Problem 1

(a) By applying the limit test:

$$\lim_{n \to \infty} \frac{3^{n+1}}{3^n} = 3 \to 3^{n+1} = \Theta(3^n)$$

$$\lim_{n \to \infty} \frac{3^{3n}}{3^n} = 3^{2n} = \infty \to 3^{3n} = \Omega(3^n) \text{ and } 3^{3n} \neq O(3^n)$$

(b) Notice that $1 \le 2 + \cos n \le 3$ for all n. Hence, for all $n \ge 1$, we have $n^3 \ge n^{2 + \cos n}$, which implies that $n^3 = \Omega(n^{2 + \cos n})$ by definition.

To show that $n^3 \neq O(n^{2+\cos n})$, we will proceed by contradiction. Assume, for the sake of contradiction, that there exist constants C > 0 and $n_0 \geq 0$ such that $n^3 \leq C n^{2+\cos n}$ for all $n \geq n_0$. This inequality simplifies to:

$$n^{3-(2+\cos n)} = n^{1-\cos n} \le C \quad \text{for all } n \ge n_0.$$

However, this leads to a contradiction. The left-hand side, $n^{1-\cos n}$, can be made arbitrarily large for large values of n where $\cos n < 0$. Specifically, since $\cos n$ oscillates between -1 and 1, there are infinitely many values of n where $\cos n < 0$, and thus $1 - \cos n$ becomes larger than 1. For such n, the expression $n^{1-\cos n}$ grows without bound as n increases, which contradicts the assumption that it is bounded by a constant C.

Therefore, the assumption that $n^3 = O(n^{2+\cos n})$ must be false.

(c) Notice that

$$g(n) = \frac{n^5 + n^{3 + \sin n} + 1}{n^2 + n + 1} = n^3 \times \frac{1 + n^{\sin n - 2} + n^{-5}}{1 + n^{-1} + n^{-2}} \to \lim_{n \to \infty} \frac{g(n)}{n^3} = 1.$$

Thus, $g(n) = \Theta(n^3)$, meaning that $g(n) = O(n^3)$ and $g(n) = \Omega(n^3)$.

Since $n^3 = \Omega(n^2)$ and $n^3 = O(n^4)$, by transitivity, we also have $q(n) = \Omega(n^2)$ and $q(n) = O(n^4)$.

Thus, the correct choice is D. The same conclusion can be reached using the limit property.

Problem 2

Data: Array arr of length nResult: Scalar val $val \leftarrow 0$;

for $i \leftarrow 1$ to n^2 do $\begin{vmatrix} j \leftarrow 1; \\ \text{while } j \leq i^2 \text{ do} \\ \end{vmatrix}$ $val \leftarrow val + arr[i] \times j^2;$ $val \leftarrow val + arr[i] \times j^2;$ end

end

Assignment to variables in this algorithm is basic, and operations are minimal, with $\Theta(1)$ complexity.

Consider the outer loop of the algorithm running from 1 to n^2 . This will be the basis of our summation, as everything inside the outer loop repeats n^2 times.

Now consider the inner loop, which runs from 1 to i^2 . This will be the content of the summation, as i^2 iterations of the inner loop are repeated for every iteration of the outer loop.

This gives us the summation:

$$\sum_{i=1}^{n^2} \theta(i^2)$$

Written out, the summation is as follows:

$$1^{2} + 2^{2} + \ldots + n^{2^{2}} = \frac{n^{2}(n^{2} + 1)(2n^{2} + 1)}{6}$$

This is found by using the Summation of Squares Formula.

From here, combining the terms in the numerator gives the largest degree of n^6 , meaning that the runtime complexity of the algorithm is $\Theta(n^6)$.

 $\begin{array}{c} \textbf{Data: Array } arr \text{ of length } n \\ \textbf{Result: Scalar } val \\ val \leftarrow 0; \\ \textbf{for } i \leftarrow 1 \textbf{ to } n \textbf{ do} \\ & | j \leftarrow 1; \\ \textbf{ for } j \leftarrow 1 \textbf{ to } \ln(i) \textbf{ do} \\ & | val \leftarrow val + j \times (arr[i])^n; \\ & \textbf{ end} \\ & \textbf{end} \end{array}$

For this algorithm, it is important to notice that the assignment includes exponentiation by n, as shown below:

$$(arr[i])^n$$

Since exponentiation by n inherently contains n multiplication operations of $\Theta(1)$, the total time complexity for the variable assignment is $\Theta(n)$, as the algorithm must spend time calculating the value.

Now consider the outer loop, which goes from 1 to n. This will be the basis of the summation.

The inner loop iterates from 1 to $\ln(i)$, which is then repeated per iteration of the outer loop.

