- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

			(Co	ogno	me)							(No	me)			_		ume	i ma	tric	ola)

A B C D E

1	00000
2	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
3	
4	
5	
6	
7	
8	
9	
10	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$

- 1. Se $z \in \mathbb{C}$ è tale che $z^4 = -16$ allora l'argomento di z è uguale a A: $\{\pi/4, \pi/4 + \pi, \pi/4 + 2\pi, \pi/4 + 3\pi\}$ B: N.A. C: $\{\pi/4, 3\pi/4, 5\pi/4, 7\pi/4\}$ D: $\{\pi/4, 2\pi/4, 3\pi/4, \pi\}$ E: $\{\pi/4, 5\pi/4, 7\pi/4, 9\pi/4\}$
- 2. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^3 + x^2$ è

 A: N.A. B: sempre non negativa C: limitata D: monotona decrescente E: iniettiva
- 3. La serie geometrica

$$\sum_{n=0}^{\infty} (1/2 + q^3)^n$$

converge per

A:
$$|q| < 1$$
 B: N.A. C: $q \in \sqrt[3]{-\frac{3}{2}}, \frac{1}{2^{1/3}}[$ D: $q \in]-1/2, 1/2[$ E: $-1 < q < 2^{1/3}$

- 4. Sia y soluzione di $y'(x)=4^\pi y(x),\ y(0)=0.$ Allora $\lim_{x\to+\infty}y(x)$ è uguale a A: N.A. B: 0 C: N.E. D: $+\infty$ E: π^4
- 5. L'integrale

$$\int_0^{\pi/4} \sin(2x) \, dx$$

vale

A: N.A. B:
$$1/2$$
 C: -1 D: $\frac{\sqrt{3}}{2}$ E: 1

6. Il limite

$$\lim_{x \to +\infty} x^2 \cos(1/x^2)$$

vale

A: N.E. B: 1 C: 0 D: N.A. E:
$$+\infty$$

- 7. Il polinomio di Taylor di grado 5 relativo al punto $x_0=0$ della funzione $f(x)=\sin(x^2)$ vale A: $1+\sin(x)\frac{x^4}{4!}$ B: 1+x C: x^2 D: N.A. E: $1-\frac{x^3}{3!}+\frac{x^5}{5!}$
- 8. Inf, min, sup e max dell'insieme

$$A = \{ n \in \mathbb{N} : \text{la funzione } x^n : \mathbb{R} \to \mathbb{R} \text{ è convessa} \}$$

valgono

A: N.A. B:
$$\{2, 2, +\infty, N.E.\}$$
 C: $\{1, 1, +\infty, N.E.\}$ D: $\{1, 2, 64, 64\}$ E: $\{1, N.E., 4, 4\}$

9. La funzione

$$f(x) = \begin{cases} x^2 + ax & \text{per } x < 0\\ \sin(bx) & \text{per } x \ge 0 \end{cases}$$

risulta continua e derivabile in $x_0 = 0$ scegliendo (a, b) uguali a

A:
$$(-1, \pi)$$
 B: $(1, \pi/2)$ C: N.E. D: $(0, 1)$ E: N.A.

10. Data $f(x) = (\log(x))^{\tan(x)}$. Allora f'(1) è uguale a A: -1 B: $\tan(\pi) + \sin(1)$ C: $\log(e)^{\tan(1)}$ D: 0 E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

			(Co	ogno	me)							(No	me)			_		ume	i ma	tric	ola)

Α	В	\mathbf{C}	D	\mathbf{E}	
11	ט	\sim	רב		

1	
2	00000
3	
4	
5	
6	
7	
8	
9	
10	

1. Il limite

$$\lim_{x \to +\infty} x^2 \cos(1/x^2)$$

vale

A: 0 B: N.E. C: N.A. D: 1 E: $+\infty$

- 2. Se $z \in \mathbb{C}$ è tale che $z^4 = -16$ allora l'argomento di z è uguale a A: N.A. B: $\{\pi/4, 5\pi/4, 7\pi/4, 9\pi/4\}$ C: $\{\pi/4, 2\pi/4, 3\pi/4, \pi\}$ D: $\{\pi/4, 3\pi/4, 5\pi/4, 7\pi/4\}$ E: $\{\pi/4, \pi/4 + \pi, \pi/4 + 2\pi, \pi/4 + 3\pi\}$
- 3. Il polinomio di Taylor di grado 5 relativo al punto $x_0 = 0$ della funzione $f(x) = \sin(x^2)$ vale A: N.A. B: $1 \frac{x^3}{3!} + \frac{x^5}{5!}$ C: $1 + \sin(x)\frac{x^4}{4!}$ D: x^2 E: 1 + x
- 4. L'integrale

