

MSTP技术白皮书

关键词: STP, RSTP, MSTP, 快速迁移, 多实例, 冗余环路, 链路备份, 负载分担

摘 要:本文主要介绍MSTP的基本概念、MSTP算法的实现、Comware MSTP实现的特色技术以及典型组网方案。

缩略语:

缩略语	英文全名	中文解释
STP	Spanning Tree Protocol	生成树协议
RSTP	Rapid Spanning Tree Protocol	快速生成树协议
MSTP	Multiple Spanning Tree Protocol	多实例生成树协议
CST	Common Spanning Tree	公共生成树
IST	Internal Spanning Tree	内部生成树
CIST	Common and Internal Spanning Tree	公共和内部生成树
MSTI	Multiple Spanning Tree Instance	多生成树实例

目 录

1 概述	3
1.1 产生背景	3
1.1.1 IEEE 802.1D STP	3
1.1.2 IEEE 802.1w RSTP	4
1.2 MSTP技术优点	5
2 MSTP详细介绍	5
2.1 相关术语	5
2.2 MSTP算法实现	g
2.2.1 初始状态	g
2.2.2 端口角色的选择原则	9
2.2.3 优先级向量计算	10
2.2.4 角色选择过程	12
2.2.5 计算结果	14
3 Comware实现的技术特色	15
3.1 MSTP的三种工作模式	15
3.2 Path Cost缺省值的计算	16
3.3 设置超时因子特性	16
3.4 指定根桥和备份根桥	17
3.5 BPDU保护	17
3.6 Root保护	17
3.7 Loop保护	18
3.8 TC保护	19
3.9 配置摘要侦听	19
3.10 No Agreement Check特性实现	21
3.11 MSTP标准报文格式特性实现	22
3.12 VLAN Ignore特性	22
4 典型组网案例	22
5 总结	23
6 参考文献	23

1 概述

1.1 产生背景

在二层交换网络中,一旦存在环路就会造成报文在环路内不断循环和增生,产生广播风暴,从而占用所有的有效带宽,使网络变得不可用。

在这种环境下STP协议应运而生,STP是一种二层管理协议,它通过有选择性地阻 塞网络冗余链路来达到消除网络二层环路的目的,同时具备链路的备份功能。

STP协议和其他协议一样,是随着网络的不断发展而不断更新换代的。最初被广泛应用的是IEEE 802.1D STP,随后以它为基础产生了IEEE 802.1w RSTP、IEEE 802.1s MSTP。

1.1.1 IEEE 802.1D STP

STP协议的基本思想十分简单。自然界中生长的树是不会出现环路的,如果网络也能够像一棵树一样生长就不会出现环路。于是,STP协议中定义了根桥(Root Bridge)、根端口(Root Port)、指定端口(Designated Port)、路径开销(Path Cost)等概念,目的就在于通过构造一棵树的方法达到裁剪冗余环路的目的,同时实现链路备份和路径最优化。用于构造这棵树的算法称为生成树算法(Spanning Tree Algorithm)。

要实现这些功能,网桥之间必须要进行一些信息的交互,这些信息交互单元就称为配置消息BPDU(Bridge Protocol Data Unit)。STP BPDU是一种二层报文,目的MAC是多播地址01-80-C2-00-00-00,所有支持STP协议的网桥都会接收并处理收到的BPDU报文。该报文的数据区里携带了用于生成树计算的所有有用信息。

STP的工作过程是: 首先进行根桥的选举。选举的依据是网桥优先级和网桥MAC 地址组合成的桥ID,桥ID最小的网桥将成为网络中的根桥,它的所有端口都连接到下游桥,所以端口角色都成为指定端口。接下来,连接根桥的下游网桥将各自选择一条 "最粗壮"的树枝作为到根桥的路径,相应端口的角色就成为根端口。循环这个过程到网络的边缘,指定端口和根端口确定之后一棵树就生成了。生成树经过一段时间(默认值是30秒左右)稳定之后,指定端口和根端口进入转发状态,其他端口进入阻塞状态。STP BPDU会定时从各个网桥的指定端口发出,以维护链路的状态。如果网络拓扑发生变化,生成树就会重新计算,端口状态也会随之改变。这就是生成树的基本原理。

随着应用的深入和网络技术的发展,STP的缺点在应用中也被暴露了出来。STP协议的缺陷主要表现在收敛速度上。

当拓扑发生变化,新的配置消息要经过一定的时延才能传播到整个网络,这个时延称为Forward Delay,协议默认值是15秒。在所有网桥收到这个变化的消息之前,若旧拓扑结构中处于转发的端口还没有发现自己应该在新的拓扑中停止转发,则可能存在临时环路。为了解决临时环路的问题,STP使用了一种定时器策略,即在端口从阻塞状态到转发状态中间加上一个只学习MAC地址但不参与转发的中间状态,两次状态切换的时间长度都是Forward Delay,这样就可以保证在拓扑变化的时候不会产生临时环路。但是,这个看似良好的解决方案实际上带来的却是至少两倍Forward Delay的收敛时间!这在某些实时业务(如语音视频)中是不能接受的。

