Funzioni continue

Definizione: f(x) si dice continua in $x_0 \in D_f$ quando

$$(*) \qquad \lim_{x \to x_0} f(x) = f(x_0)$$

Definizione: f(x) si dice continua in $I \subset D_f$ se è continua $\forall x \in I$.

Avevamo già dato questa definizione parlando del $\lim_{x \to x_0} f(x)$.

Punti di discontinuità

Un punto x_0 (per il quale abbia senso calcolare $\lim_{x \to x_0} f(x)$ cioè un punto di accumulazione del dominio (cioè posso avvicinarmi quanto voglio ad x_0 da destra e/o da sinistra all'interno del dominio) si dice punto di discontinuità per f(x) quando non si verifica la (*).

Si possono avere tre tipi di discontinuità:

• Discontinuità di prima specie quando

$$\lim_{x \to x_0^-} f(x) = l_1$$

$$con \qquad l_1 \neq l_2$$

$$\lim_{x \to x_0^+} f(x) = l_2$$

Si dice anche che la funzione ha un "salto" in x_0 .

Esempio: consideriamo per esempio

$$f(x) = \begin{cases} x & x < 1 \\ x+1 & x \ge 1 \end{cases}$$

Poiché $\lim_{x\to 1^-} f(x) = 1$ e $\lim_{x\to 1^+} f(x) = 2$ la funzione ha in $x_0 = 1$ una discontinuità di prima specie.

Discontinuità di seconda specie quando almeno uno dei due limiti (destro o sinistro) è infinito oppure non esiste.

Esempi:

1) f(x) = tgx

 $\lim_{\substack{x \to \frac{\pi}{2}^- \\ \lim_{x \to \frac{\pi}{2}^+} f(x) = -\infty}} f(x) = +\infty$ $\lim_{\substack{x \to \frac{\pi}{2}^+ \\ x \to \frac{\pi}{2}^+}} f(x) = -\infty \Rightarrow x_0 = \frac{\pi}{2} \text{ è un punto di discontinuità di } 2^a \text{ specie}$

 $\lim_{x\to 0} f(x) = +\infty \implies x_0 = 0$ è un punto di discontinuità di 2^a specie

 $\lim_{x \to 1^+} f(x) = -\infty \Rightarrow x_0 = 1$ è punto di discontinuità di 2^a specie.

• Discontinuità di terza specie quando

$$\lim_{x \to x_0} f(x) = l \text{ ma } f(x) \text{ non è definita in } x_0 \text{ oppure } f(x_0) \neq l$$

Questa specie di discontinuità viene anche detta discontinuità "eliminabile" perché se f(x) non è definita in x_0 possiamo porre $f(x_0) = l$ oppure, se era già definita, cambiare la definizione di f(x) in x_0 ponendo appunto $f(x_0) = l$ e rendendola così continua in x_0 .

Esempio:

$$f(x) = \begin{cases} \frac{x^2 - x}{x - 1} & x \neq 1 \\ 2 & x = 1 \end{cases}$$
 ma $\frac{x^2 - x}{x - 1} = \frac{x(x - 1)}{x - 1} = x$

Quindi $\lim_{x\to 1} f(x) = 1$ ma $f(1) = 2 \Rightarrow x_0 = 1$ è un punto di discontinuità di 3^a specie.

Esempi di funzioni continue

• La funzione costante f(x) = k è continua $\forall x \in \Re$ Infatti qualunque sia x_0 $\lim_{x \to x} f(x) = k$ $(= f(x_0))$

• La funzione f(x) = x è continua $\forall x \in \Re$ poiché $\lim_{x \to x_0} x = x_0$ (= $f(x_0)$)

- Le funzioni polinomiali $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$ sono continue $\forall x \in \Re$
- Le funzioni razionali fratte $f(x) = \frac{N(x)}{D(x)} = \frac{a_0 + a_1x + a_2x^2 + ... + a_nx^n}{b_0 + b_1x + b_2x^2 + ... + b_mx^m}$ sono continue $\forall x : D(x) \neq 0$
- Le funzioni goniometriche y = senx, y = cos x sono continue $\forall x \in \Re$ mentre y = tgx è continua $\forall x \neq \frac{\pi}{2} + k\pi$
- La funzione esponenziale $y = a^x$ $(a > 0 \ a \ne 1)$ è continua $\forall x \in \Re$
- La funzione logaritmica $y = \log_a x \ (a > 0 \ a \ne 1)$ è continua $\forall x > 0$

