



### **Applications**

- · Military radar
- · Commercial radar
  - Avionics
  - Marine
  - Weather



#### **Product Features**

• Frequency: DC to 12 GHz

• Output Power (P3dB): 19 W at 9.4 GHz

Linear Gain: 11 dB at 9.4 GHz
Typical PAE<sub>3dB</sub>: 46% at 9.4 GHz

Operating Voltage: 32 V

· Low thermal resistance package

CW and Pulse capable

• 3 x 4 mm package

# **Functional Block Diagram**



# **General Description**

The TriQuint TGF2978-SM is a 20 W (P<sub>3dB</sub>) discrete GaN on SiC HEMT which operates from DC to 12 GHz. The device is constructed with TriQuint's proven TQGaN25 process, which features advanced field plate techniques to optimize power and efficiency at high drain bias operating conditions. This optimization can potentially lower system costs in terms of fewer amplifier line-ups and lower thermal management costs.

The device is housed in an industry-standard 3 x 4 mm surface mount QFN package.

Lead-free and ROHS compliant

Evaluation boards are available upon request.

# **Pin Configuration**

| Pin No.                | Label                   |
|------------------------|-------------------------|
| 12 - 16                | V <sub>D</sub> / RF OUT |
| 3 - 4                  | V <sub>G</sub> / RF IN  |
| 1 - 2, 5 - 11, 16 - 20 | NC                      |
| Back side              | Source                  |

# **Ordering Information**

- 1 of 19 -

| Part                | ECCN       | Description       |
|---------------------|------------|-------------------|
| TGF2978-SM          | 3A001b.3.b | QFN Packaged Part |
| TGF2978-SM-<br>EVB1 | EAR99      | EVB               |





20W, 32V, DC - 12 GHz, GaN RF Transistor

# **Absolute Maximum Ratings**

| Parameter                                                         | Value        |
|-------------------------------------------------------------------|--------------|
| Breakdown Voltage (BV <sub>DG</sub> )                             | 100 V min.   |
| Gate Voltage Range (V <sub>G</sub> )                              | -10 to 0 V   |
| Drain Current (I <sub>D</sub> )                                   | 2.4 A        |
| Gate Current (I <sub>G</sub> )                                    | -5 to 8.4 mA |
| Power Dissipation, CW (P <sub>D</sub> )                           | 28 W         |
| RF Input Power, CW,<br>$T = 25 ^{\circ}\text{C}  (P_{\text{IN}})$ | 36dBm        |
| Channel Temperature (TcH)                                         | 275 ℃        |
| Storage Temperature                                               | -40 to 150 ℃ |

Operation of this device outside the parameter ranges given above may cause permanent damage. These are stress ratings only, and functional operation of the device at these conditions is not implied.

### **Recommended Operating Conditions**

| Parameter                                            | Value          |
|------------------------------------------------------|----------------|
| Drain Voltage (V <sub>D</sub> )                      | 32 V (Typ.)    |
| Drain Quiescent Current (I <sub>DQ</sub> )           | 100 mA (Typ.)  |
| Peak Drain Current (ID)                              | 1300 mA (Typ.) |
| Gate Voltage (V <sub>G</sub> )                       | -2.7 V (Typ.)  |
| Channel Temperature (T <sub>CH</sub> )               | 225 ℃ (Max)    |
| Power Dissipation, CW (P <sub>D</sub> ) <sup>2</sup> | 25.6 W (Max)   |
| Power Dissipation, Pulse (PD)3                       | 33 W (Max)     |

<sup>&</sup>lt;sup>1</sup> Electrical specifications are measured at specified test conditions.

Specifications are not guaranteed over all recommended operating conditions.

