

Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Chen Ma¹, Xiangyu Guo², Li Chen¹, Jun-Hai Yong¹, Yisen Wang³

- ¹ School of Software, BNRist, Tsinghua University, Beijing, China
- ² Department of Computer Science and Engineering, University at Buffalo, Buffalo NY, USA
- ³ Key Lab. of Machine Perception, School of EECS, Peking University, Beijing, China

<u>Introduction</u>

The hard-label attack is a challenging adversarial attack, in which only the top-1 predicted label is available. Existing hard-label attacks do not thoroughly investigate the geometric properties of the decision boundary to accelerate the attack. Let us take HSJA (HopSkipJumpAttack) for example. As shown in the above figure, \mathbf{x}_{t-1} is the current adversarial example mapped onto the decision boundary at the (t-1)-th iteration of the attack. HSJA updates \mathbf{x}_{t-1} along the gradient direction to reach g and then maps it to H at x_g along the line through x and g. However, the optimal update is not g. It is easy to observe that moving along the tangent line can reach the nearest location of the decision boundary to the original image x, thereby producing the adversarial example with the minimum distortion. In real attack scenarios, the image data reside in a highdimensional space, and the semicircle becomes a hemisphere B. In ndimensional space where $n \geq 3$, there are infinitely many tangent lines from x to B which produce infinitely many tangent points on B. Still, we will show that exactly one tangent point can lead to the minimum distortion when mapping it onto H along the tangent line, which is defined by the following theorem.

Definition of Optimal Tangent Points

Theorem 1: Let u be the unit normal vector of H, \mathbf{k} be any point on the surface of B, then the distance $||\mathbf{x} - \mathbf{x}_t||_2$ is the shortest if \mathbf{k} is the optimal solution of the following constrained optimization problem:

argmax
$$\langle \mathbf{k} - \mathbf{x}_{t-1}, \mathbf{u} \rangle$$
, \longrightarrow maximizes the projection of $\mathbf{k} - \mathbf{x}_{t-1}$ onto \mathbf{u} .

s.t. $\langle \mathbf{k} - \mathbf{x}_{t-1}, \mathbf{x} - \mathbf{k} \rangle = 0$, \longrightarrow ensures that \mathbf{k} is a tangent point.

 $||\mathbf{k} - \mathbf{x}_{t-1}|| = 0$, \longrightarrow indicates \mathbf{k} is on the surface of B .

 $\langle \mathbf{k} - \mathbf{x}_{t-1}, \mathbf{u} \rangle > 0$. — states that \mathbf{k} cannot appear on the same side of H as \mathbf{x} , which is always satisfied in our algorithm.

Geometrical Explanation of Theorem 1

The left figure show that all points on H that are closer to \mathbf{x} than \mathbf{x}_t are within a red disk, which is the intersection of H and the red cone whose vertex is \mathbf{x} . Clearly \mathbf{k} is the only intersection point of the cone and the hemisphere B. Thus, of all the lines intersecting B, only the tangent line leads to the shortest distance from \mathbf{x} to H.

Computation of Optimal Tangent Points

 $h = R \cdot \sin \gamma = R \cdot (\sin \beta \cos \alpha - \cos \beta \sin \alpha)$ $\mathbf{x}' = \langle \mathbf{x}, \mathbf{u} \rangle \cdot \mathbf{u} / ||\mathbf{u}||^2$

 $\mathbf{k} = \mathbf{k}' + h \cdot \mathbf{u}$ $= R \cdot \cos \gamma \cdot \frac{\mathbf{x} - \langle \mathbf{x}, \mathbf{u} \rangle \cdot \mathbf{u} / ||\mathbf{u}||^2}{||\mathbf{x} - \langle \mathbf{x}, \mathbf{u} \rangle \cdot \mathbf{u} / ||\mathbf{u}||^2||} + h \cdot \mathbf{u}$

Generalized Tangent Attack (G-TA)

$$\theta = \arccos\left(\frac{\langle \mathbf{x}, -\mathbf{u} \rangle}{||\mathbf{x}|| \cdot ||\mathbf{u}||}\right)$$

$$(x_0, z_0) = (||\mathbf{x}|| \cdot \sin \theta, -||\mathbf{x}|| \cdot \cos \theta)$$

$$x_k = \frac{s^2 \left(L^2 - z_0 \cdot \frac{L^2 s^2 z_0 + L^2 x_0 \sqrt{-L^2 s^2 + L^2 x_0^2 + s^2 z_0^2}}{L^2 \cdot x_0}\right)}{L^2 \cdot x_0}$$

$$= \frac{L^2 S^2 z_0 + L^2 x_0 \sqrt{-L^2 S^2 + L^2 x_0^2 + S^2 z_0^2}}{L^2 x_0^2 + S^2 z_0^2}$$

$$\mathbf{k} = |\mathbf{x}_{k}| \cdot \frac{\mathbf{x} - \langle \mathbf{x}, \mathbf{u} \rangle \cdot \mathbf{u} / ||\mathbf{u}||^{2}}{||\mathbf{x} - \langle \mathbf{x}, \mathbf{u} \rangle \cdot \mathbf{u} / ||\mathbf{u}||^{2}||} + \mathbf{z}_{k} \cdot \mathbf{u}$$

