Лабораторная работа №2

Структуры данных

Тазаева Анастасия Анатольевна

Содержание

1	. Цель работы	
2	Задание	6
3	Выполнение лабораторной работы	7
	3.1 Кортежи	7
	3.2 Словари	8
	3.3 Множества	10
	3.4 Массивы	11
	3.5 Самостоятельная работа	19
4	Выводы	23

Список иллюстраций

3.1	Примеры кортежей	7
3.2	Примеры операций над кортежами	8
3.3	Примеры словарей и операций над ними. Часть 1	9
3.4	Примеры словарей и операций над ними. Часть 2	9
3.5	Примеры множеств и операций над ними. Часть 1	10
3.6	Примеры множеств и операций над ними. Часть 2	11
3.7	Примеры множеств и операций над ними. Часть 3	11
3.8	Примеры массивов. Часть 1	12
3.9	Примеры массивов. Часть 2	13
3.10	Примеры массивов, заданных некоторыми функциями через	
	включение	14
3.11	Некоторые операции для работы с массивами. Часть 1	15
3.12	Некоторые операции для работы с массивами. Часть 2	15
3.13	Некоторые операции для работы с массивами. Часть 3	16
3.14	Некоторые операции для работы с массивами. Часть 4	17
3.15	Некоторые операции для работы с массивами. Часть 5	18
3.16	Некоторые операции для работы с массивами. Часть 6	19
3.17	Самостоятельная работа. Задание 1 и 2	19
3.18	Самостоятельная работа. Задание 3. Подпункты 3.1, 3.2, 3.3, 3.4	20
3.19	Самостоятельная работа. Задание 3. Подпункты 3.5, 3.6, 3.7, 3.8	20
3.20	Самостоятельная работа. Задание 3. Подпункты 3.9, 3.10	20
3.21	Самостоятельная работа. Задание 3. Подпункт 3.11	21
3.22	Самостоятельная работа. Задание 3. Подпункты 3.12, 3.13, 3.14	21
3.23	Самостоятельная работа. Задание 3. Подпункт 3.14	21
3.24	Самостоятельная работа. Задание 3. Подпункт 3.14	22
3.25	Самостоятельная работа. Задание 4 и 5	22
3.26	Самостоятельная работа. Задание 6. Подпункт 6.1, 6.2, 6.3	22

Список таблиц

1 Цель работы

Изучить несколько структур данных, реализованных в Julia, научиться применять их и операции над ними для решения задач

2 Задание

- 1. Используя Jupyter Lab, повторите примеры из раздела 2.2.
- 2. Выполните задания для самостоятельной работы (раздел 2.4).

3 Выполнение лабораторной работы

3.1 Кортежи

Кортеж (Tuple) — структура данных (контейнер) в виде неизменяемой индексируемой последовательности элементов какого-либо типа (элементы индексируются с единицы). Синтаксис определения кортежа:

```
(element1, element2, ...)
```

Примеры представлены на рис. 3.1 и 3.2:

Кортежи

Примеры кортежей

```
[3]: () # Пустой кортеж

[3]: ()

[5]: favoritelang = ("python", "julia", "R") #Кортеж из элементов типа String

[5]: ("python", "julia", "R")

[13]: x1 = (1, 2, 3) # кортеж из целых чисел

[13]: (1, 2, 3)

[14]: x2 = (1, 2.0, "tmp") # Кортеж из элементов разных типов

[14]: (1, 2.0, "tmp")

[15]: x3 = (a=2, b=1+2) # Именованный кортеж

[15]: (a = 2, b = 3)
```

Рис. 3.1: Примеры кортежей

Примеры операций над кортежами

```
[16]: length(x2) # длина кортежа x2

[16]: 3

[17]: x2[1], x2[2], x2[3] # обратиться к элементам кортежа x2

[17]: (1, 2.0, "tmp")

[18]: c = x1[2] + x1[3] # произвести какую-либо операцию (сложение)
# с вторым и третьим элементами кортежа x1

[18]: 5

[19]: x3.a, x3.b, x3[2] # обращение к элементам именованного кортежа x3

[19]: (2, 3, 3)

[21]: # проверка вхождения элементов tmp и в в кортеж x2
# (два способа обращения к методу in()):
in("tmp", x2), в in x2

[21]: (true, false)
```

Рис. 3.2: Примеры операций над кортежами

3.2 Словари

Словарь — неупорядоченный набор связанных между собой по ключу данных.