<sup>&</sup>lt;sup>2</sup> Package at 85 °C

<sup>3 100</sup> uS Pulse Width, 10 % Duty Cycle, package at 85 ℃





20W, 32V, DC – 12 GHz, GaN RF Transistor

### Pulsed RF Characterization – Load Pull Performance

Test conditions unless otherwise noted: T<sub>A</sub> = 25 °C, V<sub>D</sub> = 32 V, I<sub>DQ</sub> = 100 mA, Pulse: 100 uS Pulse Width, 10 % Duty Cycle

| Symbol             | Parameter                                        | Freq    | Min | Typical | Max | Units |
|--------------------|--------------------------------------------------|---------|-----|---------|-----|-------|
| G <sub>LIN</sub>   | Linear Gain, Power Tuned                         | 6 GHz   |     | 14.9    |     | _     |
|                    |                                                  | 8 GHz   |     | 12.9    |     |       |
|                    |                                                  | 9 GHz   |     | 11.3    |     | dB    |
|                    |                                                  | 9.4 GHz |     | 10.7    |     | ub    |
|                    |                                                  | 10 GHz  |     | 9.8     |     |       |
|                    |                                                  | 12 GHz  |     | 8.1     |     |       |
|                    |                                                  | 6 GHz   |     | 43.5    |     |       |
|                    |                                                  | 8 GHz   |     | 43.0    |     |       |
| _                  | Output Power at 3dB compression point, Power     | 9 GHz   |     | 43.0    |     |       |
| $P_{3dB}$          | Tuned                                            | 9.4 GHz |     | 42.7    |     | dBm   |
|                    |                                                  | 10 GHz  |     | 42.9    |     |       |
|                    |                                                  | 12 GHz  |     | 42.4    |     |       |
|                    |                                                  | 6 GHz   |     | 54.9    |     |       |
|                    |                                                  | 8 GHz   |     | 52.6    |     |       |
| PAE <sub>3dB</sub> | Power-Added Efficiency at 3dB compression point, | 9 GHz   |     | 49.1    |     | %     |
| PA⊏3dB             | Efficiency Tuned                                 | 9.4 GHz |     | 46.1    |     |       |
|                    |                                                  | 10 GHz  |     | 44.2    |     |       |
|                    |                                                  | 12 GHz  |     | 33.0    |     |       |
|                    | Gain at 3dB compression point, Power Tuned       | 6 GHz   |     | 11.9    |     | - dB  |
|                    |                                                  | 8 GHz   |     | 9.9     |     |       |
|                    |                                                  | 9 GHz   |     | 8.3     |     |       |
| Gзdв               |                                                  | 9.4 GHz |     | 7.7     |     |       |
|                    |                                                  | 10 GHz  |     | 6.8     |     |       |
|                    |                                                  | 12 GHz  |     | 5.1     |     |       |

Datasheet: Rev A 10-02-15 © 2015 TriQuint

Disclaimer: Subject to change without notice www.triquint.com



### Thermal and Reliability Information - CW <sup>1</sup>

| Parameter                                      | Simulated Conditions                      | Value  | Units |
|------------------------------------------------|-------------------------------------------|--------|-------|
| Thermal Resistance (θ <sub>JC</sub> )          | 05.00.0                                   | 5.83   | °C/W  |
| Maximum Channel Temperature (T <sub>CH</sub> ) | ── 85 °C Case<br>—— 30.2 W Pdiss, CW      | 261    | ℃     |
| Median Lifetime (T <sub>M</sub> )              | 30.2 W T diss, OW                         | 1.2E5  | Hrs   |
| Thermal Resistance (θ <sub>JC</sub> )          | 25.22.2                                   | 5.44   | °C/W  |
| Maximum Channel Temperature (T <sub>CH</sub> ) | ==== 85 °C Case<br>===== 25.2 W Pdiss, CW | 222    | ∞     |
| Median Lifetime (T <sub>M</sub> )              | 23.2 W T diss, GW                         | 2.3E6  | Hrs   |
| Thermal Resistance (θ <sub>JC</sub> )          | 25.22.2                                   | 5.15   | °C/W  |
| Maximum Channel Temperature (T <sub>CH</sub> ) | ==== 85 ℃ Case<br>===== 20.2 W Pdiss, CW  | 189    | ∞     |
| Median Lifetime (T <sub>M</sub> )              | 20.2 W T diss, OW                         | 4.4E7  | Hrs   |
| Thermal Resistance (θ <sub>JC</sub> )          | 25.22.2                                   | 4.90   | °C/W  |
| Maximum Channel Temperature (T <sub>CH</sub> ) | 85 ℃ Case<br>—— 15.1 W Pdiss, CW          | 159    | ∞     |
| Median Lifetime (T <sub>M</sub> )              | 13.1 W 1 diss, OW                         | 9.2E8  | Hrs   |
| Thermal Resistance (θ <sub>JC</sub> )          | 25.22.2                                   | 4.65   | °C/W  |
| Maximum Channel Temperature (T <sub>CH</sub> ) | ==== 85 ℃ Case<br>===== 10.1 W Pdiss, CW  | 132    | ℃     |
| Median Lifetime (T <sub>M</sub> )              | 10.1 W 1 diss, OW                         | 2.1É10 | Hrs   |
| Thermal Resistance (θ <sub>JC</sub> )          | 25.22.2                                   | 4.40   | °C/W  |
| Maximum Channel Temperature (T <sub>CH</sub> ) | 85 ℃ Case<br>5.0 W Pdiss, CW              | 107    | .€    |
| Median Lifetime (T <sub>M</sub> )              | 3.0 W 1 diss, GW                          | 5.6E11 | Hrs   |

