

Europaisches Patentamt
European Patent Office
Office européen des brevets

Description number:

0 413 528 A1

•

EUROPEAN PATENT APPLICATION

- D Accidation number: 90308828.4
- 1 Int. Ct. 5 A61K 7/48, A61K 31/19

- 3 Date of filling: 10.08.90
- Priority: 15.06.89 US 393749
- ② Date of publication of application: 20.02.91 Bulletin 91/08
- Designated Contracting States:

 AT BE CHIDE DKIES FRIGBIGRIF LILLUING SE
- Applicant: Yu, Ruey J., Dr.
 Lindenwold Avenue
 Ambler Pennsylvania 19002(US)

Applicant: Van Scott, Eugene J., Or. 3 Hidden Land Abington Pennsylvania 19001(US)

- Inventor: Yu, Ruey J., Dr.
 4 Lindenwold Avenue
 Ambier Pennsylvania 19002(US)
 Inventor: Van Scott, Eugene J., Dr.
 3 Hidden Land
 Abington Pennsylvania 19001(US)
- Representative: Bankes, Stephen Charles
 Digby et al
 BARON:& WARREN 18.South:End Kensington
 London W8 5BU(GB)
- Ampheteric compositions and polymeric forms of alpha hydroxyacids, and their therapeutic use.
- Preventive as well as therapeutic treatment to alleviate cosmetic conditions and symptoms of dermatologic disorders with amonotenic compositions containing alpha hydroxyacids, alpha ketoacids, related compounds or polymeric forms of hydroxyacids is disclosed. The cosmetic conditions and the dermatologic disorders in which the amphoteric compositions and the oblymeric compounds may be useful include dry skin; dandruff, acne, keratoses; psoriasis, eczema, pruntus; age spots, lentigines, melasmas, wrinkles, warts, blemished skin, hyperpigmented skin, kyperkeratotic pkin, inflammatory dermatoses, skin changes associated with aging, and skin requiring cleansers.

EP. 0 413 528 A1

BEST AVAILABLE COPY

Xeins Copy Centre

AMPHOTERIC COMPOSITIONS AND POLYMERIC FORMS OF ALPHA HYDROXYACIDS, AND THEIR THERAPEUTIC USE

This invention relates generally to therapeutic treatment as well as preventive measures for cosmetic conditions and dermatologic disorders by topical administration of amphotoric compositions or polymenic forms of alpha hydroxyacids, alpha ketoacids and related compounds. We initially discovered that alpha hydroxy or koto acids and their derivatives were effective in the topical treatment of disease conditions such as any skin, ichthyosis, eczema, palmar and plantar hyperkeratoses, dandruff, ache and warts.

We have now discovered that amphoteric compositions and polymeric forms of alpha hydroxyacids, alpha ketoacids and related compounds on topical administration are therapeutically effective for various cosmetic conditions and dematologic disorders.

In order prior U.S. Patent No. 3,879,537 entitled "Treatment of lichthyosiform Dermatoses" we described and claimed the use of certain alpha hydroxyacids, alpha ketoacids and related compounds for topical treatment of fish-scale like ichthyotic conditions in humans. In our U.S. Patent No. 3,920,835 entitled "Treatment of Disturbed Keratinization" we described and claimed the use of these alpha hydroxyacids, alpha ketoacids and their derivatives for topical treatment of dandruff, acne, and palmar and plantar hyperkeratosis.

in our prior U.S. Patent No. 4,105.783 entitled "Treatment of Dry Skin" we described and claimed the use of alpha hydroxyacids, alpha ketoacids and their derivatives for topical treatment of dry skin. In our recent U.S. Patent No. 4,246,261 entitled "Additives Enhancing Topical Corticosteroid Action" we described and claimed that alpha hydroxyacids, alpha ketoacids and their derivatives, could greatly enhance the therapeutic efficacy of corticosteroids in topical treatment of psoriasis, eczema, seborrheic dermatitis and other inflammatory skin conditions.

In our more recent U.S. Patent No. 4,363,815 entitled "Alpha Hydroxyacids, Alpha Ketoacids and Their Use in Treating Skin Conditions" we described and claimed that alpha hydroxyacids and alpha ketoacids related to or originating from amino acids, whether or not found in proteins, wore effective in topical treatment of skin disorders associated with disturbed keratinization or inflammation. These skin disorders include dry skin, ichthyosis, palmar and plantar hyperkeratosis, dandruff, Darier's disease, lichen simplex chronicus, keratoses, acne, psoriasis, eczema, pruritus, warts and herpes.

In our most recent patent application Serial No. 945,680 filed December 23, 1986 and entitled "Additives Enhancing Topical Actions of Therapeutic Agents" we described and claimed that incorporation of an alpha hydroxyacid or related compound can substantially enhance therapeutic actions of cosmetic and pharmaceutical agents.

There is no doubt that alpha hydroxyacids, alpha ketoacids and related compounds are therapeutically effective for topical treatment of various cosmetic conditions and dermatologic disorders including dry ston, acne, dandruff, keratoses, age spots, wrinkles and disturbed keratinization. However, the compositions containing these acids may irritate human skin on repeated topical applications due to lower pH of the formulations. The irritation may range from a sensation of tingling, itching and burning to clinical signs of redness and peeling. Causes for such irritation may arise from the following:

Upper layers of normal skin have a pH of 4.2 to 5.6, but the compositions containing most alpha hydroxyacids or alpha ketoacids have pH values of less than 3.0. For example, a topical formulation containing 7.6% (1 M) glycolic acid has a pH of 1.9, and a composition containing 9% (1 M) factic acid has the same pH of 1.9. These compositions of lower pH on repeated topical applications can cause a drastic pH decrease in the stratum comeum of human skin, and provoke disturbances in intercomeocyte bondings resulting in adverse skin reactions, especially to some individuals with sensitive skin.

Moreover, with today's state of the art it is still very difficult to formulate a lotion, cream or ointment emulsion which contains a free acid form of the alpha hydroxyacid, and which is physically stable as a commercial product for cosmetic or pharmaceutical use.

When a formulation containing an alpha hydroxyanid or alpha ketoacid is reacted equimolarly or equinormally with a metallic alkali such as sodium hydroxide or potassium hydroxide the composition becomes therapeutically ineffective. The reasons for such loss of therapeutic effects are believed to be as follows:

The intact skin of humans is a very effective barrier to many natural and synthetic substances. Cosmetic and pharmaceutical agents may be pharmacologically effective by oral or other systematic administration, but many of them are much less or totally ineffective on topical application to the skin. Topical effectiveness of a pharmaceutical agent depends on two major factors; (a) bioavailability of the active ingredient in the topical preparation and (b) percutaneous absorption, penetration and distribution of

the active ingredient to the target bite in the skin. For example, a topical preparation containing 5% salicylic acid is therapeutically effective as a keratorytic, but that containing 5% sodium salicylate is not an effective product. The reason for such difference is that salicylic acid is in bioavailable form and can penetrate the stratum corneum, but sodium salicylate is not in bioavailable form and cannot penetrate the stratum someon of the skin.

in the case of alpha hydroxyacids, a topical preparation containing 5% glycotic acid is therapeutically effective for dry skin, but that containing 5% socium glycotlate is not effective. The same is true in case of 5% factic acid versus 5% socium factate. The reason for such difference is that both glycotic acid and factic acid are it bioavailable forms and can readily penetrate the stratum corneum, but sodium glycotlate and socium sactate are not in bioavailable forms and cannot penetrate the stratum corneum of the skin.

When a formulation containing an alpha hydroxyacid or alpha ketoacid is reacted equimolarly or adultion multi-mult

it has now been discovered that amphoteric compositions containing alpha hydroxyacids, alpha ketoacids or related compounds, and also the compositions containing dimend or polymend forms of hydroxyacids overcome the aforementioned shortcomings and retain the therapeutic efficacies for cosmetic conditions and dermatologic disorders. The amphoteric composition contains in combination an amphoteric or osseudoamphoteric compound and at least one of the alpha hydroxyacids, alpha ketoacids or related compounds. Such amphoteric system has a suitable pH, and can release the active form of an alpha hydroxyacid or alpha ketoacid into the skin. The dimeric and polymeric forms of alpha, beta or other hydroxyacids in non-aqueous compositions have a more desired pH than that of the monomeric form of the hydroxyacids. The non-aqueous compositions can be formulated and induced to release the active form of hydroxyacids after the compositions have been topically applied to the skin. The cosmetic conditions and dermatologic disorders in humans and animals, in which the amphoteric compositions containing the dimeric or polymeric forms of hydroxyacids may be useful, include dry skin, dandruff, ache, keratoses, proriasis, eczema, pruritus, age spots, lentigines, melasmas, wrinkles, warts, blemished skin, hyperpigmented skin, hyperkeratotic skin, inflammatory dermatoses, skin changes associated with aging and as skin cleansers.

I, Amphoteric and Pseudoamphoteric Compositions

Amphoteric substances by definition should behave either as an acid or a base, and can be an organic or an inorganic compound. The molecule of an organic amphoteric compound should consist of at least one basic and one acidic group. The basic groups include, for example, amino, imino and guanido groups. The acidic groups include, for example, carboxylic, phosphoric and sulfonic groups. Some examples of organic amphoteric compounds are amino acids, peptides, polypeptides, proteins, creatine, aminoaldonic acids, aminouronic, acids, lauryl aminopropylglycine, aminoaldaric, acids, neuraminic acid, desulfated heparin, deacetylated hyaluronic;acid, hyalobiuronic acid, chondrosine;and deacetylated chondrositis.

Inorganic amphoteric compounds are certain metallic oxides such as aluminum oxide and zinc oxide.

Pseudoamphoteric compounds are either structurally related to true amphoteric compounds or capable of inducing the same function when they are incorporated into the compositions containing alpha hydrox-yacids or ketoacids. Some examples of pseudoamphoteric compounds are creatinine, stearamidoethyl diethylamine, stearamidoethyl diethylamine, stearamidoethyl diethylamine, quaternary ammonium hydroxide and quaternium hydroxide.

The amphoteric composition of the instant invention contains in combination an alpha hydroxyacid or alpha ketoacid and an amphoteric or pseudoamphoteric compound. There are two advantages of utilizing an amphoteric or the like compound in the therapeutic composition containing an alpha hydroxy or ketoacid. These are (a) the overall pH of the composition is raised, so that the composition becomes less or non-irritating to the skin-rand:(b) some alpha hydroxy or ketoacid molecular react with the amphoteric compound to form a quadruple ionic complex which acts as buffering system to control the release of alpha hydroxy or ketoacid into the skin, therefore, eliminating the skin irritation and still retaining the therapeutic efficacies.

The following are some examples. 2-Hydroxyethanoic acid (glycolic acid) 1 M aqueous solution has pH 1.9. The pHs of compositions change to 3.0 and 3.2 when arginine 0.5 M and creatinine 0.5 M respectively are incorporated into the formulations. 2-Hydroxypropanoic acid (lactic acid) 1 M aqueous solution has pH 1.9. The pHs of compositions change to 3.1 and 6.9 when arginine 0.5 M and 1.0 M respectively are

The same of the sa

incurporated into the formulations, 2-Methyl 2-hydroxypropanoic acid (methyllactic acid) 1 M adueous solution has pH 1.9. The pHs of compositions change to 3.3, 3.4 and 3.2 when 0.5 M each of arginine, cleatinitie and 4-aminobutanoic acid respectively are incorporated into the formulations, 2-Hydroxybutane-1,4-dioic acid (malic acid) 1 M adueous solution has pH 1.8, but the pH of the composition changes to 3.0 when creatinine 0.5 M is incorporated into the formulation.

deally, an amphotenic compound should contain both anionic and cationic groups or functional groups capable of behaving both as an acid and a base. Although inorganic amphotenic compounds such as aluminum oxide, aluminum hydroxide and zinc oxide may be utilized, organic amphotenic compounds have been found to be more efficient in formulating therapeutic compositions of the instant invention.

Organic amphoteric and pseudoamphoteric compounds may us classified into three groups, namely (a) amino acid type. (b) imidazoline and lecithin amphoterics and (c) pseudoamphoterics and miscellaneous amphoterics.

(a) Amino acid type amphoterics. Amphoteric compounds of amino acid type include all the amino acids, dipeptides, polypeptides, proteins and the like which contain at least one of the basic groups such as amino, imino, guanido, imidazolino and imidazoliyl, and one of the acidic groups such as carboxylic, suifonic, sulfinic and sulfate.

Glycine is a simple amphoteric compound which contains only one amino group and one carboxylic group. Lysine contains two amino groups and one carboxylic group. Aspartic acid contains one amino group and two carboxylic groups. Arginine contains one amino group, one guanido group and one carboxylic group. Histidine contains one amino group, one iminazily group and one carboxylic group. Taurine contains one amino group and one sulfonic group. Cysteine sulfinic acid contains one amino group one carboxylic group and one sulfinic group. The amino group of an amphoteric compound may also be substituted, such as in betaine which is a glycine N,N,N-trimethyl inner salt.

Glycylglycine is a simple dipeptide which contains one free amino group and one free carboxylic group.

25. Glycylhistidine is also a dipeptide which contains one free amino group, one imidazolyl group and one free carboxylic group.

The representative amphotenc compounds of amino acid type may be listed as follows: Glycine, alanine, valine, leucine, isoleucine, sèrine, threonine, cysteine, cystine, methionine, aspartic acid, asparagine, glutamic acid, glutamine, arginine, lysine, 5-hydroxylysine, histidine, phenylalanine, tyrosine, tryptophan, 3-hydroxyproline, 4-hydroxyproline and proline.

The related amino acids include homocysteine, homocystine, homoserine, omithine, citruffine, creatine, 3-aminopropanoic acid, theanine, 2-aminobutanoic acid, 4-aminobutanoic acid, 2-amino-2-methylpropanoic acid, 2-methyl-3-aminopropanoic acid, 2.6-diaminopimelic acid, 2-amino-3-phenylbut-noic acid, phenyl-glycine, canavanine, canaline, 4-hydroxyarginine, 4-hydroxyomithine, homoarginine, 4-hydroxyhomoarginine, 3-lysine, 2-4-diaminobutanoic acid, 2.3-diaminopropanoic acid, 2-methylserine, 3-phenylserine and betaine.

Sulfur-containing amino acids include taurine, cysteinesulfinic acid, methionine sulfoxide and methionine sulfone.

The halogen-containing amino acids include 3.5-diiodotyrosine, thyroxine and monoiodotyrosine. The imino type acids include pipecolic acid, 4-aminopipecolic acid and 4-methylproline.

