

Rete Neurale

Alexandru Cretu (0324428) Simone Nicosanti (0334319) Gianmatteo Gabrielli (0333313)

2022/2023

Indice

1	Progetto									
	1.1	1 Contesto ed obiettivi								
	1.2	Requis	siti per l'esecuzione							
	1.3	_	Set e Pre-elaborazione							
	1.4		ettura della rete neurale							
		1.4.1	Numero di Layer e Numero di Neuroni							
		1.4.2	Back Propagation							
		1.4.3	Regolarizzazione							
		1.4.4	Cross Validation							
		1.4.5	Inizializzazione dei pesi							
		1.4.6	Scelta del Learning Rate							
		1.4.7	Algoritmi							
2	Rist	ultati								
2.1 Classificazione										
		2.1.1	Dataset: Cancer (2 classi)							
		2.1.2	Dataset: MNIST (10 classi)							
		2.1.3	Dataset: Chinese (15 classi)							
	2.2	Regres	ssione							
		2.2.1	Dataset: Students							
		2.2.2	Dataset: Concrete							
3	Bib	liograf	ia							

1 Progetto

1.1 Contesto ed obiettivi

Il seguente progetto è stato realizzato con l'obiettivo di implementare una Rete Neurale per risolvere problemi di classificazione e regressione. (L. Bottou [2018], L. Grippo [2011]).

Il linguaggio scelto per tale implementazione è Python, poiché noto a tutti i membri del gruppo.

1.2 Requisiti per l'esecuzione

Per eseguire è necessario un ambiente **Python** da versione 3.9 in su, con installate le seguenti librerie:

- pandas;
- numpy;
- matplotlib;
- scipy;
- sklearn;

Per installarle, si può eseguire il seguente comando: "pip3 install nomelibreria".

1.3 Data Set e Pre-elaborazione

I datasets utilizzati sono stati scaricati da **www.kaggle.com** ed opportunamente divisi in *Training Set, Validation Set* e *Test Set*.

La divisione è stata effettuata facendo lo shuffle del dataset, per poi suddividerlo nei diversi set elencati precedentemente, con le seguenti proporzioni di default:

- Test Set e Validation Set rappresentano ognuno il 15%;
- Training Set rappresenta il rimanente, ovvero il 70%;

Inoltre viene effettuato il drop delle variabili target prima dell'addestramento per poi utilizzarle in fase di valutazione dell'errore.

Per la gestione di feature categoriche, viene utilizzata una codifica di tipo *One-Hot*, con il supporto della libreria **sklearn**.

Tale operazione comporta un aumento del numero di feature del dataset, data la conversione da categoriche a numeriche.

Per l'addestramento, i dati del Training Set vengono standardizzati.

In fase di testing, il *Testing Set* viene standardizzato usando media e deviazione standard del *Training Set*.

1.4 Architettura della rete neurale

1.4.1 Numero di Layer e Numero di Neuroni

L'architettura di default della rete neurale consiste in 2 *layer*, ognuno dei quali contiene un numero di *neuroni* pari a:

$$2/3 \cdot featuresNumber + labelsNumber$$
 (1)

un valore empirico che, come riportato in Krishnan [2021] si comporta bene in diverse situazioni.

1.4.2 Back Propagation

All'interno del file "NeuralNetwork.py" è stata implementata la *Back Propagation* cercando di ridurre quanto più possibile l'utilizzo di cicli for, sfruttando le operazioni matriciali offerte dalla libreria **numpy**, cercando di ottimizzare quanto più possibile i tempi di addestramento.

1.4.3 Regolarizzazione

Impostando il valore di λ_{L_1} si attiva la *L1-Regularization*. Impostando il valore di λ_{L_2} si attiva la *Squared L2-Regularization*. Bushaev [2018].

1.4.4 Cross Validation

Abilitando la Cross Validation, si può attivare la combinazione ottima di numero di layer, numero di neuroni e parametri di regolarizzazione per il problema scelto.

Essa può essere eseguita sia sequenzialmente, che utilizzando più thread.

1.4.5 Inizializzazione dei pesi

- L'inizializzazione dei pesi viene effettuata in modo diverso in base all'algoritmo di *learning* rate scelto:
 - Uniform Initialization: per RMSProp, AdaGrad;
 - He Initialization: per Diminishing Stepsize, AdaDelta, ADAM, NADAM (Yadav [2018]);
- Il bias viene inizializzato preliminarmente a zero in ogni livello.

