

Fachrichtung Mathematik • Institut für Algebra • Prof. Dr. Ulrike Baumann

Mathematische Methoden für Informatiker INF-120 Sommersemester 2017

9. Übungsblatt für die Woche 03.06. - 09.06.2019 Integral rechnung

Für die Berechnung der Integrale darf nur die am Ende des Blattes bereitgestellte Liste von Grundintegralen direkt verwendet werden. Weitere Integrale aus Formelsammlung oder anderen Quellen können natürlich zur Kontrolle der Ergebnisse genutzt werden.

Ü49 Berechnen Sie folgende Integrale mit der Methode der Substitution oder geeigneten Rechenregeln:

(a)
$$\int \frac{2}{(5x+3)^2} \, \mathrm{d}x$$
,

(a)
$$\int \frac{2}{(5x+3)^2} dx$$
, (b) $\int \sin x (1+\cos x) dx$, (c) $\int \frac{x^3}{\sqrt{x^2+1}} dx$,

(c)
$$\int \frac{x^3}{\sqrt{x^2+1}} \, \mathrm{d}x$$

(d)
$$\int_{-1}^{1} \frac{1}{x^2} dx$$
,

(e)
$$\int_{0}^{\ln 2} \frac{7e^{3x}}{\sqrt{e^{3x} + 8}} \, \mathrm{d}x.$$

Ü50 Berechnen Sie die folgenden Integrale mit der Methode der partiellen Integration:

(a)
$$\int (x+5)\cos(2x+1) dx$$
,

(a)
$$\int (x+5)\cos(2x+1) dx$$
, (b) $\int (3x^2+1)\ln(x^2+1) dx$, (c) $\int e^{2x}\cos 3x dx$,

(c)
$$\int e^{2x} \cos 3x \, dx$$

Führen Sie eine Probe für Ihre Ergebnisse durch!

Ü51 (a) Berechnen Sie folgende Integrale mit der Methode der Partialbruchzerlegung:

(i)
$$\int \frac{x^3 - 2x^2 - 2x - 27}{x^2 - 2x - 3} \, dx = \int \frac{x^3 - 2x^2 - 2x - 27}{(x - 3)(x + 1)} \, dx$$

(ii)
$$\int \frac{x^2 - 3}{x(x - 1)^2(x + 2)} \, \mathrm{d}x.$$

(b) Berechnen Sie das Integral
$$\int \frac{4x+1}{x^2+4x+7} dx$$
.

H52 **A**

- (a) Berechnen Sie mit der Methode der partiellen Integration die Menge aller Stammfunktionen der Funktion f mit $f(x) = (e^x - 1)(x - 1)$. Führen Sie eine Probe für Ihr Ergebnis durch!
- (b) Gegeben ist die reelle Funktion f mit $f(x) = \frac{\ln(2x)}{x \cdot \sqrt{1 + \ln^2(2x)}}$.

Berechnen Sie die Menge aller Stammfunktionen von f mittels der Substitutionsmethode. Es eignet sich die Substitution $u(x) = 1 + \ln^2(2x)$.

H53 Bestimmen Sie für folgende Funktionen deren Stammfunktionen mit der Methode der Substitution oder geeigneten Rechenregeln:

(a)
$$f(x) = \frac{x^2}{\sqrt{2x^3 + 3}}$$
, (b) $f(x) = \frac{(1 - x)^2}{x} + 8\sqrt[5]{x^3}$, (c) $f(x) = \frac{x\cos(\sqrt{x^2 + 1})}{\sqrt{x^2 + 1}}$.

H54 (a) Berechnen Sie folgende bestimmte bzw. unbestimmte Integrale mit partieller Integration:

(i)
$$\int (x^2 - 4) \cos 2x \, dx$$
, (ii) $\int \frac{1}{x^2} \ln(x) \, dx$.

(ii)
$$\int \frac{1}{r^2} \ln(x) \, \mathrm{d}x$$

(b) Berechnen Sie folgende Integrale mit der Methode der Partialbruchzerlegung:

(i)
$$\int \frac{x^4 - 20x^2 + 11}{x^2 - 2x - 15} dx = \int \frac{x^4 - 20x^2 + 11}{(x+3)(x-5)} dx$$
,

(ii)
$$\int \frac{x^4 + 3x^3 - 4x^2 - 11x + 23}{x^3 + 4x^2 - 3x - 18} \, \mathrm{d}x = \int \frac{x^4 + 3x^3 - 4x^2 - 11x + 23}{(x - 2)(x + 3)^2} \, \mathrm{d}x.$$

