Formulações Clássicas

Professor: Yuri Frota

www.ic.uff.br/~yuri/pi.html

yuri@ic.uff.br

hey.

Problema de Coloração de Vértices: Seja o seguinte modelo clássico de coloração

200000000

$$\sum_{i \in C} x_{ij} = 1, \forall i \in V$$

$$x_{ij} + x_{kj} \le 1, \forall ik \in E \in \forall j \in C$$

$$x_{ij} \leq w_j, \forall i \in V, \forall j \in C$$

$$w_j \ x_{ij} \in \{0,1\}, \forall i \in V \ e \ \forall j \in C$$

Vamos agora voltar a ver o problema de coloração

Problema de Coloração de Vértices: Seja o seguinte modelo clássico de coloração

$$\min \sum_{j \in C} w_j$$

$$\sum_{j \in C} x_{ij} = 1, \forall i \in V$$

200000000

$$x_{ij} + x_{kj} \le 1, \forall ik \in E \in \forall j \in C$$

$$x_{ij} \leq w_j, \forall i \in V, \forall j \in C$$

$$w_j \ x_{ij} \in \{0,1\}, \forall i \in V \ e \ \forall j \in C$$

Simetria: de quantas formas podemos representar uma coloração com 3 cores ?

Podemos trocar uma cor da solução por uma cor não usada

Problema de Coloração de Vértices: Seja o seguinte modelo clássico de coloração

$$\min \sum_{j \in C} w_j$$

$$\sum_{j \in C} x_{ij} = 1, \forall i \in V$$

200000000

$$x_{ij} + x_{kj} \le 1, \forall ik \in E \in \forall j \in C$$

$$x_{ij} \leq w_j, \forall i \in V, \forall j \in C$$

$$w_j \ x_{ij} \in \{0,1\}, \forall i \in V \ e \ \forall j \in C$$

Simetria: de quantas formas podemos representar uma coloração com 3 cores ?

Problema de Coloração de Vértices: Seja o seguinte modelo clássico de coloração

$$\min \sum_{j \in C} w_j$$

200000000

$$\sum_{j \in C} x_{ij} = 1, \forall i \in V$$

$$x_{ij} + x_{kj} \le 1, \forall ik \in E \in \forall j \in C$$

$$x_{ij} \leq w_j, \forall i \in V, \forall j \in C$$

$$w_j \ x_{ij} \in \{0,1\}, \forall i \in V \ e \ \forall j \in C$$

Simetria: de quantas formas podemos representar uma coloração com 3 cores ?

cada permutação de cores ñ usadas gera uma nova solução simétrica

Problema de Coloração de Vértices: Seja o seguinte modelo clássico de coloração

$$\min \sum_{j \in C} w_j$$

$$\sum_{j \in C} x_{ij} = 1, \forall i \in V$$

$$x_{ij} + x_{kj} \le 1, \forall ik \in E \in \forall j \in C$$

$$x_{ij} \leq w_j, \forall i \in V, \forall j \in C$$

$$w_j \ x_{ij} \in \{0,1\}, \forall i \in V \ e \ \forall j \in C$$

Simetria: de quantas formas podemos representar uma coloração com 3 cores ?

Corte de Simetria:

200000000

Só poder usar uma cor se a cor anterior já tiver sido usada. Como fica ?

Problema de Coloração de Vértices: Seja o seguinte modelo clássico de coloração

$$\min \sum_{j \in C} w_j$$

$$\sum_{j \in C} x_{ij} = 1, \forall i \in V$$

$$x_{ij} + x_{kj} \le 1, \forall ik \in E \in \forall j \in C$$

$$x_{ij} \leq w_j, \forall i \in V, \forall j \in C$$

$$w_j \ x_{ij} \in \{0,1\}, \forall i \in V \ e \ \forall j \in C$$

Simetria: de quantas formas podemos representar uma coloração com 3 cores ?

Corte de Simetria:

$$w_j \le w_{j-1}, \quad \forall j = 2...|C|$$

Só poder usar uma cor se a cor anterior já tiver sido usada. Como fica ?

