Classical Encryption Techniques

Cryptographic Tools

- cryptographic algorithms important element in security services
- review various types of elements
 - symmetric encryption
 - o public-key (asymmetric) encryption
 - o digital signatures and key management
 - o secure hash functions
- example is use to encrypt stored data

Symmetric Encryption

- or conventional / private-key / single-key
- sender and recipient share a common key
- all classical encryption algorithms are private-key
- was only type prior to invention of publickey in 1970's
- and by far most widely used

Some Basic Terminology

- □ plaintext original message
- ciphertext coded message
- cipher algorithm for transforming plaintext to ciphertext
- key info used in cipher known only to sender/receiver

Some Basic Terminology

- encipher (encrypt) converting plaintext to ciphertext
- decipher (decrypt) recovering ciphertext from plaintext
- cryptography study of encryption principles/methods
- cryptanalysis (codebreaking) study of principles/ methods of deciphering ciphertext without knowing key
- cryptology field of both cryptography and cryptanalysis

Symmetric Cipher Model

Requirements

- two requirements for secure use of symmetric encryption:
 - o a strong encryption algorithm
 - o a secret key known only to sender / receiver
- mathematically have:

$$Y = E(K, X)$$

$$X = D(K, Y)$$

- assume encryption algorithm is known
- implies a secure channel to distribute key

Cryptography

- can characterize cryptographic system by:
 - type of encryption operations used
 - substitution
 - transposition
 - product
 - o number of keys used
 - single-key or private
 - two-key or public
 - way in which plaintext is processed
 - block
 - · stream

Cryptanalysis

- objective to recover key not just message
- □ general approaches:
 - cryptanalytic attack
 - brute-force attack
- if either succeed all key use compromised

Attacking Symmetric Encryption

- cryptanalysis
 - o rely on nature of the algorithm
 - o plus some knowledge of plaintext characteristics
 - o even some sample plaintext-ciphertext pairs
 - exploits characteristics of algorithm to deduce specific plaintext or key
- □ brute-force attack
 - try all possible keys on some ciphertext until get an intelligible translation into plaintext

Cryptanalytic Attacks

- > ciphertext only
 - only know algorithm & ciphertext, is statistical, know or can identify plaintext
- > known plaintext
 - know/suspect plaintext & ciphertext
- > chosen plaintext
 - select plaintext and obtain ciphertext
- > chosen ciphertext
 - select ciphertext and obtain plaintext
- > chosen text
 - select plaintext or ciphertext to en/decrypt

Brute Force Search

- always possible to simply try every key
- most basic attack, proportional to key size
- □ assume either know / recognise plaintext

Key Size (bits)	Number of Alternative Keys	Time required at 1 decryption/µs		Time required at 10 ⁶ decryptions/μs
32	$2^{32} = 4.3 \times 10^9$	$2^{31} \mu s$	= 35.8 minutes	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	2 ⁵⁵ μs	= 1142 years	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	2 ¹²⁷ μs	$= 5.4 \times 10^{24} \text{ years}$	5.4×10^{18} years
168	$2^{168} = 3.7 \times 10^{50}$	2 ¹⁶⁷ μs	$= 5.9 \times 10^{36} \text{ years}$	5.9×10^{30} years
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu s$	$= 6.4 \times 10^{12} \text{ years}$	6.4×10^6 years

Exhaustive Key Search

More Definitions

> unconditional security

 no matter how much computer power or time is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext

> computational security

 given limited computing resources (eg time needed for calculations is greater than age of universe), the cipher cannot be broken

Classical Substitution Ciphers

- where letters of plaintext are replaced by other letters or by numbers or symbols
- or if plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns

Caesar Cipher

- earliest known substitution cipher
- by Julius Caesar
- first attested use in military affairs
- replaces each letter by 3rd letter on
- example:

```
meet me after the toga party PHHW PH DIWHU WKH WRJD SDUWB
```

Caesar Cipher

□ can define transformation as:

```
abcdefghijklmnopqrstuvwxyz
DEFGHIJKLMNOPQRSTUVWXYZABC
```

mathematically give each letter a number

```
abcdefghij k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
```