1.1.2 IEEE 802.1w RSTP

为了解决STP协议的收敛速度缺陷,2001年IEEE定义了基于IEEE 802.1w标准的快速生成树协议RSTP。RSTP协议在STP协议基础上做了三点重要改进,加快了收敛速度(最快可在1秒以内):

- (1) 为根端口和指定端口设置了快速切换用的替换端口(Alternate Port)和备份端口(Backup Port)两种角色。当根端口失效的情况下,替换端口就会快速转换为新的根端口并无时延地进入转发状态;当指定端口失效的情况下,备份端口就会快速转换为新的指定端口并无时延地进入转发状态。
- (2) 在只连接了两个交换端口的点对点链路中,指定端口只需与下游网桥进行一次握手就可以无时延地进入转发状态。如果是连接了三个以上网桥的共享链路,下游网桥是不会响应上游指定端口发出的握手请求的,只能等待两倍Forward Delay 时间进入转发状态。
- (3) 直接与终端相连而不与其他网桥相连的端口定义为边缘端口(Edge Port)。 边缘端口可以直接进入转发状态,不需要任何延时。由于网桥无法知道端口 是否是直接与终端相连,所以需要人工配置。

RSTP协议相对于STP协议的确有很多改进,并且向下兼容STP协议,可以混合组 网。但是,RSTP和STP一样同属于单生成树SST(Single Spanning Tree),有 它自身的诸多缺陷,主要表现在三个方面:

(1) 由于整个交换网络只有一棵生成树,在网络规模比较大的时候会导致较长的 收敛时间。

- (2) 因为 RSTP 是单生成树协议,所有 VLAN 共享一棵生成树,为了保证 VLAN 内部可以正常通信,网络内每个 VLAN 都必须沿着生成树的路径方向连续分布,否则将会出现有的 VLAN 由于内部链路被阻塞而被分隔开,从而导致 VLAN 内部无法通信的问题。
- (3) 当某条链路被阻塞后将不承载任何流量,无法实现负载均衡,造成了带宽的极大浪费。

这些缺陷都是单生成树无法克服的,于是支持VLAN的多生成树协议MSTP出现了。

1.2 MSTP技术优点

多生成树协议MSTP是IEEE 802.1s中定义的一种新型生成树协议,相对于STP和RSTP, 优势非常明显。MSTP的特点如下:

- MSTP 引入"域"的概念,把一个交换网络划分成多个域。每个域内形成多 棵生成树,生成树之间彼此独立;在域间,MSTP 利用 CIST 保证全网络拓 扑结构的无环路存在。
- MSTP 引入"实例(Instance)"的概念,将多个 VLAN 映射到一个实例中,以节省通信开销和资源占用率。MSTP 各个实例拓扑的计算是独立的(每个实例对应一棵单独的生成树),在这些实例上就可以实现 VLAN 数据的负载分担。
- MSTP 可以实现类似 RSTP 的端口状态快速迁移机制。
- MSTP 兼容 STP 和 RSTP。

2 MSTP详细介绍

2.1 相关术语

在图1中的每台设备都运行MSTP。下面将结合图形解释MSTP的一些基本概念。

图1 MSTP基本概念示意图

(1) MST 域

MST域是由交换网络中的多台设备以及它们之间的网段所构成。这些设备具有下列特点:都启动了MSTP;具有相同的域名;具有相同的VLAN到生成树实例映射配置;具有相同的MSTP修订级别配置;这些设备之间在物理上有链路连通。例如,图1中的区域A0就是一个MST域。

(2) VLAN 映射表

VLAN映射表是MST域的一个属性,用来描述VLAN和生成树实例的映射关系。例如,图1中MST域A0的VLAN映射表就是: VLAN 1映射到生成树实例1, VLAN 2映射到生成树实例2, 其余VLAN映射到CIST。

(3) IST

IST是域内实例0上的生成树。IST和CST共同构成整个交换网络的CIST。IST是CIST在MST域内的片段。图1中,CIST在每个MST域内都有一个片段,这个片段

就是各个域内的IST。

(4) CST

CST是连接交换网络内所有MST域的单生成树。如果把每个MST域看作是一个"设备",CST就是这些"设备"通过STP协议、RSTP协议计算生成的一棵生成树。图1中红色线条描绘的就是CST。

(5) CIST

CIST是连接一个交换网络内所有设备的单生成树,由IST和CST共同构成。图1 中,每个MST域内的IST加上MST域间的CST就构成整个网络的CIST。

(6) MSTI

一个MST域内可以通过MSTP生成多棵生成树,各棵生成树之间彼此独立。每棵生成树都称为一个MSTI。例如图1中,每个域内可以存在多棵生成树,每棵生成树和相应的VLAN对应。这些生成树就被称为MSTI。