Синтаксис определения словаря:

```
Dict(key1 => value1, key2 => value2, ...)
```

Примеры представлены на рис. 3.3 и 3.4:

Примеры словарей и операций над ними

```
phonebook = Dict("Иванов И.И." => ("867-5309","333-5544"), "Бухгалтерия" => "555-2368")
[23]: Dict{String, Any} with 2 entries:
         "Бухгалтерия" => "555-2368"
"Иванов И.И." => ("867-5309", "333-5544")
[24]: # вывести ключи словаря:
      keys(phonebook)
\cite{Matter} : KeySet for a Dict{String, Any} with 2 entries. Keys:
          .
"Бухгалтерия'
         "Иванов И.И."
[25]: # вывести значения элементов словаря:
      values(phonebook)
[25]: ValueIterator for a Dict{String, Any} with 2 entries. Values:
         "555-2368"
        ("867-5309", "333-5544")
[26]: # вывести заданные в словаре пары "ключ - значение":
      pairs(phonebook)
[26]: Dict{String, Any} with 2 entries:
         "Бухгалтерия" => "555-2368"
"Иванов И.И." => ("867-5309", "333-5544")
[29]: # проверка вхождения ключа в словарь:
       haskey(phonebook, "Иванов И.И.")
[29]: true
```

Рис. 3.3: Примеры словарей и операций над ними. Часть 1

```
[30]: # добабить элемент в словарь:
phonebook["Сидоров П.С."] = "555-3344"

[30]: "555-3344"

[31]: # удалить ключ и связанные с ним значения из словаря
pop!(phonebook, "Иванов И.И.")

[31]: ("867-5309", "333-5544")

[32]: keys(phonebook)

[32]: keys(phonebook)

[32]: кеуset for a Dict{String, Any} with 2 entries. Keys:
    "Сидоров П.С."
    "Бухгалтерия"

[33]: # Объединение словарей (функция тегде()):
    a = Dict("foo" => 0.0, "bar" => 42.0);
    b = Dict("baz" => 17, "bar" => 13.0);
    merge(a, b), merge(b,a)

[33]: (Dict{String, Real}("bar" => 13.0, "baz" => 17, "foo" => 0.0), Dict{String, Real}("bar" => 42.0, "baz" => 17, "foo" => 0.0)
```

Рис. 3.4: Примеры словарей и операций над ними. Часть 2

3.3 Множества

Множество, как структура данных в Julia, соответствует множеству, как математическому объекту, то есть является неупорядоченной совокупностью элементов какого-либо типа. Возможные операции над множествами: объединение, пересечение, разность; принадлежность элемента множеству. Синтаксис определения множества:

Set([itr]), где itr — набор значений, сгенерированных данным итерируемым объектом или пустоемножество.

Примеры представлены на рис. 3.5, 3.6, 3.7:

Примеры множеств и операций над ними

```
[34]: # создать множество из четырёх целочисленных значений:

A = Set([1, 3, 4, 5])

[34]: Set{Int64} with 4 elements:

5
4
3
1

[35]: # создать множество из 11 символьных значений:

B = Set("abrakadabra")

[35]: Set{Char} with 5 elements:

'a'
'd'
'r'
'k'
'b'

[40]: # проверка эквивалентности двух множеств:

$1 = Set([1,2]);
$2 = Set([3,4]);
issetequal($1,$2)

[40]: false

[41]: # проверка эквивалентности двух множеств:

$3 = Set([1,2,2,3,1,2,3,2,1]);
$4 = Set([2,3,1]);
issetequal($3,$4)

[41]: true
```

Рис. 3.5: Примеры множеств и операций над ними. Часть 1

```
[42]: # объединение множеств:
      C=union(51,52)
[42]: Set{Int64} with 4 elements:
[43]: # пересечение множеств:
     D = intersect(S1,S3)
[43]: Set{Int64} with 2 elements:
[44]: # разность множеств:
     E = setdiff(S3,S1)
[44]: Set{Int64} with 1 element:
[45]: # проверка вхождения элементов одного множества в другое:
      issubset(S1,S4)
[45]: true
[46]: # добавление элемента в множество:
      push!(S4, 99)
[46]: Set{Int64} with 4 elements:
        99
```

