Logic and Proof 2

Asst. Prof. Nattapol Aunsri, Ph.D.

IATE Research Unit

CCC Research Group
School of Information Technology, MFU

Propositional Equivalences

Types of Compound Propositions

Definition:

- A compound proposition that is <u>always true</u>, no matter what the truth values of the propositions that occur in it, is called a <u>tautology</u>.
- A compound proposition that is <u>always false</u> is called a contradiction.
- A compound proposition that is <u>neither a tautology nor a</u> <u>contradiction</u> is called a contingency.

Tautology

Contradiction

p	$\neg p$	$p \lor \neg p$
Т	F	T
F	Т	T

p	$\neg p$	$p \land \neg p$
Т	F	F
F	Т	F

Logical Equivalence

- Compound propositions that have the same truth values in all possible cases
- Definition : Compound propositions p and q are *logically equivalent* if $p \leftrightarrow q$ is a tautology (denoted by $p \equiv q$ or $p \Leftrightarrow q$)
- De Morgan's Law

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

Example: Logical Equivalence

$$\neg (p \lor q)$$

© The McGraw-Hill Companies, Inc. all rights reserved.

TABLE 3 Truth Tables for $\neg (p \lor q)$ and $\neg p \land \neg q$.

p	\boldsymbol{q}	$p \lor q$	$\neg (p \lor q)$	$\neg p$	$\neg q$	$\neg p \land \neg q$
T	T	Т	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	Т	T	T	Т

TABLE 6 (1.2)

TABLE 6 Logical Equivalences.			
Equivalence	Name		
$ \begin{aligned} p \wedge \mathbf{T} &= p \\ p \vee \mathbf{F} &= p \end{aligned} $	Identity laws		
$p \lor \mathbf{T} = \mathbf{T}$ $p \land \mathbf{F} = \mathbf{F}$	Domination laws		
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws		
$\neg (\neg p) \equiv p$	Double negation law		
$p \lor q \equiv q \lor p$ $p \land q = q \land p$	Commutative laws		
$(p \lor q) \lor r = p \lor (q \lor r)$ $(p \land q) \land r = p \land (q \land r)$	Associative laws		
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws		
$\neg(p \land q) \equiv \neg p \lor \neg q$ $\neg(p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws		
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws		
$ \rho \lor \neg \rho = \mathbf{T} \rho \land \neg \rho = \mathbf{F} $	Negation laws		

© The McGraw-Hill Companies, Inc. all rights reserved.

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$p \land q \equiv \neg (p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

© The McGraw-Hill Companies, Inc. all rights reserved.

TABLE 8 Logical Equivalences Involving Biconditionals.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Show that the following compounds are equivalent $\neg (p \lor (\neg p \land q))$

 $\neg p \land \neg q$

$$\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg (\neg p \land q) \qquad \text{De Morgan's Law}$$

$$\equiv \neg p \land \left[\neg (\neg p) \lor \neg q \right] \qquad \text{De Morgan's Law}$$

$$\equiv \neg p \land (p \lor \neg q) \qquad \text{Double Negation Law}$$

$$\equiv (\neg p \land p) \lor (\neg p \land \neg q) \qquad \text{Distributive Law}$$

$$\equiv F \lor (\neg p \land \neg q) \qquad \text{Negation Law}$$

$$\equiv (\neg p \land \neg q) \lor F \qquad \text{Commutative Law for Disjunction}$$

Identity Law

 $\neg p \land \neg q$

In class exercise

Check if the following is Tautology.

$$(p \land q) \rightarrow r] \rightarrow [p \rightarrow (q \rightarrow r)]$$

$$(p \lor \neg q) \rightarrow (p \land q)$$

$$(p \rightarrow q) \lor (q \land \neg r)$$

$$(\neg p \lor q) \leftrightarrow (p \rightarrow q)$$

Predicate Calculus: Predicates and Quantifiers

Predicates and Quantifiers

- Propositional logic can not adequately express the meaning of statements in Mathematics and in natural language.
- For example:

"Every computer connected to the university network is functioning properly" "There is a computer that is under attack by an intruder"

Predicate involves the variable, such as "x>3", "x=y+3", "x+y=z", computer x is under attack.

Predicate Logic

Predicate: a property that the subject of the statement can have

Ex: x > 3

- x: variable
- > 3: predicate
- P(x): x > 3
 - The value of the propositional function P at x

 $P(x_1, x_2, ..., x_n)$: n-place predicate or n-ary predicate

1. Let P(x) denote the statement "x>3". What is the truth values of P(4) and P(2)?
Sol.:
P(4) is true P(2) is false

- 2. Q(x,y) = "x=y+3."
 - What is the truth value of Q(1,2), Q(3,0)

Quantifiers

- Quantification
 - -Universal quantification: a predicate is true for every element
 - -Existential quantification: there is one or more element for which a predicate is true

The Universal Quantifier

- Domain: domain of discourse (universe of discourse)
- Definition : The *universal quantification* of P(x) is the statement "P(x) for all values of x in the domain", denoted by $\forall x$ P(x)
 - -"for all x P(x)" or "for every x P(x)"
 - When all elements in the domain can be listed, $P(x_1) \land P(x_2) \land ... \land P(x_n)$

The Existential Quantifier

- Definition: The *existential quantification* of P(x) is the proposition "There exists an element x in the domain such that P(x)", denoted by $\exists x P(x)$
 - -"there is an x such that P(x)" or "for some x P(x)"
 - -When all elements in the domain can be listed, $P(x_1) \lor P(x_2) \lor ... \lor P(x_n)$

Conclusion

© The McGraw-Hill Companies, Inc. all rights reserved.