(7) 域边界端口

域边界端口是指位于MST域的边缘,用于连接不同MST域、MST域和运行STP的 区域、MST域和运行RSTP的区域的端口。

(8) 桥 ID

由桥的优先级和MAC地址组成。

(9) 总根

总根是指CIST实例中桥ID最优的桥。

(10) 外部根路径开销

外部根路径开销指的是端口到总根的最短路径开销。

(11) 域根

MST域内的IST和每个MSTI的根桥都是一个域根。MST域内各棵生成树的拓扑不同,域根也可能不同。

(12) 内部根路径开销

到域根的最短路径开销。

(13) 指定桥 ID

由指定桥的优先级和MAC地址组成。

(14) 指定端口 ID

由指定端口的优先级和端口号组成。

(15) 端口角色

在MSTP的计算过程中,端口角色有根端口、指定端口、Master端口、Alternate端口和Backup端口。端口在不同的生成树实例中可以担任不同的角色。端口角色示意如图2所示。

图2 端口角色示意图

- 根端口:负责向根桥方向转发数据的端口。
- 指定端口:负责向下游网段或设备转发数据的端口。
- Master 端口:连接 MST 域到总根的端口,位于整个域到总根的最短路径上。
- Alternate 端口: 根端口和 Master 端口的备份端口。当根端口或 Master 端口被阻塞后, Alternate 端口将成为新的根端口或 Master 端口。
- Backup 端口: 当开启了 MSTP 的同一台设备的两个端口互相连接时就存在一个环路,此时设备会阻塞端口 ID 较小的端口,此阻塞端口称为 Backup 端口,而另外一个端口则处于转发状态,成为指定端口。Backup 端口是指定端口的备份端口,当指定端口被阻塞且无法发送协议报文后,Backup 端口的报文超时后就会快速转换为新的指定端口,并无时延的转发数据。

(16) 端口状态

MSTP中,根据端口是否学习MAC地址和是否转发用户流量,可将端口状态划分为以下三种:

- Forwarding 状态: 学习 MAC 地址, 转发用户流量;
- Learning 状态: 学习 MAC 地址,不转发用户流量;
- Discarding 状态:不学习 MAC 地址,不转发用户流量。

2.2 MSTP算法实现

2.2.1 初始状态

各台设备的各个端口在初始时会生成以自己为根桥的配置消息,总根和域根都是本桥ID,外部根路径开销和内部根路径开销全为0,指定桥ID为本桥ID,指定端口为本端口,接收BPDU报文的端口为0。

2.2.2 端口角色的选择原则

端口角色的选择原则如表1所示。

端口角色	选择原则	
根端口	端口的端口优先级向量优于其指定优先级向量,且设备的根优先级向 量取自该端口的根路径优先级向量	
指定端口	端口的指定优先级向量优于其端口优先级向量	
Master端口	域边界根端口在MSTI实例上的角色就是Master端口	
Alternate端口	端口的端口优先级向量优于其指定优先级向量,但设备的根优先级向量不是取自该端口的根路径优先级向量	
Backup端口	端口的端口优先级向量优于其指定优先级向量,但端口优先级向量中的指定桥ID为本设备的桥ID	

表1 端口角色的选择原则

□ 说明:

- 端口角色的选择原则中涉及到多种优先级向量,这些优先级向量的含义以及计算方法的介绍,请参考"2.2.3 优先级向量计算"。
- 只要端口收到的消息优先级向量优于其端口优先级向量,就会引起所有优先级向量的重新计算,并且也会重新计算每个端口的角色。

2.2.3 优先级向量计算

所有网桥的MSTP角色都是通过报文中携带的信息计算出来的,其中报文中携带的最重要的信息就是生成树的优先级向量。下面将分别介绍一下CIST优先级向量和MSTI优先级向量的计算方法。

1. CIST优先级向量计算

在CIST中优先级向量由总根、外部根路径开销、域根、内部根路径开销、指定桥 ID、指定端口ID和接收BPDU报文的端口ID组成。

为了方便后续描述,现做如下假设:

- 初始情况下,网桥 B 的端口 PB 对外发送报文中携带的信息如下:总根为 RB,外部根路径开销为 ERCB,域根为 RRB,内部根路径开销为 IRCB,指 定桥 ID 为 B,指定端口 ID 为 PB,接收 BPDU 报文的端口 ID 为 PB;
- 网桥 B 的端口 PB 收到网桥 D 的端口 PD 发送过来的报文中携带的信息如下: 总根为 RD, 外部根路径开销为 ERCD, 域根为 RRD, 内部根路径开销为 IRCD, 指定桥 ID 为 D, 指定端口 ID 为 PD, 接收 BPDU 报文的端口 ID 为 PB:
- 网桥 B 的端口 PB 收到的网桥 D 的端口 PD 发送过来的报文的优先级较高。
 根据上述假设,下面将逐一介绍各优先级向量的计算方法。

(1) 消息优先级向量

消息优先级向量是MSTP协议报文中所携带的优先级向量。根据假设,网桥B的端口PB收到的消息优先级向量即为:{RD: ERCD: RRD: IRCD: D: PD: PB}。如果网桥B和网桥D不在同一个域,那么内部根路径开销对网桥B而言是毫无意义的,它会被赋值为0。

