Physics Notes

Matthew Stringer

Contents

1	Rot	tational Motion
	1.1	Rotational Kinematics
		1.1.1 Linear vs Angular Velocity
		1.1.2 Converting Linear to angular velocity
		1.1.3 Linear vs Angular acceleration
		1.1.4 Centripetal Acceleration
	1.2	Moment of Inertia
		1.2.1 Types of Inertia
		1.2.2 Kinetic Energy of Rotating Disk
		1.2.3 Common Moments of Inertia
	1.3	Torque
		1.3.1 Direction of Torque Vector
		1.3.2 Translational vs Rotational
	1.4	Rotational Dynamics
		1.4.1 Kinetic Energy
	1.5	Angular Momentum (L)
2	Osc	cillations
	2.1	General Form of Simple Harmonic Motion

1 Rotational Motion

1.1 Rotational Kinematics

1.1.1 Linear vs Angular Velocity

- \bullet Linear speed given by v
- Angular speed given by ω
- Direction is perpendicular to the path based on right hand rule

1.1.2 Converting Linear to angular velocity

$$v = r\frac{d\theta}{dt} = r\omega$$
$$\omega = \frac{v}{r}$$

1.1.3 Linear vs Angular acceleration

- \bullet Linear acceleration given by a
- Angular acceleration given by α

1.1.4 Centripetal Acceleration

$$a = -\frac{v^2}{r}$$

1.2 Moment of Inertia

1.2.1 Types of Inertia

- Inertial mass (linear inertia) is an object's ability to resist linear acceleration.
- Moment of Inertia (rotational inertia) is an object's ability to resist rotational acceleration.

1.2.2 Kinetic Energy of Rotating Disk

$$K_{TOT} = \frac{\omega^2}{2} \int_0^r r^2 dr = \frac{1}{2} J \omega^2$$

1.2.3 Common Moments of Inertia

• Disk: $I = \frac{1}{2}mr^2$

• Hoop: $I = ml^2$

• Sphere: $I = \frac{2}{5}mr^2$

• Hollow Sphere: $I = \frac{2}{3}mr^2$

• Rod(around center point): $I = \frac{1}{12}ml^2$

• Rod(around end point): $I = \frac{1}{3}ml^2$

1.3 Torque

$$\tau = r \times F$$
$$|\tau| = rF\sin\theta$$

1.3.1 Direction of Torque Vector

• Torque vector is perpendicular to both force and position vector

• Use the right hand rule

• Positive Torques cause counter-clockwise rotations

1.3.2 Translational vs Rotational

$$F = ma$$
 $\tau = I\alpha$

1.4 Rotational Dynamics

1.4.1 Kinetic Energy

$$K_{rotational} = \frac{1}{2}Iw^2$$

1.5 Angular Momentum (L)

$$L_Q = r \times p = (r \times v)m$$

where r is a vector from point Q to the force.

Spin Angular Momentum is the angular momentum around the center of mass. This type of angular momentum is not based off of a reference point.

2 Oscillations

2.1 General Form of Simple Harmonic Motion

$$\ddot{x} + \omega^2 x = 0$$

which evaluates to

$$x(t) = A\cos(\omega t + \phi)$$