Esercitazione N.1: Misure di tensione, corrente, tempi, frequenza.

Gruppo xx Andrea Luzio, Gianfranco Cordella, Valerio Lomanto

9 ottobre 2016

1 Scopo e strumentazione

L'esercitazione ha lo scopo di impratichirsi con la strumentazione e le tecniche di misura. Abbiamo utilizzato sia il multimetro digitale sia il tester analogico.

2 Misure di tensione e corrente

2.b Partitore Abbiamo montato il circuito in Fig. 1^1 con i valori di resistenza misurati con il multimetro digitale: $R_1=810\pm7\Omega$ e $R_2=1.116\pm0.01k\Omega$. L'errore è stato stimato usando le indicazioni del manuale del multimetro (0.8% + 1 cifra). Dall'analisi del circuito ci aspettiamo che $V_{\rm OUT}/V_{\rm IN}=\frac{1}{1+R_1/R_2}=1.70\pm0.01$. Variando $V_{\rm IN}$ abbiamo ottenuto i dati riportati in tabella.

VIN[V]	$\sigma \text{ VIN[mV]}$	VOUT[V]	$\sigma \text{ VOUT[mV]}$
10.40	60	6.12	40
9.00	55	5.29	30
7.3	46	4.3	30
5.16	35	3.03	25
3.73	28	2.19	21
1.94	10	1.14	6
0.575	4	0.338	3

Tabella 1: Partitore di tensione con resistenze da circa 1k. Tutte le tensioni in V.

Come ci si aspettava la relazione tra tensione di ingresso ed uscita è lineare. Il rapporto $V_{OUT}/V_{IN} = 1.700 \pm 0.006$ è da confrontare con il valore aspettato indicato sopra.

2.c Partitore con resistenze più grandi Montando di nuovo il partitore con le resistenze $R_1 = 1.518 \pm 0.01 M\Omega$ e $R_2 = 1.03 \pm 0.01 M\Omega$, usando il voltmetro analogico per misurare $V_{OUT}(20kohm/volt)$ si osservano i nuovi dati in tabella 2

VIN[V]	$\sigma \text{ VIN[mV]}$	VOUT[V]	$\sigma \text{ VOUT[mV]}$
10.02	60	0.24	2
8.90	55	0.20	2
7.90	50	0.18	1
6.80	44	0.16	1
6.06	40	0.14	1
4.52	30	0.1	0.6
3.52	30	0.08	0.5

Tabella 2: Partitore di tensione. Tutte le tensioni in V.

Figura 1: Partitore di tensione.

 $^{^1} della$ scheda "Esercitazione N.1"

Figura 2: Partitore di tensione con resistenze da circa 1M.

Si osserva come valore del rapporto misurato con le resistenze da $1M\Omega$, $0.0229 \pm 1e - 04$ si discosti da quanto atteso $V_{\rm OUT}/V_{\rm IN} = \frac{1}{1+R_1/R_2} = 0.40^2$. La ragione della discrepanza è da ricercarsi nella impedenza di ingresso del tester.

2.d Resistenza di ingresso del tester Usando il modello mostrato nella scheda si ottiene

$$\frac{R_1}{R_T} = \frac{V_{IN}}{V_{OUT}} - (1 + \frac{R_1}{R_2})$$

Il valore misurato é dunque $R_T = 38.3 \pm 0.6 kohm$, vicino ai valori di riferimento del tester analogico (40kohm con il fondoscala 2V, dato fornito dal manuale senza incertezza).

2.1 Partitore di corrente: 2.e

Si monta il circuito indicato con i valori di resistenza misurati con il multimetro digitale: $R_3 = 98.3 \pm 1 k\Omega$, $R_1 = 560 \pm 5\Omega$, $R_2 = 220 \pm 3\Omega$. Si é variata la tensione fornita dal generatore nel range 20 - 10V per ottenere più misure e poter procedere con un fit. Il valore di tensione V_{in} é stato misurato con il multimetro digitale, mentre la corrente con l'analogico, fornendo esso misure più precise per basse correnti in continua.

