

Mathématiques

Classe: BAC

Chapitre: Fonctions Réciproques

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Soit la fonction f définie sur $\left| 0, \frac{\pi}{2} \right|$ par : $f(x) = \frac{1}{1 + \sin x}$.

- **1°) a)** Montrer que f est dérivable sur $\left| 0, \frac{\pi}{2} \right|$.
 - **b)** Etablir le tableau de variation de *f*.
- **2°)** Montrer que la fonction f réalise une bijection de $\left[0, \frac{\pi}{2}\right]$ sur un intervalle J qu'on précisera.
- **3°)** Calculer $f\left(\frac{\pi}{6}\right)$. Montrer que f^{-1} est dérivable en $\frac{2}{3}$ et calculer $\left(f^{-1}\right)'\left(\frac{2}{3}\right)$.
- **4°) a)** Montrer que f^{-1} n'est pas dérivable à droite en $\frac{1}{2}$.
 - **b)** Montrer que f^{-1} est dérivable sur $\left|\frac{1}{2},1\right|$.
 - c) Montrer que $\sin(f^{-1}(x)) = \frac{1}{x} 1$ et que $\cos(f^{-1}(x)) = \sqrt{\frac{2}{x} \frac{1}{x^2}}$.
 - **d)** En déduire que pour tout $x \in \left[\frac{1}{2}, 1 \right] : \left(f^{-1} \right)' (x) = \frac{-1}{x^2 \sqrt{\frac{2}{x} \frac{1}{x^2}}}$.

Exercice 2

40 min 7 pt

- 1°) Soit f la fonction définie sur \mathbb{R} par : $\begin{cases} f(x) = x^2 \left(1 \cos \frac{2}{x} \right) + 2 & \text{si} \quad x < 0 \\ f(x) = \frac{2 x^2}{1 + x^2} & \text{si} \quad x \ge 0 \end{cases}$
 - a) Montrer que pour tout x < 0 on a $|f(x) 2| \le 2x^2$.
 - **b)** Montrer que f est continue en 0.
 - c) Déterminer $\lim_{x\to -\infty} f(x)$.
- **2°)** Montrer que l'équation $x^3 + x^2 + x 2 = 0$ admet dans \mathbb{R} une unique solution α et que $\alpha \in [0,8;1[$
- **3°)** Soit g la restriction de f à l'intervalle $[0,+\infty]$.

On désigne par Γ la courbe de la fonction g dans un repère orthonormé $(0,\vec{i},\vec{j})$

- a) Dresser le tableau de variation de la fonction q.
- **b)** En déduire que g est une bijection de $[0,+\infty[$ sur]-1,2].
- c) Expliciter $g^{-1}(x)$ pour tout $x \in [-1,2]$.
- **4°)** a) Prouver que $g(\alpha) = \alpha$.
 - **b)** Tracer la courbe Γ puis la courbe Γ' de g^{-1} dans le même repère.

5°) Sur la figure ci-dessous est la courbe représentative dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$ d'une fonction h définie et continue sur $\left]-\infty,-2\right[\bigcup\left[-1,+\infty\right[$.

On sait que la droite d'équation y=-1 est une asymptote à C_h au voisinage de $-\infty$, la droite x=-2 est aussi une asymptote à C_h et que C_h admet une branche parabolique de direction celle de (OI) au voisinage de $+\infty$.

Soit φ la fonction définie par : $\varphi(x) = g^{-1}oh(x)$.

- a) Déterminer l'ensemble D de définition de la fonction $\, \phi \,$
- **b)** Montrer que φ est continue sur D.
- c) Déterminer $\lim_{x\to -\infty} \varphi(x)$.

Exercice 3

(\$ 30 min

4 pt

Soit f la fonction définie $\sup \left[-1, +\infty\right] = I$ par : $f(x) = x^3 + 3x^2 + 3x + 1$

- **1°)** Montrer que f réalise une bijection de l sur un intervalle J que l'on précisera.
- 2°) Montrer que pour tout x de J on a $f^{-1}(x) = \sqrt[3]{x} 1$.
- **3°)** Soit g la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par $g(x) = f^{-1}(\cos x)$.
 - a) Sur quel ensemble K, g est dérivable et calculer g'(x).
 - b) Dresser alors le tableau de variation de g et tracer la courbe de g dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000