

Aprendizagem de Máquina

César Lincoln Cavalcante Mattos

2025

Agenda

Classificadores estatísticos

- 2 Classificadores Bayesianos
- 3 Tópicos adicionais
- 4 Referências

Classificadores estatísticos

Considere padrões de entrada $\mathbf{x}_i \in \mathbb{R}^D$, $i \in \{1, \dots, N\}$, e respectivas classes $y_i \in \{C_1, C_2, \dots C_K\}$.

Modelos discriminantes

Estimam parâmetros para as fronteiras de decisão entre classes a partir dos dados.

• Regressão logística: Aprendem a distribuição $p(y_i|\mathbf{x}_i)$ diretamente.

Classificadores estatísticos

Considere padrões de entrada $\mathbf{x}_i \in \mathbb{R}^D$, $i \in \{1, \dots, N\}$, e respectivas classes $y_i \in \{C_1, C_2, \dots C_K\}$.

Modelos discriminantes

Estimam parâmetros para as fronteiras de decisão entre classes a partir dos dados.

• Regressão logística: Aprendem a distribuição $p(y_i|\mathbf{x}_i)$ diretamente.

Modelos generativos

Modelam a distribuição das entradas associadas a cada classe.

• Classificadores Bayesianos: Consideram um modelo para $p(x_i|y_i)$, definem uma priori $p(y_i)$ e aplicam a Regra de Bayes para obter $p(y_i|x_i)$.

Agenda

- Classificadores estatísticos
- 2 Classificadores Bayesianos
- 3 Tópicos adicionais
- A Referências

• **Problema**: Dado um conjunto de características (atributos) x de um padrão, a qual classe o padrão pertence?

- **Problema**: Dado um conjunto de características (atributos) $m{x}$ de um padrão, a qual classe o padrão pertence?
- Pela Regra de Bayes:

$$p(y = C_k | \boldsymbol{x}) = \frac{p(\boldsymbol{x}|y = C_k)p(y = C_k)}{p(\boldsymbol{x})}, \quad k \in \{1, \dots, K\}.$$

- **Problema**: Dado um conjunto de características (atributos) $m{x}$ de um padrão, a qual classe o padrão pertence?
- Pela Regra de Bayes:

$$p(y = C_k | \boldsymbol{x}) = \frac{p(\boldsymbol{x}|y = C_k)p(y = C_k)}{p(\boldsymbol{x})}, \quad k \in \{1, \dots, K\}.$$

A notação pode ser simplificada:

$$p(C_k|\boldsymbol{x}) = \frac{p(\boldsymbol{x}|C_k)p(C_k)}{p(\boldsymbol{x})}, \quad k \in \{1, \dots, K\}.$$

- **Problema**: Dado um conjunto de características (atributos) $m{x}$ de um padrão, a qual classe o padrão pertence?
- Pela Regra de Bayes:

$$p(y = C_k | \boldsymbol{x}) = \frac{p(\boldsymbol{x}|y = C_k)p(y = C_k)}{p(\boldsymbol{x})}, \quad k \in \{1, \dots, K\}.$$

A notação pode ser simplificada:

$$p(C_k|\boldsymbol{x}) = \frac{p(\boldsymbol{x}|C_k)p(C_k)}{p(\boldsymbol{x})}, \quad k \in \{1, \dots, K\}.$$

Formalmente, temos:

$$posteriori = \frac{verossimilhança da classe \times priori}{evidência (ou verossimilhança marginal)}$$

Classificação binária (C₁ e C₂):

$$p(C_1|\boldsymbol{x}) = \frac{p(\boldsymbol{x}|C_1)p(C_1)}{p(\boldsymbol{x})} \propto p(\boldsymbol{x}|C_1)p(C_1)$$

$$p(C_2|\boldsymbol{x}) = \frac{p(\boldsymbol{x}|C_2)p(C_2)}{p(\boldsymbol{x})} \propto p(\boldsymbol{x}|C_2)p(C_2)$$

• Ideia: Escolha a classe com maior probabilidade.

