Lecture 19: Graph Traversals

Hyungon Moon

Outline

- Depth First Search (DFS)
- Breadth First Search (BFS)

Subgraphs

- A subgraph S of a graphG is a graph such that
 - The vertices of S are a subset of the vertices of G
 - The edges of S are a subset of the edges of G
- A spanning subgraph of G
 is a subgraph that
 contains all the vertices
 of G

Subgraph

Spanning subgraph

Connectivity

- A graph is connected if there is a path between every pair of vertices
- A connected component of a graph G is a maximal connected subgraph of G

Connected graph

Non connected graph with two connected components

Trees and Forests

- A (free) tree is an undirected graph T such that
 - T is connected
 - T has no cycles

This definition of tree is different from the one of a rooted tree

- A forest is an undirected graph without cycles
- The connected components of a forest are trees

Forest

Spanning Trees and Forests

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest

Spanning tree

Depth-First Search

- Depth-first search (DFS)
 is a general technique
 for traversing a graph
- A DFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- □ DFS on a graph with n vertices and m edges takes O(n + m) time
- DFS can be further extended to solve other graph problems
 - Find and report a path between two given vertices
 - Find a cycle in the graph
- Depth-first search is to graphs what Euler tour is to binary trees

DFS Algorithm

 The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

```
Algorithm DFS(G)
   Input graph G
   Output labeling of the edges of G
       as discovery edges and
      back edges
  for all u \in G.vertices()
   u.setLabel(UNEXPLORED)
  for all e \in G.edges()
   e.setLabel(UNEXPLORED)
  for all v \in G.vertices()
   if v.getLabel() = UNEXPLORED
      DFS(G, v)
```

```
Algorithm DFS(G, v)
  Input graph G and a start vertex v of G
  Output labeling of the edges of G
    in the connected component of v
    as discovery edges and back edges
  v.setLabel(VISITED)
  for all e \in G.incidentEdges(v)
    if e.getLabel() = UNEXPLORED
       w \leftarrow e.opposite(v)
      if w.getLabel() = UNEXPLORED
         e.setLabel(DISCOVERY)
         DFS(G, w)
      else
         e.setLabel(BACK)
```

Example

Example (cont.)

DFS and Maze Traversal

- The DFS algorithm is similar to a classic strategy for exploring a maze
 - We mark each intersection, corner and dead end (vertex) visited
 - We mark each corridor (edge) traversed
 - We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)

Properties of DFS

Property 1

DFS(**G**, **v**) visits all the vertices and edges in the connected component of **v**

Property 2

The discovery edges labeled by DFS(G, v) form a spanning tree of the connected component of v

Analysis of DFS

- \square Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or BACK
- Method incidentEdges is called once for each vertex
- □ DFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$

Path Finding

- We can specialize the DFS algorithm to find a path between two given vertices v and z using the template method pattern
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as destination
 vertex z is encountered,
 we return the path as the contents of the stack


```
Algorithm pathDFS(G, v, z)
  v.setLabel(VISITED)
  S.push(v)
  if v = z
    return S
  for all e \in v.incidentEdges()
    if e.getLabel() = UNEXPLORED
       w \leftarrow e.opposite(v)
      if w.getLabel() = UNEXPLORED
         e.setLabel(DISCOVERY)
         pathDFS(G, w, z)
       else
         e.setLabel(BACK)
  S.pop()
```

Cycle Finding

- We can specialize the DFS algorithm to find a simple cycle using the template method pattern
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as a back edge
 (v, w) is encountered,
 we return the cycle as
 the portion of the stack
 from the top to vertex w

```
Algorithm cycleDFS(G, v, z)

v.setLabel(VISITED)

S.push(v)

for all e ∈ v.incidentEdges()

if e.getLabel() = UNEXPLORED

w ← e.opposite(v)

if w.getLabel() = UNEXPLORED

e.setLabel(DISCOVERY)

cycleDFS(G, w, z)

else

S.push(w)

return S

S.pop()
```

Breadth-First Search

- Breadth-first search
 (BFS) is a general
 technique for traversing
 a graph
- A BFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- □ BFS on a graph with n vertices and m edges takes O(n + m) time
- BFS can be further extended to solve other graph problems
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one

BFS Algorithm

 The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

```
Algorithm BFS(G)
   Input graph G
   Output labeling of the edges
       and partition of the
       vertices of G
  for all u \in G.vertices()
   u.setLabel(UNEXPLORED)
  for all e \in G.edges()
   e.setLabel(UNEXPLORED)
  for all v \in G.vertices()
   if v.getLabel() = UNEXPLORED
       BFS(G, v)
```

```
Algorithm BFS(G, s)
  L_0 \leftarrow new empty sequence
  L_0.insertBack(s)
  s.setLabel(VISITED)
  i \leftarrow 0
  while \neg L_i.emptv()
     L_{i+1} \leftarrow new empty sequence
     for all v \in L_i elements()
        for all e \in v.incidentEdges()
          if e.getLabel() = UNEXPLORED
             w \leftarrow e.opposite(v)
             if w.getLabel() = UNEXPLORED
                e.setLabel(DISCOVERY)
                w.setLabel(VISITED)
                L_{i+1}.insertBack(w)
             else
                e.setLabel(CROSS)
     i \leftarrow i + 1
```

Example

Example (cont.)

Example (cont.)

Properties

Notation

 G_s : connected component of s

Property 1

BFS(G, s) visits all the vertices and edges of G_s

Property 2

The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s

Property 3

For each vertex v in L_i

- The path of T_s from s to v has i edges
- Every path from s to v in G_s has at least i edges

Analysis

- \Box Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- \Box Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- \Box BFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$

Applications

- □ Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in O(n + m) time
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

Questions?

