Obsah

Obrázky	2
Načítajte data, predspracujte ich, natrénujte jednoduchú site a vyhodnoťte ju:	4
Prezrite si stĺpce v database. Podľa popisu zistite, č isa v jednotlivých stĺpcoch nachá odstráňte ich.	•
Odstráňte stĺpce, ktoré sa nedajú použiť pri ďalšom spracovaní a null hodnoty	5
Nečíselné stĺpce vhodne zakódujte	6
Vytvorte vstupné X a výstupné y dátové množiny. Vo vhodnom pomere rozdeľte dát validačnú a testovaciu množinu	
Dáta správne normalizujte, alebo škálujte	8
Natrénujte jednoduchú neurónovú sieť	10
Natrénovanú sieť vyhodnoťte na trénovacej a testovacej množine:	10
Analýza datasetu pomocou EDA	12
Natrénovanie neurónový sieť	16
Zvoľte architektúru a nastavenia hyperparametrov tak, aby ste dosiahli pretrénovan Demonštrujte pomocou grafov priebehu trénovanie, vyhodnotenia úspešností a kor	fúznej matice.
Odstráňte pretrénovanie tak, že do trénovania zavediete EarlyStopping pre skoré zas	
Zmena Hyperparametrov	21
7hrnutie tretei časti	26

Obrázky

Obrázok 11Hodnoty pred odstránením outlierov (maximum)	4
Obrázok 2Hodnoty pred odstránením outlierov (minimum)	4
Obrázok 3Hodnoty po odstránením outlierov (maximu) Obrázok 4Hodnoty po odstránení	m
outlierov (minimum)	
Obrázok 5 Chýbajúce údaje	5
Obrázok 6 Chýbajúce hodnoty po odstránení	6
Obrázok 7 Typy stĺpcov	6
Obrázok 8 Label encoding	
Obrázok 9 Dummy encoding	7
Obrázok 10 Rozdelenie trénovacie, validačné a testovacie dáta	8
Obrázok 11Histogram pred škálovaním	
Obrázok 12Histogram po škálovaním	9
Obrázok 13 Maximum pred štandardizácie Obrázok 14 Minimum pred štandardizácie	9
Obrázok 15Maximum po štandardizácie Obrázok 16Minimum po štandardizácie	
Obrázok 17Confusion matrix pre testovacie dáta	
Obrázok 18Confusion matrix pre trénovacie dáta	
Obrázok 19MLP accuracy pre trénovacie a testovacie dáta	
Obrázok 20 Graf pre popularity	
Obrázok 21Confusion matrix	
Obrázok 22 Boxplot	
Obrázok 23Scatter plot	
Obrázok 24 Pie plot	
Obrázok 25Strip plot	
Obrázok 26Violin plot	
Obrázok 27Accuracy 1. pokus	
Obrázok 28Loss 1. pokus	
Obrázok 29Konfúzna matica 1. pokus	
Obrázok 30Accuracy 2. pokus	
Obrázok 31Loss 2. pokus	
Obrázok 32Konfúzna matica 2. pokus	
Obrázok 33Test a Train accuracy	
Obrázok 34Accuracy 3. pokus	
Obrázok 35Loss 3. pokus	18
Obrázok 36Kongruenčná matica 3. pokus	
Obrázok 37Test a Train accuracy	
Obrázok 38 Loss a EarlyStopping Obrázok 39Accuracy a EarlyStopping	19
Obrázok 40Early Stopping	
Obrázok 41Konfóuzna matica a Early Stopping	20

Obrázok 42Test a Train accuracy a Early Stopping	20
Obrázok 43Accracy 1. pokus zmena	
Obrázok 44Loss 1. pokus zmena	21
Obrázok 45Konfúzna matica 1. pokus zmena	21
Obrázok 46 Accuracy 2. pokus zmena	22
Obrázok 47Loss 2. pokus zmena	
Obrázok 48Konfúzna matica 2. pokus zmena	22
Obrázok 49 Accuracy 3. pokus zmena	23
Obrázok 50Loss 3. pokus zmena	23
Obrázok 51Konfúzna matica 3. pokus zmena	23
Obrázok 52Accuracy 4. pokus zmena	24
Obrázok 53Loss 4. pokus zmena	24
Obrázok 54Konfúzna matica 4. pokus zmena	24
Obrázok 55 Accuracy 5. pokus zmena	25
Obrázok 56Loss 5. pokus zmena	
Obrázok 57Konfúzna matica 5. pokus zmena	
Obrázok 58Výpis na konci	

Načítajte data, predspracujte ich, natrénujte jednoduchú site a vyhodnoťte ju:

Prezrite si stĺpce v database. Podľa popisu zistite, č isa v jednotlivých stĺpcoch nachádzajú outliery a odstráňte ich.

