Landskeppni í eðlisfræði 2025 (Lausnir)

Úrslitakeppni

15. mars kl. 09:00-12:00

- Leyfileg hjálpargögn: Reiknivél sem geymir ekki texta.
- Keppnin samanstendur af 3 dæmum. Hvert af þessum þremur dæmum gildir 10 stig.
- Athugaðu hvort þú hafir fengið öll dæmin.
- Ekki er dregið niður fyrir röng svör.
- Liðunum í hverju dæmi er ekki endilega raðað eftir erfiðleikastigi.
- Það má alltaf leysa seinni liði þó fyrri liðir hafi ekki verið leystir.
- Skrifaðu lausnirnar þínar snyrtilega á lausnablöðin sem þú færð afhent og merktu þau vel.
- Tekið verður tillit til útreikninga við yfirferð á dæmum.

Þekktir fastar

Nafn	Tákn	Gildi
Hraði ljóss í tómarúmi	c	$3,00 \cdot 10^8 \text{m/s}$
Segulsvörunarstuðull tómarúms	μ_0	$1.26 \cdot 10^{-6} \text{N/A}^2$
Rafsvörunarstuðull tómarúms	ϵ_0	$8,85 \cdot 10^{-12} \mathrm{F/m}$
Coulombs fastinn	$k_{ m e}$	$8,99 \cdot 10^9 \mathrm{N m^2/C^2}$
Grunnhleðslan	e	$1,60 \cdot 10^{-19} \mathrm{C}$
Massi rafeindar	$m_{ m e}$	$9{,}11\cdot10^{-31}\mathrm{kg}$
Massi róteindar	$m_{ m p}$	$1,67 \cdot 10^{-27} \mathrm{kg}$
Avogadrosar talan	$N_{ m A}$	$6,02 \cdot 10^{23} 1/\mathrm{m\'ol}$
Gasfastinn	R	$8,31\mathrm{J/(Km\'ol)}$
Stefan-Boltzmann fastinn	σ	$5.67 \cdot 10^{-8} \mathrm{W/(m^2 K^4)}$
Þyngdarhröðun við yfirborð jarðar	g	9.82m/s^2
Þyngdarlögmálsfastinn	G	$6.67 \cdot 10^{-11} \mathrm{m}^3/(\mathrm{kg}\mathrm{s}^2)$
Planck fastinn	\hbar	$1,05 \cdot 10^{-34} \mathrm{Js}$
Boltzmann fastinn	$k_{\rm B}$	$1,38 \cdot 10^{-23} \mathrm{J/K}$

1 Svarthol (10 stig)

Hluti A: Varmafræði sólarinnar (4 stig)

Rifjum upp tvö grunnlögmál varmageislunar:

- Lögmál Wiens: hámarksútgeislun hlutar með hitastig T verður við bylgjulengd, $\lambda_W = \frac{b}{T}$, þar sem $b = 2.9 \cdot 10^{-3} \, \mathrm{K} \, \mathrm{m}$ er fasti Wiens.
- Stefan-Boltzmann lögmálið: hlutur með hitastig T og yfirborðsflatarmál A geislar frá sér með afli $P = \sigma A T^4$, þar sem $\sigma = 5.67 \cdot 10^{-8} \, \frac{\mathrm{W}}{\mathrm{m}^2 \, \mathrm{K}^4}$ er Stefan-Boltzmann fastinn.

Bylgjulengd [nm]

- (a) (1 stig) Grafið sýnir útgeislun sólarinnar sem fall af bylgjulengd. Hvert er hitastig sólarinnar?
- (b) (0,5 stig) Geisli sólarinnar er $r_S = 6.96 \cdot 10^8 \,\mathrm{m}$. Hvert er geislunarafi sólarinnar?
- (c) (2,5 stig) Stærsta sólarorkuver heims er að finna í Ürümqi, höfuðborg sjálfstjórnarhéraðsins Xinjiang í norðvesturhluta Kína. Stærð svæðisins sem að sólarsellurnar leggja undir sig þar þekur $1,3 \cdot 10^8 \,\mathrm{m}^2$ að flatarmáli. Metið hversu mikið rafmagn þetta sólarorkuver getur framleitt á einu ári í einingunni J. Fjarlægðin milli jarðarinnar og sólarinnar er $1\,\mathrm{AU} = 1,5 \cdot 10^{11}\,\mathrm{m}$. Til samanburðar er orkunotkun Íslendinga $2,2 \cdot 10^{17}\,\mathrm{J}$ á ári.

Hluti B: Hawking-geislun svarthols (6 stig)

- (d) (1 stig) Skoðum hnött með massa M og geisla R. Hlut með massa m er skotið frá yfirborði hnattarins með upphafshraða v. Notið orkuvarðveislu til að finna minnsta hraðann v_{lausn} sem hluturinn þarf að hafa til að sleppa í óendanlega fjarlægð frá hnetinum.
- (e) (0,5 stig) Mesti mögulegi lausnarhraði frá hnetti með massa M og geisla R er ljóshraðinn, $v_{\text{lausn}} = c$. Notið niðurstöðuna úr liðnum hér á undan til að ákvarða þann geisla R_{S} sem hnöttur þarf að hafa til þess að ekkert sleppi frá yfirborði hans, ekki einu sinni ljós. Þessi geisli nefnist Schwarzschild-geisli.

Óvissulögmál Heisenbergs segir að óvissan í staðsetningu, Δx , og óvissan í skriðþunga, Δp , uppfylla sambandið $\Delta x \Delta p \geq \frac{\hbar}{2}$ þar sem $\hbar = 1,05 \cdot 10^{-34} \, \mathrm{J} \, \mathrm{s}$ er fasti Plancks.

- (f) (0,5 stig) Metið óvissuna Δx á staðsetningu agnar sem er inni í svartholi.
- (g) (0,5 stig) Metið óvissuna, Δp , á skriðþunga agnarinnar ef p = mv og hún ferðast hægar en ljós.
- (h) (1 stig) Notið skilgreininguna á hitastigi úr varmafræði $E = k_B T$ ásamt $E = mc^2$ til að ákvarða Hawking hitastig svartholsins, T_H einungis sem fall af G, \hbar, k_B, c og heildarmassa svartholsins M.
- (i) (1 stig) Notið Hawking-hitastigið úr liðnum á undan ásamt Stefan-Boltzmann lögmálinu til að ákvarða Hawking-geislunina $P_{\rm H}$. Orkan sem svartholið tapar vegna varmageislunar er gefin með $P_{\rm H} = -\frac{d}{dt}(Mc^2)$. Notið þetta til að finna fasta A og veldi n þannig að tímaþróun á massa svartholsins fylgi diffurjöfnunni

$$\frac{dM}{dt} = -\frac{A}{M^n}.$$

(j) (1,5 stig) Leysið diffurjöfnuna og ákvarðið heildartímann, τ , sem líður frá því að svartholið í miðju vetrarbrautarinnar (Sgr A*) hefur gufað upp ef massi þess í dag er $M_0 = 8.2 \cdot 10^{34} \,\mathrm{kg}$ (að því gefnu að það stækki ekki í millitíðinni).

Lausn á Svarthol

- (a) Af grafinu sést að $\lambda_W = 500 \,\mathrm{nm}$ þannig að $T_S = \frac{b}{\lambda_W} = 5800 \,\mathrm{K}.$
- (b) Samkvæmt Stefan-Boltzmann lögmálinu er aflið þá $P_S = \sigma 4\pi r_S^2 T_S^4 = 3.91 \cdot 10^{26} \, \text{W}.$
- (c) Orkan frá sólinni dreifist jafnt yfir kúlu með geisla $R_S=1\,\mathrm{AU}$. Gerum ráð fyrir að sólarsellurnar hafi nýttni $\eta=0.1$ og að framleiðslan sé $\gamma=\frac{8\,\mathrm{klst}}{24\,\mathrm{klst}}$ á dag að meðaltali á ári, $\tau=365\cdot24\cdot60^2=3.15\cdot10^7\,\mathrm{s}$. Þá er heildarorkan sem fellur á flatarmálið $A_X=1.3\cdot10^8\,\mathrm{m}^2$ gefin með

$$E_{\rm X} = \eta \frac{A_X}{4\pi R_S^2} P_S \gamma \tau = 1.9 \cdot 10^{17} \,{\rm J}.$$

- (d) Þá fæst $\frac{1}{2}mv^2 \frac{GMm}{R} = 0 \implies v = \sqrt{\frac{2GM}{R}}.$
- (e) Þegar v=c þá er er $R_S=\frac{2GM}{c^2}$ sem er Schwarzschild-geislinn.
- (f) Við metum óvissuna sem $\Delta x = 2\pi R_S$ (það var gefið rétt fyrir öll margfeldi af R_S).
- (g) Við metum $\Delta p = m\Delta v = mc$.
- (h) Þá fæst að $T_{\rm H}=\frac{mc^2}{k_B}$. En samkvæmt óvissulögmálinu höfum við að

$$\Delta x \Delta p = 2\pi R_s mc \ge \frac{\hbar}{2} \implies m \ge \frac{\hbar}{4\pi R_S c} = \frac{\hbar c}{8\pi GM}$$

svo við ályktum að

$$T_{\rm H} = \frac{mc^2}{k_B} \ge \frac{\hbar c^3}{8\pi GM k_B}.$$

(i) Aflið er þá

$$P_{\rm H} = \sigma A T_H^4 = \sigma 4\pi R_S^2 \left(\frac{\hbar c^3}{8\pi G M k_B}\right)^4 = \frac{c^8 \sigma \hbar}{256 G^2 k_B^4 \pi^3} \frac{1}{M^2}$$

En af þessu leiðir að $\frac{dM}{dt} = -\frac{A}{M^2}$ þar sem $A = \frac{c^6 \sigma \hbar}{256 G^2 k_B^4 \pi^3} = 3.96 \cdot 10^{15} \,\mathrm{kg}^3/\mathrm{s}$ og n = 2.

(j) Fáum með aðskilnaði breytistærða að

$$-\frac{M_0^3}{3} = \int_{M_0}^0 M^2 dM = -A \int_0^\tau dt = -A\tau \implies \tau = \frac{M_0^3}{3A} = 4.6 \cdot 10^{88} \,\mathrm{s}.$$

2 Vatnseldflaug (10 stig)

Í þessu dæmi skoðum við vatnseldflaug. Hægt er að búa til einfalda heimagerða vatnseldflaug með því að taka 2L gosflösku og fylla hana að hluta með vatni. Lofti er dælt inn í flöskuna í gegnum stútinn þar til þrýstingurinn inni í henni verður nægur til að stúturinn losni þannig að vatnið þrýstist snögglega út, og samkvæmt þriðja lögmáli Newtons skýst eldflaugin upp. Markmið okkar í þessu dæmi verður að meta hversu hátt vatnseldflaugin kemst.

Uppstillingin sem að við höfum í huga er 2 L vatnsflaska með massa $m_{\rm flaska}=45\,{\rm g}$ ásamt 1 L af vatni. Hæð gosflöskunnar er $L=31,5\,{\rm cm}$ og geisli hennar er $R=4,5\,{\rm cm}$. Stúturinn er með geisla $r=1,4\,{\rm cm}$. Þegar flaskan losnar frá stútnum er upphafsþrýstingurinn inni í flöskunni $P_0=5P_a$ þar sem $P_a=1\,{\rm atm}=101,3\,{\rm kPa}$. Eðlismassi vatns er $\rho_v=1000\,{\rm kg/m^3}$ og eðlismassi lofts er $\rho_\ell=1,225\,{\rm kg/m^3}$.

- (a) (0,5 stig) Hvert er rúmmál flöskunnar, V_f , í einingunni m³? Hvert er rúmmál loftsins, V_0 , inni í flöskunni á augnablikinu þegar eldflaugin tekur á loft?
- (b) (0,5 stig) Hver er massi eldflaugarinnar, M_0 , í upphafi og þegar allt vatnið hefur tæmst úr henni, M_f .
- (c) (0,5 stig) Gerum ráð fyrir að loftið inni í flöskunni fylgi jafnhitaferli en það þýðir að T = fasti í ferlinu. Notið gaslögmálið til að ákvarða þrýsting loftsins, P_f , inni í flöskunni á augnablikinu sem að öllu vatninu hefur verið þrýst út úr flöskunni.
- (d) (1,5 stig) Ákvarðið hraða vatnsins, u, út um stút flöskunnar sem fall af þrýsting inni í flöskunni, P(t). Þið megið nota nálgunina $r \ll R$ og gera ráð fyrir að h sé svo lítið að áhrif þrýstings frá vökvasúlunni $(\rho_v g h)$ eru hverfandi.
- (e) (0,5 stig) Hversu miklum massa tapar eldflaugin á tímaeiningu, $\frac{dM}{dt}$, sem fall af u, r og ρ_v .
- (f) (0,5 stig) Krafturinn sem knýr eldflaugina upp er gefinn með $T=u\frac{dM}{dt}$. Notið niðurstöðurnar í liðunum hér á undan til að sýna að til séu fastar α og β þannig að $T=\alpha P+\beta$.
- (g) (1 stig) Notið liðina hér á undan til að ákvarða u_f og T_f þegar vatnið hefur tæmst úr flöskunni.

Með gaslögmálinu má sýna að þrýstingurinn inni í flöskunni fylgir afleiðujöfnunni $\frac{dP}{dt} = -\frac{P^2A}{P_0V_0}\sqrt{\frac{2}{\rho}}(P-P_a)$, þar sem að A er þverskurðarflatarmál stútsins. Einungis er hægt að leysa þessa afleiðujöfnu með tölulegum aðferðum en samt er hægt að nota hana til að ákvarða heildartímann τ sem að líður frá því að vatnseldflaugin fer af stað og þar til að allt vatnið hefur tæmst úr flöskunni:

$$\tau = \frac{V_0}{A} \sqrt{\frac{\rho_v}{2P_a}} \left[\sqrt{-1 + \frac{P_0}{P_a}} - \frac{V_f}{V_0} \sqrt{-1 + \frac{P_0 V_0}{P_a V_f}} \right. \\ \left. + \frac{P_0}{P_a} \arctan \left(\sqrt{-1 + \frac{P_0}{P_a}} \right) - \frac{P_0}{P_a} \arctan \left(\sqrt{-1 + \frac{P_0 V_0}{P_a V_f}} \right) \right].$$

- (h) (1 stig) Reiknið tölulegt gildi á tímanum τ .
- (i) (3 stig) Metið hraða eldflaugarinnar $v(\tau)$ þegar eldsneytið þrýtur.
- (j) (1 stig) Metið hver mesta hæð, h_{max} , vatnseldflaugarinnar verður. Hunsið loftmótsstöðu.

Lausn á Vatnseldflaug

- (a) Rúmmál flöskunnar er $V_f=2$ L = $2\cdot 10^{-3}$ m³. Rúmmál loftsins er $V_0=V_f-V_{\rm vatn}=1\cdot 10^{-3}$ m³.
- (b) Massi eldflaugarinnar er þá $M_0 = m_f + \rho V_{\text{vatn}} = 1045\,\text{g}$ í lokin er hann $M_f = m_f = 45\,\text{g}$.
- (c) Þá er $P_f V_f = P_0 V_0$ svo $P_f = \frac{P_0 V_0}{V_f} = \frac{1}{2} P_0 = \frac{5}{2} P_a$.
- (d) Samkvæmt lögmáli Bernoulli er þá

$$P_1 + \frac{1}{2}\rho_v v_1^2 + \rho_v g h_1 = P_2 + \frac{1}{2}\rho_v v_2^2 + \rho_v g h_2$$

en hér er $P_1 = P$ og $P_2 = P_a$, $h_1 = h$ og $v_2 = u$ og $h_2 = 0$. Hægt er að ákvarða v_1 sem fall af u með því að nota samfelldnilögmálið en það segir að flæðið sé varðveitt í þeim skilningi að

$$\pi R^2 v_1 = \pi r^2 u \implies v_1 = \left(\frac{r}{R}\right)^2 u$$

Við máttum gera ráð fyrir að bæði $r \ll R$ og að þrýstingurinn vegna þyngdarinnar skipti ekki máli en þá fæst

$$u = \sqrt{\frac{2}{\rho_v}(P - P_a)}.$$

Ef engar nálganir eru notaðar þá er samt hægt að reikna betta og fá

$$u = \frac{\sqrt{\frac{2}{\rho_v}(P - P_a) - 2gh}}{\sqrt{1 - \left(\frac{r}{R}\right)^2}}$$

Framvegis styðjum við okkur við fyrra formið.

- (e) Þá er $\frac{dM}{dt} = \rho_v A u$.
- (f) Par með er $T=u\frac{dM}{dt}=\rho_vAu^2=2A(P-P_a),$ svo $\alpha=2A$ og $\beta=-2AP_a.$

(g)
$$u_f = \sqrt{\frac{2}{\rho_v}(P_f - P_a)} = \sqrt{\frac{3P_a}{\rho_v}} = 17.4 \,\text{m/s og } T_f = \rho_v A u_f^2 = 187 \,\text{N}.$$

- (h) Tölulega gildið er $\tau = 74.8 \,\mathrm{ms}$.
- (i) Við athugum að $a(t) = \frac{T(t)}{M(t)} g$ svo

$$v(\tau) = \int_0^\tau \left(\frac{T(t)}{M(t)} - g\right) dt \approx \left(\frac{T(\tau) + T(0)}{M(\tau) + M(0)} - g\right) \tau = 46.3\,\mathrm{m/s}.$$

Petta er reyndar nokkuð fjarri réttu gildi, $v(\tau) = 61.7 \,\mathrm{m/s}$.

(j) Þá er $h_f \approx \frac{1}{2}v(\tau)\tau = 1,7\,\mathrm{m}$ sem gefur því að $h_{max} = h_f + \frac{v(\tau)^2}{2g} = 111\,\mathrm{m}.$

3 Hvers vegna komumst við ekki hraðar en ljós? (10 stig)

Tveir veggir með massa M hreyfast í átt hvor að öðrum með föstum hraða v. Á milli þeirra er kubbur með massa $m \ll M$ og breidd $d \ll \ell_0$, sem upphaflega hefur hraðann $u_0 > v$. Kubburinn og veggirnir renna án núnings, og loftmótsstaða er hunsuð.

Gerum ráð fyrir að allir árekstrar kubbsins við veggina séu alfjaðrandi, þ.e. að engin orka tapist í árekstrunum. Enn fremur haldast veggirnir á stöðugum hraða v í gegnum allt ferlið, t.d. með aðstoð vélar eða annars utanaðkomandi búnaðar. Upphaflegt bil milli veggjanna er ℓ_0 , og við tímann t=0 er kubburinn staðsettur við vinstri vegginn og stefnir í átt að hægri veggnum.

- (a) (0,5 stig) Hversu langur tími, τ , líður þar til bilið á milli veggjanna er orðið jafnt breidd kubbsins, d?
- (b) (1 stig) Látum u_n tákna hraða kubbsins eftir n árekstra. Sýnið að hraði kubbsins eftir n+1 árekstur uppfyllir rakningarformúluna $u_{n+1} = Au_n + Bv$ þar sem A og B eru fastar. Finnið gildin á A og B að því gefnu að $M \gg m$.

Ábending: Afstæður hraði kubbsins miðað við vegginn er varðveittur í árekstrinum (fyrir utan formerki).

- (c) (0,5 stig) Notið rakningarformúluna til þess að ákvarða hraða kubbsins eftir N árekstra einungis sem fall af u_0, N og v.
- (d) (1 stig) Látum $\ell_n \gg d$ tákna bilið á milli veggjanna þegar n-ti árekstur á sér stað. Sýnið að til séu fastar α, β, γ og δ (hugsanlega háðir n) þannig að ℓ_n uppfylli rakningarformúluna:

$$\ell_n = \frac{\alpha u_0 + \beta v}{\gamma u_0 + \delta v} \ell_{n-1}.$$

- (e) (1 stig) Notið rakningarformúluna til að ákvarðið bilið, ℓ_N , á milli veggjanna við N-ta árekstur einungis sem fall af u_0, v, N og ℓ_0 .
- (f) (1 stig) Metið fjölda árekstra, N, sem eiga sér stað þar til að $\ell_N = d$.
- (g) (1 stig) Veljið gildi á ℓ_0, v, u_0 og d b.a. kubburinn nái hraða sem er meiri en ljóshraði, c, í ferlinu.

Ástæðan fyrir þessari mótsögn er sú að hingað til höfum við notað sígilda skilgreiningu á skriðþunga, p = mv. Samkvæmt takmörkuðu afstæðiskenningunni verður hins vegar að nota eftirfarandi leiðréttingu

$$p = \gamma(v)mv$$
, par sem $\gamma(v) = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$,

er Lorentz-stuðullinn og hreyfiorkan sömuleiðis leiðréttist með $K = (\gamma(v) - 1)mc^2$. Þrátt fyrir þessar breytingar er eitt merkilegt atriði enn satt: Afstæður hraði kubbsins miðað við vegginn helst óbreyttur í hverjum árekstri, nú í ljósi hraðasamlagningarformúlunnar í takmörkuðu afstæðiskenningunni:

$$w = \frac{u+v}{1 + \frac{uv}{c^2}}.$$

Takið eftir að formerki í teljara og nefnara breytast eftir því hvort u og v séu samstefna eða gagnstefna.

(h) (2 stig) Sýnið að rakningarformúlan fyrir hraða kubbsins verði:

$$u_{n+1} = \frac{au_n + b}{cu_n + d}.$$

og ákvarðið fastana a,b,c og d.

(i) (2 stig) Rökstyðjið að þegar fjöldi árekstra stefnir á óendanlegt, þá stefnir hraði kubbsins á c.

Lausn:

- (a) Fáum þá að $2v\tau = \ell_0 d$ þannig að $\tau = \frac{\ell_0 d}{2v}$.
- (b) Afstæður hraði er varðveittur í árekstrinum þ.a. $u_n + v = u_{n+1} v$ sem gefur $u_{n+1} = u_n + 2v$.
- (c) Þá er hraðinn eftir N árekstra jafn $u_N = u_0 + 2Nv$.
- (d) Nú er $\ell_n = \ell_{n-1} 2vt_n$ þar sem að $t_n = \frac{\ell_{n-1}}{u_{n-1}+v}$ er tíminn sem líður frá því að árekstur n-1 á sér stað og þar til að árekstur n á sér stað. Með því að nota að $u_{n-1} = u_0 + 2(n-1)v$ úr liðnum á undan fáum við því að

$$\ell_n = \ell_{n-1} - \frac{2v}{u_0 + (2n-1)v} \ell_{n-1} = \left(\frac{u_0 + (2n-3)v}{u_0 + (2n-1)v}\right) \ell_{n-1}$$

(e) Byrjum á því að athuga að $\ell_1=\left(\frac{u_0-v}{u_0+v}\right)\ell_0$ og svo athugum við að

$$\ell_2 = \left(\frac{u_0 + v}{u_0 + 3v}\right) \ell_1 = \left(\frac{u_0 + v}{u_0 + 3v}\right) \left(\frac{u_0 - v}{u_0 + v}\right) \ell_0 = \frac{u_0 - v}{u_0 + 3v} \ell_0.$$

Almennt gildir að nefnari styttir út teljara í margfeldinu á undan og eftir standa alltaf bara tveir liðir þannig að

$$\ell_N = \frac{u_0 - v}{u_0 + (2N - 1)v} \ell_0.$$

(f) Við fáum þá að

$$\ell_N = d \implies d = \frac{u_0 - v}{u_0 + (2N - 1)v} \ell_0 \implies N = \frac{1}{2} (\frac{u_0}{v} - 1)(\frac{\ell_0}{d} - 1).$$

- (g) Setjum til einföldunar $v=1\,\mathrm{m/s}$ og $d=1\,\mathrm{m}$ og veljum svo hlutföllin þannig að $\ell_0/d=10^9$ og $u_0/v=10^4$ þá fæst að árekstrarnir verða $N=5\cdot 10^{12}$ og hraðinn þá eftir 10^{12} árekstra þá miklu meiri en ljóshraði eða $u=2\cdot 10^{12}\,\mathrm{m/s}$.
- (h) Þar sem að afstæður hraði er varðveittur í árekstrinum þá fáum við að

$$\frac{u_n + v}{1 + \frac{u_n v}{c^2}} = \frac{u_{n+1} - v}{1 - \frac{u_{n+1} v}{c^2}},$$

en með því að margfalda í kross og leysa fyrir u_n fæst því rakningarformúlan

$$u_{n+1} = \frac{(c^2 + v^2)u_n + 2vc^2}{2vu_n + (c^2 + v^2)}.$$

(i) Eftir marga árekstra stefnur $u_{n+1} = u_n = u_\infty$ þegar $n \to \infty$ svo við fáum að

$$u_{\infty} = \frac{(c^2 + v^2)u_{\infty} + 2vc^2}{2vu_{\infty} + (c^2 + v^2)} \implies u_{\infty} = \pm c.$$