Preprocesamiento y Clasificación para la Predicción de Vacunación contra la Gripe

Aplicación de Modelos de Machine Learning en la Gripe H1N1 y Estacional

Nombre del equipo: Preprocesadores

Integrantes y Modelos: Pablo Gradolph Oliva

- Árbol y Gradient Boosting Enric Morella Violeta
- Naïve Bayes y Voting
 Jaime De Castro Escribano
- SVM y Bagging
 María Ruxandra Cojocaru
- Regresión logística y AdaBoost
 Adrián Sánchez Carrión
- KNN y Stacking

Descripción del problema

Predecir la probabilidad de que una persona reciba dos tipos de vacunas: contra la gripe H1N1 y contra la gripe estacional.

Objetivo: construir modelos de predicción que puedan identificar patrones en esta información y ayudar a estimar las probabilidades de vacunación.

Se trata de una competición organizada por DRIVENDATA, que se plantea como un problema de clasificación multilabel.

La evaluación se basa principalmente en la métrica del área bajo la curva ROC, o ROC-AUC.

También evaluamos el desempeño de los modelos utilizando otras métricas como accuracy.

Análisis de las variables (características y etiquetas)

Dimensiones de las características de entrenamiento: (26707, 35) Dimensiones de las etiquetas de entrenamiento: (26707, 2) Dimensiones de las características de prueba: (26708, 35)

Coeficiente phi = 0.37, lo que indica una correlación positiva moderada. Esto también se puede ver en la tabulación cruzada. La mayoría de las personas que se vacunaron contra la gripe H1N1 también se vacunaron contra la gripe estacional. Si bien una minoría de las personas que se vacunaron contra la gripe estacional se vacunaron contra la gripe H1N1.

Detección de Outliers y Valores Perdidos

Se analizaron las variables individualmente, en busca de posibles errores en la anotación. Todos los valores observados para las distintas cuestiones estaban indexados en el rango permitido, por lo que concluimos con la detección de valores anómalos.

El análisis de valores nulos se realizó tanto por columnas como por registros, revelando información de gran utilidad para el preprocesamiento. Los análisis realizados por columnas se basaron en entender mejor la aparición de valores nulos en una proporción desmesurada para las columnas health_insurance, employment_industry y employment occupation.

Análisis de falta de respuesta:

Se observó que 43 observaciones presentan una tasa de no respuesta superior al 50%. Alrededor del 2.5% de individuos no respondieron, al menos, al 30% del cuestionario. Inicialmente el 75% de los encuestados presentan falta de respuesta en alguna cuestión

CUIDADO: Los resultados pueden estar demasiado sesgados para imputarle a algunas filas más del 50 % de sus resultados

Hipótesis: La causa puede ser el desempleo o similares

4. Algoritmos

Para aplicar el algoritmo kNN, se han seguido los mismos pasos de **preprocesamiento** descritos en la **parte común.**

Además, **se han escalado los datos usando MinMaxScaler**, dado que este algoritmo se basa en distancias, y las características con rangos más grandes pueden dominar las más pequeñas, distorsionando los resultados.

División de los datos

Training Features shape: (21365, 96)
Training Labels shape: (21365, 2)
Validation Features shape: (5342, 96)
Validation Labels shape: (5342, 2)
Test Features shape: (26708, 96)

Definimos un clasificador K-Nearest Neighbors y lo envolvemos en un MultiOutputClassifier para manejar múltiples salidas. Luego, definimos una cuadrícula de parámetros (param_grid) que incluye diferentes métricas de distancia, números de vecinos y tipos de pesos. Después, creamos un objeto GridSearchCV para realizar una búsqueda en la cuadrícula de parámetros con validación cruzada de 10 pliegues (cv=10). Además, empleamos un scorer personalizado (average='weighted') para configurar cómo se evalúa el desempeño del modelo durante el proceso de búsqueda de hiperparámetros.

