Linear Hybrid Automata for Analyzing Hybrid Systems

Akshay Rajhans

ECE Qualifying Exam Presentation, Spring 2010 Apr 20, 2010

Outline

- Hybrid systems
 - Hybrid automata, linear hybrid automata
- Checking Conformance to Specification
 - Simulation relations, computing them
- Checking Conformance Compositionally
 - Assume-guarantee reasoning
- Future Research Directions
- Summary

A motivating example

Verifying specifications "under all cases"

Specification: "If engine is running and oil pressure drops below x psi, the engine is shut off."

Diagnosis

Starting logic in ECU:

"If ignition key pressed & engine speed > idle, engine started"

If we had...

A way to model our (software & physical) system...

and...

A method and/or a tool to verify the specification never gets violated under ANY conditions ...

Outline

- > Hybrid systems
 - Hybrid automata, linear hybrid automata
- Checking Conformance to Specification
 - Simulation relations, computing them
- Checking Conformance Compositionally
 - Assume-guarantee reasoning
- Future Research Directions
- Summary

Hybrid dynamics: a simple example

Hybrid automata (HA)

HA: tuple (Loc, Var, Lab, Tran, Act, Inv, Init)

Example:

Thermostat System

- -Sample temperature every 5 sec.
- -Set-point 30 deg, hysteresis \pm 2 deg

Linear Hybrid automata (LHA)

LHA: Act, Inv, Init and continuous part of Tran given by linear formulas Ax { \leq or<} b

Example:

HA

LHA

Behaviors of hybrid systems

Continuous evolutions and discrete jumps

• LHA can approximate complex hybrid dynamics arbitrarily well. [Hen+98]

Timed transitions of LHA

LHA states are pairs (l,v), where

- $l \in Loc$ and
- v = instantaneous valuation of Var

Time evolution in a location is a polyhedral computation

Var (l,v_0) (l,v_0)

 $\textit{Timed} \; \mathsf{trace} \colon (l_i,\!v_i) {\to^{\tau_i}} \, (l_i,\!v_i') {\to^{\alpha}} \, (l_j,\!v_j) \, {\to^{\tau_j}} \dots$

Timed word: $\tau_i \propto \tau_i \dots$

Timed language: set of all timed words

Given that $x' \in P$, $x(t) = v_0 + x' \cdot t \approx v_0 + P \cdot t$

Outline

- √ Hybrid systems
 - Hybrid automata, linear hybrid automata
- > Checking Conformance to Specification
 - Simulation relations, computing them
- Checking Conformance Compositionally
 - Assume-guarantee reasoning
- Future Research Directions
- Summary

Checking Conformance using LHA

In words

"Under any condition, the room temperature never goes below 20 C or above 40 C."

Modeled as an LHA

Specifications

Verification problem (in abstract sense)

Set of thermostat system behaviors

Set of behaviors of (allowed by) the specification

Checking Conformance – Transition systems

Verification problem

Language = Set of thermostat system behaviors (words)

Language of the specification

In case of loops:

- words infinite, e.g., abdbcd...
- language with infinite words

Language inclusion

Brute force method impossible for infinite
words and/or languages

Simulation Relations – Transition systems

- Local condition to guarantee language inclusion
- A relation $\preceq\subseteq S_p\times S_Q$ is a simulation relation iff \forall $(p,q)\in \preceq$, also written as $p\preceq q$ and $\forall\alpha\in$ set of labels Σ , if $p\to^{\alpha}p'$ then \exists $q'\in S_Q$ s.t. $q\to^{\alpha}q'\wedge p'\preceq q'$.

Simulation Relations – LHA

- A relation $\preceq\subseteq S_p \times S_Q$ is a simulation relation iff $\forall (k,u) \preceq (l,v)$ and $\forall \alpha \in \text{set of labels } Lab \cup R^+,$ if $(k,u) \rightarrow^{\alpha}(k',u')$ then $\exists (l',v') \in S_Q \text{ s.t. } (l,v) \rightarrow^{\alpha}(l',v') \land (k',u') \preceq (l',v').$
- States are pairs, transitions are timed or discrete

Computing simulation relations

Fixed-point algorithm: (Idea)

- 1. Starting with the first guess $\leq_0 = S_P \times S_Q$
- 2. Refine the guess $\leq_{i+1} := \leq_i \backslash B_i$ by subtracting bad states
- 3. Stop when no more bad states are left (i.e. when a *fixed-point* is reached) i.e. $\leq_{i+1} == \leq_i$.

PHAVer

- Polyhedral Hybrid Automaton Verifier [Fre08]
 - Can compute simulation relations for LHA using the fixed-point algorithm
- For thermostat example, we ask:

is_sim(thermostat, spec)?

