THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Calculus Tutorial 8 (Week 9)

MATH1062/MATH1023: Mathematics 1B (Calculus)

Semester 2, 2024

Questions marked with * are harder questions.

Material covered

(1) Partial derivatives and tangent planes

Summary of essential material

The equation of the tangent plane to the surface z = f(x, y) at (x, y) = (a, b) is given by

$$z - f(a, b) = f_x(a, b)(x - a) + f_y(a, b)(y - b).$$

Questions to complete during the tutorial

1. For the given function f, find the indicated derivative (ordinary or partial). (Recall that to compute $f_x(x, y)$, regard y as a constant and differentiate f(x, y) with respect to x. Similarly, to compute $f_y(x, y)$ regard x as a constant and differentiate f(x, y) with respect to y.)

(a)
$$f(x) = 3x^2 - 16$$
, find $\frac{df}{dx}$.

(e)
$$f(x) = 4 \ln x$$
, find $\frac{df}{dx}$.

(b)
$$f(x, y) = 3x^2 - y^4$$
,
find $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$.

(f)
$$f(x, y) = y \ln x$$
, find $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$.

(c)
$$f(y) = 5e^{3y}$$
, find $\frac{df}{dy}$.

(g)
$$f(x) = \frac{2x}{x^2 + 4}$$
, find $\frac{df}{dx}$.

(d)
$$f(x, y) = xe^{3y}$$
, find $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$.

(h)
$$f(x, y) = \frac{xy}{x^2 + y^2}$$
, find $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$

- **2.** Let $f(x, y) = x^3 + x^2y^3 2y^2$. Calculate the partial derivatives $f_x(x, y)$ and $f_y(x, y)$ and evaluate each at the point (1, 2).
- 3. Find the equation of the tangent plane to the paraboloid $z = x^2 + 4y^2$ at the point (2, 1, 8).
- **4.** Let f(x, y) = 2x 3y + 2. Find the equation of the tangent plane to the surface z = f(x, y) at the point (x, y) = (3, 1). In this example there is a striking relationship between the given surface and its tangent plane! Explain it.
- *5. The Ideal Gas Law PV = kT (where k is a constant) determines each of P, V, T (pressure, volume and temperature, respectively) as functions of the other two. Show that

$$\frac{\partial P}{\partial V}\frac{\partial V}{\partial T}\frac{\partial T}{\partial P} = -1.$$

6. Find the two first-order partial derivatives of the following function which gives the volume *V* of a cylinder, radius *r* and height *a*:

$$V = \pi r^2 a$$
.

Explain what information these partial derivatives give about the effect on the volume of the cylinder of changing either only its radius or only its height.

*7. Show the ellipsoid $3x^2 + 2y^2 + z^2 = 9$ and sphere $x^2 + y^2 + z^2 - 8x - 6y - 8z + 24 = 0$ are tangential to each other at (1, 1, 2). That is, show that these two surfaces have a common tangent plane at the point (1, 1, 2).

Short answers to selected exercises

- 1. (a) f'(x) = 6x
 - (b) $f_x(x, y) = 6x$, $f_y(x, y) = -4y^3$
 - (c) $f'(y) = 15e^{3y}$
 - (d) $f_x(x, y) = e^{3y}$, $f_y(x, y) = 3xe^{3y}$
 - (e) f'(x) = 4/x
 - (f) $f_x(x, y) = y/x$, $f_y(x, y) = \ln x$
 - (g) $f'(x) = (8 2x^2)/(x^2 + 4)^2$
 - (h) $f_x(x, y) = y(y^2 x^2)/(x^2 + y^2)^2$, $f_y(x, y) = x(x^2 y^2)/(x^2 + y^2)^2$
- **2.** $f_x(1,2) = 19, f_y(1,2) = 4$
- 3. z = 4x + 8y 8