Aula 24 - Redes Convolucionais (Parte I)

João Florindo

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas - Brasil florindo@unicamp.br

Outline

- Introdução
- 2 Rede Convoluciona
- 3 Camada de Pooling
- 4 Outras Camadas

- Automatizar tarefas da nossa visão.
- Parece, mas não é simples!
- Variação em escala, posição, perspectiva, luz, formato, etc.; oclusão,
 ...
- EX.: Carro autônomo detectando pedestres e placas.
- Redes convolucionais têm se sobressaído.

- Automatizar tarefas da nossa visão.
- Parece, mas não é simples!
- Variação em escala, posição, perspectiva, luz, formato, etc.; oclusão,
 ...
- EX.: Carro autônomo detectando pedestres e placas.
- Redes convolucionais têm se sobressaído.

- Automatizar tarefas da nossa visão.
- Parece, mas não é simples!
- Variação em escala, posição, perspectiva, luz, formato, etc.; oclusão,
 ...
- EX.: Carro autônomo detectando pedestres e placas.
- Redes convolucionais têm se sobressaído.

- Automatizar tarefas da nossa visão.
- Parece, mas não é simples!
- Variação em escala, posição, perspectiva, luz, formato, etc.; oclusão,
 ...
- EX.: Carro autônomo detectando pedestres e placas.
- Redes convolucionais têm se sobressaído.

- Automatizar tarefas da nossa visão.
- Parece, mas não é simples!
- Variação em escala, posição, perspectiva, luz, formato, etc.; oclusão,
 ...
- EX.: Carro autônomo detectando pedestres e placas.
- Redes convolucionais têm se sobressaído.

Redes Neurais Convolucionais

• Teoria "antiga", mas ganhou protagonismo a partir de 2012.

 Alex Krizhevsky reduziu erro de 26% para 15% na competição ImageNet ("olimpíada" da Visão Computacional).

Despertou interesse de empresas como Google (busca de imagens),
 Amazon (recomendação de produtos), Instagram (sistema de busca),
 Facebook (marcação de usuários em fotos), etc.

Redes Neurais Convolucionais

• Teoria "antiga", mas ganhou protagonismo a partir de 2012.

 Alex Krizhevsky reduziu erro de 26% para 15% na competição ImageNet ("olimpíada" da Visão Computacional).

Despertou interesse de empresas como Google (busca de imagens),
 Amazon (recomendação de produtos), Instagram (sistema de busca),
 Facebook (marcação de usuários em fotos), etc.

Redes Neurais Convolucionais

• Teoria "antiga", mas ganhou protagonismo a partir de 2012.

 Alex Krizhevsky reduziu erro de 26% para 15% na competição ImageNet ("olimpíada" da Visão Computacional).

Despertou interesse de empresas como Google (busca de imagens),
 Amazon (recomendação de produtos), Instagram (sistema de busca),
 Facebook (marcação de usuários em fotos), etc.

Inspiração Biológica

 Cérebro reconhece objetos partindo de primitivas básicas, p.ex., patas e rabo de um cachorro, e vai iterativamente construindo conceitos mais abstratos.

 Experimento de Hubel e Wiesel em 1962: neurônios corticais especializados em certas orientações.

Inspiração Biológica

 Cérebro reconhece objetos partindo de primitivas básicas, p.ex., patas e rabo de um cachorro, e vai iterativamente construindo conceitos mais abstratos.

 Experimento de Hubel e Wiesel em 1962: neurônios corticais especializados em certas orientações.

• Problema da rede neural totalmente conectada:

- 120 milhões de parâmetros!
 - Muito dado para treinar.
 - Custo computacional.

- Atributos importantes em uma posição (bordas, cantos, contornos, etc.) tendem a ser em outras também (estrutura compartilhada).
- Objeto deslocado não é um novo objeto (invariância).
- SOLUÇÃO: Unidades escondidas olhando só para uma região e compartilhando pesos.

- Atributos importantes em uma posição (bordas, cantos, contornos, etc.) tendem a ser em outras também (estrutura compartilhada).
- Objeto deslocado não é um novo objeto (invariância).
- SOLUÇÃO: Unidades escondidas olhando só para uma região e compartilhando pesos.

- Atributos importantes em uma posição (bordas, cantos, contornos, etc.) tendem a ser em outras também (estrutura compartilhada).
- Objeto deslocado não é um novo objeto (invariância).
- SOLUÇÃO: Unidades escondidas olhando só para uma região e compartilhando pesos.

