# Classification

Ekhine Irurozki







# Classification

- Supervised learning: n features, a categorical class variable Y
- A classifier is a ML algorithm for classification. Training, learning,...
- Approaches:
  - Separation of the instances of each class in the feature space
  - Learning the distribution of the data

| 1 X <sub>2</sub> |                              | X <sub>n-1</sub>       | Xn                                        | Υ                                                                                                                                                                                                                                                           |
|------------------|------------------------------|------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6                |                              | 5                      | 9                                         | 1                                                                                                                                                                                                                                                           |
| 1                |                              | 5                      | 6                                         | 0                                                                                                                                                                                                                                                           |
| 6                |                              | 5                      | 5                                         | 0                                                                                                                                                                                                                                                           |
| 89               |                              | 23                     | 85                                        | 1                                                                                                                                                                                                                                                           |
| 435              | 5                            | 3                      | 1                                         | 1                                                                                                                                                                                                                                                           |
|                  |                              |                        |                                           |                                                                                                                                                                                                                                                             |
|                  |                              |                        |                                           |                                                                                                                                                                                                                                                             |
| 1                |                              | 77                     | 321                                       | 0                                                                                                                                                                                                                                                           |
| 8                |                              | 6                      | 8                                         | 1                                                                                                                                                                                                                                                           |
| 77               |                              | 3                      | 132                                       | 0                                                                                                                                                                                                                                                           |
| 9                |                              | 1                      | 8                                         | 0                                                                                                                                                                                                                                                           |
| 8                |                              | 4                      | 8                                         | ?                                                                                                                                                                                                                                                           |
|                  | 6<br>1<br>6<br>89<br>435<br> | 6  6  89  435  1  1  9 | 6 5 1 5 6 5 89 23 435 3 1 77 8 6 77 3 9 1 | 6        5       9         1        5       6         6        5       5         89        23       85         435        3       1               1        77       321         8        6       8         77        3       132         9        1       8 |



# OvO - OvA

- Some classification algorithms can only distinguish between two classes, how can we use them in multi class problems?
  - One vs One strategy: train k(k-1)/2 binary classifiers. At prediction stage we will assign a new observation to the class that wins in more classifiers
  - One vs All (or One vs Rest) strategy: one classifier per class. The outcome must be numerical, representing the confidence on it



### Outline

- K Nearest Neighbour, KNN
- Decision trees, bagging, random forests, boosting
- Logistic regression
- Discriminant analysis: LDA, QDA, GaussianNB
- Support Vector Machines, SVM





### Outline

- K Nearest Neighbour, KNN
- Decision trees, bagging, random forests, boosting
- Logistic regression
- Discriminant analysis: LDA, QDA, GaussianNB
- Support Vector Machines, SVM



#### KNN 3-Class classification (k = 3) 4.5 It is a lazy algorithm which does 4.0 not learn any model and makes 3.5 computations in classification 3.0 2.5 time 2.0 1.5 Given a dataset D a new 1.0 instance for prediction X sepal length (cm)

- Let D' be the k closest instances to X on D
- Assign X to the most popular class on D'



#### KNN 3-Class classification (k = 3) 4.5 It is a lazy algorithm which does 4.0 not learn any model and makes 3.5 computations in classification 3.0 2.5 time 2.0 1.5 Given a dataset D a new 1.0 instance for prediction X sepal length (cm)

- Let D' be the k closest instances to X on D
- Assign X to the most popular class on D'



#### KNN 3-Class classification (k = 3) 4.5 It is a lazy algorithm which does 4.0 not learn any model and makes 3.5 computations in classification 3.0 2.5 time 2.0 1.5 Given a dataset D a new 1.0 instance for prediction X sepal length (cm)

- Let D' be the k closest instances to X on D
- Assign X to the most popular class on D'



• What happens as we change k? The decision boundaries get smoother and we control overfitting

How do we choose k?







- If we can define similarity measures for the features we can use the KNN
- Time series, a series of data points indexed sequentially



- If we can define similarity measures for the features we can use the KNN
- Time series, a series of data points indexed sequentially





Instance Class





#### Class







#### Class



0





#### **Class**













#### **Class**











#### **Class**













# KNN - TS





**Dynamic Time Warping Matching** 

# KNN for time series

Dynamic time warping, DTW, a distance for time series





Dynamic Time Warping Matching



- Easy to understand and implement
- Computationally efficient in general
- Defining similarities
- The first thing that you should try when approaching a ML problem
- The curse of dimensionality: Nearest neighbours tend to be far away in high dimensions



### Outline

- K Nearest Neighbour, KNN
- Decision trees, bagging, random forests, boosting
- Logistic regression
- Discriminant analysis: LDA, QDA, GaussianNB
- Support Vector Machines, SVM



- Divide the feature space into high dimensional rectangles
- Find the boxes that minimise the classification error
- Infeasible!