The dipeptides include for example, glycylglycine, camosine, anserine, ophidine, homocarnosine, \$\beta\$-alanyllarginine. The tripeptides include for example, glutathione, ophthalmic acid and norophthalmic acid. Short-chain polypeptides of animal, plant and bacterial origin containing up to 100 amino acid residues include bradykinin and glucagon. The preferred proteins include for example protamines, histones and other lysine and arginine rich proteins.

(b) Imidazoline and lecithin amphoterics. The amphoteric compounds of imidazoline derived type are commercially synthesized from 2-substituted-2-imidazolines obtained by reacting a fatty acid with an aminoethylethanolamine. These amphoterics include cocoamphoglycine, cocoamphopropionate, and cocoamphopropylsulfonate. The amphoteric compounds of lecithin and related type include for example, phosphatidyl ethanolamine, phosphatidyl serine and sphingomyelin.

(c) Pseudoamphoterics and miscellaneous amphoterics. Many pseudoamphoteric compounds are chemically related or derived from true amphoterics. For example, creatinine is derived from creatine. Other pseudoamphoteric compounds may include fatty amide amines such as stearamidoethyl diethanolamine and stearamidopropyl dimethylamine. Other pseudoamphoteric: related compounds include quaternary ammonium hydroxide and quaternium hydroxide.

In accordance with the present invention, the alpha hydroxyacid, the alpha ketoacids and the related compounds which are incorporated into amphoteric or pseudoamphoteric compositions for cosmetic conditions and dermatologic disorders may be classified into three groups.

The first group is organic carboxylic acids in which one hydroxyl group is attached to the alpha carbon

of the acids. The generic structure of such alpha hydroxyacida may be represented as follows: (Ra) (Rb) C (OH) COOH

where Ra und Rb are H. F. Ci. Br. alkyri aralkyr or aryl group of saturated or unsaturated, isomeno or nonisomeric, straight or pranched chain or tyclic form, having 1 to 25 carbon atoms, and in addition Ra and Rb may carry OH, CHO, COOH and tikoxy group having 1 to 9 carbon atoms. The alpha hydroxyacids may be present as a free acid or factone form, or in a sait form with an organic base or an inorganic alkali. The aipha hydroxycolids may exist as stereoisomers as O, L, and DL forms when Ra and Rb are not identical.

Typical alkyl, gralkyl and anyl groups for Ra and Rb include methyl, ethyl, propyl, isopropyl, buryl, pentyl, potyl, fauryl, stearyl, benzyl and phenyl, etc. The aipha hydroxyapids of the first group may be to divided into (1) alkyl alpha hydroxyacids, (2) aralkyl and anyl alpha llydroxyacids, (3) polyhydroxy alpha hydroxyacids, and (4) polycarooxyric alona hydroxyacids. The following are representative alona hydrox-/acids in each subgroup.

is (1) Alkyl Alona Hydroxvacids

- 1. 2-Hydroxyethanoic acid (Glycolic acid, hydroxyacetic acid) (H) (H) C (OH) CCOH
- 2. 2-Hydroxypropanoic acid (Lactic acid)
- (CH₂) (H) C (OH) COOH
- 3. 2-Methyl 2-hydroxypropanoic acid (Methyllactic acid)
- (CH₂) (CH₂) C (OH) COOH
- 4. 2-Hydroxybutanoic acid
- (C2H5) (H) C (OH) COOH
- 5. 2-Hydroxypentanoic acid (C₂H₇) (H) C (OH) COOH
 - 6. 2-Hydroxyhexanoic acid
 - (C4H9) (H) C (OH) COOH
 - 7. 2-Hydroxyheptanoic acid
 - (CsH++ (H) C (OH) COOH
 - 8. 2-Hydroxyoctanoic/acid;
 - (CcH+2) (H) C (CH) COOH
 - 9. 2-Hydroxynonanoic acid
 - (C7His) (H) C (OH) COOH
 - 10. 2-Hydroxydecanoic acid
 - CaH++) (H) C (OH) COOH
 - 11. 2-Hydroxyundecanoic acid
 - (C, H,) (H) C (OH) COOH
 - 12. 2-Hydroxydodecanoic acid (Alpha hydroxylauric acid)
 - (C+aH2+) (H) C (OH) COOH
 - 13. 2-Hydroxytetradecanoic acid (Alpha hydroxymynstic acid) (C+2H25) (H)/C (OH) COOH ...

 - 14. 2-Hydroxyhexadecanoic acid (Alpha hydroxypalmitic acid) C+4H29) (H) C (OH) COOH
- 15. 2-Hydroxyoctadecanoic acid (Alpha hydroxystearic acid) (C16H24) (H) C (OH) COOH
 - 16. 2-Hydroxyeicosanoic acid (Alpha hydroxyarachidonic acid) (C12H27) (H) C (OH) COOH

so (2) Araikyi And Aryi Alpha Hydroxyacids

- 1. 2-Phenyl 2-hydroxyethanoic acid (Mandelic acid) (CsHe) (H) C (QH) COOH
- 2. 2.2-Diphenyl 2-hydroxyethanoic acid. (Benzilic acid):
- CcHs) (CcHs) C (OH) COOH
 - 1 3-Phenyl 2-hydroxypropanoic acid (Phenyllactic acid)
 - (C4H5CH2) (H) C (OH) COOH
 - 4, 2-Phenyl 2-methyl 2-hydroxyethanoic acid

(i)

(Atrolactic acid) (C6H5) (CH3) C (OH) COOH 5. 2-(4 -Hydroxyphenyl) 2-hydroxyethanoid acid 4-Hydroxymandelic acid) (HO-C.H.) (H) C (OH) CCOH 5. 2-(4 -Chlorophenyl) 2-nydroxyethanoic acid (4-Chloromandelic acid) (CI-C₆H₄) (H) C (QH) COQH 7 2-(3 -Hydroxy-4 -methoxyphenyi) 2-hydroxyethanoic acid (3-Hydroxy-4-methoxymandelic acid) (HO-,CH₂O-C₆H₂) (H) C (OH) COOH 8. 2-(4 -Hydroxy-3 -methoxypnenyl) 2-hydroxyethanoic acid (4-Hydroxy-3-methoxymandelic ac:d) 1HO- CH1C-C+H1) (H) C (OH) COOH 9. 3-(2'-Hydroxyphenyl) 2-hydroxypropanoic acid [3-(2 -Hydroxyphenyl) factic acid] HO-C4H4-CH2(H) C (OH) COOH 10. 3-(4 -Hydroxyphenyl) 2-hydroxypropanoic acid [3-/4 -Hydroxyphenyl) factic acid] HO-CeHe-CH2 (H) C (OH) COOH 11 2-(3.4 -Dihydroxyphenyl) 2-hydroxyethanoic acid (3.4-Dihydroxymandelic acid) HO-.HO-C.H3 (H) C (OH) COOH

25 (3) Polyhydroxy Alpha Hydroxyacids

- 1. 2.3-Dihydroxypropanoic acid (Glyceric acid) (HOCH₂) (H) C (OH) COOH
- 2. 2.3.4-Trihydroxybutanoic acid (Isomers; erythronic acid, threonic acid)
- FOCH26(HO)CH25(H),C5(OH)-COOH64
 - 3. 2.3.4.5-Tetrahydroxypentanoic acid (Isomers; ribonic acid, arabinoic acid, xylonic acid, lyxonic acid) HOCH₂ (HO)CH₂ (HO)CH₂ (HO)CH₂ (HO)CH₂ (HO)CH₂ (HO)CH₂ (HO)CH₂ (HO)CH₂ (HO)CH₂ (HO)CH₃ (HO)CH₄ (HO)CH₂ (HO)CH₃ (HO)CH₄ (HO)CH₄ (HO)CH₄ (HO)CH₅ (H
 - 4. 2.3.4.5.6-Pentahydroxyhexanoic acid (Isomers; allonic acid, altronic acid, gluconic acid, mannoic acid, gulonic acid, idonic acid, galactonic acid, talonic acid)
- 15 HOCH2 (HO)CH2 (HO)CH2 (HO)CH2 (H) C (OH) COOH
 - 5. 2.3.4.5.6.7-Hexahydroxyheptanoic acid (Isomers; glucoheptonic acid. galactoheptonic acid etc.) HOCH₂ (HO)CH₂ (HO)CH₂
 - (4) Polycarboxylic Alpha Hydroxyacids
 - 1.'2-Hydroxypropane-1,3-dioic acid (Tartronic acid)·HOOC (H) C (OH) COOH
 - 2. 2-Hydroxybutane-1,4-dicic acid (Malic acid)

HOOC CH2 (H) C (OH) COOH

45 3. 2.3-Dihydroxybutane-1.4-dioic acid (Tartaric acid)

HOOC (HO)CH (H) C (OH) COOH

4. 2-Hydroxy-2-carboxypentane-1.5-dioic acid (Citric acid)

HOOC CH2 C (OH)(COOH) CH2 COOH

- 5. 2, 3. 4, 5-Tetrahydroxyhexane- 1, 6-dioic acid (Isomers; saccharic acid, mucic acid etc.)
- ноос (снонъ соон

(5) Lactone Forms:

The typical lactone forms are gluconolactone, galactonolactone, glucoronolactone, galacturonolactone, gulconolactone, ribonolactone, saccharic acid lactone, pantoyllactone, glucoheptonolactone, mannonolactone, and galactoheptonolactone.

The second group of compounds which may be incorporated into amphoteric or pseudoamphoteric compositions for cosmetic conditions and dermatologic disorders, is organic darboxylic acids in which the

Alpha carbon of the acids is in keto form. The generic structure of such alpha ketoacids may be represented as follows:

(Ra) CO COC(Rb)

wherein Ra and Rb are H, alkyli aralkyli or aryli group of saturated or unsaturated, isomeric or non-isomeric, straight or branched chain or cyclic form, having 1 to 25 carbon atoms, and in addition Ra may carry F. Cl. Br. II CHO, CCOH and alkoxy group having 1 to 9 carbon atoms. The alpha ketoacids may be present as a free acid or an ester form, or in a salt form with an organic base or an inorganic alkali. The typical alkyli, aralkyli and anyli groups for Ra and Rb include methyl, ethyl, propyl, isopropyl, butyl, pentyl, octyl, fauryl, stearyl, benzyl and phenyl, etc.

In contrast to alpha hydroxyacids the ester form of alpha ketoacids has been found to be therapeutically effective for cosmetic and dermatologic conditions and disorders. For example, while ethyl factate has a minimal effect, ethyl pyruvate is therapeutically very effective. Although the real mechanism for such difference is not known, we have speculated that the ester form of an alpha ketoacid is chemically and/or biochemically very reactive, and a free acid form of the alpha ketoacid is released in the skin after the specifical application.

The representative along ketoacids and their esters which may be useful in amphoteric or pseudoamphoteric compositions for cosmetic conditions and dermatologic disorders are listed below:

1. 2-Ketcethanoic acid (Glyoxylic acid)

(H) CO COOH

2. Methyi 2-ketoethanoate

(H) CO COOCH2

3. 2-Ketopropanoic acid (Pyruvic acid)

CH1 CO COOH

4. Methyl 2-ketopropanoate (Methyl pyruvate)

25" CH- CO COOCHs ...

5. Ethyl 2-ketopropanoate (Ethyl pyruvate)

CH, CO COOC2H,

6. Propyl 2-ketopropanoate (Propyl pyruvate)

CH, CO COOC,H,

7. 2-Phenyl-2-ketoethanoic acid (Benzoylformic acid)

Cells CO COOH

8. Methyl 2-phenyl-2-ketoethanoate (Methyl benzoylformate)

Cats CO CGOCHs

9. Ethyl 2-phenyl-2-ketoethanoate (Ethyl benzoylformate)

Cons CO COOC2Hs

10. 3-Phenyl-2-ketopropanoic acid (Phenylpyruvic acid)

C6H5CH2 CO COOH

11. Methyl 3-phenyl-2-ketopropanoate (Methyl phenylpyruvate)

C6H5CH2 CO COOCH3

12. Ethyl 3-phenyl-2-ketopropanoate (Ethyl phenylpyruvate)

Calla CH2 CO. COOC2H4

13. 2-Ketobutanoic acid

C2H3 CO COOH

14. 2-Ketopentanoic acid

45 Cally CO COOH

15. 2-Ketohexanoic acid

C.H. CO COOH

16. 2-Ketoheotanoic acid

C5H11 CO COOH

17. 2 Ketooctanoic acid

CeH12 CO COOH

18. 2-Ketododecanoic acid

CiaHz+ CO COOH

19. Methyl 2-ketooctanoate

CeHiz CO-COOCH

The third group of compounds which may be incorporated into amphoteric or pseudoamphoteric compositions for cosmetic and dermatologic conditions and disorders, is chemically related to alpha hydroxyacids or alpha ketoacids, and can be represented by their names instead of the above two generic

structures. The third group of compounds include ascorbid acid, quinic acid, isocitine acid, tropic acid, trethocanic acid, 3-chlorolactic acid, perebronic acid, ottramalic acid, againstic acid, 2-hydroxynervonic acid, aleunitic acid and pantoic acid.

3 Dimeric and Polymeric Forms of Hydroxyacids

When two or more molecules of hydroxycarboxylic acids either identical or non-identical compounds are reacted chemically to each other, dimeric or polymeric compounds will be formed. Such dimeric and polymeric compounds may be classified into three groups, namely (a) acyclic ester, (b) cyclic ester and (c) miscellaneous dimer and polymer.

(a) Adyctic ester. The advolic ester of a hydroxycarboxylic acid may be a dimer or a polymer. The dimer is formed from two molecules of a hydroxycarboxylic acid by reacting the carboxyl group of one molecule with the hydroxy group of a second molecule. For example, glycolyl glycollate is formed from two molecules of glycolic acid by eliminating one mole of water molecule. Likewise, lactyl lactate is formed from two molecules of lactic acid. When two molecules of different hydroxycarboxylic acids are intermolecularly reacted, a different dimer is formed. For example, glycolyl factate is formed by reacting the carboxyl group of factic acid with the hydroxy group of glycolic acid. The polymer is formed in a similar manner but from more than two molecules of a hydroxycarboxylic acid. For example, glycoly glycoly glycolate is formed from three molecules of glycolic acid. Copolymer is formed from two or more than two different kinds of hydroxycarboxylic acids. For example, glycolyl lactyl glycollate is formed from two molecules of glycolic acid and one molecule of factic acid.

