

NSG 5075

(NASA-CR-158766) DOCUMENTATION OF A GROUND
HYDROLOGY PARAMETERIZATION FOR USE IN THE
GISS ATMOSPHERIC GENERAL CIRCULATION MODEL
(Connecticut Univ.) 143 p. HC A07/ME A01

N79-27632

Unclass

CSCL 08-H-G3/43 28886

CIVIL ENGINEERING DEPARTMENT

SCHOOL OF ENGINEERING
THE UNIVERSITY OF CONNECTICUT
STORRS, CONNECTICUT

DOCUMENTATION OF A GROUND HYDROLOGY
PARAMETERIZATION FOR USE IN
THE GISS ATMOSPHERIC GENERAL CIRCULATION MODEL

by

J. D. Lin, J. Alfano and P. Bock*

C. E. 79-126

June 1978

* Associate Professor, Graduate Assistant and Professor, respectively.

This research was sponsored by the NASA-Goddard, Laboratory for Atmospheric Sciences, Modeling and Simulation Facility, Greenbelt, Maryland and was carried out through the Institute of Water Resources in the Civil Engineering Department of the University of Connecticut.

PREFACE

This documentation is prepared for the Goddard Modeling and Simulation Program (and others with some familiarity with general circulation modeling) to provide a detailed description of a ground hydrology parameterization that can be used in the Atmospheric General Circulation Model (GCM). The preparation of this documentation is part of an ongoing program involving hydrologists with atmospheric modelers to develop realistic interaction between the ground hydrology and the atmospheric components in the GCM. In 1973 the GISS-GCM was documented by Tsang and Karn (TK). In this version the ground wetness is kept constant according to the particular monthly climatic surface relative humidity values for the globe. The ground wetness parameterizations were subsequently revised by GISS modelers to account for the effects of a variable ground wetness on the atmosphere. However, we have found a serious lack of information about how the parameterizations were developed. Our documentation is based primarily on the ground wetness and related sections of the computer coding (Subroutine COMP35).

This documentation is not intended to be self-contained. The reader should refer to TK for further details.

We have developed an off-line testing program for diagnostic and sensitivity studies of the ground wetness and ground temperature parameterization. As a result, some revisions and refinements of the Ground Hydrology Model (GHM) were incorporated in an off-line version, labeled as UCNI.

TABLE OF CONTENTS

	Page
Preface	1
Table of Contents	ii
<u>PART I</u>	
MODEL DESCRIPTION	
I. Introduction	1
II. Formulation	3
2.1 Ground Hydrology	3
Ground Wetness and Soil Parameters	4
Precipitation	7
Evapotranspiration	7
Surface Storage of Snow and Ice	10
Runout	15
2.2 Ground Temperature	22
2.3 Surface Conditions in the Atmosphere	24
Surface Wind and Stability Condition	25
Heat Flux and Surface Temperature	26
Moisture Flux	27
Solar Radiation	28
III. Description of the Computer Program for the GHM	29
Subroutine COMP35	29
Flow Charts	30
COMP35	30
Step 7 of COMP35	36
Step 14 of COMP35	39

TABLE OF CONTENTS (Cont'd)

PART II

MODEL RESULTS & ANALYSIS

IV.	Off-Line Model (OLM)	43
	Introduction	43
	Differences in Hydrologic Parameterizations	48
	Experiments	51
	Results	51
	Soil Moisture	52
	Surface and Ground Temperature	52
	Potential (ET) and Actual (AET) Evapotranspiration and Their Ratio, β	53
	Summary	53
V.	Description of the OLM Computer Program	69
	OLM Program	69
	Flow Chart	70
	References	80
	Appendix	
	A. Symbols and Notations	
	B. Code Listings - GHM (COMP35) and Off-Line Model (OLM)	

PART I

MODEL DESCRIPTION

I. Introduction

The ground hydrology portion of the Goddard GCM models the moisture transport processes related to the earth's surface that were considered to be important to the GCM. The evaporative, sensible and ground heat fluxes that are calculated in the ground hydrology are the principal terrestrial output parameters for the GCM. The principal input parameters to the GHM from the GCM are precipitation, either in the form of rain or snow, and net solar radiation. In the hydrologic cycle the net change in ground cell moisture levels and surface water storage are generally small for long-term averages; then precipitation, evaporation and runoff are the major components of the moisture balance in the GHM.

The present GHM parameterizations are conveniently divided into the following parts:

- a) ground wetness and soil parameters,
- b) precipitation,
- c) evapotranspiration,
- d) surface storage of snow and ice, and
- e) runoff (moisture which is unavailable for evaporation and for cell moisture changes).

In this documentation all of the above moisture transfer processes are considered. In addition, the effects of ground wetness on the ground temperature, the surface specific humidity and the surface temperature will be treated separately. The discussion focuses on understanding the computational aspects of the GHM and how they affect the flux estimates. This documentation does not attempt to develop an extensive derivation or statement of assumptions for the parameterizations at this time. Although

an attempt has been made to fully understand the current GHM parameterizations we must point out that the presently available supporting documentation for this report was not completely adequate; therefore we made inferences from the GHM computer code.

Contrary to the traditional hydrology model which is based on the approach of drainage basin system, the development of the GHM parameterizations are designed to capture, in a gross manner, the vertical fluxes for a terrestrial cell 4 degrees latitude by 5 degrees longitude. This type of approach or modeling for hydrologic processes like evapotranspiration, runoff, infiltration, etc. is difficult because of the large size of the cell (which requires arbitrary lumping of hydrologic parameters) and the arbitrary divisions of the latitude and longitude slices that generally cut through drainage basins. The fundamental moisture coupling concept is based on the storage capacity of the soil moisture near the surface to satisfy and therefore regulate the actual evaporative demand. The actual evapotranspiration depends on the characteristics of the ground surface, soil moisture level and the potential atmospheric evaporative demand.

The computer programs and the flow chart for the GHM are described in Sec. III. An off-line ground hydrology model (OLM), devised for diagnostic and sensitivity studies, is discussed in Sec. IV. Some results from numerical experiments are also presented in Sec. IV. The computer program description and flow chart for the OLM can be found in Sec. V. Listings of both programs for the GHM and OLM are in Appendix B with symbols and notations described in Appendix A.

II. Formulation

2.1 Ground Hydrology

The present ground hydrology parameterizations are developed for a ground layer of uniform thickness throughout the globe for each cell following essentially the approach outlined in Arakawa (1972). The fundamental ground moisture concept is based on the availability of moisture in soil to satisfy the evaporative demand of the atmosphere either from bare soil surface or from vegetation canopies. The equation of moisture conservation is given by

$$\rho_w S h \frac{\partial w'}{\partial t} = P - E_s - R_o - \rho_w \frac{\partial S_{si}}{\partial t} \quad (2-1-1a)$$

where w' is the ground wetness in [fraction of saturation],

ρ_w is the density of water in [g cm^{-3}],

S is the porosity of soil,

h is the depth of the ground layer in [cm],

P is precipitation in [$\text{g cm}^{-2} \text{s}^{-1}$],

E_s is evapotranspiration from the ground surface in [$\text{g cm}^{-2} \text{s}^{-1}$],

R_o is "runout" of water from the cell in [$\text{g cm}^{-2} \text{s}^{-1}$],

(This is not the conventional hydrologic definition of runoff (Sec 2.1 Runoff))

and S_{si} is the surface storage of snow or ice in [cm].

There are two additional conditions governing the ground wetness:

(i) $0 \leq w' \leq 1$ (2-1-1b)

(ii) $w' = 1, S_{si} > 0$ (2-1-1c)

Certain critical remarks concerning the fundamental concept of the parameterization are necessary at this point. The present formulation of the GHM incorporates the following basic hydrologic assumptions:

1. surface water storage other than snow and ice is negligible;
2. the presence or absence of a ground water table is ambiguous;
3. ground water storage or storage in the aerated zone below the bulk layer is neglected;
4. horizontal moisture fluxes between adjacent ground cells - surface runoff, flow in the unsaturated zone, groundwater flow, deep vertical percolation, etc. - can be either lumped or calculated by a term R_o in (2-1-1a), and
5. the hydrology of individual ground cells are independent of each other, i.e. mass continuity of the horizontal moisture fluxes is not preserved between adjacent cells.

Another major concern of the parameterizations for the GCM is how the actual evapotranspiration, E_s , in (2-1-1a) can be estimated, because E_s also affects the ground temperature and the sensible heat flux (see Sec. 2.2 and 2.3) in addition to the moisture flux balance.

Ground Wetness and Soil Parameters

The ground wetness in the present parameterization is not clearly defined, causing a certain amount of confusion. Inferences had to be made from the specific values assigned to the soil parameters. The depth of the ground layer is not explicitly specified; instead, a maximum amount of water, w_m or WGM, available for actual evapotranspiration is prescribed for two types of soil layer: WGM = 66.4 g for a "composite soil"

and WGM = 4.0 g for a "sandy soil." In addition, an impervious surface is identified by a "ROCK" factor. In reference to UCLA's model [Arakawa, 1972], an amount of 10 g available for actual evapotranspiration was used. Therefore, it appears that WGM in this model is closer to the saturation moisture content than the UCLA's maximum available amount. If we interpret the WGM as the saturation moisture content, then the ground wetness, w' (WET), in this model is defined by volumetric moisture content as a fraction of saturation. We have adopted this definition throughout this documentation. Thus, $w_m = \rho_w Sh$ in (2-1-1a). For the "composite soil," $w_m = 66.4$ g which is equivalent to specifying $S = 0.52$ and $h = 1.28$ m. However, the maximum available moisture of 10 g in UCLA's model has been used as the range over which the actual evapotranspiration is scaled from the potential evaporation by a coefficient β . β is defined as the ratio of actual evapotranspiration to potential evaporation. For the "composite soil," the lower limit of this range is set in the neighborhood of the permanent wilting percentage, PWP (USM) at a ground wetness, w' , of 0.1, while the upper limit has a value of 0.25 which is near field capacity, FC. The available amount of moisture for actual evapotranspiration ($0 \leq \beta \leq 1$) is then $ASM = 0.15 \times 66.4 = 10$ g (=FC-PWP) [Salter and Williams, 1965]. The parameterization for evapotranspiration will be discussed later.

For the "sandy soil", $ASM = 0.065944$ g and $USM = 0.024278$ g, which are consistent with the field capacity and permanent wilting percentage for a sandy loam [Salter and William, 1965]. The value of $w_m = 4.0$ g is not consistent with the parameterization outlined in the preceding paragraph. However, if 4.0 g is intended as the maximum available amount of moisture for a desert region, then the layer thickness should be adjusted according to the porosity of the "sandy soil."

Another important aspect of ground wetness in the model concerns the transformation of the initial values of "ground wetness" from the climate data of Schutz and Gates (1972). The ground wetness is first derived from the surface relative humidity data of Schutz and Gates according to

$$GW = \frac{r_s - 15}{85}, \quad 0 \leq GW \leq 1 \quad (2-1-2)$$

where r_s is the surface relative humidity and GW is the initial "ground wetness" input matrix in the GCM. We cannot find the basis for this transformation. This "ground wetness" is coded as WAT, which is used only for computing the surface relative humidity and the criterion temperature (TK, p. 132). For the ground hydrology, another transformation is carried out according to

$$WET = 0.5 * (0.3 * GW + 0.4) \quad (2-1-3)$$

which reduces the initial "ground wetness" from the range of (0,1) to (0.2, 0.35). Schutz and Gates' surface relative humidity may be considered as a long-term climatic average value which is proportional to the corresponding quantity near or on the ground surface. It is well known that in moist soil the relative humidity in the soil remains high even if the soil moisture content reaches field capacity [Child, 1969]. This implies that the atmospheric relative humidity near the ground becomes less than unity only when the ground wetness falls below the field capacity. Thus, it is reasonable to scale the range of the surface relative humidity data of Schutz and Gates for the ground wetness between the field capacity and the permanent wilting percentage. Since the ground wetness in this model is considered as depth averaged value, the ground wetness on the ground surface could become less than the permanent wilting percentage during an extended drying cycle. Therefore, the range of the ground wetness scale should be somewhat larger than the interval between the field capacity and the permanent wilting

percentage to realistically accomplish the transformation. The upper limit at WET = 0.35 is not unreasonable, but the lower limit at WET = 0.20 should be reduced to a value at or below the permanent wilting percentage.

Precipitation

The precipitation is the primary moisture input in this GHM in the form of rain or snow. The contribution of rain to the ground wetness is by means of the surface infiltration. There is no surface retention of rain water allowed in the model. The surface runoff and seepage are lumped together as the "runout." Snow is first accumulated on the ground surface as a form of surface storage. Whether it will contribute to ground wetness depends on the ground temperature above or below the freezing temperature. Therefore, the melting of snow will affect both the ground wetness and the ground temperature.

Evapotranspiration

The actual evapotranspiration in the GHM is scaled from the potential evaporation by means of a scaling factor, β . The potential evaporation, E_p (PREVAP) in [mm/hr], is given by

$$E_p = \rho_a C_D W_s (q_g^* - q_s) \quad (2-1-4)$$

where ρ_a is the density of air in [gcm^{-3}],

C_D is the drag coefficient,

W_s is the surface wind speed in (ms^{-1}),

q_s is the surface specific humidity at a reference height above the ground surface, and

q_g^* is the ground saturation specific humidity.

The ground saturation specific humidity is a function of the average ground temperature in the diurnal layer. The actual evapotranspiration, E_s (AET), is scaled down from (2-1-4) according to

$$E_s = \beta E_p, \quad 0 < \beta \leq 1. \quad (2-1-5)$$

For ocean, snow and ice, $\beta = 1$. For land, β is a function of ground wetness, soil characteristics, solar angle and the potential evaporation as the following:

$$\beta = (\beta_{\text{plant}} + \beta_{\text{soil}}) * (1 - \text{ROCK}) \quad (2-1-6)$$

where $\beta_{\text{plant}} = 1. - \exp \{ [-0.1 * \text{VPM} * \exp (16.75 * \text{VPM}) / \text{PREVAP}] * \text{PLANT} \}$,

$$(2-1-7)$$

$$\beta_{\text{soil}} = 1. - \exp [-0.01 * \text{VSM} * \exp (16.75 * \text{VSM}) / \text{PREVAP}], \quad (2-1-8)$$

$$\text{VSM} = 2. * \text{WET} * (\text{ASM} + \text{USM}) \quad (2-1-9)$$

and

$$\text{VPM} = 0.1 * \text{VSM} / \text{USM} + 0.2 * \left(\frac{\text{VSM} - \text{USM}}{\text{ASM}} \right) \quad (2-1-10)$$

It has been suggested that the parameterizations of (2-1-7) to (2-1-10) are based on Van Bavel (1966) field study. However we are not able to pin down these relationships quantitatively. Therefore, a study of the range of variation of the above parameters was carried out as follows. The PLANT factor given as a function of solar angle, Z ,

$$\text{PLANT} = \min (1.0, \frac{\cos(Z)}{0.2588}) \quad (2-1-11)$$

is shown in Figure 1. It is interesting to note that for the 32° N Latitude, the ratio of daily maximum solar radiation at the ground between Dec. 21 and June 21 is 0.4 [Koberg, 1962] while the ratio of average PLANT factor derived from Figure 1 is 0.67. Similarly, the ratios for April 21 and August 21 were found to be 0.85 and 0.95, respectively. The comparison indicates that

the PLANT factor based on the solar angle is overestimated based on Koberg. For specified values of E_p and PLANT, the scaling factor β given in (2-1-6) is plotted in Figures 2(a) and (b) for the composite and sandy soil. These figures indicate that β_{plant} dominates the actual evapotranspiration scaling factor. The intent of the specified values of field capacity and permanent wilting percentage in relation to β is not evident from the coded parameterizations. In an attempt to understand the effect of field capacity and permanent wilting percentage values we compared β with the parameterization of agricultural crops and a soil [Monteith, 1975]. This is presented in Figure 3 which shows that the current parameterizations represent a revision of the UCLA values and do not follow conventional agricultural type variations. For $E_p = 0.1 \text{ mm/hr}^{-1}$ or approximately 1.2 mm/day if transpiration is shut off during the night, β in the current model comes closest to the linear variation of the UCLA scaling factor between FC and PWP explained in Arakawa [1972].

In summary we see that the scaling factor for the calculation of actual evapotranspiration is a function of solar angle, E_p , soil type and moisture content and that in a gross sense the family of curves presented in the examples of Figure 3 is consistent with the previous UCLA formulation. However, there exists an inconsistency for the scaling factor in relation to the field capacity and permanent wilting percentage. If a parameterization embodies pertinent soil characteristics such as field capacity and permanent wilting percentage, the scaling factor should approximate the simple rule: a) once ground wetness has exceeded field capacity the actual evapotranspiration rate should approach the potential rate and b) at or below field capacity the scaling factor, β , should fall below 1 and approach zero as the permanent wilting percentage is reached. The parameterization in this model does not follow this rule, tending to scale down the potential rate excessively. If realistic evaporation

fluxes from the model are to be expected the potential rate would have to be significantly higher to compensate for the lower values of the scaling factor β . On the other hand, the value of β is limited by this potential rate in the exponent of (2-1-7) and (2-1-8). Therefore, it appears that the actual evaporation rate is in general underestimated in this model. This may significantly affect the calculation of moisture fluxes as an input to the GCM. See Section IV for further details.

Surface Storage of Snow and Ice

The surface storage in the GHM is in the form of snow, ice or mixed ice and water. There is no surface storage of rain water on the ground surface during or after a rainfall. Thus the absence of surface storage inherently affects the computed values of ground wetness. The storage affects not only the ground wetness but also the ground temperature through transfer of latent heat. The thickness of snow and ice and the fraction of ice in mixed ice and water are updated every time step. The surface storage in the ground wetness equation (2-1-1) and the latent heat transfer term in the ground temperature equation (see Sec. 2.2) are adjusted simultaneously. Again the "ROCK" factor characterizing the impervious surface is appropriately incorporated in the adjustment of the transfer processes.

FIGURE 1. SOLAR ANGLE SCALING FACTOR, PLANT, AS A FUNCTION OF SOLAR ZENITH ANGLE AT 32°N

$$E_p = .1 \text{ mm hr}^{-1} = .1 \text{ cal cm}^{-2} \text{ mm}^{-1}$$

ROCK = 0.0

PLANT = 1.0

$$E_p = 1 \text{ mm hr}^{-1} = 1 \text{ cal cm}^{-2} \text{ mm}^{-1}$$

ROCK = 0.0

PLANT = 1.0

FIGURE 2A. β , EVAPORATION SCALING FACTOR FOR COMPOSITE SOIL

$$E_p = .1 \text{ mm hr}^{-1}$$

ROCK = 0.0, PLANT = 1.0

$$E_p = 1 \text{ mm hr}^{-1}$$

ROCK = 0.0, PLANT = 1.0

FIGURE 2B. β , EVAPORATION SCALING FACTOR FOR DESERT SOIL

GIVEN FOR A-D & A', D':

PLANT = 1.0

ROCK = 0.0

FIGURE 3. EVAPORATION SCALING FACTOR, β , COMPARISONS

Runout

The term, "runout," in the present GHM has a special meaning which is different from the "runoff" conventionally used in hydrology. Runoff is generally considered to be the continuous gravity movement of water on the ground surface and in channels with a characteristic magnitude which should be consistent with the intensity of precipitation, infiltration and topography of the ground surface [Ward, 1975] The runout in this model is divided into two regimes, depending on the relative magnitude of the rainfall rate and the maximum surface infiltration rate. Runout is defined as, in a gross sense, the sum of all outgoing moisture fluxes other than evapotranspiration from a ground cell. In view of the assumption of hydrologically isolated ground cells, the runout moisture neither enters the surrounding cells nor is being stored in a lower ground layer. Therefore, the amount of runout estimated in the model represents the portion of rain or melting snow which cannot contribute to the ground wetness and evapotranspiration. Runout consists of (a) surface runoff, (b) percolation and (c) any excess of moisture above the capacity of the soil layer ($w^t > 1$).

Before calculating the runout, an infiltration rate is first calculated as one half of

$$BBFACT = 2. * FILTF * EXP(-1.75 * (ADINF - 0.5)) \quad \text{in [cm/hh]} \quad (2-1-12)$$

where

$$FILTF = [1.77 * EXP\{-0.036 * (TG - TICE)\} + 0.44562]^{-1} \quad (2-1-13)$$

and

$$ADINF = 1.25 * (2. * WET * 0.2) - 0.5 \quad (2-1-14)$$

where T_G and T_{ICE} are the ground and freezing temperature. $FILT_F$ is a temperature dependent parameter as shown in Figure 4 and $ADINF$ is a function of ground wetness. Both $ADINF$ and $BBFACT$ as a function of ground wetness are shown in Figure 5. However, the physical implications of $ADINF$ and $FILT_F$ are not known at this time. When the rainfall rate exceeds twice the maximum surface infiltration rate ($MSIR$), the excess contributes to the runoff, or

$$RUNOFF = RAIN - .5 * BBFACT \text{ in [cm/hh]} \quad (2-1-15)$$

When the rainfall rate is less than twice the $BBFACT$, the runoff is calculated by

$$RUNOFF = .5 * (RAIN)^2 / BBFACT \text{ in [cm/hh]} \quad (2-1-16)$$

These formulas are shown graphically in Figures 6 and 7. Again, the hydrologic basis for (2-1-15) and (2-1-16) is not known to us.

Given the ground temperature and soil moisture values one can first estimate the $BBFACT$ from Figure 5. Then, for a given rain input one can obtain the runoff by using Figure 6. Soil characteristics or vegetal cover effects are not considered in obtaining runoff values. What are the characteristics values of runoff? The following numerical example will help answer this question. Since typical global soil moisture contents are generally less than field capacity, $WET = .25$ should be a reasonable value for a field capacity or the upper limit of mean soil moisture values. Taking a typical ground temperature, say 20°C , one finds, from Figure 5 a value for the $BBFACT$ of 4.75. In Figure 6 we see the following for $BBFACT = 4.75$:

RAIN [cm/hh]	RUNOFF [cm/hh]
1.0	.1
2.0	.4
3.0	.8
4.0	1.5

A review of the computer output from the GCM indicates that the rainfall rates rarely exceed 1 [cm/hh]. The above table implies that runoff is generally a small part of rain or that the major portion of rain contributes to cell moisture changes. However, a recent study indicates that, on a global scale, the ratio of runoff (which is a part of runoff in GHM) to rainfall over the continent is 0.36 [Baumgartner, 1975]. Finally, runoff versus soil moisture for a given temperature is plotted for various rain values in Figure 7. In the model, the runoff is adjusted for the percentage of ROCK on the surface. The effect of a nonzero value of ROCK is to increase runoff which reduces the surface infiltration rate.

In order to balance (2-1-1a) the runoff is computed according to (2-1-12) through (2-1-16). Two corrections of runoff from the cell are made by (1) limiting the ground wetness to be less than unity as (2-1-1b) and (2) percolation by reducing the ground wetness in an amount of 5% if the ground wetness exceeds half of its maximum value.

In summary, the runoff parameterizations are a function of rain, cell moisture content and temperature. This represents a change over the previous UCLA model which used a linear scaling factor of the cell moisture to obtain a value of runoff. From the numerical example presented above it has been shown that runoff is a small part of rainfall rate and hence plays a minor role in the calculation of cell moisture changes in this model. However,

FIGURE 4. FILTF VERSUS TEMPERATURE

FIGURE 5. ADINF AND BBFACT VERSUS SOIL MOISTURE CONTENT

FIGURE 6: RUNOFF VERSUS RAIN FOR VARIOUS VALUES OF BBFACT AND
RUNOFF VERSUS BBFACT FOR VARIOUS VALUES OF RAIN

FIGURE 7. RUNOFF VERSUS SOIL MOISTURE FOR VARIOUS VALUES OF RAIN

Baumgartner has shown that runoff, which is less than runout, is not negligible; hence the GCM calculations of cell moisture are questionable.

2.2 Ground Temperature

The ground temperature in the GCM has been documented in TK. As the ground temperature is intrinsically coupled with the ground wetness, we intend to discuss only the terms in the ground temperature equation involving the ground wetness. The ground temperature is given by

$$C \frac{\partial T_g}{\partial t} = R_N - F_s - LE_s + Q_m + S_i \quad (2-2-1)$$

where T_g is the ground temperature in the diurnal ground layer [Arakawa and Mintz, 1974] in $^{\circ}\text{K}$,

C is the total heat capacity in $[\text{cal cm}^{-2} \text{ deg}^{-1}]$,

R_N is the net radiation flux at the ground surface positive downward in $[\text{ly day}^{-1}]$,

F_s is the upward flux of sensible heat in $[\text{ly day}^{-1}]$,

LE_s is the upward flux of latent heat in $[\text{ly day}^{-1}]$,

Q_m is the heating or cooling due to conduction through sea ice from the ocean below in $[\text{ly day}^{-1}]$, and

S_i is the transfer of latent heat due to melting of ice or snow or due to freezing of water in $[\text{ly day}^{-1}]$.

