

Technische Informatik: Abgabe 4

Michael Mardaus

Andrey Tyukin

20. November 2013

Exercise 4.1 (Full adder from decoder)

Exercise 4.2 (Subtractors)

a) Here are the tables for the two circuits we wish to implement (namely Half-Subtractor and Full-Subtractor):

minuend	subtrahend	underflow	difference
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

If we read ms as numbers with high order bit on the left:

$$u_{out} = m_1$$
$$d = m_1 + m_2.$$

minuend	subtrahend	underflow	underflow	difference
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Again, in SOP-notation with high-order bit on the left:

$$u_{out} = m_1 + m_2 + m_3 + m_7$$

 $d = m_1 + m_2 + m_4 + m_7.$

b) More or less compact symbolic representations of these two circuits are as follows (first component is always the resulting underflow, second is the actual difference):

$$\begin{split} HalfSubtractor(m,s) &= (\bar{m}s, m \not\leftrightarrow s) \\ FullSubtractor(m,s,u) &= (\bar{m} \not\leftrightarrow su, m \not\leftrightarrow s \not\leftrightarrow u) \end{split}$$

c) Now we want to simplify both components (difference and undeflow) of the full subtractor using Karnaugh diagrams. We begin with the difference:

	minuend / subtrahend				
		00	01	11	10
underflow	0		1		1
undernow	1	1		1	

It seems that this diagram is not simplifiable at all: we have to cover every one by an own 1x1 block. The simpliest expression for difference is thus:

$$d = \bar{m}\bar{s}u + \bar{m}s\bar{u} + msu + m\bar{s}\bar{u}$$

The ones for the output-underflow can be covered by three 2x1 blocks, which all intersect at 011 (we use additive color combination, light gray is supposed to be combination of red, green and blue):

		minuend / subtrahend				
		00	01	11	10	
underflow	0	0	1	0	0	
undernow	1	1	1	1	0	

Thus, the simplified formula for the output-underflow is:

$$u_{out} = \bar{m}u + \bar{m}s + su.$$

d)

Abbildung 1: Half subtractor.

Abbildung 2: Full subtractor. We recycled as many gatters as we could for both sub-circuits. Reason: that's the maximal complexity allowed for free LucidChart accounts...

Exercise 4.3 (Betting and Racing)

i	x_1	x_2	x_3	x_4	f_1	f_{2a}	f_{2b}
0	0	0	0	0			
1	0	0	0	1			
2	0	0	1	0	1 (B ₂)		
3	0	0	1	1	1 (<i>B</i> ₃)	1	1
4	0	1	0	0			
5	0	1	0	1	1 (<i>B</i> ₃)	1	1
6	0	1	1	0			
7	0	1	1	1		1	1
8	1	0	0	0	1 (<i>B</i> ₁)		
9	1	0	0	1	$0 (B_1 + B_3)$		
10	1	0	1	0	1 (<i>B</i> ₁)		D
11	1	0	1	1	1 (B ₁)		D
12	1	1	0	0			D
13	1	1	0	1			D
14	1	1	1	0			D
15	1	1	1	1		1	D

a1)
$$f_1=1\Leftrightarrow B_1.\neg B_2.\neg B_3+\neg B_1.B_2.\neg B_3+\neg B_1.\neg B_2.B_3$$
 where

- $B_1 = 1 \Leftrightarrow x_1. \neg x_2 = 1$
- $B_2 = 1 \Leftrightarrow \neg x_1. \neg x_2. x_3. \neg x_4 = 1$
- $B_3 = 1 \Leftrightarrow x_4$.only one of $(x_1, x_2, x_3) = 1$

brings us to column f_1 in the table above and leeds to the Karnaugh table:

	x_3x_4				
$ x_1x_2 $	00	01	11	10	
00		1	1		
01		1			
11					
10	1		1	1	

which yields: $f_1 = x_1 \neg x_2 x_3 + \neg x_1 \neg x_3 x_4 + \neg x_1 \neg x_2 x_4 + x_1 \neg x_2 \neg x_3 \neg x_4$

a2) $f_{2a} = 1 \Leftrightarrow (x_1 x_2 x_3 x_4)_2 |1101001 \text{(in decimal } 105 = 3 \times 5 \times 7)$

brings us to column f_{2a} in the table above and leeds to the Karnaugh table:

	V 2 a				
	x_3x_4				
x_1x_2	00	01	11	10	
00			1		
01		1	1		
11			1		
10					

which yields $f_{2a} = \neg x_1 x_2 x_4 + \neg x_1 x_3 x_4 + x_2 x_3 x_4$

b)

 $f_{2b}=1\Leftrightarrow 0000\leq (x_1x_2x_3x_4)_2\leq 1001|1101001$ gives column f_{2b} in the table above, Karnaugh table:

<i>y</i> = 0				0 1/.	
	x_3x_4				
x_1x_2	00	01	11	10	
00			1		
01		1	1		
11	D	D	D	D	
10			D	D	

which yields $f_{2b} = x_2x_4 + \neg x_1x_3x_4$