Centrale PC 2017

II Autour de la loi faible des grands nombres

II.A - Préliminaires

II.A.1) a) Puisque $e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$ pour tout $x \in \mathbb{R}$, on en déduit aisément que

$$\forall t \in \mathbb{R}, \qquad \cosh(t) = \sum_{n=0}^{+\infty} \frac{t^{2n}}{(2n)!}, \qquad e^{t^2/2} = \sum_{n=0}^{+\infty} \frac{t^{2n}}{2^n n!}$$

(le rayon de convergence de ces deux séries entières est donc $+\infty$).

b) Pour tout entier $n \in \mathbb{N}$, on a $(2n)! \geq 2^n n!$, car

$$(2n)! = \left(\prod_{k=n+1}^{2n} k\right) \times n!,$$

et le produit $\left(\prod_{k=n+1}^{2n}k\right)$ est supérieur à 2^n , puisque si $n\geq 1$, chacun de ses n facteurs est supérieur à 2, et si n=0, il vaut $1=2^0$. On en déduit, puisque $t^{2n}>0$:

$$\forall t \in \mathbb{R}, \quad \cosh(t) = \sum_{n=0}^{+\infty} \frac{t^{2n}}{(2n)!} \le \sum_{n=0}^{+\infty} \frac{t^{2n}}{2^n n!} = e^{t^2/2}.$$

II.A.2) Fixons $\lambda \in [0;1]$. En divisant par $e^a > 0$, on a l'équivalence :

$$e^{\lambda a + (1-\lambda)b} \le \lambda e^a + (1-\lambda)e^b \iff e^{(1-\lambda)(b-a)} \le \lambda + (1-\lambda)e^{b-a},$$

pour tous réels a < b. En posant x = b - a (qui est strictement positif), il suffit donc de montrer que

$$\forall x > 0, \qquad e^{(1-\lambda)x} \le \lambda + (1-\lambda)e^x.$$

Pour cela, on étudie la fonction $\varphi_{\lambda}: x \mapsto \lambda + (1-\lambda)e^x - e^{(1-\lambda)x}$. Elle est dérivable sur $[0; +\infty[$, et

$$\forall x > 0, \qquad \varphi_{\lambda}'(x) = (1 - \lambda)(e^x - e^{(1 - \lambda)x}) > 0$$

(puisque $0 \le 1 - \lambda \le 1$). Cette fonction est donc croissante sur $[0; +\infty[$, ce qui donne $\varphi_{\lambda}(x) \ge \varphi_{\lambda}(0) = 0$, montrant ainsi l'inégalité voulue.

II.A.3) a) Par définition d'une limite finie en $+\infty$, il existe un réel ℓ tel que

$$\forall \varepsilon > 0, \quad \exists T_0 > 0, \qquad t > T_0 \Longrightarrow |f(t) - \ell| < \varepsilon.$$

En choisissant $\varepsilon = 1$, on a donc

$$\exists T_0 > 0, \quad t > T_0 \Longrightarrow \ell - 1 < f(t) < \ell + 1,$$

ce qui montre que f est bornée sur $[T_0; +\infty[$. En outre, elle est continue, donc également bornée sur le segment $[0; T_0]$. Finalement, f est bornée sur \mathbb{R}^+ (qui est la réunion de ces deux intervalles).

- b) La fonction $g:t\mapsto te^{\gamma t}$ est continue sur \mathbb{R}^+ (c'est le produit de deux fonctions continues), et on a $\lim_{t\to +\infty} g(t)=0$ (par croissances comparées car $\gamma<0$). Donc g est bornée sur \mathbb{R}^+ par la question précédente.
- II.B Variable aléatoire discrète admettant un moment exponentiel
 - II.B.1) Notons $X(\Omega) = \{x_n, n \in \mathbb{N}\}$. La série à termes positifs $\sum_{n \geq 0} e^{\alpha |x_n|} \mathbb{P}(X = x_n)$ converge par hypothèse, et on a (puisque $\alpha > 0$)

$$\forall n \in \mathbb{N}, \qquad 0 \le e^{\alpha x_n} \mathbb{P}(X = x_n) \le e^{\alpha |x_n|} \mathbb{P}(X = x_n),$$

donc par comparaison de séries à termes positifs, on en déduit que $\sum_{n\geq 0}e^{\alpha x_n}\mathbb{P}(X=x_n)$ converge (absolument), c'est-à-dire que $e^{\alpha X}$ admet une espérance finie.

