ME 4K03 Assignment #5

Due: 12pm, 25th November, 2016

Dropbox #10 in JHE 307

1. A planar RRR robot has the manipulator Jacobian:

$$J(q) = \begin{bmatrix} -a_1 S \theta_1 - a_2 S \theta_{12} - a_3 S \theta_{123} & -a_2 S \theta_{12} - a_3 S \theta_{123} & -a_3 S \theta_{123} \\ a_1 C \theta_1 + a_2 C \theta_{12} + a_3 C \theta_{123} & a_2 C \theta_{12} + a_3 C \theta_{123} & a_3 C \theta_{123} \\ 1 & 1 & 1 \end{bmatrix}$$

and the vector of gravity terms (gravity acts in the $-Y_0$ direction):

$$G(q) = \begin{bmatrix} (\frac{1}{2}m_1 + m_2 + m_3)ga_1C\theta_1 + (\frac{1}{2}m_2 + m_3)ga_2C\theta_{12} + \frac{1}{2}m_3ga_3C\theta_{123} \\ (\frac{1}{2}m_2 + m_3)ga_2C\theta_{12} + \frac{1}{2}m_3ga_3C\theta_{123} \\ \frac{1}{2}m_3ga_3C\theta_{123} \end{bmatrix}$$

The link lengths and masses are: $a_1=0.5 \text{ m}$, $a_2=0.5 \text{ m}$, $a_3=0.1 \text{ m}$, $m_1=10 \text{ kg}$, $m_2=10 \text{ kg}$ and $m_3=2 \text{ kg}$.

- (a) If the arm is holding a 5 kg payload, when $\theta_1 = 45^\circ$, $\theta_2 = -75^\circ$ and $\theta_3 = 30^\circ$, calculate the required joint torques.
- (b) The robot's control unit can only control the torques with a resolution of 0.1 Nm. We are interested in using the robot to apply a precise force in the X_0 direction (e.g. to insert a component without damaging it). We can use configuration A: $\theta_1 = 45^{\circ}$, $\theta_2 = -75^{\circ}$ and $\theta_3 = 30^{\circ}$, or configuration B: $\theta_1 = 45^{\circ}$, $\theta_2 = -5^{\circ}$ and $\theta_3 = -40^{\circ}$. Note that both configurations align the tool with X_0 (i.e. $\phi = 0$). Determine which configuration will provide the most precise force output.