(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 18.12.2002 Bulletin 2002/51
- (21) Application number: 99928479.7
- (22) Date of filing: 08.06.1999

- (51) Int Cl.7: **C07D 471/04**, A61K 31/44, C07D 471/20, C07D 471/10, C07D 495/04 // (C07D471/04, 221:00), C07D209:00,(C07D495/04, 333:00), C07D221:00
- (86) International application number: PCT/US99/12874
- (87) International publication number: WO 99/064420 (16.12.1999 Gazette 1999/50)
- (54) **BETA-CARBOLINE COMPOUNDS**

BETACARBOLINVERBINDUNGEN
COMPOSES DE BETA-CARBOLINES

- (84) Designated Contracting States:

 AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL
 PT SF
- (30) Priority: 12.06.1998 US 97297 12.06.1998 US 89180 P
- (43) Date of publication of application: 28.03.2001 Bulletin 2001/13
- (73) Proprietor: SOCIETE DE CONSEILS DE RECHERCHES
 ET D'APPLICATIONS SCIENTIFIQUES S.A.S.
 75016 Paris (FR)
- (72) Inventors:
 - THURIEAU, Christophe, Alain F-75116 Paris (FR)
 - POITOUT, Lydie, Francine F-75013 Paris (FR)
 - GALCERA, Marie-Odile F-91070 Bondoufle (FR)
 - MOINET, Christophe, Philippe F-92290 Châtenay Malabry (FR)
 - GORDON, Thomas, D. Medway, MA 02053 (US)

- MORGAN, Barry, A.
 Franklin, MA 02038 (US)
- BIGG, Dennis, C., H. F-91190 Gif sur Yvette (FR)
- POMMIER, Jacques F-92700 Colombes (FR)
- (74) Representative: Stainthorpe, Vanessa J. et al Harrison Goddard Foote, Fountain Precinct, Leopold Street Sheffield S1 2QD (GB)
- (56) References cited: US-A- 5 378 803
 - Y. YUICHRO ET AL.: "Synthesis and biological activity of somatostatin analogues modified at the trytophan residue" CHEMICAL AND PHARMACEUTICAL BULLETIN., vol. 26, no. 3, 1978, pages 993-996, XP002118335 PHARMACEUTICAL SOCIETY OF JAPAN. TOKYO., JP ISSN: 0009-2363
 - POITOUT ET AL: 'Identification of Potent Non-Peptide Somatostatin Antagonists with sst3 Selectivity' J. MED. CHEM. vol. 44, no. 18, 2001, pages 2990 - 3000

o 1 086 101 B

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

5

20

30

45

[0001] The present invention is directed to compounds of formulas (I) and (II) and compositions containing said compounds which bind selectively to somatostatin receptor subtypes and the use of said compounds for treating medical disorders which are mediated by somatostatin receptor subtypes. Somatostatin (somatotropin release inhibiting factor, SRIF), a tetradecapeptide hormone, originally isolated from bovine hypothalami (Brazeau, P. et al., Science 179, 77-79, 1973) has been shown to have a wide range of regulatory effects on the release of a variety of hormones such as growth hormone, prolactin, glucagon, insulin, gastrin (Bloom, S.R. and Poldack, J.M., Brit. Med. J. 295, 288-289, 1987). In addition, antiproliferative properties (Reichlin, S., N. Engl. J. Med. 309, 1495-1501, 1983) have been obtained with somatostatin analogs in metastatic prostatic cancer (Parmar, H. et al, Clin. Exp. Metastasis, 10, 3-11, 1992) and in several other neuroendocrine neoplasms in man (Anthony, L. et al, Acta Oncol., 32, 217-223, 1993). Metabolism of somatostatin by aminopeptidases and carboxypeptidases leads to a short duration of action.

