Computability (07/12/2021)

Rice - Shapiro's theorem

program properties concorming I/O

properties of computable functions
$$A \subseteq C$$

$$C = \{f \in C \mid f \text{ is total }\}$$

$$ONE = \{1\}$$

Pregram properties (extensional) as sets of programs $T = \{x \mid \varphi_x \in \mathcal{T}\}$ $P_{ONE} = \{x \mid \varphi_x \in ONE\} = \{x \mid \varphi_x = II\}$

- A Rice's theorem: NO (momingful) I/O program property
 15 decidable
- Rice-shapizers theorem: a property of programs (extensional)

 am be semiedeadable only if

 it is finitary (it talks about the
 behaviour of the program on a finite

 set of imputs)

```
Rice. Shapirois theorem

Let A \subseteq C be a set of computable functions,

Let A = \{x \mid \varphi_x \in A\}

If A \subseteq C thun Y \subseteq C

A \subseteq C \subseteq C

Then Y \subseteq C

A \subseteq C \subseteq C

A \subseteq C
```

we prove

$$\neg (**) \Rightarrow \neg (*)$$

(**) cam be folse in "two cooys"

- 1) If f & A and Bef & fimite & ∈ A ⇒ A mot r.e.
- 2) If fed and YDEf Dfimite D&A > A mot r.e.

(1) let
$$f \not\in A$$
 and let $\partial f = f$ fimite $\partial f = A$

$$K = \{x \mid x \notin W_x\}$$
 $\leq_m A$

Define
$$g(x,y) = \begin{cases} \frac{\partial(y)}{\partial(y)} & \text{if } x \in K \\ f(y) & \text{if } x \in K \end{cases}$$

=
$$\begin{cases} f(y) & \text{if } x \in \mathbb{K} \text{ and } y \in \text{dom}(\mathcal{B}) \\ f(y) & \text{if } x \in \mathbb{K} \text{ ond } y \notin \text{dom}(\mathcal{B}) \end{cases}$$
= $\begin{cases} f(y) & \text{if } x \in \mathbb{K} \text{ or } y \in \text{dom}(\mathcal{B}) \\ f(y) & \text{otherwise} \end{cases}$

$$Q(x,y) = \text{``} x \in \mathbb{K} \text{ if } Q(x,y) \\ \text{semi-decadable} \end{cases}$$

$$= \begin{cases} f(y) & \text{semi-decadable} \\ \text{semi-decadable} \end{cases}$$

$$= f(y) & \text{semi}(x,y) \\ \text{computable} \end{cases}$$

$$= f(y) & \text{semi-decadable} \end{cases}$$

$$= f(y) & \text{semi-decadable} \end{cases}$$

By smm theorem there is total computable function S: IN -IN such that $\forall x,y$

$$\varphi_{S(x)}(y) = g(x,y) = \begin{cases} \partial(y) & \text{if } x \in \mathbb{K} \\ f(y) & \text{if } x \in \mathbb{K} \end{cases}$$

We show that s is the reduction function for K < A

* if
$$x \in \overline{K}$$
 ~ 0 $S(x) \in A$
let $x \in \overline{K}$ thum $\forall y$ $\varphi_{S(x)}(y) = \varphi(x,y) = \vartheta(y)$
hence $\varphi_{S(x)} = \vartheta \in A = 0$ $S(x) \in A$

* if $x \notin \overline{K}$ $\sim \sim S(x) \in \overline{A}$ Let $x \notin \overline{K}$ i.e. $x \in K$ then $Q_{S(x)}(y) = g(x,y) = f(y)$ by hence $Q_{S(x)} = f \notin \overline{A}$ and thus $S(x) \notin A$ Since $\overline{K} \leq_{cm} A$ and \overline{K} not zer ove conclude A not zer.

2) if there is $f \in A$ such that $\forall \mathcal{D} \in f$ $\mathcal{D} \text{ fimite } \mathcal{D} \not\in A \Rightarrow A \text{ mot } r.e.$ Let $f \in A$ such $\forall \mathcal{D} \in f$ fimite $\mathcal{D} \not\in A$ $\overline{K} \leq_m A$

$$g(x,y) = \begin{cases} f(y) & \text{if } x \in \mathbb{K} \\ g(x) & \text{if } x \in \mathbb{K} \end{cases} \qquad P_{x}(x) \uparrow \qquad \text{to infinite}$$

$$= \begin{cases} g(x,y) & \text{if } x \in \mathbb{K} \\ g(x) & \text{if } x \in \mathbb{K} \end{cases} \qquad P_{x}(x) \downarrow \qquad \text{to finite}$$

$$= \begin{cases} g(x,y) & \text{if } x \in \mathbb{K} \\ g(x) & \text{if } x \in \mathbb{K} \end{cases} \qquad P_{x}(x) \downarrow \qquad \text{to finite}$$

$$= \begin{cases} g(x,y) & \text{if } x \in \mathbb{K} \\ g(x) & \text{if } x \in \mathbb{K} \end{cases} \qquad P_{x}(x) \downarrow \qquad \text{to finite}$$

