

# ELEC0130 – Internet of Things (IoT) (previously referred to as ELECGT27)

Introduction to the course

**Dr Ryan Grammenos** 

Lecturer (Teaching)

Department of Electronic and Electrical Engineering
University College London

Winter 2021



## Ryan's Background

- Engineering Doctorate (EngD) in Communications at UCL.
- Have worked in Engineering and FinTech companies.
- Research interests:
  - Signal processing for communications.
  - Software defined radio.
  - Internet of Things (IoT) including time-series analysis and IoT testbeds.
- Teaching:
  - MSc modules on the Internet of Things, Wireless Communications Principles, Mobile Communication Systems.
  - Undergraduate 3-module minor:
    - Connected Systems.
    - Networked Systems.
    - Internet of Things.
  - Undergraduate modules in Digital / Embedded Engineering Design.
- Enabling activities:
  - Academic Writing, PGTA Coordination.
- Email: r.grammenos@ucl.ac.uk



- Course overview.
- Syllabus and learning outcomes.
- Tour of Moodle page for this module.



- Course overview.
- Syllabus and learning outcomes.
- Tour of Moodle page for this module.



#### **Course Schedule**



| Academic<br>Week | Date (Wed)           | Week         | Topic                            | Synchronous<br>Activity |
|------------------|----------------------|--------------|----------------------------------|-------------------------|
| 20               | First week of Term 2 | 0            | Preparation                      |                         |
| 21               | 20/01/2021           | 1            | Course Introduction              | 11am-1pm                |
| 22               | 27/01/2021           | 2            | Exploratory Data Analysis        | 11am-1pm                |
| 23               | 03/02/2021           | 3            | Statistical and Machine Learning | 11am-1pm                |
| 24               | 10/02/2021           | 4            | Cloud Applications and Services  | 11am-1pm                |
| 25               | -                    | Reading Week | -                                | -                       |
| 26               | 24/02/2021           | 5            | Sensors and Sensor<br>Nodes      | 11am-1pm                |
| 27               | 03/03/2021           | 6            | Connectivity and Networks        | 11am-1pm                |
| 28               | 10/03/2021           | 7            | Tutorial - Project<br>Review     | 11am-1pm                |
| 29               | 17/03/2021           | 8            | Tutorial - Project<br>Review     | 11am-1pm                |
| 30               | Last week of Term 2  | -            | REPORT<br>SUBMISSION             | -                       |



#### **Method of Delivery and Assessment**



- Individual project evaluated through an end-of-module report weighing towards 100% of the module grade.
  - Issued towards the middle of Term 2.
  - Coursework-based.
- Multiple formative activities each week and for each topic:
  - Pre-recorded lectures.
  - Quizzes.
  - Worked examples.
  - Practical exercises (using industry-standard software tools).
  - Discussion forums.
- Synchronous (online and live) sessions:
  - One two-hour slot per week (Wednesdays, 11am-1pm).
  - Will be interactive and require you to engage in discussion and debate.



#### **Course Style**



**AIM**: Develop solid technical knowledge and skills required to build Internet of Things (IoT) systems.

- Highly interactive and hands-on course.
- You will need to complete a number of lab scripts which will involve system design, device programming, data analysis and cloud development.
- Connected Learning format.
  - Complete the designated activities for each week before attending the online, synchronous session.



- Course overview
- Syllabus and learning outcomes.
- Tour of Moodle page for this module.



#### **Course Syllabus (in a nutshell)**

- Layer 1: Sensors and sensor nodes
  - Sensing components and devices.
  - Sensor modules, nodes and systems.
- Layer 2: Connectivity and networks
  - Wireless technologies for the IoT.
  - Edge connectivity and protocols.
  - Wireless sensor networks.
- Layer 3: Analytics and applications
  - Signal processing, real-time and local analytics.
  - Databases, cloud analytics and applications.



#### **Course Learning Outcomes**



- **Explain** the definition and usage of the term "Internet of Things" in different contexts.
- Know the key components that make up an IoT system.
- **Differentiate** between the levels of the IoT stack and be familiar with the key technologies and protocols employed at each layer of the stack.
- Apply the knowledge and skills acquired during the course to build and test
  a complete, working IoT system involving prototyping, programming and
  data analysis.
- Understand where the IoT concept fits within the broader ICT industry and possible future trends.
- Appreciate the role of big data, cloud computing and data analytics in a typical IoT system.



 $\stackrel{lack}{\mathbb{R}}$ 

- Course overview.
- Syllabus and learning outcomes.
- Tour of Moodle page for this module.





# Moodle is your oyster! Let's have a look...

