

Instructor: Zhenyu (Henry) Huang (509) 438-7235, h_zyu@yahoo.com

EE 521: Analysis of Power Systems

Lecture 17 Transient Stability II

Fall 2009

Mondays & Wednesdays 5:45-7:00

August 24 – December 18

Test 216

Topics

- Numerical Solution to Swing Equations
- Multi-Machine Systems
- Ways to improve transient stability
- Course Project

Limitation of Equal Area Criterion

- No need to know the trajectory of the system.
- It is effective for the single-machine-infinite-bus system or two-machine systems.
 - Multi-machine systems can be equivalent to a twomachine systems based on coherence groups.
- It can not be directly applied to multi-machine systems.
- It is not as effective when machines are not modeled as swing equations.
 - Exciters, governors, Power System Stabilizers (PSS), ...

Numerical Solution

- The objective is to find the system trajectory with respect to time.
- So the system stability can be observed with time.

Problem Formulation

In a multi-machine system, we have a swing equation for each machine:

$$\frac{2H_i}{\omega_s} \frac{d^2 \delta_i}{dt^2} = P_{mi} - P_{ei} = P_{ai}$$

 $P_{ai} = P_{ai}(\delta_1, \delta_2, ..., \delta_L)$, L = number of machines

Recall the SMIB system:

5

$$\frac{2H}{\omega_s} \frac{d^2 \delta}{dt^2} = P_m - P_e$$

$$P_e = \frac{E'V}{X} \sin \delta$$

$$P_e = \frac{E'V}{X} \sin \delta$$

Euler Methods

General differential equation:

$$\frac{dx}{dt} = f(x)$$

Initial condition: $x = x_0$ at $t = t_0$

Euler Method:

$$x_1 = x_0 + f(x_0) \Delta t$$

Modified Euler Method:

$$\widetilde{x}_1 = x_0 + f(x_0)\Delta t \Rightarrow x_1 = x_0 + \frac{f(x_0) + f(\widetilde{x}_1)}{2}\Delta t$$

Other methods:

Trapezoidal Runge-Kuta

. . .

Application to Swing Equations

Swing equations:

$$\frac{2H_i}{\omega_s} \frac{d^2 \delta_i}{dt^2} = P_{mi} - P_{ei} = P_{ai}$$

 $t = t_0$, initial conditions (power flow solution):

$$P_{ai0} = P_{mi0} - P_{ei0}$$
$$\delta_{i0}, \omega_{i0}$$

Swing equations:
$$t = t_{1}$$

$$\frac{2H_{i}}{\omega_{s}} \frac{d^{2}\delta_{i}}{dt^{2}} = P_{mi} - P_{ei} = P_{ai}$$

$$\begin{cases} \frac{d\omega_{i}}{dt} \Big|_{t_{0}} = \frac{2H_{i}}{\omega_{s}} P_{ai0} \\ \frac{d\delta_{i}}{dt} \Big|_{t_{0}} = \omega_{i0} - \omega_{s} \end{cases}$$

$$\begin{cases} \frac{2H_{i}}{\omega_{s}} \frac{d\omega_{i}}{dt} = P_{mi} - P_{ei} = P_{ai} \\ \frac{d\delta_{i}}{dt} \Big|_{t_{0}} = \omega_{i0} - \omega_{s} \end{cases}$$

$$\begin{cases} \frac{d\omega_{i}}{dt} \Big|_{t_{0}} = \frac{2H_{i}}{\omega_{s}} \widetilde{P}_{ai1} \\ \frac{d\omega_{i}}{dt} \Big|_{t_{0}} = \omega_{i0} + \frac{d\omega_{i}}{dt} \Big|_{t_{0}} + \frac{d\omega_{i}}{dt} \Big|_{t_{0}} \end{cases}$$

$$\begin{cases} \frac{d\omega_{i}}{dt} \Big|_{t_{0}} = \frac{2H_{i}}{\omega_{s}} \widetilde{P}_{ai1} \end{cases}$$

