AMENDMENTS TO THE CLAIMS:

The following listing of claims will replace all prior versions and listings of claims in the application.

Claim 1 (previously amended): A compound of the formula (I)

Het
$$\bigvee_{V}^{X}$$
 \bigvee_{Z}^{V} \bigvee_{Z}^{V}

wherein

1**\$**4 ""

V represents hydrogen, halogen, alkyl or alkoxy,

W represents hydrogen, cyano, nitro, halogen, alkyl, alkenyl, alkynyl, alkoxy, halogenoalkyl, halogenoalkoxy, optionally substituted phenyl, phenoxy, phenylthio, phenylalkoxy or phenylalkylthio,

X represents halogen, alkyl, alkenyl, alkynyl, alkoxy, halogenoalkyl, halogenoalkoxy, cyano, nitro, optionally substituted phenyl, phenoxy, phenylthio, phenylalkyloxy or phenylalkylthio,

Y represents hydrogen, halogen, alkyl, alkoxy, halogenoalkyl, halogenoalkoxy, cyano or nitro,

z represents hydrogen, halogen, alkyl, alkoxy, halogenoalkyl, halogenoalkoxy, hydroxyl, cyano, nitro or optionally substituted phenoxy, phenylthio, 5- or 6-membered hetaryloxy, 5- or 6-membered hetarylthio, phenylalkyloxy or phenylalkylthio,

Het represents one of the groups

wherein

G represents hydrogen (a) or represents one of the groups

Mo-7025 - 2 -

E represents hydrogen (a) or represents one of the groups

L represents oxygen or sulphur,

M represents oxygen or sulphur,

- R¹ represents optionally halogen- or cyano-substituted alkyl, alkenyl, alkoxyalkyl, alkylthioalkyl or polyalkoxyalkyl or represents optionally halogen-, alkyl- or alkoxy-substituted cycloalkyl or heterocyclyl or represents optionally substituted phenyl, phenylalkyl, hetaryl, phenoxyalkyl or hetaryloxyalkyl,
- R² represents optionally halogen- or cyano-substituted alkyl, alkenyl, alkoxyalkyl or polyalkoxyalkyl or represents optionally substituted cycloalkyl, phenyl or benzyl,
- R³, R⁴ and R⁵ independently represent optionally halogen-substituted alkyl, alkoxy, alkylamino, dialkylamino, alkylthio, alkenylthio or cycloalkylthio or represent optionally substituted phenyl, benzyl, phenoxy or phenylthio,
- R⁶ and R⁷ independently represent hydrogen, represent optionally halogenor cyano-substituted alkyl, cycloalkyl, alkenyl, alkoxy, alkoxyalkyl, represent optionally substituted phenyl or benzyl, or together with the N atom to which they are attached form an optionally substituted cyclic group which optionally contains oxygen or sulphur,

except for the compound below

$$H_3C$$
 CH_3
 CH_3
 CH_3

Claim 2 (previously amended): The compound of Claim 1, wherein

- V represents hydrogen, halogen, C₁-C₆-alkyl or C₁-C₆-alkoxy,
- $\label{eq:warpon} W \qquad \text{represents hydrogen, nitro, cyano, halogen, C_1-C_6-alkyl, C_2-C_6-alkenyl or C_2-C_6- alkynyl, C_1-C_6-alkoxy, C_1-C_4-halogenoalkyl, C_1-C_4-halogenoalkoxy or optionally halogen-, C_1-C_6-alkyl-, C_1-C_6-alkoxy-, C_1-C_4-halogenoalkyl-, C_1-C_4-halogenoalkoxy-, nitro- or cyano-substituted phenyl, phenoxy, phenylthio, phenyl-C_1-C_4-alkoxy or phenyl-C_1-C_4-alkylthio, C_1-C_4-alkylthio, C_1-C_4-a$
- x represents halogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆- alkynyl, C₁-C₆-alkoxy, C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkoxy, cyano, nitro or optionally halogen-, C₁-C₆-alkyl-, C₁-C₆-alkoxy-, C₁-C₄-halogenoalkyl-, C₁-C₄-halogenoalkoxy-, nitro- or cyano-substituted phenyl, phenoxy, phenylthio, phenyl-C₁-C₄-alkoxy or phenyl-C₁-C₄-alkylthio,
- Y represents hydrogen, halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-halogenoalkoxy, cyano or nitro,
- represents hydrogen, halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkoxy, hydroxyl, cyano, nitro or optionally halogen-, C₁-C₄-alkyl-, C₁-C₄-alkoxy-, C₁-C₄-halogeno-alkyl-, C₁-C₄-halogenoalkoxy-, nitro- or cyano-substituted phenoxy, phenylthio, thiazolyloxy, pyridinyloxy, pyrimidyloxy, pyrazolyloxy, phenyl-C₁-C₄-alkyloxy or phenyl-C₁-C₄-alkylthio,

