Лабораторная работа 8 Специальные числа и функции

Гамма- и бета-функции Гипергеометрический ряд (функция) Биномиальные коэффициенты Убывающий и возрастающий факториал Некоторые тождества с биномиальными коэффициентами Производящая функция Числа Стирлинга первого и второго рода Целозначные многочлены

Оформить работу в виде письменного отчета с пояснением всех действий и записать применяемые формулы в общем виде.

Часть 1. Гипергеометрический ряд

Теоретический материал см. лекцию

Все формулы в приложении (отдельном файле) темы в СДО. Используйте их при выполнении задания 1.

Задание 1.

- 1.1. Запишите гипергеометрическую функцию в виде ряда.
- 1.2. Ряд содержит конечное или бесконечное число членов? Обоснуйте.
- 1.3. Вычислите значение гипергеометрической функции в данной точке непосредственно (если это возможно) или используйте формулы приложения.
- 1.4. Имеется ли связь между данным гипергеометрическим рядом и тождествами с биномиальными коэффициентами, формулой параллельного суммирования, сверткой Вандермонда? Приведите соответствующие соотношения, используя формулы из приложения.

Вариант 1.
$$F\left(\frac{1}{2}, \frac{1}{2}; 4; 1\right)$$

Вариант 2. $F\left(3, \frac{1}{2}; \frac{7}{2}; -1\right)$

Вариант 3. $F\left(1, -5; -\frac{11}{2}; 1\right)$

Вариант 3. $F\left(-2, -5; 2; 1\right)$

Вариант 5. $F\left(3, -5; 9; -1\right)$

Вариант 6. $F\left(-5, -\frac{1}{2}; \frac{11}{2}; -1\right)$

Вариант 7. $F\left(\frac{3}{2}, \frac{1}{2}; 3; 1\right)$

Вариант 8. $F\left(1, -\frac{5}{2}; -\frac{4}{5}; 1\right)$

Вариант 16. $F\left(-2, -4; 2; 1\right)$

Вариант 17. $F\left(-4, -5; 3; 1\right)$

Вариант 18.
$$F(3, -4; 8; -1)$$

Вариант 26. $F\left(1, -\frac{2}{5}; -\frac{4}{7}; 1\right)$

Вариант 27. $F\left(\frac{7}{2}, -\frac{1}{2}; 4; -1\right)$

Вариант 28. $F\left(\frac{1}{2}, -3; 5; 1\right)$

Вариант 29. $F\left(-\frac{1}{2}, -3; 5; 1\right)$

Вариант 22. $F\left(-4, -\frac{1}{2}; -7; 1\right)$

Вариант 23. $F\left(-2, -4; 2; 1\right)$

Вариант 24. $F\left(-\frac{1}{2}, -\frac{5}{2}; 3; -1\right)$

Вариант 25. $F\left(-4, -\frac{3}{2}; -\frac{3}{2}; -1\right)$

Вариант 26. $F\left(1, -\frac{2}{5}; -\frac{4}{7}; 1\right)$

Вариант 27. $F\left(\frac{7}{2}, -\frac{1}{2}; 4; -1\right)$

Вариант 28. $F\left(\frac{1}{2}, -3; 5; 1\right)$

Вариант 29. $F\left(-\frac{1}{2}, -3; 5; 1\right)$

Вариант 30. $F\left(-3, -4; 2; 1\right)$

Вариант 31. $F\left(1, -5; -\frac{9}{2}; 1\right)$

Вариант 32. $F\left(2, 3; 6; 1\right)$

Часть 2. Применение специальных чисел в задачах пересчета

Задача пересчета — исследование вопроса о числе элементов, принадлежащих конечному множеству и обладающих некоторым свойством или совокупностью свойств. В теории вероятностей при решении задач рассматривали вопросы, связанные с числом перестановок, размещений и сочетаний элементов данного множества.

Сочетанием из *n* элементов по k ($0 \le k \le n$) элементов называется любое подмножество, которое содержит k элементов данного множества.

