Europäisches Patentamt

European Patent Office

Office européen des brevets

(1) Publication number: 0 468 641 A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 91305763.4

22) Date of filing: 26.06.91

"examnuic role"

rote"
10/784,916

(f) Int. Cl.⁵: **C07K 5/02**, C07K 5/06, A61K 37/64, C07D 409/12, C07D 417/12, C07D 401/12, C07D 277/56, A61K 31/415, C07D 233/64, A61K 31/425,

A61K 31/44

30 Priority: 28.06.90 JP 172050/90

43 Date of publication of application: 29.01.92 Bulletin 92/05

Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IT LI LU NL SE

Applicant: SHIONOGI SEIYAKU KABUSHIKI KAISHA trading under the name of SHIONOGI & CO. LTD.

1-8, Doshomachi 3-chome Chuo-ku Osaka 541 (JP)

(72) Inventor: Toyoda, Tatsuo
1-1-140, Suimeidai
Kawanishi-shi, Hyogo 666-01 (JP)
Inventor: Fujioka, Toshihiro
1-983-6, Isokabe, Kashiba-cho
Kitakatsuragi-gun, Nara 639-026 (JP)
Inventor: Hayashi, Kunio
32-11, Satsukida-cho
Kadoma-shi, Osaka 571 (JP)
Inventor: Nakamura, Masuhisa
6-9-11, Nakayamasakuradai
Takarazuka-shi, Hyogo 665 (JP)
Inventor: Hashimoto, Naofumi
5-13-7, Terakawa
Daito-shi, Osaka 574 (JP)

Representative: Hardisty, David Robert et al BOULT, WADE & TENNANT 27 Furnival Street London EC4A IPQ (GB)

Renin inhibiting dipeptide derivatives, their preparation and pharmaceutical preparations containing them.

A novel dipeptide derivative of the following formula (I), which compound is capable of inhibiting the enzymatic activity of renin and thereby depressing the renin-angiotensin system and lowering the blood pressure, is provided.

wherein:

 R^1 is C_1 - C_{12} alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_{10} cycloalkyl, aryl, or heterocyclic radical; R^2 is carbamoyl, aryl, 5- or 6-membered heterocyclic radical, C_1 - C_{12} alkyl-S-, C_1 - C_{12} alkyl-S- CH_2 -, or C_3 - C_{10} cycloalkyl-S-;

R3 is anyl or 5- or 6-membered heterocyclic radical;

R4 is R4 -SO2 or R4 -CO;

R4 is anyl, C1-C12 alkyl, C2-C8 alkenyl, C2-C8 alkynyl; C3-C10 cycloaklyl, or heterocyclic radical;

X is CH2, NH, O, or S; and

Y is CO or NHSO2, wherein R¹, R², R³ and R⁴ each may be substituted with one to three substituents selected independently from a group consisting of hydroxy; halogen; trifluoromethyl; -CN; heterocyclic radical; C¹-C₀ alkyl; C³-C¹0 cycloalkyl; -O-C¹-C₀ alkyl; C¹-C₀ alkyl; -SC¹-C₀ alkyl; -SC¹-C₀ alkyl; -SO-C¹-C₀ alkyl; -SO²-C¹-C₀ alkyl; -NR⁵R⁶; -O-CO-NR⁵R⁶; -O-C¹-C₀ alkyl NR⁵R⁶; R⁵ and R⁶ are independently hydrogen,

formyl or C_1 - C_8 alkyl, or $\overset{?}{R}$ and $\overset{?}{R}$, when taken together with the nitrogen to which they are attached, form a cyclic amino group, or an acid addition salt thereof.

. | 171-1117

.

.

This invention relates to dipeptide derivatives capable of inhibiting renin activity, processes for their production and pharmaceutical preparations comprising them.

Renin (EC3.4.23.15) is a protease which catalyzes the hydrolysis of angiotensinogen into angiotensin I. The angiotensin I is a biologically inactive decapeptide, though it is enzymatically converted into angiotensin II by an angiotensin converting enzyme in pulmonal vascular endotheliocytes. This system is "the reninangiotensin system". The angiotensin II induces hypertension through at least two routes, that is, contractive action on smooth muscles of peripheral vasculars and stimulation of secretion of adrenal hormone which inhibits sodium ion excretion. More particularly, it stimulates the secretion of aldosterone, an inhibitor of the excretion of Na⁺ ion, resulting in an increase of the volume of extracellular body fluid, rich is one of the causes of hypertension. Accordingly, compounds capable of depressing or inhibiting the renin-angiotensin system are expected to be potent anti-hypertensive substance. Many peptide analogues which seemed to be useful in the regulation of hypertensive diseases on the basis of renin-inhibiting activity have been developed and disclosed [for example, USP 4656269, EP-A-274259 and AU-A-8822959].

As mentioned above, the renin inhibitor inhibits the synthesis of Angiotensin I thereby depressing the renin-angiotensin system and lowering blood pressure. Owing to the physiological activity, renin inhibitors have been used in the treatment of hypertension. However, since hypertension is one of the most common disorders and causes many serious conditions and diseases, a development of more and more novel anti-hypertensive substances including renin inhibitors has been demanded to treat hypertension effectively.

The present inventors have now discovered a class of novel dipeptide compounds capable of inhibiting the catalytic activity of renin both in vitro and in vivo.

In particular, the present invention provides a dipeptide derivative of formula (I):

wherein:

5

10

15

20

25

30

35

40

45

50

55

R1 is C1-C12 alkyl, C2-C8 alkenyl, C2-C8 alkynyl, C3-C10 cycloalkyl, aryl, or heterocyclic radical;

R² is carbamoyl, aryl, 5- or 6-membered heterocyclic radical, C₁-C₁₂ alkyl-S-, C₁-C₁₂ alkyl-S-CH₂-, or C₃-C₁₀ cycloalkyl-S-;

R3 is aryl or 5- or 6-membered heterocyclic radical;

R4 is R4' -SO2 or R4' -CO;

R4 is aryl, C1-C12 alkyl, C2-C6 alkenyl, C2-C6 alkynyl; C3-C10 cycloaklyl, or heterocyclic radical;

X is CH2, NH, O, or S; and

Y is CO or NHSO₂, wherein R¹, R², R³ and R⁴ each may be substituted with one to three substituents selected independently from a group consisting of hydroxy; halogen; trifluoromethyl; -CN; heterocyclic radical; C₁-C₆ alkyl; C₃-C₁0 cycloalkyl; -O-C₁-C₆ alkyl; -SO-C₁-C₆ alkyl; -SO-C₁-C₆ alkyl; -SO-C₁-C₆ alkyl; -NHSO₂-C₁-C₆ alkyl; -NRSR⁶; -O-CO-NR⁵R⁶; -O-CO-NR⁵R⁶; -O-C1-C₆ alkyl; NR⁵R⁶; -O-C1-C₆ alkyl; NR⁵R⁶; -O-C1-C₆ alkyl; or R⁵ and R⁶ are independently hydrogen, formyl or C₁-C₆ alkyl, or R⁵ and R⁶, when taken together with the nitrogen to which they are attached, form a cyclic amino group or an acid addition salt thereof.

In another aspect the present invention also provides a compound of formula (II):

$$\mathbb{R}^7 - \mathbb{N} \longrightarrow 0$$
 \mathbb{R}^1 \mathbb{R}^1

wherein, R¹ is as defined above, and R⁷ is hydrogen or an amino protecting group, which compound is useful as an intermediate for the production of the compound of formula (I).

For the purpose of the present invention, as disclosed and claimed herein, the following terms are defined as below.

The term "C₁-C₁₂ alkyl" refers to a straight or branched saturated hydrocarbon radical having one to twelve carbon atoms, including methyl, ethyl, <u>n</u>-propyl, isopropyl, <u>n</u>-butyl, isobutyl, <u>s</u>-butyl, <u>t</u>-butyl, <u>n</u>-pentyl, isopentyl, 2-methylbutyl, <u>t</u>-pentyl, neopentyl, isopentyl, <u>n</u>-hexyl, isohexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, and the like.

The term "C₁-C₆ alkyl" refers to a straight or branched saturated hydrocarbon radical having one to six carbon atoms as defined above.

The term "C₂ - C₆ alkenyl" refers to a straight or branched unsaturated hydrocarbon radical having two to six carbon atoms and one or more double bonds, including vinyl, allyl, 1-propenyl, isopropenyl, 2-butenyl, 1,3-butadienyl, 2-pentenyl, 1-hexenyl, and the like.

10

15

20

25

30

35

50

The term "C₂ - C₆ alkynyl" refers to a straight or branched unsaturated hydrocarbon radical having two to six carbon atoms and one or more triple bonds, including ethynyl, 1-propynyl, 2-propynyl, 2-butynyl, 1,3-butadiynyl, 2-pentynyl, 1-hexynyl, and the like.

The term "C₁ - C₆ alkylenedioxy" refers to methylenedioxy, ethylenedioxy, triethylenedioxy, tetramethylenedioxy, pentamethylenedioxy, hexamethylenedioxy, and the like.

The term "C₃ - C₁₀ cycloalkyl" refers to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohe

The term "aryl" refers to aryl radicals having 6 to 10 carbon atoms, including phenyl, indenyl, naphthyl, and the like.

The term "halogen" refers to halogen atoms such as fluorine, chlorine, bromine, and iodine.

The term "cyclic amino" refers to monocyclic or bicyclic amino groups such as pyrrolidino, 2-pyrazolidinyl, piperidino, 1-piperazinyl, 1-indolinyl, 2-indolinyl, morpholino, and the like.

The term "heterocyclic group" refers to a group of saturated or unsaturated monocyclic or condensed ring which contains one or more heteroatoms selected from nitrogen, oxygen and sulfur. Examples of heterocyclic groups include, for example, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 1-pyrazolyl, 2-pyridyl, 4-pyridyl, 4-pyridyl, 2-pyridyl, 3-pyridyl, 2-pyridyl, 2-pyridyl, 3-thiazolyl, 4-thiazolyl, 5-tetrazolyl, 3-isothiazolyl, 2-pyrrolidinyl, 2-imidazolidinyl, 4-pyrazolidinyl, 4-piperidyl, 2-piperadinyl, 4-indolyl, 7-indolyl, 5-quinolyl, 8-isoquinolyl, and the like.

The term "5- or 6-membered heterocyclic groups" refers to 5- or 6-membered heterocyclic groups as defined above.

The term "carbamoyl" refers to carbamoyl or carbamoyl substituted with one or two substituents selected from a group consisting of C_1 - C_6 alkyl or C_3 - C_{10} cycloalkyl, for example, carbamoyl, methylcarbamoyl, dimethylcarbamoyl, cyclohexylcarbamoyl, and the like.

In the definition of R^1 , preferred " C_1 - C_{12} alkyl" is methyl, ethyl, propyl, isopropyl, t-butyl, pentyl, hexyl, heptyl, or the like; preferred " C_1 - C_6 alkyl" is methyl, ethyl, propyl, isopropyl, t-butyl, or the like; preferred " C_2 - C_6 alkynyl" is ethynyl, or the like; preferred " C_3 - C_{10} cycloalkyl" is cyclopropyl, cyclobutyl, cyclopentyl, cyclopexyl, or the like; preferred "aryl" is phenyl, naphthyl, or the like. Preferred "heterocyclic group" is 5-or 6- membered heterocyclic group such as 2-thienyl, 2-furyl, 2-pyrrolyl, 2-thiazolyl, 4-thiazolyl, 5-tetrazolyl, 4-pyridyl, 5-pyrimidinyl, 2-pyrazinyl, 2-pyrroldinyl, 4-piperidyl, or the like or condensed heterocyclic group such as 8-quinolyl, or the like.

Examples of preferable R1 include phenyl, o-tolyl, p-tolyl, m-tolyl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,4-dichlorophenyl, 2,6-dichlorophenyl, 2-bromophenyl, 3-bromophenyl, 4-bromophenyl, 2,4-dibromophenyl, 2,6-dibromophenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,4-difluorophenyl, 2,6-difluorophenyl, 2-tolufluoromethyl, 3-tolufluoromethyl, 4-tolufluoromethyl, 2-hydroxyphenyl, 3-hydroxyphenyl, 4hydroxyphenyl, 2-methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 3,4-dimethoxyphenyl, 3,4-methylenedioxyphenyl, 3-methylaminophenyl, 3-(N-formyl)methylaminophenyl, 2-dimethylaminophenyl, 3-dimethylaminophenyl, 4-dimethylaminophenyl, 2-morpholinophenyl, 3-morpholinophenyl, 4-morpholinophenyl, 2-(4methylpiperazyno)phenyl, 3-(4-methylpiperazyno)phenyl, 4-(4-methylpiperazyno)phenyl, 2-acetamidophenyl, 3-acetamidophenyl, 4-acetamidophenyl, 2-methylsulfonylaminophenyl, 3-methylsulfonylaminophenyl, 4methylsulfonylaminophenyl, 2-isopropoxycarbonylphenyl, 3-isopropoxycarbonylphenyl, 4-isopropoxycarbonylphenyl, 2-morpholinocarbonylphenyl, 3-morpholinocarbonylphenyl, 4-morpholinocarbonylphenyl, 2-morpholinocarbonyloxyphenyl, 3-morpholinocarbonyloxyphenyl, 4-morpholinocarbonyloxyphenyl, 2-morpholinoethoxyphenyl, 3-morpholinoethoxyphenyl, 4-morpholinoethoxyphenyl, 2-cyanophenyl, 3-cyanophenyl, 4cyanophenyl, naphtyl, 2-pyrrolyl, 3-pyrrolyl, 1-methyl-2-pyrrolyl, 5-tetrazolyl, 1-methyl-5-tetrazolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 1-methyl-4-pyridyl, 2-methyl-4-pyridyl, 3-methyl-4-pyridyl, 1-chloro-4-pyridyl, 2-chloro-4-pyridyl, 3-chloro-4-pyridyl, 1-fluoro-4-pyridyl, 2-fluoro-4-pyridyl, 3-fluoro-4-pyridyl, 2-pyrimidinyl, 5-pyrimidinyl, 2-pyrazinyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 1-methyl-2-pyrrolidinyl, 1-methyl-3pyrrolidinyl, 2-piperidyl, 3-piperidyl, 4-piperidyl, 1-methyl-2-piperidyl, 1-methyl-3-piperidyl, 1-methyl-4-piperidyl, 8-quinolyl, methyl, ethyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl, dimethylaminomethyl, morpholinomethyl, 1-morpholinoethoxyisopropyl, 1-piperidinomethyl, cyclopropyl, cyclopentene, cyclohexyl, cyclohectyl, 2-morpholinocyclohexyl, 3-morpholinocyclohexyl, 4-morpholinocyclohexyl, 2-methylaminocyclohexyl, 4-methylaminocyclohexyl, 2-dimethylaminocyclohexyl, 3-dimethylaminocyclohexyl, and the like.

Examples of preferable R² include 5-membered heterocyclic groups containing two heteroatoms such as two nitrogen atoms, nitrogen and oxgen atoms, or nitrogen and sulfur atoms, for example, 4-imidazolyl, 4-thiazolyl, 4-oxazolyl, or the like, wherein said heterocyclic group may be substituted with methyl, isopropyl, tert-butyl, amine, methylamine, dimethylamine, diethylamine, 1-pyrrolidinyl, piperidino, or the like; C1 - C12 alkyl-S- such as methylthio, ethylthio, cyclohexylthio, or the like; C1-C12 alkyl-S-CH2- such as methylthiomethyl, or the like; carbamoyl or substituted carbamoyl such as methylcarbamoyl, dimethylcarbamoyl, or the like.

Examples of preferable R4 include sulfonyl or carbonyl substituted with methyl, ethyl, isopropyl, dimethylamino, tert-butyl, N-morpholino or N-morpholinomethyl, or the like.

Examples of more preferable R1 are shown below.

Especially preferred compounds are those wherein R² is an optionally substituted 5- or 6-membered heterocyclic group; R³ is an optionally substituted aryl; R⁴ is morpholinosulfonyl; and X is NH.

The pharmaceutically acceptable acid addition salts of compounds of formula (I) include salts derived from a mineral acid such as hydrochloric acid, sulfuric acid, p-toluenesulfonic acids, or the like; carboxylic acid such as oxalic acid, maleic acid, citric acid, or the like. Preferable acid addition salts are those derived from mineral acid such as hydrochloric acid, sulfuric acid, toluenesulfonic acid, and the like.

All the compounds of the present invention are novel and can be prepared according to either of two processes described below on the basis of what Y represents.

Process I

Preparation of compounds wherein Y is CO

The process is schematically shown as below.

[6]

$$R^{7}-NH$$

$$0$$

$$H$$

$$0$$

$$R^{1}$$

[10]

$$R_{1}-NH \longrightarrow 0 \qquad HO \qquad 0$$

[14]

Step 4

55 is

$$\begin{array}{c|c}
R^4 & & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

In the above reaction schemes, R^1 , R^2 and R^3 are as defined above, R^2 is optionally protected R^2 and R^7 is amino-protecting group.

The amino protecting group which is shown by R⁷ can be selected from those groups generally used in peptide synthesis. Examples of amino protecting groups include benzyloxycarbonyl (it is referred to as Z), 2,6-dichlorobenzyloxycarbonyl (Z(Cl)₂), 4-nitrobenzyloxycarbonyl ((Z(NO₂)), 4-methoxybenzyloxycarbonyl

(Z(OMe)), t-butoxycarbonyl (Boc), t-amyloxycarbonyl (Aoc), isobornyloxycarbonyl, adamantyloxycarbonyl (Adoc), 2-(4-biphenyl)-2-propyloxycarbonyl (Bpoc), 9-fluorenylmethoxycarbonyl (Fmoc), methylsulfonylethoxycarbonyl (Msc), trifluoroacetyl, phtalyl, formyl, 2-nitrophenylsulfenyl (NPS), diphenylphosphinothioyl (Ppt), dimethylphosphinothioyl (Mpt), and the like.

Examples of the optionally protected R² shown by R² are 4-imidazoyl, 4-aminothiazolyl and R² as defined above, which are optionally protected with a group selected from benzyl (Bzl), benzyloxycarbonyl (Z), toluenesulfonyl (tosyl or Ts), trimethylsilyl (trityl, Trl), dinitrophenyl (Dnp), 2,2,2-trifluoro-1-benzyloxycarbonylaminoethyl (Tfz), 2,2,2-trifluoro-1-t-butoxycarbonyl (TfBoc), adamantyloxycarbonyl (Adoc), piperidinocarbonyl, t-butoxycarbonyl(Boc), and the like.

Step 1

5

10

15

20

30

35

40

55

1. Preparation of Compound [3] by Aldol Reaction

a) The optically active aldehyde [1], a required starting compound, can be prepared from, for example, Boc-L-phenylalanine using any of known methods described in literatures such as ¹⁾ (T. Shioiri et al., <u>J. Org. Chem. 52</u>:1252 (1987) and J. Boger et al., <u>J. Med. Chem. 28</u>:1779 (1985)).

Ē

The aldol condensation between an aldehyde [1] and a ketone [2] is carried out by a novel stereoselective method of the present invention. The reaction is conducted using metal amide, as a base, in an organic solvent in the presence of a crown ether at a temperature of about -78°C. Amides which may be used include sodium bis-trimethylsilylamide (NaN(TMS)₂), potassium bis-trimethylsilylamide (KN(TMS)₂), lithium diisopropylamide, lithium bis-trimethylsilylamide, and the like. Crown ethers which may be used include 15-crown-5, 12-crown-4, 18-crown-6, and the like. Although all the combinations of amides and crown ethers described above are suited for the stereoselective aldol reaction of the invention, certain combinations are especially preferable in connection with the stereoselectivity of the product [3] which is expressed by the ratio of the product of 2S form to 2R form, i.e., diastereo-selectivity, 2S:2R. Thus, NaN(TMS)₂, when used in association with 15-crown-5, gives the most favorable result shown by the 2S:2R value of about 2.4 to about 16.0, while other amides, when used alone or in combination with a crown ether, give inferior results shown by the 2S:2R value of less than 2.

Solvents which may be used include ethers such as diethyl ether, tetrahydrofuran (THF), dimethoxyethane, and the like with a preference for THF. When toluene is used, the stereoselectivity may be relatively decreased.

The reaction is carried out at a temperature ranging from about -20 to about -100°C, preferably about -78°C.

b) Alternatively, the stereoselective aldol condensation reaction can be carried out using metal alkoxide as a base in an inert solvent in the presence of a quarternary ammonium salt at a temperature of about -78°C.

Metal alkoxides which may be used include potassium t-butoxide (t-BuOK), potassium t-amyloxide (Et(Me)₂COK) or sodium ethoxide (EtONa), and the like.

Quarternary ammonium salts which may be used include tetrabutyl ammonium bromide ((n-Bu)₄NBr), tetramethyl ammonium bromide ((Me)4NBr), tributylbenzylammonium bromide (Bn(n-Bu)₃NBr), and the like. All the reagents are suited to the stereoselective aldol reaction of the invention and the best result can be obtained by the combination of t-BuOK and n-Bu₄NBr giving the 3S/3R value of about 3.3 - 6.5. This method is useful even in the absence of quarternary ammonium salt and gives the ratio of 3S/3R of about 3 to 5.

Solvents which may be used include THF, toluene, dichloroethane, dichloromethane, and the like with a preference for dichloromethane. When THF or toluene is used, the stereoselectivity may be decreased. The reaction can be conducted under a similar temperature as described in above a).

2) Separation of Stereoisomer (1S, 2S) [4]

The desired stereoisomer [3]-(2S) can be separated from a mixture of isomers shown by formula [3] by a known resolving procedure, for example, a column chromatography on silica gel. For the purpose of the invention, the desired isomer can be conveniently separated by reacting the mixture [3] with 2-methoxypropene or 2,2-dimethoxypropane in the presence of a catalytic amounts of p-toluene sulfonic acid or pyridinium p-toluene sulfonate in a solvent such as THF or dichloroethane at a temperature ranging from room temperature to the refluxing temperature for about 1 to 8 hours to obtain a product containing a mixture of ring-closed compounds [4] and [5] which differ in the crystallizing properties from a certain solvents. Thus, when the product is recrystallized from ethyl acetate or diisopropyl ether in which the desired stereoisomer [4] is hardly soluble and the undesired isomer [5]-(2R) is soluble, the former can be separated as a crystalline solid, while the latter remains in the mother liquor. A column chromatography on, for example, silica gel, can be used when the compound [4] is not easily separated by recrystallization. The so obtained compound [4] in (1S, 2S) form is a novel and useful compound as an intermediate for the production of the compound (I).

Alternatively, the product [3], without further treatment to form acetonide, can be directly subjected to a column chromatography on silica gel to yield the stereoisomer [3]-(2S), which is then converted into dihydric alcohol of formula [7].

Step 2a

5

10

15

20

25

35

40

45

55

Before the deprotection of C1 amino group, the compound [4] should be reduced to avoid the possibility of ring closing reaction between the deprotected amino group and the C4 carbonyl group. The reducing reaction can be carried out using any of known methods in the art. However, it is efficiently conducted by reacting a solution of the ketone [4] in ethanol, methanol, THF or toluene with a reducing reagent such as sodium borohydrate, L-selectride or Red-Al at room temperature or under cooling for about 0.5 to 2 hours. Preferably, the latter reagent is used slightly in excess, that is, about 1.0 to 1.3 mole to 1.0 mole of ketone [4]. The resultant product [6], a mixture of diastereoisomers (1:1 to 3:1), is used in the next deprotection step without further purification.

The deprotection of amino group can be carried out using any of following procedures. When the protecting group is Boc, and the like, the compound [6] is deprotected by dissolving into THF or dioxane, adding 6N HCl thereto, and stirring at room temperature for about 1 to 4 hours. Alternatively, the compound [6] is treated with an acid such as aluminium chloride, trifluoroacetic acid or formic acid in the presence of anisole to yield the dihydric aminoalcohol [7].

When the protecting group is a member of benzyloxycarbonyl groups such as benzyloxycarbonyl (hereinafter, it is referred to as Z), 2,6-dichlorobenzyloxycarbonyl (Z(Cl)₂), or 4-nitrobenzyloxycarbonyl ((Z(NO₂)), the deprotection can be effected by catalytic reduction using palladium-containing catalyst, and the like. When the protecting group is Fmoc (9-fluorenylmethoxycarbonyl), Msc (methylsulfonylethoxycarbonyl), or the like, the deprotection can be effected by treating the compound [6] by piperidine, diethylamine, or the like.

The resulting dihydric alcohol of formula [7] is subjected to the next condensation reaction without purification. The condensation can be carried out using any procedure generally used in the field of peptide synthesis. For example, to a solution of compound [7] in an appropriate solvent such as dichloromethane is added commercially available N-Boc-amino acid [8] or its DCHA salt, and the mixture is allowed to react at room temperature for about 1 to 4 hours in the presence of a slight excess of a coupling reagent such as 1.0 to 1.3 mole equivalent of diethyl cyanophosphosphate (DEPC) and, if desired, a tertiary amine such as N-methyl morpholine to obtain a coupled compound [9]. Examples of coupling reagents are DCC, EDC, DEPA, BOP, DCC-HOBt, DCC-HOSu, ethyl chlorocarbonate, isobutyl chlorocarbonate, isopropyl chlorocarbonate, diethyl chlorophosphate, diphenyl chlorophosphate, 2-chloro-4,6-dimethoxy-1,3,5-triazine, and the like. The compound [8] may be protected at the heterocyclic ring with a protecting group generally used in the field of peptide synthesis.

The resultant diastereisomer [9] is also converted into the corresponding ketone [10] without separation by dissolving the compound [9] into dichloromethane or DMF, adding about 3 to 10 times amounts of active manganese dioxide to the mixture and reacting at room temperature for 2 to 8 hours. This reaction proceeds very smoothly when fine crystal starting material [9] is used. The characteristic of this reaction is that the hydroxyl group at the C4 position of benzyl compound can be selectively oxidized.

Step 2b

Compound [10] can be also prepared through an aldol reaction according to a procedure described in step 1 from a starting compound [2] and a dipeptide aldehyde of formula [14] obtainable from a corresponding dipeptide alcohol in the same manner as that used for the preparation of compound [1]. The reaction however proceeds without stereoselectivity and differs from that of step 1 in this regard. The product being a 1:1 mixture of compound [10] in 2S and 2R isomers, chromatographic procedure is required for the separation of desired [10]-(2S)-isomer. The characteristic of the method of step 2b is that it is applicable when the method of above step 2a is not effective because a compound resists the selective oxidization with manganese dioxide.

Step 2c

The compound [10] can be prepared by reacting a chloromethyl ketone of formula [19] with an amine. The characteristic of the method of step 2c is that it is useful in the introduction of N-substituted methylketone residue to the C-terminal moiety.

Step 3

5

10

15

20

25

30

35

40

1, 1,007.00

The deprotection of ketone compound [10] can be carried out in the same manner as described in the preparation of amino dihydric alcohol [7] from compound [6]. For example, when the protecting group is Boc, it is carried out by adding excess aluminium chloride to an anisole solution of compound [10] and stirring the mixture for about 1 to 3 hours at a temperature ranging from ice-cooled temperature to room temperature. The deprotection can also be effected by treating the compound [10] with either of excess trifluoroacetic acid in anisole or 6N HCl in THF to yield the desired compound [11]. The resultant ketone [11] with carbonyl group at the C4 position is novel and important as an intermediate for preparing the compound of formula (I) of the present invention.

Step 4

The compound [11] is reacted with sulfonyl propionic acid derivatives, N-sulfamyl, N-carbamoyl, or N-acyl amino acid of formula [12] which can be prepared according to a known method such as described in a literature (J.L.Stanton et al., J.Med.Chem. 31:1839 (1988)) under a condition for the coupling reaction and then deprotected if necessary to give the desired compound (IA) as the final product.

The coupling reaction is preferably conducted using 1.0 to 1.3 mole equivalent of diethyl cyanophosphonate (DEPC) in the presence of N-methyl morpholine (NMM) in a solvent such as dichloromethane at room temperature for about 1 to 8 hours. Examples of coupling reagents are DCC, EDC, DEPA, BOP, DCC-HOBt, ethyl chlorocarbonate, isobutyl chlorocarbonate, isopropyl chlorocarbonate, diethyl chlorophosphate, diphenyl chlorophosphate, 2-chloro-4,6-dimethoxy-1,3,5-triazine, and the like.

The deprotection of the compound [13] is carried out using any of known procedures depending on the protecting group. When the protecting group of R² is tosyl, it can be carried out by stirring a mixture of a solution of compound [13] in DMF in the presence of 5 to 12 mole equivalent of pyridinium hydrochloride at room temperature for about 1 to 4 hours. The deprotection can be effected by means of trifluoroacetic acid (at 15°C for about 30 minutes), HBr/acetic acid (at room temperature for about 30 minutes), conc.ammonia (at room temperature for about 1 hour), conc.HCl, or the like.

Process II

Preparation of compounds (I) wherein Y is NHSO2

The process is schematically shown as below.

Step 1

$$R^{7}-NH \xrightarrow{CHO} \longrightarrow R^{7}-NH \xrightarrow{E} CN$$

$$L-[1] \qquad [20]$$

$$R^{7}-NH \xrightarrow{E} NH_{2} \xrightarrow{C \ell SO_{2}R^{1}} R^{7}-NH \xrightarrow{E} NHSO_{2}R^{1}$$

$$[21] \qquad [23]$$

55

Step 2

Step 3

In the above reaction schemes, R1, R2, R3, R4 and R7 are as defined above.

Step 1

40

50

55

The optically active aldehyde [1], a required starting compound, can be prepared in the same manner as described in above Process I.

The preparation of cyanhydrin [20] from aldehyde [1] is carried out substantially in accordance with a procedure described in the literature. Thus, the aldehyde [1] is allowed to react with an acidic sodium sulfite to obtain an additive, which is then reacted with KCN in ethyl acetate at room temperature to yield the cyanhydrin [20] stereoselectively (2R/2S = 3/1). The product is then resolved into each stereoisomer by column chromatography on silica gel. The desired (2R)-isomer is a crystalline solid and can be purified by recrystallization while the undesired (2R)-isomer is an oil. Therefore, alternatively, the desired product [20]-2R can be obtained conveniently by adding a seed crystal to the reaction mixture, collecting the precipitate, and recrystallizing from a solvent before subjecting to the chromatography.

The cyanhydrin [20] is then converted into an amino alcohol [21] by reducing the nitrile group. The reduction is carried out effectively by dissolving cyanhydrin [20] into an ethereal solvent, preferably THF, adding about 2 to 2.5 mole of lithium aluminium hydride thereto. The resulting amino alcohol [21] is then, without purification, reacted with sulfonyl chloride [22] to obtain sulfonyl amide of formula [23]. The reaction is conducted by reacting the amino alcohol [21] and sulfonyl chloride [22] in an appropriate solvent such as dichloromethane in the pre-

sence of tertiary amine such as triethylamine at room temperature for overnight.

Step 2

5

10

15

20

25

45

The deprotection of compound [23] can be carried out in a similar manner as described in the above Process I. The deprotected compound [24] is, without purification, dissolved into an appropriate solvent such as CH₃CN, or the like, and subjected to a condensation with N-protected-amino acid [8] in the same manner as the coupling reaction described in the above process I to yield a dipeptide analogue [25].

Step 3

The compound [25] is then deprotected in the similar manner as that used for the deprotection of compound [23] in the above Process II, step 2. The product [26] is, without purification, subjected to the condensation reaction with a modified carboxylic acid [12] in exactly the same manner as described in Process I to obtain the final product [18].

As can be seen from the above reaction schemes, the present invention provides a dipeptide in which one peptide bond is formed through a coupling reaction between, for example, a free carboxyl group of an amino-protected amino acid and an amino group of an amino dihydric alcohol of formula [7] prepared from an oxazoli-dine derivative of formula [4]. The compound [4], an important intermediate for preparing the compound of formula (1), is obtained by a stereoselective aldol condensation method of the present invention. The other peptide bond is formed by a coupling reaction between a carboxylic group of, for example, sulfonyl propionic acid of formula [12] with a free amino group of a deprotected amino ketone [11] such as histidine as can be seen in the step 4.

As will be hereinafter described in the Experiment, the compounds of the invention have been demonstrated to be an effective renin inhibitor, whereby they suppress the renin-angiotensin system (one of the in vivo causes of hypertension) and lower blood pressure. The compounds of the invention are low in toxicity and useful in the treament of hypertension or cardiac dysfunction through their renin inhibitory activity. The compounds may be administered either orally or parenterally. It is a characteristic benefit of the compounds that they are effective even when orally administered.

When the compounds of the invention are used to treat renin-associated disorders, a therapeutically effective amount of a compound of formula (I) is formulated into a composition of an appropriate form by known procedures using pharmaceutically acceptable carriers, diluents, or excipients. The administration may be conducted orally, intranasally, intravenously, subcutaneously, or the like.

For preparing composition for the administration, an active compound (I) is mixed with one or more standard adducts such as excipient, stabilizer, or inert diluent, and the like. The mixture is then formulated into an appropriate form such as a tablet, coated tablet, hard gelatin capsule, or an aqueous, alcoholic or oily suspension, or an aqueous, alcoholic or oily solution. Examples of inert excipients which can be used include various cyclodextrins, preferably β-cyclodextrin, acacia gum, magnesium carbonate, potassium phosphate, lactose, glucose, magnesium stearyl fumarate, starch, and the like. Either of dry or wet granules can be used. Examples of oily excipients or solvents include vegetable oil such as sunflower oil and fish liver oil.

For subcutaneous or intravenous administration, an active compound or a pharmaceutically acceptable salt thereof is dissolved, dispersed or emulsified into an appropriate solvent with the aid of any substances generally used in such a purpose, for example, solubilizing agent, emulsifying agent, or other adjuncts to obtain solutions, suspensions or emulsions.

Examples of appropriate solvents include water, physiological saline, alcohols such as ethanol, propanediol or glycerol, a sugar solution such as a solution of glucose or mannitol, or a mixture thereof, or Tween 80. Examples of solubilizing agents include above-mentioned cyclodextrins, preferably β -cyclodextrin.