Outline

- Introdução
- Rede Convolucional
- 3 Camada de Pooling
- 4 Outras Camadas

Convolução

Convolução

https://indoml.com

João Florindo CNN 13 / 36

Convolução+
$$ReLU(z) = max(0, z)$$
:

A Convolution Layer

- Imagem inteira introduzida como entrada (pode ser colorida, multicanais, etc.).
- Convolução com um filtro (neurônio).
- Suporte do filtro: campo receptivo.
- Resultado da convolução: mapa de ativação ou mapa de atributos.
- Ligeiramente menor que a imagem original porque as bordas são descartadas.
- Cada filtro pode representar um atributo específico da imagem, p.ex., reta, curva, cor, etc.

- Imagem inteira introduzida como entrada (pode ser colorida, multicanais, etc.).
- Convolução com um filtro (neurônio).
- Suporte do filtro: campo receptivo.
- Resultado da convolução: mapa de ativação ou mapa de atributos.
- Ligeiramente menor que a imagem original porque as bordas são descartadas.
- Cada filtro pode representar um atributo específico da imagem, p.ex., reta, curva, cor, etc.

- Imagem inteira introduzida como entrada (pode ser colorida, multicanais, etc.).
- Convolução com um filtro (neurônio).
- Suporte do filtro: campo receptivo.
- Resultado da convolução: mapa de ativação ou mapa de atributos.
- Ligeiramente menor que a imagem original porque as bordas são descartadas.
- Cada filtro pode representar um atributo específico da imagem, p.ex., reta, curva, cor, etc.

- Imagem inteira introduzida como entrada (pode ser colorida, multicanais, etc.).
- Convolução com um filtro (neurônio).
- Suporte do filtro: campo receptivo.
- Resultado da convolução: mapa de ativação ou mapa de atributos.
- Ligeiramente menor que a imagem original porque as bordas são descartadas.
- Cada filtro pode representar um atributo específico da imagem, p.ex., reta, curva, cor, etc.

- Imagem inteira introduzida como entrada (pode ser colorida, multicanais, etc.).
- Convolução com um filtro (neurônio).
- Suporte do filtro: campo receptivo.
- Resultado da convolução: mapa de ativação ou mapa de atributos.
- Ligeiramente menor que a imagem original porque as bordas são descartadas.
- Cada filtro pode representar um atributo específico da imagem, p.ex., reta, curva, cor, etc.

- Imagem inteira introduzida como entrada (pode ser colorida, multicanais, etc.).
- Convolução com um filtro (neurônio).
- Suporte do filtro: campo receptivo.
- Resultado da convolução: mapa de ativação ou mapa de atributos.
- Ligeiramente menor que a imagem original porque as bordas são descartadas.
- Cada filtro pode representar um atributo específico da imagem, p.ex., reta, curva, cor, etc.

- Sucessivas convoluções detectam atributos de mais alto nível, p.ex., semi-círculos (reta+curva), quadrados (4 retas), etc.
- Em níveis mais altos ainda pode detectar um texto manuscrito ou um objeto de uma cor específica.
- Campos receptivos se tornam mais e mais amplos (informação mais global).

OBSERVAÇÃO

Valores (pesos) dos filtros são ajustados durante o treinamento por backpropagation.

- Sucessivas convoluções detectam atributos de mais alto nível, p.ex., semi-círculos (reta+curva), quadrados (4 retas), etc.
- Em níveis mais altos ainda pode detectar um texto manuscrito ou um objeto de uma cor específica.
- Campos receptivos se tornam mais e mais amplos (informação mais global).

OBSERVAÇÃO

Valores (pesos) dos filtros são ajustados durante o treinamento por backpropagation.

- Sucessivas convoluções detectam atributos de mais alto nível, p.ex., semi-círculos (reta+curva), quadrados (4 retas), etc.
- Em níveis mais altos ainda pode detectar um texto manuscrito ou um objeto de uma cor específica.
- Campos receptivos se tornam mais e mais amplos (informação mais global).

OBSERVAÇÃO

Valores (pesos) dos filtros são ajustados durante o treinamento por backpropagation.

Camada Convolucional - Detalhes

- Stride (deslocamento) e Padding (preenchimento).
- Stride é o espaçamento entre as máscaras.

Camada Convolucional - Detalhes

 Maior stride = menos sobreposição entre campos receptivos e saída com menor dimensão.

Camada Convolucional - Detalhes

Camada Convolucional - Detalhes

• Padding é o preenchimento (com zeros por exemplo) para deixar a imagem convoluída com o mesmo tamanho da original.