The acyclic ester of dimeric and polymeric hydroxycarboxylic acids may be shown by the following chemical structure:

25 H [-O-C(Ra)(Rb)-CO-In OH"

wherein Ra,Rb = H, alkyl, aralkyl ar anyl group of saturated or unsaturated, isomeric or non-isomeric, straight or branched chain or cyclic form, having 1 to 25 carbon atoms, and n = 1 or any numerical number, with a preferred number of up to 200. Ra and Rb in monomer unit 2, 3, 4 and so on may be the same or the different groups from that in monomer unit 1. For example, Ra,Rb = H in monomer unit 1, and 30. Ra = CH₃,Rb = H in monomer unit 2 when n = 2 is a dimer called factyl glycollate, because the first monomer is glycollate unit and the second monomer is lactic acid unit. The hydrogen atomin Ra and Rb may be substituted by a halogen atom or a radical such as a lower alkyl, aralkyl, aryl or alkoxy of saturated or unsaturated, isomeric or non-isomeric, straight or branched chain or cyclic form, having 1 to 9 carbon atoms. The dimer and polymer of a hydroxycarboxylic acid may be present as a free acid, ester or salt form with organic base or norganic alkali.

The typical alkyl, araikyl and aryl groups for Ra and Rb include methyl, ethyl, propyl, isopropyl, butyl, benzyl and phenyl. Representative acyclic esters of hydroxycarboxylic acids which may be useful for cosmetic conditions and dermatologic disorders are listed below:

- 1. Glycolyl glycollate (Glycolic acid glycollate)
- . Ra.Rb = H in units 1 & 2, n = 2
 - 2. Lactyl lactate (Lactic acid lactate)
 - Ra = CH2.Rb = H in units 1&2, n = 2
 - 3. Mandelyl mandellate
 - Ra = CeHs. Rb = H in units 1 & 2, n = 2
- . 4. Atrolactyl atrolactate
 - Ra = CeHs, Rb = CHs in units 1 & 2, n = 2
 - 5. Phenyllactyl phenyllactate
 - Ra = C. H. CH2, Rb = H, in units 1 & 2, n = 2
 - 6. Benzilyl benzillate
- 50 Ra,Rb = C6H5 in units 1 & 2, n = 2
 - 7. Glycolyl lactate
 - Ra = CH2 in unit 1 ...Ra = H in unit 2, Rb = H in units 1 & 2, n = 2
 - 8. Lactyl glycollate
 - Ra=H in unit 1, Ra=CH2 in unit.2, Rb.=H in unitsit &"2, n=2 ,
- 55 9. Glycolyi glycolyi glycollate
 - Ra.Rb = H in units 1, 2 & 3, n = 3
 - 10. Lactyl lactyl lactate
 - Ra = CH₂, Rb = H in units 1, 2 & 3, n = 3

11. Lactyl glycolyr lactate
Ra = CH₂ in units 1 & 3, Ra = H in unit 2, Ra = H in units 1, 2 & 3, n = 3

12. Glycolyl glycolyl glycolyl glycollate. Ra.Rb = H in units 1, 2, 3 & 4, n = 4

13. Lactyl factyl factyl factate

Ra = CH₁, Rb = H in units 1, 2, 3 2 4, n = 4

14. Glycolyl factyl glycolyl factyl glycollate

Ra = H in units 1, 3 & 5, Ra = CH₁ in units 2 & 4, Rb = H in units 1, 2, 3, 4 & 5, n = 5

15. Polyalycolic acid and polylactic acid

(b) Cyclic ester. The cyclic ester of a hydroxycarboxylic acid may alru be a dimer or polymer, the most common type however, is a dimer form. The cyclic dimer may be formed from an identical monomer or different monomers. For example, glycolide is formed from two molecules of glycolic acid by removing two molecules of water, and lacticle is formed from two molecules of lactic acid in the same manner. The cyclic ester of dimeric and polymeric hydroxycarboxylic acids may be shown by the following chemical structure: [-O-C(Ra)(Rb)-Co-]n

wherein Ra,Rb = H, alkyl, aralkyl or aryl group of saturated or unsaturated, isomeno or non-isomeno, straight or branched chain or cyclic form, having 1 to 25 carbon atoms, and n = 1 or any numerical number, however with a preferred number of 2. Ra and Rb in units 1, 2, 3 and so on may be the same or the different groups. For example, in glycolide Ra and Rb are H in both units 1, & 2, but in lactoglycolide Ra is H in unit 1, CH₃ in unit 2 and Rb is H in both units 1, & 2. The hydrogen atom in Ra and Rb may be substituted by a halogen atom or a radical such as a lower alkyl, aralkyl, aryl or alkoxy of saturated or unsaturated, isomeric or non-isomeno, straight or branched chain or cyclic form, having 1 to 9 carbon atoms.

The typical alkyl, aralkyl and anyl groups for Ra and Rb include methyl, ethyl, propyl, isopropyl, butyl, benzyl and phenyl. Representative cyclic esters of hydroxycarboxylic acids which may be useful for cosmetic conditions and dermatologic disorders are listed below:

1. Glycolide

Ra.Rb = H, n = 2 2, Lactide

Ra = CH₃, Rb = H in units 1 & 2, n = 2

3. Mandelide

_ Ra = C₆H₅ ; Rb = H intunits 1-8-2; n = 2 -

4. Atrolactide

 $Ra = C_6H_5$, $Rb = CH_3$ in units 1 & 2, n = 2

5. Phenyllactide

 $Ra = C_6H_5$ CH₂, Rb = H in units 1 & 2, n = 2 6. Benzilide

Ra.Rb = CeHs in units 1 & 2, n = 2

7. Methyllactide

Ra,Rb = CH₃ in units 1 & 2, n = 2

8. Lactoglycolide

Ra = H in unit 1, Ra = CH2 in unit 2

40 - Rb = H-in-units.1- &: 2. n.= 2.

9. Glycolactide

Ra=CH2 in unit 1, Ra=H in unit 2

Rb = H in units 1 & 2, n = 2

(c) Miscellaneous dimer and polymer. This group includes all the dimeric and polymeric forms of hydroxycarboxylic acids, which can not be represented by any one of the above two generic structures, such as those formed from tropic acid, trethocanic acid and aleuritic acid. When a hydroxycarboxylic acid has more than one hydroxy or carboxy group in the molecule a complex polymer may be formed. Such complex polymer may consist of acyclic as well as cyclic structures.

The following hydroxycarboxylic acids have more than one hydroxy groups: glycenc acid, gluconic acid and gluconolactone, galactonic acid and galactonolactone, glucuronic acid and glucuronolactone, ribonic acid and ribonolactone, galacturonic acid and galacturonolactone, ascorbic acid, gulonic acid and gulonolactone, glucoheptonic acid and glucoheptonolactone. These polyhydroxycarboxylic acids can form complex polymers with themselves or with other simple monohydroxymonocarboxylic acids.

The following hydroxycarboxylic acids have more than one carboxyl-groups: malic acid, citric acid, citramalic acid, tartronic acid, agaricic acid and isocitric acid. These monohydroxypolycarboxylic acids can also form complex polymers with themselves or with other simple hydroxycarboxylic acids.

The following hydroxycarboxylic acids have more than one hydroxy and more than one carboxyl groups: tartaric acid, mucic acid and saccharic acid. These polyhydroxypolycarboxylic acids can form even

more complex polymers with themselves or with other hydroxycarboxylic acids.

ill. Combination Compositions

Any cosmetic and pharmacoutical agents may be incorporated into amphoteric or pseudoampnotenc compositions, or into compositions containing dimeric or polymeric forms of hydroxyacids with or without amphoteric or pseudoampnoteric systems to enhance therapeutic effects of those cosmetic and pharmaceutical agents to improve cosmetic conditions or to alleviate the symptoms of dermatologic disorder. Cosmetic and pharmaceutical agents include those that improve or eradicate age spots, keratoses and wrinkles; analgestics; anstitutics; anticone agents; antipacterials; antitypacts agents; antifungal agents; antivirial agents; anticonadition sickness agents; antiinflammatory agents; antityperkeratolytic agents; anticyskin agents; antiperspirants; antiposoriatic agents; antiseporrhoic agents; hair conditioners and hair treatment agents; antiaging and antiwrinskie agents; antiasthmatic agents and bronchodilators; sunscreen agents; antihistamine agents; skin lightering agents; depigmenting agents; vitamins; corticosteroids; tanning agents; hormones; retinoids; topical cardiovascular agents and other dermatologicais.

Some examples of cosmetic and charmaceutical agents are clotrimazole, ketoconazole, miconazole, griseofulvin, hydroxyzine, dichenhydramine, pramoxine, lidocaine, procaine, mepivacaine, monobenzone, erythromycin, tetracycline, dindamycin, meclocycline, hydroquinone, minocycline, naproxen, ibuprofen, theophylline, cromolyn, albuterol, retinoic acid, 13-cis retinoic acid, hydrocortisone, hydrocortisone 21-acetate, hydrocortisone 17-valerate, hydrocortisone 17-butyrate, betamethasone valerate, betamethasone dipropionate, tnamcinolone acetonide, fluocinonide, clobetasol propionate, benzoyl peroxide, crotamitde, propranolol, promethazine, vitamin A palmitate and vitamin E acetate.

IV. Specific Compositions For Skin Disorders

25

We have discovered that topical formulations or compositions containing specific alpha-hydroxyacids or alpha-ketoacids, or related compounds are therapeutically very effective for certain skin disorders; without utilizing any amphoteric or pseudoamphoteric systems. The alpha hydroxyacids and the related compounds include 2-hydroxyethanoic acid, 2-hydroxypropanoic acid, 2-methyl 2-hydroxyethanoic acid, 2-phenyl 2-hydroxyethanoic acid, 2-phenyl 2-hydroxyethanoic acid and 2-phenyl 3-hydroxypropanoic acid. The alpha ketoacids and their esters include 2-ketopropanoic acid, methyl 2-ketopropanoate and ethyl 2-ketopropanoate. The mentioned skin disorders include warts, keratoses, age spots, acne, nail infections, wrinkles and aging related skin changes.

In general, the concentration of the alpha hydroxyacid, the alpha ketoacid or the related compound used in the composition is a full strength to an intermediate strength, therefore the dispensing and the application require special handling and procedures.

If the alpha hdyroxyacid, or the alpha ketoacid or the related compound at full strength (usually 95-100%) is a liquid form; at room temperature, such as 2-hydroxypropanoic acid. 2-ketopropanoic acid, methyl, 2-ketopropanoate and ethyl 2-ketopropanoate, the liquid compound with or without a gelling agent is directly dispensed as 0.5 to 1 ml aliquots in small vials.

If the alpha hydroxyacid, or the alpha ketoacid or the related compound at full strength is a solid form at room temperature such as 2-hydroxyethanoic acid, 2-methyl 2-hydroxypropanoic acid, 2-phenyl 2-hydroxyethanoic acid, 2-ghenyl 2-hydroxyethanoic acid, 2-ghenyl 3-hydroxypropanoic acid, the solid compound is first dissolved in a minimal amount of vehicle or vehicle system such as water, or ethanol and propylene glycol with or without a gelling agent. For example, 2-hydroxyethanoic acid 70 g is dissolved in water 30 g, and the 70% strength solution thus obtained is dispensed as 0.5 to 1 ml aliquots in small vials, if a gelling agent is used, 0.5 to 3% of for example, hydroxyethyl cellulose, methyl cellulose, hydroxypropyl cellulose or carbomer may be incorporated into the above solution.

To prepare an intermediate strength (usually 20-50%), the alpha hydroxyacid, alpha ketoacid.or. related compound either a liquid or solid form at room temperature is first dissolved in a vehicle or vehicle system such as water, acetone, ethanol, propylene glycol and butane 1,3-diol. For example, 2-hydroxyethanoic acid or 2-ketopropanoic acid 30 g is dissolved in othanol 56 g and propylene glycol 14 g, and the 30% strength solution thus obtained is dispensed as 7 to 14 ml aliquots in dropper bottles.

For topical treatment of warrs, keratoses, age spots, acre, nall infections, wrinkles or aging related skin changes, patients are advised to apply a small drop of the medication with a toothpick or a fine-caliber.

commonly available artist's camer hair trush to affected resions only and not surrounding skin. Prescribed applications have been 1 to 6 times daily for keratoses and ordinary wants of the hands, fingers, palms, and soles. For age spots, ache, hair infections, while and aging related skin changes topical applications have been 1 to 2 times daily.

Very often, frequency and duration of applications have been modified according to clinical responses and reactions of the resions and the patient or responsible family member is instructed accordingly. For example, some clinical manifestations other than pain have been used as a signal to interrupt application. These manifestations include distinct branching of the lesions or distinct peripheral erythema.

Alternatively, an office procedure may be adapted when a full strength of 2-ketopropanoic acid or 70% to 2-hydroxyethanoic acid is used for topical treatment of age spots, keratoses, acne, warts or facial wrinkles.

We have found that the above inentioned alpha hydroxyacids, alpha ketoacids and related compounds are therapeutically effective for topical treatments of warts, keratoses, age spots, acne, nail infections, wrinkles and aging related skin changes.

Preparation of the Therapeutic Compositions

:5

Amphoteric and pseudoamphoteric compositions of the instant invention may be formulated as solution, gel. lotion, cream, dintment, shampoo, spray, stick, powder or other cosmetic and pharmaceutical preparations.

To prepare an amphoteric or pseudoamphoteric composition in solution form at least one of the aforementioned amphoteric or pseudoamphoteric compounds and in combination at least one of the hydroxyacids or the related compounds are dissolved in a solution which may consist of ethanol, water, propylene glycol, acetone or other pharmaceutically acceptable vehicle. The concentration of the amphoteric or pseudoamphoteric compound may range from 0.01 to 10 M, the preferred concentration ranges from 0.1 to 3 M. The concentration of hydroxyacids or the related compounds may range from 0.02 to 12 M, the preferred concentration ranges from 0.2 to 5 M.

In the preparation of an amphoteric or pseudoamphoteric composition in lotion, cream or ointment form, at least one of the amphoteric or pseudoamphoteric compounds and one of the hydroxyacids or the related compounds are initially dissolved in a solvent such as water, ethanol and/or propylene glycol: The solution thus prepared is then mixed in a conventional manner with commonly available cream or ointment base such as hydrophilic ointment or petrolatum. The concentrations of amphoteric or pseudoamphoteric compounds and hydroxyacids used in the compositions are the same as described above.

Amphotenc and pseudoamphoteric compositions of the instant invention may also be formulated in a get form. A typical get composition of the instant invention utilizes at least one of the amphoteric or pseudoamphoteric compounds and one of the hydroxyacids or the related compounds are dissolved in a mixture of ethanol, water and propylene glycol in a volume ratio of 40:40:20, respectively. A getting agent such as methyl cellulose, ethyl cellulose, hydroxypropylenethylcellulose, carbonner or ammoniated glycyrrhizinate is then added to the mixture with agitation. The preferred: concentration of the getting agent may range from 0.1 to 4- percent by, weight of the total composition.

