Is EEG Really Better Left Alone for Developmental Datasets? Will Decker^{1,2} & Julie M. Schneider² ¹Department of Psychology

²Department of Communication Sciences and Disorders **Louisiana State University**

Background

- Noise is unavoidable in EEG/ERP data.
- Preprocessing operations aim to remove noise & isolate brain signal.
- Efforts to standardize different preprocessing methods suggest an automated approach is best for reproducibility and that standardized parameters can yield optimal results [2][3].
- However, preprocessing standardization has only been done using adult data [3].
- High variability in child EEG/ERP data makes it difficult to truly standardize denoising techniques[1][6][10][12].
- Little is known about which preprocessing methods are optimal for child EEG/ERP data.

Research Q's

- What are the optimal parameters for each preprocessing step of child EEG/ERP data?
 - Are these different in adults?
- Does child EEG/ERP data require full automaticity, manual completion, or a hybrid of the two?

The "winners" at each preprocessing step. Each parameter yielded the least variance in the data relative to other parameters within each preprocessing step.

Data Quality Measure

Standardized Measurement Error (SME) [9]

SD = Standard deviation of mean **Individual Single Trial** amplitude across trials within $SME = \frac{SD}{\sqrt{N}}$ given time-window SME score within a **N** = Number of trials time window $RMS(SME_{1:N}) = \sqrt{\frac{SME_1^2 + SME_2^2 + \dots + SME_N^2}{N}}$ **Aggregating SME** scores across **N** = Number of participants participants **Choosing a winner n** = Number of $winner = min\{|maxRMS(SME) - minRMS(SME)|\}$ denoising parameters

Data & Task

- Data:[7]
 - 6-9 years old (n=24).
 - 128-channel EEG Geodesic Hydrogel system
 - 9 EOG channels and 9 face/scalp electrodes automatically removed before preprocessing.
 - Re-reference at Cz
- Sampling rate: 500 Hz
- Task: sequence learning. • ERP: P300 [11]

Discussion

- Evaluating child (developmental populations) EEG/ERP data quality is important because of vulnerability to noise and artifacts.
- Our findings suggest a liberal approach to data preprocessing with the exception of filtering and component removal.
- Filtering may serve as the most principle method for removing noise in developmental EEG data[3].
- Many of these parameters are deviations from the "default settings" in EEGLAB.
- Our pipeline resulted in multiple significant ERPs.
- There are many other preprocessing techniques; our findings only generalize to the specific ones chosen for this analysis.

Limitations

- Only used EEGLAB.
- Used one measure of variance.
- No control over recording conditions.

Future applications

- Testing different cognitive tasks and ERPs [13].
- Directly comparing to adult data.
- Examining manual versus automated channel rejection and artifact rejection.
- Experimenting with other toolboxes.
- Developing other methods to quantify noise in EEG/ERP data (e.g., [3]).

References

- 1. Bell, M. A., & Cuevas, K. (2012). Using EEG to Study Cognitive Development: Issues and Practices. Journal of Cognition and Development, 13(3), 281–294.
- https://doi.org/10.1080/15248372.2012.691143 2. Clayson, P. E., Baldwin, S. A., Rocha, H. A., & Larson, M. J. (2021). The data-processing multiverse of event-related potentials (ERPs): A roadmap for the optimization and standardization of ERP processing and reduction pipelines. NeuroImage, 245, 118712. https://doi.org/10.1016/j.neuroimage.2021.118712
- 3. Delorme, A. (2022). EEG is better left alone (p. 2022.12.03.518987). bioRxiv. https://doi.org/10.1101/2022.12.03.518987 4. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.
- Journal of Neuroscience Methods, 134(1), 9-21. https://doi.org/10.1016/j.jneumeth.2003.10.009 5. Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analysis of event-related brain potentials/fields I: A critical tutorial review.
- Psychophysiology, 48(12), 1711-1725. https://doi.org/10.1111/j.1469-8986.2011.01273.x 6. Hoehl, S., & Wahl, S. (2012). Recording Infant ERP Data for Cognitive Research. Developmental Neuropsychology, 37(3), 187-209. https://doi.org/10.1080/87565641.2011.627958
- 7. Langer, N., Ho, E. J., Alexander, L. M., Xu, H. Y., Jozanovic, R. K., Henin, S., Petroni, A., Cohen, S., Marcelle, E. T., Parra, L. C., Milham, M. P., & Kelly, S. P. (2017). A resource for assessing information processing in the developing brain using EEG and eye tracking. Scientific Data, 4(1), Article 1.
- 8. Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: An open-source toolbox for the analysis of event-related potentials. Frontiers in Human Neuroscience, 8. https://www.frontiersin.org/articles/10.3389/fnhum.2014.00213
- 9. Luck, S. J., Stewart, A. X., Simmons, A. M., & Rhemtulla, M. (2021). Standardized measurement error: A universal metric of data quality for averaged eventrelated potentials. Psychophysiology, 58(6), e13793. https://doi.org/10.1111/psyp.13793
- 10. Meyer, M., Lamers, D., Kayhan, E., Hunnius, S., & Oostenveld, R. (2021). Enhancing reproducibility in developmental EEG research: BIDS, cluster-based permutation tests, and effect sizes. Developmental Cognitive Neuroscience, 52, 101036. https://doi.org/10.1016/j.dcn.2021.101036 11. Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology: Official Publication of the American
- Electroencephalographic Society, 9(4), 456-479. https://doi.org/10.1097/00004691-199210000-00002 12. van der Velde, B., & Junge, C. (2020). Limiting data loss in infant EEG: Putting hunches to the test. Developmental Cognitive Neuroscience, 45, 100809.
- https://doi.org/10.1016/j.dcn.2020.100809 13. Zhang, G., & Luck, S. J. (n.d.). Variations in ERP Data Quality Across Paradigms, Participants, and Scoring Procedures.

https://doi.org/10.1038/sdata.2017.40

I am applying to PhD programs this cycle...check out my website!

Code and more...

Recommended pipeline (under development)

The code for this project!

