if to is negative then E has changed the direction

$$\Gamma_{o} = \frac{1}{2} \frac{1}{1}$$

$$\frac{1}{1} \frac{1}{1}$$

$$N_1 = \left(\frac{M_1}{\varepsilon_1}\right)^{1/2}$$
 $N_2 = \left(\frac{M_2}{\varepsilon_2}\right)^{1/2}$

for non magnetic media

$$\sqrt{\xi_{r_1}} - \sqrt{\xi_{r_2}} = \sqrt{\xi_0 \xi_{r_1}} - \sqrt{\xi_0 \xi_{r_2}}$$

$$\sqrt{\xi_{r_1}} + \sqrt{\xi_{r_2}} = \sqrt{\xi_0 \xi_{r_1}} + \sqrt{\xi_0 \xi_{r_2}}$$

$$\frac{n_1 - n_2}{n_1 + n_2}$$
In the series of the series of

this is refractive index

~ ri " 1.45

for non magnetic material

 $\int_{0}^{\infty} = \frac{\Omega_{1} - \Omega_{2}}{\Omega_{1} + \Omega_{2}} = -Ve$

ond so, Er = opposik to Ei

Initial kVL/KCL problem

Wavelength for freq = $50 \text{ KL} \rightarrow \frac{3 \times 10^8}{50} = 6 \times 10^8 \text{ cm}$

Since wavelength is very big, we con assume for a very small circuit that voltage remains constat along a R=0 line

(S)

but for very long ckts, we cannot assume:

Vsrc = ULOad 2 ×

Isrc = Iroad J

EXFI vis almost zero outside the circuit because of E

(EXII) Power is held/concentrated within the 2 conductors and being guided from SRC & Loas at all points because both E and IT suitch directions together.

Guided wave propagation

ERROR POSSIBLE: These conductors might not remain as PEC at higher frequency

Distributed Resistance (not lump resistance x)
two shout the conductors
because not PEC

Assume that distributed rusistone
per unit length as Rs (SI/m)
1 hot just on becomse distributed
Serias
resistances
LAZ (very small)
along with this we have inductore
as well because of the B
Rs(S/M)
L(H/m)
additionally, ue also have distibuted
capacitore due to the É
Rs(S/m) L(H/m)
m-1000/mm-000/mm
C(E/m) T T T
m -000 m 000 m

lastly we have or very small between
the two conductors so that means
very high resistant between them
(dielectric medium)
(leakage current)

Ult
$$X = R + j\omega L$$

(admittance) $Y = j\omega C + L = (G + j\omega C)$

Lo very less

bacause $Rsh >>>>$

Since we have all these non-idealities, there must be some voltage drop and hence KVL/KCL would fail without considering these factors.

KCL/KVL fails for macroscopic circuity but still work for <fig1> because △Z→O (because distance very small)

 $V(z,t) - I(z,t)[R+jwL)\Delta z - V(z+\Delta z,t) = 0$ because Rodl

are per unit values

 $-T(z,t)X\Delta z = V(z+\Delta z,t) - V(z,t)$

$$V(z+\Delta z,t)-V(z,t)=-XI(z,t)$$

DZ

lim DZ >0

$$\frac{\partial V}{\partial z} = -XI(z,t)$$

What about the current?

$$I(z,t) = I(z+\Delta z,t) + dI$$

$$I(z+\Delta z,t)-I(z,t)=-dI$$

$$I(z+\Delta z,t)-I(z,t)=-VY\Delta z$$

$$\frac{92}{5} = -12$$

row we find the wave equation (requires 2nd demaation)

$$\frac{\partial^2 V}{\partial z^2} = -X \frac{\partial I}{\partial I} = -X(-VY) = V \cdot XY$$

Tote:
$$X = R + jwL$$
 & complex nums
$$Y = G + jwC$$

$$\frac{\partial^2 V}{\partial z^2} - \frac{\partial^2 V}{\partial z^2} = 0$$
 where $\frac{\partial^2 V}{\partial z^2} = \frac{\partial^2 V}{\partial z^2} =$

general soln:

continuous traismission

Now, when will have bossless transmission i.e. no atternation in signal?

when e-az and eaz = 0

Lo a = 0 i.e. & = purely complex

So R=0 ond G=0

4 segues registare =0

4 leakage wrest =0 (Rshunt 717)

SO, & = jB = jurvic -> B = WILC

wavelength:
$$\lambda = 2\pi = 2\pi = 1$$

So will file

and velocity - $V = \frac{1}{\sqrt{1}}$

this is of the

guided wave

Quiz 3 and Quiz 4 Syllabus some

(open bods) (closed book)

Quiz 5 and Quiz 6 Syllabus: till today

(open bods) (closed book)

30 mins

PROSECT

finite difference method?

Vin - Vi forward difference

Az

Vin - Vi-1 backward difference

\(\text{Dackward difference} \)

\(\text{Contrab difference} \)

\(\text{Contrab difference} \)

\(\text{Contrab difference} \)
\(\text{Contrab difference} \)
\(\text{Contrab difference} \)
\(\text{Contrab difference} \)
\(\text{Contrab difference} \)
\(\text{Contrab difference} \)
\(\text{Contrab difference} \)
\(\text{Contrab difference} \)
\(\text{Contrab difference} \)