Introduction to Robotic Manipulation

Session 1

Todays Agenda

Course Introduction

Staff Introduction

Logistics

The Mechanics of Manipulation

Course Objectives

Introduction to Robotic Manipulation

- Fundamentals
- Modern research lines

Exposure to important concepts in:

- Modeling
- Controls
- State-estimation
- Planning/Al

What is Manipulation?

An agents control of its environment through selective and purposeful contact.

Remarkable human manipulation

Robotic Manipulation Examples

Course Material Overview

Mechanics for Manipulation

Perception for Manipulation

Planning for Manipulation

Controls for Manipulation

Mechanics of Manipulation

Study contact mechanics in the context of 3 important manipulation

skills:

- Grasping
- Pushing
- Bouncing

Perception for Manipulation

Our focus will be on combining vision and touch for:

- Object localization / State-estimation
- Model-based grasping and pushing with visual feedback
- Handling Uncertainty from perceptual feedback

Planning and Controls

Topics we will discuss include:

- Model predictive control through contact
- Planning with uni-lateral and complementarity constraints
- Learning and using manipulation primitives

Your background -- ideally

- Linear Algebra necessary
- ME/EECS 567: Robot Kinematics and Dynamics recommended
- Optimization -- recommended
- Python your HW

Python Requirements

- Procedural programming basics writing functions
- Numpy standard library for numerical computations (think MATLAB)
- Linear algebra (matrix manipulation, dot products etc.)
- We will have 2 Python introduction lectures
- We will write most of the code, you'll be "filling the blanks"
- Limited support over piazza

Lectures and Materials

- Our course is recorded on zoom
- Lectures will use a combination of slides and notes written on slides
- Slides will mostly follow notes, but deviate for research slides
- Course notes are online: https://nima-fazeli.github.io/manipulation/
- Join the class on Piazza we'll circulate a link over email

Your expected workload

- Good news? No exams!
- We will have 7 HW assignments no late submissions
- Assignments will be out every 2 weeks on Thursdays
- First assignment will be a refresher on Python skills
- A course project we'll discuss more down the line
- Quiz every 2 weeks over canvas, multiple choice lecture reviews

Why contact mechanics?

Our assumptions – Rigid-body Mechanics

Our assumptions – Non-penetration

State Space

Configuration Space

Reference Frames

Reference Frames

Forces and wrenches

Forces and wrenches