Hugo Marquerie 21/02/2025

La suma de funciones medibles es medible

Proposición 1. Sean f, g funciones medibles en el espacio medible (X, Σ)

$$\implies f + g \text{ es medible.}$$

Demostración: Hay que ver que $\forall \lambda \in \mathbb{R} : (f+g)^{-1}((\lambda,\infty)) \in \Sigma$.

$$\{x \in X : f(x) + g(x) > \lambda\} \stackrel{(\star)}{=} \bigcup_{\xi \in \mathbb{Q}} \{x \in X : f(x) > \lambda - \xi\} \cap \{x \in X : g(x) > \xi\}$$

$$= \bigcup_{\xi \in \mathbb{Q}} \left(f^{-1}((\lambda - \xi, \infty)) \cap g^{-1}((\xi, \infty)) \right)$$

Como queda una unión numerable de conjuntos medibles, concluimos que f+g es medible.

 (\star) Veamos esta igualdad con más detalle: supongamos que $f(x) + g(x) > \lambda$.

Hay que demostrar que $\exists \xi \in \mathbb{Q} : f(x) > \lambda - \xi \wedge g(x) > \xi$.

$$f(x) + g(x) > \lambda \implies \exists \varepsilon > 0 : f(x) + g(x) > \lambda + \varepsilon$$

Por densidad en \mathbb{Q} , $\exists \xi \in \mathbb{Q} : g(x) > \xi \wedge g(x) \leq \xi + \varepsilon$.

$$\implies f(x) > \lambda + \varepsilon - g(x) \ge \lambda + \varepsilon - (\xi + \varepsilon) = \lambda - \xi \implies f(x) > \lambda - \xi.$$

1