• Classificação binária (C_1 e C_2):

$$p(C_1|\boldsymbol{x}) = \frac{p(\boldsymbol{x}|C_1)p(C_1)}{p(\boldsymbol{x})} \propto p(\boldsymbol{x}|C_1)p(C_1)$$

$$p(C_2|\boldsymbol{x}) = \frac{p(\boldsymbol{x}|C_2)p(C_2)}{p(\boldsymbol{x})} \propto p(\boldsymbol{x}|C_2)p(C_2)$$

- Ideia: Escolha a classe com maior probabilidade.
- Problema: Como calcular as distribuições acima?

• Classificação binária (C_1 e C_2):

$$p(C_1|oldsymbol{x}) = rac{p(oldsymbol{x}|C_1)p(C_1)}{p(oldsymbol{x})} \propto p(oldsymbol{x}|C_1)p(C_1)$$

$$p(C_2|\boldsymbol{x}) = \frac{p(\boldsymbol{x}|C_2)p(C_2)}{p(\boldsymbol{x})} \propto p(\boldsymbol{x}|C_2)p(C_2)$$

- Ideia: Escolha a classe com maior probabilidade.
- Problema: Como calcular as distribuições acima?
- Ideia: Estimar as probabilidades a partir do conjunto de treinamento.

• **Problema**: Como estimar as probabilidades $p(C_1)$ e $p(C_2)$?

- **Problema**: Como estimar as probabilidades $p(C_1)$ e $p(C_2)$?
- Ideias:
 - Considerar classes equiprováveis: $p(C_1) = p(C_2) = 0.5$
 - Proporcionais aos números de exemplos disponíveis.
 - Conhecidas pela natureza do problema.

• **Problema**: Como estimar as probabilidades $p(x|C_1)$ e $p(x|C_2)$?

- **Problema**: Como estimar as probabilidades $p(x|C_1)$ e $p(x|C_2)$?
- Ideia: Considerar que os dados foram gerados por uma distribuição de probabilidade específica e estimar seus parâmetros.

• Considerando distribuições Gaussianas, temos:

$$p(C_1) = p(C_2) = 0.5 \text{ ou } p(C_k) = \frac{N_k}{N}, \ \forall k \in \{1, 2\}.$$

• Considerando distribuições Gaussianas, temos:

$$p(C_1) = p(C_2) = 0.5 \text{ ou } p(C_k) = rac{N_k}{N}, \ orall k \in \{1, 2\}.$$
 $p(oldsymbol{x}|C_1) = \mathcal{N}(oldsymbol{\mu}_1, oldsymbol{\Sigma}_1) \ ext{e} \ p(oldsymbol{x}|C_2) = \mathcal{N}(oldsymbol{\mu}_2, oldsymbol{\Sigma}_2).$

• Considerando distribuições Gaussianas, temos:

$$p(C_1) = p(C_2) = 0.5$$
 ou $p(C_k) = \frac{N_k}{N}, \ \forall k \in \{1, 2\}.$ $p(\boldsymbol{x}|C_1) = \mathcal{N}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) \ \text{e} \ p(\boldsymbol{x}|C_2) = \mathcal{N}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2).$

$$\hat{\boldsymbol{\mu}}_k = \frac{1}{N_k} \sum_{\boldsymbol{x}_i \in C_k} \boldsymbol{x}_i, \ \forall k \in \{1, 2\},$$

$$\hat{\boldsymbol{\Sigma}}_k = \frac{1}{N_k - 1} \sum_{\boldsymbol{x} \in C_k} (\boldsymbol{x}_i - \hat{\boldsymbol{\mu}}_k) (\boldsymbol{x}_i - \hat{\boldsymbol{\mu}}_k)^\top, \ \forall k \in \{1, 2\}.$$

