# **Articulation Points**

Andrés Valencia Oliveros<sup>1,2</sup>

Facultad de Ingeniería, Diseño e Innovación Institución Universitaria Politécnico Grancolombiano Bogotá, Colombia

### Resumen

. . .

Keywords: articulation point, cut vertex

### 1 Introducción

. . .

# 2 Teoría de grafos

En matemáticas y en ciencias de la computación, la teoría de grafos estudia las propiedades de los grafos. Un grafo G(V, E) es una colección de puntos, llamados vértices o nodos  $V = \{v_1, v_2, \dots\}$ , y segmentos de línea que conectan esos puntos, llamados aristas o arcos (en inglés edges)  $E = \{e_1, e_2, \dots\}$ ; cada arista e tiene dos puntos finales, que son vértices. Se escribe  $u \stackrel{e}{-} v$ , y significa que la arista e incide sobre los vértices u y v; en este caso se puede decir que e conecta los vértices u y v, o que los vértices u y v son advacentes [1].



Fig. 1. Ejemplo de un grafo. [1]

 $<sup>^{1}</sup>$  GitHub: anvalenciao

 $<sup>^2\,</sup>$  Email: anvalenciao@poligran.edu.co

### 2.1 Grafo conexo

Un grafo G es conexo, si por cada dos vértices u y v, hay un camino (finito) que comienza en u y termina en v [1]. Para verificar si un grafo G es conexo, se puede aplicar un algoritmo determinista habitual, búsqueda en anchura en inglés  $Breadth\ First\ Search\ (DFS)$  o búsqueda en profundidad en inglés  $Depth\ First\ Search\ (DFS)$ .



Fig. 2. Tipos de grafos. (a) Conexo. (b) Disconexo.

### 2.2 Grafo dirigido o digrafo

Un digrafo o grafo dirigido G(V, E) se define de manera similar a un grafo, excepto que el par de *puntos finales* (u, v) de cada arista ahora está ordenado. Se escribe  $u \stackrel{e}{\to} v$ , dónde u es el vértice inicial de e; y v es el vértice final de e. Se dice que la arista e está dirigida de u a v [1].



Fig. 3. Tipos de grafos. (a) No dirigido. (b) Dirigido o digrafo.

### 3 Puntos de articulación

Un vértice v es un punto de articulación (o vértice de corte), si al eliminar el vértice v del grafo aumenta el número de componentes conectados. Es decir, genera algunos vértices inalcanzables para otros, se desconecta el grafo.



Fig. 4. Ejemplo de grafo con dos puntos de articulación  $v_4$  y  $v_6$ .

# 4 Puentes

Una arista se llama puente si al eliminarla del grafo (manteniendo los vértices) aumenta el número de componentes conectados.



Fig. 5. Ejemplo de grafo con una arista puente  $e_9$ .

## 5 Algoritmos

lorem ipsum dolor sit amet. /home/andres/Documentos/ArticulationPoints/document/Algorithms/code

### 5.1 Algoritmo de Tarjan

El algoritmo de Tarjan para encontrar puntos de articulación

### 5.1.1 Pseudocódigo

### Algoritmo 1: sample code

```
// https://medium.com/@ziyoshams/graphs-in-javascript-cc0ed170b156
    class Graph {
3
      constructor(vertices) {
         this.V = vertices;
 4
        this.graph = new Object();
 5
 6
        this.Time = 0;
 7
8
9
      addEdge(u, v) {
10
        if (this.graph[u] === undefined) {
11
          this.graph[u] = new Array();
12
13
        if (this.graph[v] === undefined) {
14
15
           this.graph[v] = new Array();
16
17
        this.graph[u].push(v);
18
        this.graph[v].push(u);
19
20
21
\frac{22}{23}
      APUtil(u, visited, ap, parent, low, disc) {
        let children = 0;
//visited[u] = true;
24
25
        //disc[u] = this.Time;
26
         //low[u] = this.Time;
27
28
         //this.Time += 1;
29
        //console.log(this.graph[2]);
30
        //for (let v of this.graph[u]) {
for (const v of this.graph[u]) {
31
32
33
           console.log(v);
34
35
      }
36
37
      AP() {
38
        var visited = new Array(this.V),
             disc = new Array(this.V),
low = new Array(this.V),
39
40
41
             parent = new Array(this.V),
42
             ap = new Array(this.V);
43
      }
   }
44
45
   // g1 = {0: [1], 1: [0, 2], 2: [1, 3], 3: [2]};
46
   g1 = new Graph(4);
47
   g1.addEdge(0, 1);
   g1.addEdge(1, 2);
g1.addEdge(2, 3);
49
50
51
   /*g1 = new Graph(5)
52
   g1.addEdge(1, 0);
53
54
   g1.addEdge(0, 2);
55
   g1.addEdge(2, 1);
   g1.addEdge(0, 3);
56
57
   g1.addEdge(3, 4);*/
   g1.AP();
   console.log(g1);
```

## 5.1.2 Complejidad

## Glosario de términos

 ${\bf adyacentes}\,$  Si una arista conecta dos vértices, se dice que son adyacentes. 1

algoritmo determinista Su comportamiento se puede predecir completamente a partir de la entrada, el algoritmo realiza los mismos cálculos y ofrece los mismos resultados[2]. 2

BFS Breadth First Search. 2

**DFS** Depth First Search. 2

puntos finales Dos vértices conectados por una arista. 1, 2

## Referencias

- [1] S. Even,  ${\it Graph~algorithms}.$  Cambridge University Press, 2011.
- [2] P. E. Black, "deterministic algorithm," 2009.