Therefore, the summation representing this algorithm will be:

$$\sum_{i=1}^{n} \theta(n \ln(i))$$

Written out, the summation is as follows:

$$n \ln(1) + n \ln(2) + \ldots + n \ln(n) = n \ln(n!)$$

Note that n is a constant in this case, and doesn't change per iteration.

Also remember addition of logarithms, where $\log(x) + \log(y) = \log(xy)$, which is why $\ln(1) + \ldots + \ln(n)$ is equal to n!.

Using the hint as substitution for ln(n!) inside of n ln(n!):

$$\ln(n!) = n \ln(n) - n + O(\ln(n))$$

Since the largest term from the hint is $n \ln(n)$, runtime complexity is found by multiplying $n \ln(n)$ by the existing n, meaning the runtime complexity of the algorithm is $\Theta(n^2 \ln(n))$.

Data: None
Result: Scalar val $val \leftarrow 0$;
for $i \leftarrow 1$ to n do $\begin{vmatrix}
j \leftarrow 1; \\
\mathbf{while} \ j \leq i \ \mathbf{do} \\
val \leftarrow val + j \times i; \\
j \leftarrow 3 \times j \\
\mathbf{end}
\end{vmatrix}$ end

For this algorithm, all assignments are basic and mathematical operations are simple, leading to a constant runtime of $\theta(1)$.

The outer loop of this algorithm iterates from 1 to n, so this will be the basis of the summation.

The inner loop iterates from 1 to i, but it is indexed by multiplying the previous index by 3 each time, as seen below:

$$j \leftarrow 3 \times j$$

Therefore, the complexity of the inner loop is $\theta(\log_3(i))$, as it progresses arithmetically, rather than linearly (like if it was indexed by a constant +3 instead).

It is important to note that in runtime notation, the base of the logarithm does not matter, so $\theta(\log_3(n))$ is equivalent to $\theta(\log(n))$.

The resulting summation is as follows:

$$\sum_{i=1}^{n} \theta(\log(i))$$

Written out, the summation will be:

$$\log(1) + \log(2) + \ldots + \log(n) = \log(n!)$$

Also remember addition of logarithms, where $\log(x) + \log(y) = \log(xy)$, which is why $\log(1) + \ldots + \log(n)$ is equal to $\log(n!)$.

Substituting for $\log(n!)$:

$$\log(n!) = n\log(n) - n + O(\log(n))$$

The largest term is $n \log(n)$, meaning the runtime complexity of the algorithm is $\Theta(n \log(n))$.

Problem 3

(a)
$$\lim_{n\to\infty} \frac{\frac{n!}{k! \cdot (n-k)!}}{n^k} = \frac{\frac{n \times (n-1) \times ... \times (n-k+1)}{k!}}{n^k} = \frac{1}{k!} \to \binom{n}{k} = \Theta(n^k)$$

(b) $2 + \sin n \in [1, 3]$. Following a similar argument as in Problem 1(b), $n^{2+\sin n} = \text{None}(n^2)$.

- (c) Notice that $5+4\sin n \in [1,9]$, hence for all $n \ge 1$, we have $\log n \le \log(n^{5+4\sin n}) \le 9\log n$. Hence, $\log(n^{5+4\sin n}) = \Theta(\log n)$.
- (d) $\lim_{n\to\infty} \frac{n^3+2n^2+5}{n^3} = 1 \to n^3 + 2n^2 + 5 = \Theta(n^3)$
- (e) $\lim_{n\to\infty}\frac{2^n}{n^3}=\infty\to 2^n=\Omega(n^3)$ and $2^n\neq O(n^3)$
- (f) $\lim_{n\to\infty} \frac{n\log n+n}{n\log n} = \lim_{n\to\infty} \frac{\log n+1}{\log n} = 1 \to n\log n + n = \Theta(n\log n)$
- (g) $\lim_{n\to\infty} \frac{\log n}{n^2} = 0 \to \frac{\log n}{n^2} = O(1)$ and $\frac{\log n}{n^2} \neq \Omega(1)$
- (h) $\lim_{n\to\infty} \frac{k^n}{2^n} = \lim_{n\to\infty} \left(\frac{k}{2}\right)^n = \infty \to k^n = \Omega(2^n)$ and $k^n = O(2^n)$
- (i) $\lim_{n\to\infty} \frac{\sqrt{n}}{\log n} = \infty \to \sqrt{n} = \Omega(\log n)$ and $\sqrt{n} \neq O(\log n)$
- (j) $\lim_{n\to\infty} \frac{\log^2 n}{n} = 0 \to \log^2 n = O(n)$ and $\log^2 n \neq \Omega(n)$