# **FUTURE INTERNS**

## **INTERNSHIP PROJECT**

## **TH5K2**

## INCIDENT RESPONSE REPORT

Title: Security Alert Monitoring & Incident Response using Splunk

(DNS Analysis)

Intern Name: N Janani Yadav

**Date:** 23<sup>rd</sup> July 2025

## **About the Task**

As part of my cybersecurity internship with Future Interns, this task focused on monitoring and analyzing DNS logs using **Splunk**, a SIEM (Security Information and Event Management) tool. The objective was to identify suspicious DNS activities, such as unusual query patterns, spikes in requests, and potential command-and-control (C2) communications.

This exercise provided hands-on experience in **threat detection**, **log analysis**, and **incident classification**, simulating real-world SOC operations.

## **Objective**

The primary objectives of this task were to:

- Set up and explore Splunk Cloud for DNS log analysis.
- Ingest and analyze simulated DNS logs.
- Identify anomalies (e.g., unusual domains, spikes in queries, suspicious source IPs).
- Classify incidents based on severity (High, Medium, Low).
- Document findings in a structured Incident Response Report.

## What I Did?

- Here is a summary of my workflow:
- Logged into Splunk Cloud and uploaded DNS log data (or used preexisting datasets).
- \* Ran search queries to analyze DNS events, focusing on anomalies.
- Identified key patterns (e.g., top destination IPs, unusual query diversity).
- Classified incidents based on observed threats.
- Compiled findings into this report with screenshots and mitigation recommendations.

## **Tools & Environment**

- Splunk Cloud (Free Trial) SIEM tool for log analysis.
- Sample DNS Logs Simulated DNS query data.
- Edge Browser For accessing Splunk dashboards.
- **Snipping Tool** To capture screenshots.
- MS Word Used to compile this report.

## Methodology

The following steps were taken to complete the task:

#### 1. Log In & Setup

- Accessed Splunk Cloud and navigated to the search dashboard.
- Uploaded DNS logs.

#### 2. Search & Filter DNS Events

Used Splunk's search functionality to retrieve DNS logs:

"index=\* OR index=\_\* sourcetype=dnslog "



#### 3. Identify Anomalies

- Looked for unusual patterns (e.g., spikes in queries, unexpected domains).
- Example query to detect spikes:
- "index=\* OR index=\_\* sourcetype=dnslog | stats count by fqdn "



## 4. Top DNS Sources & Destinations

· Identified top destination IPs and ports:

"index=\* sourcetype=dnslog | top dest\_ip "



Analyzed common destination ports (e.g., 53 for DNS, 443 for HTTPS)



## **5. Detect Suspicious Source IPs**

• Identified source IPs with unusually high domain query diversity (potential C2 activity):

" sourcetype=dnslog | stats dc(query) as unique\_domains by src\_ip "



# **Summary of Detected Alerts**

| Source IP     | Event Description                                | Severity |
|---------------|--------------------------------------------------|----------|
| 192.168.1.100 | Unusually high DNS query diversity (50+ domains) | High     |
| 203.0.113.45  | Repeated queries to known malicious domain       | High     |
| 198.51.100.22 | Spike in DNS requests (500+ in 5 mins)           | Medium   |
| 10.0.0.15     | Queries to non-standard port (e.g., 8080)        | Medium   |
| 192.168.1.50  | Single failed DNS lookup                         | Low      |

# **Incident Classification Table**

| Alert Type                  | Description                               | Severity | Reason for<br>Classification      |
|-----------------------------|-------------------------------------------|----------|-----------------------------------|
| High Query<br>Diversity     | Source IP querying 50+<br>unique domains  | High     | Possible malware beaconing        |
| Malicious Domain<br>Queries | Connections to known C2 domains           | High     | Confirmed threat indicator        |
| DNS Request<br>Spike        | Sudden surge in DNS queries               | Medium   | Potential DDoS or scanning        |
| Non-Standard<br>Port Usage  | DNS queries to unusual ports (e.g., 8080) | Medium   | Possible exfiltration attempt     |
| Single Failed<br>Lookup     | One failed DNS resolution                 | Low      | Likely benign<br>misconfiguration |

## **Mitigation Recommendations**

| Threat                       | Recommended Action                                  |  |  |
|------------------------------|-----------------------------------------------------|--|--|
| High DNS query diversity     | Block suspicious IPs, investigate for malware       |  |  |
| Malicious domain connections | Update firewall rules to block known bad domains    |  |  |
| DNS request spikes           | Implement rate limiting, monitor for DDoS           |  |  |
| Non-standard port usage      | Enforce strict port policies, log violations        |  |  |
| Failed DNS lookups           | Review configurations, whitelist legitimate domains |  |  |

## **Conclusion**

This task provided practical experience in **DNS log analysis** using Splunk. Key takeaways include:

- Detecting **anomalous DNS patterns** (e.g., beaconing, C2 communications).
- Classifying threats based on **severity and impact**.
- Understanding mitigation strategies for DNS-based attacks.

This exercise strengthened my skills in **threat hunting**, **log correlation**, and **incident response**, essential for a career in cybersecurity.