МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» (БГТУ им. В.Г.Шухова)

Лабораторная работа №5 дисциплина «Теория цифровых автоматов» по теме «Синтез и анализ многовыходных комбинационных схем в базисе И-ИЛИ-НЕ»

Выполнил: студент группы ВТ-31 Макаров Д.С. Проверил: Рязанов Ю.Д.

Лабораторная работа №5

«Синтез и анализ многовыходных комбинационных схем в базисе И-ИЛИ-НЕ»

Цель работы: научиться строить эффективные по быстродействию и затратам оборудования многовыходные комбинационные схемы..

Вариант 9

Задание:

- 1. Составить таблицу истинности системы булевых функций, которая состоит из трех функций $f_1(X), f_2(X)$ и $f_3(X)$, где $X = x_1, x_2, x_3, x_4, x_5$. Булева функция $f_i(X)$ для k-го варианта определяется как $f_i(X) = g_{k+i^{\circ}1}(X) \land g_{k+3}(X)$, где $g_j(X)$ булева функция, представленная в таблице 1 (см. лабораторную работу N 1) в строке j. Для составления таблицы истинности рекомендуется написать программу.
- 2. Получить систему минимальных дизъюнктивных нормальных форм булевых функций f1(X), f2(X) и f3(X).
- 3. Применить факторизационный метод синтеза многоярусной комбинационной схемы в базисе И-ИЛИ-НЕ с двухвходовыми элементами И и ИЛИ по системе минимальных дизъюнктивных нормальных форм булевых функций f1(X), f2(X) и f3(X).
- 4. Получить минимальную дизъюнктивную нормальную форму системы булевых функций f1(X), f2(X) и f3(X).
- 5. Применить факторизационный метод синтеза многоярусной комбинационной схемы в базисе И-ИЛИ-НЕ с двухвходовыми элементами И и ИЛИ по минимальной дизъюнктивной нормальной форме системы булевых функций f1(X), f2(X) и f3(X).
- 6. Написать программы, моделирующие работу схем, полученных в пунктах 3 и 5, на всех входных наборах и строящие таблицу истинности каждой схемы. Сравнить полученные таблицы истинности с таблицей истинности исходной системы булевых функций.
- 7. Сравнить полученные в пунктах 3 и 5 схемы по Квайну и по быстродействию.

Ход работы

$$f_1 = f_{v9} \land f_{v12}$$

$$f_2 = f_{v9} \land f_{v12}$$

$$f_3 = f_{v9} \land f_{v12}$$

$$f_{v9} = 3 < (x_4 x_5 + x_1 x_2 x_3) < 8$$

$$f_{v10} = 4 \le (x_1 x_2 x_3 + x_4 x_5) \le 6$$

$$f_{v11} = 5 \le (x_2 x_3 + x_4 x_5 x_1) \le 8$$

$$f_{v12} = -2 \le (x_1 x_2 - x_3 x_4 x_5) \le 1$$

<u>No</u>	$x_1 x_2 x_3 x_4 x_5$	f_v9	f_v10	f_v11	f_v12	f1	f2	f3
1	00000	0	0	0	1	0	0	0
2	00001	0	0	0	1	0	0	0
3	00010	0	0	0	1	0	0	0
4	00011	0	0	1	0	0	0	0
5	00100	0	0	0	0	0	0	0
6	00101	0	0	0	0	0	0	0
7	00110	0	0	1	0	0	0	0
8	00111	1	1	1	0	0	0	0
9	01000	0	0	0	1	0	0	0
10	01001	0	0	0	1	0	0	0
11	01010	1	1	1	1	1	1	1
12	01011	1	1	1	1	1	1	1
13	01100	0	0	0	0	0	0	0
14	01101	1	1	1	0	0	0	0
15	01110	1	1	1	0	0	0	0
16	01111	1	1	0	0	0	0	0
17	10000	1	1	0	0	0	0	0
18	10001	1	1	0	1	1	1	0
19	10010	1	1	1	1	1	1	1
20	10011	1	0	1	1	1	0	1
21	10100	1	1	0	1	1	1	0
22	10101	1	1	0	0	0	0	0
23	10110	1	0	1	0	0	0	0
24	10111	0	0	1	0	0	0	0
25	11000	1	1	0	0	0	0	0
26	11001	1	0	1	0	0	0	0
27	11010	0	0	1	1	0	0	1
28	11011	0	0	0	1	0	0	0
29	11100	1	0	0	1	1	0	0
30	11101	0	0	1	1	0	0	1
31	11110	0	0	1	0	0	0	0
32	11111	0	0	0	0	0	0	0

