Digital Integrated Circuits

YuZhuo Fu

contact:fuyuzhuo@ic.sjtu.edu.cn

Office location: 417 room

WeiDianZi building,No 800 DongChuan road,MinHang Campus

Review content

- Format
 - Concept 40, Computing 60
 - 2++ hours
 - Mon. 8th 09:50-12:00
- Content
 - Introduction
 - Device
 - Inverter

Digital IC

Input&output resistance

Digital IC 3/30

Input&output resistance

- The voltage of the input signal comes, the gate could be regarded as load of front gate
- Set Empty load of current gate, calcutate VI rate
- Input resistance

$$V_i = \frac{V_i}{R_s + r_i} V_s$$

Output resistance

$$V_{o} = \frac{R_{L}}{r_{o} + R_{L}} V_{o}'$$

Greater input resistance, signal transfer, less signal attenuation

What is its meaning?

Less of the gate output resistance, smaller affect with load

Input(drive) re. is more greater than output(load)

Digital IC 4/30

The Ideal Gate

$$R_i = \infty$$
 $R_o = 0$
 $Fanout = \infty$
 $NM_H = NM_L = V_{DD}/2$

Digital IC 5/30

Complementary CMOS

nMOS pull-down network pMOS pull-up network a.k.a. static CMOS

- CMOS circuit layout/stick diagram
- Why NMOS/PDN PMOS/PUN

Device

- All state and principle
- Velocity saturation
- I-V formula (Hight-K Low-K material)
- Gate Capacitance

Digital IC 7/30

Current-Voltage Relations The Deep-Submicron Era

Digital IC 8/30

Attention: velocity position

$$\mu_{\rm n} = 3800 \,{\rm cm}^2/{\rm v.s}, \mu_{\rm p} = 1800 \,{\rm cm}^2/{\rm v.s}$$

Charge per unit area:

$$Q_i(x) = -C_{ox}[V_{gs} - V(x) - V_T]$$

$$I_{D} = -v_{n}(x)Q_{i}(x)W \qquad v_{n}(x) = \mu_{n}E(x) = \mu_{n}\frac{dV}{dx}$$

$$I_{D} = \mu_{n}\frac{dV}{dx}C_{ox}[V_{gs} - V(x) - V_{T}]W$$

$$\int_{0}^{L}I_{D}dx = \int_{0}^{V_{DS}}\mu_{n}C_{ox}[V_{gs} - V(x) - V_{T}]WdV$$

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_T) V_{DSAT} - \frac{V_{DSAT}^2}{2} \right] \kappa (V_{DSAT})$$

Digital IC

A unified model for manual analysis

$$I_D = 0 \text{ for } V_{GT} \le 0$$

$$I_D = k' \frac{W}{L} \left(V_{GT} V_{min} - \frac{V_{min}^2}{2} \right) (1 + \lambda V_{DS}) \text{ for } V_{GT} \ge 0$$

$$\text{with } V_{min} = \min(V_{GT}, V_{DS}, V_{DSAT}),$$

$$V_{GT} = V_{GS} - V_T,$$

$$\text{and } V_T = V_{T0} + \gamma (\sqrt{|-2\phi_F|} + V_{SB}| - \sqrt{|-2\phi_F|})$$

Table 3.2 Parameters for manual model of generic 0.25 μm CMOS process (minimum length device).

	V _{T0} (V)	γ (V ^{0.5})	V _{DSAT} (V)	k' (A/V ²)	λ (V ⁻¹)
NMOS	0.43	0.4	0.63	115×10^{-6}	0.06
PMOS	-0.4	-0.4	-1	-30×10^{-6}	-0.1

Digital IC 10/30

Simple Model versus SPICE

Digital IC 11/30

Capacitance components

- MOS structure capacitances
 - Overlap cap.
- Channel capacitances
 - Gate-body cap.
 - Gate-source cap.
 - Gate-drain cap.
- Junction/diffusion capacitances
 - Bottom-plate cap.
 - Side-well cap.

 \boldsymbol{G}

Gate channel Capacitance

Operation Region	C_{gh}	C_{gs}	C_{gd}])]
Cutoff	$C_{ox}WL_{eff}$	0	0	
Triode	0	$C_{ox}WL_{eff}/2$	$C_{ox}WL_{eff}/2$]
Saturation	0	$(2/3)C_{ox}WL_{off}$	0	

Most important regions in digital design: saturation and cut-off

Digital IC 13/30

Gate Capacitance

Capacitance as a function of V_{GS} (with $V_{DS} = 0$)

Capacitance as a function of the degree of saturation

CMOS static behavior

- CMOS threshold voltage
- CMOS noise margin
- CMOS gain
- DC robust
- Inverter Chain
- Power

Digital IC 15/30

CMOS Inverter Load Characteristics

Digital IC 16/30

CMOS Inverter VTC

Summary of CMOS inverter operation					
Region	Condition	P-device	N-device	output	
Α	[0,Vtn]	linear	cutoff	VDD	
В	[Vtn,VDD/2]	linear	saturated	VDD/2	
С	=VDD/2	saturated	saturated	X drop	
D	[VDD/2,VDD- VTP]	saturated	linear	<vdd 2<="" td=""></vdd>	
E	[VDD- VTP , VDD]	cutoff	linear	0	

