Rosetta 软件基本用法中文指导书

西南交通大学经管学院 刘盾博士

1. 数据的读入

Sheet1\$						
	絶区GDP	房屋价格	収工平均收入	城市人口	房地产总投资额	Dec
1	A	A	A	A	Á	1
2	D	С	E	С	D	4
3	D	В	В	E	E	2
4	D	D	E	D	С	4
5	В	D	В	С	С	2
6	В	В	D	В	В	3
7	E	D	F	E	E	5
8	E	E	E	D	E	4
9	D	D	E	D	D	4
10	С	E	E	С	D	4
11	С	D	E	В	С	4
12	D	D	E	D	D	4
13	С	С	D	С	С	3
14	D	E	E	E	D	4
15	D	E	F	В	В	5
16	E	В	E	F	F	4
17	E	F	F	E	F	5
18	D	E	Е	D	E	3

2.数据的补齐

3.数据的离散化

4.数据的约简

利用遗传算法得到的约简:

Reduct	Support	Length	
{地区GDP,城市人口,房地产总投资额}	100	3	
{她区GDP,房屋价格,房地产总投资额}	100	3	
{鲍区GDP,房屋价格,城市人口}	100	3	
{鲍区GDP, 职工平均收入, 房地产总投资额}	100	3	`

核:所有约简的交

利用 Johnson 算法得到的约简:

Reduct			Support	Length
{绝区GDP,	房屋价格。	城市人口}	100	3

5. 上下近似集的计算

等价类的获取:

上下近似集的获取:

No I	name				×
	Universe	Upper	Lower	Boundary	Outside
1	{1}	{2}	{2}		{1}
2	{2}	{9, 12}	[9, 12]		[3]
3	{3}	{4}	[4]		[18]
4	[9, 12]	{14}	[14]		{15}
5	{4}	{16}	{16}		{e}
6	[14]	{8}	{8}		{5 }
7	[18]	{11}	[11]		{7}
8	{15}	{10}	{ <u>10}</u>		{17}
9	{6}			:+1	[13]
10	{5}	一	13, 1	— 边— 界— 域—	-
11	{16}	- 近-	近	二章	负
12	{7}	似集	似集	项	域
13	{8}	集	集		
14	{17}				
15	[13]				
16	{11}				
17	{10}				

6. 规则生成

Option	Remove if
RHS Support	$l \le support(\alpha \cdot (d = v)) \le u$
RHS Accuracy	$1 \leq accuracy(\alpha \rightarrow (d = v)) \leq u$
RHS Coverage	$1 \leq coverage(\alpha \rightarrow (d = v)) \leq u$
RHS Stability	$1 \le stability(\alpha \to (d=v)) \le u$
Decision	v = v'
LHS Length	$l \leq length(\alpha) \leq u$
Condition	$(a = v')$ occurs in α

