9.1 1.2003

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

원 호 10-2002-0077081

Application Number

2002년 12월 05일

인 :

Date of Application

DEC 05, 2002

COMPLIANCE WITH RULE 17.1(a) OR (b)

원

홍림통산(주)

HONGRIM TRADING CO., LTD.

Applicant(s)

2003

11

일

COMMISSIONER局

020020077081

출력 일자: 2003/12/5

【서지사항】

【서류명】 출원인 변경 신고서

【수신처】 특허청장

【제출일자】 2003.08.26

【구명의인(양도인)】

【성명】 김동현

【출원인코드】 4-1998-032388-9

【사건과의 관계】 출원인

【신명의인(양수인)】

【명칭】 홍림통산 (주)

【출원인코드】 1-2003-018817-1

【대리인】

【명칭】 특허법인코리아나

【대리인코드】 9-2001-100001-3

【지정된변리사】 변리사 박해선, 변리사 이철

【사건의 표시】

【출원번호】 10-2002-0077081

【출원일자】2002.12.05【심사청구일자】2002.12.05

【발명의 명칭】 인삼의 유산균 발효물, 그를 함유하는 인삼 요구르

트 및 그에 이용되는 유산균 균주

【변경원인】 전부양도

【취지】 특허법 제38조제4항·실용신안법 제20조·의장법 제

24조 및 상표법 제12조 제1항의 규정에 의하여 위와

같이 신고합니다. 대리인 특허법인코리아나 (인)

【수수료】 13,000 원

【첨부서류】 1. 양도증_1통 2.인감증명서_1통 3.위임장[양도인

및 양수인의 위임장]_1통

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】특허청장【제출일자】2002.12.05

【발명의 명칭】 인삼의 유산균 발효물, 그를 함유하는 인삼 요구르트 및 그에

이용되는 유산균 균주

【발명의 영문명칭】 GINSENG FERMENTED BY LACTIC ACID BACTERIUM, YOGHURT

CONTAINING THE SAME, AND LACTIC ACID BACTERIA USED IN THE

PREPARATION THEREOF

【출원인】

【성명】 김동현

【출원인코드】 4-1998-032388-9

【대리인】

【명칭】 특허법인코리아나 【대리인코드】 9-2001-100001-3

【지정된변리사】 변리사 박해선, 변리사 이철

【발명자】

【성명】 김동현

【출원인코드】 4-1998-032388-9

【발명자】

【성명의 국문표기】 한명주

【성명의 영문표기】HAN, MYUNG J00【주민등록번호】590220-2011216

【우편번호】 135-898

【주소】 서울특별시 강남구 압구정1동 369-1 현대아파트 31-304

【국적】 KR

【발명자】

【성명의 국문표기】 추민경

【성명의 영문표기】CH00,MIN-KYUNG【주민등록번호】760407-2025910

【우편번호】 137-838

【주소】 서울특별시 서초구 방배4동 858-33

【국적】 KR

0077081

출력 일자: 2003/12/5

【심사청구】

청구

【미생물기탁】

【기탁기관명】

한국미생물보존센터

【수탁번호】

KCCM-10364

【수탁일자】

2002.03.22

【미생물기탁】

【기탁기관명】

한국미생물보존센터

【수탁번호】

KCCM-10365

【수탁일자】

2002.03.22

【취지】

특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의

한 출원심사 를 청구합니다. 대리인

특허법인코리아나 (인)

【수수료】

【기본출원료】

20

면

29,000 원

【가산출원료】

4 면

4,000 원

【우선권주장료】

0 건

0 원

【심사청구료】

11 항

461,000 원

【합계】

494,000 원

【감면사유】

개인 (70%감면)

【감면후 수수료】

148,200 원

【첨부서류】

1. 요약서·명세서(도면)_1통 2.위임장_1통 3.미생물기탁증명서[

원, 역문] 2통

【요약서】

[요약]

본 발명은 유산균으로 인삼을 발효시켜 제조되는 인삼의 유산균 발효물, 상기 인삼의 유산균 발효물을 함유하는 인삼 요구르트, 및 상기 인삼의 유산균 발효물을 수득하기 위해 이용되는 유산균 균주에 관한 것이다.

【색인어】

인삼, 유산균 발효물, 요구르트, 진세노시드, 사포닌

【명세서】

【발명의 명칭】

인삼의 유산균 발효물; 그를 함유하는 인삼 요구르트 및 그에 이용되는 유산균 균주 {GINSENG FERMENTED BY LACTIC ACID BACTERIUM, YOGHURT CONTAINING THE SAME, AND LACTIC ACID BACTERIA USED IN THE PREPARATION THEREOF}

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- 본 발명은 유산균으로 인삼을 발효시켜 제조되는 인삼의 유산균 발효물, 상기 인삼의 유산균 발효물을 함유하는 인삼 요구르트, 및 상기 인삼의 유산균 발효물을 수득하기 위해 이용되는 유산균 균주에 관한 것이다.
- ♡ 인삼은 식물 분류학상 오가과 인삼속에 속하는 다년생 숙근초로서 지구상에 약 11종이 알려져 있으며, 대표적인 종의 예로는, 아시아 극동 지역(북위 33 ~ 48 : 한국, 북만주, 러시아 일부)에 자생하며, 약효가 매우 우수한 고려 인삼(Panax ginseng C.A.Meyer); 미국, 캐나다에서 자생 및 재배하고 있는 미국삼 (Panax quinquefolium L.); 중국 운남성 동남부로부터 광서성 서남부 지역에서 야생 또는 재배하고 있는 전칠삼 (Panax notoginseng F.H.Chen); 및, 일본, 중국 서남부, 네팔에 이르기까지 분포되어 있는 죽절삼 (Panax japonicus C.A.Meyer) 등이 있다.
- 인삼은 신농본초경에 상품으로 수재되어 있을 뿐만 아니라 예로부터 귀중한 보약으로 사용되어오고 있다. 지금까지 많은 약리 실험을 통해 인삼은 스트레스에 대한 생체의 비특이적

<8>

출력 일자: 2003/12/5

저항성을 강화시키고 항산성 작용을 갖고 있음이 밝혀져 있다. 그 외에 고혈압의 개선, 인슐린 작용증강, 알록산(ALLOXAN) 당뇨 마우스에서의 혈당강하효과, 흰쥐의 간 RNA 합성, 단백질합성, 당 및 지질대사 촉진효과, 항암과 등이 있음이 밝혀졌다.