(2) 端口优先级向量

在初始情况下,端口优先级向量的信息是以自己为根。端口PB的端口优先级向量为: {RB: ERCB: RRB: IRCB: B: PB: PB}。

端口优先级向量是随端口收到的消息优先级向量更新的:如果端口收到的消息优先级向量优于端口优先级向量,则将端口优先级向量更新为消息优先级向量;否则,端口优先级向量保持不变。由于端口PB收到的消息优先级向量优于端口优先级向量,所以端口优先级向量更新为:{RD:ERCD:RRD:IRCD:D:PD:PB}。

(3) 根路径优先级向量

根路径优先级向量由端口优先级向量计算所得:

- 如果端口的优先级向量来自不同域的网桥,根路径优先级向量的外部根路径 开销为端口的路径开销和端口优先级向量的外部根路径开销之和,根路径优 先级向量的域根为本桥的域根,内部根路径开销为 0。假设网桥 B 的端口 PB 的路径开销为 PCPB,则端口 PB 的根路径优先级向量为: {RD : ERCD+ PCPB: B: 0: D: PD: PB};
- 如果端口优先级向量来自同一域的网桥,根路径优先级向量的内部路径开销 为端口优先级向量的内部根路径开销和端口路径开销之和,计算后端口 PB 的根路径优先级向量为:{RD:ERCD:RRD:IRCD+PCPB:D:PD: PB}。

(4) 桥优先级向量

桥优先级向量中总根ID、域根ID以及指定桥ID都是本桥ID,外部根路径开销和内部根路径开销为0,指定端口ID和接收端口ID也全为0。网桥B的桥优先级向量为:{B:0:B:0:B:0:0}。

(5) 根优先级向量

根优先级向量是桥优先级向量和所有指定桥ID和本桥ID值不相同的根路径优先级向量的最优值,如果本桥优先级向量比较优,那么本桥就为CIST总根。假设网桥B的桥优先级向量最优,则网桥B的根优先级向量为:{B:0:B:0:B:0:0}。

(6) 指定优先级向量

端口的指定优先级向量由根优先级向量计算所得,将根优先级向量的指定桥ID替换为本桥ID,指定端口ID替换为自己的端口ID。网桥B的端口PB的指定优先级向量为:{B:0:B:0:B:0}。

2. MSTI优先级向量计算

MSTI的各优先级向量计算的规则和CIST优先级向量计算规则是基本一致的,存在两点区别:

- MSTI 优先级向量中没有总根和外部根路径开销,仅由域根、内部根路径开销、指定桥 ID、指定端口 ID 和接收 BPDU 报文的端口 ID 组成。
- MSTI 只处理来自同一域的消息优先级向量。

2.2.4 角色选择过程

下面结合图3的组网对CIST实例的计算过程进行简要说明。假设,网桥的优先级为Switch A优于Switch B,Switch B优于Switch C,4、5、10分别为链路的路径开销。Switch A和Switch B属于同一域,Switch C单独一个域。

图3 MSTP算法计算过程组网图

图3中各设备的初始情况下对外发送的报文中携带的消息优先级向量如表2所示。

设备	端口	报文中的消息优先级向量
Switch A	AP1	{A:0:A:0:A:AP1:0}
SWIICH A	AP2	{A:0:A:0:A:AP2:0}
Switch B	BP1	{B:0:B:0:B:BP1:0}
SWIICH B	BP2	{B:0:B:0:B:BP2:0}
Switch C	CP1	{C:0:C:0:C:CP2:0}
Switch	CP2	{C:0:C:0:C:CP2:0}

表2 各台设备的初始状态

设备各端口的端口优先级向量与消息优先级向量在初始情况下是保持一致的。

在初始情况下各设备的端口都会被计算为指定端口且对外发送以自己为根桥的消息优先级向量。

1. Switch A的角色选择过程

Switch A的端口AP1和端口AP2会分别收到来自Switch B和Switch C的报文, Switch A会将端口AP1以及AP2的端口优先级向量和收到的来自其它交换机的消息

优先级向量进行比较,由于AP1和AP2的端口优先级向量优于报文中携带的消息优先级向量,端口AP1和AP2端口角色不变仍为指定端口,设备Switch A为总根且为Switch A和Switch B所在域的域根。此后端口定时对外传播以自己为根的消息。

□ 说明:

端口优先级向量和消息优先级向量的比较、处理过程为:

- 逐一比较端口优先级向量和消息优先级向量中的各元素,元素值较小的优先级向量较优,当各元素都相等时,端口优先级向量和消息优先级向量相等;
- 当消息优先级向量优于端口优先级向量或者消息优先级向量中的指定桥 ID 的桥 MAC和指定端口 ID分别和端口优先级向量中的指定桥 ID 的桥 MAC和指定端口 ID 一致时,用消息优先级向量替换端口优先级向量。

