Can We Predict the Outcome of a Boxing Match?

Industry Problem

There are many boxing enthusiasts who place bets on their predictions for the outcome of a fight. There is a significant amount of money made and lost in this industry. This has led to the pursuit of ways to objectively improve predictions, maximize betting success rates, and guarantee financial gain.

The Question:

Can the outcome of a fight be predicted using

- Historical performance metrics
- Biometric measurements
- Win/loss records

Outline Of The Initial Plan To Solve The Problem

- Identify and isolate columns containing desired metrics that can be used to create the final prediction model
- Separate data into categories reflecting performance, biometrics, and win/loss records
- Calculate win percent and use visualizations and statistical exploration to identify metrics that demonstrate a strong correlation with win percent
- Using Statsmodels, formulate best fit statistical models that take a value or group of values, and predicts a fighter's probability to win
- Create an algorithm that compares 2 fighters and predicts the outcome of a future fight using the model from step 4

The Initial Data:

Source: https://www.kaggle.com/rajeevw/ufcdata#data.csv

• Records: Measurements taken from 5144 Fights between 1993 and 2019

Columns: 145

Noisy Data set with many missing values, incomplete records, redundancy

Data Cleaning and Restructuring

- Dropped columns with information not necessary for development of the final algorithm
- Restructured the data frame to achieve information for 1 fighter per row
- Dropped null values
- Dropped rows with extreme outlier values resulting from averages taken over less than 5 fights

Cleaned and Ready Data

- 1993 Records, 18 Data columns
- 6 Performance Metrics
- 4 Biometric Measurements
- 8 Win/Loss History Metrics

Biometric Measurements Height Weight Reach Age

Performance Metrics

Average Knock Downs Per Round

Average Head Strikes Per Round

Average Take Downs Per Round

Average Total Strikes Per Round

Average Significant Striker Per Round

Total Career Title Bouts

Win/Loss History

Current Lose Streak

Current Win Streak

Total CareerLosses

Total Career Wins

Career Wins by Knockout

Career Total Fights

Longest Winning Streak

Win Percent

Column Name	Description
Fighter	The full name of the fighter
current_lose_streak	The fighter's current number of subsequent losses
current_win_streak	The fighter's current number of subsequent wins
avg_head_landed	The fighter's average number of landed strikes to the opponent's head per round
avg_KD	The fighter's average number of knockdowns per round
avg_sig_str_landed	The fighter's average significant strikes landed on the opponent per round
avg_td_landed	The fighter's average takedowns of the opponent per round
avg_total_str_landed	The fighter's average total strikes landed per round
longest_winning_streak	The fighter's longest career losing streak
losses	The fighter's total career losses
total_title_bouts	The fighter's total career title bouts
win_by_ko/tko	The fighter's total career wins by knockout
wins	The fighter's total career wins
height_cms	The fighter's height in centimeters
reach_cms	The fighter's reach in centimeters
weight_lbs	The fighter's weight in lbs.
age	The fighter's current age
total_fights	The fighters total career wins + losses
win_percent	The fighters total career wins divided by their total career fights

Cleaned and Ready Data

Column Name	Object Type
Fighter	1993 non-null object
current_lose_streak	1993 non-null int64
current_win_streak	1993 non-null int64
avg_head_landed	1993 non-null float64
avg_KD	1993 non-null float64
avg_sig_str_landed	1993 non-null float64
avg_td_landed	1993 non-null float64
avg_total_str_landed	1993 non-null float64
longest_winning_streak	1993 non-null int64
losses	1993 non-null int64
total_title_bouts	1993 non-null int64
win_by_ko/tko	1993 non-null int64
wins	1993 non-null int64
stance	1993 non-null object
height_cms	1993 non-null float64
reach_cms	1993 non-null float64
weight_lbs	1993 non-null float64
age	1993 non-null float64
total_fights	1993 non-null int64
win_percent	1993 non-null float64

Visualization and Exploration

Initial Histograms:

- Insights into midpoint and spread
- Performance metrics demonstrated R tailed distribution
 - Biometric measurements demonstrated centered distributions with
 - Win/Loss records had weak central tendencies

Visualization and Exploration

Pear Plot

Visualization and Exploration

Scatter plots

Plotted each metric vs. win percent, findings were inconclusive

Statistical Investigation: Correlations

Correlation with Win Percent
-0.45444229961822463
0.5935028985617277
0.2259392985933221
0.2127045354102693
0.20255800847914524
0.23771622131399475
0.17737205092568312
0.6463959923883718
0.2612907181416824
0.286489944539576
0.06059615713029151
0.12333530695772818
0.05641010603308878
-0.0882501053360032
0.0354733049856339

Statistical Modeling

Outcomes of Ordinary Least Squares: Example Table

Dep. Variable	:	percent_wi	in R-squ	ared:		0.045
Model:		. OL	.S Adj.	R-squared:		0.045
Method:		Least Square	es F-sta	tistic:		94.35
Date:	1	Mon, 25 May 202	20 Prob	(F-statistic):		8.00e-22
Time:		05:17:3	30 Log-L	ikelihood:		-8199.3
No. Observati	.ons:	199	3 AIC:			1.640e+04
Df Residuals:		199	BIC:			1.641e+04
Df Model:			1			
Covariance Ty	pe:	nonrobus	st			
=========	:======::	=========				
		std err			_	0.975]
Intercept		0.513				63.317
knockdowns	13.3890	1.378	9.713	0.000	10.686	16.092
0	:======	20.20			=======	1 022
Omnibus:			99 Durbi			1.923
<pre>Prob(Omnibus) Skew:</pre>	:					30.733 2.12e-07
Kurtosis:			77 Prob(52 Cond.	•		2.12e-07 4.51
		5.23		NO.		4.51

Initial Model Results

- Used Python's Statsmodels package to create a best fit liner model for each metric using the ordinary least squares method.
- Unfortunately, the strongest models that could be created still resulted in large residual differences between the model predictions and the observed data, small R-squared values, and negative log-likelihoods
- While the models predicted "conceivably realistic" win percentages, the errors between the predicted and observed values were large.

Preliminary Conclusions

- The correlations between the individual observed metrics and win percentages of the fighters were not strong
- Consequently, confidence in the accuracy of the prediction models and usefulness of the data they produce is not strong
- Next, I will take a deeper look using different modeling techniques, but with skeptic confidence in the results

XGBoost Modeling

- The XGBoost library implements the gradient boosting decision tree algorithm
- Gradient boosting is an approach where new models are created that predict the residuals or errors of prior models and then added together to make the final prediction.
- The gradient descent algorithm is used to minimize the loss when adding new models.

Initial Model

- Train/test split: 80% training data, 20% testing data
- Objective: Squared Error Regression
- 5 Boosting Rounds
- Test statistic: Root Mean Squared Error (RMSE)

Initial Resulting RMSE: 14.39

Cross Validation with XGBoost

- Objective: Squared Error Regression
- 5 Boosting Rounds
- Max Tree Depth: 4
- 4 Folds
- Test statistic: Root Mean Squared Error (RMSE)

Cross Validation Results

train	n-rmse-mean train	-rmse-std test-	-rmse-mean test-	-rmse-std
0	47.658321	0.202559	47.670566	0.879297
1	33.977088	0.140476	34.017811	0.861315
2	24.488147	0.097235	24.533840	0.845789
3	17.973477	0.065945	18.128278	0.810195
4	13.589644	0.053903	13.809209	0.725545
4	13.809209			

L2 Regularization with Parameter Search

- Used Cross Validation Model with Same Parameters as before:
 - Objective: Squared Error Regression
 - 5 Boosting Rounds
 - Max Tree Depth: 4
 - 4 Folds
 - Test statistic: Root Mean Squared Error (RMSE)

• Lambda Values: 1, 10, 100

Results:

Lambda		rmse
0	1	13.809209
1	10	14.783514
2	100	17.681025

L1 Regularization with Parameter Search

- Used Cross Validation Model with Same Parameters as before:
 - Objective: Squared Error Regression
 - 5 Boosting Rounds
 - Max Tree Depth: 4
 - 4 Folds
 - Test statistic: Root Mean Squared Error (RMSE)

Alpha Values: 1, 10, 100

Results

Alpha		rmse
0	1	13.829654
1	10	13.930784
2	100	14.398740

Hyperparameter Tuning Using Randomized Search with 4 Fold Cross Validation

- Static Parameters
 - Objective: Squared error regression
 - 5 Boosting Rounds, 4 folds
 - Max Tree Depth: 4
- Parameters Searched
 - 'colsample_bytree': np.arange(0.3, 0.7, 0.2)
 - 'learning_rate': np.arange(0.05, 1, 0.05)
 - 'max_depth': np.arange(3, 10, 1)
 - 'n_estimators': np.arange(50, 200, 50)

Hyperparameter Tuning Results and Final Model

Best parameters found:

- Number estimators: 50
- Max tree depth: 4
- Learning rate: 0.45
- Sample size by tree: 0.3
- L2 regularization with lambda=1
- Number of boosting rounds: 50

Lowest RMSE: 6.65

One Final Attempt: OLS Regression using Performance Metrics

Dep. Variable:	win non	cent R	-squared:		0.184	
Model:	win_per		dj. R-squared:		0.182	
Method:	Laast Sou		-statistic:		89.63	
Date:			rob (F-statisti	c):	3.33e-85	
Time:	•		og-Likelihood:		-8042.8	
No. Observations:			IC:		1.610e+04	
Df Residuals:		1987 B	IC:		1.613e+04	
Df Model:		5				
Covariance Type:	nonro	bust				
		======		=======		:======
	coef	std er	r t	P> t	[0.025	0.975]
Intercept	48.6032	1.02	3 47 . 487	0.000	46.596	50.610
avg_head_landed	0.1949	0.07	9 2.473	0.013	0.040	0.350
avg_KD	18.7745	1.38	1 13.599	0.000	16.067	21.482
avg_sig_str_landed	0.1255	0.06	2.093	0.036	0.008	0.243
avg_td_landed	5.0141	0.35	9 13.958	0.000	4.310	5.719
avg_total_str_landed	-0.0601	0.02	5 -2.370	0.018	-0.110	-0.010
======================================	 37	.750 D	========= urbin-Watson:	=======	1.948	
Prob(Omnibus):	0	.000 J	arque-Bera (JB)	:	42.636	
Skew:	-0	.288 P	rob(JB):		5.52e-10	
Kurtosis:	3	.426 C	ond. No.		354.	

Many Values with Large Residual/Value Ratios

Inaccuracy of Predictions

Large Residual Values

Realistic Predicted Values

Final Conclusions

The correlations between the observed features and win percentages of the fighters were not strong. This needs to be considered in the confidence granted to the prediction models created, regardless of the strength of the techniques used. Bad data in will always create bad data out. The statistical analysis demonstrated a need for greater complexity of measurement to improve the ability to confidently predict the eventual winner of a fight with accuracy.

Future Recommendations

My recommendations would be to focus more on the effectiveness of a fighter's punch and the accuracy of their landing. Examples data collection techniques would include:

- Using sensor technology to measure impact forces of a fighter's punch landing
- Measurement of the fighter's accuracy in making impact at the primary body sites of greatest vulnerability
- Swing speed and avoidance reaction time

Future Recommendations

- Effectiveness measurements would better determine the win potential of a fighter rather than just general strike frequency or biometric attributes
- General frequency metrics could be considered poor predictors of potential to win a fight because that many ineffective punches will never deliver the same effective result as one strong, forceful, accurate, and impactful blow
- Effectiveness measurements would also eliminate the need to consider biometric data because, determination of effectiveness would always supersede biometric data in terms of importance in a predictive model. For example, and very small but effective fighter would make his size irrelevant.