SummerProgramExample

Dr. Ami Gates

Week 2 SYR - Data Cleaning and Preparation

```
## Tutorial for Cleaning, Prepping, and Evaluating Data
## using Decision Trees, Naive Bayes
## and clustering - k-means & hier, mclust with EM
## Cosine sime...
## Goals, clustering and Prediction
## NOTICE: The data used here is intended to simulate real
## student application data for a special summer study
## abroad program.
## *** IMPOTRANT ** THIS DATA IS PRETEND :) (of course)
## IT IS NOT REAL and is not associated with any humans,
## organizations, opinions, venues, or institutions.
## It was created to feel like real data so as to simulate
## a real data analysis experience.
## Gates, 2018
## NOTE: You will notice that I comment out many lines of code.
## I do this so that the lines can be added back in for testing
## and review. I also do this to sometimes show options for
## doing the same thing.
## LIBRARIES
library(stringr)
#install.packages("e1071")
library(e1071)
#install.packages("mlr")
library(mlr)
## Loading required package: ParamHelpers
## Attaching package: 'mlr'
## The following object is masked from 'package:e1071':
##
##
     impute
```

```
# install.packages("caret")
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.5.1
##
## Attaching package: 'caret'
## The following object is masked from 'package:mlr':
##
##
       train
#install.packages("naivebayes")
library(naivebayes)
#install.packages("e1071")
library(e1071)
#install.packages("mlr")
library(mlr)
# install.packages("caret")
library(caret)
#install.packages("naivebayes")
library(naivebayes)
library(mclust)
## Package 'mclust' version 5.4
## Type 'citation("mclust")' for citing this R package in publications.
library(cluster)
library(tm)
## Loading required package: NLP
##
## Attaching package: 'NLP'
## The following object is masked from 'package:ggplot2':
##
       annotate
## install.packages("rpart")
## install.packages('rattle')
## install.packages('rpart.plot')
## install.packages('RColorBrewer')
## install.packages("Cairo")
library(rpart)
library(rattle)
```

```
## Rattle: A free graphical interface for data science with R.
## Version 5.1.0 Copyright (c) 2006-2017 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(rpart.plot)
library(RColorBrewer)
library(Cairo)
# install.packages("philentropy")
library(philentropy)
# install.packages("forcats")
library(forcats)
# install.packages("lsa")
library(lsa) #for cosine similarity
## Loading required package: SnowballC
# install.packages("igraph")
library(igraph) #to create network of cos sim matrix
## Attaching package: 'igraph'
## The following objects are masked from 'package:stats':
##
##
       decompose, spectrum
## The following object is masked from 'package:base':
##
##
       union
# install.packages("ggplot2")
library(ggplot2)
# install.packages("corrplot")
library(corrplot)
## corrplot 0.84 loaded
## install.packages("pastecs") ## for stats
library(pastecs)
##install.packages("dplyr")
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:pastecs':
##
##
       first, last
## The following objects are masked from 'package:igraph':
##
##
       as data frame, groups, union
```

```
## The following objects are masked from 'package:stats':
##
##
      filter, lag
## The following objects are masked from 'package:base':
##
      intersect, setdiff, setequal, union
## install.packages("ggpubr")
library(ggpubr)
## Loading required package: magrittr
##
## Attaching package: 'magrittr'
## The following object is masked from 'package:pastecs':
##
##
      extract
## !!! YOU must set this to YOUR working dir and your filename !!!
setwd("C:\\Users\\profa\\Documents\\R\\RStudioFolder 1\\DrGExamples")
StudentFile="StudentSummerProgramData.csv"
#StudentFileDF <- read.csv(StudentFile, header = TRUE, sep = ",", encoding =
"UTF-8",
                          stringsAsFactors = FALSE)
#
StudentFileDF <- read.csv(StudentFile, header = TRUE, sep = ",", encoding = "
latin1",
                         stringsAsFactors = FALSE)
## Whenever you do anything - always check to see if it did what you think i
t did
(head(StudentFileDF))
                                State GPA WorkExp MathTest Essay Decision
    N ID
            DateSub Gender
## 1
       3 9/13/2017 Female California 3.90
                                              6.7
                                                       962
                                                             NA
                                                                   Admit
                                                             97
## 2
       4 9/20/2017 Female
                              Florida 3.80
                                              1.4
                                                       969
                                                                   Admit
## 3
       7 10/4/2017
                      Male California 3.80
                                              2.3
                                                       970
                                                             NA
                                                                   Admit
## 4
      10 10/7/2017
                      Male
                             Colorado 3.60
                                              0.9
                                                       969
                                                              NA
                                                                   Admit
## 5
      13 11/3/2017
                      Male
                             Colorado 3.92
                                              1.2
                                                       969
                                                              95
                                                                   Admit
## 6
                      Male California 3.80
                                                                   Admit
      18 11/18/2017
                                              1.2
                                                       967
                                                             NA
#(StudentFileDF)
#dim(StudentFileDF)
#(colnames(StudentFileDF))
## Start the prep process by investigating the data attributes
## Once I investigate - I comment out these code lines
(table(StudentFileDF$GPA))
```

```
##
## 2.34 2.77 2.81 2.85 2.9 2.91 2.98 3 3.01 3.1 3.11 3.12 3.18 3.21 3.22
          1
               1
                    1
                         1
                               1
                                   1
                                        1
                                              1
                                                   1
                                                        2
                                                             1
                                                                  1
## 3.24 3.29 3.32 3.33 3.34 3.35 3.37 3.38 3.39
                                                 3.4 3.41 3.42 3.43 3.44 3.45
                                                   2
          1
               1
                    2
                          2
                               1
                                    1
                                        1
                                              3
                                                        3
                                                             2
## 3.46 3.47 3.48 3.49
                       3.5 3.51 3.52 3.53 3.54 3.55 3.56 3.57 3.58 3.59
               1
                     3
                               2
                                    2
                                         3
                                              5
                                                   3
                                                        7
                                                                            2
                          3
## 3.61 3.62 3.64 3.65 3.66 3.67 3.69
                                      3.7 3.71 3.74 3.75 3.77 3.78 3.79
                                                                          3.8
               1
                     2
                          3
                               1
                                    3
                                              2
                                                   1
                                                       1
                                                             4
                                         4
## 3.84 3.86 3.87 3.88 3.89 3.9 3.91 3.92 3.93 3.94 3.97
                          3
                               4
                                    1
                                         3
                                              1
(table(StudentFileDF$State))
##
##
              California
                              Colorado
                                           Florida
      Alabama
                                                       Georgia
                                                                     Maine
##
            1
                        27
                                    32
                                                49
## mississippi
                 New York
                                Oregon
                                              Utah
                                                       Vermont
                                                                   Virgina
##
                                                12
                                                             1
                        1
##
      virginia
                 Virginia
                             virginia
##
                        14
str(StudentFileDF)
## 'data.frame':
                   149 obs. of 9 variables:
## $ N ID : int 3 4 7 10 13 18 19 20 22 23 ...
## $ DateSub : chr "9/13/2017" "9/20/2017" "10/4/2017" "10/7/2017" ...
                    "Female" "Female" "Male" "Male" ...
## $ Gender : chr
## $ State
              : chr
                    "California" "Florida" "California" "Colorado" ...
## $ GPA
              : num 3.9 3.8 3.8 3.6 3.92 3.8 3.88 3.7 3.9 3.7 ...
## $ WorkExp : num 6.7 1.4 2.3 0.9 1.2 1.2 NA 1.2 4.7 1.4 ...
## $ MathTest: int 962 969 970 969 967 967 969 961 966 ...
            : num NA 97 NA NA 95 NA NA NA NA 94 ...
## $ Essay
## $ Decision: chr "Admit" "Admit" "Admit" "Admit" ...
## Change date format -----
## Change N ID into a factor
StudentFileDF$N_ID<- as.factor(StudentFileDF$N_ID)</pre>
## Update and categorize the dates
str(StudentFileDF$DateSub)
## chr [1:149] "9/13/2017" "9/20/2017" "10/4/2017" "10/7/2017" ...
(dates <- as.Date(StudentFileDF$DateSub, "%m/%d/%Y") )</pre>
     [1] "2017-09-13" "2017-09-20" "2017-10-04" "2017-10-07" "2017-11-03"
    [6] "2017-11-18" "2017-11-19" "2017-12-08" "2017-10-25" "2017-12-26"
## [11] "2017-11-27" "2018-11-02" "2017-10-21" "2018-12-03" "2018-11-07"
   [16] "2017-12-25" "2018-01-06" "2018-11-07" "2017-12-30" "2018-01-10"
```

```
[21] "2018-01-10" "2017-12-24" "2017-10-31" "2018-01-10" "2018-01-11"
    [26] "2017-12-15" "2017-12-28" "2018-01-11" "2018-01-12" "2017-11-03"
    [31] "2017-12-30" "2018-01-14" "2018-01-14" "2018-01-15" "2018-01-15"
##
    [36] "2018-01-15" "2018-01-15" "2017-12-04" "2017-12-24" "2018-01-12"
##
    [41] "2018-01-12" "2018-01-12" "2018-01-14" "2018-01-14" "2018-01-14"
    [46] "2018-01-14" "2018-01-14" "2018-01-15" "2018-01-15" "2018-01-15"
##
    [51] "2018-01-15" "2018-01-09" "2018-01-10" "2018-01-13" "2018-01-14"
    [56] "2018-01-14" "2018-01-14" "2018-01-14" "2018-01-14" "2018-01-15"
    [61] "2018-01-15" "2018-01-15" "2018-01-15" "2018-01-15" "2018-01-15"
    [66] "2018-01-15" "2018-01-14" "2018-01-14" "2018-01-15" "2018-01-06"
##
    [71] "2018-01-15" "2018-01-23" "2018-01-13" "2018-01-14" "2018-01-14"
    [76] "2018-01-03" "2018-01-14" "2017-09-02" "2017-11-09" "2017-11-15"
    [81] "2017-11-17" "2017-12-11" "2017-12-14" "2017-12-09" "2017-12-05"
   [86] "2018-01-07" "2018-01-07" "2018-01-05" "2017-11-20" "2017-12-22"
    [91] "2018-01-13" "2018-01-15" "2018-01-13" "2018-01-14" "2018-01-15"
##
  [96] "2017-12-23" "2018-03-15" "2018-02-16" "2017-12-21" "2018-03-10"
## [101] "2018-02-14" "2018-01-15" "2018-02-03" "2018-01-13" "2018-03-15"
## [106] "2018-01-29" "2017-11-12" "2017-11-07" "2017-12-01" "2017-11-23"
## [111] "2017-12-21" "2017-12-26" "2017-12-29" "2018-01-06" "2018-01-10"
## [116] "2017-11-06" "2018-01-11" "2018-01-12" "2018-01-15" "2018-01-15"
## [121] "2018-01-12" "2018-01-13" "2018-01-13" "2018-01-14" "2018-01-14"
## [126] "2018-01-14" "2018-01-14" "2018-01-14" "2018-01-15" "2018-01-12"
## [131] "2018-01-14" "2018-01-14" "2018-01-14" "2018-01-15" "2018-01-17"
## [136] "2018-01-13" "2018-01-12" "2018-01-15" "2018-02-16" "2018-01-14"
## [141] "2017-12-16" "2018-01-10" "2018-01-11" "2018-01-12" "2018-01-15"
## [146] "2018-01-09" "2018-01-12" "2018-01-15" "2018-01-15"
StudentFileDF$DateSub <- dates</pre>
(head(StudentFileDF))
     N ID
             DateSub Gender
                                 State GPA WorkExp MathTest Essay Decision
## 1
        3 2017-09-13 Female California 3.90
                                                 6.7
                                                          962
                                                                 NA
                                                                       Admit
## 2
        4 2017-09-20 Female
                               Florida 3.80
                                                 1.4
                                                          969
                                                                 97
                                                                       Admit
## 3
       7 2017-10-04
                       Male California 3.80
                                                2.3
                                                          970
                                                                 NA
                                                                       Admit
       10 2017-10-07
                       Male
                              Colorado 3.60
                                                0.9
## 4
                                                          969
                                                                 NA
                                                                       Admit
## 5
       13 2017-11-03
                       Male
                              Colorado 3.92
                                                1.2
                                                          969
                                                                 95
                                                                       Admit
       18 2017-11-18
                       Male California 3.80
                                                          967
                                                                       Admit
## 6
                                                1.2
                                                                 NA
#Change to month names
StudentFileDF$DateSub <- months(as.Date(StudentFileDF$DateSub))</pre>
#StudentFileDF$DateSub <- as.factor(StudentFileDF$DateSub)</pre>
(table(StudentFileDF$DateSub))
##
                                                       October September
## December February
                         January
                                     March
                                            November
                              95
## Here, you can see the month(s) with most/more summer program app submissio
ns
```

```
(table(StudentFileDF$Essay))
##
##
                 56
                         69
    -2 0.3
            11
                     65
                             70
                                 71
                                     73
                                          74
                                              75
                                                  78
                                                       79
                                                           80
                                                               81
                                                                   82
                                                                        83
                                                                            84
                  2
                          3
                                   2
                                           2
                                                                     2
                                                                         3
                                                                             4
##
     1
         1
             1
                      1
                              1
                                       1
                                               1
                                                   3
                                                        2
                                                            2
                                                                4
##
    85
        86
            87
                 88
                     89
                         90
                             91
                                  93
                                      94
                                          95
                                              96
                                                  97
                                                       98
                                                           99 100
##
     2
         1
             3
                  2
                      2
                          1
                              5
                                   5
                                       3
                                           4
                                               1
                                                    5
                                                        2
                                                                2
## From looking at the table, we can see that there are some
## Essay scores that are odd. There is a -2, a .3, and an 11.
## Given that all other score are 56 and above, these three
## are likely errors....we will correct them first with NA and
## then later with another option.
StudentFileDF$Essay[StudentFileDF$Essay < 40] <- NA
## Let's look at the States from which students mostly apply....
(table(StudentFileDF$State))
##
##
       Alabama
                California
                               Colorado
                                             Florida
                                                          Georgia
                                                                         Maine
##
                         27
                                      32
                                                   49
             1
## mississippi
                   New York
                                  Oregon
                                                Utah
                                                          Vermont
                                                                       Virgina
##
                                                   12
                          1
                                       4
                                                                1
##
      virginia
                   Virginia
                              virginia
##
             3
                         14
                                       1
## From this table, we can see that we have "Virginia" in three versions.
## We need to combine these. We also have a mis-spell...
StudentFileDF$State[StudentFileDF$State == "virginia"] <- "Virginia"
#(StudentFileDF$State)
StudentFileDF$State[StudentFileDF$State == "Virgina"] <- "Virginia"</pre>
StudentFileDF$State[StudentFileDF$State == "virginia"] <- "Virginia"
## Check it now...
table(StudentFileDF$State)
##
                California
##
       Alabama
                               Colorado
                                             Florida
                                                          Georgia
                                                                         Maine
                                      32
                                                   49
## mississippi
                   New York
                                  Oregon
                                                Utah
                                                          Vermont
                                                                      Virginia
##
             1
                          1
                                       4
                                                   12
                                                                1
                                                                            19
## Our next goal is to create Groups. We can see that most apps are
## from California, Colorado, Florida, Utah and Virginia
## Let's keep these 5 and create an "Other"
(MyList <- unique(StudentFileDF$State))</pre>
                       "Florida"
    [1] "California"
                                      "Colorado"
                                                     "Utah"
                                                                    "Virginia"
  [6] "Oregon"
                                                                    "Georgia"
                       "mississippi" "New York"
                                                     "Alabama"
## [11] "Vermont"
                       "Maine"
```

```
MyList <-MyList[-c(1,2,3,4,5)] ## Remove Cali, Colordao, FL, Utah, VA
#(MyList)
## Now, re-label all remaining states as "Other"
StudentFileDF$State[StudentFileDF$State %in% MyList] <- "Other"
(table(StudentFileDF$State))
##
                Colorado
## California
                            Florida
                                         Other
                                                      Utah
                                                             Virginia
##
           27
                      32
                                 49
                                             10
                                                        12
                                                                   19
## Remove Student ID ## NOTICE - these IDs are NOT REAL and
## are not associated with any students in real life. They are
## invented and pretend numbers.
#(head(StudentFileDF))
StudentFileDF = StudentFileDF[,-c(1)]
(head(StudentFileDF))
##
       DateSub Gender
                           State GPA WorkExp MathTest Essay Decision
## 1 September Female California 3.90
                                           6.7
                                                    962
                                                           NA
                                                                 Admit
                         Florida 3.80
## 2 September Female
                                          1.4
                                                    969
                                                           97
                                                                 Admit
## 3
       October |
                 Male California 3.80
                                           2.3
                                                    970
                                                           NA
                                                                 Admit
## 4
       October 0
                 Male
                        Colorado 3.60
                                          0.9
                                                    969
                                                           NA
                                                                 Admit
## 5
                        Colorado 3.92
                                                           95
                                                                 Admit
      November
                 Male
                                          1.2
                                                    969
## 6 November
                 Male California 3.80
                                          1.2
                                                    967
                                                           NA
                                                                 Admit
## CHange "Wait List" to "Waitlist"
StudentFileDF$Decision[StudentFileDF$Decision == "Wait List"] <- "Waitlist"
#(StudentFileDF)
## CHange Work experience to 0 if NA
str(StudentFileDF$WorkExp)
## num [1:149] 6.7 1.4 2.3 0.9 1.2 1.2 NA 1.2 4.7 1.4 ...
StudentFileDF$WorkExp[is.na(StudentFileDF$WorkExp)] <- 0
(sum(is.na(StudentFileDF$WorkExp))) ## No NA's should be left here
## [1] 0
## It is OK to set WorkExp to 0 if its NA as this is as likely as
## using the average.
## Let's look at the MathTest Scores next...
(table(StudentFileDF$MathTest))
##
## 742 751 753 754 757 758 761 762 763 764 765 766 767 768 769 799 853 855
         1
             1
                 1
                     1
                         1
                             1
                                 1
                                      2
                                          2
                                              1
                                                  3
                                                      1
                                                          5
                                                              6
                                                                  1
                                                                      1
## 859 862 863 864 865 866 867 868 869 952 956 957 959 960 961 962 963 964
         1
             1
                 2
                         9
                             8
                                 6
                                    11
                                          1
                                              1
                                                  2
## 965 966 967 968 969 970
##
    4 10 12
                 9 27
```

```
(sum(is.na(StudentFileDF$MathTest)))
## [1] 0
## So - we have no NAs - this is good.
## We also have seemingly normal scores - nothing far outside
## Look at GPA next.
(table(StudentFileDF$GPA))
## 2.34 2.77 2.81 2.85 2.9 2.91 2.98
                                          3 3.01 3.1 3.11 3.12 3.18 3.21 3.22
           1
                1
                                                    1
                                                          2
                                                                    1
                     1
                          1
                                1
                                     1
                                          1
                                               1
                                                               1
## 3.24 3.29 3.32 3.33 3.34 3.35 3.37 3.38 3.39
                                                  3.4 3.41 3.42 3.43 3.44 3.45
           1
                1
                     2
                          2
                                1
                                     1
                                          1
                                               3
                                                    2
                                                          3
                                                               2
                                                                    1
                                                                              5
## 3.46 3.47 3.48 3.49
                        3.5 3.51 3.52 3.53 3.54 3.55 3.56 3.57 3.58 3.59
                                                                            3.6
                          3
                                2
                                     2
                                          3
                                               5
                                                    3
                                                          7
                                                                              2
                                        3.7 3.71 3.74 3.75 3.77 3.78 3.79
## 3.61 3.62 3.64 3.65 3.66 3.67 3.69
                                                                            3.8
                1
                     2
                          3
                                1
                                     3
                                          4
                                               2
                                                    1
                                                          1
                                                                              4
## 3.84 3.86 3.87 3.88 3.89 3.9 3.91 3.92 3.93 3.94 3.97
                3
                     3
                          3
                                4
                                     1
                                          3
                                               1
## Any NAs? If so - how many...
(sum(is.na(StudentFileDF$GPA)))
## [1] 2
## There are 2 NA's. Let's replace them with the median GPA
(MedGPA <- median(StudentFileDF$GPA, na.rm=TRUE))</pre>
## [1] 3.56
StudentFileDF$GPA[is.na(StudentFileDF$GPA)] <- MedGPA
## It is not an easy choice to replace the missing GPA with the median.
## GPA may play an important role. Here, we only have two NAs. We
## could also just remove the rows.
## IMPORTANT ##
## Notice that I am NOT replacing with 0 in most cases.
## Using "0" can have a critical affect and so be careful when using it.
## Change all "WL to Admit" into "Waitlist"
StudentFileDF$Decision[StudentFileDF$Decision == "WL to Admit"] <- "Waitlist"
(StudentFileDF)
##
         DateSub Gender
                              State GPA WorkExp MathTest Essay Decision
## 1
       September Female California 3.90
                                                              NA
                                             6.7
                                                      962
                                                                    Admit
                                                              97
## 2
       September Female
                           Florida 3.80
                                             1.4
                                                      969
                                                                    Admit
## 3
         October 0
                   Male California 3.80
                                             2.3
                                                      970
                                                              NA
                                                                    Admit
## 4
                          Colorado 3.60
                                                      969
         October 0
                   Male
                                             0.9
                                                              NA
                                                                    Admit
                          Colorado 3.92
## 5
        November
                   Male
                                             1.2
                                                      969
                                                              95
                                                                    Admit
        November Male California 3.80
                                                      967
                                                                    Admit
## 6
                                             1.2
                                                              NA
```