Accuracy en validación: 0.6023961063272183						
F1 Score (weighted): 0.6138069975638539 Precision (weighted): 0.693210408279402 Recall (weighted): 0.5719017388904223						
Reporte de	clasific	cación:				
	pre	cision	recall f1	-score	support	
	0	0.69	0.34	0.45	1135	
	1	0.70	0.68	0.69	2488	
micro av	g	0.69	0.57	0.63	3623	
macro av	g	0.69	0.51	0.57	3623	
weighted av	g	0.69	0.57	0.61	3623	
samples av	g	0.31	0.29	0.29	3623	

Reporte de	clasifi	cación pa	ra h1n1_v	accine:	
	pre	cision	recall	f1-score	support
		0.84	0.96	0.90	4207
		0.69	0.34	0.45	1135
accurac	су			0.83	5342
macro av	/g	0.77	0.65	0.68	5342
weighted av	/g	0.81	0.83	0.80	5342
Reporte de	clasifi	cación pa	ıra season	al_vaccine	
	pre	cision	recall	f1-score	support
		0.73	0.74	0.73	2854
		0.70	0.68	0.69	2488
accurac	су			0.71	5342
macro av	/g	0.71	0.71	0.71	5342
weighted av	/g	0.71	0.71	0.71	5342

Mejores hiperparámetros

'estimator__metric':'manhattan','estimator__n_neighbors':11,
'estimator__p':1, 'estimator__weights':'distance'

		Metric	Neighbors	Weights	Minkowski_p	Mean F1-Score	Std F1-Score
	57	minkowski	11	distance	1	0.624599	0.010024
_	37	manhattan	11	distance	1	0.624599	0.010024
9	39	manhattan	11	distance	2	0.624599	0.010024
	36	manhattan	11	uniform	1	0.623943	0.010412
-	38	manhattan	11	uniform	2	0.623943	0.010412
	56	minkowski	11	uniform	1	0.623943	0.010412
	35	manhattan	9	distance	2	0.623815	0.010098
	33	manhattan	9	distance	1	0.623815	0.010098
9	53	minkowski	9	distance	1	0.623815	0.010098
-	52	minkowski	9	uniform	1	0.622974	0.010116

Predicción de probabilidades

AUROC para H1N1: 0.80367742

AUROC para vacuna estacional: 0.77834460

AUROC promedio: 0.79101101

'estimator metric':'manhattan', 'estimator n neighbors':11, 'estimator__p':1, 'estimator__weights':'distance'

Archivo de entrega en la competición

Dimensiones del archivo de entrega: (26708, 2)

New submission

Woohoo, your submission was successful! Your submission score is 0.7600

New submission

Woohoo, your submission was successful! Your submission score is 0.7431

New submission

. . .

Woohoo, your submission was successful! Your submission score is 0.7772

'estimator__metric': 'manhattan', 'estimator n neighbors': 7, 'estimator weights': 'uniform'

	h1n1_vaccine	seasonal_vaccine
respondent_id		
26707	0.083824	0.543200
26708	0.091159	0.360170
26709	0.000000	0.395527
26710	0.732223	0.644614
26711	0.225263	0.409081

26711	0.225263	0.409081
	h1n1_vaccine	seasonal_vaccine
respondent_id		
26707	0	1
26708	0	0
26709	0	0
26710	1	1
26711	0	0

0.7419

adrichez

id-278405

4.2. Naïve Bayes

Búsqueda de rejilla (**GridSearch**) para el mejor modelo. Métrica de comparación: **ROC area under the curve**

Preprocesamiento\ A priori distribution	Versión 1	Versión 2 (común)
Multinomial		
Bernouilli		
Gaussian		

4.2. Naïve Bayes - Preprocesamiento

Descripción de la versión de preprocesamiento final:

4.2. Naïve Bayes - Análisis de Resultados

TEST:

Primeras 5 probabilidades para label 0: [1.62095552e-03 9.90029029e-01 3.79913914e-04 3.66722749e-04 1.80916793e-02]

Primeras 5 probabilidades para label 1: [2.37988700e-01 9.99189459e-01 7.32631433e-04 1.25016481e-03 4.94526243e-01]

ROC AUC global: 0.7226507177746844 Accuracy global: 0.5922875327592662

ROC AUC Scores de cada label: [0.7909586393141701, 0.8042581968783025]

