WOOT 2010-11

Practice Olympiad 6 Solutions

1. Let x and y be positive real numbers such that x^3 , y^3 , and x + y are all rational. Show that both x and y are also rational.

Solution. Since x^3 and y^3 are rational,

$$x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$$

is also rational. Since x+y is rational, x^2-xy+y^2 is rational. But $(x+y)^2=x^2+2xy+y^2$ is also rational, so $(x^2+2xy+y^2)-(x^2-xy+y^2)=3xy$ is rational, which means xy is rational. Then $(x^2+2xy+y^2)-xy=x^2+xy+y^2$ is also rational.

Since x^3 and y^3 are rational,

$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

is also rational, so x - y is rational. Therefore, (x + y) + (x - y) = 2x is rational, which means x is rational, and so y is rational.

WOOT 2010-11

Practice Olympiad 6 Solutions

2. Let C be a point on line segment AB. We construct semicircles with diameters AB, AC, and BC, all on the same side of AB. Let D be the point on the semicircle with diameter AB such that AB and CD are perpendicular. Let E be a point on the semicircle with diameter AC, and let F be a point on the semicircle with diameter BC, such that EF is the common external tangent to these semicircles. Prove that quadrilateral CEDF is a rectangle.

Solution. Without loss of generality, assume that $AC \ge AB$. Let O_1 and O_2 be the midpoints of AC and BC, respectively. Let r_1 and r_2 be the radii of semicircles AC and BC, respectively, so the radius of semicircle AB is $r_1 + r_2$.

Let P be the projection of O_2 onto O_1E , so quadrilateral $PEFO_2$ is a rectangle. Then $O_1O_2 = r_1 + r_2$, and $O_1P = O_1E - PE = O_1E - O_2F = r_1 - r_2$. Then by Pythagoras on right triangle O_1O_2P , $EF = PO_2 = \sqrt{O_1O_2^2 - O_1P^2} = \sqrt{(r_1 + r_2)^2 - (r_1 - r_2)^2} = \sqrt{4r_1r_2} = 2\sqrt{r_1r_2}$.

Let M be the intersection of EF and CD. Then as tangents from the same point to the same circle, ME = MC and MF = MC, so ME = MF, i.e. M is the midpoint of EF, and $ME = MF = EF/2 = \sqrt{r_1 r_2}$.

WOOT 2010-11

Practice Olympiad 6 Solutions

Let G be the reflection of D in AB. Then by power of a point on C, $CD \cdot CG = CA \cdot CB$. But CD = CG, so $CD = \sqrt{CA \cdot CB} = \sqrt{2r_1 \cdot 2r_2} = 2\sqrt{r_1r_2}$, which means that M is also the midpoint of CD, and EF = CD. Hence, quadrilateral CEDF is a rectangle.

WOOT 2010-11

Practice Olympiad 6 Solutions

3. There are n tennis players in a tournament, where $n \geq 4$, and certain pairs of players played games against each other. In every group of four players, there exist three players, say A, B, and C, such that A and B played a game, A and C played a game, and B and C played a game. What is the minimum number of games that could have been played in the tournament?

Solution. We claim that the minimum number of games that could have been played is $\binom{n-1}{2}$.

First, we show that there exists such a tournament in which $\binom{n-1}{2}$ games were played. Of the n players, take one player away, leaving n-1 players. We let every pair among these n-1 players play, for a total of $\binom{n-1}{2}$ games. It is clear that this tournament has the given property.

Now we show that in any such tournament, at least $\binom{n-1}{2}$ games were played. If every pair of players played a game against each other, then we are done, so assume that there were two players that did not play against each other, say A and B.

Let C and D be any other two players. We know that among the four players A, B, C, and D, there exists three players such that every pair among these three players played a game against each other. Since A and B did not play against each other, the three players must be either A, C, and D, or B, C, and D. In either case, C and D played against each other, and C played against either A or B, and D played against either A or B. Hence, among all n-2 players other than A or B, every pair of such players played against each other, and each such player played against A or B, for a total of at least

$$\binom{n-2}{2} + n - 2 = \frac{(n-2)(n-3)}{2} + n - 2 = \frac{(n-2)(n-1)}{2} = \binom{n-1}{2}$$

games.

WOOT 2010-11

Practice Olympiad 6 Solutions

4. Let a_1, a_2, \ldots, a_n be distinct real numbers. Show that

$$\min_{1 \le i,j \le n} (a_i - a_j)^2 \le \frac{12}{n(n^2 - 1)} (a_1^2 + a_2^2 + \dots + a_n^2).$$

Solution. First, we state a lemma.

