User Defined Plane Curves in 3DXM*

Selection of one of these entries will open a dialog to enter the data the user wishes. Default examples are provided.

User Cartesian: enter $x(t) := \dots, y(t) := \dots$

User Polar: enter $r(t) := \ldots, \varphi(t) := \ldots$ The curve is $(r(t)\cos(\varphi(t)), r(t)\sin(\varphi(t)))$.

User Graph: enter $y(t) := \ldots$, implied is x(t) := t. The curve (t, y(t)) is the Graph of the function y. Three approximations are shown: Taylor, Interpolation, Fourier.

These are the explicitly parametrized user curves. The standard decorations are available: Parallel Curves, Generalized Cycoids, Osculating Circles, Family of Normals and their Envelope, Caustics from Rotated Normals.

User Implicit: enter level function $F(x,y) := \dots$ See the separate text: Implicit Planar Curves above, available also from the Documentation Menu (after selection of user defined implicit curve).

User Curvature: enter the curvature function $\kappa(s) := \ldots$. The program assumes that the parameter s is arc length. See also the text below: User Curves By Curvature, again available from the Documentation Menu of 3DXM.

H.K.

^{*} This file is from the 3D-XplorMath project. Please see: http://3D-XplorMath.org/