[0002] The actions of somatostatin are mediated via membrane bound receptors. The heterogeneity of its biological functions has led to studies to identify structure-activity relationships of peptides analogs at the somatostatin receptors which resulted in the discovery of five receptor subtypes (Yamada, et al, Proc. Natl. Acad. Sci. U.S.A, 89, 251-255, 1992; Raynor, K. et al, Mol. Pharmacol., 44, 385-392, 1993). The functional roles of these receptors are under extensive investigation. Binding to the different types of somatostatin subtypes have been associated with the treatment of the following conditions and/or diseases. Activation of types 2 and 5 have been associated with growth hormone suppression and more particularly GH secreting adenomas (Acromegaly) and TSH secreting adenomas. Activation of type 2 but not type 5 has been associated with treating prolactin secreting adenomas. Other indications associated with activation of the somatostatin subtypes are restenosis, inhibition of insulin and/or glucagon and more particularly diabetes mellitus, hyperlipidemia, insulin insensitivity, Syndrome X, angiopathy, proliferative retinopathy, dawn phenomenon and Nephropathy; inhibition of gastric acid secretion and more particularly peptic ulcers, enterocutaneous and pancreaticocutaneous fistula, irritable bowel syndrome, Dumping syndrome, watery diarrhea syndrome, AIDS related diarrhea, chemotherapy-induced diarrhea, acute or chronic pancreatitis and gastrointestinal hormone secreting tumors; treatment of cancer such as hepatoma; inhibition of angiogenesis, treatment of inflammatory disorders such as arthritis; chronic allograft rejection; angioplasty; preventing graft vessel and gastrointestinal bleeding. Somatostatin agonists can also be used for decreasing body weight in a patient.

[0003] In drug research, it is a key issue to minimize side effects by developing highly potent and selective drug molecules. Recent work on the development of nonpeptide structures (Hirschmann, R. et al, J. Am. Chem. Soc. 115, 12550-12568, 1993; Papageorgiou, C. and Borer, X., Bioorg. Med. Chem. Lett. 6, 267-272, 1996) have described compounds with low somatostatin receptor affinity.

[0004] Further, compounds of Formula I and II are sodium channel blocker and, thus, exhibit useful pharmacological properties, especially utility for the alleviation of neuropathic pain. Neuropathic pain can be described as pain associated with damage or permanent alteration of the peripheral or central nervous system. Clinical manifestations of neuropathic pain include a sensation of burning or electric shock, feelings of bodily distortion, allodynia and hyperpathia.

[0005] Sodium channel-blocking agents have been reported to be effective in the treatment of various disease states. They are in particular useful as local anesthetics, and in the treatment of arrhythmia. It has also been reported for many years that sodium channel-blocking agents may be useful in the treatment of pain, including neuropathic pain; see, for example, Tanelian et al., Pain Forum., 4(2), 75-80, (1995). There is evidence that sodium channel-blocking agents selectively suppress ectopic neural firing in injured nerves, and it is via this mechanism that they are believed to be useful for relieving pain. However, studies carried out on well known sodium channel-blocking agents, for example carbamazepine, phenytoin, lidocaine, mexiletine, and the like, indicate that these agents are not very effective for the treatment of neuropathic pain conditions at moderate dose levels, and that even at these moderate dose levels they are associated with a range of undesirable side effects, such as vertigo, nausea, sommolence, tremor, slurred speech, etc. Pre-clinical evidence demonstrates that sodium channel-blocking agents selectively suppress abnormal ectopic neural firing in injured peripheral and central neurons, and it is via this mechanism that they are believed to be useful for relieving pain. Consistent with this hypothesis, it has been shown that sodium channel accumulate in the peripheral nerve at sites of axonal injury (Devor et al., J. Neurosci, 1993, 132, 1976-1992). Alterations in either the level of expression or distribution of sodium channels with an injured nerve, therefore, have a major influence on the pathophysiology of pain associated with this type of trauma. This concept is supported by the relative success of employing sodium channel modulating agents (e.g., anticonvulsants, local anesthesics) for the treatment of neuroplastic pain. However, pain relief has often been obtained concomitantly with numerous adverse events and/or limitations in efficacy which have restricted tolerability of these drugs. It can be seen that a need still exists for an orally active agent that is effective for the treatment of neuropathic pain, but having fewer side effects.

[0006] Another aspect of this invention relates to the use of a compound of Formula I or II for treating neuropathic pain conditions in a mammal that is responsive to sodium channel-blocking agents including: peripheral neuropathies, such as trigeminal neuralgia, postherapeutic neuralgia, radiculopathy, and neuropathy secondary to metastatic infil-

tration, adiposis dolorosa and burn pain; and central pain conditions following stroke, thalamic lesions and multiple sclerosis, by administering a therapeutically effective amount of a compound of Formula I or II to the mammal.

