Przegląd rozwiązań sprzętowych platformy X86

Wykonano: marzec 2005 – 9 maja 2005 (weersja robocza niedokończona) Autor: Marcin Wiącek (<u>www.mwiacek.com</u>)

Wersja DOC dostępna na ewentualną prośbę, ewentualna współpraca w celu rozszerzania mile widziana

Spis treści

wstęp	
Standardy płyt głównych, zasilaczy i obudów	
AT-Baby	
ATX	
ATX 12V	
BTX	
Magistrale i złącza kart rozszerzeń	
ISA (Industry Standard Architecture)	
EISA (Extended Industry Standard Architecture)	
MCA (Micro Channel Architecture)	
VL-BUS (VESA Local Bus)	
PCI (Peripheral Component Interconnect)	
Mini PCI ? PC Card ?	3
PCMCIA (Personal Computer Memory Card International Association)	
AGP (Advanced Graphic Port), AGP Pro	3
PC-Express	
MXM (Mobile PCI eXpress Module)	4
AMR (Audio/Modem Riser)	
CMR (Communication and Network Riser)	4
USB	4
FireWire	
Podstawki do procesorów, procesory i chipsety	5
8086/8087 Socket (8086/8087/8088)	
80286/80287 Socket (80286/80287)	
80386/80387 Socket (80386SX/80386DX/80387)	6
80486 Socket (80486SX, 80486DX, 80486DX2, 80486DX4)	
Socket 1 (80486SX, 80486DX, 80486DX2, 80486DX4)	
Socket 2 (80486SX, 80486DX, 80486DX2, 80486DX4)	6
Socket 3 (80486SX, 80486DX, 80486DX2, 80486DX4)	7
Socket 4 (Pentium)	8
Socket 5 (Pentium)	8
Socket 6 (80486)	9
Socket 7 (Pentium, Pentium MMX,)	9
Socket 8 (Pentium Pro, Celeron)	10
Socket 370 (Pentium 2, Pentium 3, Celeron, VIA Cyrix III, VIA C3-A, VIA C3-T, VIA C3-G)	11
Socket 423 (Pentium 4)	13
Socket 462, Socket A (Athlon, Athlon XP, Athlon XP-M, Athlon MP, Duron, Sempron)	13
Socket 478 (Pentium 4, Pentium 4 EE, Celeron, Celeron D)	16
Socket 479 (Pentium M, Celeron M)	18
Socket 603 (Xeon)	19
Socket 604 (Xeon)	20
Socket 615 (Pentium II, Celeron)	20
Socket 754 (Athlon 64, Turion, Sempron)	20
Socket 775, Socket T, LGA 775 (Pentium 4, Pentium 4 EE, Pentium D, Pentium EE, Celeron D)	21
Socket 939 (Athlon 64, Athlon 64 FX-53, Athlon 64 FX-55)	23
Socket 940 (Opteron, Athlon 64 FX-51, Athlon 64 FX-53)	23
Slot 1 (Pentium Pro, Pentium 2, Pentium 3, Celeron)	
Slot 2 (Pentium II Xeon, Pentium III-S)	
Slot A (Athlon)	
NexGen (Nx586)	
MMC-1 (Pentium MMX)	
MMC-2 (Pentium II)	27
Mini-Cartridge (Pentium II)	
TCP-320 (Pentium)	

Procesory montowane na stałe (Transmeta)	27
Pamięci RAM	
DIP	27
SIMM (30 pin, 72 pinowe EDO, 72 pinowe SODIMM)	27
DIMM (EDO, 168 pinowe SDRAM, 184 pinowe DDR, DDR2, 144 i 200 pinowe SODIMM)	
RIMM (184 pinowe RAMBUS DRAM)	
Grafika	
MDA	
CGA	
EGA	
VGA	
SVGA	28
3D	28
Pamięci masowe	28
Dyski twarde	
Napędy optyczne (CD-ROM, CD-RW, DVD-ROM, combo, DVD-RW)	28
Stacje dyskietek	
Napędy taśmowe (streamery)	
Dźwięk	28
Linki	29

Wstęp

Poniższe opracowanie ma na celu ogólne przedstawienie rozwiązań technicznych stosowanych w rodzinie X86.

Platforma sprzętowa X86 została wprowadzona przez firmę IBM w roku. Była to generacja 8086/8088 nazwana później XT.

W 198xxx pojawiła się generacja 80286

Korporacja ta po układach generacji 8086, zaczęła wytwarzać 80286, 80386, 80486. Równoległe klony były produkowane przez firmy trzecie. Część z nich miała lepsze parametry niż oryginały.

W 199xx pojawił się procesor Pentium.

Po porzuceniu używanej przez niego podstawki Socket 7 przez Intela rozpoczął się nowy etap w historii – firmy trzecie zaczęły równolegle do tego giganta rozwijać Socket 7 po nazwą Super 7. Intel z kolei zaangażował się w rozwój procesorów Pentium 2 i Pentium 3.

W tym momencie nastąpiła kolejna nowość – AMD zaproponowała procesor Athlon mogący dorównywać wydajnością układom Intela, ale wykorzystujący własne protokoły i podstawkę. Od tego momentu na rynku zaczęły się rozwijać dwie równoległe Układy AMD charakteryzowały się najczęściej niższą ceną.

Standardy płyt głównych, zasilaczy i obudów

AT-Baby

ATX

ATX 12V

BTX

Magistrale i złącza kart rozszerzeń

ISA (Industry Standard Architecture)

Magistrala dla kart rozszerzeń obecna od pierwszych komputerów X86. Obecna w wersji 8-bitowej (od 1981x?) i 16-bitowej (od 1984 i generacji 80286). Działała z prędkością 8 Mhz i pozwalała na osiągnięcie transferów 7,9 i 15,9 Mbytes/sec.

W 1993 została rozszerzona przez Microsoft i Intela o możliwość automatycznej konfiguracji użytych kart rozszerzeń i nazwana ISA PnP czyli ISA PlugAndPlay (wymagane są odpowiednie karty rozszerzeń, BIOS i system operacyjny).

Karty ISA praktycznie wyszły z użycia wraz z końcem procesorów Pentium 3 Intela. Obecnie magistrala ta obecna jest w formie szczątkowej nawet w obecnych komputerach – podłączone są pod nią układy do monitorowania temperatur.

EISA (Extended Industry Standard Architecture)

32-bitowe rozszerzenie ISA dla kart rozszerzeń zaproponowane w 1988 przez <u>AST Research</u>, <u>Compaq</u>, <u>Epson</u>, <u>Hewlett Packard</u>, <u>NEC</u>, <u>Olivetti</u>, <u>Tandy</u>, <u>WYSE</u>, and <u>Zenith Data Systems</u> jako odpowiedź na magistralę MCA firmy IBM. Podobnie jak ISA działała z prędkością 8 Mhz, dawała jednak transfery 31,8 Mbytes/sec. Nigdy nie była szerzej używana.

MCA (Micro Channel Architecture)

Wprowadzona dla kart rozszerzeń przez IBM w 1987 jako 32-bitowe rozszerzenie ISA z możliwością automatycznej konfiguracji kart (podobne do obecnych rozwiązań PlugAndPlay). Nigdy nie była szerzeń używana z uwagi na to, iż była zastrzeżoną własnością intelektualną firmy IBM.

VL-BUS (VESA Local Bus)

Standard zaproponowany w 1992 przez założoną przez NEC organizację nonprofit VESA (Video Electronics Standards Association). Byla to magistrala dla 32-bitowych kart rozszerzeń z bezpośrednim dostępem do pamięci systemowej z prędkością procesora. Nie zdobyła większej popularności, gdyż była przeznaczona głównie dla systemów klasy 486 w chwili popularność zdobywały Pentium.

PCI (Peripheral Component Interconnect)

32-bitowa magistrala dla kart rozszerzeń działająca z prędkością 33 Mhz zaproponowana przez Intela w 1992. W 1993 pojawiła się jej wersja 2.0, w 1995 wersja 2.1. Pozwalały na osiągnięcie przepustowości 127 Mbytes/sec.

Pojawiła się także wersja 64-bitowa (niespotykana w komputerach biurkowych).

Mini PCI ? PC Card ?

а

PCMCIA (Personal Computer Memory Card International Association)

68 pinowe złącze dostępne dla kart rozszerzeń dostępnych w jednej z 3 wersji (Type I, Type II lub Type III) używanych w notebookach

AGP (Advanced Graphic Port), AGP Pro

66 Mhz magistrala zaproponowana w 1997 przez Intela jako 32-bitowe rozszerzenie PCI dla kart graficznych. Ma bezpośredni dostęp do pamięci operacyjnej. Pojawiły się 4 wersje:

- AGP x1 (254 Mbytes/sec)
- AGP x2 (508 Mbytes/sec)
- AGP x4 (1017 Mbytes/sec)
- AGP x8

Chociaż standard przewiduje zgodność wstecz, nowsze karty nie działają ze starszym złączem. Problem jest w tym, iż AGP x1 i AGP x2 działają z kartami na napięciu 3,3V, AGP x4....

Na rynku pojawiło się również złącze AGP Pro zgodne z AGP, które w założeniach miało pozwolić na instalację kart potrzebujących bardzo dużo mocy. Była to odpowiedź na karty z układem GeForge 256, które pobierały więcej mocy niż przewidywał standard AGP x1 i przez to paliły układy wielu płyt głównych. Złącze nie przyjęło się, ponieważ w międzyczasie zmieniono proces technologiczny wytwarzania akceleratorów graficznych i przestało być potrzebne.

PC-Express

Α

MXM (Mobile PCI eXpress Module)

230 pinowe złącze dla kart graficznych do notebooków zaproponowane przez firmę Nvidia. Zawiera sygnały magistrali PC-Express 16 i sygnały złączy związanych z obrazem (VGA, DVI, S-Video i inne). Występuje w 3 wersjach: MXM-II i MXM-III.

AMR (Audio/Modem Riser)

Zaproponowane w 1998 złącze pozwalające na tanią produkcję kart z dźwiękiem/modemem.

CMR (Communication and Network Riser)

Zaproponowane w 2000 złącze

USB

FireWire

Podstawki do procesorów, procesory i chipsety

W tej części zajmiemy się krótkim przedstawieniem rozwiązań w rodzinie X86 pozwalających umieszczać na płytach głównych procesory i koprocesory matematyczne (te ostatnie są obecnie oczywiście częścią procesorów) wraz z przeglądem dostępnych dla każdego rozwiązania układów.

Układy, które występują tylko w wersji wlutowywanej w płyty główne, są przedstawione dalej.

Wyglad podstawek związany jest bezpośrednio z technologia wytwarzania obudów układów do nich przeznaczonych. Mieliśmy więc na początku obudowy DIP z jednym rzędem nóżek z dołu układu wzdłuż obu dłuższych boków (klasa 8086), później obudowy z nóżkami z boku układu z każdej z jego czterech stron (klasa 286 i 386). Skończyło sie na chipach z nóżkami (lub z wieloma rzędami nóżek) wyprowadzonymi z dołu z każdej z 4 stron układu. Teraz właściwie są stosowane tylko te ostatnie (różne odmiany PGA). Jedyny wyjątek od podanych zasad stanowi Socket 775 – układy do niej nie mają nóżek (jedynie okrągłe powierzchnie stykowe).

Ponieważ pierwsze układy nie miały zbyt dużo wyprowadzeń, stosowano po prostu ich wciskanie w podstawki. Z czasem ilość nóżek rosła, zaczeto stosować specjalne narzedzia używane do równomiernego podważania układów przy ich wyjmowaniu. Były to rozwiązania typu LIF (Low Insertion Force).

Później (klasa 80486 i nowsze) pojawiły się pierwsze podstawki z rozwiązaniami ZIF (Zero Insertion Force). Aby włożyć układ w podstawkę, należało podnieść dostępną z boku dźwigienke, włożyć układ w podstawke i docisnąć go do niej poprzez zapiecie dźwigienki. Pewną odmianą ZIF jest Socket 479 – tam układ jest blokowany w podstawce nie przez dociśnięcie dźwigienki, ale przez przekręcenie np. śrubokrętem odpowiedniego kółka.

Obecne obudowy procesorów nie są już wręcz przystosowane mechanicznie do rozwiązań typu LIF (te przestały być już praktycznie używane wraz z Socket 7 dla Pentium) i wymagają ZIF.

Pierwsze podstawki nie miały żadnych mechanicznych zabezpieczeń uniemożliwiające błędne włożenie układu. Z czasem zaczęto takie blokady stosować - jest to najczęściej jeden otwór umieszczony niesymetrycznie jedynie w jednym rogu układu.

Początkowo podstawki nazywano od układów, które do nich pasowały (w tym opracowaniu używa się schematu "Nazwa układu" + słowo Socket). Następnie zaczęto je nazywać po prostu Socket dodając do tego kolejne liczby arabskie (mamy więc Socket 1 do Socket 8). Obecnie naicześciej do słówka Socket dodaje się liczbe pinów, które dana podstawka zawiera.

Obudowy do gniazdek Socket

DIP (Dual In Line Package)

LCC (Leaded Chip Carrier)

QFP (Quad Flat Package)

PGA (Pin Grid Array)

W rodzinie X86 istniały również procesory w postaci kart rozszerzeń (takich jak karty AGP). Złącza do nich nazywane były Slotami albo procesory były montowane na płytkach nazywanych MMC (Mobile Module Connector).

Obecne podstawki dla procesorów są patentowane i najczęściej pozwalają na używanie układów tylko jednej firmy.

8086/8087 Socket (8086/8087/8088)

16-bitowe procesory 8086 (z 16 bitową szyną danych) i 8088 (z 8 bitową szyną danych) miały tyle samo (40) nóżek i niezgodne ze soba rozkłady sygnałów. Podobnie 40 nóżek miały koprocesory 8087. Wszystkie te typy układów dostępne były w obudowach DIP i pasowały do podstawek typu DIL (Dual In Line) takich na zdjęciu.

Intel produkował 8086/8088 z zegarami 4,77, 8 i 10 Mhz w technologii 3000 nm. 8086 tej firmy został zaprezentowany w 1978, 8088 w 1979. Dostępne były też układy innych firm zgodne z tą platformą. Niektóre wprowadzały własne rozszerzenia (np. NEC V20).

80286/80287 Socket (80286/80287)

Na płytach głównych dla systemów klasy 80286 mogły być dostępne gniazda dla 68 pinowych procesorów w obudowach PGA/PLCC (Plastic Leaded Chip Carrier)/CLCC (Ceramic Leaded Chip Carrier) i gniazda dla koprocesora matematycznego (dla 40 pinowych 80287 w obudowach DIP). Dostępne były zestawy do uktualniania systemów z podstawką dla procesora nawet do 80486.

TOWNING STREET, STREET

Intel produkował 80286 (nazwa kodowa P2) od 1982. Wytwarzał układy z zegarami 6, 8, 10, 12, 16 i 20 Mhz w technologii 1500 nm. Na rynku dostępne były także 80286 od AMD, Siemens, HARRIS i innych.

