```
Requirement already satisfied: pandasql in c:\users\user\anaconda3\lib\site-packages (0.
Requirement already satisfied: sqlalchemy in c:\user\user\anaconda3\lib\site-packages
(from pandasql) (1.4.39)
Requirement already satisfied: pandas in c:\users\user\anaconda3\lib\site-packages (from
pandasql) (1.4.4)
Requirement already satisfied: numpy in c:\users\user\anaconda3\lib\site-packages (from
pandasql) (1.21.5)
Requirement already satisfied: pytz>=2020.1 in c:\user\user\anaconda3\lib\site-packages
(from pandas->pandasql) (2022.1)
Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\user\anaconda3\lib\sit
e-packages (from pandas->pandasql) (2.8.2)
Requirement already satisfied: greenlet!=0.4.17 in c:\users\user\anaconda3\lib\site-pack
ages (from sqlalchemy->pandasql) (1.1.1)
Requirement already satisfied: six>=1.5 in c:\users\user\anaconda3\lib\site-packages (fr
om python-dateutil>=2.8.1->pandas->pandasql) (1.16.0)
Note: you may need to restart the kernel to use updated packages.
```

Objectives

In [27]: pip install -U pandasql

To perform EDA on the datasets and find:

- 1. What is the average salary of employees by department?
- 2. Which department has the highest number of employees?
- 3. What is the distribution of gender in the company?
- 4. Is there a correlation between years of experience and salary?
- 5. Which department has the highest average salary?
- 6. Other insights

Overview of the Process Used

- 1. Used two different linked employee datasets from Kaggle,
- 2. Formed a data frame required specifically for the first 6 objectives,
- 3. Used SQL queries using pandasql library to find required results
- 4. Used various plots to get good Visual Insights from the data

```
In [28]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   %matplotlib inline
   import seaborn as sns
   import pandasql as psql
In [29]: df1=pd.read_csv("C:/Users/User/Downloads/Employee_Salary_Dataset.csv")
df1
```

Out[29]: ID Experience_Years Age Gender Salary 0 1 250000 28 Female 21 Male 50000 Female 2 3 3 23 170000

3	4	2	22	Male	25000
4	5	1	17	Male	10000
5	6	25	62	Male	5001000
6	7	19	54	Female	800000
7	8	2	21	Female	9000
8	9	10	36	Female	61500
9	10	15	54	Female	650000
10	11	4	26	Female	250000
11	12	6	29	Male	1400000
12	13	14	39	Male	6000050
13	14	11	40	Male	220100
14	15	2	23	Male	7500
15	16	4	27	Female	87000
16	17	10	34	Female	930000
17	18	15	54	Female	7900000
18	19	2	21	Male	15000
19	20	10	36	Male	330000
20	21	15	54	Male	6570000
21	22	4	26	Male	25000
22	23	5	29	Male	6845000
23	24	1	21	Female	6000
24	25	4	23	Female	8900
25	26	3	22	Female	20000
26	27	1	18	Male	3000
27	28	27	62	Female	10000000
28	29	19	54	Female	5000000
29	30	2	21	Female	6100
30	31	10	34	Male	80000
31	32	15	54	Male	900000
32	33	20	55	Female	1540000
33	34	19	53	Female	9300000
34	35	16	49	Male	7600000

In [30]: df2=pd.read_csv("C:/Users/User/Downloads/Department_Dataset.csv")
 df2

Out[30]: ID Dept_name location travel_required

0 1 HR Pune yes

1 2 Finance Bangalore no

2	3	Finance	Bangalore	no
3	4	Finance	Pune	no
4	5	Tech	Mumbai	no
5	6	Tech	Pune	no
6	7	Tech	Bangalore	yes
7	8	HR	Bangalore	no
8	9	HR	Pune	no
9	10	HR	Pune	no
10	11	HR	Mumbai	no
11	12	HR	Mumbai	yes
12	13	Finance	Bangalore	yes
13	14	Tech	Bangalore	yes
14	15	Tech	Mumbai	yes
15	16	Tech	Pune	yes
16	17	Tech	Bangalore	no
17	18	Finance	Mumbai	no
18	19	HR	Mumbai	no
19	20	Finance	Bangalore	no
20	21	Tech	Mumbai	no
21	22	Tech	Mumbai	yes
22	23	Tech	Mumbai	no
23	24	Tech	Pune	yes
24	25	Finance	Pune	yes
25	26	HR	Pune	no
26	27	HR	Bangalore	no
27	28	HR	Bangalore	no
28	29	Finance	Bangalore	no
29	30	Finance	Mumbai	no
30	31	Tech	Mumbai	no
31	32	Tech	Pune	yes
32	33	HR	Mumbai	yes
33	34	HR	Bangalore	yes
34	35	Tech	Bangalore	no

