A Style-Based Generator Architecture for Generative Adversarial Networks

CVPR 2019

Tero Karras, Samuli Laine, Timo Aila

Contents

I. Introduction

- **II. Style-based Generator**
- III. Properties of the style-based generator
- IV. Disentanglement Studies
- V. Results

☐ History of GAN

☐ History of GAN

☐ History of GAN

cGAN

☐ History of GAN

☐ Problem of previous models

Image Generation based on single latent space

☐ Entanglement in latent space

Model Structure

Mapping Network $f: \mathcal{Z} \to \mathcal{W}$ (8-layer MLP)

 $w \in \mathcal{W}$: Intermediate Latent Vector

"Adaptive Instance Normalization"

☐ Model Structure

$$AdaIN(\mathbf{x}_i, \mathbf{y}) = \mathbf{y}_{s,i} \frac{\mathbf{x}_i - \mu(\mathbf{x}_i)}{\sigma(\mathbf{x}_i)} + \mathbf{y}_{b,i}$$

"Adaptive Instance Normalization"

Normalization on each feature map

Scaling & Biasing with "Style"

Adding "Style" to the image that is being generated

☐ Model Structure

☐ Model Structure

☐ Distinct Properties

☐ Localization of the effects of styles

Achieve Localization

Force the convolution to be performed **only** based on the preceding features

Control the convolution in the desired direction as indicated in the style

☐ Mixing Regularization

☐ Style Mixing

"Coarse Styles" from source B
"Fine Styles" from source A

"Middle Styles" from source B "Middle Styles" from source A

"Fine Styles" from source B
"Coarse Stylse" from source A

☐ Style Mixing

Mixing	Nur	Number of latents during testing			
regularization	1	2	3	4	
Е 0%	4.42	8.22	12.88	17.41	
50%	4.41	6.10	8.71	11.61	
F 90%	4.40	5.11	6.88	9.03	
100%	4.83	5.17	6.63	8.40	

FID scores in FFHQ

^{*} FFHQ: New dataset of human faces created with style-based generator

☐ Stochastic Variation

Stochastic aspects in the picture of humans

Can be randomized without affecting the perception

- ☐ Stochastic Variation

Difficult to achieve with traditional generators

- Latent information can be supplied only through the input layer
- Hard to specify when and how many spatially-varying pseudorandom numbers should be generated

Require more network capacity

Inevitable exposure of the periodicity of generated signal

☐ Stochastic Variation

Add **per-pixel noise** after every convolution

With the help of per-feature scaling factors

Fresh noise is supplied to every layer (Features)

Only affects stochastic aspects (= Effect is localized)

Stochastic Variation

(a) Generated image (b) Stochastic variation (c) Standard deviation

White parts
→ High Variations

Black parts

→ Low Variations

Stochastic Variation

(a): All layers

(b): No noise

(c): Fine Layers

(d): Coarse Layers

☐ Style & Stochasticity

Style

Affect the entire image \rightarrow Features are **controlled coherently** with $y = (y_s, y_b)$

Stochasticity

- Noise added to all pixels **independently → Only handle** stochastic variation

Unsupervised learning with appropriate use of global and local channels

\Box Entanglement in \mathcal{Z}

Sampling probability is forced to follow the density function of training data

$lue{}$ Achieve Disentanglement with ${\cal W}$

2 factors of variation (Masculinity & Hair Length)

□ Achieve Disentanglement with W

☐ New metrics for quantifying disentanglment

Previous suggested metrics: Not suitable

No encoder to yield latent codes

Perceptual Path Length

Linear Separability

☐ Perceptual Path Length

How to quantify disentanglement? Interpolation path in latent space Non-existing new feature in the latent space **Entangled Latent Space**

☐ Perceptual Path Length

How to quantify disentanglement?

Interpolation path in latent space

Proposed Metric

The amount of change while performing interpolation in the latent space

□ Perceptual Path Length

Perceptually-based pairwise image distance

Weighted Difference between 2 VGG16 embeddings

Human-like Similarity Judgement on images

Perceptual Path Length

Perceptual Path Length

$$l_{\mathcal{Z}} = \mathbb{E}\left[\frac{1}{\epsilon^2}d\left(G(\operatorname{slerp}(\mathbf{z}_1, \mathbf{z}_2; t)), G(\operatorname{slerp}(\mathbf{z}_1, \mathbf{z}_2; t + \epsilon))\right)\right]$$

Perceptual Path Length in \mathcal{Z}

$$l_{\mathcal{W}} = \mathbb{E}\left[\frac{1}{\epsilon^2}d\left(g(\operatorname{lerp}(f(\mathbf{z}_1), f(\mathbf{z}_2); t)), \\ g(\operatorname{lerp}(f(\mathbf{z}_1), f(\mathbf{z}_2); t + \epsilon))\right)\right]$$