2. Switch B的角色选择过程

Switch B的端口BP1收到来自Switch C的端口CP1的报文后,将消息优先级向量和端口优先级向量比较,由于端口优先级向量优于消息优先级向量,端口角色不更新。

Switch B的端口BP2收到来自Switch A的端口AP2的报文后,处理过程如下:

- (1) 将端口的消息优先级向量和端口优先级向量进行比较。由于端口的消息优先级向量优于端口优先级向量,将端口的端口优先级向量更新为消息优先级向量{A:0:A:0:A:AP2:BP2};
- (2) 计算端口的根路径优先级向量。Switch A 和 Switch B 在同一域内,端口的根路径优先级向量为{A:0:A:10:A:AP2:BP2};
- (3) 计算 Switch B 的根优先级向量。只有端口 BP2 的根路径优先级向量是来自其它设备,由于端口 BP2 的根路径优先级向量优于 Switch B 的桥优先级向量, Switch B 的根优先级向量为{A:0:A:10:A:AP2:BP2};
- (4) 指定优先级向量计算。端口 BP1 的指定优先级向量为 {A:0:A:10:B:BP1:BP2},端口 BP2 的指定优先级向量为 {A:0:A:10:B:BP2:BP2}。

端口角色的确定:将端口BP1和BP2的指定优先级向量和端口优先级向量进行比较,由于BP1的指定优先级向量优于端口优先级向量,则BP1角色为指定端口,定时对外发送以Switch A为总根和域根的指定优先级向量{A:0:A:10:B:BP1:BP2};由于BP2的端口优先级向量优于指定优先级向量、且根优先级向量取自端口BP2的根路径优先级向量,则BP2角色为根端口。

3. Switch C的角色选择过程

Switch C的端口CP1收到来自Switch B未更新前的消息优先级向量{B:0:B:0:B:0:B:0:B:0:B:CP1},端口CP2收到来自Switch A的消息优先级向量均优于端口优先级向量,因此分别更新CP1和CP2的端口优先级向量为{B:0:B:0:B:BP1:CP1}和{A:0:A:0:A:AP1:CP2}。由于Switch C与Switch A和Switch B不在同一域,端口CP1的根路径优先级向量为{B:5:C:0:B:BP1:CP1},端口CP2的根路径优先级向量为{A:4:C:0:A:AP1:CP2},CP2的根路径优先级向量优于CP1的根路径优先级向量为{A:4:C:0:A:AP1:CP2},CP2的根路径优先级向量优于CP1的根路径优先级向量为{A:4:C:0:C:CP2},端口CP1和CP2的指定优先级向量分别为{A:4:C:0:C:CP1:CP2}和{A:4:C:0:C:CP2:CP2},端口CP1被计算为指定端口,CP2被计算为根端口。

Switch C的端口CP1收到来自BP1更新后的消息优先级向量{A:0:A:10:B:BP1:CP1}后,经过比较CP1的消息优先级向量优于端口优先级向量,更新端口优先级向量为{A:0:A:10:B:BP1:CP1},端口CP1计算后的根路径优先级向量没有变化,根据前面的计算,端口CP2的根路径优先级向量保持为{A:4:C:0:A:AP1:CP2},CP2的根路径优先级向量保持为{A:4:C:0:A:AP1:CP2},CP2的根路径优先级向量优先级向量,则根优先级向量为{A:4:C:0:A:AP1:CP2}。端口CP1的根路径优先级向量,则根优先级向量为{A:4:C:0:C:CP2}。端口CP1和CP2的指定优先级向量分别为{A:4:C:0:C:CP1:CP2}和{A:4:C:0:C:CP2:CP2}。CP1的端口优先级向量优于其指定优先级向量、但根优先级向量不是取自端口CP1的根路径优先级向量,故CP1角色为Alternate端口。CP2仍为根端口。

2.2.5 计算结果

设备和端口的角色确定之后,整个树形拓扑就建立完毕了。经过上述计算后的流量 转发线路如图4所示。

图4 计算后流量转发线路

3 Comware实现的技术特色

3.1 MSTP的三种工作模式

MSTP和RSTP能够互相识别对方的协议报文,而STP无法识别MSTP的报文, MSTP为了实现和STP设备的混合组网,同时完全兼容RSTP,设定了三种工作模 式:STP兼容模式、RSTP模式、MSTP模式。

- 在 STP 兼容模式下,设备的各个端口将向外发送 STP BPDU 报文;
- 在 RSTP 模式下,设备的各个端口将向外发送 RSTP BPDU 报文,当发现与运行 STP 的设备相连时,该端口会自动迁移到 STP 兼容模式下工作;
- 在 MSTP 模式下,设备的各个端口将向外发送 MSTP BPDU 报文,当发现与 运行 STP 的设备相连时,该端口会自动迁移到 STP 兼容模式下工作。