Digital IC 17/30

Switching Threshold as a function of **Transistor Ratio**

$$I_{D} = \mu_{n} C_{ox} \frac{W}{L} \left[(V_{GS} - V_{T}) V_{DSAT} - \frac{V_{DSAT}^{2}}{2} \right] = V_{sat} C_{ox} W \left[V_{GS} - V_{T} - \frac{V_{DSAT}}{2} \right]$$

$$k_{n}V_{DSAT_{n}}(V_{M}-V_{Tn}-\frac{V_{DSAT_{n}}}{2})+k_{p}V_{DSAT_{p}}(V_{M}-V_{DD}-V_{Tp}-\frac{V_{DSAT_{p}}}{2})=0$$

$$V_{M} = \frac{(V_{Tn} + \frac{V_{DSAT_{n}}}{2}) + r(V_{DD} + V_{Tp} + \frac{V_{DSAT_{p}}}{2})}{1 + r} \qquad r = \frac{k_{p}V_{DSAT_{p}}}{k_{n}V_{DSAT_{n}}}$$

$$V_{M} \approx \frac{rV_{DD}}{1+r}$$

$$V_{M} \approx \frac{rV_{DD}}{1+r} = \frac{k'_{n}V_{DSAT_{n}}(V_{M} - V_{Tn} - \frac{V_{DSAT_{n}}}{2})}{k'_{p}V_{DSAT_{p}}(V_{DD} - V_{M} + V_{Tp} + \frac{V_{DSAT_{p}}}{2})}$$

Switching threshold of CMOS inverter

Parameters for manual model of generic 0.25um CMOS process(minimum length device)

	V _{T0} (V)	γ(V ^{0.5})	V _{DSAT} (V)	k'(A/V2))	λ(V-1)
NMOS	0.43	0.4	0.63	115X10- ⁶	0.06
PMOS	-0.4	-0.4	-1	-30X10- ⁶	-0.1

Assuming $W_p/W_n=8$, calculating $V_M=?$

$$r = \frac{k_p' W_p L_p V_{DSAT_p}}{k_n' W_n L_n V_{DSAT_n}} = \frac{-30 * (-1)}{115 * 0.63} * 8 = 3.3$$

$$V_M = \frac{(V_{Tn} + \frac{V_{DSAT_n}}{2}) + r(V_{DD} + V_{Tp} + \frac{V_{DSAT_p}}{2})}{1 + r}$$

$$= \frac{(0.43 + \frac{0.63}{2}) + 3.3(2.5 - 0.4 - \frac{0.4}{2})}{1 + 3.3} = \frac{0.75 + 3.3 * 1.9}{1 + 3.3} = 1.63V$$
Digital IC

Switching threshold of CMOS inverter

Parameters for manual model of generic 0.25um CMOS process(minimum length device)

	V _{T0} (V)	γ(V ^{0.5})	V _{DSAT} (V)	k'(A/V ²))	λ(V-1)
NMOS	0.43	0.4	0.63	115X10- ⁶	0.06
PMOS	-0.4	-0.4	-1	-30X10- ⁶	-0.1

$$\frac{(W/L)_p}{(W/L)_n} = \frac{k'_n V_{DSAT_n} (V_M - V_{Tn} - \frac{V_{DSAT_n}}{2})}{-k'_p V_{DSAT_p} (V_{DD} - V_M + V_{Tp} + \frac{V_{DSAT_p}}{2})} = \frac{115 \times 10^{-6} \times 0.63 \times (1.25 - 0.43 - \frac{0.63}{2})}{30 \times 10^{-6} \times 1 \times (1.25 - 0.4 - \frac{1}{2})} = 3.5$$

This rate let $V_M = V_{dd}/2!$

Digital IC 20/30

Determining V_{IH} and V_{IL}

Digital IC

Example

g=-30, $V_{dd}=2.5V$, $V_{M}=1.0V$ Please estimate NM_{H} and NM_{L}

$$V_{IH} = V_{M} - V_{M}/G = 1.0*(1+1/30) = 1.03V$$

$$V_{IL} = (V_{DD} - V_M)/G + V_M = -1.5/30 + 1.0 = 0.95V$$

$$NM_H = V_{OH} - V_{IH} = 2.5 - 1.03 = 1.47V$$

$$NM_L = V_{IL} - V_{OL} = 0.95V$$

Digital IC 22/30

Inverter Gain

$$g = \frac{dV_{out}}{dV_{in}} \bigg|_{V_{in} = V_M}$$

$$= -\frac{k_n V_{DSATn} (1 + \lambda_n V_{out}) + k_p V_{DSATp} (1 + \lambda_p V_{out} - \lambda_p V_{DD})}{\lambda_n k_n V_{DSATn} \left(V_{in} - V_{Tn} - \frac{V_{DSATn}}{2}\right) + \lambda_p k_p V_{DSATp} \left(V_{in} - V_{DD} - V_{Tp} - \frac{V_{DSATp}}{2}\right) \bigg|_{V_i}}$$

$$\approx -\frac{k_n V_{DSATn} (1 + \lambda_n V_{out}) + k_p V_{DSATp} (1 + \lambda_p V_{out} - \lambda_p V_{DD})}{k_n V_{DSATn} \left(V_{in} - V_{Tn} - \frac{V_{DSATn}}{2}\right) (\lambda_n - \lambda_p)}$$

$$= -\frac{1 + \gamma}{\left(V_M - V_{Tn} - \frac{V_{DSATn}}{2}\right) (\lambda_n - \lambda_p)}$$
Ratio increase Gain increase

