Laboratorium z kryptografii

Zajęcia 1: Szyfr Vigenere'a

1 Zasada działania algorytmu

Szyfrowanie Vigenere'a polega na podmianie kolejnych liter alfabetu (domyślnie angielskiego) na inne wg ustalonego klucza. Kluczem jest dowolne n-literowe słowo. Szyfrogram otrzymuje się poprzez "sumę" kolejnych liter tekstu i klucza. Dodatkowo do o każdej litery alfabetu można jednoznacznie przypisać liczbę, więc operacje "dodawania" liter wygodnie jest rozpatrywać jako (dla alfabetu angielskiego) operacje dodawania nad ciałem \mathbb{Z}_{26} (liczb całkowitych mod 26). Przykładowy proces szyfrowania przedstawiono w tabeli 1.

tekst: krypto
klucz: abc

szyfrogram: ksapuq

k	r	У	p	t	О		10	17	24	15	19	14
+	+	+	+	+	+		+	+	+	+	+	+
a	b	\mathbf{c}	a	b	\mathbf{c}		0	1	2	0	1	2
=	=	=	=	=	=		=	=	=	=	=	=
k	Q	а	n	11	a		10	18	0	15	20	16

Tabela 1: Przykładowy proces szyfrowania tekstu algorytmem Vigenere'a. Pierwszy wiersz oznacza szyfrowany tekst, trzeci klucz natomiast piąty otrzymany szyfrogram.

Deszyfrowanie odbywa się poprzez "odejmowanie" liter klucza od liter szyfrogramu tj. odejmowanie w \mathbb{Z}_{26} , co przykładowo przedstawiono w tabeli 2.

k ↓ 10	s ↓ 18	a ↓ 0	p ↓ 15	u ↓ 20	q ↓ 16
-	-	-	-	-	-
0	1	2	0	1	2
=	=	=	=	=	=
10 ↓ k	17 ↓ r	24 ↓ y	15 ↓ p	19 ↓ t	14 ↓ o

Tabela 2: Przykładowy proces deszyfrowania wiadomości. W pierwszym wierszu przedstawiono szyfrogram, w trzecim odpowiadające mu liczby całkowite, w piątym liczby całkowite odpowiadające literom klucza natomiast w siódmy i dziewiątym odszyfrowany tekst w postaci liczb z ciała \mathbb{Z}_{26} oraz liter alfabetu.

2 Kryptoanaliza szyfru

Wyznaczanie długości klucza.

Aby wyznaczyć długość klucza można posłużyć się indeksem koincydencji (zgodności) $I_c(\mathbf{x})$, który określa prawdopodobieństwo tego, że dwie litery tekstu \mathbf{x} są identyczne. Przyjmując, że ilość wystąpień liter a,b,...,z w tekście \mathbf{x} o długości N wynosi odpowiednio n_0, n_1, \ldots, n_{25} , indeks koincydencji definiuje się jako:

$$I_c(\mathbf{x}) = \frac{\sum_{i=0}^{25} n_i (n_i - 1)}{N(N - 1)}.$$
 (1)

Dla języka angielskiego $I_c(\mathbf{x}) \approx 0.067$ natomiast dla tekstu całkowicie losowego $I_c(\mathbf{x}) \approx 0.038$. Ponieważ szyfr Vigenere'a jedynie przesuwa kolejne litery tekstu \mathbf{x} według pewnego klucza o długości d, to \mathbf{x} można zapisać w postaci:

$$x_0$$
 x_1 x_2 ... x_{d-1}
 x_d x_{d+1} x_{d+2} ... x_{2d-1}
 x_2d x_{2d+1} x_{2d+2} ... x_{3d-1}
 \vdots \vdots \vdots \vdots \vdots \vdots

Tabela 3: Kolumnowy podział szyfrogramy na fragmenty zakodowane tą samą literą klucza.

Każda z kolumn utworzona jest przez część tekstu x, która została przesunięta tą samą literą klucza. Możliwe więc jest sprawdzenie czy podział szyfrogramu na zadaną ilość kolumn powoduje, że zapisane w poszczególnych kolumnach litery pojawiają się z prawdopodobieństwem zbliżonym do prawdopodobieństwa dla danego języka (np. angielskiego) tj. czy zachodzi:

$$I_c(x_0 x_d x_{2d}...) \approx I_c(x_1 x_{d+1} x_{2d+1}...) \approx ... \approx 0.067.$$
 (2)

Podział d najlepiej spełniający warunek (2) wyznacza długość szukanego klucza.

