Questão 1

Dados do problema

$$O(t)$$
tem velocidade constante $\vec{v},$ ou seja $\dot{O}(t)=\vec{v}$ e $\vec{v}(t)=(v,0)$ $P(t)=(x(t),y(t))$

Solução

Como O(t) se move sob o eixo horizontal apenas, temos $O(t) = (vt, 0); v \in \mathbb{R}$.

Dessa forma O(t) = (v, 0) como queremos.

Como o vetor P(t) tem como origem o ponto O(t) então este é dado na verdade por:

$$P(t) = O(t) + (x^*(t), y^*(t))$$

Onde as funções que queremos
$$(x(t),y(t))=O(t)+(x^*(t),y^*(t))$$
, e portanto
$$\begin{cases} x(t)=vt+x^*(t)\\ y(t)=0+y^*(t) \end{cases}$$

O problema agora se reduz a encontrar $x^*(t)$ e $y^*(t)$, que podemos pensar como o movimento de P(t) quando O(t) é constante, mas este movimento é apenas um círculo, e a parametrização de um circulo $c(t) = (rcos(t), rsen(t)), r \in \mathbb{R}$.

Da física sabemos que a velocidade angular é a variação do ângulo t, portanto $c(t) = (rcos(\omega t), rsen(\omega t))$ e portanto

$$\begin{cases} x^*(t) = r\cos(\omega t) \\ y^*(t) = r\sin(\omega t) \\ x(t) = vt + r\cos(\omega t) \\ y(t) = r\sin(\omega t) \end{cases}$$

E a parametrização do ponto P(t) é dada por:

$$P(t) = ((vt + rcos(\omega t), rsen(\omega t))$$

Deixo uma animação da parametrização criada no Geogebra, que condiz com a animação do Youtube: https://www.geogebra.org/m/skn6pzzm

Questão 3

A demonstração para este exercício consistirá em construir γ de forma a possuir todos os elementos de α e ir 'inserindo' no conjunto também os elementos de β que sejam L.I. com α , dessa maneira chegará um momento em que não há mais elementos em β que sejam L.I. com α e então γ será um conjunto gerador de \mathbb{V} e $\alpha \subset \gamma \subset \beta \cup \alpha$

Lema 1. Seja \mathbb{V} um espaço vetorial, e $X = \{x_1, x_2, \dots, x_n\} \in \mathbb{V}$, com X linearmente independente de modo que $X \cup \{w\}$ é linearmente dependente, $\forall w \in \mathbb{V}$. Ou seja, X é um conjunto L.I. maximal, que possui o máximo de elementos LI de um dado espaço vetorial. Então X gera \mathbb{V} .

Demonstração. Seja $w \in \mathbb{V}$, então por hipotese $\{w, x_1, \dots, x_n\}$ é L.D., ou seja $\exists a_0, a_1, \dots, a_n \in \mathbb{R}$ com ao menos um dos $a_i \neq 0$ de forma que

$$a_0w + a_1x_1 + \dots + a_nx_n = 0$$

De fato, $a_0 \neq 0$, caso contrário $a_0 = 0 \implies a_i \neq 0, i \neq 0$ mas isso contradiz o fato de X ser L.I.

Portanto podemos reescrever

$$w = \frac{-a_1 x_1}{a_0} + \dots + \frac{-a_n x_n}{a_0}$$

Ou seja, w é uma combinação linear dos elementos de X, como estamos assumindo $\forall w \in \mathbb{V}$, então X gera \mathbb{V}

Agora partindo para a solução do problema, \mathbb{V} é gerado por β e α é L.I., com $n \leq m$ então existe ao menos um elemento de β que é L.I. com o conjunto α , caso contrário teriamos: $a_0v_i + a_1u_1 + \cdots + a_nu_n = 0$, com $a_0 \neq 0$ e poderíamos escrever $v_i = \frac{-a_1u_1}{a_0} + \cdots + \frac{-a_nu_n}{a_0}$, ou seja, β seria combinação linear de α .

Logo $\alpha \cup \{v_i\}$ é L.I. para algum $v_i \in \beta$.