Problema de Coloração de Vértices: Seja o seguinte modelo clássico de coloração

$$\min \sum_{j \in C} w_j$$

200000000

$$\sum_{j \in C} x_{ij} = 1, \forall i \in V$$

$$x_{ij} + x_{kj} \le 1, \forall ik \in E \in \forall j \in C$$

$$x_{ij} \leq w_j, \forall i \in V, \forall j \in C$$

$$w_j \ x_{ij} \in \{0,1\}, \forall i \in V \ e \ \forall j \in C$$

$$w_j \leq w_{j-1}, \quad \forall j = 2...|C|$$

essa é difícil, vamos ter que re-modelar!

e essa simetria das cores já utilizadas ?

<u>Problema de Coloração de Vértices</u>: Modelo dos Representantes

A ideia do modelo é fazer cada grupo de cores ser identificado por um vértice representante (lider), e não mais por um índice de cor.

200000000

Não teremos mais cores, mas sim líderes representantes de cada cor

<u>Problema de Coloração de Vértices</u>: Modelo dos Representantes

A ideia do modelo é fazer cada grupo de cores ser identificado por um vértice representante (lider), e não mais por um índice de cor.

200000000

<u>Problema de Coloração de Vértices</u>: Modelo dos Representantes

200000000

<u>Problema de Coloração de Vértices</u>: Modelo dos Representantes

Note que podemos ter essa simetria

Bessesses

A mesma cor assumir outra liderança

<u>Problema de Coloração de Vértices</u>: Modelo dos Representantes

Note que podemos ter essa simetria

para evitar isso, vamos estipular que apenas um vértice de índice menor pode representar um de índice maior

A mesma cor assumir outra liderança

<u>Problema de Coloração de Vértices</u>: Modelo dos Representantes

Note que podemos ter essa simetria

para evitar isso, vamos estipular que apenas um vértice de índice menor pode representar um de índice maior

Definições:

200000000

• $\overline{N}(u)$: vértices na anti-vizinhança de $u \in V$

Que NÃO são vizinhos de u

 \overline{N} (3)=1,4

20000000

• $\overline{N}(u)$: vértices na anti-vizinhança de $u \in V$

Que NÃO são vizinhos de u

• $\overline{N}^<(u)$: vértices na anti-vizinhança menor de $u \in V$

Que NÃO são vizinhos de u e tem índice MENOR

 $\overline{N}^{<}(3)=1$

Definições:

200000000

- $\overline{N}(u)$: vértices na anti-vizinhança de $u \in V$
- Que NÃO são vizinhos de u
- $\overline{N}^{<}(u)$: vértices na anti-vizinhança menor de $u \in V$
- $\overline{N}^{>}(u)$: vértices na anti-vizinhança maior de $u \in V$

Que NÃO são vizinhos de u e tem índice MENOR

Que NÃO são vizinhos de u e tem índice MAIOR

 $\overline{N}^{>}(3)=4$

Definições:

- $\overline{N}(u)$: vértices na anti-vizinhança de $u \in V$
- Que NÃO são vizinhos de u
- $\overline{N}^{<}(u)$: vértices na anti-vizinhança menor de $u \in V$
- Que NÃO são vizinhos de u e tem índice MENOR
- $\overline{N}^{>}(u)$: vértices na anti-vizinhança maior de $u \in V$

Que NÃO são vizinhos de u e tem índice MAIOR

Variáveis:

200000000

- $\overline{N}(u)$: vértices na anti-vizinhança de $u \in V$
- Que NÃO são vizinhos de u
- $\overline{N}^{<}(u)$: vértices na anti-vizinhança menor de $u \in V$
- $\overline{N}^{>}(u)$: vértices na anti-vizinhança maior de $u \in V$

Que NÃO são vizinhos de u e tem índice MENOR

Que NÃO são vizinhos de u e tem índice MAIOR

Variáveis:

200000000

$$x_{uv} = \begin{cases} 1, & \text{se o v\'ert. } u \in V \text{ representa vert. } v \in \overline{N}^{>}(u) \cup \{u\} \\ 0, & \text{caso contr\'ario} \end{cases}$$

x_11 = 1 x_13 = 1 x_15=1

- $\overline{N}(u)$: vértices na anti-vizinhança de $u \in V$
- Que NÃO são vizinhos de u
- $\overline{N}^<(u)$: vértices na anti-vizinhança menor de $u \in V$
- $\overline{N}^{>}(u)$: vértices na anti-vizinhança maior de $u \in V$

