

金属的实验

日期:	时间:	姓名:	
Date:	Time:	Name:	_

初露锋芒

学习目标

&

重难点

1. 掌握几个重要的金属有关的实验:

2. 金属冶炼、炼铁与炼钢、氢氧化亚铁的制备、铝热反应、从铝土矿中提取铝等

上述几个实验的原理、操作细节、各注意点等。

根深蒂固

一、金属的冶炼

金属冶炼的方法有很多,其实质使用还原的方法,使金属化合物中的金属离子得到电子变成金属原子。按照金属活动性顺序表进行以下分类:

(1) 电解法: 适用范围	
例:制备金属镁:	
制备金属铝:	
(2) 还原法: 适用范围	
(3) 热分解法: 适用范围	
(4)物理方法	
【答案】K—Al MgCl ₂ ^{通 电} 4Al+3O ₂ 个	Mg+Cl ₂ ↑ 2Al ₂ O ₃ ^{通 电}
Zn—Cu Hg—Ag	
【练一练】	
1. 热还原法冶炼金属的反应一定是(
A. 氧化还原反应 B. 置换反应 C.	分解反应 D. 复分解反应
【答案】A	
2. 下列反应原理不符合工业冶炼金属事实情况的]是()
A. 2HgO $\stackrel{\triangle}{}$ 2Hg+O $_2$ \uparrow	B. $4Al+3MnO_2$ \triangle $2Al_2O_3+3Mn$
C.2MgO ^{通 电} 2Mg+O₂↑	D. $4CO+Fe_3O_4$ \triangle $3Fe+4CO_2$
【答案】C	

二、炼铁与炼钢

- 1. 炼铁
 - (1) 原理:利用氧化还原反应,在高温条件下,用还原剂从铁矿石中将铁还原出来。
 - (2)设备:高炉
 - (3) 原料:铁矿石、焦炭、空气、石灰石
 - (4) 冶炼过程:
 - a. 还原剂(CO)生成

C+O₂→CO₂+热量

CO2+C→2CO -热量

b. 生铁的形成

 $Fe_2O_3+3CO \rightarrow 2Fe+3CO_2$

c. 造渣: 除去铁矿石里难熔的脉石(SiO₂):

 $CaCO_3 \rightarrow CaO + CO_2$ $CaO + SiO_2 \rightarrow CaSiO_3$

2. 炼钢

- (1) 原理: 利用氧化还原反应,在高温下,用氧化剂把生铁里过多的碳和其他杂质氧化成 气体或炉渣除去。
- (2) 设备: 转炉、电炉、平炉
- (3) 原料: 生铁、氧气、生石灰(造渣)、脱氧剂(硅铁、锰铁或铝)
- (4) 冶炼过程:
 - a. 杂质的氧化

2Fe+O₂→2FeO+热量

2FeO+Si→2Fe+SiO₂

FeO+C→Fe+CO↑

FeO+Mn→Fe+MnO

- b. 除硫、磷(造渣)
- c. 脱氧
- (5) 炼钢目的: 降碳、调硅锰、除硫磷

三、氢氧化亚铁的制备

(1) 实验原理:,	
(2) 要制得白色的 Fe(OH)2沉淀,要注意以下几点:	
①硫酸亚铁溶液中不能含有 Fe ³⁺ , 因此, 硫酸亚铁溶液应是	o
②实验用的氢氧化钠溶液,溶解亚铁盐的蒸馏水应煮沸,原因	· · · · · · · · · · · · · · · · · · ·
③为了防止硫酸亚铁中的 Fe ²⁺ 被空气中的氧气氧化,可以在溶液中加	『入少量的。
④实验时,用长胶头滴管吸取氢氧化钠溶液后,把滴管插入硫酸亚铁	溶液的,再
圣轻挤胶头滴管的胶头,逐滴加入氢氧化钠溶液,这时就会析出 Fe(OH)。	白色絮状沉淀。

