parte del SPARCv8/4 y ROM

Operaciones en la ALSU

1 0	ro	d	fun	rs1	i	rs2cte13
fun	FUN	Descri	nción		•	
0	ADD	alu<=a	•			FUN rs1,rs2cte13,rd
1	AND		AND b			
2	OR	alu<=a			r[rd]<- FUN(r[rs1],r[rs2cte13])
3	XOR		XOR b			PC<-PC+4,
4	SUB	alu<=a				(Si es cc) icc<-icc_x
5	ANDN	alu<=a	a AND (NOT b)			
6	ORN	alu<=a	OR (NOT b)			
7	XNOR	alu<=a	XNOR b			
8	ADDX	alu<=a	a + b + c			
9						
10			(150) * b(150)(E			•
11	SMUL		a(150) * b(150)) -	-(En el SPARC	es de	e 32x32)
12	SUBX	alu<=a	a - b - c			
13						
14	UDIV	alu<=a	a / b(150))(En el	SPARC es de (54/32	2)
15	SDIV	alu<=a	a / b(150)(En el S	PARC es de 64	1/32)	
27	CLI	-l .	a de			
37	SLL	alu<=a				
38	SRL	alu<=a				
39	SRA	alu<=a	a/(2^b)			

Primera instrucción ADD %g0,6,%g1

Cargar en %g1 el valor 6 (ADD %g0,6,%g1)

- Cargar la constante 6 en rs2cte13,
- Se suma con cero en la ALU
- El resultado se almacena en el banco de registros, en el registro 1.
- Para ejecutarlo es necesario enviar un flaco positivo del reloj cuando las otras señales están en:
 - DPe<='1', que es para guardar en el banco de registros.
 - ds<='0'; porque no se va a usar la señal DPin.</p>
 - rd<="00001"; porque se va a almacenar en el registro 1.
 - fun<="000000"; para realizar la suma.
 - rs1<="00000"; para que sume 0 al 6 ya que r[0]=0.
 - i<='1'; para que cargue la constante 6.
 - rs2cte13<="0000000000110"; que es el valor de la constate 6.

DPe	ds	rd	fun	rs1	i	rs2cte13
1	0	00001	000000	00000	1	000000000110

Direccionamiento del SPARCv8/4

- El SPARCv8/4 direcciona la memoria por bytes (conjunto de 8 bits).
- Sin embargo, las instrucciones son de 32 bits (es decir 4 bytes).
- Por lo tanto cada posición de memoria de programa tiene 4 bytes.
- Por este motivo el contador de programa debe contar de 4 en 4.

Primer programa

- dir instrucción
- MOV 6, %g1
- 4 MOV 9, %g2
- 8 ADD %g2, %g1, %g3
- 12 SRA %g3, 1, %g3

! Carga 6 en reg. global 1

! Carga 9 en reg. global 2

! Desplaza en global 4

! Suma en global 3

¿Qué operación aritmética hacen las dos últimas instrucciones?

```
00004000 82002006
2 00004004 84002009
3 00004008 86008001
4 0000400C 8938E001
```

```
MOV 6, %q1
MOV 9, %q2
ADD %g2, %g1, %g3
SRA %q3,1, %q4
```

```
! Carga 6 en reg. global 1
! Carga 9 en reg. global 2
! Suma y coloca en reg. global 3
! Desplaza y coloca en global 4
```