Que NÃO são vizinhos de u e tem índice MENOR

Que NÃO são vizinhos de u e tem índice MAIOR

Variáveis:

$$x_{uv} = \begin{cases} 1, & \text{se o v\'ert. } u \in V \text{ representa vert. } v \in \overline{N}^{>}(u) \cup \{u\} \\ 0, & \text{caso contr\'ario} \end{cases}$$

x_11 = 1 x_13 = 1 x_15=1

Restrições:

200000000

todo vértice tem que ser representado

Definições:

- $\overline{N}(u)$: vértices na anti-vizinhança de $u \in V$
- Que NÃO são vizinhos de u
- $\overline{N}^{<}(u)$: vértices na anti-vizinhança menor de $u \in V$
- $\overline{N}^{>}(u)$: vértices na anti-vizinhança maior de $u \in V$

Que NÃO são vizinhos de u e tem índice MENOR

Que NÃO são vizinhos de u e tem índice MAIOR

Variáveis:

$$x_{uv} = \begin{cases} 1, & \text{se o v\'ert. } u \in V \text{ representa vert. } v \in \overline{N}^{>}(u) \cup \{u\} \\ 0, & \text{caso contr\'ario} \end{cases}$$

ider x_11 = 1 x_13 = 1 x_15=1

Restrições:

200000000

$$x_{uu} + \sum_{v \in \overline{N}^{<}(u)} x_{vu} = 1, \quad \forall u \in V$$

todo vértice tem que ser representante ou representado

Definições:

- $\overline{N}(u)$: vértices na anti-vizinhança de $u \in V$
- Que NÃO são vizinhos de u
- $\overline{N}^<(u)$: vértices na anti-vizinhança menor de $u \in V$
- $\overline{N}^{>}(u)$: vértices na anti-vizinhança maior de $u \in V$

Que NÃO são vizinhos de u e tem índice MENOR

Que NÃO são vizinhos de u e tem índice MAIOR

Variáveis:

$$x_{uv} = \begin{cases} 1, & \text{se o v\'ert. } u \in V \text{ representa vert. } v \in \overline{N}^{>}(u) \cup \{u\} \\ 0, & \text{caso contr\'ario} \end{cases}$$

x_11 = 1 x_13 = 1 x_15=1

Restrições:

200000000

$$x_{uu} + \sum_{v \in \overline{N}^{<}(u)} x_{vu} = 1, \quad \forall u \in V$$

todo vértice tem que ser representante ou representado

conflito de cores (representantes)

Definições:

- $\overline{N}(u)$: vértices na anti-vizinhança de $u \in V$
- Que NÃO são vizinhos de u
- $\overline{N}^{<}(u)$: vértices na anti-vizinhança menor de $u \in V$
- $\overline{N}^{>}(u)$: vértices na anti-vizinhança maior de $u \in V$

Que NÃO são vizinhos de u e tem índice MENOR

Que NÃO são vizinhos de u e tem índice MAIOR

Variáveis:

$$x_{uv} = \begin{cases} 1, & \text{se o v\'ert. } u \in V \text{ representa vert. } v \in \overline{N}^{>}(u) \cup \{u\} \\ 0, & \text{caso contr\'ario} \end{cases}$$

x_11 = 1 x_13 = 1 x_15=1

Restrições:

$$x_{uu} + \sum_{v \in \overline{N}^{<}(u)} x_{vu} = 1, \quad \forall u \in V$$
 todo vértice tem que ser representante ou representado

$$x_{uv} + x_{uw} \le \mathbf{X}(x_{uu}), \quad \forall u \in V, \forall vw \in E$$
 conflito de cores (representantes) onde $v \in \overline{N}^{>}(u)$ e $w \in \overline{N}^{>}(u)$

Definições:

- $\overline{N}(u)$: vértices na anti-vizinhança de $u \in V$
- $\overline{N}^{<}(u)$: vértices na anti-vizinhança menor de $u \in V$
- $\overline{N}^{>}(u)$: vértices na anti-vizinhança maior de $u \in V$

Variáveis:

$$x_{uv} = \begin{cases} 1, & \text{se o v\'ert. } u \in V \text{ representa vert. } v \in \overline{N}^{>}(u) \cup \{u\} \\ 0, & \text{caso contr\'ario} \end{cases}$$

