Time Series Forecasting: Advanced

Jaemin Yoo

School of Electrical Engineering
Kim Jaechul Graduate School of Al

Outline

- 1. State space models
- 2. From linear to deep models
- 3. Convolutional neural networks
- 4. Encoder-decoder structure
- 5. Summary

Error-Correction Function

- Q: What are alternatives to linear regression models?
- Idea: Create a prediction by improving the previous prediction:

$$\widehat{z}_{t+1} = \underbrace{\widehat{z}_t}_{\text{previous forecast}} + \alpha \underbrace{(z_t - \widehat{z}_t)}_{\text{error in previous forecast}},$$

- Also known as an error-correction function.
- Since it corrects the error caused from the previous forecast.
- α is called a smoothing parameter.

Simple Exponential Smoothing

We can rewrite the error-correction function as follows:

$$\hat{z}_3 = \hat{z}_2 + \alpha(z_2 - \hat{z}_2)
= \alpha z_2 + (1 - \alpha)\hat{z}_2
= \alpha z_2 + \alpha(1 - \alpha)z_1 + (1 - \alpha)^2 \hat{z}_1$$
...

• The model is called ETS (Simple ExponenTial Smoothing):

$$\widehat{z}_{T+h} = \alpha z_T + \alpha (1 - \alpha) z_{T-1} + \alpha (1 - \alpha)^2 z_{T-2} + \dots + (1 - \alpha)^T \widehat{z}_1$$

Simple Exponential Smoothing

• Larger α puts more emphasis on the recent observations.

State and Prediction

- Let's separate ETS into two parts: state and prediction.
 - l_t is a state at time t.
 - l_t is used to create the prediction \hat{z}_t at time t.
 - l_t is updated to l_{t+1} for the next time step.

General Exponential Smoothing

• Idea: Let's make the state l_t contain more information.

Forecast equation
$$\widehat{z}_t = m{a}_t^T m{l}_{t-1}$$
 Error Correction $m{l}_t = m{F}_t m{l}_{t-1} + m{g}_t (z_t - \widehat{z}_t),$

- l_t is now a vector, and is not equivalent to the prediction \hat{z}_t .
- Parameter a_t maps l_t to \hat{z}_t through the dot product.
- Parameters $m{F}_t$ and $m{g}_t$ are used to update $m{l}_t$ to $m{l}_{t+1}$.

State Space Models

- **Q:** Do we really need the error-correction part $z_t \hat{z}_t$?
 - Maybe not. Let's model the error $z_t \hat{z}_t$ as a random variable ϵ_t .
- State space model (SSM) simplifies the previous model.
 - Consist of the measurements and state transition parts.
 - Add white noise to both parts, replacing the error-correction function.

$$\begin{array}{ll} \text{Measurements} & z_t = \boldsymbol{a}_t^T \boldsymbol{l}_{t-1} + \boldsymbol{\epsilon}_t, & \boldsymbol{\epsilon}_t \sim N(0, \sigma^2) \\ \text{State transition} & \boldsymbol{l}_t = \boldsymbol{F}_t \boldsymbol{l}_{t-1} + \boldsymbol{g}_t \boldsymbol{\epsilon}_t, & \boldsymbol{l}_0 \sim N(\boldsymbol{\mu}_0, \operatorname{diag}(\sigma_0^2)). \end{array}$$

Linear State Space Models

• Let's combine the SSM with (feature-based) linear regression:

$$z_t \sim P(z_t|y_t)$$

$$y_t = \boldsymbol{a}_t^T \boldsymbol{l}_{t-1} + \boldsymbol{w}^T \boldsymbol{x}_t$$

$$\boldsymbol{l}_t = \boldsymbol{F}_t \boldsymbol{l}_{t-1} + \boldsymbol{g}_t \epsilon_t$$

- **Pros:** Show the strength of both models.
- Cons: More parameters to learn.

Linear State Space Models

Linear State Space Model part:

$$u_t = oldsymbol{a}_t^T oldsymbol{l}_{t-1}$$

Feature-based part:

$$b_t = oldsymbol{w}^T oldsymbol{x}_t$$

Probabilistic model for data (likelihood): $z_t \sim P(z_t|u_t + b_t)$

Outline

- 1. State space models
- 2. From linear to deep models
- 3. Convolutional neural networks
- 4. Encoder-decoder structure
- 5. Summary

Generalizing Linear Regression

• Recall that **linear regression** works as $z_t = w^{\mathsf{T}} x_t$ for forecasting.