Lemma. For any real numbers x and y,

$$x^2 + y^2 \ge \frac{(x-y)^2}{2}.$$

Proof. The inequality is equivalent to $(x+y)^2 \ge 0$.

Without loss of generality, assume that $a_1 < a_2 < \cdots < a_n$, and let $d = \min_{i < j} (a_j - a_i)$. Then $a_n - a_1 \ge (n-1)d$, $a_{n-1} - a_2 \ge (n-3)d$, and so on. Then by the lemma,

$$a_n^2 + a_1^2 \ge \frac{(n-1)^2}{2} \cdot d^2,$$

$$a_{n-1}^2 + a_2^2 \ge \frac{(n-3)^2}{2} \cdot d^2,$$

and so on.

If n is even, then let n = 2k. Then

$$(n-1)^{2} + (n-3)^{2} + \dots + 1^{2} = 1^{2} + 3^{2} + \dots + (2k-1)^{2}$$

$$= [1^{2} + 2^{2} + \dots + (2k)^{2}] - [2^{2} + 4^{2} + \dots + (2k)^{2}]$$

$$= [1^{2} + 2^{2} + \dots + (2k)^{2}] - 4(1^{2} + 2^{2} + \dots + k^{2})$$

$$= \frac{(2k)(2k+1)(4k+2)}{6} - 4 \cdot \frac{k(k+1)(2k+1)}{6}$$

$$= \frac{k(2k-1)(2k+1)}{3}$$

$$= \frac{n(n-1)(n+1)}{6}.$$

If n is odd, then let n = 2k - 1. Then

$$(n-1)^{2} + (n-3)^{2} + \dots + 2^{2} = 2^{2} + 4^{2} + \dots + (2k-2)^{2}$$

$$= 4[1^{2} + 2^{2} + \dots + (k-1)^{2}]$$

$$= 4 \cdot \frac{(k-1)(k)(2k-1)}{6}$$

$$= \frac{2(k-1)(k)(2k-1)}{3}$$

$$= \frac{(2k-2)(2k)(2k-1)}{6}$$

$$= \frac{n(n-1)(n+1)}{6}.$$

WOOT 2010-11

Practice Olympiad 6 Solutions

Therefore, in either case,

$$a_1^2 + a_2^2 + \dots + a_n^2 \ge \frac{n(n-1)(n+1)/6}{2} \cdot d^2 = \frac{n(n^2-1)}{12} \cdot d^2,$$

so

$$d^2 \le \frac{12}{n(n^2 - 1)}(a_1^2 + a_2^2 + \dots + a_n^2).$$

WOOT 2010-11

Practice Olympiad 6 Solutions

5. Let \mathcal{P} be the set of all primes, and let M be a subset of \mathcal{P} containing at least three elements. For any proper subset A of M, all of the prime factors of the number

$$-1 + \prod_{p \in A} p$$

are in M. Prove that $M = \mathcal{P}$.

Solution. First, we show that the primes 2, 3, and 5 are all in M. If 2 is not in M, then let p be any prime in M, so p is odd, and take $A = \{p\}$. Then p-1 is even, so 2 is in M, contradiction. Hence, 2 is in M.

Next, we show that 3 is in M. Let p be a prime in M, other than 2. If p = 3, then we are done. If $p \equiv 1 \pmod{3}$, then taking $A = \{p\}$, we see that 3 is in M. If $p \equiv 2 \pmod{3}$, then $2p - 1 \equiv 0 \pmod{3}$, so taking $A = \{2, p\}$, we see that 3 is in M. Taking $A = \{2, 3\}$, we see that 5 is in M.

Suppose that M contains a finite number of elements. Let $M = \{p_1, p_2, \dots, p_k\}$, where $p_1 < p_2 < \dots < p_k$, so $p_1 = 2$ and $p_2 = 3$, and $k \ge 3$. Let $P = p_3 p_4 \cdots p_k$. Taking $A = \{p_2, p_3, \dots, p_k\}$, we have that all the prime factors of

$$p_2 p_3 \cdots p_k - 1 = 3P - 1$$

are in M. But 3P-1 is relatively prime to all the elements in M, except $p_1=2$, so 3P-1 must be a power of 2. Let

$$3P - 1 = 2^c$$
.

