Logical Formalism Exercise Sheet 3

Adrien Pommellet, EPITA

August 14, 2024

Main exercises

Exercise 1 - A simple bijection. Let $f : \mathbb{R} \to \mathbb{R}$ be a bijection. Prove that $g : x \in \mathbb{R} \mapsto (2 \cdot f(x) + 3) \in \mathbb{R}$ is a bijection.

Exercise 2 - Even subsets. Given $n \in \mathbb{N}^*$, let E be a finite set such that $\operatorname{Card}(E) = n$ and let $\mathcal{P}_e(E)$ be the set of all subsets of E of even cardinality. Prove that $\operatorname{Card}(\mathcal{P}_e(E)) = 2^{n-1}$.

Exercise 3 - Cardinality of a generic union. Given two finites sets E and F such that $\operatorname{Card}(E) = n$ and $\operatorname{Card}(F) = m$, prove that $\operatorname{Card}(E \cup F) \leq n + m$, then that $\operatorname{Card}(E \cup F) = n + m$ if and only $E \cap F = \emptyset$.

Exercise 4 - Analysis and synthesis. Find two real numbers a and b, knowing their sum and their product.

Extra Exercises

Analysis and Synthesis

Exercise 5 - *A decomposition.* Given $f: \mathbb{R} \to \mathbb{R}$, find all the functions $g, h: \mathbb{R} \to \mathbb{R}$ such that g is even (that is, $\forall x \in \mathbb{R}$, g(x) = g(-x)), h is odd (that is, $\forall x \in \mathbb{R}$, h(x) = -h(-x)), and f = g + h.

Exercise 6 - A functional equation. Find all the functions $f : \mathbb{R} \to \mathbb{R}$ such that $\forall x \in \mathbb{R}$, $f(x) + x \cdot f(1 - x) = 1 + x$.

Exercise 7 - An application on \mathbb{R}^2 . Given $a, b \in \mathbb{R}$, let $f:(x,y) \in \mathbb{R}^2 \to ax + by \in \mathbb{R}$. First prove that f is not injective; then that f is surjective if and only if $(a,b) \neq (0,0)$.

Combinatorics

Exercise 8 - A not so friendly dinner. Assume I, a popular man, have 10 friends, and want to invite 5 of them to my birthday party.

- 1. What is the number of possible guest lists?
- 2. What if we assume that two of my friends are married and must always be invited together?
- 3. What if two of my friends cannot stand each other and should under no circumstances be invited together?

Exercise 9 - The average subset. Let E be a set of cardinality n. What is the average cardinality $m = \frac{1}{\operatorname{Card}(\mathcal{P}(E))} \cdot \sum_{F \in \mathcal{P}(E)} \operatorname{Card}(F)$ of E's subsets?

You may rely on the equality $n \cdot (x+y)^{n-1} = \sum_{k=1}^{n} {n \choose k} \cdot k \cdot x^{k-1} \cdot y^{n-k}$.

Exercise 10 - *Inclusions.* Let E be a set of cardinality n. Consider the set:

$$F = \{(X, Y) \mid X, Y \in \mathcal{P}(E), X \subseteq Y\}$$

Determine Card(F).