1. Matematikai alapok

2021. február 24.

1. Állandók

			Matlab
π	=3.14159265358979324		pi
Rad	$=\pi/180$		
Deg	$=180/\pi$		
Arcs	$=3600*180/\pi$		
AU	= 149597870.0	[km]	
c light	= 173.14	$[\mathrm{AU/d}]$	

2. Aritmetikai függvények

```
Föggvény neve Jelölés Matlab Eg\acute{eszr\'esz}-f\ddot{u}ggv\acute{e}ny \operatorname{Int}(x)=[x] floor(x) T\ddot{o}rtr\acute{e}sz-f\ddot{u}ggv\acute{e}ny \operatorname{Frac}(x)=x-\operatorname{Int}(x) x\text{-floor}(x) Modulo-f\ddot{u}ggv\acute{e}ny \operatorname{Modulo}(x,\,y)=y*\operatorname{Frac}(x/y) \operatorname{mod}(x,y) \operatorname{P\'eld\'ak}: \operatorname{Int}(1)=1, \operatorname{Int}(1.9)=1, \operatorname{Int}(-2.2)=-3; \operatorname{Frac}(1)=0, \operatorname{Frac}(1.9)=0.9, \operatorname{Frac}(-2.2)=0.8.
```

3. Mértékegységek szögekre

Jelöljük egy szög mértékét radiánban x r-el, ívfokokban pedig x d-vel. Ekkor

$$\begin{split} x_r &= x_d * \pi/180; \\ x_d &= x_r * 180/\pi. \end{split}$$

Ha a szög mértékét ívfok, ívperc és ívmásodpercben $d_dms = (xd, xm, xs)$ akarjuk , akor ügyelni kell a negatív szögek kezelésénél, amit az alábbi példákkal szemléltetünk:

$$\begin{array}{cccccc} x_d & xd & xm & xs \\ 23.50000 & 23 & 30 & 00.0 \\ -6.15278 & -6 & 09 & 10.0 \\ 0.01667 & 0 & 1 & 0.0 \\ -0.08334 & 0 & -5 & 0.0 \end{array}$$

Az ívfok, ívperc, ívmásodperc formában megadott mértékeknél az előjel az első nemzérus tag mellé kerül, a fok és perc egész szám, míg a másodperc megadható tízedes jegyekkel is.

4. Forgatási mátrixok

Ha az Oxyz derékszögű koordináta-rendszert elforgatva az Ox tengelye körül a φ mértékű szöggel direkt irányba (vagyis az Oy tengelyt az Oz felé forgatva), az $Ox_1y_1z_1$ rendszert kapjuk, (ahol az Ox tengely megegyezik az Ox_1 tengellyel), és egy pont helyzetvektora a két rendszerben

$$\vec{r} = (x, y, z)$$
, illetve $\vec{r}_1 = (x_1, y_1, z_1)$,

akkor

$$\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & +\cos\varphi & +\sin\varphi \\ 0 & -\sin\varphi & +\cos\varphi \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Az Oy tengely körül forgat va a rendszer Oz tengelyét Ox felé, a megfelelő összefüggések:

$$\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = \begin{pmatrix} +\cos\varphi & 0 & -\sin\varphi \\ 0 & 1 & 0 \\ +\sin\varphi & 0 & +\cos\varphi \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix},$$

míg az Oz tengely körül forgatva a rendszer Ox tengelyét Oy felé:

$$\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = \begin{pmatrix} +\cos\varphi & +\sin\varphi & 0 \\ -\sin\varphi & +\cos\varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Tehát a koordináta-rendszerek tengely körüli forgatásai az alábbi forgatási mátrixokkal jellemezhetők:

$$R_{x}(\varphi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & +\cos\varphi & +\sin\varphi \\ 0 & -\sin\varphi & +\cos\varphi \end{pmatrix},$$

$$R_{y}(\varphi) = \begin{pmatrix} +\cos\varphi & 0 & -\sin\varphi \\ 0 & 1 & 0 \\ +\sin\varphi & 0 & +\cos\varphi \end{pmatrix},$$

$$R_{z}(\varphi) = \begin{pmatrix} +\cos\varphi & +\sin\varphi & 0 \\ -\sin\varphi & +\cos\varphi & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

