Algorytmy metaheurystyczne

Problem komiwojażera euklidesowego. Local Search. Karol Janic

16 listopada 2023

Spis treści

1	Cel zadania	2				
2	Algorytm Local Search					
	2.1 Otoczenie invert	2				
	2.1.1 Moc otoczenia	2				
	2.1.2 Własność ruchu invert	2				
	2.1.3 Problem nierówności trójkąta przy zaokrąglaniu	9				
	2.2 Wybór rozwiązania początkowego	9				
	2.3 Przegląd sąsiedztwa	9				
	2.4 Generowanie najlepszego kandydata	S				
3	Wyniki	3				
4	Wnioski	4				

1 Cel zadania

Celem zadania jest sprawdzenie skuteczności heurystyki Local Search na przykładzie euklidesowego problemu komiwojażera oraz zbadanie wpływu wyboru rozwiązania początkowego i metody generowania otoczenia na jakość rozwiązania.

2 Algorytm Local Search

2.1 Otoczenie invert

Otoczeniem rozwiązania reprezentowanego przez permutację π jest zbiór rozwiązań uzyskanych przy użyciu pojedynczego ruchu $invert(\pi,i,j)$, który zamienia kolejność wierzchołków od i-tego do j-tego.

2.1.1 Moc otoczenia

Można łatwo zauważyć, że:

- $invert(\pi, i, i) = \pi$
- $invert(\pi, i, j) = invert(\pi, j, i)$

Zatem ruchy powodujące powstawanie różnych rozwiązań z rozwiązania π można opisać zbiorem (wierzchołki numerujemy liczbami od 1 do n):

$$INV = \{invert(\pi, i, j) : 1 \le i < j \le n\}$$

Aby obliczyć moc zbioru INV ustalamy i kolejno na 1,2,...,(n-1) oraz dobieramy odpowiednie j, czyli $i < j \le n$. Wtedy:

$$|INV| = (n-1) + (n-2) + \dots + 1 = \frac{(n-1)n}{2} = \frac{n^2 - n}{2}$$

Interpretując permutację π jako ciąg wierzchołków do odwiedzenia można zauważyć, że $invert(\pi, 1, n)$ nie wyprowadza nowego rozwiązania, ponieważ nie ma znaczenia czy odwiedzanie rozpoczniemy od pierwszego czy ostatniego wierzchołka, więc całe otoczenie ma rozmiar $\frac{n^2-n}{2}-1$.

2.1.2 Własność ruchu invert

Cechą ruchu typy invert jest "rozplątywanie" pętli w cyklu. Pętle takie są nieoptymalne. Można to pokazać korzystając z nierówności trójkata, która na przestrzeni euklidesowej zachodzi:

$$d(A, D) \le d(A, P) + d(D, P) \qquad d(B, C) \le d(B, P) + d(P, C)$$

$$d(A,C) + d(C,D) + d(D,B) =$$

$$= d(A,P) + d(P,C) + d(C,D) + d(D,P) + d(P,B) \ge$$

$$\ge d(A,D) + d(D,C) + d(C,B)$$

2.1.3 Problem nierówności trójkąta przy zaokrąglaniu

W realizacji modelu odległości pomiędzy wierzchołkami wyrażane są liczbami całkowitymi. Konwersja dokładnej odległości następuje poprzez zaokraglenie jej do najbliższej liczby całkowitej. W takim modelu nierówność trójkąta nie zawsze zachodzi. Weźmy dla przykładu powyżej punkty A(0,0.5), B(0.5,0.5), C(0.5,0), D(0,0). Wówczas punktem przecięcia jest P(0.25,0.25). Rzeczywiste odległości prezentują się następująco:

$$d(A, D) = d(B, C) = 0.5$$

$$d(A, P) = d(D, P) = d(B, P) = d(C, P) \approx 0.35$$

$$d(A, C) = d(B, D) \approx 0.7$$

Odległości w modelu prezentują się natomiast tak jak zapisano poniżej:

$$d'(A, D) = d'(B, C) = 1$$

$$d'(A, P) = d'(D, P) = d'(B, P) = d'(C, P) = 0$$

$$d'(A, C) = d'(B, D) = 1$$

Wtedy nierówności w $\triangle APC$ oraz $\triangle BPC$ nie zachodzą a obie skonstruowane drogi mają długość 3.

2.2 Wybór rozwiązania początkowego

- 1. rozwiązanie zbudowane na podstawie MST
- 2. rozwiązanie wygenerowane w sposób losowy

2.3 Przegląd sąsiedztwa

- 1. przeglądanie całego sąsiedztwa (rozmiar: $O(n^2)$)
- 2. przeglądanie n losowo wybranych sąsiadów(rozmiar: O(n))

2.4 Generowanie najlepszego kandydata

Gdy rozwiązaniem początkowym jest rozwiązanie generowane na podstawie MST to \sqrt{n} razy generujemy takie rozwiązanie zaczynając od losowego wierzchołka drzewa a następnie używamy go jako startowego w algorytmie Local Search.

Gdy rozwiązaniem początkowym jest rozwiązanie losowe to n razy powtarzamy losowanie rozwiązania oraz poprawianie go algorytmem Local Search. W przypadku n > 1000 procedurę powtarzamy tylko 100 razy.

W każdym przypadku jako wynik wybieramy rozwiązanie o najmniejszej wadze.

3 Wyniki

Oznaczenia metod generujących kandydatów:

- LS1 algorytm Local Search startujący z rozwiązania wygenerowane z losowego wierzchołka MST i przeglądający całe otoczenie w każdej iteracji
- LS2 algorytm Local Search startujący z losowego rozwiązania i przeglądający całe otoczenie w każdej iteracji
- \bullet LS3 algorytm Local Search startujący z losowego rozwiązania i przeglądający nlosowych sąsiadów w każdej iteracji

Zaimplementowane metody zostały porównane na przykładach z https://www.math.uwaterloo.ca/tsp/vlsi/index.html. Wyniki prezentują się następująco:

	Suma wag	Suma wag	Suma wag	Suma wag	Suma wag
Przykład	rozwiązania	kandydata	$_{ m najlepszego}$	$_{ m najlepszego}$	najlepszego
	optymalnego	opartego o MST	rozwiązania LS1	rozwiązania LS2	rozwiązania LS3
xqf131					
xqg237					
pma343					
pka379					
bcl380					
pbl395					
pbk411					
pbn423					
pbm436					
xql662					
xit1083					
icw1483					
djc1785					
dcb2086					
pds2566					

Tabela 1: Porównanie metod generowania kandydatów dla problemu komiwojażera.

4 Wnioski

4