TABLE 1 Quantifiers.		
Statement	When True?	When False?
$\forall x P(x)$ $\exists x P(x)$	P(x) is true for every x . There is an x for which $P(x)$ is true.	There is an x for which $P(x)$ is false. $P(x)$ is false for every x .

- 1. Let Q(x) be the statement "x < 2". What is the truth value of the quantification $\forall x Q(x)$, where the domain consists of all real numbers?
- Solution Q(x) is not true for every real number x, because, for instance, Q(3) is false.
- Then $\forall x Q(x)$ is false

- ▶ 2. What is the truth value of $\forall x P(x)$, where P(x) is the statement " $x^2 < 10$ " and the domain consists of the positive integers not exceeding 4?
- Solution: $\forall x P(x)$ is the same of

$$P(1) \wedge P(2) \wedge P(3) \wedge P(4)$$

Then $\forall x P(x)$ is false

• 3. Let Q(x) denote the statement "x=x+1". What is the truth value of the quantification $\exists x Q(x)$, where the domain consists of all real numbers?

Solution: $\exists x Q(x)$ is false because Q(x) is

false for every real number x.

- 4. What is the truth value of $\exists x P(x)$, where P(x) is the statement " $x^2 > 10$ " and the domain consists of the positive integers not exceeding 4?
- Solution: since $\exists x P(x)$ is the same as

$$P(1) \lor P(2) \lor P(3) \lor P(4)$$

• Because P(4) is true then $\exists x P(x)$ is true.

Logical Equivalence involving Quantifiers

- Statements involving predicates and quantifiers are logically equivalent if and only if they have the same truth value no matter which predicates are substituted and which domain is used
 - -E.g. $\forall x (P(x) \land Q(x))$ and $\forall x P(x) \land \forall x$ Q(x)

Negating Quantified Expressions

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

Negation of the statement "Every student in your class has taken a course in Calculus" "There is a student in your class who has not taken a course in Calculus"

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \neg (P(x_1) \land P(x_2) \land \dots \land P(x_n))$$
$$\equiv \neg P(x_1) \lor \neg P(x_2) \lor \dots \lor \neg P(x_n)$$
$$\equiv \exists x \neg P(x)$$

$$\neg \exists x P(x) \equiv \neg (P(x_1) \lor P(x_2) \lor \dots \lor P(x_n))$$
$$\equiv \neg P(x_1) \land \neg P(x_2) \land \dots \land \neg P(x_n)$$
$$\equiv \forall x \neg P(x)$$

De Morgan's Laws for Quantifiers

@ The McGraw-Hill Companies, Inc. all rights reserved.

TABLE 2	De Morgan's	Laws for	Quantifiers.
---------	-------------	----------	--------------

Negation	Equivalent Statement	When Is Negation True?	When False?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x .

1.4 Nested Quantifiers

- Two quantifiers are nested if one is within the scope of the other
 - $\forall x \exists y (x+y=0)$
 - $\forall x \ \forall \ y \ ((x > 0) \land (y < 0) \rightarrow (xy < 0))$
- Thinking of quantification as loops
 - $\forall x \forall y P(x, y)$
 - $\forall x \exists y P(x, y)$
 - $-\exists x \forall y P(x, y)$
 - $-\exists x \exists y P(x, y)$

© The McGraw-Hill Companies, Inc. all rights reserved.

Statement	When True?	When False?
$\forall x \forall y P(x, y) \forall y \forall x P(x, y)$	P(x, y) is true for every pair x, y .	There is a pair x, y for which $P(x, y)$ is false.
$\forall x \exists y P(x,y)$	For every x there is a y for which $P(x, y)$ is true.	There is an x such that $P(x, y)$ is false for every y
$\exists x \forall y P(x,y)$	There is an x for which $P(x, y)$ is true for every y .	For every x there is a y for which $P(x, y)$ is false.
$\exists x \exists y P(x, y) \exists y \exists x P(x, y)$	There is a pair x, y for which $P(x, y)$ is true.	P(x, y) is false for every pair x, y .

Order of Quantifiers

The order of the quantifiers is important, unless all the quantifiers are universal quantifiers or all are existential quantifiers

$$\forall x \forall y P(x, y) \equiv \forall y \forall x P(x, y)$$
$$\exists x \exists y P(x, y) \equiv \exists y \exists x P(x, y)$$

Order of Quantifiers

$$\forall x \exists y P(x, y)$$

Not equivalent to

$$\exists y \forall x P(x, y)$$

END

Q&A