CLAIMS

* * * * * .					
What	18	C	aı	med	15

1	1. A self-booting software defined radio (SDR) module that interfaces with a				
2	host system, said module comprising:				
3	a modulation/demodulation section with a stored run-time kernel, wherein a				
4	processing unit of said modulation/demodulation section executes said run				
5	time kernel;				
6	an interface mechanism coupling said host system to said module, wherein				
7	said host system provides a set of reconfiguration information; and				
8	a front end unit receiving communications signals and processing said				
9	communications signals using said reconfiguration information.				
0					
1	2. The self-booting software defined radio (SDR) module according to claim				
2	1, wherein said modem/demodulation section comprises a memory unit.				
3					
1	3. The self-booting software defined radio (SDR) module according to claim				
2	2, wherein said memory unit is selected from the group comprising: FLASH				
3	memory and RAM.				
4					
1	4. The self-booting software defined radio (SDR) module according to claim				
2	1, further comprising a multi-port crossbar coupled to said front end unit.				
3					
1	5. The self-booting software defined radio (SDR) module according to claim				
2	1, modulation/demodulation section further comprises a high speed fabric.				
3					
1	6. The self-booting software defined radio (SDR) module according to claim				
2	1, wherein said communications signals are selected from a plurality of formats				
3	selected from the group comprising: Code Division Multiple Access (CDMA),				
4	Time Division Multiple Access (TDMA), Global System for Mobilization (GSM),				

5	Cellular Digital Packet Data (CDPD), DataTac, Mobitex, General Packet Radios
6	Service (GPRS), and Personal Communication Service (PCS).
7	
1	7. The self-booting software defined radio (SDR) module according to claim
2	1, wherein said interface mechanism is a plug-and-play selected from the group
3	comprising Peripheral Component Interconnect (PCI), Universal Serial Bus (USB),
4	and IEEE 1394 Firewire, TCP/IP.
5	
1	8. The self-booting software defined radio (SDR) module according to claim
2	1, wherein said interface mechanism is embedded in said module and
3	communicates with said host on a bus.
4	
1	9. The self-booting software defined radio (SDR) module according to claim
2	1, wherein said front end comprises at least one radio frequency port, at least one
3	transceiver coupled to said radio frequency port.
4	
1	10. The self-booting software defined radio (SDR) module according to claim
2	1, wherein said host system is a cellular device, a laptop computer, a personal
3	digital assistant (PDA), and a mobile transportation processor.
4	
1	11. The self-booting software defined radio (SDR) module according to claim
2	1, further comprising at least one antenna switchably coupled to said front end unit.
3	
1	12. The self-booting software defined radio (SDR) module according to claim
2	1, wherein said module comprises at least partially reconfigurable logic devices
3	selected from the group comprising: field programmable gate array (FPGA),
4	programmable logic device (PLD).
5	
l	13. A software reconfigurable radio/wireless module employing SCA
2	architecture, comprising:
3	at least one processor unit;

5	· ·	a plurality of reconfigurable elements;
6	8	an interface mechanism for transferring reconfiguration information from a
7	1	host device to said reconfigurable elements;
8	8	at least one radio frequency interface block; and
9	8	at least one multi-port reconfigurable crossbar switch with bi-directional
10	i	ports coupling to said radio frequency interface block and to said processor
11	ı	unit.
12		
1	14.	The software reconfigurable radio/wireless module according to claim, 12
2	wherein	said radio frequency interface comprises at least one switchably coupled
3	antenna	
4		
1	15.	The software reconfigurable radio/wireless module according to claim, 12
2	wherein	said multi-port crossbar switch uses a serial digital interface.
3		
1	16.	The software reconfigurable radio/wireless module according to claim, 12
2	wherein	said reconfigurable elements comprise reconfigurable transceivers, .
3		
1	17.	The software reconfigurable radio/wireless module according to claim, 12
2	wherein	said multi-port crossbar switch uses a serial digital interface.
3		
1	18.	A switched fabric software defined radio module, comprising:
2	8	at least two reconfigurable logic device on said module, wherein said
3	1	reconfigurable logic devices are each comprising:
4		a front end unit for transmission and reception of information
5		signals;
6		a processing unit;
7		a memory section;
8		a crossbar switch: and

at least one memory unit coupled to said processor unit by a control bus;

4

9	a fabric interface, wherein said processing unit, said memory
10	section, and said crossbar switch are coupled to said fabric interface.
11	
1	19. The switched fabric software defined radio module according to claim 18,
2	wherein said crossbar switch is configured as a ring.
3	
1	20. The switched fabric software defined radio module according to claim 18,
2	wherein said devices further comprises an SCA run time kernel.
2	