II.B.2) a) Puisque $X \sim \mathcal{P}(\lambda)$, on a $X(\Omega) = \mathbb{N}$ et $\mathbb{P}(X = n) = e^{-\lambda} \frac{\lambda^n}{n!}$, donc sous réserve de convergence de la série positive suivante, on a

$$\mathbb{E}(e^{\alpha|X|}) = \mathbb{E}(e^{\alpha X}) = \sum_{n=0}^{+\infty} e^{\alpha n} e^{-\lambda} \frac{\lambda^n}{n!} = e^{-\lambda} \sum_{n=0}^{+\infty} \frac{(\lambda e^{\alpha})^n}{n!}.$$

On reconnaît le développement en série entière de l'exponentielle, donc cette série converge pour tout réel α . La variable X possède donc un moment exponentiel d'ordre α pour tout $\alpha > 0$, et

$$\forall \alpha > 0, \qquad \mathbb{E}(e^{\alpha X}) = e^{-\lambda} e^{\lambda e^{\alpha}} = e^{\lambda (e^{\alpha} - 1)}.$$

b) Puisque $Y \sim \mathcal{G}(p)$, on a $Y(\Omega) = \mathbb{N}^*$ et $\mathbb{P}(Y = n) = p(1-p)^{n-1}$, donc sous réserve de convergence de la série positive suivante, on a

$$\mathbb{E}(e^{\alpha|Y|}) = \mathbb{E}(e^{\alpha Y}) = \sum_{n=1}^{+\infty} e^{\alpha n} p(1-p)^{n-1} = \frac{p}{1-p} \sum_{n=1}^{+\infty} ((1-p)e^{\alpha})^n$$

Cette série géométrique converge pour tout réel α tel que $(1-p)e^{\alpha} < 1$. La variable Y possède donc un moment exponentiel d'ordre α pour tout $\alpha \in]0; -\ln(1-p)[$ et

$$\forall \alpha \in]0; -\ln(1-p)[, \qquad \mathbb{E}(e^{\alpha Y}) = \frac{pe^{\alpha}}{1 - (1-p)e^{\alpha}}.$$

c) Puisque $Z \sim \mathcal{B}(n,p)$, on a $Z(\Omega) = [0;n]$ et $\mathbb{P}(Z=k) = \binom{n}{k} p^k (1-p)^{n-k}$. La variable aléatoire $e^{\alpha |Z|} = e^{\alpha Z}$ étant d'image finie, elle possède une espérance, donc Z possède un moment exponentiel d'ordre α pour tout $\alpha > 0$ (même pour tout $\alpha \in \mathbb{R}$ en fait), et

$$\forall \alpha \in \mathbb{R}, \qquad \mathbb{E}(e^{\alpha Z}) = \sum_{k=0}^{n} e^{\alpha k} \binom{n}{k} p^k (1-p)^{n-k} = (pe^{\alpha} + 1 - p)^n$$

(d'après la formule du binôme).

- II.C Une majoration de $\mathbb{P}\left(\left|\frac{S_n}{n}-m\right|\geq \varepsilon\right)$
 - **II.C.1)** a) Pour tout réel u, on a $e^u \ge 1 + u \ge u$ (se montre facilement avec une étude de fonction), donc

$$\forall p \in \mathbb{N}, \qquad \alpha |x_p| \mathbb{P}(X = x_p) \le e^{\alpha |x_p|} \mathbb{P}(X = x_p).$$

Puisque par hypothèse la série $\sum_{p\geq 0}e^{\alpha|x_p|}\mathbb{P}(X=x_p)$ converge, on en déduit par comparaison de séries à termes positifs que $\sum_{p\geq 0}|x_p|\mathbb{P}(X=x_p)$ converge, c'est-à-dire que X admet une espérance finie.