80386/80387 Socket (80386SX/80386DX/80387)

Na płytach głównych dla systemów klasy 80386 mogły być dostępne gniazda dla procesora (układy te miały obudowy PQFP - Plastic Quad Flat Package lub PGA) i gniazda dla koprocesora matematycznego (PGA). Procesory klasy 386 dostępne były w dwóch rodzajach – SX (16 bitowa szyna danych, 100 pinów) i DX (32 bitowa szyna danych, 132 piny). W różnych systemach montowano różne gniazda koprocesorów:

- 80287 np. dla 40 pinowych układów 80287 (używany w pierwszych systemach, ponieważ Intel długo przygotowywał specyfikację 80387)
- 80387 np. dla 68 pinowych układów 80387SX/DX i/lub 121 pinowe EMC (Extended Math Coprocessor) np. dla koprocesorów Weitek (dzięki obecności dwóch gniazd użytkownik mógł użyć układu w dowolnej obudowie)

Dostępne były zestawy do uktualniania systemów z tymi podstawkami do 80486. Przykładowo:

- zestaw Intela http://www.cpushack.net/RAPIDCAD.html
- procesor Cx486DLC Cyrixa

Intel produkował układy i386DX (rdzeń P3) i i386SX (P9) z zegarami 16, 20, 25 i 33 Mhz. Część z nich miała błąd powodujący zawieszenia systemu przy używaniu kodu 32-bitowego (poprawione układy miały oznaczenie IV lub ΣΣ). Najszybszym układem klasy 386 był AMD Am386 40. Dostępne były również wyroby Cyrixa, Texas Instruments i innych.

80486 Socket (80486SX, 80486DX, 80486DX2, 80486DX4)

Podstawka typu LIF z 168 pinami przeznaczona dla 16/32-bitowych układów klasy 80486 różnych firm działających na napięciu 5V. Więcej na jej temat można przeczytać w opisie Socket 3.

Socket 1 (80486SX, 80486DX, 80486DX2, 80486DX4)

Podstawka typu LIF / ZIF z 169 pinami przeznaczona dla 5V 16/32-bitowych układów klasy 80486 różnych firm.

Można było do niej włożyć układy 168 pinowe (jak Socket 80486) lub 169 pinowe OverDrive (tzw. ODP). Więcej na jej temat podano przy opisie Socket 3.

Socket 2 (80486SX, 80486DX, 80486DX2, 80486DX4)

Podstawka typu LIF / ZIF z 238 pinami przeznaczona dla 5V 16/32-bitowych układów klasy 80486 różnych firm.

Oprócz układów 168 i 169 pinowych (jak Socket 1) obsługiwała 234 pinowe Pentium OverDrive (PODP5V). Więcej na jej temat podano przy opisie Socket 3.

Socket 3 (80486SX, 80486DX, 80486DX2, 80486DX4)

Podstawka typu LIF / ZIF z 237 pinami przeznaczona dla 5 lub 3.3V 16/32-bitowych układów klasy różnych firm. Płyty z tą podstawką miały dostępne prędkości szyny 16, 25, 33, 40 lub 50 Mhz i mnożniki 1, 2, 3 lub 2,5 (oznaczały one, ile razy szybciej niż szyna pracuje wewnętrznie procesor). Stosowana w pierwszej połowie lat 90 XX wieku (Intel wprowadził pierwszy układ klasy 80486 w 1989, a Pentium OverDrive do Socket 3 w 1994, inni producenci podobnie).

Ponieważ początkowo Socket 1 (2 i 3) były projektowane jako podstawki do rozszerzania funkcjonalności systemu, układy do nich z większą niż 168 ilością pinów Intel nazywał OverDrive. Z czasem powstała też nazwa ODPR (OverDrive Processor Replacement), która oznaczała po prostu 168 pinowy układ klasy 80486, którego przeznaczeniem jest praca w miejscu "oryginalnego" 80486 sprzedanego z danym systemem (nawet w 80486 Socket).

Należy pamiętać, iż układy na napięcie 3,3V to m.in. procesory Intela pracujące z zegarem 75 i 100 Mhz. Ponieważ obsługę 3,3V wprowadzono dopiero w Socket 3 (jako własciwie jedyną nowość), na pewno nie mogły pracować we wcześniejszych podstawkach bez dodatkowego regulatora napięcia.

Zgodnie z niektórymi opracowaniami płyty główne bez Socket 3 (czyli ze wcześniejszymi podstawkach w jednej z podanych w tabeli umieszczonej poniżej kombinacji) nie miały mnożników 2 i 3. Według innych nie obsługiwały one częstotliwości szyny 16 Mhz i 50 Mhz. Wiele systemów nie obsługiwało Pentium OverDrive i mnożnika 2,5.

Układy rodziny 486 dostępne były w wersji SX (bez koprocesora) lub DX (z koprocesorem). Po nazwie SX/DX podawano też wewnętrzny mnożnik procesora (brak oznaczał 1, 2 oznaczało 2, a 4 mnożnik 3). Przykładowo: procesor DX2 50 Mhz pracował z szyną 25 Mhz i wewnętrzną częstotliwością 2*25 = 50 Mhz, a DX 50 z szyną 50 Mhz i wewnętrzną częstotliwością 2*25 = 50 Mhz.

Ogólnie można powiedzieć, iż płyty główne dla procesorów klasy 486 mogły mieć jedną lub dwie podstawki na procesor i w zależności od tego różne możliwości rozbudowy:

wlutowany oryginalny procesor +		włożenie procesora z 169 pinami (układu typu ODP czyli OverDrive) do Socket					
jedna podstawka Socket 1, 2 lub		1/2/3 "wyłączało" główny procesor					
3	•	włożenie procesora z 234 pinami (układu typu PODP5V czyli Pentium OverDrive)					
		do Socket 2/3 "wyłączało" główny procesor					
	•	 włożenie układu z 168 pinami do Socket 1/2/3 nic nie dawało (jeżeli płyta nie 					
		miała zwory wyłączającej oryginalny procesor)					
jedna podstawka Socket 1, 2 lub	•	możliwość użycia 168 pinowego układu 486					
3	•	możliwość użycia 169 pinowego ODP					
	•	możliwość użycia 234 pinowego PODP5V (tylko Socket 2/3 oczywiście)					
80486 Socket + jeden Socket 1, 2	•	po wyjęciu procesora z 80486 Socket (lub ustawieniu odpowiedniej zworki na					
lub 3		płycie wyłączającej 80486 Socket) można było użyć 168 lub 169 (lub 234)					
		pinowego układu w Socket 1/2/3					

Poniżej podano dane układów Intela (oprócz niego procesory 486 wytwarzali także m.in. AMD, Cyrix). Procesory generacji 486 zaczęły wymagać aktywnego chłodzenia.

Nazwa handlowa	Zegar(Mhz)	Szyna(Mhz)	Rdzeń	Cache(kB)
Intel i486 SX 16	16	16	P23, 800 nm	8/zewnętrzny
Intel i486 SX 20	20	20	P23, 800 nm	8/zewnętrzny
Intel i486 DX 25	25	25	P4, 800 nm	8/zewnętrzny
Intel i486 SX 25	25	25	P23, 800 nm	8/zewnętrzny
Intel i486 DX 33	33	33	P4, 800 nm	8/zewnętrzny
Intel i486 SX 33	33	33	P23, 800 nm	8/zewnętrzny
Intel i486 DX 50	50	50	P4, 800 nm	8/zewnętrzny
Intel i486 DX2 50	50	25	P24 (ODPR P4T, ODP P23T), 800 nm	8/zewnętrzny
Intel i486 SX2ODP 50	50	25	P23, 800 nm	8/zewnętrzny
Intel PODP5V 63	63	25	P24T, 600 nm	16+16/zewnętrzny
Intel i486 DX2 66	66	33	P24 (ODPR P4T, ODP P23T), 800 nm	8/zewnętrzny
Intel i486 DX4 75	75	25	P24C (ODPR P24CT), 600 nm	16/zewnętrzny
Intel PODP5V 83	83	33	P24T, 600 nm 16+16/zev	
Intel i486 DX4 100	100	33	P24C (ODPR P24CT), 600 nm	16/zewnętrzny

Jeżeli chodzi o nazwy rdzeni procesorów Intela, źródła podają sprzeczne dane dotyczące wszystkich układów OverDrive (np. że to Pentium OverDrive było P24CT, a DX4 ODPR P24T). Przyjęto najbardziej prawdopodobne.

Socket 4 (Pentium)

Podstawka typu LIF / ZIF z 273 pinami dla procesorów 5V.

Rozwiązanie przejściowe (wprowadzone w 1993) używane z pierwszymi 16/32-bitowymi Pentium w obudowach CPGA. Były one słynne ze względu na obecność nagłośnionego błędu w koprocesorze ujawniającego się przy dzieleniu (Intel zmuszony był wymienić bezpłatnie wadliwe układy).

Nazwa handlowa	Zegar(Mhz)	Szyna(Mhz)	Rdzeń	Cache(kB)
Pentium 60	60	60	P5, 800 nm	8+8/zewnętrzny
Pentium ODP5V-120	120	60	P5T, 350 nm	8+8/zewnętrzny
Pentium 66	66	66	P5, 800 nm	8+8/zewnętrzny
Pentium ODP5V-133	133	66	P5T, 250 nm	8+8/zewnętrzny

Chipsety Intela

	NB	CPU	Pamięć	Grafika	SB	HDD	Inne
Mercury		Pentium		PCI, ISA		PIO4	

Socket 5 (Pentium)

Podstawka LIF / ZIF z 320 pinami. 3,3V procesory Pentium dla niej były w 296 pinowych obudowach SPGA (Ceramic Staggered Pin Grid Array) i PPGA (Plastic Pin Grid Array). Później pojawiły się układy OverDrive (ODP3V) i OverDrive MMX (PODPMT). Układy P54C nazywane były również Pentium Classic (w odróżnieniu od późniejszych Pentium MMX).

Według Intela wszystkie procesory Pentium kompatybilne z Socket 5 są także kompatybilne z Socket 7 (http://support.intel.com/support/processors/sb/CS-001826.htm) i można ich używać z nowszą podstawką. Niektóre źródła podają natomiast, iż część płyt głównych nie pozwalała na używanie procesorów działających prędkością większą 120 Mhz i/lub OverDrive MMX.

Można było w nią włożyć przejściówkę i używać procesorów przeznaczonych dla Socket 7/Super 7 (np. http://www.powerleap.com/PL-ProMMX.html).

Nazwa handlowa	Zegar(Mhz)	Szyna(Mhz)	Rdzeń	Cache(kB)	Instrukcje
Pentium 75	75	50	P54C, 600 nm	8+8/zewnętrzny	
Pentium 90	90	60	P54C, 600 nm	8+8/zewnętrzny	
Pentium 100	100	50	P54C, 600 nm	8+8/zewnętrzny	
Pentium 100	100	66	P54C, 600 nm	8+8/zewnętrzny	
Pentium 120	120	60	P54CQS, 350 nm	8+8/zewnętrzny	
Pentium ODP3V-125	125	50	P54CT, 350 nm	8+8/zewnętrzny	
Pentium 133	133	66	P54CS, 350 nm	8+8/zewnętrzny	
Pentium ODP3V-150	150	60	P54CT, 350 nm	8+8/zewnętrzny	
Pentium ODPMT-150 MMX	150	50	P54CTB, 350 nm	16+16/zewnętrzny	MMX
Pentium ODPMT-150 MMX	150	60	P54CTB, 350 nm	16+16/zewnętrzny	MMX
Pentium ODP3V-166	166	66	P54CT, 350 nm	8+8/zewnętrzny	
Pentium ODPMT-166 MMX	166	66	P54CTB, 350 nm	16+16/zewnętrzny	MMX
Pentium ODPMT-180 MMX	180	60	P54CTB, 350 nm	16+16/zewnętrzny	MMX
Pentium ODPMT-200 MMX	200	66	P54CTB, 350 nm	16+16/zewnętrzny	MMX

Chipsety Intela

	NB	CPU	Pamięć	Grafika	SB	HDD	Inne
82430NX		Pentium					
(Neptun)							

	NB	CPU	Pamięć	Grafika	SB	HDD	Inne
Apollo VP-M		Pentium, M1, K5					
Apollo VP-1		Pentium, M1, K5					

Socket 6 (80486)

Nigdy nie produkowana 235 pinowa podstawka typu ZIF dla procesorów klasy 80486. Miała obsługiwać jedynie układy 3,3V. Opisywana w różnych dokumentacjach.

Socket 7 (Pentium, Pentium MMX, ...)

Podstawka ZIF z 321 pinami będąca rozszerzeniem Socket 7. Ma dodatkową nóżkę nie zawierającą żadnego sygnału (wszystkie procesory do Socket 7 ją miały po to, aby przez pomyłkę ich nie użyć w płytach z Socket 5) oraz zmiany w specyfikacji wcześniejszych nóżek zrobione po to, aby zapewnić dodatkowe mnożniki, podwójne zasilanie rdzenia procesora (wymagane w Pentium MMX – 3.3V i 2.5V).

Po porzuceniu systemów Socket 7 przez Intela (w 1999 zaprzestano produkcji Pentium MMX) cała platforma była rozwijana przez innych producentów pod nazwą Super 7 (jednym z ostatnich procesorów do niej był K6-III 500 Mhz z 2000 roku) – m.in. dodawano nowe mnożniki, wprowadzono obsługę szyny szybszej niż 66 Mhz i obsługę AGP, zamiast napięcia 2,5V można było użyć 2,0V. Były dostępne przejściówki pozwalające na korzystanie z szybkich procesorów Super 7 na "starych" płytach Socket 7.

