di un numero complesso z=x+iy, indicato con \bar{z} , è definito come

$$\bar{z} = x - iy. \tag{1.8}$$

Graficamente il coniugato \bar{z} è rappresentato dal punto (x, -y) che si ottiene mediante riflessione rispetto all'asse reale del punto (x, y). Per ogni $z, z_1, z_2 \in \mathbb{C}$, valgono le seguenti proprietà

Figura 1.3. Coordinate polari del numero complesso z = x + iy

$$\frac{\overline{z}}{z_1 + z_2} = \overline{z}_1 + \overline{z}_2, \qquad \frac{|\overline{z}| = |z|}{z_1 - z_2} = \overline{z}_1 - \overline{z}_2,
\overline{z_1 z_2} = \overline{z}_1 \, \overline{z}_2, \qquad \frac{\overline{z} = |z|^2}{\overline{z}_2}, \qquad \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z}_1}{\overline{z}_2} \quad (z_2 \neq 0).$$

È immediato verificare che, per ogni $z \in \mathbb{C}$,

$$\operatorname{Re} z = rac{z + ar{z}}{2}, \qquad \operatorname{Im} z = rac{z - ar{z}}{2i}$$

1.1.3 Forma trigonometrica e forma esponenziale

Dato il punto (x, y), siano $r \in \theta$ le sue coordinate polari; poiché

$$x = r\cos\theta$$
 e $y = r\sin\theta$,

il numero complesso z=(x,y) può essere rappresentato nella forma polare o trigonometrica come

$$z = r\left(\cos\theta + i\sin\theta\right). \tag{1.9}$$

Si ha r=|z|; il numero θ è detto **argomento** di z e indicato con $\theta=\arg z$. Geometricamente, arg z è un qualsiasi angolo (misurato in radianti) formato dalla semiretta dei reali positivi e dal vettore individuato da z (si veda la Figura 1.3). Pertanto può assumere infiniti valori che differiscono per multipli interi di 2π . Chiameremo **valore principale** di arg z, denotato con Arg z, quell'unico valore θ di arg z tale che $-\pi < \theta \leq \pi$, definito dalla formula

F. Fagnani, A. Tabacco, P. Tilli
$$r = \sqrt{x^2 + y^2} \,, \qquad \theta = \begin{cases} \arctan \frac{y}{x} \,, & \text{se } x > 0 \,, \\ \arctan \frac{y}{x} + \pi \,, & \text{se } x < 0, \, y \geq 0 \,, \\ \arctan \frac{y}{x} - \pi \,, & \text{se } x < 0, \, y < 0 \,, \\ \frac{\pi}{2} \,, & \text{se } x = 0, \, y > 0 \,, \\ -\frac{\pi}{2} \,, & \text{se } x = 0, \, y < 0 \,. \end{cases}$$
 (1.10)

Osserviamo che due numeri complessi $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ e $z_2 = r_2(\cos\theta_2 + i\sin\theta_1)$ $i\sin\theta_2$) sono uguali se e solo se $r_1=r_2$ e θ_1,θ_2 differiscono per un multiplo intero di 2π .

La rappresentazione polare risulta molto utile per esprimere in maniera semplice il prodotto di due numeri e di conseguenza fornisce un'espressione elementare per il calcolo delle potenze e delle radici di un numero complesso. Più precisamente, siano

$$z_1 = r_1 (\cos \theta_1 + i \sin \theta_1)$$
 e $z_2 = r_2 (\cos \theta_2 + i \sin \theta_2);$

allora, ricordando le formule di addizione per le funzioni trigonometriche, si ha

$$z_{1} z_{2} = r_{1} r_{2} \left[(\cos \theta_{1} \cos \theta_{2} - \sin \theta_{1} \sin \theta_{2}) + i (\sin \theta_{1} \cos \theta_{2} + \sin \theta_{2} \cos \theta_{1}) \right]$$

$$= r_{1} r_{2} \left[\cos(\theta_{1} + \theta_{2}) + i \sin(\theta_{1} + \theta_{2}) \right]. \tag{1.11}$$

Vale dunque la relazione

$$\arg(z_1 z_2) = \arg z_1 + \arg z_2.$$
 (1.12)

Si osservi che tale identità non vale se sostituiamo arg con Arg; ad esempio, se $z_1 = -1 = \cos \pi + i \sin \pi$ e $z_2 = i = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$ risulta

$$z_1 z_2 = -i = \cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right)$$

ovvero

$$\operatorname{Arg} z_1 = \pi$$
, $\operatorname{Arg} z_2 = \frac{\pi}{2}$, $\operatorname{Arg} z_1 + \operatorname{Arg} z_2 = \frac{3}{2}\pi \neq \operatorname{Arg} z_1 z_2 = -\frac{\pi}{2}$.

Talvolta è comodo esprimere un numero complesso attraverso la cosiddetta forma esponenziale. A tale scopo, estendiamo la definizione di funzione esponenziale al caso di un esponente immaginario puro, ponendo per ogni $\theta \in \mathbb{R}$,

$$e^{i\theta} = \cos\theta + i\sin\theta. \tag{1.13}$$

Tale relazione, nota come formula di Eulero, trova una giustificazione (anzi è oggetto di dimostrazione) nell'ambito della teoria delle serie in campo complesso. Accontentiamoci qui di prenderla come definizione. L'espressione (1.9) di un numero complesso z diventa allora

$$z = re^{i\theta}, (1.14)$$

che è, appunto, la forma esponenziale di z.

La relazione (1.11) fornisce immediatamente l'espressione del prodotto di due numeri complessi $z_1=r_1\mathrm{e}^{i\theta_1}$ e $z_2=r_2\mathrm{e}^{i\theta_2}$, come

$$z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)};$$
 (1.15)

dunque, per moltiplicare due numeri complessi è sufficiente moltiplicare i moduli e sommare gli argomenti. Per quanto riguarda il quoziente, notiamo che dalla (1.11) con $r_1 = r_2 = 1$, si ottiene

$$e^{i\theta_1}e^{i\theta_2} = e^{i(\theta_1 + \theta_2)}. \tag{1.16}$$

In particolare,

$$e^{i\theta}e^{-i\theta} = 1$$

e dunque ${\rm e}^{-i\theta}$ è il reciproco di ${\rm e}^{i\theta};$ pertanto il reciproco di un numero complesso $z=r{\rm e}^{i\theta}\neq 0$ è dato da

$$z^{-1} = \frac{1}{r} e^{-i\theta}.$$

Combinando tale formula con quella del prodotto, otteniamo l'espressione del quoziente di due numeri complessi $z_1=r_1\mathrm{e}^{i\theta_1}$ e $z_2=r_2\mathrm{e}^{i\theta_2}\neq 0$,

