

Moto in un fluido denso

Alberto Mazzarotto

novembre 2020

Introduzione

Come ben sappiamo dalla II legge del caro vecchio Newton F = ma, anche se questa legge è molto comoda per studiare il moto di un corpo a volte non è sufficiente per avere una sua rappresentazione realistica da un punto di vista matematico. Se da un'analisi newtoniana del moto di caduta libera¹, usando l'equazione (1), di una gocciolina di pioggia sembrerebbe che essa possa raggiungere velocità elevatissime sperimentalmente notiamo che non è così: la velocità non supera mai una certa soglia e l'accelerazione non è uniforme.

$$s(t) = s_0 + vt + \frac{1}{2}at^2 \tag{1}$$

Per rappresentare in maniera più accurata il moto di un oggetto attraverso un fluido dobbiamo considerare altri due principi fondamentali: il principio di Archimede, che ci dice che un fluido fornisce una spinta verticale ad un oggetto pari al peso del volume spostato, e la legge di Stokes che ci dice che un oggetto che si muove attraverso un fluido risente di una forza di attrito proporzionale alla sua velocità. Queste due nuove considerazioni sono riassunte nelle seguenti equazioni:

$$F_a = -V_{sfera} \rho_{fluido} \vec{g} \tag{2}$$

$$F_s = -b\vec{v} \tag{3}$$

L'analisi di questo tipo di moto verrà fatta in due passaggi; come prima cosa affronterò il problema da un punto di vista puramente teorico e, una volta trovata l'equazione del moto, confronterò i dati empirici misurati in laboratorio con le formule.

¹Si tratta di un moto uniformemente accelerato.

Contenuti

ln	trodi	uzione	i
1.	PAI	RTE TEORICA	1
	11	Cenni preliminari	1
	12	Analisi	2
2.	PAI	RTE PRATICA	4
	21	Materiali e descrizione	4
	22	Definizioni preliminari	6
	23	Risoluzione generale	6
3.	AN	ALISI DATI	8
	31	Grafico finale	8
	32	Conclusione	9
4.	TAI	BELLE DATI	10
	41	Rilevazione 1	10
	42	Rilevazione 2	11
	43	Rilevazione 3	12
	44	Rilevazione 4	13
	45	Rilevazione 5	14
	46	Bonus	14
	47	Risorse utilizzate	15
	48	Risorse finite	15
$\mathbf{F}^{:}$	igur	${f e}$	
	1	Materiali	4
	2	Grafico complessivo	8
	3	Confronto dati	9

1. PARTE TEORICA

1..1 Cenni preliminari

La situazione che prendiamo in considerazione è la seguente: una sfera di cui ci è noto diametro e densità si muove all'interno di un fluido con densità conosciuta. Calcolare la velocità v a cui si muove la sfera nel generico istante di tempo t. Supponiamo che nell'istante $t_0=0$ la pallina si muova con velocità v_0 .

Nomenclatura preliminare

variabile	u.d.m.	descrizione
ϕ_{sfera}	m	diametro sfera
$ ho_{sfera}$	kg/m^3	densità sfera
V	m^3	volume sfera
m	kg	massa sfera
$ ho_{fluido}$	kg/m^3	densità fluido
F_p	N	forza peso
F_{pf}	N	forza peso nel fluido
F_a	N	forza di Archimede
F_s	N	attrito di Stokes
g	m/s^2	accelerazione gravità
b	kg/s	coefficiente di attrito

Peso di un oggetto in un fluido

Usando Newton e il principio di Archimede posso ricavare il peso di un corpo in un fluido.

$$F_{pf} = mg - V \rho_{fluido} g$$

$$= V \rho_{corpo} g - V \rho_{fluido} g$$

$$= V g (\rho_{sfera} - \rho_{fluido})$$
(4)

1..2 Analisi

Partiamo con il trovare la risultante delle forze che agiscono sulla nostra sfera che sono forza peso, spinta di Archimede e attrito esercitato dal fluido.

$$\vec{R} = \vec{F_p} + \vec{F_a} + \vec{F_s} \tag{5}$$

Essendo il moto uni-direzionale assegno alla direzione di g verso positivo². Sostituisco nell'equazione (4) la (2) e la (3) tenendo conto dei versi dei vettori.