工作在RSTP/MSTP模式的设备可以自动迁移到STP兼容模式下工作,但是工作在STP兼容模式下的设备不能自动迁移到RSTP/MSTP模式,此时需要用户执行mCheck操作来迫使工作模式发生迁移。假设在一个交换网络中,运行MSTP(或RSTP)的设备的端口连接着运行STP的设备,该端口会自动迁移到STP兼容模式下工作;但是此时如果运行STP协议的设备被拆离,该端口不能自动迁移到MSTP(或RSTP)模式下运行,仍然会工作在STP兼容模式下。此时可以通过执行mCheck操作迫使其迁移到MSTP(或RSTP)模式下运行。

在STP兼容模式和RSTP模式下可以配置多实例,MSTI各端口状态和CIST保持一致。为了减小CPU的负担,建议在STP和RSTP模式下最好不要配置多实例。

3.2 Path Cost缺省值的计算

Comware MSTP支持3种Path Cost缺省值的计算方法: IEEE 802.1D-1998标准方法、IEEE 802.1T标准方法和Comware的私有计算方法。

IEEE 802.1D-1998和IEEE 802.1T标准的Path Cost缺省值的基本计算请参考协议 文本,下面主要介绍对标准协议的一些扩充以及Comware的私有计算方法。

(1) 对 IEEE 802.1D-1998 标准方法的扩充

对于聚合链路,IEEE 802.1D-1998并没有具体的规定,它没有区分聚合链路和单端口链路的优先级别的不同,因此对于IEEE 802.1D-1998中聚合链路STP的Path Cost值不用考虑聚合链路数。

(2) 对 IEEE 802.1T 标准方法的扩充

IEEE 802.1T Path Cost 计算标准中,端口Path Cost 值计算公式为: 20,000,000,000 / Link Speed in Kbps,聚合链路速率为聚合链路中所有选中端口速率相加。

(3) Comware 的私有计算方法

$$Path \, Cost = \begin{cases} 200,\!000 & (Link \, Speed = 0) \\ 2,\!200 - 20 * Link \, Speed & (0 < Link \, Speed \le 100) \\ 220 - 0.2 * Link \, Speed & (100 < Link \, Speed \le 1000) \\ 22 - 0.002 * Link \, Speed & (1000 < Link \, Speed \le 10000) \\ 1 & (Link \, Speed > 10000) , Link \, Speed in \, Kbps \end{cases}$$

聚合链路速率为所有unblock端口速率相加。

3.3 设置超时因子特性

协议中规定,端口收到的STP协议报文超时时间rcvdinfowhile小于等于3倍hello time,超过rcvdinfowhile后端口还未收到STP协议报文就会重新计算STP拓扑。在实际组网中,经常会出现由于端口不能及时收到STP报文导致rcvdinfowhile定时超时而引起网络拓扑震荡,为了解决该问题引入了超时因子。可以根据实际的组网情况设置超时因子,从而改变报文的超时时间,增强网络的稳定性。

超时时间=超时因子×3×hello time。

□ 说明:

一般情况下,在稳定的网络中,推荐用户将超时因子设置为5、6或者7。

3.4 指定根桥和备份根桥

STP可以通过计算来确定生成树的根桥,用户也可以通过交换机提供的命令来指定 当前交换机为根桥。

当根桥出现故障或被关机时,备份根桥可以取代根桥成为生成树的根桥;但是此时如果用户设置了新的根桥,则备份根桥将不会成为根桥。如果用户为生成树配置了多个备份根桥,当根桥失效时,STP将选择MAC地址最小的那个备份根桥作为根桥。当根桥和备份根桥都失效时,STP将通过协议计算来自动选举根桥。

在MSTP中,用户可以将当前交换机指定为生成树实例的根桥或备份根桥。当前交换机在各棵生成树实例中的根类型互相独立,它可以作为一棵生成树实例的根桥或备份根桥,同时也可以作为其他生成树实例的根桥或备份根桥。在同一棵生成树实例中,同一台交换机不能既作为根桥,又作为备份根桥。

3.5 BPDU保护

对于接入层设备,接入端口一般直接与用户终端(如PC机)或文件服务器相连,此时可以设置接入端口为边缘端口以实现这些端口的快速迁移。正常情况下,边缘端口不会收到生成树协议的配置消息(BPDU报文),但是,如果有人伪造配置消息恶意攻击交换机,当边缘端口接收到配置消息时,系统会自动将这些端口设置为非边缘端口,重新进行生成树的计算,这将引起网络拓扑的震荡。BPDU保护功能可以防止这种网络攻击。

交换机上启动了BPDU保护功能以后,如果边缘端口收到了配置消息,系统就将这些端口关闭,同时通知网管。被关闭端口只能由网络管理人员恢复。推荐用户在配置了边缘端口的交换机上配置BPDU保护功能。

3.6 Root保护

由于维护人员的错误配置或网络中的恶意攻击,网络中的合法根桥有可能会收到优先级更高的配置消息,这样当前根桥会失去根桥的地位,引起网络拓扑结构的错误

变动。假设原来的流量是经过高速链路转发的,这种不合法的变动,会导致原来通过高速链路的流量被牵引到低速链路上,导致网络拥塞。Root保护功能可以防止这种情况的发生。

