Часть 1. Вычисления. Погрешности вычислений

Цель работы

Убедиться в наличии погрешности вычислений при использовании компьютера, определить их типы, установить их абсолютные и относительные значения, оценить связь между типами данных переменных и погрешностями значений, хранимых в этих переменных.

Задание

Задание 1

1. Создайте новый проект в отдельной папке и введите программу, представленную ниже, заменив выражения в фигурных скобках соответствующими операторами. program example2;

```
{$APPTYPE CONSOLE}
```

```
uses
 SysUtils;
Var
 y:real;
begin
 WriteLn('До преобразований у=',у:20:16);
  { y=1 }
  \{ y = y/6000 \}
                      \{y = e^x\}
 y := \exp(y);
                      {Квадратный корень}
 y := sqrt(y);
  \{ y = y / 14 \}
  \{ y = 14y \}
                \{Y = y^2\}
 Y := sqr(y);
  \{ y = \ln y \}
```

$$\{ y = 6000y \}$$

WriteLn('После преобразований =', y:20:16); end.

- 2. Выполните оценку абсолютной и относительной погрешности представления числа 1 и вычислений над числами типа real. К каким типам относятся данные погрешности (см. список типов погрешностей на предыдущей странице)?
- 3. Текст программы и результаты занесите в отчет.

Задание 2

Из математики известно, что
$$\mathrm{ch}^2\mathrm{x} - \mathrm{sh}^2\mathrm{~x} = 1$$
, где $\mathrm{ch}\,\mathrm{x} = \frac{\mathrm{e}^{\mathrm{x}} + \mathrm{e}^{-\mathrm{x}}}{2}$, $\mathrm{sh}\,\mathrm{x} = \frac{\mathrm{e}^{\mathrm{x}} - \mathrm{e}^{-\mathrm{x}}}{2}$.

Разработайте программу, которая вычисляет левую часть этого равенства. Указание. Программа должна реализовывать следующую последовательность вычислений: y_1 =sh x, y_2 =ch x, $y = y_2^2 - y_1^2$, где x, y, y_1 , y_2 — переменные типа *real*. Полученные значения y_1 , y_2 и у вывести на экран, указав ширину поля вывода не менее 20 и количество дробных цифр не менее 16.

- 2. Текст программы и ее результаты занесите в отчет.
- 3. Последовательно вводя указанные значения аргумента и рассчитывая погрешности вычислений, заполните таблицу.

X	y1	y2	у	Δ	δ
5					
10					
15					
20					
25					

- 4. Поясните полученный результат и объяснения включите в отчет.
- 5. Измените в программе типы переменных x, y, y1, y2 на *double*. Повторите опыт и заполните аналогичную таблицу. Повторите опыт с типами *single* и *extended*. Сравните четыре таблицы и объясните полученные результаты.

6. Ответьте на вопрос: изменение типа данных каких переменных (из x, y, y1, y2) реально влияет на точность результата и почему?

Задание 3

Разработайте программу, которая проверяет равенство $\sin^2 x + \cos^2 x = 1$. Убедитесь, что погрешность достаточно мала. Поясните полученный результат.

Проект программы

Текст программы

```
🎇 Редактор исходного кода
n1
       program n1;
    1
       {$APPTYPE CONSOLE}
    5 □uses
        SysUtils;
       Var
         y:real;
    . begin
        WriteLn('До преобразований y=',y:20:16);
   10
        y := 1; { y=1 }
        y := y / 6000; { y= y/6000 }
        y := \exp(y);
                                         {y = ex}
        y:= sqrt(y);
                                         {Квадратный корень}
        y := y / 14; { y = y / 14 }
y := 14 * y; { y = 14y }
   15
          Y := sqr(y);
                                         {Y = y2}
          y := ln(y); { y = ln y }
          y := 6000 * y; { y = 6000y }
          WriteLn('После преобразований =', y:20:16);
   20
         readln;
   22 end.
```

Рис. 4. Текст программы задания 1.

```
旧 Редактор исходного кода
```

```
n2
       program n2;
       {$APPTYPE CONSOLE}
       var x, y, y1, y2: real;
    5
      begin
         writeln('Введите x: ');
         readln(x);
         y1 := (exp(x) - exp(-x)) / 2; {y1 = shx}
         y2 := (exp(x) + exp(-x)) / 2; {y2 = chx}
   10
         y := sqr(y2) - sqr(y1); \{y = ch(x)^2 - sh(x)^2\}
         writeln('y1 = ', y1:20:16);
         writeln('y2 = ', y2:20:16);
         writeln('y = ', y:20:16);
   15
         readln;
   16
       end.
```

