

Álvaro Cortés Calabuig Erika Souche

Overview

- Why this bioinformatics session?
- Basic NGS terminology
- NGS Pipelines
- Fastq format
- Fastq quality control

Why this session?

A typical RNA-Seq analysis at the Genomics Core delivers:

10 report files:
 differentially expressed
 genes, reads quality
 report, counting report,...

3GB of raw and analyzed data:
Fastq, BAM, counts,
normalized counts, gene
expression files, heatmaps...

1. Results Interpretation & Analysis

2. Data Re-analysis

A three-caller pipeline for variant analysis of cancer whole-exome sequencing data

Authors: Ze-Kun Liu, Yu-Kui Shang, ™ Zhi-Nan Chen, ™ Huijie Bian

3. Downstream Analysis

Reviewer: "The transcriptional and proteomic profiling experiments propose some interesting followup pathways for further analysis that may shed light on the mechanisms underlying these conditions."

4. Costs Saving

• \$1.000 sequencing and \$5.000 bioinformatics costs?!?!

Overview

- Why this bioinformatics session?
- Basic NGS terminology
- NGS Pipelines
- Fastq format
- Fastq quality control

NGS Bioinformatics

Library

Preparation

 Experimental Design

Sequencing

NGS Bioinformatics

Follow up and support

Bioinformatics...

...is a broad field

NGS Bioinformatics

NGS bioinformatics: interpretation and analysis of NGS data using informatics tools

A day in NGS Bioinformatics

Poly-A tail

Fastq

Ontology

 Fragments cluster

 Xenograft Murine infiltration

Flow Cell

Demultiplexing

VCF File

Ortholog gene

BAM

Cluster

snRNA

 Negative binomial distribution

Hadoop

Bonferroni
 Correction

Barcode

Computer Cluster

NGS data means big data...means big computing power...by now.

Whole Human Genome:

300Gb, gzip file

Exome data:

6GB

RNA-Seq

1GB

NGS data is usually analyzed on a supercomputer or cluster:

- UZ Leuven: Hydra, Google Cloud

- KU Leuven: VSC Flemish Super Computer

Overview

- Why this bioinformatics session?
- Basic NGS terminology
- NGS Pipelines
- Fastq format
- Fastq quality control

NGS Common Pipelines

 Computational steps to Sequencing transform input data into processed output information in Demultiplexing the context of biological data DNA (RNA) Fastq(c) Assembly Alignment DNA **RNA** Variant Calling Counting Differential Relative **Population Individual Studies** Expression Expression **Studies**

Sequencing

From DNA fragments to Digital reads

(c) DNA Fragments and Reads

Fragment: biological entity Read: bioinformatics concept

- Fragment: the DNA template + adapters that were loaded on the sequencing machine (is not completely sequenced)
- Read: a raw sequence originating from a sequencing machine
- Single Read: Sequencing only from one end
- Paired-end: Sequencing starting from both ends of the insert

Demultiplexing

(De)Multiplexing

Multiple samples can be *pooled together or multiplexed* into one or more flowcells

Fastq Files

Fastq Files

The result of demultiplexing is one or more fastq files containing raw reads

Fastq files are:

- Human readable (not binary) text files.
- Referred as raw data.
- Real diamonds NGS bioinformatics project
- Not ordered wrt originating (c)DNA
- Often compressed using gzip

```
-rwxr-xr-x 1 vsc31439 lp_biogenomics 326 17 janv. 15:05 GC036462.R1.fastq.gz 396 17 janv. 15:05 GC036462.R1.fastq.gz 396 17 janv. 15:49 GC036462.R2.fastq.gz 316 17 janv. 16:25 GC036463.R1.fastq.gz 316 17 janv. 17:07 GC036463.R2.fastq.gz 376 17 janv. 17:07 GC036463.R2.fastq.gz 316 17 janv. 17:41 GC036464.R1.fastq.gz 376 17 janv. 18:21 GC036464.R2.fastq.gz 376 17 janv. 18:21 GC036464.R2.fastq.gz 376 17 janv. 18:21 GC036464.R2.fastq.gz
```


: vsc31420@hpc-p-login-1 /stag/ng/leven/stg_00019/full_genomes/test_ws 11:48 \$ ls -lha GC036463.R1.fastq -rwxr-xr-x 1 vsc31420 vsc31420 134G 29 mars 11:24 GC036463.R1.fastq

Mapping and Alignment

Mapping and Alignment to Reference

Mapping refers to the process of aligning short reads to a reference sequence, whether the reference is a complete genome, transcriptome, or *de novo* assembly.

Sequencing Reads

Reference Genome

Reference Sequence in Fasta Format

- genome.fa human-readable nucleotide sequence
- Species dependent: Mouse genome: 2.6GB
- Evolves as it is updated

CTCAGAAGATGGAAAGATCTCCCATGCTCATGGATTGGCAGGATCAATATTGTAAAAATG GCTATCTTGCCAAAAGCAATCTACAGATTCAATGCAATCCCCATCAAAATTCCAACTCAA TTCTTCAACGAATTAGAAGGAGCAATTTGCAAATTCATCTGTAATAACAAAAAACCTAGG ATAGCAAAAAGTCTTCTCAAGGATAAAAGAACCTCTGGTGGAATCACCATGCCTGACCTA GTAGACCAATGGAATAGAATTGAAGACCCAGAAATGAACCCACACACCTATGGTCACTTG ATCTTCGACAAGGGAGCTAAAACCATCCAGTGGAAGAAGACAGCATTTTCAACAAATGG TGCTGGCACAACTGGTTGTTATCATGTAGAAGAATGCGAATCGATCCATACTTATCTCCT TGTACTAAGGTCAAATCTAAATGGATCAAAGAACTTCACATAAAACCAGAGACACTGAAA CTTATAGAGGAGAAAGTGGGGAAAAGCCTTGAAGATATGGGCACAGGGGAAAAATTCCTG AACAGAACAGCAATGGCTTGTGCTGTAAGATTGAGAATTGACAAATGGGACCTAATGAAA CTCCAAAGTTTCTGCAAGGCAAAAGACACCGTCAATAAGAGAAAGAGACCACCAACAGAT TGGGAAAGGATCTTTACCTATCCTAAATCAGATAGGGGACTAATATCCAACATATATAAA GAACTCAAGAAGGTGGACTTCAGAAAATCAAACAACCCCATTAAAAAATGGGGCTCAGAA CTGAACAAGAATTCTCACCTGAGTTATACCGAATGGCAGAGAAGCACCTGAAAAAATGC TCAACATCCTTAATCATCAGGGAAATGCAAATCAAAACAACCCTGAGATTCCACCTCACA CCAGTCAGAATGTCTAAGATCAAAAATTCAGGTGACAGCAGATGCTGGCGAGGATGTGGA GAAAGAAGAACACTCCTCCATTGTTGGTGGGATTGCAGGCTTGTACAACCACTCTGGAAA TCCGTCTGGCGGTTCCTCAGAAAATTGGACATAGTACTACCGGAGGATCCAGCAATACCT CTCCTGGGCATATATCCAGAAGATGCCCCAACTGGTAAGAAGGACACATGCTCCACTATG TTCATAGCAGCCTTATTTATAATAGCCAGAAGCTGGAAAGAACCCAGATGCCCCTCAACA GAGGAATGGATACAGAAAATGTGGTACATCTACACAATGGAGTACTACTCAGCTATTAAA AAGAATGAATTTATGAAATTCCTAGCCAAATGGATGGACCTGGAGGCATCATCCTGAGT

Mapping vs Alignment

Reference Ch1:

1234567890123456 ATGGTTACACCATT

Read:

GGTTCA

- Possible alignment: ATGGTTACACCATT GGTT-CA
- Mapping: Ch1-pos3

- "Also of note is that by this time the terms "read alignment" and "read mapping" had become interchangeable. The BWA and Bowtie papers both used both terms, as did many other papers."
- https://liorpachter.wordpress.com/2015/11/01/ what-is-a-read-mapping

Assembly

Assembly

- The generation of a reference, from scratch (de novo) or reference assisted.
- Overlapping reads are merged to contigs (smallest unitable unit without unknown bases)
- Contigs that belong together, but where the connecting sequence is unknown, can be connected to scaffolds, inserting N's for the unknown bases

Overview

- Why this bioinformatics session?
- Basic NGS terminology
- NGS Pipelines
- Fastq format
- Fastq quality control

Fastq Format and Reads

- What is a "read"?
 - A raw sequence (ordered collection) of nucleotides names A,C,G,T, or N.
 - Read length is experiment-dependent
 - mRNA differential expression: 51bp SE
 - Whole-Genome sequencing: 150bp PE
- Fastq file?
 - Plain-text file, where each read and complementary information occupies 4 consecutive lines

Raw Reads

- 1 @HISEQ:574:C6VG2ANXX:2:1110:1400:2194 1:N:0:ATCACG
- 2 GGGGGATTCTCACTAGGTCTCAAGGTCTCTCACTCTCGGTAGTGTTCCCAG
- 3 +

Line 1: Read identifier and is followed by a sequence that is

Unique for each read, platform dependent Begins with a '@' character

Line 2: Raw sequence of nucleotides

Line 3: begins with a '+' character and is optionally followed by the same sequence identifier.

Line 4: Quality values for the sequence in Line 2

- A quality score (Q-score) is a prediction of the probability of an error in base calling.
- It serves as a compact way to communicate very small error probabilities
 - $P = 10^{(-Q/10)}$
 - $Q = -10 \log 10(P)$

ASCII_BASE=33 Illumina, Ion Torrent, PacBio and Sanger										
Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q P_error	ASCII
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7	33 0.00050	66 B
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8	34 0.00040	67 C
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9	35 0.00032	68 D
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58 :	36 0.00025	69 E
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59 ;	37 0.00020	70 F
5	0.31623	38 €	16	0.02512	49 1	27	0.00200	60 <	38 0.00016	71 G
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =	39 0.00013	72 H
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >	40 0.00010	73 I
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?	41 0.00008	74 J
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @	42 0.00006	75 K
10	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A		

@HISEQ:574:C6VG2ANXX:2:1110:1400:2194 1:N:0:ATCACG GG GC ATTCTCACTA GT CTCAAGGTCTCTCACTCTCGGTAGTGTTCCCAG ASCII BASE=33 Illumina, Ion Torrent, PacBio and Sanger P error ASCII Q Perror ASCII ASCII ASCII P error P error 0.07943 44 , 55 7 66 B 1.00000 0.00631 0.00050 0.79433 34 " 0.00501 0.06310 56 8 67 C 0.00040 Base: G 0.63096 35 # 0.05012 46 . 0.00398 57 9 0.00032 68 D Quality: C ASCII: 67 0.50119 36 S 0.03981 47 / 0.00316 69 E 58 : 0.00025 Q: 34 37 % Base: G 0.39811 0.03162 0.00251 59: 0.00020 70 F P: 0.00040 Quality: G 0.31623 0.02512 0.00200 0.00016 71 G 49 1 60 K ASCII: 71 0.25119 39 1 0.01995 72 H 50 2 0.00158 0.00013 Q: 38 0.19953 40 0.01585 51 3 0.00126 0.00010 73 I 62 > P: 0.00016 0.15849 41) 0.01259 52 4 0.00100 0.00008 74 J 0.12589 0.01000 75 K 53 5 0.00079 0.00006 43 + 21 0.00794 65 A 0.10000 54 6 0.00063


```
......
! "#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
33
              59
               64
                                     104
                                                 126
  0.2.....41
S - Sanger Phred+33, raw reads typically (0, 40)
X - Solexa
         Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
  with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
  (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```


Checking individual base calling manually is rarely done

Fastq file quality control

- How many reads do I have ?
- Is that enough?
- How good is the quality of the data?
- Did I sequence what I wanted to sequence?
- Is pre-processing needed?

•

Example 1 – targeted sequencing

- Finding the genetic cause of a disease
 - ∘ ~ 6,000 genes
 - ∘ Illumina PE 126bp

Figure adapted from Nimblegen

Region B

Region C

Example 2 – amplicon sequencing

- Fingerprinting of xenocrafts
 - o31 SNPs
 - ∘ Illumina PE 151bp

Trace platform, http://www.uzleuven-kuleuven.be/lki/trace/ Figure adapted from Peter Hohenstein, EMBO Molecular Medicine: 5 (1), 2013

Example 3 – whole genome sequencing

- Predicting bacterial resistance
 - Whole Genome Sequencing (WGS)
 - Streptococcus pneumoniae
 - Mycobacterium tuberculosis
 - olllumina PE 301 bp

Number of reads

Estimated coverage

Fastq files – QC

FastQC

- Check Phred quality scores
- o Check GC content
- Check read content

0 . . .

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ https://multiqc.info

FastQC

Summary report

```
fastqc -o result sample.R1.fastq.gz
fastqc -o result sample.R2.fastq.gz
```

№FastQC Report

Summary

- **Basic Statistics**
- Per base sequence quality
- Per sequence quality scores
- Per base sequence content
- Per base GC content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Kmer Content

FastQC – Phred quality score by position

Example 1 – targeted sequencing

FastQC – Base content by position

Example 1 – targeted sequencing

∘ G-C 25-26%

○ A-T 24-25%

FastQC – Base content by position

Example 2 – amplicon sequencing

∘ G-C 25-27%

○ A-T 24-24%

FastQC – Over-represented sequences

Example 2 – amplicon sequencing

Sequence	Count	Percentage	Possible Source
GTGATCTCCAACTTTGACCTGACCGTCGCTTAGATCGGAAGAGCACACGT	92	5.2421652421652425	No Hit
CAGTGACACTAGTCTGCAACAAACGCCACTTAGATCGGAAGAGCACACGT	88	5.014245014245014	No Hit
TTCCTCACCTGCCCTGACCGTCGCTTAGATCGGAAGAGCACACGTCTGAA	52	2.9629629629632	Illumina Multiplexing PCR Primer 2.01 (100% over 24bp)
TTCCTCACCTGCCCTGCAACAAACGCCACTTAGATCGGAAGAGCACACGT	49	2.792022792022792	No Hit
${\tt CTCACATCAGCCTGACCTGACCGTCGCTTAGATCGGAAGAGCACACGTCT}$	31	1.7663817663817662	Illumina Multiplexing PCR Primer 2.01 (100% over 21bp)
${\sf CAGCCTCTGCTCTCACCTGACCTGACCGTCGCTTAGATCGGAAGAGCACA}$	26	1.4814814814816	No Hit
${\tt TTCCTCACCTGCCCTGCACTCAATCATCGTCTCCTAGATCGGAAGAGCAC}$	25	1.4245014245014245	No Hit
TTCCTCACCTGCCCTGCACTCTCCTCACCTCCACCCTGCACTCTCCTCAC	22	1.2535612535612535	No Hit
${\tt CTCACATCAGCCTGACACAACTTAGGACCACTTGAATAGAGAGCCTCAGT}$	22	1.2535612535612535	No Hit
TTCCTCACCTGCCCTGCACTCTCCTCACCTCCCTGCACTCAATCATC	21	1.1965811965811968	No Hit
GACCAGAAGAACCTGACCTGACCGTCGCTTAGATCGGAAGAGCACACGTC	21	1.1965811965811968	No Hit
CTCACATCAGCCTGACCGTCGCTTAGATCGGAAGAGCACACGTCTGAACT	19	1.0826210826210827	Illumina Multiplexing PCR Primer 2.01 (100% over 26bp)
TCCTCCCTCTTGATGTGACCGTCGCTTAGATCGGAAGAGCACACGTCTGA	14	0.7977207977207977	Illumina Multiplexing PCR Primer 2.01 (100% over 23bp)
GTACAGCTGCACTGTGAAGATCGGAAGAGCACACGTCTGAACTCCAGTCA	14	0.7977207977207977	Illumina Multiplexing PCR Primer 2.01 (100% over 33bp)
TTCCTCACCTGCCCTGCACCATGAATGTTTTTTATAAAAAGGCTGTTGGC	12	0.6837606837606838	No Hit
${\tt AGGTAAGTGACAGTTTGCTCATGGGAAAGGAGATAGATCGGAAGAGCACA}$	12	0.6837606837606838	No Hit
GTGATCTCCAACTTTGACCGTCGCTTAGATCGGAAGAGCACACGTCTGAA	11	0.6267806267806267	Illumina Multiplexing PCR Primer 2.01 (100% over 24bp)
${\sf CAAGAGCTCAGAGGAGGAAGCTGTCAGAGATCGGAAGAGCACACGTCTGA}$	11	0.6267806267806267	Illumina Multiplexing PCR Primer 2.01 (100% over 23bp)
TTTGTACTTGTACCTGACCGTCGCTTAGATCGGAAGAGCACACGTCTGAA	11	0.6267806267806267	Illumina Multiplexing PCR Primer 2.01 (100% over 24bp)
${\tt CTCACATCAGCCTGACACTTTAAGTCGGGAGTCAGAAAGTACCCAAGGAG}$	9	0.5128205128205128	No Hit
${\tt TTGGTGTACATGTGTTGTGTGTGTGTGTGGGGGGAAGTTGAGTAGATCG}$	9	0.5128205128205128	No Hit
TTCCTCACCTGCCCTGCACTCGATAATTCAATACATAATATTCAATAATT	9	0.5128205128205128	No Hit
${\tt GTACAGCTGGTACAAGAACCAGATCGGAAGAGCACACGTCTGAACTCCAG}$	9	0.5128205128205128	Illumina Multiplexing PCR Primer 2.01 (100% over 30bp)
${\tt TTCCTCACCTGACCTGACCGTCGCTTAGATCGGAAGAGCACACGTCTGAA}$	8	0.4558404558404558	Illumina Multiplexing PCR Primer 2.01 (100% over 24bp)
${\tt TTGGTGTACATGTGTTGTGTGTGGGGGGGAAGTTGAGTAGATCGGAAG}$	8	0.4558404558404558	No Hit
${\tt CATCTGCATGGTGATCCTGGGCTCTGTAGTGGTGGCTGCAAAGAGGTGCT}$	8	0.4558404558404558	No Hit
${\tt CATTTCCATTGCCAACCGAGTCCATTGTGCACAGTATGAAGACAGCACAT}$	8	0.4558404558404558	No Hit
${\tt GATGTTCAGGCATTCCCAGTTAGGTGAGTAAACCCTTGATCAGTCACTAT}$	7	0.39886039886039887	No Hit
${\tt AGGTAAGTGACAGTTTGCTCAGGGAAAGTGTGAGATTGGATTCTTTAAAC}$	7	0.39886039886039887	No Hit
${\tt TGGCCTTGACAAACAGATCGGAAGAGCACACGTCTGAACTCCAGTCACAG}$	7	0.39886039886039887	TruSeq Adapter, Index 2 (97% over 35bp)
${\tt TTCCTCACCTGCCCTGCACTCTCCTCACCTCCACCTCCACCTCCACCC}$	7	0.39886039886039887	No Hit
${\tt ACACTGGGCTAGACACTCGTATGGTTGTATGGGGTTTCTCTTAGAGA}$	7	0.39886039886039887	No Hit
${\tt TTTGTACTTGTACCTGGGCGCATCGTTCATTTTTCAGTTGTGGATAGCAC}$	7	0.39886039886039887	No Hit
AAGAGCCTGCCTGACCGTCGCTTAGATCGGAAGAGCACACGTCTGAACTC	6	0.3418803418803419	Illumina Multiplexing PCR Primer 2.01 (100% over 27bp)

FastQC – Over-represented sequences

Example 2 – amplicon sequencing

Index

Contamination check

FastQ Screen

- Compare reads to various libraries
- Any library can be searched against
- Output proportion of reads with
 - One hit to one library
 - Multiple hits to one library
 - One hit to multiple libraries
 - Multiple hits to multiple libraries

```
fastq_screen --subset 100000 --conf fastq_screen.conf --aligner
bowtie2 --outdir result --nohits sample.R1.fastq.gz
```

https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/

Contamination check – FastQ Screen

Example 1 – targeted sequencing

Contamination check - FastQ Screen

Example 2 – amplicon sequencing

Contamination check – kraken2

- Taxonomic sequence classification system
 - Build (custom) database
 - Compare k-mer from reads to database

```
kraken2-build --download-taxonomy --db database
kraken2-build --download-library library --db database
kraken2-build --build --db database --minimizer-spaces 0
kraken2 --db database --paired sample.R1.fastq.gz
sample.R2.fastq.gz -report kraken2Report.txt --use-names >
kraken2.output.txt
```

https://ccb.jhu.edu/software/kraken2/

Contamination check – kraken2

Example 3 – bacterial WGS

Fragments	Fragments	Fragments		NCBI		
covered by	covered by	assigned to R	ank code	taxonomic	scientific name	
clade (%)	clade	taxon		ID		
0.04	243	243 U		0 (unclassified	
99.96	632527	0 R		11	root	
99.96	632527	0 R1	L	131567	cellular organisms	
99.96	632491	121 D		2	Bacteria	
99.55	629954	1 D1	1	1783272	Terrabacteria group	
99.53	629777	0 P		201174	Actinobacteria	
99.53	629777	17 C		1760	Actinobacteria	
99.52	629754	200		85007	Corynebacteriales	
99.52	629733	74 F		1762	Mycobacteriaceae	
99.51	629657	5911 G		1763	Mycobacterium	
98.56	623663	5295 G1	1	77643	Mycobacterium tuberculosis complex	
97.69	618141	613920S		1773	Mycobacterium tuberculosis	
0.04	227	78 S		78331	Mycobacterium canettii	
0.01	37	35 S		1768	Mycobacterium kansasii	
0.03	176	0 P		1239	Firmicutes	
0.03	176	0 C		91061	Bacilli	
0.03	172	00		186826	Lactobacillales	
0.03	172	OF		1300	Streptococcaceae	
0.03	172	7G		1301	Streptococcus	
0.03	161	155 S		1313	Streptococcus pneumoniae	
0	2	15		28037	Streptococcus mitis	
0	1	0\$		257758	Streptococcus pseudopneumoniae	

Pre-processing?

- Process fastq files prior to further analysis
 - Remove reads from other species
 - Trim adapters
 - Clip low quality bases
 - Merge overlapping reads from same fragment

0 ...

Adapter clipping & trimming

FastqMcf

- Detect & remove sequencing adapters and primers
- Detect & clip poor quality at the ends of reads
- Remove low complexity reads
- Detect & remove Ns from ends of reads
- Keep PE reads in right order

```
fastq-mcf -H -X -o sample_filtered.R1.fastq.gz -o
/sample_filtered.R2.fastq.gz adapters.fa sample.R1.fastq
sample.R2.fastq
```

https://github.com/ExpressionAnalysis/ea-utils/blob/wiki/FastqMcf.md

Adapter clipping & trimming – FastqMcf

Example 2 – amplicon sequencing

- o Input
 - 2 fastq files of 1,834 reads each
- Outputs
 - 2 fastq files of 1,801 reads each
 - List of adapter found

```
Adapter TruSeq_Adapter,_Index_1 : counted 1038 at the 'end' of 'sample.R1.fastq' ...

Adapter Illumina_Single_End_Sequencing_Primer_3p : counted 1046 at the 'end' of 'sample.R2.fastq' ...

Total reads: 1801
```


Adapter clipping & trimming – FastqMcf

Example 2 – amplicon sequencing

- Multiple hits to multiple libraries
- One hit to multiple libraries
- Multiple hits to one library
- One hit to one library

Read selection – Kraken 2 & seqtk

- Select reads from sequenced organism
 - o Kraken2 outpout
 - Seqtk: toolkit for processing sequences in FASTA/Q formats

```
grep "organism" kraken2.output.txt | cut -f2 > reads.list
seqtk subseq sample.R1.fastq.gz reads.list | gzip - >
sample.selected.R1.fastq.gz
seqtk subseq sample.R2.fastq.gz reads.list | gzip - >
sample.selected.R2.fastq.gz
```

https://ccb.jhu.edu/software/kraken2/https://github.com/lh3/seqtk

Merge overlapping reads – FLASH2

- FLASH (Fast Length Adjustment of SHort reads)
 - Merge paired-end reads
 - Keep DNA fragment only

flash2 --max-overlap=250 --min-overlap=20 --allow-outies -d result -o
sample.flashed sample.R1.fastq.qz sample.R2.fastq.qz > flash.log

https://github.com/dstreett/FLASH2

Merge overlapping reads – FLASH2

- FLASH (Fast Length Adjustment of SHort reads)
 - Merge paired-end reads
 - Keep DNA fragment only

flash2 --max-overlap=250 --min-overlap=20 --allow-outies -d result -o
sample.flashed sample.R1.fastq.qz sample.R2.fastq.qz > flash.log

https://github.com/dstreett/FLASH2

Álvaro Cortés Calabuig Erika Souche