Steady state vector of a random walk on an undirected connected network

Example.

Note: $P = A \cdot D^{-1}$. It follows that if Y is

a steady state vector of P then: Y = PY $IY = AD^{-1}Y$ $(I - AD^{-1})Y = O$ $(DD^{-1} - AD^{-1})Y = O$ Laplacian

Recall: If L is the Laplacian of a connected undirected graph then Lv = 0 if and only if $v = c \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. We obtain: $D^{-1}Y = c \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ so: $Y = cD \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$Y - \text{probability vector} \Rightarrow \frac{1}{2} = \frac{1}{2} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} \text{ degrees of vertices}$$

$$Y - \text{probability vector} \Rightarrow \frac{1}{2} = \frac{1}{2} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$

Random walks on directed networks and the Google PageRank

Example. Network of web pages:

Question. How to rank web pages?

PageRank:

- Consider the steady-state vector of a random walk on the network of pages. It gives probabilities that a walker will visits each page in a long run.
- Higher probability of a page means that the page is more popular.
- Rank pages according to these probabilities.

Recall:

Definition

A stochastic matrix P is *regular* if there is $N \ge 0$ such that all entries of P^N are positive.

Perron-Frobenius Theorem

If P is a regular stochastic matrix then:

- There exists only one steady state vector *Y* of *P*
- ullet For any probability vector X we have

$$\lim_{n} P^{n} X = Y$$

Note. The transition matrix for a random walk on a network of web pages need not be regular.

Problem: a disconnected network.

Problem: cycles.

Solution.