

Lecture #1

Response of First-Order RL and RC Circuits

Chapter #7

Text book: Electric Circuits

James W. Nilsson & Susan A. Riedel

9th Edition.

link: http://blackboard.hcmiu.edu.vn/

to download materials

Courses Overview – for EE students

Objectives

- Be able to determine the natural response of both RL and RC circuits.
- Be able to determine the step response of both RL and RC circuits.
- Know how to analyze circuits with sequential switching.

Outlines

- The natural response of an RL circuit & an RC circuit
- The step response of RL & RC circuits
- Sequential switching
- Unbounded response

Overview

Ch9-10 discuss "steady-state response" of linear circuits to "sinusoidal sources". The math treatment is the same as the "dc response" except for introducing "phasors" and "impedances" in the algebraic equations.

❖ From now on, we will discuss "transient response" of linear circuits to "step sources" (Ch7-8) and general "time-varying sources" (Ch12-13). The math treatment involves with differential equations and Laplace transform.

First order circuits

A circuit that can be simplified to a Thévenin (or Norton) equivalent connected to either a single equivalent inductor or capacitor.

In Ch7, the source is either none (natural response) or step source.

Key points

- Why an RC or RL circuit is charged or discharged as an exponential function of time?
- Why the charging and discharging speed of an RC or RL circuit is determined by RC or L/R?
- What could happen when an energy-storing element (C or L) is connected to a circuit with dependent source?

- Differential equation & solution of a discharging RL circuit.
- > Time constant
- Discharging RC circuit

The natural response of an RL circuit

What is natural response?

- ✓ It describes the "discharging" of inductors or capacitors via a circuit of no dependent source.
- ✓ No external source is involved, thus termed as "natural" response.
- ✓ The effect will vanish as t → ∞. The interval within which the natural response matters depends on the element parameters.

Circuit model of a discharging RL circuit

Consider the following circuit model:

- For t < 0, the inductor L is short and carries a current I_s, while R₀ and R carry no current.
- For t > 0, the inductor current decreases and the energy is dissipated via R.

The natural response of an RL circuit

The switch is closed for a long time and opened at t = 0

$$t \le 0$$
 \longrightarrow $\frac{di}{dt} = 0$ \longrightarrow $v = 0$ (short circuit)

All the source current I_0 appears in the inductive branch

$$\underline{t \ge 0}$$
 Apply KVL:

$$L\frac{di}{dt} + Ri = 0$$

<u>t ≥ 0</u> Apply KVL: $L\frac{di}{dt} + Ri = 0$ (1st order differential equation)

Ordinary differential equation (ODE)

Solving the loop current:
$$L \frac{di}{dt} = -Ri - \frac{di}{i} = -\frac{R}{L} dt$$

$$\int_{i(t_o)}^{i(t)} \frac{di}{i} = -\frac{R}{L} \int_{t_o}^{t} dt \longrightarrow \ln \left(\frac{i(t)}{i(0)}\right) = -\frac{R}{L}t \longrightarrow i(t) = i(0)e^{\frac{R}{L}t}$$

Spring 2019

Initial condition depends on initial energy of the inductor:

$$i(0^{-}) = i(0^{+}) = I_0$$

$$i(t) = I_0 e^{-(R/L)t} t \ge 0$$

The voltage across the resistor using Ohm's law

$$v = iR = I_0 \operatorname{Re}^{-(R/L)t} \qquad t \ge 0^+$$

$$v(0^-) = 0 \qquad v(0^+) = I_0 R$$

The power dissipated in the resistor

$$p = iv = I_0^2 \text{ Re}^{-2(R/L)t}$$
 $t \ge 0^+$

The energy delivered to the resistor during any interval of time after the switch has been opened

$$w = \int_{0}^{t} p dt = I_{o}^{2} R \int_{0}^{t} e^{-2\frac{R}{L}t} dt = I_{o}^{2} R \frac{e^{-2\frac{R}{L}t}}{\frac{-2R}{L}}$$

$$w = \frac{1}{2} L I_o^2 \left(1 - e^{-2\frac{R}{L}t} \right) \qquad t \ge 0$$

The time constant (τ)

