Homework 6 Solutions

1) A sliding collar of $m=80\ kg$ falls onto a flange at the bottom of a vertical rod. Calculate the height h through which the mass m should drop to produce a maximum stress in the rod of $350\ MPa$. The rod has length L=2m, cross-sectional area $A=250\ mm^2$, and modulus of elasticity $E=105\ GPa$.

We have $W = mg = 80 \times 9.81 = 784.8 \ N$ From Eq. (4.29);

$$\sigma_{\text{max}} = \left(1 + \sqrt{1 + \frac{2h}{\delta_{st}}}\right) \frac{W}{A}$$

Solving, with $\delta_{st} = WL/AE$, we obtain

$$h = \frac{L\sigma_{\text{max}}}{2EW} \left(A\sigma_{\text{max}} - 2W \right) \tag{a}$$

Substituting the given data:

$$h = \frac{(2)(350 \times 10^6)}{2(105 \times 10^9)(784.8)} (250 \times 350 - 1569.6) = 0.365 \ m$$

2) If the given stress field acts in the thin plate shown and p is a known constant, determine the c's so that edges $x = \pm a$ are free of shearing stress and no normal stress acts on edge x = a.

$$\sigma_x = pyx^3 - 2c_1xy + c_2y$$

$$\sigma_y = pxy^3 - 2px^3y$$

$$\tau_{xy} = -\frac{3}{2}px^2y^2 + c_1y^2 + \frac{1}{2}px^4 + c_3$$

Edge $x = \pm a$:

$$\tau_{xy} = 0: \qquad -\frac{3}{2} p a^2 y^2 + c_1 y^2 + \frac{1}{2} p a^4 + c_3 = 0$$

$$\tau_{xy} = 0$$
: $-\frac{3}{2}pa^2y^2 + c_1y^2 + \frac{1}{2}pa^4 + c_3 = 0$

Adding,
$$(-3pa^2 + 2c_1)y^2 + pa^4 + 2c_3 = 0$$

or
$$c_1 = \frac{3}{2} p a^2$$
 $c_3 = -\frac{1}{2} p a^4$

Edge x = a:

$$\sigma_{y} = 0$$
: $pa^{3}y - 2c_{1}ay + c_{2}y = 0$

or

$$c_2 = 2pa^3$$

3) Verify that Eqs. (3.37) in the text are determined from the equilibrium of forces acting on the elements shown.

Refer to Fig. P3.26a. Let $A_{BC}=1$ and hence $A_{AB}=\cos\theta,~A_{AC}=\sin\theta$.

$$\sum F_x = 0$$
:

$$\sigma_x = \sigma_r \cos \theta \cos \theta + \sigma_\theta \sin \theta \sin \theta - 2\tau_{r\theta} \sin \theta \cos \theta$$

$$\sum F_y = 0:$$

$$\tau_{xy} = \sigma_r \cos \theta \sin \theta - \sigma_\theta \sin \theta \cos \theta + \tau_{r\theta} \cos \theta \cos \theta - \tau_{r\theta} \sin \theta \sin \theta$$

Similarly, from Fig. P3.26b:

$$\sum F_y = 0:$$

$$\sigma_y = \sigma_r \sin^2 \theta + \sigma_\theta \cos^2 \theta + 2\tau_{r\theta} \sin \theta \cos \theta$$

Check: $\sum F_x = 0$:

$$\tau_{xy} = \sigma_r \sin \theta \cos \theta - \sigma_\theta \sin \theta \cos \theta + \tau_{r\theta} (\cos^2 \theta - \sin^2 \theta)$$

Thus, quoted equations are derived.

4) Consider the pivot of unit thickness subject to force P=1 N per unit thickness at its vertex. Plot the values of σ_x , σ_y , and τ_{xy} as a function of θ (in deg) at section m-n a distance L=1 m from the apex using Eq'ns. (3.37) and (3.43). Also plot σ_x using the elementary (mechanics of materials) approach for comparison. Take $\alpha=15^\circ$.

5) Verify the results given below by employing Eq. (3.55b) and the method of superposition.

$$\begin{split} \sigma_{r1} &= \frac{\sigma_0}{2} \left[\left(1 - \frac{a^2}{r^2} \right) + \left(1 + \frac{3a^4}{r^4} - \frac{4a^2}{r^2} \right) \cos 2\theta \right] \\ \sigma_{\theta 1} &= \frac{\sigma_0}{2} \left[\left(1 + \frac{a^2}{r^2} \right) - \left(1 + \frac{3a^4}{r^4} \right) \cos 2\theta \right] \\ \tau_{r\theta 1} &= -\frac{\sigma_0}{2} \left(1 - \frac{3a^4}{r^4} + \frac{2a^2}{r^2} \right) \sin 2\theta \end{split}$$

and

$$\sigma_{r2} = \frac{\sigma_0}{2} \left[\left(1 - \frac{a^2}{r^2} \right) + \left(1 + \frac{3a^4}{r^4} - \frac{4a^2}{r^2} \right) \cos 2(\theta + 90^\circ) \right]$$

$$\sigma_{\theta 2} = \frac{\sigma_0}{2} \left[\left(1 + \frac{a^2}{r^2} \right) - \left(1 + \frac{3a^4}{r^4} \right) \cos 2(\theta + 90^\circ) \right]$$

$$\tau_{r\theta 2} = -\frac{\sigma_0}{2} \left(1 - \frac{3a^4}{r^4} + \frac{2a^2}{r^2} \right) \cos 2(\theta + 90^\circ)$$

