(i) $m \leftarrow \beta, m + (1 - \beta) \nabla_{\theta} J_{mini-batch}(\theta)$ $\theta \leftarrow \theta - \alpha m$

Using β_1 tracks the history of the gradients by the rolling average. Controlling β_1 on the previous State m_{i-1} , we can let the recent changes have a bit more importance than the current gradient, thus reduce the variance

(ii) Small v values will get larger updates.

This can be helpful for learning because it can get recent parameters moving more efficiently along the axes and thus expediate the convergence.

(b) (i) $\gamma = \frac{1}{1 - Pdrop} = \frac{1}{Pkcep}$

Edrop [hdrop] $i = P_{drop} \cdot 0 + (1-P_{drop}) \gamma \cdot h_i = h_i$ $\gamma = \frac{1}{1-P_{drop}}$

(ii) dropout is used for preventing overfitting.

2. (a)	1	•	1
Stack	Buffer	Arc I	ransition
[ROOT]	[[, parsed, this, sentence, correctly]		Initial
[ROOT, []	[parsed, this, Sentence, Correctly]		shift
LROOT, I, parsed]	I this, sentence, convectly]		shift
[ROOT, parsed]	[this, sentence, correctly]	parsed → I	Left
[RooT, parsed this]	[Sentence, Correctly]		Shift
[ROOT, parsed, this, sentence]	L correctly]		Shift
[RooT, parsed, sentence]	[correctly]	Sentence - this	Left
[ROOT, parsed]	Correctly 1	parsed > sentence	Right
[ROOT, parsed, correctly]			
[ROOT, parsed]		parsed - correctly	Shift
[ROOT]	5 0	ROOT > parsed	'"J""

(b) O(n)

The worst case is 2·n, which is linear.

(e) Final model performance

dev UAS test UAS

88.47