Device-to-Device Load Balancing for Cellular Networks

Lei Deng, Ying Zhang, Minghua Chen, Jack Y. B. Lee, Ying Jun (Angela) Zhang

Zongpeng Li

Lingyang Song

Mobile Data Traffic Is Skyrocketing

Source: Cisco VNI Mobile, 2015

- Cisco Forecasts 24.3 EB per Month of Mobile Data Traffic by 2019
- A 10x Increase over 2014

24.3 EB (Exabyte) = 40% of Monthly Global Fixed-Internet Traffic in 2014

The Cell Size Is Shrinking

The Trend of Shrinking Cells (Source: ZTE Article)

Small Cell Improves Spectrum Spatial Efficiency

yet Degrades Spectrum Temporal Efficiency

Case Study: SmarTone

3G Data Traffic (Gbytes Cell 2 00:00 12:00 00:00 12:00 00:00 Time

Non-synchronized Peak Traffic

Cell

Low Spectrum Temporal Efficiency!

Load Balancing Can Potentially Increase Spectrum Temporal Efficiency

We Advocate **Device-to-Device Load Balancing** (D2D LB) Scheme

Example: Without D2D Load Balancing

Peak Traffic: 3

Spectrum Temporal Utilization: 50%

Example: With D2D Load Balancing

System Model

□ Network topology

- Directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- Link rate R_{uv}

Transmitted Volume per Slot = Link Rate × Assigned Resources

□ Traffic demand pattern (Uplink)

All traffic should reach any BSs before expiration!

Performance Metrics

□ Sum peak traffic/resource reduction (Benefit)

$$\rho = \frac{P_{ND} - P_D}{P_{ND}} \in [0, 1)$$

- P_{ND} is the minimal sum peak traffic without D2D
- P_D is the minimal sum peak traffic with D2D LB
- □ D2D traffic overhead ratio (Cost)

$$\eta = \frac{V_{D2D}}{V_{D2D} + V_{BS}} \in [0, 1)$$

- V_{D2D} is the sum volume of all D2D traffic
- V_{BS} is the sum volume of all user-BS traffic

We optimize the benefit and characterize the corresponding cost

Minimize Sum Peak Traffic: No D2D

We can use YDS algorithm to get the minimal peak traffic of any BS b

 \Box Define the *intensity* of an interval I=[z,z'] as

$$g_b(I) = \frac{\sum\limits_{(s,\tau)\in\mathcal{A}_b(I)} \frac{x^{s\tau}}{R_{sb}}}{z' - z + 1}$$

 \square Theorem: $P_b^* = \max_{I \subset [1,T]} g_b(I)$.

Minimize Sum Peak Traffic: D2D LB

Limitations of Conceivable Approach

- □ No closed-form expression
 - Minimal sum peak traffic with/without D2D LB
 - Sum peak traffic reduction
- □ No efficient algorithm
 - Minimal sum peak traffic with D2D LB
- □ Hard to get insights of the benefit of D2D LB

Sum Peak Traffic Reduction: Upper Bound

Theorem: For an arbitrary network topology and an arbitrary traffic pattern,

$$\rho = \frac{P_{ND} - P_D}{P_{ND}} \le \frac{\max\{r, 1\} + \tilde{r}\Delta^- - 1}{\max\{r, 1\} + \tilde{r}\Delta^-}.$$

Captures the link-rate advantages of intra-cell D2D links over the user-BS links

Captures the link-rate advantages of inter-cell D2D links over the user-BS links

Captures the BS-level network connectivity and traffic aggregation capability

Sum Peak Traffic Reduction: Upper Bound

 \square Corollary: If $r = \tilde{r} = 1$, then we have

$$\rho = \frac{P_{ND} - P_D}{P_{ND}} \le \frac{\Delta^-}{\Delta^- + 1}$$

Network Topology

Max Indegree: $\Delta^- = \max_i d_i^- = 3$

D2D Communication Graph (BS-level)

$$\rho \le \frac{\Delta^-}{\Delta^- + 1} = 75\%$$

Discussions

- \square Corollary: $\rho = \frac{P_{ND} P_D}{P_{ND}} \le \frac{\Delta^-}{\Delta^- + 1}$
- \Box Δ -evaluates the traffic aggregation capability
- ☐ The more traffic each BS aggregates for other BSs, the more statistical multiplexing gain
- □ How good is this upper bound?
 - $\rho \rightarrow \frac{2}{3} = \frac{\Delta^-}{\Delta^- + 1}$ in the ring topology
 - i.e., tight under ring topology ($\Delta^-=2$)

