

Lecture 8: What about neural networks?

Optimization for data sciences

Rémy Sun remy.sun@inria.fr

- Introduction to optimization
 - A few problems of interest
 - Quick mathematical refresher
- Convex problems (Following Stephen Boyd)
 - Convex sets
 - Convex functions
 - Convex problems
 - Simplex algorithm for Linear Programming

- Duality (for convex problems)
 - Lagrangian and dual function
 - Dual problem
 - Qualification constraints
 - KKT conditions
- Newton's Descent and Barrier methods for convex case
 - Descent for the unconstrained problems
 - Equality constrained problems
 - Interior point methods
 - Lab session!

- What about the real (neural) world?
 - Problem statement
 - Let's try to solve it!
 - Gradient descent with(out) convexity
 - Gradient descent variants
- Backpropagation

Evaluation

- Reports on lab sessions
 - Labs on jupyter notebooks
 - Not every session
 - Explain the code done in the session
 - Summarize what is done in the practical
- Written Exam
 - Theoretical questions
 - We will do exercises in class

Refresher on convexity!

Easy problem

- classical view:
 - linear (zero curvature) is easy
 - nonlinear (nonzero curvature) is hard

the classical view is wrong

- the correct view:
 - convex (nonnegative curvature) is easy
 - nonconvex (negative curvature) is hard

Convex set

$$x_1, x_2 \in C$$
, $0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$

- Classic convex sets
 - Affine sets, hyperplanes, cones, balls, polyhedrons
- Convexity preserving operations
 - Intersection
 - Affine mapping
 - Perspective
 - Linear Fractional mapping

Convex functions

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

- Classic convex functions
 - Affine, exponential, norms, max, ...
- Convexity preserving operations
 - Non negative weighted sum, composition with affine
 - Pointwise maximum and supremum
 - Composition
 - Minimization
 - Perspective

Convex problems

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

- Convex f and linear h
 - X feasible: satisfies implicit and explicit constraints
- Quite a few classical convex problems(linear, quadratic, ...)
- Easy to change variables between equivalent problems

Duality

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

- Mirror problem that is always convex!
- Gives a lower bound on solution (weak duality)
- Can give the exact solution
 - Under qualifications on constraints for convex problems
- KKT conditions can help reverse engineer a solution

Descent methods

descent methods generate iterates as

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}$$

with $f(x^{(k+1)}) < f(x^{(k)})$ (hence the name)

- other notations: $x^+ = x + t\Delta x$, $x := x + t\Delta x$
- $ightharpoonup \Delta x^{(k)}$ is the **step**, or **search direction**
- $ightharpoonup t^{(k)} > 0$ is the step size, or step length
- from convexity, $f(x^+) < f(x)$ implies $\nabla f(x)^T \Delta x < 0$
- ightharpoonup this means Δx is a **descent direction**

Descent methods

General descent method.

given a starting point $x \in \operatorname{dom} f$. repeat

- 1. Determine a descent direction Δx .
- 2. **Line search.** Choose a step size t > 0.
- 3. **Update.** $x := x + t\Delta x$.

until stopping criterion is satisfied.

The gold standard: Newton's method

- Newton step is $\Delta x_{\rm nt} = -\nabla^2 f(x)^{-1} \nabla f(x)$
- **interpretation**: $x + \Delta x_{nt}$ minimizes second order approximation

$$\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$

Central path

• for t > 0, define $x^*(t)$ as the solution of

minimize
$$tf_0(x) + \phi(x)$$

subject to $Ax = b$

(for now, assume $x^*(t)$ exists and is unique for each t > 0)

ightharpoonup central path is $\{x^*(t) \mid t > 0\}$

example: central path for an LP

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$, $i = 1, ..., 6$

hyperplane $c^T x = c^T x^*(t)$ is tangent to level curve of ϕ through $x^*(t)$

Solvers exist!

math:

minimize
$$||Ax - b||_2^2$$

subject to $x \ge 0$

- \triangleright variable is x
- ightharpoonup A, b given
- ► $x \ge 0$ means $x_1 \ge 0, ..., x_n \ge 0$

