Dirac fermion dark matter

with Dirac neutrino masses

Diego Restrepo

May 21, 2019 - SUSY2019 - Corpus Christi

Instituto de Física Universidad de Antioquia Phenomenology Group http://gfif.udea.edu.co

Focus on

1812.05523 [PRD] and 1905.NNNNN

In collaboration with

Carlos Yaguna (UPTC), Julian Calle, Oscar Zapata, Andrés River (UdeA), Walter Tangarife (Loyola University Chicago)

3 broad classes of DM models:

Simplicity

Completeness

Effective Field Theories

 We don't know what the higher-scale physics is, but we can integrate it out.

"Simplified Models"

 We introduce a few additional degrees of freedom, but don't try to make statements about the complete theory.

Complete Theories

- We add a full set of new DoF's and expect them to explain everything (e.g. SUSY).

Dirac fermion dark matter

Isosinglet dark matter candidate

 ψ as a isosinglet Dirac dark matter fermion charged under a local U(1)_X (SM) cuples to a SM-singlet vector mediator X as

$$\mathcal{L}_{\text{int}} = -g_{\psi} \, \overline{\psi} \gamma^{\mu} \psi X_{\mu} - \sum_{f} g_{f} \bar{f} \gamma^{\mu} f X_{\mu} \,,$$

where f are the Standard Model fermions

Isosinglet Dirac fermion dark matter model and Seesaw scale

Left Field	$U(1)_{B-L}$
$(\nu_{R_1})^{\dagger}$	+1
$(u_{R_2})^\dagger$	+1
$(u_{R_2})^\dagger$	+1
ψ_L	-r
$(\psi_{R})^\dagger$	r
φ	2

$$\chi = \begin{pmatrix} \psi_{\mathsf{L}} \\ \psi_{\mathsf{R}} \end{pmatrix}$$

Duerr et al: 1803.07462 [PRD]

Singlet-Doublet Dirac Dark matter

Model (SD³M)

Singlet-Doublet Dirac Dark Matter (SD³M) By Carlos E. Yaguna. arXiv:1510.06151 [PRD].

The model extends the standard model (SM) particle content with Dirac Fermions: from SU(2) doublets of Weyl fermions: $\Psi_L = (\Psi_L^0, \Psi_L^-)^\mathsf{T}, \widetilde{(\Psi_R)} = ((\Psi_R^-)^\dagger, -(\Psi_R^0)^\dagger)^\mathsf{T}$ and singlet Weyl fermions ψ_{LR} that interact among themselves and with the SM fields

$$\mathcal{L} \supset M_{\psi} (\psi_R)^{\dagger} \psi_L + M_{\psi} (\widetilde{\Psi}_R) \cdot \Psi_L + y_1 (\psi_R)^{\dagger} \Psi_L \cdot H + y_2 (\widetilde{\Psi}_R) \cdot \widetilde{H} \psi_L + \text{h.c}$$
 (1)

Four free parameters:

$$M_{\psi}, M_{\Psi} < 2 \text{ GeV},$$
 $y_1, y_2 > 10^{-6}$ (2)

Two neutral Dirac fermion eigenstates:

$$M = \begin{pmatrix} M_{\psi} & y_2 v / \sqrt{2} \\ y_1 v / \sqrt{2} & M_D \end{pmatrix}, \qquad M_{\text{diag}} = \begin{pmatrix} M_{\chi_1} & 0 \\ 0 & M_{\chi_2} \end{pmatrix} = U_L^{\dagger} M U_R$$
 (3)

SD³M By Carlos E. Yaguna. arXiv:1510.06151 [PRD].

800

SD³M By Carlos E. Yaguna. arXiv:1510.06151 [PRD].

Compressed spectra region

LUX - XENON1T - LZ

Neutrino masses

Lepton number

- Lepton number (*L*) is an accidental discret or Abelian symmetry of the standard model (SM).
- · Without neutrino masses L_e , L_μ , L_τ are also conserved.
- The processes which violates individual *L* are called Lepton flavor violation (LFV) processes.
- · All the neutrino mass models predict, to some extent, LFV processes
- Only models with Majorana neutrinos predict processes with total $L = L_e + L_\mu + L_\tau$ violation, like neutrino less doublet beta decay (NLDBD).
- NLDBD is experimentally challenging, specially if there is a massless neutrino in the spectrum.

NLDBD prospects for a model with a massless neutrino (arXiv:1806.09977 [PLB] with Reig, Valle and Zapata)

Total lepton number: $L = L_e + L_\mu + L_{\tau_1}$

Majorana U(1)[

Field	$Z_2 \left(\omega^2 = 1\right)$
SM	1
L	ω
$(e_R)^{\dagger}$	ω
$(\nu_R)^\dagger$	ω

$$\mathcal{L}_{\nu} = h_D (\nu_R)^{\dagger} L \cdot H + M_R \nu_R \nu_R + \text{h.c.}$$

$$h_D \sim \mathcal{O}(1)$$

Dirac $U(1)_L$

Field
$$Z_3$$
 ($\omega^3 = 1$)