• Classificação de um novo padrão x_* :

$$p(\mathbf{x}_*|C_k) = \mathcal{N}(\mathbf{x}_*|\hat{\boldsymbol{\mu}}_k, \hat{\boldsymbol{\Sigma}}_k), \ k \in \{1, 2\}.$$

• Classificação de um novo padrão x_* :

$$p(\mathbf{x}_*|C_k) = \mathcal{N}(\mathbf{x}_*|\hat{\boldsymbol{\mu}}_k, \hat{\boldsymbol{\Sigma}}_k), \ k \in \{1, 2\}.$$

• Escolha a classe mais provável:

$$p(C_k|\mathbf{x}_*) \propto p(\mathbf{x}_*|C_k)p(C_k), \ k \in \{1, 2\},$$

$$\log p(C_k|\mathbf{x}_*) \propto \log p(\mathbf{x}_*|C_k) + \log p(C_k), \ k \in \{1, 2\},$$

$$\log p(C_k|\mathbf{x}_*) \propto -\frac{1}{2}\log |\hat{\mathbf{\Sigma}}_k| - \frac{1}{2}(\mathbf{x}_* - \hat{\boldsymbol{\mu}}_k)^{\top} \hat{\mathbf{\Sigma}}_k^{-1}(\mathbf{x}_* - \hat{\boldsymbol{\mu}}_k) + \log p(C_k).$$

$$p(C_k|\boldsymbol{x}) \propto p(\boldsymbol{x}|C_k)p(C_k), k \in \{1,2\}$$

$$p(C_k|\boldsymbol{x}) \propto p(\boldsymbol{x}|C_k)p(C_k), k \in \{1,2\}$$

$$p(C_k|\mathbf{x}) \propto p(\mathbf{x}|C_k)p(C_k), k \in \{1,2\}$$

$$p(\boldsymbol{x}|C_k) = \mathcal{N}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k), \ k \in \{1, 2\}$$

• Caso bidimensional (D=2):

$$oldsymbol{\Sigma} = \left[egin{array}{cc} \sigma_1^2 & \sigma_{1,2} \ \sigma_{1,2} & \sigma_2^2 \end{array}
ight]$$

• Valores altos para a covariância $\sigma_{1,2}$:

$$p(\boldsymbol{x}|C_k) = \mathcal{N}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k), \ k \in \{1, 2\}$$

• Caso bidimensional (D=2):

$$oldsymbol{\Sigma} = \left[egin{array}{cc} \sigma_1^2 & \sigma_{1,2} \ \sigma_{1,2} & \sigma_2^2 \end{array}
ight]$$

• Valores baixos (próximos de zero) para a covariância $\sigma_{1,2}$:

Naive Bayes

- Considera atributos independentes, dada a classe do padrão.
- Caso bidimensional (D=2) com K classes:

$$\mathbf{\Sigma}_k = \left[\begin{array}{cc} \sigma_{1k}^2 & 0\\ 0 & \sigma_{2k}^2 \end{array} \right]$$

Naive Bayes

• Dado $\boldsymbol{x} = [x_1, x_2, \dots, x_D]^{\top}$, calcula as probabilidade das classes: $p(C_k | \boldsymbol{x}) \propto p(\boldsymbol{x} | C_k) p(C_k), \ \forall k.$

Naive Bayes

- Dado $\boldsymbol{x} = [x_1, x_2, \dots, x_D]^{\top}$, calcula as probabilidade das classes: $p(C_k | \boldsymbol{x}) \propto p(\boldsymbol{x} | C_k) p(C_k), \ \forall k.$
- Considera atributos independentes dada a classe:

$$p(C_k|\boldsymbol{x}) \propto p(x_1|C_k)p(x_2|C_k) \cdots p(x_D|C_k)p(C_k), \ \forall k$$
$$p(C_k|\boldsymbol{x}) \propto p(C_k) \prod_{d=1}^{D} p(x_d|C_k), \ \forall k.$$