CVXPY code:

```
import cvxpy as cp
A, b = ...

x = cp.Variable(n)
obj = cp.norm2(A @ x - b)**2
constr = [x >= 0]
prob = cp.Problem(cp.Minimize(obj), constr)
prob.solve()
```

- You need to
 - Identify possibly convex problems
 - Remember ready made solvers exist
 - Use the ready made solvers
 - (and not a big neural network)

1. Statistical optimization

Problem statement: Ideal case

- Find (robot) f that classifies images well
 - Often based on neural networks

$$\forall (x,y) \in \mathcal{D}, f(x) = y$$

More formally

- Definitions
 - X set of inputs
 - Y set of labels
 - \circ $\Omega = X \times Y$
 - \circ $\mathcal D$ Distribution over Ω with probability measure p
- Find function f: X -> Y such that

$$\forall (x,y) \in \mathcal{D}, f(x) = y$$

Assessing f with a criterion

- Finding exact correspondence functions is not always the thing to do
 - No exact matching
 - Other definitions of good solutions
 - Need to use restricted function space
 - Parametric function space

$$\mathcal{F} = \{ f_{\theta} | \theta \in \mathbb{R}^d \}$$

• Introduce an assessment of how "good" f is with a loss I so that we try to have the lowest quantity l(f(x), y)

Minimizing Risk

- Definitions
 - X set of inputs
 - Y set of labels
 - \circ $\Omega = X \times Y$
 - \circ $\mathcal D$ Distribution over Ω with probability measure p
 - loss function assessing fit of f(x) to y
 - \circ Find f in function space $\mathcal{F} = \{f_{\theta} | \theta \in \mathbb{R}^d\}$
- Minimize the *Risk* over the distribution

$$min_{\theta}\mathbb{E}_{x,y\sim\mathcal{D}}[l(f_{\theta}(x),y)]$$

Minimizing Risk

- ullet Problem: we do not know $\mathcal D$!
 - Solved problem otherwise...
 - Evaluating the risk requires this distribution
- Solution: Use a dataset D of (x,y) sampled from \mathcal{D}
 - Empirical Risk Minimization
 - o If the (x,y) are i.i.d drawn from \mathcal{D} can be expressed as a mean over the dataset

$$min_{\theta}\hat{\mathcal{R}}_{\theta} = \frac{1}{N} \sum_{i=0,\dots,N-1} l(f_{\theta}(x_i), y_i)$$

Takeaway

 Core problem: Find function matching inputs to outputs for any (x,y) of the target distribution

- Optimize over family of parametric functions
 - Assess functions with loss criterion

- Minimize the Risk function
 - Empirical Risk Minimization in practice

Neural network functions

Neural networks are sequences of simple functions

$$f_{\theta} = h_{\theta}^{0} \circ h_{\theta}^{1} \circ \cdots \circ h_{\theta}^{L-1}$$

Neural network functions

Interlude: Formalization of dense networks 🔅 UNIVERSITÉ

$$d_{\theta}(x) = \sigma(W_{\theta}x^T + b_{\theta})$$

$$\sigma(x) = ReLU(x) = \max(0, x)$$

Interlude: Formalization of dense networks

$$d_{\theta}(x) = \sigma(W_{\theta}x^T + b_{\theta})$$

$$\sigma(x) = ReLU(x) = max(0, x)$$

Piecewise linear!

Individual layers are piecewise linear, composition preserves piecewise linearity

Interlude: Formalization of dense networks :

- Highly expressive
 - Can fit many types of distributions

Takeaway

- Neural networks composed of simple functions
 - Typical linear layer operations
 - Non-linear activation functions

- High expressive power
 - Universal approximation with enough neurons
 - ReLU Feedforward networks are piecewise linear

2. So what do we do?

Let's analyze the problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

- What is the cost function?
- What are the constraints functions?

Is this convex? Why?

Let's analyze the problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

- Cost function given by neural network and loss
- What are the constraints functions?

Is this convex? Why?

Let's analyze the problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

- Cost function given by neural network and loss
- No constraints!
 - Easy unconstrained problem!

Is this convex? Why?

(Non-convex) Unconstrained problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

- Cost function is given by neural network and loss
- No constraints!
 - Easy unconstrained problem!
- Not convex, for a number of reasons.

Let's do Newton descent!

- What do we need?
 - Step size
 - Evaluating is expensive... Backtrack? Fixed?
 - Gradient
 - Could get pretty expensive too...
 - Hessian
 - This is getting very very expensive.
 - And we need to invert it too?!

Let's do discount descent: Gradient descent: UNIVERSITÉ CÔTE D'AZUR

- What do we need?
 - Step size
 - Fixed step size
 - Gradient
 - Could get pretty expensive too...
 - Obtained through backpropagation!
 - No Hessian!

Does that work?!

- Gradient descent
 - OK solver for convex problems
 - Guaranteed to converge to the global minimum on convex problems

- What changes on neural networks?
 - Still guaranteed to converge under conditions
 - But not much more...

Why did we spend 7 weeks on convexity?!

- Easy solved problems
 - Need to be able to recognize them
 - Available fast solvers

- Convexity still gives us some intuition
 - We are using a convex optimization method
 - Optimizer "proofs" tend to be on convex case
 - For intuition! Because non-convex is hard...

3. Gradient descent with(out) convexity

Gradient descent

• general descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in \operatorname{dom} f$. repeat

- 1. $\Delta x := -\nabla f(x)$.
- 2. **Line search.** Choose step size *t* via exact or backtracking line search.
- 3. **Update.** $x := x + t\Delta x$.

until stopping criterion is satisfied.

- ▶ stopping criterion usually of the form $\|\nabla f(x)\|_2 \le \epsilon$
- ightharpoonup convergence result: for strongly convex f,

$$f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*)$$

 $c \in (0,1)$ depends on $m, x^{(0)}$, line search type

very simple, but can be very slow

What can we say?

- Simplest setting
 - Fixed step size
 - Descent direction if opposite of gradient
- What assumptions can we make on f?
 - Convexity is out of the question!
 - o There is a minimum?
 - Does not guarantee convergence!

A more reasonable assumption

We cannot assume convexity

- We can assume a minimum
 - Otherwise there is nothing to find
 - But it is not sufficient

A more reasonable assumption

We cannot assume convexity

- We can assume a minimum
 - Otherwise there is nothing to find
 - But it is not sufficient

- Maybe neural networks change slowly?
 - Smoothness

A more reasonable assumption

We cannot assume convexity

- We can assume a minimum
 - Otherwise there is nothing to find
 - But it is not sufficient

- Maybe neural networks change slowly?
 - Smoothness

L-Lipschitz continuity

$$|f(u)-f(w)|\leq L\left\|u-w\right\|.$$

- Function is L-Lipschitz (continuous)
 - For a given norm
 - Inequality condition

- L quantifies how fast f moves
 - Small L means regular function

L-Lipschitz smoothness

$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||.$$

Gradient is L-Lipschitz

- Fairly reasonable assumption
 - Network components usually respect this
 - Can be very large

Can even be optimized for (Lipschitz networks)

Bound on difference in values of L-smooth

- L-smooth network f
 - L>0
 - For the given norm

x, y inputs in the domain of f

Upper bound on the difference f(x) and f(y)

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2.$$

The descent sequence is decreasing

- L-smooth network f
- X_t elements of a gradient descent sequence
- Descent step $\frac{1}{L}$
- The sequence is decreasing
 - With minimal decrement

$$f(x_{t+1}) \le f(x_t) - \frac{1}{2L} ||\nabla f(x_t)||^2.$$

- 2 direct consequences
 - The sequence converges
 - Decreasing
 - Bounded below by existing minimum
 - The gradient sequence converges to 0

- 2 direct consequences
 - The sequence converges
 - Decreasing
 - Bounded below by existing minimum
 - The gradient sequence converges to 0

• We won? We won!

- 2 direct consequences
 - The sequence converges
 - Decreasing
 - Bounded below by existing minimum
 - The gradient sequence converges to 0

Not so fast...

- 2 direct consequences
 - The sequence converges
 - Decreasing
 - Bounded below by existing minimum
 - The gradient sequence converges to 0

- Not so fast...
 - Convergence is weak (no guaranteed rate)

- 2 direct consequences
 - The sequence converges
 - Decreasing
 - Bounded below by existing minimum
 - The gradient sequence converges to 0

- Not so fast...
 - No convergence rate and L can be very big...
 - It does not converge to the minimum...

With convexity

L-smooth convex network f

- Descent step $\frac{1}{L}$
- Sequence converges to global minimum
- And we know the convergence rate!

$$f(x_t) - f(x_*) \le \frac{2L||x_0 - x_*||^2}{t + 4}.$$

Takeaway

- Under reasonable L-smooth assumption
 - Gradient descent converges!
 - To something
 - With a minuscule fixed step size

- General deep learning heuristics
 - Most local minimums are similarly good/bad
 - Big networks have very few really bad mins

4. Gradients and optimizers

Approximation: Gradient Descent

 Iteratively make steps of size η to minimize risk

$$\theta^{t+1} := \theta^t - \eta \nabla_\theta \hat{\mathcal{R}_\theta}$$

Elementwise form:

$$\theta_i^{t+1} := \theta_i^t - \eta \frac{\partial \hat{\mathcal{R}}_{\theta}}{\partial \theta_i}$$

Interlude: A few nice things to know

- Guaranteed to converge under certain conditions
 - Lipschitz gradient gives nice upper bounds
 - Adaptive gradient steps can offer guarantees
 - Steps traditionally fixed
- No guarantee to find a global optimum
 - Quite unlikely
 - Gravitates towards
 Local optimum

In practice: Stochastic Gradient Descent

- Deep learning deals in large-scale
 - Big datasets
 - Big models
 - GD can get expensive!
- Stochastic Gradient Descent
 - Work on small batches of data B instead of D

$$\theta^{t+1} := \theta^t - \eta \nabla_\theta \mathcal{R}_\theta(B)$$

Noisier process

Remember SGD?

Randomly pick a starting point W^0

Compute the negative gradient at \mathbf{W}^0

$$-\nabla C(\mathbf{W}^0)$$

Times the learning rate η

$$\longrightarrow -\eta \nabla C(\mathbf{W}^0)$$

B

What is happening in a NN

The value of a network parameter w

Momentum

Cannot we build "momentum" as go?

Vanilla SGD

Momentum SGD

Start at point W^0

Movement v⁰=0

Compute gradient at W^0

Movement $v^1 = \lambda v^0 - \eta \nabla L(\boldsymbol{W}^0)$

Move to $W^1 = W^0 + v^1$

Compute gradient at W^1

Movement $v^2 = \lambda v^1 - \eta \nabla L(\mathbf{W}^1)$

Move to $W^2 = W^1 + v^2$

Movement not just based on gradient, but previous movement.

Momentum SGD

Movement: movement of last step minus gradient at present

vⁱ is actually the weighted sum of all the previous gradient:

$$\nabla L(\mathbf{W}^0), \nabla L(\mathbf{W}^1), ... \nabla L(\mathbf{W}^{i-1})$$

$$v^0 = 0$$

$$v^1 = - \eta \nabla L(\boldsymbol{W}^0)$$

$$v^2 = -\lambda \eta \nabla L(\mathbf{W}^0) - \eta \nabla L(\mathbf{W}^1)$$

Start at point W^0

Movement v⁰=0

Compute gradient at W^0

Movement $v^1 = \lambda v^0 - \eta \nabla L(\mathbf{W}^0)$

Move to $W^1 = W^0 + v^1$

Compute gradient at W^1

Movement $v^2 = \lambda v^1 - \eta \nabla L(\mathbf{W}^1)$

Move to $W^2 = W^1 + v^2$

Movement not just based on gradient, but previous movement

Momentum SGD

Adaptive Learning Rate

Set the learning rate η carefully

- Popular & Simple Idea: Reduce the learning rate by some factor every few epochs.
 - At the beginning, we are far from the destination, so we use larger learning rate
 - After several epochs, we are close to the destination, so we reduce the learning rate
 - E.g. 1/t decay: $\eta^t = \eta/\sqrt{t+1}$
- Learning rate cannot be one-size-fits-all
 - Giving different parameters different learning rates

Original Gradient Descent

$$\mathbf{W}^t \leftarrow \mathbf{W}^{t-1} - \eta \nabla C(\mathbf{W}^{t-1})$$

Each parameter w are considered separately

$$\eta_{W} = \frac{\eta}{\sqrt{\sum_{i=0}^{t}(g^{i})^{2}}}$$
 constant
$$g^{i} \text{ is } \partial L / \partial w \text{ obtained at the i-th update}$$

summation of the square of the previous derivatives

Adagrad

$$w_1$$
 g^0 0.1

Learning rate:

$$w_2 = \frac{g^0}{20.0}$$

Learning rate:

$$\frac{\eta}{\sqrt{0.1^2}} = \frac{\eta}{0.1} \qquad \frac{\eta}{\sqrt{20^2}} = \frac{\eta}{20}$$

$$\frac{\eta}{\sqrt{0.1^2 + 0.2^2}} = \frac{\eta}{0.22} \qquad \frac{\eta}{\sqrt{20^2 + 10^2}} = \frac{\eta}{22}$$

- **Observation:** 1. Learning rate is smaller and smaller for all parameters
 - 2. Smaller derivatives, larger learning rate, and vice versa

RMSProp

$$w^{1} \leftarrow w^{0} - \frac{\eta}{\sigma^{0}} g^{0} \qquad \sigma^{0} = g^{0}$$

$$w^{2} \leftarrow w^{1} - \frac{\eta}{\sigma^{1}} g^{1} \qquad \sigma^{1} = \sqrt{\alpha(\sigma^{0})^{2} + (1 - \alpha)(g^{1})^{2}}$$

$$w^{3} \leftarrow w^{2} - \frac{\eta}{\sigma^{2}} g^{2} \qquad \sigma^{2} = \sqrt{\alpha(\sigma^{1})^{2} + (1 - \alpha)(g^{2})^{2}}$$

$$\vdots$$

$$\vdots$$

$$w^{t+1} \leftarrow w^{t} - \frac{\eta}{\sigma^{t}} g^{t} \qquad \sigma^{t} = \sqrt{\alpha(\sigma^{t-1})^{2} + (1 - \alpha)(g^{t})^{2}}$$

Root Mean Square of the gradients with previous gradients being decayed

Adam: Momentum + RMSProp

$$\nu_t = \beta_1 * \nu_{t-1} - (1 - \beta_1) * g_t$$

$$s_t = \beta_2 * s_{t-1} - (1 - \beta_2) * g_t^2$$

$$\Delta \omega_t = -\eta \frac{\nu_t}{\sqrt{s_t + \epsilon}} * g_t$$

$$\omega_{t+1} = \omega_t + \Delta \omega_t$$

 η : Initial Learning rate

 g_t : Gradient at time t along ω^j

 ν_t : Exponential Average of gradients along ω_j

 s_t : Exponential Average of squares of gradients along ω_j

 $\beta_1, \beta_2: Hyperparameters$

Optimizer toolbox

- Adagrad [John Duchi, JMLR'11]
- RMSprop
 - https://www.youtube.com/watch?v=O3sxAc4hxZU
- Adadelta [Matthew D. Zeiler, arXiv'12]
- Adam [Diederik P. Kingma, ICLR'15] = RMSprop + Momentum
- AdaSecant [Caglar Gulcehre, arXiv'14]
- "No more pesky learning rates" [Tom Schaul, arXiv'12] 1
- Nadam
 - http://cs229.stanford.edu/proj2015/054_report.pdf

Visualization

A word on learning rate and batch size

- Small batch = Good generalization
 - Because of noisiness
 - Kind of but not really
- Perfectly possible to use large batches
 - Need to scale learning rate (or not, if saturated)
 - If SGD
 - xN batch -> x N learning rate
 - If adaptive (Adam, ...)
 - Less clear, xN B -> x N or x sqrt(N) Ir
 - An issue of Hessian eigenvalues

Takeaway

- Momentum can help get over small "hills"
 - Can avoid very shallow minima
- Adapt the learning rate (Step, cosine, exp, ...)
 - Get smaller learning rates to go further "into" the minimum
- Per parameter adaptations (Adam, ...)
 - Move differently for different parameters
- Look at the torch.optim optimizer

5. Backprop

We need the gradient...

$$\theta^{t+1} := \theta^t - \eta \nabla_\theta \mathcal{R}_\theta(B)$$

Requires finding the risk gradient wrt parameters

$$\nabla_{\theta} \mathcal{R}_{\theta}(B) = \frac{1}{\#B} \sum_{k=0,\dots,B-1} \nabla_{\theta} l(f_{\theta}(x_k), y_k)$$

Boils down to computing gradients for one sample

$$\nabla_{\theta} l(f_{\theta}(x), y)$$

Backpropagation (Informal)

$$l := l(f_{\theta}(x), y)$$

- Networks are complex but made of simple parts!
 - Simple gradients of component functions
 - $\begin{array}{ll} \circ & \text{Chain-rule allows} \\ & \text{decomposition into} \\ & \text{simple gradients} \end{array} \quad \frac{\partial l}{\partial w} = \frac{\partial l}{\partial a} \frac{\partial a}{\partial w} \end{array}$
- Need to store intermediate activations $\frac{\partial a}{\partial w}$ "a" to evaluate partial derivatives

- Simple 1 hidden layer MLP
 - 2 inputs
 - o 2 outputs
 - 4 hidden activations
- Classification problem
 - Outputs probabilities
 - Cross-entropy loss

$$l_{CE}(\hat{y}, y) = -\sum_{i=0}^{\#Classes-1} y_i \log(\hat{y}_i)$$

$$\begin{cases} \tilde{h}_i = \sum_{j=1}^{n_x} W_{i,j}^h \ x_j + b_i^h \\ h_i = \tanh(\tilde{h}_i) \\ \tilde{y}_i = \sum_{j=1}^{n_h} W_{i,j}^y \ h_j + b_i^y \\ \hat{y}_i = \operatorname{SoftMax}(\tilde{y}_i) = \frac{e^{\tilde{y}_i}}{\sum\limits_{j=1}^{n_y} e^{\tilde{y}_j}} \end{cases}$$

$$\begin{cases} \tilde{h}_i = \sum_{j=1}^{n_x} W_{i,j}^h \ x_j + b_i^h \\ h_i = \tanh(\tilde{h}_i) \\ \tilde{y}_i = \sum_{j=1}^{n_h} W_{i,j}^y \ h_j + b_i^y \\ \hat{y}_i = \operatorname{SoftMax}(\tilde{y}_i) = \frac{e^{\tilde{y}_i}}{\sum\limits_{j=1}^{n_y} e^{\tilde{y}_j}} \end{cases}$$

$$\begin{cases} \tilde{h}_i = \sum_{j=1}^{n_x} W_{i,j}^h \ x_j + b_i^h \\ h_i = \tanh(\tilde{h}_i) \\ \tilde{y}_i = \sum_{j=1}^{n_h} W_{i,j}^y \ h_j + b_i^y \\ \hat{y}_i = \operatorname{SoftMax}(\tilde{y}_i) = \frac{e^{\tilde{y}_i}}{\sum\limits_{j=1}^{n_y} e^{\tilde{y}_j}} \end{cases}$$

$$\begin{cases} \tilde{h}_i = \sum_{j=1}^{n_x} W_{i,j}^h \ x_j + b_i^h \\ h_i = \tanh(\tilde{h}_i) \\ \tilde{y}_i = \sum_{j=1}^{n_h} W_{i,j}^y \ h_j + b_i^y \\ \hat{y}_i = \operatorname{SoftMax}(\tilde{y}_i) = \frac{e^{\tilde{y}_i}}{\sum\limits_{j=1}^{n_y} e^{\tilde{y}_j}} \end{cases}$$

$$\begin{cases} \tilde{h}_i = \sum_{j=1}^{n_x} W_{i,j}^h \ x_j + b_i^h \\ h_i = \tanh(\tilde{h}_i) \\ \tilde{y}_i = \sum_{j=1}^{n_h} W_{i,j}^y \ h_j + b_i^y \\ \hat{y}_i = \operatorname{SoftMax}(\tilde{y}_i) = \frac{e^{\tilde{y}_i}}{\sum\limits_{j=1}^{n_y} e^{\tilde{y}_j}} \end{cases}$$

$$\begin{cases} \tilde{h}_{i} = \sum_{j=1}^{n_{x}} W_{i,j}^{h} \ x_{j} + b_{i}^{h} \\ h_{i} = \tanh(\tilde{h}_{i}) \\ \tilde{y}_{i} = \sum_{j=1}^{n_{h}} W_{i,j}^{y} \ h_{j} + b_{i}^{y} \\ \hat{y}_{i} = \operatorname{SoftMax}(\tilde{y}_{i}) = \frac{e^{\tilde{y}_{i}}}{\sum_{j=1}^{n_{y}} e^{\tilde{y}_{j}}} \end{cases}$$

$$\begin{cases} \tilde{h}_i = \sum_{j=1}^{n_x} W_{i,j}^h \ x_j + b_i^h \\ h_i = \tanh(\tilde{h}_i) \\ \tilde{y}_i = \sum_{j=1}^{n_h} W_{i,j}^y \ h_j + b_i^y \\ \hat{y}_i = \operatorname{SoftMax}(\tilde{y}_i) = \frac{e^{\tilde{y}_i}}{\sum\limits_{j=1}^{n_y} e^{\tilde{y}_j}} \end{cases}$$

$$\begin{cases} \delta_i^y = \frac{\partial \ell}{\partial \tilde{y}_i} = \hat{y}_i - y_i \\ \frac{\partial \ell}{\partial W_{i,j}^y} = \delta_i^y h_j \\ \frac{\partial \ell}{\partial b_i^y} = \delta_i^y \end{cases}$$

$$\begin{cases} \tilde{h}_i = \sum_{j=1}^{n_x} W_{i,j}^h \ x_j + b_i^h \\ h_i = \tanh(\tilde{h}_i) \\ \tilde{y}_i = \sum_{j=1}^{n_h} W_{i,j}^y \ h_j + b_i^y \\ \hat{y}_i = \operatorname{SoftMax}(\tilde{y}_i) = \frac{e^{\tilde{y}_i}}{\sum\limits_{j=1}^{n_y} e^{\tilde{y}_j}} \end{cases}$$

$$\begin{cases} \delta_i^y = \frac{\partial \ell}{\partial \tilde{y}_i} = \hat{y}_i - y_i \\ \frac{\partial \ell}{\partial W_{i,j}^y} = \delta_i^y h_j \\ \frac{\partial \ell}{\partial b_i^y} = \delta_i^y \end{cases}$$

$$\delta_i^h = \frac{\partial \ell}{\partial \tilde{h}_i} = \frac{\partial \ell}{\partial W_{i,j}^h} = \frac{\partial \ell}{\partial W_{i,j}^h} = \frac{\partial \ell}{\partial b_i^h} = \frac{\partial \ell}{\partial b_i^$$

$$\begin{cases} \tilde{h}_i = \sum_{j=1}^{n_x} W_{i,j}^h \ x_j + b_i^h \\ h_i = \tanh(\tilde{h}_i) \\ \tilde{y}_i = \sum_{j=1}^{n_h} W_{i,j}^y \ h_j + b_i^y \\ \hat{y}_i = \operatorname{SoftMax}(\tilde{y}_i) = \frac{e^{\tilde{y}_i}}{\sum\limits_{j=1}^{n_y} e^{\tilde{y}_j}} \end{cases}$$

$$\begin{cases} \delta_i^y = \frac{\partial \ell}{\partial \tilde{y}_i} = \hat{y}_i - y_i \\ \frac{\partial \ell}{\partial W_{i,j}^y} = \delta_i^y \ h_j \\ \frac{\partial \ell}{\partial b_i^y} = \delta_i^y \end{cases}$$

$$\delta_i^h = \frac{\partial \ell}{\partial \tilde{h}_i} = (1 - h_i^2) \sum_{j=1}^{n_y} \delta_j^y W_{j,i}^y$$

$$\frac{\partial \ell}{\partial W_{i,j}^h} = \delta_i^h \ x_j$$

$$\frac{\partial \ell}{\partial b_i^h} = \delta_i^h \end{cases}$$

Takeaway

Core problem: Find gradient updates

- Gradient can be computed efficiently with backpropagation
 - Chain rule starting from the "end" of the network
 - Keep network activation to evaluate gradients
 - Simple layers mean simple gradient blocks