Restrições:

$$x_{uu} + \sum_{v \in \overline{N}^{<}(u)} x_{vu} = 1, \quad \forall u \in V$$
 todo vértice tem que ser representante ou representado

$$x_{uv} + x_{uw} \leq \mathbf{X}(x_{uu}), \quad \forall u \in V, \forall vw \in E$$
 conflito de cores (representantes) onde $v \in \overline{N}^{>}(u)$ e $w \in \overline{N}^{>}(u)$

integralidade

$$x_{uv} \in \{0, 1\},\$$

 $\forall u \in V, \forall v \in \overline{N}^{>}(u)$

Definições:

- $\overline{N}(u)$: vértices na anti-vizinhança de $u \in V$
- $\overline{N}^{<}(u)$: vértices na anti-vizinhança menor de $u \in V$
- $\overline{N}^{>}(u)$: vértices na anti-vizinhança maior de $u \in V$

Variáveis:

$$x_{uv} = \begin{cases} 1, & \text{se o v\'ert. } u \in V \text{ representa vert. } v \in \overline{N}^{>}(u) \cup \{u\} \\ 0, & \text{caso contr\'ario} \end{cases}$$

Restrições:

$$x_{uu} + \sum_{v \in \overline{N}^{<}(u)} x_{vu} = 1, \quad \forall u \in V$$
 todo vértice tem que ser representante ou representado

$$x_{uv} + x_{uw} \leq \mathbf{X}(x_{uu}), \quad \forall u \in V, \forall vw \in E$$
 conflito de cores (representantes) onde $v \in \overline{N}^{>}(u)$ e $w \in \overline{N}^{>}(u)$

integralidade

$$x_{uv} \in \{0, 1\},\$$

 $\forall u \in V, \forall v \in \overline{N}^{>}(u)$

Função Objetivo:

Definições:

- $\overline{N}(u)$: vértices na anti-vizinhança de $u \in V$
- $\overline{N}^{<}(u)$: vértices na anti-vizinhança menor de $u \in V$
- $\overline{N}^{>}(u)$: vértices na anti-vizinhança maior de $u \in V$

Variáveis:

$$x_{uv} = \begin{cases} 1, & \text{se o v\'ert. } u \in V \text{ representa vert. } v \in \overline{N}^{>}(u) \cup \{u\} \\ 0, & \text{caso contr\'ario} \end{cases}$$

Restrições:

$$x_{uu} + \sum_{v \in \overline{N}^{<}(u)} x_{vu} = 1, \quad \forall u \in V$$
 todo vértice tem que ser representante ou representado

$$x_{uv} + x_{uw} \leq \mathbf{X}(x_{uu}), \quad \forall u \in V, \forall vw \in E$$
 conflito de cores (representantes) onde $v \in \overline{N}^{>}(u)$ e $w \in \overline{N}^{>}(u)$

integralidade

$$x_{uv} \in \{0, 1\},\$$

 $\forall u \in V, \forall v \in \overline{N}^{>}(u)$

Função Objetivo:

$$\min \sum_{u \in V} x_{uu}$$

Observações

- 1) O modelo é correto apenas para grafos conexos. Porque ?
- 2) Como concertar o modelo para considerar grafos que podem não ser conexos ?
- 3) É possível fortificar o modelo dos representantes com cortes cliques (visto na aula passada), como ficaria estes cortes no modelo ?
- 4) Devido como definimos as variáveis do problema, permitindo a representação apenas de vértices com índices maiores, temos que um grupo de variáveis podem já ser fixadas com valor 1, quais são e porque ?

$$\min \sum_{u \in V} x_{uu}$$

$$x_{uu} + \sum_{v \in \overline{N}^{<}(u)} x_{vu} = 1, \quad \forall u \in V$$

$$x_{uv} + x_{uw} \le 1(x_{uu}), \quad \forall u \in V, \forall vw \in E$$

$$\text{onde } v \in \overline{N}^{>}(u) \text{ e } w \in \overline{N}^{>}(u)$$

<u>Problema de Lot-Sizing</u>: Queremos minimizar os custos de produção, armazenamento e inicialização numa fábrica em um horizonte de n períodos de tempo, onde:

Bossosos

<u>Problema de Lot-Sizing</u>: Queremos minimizar os custos de produção, armazenamento e inicialização numa fábrica em um horizonte de n períodos de tempo, onde:

<u>Problema de Lot-Sizing</u>: Queremos minimizar os custos de produção, armazenamento e inicialização numa fábrica em um horizonte de n períodos de tempo, onde:

d_t -> demanda do período t

f₊ -> custo fixo de se produzir no período t

p_t -> custo de se produzir uma unidade no período t

h_t -> custo de se armazenar uma unidade no período t

<u>Problema de Lot-Sizing</u>: Queremos minimizar os custos de produção, armazenamento e inicialização numa fábrica em um horizonte de n períodos de tempo, onde:

d_t -> demanda do período t

f_t -> custo fixo de se produzir no período t

p_t -> custo de se produzir uma unidade no período t

h_t -> custo de se armazenar uma unidade no período t

Variáveis:

200000000

x_t: qtd. produzida no período t (contínua)

s_t: o estoque no final do período t (contínua)

y_t: 1, se algo foi produzido no período t e 0 c.c. (binária)

<u>Problema de Lot-Sizing</u>: Queremos minimizar os custos de produção, armazenamento e inicialização numa fábrica em um horizonte de n períodos de tempo, onde:

d₊ -> demanda do período t

f_t -> custo fixo de se produzir no período t

p_t -> custo de se produzir uma unidade no período t

h_t -> custo de se armazenar uma unidade no período t

Variáveis:

x_t: qtd. produzida no período t (contínua)

s_t: o estoque no final do período t (contínua)

y_t: 1, se algo foi produzido no período t e 0 c.c. (binária)

Restrições:

200000000

para um período t, tem que manter consistência entre:

- o que tinha armazenado
- o que foi produzido
- a demanda do período
- o que sobrou

<u>Problema de Lot-Sizing</u>: Queremos minimizar os custos de produção, armazenamento e inicialização numa fábrica em um horizonte de n períodos de tempo, onde:

d_t -> demanda do período t

f_t -> custo fixo de se produzir no período t

p_t -> custo de se produzir uma unidade no período t

h_t -> custo de se armazenar uma unidade no período t

Variáveis:

x_t: qtd. produzida no período t (contínua)

s_t: o estoque no final do período t (contínua)

y_t: 1, se algo foi produzido no período t e 0 c.c. (binária)

Restrições:

200000000

$$s_{t-1} + x_t = d_t + s_t, \quad \forall t = 1...n$$

para um período t, tem que manter consistência entre:

- o que tinha armazenado
- o que foi produzido
- a demanda do período
- o que sobrou

<u>Problema de Lot-Sizing</u>: Queremos minimizar os custos de produção, armazenamento e inicialização numa fábrica em um horizonte de n períodos de tempo, onde:

d_t -> demanda do período t

f_t -> custo fixo de se produzir no período t

p_t -> custo de se produzir uma unidade no período t

h_t -> custo de se armazenar uma unidade no período t

Variáveis:

x_t: qtd. produzida no período t (contínua)

s_t: o estoque no final do período t (contínua)

y_t: 1, se algo foi produzido no período t e 0 c.c. (binária)

Restrições:

200000000

$$s_{t-1} + x_t = d_t + s_t, \quad \forall t = 1...n$$

link entre as variáveis x e y (produção variável e fixa)

<u>Problema de Lot-Sizing</u>: Queremos minimizar os custos de produção, armazenamento e inicialização numa fábrica em um horizonte de n períodos de tempo, onde:

d_t -> demanda do período t

f_t -> custo fixo de se produzir no período t

p_t -> custo de se produzir uma unidade no período t

h_t -> custo de se armazenar uma unidade no período t

Variáveis:

x_t: qtd. produzida no período t (contínua)

s_t: o estoque no final do período t (contínua)

y_t: 1, se algo foi produzido no período t e 0 c.c. (binária)

Restrições:

$$s_{t-1} + x_t = d_t + s_t, \quad \forall t = 1...n$$

$$x_t \le My_t, \quad \forall t = 1...n$$

link entre as variáveis x e y (produção variável e fixa)

<u>Problema de Lot-Sizing</u>: Queremos minimizar os custos de produção, armazenamento e inicialização numa fábrica em um horizonte de n períodos de tempo, onde:

d_t -> demanda do período t

f₊ -> custo fixo de se produzir no período t

p_t -> custo de se produzir uma unidade no período t

h_t -> custo de se armazenar uma unidade no período t

Variáveis:

x_t: qtd. produzida no período t (contínua)

s_t: o estoque no final do período t (contínua)

y_t: 1, se algo foi produzido no período t e 0 c.c. (binária)

