Evaluation of Machine Learning Models

Shrey Gupta

Applied Machine Learning (HOUSECS 59-01), Duke University

September 19, 2018

Evaluation

- How can we evaluate the performance of the models we create?
- Various performance measures for regression, classification, and clustering.
 - Depending on various "goals" and "priorities", different measures used.

Regression

► Metrics: mean absolute error, mean squared error, and R² value.

Mean Absolute Error

Mean Squared Error

R^2 Value

Classification

 Metrics: misclassification error (and classification accuracy), precision, recall, F1-score, confusion matrices, and ROC curves (and associated AUC).

Misclassification Error

$$\mathit{accuracy} = \frac{\mathit{true\ positives} + \mathit{true\ negatives}}{\mathit{positives} + \mathit{negatives}}$$

- Most commonly used metric for classification.
- ▶ Insightful when the number of positive points is approximately equal to the number of negative points.

Precision and Recall

$$precision = rac{true\ positives}{predicted\ positives}$$
 $recall = rac{true\ positives}{positives}$

- ► Precision: "fraction of relevant instances among the retrieved instances" (Wikipedia).
- Recall: "fraction of relevant instances that have been retrieved over the total amount of relevant instances" (Wikipedia).

F1-score

$$score = 2 \left(\frac{precision \times recall}{precision + recall} \right)$$

Most applications require a balance between precision and recall (as there is a trade-off between the two).

Confusion Matrices

$$y=+1$$
 $y=-1$ $\hat{y}=+1$ true positives (TP) false positives (FP) $\hat{y}=-1$ false negatives (FN) true negatives (TN)

Provides a concise presentation of the predictive power of a model.

ROC Curves

Clustering

▶ Metrics: purity, Rand measure, and F1-score.

Purity

Rand Measure

$$\textit{measure} = \frac{\textit{true positives} + \textit{true negatives}}{\textit{positives} + \textit{negatives}}$$

Similar to accuracy measure for classification, and requires labeled points.

F1-score

$$score = 2 \left(\frac{precision \times recall}{precision + recall} \right)$$

- Precision and recall are calculated with labeled points, similar to classification.
- Most applications require a balance between precision and recall (as there is a trade-off between the two).

Training, Testing, and Validation

Cross-validation