【答案】 $Fe^{2+}+2OH^-\rightarrow Fe(OH)_2$ 排除水中溶解的空气,防止亚铁离子被氧化

苯或汽油

液面以下

成长为梦相中的白己 【练一练】Fe(OH)2为白色絮状物,易被空气中 O2氧化。在设计制取 Fe(OH)2时,要注意防止它氧 化。请你根据所提供的实验用品,设计制取较纯净的 Fe(OH)2 的方法。实验用品除图中所示外,还 有玻璃棒、药匙、普通漏斗及滤纸、滴管、试管、酒精灯、石棉网(其他固定用品略)、小铁棒、石 墨棒、久置绿矾、NaOH 溶液、久置蒸馏水、苯、CCl4、无水乙醇等。 方法一:隔绝空气的复分解反应法(完成填空)。 (1) 将 NaOH 溶液煮沸并冷却后待用。 (2) 配置较为纯净的 FeSO4溶液的方法为 (3)制较纯的 Fe(OH)2 沉淀的方法: 取适量 FeSO4 溶液,加入少量_____,保证起油膜作用。 再将吸有 NaOH 的胶头滴管悬垂于试管上方,逐滴加入 NaOH 溶液,即可观察到有白色的 Fe(OH)2 沉淀生成。 方法二:还原性气氛中复分解反应法。 如图一,为 Fe(OH)2制备实验的改进装置。请回答: (1) 如下操作能较长时间观察到白色絮状沉淀。 装入药品后, 先打开铁夹, 反应生成的 (填化学式) 经导管入 B 管,将 B 中的空气从侧管导出,反应变较缓时, (填操作方法),产生的气体将含 Fe^{2+} 的溶液由 A 压入 B 的 NaOH 溶液中,产生白色的 Fe(OH)₂沉淀。 (2) 为何能在较长时间内观察到 Fe(OH)。白色沉淀? 方法三:隔绝空气电解法。 应用如图二所示的电解实验可制得白色纯净的 Fe(OH)2沉淀。 (1) a 电极上的电极反应式为_____ (2) 电解液 c 可以是(B. NaOH 溶液 C. 无水乙醇 D. 稀 H₂SO₄溶液 A. 蒸馏水 (3) 根据(1)与(2)写出电解的化学方程式: (4)液体 d 的作用为 (5) 当电解一段时间看到白色沉淀后,再反接电源(b 棒为石墨棒),除了电极上看到气泡外, 混合物中另一明显变化为 【答案】方法一:(2)取适量绿矾于小烧杯中,加入煮沸后的水和少量稀 H₂SO₄,并加入 Fe 粉, 完全搅拌,过滤后将滤液移入细口试剂瓶。(3)苯 方法二: (1) H₂、夹住铁夹 (2) 因为 Fe(OH)2是在 H2的还原气氛中产生的。

- (4)隔绝空气,防止 Fe(OH)2被氧化
 - (5) 白色沉淀变为灰绿色,最终变为红褐色沉淀

方法三: (1) Fe-2e⁻→Fe²⁺ (2) B (3) Fe+2H₂O ^{逋 电} Fe(OH)₂↓+H₂↑

四、铝热反应

1.	基础知识

1 . 基础知识	纸漏斗 / 镁条
(1) 铝粉和氧化铁在高温条件下反应方程式:	氣酸钾
	铝粉和氧化铁的均匀混
(2) 现象:	合物
	盛有细沙的蒸发皿
2. 注意点	
(1) 铝粉和氧化铁的混合物叫做。	
(2)还有一些金属氧化物和氧化铁相似也能发生铝热反应,	这些氧化物有

(3) 工业上常利用铝热反应冶炼某些

化铁粉末

(4) 铝热反应中氯酸钾、镁条的作用是什么?

镁条剧烈燃烧,放出一定的热量,使氧 【答案】2Al+Fe₂O₃ Al_2O_3+2Fe

与铝粉在较高温度下发生剧烈的反应。 反应放出大量的热,并发出耀眼的光芒。我们还可以 看到,纸漏斗的下部被烧穿,有熔融物落 如沙中。(待熔融物冷却后,除去外层熔渣,仔细 观察,可以发现落下的是铁珠。)

铝热剂 V₂O₅、Cr₂O₃、MnO₂

难溶的金属

铝热反应的装置中铝热剂在最下面,上面铺层氯酸钾,中间插根镁条,反应时先点燃镁条, 镁条燃烧放出的热量使氯酸钾分解产生氧气,氧气的产生又促进了镁条的燃烧放出大量的热, 因为铝热反应的条件是高温,这样反应得以进行。

【练一练】某教科书对"铝热反应"实验的现象有这样的描述: "反应放出大量的热,并发出耀眼 的光芒","纸漏斗的下部被烧穿,有熔融物落入沙中"。已知: Al、Fe 的熔点、沸点数据如下:

物质	Al	Fe
熔点(℃)	660	1535
沸点(℃)	2467	2750

(1) 某同学猜测,	铝热反应所得到的熔融物	物是铁铝合金。	理由是:	该反应放热能使	铁熔化,	而
铝的熔点比铁低,	所以铁和铝能形成合金。	你认为他的解	释是否合	理?	_ (填"合	理"
或"不合理")。						

(2) 根据已有知识找出一种验证产物中有 Fe 的最简. 单. 方法.