	# 7				California		0.0	967	NA	Admit	
	# 8				California		1.2	969	NA	Admit	
	# 9		October		Florida		4.7	961	NA	Admit	
	# :				California		1.4	966	94	Admit	
	# :		November		Florida		1.7	968	91	Admit	
	# :		November		Florida		0.8	969	NA	Admit	
	# :		October		Colorado		1.2	967	94	Admit	
#1	# :	14	December		California	3.69	3.2	967	93	Admit	
#1	# :	15	November	Male	Florida	3.70	3.7	969	99	Admit	
##	# :	16	December	Female	Colorado	3.90	0.0	967	NA	Admit	
##	# :	17	January	Male	Colorado	3.78	1.2	966	100	Admit	
##	# :	18	November	Male	California	3.70	2.7	799	97	Admit	
#1	# :	19	December	Male	Florida	3.50	0.7	965	NA	Admit	
#1	# 2	20	January	Male	Colorado	3.65	1.7	963	NA	Admit	
##	# 2	21	January	Female	Colorado	3.75	1.1	969	NA	Admit	
#1	# 2	22	December	Female	Colorado	3.58	0.8	969	93	Admit	
##	# 2	23	October	Male	California	3.78	8.7	966	91	Admit	
##	# 2	24	January	Female	California	3.92	2.8	967	95	Admit	
##	# 2	25	January	Female	Florida	3.54	0.7	965	NA	Admit	
#1	# 2	26	December	Male	Florida	3.66	2.2	967	91	Admit	
#1	# 2	27	December	Female	Florida	3.90	0.0	967	88	Admit	
#1	# 2	28	January	Male	Florida	3.55	0.0	962	97	Admit	
#1	# 2	29	January	Female	Colorado	3.59	1.7	969	93	Admit	
#1	# 3	30	November	Male	California	3.66	0.9	956	89	Admit	
#4	# 3	31	December	Female	Utah	3.78	1.2	968	87	Admit	
#1	# 3	32	January	Male	Colorado	3.88	1.0	969	93	Admit	
#1	# 3	33	January	Female	Florida	3.80	1.9	965	94	Admit	
#4	# 3	34	January	Male	Florida	3.77	1.4	969	99	Admit	
#4	# 3	35	January	Female	California	3.87	1.7	966	97	Admit	
##	# 3	36	January	Female	Virginia	3.65	1.0	966	NA	Admit	
#1	# 3	37	January	Male	Virginia	3.89	0.7	966	NA	Admit	
##	# 3	38	December	Female	Virginia	3.59	1.8	966	NA	Admit	
##	# 3	39	December	Female	California	3.78	4.7	952	99	Admit	
##	# 4	40	January	Male	Virginia	3.87	8.2	957	NA	Admit	
#4	# 4	41	January	Male	Colorado	3.56	1.7	969	91	Admit	
##	# 4	42	January	Male	California	3.66	1.0	963	NA	Admit	
##	# 4	43	January	Female	Florida	3.87	1.8	968	100	Admit	
#1	# 4	44	January	Female	Other	3.77	1.7	969	NA	Admit	
#1	# 4	45	January	Male	Florida	3.56	1.1	968	95	Admit	
#1	# 4	46	January	Male	Florida	3.51	2.9	964	95	Admit	
##	# 4	47	January	Female	Virginia	3.61	0.0	967	NA	Admit	
##	# 4	48	January	Female	California	3.77	1.4	969	96	Admit	
##	# 4	49	January	Female	Virginia	3.59	0.7	967	NA	Admit	
	# !		January		_		1.1	969	NA	Admit	
	# !		-		California		3.2	969	NA	Admit	
	# !		January		California		1.2	969	NA	Admit	
	# !		•		California		0.0	969	NA	Admit	
	# 5		January	Male	Florida		3.7	966	NA	Decline	
##	# !	55	January		Virginia		2.7	957	NA	Admit	
##	# !	56	January	Male	Florida	3.59	1.2	968	NA	Admit	