Uwaga! Metoda wymaga aby szyfrogram był "dostatecznie długi" a klucz "stosunkowo krótki".

Przykład

tekst: intheprinceton...

klucz: yes

szyfrogram: grlfihpmfailmr...

Podział na 2 kolumny:

nr.	szyfrogram	I_c	nr.	szyfrogram	I_c
1	glipfim	0.0459	1	gfpam	0.0654
2	$rfhmalr \dots$	0.0475	2	rimir	0.0688
			3	lhfl	0.0659

Tabela 4: Podział przykładowego szyfrogramu na dwie oraz trzy kolumny oraz wartość współczynnika koincydencji dla każdej z kolumn danego podziału.

Wyznaczanie klucza

Mając ustaloną długość klucza można podejść do próby jego złamania. Niech $n_0^0, n_1^0, \ldots, n_{25}^0$ oraz $n_0^1, n_1^1, \ldots, n_{25}^1$ określają ile razy w kolumnach (odpowiednio) $x^0 = (x_0, x_d, x_{2d}, \ldots)$ oraz $x^1 = (x_1, x_{d+1}, x_{2d+1}, \ldots)$ o długościach N^0 oraz N^1 pojawiały się znaki a,b,...,z. Wzajemnych indeksem koincydencji nazywa się wyrażenie postaci:

$$MI_c(x^0x^1) = \frac{\sum_{i=0}^{25} n_i^0 n_i^1}{N^0 N^1}.$$
 (3)

Wiedząc, że klucz jest długości d tj. składa się z liter $k=(k_0,k_1,...,k_{d-1})$, można przy wykorzystaniu wzajemnego indeksu zgodności wyznaczyć relację pomiędzy poszczególnymi parami $k_i \leftrightarrow k_j$. Jeżeli $MI_c(x^ix^j) \approx 0.067$ to $k_i=k_j$. Jeżeli nie to należy przesuwać wszystkie dolne indeksy ciągu x^j o jeden (tj. $x_0^j \to x_1^j$ itd.) aż do uzyskania odpowiedniej wartości MI_c . Metoda ta pozwala na wyznaczenie przesunięć $y=(y_1,y_2,...,y_{d-1})$ między poszczególnymi literami klucza np.:

$$(k_0, k_1, ..., k_{d-1}) = (k_0, k_0 + y_1, k_0 + y_2, ..., k_0 + y_{d-1}).$$

$$(4)$$

Aby odczytać klucz (znaleźć k_1) należy próbować deszyfrować szyfrogram przy pomocy kolejnych k_1 , do momentu kiedy tekst jest sensowny.

Uwaga! Dobrze jest wyznaczyć wzajemne indeksy zgodności dla wszystkich kombinacji par kolumn $x^i \leftrightarrow x^j$ bo w zależności od tekstu nie musi być tak że akurat pary $x^1 \leftrightarrow x^j$ dadzą poprawne rozwiązanie. Kontynuując przykład:

$$MI_c(x^0x^1) = 0.0366$$

 $MI_c(x^0x^1_{+1}) = 0.0305$
 \vdots
 $MI_c(x^0x^1_{+6}) = 0.0650,$

gdzie dolny indeks "+i" oznacza przesuniecie kolejnych częstości występowania liter w kolumnie x^1 tzn wyznacza y_1 .

3 ZADANIA

- 1. Napisać program szyfrujący, tekst do szyfrowania ma pochodzić z pliku, klucz ustawić można w programie.
- 2. Napisać program, który wyznacza długość klucza (tekst w języku angielskim) i podaje wzajeumne indeksy zgodności pomiędzy wszystkimi literami klucza. Uwaga: Nie trzeba wyznaczać relacji między literami klucza typu $y = (y_1, y_2, \dots y_{d-1})$.

Punktacja - łącznie 10 punktów

- 3 punkty prawidłowo działająca pierwsza część zadania, czyli wczytanie tekstu z pliku i zaszyfrowanie go oraz wpisanie zaszyfrowanego tekstu do pliku.
- 3 punkty wczytanie zaszyfrowanego tekstu z pliku i obliczenie indeksu zgodności dla zadanego przez użytkownika podziału na kolumny
- 4 punkty dla zadanej przez użytkownika ilości kolumn obliczenie wzajemnego indeksu zgodności między wszystkimi kolumnami.