import libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import KFold,cross_val_score,GridSearchC\
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,accuracy_score
from sklearn.preprocessing import StandardScaler

------data = pd.read_csv('Downloads/Zoo.csv')
data.head(6)

	animal_name	hair	feathers	eggs	milk	airborne	aquatic	predator	toothed	backbone	breathes	venomous	fins	legs	tail	domestic	catsize	class_type
0	aardvark	1	0	0	1	0	0	1	1	1	1	0	0	4	0	0	1	1
1	antelope	1	0	0	1	0	0	0	1	1	1	0	0	4	1	0	1	1
2	bass	0	0	1	0	0	1	1	1	1	0	0	1	0	1	0	0	4
3	bear	1	0	0	1	0	0	1	1	1	1	0	0	4	0	0	1	1
4	boar	1	0	0	1	0	0	1	1	1	1	0	0	4	1	0	1	1
5	buffalo	1	0	0	1	0	0	0	1	1	1	0	0	4	1	0	1	1
6	calf	1	0	0	1	0	0	0	1	1	1	0	0	4	1	1	1	1
7	carp	0	0	1	0	0	1	0	1	1	0	0	1	0	1	1	0	4
8	catfish	0	0	1	0	0	1	1	1	1	0	0	1	0	1	0	0	4
9	cavy	1	0	0	1	0	0	0	1	1	1	0	0	4	0	1	0	1

-----info-----

data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 101 entries, 0 to 100
Data columns (total 18 columns):
animal_name
                    101 non-null object
                    101 non-null int64
hair
feathers
eggs
milk
airborne
                   101 non-null int64
101 non-null int64
101 non-null int64
aquatic
predator
toothed
                                      int64
backbone
                    101 non-null
breathes
                    101 non-null
venomous
                    101 non-null int64
                    101 non-null int64
101 non-null int64
fins
legs
tail
                     101 non-null int64
```

data.isna().sum()

```
animal_name
                 0
hair
                 0
feathers
eggs
                 0
milk
                 0
airborne
aquatic
                 0
predator
                 0
toothed
                  0
backbone
                 0
                 0
breathes
                  0
fins
                 0
legs
                 0
tail
                 0
domestic
                 0
catsize
                 0
class_type
                 0
dtype: int64
```

-----duplicates-----

duplicates = data.animal_name.value_counts()
duplicates(duplicates>1)

frog 2

Name: animal_name, dtype: int64

frog = data.loc[data['animal_name']=='frog']
frog

data['animal_name'][(data.venomous==1) & (data.animal_name=='frog')] = 'frog2'

color_list = [('red' if i==1 else 'blue' if i==0 else 'yellow') for i in data.hair]
unique_color = list(set(color_list))
unique_color

['blue', 'red']

-----plot-----

 $pd.plotting.scatter_matrix(data.iloc[:,:7], c=color_list, figsize=(16,8), diagonal='hist', alpha=1, s=300, edgecolor='black')$

sns.countplot(x='hair',data=data)
plt.xlabel('hair')

plt.ylabel('count')

------divide------

x = data.iloc[:,1:17]

y = data.iloc[:,17]

-----traintest-----

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)

 $x_train.shape,x_test.shape,y_train.shape,y_test.shape$

_____knn____

clf = KNeighborsClassifier(n_neighbors=3)

```
clf.fit(x_train,y_train)
predict = clf.predict(x_test)
a = accuracy_score(predict,y_test)*100
print('Accuracy is',a)
```

Accuracy is 93.54838709677419

Text(0, 0.5, 'accuracy')