The ground temperature equation is discretized with respect to time by an implicit scheme and is updated in the time step before updating the ground wetness. The finite difference equation is given in TK without the term, S_i , as the following:

$$T_g^{n+1} = T_g^n + \frac{n_3 \Delta t [R_N - F_s - LE_s + Q_m + S_i]^n}{C + [\frac{\partial R_N}{\partial T_g} + \frac{\partial F_s}{\partial T_g} + L \frac{\partial E_s}{\partial T_g} - \frac{\partial Q_m}{\partial T_g}]^n} \quad (2-2-2)$$

where the superscripts $n+1$ and n indicate the time step and $n_3 \Delta t$ is the time interval used in the subroutine.

In Equation (2-2-2), the terms, F_s , LE_s , $L \frac{\partial F_s}{\partial T_g}$, S_i and C , involve ground wetness. The latent heat flux, LE_s , or the actual evapo-transpiration, E_s , has been discussed in Sec. 2.1. The sensible heat flux, F_s , will be discussed in Sec. 2.3, because both the ground temperature and the surface temperature are affected by ground wetness. The total heat capacity is defined as

$$C = \left(\frac{c\lambda}{\omega} \right)^{1/2} \text{ in [cal cm}^{-2} \text{ deg}^{-1}] \quad (2-2-3)$$

where c is the specific heat capacity in [$\text{cal cm}^{-3}\text{deg}^{-1}$],

λ is the thermal conductivity in [$\text{cal cm}^{-1} \text{ s}^{-1} \text{ deg}^{-1}$], and

ω is the diurnal frequency in [s^{-1}].

The values of C are given as the following:

$$\text{for ocean } C = \infty \quad (2-2-4a)$$

$$\text{for snow, } C = 2.3 \quad (2-2-4b)$$

$$\text{for ice, } C = 5.1 \quad (2-2-4c)$$

for frost,

$$C = [(0.331 + 0.075w') (2. + 2.5w') * 0.001 * \frac{24 \times 3600}{2\pi}]^{1/2} \quad (2-2-4d)$$

for mixed water and ice,

$$C = [(0.276 + (0.11 + 0.15w') (w' - 0.5w_i)) (1 + w' - 0.25w_i) * .002 * \frac{24 \times 3600}{2\pi}]^{1/2} \quad (2-2-4e)$$

where w_i = the portion of ice in w' = (WET).

For soil, the original UCLA formula, (2-2-4e), with $w_i = 0$ is replaced in the present model by

$$C = [(0.3 + VSM) * (1 + 10. * VSM) * 0.001 * \frac{24 * 3600}{2\pi}]^{1/2} \quad (2-2-4f)$$

where $VSM = 2.0 * WET * (ASM + USM)$, (2-1-9)

ASM = available soil moisture in [% of saturation $\div 100$], and

USM = unavailable soil moisture in [% of saturation $\div 100$].

The proper use of (2-2-4f) requires an appropriate definition of WET . This has been discussed in Sec. 2.1. Therefore, WET in (2-2-4f) is the ground wetness defined in this model despite the fact that the maximum available amount of moisture used in this model is different from UCLA's value.

The transfer of latent heat, S_i , due to melting of ice or snow or due to freezing of water is updated at each time step according to the ground temperature below or above the freezing temperature.

2.3 Surface Conditions in the Atmosphere

The formulation of the atmosphere-ground hydrology interaction depends on parameterization of both the planetary boundary layer (PBL) and ground hydrology. In TK, the boundary layer is taken to be the bottom half of the ninth layer in the GCM and the location of the "surface," the bottom of the ninth layer, with respect to the ground surface is not specified. We shall follow the same approach in this documentation. The atmospheric conditions that are coupled with the ground hydrology are related to the source terms in the governing equations of the GCM (see TK, pp. 7-13); namely,

- (1) the surface wind and stability conditions
- (2) the heat flux
- (3) the moisture flux, and
- (4) the solar radiation.

Most of the discussions in the following paragraphs can be referred to TK (Chapter XI, pp. 109-191).

Surface Wind and Stability Conditions

Since the lower surface of the GCM or PBL is not explicitly specified, we assume that the "surface" is located at the level of anemometer height, say, 8 m from the ground surface. The surface wind components are extrapolated from the values at the n-th and n-1 th layers with respect to their σ coordinates by

$$\frac{u_n - u_{n-1}}{\sigma_n - \sigma_{n-1}} = \frac{u_s - u_n}{\sigma_s - \sigma_n} \quad (2-3-1)$$

where the subscripts n and s refer the quantities to the center of the nth layer and to the "surface" and u is the x-component of wind velocity. The y-component of velocity, v_s , is computed in a similar manner. The magnitude of the surface wind velocity is then

$$w_s = (u_s^2 + v_s^2)^{1/2} \text{ in } [\text{m s}^{-1}] \quad (2-3-2)$$

Special provisions are made for computing wind speeds at the north and south poles. The surface wind affects not only the surface skin friction but also the moisture and heat fluxes on the ground surface. These fluxes depend also on the drag coefficient, C_D . For a neutrally stable atmosphere when the surface temperature, T_s , and ground temperature, T_g , are equal,

$$C_D \equiv C_{D_o} = \min[(1.0 + 0.07 w_s^2)/1000., 0.0025], \text{ for ocean} \quad (2-3-2a)$$

$$= 0.002 + 0.006(Z_s/5000), \text{ for not ocean} \quad (2-3-2b)$$

where Z_s is the ground surface elevation in [m].

In general,

$$C_D = C_{D_0} / [1 - 7.0(T_g - T_s) / W_s^2], \quad T_g < T_s \quad (2-3-3a)$$

$$= C_{D_0} [1 + \sqrt{(T_g - T_s) / W_s^2}], \quad T_g \geq T_s \quad (2-3-3b)$$

These coefficients will be used in the moisture and heat flux computations.

Heat Flux and Surface Temperature

The sensible heat flux on the ground surface is computed according to

$$F_s = C_p \rho_a C_D |W_s| (T_g - T_s) \text{ in } [\text{ly day}^{-1}] \quad (2-3-4)$$

which is coupled to the heat flux in the PBL by the turbulent diffusion equation

$$F_h = -C_p \rho_a K \left. \frac{\partial T}{\partial z} \right|_{PBL} \quad (2-3-5)$$

where ρ_a is the air density in $[\text{g cm}^{-3}]$,

C_p is the specific heat at constant temperature in $[\text{cal g}^{-1} \text{ deg}^{-1}]$, and K is the vertical eddy diffusivity in $[\text{m}^2 \text{ s}^{-1}]$.

The horizontal convergence in the boundary layer and geopotential difference between its top and bottom are neglected, then the surface temperature, T_s , can be computed by equating the above two equations as described in detail in TK. However, we would like to point out one computation directly involving the ground wetness for the temperature gradient, $\left. \frac{\partial T}{\partial z} \right|_{PBL}$, in (2-3-5).

The temperature gradient is given by

$$\left. \frac{\partial T}{\partial z} \right|_{PBL} = \frac{(T_{TB} - T_s) - (T_{TB} - T_s)_{crit}}{(\Delta z)_{PBL}} \quad (2-3-6)$$

$$\text{and } (T_{TB} - T_s)_{crit} = (1 - r_s)(T_{TB} - T_s)_{d.a.} + r_s(T_{TB} - T_s)_{m.a.} \quad (2-3-7)$$

where $(\Delta z)_{PBL}$ is the thickness of the PBL and the subscripts, TB, s, (d.a.) and (m.a.) refer to the top of PBL, the "surface" or the bottom of PBL, dry adiabatic and moist adiabatic, respectively. The relative humidity on the "surface", r_s , is derived from

$$r_s = \frac{2w' r_n}{w' + r_n} , \text{ and } w' = \text{WET} \quad (2-3-8)$$

where w' is the ground wetness (see TK, p. 132). It appears that the ground wetness is treated like the relative humidity on the ground surface in (2-3-8). The relation between the ground wetness and the relative humidity in a soil layer has been discussed in Sec. 2.1. In order to use (2-3-8), the following transformations are made:

$$\text{WAT} = 2. * (1.66667 * 2. * \text{WET} - 0.66667) \quad (2-3-9a)$$

for the "composite soil", and

$$\text{WAT} = 0.2 * (2. * \text{WET} - 0.26909) \quad (2-3-9b)$$

for the "sandy soil." WAT is used as w' in (2-3-8) instead of WET. In a way, it is an inverse transformation of (2-1-3), which changes the ground wetness back to the "initial ground wetness" (Schutz and Gates' surface relative humidity).

On the other hand, the surface specific humidity is computed by another method using (2-3-10) as discussed in the following section.

Moisture Flux

The moisture flux from the ground is equal to the actual evapotranspiration given by (2-1-4) and (2-1-5). In these equations, the surface specific humidity, q_s , is derived by equating the flux in the PBL to the flux from the surface as the following;

$$q_s = \frac{EVACO * q_g^* + EDV * q_n}{EVACO + EDV} \quad (2-3-10)$$

where q_g^* and q_n are the saturation specific humidity at the ground surface and the specific humidity at the 9th level in the GCM. $EVACO = \beta C_{DW_S}$, an evapotranspiration coefficient in (2-1-4) and (2-1-5). $EDV = K/(\Delta z)_{PBL}$, a surface layer eddy coefficient. Physically, (2-3-10) implies a constant moisture flux through the PBL similar to the assumption used in deriving the surface temperature. However, in case of supersaturation, the surface temperature and specific humidity are adjusted to account for the heating effect of condensation and the releasing of moisture (see TK, pp. 135-136).

Solar Radiation

The radiation model in the GCM has not been documented at this time; therefore, it must be referred to the forthcoming documentation. In running the GHM on-line with the GCM or off-line alone, the radiation terms in the ground temperature equation (2-2-1) are treated either as the version given in TK or as input quantities from the GCM output.

III. Description of the Computer Program for the GHM

Subroutine COMP35

The ground hydrology model resides in subroutine COMP35 in the GCM computer program. The function of COMP35 is to evaluate the hydrology related source terms in the governing equations and their effects on the atmospheric motion. It should be noted that COMP35 is different from COMP3 in TK in that the ground hydrology parameterizations were later added. There are 16 steps in COMP35 as in COMP3 as illustrated in the flow chart. Steps 1, 2, 3, 6 and 12 interact directly with the GHM. The major ground hydrology parameterizations are incorporated in Steps 7 and 14. Step 7 deals with the coupled effects of the ground hydrology and the atmosphere on the "surface" temperature and humidity as discussed in Sec. 2.3 and the parameterizations of evapotranspiration for the latent heat flux. In Step 14, the ground temperature is first updated according to the scheme outlined in Sec. 2.2 and then ground wetness change is calculated on the basis of (2-1-1).

FLOW CHARTS

COMP35:

↓

<u>Step 4</u>	
Set Up Vertical Arrays for Some Variables	

Step 4A	HYD01680
Pressures	HYD01770

Step 4B	HYD01780
Temperature & Convective Adjustment	HYD01930

Step 4C	HYD01940
Moisture Variables	HYD02000

↓

<u>Step 5</u>	HYD02170
Vertical Diffusion of Heat & Moisture	HYD02420

↓

<u>Step 6</u>	HYD02430
Saturation Specific Humidity and Specific Humidity	HYD02480

↓

<u>Step 7</u>	HYD02490
Determination of Surface Temperature and Specific Humidity	HYD03960

↓

<u>Step 8</u>	
Contributions of Source Terms at Level Nlay	

Step 8A	HYD03970
Sensible Heat & Evaporation	HYD04160

Step 8B	HYD04170
Surface Skin Friction	HYD04450

<u>Step 9</u>	
Moist Convection	

<u>Step 9A</u>	
Preparation for Moist Convection	COMP3

<u>Step 9B</u>	
Vertical Advection of Moisture	COMP3

<u>Step 9C</u>	HYD02010
Constrain Specific Humidity	HYD02080

<u>Step 9D</u>	
Special Moist Convection for 9 Level Model	COMP3

<u>Step 9E</u>	
Types of Convection	COMP3

<u>Step 9F</u>	
Distribution of CVTP and CVQP	COMP3

COMP35,
STEP 7:

COMP 35,

STEP 14:

PART II

MODEL RESULTS & ANALYSIS

IV. Off Line Model (OLM)

Introduction

The OLM provides a simple and efficient way to test various hydrologic parameterizations without the need for extensive simulation time. The hydrologic parameterizations are assembled in a parallel manner in the OLM and given the following identification:

1. UCNI - a first revision by the University of Connecticut,
2. UCLA - the UCLA Model (Arakawa, 1972; Arakawa & Mintz, 1974),
3. GISSJK - Jack Kornfield's work previously referred to as GHM, and discussed in this text.

UCNI was developed because we felt that a hydrologically consistent model using only simple and well-defined parameterizations was needed for evaluating the existing GHM. UCNI represents our first step in developing a physically realistic multi-layered model. Specifically, the following ideas were incorporated into UCNI:

- a) soil moisture is defined in fraction of saturation;
- b) cell moisture changes are calculated from (2-1-1a) with respect to the amount of water at saturation;
- c) saturation moisture content is a function of given layer depth and porosity of soil type;
- d) the initial soil moisture range is linearly scaled between field capacity (FC) if the surface relative humidity (r_s) equals 100% to permanent wilting point if r_s equals 0;
- e) available soil moisture is the difference between FC and PWP;
- f) evaporation scaling factor, β , varies from unity at FC to 0 near PWP, with plant factor (2-1-11) kept constant at unity regardless of solar angle; and

g) vegetation and soil type may change effective soil layer thickness.

The OLM reads an output or data tape from a previously run GCM experiment with a certain known ground hydrology model. The ground hydrology parameterization generally used in GCM experiments to develop the data tape has been described in TK. Recalling these parameterizations we see the following:

1. $\beta = \text{Min}(1, 2w')$,
2. $0 \leq w' \leq 1$,
3. WGM = 10 g, and
4. w' = initial w' for all time = WET.

The data set the OLM reads every half hour from the GCM data tape is:

1. TAU, the model time in [hr];
2. PC, the surface pressure in [mb];
3. TSC, the surface temperature in [$^{\circ}$ K];
4. SHSC, surface specific humidity [g/g] for first time step the net radiation in [ly/day] for 2 through n time steps;
5. GTC, the ground temperature in [$^{\circ}$ K];
6. GWC, the ground wetness in [% saturation \div 100];
7. UC, the x component of velocity in [m/sec] for levels 7, 8, 9;
8. VC, the y component of velocity in [m/sec] for levels 7, 8, 9;
9. TC, the temperature of air in [$^{\circ}$ K] for levels 7, 8, 9 ; and
10. SHC, the specific humidity in [g] of water vapor/[g] of air for levels 7, 8, 9 .

The ground hydrology model being evaluated calculates the following diagnostic parameters:

1. GW, the ground wetness in [% saturation \div 100];
2. TS, the surface temperature in [$^{\circ}$ K];
3. GT, the ground temperature in [$^{\circ}$ K]; and
4. AET, (formerly E6DT) the evapotranspiration flux in [cm/hh].

With the GCM data tape and subroutines SDET (Solar angle calculation), SURFWD (Surface wind calculation), and RITE (Diagnostic parameters) the OLM simulates an on-line run and calculates the diagnostic variables. At the end of the experiment comparisons between GW, GWC, TS, TSC, GT, GTC and AET, AETC (from UCLA) were made and will be discussed in a later section.

The OLM-UCLA1 and OLM-UCLA2 were incorporated in OLM to calculate the AET flux (actual evapotranspiration, missing on data tape) for the case of variable ground wetness ($GW \neq K$, OLM - UCLA1) and constant ground wetness ($GW = K$, OLM - UCLA2). The recalculation of AETC was also necessary because of the different eddy diffusivity parameterizations used in developing the GCM data tape versus OLM. The TK eddy diffusivity parameterization was used in off-line experiments because it required a substantially smaller data set.

In figure 4-1 a schematic is presented of the parallel hydrology parameterizations in the OLM. The accuracy of the OLM in simulating an on-line calculation can be evaluated by comparing UCLA($GW = K$) with OLM-UCLA1 or OLM-UCLA2. Close agreement between UCLA and OLM-UCLA2 was always found. In particular, Table 4-1 outlines how diagnostic variable comparisons are made for the different hydrologic parameterizations.

GCM with UCLA Formulation and NCAR Eddy Diffusivity (EDNS)

FIGURE 4-1 Schematic of Parallel Model in OLM

TABLE 4-1

Model Diagnostic Parameter Read and Calculation Scheme

GCM Data Tape Variables	TSC	TS	GTC	GT	GWC	GW	AETC	AET
OLM Models								
UCNI	R	C		C		C		C
OLM-UCLA1: UCLA w/GW								
Variable	LOG8:F	R	C	C		C		C
	LOG8:T	R	C	R	C	R	C	C
OLM-UCLA2: UCLA w/GW								
Constant	LOG8:F	R	C	C		C		C
	LOG8:T	R	C	R		R	C	C
GISSJK	R	C		C		C		C
UCLA: GCM Data Tape (LOG8:T) Values w/GW Constant								
	R		R		R		C	

R: Model reads data tape variable every time step

C: Model calculation of this variable will be used for diagnostic purposes

It should be noted that the surface and ground temperature are calculated by the following different schemes:

$$TSC^N \rightarrow TS^{N+1}, TSC^{N+1} \rightarrow TS^{N+2} \dots \text{etc.}$$

$$GTC^N \rightarrow GT^{N+1} \rightarrow GT^{N+2} \rightarrow GT^{N+3} \dots \text{etc.}$$

Thus, TS differences reflect variations during a time step while GT differences represent cumulative effects since second data tape read.

Differences in Hydrologic Parameterizations

In order to understand the significance of the comparisons discussed later we will highlight their differences in this section. First, the UCNI differs from the UCLA parameterizations in the following areas:

- a) initialization of GW,
- b) approach taken in scaling β as a function of GW,
- c) soil water content at saturation, and
- d) definitions of GW and how it changes.

Secondly, the GISSJK parameterization differs from UCNI in the same areas, a) through d) plus the following:

- e) plant factor (effect of solar radiation on β),
- f) volumetric heat capacity, and
- g) runoff.

Among these differences, the principal factors that lead to significant variations in the estimation of the evaporative flux were β and different definitions of changes in GW. Table 4-2 summarizes the differences between these hydrologic parameterizations (UCNI, UCLA, GISSJK).

TABLE 4-2 Comparisons of UCNI, UCLA and GISSJK Parameterization

		UCNI	UCLA	GISSJK
1. Layer Depth	CS SS	100 cm 50 cm	100 cm 100 cm	4 ft (?) 4 ft (?)
2. Porosity	CS SS	.5 .5	? ?	? ?
3. Field Capacity [% Saturation/100]	CS SS	.25 .09	? ?	.25 .09
4. PWP [% Saturation/100]	CS SS	.10 .025	? ?	.10 .024
5. Soil Water Content at Saturation [g/cm ²]	CS SS	50 25	66.6 66.6	66.4 4
6. Available Water [g/cm ²]	CS SS	7.5 1.6	10.0 10.0	10.0 .2
7. GW Initialization	CS SS	$\frac{SRH \text{ (FC-PWP)} + PWP}{100}$ "	$\frac{SRH - 15}{85}$ --	$.5 \left(\frac{SRH-15}{85} \right) .3 + .4$ $\left(\frac{SRH-15}{85} \right) 5.0 + .27$
		[% Saturation/100]	[% Available/100]	[% Saturation/100]
8. Plant (<1)	CS/SS	--	--	Cos z/.2588
9. $\beta(<1) \times (\text{Plant} = 1)$	CS/SS	$\frac{\text{WET-PWP}}{\text{FC-PWP}}$	$2 \times \text{GW}$	Double exponential (see text)
10. C [cal cm ⁻² deg ⁻¹] (GW=0) (GW=1)	CS CS SS	C1 C2 C2	C1 C2 C2	$C1/\sqrt{2(.386/.3)}$ $C2 \times \sqrt{2}$ $C2/\sqrt{3/2}$

TABLE 4-2 Comparisons of UCNI, UCLA and GISSJK Parameterization (cont'd)

	UCNI	UCLA	GISSJK
11. Runoff [g/cm ²]	Rain(.1 + .9(GW) ^{1.5})	Rain(.1 + .9(GW) ^{1.5})	See Text
Examples:			
Rain = .1 [cm/hh]	GW=0 .01 GW=.5 .042 GW=1.0 .1	.01 .042 .1	0 .05 .1
Rain = 1.0 [cm/hh]	GW=0 .1 GW=.5 .42 GW=1.0 1.0	.1 .42 1.0	0 .45 .9
12. EDV [m sec ⁻¹]	TK (1973)	NCAR	TK (1973)

Notations: CS: composite soil; SS: sandy soil

SRH: surface relative humidity

EDV: surface layer eddy coefficient

Experiments

To conduct the OLM experiments a 2 day GCM run (DSNAMES: I719/VRM0, VRH0, VRP0, VRR0, 11/76) was executed from which the input GCM data tape variables, discussed in the introduction, were extracted for the general US surface and neighboring ocean cells for levels 7, 8, 9 of the GCM. The ground surface and ocean cells are shown in Fig. 4-2. This compacted or condensed GCM tape information was then read by the OLM for the following cases:

		US	Globe	Area
Cell Types	1. Dry	(J,I) (4,4)	(J,I) (33,15)	Dry Southwest
	2. Average	(3,6)	(32,17)	Southern Great Plains
	3. Wet	(7,12)	(36,23)	Canada/New England

in combination with the following ground hydrology parameterizations:

UCNI
OLM-UCLA1 (GW≠K constant)
OLM-UCLA2 (GW=K constant)
UCLA (GW=K constant)
GISSJK

These experiments took about 1 minute on IBM 360-50 at the University of Connecticut Research Computer Center while the Amdahl at GSFC took about half this time to execute.

Results

The OLM provided a simple comparison of the various ground hydrology parameterizations that were reviewed in this section. In particular, the following parameters are discussed and summarized:

Soil moisture

Surface and ground temperature

Potential & actual evapotranspiration and their ratio, β .

Soil Moisture

The following comparisons were made about soil moisture levels and variations for various cell cases (see Fig. 4-3 to 4-5):

1. GISSJK moisture levels were significantly higher for all three moisture cases;
2. UCNI and UCLA moisture levels were close in all three moisture cases;
3. OLM-UCLA1 ($GW \neq K$) moisture levels changed significantly for typical ET and rain fluxes; and
4. In general the change of moisture levels was not significant during two day test period. (Therefore longer OLM runs of duration greater than 2 days should be made.)

Surface and Ground Temperature

For temperature comparisons the following assessments were made (see Fig. 4-6 to 4-11):

1. The ground and surface temperature calculations for the UCLA model and UCNI were consistent for all cases with better surface temperature agreement during daylight hours;
2. Temperature predictions were generally in phase for most models and cell types with the exception of GISSJK;
3. The ground and surface temperature were generally higher for GISSJK, sometimes as much as 10°C higher for the different cell types; and

4. The ground temperature for GISSJK demonstrated a phase shift of about 3 hours with a gradual upward drift in magnitude from those of other models.

Potential (ET) and Actual (AET) Evapotranspiration and Their Ratio, β .

The OLM provided the following results related to evaporation rates for the three parameterizations (UCNI, UCLA, GISSJK) (see Fig. 4-12 to 4-14 and Table 4-3):

1. Potential evaporation rates were generally highest for GISSJK for all cell types;
2. The potential evaporation scaling factor, β , was lowest for GISSJK and highest for UCLA for all cell types;
3. The actual evaporation rate was lowest for GISSJK for all cell types; and
4. The UCNI generally predicted values of PE and β that appear reasonable when compared with GISSJK and UCLA models.

Summary

The major findings discussed in previous sections individually will now be summarized collectively:

Different definitions of soil moisture, although significant between models, did not cause major differences in the calculation of AET. This suggests a certain consistency within each model.

Surface and ground temperature results are similar for all models for the range of moisture levels tested with the exception of GISSJK.

Ground temperature difference of +10°C between GISSJK and other models is believed to be due to the underestimation of AET by a factor of 2

or more.

Surface temperature variation of 10°C between time steps had appeared to be due to separate (stable, unstable) parameterizations for the surface layer eddy coefficient. The variations had a deleterious effect on AET when they occurred. When the OLM used the eddy diffusivity in TK, the oscillations were greatly reduced.

Peak AET seems to occur when surface and ground temperatures peak at mid-day.

β as a function of PET&GW in GISSJK led to a "flat" - fairly constant AET for most of the daylight hours. β as a function of GW in UCNI & UCLA produced significant variations of AET during daylight hours. In OLM-UCLA1 with variable ground wetness noticeable changes in β occurred during significant evaporation or precipitation periods.