SPARC V8	Comentarios	Assembler	PC	R[rd]	mau	icc	31	29 28 27 26	25 24 23 22 21 20	18 10 11 11 13	0
108	Suma	ADD rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] + r[rs2]cte13		1 0	rd	0 0 0 0 0 0	rs1 i	rs2cte13
106	Y	AND rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] AND r[rs2]cte13		1 0	rd	000001	rs1 i	rs2cte13
106	О	OR rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] OR r[rs2]cte13		1 0	rd	000010	rs1 i	rs2cte13
106	O excluyente	XOR rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] XOR r[rs2]cte13		1 0	rd	000011	rs1 i	rs2cte13
110	Resta	SUB rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] - r[rs2]cte13		1 0	-	000100	rs1 i	rs2cte13
106	Y con rs2cte13 negada	ANDN rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] AND NOT(r[rs2]cte13)		1 0	rd	000101	rs1 i	rs2cte13
106	O con rs2cte13 negada	ORN rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] OR NOT(r[rs2])cte13		1 0	rd	0 0 0 1 1 0	rs1 i	rs2cte13
106	O excluyente negada	XNOR rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] XNOR r[rs2]cte13		1 0	1	0 0 0 1 1 1	rs1 i	rs2cte13
108	Suma con acarreo	ADDX rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] + r[rs2]cte13 + c		1 0	-	001000	rs1 i	rs2cte13
113	Mult. sin signo	UMUL rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] * r[rs2]cte13		1 0	rd	0 0 1 0 1 0	rs1 i	rs2cte13
113	Mult. con signo	SMUL rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] * r[rs2]cte13		1 0	rd	001011	rs1 i	rs2cte13
110	Resta con acarreo	SUBX rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] - r[rs2]cte13 - c		1 0	rd	001100	rs1 i	rs2cte13
115	Div. sin signo	UDIV rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] / r[rs2]cte13		1 0	rd	0 0 1 1 1 0	rs1 i	rs2cte13
115	Div. con signo	SDIV rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] / r[rs2]cte13		1 0	rd	0 0 1 1 1 1	rs1 i	rs2cte13
108	Suma	ADDcc rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1]+r[rs2]cte13	icc<-icc_x	1 0		0 1 0 0 0 0	rs1 i	rs2cte13
106	Y	ANDcc rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] AND r[rs2]cte13	icc<-icc_x	1 0		0 1 0 0 0 1	rs1 i	rs2cte13
106	O	ORcc rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] OR r[rs2]cte13	icc<-icc_x	1 0	rd	0 1 0 0 1 0	rs1 i	rs2cte13
106	O excluyente	XORcc rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] XOR r[rs2]cte13	icc<-icc_x	1 0		0 1 0 0 1 1	rs1 i	rs2cte13
110	Resta	SUBcc rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] - r[rs2]cte13	icc<-icc_x	1 0		0 1 0 1 0 0	rs1 i	rs2cte13
106	Y con rs2cte13 negada	ANDNcc rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] AND NOT(r[rs2]cte13)	icc<-icc_x	1 0		0 1 0 1 0 1	rs1 i	rs2cte13
106	O con rs2cte13 negada	ORNcc rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] OR NOT(r[rs2])cte13	icc<-icc_x	1 0		0 1 0 1 1 0	rs1 i	rs2cte13
106	O excluyente negada	XNORcc rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] XNOR r[rs2]cte13	icc<-icc_x	1 0	rd	0 1 0 1 1 1	rs1 i	rs2cte13
108	Suma con acarreo	ADDXcc rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] + r[rs2]cte13 + c	icc<-icc_x	1 0	rd	0 1 1 0 0 0	rs1 i	rs2cte13
113	Mult. sin signo	UMULcc rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] * r[rs2]cte13	icc<-icc_x	1 0		0 1 1 0 1 0	rs1 i	rs2cte13
113	Mult. con signo	SMULcc rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] * r[rs2]cte13	icc<-icc_x	1 0	rd	0 1 1 0 1 1	rs1 i	rs2cte13
110	Resta con acarreo	SUBXcc rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] - r[rs2]cte13 - c	icc<-icc_x	1 0	rd	0 1 1 1 0 0	rs1 i	rs2cte13
115	Div. sin signo	UDIVcc rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] / r[rs2]cte13	icc<-icc_x	1 0	rd	0 1 1 1 1 0	rs1 i	rs2cte13
115	Div. con signo	SDIVcc rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] / r[rs2]cte13	icc<-icc_x	1 0	rd	0 1 1 1 1 1	rs1 i	rs2cte13
					<u> </u>						
107	Desp. a la izq. (llena con ceros)	SLL rs1,rs2cte13,rd	PC<-PC+4		[rs1] << r[rs2]cte13		1 0		100101	rs1 i	rs2cte13
107	Desp. a la der. (llena con ceros)	SRL rs1,rs2cte13,rd	PC<-PC+4		[rs1] >> r[rs2]cte13		1 0	rd	100110	rs1 i	rs2cte13
107	Desp. a la der. (llena con signo)	SRA rs1,rs2cte13,rd	PC<-PC+4	r[rd]<- r[[rs1] / (2**r[rs2]cte13)		1 0	rd	100111	rs1 i	rs2cte13

INSTRUCCIONES 1/2 SPARC v8/4

0 SPARC V8		L 3/		+	[r[rs1]+r[rs2]] r[rs1]+cte13]	ice		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rs1 (= = = = = = = = = = = = = = = = = = =	₹ ~ 61 - 0 rs2			
95	0	L 2'	PC<-PC+4		[r[rs1]+r[rs2]]<-r[rd]			1 1		0 0 0 1 0 0	1	0 0 0 0 0 1 0 1 0	rs2			
95	_		PC<-PC+4		[r[rs1]+cte13]<-r[rd]			1 1		0 0 0 1 0 0	rs1 1	1 cte13				
-	7 1111111111111111111111111111111111111	D1145,[10 - 111 -]	10	1	from the first			<u> </u>		0 0 0 1 1		-				
119					EN '0'='1' ELSE PC+4			0 0 0 0				cte22				
119	Brinca si son iguales	BE cte22	PC<-PC+4*c	te22 WHF	EN z='1' ELSE PC+4			0 0 0 0				cte22				
119	8 (7				EN zOR(nXORv)='1' ELS			0 0 0 0				cte22				
119	Brinca si es menor (S)	BL cte22	PC<-PC+4*c'	te22 WHF	EN nXORv='1' ELSE PC+	.+4		0 0 0 0	0 1 1	0 1 0		cte22				
119	6 ()	BLEU cte22	PC<-PC+4*c'	te22 WHF	EN cORz='1' ELSE PC+4	+		0 0 0 0				cte22				
119	Brinca si c es uno (menor (U))	BCS cte22	PC<-PC+4*c'	te22 WHF	EN c='1' ELSE PC+4			0 0 0 0	1 0 1	0 1 0		cte22				
119	0				EN n='1' ELSE PC+4			0 0 0 0				cte22				
119					EN v='1' ELSE PC+4			0 0 0 0				cte22				
119	1				EN '1'='1' ELSE PC+4			0 0 0 1				cte22				
119	C				EN NOTz='1' ELSE PC+4			0 0 0 1				cte22				
119	* \ /				EN NOT(zOR(nXORv))='		+4	0 0 0 1				cte22				
119	7 6 ()				EN NOT(nXORv)='1' ELS			0 0 0 1				cte22				
119	, , ,		_		EN NOT(cORz)='1' ELSE			0 0 0 1				cte22				
119	(3, 6 ())		PC<-PC+4*c'	te22 WHF	EN NOTc='1' ELSE PC+4	4		0 0 0 1				cte22				
119	Brinca si es positivo	BPOS cte22	PC<-PC+4*c'	te22 WHF	EN NOTn='1' ELSE PC+4	4		0 0 0 1				cte22				
119	Brinca si v es cero	BVC cte22	PC<-PC+4*c'	te22 WHF	EN NOTv='1' ELSE PC+4	4		0 0 0 1	1 1 1	0 1 0	(cte22				
	-											<u> </u>				
125			PC<-PC+4*ct		o7<-PC			0 1			cte30					
85			PC<-%o7+8									1 0 0 0 0 0 0 0 0				
126			PC<-r[rs1]+r[1		rd]<-PC					1 1 1 0 0 0		0 0 0 0 0 0 0 0	rs2			
126	Salto con cte.	JMPL rs1+cte13,rd	PC<-r[rs1]+ct	te13 r[rd	rd]<-PC			-		1 1 1 0 0 0	rs1 1	1 cte13				
						No hace of	operaci	iones	NC			ADD R0,R0,R0)			
						Mueve			M	OV rs2cte13	,rd	ADD R0,rs2ct	e13,rd			
	INICT')	Compara	mayo o	menor	CN	MPcc rs 1,rs 2	cte13	SUBcc rs1,rs2	cte13,R0						
	IIVJII	RUCCIO	NLO	4 / 2	<u>-</u>	Compara	con cer	ro	TS	Tcc rs2	_	ORcc R0,rs2,R	.0			
	(~ / A			Invertir los bits NOT rs 1,rd						XNOR rs 1,R0,rd				
	•	SPARC v8	ರ/4			Complemento a 2 NEG rs 2,rd						SUBB R0,rs2,rd				
			-,			Incremen				C rs 1,rd		ADD rs 1,1,rd				
						incrementa en uno inversi, iu						ADD 131,1,1U				

DEC rs 1,rd

Decrementa en 1

SUBB rs 1,1,rd

SIMULACIÓN SPARC v8/4

							 															•									
Ciclos	PC	n,z,v,c	%11	%12	%13	%14			<u>_</u>		DPe	sp	P. 1	rs i,r-addri	r-data1,a	rs2cte13,r-addr2	r-data2	 q	funci	fun	alsu, Bus_A	Bus_Din	rd,r-addr3	r-data3, Bus_Dout	w-addr	w-data	We	condi	status	cte22	nPC
0																															
1																															
2																															
4											+																				
5																															
6											+																				
7																															
8																															
9																															
10																															
11																															
12																															
12 13																															
14																															
15											+																				
16																															
17																															
18																															
19																															
20																															
21																															
22																															
23																															
24																															\Box
25																															\Box
26											+																				\Box
27											+																				
22 23 24 25 26 27 28 29																															
29																															
	I					1						1			I	l		 1	1					<u> </u>	l	I	1			Ь	\perp

SPARCV8/4_risc1et circuito SPARCv8/4 y memorias aumenta 32 32 icc Bus Din a N bits. repite el bit I Register file of 31 más signif. registers of 32 bits Bus A(11..2) like listing 4.6 r data1-→Bus A fun(4) w data 32 reg_file3 r_data2quita RAM 512x 32 los bits más i ALSU32 alsu like listing 11.1 r_data3significativos 32 RAM_Dat usualmente i -addr2 FUR 32 addr9 →Bus Dout doutdin 32 we →Bus we we 1 IR(29..25) IR(12..0) IR(18..14) then we<=1 IR(30) IR(12..0) IR(13) IR(24..19) rs2cte13 rs1 >ce rd rs2cte13 ds funci 32 IR(31) '1' DPe PC ROM 256 x 32 PC like listing 11.5 IR(21..0) cte22 ROM Prog status 8 addr8 dout →Bus_PC 32 Bus PC(9..2) IR(28..25) O=OR Bus IR condi X=XOR i 32 32 ¬=NOT i̇́

Lectura de memoria

1 1	rd	0 0 0 0 0 0	rs1 0	0 0 0 0 1 0 1 0 rs2
1 1	rd	0 0 0 0 0 0	rs1 1	cte13

```
LD [rs1+rs2cte13],rd

r[rd]<- m[r[rs1]+r[rs2cte13]]

PC<-PC+4
```

Escritura de memoria

1 1	rd	0 0 0 1 0 0	rs1	0 0 0 0 0 1 0 1 0 rs2
1 1	rd	0 0 0 1 0 0	rs1	1 cte13

```
ST rd,[rs1+rs2cte13]
m[r[rs1]+r[rs2cte13]]<- r[rd]
PC<-PC+4
```

Ejercicio

$$m[500] = \sum_{n=0}^{3} m[4 * n + 100]$$

$$m[500] = \sum_{n=0}^{99} m[4 * n + 100]$$

Máximo

%o0 : A %o1 : B

%o3:C

max: SUBcc %00,%01,%g0

BL Si_cumple

NOP

No_cumple: MOV %o0,%o3

BA fin

NOP

Si_cumple: MOV %o1,%o3

fin: NOP

Brincos

Bcondi cte22

PC<-PC+4*cte22 WHEN condi ELSE PC+4

Estructura IF

SUBcc A,B,%g0
Bcondi Si_cumple

No_cumple:
...
BA fin

Si_cumple:
...
...
fin:
...

%g3 = %g1 ** %g2 --R1^R2

R1^2 MOV 1, %g3		ехр	inicializa MOV 1, %g3 – Ileva el producto MOV 0, %g4– cuenta productostermino?
SMUL %g3, %g1, %g3	R1^n	ciclo	CMPcc %g4, %g2
SMUL %g3, %g1, %g3	MOV 1, %g3		BE fin
	repetir n veces		NOP
	0 SMUL %g3, %g1, %g3		realiza la operación
	1 SMUL %g3, %g1, %g3		SMUL %g3, %g1, %g3
R1^3	•		prepara el siguiente ciclo
MOV 1, %g3	•		INC %g4, %g4
SMUL %g3, %g1, %g3	•		repite
SMUL %g3, %g1, %g3	n-1 SMUL %g3, %g1, %g3		BA ciclo
SMUL %g3, %g1, %g3	ntermina		NOP
		fin	

Brincos y ciclo WHILE (1/3)

$$y = e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2} + \frac{x \cdot x^{2}}{3 \cdot 2} + \dots + \frac{x^{i-1}}{(i-1)!} + \frac{x \cdot x^{i-1}}{i \cdot (i-1)!} + \dots$$

R1=x tiene la entrada que se lee de la memoria 100 R2=n es un contador, comienza con 1.

R3=p=x^n, se calcula mult. x al valor anterior de p R4=f=n!, se calcula mult. n al valor anterior de f R5=d=p/f

R6=y=e^x se calcula sumando d al valor anterior de y y se debe almacenar en la memoria 101.

El ciclo se detiene cuando d=0

Brincos y ciclo WHILE (2/3)

$$y = e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2} + \frac{x \cdot x^{2}}{3 \cdot 2} + \dots + \frac{x^{i-1}}{(i-1)!} + \frac{x \cdot x^{i-1}}{i \cdot (i-1)!} + \dots$$

```
1 \times = evstr(\times_dialog('Leyendo\cdot \times \cdot de\cdot MEM(100)', '0')) \cdot //R1
                             2 //Pregunta-el-valor-de-x-en-un-cuadro-de-diálogo.
                             3 n=1 · //R2 · contador
                             4 p=1 · //R3 · numerador · con · potencias · de · x
     Inicializa datos
                             5 f=1 · //R4 · denominador · con · factorial · de · n
                             6 d=1 · //R5 · división
                             7 y=1 · //R6 · sumas · parciales
Si
        ¿último
                             9 while (d~=0),
         ciclo?
                             11 p=p*x:
                             12 f=f*n;
             no
                             13 d=int(p/f);
  Realiza la operación
                             14 y=y+d;
                             16 n=n+1
Prepara el siguiente ciclo
                             18 end;
                             20 x_dialog(["Escribiendo.y.en.MEM[101]",string(y)])
                             21 //Muestra-el-valor-de-y-en-un-cuadro-de-diálogo
     finaliza datos
```


ncos y ciclo
$$\mathbb{X}$$

```
Brincos y ciclo WHILE (3/3)
y = e^{x} = \sum_{i=1}^{\infty} \frac{x^{i}}{n!} = 1 + x + \frac{x^{2}}{2} + \frac{x \cdot x^{2}}{3 \cdot 2} + \dots + \frac{x^{i-1}}{(i-1)!} + \frac{x \cdot x^{i-1}}{i \cdot (i-1)!} + \dots
```

.global start start: 3 00004000 92002005 MOV 5, %o1 exp: ! %o1 = n1 | x=evstr(x_dialog('Leyendo·x·de·MEM(100)','0'))·//R ! %o2 = e^n 2 //Pregunta-el-valor-de-x-en-un-cuadro-de-diálogo. MOV 1, %12 7 00004004 A4002001 3 n=1 · //R2 · contador 8 00004008 A6002001 MOV 1, %13 4 p=1 · //R3 · numerador · con · potencias · de · x 9 0000400C A8002001 MOV 1, %14 5 f=1 · //R4 · denominador · con · factorial · de · n MOV 1, %15 10 00004010 AA002001 6 d=1 · //R5 · división MOV 1, %o2 11 00004014 94002001 7 y=1 //R6 sumas parciales 13 00004018 80954000 Ciclo: TST %15 9 while (d~=0), BE fin 14 0000401C 02800009 15 00004020 80000000 NOP 11 p=p*x; SMUL %13, %o1, %13 12 f=f*n; 17 00004024 A65CC009

SDIV %13, %14, %15 14 y=y+d; 19 0000402C AA7CC014 ADD %02, %15, %02 15 20 00004030 94028015 ADD %12,1, %12 22 00004034 A404A001

fin:

16

21

26

18 00004028 A85D0012

24 00004038 10BFFFF8 25 0000403C 80000000

27 00004040 80000000

16|n=n+1 BA ciclo

NOP

NOP

SMUL \$14, \$12, \$14 | 13 d=int(p/f);