(3) 设计一个简单的实验方案,证明上述所得的熔融物中含有金属铝。请填写下列表格:

所用试剂	
实验操作及现象	
有关反应的化学方程式	

【答案】(1) 合理 (2) 用磁铁吸引, 若能吸附, 说明有铁生成(2分, 只回答用磁铁

吸引,给1分:其它答案若合理且完全正确给1分)

(3) NaOH 溶液、取少量样品放入试管,加入 NaOH 溶液,若有气泡产生,说明该熔融物 中有铝。

五、从铝土矿中提取铝

铝是地壳中含量最多的金属元素,在自然界主要以化合态形式存在于氧化铝中。铝土矿的主要 成分是 Al₂O₃, 此外还含有少量 SiO₂、Fe₂O₃等杂质, 冶炼金属铝很重要的一个过程是 Al₂O₃的提纯。 由于 Al₂O₃ 是两性氧化物,而杂质 SiO₂ 是酸性氧化物,Fe₂O₃ 是碱性氧化物,因而可设计出两种提纯 氧化铝的方案。

方案一:碱溶法

讨论回答下列问题:

(1)写出①、③两步骤中可能发生反应的离子方程式。

(2)步骤③中不用盐酸(或 H ₂ SO ₄)酸化的理由是	
(3)步骤④中得到较纯的 Al ₂ O ₃ ,可能含有	
	° 2OH ⁻ →SiO² 3 +H ₂ O
③AIO _	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

(2) 因为①AIO

(3) SiO₂

由于 SiO₂ 的熔点很高,在加热到 1000 ℃左右时不会熔化,因而不影响电解产物

的纯度

方案二:酸溶法

讨论回答下列问题:

(1)写出①、②中可能发生反应的离子方程式。

(2)步骤②中不用氨水沉淀 Fe³⁺的原因:

【答案】(1) ① $Al_2O_3+6H^+\rightarrow 2Al^{3+}+3H_2O$, $Fe_2O_3+6H^+\rightarrow 2Fe^{3+}+3H_2O$

 $2AI^{3+}+4OH^{-}$ → AIO_2+2H_2O , Fe³

++3OH-→Fe(OH)₃ ↓

(2) Al(OH)₃ 只能溶于强碱,不能溶于氨水,不能将 Fe(OH)₃ 和 Al(OH)₃ 分离

枝繁叶茂

知识点 1: 从铝土矿中提取铝

【例 1】铝是一种重要的金属,在生产、生活中具有许多重要的用途,下图是从铝土矿中制备铝的工艺流程:

己知:

- (1)铝土矿的主要成分是 Al₂O₃, 此外还含有少量 SiO₂、Fe₂O₃等杂质;
- (2)溶液中的硅酸钠与偏铝酸钠反应,能生成硅铝酸盐沉淀,化学反应方程式为:

 $2Na_2SiO_3 + 2NaAIO_2 + 2H_2O \rightarrow Na_2AI_2Si_2O_8 \downarrow + 4NaOH$

回答下列问题:

(1)写出向铝土矿中加入足量氢氧化钠溶液后,该步操作中发生反应的离子方程式:

(2)滤渣 A 的主要成分为______;滤渣 A 的用途是_____(只写一种);实验室过滤时使用玻璃棒,其作用是。

(3)在工	艺流程第	5三步中,选用二	二氧化碳作酸化剂	列的原因是			
 (4)若将	铝溶解,	下列试剂中最好	 子选用	(填编号).			
Α.	浓硫酸		B. 稀硫	酸		C. 稀硝酸	
理由是							
【难度] ***						
【答案] (1)Al ₂ C	0 ₃ +2OH ⁻ →2AIO	_	-→SiO3³	_+H ₂ O		
	(2)Fe ₂ O ₃ \	Na ₂ Al ₂ Si ₂ O ₈	炼铁的原料(或	女生产硅酸盐产	出的原料)	引流	
	(3)经过足	上量氢氧化钠溶液	変的溶解,大部分	分铝元素均以	NaAlO ₂ 的刑	ジ式存在于滤液	[中,通
	入过量二	氧化碳可以将	NaAlO₂完全转化	为 Al(OH)₃			
	(4)B	铝与沟	农硫酸在常温下流	发生钝化,加 剂	热溶解会产生	有毒气体 SC)2, 原料利用率
	低;稀硝	i酸能溶解铝但会	会产生 NO 气体	5,污染空气,	硝酸利用率	低;而铝与稀码	流酸反应
	速率较快	,产生的 H₂对	空气无污染				
一些不溶性 (1)试剂 (2)加入	杂质) A 是 . NaOH >	铝 NaOH A Na OH A Na O	対波 渡遊 b 渡遊 b	过量 <u>越港 c 过</u> 域剂 B 过滤 <u>溶液 c</u>	遊、 類化铝 、 、 、 、 、 、 、 、 、 、 、 、 、		
是	a 1 7 700				。 。	A12O3, 1	么万 未 的 叭 氚
II.电解	解融的氧	氢化铝可制备金厂	属铝				
(3)写出	电解的化	2学方程式		_。每生产 0.2	27 吨铝,理记	仑上转移电子的]物质的
量为		mol。					
【难度] ***	.					
【答案	】 I .(1)盐	盐酸(硫酸或硝酸	Al ³⁺ +:	ЗNH₃∙ӇО→AI(О)3 ↑ +3NH	+ 4	
(2)Al ₂ O	₃+20H ⁻ -	→2AlO ⁻		-→SiO ² - 3 +H	I ₂ O	·	
Al₂O₃ ‡	含有 SiC) 2杂质					
II .(3)2	Al ₂ O ₃ (熔晶	蚀)电解,4AI+3	O₂ ↑ 3×	104			
【解析	】铝土矿	与碱液反应时,	氧化铝、二氧化	比硅溶解,而 氧	氧化铁是滤渣	a 的主要成分	分;滤液
里加入	过量强酸	。(盐酸或硫酸)	,硅酸沉淀不溶,	滤出为滤渣 b	,溶液 b 的主	要成分为 Al³+	溶液。