□ then have Caesar cipher as:

$$c = E(k, p) = (p + k) \mod (26)$$

$$p = D(k, c) = (c - k) \mod (26)$$

Cryptanalysis of Caesar Cipher

- > only have 26 possible ciphers
 - A maps to A,B,..Z
- > could simply try each in turn
- > a brute force search
- given ciphertext, just try all shifts of letters
- > do need to recognize when have plaintext
- > eg. break ciphertext "GCUA VQ DTGCM"

Monoalphabetic Cipher

- rather than just shifting the alphabet
- could shuffle (jumble) the letters arbitrarily
- each plaintext letter maps to a different random ciphertext letter
- □ hence key is 26 letters long

Plain: abcdefghijklmnopqrstuvwxyz

Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN

Plaintext: ifwewishtoreplaceletters

Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

Monoalphabetic Cipher Security

- \square now have a total of 26! = 4 x 10²⁶ keys
- with so many keys, might think is secure
- □ but would be !!!WRONG!!!
- problem is language characteristics

Language Redundancy and Cryptanalysis

- > human languages are redundant
- > eg "how are you" "how r u"
- > letters are not equally commonly used
- > in English E is by far the most common letter
 - followed by T,R,N,I,O,A,S
- > other letters like Z,J,K,Q,X are fairly rare
- have tables of single, double & triple letter frequencies for various languages

English Letter Frequencies

Use in Cryptanalysis

- key concept monoalphabetic substitution ciphers do not change relative letter frequencies
- □ discovered by Arabian scientists in 9th century
- calculate letter frequencies for ciphertext
- compare counts/plots against known values
- □ if caesar cipher look for common peaks/troughs
 - o peaks at: A-E-I triple, NO pair, RST triple
 - troughs at: JK, X-Z
- for monoalphabetic must identify each letter
 - o tables of common double/triple letters help

Example Cryptanalysis

□ given ciphertext:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMO

- count relative letter frequencies (see text)
- □ guess P & Z are e and t
- guess ZW is th and hence ZWP is the
- proceeding with trial and error finally get:

it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

Playfair Cipher

- not even the large number of keys in a monoalphabetic cipher provides security
- one approach to improving security was to encrypt multiple letters
- > the Playfair Cipher is an example
- > invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair

Playfair Key Matrix

- > a 5X5 matrix of letters based on a keyword
- > fill in letters of keyword (sans duplicates)
- > fill rest of matrix with other letters
- > eg. using the keyword MONARCHY

M	0	N	A	R
C	H	Y	В	D
E	F	G	I/J	K
L	P	Q	S	Т
U	٧	W	X	Z

Encrypting and Decrypting

- plaintext is encrypted two letters at a time
 - 1. if a pair is a repeated letter, insert filler like 'X'
 - 2. if both letters fall in the same row, replace each with letter to right (wrapping back to start from end)
 - 3. if both letters fall in the same column, replace each with the letter below it (wrapping to top from bottom)
 - 4. otherwise each letter is replaced by the letter in the same row and in the column of the other letter of the pair

Security of Playfair Cipher

- security much improved over monoalphabetic
- \triangleright since have 26 x 26 = 676 digrams
- would need a 676 entry frequency table to analyse (verses 26 for a monoalphabetic)
- > and correspondingly more ciphertext
- > was widely used for many years
 - eg. by US & British military in WW1
- > it can be broken, given a few hundred letters
- > since still has much of plaintext structure

Polyalphabetic Ciphers

- > polyalphabetic substitution ciphers
- improve security using multiple cipher alphabets
- make cryptanalysis harder with more alphabets to guess and flatter frequency distribution
- use a key to select which alphabet is used for each letter of the message
- > use each alphabet in turn
- > repeat from start after end of key is reached

Vigenère Cipher

- simplest polyalphabetic substitution cipher
- effectively multiple caesar ciphers
- \square key is multiple letters long $K = k_1 k_2 ... k_d$
- ith letter specifies ith alphabet to use
- use each alphabet in turn
- repeat from start after d letters in message
- decryption simply works in reverse

Example of Vigenère Cipher

- > write the plaintext out
- > write the keyword repeated above it
- > use each key letter as a caesar cipher key
- > encrypt the corresponding plaintext letter
- > eg using keyword deceptive

```
key: deceptivedeceptive
plaintext: wearediscoveredsaveyourself
ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ
```


