WHAT IS CLAIMED IS:

1	1.	A method for enabling a traffic flow control down to all sub-ports of a switching
2		function
3		made of a N-port core switch fabric, said switching function comprising one or
4		more port adapters, each said port adapter including one or more sub-port
5		adapters, said method comprising the steps of:
6		in each said sub-port adapter;
7		detecting congestion in an OUT leg of said sub-port adapter;
8		reporting said detected congestion through an IN leg of said sub-port adapter, said
9		step of reporting further including the step of:
0		piggyback conveying said detected congestion over an incoming traffic entering
1		an input port of said N-port core switching fabric from said IN leg of said sub-port
12		adapter;
13		in said N-port core switch fabric:
14		broadcasting said detected congestion to all output ports;
15		in each said port adapter,
16		broadcasting said detected congestion to all sub-ports, thereby informing all said
17		sub-port adapters of a said detected congestion in any one of said OUT leg.

1	2.	The method of claim 1 further comprising the steps of:
2		in each said sub-port adapter, checking whether said OUT leg of a Nth sub-port
3		adapter is reported to be congested or not;
4		if congested, stop forwarding traffic destined for said OUT leg of said Nth sub-
5		port adapter, said stopping step further comprising the step of:
6		holding traffic in said sub-port adapter if any is received;
7		if not congested, continue or resume forwarding traffic, if any received, destined
8		for said OUT leg of said sub-port adapter;
<u>5</u> 9		continuing to cycle through each reported said sub-port adapter repeating all here
(1) (1)		above described steps.
== === 1 =============================	3.	The method of claim 1 wherein said N-port core switch fabric is switching fixed-
[] []2		size packets.
10 10 10 10 10 10 10 10 10 10 10 10 10 1		
1 1	4.	The method of claim 3 wherein said fixed-size packets, moved through the ports
2		of
3		said N-port core switch fabric, include fixed-size idle packets.
1	5.	The method of claim 3 wherein more than a single said fixed-size packet are
2		moved simultaneously through each port of said N-port core switch fabric.
	5.	

1

6.

The method of claim 3 wherein the step of piggyback conveying said detected

- congestion is performed in a header field of said fixed-size packets. 2
- The method of claim 4 wherein the step of piggyback conveying said detected 7. 1 congestion over said incoming traffic is carried out including said fixed-size idle 2 3 packet.
- The method of claim 6 wherein the step of reporting said detected congestion of 8. 1 all said sub-port adapters is time multiplexed in said header field.
 - The method of claim 1 wherein the reporting step includes reporting per priority 9. class.
 - A switching system expanding the number of ports of a switch fabric comprising; 10. a N-port core switch fabric, one or more port adapters, each said port adapter including one or more sub-port adapters, in each said sub-port adapter;
 - means for detecting congestion in an OUT leg of said sub-port adapter; 6

#== 1

2

3

4

5

means for reporting said detected congestion through an IN leg of said sub-port 7 8 adapter, said reporting means further comprising:

9		means for piggyback conveying said detected congestion over an incoming traffic
10		entering an input port of said N-port core switching fabric from said IN leg of said
11		sub-port adapter;
12		in said N-port core switch fabric:
13		means for broadcasting said detected congestion to all output ports;
14		in each said port adapter,
15		means for broadcasting said detected congestion to all sub-ports, thereby
16		informing all said sub-port adapters of a said detected congestion in any one of
1 7		said OUT leg.
400 H H H H H H H H H H H H H H H H H H		
1	11.	The switching system of claim 10 further comprising:
± 2		in each said sub-port adapter, means for checking whether said OUT leg of a Nth
3		sub-port adapter is reported to be congested or not;
4 4		if congested, means to stop forwarding traffic destined for said OUT leg of said
5		Nth sub-port adapter, said stopping means further comprising,
6		means for holding traffic in said sub-port adapter if any is received;
7		if not congested, means to continue or resume forwarding traffic, if any received,
8		destined for said OUT leg of said sub-port adapter;
9		means for continuing to cycle through each reported said sub-port adapter
10		repeating all here above described steps.

12. The switching system of claim 10 wherein said N-port core switch fabric is

18.

per priority class.

1

2

The switching system of claim 10 wherein said reporting means includes reporting

19.	A program storage device readable by a machine, tangibly embodying a program
	of instructions executable by the machine to perform method steps for enabling a
	traffic flow control down to all sub-ports of a switching function
	made of a N-port core switch fabric, said switching function comprising one or
	more port adapters, each said port adapter including one or more sub-port
	adapters, said method steps comprising:
	in each said sub-port adapter;
	detecting congestion in an OUT leg of said sub-port adapter;
	reporting said detected congestion through an IN leg of said sub-port adapter, said
	step of reporting further including the step of:
	piggyback conveying said detected congestion over an incoming traffic entering
	an input port of said N-port core switching fabric from said IN leg of said sub-port
	adapter;
	in said N-port core switch fabric:
	broadcasting said detected congestion to all output ports;
	in each said port adapter,
	broadcasting said detected congestion to all sub-ports, thereby informing all said
	sub-port adapters of a said detected congestion in any one of said OUT leg.
	19.

20. The program storage device of claim 19 further comprising the steps of:
in each said sub-port adapter, checking whether said OUT leg of a Nth sub-port

3		adapter is reported to be congested or not;
4		if congested, stop forwarding traffic destined for said OUT leg of said Nth sub-
5		port adapter, said stopping step further comprising the step of:
6		holding traffic in said sub-port adapter if any is received;
7		if not congested, continue or resume forwarding traffic, if any received, destined
8		for said OUT leg of said sub-port adapter;
9		continuing to cycle through each reported said sub-port adapter repeating all here
10		above described steps.
man yan dama kadi Yanin da H		
51	21.	The program storage device of claim 19 wherein said N-port core switch fabric is
		switching fixed-size packets.
1 1	22.	The program storage device of claim 21 wherein said fixed-size packets, moved
		through the ports of said N-port core switch fabric, include fixed-size idle packets.
1	23.	The program storage device of claim 21 wherein more than a single said fixed-
2		size packet are moved simultaneously through each port of said N-port core
3		switch fabric.
1	24.	The program storage device of claim 21 wherein the step of piggyback conveying
2		said detected congestion is performed in a header field of said fixed-size packets.

The program storage device of claim 22 wherein the step of piggyback conveying 25. 1 said detected congestion over said incoming traffic is carried out including said 2 fixed-size idle packet. 3 The program storage device of claim 24 wherein the step of reporting said 1 26. detected congestion of all said sub-port adapters is time multiplexed in said 2 3 header field. The program storage device of claim 19 wherein the reporting step includes 27. reporting per priority class.

123