Notes on the Maslov dequantisation

Davide Barbarossa Dipartimento di Informatica: Scienza ed Ingegneria Università di Bologna Bologna, Italia

March 19, 2023

Fix t > 0. Define $\phi_t : [0,1] \to [0,+\infty], \ \phi_t(0 < x) := -t \ln x, \ \phi_t(0) := +\infty$. It is bijective with inverse $\phi_t^{-1} : [0,+\infty] \to [0,1], \ \phi_t^{-1}(0 < \alpha < +\infty) := e^{-\alpha/t}, \ \phi_t^{-1}(0) := 1, \ \phi_t^{-1}(+\infty) := 0$.

Call $\widetilde{\mathbb{L}} := ([0,1], \widetilde{+}, \cdot)$, where $x\widetilde{+}y := (x+y)/2$. This is a commutative non-associative idempotent semiring¹ with unit 1 and pseudo-zero² 0.

Call $\mathbb{L}_t := ([0, +\infty], +^t, \cdot^t)$, where $\alpha +^t \beta := \phi_t(\phi_t^{-1}(\alpha) + \phi_t^{-1}(\beta)) = -t \ln(e^{-\alpha/t} + e^{-\beta/t}) + t \ln 2$, and $\alpha \cdot^t \beta := \phi_t(\phi_t^{-1}(\alpha)\phi_t^{-1}(\beta)) = \alpha + \beta$. This is a commutative non-associative idempotent semiring with unit 0 and pseudo-zero $+\infty$. \mathbb{L}_1 is usually called the *unit-log-semiring*.

Remark that the bijection $\phi_t : \widetilde{\mathbb{L}} \to \mathbb{L}_t$ is an isomorphism of semirings with unit and pseudo-zeros, as $\phi_t(x + y) = \phi_t(x) + \phi_t(y)$ and $\phi_t(x + y) = \phi_t(x) + \phi_t(y)$. Therefore, all the \mathbb{L}_t , for t > 0, are isomorphic.

Call $\mathbb{L} := ([0, +\infty], \inf, +)$ the Lawvere tropical semiring. This is a commutative idempotent semiring with unit 0 and zero $+\infty$.

¹Here by *semiring* I mean a set endowed with an associative multiplication, an associative and commutative addition, with distributivity of the multiplication over addition. By *non-associative semiring* I mean as before but without requiring associative addition. By *idempotent* I mean with x + x = x.

²For a non-associative semiring R, a pseudo-zero 0 is an element s.t. x + 0 = f(x) = 0 + x and $x \cdot 0 = 0 = 0 \cdot x$, where f is a fixed function $R \to R$ not depending on x.

Since \mathbb{L} is associative, \mathbb{L}_t and \mathbb{L} cannot be isomorphic, for no t > 0 (this can also be proven, without considering the associativity, by showing that there cannot exist a bijective homomorphism of semiring with units and pseudo-zeros between them).

It can be proven that $\alpha + t^t \beta \xrightarrow[t \to 0]{} \min\{\alpha, \beta\}$ (and trivially $\alpha \cdot t^t \beta = \alpha + \beta \xrightarrow[t \to 0]{} \alpha + \beta$). In this sense, one says that $\mathbb{L}_t \xrightarrow[t \to 0]{} \mathbb{L}$. Looking at \mathbb{L} as this limit is usually referred to as seeing \mathbb{L} as the *Maslov dequantisation* of $\widetilde{\mathbb{L}}$ (i.e. of the \mathbb{L}_t).

Remark that this limit deforms a *isomorphic family* of commutative *non-associative* idempotent semirings with units and *pseudo-zeros*, to a *non-isomorphic* commutative idempotent semiring with unit and *zero*.