18 end;

20 x_dialog(["Escribiendo.y.en.MEM[101]",string(y)]) 21 //Muestra-el-valor-de-y-en-un-cuadro-de-diálogo

Brincos y ciclo WHILE (3/3)

$$y = e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2} + \frac{x \cdot x^{2}}{3 \cdot 2} + \dots + \frac{x^{i-1}}{(i-1)!} + \frac{x \cdot x^{i-1}}{i \cdot (i-1)!} + \dots$$

```
1 \times = evstr(\times_dialog('Leyendo\cdot \times \cdot de\cdot MEM(100)', '0')) \cdot //R1
0 inicio: LD [%g0+100],%g1
                            2 //Pregunta el valor de x en un cuadro de diálogo.
       MOV 1, %I2
4
8
       MOV 1, %I3
                            3 n=1 · //R2 · contador
                            4 p=1 · //R3 · numerador · con · potencias · de · x
12
       MOV 1, %I4
                            5 f=1 · //R4 · denominador · con · factorial · de · n
16
       MOV 1, %I5
20
       MOV 1, %16
                            6 d=1 · //R5 · división
                            7 y=1 //R6 sumas parciales
24 ciclo: TST %g5
28
       Bz fin (9)
                            9 | while (d~=0),
32
       NOP
                           11 p=p*x:
       SMUL %g3, %g1, %g3 |_{12} f=f*n;
36
       SMUL %g4, %g2, %g4 |_{13} d=int(p/f);
40
44
       SDIV %g3, %g4, %g5
                           14 y=y+d;
48
       ADD %g6, %g5, %g6
                           15
                           16 n=n+1
52
       INC %g2, %g2
                           18 end;
56
       BA ciclo (-8)
                           19
60
       NOP
                           20 x_dialog(["Escribiendo y en MEM[101]",string(y)])
                           21 //Muestra el valor de y en un cuadro de diálogo
64 fin: ST %g6,[%g0+101]
```

Ejercicio de brincos

- Determinar si el valor de %00 es un número primo.
 - Recuerde que los números primos son múltiplos únicamente de él y de 1.
 - Además 1 no se considera primo.
 - Puede ir probando cada número i hasta que i^2 sea mayor que %o0.
- En %o1 debe salir un 0 si %o0 es primo, de lo contrario un 1.

%o0: N %o1 :resultado %l1 : i %l2 : j primo: mov 2,%l1 ciclo1: mov 1,%l2 ciclo2: umul %l1,%l2,%l3 cmp %l3,%o0 ble si 1 nop add %l1,1,%l1 no_1: umul %l1,%l1,%l4 bg si_2 nop ba ciclo1 no_2: nop mov 0,%o1 si_2: ba fin nop si_1: be si 3 nop no_3: add %l2,1,%l2 ba ciclo2 nop si_3: mov 1,%01 ba fin fin: nop

Residuo con división

mov 7,%o0

! %o0 dividendo

Q=A/B

mov 3,%o1

! %o1 divisor

R=A-Q*B

!%2 cociente !%3 residuo

sres: sdiv %o0,%o1,%o2

smul %o2,%o1,%l0

sub %o0,%l0,%o3

fin: nop

Residuo con restas

mov 7,%o0

! %o0 dividendo

mov 3,%o1

! %o1 divisor

! %o2 cociente

! %o0 residuo

sres:

mov 0,%o2

ciclo:

cmp %o0,%o1

bl fin_sres

nop

sub %o0,%o1,%o0

add %o2,1,%o2

ba ciclo

nop

fin_sres: nop

Primos

mov 11,%o0 ! %o0 : N ! %o1

:resultado

primo: mov 2,%l0

mov %o0,%l2

cicloP: umul %l0,%l0,%l1

cmp %l1,%l2

bg si_pri

nop

mov %l2,%o0

mov %l0,%o1

! calcula residuos (sres)

cmp %o0,0

be no_pri

add %l0,1,%l0

ba cicloP

nop

no_pri: mov 1,%o1

ba fin

nop

si_pri: mov 0,%o1

fin: ba fin nop

MULT MAT (1/3)