Accuracy Scores de cada label: [0.7635716959940098, 0.7360539123923624]

Reporte de Clasificación:

		precision	recall	f1-score	support
	0 1	0.46 0.71	0.61 0.74	0.52 0.72	1135 2488
micro macro veighted samples	avg avg	0.62 0.58 0.63 0.31	0.70 0.68 0.70 0.34	0.66 0.62 0.66 0.32	3623 3623 3623 3623

Preprocesamiento

Las máquinas de soporte vectorial trabajan buscando el hiperplano de separación máxima entre dos clases. Por este mismo motivo se requiere que, además del preprocesamiento básico aplicado, donde se eliminan los registros con una alta tasa de no respuesta, y de la codificación específica para cada tipo de variable; también es necesario escalar los datos iniciales.

De las técnicas aplicables a esta base de datos se ha escogido un escalado MinMax, ya que conserva las características en las distancias de dos observaciones

Abordaje del problema con SVM

El modelo genérico de SVM no es capaz de manejar los problemas multietiqueta, para solventar este problema se proponen dos tipos de soluciones:

- Usar la función MultiOutputClassifier. Esta función envuelve a los modelos básicos para poder manejar problemas multietiqueta.
- 2. Usar estrategias específicas para manejar problemas multiclase, como OVO y OVR (aclarar que estos métodos son usados para extender modelos binarios a problemas multiclase, no son usados como tal para problemas multisalida)

<u>Configuraciones de los algoritmos y optimización con</u> GridSeach

1. Modelo SVM con Kernel lineal y desbalanceo

Parámetros de búsqueda (param_grid):

- C:[0.01, 0.1, 1, 10]
- **Iteraciones máximas**: [10000, 20000, 50000]
- Dual: [True, False]
- Tolerancia: [1e-3, 1e-2]
- CV: 3 folds
- Random state: 42

2. Modelo SVM con Kernel lineal y balanceo

Parámetros de búsqueda (param grid):

- C:[0.01, 0.1, 1, 10]
- Iteraciones máximas: [10000, 20000, 50000]
- Dual: [True, False]
- Tolerancia: [1e-3, 1e-2]
- Class Weight: 'balanced'
- CV: 3 folds
- Random state: 42

3. Modelo SVM con Kernel RBF y desbalanceo

Parámetros de búsqueda (param_grid):

- **C**:[0.1, 1, 10]
- **Gamma:** [0.01, 0.1, 1, 10]
- Iteraciones máximas: [10000, 50000]
- Probability: True
- Class_Weight: [`balanced`, None]
- CV: 3 folds
- Random state: 42

4. Modelo OVR para LinearSVM

Parámetros optimizados para modelo base

- **C**:[0.1]
- **Tol**: [0.01]
- Iteraciones máximas: [10000]
- **Dual**: False
- Class_weight: 'balanced'
- CV: 3 folds
- Random state: 42

5. Modelo OVR para SVM RBF

Parámetros optimizados para modelo base

- **C**:[10]
- Gamma: [0.01]
- Iteraciones máximas: [50000]
- Probability: True
- CV: 3 folds
- Random state: 42

Resultados

1. Modelo SVM con Kernel lineal y desbalanceo

Modelo óptimo LinearSVC(dual=True, C=10, tol=0.001, max_iter=50000, random_state= 42)

ROC_AUC en test: 0.7506 Accuracy en test: 0.6858

2. Modelo SVM con Kernel lineal y balanceo

Modelo óptimo LinearSVC(dual=False, C=0.1, tol=0.001, max_iter=10000, random_state= 42, class_weight='balanced')

ROC_AUC en test: 0.7906 Accuracy en test: 0.6591

3. Modelo SVM con Kernel RBF y balanceo

Modelo óptimo LinearSVC(kernel='rbf', probability=True, C=10, gamma=0.01, max_iter=50000, random state= 42, class weight='balanced')

ROC_AUC en test: 0.794767 Accuracy en test: 0.6683

4. Modelo OVR para LinearSVM

Modelo:

LinearSVC(dual=False, C=0.1, tol=0.001, max_iter=10000, random_state= 42, class_weight='balanced')

ROC_AUC en test: 0.7906 Accuracy en test: 0.6858

5. Modelo OVR para SVM RBF

Modelo:

SVC(kernel='rbf', probability=True, C=10, gamma=0.01, max_iter=50000, random state= 42, class weight='balanced')

ROC_AUC en test: 0.7947 Accuracy en test: 0.0.6683

> Los mejores modelos vienen dado por <u>SVM RBF balanceado</u> y <u>OVR para SVM</u> <u>RBF balanceado</u> (medimos la precisión del área bajo la curva ROC)

4.3. Support Vector Machine

Resultados

4.4. Regresión Logística

Para aplicar la regresión logística se han seguido los mismos pasos de preprocesamiento que los descritos en la parte común.

Además, se ha probado escalar los datos para apurar la convergencia de los algoritmos y observar si hay diferencias en la capacidad de predicción.

También se ha probado un preprocesamiento sencillo donde los valores faltantes se imputaban por la moda, con peores resultados.

Configuraciones probadas del algoritmo

Modelo sin regularización, con GridSearch y balanceo

Parámetros de búsqueda (param_grid):

- Solver: ['saga', 'lbfgs']
- Penalización: [None]
- Iteraciones máximas: [500, 1000, 2000]
- Intercepto: [True, False]
- Tolerancia: [1e-3, 1e-4, 1e-5]
- CV: 5 folds

3. Modelo con con regularización l1,l2, con Bayes Search y balanceo

Espacio de parámetros (param_space):

- Solver: ['liblinear', 'saga']
- Penalización: ['l1', 'l2']
- C: (1e-6, 1e+6, 'log-uniform')
- CV: 5 folds

2. Modelo con regularización l1, l2, con Grid Search, con/sin balanceo

Parámetros de búsqueda (param_grid):

- Solver: ['liblinear', 'saga']
- Penalización: ['l1', 'l2']
- Iteraciones máximas: [100, 1000]
- **C**: [0.01, 0.1, 1, 10, 100, 1000]
- CV: 5 folds

4. Modelo con con regularización l1, l2, con Optuna y balanceo

Configuración de parámetros:

- Solver: ['liblinear', 'saga']
- Penalización: ['l1', 'l2']
- C: entre 1e-6 y 1e+6 (escala logarítmica)
- Iteraciones máximas: 5000
- CV: 5 folds

Mejores Modelos en training, sin escalar

Modelo final, indicado por BayesSearch

Primeras 5 probabilidades para label 0: [0.03566363 0.78700736 0.22852407 0.35257528 0.44705833] Primeras 5 probabilidades para label 1: [0.5190729 0.80887705 0.15751482 0.14493832 0.38309469]

ROC AUC global: 0.791403021355642 Accuracy global: 0.6565928777670837

ROC AUC Scores de cada label: [0.8692350181340401, 0.8587983241429092] Accuracy Scores de cada label: [0.8057747834456208, 0.7840230991337824]

Reporte de Clasificación:

		precision	recall	f1-score	support
	0	0.53	0.79	0.63	1106
	1	0.76	0.78	0.77	2430
micro	avg	0.67	0.78	0.72	3536
macro	avg	0.65	0.79	0.70	3536
weighted	avg	0.69	0.78	0.73	3536
samples	avg	0.36	0.39	0.36	3536

El solver SAGA, con regularizacion de tipo LASSO y C igual a 0.1729 ofrece un accuracy global solo un poco mas grande que los otros modelos.LASSO es capaz de descartar variables, por lo cual es también conveniente.

Los valores de ROC AUC para las etiquetas 0 y 1 son aproximadamente 0.8653 y 0.8582, mientras que la métrica accuracy indica una exactitud de 0.7979, respectivamente 0.7835.

¿Que influye en la decisión de vacunarse con h1n1_vaccine y seasonal_vaccine?

Se implementó este modelo de árbol utilizando DecissionTreeClassifier combinado con MultiOutputClassifier para abordar la clasificación multietiqueta.