AET estimates for three different soil moisture levels, wet, average and dry case, were remarkably similar in magnitude for the 2 days. This is due to the compensating factors of a large PET when β is small for the dry case or vice versa for the wet case.

Small negative evaporation rates generally occur during evening hours.

UCNI appears to be a reasonable revision of currently available ground hydrology models.

In conclusion the OLM has provided an efficient way to compare three different hydrology parameterizations. The effects of the differences between these parameterizations on soil moisture and temperature, although not interactive with the GCM, can be readily evaluated. The long-term calculations (greater than 2 days) although not attempted at this time should be conducted later as soon as major revisions are completed and a data tape is available.

NOTE: CIRCLES REPRESENT BOUNDARY BETWEEN US LAND MASS AND OCEAN

FIGURE 4-2 OLM CELL LAYOUT AND US LAND MASS

FIGURE 4-3 SOIL MOISTURE CONTENT FOR DRY CELL

FIGURE 4-4 SOIL MOISTURE CONTENT FOR AVERAGE CELL

FIGURE 4-5. SOIL MOISTURE CONTENT FOR WET CELL

— UCLA (GCM DATA TAPE), — UCNI (RUN #97) - - - GISSJK (RUN #782)

— — — OLM-UCLA 1 (GW \neq K, RUN # 619) and OLM-UCLA 2 (GW = K, RUN #674)

FIG. 4-6 SURFACE AIR TEMPERATURES (TS) FOR DRY CELL

FIG. 4-7 SURFACE TEMPERATURE (TS) FOR AVERAGE CELL

-T9-

— UCLA (GCM DATA TAPE), - - UCNI (#218), - - - GISSJK (#468)

FIG. 4-8 SURFACE AIR TEMPERATURE (TS) FOR WET CASE

— UCLA (GCM DATA TAPE), - - - UCNI (#330), - - - - - GISSJK (K766)

FIG. 4-10 GROUND TEMPERATURE (GT) FOR AVERAGE CELL

— UCLA (GCM DATA TAPE), — UCNI (#218), - - - - GISSJK (#468)

FIG. 4-11 GROUND TEMPERATURE (GT) FOR WET CASE

— UCLA (#322), — UCNI (#97), - - - GISSJK (#468), — 1 — OLM-UCLA 1 (#619), — 2 — OLM-UCLA 2 (#674)

FIG. 4-12 EVAPOTRANSPIRATION FOR DRY CELL

— UCLA (#364), — UCNI (#330), - - - - GISSJK (#766), — 1 — OLM-UCLA 1 (#751), — 2 — OLM-UCLA 2 (#672)

FIG. 4-13 EVAPOTRANSPIRATION FOR AVERAGE CELL

— UCLA (#356), — UCNI (#218), - - - GISSJK (#782), — 1 — OLM-UCLA 1 (#668), — 2 — OLM-UCLA 2 (#731)

FIG. 4-14 EVAPOTRANSPIRATION FOR WET CELL

CELL	RUN #	MODEL	L.O.G 8	$\overline{PET} \sim \frac{2}{3} PE_{max}$ $\overline{PET} [cm/hh]$	GW		$\overline{\beta}$	$\overline{AET} \sim \frac{2}{3} AET_{max}$ $\overline{AET} [cm/hh]$	
					[1] % sat/100	[2] % avail/100		Day 1	Day 2
DRY	97	UCNI	F	.08	.075	.04[1]	.04[1]	.27	.27
	619	OLM-UCLA1	F	.095	.095	.11[2]	.07[2]	.21	.14
	674	OLM-UCLA2	F	.085	.075	.14[2]	.14[2]	.27	.27
	322	UCLA	T	.06	.047	.14[2]	.14[2]	.27	.27
	332	OLM-UCLA2	T	.06	.047	.14[2]	.14[2]	.27	.27
	782	GISSJK	F	.14	.12	.22[1]	.22[1]	.02	.02
	330	UCNI	F	.041	.033	.176[1]	.176[1]	.5	.5
AV	751	OLM-UCLA1	F	.028	.028	.41[2]	.36[2]	.78	.75
	672	OLM-UCLA2	F	.027	.027	.42[2]	.42[2]	.83	.83
	364	UCLA	T	.037	.033	.42[2]	.42[2]	.83	.83
	766	GISSJK	F	.095	.08	.26[1]	.26[1]	.08	.08
WET	218	UCNI	F	.0125	.025	.21[1]	.21[1]	.71	.71
	668	OLM-UCLA1	F	.01	.027	.65[2]	.75[2]	1	1
	731	OLM-UCLA2	F	.01	.02	.65[2]	.65[2]	1	1
	356	UCLA	T	.0125	.025	.65[2]	.65[2]	1	1
	468	GISSJK	F	.01	.0375	.32[1]	.32[1]	.6	.4

NOTE: % sat/100 = (% avail/100) x (FC-PWP) + PWP

TABLE 4 - 3

DAYTIME AVERAGES OF PE, GW, β AND AET VERSUS DRY, AVERAGE AND WET CELL CONDITIONS

V. Description of the OLM Computer Program

OLM Program

The OLM program contains a main section where parallel hydrologic parameterizations are evaluated. The first two subroutines, SDET and SURFWD provide needed information to the main hydrologic section that would normally be available in a GCM run. The third subroutine, RITE contains the bulk of Fortran statements needed for parameter evaluation.

There is a total of 9 steps in the OLM as illustrated in the flow chart. Through step 2, Parameter Specification, the OLM receives the necessary data to simulate an on-line GCM run. The major ground hydrology parameterizations are incorporated in steps 3A, 7 and 14. Steps 7 & 14 are similar to those in COMP35 and discussed in Section III, while step 3A was added to parameterize different soil characteristics.

FLOW CHART

OFFLINE

MODEL

<u>Step 1</u>		
Design of Experiment		

Step 1A		OLM00350
Set Model Logical Parameters		OLM00700
<u>Model Type</u>	<u>Experiment Type</u>	
UCLA	GCM	
UCLAWW	ASSIM	
UCNI	TNPT	
UCNJJJA	LOG8	
UCN II	VALBFG	
	VRP4	
	GDH	
<u>Cell Type</u>		
WETCEL		
AVCELL		
DRYCEL		

Step 1B		OLM00710
Program Constants		OLM00920

Step 1C		OLM00930
Do Loop Parameters for Specific Cell Locations		OLM01220

<u>Step 2</u>	
Parameter Specification	
Step 2A	OLM01240
Variables That Are a Function of Time Step	OLM01330
Step 2B	OLM01340
Data Specification for Initial Runs	OLM01430
Step 2C	OLM01440
Initialization of Cell Variables	OLM01610
Step 2D	OLM01620
Set Sums for All Averages Equal to 0	OLM01700
Step 2E	OLM01710
Initial Data Tape Read	OLM01860
Step 2F	OLM01870
Begin Cell Loop of Model	OLM02390
Step 2G	OLM02400
Do Loop Read	OLM02460
Step 2H	OLM02470
Solar Declination Calculation	OLM02530

HYD01240 - 1260
HYD03000 - 3740

Step 7	
<hr/>	
Step 7A	OLM04580
Initialization	OLM04660
TLE (NLAYPI) = TS(J,I)	OLM04620
<hr/>	
Step 7B	OLM04670
Relative Humidity Scale	OLM04700
<hr/>	
Step 7C	OLM04710
Bulk Aerodynamic Coeff	OLM04760
<hr/>	
Step 7D	OLM04770
Surface Diffusion Coefficient	OLM04810
<hr/>	
Step 7E	OLM04820
Eddy Diffusivity (see TK and NCAR)	OLM05080

T&K:

EDNS = AMIN1(100., ED x EXP (.32 *DTS/WMAGNxx2))

EORIG = EDNS

ZLN = ZLNCO x TLE (NLAYPI) x SP/PS

New EDNS formulation

NCAR w/no countergradient (Used in GCM Data Tape Creation)

NCAR:

EDNS = 10. + 100. *(1-EXP (1200.*((TH(NLAY) - THG)/ZLN)))

Can't use above calculation for TH(9) > THG. Best that can be done offline with data from levels 7, 8 & 9.

Step 7H	OLM05420
Potential Evaporation Using LOG8 Input	OLM05550

Note:

Potential Evaporation Calculation Differences

Offline (Step 7G)

Wet from UCNI or UCLA
Eve from UCNI or UCLA
Step 7F adjust SHLE (10)
where SHLE = $f(EDV, \dots)$
SHG = QSAT (TG,PS)

for LOG8 False:

TG from previous calculation

for LOG8 true:

TG from GCM tape

UCLA (GCM Data Run - Step 7H)

Wet from Data Tape
Eve from UCLA
Step 7F adjust SHLE (10)
where SHLE = $f(EDV, \dots)$
SHG = QSAT(TG,PS)

TG always from GCM data tape

Step 8	OLM05560
Sensible Heat and Evaporation Fluxes	OLM05740
↓	
Step 14	
Ground Update of Moisture and Temperature	

Step 14A	OLM05760
WI Calculation	OLM06050

Step 14B	OLM06060
Ground Temperature Update	OLM06360

Step 14C	OLM06370
Actual Evaporation	OLM06400

Step 14D	OLM06410
Ground Moisture Update	OLM06780

Step 14E	OLM06790
Soil Moisture and Freezing	OLM07220
1 Snow Covered Land	OLM06810
2 Snow Free Land	OLM06890
3 Ice	OLM07150

References

1. Arakawa, A. 1972. Design of the UCLA General Circulation Model. Numerical Simulation of Weather and Climate Tech. Rep. No. 7, Dept. of Meteorology, University of California, Los Angeles.
2. Arakawa, A. and Y. Mintz. The UCLA Atmospheric General Circulation Model. Unpublished notes distributed at UCLA Workshop, 25 March to 4 April, 1974.
3. Baumgartner, A. and E. Richard. The World Water Balance. Elsevier Scientific Publishing Company, N. Y. 1975. (Table 12, p 66)
4. Child, E. C. 1969. An Introduction to the Physical Basis of Soil Water Phenomena. John Wiley & Sons Ltd.
5. Koberg, G. E. Methods to Compute Long Wave Radiation from the Atmosphere and Reflected Solar Radiation from a Water Surface, USGS Professional Paper, 1962.
6. Monteith, J. L. Ed. Vegetation and the Atmosphere. Vol. 1, Academic Press, N.Y., 1975.
7. Salter, P. J. and J. B. Williams. 1965. The Influence of Texture on the Moisture Characteristics of Soils. Journal of Soil Sci., 16:1-15 and 16:310-317.
8. Schutz, C. and W. L. Gates. Global Climatic Data for Surface, 800 mb, 400 mb: January. Rand Rept. R-915-ARPA, November 1971 and July, Rand Rept. R-1029-ARPA, November 1972.
9. Tsang, L. C. and R. KarP. 1973. A Documentation of the GISS Nine-Level Atmospheric General Circulation Model. Computer Sciences Corporation.
10. Van Bavel, C. H. M. et al. Atmospheric and Soil-Plant-Water Relations Studies. Research Report No. 388, U.S. Water Conservation Service, Phoenix, Arizona. July 1966.
11. Ward, R. C. Principles of Hydrology. 2nd ed., McGraw-Hill, N. Y., 1975.

Appendix A

Symbols and Notations

FORTRAN SYMBOL	MEANING	UNITS	PROGRAM LOCATION
ADINF	antecedent soil moisture indicator		HYD 06560
ADDW	water which may enter the soil to be evaporated	cm/hh	HYD 06610 06620
ASM	available soil moisture	% sat	HYD 03040 03090
	.15 - composite soil .066 - sandy soil (desert)		
BBFACT	effective infiltration rate	cm/ΔT=30 min	HYD 06570
BETA2	scaling factor for bare soil evapotranspiration rate (β)		HYD 03310 03660 03730
BETA2P	scaling factor for plant influence on transpiration		HYD 03640
BTA	= BETA2 + BETA2P ($0 \leq BTA \leq 1$)		HYD 03670 03680 03720
BTA2	argument of BETA2 coefficient		HYD 03540
BT2P	argument of BETA2P coefficient for transpiration		HYD 03560 03620
CD	surface drag coefficient		HYD 02140 02150 02160
CZH	$(\frac{\lambda c}{\omega})^{1/2}$, bulk heat capacity	cal/cm ² -deg	HYD 05040 05050 05060
	where λ = thermal conductivity	cal/cm-sec-deg	05090
	c = specific heat	cal/cm ³ -deg	05120
	ω = diurnal angular frequency	1/sec	05150 05160 05270

<u>FORTRAN SYMBOL</u>	<u>MEANING</u>	<u>UNITS</u>	<u>PROGRAM LOCATION</u>
DENOM	storage variable used in ground temp. eq.	ly/day-cm ² -day	HYD05540
DRAW	C _W _D surface wind drag parameter S	m/sec	HYD02690 02700 04000 04010
DRNG	water which is unavailable for ET due to field capacity being exceeded loss of water through percolation when WETR > .5		HYD06090 06670
DRRN	see DRAW		HYD03490 03500
DSHS	$\Delta q_g = q^* - q_g$ saturation specific humidity at the ground minus specific humidity at the ground		HYD03990
DTRBET	$\partial/\partial T_g$ of (evapotranspiration)		HYD03700 03710 05420 05430 05440 05460
DTSI	difference between ground temperature	°C	HYD03480
DTS	T _G - T _S = ΔT_g = difference between ground and surface air temperature	°C	HYD02680
DU	temporary storage variable		HYD02810 02860 02890
DV	temporary storage variable		HYD02830 02870 02910
ECAR	= E6DT/(1-ROCK) (Note: EVE in E6DT is equal to (1-ROCK)·EVE so ROCK affect cancels out in evaporation calculation)		HYD06630

FORTRAN SYMBOL	MEANING	UNITS	PROGRAM LOCATION
E6DT	evaporation rate from soil at grid pt	$\frac{g(H_2O)}{cm^2}$ /AT=30	HYD05950
ETFLX	evaporation flux for diagnostic purposes		HYD05900 05910 05920
EVACO	=EVE·DRAW		HYD03780 03790
EVAL	= 600 , latent heat coeff land 680 " " - snow, frost = 680 + 80WI, FOR MIXWI CONDITION	$\frac{cal}{g(H_2O)}$	HYD05030 05080 00110 00140 00180 00260
EVE	soil surface wetness coeff		HYD02980 03740 03770 03830
EXPTI	argument of evapotranspiration coeff		HYD03530 03550
EXDTR	storage variable		HYD03690
EXPTP	does not permit BT2P to become too large		HYD03630
EXPTS	keeps BTA2 from becoming too large		HYD03650
FILTF	infiltration rate derived from viscosity relation -f(t) only not soil type or antecedent precipitation	cm/AT=30 min	HYD03220 03270
FREEZ	amt of water that freezes or melts (%)		HYD06050 06770 06810
FLDRK			HYD06080
FXTRN	not used		HYD03020 03450

FORTRAN SYMBOL	MEANING	UNITS	PROGRAM LOCATION
GAMCN	$r_s \frac{q}{C_p} (\Delta Z)_{\text{bdy}} \frac{\frac{L}{p} \frac{q^*}{T_s}}{1 + \frac{5418}{C_p} \frac{L}{T^2} \frac{q^*}{s}}$		HYD03360
GAMCN	see GAMC		HYD03360
GAMSN	same as GAMS		HYD03410
GDH	logical variable, if true CD=.5CD		INPUT
GNFLX	variable for diag. purposes		HYD05940
GSW	how often (in hrs) print out will occur		
GT	ground temperature	°K	HYD05570 06920
GW	ground wetness (% sat.) =FLOAT(ISNR) +.5 WETR		HYD01210 01230 01260 01270 01280 01290 01300 01330 01350 01420 01430 01440 01450 01460 06960
IGVET	=13 =21 - dry land, GW = 0 =23 =24 - snow thickness - function of albedo		INPUT
ISNR	integer storage		HYD06200 06950

FORTRAN SYMBOL	MEANING	UNITS	PROGRAM LOCATION
ITC	print variable - allows a portion of J & I cells to be printed when GSW occurs		
IALB	storage for I		HYD01090
PLANT	a variable which decreases transpiration from plants when the solar zenith is greater than 75°		HYD03570 03080 03600
POTALP	precipitation	cm/time step	HYD07080
PREVAP	potential evapotranspiration	<u>mm-g(H₂O)</u> cm ³ -hr	HYD03210 03510
QSAT	saturation specific humidity function	g/g	HYD00890
RADTRM	net radiation term	ly/day	HYD05560 05880
RAIN		cm/hh	HYD06030 06190 06540
RHS	surface relative humidity		HYD02530 02550 02580 02650 02660
RNIT	=RADTRM(6.9 X 10 ⁻⁴) for diagnostic		HYD05890
ROCK	areal fraction devoid of soil, impervious soil	%	HYD03030
ROK(J,I)	same as ROCK		INPUT
RSURF	decimal value for albedo		HYD01520 01550 01560 01570
RSURFF	variable that determines soil type from albedo array		HYD03060 3070

FORTRAN SYMBOL	MEANING	UNITS	PROGRAM LOCATION
RUNOFF	water that does not infiltrate soil col.	cm water $\Delta T = 30 \text{ min}$	HYD06060 06440 06580 06590 06660
RUNOVV	water that runs off impervious area and is unavailable for evapotranspiration		HYD06100 06650
RICH	Richardson No.		HYD02930
SATI	saturation specific humidity		HYD03290 03390
SHG	saturation specific humidity at the ground	g/g	HYD03190
SHLE	sat. specific humidity f(DRAW) " f(BETA2) " f(EVACO)	g/g	HYD03750 03880 03950
SHSATS	sat. specific humidity at the surface air temperature	g/g	HYD03800
SLBEDO	albedo 7 = ocean 14 = land 35 = desert 39 = 40 = snow 50 = snow 70 = snow	.5 cm 1.0 cm 2.0 cm	HYD01500 01490 01510
SMELT	snowmelt	cm/hh	HYD06070 06280 06290
SNFAL	snow fall	cm/hh	HYD06040 06180
SNFLX	sensible heat flux		HYD05860 05870 05930
SNOTEML	storage location		HYD01540

FORTRAN SYMBOL	MEANING	UNITS	PROGRAM LOCATION
SNR	thickness of snow or change	cm or cm/hh	HYD06000 06210 06220 06240 06310 06940 06510
SNR1	snow thickness	cm or cm/hh	HYD06230
TERM1	short wave radiation	ly day ⁻¹	HYD05470
TERM2	sensible heat	cal cm ⁻² day ⁻¹	HYD05480 05490
TERM3	evaporation flux	"	05500 05510
TERM4	sea ice heat flux from ocean	"	05520
TERM5	long wave radiation	"	05530
TGM	=WAT, used for printout of WAT		HYD02640 07040
TGN	used for printout of WAT		HYD07030 07050
TGR	ground temperature	°K	HYD06020 06160 06300 06720 06820 06900
THG	potential temp of air		
TOTALP	model predicted precipitation	m/hh	HYD06170
TPMN	print variable		
UGTC	storage variable		HYD03240

FORTRAN SYMBOL	MEANING	UNITS	PROGRAM LOCATION
USM	unavailable soil moisture (%) .025 sand soil (desert) .1 composite soil Ref. Salter & Williams '64, Table I, p. 312		HYD03050 03100
VALBFG	model control variable		
VIGT	viscosity correction factor		HYD03250 03260
VGTC	centigrade temp. of ground	deg	HYD03230
VPM	composite soil moisture		HYD03180
VP1	% of available soil moisture (temp.stor)		HYD03150 03160 03170
VP2	% of unavailable soil moisture ()		
VSM	total soil moisture	% sat	HYD03140
WAT	soil moisture available for evaporation scaled up	% sat	HYD02590 02600 02610 02620 02630
WET	ground wetness	% sat	HYD01580 01670 04900 04910 05340
WETIT	water available same as WAT	% sat	HYD04880 04890
WETR	amount of water	% sat	HYD05990 06430 06450 06640 06680 06700 06710 06910
WGM	max water holding capacity or sul moist cont at saturation = 2 sandy soil = 2·16.6 composite soil	g/foot soil	HYD03000 03110 03130

FORTRAN SYMBOL	MEANING	UNITS	PROGRAM LOCATION
WI	% of ice in mixed ice and water	%WET	HYD05190 05210 05220 05230 05240 05250 05350 05730 05740
WIR	"	"	HYD06010 06780 06790 06800
WMAG	W_s wind speed at ground	m/sec	HYD02100 02120 02130
WMAGN	"	"	HYD02710 02720
WTER	% of saturation for ground in desert regions	% sat	HYD01240 01250
WTSTO	stores WET	% sat	HYD04870
XRS	used for point out of RHS		HYD03200 07070

Appendix B

Code Listing - GHM & Off-Line Models (OLM)

GHM:

FILE I635TEST SSSCSN A *** GODDARD SPACE FLIGHT CENTER ***

```

SUBROUTINE CCMP3E(J,JCENT,JUP,KON,KCENT,KLP) HYD00010
C HYD00020
CC THIS SUBROUTINE WAS ADDED TO PREVENT CONFE FROM EXCEEDING THE HYD00030
COMPILER LIMIT FOR OPTIMIZATION (CPT=2). IT CONFRIBES THE INNER HYD00040
LOOP OF COMPE. HYD00050
HYD00060
C**** THIS IS COMMON BLOCK CMS1 CREATED MAY 8 74 HYD00070
LOGICAL*4 LFLAG, SFINUP, GDF HYD00080
REAL*4 KAPA, LAT HYD00090
DIMENSION LAT(4E), DXU(4E), DXP(4E), DYL(4E), DYP(4E), SINL(4E), HYD00100
1 COSL(4E), DXYF(4E), F(4E), C(300), C1(300), CLMMY(72) HYD00110
DIMENSION PHIS(4E,72), MAP(4E,2), F2(4E,72) HYD00120
DIMENSION O(72,9,11,4) HYD00130
DIMENSION GT(72,9,11,4) HYD00140
DIMENSION U(72,9,11), V(72,9,11), T(72,9,11), SH(72,9,11) HYD00150
DIMENSION UT(72,9,11), VT(72,9,11), TT(72,9,11), SHT(72,9,11) HYD00160
DIMENSION P(72,11), PT(72,11) HYD00170
DIMENSION PU(72,9,2), PV(72,9,2), PVLP(72,9,2), FUCLD(72,9,2) HYD00180
DIMENSION CONV(72,9), SD(72,9), PIT(72), SC1(9), CCNSP(9) HYD00190
DIMENSION NMSAVE(4E), ALFSAV(4E) HYD00200
DIMENSION PHI(72,9,2), PHICLD(72,9,2), SPA(72,9,2), SFACLD(72,9,2) HYD00210
DIMENSION PU2(72,9,2), PU2CLD(72,9,2) HYD00220
DIMENSION PU3(72,9) HYD00230
DIMENSION US(72,2), VS(72,2), QS(72,2,2), WINDSG(72,2) HYD00240
DIMENSION UFIL(72,9), VFIL(72,9), TFIL(72,9), SHFIL(72,9), FFIL(72) HYD00250
DIMENSION GRLP(4E,72,4) HYD00260
DIMENSION SHS(4E,72), GT(4E,72), GW(4E,72), TOFCC(4E,72), TS(4E,72) HYD00270
C D M M C N HYD00280
* JSP, JNP, TM, NLAY, PTROP, ISTART, JSPE1, JNFN1, FIN, NLAYN1, NLAYF1, HYD00290
* J1, JM, KN, TAUT, IROT, MRDT, TAULTHT, MRCHT, HYD00300
* KR, JAYS(12), INC(11), JSE, JNB, DLAT, DLBN, JTEST, ITEST, HYD00310
* DT, TAU, ITAU, XINT, JDAY, JDAY, TCFDAY, JDATE, JMNTI(2), JYEAR, NSTEP, HYD00320
* NCYCLE, NCONPE, NHOGAN, TAUP, TAU1, TALE, TALE, HYD00330
* PI, GRAV, RGAS, KATA, PSL, ED, FMU, NFLW, FSF, NFCH, RSDIST, SIND, CCSD, HYD00340
* NCRT, NRCCBT, LCBT, PRCJAR, TOTAES, SCX, ISPACE, SOMULT, CLMMY1(5), HYD00350
* IVER, CDF, RHMAX, FCU, SPINLP, MACHIN, HYD00360
* IALTER, NNIN, FTE, PTE2, NIMPTS, SETNN, NIJ, MAXJ, IRANE, IRTYFF, ISS, HYD00370
* SS, IDIAG, PERIOD, ALPHA(4), BETA, GAMMA(4), TIMEQ(4), KTFB, RINFLU, HYD00380
* MODELT, LRAD(16), NMCT, NRAD(16), KTPA, JTATE, CDX, FLAGS(10), HYD00390
* MINI, MAXI, CL, CLMMY2(20), TINT, HYD00400
* XLABEL(20), SIG(20), DSIG(20), SIGE(21), DSIGC(19), HYD00410
* J1PS(11), JNPS(11), J1US(11), JMLS(11), J1F, JNP, J1L, JNL, J1FV, JNPV, HYD00420
* INC, J1PY, J1PN1, JMPY, JMPP1, JMFP1X, J1LX, J1UN1, J1LM1X, JMUX, FINC, HYD00430
* INC2, INCH, HYD00440
* LAT, DXU, DXP, DXU, DYP, S, INL, COSL, DXYF, F, CLMMY, NTAE, FHIS, MAP, F2, HYD00450
* P, Q, PU, PV, FUCLD, PVUP, CONV, PIT, PHICLD, SPA, SFACLD, PU2, HYD00460
* PU2CLD, PU3, PITSF, SC1, NMSAVE, ALFSAV HYD00470
EQUIVALENCE (JSF, C(1)) HYD00480
EQUIVALENCE (P(1,1), C1(1)) HYD00490
EQUIVALENCE (P(1,1), PT(1,1)) HYD00500
EQUIVALENCE (QT(1,1,1,1), G(1,1,1,1)) HYD00510
EQUIVALENCE (O(1,1,1,1), U(1,1,1,1), UT(1,1,1,1)) HYD00520
EQUIVALENCE (O(1,1,1,2), V(1,1,1,1), VT(1,1,1,1)) HYD00530
EQUIVALENCE (O(1,1,1,3), T(1,1,1,1), TT(1,1,1,1)) HYD00540
EQUIVALENCE (G(1,1,1,4), SH(1,1,1,1), SHT(1,1,1,1)) HYD00550