[0007] As a result, the compounds of the invention are indicated for the treatment of any pathology, disorder or clinical condition involving glutamate release in their etiology, including psychiatric disorders (such as schizophrenia, depression, anxiety, panic attacks, attention deficit and cognitive disorders, social withdrawal), hormonal conditions (excess GH, e.g. in the treatment of diabetes mellitus, angiopathy and acromegaly, or LH secretion, e.g., prostrate hypertrophy, menopausal syndrome, corticosterone secretion in stress), metabolic inducted brain damage (hypoglycaemia, non-ketotic hyperglycinaemia (glycine encephalopathy), sulphite oxidase deficiency, hepatic encephalopathy associated with liver failure), emesis, spasticity, epilepsy, tinnitus, pain (e.g. cancer pain, arthritis) and drug (ethanol, opiates, including synthetics with opiate-like effects, e.g. pethidine, methadone etc., cocaine, amphetamine, barbiturates and other sedatives, benzodiazephines, abuse and withdrawal.

[0008] Moreover, a compound of the present invention is indicated in the treatment of any pathology involving neuronal damage, for example neurodegenerative disorders such as Alzheimer's, Huntington's or Parkinson's diseases, virus (including HIV)-induced neurodegeneration, Amyotrophic lateral sclerosis (ALS), supra-nuclear palsy, olivopontocerebellar atrophy (OPCA), and the actions of environmental, exogenous neurotoxins.

Summary of the Invention

15

20

25

30

35

40

45

50

55

[0009] In one aspect, the present invention is directed to a compound of formula (I),

the racemic-diastereomeric mixtures and optical isomers of said compound of formula (I), the pharmaceutically-acceptable salts or prodrugs thereof or a pharmaceutically acceptable salt of said prodrug, wherein

---- represents an optional bond;

X is N or $N-R^4$, where X is N when both optional bonds are present and X is $N-R^4$ when the optional bonds are not present;

R¹ is H, $-(CH_2)_m$ -C(O)- $-(CH_2)_m$ -Z¹, $-(CH_2)_m$ -Z¹, $-(CH_2)_m$ -O-Z¹ or $-(C_0-C_6)$ alkyl-C(O)-NH- $-(CH_2)_m$ -Z³; Z¹ is an optionally substituted moiety selected from the group consisting of $-(C_1-C_{12})$ alkyl, benzo[b] thiophene, phenyl, naphthyl, benzo[b] furanyl, thiophene, isoxazolyl, indolyl,

 R^2 is (C_1-C_{12}) alkyl, (C_0-C_6) alkyl- $C(O)-O-Z^5$, (C_0-C_6) alkyl- $C(O)-NH-(CH_2)_m-Z^3$ or optionally substituted phenyl;

 Z^5 is H, (C_1-C_{12}) alkyl or $(CH_2)_m$ -aryl; Z^3 is amino, (C_1-C_{12}) alkylamino, N,N-di- (C_1-C_{12}) alkylamino, -NH-C(O)-O- $(CH_2)_m$ -phenyl, -NH-C(O) -O- $(CH_2)_m$ -(C₁-C₆)alkyl or an optionally substituted moiety selected from the group consisting of imidazolyl, pyridinyl and morpholinyl, piperidinyl, piperazinyl, pyrazolidinyl, furanyl and thiophene;

R3 is H;

5

10

15

20

25

35

40

45

50

 R^4 is H, $-C(=Y)-N(X^1X^2)$, $C(=O)X^2$ or X^2 ;

Y is O or S;

 X^2 is $-(CH_2)_m - Y^1 - X^3$;

 X^3 is H or an optionally substituted moiety selected from the group consisting of (C_1-C_{12}) alkyl, (C_3-C_8) cycloalkyl, (C_1-C_{12}) alkoxy, aryloxy, (C_1-C_{12}) alkylamino, N_1 O-di- (C_1-C_{12}) alkylamino, N_2 O-di- (C_1-C_{12}) alkylamino, N_3 O-di- (C_1-C_1) alkylamino, N_3 O-di- $(C_1-C$

R⁵ is (C₁-C₁₂)alkyl, -(CH₂)_m-Y¹-(CH₂)_m-phenyl-(X¹)_n, (C₃-C₁₂)cycloalkyl, -(CH₂)_m-S-(C₁-C₁₂)alkyl, (C₁-C₁₂)alkyl-S-S-(C₁-C₁₂)alkyl, -(CH₂)_m-(C₁-C₁₂)alkenyl or an optionally substituted moiety selected from the group consisting of phenyl, furanyl, thiophene, pyrrolyl, pyridinyl and

Y¹ is O, S, NH or a bond;

R⁶ is H or SO₂-phenyl;