Se ajustó el preprocesamiento para obtener mejores métricas tanto en CART como en ensembles (GradientBoosting):

Árbol Seasonal.

- 2. Orden explícito para columnas ordinales_str.
- 3. Categorías faltantes en columnas categóricas.
- 4. Indicadores para valores faltantes en numéricas.
 - 5. Imputación extrema en columnas numéricas.
- 6. Codificación de columnas categóricas y ordinales.

Optimización e Hiperparámetros

Se probó la optimización con GridSearchCV y con Optuna

Para **DecisionTreeClassifier**, GridSearchCV funciona mejor porque el espacio de hiperparámetros es pequeño y discreto. Sin embargo, para métodos de **Gradient Boosting** también se ha probado la librería Optuna y, en algún caso, supera a la búsqueda de scikit-learn debido a la naturaleza más compleja y amplia del espacio de hiperparámetros. Se mostrarán siempre los resultados de los modelos con mejores métricas obtenidas.

GridSearchCV: {'criterion': 'entropy', 'max_depth': None, 'max_features': None, 'max_leaf_nodes': 50, 'min_samples_leaf': 5, 'min_samples_split': 2, 'splitter': 'best'}.

Optuna: {'criterion': gini, 'max_depth': 6, 'min_samples_split': 9, 'min_sample_leaf': 10, 'max_features': None, 'min_impurity_decrease': 0.0, 'splitter': best, 'class_witght': None.}

Evaluación del modelo

Se muestran resultados y gráficos con las métricas del mejor modelo, tanto en nuestra división de test como en competición.

Woohoo, your submission was successful! Your submission score is

H1N1

0.8326

Classificatio	n Report for	H1N1 Vac	cine:	
	precision	recall	f1-score	support
No	0.86	0.95	0.90	4207
Yes	0.70	0.44	0.54	1135
accuracy			0.84	5342
macro avg	0.78	0.70	0.72	5342
weighted avg	0.83	0.84	0.83	5342

Classification	n Report for	seasonal	Vaccine:	
	precision	recall	f1-score	support
No	0.76	0.81	0.78	2854
Yes	0.76	0.70	0.73	2488
accuracy			0.76	5342
macro avg	0.76	0.75	0.76	5342
weighted avg	0.76	0.76	0.76	5342

CatBoost

H₁N₁

Mejores hiperparámetros:

{'auto_class_weights': 'SqrtBalanced',

'bagging_temperature': 1.0, 'depth': 5, 'iterations':

404, 'l2_leaf_reg': 10.0, 'learning_rate':

0.0428709991527715, 'random_strength': 0.0}

h1n1_vaccine	Classificat	Classification Report:				
	precision	recall	f1-score	support		
Θ	0.91	0.90	0.90	4207		
1	0.64	0.65	0.65	1135		
accuracy			0.85	5342		
macro avg	0.77	0.78	0.77	5342		
weighted avg	0.85	0.85	0.85	5342		

Seasonal

Mejores hiperparámetros:

{'auto_class_weights': 'Balanced',

'bagging_temperature': 1.0, 'depth': 8, 'iterations':

500, 'l2_leaf_reg': 10.0, 'learning_rate':

0.0202879645, 'random_strength': 0.0}

seasonal_vaccine Classification Report:						
		precision	recall	f1-score	support	
		0.80	0.79	0.80	2854	
		0.76	0.77	0.77	2488	
accur	acy			0.78	5342	
macro	avg	0.78	0.78	0.78	5342	
weighted	avg	0.78	0.78	0.78	5342	

Woohoo, your submission was successful! Your submission score is

XGBoost

Mejores Hiperparámetros: {'estimator__colsample_bytree': 1.0, 'estimator__gamma': 5.298302625766, 'estimator__learning_rate': 0.0326482054329, 'estimator__max_depth': 10, 'estimator__min_child_weight': 1, 'estimator__n_estimators': 403, 'estimator__reg_alpha': 0.941380446393, 'estimator__reg_lambda': 1.0, 'estimator__subsample': 0.459940784457}

