# Applied Machine Learning for Business Analytics

Lecture 5: Auto-encoders

Lecturer: Zhao Rui

Small batches bring more **noisier** gradient estimates

• Small batches can offer a regularizing effect (Wilson and Martinez, 2003), perhaps due to the noise they add to the learning process. Generalization error is often best for a batch size of 1. Training with such a small batch size might require a small learning rate to maintain stability because of the high variance in the estimate of the gradient. The total runtime can be very high as a result of the need to make more steps, both because of the reduced learning rate and because it takes more steps to observe the entire training set.

# **Agenda**

- 1. Project Scoping: What is one-pager?
- 2. Autoencoders
- 3. Applications of Autoencoders
- 4. Recommendation Systems

# 1. Project Scoping

# Goals of ML projects

- An ML project should be aimed at increasing profits directly or indirectly.
  - Increasing sales
  - Cutting costs
  - Increasing satisfaction
  - Increasing time spent on a website
- Do we have non-profits projects? Yes
  - Climate change
  - Public health
  - Education

Connect business metrics to your machine learning models



# Case study



Improve customer satisfaction which makes them spend more money

Solve their problems faster which makes them spend less money

# Case study: movie recommendation

- When building a recommendation system for movie
  - Maximize Engagement
  - Maximize Revenue from sponsored content
    - Click more, ads fee more
  - Minimize the spread of restricted content

# How to set goals?

- Goals: General Purpose of a Project
  - Maximize users' engagement while minimizing the spread of violent content and maximize revenue from sponsored content
- Objectives: Specific steps on how to achieve the above goals
  - Filter out unclasificated movies
  - Rank movies by quality ————
  - Rank movies by their ads fee
  - Rank movies by engagement: how likely users will watch it

How to combine these two targets via ML systems?

# **Multi-objective system**

- Rank Movies by quality
  - Predict films' rating
  - Minimize Rating\_loss: loss between predicted rating and true rating
- Rank movies by engagement: how likely users will watch it
  - Predict watch times
  - Minimize Engagement\_loss: loss between predicted watch times and true times

#### Solution: combine different models

- Train two models
  - Model A: rating\_loss
  - Model B: engagement\_loss
  - Rank movies by \alpha\*pred\_modelA + \beta\*pred\_modelB

# Decouple different objectives

- Easier for training
- Easier to tweak our systems
  - No need to retrain the whole system if weights for different objectives are changed
- Easier for maintenance
  - Different objectives might need different maintenance schedules

# One-pager for machine learning projects

- Amazon Writing Style Tip
  - https://medium.com/fact-of-the-day-1/amazon-writing-style-tip-a349b4bd3839
- How to write design documents for data science/machine learning projects?
  - https://eugeneyan.com/writing/writing-docs-why-what-how/



Three types of documents required during projects

Timelines not drawn to scale

#### How to use the framework to structure your docs

Here are some examples of using Why-What-How to structure a one-pager, design doc, after-action review, and my writing on this site.

|              | Why?                                              | What?                              | How?                              |
|--------------|---------------------------------------------------|------------------------------------|-----------------------------------|
| One-Pager    | <ul> <li>Problem or opportunity</li> </ul>        | · Success metrics                  | <ul> <li>Deliverables</li> </ul>  |
|              | $\cdot \ {\bf Hypothesized \ benefits}$           | · Constraints                      | · Define out-of-scope             |
|              |                                                   |                                    |                                   |
| Design Doc   | $\boldsymbol{\cdot}$ Why the problem is important | · Business / product requirements  | · Methodology & system design     |
|              | · Expected ROI                                    | · Technical requirements &         | · Diagrams, experiment results,   |
|              |                                                   | constraints                        | tech choices, integration         |
| After-action | · Context of incident                             | · Tangible & intangible impact     | · Follow-up actions & owners      |
| Review       | · Root cause analysis (5 Whys)                    | · Estimates (e.g., downtime, \$)   |                                   |
|              |                                                   |                                    |                                   |
| Writing on   | · Why reading the post is                         | · The topic being discussed (e.g., | · The insight being shared (e.g., |
| this site    | important (e.g., anecdotes)                       | documents we write at work)        | Why-What-How, examples)           |
|              |                                                   |                                    |                                   |

#### One-pager example

Why: Our data science team (in an e-commerce company) is challenged to help customers discover products easier. Senior leaders hypothesize that better product discovery will improve customer engagement and business outcomes.

What: First-order metrics are engagement (e.g., CTR) and revenue (e.g., conversion, revenue per session). Second-order metrics include app usage (e.g., daily active users) and retention (e.g., monthly active users). Constraints are set via a budget and timeline.