1.4.6 Scelta del Learning Rate

L'algoritmo per la scelta del learning rate può essere scelto tra:

- Diminishing Stepsize;
- AdaGrad;
- AdaDelta;
- RMSProp;
- **ADAM**;
- NADAM;

1.4.7 Algoritmi

L'algoritmo utilizzato dalla Rete Neurale può essere scelto tra:

- Stochastic Average Gradient Aggregation (SAGA);
- Stochastic Gradient Descent (SGD);

Entrambi gli algoritmi utilizzano il dynamic sampling come metodo di noise reduction.

Inoltre, è stata implementata la possibilità di configurare la rete in modo da poter prendere più volte nella stessa epoca un punto già considerato (con conseguente cambio dei tempi di addestramento).

2 Risultati

L'accuratezza è calcolata come:

- Media dei punti classificati correttamente sul totale, per problemi di classificazione;
- Errore quadratico medio, per problemi di regressione;

2.1 Classificazione

2.1.1 Dataset: Cancer (2 classi)

Eseguendo la ${\it Cross-Validation}$ su tutte le possibili combinazioni di:

- Numero di *Layer*: [2, 3];
- Numero di *Neuroni*: [22, 128, 256];
- Parametro di regolarizzazione L1: [0.001, 0.01, 0.1];
- Parametro di regolarizzazione L2: [0.001, 0.01, 0.1];

Si trova che la configurazione ottima per il problema è:

Layer	Neuroni	λ_{L_1}	λ_{L_2}
3	22, 128, 256	0.0	0.01

Algoritmo	Metodo	Epoche	Generalization Accuracy [%]	Tempo [min:s]
SGD	NADAM	10	0.973	0:01

2.1.2 Dataset: MNIST (10 classi)

Risultati ottenuti cambiando l'algoritmo per la scelta del learning rate:

Algoritmo	Metodo	Epoche	Generalization Accuracy [%]	Tempo [min:s]
SGD	DIMINISHING	5	0.850	1:07
SGD	ADAGRAD	5	0.894	1:07
SGD	RMSPROP	5	0.955	1:08
SGD	ADAM	5	0.948	1:09
SGD	NADAM	5	0.954	1:12

Figura 1: Grafico dell'errore relativo al MNIST.

2.1.3 Dataset: Chinese (15 classi)

Risultati ottenuti facendo variare il parametro di regolarizzazione λ_{L_2} :

D.	satisfies of the first of the first of the regular is satisfies \mathcal{A}_{L_2} .								
	Algoritmo	Metodo	λ_{L_2}	Epoche	Generalization Accuracy [%]	Tempo [min:s]			
	SGD	NADAM	0.001	25	0.796	8:38			
	SGD	NADAM	0.01	25	0.794	8:45			
	SGD	NADAM	0.1	25	0.792	8:28			
	SGD	NADAM	1.0	25	0.805	8:58			
	SGD	NADAM	10.0	25	0.681	9:06			

Figura 2: Grafico dell'errore relativo a Chinese.

2.2 Regressione

2.2.1 Dataset: Students

Risultati ottenuti facendo variare il numero di *epoche*:

Algoritmo	Metodo	Epoche	Generalization RMSE	Tempo [min:s]
SGD	NADAM	1	339.267	0:00.04
SGD	NADAM	5	55.904	0:00.20
SGD	NADAM	10	14.226	0:00.35
SGD	NADAM	50	4.09	0:01.78
SGD	NADAM	100	4.00	0:03.51

Figura 3: Istogramma dei Residui relativo a Students.

2.2.2 Dataset: Concrete

Risultati ottenuti cambiando l'algoritmo per la scelta del *learning rate* ed utilizzando il **SAGA** come algoritmo:

Algoritmo	Metodo	Epoche	Generalization RMSE	Tempo [min:s]
SAGA	DIMINISHING	1000	306.347	0:11:35
SAGA	ADAGRAD	1000	302.798	0:11.44
SAGA	ADADELTA	1000	102.301	0:45.79
SAGA	RMSPROP	1000	135.838	0:11.71
SAGA	ADAM	1000	165.665	0:12.10
SAGA	NADAM	1000	108.596	0:12.80

Figura 4: Istogramma dei Residui relativo a Concrete.

3 Bibliografia

Riferimenti bibliografici

- J. Nocedal L. Bottou, F. Curtis. Optimization methods for large-scale machine learning. Society for Industrial and Applied Mathematics, 2018.
- M. Sciandrone L. Grippo. Metodi di Ottimizzazione Non Vincolata. Springer, 2011.
- S. Krishnan. How do determine the number of layers and neurons in the hidden layer. *Geek Culture*, 2021.
- V. Bushaev. Adam latest trends in deep learning optimization. Towards Data Science, 2018.
- S. Yadav. Weight initialization techniques in neural networks. Towards Data Science, 2018.