Generalizing Linear Regression

We can generalize the linear mapping using a deep neural network.

$$z_t = \sigma(\boldsymbol{w}_l^T(\sigma(W_{l-1}^T(\sigma(W_{l-2}^T(\cdots W_0^T \boldsymbol{x}_t))))) := \text{DEEP-NET}(\boldsymbol{x}_t)$$

Multi-layer Perceptrons

Multi-layer perceptrons (MLPs):

- The most basic deep learning architecture.
- Each neuron in a hidden layer computes an affine function of the previous layer.
- It is then followed by an activation function:

$$h_{l,j} = \sigma(\mathbf{w}_{l,j}^{\mathsf{T}} \mathbf{h}_{l-1} + b_{l,j}).$$

- MLPs are flexible function estimators.
 - More layers → more complex functions.

Multi-layer Perceptrons

- Advantages: MLPs can learn complex input-output relationships.
 - → Less manual feature engineering.
- **Disadvantages:** More data are needed.
 - Careful tuning (e.g., regularization, learning rate, etc.) is necessary.
 - The model is sensitive to scaling of inputs.

Recap: MLPs for Forecasting

• Question: How can we model the sequential relationship?

Recap: State Space Models

• Question: Can we do the same with neural networks?

$$egin{aligned} oldsymbol{l}_t &= oldsymbol{l}_{t-1} + lpha \cdot \epsilon_t \ z_t &= oldsymbol{v}^T oldsymbol{l}_t + oldsymbol{w}^T oldsymbol{x}_t + \epsilon_t \end{aligned}$$

From Feed-forward to Recurrent Models

- We add the concept of **state** to the deep forecasting model.
 - The previous predictions affect the current one.

Toward Recurrent Neural Networks

Recurrent neural networks:

- Current state h_t combines
 - Previous state h_{t-1} .
 - Input features x_t .
 - Activation function σ .

STATE-SPACE MODEL

$$egin{aligned} oldsymbol{l}_t &= oldsymbol{l}_{t-1} + lpha \cdot \epsilon_t \ z_t &= oldsymbol{v}^T oldsymbol{l}_t + oldsymbol{w}^T oldsymbol{x}_t + \epsilon_t \end{aligned}$$

RECURRENT NEURAL NETWORK

$$h_t = \sigma(\theta_0 h_{t-1} + \theta_1 x_t)$$
$$z_t = \sigma(\theta h_t)$$

Long Short-Term Memory (LSTM)

- **LSTM** uses two states C_t and h_t with a **forget gate**:
 - The forget gate is similar to the exponential smoothing from ETS.

 $C_t = \alpha_t \cdot C_{t-1} + \beta_t \times \sigma(\theta_0 h_{t-1} + \theta_1 x_t)$

Outline

- 1. State space models
- 2. From linear to deep models
- 3. Convolutional neural networks
- 4. Encoder-decoder structure
- 5. Summary

Convolutional Neural Networks

Convolutional neural networks (CNNs):

- Neural networks that use convolutional layers.
- CNNs with 2D convolutions are successful in CV.
 - The idea is to encode *spatial invariance*.
- 1D convolutions are a promising alternative to RNNs for sequential data.
 - Encode temporal invariance, e.g., stationarity.
 - Often more lightweight and effective than RNNs.

Convolutional Layers

- The output h_j in a convolution layer is a discrete convolution of the inputs \mathbf{x} with weights \mathbf{w} .
- For a 1-dimensional convolution with a kernel with width *D*:

$$h_j = \sum_{d=1}^D w_d x_{j-d}.$$

• *Padding* is usually added to the first part of the sequence.

Causal vs. Non-causal Convolution

Non-causal convolution is used mostly for timeseries-level tasks.

Causal Convolution Output $h_1 \mid h_2 \mid h_3 \mid h_4 \mid h_5 \mid h_6$ Weights / Filter / Kernel Here: Kernel width = 3 $|x_1| |x_2| |x_3| |x_4| |x_5| |x_6|$ **Padding** Input

Non-Causal Convolution

1D Causal Convolution

Canonical Models: Dilated Convolution

- **Dilation** quickly increases receptive field through multiple layers.
 - Forecast is generated in an autoregressive fashion.

Outline

- 1. State space models
- 2. From linear to deep models
- 3. Convolutional neural networks
- 4. Encoder-decoder structure
- 5. Summary

Encoder-Decoder Structure

- Many deep forecasting models rely on additional features X.
- Q: What if X is given only for the current T, not for the future?
 - Autoregressive prediction is no longer possible.
- Solution: Generalize the model into encoder-decoder structure.