**How:** The team considered several online (e.g., search, recommendations) and offline (e.g., targeted emails, push notifications) approaches. Their analysis showed the majority of customer activity occurs on product pages. Thus, an <a href="item-to-item">item-to-item</a> (i2i) recommender—on product pages—is hypothesized to yield the greatest ROI.

**Appendix:** Breakdown of inbound channels and site activity, overview of the various approaches, detailed explanation on recommendation systems.

# **Achieve alignment**

Make alignment with business/product owners in the following terms:

- Business Problem
  - Our platform has so many voucher hunters
- Hypothesized Benefits
  - Effective fraud detection model will save cost
- Success metrics
  - First-order metrics are customer acquisition cost (voucher campaign)
  - Second-order metrics are users retention rate.
- Constraints
  - Low False Positive Rate
- Deliverables
  - ML Fraud detection system





# 2. Autoencoders

# **Unsupervised learning**

- Given the data x without labels
- Goal: Learn hidden structure (low dimension)



Representation Learning
Data lies on a low-dimensional
manifold



Clustering Group data points based their similarity



Density Estimation

Estimate data probability p(x) from data x1, x2, ...., xn

# Principal component analysis: maximize variance

- PCA aims to find the directions of maximum variance in high-dimensional data and projects it onto a new subspace with equal of fewer dimensions than the original one
- Goal: Learn hidden structure (low dimension)

| Original                                                                                        | Projection                                                                                                                                           | New/Latent                                                               |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Space                                                                                           | Matrix                                                                                                                                               | Space                                                                    |
| $egin{bmatrix} x_{11} & x_{12} \ x_{21} & x_{22} \ dots & dots \ x_{n1} & x_{n2} \end{bmatrix}$ | $oxed{egin{array}{c} 	imes egin{array}{c} w_{11} \ w_{21} \end{array} = egin{array}{c} 	imes egin{array}{c} w_{11} \ w_{21} \end{array} \end{array}$ | $\left[egin{array}{c} u_{11} \ u_{21} \ dots \ u_{n1} \end{array} ight]$ |



## **MNIST** dataset













#### **PCA** for MNIST visualization

- Each image has 28 by 28 pixels -> 28 by 28 matrix -> 784 dimensional vector
- ullet Using PCA, find a project matrix  ${f W} \in R^{784 imes 2}$
- After project, each image can be encoded into a 2-dimensional space



### **PCA**: minimize reconstruction error

 PCA aims to find a linear subspace that minimize the distance of the project in a least-square sense

minimize  $||\mathbf{X} - \mathbf{X}\mathbf{W}\mathbf{W}^T||_F^2$   $\mathbf{W}^T\mathbf{W} = I$  W's shape is (d, h) and h < d



### **PCA** in neural network format



- Non-linear relationship between original representation and latent features
- Which machine learning models is used for **nonlinear approximation**?

## **Autoencoder: nonLinear**



# Deep autoencoder



# **Deep Autoencoder vs PCA**



# **Deep Autoencoder vs PCA**



#### **Structure of autoencoder**



# Undercomplete autoencoder

- Simply copy input to output without learning anything useful
  - The autoencoder just mimic the identify function
  - Reconstruct the training data perfectly
  - Overfitting
- To avoid the above issues, we should use undercomplete autoencoders
  - The hidden layer size c is small compared to the original feature dimensionality

#### Sandwich architecture in autoencoder

- Forcing c (hidden layer size) is less than d (the input layer size)
  - Learn the important features
  - Information bottleneck:
    - A kind of trade-off between compression and retaining information



Input Layer Hidden Layer



Can we use only 4 bricks to rebuild the previous shape?

# **Optimization targets**

- For Autoencoder, the training objective is to minimize  $||x-\tilde{x}||^2$
- Hidden representation is what we really want to learn



# **Unsupervised or Self-supervised**

- ullet Autoencoder is one kind of self-supervised learning  $||x- ilde{x}||^2$
- Input is x, target is x
- Pretend there is part of the input you do not know and predict that



### **Build autoencoders in Keras**

https://blog.keras.io/building-autoencoders-in-keras.html

# Regularized autoencoder

Add constraints in case the identity transformation is learned, i.e., overfitting

# **Sparse autoencoders**

- Constrain on c that penalizes it from dense
- Regularization on output of encoder, not parameters

$$L(x,g(f(x))) + \Omega(c)$$



• activity\_regularizer: instance of keras.regularizers.Regularizer

#### Example



# **Denoising autoencoders**

- Add noise into original data points
- Still reconstruct the original data points

$$L(x,g(f(ar{x})))$$



# 3. Applications of Autoencoders

# **Better representation**



Bag-of-Word



Greedy Layer-wise Pre-training for W1



Greedy Layer-wise Pre-training for W2



Greedy Layer-wise Pre-training for W3



Fine-tune by backpropagation



# 4. Recommendation Systems



The two best performing public stocks of the decade - Netflix (+3700%) and Domino's Pizza (+3000%) - perfectly epitomize the 2010s. You either build the world's most advanced machine learning content recommender system, or make a better pizza sauce, there's no middle ground.