向滤液 b 中加入过量的氨水, 析出氢氧化铝(滤渣 c), 将滤渣 c 加热脱水可得氧化铝。

(2)向溶液 a 中通入过量的 CO₂,形成的滤渣中将有两种物质:硅酸及氢氧化铝,加热后得到的 Al₂O₃中 含有 SiO2杂质。

(3)2Al₂O₃(熔融)电解, 4Al+3O₂↑中有 12 个电子转移。

变式 2: 工业上用铝土矿(主要成分为氧化铝,含少量氧化铁)制取铝的过程如图所示:

请回答:

- (2) 沉淀 B 的化学式为 , 该物质除了用于金属冶炼以外, 还可用作
- (3) 电解 F, 当转移 6mol 电子时, 可制得铝
- (4) 生产过程中,除物质 E 可以循环使用外,还可以循环使用的物质有_____(填化学 式).
- (5) ②中发生反应的离子方程式为_

【难度】★★

- 【答案】(1) NaOH; ④; (2) Fe₂O₃; 颜料等; (3) 54;

(4)CaO 和 CO₂;

(5) $CO_2+AIO_2^-+2H_2O\rightarrow AI$ (OH) $_3\downarrow +HCO_3^-$;

知识点 2: 综合实验

【例 1】某课外活动小组拟用下列装置做炼铁原理的实验,同时检测氧化铁的纯度(假设矿石不含其它与之 反应的成分),并除去尾气,CO 用 $H_2C_2O_4 \rightarrow CO_2 \uparrow + CO \uparrow + H_2O$ 来制取,与 Fe_2O_3 反应的 CO 需纯净、干燥。

(1) 若所制的气体的流向为从左向右时,下列仪器组装连接的顺序是(用 a、b表示
(2) 装置乙的作用是
(3)实验结束后,先熄灭戊处的酒精灯,再熄灭甲处的酒精灯,其主要原因是
(4) 实验前氧化铁矿粉末的质量为 xg, 实验后测的乙和丙的质量分数增加了 yg 和 zg, 则氧
化铁矿粉末中氧化铁的质量分数为。
【难度】★★★
【答案】(1) adefghib (2) 吸收 CO ₂ , 使尾气 CO 点燃燃烧; 除去混在 CO 中的 CO ₂
(3) 防止还原产生的 Fe 受热时被氧化 (4) 40y/33x
→ ★

变式 1: 在一定条件下用普通铁粉和水蒸气反应,可以得到铁的氧化物。该氧化物又可以经过此反应的你反应,生成颗粒状很细的铁粉。这种铁粉具有很高的反应活性,在空气中受热撞击或受热时会燃烧,所以俗称"引火铁"。请分别用下图中示意的两套装置,制取上述铁的氧化物和"引火铁"。实验中必须使用普通铁粉、6mol/L 盐酸,其他试剂自选(装置中必要的铁架台、铁夹、铁圈、石棉网、加热设备等在图中均已略去)。

填写下列空白:

(1) 实验进行时试管 A 中应加入的试剂是; 烧杯 B 的作用是;
烧瓶 C 的作用是; 在试管 D 中收集到的是。
(2)实验时,U 形管 G 中应加入的试剂是; 长颈漏斗 H 中应加入。
(3)两套装置中,要实验时需要加热的仪器是(填该仪器对应的字母)。
(4) 烧瓶 I 中发生的反应有时要加入少量硫酸铜溶液,其目的是
•
(5) 试管 E 中发生反应的化学方程式是。
(6) 为了安全, 在 E 管中的反应发生前, 在 F 出口处必须。E 管中的
反应开始后,在 F 出口处应。
【难度】★★★
【答案】(1)还原铁粉;提供水蒸气;安全瓶(防止水槽中的水倒吸到 A 中);氢气
(2) 碱石灰; 6mol/L 盐酸(3) A、B、E(4) 构成原电池。加快产生氢气的速率
(5)4H₂+ Fe₃O₄ 3Fe + 4H₂O (6)检验 H₂的纯度;点燃