The input volume is 32 x 32 x 3. If we imagine two borders of zeros around the volume, this gives us a 36 x 36 x 3 volume. Then, when we apply our conv layer with our three 5 x 5 x 3 filters and a stride of 1, then we will also get a 32 x 32 x 3 output volume.

Camada Convolucional - Detalhes

Dimension: 6 x 6 https://indoml.com

Hiper-parâmetros

- Número de camadas convolucionais e totalmente conectadas, tamanho dos filtros, *stride*, *padding*, etc.
- Depende do problema: tamanho, número, complexidade e tipo de imagem, processamento envolvido, etc.
- Altamente empírico: conjunto de validação.

Hiper-parâmetros

- Número de camadas convolucionais e totalmente conectadas, tamanho dos filtros, *stride*, *padding*, etc.
- Depende do problema: tamanho, número, complexidade e tipo de imagem, processamento envolvido, etc.
- Altamente empírico: conjunto de validação.

Hiper-parâmetros

- Número de camadas convolucionais e totalmente conectadas, tamanho dos filtros, *stride*, *padding*, etc.
- Depende do problema: tamanho, número, complexidade e tipo de imagem, processamento envolvido, etc.
- Altamente empírico: conjunto de validação.

• Rectified Linear Units:

$$f(x) = \max(0, x).$$

- Superaram a sigmoide, tanh e outras funções de ativação.
- Treinamento muito mais rápido com desempenho parecido.
- Atenua efeito de dissipação do gradiente (vanishing gradient): gradiente diminui exponencialmente ao longo das camadas tornando o aprendizado muito lento.

Rectified Linear Units:

$$f(x) = \max(0, x).$$

- Superaram a sigmoide, tanh e outras funções de ativação.
- Treinamento muito mais rápido com desempenho parecido.
- Atenua efeito de dissipação do gradiente (vanishing gradient): gradiente diminui exponencialmente ao longo das camadas tornando o aprendizado muito lento.

Rectified Linear Units:

$$f(x) = \max(0, x).$$

- Superaram a sigmoide, tanh e outras funções de ativação.
- Treinamento muito mais rápido com desempenho parecido.
- Atenua efeito de dissipação do gradiente (vanishing gradient): gradiente diminui exponencialmente ao longo das camadas tornando o aprendizado muito lento.

Rectified Linear Units:

$$f(x) = \max(0, x).$$

- Superaram a sigmoide, tanh e outras funções de ativação.
- Treinamento muito mais rápido com desempenho parecido.
- Atenua efeito de dissipação do gradiente (vanishing gradient): gradiente diminui exponencialmente ao longo das camadas tornando o aprendizado muito lento.

Outline

- Introdução
- Rede Convolucional
- 3 Camada de Pooling
- 4 Outras Camadas

- Camadas convolucionais são equivariantes: se a entrada é transladada, a saída também será.
- Mas desejamos que nossa predição seja invariante: translação não afeta.
- SOLUÇÃO: Camada de pooling.

- Camadas convolucionais são equivariantes: se a entrada é transladada, a saída também será.
- Mas desejamos que nossa predição seja invariante: translação não afeta.
- SOLUÇÃO: Camada de pooling.

- Camadas convolucionais são equivariantes: se a entrada é transladada, a saída também será.
- Mas desejamos que nossa predição seja invariante: translação não afeta.
- SOLUÇÃO: Camada de pooling.

- Ou camada de sub-amostragem (downsampling).
- Mais comum: maxpooling filtro (normalmente 2 x 2) e stride do mesmo tamanho detectando maior elemento da região.

Example of Maxpool with a 2x2 filter and a stride of 2

- Ou camada de sub-amostragem (downsampling).
- Mais comum: maxpooling filtro (normalmente 2 × 2) e stride do mesmo tamanho detectando maior elemento da região.

Example of Maxpool with a 2x2 filter and a stride of 2

- Alternativas são, por exemplo, average pooling e L²-pooling.
- Motivação: dado que o atributo está na imagem convoluída (resposta alta ao filtro respectivo), não importa tanto a localização exata.
- Reduz o número de pesos (custo computacional), compactando os dados.
- Controla o sobre-treinamento (overfitting): perda de generalização.

- Alternativas são, por exemplo, average pooling e L^2 -pooling.
- Motivação: dado que o atributo está na imagem convoluída (resposta alta ao filtro respectivo), não importa tanto a localização exata.
- Reduz o número de pesos (custo computacional), compactando os dados.
- Controla o sobre-treinamento (overfitting): perda de generalização.