	57	January		Florida		1.4	969	NA	Decline	
	58	January		California		3.7	968	91	Admit	
	59	January		Colorado		1.7	969	NA	Admit	
	60	•		Colorado		1.2	967	NA	Admit	
	61	January				1.7	969	90	Admit	
	62	January		_		1.2	969	NA	Admit	
	63	January		_		2.7	969	97	Admit	
	64	January		Florida		0.7	968	98	Decline	
	65	•		California		2.7	961	NA	Admit	
	66	January		Other		1.2	968	NA	Admit	
	67	January		_		1.3	966	99	Admit	
	68	January				1.3	966	NA	Decline	
	69	January				1.2	967	98	Admit	
##	70	January		Virginia		5.7	968	89	Admit	
##	71	January		_		0.7	969	NA	Admit	
##	72	January	Female	Virginia	3.89	1.5	969	87	Admit	
##	73	January	Female	Florida	3.61	1.3	959	NA	Decline	
##	74	January	Female	Florida	3.54	0.9	969	NA	Decline	
##	75	January	Female	Other	3.94	0.9	965	NA	Admit	
##	76	January	Male	Colorado	3.59	1.4	969	93	Admit	
##	77	January	Female	Florida	3.84	2.7	960	NA	Decline	
##	78	September	Male	Florida	2.81	9.2	764	NA	Decline	
##	79	November	Female	California	2.34	0.8	754	75	Decline	
##	80	November	Female	Other	2.90	0.9	769	56	Decline	
##	81	November	Female	Florida	3.33	1.6	766	NA	Decline	
##	82	December	Male	Virginia	3.37	0.9	766	NA	Decline	
##	83	December	Female	Colorado	3.00	1.2	768	56	Decline	
##	84	December	Male	Florida	3.10	1.9	751	NA	Decline	
##	85	December	Male	Virginia	3.22	3.2	769	78	Decline	
##	86	January	Male	Florida	3.54	1.1	767	65	Decline	
##	87	January	Female	Colorado	3.44	3.2	757	NA	Decline	
##	88	January	Male	Colorado	2.98	0.7	763	71	Decline	
##	89	November	Female	Virginia	2.77	3.7	763	NA	Decline	
##	90	December	Male	Florida	3.18	1.4	768	NA	Decline	
##	91	January	Female	Colorado	3.11	1.7	758	69	Decline	
	92	January		Colorado		1.7	768	78	Decline	
##	93	January		Utah		1.4	769	69	Decline	
##	94	January			3.33	0.8	768	NA	Decline	
	95	January		Other		6.2	753	NA	Decline	
	96	December		Florida		1.7	769	81	Decline	
	97		Female	Colorado		4.6	762	NA	Decline	
	98	February	Female	Virginia		1.7	766	79	Decline	
	99	December		Florida		0.7	768	NA	Decline	
	100		Female	Florida		4.2	764	69	Decline	
	101	February		Virginia		8.9	742	NA	Decline	
	102	January		Virginia		0.0	761	NA	Decline	
	103	February		Colorado		0.0	765	NA	Decline	
	104	January	Male	Colorado		3.7	769	NA	Decline	
	105	-	Female	Florida		1.7	769	74	Decline	
	106	January	Male	Florida		1.9	859		Waitlist	
						-				

```
## 107
        November
                    Male
                             Florida 3.45
                                               4.7
                                                         867
                                                                 71 Waitlist
## 108
        November
                             Florida 3.50
                                                         869
                    Male
                                               1.7
                                                                 73 Waitlist
                               Other 3.55
## 109
        December Female
                                                2.2
                                                         866
                                                                 74 Waitlist
## 110
        November
                               Other 3.41
                                                1.2
                                                         868
                    Male
                                                                 85 Waitlist
## 111
        December
                    Male
                               Other 3.56
                                               0.9
                                                         866
                                                                 NA Waitlist
## 112
        December Female
                             Florida 3.53
                                               1.7
                                                         869
                                                                 NA Waitlist
## 113
        December
                    Male California 3.42
                                               0.7
                                                         869
                                                                 84 Waitlist
## 114
         January
                    Male
                            Colorado 3.50
                                                3.5
                                                         869
                                                                 83 Waitlist
## 115
                                Utah 3.39
                                                                 82 Waitlist
         January Female
                                               1.8
                                                         866
        November Female California 3.52
## 116
                                               2.7
                                                         855
                                                                 NA Waitlist
## 117
         January
                    Male
                            Colorado 3.49
                                                1.3
                                                         866
                                                                 NA Waitlist
## 118
         January Female
                            Colorado 3.43
                                               1.5
                                                         869
                                                                 NA Waitlist
## 119
         January
                    Male
                             Florida 3.44
                                               7.2
                                                         865
                                                                 NA Waitlist
## 120
         January Female
                             Florida 3.29
                                               1.2
                                                         869
                                                                 NA Waitlist
## 121
         January Female
                                Utah 3.58
                                               0.9
                                                         864
                                                                 81 Waitlist
## 122
         January Female
                                Utah 3.57
                                               1.4
                                                         869
                                                                 80 Waitlist
## 123
         January Female
                             Florida 3.56
                                               1.3
                                                         869
                                                                 84 Waitlist
## 124
         January
                             Florida 3.55
                                               2.0
                                                         853
                                                                 NA Waitlist
                    Male
## 125
         January
                    Male
                            Colorado 3.54
                                               1.2
                                                         868
                                                                 83 Waitlist
## 126
         January Female
                               Other 3.53
                                                3.3
                                                         862
                                                                 NA Waitlist
## 127
         January
                             Florida 3.52
                                               0.7
                                                         868
                                                                 81 Waitlist
                    Male
## 128
         January Female
                             Florida 3.51
                                                3.4
                                                         865
                                                                 88 Waitlist
## 129
         January Female California 3.47
                                               2.2
                                                         867
                                                                 NA Waitlist
## 130
         January Female
                             Florida 3.46
                                               1.9
                                                         869
                                                                 NA Waitlist
## 131
         January
                    Male
                             Florida 3.45
                                               0.7
                                                         866
                                                                 NA Waitlist
## 132
         January Female California 3.44
                                               0.7
                                                         867
                                                                 83 Waitlist
## 133
                    Male California 3.42
         January
                                               1.7
                                                         866
                                                                 NA Waitlist
## 134
         January
                    Male
                                Utah 3.41
                                               1.4
                                                         869
                                                                 81 Waitlist
## 135
                                Utah 3.40
                                                                 80 Waitlist
         January
                    Male
                                               1.2
                                                         868
## 136
         January
                    Male
                             Florida 3.39
                                               1.2
                                                         866
                                                                 NA Waitlist
## 137
                            Colorado 3.41
                                                                 79 Waitlist
         January Female
                                               2.7
                                                         866
## 138
                            Colorado 3.45
                                               1.7
                                                         869
                                                                 78 Waitlist
         January
                    Male
## 139
        February Female
                            Colorado 3.49
                                                2.7
                                                         866
                                                                 NA Waitlist
## 140
         January
                             Florida 3.53
                                                         864
                                                                 70 Waitlist
                    Male
                                               0.7
## 141
        December Female
                             Florida 3.45
                                               1.7
                                                         867
                                                                 87 Waitlist
## 142
         January
                    Male California 3.54
                                                4.2
                                                         865
                                                                 NA Waitlist
## 143
                                Utah 3.34
                                               2.3
                                                         867
                                                                 NA Waitlist
         January Female
## 144
         January Female
                               Other 3.61
                                               0.8
                                                         867
                                                                 84 Waitlist
## 145
         January
                    Male
                                Utah 3.48
                                               2.3
                                                         867
                                                                 85 Waitlist
## 146
                             Florida 3.39
                                                         863
                                                                 86 Waitlist
         January
                    Male
                                               4.2
## 147
         January Female
                                Utah 3.49
                                                0.7
                                                         868
                                                                 82 Waitlist
## 148
         January Female
                                Utah 3.56
                                                1.4
                                                         867
                                                                 84 Waitlist
## 149
         January
                    Male
                             Florida 3.57
                                                1.0
                                                         868
                                                                 NA Waitlist
## Let's look at the Essay scores next...
(table(StudentFileDF$Essay))
##
                                                                 84
                                                                         86
##
    56
        65
            69
                 70
                     71
                         73
                              74
                                  75
                                      78
                                           79
                                               80
                                                    81
                                                        82
                                                            83
                                                                     85
                                                                              87
     2
         1
              3
                  1
                      2
                           1
                               2
                                   1
                                        3
                                            2
                                                2
                                                     4
                                                         2
                                                             3
                                                                  4
                                                                      2
                                                                           1
                                                                               3
```

```
89
            90
                91
                    93
                        94
                             95
                                 96
                                     97
                                         98
                                             99 100
     2
         2
                 5
                     5
                                      5
                                          2
##
             1
                          3
                              4
                                  1
                                              4
                                                  2
(sum(is.na(StudentFileDF$Essay)))
## [1] 74
## Yikes! We have 74 NAs in the Essay column. This suggests that the Essay
## may have been optional. For this reason, we have several choices. We can r
## the column. We can fill in with the mean. We can create a new category "No
tIncluded".
## Below, I have chosen to create a new category called "NotIncluded". This w
ay
## we do not lose the rows and we do not alter the dataset.
## Make sure that the Decision class is a factor
StudentFileDF$Decision <- as.factor(StudentFileDF$Decision)
## Check it current state and create a new DF as a copy
CleanStudentDF <- StudentFileDF</pre>
(head(CleanStudentDF, n = 20))
##
        DateSub Gender
                             State GPA WorkExp MathTest Essay Decision
## 1
      September Female California 3.90
                                            6.7
                                                      962
                                                             NA
                                                                   Admit
      September Female
                          Florida 3.80
                                            1.4
                                                      969
                                                             97
                                                                   Admit
## 3
        October |
                  Male California 3.80
                                            2.3
                                                      970
                                                             NΑ
                                                                   Admit
## 4
        October
                  Male
                         Colorado 3.60
                                            0.9
                                                      969
                                                             NA
                                                                   Admit
                                                             95
## 5
       November
                  Male
                         Colorado 3.92
                                            1.2
                                                      969
                                                                   Admit
                  Male California 3.80
## 6
       November
                                            1.2
                                                      967
                                                             NA
                                                                   Admit
## 7
       November Female California 3.88
                                                             NA
                                                                   Admit
                                            0.0
                                                      967
## 8
       December Female California 3.70
                                            1.2
                                                      969
                                                             NA
                                                                   Admit
## 9
                                                             NA
        October Female
                          Florida 3.90
                                            4.7
                                                      961
                                                                   Admit
## 10
       December Female California 3.70
                                            1.4
                                                      966
                                                             94
                                                                   Admit
       November Female
                                                             91
                                                                   Admit
## 11
                          Florida 3.56
                                            1.7
                                                      968
## 12
       November Female
                          Florida 3.93
                                            0.8
                                                      969
                                                             NA
                                                                   Admit
## 13
        October Female
                         Colorado 3.60
                                            1.2
                                                      967
                                                             94
                                                                   Admit
## 14
                  Male California 3.69
                                                             93
       December
                                            3.2
                                                      967
                                                                   Admit
                                            3.7
## 15
       November
                  Male
                          Florida 3.70
                                                      969
                                                             99
                                                                   Admit
## 16
       December Female
                                                             NA
                                                                   Admit
                         Colorado 3.90
                                            0.0
                                                      967
## 17
                  Male
                         Colorado 3.78
                                            1.2
                                                      966
                                                            100
                                                                   Admit
        January
## 18
                  Male California 3.70
                                                      799
                                                             97
       November
                                            2.7
                                                                   Admit
## 19
       December
                  Male
                          Florida 3.50
                                            0.7
                                                      965
                                                             NA
                                                                   Admit
## 20
                  Male
                         Colorado 3.65
                                            1.7
                                                      963
                                                             NA
                                                                   Admit
        January
str(CleanStudentDF)
## 'data.frame':
                    149 obs. of 8 variables:
                     "September" "September" "October" "October" ...
## $ DateSub : chr
                     "Female" "Female" "Male" ...
## $ Gender : chr
                    "California" "Florida" "California" "Colorado" ...
## $ State : chr
```

```
## $ GPA : num 3.9 3.8 3.8 3.6 3.92 3.8 3.88 3.7 3.9 3.7 ...
## $ WorkExp : num 6.7 1.4 2.3 0.9 1.2 1.2 0 1.2 4.7 1.4 ...
## $ MathTest: int 962 969 970 969 967 967 969 961 966 ...
## $ Essay : num NA 97 NA NA 95 NA NA NA NA 94 ...
## $ Decision: Factor w/ 3 levels "Admit", "Decline",..: 1 1 1 1 1 1 1 1 1 1 1
## Change Gender and State to factors
CleanStudentDF$Gender <- as.factor(CleanStudentDF$Gender)</pre>
CleanStudentDF$State <- as.factor(CleanStudentDF$State)</pre>
str(CleanStudentDF)
## 'data.frame':
                  149 obs. of 8 variables:
## $ DateSub : chr "September" "September" "October" "October" ...
## $ Gender : Factor w/ 2 levels "Female", "Male": 1 1 2 2 2 2 1 1 1 1 ...
## $ State : Factor w/ 6 levels "California", "Colorado",..: 1 3 1 2 2 1 1
1 3 1 ...
## $ GPA
           : num 3.9 3.8 3.8 3.6 3.92 3.8 3.88 3.7 3.9 3.7 ...
## $ WorkExp : num 6.7 1.4 2.3 0.9 1.2 1.2 0 1.2 4.7 1.4 ...
## $ MathTest: int 962 969 970 969 967 967 969 961 966 ...
## $ Essay : num NA 97 NA NA 95 NA NA NA NA 94 ...
## $ Decision: Factor w/ 3 levels "Admit", "Decline",..: 1 1 1 1 1 1 1 1 1 1 1
## Exploratory Data Analysis
##
(head(CleanStudentDF, n = 10))
##
       DateSub Gender
                         State GPA WorkExp MathTest Essay Decision
## 1 September Female California 3.90
                                       6.7
                                               962
                                                      NA
                                                           Admit
## 2 September Female
                                       1.4
                                               969
                                                      97
                       Florida 3.80
                                                           Admit
## 3
       October
                Male California 3.80
                                       2.3
                                               970
                                                      NA
                                                           Admit
## 4
      October
                Male Colorado 3.60
                                       0.9
                                               969
                                                      NA
                                                           Admit
## 5
      November
                Male
                      Colorado 3.92
                                       1.2
                                               969
                                                      95
                                                           Admit
## 6
      November
                Male California 3.80
                                       1.2
                                               967
                                                      NA
                                                           Admit
## 7
      November Female California 3.88
                                       0.0
                                               967
                                                      NA
                                                           Admit
## 8
      December Female California 3.70
                                                      NA
                                       1.2
                                               969
                                                           Admit
## 9
      October Female
                       Florida 3.90
                                       4.7
                                               961
                                                      NA
                                                           Admit
## 10 December Female California 3.70
                                       1.4
                                               966
                                                      94
                                                           Admit
(names(CleanStudentDF))
## [1] "DateSub"
                                              "WorkExp" "MathTest"
                                    "GPA"
                "Gender"
                          "State"
## [7] "Essay"
                "Decision"
str(CleanStudentDF)
## 'data.frame':
                  149 obs. of 8 variables:
## $ DateSub : chr "September" "September" "October" "October" ...
## $ Gender : Factor w/ 2 levels "Female", "Male": 1 1 2 2 2 2 1 1 1 1 ...
```

```
## $ State : Factor w/ 6 levels "California", "Colorado",..: 1 3 1 2 2 1 1
1 3 1 ...
## $ GPA
              : num 3.9 3.8 3.8 3.6 3.92 3.8 3.88 3.7 3.9 3.7 ...
## $ WorkExp : num 6.7 1.4 2.3 0.9 1.2 1.2 0 1.2 4.7 1.4 ...
                     962 969 970 969 969 967 967 969 961 966 ...
## $ MathTest: int
## $ Essay
              : num NA 97 NA NA 95 NA NA NA NA 94 ...
## $ Decision: Factor w/ 3 levels "Admit", "Decline", ..: 1 1 1 1 1 1 1 1 1 1 1
. . .
### TABLES
(table(CleanStudentDF$Gender, CleanStudentDF$Decision))
##
##
            Admit Decline Waitlist
##
     Female
               39
                       21
                                 21
                       14
##
     Male
               31
                                 23
(table(CleanStudentDF$State, CleanStudentDF$Decision))
##
                Admit Decline Waitlist
##
##
     California
                   20
                            1
##
     Colorado
                   17
                            8
                                      7
     Florida
##
                   16
                           16
                                     17
##
     0ther
                    3
                            2
                                      5
                    1
                            2
                                      9
##
     Utah
     Virginia
                   13
                            6
                                      0
##
## The above tables are interesting. There does not appear to be
## any sig diff between genders.
## There does appear to be a larger Decline for FL.
## Create a small dataframe to view months of application for summer
## program and decision to join
MonthsDec <- data.frame(Months=CleanStudentDF$DateSub, DecisionMade=CleanStud
entDF$Decision)
MonthsDec$Months = factor(MonthsDec$Months, levels = month.name)
(table(MonthsDec$Months, MonthsDec$DecisionMade))
##
##
               Admit Decline Waitlist
##
                  44
                          17
                                    34
     January
                   0
                            3
                                     1
##
     February
                   0
                            3
                                     0
##
     March
##
                           0
                                     0
     April
                   0
##
     May
                   0
                           0
                                     0
##
     June
                   0
                           0
                                     0
                           0
##
     July
                   0
                                     0
                   0
                           0
                                     0
##
     August
                   2
##
     September
```

```
##
     October 0
                   8
                            4
                                     4
##
     November
                            7
                                     5
##
     December
                  11
## Notice that Dec and Jan seem the most active for Admit.
EssayCategories <- data.frame(EssayRank=CleanStudentDF$Essay, Decision=CleanS
tudentDF$Decision)
(head(EssayCategories))
     EssayRank Decision
## 1
                  Admit
            NA
## 2
            97
                  Admit
## 3
                  Admit
            NA
## 4
            NA
                  Admit
            95
                  Admit
## 5
## 6
            NA
                  Admit
EssayCategories$EssayRank <-
  cut(EssayCategories$EssayRank, breaks=c(-Inf, 60, 75, 88, Inf),
      labels=c("VeryLow","Low", "Med","High"))
EssayCategories$EssayRank <-fct_explicit_na(EssayCategories$EssayRank, "NotIn
cluded")
(table(CleanStudentDF$Decision, EssayCategories$EssayRank))
##
##
              VeryLow Low Med High NotIncluded
##
     Admit
                         0
                             3
                                 33
                                              34
##
     Decline
                    2
                         7
                             4
                                  1
                                             21
                            21
                                             19
##
     Waitlist
                    0
                         4
## That looks good and makes sense.
## CORRELATION
## Correlation Matrix
(head(CleanStudentDF))
##
       DateSub Gender
                            State GPA WorkExp MathTest Essay Decision
## 1 September Female California 3.90
                                           6.7
                                                     962
                                                            NA
                                                                  Admit
## 2 September Female
                                                            97
                                                                  Admit
                          Florida 3.80
                                           1.4
                                                     969
## 3
                 Male California 3.80
                                                     970
                                                            NA
                                                                  Admit
       October 0
                                           2.3
## 4
                         Colorado 3.60
                                           0.9
                                                                  Admit
       October
                 Male
                                                     969
                                                            NA
                 Male
                         Colorado 3.92
                                                     969
                                                            95
                                                                  Admit
## 5
      November
                                           1.2
     November
                 Male California 3.80
                                           1.2
                                                     967
                                                            NA
                                                                  Admit
correlationMatrix <- cor(CleanStudentDF[,-c(1,2,3,8)],use="complete.obs")</pre>
(correlationMatrix)
##
                  GPA
                          WorkExp
                                    MathTest
                                                   Essay
## GPA
            1.0000000 0.13750313 0.79414644 0.73699644
```

```
## WorkExp 0.1375031 1.00000000 0.08285564 0.09535277
## MathTest 0.7941464 0.08285564 1.00000000 0.83490788
## Essay 0.7369964 0.09535277 0.83490788 1.00000000
#corrplot(correlationMatrix, method="circle")
#corrplot(correlationMatrix, method="color")
corrplot(correlationMatrix, method="number")
```



```
## Note: We can see that MathTest and GPA are strongly
## correlated. This makes sense. When we do Naive Bayes -
## because we assume independence, we should not use
## both measures.
## Essay is also highly correlated with GPA and with MathTest.
## SUMMARY STATS
(summary(CleanStudentDF))
##
      DateSub
                          Gender
                                          State
                                                        GPA
                                   California:27
                                                   Min.
##
   Length:149
                       Female:81
                                                          :2.340
                                   Colorado
                                                   1st Qu.:3.430
##
    Class :character
                       Male :68
                                            :32
##
   Mode :character
                                   Florida
                                             :49
                                                   Median:3.560
##
                                   Other
                                             :10
                                                   Mean
                                                          :3.546
                                                   3rd Qu.:3.750
                                             :12
##
                                   Utah
##
                                   Virginia
                                             :19
                                                          :3.970
                                                   Max.
##
##
       WorkExp
                       MathTest
                                        Essay
                                                         Decision
   Min. :0.000
                    Min. :742.0
                                    Min. : 56.00
                                                     Admit :70
##
```

```
1st Ou.:1.000
                    1st Ou.:865.0
                                     1st Qu.: 80.00
                                                       Decline :35
                    Median :956.0
## Median :1.400
                                     Median : 87.00
                                                       Waitlist:44
           :1.997
                    Mean
                            :897.5
                                             : 85.77
## Mean
                                     Mean
                                     3rd Qu.: 94.00
##
    3rd Qu.:2.300
                    3rd Qu.:967.0
                                     Max.
## Max.
           :9.200
                            :970.0
                                             :100.00
                    Max.
##
                                     NA's
                                             :74
Stats <- round(stat.desc(CleanStudentDF[,-c(1,2,3,8)])) #numerical only
Stats
##
                GPA WorkExp MathTest Essay
## nbr.val
                149
                         149
                                  149
                                         75
                                          0
## nbr.null
                  0
                           8
                                    0
## nbr.na
                                    0
                                         74
                  0
                           0
## min
                  2
                           0
                                  742
                                         56
## max
                  4
                           9
                                  970
                                        100
## range
                  2
                           9
                                  228
                                         44
## sum
                528
                         298
                               133733
                                       6433
## median
                  4
                           1
                                  956
                                         87
                  4
                           2
                                  898
## mean
                                         86
## SE.mean
                  0
                           0
                                    6
                                          1
## CI.mean.0.95
                                          2
                  0
                           0
                                   13
## var
                  0
                           3
                                 6213
                                        107
## std.dev
                           2
                                   79
                  0
                                         10
## coef.var
                  0
                           1
                                    0
                                          0
## Differences by Groups
str(CleanStudentDF$Gender)
## Factor w/ 2 levels "Female", "Male": 1 1 2 2 2 2 1 1 1 1 ...
boxplot(GPA~Gender,data=CleanStudentDF, main="GPA by Gender",
        xlab="Gender", ylab="GPA",notch=TRUE,
        col=(c("gold","darkgreen")))
```