Система минимальных булевых функций f_1 СДНФ

$N_{\overline{0}}$	$x_1 x_2 x_3 x_4 x_5$	Простая импликанта?
[11]	01010	
[12]	01011	
[18]	10001	
[19]	10010	
[20]	10011	
[21]	10100	
[29]	11100	

Список простых импликант

$N_{\overline{0}}$	$x_1 x_2 x_3 x_4 x_5$	Простая импликанта?
[11, 12]	0101-	*
[18, 20]	100-1	*
[19, 20]	1001-	*
[21, 29]	1-100	*

Таблица простых импликант

Простая импликанта	11	12	18	19	20	21	29
0101-	*	*					
100-1			*		*		
1001-				*	*		
1-100						*	*

$$(\overline{x}_1 x_2 \overline{x}_3 x_4) \vee (x_1 \overline{x}_2 \overline{x}_3 x_5) \vee (x_1 \overline{x}_2 \overline{x}_3 x_4) \vee (x_1 x_3 \overline{x}_4 \overline{x}_5)$$

Прос	тые															
ИМПЛ	ика и 1	њ $\overline{x}1$	x^2	$\overline{x}2$	x:	$\overline{x}3$	x4	$\overline{x}4$	x^{ξ}	$\overline{x}5$	z_1	z_2	z_3	z_4	z_5	z_6
$\overline{u_1}$		_	_			_	_					*	*			
u_2	_			_		_			*		*					
u_3	_			_		_	*				*					
u_4	_				_			_		_				*	*	
z_1	_			_		*										*
z_2						*	*									
z_3		*	*													
z_4								*		*						
z_5	*				*											
z_6	*			*												

	u_1	u_2	u_3	u_4	v_1	v_2
\overline{f}	- *	- *	-	-	*	*
$v_1 \ v_2$			*	*		

f_2 СДН Φ

$N_{\overline{0}}$	$x_1 x_2 x_3 x_4 x_5$	Простая импликанта?
[11]	01010	
[12]	01011	
[18]	10001	*
[19]	10010	*
[21]	10100	*

Список простых импликант

$N_{\overline{0}}$	$x_1 x_2 x_3 x_4 x_5$	Простая импликанта?
[18]	10001	*
[19]	10010	*
[21]	10100	*
[11, 12]	0101-	*

Таблица простых импликант

Простая импликанта	11	12	18	19	21
10001			*		
10010				*	
10100					*
0101-	*	*			

$$(x_1\overline{x}_2\overline{x}_3\overline{x}_4x_5)\vee(x_1\overline{x}_2\overline{x}_3x_4\overline{x}_5)\vee(x_1\overline{x}_2x_3\overline{x}_4\overline{x}_5)\vee(\overline{x}_1x_2\overline{x}_3x_4)$$

Про	стые								
имп.	лик ан т ы 1	$x2 \overline{x}2$	$x3 \overline{x}3$	$x4 \overline{x}4$	$x5 \overline{x}5$	z_1 z_2	z_3 z_4	z_5	z_6 z_7
$\overline{u_1}$	_	_	_	_	_	_	*		*
u_2	-	-	-	-	-	*	*		
u_3^-	-	-	_	-	-	*		>	*
u_4	_	-	-	-			*	*	

_	стые лик ан т ы 1	$x2 \overline{x}2$	$x3 \overline{x}3$	$x4 \overline{x}4$	$x5 \overline{x}5$	z_1 z_2 z_3	z_4 z_5 z_6 z_7
$\overline{z_1}$	_	_			*	*	
z_2	*	*					
z_3				*	*		
z_4			*	*			
z_5	*	*					
z_6			*	*			
z_7			*			*	

	u_1	u_2	u_3	u_4	v_1	v_2
\overline{f}	-	-	-	-	*	*
v_1	*	*				
v_2			*	*		

f_3 СДН Φ

$N_{\overline{0}}$	$x_1 x_2 x_3 x_4 x_5$	Простая импликанта?
[11]	01010	
[12]	01011	
[19]	10010	
[20]	10011	
[27]	11010	
[30]	11101	*

