Plan du cours

1.	Introduction	1
П.	Définition de la symétrie axiale	3
111.	Symétrique d'un point par rapport à une droite	4
	1. Définition	
	2. Première méthode de construction à l'aide de l'équerre	
	3. Deuxième méthode de construction à l'aide du compas	5
IV.	Symétrique de figures usuelles	6
	1. Symétrique d'une droite	6
	2. Symétrique d'un segment	6
	3. Symétrique d'un cercle	7
V.	Propriétés de la symétrie axiale	8

I. Introduction

Activité 1

.....

Activité 2

Dans cet exercice, on se propose de tracer la figure symétrique d'une des figures ci-dessus en utilisant un papier calque.

- Pour cela, placer le calque exactement le long de la droite.
- Scotcher ensuite votre papier calque à l'aide de deux petits morceaux.
- Décalquer la figure choisie.
- Faire pivoter votre feuille autour de la droite, puis repasser les contours.

Activité 3

Voici plusieurs maisons paisibles au bord d'un lac très calme mais aux reflets étranges. Barrer les reflets qui ne sont pas réalistes et expliquer pourquoi ils ne conviennent pas.

Mes objectifs:

- → Associer la symétrie axiale à la notion de pliage
- → Construire l'image d'un point, d'un segment, d'un cercle par symétrie axiale.
- \hookrightarrow Construire l'image d'une droite par une symétrie axiale
- \hookrightarrow Connaître / utiliser les propriétés de conservation de la symétrie axiale.
- → Connaître et utiliser la définition de la médiatrice d'un segment

II. Définition de la symétrie axiale

→ Dans quelle figure observe-t-on une symétrie axiale?

Définition

Exemples:

III. Symétrique d'un point par rapport à une droite

1. Définition

<u>|||llustration</u> :

Définition

2. Première méthode de construction à l'aide de l'équerre

On trace la droite perpendiculaire à la droite (d) passant par A grâce à l'équerre et on y reporte la distance séparant A de (d) soit en utilisant la règle, soit le compas.

A vous de jouer! Tracer le symétrique des points M et S par rapport à la droite (d).

3. Deuxième méthode de construction à l'aide du compas

On reporte deux distances prises entre n'importe quel point de l'axe de symétrie et le point A.

A vous de jouer! Tracer le symétrique des points J et O par rapport à la droite (d).

Remarque : Lorsqu'un point est situé sur l'axe de symétrie, son symétrique est

Exercice d'application 1 —

IV. Symétrique de figures usuelles

1. Symétrique d'une droite

Propriété

2. Symétrique d'un segment

Propriété

Le symétrique d'un segment par rapport à une droite (Δ) est

3. Symétrique d'un cercle

Propriété

En résumé :

En pratique, pour construire l'image d'une figure géométrique par une symétrie axiale, on construit l'image de ses points caractéristiques :

V. Propriétés de la symétrie axiale

Activité d'introduction

Dans la figure ci-dessous, les parties du haut et du bas sont symétriques par rapport à la droite (d). Les longueurs sont exprimées en cm.

- 1. Par rapport à la droite (d), les symétriques de chacun des points A, C, S et M sont, dans l'ordre,
- 2. Par rapport à la droite (d), les symétriques de chacun des segments [TP], [AE] et [EC] sont, dans l'ordre,
- 3. Par rapport à la droite (d), les symétriques de chacun des angles $\widehat{TPM},\widehat{PMT}$ et \widehat{MTP} sont, dans l'ordre,
- 4. Les angles \widehat{EAC} et sont symétriques par rapport à la droite (d).

Or : $\widehat{TPM} = \dots$ Donc : $\widehat{EAC} = \dots$

5. Les angles \widehat{MTP} et sont symétriques par rapport à la droite (d).

Or:... = Donc:... =

6. Les segments [MT] et sont symétriques par rapport à la droite (d).

7. Les segments [AE] et sont symétriques par rapport à la droite (d).

Or:....=....
Donc:....=....

→ Construire l'image d'une figure par une symétrie axiale revient à "décalquer plier" cette figure par rapport à une droite donnée. Une telle construction n'entraîne pas de déformation ni de changement de mesure quel-quelle soit.

Propriété