Рис. 3.6: Примеры множеств и операций над ними. Часть 2

```
[47]: # удаление последнего элемента множества:
pop!(s4)

[47]: 2

[48]: S4

[48]: Set{Int64} with 3 elements:
99
3
1
```

Рис. 3.7: Примеры множеств и операций над ними. Часть 3

3.4 Массивы

Массив — коллекция упорядоченных элементов, размещённая в многомерной сетке. Векторы и матрицы являются частными случаями массивов. Общий синтаксис одномерных массивов:

```
array_name_1 = [element1, element2, ...]
array_name_2 = [element1 element2 ...]
```

Некоторые операции для работы с массивами: - length(A) — число элементов массива A; - ndims(A) — число размерностей массива A; - size(A) — кортеж размерностей массива A; - size(A, n) — размерность массива A в заданном направлении; - copy(A) — создание копии массива A; - ones() , zeros() — создать массив с единицами или нулями соответственно; - fill(value,array_name) — заполнение массива заранее определенным значением; - sort() — сортировка элементов; - collect() — вернуть массив всех элементов в коллекции или итераторе; - reshape() — изменение размера массива; - transpose() — транспонирование массива;

Примеры массивов представлены на рис. 3.8, 3.9, 3.10:

Примеры массивов

```
[49]: # создание пустого массива с абстрактным типом:
      empty_array_1 = []
[49]: Any[]
[52]: # создание пустого массива с конкретным типом:
      empty_array_2 = (Int64)[]
[51]: empty_array_3 = (Float64)[]
[51]: Float64[]
      a = [1, 2, 3]
[53]: 3-element Vector{Int64}:
[55]: # вектор-строка:
      b = [1 2 3]
[55]: 1×3 Matrix{Int64}:
[57]: # многомерные массивы (матрицы):
      A = [[1, 2, 3] [4, 5, 6] [7, 8, 9]]
[57]: 3×3 Matrix{Int64}:
       2 5 8
       3 6 9
```

Рис. 3.8: Примеры массивов. Часть 1

```
[58]: B = [[1 2 3]; [4 5 6]; [7 8 9]]
[58]: 3×3 Matrix{Int64}:
         1 2 3
4 5 6
7 8 9
[59]: # одномерный массив из 8 элементов (массив $1 \times 8$)
        # со значениями, случайно распределёнными на интервале [0, 1):
       c = rand(1,8)
[59]: 1×8 Matrix{Float64}:
         0.310043 0.950794 0.915795 0.962301 ... 0.185676 0.892984 0.766257
[66]: # многомерный массив $2 \times 3$ (2 строки, 3 столбца) элементов
         # со значениями, случайно распределёнными на интервале [0, 1):
       C = rand(2,3)
[66]: 2×3 Matrix{Float64}:
         0.203864 0.758838 0.393973
0.738799 0.988954 0.64076
[67]: # трёхмерный массив:
       D = rand(4, 3, 2)
[67]: 4×3×2 Array{Float64, 3}:
        [:,:,1] = 0.227332 0.844477 0.464529

    0.708991
    0.0160303
    0.854196

    0.760585
    0.115136
    0.984205

    0.283116
    0.597728
    0.772792

        [:, :, 2] =
0.0107221 0.446021 0.0808428
0.472339 0.710554 0.627792
0.337875 0.181368 0.0408687
0.903711 0.882048 0.893641
```

Рис. 3.9: Примеры массивов. Часть 2

```
Примеры массивов, заданных некоторыми функциями через
[68]: # массив из квадратных корней всех целых чисел от 1 до 10:
      roots = [sqrt(i) for i in 1:10]
[68]: 10-element Vector{Float64}:
       1.0
       1.4142135623730951
1.7320508075688772
       2.23606797749979
2.449489742783178
        2.6457513110645907
       2.8284271247461903
        3.0
       3.1622776601683795
[69]: # массив с элементами вида 3*x^2,
# где х - нечётное число от 1 до 9 (включительно)
      ar_1 = [3*i^2 for i in 1:2:9]
[69]: 5-element Vector{Int64}:
        27
       147
       243
[70]: # массив квадратов элементов, если квадрат не делится на 5 или 4:
       ar_2=[i^2 for i=1:10 if (i^2%5!=0 && i^2%4!=0)]
[70]: 4-element Vector{Int64}:
       49
        81
```