$V_{in}(V)$	$\sigma V_{in}(V)$	I1 (μA)	$\sigma(\text{I1}) (\mu A)$	I2 (μA)	$\sigma(I2) (\mu A)$
19.2	0.1	26.0	0.3	10.0	0.1
17.2	0.1	23.5	0.2	9.0	0.1
14.9	0.1	20.5	0.2	8.0	0.1
12.65	0.07	17.0	0.2	7.00	0.07
10.87	0.06	15.00	0.15	6.00	0.06

Ci si accorge subito che $I_1=I_{tot,1}\frac{R_2}{R_{int}+R_1+R_2}$ (dove R_{int}^3 é la resistenza interna dell'amperometro, c.a. 2kohm con il fondoscala usato). Anche $I_2=I_{tot,2}\frac{R_1}{R_{int}+R_1+R_2}$. É lecito approssimare $I_{tot,1}=I_{tot,2}=I_{tot}$ poiché la resistenza R_3 domina sul parallelo in entrambi i casi. Dalle equazioni scritte sopra si nota che $\frac{I_1}{I_2}=\frac{R_2}{R_1}$ ma non é vero che $I_1+I_2=I_{tot}$. Infatti sperimentalmente(facendo un fit lineare ad un parametro, si veda figura 1 e 2, di $I_1=KI_2$: $\frac{I_1}{I_2}=1.99\pm0.05$ compatibile con il valore atteso di $\frac{R_2}{R_1}=2.00\pm0.02$. Chiaramente $I_1+I_2\neq I_{tot}$ ad esempio, per la prima misura, $\frac{I_1+I_2}{I_{tot}}=0.18$ Si puó calcolare, sfruttando questa discrepanza la resistenza interna dell'amperometro. Sempre nell'approssimazione che I_{tot} non cambi spostando l'amperometro (questo é vero con un incertezza maggiore del 0.5 %) la resistenza interna dell'amperometro é $R_A=(R1+R2)\left(\frac{I_{TOT}}{I_1+I_2}-1\right)$. Dunque $R_A=3.4kohm$ al 1.2%.

3 Uso dell'oscilloscopio

Misure di tensione Usando i seguenti resistori per fare un partitore di tensione $R_2 = 9.91 \pm 0.08 kohm R_1 = 9.90 \pm 0.08 kohm$ si ottengono le seguenti misure: Il rapporto di partizione misurato é 1.99 \pm 0.04 contro un

VIN[V]	$\sigma \text{ VIN[mV]}$	VOUT[V]	$\sigma \text{ VOUT[mV]}$
11.6	0.7	5.92	0.3
9.8	0.6	4.8	0.3
8.1	0.4	4.0	0.2
5.4	0.3	2.7	0.14
4.2	0.2	2.1	0.1
2.64	0.14	1.33	0.07
1.76	0.10	0.88	0.05

Tabella 3: Partitore di tensione usato con l'oscilloscopio.

valore atteso di 2.00 ± 0.02 .

 $^{^2}$ É stato omesso l'errore poiché il calcolo é stato fatto senza considerare la resistenza di ingresso del voltmetro, li risultato é tuttavia chiaramente incompatibile con l'ipotesi che il voltmetro sia uno strumento ideale

 $^{^3}$ dove $I_{tot,1}$ é la corrente che passa da R_3 quando l'amperometro é nel ramo di R_1 , similmente $I_{tot,2}$

Figura 3: Fit e dati di $I_1 vs I_2$

Figura 4: Residui di I_1vsI_2

Impedenza di ingresso dell'oscilloscopio L'impedenza di ingresso dell'oscilloscopio é stata misurata con un partitore di tensione con $R_1 = 0.985 \pm 0.01 Mohm R_2 = 0.560 \pm 0.005 Mohm$. Il CH2 dell'oscilloscopio (quello del quale abbiamo misurato l'impedenza di ingresso) era ai capi di R_1 . Con CH1 si misurava invece la tensione di ingresso al partitore. La resistenza risultante é $1.0 \pm 0.1 Mohm$.

4 Misure di frequenza e tempo

Sono stati misurate le seguenti frequenze:

$f_{oscilloscopio}[kHz]$	f[kHz]	$\sigma f[kHz]$
1.559	1.53	0.01
15.09	15.3	0.1
150.4	148	1
1506.0	1490	10

Tabella 4: Frequenze misurate con il frequenzimetro e con i cursori. Non é noto l'errore del frequenzimetro.

5 Trigger dell'oscilloscopio

Generando un onda quadra con frequenza 1MHz si sono ottenuti i seguenti tempi di salita e discesa:

tipo misura	manuale[ns]	automatico[ns]
salita	68 ± 1	66 ± 2
discesa	62 ± 1	62 ± 2

Tabella 5: La misura automatica é presa con l'opportuna funzione dell'oscilloscopio, la manuale con i cursori.

6 Conclusioni e commenti finali

Di questa esperienza non abbiamo capito molto, sfortunatamente non abbiamo fatto saltare alcun fusibile.