Paoblem 1

For p(s', 91/5,a) the column ane s,a,s', n

Hence, from the table given, we can deduce the following: Since the newards are deterministic, probability distribution will be,

2	CL	ر2	<i>9</i> 1	p(s',715,a)
high	Search	high	Nseasch	×
high	seanch	(oω	gisearch	1-0
lo ω	Seate h	high	-3	1-3
lo w	seanch	ไอน	Nseanch	13
high	Wait	high	Nurait	1
high	wait	lo W	-	ο
low	wait	high	_	0
(0~	wait	ره ص	gravait	(
low	grechange	high	0	t
100	rechange	low	_	O

For p(s', 91/5,a) >0, we will have

2	a	2'	<i>9</i> 1	P(s', 7 / s, a)
high high low low high low	Search Search Search Gearch Grait wait recharge	high low high low high low high	Nseasch Nseasch -3 Nseasch Nweit Nweit	1-x 1-3 1

Paroblem 2

$$P(s'|s,a) = P_n \{S_{t-1} = s' | S_{t-1} = s', A_{t-1} = a\} = \underbrace{Z}_{n \in R} P(s',n|s,a)$$

$$P(s'|s,a) = E[R_t | S_{t-1} = s', A_{t-1} = a] = \underbrace{Z}_{n \in R} \underbrace{Z}_{n \in R} P(s',n|s,a)$$

We can write the 4 Bellman equations for 4 value functions $(V_{\pi}, V_{*}, 2_{\pi}, 2_{*})$ us follows:

$$V_{\pi}(S) = \mathcal{E}_{\pi} \left[G_{t} \mid S_{t} = S \right]$$

$$> V_{\pi}(g) = \underset{q \in A}{\not=} \pi(a/s) \left[g(s,a) + r \underset{s' \in S}{\not=} p(s'/s,a) V_{\pi}(s') \right]$$

$$V_{\alpha}(S) = \max_{\alpha} P_{\alpha}(S, \alpha)$$

$$= \max_{\alpha} \left(R_{S}^{\alpha} + V \not\subseteq P_{SS}^{\alpha}, V_{\alpha}(S') \right)$$

$$V_{*}(S) = \max_{\alpha} \left[g(S,\alpha) + S \not\geq p(S'/S,\alpha) V_{*}(S') \right]$$

$$2\pi(SA) = E\pi \left[G_{+} \mid S_{+} = S, A_{+} = \alpha\right]$$

$$\Rightarrow \qquad = \qquad R_{s}^{\alpha} + \chi \not \leq P_{ss'} \not \leq \pi(a'/s') g(s',a')$$

$$S'_{6}(S) = G_{4} \mid S_{+} = \alpha$$

$$\Rightarrow \begin{array}{c} g(s,a) = g(s,a) + Y \not \leq P(s'|s,a) \not \leq T(a'/s') g_{\pi}(s',a') \\ g' & g' & g' \end{array}$$

$$Q_{*}(S,\alpha) = R_{s}^{\alpha} + r \not \subseteq P_{SS}^{\alpha}, V_{*}(S')$$

$$= R_{s}^{\alpha} + r \not \subseteq P_{SS}^{\alpha}, \max_{\alpha'} Q_{*}(S',\alpha')$$