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}. (1.17)$$

Iterando le relazioni (1.15) e (1.17), per ogni $n \in \mathbb{Z}$, si ottiene

$$z^n = r^n e^{in\theta} \quad \text{con} \quad z = r e^{i\theta};$$
 (1.18)

in particolare, quando r=1, si ottiene la cosidetta formula di De Moivre

$$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta. \tag{1.19}$$

Consideriamo ora il problema del calcolo della radice n-esima di un numero complesso; fissato un intero $n \geq 1$ e un numero complesso $w = \rho e^{i\varphi}$ vogliamo determinare i numeri complessi $z = r e^{i\theta}$ soddisfacenti $z^n = w$. Dalla (1.18), si ha

$$z^n = r^n e^{in\theta} = \rho e^{i\varphi} = w$$

e dunque, ricordando la condizione di uguaglianza tra due numeri complessi, dovranno essere verificate le condizioni

$$\begin{cases} r^n = \rho \\ n\theta = \varphi + 2k\pi \,, \quad k \in \mathbb{Z} \end{cases}$$

ovvero

$$\begin{cases} r = \sqrt[n]{\rho} \\ \theta = \frac{\varphi + 2k\pi}{n} \,, \quad k \in \mathbb{Z} \,. \end{cases}$$

8

Figura 1.4. Rappresentazione grafica del punto $1 + \sqrt{3}i$ e delle sue radici quinte, z_j , $j = 1, \ldots, 5$

Ricordando la periodicità del seno e del coseno, risultano quindi determinate n soluzioni distinte del nostro problema

$$z = \sqrt[n]{\rho} e^{\frac{\varphi + 2k\pi}{n}} = \sqrt[n]{\rho} \left(\cos \frac{\varphi + 2k\pi}{n} + i \sin \frac{\varphi + 2k\pi}{n} \right), \qquad k = 0, 1, \dots, n - 1.$$

Geometricamente tali punti si trovano sulla circonferenza di centro origine e raggio $\sqrt[n]{\rho}$ e sono i vertici di un poligono regolare di n lati (si veda la Figura 1.4).

Esempi 1.1 i) Si consideri, per $n \ge 1$, l'equazione

$$z^n = 1$$
.

Scrivendo $1=1\mathrm{e}^{i0},$ si ottengono le n radici distinte

$$z = z_k = e^{i\frac{2k\pi}{n}}, \qquad k = 0, 1, \dots, n - 1,$$

dette le radici n-esime dell'unità. Si noti che per n dispari, si ha un'unica radice reale $z_0=1$, mentre per n pari si hanno due radici reali $z_0=1$ e $z_{n/2}=-1$ (si veda la Figura 1.5).

ii) Verifichiamo che l'equazione

$$z^2 = -1$$

ammette, come ci si aspetta, le due radici $z_{\pm}=\pm i.$ Scriviamo $-1=1\mathrm{e}^{i\pi}$ da cui otteniamo

$$z_{+} = z_{0} = e^{i\frac{\pi}{2}}$$
 e $z_{-} = z_{1} = e^{i\frac{\pi+2\pi}{2}} = e^{-i\frac{\pi}{2}} = -i$.

Figura 1.5. Radici dell'unità: terze, a sinistra, e seste, a destra

1.1.4 Equazioni algebriche

Mostriamo ora che l'equazione di secondo grado

$$az^2 + bz + c = 0$$

ammette due soluzioni complesse coniugate nel caso in cui il discriminante sia negativo. Non è restrittivo supporre a>0. Ricordando lo sviluppo del quadrato di un binomio, possiamo scrivere

$$z^{2} + \frac{b}{a}z + \frac{c}{a} = z^{2} + 2\frac{b}{2a}z + \frac{b^{2}}{4a^{2}} + \frac{c}{a} - \frac{b^{2}}{4a^{2}} = 0$$

ossia

$$\left(z + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a^2} < 0;$$

dunque otteniamo

$$z + \frac{b}{2a} = \pm i \frac{\sqrt{-\Delta}}{2a}$$

ossia

$$z = \frac{-b \pm i\sqrt{-\Delta}}{2a} \,.$$

Tale espressione può essere scritta come $z=\frac{-b\pm\sqrt{\Delta}}{2a},$ in analogia con il caso di discriminante $\geq 0.$

Le equazioni di terzo e quarto grado ammettono rispettivamente tre e quattro radici (contate con le opportune molteplicità) che sono esprimibili in forma esplicita mediante le operazioni algebriche e l'estrazione di radici quadrate, cubiche e quarte. Non esiste invece una espressione analitica per le radici di equazioni di ordine superiore. Il Teorema Fondamentale dell'Algebra garantisce però che ogni equazione algebrica di ordine n ammette esattamente n radici in campo complesso, ciascuna con l'opportuna molteplicità. Tale teorema sarà dimostrato nella Sezione 2.8.

1.2 Elementi di topologia

Sia $z_0 \in \mathbb{C}$ un numero complesso e r > 0 un numero reale positivo. L'insieme

$$B_r(z_0) = \{ z \in \mathbb{C} : |z - z_0| < r \}$$
(1.20)

si dice **intorno** di **centro** z_0 e **raggio** r; esso consiste di tutti i punti $z \in \mathbb{C}$ che distano meno di r dal centro z_0 (si veda la Figura 1.6).

Sia $\Omega \subseteq \mathbb{C}$ un insieme di numeri complessi; un punto $z_0 \in \Omega$ si dice **interno** a Ω se esiste un intorno $B_r(z_0)$ interamente contenuto in Ω , cioè $B_r(z_0) \subseteq \Omega$; si dice **esterno** a Ω se esiste un intorno $B_r(z_0)$ che non contiene punti di Ω , ossia $B_r(z_0) \cap \Omega = \emptyset$; se z_0 non è né interno né esterno a Ω si dice **punto di frontiera** per Ω . In altri termini, un punto di frontiera z_0 per Ω è tale che ogni suo intorno $B_r(z_0)$ contiene punti sia di Ω sia del suo complementare Ω^c , ossia $B_r(z_0) \cap \Omega \neq \emptyset$ e $B_r(z_0) \cap \Omega^c \neq \emptyset$. Indicheremo l'insieme dei punti di frontiera con il simbolo $\partial \Omega$, che viene comunemente detto **frontiera** di Ω . Ad esempio si consideri il disco unitario $\Omega_1 = \{z \in \mathbb{C} : |z| \leq 1\}$ allora tutti i punti z di modulo < 1 sono interni a Ω e la frontiera $\partial \Omega$ consiste della circonferenza $\{z \in \mathbb{C} : |z| = 1\}$.

Un insieme $\Omega \subseteq \mathbb{C}$ si dice **aperto** se ogni suo punto è interno, ovvero se non contiene punti della sua frontiera; si dice **chiuso** se il suo complementare è un insieme aperto. Non è difficile verificare che un insieme è chiuso se e solo se contiene tutti i suoi punti di frontiera. Si osservi che ogni intorno $B_r(z_0)$ è un insieme aperto; il disco unitario prima considerato Ω_1 è un insieme chiuso. L'insieme $\Omega_2 = \{z \in \mathbb{C} : 1 \le |z| < 2\}$, che rappresenta la corona circolare (o anello) delimitato dalle circonferenze di centro l'origine e di raggio rispettivamente 1 e 2, non è né aperto né chiuso (si veda la Figura 1.7). Si osservi che la circonferenza esterna non appartiene a Ω_2 e che $\partial \Omega_2 = \{z \in \mathbb{C} : |z| = 1\} \cup \{z \in \mathbb{C} : |z| = 2\}$. L'insieme \mathbb{C} è sia aperto sia chiuso (ed è l'unico insieme non vuoto con tale proprietà) e la frontiera è vuota.

