Differential Topology Problems Alec Lau

All uncredited problems written by Prof. Ralph Cohen.

Question 1. Let $\pi: \tilde{X} \to X$ be a covering space. Let Φ be a smooth structure on X. Prove that there is a smooth structure $\tilde{\Phi}$ on \tilde{X} so that $\pi: (\tilde{X}, \tilde{\Phi}) \to (X, \Phi)$ is an immersion.

Proof. First we have to show that $\tilde{X} \to X$ is a topological manifold. Since π is a local homeomorphism, \tilde{X} is locally Euclidean. Let p_1, p_2 be distinct points such that $\pi(p_1) = \pi(p_2) \in U \subset X$, for U an evenly covered open subset of X. Then the components of $\pi^{-1}(U)$ containing p_1, p_2 are, by definition of a covering space, disjoint open subsets of \tilde{X} . If $\pi(p_1) \neq \pi(p_2)$, since X is a manifold, there exist disjoint subsets that contain $\pi(p_1), \pi(p_2)$. These map under π^{-1} to disjoint open subsets of \tilde{X} . Thus \tilde{X} is Hausdorff. For second-countable-ness, we are inspired by Proposition 4.40 in Lee. We check first that each fiber of π is countable. For $x \in X$ and an arbitrary point $p \in \pi^{-1}(x)$. We consider a map β from $\pi_1(X,x)$ to $\pi^{-1}(x)$. Since the fundamental group of a topological manifold is countable, if we can show surjectivity of such a map, we're done. Choose a homotopy class $[f] \in \pi_1(X,x)$ of an arbitrary loop $f:[0,1] \to X$ with f(0)=f(1)=x. From the path-lifting property of covering spaces, there is a lift of f given by $\tilde{f}:[0,1]\to \tilde{X}$ starting at p_0 . The Monodromy Theorem for covering spaces shows that $\tilde{f}(1) \in \pi^{-1}(x)$ depends only on the path class of f. Thus set β such that $\beta[f] = \tilde{f}(1)$. Since the components of \tilde{X} are path-connected, for any point $p \in \pi^{-1}(x)$, there is a path \tilde{g} in \tilde{X} from p_0 to p, and then $f = \pi \circ \tilde{f}$ is a loop in X such that $p = \beta[f]$. The set of all evenly covered open subsets is an open cover of X, and thus has a countable subcover $\{U_i\}$. $\pi^{-1}(U_i)$ has one point in each fiber over U_i , so $\pi^{-1}(U_i)$ has countable components. All components of the form $\pi^{-1}(U_i)$ are thus countable and an open cover of \tilde{X} . Since the components are second-countable, \tilde{X} is second-countable. Thus \tilde{X} is a topological manifold.

For Φ a smooth structure on $X \stackrel{\pi}{\leftarrow} \tilde{X}$, we choose any point $x \in X$ such that there exist two neighborhood pairs $U_1, U_2, V_1, V_2 \subset X$ such that $x \in U_1 \cap U_2, x \in V_1 \cap V_2$ and $\pi^{-1}(U_1) \neq \pi^{-1}(U_2) \subset \tilde{X}$ and V_1, V_2 are the domains of charts ψ_1, ψ_2 , respectively, in Φ . Since π is continuous and maps U_1, U_2 homeomorphically, $\pi^{-1}(x) \in \pi^{-1}(U_1) \cap \pi^{-1}(U_2)$. Since $\psi_1, \psi_2 \in \Phi$, $\psi_1 \circ \psi_2^{-1}$ is smooth. Now we define a smooth structure $\tilde{\Phi}$ on \tilde{X} by composing the charts in Φ with π . To simplify notation,

we call $\tilde{U}_i = \pi^{-1}(U_i \cap V_i), \phi_i = \psi_i|_{U_i \cap V_i}$ i = 1, 2:

$$\tilde{\psi}_i: \tilde{X} \to \mathbb{R}^n \tag{1}$$

$$\tilde{\psi}_i(\tilde{U}_i) = \phi_i \circ \pi(\tilde{U}_i) \tag{2}$$

See Figure 1. $(\tilde{U}_i, \tilde{\psi}_i)$ are charts of \tilde{X} because $\tilde{U}_i, U_i \cap V_i$, and $V_1 \cap V_2$ are open, and the maps that

Figure 1: Charts on \tilde{X}

compose these charts are homeomorphisms: $\psi_i|_{V_1 \cap V_2}$ is still a homeomorphism. Now we need to check that the transition maps for these charts are smooth:

$$\tilde{\psi}_1 \circ \tilde{\psi}_2^{-1} = (\phi_1 \circ \pi) \circ (\phi_2 \circ \pi)^{-1}$$
 (3)

$$= (\psi_1 \circ \pi) \circ \pi^{-1} \circ \phi_2 \tag{4}$$

On $V_1 \cap V_2$, we have $\pi|_{V_1 \cap V_2} \circ \pi^{-1}|_{V_1 \cap V_2} = Id|_{V_1 \cap V_2}$. The identity map is smooth, so our transition map is then $\psi_1 \circ \psi_2^{-1}$, which we know is smooth. By combining our maximal smooth atlas Φ with surjective π , we have thus created a smooth atlas $\tilde{\Phi}$ on \tilde{X} . It remains to show that this smooth

atlas is maximal. There is no such chart $(\tilde{W}, \tilde{\phi})$ not contained in this atlas, because $\pi(\tilde{W})$ is an open subset of X, and thus has an open cover $\{U_{\alpha}, \psi_{\alpha}\}$ of charts in the maximal smooth atlas of X:

$$\tilde{\phi}(\tilde{W}) = (\cup_{\alpha} \psi_{\alpha})|_{(\cup_{\alpha} U_{\alpha}) \cap \pi(\tilde{W})} \circ \pi(\tilde{W})$$
(5)

Since $\tilde{\phi}$ can be written in this way, $(\tilde{W}, \tilde{\phi})$ is contained in this smooth atlas. Thus this smooth atlas is maximal, and $\pi(\tilde{X}, \tilde{\Phi}) \to (X, \Phi)$ is an immersion, as the charts with properly shrunken domains have exactly one chart in X.

Question 2. Consider the DeRham homomorphism

$$\int : \Omega^k(M) \to C^k(M; \mathbb{R}) \tag{6}$$

for each k. Prove that \int is a map of cochain complexes. That is,

$$\int d\omega = \delta(\int \omega) \tag{7}$$

where $\delta: C^k(M;\mathbb{R}) \to C^{k+1}(M;\mathbb{R})$ is the singular coboundary operator.

Proof. We start inductively. We want to show that the following diagram commutes:

$$\Omega^{0}(M) \xrightarrow{\int} C^{0}(M; \mathbb{R})$$

$$\downarrow^{d} \qquad \qquad \downarrow^{\delta}$$

$$\Omega^{1}(M) \xrightarrow{\int} C^{1}(M; \mathbb{R})$$

We have that $f \in \Omega^0(M)$ is just a C^{∞} function on M to \mathbb{R} . Consider a singular chain element $\sigma: \Delta^0 \to M$ in $C_0(M)$. We have

$$\int_{\sigma} f = f(\sigma(\Delta^0)) \in \mathbb{R}$$
 (8)

Thus $\int f$ is clearly an element of $\operatorname{Hom}(C_0(M), \mathbb{R}) = C^0(M; \mathbb{R})$. Now let σ denote the singular chain element $\sigma : [0,1] \to M$. Now we take the boundary homomorphism δ of this element in the

following way:

$$\delta(\int f)(\sigma) = (\int f)(\partial \sigma) \tag{9}$$

$$= \left(\int f\right) (\sigma(1) - \sigma(0)) \tag{10}$$

$$= \left(\int f\right)(\sigma(1)) - \left(\int f\right)(\sigma(0)) \tag{11}$$

$$= f(\sigma(1)) - f(\sigma(0)) \tag{12}$$

Now we take our same $f \in \Omega^0(M)$ and take d of f to obtain $df = f'(t)dt \in \Omega^1(M)$. Taking the De Rham homomorphism of this 1-form gives us, for $\sigma \in C_1(M)$,

$$\left(\int df\right)(\sigma) = \int_{\sigma} df \xrightarrow{\text{Stokes' Theorem}} \int_{\partial \sigma} f = f(\sigma(1)) - f(\sigma(0)) \in \mathbb{R}$$
 (13)

Now we proceed with the inductive step, which is to prove that this diagram commutes:

$$\Omega^{n}(M) \xrightarrow{\int} C^{n}(M; \mathbb{R})$$

$$\downarrow^{d} \qquad \qquad \downarrow^{\delta}$$

$$\Omega^{n+1}(M) \xrightarrow{\int} C^{n+1}(M; \mathbb{R})$$

We proceed in the exact way as before: for $\omega \in \Omega^n(M)$, we take $(\int \omega)(\sigma)$, for $\sigma : \Delta^n \to M$. $\delta(\int \omega)(\sigma) = (\int \omega)\partial\sigma \sum_i (-1)^i (\int f)(\sigma) | [v_0,...,\hat{v}_i,...,v_n] \in \mathbb{R}$. In the other direction of the diagram, we have $d\omega$, then $(\int d\omega)(\sigma)$. This is equal to $\int_{\sigma} d\omega = \int_{\partial \sigma} \omega$ through Stokes' Theorem. This is then equal to the same thing: $\sum_i (-1)^i (\int f)(\sigma) | [v_0,...,\hat{v}_i,...,v_n] \in \mathbb{R}$. Thus $\int d\omega = \delta \int \omega$.

Question 3. Suppose $P^p o M^n$ and $Q^q o M^n$ are smoothly embedded closed submanifolds of M^n , which we also assume is closed. Suppose further that the submanifolds intersect transversely: $P^p o Q^q$. Let $\nu_P o P$ be the normal bundle of P^p in M^n , and let $P^p o \eta_P$ be a tubular neighborhood.

1. Show that the restriction of ν_P to $P^p \cap Q^q$,

$$(\nu_P)_{P^p \cap Q^q} \to P^p \cap Q^q \tag{14}$$

is isomorphic to the normal bundle of $P^p \cap Q^q$ in Q^q .

2. Show that the space of $\eta_P \cap Q^q$ is a tubular neighborhood of $P^p \cap Q^q$ in Q^q .

Proof. 1. Call our smooth embeddings $f: P^p \to M^n, g: Q^q \to M^n$. Since $P^p \pitchfork Q^q$, we have $Df_x(T_xP^p) \oplus Dg_x(T_xQ^q) = T_xM^n$, for all $x \in P^p \cap Q^q$. Thus we have the diagram

where the square in the middle is commutative. We examine the pullback bundle of ν_q by the inclusion $i: P^p \cap Q^q \to Q^q$. We have, for the diagram

$$i^*\nu_q \longrightarrow \nu_q$$

$$\downarrow \qquad \qquad \downarrow^{\pi|_{Q^q}}$$

$$P^p \cap Q^q \stackrel{i}{\longrightarrow} Q^q$$

We have $i^*\nu_q = \{(q, v_q) \in P^p \cap Q^q \times V_q | i(q) = \pi_{Q^q}(v_q)\}$. We have that $\nu_p|_{P^p \cap Q^q}$ consists of those very v_q , since the q points in $i^*\nu_q$ are also elements of $P^p \cap Q^q$. Thus we can associate every normal vector in $\nu_p|_{P^p \cap Q^q}$ with a vector in ν_q over $P^p \cap Q^q$.

2. There really is not much to do here. Since a tubular neighborhood is diffeomorphic to a neighborhood of the normal bundle, we need only consider a neighborhood of the normal bundle of P^p when restricted to $P^p \cap Q^q$. Since η_p is (up to diffeomorphism) a neighborhood of a tubular neighborhood of P^p , we have that $\eta_p \cap Q^q$ consists of $P^p \cap Q^q$ and $\eta_p|_{P^p \cap Q^q}$. Since this is ν_p restricted to $P^p \cap Q^q$, we know from the previous problem that it is isomorphic to a neighborhood of the normal bundle of $P^p \cap Q^q$ in Q^q , i.e. a tubular neighborhood of $P^p \cap Q^q$ in Q^q .

Written by Wojciech Wieczorek.

Question 4. Let $\alpha_0 < \alpha_1 < ... < \alpha_n$ be (n+1) distinct nonzero real numbers. Consider $g: \mathbb{R}^{n+1} \to \mathbb{R}$ given by

$$g(x_0, ..., x_n) = \alpha_0 x_0^2 + ... \alpha_n x_n^2 \tag{15}$$

and let f be the restriction of g to the sphere S^n . Show that $f: S^n \to \mathbb{R}$ is Morse with 2(n+1)

non-degenerate critical points. Find all critical points of f and compute their index, i.e. the number of negative eigenvalues of the Hessian Hf(x).

Proof. Since f is restricted to S^n , we can, without loss of generality, substitute x_i^2 for $1 - x_0^2 - \dots - x_{i-1}^2 - x_{i+1}^2 - x_n^2$ in our equation for g:

$$f(x_0, ..., x_n) \mapsto (\alpha_0 - \alpha_i)x_0^2 + ... + (\alpha_n - \alpha_i)x_n^2 + \alpha_i,$$
 (16)

where there is no term with x_i . We have thus condensed Df down to a map of n coordinates. Taking the derivative of f now, we get

$$Df = (2(\alpha_0 - \alpha_i)x_0, 2(\alpha_1 - \alpha_i)x_1, ..., 2(\alpha_n - \alpha_i)x_n), \tag{17}$$

Where the i^{th} index is eliminated. If we take $x_i = \pm 1$, all other x_k s must be zero to be in the sphere, so this makes Df the zero vector, making the points when $x_i = \pm 1$ both 2 critical points. Since we were doing this without loss of generality, we can repeat this for all n+1 points. Since each (n+1) x_k can be 1 or -1, we have 2(n+1) critical points.

We observe that the Hessian of f is the matrix where the $i^{th}j^{th}$ entry is $\frac{\partial^2 f}{\partial x_i \partial x_j}$. We notice that this is $\delta_{kj}2(\alpha_j-\alpha_i)$, so the Hessian is a diagonal matrix with $2(\alpha_k-\alpha_i)$ as its diagonal entries, in order. Remember that all α are distinct. Since none of these are equal to zero, the determinant of the Hessian must be $\prod_{k=0,k\neq i}^n (\alpha_k-\alpha_i)\neq 0$. Because $\det(H(f))$ is nonzero and independent of coordinates, all critical points are non-degenerate, so f is morse.

As we have shown before, the critical points are $(\pm 1, 0, ..., 0)$, $(0, \pm 1, ...0)$, ..., $(0, 0, ..., \pm 1)$ (where all indeces that are not ± 1 are zero). Since $\alpha_0 < \alpha_1 < ... < \alpha_n$, and the entries of the Hessian can then be $2(\alpha_0 - \alpha_i)$, $2(\alpha_1 - \alpha_i)$, etc., we can determine how many are negative entries. For the critical points $(0, ..., \pm 1, ..., 0)$, the number of indeces less than i have negative values, as $\alpha_i >$ than all of those indeces' α s. The determinant of this Hessian is simply $2^{n-1}(\alpha_0 - \alpha_i)(\alpha_1 - \alpha_i)...(\alpha_n - \alpha_i)$, where all $(\alpha_k - \alpha_i)$, $\forall k < i$ is negative. The eigenvalues of this Hessian are then all values such that each one of these terms summed with the corresponding eigenvalue is 0, making the determinant zero. For the $(\alpha_k - \alpha_i)$ factors of the determinant, since they are negative, the eigenvalue to make this factor zero must be negative, as $(\alpha_k - \alpha_i - \lambda_k)$ for $\lambda_k < 0$ is positive. In conclusion, for the

critical points where the i^{th} entry is ± 1 and all others are zero, there are i negative eigenvalues. \Box

Question 5. Let M^m be a C^∞ closed manifold, and let $N^n \subset M^m$ be a smooth embedded submanifold, where N^n is also assumed to be compact with no boundary. We say that N^n can be "moved off of itself" in M if a tubular neighborhood η of N^n with retraction map $\rho: \eta \to N^n$ admits a section $\sigma: N^n \to \eta$ that is disjoint from N. That is, $N^n \cap \sigma(N^n) = \subset \eta \subset M$.

- Suppose the dimensions of the manifolds satisfy 2n < m. Prove that Nⁿ can be moved of itself in M.
- 2. To see that the dimension requirement above is necessary in general, show that $\mathbb{R}P^1 \subset \mathbb{R}P^2$ cannot be moved off of itself.
- Proof. 1. Denote the embedding of N^n into M^m by e. By Proposition 8.10 in the book, for any choice of $\varepsilon > 0$, we can choose an embedding \tilde{e} isotopic to e such that, for any $x \in N^n, ||e(x) \tilde{e}(x)|| < \varepsilon$ and $\tilde{e}(N^n) \cap N^n =$. Thus we can choose ε small enough that, for any $x \in N^n, ||e(x) \tilde{e}(x)||$ is such that $\tilde{e}(N^n)$ is within the tubular neighborhood η , and $\tilde{e}(N^n) \cap N^n =$. This is because the only transversal intersection of two n-dimensional submanifolds of an m-dimensional submanifold with 2n < m is the empty intersection. We note that $\tilde{e} \circ e^{-1}$ is continuous, with image in η , so the ρ map is such that $\rho \circ \tilde{e} \circ e^{-1} = \tilde{I}d$, where $\tilde{I}d$ is a diffeomorphism of N^n . Thus $\tilde{e} \circ e^{-1}$ is a section that is disjoint from N^n , and so N^n can be moved off itself.
 - 2. We treat $\mathbb{R}P^n$ as S^n/\sim , where $x\sim -x$. Thus when we embed $\mathbb{R}P^1$ into $\mathbb{R}P^2$, we require that the image of the embedding be an equator of S^2/\sim . (The reason it must be an equator is that if it weren't, the image would cease to have $x\sim -x$) Thus we think about an equator of S^2 under this quotient relation. Embedding another $\mathbb{R}P^1$ into $\mathbb{R}P^2$ yields two equators in S^2/\sim . Two equators of S^2 must intersect at two points, and these two points must be antipodal points. However, under our quotient relation, these two points are the same point. Thus the self-intersection number mod 2 of the embedding of $\mathbb{R}P^1$ into $\mathbb{R}P^2$ is 1. Therefore, another embedding of $\mathbb{R}P^1$ cannot be isotoped away from itself in that their intersection is .