Naive Bayes

• Dado $\mathbf{x} = [x_1, x_2, \dots, x_D]^{\top}$, calcula as probabilidade das classes: $p(C_k | \mathbf{x}) \propto p(\mathbf{x} | C_k) p(C_k), \ \forall k.$

• Considera atributos independentes dada a classe:

$$p(C_k|\boldsymbol{x}) \propto p(x_1|C_k)p(x_2|C_k) \cdots p(x_D|C_k)p(C_k), \ \forall k$$
$$p(C_k|\boldsymbol{x}) \propto p(C_k) \prod^D p(x_d|C_k), \ \forall k.$$

ullet Predição para um novo padrão $oldsymbol{x}_*$:

$$\hat{y}_* = \arg \max_k p(C_k) \prod_{d=1}^{D} p(x_{*d} | C_k)$$

$$\hat{y}_* = \arg \max_k \left[\log p(C_k) + \sum_{d=1}^{D} \log p(x_{*d} | C_k) \right].$$

Naive Bayes Gaussiano

• Considera distribuições Gaussianas para $p(x_d|C_k)$:

$$p(C_k|\boldsymbol{x}) \propto p(C_k) \prod_{d=1}^{D} \mathcal{N}(x_d|\mu_{dk}, \sigma_{dk}^2), \ \forall k.$$

Naive Bayes Gaussiano

• Considera distribuições Gaussianas para $p(x_d|C_k)$:

$$p(C_k|\boldsymbol{x}) \propto p(C_k) \prod_{d=1}^{D} \mathcal{N}(x_d|\mu_{dk}, \sigma_{dk}^2), \ \forall k.$$

ullet Predição para um novo padrão x_* :

$$\hat{y}_{*} = \arg \max_{k} \left[\log p(C_{k}) + \sum_{d=1}^{D} \log \mathcal{N}(x_{*d} | \mu_{dk}, \sigma_{dk}^{2}) \right]$$

$$\hat{y}_{*} = \arg \max_{k} \left[\log p(C_{k}) - \frac{1}{2} \sum_{d=1}^{D} \log 2\pi \sigma_{dk}^{2} - \frac{1}{2} \sum_{d=1}^{D} \frac{(x_{*d} - \mu_{dk})^{2}}{\sigma_{dk}^{2}} \right].$$

Observações:

$$\rightarrow \hat{\mu}_{dk} = \frac{1}{N_k} \sum_{x_i \in C_k} x_{id} \ e \ \hat{\sigma}_{dk}^2 = \frac{1}{N_k - 1} \sum_{x_i \in C_k} (x_{id} - \hat{\mu}_{dk})^2, \ \forall d, k.$$

ightarrow Discriminante Gaussiano com matriz de covariância diagonal.

Resumo dos Classificadores Estatísticos

Análise de Discriminante Gaussiano

$$\hat{y}_* = \arg \max_k \left[\log p(C_k) - \frac{1}{2} \log |\mathbf{\Sigma}_k| - \frac{1}{2} (\mathbf{x}_* - \boldsymbol{\mu}_k)^\top \mathbf{\Sigma}_k^{-1} (\mathbf{x}_* - \boldsymbol{\mu}_k) \right].$$

Naive Bayes

$$\hat{y}_* = \arg \max_k \left[\log p(C_k) + \sum_{d=1}^D \log p(x_{*d}|C_k) \right].$$

Naive Bayes Gaussiano

$$\hat{y}_* = \arg \max_{k} \left[\log p(C_k) - \frac{1}{2} \sum_{d=1}^{D} \log 2\pi \sigma_{dk}^2 - \frac{1}{2} \sum_{d=1}^{D} \frac{(x_{*d} - \mu_{dk})^2}{\sigma_{dk}^2} \right].$$

• **Observação**: Os parâmetros de todas as distribuições podem ser estimados a partir dos dados (de treinamento) disponíveis.

