Head Mounted Display Optics I

Gordon Wetzstein Stanford University

EE 267 Virtual Reality

Lecture 7

stanford.edu/class/ee267/

Logistics

 HW3 is probably the longest homework, so get started asap if you have not done so already

all hardware is shipped and should be with you already

Lecture Overview

- 1. stereo rendering for HMDs
- 2. field of view and visual field
- 3. lens distortion correction using GLSL
- 4. overview of microdisplay technology

Stereo Rendering for HMDs

All Current-generation VR HMDs are "Simple Magnifiers"

Side View

Image Formation – Left Eye

Top View

virtual image Image Formation – Left Eye

virtual image Image Formation – Left Eye

Image Formation – Left Eye

Prototype Specs – View-Master Deluxe VR Viewer

- roughly follows Google Cardboard 2.0:lenses focal length: 40 mm
 - lenses diameter: 34 mm
 - inter-lens distance: 64 mm
 - screen to lens distance: 39 mm
 - eye relief: 18 mm
- Topfoison 6" LCD: width 132.5 mm, height 74.5 mm; 1920x1080 px OR
- Topfoison 5.5" LCD: width 120.96 mm, height 68.03 mm; 1920x1080 px

 use these formulas to compute the perspective matrix in WebGL

you can use:

that's all you need to render stereo images on the HMD.

Image Formation for More Complex Optics

 especially important in free-form optics, off-axis optical configurations & AR

 use ray tracing – some nonlinear mapping from view frustum to microdisplay pixels

 much more computationally challenging & sensitive to precise calibration; our HMD and most magnifier-based designs will work with what we discussed so far

Field of View and Visual Field

- use Google Cardboard 2 lenses (f=40mm, d'=39mm, interpupillary/interlens distance = 64mm, eye relief = 18mm)
- Topfoison 6" LCD panel (132.5 x 74.5 mm)

virtual image of right display side

vertical field of view:

$$fov_{v} = fov_{v}^{\text{(superior)}} + fov_{h}^{\text{(inferior)}}$$
$$= 2 \tan^{-1} \left(\frac{M \frac{h}{2}}{d}\right) = 87^{\circ}$$

87° vertical field of view is approx. 64% of the vertical visual field of a single eye (135° total)

total monocular field of view of both eyes:

$$fov_h^{(total)} = 2fov_h^{(temporal)} = 82^\circ$$

82° monocular field of view is approx. 41% of the full monocular visual field of both eyes (200° total)

binocular field of view of both eyes:

$$fov_h^{(total)} = 2fov_h^{(nasal)} = 78^{\circ}$$

78° binocular field of view is approx. 65% of the binocular visual field of both eyes (120° total)

Lens Distortion Correction

All lenses introduce image distortion, chromatic aberrations, and other artifacts – we need to correct for them as best as we can in software!

Lens Distortion

grid seen through HMD lens

 lateral (xy) distortion of the image

 chromatic aberrations: distortion is wavelength dependent!

image from: https://www.slideshare.net/Mark_Kilgard/nvidia-opengl-in-2016

Lens Distortion

Lens Distortion

optical <u>digital correction</u>

• x_u, y_u undistorted point

- x_u, y_u undistorted point
- $x_d \approx x_u \left(1 + K_1 r^2 + K_2 r^4 \right)$ $y_d \approx y_u \left(1 + K_1 r^2 + K_2 r^4 \right)$

$$X_d, Y_d$$
 distorted point coordinates K_1, K_2 distortion coefficients

r normalized distance from center x_c, y_c center of optical axis

Barrel Distortion digital correction

- x_u, y_u undistorted point
- $\bullet \quad x_d \approx x_u \left(1 + K_1 r^2 + K_2 r^4 \right)$

$$y_d \approx y_u \left(1 + K_1 r^2 + K_2 r^4 \right)$$

 x_d, y_d distorted point coordinates

distortion coefficients

r normalized distance from center

 K_1, K_2

 x_c, y_c center of optical axis

This is the origin, i.e. all other points are defined relative to this

NOTES:

- center is assumed to be the center point (on optical axis) on screen
- distortion is radially symmetric around center point
- easy to get confused!
- can implement in fragment shader (not super efficient, but easier for us)

Normalizing r

• x_u, y_u undistorted point

•
$$x_d \approx x_u \left(1 + K_1 r^2 + K_2 r^4 \right)$$

 $y_d \approx y_u \left(1 + K_1 r^2 + K_2 r^4 \right)$

un-normalized radial distance from center:

 x_c, y_c center

$$\tilde{r}^2 = (x_u - x_c)^2 + (y_u - y_c)^2 \longrightarrow$$

Calculate r in metric units, e.g. mm. Need physical size of the pixels of your screen for this!

Lens Distortion Correction Example

stereo rendering without lens distortion correction

Lens Distortion Correction Example

stereo rendering with lens distortion correction

How to Render into Different Parts of the Window?

- WebGLRenderer.setViewport(x,y,width,height)
- x, y lower left corner; width, height viewport size

Overview of Microdisplays

Liquid Crystal Display (LCD) - Subpixels

LCD Backlight

extremetech.com

Liquid Crystal on Silicon (LCoS)

basically a reflective LCD

 standard component in projectors and head mounted displays

used e.g. in google glass

Organic Light Emitting Diodes (OLED)

- Self emissive
- Lower persistence (can turn on and off faster than LCD/LCoS, which is great for VR)
- used e.g. VR-compatible phones, like Google's Pixel

lightrabbit.co.uk

Digital Micromirror Device (DMD)

- developed by TI
- MEMS device
- binary states (e.g. +/- 10 degrees)
- gray-level through pulse width modulation (PWM)
- Super-fast (10-20 kHZ binary display
- More light efficient than LCD/LCoS!

Figure 1. 1 mm x 9 mm scanning fiber projector.

B. T. Schowengerdt, R. Johnston, C.D. Melville, E.J. Seibel. 3D Displays Using Scanning Laser Projection. SID 2012.

Next Lecture: HMD Displays Optics II

advanced VR & AR optics

drawing from Google Glass patent