Рис. 3.10: Примеры массивов, заданных некоторыми функциями через включение

Примеры операций над массивами представлены на рис. 3.11 - 3.16:

Некоторые операции для работы с массивами

```
[71]: # одномерный массив из пяти единиц:
      ones(5)
[71]: 5-element Vector{Float64}:
       1.0
       1.0
       1.0
[73]: # двумерный массив 2х3 из единиц:
      ones(2,3)
[73]: 2×3 Matrix{Float64}:
       1.0 1.0 1.0
1.0 1.0 1.0
[74]: # одномерный массив из 4 нулей:
      zeros(4)
[74]: 4-element Vector{Float64}:
       0.0
       0.0
[75]: # заполнить массив 3х2 цифрами 3.5
       fill(3.5,(3,2))
[75]: 3×2 Matrix{Float64}:
       3.5 3.5
3.5 3.5
```

Рис. 3.11: Некоторые операции для работы с массивами. Часть 1

```
[95]: # заполнить массив 3х2 цифрами 3.5
       fill(3.5,(3,2))
[95]: 3×2 Matrix{Float64}:
       3.5 3.5
3.5 3.5
3.5 3.5
[96]: # заполнение массива посредством функции repeat():
       repeat([1,2],3,3)
       repeat([1 2],3,3)
[96]: 3×6 Matrix{Int64}:
        1 2 1 2 1 2
1 2 1 2 1 2
1 2 1 2 1 2
[81]: # преобразование одномерного массива из целых чисел от 1 до 12 # в двумерный массив 2x6
       a = collect(1:12)
b = reshape(a,(2,6))
[81]: 2×6 Matrix{Int64}:
        1 3 5 7 9 11
2 4 6 8 10 12
[83]: # транспонирование
                                                                                   ⑥↑↓占早膏
[83]: 6×2 adjoint(::Matrix{Int64}) with eltype Int64:
             4
```

Рис. 3.12: Некоторые операции для работы с массивами. Часть 2

Рис. 3.13: Некоторые операции для работы с массивами. Часть 3

```
[87]: # θωδορ θεεχ значений θ εποπθίμαχ 2 u 5:
ar[:, [2, 5]]

[87]: 10×2 Matrix(Int64):
19 13
13 16
16 11
14 10
14 20
18 16
10 15
11 20
11 13
10 20

[88]: # θεε значения επροκ θ εποπδίμαχ 2, 3 u 4:
ar[:, 2:4]

[88]: 10×3 Matrix(Int64):
19 16 16
13 17 20
16 14 14
14 17 12
14 12 17
18 17 19
10 11 19
11 19 20
11 18 18
10 13 10

[89]: # значения θ επροκαχ 2, 4, 6 u θ εποπδίμαχ 1 u 5:
ar[[2, 4, 6], [1, 5]]

[89]: 3×2 Matrix(Int64):
16 16
15 10
17 16
```

Рис. 3.14: Некоторые операции для работы с массивами. Часть 4

```
[90]: # значения в строке 1 от столбца 3 до последнего столбца:
       ar[1, 3:end]
[90]: 3-element Vector{Int64}:
         16
         16
         13
[91]: # сортировка по столбцам:
                                                                                         ⊙↑↓去♀▮
        sort(ar,dims=1)
[91]: 10×5 Matrix{Int64}:
        12 10 11 10 10
13 10 12 12 11
         13 11 14 16 13
14 13 16 17 15
         15 14 17 19 16
16 16 17 19 20
         17 18 18 20 20
18 19 19 20 20
[92]: # сортировка по строкам:
       sort(ar,dims=2)
[92]: 10×5 Matrix{Int64}:
        13 15 16 16 19
13 16 16 17 20
11 13 14 14 16
         10 12 14 15 17
12 14 17 18 20
16 17 17 18 19
         10 11 13 15 19
11 14 19 20 20
11 12 13 18 18
         10 10 13 13 20
```