Figura 1.6. Intorno $B_r(z_0)$ di centro z_0 e raggio r > 0

Figura 1.7. Corona circolare $\Omega_2 = \{z \in \mathbb{C} : 1 \le |z| < 2\}$

Figura 1.8. Insieme aperto connesso

Un insieme aperto Ω si dice **connesso** se presi comunque due punti in Ω esiste una spezzata lineare¹ che li unisce (si veda la Figura 1.8). L'anello Ω_2 è un insieme connesso, mentre il suo complementare $\Omega_2^c = \{z \in \mathbb{C} : |z| < 1 \text{ oppure } |z| \geq 2\}$ non lo è

Un insieme aperto e connesso si dice **dominio**. Ogni intorno $B_r(z_0)$ è un dominio.

Si dice **regione** un insieme che consiste di un insieme aperto unito a tutti oppure alcuni oppure nessun punto di frontiera.

Un insieme Ω si dice **limitato** se esiste una costante R>0 tale che ogni $z\in\Omega$ soddisfa |z|< R; ossia $\Omega\subset B_R(0)$. Un insieme chiuso e limitato si dice **compatto**. L'insieme Ω_1 è una regione compatta; ogni intorno $B_r(z_0)$ è un dominio limitato; il semipiano $\Omega_3=\{z\in\mathbb{C}: \Re ez>0\}$ è un dominio non limitato (si veda la Figura 1.9, a sinistra); il settore $\Omega_4=\{z\in\mathbb{C}: \frac{\pi}{4}\leq \operatorname{Arg} z\leq \frac{\pi}{3}\}$ è una regione chiusa non limitata (si veda la Figura 1.9, a destra).

Infine, un punto z_0 si dice **punto di accumulazione** per un insieme Ω se ogni intorno di z_0 contiene almeno un punto di Ω distinto da z_0 stesso. Ne segue che se

¹ Siano $z_1, z_2, \ldots, z_n \in \mathbb{C}$; gli n-1 segmenti $\overline{z_1} \, \overline{z_2} \, \overline{z_2} \, \overline{z_3}, \ldots, \overline{z_{n-1}} \, \overline{z_n}$, presi in successione, formano una curva detta spezzata lineare.

 Ω è chiuso allora contiene tutti i suoi punti di accumulazione. Infatti se un punto di accumulazione z_0 non appartenesse a Ω , sarebbe necessariamente di frontiera per Ω ; ma questo contraddice il fatto che un insieme chiuso contiene tutti i suoi punti di frontiera. Non è difficile verificare che vale anche il viceversa e dunque un insieme è chiuso se e solo se contiene tutti i suoi punti di accumulazione.

Ogni punto di Ω_1 è di accumulazione per Ω_1 ; l'insieme dei punti di accumulazione di $B_r(z_0)$ è l'insieme $\{z\in\mathbb{C}:|z-z_0|\leq r\}$; mentre l'unico punto di accumulazione di $\Omega_5=\{z\in\mathbb{C}:z=\frac{i}{n},n=1,2,\ldots\}$ è l'origine.

1.2.1 Il punto all'infinito

Talvolta risulta conveniente includere nel piano complesso il **punto all'infinito**, denotato con ∞ . Il piano complesso con tale punto è detto **piano complesso esteso** o **piano di Gauss**. Al fine di visualizzare il punto all'infinito, possiamo pensare al piano complesso come il piano passante per l'equatore di una sfera unitaria centrata nel punto z=0 (si veda la Figura 1.10). A ogni punto z=0 nel piano corrisponde esattamente un punto z=0 sulla superficie della sfera. Il punto z=0 della sfera con la superficie della sfera. Viceversa, ad ogni punto z=0 della sfera, che non sia il polo nord z=00, corrisponde esattamente un punto z=01 nel piano. Facendo corrispondere al punto z=02 della sfera il punto z=03, otteniamo una corrispondenza biiettiva tra i punti della sfera e i punti del piano di Gauss. La sfera è nota con il nome di **sfera di Riemann** e la corrispondenza come **proiezione stereografica**.

Si osservi che l'esterno del cerchio unitario centrato nell'origine nel piano complesso, corrisponde all'emisfero superiore (senza l'equatore e il polo nord). Inoltre,

Figura 1.9. Insieme Ω_3 , a sinistra, e insieme Ω_4 , a destra

Figura 1.10. ????????????????

per ogni r > 0, i punti del piano complesso esterni al cerchio |z| = r corrispondono a punti sulla sfera vicini a N. Chiameremo pertanto **intorno del punto** all'infinito ogni insieme (aperto) $B_r(\infty) = \{z \in \mathbb{C} : |z| > r\}$.

Dato un insieme $\Omega \subseteq \mathbb{C}$, se ogni intorno di ∞ contiene almeno un punto Ω diremo che ∞ è un punto di accumulazione per Ω . Ad esempio, ∞ è punto di accumulazione per l'insieme $\Omega_6 = \{z \in \mathbb{C} : z = ni, n \in \mathbb{N}\}$ così come per il semipiano $\Omega_7 = \{z \in \mathbb{C} : \mathcal{I}m > 0\}$.

Notiamo che un insieme Ω è non limitato se e solo se ∞ è uno dei suoi punti di accumulazione. Nel seguito z indicherà sempre un punto nel piano finito, se si intende il punto ∞ questo sarà esplicitamente segnalato.

1.3 Funzioni elementari

Una funzione w=f(z) che associa a un numero complesso z un numero complesso w viene detta **funzione di variabile complessa**. Si osservi che il suo dominio di definizione $\Omega\subseteq\mathbb{C}$ non è necessariamente un dominio (insieme aperto e connesso). Ad esempio, $f_1(z)=z$ è definita su tutto \mathbb{C} mentre $f_2(z)=\frac{1}{z}$ è definita su $\mathbb{C}\setminus\{0\}$. Se il dominio di definizione non è esplicitamente indicato, la funzione si intende definita sull'insieme più ampio possibile, compatibile con l'espressione della funzione.

Poiché sia l'insieme di partenza sia quello di arrivo sono 2-dimensionali, non è in generale possibile disegnare il grafico della funzione w=f(z). Ci limiteremo ad individuare il dominio e l'immagine (quando possibile) della funzione disegnandoli separatamente. Ad esempio, si consideri $f_3(z)=\bar{z}$ ristretta al semipiano superiore $\mathcal{I}mz>0$. Allora la sua immagine è il semipiano inferiore $\mathcal{I}mz<0$ (si ricordino la (1.8) e le considerazioni successive e si veda la Figura 1.11).

Sia ora $f_4(z)=z^2$ ristretta a $\mathcal{I}mz\geq 0$. Allora, usando la rappresentazione polare $z=r\operatorname{e}^{i\theta},\ 0\leq \theta<\pi$, del generico z appartenente al dominio di definizione di f_4 , si vede che $w=z^2=r^2\operatorname{e}^{2i\theta}=R\operatorname{e}^{i\varphi}$ avendo posto $R=r^2\operatorname{e}\varphi=2\theta$. Pertanto l'immagine è tutto il piano complesso in quanto $R\geq 0$ e $0\leq \varphi<2\pi$ (si veda la Figura 1.12).

