ii.	Calculate the avalanche-zone velocity of a TRAPATT diode with the doping concentration of $2 \times 10^{15} cm^{-3}$ and current density of $20kA/cm^2$.	4	3	2	1,4
28. a.	Illustrate the working principle of GaAs MESFET with schematic diagram and circuit symbol. Also express pinch-off voltage.	10	4	3	1,4
b.i.	(OR) With relevant expression, describe the pinch-off voltage of a microwave field effect transistor.	5	3	3	1,4
ii.	Calculate the pinch-off voltage of a certain Si JFET, with the channel height of 0.1 μ m, electron concentration of $8\times10^{17}cm^{-3}$ and relative dielectric constant of 11.8.	5	3	3	1,4
29. a.	Explore the structure of HEMT and the processing steps for HEMT direct coupled FET logic circuits with operational mechanism.	10	4	4	1,4
b.i.	(OR) Examine the performance characteristics of HEMT and draw the equivalent circuit.	5	3	4	1,4
ii.	Compute the conduction band-edge difference between GaAs and AlGaAs and the sensitivity of HEMT for the threshold voltage of 0.13 V, donor concentration of $2\times10^{24}m^{-3}$, metal semiconductor schottky barrier potential of 0.8 V, GaAs band gap of 1.43 V, AlGaAs bandgap of 1.8 V and AlGaAs dielectric constant of 4.43.	5	3	4	1,4
30. a.	Construct the systematic methodology of successful RF and microwave package design and demonstrate.	10	4	5	1,3
ъ.	(OR) Interpret the thermal analysis of resistance networks in electronic systems.	10	4	5	1,3

* * * * *

Page 4 of 4 21NF6&7-18ECE321T

			 			 _	-	 -	
							1.0		
Reg. No.	 				U II			 	
Keg. 140.				11.				h - 1	
0								H 19	

B.Tech. DEGREE EXAMINATION, NOVEMBER 2022

Sixth and Seventh Semester

18ECE321T - RF AND MICROWAVE SEMICONDUCTOR DEVICES

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

Note:

(i) **Part - A** should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

(ii) Part - B should be answered in answer booklet.

Time: 2½	2 Hours			Max.	Mar	ks:	75
	$PART - A (25 \times 1 = 1)$ Answer ALL Que			Marks	BL	co	PO
1.	The capacitance of a reverse biased PN			1	1	1	1,4
	(A) Decreases as reverse bias is increased(C) Increases as reverse bias is increased		decreased				
2	The main material used in the construction	etion	of PIN diodes is	1	1	1	1,4
2.			GaAs				
	(C) Ge	(D)	Se				
3	PN junction failure below 5V is caused	d nri	marily by	1	2	1	1,4
J.			Saturation				
		(D)	Zener breakdown				
4.	Schottky diode operates only with			1	1	1	1,4
	(A) Capacitor	(B)	Minority carries				
	(C) Majority carriers	(D)	Inductor				
5	Varactor diodes are used in FM receiv	ers t	o obtain	1	2	1	1,4
٥.			Automatic volume control				
	(C) Automatic gain control	(D)	Automatic noise control				
6.	The tunnel diode is best suited for			1	1	2	1,4
0.		(B)	Rectifiers			6	
		(D)	Amplitude limiters				
7	The gunn diode has			1	1	2	1,4
7.		(B)	A single PN junction				
		` /	Two PN junction				
8	Power diodes are used in			1	1	2	1,4
0.		(B)	Rectifiers				
		(D)	Oscillator				