In [31]: df3=df1.merge(df2) df3

Out[31]: ID Experience_Years Age Gender Salary Dept_name location travel_required

0 1 5 28 Female 250000 HR Pune yes

1	2	1	21	Male	50000	Finance	Bangalore	no
2	3	3	23	Female	170000	Finance	Bangalore	no
3	4	2	22	Male	25000	Finance	Pune	no
4	5	1	17	Male	10000	Tech	Mumbai	no
5	6	25	62	Male	5001000	Tech	Pune	no
6	7	19	54	Female	800000	Tech	Bangalore	yes
7	8	2	21	Female	9000	HR	Bangalore	no
8	9	10	36	Female	61500	HR	Pune	no
9	10	15	54	Female	650000	HR	Pune	no
10	11	4	26	Female	250000	HR	Mumbai	no
11	12	6	29	Male	1400000	HR	Mumbai	yes
12	13	14	39	Male	6000050	Finance	Bangalore	yes
13	14	11	40	Male	220100	Tech	Bangalore	yes
14	15	2	23	Male	7500	Tech	Mumbai	yes
15	16	4	27	Female	87000	Tech	Pune	yes
16	17	10	34	Female	930000	Tech	Bangalore	no
17	18	15	54	Female	7900000	Finance	Mumbai	no
18	19	2	21	Male	15000	HR	Mumbai	no
19	20	10	36	Male	330000	Finance	Bangalore	no
20	21	15	54	Male	6570000	Tech	Mumbai	no
21	22	4	26	Male	25000	Tech	Mumbai	yes
22	23	5	29	Male	6845000	Tech	Mumbai	no
23	24	1	21	Female	6000	Tech	Pune	yes
24	25	4	23	Female	8900	Finance	Pune	yes
25	26	3	22	Female	20000	HR	Pune	no
26	27	1	18	Male	3000	HR	Bangalore	no
27	28	27	62	Female	10000000	HR	Bangalore	no
28	29	19	54	Female	5000000	Finance	Bangalore	no
29	30	2	21	Female	6100	Finance	Mumbai	no
30	31	10	34	Male	80000	Tech	Mumbai	no
31	32	15	54	Male	900000	Tech	Pune	yes
32	33	20	55	Female	1540000	HR	Mumbai	yes
33	34	19	53	Female	9300000	HR	Bangalore	yes
34	35	16	49	Male	7600000	Tech	Bangalore	no

In [32]: req_df=df3[['ID','Dept_name','Gender','Experience_Years','Salary']]
 req_df

0	1	HR	Female	5	250000
1	2	Finance	Male	1	50000
2	3	Finance	Female	3	170000
3	4	Finance	Male	2	25000
4	5	Tech	Male	1	10000
5	6	Tech	Male	25	5001000
6	7	Tech	Female	19	800000
7	8	HR	Female	2	9000
8	9	HR	Female	10	61500
9	10	HR	Female	15	650000
10	11	HR	Female	4	250000
11	12	HR	Male	6	1400000
12	13	Finance	Male	14	6000050
13	14	Tech	Male	11	220100
14	15	Tech	Male	2	7500
15	16	Tech	Female	4	87000
16	17	Tech	Female	10	930000
17	18	Finance	Female	15	7900000
18	19	HR	Male	2	15000
19	20	Finance	Male	10	330000
20	21	Tech	Male	15	6570000
21	22	Tech	Male	4	25000
22	23	Tech	Male	5	6845000
23	24	Tech	Female	1	6000
24	25	Finance	Female	4	8900
25	26	HR	Female	3	20000
26	27	HR	Male	1	3000
27	28	HR	Female	27	10000000
28	29	Finance	Female	19	5000000
29	30	Finance	Female	2	6100
30	31	Tech	Male	10	80000
31	32	Tech	Male	15	900000
32	33	HR	Female	20	1540000
33	34	HR	Female	19	9300000
34	35	Tech	Male	16	7600000

