1. Построить графики правых частей дифференциальных уравнений из табл. 1.2 как функций от x и пометить на графиках особые точки на промежутке $[-2\pi; 2\pi]$. Определить, какие из них устойчивы, а какие — нет (построить фазовый портрет).

Таблица 1.2. Уравнения для построения графиков

№ Уравнение № Уравнение № Уравнение					Уравнение
л/ п	<i>з</i> равнение	п/п	у равнение	п/п	з равнение
	$\frac{dx}{dt} = (x^3 - x)(x - 2)$	5	$\frac{dx}{dt} = (\sin x - x^2) \cdot (x - 2);$ $\frac{dx}{dt} = (e^{-x} - \sin x) \cdot$	9	$\frac{dx}{dt} = (x^3 - \sin x) \cdot $ $(1/2 - x);$
2	$\frac{dx}{dt} = (\frac{1}{2}x^2 + 2x - 1)$ $(x - \pi/2)$		$(r \perp 1)$	10	$(1/2-x);$ $\frac{dx}{dt} = (e^{-x} - x^3) \cdot (x+0.1);$
3	$\frac{dx}{dt} = (\sin x + x)$ $(x+0.9);$	7	$\frac{dx}{dt} = (e^{-x} + \cos x)$ $(x-1/2);$	11	$\frac{dx}{dt} = (e^{-x} - x^2 + 2) \cdot \sin(3x);$
4	$\frac{dx}{dt} = (\sin x + x^2)$ $(x-1);$	8	$\frac{dx}{dt} = (e^{-x} + \cos x)$ $(x-1/2);$ $\frac{dx}{dt} = (x^4 - x^2)$ $(0.5 - \sin(x));$	12	$\frac{dx}{dt} = (-\cos x + x^2)$ $(x - 0.8);$
№ п/ п	Уравнение	№ п/п	Уравнение	№ п/п	Уравнение
13	$\frac{dx}{dt} = (a \cdot x^2 + bx + c) \cdot (\alpha \cdot x + \beta);$ $\alpha = 10; \beta = 1; a = 1;$ $b = 1; c = 3$	17	$\frac{dx}{dt} = (e^{0.01 \cdot x} \cdot \cos(x)) \cdot (x-5) \cdot (x+2);$	21	$\frac{dx}{dt} = (a \cdot x^2 + bx + c) \cdot $ $arctg(x);$ $a = 1; b = 1; c = 3$
14	$\frac{dx}{dt} = (x - x_1) \cdot (x - x_2) \cdot (\alpha \cdot x + \beta);$ $(\alpha \cdot x + \beta);$ $x_1 = -1; x_2 = 2; \alpha = 1; \beta = 3$	18	$\frac{dx}{dt} = e^{-0.1 \cdot x} \cdot \sin(x) \cdot (x^2 - 8 \cdot x + 15);$	22	$\frac{dx}{dt} = (x-2) \cdot (x+2) \cdot \frac{2}{\pi} \arctan(100 \cdot x);$
15	$\frac{dx}{dt} = e^{-0.01 \cdot x} \cdot \sin(x) \cdot (\alpha \cdot x + \beta);$ $\alpha = 10; \beta = 1;$	19	$\frac{dx}{dt} = e^{-x} \cdot (x-2)(x+2);$	23	$\frac{dx}{dt} = e^{-x}\sin(x) \cdot $ $arctg(x);$

$$\begin{vmatrix} \frac{dx}{dt} = e^{0.01 \cdot x} \cdot \cos(x) \cdot \\ (\alpha \cdot x + \beta); \\ \alpha = 10; \beta = 1; \end{vmatrix} 20 \begin{vmatrix} \frac{dx}{dt} = e^{-x} \cdot \sin(x) \cdot \\ (x - 2)(x + 2); \end{vmatrix} 24 \begin{vmatrix} \frac{dx}{dt} = e^{-x} \cos(x) \cdot \\ arctg(x); \end{vmatrix}$$

- 2. Написать программу поиска корней функции одной переменной на языках Matlab и MVL. Использовать глобальные и локальные методы поиска: на первом этапе методы деления отрезка пополам, метод золотого сечения, случайный поиск, на втором этапе— локальные методы:
 - метод ложного положения

$$x_{n+1} = x_n - f(x_n) \cdot \frac{x_n - x_0}{f(x_n) - f(x_0)};$$

• метод секущих

$$x_{n+1} = x_n - f(x_n) \cdot \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})};$$

• метод Ньютона

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Сравнить вычислительные затраты методов. Процедуры должны иметь те же параметры, что и процедура ZEROIN.

Учебные программы поиска корней функции одной переменной строятся в соответствии с табл. 1.3.

Таблица 1.3. Сочетание глобальных и локальных методов в учебной программе

	Глобальный метод		Локальный метод	
1.	Метод деления отрезка пополам	Matlab	Метод Ньютона	MvStudium
2.	Метод золотого сечения	Matlab	Метод секущих	MvStudium
3.	Случайный поиск	Matlab	Метод ложного положения	MvStudium
4.	Метод деления отрезка пополам	Matlab	Метод ложного положения	MvStudium
5.	Метод золотого сечения	Matlab	Метод секущих	MvStudium
6.	Метод деления отрезка пополам	MvStudium	Метод Ньютона	Matlab
7.	Метод золотого сечения	MvStudium	Метод секущих	Matlab
8.	Случайный поиск	Matlab	Метод Ньютона	MvStudium
9.	Случайный поиск	MvStudium	Метод ложного положения	Matlab
10.	Метод деления отрезка пополам	MvStudium	Метод ложного положения	Matlab
11.	Метод золотого сечения	MvStudium	Метод секущих	Matlab

12.	Случайный поиск	MvStudium	Метод Ньютона	Matlab
13.	Случайный поиск	Matlab	Метод Ньютона	MvStudium
14.	Метод золотого сечения	Matlab	Метод секущих	MvStudium
15.	Метод деления отрезка пополам	Matlab	Метод ложного положения	MvStudium
16.	Метод деления отрезка пополам	Matlab	Метод ложного положения	MvStudium
17.	Метод золотого сечения	Matlab	Метод секущих	MvStudium
18.	Случайный поиск	MvStudium	Метод Ньютона	Matlab
19.	Метод золотого сечения	MvStudium	Метод секущих	Matlab
20.	Метод деления отрезка пополам	Matlab	Метод Ньютона	MvStudium
21.	Случайный поиск	MvStudium	Метод ложного положения	Matlab
22.	Метод деления отрезка пополам	MvStudium	Метод ложного положения	Matlab
23.	Метод золотого сечения	MvStudium	Метод секущих	Matlab
24.	Случайный поиск	MvStudium	Метод Ньютона	Matlab