```

FILE 1635TEST1 SSSCSH A *** SCDDARC SPACE FLIGHT CENTER ***

```

EQUIVALENCE (SD(1,1),CONV(1,1)) . . . . . HYD00560
EQUIVALENCE (SD(1,1),CONSP(1)) . . . . . HYD00570
EQUIVALENCE (QS(1,1,1),US(1,1),PU(1,1,1)),(VS(1,1),GS(1,1,2),  

1 FU(1,3,1)) . . . . . HYD00580
EQUIVALENCE (WINDS(1,1),PU(1,5,1)) . . . . . HYD00590
EQUIVALENCE (UFIL(1,1),U(1,1,1)),(VFIL(1,1),V(1,1,1)),  

1 (TFIL(1,1),T(1,1,1)),(SHFIL(1,1),SH(1,1,1)),(PFIL(1),P(1,1)) . . . . . HYD00600
EQUIVALENCE (GRUP(1,1,1),SHS(1,1,1)),(GRUP(1,1,2),GT(1,1)),  

1 (GRUP(1,1,3),GW(1,1,1)),(GRUP(1,1,4),TCFG(1,1)) . . . . . HYD00620
EQUIVALENCE (GRUP(1,1,1),PU(1,7+)),(TS(1,1),L(1,3,6)) . . . . . HYD00630
C**** ARRAYS FOR SPLIT GRID . . . . . HYD00640
LOGICAL J1PL(46),J1UL(46),JMPL(46),JMUL(46) . . . . . HYD00650
INTEGER INCP(46),INCU(46) . . . . . HYD00660
COMMON/SPLIT/ J1PL,J1UL,JMPL,JMUL,INCP,INCU . . . . . HYD00670
C
LOGICAL LAND,OCEAN,ICE,SNOW,MIXW,FFCST,FREC . . . . . HYD00700
COMMON/FACCON/AS(15),RE(16),PL(16),FLE(16),PLK(16),PLKE(16),TL(15) HYD00710
*,TLE(16),TG,TH(15),SHL(15),SFL(16),SHC,CLOUD(15),CCSZ,SC,SG,CXL,HYD00720
* OCEAN,ICE,SNOW,SHSAT(15),GAM(15),RH(15),ESS(15),SSSF(15),RH(15), HYD00730
* HHE(16),HHS(15),CVT(15),CVQ(15),CXDE(15),PREC(15),EXL(15), HYD00740
* COE(15)
COMMON/CMP3CN/TNCFI,DTC3,EDAY,ZENDC,TICE,FN,CTI,CTID,FACE, HYD00750
* GAMFAC,COEF,CCEF1,RSCIN,ROT,P1E0,SNEAR,SNCHS,CCEF1,COEF2, HYD00760
* WMAGSP,WMAGNP,M1,M2,M3,NCL,LCL1,LCL2,STEQ,CP HYD00770
COMMON/GDHYC/ICVET,ITC,GSW,CCN1,CCN2,CCN3,CCN4,CCN5,CCN6,CCN7 HYD00780
COMMON /ALECCM/ RSURF,SLBEDO(46,72),VALEFG,JALB,IALE . . . . . HYD00790
COMMON /SDOT48/ SDOT(46,72,8),MMNXTS . . . . . HYD00800
DIMENSION ROK(46,72) . . . . . HYD00810
COMMON/FOKK/ROK . . . . . HYD00820
INTEGER*2 SLEEC C . . . . . HYD00830
LOGICAL VALBFG . . . . . HYD00840
LOGICAL*4 GWSWCH . . . . . HYD00850
C**** LOGICAL FFAJ . . . . . HYD00860
QSAT(X,Y)=.622*(10.**(9.4051-2303./X))/Y . . . . . HYD00870
GWSWCH=.FALSE.
GWSWCH=AMCD((TAU-TAUI+GSW)/GSW,1.).LT..0001 . . . . . HYD00880
IF(J.GE.34)GWSWCH=.FALSE.
IF(J.LE.16)GWSWCH=.FALSE.
IF(GWSWCH,AND,(J-1+ITC)/ITC*ITC,EQ.J+ITC-1) WRITE(3,2555)
IMINC=IN
DC 809 I=1,IN
      SET THESE QUANTITIES TO ZERO FOR USE IN PREPARING COMP3 TAPE
      WITH SPLIT GRID . . . . . HYD00970
      T(I,1,M2)=C . . . . . HYD00980
      T(I,2,M2)=C . . . . . HYD00990
C
      SET THESE QUANTITIES TO ZERO FOR USE IN PREPARING COMP3 TAPE
      SURFACE FRICTION TERMS . . . . . HYD01000
      P(I,M2)=U(I,1,M2) . . . . . HYD01010
      P(I,M3)=U(I,2,M2) . . . . . HYD01020
      U(I,1,M2)=C . . . . . HYD01030
      U(I,2,M2)=C . . . . . HYD01040
      JALB=J . . . . . HYD01050
      DO 810 "I=INC,IN,INC" . . . . . HYD01060
      IALB=I . . . . . HYD01070
      HACCS=CCSF*CES(ROT+(I-1)*DLON) . . . . . HYD01080
      . . . . . HYD01090
      . . . . . HYD01100

```

FILE T635TEST ESSCSN A *** GODDARD SPACE FLIGHT CENTER ***

```

C*** COSZ=SINL(J)*SINC+CCSL(J)*HACOS          HYD01110
C*** SURFACE CONDITION                      HYD01120
OCEAN=TCPFG(J,I),GT.1.                      HYD01130
ICE=TOPCC(J,I).LT.-9.9E5                      HYD01140
LAND=.NCT.(ICE,CR.OCEAN)                      HYD01150
C*** FRAJ=.NCT.OCEAN,AND.(IGVET,EQ.13)        ****
IF(GW(46,72)-1.C.) 2554;2554,2553          HYD01160
2553 SNOW = LAND,AND.CW(J,I).GT.1.00          HYD01170
IF(IGVET,EQ.24) GO TO 2552                   HYD01180
SNOW = LAND,AND.(CW(J,I).CT.1.C.CR.SLEEDC(J,I).EE.40) HYD01190
IF(SNOW)GW(J,I) = AMAX1(10.5, GW(J,I))      HYD01200
GC TO 2552                                     HYD01210
2554 IF(GW(J,I).LT.(-0.1))GW(J,I) = 1.0       HYD01220
WTER=GW(J,I)*5.00+.2690917958                HYD01230
WTER=.5*WTER                                    HYD01240
IF(LAND) CW(J,I)=.5*(GW(J,I)*.3+.4)          HYD01250
IF(SLBEDC(J,I).EG.35) GW(J,I)=AMIN1(1.,WTER) HYD01260
GW(J,I) = CW(J,I)/2.                          HYD01270
IF(LAND,AND.IGVET,EQ.21)GW(J,I) = C.C        HYD01280
IF(OCEAN) GW(J,I) = 0.50                      HYD01290
IF(IGVET,EQ.24) GC TO 25521                  HYD01300
IF(OCEAN) GO TO 2552                         HYD01310
IF((LAT(J).GE.SNOWN)GW(J,I)=GW(J,I)+INT((LAT(J)-SNOWN)/(LAT(JNP)-HYD01320
* SNOWN)*3.E4)                                HYD01330
IF((LAT(J).LE.SNOWS) GW(J,I) = GW(J,I) + INT((LAT(J)-SNOWS)/(LAT(1)-HYD01340
* -SNOWS)*3.E4)                                HYD01350
* -SNOWS)*3.E4)                                HYD01360
GC TO 2552                                     HYD01370
25521 IF(SLBEDC(J,I).LE.39) GO TO 2552       HYD01380
C*** SNOW THICKNESS IN CMS.=0.5,1.0,2.0 FOR ALBEDOC=40,50,,70 PERCENT. HYD01390
C*** PESIDES HAVING THICKNESS OF 30CMS AT SLBEDC AND FERMANT ICE. HYD01400
C*** WITH MAXM ALBEDO OF 80 PERCENT.          HYD01410
GW(J,I) = 2.00E03 +0.5                        HYD01420
IF(SLBEDC(J,I).LT.50) GW(J,I) = C.00E03+ 0.5 HYD01430
IF(SLBEDC(J,I).LT.70) GW(J,I) = 1.0F03 + 0.5 HYD01440
IF(ICE)CW(J,I) = 30.0E03+C.5                 HYD01450
IF(J,LE.9,ANL,LAND) GW(J,I)=30.0E03+C.5     HYD01460
SNOW = LAND,ANL,CW(J,I).GT.1.01               HYD01470
2552 IF(VALBFG) GC TO 2556                   HYD01480
SLREDO(J,I) = 14                               HYD01490
IF(OCEAN)SLBEDC(J,I) = 7                       HYD01500
IF(SNOW,CR.ICE) SLBEDC(J,I) = 70              HYD01510
2556 PSURF = 0.01*SLEEDC(J,I)                  HYD01520
IF(IGVET,NE.24,CR.GW(J,I).LT.1.01) GC TO 25566 HYD01530
SNCTEM = SORT((CW(J,I)-0.5)/1000.)           HYD01540
RSURF = 0.50*SNCTEM                          HYD01550
IF(SNOTEM.LT.1.)RSURF = RSURF+0.01*SLBEDC(J,I)*(1.-SNCTEM) HYD01560
RSURF = AMIN1(RSURF,0.80)                     HYD01570
25566 WET = AMIN1(1.+(ANOD(GW(J,I),1.)*2))   HYD01580
LAND=LAND,AND.,NOT.SNOW                        HYD01590
MIXWI = GT(J,I).LE.1.1 .AND.(LAND,OR,SNOW)      HYD01600
FROST=LAND,AND.(GT(J,I).LE.TICE).AND.,NCT.MIXWI HYD01610
IF(.NOT.OCEAN) Z=PHIS(J,I)/GRAV             HYD01620
C*** GROUND TEMPERATURE AND WETNESS           HYD01630
IF(OCEAN) TG=TCPFG(J,I)                      HYD01640
IF(.NCT.OCEAN) TG=GT(J,I)                    HYD01650

```

ORIGINAL PAGE IS
OF POOR QUALITY

FILE 1645TEST SSSEN A . *** GEDDARD SPACE FLIGHT CENTER ***

```
IF(MIXWI).TG=TJCF          HYD01660
IF(.NCT,L,AND) WET=1.0      HYD01670
C
C
C**** PRESSURES             HYD01680
SF = P(I,KCENT)           HYD01690
CCLMR=PN/SP                HYD01700
DO 30 L=1,NLAY             HYD01710
PL(L)=SJC(L)*SF+PTROP     HYD01720
PLE(L)=SICE(L)*SP+PTROP   HYD01730
PLK(L)=EXPBYK(PL(L))      HYD01740
PL(NLAY+1)=SP+PTROP       HYD01750
C**** TEMPERATURES AND ADIABATIC ADJUSTMENT   HYD01760
DO 35 L=1,NLAY             HYD01770
TL(L) = T(I,L,KCENT)       HYD01780
DC 40 N=1,3                 HYD01790
DO 40 L=2,NLAY             HYD01800
LN1=L-1                    HYD01810
IF(TL(L-1)/PLK(L-1).GE.TL(L)/PLK(L)) GO TO 40  HYD01820
THETA=(TL(LN1)*DSIG(LN1)+TL(L)*DSIG(L))/(PLK(LN1)*DSIG(LN1)+  HYD01830
* PLK(L)*DSIC(L))          HYD01840
TL(L-1)=THETA*PLK(L-1)    HYD01850
TL(L)=THETA*PLK(L)        HYD01860
40 TH(L-1)=TL(L-1)/PLK(L-1)  HYD01870
TH(NLAY)=TL(NLAY)/PLK(NLAY)  HYD01880
C SAVE CHANGE IN TEMPERATURE CAUSED BY ADIAEATIC ADJUSTMENT HEATING  HYD01890
DO 45 L = 1,NLAY             HYD01900
45 U(I,L,N1) = TL(L)-T(I,L,KCENT)  HYD01910
C**** MCISTURE VARIABLES            HYD01920
DO 50 L=1,NLAY             HYD01930
SHL(L) = SH(I,L,KCENT)      HYD01940
HYD01950
50 CLOUD(L)=0,               HYD01960
CLOUD(NLAY+1)=0,             HYD01970
CLOUD(NLAY+2)=0,             HYD01980
CLOUD(NLAY+3)=0,             HYD01990
C**** ELIMINATE NEGATIVE SPECIFIC HUMIDITY  HYD02000
DO 202 L=2,NLAY             HYD02010
LN1=L-1
IF(SHL(LN1).LT.0.) GO TO 202  HYD02020
SHL(L)=SHL(L)+SHL(LN1)*CSTG(LN1)/DSIG(L)  HYD02030
SHL(LN1)=0,                  HYD02040
202 CONTINUE                 HYD02050
IF(SHL(NLAY).LT.0.) SHL(NLAY)=0.  HYD02060
C**** DRAG COEFFICIENT          HYD02070
IF (J,GT,JSP,AND,J,LT,JNP) WMAG = .5*ECRT(WINDSG(I,JCENT) +  HYD02080
1 WINDSQ(IMINC,JCENT)+WINDSQ(I,JLP)+WINDSG(IMINC,JLF))  HYD02090
IF(J,EQ,JSP) WMAG=WMAGSP  HYD02100
IF(J,EQ,JNP) WMAG=WMAGNP  HYD02110
IF(OCEAN) CD=AMIN1((1.+.07*WMAG)*.CC1.,.CC25)  HYD02120
IF(.NCT,OCEAN) CD=.002+.006*Z/5000.  HYD02130
IF(GDH) CD=C*.5*CD  HYD02140
C**** VERTICAL DIFFERENCE OF HEAT AND MCISTURE  HYD02150
70 LMIN = 2                  HYD02160
C CHANGE THIS FROM *LMIN = NLAYM1*  HYD02170
DC 75 L = 1,NLAY             HYD02180
HYD02190
HYD02200
```

ORIGINALLY PAGE IS
OF POOR QUALITY

FILE 1635TEST SSSCSN A *** GODDARD SPACE FLIGHT CENTER ***

C IF THE VERTICAL DIFFUSION HEATING TERMS TO BE SAVED ON THE COMP3 TAPE
C ARE NOT COMPUTED IN THE CODE THEY WILL DEFAULT TO ZERO
75 U(I,L,M2) = ?
DC 80 L=LNIN,NLAY
LM1=L-1
DTETA=(TH(LN1)-TH(L))* (PLK(LN1)+PLK(L))**.5
DZUP=SP*DSIG(L-M1)*RGAS*TL(LN1)/(FL(LN1)*GRAV)
DZDN=SP*DSIG(L)*RGAS*TL(L)/(FL(L)*GRAV)
FDLE=.2*EFC
TEMP=DTC3*(DSIC(LN1)+DSIG(L))/(DZUF+DZDN)**2
FLE=-2.*EFC*DTETA*TEMP
TL(LM1)=TL(LN1)+FLE/DSIG(LM1)
TL(L)=TL(L)-FLE/DSIG(L)
U(I,LM1,M2) = U(I,LM1,M2)+FLE/DSIG(LN1)

C SAVE VERTICAL DIFFUSION HEATING TERMS
U(I,L,M2) = -FLE/DSIG(L)
TH(LN1)=TL(LN1)/PLK(LN1)
TH(L)=TL(L)/PLK(L)
DSH=SHL(LN1)-SFL(L)
EFL=-2.*EFC*DSIG*TEMP
SHL(LN1)=SHL(LN1)+EFL/DSIC(LM1)

80 SHL(L)=SFL(L)-EFL/DSIG(L)

C*** SATURATION SPECIFIC HUMIDITY
DC 100 L=1,NLAY
SFAT(L)=GSAT(TL(L),PL(L))
GAM(L)=GAMFAC*SFSAT(L)/TL(L)**2
RH(L)=SFL(L)/SFAT(L)

B-5 100 CONTINUE

C*** DETERMINATION OF SURFACE TEMPERATURE
PS=PLE(NLAY+1)
PSK=EXP(EYK(PS))
TLE(NLAYP1)=TS(J,I)
RHS=0.
THG = TS(J,I)/FSK
IF(WET+RH(NLAY).NE.0.) RHS=2.*WET*RF(NLAY)/(WET+RH(NLAY))

C RH SCALE
IF(.NOT.LAND) GO TO 101
RHS=0.
WAT=2.*(1.6666666*2.*WET-.666666666)
IF(SLBEC(j,i).EQ.35) WAT=.2*(2.*WET-.269091795E)
IF(WAT.GT.1.) WAT=1.
IF(WAT.LT.0.) WAT=0.
WAT=WAT*(1.-FOK(J,I))
TGM=WAT
IF(WAT+RH(NLAY).GT.0) RHS=WAT*RF(NLAY)/(WAT+RH(NLAY))
RHS=2.*RHS

101 CONTINUE
DTS=TG-TLE(NLAYP1)
IF(DTS.GE.0.) DRAG=CD*(WMAG+SGPT(DTS))
IF(DTS.LT.0.) DRAG=CD*WMAG*(WMAG*WNAC)/((WMAG*WMAG)-7.*DTS)
WMAGN=1.
IF(DTS.LT.0.) WMAGN=.2*(WMAG+.01)
ZLN=ZLNCC*TLE(NLAYP1)*SP/PS
IF(TH(NLAY).GT.THG) GO TO 110
EDNS = 10.+100.*((1.-EXP(1200.*((TH(NLAY)-THG)/ZLN)))

FILE I635TEST SSSDSN A *** GEDDARD SPACE FLIGHT CENTER ***

```

GC TO 112                                HYD02760
C COMPUTATION OF DIFFUSION COEFFICIENT BETWEEN SURFACE AND LAYER    HYD02770
C *NLAY* WITH NCAR FORMULATION BUT NO COUNTERGRADIENT                  HYD02780
110 IF (J,EG,JSP) GC TO 113                HYD02790
    IF (J,EG,JNP) GC TO 114                HYD02800
    DU = .25*(U(IMINC,NLAY,KUP)-US(IMINC,JLF)+U(I,NLAY,KUF)-US(I,JUP)+HYD02810
    1 U(IMINC,NLAY,KCENT)-US(IMINC,JCENT)+U(I,NLAY,KCENT)-US(I,JCENT)) HYD02820
    DV = .25*(V(IMINC,NLAY,KUP)-VS(IMINC,JLF)+V(I,NLAY,KLP)-VS(I,JUP)+HYD02830
    1 V(IMINC,NLAY,KCENT)-VS(IMINC,JCENT)+V(I,NLAY,KCENT)-VS(I,JCENT)) HYD02840
    GC TO 112                                HYD02850
113 DU = .5*(U(IMINC,NLAY,KUP)-US(IMINC,JLF)+U(I,NLAY,KLF)-US(I,JUF)) HYD02860
    DV = .5*(V(IMINC,NLAY,KUP)-VS(IMINC,JLF)+V(I,NLAY,KLP)-VS(I,JUF)) HYD02870
    GC TO 112                                HYD02880
114 DU = .5*(U(IMINC,NLAY,KCENT)-US(IMINC,JCENT)+U(I,NLAY,KCENT)-      HYD02890
    1 US(I,JCENT))
    DV = .5*(V(IMINC,NLAY,KCENT)-VS(IMINC,JCENT)+V(I,NLAY,KCENT)-      HYD02910
    1 VS(I,JCENT))
118 RICH = GRAV*((TH(NLAY)-THC)/ZLN)/(TG*((DL/ZLN)**2+(DV/ZLN)**2+      HYD02930
    1 1.E-12))
    EDNS = 17.0/(1.0+4.0*RICH)+2.0                               HYD02940
112 CONTINUE                                HYD02950
    EDV=EDNS/ZLN                                         HYD02960
    EVE=AMIN1(1.0,2.0*WET)                                HYD02970
C*** **** * NEW BETA FOR GR. EVAPORATION **** *                         HYD02980
    WGM=2.0*16.6666                                         HYD02990
    IF(SLREDC(J,I).LT.10) GO TO 102                          HYD03000
    FXTPN=1                                              HYD03020
    RCKK=ROK(J,I)                                         HYD03030
    ASM=.15                                             HYD03040
    USM=.10                                             HYD03050
    RSURFF=(SLBEDG(J,I)*.01-.35)                           HYD03060
    RSUPFF=ABS(RSURFF)                                     HYD03070
    IF(ABS(RSURFF).GT..01) GO TO 6415                      HYD03080
    ASM=.065944                                         HYD03090
    USM=.024278                                         HYD03100
    WGM=2.0                                              HYD03110
6415 CONTINUE                                HYD03120
    WGM=WGM*2.0                                         HYD03130
    VSM=2.0*WET*(ASM+USM)                                 HYD03140
    VP1=AMAX1(0.0,(2.0*WET*(ASM+USM)-LSN)/ASN)          HYD03150
    VP2=AMIN1(1.0,(2.0*WET*(ASM+USM))/LSN)              HYD03160
    VF2=AMAX1(0.0,VP2)                                    HYD03170
    VPM=.1*VP2+.2*VF2                                    HYD03180
    SHG=QSAT(TG,FS)...                                  HYD03190
    XRS=0.0                                              HYD03200
    PREVAP=0.0                                         HYD03210
    FILTF=1.0                                            HYD03220
    VGTC=GT(J,I)-TICE                                    HYD03230
    UGTC=1.7625*EXP(-.036*VGTC)+.44562                 HYD03240
    VIGT=1.0/UGTC                                         HYD03250
    IF(VGTC.LT.0) VIGT= 1.0E-21                         HYD03260
    FILTF=FILTF*VIGT                                     HYD03270
    SHLE(NLAYP1)=(DRAW*SHG+EDV*SHL(NLAY))/(DRAW+EDV)     HYD03280
    SATI=QSAT(TLE(NLAYP1),PS)                            HYD03290
102 CONTINUE                                HYD03300