Min		
danceability	-0.74	Max
energy	0.000197	danceability 8.375
loudness	-47.046	energy 94.1
		loudness 29.422
speechiness	-0.128	speechiness 0.965
acousticness	-0.99	acousticness 0.996
instrumentalness	-0.929	instrumentalness 0.994
liveness	-0.828	liveness 0.997
valence	-0.631	valence 0.995
tempo	0.0	tempo 241.423
duration_ms	-427346.0	duration_ms 1930821300.0
popularity	-43.0	popularity 82.0
number_of_artists	1.0	number_of_artists 19.0
explicit	False	explicit True
dtype: object	. 4 2 3 3	dtype: object
		-1 / 1 1 / /

Obrázok 2Hodnoty pred odstránením outlierov (minimum)

Obrázok 11Hodnoty pred odstránením
outlierov (maximum)

Min		Max
danceability	0.0	danceability 0.975
energy	0.000197	energy 1.0
loudness	-47.046	loudness -0.116
speechiness	0.0	speechiness 0.965
acousticness	0.0	acousticness 0.996
instrumentalness	0.0	instrumentalness 0.994
liveness	0.00967	liveness 0.997
valence	0.0	valence 0.995
tempo	0.0	tempo 241.423
duration_ms	-427346.0	duration_ms 1930821300.0
popularity	0.0	popularity 82.0
number_of_artists	1.0	number_of_artists 19.0
explicit	False	explicit True
dtype: object		dtype: object

Obrázok 3Hodnoty po odstránením outlierov (maximu)

Obrázok 4Hodnoty po odstránením outlierov (minimum)

Outliery museli byť odstránené v nasledujúcich stĺpcoch: danceability, loudness, energy, speechiness, acousticness, instrumentalness, liveness, valence, popularity.

V nasledujúcich riadkov môžeme vidieť ako som to robila.

```
df = df[(df['danceability'] <= 1) & (df['danceability'] >= 0)]
df = df[df['loudness'] <= 0]
df = df[df['energy'] <= 1]
df = df[df['speechiness'] >= 0]
df = df[df['acousticness'] >= 0]
df = df[df['instrumentalness'] >= 0]
df = df[df['liveness'] >= 0]
df = df[df['valence'] >= 0]
df = df[df['popularity'] >= 0]
```

Odstráňte stĺpce, ktoré sa nedajú použiť pri ďalšom spracovaní a null hodnoty

Najprv musela som pozrieť že koľko hodnôt chýba v daných stĺpcov.

*****	* Missing	values	*****
Lenght of dataset:	11727		
danceability	0		
energy	0		
loudness	0		
speechiness	0		
acousticness	0		
instrumentalness	0		
liveness	0		
valence	0		
tempo	0		
duration_ms	0		
popularity	0		
number_of_artists	121		
explicit	0		
name	0		
url	0		
genres	0		
filtered_genres	0		
top_genre	168		
emotion	0		
dtype: int64			

Obrázok 5 Chýbajúce údaje

Odstránila som top_genre lebo tam chýbalo najviac dát s tým spôsobom:

```
df_with_topgenre = df[df['top_genre'].notnull()]
df.drop(columns=['top_genre'], inplace=True)
df.dropna(inplace=True)
```

Po odstránením už nebudú chýbať údaje a krásne vidíme, že už nebude chýbať žiadny dát, viď. Ďalší obrázok.

```
************** Missing values after removing them ***********
Lenght of dataset: 11606
danceability
                 0
energy
                0
loudness
speechiness
                0
acousticness
instrumentalness 0
liveness
                 0
valence
tempo
duration_ms
popularity
number_of_artists 0
explicit
                  0
url
genres
filtered_genres
emotion
dtype: int64
```