Рис. 3.15: Некоторые операции для работы с массивами. Часть 5

```
[93]: # поэлементное сравнение с числом
      # (результат - массив логических значений):
      ar .> 14
[93]: 10×5 BitMatrix:
       1 1 1 1 0
       0 1 0 0 0
       1 0 1 0 0
       0 0 0 1 1
       0 0 1 1 0
       0 0 0 0 1
[94]: # возврат индексов элементов массива, удовлетворяющих условию: \blacksquare \land \lor \bot \dotplus \mp \blacksquare
      findall(ar .> 14)
[94]: 27-element Vector{CartesianIndex{2}}:
       CartesianIndex(1, 1)
       CartesianIndex(2, 1)
       CartesianIndex(4, 1)
       CartesianIndex(5, 1)
       CartesianIndex(6, 1)
       CartesianIndex(1, 2)
       CartesianIndex(3, 2)
       CartesianIndex(6, 2)
       CartesianIndex(1, 3)
        CartesianIndex(2, 3)
       CartesianIndex(4, 3)
       CartesianIndex(6, 3)
       CartesianIndex(8, 3)
       CartesianIndex(2, 4)
        CartesianIndex(5, 4)
       CartesianIndex(6, 4)
```

Рис. 3.16: Некоторые операции для работы с массивами. Часть 6

3.5 Самостоятельная работа

Выполнение заданий можно просмотреть на рис. 3.17 - 3.26:

```
1. Даны множества: A = {0, 3, 4, 9}, B = {1, 3, 4, 7}, C = {0, 1, 2, 4, 7, 8, 9}. Найти P = A ∩ B ∪ A ∩ B ∪ A ∩ C ∪ B ∩ C ∪ B ∩ C 

A = Set([0, 3, 4, 9])
B = Set([1, 3, 4, 7])
C = Set([0, 1, 2, 4, 7, 8, 9])
P = union(intersect(A,B), intersect(A,B),intersect(A,C),intersect(B,C))
print(P)
Set([0, 4, 7, 9, 3, 1])

2. Приведите свои примеры с выполнением операций над множествами элементов разных типов.

N = Set([2002, 2003, 2004, 2005]) # Выпускники кружка Оленьи рога
T = Set([2002, 2003, 2004, 2005]) # Выпускники вкрэкка Оленьи рога
# блодат ли быпускники кружка Оленьи рога в список быпускников школы яворчесява
issubset(N,T)

true

N = Set([2002, 2003, 2004, 2005]) # Выпускники кружка Оленьи рога
S = Set([2008, 1903, 1904, 1905]) # Выпускники кружка Оленьи кольяю
R = Set([2008, 2003, 2004, 2005]) # Выпускники кружка Оленьи кольяю
R = Set([2008, 1903, 1904, 1905]) # Выпускники кружка Оленьи кольяю
R = Set([2008, 1903, 1904, 1905]) # Выпускники кружка Оленьи кольяю
R = Set([2004, 2005, 2004, 2005]) # Выпускники кружка Оленьи кольяю
R = Set([2004, 2005, 1905, 2004, 2005]) # Выпускники кружка Оленьи кольяю
R = Set([2004, 2005, 2004, 2005]) # Выпускники кружка Оленьи кольяю
R = Set([2004, 2005, 2004, 2005]) # Выпускники кружка Оленьи кольяю
R = Set([2004, 2005, 2004, 2005]) # Выпускники кружка Оленьи кольяю
R = Set([2004, 2005, 2004, 2005]) # Выпускники кружка Оленьи кольяю
R = Set([2004, 2005, 2004, 2005]) # Выпускники кружка Оленьи кольяю
R = Set([2004, 2005, 2004, 2005]) # Выпускники кружка Оленьи кольяю
R = Set([2004, 2005, 2004, 2005]) # Выпускники кружка Оленьи кольяю
R = Set([2004, 2005, 2004, 2005]) # Выпускники кружка Оленьи кольяю
R = Set([2004, 2005, 2004, 2005]) # Выпускники кружка Оленьи кольяю
R = Set([2004, 2005, 2004, 2005]) # Выпускники кружка Оленьи кольяю
R = Set([2004, 2005, 2004, 2005]) # Выпускники кружка Оленьи кольяю
R = Set([2004, 2005, 2004, 2005]) # Выпускники кружка Оленьи кольяю
R = Set([2004, 2005, 2004, 2005]) # Выпускники кружка Оленьи кольяю кольяю кольяю кольяю кольяю кольяю кольяю к
```