- 《 상기 인삼은 주로 한국, 중국, 일본 등의 아시아 국가에서 생약의 형태로 정신 의학적 질병, 신경계의 질병 및 당뇨병 등의 여러 가지 질병에 대해 사용되어 왔으며, 상기 인삼의 주요 성분인 사포닌은 강장, 강정, 진정조형 및 항고혈압 등에 효과를 보이는 것으로 알려져 있다.
- 현재 인삼의 사용은, 재배하여 채취한 상태 그대로의 수삼을 상온에서 건조시킨 백삼 또는 수삼을 98-100℃에서 가열 처리하여 제조되는 홍삼, 또는 120-180℃에서 가열 처리하여 제조되는 선삼의 형태로 사용되고 있다.
- 한편, 인삼의 뿌리에는 약 5.22%의 인삼 사포닌이 함유되어 있는데, 상기 인삼 사포닌은
 13종 이상의 진세노시드(ginsenoside)들의 혼합물이며, 그 중에는 진세노시드 Rb1, Rc 및 Rg1
 의 함유량이 비교적 높은 편이다.
- 인삼에 함유되어는 진세노시드들의 성분들 및 그의 약리학적 효능은 하기 표 1에서 보는 바와 같다.

【丑 1】

진세노시드의	<u>효능</u>
종류	
진세노시드-Rb1	중추억제 및 정신안정, 중추성 섭식억제, 공격성 행동억제, 진통, 항경련, 항불안, 부신피질 자극홀몬과 코티코스테론 분비촉진, 콜레스테로 생합성촉진, 기억력 개선, 고코레스테롤과 중성지방 및 유리지방산의 저하, 신경세포생존촉진, 간상해 보호, 골수세포의 DNA, RNA, 단백질 및 지질합성 촉진, 아세칠콜린 방출촉진, 혈관 확장, 혈소판 응집억제, 지질과산화억제, 콜레스테롤 대사촉진, 항염증, 탐식기능활성화, 신장사구체 비대억제.
진세노시드-Rb2	당 및 지방대사 촉진, 항당뇨 작용, 질소대사 평형유지, 단백질 및 지질합성촉진, 고콜레스테롤 저하 및 항동맥경화, 암독소 홀몬의 길항 작용, 평활근세포 증식억제, DNA, RNA, 부신피질자극홀몬 및 코티코스테론 분비촉진, 스트레스성식욕감퇴개선, 종양혈관 신생억제, 항산화활성물질 생성촉진, 간조직의 ATP공급활성화, 면역조절, 콜레스테롤 대사촉진, 간세포증식 및 DNA합성 촉진, 혈소판 웅집억제, 진통작용
진세노시드-Rc	간, 혈청콜레스테롤 및 RNA합성 촉진, 골수세포DNA, RNA, 단백질 및 지질합성 촉진, 진통작용, 코티코스테론 분비촉진, 프로스타사이클린 생합성 촉진, 신장 사구체 비대역제
진세노시드-Rd	부신피질 자극홀몬 및 코티코스테론 분비촉진, 신장사구체비대억제
진세노시드-Re	부신피질 자극홀몬 및 코티코스테론 분비촉진, 진통, 혈관 확장, 항 고온스트레스, 평활근 세포증식 억제, 골수세포 DNA, RNA, 단백질 및 지질합성 촉진, 간상해보호, 콜레스테롤 대사촉진
진세노시드-Rg1	면역기능 증강, 혈소판 응집억제, 항 트롬빈, 선용활성화, 기억 및 학습기능증진, 항피로, 항스트레스, 중추흥분, 혈관 확장, 항염증, 항신염 및 신혈류량증대작용, 고온환경 및 내인성 발열물질 등 유해자극 방어작용, 스트레스성 서행동장해 개선, 신경세포 생존율 촉진, 간세포 증식과 DNA합성 촉진, 부신피질자극홀몬 분비촉진, 콜레스테롤 대사촉진, 간장해 보호작용
진세노시드-Rh1	실험적 간상해 억제작용, 종양세포 분화촉진, 혈소판 응집억제, 선용활성화작 용
진세노시드-Rh2	암세포 중식억제, 암세포 재분화 유도촉진, 암세포 침윤억제, 종양중식 억제작용, 항암제의 항암활성 중대작용
화합물 K	강력한 종양 혈관 신생 작용 및 암세포 전이 억제 작용, IV형 콜라게나아제 분비의 차단, 항-신생혈관형성 활성 및 혈소판 응집의 억제, 항알레르기 효과

현재 알려진 바에 따르면, 인삼의 약리 효능을 나타내는 주성분인 진세노시드는 Rb1, Rb2 및 Rc의 사포닌들이다. 그러나, 실질적으로 항암 작용 또는 암세포의 암전이를 억제, 또 는 항알르레기 작용에 관한 성분은 인삼에 극소량 함유되어 있는 화합물 K (20-0-β-D-글루코 피라노실-20(S)-프로토파낙사디올), 진세노시드 Rh1 및 Rh2, 및 △20-진세노시드 Rh2의 사포닌 성분인 것으로 알려져 있다.

C10> 따라서, 인삼의 항암 작용, 항알레르기 작용, 면역증강작용 등을 위한 사용을 위해서는,
 상기 인삼에 극소량 함유되어 있는 화합물 K, 진세노시드 Rh1 및 Rh2, 및 △20-진세노시드 Rh2
 (진세노시드 Rk2와 진세노시드 Rh3의 혼합물을 의미함)의 사포닌 성분의 함량을 증가시키는 것이 바람직하다.