The abbreviations used are as follows:

Boc = tertiary-butoxycarbonyl; Red-Al = sodium bis(2-methoxyethoxy)aluminium, L-Selectride = lithium tri-sec-butylborohydride; Boc His(Ts).DCHA = N°-Boc-N°-tosyl-L-histidine dicyclohexylamine; BOP = benzot-nazol-1-yl-oxy-tris-(dimethylamino)phosphoniumhexafluorophosphate;

DCC-HOBt = dicyclocarbodiimide-1-hydroxybenzotriazole;

DCC-HOSu = dicyclohexylcarbodiimide-N-hydroxysuccineimide;

DEPC = diethyl cyanophosphonate; NMM = N-methylmorpholine;

PPTS = pyridinium paratoluenesulphonate;

Tala = (4-thiazolyl)-L-alanine; rt = room temperature;

Ts = tosyl; TMS = trimethylsilane;

DMAP = 4-dimethylaminopyridine;

DCHA = Dicyclohexylamine;

DCC = Dicyclohexylcarbodiimide;

EDC = 1-Ethyl-3-(3dimethylaminopropyl)carbodiimide;

DEPA = Diethyl phosphorylazide;

BOP = Benzotriazol-1-yl-oxy-tris(dimethylamino)-phosphonium hexafluorophosphate

The following Examples further illustrate the compounds of the invention and the processes for preparing the same. The Examples are not intended to be limiting to the scope of the invention in any respect and should not be so construed. Unless otherwise noted, the NMR spectra were measured in CDCl₃ at 200 MHz (internal standard = TMS) and IR spectra in CHCl₃. All amino acid used are L-isomers.

Preparation 1

10

15

25

30

35

50

55

3-Boc-4-(S)-cyclohexylmethyl-2,2-dimethyl-5(S)-[2-oxo-2-(4-pyridyl)ethyl]oxazolidine [4a]

R⁷-NH

R¹

BO

D-TsOH·H₂O. THF

rt~reflux, 1~8hrs

or

b)

ONe

ONe

p-TsOH·H₂O

dichloroethane,

reflux for 7hrs

1. a) To a 36ml (36mmol, 1.5eq) solution of 1N NaN(TMS)₂ in THF is added a solution of 4.34g (36mmol, 1.5 eq) of 4-acetylpyridine [2a] in 20ml of THF at -78°C over 10 minutes under nitrogen atmosphere. After 10 minutes stirring, a solution of 7.898g (36mmol, 1.5 eq) of 15-crown-5 in 10 ml of THF is added thereto and stirred

for 5 minutes. To the mixture is added 6.108g (24 mmol) of N-Boc-L-cyclohexylalaninal [1a] in 50ml of THF over 15 minutes and stirred for 1 hour at -78°C. The reaction mixture is added to a mixture of saturated aqueous solution of ammonium chloride and ethyl acetate with stirring and extracted three times with ethyl acetate. The extract is washed with saturated brine, dried over magnesium sulfate and concentrated to dryness in vacuo. The residue, upon purification by column chromatography on silica gel (eluent; dichloromethane/methanol = 98.5:1.5) gives N-Boc-1 (S)-cyclohexylmethyl-2-hydroxy-4-oxo-4-(4-pyridyl)butylamine [3a] (5.94g; yield = 98.5:1.5) gives N-Boc-1 (S)-cyclohexylmethyl-2-hydroxy-4-oxo-4-(4-pyridyl)butylamine [3a] (5.94g; yield = 66.0%) as a colorless powder. The product is a mixture of compound of 2(S)-isomer (desired isomer) and 2(R)-isomer (the ratio of 2(S): 2(R) = 5.24: 1).

b) To a stirring solution of 32g (125.3mmol) of N-Boc-L-cyclohexylalaninal [1a], 22.8g (188mmol, 1.5eq) of N-acetylpyridine, and 60.6g (188mmol, 1.5eq) of tetrabutyl ammonium bromide in 700ml of dichrolomethane is added each one fourth portions of t-BuOK (21.1g in total, 188mmol, 1.5eq.) at 10 minutes interval under cooling at -78°C and the stirring is continued for another 1.5 hours at the same temperature. The reaction mixture is added to a mixture of saturated aqueous ammonium chloride and dichloromethane with stirring and extracted three times with dichloromethane. The extract is treated with citric acid to purify the basic substances to obtain a crude product [3a] (37g; yield = 79%; 2(S)/2(R) = 7:1).

2. a) To a solution of 5.908g (15.7mmol) of purified alcohol [3a] in 50ml of THF are added 2ml (20.9mmol, 1.3 eq) of 2-methoxypropene and 299mg (1.57mmol, 0.1eq) of p-toluenesulfonic acid monohydrate and the mixture is heated to reflux for 4 hrs. The reaction mixture is concentrated under reduced pressure, and the resimixture is alkalified with 4% sodium bicarbonate and extracted 3 times with dichloromethane. The extract is washed once with saturated brine, dried over magnesium sulfate, and concentrated to dryness. The residue is decolorized by column chromatography on silica gel using a short column (eluent, dichloromethane/acetonitrile = orized by column chromatography on silica gel using a short column (eluent, dichloromethane/acetonitrile = 5:1) and recrystallized from ethyl acetate to obtain 4.66g (yield = 68.6%) of the title compound [4a] as a colorless solid.

b) A mixture of 72g (195.6mmol) of the crude alcohol [3a], 150ml (122.0mmol, 6.2eq) of 2,2-dimethoxypropane and 2.73g (14.4mmol, 0.073eq) of p-toluenesulfonic acid monohydrate in 150ml of dichloroethane is heated to reflux for 16 hours. After cooling, the mixture is made basic with 4% aqueous sodium bicarbonate and extracted 3 times with dichloromethane. The extract is washed once with saturated brine, dried over magnesium sulfate, and concentrated to dryness in vacuo. The crude product, upon recrystallization from isopropyl ether, gives 23.5g (29.5%) of the compound [4a] as a white crystal. The mother liquor, when treated by column chromatography on 300g of silica gel (eluent; dichloromethane/ethyl acetate = 7:1) and recrystallized in the same manner as above, gives 2.5g (3.1%) of compound [4a].

m.p. = 115 - 116°C
[α]_D = -18.5° (C=1.0 CHCl₃; 23.5°C)
[Rvmax(CHCl₃):1692, 1596, 1557, 1477, 1450, 1172, 1086 cm⁻¹
[Rvmax(CHCl₃):1.48(9H,s), 1.52(3H,s), 1.60(3H,s), 0.78-1.90(13H,m), 3.14(1H,dd,J=16.8,6.8Hz), 3.41(1H,dd,J=16.7,6.1Hz), 3.84(1H,m), 4.52(1H,t like m), 7.73(2H,m), 8.83(2H,m)
Elemental analysis (as $C_{24}H_{38}N_2O_4$)
Calcd.(%): C:69.20; H:8.71; N:6.73
Found (%): C:69.20; H:8.75; N:6.76

Preparation 2 - 20

Compounds [4], the desired stereoisomers, were prepared according to the method described in above Preparation 1 by preparing compound [3a] and separating the desired isomer [3]-(S) therefrom. The results are shown in the following Table 1. Among the compounds listed in the Table 1, compound Nos. 13 and 14 are separated chromatographically because the corresponding compounds of formula [4] do not crystallize under the conditions used.

50

45

5

10

20

25

35

50	45	40		35		30	25	20		10	5
Toble 1	e deserva est. Estadores (1996) Antidores (1997) Tradores (1997)			200		e de la companya de l	(3			(=	
Boc-NII	HII CIIO	+	; =0	ا جَہ	1	Boc-NH/		ا .	1	Boc-K	- X
• •:		,	[2]				би б			$\frac{1}{2}$	
7000		[3]			1		[4]				
of Prep. No.	a libel Disers S∰i og Tilbelgr	Yield%	C-2 S/R,	Yield%	ρ d∎	[a], C=1. 0. CIICe,	Elemental	Calcd.	Found	u -	
	7 Z					9	analysis	C: 72. 25	C:72.25	1686, 1650, 1582, 1478, 1450, 1172, 1088	78, 1450, 1172, 1088
~	phenyl	F	3.1	2	~==	-17:4	C2.H.7804	II: 8.98	11: 8.99		
	,				113	(23. 5)		H: 3.37	N: 3.36		
						-		C:69.25	C: 69. 12	1686, 1610, 1577, 14	1686, 1610, 1577, 1480, 1453, 1173, 1100.
က	o-fluorophenyl	89	8.	75	95~	-18.5	CzellseNO.F	H: 8.37	H: 8. 10	1086, 990, 848	
					-	(64. 0)		F: 4.38	F: 4.45		
								C: 70. 08	C: 70. 05	1689, 1600, 1585, 14	1689, 1600, 1585, 1488, 1465, 1456, 1430.
_	m-methoxypheny]	1 75	2.7	8	117~	- 6.2	C 11, . 10,	II: 8.82	11: 8.74	1394. 1369. 1290. 13	1394, 1369, 1290, 1255, 1172, 1139, 1088.
•			. · ·		119	(23.5)		N: 3. 14	N: 3. 15	1050	
								C: 72. 69	C: 72. 66	1687, 1610, 1573, 1	1687, 1610, 1573, 1480, 1450, 1174, 1088.
	o-methylphenyl	78	2.4	69	132~	-23.5	C H NO.	11: 9:15	II: 9.08		
			 		134	(24. 0)		N: 3.26	N: 3.20		
				Ĺ	_			C:66. 49	C: 66. 31	1687, 1612(1595).	1687, 1612(1595), 1498, 1477, 1450, 1430.
	2.4-	91	8.	89	136∼	-19. 1	CzsHssKO.Fz	II: 7.81	H: 7.82	1172, 1140, 1098, 971, 855	71. 855
)	difluorophenyl		٠.		137	(23: 5)		H: 3.10	N: 3.04		
		<u>.</u>		w.	`			F: 8. 42	F: 8.38		

35·

Table 1 (continued)

							(4)			
70.00								1		
3	č	Yel day.	C-2	I ⊆	icid% ap°C	[a], CHCe, Elemental	Elemental	Gold.	Found	
Prep. no.			:	·	. ,	(Ω)	analysis			BOX
								C: 74. 81 C: 74. 84	C: 74. 84	1687, 1595, 1508, 1477, 1449, 1393, 1373,
				9	197~ -11.7	-11.7	C. II. NO.	11: 8.44	11: 8.43	1368, 1250, 1172, 1138, 1098, 1085
۲.	1-naphthyl	3 	-	8	128	(24, 0)		N: 3.01 N: 3.06	N: 3.06	
								C: 65. 52	C:65.75	1685, 1510, 1477, 1450, 1172, 1088
	:	. · ·		ີ	113~	113~ -13.5	Cz slis NO S	11: 8.37	11: 8.28	
∞	3-thienyl	2		3	21.	(25)		N: 3.32	N: 3.31	
			<u> </u>					S: 7.61	S: 7.57	
								C: 62. 53	C:62.28	1690, 1480, 1448, 1170, 1075, 945
<u>.</u>			<u>.</u>		128∼	128~ -10.7	C221134N204S 11: 8.11	11: 8.11	11: 7.79	
თ	2-thiazolyl	e .	2	<u>.</u>	2 6	(23.5)	·	K: 6.63	N: 6.53	·
			· 		<u>.</u>			S: 7.59	S: 7.36	
			_		_					

;)

Table 1 (continued)

-		3]		-		(3)(S) or [4	or [4]		
, ≃		2-3							
	Yield% S,	S/R	Yicld%	2dm	[a]"14	Elemental	GJ Cd.	Found	I R V CB.'
					C=1. 0, CIC(1	analysis			or NMR(6)
							C: 69. 25	C: 69. 36	1690, 1610, 1590, 1485, 1475, 1443, 1392,
a-fluorophenyl	82	ა ა	-7	103~		Casilas N. 04F	II: 8.37	1: 8.41	1170, 1086
				105	-15.7	,	N: 3.23	N: 3.25	
•	:	• ;					F: 4.38	F: 4. 22	
							C: 69. 25	C: 69. 14	1685, 1600, 1505, 1475, 1450, 1392, 1170,
p-fluorophenyl	83	2.8	19	137~		Cz . H N. O. F	II: 8.37	II: 8.35	1155. 1085
	•			138	-15.7		H: 3.23	N: 3. 14	
		•					F: 4.38	F: 4.41	
							C: 66. 50	C: 66. 40	1691, 1624, 1588, 1467, 1450, 1394, 1369.
2.6-	88	13.0	83	51~		Casilat NiO4Fa	H: 7.81	II: 7.79	1279, 1174, 1139, 1089, 1030, 982, 860
di fluorophenyl				54	-18.8		N: 3.10	N: 3.34	
				•			F: 8.41	F: 8. 69	
									0. 75-1. 93(1311, a). 1. 45(911, s).
0-scthoxyphenyl	7.3	2.8	(3)(8)						3. 10(111, dd, J=9. 9. 18. 311z), 3. 70(111, a).
			23						4. 16(111, m), 4. 82(111, d. J=1011z).
									7. 00(211, m), 7. 50(111, td. J=2. 5. 711z).
	•								7. 75(111, dd. J=2. 5. 711z)
		:							0.74-1.90(1311, m). 1.44(911, m).
n-chlorophenyl	98	3.0	(3)(8)		-36.8				3. 18(211, m), 3. 71(111, m), 4. 20(111, m),
: .	•	:	. 5 2		,				4. 75(111. d. J=1011z). 7. 22-7. 59(411. a)
							C:70.88	C: 70. 87	2236. 1693. 1602. 1479. 1450. 1394. 1369.
n-cyanophenyl	. 02	2.8	89	111/~	-14.7	C111134N104	II: 8.24	II: 8.27	1172. 1088
		•		117			N: 6.36	N: 6. 16	
							C:61.39	C: 61. 00	1691, 1656, 1607, 1578, 1496, 1453, 1394,
J-mcthy]-	.67	1.5	. 51	131~		C. H. N. N. O. S	11: 7.93	11: 7.85	1369, 1342, 1279, 1156, 1089, 967, 918
sulfonyl-				132	- 3. 3°		N: 5.51	N: 5. 48	
ami nopheny l					•		S: 6.30	S: 6. 22	

5		
10		
15		
20		
25		[4]
30		
35		
•		
40		[E]
45	٠.	ont inucd)
50		Table 1 (continued)

		15					[4]			
Sept.	×:	(3)								
2	-≃	Yield%	C-2 Yield% S/R		ည္ရမ	Yield% mpC Cal. 0. CliC/s Elemental	Elemental	Calcd.	Found	IR(v ca'l)
rcp. no.						(Ω)	analysis		60 13	1500 1582 1510 1450 1325, 1172, 1137.
							L. F. NO.	C: 54. 58	11: 7.54	1066
17	p-trifluoro-	75	4.9	£	282	· ·		N: 2.90	N: 2.89	
	sethy]phcny]			-	2	(25)		F:11.79	F: 12. 02	0361 1061 867 : 337
								C: 68. 16	C: 68. 04	1690, 1632, 1484, 1451, 1456, 1594, 1505.
				6	751	354~ -2 6	C, . 114 . N 204	11: 8.39 11: 8.44	11: 8.44	1303. 1277. 1172. 1141. 1116. 1081. 1023
<u>∞</u>	m-morpholino-	2	7.7	8	15.7	(23)		N: 5.30	N: 5.36	
	carbonylphenyl					(23)		C: 67. 33	C: 67. 55	1686. 1650. 1582
	-K)-8	_			117	1172 -17 5	Caille NyO.	11: 8.90	11: 8.72	
13	norpholino)-	E	ص ح	ج م		(23.5)	.1/4 11,0	N: 5. 10	N: 5.06	606
	cthoxyphenyl					160:07		C: 68. 62	C: 68. 68	1680, 1602, 1585, 1486, 1476, 1447, 1333
	a-(N-2-forsyl)-			Š	117	1172.	C., 11, 1, 10,	11: 8.53	11: 8. 43	1378. 1367
22	acthylamino-		8 · 7	3 	212	(24.0)		N: 5.93	N: 5. 93	
				_	2					

Preparation 21

Boc-His(Ts)-1(S)-cyclohexylmethyl-2(S)-hydroxy-4-oxo-4-(4-pyridyl)butylamide [10a]

To a 3-Boc-4-(S)-cyclohexylmethyl-2,2-dimethyl-5(S)-[2-oxo-2-(4-pyridyl)ethyl]oxazolidine[4a](4.66g, 11.18mmol) is dissolved in ethanol (20ml) is added sodium borohydride (508mg, 13.42mmol) with stirring and

R1=Boc

ice-cooling and the mixture is allowed to react at room temperature for one hour. The solvent is removed in vacuo. To the residue are added ice water and saturated aqueous ammonium chloride, and the mixture is extracted with dichloromethane three times. The organic layer is washed with saturated aqueous sodium chloride, dried over MgSO₄, and evaporated to dryness in vacuo to obtain 3-Boc-4(S)-cyclohexylmethyl-2,2-dimethyl-5(S)-[2-hydroxy-2-(4-pyridyl)ethyl]oxazolidine [6a] (4.88g, quantitative amount) in colorless powder. The product is then, without further purification, dissolved in THF (2ml), and 6N HCl (16ml) is added thereto, and the mixture is stirred at room temperature for one hour. The reaction mixture is neutralized with 6N NaOH, alkalified with sodium bicarbonate, and then extracted five times with dichloromethane containing 10% methanol. The extract is dried over MgSO₄ and evaporated to dryness in vacuo to obtain 1(S)-cyclohexylmethyl-2(S), 4-dihydroxy-4-(4-pyridyl)butylamine [7a] (3.3g, quantitative amount, diastereomer ratio 1:1) in colorless powder. The product (3.30g) is then, without further purification, dissolved in dichloromethane (100ml). To the solution are added Boc-His(Ts).DCHA [8a] (8.3g, 14.05mmol, 1.3eq) and diethyl cyanophosphonate (2.29g, 14.05mmol, 1.3eq), and the mixture is stirred for 6 hours at room temperature. The reaction mixture is evaporated to dryness in vacuo, and the residue is purified with silica gel chromatography (CH2Cl2:MeOH = 95:5) to obtain Boc-His(Ts)-1(S)-cyclohexylmethyl-2(S), 4-dihydroxy-4-(4-pyridyl)butylamide [9a] (6.00g, 80%) as a mixture of two diastereomers. The product [9a] may be used in the following reaction without separation of the two isomers.

To the solution of product [9a] (1.0g, 1.45mmol) in dichloromethane (3ml) is added MnO₂ (5g) at room temperature, and the mixture is stirred for six hours. The resultant black suspension is filtered on a Celite layer overlaid with active carbon, and insoluble material on the layer is thoroughly washed with CH2Cl2-MeOH (10:1). The filtrate is evaporated to dryness in vacuo and purified with silica gel chromatography (CH₂Cl₂:MeOH = 95:5) to obtain the title compound [10a] (683mg, 69%) in colorless powder.

NMR δ (CDCl₃): 1.34(9H,s), 0.70-2.20(13H,m), 2.45(3H,s), 2.99(2H,m), 3.03(1H,dd,J=17.8,2.3Hz), 4.04(1H,ddd,J=8.7,8.7,8.7Hz), 4.23(1H,m), 4.30(1H,ddd,J=5.8,5.8,5.8Hz), 6.16(1H,m), 6.47(1H,d,J=10Hz), 7.11(1H,s), 7.36(2H,d,J=8Hz), 7.80(2H,m), 7.81(2H,d,J=8.6Hz), 7.92(1H,s), 8.82(2H,d,J=5Hz)

IR v(CHCl₃)max cm⁻¹: 3680, 3420, 3300(br), 1700, 1670, 1625, 1598, 1555, 1492, 1450, 1410, 1385, 1370, 1180, 1080, 1010

Preparation 22

10

15

20

25

30

35

$$\begin{array}{c|ccccc}
\hline
 & H & 6N-HC1 & H & OCH_3 & THF & NH_2 & OCH_3 & OCH_3$$

55

50

CH₂Cl₂

rt 1~4h

A solution of N-Boc-3-cyclohexyl-alanine methyl ester [15a] (4.00g, 13.93mmol) in THF (10ml) is stirred in the presence of 6N HCl (40ml) at room temperature for four hours. The reaction mixture is made alkaline with powdery sodium bicarbonate and extracted with dichloromethane containing 5% methanol (100 ml \times 4).

The extract is dried over MgSO₄ and evaporated to dryness <u>in vacuo</u> to quantitatively obtain 3-cyclohexylalanine methyl ester [16a] as an oil. The product is then, without further purification, dissolved in dichloromethane (50ml). To the solution are added Boc-His(Ts).DCHA [8a] (10.7g, 18.11mmol, 1.3eq) and diethyl cyanophosphonate (2.95g, 18.1mmol, 1.3eq), and the mixture is stirred for 1.5 hours at room temperature. The reaction mixture is subjected to silica gel chromatography (SiO₂:300g, CH₂Cl₂:MeOH = 99:1) to give a purified Boc-His(Ts)-3-cyclohexylalanine methyl ester [17a] (7.43g, 93%) as an oil. To a solution of the dipeptide ester [17a] (3.0g, 5.2mmol) in THF (6ml) and ethanol (6ml) is added a 2N solution of lithium borohydride in THF (3ml, 6mmol) with stirring and ice-cooling. After 20 minutes stirring, the mixture is allowed to react at room temperature for an additional one hour. The solvent is removed in vacuo and to the residue is added ice water and saturated aqueous ammonium chloride followed by extraction with dichloromethane (20ml x 3). The organic layer is washed with saturated aqueous sodium chloride, dried over MgSO₄, evaporated to dryness in vacuo and the residue is purified by silica gel chromatography (SiO₂: 200g, CH₂Cl₂:MeOH = 98:2) to obtain Boc-His(Ts)-3-cyclohexyl-alaninol [18a] (2.06g, 72%) as an oil.

To a mixture of the dipeptide alcohol [18a] (2.0g, 3.65mmol), triethylamine (1.30g, 12.85mmol, 3.5eq) and

DMSO (6ml) is added at room temperature SO₃-pyridine (2.03g, 12.75mmol, 3.5eq) in DMSO (6ml) and the mixture is stirred for 35 minutes. The reaction mixture is poured on ice, and the resultant aqueous mixture is extracted with ethyl acetate (20ml x 3). The organic layer is subsequently washed with 10% aqueous citric acid, saturated aqueous sodium chloride (x 2), 7% aqueous sodium bicarbonate, and saturated aqueous sodium chloride, dried over MgSO₄, and concentrated to dryness in vacuo. The resultant residue is purified with silica gel chromatography (SiO₂:100g, CH₂Cl₂:MeOH = 95:5) to obtain Boc-His(Ts)-3-cyclohexylalaninal [14a] (1.67g, 84%) in amorphous powder.

To a 0.5N potassium bis-trimethylsilylamide solution in toluene (9.2ml, 4.60mmol, 2.5eq) is added dropwise at -78°C cyclohexyl methyl ketone (0.58g, 4.60mmol, 2.5eq) in THF (9ml) with stirring under a nitrogen atmosphere over 10 minutes. After 20 minutes stirring at the same temperature, 18-crown-6 (1.216g, 4.60mmol, 2.5eq) in THF (10ml) is dropwise added to the mixture over two minutes. Further, the dipeptidealdehyde [14a] (1.0g, 1.83mmol) in THF (10ml) is dropwise added over 15 minutes at -78°C, and the mixture is stirred for one hour at the same temperature. The reaction is quenched by adding a solution of acetic acid (0.60g, 10mmol, 5.5eq) in THF (10ml) and after the addition of saturated aqueous ammonium chloride (30ml) the mixture is extracted with ethyl acetate (50ml x 3). The organic layer is washed with saturated aqueous sodium chloride, dried over MgSO₄, concentrated to dryness in vacuo, and purified with silica gel chromatography (Lobar column, CH₂Cl₂:MeOH = 95:5) to obtain Boc-His(Ts)-1(S)-cyclohexylmethyl-2(S)-hydroxy-4-oxo-4-cyclohexyl-butylamide [10b] (0.18g, 15%) in amorphous powder.

NMR 8: 1.30-1.90(23H,m), 1.40(9H,s), 2.32(1H,m), 2.44(3H,s), 2.59(2H,m), 2.93(1H,dd,J=5.8,9.6Hz), 3.04(1H,dd,J=5.8,9.6Hz), 3.89(1H,ddd,J=8.4,8.4,8.4Hz), 3.98(1H,m), 4.30(1H,ddd,J=6.0,6.0,6.0Hz), 6.12(1H,d,J=6.0Hz), 6.47(1H,d,J=9.8Hz), 7.10(1H,d,J=0.8Hz), 7.36(2H,d,J=8.0Hz), 7.81(2H,d,J=8.4Hz), 7.93(1H,d,J=1.2Hz)

Preparation 23

10

20

25

50

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

Boc - NH
$$\stackrel{R^2}{\longrightarrow}$$
 NH $\stackrel{H}{\longrightarrow}$ OCH₃ $\stackrel{1NLiOH}{\longrightarrow}$ Boc - NH $\stackrel{R^2}{\longrightarrow}$ NH $\stackrel{H}{\longrightarrow}$ OH [28a]

Boc - NH
$$\stackrel{\mathbb{R}^2}{\longrightarrow}$$
 NH $\stackrel{\mathbb{R}^2}{\longrightarrow}$ NH $\stackrel{\mathbb{R}^2=4-\text{thiazolyl}}{\longrightarrow}$ $Z=0$

To a solution of cyclostatine methyl ester [27a] (700mg, 3.05mmol), Boc-(4-thiazolyl)-L-alanine [8c] (869mg, 3.19mmol, 1.05eq), and HOBt (431mg, 3.19mmol, 1.05eq) in CH₃CN (10ml) is added DCC (660mg, 3.20mmol, 1.05eq) with stirring and ice-cooling under nitrogen atmosphere and the mixture is stirred for 1.5 hours at the same temperature and then allowed to react at room temperature for 14 hours. Ethyl acetate is added to the mixture, and precipitated crystals were filtered off. The filtrate is concentrated to dryness in vacuo and the residue is subjected to silica gel chromatography (SiO₂:100g, NH₄OH:MeOH:CH₂Cl₂ = 1:10:990) to give the aimed product, Boc-(4-thiazolyl)alanyl-cyclostatine methyl ester [28a] (830mg, 59%) as an oil.

To the solution of the above product [28a] (830mg, 1.72mmol) in MeOH (2ml) is added 1N LiOH (1.9ml, 1.9mmol, 1.1eq) with stirring and ice-cooling. The mixture is stirred for 10 minutes and allowed to react at room temperature for two hours. After neutral substances are removed by washing with dichloromethane, the mixture is acidified with citric acid and is extracted with ethyl acetate. The organic layer is dried over MgSO₄, and concentrated to dryness in vacuo to obtain the aimed carboxylic acid [29c] (700mg, 87%).

To a mixture of the above carboxylic acid [29a] (700mg, 1.67mmol) and N-methylmorpholine (0.17ml, 1.67mmol) in THF (10ml) is added isobutyl chlorocarbonate (0.2ml, 1.67mmol) with stirring at a temperature of -15°C - -10°C under nitrogen atmosphere, and the resultant mixture is stirred for 50 minutes at the same temperature. After precipitated crystals are removed by filtration, to the filtrate is added a solution of diazomethane (2.2eq) in ethyl ether previously prepared at -10°C and allowed to reaet at room temperature for 3 hours. The reaction mixture is concentrated in vacuo to remove diazomethane and ethyl acetate (10ml) is added to the residue. After addition of 2N HCl (3ml) at -40°C - -30°C, the mixture is allowed to react for one hour. The reaction mixture is alkalified by addition of saturated aqueous sodium bicarbonate and the ethyl acetate layer is separated. The layer is dried over MgSO₄ and concentrated to dryness in vacuo to obtain 800mg of crude chloromethyl ketone [19a]. Since the product tends to get colored and decomposed, it is immediately used in the next step without purification.

To a solution of the above product [19a] (400mg) in MeCN (5ml) are added morpholine (150mg) and a catalytic amount of NaI, and the mixture is stirred at room temperature for two hours. The reaction mixture is purified by chromatography to give the aimed compound, Boc-(4-thiazolyl)alanyl-1(S)-cyclohexylmethyl-2(S)-hydroxy-4-oxo-4-(N-morpholino)methyl-butylamide [10c] (Z=0) (120mg, 29% starting from [29a]). NMR8: 0.6-2.00(13H,m), 1.43(9H,s), 2.55(4H,m), 3.22(2H,dd,J=4.6,14.8Hz), 3.26(2H,s), 3.43(1H,dd, J=5.4,14.8Hz), 3.76(4H,m), 3.89(1H,m), 3.94(1H,m), 4.44(1H,ddd,J=6.2HzX3), 6.38(1H,d,J=9.8Hz), 6.48 (1H, d, J=7.5Hz),7.13(1H,d,J=1.8Hz), 8.79(1H,d,J=2Hz)

Preparation 24

10

15

20

25

35

In the same manner as in Preparation 23, Boc-(4-thiazolyl)alanyl-1(S)-cyclohexylmethyl-2(S)-hydroxy-4-oxo-4-(N-piperidino)methyl-butylamide [10d] (Z=CH₂) is obtained with an overall yield of 29%. NMR8: 0.6-1.83(19H,m), 1.44(9H,s), 2.46(4H,m), 3.15(2H,s), 3.20(1H,dd,J=5.6,14.8Hz), 3.44(1H, dd, J=5,14.8Hz), 3.89(2H,m), 4.47(1H,m), 6.41(1H,bs), 6.43(1H,d,J=9.8Hz), 7.12(1H,d,J=1.8Hz), 8.78 (1H, d, J=1.8Hz)

Preparation 25-50

Starting from the compounds [4] which have been prepared in Preparations 2-20, the ketone compounds [10] are obtained in the same manner as in Preparation 21. The thus obtained products are listed in Table 2.

Preparation 51-57

The aldol reaction between dipeptides [14] and methyl ketones [2] gives ketone compounds [10] in the same manner as in Preparation 22. The thus obtained products are listed in Table 3.

1.7

5	T = 0				
10	Boc-Nil 0 [10]				7, 6, 6, 6112). (211, d. J=8112). =1. 4112)
15				450. 1390. 1370.	0.7-1.85(1311, m), 1.34(911, s), 2.44(311, s), 2.95-3.55(211, m), 2.99(211, m). 3.86(311, s), 4.02(111, ddd, J=9.9.91z), 4.20(111, d, J=1011z), 4.32(111, ddd, 6.6.61lz). 6.03(111, m), 6.56(111, d, J=1011z), 7.11(111, d, J=1.31lz), 7.12(111, m), 7.35(211, d, J=81lz), 7.48(111, m), 7.55(111, m), 7.37(111, m), 7.80(211, d, J=8.41lz), 7.93(111, d, J=1.41lz)
20	E			5, 1610, 1492. 1	s), 2, 95-3, 55(2 20(111, d, J=101 H, d, J=1, 311z), 7 80(211, d, J=8, 41
25	R 2.	or NMR(&)	50. 1370.	75(1700sh). 162	III, 8), 2, 44(3II, 8), 1, 1=9, 9, 9112), 4, 1=10112), 7, 11(11, 11), 7, 37(111, 11), 7,
30	Boc-Ni	IR V BAX CE ' OF NMR(8)	3680. 3420. 3300. 3140. 1705. 1675. 1625. 1600. 1580. 1495. 1450. 1370. 1162. 1125. 1032. 1010	3680, 3420, 3280, 3140, 1675(1700sh), 1625, 1610, 1492, 1450, 1390, 1370, 1160, 1132, 1030, 1010	5(1311, m), 1.34((1, s), 4.02(111, dd 1, m), 6.56(111, d, 1, m), 7.55(111, m)
35	~	•	3680. 347 1625. 16 1162. 11	3680.34	0. 7-1. 8 3. 86(31) 6. 09(1) 7. 48(1)
• 40		[9] Yield% Yield% (from[7])	82 65	92	100
45	· •		2. x ~ x	Z. Z 🗸	Z.X ~
50	Boc-NII 6	ا	phenyl	o-fluorophenyl	#-#cthoxypheny
	Tab) c 2	of No		26	72

28

.

