Lecture - 8 : 21st Jan Quiz on Set Theory
Mid Week → 15th-

Combinatorics

Reference: - Walk through combinationics.

Thim (PHP):- Let n, k EN>0 and n>k. Suppose, we have to place n balls in k boxes, then there is a box with atleast 2 balls.

Proof: - Suppose not. Then each box contains either 0 or I boll. Let m be the no., of boxes containing a boll.

> Total # bolls = m < k < n, Contradiction.

Example: - Consider the sequence $(a_n)_{n \ge 1}$ where $a_n = 77....7$ in decimal notation.

Then I an element of the sequence divisible by 2023.

Proof of Example: We will prove that one of a_1, o_2 .

----, a_{2o_13} is divisible by $2o_23$. Let $x_1, x_2, \dots, x_{2o_23}$ be the remainders of these when divided by $2o_23$.

If one of the $x_1 = 0$, we osedone.

If not $1 \le x_1 \le 2o_{22} \ \forall i$ By PHP, $x_1 = x_1$ for some $i \ne 1$ $a_1 - a_1 = \frac{1}{2} + \frac{1}{2} +$

Example: A sound sobin tournement has n players and all pairs play one game each. Then at any given time, I 2 players who played the same no. of games.

Co-primes

Report of Example: - Let $a_i(t)$ be the # of games played by playes i, $i \in \mathbb{N}$ Then $a_i \in \{0, 1, 2, -..., n-1\}$ These are n players.

At this point, it is not clear how to use PHP to prove that $a_i = a_j$ for some $i \neq j$ Since # players = # paribile games n.

But we have the fact that if $a_i = 0$, then no a_j can play n-1 games and vice verso. Thus only n-1 possible games can be played at anytime. Now, PHP can be applied.

Thm (Genesolised PHP):- Let x,m,n EN>0 st N>mx Suppose, we place n balls in m besses. Then I a bosx with oblest 8+1 balls.

Proof: - Exercise.

Example:- Nine points one distributed orbitroxily in a unit square. Show that I at them can be consed by a disk of radius 1/2.

N=9, Divide the square into 4 regions as sharn. By the GPHP, one of these regions has atleast points

Each of these triongular regions has a circumcirde of radius 1.

Many powerful sesults in moth we PHP.

We have stated the principle of mothematical induction as a lean Aniom(s). Let P(n) be a property at i, P(m) is true for some $m \in \mathbb{N}$ (i). If P(n) is true, then so is P(n+1). Then P(n) holds P(n)

Example: - Let f(m) be the maximal # of regions into which m lines divide the plane for $m \in \mathbb{N} > 0$. Then $f(m) = {m+1 \choose 2} + 1$ $m \in \mathbb{N} > 0$ = 0 = 0 = 0 = 0 = 0 = 0

broof of Example: - Marks for wal

Suppose the statement holds for n. Then we have an assurgement of n lines which divide the plane into f(n) regions.

Suppose L is the (n+1)th line added to this assurgement and it intersects k lines.

Then it divides k+1 regions into 2. $\Rightarrow f(n+1) = f(n) + k+1 \le f(n) + n+1$ The maximum possible is when \bot intersects all n lines $\Rightarrow f(n+1) = f(n) + n+1$ $= \binom{n+1}{2} + 1 + (n+1)$ $= \binom{n+2}{2} + 1$

ethiog toriteit to sonil south tossection blueds . I. -: egas

(c, zhon on t zhana einze.

3. How do we know this strotegy gives the best solution?

Statement: - All cows have some class.

Proof by induction:

Equivalently, for any $n \in \mathbb{N} > 0$, any set of n cous hove the some colours.

Trivial too n:1

Assume true for n cous.

Suppose we have n +1 cous. Arrange them in a line

C1, C1, -- --, Cn , Cn+1

By hypothesis, C,,..., Cn hove the same chaus.

By hypotheris, Cz, ---, Cn+1 hove the some colour.