COS 226	Algorithms and Data Structures	Spring 2012
	Midterm Solutions	

1. Analysis of algorithms.

(a)
$$\frac{3}{800000}N^3$$

(b)
$$N^3$$

2. Data structure and algorithm properties.

(a)	E Min height of a binary heap with N keys.	A. ~ 1
	E Max height of a binary heap with N keys.	B. $\sim \frac{1}{2} \lg N$
	C Min height of a 2-3 tree with N keys.	C. $\sim \log_3 N$
	$E\ Max$ height of a 2-3 tree with N keys.	D. $\sim \ln N$
	$E\ \mathit{Min}\ \mathrm{height}\ \mathrm{of}\ \mathrm{left}\text{-leaning}\ \mathrm{red}\text{-black}\ \mathrm{BST}\ \mathrm{with}\ N\ \mathrm{keys}.$	E. $\sim \lg N$
	$F\ Max$ height of left-leaning red-black BST with N keys.	F. $\sim 2 \lg N$
	A Min height of a weighted quick union tree with N items.	G. $\sim 2 \ln N$
	E Max height of a weighted quick union tree with N items.	H. $\sim N$

(b) insertion sort and top-down mergesort are parsimonious

Selection sort counterexample: $C\ B\ A$. The keys $B\ and\ C\ get$ compared twice, once in first iteration and once in second iteration.

Heapsort counterexample: A B C. The keys B and C get compared twice, once in the heap construction phase (when sinking A) and once in the sortdown phase (when sinking C after A and C are exchanged).

3. Data structures.

(a) • Best case: $\sim 2N$ When the array is full.

• Worst case: $\sim 8N$

When the array is one-quarter full.

	operation	description	
	<pre>charAt(int i)</pre>	return the ith character in sequence	1
(b)	deleteCharAt(int i) delete the ith character in the sequence		N
	append(char c)	append c to the end of the sequence	1
	set(int i, char c)	replace the ith character with c	1

4. 8 sorting and shuffling algorithms.

 $7\; 9\; 3\; 5\; 4\; 2\; 6\; 8$

5. Red-black BSTs.

- (a) UVWX
- (b) P S Y

		E	N	G
(c)	rotateLeft()	1	1	1
(C)	rotateRight()	0	0	3
	flipColors()	1	0	3

6. Hashing.

(b) I. Possible.

Consider the order F D B G E C A.

II. Impossible.

No key is in the correct position.

III. Impossible.

We can assume B and G were inserted first since they are in correct position. But then third key inserted is quaranteed to be in correct position.

7. Comparing two arrays of points.

- (a) Sort a [] using heapsort (using the point's natural order).
 - For each point b[j], use binary search to search for it in the sorted array a[], incrementing a counter if found.
- (b) $N \log M$.

The running time is $M \log M$ for the sort and $N \log M$ for the N binary searches. Since $N \geq M$, the latter term is the bottleneck.

(c) 1.

Both heapsort and binary search use at most a constant amount of extra space.

8. Randomized priority queue.

- sample(): Pick a random array index r (between 1 and N) and return the key a[r].
- delRandom():
 - Select: pick a random array index r (between 1 and N) and save away the key a[r], to be returned.
 - Delete: exchange a[r] and a[N] and decrement N.
 - Restore heap order invariants: call sink(r) and swim(r) to fix up any heap order violation at r. Note that a[N] in the original heap need not be the largest key, so the call to swim(r) is necessary.

```
public Key sample() {
    int r = 1 + StdRandom.uniform(N); // between 1 and N
    return a[r];
}
public Key delRandom() {
    int r = 1 + StdRandom.uniform(N); // between 1 and N
    Key key = a[r];
                                       // save away
    exch(r, N--);
                                       // to make deleting easy
    sink(r);
                                       // if a[N] was too big
                                       // if a[N] was too small
    swim(r);
    a[N+1] = null;
                                       // avoid loitering
   return key;
}
```