【발명이 이루고자 하는 기술적 과제】

이에, 본 발명자들 또한 인삼으로부터 화합물 K, 진세노시드 Rh1 및 Rh2, 및 △20-진세노시드 Rh2의 사포닌 성분을 더욱 효율적으로 수득하고자 많은 연구를 수행한 결과, 인삼을 유산균으로 발효시킴으로서 수득되는 인삼의 유산균 발효물에 화합물 K, 진세노시드 Rh1 및 Rh2, 및 △20-진세노시드 Rh2의 함량이 상당함을 발견하고 본 발명을 완성하기에 이르렀다.

- <12> 따라서, 본 발명의 목적은 인삼의 유산균 발효물을 제공하는 것이다.
- <13> 또한, 본 발명의 다른 목적은 상기 인삼의 유산균 발효물을 함유하는 인삼 요구르트를 제공하는 것이다.
- <14> 또한, 본 발명의 또 다른 목적은 상기 인삼의 유산균 발효물을 수득하기 위해 사용되는 유산균을 제공하는 것이다.

【발명의 구성 및 작용】

- 본 발명은, (1) 인삼을 유산균으로 발효시켜 수득되는 인삼의 유산균 발효물, (2) 상기 인삼의 유산균 발효물을 함유하는 인삼 요구르트, 및 (3) 상기 유산균 발효물을 수득하는데 유 용하게 이용되는 유산균 균주를 제공한다.
- <16>이하, 본 발명을 더욱 구체적으로 설명한다.

- 본 발명에 따르면, 인삼을 유산균으로 발효시킬 경우, 발효 전의 인삼에 주로 함유되어 있는 진세노시드 Rb1, Rb2 및 Rc 등의 사포닌 성분은, 발효 전의 인삼에는 존재하지 않거나 극소량 존재하는 화합물 K (20-0-β-D-글루코피라노실-20(S)-프로토파낙사디올), 진세노시드 Rh1 및 Rh2, 및 Δ²⁰-진세노시드 Rh2으로 생물전환된다. 당업계의 통상적인 지식에 따르면, 화합물 K, 진세노시드 Rh1 및 Rh2, 및 Δ²⁰-진세노시드 Rh2의 사포닌 성분은, 진세노시드 Rb1, Rb2 및 Rc 등의 사포닌 성분에 비해 더욱 우수한 항암활성, 항알레르기 활성 및 암전이억제 활성을 갖는다 (Bae et al., Biol. Pharm. Bull., 25, 743-747 2002; Bae et al., 25, 58-63, 2002; Wakabayashi et al., Oncol. Res., 9, 411-417, 1998; Saiki et al., Proceedings of the 8th international symposium on Ginseng (서울, 고려인삼학회), 305-316, 2002; Hasegawa and Saiki, Proceedings of the 8th international symposium on Ginseng (서울, 고려인삼학회), 317-334, 2002).
- ** 한편, 상기 인삼의 유산균 발효를 위해 사용될 수 있는 인삼 원재료가 특별히 한정되지는 않고, 인삼 그 자체 및 인삼 가공물이면 어느 것이든 가능하며, 더욱 구체적으로는 수삼, 홍삼, 백삼, 미삼, 인삼잎, 인삼 추출액 및 인삼 분말 중 어느 하나 이상을 사용할 수 있다. 가공처리별로는, 건조 분말 형태의 인삼, 산처리 인삼, 고온처리 인삼 및 가압처리 인삼 등이 바람직하게 사용될 수 있다.
- 또한, 상기 건조 분말 형태의 인삼의 분말화 정도는 특별히 한정되지는 않으며, 유산균이 인삼 조직 또는 섬유소내에 높은 효율로 침투할 수 있을 정도로 분말화될 수 있고, 그러한 분말화 정도는 당업자에 의해 용이하게 인식될 수 있으며, 분말화 방법도 당업계에 통상적으로 공지되어 있다. 한편, 산처리 인삼, 고온처리 인삼 및 가압처리 인삼은 인삼 그 자체로부터 제조될 있지만, 상기한 건조 분말 형태의 인삼으로부터 얻어지는 것이 인삼처리 효과 및 이후

의 발효 효율에 있어서 바람직하다. 이 경우에도, 건조 분말 형태의 인삼의 분말화 정도는 특별히 한정되지는 않는다.

산처리 인삼은, 수삼, 홍삼, 백삼, 미삼, 인삼잎, 인삼 추출액 및 인삼 분말 중 어느 하나 이상(이하, '인삼 원재료'라 함)의 분말을 산, 바람직하게는 아세트산, 락트산, 스트르산, 부티르산, 타르타르산 또는 프로피온산, 히드록클로라이드산을 가한 다음, 약 60℃에서 약 5시간 배양하고 칼슘염으로 중화시킴으로써 수득될 수 있다. 본 발명에 따르면, 산처리 인삼을 유산균으로 발효시킬 경우, 인삼의 유산균 발효물에는 특히 진세노시드 Rh1 및 Rh2 성분의 함량이 상승하게 된다.

○21> 고온처리 인삼은, 상기 인삼 원재료의 분말을 약 100℃에서 약 2시간 가온함으로써 수득될 수 있다. 본 발명에 따르면, 고온처리 인삼을 유산균으로 발효시켜 수득되는 인삼의 유산균 발효물에는 특히 화합물 K 및 진세노시드 Rh1 및 Rh2 성분의 함량이 상승하게 된다.

^22> 가압처리 인삼은, 상기 인삼 원재료의 분말을 약 110 내지 130℃에서 약 2시간 가압하에 열처리시킴으로써 수득될 수 있다. 본 발명에 따르면, 이러한 가압처리 인삼을 유산균으로 발효시켜 수득되는 인삼의 유산균 발효물에는 비록 화합물 K의 함량은 낮아질지라도, 진세노시드 Rh1 및 Rh2 성분, 및 △20-진세노시드 Rh2의 함량이 증가하게 된다.

