Lista de Zero de Funções e Integração Numérica

1) Para as equações abaixo, verifique onde há raiz.

a)
$$4\cos(x) - e^{2x} = 0$$

$$b) \quad 1 - x ln(x) = 0$$

c)
$$x^3 + x + 1000 = 0$$

2) Use o método de Newton para obter a menor raiz positiva das equações a seguir com precisão $\varepsilon = 10^{-4}$.

a)
$$\frac{x}{2} - tg(x) = 0$$

b)
$$2\cos(x) = \frac{e^x}{2}$$

c)
$$x^5 - 6 = 0$$
 [1, 2]

3) Calcule pelo método da secante

a)
$$e^{-x^2} - \cos(x) = 0$$
, [1, 2] $\varepsilon < 10^{-4}$
b) $4\sin(x) - e^x = 0$, [0, 1] $\varepsilon < 10^{-6}$
c) $x\log(x) - 1 = 0$ $x_0 = 2.3 \ e \ x_1 = 2.7$; $\varepsilon < 10^{-7}$

$$\varepsilon < 10^{-4}$$

b)
$$4\sin(x) - e^x = 0$$

$$\varepsilon < 10^{-6}$$

c)
$$x \log(x) - 1 = 0$$

$$x_0 = 2.3 \ e \ x_1 = 2.7$$

$$\varepsilon < 10^{-7}$$

4) Calcule as integrais a seguir pela regra dos Trapézios e pela de Simpson, usando quatro e seis divisões de [a, b].

a)
$$\int_1^4 \sqrt{x} \, dx$$

b)
$$\int_{2}^{14} \frac{1}{\sqrt{x}} dx$$

- 5) Usando as integrais do exercício anterior com quantas divisões de intervalo, no mínimo, podemos esperar obter erros menores que 10^{-5} ?
- 6) Determinar h para que se possa avaliar $\int_0^{\pi/2} \cos(x) \, dx$ com erro inferior a $\varepsilon < 10^{-3}$ pela regra de Simpson.

Respostas:

$$n = 6 - T = 4.6614884$$
 e $S = 4.6665612$

b)
$$n = 4 - T = 4.76833868$$
 e $S = 4.6763744$

$$n = 6 - T = 4.7077771 e S = 4.6614894$$