Список простых импликант

$N_{\overline{0}}$	$x_1 x_2 x_3 x_4 x_5$	Простая импликанта?
[30]	11101	*
[11, 12]	0101-	*
[11, 27]	-1010	*
[19, 20]	1001-	*
[19, 27]	1-010	*

Таблица простых импликант

Простая импликанта	11	12	19	20	27	30
11101						*
0101-	*	*				

Простая импликанта	11	12	19	20	27	30
-1010	*				*	
1001-			*	*		
1-010			*		*	

 $(x_1x_2x_3\overline{x}_4x_5)\vee(\overline{x}_1x_2\overline{x}_3x_4)\vee(x_1\overline{x}_2\overline{x}_3x_4)\vee(x_1\overline{x}_3x_4\overline{x}_5)$

Прос	тые											
ИМПЛ	ика и 1	ъ $\overline{x}1$	$x2 \overline{x}2$	$x3 \overline{x}3$	$x4 \overline{x}4$	$x5 \overline{x}5$	z_1	z_2	z_3	z_4	z_5	z_6
$\overline{u_1}$	_		_	_	_	-				_	*	*
u_2		_	-	-	-			*	*			
u_3^-	-		*	-	-		*					
u_4	_			-	-	*	*					
z_1	*			_	_			*				
z_2				*	*							
z_3		*	*									
z_4					*	*						
z_5			*	*								
z_6	*									*		

	u_1	u_2	u_3	u_4	v_1	v_2
\overline{f}	-	-	-	-	*	*
v_1	*	*				
v_2			*	*		

Минимальная система булевых функций $CДH\Phi$

$\overline{\mathbb{N}^{\underline{o}}}$	$x_1 x_2 x_3 x_4 x_5$	Простая импликанта?	Признаки принадлежности
11	01010		$\{1, 2, 3\}$
$\{12\}$	01011		$\{1, 2, 3\}$
$\{18\}$	10001		$\{1, 2\}$
{19}	10010		$\{1, 2, 3\}$
$\{20\}$	10011		$\{1, 3\}$
$\{21\}$	10100		$\{1, 2\}$
$\{27\}$	11010		$\{3\}$
$\{29\}$	11100		{1}
${30}$	11101	*	$\{3\}$

$$\begin{aligned} \mathbf{11-12:} \quad &0101 -_{\{1,2,3\}} \lor 01010_{\{1,2,3\}} \lor 01011_{\{1,2,3\}} = 0101 -_{\{1,2,3\}} \\ \mathbf{11-27:} \quad &-1010_{\{3\}} \lor 01010_{\{1,2,3\}} \lor 11010_{\{3\}} = -1010_{\{3\}} \lor 01010_{\{1,2,3\}} \\ \mathbf{18-20:} \quad &100 - 1_{\{1\}} \lor 10001_{\{1,2\}} \lor 10011_{\{1,3\}} = 100 - 1_{\{1\}} \lor 10001_{\{2\}} \lor 10011_{\{3\}} \\ \mathbf{19-20:} \quad &1001 -_{\{1,3\}} \lor 10010_{\{1,2,3\}} \lor 10011_{\{1,3\}} = 1001 -_{\{1,3\}} \lor 10010_{\{2\}} \\ \mathbf{19-27:} \quad &1 - 010_{\{3\}} \lor 10010_{\{1,2,3\}} \lor 11010_{\{3\}} = 1 - 010_{\{3\}} \lor 10010_{\{1,2\}} \end{aligned}$$

21-29:
$$1 - 100_{\{1\}} \lor 10100_{\{1,2\}} \lor 11100_{\{1\}} = 1 - 100_{\{1\}} \lor 10100_{\{2\}}$$

Простые импликанты:

- 11101_{3}
- 0101-_{1,2,3}
- \bullet $-1010_{\{3\}}$
- $100 \hat{1}_{\{1\}}$
- 10001_{2}
- $1001 \{1,3\}$
- $1 010_{\{3\}}$
- 10010_{2}
- $1 100_{\{1\}}$
- 10100_{2}

Простые импликанты	11			12			18			19			20			21			27
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1
$\checkmark 11101_{\{3\}}$																			

Простые импликанты	11			12			18		19			20		21		27
$\sqrt{0101{\{1,2,3\}}}$	*	*	*	*	*	*										
$\checkmark - 1010_{\{3\}}$			*													
$\sqrt{100-1_{\{1\}}}$							*					*				
$\checkmark 10001_{\{2\}}$								*								
$\sqrt{1001} - \{1,3\}$									*		*	*	*			
$1 - 010_{\{3\}}$											*					
$\checkmark 10010_{\{2\}}$									*	*						
$\sqrt{1-100_{\{1\}}}$														*		
$\checkmark 10100_{\{2\}}$															*	

$$f_1 = \overline{x}_1 x_2 \overline{x}_3 x_4 \vee x_1 \overline{x}_2 \overline{x}_3 x_4 \vee x_1 \overline{x}_2 \overline{x}_3 x_5 \vee x_1 x_3 \overline{x}_4 \overline{x}_5$$

$$f_2 = \overline{x}_1 x_2 \overline{x}_3 x_4 \vee x_1 \overline{x}_2 \overline{x}_3 \overline{x}_4 x_5 \vee x_1 \overline{x}_2 \overline{x}_3 x_4 \overline{x}_5 \vee x_1 \overline{x}_2 x_3 \overline{x}_4 \overline{x}_5$$

$$f_3 = \overline{x}_1 x_2 \overline{x}_3 x_4 \vee x_1 \overline{x}_2 \overline{x}_3 x_4 \vee x_1 x_2 x_3 \overline{x}_4 x_5 \vee x_2 \overline{x}_3 x_4 \overline{x}_5$$

	$x_1 \overline{x}_1$	x_2	\overline{x}_2	x_3	\overline{x}_3	x_4	\overline{x}_4	x_5	\overline{x}_5	z_1	z_2	z_3	z_4	z_5	z_6	z_7	z_8	z_9	z
$\overline{u_1}$	*	_			_	_							*						
u_2		_			_	_			*				*						
u_3	_		_		_			-				*							
u_4	_		_		_		*	_				*							
u_5	-		-		-	_					*								
u_6	-		-		-	_			*		*								
u_7	-			_			-		-	*									
u_8	-		*	-			-		_	*									
u_9	-	-		-			-	-						*		*			
z_1	-			-			-		*					*					
z_2	-		-		-	*									*				
z_3	-		-		-			*							*				
z_4		*			-	-											*		
z_5	-			-			*												*
z_6	-		-		*													*	
z_7		*						*											
z_8					*	*													
z_9	*		*																
z_{10}	*			*															

	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9	v_1	v_2	v_3	v_4	v_5
$\overline{f_1}$	-		-		-		-			*	*			

	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9	v_1	v_2	v_3	v_4	v_5
$\overline{f_2}$	_			_		_		_				*	*	
f_3	-	_			-				-	*				*
v_1	*				*									
v_2			*				*							
v_3	*			*										
v_4						*		*						
v_5		*							*					