Obrázok 6 Chýbajúce hodnoty po odstránení

Nečíselné stĺpce vhodne zakódujte

```
************ Column types *********
danceability
                  float64
energy
                  float64
loudness
                 float64
speechiness
                  float64
acousticness
                 float64
instrumentalness
                 float64
liveness
                  float64
valence
                  float64
                 float64
tempo
duration_ms
                  float64
popularity
                  float64
number_of_artists
                  float64
explicit
                     bool
name
                   object
url
                   object
genres
                   object
filtered_genres
                   object
                   object
emotion
dtype: object
```

Obrázok 7 Typy stĺpcov

Najprv museli sme dozvedieť že jednotlivé stĺpce sú čísla alebo nie. S label encodingom zakódovali sme emotion, lebo je to objekt a ešte to budeme aj ďalej potrebovať. Mohli by sme to isté aj robiť aj pre explicit, name, url, genres, filtered_genress, lebo buď sú objecty alebo je explicit.

```
# Label encoding for emotion
le = LabelEncoder()
df_with_topgenre['labelEncoding'] = le.fit_transform(df_with_topgenre['emotion'])
print("*"*20, "Label encoding", "*"*20)
print(df_with_topgenre[['emotion', 'labelEncoding']].head(10))
emotions df = df with topgenre['emotion']
```

Výstup je nasledovný:

,	**;	*****	***** L	.abel	encoding	******
		emotion	labelEnc	oding	I	
	0	happy		2	2	
	1	happy		2	2	
	2	energetic		1	L	
	3	happy		2	2	
	4	happy		2	2	
	5	energetic		1	L	
	6	happy		2	2	
	7	happy		2	2	
	8	happy		2	2	
•	9	energetic		1		

Obrázok 8 Label encoding

Pre emotional dummy encoding (one-hot) dá taký výstup:

```
*********** Dummy encoding **********
    emotion happy energetic
                             sad
                                  calm
0
           True
                     False False False
      happy
1
      happy
           True
                     False False False
  energetic False
                     True False False
3
      happy
           True
                     False False False
                     False False False
4
            True
      happy
5 energetic False
                      True False False
                     False False False
6
      happy
            True
7
                     False False False
      happy
            True
            True
                     False False False
      happy
9 energetic False
                      True False False
```

Obrázok 9 Dummy encoding

Kód je nasledovný:

```
# Dummy (one-hot) encoding for emotion
df_with_topgenre = pd.get_dummies(df_with_topgenres, columns=['emotion'],
prefix='', prefix_sep='')
df_with_topgenre['emotion'] = emotions_df
myemotions = list(df_with_topgenres['emotion'].unique())
show_columns = ['emotion'] + myemotions
print("*"*20, "Dummy encoding", "*"*20)
print(df with topgenre[show columns].head(10))
```

Vytvorte vstupné X a výstupné y dátové množiny. Vo vhodnom pomere rozdeľte dáta na trénovaciu, validačnú a testovaciu množinu

V prvom rade som vymazal stĺpce, ktoré nebudeme potrebovať, pretože niektoré prvky stĺpcov nie sú čísla, ale iné typy prvkov.

```
df.drop(columns=['explicit'], inplace=True)
df.drop(columns=['name'], inplace=True)
df.drop(columns=['url'], inplace=True)
df.drop(columns=['genres'], inplace=True)
df.drop(columns=['filtered genres'], inplace=True)
```

Hodnoty X a y som nastavil na základe stĺpca emócií nasledovne.

```
X = df.drop(columns=['emotion'])
y = df['emotion']
```

Dáta rozdelila som na trénovaciu, validačnú a testovaciu množinu nasledovne:

```
X_train, X_valid_test, y_train, y_valid_test = train_test_split(X, y, shuffle=True,
test_size=0.2, random_state=42)
X_valid, X_test, y_valid, y_test = train_test_split(X_valid_test, y_valid_test,
shuffle=True, test_size=0.5, random_state=42)
```

X_train: (9284, 12)
X_valid: (1161, 12)
X_test: (1161, 12)
y_train: (9284,)
y_valid: (1161,)
y_test: (1161,)