 한편, 인삼 발효물을 수득하는 방법이 특별하게 한정되지는 않으며, 당업계에 통상적인 방법을 사용하여 인삼 발효에 사용하는 유산균의 발효조건에 적당한 것으로 알려진 조건으로 발효를 수행할 수 있으며, 구체적으로는 예를 들어 인삼 원재료를 물에 현탁한 후 유산균을 넣고, 상기 유산균의 적당한 발효 온도에서 48시간 내지 72시간 내외로 배양하여 인삼의 유산균 발효물을 얻는 생물전환 과정, 및 상기 과정을 거친 인삼의 유산균 발효물을 원심분리하고 상

등액만을 여과하여 인삼의 유산균 발효물을 얻는 농축 과정을 포함하는 방법에 의해서 수득될 수 있다.

한편, 인삼의 유산균 발효에 사용될 수 있는 유산균으로는, 인삼 중의 사포닌 성분들의 화합물 K, 진세노시드 Rh1 및 Rh2, 및 △20-진세노시드 Rh2로의 전환 효율이 높다면, 특별히 한정되지는 않고, 예를 들면 락토바실루스속의 균주, 스트렙토코쿠스속의 균주 또는 비피도박테리움속의 균주를 사용할 수 있으며, 더욱 구체적으로는 비피도박테리움 K-103 (경희대학교약대 김동현 교수 실험실, Arch. Pharm. Res., 21, 54-61, 1998 참조), 비피도박테리움 K-506 (경희대학교약대 김동현 교수 실험실, Arch. Pharm. Res., 21, 54-61, 1998 참조), 비피도박테리움 포레리움 KK-1 (KCCM-10364), 비피도박테리움 미니뭄 KK-2 (KCCM-10365) 중 하나 이상의 균주들을 사용할 수 있다.

이중에서 비피도박테리움 콜레리움 KK-1 및 비피도박테리움 미니뭄 KK-2는 인삼의 유산 균 발효물을 수득하기 위해 본 발명자들에 의해 개발된 미생물로서, 상기 비피도박테리움 KK-1은 기탁번호 KCCM-10364(2002.03.22)로, 상기 비피도박테리움 KK-2은 기탁번호 KCCM-10365(2002.03.22)로 각각 한국미생물보존센터(Korean Culture Center of Microorganisms)에 기탁되어 있다.

본 발명의 비피도박테리움 KK-1과 KK-2 균주는 그람양성균이고, 간균이며, 혐기성 균주이고, 프룩토오스 6-포스페이트 포스포케토라아제(fructose 6-phosphate phosphoketolase) 양성을 나타내며, 하기와 같은 당 이용성을 갖는다.

?> [종류	당이용성	종류
L		비피도박테리움 KK-1	비피도박테리움 KK-2
ſ	아미그달린(amygdalin)	_	
	아라비노오스(arabinose)	_	+/-
	셀로비오스(cellobiose)	-	+/
	덱스티린	· +	+
- 1	에스쿠린(esculin)	_	_
	프룩토오스	-	+
	갈락토오스	+	+
	글루코네이트	_	_
-	글루코오스	+/~	+
	글리코겐	+/-	+
-	이노시톨	_	
	이눌린(inulin)	-	+/-
1	락토오스	+	+/-
	말토오스	+/-	+
	만니톨(mannitol)	_	.
	만노오스(mannose)	+/-	+
- [멜레지토오스(melezitose)	_	-
ı	멜리비오스(melibiose)	+	_
1	라피노오스(raffinose)	+	_
ı	리보오스	+/-	+/~
	살리신	+	+
	소르비톨	+/-	_
ı	스타취(starch)	+	+
	수크로오스	-	+/-
	트레할로오스(trehalose)	-	_
Ĺ	크실로오스(xylose)		+/-

한편, 상기 비피도박테리움 KK-1과 KK-2는 동일 종에 속하는 균주와 비교하여 일반적인 분류학적 특성은 동일하지만, 인삼의 유산균 발효에 이용할 경우, 보다 많은 함량의 화합물 K, 진세노시드 Rh1 및 Rh2, 및 △20-진세노시드 Rh2를 함유하는 인삼의 유산균 발효물을 제공할 수 있다.

한편, 본 발명에 따른 인삼의 유산균 발효물은, 유산균 발효를 통해 더욱 많은 함량의화합물 K, 진세노시드 Rh1 및 Rh2, 및 △20-진세노시드 Rh2를 함유하며, 더욱 구체적으로는 인삼의 유산균 발효물내 (화합물 K + 진세노시드 Rh1), (진세노시드 Rh2 + 진세노시드 Rh1), (진세노시드 Rh2 + 진세노시드 Rh1), (진세노시드 Rh2 + △20-진세노시드 Rh2 + 진세노시드 Rh1) 또는 (화합물 K + 진세노시드 Rh1 + 진세노시드 Rh2)의 발효성분의 총량이, (진세노시드 Rc + 진세노시드 Rd + 진세노시드 Rb1 + 진세노시드 Rh2)의 발효성분의 총량이, (진세노시드 Rc + 진세노시드 Rd + 진세노시드 Rb1 +

진세노시드 Rb2+ 진세노시드 Re + 진세노시드 Rg1)에 대하여 0.1 이상의 비율로 함유하는 것이 바람직하다.

본 발명은 또한 상기 설명한 인삼의 유산균 발효물을 함유하는 인삼 요구르트를 제공한다.

상기한 인삼 요구르트는, 본 발명에 따른 인삼의 유산균 발효물을 함유하고 있기 때문에, 즉 화합물 K, 진세노시드 Rh1 및 Rh2, 및 △20-진세노시드 Rh2의 인삼 사포닌 성분의 발효 수득물을 다량 함유하기 때문에, 화합물 K, 진세노시드 Rh1 및 Rh2, 및 △20-진세노시드 Rh2의 높은 생리활성 기능, 더욱 구체적으로는 항암 효능, 항알레르기 효능 및 면역증강 효능 등을 갖는 기능성 요구르트이다.

