Communications Services and Security Quality of Service

Cèsar Fernández

Departament d'Informàtica Universitat de Lleida

Curs 2022 - 2023

- QoS Overview
 - What is QoS ?
 - QoS architecture
 - QoS service models
 - CISCO IOS images
- Classification
 - Classification overview
 - Policy-based routing
 - Policy propagation via BGP
 - Committed Access Rate (CAR)
- Congestion Management
 - Congestion management overview
 - Flow-based WFQ
 - Class-based WFQ (CBWFQ)
 - Custom queueing (CQ)
 - Priority queueing (PQ)

- Low Latency Queueing (LLQ)
- Congestion Avoidance
 - Congestion avoidance overview
 - WRED
- Policing and shaping
 - Policing and shaping overview
 - Token bucket
 - Traffic policing
 - Traffic shaping
- 6 Resource Reservation Protocol
 - Overview
 - The protocol
 - Features
 - Configuration and monitoring

Contents

- QoS Overview
 - What is QoS?
 - QoS architecture
 - QoS service models
 - CISCO IOS images
- Classification
- Congestion Management
- **4** Congestion Avoidance
- Policing and shaping
- Resource Reservation Protocol

What is QoS?

Ability of a network to improve service to specific network traffic, providing the following services:

- Dedicated bandwidth
- Improving packet losses
- Avoiding and managing congestion
- Shaping traffic
- Setting priorities across the network

Three essential components:

- QoS in a single network: queuing, scheduling and shaping
- QoS across networks: signaling
- QoS policy and management

Types of routers:

- Edge routers: packet classification, admission control
- Backbone routers: congestion management and avoidance

Queuing

- Soft queues only formed when incoming traffic is faster than outcoming rates
- By default (if not QoS defined), slow output i/fs (few Mbps) use Weighted Fair Queuing. Otherwise: FIFO applied
- Queue length may be configured
- When queues are full, traffic is dropped

Scheduling

- How the soft queues are served:
 - WFQ (Flow based, class based)
 - Custom queuing: assigns a given bandwidth
 - Priority queuing: Assigns priority. Higher priorities are served first

Shaping

- Average rate and maximum burst size are enforced on outgoing traffic
- Token bucket mechanisms

Signaling

- Field TOS (Type of Service) of IPv4 header marked to indicate priority
- 3 MSB determine IP precedence. 8 priority levels
- 6 MSB determine DSCP (Differentiated Services Code Point, DiffServ). New standard.

IP Precedence			DSCP		Not used		
7	6	5	4	3	2	1	0

TOS field

ir riecedence values					
Network Control	011	Flash			
Internet Control	010	Immediate			
Critical	001	Driority			

110	Internet Control	010	Immedia
101	Critical	001	Priority
100	Flash override	000	Routine

111

QoS service models

Service models (or levels of service) describe the end-to-end QoS capabilities. 3 models:

- Best effort
- Integrated services
- Differentiated services

Best effort

Network delivers data if it can, without any assurance of reliability, delay bounds, or throughput.

FIFO queuing. Suitable for most applications (email, file transfer, ...)

QoS service models

Integrated services

- Application requests a specific service before sending data
- Requests made by signaling (e.g. RSVP (Reservation Protocol), asking for bandwidth and delay requirements)
- If possible, networks employs smart queuing mechanisms to provide service; WFQ or WRED (Weighted RED)

Differentiated services

- Not explicitly requested service
- Using IP Precedence or DCSP signaling

CISCO IOS images

- Images that supports QoS commands in this course:
 - IOS 12. c7200-adventerprisek9-mz.124-24.T5
 - IOS 15. c7200-advipservicesk9-mz.150-1.M
- Image c7200-adventerprisek9-mz.152-4.M7 does'nt support some QoS commands

Contents

- **QoS Overview**
- 2 Classification
 - Classification overview
 - Policy-based routing
 - Policy propagation via BGP
 - Committed Access Rate (CAR)
- Congestion Management
- Congestion Avoidance
- **5** Policing and shaping
- Resource Reservation Protocol

Classification overview

To provide a preferential service to a type of traffic, it must be classified. Classification is done in 2 steps:

- Traffic must be identified. Identification methods:
 - Use of ACLs (Access Control Lists)
 - Definition of route maps
- Optionally may be marked.
 - If identified and not marked, classification is said to be on a per-hop basis. Not passed to the next router
 - When marked for network-wide use, IP Precedence bits are set

When marked, routers can use IP Precedence bits to:

- determine how WFQ and WRED methods manages the traffic
- use features such as policy-based routing or committed access rate (CAR)

Policy-based routing

PBR. How it works?

Traffic flows can be configured, marked and routed accordingly.

- Incoming traffic is classified using ACLs or extended ACLs.
 (Based on IPs, port numbers, packet length, . . .)
- IP Precedence bits are set according to classification
- Specific next-hop routers may be set

Policy-based routing

Example:

Version: 4

Policy-based routing

Example:

Ping from 10.0.0.3 to 10.0.1.2

∃ Internet Protocol Version 4, Src: 10.0.0.3 (10.0.0.3), Dst: 10.0.1.2 (10.0.1.2) Version: 4 Header length: 20 bytes

FI Differentiated Services Field: 0x00 (DSCP 0x00: Default: ECN: 0x00: Not-ECT (No

Internet Protocol Version 4, Src: 10.0.0.3 (10.0.0.3), Dst: 10.0.1.2 (10.0.1.2) Version: 4

Header length: 20 bytes

⊕ Differentiated Services Field: 0x20 (DSCP 0x08: Class Selector 1: ECN: 0x00: Not-E

Policy propagation via BGP

Configuration

Allows packet classification marking IP precedence based on BGP community

- Indicate to the incoming i/f that bgp-policy IP precedence classification must be used
- Define access list matching the required path
- Define a route-map setting the IP precedence
- Use the route-map defined in the BGP router instance

Contents Overview Classification Cong. Manag. Cong. Avoid. Shaping RSVP Ref Màster Eng. Informàtica, 2022/23

Policy propagation via BGP

Example:

Ping from 20.0.0.2 to 10.0.1.3

- Version: 4 Header length: 20 bytes
 - # Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00: Not-ECT (No Total Length: 100
 - Internet Protocol Version 4, Src: 20.0.0.2 (20.0.0.2), Dst: 10.0.1.3 (10.0.1.3) Version: 4 Header length: 20 bytes
 - # Differentiated Services Field: 0x60 (DSCP 0x18: Class Selector 3; ECN: 0x00: Not-EC Total Length: 100

CAR

CAR is a feature that implements classification and policing. Limits the input or output rate at an i/f.

Rate policies can be applied according to:

- All IP traffic
- IP precedence
- MAC address
- IP access list

CAR configuration

Configuration is done in a interface:

- Set rate-limit for input or output traffic giving:
 - Average rate (in bps)
 - Normal burst size (in bytes)
 - Maximum burst size. Bursts between normal and maximum are considered exceeding with increasing probability
- Set the actions to be performed for conforming (conform-action) and exceeding (exceed-action) traffic. Actions can be:
 - Drop the packet
 - Transmit
 - Set precedence and transmit
 - Continue (evaluate the next rate-limit action)
 - Set the precedence and continue

- Traffic from tap0. 2000 bytes every second. Rate 16 Kbps > 8 Kbps.
- Approx. half of the packets will be set to IP prec 1 outcoming s1/0
- No packets marked from tap1
- Check capture at serial line s1/0

- Traffic from tap0. 2000 bytes every second. Rate 16 Kbps > 8 Kbps.
- Approx. half of the packets will be set to IP prec 1 outcoming s1/0
- No packets marked from tap1
- Check capture at serial line s1/0

access-list 10: 11.0.0.1

Committed Access Rate (CAR)

interface Serial 1/0 rate-limit output access-group 10 8000 2000 2000 conform-action set-prec-transmit 7 exceed-action set-prec-transmit 1 ping -I tap0 13.0.0.2 -s 2000 -i 1 s1/0 p1 13.0.0.1 f0/0 C1 11.0.0.2 tap0: 11.0.0.1 13.0.0.2 12,0.0.2 route add -net 13.0.0.0/8 gw 11.0.0.2 tap1: 12.0.0.1 ping -I tap1 13.0.0.2 -s 3000 -i traffic not marked To show ping responses on tap1: echo "1 rt2" >> /etc/iproute2/rt_tables ip route add 13.0.0.0/24 via 12.0.0.2 table rt2 ip rule add from 12.0.0.1/32 table rt2

Contents

- QoS Overview
- Classification
- Congestion Management
 - Congestion management overview
 - Flow-based WFQ
 - Class-based WFQ (CBWFQ)
 - Custom queueing (CQ)
 - Priority queueing (PQ)
 - Low Latency Queueing (LLQ)
- Congestion Avoidance
- Policing and shaping
- Resource Reservation Protocol

Congestion management overview

Congestion management tasks

- Creation of software queues
- Assign packets to queues based on classification
- Schedule packets in queues for transmission

Congestion management overview

Types of queues

- FIFO. No QoS
- WFQ. Default for slow speed i/fs. 2 types:
 - Flow-based WFQ. A flow is determined by IPs, protocol and port numbers of a connection. Configurable number of queues. 256 as default. No configuration required
 - Class-based WFQ (CBWFQ). Definition of class-maps based on access-lists. 1 queue per class. Up to 64 classes
- Custom Queueing (CQ). Allocates bandwidth for each class of traffic. 16 queues. Round robin scheduling (Weighted round robin, WRR)
- Priority Queueing (PQ). Packets from a priority are sent before all lower priorities. Ensures low latency requirements. 4 queues
- Low Latency Queueing (LLC). Adds PQ to flow-based WFQ or CBWFQ

WFQ and IP precedence

Having $Nflows_j$ flows with a IP precedence value j and an assigned weight w_j , the assigned bandwidth $(1/r_i)$ to a flow of precedence i is computed as:

$$\frac{1}{r_i} = \frac{w_i}{\sum_{j=0}^7 Nflows_j \cdot w_j}$$

As flows are added and ended, the allocated bandwidth changes continuously

Example (taking $w_i = i + 1$)

Having 5 flows; 2 with IP precedence value 0 (routine), and 3 with IP precedence 5 (critical), their assigned bandwidth results:

$$\frac{1}{r_0} = \frac{1}{2 \cdot 1 + 3 \cdot 6} = 1/20 = 0.05$$

$$\frac{1}{r_5} = \frac{6}{2 \cdot 1 + 3 \cdot 6} = 6/20 = 0.3$$

Configuring WFQ

- WFQ is configured as default control management for slow speed links (<2 Mbps)
- Command fair-queue run on i/f basis. 3 parameters:
 - congestive-discard-threshold. Number of packets allowed in each queue. Default 64
 - dynamic-queues. Number of WFQ queues. Power of 2. Default depends on i/f BW. 256 for links > 512 Kbps
 - reservable-queues. Reserved to RSVP (Integrated Services) or CBWFQ (DiffServ), Default 0

Monitoring WFQ

```
R1#show queue Serial 1/0
  Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops:
  Oueueing strategy: weighted fair
  Output queue: 0/1000/64/0 (size/max total/threshold/drops)
     Conversations 0/1/256 (active/max active/max total)
    Reserved Conversations 0/0 (allocated/max allocated)
     Available Bandwidth 1158 kilobits/sec
R1#show queue Serial 1/0
  Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops:
  Oueueing strategy: weighted fair
  Output queue: 63/1000/64/668800 (size/max total/threshold/drops)
     Conversations 1/2/256 (active/max active/max total)
     Reserved Conversations 0/0 (allocated/max allocated)
     Available Bandwidth 1158 kilobits/sec
  (depth/weight/total drops/no-buffer drops/interleaves) 63/4048/66880
```

source: 12.0.0.1, destination: 13.0.0.2, id: 0x3FFA, ttl: 63, pro

Conversation 29, linktype: ip, length: 332

WFQ weights

Predefined weights (w_i) are the following:

IP prec.	Name	WFQ weight $(1/w_i)$
111	Network Control	4,048
110	Internet Control	4,626
101	Critical	5,397
100	Flash override	6,476
011	Flash	8,096
010	Immediate	10,794
001	Priority	16,192
000	Routine	32,384

Computed as

$$\frac{1}{w_i} = \frac{32,384}{\text{IP_Prec}_i + 1}$$

Weights only can be configured as DWFQ (Distributed WFQ) that runs on advanced processors

Example

packETHcli -i tap0 -d 1000 -m 2 -f /home/cesar/GNS3/Captures/ping-tap0-100.pcap -n 0 (1.1 Mbps)

- No further configuration required on i/f s1/0
- Packets at input i/fs are IP precedence marked after classification; f0/1 network(7), f0/0 routine(0)
- ping from tap0. Data length 92 bytes. ICMP header (8 bytes). IP header (20 bytes). Ethernet header (14 bytes). Total packet length: 134 bytes. Data rate: 134 · 8/10⁻³ = 1.07 Mbps
- oping from tap1. Data length 292 bytes. Total packet length: 334 bytes. Data rate: 2.67 Mbps
- Find packETH here and packETHcli here

Example

- Assigned bandwidths:
 - From tap0: $1/r_0 = \frac{1/32,384}{1/4,048+1/32,384} \simeq 1/9$ From tap1: $1/r_7 = \frac{1/4,048}{1/4,048+1/32,384} \simeq 8/9$
- Capturing at s1/0, taking 793 packets, we observe:
 - 189 packets from tap0. 128 bytes each (IP packet). 24,192 bytes
 - 604 packets from tap1. 198,112 bytes
 - Gives a ratio of 8.18 = 198,112 / 24,192

Example

R1 configuration

```
interface FastEthernet0/0
 ip address 11.0.0.2 255.255.255.0
 ip policy route-map RMO
interface FastEthernet0/1
 ip address 12.0.0.2 255.255.255.0
 ip policy route-map RM1
```


Example

R1 configuration

```
access-list 1 permit any !
route-map RM1 permit 10
match ip address 1
set ip precedence network !
route-map RM0 permit 10
match ip address 1
set ip precedence routine
```


Contents Overview Classification Cong. Manag. Cong. Avoid. Shaping RSVP Ref Master Eng. Informatica, 2022/23

Flow-based WFQ

Example

packETHcli -i tap0 -d 1000 -m 2 -f /home/cesar/GNS3/Captures/ping-tap0-100.pcap -n 0 (1.1 Mbps)

C1 tap0: 11.0.0.1

10.0

11.0.0.2

11.0.0.2

12.0.0.2

13.0.0.1

13.0.0.1

packETHcli -i tap1 -d 1000 -m 2 -f /home/cesar/GNS3/Captures/ping-tap1-300.pcap -n 0 (2.7 Mbps)

Monitoring queues

```
Rl#show queueing interface Serial 1/0
Interface Serial1/0 queueing strategy: fair
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 46388
Queueing strategy: weighted fair
Output queue: 64/1000/64/46388 (size/max total/threshold/drops)
Conversations 2/3/256 (active/max active/max total)
Reserved Conversations 0/0 (allocated/max allocated)
Available Bandwidth 1158 kilobits/sec
(depth/weight/total drops/no-buffer drops/interleaves) 48/4048/22662/0/0
Conversation 29, linktype: ip, length: 332
source: 12.0.0.1, destination: 13.0.0.2, id: 0x3FFA, ttl: 63, prot: 1
(depth/weight/total drops/no-buffer drops/interleaves) 16/32384/23727/0/0
```


Conversation 28, linktype: ip, length: 132

Characteristics

- Classes defined according to matching criteria, access-lists and input i/fs
- A single queue (from the WFQ) is reserved for each class
- Parameters to assign at each class-queue:
 - Bandwidth. In bps or a % of the total. A max-reserved-bandwidth is set as default to 75%
 - Weight for WFQ is automatically derived from the assigned bandwidth
 - Queue limit
- Packet drop. Once the queue limit is reached, tail-drop applies.
 WRED can be also configured
- Up to 64 class-queues per i/f

Configuration steps

- Define class-maps specifying how traffic is classified
- Define policy-maps indicating what to do with defined classes
- Apply policies to i/fs

Example

packETHcli -i tap0 -d 1000 -m 2 -f /home/cesar/GNS3/Captures/ping-tap0-100.pcap -n 0 (1.1 Mbps)

CBWFO:

- 80% from s1/0 BW to IP traffic from tap0 - 20% from s1/0 BW to IP traffic from tap1

Requirements (IOS 12)

- 80% bandwidth of s1/0 reserved to IP traffic from tap0
- 20% bandwidth of s1/0 reserved to IP traffic from tap1
- Being so, max-reserved-bandwidth must be set to 100%

Example

packETHcli -i tap0 -d 1000 -m 2 -f /home/cesar/GNS3/Captures/ping-tap0-100.pcap -n 0 (1.1 Mbps) C1 tap0: 11.0.0.1 11.0.0.2 s1/0 route add -net 13.0.0.0/24 gw 11.0.0.2 13.0.0.1 12.0.0.2 tap1: 12.0.0.1

CBWFO:

- 80% from s1/0 BW to IP traffic from tap0 - 20% from s1/0 BW to IP traffic from tap1

Requirements (IOS 15)

max-reserved-bandwidth deprecated

packETHcli -i tap1 -d 1000 -m 2 -f /home/cesar/GNS3/Captures/ping-tap1-300.pcap -n 0 (2.7 Mbps)

- 80% bandwidth of s1/0 reserved to IP traffic from tap0
- 19% bandwidth of s1/0 reserved to IP traffic from tap1 (to avoid error: should be less than 100%)

Example

packETHcli -i tap0 -d 1000 -m 2 -f /home/cesar/GNS3/Captures/ping-tap0-100.pcap -n 0 (1.1 Mbps)

CBWFO:

- 80% from s1/0 BW to IP traffic from tap0 - 20% from s1/0 BW to IP traffic from tap1

R1 configuration

```
access-list 101 permit ip 11.0.0.0 0.0.0.255 any access-list 102 permit ip 12.0.0.0 0.0.0.255 any ! class-map match-all class1 match access-group 101 class-map match-all class2 match access-group 102
```

```
policy-map policy1
class class1
bandwidth percent 80
class class2
bandwidth percent 19
!
interface Serial1/0
ip address 13.0.0.1 255.255.255.0
%max-reserved-bandwidth 100
service-policy output policy1
```


Example

packETHcli -l tap0 -d 1000 -m 2 -f /home/cesar/GNS3/Captures/ping-tap0-100.pcap -n 0 (1.1 Mbps)

CBWFO:

- 80% from s1/0 BW to IP traffic from tap0 - 20% from s1/0 BW to IP traffic from tap1

Run test

i/f	# Packets	IP length (bytes)	Traffic volume (bytes)
tap0	1,917	128	245,376
t.ap1	195	328	63.960

Traffic ratio =
$$\frac{245,376}{63,960}$$
 = 3.83 $\simeq \frac{80}{19}$

Queue monitoring

```
Rl# show queueing interface Serial 1/0
Interface Serial1/0 queueing strategy: fair
  Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 14010
  Queueing strategy: Class-based queueing
  Output queue: 129/1000/64/14010 (size/max total/threshold/drops)
     Conversations 3/3/256 (active/max active/max total)
     Reserved Conversations 2/2 (allocated/max allocated)
     Available Bandwidth 1 kilobits/sec
  (depth/weight/total drops/no-buffer drops/interleaves) 64/20/5634/0/0
  Conversation 265, linktype: ip, length: 132
  source: 11.0.0.1, destination: 13.0.0.2, id: 0x3F9E, ttl: 63, prot: 1
  (depth/weight/total drops/no-buffer drops/interleaves) 64/78/8380/0/0
  Conversation 266, linktype: ip, length: 332
  source: 12.0.0.1, destination: 13.0.0.2, id: 0x3FFA, ttl: 63, prot: 1
  (depth/weight/total drops/no-buffer drops/interleaves) 1/32384/0/0/0
  Conversation 257, linktype: cdp, length: 333
```


Custom queueing (CQ)

Characteristics

- Up to 16 configurable gueues
- Configurable parameters:
 - limit: max number of packet per queue (default 20)
 - byte-count: counts the number of bytes per gueue served at each round. If limit is reached while transmitting a packet, the remaining packet is transmitted
- Queues served in a round-robin fashion
- Guaranteed bandwidth can be easily derived
- Packet classification: based on protocol type or interfaces
- A default queue can be assigned to non-matching traffic

Contents Overview Classification Cong. Manag. Cong. Avoid. Shaping RSVP Ref

Custom queueing (CQ)

Assigning the byte-count. An example

Assume we want to allocate 3 traffic flows as follows (IP lengths are known and supposed fixed):

Traffic	IP length (L) (bytes)	BW reserved (B) (%)		
Α	200	30		
В	450	50		
С	1,500	20		

We proceed:

Traffic	B/L	Normalized B/L (N)	byte-count = $N \cdot L$
Α	0.150	11.2	2,240
В	0.111	8.3	3,735
С	0.013	1.0	1,500

Custom queueing (CQ)

Example

Queue monitoring

```
Rl#show interfaces Serial 1/0

Serial1/0 is up, line protocol is up

....

Output queues: (queue #: size/max/drops)

0: 0/3/7 1: 0/6/3 2: 0/20/0 3: 0/20/0 4: 0/20/0

5: 0/20/0 6: 0/20/0 7: 0/20/0 8: 0/20/0 9: 0/20/0

10: 0/20/0 11: 0/20/0 12: 0/20/0 13: 0/20/0 14: 0/20/0

15: 0/20/0 16: 0/20/0
```


Custom queueing (CQ)

Example

Queue monitoring

R1# clear counters Serial 1/0

Rl# show queueing interface Serial 1/0
Interface Serial1/0 queueing strategy: custom

Output queue utilization (queue/count)

0/4 1/7 2/0 3/0 4/0 5/0 6/0 7/0 8/0

9/0 10/0 11/0 12/0 13/0 14/0 15/0 16/0

Characteristics

- Up to 4 queues. High, medium, normal and low
- PQ gives absolute priority. Highest priority queues are first processed until being emptied
 - Some lowest priority packets may be never sent
 - Use traffic shaping or CAR to avoid previous issue on higher priorities
- Packets classified as usual
- Not classified packets ingress normal priority queue
- PQ adds extra processing. Not acceptable for high speed i/fs

Example. Video streaming

NAT configuration

- Video streaming between 2 tap i/fs through R1
- tap1 seen as 13.0.0.1 from tap0
- tap0 seen as 14.0.0.1 from tap1

Example. Video streaming

Traffic configuration

- Video stream from tap0 to tap1 at 800 Kbps
- ping traffic would cause stream losses without PQ

Example. Video streaming

R1 PQ configuration

```
interface FastEthernet0/1
ip address 12.0.0.2 255.255.255.0
ip nat inside
priority-group 1
!
priority-list 1 protocol ip high udp 5004
priority-list 1 default low
```


Example. Video streaming

PQ monitoring

R1# show queueing interface FastEthernet 0/1 Interface FastEthernet0/1 queueing strategy: priority

Output queue utilization (queue/count) high/2772 medium/0 normal/16254 low/862

Example. Video streaming

PQ monitoring

```
R1# show queueing priority
Current DLCI priority queue configuration:
Current priority queue configuration:
```

```
List Queue Args
1 low default
1 high protocol ip udp port 5004
```


Overview

- LLQ adds PQ to CBWFQ
- Useful for real-time applications such as audio calls. Reduce jitter in voice conversations
- Voice comms uses UDP, not suitable to WRED congestion avoidance
- Packets in PQ are dequeued before those in WFQ queues
- LLQ uses a single priority queue within the CBWFQ classes

R1 configuration

```
access-list 101 permit ip 11.0.0.0 0.0.0.255 any
access-list 102 permit ip 12.0.0.0 0.0.0.255 any
access-list 103 permit ip 14.0.0.0 0.0.0.255 any
class-map match-all class1
match access-group 101
class-map match-all class2
match access-group 102
class-map match-all class3
match access-group 103
policy-map policy1
 class class1
 bandwidth percent 60
 class class2
  bandwidth percent 20
 class class3
  priority percent 20
```


Queue monitoring

```
Rl#show queueing interface Serial 1/0
Interface Serial1/0 queueing strategy: fair
  Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 215341
  Queueing strategy: Class-based queueing
  Output queue: 133/1000/64/215341 (size/max total/threshold/drops)
     Conversations 4/4/256 (active/max active/max total)
     Reserved Conversations 2/2 (allocated/max allocated)
     Available Bandwidth 2 kilobits/sec
                                                         PQ weight
  (depth/weight/total drops/no-buffer drops/interleaves)
  Conversation 264, linktype: ip, length: 1504
  source: 14.0.0.2, destination: 13.0.0.2, id: 0x0115, ttl: 254, prot: 1
  (depth/weight/total drops/no-buffer drops/interleaves) 64/26/103921/0/0
  Conversation 265, linktype: ip, length: 132
  source: 11.0.0.1, destination: 13.0.0.2, id: 0x3F9E, ttl: 63, prot: 1
  (depth/weight/total drops/no-buffer drops/interleaves) 64/78/111317/0/0
  Conversation 266, linktype: ip, length: 332
  source: 12.0.0.1, destination: 13.0.0.2, id: 0x3FFA, ttl: 63, prot: 1
  (depth/weight/total drops/no-buffer drops/interleaves) 3/32384/0/0/0
  Conversation 33, linktype: ip, length: 104
  source: 15.0.0.2, destination: 13.0.0.2, id: 0x001F, ttl: 254, prot: 1
```


ping from R3

```
R3# ping 13.0.0.2 size 100 repeat 10

Type escape sequence to abort.

Sending 10, 100-byte ICMP Echos to 13.0.0.2, timeout is 2 seconds:
!!!!!!!!!

Success rate is 100 percent (10/10), round-trip min/avg/max = 52/60/68
```

ping from R4

```
R4 #ping 13.0.0.2 size 100 repeat 10

Type escape sequence to abort.

Sending 10, 100-byte ICMP Echos to 13.0.0.2, timeout is 2 seconds:
.........

Success rate is 0 percent (0/10)
```


Contents

- QoS Overview
- Classification
- Congestion Management
- Congestion Avoidance
 - Congestion avoidance overview
 - WRED
- Policing and shaping
- Resource Reservation Protocol
- Bibliography

Congestion avoidance overview

Congestion management tasks

- RED is used to prevent congestion
- Tail-drop as default if no RED configured
- CISCO implements a weighted version of RED (WRED), combining RED and IP Precedence. Weighted can be disabled, turning into a simple RED mechanism
- WRED additional features:
 - Flow-based WRED. More fairness to all flows
 - Diffserv WRED. Drop probabilities based on differentiated service code points (DCSP)

Congestion avoidance overview

RED fundamentals

- See chapter 1 (TCP congestion) to revisit RED mechanics
- Only effective in TCP flows
- Drops cause TCP not increasing advertise windows. Too much drops can put TCP into slow start
- Parameter names in CISCO configuration:

Computing the average queue length:

$$AvgLen = (1 - 2^{-n}) \cdot AvgLen + 2^{-n} \cdot SampleLen$$

n: exponential-weighting-constant

WRED basics

- A different probability profile applied to each IP precedence
- To turn WRED into RED, put the same values to all IP precedences

WRED default values

Exponential weighting constant (n): 9

Class	Min. Thresh.
0	20
1	22
2	24
3	26
4	28
5	31
6	33
7	35
RSVP	37

Example

R1 configuration

interface Serial1/0
 ip address 13.0.0.1 255.255.255.0
 random-detect

Example

RED monitoring

Rl#show queueing interface Serial 1/0
Interface Serial1/0 queueing strategy: random early detection (WRED)

Random-detect not active on the dialer

Exp-weight-constant: 9 (1/512) Mean queue depth: 0

class	Random drop	Tail drop	Minimum	${\tt Maximum}$	Mark	
	pkts/bytes	pkts/bytes	thresh	thresh	prob	
0	104/16864	0/0	20	40	1/10	
1	0/0	0/0	22	40	1/10	
2	0/0	0/0	24	40	1/10	
3	0/0	0/0	26	40	1/10	
4	0/0	0/0	28	40	1/10	
5	0/0	0/0	31	40	1/10	
6	0/0	0/0	33	40	1/10	
7	0/0	0/0	35	40	1/10	
rsvn	0/0	0/0	37	4.0	1/10	

Testing WRED

- CISCO tcp-small-servers not able to push tcspray to the limit
- Only 52 Kbytes/s out of 187 Kbytes/s (serial line)
- One should test between tap i/fs

Contents Overview Classification Cong. Manag. Cong. Avoid. Shaping RSVP Ref Måster Eng. Informàtica, 2022/23

WRED

Example 2

R1 config

set in precedence network

```
interface FastEthernet0/0
ip address 11.0.0.2 255.255.255.0
ip nat outside
ip policy route-map RM0
access-list 100 permit tcp any any eq discard
access-list 101 permit tcp any any eq echo
!
route-map RM0 permit 10
match ip address 100
set ip precedence priority
!
route-map RM0 permit 20
match ip address 101
```


Example 2

TCP tests

```
$ tcpspray 13.0.0.1 -e -n 3000
Received 3072000 bytes in 1.919753 second (1562.701 kbytes/s)
Transmitted 3072000 bytes in 1.453911 second (2063.400 kbytes/s)
$ tcpspray 13.0.0.1 -n 3000
Transmitted 3072000 bytes in 6.201178 seconds (483.779 kbytes/s)
```


Example 2

ip route 13.0.0.0/24 12.0.0.1

ip route 14.0.0.0/24 11.0.0.1

WRED monitoring

Rl#show queueing random-detect Current random-detect configuration:

Current random-detect configuration: FastEthernet0/1

Queueing strategy: random early detection (WRED) Random-detect not active on the dialer

Exp-weight-constant: 9 (1/512)

Exp-weight-constant: 9 (1/512) Mean queue depth: 0

class	Random drop pkts/bytes	Tail drop pkts/bytes	Minimum thresh	Maximum thresh	Mark prob
0	0/0	0/0	20	40	1/10
1	146/221044	45/68130	22	40	1/10
2	0/0	0/0	24	40	1/10
3	0/0	0/0	26	40	1/10
4	0/0	0/0	28	40	1/10
5	0/0	0/0	31	40	1/10
6	0/0	0/0	33	40	1/10
7	47/55230	51/61286	35	40	1/10
rsvp	0/0	0/0	37	40	1/10

Example 2

Modifying WRED parameters

```
interface FastEthernet0/1
ip address 12.0.0.2 255.255.255.0
ip nat inside
random-detect
random-detect
random-detect precedence 7 23 40 10

IP prec min-thresh max-thresh mark-prob denominator
```


Example 2

TCP tests

```
$ tcpspray 13.0.0.1 -e -n 3000
Received 3072000 bytes in 2.778369 seconds (1079.770 kbytes/s)
Transmitted 3072000 bytes in 2.549548 seconds (1176.679 kbytes/s)
$ tcpspray 13.0.0.1 -n 3000
Transmitted 3072000 bytes in 2.209408 seconds (1357.830 kbytes/s)
```


Example 2

WRED monitoring

Rl#show queueing random-detect Current random-detect configuration: FastEthernet0/1 Queueing strategy: random early detection (WRED) Random-detect not active on the dialer Exp-weight-constant: 9 (1/512) Mean queue depth: 0

mean	queue depin: U					
class	Random drop	Tail	drop	Minimum N	Maximum	Mark
	pkts/bytes	pkt:	s/bytes	thresh	thresh	prob
0	0/0	0/0	20	40	1/10	
1	43/65102	0/0	22	40	1/10	
2	0/0	0/0	24	40	1/10	
3	0/0	0/0	26	40	1/10	
4	0/0	0/0	28	40	1/10	
5	0/0	0/0	31	40	1/10	
6	0/0	0/0	33	40	1/10	
7	65/72358	28/22120	23	40	1/10	
rsvp	0/0	0/0	37	4.0	1/10	

WRED

Througput results

Average throughput over 3 measures

Prec (-e)	Prec (-d)	Throughput (-e) (kB/s)	Throughput (-d) (kB/s)
7	0	1,480	955
6	0	1,496	990
5	0	1,512	821
4	0	1,390	896
3	0	1,360	931
2	0	1,357	1,062
1	0	1,177	1,182
0	0	1,010	1,730

Contents

- QoS Overview
- Classification
- Congestion Management
- Congestion Avoidance
- Policing and shaping
 - Policing and shaping overview
 - Token bucket
 - Traffic policing
 - Traffic shaping
- Resource Reservation Protocol

Policing and shaping overview

Policing and shaping are traffic regulation mechanisms

- Policing: non-compliant traffic is discarded. (ex. CAR policy seen before)
- Shaping: non-compliant traffic is shaped and transmitted

How compliance is determined?: Token bucket

Definition

Token bucket is a formal definition of **data transfer rate**. 3 components:

- Mean rate (r): amount of data to be transferred per unit time on average. Also called Committed Information Rate (CIR)
- Burst size (b): amount of data that can be transferred in a given time interval
- Time interval (t): Burst size expressed in time units. Derived from mean rate and burst size

The following relation holds: $r = \frac{b}{t}$

Over any integral part of t, transmit rate must not exceed r. Inside t, may be arbitrarily fast.

Algorithm

- A token is added to the bucket every $\frac{1}{r}$ seconds
- The bucket size is b. Tokens arriving when the bucket is full are discarded
- An arriving packet of size d is determined as:
 - **conformant**, if d is smaller than the number of tokens in the bucket
 - non-conformant, otherwise
- Conformant packets are transmitted. Bucket is decremented in d
- Non-conformant packets are discarded (policing) or delayed until enough tokens (shaping)

Token bucket with 2 buckets

- Exceeding bursts may be allowed
- An exceed bucket is added to the already existing conform bucket
- Overflowing tokens from conform bucket drops into the exceed bucket
- Tokens can be borrowed from exceed bucket if conform bucket is not enough
- In this case, 3 actions must be observed:
 - Conformant
 - Exceeded
 - Violated
- Conform bucket size (b_c) . Exceed bucket size (b_e)
- $b_e = 0$ is a token bucket with 1 bucket

Algorithm with two buckets

- A token is added to the conform bucket every $\frac{1}{r}$ seconds
- Tokens arriving when the conform bucket is full fills into the exceed bucket
- An arriving packet of size d is determined as:
 - conformant, if d is smaller than the number of tokens in the conform bucket
 - exceed, if d is greater than the number of tokens in the conform bucket and smaller than the number of tokens in the conform and exceed bucket
 - violated, otherwise
- Conformant packets are transmitted. Conform bucket is decremented in d
- Exceeded packets are treated according to exceeding policy. Conform bucket is emptied and exceed bucket is decremented in (d-b)

Violated packets are treated according to violating policy

A numerical example

Tokens rate = 1. $b_c = 4$. $b_e = 6$

 time	Packet Length	Conform bucket	Exceed bucket	Action
0	-	4	6	-
1	2	3	6	conform
2	-	4	6	-
3	5	1	5	exceed
4	-	2	5	-
5	5	1	2	exceed
6	4	2	2	violated
7	-	3	2	-
8	-	4	2	-
9	-	4	3	-

Traffic policing

Overview

- Traffic policing allows control of maximum incoming or leaving rate using token bucket
- Traffic can be partitioned into several classes
- Several actions on conforming, exceeding and violating traffic:
 - Drop
 - Transmit
 - Set IP precedence and transmit
 - Set DCSP value and transmit

Traffic policing

Configuration steps

- Configure a class map
- Configure a police map
- Configure token bucket parameters inside a policy map:
 - Average rate (in bps or as a fraction of the bandwidth)
 - Conformant bucket size (b_c) (in bytes)
 - Excess burst parameter ($b_c + b_e$) (in bytes). If excess burst parameter equals b_c , then $b_e = 0$
 - Conform, exceed and violate actions

Traffic policing

Configuration example

CAR example (here) can be also configured as follows:

```
access-list 1 permit any
class-map match-all CMa
match access-group 1

policy-map PMa
class CMa
police 8000 2000 2000 conform-action set-prec-transmit 7
exceed-action set-prec-transmit 1

interface Serial1/0
ip address 13.0.0.1 255.255.255.0
service-policy output PMa
```


Overview

- Traffic shaping allows modify the leaving traffic profile to commit a given rate using token bucket
- Being so, we ensure traffic conforms certain policies
- As a result, traffic may suffers delays
- Shaping may be done based on ACLs or traffic classes

Shaping example. Video streaming

- Video stream at a 800 Kbps rate
- Shaping configured at i/f f0/1 at R1. 800 Kbps mean rate. No exceed bucket

Shaping example. Video streaming

ffplay -protocol_whitelist file,udp,rtp -i s.sdp

R1 config

```
interface FastEthernet0/1 ip address 12.0.0.2 255.255.255.0 ip nat inside traffic-shape rate 800000 100000 100000 Average rate (bps) b_{c} \text{ (bits)} \qquad b_{c} + b_{e} \text{ (bits)}
```


Traffic at R1 f0/1

Traffic shaping monitoring

$$r = \frac{b_c}{t}$$

Traffic shaping monitoring

Rl# show traffic-shape	statistics		
Acc.	Queue Packets Bytes	Packets Bytes	Shaping
I/F List	Depth	Delayed Delayed	Active
Fa0/1			
0	3246 4342043 592	805842 no	
Rl# show traffic-shape	statistics		
Acc.	Queue Packets Bytes	Packets Bytes	Shaping
I/F List	Depth	Delayed Delayed	Active
Fa0/1			
0	3268 4372183 592	805842 no	
Rl# show traffic-shape	statistics		
Acc.	Queue Packets Bytes	Packets Bytes	Shaping
I/F List	Depth	Delayed Delayed	Active
Fa0/1	0 3308 4426983	595 809952	yes

Contents

- **1** QoS Overview
- 2 Classification
- Congestion Management
- Congestion Avoidance
- Policing and shaping
- Resource Reservation Protocol
 - Overview
 - The protocol
 - Features
 - Configuration and monitoring

Overview

What is it?

- RSVP is an implementation of Integrated Services
- Signaling protocol. By itself doesn't provide QoS
- Clients use RSVP to apply for QoS for a session
- A session consists of:
 - Destination address (unicast or multicast)
 - IP protocol
 - Destination port
- Layer 4 protocol on top IP
- Routers must implement QoS through WFQ, WRED, LLQ, ...

Overview

how does it work? (I)

- RSVP reserves in only one direction (origin →destination)
- A route between origin and destination is established by routing protocols
- All the traversed routers must be informed about reservations
- Basic steps:
 - PATH message initiated by origin to destination. This message includes:
 - Session parameters
 - QoS requirements (required rate, burst, delay, ...)
 - Nodes IP traversed
 - RESV message from destination to origin following the same route (reverse) that PATH.
 - At each node (router), resource availability is determined
 - If enough resources, RESV message is forwarded to next node
 - If reservation is declined (not enough resources), an error message is sent to origin

Overview

how does it work? (II)

- Session maintenance. PATH and RESV messages are periodically refreshed. 30" by default
- Confirmation. At each node, after a RESV, a CONFIRM message is sent to destination
- Finishing reservations. Can be finished by origin, destination or intermediate nodes
 - PathTear messages sent in PATH direction
 - ResvTear messages sent in RESV direction
- Tear messages free resources

PATH message. Asks for a reservation: 1,000 Kbps (average rate) and 100 KBytes (Burst size). Protocol 1 (ICMP), any port (0)

```
Internet Protocol Version 4, Src: 11.0.0.1 (11.0.0.1), Dst: 13.0.0.1 (13.0.0.1)

Resource ReserVation Protocol (RSVP): PATH Message. SESSION: TPv4, Destination 13.0.0.1, Protocol 1, Port 0.

RSVP Header. PATH Message.

SESSION: IPv4, Destination 13.0.0.1, Protocol 1, Port 0.

HDP: IPv4, 11.0.0.1

TIME VALUES: 30000 ms 30" refresh time

SENDER TEMPLATE: IPv4, Sender 11.0.0.1, Port 0.

SENDER TEMPLATE: IPv4, Sender 11.0.0.1, Port 0.

ADSPEC.
```


PATH forwarded to next node. Hop field changed

Internet Protocol Version 4, Src: 11.0.0.1 (11.0.0.1), Dst: 13.0.0.1 (13.0.0.1)

Resource ReserVation Protocol (RSVP): PATH Message. SESSION: IPv4, Destination 13.0.0.1, Protocol 1, Port 0.

- # RSVP Header. PATH Message.
- # SESSION: IPv4, Destination 13.0.0.1, Protocol 1, Port 0.
- HOP: IPv4, 172,16,0,1
- # TIME VALUES: 30000 ms
- # SENDER TSPEC: IntServ. Token Bucket. 125000 bytes/sec.
- ⊕ ADSPEC

PATH forwarded to destination node

- Internet Protocol Version 4, Src: 11.0.0.1, Dst: 13.0.0.1
- Resource ReserVation Protocol (RSVP): PATH Message. SESSION: IPv4, Destination 13.0.0.1, Protocol 1, Port 0.
 - ▶ RSVP Header. PATH Message.
 - SESSION: IPv4, Destination 13.0.0.1, Protocol 1, Port 0.
 - HOP: IPv4, 13.0.0.2
 - ▶-TIME VALUES: 30000 ms
 - ▶-SENDER TEMPLATE: IPv4, Sender 11.0.0.1, Port 0.
 - ▶-SENDER TSPEC: IntServ, Token Bucket, 125000 bytes/sec.
 - ADSPEC

RESV sent to next hop. Only 500 Kbps reserved

Internet Protocol Version 4, Src: 13.0.0.1 (13.0.0.1), Dst: 13.0.0.2 (13.0.0.2)

Resource ReserVation Protocol (RSVP): RESV Message, SESSION: IPv4. Destination 13.0.0.1. Protocol 1. Port 0.

- B RSVP Header. RESV Message.
- ⊕ SESSION: IPv4, Destination 13.0.0.1, Protocol 1, Port 0.
- ⊕ HOP: IPv4, 13.0.0.1
- # TIME VALUES: 30000 ms
- ⊕ STYLE: Wildcard Filter (17)

Contents Overview Classification Cong. Manag. Cong. Avoid. Shaping RSVP Ref Master Eng. Informatica, 2022/23

The protocol

⊕ SCOPE

CONFIRM to destination if enough resources on R4. RESV sent to next hop

```
Internet Protocol Version 4, Src: 13.0.0.2 (13.0.0.2), Dat: 13.0.0.1 (13.0.0.1)
Resource Reservation Protocol (RSVP): CONFIRM Message.
SESSION: IPv4, Destination 13.0.0.1, Protocol 1, Port 0.
SESSION: IPv4, Destination 13.0.0.1, Protocol 1, Port 0.
SERPOR: IPv4, Error code: Confirmation, Value: 0, Error Node: 12.0.0.1
CONFIRM: Receiver 13.0.0.1
STYLE: Wildcard Filter (17)
Internet Protocol Version 4, Src: 172.16.0.2 (172.16.0.2), Dat: 172.16.0.1 (172.16.0.1)
Resource Reservation Protocol (RSVP): RESV Message. SESSION: IPv4, Destination 13.0.0.1, Protocol 1, Port 0.
SESSION: IPv4, Destination 13.0.0.0 Ms
```

Contents Overview Classification Cong. Manag. Cong. Avoid. Shaping RSVP Ref Master Eng. Informatica, 2022/23

The protocol

TIME VALUES: 30000 ms
 STYLE: Wildcard Filter (17)

CONFIRM to destination if enough resources on R2. RESV sent to next hop

```
Dinternet Protocol Version 4, Src: 172.16.0.1 (172.16.0.1), Dst: 13.0.0.1 (13.0.0.1)

Resource ReserVation Protocol (RSVP): CONFIRM Message. SESSION: IPv4, Destination 13.0.0.1, Protocol 1, Port 0.

PSVP Header. CONFIRM Message.

SESSION: IPv4, Destination 13.0.0.1, Protocol 1, Port 0.

ERROR: IPv4, Error code: Confirmation, Value: 0, Error Node: 12.0.0.1

CONFIRM: Receiver 13.0.0.1

STYLE: Wildcard Filter (17)

FLOWSPEC: Controlled Load: Token Bucket, 62500 bytes/sec.

Internet Protocol Version 4, Src: 11.0.0.2 (11.0.0.2), Dst: 11.0.0.1 (11.0.0.1)

Resource ReserVation Protocol (RSVP): RESV Message. SESSION: IPv4, Destination 13.0.0.1, Protocol 1, Port 0.

HSVIP Header. RESV Message.

SESSION: IPv4, Destination 13.0.0.1, Protocol 1, Port 0.
```


Reserved resources at output interfaces from origin to destination

After a second reservation accepted from R6 results:

Reservation a	it R2							
To	From	Pro	DPort	Sport	Next Hop	I/F	Fi Serv BPS	
13.0.0.1	11.0.0.1	1	0	0	172.16.0.2	Se1/0	WF LOAD 500K	
13.0.0.1	12.0.0.1	1	0	0	172.16.0.2	Se1/0	WF LOAD 500K	

1	Reservation a	t R4							i
	То	From	Pro	DPort	Sport	Next Hop	I/F	Fi Serv BPS	ı
	13.0.0.1	11.0.0.1	1	0	0	13.0.0.1	Fa0/0	WF LOAD 500K	×
	13.0.0.1	12.0.0.1	1	0	0	13.0.0.1	Fa0/0	WF LOAD 500K	П

Integrated services

- 2 type of services can be reserved:
 - Guaranteed-rate
 - Controlled-load
- Guaranteed-rate. Offered service as an unloaded network according to bandwidth requirements. Delay tolerant services. CISCO implements it using WFQ with weights proportional to bandwidth
- Controlled-load. Delivers assured bandwidth with constant delay. Implemented with WRED (not confirmed by experimentation)
- Both types of service may use LLQ. Reservations with rate and burst size below some threshold are considered priority and put into priority queue (Assigned weight is 0)

Reservation styles

- A reservation belongs to a class and a scope
- Two classes:
 - Shared. A single reservation is made for multiple upstream senders
 - 2 Distinct. A reservation established for each sender
- Two scopes:
 - Explicit. The reservation is defined by a explicit list of senders
 - Wildcard. Some wildcard (0) used to define multiple senders
- A sender consists of an origin IP and origin port

Reservation styles

Such a combination of classes and scopes leads to **three** reservation styles

	Classes					
Scope	Distinct	Shared				
Explicit	fixed-filter (FF)	shared-explicit (SE)				
Wildcard	-	Wildcard-filter (WF)				

Reservation styles

Such a combination of classes and scopes leads to **three** reservation styles

	Classes					
Scope	Distinct	Shared				
Explicit	fixed-filter (FF)	shared-explicit (SE)				
Wildcard	-	Wildcard-filter (WF)				

FF:

- Reservation not shared by any other senders
- If another receiver is added for the same sender, reservations are merged
- Example: video broadcast

Reservation styles

Such a combination of classes and scopes leads to **three** reservation styles

	Classes					
Scope	Distinct	Shared				
Explicit	fixed-filter (FF)	shared-explicit (SE)				
Wildcard	-	Wildcard-filter (WF)				

SE:

- Reservation shared by other senders
- Senders explicitly specified by the receiver

Features

Reservation styles

Such a combination of classes and scopes leads to **three** reservation styles

	Classes	
Scope	Distinct	Shared
Explicit	fixed-filter (FF)	shared-explicit (SE)
Wildcard	-	Wildcard-filter (WF)

WF:

- Reservation shared by other senders
- Senders specified by a wildcard
- WF and SE reservations useful for audio conference multicast.
 No more than one link active at the same time

Example 1

Enabling RSVP at interfaces (R2)

```
interface FastEthernet0/0
                                            Maximum amount of
 ip address 11.0.0.2 255.255.255.0
                                        reservable BW per flow (Kbps)
 ip rsvp bandwidth 1200 1200
                                           Default: previous value
interface Serial1/0
```

Maximum amount of reservable BW per i/f.

ip address 172.16.0.1 255.255.255.0 75% of i/f rate as default ip rsvp bandwidth 1150 1150 and as a maximum (Kbps)

Example 1

Enabling RSVP at interfaces (R4)

```
interface FastEthernet0/0
ip address 13.0.0.2 255.255.255.0
ip rsvp bandwidth 1200 1200
!
interface Serial1/0
ip address 172.16.0.2 255.255.255.0
ip rsvp bandwidth 1150 1150
```

Enabling RSVP at interfaces (R3)

```
interface FastEthernet0/0
ip address 13.0.0.1 255.255.255.0
ip rsvp bandwidth 1200 1200
```


Contents Overview Classification Cong. Manag. Cong. Avoid. Shaping RSVP Ref Master Eng. Informatica, 2022/23

Configuration and monitoring

Example 1

RSVP PATH proxy (R2)

For clients without RSVP capabilities

ip rsvp sender 13.0.0.1 11.0.0.1 UDP 5004 0 11.0.0.1 FastEthernet0/0 1000 10

Prev. Hop

Contents Overview Classification Cong. Manag. Cong. Avoid. Shaping RSVP Ref

Configuration and monitoring

Example 1

RSVP CONFIRM (R3)

ip rsvp reservation-host 13.0.0.1 11.0.0.1 UDP 5004 0 WF LOAD 1000 10

Reserv. style

Max burst reserved (KB) BW reserved (kbps)

Generate reserved traffic (tap0)

Average Rate: $\frac{1356.8}{6000.10-6} = 1.8 \text{ Mbps}$

Burst size: 185 - 1356 = 250 KB Burst duration: $185 \cdot 6 \, \text{ms} = 1.11 \, \text{s}$

Example 1

Monitoring reservations (R2 and R4)

```
R2# show ip rsvp reservation
              From
                            Pro DPort Sport Next Hop
                                                                   Fi Serv BPS
13.0.0.1
              0.0.0.0
                            UDP 5004 0
                                           172.16.0.2
                                                                   WF LOAD 1M
R2# show ip rsvp installation
RSVP: FastEthernet0/0 has no installed reservations
RSVP: Serial1/0
                       From
                                       Protoc DPort
                                                             Weight Conversation
1 M
      13.0.0.1
                       0.0.0.0
                                       UDP
```

Example 1. Monitoring queues (R2)

```
R2#show queueing interface Serial 1/0
Interface Serial1/0 queueing strategy: fair
  Input queue: 0/75/0/0 (size/max/drops/flushes): Total output drops: 18256
  Oueueing strategy: weighted fair
  Output queue: 106/1000/64/18256 (size/max total/threshold/drops)
     Conversations 3/4/256 (active/max active/max total)
     Reserved Conversations 1/1 (allocated/max allocated)
     Available Bandwidth 158 kilobits/sec
  (depth/weight/total drops/no-buffer drops/interleaves) 9/6/0/0/0
  Conversation 265, linktype: ip, length: 1360
  source: 11.0.0.1, destination: 13.0.0.1, id: 0xEF7D, ttl: 63,
  TOS: 0 prot: 17, source port 48823, destination port 5004
  (depth/weight/total drops/no-buffer drops/interleaves) 42/32384/4304/0/0
  Conversation 63, linktype: ip, length: 1360
  source: 11.0.0.1, destination: 13.0.0.1, id: 0xEF7D, ttl: 63,
  TOS: 0 prot: 17, source port 48823, destination port 5004
  (depth/weight/total drops/no-buffer drops/interleaves) 55/32384/7187/0/0
  Conversation 28, linktype: ip, length: 1032
  source: 12.0.0.1, destination: 13.0.0.1, id: 0x39A8, ttl: 61, prot: 1
```

Reserved flow. Weight 6 in WFQ

Example 1. Monitoring queues (R2)

```
R2#show queueing interface Serial 1/0
Interface Serial1/0 queueing strategy: fair
  Input queue: 0/75/0/0 (size/max/drops/flushes): Total output drops: 18256
  Oueueing strategy: weighted fair
  Output queue: 106/1000/64/18256 (size/max total/threshold/drops)
     Conversations 3/4/256 (active/max active/max total)
     Reserved Conversations 1/1 (allocated/max allocated)
     Available Bandwidth 158 kilobits/sec
  (depth/weight/total drops/no-buffer drops/interleaves) 9/6/0/0/0
  Conversation 265, linktype: ip, length: 1360
  source: 11.0.0.1, destination: 13.0.0.1, id: 0xEF7D, ttl: 63,
  TOS: 0 prot: 17, source port 48823, destination port 5004
  (depth/weight/total drops/no-buffer drops/interleaves) 42/32384/4304/0/0
  Conversation 63, linktype: ip, length: 1360
  source: 11.0.0.1, destination: 13.0.0.1, id: 0xEF7D, ttl: 63,
  TOS: 0 prot: 17, source port 48823, destination port 5004
  (depth/weight/total drops/no-buffer drops/interleaves) 55/32384/7187/0/0
  Conversation 28, linktype: ip, length: 1032
```

Not reserved flow, Weight 32,384 in WFQ, Best-effort

source: 12.0.0.1, destination: 13.0.0.1, id: 0x39A8, ttl: 61, prot: 1

```
Example 1. Monitoring queues (R2)
R2#show queueing interface Serial 1/0
Interface Serial1/0 queueing strategy: fair
  Input queue: 0/75/0/0 (size/max/drops/flushes): Total output drops: 18256
  Oueueing strategy: weighted fair
  Output queue: 106/1000/64/18256 (size/max total/threshold/drops)
     Conversations 3/4/256 (active/max active/max total)
     Reserved Conversations 1/1 (allocated/max allocated)
     Available Bandwidth 158 kilobits/sec
  (depth/weight/total drops/no-buffer drops/interleaves) 9/6/0/0/0
  Conversation 265, linktype: ip, length: 1360
  source: 11.0.0.1, destination: 13.0.0.1, id: 0xEF7D, ttl: 63,
  TOS: 0 prot: 17, source port 48823, destination port 5004
  (depth/weight/total drops/no-buffer drops/interleaves) 42/32384/4304/0/0
  Conversation 63, linktype: ip, length: 1360
  source: 11.0.0.1, destination: 13.0.0.1, id: 0xEF7D, ttl: 63,
  TOS: 0 prot: 17, source port 48823, destination port 5004
  (depth/weight/total drops/no-buffer drops/interleaves) 55/32384/7187/0/0
  Conversation 28, linktype: ip, length: 1032
  source: 12.0.0.1, destination: 13.0.0.1, id: 0x39A8, ttl: 61, prot: 1
```

Non compliant (token bucket) part from reserved flow. Weight 32,384 in WFQ. Best-effort

Example 2. FF style reservations do packETHcli i tapo -d 6000 -m 2 -f /home/cesar/GNS3/Captures/udp-size 1356-port dest 5004 ip 13.0.0.1.pcap -n 185; ip rsvp reservation-host 13.0.0.1 11.0.0.1 udp 5004 48823 ff load 500 10 ip rsvp reservation-host 13.0.0.1 12.0.0.1 udp 5004 48823 ff load 500 10 13.0.0.1 tap0: 11.0.0.1 11.0.0.2 tap1: 12.0.0.1 12.0.0.2 172.16.0.2 ip rsvp sender 13.0.0.1 11.0.0.1 udp 5004 48823 11.0.0.1 FastEthernet0/0 1000 10 ip rsvp sender 13.0.0.1 12.0.0.1 udp 5004 48823 11.0.0.1 FastEthernet0/0 1000 10 packETHcli -i tap1 -d 6000 -m 2 -f /home/cesar/GNS3/Captures/udp-tap1_size_1356-port_dest_5004_ip_13.0.0.1.pcap -n 0

- Two FF reservations (source port must be included)
- 1000 Kbps asked for and 500 Kbps allowed

Reservation styles by example

Ask for BW from R2

R2(config)# ip rsvp sender 13.0.0.1 11.0.0.1 UDP 5004 48823 11.0.0.1 FastEthernet0/0 1000 10 R2(config)# ip rsvp sender 13.0.0.1 12.0.0.1 UDP 5004 48823 12.0.0.1 FastEthernet0/1 1000 10

FF BW allocation from R3

R3(config)# ip rsvp reservation-host 13.0.0.1 12.0.0.1 UDP 5004 48823 FF LOAD 500 10 R3(config)# ip rsvp reservation-host 13.0.0.1 11.0.0.1 UDP 5004 48823 FF LOAD 500 10

Reserved resources at R2

R2# show ip rsvp reservation Tο From Pro DPort Sport Next Hop I/F Fi Serv BPS 13.0.0.1 11.0.0.1 UDP 5004 48823 172.16.0.2 Se1/0 FF LOAD 500K 13.0.0.1 12.0.0.1 UDP 5004 48823 172.16.0.2 Se1/0 FF LOAD 500K

Reservation styles by example

```
Reserve more than available
R3(config) # no ip rsvp reservation-host 13.0.0.1 12.0.0.1 UDP 5004 48823 FF LOAD 500 10
R3(config) # no ip rsvp reservation-host 13.0.0.1 11.0.0.1 UDP 5004 48823 FF LOAD 500 10
R3(config)# ip rsvp reservation-host 13.0.0.1 11.0.0.1 UDP 5004 48823 FF LOAD 800 10
R2# show ip rsvp reservation
To
             From
                          Pro DPort Sport Next Hop I/F Fi Serv BPS
                        UDP 5004 48823 172.16.0.2 Sel/0 FF LOAD 800K
13 0 0 1
           11.0.0.1
R3(config) # ip rsvp reservation-host 13.0.0.1 12.0.0.1 UDP 5004 48823 FF LOAD 800 10
R2# show ip rsvp reservation
To
             From
                        Pro DPort Sport Next Hop I/F Fi Serv BPS
13.0.0.1
             11.0.0.1
                          UDP 5004 48823 172.16.0.2
                                                      Sel/0 FF LOAD 800K
```

An error message returned from R4 telling that not enough BW

Reservation styles by example

```
SE style reservations
R3(config) # no ip rsvp reservation-host 13.0.0.1 11.0.0.1 UDP 5004 48823 FF LOAD 800 10
R3(config) # no ip rsvp reservation-host 13.0.0.1 12.0.0.1 UDP 5004 48823 FF LOAD 800 10
R3(config) # ip rsvp reservation-host 13.0.0.1 11.0.0.1 UDP 5004 48823 SE LOAD 500 10
R3(config) # ip rsvp reservation-host 13.0.0.1 12.0.0.1 UDP 5004 48823 SE LOAD 800 10
R2# show ip rsvp reservation
To
            From
                          Pro DPort Sport Next Hop
                                                       I/F
                                                                Fi Serv BPS
13 0 0 1
        11.0.0.1
                      UDP 5004 48823 172.16.0.2 Se1/0 SE LOAD 500K
13.0.0.1
           12.0.0.1
                      UDP 5004 48823 172.16.0.2 Sel/0 SE LOAD 800K
R2#show ip rsvp installed
RSVP: Serial1/0
BPS
      To
                      From
                                     Protoc DPort Sport Weight Conversation
      13.0.0.1
800K
                      11.0.0.1
                                                  48823 6
```

Look at queueing

Maximum shared (800 Kbps) for both sessions

Reservation styles by example

```
SE style reservations
R3(config) # no ip rsvp reservation-host 13.0.0.1 11.0.0.1 UDP 5004 48823 FF LOAD 800 10
R3(config) # no ip rsvp reservation-host 13.0.0.1 12.0.0.1 UDP 5004 48823 FF LOAD 800 10
R3(config) # ip rsvp reservation-host 13.0.0.1 11.0.0.1 UDP 5004 48823 SE LOAD 500 10
R3(config)# ip rsvp reservation-host 13.0.0.1 12.0.0.1 UDP 5004 48823 SE LOAD 800 10
R2# show ip rsvp reservation
To
             From
                           Pro DPort Sport Next Hop
                                                         I/F
                                                                  Fi Serv BPS
13 0 0 1
            11 0 0 1
                           UDP 5004 48823 172.16.0.2
                                                         Se1/0
                                                                  SE LOAD 500K
13.0.0.1
            12.0.0.1
                          UDP 5004 48823 172.16.0.2 Se1/0 SE LOAD 800K
R2#show ip rsvp installed
RSVP: Serial1/0
BPS
      To
                      From
                                      Protoc DPort Sport Weight Conversation
800K
      13.0.0.1
                      11.0.0.1
                                             5004
                                                    48823 6
```

```
Not true
Look at queueing
```

```
R2#show queueing interface Serval 1/0
Interface Seriall/0 queueing strategy: fair
(depth/weight/total d.ops/no-buffer drops/interleaves) 2/6/0/0/0
Conversation 265, inktype: ip, length: 1360
source: 12.0.0.1, destination: 13.0.0.1, id: 0xEF7D, ttl: 63,
TOS: 0 prot: 17, source port 48823, destination port 5004
```


Reservation styles by example

```
WF style reservations
R3(config) # no ip reservation-host 13.0.0.1 11.0.0.1 UDP 5004 48823 SE LOAD 500 10
R3(config)# no ip reservation-host 13.0.0.1 12.0.0.1 UDP 5004 48823 SE LOAD 800 10
R3(config)# ip rsvp reservation-host 13.0.0.1 11.0.0.1 UDP 5004 48823 WF LOAD 500 10
R3(config)# ip rsvp reservation-host 13.0.0.1 12.0.0.1 UDP 5004 48823 WF LOAD 800 10
R2# show ip rsvp reservation
To
              From
                            Pro DPort Sport Next Hop
                                                          I/F
                                                                   Fi Serv BPS
13.0.0.1
              0.0.0.0
                            UDP 5004 0
                                            172.16.0.2
                                                          Se1/0
                                                                   WF LOAD 800K
```

Wildcards (IP 0.0.0.0 and port 0) for any source. Maximum reservation used (800 Kbps)

Example 3. Guaranteed-rate. Using PQ

- Traffic from tap0 considered priority. Reserved rate (r) 400 Kbps, burst size (b) 5 **KB**
- Traffic from tap1. Reserved 500 Kbps, burst size 10 KB

Example 3. Guaranteed-rate. Using PQ

R2 configuration for PQ

ip rsvp pq-profile 62500 5000 ignore-peak-value

Max. rate (r') in Bps 62500 Bps = 500 Kbps

Max. burst (b') in Bytes 5000 B = 5 KB

Example 3. Guaranteed-rate. Using PQ

Every reservation such that:

$$r < r'$$
 and $b < b'$

will be considered into PQ

Example 3. Guaranteed-rate. Using PQ

Monitoring reservations

R2#show ip rsvp installed

```
RSVP: FastEthernet0/0 has no installed reservations
RSVP: Serial1/0
BPS
                                                 Sport Weight Conversation
      To
                     From
                                    Protoc DPort
                                           5004 48823 0
400K
    13.0.0.1
                    11.0.0.1
                                    UDP
                                                              264
500K 13.0.0.1
                 12.0.0.1
                                                 48823
                                    UDP
                                           5004
                                                              2.65
RSVP: FastEthernet0/1 has no installed reservations
```

Contents

- QoS Overview
- Classification
- Congestion Management
- Congestion Avoidance
- Policing and shaping
- **6** Resource Reservation Protocol
- Bibliography

Bibliography

- Network Warrior 2nd Ed. Gary A. Donahue. O'Reilly, 2011
- Cisco IOS Quality of Service Solutions Configuration Guide, Release 12.2SR
- Cisco. Quality of Service Networking
- Cisco IOS Quality of Service Solutions Command Reference
- Administering CISCO IP QoS in IP Networks . Syngress, 2001
- Internet QoS: Architectures and Mechanisms for Quality of Service. Zheng Wang. Morgan Kaufmann Publishers, 2001
- Cisco. QoS: RSVP Configuration Guide