GPA by Gender

Essay by Gender


```
(head(CleanStudentDF))
       DateSub Gender
                           State GPA WorkExp MathTest Essay Decision
## 1 September Female California 3.90
                                           6.7
                                                                 Admit
                                                    962
                                                           NA
## 2 September Female
                         Florida 3.80
                                           1.4
                                                    969
                                                           97
                                                                 Admit
## 3
                 Male California 3.80
                                           2.3
                                                    970
                                                                 Admit
       October
                                                           NA
                        Colorado 3.60
## 4
       October 0
                 Male
                                           0.9
                                                    969
                                                           NA
                                                                 Admit
      November
                 Male
                        Colorado 3.92
                                           1.2
                                                    969
                                                           95
                                                                 Admit
## 5
                 Male California 3.80
## 6
      November
                                           1.2
                                                    967
                                                           NA
                                                                 Admit
## Plots of Decision and Attributes
plot(CleanStudentDF$GPA,CleanStudentDF$WorkExp,
     col=CleanStudentDF$Decision)
```



```
## Here, we see mostly what we expect - but also something *odd*
## We see some Declines that have high scores!
## Can this be based on the State?
######## Analysis -------
##
## Naive Bayes
## For NB - we can only use numerical data
## Create a NB_DF to use for Naive Bayes
## Also take away the Decision - which is the class
####### ------
## For Naive Bayes, we will work with the Cleaned Dataset
(head(CleanStudentDF, n=10))
##
       DateSub Gender
                           State GPA WorkExp MathTest Essay Decision
     September Female California 3.90
                                         6.7
                                                  962
                                                         NA
                                                               Admit
     September Female
                                                               Admit
## 2
                         Florida 3.80
                                         1.4
                                                  969
                                                         97
## 3
       October 0
                 Male California 3.80
                                         2.3
                                                  970
                                                         NA
                                                              Admit
## 4
       October 0
                 Male
                        Colorado 3.60
                                         0.9
                                                  969
                                                         NA
                                                              Admit
## 5
      November
                 Male
                        Colorado 3.92
                                         1.2
                                                  969
                                                         95
                                                              Admit
                 Male California 3.80
                                         1.2
                                                              Admit
## 6
      November
                                                  967
                                                         NA
      November Female California 3.88
                                                              Admit
## 7
                                         0.0
                                                  967
                                                         NA
## 8
      December Female California 3.70
                                         1.2
                                                  969
                                                         NA
                                                              Admit
```

```
## 9
        October Female
                           Florida 3.90
                                             4.7
                                                      961
                                                              NA
                                                                    Admit
       December Female California 3.70
                                                              94
## 10
                                             1.4
                                                      966
                                                                    Admit
## First, create a training and testing set and give them new names
## DO NOT change the CleanStudentDF as you may need it later.
## Always use copies or create new DFs
## To create the Testing Set, I will use very 7 values
## The Training Set will be all the remaining values
(every7 indexes<-seq(1,nrow(CleanStudentDF),7))</pre>
                                                               92 99 106 113
  [1]
          1
              8 15 22 29
                             36 43 50 57 64 71 78
                                                           85
## [18] 120 127 134 141 148
NB DF Test=CleanStudentDF[every7 indexes, ]
NB DF Train=CleanStudentDF[-every7 indexes, ]
## View the created Test and Train sets
(head(NB DF Train, n=10))
##
        DateSub Gender
                             State
                                    GPA WorkExp MathTest Essay Decision
## 2
      September Female
                           Florida 3.80
                                             1.4
                                                      969
                                                              97
                                                                    Admit
## 3
        October 0
                  Male California 3.80
                                             2.3
                                                      970
                                                              NA
                                                                    Admit
## 4
        October 0
                  Male
                          Colorado 3.60
                                             0.9
                                                      969
                                                              NA
                                                                    Admit
## 5
       November
                  Male
                          Colorado 3.92
                                             1.2
                                                      969
                                                              95
                                                                    Admit
## 6
       November
                  Male California 3.80
                                             1.2
                                                      967
                                                              NA
                                                                    Admit
## 7
       November Female California 3.88
                                                              NA
                                                                    Admit
                                             0.0
                                                      967
## 9
        October Female
                           Florida 3.90
                                             4.7
                                                      961
                                                              NA
                                                                    Admit
       December Female California 3.70
## 10
                                             1.4
                                                      966
                                                              94
                                                                    Admit
## 11
       November Female
                           Florida 3.56
                                                              91
                                                                    Admit
                                             1.7
                                                      968
## 12
       November Female
                           Florida 3.93
                                             0.8
                                                      969
                                                              NA
                                                                    Admit
(head(NB_DF_Test, n=10))
##
        DateSub Gender
                             State GPA WorkExp MathTest Essay Decision
      September Female California 3.90
                                                                    Admit
## 1
                                             6.7
                                                      962
                                                              NA
## 8
       December Female California 3.70
                                             1.2
                                                      969
                                                              NA
                                                                    Admit
## 15
       November
                  Male
                           Florida 3.70
                                             3.7
                                                      969
                                                              99
                                                                    Admit
                                                              93
## 22
       December Female
                          Colorado 3.58
                                             0.8
                                                      969
                                                                    Admit
## 29
        January Female
                                             1.7
                                                              93
                          Colorado 3.59
                                                      969
                                                                    Admit
## 36
        January Female
                          Virginia 3.65
                                             1.0
                                                      966
                                                              NA
                                                                    Admit
## 43
        January Female
                          Florida 3.87
                                             1.8
                                                      968
                                                             100
                                                                    Admit
## 50
                          Colorado 3.71
        January Female
                                             1.1
                                                      969
                                                              NA
                                                                    Admit
## 57
        January Female
                           Florida 3.79
                                             1.4
                                                      969
                                                              NA
                                                                 Decline
## 64
                           Florida 3.71
                                                      968
                                                              98
        January
                  Male
                                             0.7
                                                                  Decline
## Notice that there are still some NAs in Essay
## We will have to deal with these....
## Naive Bayes works on numerical data ONLY
## Remove labels and nominal variables, etc.
NB_DF_Train_onlynums <- NB_DF_Train[-c(1,2,3)]</pre>
NB_DF_Test_onlynums <- NB_DF_Test[-c(1,2,3,8)]</pre>
```

```
NB Student TrainLABELS <-NB DF Train$Decision
NB Student TestLABELS <- NB DF Test$Decision
## Check what you have now...
(head(NB_DF_Train_onlynums, n=5))
##
      GPA WorkExp MathTest Essay Decision
## 2 3.80
              1.4
                       969
                              97
                                     Admit
## 3 3.80
              2.3
                       970
                              NA
                                     Admit
## 4 3.60
              0.9
                       969
                              NA
                                     Admit
## 5 3.92
              1.2
                       969
                              95
                                     Admit
## 6 3.80
              1.2
                       967
                              NA
                                     Admit
(head(NB_DF_Test_onlynums, n=5))
##
       GPA WorkExp MathTest Essay
## 1 3.90
               6.7
                        962
## 8 3.70
               1.2
                        969
                                NA
## 15 3.70
               3.7
                        969
                                99
## 22 3.58
                                93
               0.8
                        969
## 29 3.59
               1.7
                        969
                                93
## Now we will run the Naive Bayes (NB) classifier. We can do this two ways
## The first way will retain the Essay column and will skip (pass) the NAs
## The next way will not use the Essay column at all and so will have more da
## but one less variable. Since the Essay is correlated to GPA - this is OK.
## WAY 1 NB
NBStudentclassfier <- naiveBayes(Decision ~.,data=NB_DF_Train_onlynums, na.ac
tion = na.pass)
NBStudentClassifier Prediction <- predict(NBStudentclassfier, NB DF Test only
nums)
NBStudentclassfier
## Naive Bayes Classifier for Discrete Predictors
##
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
## A-priori probabilities:
## Y
##
       Admit
               Decline Waitlist
## 0.4803150 0.2283465 0.2913386
## Conditional probabilities:
##
             GPA
## Y
                  [,1]
                              [,2]
##
     Admit
              3.743770 0.13309350
     Decline 3.227241 0.32076801
##
```

```
##
     Waitlist 3.484865 0.06576987
##
##
             WorkExp
## Y
                  \lceil , 1 \rceil
                            [,2]
              1.839344 1.678519
##
     Admit
##
     Decline 2.203448 1.946881
##
     Waitlist 2.075676 1.370402
##
##
             MathTest
## Y
                  [,1]
                             [,2]
              963.5738 21.720543
##
     Admit
##
     Decline 797.4828 77.628060
     Waitlist 866.0541 3.431439
##
##
##
             Essay
## Y
                  [,1]
                            [,2]
##
     Admit
              93.81250 3.710817
##
     Decline 69.45455 8.128513
     Waitlist 80.55000 5.041668
##
print(NBStudentClassifier_Prediction)
    [1] Admit
                 Admit
                           Admit
                                    Admit
                                             Admit
                                                       Admit
                                                                Admit
                           Admit
                                    Admit
## [8] Admit
                 Admit
                                             Decline
                                                       Decline
                                                                Decline
## [15] Decline
                 Waitlist Waitlist Waitlist Waitlist Waitlist
## [22] Waitlist
## Levels: Admit Decline Waitlist
table(NBStudentClassifier_Prediction, NB_DF_Test$Decision)
##
## NBStudentClassifier_Prediction Admit Decline Waitlist
                                       9
##
                          Admit
                                                2
                                                         0
##
                          Decline
                                       0
                                                4
                                                         0
##
                          Waitlist
                                       0
                                                0
                                                         7
plot(NBStudentClassifier_Prediction)
## This gave excellent results!
## WAY 2 NB
(head(NB_DF_Train_onlynums, n=5))
##
      GPA WorkExp MathTest Essay Decision
## 2 3.80
              1.4
                               97
                        969
                                     Admit
## 3 3.80
              2.3
                        970
                               NA
                                     Admit
## 4 3.60
              0.9
                        969
                               NA
                                     Admit
## 5 3.92
              1.2
                        969
                               95
                                     Admit
## 6 3.80
              1.2
                        967
                                     Admit
(head(NB_DF_Test_onlynums, n=5))
```

```
GPA WorkExp MathTest Essay
## 1 3.90
                        962
               6.7
                               NA
## 8 3.70
               1.2
                        969
                               NA
## 15 3.70
               3.7
                        969
                               99
                               93
## 22 3.58
               0.8
                        969
## 29 3.59
               1.7
                        969
                               93
NB DF Train onlynums noEssay <- NB DF Train onlynums[-4]
NB_DF_Test_onlynums_noEssay <- NB_DF_Test_onlynums[-4]</pre>
NBStudentclassfier2 <- naiveBayes(Decision ~.,data=NB_DF_Train_onlynums_noEss
ay, na.action = na.pass)
NBStudentClassifier Prediction2 <- predict(NBStudentclassfier2, NB DF Test on
lynums_noEssay)
NBStudentclassfier2
##
## Naive Bayes Classifier for Discrete Predictors
##
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
## A-priori probabilities:
## Y
               Decline Waitlist
##
       Admit
## 0.4803150 0.2283465 0.2913386
##
## Conditional probabilities:
##
             GPA
                             [,2]
## Y
                  [,1]
##
    Admit
              3.743770 0.13309350
     Decline 3.227241 0.32076801
##
##
    Waitlist 3.484865 0.06576987
##
             WorkExp
##
## Y
                  [,1]
                           [,2]
##
     Admit
              1.839344 1.678519
     Decline 2.203448 1.946881
##
##
     Waitlist 2.075676 1.370402
##
             MathTest
##
## Y
                  [,1]
                            [,2]
##
              963.5738 21.720543
     Admit
     Decline 797.4828 77.628060
##
##
    Waitlist 866.0541 3.431439
print(NBStudentClassifier_Prediction2)
                          Admit
                                    Admit
                                             Admit
                                                      Admit
                                                               Admit
    [1] Admit
                 Admit
## [8] Admit
                 Admit
                          Admit
                                    Admit
                                             Decline Decline
                                                               Decline
## [15] Decline Waitlist Waitlist Waitlist Waitlist Waitlist
```

```
## [22] Waitlist
## Levels: Admit Decline Waitlist
table(NBStudentClassifier_Prediction2,NB_DF_Test$Decision)
##
## NBStudentClassifier_Prediction2 Admit Decline Waitlist
                          Admit
                                               4
##
                          Decline
                                       0
                                                         0
##
                          Waitlist
                                               0
                                                         7
                                       0
plot(NBStudentClassifier_Prediction2)
```



```
## -----
## Decision Tree Classification
## -----
## Next, we will use Decision Trees to see if we can classify data
## by acceptance type : Admit, Decline, Waitlist
## Notice that I am always resorting back to my original(ish) dataframes
## so that I can adjust them as needed for each application.
## Recall that students who apply for this summer study abroad program
## can be accepted (Admitted), Declined, or placed on a waitlist.
## Unlike Naive Bayes, Decision Trees can run on discretized/categorical data
```

```
(head(NB_DF_Train, n=5))
       DateSub Gender
##
                            State GPA WorkExp MathTest Essay Decision
## 2 September Female
                         Florida 3.80
                                                     969
                                                            97
                                                                  Admit
                                           1.4
## 3
                 Male California 3.80
                                           2.3
                                                     970
                                                            NA
                                                                  Admit
       October 0
## 4
       October 0
                 Male
                        Colorado 3.60
                                           0.9
                                                     969
                                                            NA
                                                                  Admit
## 5
      November
                 Male
                        Colorado 3.92
                                           1.2
                                                     969
                                                            95
                                                                  Admit
## 6
      November
                 Male California 3.80
                                           1.2
                                                     967
                                                            NA
                                                                  Admit
(head(NB_DF_Test, n=5))
##
        DateSub Gender
                             State GPA WorkExp MathTest Essay Decision
## 1
      September Female California 3.90
                                            6.7
                                                      962
                                                             NA
                                                                   Admit
## 8
       December Female California 3.70
                                                      969
                                            1.2
                                                             NA
                                                                   Admit
## 15
       November
                  Male
                           Florida 3.70
                                            3.7
                                                      969
                                                             99
                                                                   Admit
## 22
       December Female
                         Colorado 3.58
                                            0.8
                                                      969
                                                             93
                                                                   Admit
## 29
        January Female
                         Colorado 3.59
                                            1.7
                                                      969
                                                             93
                                                                   Admit
DT_Test <- NB_DF_Test[-c(8)] ## remove the Decision Class
DT Test Labels <- NB DF Test$Decision
DT Train <- NB DF Train
(head(DT_Train,n=5))
##
       DateSub Gender
                            State GPA WorkExp MathTest Essay Decision
                                                            97
## 2 September Female
                         Florida 3.80
                                           1.4
                                                     969
                                                                  Admit
                 Male California 3.80
## 3
       October 0
                                           2.3
                                                     970
                                                            NA
                                                                  Admit
## 4
                        Colorado 3.60
                                           0.9
                                                     969
                                                            NA
       October 0
                 Male
                                                                  Admit
## 5
      November
                 Male
                        Colorado 3.92
                                           1.2
                                                     969
                                                            95
                                                                  Admit
## 6
      November
                 Male California 3.80
                                           1.2
                                                     967
                                                            NA
                                                                  Admit
(head(DT_Test, n=5))
##
        DateSub Gender
                             State GPA WorkExp MathTest Essay
## 1
      September Female California 3.90
                                            6.7
                                                      962
                                                             NA
## 8
       December Female California 3.70
                                            1.2
                                                      969
                                                             NA
## 15
       November
                                            3.7
                                                             99
                  Male
                           Florida 3.70
                                                      969
## 22
       December Female
                         Colorado 3.58
                                            0.8
                                                      969
                                                             93
## 29
        January Female
                         Colorado 3.59
                                            1.7
                                                      969
                                                             93
## -----
## Step 1 - categorize GPA
DT_Train$GPAcategory <-
      cut(DT_Train$GPA, breaks=c(-Inf, 3.4, 3.7, Inf),
          labels=c("LowGPA","MedGPA","HighGPA"))
DT Train$GPAcategory[is.na(DT Train$GPA)] <- "MedGPA"
(DT_Train)
##
         DateSub Gender
                              State GPA WorkExp MathTest Essay Decision
                                                              97
## 2
       September Female
                            Florida 3.80
                                                       969
                                                                    Admit
                                             1.4
## 3
         October 0
                   Male California 3.80
                                             2.3
                                                       970
                                                              NA
                                                                    Admit
```

##	1	October	Male	Colorado	2 60	0.9	969	NA	Admit	
##		November		Colorado		1.2	969	95	Admit	
##		November		California		1.2	967	NA	Admit	
##				California		0.0	967	NA	Admit	
##		October		Florida		4.7	961	NA	Admit	
	10			California		1.4	966	94	Admit	
	11	November		Florida		1.7	968	91	Admit	
	12	November				0.8	969	NA	Admit	
	13	October		Colorado		1.2	967	94	Admit	
	14	December		California		3.2	967	93	Admit	
	16	December				0.0	967	NA	Admit	
	17	January				1.2	966	100	Admit	
	18	November		California		2.7	799	97	Admit	
	19	December		Florida		0.7	965	NA	Admit	
	20	January				1.7	963	NA	Admit	
	21	January				1.1	969	NA	Admit	
	23	October		California		8.7	966	91	Admit	
##	24			California		2.8	967	95	Admit	
	25	January		Florida		0.7	965	NA	Admit	
	26	December	Male			2.2	967	91	Admit	
	27	December		Florida		0.0	967	88	Admit	
	28	January		Florida		0.0	962	97	Admit	
	30	November		California		0.9	956	89	Admit	
	31	December			3.78	1.2	968	87	Admit	
##	32	January				1.0	969	93	Admit	
##	33	January		Florida		1.9	965	94	Admit	
##	34	January		Florida		1.4	969	99	Admit	
##	35	January	Female	California	3.87	1.7	966	97	Admit	
##	37	January	Male	Virginia	3.89	0.7	966	NA	Admit	
##	38	December	Female	Virginia	3.59	1.8	966	NA	Admit	
##	39	December	Female	California	3.78	4.7	952	99	Admit	
##	40	January	Male	Virginia	3.87	8.2	957	NA	Admit	
##	41	January	Male	Colorado	3.56	1.7	969	91	Admit	
##	42	January	Male	California	3.66	1.0	963	NA	Admit	
##	44	January	Female	Other	3.77	1.7	969	NA	Admit	
##	45	January	Male	Florida	3.56	1.1	968	95	Admit	
##	46	January	Male	Florida	3.51	2.9	964	95	Admit	
##	47	January	Female	Virginia	3.61	0.0	967	NA	Admit	
##	48	January	Female	California	3.77	1.4	969	96	Admit	
	49			Virginia		0.7	967	NA	Admit	
	51	January		California		3.2	969	NA	Admit	
	52	January	Male	California	3.91	1.2	969	NA	Admit	
##	53	January	Female	California	3.88	0.0	969	NA	Admit	
	54	January				3.7	966	NA	Decline	
	55	January		_		2.7	957	NA	Admit	
	56	January		Florida		1.2	968	NA	Admit	
	58	•		California		3.7	968	91	Admit	
	59	January		Colorado		1.7	969	NA	Admit	
	60	January				1.2	967	NA	Admit	
##	61	January	Female	Colorado	3.78	1.7	969	90	Admit	

