מתמטיקה דיסקרטית - תרגיל בית 5

הגשה ליום חמישי, 29/8 בשעה 23:57, לפי ההנחיות במודל סמסטר קיץ תשפ"ד

באות: הבאות הטענות הפריכו או הוכיחו A יחסים מעל R_1,R_2 ייהיו קבוצה, תהי A תהי A

- A אם שקילות שקילות יחס אז גם אז גם אז אקילות שקילות וו- R_1 א. אם אם יחסי אקילות וו-
- A מעל מעל סדר חלקי יחס סדר $R_1 \cup R_2$ גם אז הא הלקי מעל חלקי יחס סדר R_1 יחס סדר הלקי מעל ב.
 - A אם שקילות שקילות מעל $R_1 \triangle R_2$ אז גם A אם שקילות מעל וחסי R_2 יחס שקילות ג. אם
- A או מעל סדר חלקי יחס סדר $R_1\triangle R_2$ או גם A או מעל סדר חלקי יחס סדר R_1 יחס סדר חלקי מעל ד.

באות: חבאות: A קבוצה, ויהי A יחס מעל A יחס מעל A יחס מעל A יחס מעל A

- איבר קטן אזי אזי אזי מינימלי. איבר איבר מלא, ויהי מלא, ויהי m איבר אזי הוא Rאיבר איבר א. גניח ריומר
 - $x,y \in A$ כך שלכל S מעל מעל ב. נגדיר יחס

 $x S y \iff \exists z \in A : x R z \land z R y.$

 $S \subseteq R$ אזי א טרנזיטיבי אמ"מ אזי ו

- $y\in A$ קיים $x\in A$ סימטרי מ"מ לכל אז'י, Rיחס אז'י, אז'י, אז'י, מימטרי סימטרי פרע מ-x
- שאלה R מעל חסרי גדיר של .A שאלה כל החלוקות קבוצה $\mathcal H$ קבוצה, ותהי $\mathcal H$ קבוצה, ותהי $\mathcal F_1$ אמ"מ $\mathcal F_1$ אמ"מ $\mathcal F_1$ אמ"מ ותרי אמ"ז אמ"ז הבא: לכל לכל היא עידון אמ"ז אמ"ז אמ"ז הבא: לכל של היא עידון אמ"ז הבא: לכל אמ"ז הבא: לבל אמ"ז הבא אמ"ז הבא: לבל אמ"ז הבא אמ"ז הבא לבל אמ"ז הבא לבל אמ"ז הבא לבל אמ"ז הבא לבל אמ"ז הב
 - $A = \{1, 2, 3, 4\}$ כתבו במפורש את את במפורש א.
 - ב. הוכיחו כי R הוא יחס סדר חלקי.
 - \mathcal{H} ב. מצאו איבר מינימלי ומקסימלי ב-

יחס הרישא

 A^* , כלומר, A איברי A איברי A איברי A את כל הסדרות באורך סופי של איברי A כלומר, $a_1,\ldots,a_n\in A$ -יות הסדורות (a_1,\ldots,a_n) , כאשר אין כל ה- a_1,\ldots,a_n

$$A^* = \{(a_1, \dots, a_n) \mid n \in \mathbb{N}, a_1, \dots, a_n \in A\}$$

= $\bigcup_{n \in \mathbb{N}} \{(a_1, \dots, a_n) \mid a_1, \dots, a_n \in A\} = \bigcup_{n \in \mathbb{N}} A^n.$

n=0 בסמן ב-arepsilon את ה-"סדרה הריקה" - המקרה בו

לכל באופן באופן מעל A^* מעל הרישא הרישא יחס הרישה. קבוצה. תהי מגדרה 2. תהי הגדרה לכל

$$(a_1,\ldots,a_n),(b_1,\ldots,b_m)\in A^*,$$

 $a_i=b_i$ מתקיים $1\leq i\leq n$ וגם לכל $m\geq n$ אמ"מ $(a_1,\ldots,a_n)\leq_{\mathrm{pre}}(b_1,\ldots,b_m)$

:אינטואיציה

אם (a_i) או איברי $(a_i)_{i=1}^n$ או איברי הסדרה (a_1,\ldots,a_n) או איברי בתחילת הסדרה (a_i) או איברי היחס הוא יחס סדר מלא אם $(b_i)_{i=1}^m$ היחס הוא יחס סדר מלא אם $(b_i)_{i=1}^m$ או ישני איברים שונים, $(a_i)_{i=1}^n$ או הסדרות ($(a_i)_{i=1}^n$) אם ב- $(a_i)_{i=1}^n$ שני איברים שונים, $(a_i)_{i=1}^n$ או הסדרות ($(a_i)_{i=1}^n$) וגם ($(a_i)_{i=1}^n$) וגם ($(a_i)_{i=1}^n$) וגם ($(a_i)_{i=1}^n$) או איברים שונים, $(a_i)_{i=1}^n$

. טענה 1. תהי A^* מעל ביחס סדר אזי היחס סדר אזי מענה 1. תהי A

שאלה 4.

- א. הוכיחו את טענה 1.
- ב. האם קיים איבר מינימלי ב- A^* אם כן, מצאו אחד כזה.
- ג. האם קיים איבר מקסימלי ב- A^* ? אם כן, מצאו אחד כזה.
- שאלה 5. בדקו האם כל אחת מהפונקציות הבאות היא חח"ע/על (האם בהכרח חח"ע, בהכרח לא חח"ע או ייתכן שחח"ע, וכנ"ל לעל) במידה והפונקציה הפיכה, מצאו את הפונקציה ההופכית.
 - $f\left(x
 ight)=1-1/x$ מתקיים $x\in\left(1,\infty
 ight)$ לכל , $f:\left(1,\infty
 ight)
 ightarrow\left(0,1
 ight)$.
 - $.g\left(x
 ight)=1/x$ מתקיים $x\in\left(0,\infty
 ight)$ לכל $g:\left(0,\infty
 ight)
 ightarrow\left(0,\infty
 ight)$ ב.
 - $A\left(A
 ight)=A\triangle\mathbb{N}$ מתקיים $A\in\mathcal{P}\left(\mathbb{R}
 ight)$ לכל, $h:\mathcal{P}\left(\mathbb{R}
 ight)
 ightarrow\mathcal{P}\left(\mathbb{R}
 ight)$ ג.
 - .|A|<|B|כך ש
- כך סופיות קבוצות עבור לשהי ל $f:A\to B$ ר. כ
ר ד. פונקציה ד.
 - |A|>|B|כך ש- מכן סופיות סופיות לבור כלשהי כלשהי לבור כלשהי ה. פונקציה f:A o B