The time constant is the coefficient of time (t)

$$\tau = \frac{L}{R}$$
 (seconds)

$$i = I_o e^{-\frac{t}{t}} \qquad t \ge 0$$

$$v = iR = I_o Re^{-\frac{t}{\tau}}$$
 $t \ge 0^+$

$$p = iv = I_o^2 Re^{-2\frac{t}{\tau}} \qquad t \ge 0^+$$

$$w = \frac{1}{2}LI_o^2 \left(1 - e^{-2\frac{t}{\tau}} \right) \quad t \ge 0$$

$$w_0 = LI_0^2/2$$

initial energy stored in L

"One time constant after the inductor had begun to release its stored energy to the resistor, the current has been reduced to e-1, or approximately 0.37 of its initial value."

"Long time implies that five or more time constants have elapsed."

■ Steady State Response

t	$e^{-\iota/ au}$	t	$e^{-\iota/ au}$
au	3.6788×10^{-1}	6τ	2.4788×10^{-3}
2τ	1.3534×10^{-1}	7τ	9.1188×10^{-4}
3τ	4.9787×10^{-2}	8τ	3.3546×10^{-4}
4τ	1.8316×10^{-2}	9τ	1.2341×10^{-4}
5 au	6.7379×10^{-3}	10τ	4.5400×10^{-5}

Mai Linh

If i(t) is approximated by a linear function, it will vanish in one time constant.

Interpretation of the time constant of the RL circuit when $\tau = t \rightarrow i = I_0$

- Find the equivalent circuit.
- 2. Find the initial conditions: initial current I_0 through the equivalent inductor, or initial voltage V_0 across the equivalent capacitor.
- 3. Find the time constant of the circuit by the values of the equivalent R, L, C:

$$\tau = L/R$$
, or RC ;

4. Directly write down the solutions:

$$i(t) = I_0 e^{-(t/\tau)}, \ v(t) = V_0 e^{-(t/\tau)}.$$

Example 1

- The switch in the circuit has been closed for a long time before it is opened at t=0. Find:
 - a) i_L(t) for t≥0.
 - b) i_o(t) for t≥0+.
 - v_o(t) for t≥0+.
 - d) The percentage of the total energy stored in the 2 H inductor that is dissipated in the 10 Ω resistor.

Example 1 - Solution

a) The switch has been closed for a long time prior to t=0, so we know the voltage across the inductor

Example 1 – Solution (cont)

$$i = I_o e^{-\frac{t}{\tau}}$$
 $i = 20 \text{ A}$ $i = 20e^{-5t}$ $t \ge 0$ $\tau = \frac{L}{R} = \frac{2}{10} = 0.2 \text{ s}$

b)
$$i_o(t)$$

$$i_o = -i_L \frac{10}{10 + 40}$$

$$i_o(t) = -4e^{-5t} \ t \ge 0^+$$

c)
$$v_o(t)$$

 $v_o(t) = -40i_o = -160e^{-5t}$ $t \ge 0^+$

Example 1 – Solution (cont)

d)
$$p_{10\Omega}$$
?
$$p_{10\Omega}(t) = \frac{v_o^2}{10} = 2560e^{-10t} \text{ W}$$

$$w_{10\Omega}(t) = \int_{0}^{\infty} 2560e^{-10t} dt = 256 \text{ J}$$

Initial energy stored in the 2 H inductor is

$$W_{10\Omega}(0) = \frac{1}{2}Li^2(0) = \frac{1}{2}(2)(400) = 400 J$$

$$\frac{256}{400}(100) = 64\%$$

Example 2

- a) Find i_1 , i_2 and i_3 .
- b) Calculate the initial energy stored in the parallel inductors.
- c) Calculate the energy stored in the inductor as t $\rightarrow \infty$
- d) Show that the total energy delivered to the resistive network equals to the difference between the result obtained in (b) and (c).

