Inequalities

S. William

1 Analysis 1

Lemma 1.1 (Triebel) If $f \in \mathscr{S}_{\Omega}$, then there exist $\phi \in \mathscr{S}_{\Omega'}$, $\Omega \subset \Omega'$ that $D^{\alpha}f = f * \phi$, so

$$D^{\alpha} f \le C|f| * \langle x \rangle^{-N}$$

where Ω, Ω' are compact and C depends on the size of Ω . (N can be chosen arbitrarily large)

The proof is based on "the \mathscr{S}_{Ω} -inserting method".

Proof. Notice
$$f = \mathscr{F}^{-1}(\mathscr{F}f\mathscr{F}g), g \in \mathscr{S}_{\Omega'}$$
 and $g = 1$ on Ω . Let $\phi = D^{\alpha}g$, then $D^{\alpha}f = \mathscr{F}^{-1}(\mathscr{F}f\mathscr{F}\phi)$. \square

Assume Ω is a compact subset of \mathbb{R}^n , with diameter R.

Lemma 1.2 (Nikol'skij-Triebel) If $f \in L^p_\Omega, 0 , then$

$$||f||_{L^q} \le C||f||_{L^p}$$

where
$$C \sim R^{n(\frac{1}{p} - \frac{1}{q})}$$
.

Following inequality is an analogue of Young's inequality.

Theorem 1.1 *If* $f, g \in L_{\Omega}^{p}$, 0 , then

$$||f * g||_{L^q} \le C||f||_{L^p}||g||_{L^p}$$

where
$$C \sim R^{n(\frac{1}{p}-1)}$$
.

Proof. Let $h_x(y) = f(y)g(x-y)$ with support Ω' such that $|\Omega'| \sim |\Omega|$. Then with Lemma 1.2, we have $f * g(x) = \|h_x\|_1 \le \|h_x\|_p$, namely

$$|f * g(x)|^p \lesssim C|f|^p * |g|^p$$

where $C \sim R^{n(\frac{1}{p}-1)}$. Integrate two side to obtain the inequality. \square

Lemma 1.3 (Soblev type inequality) Assume (polynomial) $P(\xi)^{-1} \in L^p$,

$$||f||_{\mathscr{F}L^r} \lesssim ||P(D)f||_{L^q}$$

where
$$\frac{1}{r} = \frac{1}{p} - \frac{1}{q} + 1, 1 \le q \le 2, r, p \ge 1.$$

Proof. Apply Holder inequality to

$$f(x) = P^{-1}(x)P(x)f(x).$$

Then use Yang-Hausdorff inequality.

As an example, $P(x) = \langle x \rangle^d$, $d > \frac{n}{n}$, i.e. $H^{d,q} \hookrightarrow \mathscr{F}L^r$.

Corollary 1.1 (case q = 1)

$$||f||_{\mathscr{F}L^p} \lesssim ||P(D)f||_{L^1}$$

where
$$P(\xi)^{-1} \in L^p, p \ge 1$$
.

Define the smoothness degree of X under one-parameter group \mathbb{R}^+ ,

$$deg(X) = s$$
, for $f \neq 0$, $||(\lambda)f|| \sim \lambda^s$.

Lemma 1.4 If normed spaces $X \hookrightarrow Y$, then $\deg(X) \ge \deg(Y)$.

Generally,

Lemma 1.5 If normed spaces $X \hookrightarrow Y$, then $\|(\lambda)\|_X \gtrsim \|(\lambda)\|_Y$.

Note $\|(\lambda)\|_X \sim \lambda^{\deg(X)}$ if $\deg(X)$ exists. The optimal s_1, s_2 such that $\lambda^{s_1} \lesssim \|(\lambda)\| \lesssim \lambda^{s_2}, \lambda \geq 1$ are named the lower smoothness degree $(\deg^+(X))$ and upper smoothness degree $(\deg^+(X))$ respectively.

