Zadanie: PRL

Pralka

Warsztaty ILO 2017-2018, grupa olimpijska, dzień 3. Dostępna pamięć: 128 MB.

Obserwacja.1. Jeżeli m = 1, to możemy złączyć wszystkie pralki w jedną.

Uzasadnienie jest oczywiste – łączny czas prania nie może się zwiększyć, ponieważ nie ma takiego ubrania, które musiałoby czekać na zakończenie innego.

Obserwacja.2. Jeżeli $m \geq 2$, to możemy przyjąć m = 2, a rozwiązanie się nie zmieni.

Dowód. Niech t będzie czasem sumarycznym czasem oczekiwania w kolejce drugiego ubrania. Możemy zatem przypuścić, że czekamy na samym początku z drugim ubraniem przez t jednostek czasu, a następnie uruchamiamy na nim naszą symulację prania z opóźnieniem. Wówczas drugie ubranie nigdy nie będzie oczekiwało w kolejce, a wynik się nie zmieni. Możemy zatem założyć, że jest to pierwsze pranie i powtórzyć rozumowanie dla pozostałych pralek.

Od teraz zakładamy, że pierzemy tylko dwa ubrania.

Lemat.1. Niech M będzie maksymalnym czasem prania spośród wszystkich pralek. Wówczas sumaryczny czas oczekiwania drugiego ubrania wynosi M.

Dowód. Przez indukcję po n. Dla n=1 to oczywiste, bo drugie ubranie czeka t_1 czasu, aż się skończy prać pierwsze ubranie. Przypuścmy n>1. Wiadomo, że jeśli oba ubrania zostały już uprane w pralce piorącej M czasu, to drugie ubranie nie będzie już nigdy oczekiwać w koleje za zakończenie pierwszego – pierwsze pranie będzie zawsze miało M czasu zapasu, a ponieważ kolejne pralki piorą już tylko co najwyżej tak długo, to pierwsze pranie skończy się szybciej niż drugie pranie 'stanie' w kolejce do tej pralki.

Jeżeli spojrzymy sobie na pralki wcześniejsze, to przyjmijmy, że najwolniejsza pralka pierze M' jednostek czasu. Wówczas z założenia indukcyjnego drugie ubranie będzie oczekiwało sumarycznie M' jednostek czasu. Wiemy natomiast, że $M' \leq M$, bo M jest czasem najwolniejszej pralki spośród wszystkich pralek, a M' spośród wcześniejszych niż najwolniejsza. Widać zatem, że kiedy pierwsze ubranie zaczyna się prać w najwolniejszej pralce, to ma jeszcze M' zapasu, zanim drugie ubranie stanie w kolejce do tej samej pralki. Jednak ponieważ pierwsze ubranie będzie się prało M jednostek, to drugie pranie dodatkowo musi odczekać M-M' jednostek, co sumarycznie daje czas M.

Wniosek.1. Jeśli złączymy pewną liczbę pralek, tak że suma ich czasów pranie nie przekroczy M, to łączny czas prania się nie zwiększy.

Rozwiązanie O(n)

Rozwiązanie wygląda następująco. Najpierw znajdujemy maksymalną wartość w ciągu. Następnie iterujemy się od lewej do prawej i scalamy kolejne pralki. Jeśli w pewnym momencie scalenie kolejnej pralki spowoduje przekroczenie czasu M, to nie dodajemy już więcej do biężącej grupy pralek, a tworzymy nową grupę.

```
2
   wczytaj_n
3
   wczytaj_m
   wczytaj_tn
4
5
   if m == 0:
6
      wypisz(1)
7
      return 0
   M = \max(tn)
8
9
   suma = 0
   wvnik = 0
10
   for i := 1 to n:
11
12
      if suma + t[i] > M:
13
          wynik = wynik + 1
          suma = 0
14
     suma = suma + t[i]
15
16
17
   wypisz (wynik)
```