MATEMÁTICA APLICADA

ADMINISTRAÇÃO, ECONOMIA E CIÊNCIAS SOCIAIS E BIOLÓGICAS

7ª edição

Harshbarger • Reynolds

H324m Harshbarger, Ronald J.

Matemática aplicada [recurso eletrônico] : administração, economia e ciências sociais e biológicas / Ronald J. Harshbarger, James J. Reynolds ; tradução: Ariovaldo Griesi, Oscar Kenjiro N. Asakura; revisão técnica: Helena Maria de Ávila Castro, Afrânio Carlos Murolo. – 7. ed. – Dados eletrônicos. – Porto Alegre : AMGH, 2013.

Editado também como livro impresso em 2006. ISBN 978-85-8055-273-7

1. Matemática aplicada. 2. Administração. 3. Economia. 4. Ciências Sociais. 5. Ciências Biológicas. I. Reynolds, James J. II. Título.

CDU 51-7

PRODUTO DE DOIS POLINÔMIOS

Procedimento	Exemplo
Para multiplicar dois polinômios:	Multiplique $(3x + 4xy + 3y)$ por $(x - 2y)$
Escreva um dos polinômios acima do outro.	$1. \ 3x + 4xy + 3y$ $x - 2y$
2. Multiplique cada termo do polinômio de cima por cada termo do polinômio de baixo, e escreva os termos semelhantes do produto um acima do outro.	$2. \ 3x^2 + 4x^2y + 3xy \\ -6xy - 8xy^2 - 6y^2$
3. Some os termos semelhantes para simplificar o produto.	$3. \ 3x^2 + 4x^2y - 3xy - 8xy^2 - 6y^2$

EXEMPLO 6 Produto de Polinômios

Multiplique $(4x^2 + 3xy + 4x)$ por (2x - 3y).

SOLUÇÃO

$$4x^{2} + 3xy + 4x$$

$$2x - 3y$$

$$8x^{3} + 6x^{2}y + 8x^{2}$$

$$-12x^{2}y - 9xy^{2} - 12xy$$

$$8x^{3} - 6x^{2}y + 8x^{2} - 9xy^{2} - 12xy$$

Como as multiplicações que devemos fazer freqüentemente envolvem binômios, vale a pena relembrar os seguintes produtos especiais.

A.
$$(x + a)(x + b) = x^2 + (a + b)x + ab$$

B. $(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$

Será fácil lembrar estes dois produtos especiais se observarmos as suas estruturas. Podemos obter esses produtos encontrando os produtos dos **primeiros** termos, dos termos **externos**, dos termos **internos** e dos **segundos** termos e então somando os resultados. A isso chamamos de método PEIS de multiplicar dois binômios.

EXEMPLO 7 Produto de Binômios

Multiplique os seguintes polinômios:

(a)
$$(x-4)(x+3)$$

(b)
$$(3x + 2)(2x + 5)$$

SOLUÇÃO

Primeiros Externos Internos Segundos

(a)
$$(x-4)(x+3) = (x^2) + (3x) + (-4x) + (-12) = x^2 - x - 12$$

(b)
$$(3x + 2)(2x + 5) = (6x^2) + (15x) + (4x) + (10) = 6x^2 + 19x + 10$$

Alguns produtos especiais adicionais são os seguintes:

Produtos Especiais

C.
$$(x + a)^2 = x^2 + 2ax + a^2$$

D.
$$(x + a)^2 = x^2 - 2ax + a^2$$

E.
$$(x + a)(x - a) = x^2 - a^2$$

F.
$$(x + a)^3 = x^3 + 3ax^2 + 3a^2x + a^3$$

G.
$$(x-a)^3 = x^3 - 3ax^2 + 3a^2x - a^3$$

quadrado de um binômio

quadrado de um binômio

diferença de dois quadrados

cubo de um binômio

cubo de um binômio

EXEMPLO 8 Produtos Especiais

Multiplique os seguintes polinômios:

(a)
$$(x+5)^2$$

(b)
$$(3x - 4y)^2$$

(c)
$$(x-2)(x+2)$$

(d)
$$(x^2 - y^3)^2$$

(e)
$$(x+4)^3$$

SOLUÇÃO

(a)
$$(x + 5)^2 = x^2 + 2(5)x + 25 = x^2 + 10x + 25$$

(b)
$$(3x-4y)^2 = (3x)^2 - 2(3x)(4y) + (4y)^2 = 9x^2 - 24xy + 16y^2$$

(c)
$$(x-2)(x+2) = x^2 - 4$$

(d)
$$(x^2 - y^3)^2 = (x^2)^2 - 2(x^2)(y^3) + (y^3)^2 = x^4 - 2x^2y^3 + y^6$$

(e)
$$(x + 4)^3 = x^3 + 3(4)(x^2) + 3(4^2)(x) + 4^3 = x^3 + 12x^2 + 48x + 64$$

PONTO DE CONTROLE

- 1. Remova os parênteses e combine os termos semelhantes: $9x 5x(x + 2) + 4x^2$.
- 2. Calcule os seguintes produtos:

(a)
$$(2x+1)(4x^2-2x+1)$$

(b)
$$(x+3)^2$$

(c)
$$(3x+2)(x-5)$$

(d)
$$(1-4x)(1+4x)$$

Todas as expressões algébricas podem representar números reais, portanto, as técnicas usadas para executar operações com polinômios e para simplificar polinômios também se aplicam a outras expressões algébricas.

