CMIP6 Model Documentation

Institute: CNRM-CERFACS Model: CNRM-ESM2-1

Topic: ocean

Doc. Generated:2020-04-08Doc. Seeded From:Spreadsheet

Specialization Version: 1.0.4

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	3
2	Grid	10
3	Timestepping Framework	12
4	Advection	15
5	Lateral Physics	17
6	Vertical Physics	22
7	Uplow Boundaries	27
8	Boundary Forcing	29

1 Key Properties

Ocean key properties

1.1.1 Top level properties

Ocean key properties

1.1.1.1 Name *

Name of ocean model code

NEMO: Nucleus for European Modelling of the Ocean version 3.6 (OPA)

1.1.1.2 Keywords *

Keywords associated with ocean model code

Enter COMMA SEPARATED list:

1.1.1.3 Overview *

Overview of ocean model.

The ocean component of CNRM-CM6-1/CNRM-ESM2-1 is based on the version 3.6 of NEMO (Nucleus for European Models of the Ocean; Madec, 2016). It is based on the NOCS-ORCA1 configuration described in details in Danabasoglu et al. (2014). Main differences are highlighted below. In CNRM-CM6-1, NEMO is run on eORCA1 horizontal grid, which is an extension of the ORCA1 tripolar grid already used in CNRM-CM5.1. The eORCA family differs from the ORCA family by the use of two quasi-isotropic bipolar grids south of 67S instead of the former Mercator grid, which allows for a more realistic representation of the contours of Antarctic ice shelves (Mathiot et al., 2017). In eORCA1, a nominal resolution of 1 is chosen to which a latitudinal grid refinement of 1/3 is added in the tropics. CNRM-CM6-1 resolves ocean dynamics on 75 vertical levels using a vertical z-coordinate with partial step bathymetry formulation (Barnier et al., 2006). The level thickness increases from 1m near the surface to 200 m at a depth of 6000 m. The time step is 30 minutes. At the surface, the model uses the split-explicit non-linear free surface formulation proposed by Shchepetkin and McWilliams (2005), with a variable volume. Seawater thermodynamics uses the equation of state defined in the Thermodynamic Equation of State 2010 (TEOS-10, IOC et al., 2010), with conservative temperature and absolute salinity being then the prognostic variables. Radiative transfer in the water column is resolved using a chlorophyll-dependent three-waveband scheme as described in Lengaigne et al. (2007) and Mignot et al. (2013), using a seasonal climatology of surface chlorophyll concentration derived from a former 60-year long simulation run with NEMO-PISCES (e.g. Lee et al., 2016). A vertical profile of chlorophyll concentration is extrapolated from surface concentrations. Lateral diffusivity and viscosity are parameterized as in NOCS-ORCA1 (Danabasoglu et al., 2014). Parameterization of vertical mixing is also similar, with two notable exceptions in CNRM-CM6-1: mixing induced by breaking internal waves is parameterized following de Lavergne et al. (2016) and the Fox-Kemper et al. (2011) submesoscale mixed layer restratification scheme is activated.

1.1.1.4 Model Family *

ype of ocean model.			
\boxtimes	OGCM		
	Slab ocean		
	Mixed layer ocean		

	Other - please specify:		
1.1.1.5 Basic Approximations *			
Basic approximations made in the ocean.			
\boxtimes	Primitive equations		
	Non-hydrostatic		
\boxtimes	Boussinesq		
	Other - please specify:		
1.1.1.6	Prognostic Variables *		
List of p	rognostic variables in the ocean component.		
	Potential temperature		
\boxtimes	Conservative temperature		
\boxtimes	Salinity		
\boxtimes	U-velocity		
\boxtimes	V-velocity		
	W-velocity		
	SSH - Sea Surface Height		
	Other - please specify:		
1.2.1	Seawater Properties		
Physica	l properties of seawater in ocean		
1.2.1.1	Eos Type *		
Type of EOS for sea water			
	Linear		
	Wright, 1997		
	Mc Dougall et al.		
	Jackett et al. 2006		
\boxtimes	TEOS 2010		
	Other - please specify:		