Example 2 – Solution

a) The switch has been closed for a long time prior to t=0, so we know the voltage across the inductor

$$R_{eq} = (10//15+4)//40 = 8 \Omega$$

 $L_{eq} = 5//20 = 4 \text{ H}$
 $i(t) = I_o e^{-\frac{R}{L}t}$
 $i(t) = 12e^{-2t} \text{ A } t \ge 0$
 $v(t) = 8i(t) = 96e^{-2t} \text{ V } t \ge 0^+$

Example 2 – Solution (cont)

$$i(t) = \frac{1}{L} \int_{0}^{t} v(t)dt + i(t_o)$$

$$i_1 = \frac{1}{5} \int_{0}^{t} 96e^{-2x} dx - 8 = 1.6 - 9.6e^{-2t} A. \quad t \ge 0$$

$$i_2 = \frac{1}{20} \int_0^t 96e^{-2x} dx - 4 = -1.6 - 2.4e^{-2t} A. \quad t \ge 0$$

$$i_{3} = \frac{v(t)}{4 + \frac{10 \times 15}{10 + 15}} \times \frac{15}{10 + 15} = \frac{v(t)}{10} \times \frac{15}{25} = 5.76e^{-2t}A. \quad t \ge 0^{+}$$

Example 2 – Solution (cont)

Calculate the initial energy stored in the parallel inductors

$$w = \frac{1}{2}Li^2 = \frac{1}{2}(5)(64) + \frac{1}{2}(20)(16) = 320 \text{ J}$$

c) Determine how much energy is stored in the inductor as t → ∞

$$t \to \infty$$
 $i_1 = 1.6$ $t \to \infty$ $i_2 = -1.6$
 $w = \frac{1}{2}Li^2 = \frac{1}{2}(5)(1.6)^2 + \frac{1}{2}(20)(-16)^2 = 32 \text{ J}$

d) Show that total energy delivered to the resistive network equals the difference between the results obtained in (b) and (c)

$$w = \int_{0}^{\infty} p dt = \int_{0}^{\infty} iv dt = \int_{0}^{\infty} 1152e^{-4t} dt = 288 \text{ J}$$

Circuit model of a discharging RC circuit

Consider the following circuit model:

- For t<0, C is open and biased by a voltage V_g , while R_1 and R carry no current.
- For t>0, the capacitor voltage decreases and the energy is dissipated via R.

The natural response of an RC circuit

Assume the switch has been in position a for a long time:

$$t \le 0$$
 $\xrightarrow{dv} = 0$ $\xrightarrow{i} = 0$ (open circuit)

$$v_C = V_g$$

Apply node voltage technique:

$$C\frac{dv}{dt} + \frac{v}{R} = 0$$
 first-order ODE for $v(t)$:

$$v(t) = v(0)e^{\frac{t}{RC}} \quad t \ge 0$$

$$v(0^-) = v(0) = v(0^+) = V_g = V_o$$
 $\tau = RC$

$$v(t) = V_0 e^{-t/\tau} \qquad t \ge 0$$

$$\Rightarrow v(t) = V_0 e^{-(t/\tau)}$$
, where $\tau = RC$...time constant

■ Reducing R (loss) and parasitic C is speed circuits.

• • • The natural response of an *RC* circuit

The current goes through the resistor

$$i(t) = \frac{v(t)}{R} = \frac{V_0}{R} e^{-(t/\tau)}$$
 $t \ge 0^+$

The power dissipated in the resistor

$$p = vi = \frac{V_0^2}{R} e^{-2(t/\tau)}$$
 $t \ge 0^+$

The energy delivered to the resistor

$$w = \int_{0}^{t} p dt = \int_{0}^{t} \frac{V_0^2}{R} e^{-2(t/\tau)} dt = \frac{1}{2} C V_0^2 \left(1 - e^{-2(t/\tau)} \right) \qquad t \ge 0$$

$$w_0 = \frac{CV_0^2}{2}$$
 initial energy stored in C

- Find the equivalent circuit.
- 2. Find the initial conditions: initial current I_0 through the equivalent inductor, or initial voltage V_0 across the equivalent capacitor.
- 3. Find the time constant of the circuit by the values of the equivalent R, L, C:

$$\tau = L/R$$
, or RC ;

4. Directly write down the solutions:

$$i(t) = I_0 e^{-(t/\tau)}, \ v(t) = V_0 e^{-(t/\tau)}.$$

Example 3

- a) $v_C(t)$ for $t \ge 0$,
- b) $v_o(t)$ for $t \ge 0^+$,
- Find:
- c) $i_o(t)$ for $t \ge 0^+$, and
- d) the total energy dissipated in the 60 k Ω resistor.