Рис. 5. Текст программы задания 2.

```
n3
       program n3;
    1
       {$APPTYPE CONSOLE}
    5
       var x, y1, y2, y: real;
      begin
         writeln('Enter x: ');
         readln(x);
         y1 := sin(x);
        y2 := cos(x);
   10
         y := sqr(y1) + sqr(y2);
        writeln('y1 = ', y1:20:16);
        writeln('y2 = ', y2:20:16);
         writeln('y = ', y:20:16);
   14
         readln;
   15
   16
       end.
```

Рис. 6. Текст программы задания 3.

Тестовые данные и результаты тестирования

Задание 1

Абсолютная погрешность составила 1.000000000012632 - 1 = 0.000000000012632

Относительная погрешность = 0.0000000000012632

Данные погрешности относятся к начальным погрешностям, погрешностям при округлении и погрешностям операций.

Задание 2

Чем больше числа, с которыми производятся операции в условиях ограниченности разрядов для их представления, тем больше погрешность (см. таблицу 1).

Таблица 2. Результаты тестирования программы задания 2. Тип real.

X	y1	y2	у	Δ	δ
5	74.2032	74.20994	1.0000000	0.000000	0.000000
	1057778	8524787	00001819	0000018	0000018

	87520	8480	0	190	190
10	11013.2	11013.23	1.0000000	0.000000	0.000000
	3287470	2920103	29802322	0298023	0298023
	3393000	3240000	4	224	224
	0				
15	1634508	1634508.	1.0000000	0	0
	.686235	6862362	00000000		
	9024000	0830000	0		
	000	00			
20	2425825	2425825	0.0000000	1	1
	97.7048	97.70489	00000000		
	9514000	5140000	0		
	00000	0000			
25	3600244	3600244	0.0000000	1	1
	9668.69	9668.692	00000000		
	2940000	9400000	0		
	0000000	000000			

Таблица 3. Результаты тестирования программы задания 2. Тип double.

X	y1	y2	у	Δ	δ
5	74.2032	74.20994	1.0000000	0.000000	0.000000
	1057778	8524787	00001819	0000018	0000018
	87520	8480	0	190	190
10	11013.2	11013.23	1.0000000	0.000000	0.000000
	3287470	2920103	29802322	0298023	0298023
	3393000	3240000	4	224	224
	0				
15	1634508	1634508.	1.0000000	0	0
	.686235	6862362	00000000		
	9024000	0830000	0		
	000	00			

20	2425825	2425825	0.0000000	1	1
	97.7048	97.70489	00000000		
	9514000	5140000	0		
	00000	0000			
25	3600244	3600244	0.0000000	1	1
	9668.69	9668.692	00000000		
	2940000	9400000	0		
	0000000	000000			

Таблица 4. Результаты тестирования программы задания 2. Тип single.

X	y1	y2	у	Δ	δ
5	74.2032	74.20994	1.0000000	0	1
	0892000	5680000	00000000		
	00000	0000	0		
10	11013.2	11013.23	24.000000	23	23
	3242000	3400000	00000000		
	0000000	0000000	00		
	0				
15	1634508	1634508.	0.0000000	1	1
	.625000	6250000	00000000		
	0000000	0000000	0		
	000	00			
20	2425825	2425825	0.0000000	1	1
	92.0000	92.00000	00000000		
	0000000	0000000	0		
	00000	0000			
25	3600245	3600245	0.0000000	1	1
	1460.00	1460.000	00000000		
	0000000	0000000	0		
	0000000	000000			

Таблица 5. Результаты тестирования программы задания 2. Тип extended.

X	y1	y2	у	Δ	δ
5	74.2032	74.20994	1.0000000	0.000000	0.000000
	1057778	8524787	00001819	0000018	0000018
	87520	8480	0	190	190
10	11013.2	11013.23	1.0000000	0.000000	0.000000
	3287470	2920103	29802322	0298023	0298023
	3393000	3240000	4	224	224
	0				
15	1634508	1634508.	1.0000000	0	0
	.686235	6862362	00000000		
	9024000	0830000	0		
	000	00			
20	2425825	2425825	0.0000000	1	1
	97.7048	97.70489	00000000		
	9514000	5140000	0		
	00000	0000			
25	3600244	3600244	0.0000000	1	1
	9668.69	9668.692	00000000		
	2940000	9400000	0		
	0000000	000000			

Чем больше двоичных разрядов отведено под число, тем более точно его хранимое значение, то есть меньше погрешность округления, что особенно заметно при сравнении типов single и extended (таблицы 4 и 5 соотв.) На точность реально влияет изменение переменных у1, у2 – х в случаях выше является целым, погрешность округления у х стремится к 0, точность у напрямую зависит от точности у1 и у2, и только от них, потому что математически у = 1. Задание 3

Таблица 6. Результаты тестирования программы задания 3.

