Smart Software Project

Lab: Week 9

Ultrasonic Sensors

Prof. HyungJune Lee hyungjune.lee@ewha.ac.kr

Today

Lab announcement

Ultrasonic sensor

Lab assignment #6

Course announcement

Class Schedule

Week	Lecture Contents	Lab Contents
Week 1	Course introduction	Arduino introduction: platform & programming environment
Week 2	Embedded system overview & source management in collaborative repository (using GitHub)	Lab 1: Arduino Mega 2560 board & SmartCAR platform
Week 3	ATmega2560 Micro-controller (MCU): architecture & I/O ports, Analog vs. Digital, Pulse Width Modulation	Lab 2: SmartCAR LED control
Week 4	Analog vs. Digital & Pulse Width Modulation	Lab 3: SmartCAR motor control (Due: HW on creating project repository using GitHub)
Week 5	ATmega2560 MCU: memory, I/O ports, UART	Lab 4: SmartCAR control via Android Bluetooth
Week 6	ATmega2560 UART control & Bluetooth communication between Arduino platform and Android device	Lab 5: SmartCAR control through your own customized Android app (Due: Project proposal)
Week 7	Midterm exam	
Week 8	ATmega2560 Timer, Interrupts & Ultrasonic sensors	Lab 6: SmartCAR ultrasonic sensing
Week 9	Infrared sensors & Buzzer	Lab 7: SmartCAR infrared sensing
Week 10	Acquiring location information from Android device & line tracing	Lab 8: Implementation of line tracer
Week 11	Gyroscope, accelerometer, and compass sensors	Lab 9: Using gyroscope, accelerometer, and compass sensors
Week 12	Project	Team meeting (for progress check)
Week 13	Project	Team meeting (for progress check)
Week 14	Course wrap-up & next steps	
Week 15	Project presentation & demo I (Due: source code, presentation slides, & poster slide)	Project presentation & demo II
Week 16	Final week (no final exam)	

Lab Session

- Practice in-lab programming exercises based on the lecture materials
- Upload source codes for lab assignments in Ewha Cyber Campus after the lab session
 - Due: 11:59pm on the lab day
- Once you are done, you can leave the session after checking with me or TA
- Or, continue to work on programming for other homework assignments

Lab Policy

- 1) Please check out your SmartCAR (& Nexus 7 tablet) as soon as you arrive at the classroom
- 2) Please complete lab assignments
- 3) Upload required files to Ewha Cyber Campus
- 4) Check with me or TA
- 5) Please upload a null firmware to SmartCAR before you return it!!!
 - This will be a part of your lab score
- 6) Please remove files that you created or downloaded in your computer after you are done
 - Remove your project completely
- 7) Please shut down your computer before you leave
- 8) Return the checked-out SmartCAR (& Nexus 7 tablet) to TA

NOTE: How to run SmartCAR in Lab

- Power OFF
 - Compile your code
 - Lift up your SmartCAR with your hand
 - Upload your code
- Disconnect the USB cable
- Go to find a spacious area
- Put it down there
- Power ON
- It will run your firmware
- After test, turn power OFF

Lab Announcement

- Bluetooth pairing "headache"
 - Because there are so many Bluetooth devices in the classroom with the same name
 - "155v2.1.7_hb" <- SmartCAR
 - So please go outside with your SmartCAR and your Android device, and then pair them
 - Please do not pair with other students' devices

Today

Lab announcement

Ultrasonic sensor

Lab assignment #6

Course announcement

Ultrasonic wave

- Ultrasonic wave?
 - Sound wave with high frequency
 - Sound wave
 - Sound is transmitted through gases, plasma, and liquids
 - Audible wave
 - 20Hz~20kHz spectrum
 - Ultrasonic wave
 - Frequency spectrum where human cannot hear
 - Spectrum

SmartCAR Ultrasonic Sensors

- 12 ultrasonic sensors
 - Ultrasonic sensor (Transmitter)
 Transmit an ultrasonic wave to detect an object
 - ② Ultrasonic sensor (Receiver) Receive the ultrasonic wave transmitted from TX
 - => Calculates the distance from the TX-RX time diff