Table 2 (continued)

Coepd.	¥***		[6]		(10)
ō	۳.	R 2.	Yield%	Yield% Yield%	
Prep. No.	i marina di salah		((Los [1])		IR v max ca" or NMR(8)
		Ţ		:	3420. 3300. 3240. 1705. 1670. 1625.
28	p-acthylphonyl	Ĩ.	82	57	1608. 1495. 1450. 1370. 1122. 1033.
	3	<u>~</u> =(1010
		T.			3680. 3420. 3300(br), 1705. 1672. 1611.
23	2.4-	<u> </u>	22	20	1599, 1496, 1450, 1430, 1384, 1370,
	difluorophenyl	<u>``</u>			1172. 1095. 1080. 970. 855
		Ts			3692, 3420, 1709, 1673, 1599, 1575,
30	1-naphthyl	Ţ.	12	20	1495, 1450, 1386, 1370, 1175, 1094.
		~ ={			1080. 1033. 979. 908
		ě	,		0.7-1.85(1311, m), 1.34(911, s), 2.44(311, s), 2.99(211, m), 2.86-3.27(211, m), 4.00(111, ddd
31	3-thienyl	<u>د</u> . ـ	48	63	J=9. 9. 9112). 4. 19(111, d. J=1011z). 4. 32(111, ddd, J=6. 6. 611z). 6. 15(111, d. J=5.011z). 6. 54
		<u>\</u>	÷		(111, d. J=9112), 7, 11(111, d. J=1, 2112), 7, 36(211, d, J=8, 2112), 7, 3(111, dd, J=2, 8, 5, 2112).
		<u> </u>	; ; ;;	,	. 7. 53(111, dd. Je1, 2, 5, 2112). 7. 80(211, d. Je8, 4112), 7. 91(111, d. Je1, 2112), 8. 18(111. •)
		Ts			3420, 3300, 3140, 1703, 1670, 1625,
32	2-thiazolyl	<u>_</u>	79	S	1603. 1550(br), 1496. 1450. 1370.
					1165. 1123. 1032. 1010

: 1

													\neg				1
5								II. s),	1, d, J=7112). 7, 47(111, m).	III. 6). 4. 18 III. d.	=1. 411z)		1081, 1034.				
10				0101	0101	194, 1080, 1028		2. 13(211, m), 3. 13(211, m), 3. 44(311, s), 3. 00(211, m), 3. 13(211, m), 3. 90(311, s).	3. 96(111, ddd. J=10, 10, 1011z), 4. 15(111, m), 4. 34(111, ddd. J=7, 7, 711z), 6. 04(111, d, J=711z), 3. 96(111, ddd. J=10, 10, 1011z), 4. 15(111, m), 4. 34(111, d, J=1, 211z), 7. 35(211, d, J=8, 611z), 7. 47(111, m), 4. 1=1011z), 6. 99(211, m), 7. 80(211, d, J=8, 411z), 7. 91(111, d, J=1, 411z)	0. 74-1. 82(1311. a). 1. 39(911. s). 2. 44(311. s). 2. 98(211. a). 3. 08(211. a). 3. 99(111. a). 4. 18	(111, a), 4, 30(111, ddd, j=711z), 6, 05(111, d, j=711z), 6, 52(111, d, j=101z), 7, 30(111, d, j=1, 411z), 1, 311z), 7, 27-7, 45(6H, a), 7, 60(111, a), 7, 80(211, d, j=8, 411z), 7, 90(111, d, j=1, 411z), 1, 27-7, 45(6H, a), 7, 60(111, a), 7, 80(211, d, j=2, 1371, 1174, 1093, 1081, 909	3420, 2236, 1709, 1678, 1599, 1495, 1451, 1452, 1501, 1511	1034. 1034. 1054. 1081. 1034. 1174, 1155, 1094, 1081. 1034.				
15	. !	P. D.		000	3420. 3320. 3140. 1670(sh1705), 1625. 1600. 1495. 1155. 1030. 1010	26 1270 1174. IC	3424.1707.1676.1625.1598.1493.1400.1500.1500. [a]6.0*(C=1.0.CIIC21.24T)	1), 3. 00(211, m), 3.	3. 96(111, ddd. J=10, 10, 10112), 4. 15(111, m), 4. 34(111, ddd. J=7, 7, 7112), 6. 86(111, d. J=1, 2112), 7. 35(211, d. J=1, 2112), 7. 35(211, d. J=1, 2112), 7. 35(211, d. J=1, 2112), 7. 81(21), 4. J=8. 4112), 7. 91(111, d. J=1, 4112)	s), 2. 98(211, a), 3	7. 80(211, d. J=8. 4		1385, 1371, 1341.				
20		NMR(6), [a]".	5, 1590.	0	705), 1625, 1600.	C1 0374 3076	38, 1433, 1406, 13 1, 24T)	911 8). 2. 44(311. 8	(211, a), 7, 15(111, a), 1(211, a), 7, 80(211, d, 3=8.	(911, s), 2, 44(311,	711z), 6. 05(311. d.	599, 1495, 1431, 1	578 1496 1452.		1575, 1325.		
25		[10] R v max cs '. NM	1530 2140 1675 1625, 1590	1495. 1160. 1122. 1030. 1010	20, 3140, 1670(shl		3424, 1707, 1676, 1625, 1598, 149 [a],, -6, 0*(C=1, 0, CIIC£3, 24♥)	36 1 (= 1101)co	1, ddd. J=10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	. 82(1311. a). 1. 39(4. 30(111. ddd. J="	236, 1709, 1678, 1	0031 4636 000	1703, 1612, 1555, 1 17	1325 1375 1325	3420, 1105, 1013, 1025, 1170, 1135, 1080, 1065	B. p. =133-135°C
30		- H	0070	1495. 116	3420, 33		3424.17 [a]		3.96(11)	0.74-1	(111, 0)	3420.2		3424. 170 968. 917		3420.	d
		rie1d%		.45		5	30		. 22	1	27		6	. 58	1	37	
35		[9]	(from[7])	92		78	88		3		85		. 67	92.		- 77	
	·	- 	Ť	۳ - ۲ ^	Ts 1	.z^z	N. Z.	~	.S. x ^	7	2. 2	T.		Z.X	7	S.Y.	
40	ble 2 (continued)			-fluorophenyl		p-fluorophenyl	9.E-	difluorophenyl -	o-sethoxyphenyl		o-chlorophenyl		a-cyanophenyl	o-methyl- sulfonyl-	aminophenyl	p-trifluoro-	sethyl- phenyl
45	ble 2 (- 18	No.		+	34 5	7,	• 14	36		37 - 6		88	92	<u></u> -		9

55

ble 2 (continued)

	; ;			į	
Co∎pd.			[6]		[10]
Jo	ت	۳.	Yield%	Yield% Yield%	IR. v maxcm · · またはNMR(6)
rcp. NO.		Ts	() Om ()		3420, 1709, 1674, 1632, 1600, 1405, 1386, 1370, 1279, 1174, 1116, 1093, 1080, 1026
41	a-aorpholino-		85	89	
	Carolina Land				0.70~1, 90(1311, m), 1.34(911, s), 2. 90~3.60(411, m), 3.99(111, m), 4. 16(111, m).
42	phenyl	ST.	90	57	4. 49(111. ddd, J=6, 2, 6, 211z), 6. 46(111, d. J=9. 211z), 7. 12(111, d, J=1. 811z). 7. 40~7. 63(311, m), 7. 96(211, d. J=8. 411z), 8. 76(111, d. J=211z)
!		Ś	5	ž	0.70~2.05(1311, m), 1.34(911, s), 2.95~3.50(411, m), 4.01(111, m), 4.19(111, m).
43	4-pyr1dy1	<u></u>	06	5	7, 78(2), d. J=6, 2), 8, 77(1), d. J=1, 8), 8, 80(1), d. J=9, 4),
				00	0. 65~2. 05(1311. a), 1. 36(911. s), 2. 93(111. d. 1=17. 1112), 3. 15(111. dd. 1=17. d. 3. 4112).
44	3-thienyl	χ <u>΄</u>	00	8	3. 22.11; 33; 31; 31; 31; 31; 32; 33; 33; 34; 34; 34; 35; 34; 31; 31; 31; 31; 31; 31; 31; 31; 31; 31
		<u> </u>			(111, d. J=1, 9112), 7, 30(111, dd, J=5, 1, 2, 9112), 7, 53(111, dd, J=5, 1, 1, 311z).
		:			8. 20(111, d, J=1, 911z), 8. 77(111, d, J=2, 111z)
		8	Ş		0.70~1.90(1311, a). 1.35(911, s). 2.60(411, a). 2.83(211, t, J=5.4112). 3.17(211, a).
. 45	n-2-(N-	=(£	<u>.</u>	3. 22(11), 00, 3-4; 0, 14; 41.2); 3. 11, 41.1; (3); 4. 49(11), ddd, 1=6. 2, 6. 2, 6. 2112), 6. 45(21), d, 1=9. 8112).
	cthoxyphenyl			•	7. 11(111, d. J=2, 0), 7. 15(111, dd, J=1, 2, 2, 811z), 7. 37(111, t. J=7, 81z), 7. 48(111, m).
		:			7. 56(111, d. 1-7. 8112). 8. 77(111, d. 1-2. 0112)
9				;	0.70~1.86(13H.m), 1.33(9H.s), 3.00(1H.dd, J=0.5, 14.8Hz), 3.23(1H.dd, J=3.2, 14.6Hz), 3.36(3H.s), 3.40(3H.m), 4.01(1H.m), 4.20(1H.d., J=9.8Hz), 4.47(1H.ddd, J=5Hz).
46	s-(K-formyl)-			: 	6. 44(111, d. 1=9, 8112), 6. 58(111, d. 1=6, 4112), 7. 14(111, d. 1=1, 8112), 7. 39(111, ddofd.
			;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		J=1, 2, 2, 4, 8112), 7, 52(111, t, J=7, 8112), 7, 87(211, m), 8, 57(111, s), 8, 78(111, d, J=2112)
					0.77~1.84(1311, m). 2.70(311, s). 3.17(411, m), 4.03(111, m), 4.20(111, m), 4.42(111, ddd.
47	4-pyridyl		87	5	J=5,8Hzx3), 6. 42(1H, d. J=5llz), 6. 49(1H, d. J=10llz), 6. 89(1H, s), 7. 80(2H, m), 8. 81(2H, m)
		<u> </u>	:	-	

•					
Compd			[6]		[10]
Jo	.×	R.	Yield% Yield	Yicld%	IR v max cm or NMR(S)
l'rep. No.	•		(from[/]		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	, code	IIN K	62	83	0, 77~1, 82(1311, m), 1, 38(911, s), 3, 10(411, m), 4, 03(111, m), 4, 10(111, m), 4, 4(111, m), 1, 4, 4(111, m), 1=5, 2112), 6, 71(111, s), 6, 89(111, d, 1=8, 2112), 7, 47(211, t, 1=7, 8112), 7, 59(111, m).
9		-8 ₹			7. 94(211, d. J=7. 211z), 8. 47(111, s)
					0. 76~1. 82(1311, m), 1. 41(911, s), 2. 67(211, m), 3. Ub(111, 00, J=4, 6, 10112), 3. 61(111, 00,
97	4-nvridv]	-conii,	98	. 65	J=8. 4, 1811z), 4, 04(111, m), 4, 24(111, m), 4, 37(111, t, J=6, 411z), 7, 07(111, d, J=9, 411z).
} 					7.85(211, m). 8.76(211, m)
					0.82-1.88(13H, m), 1.38(9H, s), 2.15(3H, s). 2.87(1H, dd, J=6.4, 13.6Hz), 2.95(1H, t.
5	A-portido]	-SXc	99	36	J=7. 611z), 3. 10(111, dd, J=2. 2. 18. 811z). 3. 42(111, dd. J=9. 4. 18. 611z). 4. 12(111. m).
3		<u>.</u>	:		4. 23(111, ddd, J=6112×3), 4. 28(111, m), 5. 37(111, d. J=6112), 6. 55(111, d. J=10112), 7. 77(211, m).
			-		8. 82(211, m)

Table 2 (continued)

	~					4.			
10	± = 0		((111, ddd.)= . 6. 93(211, d.	(2).		z).		d. J=6. 8112x3)	
15	Boc-NII 0 (10)), 3, 88(311, s), 4, 01 58(111, d.)=9, 811z) 93(111, s), 7, 95(21	36, J=8, 4, 8, 4, 8, 4 8, 4 8, 4 8 4 8 4 8 4 8 8 4 4 8 4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4		1). 6. 58(111, d. J=711 82(31, a). 7. 94(11		4. 8. 14. 2112) 1. 8112), 4. 49(111, dd 32(111, S), 8. 77(11	, 5. 2liz) =6. 2. 6. 2. 6. 2liz) 8(1li, d, J=1. 8liz)
20	ĕ		2(211, a), 3, 08(211, a) 2(111, d, J=5, 811z), 6, 1(211, d, J=8, 611z), 7,	(411, a), 4, 00(111, dd. 211, s), 6, 13(111, a), 211, dd. 1=8, 4112), 7, 4, 7, 92(111, dd. 1=1, 211), 7, 4, 92(111, dd. 1=1, 211), 21, 211, dd. 211, dd. 21, dd	. 27	(211, a), 3, 10(211, a) =6, 611z), 6, 10(111, a)	No. 21	(12), 3, 20(111, dd, Janus), 4, 07(111, t, Janus), 4, 07(111, t, Janus), 12(111, d, Janus), 7,	3. 20(111, dd. J=14. 4 i.e.). 4. 45(111, ddd. J 111, d. J=1. 6112). 8. 7
25	1	(D C C s)	(311, s), 3, 0(5, 411z), 6, 12 1, 211z), 7, 81	(311, s), 3, 00 (611z), 6, 05((411z), 7, 36(1, 3=8, 411z),	in Ex. No	311, s), 3, 00 3(111, ddd,) 7(111, t, J-8	in Ex. No	211, d. J=5. 6 S). 3. 92(11) 8(11), S). 7.	. 75(211. m). m). 3. 93(111 811z). 7. 12(
30	+	NMR & (CDC6)	0. 75~1. 94(1311. a). 1. 33(911. s). 2. 44(311. s). 3. 00(211. a). 3. 08(211. a). 3. 88(311. s). 4. 01(111. ddd. 1= 8. 2112). 4. 19(111. a). 4. 34(111. ddd. 1=6. 4112). 6. 12(111. d. 1=5. 8112). 6. 58(111. d. 1=9. 8112). 6. 93(211. d. 1=8. 6112). 7. 11(111. s). 7. 36(211. d. 1=8. 2112). 7. 81(211. d. 1=8. 6112). 7. 93(111. s). 7. 95(211. d. 1=9112)	77-1. 83(1311. a). 1. 34(911. s). 2. 44(311. s). 3. 00(411. a). 4. 00(111. ddd. J-8. 4. 8. 4. 8. 4112). 4. 18(111. d. J-6. 2112). 4. 32(111. ddd. J-6112). 6. 05(211. s). 6. 13(111. a). 6. 54(111. d. J-9. 8112). 6. 85(111. d. J-8. 2112). 7. 11(111. d. J-0. 4112). 7. 36(211. d. J-8. 4112). 7. 43(111. d. J-1. 4112). 7. 58(111. td. J-8. 2. 0. 8112). 7. 80(211. d. J-8. 4112). 7. 92(111. d. J-1. 2112)	Identical with those of compound in Ex. No. 27	7.72-2. 00(1311, a). 1.34(911, s). 2. 44(311, s). 3. 00(211; a). 3. 10(211, a). 3. 52-3. 8(811, a). 1. 00(111, ddd. J=8112). 4. 18(111, a). 4. 33(111, ddd. J=6. 6112). 6. 10(111, a). 6. 58(111, d. J=7112). 1. 12(111, d. J=3. 4112). 7. 36(311, a). 7. 47(311, t. J=8112). 7. 68(311, a). 7. 82(311, a). 7. 94(311, d. set. due).	identical with those of compound in Ex.	0. 70~1. 85(1311, a). 1. 38(911, S). 2. 81(211, d, J=5. 611z). 3. 20(111, dd, J=4, 8. 14. 211z) 3. 45(111, dd, J=5. 2. 14. 81tz). 3. 69(311, S). 3. 92(111, a). 4. 07(111, t, J=5. 81tz), 4. 49(111, ddd, J=6. 811zx3) 6. 48(111; d. J=9. 611z). 6. 57(111, S). 6. 58(111, S). 7. 12(111, d. J=21tz). 7. 32(111, S). 8. 77(111, d. J=21tz)	0. 6-1, 92(1311. m), 2, 33(111. m), 2, 45-2, 75(211. m), 3, 20(111. dd, 1=14, 4, 5, 2112) 3, 44(111. dd, 1=14. 8, 3, 8112), 3, 85(111. m), 3, 93(111. m), 4, 45(111. ddd, 1=6, 2, 6, 2, 6, 2112) 6, 40(111. d, 1=9, 8112), 6, 49(111, d, 1=6, 8112), 7, 12(111. d, 1=1, 6112), 8, 78(111. d, 1=1, 8112)
35	(E) = (E)		1, 75-1, 94(13 1, 2 z), 4, 19(1 1-8, 6 z), 7, 13	1. 18(111. d. J=6 1. 18(111. d. J=6 1. 85(111. d. J=8 1. 58(111. td. J=	Identical vi	. 72-2. 00(138 . 00(18, ddd. J . 12(18, d. J-3	Identical ri	. 70-1. 85(13 . 45(1 , dd. J= . 48(1 ; d. J=9	. 6-1. 92(13)). . 44(1)). 4d. 3±9.
40	R2.	Yield%	.01	62	23	27	28	33	31
	Boc-N	ж 	E. ₹ \=\	<u>``</u> .≥^≥	£. ₹	2.2	¥. ₹ \} \=\	5	3 <u>~</u>
45	2 1	R.1.	p-mcthoxy- phenyl	3. 4 -methy- lenedioxy- phenyl	3-thicnyl	morpholino- carbonyloxy- phenyl	phcny1	N-methyl-3- pyrrolyl	cyclohexy1
50	Table 3	Coepd. of rep. No.	15	52	53	8	55	56	52

Preparation 58

5

10

15

20

25

30

35

40

45

50

55

$$R^{4}-NH$$

$$\begin{array}{c}
R^{3} = \text{phenyl} \\
R^{4} = (N-\text{morpholino}) \text{ sulfonyol} \\
E = CH_{3}
\end{array}$$

To a suspension of methyl ester of L-phenylalanine hydrochloride [31a] (4.31g, 20mmol) in dichloromethane (50ml) are added N-methylmorpholine (6.7g, 66mmol, 3.3eq). N-Morpholinosulfonyl chloride [30a] (4.44g, 24mmol, 1.2eq) in dichloromethane (4ml) and subsequently DMAP (244mg, 2.0mmol, 0.1eq) and the mixture is stirred overnight at room temperature. The reaction mixture is washed with 1N HCl and H₂O and the dichloromethane layer is dried over MgSO₄ and concentrated to dryness in vacuo. The residue is subjected to silica gel column chromatography (SiO₂: 110g, CH₂Cl₂:MeOH = 20:1) to obtain the compound [32a] (5.16g, 79%).

(i) To a solution of the compound [32a] (2.666g, 8.1mmol) in MeOH (12ml) is added 1N LiOH (12ml, 12mmol, 1.5eq) and the mixture is stirred at 80°C for 30 minutes. After removal of MeOH in vacuo, the reaction mixture is washed with ethyl acetate. The mixture is then treated with active carbon, adjusted to pH 2 - 3 with 1N HCl, and extracted with ethyl acetate. The extract is washed with saturated aqueous sodium chloride, dried over MgSO₄, and concentrated to dryness in vacuo. The residue is recrystallized from ethyl acetate/n-hexane to colorless needles of N-(N-morpholino)sulfonyl-phenylalanine [12b] (2.267g, 89%). m.p. 164 - 6°C (decomposition)

(ii) To the compound [32b] (E=Et) (920mg, 2.7mmol) are added 6N HCl (9.2ml) and acetic acid (2ml) and the mixture is heated with stirring on an oil bath of 100°C for one hour. After cooling, the reaction mixture is concentrated to dryness in vacuo. The residue is made alkaline by dissolving into saturated aqueous sodium bicarbonate. The aqueous solution is washed with dichloromethane (10ml x 3), treated with active carbon, and neutralized with 6N HCl. The solution is then made acidic up to pH 3 by addition of 10% aqueous citric acid and extracted with ethyl acetate (50ml x 3). The organic layer is washed with saturated aqueous sodium chloride (x 2), dried over MgSO₄, and concentrated to dryness in vacuo to give the compound [12c] as a crystalline residue (620mg, 74%). Recrystallization from dichloromethane/isopropyl ether affords white crystals (543mg, 64%). m.p. 157 - 158°C.

[α]₀=-17.7±0.6°(C=1.0; MeOH; 25.0°C) IRvmax(cm⁻¹): 3320, 3200-2600(br), 1750, 1603, 1585, 1500, 1455, 1400, 1352, 1300 NMR(δ): 2.93(5H,m), 3.17(1H,dd,J=5.2,14.2Hz), 3.54(4H,m), 4.11(1H,dd,J=5.2,8.6Hz), 7.30(5H,m)

Preparation 59

Boc - NH
$$\leftarrow$$
 COOCH₃ \rightarrow EtOH \rightarrow Boc - NH \rightarrow COOCH₃ \rightarrow NNN \rightarrow Tole

[33a] \rightarrow [34a]

COOCOOCH₃ \rightarrow COCCH₂ \rightarrow COCCH₂ \rightarrow COCCH₂ \rightarrow COCCH₃ \rightarrow COOCH₃ \rightarrow COOCH₃ \rightarrow COOCH₃ \rightarrow COOCH₃ \rightarrow COOCCH₃ \rightarrow

a) A solution of methyl ester of N-Boc-ω-benzyl-L-aspartic acid [33a] (52.7g, 0,156mmol) in a mixture of water (10ml), acetic acid (10ml) and methanol (150ml) is subjected to a catalytic reduction in the presence of 10% Pd-C (4.0g) under an atmosphere of hydrogen gas at room temperature. The reduction is conducted with stirring and under atmospheric pressure. After a 3-hour reaction, the catalyst is filtered off and the filtrate is evaporated to dryness in vacuo. The residue is dissolved in saturated aqueous sodium bicarbonate and the aqueous layer is washed with dichloromethane (50ml x 3), made acidic with citric acid (about pH3), and extracted with ethyl acetate (200ml x 4) while salting out with the addition of sodium chloride. The ethyl acetate layer is dried over MgSO₄ and concentrated to dryness in vacuo. Trituration of the residue with the addition of n-hexane affords the carboxylic acid [34a] (37.5g, 98%) as a white solid.

To a solution of the above product [34a] (18.8g, 76mmol) and N-methylmorpholine (7.8g, 77.1mmol, 1.0eq) in ethyl ether (200ml) is added isobutyl chlorocarbonate (9.92ml, 76.5mmol, 1.0eq) over 10 minutes at a temperature between -15°C and -10°C under nitrogen atmosphere, and the mixture is stirred at the same temperature for 30 minutes. Precepitated methylmorpholine hydrochloride is filtered off, and the filtrate is added to a solution of diazomethane in ethyl ether which has previously been prepared from nitrosomethylurea (37g, 359mmol) with stirring at -10°C over 5 minutes. After 2.5-hour stirring at room temperature, the mixture is concentrated in vacuo to remove excessive diazomethane. To the mixture is added ethyl acetate (150ml) and then dropwise added 2N HCl/ethyl acetate (45ml) at a temperature betwen -40°C and -30°C. After 30-minutes stirring, the mixture is neutralized with saturated aqueous sodium bicarbonate. The ethyl acetate layer is separated, dried over MgSO₄, evaporated to dryness in vacuo, and subjected to silica gel chromatography (SiO₂: 150g, AcOEt:CH₂Cl₂ = 6:1) to obtain the chloromethyl ketone [36a] (20.3g, 95%) as an oil.

To a solution of the above compound [36a] (40.3g, 144.1mmol) in MeCN (160ml) are added CaCO₃ (28g, 280mmol, 1.9eq) and thioformamide (HCSNH₂, 14g, 229.1mmol, 1.6eq) and the mixture is stirred at room temperature for 18 hours under nitrogen atmosphere. Insoluble materials are filtered off and the filtrate is concentrated to dryness in vacuo. The residue is dissolved in dichloromethane, subsequently washed with 7% aqueous

sodium bicarbonate, 1N NaOH, and water, two times each, to remove non-reacted thioformamide. The dichloromethane layer is dried over MgSO4, concentrated to dryness in vacuo, and subjected to silica gel chromatography (SiO₂: 370g, MeCN:CH₂Cl₂ = 1:7) to obtain (4-thiazolyl)alanine derivative [37a] (29.15g, 71%) as an oil.

To the solution of above product [37a] (29.1g, 101.6mmol) in methanol(120ml) is added 1N LiOH (112ml, 112mmol, 1.1eq) with stirring and ice-cooling and the mixture is stirred for ten minutes at the same temperature and allowed to react an additional one hour at room temperature. The reaction mixture is concentrated in vacuo on a water bath below 30°C to remove methanol and the residue is washed three times with dichloromethane. The aqueous layer is treated with active carbon, and citric acid to adjust the pH to 3, and extracted with ethyl acetate (150ml imes 3). To the organic layer washed two times with saturated aqueous sodium chloride are added MgSO₄ and active carbon, the mixture is filtered and the filtrate is concentrated to dryness in vacuo to obtain crystalline crude product [8b] (26.96g, 97%). Recrystallization of the product from n-hexane provides pure product [8b] (26.2g, 95%). m.p. 96 - 98°C

[a]p=-4.2°(c=2; MeOH; 24°C)

5

15

20

25

30

35

50

55

 $NMR(\delta)$: 1.47(9H,s), 3.41(1H,dd,J=5.6,14.6Hz), 3.56(1H,dd,J=3.4,11.0Hz), 4.59(1H,m), 3.60(1H,d,J=3.6Hz), 7.14(1H,d,J=2Hz), 8.94(1H,d,J=2Hz)

[34a]
$$\xrightarrow{\text{C}\ell\text{COOiPr}}$$
 Boc - NH $\xrightarrow{\text{COOCO0iPr}}$ CH₂ = SNe₂ $\xrightarrow{\text{To}\ell\text{:DMSO}}$ 9:1

$$\begin{array}{c|c}
0 \\
\text{COCH} = \text{SNe}_2 & \text{i)HC}\ell \\
\hline
\text{Boc} - \text{NH} & \text{COOCH}_3 & \text{ii)} & \Delta & \text{Boc} - \text{NH} & \text{COOCH}_3 & \longrightarrow & [8b]
\end{array}$$
[38a]

i) Preparation of carbonic anhydride

To a solution of compound [34a] (500mg, 2.02mmol) and N-methylmorpholine (225mg, 2.22mmol, 1.1eq) in toluene (4ml) is added isopropyl chlorocarbonate (0.254ml, 2.22mmol, 1.1eq) with stirring at a temperature between -15°C and -10°C under nitrogen atmosphere and the mixture is stirred at the same temperature for one hour to separate out N-methylmorpholine hydrochloride.

ii) Preparation of Corey reagent (dimethylsulfoxonium methylide)

To a suspension of trimethylsulfoxonium iodide (1.024g, 4.65mmol) in toluene (9ml) and DMSO (1ml) is added potassium t-butoxide (522mg, 4.65mmol, 1.0eq) with stirring under nitrogen atmosphere, and the mixture is heated with stirring on an oil bath at 70 - 75°C for 30 minutes. Orange crystals turn to grayish white crystals.

The carbonic anhydride solution obtained in the above step i) is charged in a dropping funnel with a cotton stopper. The solution is dropwise added to the Corey reagent prepared in the step ii) from the funnel with stiming and ice-cooling under nitrogen atmosphere over 10 minutes and the mixture is stirred at room temperature for one hour. The mixture is filtered and the filtrate is extracted with water (10ml x 3). The aqueous layer is extracted with dichloromethane (10ml x 4). Each extract is washed with water, dried over MgSO4, and concentrated to dryness in vacuo to obtain 600mg of crude product. Chromatography (SiO2: 40g, 3.5% MeOH/CH2Cl2) of the crude product gives the aimed ylide compound [38a] (554mg, 85%) as an oil.

To a solution of the ylide [38a] (3.16g, 9.83mmol) in dichloroethane (26ml) is added 2N HCl/ethyl acetate (4.92ml, 9.84mmol) with stirring at -10°C and the mixture is stirred for one hour. The mixture is warmed on an oil bath of 100°C. Although precipitates (HCI addition product) separate out after two minutes, they redissolve after 3.5 minutes. When the solution becomes turbid after 6 minutes, the solution is cooled immediately to terminate the reaction and the reaction mixture is subjected to silica gel chromatography (SiO₂: 15g, AcOEt:CH₂Cl₂ = 1:7) to obtain chloromethyl ketone [36a] (2.308g, 84%) as a crystal substance.

A suspension of the above product [36a] (2.308g, 8.25mmol), $HCSNH_2$ (1.26g, 20.62mmol, 2.5eq) and $CaCO_3$ (2.475g, 24.75mmol, 3eq) in dichloroethane (23ml), is stirred at room temperature for 15 hours under nitrogen atmosphere. After addition of NaI (62mg, 0.414mmol, 0.05eq), the mixture is stirred for an additional two hours. Insoluble materials are filtered off and washed with dichloromethane. The filtrate and washings are combined and subsequently washed with saturated aqueous sodium bicarbonate, 1N NaOH, and H_2O (x 2). Chromatographic treatment of the solution in the same manner as described in the foregoing process a) provides (4-thiazolyl)-L-alanine derivative [37a] (1.878g, 80%) as an oil.

To a solution of the above compound [37a] (3.16g, 11.04mmol) in methanol (6ml) is added with stirring and ice-cooling 1N LiOH (13ml, 13mmol, 1.18eq) and the mixture is stirred at room temperature for one hour. Similar procedure as disclosed in the process a) provides crude product [8b] (2.9g, 97%). Recrystallization of the product from ethyl ether/n-hexane gives pure product [8b] (2.6g, 88%) as colorless crystals. m.p. 110 - 112°C. [α]_D=-4.8 (c=2.0; MeOH; 25°C)

Preparation 60 and 61

10

15

20

25

55

N-sulfamylamino acids [12] listed in Table 4 are prepared from the compounds [30] in the same manner as disclosed in Preparation 58.

Preparation 62 and 63

2-Substituted (4-thiazolyl)-L-alanines [8] listed in Table 5 are prepared from the compounds [36] in the same manner as disclosed in Preparation 59.

5	. X. X.	1000)	NMR(6)	2. 55(21, m), 2. 63(21, m). 3. 13(211, m), 3. 20(311, m). 3. 55(111, bs), 3. 80(111, dd. 1=4, 4, 1011z), 4, 35(111, dt. 1=10, 211z), 7, 37(211, m). 7, 57(211, m), 7, 89(211, m). 8, 10(111, d, 1=8, 211z)	2. 58(611, s), 2. 98(111, ad. J=7. 8, 13. 6112), 3. 20(111, dd. J=5. 2, 13. 612), 4. 24(111, dofdd, J=9. 6, 7. 4, 4. 6112). 4. 90(111, d. J=10112). 4. 90(111, bs), 7. 30(51. m)
15		→ R*-NII (CIICA, CIICA	3480, 3340, 3200~2400, 1723(1750)1598, 1508, 1450, 1395, 1342, 1155, 1111, 1070, 848	
20					
25		R4 - NII COOE [32]	[α],, C=1, NcOll (Temp, °C	-56. 7(25)	·
30	4. 	1	Yield%	76	. 26
35		$\begin{array}{c} C\ell \\ z^N \\ \end{array} \begin{array}{c} R^3 \\ \end{array} $	[32] Yic1d%	88	83
40		$R^4 - C\ell + H_2N \rightarrow [30]$	<u></u> 53	9 7	33
45		∝	R.		<u></u>
50	~ I		**	ONSO2.	ИС NSO1
55	Table			60	61

			•			
5				(a		
10	×		٤)	, m), 4, 64(1), 6, 69(1), s),		
15	Boc - NII COOII		NMR(6)	*1.50(91, s), 3.38(211, m), 4.64(111, m). 5.15(211, d, J=6.8112), 6.69(111, s). 8.48(111, s)		
20	ž]	·			
25	(1,2) (1	[8]	1 R U CIICes CR 1	3430, 2440(br) 1700, 1495. 1435, 1392 1368, 1160 1060 *3440, 3200. 2440(br) 1700, 1565, 1500 1455, 1435, 1392 1370, 1160	1062	
30	Boc - NII (37)		[a]b. C=1, NeOll (temp. °C)	(C=2) -20. 4 (24) -4. 3		•.
35	M - CSNH2		% mp; (°C)	135- 136 * * * 156-		٠.
40	0 0 0 0 0 0 0		Yicld	83.		
45	Boc - NII (36)		[α],, C=1. Ne0!!	-345 (24) -10.1*		COmponia
50		(192)	Yield%	88	Towns of the second of the sec	* JOI my I
	101		Σ	CII.3	·	
55	Table 5		Compd.	63		

Preparation 64

5

R⁷-NH

CHO

CHO

ACOEt

100%

R⁷-NH

Et₂0

R⁷-NH

Et₂0

Et₂0

R⁷-NH

NHSO₂R¹

Et₃N, CH₂C
$$\ell_2$$

R⁷-NH

R⁷-NH

R⁷-NH

Et₂0

R⁸-NH

Et₂0

R⁹-NH

Et₂0

R⁹-NH

Et₂0

R⁹-NH

Et₂0

To the aldehyde compound [1a] (10.08g, 39.5mmol) is added NaHSO₃ (10.08g) in water (70ml) and the mixture is stirred with ice-cooling for 16 hours. The resultant solution is stirred at room temperature for 4 hours after addition of KCN (6.3g) in water (16.8ml) and ethyl acetate (137ml). The ethyl acetate layer is separated from the reaction mixture, washed with saturated aqueous sodium chloride, dried, and concentrated. The residue is subjected to column chromatography using Lobar column Size C (CH₂Cl₂:acetone = 19:1). Resultant product is recrystallized from hexane to give the aimed product [20a] (6.51g, 58%).

The product [20a] (3.56g, 12.6mmol) in anhydrous THF (50ml) is added dropwise to a suspension of LiAlH₄ (574mg, 1.2mol) in anhydrous THF (30ml) with stirring and ice-cooling over 30 minutes. The mixture is stirred at 0°C for an additional one hour. A small amount of ethyl acetate and ice water are added to the mixture to separate out inorganic materials. The insoluble materials are filtered, and the filtrate is concentrated in vacuo and then purified with silica gel chromatography (SiO₂: 120g, CH₂Cl₂:MeOH:NH₄OH = 80:20:2). The aimed compound [21a] (2.21g, 61%) is thus obtained.

To a solution of the compound [21a] (12.49g, 43.6mmol) in anhydrous dichloromethane (200ml) are added triethylamine (8.8g, 2.0eq) and morpholinosulfonyl chloride (10.1g, 1.25eq) and the mixture is stirred at room temperature for 3 hours and concentrated in vacuo. The residue is dissolved in ethyl acetate, washed with water, dried, and evaporated to remove the solvent. The residue is purified with silica gel chromatography (SiO₂: 200g, CH₂Cl₂:MeOH:NH₄OH = 90:10:1). The aimed compound [23a] (18.16g, 95%) is thus obtained. NMR(δ): 0.70-1.85(13H,m), 1.45(9H,s), 3.02(1H,m), 3.18(5H,m), 3.72(6H,m), 4.62(1H,d,J=9.2Hz), 5.58(1H,bt)

Preparation 65-74

25

35

40

45

50

55

The compounds [23] listed in Table 6 are prepared in the manner as taught in Preparation 64.

