Answer

Let Π be the process's next-state action and let A_1, \ldots, A_n be the process's actions. We prove that a behavior σ is weakly fair for Π iff it is weakly fair for all the A_i . The proof is long, but it involves simple expansion of the definitions

- to state, for each step, what must be proved. $\langle 1 \rangle 1$. $\Pi \equiv A_1 \vee ... \vee A_n$
- PROOF: This is the definition of a process's next-state action.
- $\langle 1 \rangle 2$. Π is enabled iff some A_i is enabled

PROOF: By $\langle 1 \rangle 1$ and the definition of enabled.

 $\langle 1 \rangle 3.$ Assume: 1. σ is a behavior that is weakly fair for Π 2. $i \in 1 \dots n$

PROVE: σ is weakly fair for A_i

 $\langle 2 \rangle 1$. σ does not end in a state in which A_i is enabled PROOF: Assumption $\langle 1 \rangle 3.1$ and the definition of weakly fair implies σ does

not end in a state in which Π is enabled, which by $\langle 1 \rangle 2$ implies $\langle 2 \rangle 1$.

 $\langle 2 \rangle 2.$ σ does not contain an infinite suffix τ such that A_i is enabled in every

- state of τ and τ contains no A_i step. $\langle 3 \rangle 1$. Suffices Assume: τ is an infinite suffix of σ with A_i enabled in
 - every state Prove: τ contains an A_i step.

PROOF: By simple logic. $\langle 3 \rangle 2$. It is enabled in every state of τ

- PROOF: By the step $\langle 3 \rangle 1$ assumption and $\langle 1 \rangle 2$.
 - $\langle 3 \rangle$ 3. τ contains a Π step.

PROOF: By $\langle 3 \rangle 2$, assumption $\langle 1 \rangle 3.1$, and the definition of weakly fair.

 $\langle 3 \rangle$ 4. A Π step starting in a state with A_i enabled is an A_i step.

PROOF: By $\langle 1 \rangle 1$, since, for any j, action A_j is enabled only if control in the process is at its label.

- $\langle 3 \rangle$ 5. Q.E.D. PROOF: By $\langle 3 \rangle$ 1, $\langle 3 \rangle$ 3, and $\langle 3 \rangle$ 4.
- PROOF: By $\langle 3 \rangle 1$, $\langle 3 \rangle 3$, and $\langle 3 \rangle 4$
- $\langle 2 \rangle$ 3. Q.E.D. PROOF: By $\langle 2 \rangle$ 1, $\langle 2 \rangle$ 2, and the definition of of weakly fair.
- $\langle 1 \rangle 4$. Assume: σ is a behavior that is weakly fair for A_i , for all $i \in 1...n$. Prove: σ is weakly fair for Π

 $\langle 2 \rangle 1$. σ does not end in a state in which Π is enabled

PROOF: By $\langle 1 \rangle 2$, Π enabled implies A_i is enabled for some i, and the $\langle 1 \rangle 4$ assumption and the definition of weakly fair implies that σ does not end in any state in which an A_i is enabled.

- $\langle 2 \rangle 2$. σ does not contain an infinite suffix τ such that Π is enabled in every state of τ and τ contains no Π step.
 - $\langle 3 \rangle 1$. Suffices Assume: 1. τ is an infinite suffix of σ with Π enabled in every state.
 - 2. τ contains no Π step.

This is a proof by contradiction.

Prove: false

Proof: Simple logic.

 $\langle 3 \rangle 2$. Choose *i* such that the process's control is at the label of A_i in the first state of τ .

PROOF: By assumption $\langle 3 \rangle 1.1$, since Π enabled implies control is at one of its labels.

 $\langle 3 \rangle 3$. Control is at the label of A_i in every state of τ .

PROOF: By $\langle 3 \rangle 2$ and assumption $\langle 3 \rangle 1.2$, since control in the process can be changed only by a Π step.

 $\langle 3 \rangle 4$. A_i is enabled in every state of τ .

PROOF: By $\langle 3 \rangle 3$ and assumption $\langle 3 \rangle 1.1$.

 $\langle 3 \rangle 5$. τ contains an A_i step.

PROOF: By $\langle 3 \rangle 4$, the step $\langle 1 \rangle 4$ assumption, and the definition of weakly fair.

 $\langle 3 \rangle 6$. Q.E.D.

PROOF: $\langle 3 \rangle 5$ and $\langle 1 \rangle 1$ contradict assumption $\langle 3 \rangle 1.2$.

 $\langle 2 \rangle 3$. Q.E.D.

PROOF: By $\langle 2 \rangle 1$, $\langle 2 \rangle 2$, and the definition of of weakly fair.

 $\langle 1 \rangle$ 5. Q.E.D.

PROOF: By $\langle 1 \rangle 3$ and $\langle 1 \rangle 4$.

CLOSE