Г

AI Challenge for Systems Engineering – A Trust-Driven Architecture for Multi-Agent System Design

David Du

Ph.D. student, Department of Industrial and Systems Engineering, Virginia Tech

Anirudh More

Ph.D. candidate, Department of Industrial and Systems Engineering, Virginia Tech

12/10/24

Outline

Problem Description

Objectives

Architecture

Optimization Algorithm

Trust

Next Steps

Problem Description

The Rapid Safe Passage (RSP) mission involves...

- Complex, mine-laden terrain navigation with a UGV as the primary platform
- Multiple agents: UAV for scanning, AI for rapid mine detection, human operators for accurate verification
- Uncertain environmental conditions that degrade AI reliability and complicate decision-making
- Discrepancies between predictions and reality erode operator trust, affecting system performance
- Ensuring trust in system performance is as critical as reducing uncertainty

Objectives

Minimize Traversal Time

- Formulate UGV navigation as an optimization problem
- Dynamically plan routes leveraging differing detection capabilities

Build Human Trust:

- Consider trust as a core design factor, not just a byproduct of speed
 - Ensure humans remain assured of system performance

Architecture

System architecture includes:

- Human: Predicts mine or clear
- AI: Predicts mine or clear
- UAV: Collects video
- UGV: Mine-clearing ground robot

Proposed architecture: Role allocation between Human and Al

Optimization Initialization

- Map is an undirected cyclic graph G=(V,E)
 - V: Set of passage points (node)
 - v ∈ V represents a decision point
 - E: Set of links (edges/paths) connecting the points
 - e ∈ E represents a potential path between nodes

Optimization Algorithm

1. Generate an initial optimal path: scan and identify the path with UAV

2. Gather information and update the cost → update the optimal path if needed

3. Follow the updated path, scan and identify the path

Trust

Trust in AI-Enabled Systems...

- Influences how operators use, question, or override AI outputs
- Balances efficiency gains with risk of catastrophic errors if misplaced
- Not static—evolves as system, interfaces, and operator understanding improve
- Critical in uncertain, high-stakes conditions (e.g., mine-laden terrain)

DoD V-Model

Extended V-Model - HSI & Trust

Activities & Artifacts to Build Trust

- 1. Trust Requirements Specification:
- Acceptable AI misclassification rates
- Operator confidence thresholds
- Explainability criteria
- 2. Participatory Design Workshops:
- Identify user expectations for transparency, explainability, and confidence-building features

Activities & Artifacts to Build Trust

- 3. XAI-Enhanced User Interfaces:
- Visualize confidence levels and explain Al recommendations
- Highlight environmental factors affecting Al accuracy
- 4. Scenario-Based Training and Simulations:
- Train operators under uncertain conditions (e.g., lighting, terrain variability)
- Help operators develop accurate mental models of Al performance

Activities & Artifacts to Build Trust

- 5. Human-in-the-Loop Verification and Validation:
- Involve operators in testing Al's mine detection performance
- Quantify trust evolution to refine system design and training
- 6. Continuous Feedback and Trust Monitoring:
- Use tools like questionnaires, physiological measures, and interaction logs

Platform for trust development and measurement

Platform for trust development and measurement – Custom-built UI

Next steps

- Update to the Platform to study trust development:
 - Various types of UxVs
 - Various vehicle movement patterns/routes
 - How the allocation of affects trust dynamics
- Investigate parallel modes of task allocation
 - o The Al and human operator focus on different terrain segments
- Redundant parallel modes of task allocation.
 - The human and Al might examine the same areas

Thank you!

David Du

Department of Industrial & Systems Engineering, Virginia Tech daviddu@vt.edu

Anirudh More

Department of Industrial & Systems Engineering, Virginia Tech anirudh1@vt.edu