##		January		_		1.2	969	NA	Admit	
##		January		_		2.7	969	97	Admit	
##		•		California		2.7	961	NA	Admit	
##		January				1.2	968	NA	Admit	
##		January		•		1.3	966	99	Admit	
##		January				1.3	966	NA	Decline	
##		January				1.2	967	98	Admit	
##		January		•		5.7	968	89	Admit	
##		January		_		1.5	969	87	Admit	
##		January				1.3	959	NA	Decline	
##		January				0.9	969	NA	Decline	
##		January				0.9	965	NA	Admit	
##		January				1.4	969	93	Admit	
##		January				2.7	960	NA	Decline	
##				California		0.8	754	75	Decline	
##		November				0.9	769	56	Decline	
##		November				1.6	766	NA	Decline	
##		December	Male	U		0.9	766	NA	Decline	
##		December				1.2	768	56	Decline	
	84	December				1.9	751	NA	Decline	
##		January				1.1	767	65	Decline	
##		January				3.2	757	NA	Decline	
##		January				0.7	763	71	Decline	
##		November		_		3.7	763	NA	Decline	
##		December				1.4	768	NA	Decline	
##		January				1.7	758	69	Decline	
##		January		Utah		1.4	769	69	Decline	
##		January		Utah		0.8	768	NA	Decline	
##		January				6.2	753	NA	Decline	
##		December				1.7	769	81	Decline	
##			Female			4.6	762	NA	Decline	
	98	February		_		1.7	766	79	Decline	
	100		Female			4.2	764	69	Decline	
	101	February				8.9	742	NA	Decline	
	102	January		_		0.0	761	NA		
	103	February		Colorado		0.0	765	NA	Decline	
	104	January		Colorado		3.7	769	NA	Decline	
	105		Female	Florida		1.7	769	74	Decline	
	107	November	Male	Florida		4.7	867		Waitlist	
	108	November	Male	Florida		1.7	869		Waitlist	
	109	December		Other		2.2	866		Waitlist	
	110	November	Male	Other		1.2	868		Waitlist	
	111	December	Male	0ther		0.9	866		Waitlist	
	112	December		Florida		1.7	869		Waitlist	
	114	January		Colorado		3.5	869		Waitlist	
	115	January		Utah		1.8	866		Waitlist	
	116			California		2.7	855		Waitlist	
	117	January				1.3	866		Waitlist	
	118	January				1.5	869		Waitlist	
##	119	January	Male	Florida	3.44	7.2	865	NA	Waitlist	

```
## 121
         January Female
                                Utah 3.58
                                                0.9
                                                         864
                                                                 81 Waitlist
## 122
         January Female
                                                         869
                                Utah 3.57
                                                1.4
                                                                 80 Waitlist
## 123
         January Female
                             Florida 3.56
                                                1.3
                                                         869
                                                                 84 Waitlist
## 124
         January
                    Male
                                                         853
                             Florida 3.55
                                                2.0
                                                                 NA Waitlist
## 125
         January
                    Male
                            Colorado 3.54
                                                1.2
                                                         868
                                                                 83 Waitlist
## 126
         January Female
                               Other 3.53
                                                3.3
                                                         862
                                                                 NA Waitlist
## 128
         January Female
                             Florida 3.51
                                                3.4
                                                         865
                                                                 88 Waitlist
## 129
         January Female California 3.47
                                                2.2
                                                         867
                                                                 NA Waitlist
## 130
         January Female
                             Florida 3.46
                                                1.9
                                                         869
                                                                 NA Waitlist
## 131
         January
                    Male
                             Florida 3.45
                                                0.7
                                                         866
                                                                 NA Waitlist
## 132
         January Female California 3.44
                                                0.7
                                                         867
                                                                 83 Waitlist
## 133
                    Male California 3.42
                                                1.7
                                                         866
                                                                 NA Waitlist
         January
## 135
         January
                    Male
                                Utah 3.40
                                                1.2
                                                         868
                                                                 80 Waitlist
## 136
         January
                    Male
                             Florida 3.39
                                                1.2
                                                         866
                                                                 NA Waitlist
## 137
         January Female
                            Colorado 3.41
                                                2.7
                                                         866
                                                                 79 Waitlist
## 138
         January
                    Male
                            Colorado 3.45
                                                1.7
                                                         869
                                                                 78 Waitlist
## 139
        February Female
                            Colorado 3.49
                                                2.7
                                                         866
                                                                 NA Waitlist
## 140
         January
                             Florida 3.53
                                                0.7
                                                         864
                                                                 70 Waitlist
                    Male
## 142
         January
                    Male California 3.54
                                                4.2
                                                         865
                                                                 NA Waitlist
## 143
         January Female
                                Utah 3.34
                                                2.3
                                                         867
                                                                 NA Waitlist
## 144
         January Female
                               Other 3.61
                                                0.8
                                                         867
                                                                 84 Waitlist
## 145
         January
                    Male
                                Utah 3.48
                                                2.3
                                                         867
                                                                 85 Waitlist
## 146
                                                4.2
                                                         863
         January
                    Male
                             Florida 3.39
                                                                 86 Waitlist
## 147
         January Female
                                Utah 3.49
                                                0.7
                                                         868
                                                                 82 Waitlist
## 149
         January
                    Male
                             Florida 3.57
                                                1.0
                                                         868
                                                                 NA Waitlist
##
       GPAcategory
## 2
            HighGPA
## 3
            HighGPA
## 4
            MedGPA
## 5
            HighGPA
## 6
            HighGPA
## 7
            HighGPA
## 9
            HighGPA
## 10
            MedGPA
## 11
            MedGPA
## 12
            HighGPA
## 13
            MedGPA
## 14
            MedGPA
## 16
            HighGPA
## 17
            HighGPA
## 18
            MedGPA
## 19
            MedGPA
## 20
            MedGPA
## 21
            HighGPA
## 23
            HighGPA
## 24
            HighGPA
## 25
            MedGPA
## 26
            MedGPA
## 27
            HighGPA
## 28
            MedGPA
```

##	30	MedGPA
		HighGPA
	32	HighGPA
	33	HighGPA
	34	HighGPA
	35	HighGPA
	37	HighGPA
	38	MedGPA
	39	HighGPA
	40	HighGPA
	41	MedGPA
	42	MedGPA
	44	HighGPA
	45	MedGPA
	46	MedGPA
	46 47	MedGPA
	48	HighGPA
	49	MedGPA
	51	MedGPA
	52	HighGPA
	53	HighGPA
	54	MedGPA
	55	HighGPA
##		MedGPA
##	58	HighGPA
##	59	HighGPA
##	60	HighGPA
##	61	HighGPA
	62	MedGPA
	63	MedGPA
	65	MedGPA
	66	MedGPA
	67	HighGPA
	68	HighGPA
##		HighGPA
	70	MedGPA
	72	HighGPA
	73	MedGPA
	74	MedGPA
		HighGPA
	75 76	•
	76 77	MedGPA
	77	HighGPA
	79	LowGPA
	80	LowGPA
##		LowGPA
	82	LowGPA
	83	LowGPA
	84	LowGPA
	86	MedGPA
##	87	MedGPA