Since dimeric and polymeric forms of hydroxyacids are less stable in the presence of water or the like vehicle, cosmetic and pharmaceutical compositions should be prepared as anhydrous formulations. Typical vehicles suitable for such formulations include mineral oil, petrolatum, isopropyl myristate, isopropyl palmitate, diisopropyl adipate, occtyl palmitate, acetone, squalene, squalane, silicone oils, vegetable oils and the like. Therapeutic compositions containing dimeric or polymeric forms of hydroxyacids do not require any incorporation of an amphoteric or pseudoamphoteric compound. The concentration of the dimeric or polymeric form of a hydroxyacid used in the composition may range from 0.1 to 100%, the preferred concentration ranges from 1 to 40%. Therapeutic compositions may be formulated as anhydrous solution, lotion, ointment, spray, powder or the like.

To prepare a combination composition in a pharmaceutically acceptable vehicle, a cosmetic or pharmaceutical agent is incorporated into any-one of the above composition by dissolving or mixing the agent into the formulation.

The following are illustrative examples of formulations and compositions according to this invention. Although the examples utilize only selected compounds and formulations, it should be understood that the following examples are illustrative and not limited, therefore, any of the aforementioned amphoteric or pseudoamphoteric compounds, hydroxyacids, dimension polymeric forms of hydroxyacids may be substi-

tuted according to the reactings of this invention in the following examples.

EXAMPLE :

An amonoteric composition containing 1 M 2-hydroxyethanoic acid and 0.5 M t-arginine in solution form for dandruff or dry skin may be formulated as follows:

2-Hydroxyethanoic acid (glycolic acid) 7.5 g is dissolved in water 60 ml and propylene glycol 20 ml. Lin Arginine 8.7 g is added to the solution with stirring until all the crystals are dissolved. Ethanol is added to
make a total volume of the solution to 100 ml. The amphoteric composition thus formulated has pH 3.0. An
amphoteric composition formulated from 1 M 2-hydroxyethanoic acid and 1 M L-arginine has pH 6.3. The
solution has pH 1.9 if no amphoteric compound is incorporated.

EXAMPLE 2

An amphoteric composition containing 1 M 2-hydroxyethanoic acid and 0.5 M L-iysine in a cream form of for dry skin and other dermatologic and cosmetic conditions may be formulated as follows:

2-Hydroxyethandic acid 7.6 g and L-tysine 7.3 g are dissolved in 30 ml of water, and the solution thus obtained is mixed with sufficient amount of all oil-in-water emulsion to make a total volume of 100 ml. The amphoteric composition thus formulated has pH 3.3.

3

EXAMPLE 3

An amphoteric composition containing 1 M 2-hydromethanoic acid and 0.5 M 4-aminobutanoic acid in lotion form for cosmetic and dermatologic conditions may be formulated as follows:

2-Hydroxyethanoic acid. 7.6; grand 4-aminobutanoic acid. 5.2; g. are: dissolved in water. 30; ml, and the solution is mixed with 50 g of an oil-in-water emulsion. The lotion thus obtained is made up to 100 ml in volume with more oil-in-water emulsion. The amphiteric composition thus formulated has pH 3.1.

EXAMPLE 4

A pseudoamphoteric composition containing 1 M 2-hydroxyethanoic acid and 0.5 M creatinine in solution form for cosmetic conditions and dermatologic disorders may be formulated as follows.

2-Hydroxyethanoic acid-7.6 g is dissolved in water 70 ml and propylene glycol 10 ml. Creatinine 5.7 g is added to the solution with stiming until all the crystais are dissolved. More water is added to make a total volume of the solution to 100 ml. The pseudoamphoteno composition thus formulated has pH 3.2. The composition has pH 4.0 when 1 M instead of 0.5 M creatinine is incorporated into the formulation.

EXAMPLE 5

An amphoteric composition containing 1 M 2-hydroxyethanoic acid and 0.5 M L-histidine in a cream form for dermatologic and cosmetic conditions may be formulated as follows.

2-Hydroxyethanoic acid 7.6 g and L-histidine 7.8 g are dissolved in 25 ml of water, and the solution thus obtained is mixed with sufficient amount of an oil-in-water emulsion to make a total volume of 100 ml. The amonotonic composition thus formulated has pH 3.2.

EXAMPLE 6

An amphateric composition containing 0.5 M 2-hydroxyethanoic acid and 0.5 M dipeptide of 3-Ala-L-His for cosmetic and dermatologic conditions may be formulated us follows.

2-Hydroxyethanoic acid 3.3 g and Licamosine (3-alany)-Linistidine) 11.3 g are dissolved in water 40 intended propylene glycol 20 mi. After all the crystals have been dissolved sufficient amount of ethanoi is added to make a total volume of the solution to 100 mi. The amonoteric composition thus formulated has pH 4.5.

EXAMPLE 7

:0

20

30

An amphoteric composition containing 0.5 M 2-hydroxyethanoic acid and 0.5 M cycloleucine for cosmetic and dermatologic conditions may be formulated as follows:

2-Hydroxyethanoic acid 3.8 g and t-aminocyclopentane-t-carboxylic acid (cycloleucine) 5.5 g are dissolved in water 40 ml and procylene glycol 20 ml. After all the crystals have been dissolved sufficient amount of ethanol is acided to make a total volume of the solution to 100 ml. The amphoteric composition thus formulated has pH 3.2.

EXAMPLE 3

A pseudoamphoteric composition containing 0.5 M 2-hydroxyethanoic acid and 0.25 M 1,12-diaminododecane for cosmetic and dermatologic conditions may be formulated as follows.

2-Hydroxyethanoic acid 3.8 g and 1.12-diaminododecane 5 g are dissolved in water 40 ml and propylene glycol 20 ml. After all the crystals have been dissolved sufficient amount of ethanol is added to make a total volume of the solution to 100 ml. The pseudoamphoteric composition thus formulated has pH 4.2.

EXAMPLE 9

An amphoteric composition containing 0.5 M 2-hydroxyethanoic acid and 5% protemine for cosmetic and dermatologic conditions may be formulated as follows.

2-Hydroxyethanoic acid 3.8 g and protamine 5 g, isolated and purified from salmon sperm are dissolved in water 25 ml. The solution thus obtained is mixed with sufficient amount of an oil-in-water emulsion to make a total volume of 100 ml. The amphoteric composition thus formulated has pH 3.2.

EXAMPLE 10

An amphoteric composition containing 1 M 2-hydroxypropanoic acid and 0.5 M L-arginine in solution form for dandruff or dry skin may be formulated as follows.

2-Hydroxypropanoic acid (DL-lactic acid) USP grade 9.0 g is dissolved in water 60 ml and propylene glycol 20 ml. L-Arginine 8.7 g is added to the solution with stirring until all the crystals are dissolved. Ethanol is added to make a total volume of the solution to 100 ml. The amphoteric composition thus formulated has pH 3.1. An amphotenic composition formulated from 1 M 2-hydroxypropanoic acid and 1 M L-arginine has pH 6.9. The solution has pH 1.9 if no amphoteric compound is incorporated.

EXAMPLE 11

An amphoteric composition containing 1M 2-hydroxypropandic-acid and 0.5 M L-lysine in a creani form for dry skin and other dermatologic and cosmetic conditions may be formulated as follows.

2-Hydroxypropanoic acid 9.0 g and L-lysine 7.3 g are dissolved in 30 ml of water, and the solution thus obtained is mixed with sufficient amount of an oil-in-water emulsion to make a total volume of 100 ml. The

amphoteric composition thus formulated has pH 3.6. An amphoteric composition formulated from 1 M 2-hydroxypropanoic acid and 1 M Lifysine has pH 8.4

EXAMPLE 12

An amphetoric composition containing 1 M 2-hydroxypropanoic acid and 0.5 M 4-aminebutanoic acid in lotion form for cosmetic and dermatologic conditions may be iormulated as follows:

2-Hydroxypropanoic acid 9.0 g and 4-aminobutanoic acid 5.2 g are dissolved in water 30 ml, and the solution is mixed with 50 g of an oil-in-water emulsion. The lotion thus obtained is made up to 100 ml in volume with more oil-in-water emulsion. The amphoteric composition thus formulated has pH 3.0

EXAMPLE 13

:5

25

25

A desudoamphoteric composition containing 1 M 2-hydroxypropanoic acid and 0.5 M creatinine in solution form for cosmetic conditions and dermatologic disorders may be formulated as follows:

-2-Hydroxypropanoic acid 9.0 g is dissolved in water 70 ml and propylene glycol 10 ml. Creatinine 5.7 g is added to the solution with stirring until all the crystals are dissolved. More water is added to make a total volume of the solution to 100 ml. The pseudoamphoteric composition thus formulated has pH 3.3. The composition has pH 4.4 when 1 M instead of 0.5 M creatinine is incorporated into the formulation.

EXAMPLE 14

An amphoteric composition containing 1 M 2-hydroxypropanoic acid and 1 M L-histidine in a cream so, form for dermatologic and cosmetic conditions may be formulated as follows:

2-Hydroxypropanoic acid 9.0 g and L-histidine 15.5 g are dissolved in 35 ml of water, and the solution thus obtained is mixed with sufficient amount of an cil-in-water emulsion to make a total volume of 100 ml. The amphotenic composition thus formulated as pH 4.9.

EXAMPLE 15

An amphoteric composition containing 1 M 2-hydroxypropanoic acid and 1 M dipeptide of Gly-Gly for 40 cosmetic and dermatologic conditions may be formulated as follows:

2-Hydroxypropanoic acid-9.0; g: and glycylglycine: 13.2 g:are-dissolved-in-water-40"ml-and-propylene-glycol 20 ml. After all the crystals have been dissolved sufficient amount of ethanol is added to make a total volume of the solution to 100 ml. The amphoteric composition thus formulated has pH 3.0.

EXAMPLE 16

An amphoteric composition containing 1 M 2-methyl-2-hydroxypropanoic acid and 0.5 M L-arginine in solution formular dandruff or dry skin may be formulated as follows.

2-Methyl-2-hydroxypropanoic acid (methyllactic acid) 10.4 g is dissolved in water 60 ml and propylene glycol*20 ml. L-Arginine 8.7 g. is, added to the solution with stirring until all the crystals are dissolved. Ethanol is added to make a total volume of the solution to 100 ml. The amphoteric composition thus formulated has pH-3.3. An amphoteric composition formulated from 1 M 2-methyl-2-hydroxypropanoic acid and 1 M L-arginine has pH 6.5. The solution has pH 1.9 if no amphoteric compound is incorporated.

EXAMPLE 17

An amonotonic composition containing 1 M 2-methyl-2-hydroxydrodanoic acid and 0.5 M 4-aminobutanoic acid in a cream form for dry skin and other dermatologic and coumetic conditions may be formulated as follows:

2-Methyl-2-hydroxydrodandic acid 10.4 g and 4-aminobutandic acid 5.2 g are dissolved in 30 ml of water and the solution thus obtained is mixed with sufficient amount of an oil-in-water emulsion to make a total volume of 100 ml. The amonoteric composition thus formulated has pH 3.2.

EXAMPLE 18

An amonoteric composition containing 1 M 2-methyl-2-hydroxypropancic acid and 1 M dipeptide of Glyis. Giy in fotion form for cosmetic and dermatologic conditions may be formulated as follows.

2-Methyl-2-hydroxypropandic acid 10.4 g and glycylglycine 13.2 g are dissolved in water 30 mt, and the solution is mixed with 50 g of an oil-in-water emulsion. The otion thus obtained is made up to 100 mt in volume with more cil-in-water emulsion. The amphoteric composition thus formulated has pH 3.0.

EXAMPLE 19

20

15

55.

A pseudoamphoteric composition containing 1 M 2-methyl-2-hydroxypropanoic acid and 0.5 M creati-25 nine in solution form for cosmetic conditions, and dermatologic disorders may be formulated as follows...

2-Methyi-2-hydroxypropanoic acid 10.4 g is dissolved in water 70 ml and propylene glycol 10 ml. Creatinine 5.7 g is added to the solution with stirring until all the crystals are dissolved. More water is added to make a total volume of the solution to 100 ml. The pseudoamphotenic composition thus formulated has pH 3.4. The composition has pH 4.4 when 1 M instead of 0.5 M creatinine is incorporated into the formulation.

EXAMPLE 20

An amphoteric composition containing 0.5 M 2-phenyl-2-hydroxyethanoic acid and 0.5 M L-histidine in a cream form for dermatologic and cosmetic conditions may be formulated as follows.

2-Phenyl 2-hydroxyethanoic acid (mandelic acid) 7.6 g and L-histidine 7.8 g are dissolved in 25 ml of water, and the solution thus obtained is mixed with sufficient amount of an oil-in-water emulsion to make a total volume of 100 ml. The amphoteric composition thus formulated has pH 5.0. The composition has pH 2.2 if no amphotenoicompound is incorporated....

EXAMPLE 21 .

An ampheteric composition containing 0.5 M 2-phenyl-2-hydroxyethanoic acid and 0.5 M L-lysine for cosmetic and dermatologic conditions may be formulated as follows:

2-Phenyl 2-hydroxyethanoic acid 7.6 g and L-lysine 7.3 g are dissolved in 25 ml of water. The solution so thus obtained is mixed with an oil-in-water emulsion to make a total volume of 100 ml. The amphoteric composition thus formulated for pH 4.6:

EXAMPLE.22

A pseudoamphotoric composition containing 0.5 M 2-phenyl 2-hydroxyethanoic acid and 0.5 M creatinine for cosmetic and dermatologic conditions may be formulated as follows.

2-Phenyl 2-hydroxyethanoic acid 7.6 g and creatinine 5.7 g are dissolved in 30 ml of water, and the solution thus obtained is mixed with sufficient amount of an oil-in-water emulsion to make a total volume of 100 ml. The ampnoteric composition thus formulated has p.f. 4.6.

EXAMPLE 23

An amphoteric composition containing 0.5 M 2-phenyl 2-hydroxyethanoic acid and 0.5 M L-citrulline for cosmetic and dermatologic conditions may be formulated as follows:

2-Phenyl 2-hydroxyethanoic acid 7.5 g and C-citrulline 8.8 g are dissolved in water 30 ml, and the solution is mixed with 50 g of an oil-in-water emulsion. The lotion thus obtained is made up to 100 ml in volume with more oil-in-water emulsion. The amphotoric composition thus formulated has pH 3.0.

EXAMPLE 24

An amphoteric composition containing 1 M citric acid and 1 M L-arginine for cosmetic conditions and 20 dermatologic disorders may be formulated as follows:

Citric acid 19.2 g is dissolved in water 50 ml and propylene glycol 10 ml. L-Arginine 17.4 g is added to the solution with stirring until all the crystals are dissolved. More water is added to make a total volume of the solution to 100 ml. The amphoteric composition thus formulated has pH 3.0. The composition has pH 1.8 if no amphoteric compound is incorporated.