Ultrasonic Sensor Hardware Architecture

SmartCAR UART Port Configuration

UART1 port is used for ultrasonic sensors

UART No.	Name	Port / Number	Etc
UARTO	RXD0	PEO / -	Program port
UARTU	TXD0	PE1 / -	Bluetooth port
UART1	RXD1	PD2 / 19	Illtraconic concor
UARTI	TXD1	PD3 / 18	Ultrasonic sensor
LIADTO	RXD2	PH0 / 17	Extension board 1
UART2	TXD2	PH1 / 16	Extension board 1
LIADTO	RXD3	PJO / 15	Extension board 2
UART3	TXD3	PJ1 / 14	Extension board 2

Baud rate should be set to 115200bps

- OFF
 - Stop measuring from the ultrasonic

TX Data Packet (ATmega2560 -> ATmega128)										
Start		ID	CSC							
0x76	0x00	0x0F	0x00	0x0F						

CSC: to check error – all ID sum & 0xFF

RX Da	ta Pac	ket (A	Tmeg	ga 12	28 -	> A1	meg	ja25	60)					
Start		ID				DAT	ΓΑ							
0x76	0x00	0x1	0x1F 0x00				0x00							
DATA													CSC	-
0x00	0x00 0x00 0x00 0x					0	0x0	0	0x0	0	0x0	0		

CSC: to check error – all ID & Data sum & 0xFF

Basic

- Front 3 ultrasonic sensors (F2, F3, F4) & Rear 1 ultrasonic sensor (R2)
- Send a TX data request packet, and receive a RX data packet for the measurement continuously

TX Data Packet (ATmega2560 -> ATmega128)										
Start		ID	CSC							
0x76	0x00	0x10	0x00	0x10						

RX Da	ta Pa	acket	(ATme	ga12	28 -	> A1	meg	ja25(60)					
Start	Α													
0x76	0x00	0 0	0x11 0x00			0x0	0x00 0x00 F2 F3 F4							F4
DATA													CSC	,
0x00		0x00	0x0	x00 0x0		0	R2		0x00		0x0	0		

- F0~6: distance in front ultrasonic sensors
- R0~4 : distance in rear ultrasonic sensors

Right

- Front 5 ultrasonic sensors (F2 ~ F6) & Rear 5 ultrasonic sensors (R0 ~ R4)
- Send a TX data request packet, and receive a RX data packet for the measurement continuously

TX Data Packet (ATmega2560 -> ATmega128)										
Start		ID	ID							
0x76	0x00	0x20	0x00	0x20						

RX Da	ta P	acke	et (A	Tme	ga12	28 -	> A1	meg	ga25	60)					
Start			₽				DAT	ГА							
0x76	0x0	C	0x2	1	0x0	0	0x0	0	0x0	0	F2		F3		F4
DATA							-							CSC	
F5		F6		R0		R1		R2		R3		R4			

- F0~6: distance in front ultrasonic sensors
- R0~4: distance in rear ultrasonic sensors

Left

- Front 5 ultrasonic sensors (F0 ~ F4) & Rear 5 ultrasonic sensors (R0 ~ R4)
- Send a TX data request packet, and receive a RX data packet for the measurement continuously

TX Data Packet (ATmega2560 -> ATmega128)										
Start		ID	CSC							
0x76	0x00	0x30	0x00	0x30						

RX Da	ta Pac	cket (A	Tme	ga12	28 -	> A1	meg	ga25	60)					
Start														
0x76	0x00	0x3	1	0x0	0	F0		F1		F2		F3		F4
DATA		-											CSC	
0x00	C)x00	R0		R1		R2		R3		R4			

- F0~6: distance in front ultrasonic sensors
- R0~4: distance in rear ultrasonic sensors

Front

- Front 7 ultrasonic sensors (F0 ~ F6)
- Send a TX data request packet, and receive a RX data packet for the measurement continuously

TX Data Packet (ATmega2560 -> ATmega128)										
Start		ID	CSC							
0x76	0x00	0x40	0x00	0x40						

RX Da	ta Pacl	cet (A	Tme	ga12	28 -	> A	me c	ja25	60)					
Start		ID				DA	ГА							
0x76	0x00	0x4	0x41 0x00			F0		F1		F2		F3		F4
DATA	DATA												CSC	
F5	F6	F6 0x00 0x				0	0x0	0	0x0	0	0x0	0		