이러한 인삼 요구르트의 제조는 통상적인 요구르트에, 예를 들면 1 내지 10중량%의 상기 인삼의 유산균 발효물을 단순히 첨가시키는 것에 의해서 제조할 수 있다. 그러나, 이러한 제 조방법은 요구르트를 제조하기 위하여, 요구르트 원료유를 유산균 발효시키는 것과, 인삼의 유 산균 발효물을 얻기 위해 한번 더 인삼을 유산균 발효시키는 것이 요구되므로, 산업적인 경제 성면에서 바람직하지 않다. 따라서, 본 발명에 따른 인삼 요구르트는, 요구르트 원료유와, 그 에 대해 1 내지 10 중량%의 인삼을 동시에 유산균 발효시킴으로써 본 발명에 따른 인삼 요구르 트를 제조할 수 있다. 상기 발효를 위한 반응물에는 유산균의 성장을 촉진시키기 위하여 비타 민 C를 더 함유시킬 수 있다.

한편, 상기한 인삼 요구르트를 제조하기 위해서, 사용되는 유산균으로는, 요구르트 원료 유와 인삼을 동시에 유산균 발효시킬 수 있는 것이라면, 특별히 한정되지는 않고, 예를 들면, 락토바실루스속의 균주, 스트렙토코쿠스속의 균주 또는 비피도박테리움속의 균주를 사용할 수

있으며, 더욱 바람직하게는 비피도박테리움 K-103, 비피도박테리움 K-506, 비피도박테리움 콜레리움 KK-1, 비피도박테리움 미니뭄 KK-2 중 하나 이상의 균주들을 사용할 수 있다.

- 상기한 요구르트 원료유는, 특별히 한정되지는 않지만, 우유, 염소젖, 면양유, 탈지유, 전지 우유 등을 사용할 수 있다.
- 35 요구르트 제조를 위한 유산균 발효 후에, 유산균을 제거할 수도 있고, 그렇지 않을 수도 있지만, 유산균은 몸의 장내환경을 개선시키는 등의 이로운 기능을 가지므로, 상기 유산균은 제거하지 않는 것이 바람직하다. 따라서, 본 발명에 따른 요구르트는 장내 환경을 개선시키는 기능도 수행할 수 있다.
- 한편, 상기 수득된 요구르트에 분유 등을 첨가하여 분말 인삼 요구르트도 수득할 수 있다. 따라서, 상기 요구르트가 그 제형에 있어서, 특별히 한정되지는 않으며, 우유 등의 요구르트 원료유의 유산균 발효를 통해 수득되는, 종래에 공지된 다양한 형태를 가질 수 있다.
- 이하, 본 발명을 실시예를 통해 더욱 구체적으로 설명하지만, 본 발명이 이에 의해서 한정되지는 않고, 당업자에게 자명한 변형 등을 수행할 수 있으며, 당업자는 상기한 변형도 본 발명의 범위 내이라는 것을 자명하게 인식할 것이다.
- <38> <실시예 1>
- 수삼을 열수로 잘 세척하여 건조하고 미센하게 분말화한 수삼가루 1g 및 비타민 C 0.1g 을 100㎡의 우유에 넣고 현탁한 후, 미리 배양한 유산균 비피도박테리움 KK-1 및 비피도박테리 움 KK-2 균주를 각각 1㎡ (약 109 세포/㎡)씩 이식하고, 37℃에서 24시간동안 배양하여 요구르 트를 얻었다.
- <40> <실시예 2>

- 수삼 또는 미삼을 잘 건조하여 만든 분말 2 g 및 비타민 C 0.1g을 100ml의 우유에 넣고 현탁한 후, 미리 배양한 유산균 비피도박테리움 K-103 및 비피도박테리움 K-506 균주를 각각 1 ml (약 10⁹ 세포/ml)씩 이식하고, 37℃에서 24시간동안 배양하여 요구르트를 얻었다.
- ^{42>} <실시예 3>
- 수삼을 잘 건조하여 만든 분말 1 g 및 비타민 C 0.1g을 100ml의 우유에 넣고 현탁한 후미리 배양한 유산균 락토바실루스 불가리쿠스, 스트렙토코쿠스 써모필루스, 비피도박테리움 KK-1 및 비피도박테리움 KK-2 균주를 각각 1ml (약 109 세포/ml)씩 이식하고, 37℃에서 12시간동안 배양하여 요구르트를 얻었다.
- <44> <실시예 4>
- ^{<45} 백삼 분말 1g 및 비타민 C 0.1g을 100ml의 우유에 넣고 현탁한 후, 미리 배양한 유산균 락토바실루스 불가리쿠스, 스트렙토코쿠스 써모필루스 및 비피도박테리움 KK-1 균주를 각각 1 ェ (약 10⁹ 세포/ml)씩 이식하고, 37℃에서 24시간동안 배양하여 요구르트를 얻었다.
- <46> <실시예 5>
- 전조한 인삼 분말 1g 및 비타민 C 0.1g을 100ml의 우유에 넣고 현탁한 후, 미리 배양한유산균 비피도박테리움 KK-1 및 비피도박테리움 KK-2 균주를 각각 1ml (약 10⁹ 세포/ml)씩 이식하고, 37℃에서 24시간동안 배양하여 인삼 요구르트를 얻었다.
- <48> <실시예 6>
- ~49> 건조한 인삼 분말에 0.5%가 되도록 락트산을 넣고 60℃에서 5시간 처리하고 중화한 다음 건조시켜 수득한 인삼 분말 (산처리인삼) 1g 및 비타민 C 0.1g을 100㎖의 우유에 넣고 현탁한

후, 미리 배양한 유산균 비피도박테리움 KK-1 및 비피도박테리움 KK-2 균주를 각각 1㎖ (약 10⁹ 세포/㎖)씩 이식하고, 37℃에서 24시간동안 배양하여 산처리 인삼 요구르트를 얻었다.