EXAMPLE 25

25

30 A pseudoamphoteric composition containing 1 M citric acid and 1 M creatinine for dermatologic and cosmetic conditions may be formulated as follows:

Citric acid 19.2 g and creatinine 11.3 g are dissolved in 40 ml of water, and the solution thus obtained is mixed with sufficient amount of an oil-in-water emulsion to make a total volume of 100 ml. The amphotenc composition thus formulated has pH 3.7.

EXAMPLE 26

40 An amphoteric composition containing 1 M malic acid and 1 M L-arginine for cosmetic and dermatologic conditions may be formulated as follows.

2-Hydroxybutanedioic, acid. (DL-malic, acid) 13.4 g.and L-arginine, 17.4 grare dissolved in water 40 ml and propylene glycol 20 ml. After all the crystals have been dissolved sufficient amount of water is added to make a total volume of the solution to 100 ml. The amphoteric composition thus formulated has pH 3.3. The composition has pH 1.8 if no amphoteric compound is incorporated.

EXAMPLE 27

A pseudoamphoteric composition containing 1 M malic acid and 0.5 M creatinine for cosmetic and dermatologic conditions may be formulated as follows.

DL-Malic acid. 13.4 g and creatinine 5.7 g are dissolved in water 40 mt and propylene/glycol 20 mt.

After all the crystals have been dissolved sufficient amount of water is added to make a total volume of the solution to 100 mt. The pseudoamphoteric composition thus formulated has pH 3.0. The composition has pH 3.8 when 1 M instead of 0.5 M creatinine is incorporated into the formulation.

EXAMPLE 28

An ampheteric composition containing 1 M tartaric acid and 1 M Liarginine for cosmetic and dermatologic subordions may be formulated as follows:

2.3-0 or droxyoutanedroid adid -OU-tanarid acid) 15.3 g and C-arginine 17.4 g are dissolved in water 40 ms and propyrenal grycol 20 ms. After all the drystals have been dissolved sufficient amount of water is added to make a total volume of the solution to 100 ms. The amonoteric composition thus formulated has pril 3.0. The composition has pil 3.7 fine amonoteric compound is incorporated.

EXAMPLE 29

A pseudoamphoteric composition containing 1 M tananc acid and 1 M creatinine for cosmetic and permatologic conditions may be formulated as follows:

DL-Tarraric acid 15:0 g and preatinine 11:3 g are dissolved in 35 ml of water. The solution thus obtained is mixed with sufficient amount of an pil-in-water emulsion to make a total volume of 100 ml. The oseudoamonoteric composition thus formulated has pH 3:4.

EXAMPLE 30

20

25

45

55

An amphoteric composition containing 1 M glucondiactore and 0.5°M L'arginine for cosmetic and dermatologic conditions may be formulated as follows:

Gluconotactone 17.3 g and L-arginine 8.7 g are dissolved in water 50 ml and propylene glycol 10 ml. After all the crystals have been dissolved sufficient water is added to make a total volume of the solution to 100 ml. The amphoteric composition thus formulated has pH 3.1. The composition has pH 5.9 when 1 M at a instead of 0.5 M L-arginine is incorporated into, the formulation. If no amphoteric compound is incorporated in the pH of the composition is 1.8.

EXAMPLE 31

An amphoteric composition containing t M gluconolactore and 0.5 M 4-aminobutanoic acid for

cosmetic and dermatologic conditions may be formulated as follows.

Siluconolactone 17.8 g and 4-aminobutanoic acid 5.2 g are dissolved in water 60 ml and propylene glycci 10 ml. After all the crystals are been dissolved sufficient water is added to make a total volume of the solution to:100.ml. The amphoteric composition thus formulated has pH 3.2.

EXAMPLE 32

An amproteric composition containing 1 M gluconolactone and 1 M dipeptide of Gly-Gly for cosmetic and dermatologic conditions may be formulated as follows.

Glucondiactione 17.8 g and glycylglycine 13.2 g are dissolved in water 50 ml and propylene glycol 5 ml. 50 More water is added to make a total volume of the solution to 100 ml. The amphotoric composition thus formulated has pH 3.1

EXAMPLE 33

A diseudoamphoteric composition containing t M glucondiatione and 0.5 M creatinine for cosmetic conditions and dermatologic disorders may be formulated as follows.

Gluconclattone 17.8 g and creatinine 5.7 g are prisolved in water 60 ml and probylene glycol 10 ml. More water is added to make a total volume of the solution to 100 ml. The pseudoamphoteno composition thus formulated has pH 3.2. The composition has pH 4.8 when 1 M instead of 0.5 M preatinine is incorporated into the formulation.

EXAMPLE 34

A desudoamphoteric composition containing 1 M-byruvic acid and 1 M creatinine for dermatologic and cosmetic conditions may be formulated as follows:

2-Ketopropandic acid (pyruvic acid) 8.8 g and preatinine 11.3 g are dissolved in water 25 ml. The solution thus obtained is mixed with sufficient amount of an oil-in-water emulsion to make a total volume of 100 ml. The amonoteric composition thus formulated has pH 3.4.

EXAMPLE 35

An amphoteric composition containing 0.5 M benzilic acid and 0.5 M Lilysine for cosmetic and dermatologic conditions may be formulated as follows:

2.2-Diphenyl 2-hydroxyethanoic acid (beñzilic acid) 11.4 g and L-lysine 7.3 g are dissolved in water 40 mt and propylene glycol 20 mt. After all the crystals have been dissolved sufficient amount of ethanol is added to make a total volume of the solution to 100 mt. The amphoteric composition thus formulated has pH 4.9. The composition has pH 2.7 if no amphoteric compound is incorporated.

EXAMPLE 36

30 .

40

An amphoteric composition containing 0.5 M benzilic acid and 0.5 M E-histidine for cosmetic and dermatologic conditions may be formulated as follows:

Benzilic acid 11.4 g and L-histidine 7.8 g are dissolved in water 40 ml and propylene glycol 20 ml. Ethyl cellulose 2 g is added with stirring, and sufficient amount of ethanol is added to make a total volume of the gel to 100 ml. The amphoteric gel composition thus formulated has pH 5.0.

EXAMPLE 37

At oseudoamphoteric composition containing 0.5 M benzilic facid, and 0.5 M creatinine for cosmetic and setermatologic conditions may be formulated as follows:

Benzilic acid 11.4 g and creatinine 5.7 g are dissolved in water 40 ml and propylene glycol 20 ml. Sufficient amount of ethanol is added to make a total volume of the solution to 100 ml. The amphotenc composition thus formulated has pH 4.9.

EXAMPLE 38

A pseudoamphotene composition containing in combination 0.5 M 2-hydroxyethanoic acid and 0.05 % petamethasone dipropionate, in a cream form for dermatologic disorders may be formulated, as follows.

2-Hydroxyethanoic acid.3.8 g and creatimine 5.7 g are dissolved in 25 ml of water, and the solution thus, obtained is mixed with 50 g of an oil-in-water emulsion. Betamethasone dipropionate 1 % in ethanol solution 5 ml is added to the above mixture. More oil-in-water emulsion is added to make a total volume of 100 ml. The pseudoamphoteric composition thus formulated has pH 4.2.

EXAMPLE 19

A desuddamenetaric composition containing in combination 0.5 M 2-hydroxivethanoic acid and 0.05% dicoetaset propionate in a cream form for definatologic disorders may be formulated as follows:

2-riverexivetnancie acid 3.8 g and preatinine 5.7 g are dissolved in 25 millof woter, and the solution thus obtained is mixed with 50 g of an oith-n-water emulsion. Clodetasol propionate 1 % in acetone solution 5 mills added to the above mixture. More bit-in-water emulsion is added to make a total volume of 100 mill. The ose-udoamonoteric composition thus formulated has pH 4.2.

EXAMPLE 40

A pseudoamphoteric composition containing in compination 0.5 M 2-hydroxyethanoic acid and 0.1% triampingione acetonide in a cream form for dermatologic disorders may be formulated as follows:

2-Hydroxyelnancic acid 3.8 g and creatinine 5.7 g are dissolved in 25 ml of water, and the solution thus obtained is mixed with 50 g of an oil-in-water emulsion. Friamcinolone acetonide 2% solution of acetoneethanol 50:50), 5 ml s added to the above mixture. More oil-in-water emulsion is added to make a control of 100 ml. The oseudoamphoteric composition mus formulated has pH 4.2.

EXAMPLE 41

A disaudoameneteric composition containing in combination -0.5-M-2-hydroxyethanoic acid and 0.21% 54 fluorouracil in a cream form for dermatologic disorders may be formulated as follows:

2-Hydroxyethanoic acid 3.8 g and creatinine 5.7 g are dissolved in 20 ml of water, and the solution thus obtained is mixed with 50 g of an oil-in-water emuision. 5-Fluorouracil 2% solution of propylene glycot: water (95:5), 10 ml is added to the above mixture. More oil-in-water emuision is added to make a total volume of 100 ml. The oseudoamphoteric composition thus formulated has pH 4.1.

EXAMPLE 42

25

45

55-

A diseudcamphoteric composition containing in combination 0.5 M 2-hydroxypropanoic acid and 0.05 % detailed hasone diorepicnate in a cream form for dermatologic disorders may be formulated as follows:

2-Hydroxycropandic acid 4.5 g and creatinine 5.7 g are dissolved in 25 mi of water, and the solution thus obtained is mixed with 50 g of a diffin-water emulsion. Betamethasone dipropionate 1% in ethanol solution 5 mi is added to the above mixture. More diffin-water emulsion is added to make a total volume of 100 mi; The besucoamphoteric composition; thus, formulated has pH-4;1?

EXAMPLE 43

A pseudoamonoteric composition containing in combination 0.5 M hydroxypropanoic acid and 0.05 % cipetasol propionate in a cream form for dermatologic disorders may be formulated as follows.

2-Hydroxypropandic acid 4.5 g and creatinine 5.7 g are dissolved in 25 ml of water, and the solution thus obtained is mixed with 50 g of an oil-in-water emulsion. Clobetasoi propionate 1% in acetone solution 5 ml is added to the above mixture. More oil-in-water emulsion is added to make a idial volume of 100 ml. The pseudoamphoteric composition thus formulated has pH 4.1.

EXAMPLE 44

A pseudoamphoteric composition containing in combination 0.5 M 2-hydroxypropanoic acid and 0.1 % triamcinoidne acetonide in a cream form for dermatologic disorders may be formulated as follows.

2-H) droxypropanoic acid 4.5 g and preatinine 5.7 g are dissolved in 25 ml of water, and the solution thus obtained is mixed with 50 g of an oil-in-water emulsion. Triamcinolone acetonide 2% solution of acetone-ethanol (50:50), 5 ml is added to the above mixture. More oil-in-water emulsion is added to make a total volume of 100 ml. The pseudosmphoteric composition thus formulated has pH 4.1.

EKAMPLE 45

A diseudoamonoteric composition containing in combination 0.5 M 2-hydroxyproponoic acid and 0.2 % 5-fluorouracil in a cream form for dermatologic disorders may be formulated as follows.

2-Hydroxypropandic acid 4.5 g and preatinine 5.7 g are dissolved in 20 mil of water, and the solution in thus obtained is mixed with 50 g of an bil-in-water emulsion. 5-Fluorouracil 2% solution of propylene glycollwater (95:5), 10 mil is added to the above mixture. More oil-in-water emulsion is added to make a total volume of 100 mil. The pseudoamonoteric composition thus formulated has pH 4.1.

EXAMPLE 46

20

30

40

50

A pseudoamphoteric composition containing in combination 0.5 M 2-hydroxyetitanoic acid and 2% clotrimazole in a cream form for athiete's foot and other fungal infections may be formulated as follows.

2-Hÿdroxyethanoic acid 3/8/g, "ciotimazole-2-grand-creatinine 5,7/g are dissolved in water 20 ml and propylene glycol 5 ml, and the sciution thus obtained is mixed with enough amount of an oil-in-water emulsion to make a total volume of 100 ml. The pseudoamphoteric composition thus formulated has pH 4.2.

EXAMPLE.47

A pseudoamphoteric composition containing in combination 0.5 M 2-hydroxyethanoic acid and 2% erythromycin in solution form for acid may be formulated as follows:

2-Hydroxyethanoic acid 3.8 g, enythromycin 2 g and creatinine 5.7 g are dissolved in water 25 ml, ethanol 40 ml and propylene glycol 15 ml. More water is then added to make a total volume of 100 ml. The oseudoamphoteno composition thus formulated has pil 4.2.

EXAMPLE 48

A pseudoamphoteric composition containing in combination 0.5 M 2-hydroxyethanoic acid and 1 % <etoconazole in a cream form for fungal infections may be formulated as follows.</p>

2-Hydroxyethanoic acid 3.8 g, ketoconazole 1 g and creatinine 5.7 g are dissolved in 25 ml of water, and the solution thus obtained is mixed with enough amount of an oil-in-water emulsion to make a total volume of 100 ml. The pseudoamphoteric composition thus formulated has pH 4.2.

EXAMPLE 49

A pseudoamphotoric composition containing in combination 0.5 M 2-hydroxypropanoic acid and 2% clotrimazole in a cream form for fungal infections may be formulated as follows:

2-Hydroxypropanoic acid 3.8 g, clotrimazole 2 g and creatinine 5.7 g are dissolved in 25 ml of water, and the solution thus obtained is mixed with enough amount of an oil-in-water emulsion to make a total volume of 100 ml. The pseudoamphoteric composition thus formulated has pH 4.1.

EXAMPLE 50

A pseudoamphoterin composition containing in combination 0.5 M 2-hydroxyethatioid acid and 2% setracycline in a get form for dermatologic disorders may be formulated as follows:

2-Hydroxyethanoic acid 3.8 g. tetracycline 2 g. preatinine 5.7 g. kantham gum 0.2 g. carbomer-941 1 g. propyrene glycol 5 ml, ethanoi 20 ml and enough amount of water are homogenized to make a total volume of 160 ml. The pseudoamphoteric composition thus formulated for ache and oily skin has pH 4.2.

EXAMPLE 51

An amphoteric composition containing 0.2 M aleuritic acid and 0.1 M L-lysine in a solution form for cosmetic and dermatologic conditions may be formulated as follows:

Aleuritic acid 6.1 g and L-lysine 1.5 g are dissolved in sufficient amount of a solution from ethanol propylene grycol 80:20 to make a total volume of 100 ml. The amphoteric composition thus formulated has bH 6.4.

EXAMPLE 52

20

30.

