Math 110 — Homework 8 — UCB, Summer 2017 — William Guss

(8.1) Find an example of an inner-product space V and a linear transformation $T: V \to V$ with eigen value λ such that $\lambda^* \notin Eig(T^*)$.

Proof. Let $V = \ell_2(\mathbb{C})$ and let T := L where L is the left-shift operator. Then λ with $|\lambda| < 1$ is an eigenvalue of the T; that is, when $W_{\lambda} = span\left((\lambda^i)_{i=1}^{\infty}\right)$ we have that $L(w) = \lambda w$, $w_{\lambda} \in W$. As in the notes $T^* = R$ where R is the right shift operator, however, the right shift operator R has no eigenvalues as proven on a previous homework.

(8.2) Let V be a finite-dimensional inner-product space, and let $T:V\to V$ be linear. Show that $\langle v|T(v)\rangle\geq 0$ for all $v\in V$ if and only if there is some $S:V\to V$ such that $T=S^*S$.

Proof. If $\langle v|T(v)\rangle \geq 0$ then $\langle v|T(v)\rangle = \langle T^*(v)|v\rangle = \overline{\langle v|T^*(v)\rangle} = \langle v|T^*(v)\rangle = \langle T(v)|v\rangle$, and therefore T is self-adjoint.

Then T has a diagonalizable in some basis, that is there exist a \mathcal{B} so that $[T]_{\mathcal{B}\to\mathcal{B}}$ is diagonal. Since it is semi-positive definite for all v,

$$0 \le \langle v|T(v)\rangle = [v]_{\mathcal{B}}^*[T]_{\mathcal{B}\to\mathcal{B}}[v]_{\mathcal{B}} = \sum_{k=1}^d |v_{\mathcal{B}}^k|^2 \lambda_k$$

which can only be the case if $\lambda_k \geq 0$. Then define S such that $[S]_{\mathcal{B} \to \mathcal{B}} = \sqrt{[T]_{\mathcal{B} \to \mathcal{B}}}$ where the square root is applied pointwise. Then $T = S^*S$ as the square roots are real and on the diagonal. This completes the implication.

In the other direction if $T = S^*S$ then

$$\langle v|T(v)\rangle = \langle v|S^*Sv\rangle = \langle S(v)|S(v)\rangle = ||S(v)||^2 \ge 0.$$

This completes the proof.

(8.3) Define $T: C^{\infty}[-1,1] \to C^{\infty}[-1,1]$ by T(f) = f''. Show that -T is nonnegative.

Proof. Recall from the text that the derivative D is anti-self adjoint. Furthermore, $T = D^2 = -D^*D$ by the anti-self-adjoint property. Thus -T is nonnegative.

(8.4) Let $R: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ be the right-shift operator. Compute |R|.

Proof. By definition $|R| = \sqrt{R^*R}$. Recall that $R^* = L$ and therefore $R^*R = LR : (v_1, ...) \mapsto L(0, v_1, ...) \mapsto (v_1, ...)$. Therefore $LR = Id_{\ell_2(\mathbb{N})}$. Since the identity is idempotent, it is also its own square root. Thus $|R| = Id_{\ell_2(\mathbb{N})}$.

(8.5) Let V and W be inner-product spaces and let $T: V \to W$ be linear. Show that T is unitary iff ||T(v)|| = ||v|| for all v.

Proof. If ||T(v)|| = ||v|| for all v, then $\langle T(v)|T(v)\rangle = ||T(v)||^2 = ||v||^2 \langle v|v\rangle$ for all v. Therefore T is unitary. The foregoing steps algebraically are logically bidirectional and thus the proof is complete.

(8.6) Find an exampole of a finite-dimensional inner-product space V, a linear-transformation $T: V \to V$, and a basis \mathcal{B} of V such that $[T^*]_{\mathcal{B}} \neq [T]_{\mathcal{B}}^*$.

Proof. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ have matrix representation in the standard basis \mathcal{E} given by

$$[T]_{\mathcal{E}} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}.$$

Now, let $\mathcal{B} = \{(1,0),(1,1)\} \subset \mathbb{R}^2$ be the desired basis. We have that

$$[T^*]_{\mathcal{B}} = \begin{bmatrix} 1\\1 \end{bmatrix}_{\mathcal{B}} \begin{bmatrix} 1\\1 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 0 & 0\\1 & 1 \end{bmatrix}.$$

Applying computation to the basic operator we get

$$[T]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}_{\mathcal{B}} \begin{bmatrix} 2 \\ 0 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}.$$

By observation of the foregoing $[T^*]_{\mathcal{B}} \neq [T]_{\mathcal{B}}^*$. This completes the proof.