Figure 2.6 Relative Frequency of Occurrence of Letters

Aids

- □ simple aids can assist with en/decryption
- □ a Saint-Cyr Slide is a simple manual aid
 - o a slide with repeated alphabet
 - o line up plaintext 'A' with key letter, eg 'C'
 - o then read off any mapping for key letter
- can bend round into a cipher disk
- or expand into a Vigenère Tableau

Security of Vigenère Ciphers

- have multiple ciphertext letters for each plaintext letter
- hence letter frequencies are obscured
- but not totally lost
- start with letter frequencies
 - o see if look monoalphabetic or not
- ☐ if not, then need to determine number of alphabets, since then can attach each

Kasiski Method

- method developed by Babbage / Kasiski
- repetitions in ciphertext give clues to period
- so find same plaintext an exact period apart
- which results in the same ciphertext
- of course, could also be random fluke
- □ eg repeated "VTW" in previous example
- □ suggests size of 3 or 9
- then attack each monoalphabetic cipher individually using same techniques as before

Autokey Cipher

- □ ideally want a key as long as the message
- □ Vigenère proposed the autokey cipher
- □ with keyword is prefixed to message as key
- knowing keyword can recover the first few letters
- □ use these in turn on the rest of the message
- but still have frequency characteristics to attack
- □ eg. given key *deceptive*

key: deceptivewearediscoveredsav

plaintext: wearediscoveredsaveyourself

ciphertext: ZICVTWQNGKZEIIGASXSTSLVVWLA

Vernam Cipher

- ultimate defense is to use a key as long as the plaintext
- > with no statistical relationship to it
- invented by AT&T engineer Gilbert Vernam in 1918
- originally proposed using a very long but eventually repeating key

Vernam Cipher.

One-Time Pad

- □ if a truly random key as long as the message is used, the cipher will be secure
- called a One-Time pad
- is unbreakable since ciphertext bears no statistical relationship to the plaintext
- since for any plaintext & any ciphertext there exists a key mapping one to other
- can only use the key once though
- problems in generation & safe distribution of key

Transposition Ciphers

- now consider classical transposition or permutation ciphers
- > these hide the message by rearranging the letter order
- > without altering the actual letters used
- can recognise these since have the same frequency distribution as the original text

Rail Fence cipher

- write message letters out diagonally over a number of rows
- then read off cipher row by row
- □ eg. write message out as:

```
m e m a t r h t g p r y e t e f e t e o a a t
```

giving ciphertext

MEMATRHTGPRYETEFETEOAAT

Row Transposition Ciphers

- > is a more complex transposition
- write letters of message out in rows over a specified number of columns
- > then reorder the columns according to some key before reading off the rows

Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Columnar Transposition.

Product Ciphers

- ciphers using substitutions or transpositions are not secure because of language characteristics
- hence consider using several ciphers in succession to make harder, but:
 - two substitutions make a more complex substitution
 - two transpositions make more complex transposition
 - but a substitution followed by a transposition makes a new much harder cipher
- this is bridge from classical to modern ciphers

Rotor Machines

- □ before modern ciphers, rotor machines were most common complex ciphers in use
- widely used in WW2
 - O German Enigma, Allied Hagelin, Japanese Purple
- implemented a very complex, varying substitution cipher
- used a series of cylinders, each giving one substitution, which rotated and changed after each letter was encrypted
- □ with 3 cylinders have 26³=17576 alphabets

Hagelin Rotor Machine

Rotor Machine Principles

Steganography

- an alternative to encryption
- □ hides existence of message
 - using only a subset of letters/words in a longer message marked in some way
 - o using invisible ink
 - o hiding in LSB in graphic image or sound file
- □ has drawbacks
 - o high overhead to hide relatively few info bits
- advantage is can obscure encryption use

Summary

- □ have considered:
 - o classical cipher techniques and terminology
 - monoalphabetic substitution ciphers
 - o cryptanalysis using letter frequencies
 - Playfair cipher
 - polyalphabetic ciphers
 - transposition ciphers
 - product ciphers and rotor machines
 - stenography