Introducción al problema termoelástico aplicado al BEM

Victoriano León Ramírez

23 de febrero de 2016

1. Planteamiento del problema

El problema se centra en la termoelasticidad desacoplada, es decir, la incidencia del efecto térmico en el problema elástico y no viceversa.

$$\varepsilon = \varepsilon^T + \varepsilon^E \tag{1}$$

1.1. El problema térmico

La ecuación de conducción del calor en un medio tridimensional, isótropo, en estado transitorio y con fuentes de calor interno se define por:

$$\frac{\partial T}{\partial t} = \frac{\lambda}{\rho c} \nabla^2 T + \frac{q_v}{\rho c} \tag{2}$$

donde T representa el incremento de temperatura respecto a un estado T_0 , ρ es la densidad del material, c es el calor específico, λ es la conductividad térmica y q_v el flujo de calor interno. Para el caso de no tener fuentes de calor internas eliminaremos el segundo término, y para el problema estacionario $\frac{\partial T}{\partial t} = 0$ por lo que nos quedará que la ecuación de transmisión de calor para el estado estacionario, sin fuentes de calor internas en un medio isótropo tridimensional homogéneo es:

$$\nabla^2 T = 0 = \frac{\partial^2 T}{\partial x_1^2} + \frac{\partial^2 T}{\partial x_2^2} + \frac{\partial^2 T}{\partial x_3^2}$$
 (3)

A su vez también podemos escribir la ecuación de expansión del material debido a la dilatación térmica como:

$$\varepsilon_{ij}^{T} = \alpha T \delta_{ij} = \begin{pmatrix} \alpha T & 0 & 0 \\ 0 & \alpha T & 0 \\ 0 & 0 & \alpha T \end{pmatrix}$$
 (4)

Donde α representa el coeficiente de dilatación térmica.