```

FILE 1635TEST SSSCSN A *** GODDARD SPACE FLIGHT CENTER ***

```

PETA2=1 HYD03310
IF(LAND,AND,.NCT,SNOW)GO TO 1234 HYD03320
GC TC 1235 HYD03330
1234 CONTINUE HYD03340
TEMP=SATI/TLE(NLAYP1) HYD03350
GAMCN=ZLN*RHS*9.8*(1.-(1.+CLH*TEMP/KAPA)/(1.+GANFAC*TEMP/ TLE(NLAYP1)))*KAPA/RGAS HYD03360
TNEH=(CRAW*TC+ECV*(TH(NLAY)*PSK-GANCA))/(CRAW+ECV) HYD03370
SATI=CSAT(TNEH,FS) HYD03380
IF(SHLE(NLAYF1),LE,SATI) GO TO 6120 HYD03390
GAMSN=GAMFAC*SATI/TNEH**2 HYD03400
TEMP=(SHLE(NLAYF1)-SATI)/(1.+GANSN) HYD03410
TNEH=TNEH+TEM*CLF HYD03420
SHLE(NLAYF1)=SHLE(NLAYP1)-TEMP HYD03430
FXTRN=1./EETA2 HYD03440
6120 CONTINUE HYD03450
RHOS=FS/(FGAS*TNEH) HYD03460
DTSI=.5*(DTS+TG-TNEH) HYD03470
IF(DTSI.GE.0.) DRRN=CC*(WNAG+SCRT(DTSI)) HYD03480
IF(DTSI.LT.0.) DRRN =CD*WNAG*(WNAG*WNAG)/((WNAG*WNAG)-7.*DTSI) HYD03490
PREVAP=DRRN*RHCS*100.* (QSAT(TG,FS)-SHLE(NLAYF1))*2E00. HYD03500
IF(PREVAP.LE.0.) GO TO 1235 HYD03510
EXPTI=AMIN1(170.,16.75*VSM) HYD03520
ETA2=.01*VSM*EXP(EXPTI)/PREVAP HYD03530
EXPTI=AMIN1(170.,16.75*VPM) HYD03540
BT2P=.10*VPM*EXP(EXPTI)/PREVAP HYD03550
PLANT=AMIN1(1.,CCSZ/.25EE) HYD03560
IF(COSZ.LT.0) PLANT=0. HYD03570
IF(RSURFF.GT..01) GO TO 4000 HYD03580
PLANT=1. HYD03590
4000 CONTINUE HYD03600
BT2P=PLANT*BT2P HYD03610
EXPTP=AMIN1(170.,BT2P) HYD03620
PETA2P=1.-EXP(EXPTP) HYD03630
EXPTS=AMIN1(170.,BTA2) HYD03640
PETA2=1.-EXP(EXPTS) HYD03650
BTA=BETA2+BETA2P HYD03660
IF(BTA.GT.1.) ETA=1. HYD03670
EXTDR=(EXPTS*EXP(EXPTS)+EXPTP*EXP(EXPTP)) HYD03680
DTRBET=(1.-RCCK)*EXTDR HYD03690
IF(BTA.GT.,999)DTRBET=0. HYD03700
PTA=(1.-ROCK)*ETA HYD03710
PETA=PTA HYD03720
EVE=BETA2 HYD03730
EVE=BETA2 HYD03740
SHLE(NLAYF1)=SHL(NLAY)-BETA2*( SHL(NLAY)-SHLE(NLAYF1))*FXTRN HYD03750
1235 CONTINUE HYD03760
EVE=1. HYD03770
EVACO=EVE*DRAW HYD03780
EVACO=AMAX1(EVACO,1.E-40) HYD03790
SHSAT=CSAT(TLE(NLAYP1),FS) HYD03800
SHG=QSAT(TG,FS) HYD03810
REW BETA CONTINUED ... HYD03820
EVE=BETA2 HYD03830
TEMP=SHSATS/TLE(NLAYP1) HYD03840
GAMC=ZLN*RHS*9.8*(1.-(1.+CLH*TEMP/KAPA)/(1.+GANFAC*TEMP/ HYD03850

```

B7

C

FILE I635TEST ESSCSN A *** GODDARD SPACE FLIGHT CENTER ***

```

* TLE(NLAYP1)))*KAPA/RGAS          HYD03860
TLE(NLAYP1)=(DRAW*TG+EDV*(TH(NLAY)*FSK-GAMC))/(CFAN+EDV)  HYD03870
SHLF(NLAYP1)=(EVAC0*SHG+EDV*SHL(NLAY))/(EVACC+ECV)        HYD03880
SHSATS=GSAT(TLE(NLAYP1),PS)          HYD03890
IF(SHLE(NLAYP1).LE.SHSAKS) GO TO 120  HYD03900
GAMS=GAMFAC*SHSATS/TLE(NLAYP1)**2    HYD03910
TEMP=(SHLE(NLAYP1)-SHSATS)/(1.+GAMS)  HYD03920
TLE(NLAYP1)=TLE(NLAYP1)+TEMP*CLH     HYD03930
C**** IF(FHAJ)TLE(NLAYP1)=TLE(NLAYP1)-.7E*TEMP*CLH   ****
SHLF(NLAYP1)=SHLE(NLAYP1)-TEMP      HYD03940
120 RHOS=PS/(FGAS*TLE(NLAYP1))      HYD03950
HYD03960
C**** SFNSIBLE HEAT (LY/DAY) AND EVAPORATION (CM/CM**2/SEC)  HYD03970
DTS=.5*(DTS+TG-TLE(NLAYP1))        HYD03980
DSHS=SHG-SHLE(NLAYP1)              HYD03990
IF(DTS,CE,0.) DRAW=CD*(WMAG+SQRT(DTS))  HYD04000
IF(DTS,LT,0.) DRAW=CD*WMAG*(WMAG*WMAG)/((WMAG*WMAG)-7.*DTS)  HYD04010
FSURF=CCEFS*RHCS*DRAW/SP          HYD04020
TL(NLAY)=TL(NLAY)+FSURF*DTS      HYD04030
HYD04040
C**** CCN1 = TH(NLAY)*PSK-GAMC
CCN2 = DRAW*TG
IF(IGVET.EQ.13) TL(NLAY) = TL(NLAY) + FSURF*DTS*C.5  HYD04050
HYD04060
C SAVE CHANGE IN TEMPERATURE IN LAYER 'NLAY' CAUSED BY SURFACE  HYD04070
C INTERACTION HEATING           HYD04080
V(I,S,N2) = FSURF*DTS            HYD04090
IF(IGVET.EQ.13) V(I,S,N2) = V(I,S,N2) + FSURF*DTS*C.5  HYD04100
HYD04110
C SAVE EVAPORATION IN MM H2O       HYD04120
P(I,N1) = FSURF*EVE*DSHS*100.*DSIC(NLAY)*SP/GRAV  HYD04130
C**** IF(FHAJ)P(I,N1)=.25*P(I,M1)  ****
TH(NLAY)=TL(NLAY)/PLK(NLAY)        HYD04140
SHL(NLAY)=SHL(NLAY)+FSURF*EVE*DSHS  HYD04150
HYD04160
C**** IF(FHAJ)SHL(NLAY)=SHL(NLAY)-.7E*FSLRF*EVE*DSHS  ****
IF(SHL(NLAY).LT.0.) SHL(NLAY)=0.  HYD04170
HYD04180
C SAVE EVAPCRATION AND SENSIBLE HEAT FLUX FOR OCEAN(LY/DAY)  HYD04190
IF(.NCT,OCEAN) GO TO 122
EVAL=600.
HYD04200
HYD04210
TEMP=10.*DRAW*RHOS*SDAY
V(I,3,N3)=EVAL*EVE*TEMP*DSHS
V(I,4,N3)=CE*TEMP*DTS
HYD04220
HYD04230
HYD04240
HYD04250
C SAVE PRECIPITABLE WATER VAPOR(G/CM**2)
122 PRECWV=0.
HYD04260
DO 123 L=1,NLAY
123 PRECWV=PFCWV+SHL(L)*DSIC(L)  HYD04270
V(I,1,M3)=SP*PRECWV*10./GRAV  HYD04280
FSURFO=.25*FSURF
HYD04290
CC 140 K=1,2
HYD04300
IF(J.EQ.JSP) CC TO 135
G(I,NLAY,KCENT,K) = Q(I,NLAY,KCENT,K)-FSLRFG*QS(I,JCENT,K)  HYD04310
P(I,M1+K) = P(I,M1+K) + FSLRFO*GS(I,JCENT,K)  HYD04320
Q(IMINC,NLAY,KCENT,K) = Q(IMINC,NLAY,KCENT,K) - FSLRFG*  HYD04330
1 GS(IMINC,JCENT,K)
P(IMINC,M1+K) = P(IMINC,M1+K) + FSLRFG*QS(IMINC,JCENT,K)  HYD04340
135 CCNTINUE
HYD04350
IF(J.EQ.JNP) GC TC 140
Q(I,NLAY,KUP,K) = Q(I,NLAY,KUP,K)-FSURFC*GS(I,JLP,K)  HYD04360
HYD04370
HYD04380
HYD04390
HYD04400

```

ORIGINAL
OF POOL
QUALITY

FILE I635TEST SSSCSN A ***.GCDDARD SPACE FLIGHT CENTER ***

```

    U(I,K,M3) = L(I,K,M3) + FSURFC*GS(I,JLF,K)           HYD04410
    Q(IMINC,NLAY+KUP,K) = Q(IMINC,NLAY,KUF,K)-FSURFC*GS(IMINC,JUF,K)   HYD04420
    U(IMINC,K,M3) = U(IMINC,K,M3) + FSLFFC*GS(IMINC,JUF,K)           HYD04430
  140 CONTINUE
    SOOT(J,I,3)=TOTALP+SDOT(J,I,3)                         HYD04440
    C**** ELIMINATE NEGATIVE SPECIFIC HUMIDITY             HYD04450
    GO 410 L=2,NLAY
    LM1=L-1
    IF(SHL(LM1),GE,0.) GO TO 410                         HYD04460
    SHL(L)=SHL(L)+SHL(LM1)*DSIG(LM1)/DSIG(L)            HYD04470
    SHL(LM1)=C.                                            HYD04480
  410 CONTINUE
    IF(SHL(NLAY),LT,0.) SHL(NLAY)=C.                      HYD04490
    IF(SHLE(NLAYF1),LT,0.) SHLE(NLAYF1)=C.                HYD04500
    C**** RADIATION SUBROUTINES                           HYD04510
    IF(NFLW,EG,0) GC TO 420                               HYD04520
    IF(.NOT,FLAGS(1)) GO TO 420                          HYD04530
    XDAY=FLCAT(JDAY+62)
    XLAT = (J-.5*(JSP+JNP))*DLAT*180./PI
    LATD = XLAT + .5
    CALL SOLAR1(NLAY,XDAY,XLAT)
    DSAREA = CXYP(J)*RSQIN
    IF(COSZ,GT,.01) PROJAR = PROJAR+DSAREA*CCSZ
    TDSABS = SG
  412 CC 412 L = 1,NLAY
    TDSABS = TDSABS+AS(L)
    TOTABS = TOTABS+TDSABS*DSAREA
    CALL LINKFO(NLAY,NFLW,JDAY,LATD)
    C SAVE SOLAR RADIATION INCIDENT ON TOP OF ATMOSPHERE(LY/DAY)
    C**** V(I,5,M3)=SOX*CCSZ ****CLC CARD REPLACED,*****
    V(I,5,M3)= ANAXI(0.,SOX*CCSZ)                         HYD04670
    C SAVE SOLAR RADIATION ABSORBED BY ATMOSPHERE(LY/DAY)
    V(I,6,M3)=TCSAES-SG
    C SAVE SOLAR RADIATION ABSORBED BY GROUND(LY/DAY)
    V(I,7,M3)=SG
    C SAVE NET LONG-WAVE RADIATION AT TOP OF MODEL ATMOSPHERE(LY/DAY)
    V(I,8,M3)=RE(1)
    C SAVE NET LONG-WAVE RADIATION AT GROUND(LY/DAY)
    V(I,9,M3)=RE(NLAYF1)
    SHS(J,I)=SG-RE(NLAYF1)
    C * * * SAVE WIND MAGNITUDE
    V(I,9,11)=WNAG
    C
    C**** PREDICTION OF CLOUD CONDITION
    420 CONTINUE
    C NEW
    WTSTD=WET
    WETIT=WET*3.33333333-.66666666
    WETIT=2.*WETIT
    WET=ANIN1(1.,WETIT)
    IF(WET,LT,0.)WET=C.
    C SET DEFAULTS FOR CONP3 TAPE
      V(I,5,M2) = C.
      V(I,6,M2) = C.
      V(I,7,M2) = C.

```

FILE 1635TEST SSSDSN A *** GODDARD SPACE FLIGHT CENTER ***

```

V(I,E,M3) = C,
T(I,3,M2) = C,
IF(OCEAN) GO TO 690                                HYD04960
IF(SNOW) GO TO 610                                 HYD04970
IF(ICE) GC TC 620                                  HYD04980
IF(FROST) GO TC 630                               HYD04990
IF(MIXWI) GO TC 640                               HYD05000
EVAL=60C.                                         HYD05010
CZH=SQRT((.3E6+.15*WET)*(1.+WET)*2.E-3*SDAY/TWCPI) HYD05020
CZH=SQRT((.3+VSM)*(1.+10*VSM)*1.0E-03*SDAY/TWCPI) HYD05030
CZH=CZH*(1-RCCK)+FOCK*.7                         HYD05040
GC TO 650                                         HYD05050
610 EVAL=68C.                                     HYD05060
CZH=2.3                                         HYD05070
GC TO 650                                         HYD05080
620 EVAL=68C.                                     HYD05090
CZH=5.1                                         HYD05100
GC TO 650                                         HYD05110
630 EVAL=68C.                                     HYD05120
CZH=SQRT((.321+.075*WET)*(2.+2.5*WET)*1.E-3*SDAY/TWCPI) HYD05130
CZH=CZH*(1-RCCK)+.7*ROCK                         HYD05140
GC TO 650                                         HYD05150
640 EVAL=68C.                                     HYD05160
WI=GT(J,I)                                       HYD05170
WI                                         HYD05180
WI=2.*WI                                         HYD05190
WI=WI*1.566666666-.666666666                      HYD05200
WI=2.*WI                                         HYD05210
WI=AMIN(1.,WI)                                    HYD05220
WI=AMAX(0.,WI)                                    HYD05230
IF(WET,GT,1.E-5) EVAL=600.+80.*WI/WET           HYD05240
CZH=SQRT((.276+(.11+.15*WET)*(WET-.5*WI))*(1.+WET-WI+1.25*WI)*
* 2.E-3*SDAY/TWCPI)                            HYD05250
* 2.E-3*SDAY/TWCPI)                            HYD05260
HYD05270
HYD05280
HYD05290
IF((GT(J,I),LE,1,1),AND,(LAND),AND,(.NCT,SNOW)) CH2=CH2*(1-RCCK) HYD05300
1+6.7*ROCK                                         HYD05310
650 TEM=0.                                         HYD05320
NEW                                         HYD05330
WET=WTS(TU)                                      HYD05340
WI=GT(J,I)                                       HYD05350
IF(ICE,AND,Z,LT,,1) TEM=CTID/HICE               HYD05360
TGSQ=TG*TG                                         HYD05370
CPAD=4.*STRO*TCSQ*TG                           HYD05380
DSQG=54.1P.*SHG/TCSQ                           HYD05390
TFMP=10.*CRAY*RFDS*SDAY                         HYD05400
NEW BETA TERM                                     HYD05410
IF(EVE,GE,1.0E-40) DTRBET=DTRBET/EVE          HYD05420
IF(EVE,LT,1.0E-40) DTRBET=C                   HYD05430
IF(EVF,GT,.9999) DTRBET=0.                      HYD05440
DSQG=DSQG*(1.+CTREET)                          HYD05450
DTRBET=C                                         HYD05460
TERM1 = SG*NHOGAN                               HYD05470
TERM2 = -CP*TEMF*CTS                           HYD05480
IF(IGVET,EO,13) TERM2 = TERM2 * 1.5            HYD05490
TERM3 = -EVAL*EVE*TEMP*DSFS                     HYD05500

```

FILE 1635TEST SSSCSN - A *** GODDARD SPACE FLIGHT CENTER ***

FILE I635TEST SSSSN A *** GCDDCARD SPACE FLIGHT CENTER ***

```

RUNOFF=0.
SNELT=0.
FLDRK=0.
DRNG=0.
RNUOVV=0.
NEW
NEW

IF(OCEAN)GO TO 2680

TGR=GT(J,I)
IF(TCTALP.LT..0)TOTALP=0.
IF(TLE(NLAYP1).LE.TICE)SNFAL=TCTALP *100.
IF(TLE(NLAYP1).LT.TICE) RAIN=TCTALP *100.
ISNR = JFIX(GW(J,I))
SNR=FLOAT(ISNR)/1000.0
IF(SNR.LT..0C1) SNR=0.
SNR1=SNR+SNFAL
SNR=SNR1-EGDT
IF(SNR1.LE.0.) CC TO 2650
IF(SNR.LE.0.) GO TO 2650
IF(TGR.LE.TICE)GC TO 2600
SNELT=CZH*(TCR-TICE)/20.
SNELT=AMIN1(SNELT,SNR)
TGR=TGR-9C.*SNFLT/CZH
SNR=SNR-SNELT
IF(ICE) GO TO 2670

SOIL MOISTURE AND FREEZING

SNOW COVERED LAND

NEW
CONTINUE
WETR=WET+(RAIN+SNELT)/WGM
RUNOFF=AMAX1(0.0,WETR-1.)
WETR=WETR-RUNOFF
GO TO 2680
NEW

SNOW FREE LAND

SNR=0.
IF(ICE)GC TO 2670
NEW
IF(RAIN.LT.0.)RAIN=0.0
IF(RAIN.LE.1.E-60)GO TO 5140
ADINF=1.25*(2.*WET-.2)-.5
EEFACT=2.*ILT*EXP(-1.7E*(ADINF-.5))
IF(RAIN.GE.BEFACT)RUNOFF=RAIN-.5*EEFACT
IF(RAIN.LT.BEFACT)RUNOFF=.5*RAIN*RAIN/EEFACT
CONTINUE

```

FILE 1635TEST SSSCSN A *** GODDARD SPACE FLIGHT CENTER ***

```

ADDW=RAIN-RUNOFF          HYD06610
ADDW=ADDW*(1.-FCCK)       HYD06620
ECAR=E6CT/(1.-FCCK)       HYD06630
WETR=WET+(ADDW-ECAR)/WGM  HYD06640
RUNOVS=FCCK*RAIN          HYD06650
RUNOFF=FUNOVS+(1-ROCK)*RUNOFF  HYD06660
DRNG=0,05*AMAX1(0,0,WETR-.5)  HYD06670
WETR=WETR-DRNG           HYD06680
C NEW                      HYD06690
IF(WETR.GT.1.)WETR=1.        HYD06700
IF(WETR.LT.0.)WETR=0.        HYD06710
IF(FRCST)TGR=TGR+FO.*ADDW/CZH  HYD06720
IF(.NOT.MIXWI) WI=0.        HYD06730
IFI(FRCST)WI=WETR          HYD06740
IFI(.NET.(MIXWI,CR,(FROST,AND,TGR,GT,TICE),CR,(TG,GT,TICE,AND,
1 TGR,LT,TICE)))GO TC 268C  HYD06750
FREEZ=CZH*(TCF-TCR)/80./WGM  HYD06760
WIR=WI+FREEZ              HYD06770
IF(WIR.GT.WETR)WIR=WETR    HYD06780
IFI(WIR.LT.0.)WIR=0.        HYD06790
FREEZ=WIR-WI               HYD06800
TGP=TGR+FO.*FREEZ*WGM/CZH  HYD06810
HYD06820
C ICE                      HYD06830
ICE                         HYD06840
ICE                         HYD06850
ICE                         HYD06860
ICE                         HYD06870
C
2670 GC TO 268C             HYD06880
TGR=AMIN1(TGR,TICE)        HYD06890
WETR=1.                     HYD06900
2680 IF(IGVET.GE.10) GT(J,I)=TGR  HYD06910
IF(WIR.GT.0.AND.WIR.LT.WETR) GT(J,I)=WIR  HYD06920
SNR=AMIN1(SNF,30.0)         HYD06930
ISNR=IF IX(AVAX1(0.,SNR)*1000.)  HYD06940
IF(IGVET.GE.20) GW(J,I)=FLCAT(ISNR)+C.50*WETR  HYD06950
C*****SAVE GROUND WETNESS,RUNOFF,SMELT  HYD06960
T(I,1,M2)=GW(J,I)          HYD06970
T(I,2,M2)=SMELT            HYD06980
T(I,3,M2)=RUNOFF           HYD06990
T(I,4,M2)=CT(J,I)          HYD07000
T(I,5,M2)=TCTALF*100.       HYD07010
TGN=GT(J,I)-TICE           HYD07020
IF(RSURFF.LT..C1)TGM=TGM+E  HYD07030
IF(TGN.LT.-270.)TGN=GT(J,I)  HYD07040
TFMN=4.*GW(J,I)             HYD07050
XRS=RHS                    HYD07060
PCTALP=RAIN                 HYD07070
GWSWCH=AMOD((TAL-TAUI+GSW)/GSW,1.),LT..CC01  HYD07080
IFI(OCFAN)GWSWCH=.FALSE.   HYD07090
IFI(J,LE.1F)GWSWCH=.FALSE.  HYD07100
IFI(J,GE.37)GWSWCH=.FALSE.  HYD07110
IFI(I,GE.48)GWSWCH=.FALSE.  HYD07120
IFI(GWSWCH.AND.(I/ITC*ITC.EQ.I.AND.(J-1+ITC)/ITC*ITC.EQ.J+ITC-1))  HYD07130
1 GO TC E065                HYD07140
                                         HYD07150

```

ORIGINAL PAGE IS
OF POOR QUALITY

B-13

FILE I635TEST SSSDSN A *** GCDDARD SPACE FLIGHT CENTER ***

IF(TAU.EQ.TAUI.AND,I.GE.13.AND,I.LE.22.AND,J.GE.31.AND,J.LE.36) HYD07160
1 GO TO 8055 HYD07170
GC TO 8065 HYD07180
8055 CONTINUE HYD07190
C CHANGED UNITS OF PREVAP(MM/HOUR) TO CM/HALF HOUR BY DIVD BY 20 10/IHYD07200
PREVAP=PREVAF/20, HYD07210
WRITE(6,2551) J,I,GT(J,I),FC1ALF,FUNCF,PREVAP,BETA2, HYD07220
1ECAR,FILTF,BEFACT,RHOS,DRRN,QSSH,DRAW,CSHS,PLANT,FCCK,ROFIGW,CTS1HYD07230
2551 FC1FORMAT(IX,2I3,2X,S(E11.4,2X),/,10X,S(E11.4,2X)) HYD07240
2559 FC1FORMAT(//,3X,'J I WETNESS/RHOS FC1ENP/DRRN FC1ALF/GSSH FUNCFHYD07250
1/DRAW PREVAP/DSHS BETA2/FLT ECAR/FCCK FILTF/ROFIGW EBFACHTHYD07260
2/CTS1,///) HYD07270
8065 CONTINUE HYD07280
C HYD07290
C **** GROUND WETNESS SECTION-ENDS **** HYD07300
C **** HYD07310
C **** HYD07320
C **** HYD07330
C **** TOTAL HEATING AND MOISTURE ADJUSTMENT HYD07340
DC 520 L=1,NLAY HYD07350
SH(I,L,KCENT)=SH(L) HYD07360
C SAVE CHANGE IN TEMPERATURE FROM SOLAR RADIATION HEATING HYD07370
T(I,L,M1)=AS(L)*COE(L) HYD07380
C SAVE CHANGE IN TEMPERATURE FROM LONG-WAVE RADIATION HEATING HYD07390
SH(I,L,M1)=(FE(L+1)-RE(L))*CCE(L) HYD07400
520 T(I,L,KCENT)=TL(L)+(AS(L)+RE(L+1)-RE(L))*CCE(L) HYD07410
TS(J,I)=TLE(NLAYP1) HYD07420
SDOT(J,I,1)=AMIN1(SDOT(J,I,1),TS(J,I)) HYD07430
SDOT(J,I,2)=AMAX1(SDOT(J,I,2),TS(J,I)) HYD07440
810 IMINC=I HYD07450
RETURN HYD07460
END HYD07470

OLM:

OFF-LINE MODEL (OLM)

