1 Introduction and Review

- For any function f(x) and for any $ain\mathbb{R}$, define $f(a^+)=\lim_{x\to a^+}f(x), f(a^-)=\lim_{x\to a^-}f(x)$
- A function f(x) is continuous at x = a iff $f(a^+) = f(a^-) = f(a)$.
- If f(x) is continuous on the open interval I iff f(x) is continuous for all $x \in I$.
- f(x) is an even function on the interval I iff f(-x) = f(x) for all $x \in I$.
- f(x) is an odd function on the interval I iff f(-x) = -f(x) for all $x \in I$.

1.0.1 Identities and Inequalities

- $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$
- $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) \sin(\alpha)\sin(\beta)$

And we can construct more using this.

Example (1). Prove the **triangle inequality**: $|a+b| \leq |a| + |b|$ for $a, b \in \mathbb{R}$.

Proof

The proof is trivial and is left as an exercise for the readers. (Use cases).