EPFL

 École polytechnique fédérale de Lausanne

Project types 1 – open topic

- You choose a relevant problem requiring image processing (ex: landcover change, temporal monitoring, land planning),
- You find the necessary data, create or find the labels
- You design a processing chain that makes sense with the ML methods seen in the class (or others, to be discussed)
- We expect that you are critical about what you are doing, discuss what works and what not, discuss in terms of scientific (domain) output

Project types 2 – deep learning

- We choose a relevant problem (examples on Moodle)
- We provide the necessary data
- You design a processing pipeline in Pytorch.
- We expect that you test several approaches and are critical about what you are doing. Discuss in terms of accuracy, training time, etc.

What we expect

- Groups 4 students
- Deadline: January 12th, midnight*.
- Submission on Moodle.
- The project will consist of
 - a .pdf document (15 pages max we wont' read further) with
 - Topic and challenges, short literature review;
 - Proposed processing routine (typically a flowchart);
 - Results (a few maps, assessment of metrics);
 - Discussion → being critical about what has been done.
 - your code in python, fully executable, creating the maps for a part of your data.

^{*} NB: our advise is to hand in before December 31st, so that you have two full weeks to study for your exams. But we leave it up to you.

IDEO course - Projects 13 October 2023

Schedule

	1 st hour	2 nd hour	3 rd hour	Deliverable	
13 October	Classification courses		Introduction about the projects		
19 October	Reading club	Brain storm ideas with the TAs		Idea!	
10 November	Course on semantic segmentation			Topic chosen, groups ready	
17 November	Reading club 2		Discuss with groups	Filled google form for topics and groups	
24 November	Project			First processing chain	
01 December	Mid term Q&A	Project			
08 December	Mid term		Project	First results	
15 December	Project				
22 December	Project			Improved results, start writing report	

EVALUATION Criteria

Criterion	Explanation	Pts. on open topic	Pts. on deep learning topic
Data (open topic only)	 Choice of relevant data (resolution, bands,) Data preparation (including dataset splits) 	3	0
Method	 Relevant choice of methods Several parameter sets / methods are compared 	3	5
Reproducibility, code	 Code can be run easily Code is readable Computational efficiency is reasonable A readme file with instructions in provided 	1	2
Evaluation of results	 Several relevant metrics are computer over train / val splits Computational complexity (e.g. training time, inference time) is assessed 	3	3
Report	 Report is clearly written Graphics are readable and complete (e.g. axis titles) Results are analysed Discussion in terms of scientific (domain) output Limitations are clearly discussed 	2	2
	TOTAL	12	12

Some advice

- Timing is short, so work well, don't go for over complicated topics.
- Discuss with the assistants to ensure you have a doable idea, so that you can start straight away
- Take a deep learning project only if you are very at ease in Python programming
- Create a slack channel for your group, so you can reach the assistants easily