Teoremi sulle funzioni continue

(solo enunciati)

1) Se f(x) e g(x) sono funzioni continue in x_0 allora

$$f(x) \pm g(x)$$

$$f(x) \cdot g(x)$$

$$\frac{f(x)}{g(x)} \quad (se \ g(x_0) \neq 0)$$

sono ancora funzioni continue in x_0 . (La dimostrazione si basa sulle operazioni con i limiti.)

- 2) Se g(x) è una funzione continua in x_0 e f è continua in $g(x_0)$ allora $f \circ g$ è continua in x_0 .
- 3) Se f(x) è una funzione continua in un intervallo I e strettamente crescente (o decrescente) in I allora la funzione f^{-1} è continua in f(I) (immagine di I)

Esempio:

La funzione esponenziale $y = e^x$ è continua in \Re e strettamente crescente.

La funzione logaritmo $y = \ln x$ è continua quando x > 0 (infatti il codominio di $y = e^x$ sono i reali positivi).

4) Teorema di Weierstrass

Se f(x) è continua in un intervallo chiuso e limitato [a,b] allora esistono il massimo assoluto M e il minimo assoluto m.

Nota: se la funzione è definita in un intervallo chiuso e limitato ma non è continua in tutti i suoi punti può non avere massimo e minimo assoluti.

Esempio:
$$f(x) = \frac{1}{x^2}$$
 $-1 \le x < 1$ $(x \ne 0)$

Il minimo assoluto è m=1 ma non c'è massimo assoluto.

5) Teorema dei valori intermedi

Se f(x) è una funzione continua in [a,b] allora f(x) assume tutti i valori compresi tra il minimo ed il massimo assoluto.

Per ogni $m \le l \le M$ esiste almeno un $x \in [a,b]$: f(x) = l

6) Teorema di esistenza degli zeri

Se f(x) è continua in un intervallo I ed esistono x_1, x_2 con $x_1 < x_2$ aventi immagini $f(x_1), f(x_2)$ discordi allora esiste (almeno) un punto c compreso tra x_1 e x_2 tale che f(c) = 0

(c si dice **zero** della funzione)

 $f(x_1), f(x_2)$ di segno opposto $x_1 < c < x_2$

$$f(c) = 0$$

Infatti è intuitivo che per passare da P_1 (per esempio sopra all'asse x) a P_2 (sotto all'asse x) con un grafico "continuo" almeno una volta il grafico taglierà l'asse x.

Nota : Questo teorema è spesso utilizzato per studiare l'esistenza di soluzioni di un'equazione f(x) = 0

ESERCIZI FUNZIONI CONTINUE

1) Studia i punti di discontinuità delle seguenti funzioni:

a)
$$f(x) = \frac{x^2 + 1}{x^2 - 4}$$

[$x = \pm 2$ discontinuità di seconda specie]

b)
$$f(x) = \frac{x}{x+3}$$

[x = -3 discontinuità di seconda specie]

c)
$$f(x) = \frac{x^2 + 2x + 1}{x + 1}$$

[x = -1 discontinuità di terza specie]

e)
$$f(x) = e^{\frac{1}{x}}$$

[x = 0 discontinuità di seconda specie]

f)
$$f(x) = \begin{cases} x & se \quad x > 0 \\ 1 - x & se \quad x < 0 \end{cases}$$

[x = 0 discontinuità di prima specie]

2) La funzione $f(x) = x^2 + x$ ammette massimo e minimo assoluti in [-1, 1]? Determina m ed M.

$$\left[m = -\frac{1}{4}; M = 2\right]$$

3) Si può applicare il teorema di Weierstrass alla funzione $y = \frac{1}{x}$ nell'intervallo [-1, 1]? Perché? [no]

4) L'equazione $x^3 + x^2 - 4 = 0$ ha (almeno) uno zero appartenente all'intervallo [1,2]? Motiva la risposta.

[si]

5) La funzione $f(x) = \ln x + x$ ha (almeno) uno zero appartenente all'intervallo (0;1]? Motiva la risposta.

[si]