Figura 1.11. Dominio e immagine della funzione $f_3(z)=\bar{z}$ ristretta al semipiano superiore $\mathcal{I}mz>0$

Ogni funzione w=f(z) di variabile complessa può essere naturalmente pensata come una funzione da \mathbb{R}^2 in \mathbb{R}^2 . In effetti, posto z=x+iy e $w=u+iv, \ f(z)$ può essere scritta come

$$w = f(z) = u(x, y) + iv(x, y)$$

dove u, v sono due funzioni reali delle due variabili reali x e y. Chiameremo funzione parte reale di f la funzione $u(x,y) = \mathcal{R}ef(z)$ e funzione parte immaginaria di f la funzione $v(x,y) = \mathcal{I}mf(z)$.

Per gli esempi sopra considerati avremo

$$f_1(z) = z = x + iy, u(x,y) = x, v(x,y) = y$$

$$f_2(z) = \frac{1}{z} = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2}, u(x,y) = \frac{x}{x^2 + y^2}, v(x,y) = -\frac{y}{x^2 + y^2}$$

$$f_3(z) = \overline{z} = x - iy, u(x,y) = x, v(x,y) = -y$$

$$f_4(z) = z^2 = x^2 - y^2 + 2ixy, u(x,y) = x^2 - y^2, v(x,y) = 2xy.$$

Fissato un intero $n \in \mathbb{N}$ e n+1 costanti complesse $a_j \in \mathbb{C}, j=0,1,\ldots,n,$ la funzione

$$P(z) = a_0 + a_1 z + \ldots + a_n z^n$$

Figura 1.12. Dominio e immagine della funzione $f_4(z)=z^2$ ristretta al semipiano superiore $\mathcal{I}m\,z\geq 0$

si dice **polinomio**; se $a_n \neq 0$, n indica il grado del polinomio. Essa è definita su tutto \mathbb{C} .

Una funzione razionale è il quoziente di due polinomi P(z) e Q(z)

$$R(z) = \frac{P(z)}{Q(z)}$$

ed è definita per tutti gli $z \in \mathbb{C}$ tali che $Q(z) \neq 0$.

Definiamo ora alcune funzioni che, con i polinomi e le funzioni razionali, saranno utilizzate nel seguito.

Funzione esponenziale

Per z = x + iy, poniamo

$$e^z = e^x e^{iy} = e^x (\cos y + i \sin y).$$
 (1.21)

Allora $e^z = u(x,y) + iv(x,y)$, con $u(x,y) = e^x \cos y$ e $v(x,y) = e^x \sin y$, è definita su tutto \mathbb{C} . Direttamente dalla (1.21) si ottiene che, per ogni z = x + iy, $z_1, z_2 \in \mathbb{C}$ e $n \in \mathbb{Z}$, si ha

$$e^{z_1+z_2} = e^{z_1} e^{z_2},$$
 $(e^z)^n = e^{nz},$ $e^0 = 1,$ $|e^z| = e^x,$ $\overline{e^z} = e^{\overline{z}}.$

Osserviamo che $|e^z| = e^x > 0$ per ogni z e dunque

$$e^z \neq 0$$
, $\forall z \in \mathbb{C}$;

pertanto l'immagine della funzione esponenziale è tutto $\mathbb C$ tranne l'origine. Inoltre la funzione è periodica con un periodo immaginario uguale a $2\pi i$; infatti

$$e^{z+2\pi i} = e^z e^{2\pi i} = e^z (\cos 2\pi + i \sin 2\pi) = e^z, \quad \forall z \in \mathbb{C}.$$

Funzioni trigonometriche

Se $x \in \mathbb{R}$, dalle formule

$$e^{ix} = \cos x + i \sin x$$
, $e^{-ix} = \cos x - i \sin x$,

ne segue che

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}, \qquad \cos x = \frac{e^{ix} + e^{-ix}}{2}.$$

È dunque naturale definire le funzioni **seno** e **coseno** della variabile complessa z come

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \qquad \cos z = \frac{e^{iz} + e^{-iz}}{2}.$$
 (1.22)

Le altre funzioni trigonometriche sono definite in termini delle funzioni seno e coseno secondo le usuali relazioni:

$$\tan z = \frac{\sin z}{\cos z}, \qquad \cot z = \frac{\cos z}{\sin z},$$

$$\sec z = \frac{1}{\cos z}, \qquad \csc z = \frac{1}{\sin z}.$$
(1.23)

Tutte le usuali identità trigonometriche seguono direttamente dalle definizioni; ad esempio, per ogni $z, z_1, z_2 \in \mathbb{C}$, si ha

$$\sin^2 z + \cos^2 z = 1$$

 $\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2 \dots$

La periodicità di $\sin z$ e $\cos z$ segue dalla definizione e dalla periodicità di e^z :

$$\sin(z + 2\pi) = \sin z$$
, $\cos(z + 2\pi) = \cos z$, $\forall z \in \mathbb{C}$,

così come quella delle altre funzioni trigonometriche; ad esempio

$$\tan(z+\pi) = \tan z$$
, $\forall z \in \mathbb{C}$.

Esplicitiamo la parte reale e quella immaginaria della funzione $f(z) = \sin z$; per z = x + iy, si ha

$$\sin z = \frac{e^{i(x+iy)} - e^{-i(x+iy)}}{2i} = \frac{e^{-y}(\cos x + i\sin x)}{2i} - \frac{e^{y}(\cos x - i\sin x)}{2i}$$
$$= \sin x \frac{e^{y} + e^{-y}}{2} + i\cos x \frac{e^{y} - e^{-y}}{2}$$
$$= \sin x \cosh y + i\cos x \sinh y$$

e dunque $u(x, y) = \sin x \cosh y$ e $v(x, y) = \cos x \sinh y$. Analogamente si ottiene

 $\cos z = \cos x \cosh y - i \sin x \sinh y$.

Da queste espressioni, si ricava immediatamente che²

$$\overline{\sin z} = \sin \bar{z} \,, \qquad \overline{\cos z} = \cos \bar{z} \tag{1.24}$$

$$\overline{\sin z} = \sin \bar{z}, \qquad \overline{\cos z} = \cos \bar{z}$$

$$|\sin z|^2 = \sin^2 x + \sinh^2 y, \qquad |\cos z|^2 = \cos^2 x + \sinh^2 y.$$
(1.24)

Infine, le ultime due uguaglianze ci permettono di ricavare gli zeri delle funzioni seno e coseno:

$$\sin z = 0 \qquad \Longleftrightarrow \qquad \sin^2 x + \sinh^2 y = 0 \qquad \Longleftrightarrow \sin x = 0 \quad \text{e} \quad \sinh y = 0 \qquad \Longleftrightarrow \qquad x = k\pi \ (k \in \mathbb{Z}) \quad \text{e} \quad y = 0$$

² Si ricordi che $\cosh^2 x - \sinh^2 x = 1$, per ogni $x \in \mathbb{R}$.

ossia

$$\sin z = 0$$
 se e solo se $z = k\pi$, $k \in \mathbb{Z}$; (1.26)

analogamente

$$\cos z = 0$$
 se e solo se $z = \left(k + \frac{1}{2}\right)\pi$, $k \in \mathbb{Z}$. (1.27)