Рис. 3.17: Самостоятельная работа. Задание 1 и 2

Рис. 3.18: Самостоятельная работа. Задание 3. Подпункты 3.1, 3.2, 3.3, 3.4

Рис. 3.19: Самостоятельная работа. Задание 3. Подпункты 3.5, 3.6, 3.7, 3.8

Рис. 3.20: Самостоятельная работа. Задание 3. Подпункты 3.9, 3.10

```
3.11) вектор вида (x^i, y^i), x = 0.1, i = 3, 6, 9, ..., 36, y = 0.2, i = 1, 4, 7, ..., 34;
```

Рис. 3.21: Самостоятельная работа. Задание 3. Подпункт 3.11

Рис. 3.22: Самостоятельная работа. Задание 3. Подпункты 3.12, 3.13, 3.14

```
task2 = [x[i]=2*x[i=3]-x[i=3] fer i:1:1:length(x)-3]
print(task2)

[7:30, -14, 1724, 2279, 1933, 743, 289, 1081, 1113, 1992, 1153, 1404, 1169, 865, 1793, 1602, 571, 342, 396, 1142, 1361, 228, 158, 1646, 1366, 669, 1016, 596, 458, 888, 1211, 1378, 1434, 895, 2112, 1897, 551, -364, -350, 149, 641, 2409, 2068, 466, 369, 728, 2341, 2086, 719, 408, 186, 334, 786, 1606, 1608, 1815, 2036, 1078, -6, -242, 338, 1252, 2247, 1133, 598, 1269, 1189, 697, 518, -475, 393, 1649, 456, 667, 1983, 1046, 524, 760, 1033, 2070, 870, -171, 1715, 2489, 456, 247, 378, 766, 712, 734, 289, 222, 427, 1713, 511, 2446, 255, -345, 645, 1866, 584, 355, 1186, 2355, 2
023, 613, 339, 312, 588, 1266, 1189, 697, 518, -475, 393, 1649, 456, 667, 1983, 1046, 524, 760, 1033, 2070, 870, -171, 11579, 2493, 455, -627, 704, 11840, 2658, 235, 237, 377, 676, 722, 734, 1284, 206, 222, 542, 7112, 511, 5114, 461, 769, 1497, 1873, 1474, 667, 781, 1980, -211, 243, 2161, 1219, 704, 1711, 1105, 741, 1711, 1105, 1481, 1705, 517, -799, -231, 1154, 1250, 2038, 2357, 597, 661, 1189, 1167, 1506, 1649, 215, 438, 1614, 1235, 819, -285, -517, 999, 2402, 1028, 047, 1712, 1606, 677, 234, 1184, 1059, 1533, 439, 601, 1893, 1874, 437, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874, 1874,
```

Рис. 3.23: Самостоятельная работа. Задание 3. Подпункт 3.14

Рис. 3.24: Самостоятельная работа. Задание 3. Подпункт 3.14

Рис. 3.25: Самостоятельная работа. Задание 4 и 5

```
6.1)

for i in 10:1:100
    res *= i**0344*i**2
end
print(res)

5.3705470004035644e7

6.2)

sum2 = sum((2*i / i + 3*i / i**2) for i in 1:25)
println(sum2)

2.1291704368143802e9

6.3)

sum3 = sum(prod(2:2n) / prod(3:2n*1) for n in 1:19)
println(sum3)

12.84175745993532
```

Рис. 3.26: Самостоятельная работа. Задание 6. Подпункт 6.1, 6.2, 6.3

4 Выводы

В ходе выполнения лабораторной работы я изучила несколько структур данных, реализованных в Julia, научилась применять их и операции над ними для решения задач