Липецкий государственный технический университет

Факультет автоматизации и информатики Кафедра прикладной математики

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА МАГИСТРА

по направлению 01.04.04 Прикладная математика тип программы Академическая профиль Математическое моделирование в экономике и технике

Математическое моделирование энергосиловых и тепловых режимов на станах холодной прокатки

Студент		Беляев Д.Ю.
Группа МПМ-15-1	подпись, дата	фамилия, инициалы
Руководитель		
к.фм.н., доцент		Орешина М.Н.
учёная степень, учёное звание	подпись, дата	фамилия, инициалы
Нормоконтроль		
программного обеспечения		Сысоев А.С.
_	подпись, дата	фамилия, инициалы
оформления работы		Сысоев А.С.
-	подпись, дата	фамилия, инициалы
Рецензент		
к.т.н., доцент, начальник		
отдела ЭТС ТУ ПАО		
«НЛМК»		Бахтин С.В.
уч. ст., уч. зв., должность	подпись, дата	фамилия, инициалы
Работа рассмотрена кафед	рой и допущена	к защите в ГЭК
Зав. кафедрой		Галкин А.В.
		09.06.2017 г.

Липецкий государственный технический университет

Факультет ФАИ	
Кафедра ПМ	

Зав.	кафедрой	Галк	ИН	A.	В.
	«16»	мая	20	17	Γ.

ЗАДАНИЕ НА ВЫПОЛНЕНИЕ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ

Студенту Беляеву Дмитрию Юрьевичу группы МПМ-15-1

- 1. **Тема** Математическое моделирование энергосиловых и тепловых режимов на станах холодной прокатки

 2. **Исхолные данные** Ланные полученные вхоле предлипломной прак-
- 2. **Исходные данные** Данные полученные входе преддипломной практики, техническая документация, научная и справочная литература.
- 3. Ожидаемые результаты Разработка и программная реализация математических моделей энергосиловых и тепловых режимов на станах холодной прокатки.
- 4. Срок сдачи работы руководителю 02.06.2017 г.
- 5. **Консультант** к.т.н., с.н.с., главный специалист по прокатному производству ПАО «НЛМК» Пименов В.А.
- 6. Дата выдачи задания 16.05.2017 г.
- 7. Руководитель работы

8.

	/Орешина М.Н./
Задание принял к исполнению студент	
	/Беляев Д.Ю./

АННОТАЦИЯ

С. 72. Ил. 30. Табл. 53. Литература 15 назв. Прил. 1

В работе исследуется задача о моделировании энергосиловых и тепловых характеристик в очаге деформации и межклетвых прометутках на непрерывных и реверсивных станах холодной прокатки, а также расчет максимальных скалывающих напряжений в нейтральном сечении по радиусу валка. Для моделирования энергосиловых режимов решается уравнение равновесия Т. Кармана, а для тепловых режимов используется уравнение теплопроводности с различными краевыми условиями.

Разработан программный комплекс, позволяющий рассчитать энергосиловые и тепловые режимы, а также максимальные скалывающие напряжения. Результаты моделирования при различных входных данных могут быть использованы для подбора оптимальных параметров прокатки.

ГРАФИЧЕСКАЯ ЧАСТЬ

Слайд 1. Цель и задачи	1
Слайд 2. Прокатное производство	1
Слайды 3-4. Моделирование энергосиловых режимов	2
Слайд 5. Моделирование тепловых режимов в очаге деформа-	1
ции. Полоса	
Слайд 6. Моделирование тепловых режимов в очаге деформа-	1
ции. Валок	
Слайд 7. Моделирование тепловых режимов на межклетевом	1
промежутке	
Слайд 8. Максимальные скалывающие напряжения	1
Слайд 9. Модуль редактирования файла с технологическими	1
параметрами	
Слайд 10. Программа для вычисления распределения темпера-	1
тур прокатного производства (ХП). Расчет	
Слайд 11. Графическое представление некоторых энергосиловых	1
и тепловых характеристик	
Слайд 12. Полоса в продольном сечении	1
Слайд 13. Полоса в поперечном сечении	1
Слайды 14-17. Настройка коэффициентов теплообмена	4
Слайд 18. Выводы	1
Слайды 19-20. Публикации	2
Всего слайдов	20

Оглавление

В	веде	ние	5
1	Раз	работка математической модели очага деформации	8
	1.1	Моделирование энергосиловых режимов	8
	1.2	Формализация задачи расчета напряженно-деформированного	
		состояния рабочего слоя валка в контакте с полосой	14
	1.3	Моделирование тепловых режимов для полосы и валков в	
		очаге деформации	16
2	Раз	работка математической модели для межклетевого проме-	
	жут	тка	20
	2.1	Формулировка краевой задачи для межклетевого промежутка	20
	2.2	Сведение полученной дифференциальной задачи к конечно-	
		разностной	21
3	Раз	работка комплекса прикладных программ для решения по-	
	стан	вленных задач	22
	3.1	Краткое описание модулей	22
	3.2	«Редактор ini.txt»	22
	3.3	Руководство оператора	29
	3.4	«Программа для вычисления распределения температур про-	
		катного производства (XП)»	34
	3.5	Руководство оператора	42
4	Hac	тройка коэффициентов теплообмена	52
	4.1	Марка стали 08Ю	52
	4.2	Марка стали 0303	58
	4.3	Марка стали ВПС	64
3	аклю	очение	68
C	писо	ок использованных источников	69
П	ри пс	ожения	71

Введение

Процесс пластической деформации между двумя или несколькими вращающимися рабочими валками называется прокаткой. Для холодной прокатки исходным материалом являются горячекатаные рулоны, получаемые на горячей прокатке при помощи непрерывных широкополосных станов [1]. Прокатка осуществляется различными способами [2], которые отличаются:

- направлением обработки (продольная, поперечная и винтовая);
- режимом станов (непрерывный и реверсивный);
- состоянием металла;
- формой изделия.

Тепло, выделяемое в процессе проката, формируется из двух компонент:

- деформация полосы, при которой выделяется большое количество тепла, неравномерно нагревающего валки и изменяющего их профиль;
- трение при контакте валков о прокатываемую полосу.

В прокатном производстве распределение температур на полосе существенно влияет на физико-механические свойства стали. Перегрев валков ведет к уменьшению срока их эксплуатации, а также к нарушению профиля валков, что приводит к ухудшению качества проката [3]. Следовательно, задача моделирования тепловых режимов на стане является актуальной. На рисунках 1 и 2 представлена общая схема непрерывного и реверсивного стана холодной прокатки.

Целью работы является разработка программного обеспечения для расчета энергосиловых параметров прокатки, тепловыделения и распределения температур по поверхности и толщине полосы в очаге деформации и межклетевых промежутках, поверхности и глубине рабочего слоя валков, а также расчет напряженно деформируемого состояния рабочего слоя валка в контакте с полосой.

Для достижения поставленной цели сформулируем следующие задачи:

— расчет энергосиловых параметров;

Рисунок 1 - Общая схема непрерывного стана холодной прокатки

Рисунок 2 – Общая схема реверсивного стана холодной прокатки

- формулировка краевых задач для очага деформации и межклетевого промежутка;
- сведение полученной дифференциальной задачи к конечно-разностной;
- формализация задачи расчета напряженно-деформированного состояния рабочего слоя рабочего валка в контакте с полосой;
- разработка комплекса прикладных программ.

В главе 1 рассматривается математическое моделирование очага деформации, включающая моделирование энергосиловых режимов, расчет напряженно-деформированного состояния рабочего слоя валка в контакте с полосой и моделирование тепловых режимов для полосы и валков в очаге деформации. В главе 2 рассматривается математическая модель межклетевого промежутка. В главе 3 представлена программная реализация математических моделей описанных в главах 1 и 2. В главе 4 представлены расчеты программы.

Некоторые результаты работы опубликованы в сборниках материалов научной конференции по проблемам технических наук за 2014г. [4] и 2015г. [5], VII Международной студенческой электронной научной конференции РАЕ «Студенческий научный форум 2015» [6] и XII научно – практической конференции с международным участием «Современные проблемы горно-металлургического комплекса. Наука и производство» [7].

1 Разработка математической модели очага деформации

1.1 Моделирование энергосиловых режимов

1.1.1 Расчет контактных напряжений

Рассмотрим k-й очаг деформации. Пусть L – длина очага деформации, x – координата по очагу деформации. Для нахождения контактного напряжения $p_{contact}$ необходимо решить уравнения равновесия Т.Кармана [3] в очаге деформации:

$$dp = \left(K_c + \frac{\mu_k p}{\operatorname{tg}\phi}\right) \frac{dh}{h},\tag{1}$$

$$dp = \left(K_c - \frac{\mu_k p}{\operatorname{tg}\phi}\right) \frac{dh}{h},\tag{2}$$

где K_c — сопротивление деформации полосы (см. ниже); μ_k — коэффициент трения; ϕ — угол между касательной к поверхности валка и горизонтальной плоскостью; h — функция, описывающая изменение толщины полосы в очаге. Решение уравнения 1 будем обозначать через p_{back} , а решение уравнения 2 через p_{forw} . Контактное напряжение $p_{contact}$ задается формулой

$$p_{contact}(x) = \min_{x \in [0,L]} \left[p_{back}(x); p_{forw}(x) \right].$$

Нам понадобится также информация о нейтральном сечении, то есть точке x^* пересечения решений уравнений 1 и 2, и толщине $h_{neutr} = h\left(x^*\right)$ в нейтральном сечении. Длина очага деформации определяется по формуле

$$L = \sqrt{R_c \cdot (H_{k-1} - H_k)},\tag{3}$$

где H_k — толщина полосы на входе в очаг; H_{k-1} — толщина полосы на выходе из очага; R_c — радиус деформированного валка в результате упругого сплющивания валков в контакте. Расчет R_c осуществляется по фактическому усилию прокатки $P_{\rm пp}$ по формуле С.С. Чепуркина [3]

$$R_c = R \left[1 + \frac{C_{\rm B} \cdot \theta \cdot F_k}{(H_{k-1} - H_k) \cdot width} \right],\tag{4}$$

где R — исходный радиус валка; $\theta = \frac{1-\nu^2}{\pi E}$ — константа упругих свойств материала валка (ν — коэффициент Пуассона, E — константа Юнга); $C_{\rm B}$ = 14.4 — коэффициент параболической формы эпюры нагружения валка; width — ширина полосы; F_k — фактическое усилие прокатки. Зная длину L очага деформации 3, можно вычислить время моделирования очага $t_{max_k} = \frac{L}{V_k}$.

Для дальнейших расчетов проведем дискретизацию по очагу деформации. Пусть M — число точек в очаге деформации (равное числу точек по времени), $x_{step} = \frac{L}{M}$ — шаг по очагу, $x_i = i \cdot x_{step}$ — расчетные узлы по очагу, $\tau = \frac{t_{max_k}}{M}$ — шаг по времени, $t_i = i \cdot \tau$ — расчетные узлы по времени, $h_i = h\left(x_i\right)$ — толщина полосы в i-ом узле (в x_i месте на очаге деформации). Аналогично для значений остальных функций в i-ом узле будем использовать обозначения p_{back_i} , p_{forw_i} , K_{c_i} , $p_{contact_i}$. Для толщины полосы справледлива [8] формула

$$h_i = H_k + \frac{x_i^2}{R_c}.$$

Для задания начальных условий для уравнений 1 и 2, вычислим [8] минимальные давления p_{back_0} и p_{forw_0} валков на входе в очаг деформации и на выходе из него по формулам

$$p_{back_0} = 1.15 \cdot \sigma_{in} - \sigma_{back},\tag{5}$$

$$p_{forw_0} = 1.15 \cdot \sigma_{out} - \sigma_{forw}, \tag{6}$$

где $\sigma_{in}, \sigma_{out}$ — пределы текучести при растяжении на входе в очаг деформации и на выходе из него; $\sigma_{back}, \sigma_{forw}$ — продольное напряжение (растягивающие напряжения) в полосе на входе в очаг деформации и на выходе из очага. Пределы текучести при растяжении рассчитаем следующим образом

$$\sigma_{in} = \sigma_{T_0} + b \left(\frac{H_0 - H_{k-1}}{H_0} \cdot 100 \right)^c,$$
 (7)

$$\sigma_{out} = \sigma_{T_0} + b \left(\frac{H_0 - H_k}{H_0} \cdot 100 \right)^c, \tag{8}$$

где σ_{T_0} — предел текучести подката; b,c — коэффициенты упрочнения полосы; H_0 — толщина подката. Продольные напряжения (растягивающие напряжения) в полосе на входе в очаг деформации и на выходе из очага определим соотношениями

$$\sigma_{back} = \frac{T_b}{H_{k-1} \cdot width},\tag{9}$$

$$\sigma_{forw} = \frac{T_f}{H_k \cdot width},\tag{10}$$

где T_b и T_f — полное переднее и заднее натяжение. Сопротивление деформации полосы рассчитывается [8] по формуле

$$K_{c_i} = 1.15 \cdot \sigma_{T_i},\tag{11}$$

где предел текучести полосы $\sigma_{T_{i}}\left(h\right)$ определяется соотношением

$$\sigma_{T_i} = \sigma_{T_0} + b \left(\frac{H_0 - h_i}{H_0} \cdot 100 \right)^c. \tag{12}$$

Здесь σ_{T_0} — предел текучести подката; b, c — коэффициенты упрочнения полосы; H_0 — толщина подката.

Находим изменения толщины полосы и сопротивления полосы

$$\Delta h_i = h_i - h_{i-1},\tag{13}$$

$$\Delta K_{c_i} = K_{c_i} - K_{c_{i-1}}. (14)$$

Выпишем итоговые формулы расчета контактных напряжений p_{back_i} и p_{forw_i} соответствующим уравнениями 1 и 2:

$$p_{back_i} = p_{back_{i-1}} + \Delta K_{c_i} + K_{c_i} \cdot \frac{\Delta h_i}{h_i} + \frac{\mu_k \cdot p_{back_i} \cdot 2 \cdot x_{step}}{h_i}, i = 1, \dots, M, \quad (15)$$

$$p_{forw_i} = p_{forw_{i-1}} - \Delta K_{c_i} + K_{c_i} \cdot \frac{\Delta h_i}{h_i} + \frac{\mu_k \cdot p_{forw_i} \cdot 2 \cdot x_{step}}{h_i}, i = 1, \dots, M.$$
 (16)

Напомним, что p_{back_0} и p_{forw_0} определяются по формулам 5 и 6. Тогда контактное напряжение определяется формулой

$$p_{contact_i} = \min\left[p_{back_i}; p_{forw_i}\right]. \tag{17}$$

Номер точки, соответствующей нейтральному сечению, можно рассчитать по формуле

$$i^* = arg \min_{i} |p_{back_i} - p_{forw_i}|.$$

Положение нейтрального сечения можно рассчитать по формуле $x^*=x_{i^*}.$ Тогда

$$h_{neutr} = h_{i^*}. (18)$$

1.1.2 Нахождение коэффициентов трения

После расчета контактного напряжения $p_{contact_k}$ можно определить расчетные усилия прокатки \tilde{F}_k как сумарное давление по площади контакта D_k , то есть

$$\tilde{F}_k = \iint_{D_k} p_{contact_k}(x, y) \, dx \, dy.$$

Считая, что $p_{contact_k}$ не меняется по ширине полосы, получаем

$$\tilde{F}_k = \int_0^L p_{contact_k}(x) \, dx,$$

или в дискретном варианте

$$\tilde{F}_k = width \sum_{i=0}^{N} p_{contact_k} \cdot x_{step}.$$
 (19)

Коэффициенты трения определяются обратным пересчетом по фактическому усилию прокатки. Опишем эту идею подробнее. Для нахождения коэффициента трения μ_k на k-ом очаге задается начальное приближение μ_k^0 . Затем для $j=1,2,\ldots$ выполняются следующие действия [9].

- Шаг 1. В соответствии с пунктом 1.1.1 рассчитать значения контактного напряжения $p_{contact_k}$ и определить расчетные усилия по формуле 19, соответствующие значению коэффициенту трения μ_k^j .
- Шаг 2. В случае выполнения условия $|F_k F_k^j| < \zeta$ коэффициент трения принять равным $\mu_k = \mu_k^j$ и остановить процесс. Иначе пересчитать

коэффициенты трения с помощью формулы

$$\mu_k^{j+1} = \begin{cases} \mu_k^j - \epsilon, & F_k < \tilde{F}_k^j - \zeta, \\ \mu_k^j + \epsilon, & F_k > \tilde{F}_k^j + \zeta \end{cases}$$

и перейти к шагу 1. В качестве ϵ , например, можно использовать значение порядка 10^{-4} , а в качестве ζ величину 0,1 % F_k . Для исключения зацикливания процесса в случае плохого начального приближения необходимо использовать контроль превышения числа итераций. В таблице 1 приведены результаты численных экспериментов подбора коэффициентов трения при различных значениях усилий для 5 клетевого стана холодной прокатки 2030. При этом разница между фактическими и расчетными усилиями не превышает 0,1 %.

Таблица 1 – Нахождение коэффициентов трения

№ опыта	Фактические	Коэффициенты тре-	Расчетные усилия
	усилия (задан-	ния (расчетные)	
	ные)		
1	1090	0,033	1090,41
	1071	0,0355	1071,42
	1107	0,0441	1107,46
	949	0,0423	948,465
	927	0,0288	926,478
2	1290	0,0658	1289,28
	1571	0,0878	1570,79
	1307	0,0607	1307
	1249	0,0631	1248,77

Окончание таблицы 1

№ опыта	Фактические	Коэффициенты тре-	Расчетные усилия
	усилия (задан-	ния (расчетные)	
	ные)		
	1327	0,047	1327,31
3	1390	0,0825	1389,24
	1371	0,0685	1370,13
	1407	0,0677	1406,99
	1449	0,0723	1448,71
	1427	0,0499	1427,64
4	1143	0,041	1142,22
	1171	0,0466	1170,36
	1471	0,0718	1470,47
	1224	0,0617	1223,61
	1006	0,0334	1005,91
5	1443	0,0908	1442,26
	1401	0,0716	1400,47
	1353	0,0639	1352,9
	1024	0,0487	1023,81
	1506	0,0518	1505,48

1.1.3 Моделирование тепловых источников в очаге деформации на основе энергосиловых параметров

Будем считать, что в соответствии с пунктом 1.1.2 подобраны коэффициенты трения и вычислены соответствующие им значения K_{c_i} , $p_{contact_i}$ и h_{neutr} по формулам 11, 17 и 18.

Для расчета тепловыделения за счет трения между полосой и валком необходимо:

1. Вычислить скорость скольжения w_{slip_i} по формуле

$$w_{slip_i} = \left| V_k \cdot \left(\frac{h_{neutr}}{h_i} - 1 \right) \right|, \tag{20}$$

где V_k — скорость полосы на k-ом очаге.

2. Вычислить касательные напряжения τ_{xi} по формуле

$$\tau_{xi} = \mu_k \cdot p_{contact_i}. \tag{21}$$

3. Рассчитать плотность теплового потока q, генерируемого трением в зоне контакта по формуле

$$q_i = \tau_{xi} \cdot w_{slip_i}. \tag{22}$$

Для расчета тепловыделения от объемной деформации полосы необходимо:

1. Вычислить значение выражения

$$\Delta T_{def_i} = \frac{\eta \cdot \sum_{i=0}^{N} K_{c_i} \ln \left(\frac{h_{i-1}}{h_i}\right)}{c_{\Pi} \cdot \lambda_{\Pi}},$$
(23)

где $\eta=0,85$ — коэффициент выходного потока тепла от пластической деформации; $c_{\rm п}$ — удельная теплоемкость полосы; $\lambda_{\rm n}$ — коэффициент теплопроводности полосы.

2. Значения теплового источника для полосы в очаге деформации в момент времени t_i вычислить по формуле

$$f_i = \frac{\Delta T_{def_i}}{t_i}. (24)$$

1.2 Формализация задачи расчета напряженно-деформированного состояния рабочего слоя валка в контакте с полосой

Максимальные скалывающие напряжения рабочего слоя валка будут находиться в нейтральном сечении очага деформации [10]. Пусть OY направлена по радиусу валка в нейтральном сечении, а начало координат находится на поверхности. Каждой координате y по глубине валка поставим в соответствие безразмерную координату $\eta = \frac{y}{L}, \ L$ — длина очага. Для нахождения величины $\tau_{max}(\eta)$ достаточно рассматривать значения $\eta \in \left[0; \frac{1}{2}\right]$.

Для максимальных скалывающих напряжений расчета воспользуемся [11] формулой

$$\tau_{max}(\eta) = -\frac{\eta p_{cp}}{2\pi} \left[\frac{k_1}{a_1} \ln \frac{(a-a_1)^2 + \eta^2}{a^2 + \eta^2} - \frac{k_1 - p_0}{a - a_1} \ln \frac{\eta^2}{(a-a_1)^2 + \eta^2} + \frac{k_2 - p_0}{b_1} \ln \frac{b_1^2 + \eta^2}{\eta^2} - \frac{k_2}{b_1} \ln \frac{4b_1^2 + \eta^2}{b_1^2 + \eta^2} \right] + \frac{6f_{cp}}{\pi} \left[1 - 2\frac{\eta}{a} \arctan \frac{a}{\eta} + \frac{a}{\eta} + \frac{\eta}{b_1} \arctan \frac{2b_1}{\eta} + \frac{\eta^2}{a^2} \ln \left(\frac{a^2}{\eta^2} + 1 \right) + \frac{\eta^2}{4b_1^2} \ln \left(\frac{4b_1^2}{\eta^2} + 1 \right) \right],$$

где η — нейтральное сечение, $p_{cp}=\frac{1}{M}\sum_{i=0}^{M}p_{contact_i}$ — средние нормальные 1. $\frac{M}{}$

напряжения, $au_{cp}=\frac{1}{M}\sum_{i=0}^{M} au_{xi}$ — среднее касательные напряжения, $k_1=\frac{1,15\sigma_{in}-\sigma_{back}}{p_{cp}}$ и $k_2=\frac{1,15\sigma_{out}-\sigma_{forw}}{p_{cp}}$. σ_{in} и σ_{out} — начальное и конечное значение предела текучести, σ_{forw} и σ_{back} — переднее и заднее натяжение, $f_{cp}=\frac{\tau_{cp}}{p_{cp}}$ — коэффициент трения. $a=1-\frac{\gamma}{\alpha}$ где γ — характерирует положение нейтрального сечения, α — угол захвата. $a_1=0,25-0,5\frac{\gamma}{\alpha}$ $b_1=0,5\frac{\gamma}{\alpha}$ $p_0=\frac{p_{max}}{p_{cp}}=\frac{4}{3}\left(2-k_1\left[1-\frac{\gamma}{\alpha}\left(1-\frac{k_2}{k_1}\right)\right]\right)$ — показатель неравномерности распределения давления. Для нахождения величины $\frac{\gamma}{\alpha}$ можно воспользоваться соотношением

$$\frac{\gamma}{\alpha} = \frac{L - x^*}{L} = \frac{L - \frac{i^* \cdot L}{M}}{L} = 1 - \frac{i^*}{M},$$

где i^* — номер точки пересечения решений уравнений 1 и 2. Глубина расположения y^* максимальных скалывающих напряжений определяется формулой

$$y^* = \eta^* \cdot L,$$

где $\eta^* = arg\min_{\eta} (\tau_{max}(\eta))$, при $\eta \in \left[0; \frac{1}{2}\right]$. Для программной реализации можно использовать дискретизацию по OY. В дискретном случае при дискретизации с шагом h имеем набор узлов $y_j = j \cdot h$, $\eta_j = \frac{j \cdot h}{\tau}$.

1.3 Моделирование тепловых режимов для полосы и валков в очаге деформации

1.3.1 Формулировка краевой задачи

Рассмотрим k-й очаг. Полоса толщиной d деформируется валками радиуса R с обеих сторон (см. рисунок 3). Обозначим через u,w — распределение температур на валке и полосе. Ось OZ направлена по нормали к полосе, будем считать, что точка z=0 соответствует центру полосы. В силу симметричности задачи достаточно рассчитать значения температуры полосы при и значения температуры в точках одного валка при $z\in\left[0,\frac{d}{2}\right]$ и значения температуры в точках одного валка при $z\in\left[\frac{d}{2},R+\frac{d}{2}\right]$. Будем считать точку стыка, соответствующую значению $z=\frac{d}{2}$, точкой идеального контакта. Для моделирования распределения

Рисунок 3 – Одна из клетей стана

температур по глубине полосы в очаге деформации сформулирована задача решения одномерного уравнения теплопроводности с краевыми условиями второго рода:

$$\begin{cases} w'_t - a_{\Pi}^2 w''_{zz} = f(z, t), & z \in \left[0, \frac{d}{2}\right], t \in [0, t_{max_k}], \\ w(z, 0) = C_2, & z \in \left[0, \frac{d}{2}\right], t \in [0, t_{max_k}], \\ \frac{\partial w}{\partial z}(0, t) = 0, & t \in [0, t_{max_k}], \\ \frac{\partial w}{\partial z}\left(\frac{d}{2}, t\right) = -\frac{q(t)}{\lambda_{\Pi}}, & t \in [0, t_{max_k}], \end{cases}$$

$$(25)$$

где $a_{\Pi}^2 = \frac{\lambda_{\Pi}}{\rho_{\Pi}c_{\Pi}}$, λ_{Π} — коэффициент теплопроводности стали, ρ_{Π} — плотность стали, c_{Π} — удельная теплоемкость стали, f — функция выделения тепла от деформации, q — плотность теплового потока, генерируемого трением в зоне контакта, C_2 — распределение температур по глубине полосы на входе в очаг деформации. Для расчета дискретных значений функций q и f необходимо воспользоваться формулами 22 и 24 соответственно.

Для моделирования распределения температур на валке в очаге деформации сформулирована задача решения одномерного уравнения теплопроводности с краевыми условиями первого рода:

$$\begin{cases} u'_{t} - a_{\mathsf{B}}^{2} u''_{zz} = 0, & z \in \left[\frac{d}{2}, R + \frac{d}{2}\right], t \in [0, t_{max_{k}}], \\ u(z, 0) = C_{1}, & z \in \left[\frac{d}{2}, R + \frac{d}{2}\right], \\ u\left(\frac{d}{2} + R, t\right) = C_{3}, & t \in [0, t_{max_{k}}], \\ u\left(\frac{d}{2}, t\right) = w\left(\frac{d}{2}, t\right), & t \in [0, t_{max_{k}}]. \end{cases}$$

$$(26)$$

где $a_{\rm B}^2=\frac{\lambda_{\rm B}}{\rho_{\rm B}c_{\rm B}},~\lambda_{\rm B}$ — коэффициент теплопроводности валка, $\rho_{\rm B}$ — плотность стали валка, $c_{\rm B}$ — удельная теплоемкость валка, d — исходная толщина полосы, R — радиус валка, C_1 — распределение температур по глубине рабочего слоя валка на входе в очаг деформации, $C_3=C_1$ — температура в центре валка.

1.3.2 Сведение дифференциальной задачи к конечно-разностной

Рассмотрим первое уравнение системы 25. Будем использовать неявную конечно-разностную схему с четырехточечным шаблоном [12], [13], [14] см. рисунок 4.

Рисунок 4 - Шаблон

Разобьем отрезок $[0,t_{max_k}]$ на M точек с шагом au, а отрезок $\left[0,R+rac{d}{2}
ight]$ — на N точек с шагом h, при этом номер точки стыка $z=rac{d}{2}$ обозначим через $N_{\mathrm{B}}.$ Тогда

$$t_{i} = i \cdot \tau,$$
 $z_{j} = j \cdot h,$
 $f_{j}^{i+1} = f(z_{j}, t_{i}),$
 $w_{j}^{i+1} = w(z_{j}, t_{i}),$
 $u_{j}^{i+1} = u(z_{j}, t_{i}),$

Заменим первое уравнение системы 25 разностными:

$$\frac{w_j^{i+1} - w_j^i}{\tau} = a_{\text{\tiny I}}^2 \frac{w_{j+1}^{i+1} - 2w_j^{i+1} + w_j^i + 1^{i+1}}{h^2} + f_j^{i+1}i = 1, \dots, M, j = 1, \dots, N_{\text{\tiny B}}$$

ИЛИ

$$-\frac{\tau a_{\Pi}^{2}}{h^{2}}w_{j-1}^{i+1} + \left(1 + \frac{2\tau a_{\Pi}^{2}}{h^{2}}\right)w_{j}^{i+1} - \frac{\tau a_{\Pi}^{2}}{h^{2}}w_{j+1}^{i+1} = w_{j}^{i} + f_{j}^{i+1}i = 1, \dots, M, j = 1, \dots, N_{B}$$
(27)

Заменим разностным аналогом начальное и граничные условия

$$w_j^0 = C_2, (28)$$

$$w_0^{i+1} = w_1^{i+1}, (29)$$

$$w_{N_{\rm B}+1}^{i+1} = w_{N_{\rm B}}^{i+1} - \frac{q_i h}{\lambda_{\rm B}} = u_{N_{\rm B}}^{i+1} - \frac{q_i h}{\lambda_{\rm B}}.$$
 (30)

Подставим формулы 29 и 30 в 27, получим

$$\left(1 + \frac{\tau a_{\scriptscriptstyle \Pi}^2}{h^2}\right) w_1^{i+1} - \frac{\tau a_{\scriptscriptstyle \Pi}^2}{h^2} w_2^{i+1} = w_1^i + f_1^{i+1}, \quad j = 1,$$

$$-\frac{\tau a_{\scriptscriptstyle \Pi}^2}{h^2} w_{N_{\scriptscriptstyle B}+1}^{i+1} + \left(1 + \frac{\tau a_{\scriptscriptstyle \Pi}^2}{h^2}\right) w_{N_{\scriptscriptstyle B}}^{i+1} = w_{N_{\scriptscriptstyle B}}^i + f_{N_{\scriptscriptstyle B}}^{i+1} + \frac{\tau a_{\scriptscriptstyle \Pi}^2 q_i}{h \lambda_{\scriptscriptstyle \Pi}}, \quad j = N_{\scriptscriptstyle B}.$$

Для нахождения остальных значений w_j^{i+1} справедливы соотношения

$$-\frac{\tau a_{\scriptscriptstyle \Pi}^2}{h^2}w_{j-1}^{i+1} + \left(1 + \frac{2\tau a_{\scriptscriptstyle \Pi}^2}{h^2}\right)w_j^{i+1} - \frac{\tau a_{\scriptscriptstyle \Pi}^2}{h^2}w_{j+1}^{i+1} = w_j^i + f_j^{i+1}, j = 2, \ldots, N_{\scriptscriptstyle \rm B} - 1.$$

Таким образом, для расчета значений слоя i+1 получаем СЛАУ относительно w_j^{i+1} , $j=1,\ldots,N_{\rm B}$. Первое уравнение системы 26 заменим разностными уравнениями:

$$\frac{u_j^{i+1} - u_j^i}{\tau} = a_{\mathrm{B}}^2 \frac{u_{j+1}^{i+1} - 2u_j^{i+1} + u_j^i + 1^{i+1}}{h^2}, \quad i = 1, \dots, M, \quad j = N_{\mathrm{B}}, \dots, N$$

ИЛИ

$$-\frac{\tau a_{\rm B}^2}{h^2}u_{j-1}^{i+1} + \left(1 + \frac{2\tau a_{\rm B}^2}{h^2}\right)u_j^{i+1} - \frac{\tau a_{\rm B}^2}{h^2}u_{j+1}^{i+1} = u_j^i i = 1,\dots, M, j = N_{\rm B},\dots, N.$$
(31)

Начальные и граничные условия примут вид

$$u_j^{N_{\rm B}} = C_1,$$
 $u_N^{i+1} = C_3,$ (32)

$$u_0^{i+1} = w_{N_n}^{i+1}. (33)$$

Подставим формулу 32 в 31 и 33 в 31, результате получим

$$\begin{split} &-\frac{\tau a_{\mathrm{B}}^2}{h^2}u_{N_{\mathrm{B}}}^{i+1} + \left(1 + \frac{2\tau a_{\mathrm{B}}^2}{h^2}\right)u_{N_{\mathrm{B}}}^{i+1} = u_{N_{\mathrm{B}}}^i + \frac{\tau a_{\mathrm{B}}^2}{h^2}C^3, \quad j = N_{\mathrm{B}}.\\ &-\frac{\tau a_{\mathrm{B}}^2}{h^2}u_{N_{\mathrm{B}}+1}^{i+1} + \left(1 + \frac{2\tau a_{\mathrm{B}}^2}{h^2}\right)u_{1}^{i+1} - \frac{\tau a_{\mathrm{B}}^2}{h^2}u_{2}^{i+1} = \frac{\tau a_{\mathrm{B}}^2q_{i}}{\lambda h}u_{1}^i, \quad j = N_{\mathrm{B}}, \end{split}$$

где $w_{N_{\rm B}+1}^{i+1}=w_{N_{\rm B}}^{i+1}-\frac{q_ih}{\lambda}$ точка стыка. Для нахождения остальных значений u_i^{i+1} справедливы соотношения

$$-\frac{\tau a_{\mathtt{B}}^2}{h^2}u_{j-1}^{i+1} + \left(1 + \frac{2\tau a_{\mathtt{B}}^2}{h^2}\right)u_j^{i+1} - \frac{\tau a_{\mathtt{B}}^2}{h^2}u_{j+1}^{i+1} = u_j^i, \quad j = N_{\mathtt{B}} - 1, \dots, N - 1.$$

Таким образом, для расчета значений слоя i+1 получаем СЛАУ относительно $u_j^{i+1}, j=N_{\text{\tiny B}},\dots,N.$

2 Разработка математической модели для межклетевого промежутка

2.1 Формулировка краевой задачи для межклетевого промежутка

На k-ом межклетевом промежутке происходит конвективный теплообмен полосы толщиной d с охлаждающей жидкостью с температурой $T_{\text{возд}}$. Обозначим через w — распределение температур на полосе. Ось OZ направлена по нормали к полосе. В силу симметричности задачи достаточно рассчитать значения температуры для $z \in \left[0, \frac{d}{2}\right]$. Время моделирования составляет $t_{max_k} = \frac{S}{Vm_k}$, где S — длина межклетевого промежутка, Vm_k — скорость на межклетевом промежутке. В качестве Vm_k для непрерывных станов используется скорость на предыдущей клети, для реверсивных станов — скорость на соответствующем проходе.

Для моделирования распределения температур по глубине полосы в межклетевом промежутке сформулирована задача решения одномерного уравнения теплопроводности с краевыми условиями второго и третьего рода:

$$\begin{cases} w'_{t} - a_{\Pi}^{2} w''_{zz} = 0, & z \in \left[0, \frac{d}{2}\right], t \in \left[0, t_{max_{k}}\right], \\ w(z, 0) = C_{4}, & z \in \left[0, \frac{d}{2}\right], \\ \frac{\partial w}{\partial z}(0, t) = 0, & t \in \left[0, t_{max_{k}}\right], \\ \frac{\partial w}{\partial z}\left(\frac{d}{2}, t\right) = -\frac{\alpha}{\lambda_{\Pi}}\left(w\left(\frac{d}{2}, t\right) - \theta(t)\right), & t \in \left[0, t_{max_{k}}\right], \end{cases}$$

$$(34)$$

где $a_{\Pi}^2 = \frac{\lambda_{\Pi}}{\rho_{\Pi} c_{\Pi}}$, λ_{Π} — коэффициент теплопроводности стали, ρ_{Π} — плотность стали, c_{Π} — удельная теплоемкость стали, C_4 — распределение температур по глубине полосы на входе в межклетевой промежуток, α — коэффициент теплообмена ($\alpha = \alpha_{\text{эм}}^{k,l}$) или $\alpha = \alpha_{\text{возд}}^{k,l}$), θ — температура окружающей среды ($\theta(t) = T_{\text{эм}}$ или $\theta(t) = T_{\text{возд}}$).

2.2 Сведение полученной дифференциальной задачи к конечно-разностной

Применим шаблон для неявной конечно-разностной схемы описанный выше для первого уравнения системы 34.

$$-\frac{\tau a_{\Pi}^{2}}{h^{2}}w_{j-1}^{i+1} + \left(1 + \frac{2\tau a_{\Pi}^{2}}{h^{2}}\right)w_{j}^{i+1} - \frac{\tau a_{\Pi}^{2}}{h^{2}}w_{j+1}^{i+1} = w_{j}^{i}, i = 1, \dots, M, j = 1, \dots, N_{B}.$$
(35)

Заменяем разностным аналогом начальные условия системы 34

$$w_j^0 = C_{4j},$$

граничные условия

$$w_0^{i+1} = w_1^{i+1}, \quad w_{N_{\mathtt{B}}}^{i+1} = rac{\lambda_{\mathtt{\Pi}} w_{N_{\mathtt{B}}}^{i+1} + \alpha h \theta(t)}{\lambda_{\mathtt{\Pi}} + \alpha h}.$$

Подставим граничное условие $w_0^{i+1}=w_1^{i+1}$ в 35, получим

$$\left(1 + \frac{2\tau a_{\Pi}^2}{h^2}\right) w_j^{i+1} - \frac{\tau a_{\Pi}^2}{h^2} w_{j+1}^{i+1} = w_j^i, \quad j = 1.$$
(36)

Подставим граничное условие $w_{N_{\rm B}}^{i+1} = \frac{\lambda_{\rm \Pi} w_{N_{\rm B}}^{i+1} + \alpha h \theta(t)}{\lambda_{\rm \Pi} + \alpha h}$ в 35, получим

$$-\frac{\tau a_{\Pi}^{2}}{h^{2}}w_{N_{B}-1}^{i+1} + \left(1 + \frac{\tau a_{\Pi}^{2}\lambda_{\Pi}}{h^{2}(\lambda_{\Pi} + \alpha h)} + \frac{2\tau a_{\Pi}^{2}}{h^{2}}\right)w_{N_{B}}^{i+1} = w_{N_{B}-1}^{i} + \frac{\tau a_{\Pi}^{2}\alpha h\theta(t)}{h^{2}(\lambda_{\Pi} + \alpha h)}, j = N_{B}.$$
(37)

Для нахождения остальных значений w_i^{i+1} справедливы соотношения

$$-\frac{\tau a_{\Pi}^2}{h^2}w_{j-1}^{i+1} + \left(1 + \frac{2\tau a_{\Pi}^2}{h^2}\right)w_j^{i+1} - \frac{\tau a_{\Pi}^2}{h^2}w_{j+1}^{i+1} = w_j^i, \quad j = 2, \dots, N_{\mathrm{B}} - 1.$$

Таким образом, для расчета значений слоя i+1 получаем СЛАУ относительно $w_j^{i+1},\ j=1,\dots,N_{\text{B}}.$

3 Разработка комплекса прикладных программ для решения поставленных задач

3.1 Краткое описание модулей

Программный продукт представляет собой комплекс программ, состоящий из двух модулей. Первый модуль – «workfile.exe», второй – «armtechnology.exe». Комплекс написан на языке C++, с использованием среды разработки Qt. Программное обеспечение предназначена для моделирования процесса холоднокатаного производства. Все результаты расчетов, представленные во втором модуле можно сохранить.

3.2 «Редактор ini.txt»

3.2.1 Общие сведения

Наименование: «Редактор ini.txt». Программа предназначена для работы с файлом технологических параметров «ini.txt» (создание и редактирование существующего).

3.2.2 Функциональное назначение

Модуль имеет два режима работы с файлом «ini.txt»:

- создание файла;
- правка файла.

В модуле реализованы функции записи, считывания и упорядоченного хранения данных.

3.2.3 Описание логической структуры

Программа имеет структуру обработчика событий по нажатию кнопки. Диаграмма классов представлена в приложении A.1. Используемые классы представлены в таблице 2.

Таблица 2 – Классы и их назначение

Класс	Назначение		
WorkFile	Выполняет связующую роль между классами Stan и		
	MarkSteel. Обращается к ним, если осуществляется: про-		
	смотр и сохранение данных. Реализует работу главного		
	окна и обращения к файлу с технологическими парамет-		
	рами		
MarkSteel	Реализует упорядоченное хранение и предоставление дан-		
	ных по маркам стали		
Stan	Реализует упорядоченное хранение и предоставление дан-		
	ных по станам		
addstan	Отвечает за окно добавления нового стана		
addsteel	Отвечает за окно добавления новой марки стали		

Описание методов класса WorkFile приведено в таблице 3.

Таблица 3 – Описание класса WorkFile

Метод	Описание	Передаваемые параметры
void addStan (QString	Добавление	NewName - название ста-
NewName, int	стана. Обраща-	на; NewNumKl - число
NewNumKl, double	ется к классу	клетей, NewLengthMkl -
NewLengthMkl,	Stan для до-	длина межклетевого про-
int NewModeStan,	бавления в	межутка, NewModeStan
QString	него объектов	- тип стана, NewSpeed -
NewSpeed,QString		скорость, NewSizeCtrip -
NewSizeCtrip, double		размер полосы (с подка-
NewSizeRwr, double		том), NewSizeRwr - радиус
NewWidthCstrip,		валка, NewWidthCstrip -
double		ширина полосы, NewTCold
NewTCold,QString		- температура охлаждаю-
NewFriction,		щей жидкости, NewFriction
QString NewTB,		- коэффициенты трения,
QString NewTF, int		NewTB - заднее натяже-
NewCstripPoints, int		ние, NewTF - переднее
NewTimePoints, int		натяжение, NewCstripPoints
NewBeginTemperature		- число точек на по-
Cstrip, int		лосе, NewTimePoints -
NewBeginTemperature		число точек по времени,
Rwr)		NewBeginTemperatureCstrip
		- начальная тем-
		пература полосы,
		NewBeginTemperatureRwr
		- начальная температура
		валка

Окончание таблицы 3

Метод		Описание	Передаваемые параметры
void addSteel (QString	Добавление	NewName - название мар-
NewName,	int	марки стали.	ки, NewGroup - ее группа,
NewGroup,	double	Обращает-	NewC - коэффициент удель-
NewC,	double	ся к классу	ной теплоемкости, NewRho -
NewRho,	double	MarkSteel для	плотность, NewLambda - ко-
NewLambda,	double	добавления в	эффициент теплопроводно-
NewSigmaT0,		него объектов	сти, NewSigmaT0 - предел
double NewCT, double			текучести, NewCT - коэффи-
NewBT)			циент упрочнения, NewBT -
			коэффициент упрочнения

Описание методов класса MarkSteel приведено в таблице 4. Таблица 4 – Описание класса MarkSteel

Метод	Описание	Передаваемые параметры
void addValu	е Добавляет па-	NewName - название мар-
(QString NewName	, раметры марки	ки, NewGroup - ее группа,
int NewGroup	, стали в списки	NewC - коэффициент удель-
double NewC, doubl	е строк	ной теплоемкости, NewRho -
NewRho, doubl	5	плотность, NewLambda - ко-
NewLambda, doubl	5	эффициент теплопроводно-
NewSigmaT0, doubl	5	сти, NewSigmaT0 - предел
NewCT, doubl	5	текучести, NewCT - коэффи-
NewBT)		циент упрочнения, NewBT -
		коэффициент упрочнения

Описание методов класса Stan приведено в таблице 5.

Таблица 5 – Описание класса Stan

Метод	Описание	Передаваемые параметры
void addValue	Добавляет па-	NewName - название ста-
(QString NewName,	раметры стана	на; NewNumKl - число
int NewNumKl, double	в списки строк	клетей, NewLengthMkl -
NewLengthMkl,		длина межклетевого про-
int NewModeStan,		межутка, NewModeStan
QString		- тип стана, NewSpeed -
NewSpeed, QString		скорость, NewSizeCtrip -
NewSizeCtrip, double		размер полосы (с подка-
NewSizeRwr, double		том), NewSizeRwr - радиус
NewWidthCstrip,		валка, NewWidthCstrip -
double NewTCold,		ширина полосы, NewTCold
QString NewFriction,		- температура охлаждаю-
QString NewTB,		щей жидкости, NewFriction
QString NewTF,		- коэффициенты трения,
double NewT, int		NewTB - заднее натяже-
NewCstripPoints, int		ние, NewTF - переднее
NewTimePoints, int		натяжение, NewCstripPoints
NewBeginTemperature		- число точек на по-
Cstrip, int		лосе, NewTimePoints -
NewBeginTemperature		число точек по времени,
Rwr)		NewBeginTemperatureCstrip
		- начальная тем-
		пература полосы,
		NewBeginTemperatureRwr
		- начальная температура
		валка

3.2.4 Используемые технические средства

Минимальные требования для работы «Редактор ini.txt»:

- OC: Windows 7, Windows 8, Windows 10;
- доп. ПО: Qt Creator;
- процессор: 2.8 ГГц;

- оперативная память: 512 МБ;
- видеоадаптер: от 256 МБ;
- свободное место не менее 50 МБ;
- устройства ввода информации: клавиатура, мышь.

3.2.5 Установка и удаление

Программа не требует установки. Папка с программой представляет собой каталог (см. рисунок 5), в котором присутствуют два текстовых файла формата ТХТ, исполняемый файл «workfile.exe» и папкой «Settings» с вложенным «ini.txt».

Рисунок 5 - Каталог программы

Eсли папки «Setting» не будет, она будет создана при запуске программы. При добавлении через приложение станов, марок стали полосы и валков будет осуществлена запись в файл.

3.2.6 Вызов и загрузка

Для вызова программы необходимо запустить исполняемый файл «workfile.exe».

3.2.7 Входные данные

Входными данными для модуля является файл «ini.txt». Структура файла состоит из тегов и ключевых слов. После каждого ключего слова должен стоять знак «=» и значение, а после каждого набора тег-значения пустая строка.

В первой строке указывается тег «[beginCommon]» — предназначен для указания ключевых слов: «CountStan» — количество станов в файле, «CountSteel» — количество марок стали полосы и «CountSteelRwr» — число марок валка. Затем теги записываются в следующем порядке: «[Stani]», «[Steeli]» и «[SteelRwri]», где вместо i ставится номер стана, марки стали полосы и марки стали валка соответственно. Тег

«[Stan]» описывается ключевыми словами: «nameStan» — название стана, «numberkl» — число клетей (проходов), «lengthmkl» — длина межклетевого промежутка, «mode» — тип стана, «speed» — скорость, «sizeCstrip» — толщина полосы, «sizeRwr» — размер валка, «widthCstrip» — ширина полосы, «tCold» — температура эмульсии, «friction» — коэффициенты трения, «tB» — заднее натяжение, «tF» — переднее натяжение, «cstripPoints» — число точек по полосе, «timePoints» — число точек по времени, «beginTemperatureCstrip» — начальная температура полосы, «beginTemperatureRwr» — начальная температура валка, «force» — усилия. Тег «[Steel]» характеризуется ключевыми словами: «патеSteel» — название марки, «group» — ее группа, «с» — удельная теплоемкость, «rho» — плотность, «lambda» — коэффициент теплопроводности, «sigmatO» — предел текучести подката, а также ключами «сt» и «bt» — коэффициенты упрочнения полосы. У тега «[SteelRwr]» ключи аналогичны «[Steel]». Пример структуры файла представлен на рисунке 6.

Рисунок 6 - Структура файла «ini.txt»

3.2.8 Выходные данные

Результатом выполнения программы является файл с технологическими параметрами «ini.txt».

3.3 Руководство оператора

3.3.1 Назначение программы

Программа предоставляет инструменты для работы с «ini.txt» — файлом технологических параметров (создание и редактирование существующего).

3.3.2 Условия выполнения программы

Минимальные требования для работы модуля «Редактор ini.txt»:

- OC: Windows 7, Windows 8, Windows 10;
- доп. ПО: Qt Creator;
- процессор: 2.8 ГГц;
- оперативная память: 512 MБ;
- видеоадаптер: от 256 МБ;
- свободное место не менее 50 МБ;
- устройства ввода информации: клавиатура, мышь.

3.3.3 Выполнение программы

Программа служит для создания «ini.txt» — файла с технологическими параметрами для «arm-technology.exe». На рисунке 7 представлено главное окно «workfile.exe».

Рисунок 7 - Главное окно программы

С помощью модуля можно:

- добавить новый стан;
- добавить новую марку полосы и валка;
- посмотреть характеристики станов.

Если файл «ini.txt» не создан, тогда порядок действий для создания нового стана следующий:

- запустить «workfile.exe» (рисунок 7);
- с помощью кнопки «Добавить стан» вызвать окно с технологическими характеристиками стана (рисунок 8);

Рисунок 8 - Окно добавление нового стана

— заполнить все поля (рисунок 9).

При нажатии на кнопку «Добавить», окно закроется и будет создана запись в файле «ini.txt». В элементе «Стан» программы «workfile.exe», появится добавленный элемент (рисунок 10).

Добавление осуществляется в конец списка.

Если «ini.txt» файл существует и находится в папке «Settings», то программа запишет новый к уже имеющимся станам. Порядок действий для создания стана будет таким же, как при отсутствии файла «ini.txt».

Порядок действий для создания новой марки стали для полосы:

Рисунок 9 - Заполнение полей

Рисунок 10 – Добавленный стан

- запустить «workfile.exe» (рисунок 7).
- с помощью кнопки «Добавить сталь полосы» вызвать окно добавления марки стали (рисунок 11);

Рисунок 11 - Окно добавление марки стали для полосы

— заполнить поля (рисунок 12).

Рисунок 12 – Заполнение полей

При нажатии на кнопку «Добавить», окно закроется и произойдет запись данных в файл. В элементе «Марка стали полосы» программы «workfile.exe», появится добавленный элемент (рисунок 13).

Добавление осуществляется в конец списка.

Порядок действий для создания новой марки стали для валка:

— запустить «workfile.exe» (рисунок 7);

Рисунок 13 – Добавленная марка стали

— с помощью кнопки «Добавить сталь валка» вызвать окно добавления марки стали (рисунок 14);

Рисунок 14 - Добавление марки стали для валка

Дальнейший порядок действий такой же, как при добавлении марки стали полосы.

Просмотр характеристик выбранного стана или марки стали Для просмотра характеристик станов и марок стали необходимо:

- запустить «workfile.exe» (рисунок 7);
- нажать на кнопку «Показать», откроется окно, в котором представлены характеристики стана или марки стали полосы и валка (рисунок 15).

Рисунок 15 – Просмотр характеристик

3.3.4 Сообщения оператору

При запуске программы без файла «ini.txt» будет выведено предупреждение с сообщением «Файл с технологическими параметрами ini.txt не найден или его невозможно прочитать!» приведенное на рисунке 16).

Рисунок 16 - Предупреждение о создании директории «Settings»

В случае возникновения предупреждения пользователю нужно нажать на кнопку «OK» и продолжить работу с модулем «workfile.exe» для создания файла «ini.txt».

3.4 «Программа для вычисления распределения температур прокатного производства (XП)»

3.4.1 Общие сведения

Наименование: «Программа для вычисления распределения температур прокатного производства (ХП)». Модуль предназначен для моделирования процесса холоднокатаного производства.

3.4.2 Функциональное назначение

Модуль реализуется в составе прикладного комплекса программ и обеспечивает расчет:

- распределения температур по всей линии стана от разматывателя до моталки, включая распределение по толщине полосы, длине очага деформации, глубине рабочего слоя валков, в межклетевых промежутках;
- расчет напряженно-деформированного состояния рабочего слоя рабочего валка в контакте с полосой, включая расчет глубины и величины максимальных скалывающих напряжений.

В таблице 6 представлены некоторые реализованные возможности модуля.

Таблица 6 - Возможности модуля

Возможность	Чем реализовано	
Распределение темпера-	Конечно-разностная схема с четырехточеч-	
тур на валке и в очаге	ным шаблоном	
деформации		
Графическое представ-	Библиотека QCustomPlot реализует графи-	
ление вычисляемой ин-	ческое представление с помощью стандарт-	
формации	ных средств Qt	
Расчет фактических	Пересчет коэффициента трения	
усилий		
Тепловой поток, генери-	Формула 22	
руемый трением в зоне		
контакта		
Максимальные скалы-	Формула 1.2	
вающие напряжения		
Предел текучести	Формула 11	

3.4.3 Описание логической структуры

Программа имеет структуру обработчика событий по нажатию кнопки. Диаграмма классов представлена в приложении A.2. Используемые классы представлены в таблице 7.

Таблица 7 - Классы и их назначение

Класс	Назначение	
WorkFile	Выполняет связующую роль между классами Stan и	
	MarkSteel. Обращается к ним, если осуществляется:	
	просмотр и сохранение данных. Реализует работу глав-	
	ного окна и обращения к файлу с технологическими	
	параметрами	
MarkSteel	Реализует упорядоченное хранение и предоставление	
	данных по маркам стали	
Stan	Реализует упорядоченное хранение и предоставление	
	данных по станам	
rollingsteel	Отвечает за логику прокатного производства	

Описание методов классов WorkFile, MarkSteel и Stan приводилось выше в таблицах 3, 4 и 5. Описание методов класса rollingsteel представлено в таблице 8.

Таблица 8 – Описание класса rollingsteel

Метод	Описание	Передаваемые параметры
Kletb(int value, in	Выполняет	value - позиция выбранного
iter)	расчет $iter$ -	стана, iter - текущий очаг
	прохода очага	деформации
	деформации	
MKletb(int value, in	Выполняет	iter - текущий межклетевой
iter)	расчет $iter$ -	промежуток
	прохода меж-	
	клетевого	
	промежутка	

3.4.4 Используемые технические средства

Минимальные требования для работы модуля «Программа для вычисления распределения температур прокатного производства $(X\Pi)$ »:

- OC: Windows 7, Windows 8, Windows 10;
- доп. ПО: Qt Creator;
- процессор: 2.8 ГГц;

- оперативная память: 1 ГБ;
- видеоадаптер: от 512 MБ;
- свободное место не менее 50 МБ;
- устройства ввода информации: клавиатура, мышь.

3.4.5 Установка и удаление

Программа не требует установки, для работы программы достаточно скопировать каталог с «arm-technology.exe» и папку «Settings» с файлами «ini.txt» и «heatini.txt» — предназначен для настройки коэффициентов теплообмена.

3.4.6 Вызов и загрузка

Для вызова программы необходимо запустить исполняемый файл «arm-technology.exe».

3.4.7 Входные данные

Входными данными для модуля является файл «ini.txt» и «heatini.txt» (их присутствие в каталоге обязательно). Структура файла «ini.txt» представлена в пункте 3.2.7. Опишем структуру файла «heatini.txt». Файл состоит из ключевых слов «mode0» и «mode1». Ключ «mode0» – используется для непрерывных станов, «mode1» – для реверсивных. После ключей идут значения коэффициента теплообмена с указанием среды («w» – эмульсия, «а» – воздух). Пример файла показан на рисунке 17.

Рисунок 17 - Структура файла «heatini.txt»

Величины, приведенные в таблице 9, являются заданными и соответствуют технологическим параметрам, теплофизическим характеристикам полосы и валков и характеристикам оборудования станов. Толщина полосы должна быть всегда меньше, чем на предыдущем проходе. Для выполнения расчетов входные параметры автоматически преобразуются в систему СИ.

Таблица 9 – Входные параметры

Обозначение	Название	Диапазон	Единицы измерения (СИ)
		значений	
H_0	Подкат	0,2-6	Миллиметры; мм
H_k	Толщина поло-	0,2-6	Миллиметры; мм
	сы после k-ого		
	очага деформа-		
	ции		
$\lambda_{\scriptscriptstyle \Pi}$	Коэффициент	10-80	Ватты, деленные на произ-
	теплопровод-		ведение метры на градусы
	ности для		Цельсия; $\frac{B_T}{(M \cdot {}^{\circ}C)}$
	полосы		(M·°C)
$\lambda_{\scriptscriptstyle exttt{B}}$	Коэффициент	10-80	Ватты, деленные на произ-
	теплопровод-		ведение метры на градусы
	ности для		Цельсия; $\frac{B_T}{(M \cdot {}^{\circ}C)}$
	валка		(M··C)
$ ho_{\scriptscriptstyle \Pi}$	Плотность ме-	7400-8000	Килограмм, деленный на
	талла полосы		объем; $\frac{\kappa_1}{M^3}$
$ ho_{ exttt{B}}$	Плотность ме-	7400-8000	Килограмм, деленный на
	талла валка		объем; $\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$
$c_{\scriptscriptstyle \Pi}$	Удельная теп-	400-700	Джоуль, деленный на про-
	лоемкость по-		изведение килограмма и
	лосы		градуса Цельсия; $\frac{\mathcal{L} \mathbb{X}}{(\kappa \Gamma \cdot {}^{\circ}C)}$
$c_{\mathtt{B}}$	Удельная теп-	400-700	Джоуль, деленный на про-
	лоемкость вал-		изведение килограмма и
	ка		градуса Цельсия; $\frac{\mathcal{L}_{W}}{(Kr \cdot {}^{o}C)}$

Продолжение таблицы 9

Обозначение	Название	Диапазон	Единицы измерения (СИ)
		значений	
F_k	Фактическое	100-3000	Тонны; т
	усилие в k -ом		
	очаге		
μ_k^0	Начальное	0,01-0,2	Безразмерный
	приближение		
	для коэффици-		
	ента трения на		
	k-ом очаге		
T_{f_k}	Переднее натя-	2-30	Тонны; т
	жение в k-ом		
	очаге		
T_{b_k}	Заднее натяже-	2-30	Тонны; т
	ние в k -ом оча-		
	ге		
S	Длина межкле-	2-15	Метры; м
	тевого проме-		
	жутка		
R	Радиус валка	125-325	Миллиметры; мм
N	Число точек по	40-100	Штук
	полосе		
M	Число точек по	40-100	Штук
	времени		
V_k	Скорость в k -	1-1800 на	Метры в минуту; М
	ом очаге	непрерыв-	МИН
		ном стане	
		и 1-900 на	
		реверсив-	
		НОМ	

Продолжение таблицы 9

Обозначания	Название	Пиопосои	Emmunia nomonomia (CIA)
Обозначение	Пазвание	Диапазон	Единицы измерения (СИ)
		значений	
ct, bt	Коэффициенты	ct=0,001-	Безразмерный
	упрочнения	0,999;	
		bt=1-30	
σ_{T0}	Предел текуче-	1-100	Ньютон, деленный на мил-
	сти подката		лиметры в квадрате; $\frac{\Pi}{\text{мм}^2}$
width	Ширина поло-	1000-2000	Миллиметры; мм
	СЫ		
T_{Π}	Начальная тем-	20-200	Градусы Цельсия; °С
	пература поло-		
	СЫ		
$T_{\mathtt{B}}$	Начальная тем-	20-200	Градусы Цельсия; °С
	пература валка		
$T_{\scriptscriptstyle 9M}$	Температура	40-65	Градусы Цельсия; °С
	эмульсии		
	(охлаждающей		
	жидкости)		
$T_{ exttt{возд}}$	Температура	20-100	Градусы Цельсия; °С
	воздуха окру-		
	жающей среды		
$C_{\mathtt{B}}$	Коэффициент	10-20	Миллиметры в квадрате
	параболиче-		деленные на килограмм;
	ской формы		$\frac{\text{MM}^2}{}$
	эпюры нагру-		КГ
	жения валка		

Окончание таблицы 9

Обозначение	Название	Диапазон значений	Единицы измерения (СИ)
ν	Коэффициент Пуассона	0,1-0,5	Безразмерный
E	Коэффициент Юнга	20000- 25000	Килограмм, деленный на миллиметры в квадрате; $\frac{\kappa \Gamma}{MM^2}$
$lpha_{ ext{\tiny 9M}}^{k,l}$	Коэффициент теплообме- на эмульсии (охлаждающей жидкости) на k -ом проме- жутке в l -ой зоне охлажде- ния	1-10000	Ватты, деленные на про- изведение метров в квад- рате и градуса Цельсия; Вт мм ² ·°C
$lpha_{ t bo 3 extsf{J}}^{k,l}$	Коэффициент теплообмена воздуха на k - ом промежутке в l -ой зоне охлаждения	1-10000	Ватты, деленные на про- изведение метров в квад- рате и градуса Цельсия; $\frac{\text{Вт}}{\text{мм}^2\cdot {}^{\circ}\text{C}}$

3.4.8 Выходные данные

Результатом выполнения программы является:

- расчетные усилия при адаптированном коэффициенте трения;
- таблица распределения тепла на всех очагах деформации и межклетевых промежутках;
- график температур по глубине;
- график продольного среза полосы;
- график поперечного среза полосы;
- график максимальных скалывающих напряжений;
- график температуры на поверхности полосы;

- график контактных напряжений;
- график предела текучести;
- график теплового потока.
 - 3.5 Руководство оператора

3.5.1 Назначение программы

Пакет прикладных программ осуществляет – при заданном технологическом режиме - расчет энергосиловых параметров прокатки (усилий, моментов, мощностей и др.), тепловыделения и распределения температур по поверхности и толщине полосы в клетях и межклетевых промежутках, температур и напряжений по поверхности и глубине рабочего слоя валков для действующих станов холодной прокатки НЛМК: 5клетевого стана 2030 ПХПП, 4-клетевого стана 1400 ПДС, реверсивного стана ПДС, реверсивного стана ПТС. Использование пакета в технологической практике позволит анализировать и оптимизировать действующие технологические режимы (по критериям повышения производительности, выравнивания нагрузок, исключения перегрева, достижения требуемой температуры, энергоэффективности и т.д.), выявлять причины ухудшения качества проката (тепловые дефекты поверхности, пробуксовки и т.д.) и повреждения оборудования (перегрузки, перегрев). Использование пакета при разработке новых технологических режимов позволит сократить сроки и уменьшить потери при разработке, предотвратить повреждение оборудования и полностью использовать его ресурсы.

3.5.2 Условия выполнения программы

Минимальные требования для работы модуля «Программа для вычисления распределения температур прокатного производства $(X\Pi)$ »:

- OC: Windows 7, Windows 8, Windows 10;
- доп. ПО: Qt Creator;
- процессор: 2.8 ГГц;
- оперативная память: 1 ГБ;
- видеоадаптер: от 512 МБ;
- свободное место не менее 50 МБ;
- устройства ввода информации: клавиатура, мышь.

3.5.3 Выполнение программы

На рисунке 18 представлено главное окно «arm-technology.exe».

Рисунок 18 - Главное окно программы

- 1 панель задания технологических параметров. Согласно файлу «ini.txt» технологических параметров можно выбрать: стан, марку стали полосы и валка, тогда значения остальных параметров предлагаются по умолчанию, их можно менять в допустимых пределах.
- 2 кнопка настройки коэффициентов теплообмена. Изначально параметры предлагаются по умолчанию.

Окно настройки коэффициентов теплообмена для непрерывных станов представлены на рисунке 19, для реверсивных станов и 20.

Для непрерывных станов на межклетевом промежутке всегда включена эмульсия. Для реверсивных станов используют четыре зоны охлаждения полосы, на которых можно менять, с чем взаимодействует полоса (эмульсия или воздух) и как сильно она остывает за счет увеличения или уменьшения коэффициента теплообмена на каждой зоне [15]. Чем больше значение коэффициента теплообмена полосы при контакте с эмульсией или воздухом, тем сильней она остывает. За счет изменения коэффициентов на разных зонах можно достигать различных температур полосы. Примеры коэффициентов теплообмена приведены в главе 4.

Рисунок 19 – Непрерывный стан. Настройка коэффициентов теплообмена

Рисунок 20 – Реверсивный стан. Настройка коэффициентов теплообмена

- 3 кнопка «Вычислить», при ее нажатии производится расчет с текущими значениями, заданными в панели 1.
 - 4 таблица распределения температур.
- 5 графическая область приложения. После окончания расчета здесь появится восемь различных графиков.
- 6 панель быстрого доступа. С помощью нее можно сохранить результаты таблицы распределения температур в файл формата CSV. «Открыть CSV для стана 2030» открывает файл с расширением «.csv» выгруженный из системы КРОТ и на его основе производится расчет. В файле обязательно должны присутствовать столбцы со значениями скорости и толщинами полос, включая подкат. Кнопка выхода из приложения.

После нажатия кнопки «Вычислить» появляются таблица распределения температур на полосе и валке в очаге деформации и межклетевом промежутке, графическая информация и сообщение о расчетных усилиях и коэффициенте трения (рисунок 21).

Рисунок 21 - Расчет окончен

В таблице распределения температур строки соответствуют разным моментам времени (первая строка – первый момент времени для очага или межклетевого промежутка), столбцы – точкам по глубине полосы

и валка (первый столбец — центр полосы). Таблица раскрашена в два цвета: красный — полоса, синий — валок. Табличные значения можно сохранить в файл с расширением «.csv» (рисунок 22).

Рисунок 22 - Фрагмент сохраненного файла

В панели 5 можно выбрать график, чтобы посмотреть его подробнее в отдельном окне. В нем его можно: развернуть на весь экран, сохранить и включить или отключить легенду графика (по умолчанию включена). График температур по глубине по умолчанию отображает значения температуры на выходе из последнего очага деформации по глубине полосы и рабочего слоя валка. Розовая зона соответствует полосе, а голубая — валку. Можно выбрать другой очаг или межклетевой промежуток в любой момент времени.

График «Температура на поверхности полосы» отображает температуру на поверхности в продольном срезе полосы. Розовые зоны соответствуют очагам деформации, а зеленые – межклетевым промежуткам.

Графики «Предел текучести», «Контактное напряжение», «Тепловой поток, генерируемый трением в зоне контакта» и «Максимальные скалывающие напряжения» отображают соответствующие значения для всех очагов на одном рисунке. В окне у графика «Максимальные скалывающие напряжения» присутствует таблица со значением максимума и глубины по радиусу валка, где она достигается (рисунок 28).

Рисунок 23 - График температур по глубине полосы

Рисунок 24 - График температур на поверхности полосы

Рисунок 25 - Предел текучести

Рисунок 26 - Контактное напряжение

Рисунок 27 - Тепловой поток, генерируемый трением в зоне контакта

Рисунок 28 - Максимальные скалывающие напряжения

«Распределение температур в продольном сечении полосы» отображает значения температур по глубине полосы и рабочего слоя валка в очагах деформации, а также по глубине полосы в межклетевом промежутке (межклетевым промежуткам соответствуют зоны, над которыми находятся темно-синие прямоугольники).

Рисунок 29 - Распределение температур в продольном сечении

«Распределение температур в поперечном сечении полосы» по умолчанию отображается в момент времени, соответствующий выходу из последнего очага. Можно выбрать другой очаг или межклетевой промежуток и любой момент времени для него.

Рисунок 30 - Распределение температур в поперечном сечении полосы

3.5.4 Сообщения оператору

В программе представлены следующие сообщения об ошибках.

Сообщение «Файл не найден или его невозможно прочитать!» возникает при отсутствии файла «ini.txt». В случае возникновения ошибки пользователю нужно нажать на кнопку «OK» и убедиться в наличии файла «ini.txt». Если его нет — создать с помощью модуля «workfile.exe».

Сообщение «Превышено максимальное число итераций! Не возможно подобрать коэффициент трения под режим усилий.» возникает при подборе коэффициента трения. В случае возникновения ошибки пользователю нужно нажать на кнопку «ОК» и изменить значения усилий на одной или нескольких клетях.

4 Настройка коэффициентов теплообмена

Представим исходные данные, подобранные коэффициенты теплообмена, показания пирометров и расчетных значений тепловых режимов на контрольных точках реверсивных станах. Таблицы с показаниями пирометров и смоделированных температур будем подразделять на 4 секции: 1 — входная моталка, 2 — стол до очага деформации, 3 — стол после очага деформации, 4 — выходная моталка.

4.1 Марка стали 08Ю

Пример 1.

Ширина полосы = 1250, марка стали – 08Ю, $T_{\text{эм}}=50,\ T_{\text{возд}}=20.$ Исходные данные приведены в таблице 10.

Габлица	10	_	Исходные	данные

k-й проход	V_k	F_k	T_{b_k}	T_{f_k}	H_k
0	-	-	-	-	1,848
1	279	750	9,2	15,6	1,033
2	255	670	10,2	14,0	0,652
3	353	614	7,1	10,0	0,431
4	308	615	5,0	6,8	0,290
5	403	667	2,0	3,1	0,210

Полученные в результате адаптации коэффициенты теплообмена приведены в таблице 11.

Таблица 11 - Коэффициенты теплообмена

<i>k</i> -й проход	Зона1	Зона2	ЗонаЗ	Зона4	Зона4	ЗонаЗ	Зона2	Зона1
1	1600в	1600в	1600в	1600э	225в	225в	80в	80в
2	100э	100э	100э	1800э	1800в	550в	10в	10в
3	130э	230э	330э	1800э	1800в	300в	10в	10в
4	100э	200э	300э	1300э	1300в	200в	5в	5в

Окончание таблицы 11

<i>k</i> -й проход	Зона1	Зона2	ЗонаЗ	Зона4	Зона4	ЗонаЗ	Зона2	Зона1
5	70э	170э	270э	е008	800в	160в	2300в	230в

В таблице 12 приведены экспериментальные значения температур, полученные с помощью пирометра.

Таблица 12 - Показания пирометра

<i>k</i> -й проход	1	2	3	4
1	58,66867	47,07479	121,5202	106,3478
2	100,3073	115,4795	121,2471	128,0421
3	122,8252	112,5566	120,5207	103,8607
4	97,23356	111,0839	111,2071	115,0236
5	109,1293	99,11263	110,2236	88,90903

В таблице 13 приведены расчетные значения температур, полученные с помощью программы с коэффициентами теплообмена из таблицы 11.

Таблица 13 - Коэффициенты теплообмена

<i>k</i> -й проход	1	2	3	4
1	58	47,0776	121,502	117,92
2	117,949	115,474	127,206	122,279
3	122,282	112,73	123,255	120,089
4	120,09	111,327	112,423	109,348
5	109,348	99,0145	110,616	88,5767

Пример 2.

Ширина полосы = 1250, марка стали – 08Ю, $T_{\text{эм}}=50,\ T_{\text{возд}}=20.$ Исходные данные приведены в таблице 14.

Таблица 14 – Исходные данные

<i>k</i> -й проход	V_k	F_k	T_{b_k}	T_{f_k}	H_k
0	-	-	-	-	1,849
1	190	778	9,2	15,5	1,033
2	301	703	10,2	14,0	0,652
3	390	648	7,2	10,0	0,431
4	339	657	5,0	6,8	0,290
5	401	730	2,0	3,1	0,211

Полученные в результате адаптации коэффициенты теплообмена приведены в таблице 15.

Таблица 15 - Коэффициенты теплообмена

<i>k</i> -й проход	Зона1	Зона2	ЗонаЗ	Зона4	Зона4	ЗонаЗ	Зона2	Зона1
1	1100в	1100в	1100в	1100э	120в	120в	50в	50в
2	е08	е08	е08	1800э	1800в	550в	10в	10в
3	130э	230э	330э	1900э	1900в	350в	10в	10в
4	100э	200э	300э	1360э	1360в	220в	5в	5в
5	70э	170э	270э	770э	770в	140в	215в	215в

В таблице 16 приведены экспериментальные значения температур, полученные с помощью пирометра.

Таблица 16 – Показания пирометра

<i>k</i> -й проход	1	2	3	4
1	59,62383	47,83656	123,1193	108,2653
2	104,1563	117,0698	130,3523	136,213
3	131,0967	121,0359	127,0696	112,7649
4	104,7047	118,1471	117,3804	120,6673
5	115,1507	104,854	115,5184	95,80751

В таблице 17 приведены расчетные значения температур, полученные с помощью программы с коэффициентами теплообмена из таблицы 15.

Таблица 17 - Расчетные значения температур

k-й проход	1	2	3	4
1	59	47,8122	123,142	118,476
2	118,505	116,971	134,105	129,662
3	129,665	120,636	129,634	126,19
4	126,192	117,509	118,426	115,199
5	115,2	104,793	115,898	94,0041

Пример 3.

Ширина полосы = 1270, марка стали – 08Ю, $T_{\text{эм}}=50,\ T_{\text{возд}}=20.$ Исходные данные приведены в таблице 18.

Таблица 18 – Исходные данные

<i>k</i> -й проход	V_k	F_k	T_{b_k}	T_{f_k}	H_k
0	-	-	-	-	2,282
1	111	701	10,2	20,5	1,548
2	261	679	12,2	16,3	1,086
3	380	656	9,2	10,2	0,760
4	301	648	6,1	7,1	0,547
5	441	614	4,1	5,1	0,410

Полученные в результате адаптации коэффициенты теплообмена приведены в таблице 19.

Таблица 19 – Коэффициенты теплообмена

<i>k</i> -й проход	Зона1	Зона2	ЗонаЗ	Зона4	Зона4	ЗонаЗ	Зона2	Зона1
1	1800в	1800в	1800в	1800э	240в	240в	80в	80в
2	200э	200э	200э	1800э	1800в	550в	10в	10в
3	230э	330э	430э	2200э	2200в	650в	35в	35в
4	200э	300э	400э	2100э	2100в	500в	5в	5в
5	240э	340э	440э	1450э	1450в	370в	30в	30в

В таблице 20 приведены экспериментальные значения температур, полученные с помощью пирометра.

Таблица 20 - Показания пирометра

k-й проход	1	2	3	4
1	47,18893	29,30495	75,87238	80,69667
2	77,59534	72,48068	104,8232	110,6942
3	105,4461	96,19495	115,0492	122,6013
4	115,4491	107,5942	100,2879	107,2015
5	103,7909	93,3341	98,44204	106,1495

В таблице 21 приведены расчетные значения температур, полученные с помощью программы с коэффициентами теплообмена из таблицы 19.

Таблица 21 – Расчетные значения температур

<i>k</i> -й проход	1	2	3	4
1	47	32,6722	81,218	77,5772
2	77,6022	74,3821	106,564	104,304
3	104,307	98,0634	120,249	116,42
4	116,429	109,621	107,448	103,934
5	103,934	93,5827	109,334	105,704

Пример 4.

Ширина полосы = 1250, марка стали – 08Ю, $T_{\text{\tiny 9M}}=50,\ T_{\text{\tiny ВОЗД}}=20.$ Исходные данные приведены в таблице 22.

Таблица 22 – Исходные данные

<i>k</i> -й проход	V_k	F_k	T_{b_k}	T_{f_k}	H_k
0	-	-	-	-	2,492
1	143	727	10,2	20,3	1,649
2	389	671	13,3	18,4	1,155
3	553	624	11,2	12,8	0,820
4	371	595	8,2	9,2	0,612

Окончание таблицы 22

k-й проход	V_k	$\mid F_k \mid$	T_{b_k}	T_{f_k}	H_k
5	464	574	5,1	6,1	0,480
6	294	709	2,1	2,7	0,211

Полученные в результате адаптации коэффициенты теплообмена приведены в таблице 23.

Таблица 23 - Коэффициенты теплообмена

<i>k</i> -й проход	Зона1	Зона2	ЗонаЗ	Зона4	Зона4	ЗонаЗ	Зона2	Зона1
1	2400в	2400в	2400в	2400э	280в	280в	125в	125в
2	430э	430э	430э	1800э	1800в	560в	45в	45в
3	480э	580э	680э	2600э	2600в	800в	100в	100в
4	450э	550э	650э	2570э	2570в	630в	5в	5в
5	240э	340э	440э	1980э	1980в	545в	30в	30в
6	35э	35э	35э	2400э	2400в	195в	5в	5в

В таблице 24 приведены экспериментальные значения температур, полученные с помощью пирометра.

Таблица 24 - Показания пирометра

<i>k</i> -й проход	1	2	3	4
1	51,38486	35,32304	81,40515	85,70946
2	82,39244	76,44199	118,9985	122,6205
3	115,1823	107,5562	130,2705	139,128
4	128,4586	119,1285	111,5122	114,8363
5	110,6885	101,7826	103,1254	108,1684
6	83,27098	99,01802	90,76926	91,37973

В таблице 25 приведены расчетные значения температур, полученные с помощью программы с коэффициентами теплообмена из таблицы 23.

Таблица 25 – Расчетные значения температур

<i>k</i> -й проход	1	2	3	4
1	51	35,0377	86,4035	82,2331
2	82,2783	76,5504	118,333	116,03
3	116,048	107,528	133,517	128,865
4	128,897	119,373	113,479	110,125
5	110,126	101,481	103,365	99,8264
6	99,8304	99,0099	94,5238	91,0474

4.2 Марка стали 0303

Пример 1.

Ширина полосы = 1030, марка стали – 0303, $T_{\text{эм}}=50,\ T_{\text{возд}}=20.$ Исходные данные приведены в таблице 26.

Таблица 26 – Исходные данные

<i>k</i> -й проход	V_k	F_k	T_{b_k}	T_{f_k}	H_k
0	-	-	-	-	2,021
1	131	785	10,2	18,7	1,334
2	274	772	12,2	16,6	0,934
3	393	738	7,1	8,3	0,671
4	257	720	4,6	5,7	0,521

Полученные в результате адаптации коэффициенты теплообмена приведены в таблице 27.

Таблица 27 - Коэффициенты теплообмена

<i>k</i> -й проход	Зона1	Зона2	ЗонаЗ	Зона4	Зона4	ЗонаЗ	Зона2	Зона1
1	700в	700в	700в	850э	850в	280в	10в	10в
2	10э	10э	10э	2290э	2290в	575в	10в	10в
3	170э	170э	170э	2950э	2950в	720в	10в	10в
4	10э	10э	10э	2040э	2040в	500в	5в	5в

В таблице 28 приведены экспериментальные значения температур, полученные с помощью пирометра.

Таблица 28 - Показания пирометра

<i>k</i> -й проход	1	2	3	4
1	74,41118	60,71149	113,1083	109,4117
2	108,8148	111,3995	131,304	134,9157
3	133,1143	127,559	134,2169	132,2713
4	131,5456	132,7785	107,1856	108,0586

В таблице 29 приведены расчетные значения температур, полученные с помощью программы с коэффициентами теплообмена из таблицы 27.

Таблица 29 - Расчетные значения температур

<i>k</i> -й проход	1	2	3	4
1	74	60,6263	113,877	111,567
2	111,571	111,197	136,564	133,014
3	133,018	127,347	136,8	132,538
4	132,54	132,208	112,183	107,633

Пример 2.

Ширина полосы = 1030, марка стали – 0303, $T_{\text{эм}}=50,\ T_{\text{возд}}=20.$ Исходные данные приведены в таблице 30.

Таблица 30 – Исходные данные

<i>k</i> -й проход	V_k	F_k	T_{b_k}	T_{f_k}	H_k
0	-	-	-	-	1,990
1	103	741	10,2	18,6	1,334
2	196	768	12,3	16,6	0,933
3	187	751	7,2	8,3	0,671
4	166	719	4,6	5,7	0,521

Полученные в результате адаптации коэффициенты теплообмена приведены в таблице 31.

Таблица 31 - Коэффициенты теплообмена

<i>k</i> -й проход	Зона1	Зона2	ЗонаЗ	Зона4	Зона4	ЗонаЗ	Зона2	Зона1
1	360э	360э	360э	1650э	1650в	300в	10в	10в
2	10э	10э	10э	1660э	1660в	475в	10в	10в
3	185э	185э	185э	1760э	1760в	450в	10в	10в
4	10э	10э	10э	1320э	1320в	270в	10в	10в

В таблице 32 приведены экспериментальные значения температур, полученные с помощью пирометра.

Таблица 32 - Показания пирометра

<i>k</i> -й проход	1	2	3	4
1	135,2356	120,1963	119,1932	115,1204
2	113,8882	116,3018	128,5581	131,5881
3	130,1957	122,9497	119,0522	114,8226
4	112,7766	114,0414	96,22141	99,08869

В таблице 33 приведены расчетные значения температур, полученные с помощью программы с коэффициентами теплообмена из таблицы 31.

Таблица 33 - Расчетные значения температур

<i>k</i> -й проход	1	2	3	4
1	135	120,407	119,923	116,607
2	116,611	116,098	134,99	130,792
3	130,796	122,581	119,42	114,325
4	114,327	113,788	103,21	99,1111

Пример 3.

Ширина полосы = 1030, марка стали – 0303, $T_{\text{эм}}=50$, $T_{\text{возд}}=20$. Исходные данные приведены в таблице 34.

Таблица 34 – Исходные данные

<i>k</i> -й проход	V_k	F_k	T_{b_k}	T_{f_k}	H_k
0	-	-	-	-	2,008
1	116	783	10,2	18,6	1,334
2	300	795	12,2	16,6	0,934
3	301	771	7,2	8,3	0,671
4	253	747	4,6	5,7	0,521

Полученные в результате адаптации коэффициенты теплообмена приведены в таблице 35.

Таблица 35 - Коэффициенты теплообмена

<i>k</i> -й проход	Зона1	Зона2	ЗонаЗ	Зона4	Зона4	ЗонаЗ	Зона2	Зона1
1	650э	650э	650э	1390э	1390в	245в	10в	10в
2	10э	10э	10э	2080э	2080в	485в	10в	10в
3	185э	185э	185э	2590э	2590в	565в	10в	10в
4	10э	10э	10э	2090э	2090в	300в	10в	10в

В таблице 36 приведены экспериментальные значения температур, полученные с помощью пирометра.

Таблица 36 – Показания пирометра

<i>k</i> -й проход	1	2	3	4
1	103,4887	89,64002	118,6145	114,4009
2	114,0988	116,6639	142,246	144,6559
3	143,9412	137,5817	135,7642	132,1058
4	131,0922	132,3982	110,7779	112,7201

В таблице 37 приведены расчетные значения температур, полученные с помощью программы с коэффициентами теплообмена из таблицы 35.

Таблица 37 – Расчетные значения температур

<i>k</i> -й проход	1	2	3	4
1	103	89,5574	119,046	116,551
2	116,555	116,099	146,745	143,707
3	143,711	137,34	136,873	132,352
4	132,355	131,924	115,805	112,425

Пример 4.

Ширина полосы = 1030, марка стали – 0303, $T_{\text{\tiny 9M}}=50,\,T_{\text{\tiny ВОЗД}}=20.$ Исходные данные приведены в таблице 38.

Таблица 38 – Исходные данные

<i>k</i> -й проход	V_k	F_k	T_{b_k}	T_{f_k}	H_k
0	-	-	-	-	1,986
1	178	732	10,2	18,7	1,333
2	210	752	12,3	16,6	0,935
3	214	729	7,2	8,3	0,670
4	223	686	4,6	5,7	0,522

Полученные в результате адаптации коэффициенты теплообмена приведены в таблице 39.

Таблица 39 - Коэффициенты теплообмена

k-й проход	Зона1	Зона2	ЗонаЗ	Зона4	Зона4	ЗонаЗ	Зона2	Зона1
1	700в	700в	700в	920э	920в	330в	10в	10в
2	10э	10э	10э	2050э	2050в	375в	10в	10в
3	170э	170э	170э	2100э	2100в	370в	10в	10в
4	13э	13э	13э	1650э	1650в	300в	10в	10в

В таблице 40 приведены экспериментальные значения температур, полученные с помощью пирометра.

Таблица 40 - Показания пирометра

k-й проход	1	2	3	4
1	83,00573	70,52084	120,1364	117,0618
2	116,9653	119,3634	133,329	136,67
3	136,1063	128,7501	125,1579	121,3883
4	120,1565	121,1996	103,9453	107,1898

В таблице 41 приведены расчетные значения температур, полученные с помощью программы с коэффициентами теплообмена из таблицы 39.

Таблица 41 – Расчетные значения температур

<i>k</i> -й проход	1	2	3	4
1	83	70,809	121,645	119,576
2	119,581	119,267	139,473	136,137
3	136,141	128,58	125,901	121,853
4	121,855	121,17	110,975	107,345

Пример 5.

Ширина полосы = 1030, марка стали – 0303, $T_{\text{\tiny 9M}}=50,\,T_{\text{\tiny ВОЗД}}=20.$ Исходные данные приведены в таблице 42.

Таблица 42 – Исходные данные

<i>k</i> -й проход	V_k	F_k	T_{b_k}	T_{f_k}	H_k
0	-	-	-	-	1,994
1	123	739	10,2	18,8	1,335
2	221	773	12,2	16,6	0,934
3	223	743	7,1	8,3	0,671
4	262	684	4,6	5,7	0,522

Полученные в результате адаптации коэффициенты теплообмена приведены в таблице 43.

Таблица 43 - Коэффициенты теплообмена

<i>k</i> -й проход	Зона1	Зона2	ЗонаЗ	Зона4	Зона4	ЗонаЗ	Зона2	Зона1
1	500э	500э	500э	1380э	1380в	270в	10в	10в
2	10э	10э	10э	2150э	2150в	270в	10в	10в
3	185э	185э	185э	2240э	2240в	365в	10в	10в
4	15э	15э	15э	1830э	1830в	275в	10в	10в

В таблице 44 приведены экспериментальные значения температур, полученные с помощью пирометра.

Таблица 44 – Показания пирометра

<i>k</i> -й проход	1	2	3	4
1	118,6216	104,5897	126,2815	122,2748
2	121,6637	123,8968	135,4912	139,9116
3	139,6855	131,675	124,9676	123,0708
4	121,5912	122,3165	109,098	113,7745

В таблице 45 приведены расчетные значения температур, полученные с помощью программы с коэффициентами теплообмена из таблицы 43.

Таблица 45 – Расчетные значения температур

<i>k</i> -й проход	1	2	3	4
1	118	104,608	126,93	124,202
2	124,207	123,727	142,382	139,879
3	139,883	131,725	126,94	123,065
4	123,068	122,298	116,782	113,706

4.3 Марка стали ВПС

Пример 1.

Ширина полосы = 1040, марка стали – ВПС, $T_{\text{эм}}=50,\ T_{\text{возд}}=20.$ Исходные данные приведены в таблице 46.

Таблица 46 – Исходные данные

<i>k</i> -й проход	V_k	F_k	T_{b_k}	T_{f_k}	H_k
0	-	-	-	-	2,274
1	153	1080	9,2	22,5	1,532
2	507	1036	16,3	20,6	0,984
3	504	1088	10,7	12,9	0,630
4	529	1114	6,6	8,3	0,420
5	404	1236	5,1	6,2	0,285

Полученные в результате адаптации коэффициенты теплообмена приведены в таблице 47.

Таблица 47 - Коэффициенты теплообмена

<i>k</i> -й проход	Зона1	Зона2	ЗонаЗ	Зона4	Зона4	ЗонаЗ	Зона2	Зона1
1	2000э	2000э	1000э	1000э	1000в	685в	5в	5в
2	15э	15э	40э	1300э	1300в	770в	10в	10в
3	440э	440э	800э	1300э	1300в	800в	85в	85в
4	10э	10э	400э	1500э	1500в	150в	10в	10в
5	100э	100э	е008	1070э	1070в	107в	84в	84в

В таблице 48 приведены экспериментальные значения температур, полученные с помощью пирометра.

Таблица 48 - Показания пирометра

<i>k</i> -й проход	1	2	3	4
1	82,11049	68,21401	121,4183	119,3993
2	119,7977	119,1666	187,0934	191,6016
3	187,4124	173,2124	218,5094	208,3001
4	208,5213	204,4753	231,3628	230,2496
5	233,5801	213,5334	203,4249	189,9884

В таблице 49 приведены расчетные значения температур, полученные с помощью программы с коэффициентами теплообмена из таблицы 47.

Таблица 49 - Расчетные значения температур

<i>k</i> -й проход	1	2	3	4
1	82	68,2209	121,908	118,638
2	118,64	118,039	190,397	187,319
3	187,325	173,208	218,893	208,287
4	208,323	204,467	232,759	230,19
5	230,333	213,074	203,272	189,887

Пример 2.

Ширина полосы = 1040, марка стали – ВПС, $T_{\text{\tiny 9M}}=50,\ T_{\text{\tiny ВОЗД}}=20.$ Исходные данные приведены в таблице 50.

Таблица 50 - Исходные данные

<i>k</i> -й проход	V_k	F_k	T_{b_k}	T_{f_k}	H_k
0	-	-	-	-	2,270
1	131	1069	9,2	22,3	1,533
2	290	1106	16,3	20,4	0,984
3	364	1133	10,7	12,7	0,631
4	416	1077	8,2	9,2	0,422
5	418	1025	7,1	8,2	0,285

Полученные в результате адаптации коэффициенты теплообмена приведены в таблице 51.

Таблица 51 – Коэффициенты теплообмена

<i>k</i> -й проход	Зона1	Зона2	ЗонаЗ	Зона4	Зона4	ЗонаЗ	Зона2	Зона1
1	1100э	1100э	900э	е008	20в	20в	20в	20в
2	200э	300э	400э	3000э	150в	150в	150в	150в
3	250э	350э	450э	4500э	120в	120в	120в	120в
4	100э	170э	230э	3200э	230в	230в	230в	230в
5	200э	250э	300э	5000э	50в	50в	50в	50в

В таблице 52 приведены экспериментальные значения температур, полученные с помощью пирометра.

Таблица 52 – Показания пирометра

k-й проход	1	2	3	4
1	71,44368	64,20819	134,857	144,89474
2	142,2845	134,55412	175,9338	188,68198
3	188,606	171,21463	210,0072	218,54111
4	214,9062	203,10501	195,4575	200,58264
5	199,8641	179,89991	195,661	194,96637

В таблице 53 приведены расчетные значения температур, полученные с помощью программы с коэффициентами теплообмена из таблицы 51.

Таблица 53 – Расчетные значения температур

<i>k</i> -й проход	1	2	3	4
1	71	64,2696	143,805	142,483
2	142,496	133,428	197,971	188,178
3	187,419	171,586	227,655	216,341
4	216,393	204,293	226,84	199,823
5	199,884	179,284	201,417	193,468

Заключение

В ходе работы были получены модели, описывающие процесс проката на непрерывных и реверсивных станах. Моделирование энергосиловых параметров производилось с помощью уравнения Т. Кармана. Коэффициент трения находился подбором значений под заданные усилия. Для моделирования тепловых режимов использовалось уравнение теплопроводности с граничными условиями первого и второго рода в очаге деформации, а второго и третьего рода в межклетевом промежутке. Также были приведены формулы максимальных скалывающих напряжений в нейтральном сечении очага деформации по радиусу валка.

Модели и расчетные формулы реализованы в пакете прикладных программ. Все выходные характеристики предоставляются в табличном или графическом виде. Использование программного обеспечения в технологической практике позволит анализировать и оптимизировать технологические режимы, выявлять причины ухудшения качества проката и повреждения оборудования.

Список использованных источников

- 1. Полухин П. И., Хензель А., Полухин В. Технология процессов обработки металлов давлением. М.:Металлургия, 1988. 408 с.
- 2. Целиков А. И., Никитин Г. С., Рокотян С. Теория продольной прокатки. М.:Металлургия, 1980. 320 с.
- 3. Пименов В. А., Бабушко Ю. Ю., Бахтин С. В. Разработка технологии реверсивной холодной прокатки тонкого высококремнистого проката на основе математической модели энергосиловых и тепловых процессов // Сталь. 2014. № 10. с. 35—39.
- 4. Беляев Д. Ю., Орешина М. Н. Моделирование теплового режима контакта валок-полоса при холодной прокатке. // Материалы научной конференции по проблемам технических наук. т. 1. Липецк: ЛГТУ, 2014. с. 26—28.
- 5. Беляев Д. Ю., Орешина М. Н., Пименов В. А. Разработка математических моделей энергосиловых и тепловых режимов в очаге деформации при холодной прокатке. // Материалы научной конференции по проблемам технических наук. т. 1. Липецк : ЛГТУ, 2015. с. 17—19.
- 6. Беляев Д. Ю., Орешина М. Н. Моделирование теплового режима контакта валок-полоса в очаге деформации при холодной прокатке. // VII Международная студенческая электронная научная конференция РАЕ «Студенческий научный форум»-2015. т. 1. : 2015. URL: http://www.scienceforum.ru/2015/1352/9558 (дата обр. 27.04.2015).
- 7. Беляев Д. Ю., Орешина М. Н. Математическое моделирование теплового режима непрерывной холодной прокатки. // Двенадцатая всероссийская научно практическая конференция с международным участием «Современные проблемы горно-металлургического комплекса. Наука и производство. т. 1. Старый Оскол: 2015. с. 119—125.
- 8. *Робертс В. Л.* Холодная прокатка стали. М.:Металлургия, 1982. 544 с.

- 9. *Третьяков А. В.* Теория, расчет и исследование станов холодной прокатки. М.:Металлургия, 1966. 253 с.
- 10. *Новацкий В*. Теория упругости. М.:Мир, 1975. 872 с.
- 11. Контактное взаимодействие металла и инструмента при прокатке. / П. Полухин, В. Николаев, В. Полухин, А. Зиновьев [и др.]. М.:Металлургия, 1974. 200 с.
- 12. *Самарский А. А.* Введению в теорию разностных схем. M.:Наука, 1971. 533 с.
- 13. *Самарский А. А.*, *Тихонов А. Н.* Уравнения математической физики. М.:Наука, 1977. 736 с.
- 14. *Самарский А. А.*, *Гулин А. В.* Численные методы. М.:Наука, 1989. 432 с.
- 15. *Третьяков А. В., Гарбер Э. А.* Совершенствование теплового процесса листовой прокатки. *М.*:Металлургия, 1973. 304 с.

Приложение А

(рекомендуемое)

Рисунок А.1 – Диаграмма классов «workfile.exe»

Рисунок А.2 – Диаграмма классов «arm-technology.exe»