杭州电子科技大学学生考试卷(A) 卷

-	考试课程	高等数	学甲(1) 考试日期		2014年1	月 12 日	成 绩	
	课程号	A0714011	教师号		任课者	女师姓名		
	考生姓名		学号 (8位)		年级		专业	

	题号	-	=	Ξ		四			五		六					
				1	2	3	1	2	3	4	1	2	1	2	t	, ,
	得分						7									

- 、选择题 (本题共6小题,每小题3分,共18分)
- 1. $f'(x_0) = 0$ 是 f(x) 在 x_0 处取得极值存在的(D)
- (A) 充分条件; (B) 必要条件; (C) 充分必要条件;
- (D) 既非充分也非必要条件.
- 2. 设函数 $y = (\sin x^4)^2$, 则导数 $\frac{dy}{dx} = ($ **(**)
 - (A) $4x^3\cos(2x^4)$; (B) $2x^3\cos(2x^4)$; (C) $4x^3\sin(2x^4)$; (D) $2x^3\sin(2x^4)$.
- 3. 设函数 f(x) 在 x = a 处可导, $\Delta y = f(a+h) f(a)$, 则当 $h \to 0$ 时必有(\mathbf{p})
 - (A) dy 是 h 的等价无穷小量; (B) $\Delta y dy$ 是 h 的同阶无穷小量;
 - (C) dy 是 h 的高阶无穷小量; (D) $\Delta y dy$ 是 h 的高阶无穷小量.
- 4. $\exists x \rightarrow 3$ 时,下列函数中为无穷小量的是(\spadesuit)
 - (A) $f(x) = e^{\frac{1}{x-3}}$; (B) $f(x) = \ln(3-x)$; (C) $f(x) = \sin\frac{1}{x-3}$; (D) $f(x) = \frac{x-3}{x^2-9}$.

- 5. x = 0是 $f(x) = \arctan \frac{1}{x}$ 的(人) 可参考 18 年 第9聚。
 (A) 连续点; (B) 可去间断点; (C) 跳跃间断点; (D) 第二类间断点.
- 6. 下列反常积分中收敛的是(B)
- $\text{(A)}\quad \int_{\epsilon}^{\infty}\frac{1}{x\ln x}dx\,; \qquad \text{(B)}\quad \int_{\epsilon}^{\infty}\frac{1}{x(\ln x)^2}dx\,; \quad \text{(C)}\quad \int_{\epsilon}^{\infty}\frac{(\ln x)^2}{x}dx\,; \qquad \text{(D)}\quad \int_{\epsilon}^{\infty}\frac{\ln x}{x}dx\,.$

二、填空题(本题共4小题,每小题3分,共12分)

- 1. 设 $y = e^{x \sin x}$, 则y在 $x = \frac{\pi}{2}$ 处的微分等于 $e^{\frac{x}{2}}$ dx
- 2. 设函数 $f(x) = \begin{cases} \frac{\ln(1-x)}{2x}, & x < 0 \\ a + e^{2x}, & x \ge 0 \end{cases}$, 且 f(x) 在 x = 0 处连续,则 $a = \frac{2}{2}$.
- 3. 不定积分 $\int_{x^2}^{1} \cos \frac{1}{x} dx =$ Sin $\frac{1}{x}$ + C
- 4. 微分方程 $y'' + \frac{1}{x}y' x = 0$ 的通解为 $\frac{1}{2}x^{3} + C_{1}$ IN FU + C₂
- 三、小型计算题(共3小题,每小题4分,共12分)

1. 求曲线 $y = 2 \ln x + x^2 + 3$ 平行于直线 y = 4x + 1 的切线方程

2p 4x-y = 0

解 4-00 +2x ドカンナーデナンX=4 スニ tn共M。(1,4) to 肉维 y-4=4(x-1) ----2'

$$\int_{0}^{\infty} t f(x-t) dt = \int_{0}^{\infty} (ru) du du$$

$$=$$
 $Y |_{0}^{\times}$ Hundu $-|_{0}^{\times}$ utilized \cdots $-\frac{1}{3}$

: FRetition
$$x = x^{2x} - 2x - 1 - \frac{1}{2}$$
 $x = x^{2x} + (u)du - \frac{1}{2}u + (u)du = \frac{1}{2}u^{2x} - 2 + \frac{1}{2}u^{2x}$
 $x = x^{2x} + (u)du = 2e^{2x} - 2 + \frac{1}{2}u^{2x}$

2. 求微分方程
$$y'' - 3y' + 2y = xe^{2x}$$
 的通解.

