

Kernel K-Means Clustering

- ☐ Kernel K-Means can be used to detect non-convex clusters
 - □ *K-Means* can only detect clusters that are linearly separable
- □ Idea: Project data onto the high-dimensional kernel space, and then perform *K-Means* clustering

- Map data points in the input space onto a high-dimensional feature space using the kernel function
- Perform K-Means on the mapped feature space
- Computational complexity is higher than K-Means
 - Need to compute and store n x n kernel matrix generated from the kernel function on the original data
- □ The widely studied spectral clustering can be considered as a variant of Kernel K-Means clustering

Kernel Functions and Kernel K-Means Clustering

- Typical kernel functions:
 - □ Polynomial kernel of degree h: $K(X_i, X_j) = (X_i \cdot X_j + 1)^h$
 - □ Gaussian radial basis function (RBF) kernel: $K(X_i, X_i) = e^{-||X_i X_j||^2/2\sigma^2}$
 - □ Sigmoid kernel: $K(X_i, X_j)$ = tanh(κ $X_i \cdot X_j \delta$)
- \square The formula for kernel matrix K for any two points x_i , $x_j \in C_k$ is $K_{x_i x_j} = \phi(x_i) \bullet \phi(x_j)$
- The SSE criterion of *kernel K-means*: $SSE(C) = \sum_{k=1}^{K} \sum_{x_{i \in C}} ||\phi(x_i) c_k||^2$
 - ☐ The formula for the cluster centroid:

$$c_k = \frac{\sum_{x_{i \in C_k}} \phi(x_i)}{|C_k|}$$

□ Clustering can be performed without the actual individual projections $\phi(x_i)$ and $\phi(x_j)$ for the data points x_i , $x_i \in C_k$

Example: Kernel Functions and Kernel K-Means Clustering

- □ Gaussian radial basis function (RBF) kernel: $K(X_i, X_i) = e^{-||X_i X_j||^2/2\sigma^2}$
- □ Suppose there are 5 original 2-dimensional points:
- \square If we set σ to 4, we will have the following points in the kernel space

□ E.g.,
$$||x_1 - x_2||^2 = (0 - 4)^2 + (0 - 4)^2 = 32$$
, therefore, $K(x_1, x_2) = e^{-\frac{32}{2 \cdot 4^2}} = e^{-1}$

Original Space

	x	у
<i>X</i> ₁	0	0
<i>X</i> ₂	4	4
<i>X</i> ₃	-4	4
<i>X</i> ₄	-4	-4
X ₅	4	-4

RBF Kernel Space ($\sigma = 4$)

$K(x_i, x_1)$	$K(x_i, x_2)$	$K(x_i, x_3)$	$K(x_i, x_4)$	$K(x_i, x_5)$
0	$e^{-\frac{4^2+4^2}{2\cdot 4^2}} = e^{-1}$	e^{-1}	e^{-1}	e^{-1}
e^{-1}	0	e^{-2}	e^{-4}	e^{-2}
e^{-1}	e^{-2}	0	e^{-2}	e^{-4}
e^{-1}	e^{-4}	e^{-2}	0	e^{-2}
e^{-1}	e^{-2}	e^{-4}	e^{-2}	0

Example: Kernel K-Means Clustering

- ☐ The above data set cannot generate quality clusters by K-Means since it contains non-covex clusters
- □ Gaussian RBF Kernel transformation maps data to a kernel matrix K for any two points $x_i, x_j: K_{x_i x_j} = \phi(x_i) \bullet \phi(x_j)$ and Gaussian kernel: $K(X_i, X_j) = e^{-||X_i X_j||^2/2\sigma^2}$
- □ K-Means clustering is conducted on the mapped data, generating quality clusters

Recommended Readings

- □ J. MacQueen. Some Methods for Classification and Analysis of Multivariate Observations. In *Proc.* of the 5th Berkeley Symp. on Mathematical Statistics and Probability, 1967
- □ S. Lloyd. Least Squares Quantization in PCM. *IEEE Trans. on Information Theory*, 28(2), 1982
- □ A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988
- □ L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, 1990
- □ R. Ng and J. Han. Efficient and Effective Clustering Method for Spatial Data Mining. VLDB'94
- B. Schölkopf, A. Smola, and K. R. Müller. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. *Neural computation*, 10(5):1299–1319, 1998
- □ I. S. Dhillon, Y. Guan, and B. Kulis. Kernel K-Means: Spectral Clustering and Normalized Cuts. KDD'04
- □ D. Arthur and S. Vassilvitskii. K-means++: The Advantages of Careful Seeding. SODA'07
- □ C. K. Reddy and B. Vinzamuri. A Survey of Partitional and Hierarchical Clustering Algorithms, in (Chap. 4) Aggarwal and Reddy (eds.), Data Clustering: Algorithms and Applications. CRC Press, 2014
- M. J. Zaki and W. Meira, Jr.. Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge Univ. Press, 2014