Obrázok 10 Rozdelenie trénovacie, validačné a testovacie dáta

Dáta správne normalizujte, alebo škálujte

Pred škálovaním histogram vizeralo nasledovne:

Obrázok 11Histogram pred škálovaním

Po škálovaním histogram vizeralo nasledovne:

Histograms after scaling/standardizing

Obrázok 12Histogram po škálovaním

Min		Max	
danceability	0.00000	danceability	9.750000e-01
energy	0.000197	energy	1.000000e+00
loudness	-47.046000	loudness	-1.160000e-01
speechiness	0.00000	speechiness	9.650000e-01
acousticness	0.000000	acousticness	9.960000e-01
instrumentalness	0.000000	instrumentalness	9.910000e-01
liveness	0.009670	liveness	9.970000e-01
valence	0.000000	valence	9.940000e-01
tempo	0.000000	tempo	2.159180e+02
duration_ms	-359471.000000	duration_ms	1.930821e+09
popularity	0.000000	popularity	8.200000e+01
number_of_artists	1.000000	number_of_artists	1.900000e+01
dtype: float64	2.00000	dtype: float64	
acype. I coacoa			10.

Obrázok 13Maximum pred štandardizácie

Obrázok 14 Minimum pred štandardizácie

Min		Max			
danceability	-2.581676	danceability	2.751750		
energy	-1.588970	energy	1.414767		
loudness	-4.190689	loudness	1.484531		
speechiness	-0.544224	speechiness	4.525316		
acousticness	-1.197201	acousticness	1.268677		
instrumentalness	-0.703670	instrumentalness	1.917442		
liveness	-1.013139	liveness	3.672029		
valence	-1.663442	valence	1.924472		
tempo	-3.682719	tempo	3.063932		
duration_ms	-0.041501	duration_ms	67.145569		
popularity	-1.194423	popularity	2.702533		
number_of_artists	-0.559810	number_of_artists	13.569615		
dtype: float64	11007020	dtype: float64			

Obrázok 15 Maximum po štandardizácie

Obrázok 16Minimum po štandardizácie

Štandardizácia v kóde by vyzeralo nasledovne:

```
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_valid = scaler.transform(X_valid)
X_test = scaler.transform(X_test)

X_train = pd.DataFrame(X_train, columns=X.columns)
X_valid = pd.DataFrame(X_valid, columns=X.columns)
X_test = pd.DataFrame(X_test, columns=X.columns)
```

Natrénujte jednoduchú neurónovú sieť

V kóde nastavila som nasledovné veci:

```
print("*"*20, "MLP", "*"*20)
print(f"Random accuracy: {1/len(y_train.unique())}")

clf = MLPClassifier(
   hidden_layer_sizes=(100, 100, 5, 6, 90),
   random_state=1,
   max_iter=100,
   validation_fraction=0.2,
   early_stopping=True,
   learning_rate='adaptive',
   learning_rate_init=0.001,
).fit(X_train, y_train)
Hodnota pre Random accuracy vyšlo: 0.25
```

Random accuracy: 0.25

Natrénovanú sieť vyhodnoťte na trénovacej a testovacej množine:

Confusion matrix pre testovacie dáta bude vyzerať nasledovne:

Obrázok 17Confusion matrix pre testovacie dáta

Že sa nám to podarilo, môžete vidieť aj na obrázku, keďže väčšina prvkov je umiestnená na hlavnej uhlopriečke. Čím viac dominuje žltkastá farba, tým presnejší výsledok sa nám podarilo dosiahnuť.

Confusion matrix pre trénovacie dáta bude vyzerať nasledovne:

Obrázok 18Confusion matrix pre trénovacie dáta

MLP accuracy on train set: 0.9023050409306334 MLP accuracy on test set: 0.8708010335917312

