Digital Image Processing (CSE 478) Lecture 6: Image resampling

Vineet Gandhi

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Today's Class

- Image down sampling
- Gaussian Pyramids
- Image up sampling

Image too big to fit screen. How can we resize?

Throw away every other row and column to create a 1/2 size image

Courtesy: F. Durand

Original

1/2 (2x zoom)

Aliasing

- Sampling rate is not enough to capture the amount of detail
- To avoid aliasing
 - sampling rate ≥ 2 * max frequency in the image (two samples per cycle)
 - minimum sampling rate is called Nyquist rate (on the basis of sampling theorem proposed by Harry Nyquist and Claude Shannon)

Courtesy: wikipedia

Nyquist limit

Gaussian pre-filtering

Solution: filter the image, then subsample

Gaussian 1/2

G 1/4

G 1/8

Down-sampling with Gaussian pre-filtering

Solution: filter the image, then subsample

Gaussian 1/2

Gaussian 1/4 (2x zoom)

Gaussian 1/8 (4x zoom)

Compare with...

Down-sampling with Gaussian pre-filtering

Smoothing removes high frequency components!

Gaussian pyramid

Gaussian pyramid

What does smoothing takes away?

What does smoothing takes away?

What does smoothing takes away?

Laplacian pyramid

Space required for image pyramid

Efficient multi-scale detection

Template

Search Region

Template

Original Image

 Level 3 search: at the lowest level we search the entire image with correlation template

 Level 2 search: constrained to a neighbourhood of high response centers in the previous level

Level 1 search: again constrained based on results of level 1

Level 0 search: total time reduced to 0.5 second from 31 seconds

Blending Apples and Oranges

Image Blending

Image Blending

© prof. dmartin

Questions?

Up-sampling

Nearest neighbor interpolation

• Just repeat elements

Nearest Neighbour Interpolation

Just repeat elements

Nearest Neighbour Interpolation

Just repeat elements

Linear interpolation

• Linear combination

Bilinear interpolation (2D)

Divide and conquer

Bilinear interpolation (2D)

 Although each step is linear in the sampled values and in the position, the interpolation as a whole is not linear but rather quadratic in the sample location.

Principled approach to interpolation

Estimate the function from quantized values

Principled approach to interpolation

• Estimate the function from quantized values

Principled approach to interpolation

- Not always possible to estimate the function, what should we do?
- Approximation: Up-sampling as filtering

Interpolation as filtering

source: B. Curless

From 1D to 2D

Bicubic filter

Commonly used

Cubic reconstruction filter

More advanced interpolation are adaptive, for example edge sensitive interpolation!

Image interpolation

Original image: X 10

Nearest-neighbor interpolation

Bilinear interpolation

Bicubic interpolation

Image interpolation

Also used for *resampling*