Ratio increase, Gain increase

$$\gamma = \frac{k_p' \frac{W_p}{L_p} V_{DSATp}}{k_n' \frac{W_n}{L_n} V_{DSATn}}$$

Digital IC 23/30

An example

An inverter in the generic 0.25um CMOS technology designed with a PMOS-to-NMOS ratio of 3.4 and with the NMOS transistor minimum size (W=0.375um, L=0.25um, W/L=1.5), Vdd=2.5V, Vlease give the gain of VM, and VIL, VIH, VIH,

Parameters for manual model of generic 0.25um CMOS process(minimum length device)

<u> </u>	V _{T0} (V)	γ(V ^{0.5})	V _{DSAT} (V)	k'(A/V2))	λ(V-1)
NMOS	0.43	0.4	0.63	115X10- ⁶	0.06
PMOS	-0.4	-0.4	-1	-30X10- ⁶	-0.1

$$\gamma = \frac{k_p' \frac{W_p}{L_p} V_{DSATp}}{k_n' \frac{W_n}{L_n} V_{DSATn}} = \frac{-30 * (-1)}{115 * 0.63} * 3.4 = 1.4$$

$$g \approx -\frac{1+\gamma}{\left(V_M - V_{Tn} - \frac{V_{DSATn}}{2}\right)\left(\lambda_n - \lambda_p\right)} = -\frac{1+1.4}{\left(1.25 - 0.43 - \frac{0.63}{2}\right)(0.06 + 0.1)}$$
$$= -\frac{2.4}{0.505 * 0.16} = -30$$

Digital IC 25/30

tpHL/tpLH

Figure 1

Computing the Capacitances

capacitor	expression	Value(fF) (H->L)	Value(fF) (L->H)
C _{gd1}	2C _{GD0n} *Wn	0.23	0.23
C _{gd2}	2C _{GD0} ,*W _p	0.61	0.61
C _{db1}	$K_{eqn}AD_{n}C_{J}+K_{eqwn}PD_{n}C_{JSW}$	0.66	0.90
C _{db2}	$K_{eqn}AD_{n}C_{J}+K_{eqwn}PD_{n}C_{JSW}$	1.5	1.15
C _{g3}	$(C_{GD0^n}+C_{GSO^n})W_n+C_{ox}W_nL_n$	0.76	0.76
C _{g4}	$(C_{GD0_p}+C_{GSO_p})W_p+C_{ox}W_pL_p$	2.28	2.28
Cw		0.12	0.12
CL		6.1	6.0

Table 1

Digital IC 26/30

Inverter Chain

If C_L is given:

- How many stages are needed to minimize the delay?
- How to size the inverters?

Digital IC 27/30

CMOS Energy & Power Equations

$$E = C_{L} V_{DD}^{2} P_{0\rightarrow 1} + t_{sc} V_{DD} I_{peak} + V_{DD} I_{leakage} 1/f_{clock}$$

$$f_{0\rightarrow 1} = P_{0\rightarrow 1} * f_{clock}$$

$$P = C_{L} V_{DD}^{2} f_{0\rightarrow 1} + t_{sc} V_{DD} I_{peak} + V_{DD} I_{leakage}$$

Dynamic power

Short-circuit power

Leakage power

Lowering Dynamic Power

Capacitance: Function of fan-out, wire length, transistor sizes Supply Voltage: Has been dropping with successive generations

 $P_{dyn} = C_L V_{DD}^2 P_{0\rightarrow 1} f$

Activity factor: How often, on average, do wires switch? Clock frequency: Increasing...

Parameter	Relation	Full Scaling	General Scaling	Fixed Voltage Scaling
W, L, t _{ox}		1/S	1/S	1/S
V_{DD} , V_{T}		1/S	1/U	1
N_{SUB}	V/W _{depl} ²	S	S ² /U	S^2
Area/Device	WL	1/S ²	1/S ²	1/S ²
Cox	1/t _{ox}	S	S	S
$\mathbf{C}_{\mathbf{L}}$	$C_{ox}WL$	1/S	1/S	1/S
k _n , k _p	C _{ox} W/L	S	S	S
Iav	$k_{n,p} V^2$	1/S	S/U ²	S
t _p (intrinsic)	C _L V / I _{av}	1/S	U/S ²	1/S ²
Pav	$\frac{\mathrm{C_L V^2/t_p}}{\mathrm{C_L V^2}}$	1/S ²	S/U ³	S
PDP	$C_L V^2$	1/S ³	1/SU ²	1/S

Digital IC 30/30