Taking $A = \{p_3, p_4, \dots, p_k\}$, we have that all the prime factors of

$$p_3p_4\cdots p_k-1=P-1$$

are in M. But P-1 is relatively prime to all the elements in M, except $p_1=2$ and $p_2=3$, so P-1 must be the product of a power of 2 and a power of 3. Let

$$P - 1 = 2^a \cdot 3^b$$

From the equations $3P-1=2^c$ and $P-1=2^a\cdot 3^b$, we get

$$2^a \cdot 3^{b+1} = 2^c - 2.$$

We have that $2^a \cdot 3^{b+1} \ge 3$, so $2^c - 2 \ge 3$, which means $c \ge 3$. Then $2^c - 2$ is even, so $a \ge 1$. Dividing both sides by 2, we get

$$2^{a-1} \cdot 3^{b+1} = 2^{c-1} - 1.$$

Then $2^{c-1} - 1$ is odd, so a = 1. Hence,

$$3^{b+1} = 2^{c-1} - 1.$$

Taking this equation modulo 3, we get $(-1)^{c-1} \equiv 1 \pmod{3}$, so c-1 is even. Let c-1=2k, so

$$3^{b+1} = 2^{2k} - 1 = (2^k - 1)(2^k + 1).$$

WOOT 2010-11

Practice Olympiad 6 Solutions

Hence, both 2^k-1 and 2^k+1 are powers of 3, that differ by $(2^k+1)-(2^k-1)=2$. But the only powers of 3 that differ by 2 are 3 and 1, so $2^k=2$, which means k=1, c=3, and b=0. Then $P=2^a\cdot 3^b+1=3$. But $P\geq 5$, contradiction. Therefore, M contains an infinite number of elements.

Let

$$M = \{p_1, p_2, p_3, \dots\},\$$

and let q be an arbitrary prime. We claim that q is in M.

Consider the q+1 numbers p_1-1 , p_1p_2-1 , ..., $p_1p_2\cdots p_{q+1}-1$. By the Pigeonhole principle, two of these numbers are congruent modulo q, say $p_1p_2\cdots p_i-1$ and $p_1p_2\cdots p_j-1$, where $1 \le i < j \le q+1$. We have that

$$p_1 p_2 \cdots p_i - 1 \equiv p_1 p_2 \cdots p_j - 1 \pmod{q}$$
.

Then

$$p_1 p_2 \cdots p_i - p_1 p_2 \cdots p_j \equiv 0 \pmod{q},$$

and

$$p_1 p_2 \cdots p_i (p_{i+1} \cdots p_j - 1) \equiv 0 \pmod{q}$$
.

If q appears among p_1, p_2, \ldots, p_i , then we are done. Otherwise, $p_1 p_2 \cdots p_i$ is relatively prime to q, so

$$p_{i+1}\cdots p_j - 1 \equiv 0 \pmod{q},$$

which means q is in M. We conclude that all primes are in M.

WOOT 2010-11

Practice Olympiad 6 Solutions

6. Let x_1, x_2, \ldots, x_n be real numbers. Prove that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} |x_i + x_j| \ge n \sum_{i=1}^{n} |x_i|.$$

Solution 1. Let

$$f(x_1, x_2, \dots, x_n) = \sum_{i,j=1}^n |x_i + x_j|,$$

$$g(x_1, x_2, \dots, x_n) = n \sum_{i=1}^n |x_i|,$$

$$h(x_1, x_2, \dots, x_n) = f(x_1, x_2, \dots, x_n) - g(x_1, x_2, \dots, x_n).$$

We want to prove that $h(x_1, x_2, ..., x_n) \ge 0$.

Without loss of generality, assume that $x_1, x_2, \ldots, x_k \geq 0$ and $x_{k+1}, x_{k+2}, \ldots, x_n < 0$. Let $m = (x_1 + x_2 + \cdots + x_k)/k$. We claim that if we replace each of x_1, x_2, \ldots, x_k with m, then $h(x_1, x_2, \ldots, x_n)$ does not increase.

Clearly, this operation does not change the value of $g(x_1, x_2, ..., x_n)$. We can express $f(x_1, x_2, ..., x_n)$ as

$$f(x_1, x_2, \dots, x_n) = \sum_{i,j=1}^k |x_i + x_j| + \sum_{i,j=k+1}^n |x_i + x_j| + 2\sum_{i=1}^k \sum_{j=k+1}^n |x_i + x_j|.$$

The values of the first two terms do not change.

For a fixed value of j, the function $|x + x_j|$ is convex. Hence, by Jensen's theorem,

$$\sum_{i=1}^{k} |x_i + x_j| = |x_1 + x_j| + |x_2 + x_j| + \dots + |x_k + x_j| \ge k|m + x_j|.$$

This holds for all $k+1 \le j \le n$. We conclude that if we replace each of x_1, x_2, \ldots, x_k with m, then $f(x_1, x_2, \ldots, x_n)$ does not increase, so $h(x_1, x_2, \ldots, x_n)$ does not increase.