DIMENSION	LAT(46),FLUXC(8,14,12)	OLM00010
COMMON	PHIS(08,14),FD(08,14),TOPOG(08,14),SINL(46),COSL(46)	OLM00020
COMMON		OLM00030
\$	PC(8,14),TSC(8,14),SHSC(8,14),GTC(8,14),GWC(8,14),	OLM00040
\$	UC(8,14,3),VC(8,14,3),TC(8,14,3),SHC(8,14,3),PLK(TO),	OLM00050
\$	SGC(8,14),US(08,14),VS(08,14)	OLM00060
COMMON		OLM00070
*	PLE(10), TLE(10), RH(10), TH(10), DSIG(10), SHL(10),	OLM00080
*	SHLE(10), RE(10), SH(8,14,3), PL(10),	OLM00090
*	GT(08,14), SHS(08,14), TL(10),	OLM00100
*	SLBEDO(08,14), TS(08,14), GW(08,14), ROK(08,14),	OLM00110
*	IWR(10), SIGE(10), SIG(10)	OLM00120
COMMON		OLM00130
*	RHS,DTS,CD,EDV,ZLN,DRAW,PREVAP,PLANT,EVE,E6DT,	OLM00140
*RHOS,CZH,DTRBET,TERM1,TERM2,TERM3,TERM4,TERM5, DENOM,RADTRM,		OLM00150
*	SNFAL,RAIN,OVER,WETR,WET,TAU,WMAG,ELE	OLM00160
DIMENSION	PLTGTC(200),PLTGT(200),PLTGWC(200),PLTGW(200),	OLM00170
1	PLTSHL(200),PLSHE(200),PLTX(200),PLTTS(200),	OLM00180
2	PLTPE(200),PLTAE(200),PLTEVE(200),PLIRGS(200),	OLM00190
3	PLEGCM(200),PLT9TG(200),PAEGO(200)	OLM00200
LOGICAL*1	STAR/*'*/,PLUS/'+'/,POUND/'#'/, CROSS/'X'/,PERIOD/'./'	OLM00210
LOGICAL	OCEAN,SNOW,ICE,LAND,MIXWI,FROST,GCM	OLM00220
LOGICAL	UCLA,UCNI,UCNII,UCNJJA,ASSIM,TINPT,VALBFG	OLM00230
LOGICAL	WETCEL,AVCELL,DRYCEL,LOG8,UCLAVW,VRP4,GDH	OLM00240
REAL*4	KAPA	OLM00250
INTEGER*2	SLBEDO	OLM00260
QSAT(X,Y) = .622*(10.** (9.4051-2353./X))/Y		OLM00270
C		OLM00280
C	REVISED MODEL STARTED 1/78	OLM00290
C	E CMS HYDRO NEW AT GSFC	OLM00300
C		OLM00310
C	DATE CORRECTIONS	OLM00320
C		OLM00330
C	STEP 1: DESIGN OF EXPERIMENT	OLM00340
C		OLM00350
C	A SET MODEL LOGICAL PARAMETERS	OLM00360
GCM=.TRUE.		OLM00370
GCM=.FALSE.		OLM00380

C	UCLA=.FALSE.	OLM00390
	UCLA=.TRUE.	OLM00400
	UCLAVW=.FALSE.	OLM00410
	UCLAVW=.TRUE.	OLM00420
	UCNI=.TRUE.	OLM00430
	UCNI=.FALSE.	OLM00440
	UCNJJA=.FALSE.	OLM00450
	UCNII=.TRUE.	OLM00460
	UCNII=.FALSE.	OLM00470
	ASSIM=.FALSE.	OLM00480
C	TINPT: TRUE IF SURFACE WD SPEED INFO IS AVAILABLE	OLM00490
C	ON INPUT DATA TAPE	OLM00500
	TINPT=.FALSE.	OLM00510
	LOG8=.FALSE.	OLM00520
	LOG8=.TRUE.	OLM00530
C	LOG8 TRUE, OLM WILL READ AND USE TAPE VARIABLES,	OLM00540
C	GWC,GTC, EVERY TIME STEP	OLM00550
	VALBFG=.TRUE.	OLM00560
C		OLM00570
	WETCEL =.FALSE.	OLM00580
	WETCEL=.TRUE.	OLM00590
	AVCELL=.TRUE.	OLM00600
	AVCELL=.FALSE.	OLM00610
	DRYCEL=.TRUE.	OLM00620
	DPYCEL=.FALSE.	OLM00630
	VRP4=.TRUE.	OLM00640
	VRP4=.FALSE.	OLM00650
	GDH=.TRUE.	OLM00660
	GDH=.FALSE.	OLM00670
C		OLM00680
C		OLM00690
C	B PROGRAM CONSTANTS	OLM00700
C		OLM00710
	NLAY = 9	OLM00720
	NLAYP1 = NLAY + 1	OLM00730
	JMIN=1	OLM00740
	JMAX=8	OLM00750
	IMAX=14	OLM00760
		OLM00770

<u>I MIN=1</u>	OLM00780
C	OLM00790
<u>J MINUS=30</u>	OLM00800
<u>J MAXUS=37</u>	OLM00810
<u>I MINUS=12</u>	OLM00820
<u>I MAXUS=25</u>	OLM00830
C	OLM00840
<u>NLAYM1=NLAY-1</u>	OLM00850
<u>JMP=JMAX-1</u>	OLM00860
<u>INC=IMIN</u>	OLM00870
<u>JNC=1</u>	OLM00880
<u>IM=IMAX</u>	OLM00890
<u>J1P=JMIN+1</u>	OLM00900
<u>JMPP1=JMP+1</u>	OLM00910
C	OLM00920
C DO LOOP PARAMETERS FOR SPECIFIC CELL LOCATIONS	
C	OLM00930
C	OLM00940
<u>I1 = IMIN+1</u>	OLM00950
<u>I2 = IMAX</u>	OLM00960
<u>I3 = INC</u>	OLM00970
<u>J1 = JMIN</u>	OLM00980
<u>J2 = JMAX-1</u>	OLM00990
<u>J3 = JNC</u>	OLM01000
C	OLM01010
<u>SIGE(1) = 0.</u>	OLM01020
<u>DO 70 L=1,NLAY</u>	OLM01030
<u>DSIG(L) = .11111111</u>	OLM01040
<u>SIGE(L+1) = SIGE(L) + DSIG(L)</u>	OLM01050
<u>70 SIG(L) = .5*(SIGE(L) + SIGE(L+1))</u>	OLM01060
R	OLM01070
<u>RGAS=287.</u>	OLM01080
<u>KAPA=.286</u>	OLM01090
<u>GRAV = 9.8</u>	OLM01100
<u>TICE = 273.16</u>	OLM01110
<u>SDAY= 86.4E+3</u>	OLM01120
<u>TWOPI = 2.*3.1416</u>	OLM01130
<u>PI=3.141592654</u>	OLM01140
<u>DPI=PI</u>	OLM01150
<u>CTID = 432.</u>	OLM01160

ORIGINAL PAGE
OF POOR QUALITY

HICE = 300. OLM01170
STBO = 1.17E-7 OLM01180
CP = .24 OLM01190
CLH=600./.24 OLM01200
GAMFAC = 5418*CLH OLM01210

C OLM01220
C STEP 2: PARAMETER SPECIFICATION OLM01230
C OLM01240

C A VAR THAT ARE A FUNCTION OF TIME STEP OLM01250
C OLM01260

C DTC3 = 1800. OLM01270
C NHOGAN=1 OLM01280

C IF(ASSIM) DTC3=60.*60.*3. OLM01290
C IF(ASSIM) NHOGAN=1 OLM01300

C ASSIM HAS A 3 HOUR TIME INTEFVAL OLM01310
C COEFS=GRAV*DTC3/DSIG(NLAY) OLM01320

C OLM01330
C B DATA SPECIFICATION FOR INITIAL RUNS OLM01340

C OLM01350
C TOTALP = 0. OLM01360

C MONTH=8 OLM01370

C IGVET=15 OLM01380

C IGVET=25 OLM01390

C IGVET=23 OLM01400

C PTROP=10. OLM01410

C ED=10. OLM01420

C OLM01430
C C INITIALIZATION OF CELL VARIABLES OLM01440

C OLM01450

C ROK=1: OCEAN, 2:LOAMY SOIL, 3:SANDY SOIL OLM01460

C READ(5,145) ((ROK(J,I),J=1,8),I=1,14) OLM01470

C SLBEDO FOR JULY 1527ALBD BUT GCM TAPE USED 14 FOR LANOLM01480

C RFAD(5,146) ((SLBEDO(J,I),J=1,8),I=1,14) OLM01490

C BUT FOR THREE TFST CELLS IT READS PHIS ARRAY. OLM01500

C SEE TOPOG PRINT OUT OLM01510

C READ(5,145) ((PHIS(J,I),J=1,8),I=1,14) OLM01520

DO 148 L=8,MONTH OLM01530

DO 148 I=1,14 OLM01540

READ(5,147) M,(TOPOG(J,I),J=1,8) OLM01550

```

148 CONTINUE. OLM01560
145 FORMAT(8(F10.5)) OLM01570
146 FORMAT(8(I2)) OLM01580
147 FORMAT(I8,8(F9.3)) OLM01590
C READ(20) SLBEDO,PHIS,TOPOG OLM01600
C OLM01610
C D SET SUMS FOR ALL AVERAGES = TO 0. OLM01620
AVGT=0. OLM01630
SUMAV=0. OLM01640
AVTS=0. OLM01650
AVGW=0.. OLM01660
AVGTC=0. OLM01670
AVTSC=0. OLM01680
AVGWC=0. OLM01690
C OLM01700
C E INITIAL DATA TAPE READ OLM01710
C OLM01720
READ(08,95) TAU,PC,TSC,SHSC,GTC,GWC,UC,VC,TC,SHC,FLUXC OLM01730
95 FORMAT(026(255A4)) OLM01740
C OLM01750
C OLM01760
HOUR = TAU OLM01770
NHH=10 OLM01780
NHH=96 OLM01790
TINC=.5 OLM01800
IF(ASSIM) TINC=3.0 OLM01810
C OLM01820
DO 200 IHH = 1,NHH OLM01830
HOUR= HCUR+TINC OLM01840
C OLM01850
C OLM01860
C F BEGIN CELL LOOP OF MODEL OLM01870
C VARIABLE LOCATION OLM01880
C OLM01890
C OLM01900
C OLM01910
C TL,T(LAYER 9 OLM01920
C OLM01930
C OLM01940

```

OLD	NEW	EQUIVALENT	SOURCE	NAME	
TS(10,10)	TS(8,14)	PC(8,14)	TAPE	P(J,I) = PI = PS - POL	OLM02030
SHS(10,10)	SHS(10,10)	TSC(8,14)	TAPE	SURFACE TEMPERATURE	OLM02040
GT(10,10)	GT(8,14)	GTC(8,14)	TAPE	NET RADIATION(LY/D)	OLM02050
GW(10,10)	GW(8,14)	GWC(8,14)	TAPE	GROUND TEMPERATURE	OLM02060
UC(8,14,3)	UC(8,14,3)	UC(8,14,3)	TAPE	GROUND WETNESS	OLM02070
VC(8,14,3)	VC(8,14,3)	VC(8,14,3)	TAPE	X VEL COMPONENT(M)	OLM02080
NOTE 2	NOTE 2	TC(8,14,3)	TAPE	Y VEL COMPONENT(M)	OLM02090
SH(10)	SH(8,14,3)	SHC(8,14,3)	TAPE	LAYER TEMPERATURE	OLM02100
TLE(10)	TLE(10)		STEP 7	SPEC HUM OF LAYER	OLM02110
RH(10)	RH		STEP 6	T(L) OF INTER L-1	OLM02120
PLF(10)	PLF(10)		STEP 4A	RELATIVE HUMIDITY	OLM02130
TH(10)	TH(10)		STEP 7	PR OF INTER FACE, L	OLM02140
DSIG(10)	DSIG(10)			POTENTIAL TEMPERAT	OLM02150
SLBEDO(10,10)	SLBEDO(8,14)			PROG CONST.=1/NLAY=.111111	OLM02160
				SPECIFIED EARTH ALBEDO FROM	OLM02170
					OLM02180
NOTE 1: PL & PLE ARE SPECIFIED IN STEP 4A FROM PC					OLM02190
NOTE 2 TL IS SPECIFIED IN STEP 4B IF GCM INPUT NOT AVAILABLE					OLM02200
DO ONE CELL FOR NOW 10/22/77					OLM02210
IF(WETCEL)	I1C=12				OLM02220
IF(WETCEL)	J1C=7				OLM02230
IF(AVCELL)	I1C=6				OLM02240
IF(AVCELL)	J1C=3				OLM02250
IF(DRYCEL)	I1C=4				OLM02260
IF(DRYCEL)	J1C=4				OLM02270
J3C=1					OLM02280
I3C=1					OLM02290
I2C=I1C					OLM02300
J2C=J1C					OLM02310
NCFL=0					OLM02320
					OLM02330

ORIGINAL PAGE QUALITY

```

C          DO 300 I=I1C,I2C,I3C                         OLM02340
C          DO 300 J=J1C,J2C,J3C                         OLM02350
C          NCFLL=NCFLL+1                               OLM02360
C          G  DO LOOP READ                           OLM02370
C          IF(IHH.GT.1) READ(08,95) TAU,PC,TSC,SHSC,GFC,GWC,UC,VC,TC,SHC
C          *,FLUXC                                     OLM02380
C          OLM02390
C          OLM02400
C          OLM02410
C          OLM02420
C          OLM02430
C          OLM02440
C          OLM02450
C          OLM02460
C          OLM02470
C          OLM02480
C          OLM02490
C          OLM02500
C          OLM02510
C          OLM02520
C          OLM02530
C          OLM02540
C          OLM02550
C          OLM02560
C          OLM02570
C          OLM02580
C          OLM02590
C          OLM02600
C          OLM02610
C          OLM02620
C          OLM02630
C          OLM02640
C          OLM02650
C          OLM02660
C          OLM02670
C          OLM02680
C          OLM02690
C          OLM02700
C          OLM02710
C          OLM02720
C          IF(NCELL.EQ.1)
C          1CALL SUBFWD(NLAY,NLAYM1,JMP,INC,IM,J1P,JMPP1,TINPT,ASSIM)
C          H SOLAR DECLINATION CALCULATION
C          IF(NCELL.EQ.1)
C          1CALL SDET(PI,DPI,COSD,SIND,ROT,DLON,ASSIM,IHH,LAT,JDAY,NCELL,
C          2TODAY)
C          I OFFLINE INTERFACE CONSIDERATIONS
C          INITIALIZE GW(J,I) WITH GWC(J,I) VALUES
C          IF(IHH.EQ.1) GW(J,I)=GWC(J,I)
C          GTC READ TWICE BECAUSE NET RADIATION NOT AVAILABLE I
C          IF(GTC(J,I).LT.2.) GTC(J,I)=TICE
C          IF(IHH.LE.2) GT(J,I)=GTC(J,I)
C          TS(J,I)=TSC(J,I)
C          IF(LOG8.AND.UCLA) GW(J,I)=GWC(J,I)
C          IF(LOG8) GT(J,I)=GTC(J,I)
C          J ZENITH ANGLE CALCULATION
C          IUS=IMINUS+I-1
C          JUS=JMINUS+J-1
C          HACOS=COSD*COS(ROT+(IUS-1)*DLON)
C          COSZ=SIND(JUS)*SIND+COSL(JUS)*HACOS
C          Z =ARCOS(COSZ)

```

```

STNA=COSD*SIN (FOT+TUS-T)*DLON)/SIN(Z) OLM02730
CHOURP=TCFDAY-(37.-TUS)*24./72. OLM02740
IF(CHOURLT.0.) CHOUR=CHOURE24. OLM02750
IF(NCELL.EQ.1) WRITE(6,152) COSZ,SINA,CHOUR OLM02760
152 FORMAT(10X,'SOLAR ZENITH ANGLE, COSZ = ',E12.4,5X,'AZIMUTH ANGLE (+WOLM02770
1,-E OF S), SINA = ',E12.4,07X,'LOCAL CELL HOUR = ',F6.2) OLM02780
OLM02790
C C STEP 3: SURFACE SPECIFICATIONS OLM02800
C C 3A SURFACE CONDITION OLM02810
C C OCEAN=TOPOG(J,I).GT.1. OLM02820
C C ICE=TOPOG(J,I).LT.-9.9E5 OLM02830
C C LAND=.NOT.(ICE.OR.OCEAN) OLM02840
C C IF(IHH.EQ.1) GO TO 54 OLM02850
53 SNOW=LAND.AND.GW(J,I).GT.1.00 OLM02860
C C IF(IGVET.EQ.24) GO TO 52 OLM02870
C C SNOW = LAND.AND.(GW(J,I).GT.1.0.OR.SLBEDO(J,I).GE.40) OLM02880
C C IF(SNOW) GW(J,I)=AMAX1(10.5,GW(J,I)) OLM02890
C C GO TO 52 OLM02900
54 SRH=85.*GW(J,I)+15. OLM02910
C C IF(ROK(J,I).EQ.1.) GO TO 55 OLM02920
C C IF(ROK(J,I).EQ.2.) GO TO 44 OLM02930
C C IF(ROK(J,I).EQ.3.) GO TO 42 OLM02940
44 FC=.25 OLM02950
C C PWP=.10 OLM02960
C C C1=1.0 OLM02970
C C C2=1.0 OLM02980
C C PORE=.5 OLM02990
C C SOILLR=100. OLM03000
C C WCAS=PORE*SOILLR OLM03010
C C GO TO 49 OLM03020
42 FC=.09 OLM03030
C C PWP=.025 OLM03040
C C C1=1.0 OLM03050
C C C2=1.0 OLM03060
C C PORE=.5 OLM03070
C C SOILLR=050. OLM03080
C C WCAS=PORE*SOILLR OLM03090
OLM03100
OLM03110

```

```

49 GW(J,I) = SEH*(FC*C1-PWP*C2)/100. + PWP*C2 OLM03120
55 GW(J,I) = GW(J,I)/2. OLM03130
IF(OCEAN) GW(J,I) = .5 OLM03140
IF(IGVET.EQ.24) GO TO 21 OLM03150
IF(OCEAN) GO TO 52 OLM03160
C OLM03170
C REF T&K CMP12980 OLM03180
PI180 = PI/180. OLM03190
SNOWN=(60.-15.*COS(.9863*(JDAY-24.668)*PI180))*PI180 OLM03200
SNOWS=SNOWN-2.*PI/3. OLM03210
JNP=46 OLM03220
C IF(LAT(JUS).GE.SNOWN) GW(J,I)=GW(J,I)+INT((LAT(JUS)-SNOWN)/(LAT(JNP) OLM03230
C *-SNOWN)*3.34) OLM03240
C IF(LAT(JUS).LE.SNOWS) GW(J,I)=GW(J,I)+INT((LAT(JUS)-SNOWS)/(LAT(1) OLM03250
C *-SNOWS)*3.34) OLM03260
C GO TO 52 OLM03270
21 IF(SLBEDO(J,I).LE.39) GO TO 52 OLM03280
GW(J,I)=2.00E03+.5 OLM03290
IF(SLBEDO(J,I).LT.70.) GW(J,I)=1.0E03+.5 OLM03300
IF(SLBEDO(J,I).LT.50) GW(J,I)=.5E03+.5 OLM03310
IF(ICE) GW(J,I)=30.E03+.5 OLM03320
IF(JUS.LE.9.AND.LAND) GW(J,I)=30.0F03+.5 OLM03330
SNOW=LAND.AND.GW(J,I).GT.1.01 OLM03340
52 IF(VALBFG) GO TO 56 OLM03350
SLBEDO(J,I)=14 OLM03360
IF(OCEAN) SLBEDO(J,I)=7. OLM03370
SNOW=LAND.AND.(GW(J,I).GT.1.).OR.SLBEDO(J,I).GE.40 OLM03380
IF(SNOW.OR.ICE) SLBEDO(J,I)=70. OLM03390
56 RSURF=.01*SLBEDO(J,I) OLM03400
IF(IGVET.NE.24.OR.GW(J,I).LT.1.01) GO TO 66 OLM03410
SNOTEM=SQRT((GW(J,I)-.5)/1000.) OLM03420
RSURF=.5*SNOTEM OLM03430
IF(SNOTEM.LT.1.) RSURF=RSURF+.01*SLBEDO(J,I)*(1.-SNOTEM) OLM03440
RSURF=AMIN1(RSURF,.8) OLM03450
66 WET=AMIN1(1.,(AMOD(GW(J,I),1.)*2)) OLM03460
C IF VALBFG IS 1 MUST HAVE FOLLOWING CARD 11/2/77 OLM03470
SNOW=LAND.AND.(GW(J,I).GT.1.0.OR.SLBEDO(J,I).GE.40) OLM03480
LAND=LAND.AND..NOT.SNOW OLM03490
MIXWI=GT(J,I).LE.1.1.AND.(LAND.OR.SNOW) OLM03500

```



```

C           PS=SP+PTROP=PLE(NLAY+1)          OLM03900
DO 30 L=1,NLAY                         OLM03910
PL(L)=SIG(L)*SP+PTROP                  OLM03920
PLE(L)=SIGE(L)*SP+PTROP                OLM03930
30 PLK(L)=PL(L)**KAPA                 OLM03940
PLE(NLAY+1)=SP+PTROP                  OLM03950
C
C           4B TEMPERATURES AND CONVECTIVE ADJUSTMENT   OLM03970
C
DO 35 L=1,NLAY                         OLM03980
NC=L-6
IF(L.LE.6) TL(L)=TC(J,I,1)-(TC(J,I,2)-TC(J,I,1)*(NLAY-2-L)) OLM04010
35 IF(L.GE.7) TL(L)=TC(J,I,NC)          OLM04020
IF(GCM) GO TO 41                      OLM04030
DO 40 N=1,3                            OLM04040
DO 40 L=2,NLAY                         OLM04050
LM1=L-1
IF(TL(L-1)/PLK(L-1).GE.TL(L)/PLK(L)) GO TO 40      OLM04060
THETA=(TL(LM1)*DSIG(LM1)+TL(L)*DSIG(L))/(PLK(LM1)*DSIG(LM1)+ OLM04080
*PLK(L)*DSIG(L))
TL(L-1)=THETA*PLK(L-1)                  OLM04100
TL(L)=THETA*PLK(L)                     OLM04110
40 TH(L-1)=TL(L-1)/PLK(L-1)            OLM04120
41 TH(NLAY)=TL(NLAY)/PLK(NLAY)        OLM04130
C
C           4C MOISTURE VARIABLES             OLM04140
DO 50 L=1,NLAY                         OLM04150
NC=L-6
IF(L.LE.6) SHL(L)=SHC(J,I,1)-(SHC(J,I,2)-SHC(J,I,1)*(NLAY-2-L)) OLM04170
IF(L.GE.7) SHL(L)=SHC(J,I,NC)          OLM04180
IF(SHL(L).LE.0.) SHL(L)=0.              OLM04190
50 CONTINUE                            OLM04210
IF(GCM) GO TO 175                      OLM04220
C
C           STEP 5                          OLM04230
C           VERTICAL DIFFUSION OF HEAT AND MOISTURE(AIR-EARTH    OLM04250
C           INTERACTION                   OLM04260
C
65 LMIN=NLAYM1                         OLM04270
                                         OLM04280

```

```

DO 80 L=LMIN,NLAY          OLM04290
LM1=L-1                   OLM04300
DTETA=(TH(LM1)-TH(L))* (PLK(LM1)+PLK(L))*.5   OLM04310
DZUP=SP*DSIG(LM1)*RGAS*TL(LM1)/(PL(LM1)*GRAV) OLM04320
DZDN=SP*DSIG(L)*RGAS*TL(L)/(PL(L)*GRAV)        OLM04330
EDLE=-2*ED
TEMP=DTC3*((DSIG(LM1)+DSIG(L))/((DZUP+DZDN)*(DZUP+DZDN))) OLM04350
FLE=-2.*EDLE*DTETA*TEMP          OLM04360
TL(LM1)=TL(LM1)+FLE/DSIG(LM1)    OLM04370
TL(L)=TL(L)-FLE/DSIG(L)         OLM04380
TH(LM1)=TL(LM1)/PLK(LM1)        OLM04390
TH(L)=TL(L)/PLK(L)             OLM04400
DSH=SHL(LM1)-SHL(L)            OLM04410
ELE=-2.*EDLE*DSH*TEMP          OLM04420
SHL(LM1)=SHL(LM1)+ELE/DSIG(LM1) OLM04430
80 SHL(L)=SHL(L)-ELE/DSIG(L)   OLM04440
175 CONTINUE                  OLM04450
C                               OLM04460
C                               STEP 6: RELATIVE HUMIDITY OLM04470
C                               OLM04480
DO 90 L=7,NLAY              OLM04490
TEMP=QSAT(TL(L),PL(L))        OLM04500
90 RH(L)=SHL(L)/TEMP          OLM04510
C                               OLM04520
IPR=1                         OLM04530
IF(NCELL.EQ.1.AND.IHH.EQ.1)   OLM04540
* CALL RITE(IWRS,I,J,IHH,HOUR,IPR,           OLM04550
*UCLA,UCNI,UCNJJA,UCNII,I2C,J2C,IMAX,JMAX,IMINUS,JMINUS,MONTH) OLM04560
C                               OLM04570
C                               STEP 7: DETERMINATION OF SURF TEMP OLM04580
C                               OLM04590
C                               A INITIALIZATION OLM04600
C                               OLM04610
TLE(NLAYP1)=TS(J,I)           OLM04620
PS=PLE(NLAY+1)                OLM04630
PSK=PS**KAPA                  OLM04640
THG = TS(J,I)/PSK             OLM04650
C                               OLM04660
C                               B RH SCALE OLM04670

