Homework8 Program Report

张景浩 PB20010399

2023.5.13

1 问题描述

基于 de Casteljau 迭代算法或者 Bernstein 基函数代数方法,编写程序实现平面 bezier 曲 线生成,并用 3 阶 C^2 连续 bezier 样条实现曲线插值。

2 算法原理

2.1 基于 Bernstein 基函数代数方法的 bezier 曲线

由控制点 P_0, \cdots, P_n 生成的 bezier 曲线的方程为

$$P(t) = \sum_{i=0}^{n} P_i B_{i,n}(t), \quad t \in [0, 1]$$

其中

$$B_{i,n}(t) = \binom{n}{i} t^i (1-t)^{n-i}, \quad i = 0, \dots, n$$

2.2 3 阶 C^2 连续 bezier 样条曲线插值

由 2.1 中 bezier 曲线的方程可知,若要生成 3 阶的 bezier 曲线需要四个控制点。所以为了使用三阶 bezier 曲线插值数据点 P_1, \dots, P_n ,我们需要在每两个相邻的数据点之间在添加两个控制点,使得这一段 3 阶 bezier 样条由这四个控制点生成,这样一来,我们得到了为了生成 3 阶 bezier 样条的全部控制点 $b_1, \dots b_m, m = 3n - 2$ 。其中, $b_{3i-2} = P_i, i = 1, \dots, n$,而其他控制点的选择决定了 bezier 样条的连续性。

注意到,上述控制点的选择已经保证了 bezier 样条的 C^0 连续性,接下来我们来考虑更高阶的连续性。对数据点给定一个参数化 t_1, \dots, t_n ,在本次实验中选择的是均匀参数化,考察 bezier 样条在数据点两侧的各阶导数后,我们得到连续性条件:

 $1. C^1$ 连续性

•
$$b_{3i} - b_{3i+1} = b_{3i+1} - b_{3i+2}, i = 1, \dots, n-2$$

2. C² 连续性

•
$$b_{3i} - b_{3i+1} = b_{3i+1} - b_{3i+2}, i = 1, \dots, n-2$$

•
$$b_{3i-1} - 2b_{3i} + b_{3i+1} = b_{3i+1} - 2b_{3i+2} + b_{3i+3}, i = 1, \dots, n-2$$

本次实验中选择了自然边界条件

$$b_2 = \frac{1}{2}(b_1 + b_3), \ b_{m-1} = \frac{1}{2}(b_{m-2} + b_m)$$

所以,解线性方程组

$$\begin{bmatrix} 1 & & & & & & & & & & \\ 1 & -2 & 1 & & & & & & \\ & 1 & -2 & 0 & 2 & -1 & & & & \\ & 1 & -2 & 1 & & & & & \\ & & 1 & -2 & 1 & & & & \\ & & & \ddots & \ddots & \ddots & & \\ & & & 1 & -2 & 0 & 2 & -1 \\ & & & & 1 & & \\ & & & & 1 & -2 & 1 \\ & & & & & 1 \end{bmatrix}_{m \times m} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ \vdots \\ b_{m-4} \\ b_{m-3} \\ b_{m-2} \\ b_{m-1} \\ 0 \\ 0 \\ Pn \end{bmatrix}$$

就可以得到所有控制点 b_1, \dots, b_m ,通过 2.1 中的方法就可以得到 3 阶 C^2 连续的 bezier 样条插值曲线。

3 代码实现

本次实验使用 matlab 进行编译, 算法具体的实现详见 bezier_curve.m 和 bezier_spline.m 文件。

4 测试结果

图 1: bezier 曲线和 3 阶 bezier 样条

5 总结

通过测试我们发现, bezier 曲线模拟了其控制多边形的形状, 并且在第一个和最后一个控制点处与控制多边形相切, 而 3 阶的 bezier 样条对给定的数据点进行了插值, 得到的结果很接近预期效果, 并且修改某一个数据点的信息时, 只会影响局部的 bezier 样条曲线形状。