Federated Machine Learning System Design and Practical Architecture

Chandra Gummaluru, Erick Mejia Uzeda, Maggie Ding, Cynthia Liao

Supervisor: Ashish Khisti Administrator: Phil Anderson

Traditional Machine Learning (ML)

Requires collecting a large quantity of potentially private data in a central location

Federated Learning (FL)

Allows for decentralized collaborative learning without explicitly sharing client data

Naïve Federated Learning

Testing Specification

Train a digit classification model using 3 clients, where each one only has a subset of the digits

2 | 6 | 4 |

79

local updates

to server

Client 1

Client 2

Client 3

Results

Server learns about all digits with high accuracy and clients slowly do too

Figure I: Server (top-left) and Clients (other) Testing Curves for Naïve FL

Data Privacy

₽ P

Keep client data private while performing arithmetic on it

Solution

Multi-party Homomorphic Encryption

Results

No impact on the model's performance despite rounding errors introduced by the scheme

2

Non-IID Data

Goal: Address 3 Core Federated Learning Issues

Each client's local dataset is very different, making server-side aggregation less accurate

Solution

FedProx: add proximal term to objective

Results

Smoothed out the oscillations in the testing curves with minor degradations in accuracy

Figure 3: Naïve (left) and FedProx (right) Testing Curves

3

Communication Efficiency

Reduce the data transfer size to increase communication efficiency

Solution

Federated Dropout: zero out some terms

Results

Communication cost is reduced by 1% with minimal impact on overall performance

Figure 4: Naïve (left) and Federated Dropout (right) Testing Curves

Conclusion

Demonstrated the feasibility of creating a

Federated Learning system that addresses

the practical issues of privacy, non-IID data,

and communication efficiency.

Full System Pipeline

Overall Results

Future Work

- Benchmarking
- Unsupervised Learning
- Addressing Fairness