10 kΩ × 100 V + V_c

When the switch is closed for a long time, the capacitor is an open circuit

$$R = 32k + 240k // 60k = 80k\Omega$$

$$\tau = RC = 80k \times 0.5 \mu = 0.04$$

$$V_o = 100 \text{V}$$

$$v_c(t) = 100e^{-25t} \text{ t} \ge 0$$

Example 3 (cont) v₀(t) for t≥0+

$$v_o(t) = \frac{100}{80 \times 10^3} e^{-25t} \times 48 \times 10^3 = 60 e^{-25t} \text{ V} \quad t \ge 0^+$$

c) i_o(t) for t≥0+

$$i_o(t) = \frac{60}{60 \times 10^3} e^{-25t} = 0.001 e^{-25t} A$$

d) The total energy dissipated in the 60 kΩ resistor.

$$p = iv = 0.06e^{-50t} \text{ W}$$

$$w = \int_{a}^{\infty} pdt = \int_{a}^{\infty} 0.06e^{-50t} dt = 1.2 \text{ mJ}$$

a) Find $v_1(t)$, $v_2(t)$, and $v_1(t)$, $v_2(t)$, and $v_1(t)$ for $t \ge 0$ $V_{e1} = -4 \text{ V} \qquad V_{e2} = 24 \text{ V}$ For $t \ge 0$ $V_{e1} = -4 \text{ V} \qquad V_{e2} = 24 \text{ V}$ $V_{e2} = 24 \text{ V}$ $V_{e3} = -4 \text{ V} \qquad V_{e2} = 24 \text{ V}$

$$V_{e1} = -4 \text{ V}$$
 $V_{e2} = 24 \text{ V}$

$$C_{eq} = \frac{5\mu \times 20\mu}{5\mu + 20\mu} = 4\mu F$$

$$\tau = RC_{ex} = 250 \times 10^3 \times 4 \times 10^{-6} = 1s$$

$$v(t) = (24-4)e^{-t} = 20e^{-t} \text{ V} \quad t \ge 0$$

$$i(t) = \frac{v(t)}{R} = \frac{20e^{-t}}{250 \times 10^3} = 80e^{-t} \mu A \quad t \ge 0^+$$

$$v_1(t) = -\frac{1}{C_1} \int_0^t i(t)dt + v_1(0) = -\frac{10^6}{5} \int_0^t 80 \times 10^{-6} e^{-t}dt - 4 = (16e^{-t} - 20)V \qquad t \ge 0$$

$$v_2(t) = -\frac{1}{C_2} \int_0^t i(t)dt + v_2(0) = -\frac{10^6}{20} \int_0^t 80 \times 10^{-6} e^{-t}dt + 24 = (4e^{-t} + 20)V \quad t \ge 0$$

Example 4 (cont)
 b) Calculate the initial energy stored in the capacitor C₁ and C₂

$$w_1 = \frac{1}{2}CV^2 = \frac{1}{2}(5 \times 10^{-6})(4)^2 = 40 \ \mu J$$

$$w_2 = \frac{1}{2}CV^2 = \frac{1}{2}(20 \times 10^{-6})(24)^2 = 5760 \ \mu J$$

$$w_{total} = w_1 + w_2 = 40 \ \mu J + 5760 \ \mu J = 5800 \ \mu J$$

c) Calculate how much energy is stored in the Capacitors as t → ∞

$$\begin{split} w_1 &= \frac{1}{2}CV^2 = \frac{1}{2}(5\times10^{-6})(-20)^2 = 1000\ \mu J \\ w_2 &= \frac{1}{2}CV^2 = \frac{1}{2}(20\times10^{-6})(20)^2 = 4000\ \mu J \\ w_{total} &= w_1 + w_2 = 1000\ \mu J + 4000\ \mu J = 5000\ \mu J \end{split}$$

d) Show that the total energy delivered to the 250 k Ω resistor is the difference between the results obtained in (b) and (c)

$$p = iv = 1.6e^{-2t} \text{ mW}$$

$$w = \int_{0}^{\infty} p dt = \int_{0}^{\infty} 1.6 \times 10^{-3} e^{-2t} dt = 800 \ \mu\text{J}$$

$$800 \ \mu\text{J} = (5800 \ \mu\text{J} - 5000 \ \mu\text{J})$$

- 1. Charging an RC circuit
- 2. Charging an RL circuit

What is step response?

