Termoquímica

Fábio Lima

Fábio Lima 1 (30)

Sumário

- 1 Termoquímica
- 2 Transformações Químicas
- 3 Fatores que influenciam a entalpia
- 4 Estado Alotrópico
- 5 Entalpia Padrão
- 6 Entalpia de padrão de formação
- **7** Tipos de Entalpia

Fábio Lima 2 (30)

Termoquímica

Termoquímica: é a parte da Físico-Química voltada para o estudo dos processos que envolvem troca de energia (liberada ou absorvida), sob a forma de calor, à pressão constante

Calor: é energia térmica que passa de um corpo em maior temperatura para um corpo de menor temperatura!

Fábio Lima 4 (30

Entalpia (H)

Entalpia (H) é, de forma simplificada, a quantidade total de energia que se encontra nas substâncias e que pode estar em trânsito, mediante transformações físicas ou químicas.

$$\underbrace{\mathsf{CH}_4(\mathsf{g}) + \mathsf{O}_2(\mathsf{g})}_{Reagentes} \longrightarrow \underbrace{\mathsf{CO}_2(\mathsf{g}) + 2\,\mathsf{H}_2\mathsf{O}(\ell)}_{Produtos}$$

○ A variação de entalpia é dada por:

$$\Delta H = H_{final} - H_{inicial}$$

$$\Delta H = H_{produtos} - H_{reagentes}$$

Fábio Lima 5 (30)

Transformações Químicas

Processos Endotérmicos

 \bigcirc Nas reações endotérmicas, ocorre absorção de calor (o sistema esfria), a entalpia dos produtos $(H_{\rm p})$ é maior do que a entalpia dos reagentes $(H_{\rm r})$ e o ΔH = (+).

$$CaCO_{3(s)} \longrightarrow CaO_{(s)} + CO_{2(g)}$$
 $\Delta H = 177.5 \text{ kJ mol}^{-1}$

Fábio Lima 7 (30)

Processos Endotérmicos

Fábio Lima 8 (30)

Processos Exotérmicos

 \odot Reações exotérmicas, ocorre liberação de calor (o sistema esquenta), a entalpia dos produtos ($\rm H_P$) é menor do que a entalpia dos reagentes ($\rm H_R$) e o Δ H=(-).

$${\rm C_2H_6O_{\,(\ell)} + 3\,O_{2\,(g)} \longrightarrow \,2\,CO_{2\,(g)} + 3\,H_2O_{\,(\ell)} \qquad \Delta H^{\,\circ} = -1368\,{\rm kJ\,mol}^{-1}}$$

Fábio Lima 9 (30)

Processos Exotérmicos

Fábio Lima 10 (30)

Fatores que influenciam a entalpia

Fatores que influenciam a entalpia

Principais Fatores

- Temperatura
- Pressão
- Estado físico
- Quantidade de matéria
- Estado alotrópico

Fábio Lima 12 (30

Carbono (C)

Fábio Lima 14 (30)

Oxigênio (O)

Fábio Lima 15 (30)

Enxofre (S)

Fábio Lima 16 (30)

Fósforo (P)

Ordem descrescente de estabilidade

Fábio Lima 17 (30)

Entalpia padrão (ΔH°)

- Entalpia de padrão (ΔΗº) devido à impossibilidade de determinarmos diretamente a entalpia das substâncias, trabalhamos com a variação de entalpia (ΔΗ). Porém, a variação de entalpia de uma reação depende da temperatura, da pressão, do estado físico, do número de mols e da variedade alotrópica das substâncias envolvidas.
- \odot O estado padrão de uma substância corresponde à sua forma mais estável, a 1 atm, a 25 °C. A entalpia padrão de uma substância é indicada por ΔH^0 .

Por convenção foi estabelecido que:

PDefinição

"Toda substância simples, no estado padrão e na sua forma alotrópica mais estável (mais comum), tem entalpia (H) igual a zero."

Fábio Lima 19 (30

Entalpia de padrão de formação

Entalpia Padrão de Formação

Entalpia Padrão de Formação: é a variação de entalpia que ocorre na formação de 1 mol de uma substância composta a partir de substâncias simples no estado padrão.

Observe que todos os reagentes são substâncias simples no estado padrão

$$H_2(g) \longrightarrow H^0 = \Delta H^{\circ} = 0 \text{ kJ mol}^{-1}$$
 $O_2(g) \longrightarrow H^0 = \Delta H^{\circ} = 0 \text{ kJ mol}^{-1}$

Fábio Lima 21 (30)

Equação de Formação

$$C(s) + O_2(g) \longrightarrow CO_2(g)$$

 $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(\ell)$

Fábio Lima 22 (30)

Entalpia de dissolução ($\Delta H_{\rm dissol.}$)

O calor de dissolução é a variação de entalpia associada à dissolução de um mol de uma substância num determinado solvente para preparar uma solução diluída ideal:

$$HC\ell(g) + H_2O(\ell) \longrightarrow HC\ell(aq) \quad \Delta H^* = -18 \text{ kcal mol}^{-1}$$

Fábio Lima 24 (30

Entalpia de neutralização ($\Delta H_{neutr.}$)

 \odot O calor de neutralização é a variação de entalpia associada à formação de 1 mol de $H_2O(\ell)$ a partir de 1 mol de $H_{(aq)}^+$ e 1 mol de $OH_{(aq)}^-$, no estado padrão, em reações de neutralização entre ácidos e bases.

A entalpia de neutralização é praticamente constante no caso de ácidos e bases fortes.

Isto ocorre porque a reação que realmente acontece é:

$$H^{+}(ag) + OH^{-}(ag) \longrightarrow H_2O(\ell)$$
 $\Delta H^{+} = -13.8 \text{ kcal}$

Fábio Lima 25 (30)

Cálculo de AH por entalpia de formação

Exemplo 1 (Fuvest) A seguir são fornecidos dados relativos ao etanol hidratado e à gasolina.

Tabela 1: Dados relativos ao etanol hidratado e à gasolina.

Combustível	Calor de Combustão (kcal/g)	Densidade (kg/L)	Preço por litro (U. M.) *
Etanol hidratado	6,0	0,80	65
Gasolina	11,5	0,70	100

^{* (}U. M. = unidade monetária arbitrária.) Calcule:

- (a) As energias liberadas na combustão de 1 L de cada combustível.
- (b) Os custos de 1 000 kcal (em U. M.) provenientes da queima do etanol e da gasolina.

ℂ Solução 1

Transforme as unidades equivalentes

a)

Etanol = 0,80 kg/L = 800 g/L \longrightarrow 6 kcal/g × 800 g/L = 4800 kcal/L Gasolina = 0,70 kg/L = 700 g/L \longrightarrow 11,5 kcal/g × 700 g/L = 8050 kcal/L b)

Etanol

$$65$$
 U.M. — 4800 kcal x U.M. — 1000 kcal

x = 13,54 U.M.

Gasolina

100 U.M. —— 8050 kcal

x = 12.42 U.M.

Fábi<mark>o Lima</mark>

x U.M. —— 1000 kcal

Exemplo 2 (UERJ) O alumínio é utilizado como redutor de óxidos, no processo denominado de aluminotermia, conforme mostra a equação química:

$$8 A\ell(s) + 3 Mn_3O_4(s) \longrightarrow 4 A\ell_2O_3(s) + 9 Mn(s)$$

Observe a tabela:

Substância	Entalpia de Formação Δ H a 298 K	
$A\ell_2O_3(s)$	- 1667,8	
$Mn_3O_2(s)$	- 1385,5	

Segundo a equação acima, para a obtenção do Mn(s), a variação de entalpia, na temperatura de 298 K, em KJ, é de:

Solução 2

Letra b). Veja o passo a passo para a determinação da variação de entalpia:

12 Passo: O cálculo da entalpia dos produtos (H_p) é feito pela multiplicação do coeficiente de cada participante pela sua entalpia e, depois, pela soma dos resultados.

2º Passo: O cálculo da entalpia dos reagentes (H_r) é feito pela multiplicação do coeficiente de cada participante pela sua entalpia e, depois, pela soma dos resultados.

$$\triangle$$
 H = H_{produtos} - H_{reagentes}

$$\triangle$$
 H = [(4 · \triangle H_{Aℓ2O3}(s) + 9 · \triangle H_{Mn (s)})] - [8 · \triangle H_{Aℓ (s)} + 3 · \triangle H_{Mn3O4}(s)]
$$\triangle$$
 H = [4 · (-1667,8) + 9 · (0)] - [8 · (0) + 3 · (-1385,3)]
$$\triangle$$
 H = [-6671,2] - [-4155,9]
$$\triangle$$
 H = -2515,3 kJ mol⁻¹

Fábio Lima 29 (30)

Fim da Aula

Download Aula

Fábio Lima 30 (30)