Protokoll: Schmitt-Trigger

Tom Kranz, Philipp Hacker

13. Mai 2014

Inhaltsverzeichnis

1	Vor	bereitung	2								
	1.1	Schaltskizzen	2								
	1.2	Dimensionierung	2								
	1.3	Vorbereitungsaufgaben 1 u. 2									
2	Durchführung										
	2.1	Messgeräte	3								
	2.2	Versuchsaufgabe 1	4								
	2.3	Versuchsaufgabe 2	4								
	2.4	Versuchsaufgabe 3	4								
3	3 Auswertung										
4	4 Quellen										
5 Anhang											

1 Vorbereitung

1.1 Schaltskizzen

Abb. 1: Schaltbilder zum Schmitt-Trigger

1.2 Dimensionierung

Grundlage der Dimensionierung stellt dar, dass die Transistoren nur eine gewisse Leistung abgeben können, bevor sie überhitzen, also eine obere Grenze für den Kollektor-Emitter-Strom haben. Die Widerstände $R_{\rm C}$ sollten also angemessen groß sein, aber nicht zu groß, da der Basisstrom für T_2 zum Durchsteuern ausreichen muss. Auch muss bei der Wahl von $R_{\rm C}$ bedacht werden, dass man mit $U_{\rm a}$ eventuell ein System besteuern möchte, das $R_{\rm C}$ dann als Innenwiderstand seiner Stromquelle sieht. $R_{\rm E}$ ist maßgeblich an der Größe des Low-Potentials $U_{\rm L} \approx \frac{R_{\rm E}}{R_{\rm C} + R_{\rm E}} \cdot U_{\rm S}$ beteiligt, weswegen er kleiner als $R_{\rm C}$ gewählt werden sollte, um ein möglichst niedriges $U_{\rm L}$ zu erhalten. Des Weiteren muss $R_{\rm B}$ groß sein, um den über diesen Weg verschwendeten Strom gering zu halten. Da $R_{\rm K}$ mit $R_{\rm B}$ einen Spannungsteiler für die Basis-Emitter-Spannung von T_2 bildet, sollte dieser nicht zu groß, für einen angemessenen Basis-Emitter-Strom aber auch nicht zu klein sein. R_1 und R_2 dienen der Regelung der Schwellspannungen U_{-} und U_{+} , indem sie eine Basisvorspannung liefern; da hier auch möglichst keine Leistung verloren gehen soll, werden sie groß gewählt. Der Eingangskondensator $C_{\rm e}$ bewirkt eine Gleichstromentkopplung – er kann also weitgehend frei gewählt werden. Schließlich wurden folgende Elemente verbaut:

Tabelle 1: Spezifikationen der verwendeten Bauelemente (*: fest verbaut, hier Nennwert)

1.3 Vorbereitungsaufgaben 1 u. 2

Schmitt-Trigger werden zur Erzeugung und Flankenversteilerung von Rechteckimpulsfolgen eingesetzt. Somit dienen sie meist der Umwandlung von analogen, beliebigen Signalen $U_{\rm e}$ zu High- und Lowpotentialen, welche binär interpretiert werden können. Weiterhin nutzt man Schmitt-Trigger zur "Entprellung" von Schaltern (Auflösen des kurzzeitigen, mehrfachen Öffnens und Schließens eines Tasters) und der Schwingungserzeugung.

Die sogenannte Schalthysteresis ist die Differenz aus High- und Lowzustand des ST (High- u. Lowpotential fallen nicht zusammen). Sie bestimmt wann das Eingangssignal $U_{\rm e}$ als ein Einbzw. Ausschalten des Triggers interpretiert wird. Für eben dieses ΔU gilt näherungsweise

$$\Delta U = U_{+} - U_{-} \approx (U_{\rm E} - U_{\rm BE;Schw}) - (U_{\rm E} - U_{\rm CE;sat}) = U_{\rm BE;Schw} - U_{\rm CE;sat}$$
(1)

Abb. 2: Ausgangssignal U_a über t (schematisch; ideal)

Die Flankenversteilerung des Ausgangssignals des Schmitt-Triggers (Abb. 2) kann dadurch erreicht werden, dass mittels eines Kondensators $R_{\rm K}$ überbrückt wird. Dies hat zur Folge, dass die Spannungssprünge in den Zeitpunkten t_+ bzw. t_- vom Kollektor von T_1 direkt auf die Basis von T_2 übertragen werden können.

