Step-1

4764-1.6-60P AID: 124

RID: 232 | 28/1/2012

Given matrix is
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix}$$

We have to factor the symmetric matrix A into $A = LDL^T$, where D is a diagonal matrix and L is a lower triangular matrix.

Step-2

We have
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix}$$

Subtracting 3 times row 1 from row 2 gives

$$\rightarrow \begin{bmatrix} 1 & 3 \\ 0 & -7 \end{bmatrix}$$

Step-3

Applying the same row operation reversely on the identity matrix gives L.

Adding 3 times row 1 to row 2 gives $\rightarrow \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$

$$L = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$$
 Therefore,

 $L^{T} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}.$ The transpose of the matrix L is

Step-4

Since the pivots are 1 and -7.

So the matrix *D* is
$$D = \begin{bmatrix} 1 & 0 \\ 0 & -7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -7 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$

Hence the LDL^T factorization of the given matrix is

Step-5

Given matrix is
$$A = \begin{bmatrix} 1 & b \\ b & c \end{bmatrix}$$

We have to factor the symmetric matrix A into $A = LDL^T$, where D is a diagonal matrix and L is a lower triangular matrix.

Step-6

Subtracting b times row 1 from row 2 gives

$$\rightarrow \begin{bmatrix} 1 & b \\ 0 & c - b^2 \end{bmatrix}$$

Step-7

Applying the same row operations reversely on the identity matrix gives ${\cal L}.$

Adding b times row 1 to row 2 gives

$$\rightarrow \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix}$$

$$L = \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix}$$
 Therefore,

The transpose of the matrix L is $L^T = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$.

Step-8

Since the pivots are 1 and $c-b^2$.

So the matrix
$$D$$
 is
$$D = \begin{bmatrix} 1 & b \\ 0 & c - b^2 \end{bmatrix}$$

Hence the LDL^T factorization of the given matrix is

$$\begin{bmatrix} 1 & b \\ b & c \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & c - b^2 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$$

Step-9

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Given matrix is

We have to factor the symmetric matrix A into $A = LDL^T$, where D is a diagonal matrix and L is a lower triangular matrix.

Step-10

Adding $\frac{1}{2}$ times row 1 to row 2 gives

$$\rightarrow \begin{bmatrix} 2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Adding row 2 to $\frac{3}{2}$ times row 3 gives

$$\rightarrow \begin{bmatrix} 2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & 0 & 2 \end{bmatrix}$$

Step-11

Applying the same row operations reversely on the identity matrices gives L.

Subtracting $\frac{1}{2}$ times row 1 to row 2 gives

$$\rightarrow \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Subtracting row 2 from $\frac{3}{2}$ times row 3 gives

Step-12

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ \frac{1}{2} & 1 & \frac{3}{2} \end{bmatrix}$$
e,

Therefore

$$L^{T} = \begin{bmatrix} 1 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 1 \\ 0 & 0 & \frac{3}{2} \end{bmatrix}$$

The transpose of L is

Step-13

Since the pivots are 2, $\frac{3}{2}$, and 2.

$$D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

So the matrix D is

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ \frac{1}{2} & 1 & \frac{3}{2} \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 1 \\ 0 & 0 & \frac{3}{2} \end{bmatrix}$$

Hence the LDL^T factorization of the given matrix is