By a similar argument, if we replace each of $x_{k+1}, x_{k+2}, \ldots, x_n$ with their arithmetic mean, then again $h(x_1, x_2, \ldots, x_n)$ does not increase. Hence, it suffices to prove that $h(x_1, x_2, \ldots, x_n) \geq 0$ in the case where $x_1 = x_2 = \cdots = x_k = a$ and $x_{k+1} = x_{k+2} = \cdots = x_n = -b$, where a and b are nonnegative real numbers. In this case, the inequality becomes

$$2k^2a + 2(n-k)^2b + 2k(n-k)|a-b| \ge kna + (n-k)nb.$$

Without loss of generality, assume that $a \geq b$, so

$$2k^{2}a + 2(n-k)^{2}b + 2k(n-k)(a-b) > kna + (n-k)nb.$$

WOOT 2010-11

Practice Olympiad 6 Solutions

This inequality simplifies to

$$kna + (n^2 - 5kn + 4k^2)b \ge 0.$$

Since $a \geq b$,

$$kna + (n^2 - 5kn + 4k^2)b > (n^2 - 4kn + 4k^2)b = (n - 2k)^2b > 0,$$

as desired.

Solution 2. First, we prove some lemmas.

Lemma 1. For any real numbers a and b,

$$\min(a,b) = \frac{a+b-|a-b|}{2}.$$

Proof. The expressions on both sides are symmetric in a and b, so without loss of generality, assume that $a \le b$. Then $\min(a, b) = a$ and

$$\frac{a+b-|a-b|}{2} = \frac{b+a-(b-a)}{2} = a.$$

Hence, the identity holds.

Lemma 2. For any real numbers a and b,

$$|a| + |b| - |a + b| = \begin{cases} 0 & \text{if } ab \ge 0, \\ 2\min(|a|, |b|) & \text{if } ab < 0. \end{cases}$$

Proof. If a = 0 or b = 0, then |a| + |b| - |a + b| = 0. If a > 0 and b > 0, then |a| + |b| - |a + b| = a + b - (a + b) = 0. If a < 0 and b < 0, then |a| + |b| - |a + b| = (-a) + (-b) - [-(a + b)] = 0. Hence, |a| + |b| - |a + b| = 0 if $ab \ge 0$.

Otherwise, ab < 0. Without loss of generality, assume that a > 0 and b < 0. Then |a| + |b| - |a + b| = a - b - |a + b|. By Lemma 1, $a - b - |a + b| = 2\min(a, -b) = 2\min(|a|, |b|)$.

Let P be the set of indices p such that $x_p \ge 0$, and let Q be the set of indices q such that $x_q < 0$. Then by Lemma 2,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (|x_i| + |x_j| - |x_i + x_j|) = \sum_{x_i x_j < 0} 2 \min(|x_i|, |x_j|)$$

$$= 2 \sum_{p \in P, q \in Q} 2 \min(|x_p|, |x_q|)$$

$$= 4 \sum_{p \in P, q \in Q} \min(|x_p|, |x_q|).$$

WOOT 2010-11

Practice Olympiad 6 Solutions

But $\min(|x|,|y|) \le \sqrt{|x||y|}$ for all real numbers x and y, so

$$\begin{split} 4 \sum_{p \in P, q \in Q} \min(|x_p|, |x_q|) &\leq 4 \sum_{p \in P, q \in Q} \sqrt{|x_p||x_q|} \\ &= 4 \left(\sum_{p \in P} \sqrt{|x_p|} \right) \left(\sum_{q \in Q} \sqrt{|x_q|} \right). \end{split}$$

By the AM-GM inequality,

$$4\left(\sum_{p\in P}\sqrt{|x_p|}\right)\left(\sum_{q\in Q}\sqrt{|x_q|}\right) \le \left(\sum_{p\in P}\sqrt{|x_p|} + \sum_{q\in Q}\sqrt{|x_q|}\right)^2$$
$$= \left(\sum_{i=1}^n\sqrt{|x_i|}\right)^2.$$

Finally, by the Cauchy-Schwarz inequality,

$$\left(\sum_{i=1}^{n} \sqrt{|x_i|}\right)^2 \le n \sum_{i=1}^{n} |x_i|.$$

Hence,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (|x_i| + |x_j| - |x_i + x_j|) \le n \sum_{i=1}^{n} |x_i|.$$