#### Notes:

# Thermal and Reliability Information - Pulsed <sup>1</sup>

| Parameter                                      | Simulated Conditions                             | Value | Units |
|------------------------------------------------|--------------------------------------------------|-------|-------|
| Thermal Resistance (θ <sub>JC</sub> )          | 05 00 0000                                       | 5.36  | ºC/W  |
| Maximum Channel Temperature (T <sub>CH</sub> ) | ── 85 °C Case<br>— 30.2 W Pdiss, 500 uS PW, 10%  | 247   | °C    |
| Median Lifetime (T <sub>M</sub> )              | 00.2 ** 1 diss, 500 de 1 **, 1070                | 3.2E6 | Hrs   |
| Thermal Resistance (θ <sub>JC</sub> )          | 05 00 0000                                       | 5.08  | ºC/W  |
| Maximum Channel Temperature (T <sub>CH</sub> ) | ── 85 °C Case<br>— 25.2 W Pdiss, 500 uS PW, 10%  | 213   | Ç     |
| Median Lifetime (T <sub>M</sub> )              | 20.2 ** 1 diss, 500 de 1 **, 1070                | 5.0E7 | Hrs   |
| Thermal Resistance (θ <sub>JC</sub> )          | 05 00 0000                                       | 4.17  | ºC/W  |
| Maximum Channel Temperature (T <sub>CH</sub> ) | ── 85 °C Case<br>— 30.2 W Pdiss, 100 uS PW, 10%  | 211   | Ç     |
| Median Lifetime (T <sub>M</sub> )              | 00.2 <b>VV</b> 1 diss, 100 de 1 <b>VV</b> , 1070 | 6.0E7 | Hrs   |
| Thermal Resistance (θ <sub>JC</sub> )          | 05 00 0000                                       | 4.01  | ºC/W  |
| Maximum Channel Temperature (T <sub>CH</sub> ) | ── 85 ℃ Case<br>— 25.2 W Pdiss, 100uS PW, 10%    | 186   | °C    |
| Median Lifetime (T <sub>M</sub> )              | 25.2 ** 1 0133, 10000 1 **, 1076                 | 5.9E8 | Hrs   |

#### Notes:

Datasheet: Rev A 10-02-15 © 2015 TriQuint

<sup>1.</sup> Thermal resistance measured to bottom of package.

<sup>1.</sup> Thermal resistance measured to bottom of package.



### Median Lifetime<sup>1</sup>



<sup>&</sup>lt;sup>1</sup> For pulsed signals, average lifetime is average lifetime at maximum channel temperature divided by duty cycle.



# **Maximum Channel Temperature, CW**





# **Maximum Channel Temperature, Pulsed**





- 1. 32 V, 100 mA, Pulsed signal with 100 uS pulse width and 10% duty cycle. Performance is at indicated input power.
- 2. See page 16 for load pull and source pull reference planes. 15-Ω load pull TRL fixtures are built with 10-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.





- 1. 32 V, 100 mA, Pulsed signal with 100 uS pulse width and 10% duty cycle. Performance is at indicated input power.
- 2. See page 16 for load pull and source pull reference planes. 15-Ω load pull TRL fixtures are built with 10-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.





- 32 V, 100 mA, Pulsed signal with 100 uS pulse width and 10% duty cycle. Performance is at indicated input power.
- 2. See page 16 for load pull and source pull reference planes. 15-Ω load pull TRL fixtures are built with 10-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.