Grundintegrale

(1)
$$\int x^a dx = \frac{x^{a+1}}{a+1} + C \quad (a \neq -1)$$

$$(2) \quad \int e^x \, \mathrm{d}x = e^x + C$$

(3)
$$\int a^x dx = \frac{1}{\ln a} a^x + C \quad (a > 0, a \neq 1)$$

(4)
$$\int \frac{1}{x+a} dx = \ln|x+a| + C$$

(5)
$$\int \frac{1}{x^2+1} \, \mathrm{d}x = \arctan(x) + C$$

(6)
$$\int \sin(x) \, \mathrm{d}x = -\cos(x) + C$$

(7)
$$\int \cos(x) \, \mathrm{d}x = \sin(x) + C$$

(8)
$$\int \frac{1}{\cos^2(x)} dx = \int (1 + \tan^2(x)) dx = \tan(x) + C$$

(9)
$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$

(10)
$$\int f'(ax+b) dx = \frac{1}{a}f(ax+b) + C \quad (a \neq 0)$$

Integration $\int_{a}^{b} f(x) dx = \int_{a}^{b} g(u(x)) \cdot u'(x) dx$
u = u(x) $u = u(x)$ $u = u(x)$
$\frac{du}{ds} = u'(s) \longrightarrow du = u'(s) ds$
$\frac{2}{a} \int \frac{2}{(a+12)^2} ds \qquad Substitution: u = 5 + 3.$
a) $\int \frac{2}{(55+3)^2} d5$ Substitution: $u = 55+3$. $\frac{du}{d5} = 5 \implies d5 = \frac{1}{5} du$
$= \int \frac{2}{u^2} \cdot \frac{1}{5} du$
2 Sturdy Kein & mehr erhalten
$= -\frac{1}{5} \cdot \frac{1}{4} + C = -\frac{1}{5} \cdot \frac{1}{5 \times 513} + C$
b) $I = \int \sin x (1 + \cos x) dx$ $u = 1 + \cos x$
$\frac{du}{ds} = -\sin s$ $ds = \frac{du}{\cos s}$
$=\int Sinx \cdot U \cdot \frac{1}{-\sin x} du$
$= -\int u du = -\frac{1}{2}u^2 = -\frac{1}{2}(1+\cos x)^2 + C$
2 Weg. T= [sinx cosx dx]

u=Sin>
$\frac{du}{ds} = \cos s \qquad ds = \frac{1}{\cos s} \cdot du$
=> Sinx dx + Ju. Cosx. 1 cosx. du
= - Cus>> + Ju du
$= - \cos x + \frac{1}{2}u^{2} = - \cos x + \frac{1}{2}(\sin x) + \frac{1}{4}(\sin x) + \frac$
$\frac{1}{1} = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} $
7 T S 1. 2. A Ptional
() $I = \int \frac{3}{\sqrt{3^2+1}} dx$ $U = 3^2+1$
$\frac{du}{dx} = 2x \qquad dx = \frac{1}{2x} du$
$\Rightarrow T = \int \frac{\sqrt{3}}{\sqrt{u}} \cdot \frac{1}{2\pi} du$
$=\int \frac{x^2}{5u} \cdot \frac{1}{2} du$
$= \int \frac{u-1}{\sqrt{u}} \cdot \frac{1}{2} du$
$= \frac{1}{2} \left(\int \overline{su} - \int \overline{su} \right) du$
$= \frac{1}{2} \left(\frac{2}{3} u^{\frac{2}{2}} - 2 \cdot u^{\frac{1}{2}} \right) + C$ $= \frac{1}{3} \left(\frac{2}{3} u^{\frac{2}{2}} - 2 \cdot u^{\frac{1}{2}} \right) + C$ $= \frac{1}{3} \left(\frac{2}{3} u^{\frac{2}{2}} - 2 \cdot u^{\frac{1}{2}} \right) + C$
$-\frac{1}{2}(-3+1)^{\frac{3}{2}}-(-3+1)^{\frac{7}{2}}+C$

$$= \int I = e^{2x} \cdot \frac{1}{3} \sin(3x) - \int 2 \cdot e^{2x} \cdot \frac{1}{3} \sin(3x) dx$$

$$= -\int e^{2x} \cdot \frac{1}{3} \sin(3x) dx$$

$$= e^{2x} \cdot \frac{1}{4} \cos(3x) - \int 2e^{2x} \cdot \frac{1}{4} \cos(3x) dx$$

$$= \int e^{2x} \cdot \frac{1}{4} \cos(3x) - \frac{1}{4} \int e^{2x} \cdot \cos(3x) dx = \int e^{x} \cos(3x) dx$$

$$\Rightarrow e^{2x} \cdot \frac{1}{4} \cos(3x) = \frac{11}{4} \int e^{2x} \cos(3x) dx$$

$$\Rightarrow \int e^{2x} \cos(3x) dx = \frac{1}{14} e^{2x} \cos(3x) dx$$

$$\Rightarrow \int e^{2x} \cos(3x) dx = \frac{1}{14} e^{2x} \cos(3x) = I$$
3 Partial bruch foregung
$$I = \int \frac{P(x)}{4} dx$$
1) grad (P) \(P \) \(Q \) and (Q)
$$\Rightarrow Polynomedivision \(\frac{P(x)}{4} = a(x) + \frac{M(x)}{4} = a(x) + \frac{M(x)}{$$

4	quadrat	Terme	(-37ax+	J) - P2	iare Konj	Lonplesor
	ticlbruch 2					
	fache ree	,	1		,.	
	A1 + (-	AL Lt	+	1/K		
Kompl	eges Paer	·.				
51)						
α) $\frac{1}{7}$	$=\int \frac{3^{3}-27}{3}$	2-2-5-	27			
	ynomoliu:	-275-3				
	-2x ² -2x-2-) ; -5 -	27 -3=	+	×-27 ~2)x-2	
-3	-2x² -3× ->-					
2) Zer			st geg	e <i>he</i> n.	9 (%) = 1	75-3)(75+1)
3) PB	2:					
/	×-27 q(x)	= +	+ B 5+1)(x) = (x-3)(5+1)