- Recursive binary splitting: iteratively partition the feature space.
- Error measured as

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk}) \text{ where } \hat{p}_{mk}$$



- Recursive binary splitting: iteratively partition the feature space.
- Error measured as

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk}) \text{ where } \hat{p}_{mk}$$



- Recursive binary splitting: iteratively partition the feature space.
- Error measured as

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk}) \text{ where } \hat{p}_{mk}$$



- Recursive binary splitting: iteratively partition the feature space.
- Error measured as

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk}) \text{ where } \hat{p}_{mk}$$







- Deep trees lead to high variance and overfitting
- When do we stop growing the tree?
  - iterate until each region contains no more than k samples
  - prune the tree, regularization





- Deep trees lead to high variance and overfitting
- When do we stop growing the tree?
  - iterate until each region contains no more than k samples
  - prune the tree, regularization





- Simple and interpretable. It is easy to understand by an expert
- Not competitive with modern algorithms
- High variance
- Can be a building block for other techniques



#### Bagging

- Bootstrap sample
- Grow a full tree
- Aggregate all results
- The mean decrease of Gini index by split for a given feature gives the variable importance





#### Random forests

- Bootstrap sample
- Select a subset of the features for each split
- Aggregate the results





#### Outline

- K Nearest Neighbour, KNN
- Decision trees, bagging, random forests, boosting
- Logistic regression
- Discriminant analysis: LDA, QDA, GaussianNB
- Support Vector Machines, SVM



- Binary class variable, Y
- Example in finance: X is the balance of a client and Y client's default
- Different approach from previous chapter: model the relation between X, the balance, and the probability of default of this client  $p(X) = Pr(Y = 1 \mid X)$



- First approach is to use linear regression:  $Y = \beta_0 + \beta_1 X$ 
  - LR is a very powerful solution in many context
  - Easy to fit
  - Interpretable







• Change the domain from  $(-\infty, \infty)$  to [0,1]





One approach is to use the logistic function

$$p(X) = \frac{exp(\beta_0 + \beta_1 X)}{1 + exp(\beta_0 + \beta_1 X)}$$

• This is equivalen to  $log \frac{p(X)}{1 - p(X)} = \beta_0 + \beta_1 X$ 

One approach is to use the logistic function

$$p(X) = \frac{exp(\beta_0 + \beta_1 X)}{1 + exp(\beta_0 + \beta_1 X)}$$

• This is equivalen to  $log \frac{p(X)}{1 - p(X)} \neq \beta_0 + \beta_1 X$ 

One approach is to use the logistic function

$$p(X) = \frac{exp(\beta_0 + \beta_1 X)}{1 + exp(\beta_0 + \beta_1 X)}$$

The logit is linear in X

• This is equivalen to  $log \frac{p(X)}{1 - p(X)} \neq \beta_0 + \beta_1 X$ 

- Making predictions is easy
- Maximum likelihood estimation of the coefficients efficient



- When the classes are well separated it can be unstable: if there is a feature that separates clases perfectly the coefficients go up to infinity
- If the sample is small discriminant analysis is more accurate



#### Outline

- K Nearest Neighbour, KNN
- Decision trees, bagging, random forests, boosting
- Logistic regression
- Discriminant analysis: LDA, QDA, GaussianNB
- Support Vector Machines, SVM



$$\bullet \ \ P(Y=k)$$

- P(X = x | Y = y): assume that they follow the Gaussian distribution with the same variance in each class (Linear Discriminant Analysis)
- P(Y = k | X = x)

| X | Y   |
|---|-----|
| 3 | 1   |
| 5 | 0   |
| 4 | 0   |
| 7 | 1   |
| 3 | 1   |
|   |     |
|   | ••• |
| 8 | 0   |
| 9 | 1   |
| 4 | 0   |
| 8 | ?   |

• Model the distribution of X and use the Bayes theorem to obtain P(Y|X):

$$P(Y = k \mid X = x) = \frac{P(X = x \mid Y = y)P(Y = k)}{P(X = x)} = \frac{\pi_k f_k(x)}{\sum_{i \le k} \pi_i f_i(x)}$$