- Alternativas são, por exemplo, average pooling e L²-pooling.
- Motivação: dado que o atributo está na imagem convoluída (resposta alta ao filtro respectivo), não importa tanto a localização exata.
- Reduz o número de pesos (custo computacional), compactando os dados.
- Controla o sobre-treinamento (overfitting): perda de generalização.

- Alternativas são, por exemplo, average pooling e L2-pooling.
- Motivação: dado que o atributo está na imagem convoluída (resposta alta ao filtro respectivo), não importa tanto a localização exata.
- Reduz o número de pesos (custo computacional), compactando os dados.
- Controla o sobre-treinamento (overfitting): perda de generalização.

Max Pooling

Avg Pooling

https://indoml.com

Outline

- Introdução
- Rede Convolucional
- 3 Camada de Pooling
- Outras Camadas

- Esta camada é usada apenas na fase de treinamento, não no teste.
- Elimina um conjunto aleatório de ativações na camada setando para zero.
- Força a rede a ser "redundante", i.e, a classificar corretamente mesmo que algumas ativações sejam zeradas.
- Atenua o overfitting.

- Esta camada é usada apenas na fase de treinamento, não no teste.
- Elimina um conjunto aleatório de ativações na camada setando para zero.
- Força a rede a ser "redundante", i.e, a classificar corretamente mesmo que algumas ativações sejam zeradas.
- Atenua o overfitting.

- Esta camada é usada apenas na fase de treinamento, não no teste.
- Elimina um conjunto aleatório de ativações na camada setando para zero.
- Força a rede a ser "redundante", i.e, a classificar corretamente mesmo que algumas ativações sejam zeradas.
- Atenua o overfitting.

- Esta camada é usada apenas na fase de treinamento, não no teste.
- Elimina um conjunto aleatório de ativações na camada setando para zero.
- Força a rede a ser "redundante", i.e, a classificar corretamente mesmo que algumas ativações sejam zeradas.
- Atenua o overfitting.

- Normalização (z-score) das ativações por mini-batch.
- Torna o treinamento mais rápido e estável.
- Atenua o covariante shift: efeito da aleatoriedade dos dados entrada e pesos iniciais.
- Normalmente aplicado após uma camada totalmente conectada ou convolucional e antes de uma não-linearidade (p.ex. ReLU).

- Normalização (z-score) das ativações por mini-batch.
- Torna o treinamento mais rápido e estável.
- Atenua o covariante shift: efeito da aleatoriedade dos dados entrada e pesos iniciais.
- Normalmente aplicado após uma camada totalmente conectada ou convolucional e antes de uma não-linearidade (p.ex. ReLU).

- Normalização (z-score) das ativações por mini-batch.
- Torna o treinamento mais rápido e estável.
- Atenua o covariante shift: efeito da aleatoriedade dos dados entrada e pesos iniciais.
- Normalmente aplicado após uma camada totalmente conectada ou convolucional e antes de uma não-linearidade (p.ex. ReLU).

- Normalização (z-score) das ativações por mini-batch.
- Torna o treinamento mais rápido e estável.
- Atenua o covariante shift: efeito da aleatoriedade dos dados entrada e pesos iniciais.
- Normalmente aplicado após uma camada totalmente conectada ou convolucional e antes de uma não-linearidade (p.ex. ReLU).

Camada Totalmente Conectada

- Ao final, temos a camada totalmente conectada.
- Estabelece quais atributos de alto nível (última camada convolutional) mais se correlacionam com a classe do objeto.
- EX.: Imagem de um cachorro teria resposta alta no mapa de ativação correspondente a patas e rabo. Um pássaro teria resposta alta para bico e asas.

Camada Totalmente Conectada

- Ao final, temos a camada totalmente conectada.
- Estabelece quais atributos de alto nível (última camada convolutional) mais se correlacionam com a classe do objeto.
- EX.: Imagem de um cachorro teria resposta alta no mapa de ativação correspondente a patas e rabo. Um pássaro teria resposta alta para bico e asas.

Camada Totalmente Conectada

- Ao final, temos a camada totalmente conectada.
- Estabelece quais atributos de alto nível (última camada convolutional) mais se correlacionam com a classe do objeto.
- EX.: Imagem de um cachorro teria resposta alta no mapa de ativação correspondente a patas e rabo. Um pássaro teria resposta alta para bico e asas.

Redes Neurais Convolucionais

Redes Neurais Convolucionais