Le (1.26) e (1.27) permettono di ricavare il dominio di definizione delle funzioni trigonometriche definite in (1.23); ad esempio, la funzione tangente è definita su $\mathbb C$ tranne i punti $z=\left(k+\frac{1}{2}\right)\pi,\,k\in\mathbb Z.$

Funzioni iperboliche

Anche in questa situazione generalizziamo le formule

$$sinh x = \frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2}$$

valide per ogni $x\in\mathbb{R},$ ponendo in modo naturale

$$\sinh z = \frac{e^z - e^{-z}}{2}, \qquad \cosh z = \frac{e^z + e^{-z}}{2}, \qquad (1.28)$$

per ogni $z \in \mathbb{C}$. Analogamente al caso reale è possibile definire le funzioni tangente, cotangente, secante e cosecante iperbolica. Seguono dalle definizioni le usuali relazioni iperboliche quali, ad esempio,

$$\cosh^2 z - \sinh^2 z = 1, \quad \forall z \in \mathbb{C}.$$

Il seno e coseno iperbolico sono funzioni periodiche di periodo $2\pi i$, mentre la tangente iperbolica lo è di periodo πi .

Le funzioni seno e coseno iperbolico sono strettamente legate alle analoghe funzioni trigonometriche; infatti, dalle (1.22) e (1.28) si ottiene immediatamente che

$$\sinh iz = i \sin z$$
, $\cosh iz = \cos z$,
 $\sin iz = i \sinh z$, $\cos iz = \cosh z$.

Inoltre, posto z = x + iy, si ha

$$\begin{split} \sinh z &= \sinh x \, \cos y + i \cosh x \, \sin y \,, \qquad \cosh z &= \cosh x \, \cos y + i \sinh x \, \sin y \,, \\ |\sinh z|^2 &= \sinh^2 x + \sin^2 y \,, \qquad |\cosh z|^2 &= \sinh^2 x + \cos^2 y \,. \end{split}$$

Infine

$$\sinh z = 0 \quad \text{se e solo se} \quad z = k\pi i \,, \quad k \in \mathbb{Z} \,;$$
$$\cosh z = 0 \quad \text{se e solo se} \quad z = \left(k + \frac{1}{2}\right)\pi i \,, \quad k \in \mathbb{Z} \,.$$

Funzione logaritmo

Indichiamo con Logr il logaritmo naturale di un numero reale e positivo r; considerato $z=r\,e^{i\theta}\neq 0$, utilizzando formalmente le note proprietà del logaritmo, poniamo

$$\log z = \log r e^{i\theta} = \operatorname{Log} r + i\theta$$
, $\operatorname{con} r = |z| \quad e \quad \theta = \operatorname{arg} z$. (1.29)

Poiché arg $z=\operatorname{Arg} z+2k\pi,\ k\in\mathbb{Z}$, la (1.29) non definisce una funzione univoca ma multivoca, cioè ad ogni $z\neq 0$, corrispondono infiniti valori di $\log z$ aventi tutti la stessa parte reale ($\mathcal{R}e\log z=\operatorname{Log} r$) e parte immaginaria che differisce per un multiplo intero di 2π . Chiameremo **valore principale** di $\log z$ il valore ottenuto ponendo $\theta=\operatorname{Arg} z$ nella (1.29). Tale valore si denota $\operatorname{Log} z$ ed è quindi dato dall'equazione

$$Log z = Log |r| + i Arg z. (1.30)$$

La mappa w = Log z è una funzione il cui dominio di definizione è $\mathbb{C} \setminus \{0\}$ e la cui immagine è la striscia $-\pi < \mathcal{I}mw \leq \pi$. Osserviamo che Log z si riduce all'usuale logaritmo naturale di una variabile reale quando il dominio di definizione è ristretto al semiasse dei reali positivi.

Occorre una certa cautela nell'estendere le note proprietà dei logaritmi. Innanzitutto, verifichiamo che

$$e^{\log z} = z$$
.

Ciò significa che indipendentemente dal valore di $\log z$ che scegliamo, il numero $\mathrm{e}^{\log z}$ sarà sempre z. Per verificare tale uguaglianza, scriviamo $z=r\mathrm{e}^{i\theta}$ e $\log z=\mathrm{Log}\,r+i\theta$; allora

$$e^{\log z} = e^{\log r + i\theta} = e^{\log r} e^{i\theta} = re^{i\theta} = z$$
.

Non è invece vero in generale che $\log e^z = z$. Infatti, se z = x + iy, si ha

$$\log e^z = \operatorname{Log} |e^z| + i \operatorname{arg} e^z = x + i(y + 2k\pi) = z + 2k\pi, \quad k \in \mathbb{Z}.$$

Per ogni $z_1, z_2 \in \mathbb{C} \setminus \{0\}$ valgono tuttavia le relazioni

$$\log z_1 z_2 = \log z_1 + \log z_2, \qquad \log \frac{z_1}{z_2} = \log z_1 - \log z_2. \tag{1.31}$$

Queste uguaglianze sono da intendersi nel senso che, ad esempio, ogni valore di $\log z_1 z_2$ può essere espresso come la somma di un valore di $\log z_1$ e di un valore di $\log z_2$; viceversa, ogni valore di $\log z_1$ sommato a un valore di $\log z_2$ è un valore di $\log z_1 z_2$.

Per verificare la prima delle (1.31), poniamo $z_1 = r_1 e^{i\theta_1}$, $z_2 = r_2 e^{i\theta_2}$; ricordando la (1.12), si ha

$$\log z_1 z_2 = \log r_1 r_2 e^{i(\theta_1 + \theta_2)} = \operatorname{Log} r_1 r_2 + i(\theta_1 + \theta_2)$$

= $\operatorname{Log} r_1 + i\theta_1 + \operatorname{Log} r_2 + i\theta_2 = \log z_1 + \log z_2$.

In modo analogo si dimostra la seconda delle (1.31). Si osservi che le (1.31) non valgono sostituendo log con Log. Ad esempio, per $z_1=z_2=-1=\mathrm{e}^{i\pi}$ si ha Log $z_1=\mathrm{Log}\,z_2=\pi i$ mentre Log $z_1z_2=0$ e dunque

$$\operatorname{Log} z_1 z_2 = 0 \neq 2\pi i = \operatorname{Log} z_1 + \operatorname{Log} z_2.$$

1.4 Limiti e continuità

I concetti di limite e di continuità sono simili a quelli già studiati per funzioni di variabile reale e pertanto la nostra trattazione sarà concisa.

Diamo la seguente definizione.

Definizione 1.2 Sia $f: \Omega \to \mathbb{C}$ e sia z_0 un punto di accumulazione per il dominio Ω . Si dice che f ha limite $\ell \in \mathbb{C}$ (o tende a ℓ) per z tendente a z_0 e si scrive

$$\lim_{z \to z_0} f(z) = \ell$$

se per ogni $\varepsilon > 0$ esiste un $\delta > 0$ tale che

$$\forall z \in \Omega, \qquad 0 < |z - z_0| < \delta \implies |f(z) - \ell| < \varepsilon.$$
 (1.32)

Con il linguaggio degli intorni: per ogni intorno $B_\varepsilon(\ell)$ di ℓ esiste un intorno $B_\delta(z_0)$ di z_0 tale che

$$\forall z \in \Omega, \qquad z \in B_{\delta}(z_0) \setminus \{z_0\} \implies f(z) \in B_{\varepsilon}(\ell).$$

La definizione di limite è illustrata graficamente nella Figura 1.13.

