

Project Flat-Panel CT Reconstruction Motivation

Y. Huang, F. Wagner, A. Maier

Pattern Recognition Lab (CS 5) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) 28.04.2022

Organization

Organization

Time and place

Thursday, 10:00-12:00

Zoom-meeting (link in StudOn)

Supervisors

Prof. Andreas Maier

Dr. Yixing Huang

Fabian Wagner

Participation Options

Hochschulpraktikum / Academic Laboratory (5 ECTS)

- Attend online course
- Finish all exercise sheets (alone or in groups of two)
- Individual presentation about one exercise sheet

Hochschulpraktikum + Forschungspraktikum / Academic Laboratory + Research Laboratory (5+5 ECTS)

- Same as Academic Laboratory
 - + Individual research project
 - + 6-page report
- Check our website (https://lme.tf.fau.de/teaching/thesis/)

What we expect

You have to write your own code

→ If you copy code, we will find out

You will not be able to finish the exercises on time if you only work during our sessions

→ You need to work between sessions

We will ask questions regarding your code

→ Take notes, as they might be asked again at final presentation

Tentative timetable

Exercise submission via StudOn

During meetings on Tuesdays

Code and results are checked by a supervisor

StudOn

- For each exercise, a submission is required
- Please upload your scripts
- → StudOn is used to keep track of your individual status, but you will "pass" the exercises based on the individual discussion during the Tuesday meetings

Content of the Exercises

Exercise 1/5 – Basics

- World coordinates ↔ Pixel coordinates
- Implement a Grid structure in python
 - → 2D phantom

Exercise 2/5 – Parallel-Beam

- Parallel-beam sinogram
- Parallel-beam back-projection
- Ramp & RamLak filter in spatial and Fourier domain

Exercise 3/5 – Fan-Beam

- Fan-beam sinogram
- Rebinning:

Fan-beam → Parallel-beam

Exercise 4/5 – OpenCL

- Comparison of CPU and GPU runtime
- Parallel-beam back-projection on GPU

whitehatvirtual.com

Exercise 5/5 - Cone-Beam

- Cone-beam reconstruction of real data
- Use framework CONRAD

Questions?

cs5-projfcr@lists.fau.de