Universidad Distrital Francisco José de Caldas

Programa Académico de Matemáticas

Taller de conjuntos Fundamentos de Matemáticas

- 1. Determine qué conjuntos son subconjuntos de otros.
 - (a) $C = \{ n \in \mathbb{Z} \mid \exists k \in \mathbb{Z} \text{ tal que } n = k^4 \};$
 - (b) $E = \{ n \in \mathbb{Z} \mid \exists k \in \mathbb{Z} \text{ tal que } n = 2k \};$
 - (c) $P = \{n \in \mathbb{Z} \mid n \text{ es un número primo}\};$
 - (d) $N = \{ n \in \mathbb{Z} \mid \exists k \in \mathbb{Z} \text{ tal que } n = k^8 \};$
 - (e) $S = \{ n \in \mathbb{Z} \mid \exists k \in \mathbb{Z} \text{ tal que } n = 6k \};$
 - (f) $D = \{n \in \mathbb{Z} \mid \exists k \in \mathbb{Z} \text{ tal que } n = k 5\};$
 - (g) $B = \{ n \in \mathbb{Z} \mid n \text{ es no negativo} \}.$
- 2. ¿ Cuáles de las siguientes son verdaderas y cuáles son falsas?
 - (a) $\{\emptyset\} \subseteq A$ para cualquier conjunto A.
 - (b) $\emptyset \subseteq A$ para cualquier conjunto A.
 - (c) $\emptyset \subseteq \mathcal{P}(A)$ para cualquier conjunto A.
 - (d) $\{\emptyset\} \subseteq \mathcal{P}(A)$ para cualquier conjunto A.
 - (e) $\emptyset \in A$ para cualquier conjunto A.
 - (f) $\emptyset \in \mathcal{P}(A)$ para cualquier conjunto A.
 - (g) $\{\{\emptyset\}\}\subseteq \mathcal{P}(\emptyset)$.
 - (h) $\{\emptyset\} \subseteq \{\{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\{\emptyset\}\}\}\}.$
 - (i) $\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}.$
- 3. Pruebe que:
 - (a) $B \subseteq A \cup B$.
 - (b) $A \cap B \subseteq B$.
 - (c) Si $A \subseteq B$, entonces $A \cup M \subseteq B \cup M$ para cualquier conjunto M.
 - (d) Si $A \subseteq B$, entonces $A \cap M \subseteq B \cap M$ para cualquier conjunto M.
 - (e) $A \cup B = A$ si y solo si $B \subseteq A$.
 - (f) $A \subseteq B$ si y solo si $B^c \subseteq A^c$
- 4. Determine el valor de verdad de las siguientes afirmaciones. Si es verdadera realizar la prueba y si es falso mostrar un contraejemplo.
 - (a) $A \cap B = A \iff A \subseteq B$.
 - (b) $A \cap B = B \iff B \subseteq A$.
 - (c) $A \cap B = A \iff A = B$.