LHS:Left hand side,左边 RHS:Right hand side,右边

RHS Support RHS Accuracy RHS Coverage RHS Stability LHS Length RHS Length 地区GDP(A) AND 房屋价格(A) AND 城市人□(A) => Dec(1) 地区GDP(D) AND 房屋价格(C) AND 城市人口(C) => Dec(4) 地区GDP(D) AND 房屋价格(B) AND 城市人口(E) => Dec(2) 1.0 0.111111 1.0 地区GDP(D) AND 房屋价格(D) AND 城市人口(D) => Dec(4) 地区GDP(B) AND 房屋价格(D) AND 城市人口(C) => Dec(2) 0. 333333 1.0 0.5 1.0 地区CDP(B) AND 房屋が格(D) AND 城市人口(B) => Dec(3) 地区CDP(B) AND 房屋が格(B) AND 城市人口(B) => Dec(3) 地区CDP(B) AND 房屋が格(D) AND 城市人口(B) => Dec(4) 地区CDP(C) AND 房屋が格(E) AND 城市人口(B) => Dec(4) 地区CDP(C) AND 房屋が格(D) AND 城市人口(B) => Dec(4) 0.333333 1.0 0.333333 1.0 0.111111 1 0 0 111111 1.0 0.111111 地区GDF(D) AND 房屋价格(E) AND 城市人口(E) => Dec(3) 地区GDF(D) AND 房屋价格(E) AND 城市人口(E) => Dec(4) 地区GDF(D) AND 房屋价格(E) AND 城市人口(E) => Dec(4) 地区GDF(E) AND 房屋价格(B) AND 城市人口(F) => Dec(4) 1.0 0.333333 1.0 0.111111 1.0 1.0 0.333333 0.111111 1.0 地区GDP(E) AND 房屋价格(F) AND 城市人口(E) => Dec(5) 地区GDP(D) AND 房屋价格(E) AND 城市人口(D) => Dec(3) 0.333333 1.0 0.333333 1.0 | 短区GDF(D) AND 房屋价格(E) AND 城市人口(D) => Dec(3) | 短区GDF(A) AND 収工平均收入(A) AND 房地产总投资源(A) => Dec(4) | 地区GDF(D) AND 収工平均收入(B) AND 房地产总投资源(B) => Dec(4) | 地区GDF(D) AND 収工平均收入(B) AND 房地产总投资源(B) => Dec(2) | 地区GDF(B) AND 収工平均收入(B) AND 房地产总投资源(C) => Dec(2) | 地区GDF(B) AND 収工平均收入(B) AND 房地产总投资源(C) => Dec(4) | 地区GDF(B) AND 収工平均收入(D) AND 房地产总投资源(B) => Dec(3) | 地区GDF(B) AND 収工平均收入(D) AND 房地产总投资源(B) => Dec(3) | 地区GDF(C) AND 収工平均收入(C) AND 房地产总投资源(B) => Dec(4) | 地区GDF(C) AND 収工平均收入(C) AND 房地产总投资源(B) => Dec(4) | 地区GDF(C) AND 収工平均收入(C) AND 房地产总投资源(D) => Dec(4) | 地区GDF(C) AND 収工平均收入(C) AND 原地产总投资源(D) => Dec(4) | 地区GDF(C) AND 収工平均收入(C) AND 原地产总投资源(D) => Dec(4) | 地区GDF(D) AND 収工平均收入(D) AND 成业产品投资源(D) => Dec(4) | 地区GDF(D) AND 収工平均收入(D) AND 成业产品投资源(D) => Dec(4) | 地区GDF(D) AND 収工平均收入(D) AND 成业产品投资源(D) => Dec(4) | 地区GDF(D) AND 収工平均收入(D) AND 风速产品投资源(D) => Dec(4) | 地区GDF(D) AND 収工平均收入(D) AND 风速产品投资源(D) => Dec(4) | 地区GDF(D) AND 风工平均收入(D) AND 风速产品投资源(D) => Dec(4) | 地区GDF(D) AND 风工采货源(D) == Dec(4) | 地区 0.444444 1.0 1.0 1.0 0.111111 1.0 0. 333333 1.0 1.0 0.333333 1.0 1.0 0.111111 1.0 0.111111 蛇区GDP(C) AND 职工平均收入(E) AND 房蛇产总投资额(C) ⇒ Dec(4) 1

规则的挑选:

7. 其他功能

导出 C++程序:

```
Undefined
// The header (.h) file starts here.
//-----
// Classifier generated by ROSETTA.
// Exported 2007.06.26 13:22:30 by Administrator.
// No name
// 65 rules.
#ifndef __CLASSIFIER_EXPORTED_FROM_ROSETTA_H__
#define __CLASSIFIER_EXPORTED_FROM_ROSETTA_H_
// Class..... ROSETTAObject
// Author.....: Aleksander 豩rn
// Date..... 2007.06.26 13:22:30
// Description...: An object input to a ROSETTAClassifier.
//
               For a legend to the encoding of slots for the
11
              symbolic attributes, see the Lookup methods.
//-----
class ROSETTAObject {
public:
 // Variable slots....
                  .....
          地区GDP;
          房屋价格;
 int
          职工平均收入;
 int
          城市人口;
 int
          房地产总投资额;
 int
 // Dictionary lookup methods.....
 static int Lookup地区GDP(const char *text);
 static int Lookup房屋价格(const char *text);
 static int Lookup职工平均收入(const char *text);
 static int Lookup城市人口(const char *text);
 static int Lookup房地产总投资额(const char *text);
);
```

文件保存:

