Fibonacci Closed-Form Solution

Robert Mitchell robert.mitchell36@gmail.com

August 2017

Proposition: $\forall n \in \mathbb{Z}^{\geq 0}$, where $\phi = \frac{1+\sqrt{5}}{2}$, and $\psi = \frac{1-\sqrt{5}}{2}$

1. Fib(n) is the closest integer to $\frac{\phi^n}{\sqrt{5}}$

2. Fib(n) =
$$\frac{\phi^n - \psi^n}{\sqrt{5}}$$

Proof of 1: By induction on n:

Base cases: $n \in \{0, 1\}$

Take n = 0: Fib(0) = 0, and $\frac{\phi^0}{\sqrt{5}} = \frac{1}{\sqrt{5}}$, and $[\frac{1}{\sqrt{5}}] = 0$ as desired. Take n = 1: Fib(1) = 1, and $\frac{\phi}{\sqrt{5}} = \frac{1+\sqrt{5}}{2\sqrt{5}} = \frac{1}{2\sqrt{5}} + \frac{1}{2} = \frac{1}{2}(\frac{1}{\sqrt{5}} + 1)$, and since $[\frac{1}{\sqrt{5}} + 1] = 1$, it follows that $[\frac{\phi}{\sqrt{5}}] = 1$ as desired.

Inductive step: Take arbitrary $n \in \mathbb{N}$, and assume $\left[\frac{\phi^n}{\sqrt{5}}\right] = \operatorname{Fib}(n)$ and $[\frac{\phi^{n-1}}{\sqrt{5}}] = \mathrm{Fib}(n-1).$ It suffices to show that

$$Fib(n+1) = \left[\frac{\phi^{n+1}}{\sqrt{5}}\right].$$

Given the definition of Fib(n+1) as Fib(n)+Fib(n-1), it follows immediately from the inductive hypothesis that $\operatorname{Fib}(n+1) = \left[\frac{\phi^n}{\sqrt{5}}\right] + \left[\frac{\phi^{n-1}}{\sqrt{5}}\right]$. Therefore, it suffices to show that

$$\left[\frac{\phi^{n+1}}{\sqrt{5}}\right] = \left[\frac{\phi^n}{\sqrt{5}}\right] + \left[\frac{\phi^{n-1}}{\sqrt{5}}\right]$$

or, equivalently,

$$|\frac{\phi^{n+1} - \phi^n - \phi^{n-1}}{\sqrt{5}}| < \frac{1}{2}$$

Factoring out common terms,

$$\frac{\phi^{n-1}}{\sqrt{5}}|\phi^2 - \phi - 1| < \frac{1}{2} \to |\phi^2 - \phi - 1| < \frac{\sqrt{5}}{2\phi^{n-1}}$$

By definition, $\phi = \frac{1+\sqrt{5}}{2}$, so the above is equivalently

$$|\frac{1+2\sqrt{5}+5}{4}-\frac{1+\sqrt{5}}{2}-1|<\frac{\sqrt{5}}{2\phi^{n-1}}$$

Thus,

$$|\frac{6+2\sqrt{5}-2-2\sqrt{5}-4}{4}|<\frac{\sqrt{5}}{2\phi^{n-1}}$$

which is, by arithmetic, $0 < \frac{\sqrt{5}}{2\phi^{n-1}}$, which is obviously true, since $\forall n \in \mathbb{N}, \phi^n > 0$.

Therefore, given $\left[\frac{\phi^n}{\sqrt{5}}\right] = \operatorname{Fib}(n)$ and $\left[\frac{\phi^{n-1}}{\sqrt{5}}\right] = \operatorname{Fib}(n-1)$, it is true that $\operatorname{Fib}(n+1) = \left[\frac{\phi^{n+1}}{\sqrt{5}}\right]$, and therefore, by induction, $\forall n \in \mathbb{N}, \operatorname{Fib}(n) = \left[\frac{\phi^n}{\sqrt{5}}\right]$

Before proving the second portion of the proposition, let us prove this Lemma which will make the proof of part 2 quite simple.

Lemma: $\forall n \in \mathbb{N}$, with ϕ and ψ defined as in the above proposition,

1.
$$\phi^n = \phi^{n-1} + \phi^{n-2}$$

2.
$$\psi^n = \psi^{n-1} + \psi^{n-2}$$

Proof of 1: By induction on n:

Base case: n=2 By direct computation,

$$\phi^2 = \frac{(1+\sqrt{5})^2}{4} = \frac{1}{4}(1+2\sqrt{5}+5) = \frac{3+\sqrt{5}}{2}$$

And

$$\phi + \phi^0 = \frac{1 + \sqrt{5}}{2} + 1 = \frac{3 + \sqrt{5}}{2} = \phi^2$$

Therefore, for n = 2, $\phi^n = \phi^{n-1} + \phi^{n-2}$.

