(a)	Name the spectral series shown in diagram 1.
	Balmer
	(1)
(b)	Show, by calculation, that the energy of a photon of red light of wavelength 656 nm is 1.9 eV.
(b)	On diagram 2, draw arrows to represent
	(i) the electron transition that gives rise to the red line (label this arrow R).
	Red goes from n=3 to n=2 from -1.5 to -3.4
	(ii) a possible electron transition that gives rise to the blue line (label this arrow B).
	Blue goes from n=4 to n=2 from -0.85 to -3.4
	(Total 6
This	question is about the radioactive decay of potassium-40.
	icleus of the nuclide K (potassium-40) decays to a stable nucleus of the nuclide Ar on-40).
(a)	State the names of the two particles emitted in this decay.

1.

This question is about atomic spectra and energy levels.

Diagram 1 below shows part of the emission line spectrum of atomic hydrogen. The

	Deduce that the decay constant for potassium-40 is 1.8×10^{-17} s ⁻¹ .
(c)	Determine the half-life of potassium-40.
	(Total 6 m
This	question is about particle physics.
	question is about particle physics. utron can decay into a proton, an electron and an antineutrino according to the reaction
	utron can decay into a proton, an electron and an antineutrino according to the reaction
A net	utron can decay into a proton, an electron and an antineutrino according to the reaction $ n \ \ \ p+e+. $
A net	utron can decay into a proton, an electron and an antineutrino according to the reaction $n\ \ \ p+e+.$ Deduce the value of the electric charge of the antineutrino.

(b)	State the name of the fundamental interaction (force) that is responsible for this deca	y.
(c)	State how an antineutrino differs from a neutrino.	
	(To	otal 4 mar
Nucle	ear binding energy and nuclear decay	
(a)	State what is meant by a <i>nucleon</i> , giving an example of two nucleons.	
	Nucleon is made up of three quarks	
(b)	Explain what a nucleon is made of and what force holds it together. Include a description of the exchange particle that mediates the interaction between nucleons.	ption
(c)	Define what is meant by the <i>mass defect</i> of a nucleus.	
(c)	Define what is meant by the <i>binding energy</i> of a nucleus.	

The graph below shows the variation with nucleon (mass) number of the binding energy per nucleon.

(c)	Use the graph to explain why energy can be released in both the fission and the fusion processes.	
	The first thing that occurs on the graph is the fusion process until it undergoes the maximum release of energy, after that there is a fission process -split	
	up	
		(3)
(c)	Use the graph to explain why there is an abundance of iron (Fe) in the universe.	
		(2)
		(2)

(d)	A sample of carbon-11 has an initial mass of 4.0 ? 10^{-15} kg. Carbon-11 has a half-life of approximately 20 minutes. Calculate the mass of carbon-11 remaining after one hour has elapsed.	
	10.50.25 0.125 0.125x4x10^-15=0.5x10^-15	
		(2)
		(-)
(e)	Uranium-238, undergoes ? decay to form an isotope of thorium. Write down the nuclear equation for this decay.	
	234(up)TH(down)+4(up)alpha2(down)	
		(2)
	(Total 11 m	
This	s question is about a proton.	
The	proton is made out of three quarks.	
(a)	Explain why the three quarks in the proton do not violate the Pauli exclusion principle.	
	They have different spin alignments (opposite spins) two quarks are up and down and the third one can be either up or down	
	direction	(2)
		(2)
(b)	Quarka have onin Evnlain have it is nessible for the proton to also have onin	
(b)	Quarks have spin Explain how it is possible for the proton to also have spin	
	It depends on the down quark.Up and down have to be in different directions +1/2 or -1/2	
		(2)
	(Total 4 m	

5.

6. Which **one** of the following correctly gives the number of electrons, protons and neutrons in a neutral atom of the nuclide?

	Number of electrons	Number of protons	Number of neutrons
A.	65	29	36
B.	36	36	29
C.	29	29	65
D.	29	29	36

(1)

- 7. The unified mass unit is defined as
 - A. the mass of one neutral atom of C.
 - B. of the mass of one neutral atom of C.
 - C. of the mass of one neutral atom of C.
 - D. the mass of the nucleus of C.

(1)

- **8.** Which of the following provides evidence for the existence of atomic energy levels?
 - A. The absorption line spectra of gases
 - B. The existence of isotopes of elements
 - C. Energy release during fission reactions
 - D. The scattering of α -particles by a thin metal film

(1)