(4) 16g

变式 2: 实验室用如图所示的装置测定 FeO 和 Fe_2O_3 固体混合物中的 Fe_2O_3 的质量,D 装置的硬质玻璃管中的固体是 FeO 和 Fe_2O_3 的混合物。

(1)检查装置的气密性后,为了实验的安全,在点燃 D 处的酒精灯之前,必须检验整套装置	
中的气体的纯度,其检验方法是:	
°	
(2) 装置 A 中的盐酸能否改为硝酸, 原因是,	0
(3) 装置 B 的作用是, 装置 C 中所盛装的液体是	_°
(4) 若 FeO 和 Fe_2O_3 固体混合物的质量为 23.2g,反应完全后 U 形管的质量增加了 7.2g,则	則混
合物中 Fe ₂ O ₃ 的质量为g。	
(5)U 形管 E 右边又连接干燥管 F 的目的是, 若无干燥	喿
管 F,测得 Fe ₂ O ₃ 的质量可能(填"偏大"、"偏小"或"无影响"。	
【难度】★★★	
【答案】①)从干燥管末端管口用向下排空气法或排水法收集气体一小试管,用拇指堵住管口,	
使管口向下移向酒精灯火焰,松开拇指,未听到尖锐的爆鸣声,说明整套装置中气体已纯净。	
(2) 不能,因为锌和硝酸反应不生成氢气。	
(3)除去氢气中混有的氯化氢气体;浓硫酸	

(5) 防止空气中的水蒸气等气体进入 E 中; 偏大

瓜熟蒂落

1.	我国古代的湿法冶金术是世界闻名的,我国在世界上最先应用湿法冶金的金属是()									
	A. Fe	В.	Cu	C.	Ag		D.	Hg		
	【难度】★									
	【答案】B									
2.	西汉刘安晋记载:"曾	青得	铁则化为铜",已知]"曾	青"指硫酸铜溶	液,	那么	、"曾青得	铁则化	么为铜"
	中的"铜"是指()								
	A. 铜元素	В.	铜单质	C.	氧化铜		D.	铜原子		
	【难度】★									
	【答案】B									
3.	能用热分解法制得的	金属	是()							
	A. Fe	В.	Ag	C.	Mg	D.	Na			
	【难度】★									
	【答案】B									
4.					8					
	A. 在高温条件下,	∏ H ₂	还原 MgO 制备单质	Mg						
	B. 在通电条件下, F									
	C. 在通电条件下, F									
	D. 加强热, 使 <u>CuO</u>	在高	温条件下分解制备单	单质	Cu					
	【难度】★									
	【答案】B									
	【解析】Mg 的活泼性	强,	不能用 H ₂ 还原法制	备]	Mg,而是用电角	犀熔鬲	d M	IgCl2的方	法制省	A, 电
	解饱和食盐水得到Nac	OH I	不是 Na; <u>CuO</u> 强热	h 分	解生成 Cu ₂ O 而	不是	Cu			
5.	工业上由含钒、铬和铅	品的矿	物冶炼难熔的金属	钒、	铬和锰,通常3	采用的	的方	法是()	
	A. 炭还原法		B. 衔	日热	还原法					
	C. 直接加热法		D.盐	的水	溶液与活泼金属	属置挂	奂法			
	【难度】★									
	【答案】B									

6	工业上制タ下列全届	采用的化学反应原理正确的是	()
υ.	工工工川田 17月 11月 1	不用的化子及应原生工棚的足	-	,

- A. 镁: 2MgO (熔融) <u>通直流电</u> Mg+O₂↑
- B. 钙: CaO+C 高温 Ca+CO↑
- C. 锰: 3MnO₂+4Al = 3Mn+2Al₂O₃
- D. 汞: HgS加热Hg+S

【难度】★

【答案】C

- 8. 下列有关铁、铝的冶炼的说法中,正确的是 (
 - A. 冶金工业中, 金属铁的冶炼主要采用电解法
 - B. 炼铁过程中铁的氧化物被焦炭还原生成单质铁, 电解冶炼铝的过程中, 阳极生成铝单质, 阴极生成氧气
 - C. 炼铁的主要原料是铁矿石、焦炭、生石灰和空气, 电解冶炼铝的原料是氧化铝和冰晶石
 - D. 铁、铝冶炼设备分别是炼铁高炉和铝电解槽

【难度】★★

【答案】D

- 9. 下列操作可得到纯净 Al₂O₃的是 ()
 - A. 向 NaAlO₂溶液中加入适量稀 H₂SO₄蒸干并灼烧
 - B. 向 NaAlO₂溶液中通入过量 CO₂后蒸干并灼烧
 - C. 向 AlCl₃溶液中加入过量氨水后蒸干并灼烧
 - D. 向 AlCl₃溶液中加入适量 NaAlO₂溶液,蒸干并灼烧

