Divisibility and Congruences (I)

Jongmin Lim (December 2023)

November 5, 2023

1 Fun factorisations

1.1 Example 1

Find all $n \in \mathbb{Z}^+$ such that $n + 10|n^3 + 100$

- 1. What else is divisible by n + 10 that has the term n^3 in it?
- 2. Can you simplify the question a bit more using this fact?

1.2 Example 2

Find all $x, y \in \mathbb{Z}^+$ such that $\frac{1}{x} + \frac{1}{y} = \frac{1}{2022}$

- 1. Can we change the equation into a from of something \times something = number?
- 2. Since the number only has finitely many factors, this tells us what the "something"s can be.

1.3 Fun factorisations

Factorise fully with rational coefficients.

1.
$$x^2 - y^2 + 2y - 1$$

$$2. \ x^2 - y^2 - 4x + 2y + 3$$

3.
$$x^4 + x^2 + 1$$

4.
$$x^4 + 4$$

5.
$$x^5 + x^4 + 1$$

1.4 Problems

- 1. Find all primes where $p^3 4p + 9$ is a perfect square.
- 2. Find all $n \in \mathbb{Z}^+$ such that $\frac{1}{3} + \frac{1}{n}$ can be expressed as a fraction with a denominator less than n.
- 3. Find all $n \in \mathbb{Z}$ such that $n^2 + 3n + 1$ divides $n^3 + 6n^2 + 2n + 1$.

- 4. Find $\sqrt{1000 \times 1001 \times 1002 \times 1003 + 1}$
- 5. For which n does $x^2 + x + 1$ divide $x^{2n} + x^n + 1$?
- 6. Show that if $4^n + 2^n + 1$ is prime, then n must be a power of 3.
- 7. Let $P(x) = x^2 + x + 1$ for positive integers x. Let Q(x) be the largest prime divisor of P(x). Show that Q(x) is never eventually monotonically increasing.

2 Euclidean algorithm

Given a = bq + r, we can show that gcd(a, b) = gcd(b, r).

- 1. Show that $\frac{12n+1}{30n+2}$ is irreducible for all $n \in \mathbb{Z}^+$.
- 2. Show that two consecutive Fibnacci numbers are always coprime.
- 3. Find the greatest common divisor between $7^{610} 3^{610}$ and $7^{377} 3^{377}$.

3 GCD trick

3.1 Example 1

Let positive integers a, b, c satisfy $c(ac+1)^2 = (5c+2b)(2c+b)$, and c is odd. Show that c must be a perfect square.

- 1. Let g = gcd(b, c). Why? Because then I can factorise out g and cancel it out. The fact that I take out the gcd also means I get to set b = gx and c = gy, and use the fact that gcd(x, y) = 1.
- 2. Show that g|y.
- 3. Show that y|g. Hence, conclude y=g and solve the problem.

3.2 Example 2

Find square numbers that can be expressed in the form of t(t+1).

- 1. Notice that t and t+1 are coprime. What can we deduce from this?
- 2. Solve the problem.

3.3 Problems

- 1. Show that (36a + b)(36b + a) cannot be a power of 2.
- 2. Find all integer solutions to $y^2(x^2+y^2-2xy-x-y)=(x+y)^2(x-y)$.
- 3. Find all triples of positive integers a, b, c such that $\frac{(at+1)(bt+1)(ct+1)-1}{lcm(at,bt,ct)}$ is an integer, for any integer t.
- 4. Let positive integers a, b, c satisfy $c(ac+1)^2 = (5c+2b)(2c+b)$, and c is even. Show that there are no solutions.