对于设置了Root保护功能的端口,端口角色只能保持为指定端口。一旦这种端口上收到了优先级高的配置消息,这些端口的状态将被设置为侦听状态,不再转发报文(相当于将此端口相连的链路断开)。当在足够长的时间内没有收到更优的配置消息时,端口会恢复原来的状态。

在MSTP中,此功能对所有实例都起作用。

3.7 Loop保护

交换机各端口的端口状态依靠不断接收上游交换机发送的BPDU来维持。但是由于链路拥塞或者单向链路故障,根端口会收不到上游交换机的BPDU。此时下游交换机会重新选择根端口,原来的根端口经过计算后会变为指定端口,而原来的阻塞端口重新计算后会变为根端口且迁移到转发状态,从而交换网络中会产生环路。环路保护功能会抑制这种环路的产生。在启动了环路保护功能后,根端口的角色如果发生变化就会变为Discarding状态,并一直保持在Discarding状态,不转发报文,从而不会在网络中形成环路。

在MSTP中,此功能对端口角色为根端口、Alternate端口和Backup端口有效。 举例:

图5 Loop保护功能

Switch A和Switch B都为Comware交换机。假设,Switch A为根交换机,Switch B的端口GigabitEthernet2/1角色为根端口,GigabitEthernet2/2角色为Alternate端

口。如果端口GigabitEthernet2/1由于链路拥塞收不到Switch A的BPDU报文,经过一段时间后,Switch B重新计算角色,端口GigabitEthernet2/1被计算为指定端口且状态为Forwarding,GigabitEthernet2/2被计算为根端口且状态为Forwarding,此时Switch A与Switch B之间的两条链路均可以转发报文,只要链路中存在广播报文就会引起广播风暴。对于这样的组网可以在GigabitEthernet2/1启动环路保护功能,当端口GigabitEthernet2/1在一定时间内收不到BPDU报文时,就会变为Discarding状态,从而阻止环路的形成,而端口GigabitEthernet2/2会迁移到转发状态,进行报文转发。

3.8 TC保护

交换机在接收到TC-BPDU报文(网络拓扑发生变化的通知报文)后,会执行转发地址表项的删除操作。在有人伪造TC-BPDU报文恶意攻击交换机时,交换机短时间内会收到很多的TC-BPDU报文,频繁的删除操作给交换机带来很大负担,给网络的稳定带来隐患。

TC保护功能使能后,设备在收到TC-BPDU报文后的10秒内,允许收到TC-BPDU报文后立即进行地址表项删除操作的次数可以由用户控制(假设次数限制为X)。同时系统会监控在该时间段内收到的TC-BPDU报文数是否大于X,如果大于X,则设备在该时间超时后再进行一次地址表项删除操作。这样就可以避免频繁地删除转发地址表项。

3.9 配置摘要侦听

根据IEEE 802.1s的规定,相连交换机若实现MSTP域内MSTI的互通,它们的域配置(域名、修订级别、VLAN与实例的映射关系)必须完全一致。MSTP在发送BPDU报文的时候,会把配置ID(配置ID由域名、修订级别和配置摘要组成,其中配置摘要是由VLAN与实例的映射关系经过HMAC-MD5运算生成的16字节签名)放到报文中传输,相连的交换机就是根据这些信息来判断发送报文的交换机和自己是否处于同一个域内。

如果其它厂商的配置摘要计算方法和标准中列举的参考例子不一致,那么 Comware交换机和其它厂商交换机即使域配置相同,各自计算出的配置摘要也会 不相同,所以它们不会认为在一个域内,这样就只能实现CIST的互通,不能实现 MSTI的互通。

Comware MSTP提供如下方法可以和配置摘要计算方法和标准协议不一致的厂商交换机实现域内MSTI的互通。

在保证相连Comware交换机域配置和其它厂商交换机域配置完全一致的前提下,可以通过命令在每一个和其它厂商交换机相连的端口上启动配置摘要侦听功能。对于启动了配置摘要侦听功能的端口,在接收到其它厂商交换机MSTP报文时,直接认为报文来自域内,同时记录下报文中的配置摘要;在发送MSTP报文时,将之前记录的配置摘要填充到发送的报文中,这就保证了其它厂商交换机接收到该报文时也认为它来自域内,这样Comware MSTP和其它厂商交换机MSTP就可以在MSTI域内互通了。

\triangle

<u>/!\</u> 注意:

- 配置摘要侦听功能一定要在 Comware 交換机和其它厂商交换机的域配置完全相同的条件下启动,否则可能因为各交换机 VLAN 与实例映射关系不一致导致广播风暴。
- 域内和其它厂商交换机相连的每一个端口都必须启动配置摘要侦听功能;在域的边界端口上不能使能配置摘要侦听功能。
- 不要直接更改启动了配置摘要侦听功能的 Comware 交换机及其相连的其它厂商交换机的域配置。请在更改域配置之前将配置摘要侦听功能关闭,否则在更改域配置的过程中可能因为各交换机 VLAN 与实例映射关系不一致导致广播风暴。
- 如果域内都是 Comware 交换机,则不必启动配置摘要侦听功能。

