README - Lyra_air_santé

Projet

Lyra_air_santé est un modèle IA fine-tuné sur gpt-3.5-turbo visant à prédire les risques sanitaires environnementaux (allergiques et cardiovasculaires) à partir de conditions atmosphériques courantes, dans une logique à la fois diagnostique et préventive.

Objectif

Anticiper les effets combinés de plusieurs facteurs environnementaux (pollens, inversion thermique, pollution, chaleur humide, vent, etc.) sur la santé humaine, en les rendant lisibles sous forme de risques :

- Risques allergique: faible, moyen, élevé, très élevé, extrême
- Risques cardiovasculaire: idem

Construction du modèle

1. Recherche initiale et réflexion

- L'auteur (Jérôme) a réalisé une exploration documentaire des **facteurs de risques combinés**, incluant :
 - o Inversion thermique et pollution
 - o Effets de vent sur la dispersion pollinique
 - o Humidité élevée et chaleur (stress cardiovasculaire)
 - o Cas rare: thunderstorm asthma (orage post-pollinisation)

2. Construction du dataset d'entraînement

- 100 lignes équilibrées simulées selon une logique bayésienne implicite
- Format : JSONL (OpenAI) avec 7 entrées standardisées :
 - o Température
 - o Humidité
 - o Inversion
 - o Pollens
 - IQA (indice ATMO)
 - Vent > 20 km/h
 - o Pluie > 20 mm
- Sortie: deux lignes de diagnostic
- Contrôle visuel complet via Excel

3. Dataset de validation

• 30 cas préparés manuellement :

- 15 cas typiques (normaux)
- o 10 cas à seuil ou ambigus
- o 5 cas extrêmes (canicule, orage, smog hivernal)

4. Entraînement du modèle

• Modèle: gpt-3.5-turbo

Hyperparamètres :

o n_epochs: 3

o batch_size: 1

o learning_rate_multiplier: 2

• Validation loss final: 0.142

• Convergence rapide, oscillations amorties, aucune perte de stabilité

Tests comparatifs

Prompts typiques

• 5 prompts basés sur des conditions moyennes ou fréquentes

Prompts extrêmes

3 prompts simulant des cas critiques à fort impact sanitaire

Prompt Risque Cardio (base) Risque Cardio (fine-tuné)

Canicule stagnante élevé extrême

Orage post-pollinisation moyen très élevé

Smog hivernal invisible très élevé extrême

Z Dimension médico-environnementale

Le modèle agit comme un **agent préventif cognitif**, avec des capacités d'inférence similaires à celles d'un médecin environnemental :

- Analyse de motifs d'émergence
- Lecture de "signaux faibles" (inversion + pluie + stagnation)
- Détection d'effets systémiques (ex : UV + pollution + chaleur humide)
- Simulation de diagnostics respiratoires indirects

Applications envisagées

- Alertes locales à destination de populations vulnérables
- Intégration dans un assistant Make (workflow complet réalisable)
- Collectivités locales, maisons de santé, ARS

- Couplage possible avec données Météo-France, Atmo-France, ou Netatmo
- Extension prévisionnelle (données à 3 jours)

➡ Licence / Usage

Ce modèle est démonstratif et à visée pédagogique.