Binary search on arrays

In the lecture, we learned binary search, and we want you to implement the binary search. It is a very efficient algorithm, and it will not only used on arrays..

Anyway, in this problem, you are given an integer array a[1..n] and m integers x_1, x_2, \dots, x_m that we need to search from this array. The elements on the array are distinct. For each x_i , please find whether x_i exists in the array a or not.

To reject solutions that read all x_1, x_2, \dots, x_m and compute answers at once, we decided to give inputs in a different way. Please refer to the input format and notes for further information.

Input

Your input consists of an arbitrary number of records, but no more than 5.

Each record starts with a line containing two integers n and m ($1 \le n, m \le 100,000$), the number of integers. The next line contains n distinct integers $a[1], a[2], \cdots, a[n]$ ($0 \le a[i] < 10^9$), which are the elements of the array. The next line contains y_1, y_2, \cdots, y_m ($0 \le y_j < 10^9$), which are used to generate the sequence x_1, x_2, \cdots, x_m . You should generate like this:

- $\bullet \quad x_1 = y_1.$
- For all $j \ge 2$, $x_j = (x_{j-1} + y_j) \mod 10^9$ if x_{j-1} exists in array a, and $x_j = (x_{j-1} y_j) \mod 10^9$ otherwise.

The end of input is indicated by a line containing only the value -1.

Output

For each input record, print a line that contains m digits. The j-th $(1 \le j \le m)$ digit should be '1' if x_j exists in array a_j and '0' otherwise.

Example

Standard input	Standard output
3 6	111010
1 3 2	01101
1 1 1 1 1 1	
3 5	
3 5 1	
2 1 2 -1 -3	
-1	

Notes

For the first sample:

- $x_1 = y_1 = 1$. 1 exists in array a.
- $x_2 = x_1 + y_2 = (1+1) \mod 10^9 = 2$. 2 exists in array a.
- $x_3 = x_2 + y_3 = (2+1) \mod 10^9 = 3$. 3 exists in array a.
- $x_4 = x_3 + y_4 = (3 + 1) \mod 10^9 = 4$. 4 doesn't exist in array a.
- $x_5 = x_4 y_5 = (4 1) \mod 10^9 = 3$. 3 exists in array a.
- $x_6 = x_5 + y_6 = (3+1) \mod 10^9 = 4$. 4 doesn't exist in array a.

For the second example:

- $x_1 = y_1 = 2$. 2 doesn't exist in array a.
- $x_2 = x_1 + y_2 = (2 1) \mod 10^9 = 1$. 1 exists in array a.
- $x_3 = x_2 + y_3 = (1+2) \mod 10^9 = 3$. 3 exists in array a.
- $x_4 = x_3 + y_4 = (3 + (-1)) \mod 10^9 = 2$. 2 doesn't exist in array a.
- $x_5 = x_4 y_5 = (2 (-3)) \mod 10^9 = 5$. 5 exists in array a.

Time Limit

2 seconds.