SM 1

 L ω
 $(e_R)^{\dagger}$ ω^2
 $(\nu_R)^{\dagger}$ ω^2

$$\mathcal{L}_{\nu} = h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c.}$$

$$h_D \sim \mathcal{O}(10^{-11})$$

Total lepton number: $L = L_e + L_\mu + L_\tau$

Majorana U(1)_L

Field
$$Z_2$$
 ($\omega^2 = 1$)
SM 1
 L ω
 $(e_R)^{\dagger}$ ω
 $(\nu_R)^{\dagger}$ ω

$$\mathcal{L}_{\nu} = h_D (\nu_R)^{\dagger} L \cdot H + M_R \nu_R \nu_R + \text{h.c.}$$

$$h_D \sim \mathcal{O}(1)$$

Dirac $U(1)_{B-L}$

Field
$$Z_3$$
 ($\omega^3 = 1$)
SM 1
 L ω
 $(e_R)^{\dagger}$ ω^2
 $(\nu_R)^{\dagger}$ ω^2

$$\mathcal{L}_{\nu} = h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c.}$$

$$h_D \sim \mathcal{O}(10^{-11})$$

Explain smallness ala Peccei-Quinn: $U(1)_{B-L} \xrightarrow{\langle S \rangle} Z_N$, $N \ge 3$.

To explain the smallness of Dirac neutrino masses choose $U(1)_{B-L}$ which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{T.L} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

To explain the smallness of Dirac neutrino masses choose $U(1)_{B-L}$ which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{T.L} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

• Forbids Majorana term: $u_{R}
u_{R}$

To explain the smallness of Dirac neutrino masses choose $U(1)_{B-L}$ which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{T.L} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

- Forbids Majorana term: $\nu_R \nu_R$
- Realizes of the 5-dimension operator which conserves lepton number in $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$:

$$\mathcal{L}_{5-D} = \frac{h_{\nu}}{\Lambda} (\nu_R)^{\dagger} L \cdot HS + \text{h.c}$$

To explain the smallness of Dirac neutrino masses choose $U(1)_{B-L}$ which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{T.L} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

- Forbids Majorana term: $\nu_R \nu_R$
- Realizes of the 5-dimension operator which conserves lepton number in $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$:

$$\mathcal{L}_{5-D} = \frac{h_{\nu}}{\Lambda} (\nu_R)^{\dagger} L \cdot HS + \text{h.c.}$$

H V_R

 $U(1)_{B-L} \stackrel{\langle S \rangle}{\to} Z_N$

• Enhancement to the effective number of degrees of freedom in the early Universe $\Delta N_{\rm eff} = N_{\rm eff} - N_{\rm eff}^{\rm SM}$ (see arXiv:1211.0186)

See E. Ma, Rahul Srivastava: arXiv:1411.5042 [PLB] for tree-level realization

From 1210.6350 and 1805.02025: $\Delta N_{\text{eff}} = 3 (T_{\nu_R}/T_{\nu_L})^4$

$$\Gamma_{\nu_R}(T) = n_{\nu_R}(T) \sum_f \langle \sigma_f(\nu_R \bar{\nu}_R \to f\bar{f}) v \rangle$$

$$= \sum_f \frac{g_{\nu_R}^2}{n_{\nu_R}} \int \frac{d^3p}{(2\pi)^3} \frac{d^3q}{(2\pi)^3} f_{\nu_R}(p) f_{\nu_R}(q) \sigma_f(s) (1 - \cos\theta),$$

$$s = 2pq(1 - \cos \theta), f_{\nu_R}(k) = 1/(e^{k/T} + 1)$$

$$n_{\nu_R}(T) = g_{\nu_R} \int \frac{d^3k}{(2\pi)^3} f_{\nu_R}(k), with g_{\nu_R} = 2$$

$$\sigma_f(s) \simeq \frac{N_C^f (Q_{BL}^f)^2 Q^2 s}{12\pi} \left(\frac{g'}{M_{el}}\right)^4, In the limit M_{Z'}^2 \gg s.$$

with three right-handed neutrinos, the Hubble parameter is

$$H(T) = \sqrt{\frac{4\pi^3 G_N \left[g(T) + 21/4\right]}{45}} T^2.$$

The right-handed neutrinos decouple when

$$\Gamma_{\nu_R}(T_{\text{dec}}^{\nu_R}) = H(T_{\text{dec}}^{\nu_R}).$$

A. Solaguren-Beascoa, M. C. Gonzalez-Garcia: arXiv:1210.6350 [PLB]

From 1210.6350 and 1805.02025: $\Delta N_{\text{eff}} = 3 (T_{\nu_R}/T_{\nu_L})^4$

$$\begin{split} \Gamma_{\nu_R}(T) &= n_{\nu_R}(T) \sum_f \langle \sigma_f(\nu_R \bar{\nu}_R \to f\bar{f}) v \rangle \\ &= \sum_f \frac{g_{\nu_R}^2}{n_{\nu_R}} \int \frac{d^3p}{(2\pi)^3} \frac{d^3q}{(2\pi)^3} f_{\nu_R}(p) f_{\nu_R}(q) \sigma_f(s) (1 - \cos\theta), \end{split}$$