$$\int_0^{\pi/4} \sin(2x) \, dx$$

vale

A:
$$1/2$$
 B: N.A. C: 1 D: -1 E: $\frac{\sqrt{3}}{2}$

5. La serie geometrica

$$\sum_{n=0}^{\infty} (1/2 + q^3)^n$$

converge per

$$\text{A: } |q| < 1 \quad \text{ B: } -1 < q < 2^{1/3} \quad \text{ C: } q \in]\sqrt[3]{-\frac{3}{2}}, \\ \tfrac{1}{2^{1/3}}[\quad \text{ D: } q \in] - 1/2, 1/2[\quad \text{ E: N.A.}$$

6. Inf, min, sup e max dell'insieme

$$A = \{ n \in \mathbb{N} : \text{la funzione } x^n : \mathbb{R} \to \mathbb{R} \text{ è convessa} \}$$

valgono

A:
$$\{1, 2, 64, 64\}$$
 B: $\{1, 1, +\infty, N.E.\}$ C: $\{2, 2, +\infty, N.E.\}$ D: N.A. E: $\{1, N.E., 4, 4\}$

- 7. Sia y soluzione di $y'(x)=4^\pi y(x),\ y(0)=0.$ Allora $\lim_{x\to+\infty}y(x)$ è uguale a A: N.E. B: 0 C: N.A. D: π^4 E: $+\infty$
- 8. La funzione

$$f(x) = \begin{cases} x^2 + ax & \text{per } x < 0\\ \sin(bx) & \text{per } x \ge 0 \end{cases}$$

risulta continua e derivabile in $x_0 = 0$ scegliendo (a, b) uguali a

A:
$$(-1,\pi)$$
 B: $(1,\pi/2)$ C: N.A. D: $(0,1)$ E: N.E.

- 9. Data $f(x) = (\log(x))^{\tan(x)}$. Allora f'(1) è uguale a A: $\tan(\pi) + \sin(1)$ B: -1 C: $\log(e)^{\tan(1)}$ D: N.A. E: 0
- 10. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^3 + x^2$ è

A: sempre non negativa B: N.A. C: monotona decrescente D: iniettiva E: limitata

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

(Cognome)	(Nome)	(Numero di matricola)

CODICE = 649617

А В	C D	\mathbf{E}
-----	-----	--------------

1	
2	00000
3	
4	
5	
6	
7	
8	
9	
10	

1. La serie geometrica

$$\sum_{n=0}^{\infty} (1/2 + q^3)^n$$

converge per

$$\text{A: } |q| < 1 \quad \text{ B: N.A.} \quad \text{C: } q \in]-1/2, 1/2[\quad \text{ D: } q \in]\sqrt[3]{-\frac{3}{2}}, \tfrac{1}{2^{1/3}}[\quad \text{ E: } -1 < q < 2^{1/3}]$$

2. Se $z\in\mathbb{C}$ è tale che $z^4=-16$ allora l'argomento di z è uguale a

A: N.A. B:
$$\{\pi/4, \pi/4 + \pi, \pi/4 + 2\pi, \pi/4 + 3\pi\}$$
 C: $\{\pi/4, 5\pi/4, 7\pi/4, 9\pi/4\}$ D: $\{\pi/4, 3\pi/4, 5\pi/4, 7\pi/4\}$ E: $\{\pi/4, 2\pi/4, 3\pi/4, \pi\}$

3. Il limite

$$\lim_{x \to +\infty} x^2 \cos(1/x^2)$$

vale

A: N.E. B: 1 C: N.A. D: 0 E:
$$+\infty$$

4. La funzione

$$f(x) = \begin{cases} x^2 + ax & \text{per } x < 0\\ \sin(bx) & \text{per } x \ge 0 \end{cases}$$

risulta continua e derivabile in $x_0 = 0$ scegliendo (a, b) uguali a

A: N.A. B:
$$(-1, \pi)$$
 C: N.E. D: $(0, 1)$ E: $(1, \pi/2)$

5. Inf, min, sup e max dell'insieme

$$A = \{ n \in \mathbb{N} : \text{la funzione } x^n : \mathbb{R} \to \mathbb{R} \text{ è convessa} \}$$

valgono

A: N.A. B:
$$\{1, 2, 64, 64\}$$
 C: $\{1, N.E., 4, 4\}$ D: $\{2, 2, +\infty, N.E.\}$ E: $\{1, 1, +\infty, N.E.\}$

6. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^3 + x^2$ è

A: limitata B: sempre non negativa C: N.A. D: monotona decrescente E: iniettiva

7. Data $f(x) = (\log(x))^{\tan(x)}$. Allora f'(1) è uguale a

A:
$$\tan(\pi) + \sin(1)$$
 B: $\log(e)^{\tan(1)}$ C: -1 D: N.A. E: 0

8. L'integrale

$$\int_0^{\pi/4} \sin(2x) \, dx$$

vale

A: 1 B:
$$1/2$$
 C: $\frac{\sqrt{3}}{2}$ D: N.A. E: -1

9. Sia y soluzione di $y'(x)=4^\pi y(x),\,y(0)=0.$ Allora $\lim_{x\to+\infty}y(x)$ è uguale a

A: N.E. B: N.A. C: 0 D:
$$\pi^4$$
 E: $+\infty$

10. Il polinomio di Taylor di grado 5 relativo al punto $x_0 = 0$ della funzione $f(x) = \sin(x^2)$ vale

A:
$$1 - \frac{x^3}{3!} + \frac{x^5}{5!}$$
 B: $1 + x$ C: N.A. D: $1 + \sin(x) \frac{x^4}{4!}$ E: x^2

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

			(Co	gnor	me)						(No	me)			(Nı	ımeı	ro di	trico	la)

CODICE = 402167

1	00000
2	00000
3	
4	
5	
6	
7	
8	
9	
10	

1. Inf, min, sup e max dell'insieme

$$A = \{ n \in \mathbb{N} : \text{la funzione } x^n : \mathbb{R} \to \mathbb{R} \text{ è convessa} \}$$

valgono

A:
$$\{2, 2, +\infty, N.E.\}$$
 B: $\{1, 1, +\infty, N.E.\}$ C: $\{1, 2, 64, 64\}$ D: $\{1, N.E., 4, 4\}$ E: N.A.

2. La serie geometrica

$$\sum_{n=0}^{\infty} (1/2 + q^3)^n$$

converge per

A:
$$|q| < 1$$
 B: $q \in]-1/2, 1/2[$ C: $-1 < q < 2^{1/3}$ D: $q \in]\sqrt[3]{-\frac{3}{2}}, \frac{1}{2^{1/3}}[$ E: N.A.

3. L'integrale

$$\int_0^{\pi/4} \sin(2x) \, dx$$

vale

A:
$$1/2$$
 B: -1 C: N.A. D: $\frac{\sqrt{3}}{2}$ E: 1

4. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^3 + x^2$ è

A: N.A. B: iniettiva C: monotona decrescente D: sempre non negativa E: limitata

5. La funzione

$$f(x) = \begin{cases} x^2 + ax & \text{per } x < 0\\ \sin(bx) & \text{per } x \ge 0 \end{cases}$$

risulta continua e derivabile in $x_0 = 0$ scegliendo (a, b) uguali a

A:
$$(-1,\pi)$$
 B: $(0,1)$ C: N.A. D: $(1,\pi/2)$ E: N.E.

6. Il limite

$$\lim_{x \to +\infty} x^2 \cos(1/x^2)$$

vale

A:
$$+\infty$$
 B: N.E. C: 0 D: N.A. E: 1

7. Data $f(x) = (\log(x))^{\tan(x)}$. Allora f'(1) è uguale a

A: N.A. B:
$$\log(e)^{\tan(1)}$$
 C: 0 D: -1 E: $\tan(\pi) + \sin(1)$

8. Sia y soluzione di $y'(x) = 4^{\pi}y(x)$, y(0) = 0. Allora $\lim_{x \to +\infty} y(x)$ è uguale a

A:
$$\pi^4$$
 B: N.A. C: 0 D: $+\infty$ E: N.E.

9. Se $z \in \mathbb{C}$ è tale che $z^4 = -16$ allora l'argomento di z è uguale a

A:
$$\{\pi/4, 3\pi/4, 5\pi/4, 7\pi/4\}$$
 B: N.A. C: $\{\pi/4, 2\pi/4, 3\pi/4, \pi\}$ D: $\{\pi/4, \pi/4 + \pi, \pi/4 + 2\pi, \pi/4 + 3\pi\}$ E: $\{\pi/4, 5\pi/4, 7\pi/4, 9\pi/4\}$

10. Il polinomio di Taylor di grado 5 relativo al punto $x_0 = 0$ della funzione $f(x) = \sin(x^2)$ vale

A:
$$1 + x$$
 B: N.A. C: $1 + \sin(x) \frac{x^4}{4!}$ D: x^2 E: $1 - \frac{x^3}{3!} + \frac{x^5}{5!}$