Classificadores Estatísticos

Naive Bayes Gaussiano

Classificadores Bayesianos

Naive Bayes Gaussiano

Análise de Discriminante Gaussiano

• O que impacta o formato das fronteiras de decisão?

- O que impacta o formato das fronteiras de decisão?
- Matrizes de covariância das classes.
 - ightarrow Se $\mathbf{\Sigma}_{j}
 eq \mathbf{\Sigma}_{k}, orall j, k$, fronteira quadrática.
 - \rightarrow Se $\Sigma_k = \Sigma, \forall k$, contrário, fronteira linear.

- O que impacta o formato das fronteiras de decisão?
- Correlação entre atributos.
 - → Se atributos são correlacionados, contornos elípticos inclinados.
 - \rightarrow Se $\Sigma_k, \forall k$, é diagonal, contornos elípticos retos.

- O que impacta o formato das fronteiras de decisão?
- Correlação entre atributos.
 - → Se atributos são correlacionados, contornos elípticos inclinados.
 - \rightarrow Se $\Sigma_k = \sigma_k^2 I, \forall k$, contornos esféricos.

Classificadores Bayesianos

 Quais as vantagens/desvantagens de usar Regressão Logística (RL) ou Análise de Discriminante Gaussiano (ADG)?

Classificadores Bayesianos

- Quais as vantagens/desvantagens de usar Regressão Logística (RL) ou Análise de Discriminante Gaussiano (ADG)?
 - → ADG permite fronteiras de decisão não-lineares, dependendo das considerações feitas.
 - \rightarrow ADG considera que as distribuições $p(\boldsymbol{x}|C_k)$ são Gaussianas, o que não necessariamente é verdade.
 - → ADG usualmente precisa de menos dados para obter uma boa solução.
 - ightarrow ADG permite incluir ou remover classes sem precisar retreinar o modelo por completo.
 - → NB permite incluir ou remover atributos sem precisar retreinar o modelo por completo.
 - → ADG pode lidar com atributos faltantes via marginalização.
 - → RL é mais robusta quando considerações incorretas são feitas.

Agenda

Classificadores estatísticos

- Classificadores Bayesianos
- 3 Tópicos adicionais
- 4 Referências

Tópicos adicionais

- Classificadores Naive Bayes não-Gaussianos ou mistos.
 - \rightarrow Para classes $k \in \{1, \dots, K\}$:

$$p(C_k|\mathbf{x}) \propto p(C_k) \prod_{d=1}^{D} p(x_d|C_k)$$

ightarrow Considerando, por exemplo, os d_1 primeiros atributos Gaussianos, os d_2-d_1 seguintes binários (distribuição de Bernoulli) e os demais categóricos (distribuição multinoulli):

$$p(C_k|\boldsymbol{x}) \propto p(C_k) \prod_{d=1}^{d_1} \mathcal{N}(x_d|\mu_{dk}, \sigma_{dk}^2) \prod_{d=d_1+1}^{d_2} \mathrm{Ber}(x_d|q_{dk}) \prod_{d=d_2+1}^{D} \mathrm{Cat}(x_d|\boldsymbol{q}_{dk})$$

• Inferência Bayesiana: adicionar prioris para $p(C_k)$ (e.g. Dirichlet) e os parâmetros das distribuições (e.g. Gaussiana, gamma inversa, beta, Dirichlet).

Agenda

Classificadores estatísticos

- 2 Classificadores Bayesianos
- 3 Tópicos adicionais
- 4 Referências

Referências bibliográficas

- Caps. 3 e 4 MURPHY, Kevin P. Machine learning: a probabilistic perspective, 2012.
- Cap. 9 MURPHY, Kevin P. Probabilistic Machine Learning: An Introduction, 2021.
- Caps. 1 e 8* BISHOP, Christopher M. Pattern recognition and machine learning, 2006.