CSUIT. Comparaisons des suites

QCOP CSUIT. 1

2. La question suivante nous guide : on cherche deux suites équivalentes telles que leur différence ne tende pas vers 0. On peut prendre $u_n := n + 1$ et $v_n := n$.

QCOP CSUIT.2

- **2.** On peut prendre $u_n := 1 + \frac{1}{n}$ et $v_n := 1 + \frac{1}{n^2}$.
- **3.** a) Ne pas oublier de justifier et mentionner que cette suite est correctement définie à partir d'un certain rang.

QCOP CSUIT.3

2. On peut prendre $u_n := 1$ et $v_n := 1 + \frac{1}{n}$.

QCOP CSUIT.4

- 1. Résultat. $\frac{u_n}{v_n} 1 \longrightarrow 0$.
- 2. On peut prendre $u_n := 1 + \frac{1}{n}$ et $v_n := 1 + \frac{1}{n^2}$.
- **3.** Un jeu avec les $\phi(\cdot)$ donne que

$$u_n + C \sim v_n + C \implies \left[C = 0 \text{ ou } v_n \longrightarrow +\infty\right].$$

On montre que $\frac{u_n+C}{v_n+C}-1\longrightarrow 0.$

QCOP CSUIT.5

3. On peut prendre $u_n := n$.

QCOP CSUIT.6

1. Résultat. $u_n \sim v_n \iff u_n - v_n = \mathcal{O}(v_n)$.