Obrázok 19MLP accuracy pre trénovacie a testovacie dáta

Kód, s ktorým sa mi podarilo dosiahnuť tento výsledok, je nasledovný:

```
y pred = clf.predict(X train)
print('MLP accuracy on train set: ', accuracy_score(y_train, y pred))
cm_train = confusion_matrix(y_train, y_pred)
y pred = clf.predict(X test)
print('MLP accuracy on test set: ', accuracy_score(y_test, y_pred))
cm test = confusion matrix(y test, y pred)
class names = list(le.inverse transform(clf.classes ))
disp = ConfusionMatrixDisplay(confusion_matrix=cm_train,
display_labels=class_names)
fig, ax = plt.subplots(figsize=(10,10))
disp.plot(ax=ax)
disp.ax_.set_title("Confusion matrix on train set")
disp.ax_.set(xlabel='Predicted', ylabel='True')
plt.show()
disp = ConfusionMatrixDisplay(confusion matrix=cm test, display labels=class names)
fig, ax = plt.subplots(figsize=(10,10))
disp.plot(ax=ax)
disp.ax_.set_title("Confusion matrix on test set")
disp.ax_.set(xlabel='Predicted', ylabel='True')
plt.show()
```

Analýza datasetu pomocou EDA

V prvom rade som začal jednoduchým grafom, ktorý je histplot a skúma popularity. Tu ma zaujímalo, aké sú najvyššie a najnižšie čísla.

Ďalej je Correlation Matrix:

Obrázok 21Confusion matrix

Nasledujóuci graf bude typu boxplot. Pomocou tohto grafu skúmam, aké populárne sú jednotlivé kategórie emócií.

Obrázok 22 Boxplot

Scatter plot medzi energy a loudness:

Obrázok 23Scatter plot

Percentuálne zastúpenie hodnôt v emotion:

Percentuálne zastúpenie hodnôt v emotion

Obrázok 24 Pie plot

Strip plot pre emotion pomocou energy:

Obrázok 25Strip plot

Violin plot pre emotion pomocou tempo:

Obrázok 26Violin plot

Natrénovanie neurónový sieť

Zvoľte architektúru a nastavenia hyperparametrov tak, aby ste dosiahli pretrénovanie. Demonštrujte pomocou grafov priebehu trénovanie, vyhodnotenia úspešností a konfúznej matice.

Prvý pokus. Mala som nastavené epochs na 7500, batch_size na 32 a learning_rate na 0.0002

Obrázok 28Loss 1. pokus

Obrázok 27Accuracy 1. pokus

Pri prvom pokuse Confusion matrix on test set dal dobré hodnoty, lebo výrazne vidíme hlavný diagonál. Žltá farba dominuje na hlavnej diagonále, a to znamená že na hlavnej diagonále máme najväčšie čísla, dostali sme dobrý výsledok.

Obrázok 29Konfúzna matica 1. pokus

Pri druhom pokuse mala som hodnoty takto nastavené, že epochs na 5000, batch_size na 32 a learning_rate na 0.02. Nasledované grafy budú oveľa horšie vyzerať ako predošlé.

Obrázok 31Loss 2. pokus

Obrázok 30Accuracy 2. pokus

Pri 2. pikuse konfúzna matica bude ceľkom istá ako pri prechádzajúcej pokuse.

Obrázok 32Konfúzna matica 2. pokus

*************** Test accuracy ***********

Test accuracy: 0.8858

************ Train accuracy ***********

Train accuracy: 0.9039

Pri treťom pokuse mala som hodnoty takto nastavené, že epochs na 2500, batch_size na 42 a learning_rate na 0.001.

Obrázok 35Loss 3. pokus

Obrázok 34Accuracy 3. pokus

Kongruenčná matica bude vyzerať nasledovne:

Obrázok 36Kongruenčná matica 3. pokus

*********** Test accuracy **********

Test accuracy: 0.8755

*********** Train accuracy ***********

Train accuracy: 0.9282

Kód s čím som nastavila jednotlivé premenné je nasleddovné:

```
model = Sequential()
model.add(Dense(24, input_dim=X_train.shape[1], activation='relu'))
model.add(Dense(15, activation='relu'))
model.add(Dense(4, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=0.001),
metrics=['accuracy'])
history = model.fit(x=X_train, y=y_train, validation_data=(X_valid, y_valid),
epochs=2500, batch size=42)
```

Odstráňte pretrénovanie tak, že do trénovania zavediete EarlyStopping pre skoré zastavenie trénovania

Pomocou EarlyStopping môžeme zastaviť trénovanie. Do kódu bolo potrebné pridať iba jeden riadok, ktorý vyzerá takto:

```
earlystopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1,
restore_best_weights=True)
```

V predchádzajúcej úlohe bola definovaná premenná. Musíme túto premennú trochu zmeniť, čo urobíme takto:

```
history = model.fit(x=X_train, y=y_train, validation_data=(X_valid, y_valid), epochs=2500, batch_size=32,callbacks=[earlystopping])
```

Mala som hodnoty takto nastavené, že epochs na 2500, batch_size na 32 a learning_rate na 0.0002.