【难度】★★

【答案】C

- 10. 用铝热法冶炼难熔的金属,其优越性有下列的 ()
 - A. 铝有很强的还原性, 在高温下可将难熔的金属从其氧化物中还原出来
 - B. 氧化铝熔点很低,容易与难熔金属分离
 - C. 氧化铝熔点高,可与难熔金属一起熔化
 - D. 反应放出大量的热, 使还原出来的金属融化, 便于分离

【难度】★

【答案】D

- 11. 用铝热法从下列氧化物中还原出物质的量相同的金属,耗铝最少的是()
 - A. Cr₂O₃
- B. MnO
- C. V2O5
- D. WO₃

【难度】★★

【答案】D

12. 下列各图示中能较长时间看到 Fe(OH)2白色沉淀的是 (填序号)。

【难度】★★

【答案】①②③⑤

【解析】因为 $Fe(OH)_2$ 在空气中很容易被氧化为红褐色的 $Fe(OH)_3$,即发生 $4Fe(OH)_2+O_2+2H_2O$ $\rightarrow 4Fe(OH)_3$ 。因此要较长时间看到 $Fe(OH)_2$ 白色沉淀,就要排除装置中的氧气或空气。①、②原理一样,都是先用氢气将装置中的空气排尽,并使生成的 $Fe(OH)_2$ 处在氢气的保护中;③的原

理为铁作阳极产生 Fe^{2+} ,与电解水产生的 OH^- 结合生成 $Fe(OH)_2$,且液面用汽油保护,能防止空气进入;⑤中液面加苯阻止了空气进入;④由于带入空气中的氧气,能迅速将 $Fe(OH)_2$ 氧化,因而不能较长时间看到白色沉淀。

13. 工业上以铝土矿(主要成分是 Al₂O₃,含杂质 Fe₂O₃和 SiO₂)为原料生产铝,其生产流程如下:

下列叙述错误的是 ()

- A. 沉淀 A 主要是 SiO₂
- B. 步骤②的目的是分离 Fe3+和 Al3+
- C. 溶液 E 溶质主要有碳酸钠和硫酸钠
- D. ⑤主要是把电能转化为化学能

【难度】★★

【答案】C

14. 工业上用铝土矿(主要成分为 Al₂O₃, 含 Fe₂O₃杂质)为原料冶炼铝的工艺流程如下:

下列叙述正确的是()

- A. 试剂 X 可以是氢氧化钠溶液,也可以是盐酸
- B. 反应①过滤后所得沉淀为氢氧化铁
- C. 图中所示转化反应都不是氧化还原反应
- D. 反应②的化学方程式为 NaAlO₂+CO₂+2H₂O→Al(OH)₃ ↓ +NaHCO₃

【难度】★★

【答案】D

【解析】试剂 X 只能是氢氧化钠溶液,不能是盐酸;反应①过滤后所得沉淀为 Fe_2O_3 ; 电解氧化铝制铝的反应是氧化还原反应。

- 15. 常见金属的冶炼方法
 - (1) 热分解法:适用于冶炼金属活动性较差的金属(金属活动顺序表中_____及其以后的金属),如:_____
 - (2) 电解法:适合冶炼活动性很强的金属(一般在金属活动性顺序表中排在_____及其以前的金属).如:_____;_____;
- (3) 热还原法: 用还原剂(C、CO、H₂、Al等)还原金属氧化物,适用于金属活动性顺序表中的_____与____之间的大多数金属的冶炼.如: _____; ____;

铝热反应实验现象及化学方程式:

现象		14	水格。水珠		1/2	里有火红熔融物	71
Section of the sectio			KAL, JOHN		, 123	主日八江州城市	_
铝与氧化铁反应	的化子						
方程式							
实验说明:		Section 1980 to the section of the s	- 2566	V		50 1007-1500-1500-1500 E-1000	
a. Al与Fe ₂ O ₃ 能	发生铝热反应	立,与其它	它较不活泼	金属氧化	物也能发生	生铝热反应.	
b. 铝热反应的最	大特点是放出	出大量的热	、 在生产	上利用这·	一特点,可	可用于焊接钢轨	,冶金工
上也常用这一原理	里,使铝与金	属氧化物	反应, 冶灯	东钒、铬、	锰等.如]:	
Al+N	$MnO_2 \rightarrow \underline{\hspace{1cm}}$						
【难度】★★							
【答案】							
(1) Hg; Ag; (2) Al; K	; Ca; Na	a; (3) Zn	; Cu; Zı	n; Fe; Sn	; Pb; Cu; 铝	热剂; 流
落; 2Al F 3Mn+2A	Fe O ■ ■	2Fe	AlO;	4; 3;			
5. 铝热反应的化学	2 3	2 11 + F22O2	- 16	A1 ₂ O ₂	十2Fe 基	其同学对"铝热反	应"的现象
. 由然及应的化子/	7年1八月: 2月			111203	12100 /	门门于/门 旧 /// /	./ HJ-7L3
			这样				
的描述: "反应放出	大量的热,			"纸漏斗的]下部被烧	穿,有熔融物落	入沙中"。
的描述: "反应放出 查阅《化学手册》;		并发出耀眼	艮的光芒"、			穿,有熔融物落	5入沙中"。
		并发出耀眼	艮的光芒"、			穿,有熔融物落	下入沙中"。
	知,Al、Al ₂ 0	并发出耀眼 O ₃ 、Fe、F	限的光芒"、 Fe ₂ O ₃ 的熔,	点、沸点药	数据如下:	穿,有熔融物落	5入沙中"。
	知,Al、Al ₂ 0 物质	并发出耀眼 O ₃ 、Fe、F	良的光芒"、 Fe ₂ O ₃ 的熔, Al ₂ O ₃	点、沸点数 Fe	数据如下: Fe ₂ O ₃	穿,有熔融物落	5入沙中"。
查阅《化学手册》	知,Al、Al ₂ 0 物质 熔点/℃ 沸点/℃	并发出耀眼 O ₃ 、Fe、F Al 660 2 467	R的光芒"、 Fe ₂ O ₃ 的熔, Al ₂ O ₃ 2 054 2 980	点、沸点数 Fe 1 535 2 750	数据如下: Fe ₂ O ₃ 1 462		
	知,Al、Al ₂ 0 物质 熔点/℃ 沸点/℃	并发出耀眼 O ₃ 、Fe、F Al 660 2 467	R的光芒"、 Fe ₂ O ₃ 的熔, Al ₂ O ₃ 2 054 2 980	点、沸点数 Fe 1 535 2 750	数据如下: Fe ₂ O ₃ 1 462		
查阅《化学手册》	知,Al、Al ₂ 0 物质 熔点/℃ 沸点/℃	并发出耀眼 O ₃ 、Fe、F Al 660 2 467	R的光芒"、 Fe ₂ O ₃ 的熔, Al ₂ O ₃ 2 054 2 980	点、沸点数 Fe 1 535 2 750	数据如下: Fe ₂ O ₃ 1 462		
查阅《化学手册》:	知,Al、Al ₂ 6 物质 熔点/℃ 沸点/℃ 沸点/℃	并发出耀眼 O ₃ 、Fe、F Al 660 2 467 到的熔融	R的光芒"、 Fe ₂ O ₃ 的熔, Al ₂ O ₃ 2 054 2 980 由物应是铁	点、沸点数 Fe 1 535 2 750 铝合金。	数据如下: Fe ₂ O ₃ 1 462 这种推测	_ _ _]有一定的道理 。	,理由是
查阅《化学手册》	知,Al、Al ₂ 6 物质 熔点/℃ 沸点/℃ 沸点/℃	并发出耀眼 O ₃ 、Fe、F Al 660 2 467 到的熔融	R的光芒"、 Fe ₂ O ₃ 的熔, Al ₂ O ₃ 2 054 2 980 由物应是铁	点、沸点数 Fe 1 535 2 750 铝合金。	数据如下: Fe ₂ O ₃ 1 462 这种推测	_ _ _]有一定的道理 。	,理由是
查阅《化学手册》。 (1)该同学推测,银	知,Al、Al ₂ d 物质 熔点/℃ 沸点/℃ 沸点/℃ B热反应所得	并发出耀眼 O ₃ 、Fe、F Al 660 2 467 到的熔融 证明上述	R的光芒"、 Fe ₂ O ₃ 的熔, Al ₂ O ₃ 2 054 2 980 由物应是铁	点、沸点数 Fe 1 535 2 750 铝合金。	数据如下: Fe ₂ O ₃ 1 462 这种推测 中含有金属] 有一定的道理 。 属铝。该实验所,	,理由是
查阅《化学手册》。 (1)该同学推测,银 (2)设计一个简单的 当观察到	知,Al、Al ₂ d 物质 熔点/℃ 沸点/℃ 沸点/℃ 引热反应所得	并发出耀眼 O ₃ 、Fe、F Al 660 2 467 到的熔融 证明上述	R的光芒"、 Fe ₂ O ₃ 的熔, Al ₂ O ₃ 2 054 2 980 由物应是铁	点、沸点数 Fe 1 535 2 750 铝合金。	数据如下: Fe ₂ O ₃ 1 462 这种推测 中含有金属]有一定的道理 。 属铝。该实验所, 物中含有金属铅	,理由是
查阅《化学手册》: (1)该同学推测,银 (2)设计一个简单的 当观察到 (3)实验室溶解该熔	知,Al、Al ₂ d 物质 熔点/℃ 沸点/℃ 沸点/℃ 引热反应所得	并发出耀眼 O3、Fe、F A1 660 2 467 到的熔融 证明上述 佐用下列に	R的光芒"、 Fe ₂ O ₃ 的熔, Al ₂ O ₃ 2 054 2 980 中物应是铁 所得的块料 的 式剂中的	点、沸点数 Fe 1 535 2 750 铝合金。	数据如下: Fe ₂ O ₃ 1 462 这种推测 中含有金属]有一定的道理 。 属铝。该实验所, 物中含有金属铅	,理由是
查阅《化学手册》。 (1)该同学推测,银 (2)设计一个简单的 当观察到	知,Al、Al ₂ d 物质 熔点/℃ 沸点/℃ 沸点/℃ 引热反应所得	并发出耀眼 O3、Fe、F A1 660 2 467 到的熔融 证明上述 选用下列证 B.	R的光芒"、 Fe ₂ O ₃ 的熔, Al ₂ O ₃ 2 054 2 980 由物应是铁	点、沸点数 Fe 1 535 2 750 铝合金。 犬熔融物中 现象时,	数据如下: Fe ₂ O ₃ 1 462 这种推测 中含有金属]有一定的道理 。 属铝。该实验所, 物中含有金属铅	,理由是

