Problem 4.

(a)

x	y	z	$(\neg x)$	\rightarrow	$(y \wedge z)$	\wedge	$(\neg y)$	\rightarrow	$(x \wedge z)$
0	0	0	1	0	0	0	1	0	0
0	0	1	1	0	0	0	1	0	0
0	1	0	1	0	0	0	0	1	0
0	1	1	1	1	1	1	0	1	0
1	0	0	0	1	0	0	1	0	0
1	0	1	0	1	0	1	1	1	1
1	1	0	0	1	0	1	0	1	0
1	1	1	0	1	1	1	0	1	1

(b) To get the DNF form, we highlight all rows that evaluate to true.

\boldsymbol{x}	y	z	$(\neg x)$	\rightarrow	$(y \wedge z)$	\wedge	$(\neg y$	\rightarrow	$(x \wedge z)$
0	0	0	1	0	0	0	1	0	0
0	0	1	1	0	0	0	1	0	0
0	1	0	1	0	0	0	0	1	0
0	1	1	1	1	1	1	0	1	0
1	0	0	0	1	0	0	1	0	0
1	0	1	0	1	0	1	1	1	1
1	1	0	0	1	0	1	0	1	0
1	1	1	0	1	1	1	0	1	1

So we end up with:

$$(\neg x \wedge y \wedge z) \vee (x \wedge \neg y \wedge z) \vee (x \wedge y \wedge \neg z) \vee (x \wedge y \wedge z)$$

(c) To get the CNF form, we negate our original expression.

x	y	z	$\neg \Big(\big(\neg x \to (y \land z) \big) \land \big(\neg y \to (x \land z) \big) \Big)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Now negate the DNF for this truth table.

$$\neg \big((\neg x \wedge \neg y \wedge \neg z) \vee (\neg x \wedge \neg y \wedge z) \vee (\neg x \wedge y \wedge \neg z) \vee (x \wedge \neg y \wedge \neg z) \big)$$

$$\text{LEQV} \quad \neg (\neg x \wedge \neg y \wedge \neg z) \wedge \neg (\neg x \wedge \neg y \wedge z) \wedge \neg (\neg x \wedge y \wedge \neg z) \wedge \neg (x \wedge \neg y \wedge \neg z)$$

$$\text{LEQV} \quad (\neg \neg x \vee \neg \neg y \vee \neg \neg z) \wedge (\neg \neg x \vee \neg \neg y \vee \neg z) \wedge (\neg \neg x \vee \neg y \vee \neg \neg z) \wedge (\neg \vee \neg \neg y \vee \neg \neg z)$$

$$\text{LEQV} \quad (x \vee y \vee z) \wedge (x \vee y \vee \neg z) \wedge (x \vee \neg y \vee z) \wedge (\neg \vee y \vee z)$$

Eaiser way: (I watched this part of the lecture after I did this already D:) Highlight all rows that evaluate to false. Then negate all of the variables.

x	y	z	$\mid (\neg x \mid$	\rightarrow	$(y \wedge z)$	\wedge	$(\neg y)$	\rightarrow	$(x \wedge z)$
0	0	0	1	0	0	0	1	0	0
0	0	1	1	0	0	0	1	0	0
0	1	0	1	0	0	0	0	1	0
0	1	1	1	1	1	1	0	1	0
1	0	0	0	1	0	0	1	0	0
1	0	1	0	1	0	1	1	1	1
1	1	0	0	1	0	1	0	1	0
1	1	1	0	1	1	1	0	1	1

So we end up with:

$$(x \lor y \lor z) \land (x \lor y \lor \neg z) \land (x \lor \neg y \lor z) \land (\neg \lor y \lor z)$$

$$(d) \\ (\neg x \to (y \land z)) \land (\neg y \to (x \land z)) \\ \text{LEQV} \quad (\neg \neg x \lor (y \land z)) \land (\neg \neg y \lor (x \land z)) \\ \text{LEQV} \quad (x \lor (y \land z)) \land (y \lor (x \land z)) \\ \text{LEQV} \quad ((x \lor y) \land (x \lor z)) \land ((y \lor x) \land (y \lor z)) \\ \text{LEQV} \quad ((x \lor y) \land (x \lor z)) \land (y \lor x) \land (y \lor z)) \\ \text{LEQV} \quad (x \lor y) \land (x \lor z) \land (y \lor x) \land (y \lor z) \\ \text{LEQV} \quad ((x \lor y) \land (y \lor x)) \land (x \lor z) \land (y \lor z) \\ \text{LEQV} \quad (x \lor y) \land (x \lor z) \land (y \lor z) \\ \text{LEQV} \quad (x \lor y) \land (x \lor z) \land (y \lor z) \\ \text{[idempotency laws]}$$