5. Szög mértékének meghatározása

- Ha ismert az $sr=\sin{(r)}$ érték, akkor az $r\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ radiánban megadott szö g mértéke egyértelműen meghatározható az $r=\arcsin{(sr)}$ inverz függvény segítségével.
- Az $r \in [0, 2\pi)$ radiánban megadott szög mé rtékét viszont csak két szögfüggvényérték ismeretében tudjuk egyértelműen meghatározni. Példá ul, ha ismertek az $sr = \sin(r)$, illetve $cr = \cos(r)$ értékek, akkor

$$r = \begin{cases} \arccos(cr), & \text{ha } sr \ge 0, \\ 2\pi - \arccos(cr), & \text{ha } sr < 0. \end{cases}$$

6. Gyakorlatok: Matlab függvények

Készítsük el a következő MATLAB függvényeket:

Név	${f Bemenet}$	Kimenet	Leírás
$\deg _\mathrm{dms}$	$deg \in [0, 360)$	(d, m, s) $d \in [0, 360) \cap \mathbb{N},$ $m \in [0, 59) \cap \mathbb{N},$ $s \in [0, 60) \cap \mathbb{R};$	ívfokban megadott értéket alakít fok-perc-másodperc formába;
${ m dms_deg}$	(d, m, s)	$\deg\in\mathbb{R}$	ívfok-perc-másodperc formájú szögmértéket alakít ívfokba;
$\overline{\deg}$ rad	$deg \in [0, 360)$	$rad \in [0, 2\pi)$	radiánt alakít fokokká
rad_deg	$rad \in [0, 2\pi)$	$deg \in [0, 360)$	fokokatt alakít radiánná
Rot_x	$\varphi \in \mathbb{R} [rad]$	$R_x\left(\varphi\right)\in M_3\left(\mathbb{R}\right)$	forgatási mátrix az Ox tengely körül;
Rot_y	$\varphi \in \mathbb{R} [rad]$	$R_{y}\left(\varphi\right)\in M_{3}\left(\mathbb{R}\right)$	forgatási mátrix az Oy tengely körül;
$\overline{\text{Rot}_{\mathbf{z}}}$	$\varphi \in \mathbb{R} [\mathrm{rad}]$	$R_{z}\left(\varphi\right)\in M_{3}\left(\mathbb{R}\right)$	forgatási mátrix az Oz tengely körül;
sc_rad	$sr, cr \in [-1, 1]$	$r \in [0, 2\pi)$	$sr = \sin(r), cr = \cos r, sr^2 + cr^2 = 1.$

6.1. Példák

- 1. $\operatorname{\mathbf{deg}} \operatorname{\mathbf{dms}}(123.12456789123) = (123.00, 7.00, 28.44);$
- $2. \ \mathbf{dms} \ \ \mathbf{deg}(11,22,33.4567) \ = 11.375960194444444;$
- 3. deg rad(345.678) = 6.033219251708959;
- 4. **rad** deg(6.033219251708959) = 345.678;

5.
$$\mathbf{Rot}_{\mathbf{x}}(\pi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix};$$

6. rad deg(sc rad(-0.5, -sqrt(3)/2)) = 210.

6.2. Tesztkérdés minták

- 1. Az $\alpha=123.12456789123$ fok szögmértéket fok, perc, másodperc alakban kifejezve mennyi a másodperc ötödik tizedesjegye? (V: 0)
- 2. Ha tudjuk, hogy $\cos \alpha = -0.5555555$ és $\sin \alpha < 0$, akkor a (fok, perc másodperc) alakban kifejezett α másodperceinek harmadik tizedesjegye: (**V**: 4)

$$dms = deg_dms(360-acos(-0.5555555)*180/pi)$$

$$dms = 236.00$$
 15.00 3.65

$$1000*dms = 3654.84$$