计算物理 实验报告4

羊达明 PB16000647

用Schrage方法编写随机数子程序,用连续两个随机数作为点的坐标值绘出若干点的平面分布图。再用 $< x^k >$ 测试均匀性(取不同量级的N值,讨论偏差与N的关系)、C(I)测试其2维独立性(总点数 $N > 10^7$)。

两种检验方法具体实现如下:

1. 用 $< x^k >$ 测试均匀性

X 是 $[0,\ 1]$ 上均匀分布的随机变量,它的 k 阶原点矩理论值为 $< x^k> = \int_0^1 x^k dx = rac{1}{k+1}$.

计算伪随机序列的 k 阶矩 $< x^k > = \sum_{n=1}^N x_n^k$,比较实际值和理论值的偏差.偏差越小,均匀性越好.

2. 用 C(l) 测试独立性

讨论伪随机数序列独立性的一个方法是顺序相关法,用相邻两个随机数的相关系数来标识伪随机数序列的独立性情况,相关系数越小,独立性越好.相距为 $m{l}$ 的相关系数为 $m{C(l)} = rac{<x_nx_{n+l}>-<x_n>^2}{<x_n^2>-<x_n>^2}$.

其中平均值的定义是 $< x_n > = \sum_{n=1}^N x_n/N$. 当两个随机数序列 $x_n = x_{n+l}$ 不相关时,相关系数为0.

结果:

带颜色的图不同颜色表示不同生成顺序,可以看出这个也是很均匀的。

k阶矩的可读结果都在输出文件kth_order_*中,对应上面两个例子

简图如下:

间图如1	` .				
1 N = 1000					
2	k	kth moment	1 / 1 + k	deviation	
3	1	0.483162335808465	0.500000000000000	0.016837664191535	
4	2	0.315327211689535	0.333333333333333	0.018006121643798	
5	3	0.233329428056492	0.2500000000000000	0.016670571943508	
6	4	0.185162816054437	0.200000000000000	0.014837183945563	
7	5	0.153604692242437	0.16666666666667	0.013061974424230	
8	8 N = 10000				
9	k	kth moment	1 / 1 + k	deviation	
10	1	0.495985448118800	0.500000000000000	0.004014551881200	
11	2	0.329580475232445	0.333333333333333	0.003752858100888	
12	3	0.246610618829347	0.250000000000000	0.003389381170653	
13	4	0.196916316733386	0.200000000000000	0.003083683266614	
14	5	0.163832984806532	0.16666666666667	0.002833681860134	
15 N = 100000					
16	k	kth moment	1 / 1 + k	deviation	
17	1	0.498311064450744	0.500000000000000	0.001688935549256	
18	2	0.331693036471487	0.333333333333333	0.001640296861847	
19	3	0.248508964968603	0.2500000000000000	0.001491035031397	
20	4	0.198626079094302	0.2000000000000000	0.001373920905698	
21	5	0.165382021108548	0.166666666666667	0.001284645558118	
22					

除了上面例子外还跑了各种N的值的情形,N越大,实验值与理论值越接近。

C(l)测试二维独立性的结果在输出文件correlation_*中可以看到,两个可视化结果如下:

Correlation Coefficient of 16807(N=10^8,Seed=1)

Correlation Coefficient of Randomz(N=10^8,Seed=1)

独立性都还可以。