Restrições:

$$s_{t-1} + x_t = d_t + s_t, \quad \forall t = 1...n$$

$$x_t \le My_t, \quad \forall t = 1...n$$

não pode haver sobras no fim do horizonte

<u>Problema de Lot-Sizing</u>: Queremos minimizar os custos de produção, armazenamento e inicialização numa fábrica em um horizonte de n períodos de tempo, onde:

d_t -> demanda do período t

f_t -> custo fixo de se produzir no período t

p_t -> custo de se produzir uma unidade no período t

h_t -> custo de se armazenar uma unidade no período t

Variáveis:

x_t: qtd. produzida no período t (contínua)

s_t: o estoque no final do período t (contínua)

y_t: 1, se algo foi produzido no período t e 0 c.c. (binária)

Restrições:

$$s_{t-1} + x_t = d_t + s_t, \quad \forall t = 1...n$$

$$x_t \le My_t, \quad \forall t = 1...n$$

$$s_n = 0$$

não pode haver sobras no fim do horizonte

<u>Problema de Lot-Sizing</u>: Queremos minimizar os custos de produção, armazenamento e inicialização numa fábrica em um horizonte de n períodos de tempo, onde:

d_t -> demanda do período t

f_t -> custo fixo de se produzir no período t

p_t -> custo de se produzir uma unidade no período t

h_t -> custo de se armazenar uma unidade no período t

Variáveis:

x_t: qtd. produzida no período t (contínua)

s_t: o estoque no final do período t (contínua)

y_t: 1, se algo foi produzido no período t e 0 c.c. (binária)

Restrições:

$$s_{t-1} + x_t = d_t + s_t, \quad \forall t = 1...n$$

$$x_t \le My_t, \quad \forall t = 1...n$$

$$s_n = 0$$

$$s_t, x_t \ge 0 \text{ e } y_t \in \{0, 1\}, \quad \forall t = 1...n$$

<u>Problema de Lot-Sizing</u>: Queremos minimizar os custos de produção, armazenamento e inicialização numa fábrica em um horizonte de n períodos de tempo, onde:

d_t -> demanda do período t

f_t -> custo fixo de se produzir no período t

p_t -> custo de se produzir uma unidade no período t

h_t -> custo de se armazenar uma unidade no período t

Variáveis:

x_t: qtd. produzida no período t (contínua)

s_t: o estoque no final do período t (contínua)

y_t: 1, se algo foi produzido no período t e 0 c.c. (binária)

Restrições:

$$s_{t-1} + x_t = d_t + s_t, \quad \forall t = 1...n$$

$$x_t \le My_t, \quad \forall t = 1...n$$

$$s_n = 0$$

integralidade e ñ negatividade

$$s_t, x_t \ge 0 \text{ e } y_t \in \{0, 1\}, \quad \forall t = 1...n$$

Função Objetivo:

<u>Problema de Lot-Sizing</u>: Queremos minimizar os custos de produção, armazenamento e inicialização numa fábrica em um horizonte de n períodos de tempo, onde:

d_t -> demanda do período t

f_t -> custo fixo de se produzir no período t

p_t -> custo de se produzir uma unidade no período t

h₊ -> custo de se armazenar uma unidade no período t

Variáveis:

x_t: qtd. produzida no período t (contínua)

s_t: o estoque no final do período t (contínua)

y_t: 1, se algo foi produzido no período t e 0 c.c. (binária)

Restrições:

$$s_{t-1} + x_t = d_t + s_t, \quad \forall t = 1...n$$

$$x_t \le My_t, \quad \forall t = 1...n$$

$$s_n = 0$$

integralidade e ñ negatividade

$$s_t, x_t \ge 0 \text{ e } y_t \in \{0, 1\}, \quad \forall t = 1...n$$

Função Objetivo:

$$\min \sum_{t=1}^{n} (p_t x_t + h_t s_t + f_t y_t)$$

Quanto maior valor de M -> maior será o domínio da variável x -> mais frouxa/distante vai ser a modelagem em relação aos pontos inteiros -> mais soluções para procurar -> mais demorado.