H₁N₁ Seasonal ROC Curve for H1N1 Vaccine Confusion Matrix for H1N1 Vaccine ROC Curve for Seasonal Vaccine Confusion Matrix for Seasonal Vaccine 0.8 Not Vaccinated Not Vaccinated 2500 1200 1500 Vaccinated 1000 ROC curve (area = 0.8634) 0.88 0.72 macro avg 0.80 0.73

Woohoo, your submission was successful! Your submission score is 0.8601

H₁N₁

Mejores hiperparámetros: {'n_estimators': 350, 'max_depth': 9, 'reg_alpha': 1.6438000000000001, 'colsample_bytree': 0.378, 'learning_rate': 0.0592, 'reg_lambda': 83.161, 'subsample': 0.8698000000000001, 'class_weight': 'balanced', 'min_gain_to_split': 0.418, 'min_data_in_leaf': 3}

h1n1_vaccine	cine Classification Report:					
				support		
Θ	0.93	0.82	0.87	4207		
1	0.53		0.63	1135		
accuracy			0.81	5342		
macro avg	0.73	0.80	0.75	5342		
weighted avg	0.85	0.81	0.82	5342		

Mejores hiperparámetros: {'n_estimators': 350, 'learning_rate': 0.0463, 'max_depth': 10, 'reg_alpha': 1.77890000000000001, 'reg_lambda': 34.0818, 'subsample': 0.4188, 'colsample_bytree': 0.36719999999999997, 'class_weight': 'balanced', 'min_gain_to_split': 0.115, 'min_data_in_leaf': 10}

seasonal_vaccin	e Classifi	cation Re	port:	
pı				support
0	0.81	0.79	0.80	2854
1	0.77	0.78	0.78	2488
accuracy			0.79	
macro avg	0.79		0.79	5342
weighted avg	0.79	0.79	0.79	5342

#123

Preprocesadores
4d 6h ago - 34 submission

Para aplicar el ensemble Stacking, dado que también empleamos como modelo base kNN, se han seguido los mismos pasos de **preprocesamiento** descritos en la **parte común, escalando** además **los datos usando MinMaxScaler**, dado que este algoritmo se basa en distancias, y las características con rangos más grandes pueden dominar las más pequeñas, distorsionando los resultados.

Estructura de los datos después del preprocesamiento

Training Features shape: (21365, 96)
Training Labels shape: (21365, 2)
Validation Features shape: (5342, 96)
Validation Labels shape: (5342, 2)
Test Features shape: (26708, 96)

Tras probar diferentes combinaciones de modelos e hiperparámetros, implementamos un ensemble stacking adaptado al problema multietiqueta, enfocado en predecir la probabilidad de recibir dos tipos de vacunas (H1N1 y gripe estacional). Este modelo combina como estimadores base k-Nearest Neighbors, Decision Tree y Gradient Boosting, mientras que una regresión logística sirve como meta-modelo para integrar sus predicciones. Optimizamos los hiperparámetros clave mediante GridSearchCV, logrando un equilibrio entre sesgo y varianza. La inclusión de un MultiOutputClassifier para manejar ambas etiquetas permitió obtener un F1-score promedio por muestra sobresaliente, destacando este enfoque como el más robusto y efectivo.

Accuracy en validación: 0.6916885061774616					Reporte de clasificación para h1n1_vaccine:					
							precision	recall	f1-score	support
F1 Score (weighted): 0.7158316930709608					0	0.88	0.95	0.91	4207	
Precision (weighted): 0.7644899025405792 Recall (weighted): 0.678719293403257						1	0.73	0.52	0.60	1135
						accuracy			0.86	5342
Reporte de clasificación:				macro avg	0.80	0.73	0.76	5342		
		precision	recall	f1-score	support	weighted avg	0.85	0.86	0.85	5342
						Reporte de clas	ificación p	ara seaso	nal_vaccine	e:
	0	0.73	0.52	0.60	1135		precision	recall	f1-score	support
		0.78	0.75	0.77	2488					
						0	0.79	0.82	0.80	2854
micro	avg	0.77	0.68	0.72	3623	1	0.78	0.75	0.77	2488
macro	avg	0.75	0.63	0.69	3623	20011772011			0.79	5342
weighted	avg	0.76	0.68	0.72	3623	accuracy macro avg	0.79	0.79	0.79 0.79	5342
samples	avg	0.35	0.34	0.34	3623	weighted avg	0.79	0.79	0.79	5342