$$R = F_p - F_a - F_s$$

$$= mg - V \rho_{fluido} g - bv$$
(6)

Ricordandoci che $m = V \rho_{sfera}$ e che, per la II legge di Newton R = ma, risolvo l'equazione per a. Uso anche l'equazione (4).

$$ma = mg - V\rho_{fluido} g - bv$$

$$= V\rho_{sfera} g - V\rho_{fluido} g - bv$$

$$= Vg(\rho_{sfera} - \rho_{fluido}) - bv$$

$$= F_{pf} - bv$$

$$a = \frac{F_{pf} - bv}{m}$$

$$a = \frac{b}{m} \left(\frac{F_{pf}}{b} - v\right)$$

$$(7)$$

Possiamo notare ora che $\left[\frac{b}{m}\right] = \frac{1}{s}$, è dunque una frequenza che chiamo $\frac{1}{T}$, e che $\left[\frac{F_{pf}}{b}\right] = \frac{m}{s}$ è quindi una velocità che chiamo v_l . Riscrivendo l'equazione (7) tenendo conto della nuova nomenclatura ottengo una formula molto carina:

$$a = \frac{1}{\mathcal{T}} \left(v_l - v \right) \tag{8}$$

²La direzione verso il basso per intenderci.

Ma a non è altro che la derivata di v rispetto al tempo, mi trovo dunque di fronte ad un equazione differenziale che sono in grado di risolvere usando gli integrali.

$$a = \frac{1}{\mathcal{T}} (v_l - v)$$

$$\frac{a}{v_l - v} = \frac{1}{\mathcal{T}}$$

$$\int \frac{a}{v_l - v} dt = \int \frac{1}{\mathcal{T}} dt$$

$$\int \frac{dv}{v_l - v} \frac{dt}{dt} = \int \frac{1}{\mathcal{T}} dt$$

$$-\log|v_l - v| = \frac{1}{\mathcal{T}} t + C$$

$$\log|v_l - v| = -\frac{1}{\mathcal{T}} t + C$$

$$(9)$$

Supponendo ora che $v < v_l$ possiamo togliere il valore assoluto e applicare l'esponenziale.

$$\log(v_l - v) = -\frac{1}{\mathcal{T}}t$$

$$v_l - v = e^{-\frac{1}{\mathcal{T}}t + C}$$

$$v = v_l - e^{-\frac{1}{\mathcal{T}}t}e^C$$

$$v(t) = v_l - C'e^{-\frac{1}{\mathcal{T}}t}$$
(10)

Abbiamo finalmente ricavato l'equazione della velocità, per trovare C' dobbiamo utilizzare le condizioni iniziali che si trovano nei cenni preliminari all'inizio di questo capitolo.

$$\begin{cases} v_0 = v_l - C' \\ C' = v_0 - v_l \end{cases} \Rightarrow v(t) = v_l - (v_0 - v_l)e^{-\frac{1}{\tau}t}$$
(11)

Se $v_0 = 0$ trovo la seguente formula e ho finito:

$$v(t) = v_l - v_l e^{-\frac{1}{\tau}t}$$

$$= v_l (1 - e^{-\frac{1}{\tau}t})$$
(12)

2. PARTE PRATICA

2...1 Materiali e descrizione

L'esperimento consiste nel lasciar cadere una sferetta, in questo caso di metallo, all'interno di un fluido e annotare coppie di valori empirici velocità-tempo confrontandoli con quelli teorici ricavati dalla formula trovata nella sezione precedente. Sinceramente non sono molto soddisfatto degli esperimenti fatti perché il tempo di caduta è troppo breve e questo causa un errore grossolano sia sul rilevamento dei tempi che sull'affidabilità dei valori. Il problema è dovuto al fatto che avrei dovuto scegliere una sferetta di raggio minore (ma non ne avevo in casa), questo perché l'attrito del fluido non è solo proporzionale alla velocità della sfera, ma anche al suo raggio; la legge di Stokes completa per una sfera è infatti:

$$F_s = -6\pi\mu rv\tag{13}$$

mentre la sua forza antagonista, $F_p f$ è proporzionale al volume che va come r^3 quindi, per r grandi, la forza peso vince³ e la sferetta cade svelta. Per limitare i danni ho fatto le riprese a rallentatore per aumentare la precisione delle misure.