Inductive step: Take arbitrary $n \in \mathbb{N}$, where n > 2, and assume $\phi^n = \phi^{n-1} + \phi^{n-2}$. We desire to show that

$$\phi^{n+1} = \phi^n + \phi^{n-1}$$

Observe that

$$\phi^{n+1} = \phi \phi^n = \phi(\phi^{n-1} + \phi^{n-2})$$

by assumption, and that by distribution this is equal to

$$\phi^n + \phi^{n-1}$$

as desired. Therefore, $\forall n \in \mathbb{N}$, where $n \geq 2$, $\phi^n = \phi^{n-1} + \phi^{n-2}$.

Q.E.D.

Proof of 2: By induction on n:

Base case: n=2 By direct computation,

$$\psi^2 = \frac{(1-\sqrt{5})^2}{4} = \frac{1}{4}(1-2\sqrt{5}+5) = \frac{3-\sqrt{5}}{2} = 1 + \frac{1-\sqrt{5}}{2} = \psi^0 + \psi$$

Therefore, for $n=2, \psi^n=\psi^{n-1}+\psi^{n-2}$.

Inductive step: Take arbitrary $n \in \mathbb{N}$, where n > 2, and assume $\psi^n =$ $\psi^{n-1} + \psi^{n-2}$. We desire to show that

$$\psi^{n+1} = \psi^n + \psi^{n-1}$$

Observe that

$$\psi^{n+1} = \psi \psi^n = \psi(\psi^{n-1} + \psi^{n-2})$$

by assumption, and that by distribution this is equal to

$$\psi^n + \psi^{n-1}$$

as desired. Therefore, $\forall n \in \mathbb{N}$, where $n \geq 2$, $\psi^n = \psi^{n-1} + \psi^{n-2}$.

Q.E.D.

Now, returning to the second part of the Proposition,

Proof of 2: By induction on n:

Base case: n = 0 By direct computation, Fib(0) = 0, and

$$\frac{\phi^0 - \psi^0}{\sqrt{5}} = \frac{1 - 1}{\sqrt{5}} = 0$$

. Thus, for n=0, ${\rm Fib}(n)=\frac{\phi^n-\psi^n}{\sqrt{5}}$ Base case: n=1 By direct computation,

$$Fib(1) = 1 = \frac{1 + \sqrt{5} - 1 + \sqrt{5}}{2\sqrt{5}} = \frac{\phi - \psi}{\sqrt{5}}$$

Base case: n = 2 By direct computation, Fib(2) = Fib(1) + Fib(0) = 1, and

$$\frac{\phi^2 - \psi^2}{\sqrt{5}} = \frac{1}{\sqrt{5}}(\phi + \phi^0 - \psi - \psi^0) = \frac{1}{\sqrt{5}}(\frac{1 + \sqrt{5} - (1 - \sqrt{5})}{2}) = \frac{2\sqrt{5}}{2\sqrt{5}} = 1$$

Therefore, $\mathrm{Fib}(2) = \frac{\phi^2 - \psi^2}{\sqrt{5}}$, as desired. **Inductive step:** Take arbitrary $n \in \mathbb{N}$, where n > 2, and assume $\mathrm{Fib}(n) = \frac{\phi^n - \psi^n}{\sqrt{5}}$ and $\mathrm{Fib}(n-1) = \frac{\phi^{n-1} - \psi^{n-1}}{\sqrt{5}}$.

Observe that, since Fib(n + 1) = Fib(n) + Fib(n - 1),

$$Fib(n+1) = \frac{\phi^n - \psi^n}{\sqrt{5}} + \frac{\phi^{n-1} + \psi^{n-1}}{\sqrt{5}} = \frac{1}{\sqrt{5}} (\phi^n + \phi^{n-1} - \psi^n - \psi^{n-1})$$

Which, by the above Lemma, is equal to

$$\frac{\phi^{n+1}-\psi^{n-1}}{\sqrt{5}}$$

as desired.

Therefore,

$$\forall n \in \mathbb{N}, \text{Fib}(n) = \frac{\phi^n - \psi^n}{\sqrt{5}}$$

Q.E.D.