- (1)用硫酸亚铁晶体配制上述 FeSO4溶液时还需要加入。
- (2)除去蒸馏水中溶解的 O2常采用_____的方法。
- (3)生成 Fe(OH)₂白色沉淀的操作是用长滴管吸取不含 O₂的 NaOH 溶液,插入FeSO₄溶液液面下,再挤出 NaOH 溶液,这样操作的理由是

【难度】★★

【答案】(1)稀 H₂SO₄、铁屑 (2)煮沸 (3)避免生成的 Fe(OH)₂沉淀接触 O₂而被氧化

【解析】 Fe^{2-} 易水解,要加入稀 H_2SO_4 防止其水解; Fe^{2-} 易被空气中的 O_2 氧化,要加铁粉,将被氧化生成的 Fe^{3+} 还原成 Fe^{2+} 。气体的溶解度是随温度升高而降低的,所以煮沸后的蒸馏水中溶解的 O_2 减少。

优点:装置简单。

缺点: 难以控制 FeSO₄、NaOH 中不含氧气。即使加热煮沸 FeSO₄、NaOH 溶液,在冷却和 实验过程中还会有少量氧气溶解。

18. 铁与水蒸气反应,通常有以下两种装置,请思考以下问题:

(1)方法一中,装	置 A 的作用			•
方法二中,	装湿棉花的作用			0
(2)实验完毕后,	取出装置一的少量固体,	溶于足量稀盐酸,	再滴加 KSCN 溶液,	溶液颜色无明
显变化, 试解释	原因:		o	

【难度】★★

【答案】(1)提供水蒸气 提供水蒸气 (2)在溶液中 Fe³-被未反应的铁粉完全还原为 Fe²

【答案】(1)该反应温度下铝己熔化,未反应的铝可与生成的铁熔合在一起,形成合金

(2)NaOH 溶液 有气泡生成 (3)B

【解析】(1)铝热反应放出大量的热,使生成的铁熔化,与未反应完的铝可以形成合金。

(2)铝与 NaOH 溶液反应,产生 H2。

(3)浓 H₂SO₄使铁、铝钝化,稀 HNO₃会产生 NO,污染环境,NaOH 溶液不能溶解铁。

19. 铝土矿的主要成分是 Al_2O_3 ,此处还含有少量 SiO_2 、 Fe_2O_3 等杂质,从铝土矿中提纯净 Al_2O_2 的 工艺流程如下:

讨论回答下列问题:

(1)写出①、②中可能发生反应的离子方程式:

1)		

②______。

(2)步骤②中不用氨水沉淀 Fe³-的原因: ______

【难度】★★

【答案】 (1) Al₂O₃+6H⁻→2Al³⁺+3H₂O Fe₂O₃+6H⁻→2Fe³⁺+3H₂O

(2) Al(OH)3能溶于强碱溶液但不溶于氨水,用氨水不能将 Fe(OH)3和 Al(OH)3分离。

20. 铝是一种应用广泛的金属,工业上用 Al₂O₃和冰晶石(Na₃AlF₆)混合熔融电解制得。 ①铝土矿的主要成分是 Al₂O₃和 SiO₂等。从铝土矿中提炼 Al₂O₃的流程如下:

②以萤石(CaF2)和纯碱为原料制备冰晶石的流程如下:

回答下列问题:

- (1) 写出反应 1 的化学方程式_____
- (2) 滤液 I 中加入 CaO 生成的沉淀是_____, 反应 2 的离子方程式为_____