b) Justifions que X possède un moment d'ordre 2 : puisque $\lim_{|x|\to +\infty} \frac{x^2}{e^{\alpha|x|}}=0$ (dû à $\alpha > 0$), il existe a > 0 tel que $|x| \ge a \Longrightarrow x^2 \le e^{\alpha |x|}$. On a donc (en distinguant les $\cos |x| < a \text{ et } |x| \ge a$):

$$\forall x \in \mathbb{R}, \quad x^2 \le a^2 + e^{\alpha|x|}.$$

Ceci amène la majoration:

$$\forall p \in \mathbb{N}, \qquad |x_p|^2 \mathbb{P}(X = x_p) \le a^2 \mathbb{P}(X = x_p) + e^{\alpha |x_p|} \mathbb{P}(X = x_p).$$

Puisque les séries $\sum_{p\geq 0}a^2\mathbb{P}(X=x_p)$ et $\sum_{p\geq 0}e^{\alpha|x_p|}\mathbb{P}(X=x_p)$ convergent, on en déduit par comparaison de séries à termes positifs que $\sum_{p\geq 0}|x_p|^2\mathbb{P}(X=x_p)$ converge.

Les variables $(X_k)_{k\in\mathbb{N}^*}$ (qui sont réelles, discrètes et ont la même loi, celle de X), possèdent donc toutes un moment d'ordre 2, et elles sont deux à deux indépendantes (puisque mutuellement indépendantes par hypothèse), donc on peut appliquer la loi faible des grands nombres : en notant m = E(X) et $\sigma^2 = V(X)$, on a

$$\forall \varepsilon > 0, \qquad \mathbb{P}\left(\left|\frac{S_n}{n} - m\right| \ge \varepsilon\right) \le \frac{\sigma^2}{n\varepsilon^2}.$$

II.C.2) a) La série de fonctions $t\mapsto \sum_{p\geq 0}e^{tx_p}\mathbb{P}(X=x_p)$ converge normalement sur le segment

 $[-\alpha; \alpha]$: en effet,

$$\forall t \in [-\alpha; \alpha], \quad \forall p \in \mathbb{N}, \qquad \left| e^{tx_p} \mathbb{P}(X = x_p) \right| \le e^{\alpha |x_p|} \mathbb{P}(X = x_p),$$

et la série $\sum_{p\geq 0}e^{\alpha|x_p|}\mathbb{P}(X=x_p)$ converge par hypothèse.

Cette convergence normale a deux conséquences :

- d'une part, elle entraîne la convergence absolue pour tout $t \in [-\alpha; \alpha]$, ce qui montre que $\mathbb{E}(e^{tX})$ est bien définie.
- d'autre part, elle entraı̂ne la convergence uniforme sur $[-\alpha; \alpha]$, ce qui montre (puisque les $t \mapsto e^{tx_p} \mathbb{P}(X = x_p)$ sont continues) la continuité de la fonction somme $\Psi: t \mapsto \mathbb{E}(e^{tX})$ sur $[-\alpha; \alpha]$.
- b) Pour tout $p \in \mathbb{N}$, la fonction $t \mapsto e^{tx_p} \mathbb{P}(X = x_p)$ est de classe \mathcal{C}^1 sur \mathbb{R} Considérons la série dérivée :

$$t \mapsto \sum_{p\geq 0} \frac{d}{dt} \left(e^{tx_p} \mathbb{P}(X = x_p) \right) = \sum_{p\geq 0} x_p e^{tx_p} \mathbb{P}(X = x_p).$$

Montrons que cette série de fonctions converge normalement sur tout segment $[-\beta; \beta]$ avec $0 < \beta < \alpha$. On a

$$\forall t \in [-\beta; \beta], \quad \forall p \in \mathbb{N}, \qquad |x_p e^{tx_p} \mathbb{P}(X = x_p)| \quad \leq \quad |x_p| e^{\beta|x_p|} \mathbb{P}(X = x_p) \\ = \quad |x_p| e^{(\beta - \alpha)|x_p|} \times e^{\alpha|x_p|} \mathbb{P}(X = x_p).$$