Experimental Results of Attacks against Defense Models

Comprehensive Understanding of Tangent Attack

Experimental Results

Table 1: Mean ℓ_2 distortions of different query budgets on the ImageNet dataset, where r=1.1.

Target Model	Method		Targeted Attack				Untargeted Attack						
		@300	@1K	@2K	@5K	@8K	@10K	@300	@1K	@2K	@5K	@8K	@10
	BA [4]	111.798	108.044	106.283	102.715	86.931	78.326	-	107.558	102.309	95.776	78.668	60.29
	Sign-OPT [11]	103.939	87.706	71.291	46.744	34.640	29.414	121.085	79.158	43.642	16.625	10.557	8.68
Inception-v3	SVM-OPT [11]	101.630	82.950	67.965	46.275	35.694	31.106	121.135	66.027	36.763	15.736	10.501	8.78
	HSJA [7]	111.562	95.295	82.111	52.544	37.395	30.425	103.605	57.295	37.185	15.484	9.989	7.96
	TA	103.781	80.327	66.708	42.121	30.846	25.566	94.752	52.523	35.229	15.040	9.748	7.79
	G-TA	103.724	81.089	67.168	42.434	31.011	25.587	94.668	52.037	34.540	14.643	9.540	7.61
Inception-v4	BA [4]	110.343	106.616	104.586	100.321	84.058	75.507	-	116.075	111.474	104.451	86.572	66.28
	Sign-OPT [11]	101.620	85.731	69.719	46.416	34.957	30.004	132.991	86.431	48.292	18.678	11.567	9.26
	SVM-OPT [11]	99.856	81.342	66.982	45.667	35.477	31.152	132.227	72.920	41.095	17.611	11.418	9.37
	HSJA [7]	109.670	93.916	80.937	52.358	37.773	30.958	110.727	63.731	42.290	17.936	11.367	8.91
	TA	101.666	78.683	65.304	41.629	30.993	25.958	101.207	58.616	40.314	17.639	11.304	8.90
	G-TA	101.495	79.210	65.888	42.002	30.965	25.847	101.173	58.225	39.788	17.265	11.008	8.67
	BA [4]	81.090	77.723	76.122	71.967	55.953	47.652	-	75.998	71.671	66.983	53.917	40.72
	Sign-OPT [11]	75.722	62.876	49.191	30.155	21.333	17.672	70.035	47.705	27.314	10.890	6.643	5.24
CENIat 154	SVM-OPT [11]	74.658	58.677	46.827	30.264	22.461	19.186	69.854	40.291	23.692	10.494	6.666	5.40
SENet-154	HSJA [7]	77.035	63.488	51.802	30.138	19.680	16.261	71.248	38.035	24.895	10.218	5.855	4.84
	TA	70.739	55.256	43.694	24.961	16.756	13.876	65.589	35.689	24.037	10.039	5.774	4.76
	G-TA	70.591	55.224	44.047	25.041	16.854	14.047	65.871	35.768	23.954	9.959	5.733	4.73
ResNet-101	BA [4]	81.565	77.903	76.366	72.392		51.679		64.007	60.389	56.544	44.175	31.3
	Sign-OPT [11]	76.732	63.939	51.231	32.439	23.160	19.248	56.244	38.282	21.985	10.048	7.050	6.05
	SVM-OPT [11]	77.031	61.417	49.842	32.806	24.553	20.964	55.894	32.638	19.409	9.830	7.185	6.28
	HSJA [7]	76.121	63.091	52.301	31.018	20.472	16.911	56.264	27.443	17.717	7.649	4.723	4.01
	TA	72.434	57.969	47.142	27.699	18.788	15.414	53.197	26.777	17.651	7.730	4.822	4.10
	G-TA	72.459	58.320	47.297	27.905	19.045	15.633	53.058	26.631	17.384	7.602	4.720	4.02

Table 2: Mean ℓ_2 distortions with different query budgets on the CIFAR-10 dataset, where r=1.5.