##	88	LowGPA
##	89	LowGPA
##	90	LowGPA
	91	LowGPA
##	93	LowGPA
##	94	LowGPA
##	95	LowGPA
##	96	MedGPA
##	97	LowGPA
##	98	LowGPA
##	100	LowGPA
##	101	LowGPA
	102	LowGPA
	103	LowGPA
	104	LowGPA
	105	LowGPA
	107	MedGPA
	108	MedGPA
	109	MedGPA
	110	MedGPA
	111	MedGPA
	112	MedGPA
	114	MedGPA
	115	LowGPA
	116	MedGPA
	117	MedGPA
	118	MedGPA
	119	MedGPA
	121	MedGPA
	122	MedGPA
	123	MedGPA
	124	MedGPA
	125	MedGPA
	126	MedGPA
	128	MedGPA
	129	MedGPA
	130	MedGPA
	131	MedGPA
	132	MedGPA
	133	MedGPA
	135	LowGPA
	136	LowGPA
	137	MedGPA
	138	MedGPA
	139	MedGPA
	140	MedGPA
	142	MedGPA
	143	LowGPA
	144	MedGPA
##	145	MedGPA

```
## 146
            LowGPA
## 147
            MedGPA
## 149
            MedGPA
(table(DT Train$GPAcategory))
##
##
    LowGPA
            MedGPA HighGPA
##
        26
                 65
                         36
DT Test$GPAcategory <-
  cut(DT_Test$GPA, breaks=c(-Inf, 3.4, 3.7, Inf),
      labels=c("LowGPA", "MedGPA", "HighGPA"))
## Change any NAs to MedGPA
DT Test$GPAcategory[is.na(DT Test$GPA)] <- "MedGPA"</pre>
(DT Test)
##
         DateSub Gender
                                     GPA WorkExp MathTest Essay GPAcategory
                              State
## 1
       September Female California 3.90
                                              6.7
                                                        962
                                                               NA
                                                                       HighGPA
## 8
        December Female California 3.70
                                              1.2
                                                        969
                                                               NA
                                                                        MedGPA
## 15
        November
                    Male
                            Florida 3.70
                                              3.7
                                                        969
                                                               99
                                                                        MedGPA
## 22
                                                               93
        December Female
                           Colorado 3.58
                                              0.8
                                                        969
                                                                        MedGPA
## 29
         January Female
                           Colorado 3.59
                                              1.7
                                                        969
                                                               93
                                                                        MedGPA
## 36
         January Female
                           Virginia 3.65
                                              1.0
                                                        966
                                                               NA
                                                                        MedGPA
## 43
                            Florida 3.87
                                                        968
                                                              100
         January Female
                                              1.8
                                                                       HighGPA
## 50
         January Female
                           Colorado 3.71
                                              1.1
                                                        969
                                                               NA
                                                                       HighGPA
## 57
         January Female
                            Florida 3.79
                                              1.4
                                                        969
                                                               NA
                                                                       HighGPA
## 64
                                              0.7
                                                        968
                                                               98
         January
                    Male
                            Florida 3.71
                                                                       HighGPA
## 71
         January
                    Male
                           Virginia 3.45
                                              0.7
                                                        969
                                                               NA
                                                                        MedGPA
## 78
       September
                    Male
                            Florida 2.81
                                              9.2
                                                        764
                                                               NA
                                                                        LowGPA
## 85
                           Virginia 3.22
                                              3.2
                                                        769
                                                               78
        December
                    Male
                                                                        LowGPA
## 92
                    Male
                           Colorado 3.32
                                              1.7
                                                        768
                                                               78
         January
                                                                        LowGPA
## 99
        December Female
                            Florida 3.38
                                              0.7
                                                        768
                                                               NA
                                                                        LowGPA
## 106
                                              1.9
                                                               NA
         January
                    Male
                            Florida 3.40
                                                        859
                                                                        LowGPA
## 113
        December
                    Male California 3.42
                                              0.7
                                                        869
                                                               84
                                                                        MedGPA
## 120
         January Female
                            Florida 3.29
                                              1.2
                                                        869
                                                               NA
                                                                        LowGPA
## 127
                                                               81
         January
                    Male
                            Florida 3.52
                                              0.7
                                                        868
                                                                        MedGPA
## 134
         January
                    Male
                               Utah 3.41
                                              1.4
                                                        869
                                                               81
                                                                        MedGPA
## 141
        December Female
                            Florida 3.45
                                              1.7
                                                        867
                                                               87
                                                                        MedGPA
## 148
         January Female
                               Utah 3.56
                                                        867
                                                               84
                                              1.4
                                                                        MedGPA
(table(DT_Test$GPAcategory))
##
##
    LowGPA
            MedGPA HighGPA
         6
##
                 11
## Step 2 -----
### Categorize the Essay scores AND deal with the NAs
## I will group the Essays as shown and will change NA to a new group
## called NotIncluded.
```

```
DT Test$Essaycategory <-
  cut(DT Test$Essay, breaks=c(-Inf, 60, 85, Inf),
      labels=c("Low","Med","High"))
DT_Test$Essaycategory <-fct_explicit_na(DT_Test$Essaycategory, "NotIncluded")</pre>
str(DT_Test$Essaycategory)
## Factor w/ 4 levels "Low", "Med", "High", ..: 4 4 3 3 3 4 3 4 4 3 ...
## I need DT_Test$Essaycategory to be a string not factor
## so I can add a category of "NotIncluded"
(table(DT_Test$Essaycategory))
##
##
           Low
                       Med
                                  High NotIncluded
##
             0
                         6
                                     6
(DT_Test$Essaycategory)
## [1] NotIncluded NotIncluded High
                                             High
                                                         High
## [6] NotIncluded High
                                NotIncluded NotIncluded High
## [11] NotIncluded NotIncluded Med
                                            Med
                                                         NotIncluded
## [16] NotIncluded Med
                                NotIncluded Med
                                                         Med
## [21] High
                    Med
## Levels: Low Med High NotIncluded
DT_Train$Essaycategory <-
  cut(DT_Train$Essay, breaks=c(-Inf, 60, 85, Inf),
      labels=c("Low","Med","High"))
DT_Train$Essaycategory <-fct_explicit_na(DT_Train$Essaycategory, "NotIncluded
(table(DT_Train$Essaycategory))
##
                                  High NotIncluded
##
           Low
                       Med
                        27
                                    34
## As we can see, the Essay column is not very helpful overall. The NotInclud
ed
## is large and the Low is very small.
## Step 3-----
## Categorize the submission time as Early, Ontime, or Later
DT_Train$DateSub[DT_Train$DateSub %in% c("September", "October")] <- "Early"</pre>
DT Train$DateSub[DT Train$DateSub %in% c("November", "December")] <- "Ontime"
DT_Train$DateSub[DT_Train$DateSub %in% c("January", "February", "March", "April"
)] <- "Later"
(head(DT_Train, n=15))
##
      DateSub Gender
                          State GPA WorkExp MathTest Essay Decision
## 2
                                          1.4
                                                          97
                                                                Admit
        Early Female
                        Florida 3.80
                                                   969
## 3
        Early Male California 3.80
                                         2.3
                                                   970
                                                          NA
                                                                Admit
```

```
## 4
         Early
                   Male
                           Colorado 3.60
                                                0.9
                                                           969
                                                                   NA
                                                                           Admit
## 5
        Ontime
                           Colorado 3.92
                                                1.2
                                                           969
                                                                   95
                                                                          Admit
                   Male
                                                1.2
## 6
        Ontime
                   Male California 3.80
                                                           967
                                                                   NA
                                                                          Admit
## 7
        Ontime Female California 3.88
                                                0.0
                                                           967
                                                                   NA
                                                                          Admit
## 9
                                                4.7
         Early Female
                            Florida 3.90
                                                           961
                                                                   NA
                                                                          Admit
## 10
        Ontime Female California 3.70
                                                1.4
                                                           966
                                                                   94
                                                                          Admit
## 11
        Ontime Female
                            Florida 3.56
                                                1.7
                                                           968
                                                                   91
                                                                          Admit
## 12
        Ontime Female
                            Florida 3.93
                                                0.8
                                                           969
                                                                   NA
                                                                          Admit
## 13
                                                                   94
         Early Female
                           Colorado 3.60
                                                1.2
                                                                          Admit
                                                           967
                                                3.2
## 14
        Ontime
                   Male California 3.69
                                                           967
                                                                   93
                                                                          Admit
                                                0.0
## 16
        Ontime Female
                           Colorado 3.90
                                                           967
                                                                   NA
                                                                          Admit
## 17
         Later
                   Male
                           Colorado 3.78
                                                1.2
                                                           966
                                                                  100
                                                                          Admit
                   Male California 3.70
## 18
        Ontime
                                                2.7
                                                           799
                                                                   97
                                                                          Admit
##
       GPAcategory Essaycategory
## 2
            HighGPA
                                High
## 3
            HighGPA
                       NotIncluded
## 4
            MedGPA
                       NotIncluded
## 5
            HighGPA
                                High
## 6
            HighGPA
                       NotIncluded
## 7
            HighGPA
                       NotIncluded
## 9
           HighGPA
                       NotIncluded
            MedGPA
## 10
                                High
## 11
            MedGPA
                                High
## 12
           HighGPA
                       NotIncluded
## 13
            MedGPA
                                High
## 14
            MedGPA
                                High
## 16
            HighGPA
                       NotIncluded
## 17
            HighGPA
                                High
## 18
            MedGPA
                                High
(table(DT_Train$DateSub))
##
##
    Early
             Later Ontime
##
         6
                89
                         32
DT_Test$DateSub[DT_Test$DateSub %in% c("September", "October")] <- "Early"
DT_Test$DateSub[DT_Test$DateSub %in% c( "November", "December")] <- "Ontime"
DT_Test$DateSub[DT_Test$DateSub %in% c("January", "February", "March", "April")</pre>
] <- "Later"
(head(DT_Test, n=5))
##
       DateSub Gender
                              State GPA WorkExp MathTest Essay GPAcategory
## 1
         Early Female California 3.90
                                                6.7
                                                           962
                                                                   NA
                                                                            HighGPA
## 8
        Ontime Female California 3.70
                                                1.2
                                                           969
                                                                             MedGPA
                                                                   NA
                                                                   99
## 15
        Ontime
                   Male
                            Florida 3.70
                                                3.7
                                                           969
                                                                             MedGPA
## 22
        Ontime Female
                           Colorado 3.58
                                                0.8
                                                           969
                                                                   93
                                                                             MedGPA
## 29
                           Colorado 3.59
                                                           969
                                                                   93
         Later Female
                                                1.7
                                                                             MedGPA
##
       Essaycategory
## 1
         NotIncluded
## 8
         NotIncluded
```

```
## 15
               High
## 22
               High
## 29
               High
(table(DT_Test$DateSub))
##
##
    Early
          Later Ontime
              13
##
        2
## Step 4 -----
## Let's see where we are....
(head(DT_Train, n=5))
     DateSub Gender
##
                          State GPA WorkExp MathTest Essay Decision
## 2
       Early Female
                        Florida 3.80
                                          1.4
                                                   969
                                                           97
                                                                 Admit
               Male California 3.80
                                          2.3
                                                           NA
## 3
       Early
                                                   970
                                                                 Admit
## 4
               Male
                       Colorado 3.60
                                          0.9
                                                   969
                                                           NA
                                                                 Admit
       Early
## 5 Ontime
               Male
                       Colorado 3.92
                                          1.2
                                                   969
                                                           95
                                                                 Admit
               Male California 3.80
## 6
      Ontime
                                          1.2
                                                   967
                                                           NA
                                                                 Admit
##
     GPAcategory Essaycategory
## 2
         HighGPA
                           High
## 3
         HighGPA
                   NotIncluded
## 4
          MedGPA
                   NotIncluded
## 5
         HighGPA
                           High
## 6
         HighGPA
                   NotIncluded
(head(DT_Test, n=5))
##
      DateSub Gender
                           State GPA WorkExp MathTest Essay GPAcategory
## 1
        Early Female California 3.90
                                           6.7
                                                    962
                                                            NA
                                                                   HighGPA
## 8
       Ontime Female California 3.70
                                           1.2
                                                    969
                                                            NA
                                                                    MedGPA
                                           3.7
                                                            99
## 15
       Ontime
                Male
                         Florida 3.70
                                                    969
                                                                    MedGPA
                                           0.8
## 22
       Ontime Female
                        Colorado 3.58
                                                    969
                                                            93
                                                                    MedGPA
## 29
        Later Female
                        Colorado 3.59
                                           1.7
                                                    969
                                                            93
                                                                    MedGPA
##
      Essaycategory
## 1
        NotIncluded
## 8
        NotIncluded
## 15
               High
## 22
               High
## 29
               High
ReadyDT_Train<-DT_Train[-c(4,5,6,7)]</pre>
ReadyDT_Test<-DT_Test[-c(4,5,6,7)]
TestLabels <- DT_Test_Labels
(head(ReadyDT_Test, n=20))
```

```
##
       DateSub Gender
                             State GPAcategory Essaycategory
         Early Female California
## 1
                                                   NotIncluded
                                        HighGPA
## 8
        Ontime Female California
                                         MedGPA
                                                   NotIncluded
## 15
        Ontime
                  Male
                           Florida
                                         MedGPA
                                                          High
## 22
        Ontime Female
                          Colorado
                                         MedGPA
                                                          High
## 29
         Later Female
                          Colorado
                                         MedGPA
                                                          High
## 36
         Later Female
                          Virginia
                                         MedGPA
                                                   NotIncluded
## 43
         Later Female
                           Florida
                                        HighGPA
                                                          High
## 50
         Later Female
                          Colorado
                                        HighGPA
                                                   NotIncluded
## 57
         Later Female
                           Florida
                                        HighGPA
                                                   NotIncluded
## 64
         Later
                  Male
                           Florida
                                        HighGPA
                                                          High
## 71
                  Male
                                         MedGPA
                                                   NotIncluded
         Later
                          Virginia
## 78
         Early
                  Male
                           Florida
                                         LowGPA
                                                   NotIncluded
        Ontime
## 85
                  Male
                          Virginia
                                         LowGPA
                                                            Med
## 92
         Later
                  Male
                          Colorado
                                                            Med
                                         LowGPA
## 99
        Ontime Female
                           Florida
                                         LowGPA
                                                   NotIncluded
## 106
         Later
                  Male
                           Florida
                                         LowGPA
                                                   NotIncluded
                  Male California
## 113
                                                            Med
        Ontime
                                         MedGPA
## 120
         Later Female
                           Florida
                                         LowGPA
                                                   NotIncluded
## 127
                  Male
                           Florida
                                                            Med
         Later
                                         MedGPA
## 134
                  Male
                              Utah
                                         MedGPA
                                                            Med
         Later
(head(ReadyDT_Train, n=20))
##
      DateSub Gender
                            State Decision GPAcategory Essaycategory
## 2
        Early Female
                          Florida
                                      Admit
                                                 HighGPA
                                                                   High
                 Male California
## 3
        Early
                                      Admit
                                                 HighGPA
                                                            NotIncluded
## 4
        Early
                 Male
                         Colorado
                                      Admit
                                                  MedGPA
                                                            NotIncluded
       Ontime
## 5
                 Male
                         Colorado
                                      Admit
                                                 HighGPA
                                                                   High
## 6
                 Male California
                                      Admit
                                                 HighGPA
                                                            NotIncluded
       Ontime
## 7
       Ontime Female California
                                      Admit
                                                 HighGPA
                                                            NotIncluded
## 9
        Early Female
                          Florida
                                      Admit
                                                 HighGPA
                                                            NotIncluded
## 10
       Ontime Female California
                                      Admit
                                                  MedGPA
                                                                   High
## 11
       Ontime Female
                          Florida
                                      Admit
                                                  MedGPA
                                                                   High
## 12
                                      Admit
       Ontime Female
                          Florida
                                                 HighGPA
                                                            NotIncluded
## 13
        Early Female
                         Colorado
                                      Admit
                                                  MedGPA
                                                                   High
## 14
       Ontime
                 Male California
                                      Admit
                                                  MedGPA
                                                                   High
## 16
       Ontime Female
                         Colorado
                                      Admit
                                                 HighGPA
                                                            NotIncluded
## 17
        Later
                 Male
                         Colorado
                                      Admit
                                                 HighGPA
                                                                   High
## 18
                 Male California
       Ontime
                                      Admit
                                                  MedGPA
                                                                   High
## 19
       Ontime
                 Male
                          Florida
                                      Admit
                                                  MedGPA
                                                            NotIncluded
## 20
                         Colorado
                                      Admit
                                                            NotIncluded
        Later
                 Male
                                                  MedGPA
## 21
        Later Female
                         Colorado
                                      Admit
                                                 HighGPA
                                                            NotIncluded
## 23
                 Male California
                                      Admit
                                                 HighGPA
        Early
                                                                   High
## 24
        Later Female California
                                      Admit
                                                 HighGPA
                                                                   High
(table(ReadyDT_Train$DateSub))
##
##
    Early
            Later Ontime
##
        6
               89
                      32
```

```
## Now, we can train and test the decision tree
Treefit <- rpart(ReadyDT_Train$Decision ~ ., data = ReadyDT_Train, method="cl</pre>
ass")
summary(Treefit)
## Call:
## rpart(formula = ReadyDT Train$Decision ~ ., data = ReadyDT Train,
       method = "class")
##
     n = 127
##
##
             CP nsplit rel error
                                     xerror
                                                  xstd
                     0 1.0000000 1.0000000 0.08530826
## 1 0.31818182
## 2 0.24242424
                     1 0.6818182 0.6818182 0.08167091
## 3 0.02525253
                     2 0.4393939 0.4393939 0.07167476
                     5 0.3636364 0.4848485 0.07412949
## 4 0.01000000
##
## Variable importance
                                                    DateSub
     GPAcategory Essaycategory
                                        State
##
              48
                                            8
                            43
                                                           1
##
## Node number 1: 127 observations,
                                        complexity param=0.3181818
##
     predicted class=Admit
                                expected loss=0.519685 P(node) =1
##
       class counts:
                        61
                               29
                                     37
##
      probabilities: 0.480 0.228 0.291
##
     left son=2 (101 obs) right son=3 (26 obs)
##
     Primary splits:
##
         GPAcategory
                       splits as
                                   RLL,
                                           improve=18.8361500, (0 missing)
##
         Essaycategory splits as
                                   RRLR,
                                           improve=14.7925700, (0 missing)
                                   LLRRRL, improve= 5.5170590, (0 missing)
##
         State
                       splits as
##
                       splits as
                                   LRL,
                                           improve= 1.1537370, (0 missing)
         DateSub
##
         Gender
                       splits as
                                   LR,
                                           improve= 0.5156044, (0 missing)
##
     Surrogate splits:
         Essaycategory splits as RLLL, agree=0.811, adj=0.077, (0 split)
##
##
## Node number 2: 101 observations,
                                        complexity param=0.2424242
##
     predicted class=Admit
                                expected loss=0.3960396 P(node) =0.7952756
##
       class counts:
                        61
                                8
                                     32
##
      probabilities: 0.604 0.079 0.317
##
     left son=4 (83 obs) right son=5 (18 obs)
##
     Primary splits:
##
                                           improve=15.1799800, (0 missing)
         Essaycategory splits as
                                   -RLL,
                                   -RL,
                                           improve=12.1314400, (0 missing)
##
         GPAcategory
                       splits as
##
         State
                       splits as
                                   LLRRRL, improve= 5.1710590, (0 missing)
##
                                           improve= 1.1016320, (0 missing)
         DateSub
                       splits as
                                   LRL,
##
         Gender
                       splits as
                                   LR,
                                           improve= 0.1820409, (0 missing)
##
     Surrogate splits:
##
         State splits as LLLLRL, agree=0.851, adj=0.167, (0 split)
##
## Node number 3: 26 observations
```

```
##
     predicted class=Decline expected loss=0.1923077 P(node) =0.2047244
##
       class counts:
                         0
                              21
                                     5
##
      probabilities: 0.000 0.808 0.192
##
## Node number 4: 83 observations,
                                      complexity param=0.02525253
     predicted class=Admit
                               expected loss=0.2650602 P(node) =0.6535433
##
##
       class counts:
                        61
                               6
##
      probabilities: 0.735 0.072 0.193
##
     left son=8 (36 obs) right son=9 (47 obs)
##
     Primary splits:
         GPAcategory
##
                                          improve=5.170697, (0 missing)
                       splits as
                                  -RL,
##
         Essaycategory splits as
                                  --LR,
                                          improve=4.751208, (0 missing)
                                  LLRRLL, improve=2.584846, (0 missing)
##
         State
                       splits as
##
         DateSub
                       splits as
                                  LRL,
                                          improve=1.129223, (0 missing)
##
         Gender
                       splits as
                                          improve=0.226041, (0 missing)
                                  RL,
##
     Surrogate splits:
##
         Essaycategory splits as
                                  --LR,
                                          agree=0.602, adj=0.083, (0 split)
                                  LRR,
                                          agree=0.590, adj=0.056, (0 split)
##
         DateSub
                       splits as
                                          agree=0.578, adj=0.028, (0 split)
##
         Gender
                       splits as
                                  LR,
##
         State
                       splits as
                                  RRRRLR, agree=0.578, adj=0.028, (0 split)
##
## Node number 5: 18 observations
##
     predicted class=Waitlist expected loss=0.1111111 P(node) =0.1417323
##
       class counts:
                         0
                                    16
##
      probabilities: 0.000 0.111 0.889
##
## Node number 8: 36 observations
                               expected loss=0.05555556 P(node) =0.2834646
     predicted class=Admit
##
##
       class counts:
                        34
      probabilities: 0.944 0.056 0.000
##
##
## Node number 9: 47 observations,
                                      complexity param=0.02525253
##
     predicted class=Admit
                               expected loss=0.4255319 P(node) =0.3700787
##
       class counts:
                               4
                                    16
                        27
##
      probabilities: 0.574 0.085 0.340
     left son=18 (15 obs) right son=19 (32 obs)
##
##
     Primary splits:
##
         Essaycategory splits as --LR,
                                          improve=4.6479610, (0 missing)
##
                                  LRRR-L, improve=1.4511470, (0 missing)
         State
                       splits as
##
         DateSub
                       splits as
                                  LRL,
                                          improve=1.0279200, (0 missing)
                                          improve=0.3603095, (0 missing)
##
         Gender
                       splits as
                                  RL,
##
     Surrogate splits:
##
         DateSub splits as RRL, agree=0.702, adj=0.067, (0 split)
##
## Node number 18: 15 observations
##
     predicted class=Admit
                               expected loss=0.06666667 P(node) =0.1181102
##
       class counts:
                        14
##
      probabilities: 0.933 0.000 0.067
##
## Node number 19: 32 observations, complexity param=0.02525253
```

```
##
     predicted class=Waitlist expected loss=0.53125 P(node) =0.2519685
##
      class counts:
                       13
                               4
                                    15
      probabilities: 0.406 0.125 0.469
##
##
     left son=38 (11 obs) right son=39 (21 obs)
##
     Primary splits:
##
         State splits as LRRR-L, improve=1.334686, (0 missing)
                                   improve=0.214951, (0 missing)
##
         Gender splits as LR,
##
## Node number 38: 11 observations
##
     predicted class=Admit
                               expected loss=0.3636364 P(node) =0.08661417
##
      class counts:
                        7
                               0
##
      probabilities: 0.636 0.000 0.364
##
## Node number 39: 21 observations
##
     predicted class=Waitlist expected loss=0.4761905 P(node) =0.1653543
##
      class counts:
                         6
                               4
##
      probabilities: 0.286 0.190 0.524
predicted= predict(Treefit, ReadyDT_Test, type="class")
(Results <- data.frame(Predicted=predicted, Actual=TestLabels))</pre>
##
       Predicted
                   Actual
## 1
          Admit
                   Admit
## 8
                   Admit
          Admit
## 15
          Admit
                   Admit
## 22
          Admit
                   Admit
## 29
          Admit
                   Admit
## 36
          Admit
                   Admit
## 43
          Admit
                   Admit
## 50
          Admit
                   Admit
          Admit Decline
## 57
## 64
          Admit Decline
## 71
          Admit
                   Admit
## 78
        Decline Decline
## 85
        Decline Decline
## 92
        Decline Decline
## 99
        Decline Decline
## 106
       Decline Waitlist
## 113 Waitlist Waitlist
## 120
        Decline Waitlist
## 127 Waitlist Waitlist
## 134 Waitlist Waitlist
## 141
          Admit Waitlist
## 148 Waitlist Waitlist
(table(Results))
            Actual
## Predicted Admit Decline Waitlist
## Admit 9 2
```

```
## Decline 0 4 2
## Waitlist 0 0 4
```

fancyRpartPlot(Treefit)

