4. Das Skalarprodukt

4.1. Definitionsgleichung

Zum Einstieg ein kurzer Exkurs in die Welt der Physik. Dort ist bekannt, dass die Arbeit W sich aus dem Produkt der Kraftkomponente $\overrightarrow{F_s} = |\overrightarrow{F}| \cdot \cos(\alpha)$ und dem Weg \overrightarrow{s} berechnet. Als Formel ergibt sich:

$$W = F_{s} \cdot s = |\overrightarrow{F}| \cdot |\overrightarrow{s}| \cdot cos(\alpha) \stackrel{\text{def}}{=} \overrightarrow{F} \cdot \overrightarrow{s}$$

Der **Winkel** lpha ist der Winkel, den die beiden Vektoren \vec{F} und \vec{s} miteinander einschließen.

Da die Größen Kraft \overrightarrow{F} und Weg \overrightarrow{s} gerichtete Größen, also Vektoren sind, die Arbeit W allerdings eine Zahl (Skalar) spricht man vom Skalarprodukt zweier Vektoren, dessen Ergebnis eine **Zahl** ist.

Definition Skalarprodukt

Sind \vec{u} und \vec{v} zwei Vektoren und ist α $(0 \le \alpha \le 180^0)$ der Winkel, den die beiden Vektoren miteinander einschließen, dann ist $\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cdot cos(\alpha)$ das Skalarprodukt der Vektoren \vec{u} und \vec{v} .

Beispiel 1 Gegeben sind die beiden Vektoren
$$\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 und $\vec{v} = \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix}$ und der Winkel $\alpha = 10,89^{\circ}$.

Berechne das Skalarprodukt der beiden Vektoren mit Hilfe der Definitionsgleichung.

□ Lösung:

$$|\vec{u}| = \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix} = \sqrt{1+4+9} = \sqrt{14} \text{ und } |\vec{v}| = \begin{vmatrix} 2 \\ 2 \\ 4 \end{vmatrix} = \sqrt{4+4+16} = \sqrt{24}. \text{ Somit gilt}$$

$$\vec{u} \cdot \vec{v} = \sqrt{14} \cdot \sqrt{24} \cdot cos(10,89) = 18,0$$

Übung 1

Berechne das Skalarprodukt der beiden Vektoren mit Hilfe der Definitionsgleichung.

a)
$$\vec{a} = {8 \choose 1}$$
; $\vec{b} = {2 \choose 1}$; $\alpha = 19.44^0$

b)
$$\vec{a} = \begin{pmatrix} -1\\1\\1 \end{pmatrix}$$
; $\vec{b} = \begin{pmatrix} 1\\-1\\2 \end{pmatrix}$: $\alpha = 90^{\circ}$

□ Lösung:

a)
$$\vec{a} \cdot \vec{b} = \left| {8 \choose 1} \right| \cdot \left| {2 \choose 1} \right| \cdot cos(19,44) = \sqrt{65} \cdot \sqrt{5} \cdot cos(19,44) \approx 17$$

b)
$$\vec{a} \cdot \vec{b} = \begin{vmatrix} -1 \\ 1 \\ 1 \end{vmatrix} \cdot \begin{vmatrix} 1 \\ -1 \\ 2 \end{vmatrix} \cdot cos(90) = \sqrt{50} \cdot \sqrt{62} \cdot cos(90) = 0$$

4.2 Koordinatenform des Skalarprodukts

Ist der Winkel α den die beiden Vektoren einschließen nicht bekannt, gibt es eine zweite Möglichkeit, dass Skalarprodukt nur mit Hilfe der Vektorkoordinaten zu berechnen.

