Calculus on Normed Vector Spaces

Joydeep Medhi 2013MT60599

Supervisor: Amit Priyadarshi

Dept. of Mathematics Indian Institute of Technology

Midterm Presentation 2

February 21, 2018

Overview

- Introduction
 - Aim
 - Previous Work
- Calculus on Normed Vector Spaces
 - Hilbert Spaces
 - Convex Functions
 - The Inverse Mapping Theorem
 - Future Work

Aim

- To study the notion of derivatives on general normed vector spaces and do Calculus on them.
- To generalise the basic calculus of function of several variables to Normed Vector Spaces.'
- To explore the applications of these concepts.

Quick overview of previous work

- Normed Vector Spaces
- Directional and Partial Derivatives
- Differentiation and Mean Value Theorems
- Higher order Differentials and Derivatives
- Taylor Theorems and Applications (Extrema)

Hilbert Space

A vector space E over the field F together with an inner product, i.e., with a map

$$\langle .,. \rangle : E \times E \rightarrow F$$

which follows the three axioms for all vectors $\in E$

- Positive-definiteness
- Linearity in first argument
- Conjugate symmetry

Then the pair (E, <, >) is called an inner product space.

for
$$x \in E$$
 , $||x||$ is defined as $\sqrt{\langle x, x \rangle}$.

If E is an inner product space and complete with the norm derived from the inner product, Then E is said to be a **Hilbert Space**

The Riesz Representation Theorem

If H is a Hilbert space, then by the Riesz representation theorem, we may associate an element of H to a continuous linear form.

Before looking at the general Theorem, let us see what happens in \mathbb{R}^n . If I is a linear form defined on \mathbb{R}^n , (e_i) its standard basis and $x = \sum_{i=1}^n x_i e_i$ then

$$I(x) = \sum_{i=1}^{n} x_i I(e_i) = x.w$$

where $w = (I(e_1),, I(e_n)).$

If \overline{w} is such that $I(x) = x.\overline{w}$ for all $x \in \mathbb{R}^n$, then $x.(w - \overline{w}) = 0$ for all $x \in \mathbb{R}^n$, it follows that $w - \overline{w} = 0$. Hence, the element w such that I(x) = x.w for all x is **unique**.

The Riesz Representation Theorem

Theorem Let I be a continuous linear form defined on a Hilbert space H . Then there is a unique element $a \in H$ such that

$$I(x) = \langle x, a \rangle$$

for all $x \in H$. In addition, $|I|_{H^*} = ||a||$.

he Riesz Representation Theorem

If f is a real-valued mapping defined on an open subset O of a Hilbert space H and is differentiable at a point $x \in O$, then f'(x) is a continuous linear form and so, from Theorem, there is a unique element $a \in H$ such that

$$f'(x)h = < h, a >$$

for all $h \in H$. We call **a** the gradient of f at x and write $\nabla f(x)$ for a. If f is differentiable on O, then we obtain a mapping ∇f from O into H to which we also give the name gradient.

Remark. If f has a second differential at a point $x \in O$, then ∇f is differentiable at x. If f is of class C^2 on O, then ∇f is of class C^1 on O.

Convex functions

Let X be a convex subset of a vector space V . We say that $f:X\to R$ is **convex** if for all $x,y\in X$ and $\lambda\in (0,1)$ we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

If this inequality is strict when $x \neq y$, then we say that f is **strictly convex**.

Convex Hull

Let E be a vector space and $x_1,...,x_n \in E$. We say that $y \in E$ is a *convex combination* of the points $x_1,...,x_n$ if there exists $\lambda_1,...,\lambda_n \in [0,1]$ with $\sum_{i=1}^n \lambda_i = 1$ such that $y = \sum_{i=1}^n \lambda_i x_i$.

If X is a nonempty subset of E, then we define $co\ X$, the convex hull of X, to be the set of points $y\in E$ which are convex combinations of points in X.

Defination. A subset X of a vector space E is convex if and only if co X = X.

Continuity of Convex function

All convex functions are not continuous.

For example, if we define f on $\left[0,1\right]$ by

$$f(x) = \begin{cases} 0 & x \in [0,1) \\ 1 & x = 1 \end{cases}$$

then f is convex, but not continuous. However, f is continuous on the interior [0,1].

Continuity of Convex functions

Lemma If P is a bounded nonempty polyhedron in a finite-dimensional normed vector space E and f is a convex function defined on E, then f has an upper bound on P .

Theorem Let X be a finite dimensional normed vector space E and $f: X \to \mathbb{R}$ is convex. If $x \in intX$, then f is continuous at x. **Corollary** If a convex function is defined on an open subset of a finite-dimensional normed vector space, then it is continuous.