Rattle 2018-Aug-26 14:53:37 profa

```
### DT 2-----
## Sometimes it is interesting to remove variables to see the
## affect this will have on the Decision Tree.
## Suppose I remove GPA as this seems to be critical.
## Let's remove that variable and see what we get
(head(DT_Train, n=5))
##
     DateSub Gender
                         State GPA WorkExp MathTest Essay Decision
## 2
       Early Female
                       Florida 3.80
                                                  969
                                                         97
                                                               Admit
                                        1.4
                                        2.3
## 3
               Male California 3.80
                                                  970
                                                               Admit
       Early
                                                         NA
## 4
       Early
               Male
                      Colorado 3.60
                                        0.9
                                                  969
                                                         NA
                                                               Admit
     Ontime
               Male
                      Colorado 3.92
                                        1.2
                                                         95
                                                               Admit
## 5
                                                  969
               Male California 3.80
                                                               Admit
## 6
     Ontime
                                        1.2
                                                  967
                                                         NA
##
     GPAcategory Essaycategory
         HighGPA
## 2
                          High
## 3
         HighGPA
                   NotIncluded
## 4
         MedGPA
                   NotIncluded
## 5
         HighGPA
                          High
## 6
         HighGPA
                   NotIncluded
(head(DT_Test, n=5))
```

```
##
      DateSub Gender
                          State GPA WorkExp MathTest Essay GPAcategory
## 1
        Early Female California 3.90
                                          6.7
                                                   962
                                                          NA
                                                                  HighGPA
       Ontime Female California 3.70
                                          1.2
## 8
                                                   969
                                                          NA
                                                                  MedGPA
## 15
      Ontime
                Male
                        Florida 3.70
                                          3.7
                                                   969
                                                          99
                                                                  MedGPA
                                                          93
## 22
      Ontime Female
                       Colorado 3.58
                                          0.8
                                                   969
                                                                  MedGPA
## 29
        Later Female
                       Colorado 3.59
                                          1.7
                                                   969
                                                          93
                                                                  MedGPA
##
      Essaycategory
## 1
        NotIncluded
## 8
        NotIncluded
## 15
               High
## 22
               High
## 29
               High
DT_Train_NoGPA<-DT_Train[-c(4,5,6,7,9)]
DT_Test_NoGPA<-DT_Test[-c(4,5,6,7,8)]
DT_Test_Labels <- DT_Test_Labels
(head(DT Train NoGPA, n=5))
##
     DateSub Gender
                         State Decision Essaycategory
                                   Admit
## 2
       Early Female
                       Florida
                                                  High
## 3
               Male California
                                   Admit
                                           NotIncluded
       Early
## 4
       Early
               Male
                      Colorado
                                  Admit
                                           NotIncluded
## 5
      Ontime
               Male
                      Colorado
                                   Admit
                                                  High
## 6 Ontime
               Male California
                                   Admit
                                           NotIncluded
(head(DT Test NoGPA, n=5))
      DateSub Gender
                          State Essaycategory
## 1
        Early Female California
                                  NotIncluded
## 8
       Ontime Female California
                                   NotIncluded
## 15
      Ontime
                Male
                        Florida
                                          High
## 22
      Ontime Female
                       Colorado
                                          High
## 29
        Later Female
                       Colorado
                                          High
Treefit2 <- rpart(DT Train NoGPA$Decision ~ ., data = DT Train NoGPA, method=
"class")
summary(Treefit2)
## Call:
## rpart(formula = DT_Train_NoGPA$Decision ~ ., data = DT_Train_NoGPA,
##
       method = "class")
##
     n = 127
##
             CP nsplit rel error
##
                                                  xstd
                                     xerror
## 1 0.13636364
                     0 1.0000000 1.0000000 0.08530826
## 2 0.03030303
                     2 0.7272727 0.8181818 0.08441362
                     4 0.6666667 0.9848485 0.08535063
## 3 0.01515152
                     5 0.6515152 1.0000000 0.08530826
## 4 0.01000000
##
## Variable importance
## Essaycategory
                         State
                                     DateSub
```

```
##
              80
                            16
##
## Node number 1: 127 observations,
                                        complexity param=0.1363636
     predicted class=Admit
                               expected loss=0.519685 P(node) =1
                              29
##
       class counts:
                        61
                                     37
##
      probabilities: 0.480 0.228 0.291
##
     left son=2 (34 obs) right son=3 (93 obs)
##
     Primary splits:
##
         Essaycategory splits as
                                   RRLR,
                                           improve=14.7925700, (0 missing)
                                  LLRRRL, improve= 5.5170590, (0 missing)
##
         State
                       splits as
                                           improve= 1.1537370, (0 missing)
##
         DateSub
                       splits as
                                  LRL,
##
         Gender
                       splits as
                                  LR,
                                           improve= 0.5156044, (0 missing)
##
## Node number 2: 34 observations
     predicted class=Admit
                               expected loss=0.05882353 P(node) =0.2677165
##
##
       class counts:
                        32
##
      probabilities: 0.941 0.000 0.059
##
## Node number 3: 93 observations,
                                       complexity param=0.1363636
##
     predicted class=Waitlist expected loss=0.6236559 P(node) =0.7322835
##
       class counts:
                        29
                              29
                                     35
##
      probabilities: 0.312 0.312 0.376
##
     left son=6 (66 obs) right son=7 (27 obs)
##
     Primary splits:
##
         Essaycategory splits as
                                           improve=6.9237540, (0 missing)
                                  LR-L,
##
         State
                       splits as
                                  LRRRRL, improve=3.9956670, (0 missing)
##
                       splits as
                                           improve=0.6589166, (0 missing)
         Gender
                                  LR,
##
                                           improve=0.4760531, (0 missing)
         DateSub
                       splits as
                                  LRL,
##
     Surrogate splits:
         State splits as LLLLRL, agree=0.763, adj=0.185, (0 split)
##
##
## Node number 6: 66 observations,
                                       complexity param=0.03030303
##
     predicted class=Admit
                               expected loss=0.5606061 P(node) =0.519685
##
       class counts:
                        29
                              20
                                     17
      probabilities: 0.439 0.303 0.258
##
     left son=12 (23 obs) right son=13 (43 obs)
##
##
     Primary splits:
##
         State
                 splits as
                            LRRRRL, improve=2.4339550, (0 missing)
##
                                     improve=0.5731818, (0 missing)
         DateSub splits as
                            RRL,
##
         Gender splits as
                                     improve=0.3407382, (0 missing)
                            LR,
##
## Node number 7: 27 observations
##
     predicted class=Waitlist expected loss=0.3333333 P(node) =0.2125984
##
       class counts:
                               9
                         0
                                     18
##
      probabilities: 0.000 0.333 0.667
##
## Node number 12: 23 observations
     predicted class=Admit
                               expected loss=0.3478261 P(node) =0.1811024
##
##
       class counts:
                        15
      probabilities: 0.652 0.174 0.174
```

```
##
## Node number 13: 43 observations,
                                       complexity param=0.03030303
     predicted class=Decline
                               expected loss=0.627907 P(node) =0.3385827
##
##
       class counts:
                        14
                                    13
      probabilities: 0.326 0.372 0.302
##
##
     left son=26 (21 obs) right son=27 (22 obs)
##
     Primary splits:
                            -LRLR-, improve=0.6663646, (0 missing)
##
         State
                 splits as
##
                                    improve=0.4774944, (0 missing)
         DateSub splits as
                            LRL,
                                    improve=0.3492506, (0 missing)
##
         Gender splits as
                            LR,
##
     Surrogate splits:
##
         Gender
                       splits as LR,
                                        agree=0.581, adj=0.143, (0 split)
         Essaycategory splits as L--R, agree=0.558, adj=0.095, (0 split)
##
                       splits as RLR, agree=0.535, adj=0.048, (0 split)
##
##
## Node number 26: 21 observations
##
     predicted class=Admit
                               expected loss=0.5714286 P(node) =0.1653543
##
       class counts:
                         9
                               7
                                      5
##
      probabilities: 0.429 0.333 0.238
##
## Node number 27: 22 observations,
                                       complexity param=0.01515152
     predicted class=Decline
                               expected loss=0.5909091 P(node) =0.1732283
##
##
       class counts:
                               9
                         5
                                     8
##
      probabilities: 0.227 0.409 0.364
##
     left son=54 (7 obs) right son=55 (15 obs)
##
     Primary splits:
##
         DateSub splits as LRL, improve=0.9203463, (0 missing)
##
         Gender splits as LR, improve=0.2727273, (0 missing)
##
## Node number 54: 7 observations
     predicted class=Admit
                               expected loss=0.5714286 P(node) =0.05511811
##
##
       class counts:
                        3
##
      probabilities: 0.429 0.429 0.143
##
## Node number 55: 15 observations
     predicted class=Waitlist expected loss=0.5333333 P(node) =0.1181102
##
##
       class counts:
                               6
                         2
##
      probabilities: 0.133 0.400 0.467
predicted2= predict(Treefit2,DT Test NoGPA, type="class")
(Results2 <- data.frame(Predicted=predicted2,Actual=DT Test Labels))</pre>
##
       Predicted
                   Actual
## 1
           Admit
                    Admit
## 8
           Admit
                    Admit
## 15
           Admit
                    Admit
## 22
           Admit
                    Admit
## 29
           Admit
                    Admit
## 36
           Admit
                    Admit
## 43
          Admit
                    Admit
```

```
## 50
           Admit
                    Admit
## 57
                 Decline
        Waitlist
           Admit
                  Decline
## 64
           Admit
                    Admit
## 71
## 78
           Admit Decline
## 85
        Waitlist Decline
## 92
        Waitlist Decline
## 99
           Admit Decline
## 106
        Waitlist Waitlist
        Waitlist Waitlist
## 113
## 120
        Waitlist Waitlist
## 127
        Waitlist Waitlist
## 134
       Waitlist Waitlist
## 141
           Admit Waitlist
## 148
       Waitlist Waitlist
(table(Results2))
##
             Actual
## Predicted Admit Decline Waitlist
##
     Admit
                          3
     Decline
##
                  0
                          0
                                    0
##
     Waitlist
                          3
                                    6
fancyRpartPlot(Treefit2)
```


Rattle 2018-Aug-26 14:53:37 profa

```
## Here we can see that the State plays a role in the Decision.
### DT 3 -----
## Let's see what happens if we leave in the numerical values
(head(DT_Train, n=5))
##
     DateSub Gender
                         State GPA WorkExp MathTest Essay Decision
## 2
       Early Female
                       Florida 3.80
                                         1.4
                                                  969
                                                          97
                                                                Admit
## 3
       Early
               Male California 3.80
                                         2.3
                                                  970
                                                          NA
                                                                Admit
## 4
       Early
               Male
                      Colorado 3.60
                                         0.9
                                                  969
                                                          NA
                                                                Admit
## 5
      Ontime
               Male
                      Colorado 3.92
                                         1.2
                                                  969
                                                          95
                                                                Admit
## 6 Ontime
               Male California 3.80
                                         1.2
                                                  967
                                                          NA
                                                                Admit
     GPAcategory Essaycategory
##
## 2
         HighGPA
                          High
## 3
         HighGPA
                   NotIncluded
## 4
          MedGPA
                   NotIncluded
## 5
         HighGPA
                          High
## 6
         HighGPA
                   NotIncluded
(head(DT Test, n=5))
##
      DateSub Gender
                          State GPA WorkExp MathTest Essay GPAcategory
## 1
        Early Female California 3.90
                                          6.7
                                                   962
                                                           NA
                                                                  HighGPA
## 8
       Ontime Female California 3.70
                                          1.2
                                                   969
                                                           NA
                                                                   MedGPA
## 15
      Ontime
                Male
                        Florida 3.70
                                          3.7
                                                   969
                                                           99
                                                                   MedGPA
## 22
      Ontime Female
                       Colorado 3.58
                                          0.8
                                                   969
                                                           93
                                                                   MedGPA
## 29
        Later Female
                       Colorado 3.59
                                          1.7
                                                   969
                                                           93
                                                                   MedGPA
##
      Essavcategory
## 1
        NotIncluded
## 8
        NotIncluded
## 15
               High
## 22
               High
## 29
               High
DT_Train_WithQuantData<-DT_Train[-c(9,10)]</pre>
DT Test WithQuantData<-DT Test[-c(8,9)]
DT_Test_Labs <- DT_Test_Labels</pre>
(head(DT_Train_WithQuantData,n=5))
##
     DateSub Gender
                         State GPA WorkExp MathTest Essay Decision
## 2
       Early Female
                       Florida 3.80
                                         1.4
                                                  969
                                                          97
                                                                Admit
## 3
               Male California 3.80
                                         2.3
                                                  970
                                                          NA
       Early
                                                                Admit
## 4
       Early
               Male
                      Colorado 3.60
                                         0.9
                                                  969
                                                          NA
                                                                Admit
## 5
      Ontime
                      Colorado 3.92
                                                          95
               Male
                                         1.2
                                                  969
                                                                Admit
## 6
     Ontime
               Male California 3.80
                                         1.2
                                                                Admit
                                                  967
                                                          NA
(head(DT_Test_WithQuantData, n=5))
##
      DateSub Gender
                          State GPA WorkExp MathTest Essay
        Early Female California 3.90
                                          6.7
## 1
                                                   962
                                                           NA
       Ontime Female California 3.70
## 8
                                          1.2
                                                   969
                                                           NA
```

```
Florida 3.70
## 15 Ontime
               Male
                                         3.7
                                                  969
                                                         99
                                                         93
## 22 Ontime Female
                       Colorado 3.58
                                                  969
                                         0.8
                                         1.7
## 29
       Later Female
                       Colorado 3.59
                                                  969
                                                         93
Treefit3 <- rpart(DT_Train_WithQuantData$Decision ~ ., data = DT_Train_WithQu
antData, method="class")
summary(Treefit3)
## Call:
## rpart(formula = DT Train WithQuantData$Decision ~ ., data = DT Train WithQ
uantData,
##
       method = "class")
##
     n= 127
##
##
            CP nsplit rel error
                                     xerror
                    0 1.00000000 1.00000000 0.08530826
## 1 0.5454545
## 2 0.3636364
                    1 0.45454545 0.45454545 0.07252716
## 3 0.0100000
                    2 0.09090909 0.09090909 0.03622618
##
## Variable importance
## MathTest
                 GPA
                        State WorkExp DateSub
##
         45
                  36
                            9
                                     5
##
## Node number 1: 127 observations,
                                       complexity param=0.5454545
##
     predicted class=Admit
                               expected loss=0.519685 P(node) =1
##
       class counts:
                        61
                              29
                                    37
##
      probabilities: 0.480 0.228 0.291
##
     left son=2 (65 obs) right son=3 (62 obs)
##
     Primary splits:
##
        MathTest < 910.5 to the right, improve=40.455540, (0 missing)
                  < 3.585 to the right, improve=31.841070, (0 missing)
##
         GPA
##
         Essay
                  < 86.5 to the right, improve=22.603460, (64 missing)
##
                                        improve= 5.517059, (0 missing)
                  splits as LLRRRL,
##
        WorkExp < 0.35 to the left, improve= 1.349633, (0 missing)
##
     Surrogate splits:
##
         GPA
                 < 3.585 to the right, agree=0.906, adj=0.806, (0 split)
##
                                       agree=0.614, adj=0.210, (0 split)
         State
                 splits as LLRRRL,
##
        WorkExp < 1.45 to the left, agree=0.583, adj=0.145, (0 split)
##
         DateSub splits as LRR,
                                       agree=0.535, adj=0.048, (0 split)
##
## Node number 2: 65 observations
     predicted class=Admit
                               expected loss=0.07692308 P(node) =0.511811
##
##
       class counts:
                        60
                               5
                                     0
##
      probabilities: 0.923 0.077 0.000
##
## Node number 3: 62 observations,
                                   complexity param=0.3636364
     predicted class=Waitlist expected loss=0.4032258 P(node) =0.488189
##
##
       class counts:
                         1
                              24
                                    37
      probabilities: 0.016 0.387 0.597
##
##
     left son=6 (25 obs) right son=7 (37 obs)
```

```
##
     Primary splits:
         MathTest < 826
##
                          to the left,
                                         improve=28.692900, (0 missing)
                  < 3.38 to the left,
                                         improve=21.353810, (0 missing)
##
         GPA
##
                  < 76.5 to the left,
                                         improve= 4.885881, (30 missing)
         Essay
         State
                                         improve= 3.073124, (0 missing)
##
                  splits as
                             RLRRRL,
##
         DateSub splits as
                                         improve= 1.318786, (0 missing)
                              -RL,
##
     Surrogate splits:
##
         GPA
                 < 3.38 to the left,
                                        agree=0.919, adj=0.80, (0 split)
##
         State
                                        agree=0.677, adj=0.20, (0 split)
                 splits as
                            RRRRRL,
                                        agree=0.645, adj=0.12, (0 split)
##
         DateSub splits as
                             -RL,
         WorkExp < 0.35 to the left,
                                        agree=0.629, adj=0.08, (0 split)
##
##
## Node number 6: 25 observations
##
     predicted class=Decline
                                expected loss=0.04 P(node) =0.1968504
##
       class counts:
                         1
                               24
                                      0
##
      probabilities: 0.040 0.960 0.000
##
## Node number 7: 37 observations
##
     predicted class=Waitlist expected loss=0 P(node) =0.2913386
##
       class counts:
                         0
                                0
                                     37
##
      probabilities: 0.000 0.000 1.000
predicted3= predict(Treefit3,DT Test WithQuantData, type="class")
(Results3 <- data.frame(Predicted=predicted3,Actual=DT Test Labs))</pre>
##
       Predicted
                   Actual
## 1
                    Admit
           Admit
## 8
           Admit
                    Admit
## 15
           Admit
                    Admit
## 22
           Admit
                    Admit
## 29
           Admit
                    Admit
## 36
           Admit
                    Admit
## 43
           Admit
                    Admit
## 50
           Admit
                    Admit
## 57
           Admit Decline
## 64
           Admit Decline
## 71
           Admit
                    Admit
## 78
         Decline Decline
## 85
         Decline Decline
## 92
         Decline Decline
## 99
         Decline Decline
## 106 Waitlist Waitlist
## 113
       Waitlist Waitlist
## 120
       Waitlist Waitlist
## 127
        Waitlist Waitlist
## 134 Waitlist Waitlist
## 141
       Waitlist Waitlist
## 148
       Waitlist Waitlist
(table(Results3))
```

```
##
             Actual
## Predicted Admit Decline Waitlist
                   9
                           2
##
     Admit
                           4
                                     0
##
     Decline
                   0
##
     Waitlist
                   0
                           0
                                     7
fancyRpartPlot(Treefit3)
```


