机器学习引论

彭玺

pengxi@scu.edu.cn

www.pengxi.me

提纲

- . Review
- 二 . Kernel and Nonlinear SVM

提纲

- . Review
- 二 . Kernel and Nonlinear SVM

Review - Two Limitations of KNN

Prob: It do not learn knowledge from training data

 Prob: It requires that the data come from the Euclidean space so that the obtained neighbors and the data point itself come from the same subject.

Review - Two Limitations of KNN

- Prob: It do not learn knowledge from training data
- Sol: Perceptron -> Linear SVM
- Prob: It requires that the data come from the Euclidean space so that the obtained neighbors and the data point itself come from the same subject.
- Sol: Kernel + SVM = Nonlinear SVM

 Binary classification can be viewed as the task of separating classes in feature space:

$$\mathrm{sgn}(x) := egin{cases} -1 & ext{if } x < 0, \ 0 & ext{if } x = 0, \ 1 & ext{if } x > 0. \end{cases}$$

Activate function

 Binary classification can be viewed as the task of separating classes in feature space:

$$y = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)$$

 1890: 美国心理学家和哲学家William James在其著作中指出—— 当两个事件同时发生时,涉及到的大脑过程间的连接将会增强, 这是无监督的Hebb学习规则的灵感来源。此外, James还提出了加权(weighted)、可变(modifiable)、及并行连接(parallel connections)等神经网络至今采用的基本概念。

Let y be the correct output, and f(x) the output function of the network.

- Error: E = y f(x)
- Update weights: $W_i \leftarrow W_i + \alpha x_i E$

The decision boundary should be as far away from the data of both classes as possible

• Let training set $\{(\mathbf{x}_i, y_i)\}_{i=1..n}$, $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \{-1, 1\}$ be separated by a hyperplane with margin m. Then for each training example (\mathbf{x}_i, y_i) :

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \le -m/2 \quad \text{if } y_{i} = -1$$

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \ge m/2 \quad \text{if } y_{i} = 1 \qquad \Leftrightarrow \qquad y_{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b) \ge m/2$$

- For every support vector \mathbf{x}_s , the above inequality is an equality. After rescaling \mathbf{w} and b by m/2 in the equality, we obtain that distance between each \mathbf{x}_s and the hyperplane is $r = \frac{\mathbf{y}_s(\mathbf{w}^T\mathbf{x}_s + b)}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}$
- Then the margin can be expressed through (rescaled) w and b as:

$$m = 2r = \frac{2}{\|\mathbf{w}\|}$$

Then we can formulate the quadratic optimization problem:

Find w and b such that

$$\rho = \frac{2}{\|\mathbf{w}\|}$$
 is maximized

and for all
$$(\mathbf{x}_i, y_i)$$
, $i=1..n$: $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$

Which can be reformulated as:

Find w and b such that

$$\Phi(\mathbf{w}) = ||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w}$$
 is minimized

$$\Phi(\mathbf{w}) = ||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w} \text{ is minimized}$$
and for all (\mathbf{x}_i, y_i) , $i=1..n$: $y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1$

The objective function:

Minimize
$$\frac{1}{2}||\mathbf{w}||^2$$

subject to
$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \geq 1 \quad \forall i$$

Review - Two Limitations of KNN

- Prob: It do not learn knowledge from training data
- Sol: Perceptron -> Linear SVM
- Prob: It requires that the data come from the Euclidean space so that the obtained neighbors and the data point itself come from the same subject.
- Sol: Kernel + SVM = Nonlinear SVM

提纲

- . Review
- 二. Kernel and Nonlinear SVM

 General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

 General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

Lagrangian of Original Problem

Minimize
$$\frac{1}{2}||\mathbf{w}||^2$$

subject to
$$1-y_i(\mathbf{w}^T\mathbf{x}_i+b) \leq 0$$
 for $i=1,\ldots,n$

for
$$i = 1, ..., n$$

The Lagrangian is

Lagrangian multipliers
$$\mathcal{L} = \frac{1}{2}\mathbf{w}^T\mathbf{w} + \sum_{i=1}^n \alpha_i \left(1 - y_i(\mathbf{w}^T\mathbf{x}_i + b)\right)$$

Note that $||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w}$

Setting the gradient of \mathcal{L} w.r.t. w and b to zero, we have

$$\mathbf{w} + \sum_{i=1}^{n} \alpha_i (-y_i) \mathbf{x}_i = \mathbf{0} \quad \Rightarrow \quad \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

$$\sum_{i=1}^{n} \alpha_i y_i = \mathbf{0}$$

$$\alpha_i \ge \mathbf{0}$$

The Dual Optimization Problem

We can transform the problem to its dual

Dot product of X

max.
$$W(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 subject to $\alpha_i \geq 0, \sum_{i=1}^n \alpha_i y_i = 0$