X	у	Δ	δ
5	1.000000000	0	0
	0000000		
10	1.000000000	0	0
	0000000		
15	1.000000000	0	0
	0000000		
20	1.000000000	0	0
	0000000		
25	1.000000000	0	0
	0000000		

То, что abs(sin(x)) < 1 и abs(cos(x)) < 1, позволяет с высокой точностью вычислять и хранить их значения, в отличие от больших чисел вроде $csh(25)^2$. За счет этого обеспечивается малая (практически нулевая) погрешность округления и операций.

Вывод

Погрешности зависят от многих факторов, в частности, от разрядов, доступных для хранения значений, т. е. типа переменной, от величины вычисляемого значения и др. Было подтверждено наличие погрешностей, связанных с означенными факторами, измерены их абсолютные и относительные значения.

Часть 2. Программирование разветвляющегося вычислительного процесса

Вариант 19

Цель работы

Изучить технологию программирования разветвляющихся вычислительных процессов.

Задание

Даны действительные числа x, y. Вычислить f(x,y):

$$f(x,y) = \begin{cases} x - 2y + xy, & \text{при} & x < y; \\ (\sin x)x, & \text{при} & x = y; \\ y - 2x + 1 & \text{при} & x > y. \end{cases}$$

Протестировать все ветви алгоритма.

Проект программы

Рис. 7. Проект программы части 2

Текст программы

Рис. 8. Текст программы части 2

Тестовые данные и результаты тестирования

Таблица 2. Результаты тестирования программы части 2

X	y	F(x, y)
0	1	-2.00000000000000E+000
1	2	-1.00000000000000E+000
1	1	8.4147098480789650E-001
2	2	1.8185948536513632E+000
2	1	-2.00000000000000E+000
1	0	-1.00000000000000E+000

Вывод

Был написан разветвляющийся алгоритм на ЯП Pascal, а также составлен проект данного алгоритма.

Часть 3. Программирование циклического процесса.

Типы циклов

Цель работы

Изучить технологию программирования циклических процессов и типы циклов.

Задание

Решить задачу, организовав итерационный цикл.

Вычислить значение sin(3) с точностью ξ , используя разложение в ряд: $sin(x) = x - x^3/3! + x^5/5! -$

Значение точности вводится с клавиатуры. Проверить программу при ξ = 10^{-3} , 10^{-4} . Определить, как изменяется число итераций при изменении точности.

Проект программы

Рис. 9. Проект программы части 3.

Текст программы

```
论 Редактор исходного кода
! ▼ (= )
n1.lpr
    1 program n1;
    . ☐ function Factorial(x: integer): extended;
                 var res: extended; i: longint;
    5
                begin
                  res := 1;
                   for i := 1 to x do
                     res := res * i;
                   Factorial := res;
   10
                 end;
       function Pow(x: extended; power: integer): extended;
                 var i: longint; res: extended;
                begin
   15
                  res := 1;
                   for i := 1 to power do
                      res := res * x;
                  Pow := res;
                 end;
   20
       var eps, result, next term: real; depth: longint;
       begin
            writeln('Enter epsilon');
            readln(eps);
   25
            depth := 0;
             result := 0;
   27
             repeat
                 next_term := Pow(-1, depth) * Pow(3, 2 * depth + 1) / Factorial(2 * depth + 1);
                  result := result + next_term;
   30
                   depth := depth + 1;
             until abs(next term) <= eps;</pre>
             writeln('Sin(3) = ', result, ' iterations = ', depth);
        end.
   35
```

Рис. 10. Текст программы части 3.

Тестовые данные и результаты тестирования

Таблица 3. Результаты тестирования программы части 3.

Epsilon	Sin(3) с точностью epsilon	Количество итераций
0.001	1.4113062718531458E-001	7
0.0001	1.4113062718531458E-001	8

Вывод

Была решена задача, требующая проектирования и построения программы с итерационным циклом с постусловием. Были изучены технология программирования циклических процессов и типы циклов.