

planetmath.org

Math for the people, by the people.

generalization of a uniformity

Canonical name GeneralizationOfAUniformity

Date of creation 2013-03-22 16:43:09 Last modified on 2013-03-22 16:43:09

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 5

Author CWoo (3771)
Entry type Definition
Classification msc 54E15
Synonym semiuniformity
Synonym quasiuniformity
Synonym semiuniform space
Synonym quasiuniform space

Synonym semi-uniform Synonym quasi-uniform Synonym semiuniform Synonym quasiuniform

Related topic GeneralizationOfAPseudometric

Defines semi-uniformity
Defines quasi-uniformity
Defines semi-uniform space
Defines quasi-uniform space

Let X be a set. Let \mathcal{U} be a family of subsets of $X \times X$ such that \mathcal{U} is a filter, and that every element of \mathcal{U} contains the diagonal relation Δ (reflexive). Consider the following possible "axioms":

- 1. for every $U \in \mathcal{U}, U^{-1} \in \mathcal{U}$
- 2. for every $U \in \mathcal{U}$, there is $V \in \mathcal{U}$ such that $V \circ V \in \mathcal{U}$,

where U^{-1} is defined as the http://planetmath.org/OperationsOnRelationsinverse relation of U, and \circ is the http://planetmath.org/OperationsOnRelationscomposition of relations. If \mathcal{U} satisfies Axiom 1, then \mathcal{U} is called a *semi-uniformity*. If \mathcal{U} satisfies Axiom 2, then \mathcal{U} is called a *quasi-uniformity*. The underlying set X equipped with \mathcal{U} is called a *semi-uniform space* or a *quasi-uniform space* according to whether \mathcal{U} is a semi-uniformity or a quasi-uniformity.

A semi-pseudometric space is a semi-uniform space. A quasi-pseudometric space is a quasi-uniform space.

A uniformity is one that satisfies both axioms, which is equivalent to saying that it is both a semi-uniformity and a quasi-uniformity.

References

[1] W. Page, Topological Uniform Structures, Wiley, New York 1978.