Koordinatenform Skalarprodukt

Sind die beiden Vektoren $\vec{u}=\begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix}$ und $\vec{v}=\begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix}$ gegeben, dann errechnet sich das Skalarprodukt

mit Hilfe ihrer Koordinaten durch:

$$\vec{u} \cdot \vec{v} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = u_1 v_1 + u_2 v_2 + u_3 v_3$$

Beispiel 2 Berechne das Skalarprodukt der beiden Vektoren mit Hilfe der Koordinatenform

a)
$$\vec{a} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$
; $\vec{b} = \begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix}$

b)
$$\vec{a} = \begin{pmatrix} -1\\1\\1 \end{pmatrix}$$
; $\vec{b} = \begin{pmatrix} 1\\-1\\2 \end{pmatrix}$

□ Lösung:

a)
$$\vec{a} \cdot \vec{b} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix} = 2 \cdot 4 + 3 \cdot (-2) + 1 \cdot 5 = 7$$

b) $\vec{a} \cdot \vec{b} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = (-1) \cdot 1 + 1 \cdot (-1) + 1 \cdot 2 = 0$

4.3 Berechnung des eingeschlossenen Winkels lpha

In manchen Szenarien interessiert uns der eingeschlossene Winkel zweier Vektoren. Mit Hilfe der beiden Gleichungen $\overrightarrow{u}\cdot\overrightarrow{v}=u_1v_1+u_2v_2+u_3v_3$ und $\overrightarrow{u}\cdot\overrightarrow{v}=|\overrightarrow{u}|\cdot|\overrightarrow{v}|\cdot cos(\alpha)$ für das Skalarprodukt können wir folgern: $|\overrightarrow{u}|\cdot|\overrightarrow{v}|\cdot cos(\alpha)=u_1v_1+u_2v_2+u_3v_3$.

Wenn wir nun die entstandene Gleichung nach $cos(\alpha)$ umstellen, dann ergibt sich:

$$cos(\alpha) = \frac{u_1v_1 + u_2v_2 + u_3v_3}{|\overrightarrow{u}| \cdot |\overrightarrow{v}|}$$

Beispiel 3 Berechne den von Vektor $\vec{a} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ und Vektor $\vec{b} = \begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix}$ eingeschlossenen Winkel.

☐ Lösung:

$$|\vec{a}| = \begin{vmatrix} 2 \\ 3 \\ 1 \end{vmatrix} = \sqrt{14}; \ |\vec{b}| = \begin{vmatrix} 4 \\ -2 \\ 5 \end{vmatrix} = \sqrt{45} \implies cos(\alpha) = \frac{7}{\sqrt{14} \cdot \sqrt{45}} \implies \alpha = 73, 8^{0}.$$

4.4 Eigenschaften und Gesetze des Skalarprodukts

I.
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$
 (Kommutativgesetz)

II.
$$(r \cdot \vec{a}) \cdot \vec{b} = r \cdot (\vec{a} \cdot \vec{b})$$
 für $r \in \mathbb{R}$

III.
$$(\vec{a} + \vec{b}) \cdot \vec{c} = (\vec{a} \cdot \vec{c}) + (\vec{b} \cdot \vec{c})$$
 (Distributivgesetz)

IV.
$$\vec{a} \cdot \vec{a} = \vec{a}^2 = a^2 > 0$$
 für $\vec{a} \neq \vec{0}$

7.
$$\vec{a} \cdot \vec{b} = 0 \iff \vec{a} \perp \vec{b}$$
 für \vec{a} , $\vec{b} \neq \vec{0}$ (\perp bedeutet senkrecht/orthogonal/Winkel 90°)

Beweis: Der Beweis der Gesetze erfolgt direkt aus der Definition.

Exemplarisch der Beweis für V.:

"
$$\Rightarrow$$
": $\vec{a} \cdot \vec{b} = 0 \Rightarrow |\vec{a}| \cdot |\vec{b}| \cdot cos(\alpha) = 0$, Da \vec{a} , $\vec{b} \neq \vec{0}$ folgt $cos(\alpha) = 0 \Rightarrow \alpha = 90^{\circ}$

"
$$\Leftarrow$$
 ": $\vec{a} \perp \vec{b} \Rightarrow \alpha = 90^{\circ} \Rightarrow \vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot cos(90^{\circ}) = 0$

qed.