```

RHS=0.	OLM04680
IF (WET+RH (NLAY) .NE. 0) RHS=2.*WET*RH (NLAY) / (WET+RH (NLAY))	OLM04690
C	OLM04700
C BULK AERODYNAMIC COEFF.	OLM04710
C	OLM04720
DTS=TG-TLE (NLAYP1)	OLM04730
IF(DTS.GE.0.) DRAW=CD*(WMAG+SQRT(DTS))	OLM04740
IF(DTS.LT.0.) DRAW=CD*WMAG*(WMAG*WMAG)/((WMAG*WMAG)-7.*DTS)	OLM04750
C	OLM04760
C D SURFACE DIFFUSION COEFF	OLM04770
C	OLM04780
ZLNCO = .5*DSIG (NLAY) *RGAS/GRAV	OLM04790
SP=(PLE(10)-PL(9))/(1.-17./18.)	OLM04800
C	OLM04810
C E ORIGINAL FORMULATION FROM TSANG & KARN	OLM04820
C	OLM04830
WMAGN=1	OLM04840
IF(DTS.LT.0.) WMAGN=.2*(WMAG+.01)	OLM04850
EDNS=AMIN1(100.,ED*EXP(.32*DTS/WMAGN*WMAGN))	OLM04860
FORIG=EDNS	OLM04870
ZLN = ZLNCO*TLE (NLAYP1)*SP/PS	OLM04880
C NEW EDNS FORMULATION (1/30/78)	OLM04890
C NCAR W/NO COUNTERGRADIENT	OLM04900
C	OLM04910
EDNS=10.+100.* (1.-EXP(1200.* ((TH(NLAY)-THG)/ZLN)))	OLM04920
C TH(9) GT THG THE FOLLOWING EDNS PREDICTION IS BAOLM04930	
IF (TH(9).GT.THG) EDNS=FORIG	OLM04940
C	OLM04950
EDV=EDNS/ZLN	OLM04960
C	OLM04970
C WRITE(6,7123)	OLM04980
C 7123 FORMAT(10X,'EORIG',6X,'EDNS',8X,'TH(9)',8X,'THG')	OLM04990
C WRITE(6,7119) EORIG,EDNS, TH(9), THG	OLM05000
C 7119 FORMAT(5X,4(E12.4))	OLM05010
C	OLM05020
C	OLM05030
EVE=1.	OLM05040
IF (LAND.AND..NOT.SNOW) GO TO 7034	OLM05050
GO TO 7235	OLM05060

```

7034 CONTINUE OLM05070
C
C F EVAPORATION SCALING FACTOR OLM05080
C OLM05090
IF(UCNI) EVE=AMIN1(1., (WET-PWP*C2)/(FC*C1-PWP*C1)) OLM05100
TEMP=2.*GWC(J,I) OLM05110
IF(UCLA) EVE=AMIN1(1., 2.*TEMP) OLM05120
PLANT=AMIN1( 1., COSZ/.2588) OLM05130
IF(COSZ.LT.0) PLANT=0. OLM05140
OLM05150
OLM05160
C OLM05170
7235 CONTINUE OLM05180
GO TO 7236
7237 EVE=1.0 OLM05190
7236 EVACO=EVE*DRAW OLM05200
EVACO=AMAX1(EVACO,1.E-40) OLM05210
SHSATS=QSAT(TLE(NLAYP1),PS) OLM05220
SHG=QSAT(TG,PS) OLM05230
TEMP=SHSATS/TLE(NLAYP1) OLM05240
GAMC=ZLN*RHS*9.8*(1.-(1.+CLH*TEMP/KAPA)/(1.+GAMFAC*TEMP/ * TLE(NLAYP1))*KAPA/RGAS OLM05250
OLM05260
TLE(NLAYP1)=(DRAW*TG+EDV*(TH(NLAY)*PSK-GAMC))/(DRAW+EDV) OLM05270
SHLE(NLAYP1)=(EVACO*SHG+EDV*SHL(NLAY))/(EVACO+EDV) OLM05280
SHSATS=QSAT(TLE(NLAYP1),PS) OLM05290
IF(SHLE(NLAYP1).LE.SHSATS) GO TO 7121 OLM05300
GAMS=GAMFAC*SHSATS/TLE(NLAYP1)**2 OLM05310
TEMP=(SHLE(NLAYP1)-SHSATS)/(1+GAMS) OLM05320
TLE(NLAYP1)=TLE(NLAYP1)+TEMP*CLH OLM05330
SHLE(NLAYP1)=SHLE(NLAYP1)-TEMP OLM05340
7121 RHOS=PS/(RGAS*TLE(NLAYP1)) OLM05350
C OLM05360
C G POTENTIAL EVAPORATION(MM/HR) OLM05370
C OLM05380
PREVAP=DRAW*RHOS*100.* (QSAT(TG,PS)-SHLE(NLAYP1))*3600. OLM05390
IF(PREVAP.LE.0..AND.EVE.LT..999) GO TO 7237 OLM05400
OLM05410
C H POT EVAP USING LOG8 INPUT(MM/HR) OLM05420
C OLM05430
T=GTC(J,I) OLM05440
DGCM=GTC(J,I)-TSC(J,I) OLM05450

```

WETGCM=GWC (J,I) *2.	OLM05460
EVCM=AMIN1(1.,2.*WETGCM)	OLM05470
SGCM=QSAT(T,PS)	OLM05480
IF(DGCM.GE.0.) DRCM=CD*(WMAG+SQRT(DGCM))	OLM05490
IF(DGCM.LT.0.) DRCM=CD*WMAG*(WMAG*WMAG)/((WMAG*WMAG)-7.*DGCM)	OLM05500
EVACOG=EVCM*DRCM	OLM05510
SH10=(EVACOG*SGCM+EDV*SHL(9))/(EVACOG+EDV)	OLM05520
DGCM SH=SGCM-SH10	OLM05530
EGCM=DGCM SH*EVCM*DTC3*DRCM*RHOS*10.	OLM05540
C	OLM05550
C STEP 8A:	OLM05560
C SENSIBLE HEAT(LY/DAY) & EVAPORATION(GR/CM**2/SEC)	OLM05570
C	OLM05580
DTS=.5*(DTS+TG-TLE(NLAYP1))	OLM05590
DSHS=SHG-SHLE(NLAYP1)	OLM05600
IF(DTS.GE.0.) DRAW=CD*(WMAG+SQRT(DTS))	OLM05610
IF(DTS.LT.0.) DRAW=CD*(WMAG**3)/(WMAG**2-7.*DTS)	OLM05620
FSURF=COEFS*RHOS*DRAWS/SP	OLM05630
TL(NLAY)=TL(NLAY)+FSURF*DTS	OLM05640
TH(NLAY)=TL(NLAY)/PLK(NLAY)	OLM05650
SAVSHL=SHL(NLAY)	OLM05660
SHL(NLAY)=SHL(NLAY)+FSURF*EVE*DSHS	OLM05670
C SAVSHL=SAVSHL/SHL(NLAY)	OLM05680
IF(SHL(NLAY).LT.0.) SHL(NLAY)=0.	OLM05690
C	OLM05700
TPR=2	OLM05710
CALL RITE(IWRS,I,J,THH,HOUE,IPPE,	OLM05720
*UCLA,UCNI,UCNJJA,UCNII,I2C,J2C,IMAX,JMAX,IMINUS,JMINUS,MONTH)	OLM05730
C	OLM05740
C STFP 14: GROUND UPDATE OF MOISTURE AND TEMP	OLM05750
C	OLM05760
WTSTO=WET	OLM05770
1405 IF(OCEAN) GO TO 1490	OLM05780
IF(SNOW) GO TO 1410	OLM05790
IF(ICE) GO TO 1420	OLM05800
IF(FROST) GO TO 1430	OLM05810
IF(MIXWI) GO TO 1440	OLM05820
EVAL=600.	OLM05830
IF(UCLA) CZH=((.386+.15*WET)*(1.+WET)*2.E-3*SDAY/TWOPI)**.5	OLM05840

```

    GO TO 1450                                OLM05850
1410 EVAL=680.                               OLM05860
    CZH=2.3                                    OLM05870
    GO TO 1450                                OLM05880
1420 EVAL=680.                               OLM05890
    CZH=5.1                                    OLM05900
    GO TO 1450                                OLM05910
1430 EVAL=680.                               OLM05920
    CZH=SQRT((.331+.075*WET)*(2.+2.5*WET)*1.E-3*SDAY/TWOPI) OLM05930
    GO TO 1450                                OLM05940
1440 EVAL=680.                               OLM05950
C
C          A WI CALCULATION                  OLM05960
C
        WI=GT(J,I)                            OLM05970
1445 CZH=SQRT((.276+(.11+.15*WET)*(WET-.5*WI))*(1.+WET-WI+1.25*WI)* OLM06000
        * 2.E-3*SDAY/TWOPI)                   OLM06010
1450 TEM=0.                                   OLM06020
        WET=WTSTO                            OLM06030
        WI=GT(J,I)                            OLM06040
C
C          B GROUND TEMPERATURE UPDATE      OLM06050
C
        IF(ICE.AND.Z.LT..1) TEM=CTID/HICE     OLM06060
        TGSQ=TG*TG                            OLM06070
        DRAD=4.*STBO*TGSQ*TG                 OLM06090
        DSQG=5418.*SHG/TGSQ                  OLM06100
        TEMP=10.*DRAW*RHOS*SDAY              OLM06110
        OLM06120
C
C          TERM1 = SG*NHOGAN                OLM06130
        TERM2 = -CP*TEMP*DTS                 OLM06140
        TERM3 = -EVAL*EVE*TEMP*DSHS          OLM06150
        TERM4= TEM*(TICE-TG)                 OLM06160
        OLM06170
C
C          RMIS=.9                         OLM06180
        RE(NLAYP1)=(1.17E-7*TG**4)*RMIS    OLM06190
        OLM06200
C
C          TERM5 = -RE(NLAYP1)*NHOGAN       OLM06210
        DENOM = SDAY*CZH/DTC3 + DRAD + TEM + TEMP*EDV*(CP/DRAW+EDV) + OLM06220
        OLM06230

```

*EVAL*EVE*DSOG/(EVACO+EDV)	OLM06240
SHS(J,I)=SHSC(J,I)*NHOGAN	OLM06250
C SHS(J,I) = SG-RE(NLAYP1)	OLM06260
RADTRM=SHS(J,I)	OLM06270
GT(J,I)=TG+(RADTRM+TERM2+TERM3+TERM4)/DENOM	OLM06280
1490 CONTINUE	OLM06290
1475 CONTINUE	OLM06300
C IPR=4	OLM06310
C CALL RITE(IWRS,I,J,IHH,HOUR,IPR,	OLM06320
*UCLA,UCNI,UCNJJA,UCNII,I2C,J2C,IMAX,JMAX,IMINUS,JMINUS,MONTH)	OLM06330
C C ACTUAL EVAPORATION (CM/HH)	OLM06340
C E6DT=DSHS*EVE*DTC3*DRAW*RHOS*10.0	OLM06350
C D GROUND MOISTURE UPDATE	OLM06360
C WETR=WET	OLM06370
SNR=0.	OLM06380
WIR=0.	OLM06390
TGR=TG	OLM06400
1851 RAIN=0.	OLM06410
SNFAL=0.	OLM06420
FREEZ=0.	OLM06430
OVER=0.	OLM06440
SMELT=0.	OLM06450
FLDRK=0.	OLM06460
DRNG=0.	OLM06470
BUNOVV=0.	OLM06480
C	OLM06490
C	OLM06500
IF(OCEAN) GO TO 1880	OLM06510
TGR=GT(J,I)	OLM06520
TOTALP=FLUXC(J,I,3)	OLM06530
C THEN RAIN INPUT WOULD BE IN CM/SAMPLE TIME	OLM06540
C ASSUMES FLC(J,I,3), PRECIP IN MM/SAMPLE TIME	OLM06550
IF(TOTALP.LT..0) TOTALP=0.	OLM06560
	OLM06570
	OLM06580
	OLM06590
	OLM06600
	OLM06610
	OLM06620

IF (TLE(NLAYPT).LE.TICE) SNFAL=TOTALP *100.	OLM06630
IF (TLE(NLAYP1).GT.TICE) RAIN=TOTALP *100.	OLM06640
ISNR = IFIX(GW(J,1))	OLM06650
SNR=FLOAT(ISNR)/1000.0	OLM06660
IF(SNR.LT..001) SNR=0.	OLM06670
SNR1=SNR+SNFAL	OLM06680
SNR=SNR1-E6DT	OLM06690
IF(SNR.LE.0.) GO TO 1850	OLM06700
IF(SNR.LE.0.) GO TO 1850	OLM06710
IF(TGR.LE.TICE) GO TO 1800	OLM06720
SMELT=CZH*(TGR-TICE)/80.	OLM06730
SMELT=AMIN1(SMELT,SNR)	OLM06740
TGH=TGR-80.*SMELT/CZH	OLM06750
SNR=SNR-SMELT	OLM06760
IF(ICE) GO TO 1870	OLM06770
C	OLM06780
C E SOIL MOISTURE AND FREEZING	OLM06790
C	OLM06800
C 1 SNOW COVERED LAND	OLM06810
C	OLM06820
1800 CONTINUE	OLM06830
WETR=WET+(RAIN+SMELT)/WCAS	OLM06840
RUNOFF=AMAX1(0.0,WETR-1.)	OLM06850
WETR=WETR-RUNOFF	OLM06860
GO TO 1880	OLM06870
C	OLM06880
C 2 SNOW FREE LAND	OLM06890
C	OLM06900
1850 SNR=0.	OLM06910
IF(ICE) GO TO 1870	OLM06920
RAIN=FLUXC(J,I,3)*100.	OLM06930
1892 E6DT=DSHS*EVE*DTC3*DRAWS*RHOS*10.0	OLM06940
WETR=WET	OLM06950
IF(RAIN.GT.0.) OVER=RAIN*(.1+.9*WET**1.5)	OLM06960
C MOISTURE CONTINUITY EQUATION	OLM06970
IF(UCLAVW) WETR=WET + (RAIN-E6DT - OVER)/WCAS	OLM06980
IF(WETR.GT.1.) WETR=1.	OLM06990
IF(WETR.LT.0.) WETR=0.	OLM07000
ADDW=(RAIN-E6DT-OVER)/WCAS	OLM07010

IF(FROST) TGR=TGR+80.*ADDW/CZH	OLM07020	
IF(.NOT.MIXWI) WI=0.	OLM07030	
IF(FROST) WI=WETR	OLM07040	
IF(.NOT.(MIXWI.OR.(FROST.AND.TGR.GT.TICE).OR.(TG.GT.TICE.AND. 1 TGR.LT.TICE))) GO TO 1880	OLM07050	
FREEZ=CZH*(TICE-TGR)/80./WCAS	OLM07060	
WIR=WI+FREEZ	OLM07070	
IF(WIR.GT.WETR) WIR=WETR	OLM07080	
IF(WIR.LT.0.) WIR=0.	OLM07090	
FREEZ=WIR-WI	OLM07100	
TGR=TGR+80.*FREEZ*WCAS/CZH	OLM07110	
GO TO 1880	OLM07120	
C	ORIGINAL PAGE OF	
C	3 TICE	
C	1870 TGR=A MIN1(TGR,TICE) WETR=1.	OLM07130
1880 IF(IGVET.GE.10) GT(J,I) = TGR IF(WIR.GT..0.AND.WIR.LT.WETR) GT(J,I) = WIR SNR = A MIN1(SNR,30.0) ISNR = IFIX(AMAX1(0.,SNR)*1000.) IF(.NOT.LAND) GO TO 300 IPR=5	OLM07140 OLM07150 OLM07160 OLM07170 OLM07180 OLM07190 OLM07200 OLM07210 OLM07220 OLM07230 OLM07240 OLM07250 OLM07260 OLM07270 OLM07280 OLM07290 OLM07300 OLM07310 OLM07320 OLM07330 OLM07340 OLM07350 OLM07360 OLM07370 OLM07380 OLM07390 OLM07400	
C	CALL RITE(IWRS,I,J,IHH,HOUR,IPR, *UCLA,UCNI,UCNJJA,UCNII,I2C,J2C,IMAX,JMAX,IMINUS,JMINUS,MONTH)	
C	SUMAV=SUMAV+1 AVGTC=AVGTC+GTC(J,I) AVTSC=AVTSC+TSC(J,I) AVGWC=AVGWC+GWC(J,I) AVGT = AVGT+GT(J,I) AVTS=AVTS+TLE(10) AVGW=AVGW+GW(J,I)	
C	PLOT DATA	
C	GOOD FOR SINGLE CELL ANALYSIS ONLY	
IHH=IHH		
2553 CONTINUE		
PLTGTC(IH2)=GTC(J,I)		

PLTTS (IH2) = TS (J,I)	OLM07410
PLTGT (IH2) = TG	OLM07420
PLTGWC (IH2) = SHLE (NLAYP1)	OLM07430
PLTGW (IH2) = SHL (9)	OLM07440
PLTSHL (IH2) = EORIG	OLM07450
PLSHE (IH2) = EDNS	OLM07460
PLT9TG (IH2) = TH (9) / THG	OLM07470
PLTX (IH2) = IH2	OLM07480
IF (UCLA) PREVAP= (E6DT/EVE) *20.	OLM07490
PLTPE (IH2) = PREVAP/20.	OLM07500
PLTAE (IH2) = E6DT	OLM07510
PLTEVE (IH2) = EVE	OLM07520
PLEGCM (IH2) = EGCM	OLM07530
PLIRGS (IH2) = TLE (10)	OLM07540
PAEGO (IH2) = PLEGCM (IH2) / PLTAE (IH2)	OLM07550
IF (IH2.GT.95.AND.IH2.LT.101) IH2=IH2+1	OLM07560
IF (IH2.GT.95.AND.IH2.LT.101) GO TO 2553	OLM07570
300 CONTINUE	OLM07580
200 CONTINUE	OLM07590
TEMP=SUMAV	OLM07600
AVGWC=AVGWC/TEMP	OLM07610
AVTSC=AVTSC/TEMP	OLM07620
AVGTC=AVGTC/TEMP	OLM07630
AVGW=AVGW/TEMP	OLM07640
AVTS=AVTS/TEMP	OLM07650
AVGT=AVGT/TEMP	OLM07660
C	OLM07670
WRITE(6,2571)	OLM07680
2571 FORMAT(6X,'TIME STEP',1X,'TGC',6X,'TG',7X,'TSC', 3X,'TS (N+1)',2X,	OLM07690
*'SHLE(10)',4X,'SHL(9)',	OLM07700
*4X,'EORIG',3X,'EDNS', 6X,'PE',8X,'AE',7X,'EVE',6X,'AE-GCM',	OLM07710
*2X,'EG/EO')	OLM07720
DO 2574 I=1,NHH	OLM07730
WRITE(6,2572) I,PLTGTC (I),PLTGT (I),PLTTS (I),PLIRGS (I),PLTGWC (I),	OLM07740
*PLTGW (I),PLTSHL (I),PLSHE (I),PLTPE (I),PLTAE (I),PLTEVE (I),PLEGCM (I)	OLM07750
*,PAEGO (I)	OLM07760
2574 CONTINUE	OLM07770
2572 FORMAT(8X,I3,2X,4(F7.2,2X),2(F9.7,2X),2(F5.1,2X),4(F8.5,2X),F5.2)	OLM07780
NHH=IH2-1	OLM07790

```

RNHH=RNHH/1. OLM07800
VBOT=(AVGT+AVGTC+AVTS)/3.-25. OLM07810
VBOT=265. OLM07820
VTOP=VBOT+50. OLM07830
WRITE(6,2564) AVGT,AVTS,AVGW,AVGTC,AVTSC,AVGWC OLM07840
2564 FORMAT(/,13X,'AV GR TEMP = ',E10.4,14X,'AV SURFACE TEMP = ',E10.4,OLM07850
115X,'AV GR WETNESS = ',E10.4,/,3X,'ASSIMILATION GR TEMP = ',E10.4,OLM07860
24X,'ASSIMILATION SURFACE TEMP = ',E10.4,5X,'ASSIMILATION GR WETNESOLM07870
3S = ',E10.4) OLM07880
C OLM07890
CALL GRDPLT(RNHH,0.,RNHH,VBOT,VTOP,PLTX,PLTGT,PERIOD,1,0) OLM07900
CALL GRDPLT(RNHH,0.,RNHH,VBOT,VTOP,PLTX,PLTGT,STAR,0,1) OLM07910
WRITE(6,2580) OLM07920
2580 FORMAT(20X,'PERIOD = INPUT GT',5X,'STAR = CAL GT', //) OLM07930
CALL GRDPLT(RNHH,0.,RNHH,VBOT,VTOP ,PLTX,PLTTS,POUND,1,0) OLM07940
CALL GRDPLT(RNHH,0.,RNHH,VBOT,VTOP,PLTX,PLIRGS,PLUS,0,1) OLM07950
WRITE(6,2595) OLM07960
2595 FORMAT(20X,'POUND = INPUT TS',5X,'PLUS = CALCULATED TS') OLM07970
CALL GRDPLT(RNHH,0.,RNHH,.000,250.,PLTX,PLTSHL,STAR,1,0) OLM07980
CALL GRDPLT(RNHH,0.,RNHH,.900,1.10,PLTX,PLT9TG,POUND,0,0) OLM07990
CALL GRDPLT(RNHH,0.,RNHH,.000,250.,PLTX,PLSHE,PLUS,0,1) OLM08000
WRITE(6,2585) OLM08010
2585 FORMAT(18X,'PLUS = T & K EDNS', 5X,'STARS = NCAR EDNS WHEN OLM08020
*TH(9)/THG IS LESS THAN 1.0, UNSTABLE CASE', //) OLM08030
CALL GRDPLT(RNHH,0.,RNHH,-.05,0.20,PLTX,PLEGCM,PERIOD,1,0) OLM08040
CALL GRDPLT(RNHH,0.,RNHH,-.05,0.20,PLTX,PLTPE,PLUS,0,0) OLM08050
CALL GRDPLT(RNHH,0.,RNHH,-.05,0.20,PLTX,PLTAE,STAR,0,1) OLM08060
WRITE(6,2590) OLM08070
2590 FORMAT(20X, 'STARS = ACTUAL EVAP OLM08080
*(CM/HH)',5X,'PLUS = POTENTIAL EVAP(CM/HH)',/,20X,'PERIOD = ACTUAOLM08090
*L EVAPORATION FROM INPUT TAPE(CM/HH)', //) OLM08100
CALL GRDPLT(RNHH,0.,RNHH,.000,1.00,PLTX,PLTEVE,POUND,1,0) OLM08110
CALL GRDPLT(RNHH,0.,RNHH,0.,2.5,PLTX,PAEGO,PERIOD,0,1) OLM08120
WRITE(6,2609) OLM08130
2609 FORMAT(20X,'POUND = EVAP SCALING FACTOR',5X,'PERIOD = AEGCM/AEOLM'OLM08140
* //) OLM08150
CALL GRDPLT(RNHH,0.,RNHH,0.,.05,PLTX,PLTGWC,STAR,1,0) OLM08160
CALL GRDPLT(RNHH,0.,RNHH,0.,.05,PLTX,PLTGW,PLUS,0,1) OLM08170
WRITE(6,2605) OLM08180

```

```

2605 FORMAT(20X,'STAR = SHL*(10) :TK',5X,'PLUS' = SHL(9)'//') OLM08190
STOP OLM08200
END OLM08210
SUBROUTINE SDFT(PI,DPI,COSD,SIND,ROT,DLON,ASSIM,IHH,LAT,JDAY, OLM08220
1NCELL,TOFDAY) OLM08230
DIMENSION LAT(46),DAYSPM(12),JMONTH(12),AMONTH(2,12) OLM08240
COMMON PHIS(08,14),FD(08,14),TOPOG(08,14),SINL(46),COSL(46) OLM08250
COMMON $ OLM08260
$ PC(8,14),TSC(8,14),SHSC(8,14),GTC(8,14),GWC(8,14), OLM08270
$ UC(8,14,3),VC(8,14,3),TC(8,14,3),SHC(8,14,3),PLK(10), OLM08280
$ SGC(8,14),US(08,14),VS(08,14) OLM08290
COMMON OLM08300
* PLE(10),TLE(10),RH(10),TH(10),DSIG(10),SHL(10), OLM08310
* SHLE(10),RF(10),SH(8,14,3),PL(10), OLM08320
* GT(08,14),SHS(08,14),TL(10), OLM08330
* SLBEDO(08,14),TS(08,14),GW(08,14),ROK(08,14), OLM08340
* IWR(10),SIGE(10),SIG(10) OLM08350
COMMON OLM08360
* RHS,DTS,CD,EDV,ZLN,DRAW,PREVAP,PLANT,EVE,E6DT, OLM08370
* RHOS,CZH,DTRBET,TERM1,TERM2,TERM3,TERM4,TERM5,DENOM,RADTRM, OLM08380
* SNFAL,RAIN,OVER,WETR,WET,TAU,WMAG,ELE OLM08390
LOGICAL OCEAN,SNOW,ICF,LAND,MIXWI,FROST OLM08400
LOGICAL GISSJK,UCLA,UCNI,UCNII,UCNJJA,ASSIM,TINPT OLM08410
C OLM08420
INTEGER AMONTH,DAYSPM,DAYSPY OLM08430
C DATA AMONTH/'JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY' OLM08440
C * AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER' OLM08450
C JJA PUT COOMENTS ON AMONTH 10/22/77 OLM08460
DATA AMONTH/ 1,2,3,4,5,6,7,8,9,10,11,12, 1,2,3,4,5,6,7,8,9,10, 11,12/ OLM08470
DATA DAYSPM/31,28,31,30,31,30,31,31,30,31,30,31/ OLM08490
DATA IDAY0/302/,DAYSPY/365/,LASTM/0/ OLM08500
INTEGER*2 SLBEDO OLM08510
REAL*4 LAT OLM08520
C OLM08530
INTFX(XTAU)=INT(XTAU*XINT+.5) OLM08540
XINT=600. OLM08550
C OLM08560
C OLM08570