Target Model	Method	Targeted Attack					Untargeted Attack						
		@300	@1K	@2K	@5K	@8K	@10K	@300	@1K	•			@10K
	BA [4]	8.651	8.073	8.013	6.387	4.189	3.333	_	5.636	4.725	4.414	2.750	1.696
	Sign-OPT [11]	8.279	6.331	4.250	1.718	0.960	0.718	4.387	2.334	1.178	0.403	0.267	0.226
PyramidNet-272	SVM-OPT [11]	9.207	6.801	4.530	2.010	1.207	0.947	4.481	2.318	1.093	0.414	0.276	0.236
T yrannar (ot 272	HSJA [7]	7.917	4.329	2.523	0.793	0.489	0.397	4.505	1.279	0.713	0.333	0.255	0.227
	TA	7.943	4.267	2.488	0.809	0.503	0.406	4.256	1.275	0.710	0.329	0.253	0.226
	G-TA	7.816	4.277	2.469	0.803	0.505	0.412	4.432	1.270	0.702	0.329	0.252	0.225
	BA [4]	8.487	7.885	7.821	6.034	3.632	2.703	_	2.717	2.514	2.373	1.642	1.106
	Sign-OPT [11]	8.372	6.514	4.351	1.827	0.987	0.711	4.917	4.159	3.260	1.352	0.452	0.250
GDAS	SVM-OPT [11]	9.529	7.243	5.092	2.347	1.317	0.958	4.909	3.950	2.736	1.082	0.371	0.234
	HSJA [7]	7.714	3.566	1.966	0.591	0.365	0.301	2.188	0.756	0.483	0.261	0.208	0.189
	TA	7.674	3.529	1.946	0.585	0.366	0.302	2.190	0.774	0.485	0.257	0.206	0.187
	G-TA	7.697	3.558	1.959	0.583	0.361	0.298	2.161	0.745	0.476	0.255	0.204	0.185
	BA [4]	8.688	8.046	7.984	5.786	2.486	1.555	_	4.425	3.648	3.435	1.543	0.832
	Sign-OPT [11]	8.258	5.576	3.260	1.087	0.593	0.459	3.093	1.494	0.828	0.319	0.239	0.213
WRN-28	SVM-OPT [11]	9.516	5.968	3.744	1.367	0.728	0.553	2.977	1.466	0.723	0.325	0.245	0.221
VIII (20	HSJA [7]	6.810	2.603	1.326	0.518	0.389	0.347	3.052	0.797	0.508	0.299	0.250	0.232
	TA	6.802	2.556	1.311	0.519	0.394	0.353	2.974	0.785	0.496	0.293	0.249	0.233
	G-TA	6.755	2.543	1.281	0.513	0.387	0.345	2.995	0.782	0.502	0.298	0.250	0.232
	BA [4]	8.658	8.014	7.953	5.738	2.484	1.566	-	4.377	3.586	3.367	1.487	0.821
	Sign-OPT [11]	8.156	5.579	3.300	1.186	0.646	0.501	4.754	3.239	1.885	0.311	0.226	0.201
WRN-40	SVM-OPT [11]	9.339	6.061	3.840	1.445	0.800	0.605	4.457	2.756	0.739	0.310	0.229	0.206
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	HSJA [7]	6.909	2.648	1.330	0.528	0.400	0.357	2.992	0.777	0.498	0.290	0.242	0.225
	TA	6.944	2.579	1.295	0.523	0.398	0.358	2.926	0.770	0.490	0.288	0.243	0.227
	G-TA	6.783	2.605	1.320	0.535	0.403	0.361	2.952	0.772	0.492	0.288	0.241	0.223

Table 3: Experimental results of the combined method of QEBA-S and TA.

Target Model	Method	Targeted Attack									
_		@300	@1K	@2K	@5K	@8K	@10K				
Inception-v3	QEBA-S [25]	100.295	79.604	63.621	35.194	22.773	18.414				
mception-v3	QEBA-S+TA	104.490	75.622	59.836	33.112	22.329	17.799				
Inception-v4	QEBA-S [25]	97.772	77.347	62.451	35.275	23.204	19.002				
	QEBA-S+TA	101.845	73.838	58.554	33.288	23.160	18.736				
SENet-154	QEBA-S [25]	72.831	55.367	42.674	21.988	13.888	11.210				
SENCI-134	QEBA-S+TA	76.547	52.269	39.740	20.608	13.873	11.016				
ResNet-101	QEBA-S [25]	75.567	57.929	44.983	23.209	14.402	11.467				
Nesivet-101	QEBA-S+TA	78.709	53.917	41.245	21.198	13.856	10.773				