$$\begin{cases} \frac{d\omega_{i}}{dt} \Big|_{t_{0}} = \frac{2H_{i}}{\omega_{s}} \widetilde{P}_{ai1} \end{cases}$$

$$\left| \frac{d\omega_i}{dt} \right|_{\widetilde{t}} = \frac{2H_i}{\omega_s} \widetilde{P}_{ai}$$

$$\left| \frac{d\delta_i}{dt} \right|_{\widetilde{t}} = \widetilde{\omega}_{i1} - \omega_s$$

$$t = t_2$$

$$\begin{cases}
\frac{d\omega_{i}}{dt}\Big|_{\widetilde{t}} = \frac{2H_{i}}{\omega_{s}}\widetilde{P}_{ai1} \\
\frac{d\delta_{i}}{dt}\Big|_{\widetilde{t}} = \widetilde{\omega}_{i1} - \omega_{s}
\end{cases}$$

$$\begin{cases}
\omega_{i1} = \omega_{i0} + \frac{\frac{d\omega_{i}}{dt}\Big|_{t_{0}} + \frac{d\omega_{i}}{dt}\Big|_{\widetilde{t}}}{2}\Delta t \\
\delta_{i1} = \delta_{i0} + \frac{\frac{d\delta_{i}}{dt}\Big|_{t_{0}} + \frac{d\delta_{i}}{dt}\Big|_{\widetilde{t}}}{2}\Delta t
\end{cases}$$

Example: Euler Methods

Textbook example 16.11.

Multi-Machine Systems

Modeling Approaches:

Classical model:

- 1. $P_m = const$
- 2. Generator model: $E' = const, X_d'$
- 3. Machine dynamics: δ and ω only
- 4. Load model: Z=V²/S*=const
- 5. Two state variables: δ and ω

Full model (simulation programs):

- 1. Governor system: P_m != const
- 2. Excitation system: E'!= const
- 3. Machine dynamics: δ , ω , E", dq axis X, damping (friction)
- 4. Load model: ZIP
- 5. >3 state variables: δ , ω , E"

Solution Steps (Classical Model)

- Solve pre-fault power flow
- 2. Convert loads to constant impedance
- Expand Y matrix with load impedance and machine reactances
- 4. Reduce Y matrix to contain only machine buses
- Calculate E' and initial δ
- 6. Derive power-angle equations for each machine for pre-fault, fault-on, and post-fault conditions (diff Y)
- 7. Establish machine swing equations
- 8. Apply the Modified Euler Method to solve the equations numerically

$$Y_{\text{exp}} = \begin{bmatrix} Y + y_{load} & -y_g \\ -y_g & y_g \end{bmatrix}$$

$$P_{ai} = P_{ai} (\delta_1, \delta_2, ..., \delta_L)$$

$$\frac{2H_i}{\omega_s} \frac{d^2 \delta_i}{dt^2} = P_{mi} - P_{ei} = P_{ai}$$

10

Example: Gaussian Elimination (Kron Reduction)

Problem: Bus admittance matrix and power flow solution are given. Reduce the network to retain only generator buses 1 through 3

$$Y_{bus} = \begin{bmatrix} -j12.5 & 0 & 0 & j12.5 & 0 \\ 0 & -j12.5 & 0 & 0 & j12.5 \\ 0 & 0 & -j14 & j4 & j10 \\ j12.5 & 0 & j4 & -j21.5 & j5 \\ 0 & j12.5 & j10 & j5 & -j27.5 \end{bmatrix}$$

Solution:

Step 1: Perform a complete power flow to determine the voltage magnitude at each bus Step 2: Calculate the effective impedance of the loads based on the voltage magnitude Step 3: Perform a Gaussian elimination to remove bus 4 and 5

wiew

Node 2

Example: Gaussian Elimination (Kron Reduction) cont'd

Effective load impedance:

$$Y_{L} = \frac{P_{L} - j Q_{L}}{|V_{L}|^{2}}$$

$$Y_{L} = \frac{P_{L4} - j Q_{L4}}{|V_{L}|^{2}} + j \cdot 0.25$$

$$Y_{L4} = \frac{P_{L4} - j Q_{L4}}{|V_4|^2} = \frac{1 + j0.25}{0.98^2} = 1.04 + j0.26$$

$$Y_{L5} = \frac{P_{L5} - j Q_{L5}}{|V_5|^2} = \frac{1.25 + j0.1}{0.95^2} = 1.39 + j0.11$$

Node 1 V_4 =0.98 pu V_5 =0.95 pu Node 5

Include effective load impedance in Y matrix:

$$Y_{bus}^{(1)} = \begin{bmatrix} -j12.5 & 0 & 0 & j12.5 & 0 \\ 0 & -j12.5 & 0 & 0 & j12.5 \\ 0 & 0 & -j14 & j4 & j10 \\ j12.5 & 0 & j4 & 1.04 - j21.24 & j5 \\ 0 & j12.5 & j10 & j5 & 1.39 - j27.39 \end{bmatrix}$$

World Class. Face to Face.

Example: Gaussian Elimination (Kron Reduction) cont'd

Formulate new network equations:

-j12.5	0	0	<i>j</i> 12.5	0	$\lceil V_1 ceil$		I_1	
0	-j12.5	0	0	<i>j</i> 12.5	V_2		I_2	
0	0	- <i>j</i> 14	j4	<i>j</i> 10	V_3	=	I_3	
<i>j</i> 12.5	0	j4	1.04 - j21.24	j5	V_4		0	
0	<i>j</i> 12.5	<i>j</i> 10	j5	1.39 - <i>j</i> 27.39	$\lfloor V_5 \rfloor$		$\begin{bmatrix} 0 \end{bmatrix}$	

Pivot around node 4:

$$\begin{bmatrix} 0.36 - j5.16 & 0 & 0.11 + j2.35 & 0 & 0.14 + j2.94 \end{bmatrix} \begin{bmatrix} V_1 \\ 0 & -j12.5 & 0 & 0 & j12.5 \\ 0.12 + j2.35 & 0 & 0.04 - j13.25 & 0 & 0.05 + j10.94 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \end{bmatrix} = \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ V_4 \end{bmatrix}$$

$$\begin{bmatrix} 0.14 + j2.94 & j12.5 & 0.05 + j10.94 & 0 & 1.45 - j26.22 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \end{bmatrix} = \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \end{bmatrix}$$

$$Y_{ij}^{(1)} = \left(Y_{ij} - \frac{Y_{ik}Y_{kj}}{Y_{kk}}\right)$$

$$I_{i}^{(1)} = I_{i} - \frac{Y_{ik}}{Y_{kk}}I_{k}$$

WASHINGTON STATE UNIVERSITY TRI-CITIES

World Class. Face to Face.

Example: Gaussian Elimination (Kron Reduction) cont'd

Pivot around node 5:

$$\begin{bmatrix} 0.41 - j4.83 & 0.14 + j1.39 & 0.24 + j3.57 & 0 \\ 0.14 + j1.39 & 0.33 - j6.56 & 0.31 + j5.20 & 0 \\ 0.25 + j3.57 & 0.31 + j5.20 & 0.33 - j8.70 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_3 \end{bmatrix} = \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ 0 \end{bmatrix}$$

The resulting reduced equations:

$$\begin{bmatrix} 0.41 - j4.83 & 0.14 + j1.39 & 0.24 + j3.57 \\ 0.14 + j1.39 & 0.33 - j6.56 & 0.31 + j5.20 \\ 0.25 + j3.57 & 0.31 + j5.20 & 0.33 - j8.70 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix}$$

Tip: the resulting matrix should be symmetrical as the original matrix.

Course Project

- See handouts.
- Due December 2, 2009.
- You are welcome to discuss the project with me.

Ways to Improve Transient Stability

- Increase operation margin
- Reduce P_m : governor control
- Clear fault quicker: relay actions
- Increase E': excitation control
- Reduce X: line compensation or enforcement
- Reduce probability of short circuit: vegetation management, ...

•

Questions?