α's → New variables
(Lagrangian multipliers)

This is a convex quadratic programming (QP) problem

- Global maximum of α_i can always be found
- →well established tools for solving this optimization problem (e.g. cplex)

Note:

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

General Idea: Lagrange Optimization

$$\min_{w} f(w)$$
s.t. $g_i(w) \leq 0, \quad i = 1, \ldots, k$
 $h_i(w) = 0, \quad i = 1, \ldots, l$

1) Formulate Lagrangian function (primal problem)

$$L_p(w,\alpha,\beta) = f(w) + \sum_{i=1}^k \alpha_i g_i(w) + \sum_{i=1}^l \beta_i h_i(w)$$

- 2) Minimize Lagrangian wrt primal variable w: $\frac{\partial L_{\rho}(w,\alpha,\beta)}{\partial w} = 0$
- 3) Substitute the primal variable w and express Lagrangian wrt dual variables α_i, β_i : $L_d(\alpha, \beta)$
- 4) Maximize the Lagrangian with respect to dual variables and solve for dual variables (dual problem) g_{W}
- 5) Recover the solution (for the primal variables) from the dual variables

A Geometrical Interpretation

Recall:

Note that data only appears as dot products

$$\max_{i=1} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=N+1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} x_{j}$$
s.t. $C \ge \alpha_{i} \ge 0, \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$

Since data is only represented as dot products, we need not do the mapping explicitly.

Introduce a Kernel Function (*) K such that:

$$K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$$

(*)Kernel function – a function that can be applied to pairs of input data to evaluate dot products in some corresponding feature space

Consider the following transformation

$$\phi(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$
$$\phi(\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}) = (1, \sqrt{2}y_1, \sqrt{2}y_2, y_1^2, y_2^2, \sqrt{2}y_1y_2)$$

Define the kernel function $K(\mathbf{x}, \mathbf{y})$ as

$$\langle \phi(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}), \phi(\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}) \rangle = (1 + x_1 y_1 + x_2 y_2)^2$$
$$= K(\mathbf{x}, \mathbf{y})$$
$$K(\mathbf{x}, \mathbf{y}) = (1 + x_1 y_1 + x_2 y_2)^2$$

The inner product $\phi(.)\phi(.)$ can be computed by K without going through the map $\phi(.)$ explicitly!!!

Kernel SVM

Change all inner products to kernel functions

For training,

max.
$$W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 subject to $C \ge \alpha_i \ge 0, \sum_{i=1}^{n} \alpha_i y_i = 0$

max.
$$W(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^n \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$
 subject to $C \geq \alpha_i \geq 0, \sum_{i=1}^n \alpha_i y_i = 0$

- Linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^\mathsf{T} \mathbf{x}_j$
 - Mapping Φ : $\mathbf{x} \to \mathbf{\phi}(\mathbf{x})$, where $\mathbf{\phi}(\mathbf{x})$ is \mathbf{x} itself
- Polynomial of power p: $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j)^p$ - Mapping Φ : $\mathbf{x} \to \mathbf{\phi}(\mathbf{x})$, where $\mathbf{\phi}(\mathbf{x})$ has $\binom{d+p}{p}$ dimensions
- Gaussian (radial-basis function): $K(\mathbf{x}_i, \mathbf{x}_i) = e^{-\frac{\|\mathbf{x}_i \mathbf{x}_j\|}{2\sigma^2}}$
 - Mapping Φ : $\mathbf{x} \to \mathbf{\phi}(\mathbf{x})$, where $\mathbf{\phi}(\mathbf{x})$ is *infinite-dimensional*: every point is mapped to *a function* (a Gaussian); combination of functions for support vectors is the separator.
- Higher-dimensional space still has intrinsic dimensionality d (the mapping is not onto), but linear separators in it correspond to nonlinear separators in original space.

Test Questions

- Q1: The evolution of neuron from biology to mathematics?
- Q2: The key concepts of Perceptron and its limitations.
- Q3: Who is Vladimir N. Vapnik and what is his major contribution?
- Q4: Maximum Margin Principle and why support vector is important?
- Q5: How to compute the distance between a given data point to the decision boundary?
- Q6: What limitations the linear SVM suffered from?
- Q7: Why dual form of SVM is important?
- Q8: How to derive the dual form from the prime form of SVM?
- Q9: What the limitations the kernel method suffers from?
- Q10: the relation between Perception and SVM.
- Q11: are there other methods to address linear inseparable issue besides kernel?

Others

Further Reading

- What is hard margin in SVM?
- What is soft margin in SVM? Why soft-margin SVM is regarded better than hard one?

Q&A
THANKS!