- <50> <실시예 7>
- 전조한 인삼분말을 증류수에 현탁하여 100℃에서 2시간 찌고 건조시켜 수득한 인삼 (가열인삼) 분말 1g 및 비타민 C 0.1g을 100㎖의 우유에 넣고 현탁한 후, 미리 배양한 유산균 비피도박테리움 KK-1 및 비피도박테리움 KK-2 균주를 각각 1㎖ (약 109 세포/㎖)씩 이식하고, 37℃에서 24시간동안 배양하여 가열인삼 요구르트를 얻었다.
- <52> <실시예 8>
- 건조한 분말을 120℃에서 2시간동안 가압처리하고 건조시켜 수득된 인삼 분말
 (가압인삼) 1g 및 비타민 C 0.1g을 100㎖의 우유에 넣고 현탁한 후, 미리 배양한 유산균 비피도박테리움 KK-1과 비피도박테리움 KK-2 균주를 각각 1㎖ (약 109 세포/㎖)씩 이식하고, 37℃에서 24시간동안 배양하여 가압처리 인삼 요구르트를 얻었다.
- <54> <실시예 9>
- 건조한 인삼 분말 1g 및 비타민 C 0.1g을 100ml의 우유에 넣고 현탁한 후, 미리 배양한유산균 비피도박테리움 KK-1 및 비피도박테리움 KK-2 균주를 각각 1ml (약 109 세포/ml)씩 이식하고, 37℃에서 24시간동안 배양하여 인삼 요구르트를 얻었다.
- <56> <실시예 10>
- <57> 건조한 인삼 분말에 0.5%가 되도록 락트산을 넣고 60℃에서 5시간 처리하고 중화한다음, 건조시켜 수득한 인삼 (가열인삼) 분말 1g 및 비타민 C 0.1g을 100ml의 우유에 넣고 현

탁한 후 미리 배양한 유산균 비피도박테리움 KK-1 및 비피도박테리움 KK-2 균주를 각각 1㎖ (약 10⁹ 세포/㎖)씩 이식하고, 37℃에서 24시간동안 배양하여 가열인삼 요구르트를 얻었다.

- <58> <실시예 11>
- 건조한 인삼분말을 증류수에 현탁하여 100℃에서 2시간 찌고 건조시켜 수득한 인삼 분말 (가열인삼) 1g 및 비타민 C 0.1g을 100㎡의 우유에 넣고 현탁한 후 미리 배양한 유산균 비피도 박테리움 KK-1 및 비피도박테리움 KK-2 균주를 각각 1㎡ (약 109 세포/㎡)씩 이식하고, 37℃에서 24시간동안 배양하여 가열인삼 요구르트를 얻었다.
- <60> <실시예 12>
- 전조한 분말을 120℃에서 2시간동안 가압처리하고 건조시켜 수득한 인삼 (가압인삼) 분말 1g 및 비타민 C 0.1g을 100ml의 우유에 넣고 현탁한 후, 미리 배양한 유산균 비피도박테리움 KK-1 및 비피도박테리움 KK-2 균주를 각각 1ml (약 109 세포/ml)씩 이식하고, 37℃에서 24시간동안 배양하여 가압인삼 요구르트를 얻었다.
- <62> <실시예 13~24>
- 상기 실시예 1 내지 12에서, 100㎡의 우유 대신에, 100㎡의 물을 사용한 것을 제외하고
 .
 는 상기 실시예 1 내지 12와 동일한 과정을 반복하여, 각각의 유산균 발효물을 수득하였다.
- <64> <실험예 1 : 사포닌 성분의 함량분석>
- 시판품인 일반 인삼 (경동시장에서 구입한 농협 고려인삼 금산산 4-6년근), 및 그의 건조 인삼 분말, 산처리 인삼, 고온처리인삼 및 가압처리 인삼 (상기 실시예와 동일한 방법에 의해 제조) 각각 1g에 비타민 C 0.1g을 우유 100mℓ에 가한 후, 유산균 비피도박테리움 KK-1과 비피도박테리움 KK-2 균주 각 1g을 넣고 37℃에서 72시간동안 배양하고 감압 농축하여, 인삼 발

효 요구르트, 고온처리 인삼 발효 요구르트, 산처리 인삼 발효요구르트, 가압처리 인삼 발효 요구르트를 수득하였다. 이어서, 인삼, 및 그의 건조 인삼 분말, 산처리 인삼, 고온처리인삼, 가압처리 인삼, 및 상기 수득된 각각의 인삼 발효 요구르트를 2g 씩을 취하여 메탄을 100㎡씩으로 3회 추출하고, 농축시킨 후에 물에 현탁시키고, 에테르 100㎡씩으로 3회 추출하였다. 이어서, 부탄을 100㎡씩으로 3회 추출한 후에 부탄을 분획을 농축시키고, 수득된 농축물을 메탄올에 용해시켜 TLC로 분석하여(용매로는 CHCl3: MeOH:H2O = 65:35:10의 하층 용액; 발색시약으로는 MeOH 중의 5% 황산 용액; 검출기로는 Shimadzu TLC scanner CS-9301PC를 사용), 하기 표 2와 같은 결과를 얻었다. 성분함량은, 최종 추출 분획 100%에 함유된 각 성분의 함량으로 계산하였다.

<66>【班 2】

성분명	성분함량(%)			
	인삼	인삼	고온인삼	고온인삼의
	(실시예 5)	발효요구르트	(실시예 7)	발효요구르트
		(실시예 5)		(실시예 7)
진세노시드 Rb1	15.1	1.6	5.1	2.7
진세노시드 Rb2	8.2	1.1	3.5	2.1
진세노시드 Rc	9.5	0.5	3.8	2.9
진세노시드 Re	10.7	2.7	7.8	4.5
진세노시드 Rg3	< 1	< 1	14.6	8.5
△ ²⁰ -진세노시드 Rg3	< 1	< 1	< 1	<1
화합물 K	0	28.6	4.5	2.9
진세노시드 Rh2	< 1	< 1	<1	3.2
△ ²⁰ -진세노시드 Rh2	< 1	< 1	<1	<1
진세노시드 Rh1	< 1	1.2	0.5	1.8
프로토파낙사디올	< 1	2.1	<1	2.1