- □ The response of a circuit to the sudden application of a constant voltage or current source, describing the charging behavior of the circuit.
- ☐ Step (charging) response and natural (discharging) response show how the signal in a digital circuit switches between Low and High with time.

The step response of an RL circuit

Energy stored in the inductor at the time the switch is closed is given in terms of a nonzero initial current *i*(0).

For $t \ge 0$

KVL
$$V_s = iR + L\frac{di}{dt}$$

$$\frac{di}{dt} = \frac{-Ri + V_z}{L} = -\frac{R}{L} \left(i - \frac{V_z}{R} \right) \longrightarrow di = -\frac{R}{L} \left(i - \frac{V_z}{R} \right) dt \longrightarrow \frac{di}{i - \frac{V_z}{R}} = -\frac{R}{L} dt$$

$$\int_{i(0)-I_o}^{i(t)} \frac{di}{i - \frac{V_s}{R}} = -\frac{R}{L} \int_0^t dt \qquad \qquad \ln \left(\frac{i(t) - \left(\frac{V_s}{R} \right)}{I_o - \left(\frac{V_s}{R} \right)} \right) = -\frac{R}{L} t \qquad \qquad \frac{i(t) - \left(\frac{V_s}{R} \right)}{I_o - \left(\frac{V_s}{R} \right)} = e^{-\frac{R}{L} t}$$

$$i(t) = \frac{V_s}{R} + \left(I_o - \frac{V_s}{R}\right)e^{-\frac{R}{L}t}$$

If at
$$t = 0$$
 $I_o = 0$

$$i(t) = \frac{V_s}{R} + \left(I_o - \frac{V_s}{R}\right)e^{-\frac{R}{L}t} - \frac{V_s}{R}$$
At $t = \infty$ $i(\infty) = \frac{V_s}{R}$

$$i(t) = \frac{V_s}{R}\left(1 - e^{-1}\right) \approx 0.6321\frac{V_s}{R}$$

$$\frac{di}{dt} = \frac{-V_s}{R}\left(\frac{-1}{\tau}\right)e^{-t/\tau} = \frac{V_s}{L}e^{-t/\tau}$$

$$\frac{di}{dt}(0) = \frac{V_s}{L}$$

 $i(t) = \frac{V_s}{R} \left(1 - e^{\frac{R}{L}t} \right)$

The step response of an RL circuit

$$v = L\left(\frac{-R}{L}\right)\left(I_o - \frac{V_s}{R}\right)e^{-\frac{R}{L}t} = (V_s - I_o R)e^{-\frac{R}{L}t}$$
$$v(0^-) = 0 \qquad v(0^+) = V_s - I_o R$$

If at
$$t=0 \longrightarrow I_a=0$$

$$v = V_s e^{\frac{R}{L^t}}$$

At
$$t = \infty - - - \nu(\infty) = 0$$

Make-before-break Switch= The connection at position b is established before the connection at position a is broken, so there is no interruption of current through the inductor.

a) Find the expression for i(t) for $t \ge 0$.

For
$$t < 0$$
 $I_o = -8 \text{ A}$
For $t \ge 0$ $\tau = \frac{L}{R} = \frac{200 \times 10^{-3}}{2} = 0.1 \text{ s}$

$$i(t) = \frac{V_s}{R} + \left(I_o - \frac{V_s}{R}\right)e^{-\frac{R}{L}t} = 12 + (-8 - 12)e^{-10t} = 12 - 20e^{-10t}$$

Example 5 (cont)

b) What is the initial voltage across the inductor just after the switch has been moved to position b?

$$v = L \frac{di}{dt} = 0.2(200e^{-10t}) = 40e^{-10t}V$$
 $t \ge 0^+$
 $v(0^+) = 40V$

c) How many milliseconds after the switch has been moved does the inductor voltage equal to 24 V?

$$24 = 40e^{-10t}$$
$$t = \frac{1}{10} \ln \frac{40}{24} = 51.08 \times 10^{-3}$$
$$t = 51.08 \text{ ms}$$

d) Plot i(t) & v(t)?