Mejores hiperparámetros

'estimator__boost__learning_rate': 0.1, 'estimator__boost__n_estimators':
200, 'estimator__final_estimator__C': 1, 'estimator__tree__max_depth': 10

		Final Estimator C	Tree Max Depth	Boost N Estimators	Boost Learning Rate	Mean F1-Score	Std F1-Score
_	32		10	200	0.1	0.755940	0.004299
_	35	10	10	200	0.1	0.755816	0.003863
Ĭ	30		5	200	0.1	0.755675	0.004389
	34	10	7	200	0.1	0.755597	0.004244
	33	10	5	200	0.1	0.755535	0.004455
	31		7	200	0.1	0.755145	0.003943
_	27	0.1	5	200	0.1	0.754536	0.003486
	12		5	200	0.05	0.754443	0.004742
٦	14		10	200	0.05	0.754302	0.004527
4	15	10	5	200	0.05	0.754209	0.005071

Predicción de probabilidades Archivo de entrega en la competición AUROC para H1N1: 0.87309089 Dimensiones del archivo de entrega: (26708, 2) AUROC para vacuna estacional: 0.86230148 AUROC promedio: 0.86769619 h1n1_vaccine seasonal_vaccine New submission h1n1 vaccine: AUC = 0.8731 seasonal vaccine: AUC = 0.8623 respondent_id 1.0 1.0 -26707 0.099733 0.273661 0.8 0.8 26708 0.062585 0.086467 Woohoo, your submission was successful! Your submission score is 0.8177 26709 0.111338 0.752619 0.6 26710 0.762210 0.887535 0.4 New submission 26711 0.196246 0.500750 0.2 0.2 h1n1_vaccine seasonal vaccine 0.0 0.2 0.8 0.2 0.8 Woohoo, your submission was successful! Your submission score is respondent_id FPR FPR 0.8404 26707 Modelos base: 26708 k-Nearest Neighbors (kNN) New submission 26709 Árbol de decisión (Decision Tree) Gradient Boosting. 26710 26711 Meta modelo: Regresión Logística. Woohoo, your submission was successful! Your submission score is 0.8578 seasonal_vaccine: AUC = 0.8364 adrichez h1n1 vaccine: AUC = 0.82480.8151 id-278404 1.0 1.0 MultiOutputClassifier 0.8 0.8 estimator: StackingClassifier knn 0.6 TPR KNeighborsClassifier > DecisionTreeClassifier 0.4 final_estimator 0.2 0.2 ▶ LogisticRegression 0.0 1.0 0.0 0.2 0.4 0.6 0.8 0.2 0.6 0.8

Comentarios finales kNN y Stacking

Combinación de hiperparámetros

validación cruzada para cada configuración de hiperparámetros, mientras que la banda sombreada alrededor de la línea muestra la desviación estándar de los F1-scores, lo que indica la variabilidad del rendimiento del modelo entre las particiones.

En resumen, el modelo de Stacking ha logrado un

La línea azul (kNN) y la línea verde (Stacking) representa el F1-score promedio obtenido en las particiones de

En resumen, el modelo de Stacking ha logrado un rendimiento superior al modelo kNN en la competición de DrivenData, lo que sugiere que la combinación de múltiples clasificadores en un ensemble de Stacking ha sido efectiva para mejorar la capacidad predictiva del modelo.

El modelo Stacking ha demostrado ser más efectivo y robusto en términos de generalización y rendimiento en los conjuntos de validación y prueba en comparación con

kNN. Aunque kNN ha mostrado un rendimiento perfecto en el conjunto de entrenamiento, su sobreajuste lo hace menos adecuado para datos nuevos datos no vistos.

Con ajustes adicionales en los hiperparámetros y el preprocesamiento de datos, ambos modelos podrían mejorar más, pero Stacking ya ha mostrado una ventaja clara en esta práctica.