La definizione di limite può essere estesa in modo ovvio al caso in cui z_0 oppure ℓ oppure entrambi siano il punto all'infinito ∞ , utilizzando la formulazione con gli intorni. Ad esempio,

$$\lim_{z \to \infty} f(z) = \ell \in \mathbb{C}$$

equivale a dire che per ogni intorno $B_{\varepsilon}(\ell)$ di ℓ esiste un intorno $B_R(\infty)$ di ∞ tale che

$$\forall z \in \Omega, \qquad z \in B_R(\infty) \implies f(z) \in B_{\varepsilon}(\ell);$$

ovvero, per ogni $\varepsilon>0$ esiste un R>0tale che

$$\forall z \in \Omega, \qquad |z| > R \implies |f(z) - \ell| < \varepsilon.$$
 (1.33)

Figura 1.13. Rappresentazione grafica della definizione di limite

20

Esempi 1.3 a) Verifichiamo che $\lim_{z\to 1}iz=i$. Per ogni $\varepsilon>0$, la condizione

$$|f(z) - \ell| < \varepsilon$$
 equivale a $|iz - i| = |z - 1| < \varepsilon$.

Allora la (1.32) è verificata con $\delta = \varepsilon$.

b) Verifichiamo che $\lim_{z\to\infty}\frac{1}{z^2}=0.$ Poiché

$$\left| \frac{1}{z^2} - 0 \right| < \varepsilon$$
 equivale a $|z| > \frac{1}{\sqrt{\varepsilon}}$.

la (1.33) è soddisfatta con $R = \frac{1}{\sqrt{\varepsilon}}$.

Lasciamo al lettore la facile verifica dell'unicità del limite, quando esiste, e delle seguenti proprietà.

Teorema 1.4 Sia z_0 un punto di accumulazione per il dominio di definizione di una funzione f; supponiamo che

$$f(z)=u(x,y)+iv(x,y)\,, \qquad z_0=x_0+iy_0\,, \qquad \ell=\ell_{re}+i\ell_{im}\,.$$

Allora

$$\lim_{z \to z_0} f(z) = \ell \qquad \iff \qquad \begin{cases} \lim_{(x,y) \to (x_0,y_0)} u(x,y) = \ell_{re} \\ \lim_{(x,y) \to (x_0,y_0)} v(x,y) = \ell_{im} \,. \end{cases}$$

Teorema 1.5 Sia z_0 un punto di accumulazione per il dominio di definizione di due funzioni f e g; supponiamo che

$$\lim_{z \to z_0} f(z) = \ell \qquad e \qquad \lim_{z \to z_0} g(z) = m.$$

$$\lim_{z \to z_0} [f(x) \pm g(x)] = \ell \pm m,$$

Allora

$$\lim_{z \to z_0} [f(x) \pm g(x)] = \ell \pm m,$$

$$\lim_{z \to z_0} [f(x) g(x)] = \ell m,$$

$$\lim_{z \to z_0} \frac{f(x)}{g(x)} = \frac{\ell}{m}, \quad m \neq 0.$$

Teorema 1.6 Sia z_0 un punto di accumulazione per il dominio di definizione di una funzione f; allora

$$\lim_{z \to z_0} f(z) = \ell \qquad \Longrightarrow \qquad \lim_{z \to z_0} |f(z)| = |\ell|.$$

Utilizzando la definizione di limite e i risultati appena enunciati si ha immediatamente che, se P(z) e Q(z) sono due polinomi, allora

$$\lim_{z \to z_0} P(z) = P(z_0), \qquad \lim_{z \to z_0} \frac{P(z)}{Q(z)} = \frac{P(z_0)}{Q(z_0)} \quad (Q(z_0) \neq 0).$$

1.4.1 Continuità

Consideriamo ora la nozione di continuità.

Definizione 1.7 Sia $\Omega \subseteq \mathbb{C}$ una regione e sia $f:\Omega \to \mathbb{C}$. Si dice che $f \ \grave{e}$ continua in $z_0 \in \Omega$ se

$$\lim_{z \to z_0} f(z) = f(z_0).$$

Diremo che f è continua in una regione Ω se è continua in ogni punto $z_0 \in \Omega$.

Ricordando il Teorema 1.5, se due funzioni sono continue in un punto z_0 allora anche la somma, la differenza, il prodotto sono funzioni continue in z_0 ; il quoziente è continuo purché la funzione a denominatore non sia nulla in z_0 . È inoltre possibile verificare, direttamente dalla definizione, che la composizione di funzioni continue è continua. Infine, dal Teorema 1.4, segue che una funzione f di variabile complessa è continua in $z_0 = (x_0, y_0)$ se e solo se le sue parti reale e immaginaria u e v sono continue in (x_0, y_0) . Riassumendo e utilizzando le definizioni date nella Sezione 1.3, vale il seguente risultato.

Teorema 1.8 Tutte le funzioni elementari (polinomi, funzioni razionali, funzione esponenziale, funzioni trigonometriche e iperboliche, funzione logaritmo) sono continue nel loro dominio di definizione.

1.5 Esercizi

1. Scrivere in forma algebrica i seguenti numeri complessi:

a)
$$(2-3i)(-2+i)$$

b)
$$(3+i)(3-i)(\frac{1}{5}+\frac{1}{10}i)$$

c)
$$\frac{1+2i}{3-4i} + \frac{2-i}{5i}$$

b)
$$(3+i)(3-i)\left(\frac{1}{5} + \frac{1}{10}i\right)$$

d) $\frac{5}{(1-i)(2-i)(3-i)}$

2. Scrivere in forma trigonometrica ed esponenziale i seguenti numeri complessi:

a)
$$z = i$$

b)
$$z = -1$$

c)
$$z = 1 + i$$

d)
$$z = i(1+i)$$

e)
$$z = \frac{1+i}{1-i}$$

f)
$$z = \sin \alpha + i \cos \alpha$$

3. Calcolare il modulo dei seguenti numeri complessi:

a)
$$z = \frac{1}{1-i} + \frac{2i}{i-1}$$

b)
$$z = 1 + i - \frac{i}{1 - 2i}$$

5. Risolvere le seguenti equazioni:

a)
$$z^2 - 2z + 2 = 0$$

b)
$$z^2 + 3iz + 1 = 0$$

$$c) z|z| - 2z + i = 0$$

d)
$$|z|^2 z^2 = i$$

e)
$$z^2 + i\bar{z} = 1$$

$$\boxed{f)} \quad z^3 = |z|^4$$

- 6. Verificare che 1+i è radice del polinomio $z^4-5z^3+10z^2-10z+4$ e trovare le altre radici.
- 7. Calcolare z^2 , z^9 , z^{20} per

a)
$$z = \frac{1-i}{i}$$

b)
$$z = \frac{2}{\sqrt{3} - i} + \frac{1}{i}$$

8. Calcolare e rappresentare graficamente i seguenti numeri complessi:

a)
$$z = \sqrt[3]{-i}$$

$$b) z = \sqrt[5]{1}$$

c)
$$z = \sqrt{2 - 2}$$

9. Rappresentare graficamente i seguenti sottoinsiemi del piano complesso; di ognuno di essi si dica se è aperto, chiuso, connesso e se ne indichi la frontiera:

a)
$$\Omega_1 = \{ z \in \mathbb{C} : |z - 2 + i| \le 1 \}$$

b)
$$\Omega_2 = \{ z \in \mathbb{C} : |2z + 3| > 4 \}$$

c)
$$\Omega_3 = \{ z \in \mathbb{C} : |\mathcal{I}mz| > 2 \}$$

d)
$$\Omega_4 = \{ z \in \mathbb{C} : |z| > 0, \ \frac{\pi}{6} \le \operatorname{Arg} z \le \frac{\pi}{3} \}$$