Lista materiali

- Cilindro graduato.
- Righello.
- Sferetta di metallo.
- Olio di semi.
- Elastici.
- Bilancia.
- Magneti (opzionale).

Figure 1: Materiali 3È simile al rapporto che c'è tra superficie e volume delle cellule: il motivo per cui non abbiamo poche cellule grandi ma tante cellule piccole è che gli scambi chimici avvengono sulla superficie e il rapporto tra superficie e volume non può essere troppo piccolo altrimenti la cellula morirebbe. In una sfera (la nostra cellula) $V \propto R^3$, mentre $S \propto R^2$ ne segue che $S/V \propto 1/R$ e quindi se R cresce troppo la cellula non ha sufficienti scambi per poter stare in vita.

Un altro problema che ho riscontrato riguarda il timer del telefono che sembra non essere affidabile per quanto riguarda i centesimi di secondo.

Per diminuire l'errore sui dati ho deciso, visto gli strumenti digitali a disposizione, di aggiungere alle riprese una barra orizzontale che ho mappato in modo tale che fosse sempre al centro della mia sfera. Supponendo trascurabile la distorsione delle distanze prodotte dall'inclinazione della fotocamera⁴ posso utilizzare la posizione in pixel della barra per ricavare una posizione approssimata della sfera nel cilindro. Un ragionamento analogo posso farlo per il tempo: essendo il timer del telefono poco preciso mi affido ai frame del video come unità di misura del tempo. Non posso ricondurmi ad una misura in secondi utilizzando il direttamente framerate per risalire al tempo poichè il video è a rallentatore, devo applicare lo stesso ragionamento della posizione dando per buoni $T_{cronometro}$ iniziale e $T_{cronometro}$ finale.

Per questo motivo, nelle misurazioni effettuate sono presenti solo le posizioni di spazio e di tempo, fatte rispettivamete in cm e s, relative al primo e l'ultimo istante del moto: sono sufficienti a calcolare Δs e Δt da cui ricavo la posizione e tempo usando (16) e (17).

Un dettaglio importante da sapere è la tecnica di tracking utilizzata⁵: fissati due istanti nel tempo, chiamati keyframe, e nello spazio in pixel, il software fa un'interpolazione lineare tra le posizioni nell'intervallo di tempo. Il moto della barra che ne risulta è rettilineo uniforme, ovvero a velocità costante. Interpolando le posizioni di istanti di tempo vicini abbastanza vicini posso approssimare il moto della pallina in maniera discreta; è una sorta di analisi infinitesimale fatta in maniera dinamica poiché l'intervallo dt su cui viene applicata l'approssimazione non è fisso ma varia a seconda di un errore...

Più avanti ci sarà un approfondimento in merito in quanto conduce a delle osservazioni interessanti.

⁴Anche se ho avuto cura di posizionare il telefono in modo tale da rendere la normale alla camera più possibile parallela al terreno per limitare questo effetto nulla nella vita è perfetto.

⁵Devo dire molto rozza, ma ha adempiuto il suo compito.

2..2 Definizioni preliminari

Definiamo in questo modo gli intervalli di tempo e di spazio:

$$\Delta s = |s_{finale} - s_{iniziale}| \tag{14}$$

$$\Delta pxl = |pxl_{finale} - pxl_{iniziale}| \tag{15}$$

L'equazione generale che lega la posizione in pixel nel video della palla alla sua posizione reale in cm è:

$$s(pxl) = s_0 - \frac{\Delta s}{\Delta pxl} \cdot \delta_{pxl} \tag{16}$$

mentre per il tempo si avrà:

$$t(frame) = t_0 + \frac{\Delta t}{\Delta frame} \cdot \delta_{frame}$$
 (17)

2...3 Risoluzione generale

Prendendo come parametri noti i seguenti:

variabile	u.d.m.	descrizione
r	kg	raggio sfera
$ ho_{sfera}$	kg/m^3	densità sfera
m_{fluido}	kg	massa fluido
V_{fluido}	m^3	volume fluido
g	m/s^2	accelerazione gravità

Ricavo i dati mancanti in questo modo, facendo riferimento ai valori della Table 1:

$$\rho_{fluido} = \frac{m_{fluido}}{V_{fluido}} = \frac{2.27 \cdot 10^{-1}}{2.5 \cdot 10^{-4}} = 908 \quad \left[\frac{kg}{m^3}\right]$$