1.2.1.2	Eos Functional Temp *
Temperat	ure used in EOS for sea water
	Potential temperature
	Conservative temperature
1.2.1.3	Eos Functional Salt *
Salinity u	used in EOS for sea water
	Practical salinity Sp
	Absolute salinity Sa
	Eos Functional Depth *
$Depth\ or$	pressure used in EOS for sea water?
	Pressure (dbars)
\boxtimes	Depth (meters)
	Ocean Freezing Point *
Equation	used to compute the freezing point (in deg C) of seawater, as a function of salinity and pressure
	TEOS 2010
	Other - please specify:
	Ocean Specific Heat *
Specific h	eat in ocean (cpocean) in $J/(kg \ K)$
3991	.87
1.2.1.7	Ocean Reference Density *
Boussines	sq reference density (rhozero) in $kg / m3$
1026	
	Bathymetry
Properti	ies of bathymetry in ocean
1.3.1.1	Reference Dates *
Reference	date of bathymetry
\boxtimes	Present day
	21000 years BP
	6000 years BP

LGM - Last Glacial Maximum
Pliocene
Other - please specify:
1.3.1.2 Type *
Is the bathymetry fixed in time in the ocean?
☐ True ☐ False
1.3.1.3 Ocean Smoothing *
Describe any smoothing or hand editing of bathymetry in ocean
Enter TEXT:
1.3.1.4 Source *
Describe source of bathymetry in ocean
Enter TEXT:
1.4.1 Nonoceanic Waters
Non oceanic waters treatement in ocean
1.4.1.1 Isolated Seas
Describe if/how isolated seas is performed
The isolated sea are not represented in the ocean model. They are considered as lakes and

1.4.1.2 River Mouth

Describe if/how river mouth mixing or estuaries specific treatment is performed

embedded in the atmospheric model which calculates the surface fluxes.

Kz increase near river mouth (top 20 m)

1.5.1 Software Properties

 $Software\ properties\ of\ ocean\ code$

1.5.1.1 Repository

 $Location\ of\ code\ for\ this\ component.$

Https://www.nemo-ocean.eu/

1.5.1.2 Code Version

 $Code\ version\ identifier.$

V3.6

dealt with the FLAKE scheme. The FLAKE scheme is implemented in the SURFEX platform

1.5.1.3 Code Languages
$Code\ language(s).$
Fortran
1.6.1 Resolution
Resolution in the ocean grid
1.6.1.1 Name *
This is a string usually used by the modelling group to describe the resolution of this grid, e.g. $ORCA025$, $N512L180$, $T512L70$ etc.
EORCA1L75
1.6.1.2 Canonical Horizontal Resolution *
Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc.
1
1.6.1.3 Range Horizontal Resolution *
$Range\ of\ horizontal\ resolution\ with\ spatial\ details,\ eg.\ 50 (Equator) \hbox{-} 100 km\ or\ 0.1\hbox{-} 0.5\ degrees\ etc.$
1-0.3 in the tropics
1.6.1.4 Number Of Horizontal Gridpoints *
$Total\ number\ of\ horizontal\ (XY)\ points\ (or\ degrees\ of\ freedom)\ on\ computational\ grid.$
105704
1.6.1.5 Number Of Vertical Levels *
Number of vertical levels resolved on computational grid.
75
1.6.1.6 Is Adaptive Grid *

 $Default\ is\ False.\ Set\ true\ if\ grid\ resolution\ changes\ during\ execution.$

True	False

1.6.1.7 Thickness Level 1 *

Thickness of first surface ocean level (in meters)

1

1.7.1 Tuning Applied

 $Tuning\ methodology\ for\ ocean\ component$

1.7.1.1 Description *

General overview description of tuning: explain and motivate the main targets and metrics retained. Document the relative weight given to climate performance metrics versus process oriented metrics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle with a parameter value that required pushing it to its limits to solve a particular model deficiency.