```

```

JSP=1 OLM08580
JSB=1 OLM08590
JNP=46 OLM08600
JNB=46 OLM08610
IF(IHH.GT.1) GO TO 211 OLM08620
C OLM08630
FJEQ=.5*(JSP+JNP) OLM08640
DLAT=180/(JNP-JSP) OLM08650
DLAT=DLAT*PI/180. OLM08660
DO 200 J=JSB,JNB OLM08670
200 LAT(J)=DLAT*(J-FJEQ) OLM08680
LAT(JSP)=-.5*DPT OLM08690
LAT(JNP)=-LAT(JSP) OLM08700
DO 210 J=JSB,JNB OLM08710
TEMP=LAT(J) OLM08720
SINL(J)=SIN(TEMP) OLM08730
COSL(J)=COS(TEMP) OLM08740
C WRITE(6,30) J,LAT(J),SINL(J),COSL(J) OLM08750
C 30 FORMAT(2X,'FOR J =',I4.5X,'LAT(J) = ',E12.4.5X,
C 1 'SINL(J) = ',E12.4.5X,'COSL(J) = ',E12.4) OLM08760
210 CONTINUE OLM08770
C OLM08780
C OLM08790
C OLM08800
211 DT=300. OLM08810
IF(ASSIM) DT=60.*60.*3. OLM08820
DTHR=DT/3600. OLM08830
IDTHR=INTFX(DTHR) OLM08840
I24=INTFX(24.)
NSTEP=.5+TAU/DTHR OLM08850
NSTEP=NSTEP*IDTHR OLM08860
ITAU=NSTEP*XINT OLM08870
TAU=FLOAT(ITAU)/XINT OLM08880
IDAY=ITAU/I24 OLM08890
TOFDAY=FLOAT(ITAU-IDAY*I24)/XINT OLM08900
ROT=2*PI*TOFDAY/24. OLM08910
IM=72 OLM08920
DLON=2.*PI/IM OLM08930
C OLM08940
WRITE(6,212) DTHR, IDTHR, NSTEP, ITAU, TAU, IDAY, TOFDAY, ROT, DLON, IHH OLM08950
212 FORMAT(10X,'DTHR = ',E12.4.5X,'IDTHR = ',I6.5X,'NSTEP = ', OLM08960

```

28
 1I6.5X, 'ITAU = ', I10.5X, 'TAU = ', F12.3.5X, 'IDAY = ', I6, / OLM08970
 210X, 'TODAY(Z HRS) = ', E12.4.5X, 'ROT = ', F12.4.5X, 'DLON = ', E12.4, OLM08980
 3 32X, 'STEP = ', I5) OLM08990

C OLM09000

C OLM09010

SOLS=173. OLM09020

APHEL=183. OLM09030

DEC MAX=PI*(23.5/180) OLM09040

ECCN=.0178 OLM09050

C OLM09060

C CALCULATE CALENDAR OLM09070

C OLM09080

JYFAR=1+(IDAY+IDAY0-1)/DAYSPY OLM09090

JDAY=IDAY+IDAY0-DAYSPY*(JYEAF-1) OLM09100

J=0 OLM09110

DO 10 MONTH=1,12 OLM09120

J=J+DAYSPM(MONTH) OLM09130

IF (JDAY.LE.J) GO TO 20 OLM09140

10 CONTINUE OLM09150

20 JDATE=JDAY-(J-DAYSPM(MONTH)) OLM09160

JMONTH(1)=AMONTH(1,MONTH) OLM09170

JMONTH(2)=AMONTH(2,MONTH) OLM09180

C OLM09190

WRITE(6,213) JDAY, JDATE OLM09200

213 FORMAT(10X,'JDAY = ',I6.5X,'JDATE = ',I6) OLM09210

C OLM09220

C CALCULATE ORBIT POSITION OLM09230

C OLM09240

FDAY=JDAY OLM09250

SEASON=(FDAY-SOLS)/DAYSPY OLM09260

DIST=(FDAY-APHEL)/DAYSPY OLM09270

DEC=DEC MAX*COS(2.*PI*SEASON) OLM09280

RSDIST=(1.+ECCN*COS(2.*PI*DIST))**2 OLM09290

SIND=SIN(DEC) OLM09300

COSD=COS(DEC) OLM09310

IF(IHH.EQ.1) WRITE(6,25) SIND,COSD OLM09320

25 FORMAT(/,5X,'SIND = ',E12.4.5X,'COSD = ',E12.4) OLM09330

C OLM09340

C READ IN TOPOG(J,I) AND CALCULATE PHIS(J,I) OLM09350

C SEE TSANG AND KARN CODE LISTING PAGE A-23 OLM09360
C LINES MAI27100 TO MAI27280 OLM09370
C DID NOT INPUT INTO MODEL AT THIS TIME 10/29/77 OLM09380
C OLM09390
C OLM09400
C RETURN OLM09410
C END OLM09420
C SUBROUTINE SURFWD(NLAY,NLAYM1,JMP,INC,IM,J1P,JMPP1,TINPT,ASSIM) OLM09430
C DIMENSION ZM(08,14) OLM09440
C COMMON PHIS(08,14),FD(08,14),TOPOG(08,14),SINL(46),COSL(46) OLM09450
C COMMON OLM09460
\$ PC(8,14),TSC(8,14),SHSC(8,14),GTC(8,14),GWC(8,14), OLM09470
\$ UC(8,14,3),VC(8,14,3),TC(8,14,3),SHC(8,14,3),PLK(10), OLM09480
\$ SGC(8,14),US(08,14),VS(08,14) OLM09490
C COMMON OLM09500
* PLE(10), TLE(10), RH(10), TH(10), DSIG(10), SHL(10), OLM09510
* SHLE(10), RE(10), SH(8,14,3), PL(10), OLM09520
* GT(08,14), SHS(08,14), TL(10), OLM09530
* SLBEDO(08,14), TS(08,14), GW(08,14), ROK(08,14), OLM09540
* IWR(10), SIGE(10), SIG(10) OLM09550
C COMMON OLM09560
* RHS,DTS,CD,EDV,ZLN,DRAW,PREVAP,PLANT,EVE,E6DT, OLM09570
* RHOS,CZH,DTRBET,TERM1,TERM2,TERM3,TERM4,TERM5, DENOM,RADTRM, OLM09580
* SNFAL,BAIN,OVER,WETR,WET,TAU,WMAG,ELE OLM09590
LOGICAL OCEAN,SNOW,ICE,LAND,MIXWI,FROST OLM09600
LOGICAL GISSJK,UCLA,UCNI,UCNII,UCNJJA,ASSIM,TINPT OLM09610
INTEGER*2 SLBEDO OLM09620
C OLM09630
C SURFACE WIND MAGNITUDE OLM09640
C OLM09650
C CMS: E SUB WIND OLM09660
C OLM09670
C NOTE FD(J,I) MUST BE CALCULATED AT ALL CELLS FOR OLM09680
C WMAG CALCULATION OLM09690
IMIN=INC OLM09700
IMAX=IM OLM09710
JMIN=J1P-1 OLM09720
JMAX=JMPP1 OLM09730
C OLM09740

COEF1=(1.-SIG(NLAYM1))/(SIG(NLAY)-SIG(NLAYM1))	OLM09750
COEF2=(SIG(NLAY)-1)/(SIG(NLAY)-SIG(NLAYM1))	OLM09760
DO 10 I=IMIN,I _{MAX}	OLM09770
DO 10 J=JMIN,JMAX	OLM09780
IF(TINPT) GO TO 10	OLM09790
US(J,I)=COEF1*UC(J,I,3)+COEF2*UC(J,I,2)	OLM09800
VS(J,I)=COEF1*VC(J,I,3)+COEF2*VC(J,I,2)	OLM09810
10 FD(J,I)=US(J,I)**2+VS(J,I)**2	OLM09820
RETURN	OLM09830
END	OLM09840
SUBROUTINE RITE(IWRS,I,J,IHH,HOUR,IPR,	OLM09850
*UCLA,UCNI,UCNJJA,UCNII,I2C,J2C,I _{MAX} ,JMAX,IMINUS,JMINUS,MONTH)	OLM09860
DIMENSTON	OLM09870
*	OLM09880
COMMON PHIS(08,14),FD(08,14),TOPOG(08,14),SINL(46),COSL(46)	OLM09890
COMMON	OLM09900
\$ PC(8,14),TSC(8,14),SHSC(8,14),GTC(8,14),GWC(8,14),	OLM09910
\$ UC(8,14,3),VC(8,14,3),TC(8,14,3),SHC(8,14,3),PLK(10),	OLM09920
\$ SGC(8,14),US(08,14),VS(08,14)	OLM09930
COMMON	OLM09940
*	OLM09950
*	OLM09960
*	OLM09970
*	OLM09980
*	OLM09990
COMMON	OLM10000
*	OLM10010
*RHOS,CZH,DTRBFT,TERM1,TERM2,TERM3,TERM4,TERM5, DENOM,RADTRM,	OLM10020
*	OLM10030
LOGICAL OCEAN,SNOW,ICE,LAND,MIXWI,FROST	OLM10040
LOGICAL UCLA,UCNI,UCNII,UCNJJA,ASSIM,TINPT	OLM10050
LOGICAL PRIN,PRISMV,PRSURV,PRGRIT,PRMCEV	OLM10060
INTEGER PARM10,PARM11,PARM12,PARM13,PARM50,PARM51,PARM52,PARM53	OLM10070
INTEGER*2 SLBEDO	OLM10080
C	OLM10090
C CMS: E SUB PRINT	OLM10100
C	OLM10110
C LOGICAL PRINT CONTROL VARIABLES	OLM10120
C	OLM10130

PRIN=.TRUE.	OLM10140	
PRISMV=.TRUE.	OLM10150	
PRSURV=.TRUE.	OLM10160	
PRGRT=.TRUE.	OLM10170	
PRMCEV=.TRUE.	OLM10180	
C	OLM10190	
C	OLM10200	
C	PRINT CONTROL VARIABLES	OLM10210
C		OLM10220
PARM10=I2C	OLM10230	
PARM11=J2C	OLM10240	
PARM12=IHH	OLM10250	
PARM13=1	OLM10260	
PARM50=I	OLM10270	
PARM51=J	OLM10280	
PARM52=IHH	OLM10290	
PARM53=IPR	OLM10300	
C	INITIALIZED VARIABLES	OLM10310
C		OLM10320
C		OLM10330
IF(IPR.NE.1.OF..NOT.PRIN) GO TO 305	OLM10340	
C	INDEX FOR CELL	OLM10350
T1=JMINUS-1	OLM10360	
DO 1217 J=1,JMAX	OLM10370	
T1=T1+1	OLM10380	
T2=(IMINUS-1)/100	OLM10390	
DO 1217 I=1,IMAX	OLM10400	
T2=T2+.01	OLM10410	
CELL(J,I)=T1+T2	OLM10420	
1217 CONTINUE	OLM10430	
C		OLM10440
WRITE(6,234)	OLM10450	
234 FORMAT(//,45X,'GISS INDEX FOR CELL (J,I)')	OLM10460	
WRITE(6,90) (I,I=1,IMAX)	OLM10470	
J=JMAX+1	OLM10480	
DO 1216 JJ=1,JMAX	OLM10490	
J=J-1	OLM10500	
WRITE(6,233) J,(CELL(J,I),I=1,IMAX)	OLM10510	
	OLM10520	

1216 CONTINUE		OLM10530
C		OLM10540
WRITE(6,201)		OLM10550
201 FORMAT(5X,/,38X,'SURFACE ALBEDO FOR JULY, DSNAME = I527ALBD')		OLM10560
WRITE(6,91) (I,I=1,I ^{MAX})		OLM10570
J=JMAX+1		OLM10580
DO 1203 JJ=1,JMAX		OLM10590
J=J-1		OLM10600
WRITE(6,203) J,(SLBEDO(J,I),I=1,I ^{MAX})		OLM10610
1203 CONTINUE		OLM10620
203 FORMAT(08(2X,I3,14(4X,I2,2X)))		OLM10630
C		OLM10640
WRITE(6,207)		OLM10650
207 FORMAT(//,40X,'SURFACE ELEVATION(GEOPOTENTIAL HT) ')		OLM10660
WRITE(6,91) (I,I=1,I ^{MAX})		OLM10670
J=JMAX+1		OLM10680
DO 1204 JJ=1,JMAX		OLM10690
J=J-1		OLM10700
WRITE(6,218) J,(PHIS(J,I),I=1,I ^{MAX})		OLM10710
1204 CONTINUE		OLM10720
C		OLM10730
WRITE(6,209) MONTH		OLM10740
209 FORMAT(//,44X,'TOPOG ARRAY FOR MONTH = ',I2)		OLM10750
WRITE(6,91) (I,I=1,I ^{MAX})		OLM10760
J=JMAX+1		OLM10770
DO 1206 JJ=1,JMAX		OLM10780
J=J-1		OLM10790
WRITE(6,210) J,(TOPOG(J,I),I=1,I ^{MAX})		OLM10800
1206 CONTINUE		OLM10810
210 FORMAT(08(2X,I3,1X,14(F7.0,1X)))		OLM10820
C		OLM10830
WRITE(6,212)		OLM10840
212 FORMAT(//,43X,'INITIAL SURFACE TEMPERATURE(K) ')		OLM10850
WRITE(6,90) (I,I=1,I ^{MAX})		OLM10860
J=JMAX+1		OLM10870
DO 1207 JJ=1,JMAX		OLM10880
J=J-1		OLM10890
WRITE(6,233) J,(TSC(J,I),I=1,I ^{MAX})		OLM10900
1207 CONTINUE		OLM10910

C		OLM10920
WRITE(6,214)		OLM10930
214 FORMAT(//,43X,'INITIAL GROUND TEMPERATURE (K) ')		OLM10940
WRITE(6,90) (I,I=1,IMAX)		OLM10950
J=JMAX+1		OLM10960
DO 1208 JJ=1,JMAX		OLM10970
J=J-1		OLM10980
WRITE(6,233) J, (GTC(J,I),I=1,IMAX)		OLM10990
1208 CONTINUE		OLM11000
C		OLM11010
WRITE(6,216)		OLM11020
216 FORMAT(//,43X,'INITIAL SURFACE PRESSURE (MB) ')		OLM11030
WRITE(6,91) (I,I=1,IMAX)		OLM11040
J=JMAX+1		OLM11050
DO 1209 JJ=1,JMAX		OLM11060
J=J-1		OLM11070
WRITE(6,218) J, (PC(J,I),I=1,IMAX)		OLM11080
1209 CONTINUE		OLM11090
218 FORMAT(8(2X,I3,1X,14(F7.1,1X)))		OLM11100
C		OLM11110
WRITE(6,205)		OLM11120
205 FORMAT(/,2X,38X,'INITIAL GROUND WETNESS MATRIX (GWC) ')		OLM11130
WRITE(6,91) (I,I=1,IMAX)		OLM11140
90 FORMAT(/,3X,'J I' ,14(I3,5X))		OLM11150
91 FORMAT(/,3X,' J/I' ,14(I3,5X))		OLM11160
J=JMAX+1		OLM11170
DO 1210 JJ=1,JMAX		OLM11180
J=J-1		OLM11190
WRITE(6,200) J, (GWC(J,I),I=1,IMAX)		OLM11200
1210 CONTINUE		OLM11210
200 FORMAT(08(2X,I3,14(F7.4,1X)))		OLM11220
C		OLM11230
WRITE(6,237)		OLM11240
237 FORMAT(//,45X,'SURFACE SPECIFICATION',//,10X,'1: OCEAN, ',3X,		OLM11250
1'2: LOAMY SOIL, ',3X,'3:SANDY SOIL,',4X,'4: ')		OLM11260
WRITE(6,91) (I,I=1,IMAX)		OLM11270
J=JMAX+1		OLM11280
DO 1222 JJ=1,JMAX		OLM11290
J=J-1		OLM11300

```

      WRITE(6,233) J, (ROK(J,I), I=1,IMAX) OLM11310
1222 CONTINUE OLM11320
C OLM11330
      WRITE(6,236) OLM11340
236 FORMAT(//, 34X, 'TRANFORMED GROUND WETNESS MATRIX(GW, 0-.5 SCALE)') OLM11350
      WRITE(6,91) (I, I=1,IMAX) OLM11360
      J=JMAX+1 OLM11370
      DO 1220 JJ=1,JMAX OLM11380
      J=J-1 OLM11390
      WRITE(6,200) J, (GW(J,I), I=1,IMAX) OLM11400
1220 CONTINUE OLM11410
C OLM11420
      WRITE(6,235) OLM11430
235 FORMAT(//,45X, 'WMAG COMPONENT : FD(J,I)') OLM11440
      WRITE(6,90) (I, I=1,IMAX) OLM11450
      J=JMAX+1 OLM11460
      DO 1221 JJ=1,JMAX OLM11470
      J=J-1 OLM11480
      WRITE(6,233) J, (FD(J,I), I=1,IMAX) OLM11490
1221 CONTINUE OLM11500
C OLM11510
      IF(IHH.EQ.1) WRITE(6,240) OLM11520
      IF(IHH.GT.1) WRITE(6,221) OLM11530
240 FORMAT(//,45X, 'SURFACE SPECIFIC HUMIDITY')
221 FORMAT( //,47X, 'NET RADIATION(LY/DAY) ')
      WRITE(6,91) (I, I=1,IMAX) OLM11560
      J=JMAX+1 OLM11570
      DO 1211 JJ=1,JMAX OLM11580
      J=J-1 OLM11590
      IF(IHH.EQ.1) WRITE(6,223) J, (SHSC(J,I), I=1,IMAX) OLM11600
      IF(IHH.GT.1) WRITE(6,218) J, (SHSC(J,I), I=1,IMAX) OLM11610
1211 CONTINUE OLM11620
      LL=0 OLM11630
      DO 229 L=1,3 OLM11640
      LL=L+6 OLM11650
C OLM11660
      WRITE(6,222) LL OLM11670
222 FORMAT( //,45X, 'X COMP OF VEL AT LEVFL',I2) OLM11680
      WRITE(6,90) (I, I=1,IMAX) OLM11690

```

```

J=JMAX+1 OLM11700
DO 1212 JJ=1,JMAX OLM11710
J=J-1 OLM11720
WRITE(6,233) J, (UC(J,I,L),I=1,IMAX) OLM11730
1212 CONTINUE OLM11740
233 FORMAT( 08(1X,I3,1X, 14(F7.2,1X) )) OLM11750
C OLM11760
WRITE(6,224) LL OLM11770
224 FORMAT( //,45X,'Y COMP OF VEL AT LEVEL', I2) OLM11780
WRITE(6,90) (I,I=1,IMAX) OLM11790
J=JMAX+1 OLM11800
DO 1213 JJ=1,JMAX OLM11810
J=J-1 OLM11820
WRITE(6,233) J, (VC(J,I,L),I=1,IMAX) OLM11830
1213 CONTINUE OLM11840
C OLM11850
WRITE(6,225) LL OLM11860
225 FORMAT( //,43X,'TEMPERATURE OF AIR AT LEVEL',I2) OLM11870
WRITE(6,90) (I,I=1,IMAX) OLM11880
J=JMAX+1 OLM11890
DO 1214 JJ=1,JMAX OLM11900
J=J-1 OLM11910
WRITE(6,233) J, (TC(J,I,L),I=1,IMAX) OLM11920
1214 CONTINUE OLM11930
C OLM11940
WRITE(6,226) LL OLM11950
226 FORMAT( //,45X,'SPEC HUMIDITY AT LEVEL', I2) OLM11960
WRITE(6,90) (I,I=1,IMAX) OLM11970
J=JMAX+1 OLM11980
DO 1215 JJ=1,JMAX OLM11990
J=J-1 OLM12000
WRITE(6,223) J, (SHC(J,I,L),I=1,IMAX) OLM12010
1215 CONTINUE OLM12020
223 FORMAT( 08(1X,I3,1X, 14(F7.4,1X) )) OLM12030
229 CONTINUE OLM12040
C OLM12050
305 CONTINUE OLM12060
C OLM12070
C SURFACE VARIABLES OLM12080

```

C	IF(IPR.NE.2.OF..NOT.PRSMV) GO TO 395	OLM12090
		OLM12100
396 PARM13=2		OLM12110
	IF(PARM10.EQ.PARM50.AND.PARM11.EQ.PARM51.AND.PARM12.EQ.PARM52	OLM12120
	*.AND.PARM13.EQ.PARM53)	OLM12130
	*GO TO 320	OLM12140
	GO TO 395	OLM12150
320 CONTINUE		OLM12160
	WRITE(6,490)	OLM12170
490 FORMAT(/,04X, 'RHS', 07X, 'DTS', 07X, 'ELE', 08X, 'EDV', 07X, 'ZLN',	OLM12180	
*05X,'SHL(10)',03X, 'SHL(9)', 04X, 'DRAW', 05X, 'TLE(10)')	OLM12190	
WRITE(6,500) RHS,DTS,ELE,EDV,ZLN,SHL(10),SHL(9),DRAW,TLE(10)	OLM12200	
500 FORMAT(2X,09(F8.4,2X))	OLM12210	
395 CONTINUE		OLM12220
C	GROUND TEMPERATURE CALCULATION VARIABLES	OLM12230
C		OLM12240
C		OLM12250
	IF(IPR.NE.4.OR..NOT.PRGRT) GO TO 605	OLM12260
604 PARM13=4		OLM12270
	IF(PARM10.EQ.PARM50.AND.PARM11.EQ.PARM51.AND.PARM12.EQ.PARM52	OLM12280
	*.AND.PARM13.EQ.PARM53)	OLM12290
	*GO TO 510	OLM12300
	GO TO 605	OLM12310
510 CONTINUE		OLM12320
	WRITE(6,595)	OLM12330
595 FORMAT(6X, 'RHOS', 07X, 'DTS ', 08X, 'CZH', 07X,	OLM12340	
*'WMAG ',06X, 'TERM2', 05X, 'TERMM3', 06X, 'TERM4', 06X, 'TL(9)',	OLM12350	
*',06X, 'DENOM', 06X, 'RADTRM', 06X, 'GT ')	OLM12360	
WRITE(6,600) RHOS,DTS,CZH, WMAG ,TERM2,TERMM3,TERM4,	OLM12370	
*TL(9),DENOM,RADTRM,GT(J,I)	OLM12380	
600 FORMAT(1X,11(F10.3,1X))	OLM12390	
605 CONTINUE		OLM12400
C	MOISTURE CONTINUITY EQ. VARIABLES	OLM12410
C		OLM12420
C		OLM12430
	IF(IPR.NE.5.OR..NOT.PRMCEV) GO TO 695	OLM12440
696 PARM13=5		OLM12450
	IF(PARM10.EQ.PARM50.AND.PARM11.EQ.PARM51.AND.PARM12.EQ.PARM52	OLM12460
	*.AND.PARM13.EQ.PARM53)	OLM12470

32

*GO TO 610	OLM12480
GO TO 695	OLM12490
610 CONTINUE	OLM12500
WRITE(6,690)	OLM12510
690 FORMAT(5X,'SNFAL',05X,'RAIN',06X,'OVER',06X,'PLANT', *04X,'POT-E',04X,'ACTUAL-E',04X, *7X,'WETR',06X,'WET', *7X,'RH(9)',6X,'PL(9)',6X,'SHL(9)')	OLM12520 OLM12530 OLM12540
WRITE(6,700) SNFAL,RAIN,OVER,PLANT,PREVAP,E6DT,WETR,WET, *RH(9),PL(9),SHL(9)	OLM12550 OLM12560
700 FORMAT(2X,11(F9.4,1X),//)	OLM12570
695 CONTINUE	OLM12580
C //EXEC LDR	OLM12590
C /DD 008 DSNAME=DJJA	OLM12600
C /EXEC *	OLM12610
C	OLM12620
T=PARM50	OLM12630
J=PARM51	OLM12640
C	OLM12650
RETURN	OLM12660
END	OLM12670