Encoder-Decoder Structure

- Idea: Our prediction model consists of an encoder and a decoder.
 - Encoder takes $\mathbf{z}_{1:T}$ and $\mathbf{X}_{1:T}$ and summarizes them as a state \mathbf{h}_T .
 - Decoder takes h_T and generates predictions without more input.
- We choose a linear mapping $\hat{y} = Wh_T$ as a decoder in many cases.
 - Meaning that we map a representation h_T into a scalar prediction.

Encoder-Decoder Structure

- What if we use a sequential model (e.g., an RNN) as a decoder?
- We can generate a sequence, from h_T , without further input!

Seq2Seq (Many-to-Many)

Encoder Part

- Encoder is a general representation learner of time series.
 - That is, the encoded output h_T can be used for other tasks as well.
- Encoder is the same in one-to-one and many-to-many cases.
 - One-to-one: The output $h_T = f_{\text{encoder}}(\cdot)$ is used to predict z_{T+1} .
 - **Seq2seq:** The output $h_T = f_{\text{encoder}}(\cdot)$ is used to predict $z_{T+1}: z_{T+h}$.

$$f_{encoder}: \{z_1, \cdots, z_{T_e}\} \mapsto \boldsymbol{h}_{T_e} \ f_{decoder}: \boldsymbol{h}_{T_e} \mapsto \{z_{T_e+1}, \cdots, z_{T_e+T_d}\}$$

Decoder Part

- Decoder should be able to work in an autoregressive way.
 - That is, it should create a sequence without any input.
- Possible decoder models:
 - MLP with h output neurons; it creates h outputs at the same time.
 - RNN that assumes dummy (= meaningless) inputs.

$$f_{encoder}: \{z_1, \cdots, z_{T_e}\} \mapsto \boldsymbol{h}_{T_e}$$
 $f_{decoder}: \boldsymbol{h}_{T_e} \mapsto \{z_{T_e+1}, \cdots, z_{T_e+T_d}\}$

Example: RNN-RNN

- We can use an RNN as both an encoder and a decoder.
 - Decoder RNN uses a dummy input u.

Encoding Sequence

Decoding Sequence

Example: RNN-MLP

- We can combine different model structures as well.
 - Decoder MLP generates a sequence altogether.

Encoding Sequence

Decoding Sequence

- Suppose we use an RNN encoder in the Seq2Seq structure.
- Natural approach: We pass the last state $m{h}_T$ to the decoder.
 - Why? The last cell creates a good summary of all observations.

- Limitation 1: The encoder is likely to forget early observations.
 - Especially when the window size is large.
- Limitation 2: Single state h_T may not be enough for the decoder.
 - Decoder needs different information at different locations.

- Solution: Attention mechanism.
 - Let h_1, \dots, h_T be the state vectors created from RNN cells.
 - Let h_{T+k} be the state vector for the k-th decoding step.
 - Create a weighting function f such that

$$f(\boldsymbol{h}_{T+k}, \boldsymbol{h}_1, \cdots, \boldsymbol{h}_T) = \frac{\exp(\boldsymbol{h}_{T+k}^{\top} \boldsymbol{h}_i)}{\sum_{i=1}^{T} \exp(\boldsymbol{h}_{T+k}^{\top} \boldsymbol{h}_i)}.$$

- h_{T+k} is the query of attention; it determines which i is more important.
- h_i is a key of attention; it contains the property of time step i.

Properties of Attention

- **Property 1:** All scores are positive (thanks to $exp(\cdot)$).
- **Property 2:** The sum of scores is always one.
- Property 3: Higher $h_{T+k}^{\top} h_i$ leads to a higher score.

• It means more related.

- How an attention RNN works:
 - Compute the scores of all encoder states using the scoring function.
 - Compute the weighted average of these states:

$$\vec{\boldsymbol{h}}_{T+k} = \sum_{i=1}^{T} \alpha_i \boldsymbol{h}_i.$$

- Pass \overrightarrow{h}_{T+k} as an input to the k-th decoding step.
- Note: The state changes at every decoding step by the query h_{T+k} .

Outline

- 1. State space models
- 2. From linear to deep models
- 3. Convolutional neural networks
- 4. Encoder-decoder structure
- 5. **Summary**

Summary

- MLPs are robust baseline methods.
- RNNs were the de facto standard model for sequence modeling.
- Later research shows that CNNs are more effective than RNNs.
 - Although some people favor advanced versions of RNNs.
- Transformer methods show SOTA performance in some cases.
 - They still have various limitations, e.g., quadratic complexity.
 - Currently an active area of research in time series analysis.