Page 1 of 4 21NF6&7-18ECE321T

- 9.	The number of semiconductor layers in	in IM	IPATT diode is	1	1	2	1,
	(A) 2	(B)					
	(C) 5	(D)					
10.	A major disadvantage of TRAPATT of	liode	is	1	2	2	1,
			Fabrication is costly				
			Low operational bandwidth				
11	N					•	
11.	BJT is adriven device.	(-)	_	1	1	3	1,
	4 - 3	` '	Power				
	(C) Current	(D)	Gain				
12.	The frequency of operation of an FET	is li	mited by	1	2	3	1,
			Gate length				
			Drain voltage				
	(1)	(2)	Drain Voltage				
13.	If gate-metal layer is in contact w formed.	ith t	he implant layer,is	1	2	3	1,
	(A) Transistor	(B)	Buffer				
		. ,	Switch				
		,					
14.	The MESFET has maximum			1	2	3	1,
	4 = 4	. ,	Source voltage				
	(C) Drain voltage	(D)	Gate to source voltage				
15.	The current gain of a BJT	W	ith frequency.	1	2	3	1,
			Decreases				
	4 min	' '	Zero				
16.	HEMT used in the microwave circuit			1	1	4	1,
		. ,	Low noise amplifier				
	(C) High power amplifiers	(D)	Source				
17.	The method used for fabrication of Ga	ı As F	FET is	1	2	4	1,4
			Diffusion				,
		` /	Ion implantation				
	(c) conduction	(D)	1011 Implantation				
18.	The power added efficiency of the amount of	RF	power transistor quantities the	1	2	4	1,
	(A) AC bias that is converted to	(B)	DC bias that is converted to IF				
	RF power		power				
	(C) DC bias that is converted to	(D)	AC bias that is converted to IF				
	RF power		power				
10	The channel charging delay in HEMT	ic		1	2	4	1,
12.			Maximum at law.	1	۷	7	1,
	(A) Minimum at high current densities	(D)	Maximum at low current densities				
	A Auto Carlos	(D)	Maximum at high current				
	densities	(1)	densities densities				

20.	The optimum value of L_{gd} in HEMT is	1	2	4	1,4		
	(A) 3.2 times that of the gate (B) 2.3 times that of the gate length						
	length L_g L_g						
	(C) 4.2 times that of the gate (D) 2.4 times that of the gate length						
	length L_g L_g						
21.	management is probably one of the most critical aspects of the	1	1	5	1,3		
	package design.						
	(A) Mechanical(B) Electrical(C) Computer integrated(D) Thermal						
	(b) Therman						
22.	The thermal conductivity of diamond is	1	1	5	1,3		
	(A) $41.6W / in^{\circ}C$ (B) $40W / in^{\circ}C$						
	(C) $40.6W / in^{\circ}C$ (D) $40.06W / in^{\circ}C$						
23.	effects result in poor RF performance with respect to things	1	2	6	1,2		
	such as gain, efficiency and intermodulation distortion etc.						
	(A) Capacitive (B) Inductive						
	(C) Resistive (D) Reactive						
24.	It is common for the RF power chains within base station circuits to	1	1	5	1,3		
	dissipate 100 towatts each.						
	(A) 150 (B) 400						
	(C) 300 (D) 200						
25.	The most critical heat-producing component for most RF systems is the stage.	1	2	6	1,2		
	(A) Frequency amplifier (B) Current amplifier						
	(C) Voltage amplifier (D) Power amplifier						
	Marks	BL	со	PO			
26. a.	Construct a schottky diode and illustrate the V-I characteristics of it. Also	10	4	1	1,4		
	mention the advantages and applications.						
	(OR)						
b.	With neat sketch, develop a PIN diode and explain the working principle	10	4	1	1,4		
	and characteristics.						
27.0	Investigate the mineral of anomalies of	10	4	2	1,4		
21. a.	Investigate the principles of operation of microwave tunnel diode with energy band diagrams and V-I characteristics.	10	7	2	1,4		
hi	(OR) Compute the maximum CW output power and the resonant frequency of	6	3	2	1,4		
0.1.	an IMPATT diode with the following parameters, carrier drift velocity of	Ü		~	*,'		
	2×10^7 cm/s, drift region length of 6 μ m, maximum operating voltage of						
	100 V, maximum operating current of 200 mA, efficiency of 15% and the						
	break down voltage of 90 V.						

Page 2 of 4

21NF6&7-18ECE321T