Homework 0

Evan Hughes

January 2023

1. Fill in the following table

	p	q	$\neg p$	$\neg q$	$p \implies q$	$\neg p \implies \neg q$	$\neg q \implies \neg p$	$\neg(p \Longleftrightarrow q)$
Ì	Т	Τ	F	F	Т	Т	Т	F
	$\mid T \mid$	\mathbf{F}	\mathbf{F}	${\rm T}$	\mathbf{F}	${ m T}$	\mathbf{F}	${f T}$
	F	\mathbf{T}	\mathbf{T}	F	${f T}$	\mathbf{F}	${ m T}$	\mathbf{F}
	F	\mathbf{F}	Τ	Τ	${ m T}$	${ m T}$	${ m T}$	${ m T}$

2. Which of the following expressions are tautologies?

- $(((p \implies q) \implies p) \implies p)$: Tautology
- $(((p \lor q) \land \neg q) \implies q)$: Tautology
- $(p \implies (\neg p \land q))$: Not a Tautology
- $(((p \lor \neg q) \implies r) \implies q)$: Not a Tautology
- $(((p \implies q) \lor (r \implies s)) \implies ((p \lor r) \implies (q \land s)))$: Tautology
- $(((p \implies q) \land (r \implies s)) \implies ((p \lor r) \implies (q \land s)))$: Tautology

3. State whether the given biconditional is true or false under the assumption that all variables are quantified over $\mathbb R$. Give a brief explanation for each.

- (a) $x^2 = 9$ if and only if x = 3: False because $(-3)^2 = 9$
- (b) x is a positive number if and only if x > 0: True because positive numbers are numbers that are greater than 0
- (c) |x| is a positive number if and only if $x \neq 0$: True because the absolute value of a number is always positive unless its 0
- (d) A number x is rational if and only if it has a terminating decimal expansion: False because $\frac{1}{3}$ is rational but does not have a terminating decimal expansion
- (e) Today is March 1 if and only if yesterday was February 28: False because today is March 1st and yesterday was February 29th if its a leap year

1

LATEX Exercises

- 1. Please type me! Sphinx of black quartz, judge my vow!
- 2. $e^{i\pi} + 1 = 0$
- 3. $e^{i\Theta} = \cos(\Theta) + i\sin(\Theta)$
- 4. $G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$
- 5. $x = \frac{-b \pm \sqrt{b^2 + 4ac}}{2a}$
- 6. $\overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{t}$

7.
$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^r y^{n-r}$$

8.
$$\sqrt{\frac{a_1^2 + \dots + a_n^2}{n}} \ge \frac{a_1 + \dots + a_n}{n} \ge \sqrt[n]{a_1 + \dots + a_n} \ge \frac{n}{\frac{1}{a_1} + \dots + \frac{1}{a_n}}$$

9.
$$|\langle x, y \rangle| \le \langle x, x \rangle * \langle y, y \rangle$$

10.

A1:
$$\varphi \longrightarrow (\psi \rightarrow \varphi)$$

A2:
$$(\varphi \longrightarrow (\psi \rightarrow \theta)) \longrightarrow ((\varphi \rightarrow \psi) \longrightarrow (\varphi \rightarrow \theta))$$

A3: $(\neg \varphi \rightarrow \neg \psi) \longrightarrow (\psi \rightarrow \varphi)$

A3:
$$(\neg \varphi \rightarrow \neg \psi) \longrightarrow (\psi \rightarrow \varphi)$$