Useful formulas

25

 $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ — number of ways to choose k objects out of n $\binom{n+k-1}{k-1}$ — number of ways to choose k objects out of n with repetitions

permutations of n elements with k cycles $\binom{n+1}{m} = n \binom{n}{m} + \binom{n}{m-1}$ $\frac{n}{m}$] — Stirling numbers of the first kind; number of

$${\binom{n+1}{m}} = n {\binom{n}{m}} + {\binom{n}{m-1}}$$

$$(x)_n = x(x-1)\dots x - n + 1 = \sum_{k=0}^n (-1)^{n-k} {n\brack k} x^k$$

of partitions of set $1, \ldots, n$ into k disjoint subsets. ${n+1 \brace m} = k \begin{Bmatrix} n \end{Bmatrix} + \begin{Bmatrix} n \cr k-1 \end{Bmatrix}$ ${n \choose m}$ — Stirling numbers of the second kind; number

$$\begin{cases} m \\ m \end{cases} = k \begin{cases} k \\ k \end{cases} + \begin{cases} k_{n-1} \end{cases}$$

$$\sum_{k=0}^{n} \binom{n}{k} (x)_k = x^n$$

$$K = 0$$

$$C_n = \frac{1}{n+1} {2n \choose n}$$
 — Catalan numbers $C(x) = \frac{1-\sqrt{1-4x}}{2x}$

Binomial transform

If
$$a_n = \sum_{k=0}^{n} {n \choose k} b_k$$
, then $b_n = \sum_{k=0}^{n} (-1)^{n-k} {n \choose k} a_k$

•
$$a = (1, x, x^2, ...), b = (1, (x+1), (x+1)^2, ...)$$

•
$$a_i = i^k, b_i = \binom{n}{i} i!$$

Burnside's lemma

shifts of array, rotations and symmetries of $n \times n$ Let G be a group of action on set X (Ex.: cyclic

action f that transforms x to y: f(x) = y. Call two objects x and y equivalent if there is an

calculated as follows: CThe number of equivalence classes then can be lculated as follows: $C = \frac{1}{|G|} \sum_{f \in G} |X^f|$, where X^f

is the set of fixed points of $f: X^f = \{x | f(x) = x\}$

Generating functions

 $a_0, a_1, \dots, a_n, \dots$ is $A(x) = \sum_{i=1}^{\infty} a_i x^i$ Ordinary generating function (o.g.f.) for sequence

sequence $a_0, a_1, \dots, a_n, \dots$ is $A(x) = \sum_{n=0}^{\infty} a_i x^i$ Exponential generating function (e.g.f.)

$$B(x) = A'(x), b_{n-1} = n \cdot a_n$$

$$c_n = \sum_{k=0}^{n} a_k b_{n-k}$$
 (o.g.f. convolution)
 $c_n = \sum_{k=0}^{n} \binom{n}{k} a_k b_{n-k}$ (e.g.f. convolution, compute with FFT using $\widetilde{a_n} = \frac{a_n}{n!}$)

General linear recurrences

If
$$a_n = \sum_{k=1}^n b_k a_{n-k}$$
, then $A(x) = \frac{a_0}{1-B(x)}$. We also can compute all a_n with Divide-and-Conquer algorithm in $O(n \log^2 n)$.

Inverse polynomial modulo x'

Given A(x), find B(x) s $A(x)B(x) = 1 + x^{l} \cdot Q(x) \text{ for some } Q(x)$

1. Start with
$$B_0(x) = \frac{1}{a_0}$$

Double the length of
$$B(x)$$
:
 $B_{k+1}(x) = (-B_k(x)^2 A(x) + 2B_k(x)) \mod x^{2^{k+1}}$

Fast subset convolution

Given array a_i of size 2^k , calculate $b_i =$

Hadamard transform

size $2 \times 2 \times \ldots \times 2$, calculate FFT of that array: Treat array a of size 2^k as k-dimentional array