Міністерство освіти і науки України НТУУ «Київський політехнічний інститут» Фізико-технічний інститут

Спеціальні розділи програмування

Курсова робота

MLP для класифікації зарплати навчений на даних перепису населення

Студент 2 курсу ФТІ Групи ФІ-92 Поночевний Назар Юрійович	Ч
Перевірив:	
Прийняв:	_

Виконав:

1 Мета роботи

Отримати досвід використання основних методів та засобів аналізу та візуалізації даних у середовищі розробки IPython Notebook [1] на реальних наборах даних.

2 Завдання

На підставі даних перепису спрогнозувати, чи перевищуватиме дохід особи \$50 тис. на рік.

3 Датасет

У роботі було використано Census Income (Adult) датасет. [4] В ньому є 2 файли (.data, .test), проте вони не збалансовані, тому файли були зконкатеновані для самостійного балансування. Було отримано (48841 рядків х 15 колонок) dataframe з різними типами даних та відсутніми значеннями.

	agı	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per- week	native- country	salary
(50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0	13	United- States	<=50K
1	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	0	40	United- States	<=50K
2	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0	40	United- States	<=50K
3	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Female	0	0	40	Cuba	<=50K
4	37	Private	284582	Masters	14	Married-civ- spouse	Exec- managerial	Wife	White	Female	0	0	40	United- States	<=50K

Рис. 1: Датасет (перші 5 рядків)

4 Очищення даних

Перш за все, замінюємо відсутні дані та балансуємо набір даних, видаляючи деякі рядки з більшості ('<= 50K'). Ця процедура зменшила dataframe до (11687 рядків х 15 стовпців). Після цього виконуємо нормалізацію, стандартизацію та OneHot-кодування даних за допомогою цієї карти (карта була побудована з використанням гістограм кожного стовпця кадру даних):

```
norm_map = { 'age': 'standartization', 'workclass': 'onehot',
'fnlwgt': 'normalization', 'education': 'onehot',
'education-num': 'standartization', 'marital-status': 'onehot',
'occupation': 'onehot', 'relationship': 'onehot',
'race': 'onehot', 'sex': 'onehot',
'capital-gain': 'normalization',
'capital-loss': 'normalization', 'salary': 'onehot',
'hours-per-week': 'standartization', 'native-country': 'onehot'}
```

5 Візуалізація даних

Розглянемо кореляційні зв'язки Пірсона: [2]

Рис. 2: Теплова карта кореляції

Існує невелика кореляція, тож, подивимось, як категоричні дані будуть відокремлювати значення "Зарплата":

Розглянемо як залежать один від одного інші категоріальні змінні:

Також побудуємо графік щоб побачити розподіл за змінною "Вік":

Розглянемо як залежать 4 змінні одночасно:

6 Класифікація

Побудуємо моделі машинного навчання

1. Перш за все розділяємо дані

X shape: (23374, 104)

Y shape: (23374, 2)

Training X shape: (15193, 104) Training Y shape: (15193, 2) Test X shape: (8181, 104) Test Y shape: (8181, 2)

2. Створюємо моделі

kNN

knn = KNeighborsClassifier()

knn_model = MultiOutputClassifier(estimator=knn)

Рис. 3: Кореляції з категоричними ознаками

```
# Naive Bayes
nb = GaussianNB()
nb_model = MultiOutputClassifier(estimator=nb)

# SVM
svm = SVC(kernel='rbf', C=1e3, gamma=0.1)
svm_model = MultiOutputClassifier(estimator=svm)

# DecisionTree
dtree = DecisionTreeClassifier()
dtree_model = MultiOutputClassifier(estimator=dtree)

# RF
rf = RandomForestClassifier(n_estimators=10)
rf_model = MultiOutputClassifier(estimator=rf)
```


Рис. 4: Кореляції з іншими категоричними ознаками

Рис. 5: Розподіл за змінною "Вік"

```
# MLP
x_shape, y_shape = X.shape[1], Y.shape[1]
mean_shape = (x_shape + y_shape) // 2

mlp_model = Sequential()
mlp_model.add(Dense(x_shape, input_shape=(x_shape,),
activation='relu'))
mlp_model.add(Dense(mean_shape, activation='relu'))
mlp_model.add(Dense(y_shape, activation='softmax'))
es = EarlyStopping(monitor='val_accuracy', verbose=1,
patience=5)
mlp_model.compile(loss='categorical_crossentropy',
optimizer='adam', metrics=['accuracy'])
```


Рис. 6: Залежність зарплатні від віку, років навчання та вагового коефіцієнту

3. Навчаємо та оцінюємо

kNN Test accuracy: 0.790

Naive Bayes Test accuracy: 0.699

SVM Test accuracy: 0.784

DecisionTree Test accuracy: 0.744

RF Test accuracy: 0.745 MLP Test accuracy: 0.815

4. Дивимося матрицю Confusion

Рис. 7: Матриця Confusion

5. Дивимося важливість ознак

Рис. 8: Важливість ознак

7 Побудова більш простої моделі

Тепер нам відомі найважливіші особливості (вік, ваговий коефіцієнт, години на тиждень, номер освіти, сімейний стан, стосунки) та модель з найбільшою точностю (MLP), тому побудуємо спрощену модель MLP, але з тією ж акуратністю на тестових даних.

1. По новому розділяємо дані

X shape: (23374, 17) Y shape: (23374,)

Training X shape: (15193, 17) Training Y shape: (15193,) Test X shape: (8181, 17) Test Y shape: (8181,)

2. Створюємо нову модель

Model: "sequential 1"

Layer (type)	Output Shape	Param #
dense_3 (Dense)	(None, 17)	306
dense_4 (Dense)	(None, 9)	162
dense_5 (Dense)	(None, 1)	10

Total params: 478

Trainable params: 478 Non-trainable params: 0

3. Навчаємо та оцінюємо

MLP Test accuracy: 0.806

Рис. 9: Навчання нової моделі

8 Висновок

За результатами роботи було отримано досвід використання основних методів та засобів аналізу та візуалізації даних у середовищі розробки IPython Notebook на реальних наборах даних і побудовано ефективну модель багатошарового персептрону, яка на підставі даних перепису прогнозує, чи перевищуватиме дохід особи \$50 тис. на рік. Ваги нейронної мережі були опубліковані на GitHub-репозиторії для публічного використання. [3]

Література

- [1] Anaconda Inc. Anaconda website.
- [2] Albert Sanchez Lafuente. Complete guide to data visualization with python. *Towards Data Science*, 2020.
- [3] Nazar Ponochevnyi. Trained-mlp-for-census-income-classification repository.
- [4] Machine Learning Repository. Census income data set.