Internet Technology and Protocols

http://netgroup.uniroma2.it/ITP

Prof. Stefano Salsano

http://netgroup.uniroma2.it/Stefano_Salsano/ e-mail: stefano.salsano@uniroma2.it

AA2019/20 - Slide deck #3 - v1

Virtual LANs

Broadcast issues

Switches: - did partition collision domains

- bud DID not partition broadcast domain

The "obvious" solution: IP subnets

→ Partition network into several subnets

- ⇒Critical approach (especially in the past):
 - →routers were slow
 - → Need to replace switches with routers
- ⇒No more a problem of efficiency, today
 - → layer 3 switches = hardware-based routers, very fast!
- ⇒However...

Cons of physical IP subnets

Physical Network Design vs Logical Network Design

→ Standard design for physical network

Solution: Virtual LAN (VLAN)

- → VLAN = area which limits the broadcast domain
 - **⇒** Benefits
 - → Broadcast confinement solves scalability issues of large flat networks
 - → Isolation of failures and network impairments
 - → Security (more later)
- → Multiple VLANs may coexist over a same <u>Switched</u> LAN

VLAN Membership

→ Per Port

- ⇒ THE typical VLAN approach
- ⇒ The IEEE 802.1Q approach

→ Per User

- → Via MAC address
- → Via VLAN tag
- ⇒ Results: anarchic VLAN
 - \rightarrow but too easy to break into \odot

→ Per Protocol

⇒ New feature in IEEE 802.1v

→ Combination (cross-layer)

- ⇒ Supported as proprietary extensions
 - → Via IP subnet address
 - $\rightarrow \dots$
- ⇒ Classification hierarchy may be defined
 - \rightarrow E.g. per IP subnet;
 - \rightarrow if not IP \rightarrow per protocol;
 - → if not in the set of classified protocols→ per MAC;
 - → if not in MAC list per port.

Physical vs logical view (i.e. why VLANS instead of IP network)

- → Layer 3 subnets ought to be physically separated
- → BUT many VLANs may overlap
- → on the same, unique physical network structure!
 - ⇒ Robust, failureproof, single managed

All users attached to same switch port must be in the same VLAN.

VLANs and IP subnets /1

- → 1 VLAN = 1 IP subnet
 - ⇒ Routers are needed to move frames from different VLANs
 - ⇒ Even if STAs are in the same physical network
- → Inter-VLAN connectivity through router: improves security
 - ⇒ May apply packet filtering mechanisms such as ACL, etc

VLANs and IP subnets /2

- → Routers for VLAN interconnection may have as little as just one physical interface
 - ⇒ Also called, in jargon, "one-armed routers"
- → Multiple IP addresses on the single interface

VLAN tagging

Port types

TRUNK port: transmits and receives tagged frames i.e. with explicit VLAN membership indication

ACCESS port: transmits and receives untagged frames i.e. with no VLAN membership indication

HYBRID ports: may handle both tagged and untagged frames

Access links

- → A link connected to an access port
 - ⇒ Typically the PC-to-switch link
 - ⇒ or small-hub-to-switch link
- → Connected STAs belong to only 1 VLAN
- → Connected STAs DO NOT NEED TO KNOW they are on a VLAN
 - ⇒ They just assume to be on a dedicated IP subnet
- → TX/RX frames:
 - ⇒ standard Ethernet (no QTAG prefix)

Access links (legacy regions)

Trunk links

- → A link connected to a trunk port
 - ⇒ Typically switch-to-switch or switch-to-router links
 - ⇒ frequently server-to-switch link
 - ⇒ If PC-to-switch link:
 - → Anarchic VLANs considered

- → Support tagged Ethernet frames
 - ⇒ Explicit tagging mechanism to differentiate them
- → Does not belong to a VLAN but transport VLAN frames
 - ⇒ Either from all VLANs
 - ⇒ Or just from selected VLANs
- → However, may belong to a VLAN
 - ⇒ Case of hybrid link
 - ⇒ Untagged frames assumed to belong to a VLAN

—— Giuseppe	e Bianchi
-------------	-----------

Hybrid links

→ Support both tagged and untagged Ethernet frames

- ⇒ Untagged frames belong to the same VLAN (in the example, VLAN C)
- ⇒ Modern understanding and implementations: all links are of hybrid type...

Ethernet Frame format for VLAN (802.3ac, 1998)

User Priority (802.1p)

0	BE	Best Effort (default)
1	ВК	Background
2		Unspecified
3	EE	Excellent Effort
4	CL	Controlled Load
5	VI	Video < 100ms latency/jitter
6	VO	Voice < 10 ms latecny/jitter
7	NC	Network Control

Managed via separated output queues

- typically with priority queueing
- but more complex scheduling mechanisms can be used

May a station belong to more than 1 VLAN?

Yes! (typical case: servers)