Código destacado

Algoritmos Computacionales. Grupo 3009

Facultad de Ciencias. Universidad Nacional Autónoma de México

Imprimir en pantalla

	Julia	Python
Imprimir x y bajarse a una linea nueva	<pre>println(x)</pre>	<pre>print(x)</pre>
Imprimir x y no crear linea nueva	<pre>print(x)</pre>	<pre>print(x,end="")</pre>

Tipos de datos

	Julia	Python
enteros	Int8 , Int16, Int32, Int64	int
reales/flotantes	Float16, Float32, Float64	float
cadenas/strings	String	str
Booleanos	Bool	bool
Listas	Array{Any,1}	lst
Arreglos	Array{Int8,1},	-

Lectura de Datos

	Julia	Python
Leer datos como string y asignarlo a x	<pre>x = readline()</pre>	<pre>x = input()</pre>
Leer datos como tipo T y asignarlo a x	<pre>x = parse(T,readline())</pre>	x = T(readline())

Operaciones matemáticas

	Julia	Python
a+b , $a-b$	a+b , a-b	a+b, a-b
$a\cdot b$, a/b	a*b , a/b	a*b , a/b
a^b , $\sqrt[b]{a}$	a^b , a^(1/b)	a**b , a**(1/b)
e^x , $\ln x$	exp(x), $log(x)$	np.exp(x) , $np.log(x)$
$\sin x$, $\cos x$	sin(x), $cos(x)$	np.sin(x) , $np.cos(x)$
$\lfloor x floor$, $\lceil x ceil$	floor(x) , $ceil(x)$	np.floor(x) , $np.ceil(x)$

Operadores lógicos

	Julia	Python	
P & Q	P && Q	P and Q	
P ee Q	P Q	P or Q	
$\neg P$! P	not P	
$a \leq b$, $a \geq b$	a <= b , a >= b	a <= b , a >= b	
a < b , $a > b$	a < b , a > b	a < b , a > b	
a == b , $a eq b$	a == b , a != b	a == b , a != b	

Ciclos y estructuras de control

Estructura if

Python

```
alumnos = 30
if alumnos <= 5:
    print("La clase no se abrira")
else:
    print("Todo está bien")</pre>
```

Julia

```
alumnos = 30
if alumnos <= 5
    print("La clase no se abrira")
else
    print("Todo está bien")
end</pre>
```

Ciclo While

Python

```
c = 1
itera = 8
while c <= itera:
    c = c +1
    print("Vamos en la iteracion", end="")
    print(c)
print("Salimos")</pre>
```

Julia

```
c = 1
itera = 8
while c <= itera
    global c
    c = c +1
    print("Vamos en la iteracion", end="")
    print(c)
end
print("Salimos")</pre>
```

Ciclo For

Python

```
suma = 0
for i in range(1,6):
    suma = suma + i
print(suma)
```

Julia

```
suma = 0
for i in range(1,6):
    global suma
    suma = suma + i
end
```

Listas

Funciones para crearlas

	Julia	Python	Resultado
numeros enteros entre dos valores	range(1,stop = 5)	range(1,6)	[1,2,3,4,5]
intervalo con una distancia entera	<pre>range(1, stop = 9, step = 2)</pre>	range(1,10,2)	[1,3,5,7,9]
intervalo con una distancia real	range(1, stop = 3, step = 0.5)	np.arange(1,3.5,0.5)	[1,1.5,2,2.5,3]
intervalo con n puntos igualmente espaciados	range(0, stop = 1, length = n)	np.linspace(0,10,n)	[0,, 1]

Listas por comprensión

	Julia	Python	
$\{g(x) \mid x \in A\}$	[g(x) for x in A]	[g(x) for x in A]	

Definición de funciones

Python

```
def sucesionFacil(n):
    a = (-1)**n
    return a / n^2
```

Julia

```
function sucesionFacil(n) a = (-1)^n return \ a \ / \ n^2 end
```