Gravitational Waves Do You See it?

What are Gravitational Waves?

A picture is worth a thousand words

"Ripples" in spacetime caused by accelerating massive celestial bodies Energy radiated as gravitational waves (think dropping pebble in pond)

Why are GW Important?

Why are GW Important?

- One of the final pieces in Einstein's General Theory of Relativity
- Opens new "windows" to study the Universe in addition to EM radiation

Ok, mainly to answer

- ✗ How old is the Universe?
- ✗ How big is the Universe?

Problem Statement

Build a Machine Learning pipeline to read, preprocess, train models and predict the gravitational wave signals & use ROC AUC metric to build the classifier.

How are GW Detected?

Got LASER?

LIGO & Virgo Observatory locations

Look at Data

Challenges with Data Visualizations

72GB

That's a lot of data

786,000 measurements

And a lot of observations

With balanced class distribution

Why do we need ML?

LIGO Hanford

Virgo

Spectrogram Transformation

Time domain → Frequency domain

Signals = sine + cosine

STFT: short term fourier transform

Changes in frequency over time removes unwanted white noise

Constant Q-Transform →

Modelling

Baseline CNN & SOTA Models

Model Comparison

	CNN	EfficientNet EfficientNet
Architecture	3x Conv2D 3x MaxPool2D 1x Flatten 2x Dense	1x Conv2D 1x EfficientNet (imagenet) 1x GlobalAvgPool2D 1x Dense
# Parameters	Total params: 4,382,081	Total params: 4,090,619 Trainable params: 4,048,603
Avg time/epoch	3300s / 55 min	5600s / 1 hr 33 min
Performance metrics	Train AUC: 0.83 acc: 0.76 Valid AUC: 0.84 acc: 0.77 kaggle: 0.843*	Train AUC: 0.80 l acc: 0.73 Valid AUC: 0.84 l acc: 0.69 kaggle: 0.844*

Current kaggle LB: 0.880*

Competition ongoing as of Aug 5, 2021

Conclusions

- Big data challenge addressed (used ~100hrs of GPU time on kaggle)
- Achieved 0.84 AUC score on test data
- Optimizing for GPU can run 5x faster
- Train Once & predict forever (50MB model can predict 20GB of data)

Future Work

Preprocess

- > It makes a significant difference.
- > See if using "raw" data to train the model is possible.

Compute Efficiency

- > Take advantage of GPU.
- > Make all functions & operations in TensorFlow pipeline GPU-compatible.

Regularization

> Train models with regularization to further improve performance.

THANKS!

Any questions?