Lemma 1.6 If normed spaces $X \hookrightarrow Y$, then $\deg^+(X) \ge \deg^-(Y)$.

The default one-parameter group is $(\lambda)f = f(\lambda)$ for function spaces.

2 Analysis 2

Bootstrap principle (continuity method): In connected space X, if subset $A \neq \emptyset$ is open and closed, then A = X.

Example 2.1 If
$$f \in C(X)$$
, $f(x_0) = 0$, $\{f = 0\}$ is open, then $f = 0$.

Lemma 2.1 (Gap principle 1) Let $f(x) \in C(\Omega)$, $f(x_0) < \epsilon(> \epsilon)$ where Ω is a connected space. If $f(x) < \epsilon$ or $> \epsilon$ for all $x \in \Omega$, then $f(x) < \epsilon(> \epsilon)$ for all $x \in \Omega$.

Proof.
$$\{f < \epsilon\} = \{f \le \epsilon\}.$$
 \square

We say ϵ is a gap of f. Moreover, if any $\epsilon > 0$ can be a gap of f, then f = 0.

Lemma 2.2 (Gap principle 2) Let $f(x) \in C(\Omega), |f(x_0)| < \epsilon$ where Ω is a connected space. Whenever $|f(x)| \le \epsilon$ where $\epsilon > 0$, $|f(x)| \le \epsilon$ for all $x \in \Omega$. Then $|f(x)| \le \epsilon, \forall x \in \Omega$.

Lemma 2.3 (Gap principle 3) Let $f(x) \in C(\Omega), |f(x_0)| < \epsilon$ where Ω is a connected space. Whenever $|f(x)| \le \eta(\epsilon)$ where $\epsilon > 0$ and $\eta(x) > x, \forall x > 0$, $|f(x)| \le \epsilon$ for all $x \in \Omega$. Then $|f(x)| \le \epsilon, \forall x \in \Omega$.

 $(\epsilon, \eta(\epsilon)]$ is an impenetrable barrier of f.

Corollary 2.1 (Terence's Bootstrap principle) Let $f(x) \in C^+(\Omega)$ where Ω is a connected space. $f(x) \leq H(f(x_0)) + \eta(f(x))$, for all $x \in \Omega$ where $\eta(x) = o(x), H(x) \to 0, x \to 0, H(0) = 0$. We have

- 1) $\forall (\text{sml}) \epsilon > 0 \exists (\text{sml}) \delta > 0, f(x_0) < \delta \rightarrow f \leq \epsilon; (f(x_0) \neq 0)$
- 2) if $f(x_0) \ll 1$, then f is bounded;
- 3) if $f(x_0) = 0$, then f = 0.

Proof. Select small $\epsilon > 0$ and $f(x) \le \epsilon$. Let $f(x_0) = \delta > 0$ that $H(\delta) < \frac{\epsilon}{2}$.

$$f(x) \le H(f(x_0)) + \eta(f(x))$$

 $\le \frac{\epsilon}{2} + o(\epsilon) < \epsilon.$

Example 2.2 It holds when $f(x) \lesssim f(x_0)^{\beta} + f(x)^{\alpha}, \alpha > 1, \beta > 0$.

Following is an important application of bootstrap principle.

Proposition 2.1 $V \in C^2(\mathbb{R}^n), V(0) = V'(0) = 0, H_V > 0.$ sml $u_0, u_1 \in \mathbb{R}^n \exists ! u : \mathbb{R} \to \mathbb{R}^n$ is the bounded solution to the Cauchy problem

$$u''(t) = V'(u(t)), u(0) = u_0, u'(0) = u_1.$$

Proof. $f(t) = ||u'(t)||^2 + ||u(t)||^2$. We have $f(t) \lesssim f(0) + f(t)^3$. \square

Theorem 2.1 (Acausal Gronwall inequality) Assume that the measurable function K'(t,s) satisfies that

$$\left\{ \begin{array}{l} K'(t,s)K'(s,r) \leq K'(t,r), K'(t,s) \geq 0, K'(t,t) = 1, \\ \sup_t \int K(t,s)K'(t,s)^{-1}\mathrm{d}s < C, \sup_s K'(t,s)\phi(s) \text{ is locally bounded}. \end{array} \right.$$

If
$$\begin{cases} u \leq A + \epsilon \int K(t,s)u(s)\mathrm{d}s, \\ u \leq \phi, \end{cases}$$
 then $u \leq \sup_s K'(t,s)A(s)$, where $\epsilon \ll 1$ depends on K,K' .