			(Co	gnoi	me)						(No	me)			(N ₁	umei	ro di	i ma	trico	la)

Α	В	С	D	Ε	

1	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
2	
3	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
4	
5	
6	
7	
8	
9	
10	

			(Co	gnor	ne)						(No	me)			(Nı	umei	ro di	trico	la)

Α	В	С	D	Ε	
		_			

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

			(Co	gnoi	me)						(No	me)			(N ₁	umei	ro di	i ma	trico	la)

$n \rightarrow 0$

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

			(Co	gnoi	me)						(No	me)			(N ₁	ımeı	ro di	i ma	trico	la)

Α	В	\mathbf{C}	D	\mathbf{E}	
	_	_	_		

1	$\bigcirc \bullet \bigcirc \bigcirc \bigcirc$
2	
3	
4	
5	
6	
7	
8	
9	
10	

22 luglio 2010

PARTE B

1. Studiare, al variare del parametro $\lambda > 0$ il numero di soluzioni dell'equazione

$$\frac{1}{x} = x^{\lambda} e^{-x} \qquad x \ge 1$$

Soluzione: L'equazione in questione è equivalente a risolvere $e^{-x}x^{\lambda+1}=1$. Chiamata $F(x)=e^{-x}x^{\lambda+1}$ si ha F(1)=1/e<1. Inoltre $F'(x)=e^{-x}x^{\lambda}(-x+\lambda+1)$ si annulla per $x=\lambda+1$. Inoltre la funzione F risulta crescente per $x<\lambda+1$ e decrescente per $x>\lambda+1>1$. Il massimo relativo vale $e^{-1-\lambda}(1+\lambda)^{1+\lambda}$. Tale massimo risulta essere uguale a uno se

$$e^{1+\lambda} = (1+\lambda)^{1+\lambda}$$

quindi se $(1 + \lambda) = (1 + \lambda) \log(1 + \lambda)$, da cui $\lambda = e - 1$. Si vede facilmente the il massimo cresce con λ e quindi non c'è nessuna soluzione per $\lambda < e - 1$, una soluzione per $\lambda = e - 1$ e due soluzioni per $\lambda > e - 1$.

2. Trovare tutte le soluzioni dell'equazione differenziale

$$y''(t) - y(t) = e^t \cos(t)$$

Soluzione: Le radici dell'equazione caratteristica sono $\lambda = \pm 1$ e quindi non c'è risonanza. Cercando la soluzione particolare della forma $y_f(t) = a e^t \cos(t) + b e^t \sin(t)$ si ottiene facilmente che le soluzioni sono

$$y(t) = e^{t}c_1 + e^{-t}c_2 + \frac{1}{5}e^{t}(2\sin(t) - \cos(t))$$

3. Studiare la convergenza dell'integrale generalizzato e eventualmente calcolarlo

$$\int_{1}^{+\infty} \frac{x^2 + x + 1}{x^2(x^2 + 1)} \, dx$$

Soluzione: il denominatore della funzione integranda non si annulla mai e inoltre $\frac{x^2+x+1}{x^2(x^2+1)} = O(x^{-2} \text{ per } x \to +\infty$, quindi l'integrale converge. Scomponendo in

$$\frac{x^2 + x + 1}{x^2(x^2 + 1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{(x^2 + 1)}$$

si ottiene che una primitiva è $\log(x) - \frac{1}{2}\log(x^2 + 1) - \frac{1}{x}$ da cui

$$\int_1^{+\infty} \frac{x^2 + x + 1}{x^2(x^2 + 1)} \, dx = \frac{1}{2} (2 + \log(2))$$

4. Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione regolare convessa. La funzione $[f(x)]^2$ è ancora convessa? In caso di risposta (motivata) negativa, dare delle condizioni sufficienti affinchè anche $[f(x)]^2$ sia convessa

Soluzione: in generale $[f(x)]^2$ non è convessa, per esempio basta prendere $f(x)=x^2-1$ e si vede che $[f(x)]^2=x^4-2x^2+1$ non è convessa perchè $\frac{d^2}{dx^2}(x^4-2x+1)=12x^2-4$ risulta negativa per $|x|<3^{-1/2}$.

In generale dato che per ipotesi $f'' \geq 0$

$$\frac{d^2}{dx^2}[f(x)]^2 = 2[f'(x)]^2 + 2f(x)f''(x),$$

la derivata seconda risulta nonnegativa per esempio se $f(x) \ge 0$.