- Assign x to the class with maximum P(Y|X)
- We do not need the denominator
- Particularly accurate when the classes are normal



• Model the distribution of X and use the Bayes theorem to obtain P(Y|X):

$$P(Y = k \mid X = x) = \frac{P(X = x \mid Y = y)P(Y = k)}{P(X = x)} = \frac{\pi_k f_k(x)}{\sum_{i < k} \pi_i f_i(x)}$$

- Assign x to the class with maximum P(Y|X)
- We do not need the denominator
- Particularly accurate when the classes are normal



• Model the distribution of X and use the Bayes theorem to obtain P(Y|X):

$$P(Y = k \mid X = x) = \frac{P(X = x \mid Y = y)P(Y = k)}{P(X = x)} = \frac{\pi_k f_k(x)}{\sum_{i \le k} \pi_i f_i(x)}$$

- Assign x to the class with maximum P(Y|X)
- We do not need the denominator
- Particularly accurate when the classes are normal



• Model the distribution of X and use the Bayes theorem to obtain P(Y|X):

$$P(Y = k \mid X = x) = \frac{P(X = x \mid Y = y)P(Y = k)}{P(X = x)} = \frac{\pi_k f_k(x)}{\sum_{i \le k} \pi_i f_i(x)}$$

$$\pi_1 = .5, \quad \pi_2 = .5$$

$$\pi_1 = .3$$
,  $\pi_2 = .7$ 



#### Linear Discriminant analysis

 If we assume that f is Gaussian, the Bayes classifier assign an observation to the class with maximum discriminant funciton value

$$\delta_k(x) = x \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(p_k)$$

- Linear function of x
- Learning from data implies estimating the means and the variances



# Quadratic discriminant analysis

• 
$$P(Y = k \mid X = x) = \frac{P(X = x \mid Y = y)P(Y = k)}{P(X = x)} = \frac{\pi_k f_k(x)}{\sum_{i \le k} \pi_i f_i(x)}$$

- assume that the density follows a Gaussian distribution with different variance in each class
- Discriminant function  $\delta_k(x)$  is quadratic on x



# Quadratic discriminant analysis

• 
$$P(Y = k \mid X = x) = \frac{P(X = x \mid Y = y)P(Y = k)}{P(X = x)} = \frac{\pi_k f_k(x)}{\sum_{i \le k} \pi_i f_i(x)}$$

- assume that the density follows a Gaussian distribution with different variance in each class
- Discriminant function  $\delta_k(x)$  is quadratic on x



# Quadratic discriminant analysis

• 
$$P(Y = k \mid X = x) = \frac{P(X = x \mid Y = y)P(Y = k)}{P(X = x)} = \frac{\pi_k f_k(x)}{\sum_{i \le k} \pi_i f_i(x)}$$

- assume that the density follows a Gaussian distribution with different variance in each class
- Discriminant function  $\delta_k(x)$  is quadratic on x



## Naive Bayes

In each class the density factors into a product of

densities, 
$$f_k(x) = \prod_{j=1}^{p} f_{jk}x(j)$$

 The assumptions are strong (conditionally independence in each of the classes) but for classification we are interested in finding the class for which the probability

$$P(Y = k | X = x) = \frac{P(X = x | Y = y)P(Y = k)}{P(X = x)}$$
 is

maximized



## LDA QDA



Bayes, LDA and QDA decision boundaries



#### Outline

- K Nearest Neighbour, KNN
- Decision trees, bagging, random forests, boosting
- Logistic regression
- Discriminant analysis: LDA, QDA, GaussianNB
- Support Vector Machines, SVM



## Separating hyperplanes

- Find decision boundaries that separate the data in different classes
- Two dimensional feature space in the example



- A flat affine subspace of dimension n-1
- In a two dimensional space, a hyperplane is a line
- It has the form

$$\beta_0 + X_1 \beta_1 + X_2 \beta_2 + \ldots + X_n \beta_n = 0$$

• The vector  $(\beta_1, \beta_2, ..., \beta_n)$  is called a normal vector and goes from the origin in a direction orthogonal to the surface of the hyperplane



- Hyperplane,  $\beta_0, \beta_1, \beta_2$
- Normal,  $\beta_1, \beta_2$

• 
$$\beta_1^2 + \beta_2^2 = 1$$

- Projections onto the normal and the distance to the hyperplane
- Can be positive, zero or negative



