Kraków 2017-03-17

Szybki przepływ

Znajdź wartość maksymalnego przepływu pomiędzy źródłem a ujściem w zadanej sieci przepływowej.

 ${\bf Uwaga}:$ Wymagany jest algorytm typu push-relabelw wersji $O(V^3)$ z heurystyką global relabelling.

Wejście

Pierwsza linia wejścia zawiera liczbę całkowitą z ($1 \le z \le 2*10^9$) – liczbę zestawów danych, których opisy wystepują kolejno po sobie. Opis jednego zestawu jest następujący:

W pierwszej linii zestawu znajdują się cztery liczby całkowite $2 \le n \le 100\,000$; $0 \le m \le 1\,000\,000$; $1 \le s \ne t \le n$, oznaczające odpowiednio liczbę wierzchołków, liczbę krawędzi, numer wierzchołka będącego źródłem oraz numer wierzchołka będącego ujściem. Kolejne m linii zawiera opisy krawędzi. Opis krawędzi składa się z trzech liczb całkowitych $1 \le a \ne b \le n$; $0 \le c \le 10^9$, oznaczających, że krawędź ta prowadzi z wierzchołka a do wierzchołka b, a jej przepustowość wynosi c.

Wyjście

Dla każdego zestawu danych wypisz w pojedynczej linii wartość maksymalnego przepływu w zadanej sieci przepływowej.

Przykład

Dla danych wejściowych:	Poprawną odpowiedzią jest:
1	7
4714	
1 2 3	
1 3 5	
2 3 2	
3 2 3	
2 4 2	
3 4 1	
2 4 5	

Szybki przepływ 1/1