Übung 2 Prüfe, ob die Vektoren \vec{u} und \vec{v} zueinander orthogonal sind.

a)
$$\vec{u} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
 und $\vec{v} = \begin{pmatrix} 0 \\ 5 \\ 0 \end{pmatrix}$

c)
$$\vec{u} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$
 und $\vec{v} = \begin{pmatrix} 2 \\ 2 \\ 5 \end{pmatrix}$

b)
$$\vec{u} = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$$
 und $\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

d)
$$\vec{u} = \begin{pmatrix} 3 \\ 0 \\ -2 \end{pmatrix}$$
 und $\vec{v} = \begin{pmatrix} 2 \\ 11 \\ 3 \end{pmatrix}$

□ Lösung:

a)
$$u = \binom{n}{2}$$
 $udv = \binom{n}{2}$ $udv = \binom{n}{$

c)
$$\vec{u} = (\frac{-2}{3}) - \vec{k} \cdot \vec{v} = (\frac{2}{3})$$
 $\vec{v} = 3.2 + 0.2 + (-3.3 = 0) \Rightarrow \vec{v} = 3.2$

Übung 3

Untersuche, was bei der Berechnung des Skalarprodukts falsch gemacht wurde.

□ Lösung:

a) Beim Skalarprodukt ist das Ergebnis immer eine Zahl (ein Skalar)

$$\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} = 2 \cdot 1 + (-1) \cdot 4 + 3 \cdot 2 = 2 - 4 + 6 = 7$$

b) Rechnung unvollständig (Addition fehlt), da
$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 1 + 1 + 1 = 3$$

Übung 4

a) Gib je zwei Vektoren an, die zu dem Vektor \vec{v} orthogonal sind.

(1)
$$\vec{v} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
 (2) $\vec{v} = \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix}$ (3) $\vec{v} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (4) $\vec{v} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$

b) Begründe, dass es zu einem gegebenen Vektor unendlich viele orthogonale Vektoren gibt.

□ Lösung:

a) (1)
$$\overrightarrow{u_1} = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$$
 oder $\overrightarrow{u_2} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
(2) $\overrightarrow{u_1} = \begin{pmatrix} 4 \\ 11 \\ -3 \end{pmatrix}$ oder $\overrightarrow{u_2} = \begin{pmatrix} -4 \\ 0 \\ 3 \end{pmatrix}$
(3) $\overrightarrow{u_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ oder $\overrightarrow{u_2} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$
(4) $\overrightarrow{u_1} = \begin{pmatrix} 2 \\ -2 \\ 2 \end{pmatrix}$ oder $\overrightarrow{u_2} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$

b) Da es immer unendlich viele Vielfache von Vektoren gibt.

Übung 5

Untersuche, ob die Diagonalen des Vierecks ABCD mit A(3|1|2), B(3|0|-3), C(7|3|-4) und D(6|3|0) zueinander orthogonal sind. Welche Aussagen kann man über das Viereck machen?

□ Lösung:

$$\overrightarrow{A}_{1} = \overrightarrow{A}C = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} - \begin{pmatrix} 3 \\ 2 \\ -6 \end{pmatrix}$$

$$\overrightarrow{A}_{2} = \overrightarrow{B}C = \begin{pmatrix} 4 \\ 2 \\ 3 \\ -6 \end{pmatrix} - \begin{pmatrix} 3 \\ 2 \\ -6 \end{pmatrix}$$

Übung 6

Bestimme für den Dreieckspunkt C die dritte Koordinate so, dass das Dreieck ΔABC mit A(10|8|0), B(6|11|1) und $C(2|8|c_3)$ rechtwinklig ist.

ANALYTISCHE GEOMETRIE - SKALARPRODUKT

□ Lösung:

$$\begin{array}{lll}
A & (n01810) & \overrightarrow{AB} = \begin{pmatrix} 4 \\ -3 \end{pmatrix} & (61m1n) \\
C & (218163) & \overrightarrow{BC} = \begin{pmatrix} -4 \\ -3 \\ -3 \end{pmatrix} & (-4) + 9 - n \cdot (c_3 - n) = 0 \\
& - 16 + 9 - c_3 + n = 0 \\
& - c_3 = -6
\end{array}$$

$$\Rightarrow C & (2181 - 6)$$

Vorüberlegung

Finde einen Vektor
$$\vec{n}$$
, der orthogonal zu den beiden Vektoren $\vec{u} = \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix}$ und $\vec{v} = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$ ist.

Dazu müssen die folgenden Gleichungen gelten:

$$\vec{n} \cdot \vec{u} = 0$$
 und

$$\vec{n} \cdot \vec{v} = 0$$