En utilisant la question II.A.3)b), on obtient, puisque $\beta - \alpha < 0$, qu'il existe une constante M > 0 telle que $\forall p \in \mathbb{N}, |x_p|e^{(\beta-\alpha)|x_p|} \leq M$. D'où la majoration

$$\forall t \in [-\beta; \beta], \quad \forall p \in \mathbb{N}, \qquad \left| x_p e^{tx_p} \mathbb{P}(X = x_p) \right| \le M e^{\alpha |x_p|} \mathbb{P}(X = x_p),$$

qui montre bien la convergence normale voulue puisque $\sum_{p>0}e^{\alpha|x_p|}\mathbb{P}(X=x_p)$ converge

Finalement, on peut appliquer le théorème de dérivation terme à terme d'une série de fonctions de classe C^1 : la série $t \mapsto \sum_{p>0} e^{tx_p} \mathbb{P}(X=x_p)$ converge simplement sur $[-\alpha; \alpha]$ et sa série dérivée converge uniformément sur tout segment $[-\beta; \beta] \subset]-\alpha; \alpha[$, donc la fonction somme Ψ est de classe \mathcal{C}^1 (donc dérivable) sur $]-\alpha; \alpha[$ et

$$\forall t \in]-\alpha; \alpha[, \qquad \Psi'(t) = \sum_{p=0}^{+\infty} \frac{d}{dt} \left(e^{tx_p} \mathbb{P}(X = x_p) \right) = \mathbb{E}(X e^{tX}).$$

II.C.3) a) On a directment $f_{\varepsilon}(0) = \Psi(0) = \mathbb{E}(1) = 1$, et

$$\forall t \in]-\alpha, \alpha[, \qquad f'_{\varepsilon}(t) = (-(m+\varepsilon)\Psi(t) + \Psi'(t)) e^{-(m+\varepsilon)t},$$

donc
$$f'_{\varepsilon}(0) = -(m+\varepsilon)\underbrace{\Psi(0)}_{=1} + \underbrace{\Psi'(0)}_{=E(X)=m} = -\varepsilon.$$

b) Faisons un développement limité d'ordre 1 en 0 : il existe une fonction $u:]-\alpha; \alpha[\to \mathbb{R}$ telle que $\lim_{t\to 0} u(t) = 0$ et

$$\forall t \in]-\alpha; \alpha[, \qquad f_{\varepsilon}(t) = f_{\varepsilon}(0) + tf'_{\varepsilon}(0) + tu(t) = 1 + t(-\varepsilon + u(t)).$$

Par définition d'une limite nulle, il existe $\beta \in]0; \alpha[$ tel que

$$t \in [-\beta; \beta] \Longrightarrow |u(t)| \le \frac{\varepsilon}{2} \Longrightarrow f_{\varepsilon}(t) \in \left[1 - \frac{3t\varepsilon}{2}; 1 - \frac{t\varepsilon}{2}\right].$$

En choisissant alors t strictement positif et suffisamment petit, on obtient

$$\exists t_0 \in]0; \alpha[, f_{\varepsilon}(t_0) \in]0; 1[$$

(par exemple avec $t_0 = \min(\beta; \frac{1}{3\varepsilon})$, on a $f_{\varepsilon}(t_0) \in [\frac{1}{2}; 1[)$

II.C.4) Soit $t \in [-\alpha; \alpha]$ et $n \in \mathbb{N}^*$. On a $e^{tS_n} = \prod_{k=1}^n e^{tX_k}$. Puisque les variables $(X_k)_{k \in \mathbb{N}^*}$ suivent la même loi que X, les variables $(e^{tX_k})_{k \in \mathbb{N}^*}$ admettent toutes une espérance finie (d'après **II.C.2**)a)), égale à $\Psi(t)$. En outre, l'indépendance mutuelle des (X_k) donne l'indépendance mutuelle des (e^{tX_k}) , donc par produit, la variable e^{tS_n} est d'espérance finie et

$$\mathbb{E}(e^{tS_n}) = \prod_{k=1}^n \mathbb{E}(e^{tX_k}) = \prod_{k=1}^n \Psi(t) = (\Psi(t))^n.$$