For every blue point i

$$\beta_0 + \sum_j X_{ij} \beta_{ij} > 0$$

For every purple point i

$$\beta_0 + \sum_j X_{ij} \beta_{ij} < 0$$

- Predictions are very easy
- Data has to be normalised



- Assume that the class value of instance i is  $y_i = \{-1, +1\}$
- Then for every separating hyperplane it holds that for every sample i

$$y_i * (\beta_0 + \sum_j X_{ij} \beta_{ij}) > 0$$

This is the key to the learning algorithm



## Max margin classifier

- Which separating Hyperplane do we choose?
- In order to reduce the variance we will prefer the hyperplane that is farther from the observations





# Max margin classifier

 The maximal margin classifier can be estimated as an optimisation problem

$$\arg\max_{\beta_0,\beta_1,...,\beta_n} M$$

subject to 
$$\sum_{j=1}^{n} \beta_j^2 = 1$$
,

$$y_i * (\beta_0 + \sum_j X_{ij} \beta_{ij}) \ge M$$



## The non-separable case

 In most cases the data is not separable. In this case we can try to look for the hyperplane that almost separates the classes, the support vector classifier





## The non-separable case

 In most cases the data is not separable. In this case we can try to look for the hyperplane that almost separates the classes, the support vector classifier





## The non-separable case

 In most cases the data is not separable. In this case we can try to look for the hyperplane that almost separates the classes, the support vector classifier











$$\arg\max_{\beta_0,\beta_1,\dots,\beta_n} M_{i},\dots,\epsilon_n$$
subject to 
$$\sum_{j=1}^n \beta_j^2 = 1,$$

$$y_i * (\beta_0 + \sum_j X_{ij}\beta_{ij}) \ge M(1 - \epsilon_i),$$

$$\epsilon_i \ge 0, \sum_i \epsilon_i \le C$$



$$\arg\max_{\beta_0,\beta_1,\dots,\beta_n,\epsilon_1,\dots,\epsilon_n} M$$
subject to 
$$\sum_{j=1}^n \beta_j^2 = 1,$$

$$y_i * (\beta_0 + \sum_j X_{ij}\beta_{ij}) \ge M(1 + \epsilon_i)$$

$$\epsilon_i \ge 0, \sum_j \epsilon_i \le C$$



$$\arg\max_{\beta_0,\beta_1,...,\beta_n} M_{i},...,\epsilon_n$$
 subject to 
$$\sum_{j=1}^n \beta_j^2 = 1,$$
 
$$y_i * (\beta_0 + \sum_j X_{ij}\beta_{ij}) \ge M(1 + \epsilon_i),$$
 
$$\epsilon_i \ge 0, \sum_i \epsilon_i \le C$$
 control overfitting



$$\arg\max_{\beta_0,\beta_1,...,\beta_n} M_{i},...,\epsilon_n$$
 subject to 
$$\sum_{j=1}^n \beta_j^2 = 1,$$
 
$$y_i * (\beta_0 + \sum_j X_{ij}\beta_{ij}) \ge M(1 + \epsilon_i),$$
 
$$\epsilon_i \ge 0, \sum_i \epsilon_i \le C$$
 control overfitting

#### SVC non linearities

 We can address non-linearities by enlarging the feature space as follows

$$X_1^2, X_1^3, X_1X_2, X_1X_2^2, \dots$$

Then we can fit

$$\beta_0 + X_1^2 \beta_1 + X_1^3 \beta_2 + X_1 X_2 \beta_3 + X_1 X_2^2 \beta_0 \dots$$



#### SVM

• The SVC classifies a test instance to the size of the hyperplane it lies on. When K is the inner product it can also be expresses as

$$f(x) = \beta_0 + \sum \alpha_i K(x, x_i)$$

- To estimate it we just need the pairwise distance among observations. It happens that α<sub>i</sub> is going to be non-zero just for the support vectors
- The support vector machine is an extension of the support vector classifier using kernels.



## SVM kernels

Kernels quantify the similarities between two observations

$$K(x_i, x_k) = \sum_{j} x_{ij} x_{kj}$$

Polynomial

$$K(x_i, x_k) = (1 + \sum_{j} x_{ij} x_{kj})^d$$

Radial Kernel

$$K(x_i, x_k) = exp(-\lambda + \sum_{j} (x_{ij} x_{kj})^2)$$



### SVM kernels



• Polynomial kernel of degree 3

Radial kernel