										`		
10				, J=9, 211z).		111, dt. . 8. 79(111, bd).	12, 9112).	. 7. S. OHz).	d. J=9. 2llz). 0. 8. 2llz). :)	a), 3. 08(111. dt, a),	. (a	a). 4. 65(111. d.
15) NIISO ₂ R' [23]			0.80~1.90(1311, n). 1.45(911.5). 2.80(611.5). 3.08(211.n). 3.72(211, n). 4.63(111.d. J.9.2112).		0.70-1.80(1311, a), 1.37(911, s), 2.49(111, bs), 2.82(111, dt. 1=6.2, 13.5112), 3.12(111, dt. 1=7, 13112), 3.68(211, m), 4.60(111, d, 1=9, 3112), 4.47(111, dd. 1=4,6112), 8.17(111, m), 8.79(111, bd), a poetin be)	3. 00(111: 03)	0. 10*1. 65(1511, m). 3. 67(211, m). 4. 57(111, d, 1*9, 2), 5. 89(111, t, 1*711z), 7. 07(111, dd. 1*3. 7. 5. 0Hz). 7. 60(211, m). 6. 24(111, bt)	0. 65-1. 80(1311, m). 1. 32(911, s). 2. 89(2H, bt). 3. 55(1H, m). 3. 66(1H, m). 4. 58(1H, d. J=9. 2Hz). 6. 80(1H, bt). 7. 57(1H, dd. J=4. 4. 8. 4Hz), 7. 66(1H, t. J=7. 4Hz). 8. 07(1H, dd. J=1. 0. 8. 2Hz). 8. 99(1H, dd. J=1. 6. 8. 4Hz). 8. 42(1H, dd. J=1. 4. 7. 4Hz). 9. 05(1H, dd. J=1. 6. 4. 4Hz)	0.70~1.80(1311, a). 1.37(911, s). 2.58(111, bd, J=5112). 2.80(111, dt. J=6.2.13.6112). 3.08(111, dt. J=6.5,13.6112). 3.65(211, a). 4.56(111, d. J=9.2112). 5.82(111, bt. J=6112). 7.53(311, a). 7.85(211, a)	0.75~1.87(1311, m). 1.45(911, s). 1.98(111, bs). 2.52(411, m). 2.86(211, m). 3.17(411, m). 3.73(611, m). 4.62(111, d, J=9.41z). 5.63(111, bt)	0, 75~1, 88(1311, m), 1, 45(911, s), 2, 03(2H, m), 2, 49(6H, m), 3, 13(4H, m), 3, 72(6H, m), 4, 65(1H, d, 1=9, 1Hz), 5, 82(1H, bt)
20	Boc - NII (1)			8(211, a). 3. 72(21	ă.	82(111, dt. J=6. 2, 47(111, dd. J=4. 6	1.13.41(2).3.1	9(111, t, J=711z).	55(111, m); 3. 66(11, t, J=7. 4112), 8 7, 4112), 9, 05(111,	3Hz), 2, 80(111, dt 2), 5, 82(111, bt. J	. 52(411, m), 2, 86(49(6II, m), 3, 13(
25	EtsN Bo	[23]	NMR(5)	80(6ll, s), 3.0		49(111, bs), 2. 1, J=9, 3Hz), 4.	OUCH At 1=6	d, J=9. 2), 5. 8	89(2H, bt), 3. 8, 4Hz), 7, 66(1 1H, dd, J=1, 4, 7	. 58(1H, bd, J=E (1H, d, J=9. 2H2	. 98(111, bs). 2. , 5. 63(14, bt)	. 03(2H, m). 2.
30	+ CeSO,R'		Z	1. 45(9II. s.), 2.	, i	1.37(911.s). 2. m). 4.60(111.c	1 20/01 5) 9	1. 53(511, 5), 5, 11, n), 4, 57(111, 11, bt)	1. 32(911, s), 2. (111, dd, J=4, 4, 8. 412), 8. 42(1.37(911, s), 2 65(211, m), 4.56	0, 75~1, 87(1311, m), 1, 45(911, s), 1, 98(111, bs), 2 3, 73(611, m), 4, 62(111, d, J=9, 411z), 5, 63(111, bt)	. 1. 45(911. s). 2 .,bt)
35				-1. 90(1311, m).	5. 48(1Н. ш)	0. 70~1. 80(1311. a). J=7, 1311z). 3. 68(211	1 05(1211 =)		-1. 80(1311. m). (111, bt), 7. 57(0.70~1.80(1311, m). J=6.5.13.61(z).3.(7.85(21), m)	-1. 87(1311, m). 1(611, m). 4. 62(0, 75-1, 88(13 , n), 1, 4 J=9, 1 z), 5, 82(1 , bt)
40	Boc - Mil			8	5. 48	0.70	9 6	2.69 2.69 ≥	0.65 6.80 2.90	0.70 J=6.	3.7.	1.9
			icld %		26	06	1	93	66	97	- 72	36
45			<u>۲</u> ۲		-NKe2	(O)=	12	Q°		(Q)	Ů }	Ů -
50	Table 6	Compd.	of No.	2		99		. 49	89	69	70	11

.

Z.
: ·
<u>۾</u>
ě
.
on t
:0
9
ပ
api
Ë
_

			[23]
Compd			
Jo	2	yicld	NMR(S)
Prcp. No.		ሄ	3 84(211, n), 4, 66(111, d.
72	V N⊮c,	75	0. 75~1. 90(1311, m). 1. 44(911, s). 2. 29(011, s). 2. 00(211, m). 0. 15~1. 90(1311, m). 1. 44(911, s). 2. 29(011, s). 2. 00(211, m). 0. 15. 15. 17. 18. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19
		:	3 14(211, m), 3, 72(211, m), 4, 65(111, d.
7.3	ခ္ခ	97	0.75~1.85(131, m), 1.45(31, s), 2.65(111, 5), 2.55(111, 5), 2.55(111, 5), 5.53(111, 5)
2			
74	{	86	0, 94(311, t, J=7, 2112), 0, 80~1, 35(111, t, J=7112) 3, 70(211, n), 4, 63(111, d, J=9112), 5, 44(111, t, J=7112)

.

Preparation 75

$$R^{7} = Boc$$

$$R^{1} = N \bigcirc 0$$

$$R^{2} = I \bigcirc N$$

A mixture of the compound [23a] (18.16g, 41.6mmol), THF (150ml), and 6N HCl (150ml) is stirred at room temperature for 4 hours. The reaction mixture is made alkaline with Na_2CO_3 and saturated aqueous $NaHCO_3$ and extracted with a mixture of dichloromethane and methanol (9:1). The organic layer is dried and evaporated to dryness in vacuo. The residue is subjected to silica gel column chromatography (SiO₂: 100g, CH_2CI_2 :MeOH:NH₄OH = 80:20:2). The compound [24a] (14.0g, quantitative amount) is thus obtained.

To a solution of the above compound [24a] (14.0g, 41.6mmol) in acetonitrile (200ml) are added 4-thiazo-lyl-L-alanine [8b] (12.09g, 1.1eq) and HOBt (7.04g, 1.25eq) with ice-cooling. To the mixture is added DCC (11.18g, 1.3eq) and the resulting mixture is stirred for one hour at 0 °C and one hour at room temperature. The reaction mixture is filtered after addition of ethyl acetate and the filtrate is concentrated in vacuo. The residue is subjected to silica gel column chromatography (SiO₂: 600g, CH₂Cl₂:MeOH:NH₄OH = 90:10:1) to give the product [25a] (24.5g, quantitative amount).

NMR(δ): 0.70-1.80(13H,m), 1.45(9H,s), 2.45(1H,bs), 2.98(2H,m), 3.18(4H,m), 3.30(2H,m), 3.75(5H,m), 4.02(1H,m), 4.46(1H,ddd,J=6.4Hx3), 5.72(1H,bt,J=6.6Hz), 6.16(1H,d,J=6.4Hz), 6.36(1H,d,J=9.2Hz), 7.15(1H,d,J=1.8Hz), 8.82(1H,d,J=2Hz)

Preparation 76-86

Compounds [25] listed in Table 7 are prepared according to the procedure disclosed in Preparation 75.

5				· · ·		
10) NIISO ₂ R¹ [25]	9H m) 3 73(1H m).	0.70~1.80(1311, m), 1.45(911, s), 2.79(611, s), 2.53(211, m), 3.53(211, 2), 2.33(211, d), 4.48(111, ddd, J=6, 6112), 5.58(111, bt), 6.15(111, d, J=7112), 6.39(111, d, J=10112), 7.15(111, d, J=1, 8112), 8.82(111, d, J=2112)), 3, 99(111, m), 11, d, J=1, 812), 11, d, J=2112),	0. 65-2. 00(1311, m), 1. 43(911, s), 2. 81(111, dt. J=6. 3, 13. 5112), 2. 99(111, dt. J=6. 9, 13. 5112), 3. 24(211, m), 3. 66(111, dd. J=2. 4, 6. 8112), 3. 97(111, m), 4. 45(111, ddd. J=6. 9112x3), 6. 02(111, d, J=6. 9112), 6. 22(111, bt), 6. 39(111, d, J=9. 3112), 7. 10(211, m), 8. 75(111, d, J=1. 8112)	0. 55(1311, m), 1. 43(911, s), 2. 79(211, m), 3. 11(111, dd. J=5. 1.14. (112), 5. 25(111, dd. J=5. 4, 14. 7112), 3. 65(111, m), 3. 84(111, m), 4. 32(111, dd. J=6. 6112x3), 6. 09(111, d. J=6112), 6. 27(111, d. J=9. 4112), 6. 78(111, t. J=6. 2112), 7. 02(111, d. J=1. 8112), 7. 56(111, dd. J=4. 3, 8. 4112), 7. 65(111, t. J=7. 4112), 8. 06(111, dd. J=1. 4, 8. 3112), 8. 27(111, dd. J=1. 8, 8. 4112), 8. 41(111, dd. J=1. 4, 7. 3112), 8. 69(111, d. J=1. 912), 9. 04(111, dd. J=1. 7, 4. 2112)
15	= \5	706 6 (= 11	15(111, d. J. 13(111, d. J. 13(111, d. J. 13(111, d. J. 13(11))	. a). 7. 11(1	13. 5112). 2. 5112). 3. 97(1	J=5, 1, 14. ddd, J=6, 6ll. 7, 02(1ll, dd, 06(1ll, dd, 11z), 8, 69(1
20	Boc - NII	NMR(6)	9(611, 8), 2, 33(6), 5, 5, 58(111, bt), 6 (111, d, J=2112)	.), 3, 70(111, dt. J .6, 311z), 6, 55(211 ., 8, 20(111, d. J=7	31(111, dt. J=6. 3. 111, dd. J=2. 4. 6. E 5. 22(111, bt), 6. â	, m), 3. 11(111, dd. 111, m), 4. 32(111, qf. (111, t, J=6. 211z), 11, t, J=7. 411z), 8 11, dd. J=1. 4, 7. 3
25 ,	C0011 [8]		911, s), 2, 7 , J=6, 6Hz) 811z), 8, 82	911, s), 2, 6 d, J=5, 6 15(111, d, J= J=4, 24 11z)	(911, s), 2. { 11, 3. 66(1=6, 911z), (1=1, 811z)), 2. 79(2ll, .e.), 3. 84(4llz), 6. 78 z), 7. 65(1z), 2), 8. 41(1z)
30	Boc - NII COO		0. 70~1. 80(1311, m), 1. 45(911, s), 2. 79(511, s), 2. 53(511, m), 3. 53(511, 5), 5. 4. 01(111, m), 4. 48(111, ddd, J=6. 6112), 5. 58(111, bt), 6. 15(111, d, J=7112), 6. 3 (111, d), 7. 15(111, d, J=1. 8112), 8. 82(111, d, J=2112)	0. 65-1. 75(13H; m), 1. 39(9H, s), 2. 60(1H, dt. 3-0, 4, 13), 312, 313, 313, 313, 313, 313, 313, 313	0. 65-2. 00(1311, m), 1. 43(911, s), 2. 81(111, dt. J=6. 3, 13. 511z), 2. 99(111, dt. J=6, 9, 13. 511z), 3. 24(211, m), 3. 66(111, dd. J=2. 4, 6. 811z), 3. 97(111, m), 4. 44 1=6. 511z×3), 6. 02(111, d, J=6, 911z), 6. 22(111, bt), 6. 39(111, d, J=9. 311z), 7. 58(211, m), 8. 75(111, d, J=1, 811z)	0. 55(1311, m), 1. 43(911, s), 2. 79(211, m), 3. 11(111, dd. J=5. 1. 14. 1112), 3. 65(111, m), 3. 84(111, m), 4. 32(111, ddd. J=6. 6112x3), 6. 09(111, d. J=6.112, j. 6. 27(111, d. J=9. 4112), 6. 78(111, t. J=6. 2112), 7. 02(111, d. J=1. 8112), 7. 56(111, dd. J=4. 3. 8. 4112), 7. 65(111, t. J=7. 4112), 8. 06(111, dd. J=1. 4. 8. 3112), 8. 27(111, dd. J=1. 8. 8. 4112), 8. 41(111, dd. J=1. 4. 7. 3112), 8. 69(111, d. J=1. 912), 9. 04(111, dd. J=1. 7. 4. 2112)
35	NISO ₂ R'	L	0. 70~1. 4. 01(11 J=1011z)	0. 65~1. J=6. 6. 4. 46(11) 7. 45(11) 9. 08(11)	0. 65~2 J=6. 9. J=6. 5 7. 58(2	0. 55(1 1-5. 4. 1-6112) 7. 56(1 8. 27(1
40		Yield%	06	٧6	66	96
	₹	ж ж	3_7	% <u>₹</u>		
45		<u>~</u>	-NKe.	@		⊘ *
50	Table 7	Compd. of Prep. No.	76	77	28	79

able 7 (continued)

Compd. of Prep. No. 80		2 4	76P193A	(25) NMR(5)
of Prep. No.	- O C		Vielde	(P) MMN
80	(a) (c)	2	_	
80				0. 67~2. 00(1311, m), 1. 43(911, s), 2. 74(111, dt, J=6. 9, 13. 511z), 2. 94(111, dt, J=6. 8.
			66	13. 5112), 3. 18(111, dd, J=6. 3, 14Hz), 3. 27(111, dd, J=5. 1, 14112), 3. 52(111, dt, J=2. 0.
·		Ĭ		6.8112), 3.95(111, m), 4.41(111, ddd, J=6.6112x3), 5.95(111, bt), 6.05(111, d. J=6.0).
·	Ç	-		6. 29(111, d. 1=9. 3112), 7. 07(111, d. 1=1. 9112), 7. 52(311, m), 1. 86(211, m), 8. 13(111, d.
	Ç	• •		1.2. 0112)
	()			0.63-1.78(1311, m). 1.45(911, s). 2.14(111, bs). 2.52(411, bt, J=4, 6112). 2.86(211, 1,
\ =		~ <u>_</u>	66	J=7112), 3. 05(211, bt. J=6112), 3. 14~3. 40(411, a), 3. 66(111, a), 3. 73(411, a).
5)		}.	4. 00(111, m), 4. 42(111, ddd, J=6. 2Hz), 5. 80(111, bt), 6. 24(111, d, J=6. 611z), 6. 31(111, d,
	ŗ		· .	J=9 4112). 7. 14(111, d, J=2Hz), 8. 81(111, d. J=211z)
		,		0 70~1 80(1311, m), 1, 45(9H, S), 2, 01(211, m), 2, 49(611, m), 3, 08(411, m), 3, 30(211, m),
\ \ -	(<u>x</u> /	<u>.</u>	ç	3 72(511, m), 4, 00(111, m), 4, 43(111, ddd, J=6, 6112x3), 5, 88(111, bt), 6, 24(111, d.
70)	Ĩ	3	J=6, 6 12), 6, 52(111, d, J=9, 6 12), 7, 15(111, d, J=1, 8 12), 8, 82(111, d, J=1, 8 12)
	:			0 60~1 80(1311, m). 1, 45(911, s), 2, 29(611, s), 2, 81(211, t, 1=6, 211z), 3, 04(211, d,
		4	11	J=6 6 12). 3 18(2 1, m), 3. 25(1 1, dd, J=5. 6, 14, 6 12), 3. 34(1 1, dd, J=5. 4, 14. 6 12).
3 	/ NYC2			3. 65(111, dt, J=2. 4, 6, 2112), 3, 98(111, m), 4, 45(111, ddd, J=6, 6112), 6, 22(111, d.
		: ·	···	J=6. 6112), 6. 40(111, d, J=9. 6112), 7. 14(111, d, J=2112), 8. 81(111, d, J=2112)
:		u		0.70~1.80(1311, m), 1.45(911, s), 2.96(611, s), 3.03(211, m), 3.30(211, m), 3.70(111, m).
. 98	<u>ء</u>		75	4, 02(111, m), 4, 46(111, ddd, J=6, 6112×3), 5, 72(111, bt), 6, 21(111, d, J=6, 6112),
	,	Ĩ		6. 39(111, d, J=9, 6112), 7, 15(111, d, J=1, 6112), 8, 82(111, d, J=1, 8112)
				0. 95(311, t. 1-7, 2112), 0. 65-1: 88(1711, m), 1. 45(911, s), 3. 00(511, m), 3. 30(211, m).
88		\ <u></u>	8	3. 68(111, dt. 1=2. 3, 6. 611z), 4. 01(111, m), 4. 45(111, ddd, J=6. 211zx3), 5. 56(111, bt).
3	. (<u></u>		6. 18(111, d. 1=6. 6112)6. 35(111, d. 1=9. 6112). 7. 14(111, d. 1=1. 8112). 8. 81(111, d.
	<u>/</u>			J=2. 011z)

ogen i de market de la sedició The second second State of the Control of the Control

and a statement of the last

	[25]	(A) GMN	11)30 6 (2113 6: 6 3 :	0 65~1 75(1311, a), 1. 43(911, s), 2. 64(311, s), 2. 74(111, dt, J-6, 3, 13, 0112), 2. 30(11), 444	- Ne 99 dt, J=6.8, 13. 4liz), 3. 10(2ll, a), 3. 61(1ll, dt, J=3, 6. 6liz), 3. 96(1ll, a), 4. 34(1ll, c), - Ne dt, J=6.8, 13. 4liz), 6. 82(1ll, s), - Ne dt, J=6. 2liz), 6. 32(1ll, dt, J=6. 2liz), 6. 82(1ll, s), - Ne dt, J=6. 2liz), 6. 32(1ll, dt, J=6. 2liz), 7. 32(1l	7. 52(311, m). 7. 86(211, dd. J=1. 6, 7. 811z)	
en de martin en milijen i til en Programmen i den en de som de Programmen i de de som de milijen			Yield%		66	: : '	
		• • • • • • • • • • • • • • • • • • •	<u>`</u>		N N N	Ĩ	
Continued		•	- ≃		0	>	
Table 7 (conf		Compd.	Jo	Prcp. No.	98		_

Example 1

5

10

15

20

25

3-t-Butylsulfonyl-2(S)-phenylmethylpropionyl-His-1(S)-cyclohexylmethyl-2(S)-hydroxy-4-oxo-4-(4-pyridyl)butylamide [la]

1) His(Ts)-1(S)-cyclohexylmethyl-2(S)-hydroxy-4-oxo-4-(4-pyridyl)butylamide [11a]

$$\mathbb{R}^{7-N\mathbb{H}}$$
 \mathbb{R}^{2}
 \mathbb{R}^{1}
 \mathbb{R}^{1}

[10a]

[11a] $R^{1} = 4 - pyridyl$ $R^{2} = 4 - tosylimidazolyl$ $R^{7} : Boc$

35

Boc-His(Ts) 1(S)-cyclohexylmethyl-2(S), hydroxy-4-oxo-4-(4-pyridyl)butylamide [10a] (1.31g, 1.96mmol) prepared in Preparation 21 is dissolved in anisole (13ml). To the solution is added trifluoroacetic acid (13ml) with stirring and ice-cooling and the mixture is stirred at room temperature for one hour. After evaporation of the reaction mixture to dryness in vacuo, ice is added to the residue and the mixture is washed with ethyl ether. The aqueous layer neutralized with 3N NaOH and adjusted to pH8 by addition of powdered Na₂CO₃ is extracted with dichloromethane three times and finally extracted with a mixture of dichloromethane and methanol (10:1). The organic layer is washed with saturated aqueous sodium chloride, dried over MgSO₄ and evaporated to dryness in vacuo. The residue is purified with silica gel chromatography (CH₂Cl₂:MeOH = 95:5) to obtain the aimed crude product (850mg, 73%). Recrystallization of the crude product from ethyl acetate provides the title compound [11a] (750mg, 65%) as a needle crystal. m.p.161-162°C
NMR(δ): 0.75-1.80(13H,m), 1.98(1H,br.s), 2.44(3H,s), 2.73(1H,dd,J=14.8,8.2Hz), 2.95~3.24(3H,m), 3.65(1H,

 $NMR(\delta): 0.75-1.80(13H,m), \ 1.98(1H,br.s), \ 2.44(3H,s), \ 2.73(1H,dd,J=14.8,8.2Hz), \ 2.95-3.24(3H,m), \ 3.65(1H,dd,J=8.4,4.2Hz), \ 4.02(1H,m), \ 4.27(1H,m), \ 7.12(1H,d,J=1.2Hz), \ 7.36(2H,d,J=7.8Hz), \ 7.53(1H,d,J=10Hz), \ 7.70(2H,m), \ 7.81(2H,d,J=8.4Hz), \ 7.92(1H,d,J=1.4Hz), \ 8.79(2H,m)$

IR vmax(CHCl₃)cm⁻¹:3680, 3340, 1690, 1654, 1602, 1593, 1515, 1475, 1450

50 Elemental analysis(as C₂₉H₃₉N₅O₆S)

Calcd.: C:59.01; H:6.75; N:11.87; S:5.43 Found : C:59.12; H:6.69; N:11.68; S:5.21

2) 3-t-Butylsulfonyl-2(S)-phenylmethylpropionyl-His(Ts).1(S)-cyclohexylmethyl-2(S)-hydroxy-4-oxo-4-(4-pyridyl)butylamide [13a]

5

10

50

To a solution of the ketone compound [11a] (334mg, 0.57mmol) in dichloromethane (1ml) are added 3-tbuty/sulfonyl-2(S)-phenylmethylpropionic acid (220mg, 0.76mmol, 1.3eq), N-methylmorpholine (77mg, 0.76mmol, 1.3eq), and then DEPC (124mg, 0.76mmol, 1.3eq) and the mixture is stirred at room temperature for four hours. The reaction mixture is evaporated to dryness in vacuo and subjected to silica gel chromatography (CH₂Cl₂:MeOH = 95:5) to obtain the title compound [13a] (418mg, 89%) as colorless powders. NMR δ : 0.70-2.10(14H,m), 1.33(9H,s), 2.43(3H,s), 2.70 -3.28(8H,m), 3.45(1H,dd,J=12.9,9.4Hz), 4.00(1H,m), 4.18(1H,m), 4:53(1H,ddd,J=5.8,5.8,5.8Hz), 6.34(1H,d,J=10Hz), 7.17(1H,d,J=1.2Hz), 7.22(5H,m), 7.34 (2H, d, J=8.4Hz), 7.81(2H,d,J=8.5Hz), 7.85(1H,d,J=1.2Hz), 7.75(2H,d,J=6.0Hz), 8.81(2H,d,J=5.9Hz) IR vmax(CHCl₃) cm⁻¹:3680, 3470, 3370, 1665, 1600, 1520, 1450, 1172, 1112, 1075

3) 3-t-Butylsulfonyl-2(S)-phenylmethylpropionyl-His 1(S)-cyclohexylmethyl-2(S)-hydroxy-4-oxo-4-(4-pyridyl) butylamide [la]

$$R^{4} = t-butylsulfonyl$$

$$X = C H_{2}$$

$$R^{2}$$

$$NH$$

$$NH$$

$$H\bar{0}$$

$$NH$$

$$H\bar{0}$$

$$NH$$

$$H\bar{0}$$

$$R^{1} = 4 - pyridyl$$

$$R^{2} = 4 - imidazolyl$$

$$R^{3} = phenyl$$

To a solution of the protected compound [13a] (740mg, 0.89mmol) obtained in the above step 2) in DMF (4ml) is added pyridinium hydrochloride (1030mg, 8.87mmol, 10.0eq) and the mixture is stirred at room temperature for two hours. The reaction mixture is adjusted to pH 7 - 8 by addition of ice and 4% aqueous NaHCO₃ and extracted three times with dichloromethane. The organic layer is washed with saturated aqueous sodium chloride, dried over MgSO4, and concentrated to dryness in vacuo. The residue is purified with silica gel chromatography (CH₂Cl₂:MeOH:concNH₄OH = 950:50:1) to obtain the title compound [la] (543mg, 90%). Trituration of the residue with diisopropyl ether gives colorless powders.

NMR δ : 0.67-1.83(13H,m), 1.33(9H,s), 2.86(1H,d,J=13.5,8.4Hz), 2.97(1H,dd,J=13.0,9.8Hz), 3.10(5H,m), 3.26(1H,m), 3.56(1H,dd,J=13.0,9.8Hz), 4.02(1H,m), 4.20(1H,m), 4.56(1H,ddd,J=6.3,6.3,6.3Hz), 6.44 (1H, d,

J=10Hz), 6.90(1H,s), 7.24(4H,m), 7.48(1H,s), 7.46(1H,bs), 7.70(2H,m), 8.78(2H,m)

[a]_D=-22.5°(C=1.0; MeOH; 23°C) IR vmax(CHCl₃)cm⁻¹:3460, 3360(br), 1662(1690sh), 1603, 1496, 1450, 1410,

Elemental analysis (as C₃₈H₄₉N₅O₆S.3/4H₂O) Calcd.: C:62.36; H:7.34; N:10.10; S:4.62 Found: C:62.42; H:7.33; N:10.21; S:4.49

Examples 2-52

20

25

30

35

45

50

55

The same procedure as disclosed in the steps 1) and 2) in Example 1 is repeated using, as the starting material, the compounds [10] prepared in foregoing Preparations 21-58, and the compounds [11] and [13] listed in Tables 8 (compound [11]) and 9 (compound [13]) are obtained. The compounds [13] (for example, compound [13] of No. 23) wherein R1 or R2 is not protected correspond to the compounds (I) of the invention. Where the substituent R2 is protected, the compounds [13] are deprotected according to the procedure as disclosed in Step 3) in Example 1 to obtain the final products (I), which are listed in the following Table 10.

SAME TOWNS

5																								
			Found	C:63.34	11: 6.61	N: 9.84 S: 5.67											C:59.53	H: 6.04	N: 9. 42	S: 5.56	F: 6.38			
10			Elemental analysis Caled. Found	C: 63. 58 C	11: 6.76	K: 9.89		oil				Oil			:	110	C:59.78	11: 6.02	N: 9.30	5: 5.32	F: 6.31		110	
15 .	± 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									11 44 1#R 16112)	0. 70-1, 83(1311, 8), 2. 05(34, 55), 2. 44(311, 5), 2. 12(111, 02, 5), 2. 18(13, 1812)	2, 98(1)1, dd, J=10, 18112), 3, 01(1)1, dd, J=0, 19112), 31 (2)11, d, J=10, 11, d, J=10, J												
20	R":		IRUBAN CB. OF NMIR (6)		-					1966 6 12 110711	44(311, 5), 2, 12, 12, 1	4 02(1), m) 4. 2.	(211, d, J=8, 011z)	1. 4112)										
25			I R v max ca		•	1075	670	1480	1075	CIAI), 2. 05(3H, bs.), 2. ·	, 1811z), 3. O1\1n. G 91-> 2 \$5(311 g)	7. 17(1), a), 7. 30-7. 60(3), a), 7. 35(2), d, J=8. 0)(z).	7, 80(211, d, J=8, 411z), 7, 91(111, d, J=1, 411z)	1570, 1510.	1092, 1075	1612, 1595.	1303 1179	1304 1112			1599, 1575.	; 1190, 1174.	
30	T =0	[3]	^	2001 0000 000	3560, 3360, 1666,	1598, 1580, 1511 1450, 1382, 1172, 1075	2500 2450(hr) 1670	510 1508 1510 1480	1610, 1330, 1340,	1450. 1383. 11 10, 1013	0. 70-1. 83(13) .	2. 98(111. dd. J=10 . 55211. dd. J=10	4. 66(111, 00; J=4.	7. 80(211, d. J=8. 4	3360, 1668, 1608, 1570, 1510.	1450. 1385. 1172. 1092. 1075	2500 2750 1565 1612 1595.	3300. 3300. 1000	1510, 1498, 1473, 1384, 1412,	10.5.970	•	3400(br), 1665, 1599, 1575,	1510, 1450, 1386, 1190, 1174,	10071 40001
35	R:		(*) 0. (c=1. 0. Clid1.)	(2)		(23.5)												,	-43. 9	(23.5)				
40	Boc-NII		Yield%	(2) d e		8	126-127		29			Ts 55	~		Ts.	43			2.2	12		Ts	€ 	
					. <u>S</u> .	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ٔ ا	<u>s</u>	<u>_</u>	Ĭ		-		· .		<u></u>	[<u> </u>		<u> </u>	
45	80 1		- ~			phenyl			o-floorophenyl		-	a-acthoxyphenyl	· :			p-sethylphenyl				2. 4-difluoro-	phenyl		1-naphthy1	
50	Table 8			Ex. No.		63			ო			4				s.				9			-	

Table 8 (continued)

				(11)		
i d	Δ,		Yield%	[a]"	(D)de	IR veax cart or NMR(6)
5 ,		- s.,		(C=1, 0, CIICe,)(d)		
EX. NO.		-			-	3680, 3360(br), 3120, 1665.
		2.2	2			1598, 1510, 1475, 1450, 1382.
×	3-thichyi		·, 2			1172, 1076
	.	(0. 73-1, 83(1311, m), 2. 33(211, bs), 2. 44(311, s), 2. 76(111, dd, J=7, 1511z).
						3. 07(111, dd, J=3. 6, 14, 611z), 3. 18-3. 38(211, m), 3. 68(111, m), 4. 02(111, m).
•		٧. ₂	23			4. 25(1H, a), 7. 14(1H, s), 7. 35(2H, d, J-8. 0Hz), 7. 51(1H, d, J-9. 0Hz).
5	TATOZETU1-7		3			7. 69(1H, d. J=3. 0Hz), 7. 80(2H, d. J=8. 4Hz). 7. 95(1H, d. J=1. 2Hz).
•		<u> </u>	٠.			8. 01(1H, d. J=3. 0Hz)
		Ts			-	3360, 1670, 1590.
•		~	ÿ			1510. 1445, 1382.
2	- I Toologueriy I	<u>_</u>	3			1170, 1090, 1075
						3360, 3500(6r), 1665.
:		<u>د</u> . ح	۲۵	8 59-	128~130	
=	p-1 luoropheny t		5	(24 0)		
	-					3368, 1698, 1665, 1624, 1598, 1512, 1420, 1385, 1279, 1190, 1174, 1094,
	2. 6-difluoro-	^_ <u>~</u>	53	-23.9		1077, 1018
:	- Nonda			(24.0)		
	Tricing I	7	1			0. 70-1. 85(1311, a). 2. 20(311, bs). 2. 44(311, s). 2. 74(111, dd. J=8. 13112).
		<u>.</u>			· :	2. 95(11, dd, 1-10, 1711z), 3. 10(111, dd, 1-15. 511z), 3. 26(111, dd, 1-17, 311z)
	44	<u> </u>	- 52	·		3. 69(11, dd, 1=5, 1011z), 3. 88(311, s), 3. 99(111, e), 4. 18(111, s),
3	ם-בכווסא שוביים		·			6. 98(211, m), 7. 12(111, s), 7. 35(211, d. J=811z), 7. 50(111, m).
		<u> </u>				7. 72(111, dd, 1=7. 5, 2112), 7. 81(211, d, 1=8112). 7. 92(111, s)
		ا				

Ю

Table 8 (continued)

7				E	
Z 50	~	× ×	Yield% ap(C)	(D)da	R v Bax CB. 1 or NMR(6)
Ex. No.	·			-	0 20 1 80/1211 2) 2 40/211 5), 2 44(311, 5), 2. 72(111, dd. 1=8, 15, 8112).
14	o-chlorophenyl	Z- X-Z	75		3. 00(111, dd. J=17. 5, 10Hz), 3. 07(111, dd. J=15. 5Hz), 3. 17(111, dd. J=17. 5, 4Hz), 3. 65(111, dd. J=10, 5Hz), 3. 98(111, m), 4. 23(111, m), 7. 11(111, s), 7. 25-7. 58(6H, m), 7. 81(2H, d, J=8, 4Hz), 7. 91(111, d, J=1. 4Hz)
					1189 1174 1094 1078 909
15	m-cyanophenyl	Z.x.	79		3360, 2236. 1666, 1514, 1436, 1450, 1566, 1165, 11, 11, 11, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13
•		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			1094, 1078.
16	o-mcthyl- sulfonyl-	T.	æ		3368, 1657, 1607, 1578, 1438, 1432, 1308, 1338, 1388, 1388, 1388, 1388, 1388, 1388, 1388, 1388, 1388, 1388, 1388,
	aminophenyl			·	301 301 301
-	n-trifluoro-	T.	53	113-115	3360, 1670, 1600, 1510, 1450, 1410, 1385, 1325, 1180, 1135, 1005
	sethylphenyl				

10	
15	
20	
25	
30	
35	

Joseph Control				(11)
	۲.	× .	Yield%	NMR (6)
	e-murphulinu- carbonyloxy- phenyl	r. z^≥	81	0, 73-2, 20(1311, m), 2, 44(311, s), 2, 75(111, dd, J=14, 8, 8, 611z). 2, 93-3, 24(311, m), 3, 5-3, 82(81, m), 4, 02(111, m), 4, 23(111, m). 7, 13(111, d, J=1, 011z), 7, 35(214, d, J=8, 011z), 7, 35(111, m), 7, 47(111, t, J=7, 511z), 7, 60(111, d, J=1011z), 7, 67(111, m), 7, 81(211, d, J=8, 411z), 7, 81(111, m), 7, 91(111, d, J=1, 411z)
19	a-worpholino- carbonylphenyl	₹. ×_₹	41	0. 70-1. 85(1311, a). 2. 28(311, bs), 2. 44(311, s). 2. 75 (111, dd. 1=8. 6. 14. 8112), 2. 95-3. 27(311, a). 3. 30-3. 94(811, a). 3. 68 (111, dd. 1=8. 4, 4. 2112), 4. 02(111, a), 4. 26(111, a), 7. 14(111, d. 1=1. 4112), 7. 36(211, d. 1=8112), 7. 47-7. 69(211, a), 7. 81(211, d. 1=8. 4112), 7. 93(111, d. 1=1. 2112), 7. 98(111, d. 1=1. 6112), 8. 00(111, a)
50	3.4-methylene- dioxyphenyl	F. ≥ \	74	0. 70-2. 15(1311, m). 2. 44(311, s). 2. 73(111, dd, J=14, d, e). 4127. 2. 91(111, dd, J=17, 8, 9. 611z), 3. 09(1H, dd, J=14, 6, 4. 211z), 3. 13(111, dd, J=18, 411z), 3. 67(111, dd, J=8, 6, 3. 811z), 4. 00(111, m). 4. 20(111, m). 6. 05(211, s). 6. 84(111, d, J=8, 211z), 7. 12(111, d, J=1. 011z), 7. 36(211, d, J=8, 011z), 7. 40(111, d, J=1, 6Hz), 7. 53(111, dd, J=8, 2. 1. 6Hz), 7. 81(211, d, J=8, 211z), 7. 92(111, d, J=1, 411z)
21	cyclohexy1	F-Z-Z	89	0, 70-1, 89(2311, m), 2, 13(311, bs), 2, 33(111, m), 2, 43(111, b), 2, 47(111, dd, J=17, 6, 9, 411z), 2, 66(111, dd, J=15, 2, 611z), 2, 71(111, dd, J=14, 9, 411z), 3, 07(111, dd, J=14, 8, 3, 611z), 7, 12(111, d, J=1, 211z), 7, 37(211, d, J=8, 41z), 7, 48(111, d, J=1011z), 7, 82(211, d, J=8, 411z), 7, 94(111, d, J=1, 411z)
22	p-acthoxypheny ¹	\\\	25 - S	0. 76-2, 20(1311, a), 2, 44(314, s), 2, 72(114, dd, J=8. 6, 15112). 2, 93(111, dd, J=9. 6, 17, 6112), 3, 94(114, dd, J=3. 6, 15112). 3, 17(111, dd, J=2. 4, 17, 6112), 3, 67(111, dd, J=4, 8, 6112), 3, 88(311, s). 4, 02(111, a), 4, 23(111, a), 6, 93(211, d, J=9112), 7, 27(111, s). 7, 36(211, d, J=8, 2112), 7, 52(111, d, J=9, 6112), 7, 81(111, d, J=8, 4112), 7, 91(211, d, J=9112), 7, 92(111, d, J=1, 8112)

