Übungsblatt 1

Felix Kleine Bösing

October 17, 2024

Aufgabe 1

Wir haben hier jeweils zwei/drei Aussagen, die nur die Ausprägungen wahr oder falsch annehmen können. Dementsprechen müssen wir nur vier/acht mögliche Fälle prüfen und können mit einer Wahrheitstabelle die Äquivalenz beweisen.

(a)
$$\neg (A \land B) \equiv \neg A \lor \neg B$$

$\mid A$	$\mid B \mid$	$A \wedge B$	$\neg(A \land B)$	$\neg A$	$\neg B$	$\mid \neg A \lor \neg B \mid$
T	T	T	F	F	F	F
$\mid T$	F	F	T	F	T	T
F	T	F	T	T	F	T
F	F	F	T	T	T	T

Da die Spalten für $\neg(A \land B)$ und $\neg A \lor \neg B$ identisch sind, schließen wir daras, dass:

$$\neg (A \land B) \equiv \neg A \lor \neg B$$

(b)
$$A \Rightarrow B \equiv \neg B \Rightarrow \neg A$$

A	B	$\neg A$	$\neg B$	$A \Rightarrow B$	$ \neg B \Rightarrow \neg A$
T	T	F	F	T	T
$\mid T \mid$	F	F	T	F	F
F	T	T	F	T	T
F	F	T	T	T	T

Da die Spalten für $A\Rightarrow B$ und $\neg B\Rightarrow \neg A$ identisch sind, schließen wir, dass:

$$A \Rightarrow B \equiv \neg B \Rightarrow \neg A$$

(c)
$$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$$

A	$\mid B$	$\mid C$	$B \wedge C$	$A \lor (B \land C)$	$A \lor B$	$A \lor C$	$(A \vee B) \wedge (A \vee C)$
T	$T \mid T$	$\mid T \mid$	T	T	T	T	T
$\mid T$	$' \mid T$	$\mid F \mid$	F	T	T	T	T
T	$' \mid F$	$\mid T$	F	T	T	T	T
I	$\mid F$	$\mid F \mid$	F	T	T	T	T
F	$\mid T$	$\mid T$	T	T	T	T	T
F	$\mid T$	F	F	F	T	F	F
F	$\mid F$	$\mid T$	F	F	F	T	F
F	$\mid F$	F	F	F	F	F	F

Da die Spalten für $A \vee (B \wedge C)$ und $(A \vee B) \wedge (A \vee C)$ identisch sind, schließen wir daraus, dass:

$$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$$

Aufgabe 2

Gegeben sei eine Menge M. Für jedes Element $x \in M$ bezeichne A(x) eine gegebene Aussage. Zeigen Sie:

(a)
$$\neg (\forall x \in M : A(x)) \iff \exists x \in M : \neg A(x)$$

Wir beweisen, dass:

$$\neg(\forall x \in M : A(x)) \iff \exists x \in M : \neg A(x)$$

- Die linke Seite $\neg(\forall x \in M : A(x))$ besagt, dass es nicht wahr ist, dass A(x) für alle $x \in M$ gilt. Das bedeutet, dass es mindestens ein $x \in M$ geben muss, für das A(x) nicht gilt.
- Die rechte Seite $\exists x \in M : \neg A(x)$ besagt genau das: Es existiert ein $x \in M$, für das A(x) nicht wahr ist.

Da beide Seiten dasselbe ausdrücken, gilt die Äquivalenz:

$$\neg(\forall x \in M : A(x)) \iff \exists x \in M : \neg A(x)$$

(b)
$$\neg(\exists x \in M : A(x)) \iff \forall x \in M : \neg A(x)$$

Wir beweisen, dass:

$$\neg(\exists x \in M : A(x)) \iff \forall x \in M : \neg A(x)$$

Wir wissen bereits aus 1b), dass:

$$A \to B \iff \neg B \to \neg A$$

sowie Äquivalenz aus zwei Implikationen besteht:

$$A \iff B \equiv (A \to B) \land (B \to A)$$

Nehmen wir nun an, dass 2a) wahr ist, dann gilt:

$$\neg(\forall x \in M : A(x)) \iff \exists x \in M : \neg A(x)$$

Daraus folgt, dass wir die Aussagen von 2a vertauschen und negieren können und erhalten:

$$\neg(\exists x \in M : A(x)) \iff \forall x \in M : \neg A(x)$$

Womit die Äquivalenz bewiesen ist.

Aufgabe 3

(a)

Gegeben sind die folgenden Mengen:

$$X = \{n \in \mathbb{N} \mid 1 \le n \le 100\}$$

$$A = \{n \in X \mid 2(n-13)(n-3) < 0\}$$

$$B = \{n \in X \mid \exists m \in \mathbb{N}, m^2 = n\}$$

$$C = \{n \in X \mid n \text{ ist durch 2 teilbar}\}$$

Die Mengen ergeben sich daher wie folgt:

Die Menge A ergibt sich aus allen natürlichen Zahlen n im Intervall [1,100], für die die Ungleichung 2(n-13)(n-3)<0 gilt. Die Nullstellen der Ungleichung liegen bei n=3 und n=13. Für Werte zwischen 3 und 13 ist 2(n-13)(n-3) negativ und die Ungleichung somit wahr.

$$A = \{4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

Die Menge B umfasst alle natürlichen Zahlen n im Intervall [1, 100], für die es eine natürliche Zahl m gibt, sodass $m^2=n$. Da die Quadratzahlen im Intervall [1, 100] die Zahlen $(1, 2^2, 3^2, 4^2, 5^2, 6^2, 7^2, 8^2, 9^2, 10^2)$ sind, ergibt sich:

$$B = \{1, 4, 9, 16, 25, 36, 49, 64, 81, 100\}$$

Die Menge C umfasst alle natürlichen Zahlen n im Intervall [1, 100], die durch 2 teilbar sind.

$$C = \{2, 4, 6, 8, 10, 12, \dots, 100\}$$

Bestimmen Sie die Mengen:

1. $(A \cup B) - C$: Union von A und B mit Differenz von C.

$$(A \cup B) = \{1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 25, 36, 49, 64, 81, 100\}$$

 $(A \cup B) - C = \{1, 5, 7, 9, 11, 25, 49, 81\}$

2. $A \cup (B - C)$: Vereinigung von A und der Differenz von B und C.

$$B-C = \{1, 9, 25, 49, 81\}, \quad A \cup (B-C) = \{1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 49, 81\}$$

3. $(B \cap A) - C$: Schnittmenge von B uund A mit Differenz von C.

$$B \cap A = \{4, 9\}, \quad (B \cap A) - C = \{9\}$$

4. $B \cap (A - C)$: Schnittmenge von B und der Differenz von A und C.

$$A - C = \{5, 7, 9, 11\}, \quad B \cap (A - C) = \{9\}$$

(b) De Morgansche Regeln

$$i)X\setminus (Y\cap Z)=(X\setminus Y)\cup (X\setminus Z)$$

$$ii)X \setminus (Y \cup Z) = (X \setminus Y) \cap (X \setminus Z)$$

Beweis für (i):

Die Menge links des Gleichheitszeichens besteht aus allen Elementen von X, die nicht in der Schnittmenge von Y und Z enthalten sind. Anders könnte man schreiben $x \in X \land (x \notin Y \lor x \notin Z)$. Der Ausdruck in Klammern

evaluiert zu wahr, wenn x mindestens in einer der beiden Mengen nicht existiert. Oder ander ausgedrückt: $(x \in X \land x \notin Y) \lor (x \in X \land x \notin Z)$. Womit wir beim Ausdruck rechts des Gleichheitszeichens angekommen sind.

Beweis für (ii): Die Menge links des Gleichheitszeichens besteht aus allen Elementen von X, die nicht in der Vereinigungsmenge von Y und Z enthalten sind. Anders könnte man schreiben $x \in X \land x \notin Y \land x \notin Z$. Für x muss gelten, dass es weder in Y noch in Z enthalten sein darf. Oder wie es rechts des Gleichheitszeichens ausgedrückt ist: $(x \in X \land x \notin Y) \land (x \in X \land x \notin Z)$. Den Ausdruck xinX können wir in beiden Teilen der Konjunktion rausziehen und so die Äquivalenz zeigen.

Aufgabe 4

Seien X, Y Mengen und $f: X \to Y$ eine Abbildung.

- (i) Für $A \subseteq X$ setzen wir $f(A) := \{ f(a) \mid a \in A \}$.
- (ii) Für $B \subseteq Y$ setzen wir $f^{-1}(B) := \{x \in X \mid f(x) \in B\}.$

Wir prüfen die folgenden Aussagen:

(a)
$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

Diese Aussage ist wahr.

Begründung: Das Urbild von $A \cap B$ unter f besteht aus allen $x \in X$, für die $f(x) \in A \cap B$ gilt. Das bedeutet, dass $f(x) \in A$ und $f(x) \in B$, was genau dem Schnitt der Urbilder entspricht:

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

(b)
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

Diese Aussage ist wahr.

Begründung: Das Urbild von $A \cup B$ unter f besteht aus allen $x \in X$, für die $f(x) \in A \cup B$ gilt. Das bedeutet, dass $f(x) \in A$ oder $f(x) \in B$, was genau der Vereinigung der Urbilder entspricht:

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

(c)
$$f(A \cap B) = f(A) \cap f(B)$$

Diese Aussage ist falsch.

Gegenbeispiel: Angenommen, f ist nicht injektiv. Sei $f(x_1) = f(x_2)$ mit $x_1 \neq x_2$, wobei $x_1 \in A$ und $x_2 \in B$. Dann gilt:

$$A \cap B = \emptyset$$
, $f(A \cap B) = f(\emptyset) = \emptyset$

Aber:

$$f(A) \cap f(B) = \{f(x_1)\} = \{f(x_2)\}\$$

Das zeigt, dass $f(A \cap B) \neq f(A) \cap f(B)$, wenn f nicht injektiv ist.

(d)
$$f(A \cup B) = f(A) \cup f(B)$$

Diese Aussage ist wahr.

Begründung: Das Bild von $A \cup B$ unter f besteht aus allen f(x) für $x \in A \cup B$, was dem Bild der Vereinigung $f(A) \cup f(B)$ entspricht:

$$f(A \cup B) = f(A) \cup f(B)$$