II.C.5) a) Soit $t \in]0; \alpha]$ et $n \in \mathbb{N}^*$. Puisque t > 0 et que exp est strictement croissante, les événements $\left(\frac{S_n}{n} \geq m + \varepsilon\right)$, $(tS_n \geq tn(m+\varepsilon))$, et $\left(e^{tS_n} \geq e^{tn(m+\varepsilon)}\right)$ sont égaux. Donc

$$\mathbb{P}\left(\frac{S_n}{n} \geq m + \varepsilon\right) = \mathbb{P}\left(e^{tS_n} \geq e^{tn(m+\varepsilon)}\right) = \mathbb{P}\left(e^{tS_n} \geq \left(e^{t(m+\varepsilon)}\right)^n\right).$$

La variable aléatoire e^{tS_n} admettant une espérance, on a en appliquant l'inégalité de Markov :

$$\mathbb{P}\left(e^{tS_n} \ge \left(e^{t(m+\varepsilon)}\right)^n\right) \le \frac{\mathbb{E}(e^{tS_n})}{\left(e^{t(m+\varepsilon)}\right)^n} = \frac{\left(\Psi(t)\right)^n}{\left(e^{t(m+\varepsilon)}\right)^n} = \left(e^{-t(m+\varepsilon)}\Psi(t)\right)^n,$$

c'est-à-dire

$$\mathbb{P}\left(\frac{S_n}{n} \ge m + \varepsilon\right) \le \left(f_{\varepsilon}(t)\right)^n.$$

b) On choisit $t=t_0$ (le réel obtenu à la question **II.C.3**)b)) dans l'inégalité précédente (qui est vraie pour tout $t \in]0; \alpha]$). En posant $r=f_{\varepsilon}(t_0)$, on a alors $r \in]0; 1[$ et

$$\forall n \in \mathbb{N}^*, \qquad \mathbb{P}\left(\frac{S_n}{n} \ge m + \varepsilon\right) \le r^n.$$

II.C.6) Pour tout $n \in \mathbb{N}^*$, on a

$$\begin{split} \mathbb{P}\left(\left|\frac{S_n}{n} - m\right| \geq \varepsilon\right) &= \mathbb{P}\left(\frac{S_n}{n} \geq m + \varepsilon\right) + \mathbb{P}\left(\frac{S_n}{n} \leq m - \varepsilon\right) \\ &= \mathbb{P}\left(\frac{S_n}{n} \geq m + \varepsilon\right) + \mathbb{P}\left(\frac{-S_n}{n} \geq -m + \varepsilon\right) \\ &= \mathbb{P}\left(\frac{X_1 + \dots + X_n}{n} \geq E(X) + \varepsilon\right) + \mathbb{P}\left(\frac{-X_1 - \dots - X_n}{n} \geq E(-X) + \varepsilon\right). \end{split}$$

On utilise alors le résultat montré à la question $\mathbf{H.C.5}$)b), qui s'énonce ainsi : pour tous réels $\varepsilon > 0$, $\alpha > 0$, pour toute variable aléatoire discrète T telle que $e^{\alpha |T|}$ est d'espérance finie, et pour toute suite (T_k) de variables mutuellement indépendantes suivant toutes la loi de T, on a :

$$\exists r \in]0; 1[, \forall n \in \mathbb{N}^*, \qquad \mathbb{P}\left(\frac{T_1 + \dots + T_n}{n} \ge E(T) + \varepsilon\right) \le r^n.$$

En appliquant ce résultat à T=X, puis à T=-X (on peut car -X suit les mêmes hypothèses que X, et les $(-X_k)$ suivent la même loi que -X), on obtient l'existence de deux réels r_1, r_2 de]0;1[tels que :

$$\forall n \in \mathbb{N}^*, \qquad \left\{ \begin{array}{l} \mathbb{P}\left(\frac{X_1 + \dots + X_n}{n} \ge E(X) + \varepsilon\right) \le r_1^n \\ \mathbb{P}\left(\frac{-X_1 - \dots - X_n}{n} \ge E(-X) + \varepsilon\right) \le r_2^n \end{array} \right.$$

Par somme, on en déduit :

$$\forall n \in \mathbb{N}^*, \qquad \mathbb{P}\left(\left|\frac{S_n}{n} - m\right| \ge \varepsilon\right) \le r_1^n + r_2^n.$$