1:20 PM - 27 Dec 2019









# Core problem in rec. sys.

- Filter Information for users
- Personalization is the key:
  - Given a certain user, compute the score that quantifies how strongly a user likes item i.



### **Content-based method**

- Define the similarity from items' content
  - Name: cosine similarity
  - Category
  - Rating
  - Description
  - o Etc
- Combine them into a final score
- Ranked items based on their similar scores compared to users' purchased item.



### **User behaviour**

- Content-based methods: only look at the items' information
- The Insights behind the huge interaction behind users and items



Ratings in Netflix



Order History

### **User-Item matrix**

- Content-based methods: only look at the items' information
- The Insights behind the huge interaction behind users and items

|                |          |        | Vector |        |              |        |
|----------------|----------|--------|--------|--------|--------------|--------|
|                |          | Item 1 | Item 2 | Item 3 | <br>Item k-1 | Imte k |
|                | User 1   | 1      | 0      | 0      | 3            | 1      |
| User<br>Vector | User 2   | 0      | 3      | 1      | 0            | 2      |
|                |          |        |        |        |              |        |
|                | User n-1 | 0      | 2      | 0      | 1            | 1      |
|                | User n   | 0      | 0      | 0      | 0            | 0      |

### **User-based CF**

- Find the similarity score between users
- Recommend products which these similar users have liked or bought previously



$$s_{u,v} = cos(ec{u},ec{v}) = rac{ec{u} * ec{v}}{||ec{u}|||ec{v}||}$$

Cosine similarity used a lot in information retrieval

## **Item-based CF**

- Find the similarity score between items
- Recommend similar items which were liked or purchased by the users in the past



$$s_{i,m} = cos(ec{i},ec{m}) = rac{ec{i}*ec{m}}{||ec{i}|||ec{m}||}$$

# **Data sparsity**

| movield | 1         | 2        | 3        | 4   | 5        | 6         | 7         | 9   | 10        | 11       | <br>106487    | 106489    | 106782    | 106920   | 109374 |              |
|---------|-----------|----------|----------|-----|----------|-----------|-----------|-----|-----------|----------|---------------|-----------|-----------|----------|--------|--------------|
| userld  |           |          |          |     |          |           |           |     |           |          |               |           |           |          |        | Similarities |
| 316     | -0.829457 | NaN      | NaN      | NaN | NaN      | NaN       | -1.329457 | NaN | -0.829457 | NaN      | <br>NaN       | NaN       | NaN       | NaN      | NaN    | between use  |
| 320     | NaN       | NaN      | NaN      | NaN | NaN      | NaN       | NaN       | NaN | NaN       | NaN      | <br>NaN       | NaN       | NaN       | NaN      | NaN    |              |
| 359     | 1.314526  | NaN      | NaN      | NaN | NaN      | 1.314526  | NaN       | NaN | 0.314526  | 0.314526 | <br>NaN       | NaN       | NaN       | NaN      | NaN    | and items a  |
| 370     | 0.705596  | 0.205596 | NaN      | NaN | NaN      | 1.205596  | NaN       | NaN | NaN       | NaN      | <br>-1.294404 | -0.794404 | 0.705596  | 0.205596 | NaN    | zero         |
| 910     | 1.101920  | 0.101920 | -0.39808 | NaN | -0.39808 | -0.398080 | NaN       | NaN | NaN       | 0.101920 | <br>NaN       | NaN       | -0.398080 | NaN      | NaN    |              |

- The core problem behind recommendation sys. is to fill these zero entries, i.e., infer the users preference over the item.
  - Address as data missing problems:
    - Use the mean value of the row
    - Use the mean value of the column
  - Matrix Factorization
    - Singular Value Decomposition
    - Non-Negative Matrix Factorization
    - Auto-encoder

## NMF for rec



### Autoencoder for rec.



### **Pros & Cons of CF**

#### Pros

- Capture latent users and item factors
- Can handle sparsity
- Scalable computation (ALS)

#### • Cons:

- Biases (Temporal and Popularity)
- Cold Start Problem
- No Context-awareness

### **Feature-based Methods**

#### Deep & Wide Model from Google



Source: https://ai.googleblog.com/2016/06/wide-deep-learning-better-together-with.html

### **Feature-based Methods**

- Three-class classification problem:
  - Click
  - Impressed but unclick
  - Dislike



Figure 1: An example of multiple feedbacks in WeChat Top Stories.



(a) Deep feedback network

Source: https://www.ijcai.org/proceedings/2020/0349.pdf

Next Class: Convolutional Neural Network