Fuzzy String Matching in R

(Using fuzzywuzzy, polyfuzz, and difflib)

If you like this video, please subscribe so that I can continue to make content like this.

company_name	location
Apple	Cupertino, California
Google	Mountain View, California
Amazon	Seattle, Washington

name_of_company	NASDAQ_close
Apple	\$174.72
Google	\$2,833.46
Amazon	\$3,295.47

company_name	Location
Apple	Cupertino, California
Google	Mountain View, California
Amazon	Seattle, Washington
	-

name_of_company	NASDAQ_close
Apple	\$174.72
Google	\$2,833.46
Amazon	\$3,295.47

company_name	location
Apple	Cupertino, California
Google	Mountain View, California
Amazon	Seattle, Washington

name_of_company	NASDAQ_close
Apple	\$174.72
Google	\$2,833.46
Amazon	\$3,295.47

company_name	location	NASDAQ_close
Apple	Cupertino, California	\$174.72
Google	Mountain View, California	\$2,833.46
Amazon	Seattle, Washington	\$3,295.47

dataset1 LEFT JOIN dataset2 on dataset1.company_name = dataset2.name_of_company

company_name	location
Apple	Cupertino, California
Google	Mountain View, California
Amazon	Seattle, Washington

name_of_company	NASDAQ_close
Appl	\$174.72
GOOGLE	\$2,833.46
Amazon.com, Inc	\$3,295.47

company_name	location
Apple	Cupertino, California
Google	Mountain View, California
Amazon	Seattle, Washington

name_of_company	NASDAQ_close
Appl	\$174.72
GOOGLE	\$2,833.46
Amazon.com, Inc	\$3,295.47

Enter...

"Fuzzy" string matching!

Often, we want to compare two strings that are referring to the same information, but the two strings are written slightly differently.

This may occur because of...

Typos, or different spellings

company name

Apple

name_of_company

Appl

This may occur because of...

• Differences in capitalizations

company name

Google

name_of_company

GOOGLE

This may occur because of...

Different usages of non-alphanumeric characters

company name

Amazon

name_of_company

Amazon.com, Inc

In cases like these, we can use fuzzy string matching.

Fuzzy string matching

- Sometimes also known as "approximate" string matching
- We can compute a similarity score between two strings

company name

Amazon

name_of_company

Amazon.com, Inc

Similarity Score: 0.5714286

Fuzzy string matching

- Sometimes also known as "approximate" string matching
- We can compute a similarity score between two strings
- The **higher** the score, the more similar the strings

```
company_name
Apple
```

```
name_of_company
Appl
```

Similarity Score: 0.8888889

Just like we can calculate how similar two numeric vectors are, we can determine how similar two strings are.

Levenshtein distance

 The Levenshtein distance is the minimum number of single-character edits (additions, substitutions, or deletions) required to get from one string to the other

The fuzzywuzzy Python package uses the Levenshtein distance (in some cases).

Gestalt Pattern Matching

- Gestalt Pattern Matching (aka Ratcliff/Obershelp Pattern Recognition) produces matches that look more "correct" to the human eye
- Depends on the longest common substring between the two strings

The difflib Python package uses Gestalt Pattern Matching. So does the fuzzywuzzy package (in some cases).

Choosing an algorithm

- There are many different fuzzy string matching algorithms (and more being developed all the time)
- Take into consideration computational time, availability of algorithms in programming languages, etc.

We'll be using a Kaggle dataset. Link in description and on my GitHub!