2 Durchführung

2.1 Messgeräte

Die Speisespannung und die verschiedenen Eingangs-Gleichspannungen lieferte das Stromversorgungsgerät Tektronix PS 280, Wechselsignale wurden mit dem Funktionsgenerator Tektronix AFG 3022B erzeugt. Gleichspannungen wurden mit dem Multimeter VOLTCRAFT-PLUS VC 920 gemessen, Wechselsignale mit dem Oszilloskop Hameg HM1508-2 dargestellt.

2.2 Versuchsaufgabe 1

In der Schaltung, welche in Abb. 1a gezeigt ist, wurden durch Variation der Eingangsspannung $U_{\rm e}$ bis zum Umschlag der Ausgangsspannung $U_{\rm a}$ die Schwellspannungen zu $U_{+}\approx 3{,}345\,{\rm V}$ bzw. $U_{-}\approx 2{,}25\,{\rm V}$ ermittelt. Die Hysteresis beträgt somit $\Delta U\approx 1{,}05\,{\rm V}$.

2.3 Versuchsaufgabe 2

Zur Bestimmung der Abhängigkeit der Kippspannungen von der Speisespannung wurde wie in der vorherigen Messung verfahren. Die Werte der Speisespannung wurden von der Stromversorgung abgelesen.

$U_{\rm S}$ in V	5	6	7	8	9	10	11	12	13	14	15
U_{+} in V	1,658	1,937	2,175	2,366	2,68	2,93	3,045	3,35	3,46	3,84	4,06
U_{-} in V	1,2056	1,3756	1,48	1,61	1,7603	1,954	2,02	2,25	2,34	2,5	2,69

2.4 Versuchsaufgabe 3

Die Schaltung aus Abb. 1b (ohne Kondensator C) wurde mit einem Sinussignal der Frequenz 1 kHz angesteuert. Ermittelt wurde die kleinste Amplitude des Signals, für welche der ST gerade noch eine Rechteckimpulsfolge erzeugte. Die Einstellung des dafür geeigneten Arbeitspunktes wurde durch die Justierung von R_2 realisiert. Für eine Speisespannung von $U_{\rm S}=12\,{\rm V}$, sowie der Entkopplungskapazität $C_{\rm e}\approx100\,{\rm nF}$ ergab sich die Peak-to-Peak-Spannung zu $V_{\rm PP;min}=1,540\,{\rm V}$. Das Potentiometer war dabei auf $R_2=5,6\,{\rm k}\Omega$ gestellt.

3 Auswertung

Der Versuch hat die Funktionen und Eigenschaften des Schmitt-Triggers gezeigt. Es konnte festgestellt werden, dass die Kippspannungen nicht einzig vom Gleichanteil des Eingangssignals, sondern auch von der Speisespannung abhängen. Dies ist in Abb. 3 dargestellt. Jedoch basiert eine Berechnung dieser Kippspannungen, wenn überhaupt, auf ungenauen Schätzungen, wie zum Beispiel dem kurz angesprochene Zusammenhang $U_+ \approx U_{\rm BE;Schw} + 0.5 \, \rm V.$ Schließlich hat sich diese Schätzung auch als nicht zutreffend ergeben, was die Notwendigkeit der Vermessung der Schaltung hervorhebt.

Abb. 3: Kippspannungen-über-Speisespannung-Diagramm

4 Quellen

- Abb. 1a, Abb. 1b, Abb. 2: "Elektronikpraktikum", B. Pompe, 2013
- Abb. 3: erstellt mit gnuplot, Version 4.6

5 Anhang

Die originalen Messwert-Aufzeichnungen liegen bei.