- F0~6 : distance in front ultrasonic sensors
- R0~4: distance in rear ultrasonic sensors

Back

- Front 2 ultrasonic sensors (F0, F6) & Rear 5 ultrasonic sensors (R0 ~ R4)
- Send a TX data request packet, and receive a RX data packet for the measurement continuously

TX Data Packet (ATmega2560 -> ATmega128)									
Start		ID	CSC						
0x76	0x00	0x50	0x00	0x50					

RX Data Packet (ATmega128 -> ATmega2560)															
Start							DA	ГА							
0x76	0x0	O	0x51 0x00		F0		0x00		0x00		0x00		0x00		
DATA						-							CSC		
0x00		F6		R0		R1		R2		R3		R4			

- F0~6: distance in front ultrasonic sensors
- R0~4 : distance in rear ultrasonic sensors

All

- Front 7 ultrasonic sensors (F0 ~ F6) & Rear 5 ultrasonic sensors (R0 ~ R4)
- Send a TX data request packet, and receive a RX data packet for the measurement continuously

TX Data Packet (ATmega2560 -> ATmega128)									
Start		ID	CSC						
0x76	0x00	0xF0	0x00	0xF0					

RX Data Packet (ATmega128 -> ATmega2560)															
Start ID							DA	ГА							
0x76	0x00		0xF1 0x00			F0		F1 F			F3			F4	
DATA							-							CSC	_
F5		F6		R0		R1		R2		R3		R4			

- F0~6: distance in front ultrasonic sensors
- R0~4 : distance in rear ultrasonic sensors

SmartCAR Firmware

```
#define NUM_TX_BYTES
                                 5
                                 17
#define NUM RX BYTES
unsigned char TX_buf[NUM_TX_BYTES] = \{0x76, 0x00, 0xF0, 0x00, 0xF0\};
unsigned char TX_stop_buf[NUM_TX_BYTES] = \{0x76, 0x00, 0x0F, 0x00, 0x0F\};
unsigned char RX_buf[NUM_RX_BYTES];
boolean ultrasonic result = false;
void setup()
  int i = 0;
   Serial.begin(115200);
   while (text[i] != '₩0')
     Serial.write(text[i++]);
   Serial.write("Received cmds: ");
   Serial1.begin(115200);
   //initialize ports
   pinMode(....);
   digitalWrite(...);
```



```
void loop()
void serialEvent()
   int command = Serial.read();
   switch (command)
      case 1:
         move stop();
         delay(500);
         move forward();
         break;
      case 2:
         move_stop();
         delay(500);
         turn left();
         break:
      case 3:
         move stop();
         delay(500);
         turn_right();
         break:
      case 4:
         move_stop();
         delay(500);
         move backward();
         break;
```

SmartCAR Firmware

```
case 5:
   move_stop();
   break;
case 6:
   front_led_control(true);
   break:
case 7:
   front_led_control(false);
   break:
case 8:
   rear led control(true);
   break:
case 9:
   rear led control(false);
   break:
case 10
   ultrasonic_sensor_read();
   break;
default:
   move_stop();
   front_led_control(false);
   rear_led_control(false);
```

```
void ultrasonic sensor read()
   ultrasonic result = false:
  Serial1.write(TX buf, NUM TX BYTES);
void serialEvent1()
  unsigned char z. tmp = 0:
  Serial1.readBytes((char *)RX buf, NUM RX BYTES):
   if ( (RX buf[0] == 0x76) \&\& (RX buf[1] == 0x00) \&\&
         (ultrasonic_result == false) )
      for (z = 2; z < NUM RX BYTES-1; z++)
         tmp += RX buf[z];
      tmp = tmp & 0xFF;
      if (RX buf[NUM RX BYTES-1] == tmp)
         Serial.println("FRONT");
         for (z=4; z < 11; z++)
            Serial.print(" F");
            Serial.print(z-4);
            Serial.print(": ");
            Serial.print(RX buf[z]);
```

SmartCAR Firmware

Execute the ultrasonic sensor!

```
Serial.println("₩nBACK");
for (z=11; z < NUM_RX_BYTES-1; z++)
{
    Serial.print(" B");
    Serial.print(z-11);
    Serial.print(": ");
    Serial.print(RX_buf[z]);
}

ultrasonic result = true;
Serial1.write(TX_stop_buf,
    NUM_TX_BYTES);
}
```

Measure only once and then disable the ultrasonic sensor!