Число сочетаний из n элементов по k элементов обозначается символом \mathcal{C}_n^k и вычисляется по формуле

$$C_n^k = \frac{n(n-1)(n-2)...(n-k+1)}{k!}.$$

??????Количество неупорядоченных способов разбиений множества из n элементов на k непустых подмножеств? (числа Стирлинга второго рода)

Например, четырехэлементное множество {1,2,3,4}можно разбить на два непустых подмножества 7 способами:

$$\{1,2,3\}\{4\}, \quad \{1,2,4\}\{3\}, \quad \{1,3,4\}\{2\}, \quad \{2,3,4\}\{1\},$$

 $\{1,2\}\{3,4\}, \quad \{1,3\}\{2,4\}, \quad \{1,4\}\{3,2\}$

??????Количество перестановок порядка n с k циклами? (числа Стирлинга первого рода (без знака))

Рассмотрим перестановку, которая переводит строку цифр 123456789 в 384729156. <u>Каждая перестановка эквивалентна некоторому множеству циклов.</u>

Для наглядности представим перестановку в виде двух строк

123456789 384729156

Возникает циклическая структура: [1,3,4,7], т.е. $1\rightarrow 3\rightarrow 4\rightarrow 7\rightarrow 1$. Другим циклом в данной перестановке является: [2,8,5], еще один цикл – [6,9]. Таким образом, перестановка 384729156 эквивалентна циклическому представлению [1,3,4,7][2,8,5][6,9].

Существует одиннадцать различных способов составления двух циклов из четырех элементов:

Отметим, например, [1,3,4][2] = [3,4,1][2] = [4,1,3][2], здесь 2 – неподвижная точка.

Систематические методы пересчета основаны на понятии производящей функции.

Изучив материал соответствующей лекции, ответьте на вопросы.

- 1. Сколько существует различных способов составления трех циклов из девяти элементов?
- 2. Посчитайте это число способов, пользуясь соответствующими рекуррентными формулами и числами s(6, k).
- 3. Сколько существует способов разбиений множества из 9 элементов на 3 неупорядоченных непустых подмножества?

	-		Треуг	ольния	с Стир.	линга д	омь ву	ла по	дмнох	кеств
n	$n \choose 0$	${n \brace 1}$	$n \choose 2$	$\begin{Bmatrix} n \\ 3 \end{Bmatrix}$	$\binom{n}{4}$	${n \brace 5}$	${n \brace 6}$	$\binom{n}{7}$	$\binom{n}{8}$	${n \brace 9}$
0	1									
1	0	1								
2	0	1	1							
3	0	1	3	1						
4	0	1	7	6	1					
5	0	1	15	25	10	1				
6	0	1	31	90	65	15	1			
7	0	1	63	301	350	140	21	1		
8	0	1	127	966	1701	1050	266	28	1	
9	0	1	255	3025	7770	6951	2646	462	36	1

	Треугольник Стирлинга для числа циклов									
n	[n] [0]	[n] [1]	[n] [2]	[n] [3]	[n] [4]	[n] [5]	[n] [6]	[n] [7]	[n] 8]	n 9
0	1									
1	0	1								
2	0	1	1							
3	0	2	3	1						
4	0	6	11	6	1					
5	0	24	50	35	10	1				
6	0	120	274	225	85	15	1			
7	0	720	1764	1624	735	175	21	1		
8	0	5040	13068	13132	6769	1960	322	28	1	
9	0	40320	109584	118124	67284	22449	4536	546	36	1

Первые числа	Стирлинга	со знаком:	.5 ((n.)	k

n\k	0	1	2	3	4	5	6
0	1						
1	0	1					
2	0	-1	1				
3	0	2	-3	1			
4	0	-6	11	-6	1		
5	0	24	-50	35	-10	1	
6	0	-120	274	-225	85	-15	1

Задание 2. Дана перестановка, которая переводит строку цифр 123456789.

- 2.1. Запишите данную перестановку в виде множества циклов. Пусть k число полученных циклов.
- 2.2. Сколько существует различных способов составления k циклов из девяти элементов?
- 2.3. Посчитайте это число способов, пользуясь соответствующими рекуррентными формулами и числами s(6, k).
- 2.4. Сколько существует способов разбиений множества из 9 элементов на k неупорядоченных непустых подмножеств?
- 2.5. Приведите Ваш пример разбиения множества из 4 или 5 элементов на 3 цикла.