Het represents one of the groups

G represents hydrogen (a) or represents one of the groups

$$\mathbb{R}^{4}$$
 \mathbb{R}^{5} (e), \mathbb{E} (f), or \mathbb{R}^{7} (g)

wherein

E represents a metal ion or an ammonium ion,

L represents oxygen or sulphur and

M represents oxygen or sulphur,

R1 represents optionally halogen- or cyano-substituted C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, C_1 - C_8 -alkylthio- C_1 - C_8 -alkyl or poly- C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl or represents optionally halogen-, C_1 - C_6 -alkyl- or C_1 - C_6 -alkoxy-substituted C_3 - C_8 -cycloalkyl in which optionally one or two not directly adjacent methylene groups are replaced by oxygen and/or sulphur,

represents optionally halogen-, cyano-, nitro-, C_1 - C_6 -alkyl-, C_1 - C_6 -alkoxy-, C_1 - C_6 -halogenoalkyl-, C_1 - C_6 -halogenoalkoxy-, C_1 - C_6 -alkylsulphonyl-substituted phenyl,

represents optionally halogen-, nitro-, cyano-, C_1 - C_6 -alkyl-, C_1 - C_6 -alkoxy-, C_1 - C_6 -halogenoalkyl- or C_1 - C_6 -halogenoalkoxy-substituted phenyl- C_1 - C_6 -alkyl,

represents optionally halogen- or C_1 - C_6 -alkyl-substituted 5- or 6-membered hetaryl having one or two heteroatoms selected from the group consisting of oxygen, sulphur and nitrogen, represents optionally halogen- or C_1 - C_6 -alkyl-substituted phenoxy- C_1 - C_6 -alkyl or

represents optionally halogen-, amino- or C_1 - C_6 -alkyl-substituted 5- or 6-membered hetaryloxy- C_1 - C_6 -alkyl having one or two heteroatoms selected from the group consisting of oxygen, sulphur and nitrogen,

represents optionally halogen- or cyano-substituted C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_1 - C_8 -alkoxy- C_2 - C_8 -alkyl, C_2 - C_8 -alkyl,

represents optionally halogen-, C₁-C₆-alkyl- or C₁-C₆-alkoxy-substituted C₃-C₈-cycloalkyl or represents optionally halogen-, cyano-, nitro-, C₁-C₆-alkyl-, C₁

alkoxy-, C_1 - C_6 -halogenoalkyl- or C_1 - C_6 -halogenoalkoxy-substituted phenyl or benzyl,

- R³ represents optionally halogen-substituted C₁-C₈-alkyl or optionally halogen-, C₁-C₆-alkyl-, C₁-C₆-alkoxy-, C₁-C₄-halogenoalkyl-, C₁-C₄-halogenoalkoxy-, cyano- or nitro-substituted phenyl or benzyl,
- R⁴ and R⁵ independently represent optionally halogen-substituted C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₈-alkylamino, di(C₁-C₈-alkyl)amino, C₁-C₈-alkylthio or C₃-C₈-alkenylthio or represent optionally halogen-, nitro-, cyano-, C₁-C₄-alkoxy-, C₁-C₄-halogenoalkoxy-, C₁-C₄-alkylthio-, C₁-C₄-halogenoalkylthio-, C₁-C₄-alkyl- or C₁-C₄-halogenoalkyl-substituted phenyl, phenoxy or phenylthio,
- R⁶ and R⁷ independently represent hydrogen, represent optionally halogenor cyano-substituted C₁-C₈-alkyl, C₃-C₈-cycloalkyl, C₁-C₈-alkoxy,
 C₃-C₈-alkenyl or C₁-C₈-alkoxy-C₂-C₈-alkyl, represent optionally
 halogen-, C₁-C₈-alkyl-, C₁-C₈-halogenoalkyl- or C₁-C₈-alkoxysubstituted phenyl or benzyl or together represent an optionally C₁-C₆alkyl-substituted C₃-C₆-alkylene radical in which optionally one
 methylene group is replaced by oxygen or sulphur,

except for the compound below

٠« _

Mo-7025 - 6 -

$$H_3C$$
 CH_3
 CH_3
 CH_3

Claim 3 (previously amended): The compound of Claim 1, wherein

- V represents hydrogen, fluorine, chlorine, bromine, C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy,
- W represents hydrogen, fluorine, chlorine, bromine, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_2 -halogenoalkyl or C_1 - C_2 -halogenoalkoxy,
- x represents fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₂-halogenoalkoxy, cyano or nitro,
- Y represents hydrogen, fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₂-halogenoalkyl, C₁-C₂-halogenoalkoxy, cyano or nitro,
- z represents hydrogen, fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₂-halogenoalkyl, C₁-C₂-halogenoalkoxy, hydroxyl, cyano, nitro or optionally fluorine-, chlorine-, bromine-, C₁-C₄-alkyl-, C₁-C₄-alkoxy-, C₁-C₂-halogenoalkyl-, C₁-C₂-halogenoalkoxy-, nitro- or cyano-substituted phenoxy or benzyloxy,

Het represents one of the groups

G represents hydrogen (a) or represents one of the groups

14

E represents a metal ion or an ammonium ion,

L represents oxygen or sulphur and

M represents oxygen or sulphur,

represents optionally fluorine- or chlorine-substituted C₁-C₁₆-alkyl, C₂-C₁₆-alkenyl, C₁-C₆-alkoxy-C₁-C₆-alkyl, C₁-C₆-alkylthio-C₁-C₆-alkyl or poly-C₁-C₆-alkoxy-C₁-C₆-alkyl or represents optionally fluorine-, chlorine-, C₁-C₅-alkyl- or C₁-C₅-alkoxy-substituted C₃-C₇-cycloalkyl in which optionally one or two not directly adjacent methylene groups are replaced by oxygen and/or sulphur, represents optionally fluorine-, chlorine-, bromine-, cyano-, nitro-, C₁-C₄-alkyl-, C₁-C₄-alkoxy-, C₁-C₃-halogenoalkyl-, C₁-C₃-halogenoalkoxy-, C₁-C₄-alkylthio- or C₁-C₄-alkylsulphonyl-substituted phenyl,

represents optionally fluorine-, chlorine-, bromine-, C_1 - C_4 -alkyl-, C_1 - C_4 -alkoxy-, C_1 - C_3 -halogenoalkyl- or C_1 - C_3 -halogenoalkoxy-substituted phenyl- C_1 - C_4 -alkyl,

represents optionally fluorine-, chlorine-, bromine- or C_1 - C_4 -alkyl-substituted pyrazolyl, thiazolyl, pyridyl, pyrimidyl, furanyl or thienyl, represents optionally fluorine-, chlorine-, bromine- or C_1 - C_4 -alkyl-substituted phenoxy- C_1 - C_5 -alkyl or

represents optionally fluorine-, chlorine-, bromine-, amino- or C_1 - C_4 -alkyl-substituted pyridyloxy- C_1 - C_5 -alkyl, pyrimidyloxy- C_1 - C_5 -alkyl, thiazolyloxy- C_1 - C_5 -alkyl,

 $\label{eq:c2-C16-alkyl} R^2 \quad \text{represents optionally fluorine- or chlorine-substituted C_1-C_{16}-alkyl, $$C_2$-$C_{16}$-alkenyl, C_1-C_6-alkoxy-C_2-C_6-alkyl, $$C_2$-$C_6$-alkyl, $$C_2$-$C_6$

-8-

represents optionally fluorine-, chlorine-, C_1 - C_4 -alkyl- or C_1 - C_4 -alkoxy-substituted C_3 - C_7 -cycloalkyl or

represents optionally fluorine-, chlorine-, bromine-, cyano-, nitro-, C₁-C₄-alkyl-, C₁-C₃-alkoxy-, C₁-C₃-halogenoalkyl- or C₁-C₃-halogenoalkoxy-substituted phenyl or benzyl,

R³ represents optionally fluorine- or chlorine-substituted C₁-C₆-alkyl or optionally fluorine-, chlorine-, bromine-, C₁-C₄-alkyl-, C₁-C₄-alkoxy-, C₁-C₂-halogenoalkoxy-, C₁-C₂-halogenoalkyl-, cyano- or nitro-substituted phenyl or benzyl,

 R^4 and R^5 independently represent optionally fluorine- or chlorine-substituted $\mathsf{C}_1\text{-}\mathsf{C}_6\text{-}\mathsf{alkyl},\,\mathsf{C}_1\text{-}\mathsf{C}_6\text{-}\mathsf{alkoxy},\,\mathsf{C}_1\text{-}\mathsf{C}_6\text{-}\mathsf{alkylamino},\,\mathsf{di}(\mathsf{C}_1\text{-}\mathsf{C}_6\text{-}\mathsf{alkyl})\mathsf{amino},\,\mathsf{C}_1\text{-}\mathsf{C}_6\text{-}\mathsf{alkylthio}$ or $\mathsf{C}_3\text{-}\mathsf{C}_4\text{-}\mathsf{alkenylthio}$ or represent optionally fluorine-, chlorine-, bromine-, nitro-, cyano-, $\mathsf{C}_1\text{-}\mathsf{C}_3\text{-}\mathsf{alkoxy-},\,\mathsf{C}_1\text{-}\mathsf{C}_3\text{-}\mathsf{alkoxy-},\,\mathsf{C}_1\text{-}\mathsf{C}_3\text{-}\mathsf{alkylthio-},\,\mathsf{C}_1\text{-}\mathsf{C}_3\text{-}\mathsf{alkylthio-},\,\mathsf{C}_1\text{-}\mathsf{C}_3\text{-}\mathsf{alkylthio-},\,\mathsf{C}_1\text{-}\mathsf{C}_3\text{-}\mathsf{alkyl-}$ or $\mathsf{C}_1\text{-}\mathsf{C}_3\text{-}\mathsf{halogenoalkyl-substituted}$ phenyl, phenoxy or phenylthio,

R⁶ and R⁷ independently represent hydrogen, represent optionally fluorine- or chlorine-substituted C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₁-C₆-alkoxy, C₃-C₆-alkenyl or C₁-C₆-alkoxy-C₂-C₆-alkyl, represent optionally fluorine-, chlorine-, bromine-, C₁-C₅-halogenoalkyl-, C₁-C₅-alkyl- or C₁-C₅-alkoxy-substituted phenyl or benzyl, or together represent an optionally C₁-C₄-alkyl-substituted C₃-C₆-alkylene radical in which optionally one methylene group is replaced by oxygen or sulphur, except for the compound below

$$H_3C$$
 CH_3
 F_3C
 CH_3

Claim 4 (previously amended): The compound of Claim 1, wherein
 V represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl, methoxy or ethoxy,

Mo-7025 - 9 -

- W represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl, propyl, methoxy or ethoxy,
- X represents fluorine, chlorine, bromine, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, propoxy, isopropoxy, trifluoromethyl, trifluoromethoxy, difluoromethoxy or cyano,
- Y represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl, propyl, isopropyl, tert-butyl, methoxy, ethoxy, propoxy, isopropoxy, trifluoromethyl, trifluoromethoxy, difluoromethoxy, cyano or nitro,
- z represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl, propyl, isopropyl, tert-butyl, methoxy, ethoxy, propoxy, isopropoxy, trifluoromethyl, trifluoromethoxy, difluoromethoxy, cyano or nitro,

Het represents one of the groups

G represents hydrogen (a) or represents one of the groups

wherein

E represents a metal ion or an ammonium ion,

L represents oxygen or sulphur and

M represents oxygen or sulphur,

R¹ represents optionally fluorine- or chlorine-substituted C₁-C₁₄-alkyl, C₂-C₁₄-alkenyl, C₁-C₄-alkoxy-C₁-C₆-alkyl, C₁-C₄-alkylthio-C₁-C₆-alkyl, poly-C₁-C₄-alkoxy-C₁-C₄-alkyl or represents optionally fluorine-, chlorine-, methyl-, ethyl-, n-propyl-, isopropyl-, n-butyl-, isobutyl-, tert-butyl-, methoxy-, ethoxy-, n-propoxy- or isopropoxy-substituted C₃-C₆-

cycloalkyl in which optionally one or two not directly adjacent methylene groups are replaced by oxygen and/or sulphur, represents optionally fluorine-, chlorine-, bromine-, cyano-, nitro-, methyl-, ethyl-, n-propyl-, isopropyl-, methoxy-, ethoxy-, trifluoro-methyl-, trifluoromethoxy-, methylthio-, ethylthio-, methylsulphonyl- or ethylsulphonyl-substituted phenyl,

represents optionally fluorine-, chlorine-, bromine-, methyl-, ethyl-, n-propyl-, isopropyl-, methoxy-, ethoxy-, trifluoromethyl- or trifluoromethoxy-substituted benzyl,

represents optionally fluorine-, chlorine-, bromine-, methyl- or ethyl-substituted furanyl, thienyl or pyridyl,

represents optionally fluorine-, chlorine-, methyl- or ethyl-substituted phenoxy- C_1 - C_4 -alkyl or

represents optionally fluorine-, chlorine-, amino-, methyl- or ethyl-substituted pyridyloxy- C_1 - C_4 -alkyl, pyrimidyloxy- C_1 - C_4 -alkyl, thiazolyloxy- C_1 - C_4 -alkyl,

represents optionally fluorine- or chlorine-substituted C₁-C₁₄-alkyl, C₂-C₁₄-alkenyl, C₁-C₄-alkoxy-C₂-C₆-alkyl or poly-C₁-C₄-alkoxy-C₂-C₆-alkyl,

represents optionally fluorine-, chlorine-, methyl-, ethyl-, n-propyl-, isopropyl- or methoxy-substituted C_3 - C_6 -cycloalkyl,

or represents optionally fluorine-, chlorine-, cyano-, nitro-, methyl-, ethyl-, n-propyl-, isopropyl-, methoxy-, ethoxy-, trifluoromethyl- or trifluoromethoxy-substituted phenyl or benzyl,

R³ represents optionally fluorine- or chlorine-substituted methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, or optionally fluorine-, chlorine-, bromine-, methyl-, ethyl-, isopropyl-, tert-butyl-, methoxy-, ethoxy-, isopropoxy-, trifluoromethyl-, trifluoromethoxy-, cyano- or nitro-substituted phenyl or benzyl,

 R^4 and R^5 independently represent optionally fluorine- or chlorine-substituted C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylamino, di(C_1 - C_4 -alkyl)amino or

C₁-C₄-alkylthio or represent optionally fluorine-, chlorine-, bromine-, nitro-, cyano-, methyl-, methoxy-, trifluoromethyl- or trifluoromethoxy-substituted phenyl, phenoxy or phenylthio,

 R^6 and R^7 independently represent hydrogen, represent optionally fluorine- or chlorine-substituted C_1 - C_4 -alkyl, C_3 - C_6 -cycloalkyl, C_1 - C_4 -alkoxy, C_3 - C_4 -alkenyl or C_1 - C_4 -alkoxy- C_2 - C_4 -alkyl, represent optionally fluorine-, chlorine-, bromine-, methyl-, methoxy- or trifluoromethyl-substituted phenyl or benzyl, or together represent an optionally methyl- or ethyl-substituted C_5 - C_6 -alkylene radical in which optionally one methylene group is replaced by oxygen or sulphur,

except for the compound below

$$H_3C$$
 CH_3
 F_3C
 CH_3

Claim 5 (previously amended): A process for preparing a compound of Claim 1, comprising

condensing intramolecularly a compound of the formula (II)

$$F_3C \xrightarrow{CO_2R^8} X \qquad V \qquad (II)$$

wherein

V, W, X, Y and Z are as defined in Claim 1, and

R⁸ represents alkyl

in the presence of a diluent and in the presence of a base, yielding a compound of the formula (I-1-a)

or

condensing intramolecularly a compound of the formula (III)

wherein

V, W, X, Y, Z and R⁸ are as defined in Claim 1, in the presence of a diluent and in the presence of a base to yield a compound of the formula (I-2-a)

$$\mathsf{F_3C} \overset{\mathsf{HO}}{\underbrace{\hspace{1cm} \mathsf{X} \hspace{1cm} \mathsf{V}}} \mathsf{Y} \qquad \qquad \mathsf{(I-2-a)}$$

and

collecting the reaction product

Claim 6 (previously amended): The compound of the formula (II)

$$F_3C - \bigvee_{N}^{CO_2R^8} \bigvee_{N}^{X} \bigvee_{V}$$
 (II)

wherein

V, W, X, Y and Z are as defined in Claim 1 and R⁸ represents alkyl.

Claim 7 (previously amended): The compound of the formula (III)

wherein

V, W, X, Y, Z and R⁸ are as defined in claim 6 except for the compound below

$$F_3C \xrightarrow{O} CH_3 \\ CO_2C_2H_5 CH_3$$

Claim 8 (previously amended): The compound of the formula (XVI)

wherein

V, W, X, Y and Z are as defined in Claim 1.

Claim 9 (previously amended): The compound of the formula (XIX)

V, W, X, Y and Z are as defined in Claim 1.

Claim 10 (previously amended): A compound of the formula (XVIII)

$$H_2N$$
 CN $(XVIII)$

Claim 11 (previously amended): The compound of the formula (XIV)

$$F_3C$$
 CO_2R^8 (XIV)

wherein

R⁸ is as defined in Claim 6.

Claim 12 (previously amended): A pesticide and/or weed killer comprising at least one compound of Claim 1.

Claim 13 (previously canceled)

Claim 14 (previously amended): A method for controlling at least one of a pest and a weed comprising applying a compound of Claim 1 to the pest, weed and/or its habitat.

Claim 15 (previously amended): A process for preparing at least one of a pesticide and a weed killer comprising mixing at least one compound of Claim 1 with at least one of extenders and surfactants.

Claim 16 (previously canceled).

Claim 17 (previously presented): The process of Claim 5, further including reacting the compound of formula (I-1-a) or the compound of formula (I-2-a) with a compound of the formula (IV)

$$Hal \bigvee_{i \in \mathcal{A}} R^1$$
 (IV)

wherein

R¹ is as defined in Claim 1 and

Hal represents halogen

or

reacting the compound of formula (I-1-a) or the compound of formula (I-2-a) with a compound of the formula (V)

$$R^{1}$$
-CO-O-CO- R^{1} (V)

wherein

R¹ is as defined in Claim 1, and

collecting the reaction product,

wherein the step of reacting optionally occurs in the presence of a diluent and in the presence of an acid binder.

Claim 18 (previously presented): The process of Claim 5, further including reacting the compound of formula (I-1-a) or the compound of formula (I-2-a) with a compound of the formula (VI)

$$R^2$$
-M-CO-CI (VI)

wherein

R² and M are as defined in Claim 1, and collecting the reaction product,

wherein the step of reacting optionally occurs in the presence of a diluent and in the presence of an acid binder.

Claim 19 (previously presented): The process of Claim 5, further including reacting the compound of formula (I-1-a) or the compound of formula (I-2-a) with a compound of the formula (VII)

$$CI \underbrace{\hspace{1cm} M-R^2}_{S}$$
 (VII)

wherein

 $\,$ M and $\,$ R 2 are as defined in Claim 1, and collecting the reaction product,

wherein the step of reacting optionally occurs in the presence of a diluent and in the presence of an acid binder.

Claim 20 (previously presented): The process of Claim 5, further including reacting the compound of formula (I-1-a) or the compound of formula (I-2-a) with a compound of the formula (VIII)

$$R^3$$
-SO₂-CI (VIII)

wherein

R³ is as defined in Claim 1, and collecting the reaction product,

wherein the step of reacting optionally occurs in the presence of a diluent and in the presence of an acid binder.

Claim 21 (previously presented): The process of Claim 5, further including reacting the compound of formula (I-1-a) or the compound of formula (I-2-a) with a compound of the formula (IX)

$$Hal - P \qquad (IX)$$

$$L \qquad R^5$$

wherein

L, R⁴ and R⁵ are as defined in Claim 1.

Hal represents halogen, and collecting the reaction product,

wherein the step of reacting optionally occurs in the presence of a diluent and in the presence of an acid binder.

Claim 22 (previously presented): The process of Claim 5, further including reacting the compound of formula (I-1-a) or the compound of formula (I-2-a) with a compound of the formula (X) or (XI)

$$R^{10} \setminus R^{11}$$
 (XI)

wherein

5

Me represents a mono- or divalent metal,

t represents the number 1 or 2 and

 $R^{10},\,R^{11},\,R^{12}$ independently represent hydrogen or alkyl, and collecting the reaction product,

wherein the step of reacting optionally occurs in the presence of a diluent.

Claim 23 (previously presented): The process of Claim 5, further including reacting the compound of formula (I-1-a) or the compound of formula (I-2-a) with a compound of the formula (XII)

$$R^6-N=C=L$$
 (XII)

wherein

R⁶ and L are as defined in Claim 1, and collecting the reaction product,

wherein the step of reacting optionally occurs in the presence of a diluent and in the presence of a catalyst,

or

reacting the compound of formula (I-1-a) or the compound of formula (I-2-a) with a compound of the formula (XIII)

$$R^6$$
 N CI (XIII)

L, R^6 and R^7 are as defined in Claim 1, and collecting the reaction product, wherein the step of reacting optionally occurs in the presence of a diluent and in the presence of an acid binder.