%g1 dir. de a_0 apuntadores %g2 dir. de b_0 entradas %g3 dir. de c_0 %g4 *i* $c_{i,j} = \sum_{k=0}^{\infty} a_{i,k} b_{k,j,k}$ %g5 *j* %g6 *k* $%g7 = a_{i,k} = m(%g1+4*((3*%g4)+%g6))$

MULT:

!-- para i

CMP %g4,3 ciclo i:

BE fin i NOP

MOV 0,%g4

ADD %g4,1,%g4

%o2 operaciones

BA ciclo i

NOP

fin i: **NOP**

RETL

ļpara j

 $\%00 = b_{k,j} = m(\%g2+4*((3*\%g6)+\%g5))$

%o1 = $c_{i,j}$ =m(%g3+4*((3*%g4)+%g5))

ciclo_j: CMP %g5,3

BE fin j

MOV 0,%g5

NOP

ADD %g5,1,%g5

BA ciclo j

NOP

-para k

MOV 0,%g6 ! MOV 0,%o2

ciclo k: CMP %g6,3 BE fin k

NOP

! --a_ik

UMUL %g4,3,%o2 ADD %o2,%g6,%o2

UMUL %o2,4,%o2 LD [%g1+%o2],%g7

--b_kj

UMUL %g6,3,%o2 ADD %o2,%g5,%o2

UMUL %o2,4,%o2 LD [%g2+%o2],%o0

--sum

SMUL %g7,%o0,%o2 ADD %01,%02,%01

ADD %g6,1,%g6 BA ciclo k

NOP

fin k: !--c ij

> UMUL %g4,3,%o2 ADD %o2,%g5,%o2

> > UMUL %o2,4,%o2

fin_j: ST %o1,[%g3+%o2]

Llamado a rutina

0 1 cte30

CALL cte30

%o7<-PC
PC<-PC+4*cte30

```
5 00004000 90002005
                                  mov 5, %o0
  00004004 40000007
                                  call rutina
  00004008 80000000
                                  nop
  0000400C 90002009
                                  mov 9,%o0
 9 00004010 40000004
                                  call rutina
  00004014 80000000
                                  nop
  00004018 10800000
                                  ba fin
                          fin:
12 0000401C 80000000
                                  nop
13
   00004020 92022030
                          rutina: add %00,0x30,%o1
  00004024 81C3E008
                                  retl
16 00004028 80000000
                                  nop
```

Retorno de rutina

RETL	
PC<-%o7+8	

```
5 00004000 90002005
                                  mov 5,%o0
                                  call rutina
  00004004 40000007
  00004008 80000000
                                  nop
  nnnn400C 90002009
                                  mov 9,%00
  00004010 40000004
                                   call rutina
  00004014 80000000
                                  nop
11 00004018 10800000
                                  ba fin
                          fin:
  0000401C 80000000
                                  nop
13
  00004020 92022030
                          rutina: add %00,0x30,%o1
  00004024 81C3E008
                                   retl
  00004028 80000000
                                   nop
```

Modificación del circuito

PC<-%o7+8

Llamando la multiplicación de matrices

MOV MA,%g1 !--A

MOV MB ,%g2 !--B

MOV ME,%g3 !--E

CALL MULT !--E=AB

NOP

MOV ME,%g1 !--E

MOV MC,%g2 !--C

MOV MD,%g3 !--D

CALL MULT !--D=EC

NOP

FIN: BA FIN

NOP

!No se puede usar D en vez de E !porque después tiene que escribir !y leer la matriz D, y cuando la escribe !daña lo que tiene que leer.

ultimo:

.skip -ultimo

! comienza desde cero

MA:

.word 1

.word 2

.word 3

.word 4

word 5

.word 6

.word 7

.word 8

.word 9

MB:

.word 10

.word 11

.word 12

! E. T. C.

micro_mem SPARC_RISC 4 etapas con avance datos IV III RAM_Dat Bus_. Dout din dout addrW alsu Büs Add we addrR r_data3r_data2 r_data1 RAM Dat ALSU32 w_data *Bus_Din r_data2 r_data1 reg_file3 r-addr2 r-addr1 r_data3 alsu-*13A r-addr3 *13B icc_x *13C *11 icc PCW_Q و <u>در</u> ا<u>در</u> *13{A.B,C} ROM_Prog *5 ... *9 A addr *10-III ... *12-III *10 ... *12 *11