10. Trovare il dominio di definizione delle seguenti funzioni:

a)
$$f(z) = \frac{1}{z^2 + 4}$$

b)
$$f(z) = \operatorname{Arg}\left(\frac{1}{z}\right)$$

$$\boxed{\text{c)}} f(z) = \frac{z}{z + \bar{z}}$$

d)
$$f(z) = \frac{1}{9 - |z|^2}$$

11. Per le seguenti funzioni f(z) si trovino $u(x,y)=\mathcal{R}e\,f(z),\,v(x,y)=\mathcal{I}m\,f(z)$ e g(z)=|f(z)|.

a)
$$f(z) = z^3 + z + 1$$

(b)
$$f(z) = \frac{1}{z^2 + 1}$$

$$\boxed{\text{c}} f(z) = \frac{3z}{z - \bar{z}}$$

d)
$$f(z) = \frac{1}{|z|^2 + 3}$$

12. Data $f(x,y) = x^2 - y^2 - 2y + 2ix(1-y)$ esprimerla in funzione della variabile complessa z = x + iy.

1.5.1 Soluzioni

1. Forma algebrica numeri complessi:

a)
$$-1 + 8i$$
;

b)
$$2+i$$
; c) $-\frac{2}{5}$; d) $\frac{1}{2}i$.

c)
$$-\frac{2}{5}$$

d)
$$\frac{1}{2}i$$
.

2. Forma trigonometrica e esponenziale numeri complessi:

a)
$$z = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = e^{i\frac{\pi}{2}}$$
;

b)
$$z = \cos \pi + i \sin \pi = e^{i\pi}$$

c)
$$z = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = \sqrt{2} e^{i \frac{\pi}{4}};$$

a)
$$z = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = e^{i\frac{\pi}{2}};$$
 b) $z = \cos \pi + i \sin \pi = e^{i\pi};$
c) $z = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right) = \sqrt{2}e^{i\frac{\pi}{4}};$ d) $z = \sqrt{2} \left(\cos \frac{3}{4}\pi + i \sin \frac{3}{4}\pi\right) = \sqrt{2}e^{i\frac{3}{4}\pi};$
e) $\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = e^{i\frac{\pi}{2}};$ f) $\cos \left(\frac{\pi}{2} - \alpha\right) + i \sin \left(\frac{\pi}{2} - \alpha\right) = e^{i\left(\frac{\pi}{2} - \alpha\right)}.$

e)
$$\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = e^{i\frac{\pi}{2}}$$
;

f)
$$\cos\left(\frac{\pi}{2} - \alpha\right) + i\sin\left(\frac{\pi}{2} - \alpha\right) = e^{i\left(\frac{\pi}{2} - \alpha\right)}$$

3. Modulo numeri complessi:

a)
$$\sqrt{\frac{5}{2}}$$
; b) $\sqrt{\frac{13}{5}}$.

b)
$$\sqrt{\frac{13}{5}}$$
.

4. Invece di compiere la verifica diretta, moltiplichiamo il denominatore per $|\bar{z}|$ (=1) e otteniamo

$$\left|\frac{3z-i}{3+iz}\right| = \left|\frac{3z-i}{3\bar{z}+i}\right| = \left|\frac{3z-i}{3z-i}\right| = \frac{|3z-i|}{|3z-i|} = 1.$$

5. Risoluzione equazioni:

a)
$$z = 1 \pm i$$
;

b) Applichiamo la formula risolutiva per equazioni di secondo grado e otteniamo

$$z = \frac{-3i \pm \sqrt{-9 - 4}}{2} = \frac{-3i \pm \sqrt{13}i}{2} = \frac{-3 \pm \sqrt{13}}{2}i.$$

c) Scrivendo z = x + iy, l'equazione diventa

$$(x+iy)\sqrt{x^2+y^2} - 2x - 2iy + i = 0,$$

ovvero

$$x\sqrt{x^2+y^2}-2x+i\left(y\sqrt{x^2+y^2}-2y+1\right)=0$$
.

Uguagliando parte reale e parte immaginaria del primo e del secondo membro, otteniamo il sistema

$$\begin{cases} x \left(\sqrt{x^2 + y^2} - 2 \right) = 0 \\ y \sqrt{x^2 + y^2} - 2y + 1 = 0 \,. \end{cases}$$

Dalla prima equazione, dovrà essere x=0 oppure $\sqrt{x^2+y^2}=2$. Quest'ultima relazione inserita nella seconda equazione del sistema dà un risultato impossibile. Pertanto lie uniche soluzioni possibili saranno

$$\left\{ \begin{array}{l} x=0\\ y|y|-2y+1=0 \, . \end{array} \right.$$

Distinguendo i due casi $y \ge 0$ e y < 0, otteniamo

$$\begin{cases} x = 0 \\ y^2 - 2y + 1 = 0, \end{cases} \quad \text{e} \quad \begin{cases} x = 0 \\ -y^2 - 2y + 1 = 0, \end{cases}$$

e dunque

$$\begin{cases} x = 0 \\ y = 1 \end{cases} \quad e \quad \begin{cases} x = 0 \\ y = -1 \pm \sqrt{2} \end{cases}.$$

Pertanto le soluzioni sono $z=i,\,z=i(-1\pm\sqrt{2}).$

d)
$$z=\pm\frac{\sqrt{2}}{2}(1+i)$$
; e) $z=\frac{\sqrt{7}}{2}-i\frac{1}{2}$; $z=-\frac{\sqrt{7}}{2}-i\frac{1}{2}$. f) Ricordando che $|z|^2=z\bar{z}$, l'equazione diventa

$$z^3 = z^2 \bar{z}^2 \qquad \Longleftrightarrow \qquad z^2 (z - \bar{z}^2) = 0.$$

Allora una soluzione è z=0 e le altre soddisfano $z-\bar{z}^2=0$. Ponendo z=x+iy, si perviene al sistema

$$\begin{cases} x^2 - y^2 - x = 0 \\ 2xy + y = 0. \end{cases}$$

Riscrivendo la seconda equazione come y(2x+1) = 0, si ottengono i due sistemi

$$\begin{cases} y = 0 \\ x(x-1) = 0, \end{cases} \begin{cases} x = -\frac{1}{2} \\ y^2 = \frac{3}{4}. \end{cases}$$

In definitiva, le soluzioni sono

$$z = 0;$$
 $z = 1;$ $z = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i.$

6. Poiché il polinomio è a coefficienti reali, oltre alla radice z=1+i, vi è anche la radice coniugata $\bar{z} = 1 - i$. Pertanto il polinomio è divisibile per (z-1-i)(z-1+i) = $z^2 - 2z + 2$ e si ha

$$z^4 - 5z^3 + 10z^2 - 10z + 4 = (z^2 - 2z + 2)(z^2 - 3z + 2) = (z^2 - 2z + 2)(z - 1)(z - 2).$$

Le radici sono quindi

$$z = 1 + i$$
, $z = 1 - i$, $z = 1$, $z = 2$.