Trace-driven Simulation: Benefit and Cost

Effects of Traffic Delay and Commu. Range

Computational Cost of Large-Scale LP

Instance	$ \mathcal{B} $	$ \mathcal{U} $	$ \mathcal{E} $	# of demands	T
S1 (Light)	3	15	139	4035	43200
S2 (Medium)	6	30	344	6945	43200
S3 (Heavy)	9	45	1083	10095	43200

Conclusion

- Advocate the concept of D2D load balancing
- Define the performance metrics for both benefit and cost
- □ Theoretical upper bound for arbitrary settings
- □ Real-world trace-driven simulations

Future Work

- Design efficient algorithms for sum peak traffic minimization with D2D LB
- □ Design incentive mechanisms for D2D users
- Distributed/Online scheduling algorithms
- Refine the physical-layer channel model and relax some assumptions

Q&A

Thank you!

Backup Slides

Minimize Sum Peak Traffic: No D2D

min
$$P_b$$

s.t.
$$\sum_{t=\tau}^{d^{s\tau}} y_{sb}^{s\tau}(t) R_{sb} = x^{s\tau}, \forall s \in \mathcal{U}_b, \tau \in [1, T]$$

$$\sum_{s \in \mathcal{U}_b} \sum_{\tau: \tau \leq t \leq d^{s\tau}} y_{sb}^{s\tau}(t) = \alpha_b(t), \forall t \in [1, T]$$

$$\alpha_b(t) \leq P_b, \forall t \in [1, T]$$

$$y_{sb}^{s\tau}(t) \geq 0, \forall s \in \mathcal{U}_b, \tau \in [1, T], t \in [\tau, d^{s\tau}]$$
var
$$y_{sb}^{s\tau}(t), \alpha_b(t), P_b$$

Minimize Sum Peak Traffic: D2D

min
$$\sum_{b \in \mathcal{B}} P_b$$
s.t. feasible traffic scheduling policy,
$$\sum_{v \in \mathcal{U}_b} \sum_{s \in \mathcal{U}} \sum_{\tau: \tau \leq t \leq d^{s\tau}} y_{vb}^{s\tau}(t) = \alpha_b(t),$$

$$\forall b \in \mathcal{B}, t \in [1, T]$$

$$\sum_{u \in \mathcal{U}_b} \sum_{v \in \text{in}(u) \setminus \{u\}} \sum_{s \in \mathcal{U}} \sum_{\tau: \tau \leq t \leq d^{s\tau}} y_{vu}^{s\tau}(t) = \beta_b(t),$$

$$\forall b \in \mathcal{B}, t \in [1, T]$$

$$\alpha_b(t) + \beta_b(t) \leq P_b, \forall b \in \mathcal{B}, t \in [1, T]$$
var
$$y_{uv}^{s\tau}(t), \alpha_b(t), \beta_b(t), P_b$$

Ring Topology

 \square For any $D \ge 1$, there exists a ring topology and a traffic demand pattern such that

$$\rho = \frac{2(D-1)}{3D-2}$$

- $-\lim_{D\to\infty}\rho=\frac{2}{3}=\frac{\Delta^-}{\Delta^-+1}$
- The bound is asymptotically tight

Complete Topology

□ In a N-BS complete topology, there exists a traffic demand pattern such that

$$\rho = \frac{N-1}{N+1}$$

- $-\lim_{N\to\infty}\rho=1$
- In the best case, we can achieve 100% sum peak traffic reduction!

Tradeoff between Benefit and Cost

 \Box Tradeoff between sum peak traffic reduction ρ and overhead ratio η