SmartCAR Control App

- http://ai2.appinventor.mit.edu
- Click on "New Project"
- Enter "SmartCAR_Ctr" in Project Name (One word, no space)
- Under "User Interface"
 - Drag-and-drop "ListPicker" component
 - To select a Bluetooth device
 - Drag-and-drop "Button" component
 - Drag-and-drop "Label" component
- Under "Layout"
 - Drag-and-drop "TableArrangement"
 - Drag-and-drop "TableArrangement"
- Under "Connectivity"
 - Drag-and-drop "BluetoothClient"
 - Uncheck "Secure"
- Under "Sensors"
 - Drag-and-drop "AccelerometerSensor"

SmartCAR Sensor Control

- Sensing Ultrasonic sensor (command byte: 10)
 - Send "10" in number using "BluetoothClient.Send1ByteNumber"
- Sensing Infrared sensor (command byte: 11)
 - Send "11" in number using "BluetoothClient.Send1ByteNumber"

```
when UltrasonicButton . Click

do if BluetoothClient1 . IsConnected . then call BluetoothClient1 . Send1ByteNumber number . 10

when InfraredButton . Click

do if BluetoothClient1 . IsConnected . then call BluetoothClient1 . Send1ByteNumber
```

numbe

Receiving Bytes from SmartCAR

- Use "Clock" component: timer functionality
 - To periodically check whether any data have been received from Bluetooth
 - TimerAlwaysFires?: to select whether to expire periodically or not
 - TimerEnabled: to select whether to initially enable or not

Receiving Bytes from SmartCAR

- 1) When Bluetooth is connected, then the timer is enabled
- 2) When "Timer" expires, check if there are received data
 - If so, print them to a label

```
when ListPicker1 .BeforePicking
                                    BluetoothClient1 -
       AddressesAndNames
1)
     when DisconnectButton - .Click
                 set Timer . Timer Enabled to false
                                          ListPicker1 - Selection
                                                                        call BluetoothClient1 - .Disconnect
             set (Timer - ). TimerEnabled - to 📗 true -
                                                                        set ConnectivityLabel - . Text - to
                                                                                                     Status: Disconnected
             set ConnectivityLabel . Lext to
                                            Status: Connected
                                                                        set BTOutput . Text . to
             set ConnectivityLabel - . Text - to
                                           Status: Connection Fail
    when Timer .Timer
                BluetoothClient1 - IsConnected
        then
                         call BluetoothClient1 - .BytesAvailableToReceive > -
                   set BTOutput ▼ . Text ▼ to Call BluetoothClient1 ▼ .ReceiveText
                                                                             numberOfBytes
```

SmartCAR Control App with Buzzer

- http://ai2.appinventor.mit.edu
- Click on "New Project"
- Enter "SmartCAR_Ctr" in Project Name (One word, no space)
- Under "User Interface"
 - Drag-and-drop "ListPicker" component
 - To select a Bluetooth device
 - Drag-and-drop "Button" component
 - Drag-and-drop "Label" component
- Under "Layout"
 - Drag-and-drop "TableArrangement"
 - Drag-and-drop "TableArrangement"
- Under "Connectivity"
 - Drag-and-drop "BluetoothClient"
 - Uncheck "Secure"
- Under "Sensors"
 - Drag-and-drop "AccelerometerSensor"

How to Run your Android app

- 1. Install "QR Barcode Scanner" in Play Store (Android device)
- 2. Click on "Build" (PC)
 - Click on "App (provide QR code for .apk)"
- 3. Run "QR Barcode Scanner" (Android device)
- 4. Touch the URL link (Android device)
- 5. Select "OK" to install .apk file (Android device)

Lab Assignment #6: Ultrasonic sensor & Buzzer

- Submit three following files to Cyber Campus
 - 1) lab6.cpp (Arduino firmware code)
 - 2) lab6.h (Arduino firmware code)
 - 3) SmartCAR_Ctr.apk (Android app package)
 - You should set the app icon image to "SmartCAR.png"
 - In App Inventor,
 "Build" → "App (save .apk to my computer)"

Show your result to TA or instructor