Рис. 2: Схема для задания 2

Приложение

Содержимое файла funcTest.py

```
from binVectors import gen_bin_vector_5 as gen_bin_vector
from tabulate import tabulate
def truth_table(vector):
    result = []
    for i in range(0,len(vector)):
        args = vector[i][0]
        sch = schema(args)
        result.append([
            i+1,
            args,
            int(f(f_v9,f_v12,args)),
            int(sch[0]),
            int(t1_sch_f1(args)),
            int(f(f_v10,f_v12,args)),
            int(sch[1]),
            int(t1_sch_f2(args)),
            int(f(f_v11,f_v12,args)),
            int(sch[2]),
            int(t1_sch_f3(args))
        ])
    return result
def f_v9(str_val):
   x1 = str_val[0]
    x2 = str_val[1]
    x3 = str_val[2]
    x4 = str_val[3]
    x5 = str_val[4]
    return (
        3 < (int(x4 + x5,2) + int(x1 + x2 + x3,2)) < 8
def f_v10(str_val):
    x1 = str_val[0]
    x2 = str_val[1]
    x3 = str_val[2]
    x4 = str_val[3]
    x5 = str_val[4]
    return (
        4 \le (int(x4 + x5,2) + int(x1 + x2 + x3,2)) \le 6
def f_v11(str_val):
    x1 = str_val[0]
    x2 = str_val[1]
    x3 = str_val[2]
    x4 = str_val[3]
    x5 = str_val[4]
    return (
        5 \le (int(x2 + x3,2) + int(x4 + x5 + x1,2)) \le 8
def f_v12(str_val):
    x1 = str_val[0]
    x2 = str_val[1]
    x3 = str_val[2]
```

```
x4 = str_val[3]
    x5 = str_val[4]
    return (
        -2 \le (int(x1 + x2,2) - int(x3 + x4 + x5,2)) \le 1
def f(f1,f2,str_val):
    return f1(str_val) and f2(str_val)
def t1_sch_f1(str_val):
    x1 = bool(int(str_val[0]))
    x2 = bool(int(str_val[1]))
    x3 = bool(int(str_val[2]))
    x4 = bool(int(str_val[3]))
    x5 = bool(int(str_val[4]))
    z2 = not x3 and x4
    z3 = not x1 and x2
    z4 = not x4 and not x5
    z5 = x1 and x3
    z6 = x1 and not x2
    z1 = not x3 and z6
    u1 = z2 and z3
    u4 = z4 and z5
    u2 = z1 and x5
    u3 = z1 and x4
    v1 = u1 \text{ or } u2
    v2 = u3 \text{ or } u4
    f = v1 \text{ or } v2
    return f
def t1_sch_f2(str_val):
    x1 = bool(int(str_val[0]))
    x2 = bool(int(str_val[1]))
    x3 = bool(int(str_val[2]))
    x4 = bool(int(str_val[3]))
    x5 = bool(int(str_val[4]))
    z2 = not x2 and x1
    z3 = not x4 and x5
    z4 = not x3 and x4
    z5 = not x1 and x2
    z6 = x3 and not x4
    z7 = z2 and not x3
    z1 = z2 and not x5
    u1 = z7 and z3
    u2 = z1 and z4
    u3 = z1 and z6
    u4 = z4 and z5
    v1 = u1 \text{ or } u2
    v2 = u3 \text{ or } u4
    f = v1 or v2
```

```
return f
def t1_sch_f3(str_val):
    x1 = bool(int(str_val[0]))
    x2 = bool(int(str_val[1]))
    x3 = bool(int(str_val[2]))
    x4 = bool(int(str_val[3]))
    x5 = bool(int(str_val[4]))
    z2 = not x3 and x4
    z3 = not x1 and x2
    z4 = not x4 and not x5
    z5 = x2 and x3
    z6 = x1 and z4
    z1 = x1 and z2
    u1 = z5 and z6
    u2 = z2 and z3
    u3 = not x2 and z1
    u4 = not x5 and z1
    v1 = u1 \text{ or } u2
    v2 = u3 \text{ or } u4
    f = v1 \text{ or } v2
    return f
def schema(str_val):
    x1 = bool(int(str_val[0]))
    x2 = bool(int(str_val[1]))
    x3 = bool(int(str_val[2]))
    x4 = bool(int(str_val[3]))
    x5 = bool(int(str_val[4]))
    z7 = x2 and x5
    z8 = not x3 and x4
    z9 = x1 and not x2
    z10 = x1 and x3
    z4 = x2 and z8
    z5 = not x4 and z10
    z6 = not x3 and z9
    z1 = not x5 and z5
    z2 = x4 and z6
    z3 = x5 and z6
    u1 = not x1 and z4
    u2 = not x5 and z4
    u3 = z3
    u4 = not x4 and z3
    u5 = z2
    u6 = not x5 and z2
    u7 = z1
    u8 = not x2 and z1
    u9 = z5 and z7
    v1 = u1 \text{ or } u5
    v2 = u3 \text{ or } u7
```