The step response of an RC circuit

Initial condition depends on initial energy of the capacitor: $V(0^+) = v(0^-) \equiv V_0$

Apply KCL:
$$C \frac{dv}{dt} + \frac{v_C}{R} = I_s$$

$$v_{C}(t) = I_{s}R + (V_{0} - I_{s}R)e^{-t/RC}$$
, $t \ge 0$

$$i(t) = C \frac{dv_C}{dt} = C(V_0 - I_s R) \left(\frac{-1}{RC}\right) e^{-t/RC}$$

$$i(t) = \left(I_s - \frac{V_0}{R}\right) e^{-t/RC} \quad , \quad t \ge 0^+$$

Example 6

a) Find $v_o(t)$ for $t \ge 0$

$$\frac{dv_c}{dt} = 0 \longrightarrow i_c = 0 \longrightarrow \text{ (open circuit)}$$

$$v_o = 40 \frac{60k}{20k + 60k} = 30 \text{ V}$$

Example 6 (cont)

For
$$t \ge 0$$

$$v_C(t) = I_s R + (V_a - I_s R) e^{\frac{t}{RC}}$$

Apply Source Transformation Or Norton Equivalent

Example 6 (cont)

$$v_{C}(t) = I_{s}R + (V_{o} - I_{s}R)e^{-\frac{t}{RC}}$$

$$V_{o} = v_{o} = 30 V \qquad R = R_{N} = 40 k\Omega \qquad I = I_{S} = -1.5 mA \qquad RC = 0.01$$

$$v_{o}(t) = v_{C}(t) = -60 + (30 + 60)e^{-100t} = -60 + 90e^{-100t} \qquad t \ge 0$$

b) Find
$$i_o(t)$$
 for $t \ge 0$ +

$$i_o(t) = C \frac{dv_o}{dt} = (0.25 \times 10^{-6})(-9000 \times 10^{-100t})$$

 $i_o(t) = -2.25e^{-100t} \text{ mA}$

43

A general solution for natural & step responses

SEE

x(t) the unknown variable as a function of time

$$x(t) = x_f + \left[x(t_0) - x_f\right] e^{-\left(\frac{t - t_0}{\tau}\right)}$$

x_f the final value of the variable

 $x(t_0)$ the initial value of the variable

t₀ time of switching

T time constant

Procedure:

- 1) Identify the variable of interest of the circuit. For RC circuits, it is best to choose v_C ; for RL circuit, it is best to choose i_L .
- 2) Determine the initial value of the variable.($v_c(t_0)$ in case of RC circuit and $i_L(t_0)$ in case of RL circuits)
- 3) Calculate the final value of the variable (value at $t = \infty$)
- 4) Calculate the time constant for the circuit.

Sequential Switching

• The time reference for switching cannot be t = 0.

Procedure for sequential switching problem

- (1) Obtain the initial value $x(t_0)$
- (2) Apply the techniques described previously to find current and voltage value.
- (3) Redraw the circuit that pertains to each time interval and repeat step (1).

Note: Since inductive current I_L and capacitive voltage V_C can change instantaneously at the time of switching, these value should be solved first for sequential switching problem.

46

At t=0 switch 1 is opened; Then, 35 ms later, switch 2 is opened

Find

a) $i_L(t)$ for $0 \le t \le 35$ ms.

Both switches are initially closed for a long time

$$R_{eq} = \frac{1}{\frac{1}{12} + \frac{1}{6} + \frac{1}{3}} = \frac{12}{7} \Omega$$

$$6//12 = 4\Omega$$

$$i_L(0^-) = \frac{60}{\frac{12}{7} + 4} \times \frac{4}{4 + 3} = 6 \text{ A}$$

Switch 1 is open

Example 8 (cont)

Switch 1 is open

$$R_{eq} = 9//18 = 6\Omega$$

$$\tau = \frac{L}{R} = \frac{150 \times 10^{-3}}{6} = 0.025 \, s$$

$$i_L(t) = 6e^{-40t} \text{ A} \quad 0 \le t \le 35 \text{ ms}$$

b) i_L(t) for t ≥35 ms.