Perceptual Path Length in ${\mathcal W}$

- * slerp : Spherical Interpolation
 - * lerp: Linear Interpolation

☐ Perceptual Path Length

Method	Path 1	Separa-	
Wiethod	full	end	bility
B Traditional generator \mathcal{Z}	412.0	415.3	10.78
D Style-based generator \mathcal{W}	446.2	376.6	3.61
E + Add noise inputs W	200.5	160.6	3.54
+ Mixing 50% W	231.5	182.1	3.51
F + Mixing 90% W	234.0	195.9	3.79

Method	FID	Path 1	length	Separa-
Method	FID	full	end	bility
B Traditional 0 \mathcal{Z}	5.25	412.0	415.3	10.78
Traditional 8 Z	4.87	896.2	902.0	170.29
Traditional 8 W	4.87	324.5	212.2	6.52
Style-based 0 \mathcal{Z}	5.06	283.5	285.5	9.88
Style-based 1 W	4.60	219.9	209.4	6.81
Style-based 2 W	4.43	217.8	199.9	6.25
F Style-based 8 W	4.40	234.0	195.9	3.79

Perceptual Path Length and Separability score depending on the architecture

Results depending on the architecture and depth of mapping network

* full : $t \sim U(0,1)$

* end : $t \in \{0, 1\}$

☐ Linear Separability

If sufficiently disentangled..

Direction vectors consistently pointing to the corresponding factors of variation should exist

Proposed Metric

How well latent-space points can be separated into distinct 2 sets

= How clearly each set can represent binary attribute

□ Linear Separability

Train auxiliary **classification** networks

Obtain **binary attributes**

Same as the discriminator in ProGAN

Generate 200000 images to evaluate one of the attributes

Perform classification

Leave **the most confident** samples (100000 samples)

☐ Linear Separability

H(X|Y): Conditional Entropy

X: The class **predicted** by linear SVM based on z

Y : The **true class** predicted by pre-trained classifier

The **amount of additional information** to determine the true class

 $\exp(\Sigma_i H(X_i|Y_i))$: Final **Separability Score**

☐ Linear Separability

Method	Path length		Separa-
Wiethod	full	end	bility
B Traditional generator \mathcal{Z}	412.0	415.3	10.78
D Style-based generator \mathcal{W}	446.2	376.6	3.61
E + Add noise inputs \mathcal{W}	200.5	160.6	3.54
+ Mixing 50% W	231.5	182.1	3.51
F + Mixing 90% W	234.0	195.9	3.79

Perceptual Path Length and Separability score depending on the architecture

Method	FID	Path length		Separa-
Michiga	FID	full	end	bility
B Traditional 0 Z	5.25	412.0	415.3	10.78
Traditional 8 Z	4.87	896.2	902.0	170.29
Traditional 8 W	4.87	324.5	212.2	6.52
Style-based 0 \mathcal{Z}	5.06	283.5	285.5	9.88
Style-based 1 \mathcal{W}	4.60	219.9	209.4	6.81
Style-based 2 \mathcal{W}	4.43	217.8	199.9	6.25
F Style-based 8 W	4.40	234.0	195.9	3.79

Results depending on the architecture and depth of mapping network

☐ Comparing with other generators

Method	CelebA-HQ	FFHQ
A Baseline Progressive GAN [30]	7.79	8.04
B + Tuning (incl. bilinear up/down)	6.11	5.25
C + Add mapping and styles	5.34	4.85
D + Remove traditional input	5.07	4.88
E + Add noise inputs	5.06	4.42
F + Mixing regularization	5.17	4.40

FID scores for various generators

☐ Perceptual Path Length & Separability

Method	Path 1	Separa-	
Method	full	end	bility
B Traditional generator \mathcal{Z}	412.0	415.3	10.78
D Style-based generator ${\cal W}$	446.2	376.6	3.61
E + Add noise inputs \mathcal{W}	200.5	160.6	3.54
+ Mixing 50% W	231.5	182.1	3.51
F + Mixing 90% W	234.0	195.9	3.79

Method	FID	Path length		Separa-
Witthou	FID	full	end	bility
B Traditional 0 \mathcal{Z}	5.25	412.0	415.3	10.78
Traditional 8 Z	4.87	896.2	902.0	170.29
Traditional 8 W	4.87	324.5	212.2	6.52
Style-based 0 Z	5.06	283.5	285.5	9.88
Style-based 1 W	4.60	219.9	209.4	6.81
Style-based 2 W	4.43	217.8	199.9	6.25
F Style-based 8 W	4.40	234.0	195.9	3.79

Even the traditional model has **performed better** when ${\mathcal W}$ is introduced

Best results are derived from the proposed model $\rightarrow \mathcal{W}$ is less entangled than \mathcal{Z}

☐ Unresolved problem

Figure 7: Other visual artefacts in the CelebA dataset. Notice the lack of symmetry and visible marks in ears. There's also some artefacts in the eyes, glasses, and lips

Thank you