Nazwa handlowa	Zegar(Mhz)	Szyna(Mhz)	Rdzeń	Cache(kB)	Instrukcje
		Proce	esory dla Socket 5		
Pentium 150	150	60	P54CS, 350 nm	8+8/zewnętrzny	
Pentium 166	166	66	P54CS, 350 nm	8+8/zewnętrzny	
Pentium 166 MMX	166	66	P55C, 350 nm	16+16/zewnętrzny	MMX
IDT WinChip C6-180	180	60	C6, 350 nm	32+32/zewnętrzny	MMX
Pentium 200	200	66	P54CS, 350 nm	8+8/zewnętrzny	
Pentium 200 MMX	200	66	P55C, 350 nm	16+16/zewnętrzny	MMX
IDT WinChip C6-200	200	66	C6, 350 nm	32+32/zewnętrzny	MMX
IBM MX2	208				
IDT WinChip C6-225	225	75	C6, 350 nm	32+32/zewnętrzny	MMX
IDT WinChip2 W2-3D 225	225	75	C6-3D, 250 nm	32+32/zewnętrzny	MMX, 3dnow
Pentium 233 MMX	233	66	P55C, 350 nm	16+16/zewnętrzny	MMX
IDT WinChip C6-240	240	60	C6, 350 nm	32+32/zewnętrzny	MMX
IDT WinChip2 W2-3D 240	240	60	C6-3D, 250 nm	32+32/zewnętrzny	MMX, 3dnow
IDT WinChip2 W2-3D 250	250		C6-3D, 250 nm	32+32/zewnętrzny	MMX, 3dnow
AMD K6 266	266	66	250 nm	32+32/zewnętrzny	MMX
AMD K6-2 266			250 nm	32+32/zewnętrzny	MMX, 3Dnow
IDT WinChip2 W2-3D 266	266		C6-3D, 250 nm	32+32/zewnętrzny	MMX, 3dnow
IDT WinChip2 W2-3D 266	266	100	C6-3D, 250 nm	32+32/zewnętrzny	MMX, 3dnow
Cyrix MII-333GP	290	83	250 nm	64/zewnętrzny	MMX
AMD K6 300	300				MMX
AMD K6-2 300	300	100	Chomper, 250 nm	32+32/zewnetrzny	MMX, 3Dnow
IDT WinChip2 W2-3D 300	300		C6-3D, 250 nm	32+32/zewnętrzny	MMX, 3dnow
IDT WinChip2 W2-3D 300	300	100	C6-3D, 250 nm	32+32/zewnetrzny	MMX, 3dnow
AMD K6-2 350	350	100	Chomper, 250 nm	32+32/zewnetrzny	MMX, 3Dnow
AMD K6-2 380	380	95	Chomper, 250 nm	32+32/zewnętrzny	MMX, 3Dnow
AMD K6-2 400	400	100	Chomper, 250 nm	32+32/zewnętrzny	MMX, 3Dnow
AMD K6-III 400	400	100	Sharptooth, 250 nm	32+32/256/zewnetrzny	MMX, 3Dnow
AMD K6-2 450	450	100	Chomper, 250 nm	32+32/zewnętrzny	MMX, 3Dnow
AMD K6-III 450	450	100	Sharptooth, 250 nm	32+32/256/zewnetrzny	MMX, 3Dnow
AMD K6-2 475	475	95	Chomper, 250 nm	32+32/zewnetrzny	MMX, 3Dnow
AMD K6-III 500	500	100	250 nm	32+32/256/zewnętrzny	MMX, 3Dnow

Chipsety Intela

NB	CPU	Pamięć	Grafika	SB	HDD	Inne

82430FX (Triton)	Pentium, Pentium MMX, FSB do 66	FPM, EDO, 128MB	PCI, ISA	PIO4	USB1.1
82430HX	Pentium, Pentium	FPM, EDO, ECC, 512MB	PCI, ISA	PIO4	USB1.1
(Triton II)	MMX, inne, FSB do 66				
82430TX	Pentium, Pentium	FPM,EDO,SDRAM,256MB	PCI, ISA	UDMA33	USB1.1
	MMX, inne, FSB do 66				
82430VX	Pentium, Pentium	FPM,EDO,SDRAM,128MB	PCI, ISA	PIO4	USB1.1
(Triton III)	MMX, inne, FSB do 66				

Chipsety VIA

	NB	CPU	Pamięć	Grafika	SB	HDD	Inne
Apollo VP-2		Pentium, Pentium MMX, M1, K5, K6	_				
Apollo VPX		Pentium, Pentium MMX, M1, K5, K6					
Apollo VP-3		Pentium, Pentium MMX, M1, M2, K5, K6					
VT8501 (Apollo MVP4)		FSB do 100 Mhz, wszystkie	SDRAM lub EDO, 768 MB	Trident Blade 3D, AGP	VT82C686	UDMA 66	ISA, PCI, USB

Chipsety OPTi

NB	CPU	Pamięć	Grafika	SB	HDD	Inne
Vendetta	Pentium, Pentium					
	MMX, M1, K5					
Viper	Pentium, Pentium					
Xpress+	MMX, M1, M2, K5,					
	K6					

Chipsety SiS

NB	СРИ	Pamięć	Grafik	SB	HDD	Inne
			а			
SIS 5571	Pentium, Pentium MMX, M1, K5, K6					
SIS 5591	FSB do 100 Mhz		ISA, PCI, AGP			
SIS 5596	Pentium, Pentium MMX, M1, K5, K6					
SIS 5597	Pentium, Pentium MMX, M1, K5, K6					
SIS 530		DIMM, 1,5GB		SiS 5595	UDMA66	ISA,

Chipsety ALI

NB	СРИ	Pamię ć	Grafi ka	SB	HD D	Inne
M1531 + M1533 (ALI Alladin IV)	Pentium, Pentium MMX, M1,M2, FSB do 83,3			M1543		

Socket 8 (Pentium Pro, Celeron)

Opatentowana przez Intela podstawka typu ZIF z 387 pinami. Współdziałała z 16/32-bitowymi Pentium Pro lub Pentium II OverDrive 300 – 333 w konfiguracjach dwuprocesorowych. Pentium Pro było pierwszym procesorem Intela z uaktualnianym programowo microcode (np. przez BIOS) i działało znacznie wolniej z oprogramowaniem mieszanym (częściowo 16 i 32 bitowym) niż analogiczne Pentium.

Dostępne były przejściówki pozwalające używać:

procesorów Socket 8 w płytach z Slot 1

- procesorów Celeron z zegarem 766 Mhz (Coppermine na szynie 66 Mhz do Socket 370) ze złączem Socket 8 (np. PerformaPRO 766 firmy EverGreen)
- procesorów Celeron w obudowie PPGA (Mendocino na szynie 66 Mhz do Socket 370) ze złączem Socket 8 (np. PL-Pro/II PowerLeapa)

Nazwa handlowa	Zegar(Mhz)	Szyna(Mhz)	Rdzeń	Cache(kB)	Instrukcje
Pentium Pro 150	150	60	P6, 600 nm	16/256	
Pentium Pro 166	166	66	P6, 350 nm	16/512	
Pentium Pro 180	180	60	P6, 600 nm	16/256	
Pentium Pro 200	200	66	P6, 600 nm	16/256	
Pentium Pro 200	200	66	P6, 350 nm	16/512	
Pentium Pro 200	200	66	P6, 350 nm	16/1024	
Pentium II OD300	300	66	P6T, 250 nm	32/512	MMX
Pentium II OD333	333	66	P6T, 250 nm	32/512	MMX

Chipsety Intela

Chipset	NB	CPU	Pamięć	Grafika	SB	HDD	Inne
440FX (Natoma)		1-2 Pentium Pro, Pentium II, FSB 50,60,66	FPM, EDO, BEDO, 1024 MB, ECC	ISA, PCI		DMA Mode 2	ISA, PCI
440LX	1-2 Pentium Pro, FSB 50,60,66		SDRAM, EDO, 1024 MB, ECC	ISA, PCI, AGP 1x		UDMA33	ISA, PCI, USB

Socket 370 (Pentium 2, Pentium 3, Celeron, VIA Cyrix III, VIA C3-A, VIA C3-T, VIA C3-G)

Opatentowana przez Intela podstawka typu ZIF z 370 pinami dla procesorów 16/32-bitowych. Bezpośrednio do niej mocowano zapinkami radiator z wentylatorem. Niektóre procesory do niej można było nieoficjalnie używać w konfiguracjach dwuprocesorowych.

Początkowo dostępne były do niej tylko układy w technologii 250 nm (w obudowie PPGA – Plastic Pin Grid Array). Następnie Intel przeszedł na 180 nm (układy Coppermine z SSE w obudowie FC-PGA - Flip Chip Pin Grid Array) i Tualatin w technologii 130 nm (obudowy FC-PGA2 – FC-PGA z dodatkową blaszką chroniącą rdzeń procesora nazwaną Integrated Heat Sink).

W planach Intela były też układy z rdzeniem Coppermine-T (Coppermine 180 nm z interfejsem Tualatin). W części materiałów jest informacja, iż były to Pentium III 866 EB, 933 EB, 1.0 EB i 1.33 EB. Nie można jednak tego z całą pewnością ustalić. Podobnie w chwili obecnej nie można ustalić, czy na rynku były Pentium III-S 700 i 1,2 i 1,33.

Pomiędzy PPGA, FC-PGA i FC-PGA2 były pewne różnice np. w napięciach i pomimo takiej samej fizycznie podstawki nie wszystkie kombinacje procesor-płyta główna działały. Pojawiły się odpowiednie przejściówki pozwalające na korzystanie z nowych procesorów w starych płytach (oczywiście oprócz nich było też czasem wymagane, aby płyta potrafiła obsłużyć dany mnożnik lub szybszą szynę):

- procesorów FC-PGA2 w płytach FC-PGA np. PowerLap PL-Neo/T (http://www.powerleap.com/PL-NeoT.html)
- procesorów FC-PGA w płytach PPGA np. PowerLeap PL-Neo S370 (http://www.hardwarecentral.com/hardwarecentral/reviews/1809/2/)

Odpowiednią licencję na używanie Socket 370 wykupiła od Intela firma Cyrix (później przejęta przez VIA). Po uaktualnieniach BIOS w części płyt głównych można było stosować także jej procesory.

Warto dodać, iż układy Joshua (rdzeń Jalapeno) Cyrixa nie wyszły poza stadium prototypów i stąd ich nie ma w poniższej tabeli. Niektóre źródła potwierdzają istnienie układów z rdzeniem Samuel taktowanym powyżej 700 Mhz, Samuel 2 z rdzeniem wolniejszym niż 700 Mhz i Ezra-T 750 Mhz. Trudno to jednoznacznie stwierdzić.

Procesory do Socket 370 były także używane (po zastosowaniu przejściówek) w płytach głównych ze złączem Slot 1.

Nazwa handlowa	Zegar(Mhz)	Szyna(Mhz)	Rdzeń	Cache(kB)	Instrukcje
Celeron 300A	300	66	P6C (Mendocino), 250 nm	32/128	MMX
Celeron 333	333	66	P6C (Mendocino), 250 nm	32/128	MMX
Celeron 366	366	66	P6C (Mendocino), 250 nm	32/128	MMX

C-1 100	400		DCC (Marada disa) 250 san	22/120	NANAV/
Celeron 400	400	66	P6C (Mendocino), 250 nm	32/128	MMX
Celeron 433	433	66	P6C (Mendocino), 250 nm	32/128	MMX
Celeron 466	466	66	P6C (Mendocino), 250 nm	32/128	MMX
Pentium III 500E	500	100	Coppermine, 180 nm	16+16/256	MMX, SSE
Celeron 500	500	66	P6C (Mendocino), 250 nm	32/128	MMX
VIA Cyrix III	500	100	Samuel, 180 nm	64+64/0	MMX, 3Dnow!
Pentium III 533EB	533	133	Coppermine, 180 nm	16+16/256	MMX, SSE
Celeron 533	533	66	P6C (Mendocino), 250 nm	32/128	MMX
Celeron 533A	533	66	Coppermine, 180 nm	32/128	MMX, SSE
VIA Cyrix III	533	133	Samuel, 180 nm	64+64/0	MMX, 3Dnow!
Pentium III 550E	550	100	Coppermine, 180 nm	16+16/256	MMX, SSE
VIA Cyrix III	550	100	Samuel, 180 nm	64+64/0	MMX, 3Dnow!
Celeron 566	566	66	Coppermine, 180 nm	32/128	MMX, SSE
Pentium III 600E	600	100	Coppermine, 180 nm	16+16/256	MMX, SSE
Pentium III 600EB	600	133	Coppermine, 180 nm	16+16/256	MMX, SSE
Celeron 600	600	66	Coppermine, 180 nm	32/128	MMX, SSE
VIA Cyrix III	600	100	Samuel, 180 nm	64+64/0	MMX, 3Dnow!
Celeron 633	633	66	Coppermine, 180 nm	32/128	MMX, SSE
Pentium III 650E	650	100	Coppermine, 180 nm	16+16/256	MMX, SSE
VIA Cyrix III	650	100	Samuel, 180 nm	64+64/0	MMX, 3Dnow!
Pentium III 667EB	667	133	Coppermine, 180 nm	16+16/256	MMX, SSE
Celeron 667	667	66	Coppermine, 180 nm	32/128	MMX, SSE
VIA Cyrix III	667	133	Samuel, 180 nm	64+64/0	MMX, 3Dnow!
Pentium III 700E	700	100	Coppermine, 180 nm	16+16/256	MMX, SSE
Celeron 700	700	66	Coppermine, 180 nm	32/128	MMX, SSE
VIA COLA	700	100	Samuel, 180 nm	64+64/0	MMX, 3Dnow!
VIA C3-A	700	100	Samuel 2, 150 nm	128/64	MMX, 3Dnow!
Pentium III 733EB	733	133	Coppermine, 180 nm	16+16/256	MMX, SSE
Celeron 733	733	66	Coppermine, 180 nm	32/128	MMX, SSE
VIA C3-A	733	133	Samuel 2, 150 nm	128/64	MMX, 3Dnow!
Pentium III 750E	750	100	Coppermine, 180 nm	16+16/256	MMX, SSE
VIA C3-A	750	100	Samuel 2, 150 nm	128/64	MMX, 3Dnow!
Celeron 766	766	66	Coppermine, 180 nm	32/128	MMX, SSE
Pentium III 800E	800	100	Coppermine, 180 nm	16+16/256	MMX, SSE
Pentium III 800EB	800	133	Coppermine, 180 nm	16+16/256	MMX, SSE
Celeron 800	800	100	Coppermine, 180 nm	32/128	MMX, SSE
VIA C3-A	800	100	Ezra, 130 nm	128/64	MMX, 3dnow!
VIA C3-T	800	133	Ezra-T, 130 nm	128/64	MMX, 3Dnow!
VIA C3-A	800	100	Samuel 2, 150 nm	128/64	MMX, 3Dnow!
VIA C3-A	800	133	Samuel 2, 150 nm	128/64	MMX, 3Dnow!
Pentium III 850E	850	100	Coppermine, 180 nm	16+16/256	MMX, SSE
Celeron 850	850	100	Coppermine, 180 nm	32/128	MMX, SSE
VIA C3-A	850	100	Ezra, 130 nm	128/64	MMX, 3dnow!
Pentium III 866EB	866	133	Coppermine, 180 nm	16+16/256	MMX, SSE
VIA C3-A	866	133	Ezra, 130 nm	128/64	MMX, 3dnow!
VIA C3-T	866	133	Ezra-T, 130 nm	128/64	MMX, 3Dnow!
Pentium III 900E	900	100	Coppermine, 180 nm	16+16/256	MMX, SSE
Celeron 900	900	100	Coppermine, 180 nm	32/128	MMX, SSE
Celeron 900A	900	100	Tualatin, 130 nm	32/256	MMX, SSE
Pentium III 933EB	933	133	Coppermine, 180 nm	16+16/256	MMX, SSE
VIA C3-T	933	133	Ezra-T, 130 nm	128/64	MMX, 3Dnow!
Celeron 950	950	100	Coppermine, 180 nm	32/128	MMX, SSE
Pentium III 1,0E	1000	100	Coppermine, 180 nm	16+16/256	MMX, SSE
Pentium III 1,0EB	1000	133	Coppermine, 180 nm	16+16/256	MMX, SSE
Pentium III 1,0EB	1000	133	Tualatin, 130 nm	16+16/256	MMX, SSE
,					, ,
Celeron 1,0	1000	100	Coppermine, 180 nm	32/128	MMX, SSE
Celeron 1,0A	1000	100	Tualatin, 130 nm	32/256	MMX, SSE
VIA C3-C	1000	133	Ezra-T	128/64	MMX, 3dnow!
VIA C3-G	1000	133	Nehemian	128/64	MMX, SSE, 3Dnow!
Pentium III 1,1E	1100	100	Coppermine, 180 nm	16+16/256	MMX, SSE
Celeron 1,1	1100	100	Coppermine, 180 nm	32/128	MMX, SSE
Celeron 1,1A	1100	100	Tualatin, 130 nm	32/256	MMX, SSE
VIA C3-G	1100	133	Nehemian	128/64	MMX, SSE, 3Dnow!
Pentium III 1,13EB	1133	133	Coppermine, 180 nm	16+16/256	MMX, SSE
Pentium III 1,13	1133	133	Tualatin, 130 nm	16+16/256	MMX, SSE
Pentium III-S 1,13	1133	133	Tualatin, 130 nm	16+16/512	MMX, SSE
Pentium III 1,2	1200	133	Tualatin, 130 nm	16+16/256	MMX, SSE

Celeron 1,2	1200	100	Tualatin, 130 nm	32/256	MMX, SSE
VIA C3-G	1200	133	Nehemian	128/64	MMX, SSE, 3Dnow!
Pentium III-S 1,26	1266	133	Tualatin, 130 nm	16+16/512	MMX, SSE
Celeron 1,3	1300	100	Tualatin, 130 nm	32/256	MMX, SSE
VIA C3-G	1300	133	Nehemian	128/64	MMX, SSE, 3Dnow!
Pentium III 1,33	1333	133	Tualatin, 130 nm	16+16/256	MMX, SSE
Pentium III 1,4	1400	133	Tualatin, 130 nm	16+16/256	MMX, SSE
Pentium III-S 1,4	1400	133	Tualatin, 130 nm	16+16/512	MMX, SSE
Celeron 1,4	1400	100	Tualatin, 130 nm	32/256	MMX, SSE
VIA C3-G	1400	133	Nehemian	128/64	MMX, SSE, 3Dnow!

Chipsety Intela

	NB	CPU	Pamięć	Grafika	SB	HDD	Inne
810	82810	FSB 66/100 Mhz	SDRAM 66/100, 512 MB	Intel 3D	ICH (82801AA)	UDMA66	PCI2.2, USB x2
					ICH0 (82801AB)	UDMA33	
810E	82810E	82810E FSB 66/100/133, SDRAM 66/100, 512 M		Intel 3D	ICH (82801AA)	UDMA66	PCI2.2, USB x2
		Tualatin			ICH0 (82801AB)	UDMA33	
810E2	82810E2						
815EG	82815EG						
815G	82815G						
815P	82815P						
820	82820						
820E	82820E						
840	82840						

Chipsety SIS

Socket 423 (Pentium 4)

Pentium 3 z niższymi zegarami.

Podstawka typu ZIF dla 16/32-bitowych procesorów Pentium 4 firmy Intel. Wprowadzona w listopadzie 2000. Było to rozwiązanie przejściowe, które stosunkowo szybko zostało zastąpione przez Socket 478 w 2001.

Dostępne dla niego były tylko układy z rdzeniem Williamette. Były one zamknięte w obudowach OOI (skrót od OLGA - Organic Land Grid Array) chroniącą mechanicznie rdzeń układu przed ukruszeniem. Jak pierwsze wykorzystywały architekturę NetBurst. Osiągały znacznie niższe rezultaty wydajnościowe niż

W okresie późniejszym pojawiły się na rynku przejściówki pozwalające na korzystanie w Socket 423 z niektórych procesorów w obudowie Socket 478. Przykładowe rozwiązanie PL-P4/N firmy PowerLap (http://www.powerleap.com/PL-P4N.html) pozwalało na użycie 130 nm procesorów

Pentium4 i Celeron z rdzeniem Willamette i Northwood. Mogły one działac z szyną 100 Mhz QDR (400 Mhz) z maksymalną szybkością 3000 Mhz lub z szyną 133 Mhz QDR (533 Mhz) z maksymalną szybkością 3059 Mhz.

Nazwa handlowa	Zegar(Mhz)	Szyna(Mhz)	Rdzeń	Cache L1D,L1I,L2,L3 (kB,kµops)	Instrukcje
Pentium 4 1,3 - 2,0	1300 - 2000	100/400	Williamette, 180 nm	8+12kµops/256	MMX, SSE, SSE2

Chipsety Intela

NB	CPU	Pamięć	Grafika	SB	HDD	Inne
850	FSB 400	RDRAM PC800, dual, 2GB	PCI, AGP 4x			
(Tehama)						

Socket 462, Socket A (Athlon, Athlon XP, Athlon XP-M, Athlon MP, Duron, Sempron)

Podstawka typu ZIF z 462 pinami dla 16/32-bitowych procesorów firmy AMD. Używana do 2005 (AMD zapowiedział już jej koniec). Radiator z wentylatorem jest do niej bezpośrednio mocowany zapinkami.

Używana zarówno w systemach biurkowych (Athlon, Athlon XP, Duron, Sempron) jak i dwuprocesorowych serwerowych (Athlon MP) jak i notebookowych (Athlon XP-M). Wszystkie te procesory mają odsłonięty rdzeń i możliwość zmiany prędkości poprzez modyfikację połączeń mostków dostępnych na górnej części płytki. Układy XP-M mają dodatkowo odblokowany mnożnik częstotliwości (wymagany w technologii PowerNow! zmieniającej dynamicznie prędkość procesora w zależności od obciążenia) i są wykorzystywane do overclockingu w systemach biurkowych.

Nazwa handlowa	Zegar(Mhz)	Szyna(Mhz)	Rdzeń	Cache(kB)	Instrukcje
Duron 550	550	100/200	Spifire, 180 nm	64+64/64	MMX, 3dnow!
Duron 600	600	100/200	Spifire, 180 nm	64+64/64	MMX, 3dnow!
Duron-M 600	600	100/200	Spifire, 180 nm	64+64/64	MMX, 3dnow!
Athlon 650B	650	100/200	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Duron 650	650	100/200	Spifire, 180 nm	64+64/64	MMX, 3dnow!
Athlon 700B	700	100/200	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Duron 700	700	100/200	Spifire, 180 nm	64+64/64	MMX, 3dnow!
Duron-M 700	700	100/200	Spifire, 180 nm	64+64/64	MMX, 3dnow!
Athlon 750B	750	100/200	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Duron 750	750	100/200	Spifire, 180 nm	64+64/64	MMX, 3dnow!
Athlon 800B	800	100/200	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Duron 800	800	100/200	Spifire, 180 nm	64+64/64	MMX, 3dnow!
Duron-M 800	800	100/200	Spifire, 180 nm	64+64/64	MMX, 3dnow!
Duron-M 800	800	100/200	Morgan, 180 nm	64+64/64	MMX, 3dnow!, SSE
Athlon 850B	850	100/200	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Duron 850	850	100/200	Spifire, 180 nm	64+64/64	MMX, 3dnow!
Duron-M 850	850	100/200	Morgan, 180 nm	64+64/64	MMX, 3dnow!, SSE
Athlon 900B	900	100/200	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Duron 900	900	100/200	Spifire, 180 nm	64+64/64	MMX, 3dnow!
Duron 900	900	100/200	Morgan, 180 nm	64+64/64	MMX, 3dnow!, SSE
Duron-M 900	900	100/200	Spifire, 180 nm	64+64/64	MMX, 3dnow!
Duron-M 900	900	100/200	Morgan, 180 nm	64+64/64	MMX, 3dnow!, SSE
Athlon 950B	950	100/200	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Duron 950	950	100/200	Spifire, 180 nm	64+64/64	MMX, 3dnow!
Duron 950	950	100/200	Morgan, 180 nm	64+64/64	MMX, 3dnow!, SSE
Duron-M 950	950	100/200	Morgan, 180 nm	64+64/64	MMX, 3dnow!, SSE
Athlon 1,0B	1000	100/200	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Athlon 1,0C	1000	133/266	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Athlon MP 1,0	1000	133/266	Palomino, 180 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP-M 1200+	1000	100/200	Thoroughbred LV, 130 nm	64+64/256	MMX, 3dnow!, SSE
Duron 1,0	1000	100/200	Morgan, 180 nm	64+64/64	MMX, 3dnow!, SSE
Duron-M 1,0	1000	100/200	Morgan, 180 nm	64+64/64	MMX, 3dnow!, SSE
Athlon 1,1B	1100	100/200	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Athlon XP-M 1300+	1100	100/200	Thoroughbred LV, 130 nm	64+64/256	MMX, 3dnow!, SSE
Duron 1,1	1100	100/200	Morgan, 180 nm	64+64/64	MMX, 3dnow!, SSE
Duron-M 1,1	1100	100/200	Morgan, 180 nm	64+64/64	MMX, 3dnow!, SSE
Athlon 1,13C	1130	133/266	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Athlon 1,2B	1200	100/200	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Athlon 1,2C	1200	133/266	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Athlon MP 1,2	1200	133/266	Palomino, 180 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP-M 1400+	1200	100/200	Thoroughbred (LV), 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP-M 1400+	1200	133/266	Thoroughbred (LV), 130 nm	64+64/256	MMX, 3dnow!, SSE
Duron 1,2	1200	100/200	Morgan, 180 nm	64+64/64	MMX, 3dnow!, SSE
Duron-M 1,2	1200	100/200	Morgan, 180 nm	64+64/64	MMX, 3dnow!, SSE
Athon XP-M 1400+	1260	133/266	Palomino, 180 nm	64+64/256	MMX, 3dnow!, SSE
Athlon 1,3B	1300	100/200	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Athlon XP 1500+	1300	133/266	Palomino, 180 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP-M 1500+	1300	100/200	Thoroughbred (LV), 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP-M 1700+	1300	100/200	Barton LV, 130 nm	64+64/512	MMX, 3dnow!, SSE
AU11011 AF-141 1/00+	1200	100/200	Charactet / 20	04704/312	11111/1, JUHUW!, 33E

Strona 14 / 29

Duron 1,3	1300	100/200	Morgan, 180 nm	64+64/64	MMX, 3dnow!, SSE
Duron-M 1,3	1300	100/200	Morgan, 180 nm	64+64/64	MMX, 3dnow!, SSE
Athlon 1,33C	1330	133/266	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Athlon MP 1500+	1330	133/266	Palomino, 180 nm	64+64/256	MMX, 3dnow!, SSE
Athon XP-M 1500+	1330	133/266	Palomino, 180 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP-M 1500+	1330	133/266	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon 1,4B	1400	100/200	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Athlon 1,4C	1400	133/266	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Athlon XP 1600+	1400	133/266	Palomino, 180 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP 1600+	1400	133/266	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon MP 1600+	1400	133/266	Palomino, 180 nm	64+64/256	MMX, 3dnow!, SSE
Athon XP-M 1600+	1400	133/266	Palomino, 180 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP-M 1600+	1400 1400	100/200 133/266	Thoroughbred (LV), 130 nm	64+64/256 64+64/256	MMX, 3dnow!, SSE MMX, 3dnow!, SSE
Athlon XP-M 1600+ Athlon XP-M 1800+	1400	100/200	Thoroughbred (LV), 130 nm Barton LV, 130 nm	64+64/512	MMX, 3dnow!, SSE
Athlon XP-M 1800+	1400	133/266	Barton LV, 130 nm	64+64/512	MMX, 3dnow!, SSE
Duron 1,4	1400	133/266	Applebred, 130 nm	64+64/64	MMX, 3dnow!, SSE
Athlon XP 1700+	1460	133/266	Palomino, 180 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP 1700+	1460	133/266	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athon XP-M 1700+	1460	133/266	Palomino, 180 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP-M 1700+	1460	133/266	Thoroughbred (LV), 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP-M 1900+	1460	133/266	Barton LV, 130 nm	64+64/512	MMX, 3dnow!, SSE
Athlon XP-M 1800+	1500	100/200	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Sempron 2200+	1500	166/333	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Sempron 2200+	1500	166/333	Thorton, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP 1800+	1530	133/266	Palomino, 180 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP 1800+	1530	133/266	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon MP 1800+	1530	133/266	Palomino, 180 nm	64+64/256	MMX, 3dnow!, SSE
Athon XP-M 1800+	1530	133/266	Palomino, 180 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP-M 1800+	1530	133/266	Thoroughbred (LV), 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP-M 2000+	1530	133/266	Barton LV, 130 nm	64+64/512	MMX, 3dnow!, SSE
Sempron 2300+ Athlon XP 1900+	1580 1600	166/333 133/266	Thoroughbred, 130 nm Palomino, 180 nm	64+64/256 64+64/256	MMX, 3dnow!, SSE MMX, 3dnow!, SSE
Athlon XP 1900+	1600	133/266	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon MP 1900+	1600	133/266	Palomino, 180 nm	64+64/256	MMX, 3dnow!, SSE
Athon XP-M 1900+	1600	133/266	Palomino, 180 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP-M 1900+	1600	100/200	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP-M 1900+	1600	133/266	Thoroughbred (LV), 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP-M 2100+	1600	100/200	Barton LV, 130 nm	64+64/512	MMX, 3dnow!, SSE
Athlon XP-M 2100+	1600	133/266	Barton LV, 130 nm	64+64/512	MMX, 3dnow!, SSE
Duron 1,6	1600	133/266	Applebred, 130 nm	64+64/64	MMX, 3dnow!, SSE
Athlon XP 2000+	1660	133/266	Palomino, 180 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP 2000+	1660	133/266	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP 2000+	1660	133/266	Thorton, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon MP 2000+	1660	133/266	Palomino, 180 nm	64+64/256	MMX, 3dnow!, SSE
Athlon MP 2000+	1660	133/266 133/266	Thoroughbred, 130 nm Palomino, 180 nm	64+64/256	MMX, 3dnow!, SSE MMX, 3dnow!, SSE
Athon XP-M 2000+ Athlon XP-M 2000+	1660 1660	133/266	Thoroughbred (LV), 130 nm	64+64/256 64+64/256	MMX, 3dnow!, SSE
Athlon XP-M 2200+	1660	133/266	Barton LV, 130 nm	64+64/512	MMX, 3dnow!, SSE
Sempron 2400+	1660	166/333	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Sempron 2400+	1660	166/333	Thorton, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP 2100+	1730	133/266	Palomino, 180 nm	64+64/256	MMX, 3dnow!, SSE
Athlon MP 2100+	1730	133/266	Palomino, 180 nm	64+64/256	MMX, 3dnow!, SSE
Sempron 2500+	1750	166/333	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Sempron 2500+	1750	166/333	Thorton, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP 2200+	1800	133/266	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP 2200+	1800	133/266	Thorton, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon MP 2200+	1800	133/266	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athler XP M 2400+	1800	133/266	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP-M 2400+	1800	133/266	Barton (LV), 130 nm	64+64/512	MMX, 3dnow!, SSE
Duron 1,8	1800	133/266	Applebred, 130 nm	64+64/64	MMX, 3dnow!, SSE
Athlon XP 2500+ Sempron 2600+	1830 1830	166/333	Barton, 130 nm	64+64/512	MMX, 3dnow!, SSE MMX, 3dnow!, SSE
Sempron 2600+	1830	166/333 166/333	Thoroughbred, 130 nm Thorton, 130 nm	64+64/256 64+64/256	MMX, 3dnow!, SSE
Athlon XP-M 2500+	1860	133/266	Barton, 130 nm	64+64/512	MMX, 3dnow!, SSE
Athlon XP 2600+	1910	166/333	Barton, 130 nm	64+64/512	MMX, 3dnow!, SSE
Athlon XP-M 2600+	1910	133/266	Barton, 130 nm	64+64/512	MMX, 3dnow!, SSE
7.G.1.5.17.11.11.20001	1710	133/200	50.001, 150 IIII	51.01/512	i ii i/ y Sariovi; SSL

Athlon XP 2400+	2000	133/266	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP 2400+	2000	133/266	Thorton, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon MP 2400+	2000	133/266	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP-M 2600+	2000	133/266	Barton, 130 nm	64+64/512	MMX, 3dnow!, SSE
Sempron 2800+	2000	166/333	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Sempron 2800+	2000	166/333	Thorton, 130 nm		MMX, 3dnow!, SSE
Sempron 3000+	2000	166/333	Barton, 130 nm	64+64/512	MMX, 3dnow!, SSE
Athlon XP-M 2400+	2060	133/266	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP 2600+	2080	166/333	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP 2800+	2080	166/333	Barton, 130 nm	64+64/512	MMX, 3dnow!, SSE
Athlon XP 3000+	2100	200/400	Barton, 130 nm	64+64/512	MMX, 3dnow!, SSE
Athlon XP 2600+	2130	133/266	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon MP 2600+	2130	133/266	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon MP 2800+	2130	133/266	Barton, 130 nm	64+64/512	MMX, 3dnow!, SSE
Athlon XP-M 2600+	2130	133/266	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP-M 2800+	2130	133/266	Barton, 130 nm	64+64/512	MMX, 3dnow!, SSE
Athlon XP 2700+	2160	166/333	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE
Athlon XP 3000+	2160	166/333	Barton, 130 nm	64+64/512	MMX, 3dnow!, SSE
Athlon XP 3200+	2200	200/400	Barton, 130 nm	64+64/512	MMX, 3dnow!, SSE
Athlon XP 2800+	2250	166/333	Thoroughbred, 130 nm	64+64/256	MMX, 3dnow!, SSE

Chipsety NVidia

	NB	CPU	Pamięć	Grafika	SB	HDD	Inne
Chipsety VIA							
	NB	CPU	Pamięć	Grafika	SB	HDD	Inne
Chipsety SIS							
	NB	CPU	Pamięć	Grafika	SB	HDD	Inne

Socket 478 (Pentium 4, Pentium 4 EE, Celeron, Celeron D)

Podstawka z 478 pinami typu ZIF dla 16/32-bitowych Pentium 4/Celeron firmy Intel. Wprowadzona w październiku 2001. Procesory do niej zamknięte są w obudowach typu FC-PGA2. Wokół niej montowano do płyty głównej tzw. koszyczki

retencyjne, a do nich radiatory z wentylatorem. Czasem (z konkretnymi układami chłodzenia) usuwano koszyczek i chłodzenie montowano bezpośrednio do płyty.

Początkowo używana z układami Williamette (podobnymi jak dla Socket 423).

Następnie Intel zmienił proces technologiczny na 130 nm i zaczął wytwarzać układy Northwood (od 2002). Miały większy cache 2 poziomu, niższe napięcie zasilania i niższy pobór

prądu. Ich kolejne wersje używały coraz szybszej szyny (wymagały przez to nowych chipsetów). Pentium 4 z tym rdzeniem uzyskały też obsługę HT (także używającej wsparcia w chipsecie). Odmianą układów Northwood była seria Extreme Edition z dodatkowym cache 3 poziomu.

Kolejne były układy wykonane w technologii 90 nm (rdzeń Prescott). Wprowadzały nowe instrukcje SSE3, zmiany w obsłudze HT, zwiększony do 16 kB cache 1 poziomu dla danych i wydłużone do 31 (z 20) potoki wykonawcze. Dzięki tej ostatniej cesze były znacznie wolniejsze niż analogiczne Northwoody i bardziej się grzały. Ich obsługa w starszych płytach wymagała uaktualnień BIOS i odpowiednio wydajnego układu zasilania (Prescotty najczęściej zużywają więcej energii niż analogiczne procesory w technologii 130 nm).

Procesory Celeron z rdzeniem Williamette i Northwood były powszechnie krytykowane za małą wydajność, dla odmiany układy oparte na Pentium 4 Prescott osiągały bardzo dobre rezultaty.

Dostępna jest przejściówka firmy Asus model CT-479, która pozwoli na użycie w niektórych płytach tej firmy (P4P800-VM, P4P800-SE, P4GD1, P4C800 Deluxe, P4GPL-X, P4C800-E Deluxe) z Socket 478 procesorów Pentium M / Celeron M działających z gniazdkiem Socket 479 (mogą być z jądrem Banias i Dothan, nie mogą być w wersji Low Voltage i Ultra Low Voltage).

Niektóre wolniejsze procesory Socket 478 mogły być też używane na przejściówce w płytach z Socket 423.

Nazwa handlowa	Zegar(Mhz)	Szyna(Mhz)	Rdzeń	Cache L1D,L1I,L2,L3 (kB,kµops)	Instrukcje
Pentium 4 1,3	1300	100/400	Williamette, 180 nm	8+12kµops/256	MMX, SSE, SSE2
Pentium 4 1,4	1400	100/400	Williamette, 180 nm	8+12kµops/256	MMX, SSE, SSE2
Pentium 4 1,5	1500	100/400	Williamette, 180 nm	8+12kµops/256	MMX, SSE, SSE2
Pentium 4 1,6	1600	100/400	Williamette, 180 nm	8+12kµops/256	MMX, SSE, SSE2
Pentium 4 1,6A	1600	100/400	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2
Pentium 4 1,7	1700	100/400	Williamette, 180 nm	8+12kµops/256	MMX, SSE, SSE2
Pentium 4 1,7A	1700	100/400	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2
Celeron 1,7	1700	100/400	Williamette, 180 nm	8+12kµops/128	MMX, SSE, SSE2
Pentium 4 1,8	1800	100/400	Williamette, 180 nm	8+12kµops/256	MMX, SSE, SSE2
Pentium 4 1,8A	1800	100/400	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2
Celeron 1,8	1800	100/400	Williamette, 180 nm	8+12kµops/128	MMX, SSE, SSE2
Celeron 1,8	1800	100/400	Northwood, 130 nm	8+12kµops/128	MMX, SSE, SSE2
Pentium 4 1,9	1900	100/400	Williamette, 180 nm	8+12kµops/256	MMX, SSE, SSE2
Pentium 4 1,9A	1900	100/400	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2
Celeron 1,9	1900	100/400	Williamette, 180 nm	8+12kµops/128	MMX, SSE, SSE2
Celeron 1,9	1900	100/400	Northwood, 130 nm	8+12kµops/128	MMX, SSE, SSE2
Pentium 4 2,0	2000	100/400	Williamette, 180 nm	8+12kµops/256	MMX, SSE, SSE2
Pentium 4 2,0A	2000	100/400	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2
Celeron 2,0	2000	100/400	Williamette, 180 nm	8+12kµops/128	MMX, SSE, SSE2
Celeron 2,0	2000	100/400	Northwood, 130 nm	8+12kµops/128	MMX, SSE, SSE2
Pentium 4 2,1	2100	100/400	Northwood, 130 nm	8+12kµops/512	
•		· · · · · · · · · · · · · · · · · · ·	•		MMX, SSE, SSE2
Celeron 2,1	2100	100/400	Northwood, 130 nm	8+12kµops/128	MMX, SSE, SSE2
Pentium 4 2,2	2200	100/400	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2
Celeron 2,2	2200	100/400	Northwood, 130 nm	8+12kµops/128	MMX, SSE, SSE2
Pentium 4 2,26	2266	133/533	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2
Celeron D 315	2266	133/533	Prescott, 90 nm	16+12kµops/256	MMX, SSE, SSE2, SSE3
Pentium 4 2,3	2300	100/400	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2
Celeron 2,3	2300	100/400	Northwood, 130 nm	8+12kµops/128	MMX, SSE, SSE2
Pentium 4 2,4	2400	100/400	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2
Pentium 4 2,4B	2400	133/533	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2
Pentium 4 2,4C	2400	200/800	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2, HT
Celeron 2,4	2400	100/400	Northwood, 130 nm	8+12kµops/128	MMX, SSE, SSE2
Celeron D 320	2400	133/533	Prescott, 90 nm	16+12kµops/256	MMX, SSE, SSE2, SSE3
Pentium 4 2,5	2500	100/400	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2
Celeron 2,5	2500	100/400	Northwood, 130 nm	8+12kµops/128	MMX, SSE, SSE2
Pentium 4 2,53	2533	133/533	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2
Celeron D 325	2533	133/533	Prescott, 90 nm	16+12kµops/256	MMX, SSE, SSE2, SSE3
Pentium 4 2,6	2600	100/400	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2
Pentium 4 2,6C	2600	200/800	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2, HT
Celeron 2,6	2600	100/400	Northwood, 130 nm	8+12kµops/128	MMX, SSE, SSE2
Pentium 4 2,66	2660	133/533	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2
Celeron D 330	2660	133/533	Prescott, 90 nm	16+12kµops/256	MMX, SSE, SSE2, SSE3
Pentium 4 2,7	2700	100/400	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2
Celeron 2,7	2700	100/400	Northwood, 130 nm	8+12kµops/128	MMX, SSE, SSE2
Pentium 4 2,8	2800	100/400	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2
Pentium 4 2,8B	2800	133/533	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2
Pentium 4 2,8C	2800	200/800	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2, HT
Pentium 4 2,8E	2800	200/800	Prescott, 90 nm	16+12kμops/1024	MMX,SSE,SSE2,SSE3,HT
Pentium 4 518	2800	133/533	Prescott, 90 nm	16+12kµops/1024	MMX, SSE, SSE2, SSE3
Celeron 2,8	2800	100/400	Northwood, 130 nm	8+12kµops/128	MMX, SSE, SSE2
Celeron D 335	2800	133/533	Prescott, 90 nm	16+12kµops/256	MMX, SSE, SSE2, SSE3
				1 1	
Celeron D 340	2930	133/533	Prescott, 90 nm	16+12kµops/256	MMX, SSE, SSE2, SSE3

Pentium 4 3,0	3000	200/800	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2, HT
Pentium 4 3,0E	3000	200/800	Prescott, 90 nm	16+12kµops/1024	MMX,SSE,SSE2,SSE3,HT
Pentium 4 3,06	3066	133/533	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2, HT
Pentium 4 3,2	3200	200/800	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2, HT
Pentium 4 3,2E	3200	200/800	Prescott, 90 nm	16+12kµops/1024	MMX,SSE,SSE2,SSE3,HT
Pentium 4 3,2EE	3200	200/800	Prestonia, 130 nm	8+12kµops/512/2048	MMX, SSE, SSE2, HT
Pentium 4 3,4	3400	200/800	Northwood, 130 nm	8+12kµops/512	MMX, SSE, SSE2, HT
Pentium 4 3,4E	3400	200/800	Prescott, 90 nm	16+12kµops/1024	MMX,SSE,SSE2,SSE3,HT
Pentium 4 3,4EE	3400	200/800	Gallatin, 130 nm	8+12kµops/512/2048	MMX, SSE, SSE2, HT

Chipsety Intela składają się z mostka północnego (układu 82xxx) i odpowiedniego mostka południowego (ICH2 - 82801BA, ICH4 - 82801DB, ICH5 - 82801EB, ICH5R - 82801ER, ICH6 - , ICH6R -). Grafika EG oznacza zintegrowany układ Extreme Graphics 2, GMA900 to Graphics Media Accelerator 900. Układ 865PE miał byc w zamierzeniach tańszą wersją 875P – w praktyce wiele firm odblokowywało funkcję PAT przyspieszającą dostęp do RAM i oba miał tę samą wydajność.

	NB	CPU	Pamięć	Grafika	SB	HDD	Inne
845	82845	FSB 400	DDR 200/266 lub SDR 133	PCI, AGP 4x	ICH2	ATA100	USB1.1x4,PCI
845E	82845E	FSB 400/533, HT	DDR 200/266	PCI, AGP 4x			
845G	82845G	FSB 400/533, HT	DDR 200/266 lub SDR 133	EG, PCI, AGP 4x			
845GE	82845GE	FSB 400/533, HT	DDR 266/333	EG, PCI, AGP 4x	ICH4	ATA100	USB2.0x6,PCI
845GL			DDR 200/266 lub SDR 133	EG, PCI	10114	ATATOO	0302.000,FC1
845GV	82845GV	FSB 400/533, HT	DDR 200/266/333 lub SDR 133	EG, PCI			
845PE	82845PE	FSB 400/533, HT	DDR 266/333 PCI, AGP 4x				
848P	82848P	FSB 400/533/800,HT	DDR 266/333/400	PCI, AGP 4x/8x	ICH5	ATA100,SATAx2	
0407	020 1 0P	F3D 400/333/600,F1	DDR 200/333/400	PCI, AGP 4x/ox	ICH5R	ATA100,SATAx2,RAID0	
9650	020650	ECD 400/E22/900 HT	DDR 266/333/400, dual, 4GB	EG2,PCI,AGP4x/8x	ICH5	ATA100,SATAx2	
003G	865G 82865G FSB 400/533/800,HT 865GV 82865GV FSB 400/533/800,HT		DDR 200/333/400, dual, 4GB	EGZ,PCI,AGP4X/0X	ICH5R	ATA100,SATAx2,RAID0	Ì
865GV			DDR 266/333/400, dual	EG2, PCI	ICH5	ATA100,SATAx2	
00304	02003GV	130 400/333/600,111	DDR 200/333/400, ddal	LOZ, FCI	ICH5R	ATA100,SATAx2,RAID0	USB2.0x8,PCI
865P	82865P	FSB 400/533,HT	DDR 266/333, dual	PCI, AGP 4x/8x	ICH5	ATA100,SATAx2	0302.000,FC1
003F	0200JF	130 400/333,111	DDK 200/333, ddai	rci, Adr 4x/ox	ICH5R	ATA100,SATAx2,RAID0	
06EDE	865PE 82865PE FSB 400/533/800,HT		DDR 266/333/400, dual, 4GB	PCI, AGP 4x/8x	ICH5	ATA100,SATAx2	
OUSPE			DDR 200/333/400, dual, 4GB	PCI, AGP 4x/ox	ICH5R	ATA100,SATAx2,RAID0	1
875P	82875P	ECB E33/900 HT	DDR 333/400, dual, ECC, 4GB	PCI, AGP 4x/8x	ICH5	ATA100,SATAx2	
0/3P	875P 82875P FSB 533/800,HT		DDK 333/400, dual, ECC, 4GB	rci, Adr 4x/0x	ICH5R	ATA100,SATAx2,RAID0	
					ICH6		USB2.0x8, PC
910GL	82910GL	FSB 533,HT	FSB 533,HT DDR 333/400, dual, 2GB		ICH6R		Express
							1x,PCI

Chipsety SIS

		NB	CPU	Pamięć	Grafika	SB	HDD	Inne
--	--	----	-----	--------	---------	----	-----	------

Chipsety VIA

	NB	CPU	Pamięć	Grafika	SB	HDD	Inne

Chipsety ATI

	NB	CPU	Pamięć	Grafika	SB	HDD	Inne

Socket 479 (Pentium M, Celeron M)

Podstawka używana początkowo w notebookach wraz z platformą Centrino. Platforma Centrino to kombinacja procesora, chipsetu Intela i modułu WiFi:

- gdy używany jest Pentium M z jądrem Banias, mówimy o jej wersji 1 (Carmel wprowadzona w marcu 2003) z obsługą pamięci DDR i szyny PCI.
- jeżeli wykorzystywany jest Pentium M w wersji Dothan, jest to wersja 2 (Sonoma wprowadzona w) z pamięciami DDR2 i szyną PC-Express.

Oprócz Pentium M dostępny jest też Celeron M. Nie tworzy on Centrino, ma mniejszy cache i nie ma SpeedStep (automatycznej zmiany mnożnika w zależności od obciążenia procesora).

Wszystkie obecne procesory to układy 16/32-bitowe z odsłoniętym rdzeniem. Obecnie pojawiają się już płyty główne z tym złączem dla systemów biurkowych.

Układy w tej podstawce są blokowane poprzez przekręcenie widocznego na górze podstawki kółka (brak jest dźwigienki jak w klasycznych rozwiązaniach ZIF).

Nazwa handlowa	Zegar(Mhz)	Szyna(Mhz)	Rdzeń	Cache(kB)	Instrukcje
Pentium M 900Mhz	900	100/400	Banias ULV, 130 nm	64/1024	MMX, SSE, SSE2
Celeron M 800Mhz	800	100/400	Banias ULV, 130 nm	64/512	MMX, SSE, SSE2
Celeron M 900Mhz	900	100/400	Banias ULV, 130 nm	64/512	MMX, SSE, SSE2
Celeron M 333	900	100/400	Banias ULV, 130 nm	64/512	MMX, SSE, SSE2
Celeron M 353	900	100/400	Dothan, 90 nm	64/1024	MMX, SSE, SSE2, SSE3, NX
Pentium M 1,0	1000	100/400	Banias LV, 130 nm	64/1024	MMX, SSE, SSE2
Pentium M 723	1000	100/400	Dothan ULV, 90 nm	64/2048	MMX, SSE, SSE2, SSE3, NX
Pentium M 1,1	1100	100/400	Banias LV, 130 nm	64/1024	MMX, SSE, SSE2
Pentium M 713	1100	100/400	Banias ULV, 130 nm	64/1024	MMX, SSE, SSE2
Pentium M 733	1100	100/400	Dothan ULV, 90 nm	64/2048	MMX, SSE, SSE2, SSE3, NX
Pentium M 1,2	1200	100/400	Banias LV, 130 nm	64/1024	MMX, SSE, SSE2
Pentium M 753	1200	100/400	Dothan ULV, 90 nm	64/2048	MMX, SSE, SSE2, SSE3, NX
Celeron M 1,2	1200	100/400	Banias, 130 nm	64/512	MMX, SSE, SSE2
Celeron M 310	1200	100/400	Banias, 130 nm	64/512	MMX, SSE, SSE2
Pentium M 1,3	1300	100/400	Banias, 130 nm	64/1024	MMX, SSE, SSE2
Celeron M 1,3	1300	100/400	Banias, 130 nm	64/512	MMX, SSE, SSE2
Celerom M 320	1300	100/400	Banias, 130 nm	64/512	MMX, SSE, SSE2
Celeron M 350	1300	100/400	Dothan, 90 nm	64/1024	MMX, SSE, SSE2, SSE3, NX
Pentium M 1,4	1400	100/400	Banias, 130 nm	64/1024	MMX, SSE, SSE2
Pentium M 710	1400	100/400	Dothan, 90 nm	64/2048	MMX, SSE, SSE2, SSE3, NX
Pentium M 738	1400	100/400	Dothan LV, 90 nm	64/2048	MMX, SSE, SSE2, SSE3, NX
Celeron M 330	1400	100/400	Banias, 130 nm	64/512	MMX, SSE, SSE2
Celeron M 360	1400	100/400	Dothan, 90 nm	64/1024	MMX, SSE, SSE2, SSE3, NX
Pentium M 1,5	1500	100/400	Banias, 130 nm	64/1024	MMX, SSE, SSE2
Pentium M 705	1500	100/400	Banias, 130 nm	64/1024	MMX, SSE, SSE2
Pentium M 715	1500	100/400	Dothan, 90 nm	64/2048	MMX, SSE, SSE2, SSE3, NX
Celeron M 340	1500	100/400	Banias, 130 nm	64/512	MMX, SSE, SSE2
Pentium M 1,6	1600	100/400	Banias, 130 nm	64/1024	MMX, SSE, SSE2
Pentium M 725	1600	100/400	Dothan, 90 nm	64/2048	MMX, SSE, SSE2, SSE3, NX
Pentium M 730	1600	133/533	Dothan, 90 nm	64/2048	MMX, SSE, SSE2, SSE3, NX
Pentium M 1,7	1700	100/400	Banias, 130 nm	64/1024	MMX, SSE, SSE2
Pentium M 735	1700	100/400	Dothan, 90 nm	64/2048	MMX, SSE, SSE2, SSE3, NX
Pentium M 740	1733	133/533	Dothan, 90 nm	64/2048	MMX, SSE, SSE2, SSE3, NX
Pentium M 745	1800	100/400	Dothan, 90 nm	64/2048	MMX, SSE, SSE2, SSE3, NX
Pentium M 750	1866	133/533	Dothan, 90 nm	64/2048	MMX, SSE, SSE2, SSE3, NX
Pentium M 755	2000	100/400	Dothan, 90 nm	64/2048	MMX, SSE, SSE2, SSE3, NX
Pentium M 760	2000	133/533	Dothan, 90 nm	64/2048	MMX, SSE, SSE2, SSE3, NX
Pentium M 765	2100	100/400	Dothan, 90 nm	64/2048	MMX, SSE, SSE2, SSE3, NX
Pentium M 770	2133	133/533	Dothan, 90 nm	64/2048	MMX, SSE, SSE2, SSE3, NX
		Centrino 3 (Napa) – procesor Yonah/Jon	ah ?	

Chipsety Intela

NB	CPU	Pamięć	Grafika	SB	HDD	Inne

Socket 603 (Xeon)

Podstawka dla procesorów serwerowych Intela (są to Pentium 4 z możliwościami pracy wieloprocesorowej). MP oznacza Multi Processing.

Nazwa handlowa	Zegar(Mhz)	Szyna(Mhz)	Rdzeń	Cache(kB,kµops)	Instrukcje
Xeon MP 1,4	1400	100/400	Foster MP, 180 nm	8+12kµops/256/512	MMX, SSE, SSE2
Xeon 1,4	1400	100/400	Foster, 180 nm	8+12kµops/256	MMX, SSE, SSE2
Xeon MP 1,5	1500	100/400	Foster MP, 180 nm	8+12kµops/256/512	MMX, SSE, SSE2
Xeon MP 1,5	1500	100/400	Gallatin, 130 nm	8+12kµops/512/1024	MMX, SSE, SSE2, HT
Xeon 1,5	1500	100/400	Foster, 180 nm	8+12kµops/256	MMX, SSE, SSE2
Xeon MP 1,6	1600	100/400	Foster MP, 180 nm	8+12kµops/256/512	MMX, SSE, SSE2

Xeon 1,7	1700	100/400	Foster, 180 nm	8+12kµops/256	MMX, SSE, SSE2
Xeon 1,8	1800	100/400	Prestonia, 130 nm	8+12kµops/512	MMX, SSE, SSE2, HT
Xeon MP 1,9	1900	100/400	Gallatin, 130 nm	8+12kµops/512/1024	MMX, SSE, SSE2, HT
Xeon MP 2,0	2000	100/400	Gallatin, 130 nm	8+12kµops/512/1024	MMX, SSE, SSE2, HT
Xeon 2,0	2000	100/400	Foster, 180 nm	8+12kµops/256	MMX, SSE, SSE2
Xeon 2,0	2000	100/400	Prestonia, 130 nm	8+12kµops/512	MMX, SSE, SSE2, HT
Xeon MP 2,2	2200	100/400	Gallatin, 130 nm	8+12kµops/512/2048	MMX, SSE, SSE2, HT
Xeon 2,2	2200	100/400	Prestonia, 130 nm	8+12kµops/512	MMX, SSE, SSE2, HT
Xeon 2,4	2400	100/400	Prestonia, 130 nm	8+12kµops/512	MMX, SSE, SSE2, HT
Xeon MP 2,5	2500	100/400	Gallatin, 130 nm	8+12kµops/512/1024	MMX, SSE, SSE2, HT
Xeon 2,6	2600	100/400	Prestonia, 130 nm	8+12kµops/512	MMX, SSE, SSE2, HT
Xeon MP 2,7	2700	100/400	Gallatin, 130 nm	8+12kµops/512/2048	MMX, SSE, SSE2, HT
Xeon MP 2,8	2800	100/400	Gallatin, 130 nm	8+12kµops/512/2048	MMX, SSE, SSE2, HT
Xeon 2,8	2800	100/400	Prestonia, 130 nm	8+12kµops/512	MMX, SSE, SSE2, HT
Xeon MP 3,0	3000	100/400	Gallatin, 130 nm	8+12kµops/512/4096	MMX, SSE, SSE2, HT

Socket 604 (Xeon)

Podstawka dla procesorów serwerowych Intela (są to Pentium 4 z możliwościami pracy wieloprocesorowej). 64 bitowość układów Nocona była niezgodna z EMT64.

Nazwa handlowa	Zegar(Mhz)	Szyna(Mhz)	Rdzeń	Cache(kB,kµops)	Instrukcje
Xeon 2,0	2000	133/533	Prestonia, 130 nm	8+12kµops/512	MMX, SSE, SSE2, HT
Xeon 2,4	2400	133/533	Prestonia, 130 nm	8+12kµops/512	MMX, SSE, SSE2, HT
Xeon 2,66	2660	133/533	Prestonia, 130 nm	8+12kµops/512	MMX, SSE, SSE2, HT
Xeon 2,8	2800	133/533	Prestonia, 130 nm	8+12kµops/512	MMX, SSE, SSE2, HT
Xeon 2,8	2800	200/800	Nocona, 90 nm	16+16/1024	MMX,SSE,SSE2,SSE3,64bit,HT
Xeon 3,0	3000	200/800	Nocona, 90 nm	16+16/1024	MMX,SSE,SSE2,SSE3,64bit,HT
Xeon 3,0	3000	200/800	Irwindale, 90 nm	16+16/2048	MMX,SSE,SSE2,SSE3,EMT64,NX,HT
Xeon 3,06	3060	133/533	Prestonia, 130 nm	8+12kµops/512	MMX, SSE, SSE2, HT
Xeon 3,06	3060	133/533	Prestonia, 130 nm	8+12kµops/512/1024	MMX, SSE, SSE2, HT
Xeon 3,2	3200	133/533	Prestonia, 130 nm	8+12kµops/512/1024	MMX, SSE, SSE2, HT
Xeon 3,2	3200	200/800	Nocona, 90 nm	16+12kµops/1024	MMX,SSE,SSE2,SSE3,64bit,HT
Xeon 3,2	3200	200/800	Irwindale, 90 nm	16+12kµops/2048	MMX,SSE,SSE2,SSE3,EMT64,NX,HT
Xeon 3,4	3400	200/800	Nocona, 90 nm	16+12kµops/1024	MMX,SSE,SSE2,SSE3,64bit,HT
Xeon 3,4	3400	200/800	Irwindale, 90 nm	16+12kµops/2048	MMX,SSE,SSE2,SSE3,EMT64,NX,HT
Xeon 3,6	3600	200/800	Nocona, 90 nm	16+12kµops/1024	MMX,SSE,SSE2,SSE3,64bit,HT
Xeon 3,6	3600	200/800	Irwindale, 90 nm	16+12kµops/2048	MMX,SSE,SSE2,SSE3,EMT64,NX,HT

Socket 615 (Pentium II, Celeron)

Część procesorów Intela klasy Pentium II / Celeron (Celerony będące odmianą Pentium III) do notebooków umieszczane były w obudowach BGA (Ball Grid Array). W tanich komputerach montowane były bezpośrednio do płyt głównych, w droższych umieszczane były w adaptorach, a te w podstawkach. To drugie rozwiązanie nazywane było Micro-PGA1 i miało 615 pinów (243 było niepodłączonych).

Socket 754 (Athlon 64, Turion, Sempron)

Podstawka typu ZIF dla 16/32/64-bitowych lub 16/32 bitowych procesorów firmy AMD wprowadzona w 2003.

Procesory te mają wbudowany jednokanałowy kontroler (mostek północny) niebuforowanej pamięci DDR 200-400 Mhz (PC 1600 – 3200). Obsługiwane jest maksymalnie 4 GB.

Na rynku są dostępne płyty główne zawierające zarówno gniazdo Socket 754 jak i Socket 939 (można w nie włożyć jeden procesor do jednej z tych podstawek).

Nazwa handlowa	Zegar(Mhz)	Szyna(Mhz)	Rdzeń	Cache(kB)	Instrukcje
Athlon 64 2600+	1600	200/800	Newcastle, 130 nm	64+64/512	MMX,3dnow!,SSE,SSE2,64bit,NX
Athlon 64 2800+	1800	200/800	Newcastle, 130 nm	64+64/512	MMX,3dnow!,SSE,SSE2,64bit,NX
Sempron 3100+	1800	200/800	Paris, 130 nm	64+64/128	MMX,3dnow!,SSE,SSE2,NX
Athlon 64 3000+	2000	200/800	Newcastle, 130 nm	64+64/512	MMX,3dnow!,SSE,SSE2,64bit,NX
Athlon 64 3200+	2000	200/800	ClawHammer, 130 nm	64+64/1024	MMX,3dnow!,SSE,SSE2,64bit,NX
Athlon 64 3200+	2200	200/800	Newcastle, 130 nm	64+64/512	MMX,3dnow!,SSE,SSE2,64bit,NX
Athlon 64 3400+	2200	200/800	ClawHammer, 130 nm	64+64/1024	MMX,3dnow!,SSE,SSE2,64bit,NX
Athlon 64 3400+	2400	200/800	Newcastle, 130 nm	64+64/512	MMX,3dnow!,SSE,SSE2,64bit,NX
Athlon 64 3700+	2400	200/800	ClawHammer, 130 nm	64+64/1024	MMX,3dnow!,SSE,SSE2,64bit,NX
		At	hlon 64 Mobile, Turion, Semp	oron	_

Socket 775, Socket T, LGA 775 (Pentium 4, Pentium 4 EE, Pentium D, Pentium EE, Celeron D)

Opatentowana podstawka dla Pentium 4 / Celeron firmy Intel wprowadzona w 2004. Jako jedyna w rodzinie x86 zawiera powierzchnie sprężyste, a procesor ma tylko powierzchnie stykowe. Używana w konfiguracjach jednoprocesorowych. Nie ma uchwytu do mocowania chłodzenia (jest ono montowane bezpośrednio w otworach

płyty głównej)

Tylko dwa procesory zostały wykonane w technologii 130 nm (Intel generalnie przeszedł już na 90 nm). Układy niskobudżetowe dla tej podstawki pracują na szynie 533 Mhz, droższe działają z szyną 800 lub 1066 Mhz. Pojawiła się obsługa bitu NX. Część procesorów jest 16/32 bitowa, część już 16/32/64 bitowa. Wszystkie mają rdzenie

chronione przed ukruszeniem metalową osłoną.

Pod tą samą nazwą można spotkać procesory z rdzeniem Prescott o tych samych parametrach i różnym steppingu. Nowszy stepping E0 wprowadza m.in. lepsze oszczędzanie energii (http://www.tomshardware.com/cpu/20041115/pentium4 570-02.html).

Nowe układy (Pentium D i Pentium EE) będą 2-rdzeniowe. Część z nich może wymagać płyt głównych potrafiących obsłużyć procesor o większych wymaganiach energetycznych (nawet 130 Watt).

W planach Intela był także procesor Tejas (prawdopodobnie do Socket 775). Firma zrezygnowała jednakże z jego wyprodukowania.

Nazwa handlowa	Zegar(Mhz)	Szyna(Mhz)	Rdzeń	Cache L1D,L1I,L2,L3 (kB,kµops)	Instrukcje
Celeron D 325	2533	133/533	Prescott, 90 nm	16+12kµops/256	MMX, SSE, SSE2, SSE3
Celeron D 325J	2533	133/533	Prescott, 90 nm	16+12kµops/256	MMX, SSE, SSE2, SSE3, NX
Pentium 4 505	2666	133/533	Prescott, 90 nm	16+12kµops/1024	MMX, SSE, SSE2, SSE3
Celeron D 330	2666	133/533	Prescott, 90 nm	16+12kµops/256	MMX, SSE, SSE2, SSE3
Celeron D 330J	2666	133/533	Prescott, 90 nm	16+12kµops/256	MMX, SSE, SSE2, SSE3, NX
Pentium 4 510	2800	133/533	Prescott, 90 nm	16+12kµops/1024	MMX, SSE, SSE2, SSE3, HT
Pentium 4 520	2800	200/800	Prescott, 90 nm	16+12kµops/1024	MMX, SSE, SSE2, SSE3, HT
Pentium 4 520J	2800	200/800	Prescott, 90 nm	16+12kµops/1024	MMX, SSE, SSE2, SSE3, HT, NX
Celeron D 335	2800	133/533	Prescott, 90 nm	16+12kµops/256	MMX, SSE, SSE2, SSE3
Celeron D 335J	2800	133/533	Prescott, 90 nm	16+12kµops/256	MMX, SSE, SSE2, SSE3, NX
Pentium D 820	2800	200/800	Smithfield, 90 nm	16+12kµops/1024	MMX,SSE,SSE2,SSE3,NX,EMT64,2x
Pentium 4 515	2930	133/533	Prescott, 90 nm	16+12kµops/1024	MMX, SSE, SSE2, SSE3
Celeron D 340	2930	133/533	Prescott, 90 nm	16+12kµops/256	MMX, SSE, SSE2, SSE3
Celeron D 340J	2930	133/533	Prescott, 90 nm	16+12kµops/256	MMX, SSE, SSE2, SSE3, NX

Pentium 4 530	3000	200/800	Prescott, 90 nm	16+12kµops/1024	MMX, SSE, SSE2, SSE3, HT
Pentium 4 530J	3000	200/800	Prescott, 90 nm	16+12kµops/1024	MMX, SSE, SSE2, SSE3, HT, NX
Pentium 4 630	3000	200/800	Prescott, 90 nm	16+12kµops/2048	MMX,SSE,SSE2,SSE3,HT,NX,EMT64
Pentium D 830	3000	200/800	Smithfield, 90 nm	16+12kµops/1024	MMX,SSE,SSE2,SSE3,NX,EMT64,2x
Pentium 4 3,06E	3060	133/533	Prescott, 90 nm	16+12kµops/1024	MMX, SSE, SSE2, SSE3
Pentium 4 3,2F	3200	200/800	Prescott, 90 nm	16+12kµops/1024	MMX, SSE, SSE2, SSE3, HT, EMT64
Pentium 4 540	3200	200/800	Prescott, 90 nm	16+12kµops/1024	MMX, SSE, SSE2, SSE3, HT
Pentium 4 540J	3200	200/800	Prescott, 90 nm	16+12kµops/1024	MMX, SSE, SSE2, SSE3, HT, NX
Pentium 4 640	3200	200/800	Prescott, 90 nm	16+12kµops/2048	MMX,SSE,SSE2,SSE3,HT,NX,EMT64
Pentium D 840	3200	200/800	Smithfield, 90 nm	16+12kµops/1024	MMX,SSE,SSE2,SSE3,NX,EMT64,2x
Pentium EE 840	3200	200/800	Smithfield, 90 nm	16+12kµops/1024	MMX,SSE,SSE2,SSE3,NX,HT,EMT64,2x
Pentium 4 3,4EE	3400	200/800	Gallatin, 130 nm	8+12kµops/512/2048	MMX, SSE, SSE2, HT
Pentium 4 3,4F	3400	200/800	Prescott, 90 nm	16+12kµops/1024	MMX, SSE, SSE2, SSE3, HT, EMT64
Pentium 4 550	3400	200/800	Prescott, 90 nm	16+12kµops/1024	MMX, SSE, SSE2, SSE3, HT
Pentium 4 550J	3400	200/800	Prescott, 90 nm	16+12kµops/1024	MMX, SSE, SSE2, SSE3, HT, NX
Pentium 4 650	3400	200/800	Prescott, 90 nm	16+12kµops/2048	MMX,SSE,SSE2,SSE3,HT,NX,EMT64
Pentium 4 3,46EE	3466	266/1066	Gallatin, 130 nm	8+12kµops/512/2048	MMX, SSE, SSE2, HT
Pentium 4 3,6F	3600	200/800	Prescott, 90 nm	16+12kµops/1024	MMX, SSE, SSE2, SSE3, HT, EMT64
Pentium 4 560	3600	200/800	Prescott, 90 nm	16+12kµops/1024	MMX, SSE, SSE2, SSE3, HT
Pentium 4 560J	3600	200/800	Prescott, 90 nm	16+12kµops/1024	MMX, SSE, SSE2, SSE3, HT, NX
Pentium 4 660	3600	200/800	Prescott, 90 nm	16+12kµops/2048	MMX,SSE,SSE2,SSE3,HT,NX,EMT64
Pentium 4 3,73EE	3730	266/1066	Prescott, 90 nm	16+12kµops/2048	MMX,SSE,SSE2,SSE3,HT,NX,EMT64
Pentium 4 3,8F	3800	200/800	Prescott, 90 nm	16+12kµops/1024	MMX, SSE, SSE2, SSE3, HT, EMT64
Pentium 4 570	3800	200/800	Prescott, 90 nm	16+12kµops/1024	MMX, SSE, SSE2, SSE3, HT
Pentium 4 570J	3800	200/800	Prescott, 90 nm	16+12kµops/1024	MMX, SSE, SSE2, SSE3, HT, NX
Pentium 4 670	3800	200/800	Prescott, 90 nm	16+12kµops/2048	MMX,SSE,SSE2,SSE3,HT,NX,EMT64

Chipsety Intela

	NB	CPU	Pamięć	Grafika	SB	HDD	Inne
915G		FSB 533/800, HT	DDR333/400 lub DDR2 400/500, 4 GB	PCI, GMA900, PC Express 16x			
915GV		FSB 533/800, HT	DDR333/400 lub DDR2 400/500, 4 GB	PCI, GMA900			
915P		FSB 533/800, HT	DDR333/400 lub DDR2 400/500, 4 GB	PCI, PC Express 16x			
925X		FSB 800, HT	DDR2 400/533, 4 GB	PCI, PC Express 16x			
925XE		FSB 800/1066, HT	DDR2 400/533, 4 GB	PCI, PC Express 16x			
945P (Lakeport)			DDR2		ICH7	Serial ATA II, UDMA100	
945G (Lakeport)			DDR2		ICH7		
955X			DDR2		ICH7		

Chipsety SIS

	NB	CPU	Pamięć	Grafika	SB	HDD	Inne
--	----	-----	--------	---------	----	-----	------

Chipset VIA

	NB	CPU	Pamięć	Grafika	SB	HDD	Inne
--	----	-----	--------	---------	----	-----	------

Chipsety NVidia

	NB	CPU	Pamięć	Grafika	SB	HDD	Inne
--	----	-----	--------	---------	----	-----	------

Socket 939 (Athlon 64, Athlon 64 FX-53, Athlon 64 FX-55)

Podstawka typu ZIF dla procesorów 16/32/64 bitowych firmy AMD wprowadzona w 2004.

Procesory te mają wbudowany dwukanałowy kontroler (mostek północny) niebuforowanej pamięci DDR 200-400 Mhz (PC 1600 – 3200). Maksymalnie obsługiwane jest 8 GB.

Na rynku są dostępne płyty główne zawierające zarówno gniazdo Socket 754 jak i Socket 939 (można w nie włożyć jeden procesor do jednej z tych podstawek). Procesory do Socket 939 można również używać w płytach głównych z Socket 940.

Nazwa handlowa	Zegar(Mhz)	Szyna(Mhz)	Rdzeń	Cache(kB)	Instrukcje
Athlon 64 3000+	1800	200/1000	Winchester, 90 nm	64+64/512	MMX,3Dnow!,SSE,SSE2,NX,64bit
Athlon 64 3200+	2000	200/1000	Winchester, 90 nm	64+64/512	MMX,3Dnow!,SSE,SSE2,NX,64bit
Athlon 64 3500+	2200	200/1000	Winchester, 90 nm	64+64/512	MMX,3Dnow!,SSE,SSE2,NX,64bit
Athlon 64 3500+	2200	200/1000	Newscastle, 130 nm	64+64/512	MMX,3Dnow!,SSE,SSE2,NX,64bit
Athlon 64 3800+	2400	200/1000	Newcastle, 130 nm	64+64/512	MMX,3Dnow!,SSE,SSE2,NX,64bit
Athlon 64 4000+	2400	200/1000	ClawHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,NX,64bit
Athlon 64 FX-53	2400	200/1000	SledgeHammer,130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,NX,64bit
Athlon 64 FX-55	2600	200/1000	SledgeHammer,130 nm	64+64/1204	MMX,3Dnow!,SSE,SSE2,NX,64bit

Socket 940 (Opteron, Athlon 64 FX-51, Athlon 64 FX-53)

Podstawka typu ZIF dla procesorów serwerowych 16/32/64 bitowych firmy AMD. Procesory te ma wbudowane kontrolery pamięci registered DDR (Opterony PC2700, Athlon-64 FX dwukanałowy PC3200).

W płytach z tą podstawką można też umieszczać procesory dla Socket 939.

Nazwa handlowa	Zegar(Mhz)	Szyna(Mhz)	Rdzeń	Cache(kB)	Instrukcje
Opteron 140	1400	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,NX,64bit
Opteron 140EE	1400	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,NX,64bit
Opteron 240	1400	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,NX,64bit
Opteron 240EE	1400	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,NX,64bit
Opteron 840	1400	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2, NX,64bit
Opteron 840EE	1400	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2, NX,64bit
Opteron 142	1600	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,NX,64bit
Opteron 242	1600	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,NX,64bit
Opteron 242	1600	200/1000	SledgeHammer, 90 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,SSE3,NX,64bit
Opteron 842	1600	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2, NX,64bit
Opteron 842	1600	200/1000	SledgeHammer, 90 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,SSE3,NX,64bit
Opteron 144	1800	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,NX,64bit
Opteron 244	1800	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,NX,64bit
Opteron 244	1800	200/1000	SledgeHammer, 90 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,SSE3,NX,64bit
Opteron 844	1800	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2, NX,64bit
Opteron 844	1800	200/1000	SledgeHammer, 90 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,SSE3,NX,64bit
Opteron 146	2000	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,NX,64bit
Opteron 146	2000	200/800	Venus, 90 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,NX,64bit
Opteron 146HE	2000	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,NX,64bit
Opteron 246	2000	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,NX,64bit

Opteron 246	2000	200/800	Troy, 90 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,NX,64bit
Opteron 246	2000	200/1000	SledgeHammer, 90 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,SSE3,NX,64bit
Opteron 246HE	2000	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,NX,64bit
Opteron 846	2000	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2, NX,64bit
Opteron 846	2000	200/800	SledgeHammer, 90 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2, NX,64bit
Opteron 846	2000	200/1000	SledgeHammer, 90 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,SSE3,NX,64bit
Opteron 846HE	2000	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2, NX,64bit
Opteron 148	2200	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,NX,64bit
Opteron 248	2200	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,NX,64bit
Opteron 248	2200	200/800	Troy, 90 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,NX,64bit
Opteron 248	2200	200/1000	SledgeHammer, 90 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,SSE3,NX,64bit
Opteron 248HE	2200	200/1000	SledgeHammer, 90 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,SSE3,NX,64bit
Opteron 848	2200	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2, NX,64bit
Opteron 848	2200	200/1000	SledgeHammer, 90 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,SSE3,NX,64bit
Athlon 64 FX-51	2200	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3dnow!,SSE,SSE2,NX,64bit
Opteron 150	2400	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,NX,64bit
Opteron 250	2400	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,NX,64bit
Opteron 250	2400	200/1000	SledgeHammer, 90 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,SSE3,NX,64bit
Opteron 850	2400	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2, NX,64bit
Opteron 850	2400	200/1000	SledgeHammer, 90 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,SSE3,NX,64bit
Athlon 64 FX-53	2400	200/800	SledgeHammer, 130 nm	64+64/1024	MMX,3dnow!,SSE,SSE2,NX,64bit
Opteron 252	2600	200/1000	SledgeHammer, 90 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,SSE3,NX,64bit
Opteron 852	2600	200/1000	SledgeHammer, 90 nm	64+64/1024	MMX,3Dnow!,SSE,SSE2,SSE3,NX,64bit

Slot 1 (Pentium Pro, Pentium 2, Pentium 3, Celeron)

Złącze dla 16/32-bitowych procesorów na płycie głównej z 242 stykami, które były w nie wkładane jak karta rozszerzeń. Dostępne były do niego układy w obudowach SECC (Single Edge Contact Cartridge), SECC2 i SEP (Single Edge Processor). Niekompatybilne sygnałowo z Slot A. Używane w konfiguracjach jedno/dwuprocesorowych.

Używane zarówno z procesorami dla niego przewidzianymi, jak również z innymi. Dostępne były bowiem przejściówki pozwalające z nim używać procesorów:

- Socket 8
- Socket 370 (FCPGA i FCPGA2) np. http://www.powerleap.com/PL-iP3T.html
- Socket 370 (PPGA)

Pierwsze układy Celeron (Covington) z powodu braku cache 2 poziomu miały tak niską wydajność, iż Intel musiał go dodać. Pomimo zablokowania przez Intela mnożnika częstotliwości szczególnie jeden model był bardzo popularny – Celeron 300A działał przy overclockingu z szyną 100 Mhz.

Na rynku były dostępne płyty główne zawierające jendocześnie Slot 1 i Slot 2 (np. A-trend ATC6400).

Układy z rdzeniem Katmai miały numer seryjny.

Nazwa handlowa	Zegar(Mhz)	Szyna(Mhz)	Rdzeń	Cache(kB)	Instrukcje
Pentium II 233	233	66	P6L (Klamath), 350 nm	16+16/512	MMX
Pentium II 266	266	66	P6L (Klamath), 350 nm	16+16/512	MMX
Pentium II 266	266	66	P6L (Deutsches), 250 nm	16+16/512	MMX
Celeron 266	266	66	P6C (Covington), 250 nm	32/0	MMX
Pentium II 300	300	66	P6L (Klamath), 350 nm	16+16/512	MMX
Pentium II 300	300	66	P6L (Deutsches), 250 nm	16+16/512	MMX
Celeron 300	300	66	P6C (Covington), 250 nm	32/0	MMX
Celeron 300A	300	66	P6C (Mendocino), 250 nm	32/128	MMX
Pentium II 333	333	66	P6L (Deutsches), 250 nm	16+16/512	MMX
Celeron 333	333	66	P6C (Mendocino), 250 nm	32/128	MMX
Pentium II 350	350	100	P6L (Deutsches), 250 nm	16+16/512	MMX
Celeron 366	366	66	P6C (Mendocino), 250 nm	32/128	MMX
Pentium II 400	400	100	P6L (Deutsches), 250 nm	16+16/512	MMX
Celeron 400	400	66	P6C (Mendocino), 250 nm	32/128	MMX

Celeron 433	433	66	P6C (Mendocino), 250 nm	32/128	MMX
Pentium II 450	450	100	P6L (Deutsches), 250 nm	16+16/512	MMX
Pentium III 450	450	100	P6K (Katmai), 250 nm	16+16/512	MMX, SSE
Pentium III 500	500	100	P6K (Katmai), 250 nm	16+16/512	MMX, SSE
Pentium III 533	533	133	P6K (Katmai), 250 nm	16+16/512	MMX, SSE
Pentium III 533EB	533	133	Coppermine, 180 nm	16+16/256	MMX, SSE
Pentium III 550	550	100	P6K (Katmai), 250 nm	16+16/512	MMX, SSE
Pentium III 550E	550	100	Coppermine, 180 nm	16+16/256	MMX, SSE
Pentium III 600	600	100	P6K (Katmai), 250 nm	16+16/512	MMX, SSE
Pentium III 600B	600	133	P6K (Katmai), 250 nm	16+16/512	MMX, SSE
Pentium III 600E	600	100	Coppermine, 180 nm	16+16/256	MMX, SSE
Pentium III 600EB	600	133	Coppermine, 180 nm	16+16/256	MMX, SSE
Pentium III 650E	650	100	Coppermine, 180 nm	16+16/256	MMX, SSE
Pentium III 667EB	667	133	Coppermine, 180 nm	16+16/256	MMX, SSE
Pentium III 700E	700	100	Coppermine, 180 nm	16+16/256	MMX, SSE
Pentium III 733EB	733	133	Coppermine, 180 nm	16+16/256	MMX, SSE
Pentium III 750E	750	100	Coppermine, 180 nm	16+16/256	MMX, SSE
Pentium III 800E	800	100	Coppermine, 180 nm	16+16/256	MMX, SSE
Pentium III 800EB	800	133	Coppermine, 180 nm	16+16/256	MMX, SSE
Pentium III 850E	850	100	Coppermine, 180 nm	16+16/256	MMX, SSE
Pentium III 866EB	866	133	Coppermine, 180 nm	16+16/256	MMX, SSE
Pentium III 933EB	933	133	Coppermine, 180 nm	16+16/256	MMX, SSE
Pentium III 1,0E	1000	100	Coppermine, 180 nm	16+16/256	MMX, SSE
Pentium III 1,06EB	1060	133	Coppermine, 180 nm	16+16/256	MMX, SSE
Pentium III 1,13EB	1133	133	Coppermine, 180 nm	16+16/256	MMX, SSE

Poniżej przedstawiono chipsety Intela. Bardzo udanym układem był 82440BX, który na niektórych płytach działał po przetaktowaniu nawet z FSB 150-200 Mhz.

Chipset	NB	CPU	Pamięć	Grafika	SB	HDD	Inne
			440FX i 440LX jak w Sock	et 8			
440BX		1-2 CPU, FSB 66, 100	EDO, SDRAM, 1024MB	ISA, PCI,		UDMA33	AGP,
		Mhz		AGP 1x/2x			USB
440EX		FSB 66 Mhz	EDO, SDRAM, 256MB	ISA, PCI,		UDMA33	AGP,
				AGP 1x			USB

Chipsety VIA

	NB	CPU	Pamięć	Grafika	SB	HDD	Inne
Apollo Pro 133	VT82C693A	FSB do 133	SDRAM, HSDRAM, VCM133	AGP	VT82C596B	UDMA66	PCI, USB

Slot 2 (Pentium II Xeon, Pentium III-S)

Złącze krawędziowe z 330 stykami dla 16/32-bitowch procesorów serwerowych Intela (konfiguracje dwuprocesorowe) w obudowach SECC

Można w nim było zastosować przejściówkę i używać także Pentium III-S: http://www.powerleap.com/PL-P3XEONS.html

Na rynku były dostępne płyty główne zawierające jendocześnie Slot 1 i Slot 2 (np. A-trend ATC6400)

Nazwa handlowa	Zegar(Mhz)	Szyna(Mhz)	Rdzeń	Cache(kB)	Instrukcje
Pentium II Xeon 400	400	100	Drake, 250 nm	32/512	MMX
Pentium II Xeon 400	400	100	Drake, 250 nm	16+16/1024	MMX
Pentium II Xeon 450	450	100	Drake, 250 nm	32/512	MMX
Pentium II Xeon 450	450	100	Drake, 250 nm	16+16/1024	MMX
Pentium II Xeon 450	450	100	Drake, 250 nm	32/2048	MMX
Pentium III Xeon 500	500	100	Tanner, 250 nm	32/512	MMX, SSE
Pentium III Xeon 500	500	100	Tanner, 250 nm	16+16/1024	MMX, SSE
Pentium III Xeon 500	500	100	Tanner, 250 nm	32/2048	MMX, SSE
Pentium III Xeon 550	550	100	Tanner, 250 nm	32/512	MMX, SSE
Pentium III Xeon 550	550	100	Tanner, 250 nm	16+16/1024	MMX, SSE
Pentium III Xeon 550	550	100	Tanner, 250 nm	32/2048	MMX, SSE
Pentium III Xeon 600	600	100	Cascades, 180 nm	32/256	MMX, SSE
Pentium III Xeon 667	667	100	Cascades, 180 nm	32/256	MMX, SSE
Pentium III Xeon 700	700	100	Cascades, 180 nm	16+16/1024	MMX, SSE

Pentium III Xeon 700	700	100	Cascades, 180 nm	32/2048	MMX, SSE
Pentium III Xeon 733	733	100	Cascades, 180 nm	32/256	MMX, SSE
Pentium III Xeon 800	800	100	Cascades, 180 nm	32/256	MMX, SSE
Pentium III Xeon 866	866	100	Cascades, 180 nm	32/256	MMX, SSE
Pentium III Xeon 900	900	100	Cascades, 180 nm	32/256	MMX, SSE
Pentium III Xeon 933	933	100	Cascades, 180 nm	32/256	MMX, SSE
Pentium III Xeon 1,0	1000	100	Cascades, 180 nm	32/256	MMX, SSE

Intel 440 GX

Slot A (Athlon)

Złącze krawędziowe z 242 stykami dla 16/32-bitowych procesorów AMD. Niekompatybilne sygnałowo z Slot 1. Możliwe było zmienienie mnożników dostępnych dla niego procesorów po rozłożeniu ich zewnętrznej obudowy.

Nazwa handlowa	Zegar(Mhz)	Szyna(Mhz)	Rdzeń	Cache(kB)	Instrukcje
Athlon 500	500	100/200	Pluto K7, 250 nm	64+64/512	MMX, 3Dnow!
Athlon 550	550	100/200	Pluto K7, 250 nm	64+64/512	MMX, 3Dnow!
Athlon 550	550	100/200	Orion K75, 180 nm	64+64/512	MMX, 3Dnow!
Athlon 600	600	100/200	Pluto K7, 250 nm	64+64/512	MMX, 3Dnow!
Athlon 600	600	100/200	Orion K75, 180 nm	64+64/512	MMX, 3Dnow!
Athlon 650	650	100/200	Pluto K7, 250 nm	64+64/512	MMX, 3Dnow!
Athlon 650	650	100/200	Orion K75, 180 nm	64+64/512	MMX, 3Dnow!
Athlon 650A	650	100/200	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Athlon 700	700	100/200	Pluto K7, 250 nm	64+64/512	MMX, 3Dnow!
Athlon 700	700	100/200	Orion K75, 180 nm	64+64/512	MMX, 3Dnow!
Athlon 700A	700	100/200	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Athlon 750	750	100/200	Orion K75, 180 nm	64+64/512	MMX, 3Dnow!
Athlon 750A	750	100/200	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Athlon 800	800	100/200	Orion K75, 180 nm	64+64/512	MMX, 3Dnow!
Athlon 800A	800	100/200	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Athlon 850	850	100/200	Orion K75, 180 nm	64+64/512	MMX, 3Dnow!
Athlon 850A	850	100/200	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Athlon 900	900	100/200	Orion K75, 180 nm	64+64/512	MMX, 3Dnow!
Athlon 900A	900	100/200	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Athlon 950	950	100/200	Orion K75, 180 nm	64+64/512	MMX, 3Dnow!
Athlon 950A	950	100/200	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!
Athlon 1,0	1000	100/200	Orion K75, 180 nm	64+64/512	MMX, 3Dnow!
Athlon 1,0A	1000	100/200	Thunderbird, 180 nm	64+64/256	MMX, 3Dnow!

NexGen (Nx586)

462 pinowa podstawka ZIF dla procesorów NexGen Nx586 klasy Pentium. Były one produkowane przez IBM i jako pierwsze w rodzine X86 miały wewnętrzną architekturę RISC. Z uwagi na drobne różnice programowe część programów rozpoznawała je jako 386. Dostępne był następujące układy:

Nx586 P75, 70MHz, 2 x 35MHz Nx586 P80, 75MHz, 2 x 37.5MHz Nx586 P90, 84MHz, 2 x 42MHz Nx586 P100, 93MHz, 2 x 46.5MHz Nx586 P110, 102MHz, 2 x 51MHz Nx586 P120, 111MHz, 2 x 55.5MHz

Firma NexGen została przejęta w 1995 przez AMD.

MMC-1 (Pentium MMX)

Część procesorów Intela klasy Pentium MMX (tzw. Tillamook) do notebooków umieszczana w obudowach TCP na płytkach nazwanych MMC, które był dołączane do płyt głównych za pomocą złącz 280 pinowych. Płytki te zawierały oprócz procesora również mostek północny, regulator napięcia i cache 2 poziomu.

MMC-2 (Pentium II)

Część procesorów Intela klasy Pentium II do notebooków umieszczane były na płytkach nazywanych MMC-2 (Mobile Module Connector 2), które były dołączane do płyt głównych za pomocą złącz 400 pinowych (na zdjęciu żółte złącze w lewej strony).

Mini-Cartridge (Pentium II)

Część procesorów Intela klasy Pentium II do notebooków umieszczane były w obudowach nazywanych Mini-Cartridge (ze złączami 240 pinowymi).

TCP-320 (Pentium)

Część procesorów Intela do notebooków klasy Pentium (bez MMX) umieszczane były w obudowach TCP (Tape Carrier Package) na płytkach, które następnie były dołączane do płyt głównych złączami 320 pinowymi. Na zdjęciu pokazano jeden z takich układów.

Procesory montowane na stałe (Transmeta)

aaa

Pamięci RAM

DIP

Początkowo pamięci bywały montowane w podstawkach typu DIP.

SIMM (30 pin, 72 pinowe EDO, 72 pinowe SODIMM)

(Single In-Line Memory Module)

"Krótka" wersja 30 pinowa była używana w systemach klasy 286, 386.

W 486 i Pentium pojawiła się "długa" wersja 72 pinowa. Jej odmianą były układy EDO (Extended Data Output). Pamięci do notebooków był natomiast nazywane SODIMM. Takie pamięci w Pentium trzeba było używać parami – procesor miał bowiem szynę danych 64 bitową, a pamięci były tylko 32 bitowe.

DIMM (EDO, 168 pinowe SDRAM, 184 pinowe DDR, DDR2, 144 i 200 pinowe SODIMM)

(Dual In-Line Memory Module)

Pierwszą odmianą były SDRAM (Synchronous DRAM) używane w systemach z podstawką Socket 370, Slot 1 i podobnych (generacja Pentium Pro – Pentium III).

PC66 – 533 MB/s PC100 – 800 MB/s PC133 – 1066 MB/s Ich odmianą są 144 pinowe SODIMM do notebooków. Kolejną generacją są DDR-SDRAM (Double Data Rate SDRAM) nazywane w skrócie DDR używane w systemach klasy Pentium 4, Athlon i nowszych. DDR 200/PC1600 - 1600 MB/s (3200 MB/s) DDR 266/PC2100 - 2133 MB/s (4266 MB/s) DDR 333/PC2700 - 2666 MB/s (5333 MB/s) DDR 400/PC3200 - 3200 MB/s (6400 MB/s) Ich odmianą są 200 pinowe SODIMM. Kolejną DDR2: DDR2 400/PC3200 - 3200 MB/s (6400 MB/s) DDR2 533/PC4300 - 4266 MB/s (8533 MB/s) DDR2 667/PC5400 - 5333 MB/s (10666 MB/s) RIMM (184 pinowe RAMBUS DRAM) RDRAM (RAMBUS DRAM) to pamięci używane wraz z początkiem platformy Pentium 4 (głównie w systemach z Socket 423). Grafika **MDA CGA EGA VGA SVGA** 3D Pamięci masowe Dyski twarde Napędy optyczne (CD-ROM, CD-RW, DVD-ROM, combo, DVD-RW) Stacje dyskietek Napędy taśmowe (streamery)

Dźwięk

Linki

Poniżej przedstawiono kilka linków, na podstawie których przygotowano obecne opracowanie:

- http://perso.wanadoo.fr/informatos/processeur/intel%20pentium%203.html
- http://dch-fag.de/kap03.html
- http://www.amd.com/us-en/Processors/ProductInformation/0,,30 118 9485 9487%5E10248,00.html
- http://www.amd.com/us-en/Processors/ProductInformation/0,,30 118 8796 9240,00.html
- http://www.amd.com/us-en/Processors/ProductInformation/0,,30 118 9485 9488%5E10756,00.html
- http://cpu-museum.de/
- http://www.cpu-collection.de/
- http://www.x86.org/
- http://www.tom.womack.net/x86FAO/fag_time.html
- http://motherboards.mbarron.net/glossary.htm
- http://www.tomshardware.pl/cpu/20030217/cpu_charts-11.html
- http://www.morepc.ru/processor/show.html?list=1
- http://users.erols.com/chare/
- http://www.cpu-info.com/index2.php?mainid=html/artic/sockets.php
- http://www.cpu-collector.com/menu/bvclass.htm
- http://www.plasma-online.de/english/help/almanach/socket.html
- http://www.tomshardware.com/cpu/20041220/index.html
- http://www.tomshardware.com/cpu/20041221/index.html
- http://www.bytes-and-more.de/tech/intel overdrive tech.htm
- http://support.intel.com/support/processors/sb/CS-009863.htm
- http://forum.hardware.fr/forum2.php3?post=584899&cat=1
- http://www.computerhope.com/help/bus.htm
- http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=pinconbus_pc_card_ata
- http://www.interfacebus.com/Interface PC Buses.html

chip 1/2000