## Lista II de Inferência - MAE0311 (Anexos)

Guilherme NUSP: 8943160 e Leonardo NUSP: 9793436

## Questão 1

c) Os EQM's de  $T_1 = \bar{X}$  e  $T_2 = X_{(n)}$  são respectivamente:

$$EQM(T_1) = \frac{\theta^2(2n+1)}{18n}$$

$$EQM(T_2) = \frac{\theta^2}{(2n+1)(n+1)}$$

Fixando o tamanho da amostra em n=10 Seus gráficos em função de  $\theta$  são:



Fixando o valor de  $\theta = 1$  e fazendo os gráficos em função do tamanho da amostra(n), temos:



O exercício pedia apenas para fazer os gráficos dos EQM's em função de  $\theta$ , porém quando fizemos os gráficos dos dois estimadores notamos uma diferença significativa,<br/>então decidimos construir os gráficos dos EQM's fixando um valor de  $\theta$  e variando o tamanho da amostra, assim com esse conjunto de gráficos podemos concluir que o estimador  $T_2 = X_{(n)}$  é melhor, pois conforme  $\theta$  cresce o EQM cresce mais "devagar" e também inclusive quando  $n \to \infty$  EQM converge para 0.

## Questão 2

c) Supondo Que  $T_1=2\bar{X}$ e  $T_2=\frac{n+1}{n}X_{(n)}$  sejam não-viciados são respectivamente:

$$EQM(T_1) = \frac{\theta^2}{3n}$$

$$EQM(T_2) = \frac{\theta^2}{n(n+2)}$$

Fixando o tamanho da amostra em n=100 Seus gráficos em função de  $\theta$  são:



Como podemos observar, da mesma forma que ocorre com o exercício acima, o estimador  $T_2$  é melhor, pois conforme  $\theta$  cresce o EQM cresce mais "devagar", e também como o EQM dos dois estimadores quando  $n \to \infty$ , precebemos que o estimador  $T_2$  faz o EQM convergir mais rápido para 0.