Out[33]:		ID	Dept_name	Gender	Experience_Years	Salary
	0	1	HR	Female	5	250000
	1	2	Finance	Male	1	50000
	2	3	Finance	Female	3	170000
	3	4	Finance	Male	2	25000
	4	5	Tech	Male	1	10000
	5	6	Tech	Male	25	5001000
	6	7	Tech	Female	19	800000
	7	8	HR	Female	2	9000
	8	9	HR	Female	10	61500
	9	10	HR	Female	15	650000
	10	11	HR	Female	4	250000
	11	12	HR	Male	6	1400000
	12	13	Finance	Male	14	6000050
	13	14	Tech	Male	11	220100
	14	15	Tech	Male	2	7500
	15	16	Tech	Female	4	87000
	16	17	Tech	Female	10	930000
	17	18	Finance	Female	15	7900000
	18	19	HR	Male	2	15000
	19	20	Finance	Male	10	330000
	20	21	Tech	Male	15	6570000
	21	22	Tech	Male	4	25000
	22	23	Tech	Male	5	6845000
	23	24	Tech	Female	1	6000
	24	25	Finance	Female	4	8900
	25	26	HR	Female	3	20000
	26	27	HR	Male	1	3000
	27	28	HR	Female	27	10000000
	28	29	Finance	Female	19	5000000
	29	30	Finance	Female	2	6100
	30	31	Tech	Male	10	80000
	31	32	Tech	Male	15	900000
	32	33	HR	Female	20	1540000
	33	34	HR	Female	19	9300000
	34	35	Tech	Male	16	7600000

```
psql.sqldf(q2)
Out[34]:
            Department_Name Average_Salary
         0
                      Finance
                                 2165561.11
                         HR
                                 1958208.33
         2
                        Tech
                                 2077257.14
         q3="select Dept name, count(*) as Number of Employees from req df group by Dept name"
In [35]:
         psql.sqldf(q3)
Out[35]:
            Dept_name Number_of_Employees
         0
               Finance
                                        9
         1
                   HR
                                       12
         2
                  Tech
                                       14
         q4="select Dept name, round(avg(Salary),2) as avg salary from req df group by Dept name
In [36]:
         psql.sqldf(q4)
Out[36]:
            Dept_name avg_salary
         0
                Finance 2165561.11
         1
                  Tech 2077257.14
         2
                   HR 1958208.33
```

plt.scatter(req df['Experience Years'], req df['Salary'])

plt.title('Scatter Plot showing Years of Experience and Salary')

plt.xlabel('No. of Years of Experience')

plt.ylabel('Salary')

plt.show()

In [37]:


```
In [38]: corr=req_df['Experience_Years'].corr(req_df['Salary'])
    corr

Out[38]: 0.6855999775494617

In [39]: sns.lmplot(x='Experience_Years', y='Salary', data=req_df)
```

Out[39]: <seaborn.axisgrid.FacetGrid at 0x2139c1c1dc0>

In [40]: sns.countplot(x='Gender', data=req_df)

Out[40]: <AxesSubplot:xlabel='Gender', ylabel='count'>

In [41]: sns.countplot(x='Gender', hue='location', data=df3, palette='rainbow')
plt.title('Gender Distribution by Location')

plt.show()

In [42]: sns.displot(req_df['Gender'])

Out[42]: <seaborn.axisgrid.FacetGrid at 0x2139c21c3a0>

In [43]: sns.heatmap(df3.corr(),annot=True)

Out[43]: <AxesSubplot:>

In [44]: sns.pairplot(df3[['Experience_Years','Age','Salary','location']],hue='location')

Out[44]: <seaborn.axisgrid.PairGrid at 0x2139c66b6a0>

In [45]: sns.pairplot(df3[['Experience_Years','Age','Salary','Gender']],hue='Gender')

Out[45]: <seaborn.axisgrid.PairGrid at 0x2139dd0cfa0>


```
In [46]: sns.set(style="whitegrid")
sns.violinplot(x="Age", y="Experience_Years", data=df3)
```

Out[46]: <AxesSubplot:xlabel='Age', ylabel='Experience_Years'>

In [47]: sns.countplot(x='travel_required', hue='location', data=df3, palette='rainbow')
 plt.title('Travel Required or not by Location')
 plt.show()

Conclusion

Findings according to the Exploratory Data Analysis:

- 1. Average Salary of Finance Department: 2165561.11
- 2. Average Salary of Tech Department: 2077257.14
- 3. Average Salary of HR Department: 1958208.33
- 4. Tech Department has the highest number of Employees (14)
- 5. There are 18 female employees and 16 male employees in the company. The gender distribution can be considered as more or less equal. Except for Mumbai, in other two locations, the number of females is higher than that of males.
- 6. The correlation between Years of Experience and Salary is 0.69. This means that the features are quite strongly correlated, and this relation can be used to predict salary.
- 7. The Finance Department has the highest average salary.
- 8. Age is highly correlated with Salary and Years of Experience.
- 9. Except in Pune, for the other two cities, more employees don't require travel. The city with highest number of employees who don't require travel is Bangalore.

Thank You