La suite majorante $(u_n) = (r_1^n + r_2^n)$ tend bien vers 0 et on a

$$u_n^c = \left| \frac{u_{n+1}}{u_n} \right| = \frac{r_1^{n+1} + r_2^{n+1}}{r_1^n + r_2^n} \underset{n \to +\infty}{\longrightarrow} \max(r_1; r_2) \in]0; 1[.$$

Donc la vitesse de convergence de (u_n) est géométrique de rapport $\ell^c = \max(r_1; r_2)$. La majoration obtenue avec la loi faible des grands nombres (à savoir

$$\mathbb{P}\left(\left|\frac{S_n}{n}-m\right|\geq\varepsilon\right)\leq\frac{\sigma^2}{n\varepsilon^2}), \text{ elle, donne seulement une convergence lente, puisqu'en posant }v_n=\frac{\sigma^2}{n\varepsilon^2}, \text{ on a }\lim_{n\to+\infty}v_n=0, \text{ et }v_n^c=\left|\frac{v_{n+1}}{v_n}\right|=\frac{n}{n+1}\underset{n\to+\infty}{\longrightarrow}1.$$

- II.D Une majoration de $\mathbb{P}\left(\left|\frac{S_n}{n}\right| \geq \varepsilon\right)$
 - **II.D.1)** Pour $\alpha > 0$, on a $\forall p \in \mathbb{N}$, $e^{\alpha |x_p|} \mathbb{P}(X = x_p) \le e^{\alpha c} \mathbb{P}(X = x_p)$ puisque $\forall p \in \mathbb{N}$, $|x_p| \le c$ par hypothèse. Puisque la série $\sum_{p>0} e^{\alpha c} \mathbb{P}(X = x_p)$ converge (vers $e^{\alpha c}$, étant donné que

 $\sum_{p=0}^{+\infty} \mathbb{P}(X=x_p)=1), \text{ on en déduit par comparaison de séries à termes positifs que}$ $\sum_{p>0} e^{\alpha|x_p|} \mathbb{P}(X=x_p) \text{ converge, et donc que } \mathbb{E}\left(e^{\alpha|X|}\right) \text{ existe.}$

II.D.2) a) Puisque
$$Y = \frac{1}{2} - \frac{X}{2c}$$
, on a $2cY = c - X$, donc $X = c - 2cY = c - cY - cY = -cY + (1 - Y)c$.

b) On fixe $\omega \in \Omega$ et on utilise l'inégalité montrée en **II.A.2**), avec les réels a=-c, b=c (on a bien a < b) et $\lambda = Y(\omega) = \frac{c-X(\omega)}{2c} \in [0;1]$ (puisque $-c \leq X(\omega) \leq c$):

$$e^{X(\omega)} = e^{Y(\omega)(-c) + (1 - Y(\omega))c} \le Y(\omega)e^{-c} + (1 - Y(\omega))e^{c}.$$

Ceci étant vrai pour tout $\omega \in \Omega$, on en déduit

$$e^X \le Ye^{-c} + (1 - Y)e^c$$
.

II.D.3) a) Par linéarité de l'espérance, la variable Y est d'espérance finie (comme X), et

$$\mathbb{E}(Y) = \frac{1}{2} - \frac{1}{2c}\mathbb{E}(X) = \frac{1}{2}.$$

Par croissance de l'espérance, l'inégalité établie à la question précédente donne :

$$\mathbb{E}(e^X) \le \mathbb{E}(Ye^{-c} + (1 - Y)e^c) = e^{-c}\mathbb{E}(Y) + e^c(1 - \mathbb{E}(Y)) = \frac{1}{2}(e^{-c} + e^c) = \cosh(c).$$

b) A la question précédente, nous avons montré que pour toute variable T d'espérance nulle et bornée par M, nous avons $\mathbb{E}(e^T) \leq \cosh(M)$. On applique ce résultat avec T = tX, où t > 0 est fixé (on peut car $\mathbb{E}(tX) = t\mathbb{E}(X) = 0$ et $|tX| \leq tc$). On obtient :

$$\forall t > 0, \qquad \Psi(t) = \mathbb{E}(e^{tX}) \le \cosh(ct).$$

II.D.4) Par définition de f_{ε} , on a $f_{\varepsilon}(t) = e^{-\varepsilon t}\Psi(t)$ (car m = 0 ici). La question précédente combinée à l'inégalité montrée en II.A.1)b) donne

$$\forall t > 0, \qquad f_{\varepsilon}(t) \le e^{-\varepsilon t} \cosh(ct) \le e^{-\varepsilon t} e^{c^2 t^2/2} = e^{-t\varepsilon + \frac{1}{2}c^2 t^2}.$$