The ocean has been tuned in ocean forced mode.

1.7.1.2 Global Mean Metrics Used

List set of metrics of the global mean state used in tuning model/component

Enter COMMA SEPARATED list:

1.7.1.3 Regional Metrics Used

List of regional metrics of mean state (e.g THC, AABW, regional means etc) used in tuning model/component

Enter COMMA SEPARATED list:

1.7.1.4 Trend Metrics Used

List observed trend metrics used in tuning model/component

Enter COMMA SEPARATED list:

1.8.1 Conservation

Conservation in the ocean component

1.8.1.1 Description *

 $Brief\ description\ of\ conservation\ methodology$

Enter TEXT:

1.8.1.2 Scheme *

Properties conserved in the ocean by the numerical schemes

operites	s conserved in the ocean by the numerical schemes
Selec	t MULTIPLE options:
	Energy
	Enstrophy
	Salt
	Volume of ocean
	Momentum
	Other - please specify:

1.8.1.3 Consistency Properties
$Any \ additional \ consistency \ properties \ (energy \ conversion, \ pressure \ gradient \ discretisation, \ \ldots)?$
Enter COMMA SEPARATED list:
1.8.1.4 Corrected Conserved Prognostic Variables
Set of variables which are conserved by *more* than the numerical scheme alone.
Enter COMMA SEPARATED list:
1.8.1.5 Was Flux Correction Used
Does conservation involve flux correction ?
Select either TRUE or FALSE:
☐ True ☐ False

2 Grid

 $Ocean\ grid$

2.1.1 Top level properties

 $Ocean\ grid$

2.1.1.1 Name

 $Name\ of\ grid\ in\ ocean\ model.$

EORCA1L75

2.1.1.2 Overview

Overview of grid in ocean model.

See Matthiot et al. 2017

2.1.2 Vertical

Properties of vertical discretisation in ocean

2.1.2.1 Coordinates *

Type of vertical coordinates in ocean		
	Z-coordinate	
\boxtimes	Z*-coordinate	
	S-coordinate	
	Isopycnic - sigma 0 - Density referenced to the surface	
	Isopycnic - sigma 2 - Density referenced to 2000 m $$	
	Isopycnic - sigma 4 - Density referenced to 4000 m $$	
	Isopycnic - other - Other density-based coordinate	
	Hybrid / Z+S	
	Hybrid / Z+isopycnic	
	Hybrid / other	
	Pressure referenced (P)	
	P*	
	Z**	
	Other - please specify:	

2.1.2.2	Partial Steps *
Using par	rtial steps with Z or Z^* vertical coordinate in ocean ?
	True
2.1.3	Horizontal
Type of	horizontal discretisation scheme in ocean
2.1.3.1	Type *
Horizonte	al grid type
	Lat-lon
	Rotated north pole
\boxtimes	Two north poles (ORCA-style)
	Other - please specify:
2.1.3.2	Staggering
Horizonte	al grid staggering type
	Arakawa B-grid
\boxtimes	Arakawa C-grid
	Arakawa E-grid
	N/a
	Other - please specify:
2.1.3.3	Scheme *
Horizonte	al discretisation scheme in ocean
Selec	et SINGLE option:
	Finite difference
	Finite volumes
	Finite elements
	Unstructured grid
	Other - please specify:

3 Timestepping Framework

Ocean Timestepping Framework

3.1.1 Top level properties

 $Ocean\ Timestepping\ Framework$

3.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ timestepping\ framework\ in\ ocean\ model.$

Leap-frog

3.1.1.2 Overview

 $Overview\ of\ ocean\ time stepping\ framework\ in\ ocean\ model.$

Enter TEXT:

3.1.1.3	Diurnal	Cycle	*
---------	---------	-------	---

Diurnal cycle type				
	None - No diurnal cycle in ocean			
	Via coupling - Diurnal cycle via coupling frequency			
	Specific treatment - Specific treament			
	Other - please specify:			

3.2.1 Tracers

 $Properties \ of \ tracers \ time \ stepping \ in \ ocean$

3.2.1.1 Scheme *

 ${\it Tracers\ time\ stepping\ scheme}$

$\label{lem:leap-frog} \mbox{Leap-frog scheme with Asselin filter} \ \ \mbox{Leap-frog scheme with Asselin filter}$
Leap-frog + Periodic Euler - Leap-frog scheme with Periodic Euler
Predictor-corrector - Predictor-corrector scheme
Runge-Kutta 2 - Runge-Kutta 2 scheme
AM3-LF - AM3-LF such as used in ROMS
Forward-backward - Forward-backward scheme
Forward operator - Forward operator scheme
Other - please specify:

1800		
3.3.1 I	Baroclinic Dynamics	
Baroclin	ic dynamics in ocean	
3.3.1.1	Type *	
Baroclinio	dynamics type	
Selec	t SINGLE option:	
	Preconditioned conjugate gradient	
	Sub cyling - Sub cycling relative to tracers	
	Other - please specify:	
0010	G 1 *	
	Scheme * c dynamics scheme	
	·	
	Leap-frog + Asselin filter - Leap-frog scheme with Asselin filter	
	Leap-frog + Periodic Euler - Leap-frog scheme with Periodic Euler	
Ш	Predictor-corrector - Predictor-corrector scheme	
	Runge-Kutta 2 - Runge-Kutta 2 scheme	
	AM3-LF - AM3-LF such as used in ROMS	
	Forward-backward - Forward-backward scheme	
	Forward operator - Forward operator scheme	
	Other - please specify:	
2212	Time Step	
	time step (in seconds)	
1800		
0 1 1 T		
3.4.1 Barotropic		
Barotrop	oic time stepping in ocean	
3.4.1.1	Splitting *	
Time spli	tting method	
	None	

3.2.1.2 Time Step *
Tracers time step (in seconds)

\boxtimes	Split explicit
	Implicit
	Other - please specify:
.4.1.2	Time Step

3.

Barotropic time step (in seconds)

Enter INTEGER value:

3.5.1 Vertical Physics

Vertical physics time stepping in ocean

3.5.1.1 Method *

Details of vertical time stepping in ocean

Enter TEXT:

4 Advection

Ocean advection

4.1.1 Top level properties

 $Ocean\ advection$

4.1.1.1 Name

Commonly used name for the advection in ocean model.

TVE

4.1.1.2 Overview

Overview of ocean advection in ocean model.

Enter TEXT:

4.2.1 Momentum

Properties of lateral momentum advection scheme in ocean

4.2.1.1 Type *

Type of lateral momentum advection scheme in ocean

Flux form

Vector form

4.2.1.2 Scheme Name *

Name of ocean momentum advection scheme

Total Variance Dissipation (TVD)

4.2.1.3 ALE

Using ALE for vertical advection ? (if vertical coordinates are sigma)

