Data Exploration, Pattern Detection, and Anomaly Detection

Techniques I used, to find relationships in the data:

-PEARSON Correlation Method:

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\{\sum_{i=1}^{n} (x_i - \bar{x})^2\}^{\frac{1}{2}} \{\sum_{i=1}^{n} (y_i - \bar{y})^2\}^{\frac{1}{2}}}$$

-Kendall Correlation Method:

Kendall's Tau =
$$(C - D / C + D)$$

-Spearman Correlation Method:

$$\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$$

Pattern Found:

Dataset1:

■Pattern Detected in, Screentime before sleep hrs, Meal intake, and Workhours. The initial values of the columns have less instances in comparison to other half instances. Approximately, 50% data has 20% instances and 50% data has 80% instances.

Dataset2:

- -Carrier Company Name, Uniquely Identified Carrier, Source Port, Destination Port, have the values that has equal number of instances in each columns.
- -Ship beam, Ship draft and Storage Capacity have the bell shaped data, which shows the Normal Distribution.

Dataset3:

- In third dataset, we have a linear dependence on weight and inverse relation with height^2. BMI and Weight Class are also related by this:

Formula for body mass index (BMI):

$$BMI = \frac{weight}{height^2}$$

Write a Python Program that asks the user for weight and height and then displays weight class based on BMI (use the table below for this).

вмі	Weight class
below 18.5	underweight
18.5 - 24.9	normal
25.0 - 29.9	overweight
30.0 and up	Very overweight

Anomaly Detection Techniques that I used:

-Median Absolute Deviation Method:

-Found the lower bound and the upper bound of the dataset using: (let, data=x)

Lower bound = median(x) - 2.5 * MAD(x)

Upper bound = median(x)+2.5*MAD(x)

MAD = median(abs(x - median(x)))

-Inter Quartile Range (IQR method):

-Found the lower bound and the upper bound of the dataset using: (let, data=x)

Lower bound = Q1 - 1.5*IQR

Upper bound =Q3+1.5*IQR

Q1- > first quartile number (Parameter setting: (20-25 percentile))

Q3 -> Second quartile number (Parameter setting: (75-80 percentile))

IQR = Q3-Q1

-Boxplot method:

-3 Standard deviation method:

-Found the lower bound and the upper bound of the dataset using: (let, data=x)

lower bound = mean(x) - 3*std(x)

upper bound = mean(x)+3*std(x)

std -> Standard Deviation