$$i_L(35 \text{ ms}) = 6e^{-40(35 \times 10^{-3})} = 1.48 \text{ A}$$

$$\tau = \frac{L}{R} = \frac{150 \times 10^{-3}}{9} = 0.016666 \, s$$

$$i_t(t) = 1.48e^{-60(t-0.035)}$$
 A $t \ge 35$ ms

Example 8 (cont)

c) What % of the initial energy stored in the 150 mH inductor. is dissipated in the 18 Ω resistor.

$$w_{tm.} = \frac{1}{2}Li^{2} = \frac{1}{2} \times 150 \times 10^{-3} \times (6)^{2} = 2.7 J$$

$$v_{L} = L\frac{di}{dt} = -36e^{-40t}$$

$$P = \frac{v_{L}^{2}}{18} = 72e^{-80t} \text{ W}$$

$$w = \int_{0.035}^{0.035} 72e^{-80t} dt = 845.27 \text{ mJ}$$

$$\%w = \frac{845.27 \text{ mJ}}{2700 \text{ mJ}} \times 100 = 31.31\%$$

Example 8 (cont)

d) Repeat (c) for the 3 Ω resistor

$$0 \le t \le 35 \,\mathrm{ms}$$

$$v_{3\Omega} = \left(\frac{v_L}{9}\right)(3) = \frac{1}{3}v_L = -12e^{-40t} \text{ V}$$

$$w_{3\Omega} = \int_{0}^{0.035} \frac{144}{3} e^{-80t} dt = 563.51 \,\text{mJ}$$

$$t > 35 \, \text{ms}$$

$$i_{3\Omega} = i_L = 1.48e^{-60(t-0.035)}$$
 A

$$w_{3\Omega} = \int_{0.035}^{\infty} i_{3\Omega}^2 \times 3dt = 54.73 \text{ mJ}$$

$$w_{30}$$
 (total) = 563.51 mJ + 54.73 mJ = 618.24 mJ

$$\%w = \frac{618.24 \text{ mJ}}{2700 \text{ mJ}} \times 100 = 22.90\%$$

Definition and reason of unbounded response

- □ An unbounded response means the voltages or currents increase with time without limit.
- It occurs when the Thévenin resistance is negative (R_{Th} <0), which is possible when the first-order circuit contains dependent sources.

51

This type of response is called an **unbounded response**.

It may happen when the circuit contains dependent source.

In this case, the Thevenin equivalent with respect to the terminals of either an inductor or a capacitor may be negative, which resulting in a negative time constant.

To solve the circuit which have unbounded response, we need to derive the differential equation that describes the circuit containing the negative R_{th} .

 \blacksquare Q: $v_o(t) = ?$ for $t \ge 0$.

For t>0, the capacitor seems to "discharge" (not really, to be discussed) via a circuit with a current-controlled current source, which can be represented by a Thévenin equivalent.

Example

■ Since there is no independent source, $V_{Th} = 0$, while R_{Th} can be determined by the test source method: i_T

$$i_T = \frac{v_T}{10 \text{ k}\Omega} + \frac{v_T}{20 \text{ k}\Omega} - 7 \frac{v_T}{20 \text{ k}\Omega},$$

$$\Rightarrow R_{Th} = v_T / i_T = -5 \text{ k}\Omega \times 0.$$

For t≥0, the equivalent circuit and governing differential equation become:

$$V_0 = v_o(0^+) = 10 \text{ V}, \ \tau = RC = -25 \text{ ms} < 0,$$

 $\Rightarrow v_o(t) = V_0 e^{-t/\tau} = 10 e^{+40t} \text{ V}. \text{ ...grow without limit.}$

Why the voltage is unbounded?

- Since $10\text{-k}\Omega$, $20\text{-k}\Omega$ resistors are in parallel, \Rightarrow $i_{10\text{k}\Omega}=2i_{\Delta}$, the capacitor is actually charged (not discharged) by a current of $4i_{\Delta}$!
- Charging effect will increase v_o , which will in turn increase the charging current $(i_{\Delta} = v_o/20 \text{ k}\Omega)$ and v_o itself. The positive feedback makes v_o soaring.

Undesired interconnection between a capacitor and a sub-circuit with dependent source (e.g. transistor) could be catastrophic!