<67>	성분명	량 (%)			
	0 2 0	산처리인삼	산처리	가압인삼	 가압처리인삼의 밸
		(실시예 6)	발효요구르트	(실시예 8)	효요구르트
			(실시예 6)		(실시예 8)
	진세노시드 Rb1	2.5	1.2	2.5	1.2
	진세노시드 Rb2	2	0.9	1.2	0.8
	진세노시드 Rc	1.8	1.1	1.5	1.0
	진세노시드 Re	6.8	5.2	3.9	2.9
	진세노시드 Rg3	25	7	16.1	4.5
	△ ²⁰ -진세노시드 Rg3	< 1	< 1	6.5	2.1
	화합물 K	0	2.2	0	1.2
	진세노시드 Rh2	0.2	10.2	<1	4.5
	△ ²⁰ -진세노시드 Rh2	0.1	1.8	<1	3.8
	진세노시드 Rh1	0.5	2.1	2.1	2.5
	프로토파낙사디올	<1	2.5	<1	2.8

실시예 1 내지 4, 및 실시예 9 내지 12도 상기 표 2와 유사한 결과를 나타내었으며, 실시예 13 내지 24의 인삼의 유산균 발효물은 상기 발효 요구르트와 유사한 사포닌 성분 함량을 나타내었다.

<69> <실험예 2 : 항암 효과 분석>

(마우스 림프액 신생혈장 세포주; KCLB-10023), A-549 (인간 폐암 세포주; KCLB-10185), P-388 (마우스 림프액 신생혈장 세포주; KCLB-10046), L-1210 (마우스 림프구 백혈병 세포주; KCLB-10219)을, 10% FBS, 1% 항생제-항균제(antibiotics-antimycotics; GIBCO사, 미국) 및 2.2g/ l 의 중탄산나트륨을 보충한 RPMI 1640 배지로 배양하였다.

《71》 상기 HepG2, A-549는 0.25% 트립신으로 처리하여 세포를 플라스크에서 떼어내고, 세포수를 3 서0⁴ 세포/웰이 되도록 96웰 플레이트의 각 웰에 180ℓℓ씩 깔아 24시간 동안 37℃에서, 5% CO₂가 포화된 CO₂ 배양기에서 배양하였다. P-388 및 L-1210은 4 x 10⁴/웰이 되도록 세포수를 맞추어, 각 웰에 180ℓℓ를 넣고 2시간 동안 5% CO₂가 포화된 CO₂ 배양기에서 배양하였다. 이어서, 백삼의 부탄올추출물 및 표 3에 기재된 유산균 발효 인삼의 부탄올분획 각각을 고압 증기

멸균한 후, 10mg/ml가 되도록 웰당 20μl씩를 첨가하여, 시료를 첨가하여, 48시간 동안 37℃의 5% CO₂가 포화된 CO₂ 배양기에서 배양시켰다. 그런 다음, 웰당 20mg/ml의 MTT시약을 50μl씩 첨가하여, 4시간동안 CO₂ 배양기에서 반응시킨 후, 배지를 걷어내고, 침전물에 DMSO 100μl를 첨가한 다음, 580nm에서 ELISA 판독기로 흡광도를 측정하여 세포 독성을 측정하였다. 측정 결과를 하기 표 3에 나타내었다.

<72>【班 3】

一	ED ₅₀ (μg/mℓ)			
	P388	L1210	A549	HepG2
일반인삼추출물	> 100	> 100	> 100	> 100
백삼의 유산균 발효물	98	50	160	96
산처리인삼의 유산 균 발효물	82	51	102	95
고온처리인삼의 유 산균 발효물	78	45	87	91
가압처리인삼의 유 산균 발효물	85	52	105	92

<73> <실험예 3: E. coli HGU-3 및 장내유해효소에 미치는 효과>

24시간 배양한 E. coli HGU-3 (경희대학교 약대 김동현 교수 실험실, 일반적인 E. coli특성과 거의 동일), 및 비피도박테리움 KK-1 또는 비피도박테리움 KK-2를 각각 107개가 되도록 5ml의 GAM 배양액에 이식하고, 24시간 배양한 후, 균주가 생산한 대장암 및 간장해의 원인효소인 베타글루쿠로니다제와 트립토판나아제의 효소활성을 측정하였다.

트립토판나아제 효소활성은 완전반응 혼합물 (0.1M 비사인(bicine; pH 8.0), 4% 피리독
살 5-포스페이트, 20% 송아지 혈청 알부민) 0.2ml, 0.02M 트립토판 0.2ml 및 효소액 0.1ml을
가하여 30분 반응시키고, 착색제 (p-디메틸아미노벤즈알데히드 14.7g, 95% 에탄올 948ml, C-H₂
SO₄ 52ml) 2ml을 가하여 반응을 종료시킨 후, 원심분리 (2000 冷, 20분)하고 상등액으로 550mm에서 흡광도를 측정하였다.

<77> 상기 측정결과는, 비피도박테리움 KK-1를 이식한 경우를 표 4에, 비피도박테리움 KK-2를 이식한 경우를 표 5에 나타내었다.

<78> 【班 4】

	저해율 (%)		
	베타글루쿠로니다제	트립토판나아제	
대조군	0	0	
인삼추출물	32	45	
인삼의 유산균 발효물	85	85	
산처리인삼의 유산균 발효물	75	78	
고온처리인삼의 유산균 발효물	89	87	
가압처리인삼의 유산균 발효물	78	85	

<79>【班 5】

	저해율 (%)			
	베타글루쿠로니다제	트립토판나제		
대조군	0	0		
인삼추출물	32	45		
인삼생물전환인삼	76	81		
산처리생물전환인삼	67	88		
고온처리생물전환인삼	82	68		
가압처리생물전환인삼	71	78		

상기 표 4 및 표 5에서 보는 바와 같이, 인삼의 유산균 발효물은 인체에 흡수시 항암효과 및 장내세균이 생산하는 β-글루쿠로니다아제 및 트립토판나아제의 활성을 저해하여 대장암 및 간손상을 예방하는 효과를 나타낼 수 있음을 알 수 있다.