Proof. Let the auxiliary function $B(t) = \sup_{s} K'(t, s)(A(s) + \sigma \phi(s))$, we have

$$B(t) \geq A(t) + \sigma \phi(t) (\geq \sigma u(t)),$$

$$B(s) < K'(t, s)^{-1} B(t).$$

Assume $u(t) \leq MB(t)$ for smallest M > 0, then

$$u(t) \leq A(t) + \int K(t,s)u(s)ds$$

$$\leq B(t) + \epsilon M \int K(t,s)K'(t,s)^{-1}B(t)ds$$

$$\leq B(t) + \frac{1}{2}MB(t).$$

Thus $M \leq 1 + \frac{1}{2}M$, namely $M \leq 2$. In a word, we have $u(t) \leq 2B(t)$. It follows that

$$u(t) \le 2 \sup_{s} K'(t, s) A(s),$$

since σ is arbitrarily small. \square

It is trivial to replace $u \leq \psi$ with $u \lesssim \phi$.

Corollary 2.2 (Acausal Gronwall inequality (convolution type)) Assume that the measurable function K'(t) satisfies that

$$\left\{ \begin{array}{l} K'(s)K'(t) \leq K'(s+t), K'(t) \geq 0, K'(0) = 1, \\ \sup_t \int K(t-s)K'(t-s)^{-1}\mathrm{d}s < C, \sup_s K'(t-s)\phi(s) \text{ is locally bounded.} \end{array} \right.$$

If
$$\begin{cases} u \leq A + \epsilon \int K(t-s)u(s)\mathrm{d}s, \\ u \leq \phi, \end{cases}$$
 then $u \leq \sup_s K'(t-s)A(s)$, where $\epsilon \ll 1$ depends on K, K' .

Example 2.3
$$k(t) = e^{\alpha t} \wedge e^{-\beta t}, k'(t) = e^{\alpha' t} \wedge e^{-\beta' t}, 0 < \alpha' < \alpha, 0 < \beta' < \beta.$$

3 Elementary

Lemma 3.1 *In norm space, we have*

$$|x - x_1| + |x - x_2| \gtrsim |x| + 1, x_1 \neq x_2.$$

The implicit constant depends on x_1, x_2

Proof. Consider it on two parts $|x| < C, |x| \ge C$. \square

4 Operator

Lemma 4.1 In a Banach space X, If $S \in \mathcal{G}(X)$, then

$$\frac{\|T\|}{\|S^{-1}\|} \le \|TS\|, \|ST\| \le \|T\| \|S\|.$$

If
$$||S^{-1}|| = ||S|| = 1$$
, then $||TS|| = ||ST|| = ||T||$.

5 Lattice theory

Theorem 5.1 (Gronwall) Let $G_f := \{x \in L | x \leq f(x)\}$ where L is a completed lattice and f is order preserving, then there exists unique

$$m = \sup G_f \in \operatorname{fix}(f) \subseteq G_f$$

and

$$fix(f) = \{m\} \Rightarrow G_f \leq m.$$

Proof. For any poset (L, \leq) , we have the following facts,

i)
$$x \in G_f \Rightarrow x \le f(x) \le \dots \le f^{(n)}(x) \le \dots \in G_f$$
,

ii)
$$m = \sup G_f \Rightarrow m \in \operatorname{fix}(f) \subseteq G_f$$
.

Let $(x)_f = \{x, f(x), \dots\}$ that is contained in G_f when $x \in G_f$. \square