

CLUSTERING SIGNED NETWORKS WITH THE GEOMETRIC MEAN OF LAPLACIANS

PEDRO MERCADO¹, FRANCESCO TUDISCO², MATTHIAS HEIN¹

¹SAARLAND UNIVERSITY ²UNIVERSITY OF PADUA

INTRODUCTION

GOAL: Extend Spectral Clustering to networks that have positive and negative relationships, by defining a new Laplacian that blends both sources of information.

CONTRIBUTIONS:

- 1. We introduce the *geometric mean of Laplacians* as an alternative way to blend information of positive and negative relations.
- 2. We show that in expectation under the Stochastic Block Model our method outperforms current approaches.
- 3. We show that eigenvectors of the matrix geometric mean can be computed efficiently without ever computing the matrix itself.

CLUSTERING AS GRAPH PARTITIONING

- Get eigenvectors $\{\mathbf{u}_i\}_{i=1}^k$ corresponding to the k smallest eigenvalues of L.
- 2 Let $U = (\mathbf{u}_1, \dots, \mathbf{u}_k)$.
- ³ Cluster the rows of U with k-means into clusters C_1, \ldots, C_k .

CASE OF SIGNED NETWORKS:

A signed graph is the pair $G^{\pm} = (G^+, G^-)$ and G^- encode positive the negative relations, respectively.

Current signed Laplacians are some sort of arithmetic mean of Laplacians.

MATRIX GEOMETRIC MEAN

Let A, B be p.d. matrices. The geometric mean of A and B is the matrix A # Bdefined by[3] $\mathbf{A} \# \mathbf{B} = \mathbf{A}^{1/2} (\mathbf{A}^{-1/2} \mathbf{B} \mathbf{A}^{-1/2})^{1/2} \mathbf{A}^{1/2}$

OBSERVATION: Let $\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$ and $\mathbf{B}\mathbf{u} = \mu \mathbf{u}$. Then,

$$(\mathbf{A} + \mathbf{B})\mathbf{u} = (\lambda + \mu)\mathbf{u}, \qquad (\mathbf{A} \# \mathbf{B})\mathbf{u} = (\sqrt{\lambda \mu})\mathbf{u}$$

Relative ordering of eigenvalues is different among matrix means.

GEOMETRIC MEAN LAPLACIAN

We define the normalized geometric mean Laplacian of G^{\pm} as

$$\mathbf{L_{GM}} = \mathbf{L_{sym}^+} \# \mathbf{Q_{sym}^-}$$

We add a small diagonal shift to enforce Laplacians to be p.d.

STOCHASTIC BLOCK MODEL ANALYSIS

In the Stochastic Block Model (SBM), the edge W_{ij} exists with probability p if v_i and v_j are in the <u>same</u> cluster and q if they are in <u>different</u> clusters.

For signed networks we consider a SBM for each graph G^+ and G^- , with parameters $(p_{\rm in}^+, p_{\rm out}^+)$ and $(p_{\rm in}^-, p_{\rm out}^-)$ respectively, i.e.

$$P(W_{ij}^{+} = 1) = \begin{cases} p_{\text{in}}^{+} & \text{if } v_{i}, v_{j} \text{ are in the same cluster} \\ p_{\text{out}}^{+} & \text{if } v_{i}, v_{j} \text{ are in the different clusters} \end{cases}$$

$$P(W_{ij}^{-} = 1) = \begin{cases} p_{\text{in}}^{-} & \text{if } v_i, v_j \text{ are in the same cluster} \\ p_{\text{out}}^{-} & \text{if } v_i, v_j \text{ are in the different clusters} \end{cases}$$

COROLLARY (SBM IN EXPECTATION)

Let $\mathcal{D} = \{(p_{\text{in}}^+, p_{\text{out}}^+, p_{\text{in}}^-, p_{\text{out}}^-) \in [0, 1]^4 \mid p_{\text{out}}^+ < p_{\text{in}}^+, \text{ and } p_{\text{in}}^- < p_{\text{out}}^-\}.$ Assume k clusters of same size. Let $\chi_1 = 1$ and $\chi_i = (k-1)\mathbf{1}_{\mathcal{C}_i} - \mathbf{1}_{\overline{\mathcal{C}_i}}$. Then, under condition \mathcal{D} ,

- $\{\chi_i\}_{i=1}^k$ always correspond to the k smallest eigenvalues of $\mathbb{E}[\mathbf{L}_{\mathbf{GM}}]$.
- $\{\chi_i\}_{i=1}^k$ correspond to the k smallest eigenvalues of $\mathbb{E}[\mathbf{L_{SN}}]$ in at most $\frac{1}{6} + \frac{2}{3(k-1)} + \frac{1}{(k-1)^2}$ proportion of cases.

Under condition \mathcal{D} , our method always identifies the informative eigenvectors, whereas the state of the art doesn't.

A more general result can be found in our paper.