Dag	
(cont.	
00	١
Table	

		•		
Cospd.				[11]
o,	- ~	2	Yield%	NMR(6)
Ex. No.				
,				0. 7~2. 05(1311, a), 2. 96(111, dd, J=18, 9. 411z).
:				3, 15(111, dd, J=14, 2, 7, 811z), 3, 21(111, dd, J=18, 2, 511z),
22	ohenvl	?_	20	3. 36(111, dd. 1=14. 2. 4. 2112), 3. 80(111, dd. 1=7. 8. 4. 4112), 4. 04(111. m).
3		<u> </u>		4.24(111, m), 7.11(111, d. 1=1.611z), 7.41~7.63(311, m).
	·			7.94(211, a), 8.75(111, d, J=1, 811z) (mp. 106-107t)
				0. 70-1, 85(13H, m), 2:04(3H, m), 3.02(111. dd, J=18. 8. 611z), 3. 10-
				3 26(211, a), 3 36(111, dd, J=14, 4, 4, 2112), 3 82(111, dd, J=7, 6, 4, 4112),
-	4-portido1	\.	. 20	4. 02(111, a), 4. 26(111, a), 7. 13(111, d, J=1. 6Hz), 7. 59(1H, d, J=1011z).
5		~_{ ={	?	7 71(211, dd, J=4, 6, 1. 6Hz), 8. 76(111, d, J=2Hz).
		•		8. 82(211, dd, J=4, 6, 1, 6llz) (mp. 118~120°C)
				0. 70-1. 87(1311, a), 2. 28(311, bs), 2. 89(111, dd, J=17. 6, 9. 411z).
:				3. 10(111, dd. J=17. 6. 2. 7112), 3. 14(111, dd. J=14. 3, 7. 811z).
26	2-thienvl	3	72	3.35(111, dd, J=14.3, 4.1112), 3.78(111, dd, J=7.8, 4.311z), 4.00(111, m).
3		<u>~</u> =(!	4, 20(111, m), 7, 12(111, d, 1=2, 011z), 7, 31(111, dd, 1=5, 1, 2, 911z),
				7. 52(111, dd, J=5, 1, 1, 211z), 7. 57(111, s), 8. 08(111, dd, J=2, 9, 1, 211z).
		*		8. 75(111, dd. J=211z)
				0. 70-1. 90(2411. m). 1. 98(311. bs), 2. 32(111. m), 2. 45(111. dd. J=9. 8. 1. 811z).
				2. 66(111, dd. 1=18, 2. 811z). 3. 15(111, dd. 1=14, 7. 411z).
- 36	cvelohexvl	\ر	69	3. 35(111, dd, J=14, 4, 3, 811z), 3, 80(1H, dd, J=7, 4, 4, 211z), 3, 91(111, m).
		1	χÞ.	4. 02(111, m), 7. 13(11, d. J=1. 611z), 7. 50(111, d. J=9. 811z).
			90-93	8. 78(111, d. J=1. 811z)

Table 8 (continued)

Compd.	R.	ŭ.	Yield%([a];*	NMR(&)
Ex. No.			ľ	Cicali.	2 20 0 10/1011 2 0 50/111 1 14 7112) 2 82(211, 1, 1=5, 7112), 2, 94(111, dd.
27	n-2-(N- norpholino)- ethoxyphenyl	Î	76	-46.8 (23.5)	0. (0~2. 10(13), m.), 2. 33(4), 4. 3. 15. 14. 6 12), 3. 18(1), dd. J=2. 5. 17. 9 12), 3. 34(1), dd. J=3. 5, 17. 9 12), 3. 15(1), dd. J=4. 1. 14. 6 12), 3. 74(4), t. J=9. 3 12), 3. 74(1), m), 4. 02(1), m), 4. 15(2), t. J=8. 7 12), 4. 22(1), m), 7. 11(1), br. s), 7. 15(1), d. J=2. 7), 7. 36(1), t. J=8. 2), 7. 45-7. 62(2), m).
					8. 75(111, d. J=1, 18z)
88	m-(N-formyl)- methylamino- phenyl	9 T	73		0. 77~1. 85(13H, m); Z. 40(2H, m); 3. 02(1H, d); 7-3; 0; 1; 3. 25(1H, d); 1-2; 1, 8, 2Hz). 3. 35(1H, m); 3. 60(1H, dd, 1-4, 3, 7, 8Hz), 4, 03(1H, m); 4, 25(1H, d; 1-2, 1, 8, 2Hz). 7. 13(1H, d, 1-2, 0Hz); 7, 38(1H, ddofd, 1-8, 0, 1, 2, 2, 3Hz); 7, 52(1H, t, 1-7, 52Hz). 7. 59(1H, d, 1-9; 7Hz); 7, 79(2H, m); 8, 52(1H, s); 8, 75(1H, d, 1-2, 0)
29	N-mcthyl-3- pyrrolyl	2	69	-57. 6 (24)	70.70~2.00(1311, m); 2.65(111, dd, J=9.8, 16.811z); 2.94(111, dd, J=2.4, 1711z); 3.13(111, dd, J=7.6, 14.41z); 3.35(111, dd, J=4.2, 14.61tz); 3.69(311, s); 3.77(111, dd, J=4.2, 81tz); 3.99(111, m); 4.13(111, dt, J=9.6, 211z); 6.56(111, s); 6.57(111, s); 7.11(111, d, J=1.811z); 7.27(111, s); 7.53(111, d, J=9.611z); 8.76(111, d, J=211z)
30	N-morpholino- methyl	S_T	25	· · · · · .	
31	N-pyperidino- methyl		36		3 80(1H dd 1-4 2 7 8H2).
32	4-pyridyl	T Ne	92		4. 03(1H, m), 4. 25(1H, m), 6. 88(1H, s), 7. 58(1H, d. J=9. 6Hz), 7. 71(2H, m), 8. 81(2H, m) 4. 03(1H, m), 4. 25(1H, m), 6. 88(1H, s), 7. 58(1H, d. J=9. 6Hz), 7. 71(2H, m), 6. 77(1H, m)
33	pheny1 ·	Cilo	11 70		0. 78~1, 75(13H, a.), 3. 11(4H, a.), 4. 0/(2H, a.), 4. 25(1H, a.), 9. 10(1H, s.) J=7, 8, 15, 3Hz), 7, 57(1H, t, J=7Hz), 7, 88(2H, d. J=7, 2Hz), 8, 49(1H, s.)

		· 		
Compd.		당.	R^2 Yield%(C=1.CIICe3)	NMR(S)
Ex. No.		·	(Tcmp. °C)	
34	4-pyridyl	-CONII	17	
		100	10000000000000000000000000000000000000	
				0.70~1, 80(13H, m), 2, 13(3H, s), 2, 73(1H, dd, J=8, 2, 13, 8Hz), 3, 02(1H, dd, J=4, 13, 5Hz).
25	A-noridel	-SKe	000	3.09(111, dd, 1=8, 6, 15, 211z), 3.20(111, dd, 1=3, 6, 18, 411z), 3.58(111, dd, 1=4, 8, 411z).
3		}.	· · · · · · · · · · · · · · · · · · ·	4. 06(111, m), 4. 28(111, m), 7. 58(111, d, J=1011z), 7. 72(211, m), 8. 81(211, m)
			1	

5	I = 0							
10	N.1.	14(711.0).), =8. Gllz).	0101		084, 1080	
15		6)	4, 20(11, s). 13-7, 30(61, s). 4, J=8, 41(z).	0112). 7. 18(111. s)	3. 48(111. a). 4. J. 9. 011z). (211, d. J-8. 41lz).	970.855	292 1175 1117. 1	
20	Re- \ 501	[13] [R v sax(cs · 1) or NMR(6)	(11), 3, 98(11), a), 111, d, J=9, 4112), 7, 86(21), 1, 1, 1=7, 8142)	13. 4112). 3. 97 (11) 13. 4112). 3. 97 (11) 14. 6. 43 (11). 4. J=9. 18. 2112). 7. 54 (11).	7. 43(31, 5). 2. 7. 6112), 3. 86(31, 5). 7. 7112), 6. 40(111, 7, 52(211, n). 7. 80	130, 1436, 1430, 13	1 78C1 0371 4C7	
25		[13] R v max(cm ⁻¹) or NMR(6) R v max(cm ⁻¹) or NMR(6)	0. 70~1: 82(1311, m). 1. 32(311, g). 1. 33(111, 03.); 2. 37(131, m). 3. 2(1311, m). 3. 48(131, dd. J=13. 93(131, d. J=9, 4312), 7. 13~7. 30(611, m). 4. 56(131, dd. J=6, 6, 6112), 6. 44(131, d. J=9, 4112), 7. 13~7. 30(611, m). 7. 40~7. 63(331, m). 7. 34(231, d. J=8, 4112), 7. 80(231, d. J=8, 4312). 7. 89(131, d. J=1, 2312), 7. 96(231, d. J=7, 842)	0. 70~1. 80(1311. m). 1. 34(91. s). 2. 13(61. 03). 2. 10 13(111. m). 3. 19(111. m). 3. 51(111. dd. J=9. 6. 13. 4112). 3. 97(111. m). 4. 15(111. m). 4. 58(111. ddd. J=6. 2, 6. 2, 6. 212). 6. 43(111. d. J=9. 0112). 7. 18(111. s). 7. 05~7. 41(711. m). 7. 34(211. d. J=8. 2112). 7. 54(111. a). 7. 82(211. d. J=8. 6112). 7. 87(111. ddd. J=7. 7. 1. 9112). 7. 96(111. d. J=1. 7112)	0, 70-1, 82(1311, a), 1, 33(911, a), 2, 43(311, s), 2, 11°3, 13(111, a), 3, 20(111, a), 3, 49(111, dd, 1=9, 1611z), 3, 86(311, s), 3, 48(111, a), 4, 18(111, a), 4, 56(111, ddd, 1=7, 7, 711z), 6, 40(111, d, 1=9, 011z), 7, 21(111, s), 7, 09-7, 40(711, a), 7, 52(211, a), 7, 80(211, d, 1=8, 411z), 7, 87(111, d, 1=1, 411z)	3400. 3260. 3140. 1665. 1625. 1805. 1436. 1430. 1310. 1112.	340U(6F), 1555, 1600, 1333(6H), 1360, 1410	501. 1336. 1303. 1
30			0.70-1:82(1311, a). 3. 21(111, a). 3. 4. 56(111, ddd, J. 7. 40-7. 63(311, d. J=1). 7. 89(111, d. J=1).	0. 70-1. 80(138) 3. 19(18, a). 3. 4. 58(18, ddd. J 7. 05-7. 41(78, 7. 87(18, ddd. J	0, 70-1, 82(1311, m), 1, 3, 20(111, m), 3, 49(111, 4, 18(111, m), 4, 56(111, 7, 21(111, s), 7, 09-7, 7, 87(111, d, 1=1, 411z)	3400, 3260, 31	 i	3696. 3416. 1
	×302 ×12]	Yicld %	98	73	93	79	92	4
35	Če	۲. ۲.	۳.٠ <u>٠</u>	° ^-	°. ×^≥ \=(~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	£- x	P-2-
40	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	R	tert-buty]	tert-buty]	(crt-buty)	tert-buty]	tert-buty]	tert-buty]
	# E		phenyl	a-fluorophenyl	•-ncthoxypheny] tert-buty]	p-uethylphenyl	2,4-difluoro- phenyl	J-naphthyl
45			phc		-	4	2. 4	7
	Table NH 2	Compd. of Ex. No.	8	က	4	ហ	9	,
	· -							

5		
10		
15	$\langle x \rangle$	- W-00
20	: ²	NIN PO
25	\bigcirc	
30 ,		R*'\$02CII2
35		. ► ≃
40	Table 9 (continued)	*
45	Table 9	:

3-thienyl tert-butyl 2-thiazolyl tert-butyl 3-fluorophenyl tert-butyl Ts Ts Ts Ts Ts Ts Ts Ts Ts T	:·					
3-thienyl tert-butyl 2-thiazolyl tert-butyl 3-fluorophenyl tert-butyl Ts Ts Ts Ts Ts Ts Ts Ts Ts T	Sept			•		[13]
3-thienyl tert-butyl Ts 2-thiazolyl tert-butyl Ts 3-fluorophenyl tert-butyl Ts	Jo	~	×.	 ≅	Yield	R P Bax(ca.1) or NMR(6)
3-thienyl tert-butyl Ts 2-thiazolyl tert-butyl Ts -fluorophenyl tert-butyl Ts -fluorophenyl tert-butyl Ts	Ex. No.				2	2410 2260(ch) 1665 1598 1510 1385, 1173, 1116, 1093, 1078
2-thiazoly1 tert-buty1 Ts 81 -fluoropheny1 tert-buty1 Ts 83	- ω	3-thieny1	tert-buty]	₽. <u>~</u>	74	
2-thiazolyl tert-butyl Ts 81 -fluorophenyl tert-butyl Ts 83	,					
a-fluorophenyl tert-butyl N 83	6		tert-buty]	۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲	 	0. 7-1. 82(1311, m), 1. 35(911, s), 2. 37(111, bs), 2. 43(311, s). 2. 78-3. 28(811, m), 3. 53(111, dd, J=9. 0, 13. 011z), 3. 97(111, m), 4. 18(111, m). 4. 58(111, ddd, 6. 4, 6. 4, 6. 41iz), 6. 35(111, d. J=9. 01iz), 7. 05(111, d. J=6. 41iz), 7. 20(111, s), 7. 13-7. 40(511, m), 7. 33(211, d. J=8. 41iz), 7. 68(111, d. J=3. 21iz), 7. 80(211, d. J=8. 41iz), 8. 00(111, d. J=1. 21iz), 8. 01(211, d. J=31iz)
	10	s-fluorophenyl	tert-buty]	£.≈~≥	83	3460, 3360, 3280, 3160, 1655, 1625, 1590, 1500, 1450, 1115, 1032, 1010

	1				(13)
Sept.				_1	(10)
jo	~	٦٠.	χ.,	Yield	I R or NMR
Ex. No.				*	
			Ts		3410, 3280, 3160, 1665, 1625, 1600, 1509, 1450, 1155, 1115, 1030, 1010
=	p-fluorophenyl tert-butyl	tert-butyl	T_	2	
			1		3420, 1660, 1624, 1599, 1499, 1467, 1459, 1385, 1292, 1189, 1175, 1118, 1093.
				8	, 0101 900
2	2.6-difluoro-	tert-buty1			1,000, 1010
					0. 70-1. 80(131i, m), 1. 33(91i, s), 2. 42(31i, s), 2. 78-3. 25(71i, m).
		-	7		3. 50(111, dd, J=18, 13Hz), 3. 88(3H, s), 3. 95(1H, m), 4. 10(1H, m).
~	o-methoryoheny] tert-buty]	tert-buty]	₹	79	4. 48(111, ddd, 1=6. 5. 6. 5. 6. 5112), 6. 48(111, d. 1=9112), 6. 97(211, a).
3					7. 06-7, 40(911, a), 7. 49(111, a), 7. 73(111, dd, J=9. 211z).
			:		7. 79(211, d. 1=842), 7. 84(111, s)
					0.70-1.80(1311, 1.31(911, 1.3). 2.40(311, 1.3). 2.80-3.22(711, 1.3).
·			5		3. 50(111, dd, J=15, 7. 511z), 3. 93(111, m), 4. 09(111, a), 4. 51(111, ddd, J=6. 4.
	o-chlorophenyl	tert-buty]	~ ````	8	6. 4. 6. 411z), 6. 29(1H, d. J-1011z), 7. 03-7. 41(81l, m), 7. 53(11l, m),
			=[7. 78(211, d.)=8. 4112), 7. 78(111, d. J=1. 4112)
•		·			211 321 0011 1001 0001 0011 0011
			<u>.</u>		3408. 2236. 1668. 1599. 1508. 1478. 1450. 1358. 1231. 1130. 1175. 1111.
15	a-cyanophenyl	tert-buty]	Z^	8	1079. 908
			7		2111 2511 1/211 1001 10/21 2821 6371 0071 8231 8001 8001
	o-acthyl-		Ts		3420; 1666, 1601; 1310, 1433; 1446, 1361; 1340; 1230; 1114; 1130; 1114;
9	sulfonyl-	tert-butyl	<u>-</u>		1079, 908, 909
<u>:</u>	aminophenyl		=_		
			3		3400-3200, 3140, 1665, 1625, 1600, 1510, 1450, 1410, 1325, 1175, 1135, 1115
-	harris Character tertablity	tert-buty]	~	85	1065
= ·	phenyl		~ ={ -		
	, curand				

5	
10	*
15	- 4-8-9-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
20	H H
25	
30	R4" —S02CII2
35	~
	8

55

					(13)
Compd.	~	R.	2	Yield	NMR(6)
Ex. No.				8	1 2 43(311 s.) 1 33(311 s.) 2 43(311 s.)
82	- porpholino-	tert-buty]	£. ×	22	0.70-1.82(13H, m), 1.30(1H, dd, J=14, 10Hz), 3.52-3.82(8H, m), 3.96(1H, m), 2.74-3.30(7H, m), 3.49(1H, dd, J=14, 10Hz), 3.52-3.82(8H, m), 3.96(1H, m), 4.16(1H, m), 4.54(1H, ddd, J=6.2, 6.2, 6.2Hz), 6.40(1H, d, J=9.4Hz), 7.0(1H, m)
:	carbonyloxyphenyl		=[7, 10-7, 40(7H, m), 7, 33(2H, d, J=8, 2Hz), 1, 40(1H, t, J=1, 2Hz) 7, 80(2H, d, J=8, 4Hz), 7, 80(1H, m), 7, 89(1H, d, J=1, 2Hz)
		*	£.×		0. 7~1. 82(1311, m), 1. 32(311, s), 2. 43(311, s), 2. 13 (313), 3. 99(111, m), 4. 20(111, m), 3. 48(111, dd, J=9, 4, 12, 8112), 3. 30~3. 90(811, m), 3. 99(111, m), 4. 20(111, m), 4. 52(111, dd, J=6, 2, 6, 2, 6, 2112), 6. 42(111, d, J=9, 4112), 7. 08~7. 31(611, m),
55	a-sorpholino- carbonylphenyl	tert-butyl.		8	7, 34(211, d, J=8, 2112), 7, 45-7, 68(211, m), 7, 81(211, d, J=8, 4112). 7, 91(111, d, J=1, 4112), 8, 05(211, m)
					0. 7-1. 8(1311, a), 1. 9(111, bs), 1. 33(911, s), 2. 44(311, s), 2. 74-3. 30(711, a), 3. 50(111, dd, 3=9, 2, 1342), 3. 96(111, a), 4. 16(111, a),
20		tert-butyl,	F. Z	8	A. 56(111, ddd, J=6, 4, 6, 4, 6, 4Hz), 6, 06(211, s), 6, 40(111, d, J=9, 211z). 6, 85(111, d, J=8, 2Hz), 7, 25(6H, m), 7, 34(111, d, J=8, 211z).
	d 10xy pheny 1	·	~ ={		7. 45(111, d, J=1, 611z), 7. 56(111, dd, J=8. 2, 1, 611z). 7. 80(211, d, J=8, 411z), 7. 85(11, d, J=1, 411z)

STREET, STREET

Table 9 (continued

2000					[13]
	~	₩	R 2:	Yield	NMR(6)
Ex. No.				%	
		-	•		0. 70-1. 90(2311, m), 1. 34(911, s), 2. 33(111, m), 2. 44(311, s).
ē	- Insolution	tert-buty]	<u>s</u>	98	2, 78-3, 27(811, m), 3, 50(111, dd, J=12, 0, 8, A11z), 3, 86(111, m), 3, 96(111, m).
3.: -	cyclones)				4. 54(111, ddd, J=6. 2, 6. 2, 6. 2112), 6. 35(111, d. J=10112), 7. 13-7. 34(611, .).
	٠.		<u> </u>		7. 37(211, d. J=8, 4112), 7. 82(211, d. J=8, 4112), 7. 90(111, d. J=1. 4112).
					0. 72-1. 80(1311, w), 0. 90(111, bs), 1. 33(911, s), 2. 43(311, s).
· · .·					2, 78-3, 12(711, m), 3, 20(111, m), 3, 49(111, dd, J=9, 4, 13, 211z), 3, 88(311, s),
ç	Landayandhann	vi tert-butvi	Ts.	87	3. 97(111, dd, 1=9, 4, 13, 211z), 3. 88(311, s), 3. 97(111, ddd, 1=7, 4, 7, 4, 7, 411z),
7			z/		4. 17(111, a), 4. 57(111, ddd, J=6. 6, 611z), 6. 42(111, d, J=9, 411z).
•	•		<u>~</u> =(6. 94(211, d, J=9112), 7. 16-7. 26(611, w). 7. 22(111, s). 7. 34(211, d. J=811z).
· ·:	· .				7. 79(211, d. 1=8. 4112), 7. 84(111, d. 1=1. 2112), 7. 94(211, d. 1=9112).

			•	
5		*		
10 .				
15	. /			
20				
25			-8-03 	
30		R. E.	\	0 011
35		£ .	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0
40			~	
4 5				
50	Table 9 (continued)	Type:		. •
55	Table			

The second of th

[13] ([1 A])	R' Yield% NMR(5)	86 4. 74(111, ddd, 1=5.6112×3), 6. 32(111, d. 1=9.8112), 7. 13(111, d. 1=2112), 7. 25(511, m). 7. 47(211, t, 1=7.8112), 7. 57(111, d. 1=7.8112), 7. 96(211, d. 1=7.2112), 8. 65(111, d. 1=2112) 1=2112)	S0 ₂ 86 4. 15(111, m), 7. 65(111, ddd, J=611z), 7. 82(211, bs), 8. 86~3. 50(911, m), 3. 99(111, m). S0 ₂ 86 4. 15(111, m), 4. 66(111, ddd, J=611zx3), 6. 33(111, d, J=9, 211z), 7. 16(111, d, J=0, 611z). 7. 28(511, m), 7. 65(111, d, J=611z), 7. 82(211, bs), 8. 69(111, d, J=0, 611z), 8. 82(211, bs)	So. 79 4. 72(1H, ddd, J=6Hzx3), 6. 33(1H, d, J=9. 4Hz), 7. 14(1H, d. J=2Hz), 7. 17~7, 38(6H, m), 7. 55(1H, dd, J=5. 2. 1. 4Hz), 7. 55(1H, s), 8. 20(1H, dd, J=1Hz), 7. 55(1H, dd, J=5. 2. 1. 4Hz), 7. 55(1H, s), 8. 67(1H, dd, J=5Hz)	So ₂ 87 3.92(1H, m), 4.70(1H, ddd, J=5.2Hz×3), 6.30(1H, d, J=9.8Hz), 7.16(1H, d, J=2Hz), 7.27(5H, m), 7.50(1H, d. J=5.8Hz), 8.71(1H, d. J=2.2Hz)	SO ₂ 91 3.75(411, m), 2.60(411, m), 2.84(211, t, J=11, 211z), 2.89~3.62(911, m). 3.75(411, m), 3.95(111, ddd, J=7.811zx3), 4.18(211, t, J=5.41z), 4.18(111, m). 4.73(111, ddd, J=5.211zx3), 6.32(111, d, J=9.41z), 7.14(111, d, J=211z), 7.14(111, m). 7.22~7.56(311, m), 8.67(111, d, J=211z)
	Yield				ļ	
	8	+ 80,	+	+	+	+ .
	×	5	E .	CII.	₹5	5
	ž.	O -		<u></u>		○
	۳. د	8	S\$	SI	8	5 Z
	Ä	pheny1	4-pyridyl	3-thienyl	cycl ohexy l	n-2-(N- norpholind)ethoxy- phenyl
paro	of	Ex. No.	24	25	26	27

Table 9 (continued)

							[13] ([1 A])
of of	٦. ا	π. •	8	×	×	Yield%	NMR(6)
Ex. No.				1			0 60-1 78(1311 m) 9 51(911 m) 9 84(411 m). 3 17(211 m), 3.37(311, s).
Š		. 0	(N IN	, No.	5	3. 40(5H. b), 3. 54(1H, dd, J=4, I, 10Hz), 3. 96(2H, b), 4. 14(1H, m), 4. 74(1H, m).
97	[101-E)-E		<u></u>			٠.	5, 20(1H, d, J=5, 7Hz), 6, 60(1H, d, J=6, 6Hz), 7, 15(1H, d, J=1, 9Hz), 7, 34(5H, m).
·	y 1) metny 1-	7	>				7, 53(111, t, 1=8, 9112), 7, 89(211, m), 8, 61(111, s), 8, 84(111, d, 1=2, 111z).
	0,10						9. 26(111, d. 1=7. 211z)
	Dueny1						0.70~1, 80(1311, a), 2, 63(111, dd, J=9, 6, 16, 811z), 2, 80(111, dd, J=2, 5, 16, 811z).
6		٠. د	· (5	1	. SX	2 95(211, m), 3, 07~3, 33(311, m), 3, 48(211, m), 3, 69(311, s), 3, 90(111, ddd.
6.7 7.2	N-Beinyi-		<u></u>	<u>.</u>	300 L	3]=7 4112x3), 4. 06(111, m), 4. 75(111, ddd, J=5, 6Hz), 6. 36(111, d. J=9, 6Hz).
	pyrroly1	<i>_</i>	>	• • •	 		6. 57(114, s), 6. 58(111, s), 7. 11(111, d, J=1, 8112), 7. 28(611, a), 7. 49(111, d, J=6, 8112).
		-					8. 69(1H, d, J=2llz)
		*					0, 58~2, 00(13H, m), 2, 58(8H, m), 2, 98(3H, m), 3, 27(4H, m), 3, 60(1H, dd.
6		v	(ž	()	48	J=4. 8. 14. 8112), 3, 80(611, m), 4, 15(211, m), 4, 78(111, m), 5, 03(111, d, J=4, 5112).
જ	CN-morpho	<u>^</u>	0)		6. 60(111, d. J-9, 411z), 7, 18(111, d. J-1, 811z), 7, 44(111, s), 7, 45(11, ddd, J-711zx3).
	- (0111	<u>`</u>)	: A 1 1			7 61(11), t, J=7, 2112), 7, 72(11), t, J=7, 0112), 7, 86(11), d, J=8, 2112), 7, 94(11), d.
	netny.						1=7 0Hz), 8 42(111, d. 1=8, 2112), 8. 86(111, d. 1=1, 8112), 9. 45(111, d. 1=7, 8112)
							0 60~2. 08(1911, m), 2. 54(711, m). 2. 71(211. m). 2. 99(311. n). 3. 22(111. m).
	-	·. · ·	. (, H	(در	3 28(211. s), 3. 60(111, dd, J=5, 1511z), 3. 80(211, m), 4. 14(211, m), 4. 80(111, m).
รี 	(n-pyper 1	<u>^</u>	0		<u>;</u>		5 07(111, bs), 6, 64(111, d, J-8, 611z), 7, 18(111, d, J-1, 811z), 7, 45(211, ddd.
	0110)	<u> </u>	}- 				1=7 0Hzx3), 7, 60(111, t, 1=6, 611z), 7, 70(111, t, 1=6, 611z), 7, 86(114, d, 1=8, 611z),
	ne cny i				·		7, 94(111, d, J=7, 8112), 8, 24(111, d, J=8, 6112), 8, 84(111, d, J=1, 8112), 9, 34(111, d,
		· ;			;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		J=7, 4Hz)
							0, 78~1. 68(1311, m), 2, 45(211, m), 2, 75(311, s), 2, 83(311, m), 3, 10(311, m).
	Arnorido	ام	<	-	NSO.	95	3, 43(4H, m), 3, 45(2H, m), 3, 97(2H, m), 4, 12(1H, m), 4, 75(1H, m), 5, 16(1H, d.
7 0			<u></u>)]=5 z), 6, 70(111, d, 1=9, 411z), 6, 92(111, s), 7, 33(511, m), 7, 82(211, bs).
		Ž .	- 			· •.	8 85(2 . bs), 9, 22(11 , d, J=7, 6 z)
		_	_	_	-		

Service Commission Contraction

; /

•	7	֚֚֚֝֝֟֝֜֝֜֜֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	-	
•	•			
•	֓֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜		֡	
			?	
	-		3	

\neg			. v i	Ti 6	pj.	2).	5
[13] ([1 A])	NMR(6)	0.70~1.85(13H.m). 1.30(9H.s). 2.84(1H.m). 3.14(7H.m). 3.46(1H.m). 4.06(1H.m). 4.13(1H.ddd. 1=7Hz). 4.63(1H.m). 6.40(1H.d. 1=10Hz). 6.79(1H.s). 7.25(5H.m). 7.48(2H.t.landland). 7.57(1H.m). 7.97(2H.m). 8.51(1H.m)	0.79~1.78(1311, m), 2. 10(211, m), 2. 50(211, m), 2. 68(311, m), 2. 96(411, m). 3. 13(211, m), 3. 93(111, dd,)=3. 6. 14. 2112), 4. 05(111, m), 4. 21(211, m), 4. 78(111, m). 7. 28(111, d,)=9. 0112), 7. 44(211, d,)=4. 4112), 7. 58(211, m), 7. 88(411, m), 8. 20(111, d). 1=7. 8112), 8. 50(111, d,)=8. 0112), 8. 80(211, bs)	0.80~1.80(1311, m). 2.14(311, s). 2.63(211, m). 2.96(111, m). 3.26(311, m). 3.49(41, m). 3.98(111, dddd, J=5.0112×4), 4.12(111, m). 4.25(111, m). 4.65(111, ddd. J=5.812), 4.99(111, d, J=5.4112), 6.90(111, d, J=10112), 7.30(511, m). 7.78(211.bs).	0. 78~1. 80(1311, m), 2. 95~3. 55(1011, m), 3. 99(111, ddd, J=7. 81t2), 4. 18(111, m), 4. 63(111, ddd, J=5. 61t2), 6. 39(111, d, J=9. 41t2), 7. 11(111, d. J=1. 81tz), 7. 38(211, d. J=5. 21tz), 7. 58(311, m), 7. 76(311, m), 7. 89(111, m), 8. 03(111, d. J=7. 81tz), 8. 54(111, d. J=1. 81tz), 8. 80(211, bs)	0. 70~1. 82(1311, m). 1. 22(311, d, J=711z). 1. 30(311, d, J=711z). 1. 90(111, bs). 2. 43(311, s). 2. 72~3. 23(811, m). 3. 49(111, dd, J=13. 2. 9. 611z). 3. 99(111, m). 4. 19(111, m). 4. 57(111, ddd, J=611z×3), 6. 40(111, d. J=9. 41z). 7. 96(21, d. J=6. 81z). 7. 15~7. 32(61, m). 7. 34(211, d. J=8. 411z). 7. 42~7. 63(311, m). 7. 85(211, d. J=8. 411z). 7. 85(111, d. J=8. 411z)	0, 70~1, 83(1311, m), 1, 23(311, 1, 1=7, 4112), 2, 43(311, 5), 2, 20(211, 05), 2, 03 3, 24 (811, m), 3, 50(111, dd, 1=9, 6, 14, 2112), 4, 00(111, m), 4, 19(111, m), 4, 57(111, ddd, 1=6, 2112x3), 6, 43(111, d, 1=9, 4112), 7, 06~7, 40(811, m), 7, 40~7, 63(311, m), 7, 80(211, d, 1=8, 4112), 7, 88(111, s), 7, 97(211, d, 1=1, 8112)
	Yield%	11	70	84	68	88	. 86
	~	+ 80,	osy ()	ONSO.	+ 80.) −so.	> 502
	×	= 5	Ę	E E	ē.	CI.	:
	Š	0		000	00	(O)	
	۳. ۲.	Z-	-CONII.	-Sile	27	2	Z-=
	۳. ت	phenyl	4-pyridy)	4-pyridyl	4-pyridyl	pheny1	pheny l
	Compd.	Ex. No.	34	35	36	37	38

able 9 (continued)

				-			(12) (11 A1)
Compd		•	······································				(() () (()
of "	~	Z.	2	×	~ ~	Yield%	NMR(S)
39	pheny1	S	0	5	0-{ 	16	0. 70-1. 80(1311, a), 2. 28(111, dd, J=6. 2, 16, 411z), 2. 66(111, dd, J=4, 16. 814z). 2. 92(311, a), 3. 05-3. 75(1211, a), 4. 06(111, a), 4. 19(111, a), 4. 79(111, ddd, J=6. 211z). 6. 78(111, d, J=1011z), 7. 18(111, d, J=1, 811z), 7. 30-7. 57(711, a), 7. 77(111, d. J=1, 811z) 1-7. 811z), 7. 88(111, a), 8. 04(311, a), 8. 29(111, d, J=6. 411z), 8. 69(111, d, J=1, 811z)
40	pheny l	₹-₹	00	ຣົ	°, (°) (°)	18	0.80~1.80(1311, m), 2.40(311, s), 2.90~3.75(1711, m), 4.06(111, m), 4.22(111, d. J-9.211z), 4.63(111, ddd. J-511z), 6.87(111, d. J-9.611z), 7.18~7.59(911, m), 7.74~8.14(1011, m)
<u>+</u>	4-pyridyl	\$		5	 	.76	0.70~1.79(13H, m). 2.25(1H, dd. J=6.6.17Hz). 2.74(1H, dd. J=3.8.16.8Hz). 2.88(1H, dd. J=3.6.16Hz). 2.96(3H, m). 3.08~3.64(10H, m)3.75(1H, dd. J=4, 8, 13Hz). 4.12(2H, m). 4.75(1H, ddd. J=5.8Hz×3). 6.82(1H, d. J=9.4Hz). 7.19(1H, d. J=2Hz). 8.77(2H, bs). 7.28(1H, d. J=7.6Hz). 7.41(1H, t. J=7Hz). 7.54(2H, m). 7.78(1H, d. J=8Hz). 7.87(3H, m). 8.03(1H, m). 8.46(1H, d. J=6.2Hz). 8.71(1H, d. J=2Hz)
42	4-pyridy]	5	00	E 5	() o-√	19	
43	4-pyridyl	\$ T	<u></u>	2	ONSO.	95	0, 70-1, 90(1311, m), 2, 49(211, m), 2, 87(311, m), 3, 15(311, m), 3, 41(411, m), 3, 57(211, m), 3, 97(211, m), 4, 11(111, m), 4, 74(111, m), 5, 11(111, d, J=5112), 6, 59(111, d, J=9, 2112), 7, 15(111, d, J=2112), 7, 32(511, m), 7, 85(211, m), 8, 85(111, d, J=2112), 8, 85(211, m), 9, 34(111, d, J=7112)
44	4-pyridy1	82	00	MII	1 0 NSO	96	0. 76~1. 86(1311, m), 1. 95(211, m), 2. 50(211, m), 2. 65(211, m), 2. 88~3. 29(611, m). 3. 58(111, dd. 3~5. 1511z), 3. 98(111, m), 4. 13(311, m), 4. 79(111, m), 5. 05(111, d. 3. 58(111, dd. 3~5. 1511z), 3. 98(111, m), 4. 13(311, m), 7. 43(211, m), 7. 59(211, m), 3. 58(111, m), 8. 69(111, m), 8. 85(111, d. 3=211z), 8. 55(211, bs), 9. 51(111, d. 3=711z)

