

ZIMBABWE SCHOOL EXAMINATIONS COUNCIL

General Certificate of Education Ordinary Level

COMBINED SCIENCE

4003/2

PAPER 2 Theory

NOVEMBER 2021 SESSION

2 hours

Additional materials: Answer sheets Calculator (Optional) String

The Periodic Table is provided on page 13.

Time 2 hours

INSTRUCTIONS TO CANDIDATES

Write your name, centre number and candidate number in the spaces at the top.

Section A

Answer all questions.

write your answers in the spaces provided on the question paper.

Section B

Answer any two questions.

Write your answers on the separate answer sheets provided.

Section C

Answer any two questions.

Write your answers on the separate answer sheets provided.

Section D

Answer any two questions.

Write your answers on the separate answer sheets provided.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question.

ror examme	r s use
Section A	
Section B	
Section C	
Section D	
ТОТАL	

Com overminante mes

This question paper consists of 13 printed pages and 3 blank pages.

Copyright: Zimbabwe School Examinations Council, N2021.

Section A

Answer all the questions in this section in the spaces provided on the question paper.

1. Fig.1.1 shows a pyramid of biomass.

Fig.1.1

(a) Define the term biomass.

[1]

(b) (i) Identify the trophic level represented by X.

[1]

(ii) Explain the shape of the pyramid.

[2]

(iii) Name the form of energy received by X.

[1]

(iv) State, giving a reason, the effect of decreasing the biomass of X on Z.

[2]

2. (a) Write a word equation for anaerobic respiration in mammals.

[2]

(b) Describe how plants are adapted to reduce water loss due to transpiration.

[2]

(c) Relate the structure of a blood capillary to its function.

[2]

3. Fig.3.1 shows the electrolysis of molten lead (II) bromide.

Fig.3.1

(a)	(i)	Define the term electrolysis.	
		[1]	
	(ii)	State the product formed at each of the electrodes A and B . A	
		B [2]	,
(b)	(i)	Suggest the most suitable material which can be used as the electrodes.	
]
	(ii)	Give two general properties of an electrode.	
		1	5.85
		2	

[2]

(c) State any one reason for plating iron.

[1]

4. (a) Two reactions, A and B are shown below.

 $\begin{array}{c} \text{Reaction A} \\ \text{iron + sulphur} \longrightarrow \text{iron sulphide} \end{array}$

Reaction B sugar + water → sugar solution

(i) Name a process which can be used to obtain pure water from the sugar solution.

[1]

(ii) State the reaction, A or B, in which there is a physical change.

[1]

(iii) State any two factors that affect solubility.

1.

2.

[2]

(b) Describe the arrangement of particles in a gas.

[2]

4003/2 N2021

5.	(a)	(i)	State the law of conservation of energy.	
			we see the section is seen a state of the section of the section of the section x_1, \dots, x_{n-1}	5 200
			The second of the second second section and the second section of the second se	[2]
		(ii)	Write the energy conversion in a stretched catapult.	
	*		a to edite to seeks been a constants encourage or wave manifest	6 8
			we are necessary as a second of the second o	[2
	(b)	Desc	ribe the Hwange thermal power generation.	
			as the silver and silver as a second as about the above the contract of the co	691 0 80 g
		a 4061 :		98 9, 3
		re 00	we say a series we a susception of the series of a series and $m_{a,b}$ to $g_{a,b}$ to $g_{a,b}$	[3
6.	(a)	(i)	State the formula for calculating pressure in liquids.	
				[1
		(ii)	Calculate the pressure exerted by a 1.5 m column of water given the density is 1 200 kgm ⁻³ .	at its
			[acceleration due to gravity = 10 ms^{-2}]	

(b) Fig.6.1 shows a model of a siphon being used to drain a liquid.

Fig.6.1

(i) Give two conditions that enable the siphon to work.

1

2

[2]

(ii) Describe how the siphon works.

[2]

4003/2 N2021

Section B

Answer any two questions in this section on the separate answer sheets provided. 7. (a) Describe any three ways that can be used to dispose household litter. [3] **(b) (i)** Outline the importance of maintaining clean toilets at school. [3] (ii) List any three materials or substances that can be used for cleaning the toilets. [3] (c) Describe any one role of the Environmental Management Agency (EMA). [1] 8. (a) State the function of the 1. testes, 2. sperm duct, 3. prostate gland. [3] (b) **(i)** Describe the life cycle of the bilharzia parasite. [4] (ii) State any three methods of preventing bilharzia. [3] 9. (a) (i) Define the term balanced diet. [1] (ii) State any **one** function of fibre in the diet. [1]

[2]

Name any two sources of protein for a person who does not eat

[4]

(c) State two ways by which Ebola is transmitted in a community.

[2]

(iii)

meat.

Section C

Answer any two questions in this section on the separate answer sheets provided.

- 10. The electronic configurations of three elements, X, Y and Z are:
 - X 2, 8, 6
 - Y 2, 1
 - **Z** 2, 6
 - (a) (i) State, using X, Y or Z, the two elements that are in the same group of the Periodic Table. [2]
 - (ii) Give a reason for the answer in a(i). [1]
 - (iii) Identify, from X, Y and Z, the element that has the highest proton number. [1]
 - (iv) Name the type of bonding that can exist between Y and Z. [1]
 - (b) (i) Z is an isotope and it has eight neutrons.