EXEMPLO 9 Operações com Expressões Algébricas

Faça as operações indicadas.

(a)
$$3\sqrt{3} + 4x\sqrt{y} - 5\sqrt{3} - 11x\sqrt{y} - (\sqrt{3} - x\sqrt{y})$$

(b) $x^{3/2}(x^{1/2} - x^{-1/2})$

(b)
$$x^{3/2}(x^{1/2}-x^{-1/2})$$

(c)
$$(x^{1/2}-x^{1/3})^2$$

(d)
$$(\sqrt{x} + 2)(\sqrt{x} - 2)$$

SOLUÇÃO

(a) Removemos os parênteses e a seguir combinamos os termos contendo $\sqrt{3}$ e os termos contendo $x\sqrt{y}$.

$$(3-5-1)\sqrt{3} + (4-11+1)x\sqrt{y} = -3\sqrt{3} - 6x\sqrt{y}$$

(b)
$$x^{3/2}(x^{1/2} - x^{-1/2}) = x^{3/2} \cdot x^{1/2} - x^{3/2} \cdot x^{-1/2} = x^2 - x$$

(c)
$$(x^{1/2} - x^{1/3})^2 = (x^{1/2})^2 - 2x^{1/2}x^{1/3} + (x^{1/3})^2 = x - 2x^{5/6} + x^{2/3}$$

(d)
$$(\sqrt{x} + 2)(\sqrt{x} - 2) = (\sqrt{x})^2 - (2)^2 = x - 4$$

Nos capítulos posteriores será necessário escrever os problemas em uma forma simplificada para que possamos executar certas operações neles. Freqüentemente, podemos usar a divisão de um polinômio por outro para obter as simplificações, como mostrado no procedimento a seguir.

DIVISÃO DE POLINÔMIOS

Procedimento	Exemplos	
Para dividir um polinômio por outro:	Divida $4x^3 + 4x^2 + 5$ por $2x^2 + 1$.	
1. Escreva ambos os polinômios na ordem decrescente das potências da variável. Inclua os termos que faltam no dividendo, com coeficiente 0.	1. $2x^2 + 1\overline{\smash)}4x^3 + 4x^2 + 0x + 5$	
 2. (a) Divida a maior potência do divisor pela maior potência do dividendo e escreva esse quociente parcial sobre o dividendo. Multiplique o quociente parcial pelo divisor, escreva o produto abaixo do dividendo e subtraia obtendo um novo dividendo. (b) Repita até que o grau do novo dividendo seja menor que o grau do divisor. Qualquer resto é escrito sobre o divisor e somado ao quociente. 	2. (a) $2x^{2} + 1) \frac{2x}{4x^{3} + 4x^{2} + 0x + 5}$ $\frac{4x^{3} + 2x}{4x^{2} - 2x + 5}$ (b) $2x^{2} + 1) \frac{2x + 2}{4x^{3} + 4x^{2} + 0x + 5}$ $\frac{4x^{3} + 2x}{4x^{2} - 2x + 5}$ $\frac{4x^{2} + 2}{-2x + 3}$ Grau de $(-2x + 3)$ < grau de $(2x^{2} + 1)$ Quociente: $2x + 2 + \frac{-2x + 3}{2x^{2} + 1}$	

EXEMPLO 10 Divisão de Polinômios

Divida
$$(4x^3 - 13x - 22)$$
 por $(x - 3)$, $x \ne 3$.

SOLUÇÃO

$$\begin{array}{r}
4x^2 + 12x + 23 \\
x - 3) \overline{4x^3 + 0x^2 - 13x - 22} \\
\underline{4x^3 - 12x^2} \\
12x^2 - 13x - 22 \\
\underline{12x^2 - 36x} \\
23x - 22 \\
\underline{23x - 69} \\
47
\end{array}$$

Inserimos $0x^2$ para que cada potência de x esteja presente

O quociente é $4x^2 + 12x + 23$, com resto 47, ou

$$4x^2 + 12x + 23 + \frac{47}{x-3}$$

PONTO DE CONTROLE

3. Use a divisão de polinômios para calcular $(x^3 + 2x + 7) \div (x - 4)$.

Um uso importante das expressões algébricas é descrever a relação entre as quantidades. Por exemplo, a expressão "um a mais do que um número" pode ser escrita como n+1, onde n representa um número arbitrário. Essa habilidade de representar quantidades ou suas inter-relações algebricamente é uma das chaves para o uso de planilha eletrônica.

Cada célula em uma planilha tem um endereço baseado em suas linha e coluna (ver Tabela 0.3). Esses endereços das células podem atuar como variáveis de uma expressão algébrica, e os recursos "fill down" e "fill up" atualizam essas células referenciadas mantendo as relações algébricas. Por exemplo, observamos anteriormente que se \$ 1.000 forem investidos em uma conta que rende 10% de juros anuais, capitalizados anualmente, então, o valor futuro da conta depois de n anos é dado por \$ 1.000 $(1,1)^n$. Podemos calcular o valor futuro iniciando pela planilha mostrada na Tabela 0.4.

TABELA 0.3

	А	В	С	D
1	célula A1	célula B1	célula C1	
2	célula A2	célula B2	célula C2	
3	célula A3	célula B3	célula C3	
4				
5				

Encerra aqui o trecho do livro disponibilizado para esta Unidade de Aprendizagem. Na Biblioteca Virtual da Instituição, você encontra a obra na íntegra.