Let O be an open subset of a normed vector space E and f a real-valued differentiable functions defined on O. If $X \subset O$ is convex and $x, y \in X$, then the following are equivalent:

- f is convex on X.
- $f(y) f(x) \ge f'(x)(y x)$
- $(f'(y) f'(x))(y x) \ge 0$

Remark. From third condition we deduce that, if f is differentiable on an open interval I of \mathbb{R} , then f is convex (resp. strictly convex) if and only if the derivative of f is increasing (resp. strictly increasing) on I.

Example Let $A \in M_n(\mathbb{R})$ be symmetric, $b \in \mathbb{R}^n$ and $f : \mathbb{R}^n \to R$ be defined by

$$f(x) = \frac{1}{2}x^t Ax - b^t x.$$

Then

$$f(y) - f(x) - f'(x)(y - x) = \frac{1}{2}y^{t}Ay - b^{t}y - \frac{1}{2}x^{t}Ax - b^{t}x - (Ax - b)^{t}(y - x)$$

$$= \frac{1}{2}y^{t}Ay + \frac{1}{2}x^{t}Ax - x^{t}Ay$$

$$= \frac{1}{2}(y - x)^{t}A(y - x)$$

It follows that f is convex (resp. strictly convex) if and only if the matrix A is positive (resp. positive definite).

Let O be an open subset of a normed vector space E and f a real-valued 2-differentiable function defined on O. For $x \in O$ and $h \in E$ we set $Q_{f(x)}(h) = f^{(2)}(x)(h,h)$

 $Q_{f(x)}$ is quadratic form.

Theorem. Let O be an open subset of a Normed Vector Space E, $X \subset O$ convex and $f: O \to \mathbb{R}$ 2-differentiable. Then

- f is convex on X, if and only if $Q_{f(x)}$ is positive for all $x \in X$.
- f is strictly convex on X, if $Q_{f(x)}$ is positive definite for all $x \in X$.

Example A function f may be strictly convex without the quadratric form Q_f being positive definite at all points. For example, if f is the real-valued function defined on \mathbb{R} by $f(x) = x^4$ then $Q_f(0) = 0$. However,

$$(x+h)^4 - x^4 = x^4 + 4x^3h + 6x^2h^2 + 4xh^3 + h^4 - x^4$$
$$= f'(x)h + h^2(6x^2 + 4xh + h^2)$$
$$= f'(x)h + h^2(2x^2 + (2x+h)^2) > f'(x)h$$

if $h \neq 0$. Therefore f is strictly convex.

Suppose that E and F are normed vector spaces and that O and U are open subsets of E and F respectively.

A function $f:O\to U$ is a diffeomorphism if f is bijective and both f and f^{-1} are differentiable. Also, we say that f is a C^k -diffeomorphism if both f and f^{-1} are C^k -mappings.

Results. If f is a diffeomorphism, then at any point x in its domain, f'(x) is invertible.

In addition, for f to be a C^k -diffeomorphism it is sufficient that f be of class C^k .

Proposition. Let E and F be Banach spaces, $O \subset E$ and $U \subset F$ open sets and $f:O \to U$ a differentiable homeomorphism. If $a \in O$ and f'(a) is invertible then f^{-1} is differentiable at b=f(a).

In addition, if f is of class C^1 then there is a open neighbourhood O' such that $f_{|O'}$ is a C^1 -diffeomorphism onto its image.

Theorem. Let E and F be Banach spaces, $O \subset E$ and $f: O \to F$ of class C^1 . If $a \in O$ and f'(a) is invertible, then there is an open neighbourhood O' of such that $f_{|O'}$ is a C^1 -diffeomorphism onto its image.

Remarks.

- Under the conditions of the theorem, $f_{|O'|}$ is a C^1 -diffeomorphism onto its image. Infact if f is of class C^k , then $f_{|O'|}$ is a C^k -diffeomorphism.
- If a mapping f is such that each point in its domain has an open neighbourhood O such that f restricted to O defines a diffeomorphism onto its image, then we say that f is a local diffeomorphism.

Example.

Consider the mapping

$$f: \mathbb{R}^2 \ (0,0) \to \mathbb{R}^2, (r,\theta) \mapsto (rcos\theta, rsin\theta)$$

Then

$$J_f(r, heta) = egin{bmatrix} \cos heta & -r \sin heta \ \sin heta & r \cos heta \end{bmatrix}$$

and **det** $J_f(r,\theta) = r \neq 0$. It follows that $f'(r,\theta)$ is invertible for all $(r,\theta) \in \mathbb{R}^2$.

The continuity of the entries in the Jacobian matrix imply that f is a C^1 -mapping. Hence f is a local diffeomorphism. However, f is not bijective and so not a diffeomorphism.

Future Work

- Implicit Mapping and Rank Theorem
- Theory of Vector Fields
- Application of these concepts in various fields (Optimization/Machine Learning etc.)

References

Rodney Colman(2012)

Calculus on Normed Linear Spaces

Avez, A.(1986)

Differential Calculus. J. Wiley and Sons Ltd, New York (1986)

Thank You!