Table 9 (continued)

7000				1.00	. [(13) ((1 A 1))
of of	<u>ج</u>	73	R3	×	*	Yic1d%	NMR(&)
5. 10.	l operal	4	<	12) NGO.	76	0.77~1.85(2311, m), 2.36(111, m), 2.56(411, m), 2.85(311, m), 3.18(111, dd.
2	, (v)		<u></u>)		6. 55(1H, d. 1=9. 2Hz), 7. 16(1H, d. 1=1. 8Hz), 7. 32(5H, a.), 8. 84(1H, d. 1=1. 8Hz). 9. 10(1H, d. 1=7. 2Hz)
					, Ke	1	0. 77~1. 80(1311, m), 2. 35(611.s), 2. 75(111, dd, J=10. 6, 13. 8112), 3. 15(311, m).
46	4-pyridyl	*	0	₩.	NC NSO	68 8	3. 43(111, dd. 1=3. 8, 13. 811z), 3. 55(111, dd. 1=4. 2. 1511z), 3. 75(111, m), 3. 95(211. m). 4. 12(111, m), 4. 73(111, m), 4. 98(111, d. 1=511z), 6. 63(111, d. 1=9. 41z), 7. 13(111, d.
	•	5					J=2112), 7, 31(511, m), 7, 85(211, bs), 8, 84(111, d, J=2), 8, 84(211, bs), 9, 39(111, d. J=7, 2112)
					(l	0.79~1.80(13H, m), 2.30(2H, m), 2.42(2H, m), 2.85~3.62(11H, m), 3.94(1H, m).
47	4-pyridy1		<u></u>	₹) Z	06	4.00(111, m), 4.20(111, m), 4.42(111, m), 4.75(111, m), 6.53(111, d, 1=9.412). 7.16(11, d, 1=2112), 7.29(511, m), 7.71(111, d, 1=4.4112), 7.85(211, m), 8.33(111, d.
		•	-				1-711z), 8. 62(111, d, J-211z), 8. 83(211, bs)
						Ì	0. 79-1. 76(1311, m), 2. 20(211, m), 2. 49(211, m), 2. 80-3. 08(411, m), 3. 19-3. 56(711, m),
48	4-pyridyl	\ <u></u>		풀		94	3.92(1H, dd, 1=4.4, 14.2Hz). 4.00(1H, m), 4.20(1H, m), 4.55(1H, m), 4.74(1H, m),
		-\))}	··.	>		6.65(111, d. 1=9.611z), 7.15(111, d. 1=1.611z), 7.45(21, d. 1=5.41z), 7.57(21, m).
							0. 82~1. 80(1311. a). 2. 19(211. a). 2. 33(211. a). 2. 60(411. a). 2. 77~3. 25(611. a).
49	n-2-(N-	প্		Ē	NII O N 77	77	3. 43(711, m), 3. 74(411, m)3. 83(111, dd, J=5, 15112), 3. 98(111, m), 4. 21(311, m).
,	morpholi-		(a))		4. 63(1H. a), 4. 76(1H, dddd, 3=5, 2Hzx4), 4. 76(1H, a), 6. 64(1H, d, 3=9, 8Hz),
	no)ethoxy-	<u>.</u>	- .	·			7.12(111, d, J=1, 4112), 7.15(11, a), 7.41(311, a), 7.55(31, a), 7.67(21, a),
	pheny1					,,,	7.84(211, a), 8.17(111, a), 8.54(111, d, J-211z)
					C	ē	0.60~1.80(13H, m), 3.08(5ll, m), 3.33(4ll, m), 3.57(2ll, m), 3.64(4ll, m).
20	4-pyridyl	~ <u>~</u>	@	Z	ري خ	83	4.05(111, m), 4.18(111, m), 4.65(111, m), 4.95(111, bs), 6.87(111, d. 1 m), 811z),
		<u></u>	<u>}</u>)		7. 17(111, d. 1-1. 2112), 7. 30(511, m), 8. 17(211, m), 8. 58(111, d. 1-911z), 8. 70(111, d.
							J-1. 2Hz), 8. 84(2H, m)

Table 9 (continued)

		ŀ					((A 1)) (c.)
			-		-		(13) (FI W)/
\simeq	<u>-</u> ۲.		2.	×	~	Yield%	NMR(6)
	•						
-N)-6	1 2		(Ö	(70	0, 70~1, 80(1311, m), 2, 28(111, dd, J=6, 6, 17, 3112), 2, 35(411, m), 2, 58(111, da. J=4, 16, 6112), 2, 80(311, m), 2, 95(111, m), 3, 18(211, m), 3, 35(411, m), 3, 50(211, m).
roho	morpholi-		000		(<u>~</u>)		3. 63(1H, dd, 1=5. 4. 12Hz), 3. 71(4H, t, J=4. 4Hz), 3. 87(1H, d, J=7. 4Hz).
100	10. 10. 10. 10. 10. 10. 10. 10. 10. 10.) }				4. 05(111, m), 4. 16(311, t. 1=5. 611z), 4. 77(111, ddd, 1=6. 41z×3), 6. 79(111, d.
The note			- •	•		*	J=9, 6112), 7, 09(111, dd, J=2, 4, 8142), 7, 18(111, d, J=1, 8112), 7, 35(311, m),
		· ·					7.54(311, m), 7.63(111, d, 1=7, 811z), 7.77(111, d, 1=7, 611z), 7.88(111, m), 8.02(111, m),
					3.2	,	8. 28(111, d. 1=6, 4Hz), 8. 70(111, d. 1=1.811z)
		1					0. 78(2311, m), 2. 22(211, m), 2. 38(211, m), 2. 58(211, m), 3. 00(311, m), 3. 48(611, m).
יין ניין יין ניין	o lovadolova		. (- E	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	94	3. 82(111, dd, J=5, 14, 6112), 3. 82(111, m), 3. 98(111, m), 4. 63(111, m), 4. 74(111, ddd.
		<u></u>	000		;)	, -	J*8, 8112), 6, 56(111, d, J=8, 8112), 7, 12(111, d, J=1, 8112), 7, 44(211, m), 7, 58(211, dt.
	<u></u>	<u> </u>) }-		*	·.	J=1. 8, 6. 4112), 7. 80(111, m), 7. 89(111, m), 8. 11(111, d. J=7. 8112), 8. 22(111, d.
					• • •		J=7, 2112), 8, 54(111, d, J=1, 811z)

	_	
•	٠.	:
_	o	!
i	Ò	i
	200	ł
	=	:
	u	÷
:	=	1
•	_	÷
	=	i
	≂	i
	$\mathbf{}$	
		•
		•
•		:
•	ဎ	:
	၁	:
•	<u>ာ</u>	
`	<u>ဗ</u>	
,		
,	Table 9 (c	

	•	Line Cormital	Calcd	-	Found	- P	
	[α]» C=1.0, CIIC1»	(a j.) CilCl. (Molecular weight)					IR v max cm-1
	(Tcmp. °C)		- 1		i	ī	7590 3490 3360(hr)
23	-20.1	اب		11:7.15	C: 63. 28	17.7:11	3520, 5420, 5580, 517 1670, 1600, 1580, 1450.
	(24)	• •	N:5. 90	0: 5: 10 			8111
:			i	Ť	C. 61 47	11:7.02	3410, 3360, 1665, 1605.
	-22.6	-1/1120	N:7.99	S:9.14	N:8.01		1595, 1505, 1450, 1410.
		(708 93)				_1	5111
1 26	- 92 1	Si	C:59.89	11:6.75	C: 59. 68		3315, 1665, 1510, 1412.
	(96)		N:5.99	S:13.70	N:5.89	s:13.41	1290, 1115
1	707		C: 62, 51	11:7.94	C: 62. 60	11:8.05	3520, 3420, 3360.
92	0.75	,	10 S.N	5:9.02	N:5.76	S:8.87	(br-sh), 1665, 1605.
	(1/2)	721120		·))	,		1510, 1450, 1118
10		N 0 0 0	C-61 92	11:7.37	C: 61. 77	11:7.51	3500, 3420, 3360, 1665.
	-14.4	- C 13:160:170802	N:6.72	S:7.69	N:6.52	S:7.41	1.596, 1581, 1505, 1460,
	(63.9)	(101 / 20 /	}				1448
-	10.70	N 101 /	C 55 23	11:6.30	C: 55.02	11:6.07	3370, 1672, 1603, 1586.
87.	(24.0)	2 / 11 0 1 / 011 01		S:7.66	N: 10. 01	S:7. 11	[511, 1450, 1406, 1341.]
	-23.2	31120 - / 2011 2012					1262, 1158, 1116
	CECOIL	1000 107)	6.61 41	11:7 49	C:61.28	11:7.43	3500, 3420, 3360, 1660.
62	1.72	Cad: 50:140632	N 7 2 . N	27.8.5	N:7.50	S:8.50	1605, 1530, 1508, 1462.
	(24.0)	721120 7411 120		- - - -			1450
į		7 133, 1307	C.57 88	11:7.54	C:57.65	11:7.31	3380(3300), 1712, 1665
	· · · · · · · · · · · · · · · · · · ·	-3/11,00.3/11Pr.0		S:7.10	N:9.59	S:6.88	1600(1535), 1510.
		(400 655)					11455, 1430
İ		/000 - 100 V					

Table 9 (continued)

	CIICL	IRV max "cm-1	2301 707 1 10867 10868	1600, 1535, 1510, 1450	1400	3560, 3380(3300), 1675	1602, 1595, 1510(1535)). 1455	3600, 3360, 1732, 1685,	1664, 1640, 1600, 1545		3600, 3380, 1670(1690)	1600. (1515. 1525)	1500	3500, 3400, 3370, 1665.	1598, 1510, (sh. 1550.	1525)				3400, 3340, 1665, (sh.	1695), 1625, 1530, 1510			0101
Poned	Dino.		1	N: 9 88 S: 7, 55		C:57.94 II:6.53	N:11.36 S:8.36		C:59.37 II:6.66	N:11.39 S:4.25		C:56. 60 II: 6. 77			ŀ	N:6.79 S:7.59		_	N:7.54 S:4.23		C:65.08 II:6.82	N:9.21 S:3.95	 C:57.89 II:6.36		
7.7.0	Ca166.		İ	C59, 30 II: 7, 37		C:58.01 11:6.56	N:11.27 S:8.60		1	N:11.27 S:4.30		C: 56, 71 11:6, 92	N:10.02 S:9.17		C: 62 60 11:7.33	N:6.79 S:7.77		C: 67, 45 11:6.87	N:7:49 S:4.29		7	N:9.24 S:4.23	1:6.	N:11.56 S:8.82	
	Molecular formula	(Molecular Weight)		C40 115 a Na 07 S2	112011/11/20	C. 010. No.0.5,	.1/411.0	(745 044)	C. II. o No O. S	1/21120	(745 876)	C. 11, 18,0,5,	0.11.7	(698 886)	C. II. N. O. S.	0.111.0.1.7.1.1.20	(-825 074)	CA, 1150NAOnS	071120	(719.952)	CA : 11, 0 N 5 0 0 S - 11 20	(757.947)	C351146N007S2	(726. 921)	
	α] 2.0.0.		(Tcmp. ℃)	•		-27 0	(26)	162-64	70 301			6 69-	(24)	175-8	17.5/5/	71.9\0.1.1			001-86		-197	(25. 5)	-33.2	(25.5)	
	Compd.	j O	Ex. No.	3			20		2.4	-		25	3		26	00		30	3	· .		•	73	?	

(por	
ntint	
(CO)	
[ablc]	
•	•

Compd		No cular formula	Calcd		Pound	:	
J0	C=1, 0, CIIC1,	Nolecular					I IX V max Cm. 1
Ex. No.	(Tcmp, "C)						HIGH.
77	-40.7(24)	C411163N20A5S2	C: 59, 33	11:6.44	C:59. 40	11:6.50	3560, 3520, 3390. (sh
	011-801	(830.014)		S:7.73	N:10.04		3300), 1670, 1600, 1535
				<u> </u>			1510
45	-34.6	C361153N507S	C: 58.80	11:7.78	C:58.55	11:7.55	3540, 3380, 3300, 1670,
	(24)	13/41120-1/211Pr20	N:8.79		N:9.05	S:7.77	1605, 1530, 1510, 1450,
		(796.554)					1408
46	-32.0	C231144N0083	C: 56. 83	11:6.91	C: 66, 85	11:6.82	3550, 3380(3300), 1665
: .	(25)	1.1/21120.1/2111120		S:8.37	N:11:14	S:8.01	. 1605, 1596, 1530, 1510
		·1/4CIIC12		•			. 1455, 1450
		(766, 200)		-			
47		C371148No00S	C: 60. 71	11:7.03	C:60.79	11:7.05	
		02/11101/1011120	N: 11. 46	S: 4. 37	N:11.56	S:4. 31	
		(733, 120)					
48	-23.0(25)	CALILSON 600S	C: 68. 34	11:6.81	C:63.34	11:6.92	3520, 3340, 1670, 1600,
		.5/41120	N: 10. 81	S: 1. 12	N:10.64	S:3. 81	1510(1530)
							-
49	-19.3(25)	ب	C: 63. 34	11:7.20	C: 63. 49	11:7.27	3520, 3340, 1670, 1598.
			N:9.23	S:3.52	N:9:35	S: 3.36	1580, 1510, (sh 1530)
		(910, 114)	•				
50	-24.8	CapllagNo00S2			C:61.35	11:7.03	3430(3480)3320, 1670.
	(54)	.1120.1/5.D20			N:11.36	S:4. 16	1640, 1603, 1510
		(729.31)					

Calcd. Found 1 R \(\nu\) max cm-1 C:65.39 :7.15 C:65.63 :7.44 3400.3340.1668.(163) N:7.94 S:3.64 N:7.85 S:3.39 5).1600.1585.1511.	C:65.60 II:7.60 C:65.66 II:7.68 3480, 3340, 1670, 1598. N:9.11 S:4.17 N:9.08 S:3.89 1508, (1525), 1448, 14
Found C:65.63 II:7.44 N:7.85 S:3.39	C:65.66 11:7.68 3
Calcd. C: 65, 39 11:7, 15	C: 65. 60 11:7. 60 N: 9. 11 S: 4. 17
Molecular formula Molecular weight)	(881.586) (881.586) (421157Ns0nS -1/21120
1000	(25) 52 -26.0 (24)

5		
10		
15	(1 A	
 20	T =0	
25	HAN	
30		0
35	SO 80	
40		
45	:	
	01	

R R Yield (Ce-1, 0, Well!) Molecular formula Calcd. Found	800				[a],°		Elemental analysis	analysis	
phenyl tert- 75 -22.2° -1/21140.1/41Pr4 1: 7.0 1: 7.65 1: 7.65	jo	œ.	· ~	Yield	(C=1. 0. NeOII)	Molecular formula		Found	L R v Bax CB.
phenyl tert- 75 -22.2° -1/211.0.1/41Pr,d 1: 7.10 1: 7.65 o-fluorophenyl tert- 90 -20.9 -3/41.0 1: 7.53 1: 7.15 a-acthoxyphenyl tert- 73 -18.1 1.511.0 1/211.0 1/211.0 butyl (24.0) 2.4.5 2.4.5 2.67 C:62.65 F: 2.71 c.4-difluoro- tert- 93 -21.3 3/411.0 1: 7.63 1: 7.64 c.4-difluoro- tert- 93 -21.0 1/211.0 1: 6.82 phenyl butyl (23.5) 2.4.43 S: 4.61 c.4-difluoro- tert- 93 -21.0 1/211.0 c.4-difluoro- tert- 93 -21.0 1/211.0 c.4-difluoro- tert- 93 -21.0 1/211.0 c.4-difluoro- tert- 53 2.1.21 c.4-difluoro- tert- 53 2.1.21 c.4-difluoro- tert- 63 2.1.21 c.4-difluoro- tert- 73 2.1.21 c.4-difluoro- tert- 75 2.1.21 c.4-difluoro- tert- 75 2.1.21 c.4-difluo	Ex. No.		:	.%	(Q)				
phenyl tert- 75 -22.2° -1/211,0.1/41Pr, d 1: 7.65 1: 7.65 1: 7.85 1: 7.99 1: 7.85 1: 7.99 1: 7.85 1: 7.99 1: 7.85 1: 7.99 1: 7.85 1: 7.99 1: 7.85 1: 7.99 1: 7.85 1: 7.99 1: 7.89 1: 7.17 1: 7.17 1: 7.17 1: 7.17 1: 7.17 1: 7.17 1: 7.17 1: 7.17 1: 7.17 1: 7.17 1: 7.17 1: 7.17 1: 7.17 1: 7.17 1: 7.17 1: 7.17 1: 7.17 1: 7.17 1: 7.17 1: 7.18 7: 7.80 7: 4.80 7:						Cs, Ils . N. O.S	C:64.82	C: 64. 87	3460, 3360(br), 1663, 1600, 1580.
O-fluorophenyl tert- 90 -20,9 -3/4H ₂ 0 H: 7.85 H: 7.99 -20,9 -3/4H ₂ 0 H: 7.17 H: 7.12 -20,9 -3/4H ₂ 0 H: 7.89 H: 8.05 -20,9 -3/4H ₂ 0 H: 7.89 H: 7.12 -20,9 -3/4H ₂ 0 H: 7.89 H: 7.12 -20,9 -3/4H ₂ 0 H: 7.89 H: 7.12 -20,9 -3/4H ₂ 0 H: 7.53 H: 7.16 -20,9 -3/4H ₂ 0 H: 7.53 H: 7.16 -21,0 -21,0 -21,0 H: 7.63 H: 7.64 -21,0 -1/2H ₂ 0 H: 7.74 H: 7.76	~	ohcnyl	tert-	75	-22. 2*	-1/211:0, 1/4iPr:d	11: 7.70	11: 7.65	1498, 1450, 1116
0-fluorophenyl tert- 90 -20.9 -3/44,0 E.62.56 F: 2.67 C:62.65 F: 2.71 C.62.65	1		butyl		(24t)		N: 7.85	N: 7.99	
O-fluorophenyl tert- 90 -20.9 ·3/4H ₂ 0 H: 7.17 H: 7.12 B-acthoxyphenyl tert- 73 -18.1 ·1.5H ₂ 0 H: 7.53 H: 7.15 Dutyl tert- 73 -18.1 ·1.5H ₂ 0 H: 7.53 H: 7.16 Dutyl tert- 94 -21.3 ·3/4H ₂ 0 H: 7.63 H: 7.64 Dutyl tert- 94 -21.3 ·3/4H ₂ 0 H: 7.63 H: 7.64 Dutyl (24.0) H: 7.63 H: 7.54 Dutyl (24.0) H: 7.63 H: 7.63 S: 4.56 F: 2.11 F: 7.11 H: 7.89 H: 8.05 H: 7.12 S: 4.56 S: 4.61 Dutyl (24.0) H: 7.63 H: 7.63 Dutyl (24.0) H: 7.63 H: 7.63 S: 4.61 S: 4.			:				S: 4.49		
o-fluorophenyl tert- 90 -20.9 ·3/4H20 H: 7.17 H: 7.12 butyl (24.0) S: 4.56 s. 4.51 S: 4.56 s. 4.55 S: 4.56 butyl (24.5) S: 4.51 S: 4.56 butyl (24.5) S: 4.36 S: 4.12 p-methylphenyl tert- 94 -21.3 ·3/4H20 H: 7.93 H: 7.99 butyl (24.0) R: 7.93 H: 7.99 c. 4-difluoro- tert- 93 -21.0 ·1/2H20 H: 6.82 phenyl butyl (23.5) R: 7.74 N: 7.76 phenyl butyl (23.5) R: 7.74 s. 4.64			2	5		C,, II, oFN O.S	C:62.56 F: 2.67	F: 2.71	3460, 3360(br), 1666, 1611, 1575.
Putyl	۰۰ 	o-fluorophenyl	tert-	8	-20.9	.3/4H20	H: 7.17	11: 7.12	1480, 1453, 1116
B-mcthoxyphenyl tert- 73 -18.1 ·1.5li ₂ 0 li: 7.53 li: 7.16 butyl butyl tert- 94 -21.3 ·3/4li ₂ 0 li: 7.93 li: 7.99 butyl butyl tert- 94 -21.3 ·3/4li ₂ 0 li: 7.93 li: 7.99 butyl tert- 93 -21.0 ·1/2li ₃ 0 li: 6.82 li: 6.82 butyl butyl tert- 93 -21.0 ·1/2li ₃ 0 li: 6.82 li: 6.82 butyl butyl tert- 93 -21.0 ·1/2li ₃ 0 li: 6.82 li: 6.82 butyl tert- 93 -21.0 ·1/2li ₃ 0 li: 6.82 li: 6.82 si d. d0	•		buty]		(24.0)		N: 7.89	N: 8.05	
B-mcthoxyphenyl tert- 73 -18.1 ·1.5li30 li: 7.53 li: 7.16 butyl (24.5) c.4.5i li. 7.51 li: 7.53 li: 7.16 li: 7.52 li: 7.52 li: 7.52 li: 7.52 li: 7.52 li: 7.52 li: 7.52 li: 7.52 li: 7.52 li: 7.52 li: 7.52 li: 7.52 li: 7.52 li: 7.52 li: 7.52 li: 7.64 li: 7.64 li: 7.64 li: 7.64 li: 7.64 li: 7.64 li: 7.64 li: 7.64 li: 7.64 li: 7.64 li: 7.64 li: 7.64 li: 7.64 li: 7.64 li: 7.64 li: 7.64 li: 7.64 li: 6.82 li: 6.				; ·			S: 4.51	S: 4.56	
p-methoxyphenyl tert- 73 -18.1 -1.5H ₂ O H: 7.53 H: 7.16 p-methylphenyl tert- 94 -21.3 -3/4H ₂ O H: 7.63 H: 7.63 p-methylphenyl tert- 94 -21.3 -3/4H ₂ O H: 7.63 H: 7.63 p-methylphenyl tert- 94 -21.3 -3/4H ₂ O H: 7.63 H: 7.63 s 2.4-difluoro- tert- 94 -21.3 -3/4H ₂ O H: 7.93 H: 7.93 s 2.4-difluoro- tert- 93 -21.0 -1/2H ₂ O R: 6.82 H: 6.82 phenyl butyl (23.5) 1/2H ₃ O R: 7.4 R: 7.74 R: 7.76						C, 111, 2N, 0, S	C:62.02	C: 62. 05	3468, 3348(br). 1668, 1600, 1585.
p-mcthylphenyl tcrt- 94 -21.3 -3/4 z0 18.7.63 18.7.63 18.7.64 p-mcthylphenyl tcrt- 94 -21.3 -3/4 z0 18.7.63 18.7.64 butyl (24.0) 18.7.63 18.7.63 18.7.64 s. 4.54 18.7.63 18.7.63 s. 4.54 18.7.63 18.7.63 s. 4.54 18.7.63 s. 4.61 18.7.93 18.7.93 s. 4.61 18.6.13 18.6.13 s. 4.61 18.6.82 18.6.82 phenyl butyl (23.5) 17.211,0 s. 4.43 17.74 18.7.74 s. 4.40 18.7.44	7	B-Bethoxyphenyl	tert-	33	-18.1	-1.51120	11: 7.53	11: 7.16	1499. 1464, 1451. 1430. 1289, 1258.
p-mcthylphenyl tcrt- 94 -21.3 -3/4 ₂ 0 R: 7.63 R: 7.64 p-mcthylphenyl tcrt- 94 -21.3 -3/4 ₂ 0 H: 7.63 H: 7.64 butyl (24.0) R: 7.93 N: 7.93 N: 7.99 2.4-difluoro- tert- 93 -21.0 -21.0 -1/2 ₂ 0 R: 6.25 C:61.39 F: 5.25 C:61.18 F: 5.35 phenyl butyl (23.5) R: 7.44 R: 7.74 R: 7.76	•		butyl	:	(24.5)		N: 7.61	N: 7.52	1169, 1117, 1077.
p-mcthylphenyl tert- 94 -21.3 .3/4 ₂ 0 H: 7.63 H: 7.64 butyl (24.0) N: 7.93 N: 7.99 2.4-difluoro- tert- 93 -21.0 .1/2 ₂ 0 H: 6.82 H: 6.82 phenyl butyl (23.5) X: 4.43 X: 4.61							S: 4.36	S: 4.12	
p-mcthylphenyl tert- 94 -21.3 ·3/4 ₁ 0 ll: 7.63 ll: 7.64 ll: 7.99 butyl (24.0)						C, 11, 2N, 0.5	C:64. 61	C:64.65	3460, 3350(br), 1666, 1608, 1564.
2.4-difluoro- tert- 93 -21.0 -1/28,0 N: 7.93 N: 7.99 2.4-difluoro- tert- 93 -21.0 -1/28,0 N: 7.74 N: 7.76 phenyl butyl (23.5) S: 4.61 S: 4.54 S: 4.61 S: 4.61 S: 4.61 S: 4.61 S: 4.61 S: 4.61 S: 4.61 S: 4.61	<u>د</u>	p-mcthylphenyl	tert-	94	-21.3	.3/41120	H: 7.63	11: 7.64	1498, 1450, 1116
2. 4-difluoro- tert- 93 -21.0 .1/20,0 1: 6.82 1: 6.8			butyl		(24.0)		N: 7.93	N: 7.99	
2. 4-difluoro- tert- 93 -21.0 .1/281,0 li 6. 82 li 6. 82 li 6. 82 phenyl butyl (23.5) S. 4. 40			•			· •	S: 4:54	S: 4.61	
2. 4-difluoro- tert- 93 -21.0 ·1/28,0 ll: 6.82 ll: 6.82 phenyl butyl (23.5) N: 7.74 N: 7.76 S: 4.40				:		1			3470, 3350(br). 1665. 1612(1595sh).
phenyl butyl (23.5) N: 7.74 N: 7.76 S: 4.40	9	2. 4-difluoro-	tert-	8	-21.0	.1/211,0	11: 6.82	11: 6.82	1498, 1450, 1430, 1116, 1100, 970,
S: 4 43)	phenyl	butyl		(23.5)		N: 7.74	N: 7.76	855
							S: 4.43	S: 4.40	

	(VI)	
= 		=0)5
- <u>-</u> -		NN NO
	: -	R*. \S01
Table 10 (continued)		

Se bd.				[\alpha] ".		Elcinenta	Elemental analysis	
٥	. ×	R +	Yield	(C=1. 0. Ycoll)	(C=1, 0, McOll) Molecular formula	Calcd.	Found	R v max cm.
Ex. No.	ξ.		×	3				
		:			Caills 3 NaOaS	C:65.53	C: 65. 43	3672, 3352(br), 1665, 1605, 1509.
7	1-naphthyl	tert-	.09		٠	11: 7.31	11: 7:09	1464, 1450, 1441, 1369, 1291, 1117.
		butyl		(24.0)		N: 7.46	N: 7.37	1077
						S: 4.27	S: 4.24	
		:			Casllacha0aSa	C: 59. 81	C: 59. 68	3460. 3350(br). 1662. 1600. 1505.
80	3-thienyl	tert-	8	-24. 4	0211.	11: 7.17	H: 7.02	1446. 1113
		buty1	\. \. \. \.	(28.0)		N: 7, 97	N: 8.23	
	•					S: 9.12	S: 9.10	
		1 11	1		C341147N504S2	C:56. 45	C: 56. 41	3660, 3356(br), 1661, 1599, 1511.
Ø	2-thiazolyl	tert-	2		.21120-1/2C41102 11: 7.24	11: 7.24	11: 6.95	1446. 1113
		buty]	:			N: 9, 16	N: 9.14	
• •		: 	:1		:	S: 8.37	S: 8.09	

5	
0	(1 A)
15	T =0
20	
25	
30	/ ₂₀₈ ×
35	
40	(Pg

		• • •					
Compd	. ~	Vield	[a] C=1.0.¥e0il	(a). (a). (b). (a).	Calcd.	Found	R v sax cs.
, N	•	%	(Ω)				
<u> </u>	(A) (A)			C., H., N. FO.S	C:62.56 F: 2.67	C:62.56 F: 2.67 C:62.72 F: 2.60	3470, 3340, 1663, 1605, 1590.
	[neodocron]	8	-21.4	3/411,0	11: 7.17	11: 7.14	1496, 1445, 1400, 1370, 1115.
-		3			N: 7.89	N: 7.67	1075, 1015
					S: 4.51	S: 4.60	
				Cs, II, N. FO.S	C:62.56 F: 2.67	C:62.60 F: 2.66	C:62.60 F: 2.66 3470, 3340, 1665, 1600, 1505.
=	n-Cluoronbeny)	***	-21.3	3/411,0	H: 7.17	N: 7.17	1450, 1410, 1370, 1156, 1115.
: —					N: 7.89	N: 7.84	1076
	- v 2		3		S: 4.51	S: 4.62	
	7,100,000,000,000			Carllagha FroaS	C:61.15 F: 5.23	C:61.05 F: 5.26	3468, 3360, 1664, 1624, 1502.
	2 6-di Chioro-	75	-23.4	2/311,0	11: 6.84	11: 6.60	1467, 1450, 1402, 1370, 1290.
*	200000		(23.5)	•	N: 7.71	N: 7.77	1117, 1078, 1016, 991
		: -		·.	S: 4.41	S: 4.75	

Table 10 (continued)

		•					
Coepd	10	Yield	[a]. C=1. 0. NeOll	[a]. C=1.0, WeO! Wolccular formula	Ca)cd.	Found	R v max cm.
ō.	4		5			9. 00	3468 3348, 1665, 1600, 1502.
Ex. No.	The second second second	?		C. 11. 1. 10.S	C:63.18	C: 63. 18	1163
 -	· ·			C 1776	11: 7.46	H: 7.52	1487, 1465, 1436, 1265, 1105.
13	0-mcthoxyphenyl	75	က် က	.3/41120	N 7 76	N: 7.38	1117, 1077, 1026
	**************************************	· · · · · · · · · · · · · · · · · · ·	(24. 0)		6. 6.46	S: 4.03	
				0 0 170	C. 61. 23 C. 8: 5. 85	C: 61. 03	Cr. 5. 63 3468, 3360, 1665, 1593, 1500.
				Carlles Ceneus		_	1450, 1434, 1402, 1370, 1291.
. 9	0-chlorophenyl	75	8.4	.0. 1 CligCr2.1/31124 11: 0.31	N: 0:31	N: 7.68	1117. 1077
:			(23. 5)		2	S: 4.31	
					0: 4:41	00.00	3468, 3360, 2236, 1666, 1602.
			-	C. II. N. O.S	C:61.82	[6:10]	1400 1450 1431 1401, 1370.
			,	- 1 /4CII-Co-	11: 6.99	11: 6.75	1439, 1430, 1431, 1531, 500
15	a-cyanophenyl	35	-20.6	* 207 1101 17 108 11 1	N: 9.42	N: 9. 40	1288, 1150, 1117, 1077, 303
		-	(24. 5)		6. 1.31	S: 4.25	
					5: 4: 51	C.58 54	3464, 3352, 1664, 1607, 1578.
	1	-		C, olls , No O. Sz	C:58.82		1492 1452, 1400, 1340, 1289.
				1.1/4(iPr),0.1/211,d H: 7.19	1,d H: 7.19	95 ::	710 830 2201 211 331
91	p-methylsulfonyl-	٠.	86 -11.4		N: 8.68	N: 8.46	1155, 1111, 1011; 500; 51;
·-	Bai nopheny l		(24.0)		6. 7.95	S: 7.71	
					- 1	\top	3450, 3350, 1665, 1605, 1510.
	1	-		CasllasFaNAO.S	C: 60. 38 F: 1. 54		
			8	0,11/211,0	11: 6.67	0. ::	1115 1065
11	p-trifluoromety!-	25			N: 7.41	N: 7.27	1113, 1003
	pheny l		(64.0)	•		S: 4.24	0: 4:41
		-					

	4	_	1
		S	
•		2	
	122	2000	

(V I)
R**-S02-NII

			•	٠					
S. D.	2		Yield	Yield [a].					1
٥	- - -	⊔		(C=1.0.	Wolecular formula	S Cd.	Found	IR veax ca.	
Ex. No.	The second secon		፠	McOII)					
٠.	a-morpholino-	~			Cazils 7Ns O.S	C: 60. 09 C: 59. 93	C:59.93	3470, 3320, 1711, 1680.	1
8	carbony loxypheny l	tert - butyl	36	-15.810.6 13/4H20	·1 3/4H20	11: 7.26	II: 6.94	1665, 1605, 1587, 1500.	
				(25t)		N: 8.34	N: 8.38	1420. 1370. 1116. 1068	
						S: 3.82	S: 3. 79		
					CasllarNaO.S.	C:61. 93 C:61. 70	C:61.70	3356, 1665, 1627, 1581,	1
61	m-morpholino-	tert-buty]	73	-15.810.6	· 5/4 II20	11: 7.36	II: 7.36 II: 7.10	1498, 1463, 1451, 1369.	
. 	carbonylphenyl			(25t)		N: 8. 60	N: 8.42	1289, 1117, 1075, 1028	
						S: 3.94 S: 3.92	S: 3.92).	
	•				CsallsoH40aS	C:59.89	C: 59. 86	3470. 3340. 1665, 1605.	
		tert - butyl	&	-16.8±0.6	·2ll10 · 2/5 dioxane	11: 7.26 11: 6.92	11: 6.92	1505, 1490, 1445, 1117.	•
	dioxyphenyl			(25t)		N: 7.05 N: 6.77	N: 6. 77	1080. 1042	
						S: 4.04 S: 3.87	S: 3.87		

