CSC236 Week 1 - Introductory Lecture

Cristyn Howard

January 4, 2018

- predicate: statement about a set of variables
 - Ex] O(n): n is a natural number; $O: \mathbb{N} \to \text{Boolean}$
 - Ex D(a,b): a divides b; $D: \mathbb{N} \times \mathbb{N} \to \text{Boolean}$
 - predicates may have infinitely many variables
 - in this course, we will mostly be focused on unary predicates
- Simple Induction:
 - base case P(x); predicate is true for some natural number x
 - * often, x is 0, however some problems have a base case other than 0
 - induction $\forall k \in \mathbb{N}, P(k) \to P(k+1)$
 - If P is true for the first element in an ordered set, and we know that P being true for any arbitrary element means that it is true for the next element, then we can conclude that P is true for all elements in the ordered set.
 - Principle of Simple Induction (PSI): $[P(0) \land [\forall k \in \mathbb{N}, P(k) \rightarrow P(k+1)]] \rightarrow \forall n \in \mathbb{N}, P(n)$
- Writing proofs with simple induction:
 - 1. Define predicate.
 - 2. Prove base case.
 - 3. Set up and prove induction step.
 - 4. Reference PSI, state conclusions.
- Example of simple induction problem:

Let $\{a_0, a_1, ...\}$ be a sequence of natural numbers such that $a_0 = 1$, and $\forall n \geq 1$, $a_n = 2a_{n-1} + 1$. Prove that $\forall n \in \mathbb{N}$, $a_n = 2^{n+1} - 1$.

<u>Define predicate:</u> Let $P(n): a_n = 2^{n+1} - 1$. Must show that $\forall n \in \mathbb{N}, P(n)$. <u>Base case:</u> $n = 0, P(0): 2^{0+1} - 1 = 2^1 - 1 = 2 - 1 = 1 = a_0$, therefore P(0) is true.

<u>Base case:</u> $n = 0, P(0): 2^{s+1} - 1 = 2^s - 1 = 1 = a_0$, therefore P(0) is true.

<u>Induction step:</u> Assume P(k) is true for some arbitrary $k \in \mathbb{N}$, so we have $a_k = 2^{k+1} - 1$.

From definition $a_n = 2a_{n-1} + 1$, we get $a_{k+1} = 2a_k + 1 = 2(2^{k+1} - 1) + 1 = 2^{k+2} - 2 + 1 = 2^{k+2} - 1$, and thus $P(k+1) : a_{k+1} = 2^{k+2} - 1$ is true. Thus assuming P(k) gives us P(k+1), so $P(k) \to P(k+1)$.

Reference PSI, state conclusions: We have $P(0) \wedge [\forall k \in \mathbb{N}, P(k) \to P(k+1)]$, so via PSI we can conclude that $\forall n \in \mathbb{N}, P(n)$.