7. Potenze di numeri complessi:

Figura 1.14. Radici cubiche di -i, a sinistra, radici quinte di 1, al centro, e radici quadrate di 2-2i, a destra

a)
$$z^2 = 2i$$
, $z^9 = -16(1+i)$, $z^{20} = -2^{10}$.

b) Razionalizzando i denominatori si ha

$$z = 2 \frac{\sqrt{3} + i}{4} - i = \frac{1}{2}(\sqrt{3} - i)$$
.

Scrivendo il numero in forma esponenziale, si ha

$$z = \frac{1}{2}(\sqrt{3} - i) = e^{-\frac{\pi}{6}i}$$

e quindi

$$z^{2} = e^{-\frac{\pi}{3}i} = \cos\frac{\pi}{3} - i\sin\frac{\pi}{3} = \frac{1}{2}(1 - \sqrt{3}i);$$

$$z^{9} = e^{-\frac{3}{2}\pi i} = e^{\frac{\pi}{2}i} = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} = i,$$

$$z^{20} = e^{-\frac{20}{6}\pi i} = e^{\frac{2}{3}\pi i} = \frac{1}{2}(-1 + \sqrt{3}i).$$

8. Calcolo e rappresentazione grafica di numeri complessi:

a) $z_1 = \frac{1}{2} \left(\sqrt{3} - i \right)$, $z_2 = i$, $z_3 = -\frac{1}{2} \left(\sqrt{3} + i \right)$. I numeri sono rappresentati nella Figura 1.14, a sinistra.

b) Scriviamo il numero 1 in forma esponenziale $1 = e^{0\pi i}$. Allora, ricordando che $e^{a+2\pi i} = e^a$, si ottiene

$$z_1 = 1$$
, $z_2 = e^{\frac{2}{5}\pi i}$, $z_3 = e^{\frac{4}{5}\pi i}$, $z_4 = e^{-\frac{4}{5}\pi i}$, $z_5 = e^{-\frac{2}{5}\pi i}$.

I numeri sono rappresentati nella Figura 1.14, al centro. c) $z_1 = \sqrt[4]{8} \mathrm{e}^{-\frac{1}{8}\pi i}$, $z_2 = \sqrt[4]{8} \mathrm{e}^{\frac{7}{8}\pi i}$.

I numeri sono rappresentati nella Figura 1.14, a destra.

9. Studio sottoinsiemi:

Figura 1.15. Insiemi Ω_1 , a sinistra, e Ω_2 , a destra, relativi all'Esercizio 9

- a) L'insieme Ω_1 , rappresentato in Figura 1.15 a sinistra, è chiuso, connesso e la sua frontiera è $\partial \Omega_1 = \{z \in \mathbb{C} : |z-2+i|=1\}$, circonferenza di centro 2-i e
- b) L'insieme Ω_2 , rappresentato in Figura 1.15 a destra, è aperto, connesso e la sua frontiera è $\partial \Omega_2 = \{z \in \mathbb{C} : |2z+3|=4\}$, circonferenza di centro $-\frac{3}{2}$ e raggio 2.
- c) L'insieme Ω_3 , rappresentato in Figura 1.16 a sinistra, è aperto, non connesso e la sua frontiera è $\partial \Omega_3 = \{z \in \mathbb{C} : |\mathcal{I}mz| = 2\}$, coppia di rette parallele all'asse
- d) L'insieme Ω_4 , rappresentato in Figura 1.16 a destra, non è né aperto né chiuso, è connesso e la sua frontiera è $\partial \Omega_4 = \{z \in \mathbb{C} : \operatorname{Arg} z = \frac{\pi}{6}\} \cup \{z \in \mathbb{C} : \operatorname{Arg} z = 0\}$ $\frac{\pi}{3}$ \rightarrow \{0\}.
- 10. Dominio funzioni:
- a) $\Omega = \mathbb{C} \setminus \{\pm 2i\}$; b) $\Omega = \mathbb{C} \setminus \{0\}$; c) Poiché $z + \bar{z} = 2\Re z$, risulta $\Omega = \mathbb{C} \setminus \{\Re z = 0\}$.
- d) $\Omega = \mathbb{C} \setminus \{|z| = 3\}$.
- 11. Parte reale, immaginaria e modulo di funzioni:
- a) $u(x,y)=x^3-3xy^2+x+1$, $v(x,y)=3x^2y-y^3+y$, $|f(z)|=\sqrt{(x^3-3xy^2+x+1)^2+(3x^2y-y^3+y)^2}$. b) Posto z=x+iy si ha

$$f(z) = \frac{1}{(x+iy)^2 + 1} = \frac{1}{x^2 - y^2 + 1 + 2ixy}$$
$$= \frac{x^2 - y^2 + 1 - 2ixy}{(x^2 - y^2 + 1)^2 + 4x^2y^2},$$

pertanto

$$\begin{split} u(x,y) &= \frac{x^2 - y^2 + 1}{(x^2 - y^2 + 1)^2 + 4x^2y^2} \,, \qquad v(x,y) = -\frac{2xy}{(x^2 - y^2 + 1)^2 + 4x^2y^2} \,, \\ |f(z)| &= \frac{\sqrt{(x^2 - y^2 + 1)^2 + 4x^2y^2}}{(x^2 - y^2 + 1)^2 + 4x^2y^2} = \frac{1}{\sqrt{(x^2 - y^2 + 1)^2 + 4x^2y^2}} \,. \end{split}$$

c) Ricordando che $z - \bar{z} = 2iy$, si ha

$$f(z) = \frac{3x + 3iy}{2iy} = \frac{3}{2} - \frac{3}{2}\frac{x}{y}i;$$

pertanto

$$u(x,y) = \frac{3}{2}$$
, $v(x,y) = -\frac{3}{2}\frac{x}{y}$, $|f(z)| = \frac{3}{2}\sqrt{1 + \frac{x^2}{y^2}}$.

d)
$$u(x,y) = \frac{1}{x^2 + y^2 + 3}$$
, $v(x,y) = 0$, $|f(z)| = \frac{1}{x^2 + y^2 + 3}$.

12. Posto
$$x = \frac{z + \overline{z}}{2}$$
 e $y = \frac{z - \overline{z}}{2i}$, si ha

$$f(z) = \frac{(z+\bar{z})^2}{4} + \frac{(z-\bar{z})^2}{4} + i(z-\bar{z}) + i(z+\bar{z}) - \frac{1}{2}(z+\bar{z})(z-\bar{z})$$

= $\bar{z}^2 + 2iz$.

Figura 1.16. Insiemi Ω_3 , a sinistra, e Ω_4 , a destra , relativi all'Esercizio 9