8. Aufgabenblatt

(Besprechung in den Tutorien 12.12.2022–16.12.2022)

Aufgabe 1. Totalitätsproblem (Fortsetzung)

Sei Σ ein endliches Alphabet. Eine Sprache $L \subseteq \Sigma^*$ heißt co-semi-entscheidbar, falls \overline{L} semi-entscheidbar ist. Wie im 7. Aufgabenblatt definieren wir das Totalitätsproblem durch:

$$T = \{w \in \{0,1\}^* \mid M_w \text{ hält bei jeder möglichen Eingabe } x \in \{0,1\}^*\}.$$

- (a) Seien $A, B \subseteq \Sigma^*$. Zeigen Sie, dass, wenn $A \leq B$ und B co-semi-entscheidbar ist, dann auch A co-semi-entscheidbar ist.
- (b) Schlussfolgern Sie aus (a), dass T nicht co-semi-entscheidbar ist.
- (c) Zeigen Sie, dass T nicht semi-entscheidbar ist.
- (d) Schlussfolgern Sie aus (c), dass nicht $T \leq K$ gilt, wobei K das spezielle Halteproblem ist.

Anmerkung: Dies zeigt, dass T in einem gewissen Sinne "echt schwerer" ist als alle semi-entscheidbaren und alle co-semi-entscheidbaren Sprachen.

Aufgabe 2. (Semi-)Entscheidbarkeit

Ist die Sprache $\{w \in \{0,1\}^* \mid M_w$ akzeptiert ein Wort der Länge 1 $\}$ semi-entscheidbar? Ist sie entscheidbar?

Hinweis: Sie können die Existenz einer *universellen* Turing-Maschine, die eine beliebige andere Turing-Maschine "simulieren" kann, annehmen.

Aufgabe 3. Satz von Rice

Verwenden Sie für jede der folgenden Sprachen den Satz von Rice, um zu zeigen, dass sie unentscheidbar ist, oder zeigen Sie, dass sie entscheidbar ist.

- (a) $\{w \in \{0,1\}^* \mid M_w \text{ akzeptiert genau } 12 \text{ W\"{o}rter}\}$
- (b) $\{w \in \{0,1\}^* \mid M_w$ enthält eine gerade Anzahl von Zuständen $\}$
- (c) $\{w \in \{0,1\}^* \mid \text{Die von } M_w \text{ akzeptierte Sprache enthält unendlich viele Wörter}\}$
- (d) $\{w \in \{0,1\}^* \mid M_w \text{ akzeptiert das leere Wort } \varepsilon\}$
- (e) $\{w \in \{0,1\}^* \mid M_w \text{ akzeptiert mindestens ein Wort ungerader Länge}\}$

Aufgabe 4. Fleißige Biber

Ein unärer fleißiger Biber ist eine Turing-Maschine

$$B = (\{z_0, \ldots, z_n\}, \{1\}, \{1, \square\}, \delta, z_0, \square, \{z_n\})$$

mit n Nicht-Endzuständen, die bei Eingabe des leeren Wortes in endlich vielen Schritten hält und dabei die maximal mögliche Anzahl 1'en aufs Band schreibt, verglichen mit allen anderen Turing-Maschinen, welche die gleichen Voraussetzungen erfüllen (n Nicht-Endzustände, Alphabete $\{1\}$ und $\{1, \square\}$ und Halten bei leerer Eingabe).

a) Geben Sie eine Überführungsfunktion δ an, sodass die Turing-Maschine

$$(\{z_0, z_1, z_2\}, \{1\}, \{1, \square\}, \delta, z_0, \square, \{z_2\})$$

bei leerer Eingabe möglichst viele 1'en aufs Band schreibt und hält.

b) Ist die Sprache $\{w \in \{0,1\}^* \mid M_w \text{ ist ein fleißiger Biber}\}$ entscheidbar? Sie können davon ausgehen, dass die folgende Funktion unberechenbar ist: $b: \mathbb{N} \to \mathbb{N}$, b(n) ist die Anzahl 1'en, die ein fleißiger Biber mit n Nicht-Endzuständen aufs Band schreibt. Außerdem können Sie die Existenz einer universellen Turing-Maschine, die eine beliebige andere Turing-Maschine "simulieren" kann, annehmen.