Restrições:

$$s_{t-1} + x_t = d_t + s_t, \quad \forall t = 1...n$$

 $\forall t = 1...n$

$$x_t \leq My_t$$
,

$$s_n = 0$$

BIG

Função Objetivo:

$$\min \sum_{t=1}^{n} (p_t x_t + h_t s_t + f_t y_t)$$

 $s_t, x_t \geq 0$ e $g_t = \{0, \pm\}$

um bom chute?

Problema de Lot-Sizing: Como fortalecer? Tentar tirar esse big M

200000000

- Definir variável w_{it} como qtd produzida no período i destinada a atender uma demanda no período t, onde t >= i.

Problema de Lot-Sizing: Como fortalecer? Tentar tirar esse big M

Definir variável wit como qtd produzida no período i destinada a atender uma demanda no período t, onde $t \ge i$.

$$w_{11} = 3$$
 $w_{12} = 0$ $w_{13} = 0$ $w_{14} = 1$ $w_{22} = 2$ $w_{23} = 2$ $w_{24} = 0$

200000000

Problema de Lot-Sizing: Como fortalecer? Tentar tirar esse big M

Logo, vemos que x_i pode ser escrito em função de w_{it} :

Problema de Lot-Sizing: Como fortalecer? Tentar tirar esse big M

200000000

Logo, vemos que x_i pode ser escrito em função de w_{it} :

$$x_i = \sum_{t=i}^n w_{it}$$

Problema de Lot-Sizing: Podemos então substituir a variável x pela w, logo

$$\min \sum_{t=1}^{n} (p_t x_t + h_t s_t + f_t y_t)$$

$$s_{t-1} + x_t = d_t + s_t, \quad \forall t = 1...n$$

$$x_t \le M y_t, \quad \forall t = 1...n$$

$$s_n = 0$$

$$s_t, x_t \ge 0 \text{ e } y_t \in \{0, 1\}, \quad \forall t = 1...n$$

200000000

$$\min \sum_{t=1}^{n} (p_t(\sum_{j=t}^{n} w_{tj}) + h_t s_t + f_t y_t)$$

$$s_{t-1} + \sum_{j=t}^{n} w_{tj} = d_t + s_t, \quad \forall t = 1...n$$

$$como \ \text{fica ?}$$

$$s_n = 0$$

$$s_t, w_{it} \ge 0 \ \text{e} \ y_t \in \{0, 1\}, \quad \forall i, t = 1...n \ \text{e} \ i \le t$$

BIG

Problema de Lot-Sizing: Podemos então substituir a variável x pela w, logo

$$\min \sum_{t=1}^{n} (p_t x_t + h_t s_t + f_t y_t)$$

$$s_{t-1} + x_t = d_t + s_t, \quad \forall t = 1...n$$

$$x_t \le M y_t, \quad \forall t = 1...n$$

$$s_n = 0$$

$$s_t, x_t \ge 0 \text{ e } y_t \in \{0, 1\}, \quad \forall t = 1...n$$

$$\min \sum_{t=1}^{n} (p_t(\sum_{j=t}^{n} w_{tj}) + h_t s_t + f_t y_t)$$

$$s_{t-1} + \sum_{j=t}^{n} w_{tj} = d_t + s_t, \quad \forall t = 1...n$$

$$w_{it} \le d_t y_i, \quad \forall i, t = 1...n \text{ e } i \le t$$

$$s_n = 0$$

$$s_t, w_{it} \ge 0 \text{ e } y_t \in \{0, 1\}, \quad \forall i, t = 1...n \text{ e } i \le t$$

Ficou um Big M bem apertado

Considere o <u>Problema de Lot-Sizing</u> original onde iremos considerar agora mais algumas restrições operacionais de execução que geralmente ocorrem:

Exercícios

- 1) Cada período t tem um limite L_t de unidades que podem ser produzidas nele.
- 2) Em um subconjunto de períodos B \subseteq {1,...,n} ocorre limpeza do armazém e nestes períodos não deve ter nada armazenado.
- 3) Não se pode produzir por mais de 2 períodos consecutivos.
- 4) Considere agora o problema de <u>Lot-Sizing com cobrança fixa de armazenagem</u>, onde o custo do armazém tem valor fixo de uso h (se usado), não importando a quantidade armazenada, como ficaria o modelo?

- 3) Vamos modelar com as variáveis y, uma restrição para cada período de tempo
- 4) Precisaremos de variáveis novas binárias para indicar o uso ou não do armazém em cada período de tempo

(binária)

Até a próxima

200000000