PHAVer: No.

Outline

- ✓ Hybrid systems
 - Hybrid automata, linear hybrid automata
- ✓ Checking Conformance to Specification
 - Simulation relations, computing them
- Checking Conformance Compositionally
 - Assume-guarantee reasoning
- Future Research Directions
- Summary

Modular modeling and reasoning

- Parallel composition ('||') operation:
 - Events with matching labels are synchronous.
 - Continuous variables are disjoint.
 - $Sys = Subsys_1 | |Subsys_2| | ...$
- Often: Modeling and analysis of such a Sys too expensive.
- Need: Ability to deduce whether $Sys \leq Q$ without having to construct Sys explicitly.

Example

• sys = thermostat | | furnace

ullet Burners heats unevenly, n monitoring sensors

Assume-guarantee (AG) reasoning

Non-circular reasoning [Fre04]

$$\begin{array}{c|ccc} P_1 & |A & \preceq & Q \\ P_2 & \preceq & A \\ \hline P_1 & |P_2 & \preceq & Q \\ \end{array}$$

- Main Idea: Complex task deduced from simpler subtasks
- Profitable if A is simpler than P_2 , i.e.

$$P_1 | A \text{ simpler than } P_1 | P_2$$

Example (Furnace vs Assumption)

Experimental results

Comparison: Computation time AG/non-AG

#sensors in the furnace model	Non-AG Method $P_1 P_2 \preceq Q$		AG Method $P_1 A \leq and Q P_2 \leq A$		
	# State variables	Time (s)	# State variables	Time (s)	
1	4	2.10	$4 \ and \ 2$	1.10	
2	5	121.45	4 and 3	2.85	
3	6	∞^*	$4\ and\ 4$	23.51	
4	7	∞^*	4 and 5	272.67	

Legend: P_1 : Thermostat, P_2 : Furnace, A: Furnace Assumption, Q: Specification

Experimental results

- Simulation relation computation expensive
- Heuristic: Look at only reachable states

#sensors in the furnace model	Non-AG Method $P_1 P_2 \preceq Q$			AG Method $P_1 A \leq Q \ and \ P_2 \leq A$		
	# State variables	Time (s)		# State	Time (s)	
		Full	Reach	variables	Full	Reach
1	4	2.10	0.10	4 and 2	1.10	0.20
2	5	121.45	0.40	4 and 3	2.85	0.30
3	6	∞^*	1.40	$4 \ and \ 4$	23.51	2.80
4	7	∞^*	23.71	$4 \ and \ 5$	272.67	96.02

Legend: P_1 : Thermostat, P_2 : Furnace, A: Furnace Assumption, Q: Specification

Outline

- ✓ Hybrid systems
 - Hybrid automata, linear hybrid automata
- ✓ Checking Conformance to Specification
 - Simulation relations, computing them
- **✓ Checking Conformance Compositionally**
 - Assume-guarantee reasoning
- > Future Research Directions
- Summary

Future Research Directions - I

 Explicit simulation relation computation using fixed-point approach is expensive.

$$\leq_{n+1} := \leq_n \setminus B_n$$
 i.e. set difference $\leq_n \cap \neg B_n$

Alternative to explore:

- Developing necessary and sufficient conditions for existence of simulation relations
- Ex.: Approximate simulation for transition systems with observations in metric spaces [GirardPappas03]

Future Research Directions - II

• For AG, significant human effort is needed in coming up with good assumptions A.

$$\begin{array}{c|ccc} P_1||A & \preceq & Q \\ P_2 & \preceq & A \\ \hline P_1||P_2 & \preceq & Q \end{array}$$

Alternatives to explore:

- (Semi-)automating the assumption generation process by doing it iteratively
- Ex.: Parameter synthesis for LHA [FrehseJhaKrogh08]

Summary

- ✓ Simulation relations for conformance check
- √ AG for compositional reasoning

- > Explicitly generating simulation relations computationally expensive
 - Opportunity for further research
- > Assumption generation needs human effort
 - Opportunity for further research

References

[Hen+98] Algorithmic Analysis of Nonlinear Hybrid Systems, Thomas Henzinger, Pei-Hsin Ho, Howard Wong-Toi

[Fre08] PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech, Goran Frehse

[Fre04] Assume-guarantee Reasoning of Hybrid Systems with Discrete Interaction using Simulation Relations, Goran Frehse

Linear Hybrid Automata (LHA) for Analyzing Hybrid Systems (HS)

Akshay Rajhans

ECE Qualifying Exam Presentation, Spring 2010 Apr 20, 2010