A hypical-composition-containing_a_dimerio form of alpha hydroxyacid,in solution-for-ache,-dandruff,-and----25 as a skin cleanser may be formulated as follows:

Glycolide powder 1.0 g is dissolved in ethanol 89 ml and propylene glycol 10 ml. The composition thus formulated has pH 4.0, and contains 1% active ingredient.

EXAMPLE.53

A typical composition containing a dimeric form of alona hdyroxyacid in cintment for dry skin, psoriasis, eczema, pruritus, wrinkles and other skin changes associated with aging may be formulated as follows.

Glycolide powder 2.0 g is mixed uniformly with petrolatum 66 g and mineral oil 32 g. The composition thus formulated contains 2% active ingredient.

EXAMPLE 54

A typical composition containing a full strength or a high concentration of an alpha hydroxyacid, alpha ketoacid or closely related compound for topical treatments of warts, keratoses, ache, age spots, nail infections, wrinkles and aging related skin changes may be prepared as follows.

If the alpha hydroxyacid, alpha ketoacid or closely related compound at full strength is a liquid form at room temperature such as 2-hydroxycropanoic acid, 2-ketopropanoic acid, methyl 2-ketopropanoate and ethyl 2-ketopropanoate, the compound is directly dispensed as 0.5 to 1 ml aliquots in small vials. If the compound is a solid form at room temperature such as 2-hydroxyethanoic acid and 2-methyl 2-hydroxypropanoic acid, it is first dissolved in minimal amount of an appropriate solvent or solvent system such as water or ethanol and propylene glycol with or without a gelling agent. For example, 2-hydroxyethanoic acid 70 g is dissolved in water 30 ml, and the 70% strength 2-hydroxyethanoic acid thus obtained is dispensed as 0.5±0.1 ml aliquots.in small vials. If a gelling agent is used..methyl-cellulose or hydroxyethyl cellulose 1, g may be added to the above solution.

EXAMPLE 55

A typical composition containing an intermediate cheright of an alpha hydroxyacid, alpha kotoacid or closely related compound for topical treatment of warts, keratoses, acree, half infections, age spots, wrinkles and alphg related skin changes may be prepared as follows.

2-Hydroxyethanoic acid or 2-ketopropanoic acid 40 g is dissovled in ethanol 54 g and probylene glycul 6 g, and the 40% strength solution thus obtained is dispensed as 5 to 10 ml aliquots in dropper bottles.

TEST RESULTS

In order to determine whether amphoteric and oseudoamphoteric compositions of the instant invention were therapeutically effective for various cosmetic conditions and dermatologic disorders, a total of more than 90 volunteers and catients participated in these studies. Some participating subjects were given two preparations; an amphoteric or pseudoamphoteric composition containing an alpha hydroxyacid or the related compound, and a vehicle piacebo. Others were given multiple preparations containing a known obarmaceutical agent such as a confocteroid with or without incorporation of an amphoteric or pseudoamphoteric composition consisting of an alpha hydroxyacid or the related compound of the instant invention. The amonoteric and oseudoamphoteric compositions were formulated according to the Examples described in the previous section.

li)

1. Common dry skin.

20

Human subjects having ordinary dry skin or with moderate degrees of dry skin as evidenced by dryness; flaking and cracking of the skin-were-instructed to apply topically the flotion or containing an alpha hydroxyacid or the related compound in amphoteric or pseudoamphoteric composition, on the affected area of the skin. Topical application, two to three times daily, was continued for two to four weeks.

In all the 28 subjects tested, the feeling of the skin dryness disappeared within a week of topical application. The rough and cracked skin became less pronounced and the skin appeared normal and felt smooth after several days of topical treatment. The alpha hydroxyacids and the related compounds which have been found to be therapeutically effective when incorporated into the amphoteric or pseudoamphoteric compositions for dry skin are as follows:

2-hydroxyethanoic acid (glycolic acid), 2-hydroxypropanoic acid (lactic acid), 2-methyl-2- hydroxypropanoic acid (methyllactic acid), phenyl 2-hydroxyethanoic acid (mandelic acid), phenyl 2-hydroxyethanoic acid (atrolactic acid), 3-phenyl-2-hydroxypropanoic acid (phenyllactic acid), diphenyl 2-hydroxyethanoic acid (benzilic acid), gluconolactone, tartaric acid, citric acid, saccharic acid, malic acid, tropic acid, gluconolactone, acid, 3-hydroxybutanoic acid, quinic acid, ribonolactone, glucuronolactone, galacturonic acid, methyl pyruvate, ethyl pyruvate, phenylpyruvic acid, benzoylformic acid and methyl benzoylformate.

The ordinary dry, skin conditions; once restored to normal appearing skin, remained improved for some time until causes of dry skin, such as low humidity, cold weather, excessive contact pressure, detergents, soaps, solvents, chemicals, etc., again coursed recurrence of the dry skin condition. On continued use it was also found that twice daily topical application of an amphoteric or pseudoamphoteric composition containing an alpha hydroxyacid or the related compound of the instant invention prevented the development of new dry skin lesions.

2. Severe dry skin.

In severe dry skin, the skin tesions are different from the ordinary dry skin. A main cause of severe dry skin is inherited genetic defects of the skin. The involved skin is hyperplastic, fissured and has thick adherent scales. The degree of thickening is such that lesions are palpably and visually elevated. The thickened adherent scales cause the surface of involved skin to be markedly rough and uneven. These two attributes of thickness and texture can be quantified to allow objective measurement of degree of inprovement from topically applied test materials as follows:

	DEGREE OF MPROVEMENT				
	None	Mild	Moderate	Substantial	Complete
	(0)	(* + 1	(2+)	! (3+)	(4+)
Tickness	=:gniy	Oatectacle reduction	Reactly apparent reduction	Barbly elevated	Normal thickness
erutxe⊺	Visibly rough	Palcably rough	Uneven : _, not rough	Slightly uneven	Visibly and palpably smooth

By means of such parameters, degrees of change in lesions can be numerically recorded and comparisons made of one treated site to another.

In order to evaluate the amphoteric and pseudoamphoteric compositions of the instant invention, a total of 6 patients having severe dry skin conditions were treated with the compositions containing an alpha hydroxyacid or the related compound.

Tested areas were of a size convenient for topical applications, i.e., circles 5 cm in diameter demarcated with a plastic ring of that size inked on a stamp pad. The medicinal lotions or creams were topically applied by the patient in an amount sufficient to cover the treatment sites. Applications were made three times daily and without occlusive dressings. Applications were discontinued at any time when resolutions of the lesion on the treatment area was clinically judged to be complete.

Ther test results of amphotenchand-pseudoamphoteric compositions containing the following alphamaydroxyacids or the related compounds on patients with severe dry skin are summarized as follows:

- 4 + Effectiveness: glycolic acid, factic acid, methyllactic acid, mandelic acid, tropic acid, atrolactic acid and pyruvic acid.
- 3+ Effectiveness; benzilic acid, gluconolactone, malic acid, tartaric acid, citric acid, saccharic acid, methyl pyruvate, phenyllactic acid, pnenylpyruvic acid, glucuronic acid and 3-hydroxybutanoic acid.
- 2 Effectiveness; mucic acid; ribonolactone, 2-hydroxydodecanoic acid, quinic acid; benzoylformic acid; and methyl benzoylformate.

3. Psoriasis.

50

The involved skin in psoriasis is hyperplastic (thickened), erythematous (red or inflamed), and has thick adherent scales. The degree of thickening is such that lesions are elevated up to 1 mm above the surface of adjacent normal skin; erythema is usually an intense red; the thickened adherent scales cause the surface of involved skin to be markedly rough and uneven. These three attributes of thickness, color and texture:can.be:quantified.to:allow.objective.measurement:of.degree of:improvement.from topically.applied:...>
test materials as follows.

		DEGREE	OF IMPROVEMEN	т	
<u> </u>	None	Mild	Moderate	Substantial	Complete
	(0)	(1+)	(2+)	(3+)	(4+)
THICKNESS	Highly elevated	Detectable reduction	Readily apparent reduction	Barely elevated	Normal thickness
TEXTURE:	Visibly	Palpably rough.	Uneven but not rough	Slightly unevento	Visibly and palpably smooth
COLOR	Intense	Red	Dark Pink	Light Pink	Normal Skin Color

By means of such parameters, degree of improvement in psoriatic tesions can be numerically recorded and comparisons made of one related sits to another.

Patients having oscriasis participated in this study. Amphoteric and pseudoamphotenic compositions containing both an alona adyroxyacid or the related compound and a corticosteroid were prepared according to the Examples. Compositions containing only a corticosteroid were also prepared and included in the comparison test. Test areas were kept to minimal size convenient for topical application, i.e., circles approximately 4 cm in claimeter. The medicinal compositions were topically applied by the patient in an amount fusually about 0.1 milliliter) sufficient to cover the test situ. Applications were made two to three times daily and without occlusive dressings. Test periods usually lasted for two to four webs. The test results on patients having psoriasis are summarized on the following table.

Topical Effects on Psoriasis of Antipsoriatic Compositions

Compositions*	Therapeutic Effectiveness
Hydrocortisone 2.5% alone	1+
With lactic acid	2+
With glycolic acid	2+
	Hydrocortisone 2.5% alone With lactic acid

25

Compositions*	Therapeutic Effectiveness
With ethyl pyrivate	2+
with methyl pyruvate	2+
With benzilic acid	2+
With pyruvic acid	2+
With methyllactic acid	2+
Hydrocortisone 17-valerate 0.2% alor	ne 2+
With lactic acid	3+
With glycolic acid	3+
With benzilic acid	3+
With ethyl pyruvate	3+
With methyl pyruvate	3+
With gluconolactone	3+
With pyruvic acid	3+
Betamethasone dipropionate 0.05% alo	ne 3+
With lactic acid	4+
With glycolic acid	4+
With ethyl pyruvate	4+
With methyl pyruvate	4+
With mandelic acid	4+
With benzilic acid	4+
Clobetasol propionate 0.05% alone	3+
With lactic acid	4+
With glycolic acid	4+

pre sub or invi-

ma cor

5. 4

and

adı

:05 wit

cor

COL

ant

7. .

hai

tru

mc

Ho

201

rec

the

SIC

age

021:

36

ma

sut

adr

or.

20. 584

Compositions*	Therapeutic Effectiveness		
With ethyl pyruvate	4+		
With methyl pyruvate	4+		
With methyllactic acid	4+		
With mandelic acid	4+		
With tropic acid	4+		
With benzilic acid	4+		

* Except the "alone" preparations, all others were amphoteric or pseudoamphoteric compositions containing 0.2 to 2M alpha hydroxyacids or related compounds.

25

•0

٠5

20

We have also found that an amphoteric or pseudoamphoteric composition containing an alpha hydroxyacid or the related compound in combination with an antimetabolite agent such as 5-fluorouracil with or without additional incorporation of a conticosteroid is therapeutically effective for topical treatment of pseudoantic process.

4. Eczema.

- in a topical treatment of eczema patients, hydrocortisone alone at 2.5% or hydrocortisone 17-valorate alone at 0.2% would achieve only 2.5 improvement, and betamethasone dipropionate or clobetasol propionate alone at 0.05% would achieve only a 3.5 improvement on all the eczema patients tested. Test results of amphoteric and pseudoamphoteric compositions containing both a corticosteroid and one of the following alpha hydroxyacids or the related compounds are shown as follows:
- 3+ Effectiveness; hydrocortisone 2.5% or hydrocortisone 17-valerate 0.2% plus lactic acid, glycolic acid, and allocacid. ethyl pyruvate gluconolactone, benzilic acid or ribonolactone.
 - 4 Effectiveness: detamethasone dipropionate or clobetasol propionate 0.05% plus lactic acid, glycolic acid, mandelic acid, ethyl pyruvate, methyl pyruvate, benzilic acid, gluconolactone, citric acid, tartaric acid or methyllactic acid.

5. Oily Skin and Skin Cleanse.

Human subjects having oily skin or blemished skin as well as acne patients having extremely oily skin participated in this study. Amphoteric and pseudoamphotenic compositions containing alpha hydroxyacids or the related compounds were formulated in solution or gel form.

Each participating subject received a solution on a get preparation containing an alpha-hydroxyacid or a related compound in an amphoteric or pseudoamphotenic composition. The participating subjects were instructed to apply topically the solution or get medication on the affected areas of forehead or other part of the face. Three-times daily applications were continued for 2 to 6 weeks.

The degree of improvement of oily skin as well as the rate of improvement of acne lesions were clinically evaluated. Most participants reported that oiliness of skin disappeared within one to two weeks of topical administration, and the skin so treated became smooth and soft. Many participating subjects

The same of the sa

preferred gel preparations than solution compositions. It was found that all the participants showed substantial improvements on pily skin and aone lesions by six weeks of topical admin stration of amphotencial pseudoamphoteric compositions containing dipha hydroxyacids or the related compounds of the instant invention.

Those alona hydroxivacids and the related compounds which have been found to be therapeutically effective for only skin and as skin cleansers include: penaltic acid, glycolic acid, lactic acid, methyllactic acid, mandelic acid, pyruvic acid, ethyl pyruvate methyl pyruvate, tropic acid, malic acid, glycolic acid, ethyl pyruvate, tropic acid, malic acid, glycolic acid, as a skin cleanser for only skin or ache-prone skin, the amphoteric or pseudoamphoteric composition containing an alona hydroxyacid or the related compound may also be incorporated with other dermatologic agents. For example, an amphoteric gel composition may consist of both an alona hydroxyacid and erythromycin or tetracycline.

6. Acne

Amphotoric and pseudoamphotoric compositions containing alpha hydroxyacids or the related comcounds of the instant invention in a solution or get form were provided to patients having comedongenic and/or papulopustular lesions of acne. Each participating patient was instructed to apply topically the composition on the involved areas of the skin such as forehead, face and chest. Three times daily administration was continued for 6 to 12 weeks.

The degree and rate of improvement on acne lesions were clinically evaluated. It was found that acne lesions consisting mainly of comedones improved substantially after 6 to 8 weeks of topical administration with the amphoteric or the pseudoamphoteric composition containing an alpha hydroxyacid or the related compound. The time for complete clearing of comedongenic acne treated with the amphotenc or pseudoamphoteric composition of the instant invention varied from 6 to 12 weeks.

As a topical treatment for esculopustular and/or pustular acne the amphoteric or pseudoamphoteric composition containing an alpha hydroxyacid or the related compound may incorporate in addition an antiacne agent. The antiacne agents include antibiotics such as erythromycin, tetracycline, clindamycin, meclocycline, and minocycline, and retinoids such as retinoid acid. Such combination, compositions have been found to be therapeutically more effective for topical treatment of severe acne.