【발명의 효과】

> 이상에서 살펴본 바와 같이, 본 발명에 따른 인삼의 유산균 발효물은 인삼 원재료에서는 극소량 함유되어 있거나 거의 되어 있지 않은 화합물 K, 진세노시드 Rh1 및 Rh2, 및 △²⁰-진세 노시드 Rh2를 다량 함유하고 있어, 항암작용, 항알레르기 작용 및 장내환경 개선 작용을 할 수 있음을 알 수 있다. 따라서, 상기 인삼의 유산균 발효물을 유효성분으로서 함유하는 요구르 트는 상기한 사포닌 성분들의 나타내는 생리활성을 제공하는 기능성 요구르트로 유용하게 이용될 수 있다.

【특허청구범위】

【청구항 1】

유산균으로 인삼을 발효시켜 제조되는 인삼의 유산균 발효물.

【청구항 2】

제 1 항에 있어서, 상기 인삼이 건조 인삼 분말, 산처리 인삼, 고온처리 인삼, 가압 처리 인삼으로 이루어진 군으로부터 선택됨을 특징으로 하는 인삼의 유산균 발효물.

【청구항 3】

제 1 항 또는 제 2 항에 있어서, 상기 인삼의 발효물이 화합물 K (20-0-β-D-글루코피라 노실-20(S)-프로토파낙사디올), 진세노시드(ginsenoside) Rh1, 진세노시드 Rh2 및 △²⁰-진세노시드 Rh2로 이루어진 군으로부터 선택된 하나 이상의 발효 성분을 함유함을 특징으로 하는 인삼의 유산균 발효물.

【청구항 4】

제 3 항에 있어서, (화합물 K + 진세노시드 Rh1), (진세노시드 Rh2 + 진세노시드 Rh1), (진세노시드 Rh2 + \triangle 20-진세노시드 Rh2 + 진세노시드 Rh1) 또는 (화합물 K + 진세노시드 Rh1 + 진세노시드 Rh2)의 추출 발효성분의 총량이, 진세노시드 Rc + 진세노시드 Rd + 진세노시드 Rb1 + 진세노시드 Rb2+ 진세노시드 Re + 진세노시드 Rg1에 대하여 0.1 이상의 비율로 상기 인삼의 발효물 중에 함유함을 특징으로 하는 인삼의 유산균 발효물.

【청구항 5】

제 1 항 또는 제 2 항에 있어서, 상기 유산균이 인삼내에 포함되어 있는 진세노시드 성 분을 생물전환시킬 수 있는 유산균임을 특징으로 하는 인삼의 유산균 발효물.

【청구항 6】

제 5 항에 있어서, 상기 유산균이 비피도박테리움 K-103, 비피도박테리움 K-506, 비피도 박테리움 KK-1 및 비피도박테리움 KK-2으로 이루어진 군으로부터 선택된 하나 이상의 유산균임 을 특징으로 하는 인삼의 유산균 발효물.

【청구항 7】

제 1 항 또는 제 2 항에 따른 인삼의 유산균 발효물을 함유함을 특징으로 하는 인삼 요 구르트.

【청구항 8】

제 7 항에 있어서, 상기 유산균 발효물이 요구르트 원료유와 인삼을 유산균으로 동시에 발효시키는 것에 의해 상기 인삼 요구르트에 함유됨을 특징으로 하는 인삼 요구르트.

【청구항 9】

제 8 항에 있어서, 상기 유산균이 비피도박테리움 K-103, 비피도박테리움 K-506, 비피도박테리움 KK-1 (KCCM-10364) 및 비피도박테리움 KK-2 (KCCM-10364)으로 이루어진 군으로부터 선택된 하나 이상의 유산균임을 특징으로 하는 인삼 요구르트.

【청구항 10】

비피도박테리움 KK-1 (KCCM-10364).

【청구항 11】

비피도박테리움 KK-2 (KCCM-10365).

150.5

【서지사항】

【서류명】 명세서 등 보정서

【수신처】 특허청장

【제출일자】 2003.04.16

【제출인】

【성명】 김동현

【출원인코드】 4-1998-032388-9

【사건과의 관계】 출원인

【대리인】

【명칭】 특허법인코리아나 【대리인코드】 9-2001-100001-3

【지정된변리사】 변리사 박해선, 변리사 이철

【사건의 표시】

【출원번호】 10-2002-0077081

【출원일자】2002.12.05【심사청구일자】2002.12.05

【발명의 명칭】 인삼의 유산균 발효물, 그를 함유하는 인삼 요구르

트 및 그에 이용되는 유산균 균주

【제출원인】

【접수번호】 1-1-2002-0404949-28

【접수일자】2002.12.05【보정할 서류】명세서등

【보정할 사항】

 【보정대상항목】
 별지와 같음

 【보정방법】
 별지와 같음

【보정내용】별지와 같음

【취지】 특허법시행규칙 제13조·실용신안법시행규칙 제8조의 규

정에의하여 위와 같 이 제출합니다. 대리인

특허법인코리아나 (인)

【수수료】

【보정료】 0 원

【추가심사청구료】 0 원

【기타 수수료】 0 원

[합계] 0 원

【첨부서류**】**

출력 일자: 2003/12/5

1. 기타첨부서류[상세한 설명]_1통

【보정대상항목】 식별번호 66

【보정방법】 정정

【보정내용】

【丑 2】

정분명	성분함량(%)			
	인삼 (실시예 5)	인삼 발효요구르트	고온인삼 (실시예 7)	고온인삼의 발효요구르트
진세노시드 Rb1	15.1	(실시예 5) 1.6	5.1	(실시예 7) 2.7
진세노시드 Rb2 진세노시드 Rc	8.2	1.1	3.5	2.1
진세노시드 Re	9.5 10.7	0.5 2.7	3.8 7.8	2.9 4.5
전세노시드 Rg3 △ ²⁰ -진세노시드 Rg3	< 1	< 1	14.6	8.5
화합물 K	< 1	< 1	4.5	<1
진세노시드 Rh2	< 1	28.6	< 1 <1	2.9 3.2
△ ²⁰ -진세노시드 Rh2	< 1	< 1	<1	<1
진세노시드 Rh1 프로토파낙사디올	< 1 < 1	$\frac{1.2}{2.1}$	0.5	1.8
		4,1	<1	2.1