We have, by superposition:

$$\sigma_r = \sigma_{r1} + \sigma_{r2} \qquad \sigma_\theta = \sigma_{\theta1} + \sigma_{\theta2} \qquad \tau_{r\theta} = \tau_{r\theta1} + \tau_{r\theta2}$$

Hence, at r=a and $\theta = \pi/2$,

$$\begin{split} \sigma_{r1} &= 0 & \sigma_{r2} &= 0 \\ \sigma_{\theta 1} &= 3\sigma_0 & \sigma_{\theta 2} &= -\sigma_0 \\ \tau_{r\theta 1} &= 0 & \tau_{r\theta 2} &= 0 \end{split}$$

lead to the solution:

$$\sigma_r = 0$$
 $\sigma_\theta = 2\sigma_0$ $\tau_{r\theta} = 0$

(b) Referring to the results of part (a), we write

$$\sigma_{r1} = 0$$
 $\sigma_{r2} = 0$

$$\sigma_{\theta 1} = 3\sigma_{0}$$
 $\sigma_{\theta 2} = \sigma_{0}$

$$\tau_{r\theta 1} = 0$$
 $\tau_{r\theta 2} = 0$

Thus,

$$\sigma_r = 0$$
 $\sigma_\theta = 4\sigma_0$ $\tau_{r\theta} = 0$

6) A $20 \ mm$ -thick steel bar with a slot ($25 \ mm$ radii at ends) is subjected to an axial load P, as shown. What is the maximum stress for $P=180 \ kN$? Use Appendix D to estimate the value of the K.

We have

$$\frac{d}{D} = \frac{1}{3}$$

Then, from Fig. D.8: $K \approx 2.3$. Hence

$$\sigma_{\text{max}} = K \frac{p}{A} = 2.3 \frac{180(10^3)}{(150-50)20} = 207 \text{ MPa}$$

7) The figure depicts a filleted cantilever spring. Find the largest bending stress for two cases: (a) the fillet radius is r = 5 mm; (b) the fillet radius is r = 10 mm. Given: b = 12 mm and P = 400 N.

NOTE: The parameter r = 5 mm in Part (a) does not any sense in practical engineering (while it is actually possible in theory). You can ignore this part and work on Part (b) only

At a section through B

$$M_B = 400(0.3) = 120 \ N \cdot m$$

$$\sigma_{nom} = \frac{M_B c}{I} = \frac{120(0.02)}{\frac{1}{12}(0.012)(0.04)^3} = 37.5 \text{ MPa}$$

(a)
$$\frac{r}{d} = \frac{5}{40} = 0.125$$
 $\frac{D}{d} = \frac{60}{40} = 1.5$: $K \approx 1.65$ (Fig. D.2)

$$\sigma_{\text{max}} = 1.65(37.5) = 61.9 \ MPa$$

(b)
$$\frac{r}{d} = \frac{10}{40} = 0.25$$
 $\frac{D}{d} = \frac{60}{40} = 1.5$: $K \approx 1.41$ (Fig. D.2) $\sigma_{\text{max}} = 1.41(37.5) = 52.8 \ MPa$

8) The shaft shown has the following dimensions: r=20~mm, d=400~mm, and D=440~mm. The shaft is subjected simultaneously to a torque $T=20~kN\cdot m$, a bending moment $M=10~kN\cdot m$, and an axial force P=50~kN. Calculate at the root of the notch (a) the maximum principal stress, (b) the maximum shear stress, and (c) the octahedral stresses.

(a) We have D/d=1.1 and r/d=0.05. Then, we find from Figs. D.6, D.7, and D.5 that

$$K_t = 1.64$$
 $K_b = 2.2$ $K_a = 2.3$

Then, Eqs. (b) of Example 3.5 yield

$$\sigma_x = 2.3 \frac{50(10^3)}{\pi(0.2)^2} + 2.2 \frac{4(10 \times 10^3)}{\pi(0.2)^3} = 4.42 \ MPa$$

$$\tau_{xy} = 1.64 \frac{2(20 \times 10^3)}{\pi (0.2)^3} = 2.61 MPa$$

Equation (a) of Example 3.4 is therefore

$$\sigma_{1.2} = \frac{4.42}{2} \pm \left[\left(\frac{4.42}{2} \right)^2 + (2.61)^2 \right]^{\frac{1}{2}}$$

or $\sigma_1 = 5.63 \text{ MPa}$ $\sigma_2 = -1.21 \text{ MPa}$

(b)
$$\tau_{\text{max}} = \frac{1}{2} (5.63 + 1.21) = 3.42 \text{ MPa}$$

(c)
$$\sigma_{oct} = \frac{1}{3}(5.63 - 1.21) = 1.47 MPa$$

$$\tau_{oct} = \frac{1}{3}[(5.63 + 1.21)^2 + (-1.21)^2 + (-5.63)^2]^{\frac{1}{2}} = 2.98 \text{ MPa}$$