This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

 (Previously Presented) An article of manufacture for use in a computer system for translating a path expression in an object oriented query to a relational database outer join, said path expression comprising a navigation path through a relationship in a schema, said article of manufacture comprising a computer-uscable storage medium having a computer program embodied in said medium which causes the computer system to perform:

analyzing each path expression defined in each level of the object oriented query; identifying each path expression which can be a candidate for a translation to an outer join;

ordering the path expression starting with path expression defined in a FROM clause, adding to the FROM clause path expression, each path expression identified as a candidate for a translation to an outer join, and making the ordered path expressions as input to a select operator for each level of the object oriented query;

grouping the ordered path expressions sequentially based upon on a source-target dependency between ordered path expressions and based upon the identifications as a candidate for a translation to an outer join;

creating a quantifier for each path expression, said quantifier comprising a variable representing a table in a relational database;

replacing each grouped path expression with a corresponding quantifier and related table in a relational database; and

completing a translation of the object oriented query to a relational query.

 (Previously Presented) The article of manufacture of claim 1 wherein the embodied computer program embodied in said medium can further cause the computer system to perform:

performing optimization on the grouped quantifiers, said optimization identifying quantifiers which can be a candidate for a translation to an inner join;

generating an outer join for each quantifier which remains after optimization a candidate for a translation to an outer join; and

generating an inner join for each quantifier which remains after optimization a candidate for a translation to an inner join.

- (Original) The article of manufacture of claim 2 wherein the optimization identifies a quantifier as a candidate for a translation to an inner join if a corresponding path expression is used in a FROM clause.
- 4. (Original) The article of manufacture of claim 2 wherein the optimization identifies a quantifier as a candidate for a translation to an inner join if a LIKE, IN, or BETWEEN operator exists in a WHERE clause containing a corresponding path expression.
- (Original) The article of manufacture of claim 2 wherein the optimization identifies a quantifier as a candidate for a translation to an inner join if an EQUAL, LESS THAN, GREATER THAN, LESS THAN OR EQUAL, GREATER THAN OR EQUAL, NOT EQUAL, or NOT NULL operator exits in a WHERE clause.
- (Previously Presented) A method of translating a path expression in an object oriented query to a relational database outer join, said path expression comprising a navigation path through a relationship in a schema, comprising:

analyzing each path expression defined in each level of the object oriented query; identifying each path expression which can be a candidate for a translation to an outer join;

ordering the path expressions starting with path expressions defined in a FROM clause, adding to the FROM clause path expressions, each path expression identified as a candidate for a translation to an outer join, and making the ordered path expressions as input to a select operator for each level of the object oriented query;

grouping the ordered path expressions sequentially based upon on a source-target dependency between ordered path expressions and based upon the identifications as a candidate for a translation to an outer join;

Serial No. 10/669,934 Docket No. SVL920020078US1 Firm No. 0057,0097

creating a quantifier for each path expression, said quantifier comprising a variable representing a table in a relational database;

replacing each grouped path expression with a corresponding quantifier and related table in a relational database; and

completing a translation of the object oriented query to a relational query.

 (Previously Presented) The method of claim 6 further comprising: performing optimization on the grouped quantifiers, said optimization identifying quantifiers which can be a candidate for a translation to an inner join;

generating an outer join for each quantifier which remains after optimization a candidate for a translation to an outer join; and

generating an inner join for each quantifier which remains after optimization a candidate for a translation to an inner join.

- (Original) The method of claim 7 wherein the optimization identifies a quantifier
 as a candidate for a translation to an inner join if a corresponding path expression is used in a
 FROM clause.
- (Original) The method of claim 7 wherein the optimization identifies a quantifier
 as a candidate for a translation to an inner join if a LIKE, IN, or BETWEEN operator exists in a
 WHERE clause containing a corresponding path expression.
- 10. (Original) The method of claim 7 wherein the optimization identifies a quantifier as a candidate for a translation to an inner join if an EQUAL, LESS THAN, GREATER THAN, LESS THAN OR EQUAL, GREATER THAN OR EQUAL, NOT EQUAL, or NOT NULL operator exits in a WHERE clause.
- 11. (Original) A computer system for translating a path expression in an object oriented query to a relational database outer join, said path expression comprising a navigation path through a relationship in a schema, said computer system comprising:

Serial No. 10/669,934 Docket No. SVL920020078US1 Firm No. 0057,0097

computer program instructions for analyzing each path expression defined in each level of the object oriented query;

computer program instructions for identifying each path expression which can be a candidate for a translation to an outer join;

computer program instructions for ordering the path expressions starting with path expressions defined in a FROM clause, adding to the FROM clause path expressions, each path expression identified as a candidate for a translation to an outer join, and making the ordered path expressions as input to a select operator for each level of the object oriented query;

computer program instructions for grouping the ordered path expressions sequentially based upon on a source-target dependency between ordered path expressions and based upon the identifications as a candidate for a translation to an outer join;

computer program instructions for creating a quantifier for each path expression, said quantifier comprising a variable representing a table in a relational database:

computer program instructions for replacing each grouped path expression with a corresponding quantifier and related table in a relational database; and

computer program instructions for completing a translation of the object oriented query to a relational query.

12. (Original) The computer system of claim 11 further comprising:

computer program instructions for performing optimization on the grouped quantifiers, said optimization identifying quantifiers which can be a candidate for a translation to an inner ioin:

computer program instructions for generating an outer join for each quantifier which remains after optimization a candidate for a translation to an outer join; and

computer program instructions for generating an inner join for each quantifier which remains after optimization a candidate for a translation to an inner join.

13. (Original) The computer system of claim 12 wherein the optimization identifies a quantifier as a candidate for a translation to an inner join if a corresponding path expression is used in a FROM clause. Amdt. dated August 21, 2007 Serial No. 10/669,934
Reply to Office action of May 21, 2007 Docket No. SVI-920020078US1
Firm No. 0057,0097

14. (Original) The computer system of claim 12 wherein the optimization identifies a quantifier as a candidate for a translation to an inner join if a LIKE, IN, or BETWEEN operator exists in a WHERE clause containing a corresponding path expression.

15. (Original) The computer system of claim 12 wherein the optimization identifies a quantifier as a candidate for a translation to an inner join if an EQUAL, LESS THAN, GREATER THAN, LESS THAN OR EQUAL, GREATER THAN OR EQUAL, NOT EQUAL, or NOT NULL operator exits in a WHERE clause.