Material Science Homework 1 Due Tuesday Oct 16, 2018

(4%)E:
$$\vec{E} = \vec{a_3} + \frac{1}{2}\vec{c} = \frac{1}{3}[\bar{1}\bar{1}20] + \frac{1}{2}[0001] = \frac{1}{6}[\bar{2}\bar{2}43]$$

註1:因為方向的正負不同,因此差一個正負號則全錯

 $\fbox{$ ext{it 2}$}$: HCP 的四軸表示法伴隨有長度的意味,因此前面的 $\frac{1}{6}$ 加入更能表達單位晶胞內的方向

2. (a) Plane A is a $(32\overline{2})$ plane. (3%)

	<u>x</u>	\underline{v}	<u>z</u>
Intercepts	$\frac{a}{3}$	$\frac{b}{2}$	$-\frac{c}{2}$
Intercepts in terms of a , b , and c	$\frac{1}{3}$	$\frac{1}{2}$	$-\frac{1}{2}$
Reciprocals of intercepts	3	2	-2
Reduction	(not necessary)		
Enclosure	$(32\overline{2})$		

Plane B is a $(20\overline{2})$ plane. (2%)

	<u>x</u>	<u>y</u>	<u>z</u>
Intercepts	$-\frac{a}{2}$	∞b	$\frac{c}{2}$
Intercepts in terms of a , b , and c	$-\frac{1}{2}$	∞	$\frac{1}{2}$
Reciprocals of intercepts	– 2	0	2

$$(\bar{2}02)$$
 or $(20\bar{2})$

(b) Plane 1 is a (0 2 0) plane. (2%)

	\underline{x}	$\underline{\mathcal{V}}$	<u>z</u>
Intercepts	∞a	<i>b</i> /2	∞c
Intercepts in terms of a , b , and c	∞	1/2	∞
Reciprocals of intercepts	0	2	0
Enclosure		(020)	

Plane 2 is a $(2\bar{2}1)$ plane. (3%)

<u>x</u>	Y	<u>z</u>
a/2	<i>-b</i> /2	c
1/2	-1/2	1
2	-2	1
	$(2\overline{2}1)$	
	a/2 1/2	a/2 -b/2 1/2 -1/2 2 -2

註 1: (010)和(020)在 unit cell 表示的平面不完全相同,相似狀況以此類推,故會酌扣分數

註2:注意平面、平面族、方向、方向族的表示方法,不同表示方法意義不同

註3:在結晶結構中,截距不完全是指長度,截距是與各軸單位長度的比例

3.

4. A sketch of one-third of an ideal HCP unit cell is shown below.

$$\overline{MJ}^2 = \overline{MH}^2 + \overline{JH}^2$$

$$(a)^2 = \left(\frac{c}{2}\right)^2 + \left(\frac{2}{3} \times \frac{\sqrt{3}}{2}a\right)^2 \quad \Rightarrow \quad \left(\frac{c}{a}\right)^2 = \frac{8}{3}$$

$$\frac{c}{a} = \sqrt{\frac{8}{3}} \approx 1.633$$
 (5%)

APF=
$$\frac{V_S}{V_C} = \frac{6 \times \frac{4}{3} \pi R^3}{\left[6 \times \frac{\sqrt{3}}{4} (2R)^2\right] \times \left(\sqrt{\frac{8}{3}} \times 2R\right)} = 0.74$$
 (5%)

5.
$$n = \frac{\rho V_C N_A}{A_{Sn}} = \frac{(7.30)(5.83 \times 10^{-8} cm)^2 (3.18 \times 10^{-8} cm) N_A}{118.69} = 4 \frac{atoms}{unit cell}$$

$$APF = \frac{V_S}{V_C} = \frac{n \times \frac{4}{3} \pi R^3}{a^2 c} = \frac{4 \times \frac{4}{3} \pi (1.51 \times 10^{-8} cm)^3}{(5.83 \times 10^{-8} cm)^2 (3.18 \times 10^{-8} cm)} = 0.534 = 53.4\% \quad (10\%)$$

6. In this case c=1.856a, for HCP, a=2R, which means that $V_C=6R^2c\sqrt{3}=6R^2(1.856)(2R)\sqrt{3}$

The density equal to

$$\rho = \frac{nA_{Zn}}{V_C N_A} = \frac{nA_{Zn}}{(1.856)(12\sqrt{3})N_A R^3}$$

Solving R from above eq. lead to

$$R = \left[\frac{nA_{Zn}}{(1.856)(12\sqrt{3})\rho N_A} \right]^{\frac{1}{3}} = \left[\frac{6 \times 65.41}{(1.856)(12\sqrt{3})(7.13)N_A} \right]^{\frac{1}{3}} = 0.133 \, nm \quad (10\%)$$

7. (a)
$$LD_{111} = \frac{number\ of\ atoms\ centered\ on\ [111]\ direction}{length\ of\ [111]\ direction}$$
 (in terms of R) $= \frac{2\ atoms}{4R} = \frac{1}{2R}$ (5%)

$$PD_{110} = \frac{number\ of\ atoms\ centered\ on\ (110)\ plane}{area\ of\ (110)\ plane} (in\ terms\ of\ R) = \frac{2\ atoms}{\frac{16\sqrt{2}}{3}\ R^2} = \frac{3}{8\sqrt{2}R^2} \ (5\%)$$

(b)
$$LD_{111} = \frac{1}{2R} = \frac{1}{2 \times 0.137} = 3.650 \, nm^{-1} \quad (2.5\%)$$

$$PD_{110} = \frac{3}{8\sqrt{2}R^2} = \frac{3}{8\sqrt{2}(0.137)^2} = 14.128 \, nm^{-2} \quad (2.5\%)$$

註:題目已經告知利用 R 證明線密度和面密度,故用百分比表示者不給分

8. (a)
$$V_C = \frac{nA_{Zr}}{\rho N_A} = \frac{6 \times 91.22}{6.51 \times N_A} = 1.396 \times 10^{-22} cm^3 / unit cell$$
 (10%)

(b) For HCP and c = 1.593 a

$$V_C = 3 \times a \times \frac{\sqrt{3}}{2} a \times c = \frac{3\sqrt{3}}{2} a^2 c = \frac{3\sqrt{3}}{2} (1.593) a^3 = 1.396 \times 10^{-22} cm^3 / unit cel$$

Solving for a

$$a = \left[\frac{1.396 \times 10^{-22}}{(\frac{3\sqrt{3}}{2})(1.593)}\right]^{\frac{1}{3}} = 0.323 \, nm \qquad (5\%)$$

$$c = 1.593 a = 1.593 \times 0.323 = 0.515 nm$$
 (5%)

上面加總共95分,送5分,總分100分