Repetimos o processo de encontrar algum v_j que seja L.I. ao novo conjunto $\alpha \cup \{v_i\}, j \neq i$ um número finito de vezes k, de forma que m = n + k, teremos então o conjunto $\alpha \cup \{v_1, \dots, v_k\}$ L.I. de modo que $\alpha \cup \{v_1, \dots, v_k\} \cup \{v_i\}$ é L.D. $\forall v_i \in \beta$.

Seja $\gamma = \alpha \cup \{v_1, \dots, v_k\}$ e tomando $\{u_1, \dots, u_n\} = \{\varepsilon_1, \dots, \varepsilon_n\}$ e $v_1, \dots, v_k = \varepsilon_{n+1}, \dots, \varepsilon_m$, teremos o conjunto

$$\gamma = \{\varepsilon_1, \dots, \varepsilon_m\}$$

. Aplicando o Lema 1 a γ temos que γ gera $\mathbb V$ e satisfaz $\alpha \subset \gamma \subset \beta \cup \alpha$

Questão 5

Lema 2. Seja X(t) um vetor, se $||X(t)|| = c, \forall t \in \mathbb{R}, c \neq 0$, ou seja, vetor de módulo constante não nulo, então:

$$\langle X(t), X'(t) \rangle = 0$$

Demonstração.

$$\langle X(t), X(t) \rangle = c^2$$

Como vale para todo t, podemos derivar

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle X(t), X(t)\rangle = \frac{\mathrm{d}}{\mathrm{d}t}c^2 = 0$$

Aplicando a regra da cadeia

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle X(t), X(t)\rangle = \langle X(t)', X(t)\rangle + \langle X(t), X'(t)\rangle$$
$$= 2\langle X(t), X'(t)\rangle = 0$$

$$e \ 2\langle X(t), X'(t)\rangle = 0 \implies \langle X(t), X'(t)\rangle = 0$$

Seja então $c(t_0)$ a posição da particula no tempo t_0 dada pela função $c: I \to \mathbb{R}^3$, sabemos que velocidade mede a variação da posição, portanto $\dot{c}(t_0)$ é o vetor velocidade no ponto t_0 que é um vetor tangente a curva descrita por c(t) no ponto t_0 . Como $\dot{c}(t_0)$ é não nulo, então $|\dot{c}(t_0)| \neq 0$, podemos então definir um vetor unitário que é tangente a curva:

$$T(t_0) = \frac{\dot{c}(t_0)}{\|\dot{c}(t_0)\|}$$

Então $T(t_0)$ é o vetor que nos dá a direção da velocidade.

Se olharmos para a variação de T(t), temos T'(t) e como ||T(t)|| = 1, então pela Lema 2

$$\langle T(t), T'(t) \rangle = 0$$

Tomamos então o vetor unitário na direção de $T'(t_0)$, que continua sendo ortogonal a $T(t_0)$

$$N(t) = \frac{T'(t)}{\|T'(t)\|}$$

E este é o vetor na direção Normal.

Aceleração é a variação da velocidade, temos então que aceleração é dada por $\frac{d}{dt}\dot{c}(t) = \ddot{c}(t)$. Como temos dois vetores ortogonais $T(t_0)$ e $N(t_0)$, podemos decompor as componentes de $\ddot{c}(t_0)$ nestes vetores.

Sendo $\ddot{c}_T(t_0)$ a componente aceleração tangencial, e $\ddot{c}_N(t_0)$ a componente aceleração normal, ou seja, ambos escalares, temos então definida a aceleração normal de c em t_0 :

$$\ddot{c}(t_0) = \ddot{c}_T(t_0)T(t_0) + \ddot{c}_N(t_0)N(t_0)$$

$$\ddot{c}_T(t_0) = \frac{\ddot{c}(t_0)T(t_0)}{\|T(t_0)\|^2} = \ddot{c}(t_0)T(t_0)$$

$$\ddot{c}_N(t_0) = \frac{\ddot{c}(t_0)N(t_0)}{\|N(t_0)\|^2} = \ddot{c}(t_0)N(t_0)$$