7. Age Spots

Many small and large discolored lesions, commonly called age spots on the face and the back of the hands are benign keratoses, if they are not variants of actinic keratoses. Very few of such age spots are true lentigines, therefore alpha hydroxyacids and the related compounds may be effective in eradicating most age spots without concurrent use of skin bleaching agents such as hydroquinone and monobenzone. However, additional beneficial effects have been found when a skin bleaching agent such as hydroquinone or monobenzone is also incorporated into the compositions of the instant invention for age, spots involving pigmented lesions.

Amphoteric and pseudoamphoteric compositions containing alpha hydroxyacids or the related compounds, with or without incorporation of hydroquinone were provided to volunteer subjects and patients having age spot keratoses, melasma, lentigines and/or other pigmented lesions. Each participating subject received two products, i.e., with or without the addition of 2% hydroquinone to the amphoteric or pseudoamphoteric composition containing an alpha hydroxyacid or the related compound.

The volunteer subjects and patients were instructed to apply topically one medication on one side of the body such as left side of the face or on the back of the left hand, and the other medication on the other side of the body such as on right side of the face or on the back of the right hand. Specific instructions were given to the participating subjects that the medications were applied three times daily to the lesions of age spot keratoses, melasmas, lentigines and/or other pigmented lesions. Clinical photos were taken of participating subjects before the initiation of the topical treatment and every 4 weeks during the course of treatment.

At the end of 4 to 8 weeks, improvement of age spot keratoses was clinically discernible. After 4 to 6 months of topical treatment, substantial improvement of age spot keratoses occurred in the majority of subjects tested. Complete eradication of age spot keratoses occurred after 6 to 9 months of topical administration with the amphoteric or pseudoamphoteric compositions of the instant inventions.

Amphoteric or pseudoamphoteric compositions containing both an alpha hydroxyacid or the related

compound and hydroquinone were judged to be more effective in eradicating pigmented age spots, melasma, lentilines and other pigmented tesions.

The pipha hydroxyacids and the related compounds which have been found to be therapeutically effective for age spots with or without combination with hydroquinone include glycolic acid, factic acid, methyllactic acid, mandelic acid, pyruvic acid, methyl pyruvate, ethyl pyruvate, benzillo acid, gluconolactione, mailo acid, tartaric acid, othric acid and tropic acid. For flat or slightly elevated seborrheic keratoses on the face and/or the back of the body, amphoteric or pseudoamphoteric compositions continuing higher concentrations of alpha hydroxyacids or the related compounds have been found to be effective in eraclicating such lesions.

Actinic keratoses may be successfully treated with amphoteric or pseudoamphoteric compositions containing alpha hydroxyacids or the related compounds in combination with an antimetabolite agent such as 5-fluorouracit.

15 3. Warts.

Eradications of common wants by topical application of amphoteric or pseudoamphoteric compositions require higher than usual concentrations of alpha hydroxyacids or the related compounds in the formulations. The amphoteric or oseudoamphoteric compositions were formulated as a liquid or light gel form, and dispensed usually as 0.5-1 ml aliquots in small yiels.

Topical applications were made discreetly to wart lesions by adult patients or by responsible adult family members. For ordinary usual warts of hands, fingers, palms and coles topical applications were made 2 to 4 times daily, and were continued for 2 to 6 weeks. Generally, the overlying stratum comeum of the wart lesion change in appearance after several weeks topical application of the composition; In most cases; the wart lesion simply fell off. The skin then healed normally without forming any scars.

We have also found that when a dermatologic agent such as 5-fluorouracil is incorporated into the amphoteric or pseudoamphoteric compositions containing alpha hydroxyacids or the related compounds, the medications have been very effective for topical treatment of warts without using higher concentrations of alpha hydroxyacids or the related compounds.

The alphathydroxyacids and the related compounds which have been found to be therapeutically effective for topical treatment of warts with or without incorporation of 5-fluorouracil include glycolic acid, factic acid, pyruvic acid, ethyl pyruvate, methyl pyruvate and mandelic acid.

Topical formulations and compositions containing specific alpha hydroxyacids, alpha ketoacids or the related compounds at full strengths or high to intermediate concentrations prepared according to Examples 54 and 55, without utilizing amphoteric or pseudoamphoteric systems, have also been tested for ordinary warts of the hands, fingers, palms and soles. Participating patients have been advised to apply a small drop of the medication with a toothpick or a fine caliber brush to the center of a wart lesion only. Prescirbed applications have been 3 to 6 times daily, and are continued until the patient feels pain.

For the more rough-surfaced wart, the duration of application has been as short as one or a few days.

46. For lesions, with more compact, less permeable stratum corneum, the time: to:experience: gpain:has.been.been.been.ger. Frequency and duration of applications have been modified according to other clinical responses and reactions of lesions, and the patient or responsible family member is instructed accordingly.

For example, some clinical manifestations other than pain have also been used as a signal to interrupt application. These manifestations have included distinct blanching of the lesions or distinct peripheral erythema. Very often, discomfort is the usual signal of clinical reactions.

Generally, the overlying stratum comeum of the wart lesions became loose, and the whole wart lesion simply fell off. The skin then healed normally without forming any scars.

50 9. Athlete's Foot and Nail Infections

Amphoteric and pseudoamphoteric compositions containing both an antifungal agent and one of the alpha hydroxyacids or the related compounds were provided to patients having frequent recurrence of fungal infections involving the foot. The antifungal agents include clotimazole, miconazole, keticionazole and griseofulvin. When both feet but not toe nails were involved in the infection, the patients were instructed to apply topically the compositions of the instant invention on the left foot, and a brand-name antifungal product on the right foot. Three times daily applications were continued for one to four weeks. The degree and rate of improvement on skin lesions were clinically evaluated, and comparison was made one side of

the bo pseudrelated the an due to two we antifur

therap not be infects binatic rangin topica techni folds i

eradic to bec of pas

25 10. W

due triat v dermi ogy a abnor commission wrinki in hydro and v of the each three-

visit.

the sa

time ;

cartic

Charles to Lines.

photoon at peen partici TI which dition:

(1) All-

the body against the other it was found that the skin resides improved much faster with the amphotencion pseudoamphoteric compositions containing both the antifungal agent and the alpha hydroxyacid or the related compounds. The alpha hydroxyacids or the related compounds seemed to enhance the efficacies of the antifungal agents, and also to eliminate the discomforts such as itching, lingling, burning and irritation due to fungal infections. When the related were not involved the infected skin generally healed within one to two weeks from topical application of the amphoteric or pseudoamphoteric composition containing both an antifungal agent and an alpha hydroxyacid or the related compound.

Fungal infections of the hails are very difficult to treat, because antifungal products to date are not therapeutically effective for topical treatment of hails. One of the reasons is that most antifungal drugs have not been formulated as bicavailable forms in the commercial products. When tow hails were involved in the infections, patients were provided with amphoteric or besudoamphoteric compositions containing in combination an antifungal agent and an alpha hydro xyacid or an alpha ketoacid at higher concentrations ranging from 20 to 99%, dispensed as 1-2 mil aliquots in small vials. The patients were instructed to apply topically the compositions discreetly to the infected hail surface by means of a fine calibre paint brush, the technique was the same as for application of hail polish, that is careful avoidance of contact with lateral hail folds or any peri-uniqual skin. Once or twice daily applications were continued for 2 to 8 weeks.

415

As mentioned above, while brand-name antifungal products are usually not effective against fungus infections within or underneath the hail, it was found that the amphoteric or pseudoamphotenc compositions containing an antifungal agent and an alpha hydroxyccid or alpha ketoacid were therapeutically effective in eradicating fungal infections of the hails. Such treatment may cause in some instances the treated hail plate to become loose and eventually fell off from the hail bed. This happened quite naturally without any feeling of pain nor bleeding, and the skin lesion healed quickly with normal growth of a new hail.

25 10. Wrinkles

Wrinkles of skin may be due to natural aging and/or sun damage. Most fine wrinkles on the face are due to natural or innate aging, while coarse wrinkles on the face are the consequence of actinic or sun damage. Although the real mechanism of wrinkles formation in the skin is still unknown, it has been shown that visible fine, wrinkles, are, due to diminution in the number and diameter of elastic fibers in the papillary dermis, and also due to atrophy of dermis as well as reduction in subcutaneous adjoose tissue. Histopathology and electron microscopy studies indicate that coarse wrinkles are due to excessive deposition of abnormal elastic materials in the upper dermis and thickening of the skin. At present there are no commercial products which have been found to be therapeutically effective for topical eradication of wrinkles, although retinoic acid (tretinoin) has been shown to be beneficial for sun damaged skin.

In order to determine whether the amphotenic or oseudoamphoteric composition containing the alpha hydroxyacids, alpha ketoacids or the related compounds are therapeutically effective for wrinkles, patients and volunteer subjects participated in this study. The participants were instructed to apply the formulations of the instant invention twice daily on areas of facial wrinkles for 4 to 12 months. All participants were told to avoid sun exposure, and to use sunscreen products if exposure to sunlight was unavoidable. Photographs of each side-of-time-face-for-leach; participants were taken at the beginning of the study, and repeated; at, one to three-month intervals. The participants were asked not to wear any facial make-up at the time of each office visit. Standardized photographic conditions were used including the use of same lot of photographic film, the same light source at two feet from the face, aimed at a locus on the frontal aspect of each cheek. Each time photographs were taken with camera aimed perpendicular to the cheek. At the end of study twenty two participants had been entered into the study for at least four months. Clinical evaluations and review of photographs have revealed substantial reductions in facial wrinkles of the temporal region and cheek area on at least one side of the face in eighteen cases. Degree of improvement and reduction in wrinkles has been evaluated and determined to be mild to moderate in six participants but very substantial in twelve participants.

The alpha hydroxyacids, alpha ketoacids and other related compounds including their factore forms which may be incorporated into the amphotenc and pseudoamphoteric compositions for cosmetic conditions and dermatologic disorders such as dry skin; acne; age spots, keratoses; warts and skin wrinkles or in combination with other dermatologic agents to enhance therapeutic effects include the following:

(1) Alkyi Alpha Hydroxyacids

55

2-Hydroxyethanoic acid (Glycolic acid), 2-Hydroxypropanoic acid (Lactic acid), 2-Methyl 2-hydroxypropanoic acid (Methyllactic acid), 2-Hydroxybutanoic acid, 2-Hydroxypentanoic acid (Alpha hydroxypalmitic acid), 2-Hydroxypentanoic acid (Alpha hydroxypalmitic acid), 2-Hydroxypentanoic acid (Alpha hydroxyparachidenic acid), 2-Hydroxypentanoic acid (Alpha hydroxyparachidenic acid).

(2) Aralkyl And Aryl Alcha Hydroxyacids

2-Phenyl 2-hydroxyethanoic acid (Mandelic acid), 2.2-Diphenyl 2-hydroxyethanoic acid (Benzilic acid), 3-Phenyl 2-hydroxypropanoic acid (Phenyliactic acid), 2-Phanyl 2-methyl 2-hydroxyethanoic acid (Atrolactic acid), 2-(4-Hydroxyphenyl), 2-hydroxyethanoic acid, 2-(4-Clorophenyl), 2-hydroxyethanoic acid, 2-(4-Pydroxy-3-methoxyphenyl), 2-hydroxyethanoic acid, 3-(4-Pydroxyphenyl), 2-hydroxyphenyl), 2-hydroxyphenyl, 2-hydroxyphenyl,

(3) Polyhydroxy Alpha Hydroxyacids

20

2.3-Dihydroxypropanoic acid (Glyceric acid). 2.3.4-Trihydroxybutanoic acid (Isomers: erythronic acid, threonic acid). 2.3.4.5-Tetrahydroxypentanoic acid (Isomers: ribonic acid, arabinoic acid, xylonic acid, lyxonic acid). 2.3.4.5.6-Pentahydroxyhexanoic acid (Isomers: aldonic acid, altronic acid, gluconic acid, mannoic acid, gulonic acid, idonic acid, galactonic acid, talonic acid). 2.3.4.5.8.7-Hexahydroxyheptanoic acid (Isomers: glucoheptonic acid, galactoheptonic acid, etc.)

(4) Polycarboxylic Alpha Hydroxyacids

2-Hydroxypropane 1,3-dioic acid (Tartronic acid), 2-Hydroxybutane-1,4-dioic acid (Malic acid), 2,3-Dihydroxybutane-1,4-dioic, acid (Tartanic, acid), 2-Hydroxy-2-carboxypentane-1,5-dioic acid (Citric acid), 2,3|4|5-Tetrahydroxyhexane-1,6-dioic acid (Isomers; saccharic acid, mucic acid, etc.)

35 (5) Alpha Hydroxyacid Related Compounds

Ascorbic acid, quinic acid, isocitric acid, tropic acid, 3-chlorolactic acid, trethocanic acid, cerebronic acid, attramalic acid, agaricic acid, 2-hydroxynervonic acid and aleuntic acid.

(6) Alpha Ketoacids And Related Compounds

2-Ketoethanoic acid (Glyoxylic acid). Methyl 2-ketoethanoate. 2-Ketopropanoic acid (Pyruvic acid). Methyl 2-ketopropanoate (Methyl pyruvate). Ethyl. 2-ketopropanoate (Ethyl pyruvate). Propyl 2-ketopropanoate (Propyl pyruvate). 2-Phenyl-2-ketoethanoic acid (Benzoylformic acid). Methyl 2-phenyl-2-ketoethanoate (Ethyl benzoylformate). 3-Phenyl-2-ketoethanoate (Ethyl benzoylformate). 3-Phenyl-2-ketopropanoic acid (Phenylpyruvic acid). Methyl 3-phenyl-2-ketopropanoate (Ethyl phenylpyruvate). 2-Ketobutanoic acid. 2-Ketopentanoic acid. 2-ketopentanoic

The amphoteric and pseudoamphoteric compounds which may be incorporated into the compositions of the instant invention for cosmetic and dermatologic conditions include amino acids, peptides, proteins and the like compounds such as creatinine and creatine.

The dimeric and polymeric forms of alpha hydroxyacids and the related compounds which may be incorporated into the compositions of the instant invention include acyclic esters and cyclic ester; for example, glycolly glycollate, lactyl lactate, glycolide, lactide, polyglycolic acid and polytactic acid.