- 1. 32 V, 100 mA, Pulsed signal with 100 uS pulse width and 10% duty cycle. Performance is at indicated input power.
- 2. See page 16 for load pull and source pull reference planes. 15-Ω load pull TRL fixtures are built with 10-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.







- 1. 32 V, 100 mA, Pulsed signal with 100 uS pulse width and 10% duty cycle. Performance is at indicated input power.
- 2. See page 16 for load pull and source pull reference planes. 15-Ω load pull TRL fixtures are built with 10-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.







- 1. 32 V, 100 mA, Pulsed signal with 100 uS pulse width and 10% duty cycle. Performance is at indicated input power.
- 2. See page 16 for load pull and source pull reference planes. 15-Ω load pull TRL fixtures are built with 10-mil RO4350B material.
- 3. NaN means the impedances are either undefined or varying in load-pull system.





### Typical Pulsed Performance – Power Tuned<sup>(1,2)</sup>

#### Notes:

- 1. Pulsed signal with 100 uS pulse width and 10 % duty cycle
- 2. See page 16 for load pull and source pull reference planes where the performance was measured.
- 3. Vd = 32 V, Idq = 100 mA















# Typical Pulsed Performance – Efficiency Tuned (1,2)

- Pulsed signal with 100 uS pulse width and 10 % duty cycle
- 2. See page 16 for load pull and source pull reference planes where the performance was measured.
- Vd = 32 V, Idq = 100 mA3.

















# **Pin Layout**



| Pin | <b>Description</b> |
|-----|--------------------|
|     | Description        |

| Pin                       | Symbol                  | Description                                                                                  |
|---------------------------|-------------------------|----------------------------------------------------------------------------------------------|
| 12 - 15                   | V <sub>D</sub> / RF OUT | Drain voltage / RF Output to be matched to 50 ohms; see EVB Layout on page 19 as an example. |
| 3 - 4                     | V <sub>G</sub> / RF IN  | Gate voltage / RF Input to be matched to 50 ohms; see EVB Layout on page 19 as an example.   |
| 1 - 2, 5 – 11, 16 -<br>20 | N/C                     | Not connected                                                                                |
| Back side                 | Source                  | Source connected to ground                                                                   |

#### Notes:

Thermal resistance measured to back side of package

The TGF2978-SM will be marked with the "2978" designator and a lot code marked below the part designator The "YY" represents the last two digits of the calendar year the part was manufactured, the "WW" is the work week of the assembly lot start, and the "MZZZ" is the production lot number.

20W, 32V, DC - 12 GHz, GaN RF Transistor

#### **Mechanical Information**

All dimensions are in milimeters.



#### Note:

Unless otherwise noted, all dimention tolerances are +/-0.127 mm.

This package is lead-free/RoHS-compliant. The plating material on the leads is NiAu. It is compatible with both lead-free (maximum 260 ℃ reflow temperature) and tin-lead (maximum 245 ℃ reflow temperature) soldering processes.





# **Product Compliance Information**

### **ESD Sensitivity Ratings**



ESD Rating: Class 1B Value: Passes ≥ 600 V.

Test: Human Body Model (HBM) Standard: JEDEC Standard JESD22-A114

#### **MSL Rating**

The part is rated Moisture Sensitivity Level 3 at 260 ℃ per JEDEC standard IPC/JEDEC J-STD-020.

#### **ECCN**

**US Department of Commerce EAR99** 

### **Solderability**

Compatible with the latest version of J-STD-020, Lead free solder, 260  $^{\circ}\mathrm{C}$ 

#### **RoHs Compliance**

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C<sub>15</sub>H<sub>12</sub>Br<sub>4</sub>O<sub>2</sub>) Free
- PFOS Free
- SVHC Free

# **Recommended Soldering Temperature Profile**



Datasheet: Rev A 10-02-15 © 2015 TriQuint

Disclaimer: Subject to change without notice www.triquint.com





20W, 32V, DC - 12 GHz, GaN RF Transistor

#### **Contact Information**

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: <u>www.triquint.com</u> Tel: +1.972.994.8465 Email: <u>info-sales@triquint.com</u> Fax: +1.972.994.8504

For technical questions and application information: **Email: info-products@triquint.com** 

#### **Important Notice**

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Datasheet: Rev A 10-02-15 © 2015 TriQuint

Disclaimer: Subject to change without notice www.triquint.com

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Qorvo:

TGF2978-SM