

# Shuhang GU

Dept. of Computing
The Hong Kong Polytechnic University



#### **Outline**

- Introduction
  - Image Restoration and Enhancement
  - Synthesis & Analysis Sparsity Models
- Convolutional sparse coding for image super-resolution
  - Convolutional Sparse Coding v.s. Sparse Coding
  - The Proposed Method
- Guided Image Enhancement via Weighted Analysis Sparsity Model
  - Dependency Modeling for Guided Enhancement
  - Learning dynamic guidance for guided depth enhancement
- Ongoing and Future Works
  - Image Separation without Training Data
  - Image Restoration with Deep Denoisers
  - Optimization Inspired Network Structure Design



#### Introduction



#### Image restoration and enhancement problems

#### **Image Denoising**





y = x + nImage Deconvolution





 $y = k \otimes x + n$ Contrast Enhancement





#### Image Super-resolution





 $y = D(k \otimes x) + n$ Image Inpainting





$$y = M \odot x + n$$

• • •

#### Synthesis representation models

Synthesis based sparse representation model assumes that a signal x can be represented as a linear combination of a small number of atoms chosen out of a dictionary D:





#### Synthesis representation models

Synthesis based sparse representation model assumes that a signal x can be represented as a linear combination of a small number of atoms chosen out of a dictionary D:





#### Analysis representation models

Analysis model generate representation coefficients by a simple multiplication operation, and assumes the coefficients are sparse:

$$||Px||_0 < \varepsilon$$



Analysis representation models

Analysis model generate representation coefficients by a simple multiplication operation, and assumes the coefficients are sparse:





#### Synthesis model

$$min_{\alpha} \frac{1}{2} ||y - D\alpha||_F^2 + \psi(\alpha)$$
$$x = D\alpha$$

- Representative methods
   KSVD, BM3D, LSSC, NCSR, et. al.
- Pros
- Synthesis model can be more sparse
- Cons
- Patch prior modeling needs aggregation
- Time consuming

#### **Analysis model**

$$min_x \frac{1}{2} ||y - x||_F^2 + \phi(Px)$$

- Representative methods
   TV, wavelet methods, FRAME, FOE,
   CSF, TRD et. al.
- Pros
- Patch divide free
- Efficient in the inference phase
- Cons
- Not as sparse as synthesis model,
   limited capacity in modeling image prior.

# Convolutional sparse coding for image superresolution



# Convolutional Sparse Coding v.s. Sparse Coding

#### Consistency constraint





# Convolutional Sparse Coding v.s. Sparse Coding

#### Sparse coding

$$min_{\alpha}||y - D\alpha||_F^2 + \phi(\alpha)$$

Convolutional sparse coding

$$min_{\mathbf{Z}} \|\mathbf{Y} - \sum \mathbf{f}_i \otimes \mathbf{z}_i\|_F^2 + \sum \varphi(\mathbf{z}_i)$$

**Matrix Form** 











#### LR filter training

$$\begin{split} \min_{\pmb{Z},\pmb{f}} &\|\pmb{Y} - \sum\nolimits_{i=1}^{N} \pmb{f}_i^l \otimes \pmb{Z}_i^l \,\|_F^2 + \lambda \sum\nolimits_{i=1}^{N} \|\pmb{Z}_i^l \,\|_1 \\ & s.t. \, \|\pmb{f}_i^l \,\|_F^2 \leq 1 \end{split}$$





Joint HR filter and mapping function learning

$$\{f^h, W\} = \min_{f, W} ||X - \sum_{j=1}^{M} f_j^h \otimes g(Z_:^l; w_j)||_F^2$$
  
 $s.t. ||f_j^h||_F^2 \le e; \quad w_j \succeq 0, |w_j|_1 = 1$ 





#### **Optimization: SA-ADMM**

$$\{\boldsymbol{W}\} = \arg\min_{\boldsymbol{W}} \sum_{k=1}^{K} \|\boldsymbol{X}_{k} - \sum_{j=1}^{M} \boldsymbol{f}_{j}^{h} \otimes g(\boldsymbol{Z}_{k,:}^{l}; \boldsymbol{w}_{j}) \|_{F}^{2}, \quad s.t. \ \boldsymbol{w}_{j} \succeq 0, |\boldsymbol{w}_{j}|_{1} = 1.$$

Denote by  $\tilde{Z}_i^t$  the upsampling of LR feature map

$$\tilde{\mathbf{Z}}_{k,i}^{l}(x',y') = \begin{cases} \mathbf{Z}_{k,i}^{l}(x,y) & if \ mod(x',factor) = 0 \ and \ mod(y',factor) = 0 \\ 0 & otherwise \end{cases}$$

then we have

$$[vec(\mathbf{Z}_{k,1}^h), vec(\mathbf{Z}_{k,2}^h), \dots, vec(\mathbf{Z}_{k,M}^h)] = [vec(\tilde{\mathbf{Z}}_{k,1}^l), vec(\tilde{\mathbf{Z}}_{k,2}^l), \dots, vec(\tilde{\mathbf{Z}}_{k,N}^l)] * \mathbf{W},$$

#### The original problem can be write as:

$$\{\boldsymbol{W}\} = \sum_{k=1}^{K} \arg\min_{\boldsymbol{W}} \|vec(\boldsymbol{X}) - [\boldsymbol{F}_{1}^{h}, \dots, \boldsymbol{F}_{M}^{h}] * \begin{bmatrix} [vec(\tilde{\boldsymbol{Z}}_{k,1}^{l}), \dots, vec(\tilde{\boldsymbol{Z}}_{k,N}^{l})] \\ & [vec(\tilde{\boldsymbol{Z}}_{k,1}^{l}), \dots, vec(\tilde{\boldsymbol{Z}}_{k,N}^{l})] \end{bmatrix} * vec(\boldsymbol{W}) \|_{F}^{2}$$

$$s.t. \ \boldsymbol{w}_{i} \succeq 0, |\boldsymbol{w}_{i}|_{1} = 1.$$

Optimization: SA-ADMM

$$\{\boldsymbol{W}\} = \sum_{k=1}^{K} \arg\min_{\boldsymbol{W}} \|vec(\boldsymbol{X}) - [\boldsymbol{F}_{1}^{h}, \dots, \boldsymbol{F}_{M}^{h}] * \begin{bmatrix} [vec(\tilde{\boldsymbol{Z}}_{k,1}^{l}), \dots, vec(\tilde{\boldsymbol{Z}}_{k,N}^{l})] \\ & \vdots \\ [vec(\tilde{\boldsymbol{Z}}_{k,1}^{l}), \dots, vec(\tilde{\boldsymbol{Z}}_{k,N}^{l})] \end{bmatrix} * vec(\boldsymbol{W}) \|_{F}^{2}$$

$$s.t. \ \boldsymbol{w}_{i} \succeq 0, |\boldsymbol{w}_{i}|_{1} = 1.$$



$$\{ \mathbf{W} \} = \sum_{k=1}^{K} \arg \min_{\mathbf{W}} \| vec(\mathbf{X}) - \mathbf{A} * vec(\mathbf{W}) \|_{F}^{2} \quad s.t. \ \mathbf{w}_{j} \succeq 0, |\mathbf{w}_{j}|_{1} = 1.$$

#### SA-ADMM

$$vec(\mathbf{W})_{t+1} = [Lvec(\bar{\mathbf{W}})_t - \rho(\mathbf{T}_t - \mathbf{S}_t) - \frac{1}{K} \sum_{k=1}^K \mathbf{A}_k^T (\mathbf{A}_k vec(\mathbf{W}_{\tau_j(t)}) - \mathbf{X}_k)] / (\rho + L)$$

$$\mathbf{S}_{t+1} = argmin_{\mathbf{S}} \frac{\rho}{2} ||\mathbf{W}_{t+1} + \mathbf{T}_t - \mathbf{S}||^2, \quad s.t. \ \mathbf{s}_j \succeq 0, \sum_{j=1}^K \mathbf{s}_j = 1$$

$$\mathbf{T}_{t+1} = \mathbf{T}_t + \mathbf{W}_{t+1} - \mathbf{S}_{t+1}$$









# Guided Image Enhancement via Weighted Analysis Sparsity



# **Dependency Modeling**

Dependent image data







• • •

Depth

epth RGB

Guided enhancement





## **Dependency Modeling**

- Previous Arts
  - 1<sup>st</sup> order method: co-different

$$\sum_{i}\sum_{j\in S(i)}(x_i-x_j)^2\varphi(\boldsymbol{g_i}-\boldsymbol{g_j})$$

$$\sum_{i}\sum_{j\in S(i)}(1-\rho(x_i-x_j))\varphi(g_i-g_j)$$

- 2<sup>nd</sup> order method: TGV
- Other priors: Non-local mean
- Data-driven method: joint dictionary learning



### **Dependency Modeling**

Weighted Analysis Sparse Representation Model

$$\sum_{i}\sum_{j\in S(i)}(x_i-x_j)^2\varphi(\boldsymbol{g_i}-\boldsymbol{g_j})$$

$$\sum_{i}\sum_{j\in S(i)}\left(1-\rho(x_i-x_j)\right)\varphi(g_i-g_j)$$

Generalize the model: from oneorder point —wise relationship to high-order local prior.

$$\hat{x} = argmin_X f(\boldsymbol{x}, \boldsymbol{y}) + \sum \rho(\boldsymbol{k}_x^i * \boldsymbol{x}) \odot \varphi(\boldsymbol{k}_g^i * \boldsymbol{g})$$

- How to choice  $\rho$ , $\varphi$ , k?
- Highly non-convex, hard to optimize!



# Guided image enhancement via weighted analysis sparsity

- Task-driven training of stage-wise parameters
  - Solving weighted analysis sparse representation model with gradient descent, we have:

$$\hat{x} = argmin_X f(\mathbf{x}, \mathbf{y}) + \sum_{i} \rho(\mathbf{k}_x^i * \mathbf{x}) \odot \varphi(\mathbf{k}_g^i * \mathbf{g})$$

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \tau \left( \Delta f(\mathbf{x}^t, \mathbf{y}) + \sum_{i} \mathbf{k}_x^i \rho^{i'} (\mathbf{k}_x^i * \mathbf{x}) \odot \varphi(\mathbf{k}_g^i * \mathbf{g}) \right)$$

Stage-wise parameter training

$$\min_{\mathbf{k}_{x},\mathbf{k}_{g},\rho,\varphi} loss(\mathbf{x}^{t+1}(\mathbf{x}^{t};\mathbf{k}_{x},\mathbf{k}_{g},\rho,\varphi) - \mathbf{x}^{gt})$$
s.t. 
$$\mathbf{x}^{t+1}(\mathbf{x}^{t};\mathbf{k}_{x},\mathbf{k}_{g},\rho,\varphi) = \mathbf{x}^{t} - \tau \left( \Delta f(\mathbf{x}^{t},\mathbf{y}) + \sum_{\mathbf{k}_{x}}^{i} \rho^{i'}(\mathbf{k}_{x}^{i}*\mathbf{x}) \odot \varphi(\mathbf{k}_{g}^{i}*\mathbf{g}) \right)$$

# Guided image enhancement via weighted analysis Future COMPUTING analysis FUTURE

# sparsity

Low quality depth map





# Guided image enhancement via weighted analysis Future computing analysis Future sparsity





# Guided Image Enhancement via Weighted Computing for the FUTURE

## **Analysis Sparsity**

Experimental results



















# Guided Image Enhancement via Weighted Computing for the FUTURE

### **Analysis Sparsity**

Experimental results











# Ongoing and Future Works



# Image Separation without Training Data

 Complementary Property of ASR and SSR Layer Separation

$$min_{u,v}f(\mathbf{y}-\mathbf{u}-\mathbf{v})+\rho_{s}(\mathbf{u})+\rho_{A}(\mathbf{v})$$







#### Image Restoration with Deep Denoisers

Half Quadratic Splitting

$$min_{\chi}f(\mathbf{y},\mathbf{x})+
ho(\mathbf{x})$$
 Half Quadratic Splitting 
$$min_{\chi,s}f(\mathbf{y},\mathbf{x})+\lambda||\mathbf{x}-\mathbf{s}||_F^2+
ho(\mathbf{s})$$



Deep Denoiser

#### Optimization Inspired Network Structure Design

- State-of-the-art Performance Has been Achieved by Deep Models
  - Non-blind Super-Resolution
  - Gaussian Denoising
  - Non-blind Deblur
- More Complex Restoration problems
  - Blind Deblur, SR, Denoising?



#### **Related Publication**

- **S. Gu**, W. Zuo, Q. Xie, D. Meng, X. Feng, L. Zhang. "Convolutional Sparse Coding for Image Super-resolution," In **ICCV 2015**.
- **S. Gu**, W. Zuo, S. Guo, Y. Chen, C. Chen and L. Zhang, "Learning Dynamic Guidance for Depth Image Enhancement," To appear in **CVPR 2017**.
- K. Zhang, W. Zuo, S. Gu and L. Zhang, "Learning Deep CNN Denoiser Prior for Image Restoration," To appear in CVPR 2017.
- **S. Gu**, et. al. Joint Convolutional Analysis and Synthesis Sparse Representation for Single Image Layer Separation. Submitted.

#### References

- Elad, M., Milanfar, P., Rubinstein, R. Analysis versus synthesis in signal priors. Inverse problems 2007.
- Buades A, Coll B, Morel JM. A non-local algorithm for image denoising. In CVPR 2005.
- M. Aharon, M. Elad, A. Bruckstein. K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. TSP 2006.
- K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-d transform-domain collaborative filtering. TIP, 2007.
- J. Marial, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image restoration. In ICCV 2009.
- W. Dong, L. Zhang, and G. Shi, "Centralized Sparse Representation for Image Restoration," In ICCV 2011.
- Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 1992.



#### References

- Zhu, S.C., Wu, Y., Mumford, D.: Filters, random fields and maximum entropy (frame): Towards a unified theory for texture modeling. IJCV 1998.
- Roth, S., Black, M.J.: Fields of experts. IJCV 2009.
- Schmidt, U., Roth, S.: Shrinkage fields for effective image restoration. In: CVPR. (2014)
- Chen, Y., Yu, W., Pock, T.: On learning optimized reaction diffusion processes for effective image restoration. In: CVPR. (2015)
- Rubinstein, Ron, Tomer Peleg, and Michael Elad. "Analysis K-SVD: A dictionary-learning algorithm for the analysis sparse model." TSP 2013.
- Zoran D, Weiss Y. From learning models of natural image patches to whole image restoration.
   In: ICCV 2011.
- M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. Deconvolutional networks. In CVPR, 2010.
- B. Wohlberg. Efficient convolutional sparse coding. In ICASSP, 2014.
- L. W. Zhong and J. T. Kwok. Fast stochastic alternating direction method of multipliers. In ICML, 2013.



#### References

- J. Diebel and S. Thrun. An application of markov random fields to range sensing. In NIPS, 2005.
- B. Ham, M. Cho, and J. Ponce. Robust image filtering using joint static and dynamic guidance. In CVPR, 2015.
- D. Ferstl, C. Reinbacher, R. Ranftl, M. Ruther, and H. Bischof. Image guided depth upsampling using anisotropic total generalized variation. In ICCV, 2013.
- J. Park, H. Kim, Y.-W. Tai, M. S. Brown, and I. Kweon. High quality depth map upsampling for 3d-tof cameras. In ICCV, 2011.



# THANKS!

