Application Serial No. 10/749,180 Reply to Office Action of April 17, 2008 JUL 2 2 2008

PATENT Docket: CU-6547

Amendments to the Specification

Please delete the second, third and fourth paragraphs of the specification and replace them with the following three paragraphs:

In recent years, the technology of audio-video <u>equipment</u> equipments, personal computers or the like has advanced to be cordless and portable, and this advance has required reduction in size and weight as well as higher energy density to batteries used as driving power sources of these equipments. For these demands, there have been proposed nonaqueous electrolyte batteries having high energy density and high voltage, typically, a lithium ion secondary battery, in place of conventional alkaline batteries. Generally, a nonaqueous electrolyte battery is structured by the steps of: furnishing each of positive and negative electrode plates with a terminal to pass an electric current out from each electrode plate; winding up the electrode plates vorticosely together with a separator disposed between the electrode plates in order to prevent short-circuit between the electrode plates; inserting the electrode plates with the separator into a battery case filled with a nonaqueous electrolyte through its opening; and sealing the opening to form a sealed opening.

Feature size of a nonaqueous electrolyte battery is desired to become thinner and smaller due to the trend of <u>equipment</u> <u>equipments</u> as becoming thinner and smaller and for the purpose of efficient use of space. In terms of performance, it is desired to elongate life span of a charge/discharge cycle and to realize higher energy density. To meet these demands, an electrode plate for a battery before winding is pressed to form a thin layer. If the electrode plate is made of a collector having electrode active material layers formed intermittently on both surfaces, due to the pressure generated by the press-working, the electrode active material layers are likely to be peeled and chipped, and the collector is easily broken depending on a positional relationship of the electrode active material layers on both surfaces of the collector. Particularly, a raised portion is created at a starting side in the coating process of the electrode active material layer. If a position of said raised portion coincides with a position of a starting or a finishing sides in the coating process of an electrode active material layer formed on the other surface, bending stress and

Application Serial No. 10/749,180 Reply to Office Action of April 17, 2008

PATENT Docket: CU-6547

tension are generated at boundary between said raised portion and its surrounding area. Thus, the collector receives stress which leads to hardening of the collector, and as a result, the collector is broken.

Therefore, a process for producing an electrode plate for a battery having thin layer thickness by pressing and high density is desired in which an electrode active material layer is not likely to chip and fracture during production process, it is large in yield, and production is capable at low [law]] cost.

Please delete the first paragraph on page 4 of the specification, which comes directly after the heading "SUMMARY OF THE INVENTION" and replace it with the following paragraph:

In view of the above-mentioned problems, an object of the present invention is to provide an electrode plate for a battery in which an electrode active material layer is not likely to be damaged (peeling, chipping, cracking or the like, but especially chipping), a collector is not likely to be broken during production process, it is large in yield, and production is capable at low [[law]] cost, a nonaqueous electrolyte battery using such an electrode plate, and processes for producing thereof.