

Arquitetura de Computadores

Prof. Marcos Grillo marcos.grillo@aedu.com

Apresentação da Disciplina

PLANO DE ENSINO E APRENDIZAGEM						
CURSO: Ciência da Computação						
Disciplina:	Período Letivo:	Série:	Periodo:	Semestre de	Ano de Ingresso:	
Arquitetura de Computadores	2° sem/2013	6ª Série	Não definido	Ingresso:	2011	
C.H. Teórica:		C.H. Outras: C.H. Total:		tal:		
40	20 60					

Ementa

Arquiteturas RISC e CISC. Pipeline. Paralelismo de Baixa Granularidade. Processadores Superescalares e Superpipeline. Multiprocessadores. Multicomputadores. Arquiteturas Paralelas e não Convencionais. Microprocessadores e Computadores Pessoais. Organização de Memória. Sistemas de Entrada e Saída, Sistemas de vídeo, Som e Outros.

Objetivos

Compreender e assimilar os componentes de dispositivos que compõem o computador. Formas de organização e de comunicação entre os subsistemas computacionais (processador, memória, disco e etc.)

Conhecer a estrutura de funcionamento de uma CPU. conhecer as arquiteturas de computadores do tipo CISC e RISC. Conhecer arquiteturas de computadores pessoalis, multicomputadores e multiprocessadores.

Apresentação da Disciplina

	Cronograma de Aulas				
Semana nº.	Tema				
1	Estrutura básica de um computador pessoal				
2	Estrutura e Funcionamento da CPU: conjunto de instruções				
3	Estrutura e Funcionamento da CPU: ciclo de instruções				
4	Arquitetura RISC e CISC				
5	Registradores: tipos de registradores				
6	Registradores mais utilizados em computadores pessoais				
7	Arquitetura Pipeline				
8	Atividades de Avaliação.				
9	Memorias: principal				
10	Memorias: Secundária, cache				
11	Dispositivos de entradas e saída				
12	Barramento: Tipos, arquitetura, adaptadores				
13	Sistema de video: GPU, Memórias, VGA, HDMI, 3D				
14	Sistema multimídia				
15	Análise de desempenho de computadores (Benchmark)				
16	Arquitetura de computadores com paralelismo: Cluster, Cloud.				
17	Computadores dedicados e embarcados				
18	Prova Escrita Oficial				
19	Exercícios de Revisão.				
20	Prova Substitutiva				

Literatura.

HENNESSY, J. L.. **Arquitetura de Computadores** : Uma Abordagem Quantitativa. 4° ed. São Paulo: Campus - Elsevier, 2009.

Sistema de Avaliação				
1° Avaliação - PESO 4,0	2° Avaliação - PESO 6,0			
Atividades Avaliativas a Critério do Professor	Prova Escrita Oficial			
Práticas: 3	Práticas: 3			
Teóricas: 7	Teóricas: 7			
Total: 10	Total: 10			

Cronograma de Aulas - 1ª etapa.

- Estrutura básica de um computador pessoal
- Estrutura e Funcionamento da CPU: conjunto de instruções
- Estrutura e Funcionamento da CPU: ciclo de instruções
- Arquitetura RISC e CISC
- Registradores: tipos de registradores
- Registradores mais utilizados em computadores pessoais
- Arquitetura Pipeline
- Atividades de Avaliação.

Cronograma de Aulas - 2º etapa.

- Memorias: principal;
- Memorias: Secundária, cache;
- Dispositivos de entradas e saída;
- Barramento: Tipos, arquitetura, adaptadores;
- Sistema de vídeo;
- Sistema multimídia;
- Análise de desempenho de computadores (Benchmark);
- Arquitetura de computadores com paralelismo;
- Computadores dedicados e embarcados;
- Prova Escrita Oficial;
- Exercícios de Revisão;
- Prova Substitutiva;

Computadores embarcados

São computadores embarcados, equipamentos com processador e memória dedicados e voltados e um único propósito, onde podem ser conhecidos como sistema embutido ou embebido.

Bastante limitados, podem não ser possível a alteração

do seu propósito.

Estrutura Básica

- Processador;
- Memória;
- Interface de entrada;
- Interface de saída;
- Firmware;

Processadores de sistema embarcado

- Microcontroladores de 8, 16 e 32 bits:
 - Microchip, Atmel, Motorola, Intel, Tl, ARM, Philips, etc.
- Processadores digitais de sinais (DSPs) de 16 e 32 bits (ponto fixo e/ou flutuante):
 - Microchip, Motorola, Tl, Analog Devices, etc.
- Processadores dedicados e SoC (System on a Chip) de diferentes fabricantes.

Microcontroladores (MCU)

- Possuem processador;
- Memória;
- Periféricos de entrada e saída;
- Programado para funções específicas;
- Pode ser chamado de controlador embutido.

A grande diferença entre microprocessadores, ele pode ser programado, possui memória embarcada para escrita e leitura.