Claims

- A pharmacautical or cosmetic composition comprising in combination an amphoteric or pseudoamphoteric agent and an alpha hydroxyacid, an alpha ketoacid or a related compound in a pharmaceutically acceptable vehicle for topical application.
- 2. A composition comprising a cosmetic or pharmaceutical agent in an amphotenic or pseudoamphotenic system comprising an alpha hydroxyacid, an alpha ketoacid or a related compound in a pharmaceutically acceptable vehicle for topical treatment of cosmetic conditions or medical disorders.
- 3. A composition according to claim 2 wherein said cosmetic or pharmaceutical agent is selected from agents that improve or eradicate age spots, keratoses and wrinkles; analgesics; anaesthetics; antiacnes agents; antibacterials; antiyeast agents; antifungal agents; antiviral agents; antidardruff agents; antidermatitis agents; antipruritic agents; antiemetics; antimotionsickness agents; antiinflammatory agents; antipyperkeratolytic agents, antidy skin agents; antiperspirants; antipsorates; antiseborrheic agents; hair conditioners and hair treatment agents; antiaging and antiwrinkle agents; antiasthmatic agents and bronchodilators; sunscreen agents; antihistamine agents; skin lightening agents; depigmenting agents; vitamins; corticosteroids; tanning agents; hormones, jetinoids; topical cardiovascular agents or dermatologicals.
- 4. A composition according to claim 2 wherein said cosmetic or pharmaceutical agent is selected from clottmazole, ketoconazonel, miconazole, griseofulvin, hydroxycine, diphenhydramine, pramoxine, lidocaine, procaine, mepivacaine, hydroquinone, monobenzone, erythromycin, tetracycline, clindamycin, meclocycline, minocycline, naproxen, ibuprofen, theophylline, cromolyn, albuterol, retinoic acid, 13-cis retinoic acid.
- hydrocortisone. hydrocortisone 21-acetate. hydrocortisone 17-valerate. hydrocortisone 17-butyrate. betamethasone dipropionate. triamcincione acetonide. fluicinonide. clobetasol propionate, benzoyl peroxide, crotamiton, propranolol, promethazine, vitamin A palmitate or vitamin E acetate.
- 5. A composition according to any preceding claim which includes an amphoteric or pseudoamphoteric agent, selected, from, amino, acids, dipeptides, polypeptides, proteins, imidazoline, derivatives, electhin, derivatives, related agents or metallic oxides.
- 6. A composition according to any preceding claim which includes an amphoteric or pseudoamphoteric agent selected from glycine, alanine, valine, leucine, isoleucine, serine, threonine, cysteine, cystine, methionine, aspartic acid, asparagine, glutamic acid, glutamine, arginine, tysine, 5-hydroxytysine, histidine, phenylaline, tyrosine, tryptophan, 3-hdryxyproline, 4-hydroxyproline, proline, homocysteine, homocysteine,
- 30. homoserine, contithine, citrulline, creatine, creatine, 31-aminopropanoic, acid., 2-aminobutanoic acid., 2-aminobutanoic acid., 2-methyl-3-aminopropanoic acid, theanine, phenyl-glycine, canavanine, canaline, 4-hydroxyarginine, 4-hydroxyomithine, homoarginine, 4-hydroxyomoarginine, 8-lysine, 2,4-diamonobutanoic acid, 2-3-diaminopropanoic acid, 2,6-diaminoprimelic acid, 2-amono-3-phenyl-butanoic acid, 2-methylserine, 3-phenylserine, betaine, taurine, cysteinesulfinic acid, methionine sulfoxide.
- methionine sulfone, 3,5-diiodotyrosine, thyroxine, monoiodotyrosine, pipecolic acid, 4-aminopipecolic acid, 4-methylproline, glycylglycine, carnosine, anserine, ophidine, homocarnosine, \$-alanyllysine, \$-alanyllar-ginine, glutathione, ophthalmic acid, norophthalmic acid, bradykinin, glucagon, protamines, histones, cocoamphoglycine, cocoamphopropionate, cocamphopropylsulfonate, phosphatidyl ethanolamine, phosphatidyl serine, sphingomyelin, stearamidoethyl, diethylamine, stearamidoethyl diethanolamine, stearamidopropyl-dimethylamine, quatemary;ammonium:hydroxide, quatemium:hydroxide, aluminum:oxide, orzinc/oxide.
 - 7. A composition according to any preceding claim wherein said alpha hydroxyacid is selected from alkyl alpha hydroxyacids, aralkyl and aryl alpha hydroxyacids, polyhydroxy alpha hydroxyacids and polycorboxylic alpha hydroxyacids having the following chemical formula:

A P. B.

- 45 (Ra) (Rb) C (OH) COOH wherein Ra and Rb are H, F, Cl, Br, alkyl, aralkyl or anyl group of saturated or unsaturated, isomeric or non-isomeric, straight or branched chain or cyclic form, having 1 to 25 carbon atoms, and in addition Ra and Rb may carry OH, CHO, COOH and alkoxy group having 1 to 9 carbon atoms, said alpha hydroxyacid existing as a free acid or lactone form, or in salt form with an organic base or an inorganic alkali, and as
 - stereoisomers as D, L, and DL forms when Ra and Rb are not identical.
 8. A composition according to claim 7 wherein said alkyl alpha hydroxyacid is selected from 2-Hydroxyethanoic acid (Giyochic acid), 2-Hydroxypropanoic acid (Lactic acid), 2-Hydroxypropanoic acid.
 (Methyllactic acid), 2-Hydroxybutanoic acid, 2-Hydroxypertanoic acid, 2-Hydroxypertanoic acid.
 3-Hydroxypertanoic acid.
- yfieptanoic acid, 2-Hydroxyoctanoic acid, 2-Hydroxynonanoic acid, 2-Hydroxydecanoic acid, 2-Hydroxydecanoic acid, 2-Hydroxydecanoic acid (Alpha hydroxylauric acid), 2-Hydroxydecanoic acid (Alpha hydroxynyristic acid), 2-Hydroxyhexadecanoic acid (Alpha hydroxypalmitic acid), 2-Hydroxyoctadecanoic acid (Alpha hydroxysiearic acid), 2-Hydroxyeicosanoic acid (Alpha hydroxysiearic acid), 2-Hydroxyeicosanoic acid (Alpha hydroxysiearic acid), 2-Hydroxyeicosanoic acid (Alpha hydroxysiearic acid).
 - 9. A composition according to claim 7 wherein said aralkyl and aryl alpha hydroxyacid is selected from 2-

Phenyl 2-hydroxyethanoic acid (Mandhic acid), 2.2-Diphenyl 2-hydroxyethanoic acid (Benzilic acid), 3-Phenyl 2-hydroxyethanoic acid (Phenyllactic acid), 2-Phenyl 2-hydroxyethanoic acid (Arolactic acid), 2-(4-Hydroxyethanoic acid, 2-(4-Chlorophenyl) 2-hydroxyethanoic acid, 2-(4-Hydroxyethanoic acid, 2-(4-Hydroxyethanoic acid, 3-(4-Hydroxyethanoic acid, 3-(4-Hydroxyethanoi

A composition according to claim 7 wherein said polyhydroxy alpha hydroxyacid and polycarboxylic alpha hydroxyacid is selected from 2.3-Dihydroxypropanoic acid (Glyceric acid), 2.3.4-Trihydroxybutanoic acid (Isomers; erythronic acid, threonic acid), 2.3.4.5-Tetrahydroxypentanoic acid (Isomers; ribonic acid, arabinoic acid, sylonic acid, lyxonic acid), 2.3.4.5-Pentahydroxyhexanoic acid (Isomers; allonic acid, altronic acid, gluconic acid, gulonic acid, idonic acid galactonic acid, talonic acid), 2.3.4.5.6-Texahydroxyheptanoic acid (Isomers; glucoheptonic acid, galactoheptonic acid etc.), 2-Hydroxyporpane-1.3-dioic acid (Tartronic acid), 2-Hydroxybutane-1.4-dioic acid (Malic acid), 2.3-Dihydroxybutaine-1.4-dioic acid (Tartraric acid), 2-Hydroxy-2-carboxypentane-1.5-dioic acid (Citric acid), 2.3.4.5-Tetrahydroxyhexane-1.6-dioic acid (Isomers; saccharic acid, mucic acid, etc.), or lactone forms (gluconolactone, galactonolactone, glucoheptonolactone, galactonolactone, galactone), galactone, pantoyllactone, glucoheptonolactone, mannonolactone, galactoheptonolactone, etc.),

11. A composition according to any preceding claim wherein said alpha ketoacid has the following chemical formula:

20 (Ra) CC COO (Rb)

wherein Ra and Rb each represent H or an alkyl, aralkyl or aryl group of saturated or unsaturated, isomeric or non-isomeric, straight or branched chain or cyclic form, having 1 to 25 carbon atoms, and in addition Ra may carry F. Cl. Br. I. OH. CHO, COOH or an alkoxy group having 1 to 9 carbon atoms, said alpha ketoacid existing as a free acid or an ester form-or in a salt-form-with an organic base or an inorganic alkali.

25 12. A composition according to claim 11 wherein said alpha ketoacid and its ester is selected from 2-Ketoethanoic acid (Glyoxylic acid), Methyl 2-ketoethanoate, 2-Ketopropanoic acid (Pyruvic acid), Methyl 2-ketopropanoate (Methyl pyruvate), Ethyl 2-ketopropanoate (Ethyl pyruvate), Propyl 2-ketopropanoate (Propyl pyruvate), 2-Phenyl-2-ketoethanoic acid (Benzoylformic acid), Methyl 2-phenyl-2-ketoethanoate (Methyl benzoylformate), Ethyl 2-phenyl-2-ketopropanoic acid (Phenylpyruvic acid), Methyl 3-phenyl-2-ketopropanoate (Methyl phenylpyruvate), Ethyl 3-phenyl-2-ketopropanoate (Ethyl phenylpyruvate), 2-Ketopopanoate (Ethyl phenylpyruvate), 2-Ketopopanoate (Ethyl phenylpyruvate), 2-Ketopopanoate (Ethyl phenylpyruvate), 2-Ketopopanoate (Ethyl 2-ketooctanoic acid, 2-Ketopopanoate).

13. A composition according to any preceding claim wherein the said related compound is selected from ascorbic acid, quinic acid, isocitric acid, tropic acid, trethocanic acid; 3-chlorolactic acid, cerebronic acid, citramalic acid, agaricic acid, 2-hydroxynervonic acid, aleuritic acid and pantoic acid.

14. A therapeutic composition for topical treatment of cosmetic conditions or dermatologic disorders comprising dimeric or polymeric forms of hydroxyacids, having the following chemical formula:
Pr. (-O-C(Ra)(Rb)-CO-In OH

wherein Ra,Rb = H, alkyl, aralkyl or aryl group of saturated or unsaturated, isomeric or non-isomeric, straight or branched; chain; or/cyclic form, having 1/to 25 carbon atoms, and n = 1 or any/numerical:number/up:to// 200; Ra and Rb in monomer unit 2, 3, 4 may be the same or the different groups from that in monomer unit 1; the hydrogen atom in Ra and Rb may be substituted by a halogen atom or a radical of lower alkyl, aralkyl, aryl or alkoxy of saturated or unsaturated, isomeric or non-isomeric, straight or branched chain or cyclic form, having 1 to 9 carbon atoms, and the dimeric and polymeric forms of hydroxyacids may be present as a free acid, ester or in a salt form with an organic base or inorganic alkali.

15. A composition according to claim 14 wherein said dimeric or polymeric forms of hydroxyacids are selected from the group consisting of glycolyl glycollate, lactyl lactate, mandelyl mandellate, atrolactyl atrolactate, phenyllactyl phenyllactate, benzilyl benzillate, glycolyl lactate, lactyl glycollate, triglycolic acid, trilactic acid, polygtycolic acid or polylactic acid.

16. A therapeutic composition for topical treatment of cosmetic conditions or dermatologic disorders comprising dimeric or polymeric forms of hydroxyacids, having the following chemical formula: (-O-C(Ra)(Rb)-CO-In

wherein Ra,Rb = H, alkyl, aralkyl or aryl group of saturated or unsaturated, isomeric or non-isomeric, straight or branched chain or cyclic form, having 1 to 25 carbon atoms, and n = 1 or any numerical number, and Ra or Rb may be identical or not identical in the monomer units.

17. A composition according to claim 16 wherein said dimeric or polymeric forms of hydroxyacids are selected from glycolide, lactide, mandelide, atrolactide, phenyllactide, benzillde, methyllactide, lactoglycolide or glycolactide.

- 18. A composition according to any one of claims 14 to 17 further comprising a cosmetic or pharmaceutical agent incorporated as an ingredient in said composition.
- 19. A composition according to any preceding claim for use in the treatment of dry skin, zerosis, ichthyosis, dandruff, brownish spots, keratosus, melasma, lentigines, age spots, liver spots, pigmented spots, wrinkles, blemishes, skin lines, oily skin, acne, warts, eczema, pruritic skin, psoriasis, inflammatory dermatoses, disturbed keratinization, skin changes associates with aging, half or skin requiring cleansers, conditioning or treatment, and hair or scalo requiring shampooing or conditioning.
- 20. A therapeutic composition for topical treatment of warts, nail infections, age spots, wrinkles and aging related skin changes comprising at least one member selected from alpha hydroxyacids, alpha ketoacids or related compounds.
 - 21. A composition according to claim 20 wherein said alpha hydroxyacids, alpha ketoacids or related compounds may be present as a free acid, lactone, ester or in sait form with an organic base or an inorganic alkali.
- 22. A composition according to claim 20 or claim 21 wherein said alpha hydroxyacids, alpha ketoacids or related compounds are selected from 2-hydroxyethanoic acid. 2-hydroxypropanoic acid. 2-methyl 2-hydroxypropanoic acid. 2-phenyl 2-hydroxyethanoic acid. 2-diphenyl 2-hydroxyethanoic acid. 2-phenyl 2-methyl 2-hydroxyethanoic acid. 2-phenyl 3-hydroxypropanoic acid. 2-ketopropanoic acid. methyl 2-ketopropanoid.
- 23. A cosmetic skin treatment which comprises the topical application to the skin of a composition according to any preceding claim.
 - 24. The use in the preparation of a pharmaceutical or cosmetic composition for the topical treatment of skin conditions, of a combination of an amphoteric or pseudoamphoteric agent and an alpha hydroxyacid, an alpha ketoacid or a related compound.

0

: چ

30

Europecn Patent Office

EUROPEAN SEARCH REPORT

Application Number

EP 90 30 8828

× !	EP-A-0 086 070 (UNILEVE Page 3, line 35 - page 4, line _U-A-5 814 3 (MEDISAN A Pages 8-9 in the whole (cla	ne 20: page 7, iii 	nes :2-26 *	1-24	A 61 K 7/48 A 61 K 31/19
	Pages 8-9 in the whole (cla	ims 1-8) *			
Α Ε	EP-A-0 273 202 (E.J. VAN	SCOTT		1-24	•
	•				
.					TECHNIAL RELIE SEARCHE ONL CLE
٠				r.	A 61 K
	·		-		
					•
	The present search report has be	en drawn up for all c	laime		
	Place of search		Metion of search		Examiner
	The Hague	25'00	tober 90		BRINKMANN C.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.