Preprocesamiento

Para aplicar Bagging (Boostrap Aggregating), se han seguido los mismos pasos de preprocesamiento descritos en la parte común.

Se escalan los datos usando MinMaxScaler para facilitar la separación de las clases con SVM, ya que la complejidad del algoritmo aumenta y la ejecución se alarga.

Configuraciones probadas y resultados

1. Modelo de Bagging Clásico

Criterios utilizados:

Estimador base: SVM RBF

N estimadores: 10

Max samples = 0.8

Max features: 1 **Boostrap: True**

Random State: 42

=== Bagging SVM ===

Accuracy: 0.6721847930702599 Roc-AUC: 0.7943632909967411

Classification Report:

precision recall f1-score support

0 0.55

0.77 0.64

1106

1 0.77

0.78 0.78

2430

2. Modelo de Bagging con Random **Subespaces**

Criterios utilizados:

Estimador base: SVM RBF

N estimadores: 10

Max_samples= 1

Max features: 0.5

Boostrap: False

Random State: 42

=== Random subespaces ===

Accuracy: 0.658710298363811

Roc- AUC: 0.7843039373471437

Classification Report:

precision recall f1-score support 0

0.55 0.75 0.63 1106

1 0.77 0.75 0.76 2430

Preprocesamiento

Para aplicar AdaBoost, se han seguido los mismos pasos de preprocesamiento descritos en la parte común.

Se escalan los datos usando MinMaxScaler para facilitar la convergencia en el caso de la regresión logística, ya que la complejidad del algoritmo aumenta y la ejecución se alarga.

Configuraciones probadas

1. Modelo en base a Árboles de decisión, con Bayes Search

Espacio de búsqueda:

- Número de estimadores: entre 50 y 300
- Tasa de aprendizaje: entre 0.01 y 1.0 (dist. Log.)
- Profundidad máxima: entre 1 y 10
- Mínimo de muestras para dividir: entre 2 y 20
- Mínimo de muestras por hoja: entre 1 y 10
- Algoritmo: SAMME
- CV: 5 folds

2. Modelo en base a Árboles de decisión, con Optuna

Espacio de búsqueda:

- Número de estimadores: entre 50 y 300
- Tasa de aprendizaje: entre 0.01 y 1.0 (dist. Log.)
- Profundidad máxima: entre 1 v 10
- Mínimo de muestras para dividir: entre 2 y 20
- Mínimo de muestras por hoja: entre 1 y 10
- Algoritmo: SAMME
- CV: 5 folds

3. Modelo en base a la regresión logística, con GridSearch

Espacio de búsqueda:

- **Número de estimadores**: [5, 10, 20, 30, 50]
- Tasa de aprendizaje: [0.01, 0.1, 1, 10, 100]
- Algoritmo: SAMME
- Penalización: 'l2'
- Solver: 'liblinear'
- Máximo de iteraciones: 5000
- **C**: 0.2742
- CV: 5 folds

Mejores Modelos en training

El mejor modelo es el Adaboost basado en árboles de decisión y optimización con Optuna

5.5. Voting – Análisis de Resultados

Accuracy global: 0.6937439846005775

ROC AUC Scores de cada label: [0.8754179718266757, 0.8658382634191356] Accuracy Scores de cada label: [0.8565928777670837, 0.7917228103946102]

Reporte de Clasificación:

		precision	recall	f1-score	support	
	0	0.75	0.49	0.59	1106	
	1	0.78	0.77	0.77	2430	
micro	avg	0.78	0.68	0.72	3536	
macro	avg	0.77	0.63	0.68	3536	
weighted	avg	0.77	0.68	0.72	3536	
samples	avg	0.36	0.34	0.34	3536	

¡Gracias!

¿Alguna pregunta?

- pablogradolph@correo.ugr.es
- adrian31@correo.ugr.es
- <u>sbowlder@correo.ugr.es</u>
- emorella@correo.ugr.es
- ruxico@correo.ugr.es

GitHub: https://github.com/PabloGradolph/FluShotLearning