Característica MCU

- Baixas frequências de trabalho (clock em Mhz);
- Baixo consumo, alguns miliwatts;
- Custo baixo;
- Fácil programação;
- Utilização em aplicações bem especificas;
 - Esteiras de produção;
 - Receptor digital;
 - Controladoras de Disco;
 - Teclados;
 - Câmeras IP.

Processadores de sistema embarcado DSPs

- DSP Digital Signal Processor (Processador digital de sinais)
 - Processador com dispositivos especialmente projetados para o tratamento de sinais;
 - Equalização de sinais de áudio;
 - Geradores de eco;
 - Geradores de efeitos de áudio;
 - Modems.

Processadores de sistema embarcado- DSCs

- DSC Digital Signal Controller (Controlador digital de sinais).
 - Grande poder de cálculos;
 - DSP com periféricos de microcontrolador.
- Exemplos:
 - Saídas PWM (técnica que consiste em fornecer um sinal analógico através de meios digitais);
 - Entradas analógicas;
 - Dispositivos de comunicação.

Memória

- Memória RAM:
 - Volátil, SRAM (Static RAM) e a DRAM (Dynamic).
- Memória ROM (Read-Only Memory):
 - Memória não volátil, PROM (Programmable Read-Only Memory) e a EPROM (Erasable-and-Programmable Read-Only Memory);
 - Programáveis com exposição de luz;
 - Gravadas Byte a Byte.

Memória

- Memórias Híbridas:
- Flash:
 - Alta densidade;
 - Baixo custo;
 - Não volátil;
 - Rápidas, gravação em bloco de Bytes.
- NVRAM:
 - Bateria de backup, mantêm os dados quando desligada a alimentação.

Memória

- Memórias Híbridas:
- EEPROM (Electrically-Erasable-Programmable):
 - Eletricamente programáveis e apagáveis;
 - Número limitado de gravações;
 - Alto custo;

Firmware

- Conjunto de instruções lógicas (software), que estão gravadas diretamente no Hardware;
- São utilizados para inicialização dos componentes, deixando-os prontos para a interação do sistema operacional;
- Exemplo um novo padrão de mídia ou um novo padrão de interpretador;
- Presente nas memórias não voláteis como ROM, PROM, EPROM ou ainda EEPROM e memória flash.

Equipamentos que possuem firmware.

- CDROM/ DVDROM/ BLUERAY;
- Controladoras de disco;
- BIOS (Basic Input/Output System (Sistema Básico de Entrada/Saída);
- Câmeras digitais (ex. GOPRO);
- Roteadores;
- Impressoras;
- Telefones;
- MP3 Players.

Equipamentos que possuem firmware.

- CDROM/ DVDROM/ BLUERAY;
- Controladoras de disco;
- BIOS (Basic Input/Output System (Sistema Básico de Entrada/Saída);
- Câmeras digitais (ex. GOPRO);
- Roteadores;
- Impressoras;
- Telefones;
- MP3 Players;
- Controle remoto (1970).

Sistemas com firmware

- ABS (veículos);
- Injeção Eletrônica (veículos/máquinas);
- Televisores com ajustes digitais;
- Osciloscópios digitais;
- Câmeras IP;
- Máquinas industriais;
- Centrais multimídia;

Linguagem de programação

C e C++:

- Utilização de bibliotecas e linguagem de alto nível;
- Tradução mais simplificada de um algoritmo para um programa;
- Escrita do programa de uma maneira mais legível;
- Depuradores;
- Compatibilização de plataformas (um programa em tipos diferentes de hardware) código fonte.

Linguagem de programação

C e C++:

- Vários compiladores e IDE (Integrated Development Environment) para microcontroladores;
- Cada compilador utiliza de estruturas diferenciadas, facilitando ao programador a utilização dos recursos embarcados no componente;
- Cada componente pode ou não possuir bibliotecas especificas para facilitar e exploração de recursos.

Família PIC (Programmable Interface Controller)

- Microcontroladores fabricados pela empresa Microchip Tecnology;
- Possuem versões que processa dados de 8 bits,
 16 bits e os mais recentes de 32 bits;
- Linguagem assembly;

Família PIC (Programmable Interface Controller)

SDCC – Compilador Opensouce

- Compilador voltado a arquitetura PIC;
- Transforma um arquivo .c em .asm;
- Depende de um Assembler e um Linker;
- Opensource;

Ex:

sdcc -S -mpic16 -p18f452.

GPUTILS - Linker e Assembler

- Assembler (gpasm);
- Linker (gplink);
- Bibliotecas (gplib).

As duas ferramentas podem ser configuradas e integradas as IDE a seguir:

Eclipse PiKdev Piklab Kdevelop

Referências

- http://labdegaragem.com/profiles/blogs/artigo-ostipos-de-mem-ria-encontrados-emmicrocontroladores;
- http://labdegaragem.com/profiles/blogs/artigo-ostipos-de-mem-ria-encontrados-emmicrocontroladores
- http://sdcc.sourceforge.net/
- http://gputils.sourceforge.net/