Data Science Inference and Modeling

The textbook for the Data Science course series is freely available online.

This course corresponds to the textbook chapters Statistical Inference and Statistical Models.

Learning Objectives

- The concepts necessary to define estimates and margins of errors of populations, parameters, estimates, and standard errors in order to make predictions about data
- How to use models to aggregate data from different sources
- The very basics of Bayesian statistics and predictive modeling

Course Overview

Section 1: Parameters and Estimates

You will learn how to estimate population parameters.

Section 2: The Central Limit Theorem in Practice

You will apply the central limit theorem to assess how close a sample estimate is to the population parameter of interest.

Section 3: Confidence Intervals and p-Values

You will learn how to calculate confidence intervals and learn about the relationship between confidence intervals and p-values.

Section 4: Statistical Models

You will learn about statistical models in the context of election forecasting.

Section 5: Bayesian Statistics

You will learn about Bayesian statistics through looking at examples from rare disease diagnosis and baseball.

Section 6: Election Forecasting

You will learn about election forecasting, building on what you've learned in the previous sections about statistical modeling and Bayesian statistics.

Section 7: Association Tests

You will learn how to use association and chi-squared tests to perform inference for binary, categorical, and ordinal data through an example looking at research funding rates.

Introduction to Inference

The textbook for this section is available here

In this course, we will learn:

- statistical inference, the process of deducing characteristics of a population using data from a random sample
- the statistical concepts necessary to define estimates and margins of errors
- how to forecast future results and estimate the precision of our forecast
- how to calculate and interpret confidence intervals and p-values

Key points

- Information gathered from a small random sample can be used to infer characteristics of the entire population.
- Opinion polls are useful when asking everyone in the population is impossible.
- A common use for opinion polls is determining voter preferences in political elections for the purposes
 of forecasting election results.
- The *spread* of a poll is the estimated difference between support two candidates or options.

Section 1 Overview

Section 1 introduces you to parameters and estimates.

After completing Section 1, you will be able to:

- Understand how to use a sampling model to perform a poll.
- Explain the terms **population**, **parameter**, and **sample** as they relate to statistical inference.
- Use a sample to estimate the population proportion from the sample average.
- Calculate the expected value and standard error of the sample average.

Sampling Model Parameters and Estimates

The textbook for this section is available here and here; first part

Key points

- The task of statistical inference is to estimate an unknown population parameter using observed data from a sample.
- In a sampling model, the collection of elements in the urn is called the *population*.
- A parameter is a number that summarizes data for an entire population.
- $\bullet\,$ A sample is observed data from a subset of the population.
- An *estimate* is a summary of the observed data about a parameter that we believe is informative. It is a data-driven guess of the population parameter.
- We want to predict the proportion of the blue beads in the urn, the parameter p. The proportion of red beads in the urn is 1-p and the spread is 2p-1.

• The sample proportion is a random variable. Sampling gives random results drawn from the population distribution.

Code: Function for taking a random draw from a specific urn

The dslabs package includes a function for taking a random draw of size n from the urn:

```
if(!require(tidyverse)) install.packages("tidyverse")
## Loading required package: tidyverse
## -- Attaching packages -----
## v ggplot2 3.3.2
                               0.3.4
                    v purrr
## v tibble 3.0.3
                    v dplyr 1.0.1
## v tidyr 1.1.1
                     v stringr 1.4.0
## v readr
          1.3.1
                     v forcats 0.5.0
## -- Conflicts -----
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
if(!require(dslabs)) install.packages("dslabs")
## Loading required package: dslabs
library(tidyverse)
library(dslabs)
take_pol1(25)
                # draw 25 beads
```


The Sample Average

The textbook for this section is available here and here

Key points

- Many common data science tasks can be framed as estimating a parameter from a sample.
- We illustrate statistical inference by walking through the process to estimate p. From the estimate of p, we can easily calculate an estimate of the spread, 2p-1.
- Consider the random variable X that is 1 if a blue bead is chosen and 0 if a red bead is chosen. The proportion of blue beads in N draws is the average of the draws $X_1, ..., X_N$.
- \overline{X} is the sample average. In statistics, a bar on top of a symbol denotes the average. \overline{X} is a random variable because it is the average of random draws each time we take a sample, \overline{X} is different.