True False

4.3.1 Lateral Tracers

Properties of lateral tracer advection scheme in ocean

4.3.1.1 Order *

Order of lateral tracer advection scheme in ocean

 $\mathbf{2}$

4.3.1.2	Flux Limiter *
Monoton	ic flux limiter for lateral tracer advection scheme in ocean?
	True
4.3.1.3	Effective Order *
$\it Effective$	order of limited lateral tracer advection scheme in ocean
2	
4.3.1.4	Name *
Descripti	we text for lateral tracer advection scheme in ocean (e.g. MUSCL, PPM-H5, PRATHER,)
Tota	l Variance Dissipation (TVD)
4.3.1.5	Passive Tracers
Passive t	racers advected
Selec	et MULTIPLE options:
	Ideal age
	CFC 11
	CFC 12
	SF6
	Other - please specify:
4.3.1.6	Passive Tracers Advection
Is advects	ion of passive tracers different than active ? if so, describe.
No	
4.4.1	Vertical Tracers
Propert	ies of vertical tracer advection scheme in ocean
4.4.1.1	Name *
Descripti	ve text for vertical tracer advection scheme in ocean (e.g. MUSCL, PPM-H5, PRATHER,)
TVE	
4.4.1.2	Flux Limiter *
Monoton	ic flux limiter for vertical tracer advection scheme in ocean?
Selec	et either TRUE or FALSE:
	True False

5 Lateral Physics

Ocean lateral physics

5.1.1 Top level properties

Ocean lateral physics

=	1	1	- 1	1 7	NΤ	_	m	_

 $Commonly\ used\ name\ for\ the\ lateral\ physics\ in\ ocean\ model.$

Laplacian viscosity

5.1.1.2 Overview

Overview of ocean lateral physics in ocean model.

Enter TEXT:

5.1.1.3 Scheme *				
Type of tr	ransient eddy representation in ocean			
	None - No transient eddies in ocean			
	Eddy active - Full resolution of eddies			
	Eddy admitting - Some eddy activity permitted by resolution			

5.1.2 Operator

Properties of lateral physics operator for momentum in ocean

5.1.2.1 Direction *

Direction of lateral physics momentum scheme in the ocean

\boxtimes	Horizontal
	Isopycnal
	Isoneutral
	Geopotential
	Iso-level
	Other - please specify:

5 1 2 2	Ondon *
	Order *
Order of	lateral physics momentum scheme in the ocean
	Harmonic - Second order
	Bi-harmonic - Fourth order
	Other - please specify:
5.1.2.3	Discretisation *
Discretise	ation of lateral physics momentum scheme in the ocean
	Second order - Second order
	Higher order - Higher order
	Flux limiter
	Other - please specify:
Properti	Eddy Viscosity Coeff es of eddy viscosity coeff in lateral physics momentum scheme in the ocean
	Type *
	nysics momentum eddy viscosity coeff type in the ocean
\boxtimes	Constant
	Space varying
	Time + space varying (Smagorinsky)
	Other - please specify:
5.1.3.2	Constant Coefficient
If constar	at, value of eddy viscosity coeff in lateral physics momentum scheme (in m2/s)
2000	0
5.1.3.3	Variable Coefficient
If space-v	arying, describe variations of eddy viscosity coeff in lateral physics momentum scheme
Ente	r TEXT:
5.1.3.4	Coeff Background *
	background eddy viscosity coeff in lateral physics momentum scheme (give values in $m2/s$)
2000	0

5.1.3.5	Coeff Backscatter *
Is there be	ackscatter in eddy viscosity coeff in lateral physics momentum scheme?
	True
5.2.1	Tracers
Properti	es of lateral physics for tracers in ocean
5.2.1.1	Mesoscale Closure *
Is there a	mesoscale closure in the lateral physics tracers scheme ?
	True
5.2.1.2	Submesoscale Mixing *
Is there a	$submesoscale\ mixing\ parameterisation\ (i.e\ Fox\text{-}Kemper)\ in\ the\ lateral\ physics\ tracers\ scheme\ ?$
	True
5.2.2 (Operator
Properti	es of lateral physics operator for tracers in ocean
5.2.2.1	Direction *
Direction	of lateral physics tracers scheme in the ocean
	Horizontal
	Isopycnal
\boxtimes	Isoneutral
	Geopotential
	Iso-level
	Other - please specify:
5.2.2.2	Order *
Order of l	lateral physics tracers scheme in the ocean
	Harmonic - Second order
	Bi-harmonic - Fourth order
	Other - please specify

5.2.2.3	Discretisation *
Discretisa	tion of lateral physics tracers scheme in the ocean
	Second order - Second order
	Higher order - Higher order
	Flux limiter
	Other - please specify:
5.2.3 I	Eddy Diffusity Coeff
Properti	es of eddy diffusity coeff in lateral physics tracers scheme in the ocean
5.2.3.1	Type *
Lateral ph	sysics tracers eddy diffusity coeff type in the ocean
\boxtimes	Constant
	Space varying
	Time + space varying (Smagorinsky)
	Other - please specify:
5.2.3.2	Constant Coefficient
If constan	t, value of eddy diffusity coeff in lateral physics tracers scheme (in $m2/s$)
2000	
5.2.3.3	Variable Coefficient
If space-v	arying, describe variations of eddy diffusity coeff in lateral physics tracers scheme
Ente	TEXT:
5.2.3.4	Coeff Background *
Describe	background eddy diffusity coeff in lateral physics tracers scheme (give values in m2/s)
2000	
5.2.3.5	Coeff Backscatter *
Is there be	ackscatter in eddy diffusity coeff in lateral physics tracers scheme?
	True

5.2.4 Eddy Induced Velocity

 $Properties \ of \ eddy \ induced \ velocity \ (EIV) \ in \ lateral \ physics \ tracers \ scheme \ in \ the \ ocean$

5.2.4.1	Type *
Type of E	IV in lateral physics tracers in the ocean
	GM - Gent and McWilliams
	Other - please specify:
5.2.4.2	Constant Val
If EIV sch	neme for tracers is constant, specify coefficient value (M2/s)
2000	
5.2.4.3	Flux Type *
Type of E	IV flux (advective or skew)
Adve	ctive flux
5.2.4.4	Added Diffusivity *
Type of E	IV added diffusivity (constant, flow dependent or none)
Enter	· TEXT·

6 Vertical Physics

Ocean Vertical Physics

6.	1.1	Top	level	pro	perties

 $Ocean\ Vertical\ Physics$

6.1.1.1 Name

Commonly used name for the vertical physics in ocean model.

Turbulent closure TKE, Convection, Tidal mixing, bottom boundary layer

6.1.1.2 Overview

 $Overview\ of\ ocean\ vertical\ physics\ in\ ocean\ model.$

Enter TEXT:

6.1.2 Details

Properties of vertical physics in ocean

6.1.2.1 Langmuir Cells Mixing *

Is	there	Langmuir	cells	mixing	in	upper	ocean	8
		True		\Box	Fal	se		

6.1.3 Tracers

Properties of boundary layer (BL) mixing on tracers in the ocean

6.1.3.1 Type *

	Constant value
\boxtimes	Turbulent closure - TKE
	Turbulent closure - KPP
	Turbulent closure - Mellor-Yamada
	Turbulent closure - Bulk Mixed Layer
	Richardson number dependent - PP
	Richardson number dependent - KT
	Imbeded as isopycnic vertical coordinate

Other - please specify:

 ${\it Type~of~boundary~layer~mixing~for~tracers~in~ocean}$

6.1.3.2	Closure Order				
If turbule	If turbulent BL mixing of tracers, specific order of closure (0, 1, 2.5, 3)				
Ente	r FLOAT value:				
6.1.3.3	Constant				
If constar	nt BL mixing of tracers, specific coefficient (m2/s)				
Ente	r INTEGER value:				
6.1.3.4	Background *				
Backgrou	nd BL mixing of tracers coefficient, (schema and value in $m2/s$ - may by none)				
Ente	r TEXT:				
6.1.4 I	Momentum				
Properti	ies of boundary layer (BL) mixing on momentum in the ocean				
6.1.4.1	Type *				
Type of b	oundary layer mixing for momentum in ocean				
	Constant value				
\boxtimes	Turbulent closure - TKE				
	Turbulent closure - KPP				
	Turbulent closure - Mellor-Yamada				
	Turbulent closure - Bulk Mixed Layer				
	Richardson number dependent - PP				
	Richardson number dependent - KT				
	Imbeded as isopycnic vertical coordinate				

