

PDAs accepting by final state and empty stack are equivalent

- P_F → PDA accepting by final state
 - $P_F = (Q_F, \sum, \Gamma, \delta_F, q_0, Z_0, F)$
- P_N → PDA accepting by empty stack
 - $P_{N} = (Q_{N}, \sum, \Gamma, \delta_{N}, q_{0}, Z_{0})$
- Theorem:
 - $(P_N \rightarrow P_F)$ For every P_N , there exists a P_F s.t. $L(P_F) = L(P_N)$
 - $(P_F \rightarrow P_N)$ For every P_F , there exists a P_N s.t. $L(P_F)=L(P_N)$

$$P_N \rightarrow P_F$$
 Construction

P_F:

$$P_F = (Q_N U \{p_0, p_f\}, \sum_i \Gamma U \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$$

$$P_{N} = (Q_{N}, \sum, \Gamma, \delta_{N}, q_{0}, Z_{0})$$

 Whenever P_N's stack becomes empty, make P_F go to a final state without consuming any addition symbol

- Whenever P_N's stack becomes empty, make P_F go to a final state without consuming any addition symbol
- To detect empty stack in P_N : P_F pushes a new stack symbol X_0 (not in Γ of P_N) initially before simultating P_N

$P_N \rightarrow P_F$ Construction

- Whenever P_N 's stack becomes empty, make P_F go to a final state without consuming any addition symbol
- To detect empty stack in P_N: P_F pushes a new stack symbol X_0 (not in Γ of P_N) initially before simultating P_N

- Whenever P_N's stack becomes empty, make P_F go to a final state without consuming any addition symbol
- To detect empty stack in P_N : P_F pushes a new stack symbol X_0 (not in Γ of P_N) initially before simultating P_N

 \bullet δ_F is given by rules:

$$R_1$$
: $\delta_F(p_0, \varepsilon, x_0) = \{(q_0, z_0x_0)\}$

R₂: δ_F (q, a, z₀) = δ (q, a, z₀) for all q in Q, a in Σ or ε and z in Γ

R3 :
$$\delta_F(q, \epsilon, x_0) = \{(p_f, x_0)\}$$

$$(p_0, w, x_0) \mid -_F (q_0, w, z_0 x_0)$$

 $\mid -^*_F (q, \varepsilon, x_0)$
 $\mid -_F (p_f, \varepsilon, x_0)$

Example: Matching parenthesis "(" ")"

```
(\{p_0,q_0,p_f\},\{(,)\},\{X_0,Z_0,Z_1\},\delta_f,p_0,X_0,p_f)
                         (\{q_0\}, \{(,)\}, \{Z_0, Z_1\}, \delta_N, q_0, Z_0)
                                                                                                            P<sub>f</sub>:
P_N:
                                                                                                            \delta_{\rm f}:
\delta_N:
                                                                                                                                      \delta_f(p_0, \epsilon, X_0) = \{ (q_0, Z_0, X_0) \}
                         \delta_{N}(q_{0},(Z_{0})) = \{ (q_{0},Z_{1}Z_{0}) \}
                                                                                                                                      \delta_f(q_0, (Z_0)) = \{ (q_0, Z_1, Z_0) \}
                         \delta_{N}(q_{0},(Z_{1})) = \{ (q_{0}, Z_{1}Z_{1}) \}
                                                                                                                                      \delta_f(q_0, (Z_1)) = \{ (q_0, Z_1Z_1) \}
                         \delta_{N}(q_{0},),Z_{1}) = \{ (q_{0}, \varepsilon) \}
                                                                                                                                      \delta_f(q_0, 1), Z_1 = \{ (q_0, \epsilon) \}
                         \delta_{N}(q_{0}, \mathcal{E}, Z_{0}) = \{ (q_{0}, \mathcal{E}) \}
                                                                                                                                      \delta_f(q_0, \varepsilon, Z_0) = \{ (q_0, \varepsilon) \}
                                                                                                                                      \delta_f(p_0, \epsilon, X_0) = \{ (p_f, X_0) \}
                                          (Z_0/Z_1Z_0)
                                                                                                                                                               (Z_0/Z_1Z_0)
                                           (Z_1/Z_1Z_1)
                                                                                                                                                                (Z_{1}/Z_{1})
                                          ),Z_1/\varepsilon
                                                                                                                                                                ),Z_1/\epsilon
                                          \varepsilon,Z_0/\varepsilon
                                                                                                                                                                \epsilon ,Z<sub>0</sub>/ \epsilon
                       start
                                                                                                              start
```

Accept by empty stack

Accept by final state

How to convert an final state PDA into an empty stack PDA?

Main idea:

- Whenever P_F reaches a final state, just make an ε-transition into a new end state, clear out the stack and accept
- Danger: What if P_F design is such that it clears the stack midway without entering a final state?
 - \rightarrow to address this, add a new start symbol X_0 (not in Γ of P_F)

$$P_{N} = (Q \cup \{p_{0}, p_{e}\}, \sum, \Gamma \cup \{X_{0}\}, \delta_{N}, p_{0}, X_{0}, \{p_{e}\})$$

• δ_N is defined by R_1 , R_2 , R_3 and R_4 as:

 R_1 : $\delta_N(p_0, \epsilon, x_0) = \{(q_0, z_0x_0)\}$

 R_2 : $\delta_N(p, \varepsilon, z) = \{(p, \varepsilon)\}$

for all $z \in \Gamma \cup \{x_0\}$

 R_3 : δ_N (q, a, z) = δ (q, a, z) for all a \in z, q \in Q, z \in \Gamma.

 R_4 : δ_N (q, ϵ , z) = δ (q, ϵ , z) \cup {(p, ϵ)} for all $z \in \Gamma \cup \{x_0\}$ and q \in F.

Equivalence of PDAs and CFGs

CFGs ↔ PDAs ==> CFLs

Formal construction of PDA from CFG

Theorem

For any context free language L, there exists an PDA M such that L = L(M)

Proof

Let G = (V, T, P, S) be a grammar. There exists a Greibach Normal Form then we can construct PDA which simulates left most derivations in this grammar.

 $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$, where

 $Q = \{q_0, q_1, q_f\} \rightarrow \text{set of states}$

 Σ = terminals of grammar G

 $\Gamma = V \cup \{z\}$ where V is the variables in grammar G

 $F = \{q_f\} \rightarrow \text{final state.}$

- The transition function will include
- 1. $\delta(q0, \lambda, z) = \{(q1, Sz)\}$ S \rightarrow start symbol
- 2. $\delta(q_1, \epsilon, A) = \{(q, \alpha)\}$ for each $A \rightarrow \alpha$ in P
- 3. $\delta(q, a, a) = \{(q, \epsilon)\}\$ for each $a \in \Sigma$