We count the number of settings $(p_{\rm in}^+, p_{\rm out}^+, p_{\rm in}^-, p_{\rm out}^-)$ where in expectation $\{\chi_i\}_{i=1}^k$ correspond to the k smallest eigenvalues.

Our method identifies the informative eigenvectors in at least 75% of the cases, whereas the state of the art does it in at most 50% of the cases.

SBM IN SPARSE GRAPHS

Setting: 50 runs on graphs with two clusters of 100 nodes.

- L_{BN}, L_{SN} fail when either G^+ or G^- are informative about the cluster structure.
- Our method works when either *G* or G^- are informative.

Our method works when either G^+ or G^- are informative, whereas the state of the art requires both G^+ and G^- to be informative.

POWER METHOD FOR $L_{SYM}^+ \# Q_{SYM}^-$

We need the eigenvectors of $\mathbf{L}_{\mathsf{sym}}^+ \# \mathbf{Q}_{\mathsf{sym}}^-$.

- Computation of A#B is expensive.
- ullet **A**#**B** is in general a dense matrix, even if A and B are sparse.

We compute eigenvectors of A#B without ever computing A#B. Inverse Power Method (IPM) for A#B:

Alternative formulation[4]: $\mathbf{A} \# \mathbf{B} = \mathbf{A} (\mathbf{A}^{-1} \mathbf{B})^{1/2}$

$$(\mathbf{A}\#\mathbf{B})x_{k+1} = x_k \iff \mathbf{A}u_k = x_k \text{ and } (\mathbf{A}^{-1}\mathbf{B})^{1/2}v_k = u_k$$

For $(\mathbf{A}^{-1}\mathbf{B})^{1/2}x = y$ we use the Extended Krylov Subspace Method (EKSM)[5]: Let $M = A^{-1}B$ and $f(X) = X^{-1/2}$. Project M onto the subspace

$$\mathbb{K}^{s}(M,\mathbf{y}) = \operatorname{span}\{\mathbf{y}, M\mathbf{y}, M^{-1}\mathbf{y}, \dots, M^{s-1}\mathbf{y}, M^{1-s}\mathbf{y}\},\,$$

At each step we have $MV_s = V_sH_s + [\mathbf{u}_{s+1}, \mathbf{v}_{s+1}][\mathbf{e}_{2s+1}, \mathbf{e}_{2s+2}]^T$, where,

- H_s is $2s \times 2s$ symmetric tridiagonal,
- \mathbf{u}_{s+1} and \mathbf{v}_{s+1} are orthogonal to V_s

Solution **x** is approximated by $\mathbf{x}_s = V_s H_s^{-1/2} \mathbf{e}_1 ||\mathbf{y}|| \approx M^{-1/2} \mathbf{y}$

EXPERIMENTS IN WIKIPEDIA

- We look for 30 clusters with L_{GM}.
- ullet We present sorted adjacency matrices based on clusters obtained with L_{GM} .
- No previous method has found cluster structure in this network.

Our method is the first one finding cluster structure in this network.

EXPERIMENTS ON UCI DATASETS

We build W^+ and W^- through k^+ -nearest neighbours and k^- -farthest neighbours, respectively, with $k^+, k^- \in \{5, 7, 10, 15, 20, 40, 60\}$.

		iris	wine	ecoli	optdig	USPS	pendig	MNIST
# vertices		150	178	310	5620	9298	10992	70000
# classes		3	3	3	10	10	10	10
${f L_{SN}}$	Best (%)	23.4	40.6	18.8	28.1	10.9	10.9	12.5
	Str. best (%)	10.9	21.9	14.1	28.1	9.4	10.9	12.5
${ m L_{BN}}$	Best (%)	17.2	21.9	7.8	0.0	1.6	3.1	0.0
	Str. best (%)	7.8	4.7	6.3	0.0	1.6	3.1	0.0
${f L_{AM}}$	Best (%)	12.5	28.1	14.1	0.0	0.0	1.6	0.0
	Str. best (%)	10.9	14.1	12.5	0.0	0.0	1.6	0.0
L_{GM}	Best (%)	59.4	42.2	65.6	71.9	89.1	84.4	87.5
	Str. best (%)	57.8	35.9	60.9	71.9	87.5	84.4	87.5

Our method is robust against misleading sources of information.

REFERENCES

- [1] K. Chiang, J. Whang, and I. Dhillon. Scalable clustering of signed networks using balance normalized cut. CIKM, 2012.
- [2] J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E. Luca, and S. Albayrak. Spectral analysis of signed graphs for clustering, prediction and visualization. In ICDM, 2010.
- [3] Rajendra Bhatia. Positive definite matrices. Princeton University Press, 2009.
- Bruno Iannazzo. The geometric mean of two matrices from a computational viewpoint. Numerical Linear Algebra with Applications, 2016.
- [5] V. Druskin and L. Knizhnerman. Extended Krylov subspaces: approximation of the matrix square root and related functions. SIAM J. Matrix Anal. Appl., 1998.