Rattle 2018-Aug-26 14:53:37 profa

```
## By doing the above, we can see that the MathTest plays a large role.
## We can also see the natural cut-off value.
#### DT 4 -----
### Let's see if State has any real affect.
### to do this, we will need to remove some of the more
## active elements such as GPA and MathTest...
(head(DT_Train, n=5))
                        State GPA WorkExp MathTest Essay Decision
    DateSub Gender
                                                       97
## 2
      Early Female
                      Florida 3.80
                                       1.4
                                                             Admit
                                                969
## 3
              Male California 3.80
                                       2.3
                                                       NA
                                                             Admit
      Early
                                                970
                                       0.9
                                                             Admit
## 4
      Early
              Male
                     Colorado 3.60
                                                969
                                                       NA
## 5 Ontime
              Male
                      Colorado 3.92
                                       1.2
                                                969
                                                       95
                                                             Admit
              Male California 3.80
                                                             Admit
## 6 Ontime
                                       1.2
                                                967
                                                       NA
    GPAcategory Essaycategory
## 2
        HighGPA
                         High
        HighGPA NotIncluded
## 3
```

```
## 4
          MedGPA
                   NotIncluded
## 5
         HighGPA
                           High
## 6
         HighGPA
                   NotIncluded
(head(DT_Test, n=5))
      DateSub Gender
                           State GPA WorkExp MathTest Essay GPAcategory
##
## 1
        Early Female California 3.90
                                          6.7
                                                    962
                                                           NA
                                                                   HighGPA
       Ontime Female California 3.70
## 8
                                          1.2
                                                    969
                                                           NA
                                                                   MedGPA
                Male
                        Florida 3.70
                                           3.7
                                                           99
## 15
      Ontime
                                                    969
                                                                   MedGPA
## 22
      Ontime Female
                        Colorado 3.58
                                          0.8
                                                    969
                                                           93
                                                                   MedGPA
                        Colorado 3.59
## 29
        Later Female
                                          1.7
                                                    969
                                                           93
                                                                   MedGPA
##
      Essaycategory
## 1
        NotIncluded
## 8
        NotIncluded
## 15
               High
## 22
               High
## 29
               High
DT_Test_GLabs<-DT_Test_Labels
DT_Train_Focus<-DT_Train[-c(4,5,6,7,9,10)]
DT_Test_Focus<-DT_Test[-c(4,5,6,7,8,9)]
(head(DT_Train_Focus, n=5))
##
     DateSub Gender
                          State Decision
## 2
       Early Female
                        Florida
                                   Admit
## 3
               Male California
       Early
                                   Admit
## 4
       Early
               Male
                       Colorado
                                   Admit
## 5
      Ontime
               Male
                       Colorado
                                   Admit
## 6 Ontime
               Male California
                                   Admit
(head(DT Test Focus, n=5))
##
      DateSub Gender
                           State
        Early Female California
## 1
## 8
       Ontime Female California
## 15 Ontime
                Male
                         Florida
## 22
       Ontime Female
                        Colorado
## 29
        Later Female
                        Colorado
Treefit4 <- rpart(DT Train Focus$Decision ~ ., data = DT Train Focus, method=
"class")
summary(Treefit4)
## Call:
## rpart(formula = DT Train Focus$Decision ~ ., data = DT Train Focus,
       method = "class")
##
##
     n = 127
##
             CP nsplit rel error
##
                                     xerror
                                                   xstd
## 1 0.10606061
                     0 1.0000000 1.0000000 0.08530826
                     1 0.8939394 1.0151515 0.08524467
## 2 0.02272727
```

```
## 3 0.01000000
                    4 0.8181818 0.9393939 0.08535063
##
## Variable importance
     State Gender DateSub
                13
##
        80
##
## Node number 1: 127 observations, complexity param=0.1060606
     predicted class=Admit
                               expected loss=0.519685 P(node) =1
##
##
       class counts:
                        61
                              29
                                    37
##
      probabilities: 0.480 0.228 0.291
     left son=2 (68 obs) right son=3 (59 obs)
##
##
     Primary splits:
                            LLRRRL, improve=5.5170590, (0 missing)
##
         State
                 splits as
                                    improve=1.1537370, (0 missing)
##
         DateSub splits as
                            LRL,
##
         Gender splits as LR,
                                    improve=0.5156044, (0 missing)
##
     Surrogate splits:
         DateSub splits as LLR, agree=0.551, adj=0.034, (0 split)
##
##
## Node number 2: 68 observations
     predicted class=Admit
                               expected loss=0.3676471 P(node) =0.5354331
##
##
       class counts:
                        43
                              13
                                    12
      probabilities: 0.632 0.191 0.176
##
##
## Node number 3: 59 observations,
                                      complexity param=0.02272727
     predicted class=Waitlist expected loss=0.5762712 P(node) =0.4645669
##
##
       class counts:
                        18
                              16
                                    25
      probabilities: 0.305 0.271 0.424
##
     left son=6 (49 obs) right son=7 (10 obs)
##
##
     Primary splits:
                 splits as --LLR-, improve=1.4864750, (0 missing)
##
         State
##
         DateSub splits as LRL,
                                    improve=0.7052186, (0 missing)
##
         Gender splits as LR,
                                    improve=0.4061080, (0 missing)
##
## Node number 6: 49 observations,
                                     complexity param=0.02272727
     predicted class=Waitlist expected loss=0.6326531 P(node) =0.3858268
##
##
       class counts:
                        17
                              14
                                    18
##
      probabilities: 0.347 0.286 0.367
##
     left son=12 (27 obs) right son=13 (22 obs)
     Primary splits:
##
##
         Gender
                                    improve=1.166564, (0 missing)
                splits as LR,
                 splits as --LR--, improve=0.341078, (0 missing)
##
##
         DateSub splits as LRL,
                                    improve=0.084778, (0 missing)
##
     Surrogate splits:
         State splits as --RL--, agree=0.571, adj=0.045, (0 split)
##
##
## Node number 7: 10 observations
##
     predicted class=Waitlist expected loss=0.3 P(node) =0.07874016
##
                               2
       class counts:
                         1
##
      probabilities: 0.100 0.200 0.700
##
```

```
## Node number 12: 27 observations, complexity param=0.02272727
##
     predicted class=Admit
                               expected loss=0.6296296 P(node) =0.2125984
##
       class counts:
                        10
                              10
                                     7
##
      probabilities: 0.370 0.370 0.259
     left son=24 (10 obs) right son=25 (17 obs)
##
     Primary splits:
##
##
         DateSub splits as LRL,
                                    improve=0.4013072, (0 missing)
                 splits as --LR--, improve=0.3172515, (0 missing)
##
         State
##
## Node number 13: 22 observations
     predicted class=Waitlist expected loss=0.5 P(node) =0.1732283
##
##
       class counts:
                               4
                         7
                                    11
      probabilities: 0.318 0.182 0.500
##
##
## Node number 24: 10 observations
                               expected loss=0.5 P(node) =0.07874016
##
     predicted class=Admit
##
       class counts:
                         5
                               3
      probabilities: 0.500 0.300 0.200
##
##
## Node number 25: 17 observations
##
     predicted class=Decline
                               expected loss=0.5882353 P(node) =0.1338583
##
       class counts:
                         5
                               7
                                      5
##
      probabilities: 0.294 0.412 0.294
predicted4= predict(Treefit4,DT_Test_Focus, type="class")
(Results4 <- data.frame(Predicted=predicted4,Actual=DT Test GLabs))</pre>
##
       Predicted
                   Actual
                    Admit
## 1
           Admit
## 8
           Admit
                    Admit
## 15
        Waitlist
                    Admit
## 22
           Admit
                    Admit
## 29
           Admit
                    Admit
## 36
           Admit
                    Admit
## 43
                    Admit
         Decline
## 50
           Admit
                    Admit
## 57
         Decline Decline
## 64
        Waitlist Decline
## 71
           Admit
                    Admit
## 78
        Waitlist Decline
## 85
           Admit Decline
## 92
           Admit Decline
## 99
           Admit Decline
## 106 Waitlist Waitlist
## 113
           Admit Waitlist
## 120
        Decline Waitlist
## 127
       Waitlist Waitlist
## 134 Waitlist Waitlist
           Admit Waitlist
## 141
## 148 Waitlist Waitlist
```

```
(table(Results4))
##
             Actual
## Predicted Admit Decline Waitlist
##
     Admit
                   7
                            3
                                     2
##
     Decline
                   1
                            1
                                     1
##
     Waitlist
                   1
                            2
                                     4
fancyRpartPlot(Treefit4)
```


Rattle 2018-Aug-26 14:53:38 profa

```
## This offers some insight....
## Florida has a higher Decline rate
   Clustering
(head(CleanStudentDF, n=5))
       DateSub Gender
                           State GPA WorkExp MathTest Essay Decision
## 1 September Female California 3.90
                                                    962
                                                           NA
                                                                 Admit
                                           6.7
                                                           97
                                                                 Admit
## 2 September Female
                         Florida 3.80
                                           1.4
                                                    969
## 3
      October
                 Male California 3.80
                                           2.3
                                                    970
                                                           NA
                                                                 Admit
## 4
       October 0
                 Male
                        Colorado 3.60
                                          0.9
                                                    969
                                                           NA
                                                                 Admit
## 5 November
               Male Colorado 3.92
                                          1.2
                                                    969
                                                           95
                                                                 Admit
```

```
X <- CleanStudentDF
## Make sure there are no NAs
(sum(is.na(CleanStudentDF$GPA)))
## [1] 0
(sum(is.na(CleanStudentDF$MathTest)))
## [1] 0
(sum(is.na(CleanStudentDF$WorkExp)))
## [1] 0
(sum(is.na(CleanStudentDF$Essay)))
## [1] 74
## Essay has 74 NA values....
## Remember, we cluster with numerical data and so my next step
## is to remove the non-numerical columns
(head(X, n=10))
##
        DateSub Gender
                            State GPA WorkExp MathTest Essay Decision
      September Female California 3.90
                                            6.7
                                                     962
                                                             NA
                                                                   Admit
                                                             97
## 2
      September Female
                          Florida 3.80
                                            1.4
                                                     969
                                                                   Admit
## 3
        October 0
                  Male California 3.80
                                            2.3
                                                     970
                                                             NA
                                                                   Admit
## 4
        October
                  Male
                         Colorado 3.60
                                            0.9
                                                     969
                                                             NA
                                                                   Admit
                                                             95
## 5
       November
                  Male
                         Colorado 3.92
                                            1.2
                                                                   Admit
                                                     969
## 6
       November
                  Male California 3.80
                                            1.2
                                                             NA
                                                                   Admit
                                                     967
## 7
       November Female California 3.88
                                            0.0
                                                     967
                                                             NA
                                                                   Admit
## 8
       December Female California 3.70
                                            1.2
                                                     969
                                                             NA
                                                                   Admit
## 9
       October Female
                          Florida 3.90
                                            4.7
                                                     961
                                                             NA
                                                                   Admit
## 10 December Female California 3.70
                                            1.4
                                                     966
                                                             94
                                                                   Admit
X \leftarrow X[,-c(1,2,3,7,8)] ## Here I have removed Essay
(head(X, n=5))
      GPA WorkExp MathTest
## 1 3.90
              6.7
                       962
## 2 3.80
              1.4
                       969
## 3 3.80
              2.3
                       970
## 4 3.60
              0.9
                       969
## 5 3.92
              1.2
                       969
## When Clustering, there are many options.
## OPtion 1 - I will choose the number of clusters as 3
ClusFIT1 <- Mclust(X,G=3)
(ClusFIT1)
## 'Mclust' model object:
## best model: ellipsoidal, equal shape and orientation (VEE) with 3 compone
nts
```

```
summary(ClusFIT1)
## Gaussian finite mixture model fitted by EM algorithm
## Mclust VEE (ellipsoidal, equal shape and orientation) model with 3 compone
nts:
##
## log.likelihood
                     n df
                               BIC
                                          ICL
         -766.6072 149 19 -1628.289 -1628.289
##
##
## Clustering table:
## 1 2 3
## 29 76 44
plot(ClusFIT1, what = "classification")
```



```
## OPtion 2 - cluster with no k selected
ClusFIT2 <- Mclust(X)
(ClusFIT2)

## 'Mclust' model object:
## best model: diagonal, equal shape (VEI) with 7 components
summary(ClusFIT2)</pre>
```

```
## Gaussian finite mixture model fitted by EM algorithm
##
## Mclust VEI (diagonal, equal shape) model with 7 components:
##
##
   log.likelihood
                    n df
                               BIC
                                        ICL
        -666.9693 149 36 -1514.081 -1532.74
##
##
## Clustering table:
  1 2 3 4 5 6 7
## 10 32 22 22 9 20 34
plot(ClusFIT2, what = "classification")
```



```
## mixture models with a variety of covariance structures.
## Details: https://cran.r-project.org/web/packages/mclust/vignettes/mclust.h
tml
##
## ALternatively, K means will start with the assumption that a given data
## point belongs to one cluster.
####### k means ------
## Recall - we have:
(head(X))
##
    GPA WorkExp MathTest
## 1 3.90
         6.7
               962
## 2 3.80
         1.4
               969
## 3 3.80
        2.3
               970
## 4 3.60
        0.9
               969
## 5 3.92
         1.2
               969
## 6 3.80
        1.2
               967
kmeansFIT1 <- kmeans(X,3)</pre>
(kmeansFIT1)
## K-means clustering with 3 clusters of sizes 12, 64, 73
## Cluster means:
      GPA WorkExp MathTest
## 1 3.735000 3.108333 959.4167
## 2 3.731094 1.607813 967.7031
## 3 3.352329 2.154795 825.8493
##
## Clustering vector:
##
  2
2
## [141] 3 3 3 3 3 3 3 3 3
## Within cluster sum of squares by cluster:
      191.7151
              245.7625 183347.7000
## (between_SS / total_SS = 80.0 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss"
```

```
## [5] "tot.withinss" "betweenss" "size"
                                                    "iter"
## [9] "ifault"
summary(kmeansFIT1)
##
               Length Class Mode
## cluster
               149
                       -none- numeric
## centers
                9
                       -none- numeric
## totss
                 1
                     -none- numeric
## withinss
                3
                      -none- numeric
## tot.withinss
                 1
                     -none- numeric
## betweenss
               1
                      -none- numeric
                 3
## size
                      -none- numeric
## iter
                 1
                      -none- numeric
## ifault
                 1
                       -none- numeric
# get cluster means
aggregate(X,by=list(kmeansFIT1$cluster),FUN=mean)
                 GPA WorkExp MathTest
    Group.1
## 1
          1 3.735000 3.108333 959.4167
## 2
          2 3.731094 1.607813 967.7031
## 3
          3 3.352329 2.154795 825.8493
X2 <- data.frame(X, kmeansFIT1$cluster)</pre>
(head(X2, n=10))
      GPA WorkExp MathTest kmeansFIT1.cluster
##
## 1 3.90
              6.7
                        962
                                             1
## 2 3.80
              1.4
                        969
                                             2
## 3 3.80
              2.3
                                             2
                        970
## 4 3.60
              0.9
                        969
                                             2
## 5 3.92
              1.2
                        969
                                             2
                                             2
## 6 3.80
              1.2
                        967
## 7 3.88
              0.0
                        967
                                             2
## 8 3.70
              1.2
                        969
                                             2
## 9 3.90
              4.7
                        961
                                             1
## 10 3.70
               1.4
                        966
                                             2
## The aggregate really shows the cut-offs for the groups.
## Hierarchical Cluster - this one is ugly because there are too many GPAs
d1 <- dist(X, method = "euclidean") # distance matrix</pre>
fit1 <- hclust(d1, method="ward.D2")</pre>
plot(fit1, labels = X$GPA, hang = -.2, cex = 0.5) # display dendogram
```

Cluster Dendrogram

d1 hclust (*, "ward.D2")

```
####### Cosine similarity
## To use Cos Sim and library lsa, you will need
## to place your data into a matrix
## Let's look at our data:
(head(X, n=10))
##
       GPA WorkExp MathTest
## 1 3.90
               6.7
                         962
## 2 3.80
               1.4
                         969
## 3
     3.80
               2.3
                         970
## 4 3.60
               0.9
                         969
## 5
     3.92
               1.2
                         969
## 6 3.80
               1.2
                         967
## 7
     3.88
               0.0
                         967
## 8 3.70
               1.2
                         969
## 9 3.90
               4.7
                         961
## 10 3.70
               1.4
                         966
## Now, convert this to a matrix
X_Matrix <- as.matrix(X)</pre>
Cos_SimMatrix <- cosine(X_Matrix)</pre>
diag(Cos_SimMatrix) <- 0 # Remove relationship with self</pre>
Cos_SimMatrix
##
                 GPA
                        WorkExp MathTest
## GPA
            0.000000 0.7501660 0.9987190
```

```
## WorkExp 0.750166 0.0000000 0.7473097
## MathTest 0.998719 0.7473097 0.0000000
# Prune edges of the tree
edgeLimit <- .70
Cos_SimMatrix[(Cos_SimMatrix < edgeLimit)] <- 0</pre>
## Make the network
(Cos_Sim_Network <- graph_from_adjacency_matrix(Cos_SimMatrix,</pre>
                                                 mode = 'undirected',
                                                 weighted = T))
## IGRAPH 5841bff UNW- 3 3 --
## + attr: name (v/c), weight (e/n)
## + edges from 5841bff (vertex names):
## [1] GPA
              --WorkExp GPA --MathTest WorkExp--MathTest
##plot the network
plot(Cos Sim Network)
```



```
tkplot(Cos_Sim_Network, vertex.color="yellow")
## [1] 1
## This shows that the cosine Sim is high between GPA, WOrkExp
## and MathTest
```

```
## Network Refs
## http://www.business-science.io/business/2016/10/01/CustomerSegmentationPt3
.html
## http://igraph.org/r/doc/plot.common.html
```