Linear Algebra TOTAL POINTS 5

1.Question 1 Let two matrices be

A=[4639],*B*=[-2-592]

What is A - B?

0

[21-67]

0

[411211]

0

[611-67]

0

[611-1211]

Correct

To subtract B from A, carry out the subtraction element-wise.

1 / 1 point

What is 2 * x2*x?

 $\boxed{ \boxed{ \boxed{ \boxed{ \boxed{ \boxed{ 415212} \boxed{ \boxed{ \boxed{ \boxed{ \boxed{ \boxed{ }} } } } } }}}$

[[]]164102]]]]

0

[415212]

0

[164102]

Correct

To multiply the vector x by 2, take each element of x and multiply that element by 2.

1 / 1 point

3.Question 3

Let u be a 3-dimensional vector, where specifically

$$u = [218]$$

What is $u^{\text{text}}Tu$?

0

[[812]]

0

[812]

0

[218]

0

[218]

Correct

1 / 1 point

4.Question 4

Let u and v be 3-dimensional vectors, where specifically

$$u = [[3-54]]$$

and

$$v = [125]$$

What is u^TvuTv?

(Hint: $\mathbf{u}^{\mathsf{T}}\mathbf{u}^{\mathsf{T}}$ is a

1x3 dimensional matrix, and v can also be seen as a 3x1

matrix. The answer you want can be obtained by taking

the matrix product of $\mathbf{u}^{\wedge}\mathbf{T}uT$ and $\mathbf{v}v$.) Do not add brackets to your answer.

13

Correct

1 / 1 point

5.Question 5

Let A and B be 3x3 (square) matrices. Which of the following

must necessarily hold true? Check all that apply.

$$A * B = B * AA*B=B*A$$

If C = A*BC=A*B, then C is a 6x6 matrix.

$$A + B = B + AA + B = B + A$$

Correct

We add matrices element-wise. So, this must be true.

If A is the 3x3 identity matrix, then A * B = B * AA*B=B*A

Correct

Even though matrix multiplication is not commutative in general (A*B \neq B*AA*B\neq B*A after General matrices A, BA,B), for the special case where A=IA=I, we have A*B=I*B=B and also B*A=B*I=BB*A=B*I=B. So, A*B=B*AA*B=B*A.