Define the term *isotope*. [1]

- (ii) State the nucleon number of Z. [1]
- (c) Describe three differences in the physical properties of Y and Z. [3]
- 11. (a) (i) Define the term *fuel*. [1]
 - (ii) State any two uses of fuels. [2]
 - (iii) State any three alternative sources of energy other than fuels. [3]
 - (b) (i) Name the gas which causes global warming. [1]
 - (ii) State any three effects of global warming. [3]
- 12. (a) Define the term *neutralisation*. [2]
 - (b) State two formulae that may be used to calculate the concentration of a solution.

[2]

(c)	(i)	Name the process of making soap.	[1]	
	(ii)	Describe how soap is produced from vegetable oil.	[4]	Ror Executaer's Une
	(iii)	State the second product of the process named in (i)	f11	

Section D

	Answer any two questions in this section on the separate answer sneets provided.							
13.	(a)	(i) A 2 A electric heater was connected to a 110 V supply for 1 hour.						
			Calculate the cost of running the electric heater for 1 hour if one unit costs 50 cents.	[4]				
		(ii)	State one limitation of the Ohm's law.	[1]				
		(iii)	Name the two cables on a two pin plug.	[2]				
	(b)	(i)	Outline how a lightning conductor should be installed for it to protect a building.	[2]				
		(ii)	State any one myth on lightning.	[1]				
14.	(a)	(i)	Describe the operation of a direct current (d.c) motor.	[5]				
		(ii)	State any three factors that affect the speed of rotation of the coil.					
	(b)	State	State any two uses of solar systems.					
15.	(a)	A boy pushes a wheel barrow with a force of 25 N against a frictional force of 7 N.						
		(i)	Define the term friction.	[1]				
		(ii)	Calculate the resultant force on the wheel barrow.	[2]				

[2]

State any two applications of friction.

(b)

(c) Fig.15.1 shows a borehole which is operated by a lever. The load is 120 N.

Fig.15.1

- (i) State the principle of moments. [1]
- (ii) Calculate the minimum effort required to operate the pump. [2]
- (iii) State the effect of reducing the length of the effort arm. [1]
- (iv) State how friction can be reduced in the pump. [1]

Candidate Name

r's

	Key	*58-7 +90-1	Francium 87	133 Cs	Rb Rb	39 Fotassan	23 Na	3 Line 7		_
	~ × •	*58-71 Lanthanoid series †90-103 Actinoid series	28	%	w	22				
l	0 X a	nanoid tinoid s	726 Ra	137 Ba	Stranton SP	Calcum Calcum	Mg Mg	9 Berylleum		=
	 relative atomic mass X = atomic symbol proton (atomic) Num 	series series	227 AC Actorium 1	139 La Lathanan	89 Y	Somoum 21				
Th	 a = relative atomic mass X = atomic symbol b = proton (atomic) Number 			178 Hf Hafracon 72	91 Zr Zracmum 40	48 11				TO CONTRACT
volume	232 Th	140 Ce Canum	9 5	181 Ta Tartalum	93 Nb Nicotum	51 V Variation 23				
of one	Protectment 91	Presendymum 59		184 W Tungsten 74	98 Mo Nothbanum 42	52 Cr Chromaun				
mole of	238 U Uranium 92	Neodymann 60		186 Re 75	Tc Tectrostan	Mn Mn Marganese 25				
any gas	Np Nepturaum 93	Pm Promethism 61		190 Os 76	Ruberum	26 77 56			Hydrogen	
is 28 d	Pu Pulonum	Sm Sm 52		192 Ir Holum	103 Rhodom	59 Co		,		
m³ at ro	American	152 European 63		78 P# 198	Pd Pd	28 N. N. 59				
om temp	Se COM	Gadornian 64		197 Au Gold 79	47 Save 108	29 Const				
erature	Bk Burkelum 97	159 7b		201 Hg Mercury	Cadmum	95 Znc Znc				
and pre	C# Cartonium 98	Dy Dy		204 7. Theorem	15 h	76 Ga 31	27 A1 Aurraum 13	6 Bornari		=
The volume of one mole of any gas is 28 dm³ at room temperature and pressure (r.t.p.)	Es Endenum	165 Ho 167		2 2 29	5 9 3	Germanum 32	12 SE 58	6 Carbon 12		7
tp.)	Fm ferman	88 Entern 467		209 Banuari	Sb Antonomy 51	1	31 Phosphorus 15	Narrogen		۷
	Md Mandanan 101	Tm Tm		Po Potoniam B4	128 Te Tethorum	See See	16 Supp 05 32	8 0 9 0 16		≤
	No.	70 Yb	ł	SS Assume	127	80 Bromps	τ ² Ω 35.5	ω		\[
	Lamencourn 103	Lu Lotatium		86 Redon	131 Xeo	36 Kryptur	Ar Argon	10 N 20	2 Herry H •	0

DATA SHEET
The Periodic Table of the Elements

4003/2 N2021

[Turn over