Plot accuracy

Obrázok 38 Loss a EarlyStopping

Obrázok 39Accuracy a EarlyStopping

Ako môžete vidieť na grafoch, pomocou EarlyStopping sa namiesto 2500 epoch program zastavil na 135 epochách.

Epoch 135: early stopping

Obrázok 40Early Stoppina

Matica zmätku bude v tomto cvičení vyzerať takto:

Obrázok 41Konfóuzna matica a Early Stopping

Na obrázku môžete vidieť aj to, že pomocou Early Stopping sa nám podarilo dosiahnuť celkom dobré výsledky. Je vidieť, že na hlavnej uhlopriečke viac dominuje žltá farba, z toho vieme aj to, že čím vyššie čísla sú na hlavnej uhlopriečke, tak nám vyšiel celkom dobrý výsledok.

************* Test accuracy ***********

Test accuracy: 0.8431

************* Train accuracy ***********

Train accuracy: 0.8615

Obrázok 42Test a Train accuracy a Early Stopping

Zmena Hyperparametrov

	Learning	Epochs	Batch	Train	Test	Early	Počet
	rate		size	accuracy	accuracy	Stopping	neuróny
1. pokus	0.2	2500	32	0.8325	0.8244	12	24+15+4
2. pokus	0.0002	2500	10	0.8779	0.8679	150	24+15+4
3. pokus	0.001	700	50	0.8787	0.8636	100	24+15+4
4. pokus	0.5	100	32	0.2888	0.2992	25	24+15+4
5. pokus	0.1	100	32	0.8485	0.8389	21	24+10+4

Obrázok 44Loss 1. pokus zmena

Obrázok 43Accracy 1. pokus zmena

Obrázok 45Konfúzna matica 1. pokus zmena

Obrázok 47Loss 2. pokus zmena

Obrázok 48Konfúzna matica 2. pokus zmena

Obrázok 50Loss 3. pokus zmena

Obrázok 49 Accuracy 3. pokus zmena

Obrázok 51Konfúzna matica 3. pokus zmena

Obrázok 52Accuracy 4. pokus zmena

Obrázok 54Konfúzna matica 4. pokus zmena

Obrázok 56Loss 5. pokus zmena

Obrázok 55 Accuracy 5. pokus zmena

Obrázok 57Konfúzna matica 5. pokus zmena

Zhrnutie tretej časti

Na základe mojich skúseností som si uvedomil, že čím menší je miera učenia, tým lepšiu hodnotu získame. Ak je teda napríklad miera učenia 0.1, dostanem horší výsledok, ako keď je miera učenia napríklad 0.00001. Zmenil som počet epochs, learning_rate a batch_size, len v poslednom bode to zostalo rovnaké, až na jeden prípad, kedy som zmenil aj počet neurónov.

Mali by sme tiež spomenúť, koľko z toho, čo presne nastavujem pri nastavovaní buniek neurónov. Prvý: 24, input_dim=X_train.shape[1], aktivácia='relu', druhý 15, aktivácia='relu', tretí 4, aktivácia='softmax'. Pri treťom sme to určite museli nastaviť na 4, lebo inak by to nešlo.

Ďalšie nastavenia, ktoré som urobil potom: model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=0.0002), metrics=['accuracy']) a ešte jedno dôležité nastavenie bolo history = model.fit(x=X_train , y=y_vlak, validation_data=(X_valid, y_valid), epochs=100, batch_size=32, callbacks=[earlystopping]). Zmenil som hodnoty v týchto dvoch riadkoch, aby som zistil, čo by bolo najlepšie. V tomto prípade Adam nie je mužské meno, ale z keras.src.optimizers importujeme Adam, súčasť Kerasu.

Ďalej je dôležité spomenúť, že pred ukončením programu napíšem do konzoly nasledovné:

y_test: (1175, 4) y_train: (9377, 4)

Obrázok 58Výpis na konci