$$\begin{split} s = &2pq(1-\cos\theta), & f_{\nu_R}(k) = &1/(e^{k/T}+1) \\ n_{\nu_R}(T) = &g_{\nu_R} \int \frac{d^3k}{(2\pi)^3} f_{\nu_R}(k), & \text{with } g_{\nu_R} = &2 \\ \sigma_f(s) \simeq &\frac{N_C^f(Q_{BL}^f)^2 Q^2 s}{12\pi} \left(\frac{g'}{M_{Pl}}\right)^4, & \text{In the limit } M_{Z'}^2 \gg s. \end{split}$$

with three right-handed neutrinos, the Hubble parameter is

$$H(T) = \sqrt{\frac{4\pi^3 G_N \left[g(T) + 21/4\right]}{45}} T^2.$$

The right-handed neutrinos decouple when

$$\Gamma_{\nu_R}(T_{\text{dec}}^{\nu_R}) = H(T_{\text{dec}}^{\nu_R}).$$

E. Ma, R. Srivastava: arXiv:1411.5042 [PLB]

Z.-L. Han, W. Wang: arXiv:1805.02025 [EJPC]

(also: Planck 1807.06209, Riess et al 1903.07603)

One-loop realization of \mathcal{L}_{5-D} with

total L

One loop topologies $U(1)_{B-L} \oplus Z_2 \oplus Z_2$

One loop topologies $U(1)_{B-L}$ only!

One loop topologies $U(1)_{B-L}$ only! with J. Calle, C. Yaguna, and O. Zapata, arXiv:1812.05523 [PRD]

Anomaly cancellation conditions

$$\sum_{i} f_{i} = 3$$

$$\sum_{i} f_{i}^{3} = 3$$

One loop topologies $U(1)_{B-L}$ only! with J. Calle, C. Yaguna, and O. Zapata, arXiv:1812.05523 [PRD]

T1-3-E

Fields: fi	$(\nu_{R3})^{\dagger}$	$(\nu_{R2})^{\dagger}$	$(\nu_{R1})^{\dagger}$	ψ_{L}	$(\psi_R)^{\dagger}$	S
(A)	+4	+4	-5	-r	r	+3
(B)	$+\frac{8}{5}$	$+\frac{8}{5}$	$+\frac{2}{5}$	7 - 5	$-\frac{10}{5}$	$+\frac{3}{5}$

 $\psi_{L,R} o$ Singlet fermions (quiral)

 $\Psi_{L,R}
ightarrow ext{Vector-like}$ doublet fermions

 σo Singlet scalar

 $\eta \to Doublet scalar$

Anomaly cancellation conditions

$$\sum_{i} f_{i} = 3$$

$$\sum_{i} f_{i}^{3} = 3$$

$SD^3M+\sigma_i~(i=1,2)$ with J. Calle, C. Yaguna, and O. Zapata, arXiv:1812.05523 [PRD]

 $\psi_{L,R} \to \text{Singlet fermions (quiral)}$

 $\Psi_{L,R} o$ Vector-like doublet fermions : 10/5

 $\sigma \to \text{Singlet scalar}: 15/5$

Fields: fi	$(\nu_{R3})^{\dagger}$	$(\nu_{R2})^{\dagger}$	$(\nu_{R1})^{\dagger}$	ψ_{L}	$(\psi_R)^\dagger$	S
(A)	+4	+4	-5	-r	r	+3
(B)	$+\frac{8}{5}$	$+\frac{8}{5}$	$+\frac{2}{5}$	7 _ 5	$-\frac{10}{5}$	+ - 5

Anomaly cancellation conditions

$$\sum_{i} f_{i} = 3$$

$$\sum_{i} f_{i}^{3} = 3$$

$SD^{3}M+\sigma_{i}$ (i=1,2)

$$M_{\psi} = h_1 \langle S \rangle$$
, $y_2 = 0$:

$$\mathcal{L} = \mathcal{L}_{\text{SD}^{3}\text{M}} + h_{3}^{ia}\widetilde{(\Psi_{R})} \cdot L_{i} \, \sigma_{a} + h_{2}^{\beta a} \left(\nu_{R\beta}\right)^{\dagger} \psi_{L} \, \sigma_{a}^{*} - V(\sigma_{a}, S, H) \, . \label{eq:loss_loss}$$

with A.F Rivera, W. Tangarife, arXiv:19nn.nnnnn

Spin independent (SI) direct detection cross section

Vector SI (blue points) and scalar SI (green points)

Conclusions

A single U(1) symmetry to explain both the smallnes of Dirac neutrino masses and the stability of Dirac fermion dark matter

Conclusions

A single U(1) symmetry to explain both the smallnes of Dirac neutrino masses and the stability of Dirac fermion dark matter

Dirac neutrino masses and DM

- Spontaneously broken $U(1)_{B-L}$ generates a radiative Dirac neutrino masses
- A remnant symmetry makes the lightest field circulating the loop stable and good dark matter candidate.
- For T1-2-A: Either Singet Doublet Dirac Dark Matter or Singlet Scalar Dark Matter with extra scalar and vector portal
- · With relaxed direct detection constraints

