ORTHOGONAL PROJECTION

DEFINITION (VECTOR ORTHOGONAL TO A SPACE)

Let V be a subspace of \mathbb{R}^n . A vector \boldsymbol{u} is orthogonal (or perpendicular) to V if \boldsymbol{u} is orthogonal to all vectors in V.

 $V = \{(x, y, z) | 2x + 3y - z = 0\}$ is a subspace of \mathbb{R}^3 (it is a plane in \mathbb{R}^3 containing the origin).

So (2,3,-1) is orthogonal to V.

 $V = \{(x, y, z) \mid ax + by + cz = 0\}$ is a subspace of \mathbb{R}^3 (it is a plane in \mathbb{R}^3 containing the origin).

So (a,b,c) is orthogonal to V.

$$V = \{(x, y, z) \mid ax + by + cz = 0\}$$
 is a subspace of \mathbb{R}^3

Let
$$n = (a, b, c)$$
.

$$V = \{(x, y, z) \mid ax + by + cz = 0\}$$

$$= \{ \boldsymbol{u} \in \mathbb{R}^3 \mid \boldsymbol{n} \cdot \boldsymbol{u} = 0 \}$$

n is orthogonal to V. We say that n is a normal vector of V.

Question: If n is orthogonal to V, is cn orthogonal

to *V* for every $c \neq 0$?

$$\mathbf{n} \cdot \mathbf{u} = 0 \Leftrightarrow (c\mathbf{u}) \cdot \mathbf{u} = 0 \quad (c \neq 0)$$

 $V = \text{span}\{(1,1,-1,0),(0,1,1,-1)\}$ is a subspace of \mathbb{R}^4 .

Question: Find all vectors orthogonal to V.

Remember:

 $\mathbf{v} = (w, x, y, z)$ is orthogonal to V

 \Leftrightarrow

v = (w, x, y, z) is orthogonal to every vector in V.

Wow! Isn't this very difficult to check??

 $V = \text{span}\{(1,1,-1,0),(0,1,1,-1)\}$ is a subspace of \mathbb{R}^4 .

Question: Find all vectors orthogonal to V.

In general, if $V = \text{span}\{u_1, u_2, ..., u_k\}$, then v is orthogonal to V if and only if v is orthogonal to $u_1, u_2, ..., u_k$, that is, $v \cdot u_i = 0$ for all i = 1, ..., k.

This is much easier!

 $V = \text{span}\{(1,1,-1,0),(0,1,1,-1)\}$ is a subspace of \mathbb{R}^4 .

Question: Find all vectors orthogonal to V.

 $m{u}$ is orthogonal to $V \Leftrightarrow m{u}$ is orthogonal to the vectors that spans V

Let
$$u = (w, x, y, z)$$
.

$$(w, x, y, z) \cdot (1, 1, -1, 0) = 0$$
 and $(w, x, y, z) \cdot (0, 1, 1, -1) = 0$

$$\begin{cases} w + x - y = 0 \\ x + y - z = 0 \end{cases}$$

 $V = \text{span}\{(1,1,-1,0),(0,1,1,-1)\}$ is a subspace of \mathbb{R}^4 .

Question: Find all vectors orthogonal to V.

$$\begin{cases} w + x - y &= 0 \\ x + y - z &= 0 \end{cases}$$

$$\begin{cases} w = 2s - t \\ x = -s + t \end{cases}$$

$$\begin{cases} y = s \\ z = t, s, t \in \mathbb{R} \end{cases}$$

$$\begin{pmatrix}
1 & 1 & -1 & 0 & 0 \\
0 & 1 & 1 & -1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -2 & 1 & 0 \\
0 & 1 & 1 & -1 & 0
\end{pmatrix}$$

 $V = \text{span}\{(1,1,-1,0),(0,1,1,-1)\}$ is a subspace of \mathbb{R}^4 .

Question: Find all vectors orthogonal to V.

 $m{u}$ is orthogonal to $V \Leftrightarrow m{u}$ is orthogonal to the vectors that spans V

So
$$\boldsymbol{u}$$
 is orthogonal to V if and only if $\boldsymbol{u} = s \begin{pmatrix} 2 \\ -1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$

 $V = \text{span}\{(1,1,-1,0),(0,1,1,-1)\}$ is a subspace of \mathbb{R}^4 .

Question: Find all vectors orthogonal to V.

 $m{u}$ is orthogonal to $V \Leftrightarrow m{u}$ is orthogonal to the vectors that spans V

So u is orthogonal to V if and only if $u \in \text{span} \left\{ \begin{array}{c|c} 2 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \end{array} \right\}$.

DEFINITION (ORTHOGONAL PROJECTION)

Let V be a subspace of \mathbb{R}^n .

Every vector $u \in \mathbb{R}^n$ can be uniquely written as

$$u = n + p$$

where n is orthogonal to V

and p belongs to V.

p is called the

(orthogonal) projection

of u onto V.

WAIT A MINUTE...

Let V be a subspace of \mathbb{R}^n .

Every vector $u \in \mathbb{R}^n$ can be uniquely written as

$$u = n + p$$

$$n = 0$$

where n is orthogonal to V

$$u = 0 + u$$

and p belongs to V.

What happens if u belongs to V?

$$u = p$$

PROJECTION IN R² AND R³

Let V be a subspace of \mathbb{R}^2 .

$$V = \{(0, y) \mid y \in \mathbb{R}\}\ (V \text{ is the } y\text{-axis})$$

The projection of (x, y) onto V is (0, y).

PROJECTION IN R² AND R³

Let V be a subspace of \mathbb{R}^3 .

$$V = \{(x, y, 0) \mid x, y \in \mathbb{R}\}\ (V \text{ is the } xy\text{-plane})$$

WAIT A(NOTHER) MINUTE...

Let V be a subspace of \mathbb{R}^2 .

$$V = \{(0, y) | y \in \mathbb{R}\}\ (V \text{ is the } y\text{-axis})$$

Let V be a subspace of \mathbb{R}^3 .

$$V = \{(x, y, 0) \mid x, y \in \mathbb{R}\}\ (V \text{ is the } xy\text{-plane})$$

Questions:

What if the subspaces are not so 'trivial'?

How can we compute orthgonal projections in general?

What is required?

SUMMARY

- 1) What it means for a vector to be orthogonal to a vector space.
- 2) Definition of orthogonal projection onto a vector space.