Ricavando v_l sperimentalmente so che quando $v=v_l\Rightarrow R=0$ nell'equazione (6). Posso quindi ricavare b e trovare l'equazione del moto sostituendo i parametri nell'equazione (12), ricordandomi che $\frac{b}{m}=\frac{1}{T}$:

$$R = mg - V \rho_{fluido} g - bv$$

$$0 = mg - V \rho_{fluido} g - bv_l$$

$$b = \frac{mg - V \rho_{fluido}}{v_l}$$
(18)

L'equazione teorica della velocità è quindi:

$$v(t) = v_l - v_l e^{-\frac{1}{\tau}t}$$

$$= v_l (1 - e^{-\frac{1}{\tau}t})$$

$$= v_l (1 - e^{-\frac{bt}{m}})$$
(19)

Si procede ora con l'analisi dei dati vera e propria.

3. ANALISI DATI

variabile	misura	errore	u.d.m.	descrizione
ϕ_{sfera}	$1.2 \cdot 10^{-2}$	±0.001	m	diametro sfera
$ ho_{sfera}$	7800		kg/m^3	densità sfera
V	$9 \cdot 10^{-7}$		m^3	volume sfera
M	$8 \cdot 10^{-3}$	± 0.001	kg	massa sfera misurata
m	$7.02 \cdot 10^{-3}$		kg	massa sfera teorica
V_{fluido}	$2.5 \cdot 10^{-4}$		m^3	volume fluido
m_{fluido}	$2.27 \cdot 10^{-1}$	± 0.001	kg	massa fluido
$ ho_{fluido}$	908		kg/m^3	densità fluido

Table 1: Dati empirici

3..1 Grafico finale

Con i dati a disposizione si può approssimare la velocità istantanea della sfera alla sua velocità media in un intervallo di tempo dt mediante l'uso della seguente formula:

$$v_m = \frac{ds}{dt} = \frac{s_f - s_i}{t_f - t_i}$$

Una volta calcolata la velocità posso poi tracciare il grafico del suo andamento nel tempo. Si può ora ricavare il valore medio di v_l , supponendo v_{li} di ciascuna misurazione l'ultimo valore calcolato⁶:

$$v_l = \frac{v_{l1} + v_{l2} + v_{l3} + v_{l4}}{4} = 0.833 \quad \left[\frac{m}{s}\right]$$

⁶Ho però scartato i dati relativi alla Rilevazione 3 poichè erano totalmente fuoli media nell'ultimo tratto.

Posso ora calcolare il valore teorico di b usando l'equazione (18). Avendo ottenuto b si può ora trovare l'equazione del moto.

$$b = \frac{mg - V\rho_{fluido}}{v_l} = 0.0816 \quad \left[\frac{kg}{s}\right]$$

3..2 Conclusione

Attraverso un programma disegno l'andamento teorico del grafico e lo confronto con i valori misurati, anche se i valori sembrano rientrare tutti nella media mi sarebbe piaciuto avere delle misurazioni in un intervallo di tempo più ampio per avere dei dati con una variazione un po' maggiore. Dai dati a disposizione si può notare una corrispondenza tra i valori attesi e le misurazioni empiriche, anche se penso sia necessario un campo dati fatto su un intervallo di tempo maggiore.

Figure 3: Confronto dati

4. TABELLE DATI

4..1 Rilevazione 1

frame	pixel	t(s)	s(cm)	v(cm/s)
0	493	3.52	22	0
10	494	3.56184	21.9612	0.927625
20	502	3.60367	21.6507	7.42096
30	534	3.64551	20.4088	29.6839
40	582	3.68735	18.546	44.5258
50	644	3.72918	16.1399	57.5125
60	714	3.77102	13.4233	64.9335
70	794	3.81286	10.3186	74.2097
80	882	3.85469	6.90343	81.6307
90	973	3.89653	3.37184	84.4136
98	1047	3.93	0.5	85.8049