Table 10 (continued

2000			Yield	Yield [a].			7	10 vens or 1
i .		ж •		(C=1.0.	Nolecular formula		round Tound	-> <p< td=""></p<>
;			×	KcOil)				
Ex. 70.					CII. N.O.S	C: 62. 42 C: 62. 42	C: 62. 42	3460, 3340, 1662(sh1685).
			2	9 0+6 16	1/211.0	11: 8.35	11: 8.06	1605, 1500, 1450, 1115
21	cyclohexyl	tert - buty1	ž .	_		N: 7.87	N: 8. 10	
				3 .		S: 4.50	S: 4.33	
					N. 0. N. 11. 7	C: 60. 21	C: 60. 24	3470, 3340, 1665, 1603.
				9 010 51		11: 7.71	11: 7.38	1575, 1510, 1170, 1116.
22	p-sethoxyphenyl	tert - butyl	5 	-10.3±0.0		N: 7.02	N: 6. 78	1076, 1030
		· · · · · · · · · · · · · · · · · · ·		(252)		S: 4.02	S: 3.77	
			1		C.H. N.O.S	C: 63. 32	C: 63. 59	3460, 3340, 1665, 1600.
			- 	3 040 10-	0-11-	11: 7.38	11: 7.46	1580, 1500, 1450, 1120.
37	phenyl	1 SODFODY 1	3 :	(747)	•	N: 8.20	N: 8.01	
						S: 4.69	S: 4.48	
					Civilian,0.S	C:63.28	C: 63. 17	
				-29 140 G		11: 7.21	11: 7.21 11: 7.18	1582, 1510, 1450, 1310.
<u>چ</u>	phenyl	cruhi	3			N: 8. 43	N: 8. 49	1123
				<u>}</u>		S: 4.83	S: 4.83 S: 4.60	
			4					

Table 10 (continued)

[IA] $R^4 - X$ MII MII MII R^1

		Γ-			7												
	R V maxce.	3380, 1667, 1604, 1584, 1508.	1454, 1448, 1410, 1339, 1294.	1261, 1156, 1113, 1071		3490; 3400, 1665, 1605, 1580.	1510. 1450. 1115			3460, 3400, 3310, 1662, 1630.	1600, 1580, 1510, 1490, 1450.	1115.1070		3460, 3400, 3320, 1660(sh1690).	1625, 1520, 1490, 1460, 1445.	1410. 1115	
	Found	C:56.16	II: 6.33	N:10.24	S: 7.64	C:62. 10	11: 7.24	N: 7.95	S: 8.70	C:64.38	и: 6.82	N: 8.97		C:66.54	11: 7.54	N: 10. 66	
	Calcd.	C:56, 09	11: 6.56	N: 10, 49	S: 8.01	C: 62, 11	11: 7.12	N: 7.83	S: 8.96	C: 64. 31	11: 7.10	N: 8.84		C: 66. 73	11: 7.51	N: 10. 61	
	Kolecular		C371150No01S2	.2/31120	2/5CII,C&,	÷	C, 8H, oN, O.S.	.1/41120	(157.159°)		C4 2 11 5 1 N 5 O 6	-211,10	2/5CH 2C@2		CallsoNe0.	-11,0-1/2:Pr,d N:10.61	
[a]nº	Vicld%(C=1.0, McOII)	Comp. C.	-25.5	(25)			-24.9	(23. 5)			-15.8	(22)			-19.3	(25)	
	Yicld%		52				44			*	7.9		•		79	1. 11.	
	×		· =	-			CII		•		<u></u>				CIS	•	
	č		N-morpho-	lino-	sulfonyl		ter-butyl-	Nilia Sulfonyl			N-morpho-	lino-	carbonyl		N-morpho-	lino-	carbonyl
	R.		Y		=		Ś	im 人人	=		= 2		-		== 2		Ž.
	۳.		-N)-E	mothv1)-	aminophenyl		phenyl				nhenv1				4-nvridv]		
Compd	Jo .	EX. 70.	ä	3			33	3			UP	?			69	?	

able 10 (continued)

Compd. of: Ex. No.	NMR(&):
83	7.0.70~1.83(1311, m), 1.33(911, s), 2.68~3.18(711, m), 3.27(111, m), 3.60(111, dd, J=9.8, 13.2112). 3.80(111, br), 3.99(111, m), 4.21(111, m), 4.60(111, m), 6.48(111, d, J=9.41z), 6.89(111, s). 3.60(111, br), 3.99(111, m), 4.21(111, d), 4.33(211, d), 5.48(111, d), 5.41(11)
က	0. 68~1, 83(1311, m), 1. 33(911, s), 2. 70~3, 17(711, m), 3. 60(111, dd. J=13, 1, 9. 911z), 3. 59(211, brs). 3. 25(111, m), 3. 98(111, m), 4. 18(111, m), 4. 59(111, ddd, J=6, 8, 6, 8, 6, 81 z), 6. 51(111, d, J=9, 011z), 6. 90(111, s),
4	7. 05~1. 31(111, a), 1. 32(911, a), 2. 74~3. 17(711, a), 3. 27(111, a), 3. 59(111, dd. J=10. 1311z). 4. 3. 83(314, s), 4. 00(111, a), 4. 20(111, a), 4. 60(111, ddd, J=7, 7, 711z), 4. 72(111, bs), 6. 60(111, d. J=911z). 6. 86(111, s), 7. 04~7. 55(911, a), 7. 48(111, s)

able 10 (continued)

Cospd	NMR(8):
Ex. No.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	0.70~1.85(1311, m). 1.32(911, s). 2.40(311, s). 2.70~3.18(711, m). 3.51(111, m).
လ	3. 61(111, dd. 1=13. 2, 9, 8112); 3, 75(211, bs), 3, 99(111, m), 4, 19(111, m), 7, 19(211, d, 1=8, 2112)
	6. 53(111, d. 1=9, 1112), 6. 88(111, S), 1. 10~1. 43(11, 4); 1. 32(111, 5); 1. 32(111, 4)
	0.70~1.80(1311, m), 1.34(911, s), 2.77~3.16((11, m), 3.20(211, 05), 3. 20(111, 1), 1.3 (111, d) 1=9.31(2).
9	3. 59(111, dd.)=13. 95112), 3. 48(111, m). 4. 18(111, m). 4. 59(111, ddd. J=1). 1. 112), 0. 10(111; 0). 3. 50(111, dd. J=1).
	6. 78~7. 00(211, m), 6. 91(111, s), 7. 23(511, n), 7. 54(111, s), 7. 91(111, ddd, j=6, 6, 6, 6, 6, 91(111, s), 7. 23(511, n), 7. 54(111, s), 7. 91(111, ddd, j=6, n), 7. 91(111, s), 91(111, s), 91(111, s), 91(111, s), 91(1111, s), 91(111,
	0 70~1 85(1311, B), 1, 30(911, s), 2, 82(111, dd, 1=13, 2, 8, 411z), 2, 90~3, 18(611, B), 3, 26(111, B),
	3 5 50(111, de 1 = 13 0 10 0112), 4. 03(111, m), 4. 24(111, m), 4. 60(111, ddd, J=5, 112), 5. 30(111, brs), 6. 63(111, d. J=9, 2112),
_	3.33(11), dd; 3-10; d; 3-10; d; di a) 7.90(21), a), 7.86(111, s), 8.60(111, d. 1=7.611z)
	6. 83(111, 5). (. 60(31), 2). (. 100(11), 2). (. 11), 3. 59(11), 40, 3-13. 2. 10. 2112).
· 	0.70~1.83(1.51; 5). 1. 55(31; 5). 1. 55(31; 5). 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
80	3. 97(1H. m), 4. 18(1H. m), 4. 58(1H. m), 6. 44(1H. d. J#9. 4HZ), 6. 66(1H. s), 1. 12
	7. 50(111, s), 7. 51(111, dd, J=5. 0, 1. 211z), 8. 13(111, dd, J=1. 2, 3Hz)
	1 70 1 83(1311 a), 1, 34(811, 8), 2, 74 -3, 32(811, a), 3, 61(111, dd, J=12, 8, 9, 4112), 3, 73(211, bs).
	2 95(111, m), 4, 23(111, m), 4, 60(111, ddd, J=6, 6, 6, 6, 6, 611z), 6, 51(111, d, J=9, 2Hz), 6, 96(111, s), 7, 12~7, 35(311, m).
9	3 (2011 4 1=311) 8 (01(11 d 1=3112)
	5)(5), 1, 00/11, 0, 3-01, 2, 0. 00/11, 0. 00

able 10 (continued)

6. 85(111, s). 6. 93(211, t. J=8. ZHZ). 1. 35(811, m). 3. 62(111, dd. J=14, 1011z). 3. 87(311, s). 3. 95(111, m). 0. 70~1. 82(1311, m). 1. 33(911, s). 2. 75~3. 35(811, m). 3. 62(111, dd. J=14, 1011z). 3. 87(311, s). 6. 85(211, m). 7. 24(511, m). 4. 15(111, m). 4. 62(111, dd. J=6. 5, 6. 511z). 6. 66(111, d. J=9. 4Hz). 6. 82(111, s). 6. 85(211, m). 7. 24(511, m).	3 0 2	12 11 10 No.	(1 A) NMR(5) 1. 33(911, s). 2. 75~3. 19(711, m). 3. 28(111, a). 3. 62(111, dd. J=13. 10Hz). 4. 02(111, a). 4. 20(111, m). 4. 59(111, ddd. J=6. 4. 6. 411z). 6. 55(111, d. J=9. 411z). 6. 92(111, s). 7. 25(611, m). 7. 45(211, m). 7. 56(111, s). 7. 62(111, m). 7. 70(111, d. J=7. 611z) 9. 70~1. 82(1311, m). 1. 33(911, s). 2. 75~3. 20(711, m). 3. 28(111, a). 3. 57(211, bs). 3. 60(111, dd. J=13. 1011z). 4. 00(111, m). 4. 19(111, m). 4. 59(111, ddd. J=6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6
		12	0, 70~1. 85(1311, m), 1. 33(911, s), 2. 10~3, 10(111, 10, 1), 5. 68(211, bs), 6. 55(111, d, J=9, 4112) 3, 95(111, m), 4, 12(111, m), 4, 58(111, ddd, J=6, 4, 6, 4, 6, 412), 5, 68(211, ps), 6, 55(111, d, J=9, 4112)
12 3 95(111, m), 4, 12(111, m), 4, 58(111, ddd, J=6, 4, 6, 4, 6, 4 12), 5, 68(211, bs), 6, 55(111, d, J=9, 4112)			7. 14(2H, dd. J=17. 2. 8. 8Hz). 7. 26(6H, m). 7. 48(1H, d. J=6HZ)
7. 14(211, dd. J=17. 2. 8. 8112). 7. 26(511, m). 7. 25(111, m). 3. 25(111, m). 3. 61(111, dd. J=13. 2. 9. 8112). 0. 70~1. 85(1311, m). 1. 33(911, s). 2. 78~3. 18(711, m). 3. 25(111, m). 3. 61(111, dd. J=9. 4112) 12 3. 95(111, m). 4. 12(111, m). 4. 58(111, ddd. J=6. 4. 6. 412). 5. 68(211, bs). 6. 55(111, d. J=9. 4112)		=	4. 00(111, m), 4. 19(111, m), 4. 59(111, ddd, J=5. 6. 6. 6. 6. 6. 612), 9. 34(111, c. 5 - 5. 2), 7. 96(211, dd, J=9. 5. 4112)
11 4. 00(111, m), 4. 19(111, m), 4. 59(111, ddd, J=6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 54(111, 5), 7. 54(111, 5), 7. 96(211, dd, J=9, 5, 4112) 7. 14(211, dd, J=17, 2, 8, 8112), 7. 26(611, m), 7. 48(111, d, J=8112), 7. 54(111, s), 7. 54(111, dd, J=13, 2, 9, 8112), 0. 70~1, 85(1311, m), 1. 33(911, s), 2. 78~3, 18(711, m), 3. 25(111, m), 3. 61(111, dd, J=9, 4112), 12 3. 95(111, m), 4. 12(111, m), 4. 58(111, ddd, J=6, 4, 6, 41, 6, 4112), 5. 68(211, bs), 6. 55(111, d, J=9, 4112), 6. 55(111, m), 4. 58(111, m), 4. 58(1		0.70~1.82(1311, m), 1.33(911, s), 2.75~3.20(711, m), 3.26(111, m), 3.51(111, m), 3.51(111, m), 1.82(1311, m), 1.33(911, s), 2.75~3.20(711, m), 3.26(111, m),
0. 70~1. 82(1311, m). 1. 33(911, s). 2. 75~3. 20(711, m). 3. 28(111, d. 1=9. 2112), 6. 90(111, s). 4. 00(111, m). 4. 19(111, m). 4. 59(111, ddd, J=6. 6. 6. 6. 6112), 6. 54(111, d. 1=9. 2112), 6. 90(111, s). 7. 14(211, dd, J=17, 2. 8. 8112), 7. 26(611, m). 7. 48(111, d. J=8112), 7. 54(111, s). 7. 96(211, dd, J=9. 5. 4112) 12. 13. 95(111, m). 4. 12(111, m). 4. 58(111, ddd, J=6. 4, 6. 4112), 5. 68(211, bs), 6. 55(111, d, J=9. 4112)	·		7. 45(211, m). 7. 56(111, s). 7. 62(111, m). 7. 70(111, d. 1=7. 6112)
7. 45(211, m), 7. 56(111, s), 7. 62(111, m), 7. 70(111, d, J=7, 6112) 0. 70~1. 82(1311, m), 1. 33(911, s), 2. 75~3. 20(711, m), 3. 28(111, m), 3. 57(211, bs), 3. 60(111, dd, J=13. 1011z), 11 4. 00(111, m), 4. 19(111, m), 4. 59(111, ddd, J=6. 6. 6. 6. 611z), 6. 54(111, d. J=9. 211z), 6. 90(111, s), 7. 14(211, dd, J=17. 2. 8. 811z), 7. 26(611, m), 7. 48(111, d. J=811z), 7. 54(111, s), 7. 96(211, dd, J=13. 2. 9. 811z), 12 3. 95(111, m), 4. 12(111, m), 4. 58(111, ddd, J=6. 4, 6. 4, 6. 411z), 5. 68(211, bs), 6. 55(111, d, J=9. 411z)			9.70~1.82(1311, m). 1.33(911.5). 2. (3.3). 1.3(111.4). 1.5(111.4). 1.9. 4112). 6.92(111.5). 7.25(611.m). 4.59(111.4). 4.59(1111.4). 4.59(111.4). 4.59(111.4). 4.59(111.4). 4.59(111.4). 4.59(111.4). 4.59(111.4). 4.59(111.4). 4.59(111.4). 4.59(111.4). 4.59(111.4). 4.59(111.4). 4.59(111.4). 4.59(111.4). 4.59(111.4). 4.59(111.4). 4.59(111.4). 4.59(111.4). 4.59(1111.4). 4.59(111.4). 4.59(111.4). 4.59(111.4). 4.59(111.4). 4.59(111.4). 4.59(111.4). 4.
0. 70~1. 82(1311, m). 1. 33(311. 5). 2. 13~3. 13(111. d. 1=9. 4112). 6. 92(111, s). 7. 25(611, m). 7. 45(211, m). 4. 59(111, ddd. J=6. 4. 6. 4112). 6. 55(111, d. 1=7. 6112) 7. 45(211, m). 7. 56(111, s). 7. 62(111, m). 7. 70(111, d. 1=7. 6112) 8. 7. 45(211, m). 7. 56(111, s). 7. 62(111, m). 7. 70(111, d. 1=7. 6112) 9. 70~1. 82(1311, m). 1. 33(911, s). 2. 75~3. 20(711, m). 3. 28(111, d. 1=9. 2112). 6. 90(111, d. 1=9. 5. 4112) 7. 14(211, dd. J=17. 2. 8. 8112). 7. 26(611, m). 7. 48(111, d. J=8112). 7. 54(111, d. J=9. 2112). 7. 14(211, dd. J=17. 2. 8. 8112). 7. 26(611, m). 7. 48(111, m). 3. 51(111, dd. J=13. 2. 9. 8112). 9. 70~1. 85(1311, m). 4. 58(111, ddd. J=6. 4. 6. 4. 6. 4112). 5. 68(211, bs). 6. 55(111, d. J=9. 4112) 12. 3. 95(111, m). 4. 12(111, m). 4. 58(111, ddd. J=6. 4. 6. 4112). 5. 68(211, bs). 6. 55(111, d. J=9. 4112)	X	.	3 28(1H. m), 3. 62(1H, dd. J=13, 10Hz), 4. 02(1H. m).
Ex. No. 0. 70~1. 82(1311, m). 1. 33(911, s). 2. 75~3. 19(711, m). 3. 28(111, m). 3. 62(111, dd, J=13. 10Hz). 4. 02(1111, m). 10. 4. 20(111, m). 4. 59(111, ddd. J=6. 4. 6. 4. 6. 411z). 6. 55(111, d. J=9. 411z). 6. 92(111, s). 7. 25(611, m). 7. 45(211, m). 7. 56(111, s). 7. 62(111, m). 7. 70(111, d. J=7. 611z) 10. 70~1. 82(1311, m). 1. 33(911, s). 2. 75~3. 20(711, m). 3. 28(111, m). 3. 57(211, bs). 3. 60(111, dd. J=13. 1011z). 11. 4. 00(1111, m). 4. 19(111, m). 4. 59(111, ddd. J=6. 6. 6. 6. 611z). 6. 54(111, d. J=9. 211z). 6. 90(111, s). 7. 14(211, dd. J=17. 2. 8. 811z). 7. 26(611, m). 7. 48(111, d. J=811z). 7. 54(111, dd. J=13. 2. 9. 811z). 12. 3. 95(111, m). 4. 12(111, m). 4. 58(111, ddd. J=6. 4. 6. 4. 6. 411z). 5. 68(211, bs). 6. 55(111, d. J=9. 411z) 3. 95(111, m). 4. 12(111, m). 4. 58(111, ddd. J=6. 4. 6. 4. 6. 411z). 5. 68(211, bs). 6. 55(111, d. J=9. 411z)	~ ~~~		NMKOO
0f Ex. No. 9. 70~1. 82(1311, m). 1. 33(911, s). 2. 75~3. 19(711, m). 3. 28(114, m). 3. 62(114, dd, J=13. 10Hz). 4. 02(111, m). 4. 20(111, m), 4. 59(111, ddd, J=6, 4, 6, 4, 6, 411z), 6. 55(111, d, J=9, 411z), 6. 92(111, s). 7. 25(611, m). 7. 45(211, m), 7. 56(111, s), 7. 62(111, m), 7. 70(111, d, J=7, 611z) 0. 70~1. 82(1311, m), 1. 33(911, s), 2. 75~3. 20(711, m), 3. 28(111, m), 3. 57(211, bs), 3. 60(111, dd, J=13. 1011z). 7. 14(211, m), 4. 19(111, m), 4. 59(111, ddd, J=6, 6, 6, 611z), 6. 54(111, d, J=9, 211z), 6. 90(111, s). 7. 14(211, dd, J=17, 2. 8. 811z), 7. 26(611, m), 7. 48(111, d, J=811z), 7. 54(111, dd, J=13. 2. 9. 811z). 9. 70~1. 85(1311, m), 1. 33(911, s), 2. 78~3. 18(711, m), 3. 25(111, m), 3. 61(111, dd, J=9, 411z) 3. 95(111, m), 4. 12(111, m), 4. 58(111, ddd, J=6, 4, 6, 4, 6, 411z), 5. 68(211, bs), 6. 55(111, d, J=9, 411z)	8	Z	
Compd. Compd. NMR(6) NMR(6) Of. Ex. No. 0.70—1. 82(1311, m). 1. 33(911, s). 2. 75—3. 19(711, m). 3. 28(111, m). 3. 62(111, dd. J=13, 10Hz). 4. 02(111, m). 7. 45(211, m). 4. 59(111, dd. J=6. 4, 6. 41z), 6. 55(111, d. J=9. 41tz), 6. 92(111, s). 7. 25(611, m). 7. 45(211, m). 7. 56(111, s). 7. 62(111, m). 7. 70(111, d. J=7. 61tz) 0. 70—1. 82(1311, m). 1. 33(911, s). 2. 75—3. 20(711, m). 3. 28(111, m). 3. 57(211, bs). 3. 60(111, dd. J=13, 101tz). 1) 4. 00(111, m). 4. 19(111, m). 4. 59(111, ddd. J=6. 6. 6. 6. 61tz). 6. 54(111, s). 7. 54(211, dd. J=9. 5. 41tz) 7. 14(211, dd. J=17. 2. 8. 81tz). 7. 26(611, m). 7. 48(111, d. J=81tz). 7. 54(111, dd. J=13. 2. 9. 81tz). 10. 70—1. 85(1311, m). 1. 33(911, s). 2. 78—3. 18(711, m). 3. 25(111, m). 3. 61(111, dd. J=13. 2. 9. 81tz). 3. 95(111, m). 4. 12(111, m). 4. 58(111, ddd. J=6. 4, 6. 41tz). 5. 68(211, bs). 6. 55(111, d. J=9. 41tz)	:: :	110	

Table 10 (continued)

Conso	(VI)
Jo	NMR(6)
Ex. No.	
	0, 70~1, 80(1311, m), 1, 33(911, s), 2, 78~3, 17(711, m), 3, 26(111, m), 3, 52(111, dd, J=13, 9, 811z), 3, 97(111, m).
14	4.13(111. m), 4.57(111, ddd, J=6.7, 6.7, 6.7, 6.52(111, d, J=9.011z), 6.85(111, s), 7.14~7.42(811, m).
	7. 46(111, s), 7. 53(111, a),
	$0.70 \sim 1.80(1311. m). 1.33(911. s). 2.77 \sim 3.18(711. m). 3.29(111. m). 3.61(111. dd. J=12. 8.9.811z).$
	4.04(111, m), 4.22(111, m), 4.57(111, ddd, 1=5.8.5.812), 6.59(111, d.1=9112), 6.91(111, s).
	7. 23(511, a), 7. 56(111, s), 7. 58(111, t, 1=7. 811z), 7. 81(111, d, 1=7. 811z), 8. 14(111, d, 1=811z), 8. 23(111, s)
	$0.70 \sim 1.82(1311, m)$, 1.33(911, s), 2.75 $\sim 3.17(711, m)$, 3.26(111, m), 3.59(114, dd, J=13, 10.4112), 4.01(111, m).
9	4, 16(111, m), 4. 57(111, ddd, J=6, 4, 6, 4, 6, 4112), 6. 59(111, d, J=9, 2112), 6. 88(111, s), 7. 20(611, m), 7. 49(111, d, J=1, 2112).
· 	7. 50(211, w). 7. 69(111, dd, 1=8. 4. 1. 211z). 7. 86(111, dd, 1=8. 2. 1. 211z)
	0. 70-1. 80(1311, m). 1. 32(911, s), 2. 75-3. 18(711, m), 3. 27(111, m), 3. 58(111, dd, J=13, 4. 1011z), 4. 04(111, m).
17	4.21(111, td. 1=7, 2. 5112), 4. 57(111, ddd. 1=6. 3, 6. 3, 6. 3112), 6. 54(111. d. 1=9. 4Hz), 7. 25(511. m).
	7. 52(111, d. 1=911z), 7. 71(211, d. 1=8. 211z). 8. 04(211, d. 1=811z)
_	

(able 10 (continued)

	Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ	(1 A) NM R(5) NM R(5) (0.70~1.83(1311, m). 1.34(911, s). 2.70~3.15(711, m). 3.28(111, m). 3.48~3.82(811, m). 3.88(111, m). 4. 14(111, m), 4.63(111, ddd, J=6.6.6.6.6112), 6.39(111, d. J=8.6112), 6.80(111, s), 7.17~7.40(611, m). 7. 40~7.60(311, m). 7.77(111, d. J=7.6112) 0.70~1.80(1311, m). 1.33(911, s). 2.63~3.17(711, m). 3.30(111, m). 3.38~3.95(1011, m). 4.18(111, m). 4. 63(111, ddd, J=6.6, 6112), 6.49(111, d. J=8.8112), 6.86(111, s). 7.23(611, m). 7.56(111, s). 7.55(111, m). 7. 71(111, d. J=6112), 7.84(111, s), 8.00(111, m). 3.26(111, m). 3.60(111, dd, J=13.9.8112), 3.97(111, m). 9. 70~1.82(1311, m). 1.34(911, s), 2.78~3.18(711, m). 3.26(111, m). 3.60(111, dd, J=13.9.8112), 3.97(1111, m).
· · · · ·	20	4, 17(111, m), 4, 60(111, ddd, J=6, 4, 6, 4, 6, 4112), 6, 04(211, s), 6, 45(111, d, J=9, 4112), 9, 04(111, d, J=6, 4112)
: 3		6. 86(111, s), 7. 25(511, a), 7. 39(111, d, J=1, Z1Z), 1. 45(111, s), 1. 51(211, s)

Table: 10 (continued)

	Compd	(1 A) NMR(6)
	CX. NO.	24. no. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10
	21	3.60(111, dd.)=13.3.9.81(z), 3.88(111, m), 3.99(111, m), 4.56(111, ddd, J=6, 6, 6112), 6.41(111, q, J=3, 2112). 6.88(111, s), 7.27(511, m), 7.54(111, s)
•.		0,70~0,83(1311, m), 1,34(914, s), 2,75~3,17(711, m), 3,15(111, m), 3,60(111, dd, 1=13, 9,6112), 3,87(311, s),
	22	3.98(111, m), 4. 18(111, m), 4. 61(111, ddd, J=6. 8, 6. 8, 6. 811z), 6. 44(111, d, J=9. 211z), 6. 86(111, S), 6. 33(211, d, J=311z), 7. 98(111, s), 7. 91(211, d, J=8. 611z)
•	3	0.70~1.85(1311, m), 1.23(311, d, J=6.811z), 1.30(311, d, J=6.811z), 2.70~3.18(811, m), 3.22(111, m).
	•	6. 87(111, s). 7. 22(511. a). 7. 50(411, a). 7. 93(211, d. J=6. 811z)
		0.70~1.85(1311, m), 1.23(311, t, 1=7.411z), 2.65(811, m), 3.23(111, m), 3.57(111, dd, 1=14, 9.811z).
•		4. U3(1H, m), 4. 19(1H, m), 4. 02(1H, d), 2. 02(3H, m), 7. 93(2H, d, 1=6.8Hz)

. . 1

Table 10 (continued)

Compd			[IA]
Jo	æ.3	×	
Ex. No.			NMR(0)
			0.65-1.77(1311, m). 2.50(211, m). 2.80(311, m). 2.89(311, s), 3.00(211, m). 3.20(111.dd.
28	(· 🗐	J-5, 15112), 3, 40(411, m), 3, 53(111, dd, J-5, 15Hz), 3, 95(211, m), 4, 12(111, m),
	<u></u>		4.80(1H, dt, J=4, 4, 7, 0Hz), 5, 18(1H, d, J=6Hz), 6, 62(1H, d, J=9, 4Hz), 6, 82(1H, dt.
			J=2, 2, 7Hz), 7, 14(111, d, J=2Hz), 7, 30(8H, m), 8, 81(1H, d, J=2Hz), 9, 09(1H, d,
		,	J=6.8liz)
			0.70-1.82(1311, m), 1.31(911, s), 2.83-3.30(91, m), 3.47(111, dd, J-4, 6.13.211z),
33	(5	
3	<u></u>		6. 24(111.5); 6. 49(111, d. 1-9. 8112); 7. 25(511. m). 7. 47(211, t. 1-7. 4112). 7. 56(111, d.
			J=7112), 7, 62(111, d, J=6, 8112), 7, 96(2H, dd, J=1, 4, 6, 6112)
			10, 78~1, 80(1311, m), 2, 56(211, m), 2, 90~3, 70(1511, m), 4, 04(111, m), 4, 21(111, m).
40	\{\langle}	์ เ	CII, 4. 64(111, ddd, 1=6, 2112), 6. 68(111, d. 1=10112), 6. 87(111, s), 7. 26~7. 59(811, n),
	0)		7. 76(111, d. J=8. 211z). 7. 87(111, n). 8. 02(311, n).
	-		
			0. 67~1. 77(1311, m), 2. 47(111, dd, J=7. 5, 1711z), 2. 62(111, dd, J=5, 1811z), 2. 88~3. 76
42	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ਹ <u>ੋ</u>	CII, (1511, m), 4. 08(111, m), 4. 17(11, m), 4. 63(111, ddd, J=511z), 6. 77(111, d. J=1011z).
			6. 88(111, s), 7. 29(111, d. 1-7. 511z), 7. 40(111, t. 1-7. 511z), 7. 54(311, w), 7. 80(211, d.
	<u>-</u>		J=6, 2112), 7, 80(211, n), 8, 04(111, n), 8, 33(111, n), 8, 76(211, d, J=6112)

.

Examples 53

5

10

To the compound [25a] (24.5g, 41.6mmol) are added anisole (89.7g, 20eq) and anhydrous dichloromethane (250ml). To the mixture is dropwise added trifluoroacetic acid (250ml) with stirring and ice-cooling over 30 minutes, and the mixture is stirred at room temperature for one hour. The reaction mixture is concentrated in vacuo, made alkaline with Na₂CO₃ and saturated aqueous sodium bicarbonate, and extracted with a mixture of dichloromethane and methanol (9:1). The organic layer is washed with water, dried over MgSO₄, and evaporated to dryness in vacuo. The residue is subjected to silica gel chromatography (SiO₂: 600g, CH₂Cl₂:MeOH:NH₄OH = 90:10:1) to obtain the compound [26a] (14.63g, 72%).

To the above compound [26a] (11.04g, 22.5mmol) are added N-(morpholinosulfonyl)phenylalanine [12a] (8.5g, 1.2eq), HOBt (3.96g, 1.25eq), and anhydrous CH_3CN (200ml). To the mixture is added DCC (6.05g, 1.3eq) with stirring and ice-cooling, and the mixture is stirred at 0°C for one hour and then at room temperature for an additional one hour. To the reaction mixture is added ethyl acetate and it is then filtered. The filtrate is concentrated in vacuo and subjected to silica gel chromatography (SiO₂: 600g, CH_2Cl_2 :MeOH = 97:3). Relevant fractions are combined and treated with isopropyl ether to give the compound [lb] (16.33g, 92%).

Elemental analysis (as C₃₃H₅₁N₇O₉S₃·0.75H₂O.1.0CH₂Cl₂)

Calcd.: C: 49.20; H: 6.57; N: 12.13; S 11.90

Found: C: 49.05; H: 6.20; N: 11.92; S 11.78

 $[\alpha]_0$ =-22.5 (c=1; MeOH; 24°C)

IR: 3370, 2720, 1665, 1530, 1510, 1454, 1340, 1330, 1260, 1155, 1113, 1073, 943

NMR(δ): 0.72(3H,m), 1.12(6H,m), 4.16(1H,bd,J=8Hz), 1.62(3H,bd,J=8Hz), 2.21(1H,bs), 2.47(2H,m), 2.74 (1H, dd,J=10.14Hz), 2.80-3.33(4H,m), 3.21(4H,m),3.33-3.62(8H,m), 3.75(4H,m), 3.97(2H,m), 4.68(1H,m), 5.16 (1H, d,J=5.4Hz), 5.64(1H,t,J=6.8Hz), 6.55(1H,d,J=9.2Hz), 7.19(1H,d,J=1.2Hz), 7.35(5H,m), 8.90(1H,d,J=1.2Hz),

9.40(1H,d,J=6.8Hz)

Examples 54-71

In accordance with substantially the same procedure as disclosed in Example 53, the compounds of the invention listed in Table 11 are obtained.

	П	s,	.5.	35.55	28.0	290.	415.
		1 R D maxcm 1 3370, 2920, 1730, 1665.	1600, 1530, 1510, 1400. 1340, 1260, 1155, 1115. 1072, 940	1530, 1510, 1505, 1335, 1516, 1075	3370, 2920, 1000, 1004, 1530, 1260, 1153, 1113, 950	1510, 1448, 1325, 1290, 1145, 1115, 955	1577, 1530, 1512, 1415, 1340, 1260, 1160, 1115, 1075, 945
		IR J BAXCE 1, 2920, 1730.	530. 15 260. 11 140	1510. 15	1510. 1	1510, 1448, 1328 1145, 1115, 955 3380, 2930, 166	1577. 1530. 1340. 1260. 1075. 945
	02R-	1 R 3370. 2	1600. 1530 1340. 1260 1072. 940	3340. 2 1530. 1 1261.	3370. 1530. 1260.	1510. 1145.	1340
	NIISO R			55. 62 6. 54 11. 41 7. 18	C: 48. 59 II: 6. 48 N: 12. 28 S: 11. 37	N: 9. 40 S: 12. 73	II: 5.98 N:12.10 S:11.68
		Found C:52.83	II: 6.48 N:10.96 S:10.75	C: 55. 62 II: 6. 54 N: 11. 41 S: 7. 18			
		Elemental Calcd.	H: 6.75 N:11.10 S:10.89	C: 55. 65 II: 6. 76 N: 11. 57 S: 7. 57	C: 48, 48 11: 6, 58 N: 12, 66 S: 12, 42	C: 53. 80 II: 7. 31 N: 9. 62 S: 13. 22	C. 30. 30 II: 6. 05 N: 12. 13 S: 11. 90
	. N	 					Cez
	R* - X	Kolecular formula	C31115377708 S3 -0. 751120 -0. 33(ipr)20	C3.0113.5N7.08 S3. • 0. 661120 • 0. 25CH2.C@2	C3, 114, N70, S3, .0, 511, 0	S, 21120 .0. 21120 .0. 1 (ipr) 20	C341147N7U8 S3 .0.51120 .0.25Cll2Ce2
•	≃	, ,	2 % 0 0	2 % 5 5	0 0,	0 03	
	DCC, IIOB1	Yield%(C=1, μcOll(C)	-38. 4 (24. 0)	15.3 (24)	-22. 9	-7.4 (24.0)	-23. 7 (25. 0)
	8	3% C=1			∞	68	85
	NIISO 3R'	Yield	83	83	88		
		≃	NSO.	\ \cdot \cdo	NSO, -	+201-	ONSO,
:	[36]		6	6 	, o	₹	¥
		×	≣	(0)	10	6	(0)
	+ N. II	R 3					
	₩ _0	-	0) ×	S Z	27	S ₹	2 Z
	× × 21	2	<u> </u>				
	~ 35	2	Ů	Ů	-N'er	-NEC2	(P
=			1				· 00
Table		Compd.	54 54	55	\$6	57	28

												_								_				\neg			_	٦
5			I R v maxcm -		3330, 2920, 1670, 1599.	1575, 1580, 1505, 1336.	1165. 1115		3360, 2920, 1615, 1600.	1567, 1530, 1500, 1450.	1330. 1290		3360, 2920, 1660, 1530.	1510, 1450, 1405, 1338.	1290, 1155, 1115, 1015		3360, 2920, 1660, 1605.	1530, 1510, 1446, 1330,	1290, 1160, 1165, 1145.	1116, 1115	3440, 3360, 1662, 1605.	1585, 1510, 1450, 1330,	1290, 1160, 1115, 1095		3380, 2920, 1665, 1605.	1530, 1510, 1405, 1327.	1260, 1153, 1115, 1070	
10					33	15.	Ξ		33	15						_	33				-			<u>.</u>	-			او
15			l analysis	Found	C:57.84	11: 6.32	N:11.69	S: 7.55	C:58.20	11: 6.27	N: 8.59	S:11.75	C:53.04	11: 6.22	N: 7.56	S: 16. 63	C:57.01	_	ž	S: 12. 81	C:58.20	1 11: 7.08	N: 7.32	S: 12. 35	C:50.98	3 11: 6.86	5 N:11.90	2 8:11.46
		[18]	Elemental	Calcd.	C:57.81	II: 6.33	N:11.72	S: 7.67	C: 58. 43	11: 6.46	N: 8.74	S: 12, 00	C: 53. 28	11: 6.51	N: 7.31	S: 16. 73	╁╌		N: 7.41	S:12,72	+-		N: 7.36	S:12.64	╂—		N:11.85	8:11.02
20			Nolecular	formula	C. olls, N.O.	S	·0. 511 ₂ 0	•0. 25CII 2CR2	C3 p 11 s 1 No 0,	S	.0. 211,0		C3.11.8N.0,	S.	.0. 7511,0		Callagua,0,	S	.0.511,0		C3,1152N407	S	•		Carllas N.O.	S	0.751120	
25				Ç	1 _						_												·	`		.c	(S	
			[a] ₀	Yield% C=1. MeO!!(°C)	-	-17.6	(25. 0)			-15.0	(23.5)		4	-3.4	(23.5)	<u> </u>		~	(25.5)			P 5.	(25.5)			-23.5	(25. 5)	
30	•			Yield%		~~ %	3			- 02	2			ະະ	3			7.9	<u>.</u>			88			-	72	:	
35			∵			(- 6	200 L .		:		- 200 -			-	100+			2	100 H			(
•	٠	-	<u>,</u>	;	\dagger	= =	 E			: =				5	<u> </u>		T	5	5		·	. 5	<u>.</u>			Ę	E	
4Ò			 			(000	 } }-	1	, (<u></u>	>		•	<u></u>	>			<u>_</u>	\ \ \		•	<u>O</u>	>		. (<u></u>) , ·
45		-	<u>.</u>	•	+				+			•.	1			<u>.</u>	+		. : 		+		<u>a</u>	:_	+			
	ᅱ		20	-				\		c		Ĩ					.		<u></u>	<u> </u>				Ĩ			<u></u>	<u> </u>
50	Table 11 (continued)		<u>· · · · ·</u>	 - <u>×</u>	1		<u></u>	<u>}</u>			000	\ <u>\</u>				g P	-		<u>(C</u>	?			<u>(C</u>	>			<u> </u>)
55	Table 11		Compd.	5	Ex. No.		23				09				5				- 62				63				5	

かっていたというできるような事をはおのの大をなっているというと

Table 1	Table 11 (continued)	ଚା				· · · · · · · · · · · · · · · · · · ·					
			+	-					(18)		
Compd.		2 2	2	×	 ~	V:0149K	[\alpha] 00	Nolecular	Elemental	analysis	1 R v maxcm-1
 5 6	٤	<u>.:</u>	•			30/01211	(C) Ne011(C)	formula	Calca.	1,00110	2220 2000 1570 1597
Ex. No.			-					C4, 11, 0N, 08	C:57. 26	C:57. 12	3330, 3000, 1910, 1931.
	- ;		. (=	\ \	7.4	-16.8	S2.11.0	11: 7.15	11: 6.93	1525(should). 150%.
65	()	<u></u>	000	<u> </u>			(25.5)		N:11.40	N:11.21	1330, 1143, 1124
·)	<u> </u>	<u>}</u>		•			•	S: 7.45	S: 7.36	
				+				C. 11 N. 0.	C: 49. 92	C: 49. 76	3380, 2930, 1665, 1605.
				<u>ښ</u> .	(0	0.11.0	11: 6.88	11: 6.63	1530, 1510, 1325, 1263.
99	(જ્	<u>_</u>	<u> </u>	O NSO.	3	6 :61 -	.0 33CII.Ce.		N:11.10	1155, 1116, 1075, 945
)		· }	<u> </u>			(69. 69.		S:11.00	S: 10. 66	
								C II N. O.	C:55.69	C:55.48	3330, 2920, 1670, 1600.
					(. 6	0 71	0-11-0	H: 7.04	H: 6.86	1530, 1505, 1446, 1330.
67	(<u>~</u>	000	 Z		8	0.367	10 5CH 5CH	N:10,70	N: 10. 82	1142, 1115
		=() }				(60.00)		S: 7.00	S: 6.66	
		•		1				Callan N.O.	╁╌	C:50.08	3380, 2920, 1665, 1510.
					(<u>.</u>	-23.8	83.11.0		11: 6.80	1328, 1262, 1155, 1115
89	√ N¥e₃	\ \ -	<u>(</u>	₹			(25.5)	•	N:12.41	N: 12. 41	
		<u></u>	>						\$:12.17	5:11.99	
								C. 114 R. 0,		C: 52. 25	3350, 2920, 1660, 1604.
					•	08	-111	S		11: 6.80	1525, 1510, 1325, 1286.
69	CII3	\\	(O	5	100+		(0.4.0)	0. 51120	N: 7.58	N: 7.80	1146.1114
		-\ -\) .			<u>.</u>	<u> </u>	.0 33CII,CA		S: 12. 51	
								C3.113.N.03	C:55. 72	C: 55. 58	3360, 2920, 1660, 1605.
				ŧ		0	-7 0	. 5		И: 7.39	1530, 1510, 1450, 1325.
20	{		0	<u>-</u>	1 200 H		(23. 5)	0.331120	N: 7.64	N: 7.57	1290, 1140, 1115
		Ĩ	>						S:13.12	S: 12. 83	
						-					

.

•.									
					-		[18]		
C			c		[4]00	Molecular	Elemental	analysis	1 R v maxca
4		- :	·	Yield%	Yield% C=1 WeOll(%C) formula Calcd. Found	formula	Calcd.	Found	
	+					Callana0,	C:59.78	C:59.81	C. 11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
· · · · · · · · · · · · · · · · · · ·		. ₹	0	20	9 9-	5,	N: 7.27	H: 7.27 H: 7.10	1530, 1510, 1447, 1326.
<u>Ö</u>	<u> </u>	<u>.</u>	₹		(24.0)	.0.751120	N: 8.94 N: 8.85		1142, 1126
<i>)</i> }							S: 8.18 S: 7.89	S: 7.89	

Qf

. *		
	•	
` _:		
_	١,	
מווטיו	7 I	
~	٦í	
. 👱	2 I	
=	וכ	
•	-	ı
•		ì
••	- 1	Į
٠	ا د	ĺ
	- 1	ı
•	= 1	8
•	יכ	
	•	
. `		
•		
		1
_	-	1
-	- 1	
_	_	ŀ
		i
- 7	^^	ł
	_	ı
-	_	
_	0	
	_	
	••	
·	<u>د</u>	

Compd.	[1 B] NM IX 8 [74(311, m), 1, 12(611, m), 1, 42(111, bd), 1, 60(311, bd, 7, 5112), 1, 95(211, m), 2, 05(111, bs), 2, 52(211, m), 6, 7(311, m), 1, 12(611, m), 1, 1, 12(611, m), 3, 55(211, m), 3, 78(411, m), 3, 88(111, m), 4, 18(111, d, 1=1, 6112), 1, 1
55	. v. c. ∞ o w. ⊃ =
56	5 = 1.9112) $5 = 1.9112$ 0 $5 = 1.9112$ 0 $5 = 1.9112$ 0 $5 = 1.9112$ 0 $5 = 1.9112$ 0 $5 = 1.9112$ 0 $5 = 1.9112$ 0 $5 = 1.9112$ 0 $5 = 1.9112$ 0 $5 = 1.912$ 0 $5 = 1.$
58	5(311, m). 4(611, m).
29	8.85(111, d. $J-2$.0112), 9. 11(111, bs), 9. 30(111, d. $J=1$.0112) 0. 73(311, bs), 0. 92 \sim 1. 48(611, m), 1. 60(411, bd), 2. 26(211, m), 2. 40(211, m), 2. 73(111, m), 3. 00(411, m), 3. 44(811, m), 3. 85(111, dd, $J=4$. 2. 14. 4112), 3. 86(111, m), 4. 49(111, m), 4. 63(111, m), 6. 23(111, bt), 6. 80 3. 44(811, m), 3. 85(111, dd, $J=1$. 6112), 7. 45(211, m), 7. 58(211, m), 7. 70 \sim 7. 96(311, m), 8. 16(211, t, $J=1$. 6112), 8. 58(111, d, $J=1$. 8112), 8. 77(111, m), 9. 11(111, bs)

	100000000000000000000000000000000000000
୍ଦ	,
_	·
_	-
0	;
7.	=
-	•

Compd.	
o C	
Ex No.:	
9	$0.55 \approx 1.70(1311.\text{ m}).1.35(911.\text{ s}).2.75(211.\text{ m}).2.85 \approx 3.60(811.\text{ m}).3.75(111.\text{ m}).4.55(111.\text{ ddd}. J=6.4$
). 	11-27 6 17(111 d.1=9 0112) 6 79(111, 1, J=6, 7112), 7, 11(111, d. J=2, 0112), 7, 26(511, m), 7, 55(111, dd.
	1=1 3112) 7 65(111, 1, 1=7, 8112), 8, 05(111, dd, 1=1, 4, 8, 2112), 8, 26(111, dd, 1=1, 8, 8, 3(112), 8, 41(111,
 	Ad 1=1 A 7 2112) 8 58(111, d, J=2, 0112), 9, 04(111, dd, J=1, 8, 4, 3112)
3	75(131
5	
	12), 8, 70(
62	1. $34(911, m)$, 0. $63 \sim 1$, 78(1311, m), 2. $74(111, dt, J=6, 5, 13, 511z)$, 2. $85 \sim 3.52(811, m)$, 3. $58(111, dt, dt)$
	₹. Z
	25.
63	$0.60 \sim 1.75(1311, m)$, 1, 34(911, s), 2, 63(311, s), 2, 70(111, dt, J=6, 6, 13, 611z), 2, 80 $\sim 3.46(911, m)$, 3, 33
3	3 87(1
	, L
73	-
5	17)
	III. d. J=2.
65	311 [1] 0
3	(E
	(Z)
	d, j=1, 411z), 7, 46(211, m), 7, 60(211, m), 7, 76(111, d, J=3, 611z), 7, 84(111, dd, J=2, 6, 6, 811z), 7, 92(111, m).
· ·	8.16(111, d, 1=8, 411z), 8.34(111, d, 1=7, 211z), 8.60(111, d, 1=211z)

1	0	

35 [:]

0

:	; .
	4:1
1.	<u> </u>
	ביוני
,	5
=	=
-	apic il (continued)

Compd. of 66 66 67 68 69	0. $55 \sim 1.74(1311, m)$. 2. $02(211, m)$. 2. $18(111, bs)$, 2. $50(611, m)$. 2. $66 \sim 2$. $94(311, m)$. 2. $94 \sim 3$. $30(511, m)$. 3. $45(811, m)$. 3. $73(511, m)$. 3. $73(511, m)$. 4. $10(111, m)$. 4. $10(111, m)$. 5. $10(111, bd)$. 5. $10(111, bd)$. 5. $10(111, bd)$. 5. $10(111, dd)$. 5. $10(111, dd)$. 5. $10(111, dd)$. 6. $10(111, dd)$. 7. $10(111, dd)$. 6. $10(111, dd)$. 6. $10(111, dd)$. 7. 60(111, dd) 1. 6. $10(111, dd)$. 7. $10(111,$
=	$0.64 \sim 1.88(1711, m)$, $0.94(311, t.) = 1.51(2)$, $0.50(111, m)$, $0.50(111, m)$, $0.90(111,

EP 0 468 641 A2

Renin inhibition potency of the compounds (I) of the invention was determined in vitro and in vivo according to the procedure described in the following Experiments.

Experiment 1 Potency in vitro

Commercially available lyophilized human plasma (Ortho, Bi-Level Plasma Renin Control) was renatured by dissolving in water. Angiotensinogen was allowed to react with intrinsic renin contained in the renatured plasma to generate angiotensin I (AI), which was quantitatively measured with radioimmunoassay (RIA). Thus, potency of the plasma renin was determined on the basis of the AI production. For this purpose, Renin RIA kit (RENIN' RIABEADR) manufactured by Dinabott was used. All of the reagents necessary for the measurement of the AI production were available from the attachment of the kit, and the measurement was conducted according to the manufacturer's direction.

To the plasma (0.2ml) were added all of the reagents, and the mixture was combined with either of sample solutions (0.002ml) of various concentrations which had been prepared by dissolving a test compound in different amount of ethanol. Ethanol (0.002ml) containing no test compound was used as a control solution. The amount of Al produced was measured after 60 minutes incubation. Renin inhibition potency of test compound was determined by comparing the amount of Al produced by a sample solution with that produced by a control solution. The concentrations of the test compounds which inhibit renin activity by 50% (IC₅₀) are summarized in Table 11.

·

Renin Inhibition in vitro Table 11

		TC	Test Compound	IC ₅₀	Test Compound	i IC ₅₀
	Compound	^{1C} 50	(Example No.)		(Example No.	1
(Exam	ple No.)		22	39.2	42	13
	1	6.09		2.07	43	0.51
	2	5.87	23		44	1.53
	3 .	4.44	24	1.56	45	0.31
	4	3.21	25	3.17	46	3.16
	5	29.0	26	1.32		5.90
	6	4.22	27	1.78	47	1.98
	8	6.17	28	0.52	48	
	9	12.0	29	3.31	49	2.34
		10.9	30	1.07	50	14.8
	10	9.1	31	11.6	51	4.51
	11	4.56	32	6.72	52	1.69
	12		33	4.65	53	0.36
	13	53.9	34	9.53		0.60
	14	9.3		0.63		0.70
	15 .	12.6	35	4.98	- - -	0.80
	16	71.3	36		58	0.19
	17	259	. 37	14.5	59	0.41
	18	22.8	3.8	39.2		1.24
	19	3.75	39	7.5	-	0.70
	20	7.36	40	18.1	64	0.53
	21	2.73	41	4.9	8 69 · ·	. •
	4.				(1)(KRI-	
	. •	Vend			(2)(ES-6	864) 3

 10_{50} : nM

50

(2) ES-6864

Experiment 2 Potency in vivo

Crab-eating monkeys (Cynomolgus monkeys) (2.8-5.0 kg) were fed on low sodium diet (Na 7.15mg/100g feed) for six days, during which the monkeys intramuscularly received furosemide (2mg/kg body weight) every other day from the second day of the experiment, in order to make the monkeys hyperrenin condition.

After seven days of low sodium feeding, the monkeys were restrained on a monkey chair. Compounds to be tested are dissolved in 0.1M citric acid/physiological saline or suspended in water with addition of β-cyclodextrin, and orally administered to the monkeys using a stomach probe (15mg/kg body weight). Two milliliters of blood was collected from the femoral vein before administration of the compounds and 0.5, 1.5, 2.5 and 4 hours after the administration. For the blood collection, an injection syringe containing 30μl of 6% aqueous EDTA-2Na solution was used. The collected blood was transferred into a test tube and centrifuged (3000 rpm, 10 minutes) at 4°C, and the resultant supernatant was used to determine the renin content. Plasma renin activity (Al(ng)/ml/h value) was measured using a Radioimmunoassay kit commercially available from Dinabott Co. in the same manner as in the foregoing in vitro test. Renin inhibition potencies of the compounds tested, which were expressed as a percentage of renin activity relative to the activity before the administration, are listed in Table 12.

Table 12

Compound	Max	Mean	4h	6h	8h	24h
Example No						<u> </u>
1	33	22	22			
2	49	46	49			
8	6 O [']	52	60			
21	55	37	55			
24	99	90	77	56	42	28
26	83	71	69	99		
27	81	65'	81	73	64	28
28	97	74	97	89	83	53
33	95	85	68	82		·
35	39	30	39	23	24	14
39	46	28	12			
40	44	30	44			
41	95	89	87	. 76	54	18
43	, 98	86	95	83	70	11
44	99	97	91	81	71	21/1/4
47	59	47	55	.6	18	34
48	98	88	88	63	33	0
49	92	84	78	. 72	51	12
50	. 93	59	58	42	29	0
51	80	48	35	0	0	0
53	96	. 85 ⁻	94		73	
56	93	. 72	82		85	
57	100	97	. 89		80	· · :
58	83	71_	82		: 67	

⁰mg/kg. 1) Administration rate of compound

The compounds of the invention which are not listed in Table 12 showed similar inhibition potencies.

²⁾ Furosemide was not administered in case of Nos.

Vasodepressor activity of the compounds of the invention was also measured with direct technique using a conscious monkey, where a monkey was administered a compound of the invention orally or intravenously (a solution in Tween 20). The test results are shown in Table 13.

Table 13

Compound Example No.	Administration route	Dose (mg/kg)	Maximum reduced BP (-AmmHq)
43	p.o.	100	35
	-	30	10
		10	´ 5
43	i.v.	3	-
		1	. 20
		0.3	. 5
44	i.v.	3	20
		1	8
•		0.3	5

The above test results show that the compounds of the present invention have renin inhibition potency both in vitro and in vivo.

The compounds of the invention are thus useful for the treatment of hypertension due to the renin inhibition when orally administered. However, other administration routes may be also effective.

As discussed previously, the compounds of the invention can be formulated into a pharmaceutical composition together with suitable carriers or excipients. When the compounds of the invention are used as a hypotensive agent, suitable dosage is 0.01-50mg/kg/day in one to three divided does, preferably 0.05-10mg/kg/day, when orally administered, and 1-5000µg/kg/day, preferably 5-500µg/kg/day, when parenterally administered.

Claims

25

35

40

45

50

55

1. A dipeptide derivative of formula (I):

wherein:

R1 is C₁-C₁₂ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₁₀ cycloalkyl, aryl, or heterocyclic radical; R2 is carbamoyl, aryl, 5- or 6-membered heterocyclic radical, C₁-C₁₂ alkyl-S-, C₁-C₁₂ alkyl-S-CH₂-, or C₃-C₁₀ cycloalkyl-S-;

R3 is aryl of 5- or 6-membered heterocyclic radical;

R4 is R4'-SO2 or R4'-CO;

R4' is aryl, C_1 - C_{12} alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl; C_3 - C_{10} cycloalkyl, or heterocyclic radical;

X is CH₂, NH, O, or S; and

Y is CO or NHSO₂ wherein R¹, R², R³ and R⁴ each may be substituted with one to three substituents selected independently from a group consisting of hydroxy; halogen; trifluoromethyl; -CN; heterocyclic radical; C₁-C₆ alkyl; C₃-C₁₀ cycloalkyl; -O-C₁-C₆ alkyl; -S-C₁-C₆ alkyl; -SO-C₁-C₆ alkyl; -SO₂-C₁-C₆ alkyl; -NHSO₂-C₁-C₆ alkyl; -NR⁵R⁶; -O-CO-NR⁵R⁶; -O-CO-NR⁵R⁶; -O-C₁-C₆ alkyl; NR⁵R⁶; R⁵ and R⁶ are independently hydrogen, formyl or C₁-C₆ alkyl, or R⁵ and

Re, when taken together with the nitrogen to which they are attached, form a cyclic amino group; or an acid addition salt thereof.

- A compound as daimed in Claim 1 wherein R² is optionally substituted 5- or 6-membered heterocyclic group; R³ is optionally substituted aryl; R⁴ is morpholinosulfonyl; and x is NH.
- 3. A compound for the manufacture of the derivative of formula (I) of Claim 1, said compound having the formula:

wherein, R1 is as defined in Claim 1, and R7 is hydrogen or an amino protecting group.

10

15

25

.55

4. A process for the preparation of a compound as defined in Claim 1 of Claim 2 wherein Y is CO comprising at least the final step of the following reaction scheme:

H R⁷-NH CBO + 0 [1](S) [2]

R7-N 1 S S R1 +

R7-H S R 3 R1

Step 2b

Step 2c

$$\mathbb{R}^{7}-\mathbb{N}\mathbb{B} \xrightarrow{\mathbb{N}\mathbb{R}} \mathbb{N}\mathbb{R} \xrightarrow{\mathbb{N}\mathbb{R}} \mathbb{N}\mathbb{R} \xrightarrow{\mathbb{N}\mathbb{R}} \mathbb{N}\mathbb{R}$$

[14]

R¹ [2]

$$\mathbb{R}^{7}-\mathbb{NH} \longrightarrow \mathbb{NH} \longrightarrow \mathbb{R}^{2}$$

$$\mathbb{R}^{0} \longrightarrow \mathbb{NH} \longrightarrow \mathbb{R}^{1}$$

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{1}$$

$$R_1-NH$$
 NH
 HO
 OH
 R_1
 HO
 OH

10

15

20

25

30

35

50

. 55

[11] [12] (S) BO [13]

wherein R¹, R², R³, R⁴ and X are as defined in Claim 1, R² is protected R² and R⁷ is an amino protecting group.

5. A process for preparing a compound as defined in Claim 1 or Claim 2 wherein Y is NHSO₂ comprising at least the final step of the following reaction scheme:

Step 1

$$R^{7}-NH \xrightarrow{CHO} \longrightarrow R^{7}-NH \xrightarrow{E} CN$$

$$L-[1] \qquad [20]$$

$$R^{7}-NH \xrightarrow{E} NH_{2} \xrightarrow{C\ell SO_{2}R^{1}} R^{7}-NH \xrightarrow{HO} NHSO_{2}R^{1}$$

$$[21] \qquad [23]$$

10

15

50

55

$$R^{7} - NH \xrightarrow{HO} NHSO_{2}R^{1} \xrightarrow{HO} NHSO_{2}R$$

$$[23] \qquad \qquad [24]$$

$$R^{7} - NH \xrightarrow{COOH} R^{2} \xrightarrow{R^{2}} NH \xrightarrow{R^{2}} NHSO_{2}R^{1}$$

$$\begin{array}{c}
\text{Step 3} \\
 & \text{R}^2 \\
 & \text{NH}_2 \\
 & \text{NH}_2 \\
 & \text{NH}_3 \\
 & \text{NHSO}_2 R^1 \\
 & \text{NHSO}_2 R^1
\end{array}$$

$$\begin{array}{c}
\text{R}^3 \\
 & \text{NHSO}_2 R^1
\end{array}$$

wherein R1, R2, R3, R4 and X are as defined in Claim 1 and R7 is an amino protecting group.

[IB]

EP 0 468 641 A2

- A pharmaceutical preparation for use in the treatment of hypertension comprising a pharmaceutically effective amount of at least one compound as defined in Claim 1 or Claim 2 together with one or more pharmaceutically acceptable carriers, diluents or excipients.
- 7. The use of a compound as defined in Claim 1 or Claim 2 in the manufacture of a medicament for use in 5 the treatment of hypertension.
 - A process for carrying out a stereo selective aldol condensation between an aldelyde and a ketone wherein the reaction is carried out in the presence of a metal amide and a crown ether in an organic solvent and at a temperature in the range -10 to about -100°C.
 - A process as claimed in Claim 8 wherein the amide is sodium bis-trimethylsilylamide (NaN(TMS)2), the crown ether is 15-crown-5 and the temperature is about -78°C.

Claims for the following Contracting State: ES 15

1. A process for the production of a pharmaceutical preparation for the treatment of hypertension comprising the step of admixing a pharmaceutically effective amount of at least one compound of the formula

$$R_{4} \xrightarrow{X} \underbrace{\begin{array}{c} 0 \\ NH \end{array}}_{B_{3}} \underbrace{\begin{array}{c} 0 \\ NH \end{array}}_{B_{3}} \underbrace{\begin{array}{c} 0 \\ NH \end{array}}_{B_{3}} \underbrace{\begin{array}{c} 0 \\ NH \end{array}}_{A_{3}} \underbrace{\begin{array}{c} 0$$

wherein:

10

20

25

30

35

 R^1 is C_1 - C_{12} alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_{10} cycloalkyl, aryl, or heterocyclic radical; R2 is carbamoyl, aryl, 5- or 6-membered heterocyclic radical, C1-C12 alkyl-S-, C1-C12 alkyl-S-CH2-, or C₃-C₁₀ cycloalkyl-S-;

R3 is anyl of 5- or 6-membered heterocyclic radical;

R4 is R4'-SO2 or R4'-CO;

R4 is aryl, C₁-C₁₂ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl; C₃-C₁₀ cycloalkyl, or heterocyclic radical;

X is CH2, NH, O, or S; and

Y is CO or NHSO2 wherein R1, R2, R3 and R4 each may be substituted with one to three substituents selected independently from a group consisting of hydroxy; halogen; trifluoromethyl; -CN; heterocyclic $\text{radical; } C_{1}\text{-}C_{6} \text{ alkyl; } C_{3}\text{-}C_{10} \text{ cycloalkyl; } -\text{O-}C_{1}\text{-}C_{6} \text{ alkyl; } -\text{S-}C_{1}\text{-}C_{6} \text{ alkyl; } -\text{SO-}C_{1}\text{-}C_{6} \text{ alkyl; } -\text{SO}_{2}\text{-}C_{1}\text{-}C_{6} \text{ alkyl; } -\text{SO}_{2}\text{-}C_{1}\text{-}C$ $C_1-C_6 \text{ alkylenedioxy; -CO-O-C}_1-C_6 \text{ alkyl; -NHCO-C}_1-C_6 \text{ alkyl; -NHSO}_2-C_1-C_6 \text{ alkyl; -NR}^5R^6; -O-CO-NR}^5R^6; -O-CO-NR}^$ -CO-NR5R6; -O-C1-C6 alkyl NR5R6; R5 and R6 are independently hydrogen, formyl or C1-C6 alkyl, or R5 and Re, when taken together with the nitrogen to which they are attached, form a cyclic amino group; or an acid addition salt thereof together with one or more pharmaceutically acceptable diluents, excipients or carriers.

- A process as claimed in Claim 1 wherein R2 is optionally substituted 5- or 6-membered heterocyclic group; R3 is optionally substituted aryl; R4 is morpholinosulfonyl; and x is NH.
 - A process for the preparation of a compound as defined in Claim 1 of Claim 2 wherein Y is CO comprising at least the final step of the following reaction scheme:

50

*

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

$$\mathbb{R}^{7-NH} \xrightarrow{0} \mathbb{R}^{2}$$

$$\mathbb{R}^{2} \xrightarrow{\mathbb{R}^{3}} \mathbb{R}^{1} \longrightarrow \mathbb{R}^{3}$$

$$\mathbb{R}^{3} \xrightarrow{\mathbb{R}^{3}} \mathbb{R}^{1}$$

$$R^{7}-NH \longrightarrow 0 \qquad HO \qquad 0$$

$$(10)$$

Step 2b

Step 2c

wherein R¹, R², R³, R⁴ and X are as defined in Claim 1, R² is protected R² and R⁷ is an amino protecting group.

4. A process for preparing a compound as defined in Claim 1 or Claim 2 wherein Y is NHSO₂ comprising at least the final step of the following reaction scheme:

$$R^{7}-NH \xrightarrow{CHO} \longrightarrow R^{7}-NH \xrightarrow{E} CN$$

$$R^{7}-NH \xrightarrow{BO} NH_{2} \xrightarrow{C \in SO_{2}R^{1}} R^{7}-NH \xrightarrow{E} NBSO_{2}R^{1}$$

$$[21]$$

$$[23]$$

10

15

[25]
$$\longrightarrow NH_2 \longrightarrow NH_2 \longrightarrow NHSO_2R^1 \longrightarrow R^4 - X \longrightarrow OH$$
[26] [12]

$$\frac{1}{R^4 - \chi} = \frac{R^3}{0} \times \frac{R^2}{0} \times \frac{R^2}{10} \times \frac{R^3}{10} \times \frac{$$

wherein R1, R2, R3, R4 and X are as defined in Claim 1 and R7 is an amino protecting group.

5. The use of a compound as defined in Claim 1 or Claim 2 in the manufacture of a medicament for use in

50

EP 0 468 641 A2

the treatment of hypertension.

- A process for carrying out a stereo selective aldol condensation between an aldelyde and a ketone wherein the reaction is carried out in the presence of a metal amide and a crown ether in an organic solvent and at a temperature in the range -10 to about -100°C.
- 7. A process as claimed in Claim 8 wherein the amide is sodium bis-trimethylsilylamide (NaN(TMS)2), the crown ether is 15-crown-5 and the temperature is about -78°C.

Claims for the following Contracting States: GR 10

1. A process for the production of a pharmaceutical preparation for the treatment of hypertension comprising the step of admixing a pharmaceutically effective amount of at least one compound of the formula

wherein:

15

20

25

30

35

R¹ is C1-C12 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C10 cycloalkyl, aryl, or heterocyclic radical; R2 is carbamoyl, aryl, 5- or 6-membered heterocyclic radical, C1-C12 alkyl-S-, C1-C12 alkyl-S-CH2-, or C3-C10 cycloalkyl-S-;

R3 is anyl of 5- or 6-membered heterocyclic radical;

R4 is R4'-SO2 or R4'-CO;

R4' is aryl, C₁-C₁₂ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl; C₃-C₁₀ cycloalkyl, or heterocyclic radical;

X is CH2, NH, O, or S; and

Y is CO or NHSO₂ wherein R¹, R², R³ and R⁴ each may be substituted with one to three substituents selected independently from a group consisting of hydroxy; halogen; trifluoromethyl; -CN; heterocyclic $\text{radical; } C_{1}\text{--}C_{6} \text{ alkyl; } C_{3}\text{--}C_{10} \text{ cycloalkyl; } -\text{O-}C_{1}\text{--}C_{6} \text{ alkyl; } -\text{S-}C_{1}\text{--}C_{6} \text{ alkyl; } -\text{SO-}C_{1}\text{--}C_{6} \text{ alkyl; } -\text{SO}_{2}\text{--}C_{1}\text{--}C_{6} \text{ alkyl; } -\text{SO}_{2}\text{--}C_{1}\text{--}C_{1}\text{--}C_{1}\text{--}C_{1}\text{--}C_{1}\text{--}C_{1}\text{--}C_{1}\text{--}C_{1}\text{--}C_{1}\text{--}C_{1}\text{--}C_{1}\text{--}C_{1}\text{--}C_{1}\text{--}$ $C_1-C_6 \text{ alkylenedioxy; -CO-O-C}_1-C_6 \text{ alkyl; -NHCO-C}_1-C_6 \text{ alkyl; -NHSO}_2-C_1-C_6 \text{ alkyl; -NR}^5R^6; -O-CO-NR}^5R^6;$ -CO-NR5R6; -O-C1-C6 alkyl NR5R6; R5 and R6 are independently hydrogen, formyl or C1-C6 alkyl, or R6 and Re, when taken together with the nitrogen to which they are attached, form a cyclic amino group; or an acid addition salt thereof together with one or more pharmaceutically acceptable diluents, excipients or carriers.

- A process as claimed in Claim 1 wherein R2 is optionally substituted 5- or 6-membered heterocyclic group; R^3 is optionally substituted aryl; R^4 is morpholinosulfonyl; and x is NH.
 - A process for the preparation of a compound as defined in Claim 1 of Claim 2 wherein Y is CO comprising at least the final step of the following reaction scheme:

50

45

[5]

$$B_2N$$
 BO
 OB
 $[7]$

$$R_{3}-NH \longrightarrow HO OH$$

$$[9]$$

$$\mathbb{R}^{2}-\mathbb{NH} \longrightarrow \mathbb{R}^{1}$$

$$[10]$$

Step 2b

[14]

$$\int \int_{0}^{R'} [2]$$

いっては、一般のできないないできないと、一般のは、大きなないのでは、一般のでは、一般のできないないとなっている。

.[11] [12] (S) HÖ [13] [11]

wherein R¹, R², R³, R⁴ and X are as defined in Claim 1, R^{2'} is protected R² and R⁷ is an amino protecting group.

1110

4. A process for preparing a compound as defined in Claim 1 or Claim 2 wherein Y is NHSO₂ comprising at least the final step of the following reaction scheme:

50

10

15

20

25

30

5

10

15

20

35

45

50

55

$$R^{7}-NH \xrightarrow{CHO} \longrightarrow R^{7}-NH \xrightarrow{BO} CN$$

$$L-[1] \qquad \qquad [20]$$

$$R^{7}-NH \xrightarrow{BO} NH_{2} \xrightarrow{C\ell SO_{2}R^{1}} \qquad R^{7}-NH \xrightarrow{E} NHSO_{2}R^{1}$$

$$[21] \qquad \qquad [23]$$

Step 2

$$\mathbb{R}^7 - \mathbb{NH} \xrightarrow{\mathbb{H}} \mathbb{NHSO}_2 \mathbb{R}^1 \xrightarrow{\mathbb{H}} \mathbb{NHS}$$

³⁰ [23] [24]

$$\begin{array}{c|c}
R^{7} - NH & R^{2} \\
\hline
 & R^{7} - NH & R^{2} \\
\hline
 & R^{7} - NH & R^{2} \\
\hline
 & NHSO_{2}R^{1}
\end{array}$$
[25]

Step 3

[25]
$$\longrightarrow NH_2$$

$$0$$

$$10$$

$$10$$

$$10$$

$$10$$

$$12$$

$$10$$

$$12$$

wherein R1, R2, R3, R4 and X are as defined in Claim 1 and R7 is an amino protecting group.

- The use of a compound as defined in Claim 1 or Claim 2 in the manufacture of a medicament for use in the treatment of hypertension.
- 6. A process for carrying out a stereo selective aldol condensation between an aldelyde and a ketone wherein the reaction is carried out in the presence of a metal amide and a crown ether in an organic solvent and at a temperature in the range -10 to about -100°C.
- 7. A process as claimed in Claim 8 wherein the amide is sodium bis-trimethylsilylamide (NaN(TMS)₂), the crown ether is 15-crown-5 and the temperature is about -78°C.
- 8. A compound for the manufacture of the derivative of formula (I) of Claim 1, said compound having the formula:

wherein, R1 is as defined in Claim 1, and R7 is hydrogen or an amino protecting group.

50

5

10

15

20

25

30