科目	時限	学生番号	学部・学科	氏名
統計学	Ι			

- 問1 以下の空欄に入れるべき適当な数値を下の解答欄に記入しなさい。(配点: 問3 母集団の分布を正規分布 $N\left(55,15^2\right)$ とする。いま無作為に 225 人のサン 15 点= 1 点× 15 問) プルをとって平均値 \bar{X} を求めるとすれば、 \bar{X} はどんな値になるか。2 シグ
 - (1)3個のデータ

7, 10, 13

の平均値は $\bar{X}=10$ であり、分散は $S^2=1$ である。もしこの データが特定の母集団から得られたサンプルと考えるなら不偏分散 $\hat{\sigma^2}=2$ を求めておくことも必要である。

- (2) 確率変数 X について $\mathrm{E}[X]=2$ 、 $\mathrm{V}[X]=4$ であることが分かっている。いま Y=X+10 のように変数 Y を定義すると $\mathrm{E}[Y]=3$ となり、また $\mathrm{V}[Y]=4$ となる。この二つから $\mathrm{E}[Y^2]=5$ となることも分かる。
- (3) 確率変数 Z は標準正規分布 N(0,1) に従っている。正規分布表から

$$P(Z \ge 1.0) = 6$$
 $P(Z \le -1.5) = 7$
 $P(-1.96 \le Z \le 1.96) = 8$
がわかる。

(4) 確率変数 X は離散型であり、

値	確率	
0	0.4	
1	0.6	

という分布に従っている。この時、 $\mathbf{E}[X]=$ 9 、 $\mathbf{V}[X]=$ 10 である。

(5) 確率変数 XC は正規分布 N $(100,15^2)$ に従っている。この分布の 1 シ グマ区間は 11 から 12 という範囲であり、X の値がこの範囲に おさまる確率は 13 である。また正規分布表から $P(100 \le X \le 115) = 14$

 $P(90 \le X \le 110) = 15$ であると分かる。

(解答)

①②③③④②ØØØØØØ

- 問2 札幌市内の居住者のうち 40% の人があるテレビ番組をみたことが分かっている。いま、札幌市内から 300 人のサンプルをとり、この番組をみていれば数値の 1、みていなければ数値の 0 で回答してもらうことにした。回答が集まった後、300 人について視聴率 \bar{X} を求める。以下の設問に答えなさい。(配点: 20 点)
 - (1) 母集団の平均値 μ および分散 σ^2 を求めなさい。
 - (2) サンプルから得られる視聴率 \bar{X} が示す値について確率分布の大まかな 形を図に描き、期待値 $\mathbf{E}\left[\bar{X}\right]$ とばらつき $\mathbf{SD}\left[\bar{X}\right]$ の値を図の中に書き 加えなさい。(注)書き入れる値は数式でも可

問3 母集団の分布を正規分布 $N\left(55,15^2\right)$ とする。いま無作為に 225 人のサンプルをとって平均値 \bar{X} を求めるとすれば、 \bar{X} はどんな値になるか。2 シグマ区間で範囲を示し、その範囲内におさまる確率を併せて答えなさい。(配点: 15 点)

問4 統計学の試験のあと10名の答案を無作為にとり得点を調べたところ

70, 63, 92, 71, 26 65, 51, 74, 32, 90

だった。 \bar{X} と S^2 、 $\hat{\sigma^2}$ を求めると、それぞれ 63.4、428.0、475.6 だった。 受験者全体の平均値 μ を信頼係数 95% で推定しなさい。 但し、受験者全体 の得点のばらつきは毎年 20 点前後で安定しており、今回も 20 点という値 を想定してもよい。(注)計算プロセスを分かりやすく書くこと。(配点: 20 点)