Вариант 1. 495768132	Вариант 13. 534918762
Вариант 2. 354986721	Вариант 14. 784362951
Вариант 3. 534987621	Вариант 15. 834215769
Вариант 4. 134296857	Вариант 16. 637918452
Вариант 5. 245178396	Вариант 17. 689547132
Вариант 6. 354986721	Вариант 18. 795832146
Вариант 7. 135784652	Вариант 19. 936782541
Вариант 8. 527918463	Вариант 20. 845672913
Вариант 9. 918375642	Вариант 21. 249875613
Вариант 10. 689479251	Вариант 22. 369578421
Вариант 11. 231486795	Вариант 23. 572961348
Вариант 12. 354986271	Вариант 24. 619572438

Вариант 25. 297543861

Вариант 26. 485179326

Вариант 27. 482965371

Вариант 28. 742981653

Вариант 29. 286945173

Вариант 30. 346871925

Вариант 31. 682971435

Часть 3. Целозначные многочлены

Биномиальные коэффициенты $\binom{x}{0}$, $\binom{x}{1}$, $\binom{x}{2}$, ... являются *целозначными многочленами* от x, то есть принимают целые значения при целых x. Более того, они образуют базис целозначных многочленов, в котором все целозначные многочлены степени n выражаются как линейные комбинации $\binom{x}{k}$, k=0,1,...,n, с целыми коэффициентами.

Например,
$$3x^3 - 5x^2 + 7x - 1 = -1 \cdot {x \choose 0} + 5 \cdot {x \choose 1} + 8 \cdot {x \choose 2} + 18 \cdot {x \choose 3}$$

ПРИМЕР РАЗОБРАН НА ЛЕКЦИИ

Задание 3. Разложите многочлен по базису $\begin{pmatrix} x \\ 0 \end{pmatrix}$, $\begin{pmatrix} x \\ 1 \end{pmatrix}$, $\begin{pmatrix} x \\ 2 \end{pmatrix}$, ...

Вариант 1. $-x^4 + x^2 + 7x - 10$

Вариант 2. $x^4 + 9x^2 - 5x + 1$

Вариант 3. $-5x^4 + 7x^3 - 4x - 2$

Вариант 4. $-8x^4 - 4x^2 - 2x + 1$

Вариант 5. $x^4 - x^3 + x^2 - x + 1$

Вариант 6. $2x^4 + 3x^2 - 7x + 8$

Вариант 7. $7x^4 - 7x^3 + x^2 - 2$

Вариант 8. $11x^4 - x^2 + 15$

Вариант 9. $-6x^4 - 5x^3 + 4x^2 + 3x$

Вариант $10. -6x^4 + 7x^3 - 11x + 4$

Вариант 11. $16x^4 - x^3 + 5x^2 + 5$

Вариант 12. $-x^4 - 7x^3 + 2x - 8$

Вариант 13. $3x^4 - 9x^2 + 2x - 17$

Вариант $14. -5x^4 - 9x^3 + 21$

Вариант 15. $13x^4 - 8x^2 - 11x + 4$

Вариант 16. $9x^4 - 5x^3 - 2x^2 - 15$

Вариант 17. $17x^4 - 13x^2 + 7x - 8$

Вариант 18. $-8x^4 - 9x^3 - 9x$

Вариант 19. $-15x^4 - 7x^2 - 12x$

Вариант 20. $-7x^4 + x^3 - 16x^2 + 3$

Вариант 21. $-4x^4 - 9x + 5$

Вариант 22. $-8x^4 + 7x^3 - 5x^2 + 9$

Вариант 23. $15x^4 - 7x - 11$

Вариант 24. $21x^4 + 13x^3 - 7x^2 + 37$

Вариант 25. $-8x^4 - 5x^3 + 7x - 1$

Вариант 26. $-11x^4 + 16x - 28$

Вариант 27. $-25x^4 - 13x^2 + 24$

Вариант 28. $18x^4 - 3x^3 + 6x^2 - 4$

Вариант 29. $-13x^4 + 11x^2 - 27x$

Вариант $30.-16x^4-5x^3-19x^2$

Вариант $31.17x^4 + 7x^3 - 11x^2 + 7x$

Вариант 32. $-x^4 + 5x^2 + 2x - 30$