	misura	u.d.m
Δt	0.41	S
Δs	21.5	cm
Δpxl	554	pixel
$\Delta frame$	98	pixel

4..2 Rilevazione 2

frame	pixel	t(s)	s(cm)	v(cm/s)
0	488	2.41	21.3	0
10	491	2.45316	21.1872	2.61456
20	507	2.49632	20.5854	13.9443
30	543	2.53947	19.2313	31.3748
40	594	2.58263	17.313	44.4477
50	656	2.62579	14.981	54.0344
60	728	2.66895	12.2729	62.7493
70	817	2.71211	8.92532	77.5655
80	906	2.75526	5.57776	77.5655
90	996	2.79842	2.19258	78.437
95	1041	2.82	0.5	78.4366

	misura	u.d.m
Δt	0.41	S
Δs	20.8	cm
Δpxl	553	pixel
$\Delta frame$	95	pixel

4..3 Rilevazione 3

frame	pixel	t(s)	s(cm)	v(cm/s)
0	486	2.23	22.1	0
10	493	2.27176	21.8276	6.52403
20	522	2.31352	20.6989	27.0283
30	564	2.35527	19.0643	39.1442
40	623	2.39703	16.7681	54.9883
50	693	2.43879	14.0438	65.2403
60	769	2.48055	11.0859	70.8327
70	857	2.52231	7.66108	82.0164
80	948	2.56407	4.11946	84.8124
90	1040	2.60582	0.538919	85.7449
91	1041	2.61	0.5	9.32001

	misura	u.d.m
Δt	0.38	s
Δs	21.6	cm
Δpxl	555	pixel
$\Delta frame$	91	pixel

4..4 Rilevazione 4

frame	pixel	t(s)	s(cm)	v(cm/s)
0	493	1.83	22	0
10	497	1.87211	21.842	3.75179
20	515	1.91421	21.1312	16.8832
30	549	1.95632	19.7884	31.8903
40	599	1.99842	17.8138	46.8977
50	661	2.04053	15.3652	58.153
60	734	2.08263	12.4822	68.4707
70	820	2.12474	9.08587	80.6641
80	910	2.16684	5.53152	84.4154
90	1000	2.20895	1.97717	84.4159
95	1045	2.23	0.2	84.4159

	misura	u.d.m
Δt	0.40	s
Δs	21.8	cm
Δpxl	552	pixel
$\Delta frame$	95	pixel

4..5 Rilevazione 5

frame	pixel	t(s)	s(cm)	v(cm/s)
0	498	1.7	21.8	0
10	501	1.74227	21.6809	2.81815
20	514	1.78454	21.1647	12.212
30	550	1.8268	19.7353	33.8178
40	596	1.86907	17.9088	43.2116
50	650	1.91134	15.7647	50.7268
60	721	1.95361	12.9456	66.6962
70	805	1.99588	9.61029	78.9082
80	889	2.03814	6.275	78.9084
90	979	2.08041	2.70147	84.544
97	1042	2.11	0.2	84.5448

	misura	u.d.m
Δt	0.41	s
Δs	21.6	cm
Δpxl	544	pixel
$\Delta frame$	97	pixel

4..6 Bonus

Oltre ai dati relativi alle misurazioni ho voluto includere anche delle immagini in cui si può vedere il software con il quale è stato realizzato il tracking. Come prima cosa ho supposto che il moto fosse solo rettilineo uniforme tra la posizione spazio-temporale iniziale e quella finale: interpolazione semplice realizzata con 2 soli keyframe. Ho poi aggiunto i successivi keyframe di interpolazione basandomi su un criterio di errore: quando la barra aveva distanza dal centro della sfera maggiore del raggio aggiungevo un punto nuovo per *correggere il tiro*.

Si può notare come, con il passare del tempo in ogni misurazione effettuata, la densità di keyframe diminuisce, questo significa che il moto della sfera può essere approssimato con uno a velocità costante con precisione sempre maggiore a mano a mano che il tempo passa. Questa è un ulteriore conferma dell'ipotesti iniziale.

4..7 Risorse utilizzate

- Atom: editor di testo "hackerabile", usato come ide per la programmazione in c++ e python. "https://atom.io/".
- ullet KdenLive: software usato per il montaggio video. "https://kdenlive.org/it/".
- Krita: disegno e manipolazione di immagini digitali. "https://krita.org/en/".
- Overleaf: come Word, ma meglio. "https://it.overleaf.com".

4..8 Risorse finite

• Pazienza.