6.1.4.2 Closure Order

Other - please specify:

If turbulent BL mixing of momentum, specific order of closure (0, 1, 2.5, 3)

Enter FLOAT value:

6.1.4.3 Constant
If constant BL mixing of momentum, specific coefficient $(m2/s)$
Enter INTEGER value:
6.1.4.4 Background *
Background BL mixing of momentum coefficient, (schema and value in m2/s - may by none)
Enter TEXT:
6.1.5 Details
Properties of interior mixing in the ocean
6.1.5.1 Convection Type *
Type of vertical convection in ocean
Non-penetrative convective adjustment
Enhanced vertical diffusion
☐ Included in turbulence closure
Other - please specify:
6.1.5.2 Tide Induced Mixing *
Describe how tide induced mixing is modelled (barotropic, baroclinic, none)
Baroclinic tides
6.1.5.3 Double Diffusion *
Is there double diffusion
True False
6.1.5.4 Shear Mixing *
Is interior shear mixing explicitly parameterised?
☐ True ☐ False

6.1.6 Tracers

Properties of interior mixing on tracers in the ocean

6.1.6.1	Type *
Type of i	nterior mixing for tracers in ocean
	Constant value
\boxtimes	Turbulent closure / TKE
	Turbulent closure - Mellor-Yamada
	Richardson number dependent - PP
	Richardson number dependent - KT
	Imbeded as isopycnic vertical coordinate
	Other - please specify:
6.1.6.2	Constant
If constan	nt interior mixing of tracers, specific coefficient $(m2/s)$
Ente	er INTEGER value:
	ckground interior mixing using a vertical profile for tracers (i.e is NOT constant)? True
	and interior mixing of tracers coefficient, (schema and value in m2/s - may by none)
Set 1	to molecular value (resp. $1e-7m/s$ and $1e-9m/s$ for T and S), and managed within the xing parametrization
6.1.7	Momentum
Propert	ies of interior mixing on momentum in the ocean
6.1.7.1	Type *
	interior mixing for momentum in ocean
	Constant value
\boxtimes	Turbulent closure / TKE
	Turbulent closure - Mellor-Yamada
	Richardson number dependent - PP
	Richardson number dependent - KT
	Imbeded as isopycnic vertical coordinate

U Other - please specify:
6.1.7.2 Constant
If constant interior mixing of momentum, specific coefficient $(m2/s)$
Enter INTEGER value:
6.1.7.3 Profile *
Is the background interior mixing using a vertical profile for momentum (i.e is NOT constant) ?
No
6.1.7.4 Background *
Background interior mixing of momentum coefficient, (schema and value in $m2/s$ - may by none)
Enter TEXT:

7 Uplow Boundaries

Ocean upper / lower boundaries

7.1.1 Top level properties

Ocean upper / lower boundaries

7.1.1.1 Name

Commonly used name for the uplow boundaries in ocean model.

Enter TEXT:

7.1.1.2 Overview

Overview of ocean upper / lower boundaries in ocean model.

Enter TEXT:

7.2.1 Free Surface

Properties of free surface in ocean

7.2.1.1 Scheme *

Free surface scheme in ocean

Linear implicit

Linear filtered

Linear semi-explicit

Non-linear implicit

Non-linear filtered

Non-linear semi-explicit

Fully explicit

Other - please specify:

7.2.1.2 Embeded Seaice *

7.3.1 Bottom Boundary Layer

Properties of bottom boundary layer in ocean

7.3.1.1 Overview *
Overview of bottom boundary layer in ocean
Enter TEXT:
7.3.1.2 Type Of Bbl *
Type of bottom boundary layer in ocean
□ Diffusive
☐ Acvective
Other - please specify:
7.3.1.3 Lateral Mixing Coef
If bottom BL is diffusive, specify value of lateral mixing coefficient (in m2/s)
1000
7.3.1.4 Sill Overflow *
Describe any specific treatment of sill overflows
Enter TEXT:

8 Boundary Forcing

Ocean boundary forcing

8.1.1 Top level properties

Ocean boundary forcing

8.1.1.1 Name

Commonly used name for the boundary forcing in ocean model.

