Guidelines

Design and Analysis of Algorithm Laboratory (PC-CS493)

Students are advised to follow the guidelines to prepare Laboratory Copy for PC-CS493:

- 1. Lab Copy should be prepared in your own handwriting using A4 Sheets
- 2. Only one side of the A4 sheets will be in use
- 3. Use proper format (given below) to prepare the Lab Copy
- 4. File up the A4 sheets by properly filling top sheets (one per assignment) and index page
- 5. The terminologies like "Problem definition, Algorithm and others" must be written in the lab report along with associated descriptions

Assignment Number 1

Problem definition: Using Divide and Conquer Technique write a C program to *implement* Binary Search. Mention the Compiler used in your program. *Analyze* the complexity of Binary Search.

Algorithm: Write algorithm for Binary Search using divide and conquer [Reference: Fundamentals of Computer Algorithms by Sahni]

Program Code: Write recursive version of the code which you have made in Laboratory

Result and discussion: Write output of the code and provide a brief explanation of the output generated.

Complexity Analysis: Write the complexity analysis of Binary Search using divide and conquer method [Reference: Class Note / Fundamentals of Computer Algorithms by Sahni]

Assignment Number 2

Problem definition: Using Divide and Conquer Technique write a C program to *implement* Merge Sort. Mention the Compiler used in your program. *Analyze* the complexity of the implemented Sorting Algorithm.

Algorithm: Write algorithm for Merge Sort using divide and conquer [Reference: Fundamentals of Computer Algorithms by Sahni]

Program Code: Write recursive version of the code which you have made in Laboratory

Result and discussion: Write output of the code and provide a brief explanation of the output generated.

Complexity Analysis: Write the complexity analysis of Merge Sort using divide and conquer method [Reference: Class Note / Fundamentals of Computer Algorithms by Sahni]

Assignment Number 3

Problem definition: Using Divide and Conquer Technique write a C program to *implement* Quick Sort. Mention the Compiler used in your program. *Analyze* the complexity of the implemented Sorting Algorithm.

Algorithm: Write algorithm for Quick Sort using divide and conquer [Reference: Class Note]

Program Code: Write recursive version of the code which you have made in Laboratory

Result and discussion: Write output of the code and provide a brief explanation of the output generated.

Complexity Analysis: Write the complexity analysis of Quick Sort using divide and conquer method [Reference: Class Note]

Assignment Number 4

Problem definition: Using Divide and Conquer Technique write a C program to *implement* Max-Min Problem. Mention the Compiler used in your program. *Analyze* the complexity value of your program.

Algorithm: Write algorithm for Max-Min using divide and conquer [Reference: Class Note]

Program Code: Write recursive version of the code which you have made in Laboratory

Result and discussion: Write output of the code and provide a brief explanation of the output generated.

Complexity Analysis: Write the complexity analysis of Max-Min using divide and conquer method [Reference: Class Note]

Assignment Number 5

Problem definition: *Implement* Fractional Knapsack Problem using appropriate algorithm design technique. Mention the Compiler used in your program. *Analyze* the complexity value of your algorithm.

Algorithm: Write algorithm for Fractional Knapsack Problem using greedy method [Reference: Fundamentals of Computer Algorithms by Sahni]

Program Code: Write the code which you have made in Laboratory

Result and discussion: Write output of the code and provide a brief explanation of the output generated.

Complexity Analysis: Write the complexity analysis of Fractional Knapsack Problem using greedy method [Reference: Fundamentals of Computer Algorithms by Sahni]

Assignment Number 6

Problem definition: *Implement* Job sequencing with deadlines problem using appropriate algorithm design technique. Mention the Compiler used in your program. *Analyze* the complexity value of your algorithm.

Algorithm: Write algorithm for Job sequencing with deadlines problem using greedy method [Reference: Class Note / Fundamentals of Computer Algorithms by Sahni]

Program Code: Write the code which you have made in Laboratory

Result and discussion: Write output of the code and provide a brief explanation of the output generated.

Complexity Analysis: Write the complexity analysis of Job sequencing with deadlines problem using greedy method [Reference: Class Note / Fundamentals of Computer Algorithms by Sahni]

Important Dates

Group	Assignment Number	Date of Assignment	Date of Submission
A	1	2/3/2022	9/3/2022
	2	9/3/2022	16/3/2022
	3	16/3/2022	23/3/2022
	4	16/3/2022	23/3/2022
	5	23/3/2022	30/3/2022
	6	30/3/2022	20/4/2022

Group	Assignment Number	Date of Assignment	Date of Submission
В	1	7/3/2022	14/3/2022
	2	14/3/2022	21/3/2022
	3	21/3/2022	28/3/2022
	4	21/3/2022	28/3/2022
	5	28/3/2022	11/4/2022
	6	11/4/2022	25/4/2022