Then

$$n\sum_{i=1}^{n}|x_{i}|+n\sum_{i=1}^{n}|x_{i}|-\sum_{i=1}^{n}\sum_{j=1}^{n}|x_{i}+x_{j}| \leq n\sum_{i=1}^{n}|x_{i}|,$$

SO

$$\sum_{i=1}^{n} \sum_{j=1}^{n} |x_i + x_j| \ge n \sum_{i=1}^{n} |x_i|.$$

11

WOOT 2010-11

Practice Olympiad 6 Solutions

7. Let I be the incenter of triangle ABC. Let A_1 and A_2 be points on side BC such that $\angle BIA_1 = \angle CIA_2 = 90^\circ$, let B_1 and B_2 be points on side AC such that $CIB_1 = \angle AIB_2 = 90^\circ$, and let C_1 and C_2 be points on side AB such that $\angle AIC_1 = \angle BIC_2 = 90^\circ$.

Let A', B', and C' be the midpoints of arcs BC, AC, and AB on the circumcircle of triangle ABC. Let $A'A_1$ intersect AC at A'_1 , let $A'A_2$ intersect AB at A'_2 , let $B'B_1$ intersect AB at B'_1 , let $B'B_2$ intersect BC at B'_2 , let $C'C_1$ intersect BC at C'_1 , and let $C'C_2$ intersect AC at C'_2 . Prove that $A'_1A'_2$, $B'_1B'_2$, and $C'_1C'_2$ are concurrent.

Solution. Let γ_O be the circumcircle of triangle ABC. First, we prove a lemma.

Lemma. Let γ_A be the circle that is tangent to sides AB and AC, and internally tangent to γ_O . Then γ_A is tangent to AB and AC at C_1 and B_2 , respectively.

Proof. Let γ_A be tangent to AB, AC, and γ_O at C_a , B_a , and T_1 , respectively.

There exists a homothety, centered at T_1 , that takes γ_A to γ_O . This homothety takes the tangent to γ_A at B_a (namely AC) to a tangent to γ_O . These tangents must be parallel, so the image of B_a under the homothety must be the midpoint of arc AC, namely B'. Hence, T_1 , B_a , and B' are collinear. Similarly, T_1 , C_a , and C' are collinear. Note that BB' and CC' intersect at I.

By Pascal's theorem on hexagon $ABB'T_1C'C$, I lies on B_aC_a . But $AB_a = AC_a$, so B_aC_a is perpendicular to AI. Therefore, $B_a = B_2$ and $C_a = C_1$.

Similarly, we can define γ_B as the circle that is tangent to sides AB, BC, and internally tangent to γ_O , and γ_C as the circle that is tangent to sides AC, BC, and internally tangent to γ_O . Then γ_B is tangent to AB and BC at C_2 and C_3 and C_4 , respectively, and C_4 and C_5 are tangent to C_6 and C_7 and C_8 and C_8 and C_8 and C_8 and C_8 are tangent to C_8 and C_8 and C_8 and C_8 are tangent to C_8 and C_8 and C_8 are tangent to C_8 and C_8 and C_8 are tangent to C_8 and C_8 are tangent to C_8 and C_8 and C_8 are tangent to C_8 are tangent to C_8 and C_8 are tangent to C_8 are tangent to C_8 and C_8 are tangent to C_8 are tangent to C_8 are tangent to C_8 and C_8 are tangent to C_8 are tangent to C_8 and C_8 are tangent to C_8 are tangent to C_8 are tangent to C_8 and C_8 are tangent to C_8 are tangent to C_8 and C_8 are tangent to C_8 are tangent to C_8 and C_8 are tangent to C_8 are tangent to C_8 and C_8 are tangent to C_8 are tangent to C_8 and C_8 are tangent to C_8 are tangent to C_8 and C_8 are tangent to C_8 are tangent to C_8 are tangent to C_8 and C_8 are tangent to C_8 and C_8 are tangent to C_8 are tangent to C_8 are

WOOT 2010-11

Practice Olympiad 6 Solutions

Let γ_I be the incircle of triangle ABC, and let X be the external center of similitude of γ_O and γ_I . Note that A is the external center of similitude of γ_I and γ_A , and T_1 is the external center of similitude of γ_A and γ_O , so by Monge's theorem, X lies on AT_1 . Similarly, X lies on BT_2 and CT_3 .

Finally, by Pascal's theorem on hexagon $ABT_2A'T_3C$, X lies on $A'_1A'_2$. Similarly, X lies on $B'_1B'_2$ and $C'_1C'_2$. Thus, $A'_1A'_2$, $B'_1B'_2$, and $C'_1C'_2$ are all concurrent at X.