举例:

图6 配置摘要侦听功能

Switch A、Switch B为Comware交换机,Switch C为配置摘要计算方法非标准的其它厂商交换机,所有设备都启用MSTP,并且域配置都相同。

在组网中,为了实现Switch A与Switch C以及Switch B与Switch C之间的域内互通,必须在Switch A的端口 GigabitEthernet1/1 和 Switch B的端口 GigabitEthernet1/2上启动配置摘要侦听功能。Switch A与Switch B由于都是Comware设备,不需要启动配置摘要侦听功能。

3.10 No Agreement Check特性实现

MSTP标准协议中规定,指定端口快速迁移的条件就是收到下游根端口发送的携带agreement标志报文,而根端口发送携带agreement标志报文的前提又是收到上游指定端口发送携带agreement标志的报文。当交换机(如:RSTP交换机)的指定端口发送的报文中不携带agreement标志时,该交换机作为上游桥设备与Comware设备MSTP互通时,因为Comware设备根端口无法收到上游指定端口发送的携带agreement标志的报文,所以不向上游桥指定端口回应agreement标志报文,从而导致该交换机的指定端口无法快速迁移。可以通过在Comware设备的端口上启动No Agreement Check特性来避免端口连接的上游桥设备为RSTP交换机或者与MSTP协议实现存在私有性差异的厂商设备时,上游桥设备不能快速迁移问题。

举例:

图7 No Agreement Check特性

Switch A为根交换机并为RSTP交换机,Switch B的GigabitEthernet2/1为根端口。 为了使Switch A的端口GigabitEthernet1/1能够快速迁移,应该在Switch B的GigabitEthernet2/1上启动No Agreement Check。

3.11 MSTP标准报文格式特性实现

本特性主要实现Comware设备与支持标准MSTP协议报文格式设备之间的互通。有了此特性,当标准协议报文格式设备和私有协议报文格式设备混合组网时,就能够正确地进行网络拓扑计算。

Comware设备在缺省配置下能自动识别接收的MSTP报文格式,其发送报文格式可以根据接收到的报文格式自动更改,按接收到的报文格式向外发送报文。也可按用户在端口上的实际配置收发用户指定格式的报文。Comware设备如果工作在RSTP或STP兼容模式下与其它设备组网,在公共生成树实例上也能正常互通。

3.12 VLAN Ignore特性

在一般情况下,某个VLAN都会映射到一个MSTP的实例中,此VLAN中的端口在该实例上的转发状态由MSTP计算得出。在网络拓扑比较复杂的情况下,某些VLAN的拓扑可能会被生成树阻塞,造成该VLAN的业务流量不通,为了解决该问题引入了VLAN Ignore特性。当在该VLAN上启动VLAN Ignore特性后,该VLAN中每个端口的实际转发状态不再遵从MSTP计算出的状态,而是一直保持Forwarding的状态。当该VLAN关闭VLAN Ignore特性后,该VLAN中每个端口的实际转发状态仍然会遵从MSTP计算出的状态。

4 典型组网案例

MSTP可以使得同一组网中的不同VLAN的报文按照不同的生成树进行转发,从而 实现不同VLAN数据的负载分担和冗余备份。

图8 MSTP典型组网图

如图8所示, Switch A和Switch B为汇聚层设备, Switch C和Switch D为接入层设备。为了合理均衡各条链路上的流量,可以在设备上按照下列思路进行配置:

- 所有设备属于同一个 MST 域;
- VLAN 10 的报文沿着实例 1 转发,实例 1 的根桥为 Switch A;
- VLAN 20 的报文沿着实例 2 转发,实例 2 的根桥为 Switch B;
- VLAN 30 的报文沿着实例 3 转发,实例 3 的根桥为 Switch A;
- VLAN 40 的报文沿着实例 4 转发,实例 4 的根桥为 Switch B。

MSTP计算完成后,不同VLAN流量的转发路径如图9所示,这样可以大大减少各链路的负载。同时,每个VLAN都有一条冗余备份链路,当前工作链路失效后,冗余备份链路会马上生效,大大减小由于链路故障而导致的流量丢失。

图9 流量转发路径图

5 总结

MSTP可以弥补STP和RSTP的缺陷,它既可以快速收敛,也能使不同VLAN的流量沿着各自的路径转发,从而为冗余链路提供了更好的负载分担机制。MSTP使用灵活,适用于任意复杂组网,配置相对也比较简单,最简单的情况下只需要将MSTP协议开启即可,还可以通过设置桥优先级、域信息以及端口路径开销来选择任意VLAN的任意一条通路来实现流量转发。

6 参考文献

IEEE 802.1D: Spanning Tree Protocol

IEEE 802.1w: Rapid Spanning Tree Protocol

IEEE 802.1s: Multiple Spanning Tree Protocol

Copyright ©2008 杭州华三通信技术有限公司 版权所有,保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。 本文档中的信息可能变动,恕不另行通知。