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_N}{N}$$

• The number of blue beads drawn in N draws, $N\overline{X}$, is N times the proportion of values in the urn. However, we do not know the true proportion: we are trying to estimate this parameter p.

Polling versus Forecasting

The textbook for this section is available here

Key points

- A poll taken in advance of an election estimates p for that moment, not for election day.
- In order to predict election results, forecasters try to use early estimates of p to predict p on election day. We discuss some approaches in later sections.

Properties of Our Estimate

The textbook for this section is available here

Key points

- When interpreting values of \overline{X} , it is important to remember that \overline{X} is a random variable with an expected value and standard error that represents the sample proportion of positive events.
- The expected value of \overline{X} is the parameter of interest p. This follows from the fact that \overline{X} is the sum of independent draws of a random variable times a constant 1/N.

$$E(\overline{X}) = p$$

• As the number of draws N increases, the standard error of our estimate \overline{X} decreases. The standard error of the average of \overline{X} over N draws is:

$$SE(\overline{X}) = \sqrt{p(1-p)/N}$$

- In theory, we can get more accurate estimates of p by increasing N. In practice, there are limits on the size of N due to costs, as well as other factors we discuss later.
- We can also use other random variable equations to determine the expected value of the sum of draws E(S) and standard error of the sum of draws SE(S).

$$E(S) = Np$$

$$SE(S) = \sqrt{Np(1-p)}$$

Assessment 1.1: Parameters and Estimates

1. Polling - expected value of S

Suppose you poll a population in which a proportion \mathbf{p} of voters are Democrats and $\mathbf{1}-\mathbf{p}$ are Republicans. Your sample size is $\mathbf{N}=\mathbf{25}$. Consider the random variable \mathbf{S} , which is the total number of Democrats in your sample.

What is the expected value of this random variable S?

Possible Answers - [] A.
$$E(S)=25(1-p)$$
 - [X] B. $E(S)=25p$ - [] C. $E(S)=\sqrt{(25p(1-p))}$ - [] D. $E(S)=p$

2. Polling - standard error of S

Again, consider the random variable S, which is the total number of Democrats in your sample of 25 voters. The variable p describes the proportion of Democrats in the sample, whereas 1-p describes the proportion of Republicans.

What is the standard error of S?

Possible Answers - [] A.
$$SE(S)=25p(1-p)$$
 - [] B. $SE(S)=\sqrt{25}p$ - [] C. $SE(S)=25(1-p)$ - [X] D. $SE(S)=\sqrt{(25p(1-p))}$

3. Polling - expected value of X-bar

Consider the random variable S/N, which is equivalent to the sample average that we have been denoting as X. The variable N represents the sample size and p is the proportion of Democrats in the population.

What is the expected value of \mathbf{X} ?

Possible Answers -
$$[X]$$
 A. $E(X)=p-[]$ B. $E(X)=Np-[]$ C. $E(X)=N(1-p)-[]$ D. $E(X)=1-p$

4. Polling - standard error of X-bar

What is the standard error of the sample average, \mathbf{X} ?

The variable N represents the sample size and p is the proportion of Democrats in the population.

Possible Answers - [] A.
$$SE(X) = \sqrt{(Np(1-p))}$$
 - [X] B. $SE(X) = \sqrt{(p(1-p)/N)}$ - [] C. $SE(X) = \sqrt{(p(1-p))}$ - [] D. $SE(X) = \sqrt{N}$

5. se versus p

Write a line of code that calculates the standard error se of a sample average when you poll 25 people in the population. Generate a sequence of 100 proportions of Democrats p that vary from 0 (no Democrats) to 1 (all Democrats).

Plot se versus p for the 100 different proportions.

Instructions - Use the seq function to generate a vector of 100 values of p that range from 0 to 1. - Use the sqrt function to generate a vector of standard errors for all values of p. - Use the plot function to generate a plot with p on the x-axis and se on the y-axis.