The group G is isomorphic to the group labelled by [10, 2] in the Small Groups library. Ordinary character table of $G \cong C10$:

	1a	5a	5b	5c	5d	2a	10a	10b	10c	10d
χ_1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	-1	-1	-1	-1	-1
χ_3	1	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{4}$	1	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^4$
χ_4	1	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{4}$	-1	-E(5)	$-E(5)^2$	$-E(5)^{3}$	$-E(5)^4$
χ_5	1	$E(5)^{2}$	$E(5)^{4}$	E(5)	$E(5)^{3}$	1	$E(5)^{2}$	$E(5)^4$	E(5)	$E(5)^3$
χ_6	1	$E(5)^{2}$	$E(5)^{4}$	E(5)	$E(5)^{3}$	-1	$-E(5)^2$	$-E(5)^4$	-E(5)	$-E(5)^3$
χ_7	1	$E(5)^{3}$	E(5)	$E(5)^{4}$	$E(5)^{2}$	1	$E(5)^{3}$	E(5)	$E(5)^4$	$E(5)^2$
χ_8	1	$E(5)^{3}$	E(5)	$E(5)^{4}$	$E(5)^{2}$	-1	$-E(5)^{3}$	-E(5)	$-E(5)^4$	$-E(5)^2$
χ_9	1	$E(5)^{4}$	$E(5)^{3}$	$E(5)^{2}$	E(5)	1	$E(5)^{4}$	$E(5)^{3}$	$E(5)^{2}$	E(5)
χ_{10}	1	$E(5)^{4}$	$E(5)^{3}$	$E(5)^{2}$	E(5)	-1	$-E(5)^4$	$-E(5)^{3}$	$-E(5)^2$	-E(5)

Trivial source character table of $G \cong C10$ at p = 2:

Normalisers N_i	N_1					N_2					
p-subgroups of G up to conjugacy in G			P_1					P_2			
Representatives $n_j \in N_i$		5a	5b	5c	5d	1a	5a	5b	5c	5d	
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	2	2	2	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2 * E(5)	$2 * E(5)^2$	$2 * E(5)^3$	$2*E(5)^4$	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	$2 * E(5)^2$	$2 * E(5)^4$	2 * E(5)	$2*E(5)^3$	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	$2 * E(5)^3$	2 * E(5)	$2*E(5)^4$	$2 * E(5)^2$	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10}$	2	$2*E(5)^4$	$2 * E(5)^3$	$2 * E(5)^2$	2 * E(5)	0	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	1	1	1	1	1	1	1	1	1	1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	1	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^4$	1	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^4$	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	1	$E(5)^{2}$	$E(5)^{4}$	E(5)	$E(5)^{3}$	1	$E(5)^{2}$	$E(5)^{4}$	E(5)	$E(5)^3$	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	1	$E(5)^{3}$	E(5)	$E(5)^{4}$	$E(5)^{2}$	1	$E(5)^{3}$	E(5)	$E(5)^{4}$	$E(5)^{2}$	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10}$	1	$E(5)^4$	$E(5)^{3}$	$E(5)^{2}$	E(5)	1	$E(5)^4$	$E(5)^{3}$	$E(5)^{2}$	E(5)	

$$\begin{aligned} P_1 &= Group([()]) \cong 1 \\ P_2 &= Group([(1,2)]) \cong \mathbf{C2} \end{aligned}$$

$$N_1 = Group([(1,2), (3,4,5,6,7)]) \cong C10$$

 $N_2 = Group([(1,2), (3,4,5,6,7)]) \cong C10$