САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ ПЕТРА ВЕЛИКОГО

Высшая школа прикладной математики и механики Кафедра прикладной математики и информатики

Лабораторная работа 1

Студент: Макар Александрович Соломатин Преподаватель: Александр Николаевич Баженов

Группа: 3630102/70201

СОДЕРЖАНИЕ

Содержание

2 3 РЕШЕНИЕ

1. Постановка задачи

Требуется найти $\varepsilon > 0$, при котором следующие интервальные матрицы - особенные (содержат особенную точечную матрицу):

1.

$$\mathbf{A} = \begin{pmatrix} [1-\varepsilon, 1+\varepsilon] & [1-\varepsilon, 1+\varepsilon] \\ [1.1-\varepsilon, 1.1+\varepsilon] & [1-\varepsilon, 1+\varepsilon] \end{pmatrix}$$

2.

$$\mathbf{A} = \begin{pmatrix} 1 & [0, \varepsilon] & \cdots & [0, \varepsilon] \\ [0, \varepsilon] & 1 & \cdots & [0, \varepsilon] \\ \cdots & \cdots & \cdots & \cdots \\ [0, \varepsilon] & [0, \varepsilon] & \cdots & 1 \end{pmatrix}$$

2. Теория

Определение. Интервальная матрицы – прямоугольная таблиица, составленная из интервалов \mathbf{a}_{ij} : $\mathbf{A} = (\mathbf{a})_{ij}$.

Определение. Вершинами интервальной матрицы $A = (a_{ij})$ из $\mathbb{R}^{m \times n}$ назовем точечные $m \times n$ -матрицы, ij-ым элементом которых является $\underline{\mathbf{a}}_{ij}$ или $\overline{\mathbf{a}}_{ij}$. Множество вершин интервальной матрицы обозначим как

$$\operatorname{vert} \mathbf{A} := \{ A \in \mathbb{R}^{m \times n} \mid A = (a_{ij}), \ a_{ij} \in \{ \underline{\mathbf{a}}_{ij}, \overline{\mathbf{a}}_{ij} \} \}$$

Определение. Интервальная матрица $\mathbf{A} \in \mathbb{IR}$ называется неособенной, если неособенны все точечные матрицы $A \in \mathbf{A}$. Интервальная матрица называется особенной, если она содержит особенную точечную матрицу.

Теорема (критерий Баумана). Интервальная матрица **A** неособенна тогда и только тогда, когда определители всех ее крайних матриц имеют одинаковых знак, т.е.

$$\forall A', A'' \in \text{vert} \mathbf{A} \ (\det A') \cdot (\det A'') > 0$$

Теорема (признак Бекка). Пусть интервальная матрица $\mathbf{A} \in \mathbb{IR}^{m \times n}$ такова, что ее середина mid \mathbf{A} неособенна и

$$\rho(|(\mathrm{mid}\mathbf{A})^{-1}|\cdot\mathrm{rad}\mathbf{A})<1$$

Тогда А неособенна.

3. Решение

3.1. Задача 1

Для нахождения требуемого ε воспользуемся критерием Баумана. Найдем определители во всех вершинах этой интервальной матрицы.

3 РЕШЕНИЕ

$$\mathbf{det} \ \mathbf{A} = (1 \pm \varepsilon)^2 - (1.1 \pm \varepsilon)(1 \pm \varepsilon) = (1 \pm 1)\varepsilon^2 + (\pm 2 \pm 1.1 \pm 1)\varepsilon - 0.1$$

Наибольшего значения определитель достигает, когда

$$\det A = 2\varepsilon^2 + 4.1\varepsilon - 0.1\tag{1}$$

И наименьшего, когда

$$\det A = -4.1\varepsilon - 0.1\tag{2}$$

По критерию Баумана, и.м. **А** будет неособенной, если определители во всех вершинах имеют одинаковый знак, а значит будет особенной, если есть определители с разными знаками.

Для этого необходимо и достаточно, чтобы наибольший определитель (1)был больше нуля, а наименьший (2) был меньше нуля.

Решаем квадратное неравенство

$$\begin{cases} 2\varepsilon^2 + 4.1\varepsilon - 0.1 > 0 \\ -4.1\varepsilon - 0.1 < 0 \end{cases}$$
 (3)

Получаем

$$\begin{cases} (\varepsilon + 2.074)(\varepsilon - 0.024) &> 0\\ \varepsilon &> 0.024 \end{cases}$$
(4)

С учетом $\varepsilon > 0$, матрица **A** является особенной при $\varepsilon > 0.024$

3.2. Задача 2

Для решения задачи воспользуемся признаком Бекка. Будем искать минимальный ε , при котором в интервальную матрицу входит особенная матрица. Для этого возьмем отрезок [0;500] и будем искать ε методом половинного деления, проверяя середину очередного отрезка на условие

$$\rho(|(\mathrm{mid}\mathbf{A})^{-1}|\cdot\mathrm{rad}\mathbf{A})<1$$

Если середина отрезка такова, что матрица с ее радиусом – неособенная, то сместим левую границу в середину отрезка, иначе – правую. Код программы приведен в Приложении. Вычисленные значения ε для некоторых n:

n	ω
2	1.000
3	0.594
4	0.419
5	0.323
6	0.262
7	0.213
8	0.182

График зависимости $\varepsilon(n)$:

4 ВЫВОД

Рис. 1. Зависимость $\varepsilon(n)$

4. Вывод

В первой задаче критерий Баумана легко применим - размерность интервальной матрицы всего лишь 2, и можно составить выражение для определителя и его наибольшее и наименьшее значение в вершинах аналитически. В задачах высокой размерности, количество вершин возрастает экспонентциально, и более рациональным будет использование признака Бекка. Однако из-за приближенного вычисления обратной матрицы и спектрального радиуса, этот метод сам является приближенным.

Минимальная величина ε , при которой интервальная матрица во второй задаче начинает быть особенной, как видно из графика, обратна пропорциональна размеру n этой матрицы. Можно объяснить это тем, что за счет увеличения количества интервальных элементов в матрице при увеличении ее размера, множество различных определителей точечных матриц становится шире, а значит и охватывает 0 при меньших магнитудах интервалов.

5. Приложение

1. Репозиторий с исходным кодом https://github.com/MakarSolomatin/interval_analysis

Список литературы

[1] А. Н. Баженов. Лекции по интервальному анализу.