ECUME

8.1.1.2 Overview

Overview of ocean boundary forcing in ocean model.

Enter TEXT:

8.1.1.3 Surface Pressure *

Describe how surface pressure is transmitted to ocean (via sea-ice, nothing specific,...)

Not transmitted (only dynamic sea level intervenes in the surface pressure force)

8.1.1.4 Momentum Flux Correction

Describe any type of ocean surface momentum flux correction and, if applicable, how it is applied and where.

No

8.1.1.5 Tracers Flux Correction

Describe any type of ocean surface tracers flux correction and, if applicable, how it is applied and where.

Enter TEXT:

8.1.1.6 Wave Effects *

 $Describe\ if/how\ wave\ effects\ are\ modelled\ at\ ocean\ surface.$

Enter TEXT:

8.1.1.7 River Runoff Budget *

 $Describe\ how\ river\ runoff\ from\ land\ surface\ is\ routed\ to\ ocean\ and\ any\ global\ adjustment\ done.$

Continental runoff are routed to the ocean by the CTRIP river runoff model. Then an interpolation is done from the river outlet to the ocean nerby grid points. There is afterwards a global conservation procedure applied to ensure a global conservation as the interpolation is not conservative locally.

8.1.1.8	Geothermal	Heating	*

 $Describe\ if/how\ geothermal\ heating\ is\ present\ at\ ocean\ bottom.$

Climatological map of geothermal heating applied at the lowermost ocean level of each water column.

8.1.2 Bottom Friction

Properties of momentum bottom friction in ocean

8.1.2.1	Type *
Type of n	nomentum bottom friction in ocean
\boxtimes	Linear
	Non-linear
	Non-linear (drag function of speed of tides)
	Constant drag coefficient
	None
	Other - please specify:
8.1.3 l	Lateral Friction
Properti	ies of momentum lateral friction in ocean
8.1.3.1	Type *
Type of n	nomentum lateral friction in ocean
	None
	Free-slip
\boxtimes	No-slip
	Other - please specify:
8.1.4 \$	Sunlight Penetration
Properti	$ies\ of\ sunlight\ penetration\ scheme\ in\ ocean$
8.1.4.1	Scheme *
Type of s	unlight penetration scheme in ocean
	1 extinction depth
	2 extinction depth
\boxtimes	3 extinction depth

	Other - please specify:
Is the oce	Ocean Colour * an sunlight penetration scheme ocean colour dependent ? True
8.1.4.3	Extinction Depth Description
Describe	$extinctions\ depths\ for\ sunlight\ penetration\ scheme\ (if\ applicable).$
Ente	r TEXT:
8.1.4.4	Extinction Depths
List extin	ctions depths for sunlight penetration scheme (if applicable).
Ente	r COMMA SEPARATED list:
8.1.5 I	Fresh Water Forcing
Properti	es of surface fresh water forcing in ocean
8.1.5.1	From Atmopshere *
Type of s	urface fresh water forcing from atmos in ocean
Selec	t SINGLE option:
	Freshwater flux
	Virtual salt flux
	Other - please specify:
8.1.5.2	From Sea Ice *
	urface fresh water forcing from sea-ice in ocean
Selec	t SINGLE option:
	Freshwater flux
	Virtual salt flux
	Real salt flux
	Other - please specify:

8.1.5.3 Forced Mode Restoring *

Type of surface salinity restoring in forced mode (OMIP) $\,$

Enter TEXT: