SET - 1

PRACTICAL NO: 1

Aim: Write a python program to create a simple arithmetic application including operations(addition, subtraction, multiplication, division, modulus, exponent, integer division.

Program:

```
a = int(input("Enter a number:"))
b = int(input("Enter a number:"))
print("Addition =" , (a + b))
print("Subtraction =" , (a - b))
print("Multiplication =" , (a * b))
print("Division = " , (a / b))
print("Modulus = " , (a % b))
print("Exponent = " , (a ** b))
print("Integer division = " , (a // b))
```

Output:

```
Enter a number:10
Addition = 25
Subtraction = 5
Multiplication = 150
Division = 1.5
Modulus = 5
Exponent = 576650390625
Integer division = 1
PS C:\Users\bharg> [
```

Aim: Write a python program to convert numbers from octal, binary and hexadecimal systems into decimal number system.

Program:

```
a = input("Enter the value of Binary \n")
print("The num in dec is ",int(a,2))

a = input("Enter the value of Octal \n")
print("The num in dec is ",int(a,8))

a = input("Enter the value of Hexadecimal \n")
print("The num in dec is ",int(a,16))
```

Output:

```
Enter the value of Binary
1100
The num in dec is 12
Enter the value of Octal
256
The num in dec is 174
Enter the value of Hexadecimal
A
The num in dec is 10
```

Aim: Write a python program to convert numbers from decimal number system into octal, binary and hexadecimal system.

Program:

```
a =int( input("Enter the value of DEC \n"))
print("The num in binary is ",bin(a))
print("The num in Octal is ",oct(a))
print("The num in Hexadecimal is ",hex(a))
```

Output:

```
Enter the value of DEC
174
The num in binary is 0b10101110
The num in Octal is 0o256
The num in Hexadecimal is 0xae
```

Aim: Write a python program to check whether the given number is a palindrome or not.

Program:

```
no = int(input("Enter the Integer \n"))
sum = 0
temp = no
while(no>0):
    r=no%10
    sum=(sum*10)+r
    no = int(no / 10)
if(temp==sum):
    print(f"The num is palindrome {no}")
else:
    print("The numm is not palindrome !!!!!!")
```

Output:

```
Enter the Integer
121
The num is palindrome 0
```

Aim: Write a python program to calculate area of a triangle.

Program:

```
x=float(input("Enter the val of Base "))
y=float(input("Enter the val of Height "))
Area =(x*y)/2
print("The area is",Area)
```

Output:

```
PS C:\Users\bharg> python -u "c:\Users\bharg\Downloads\Python\p4.py"

Enter the val of Base 6

Enter the val of Height 6

The area is 18.0
```

Aim: Write a python program to display maximum of given 3 numbers.

Program:

```
x=3

y=7

z=100

if (x >= y) and (x >= z):

largest = x

elif (y >= x) and (y >= z):

largest = y

else:

largest = z

print("The of the numbers is :", largest)
```

Output:

```
PS C:\Users\bharg> python -u "C:\Users\bharg\AppData\
100
PS C:\Users\bharg> python -u "c:\Users\bharg\Download
The of the numbers is : 100
PS C:\Users\bharg> []
```

Aim: Write a python program to find those numbers which are divisible by 3 and multiple of 5 within 500 numbers.

Program:

```
for x in range(1,501):

if(x % 3==0 and x % 5 == 0):

print(x,end = ' ')
```

Output:

```
PS C:\Users\bharg> python -u "c:\Users\bharg\Downloads\Python\tempCodeRunnerFile.py"
15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345 360 375 3
90 405 420 435 450 465 480 495
PS C:\Users\bharg>
```

Aim: Write a python program to draw kite pattern using for loop.

Program:

```
r=int(input("Enter the val for size "))
for x in range(r,0,-1):
    print(" " * x , "* " * (r-x))
for x in range(0,r,1):
    print(" " * x , "* " * (r-x))
for x in range(r-1,int(r/2)-1,-1):
    print(" " * x , "* " * (r-x))
```

Output:

SET - 2

PRACTICAL NO: 1

Aim: Write a python program to print numbers from 1 to 50. For multiple of 4 print name instead of number and for multiple of 5 print father name. For the numbers which are multiple of both 4 and 5 print surname

Program:

```
for i in range(1,51):

b=i

if(i % 4 == 0):

b="Bhargav"

if(i % 5 == 0):

b="Jayeshbhai"

if(i % 4 == 0 and i % 5 == 0):

b="Bhandari"

print(b)
```

Output:

Aim:

Write a python program to find numbers between 500 and 800 when each digit of number is ODD and the number should be printed in sequence separated by comma.

Program:

```
item=[]
for i in range(500,801):
    s=str(i)
    if(int(s[0])%2!=0) and (int(s[1])%2!=0) and (int(s[2])%2!=0):
        item.append(s)
print(", " .join(item))
```

Output:

```
PS´C:\Users\bharg> python -u "c:\Users\bharg\Downloads\Python\tempCodeRunnerFile.py" 511, 513, 515, 517, 519, 531, 533, 535, 537, 539, 551, 553, 555, 557, 559, 571, 573, 575, 577, 579, 591, 593, 595, 597, 599, 711, 713, 715, 717, 719, 731, 733, 735, 737, 739, 751, 753, 755, 757, 759, 771, 773, 775, 777, 779, 791, 793, 795, 797, 799
PS C:\Users\bharg> []
```

Aim: Write a python program which accept a sequence of 4 digit binary numbers separated by comma and also print the numbers which are divisible by 3 in sequence separated by comma.

Program:

```
item=[]
print("Enter the 4 bit binary sequence sperated by comma ")
number = [x for x in input().split(",") ]
for p in number:
    x=int(p,2)
    if (x % 3 ==0):
        item.append(p)
print(", " .join(item))
```

Output:

```
PS C:\Users\bharg> python -u "c:\Users\bharg\Downloads\Python\tempCodeRunnerFile.py"
Enter the 4 bit binary sequence sperated by comma
L110,1011,1111
L111
PS C:\Users\bharg>
```

Aim: Write a python program to display Fibonacci sequence up to nth term using recursive functions

Program:

```
def recurr_fib(n):
    if n<=1:
        return n
    else:
        return(recurr_fib(n-1)+recurr_fib(n-2))
num = int(input("Enter the Range of Fib:"))

if num<=0:
    print("Enter a positive Number")
else:
    for i in range (num):
        print(recurr_fib(i))</pre>
```

Output:

```
Enter the Range of Fib :5
0
1
1
2
3
PS C:\Users\bharg>
```

Aim: Write a python program that accept a string and calculate the number of uppercase and lowercase letter.

Program:

```
str=input("Enter the string to check the lower and upper values \n")
b=0
m=0
for i in str:
    if (i<='z' and i>='a'):
        b=b+1
    if( i>='A' and i<='Z'):
        m=m+1

print("THE Lower CASE VLAUES ARE ",b)

print("THE Upper CASE VLAUES ARE ",m)
```

Output:

```
PS <u>C:\Users\bharg</u>> python -u "c:\Users\bharg\Downloads\Python\tempCodeRunnerFile.py"
Enter the string to check the lower and upper values
BhArGaV BHAndaRi
THE Lower CASE VLAUES ARE 7
THE Upper CASE VLAUES ARE 8
PS C:\Users\bharg>
```

Aim: Write a python program to search a number in array using sequential search.

Program:

```
import numpy as nd
def seq_search(array,num):
    pos=0
    found=False
    while pos<len(array) and not found:
        if (array[pos]==num):
            found=True
        else:
            pos=pos+1
        return found,pos+1
        array1=nd.random.randint(50,size=(10))
    print(array1)
    number=int(input("Enter the number you want to search "))
    print(seq_search(array1,number))</pre>
```

Output:

```
PS C:\Users\bharg> python -u "c:\Users\bharg\Downloads\Python\2-p6.py"
[32 19 14 13 49 34 42 46 1 18]
Enter the number you want to search 56
(False, 11)
PS C:\Users\bharg> [
```

Aim: Write a python program to sort elements of array.

Program:

```
size = int(input("enter size of an array : "))
arr = []
for i in range(size):
    element = int(input("enter element in array :"))
    arr.append(element)
    arr.sort()
print("sorted array in ascending order is : ",arr)
print("sorted array in descending order is : ",arr[::-1])
```

Output:

```
PS C:\Users\bharg> python -u "c:\Users\bharg\Downloads\Python\2-p7.py"
enter size of an array : 5
enter element in array :6
enter element in array :7
enter element in array :0
enter element in array :2
enter element in array :13
sorted array in ascending order is : [0, 2, 6, 7, 13]
sorted array in descending order is : [13, 7, 6, 2, 0]
PS C:\Users\bharg>
```

Aim: Write a python program to input two matrix and perform the following given operation:

Program:

```
import numpy
arr1=([1,2,3],[4,5,6],[7,8,9])
arr2=([3,2,1],[6,5,4],[9,8,7])
result=([0,0,0],[0,0,0],[0,0,0])
mat1=numpy.array(arr1)
mat2=numpy.array(arr2)
print("The addition of matrix is \n",mat1+mat2)
print("The Subtraction of matrix is \n",mat1-mat2)
for i in range(0,len(mat1),1):
  for k in range(0, len(mat2[0]), 1):
     for j in range(0,len(mat2),1):
       result[i][i] += mat1[i][k]*mat2[k][i]
print("The multiplication of matrix is ",)
for m in result:
  print(m)
print("The Transpose of matrix is \n",mat1.T)
print("The Transpose of matrix is \n",mat2.T)
```

Output:

SET-3

PRACTICAL NO: 1

Aim: Do as directed: a) Read student data from given excel file sheet named as "5CSE" into appropriate pandas data structure. b) Fill missing values in columns "Subject" and "Batch" using forward fill method. c) Fill value "Jay Patel" in "Mentor" column for students having "Enrollment" column value from "200860131001" to "200860131029" and "Pal Patel" for remaining students. d) Add a new column "City" in existing student data and fill that column with residential city of student. e) Count total number of students subjectwise and batch-wise.

Program:

```
a)
```

```
import pandas as pd
df = pd.read_csv('5CSE.csv')
df
```

b)

```
df.drop("Unnamed: 0",axis=1,inplace=True)
df["Subject"].fillna(method="ffill",inplace=True)
df["Batch"].fillna(method="ffill",inplace=True)
df
```

c)

```
def value(x):
    if(x<=200860131029):
        return "Jay Patel"
    else:
        return "Pal Patel"

df["Mentor"]=df.apply(lambda x:value(x["Enrollment"]),axis=1)
df</pre>
```

d)

df['City']=["Vapi","Silvassa","Vapi","Bhilad","Bhilad","Vapi","Va

e)

df.groupby(["Subject"]).size().reset_index(name='Number of Students')
df.groupby(["Batch"]).size().reset_index(name='Number of Students')

Output:

a)

	Unnamed: 0	Roll No	Enrollment	Name of Student	Subject	Batch	Mentor
0	0	1	200860131003	Arvindsingh Sarwansingh Deora	PDS	G1	NaN
1	1	2	200860131006	Sanal Saraswat	PDS	NaN	NaN
2	2	3	200860131007	Patel Yashkumar Hitendrabhai	PDS	NaN	NaN
3	3	4	200860131008	Harssht Shah	PDS	NaN	NaN
4	4	5	200860131010	Chaudhary Manisha K	PDS	NaN	NaN
5	5	6	200860131011	Nupur Kundan Bhavsar	PDS	NaN	NaN
6	6	7	200860131012	Kaustubh Vijay Tambe	PDS	NaN	NaN
7	7	8	200860131014	Devendra Ghori	PDS	NaN	NaN
8	8	9	200860131016	Harshalkumar Nalinbhai Pate	PDS	NaN	NaN
9	9	10	200860131017	Hadal Rinkesh Bhagvanbhai	PDS	NaN	NaN
10	10	11	200860131018	Patel Sneh	NaN	NaN	NaN

	Unnamed: 0	Roll No	Enrollment	Name of Student	Subject	Batch	Mentor
11	11	12	200860131019	Rutik Sumanbhai Patel	NaN	NaN	NaN
12	12	13	200860131020	Harshit.B.Dhodi	NaN	NaN	NaN
13	13	14	200860131021	Rahul Dora	NaN	G2	NaN
14	14	15	200860131022	Akshit Kantilal Patel	PDS	NaN	NaN
15	15	16	200860131023	Lakhani Brijay	PDS	NaN	NaN
16	16	17	200860131024	Krutagna Patel	PDS	NaN	NaN
17	17	18	200860131028	Dhruvi Sushilbhai Patel	PDS	NaN	NaN
18	18	19	200860131031	Mayur Pareshbhai Parmar	PDS	NaN	NaN
19	19	20	210860131503	Bhargav Bhandari	PDS	NaN	NaN
20	20	21	210860131504	Gautam Suraj Umaprasad	PDS	NaN	NaN
21	21	22	210860131506	Patel Prachi Jitendrabhai	PDS	NaN	NaN
22	22	23	210860131508	Ruchi P Mishra	PDS	NaN	NaN
23	23	24	210860131510	Hemangi Toke	PDS	NaN	NaN
24	24	25	210860131511	Sweta Vinod Jaiswal	PDS	NaN	NaN
25	25	26	210860131512	Siddhi Nagesh Bhad	PDS	NaN	NaN
26	26	27	200860131002	Amit Kumar Bhagat	CS	G3	NaN
27	27	28	200860131004	Harshi Patel	CS	NaN	NaN
28	28	29	200860131005	Mitaliya Vivek V.	CS	NaN	NaN
29	29	30	200860131009	Anuradha Kumari Kharwar	CS	NaN	NaN
30	30	31	200860131013	Yadav Kauntay Mahendra	NaN	NaN	NaN

	Unnamed: 0	Roll No	Enrollment	Name of Student	Subject	Batch	Mentor
31	31	32	200860131014	Saurabh Singh	NaN	NaN	NaN
32	32	33	200860131025	Hariom Prasad	CS	NaN	NaN
33	33	34	200860131026	Nisarg Ashokbhai Rathod	CS	NaN	NaN
34	34	35	200860131027	Rutik	CS	NaN	NaN
35	35	36	200860131029	Shivam Jaydeepbhai Desai	CS	NaN	NaN
36	36	37	200860131030	Rohan Prasad	CS	NaN	NaN
37	37	38	210860131501	Kaushik H Koladiya	CS	NaN	NaN
38	38	39	210860131502	Gohil Pratik D.	CS	NaN	NaN
39	39	40	210860131505	Tas Shaikh	CS	NaN	NaN
40	40	41	210860131509	Saloni Amar Bhatt	CS	NaN	NaN
41	41	42	210860131538	Nehal.M.Tandel	CS	NaN	NaN

b)

Roll No	Enrollment	Name of Student	Subject	Batch	Mentor	
0	1	200860131003	Arvindsingh Sarwansingh Deora	PDS	G1	NaN
1	2	200860131006	Sanal Saraswat	PDS	G1	NaN
2	3	200860131007	Patel Yashkumar Hitendrabhai	PDS	G1	NaN
3	4	200860131008	Harssht Shah	PDS	G1	NaN
4	5	200860131010	Chaudhary Manisha K	PDS	G1	NaN
5	6	200860131011	Nupur Kundan Bhavsar	PDS	G1	NaN

Roll No	Enrollment	Name of Student	Subject	Batch	Mentor	
6	7	200860131012	Kaustubh Vijay Tambe	PDS	G1	NaN
7	8	200860131014	Devendra Ghori	PDS	G1	NaN
8	9	200860131016	Harshalkumar Nalinbhai Pate	PDS	G1	NaN
9	10	200860131017	Hadal Rinkesh Bhagvanbhai	PDS	G1	NaN
10	11	200860131018	Patel Sneh	PDS	G1	NaN
11	12	200860131019	Rutik Sumanbhai Patel	PDS	G1	NaN
12	13	200860131020	Harshit.B.Dhodi	PDS	G1	NaN
13	14	200860131021	Rahul Dora	PDS	G2	NaN
14	15	200860131022	Akshit Kantilal Patel	PDS	G2	NaN
15	16	200860131023	Lakhani Brijay	PDS	G2	NaN
16	17	200860131024	Krutagna Patel	PDS	G2	NaN
17	18	200860131028	Dhruvi Sushilbhai Patel	PDS	G2	NaN
18	19	200860131031	Mayur Pareshbhai Parmar	PDS	G2	NaN
19	20	210860131503	Bhargav Bhandari	PDS	G2	NaN
20	21	210860131504	Gautam Suraj Umaprasad	PDS	G2	NaN
21	22	210860131506	Patel Prachi Jitendrabhai	PDS	G2	NaN
22	23	210860131508	Ruchi P Mishra	PDS	G2	NaN
23	24	210860131510	Hemangi Toke	PDS	G2	NaN
24	25	210860131511	Sweta Vinod Jaiswal	PDS	G2	NaN

Roll No	Enrollment	Name of Student	Subject	Batch	Mentor	
25	26	210860131512	Siddhi Nagesh Bhad	PDS	G2	NaN
26	27	200860131002	Amit Kumar Bhagat	CS	G3	NaN
27	28	200860131004	Harshi Patel	cs	G3	NaN
28	29	200860131005	Mitaliya Vivek V.	CS	G3	NaN
29	30	200860131009	Anuradha Kumari Kharwar	cs	G3	NaN
30	31	200860131013	Yadav Kauntay Mahendra	CS	G3	NaN
31	32	200860131014	Saurabh Singh	CS	G3	NaN
32	33	200860131025	Hariom Prasad	CS	G3	NaN
33	34	200860131026	Nisarg Ashokbhai Rathod	CS	G3	NaN
34	35	200860131027	Rutik	CS	G3	NaN
35	36	200860131029	Shivam Jaydeepbhai Desai	CS	G3	NaN
36	37	200860131030	Rohan Prasad	cs	G3	NaN
37	38	210860131501	Kaushik H Koladiya	cs	G3	NaN
38	39	210860131502	Gohil Pratik D.	cs	G3	NaN
39	40	210860131505	Tas Shaikh	cs	G3	NaN
40	41	210860131509	Saloni Amar Bhatt	cs	G3	NaN
41	42	210860131538	Nehal.M.Tandel	CS	G3	NaN

c)

Roll No	Enrollment	Name of Student	Subject	Batch	Mentor	
0	1	200860131003	Arvindsingh Sarwansingh Deora	PDS	G1	Jay Patel
1	2	200860131006	Sanal Saraswat	PDS	G1	Jay Patel
2	3	200860131007	Patel Yashkumar Hitendrabhai	PDS	G1	Jay Patel
3	4	200860131008	Harssht Shah	PDS	G1	Jay Patel
4	5	200860131010	Chaudhary Manisha K	PDS	G1	Jay Patel
5	6	200860131011	Nupur Kundan Bhavsar	PDS	G1	Jay Patel
6	7	200860131012	Kaustubh Vijay Tambe	PDS	G1	Jay Patel
7	8	200860131014	Devendra Ghori	PDS	G1	Jay Patel
8	9	200860131016	Harshalkumar Nalinbhai Pate	PDS	G1	Jay Patel
9	10	200860131017	Hadal Rinkesh Bhagvanbhai	PDS	G1	Jay Patel
10	11	200860131018	Patel Sneh	PDS	G1	Jay Patel
11	12	200860131019	Rutik Sumanbhai Patel	PDS	G1	Jay Patel
12	13	200860131020	Harshit.B.Dhodi	PDS	G1	Jay Patel
13	14	200860131021	Rahul Dora	PDS	G2	Jay Patel
14	15	200860131022	Akshit Kantilal Patel	PDS	G2	Jay Patel
15	16	200860131023	Lakhani Brijay	PDS	G2	Jay Patel
16	17	200860131024	Krutagna Patel	PDS	G2	Jay Patel
17	18	200860131028	Dhruvi Sushilbhai Patel	PDS	G2	Jay Patel

Roll No	Enrollment	Name of Student	Subject	Batch	Mentor	
18	19	200860131031	Mayur Pareshbhai Parmar	PDS	G2	Pal Patel
19	20	210860131503	Bhargav Bhandari	PDS	G2	Pal Patel
20	21	210860131504	Gautam Suraj Umaprasad	PDS	G2	Pal Patel
21	22	210860131506	Patel Prachi Jitendrabhai	PDS	G2	Pal Patel
22	23	210860131508	Ruchi P Mishra	PDS	G2	Pal Patel
23	24	210860131510	Hemangi Toke	PDS	G2	Pal Patel
24	25	210860131511	Sweta Vinod Jaiswal	PDS	G2	Pal Patel
25	26	210860131512	Siddhi Nagesh Bhad	PDS	G2	Pal Patel
26	27	200860131002	Amit Kumar Bhagat	CS	G3	Jay Patel
27	28	200860131004	Harshi Patel	CS	G3	Jay Patel
28	29	200860131005	Mitaliya Vivek V.	CS	G3	Jay Patel
29	30	200860131009	Anuradha Kumari Kharwar	CS	G3	Jay Patel
30	31	200860131013	Yadav Kauntay Mahendra	CS	G3	Jay Patel
31	32	200860131014	Saurabh Singh	CS	G3	Jay Patel
32	33	200860131025	Hariom Prasad	CS	G3	Jay Patel
33	34	200860131026	Nisarg Ashokbhai Rathod	CS	G3	Jay Patel
34	35	200860131027	Rutik	CS	G3	Jay Patel
35	36	200860131029	Shivam Jaydeepbhai Desai	cs	G3	Jay Patel
	37	200860131030	Rohan Prasad	CS	G3	Pal Patel

ı	Roll No	Enrollment	Name of Student	Subject	Batch	Mentor	
	07		04000404504		00	00	5.15.1
	37	38	210860131501	Kaushik H Koladiya	CS	G3	Pal Patel
	38	39	210860131502	Gohil Pratik D.	CS	G3	Pal Patel
	39	40	210860131505	Tas Shaikh	CS	G3	Pal Patel
	40	41	210860131509	Saloni Amar Bhatt	cs	G3	Pal Patel
	41	42	210860131538	Nehal.M.Tandel	CS	G3	Pal Patel

d)

	Roll No	Enrollment	Name of Student	Subject	Batch	Mentor	City
0	1	200860131003	Arvindsingh Sarwansingh Deora	PDS	G1	Jay Patel	Vapi
1	2	200860131006	Sanal Saraswat	PDS	G1	Jay Patel	Silvassa
2	3	200860131007	Patel Yashkumar Hitendrabhai	PDS	G1	Jay Patel	Vapi
3	4	200860131008	Harssht Shah	PDS	G1	Jay Patel	Bhilad
4	5	200860131010	Chaudhary Manisha K	PDS	G1	Jay Patel	Bhilad
5	6	200860131011	Nupur Kundan Bhavsar	PDS	G1	Jay Patel	Vapi
6	7	200860131012	Kaustubh Vijay Tambe	PDS	G1	Jay Patel	Vapi
7	8	200860131014	Devendra Ghori	PDS	G1	Jay Patel	Vapi
8	9	200860131016	Harshalkumar Nalinbhai Pate	PDS	G1	Jay Patel	Vapi
9	10	200860131017	Hadal Rinkesh Bhagvanbhai	PDS	G1	Jay Patel	Vapi
10	11	200860131018	Patel Sneh	PDS	G1	Jay Patel	Vapi
11	12	200860131019	Rutik Sumanbhai Patel	PDS	G1	Jay Patel	Vapi

	Roll No	Enrollment	Name of Student	Subject	Batch	Mentor	City
12	13	200860131020	Harshit.B.Dhodi	PDS	G1	Jay Patel	Vapi
13	14	200860131021	Rahul Dora	PDS	G2	Jay Patel	Vapi
14	15	200860131022	Akshit Kantilal Patel	PDS	G2	Jay Patel	Silvassa
15	16	200860131023	Lakhani Brijay	PDS	G2	Jay Patel	Vapi
16	17	200860131024	Krutagna Patel	PDS	G2	Jay Patel	Vapi
17	18	200860131028	Dhruvi Sushilbhai Patel	PDS	G2	Jay Patel	Vapi
18	19	200860131031	Mayur Pareshbhai Parmar	PDS	G2	Pal Patel	Vapi
19	20	210860131503	Bhargav Bhandari	PDS	G2	Pal Patel	Udvada
20	21	210860131504	Gautam Suraj Umaprasad	PDS	G2	Pal Patel	Vapi
21	22	210860131506	Patel Prachi Jitendrabhai	PDS	G2	Pal Patel	Vapi
22	23	210860131508	Ruchi P Mishra	PDS	G2	Pal Patel	Vapi
23	24	210860131510	Hemangi Toke	PDS	G2	Pal Patel	Vapi
24	25	210860131511	Sweta Vinod Jaiswal	PDS	G2	Pal Patel	Vapi
25	26	210860131512	Siddhi Nagesh Bhad	PDS	G2	Pal Patel	Vapi
26	27	200860131002	Amit Kumar Bhagat	CS	G3	Jay Patel	Silvassa
27	28	200860131004	Harshi Patel	CS	G3	Jay Patel	Pardi
28	29	200860131005	Mitaliya Vivek V.	CS	G3	Jay Patel	Vapi
29	30	200860131009	Anuradha Kumari Kharwar	CS	G3	Jay Patel	Bhilad
30	31	200860131013	Yadav Kauntay Mahendra	CS	G3	Jay Patel	Vapi
31	32	200860131014	Saurabh Singh	CS	G3	Jay Patel	Vapi

	Roll No	Enrollment	Name of Student	Subject	Batch	Mentor	City
32	33	200860131025	Hariom Prasad	CS	G3	Jay Patel	Silvassa
33	34	200860131026	Nisarg Ashokbhai Rathod	CS	G3	Jay Patel	Vapi
34	35	200860131027	Rutik	CS	G3	Jay Patel	Vapi
35	36	200860131029	Shivam Jaydeepbhai Desai	CS	G3	Jay Patel	Vapi
36	37	200860131030	Rohan Prasad	CS	G3	Pal Patel	Vapi
37	38	210860131501	Kaushik H Koladiya	CS	G3	Pal Patel	Vapi
38	39	210860131502	Gohil Pratik D.	CS	G3	Pal Patel	Vapi
39	40	210860131505	Tas Shaikh	CS	G3	Pal Patel	Vapi
40	41	210860131509	Saloni Amar Bhatt	CS	G3	Pal Patel	Bhilad
41	42	210860131538	Nehal.M.Tandel	CS	G3	Pal Patel	Vapi

e)

Batch Number of Students

0	G1	13
1	G2	13
2	G3	16

Subject Number of Students

0	CS	16
1	PDS	26

Aim: Do as directed: a) Read data from given csv file into appropriate pandas data structure. Delete rows having missing values. b) Calculate average price of cars having four and six cylinder engines. c) Find out cheapest and most expensive car details. d) Find out convertible and sedan car details having maximum engine horsepower. e) Find average sedan car price f) Count total number of cars per company. g) Find each company's highest car price.

Program:

```
a)
import pandas as pd
import numpy as np
df=pd.read csv("Automobile data Miss.csv")
df
df.dropna(axis='rows')
b)
a1=df["num-of-doors"]=='four'
a 1=df[a1]["price"].mean()
a2=df["num-of-doors"]=='two'
a 2=df[a2]["price"].mean()
avg = (a 1+a 2)/2
print(avg)
c)
print("Detail of cheapest car")
df[df.price == df.price.min()]
print("Detail of expensive car")
df[df.price == df.price.max()]
d)
df1=df.loc[(df['body-style']=='convertible')]
df1=df1.iloc[df1['horsepower'].argmax()]
df2=df.loc[(df['body-style']=='sedan')]
```

df2=df2.iloc[df2['horsepower'].argmax()]

print('maximum hoursepower of convertible car is\n\n',df1) print('\n\nmaximum hoursepower of sedan car is\n\n',df2)

e)

df[df["body-style"]=="sedan"].agg({"price":'mean'})

f)

df['make'].value_counts()

g)

car_manufacturers = df.groupby('make')
price= car_manufacturers["make","price"].max()
price

Output:

a)

b)

c)

Detail	of cheapest	car																		
	symboling	normalized- losses	make	fuel- type	aspiration	num-of- doors	body- style	drive- wheels	engine- location	wheel- base	engine- size	fuel- system	bore	stroke	compression- ratio	horsepower	peak- rpm	city- mpg	highway- mpg	price
138		83.0	subaru	gas	std	two	hatchback	fwd	front			2bbl	3.62		9.0	69.0	4900.0			5118.0
1 rows	26 columns																			

Detai	il of expens	ive car																		
	symboling	normalized- losses	make	fuel- type	aspiration	num-of- doors	body- style	drive- wheels	engine- location	wheel- base	engine- size	fuel- system	bore	stroke	compression- ratio		peak- rpm	city- mpg	highway- mpg	price
		NaN	mercedes- benz	gas	std	two	hardtop	rwd	front		304	mpfi				184.0	4500.0			45400.0
1 rows	s × 26 columns																			

d)

symboling 3 normalized-losses NaN make porsche	
normalized-losses NaN make porsche	
•	
· · · · · · · · · · · · · · · · · · ·	
fuel-type gas	
aspiration std	
num-of-doors two	
body-style convertible	
drive-wheels rwd	
engine-location rear	
wheel-base 89.5	
length 168.9	
width 65.0	
height 51.6	
curb-weight 2800	
engine-type ohcf	
num-of-cylinders six	
engine-size 194	
fuel-system mpfi	
bore 3.74	
stroke 2.9	
compression-ratio 9.5	
horsepower 207.0	
peak-rpm 5900.0	
city-mpg 13	
highway-mpg 17	
price 36000.0	
Name: 49, dtype: object	

e)

price 14459.755319

dtype: float64

f)

toyota	32
nissan	18
mazda	17
mitsubishi	13
honda	13
volkswagen	12
subaru	12
peugot	11
volvo	11
dodge	9
mercedes-ber	ız 8
bmw	8
audi	7
plymouth	7
saab	6
porsche	5
isuzu	4
jaguar	3
chevrolet	3
alfa-romero	3
renault	2
mercury	1
Name: make,	dtype: int64

g)

price	make	
piles		make
16500.0	alfa-romero	alfa-romero
23875.0	audi	audi
41315.0	bmw	bmw
6575.0	chevrolet	chevrolet
12964.0	dodge	dodge
12945.0	honda	honda
11048.0	isuzu	isuzu
36000.0	jaguar	jaguar
18344.0	mazda	mazda
45400.0	mercedes-benz	mercedes-benz
16503.0	mercury	mercury
14869.0	mitsubishi	mitsubishi
19699.0	nissan	nissan
18150.0	peugot	peugot
12764.0	plymouth	plymouth
37028.0	porsche	porsche
9895.0	renault	renault
18620.0	saab	saab
11694.0	subaru	subaru
17669.0	toyota	toyota
13845.0	volkswagen	volkswagen
22625.0	volvo	volvo

SET-4

PRACTICAL NO: 1

Aim: Plot gender-wise share of overall voters with legend and suitable labels. (Pie chart).

Program:

```
from pandas import DataFrame, read csv
import matplotlib.pyplot as plt
import pandas as pd
result df=pd.read csv('Votes 2019.csv')
result df
x=result_df["Female "].sum()
print("Sum of Female voters = ",x)
y=result df["Male"].sum()
print("Sum of Male voters = ",y)
z=result_df["Other "].sum()
print("Sum of Other voters = ",z)
sizes=[x,y,z]
labels=["Female","Male","Other"]
colors=['palegreen','lightskyblue','red']
explode=(0,0.1,0)
plt.pie(sizes,explode=explode,labels=labels,colors=colors,startangle=90,autopct="%.1f%%",shado
w=True)
plt.legend(labels,loc=2)
plt.show()
```

Output:

```
Sum of Female voters = 294035406

Sum of Male voters = 316792980

Sum of Other voters = 5663
```


Aim: Indian states are divided into six administrative zones: Central, East, North, Northeast, South and Western. Plot six bar chart into single figure to visualize total voters with suitable chart title.

Program:

```
zone=['Southern','Southern','North East','North East','North East','East','North','Central','Western','Western','Western','North','North','North','Southern','Southern','Southern','Southern','North','North','North East','North East','North','East','Southern','North','North','North','North','Southern','North East','North','North','East']
result_df['Zone']=zone
result_df.head()

result_df.to_csv("Votes_2019.csv")
y=result_df['Zone']
fig=plt.figure()
ax=fig.add axes([0,3,1,1])
```

Output:

plt.show()

11=ax.bar(y,result_df['Total Voters']) ax.set_title("Total Voters vs Zone") ax.set_ylabel("Total Voters",size=12)

ax.set xlabel("Administrative Zones", size=12)

Aim: Plot zone-wise share of total voters with legend and suitable labels. (Pie chart)

Program:

```
xx=result_df['Total Voters'].groupby(result_df['Zone']).sum()
print(xx)
```

```
sizes=[xx["Central"],xx["East"],xx["North"],xx["North East"],xx["Southern"],xx["Western"]] labels=["Central","East","North","Northeast","South","West"] colors=['c','gold','yellow','chartreuse','lightgreen','tomato'] plt.pie(sizes,colors=colors,labels=labels,autopct="%.1f%%") plt.legend(labels,loc=4)
```

plt.show()

Output:

Aim: Plot horizontal bar chart for states vs total actual votes with suitable labels.

Program:

```
fig=plt.figure()
ax=fig.add_axes([0,3,2,3])
ax.barh(y=result_df['State Name'],width=result_df['Total Actual Votes'])
plt.title("States vs Total actual voters")
plt.ylabel("State name")
plt.xlabel("Total Actual Voters")

plt.show()
```

Output:

Aim: Plot type-wise share (EVM and Postal) with legend and suitable labels for each administrative zone into single figure. (Pie chart).

Program:

```
import numpy as np
fig=plt.figure()
ax = fig.subplots(2,3)
xx=result df['EVM Vote'].groupby(result df['Zone']).sum()
yy=result df['Postal Vote'].groupby(result df['Zone']).sum()
ax[0][0].pie([xx['East'],yy['East']],autopct='%.2f%%')
ax[0][0].set title('East Zone')
ax[0][1].pie([xx['North'],yy['North']],autopct='%.2f\%\%')
ax[0][1].set title('North Zone')
ax[0][2].pie([xx['Western'],yy['Western']],autopct='%.2f%%')
ax[0][2].set title('Western Zone')
ax[1][0].pie([xx['Southern'],yv['Southern']],autopct='%.2f\%')
ax[1][0].set title('Southern Zone')
ax[1][1].pie([xx['Central'],yy['Central']],autopct='%.2f\%\%')
ax[1][1].set title('Central Zone')
ax[1][2].pie([xx['North East'],yy['North East']],autopct='%.2f\%')
ax[1][2].set title('Noth-East Zone')
plt.legend(["EVM vote","Postal Votes"])
plt.show()
```

Output:

Aim: Plot vote deficits (Total actual votes – Total voters) for each states using line chart

Program:

```
result_df.loc[:,"New"]=result_df.loc[:,"Total Actual Votes"].subtract(result_df.loc[:,"Total Voters"])
result_df
fig = plt.figure()
ax = fig.add_axes([0,3,2,3])
ax.plot(result_df['State Name'],result_df['New'],color='purple',marker='o')
plt.title("State vs Total Actual Votes - Total voters",fontsize=14)
plt.xlabel("State name",fontsize=14)
plt.ylabel("Total Actual Votes - Total Voters",fontsize=14)
plt.show()
```

Output:

Aim: Plot horizontal bar chart for states vs male, female and others votes (grouping of bars) with legend and suitable title.

Program:

```
fig = plt.figure()
ax = fig.add axes([0,3,2,3])
pos=list(range(len(result df["Female "])))
width=0.25
ax.barh(pos,result df['Female '],width,alpha=0.5,color='purple',label=result df['State Name'][0])
ax.barh([p + width for p in pos],
     result df['Male'], width, alpha=0.5, color='mediumpurple', label=result df['State Name'][1])
ax.barh([p + width*2 for p in pos],
     result df['Other'], width, alpha=0.5, color='pink', label=result df['State Name'][2])
ax.set title('State vs male, female, other voters')
ax.set yticks([p + 1.5*width for p in pos])
ax.set yticklabels(result df['State Name'])
plt.ylim(min(pos)-width,max(pos)+width*4)
plt.xlim([0,max(result df['Female ']+result df['Male']+result df['Other '])])
plt.legend(['Female','Male','Other '],loc='upper right')
plt.grid()
plt.show()
```

Output:

SET - 5

PRACTICAL NO: 1

Aim: Load iris dataset from sklearn library given iris.csv file into appropriate data structure of pandas.

Program:

```
%matplotlib inline
from sklearn.datasets import load_iris
iris = load_iris()

import pandas as pd
import numpy as np
print('Your pandas version is: %s' % pd.__version__)
print('Your NumPy version is %s' % np.__version__)
from sklearn.datasets import load_iris
iris = load_iris()
iris_nparray = iris.data

iris_dataframe = pd.DataFrame(iris.data, columns=iris.feature_names)
iris_dataframe['group'] = pd.Series([iris.target_names[k]] for k in iris.target], dtype="category")
iris_dataframe
```

Output:

```
Your pandas version is: 1.4.2
Your NumPy version is 1.21.5
```

Aim: Perform Descriptive Statistics for Numeric Data, Measuring central tendency, Measuring variance and range.

Program:

- a) print(iris dataframe.mean(numeric only=True))
- b) print(iris_dataframe.median(numeric_only=True))
- c) print(iris dataframe.std())
- d) print(iris_dataframe.max(numeric_only=True) iris_dataframe.min(numeric_only=True))
- e) print(iris dataframe.quantile([0,.25,.50,.75,1]))

Output:

a)

```
sepal length (cm) 5.843333
sepal width (cm) 3.057333
petal length (cm) 3.758000
petal width (cm) 1.199333
dtype: float64
```

b)

```
sepal length (cm) 5.80
sepal width (cm) 3.00
petal length (cm) 4.35
petal width (cm) 1.30
dtype: float64
```

c)

```
      sepal length (cm)
      0.828066

      sepal width (cm)
      0.435866

      petal length (cm)
      1.765298

      petal width (cm)
      0.762238

      dtype: float64
```

d)

```
sepal length (cm) 3.6
sepal width (cm) 2.4
petal length (cm) 5.9
petal width (cm) 2.4
dtype: float64
```

e)

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0.00	4.3	2.0	1.00	0.1
0.25	5.1	2.8	1.60	0.3
0.50	5.8	3.0	4.35	1.3
0.75	6.4	3.3	5.10	1.8
1.00	7.9	4.4	6.90	2.5
				+ Code + Markdown

Aim: To Working with percentiles and defining measures of normality.

Program:

a)

```
from scipy.stats import kurtosis, kurtosistest
variable = iris_dataframe['petal length (cm)']
k = kurtosis(variable)
zscore, pvalue = kurtosistest(variable)
print('Kurtosis %0.3f z-score %0.3f p-value %0.3f' % (k, zscore, pvalue))
```

b)

```
from scipy.stats import skew, skewtest
variable = iris_dataframe['petal length (cm)']
s = skew(variable)
zscore, pvalue = skewtest(variable)
print('Skewness %0.3f z-score %0.3f p-value %0.3f' % (s, zscore, pvalue))
```

Output:

a)

```
Kurtosis -1.396 z-score -14.823 p-value 0.000
```

b)

```
Skewness -0.272 z-score -1.400 p-value 0.162
```

Aim: To Counting for Categorical Data, Understanding frequencies, Creating contingency tables.

Program:

```
a)
```

```
pcts = [0, .25, .5, .75, 1]
iris_binned = pd.concat(
   [pd.qcut(iris_dataframe.iloc[:,0], pcts, precision=1),
   pd.qcut(iris_dataframe.iloc[:,1], pcts, precision=1),
   pd.qcut(iris_dataframe.iloc[:,2], pcts, precision=1),
   pd.qcut(iris_dataframe.iloc[:,3], pcts, precision=1)],
   join='outer', axis = 1)
print(iris_dataframe['group'].value_counts())
```

b)

print(iris binned['petal length (cm)'].value counts())

c)

print(pd.crosstab(iris_dataframe['group'], iris_binned['petal length (cm)']))

Output:

a)

```
setosa 50
versicolor 50
virginica 50
Name: group, dtype: int64
```

b)

```
(0.9, 1.6] 44
(4.4, 5.1] 41
(5.1, 6.9] 34
(1.6, 4.4] 31
Name: petal length (cm), dtype: int64
```

c)

```
petal length (cm) (0.9, 1.6] (1.6, 4.4] (4.4, 5.1] (5.1, 6.9]
group
setosa
                        44
                                    6
                                               0
                                                          0
versicolor
                         0
                                   25
                                              25
                                                          0
virginica
                         0
                                    0
                                              16
                                                         34
```

Aim: To Creating Applied Visualization for EDA like boxplots.

Program:

a)

boxplots = iris_dataframe.boxplot(fontsize=9)

b)

import matplotlib.pyplot as plt
boxplots = iris_dataframe.boxplot(column='petal length (cm)', by='group', fontsize=10)
plt.suptitle("")
plt.show()

Output:

a)

b)

SET - 6

PRACTICAL NO: 1

Aim: Prepare a Pie charts by taking suitable reference.

Program:

import matplotlib.pyplot as plt %matplotlib inline

```
values = [5, 8, 9, 10, 4, 7]
colors = ['b', 'g', 'r', 'c', 'm', 'y']
labels = ['A', 'B', 'C', 'D', 'E', 'F']
explode = (0, 0.2, 0, 0, 0, 0)
```

plt.pie(values, colors=colors, labels=labels, explode=explode, autopct='%1.1f%%', counterclock=False, shadow=True) plt.title('Values')

plt.show()

Output:

Aim: Prepare a Barcharts charts by taking suitable reference.

Program:

import matplotlib.pyplot as plt %matplotlib inline

```
values = [5, 8, 9, 10, 4, 7]
widths = [0.7, 0.8, 0.7, 0.7, 0.7, 0.7]
colors = ['b', 'r', 'b', 'b', 'b']
plt.bar(range(0, 6), values, width=widths, color=colors, align='center')
plt.show()
```

Output:

Aim: Prepare a Histograms by taking suitable reference.

Program:

import numpy as np import matplotlib.pyplot as plt %matplotlib inline

x = 20 * np.random.randn(10000)

plt.hist(x, 25, range=(-50, 50), histtype='stepfilled', align='mid', color='g', label='Test Data') plt.legend() plt.title('Step Filled Histogram') plt.show()

Output:

Aim: Prepare a Boxplots by taking suitable reference.

Program:

```
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

spread = 100 * np.random.rand(100)
center = np.ones(50) * 50
flier_high = 100 * np.random.rand(10) + 100
flier_low = -100 * np.random.rand(10)
data = np.concatenate((spread, center, flier_high, flier_low))
```

plt.boxplot(data, sym='gx', widths=.75, notch=True) plt.show()

Output:

Aim: Prepare a Scatterplots by taking suitable reference.

Program:

```
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

x1 = 5 * np.random.rand(40)
x2 = 5 * np.random.rand(40) + 25
x3 = 25 * np.random.rand(20)
x = np.concatenate((x1, x2, x3))

y1 = 5 * np.random.rand(40)
y2 = 5 * np.random.rand(40) + 25
y3 = 25 * np.random.rand(20)
y = np.concatenate((y1, y2, y3))

plt.scatter(x, y, s=[100], marker='^', c='m')
plt.show()
```

Output:

Aim: Prepare a Time Series by taking suitable reference.

Program:

```
import pandas as pd
import matplotlib.pyplot as plt
import datetime as dt
%matplotlib inline

start_date = dt.datetime(2022, 10, 20)
end_date = dt.datetime(2022, 11, 5)
daterange = pd.date_range(start_date, end_date)
sales = (np.random.rand(len(daterange)) * 50).astype(int)
df = pd.DataFrame(sales, index=daterange, columns=['Sales'])

df.loc['Oct 4 2022':'Nov 04 2022'].plot()
```

df.loc['Oct 4 2022':'Nov 04 2022'].plot()
plt.ylim(0,50)
plt.xlabel('Sales Date')
plt.ylabel('Sale Value')
plt.title('Plotting Time')
plt.show()

Output:

