Pregunta 1 (2 puntos)

Se consideran los siguientes subconjuntos de \mathbb{R} :

$$A = \left\{ x \in \mathbb{R} \mid |x - \frac{1}{2}| \le 2 \right\} \text{ y } B = \left\{ x \in \mathbb{R} \mid 4x^2 - 8x - 5 < 0 \right\}$$

Obtenga $A \cap B$, $A \cup B$, $B \setminus A$ y \overline{B} , expressed mediante intervalos.

Pregunta 2 (2,5 puntos)

Se dice que una relación $\mathcal R$ en el conjunto U es circular si satisface la propiedad siguiente:

$$\forall x, y, z \in U$$
 si $x\Re y \in y\Re z$, entonces $z\Re x$.

- 1. Si \mathcal{R} es una relación de equivalencia, ¿es \mathcal{R} circular? ¿Por qué?
- 2. Si \mathcal{R} es reflexiva y circular, ¿es \mathcal{R} una relación de equivalencia? ¿Por qué?

Pregunta 3 (3 puntos)

Se define en \mathbb{N} la operación interna \star y, por inducción, $a^{(n)}$ mediante:

$$a \star b = 2a + b$$
 y $\begin{cases} a^{(1)} = a \\ a^{(n+1)} = a^{(n)} \star a \text{ si } n \geqslant 1 \end{cases}$

- 1. Estudie si la operación \star es conmutativa, asociativa, posee elemento neutro y en su caso, si todo elemento tiene simétrico.
- 2. Calcule $a^{(2)}$, $a^{(3)}$, $a^{(4)}$ y exprese $a^{(n)}$, respecto de las operaciones usuales de \mathbb{N} . Demuestre por inducción la validez de la expresión hallada para $a^{(n)}$ si $n \ge 1$.

Pregunta 4 (2,5 puntos)

Resuelva en $\mathbb C$ la ecuación:

$$(z-1-i)(z+1+i)(z-1+i)(z+1-i) = 5$$