$$g(x,y) = \begin{cases} f(y) & \text{if } \neg H(x,x,y) \\ \uparrow & \text{if } H(x,x,y) \end{cases}$$

$$= f(y) + \mu z. \quad \chi_{H}(x,x,y)$$

$$\downarrow_{o} \quad \text{if } H(x,x,y) \quad \chi_{H}(x,x,y) = 1 \Rightarrow \uparrow$$

$$\downarrow_{o} \quad \text{if } \neg H(x,x,y) \quad \chi_{H}(x,x,y) = 0 \Rightarrow 0$$

computable

Here by sman theorem $\exists s: N \to N$ total computable such that $P_{s(x)}(y) = g(x,y) = \begin{cases} f(y) & \text{if } \neg H(x,x,y) \\ \uparrow & \text{if } H(x,x,y) \end{cases}$

We show that s

15 kn reduction function for KSm A

$$(f x \in \overline{K} \Rightarrow \varphi_{\alpha}(x))^{\uparrow}$$

=
$$P_{x}(x)$$
 $\Rightarrow \forall y \gamma H(x, x, y)$

$$\Rightarrow \forall y \quad \varphi_{S(x)}(y) = g(x,y) = f(y)$$

$$\Rightarrow \varphi_{S(x)} = f \in A \Rightarrow S(x) \in A$$

if
$$x \notin K \Rightarrow x \in K \Rightarrow P_x(x) \downarrow i.e.$$

$$\exists y_0 \quad \forall y < y_0 \quad \forall H(x, x, y) \quad \forall y \neq y_0 \quad H(x, x, y)$$

Even

$$P_{S(x)}(y) = g(x,y) = \begin{cases} f(y) & \text{if } \frac{1}{7}H(x,x,y) \\ 1 & \text{if } H(x,x,y) \end{cases}$$

$$= \begin{cases} f(y) & \text{y < y > otherwise} \end{cases}$$

$$\Rightarrow \varphi_{S(x)} \in \overline{A} \Rightarrow S(x) \in \overline{A}$$

Hence $\overline{K} \leq_m A$ and \overline{K} mot e.e. \Longrightarrow A mot e.e.

* How do we use it? We use it to show that sets are mot E.e.

Example:
$$C = \{f \mid f \mid s \text{ total}\}\$$

$$T = \{x \mid x \in C\} = \{x \mid \varphi_x \mid s \text{ total}\}\$$

* Example: ONE =
$$\{x \mid \varphi_x = I\}$$

$$= \{x \mid \varphi_x \in \{I\}\}^{\frac{1}{2}}$$

$$A = \{I\}$$

$$\Delta \neq A$$
 $\partial = \phi = \Delta I$ fimite $\partial \in A$ $\Rightarrow \overline{ONE}$ mot e . by \overline{R}_{ICE} . Shopping

OBSERVATION: The converse implication

$$A \in C$$
 $A = d \approx l \varphi_{\infty} \in A$

counter example

(2)
$$A = \{x \mid \varphi_x \in A\}$$
 mot se.

$$A = \{f \mid dom(f) \cap \overline{K} \neq \emptyset\}$$

1 let f be a function

*
$$f \in A$$
 => $dom(f) \cap \overline{K} \neq \emptyset$ let $\infty \in dom(f) \cap \overline{K}$

and
$$\Re(x) = \sqrt{f(x)}$$
 $x = \infty$
otherwise

$$\theta \in f$$
 θ fimite domn $(\theta) = (\infty) \cap K = (\infty) \neq \emptyset$

$$\times$$
 f such that $\exists \theta \in f$ fimite $\vartheta \in A$ ψ . Feat since $\vartheta \in A$ dom(f) 0×10^{-10} dom(0×10^{-10} dom)

$$q_{\text{out}}(t)$$
 $q_{\text{out}}(t)$

$$\Rightarrow$$
 dom(f) $\cap \overline{k} \neq \phi$

2
$$A = \{x \mid \varphi_x \in A\} = \{x \mid dom(\varphi_x) \cap \overline{K} \neq \emptyset\}$$
 mot $z \in A$

intuition: given xE IN

im order to check ze K

def
$$P^{1}(y)$$

if $y = \infty$

then O

else loop

 $defined anly$

on ∞
 $dom(P^{1}) = d \propto 3$

$$dom(P')=dx$$

$$g(x,y) = \begin{cases} 0 & y=x \\ \uparrow & \text{otherwise} \end{cases}$$

$$= \mu z \cdot |y-x| & \text{compotable}$$
by smm theorem $s: N \to N + bb = comp$.
$$= p_{S(x)}(y)$$

$$= p_{S(x)}(y)$$

$$s is the reduction function for $x \in A$

$$x \in K \iff dom(p_{S(x)}) \cap K \iff \emptyset \iff S(x) \in A$$$$

sima K mot e.e. them A mot t.e.