II.D.5) Utilisons II.C.5)a):

$$\forall n \in \mathbb{N}^*, \quad \forall t > 0, \qquad \mathbb{P}\left(\frac{S_n}{n} \ge \varepsilon\right) \le (f_{\varepsilon}(t))^n$$

(en effet $m = \mathbb{E}(X) = 0$ et f_{ε} est définie sur tout \mathbb{R} ici).

L'inégalité de la question précédente donne alors :

$$\forall n \in \mathbb{N}^*, \quad \forall t > 0, \qquad \mathbb{P}\left(\frac{S_n}{n} \ge \varepsilon\right) \le \left(e^{-t\varepsilon + \frac{1}{2}c^2t^2}\right)^n,$$

d'où en choisissant $t = \frac{\varepsilon}{c^2}$:

$$\forall n \in \mathbb{N}^*, \qquad \mathbb{P}\left(\frac{S_n}{n} \ge \varepsilon\right) \le e^{-n\frac{\varepsilon^2}{2c^2}}.$$

Majorons maintenant $\mathbb{P}\left(\left|\frac{S_n}{n}\right| \geq \varepsilon\right)$. Par additivité de \mathbb{P} , on a

$$\mathbb{P}\left(\left|\frac{S_n}{n}\right| \geq \varepsilon\right) = \mathbb{P}\left(\frac{S_n}{n} \geq \varepsilon\right) + \mathbb{P}\left(\frac{S_n}{n} \leq -\varepsilon\right) = \mathbb{P}\left(\frac{S_n}{n} \geq \varepsilon\right) + \mathbb{P}\left(\frac{-S_n}{n} \geq \varepsilon\right).$$

On vient de voir comment majorer le premier terme.

Pour majorer le second terme, on applique tout ce qui précède à la variable -X au lieu de X (on peut car $\mathbb{E}(-X) = -\mathbb{E}(X) = 0$ et $|-X| = |X| \le c$). Cela revient à remplacer chaque X_k par $-X_k$, et donc S_n par $-S_n$: il vient

$$\forall n \in \mathbb{N}^*, \qquad \mathbb{P}\left(\frac{-S_n}{n} \ge \varepsilon\right) \le e^{-n\frac{\varepsilon^2}{2c^2}}.$$

Par somme, on obtient finalement

$$\forall n \in \mathbb{N}^*, \qquad \mathbb{P}\left(\left|\frac{S_n}{n}\right| \ge \varepsilon\right) \le 2e^{-n\frac{\varepsilon^2}{2c^2}}.$$

II.D.6) Puisque $Z \sim \mathcal{B}(n, p)$, il existe des variables mutuellement indépendantes X_1, \dots, X_n suivant toutes la loi de Bernoulli $\mathcal{B}(p)$ et telles que $X_1 + \dots + X_n = Z$. On a donc

$$P\left(\left|\frac{Z}{n}-p\right|\geq\varepsilon\right)=P\left(\left|\frac{(X_1-p)+\cdots+(X_n-p)}{n}\right|\geq\varepsilon\right).$$

Il suffit alors d'appliquer l'inégalité de la question précédente avec les variables aléatoires $Y_k = X_k - p$, qui sont bien centrées car l'espérance de la loi $\mathcal{B}(p)$ est p, et qui sont bornées car $|Y_k| \leq c = \max(p; 1-p)$ pour tout $k \in [1; n]$. Cela donne :

$$P\left(\left|\frac{Z}{n} - p\right| \ge \varepsilon\right) = P\left(\left|\frac{Y_1 + \dots + Y_n}{n}\right| \ge \varepsilon\right) \le 2\exp\left(\frac{-n\varepsilon^2}{2\max(p; 1 - p)^2}\right).$$