R7 is H, alkyl optionally substituted with alkoxy or dialkylamino;

wherein an optionally substituted moiety or optionally substituted phenyl is optionally substituted by one or more substituents, each independently selected from the group consisting of CI, F, Br, I, CF₃, NO₂, OH, SO₂NH₂, CN, N₃, -OCF₃, (C₁-C₁₂)alkoxy, -(CH₂)_m-phenyl-(X¹)_n, -NH-CO-(C₁-C₆)alkyl, -S-phenyl-(X¹)_n, -O-(CH₂)_m-phenyl-(X¹)_n, -(CH₂)_m-C(O) -O-(C₁-C₆)alkyl, -(CH₂)_m-C(O)-(C₁-C₆)alkyl, -O-(CH₂)_m-NH₂, -O-(CH₂)_m-NH-(C₁-C₆)alkyl, -O-(CH₂)_m-N-di-((C₁-C₆)alkyl) and -(C₀-C₁₂)alkyl-(X¹)_n;

 X^1 for each occurrence is independently selected from the group consisting of hydrogen, Cl, F, Br, I, NO₂, OH, -CF₃, -OCF₃, (C₁-C₁₂)alkyl, (C₁-C₁₂)alkoxy, -S-(C₁-C₆)alkyl, -(CH₂)_m-amino, -(CH₂)_m-NH-(C₁-C₆)alkyl, -(CH₂)_m-NH-(C₁-C₆)alkyl, -(CH₂)_m-NH-(C₃-C₆)cycloalkyl;

m for each occurrence is independently 0 or an integer from 1 to 6; and

n for each occurrence is independently an integer from 1 to 5.

[0010] A preferred compound of formula (I) is where X is NH; R¹ is H; R² is -CH(CH₃)₂-CO-NH-(CH₂)_m-Z³ where m in the definition of R² is 1, 2 or 3;

Z³ is imidazolyl, pyridinyl, morpholino, or N,N-di-ethylamino;

 R^5 is propyl, n-butyl, n-pentyl, -(CH₂)-O-(CH₂)-phenyl, 2-nitro-3-OMe-phenyl, p-t-Bu-phenyl, m-OMe-phenyl, o-OMe-phenyl, p-nitro-phenyl, -(CH₂)₂-S-Me, cyclohexyl, m-Br-phenyl, p-S-Me-phenyl, p-N,N-dimethylamino-phenyl, m-methyl-phenyl or

R⁵ is H; and R⁷ is H.

[0011] Another preferred compound of formula (I) is where X is NH; R1 is H; R2 is phenyl;

R⁵ is propyl, n-butyl, n-pentyl, n-heptyl, isobutyl, neopentyl, cyclopropyl, cyclohexyl, -(CH₂)₂-S-Me, phenyl, -(CH₂) -O-(CH₂)-phenyl, 2-nitro-3-OMe-phenyl, p-t-Bu-phenyl, o-OMe-phenyl, m-OMe-phenyl, p-OMe-phenyl, 3,4,5-tri-OMe-phenyl, p-butoxy-phenyl, 3-ethoxy-4-methoxy-phenyl, o-nitro-phenyl, p-nitro-phenyl, p-OCF₃-phenyl, o-CF₃-phenyl, 3-F-4-OMe-phenyl, o-F-phenyl, m-Br-phenyl, p-Br-phenyl, 2,4-di-Cl-phenyl, 3,4-di-Cl-phenyl, p-(3-(N,N-dimethylamino)propoxy)phenyl, -(CH₂)₂-S-Me, cyclohexyl, p-(Me-CO-NH-)-phenyl, p-t-Bu-phenyl, p-OH-phenyl, p-(S-Me)-phenyl, p(-S-t-Bu)-phenyl, p-N,N-dimethylamino-phenyl, m-methyl-phenyl, 3-OH-4-Ome-phenyl, p-phenyl-phenyl

nyl,

10

15

20

25

30

35

40

5 O NO₂ O or

R⁶ is H; and R⁷ is H.

[0012] Another preferred compound of formula (I) is where X is NH; R^1 is H; R^2 is p-OMe-phenyl or p-nitro-phenyl; R^5 is n-butyl, n-pentyl, n-hexyl, isobutyl, cyclohexyl, -(CH_2)₂-S-Me, phenyl, m-OMe-phenyl, 2-nitro-3-OMe-phenyl, p-nitro-phenyl, p-thiomethyl-phenyl, m-Br-phenyl, 2-OMe-4-dimethylamino-phenyl, p-(3-(N,N-dimethyl-amino)propoxy)phenyl, p-dimethylamino-phenyl, 3-nitro-4-Cl-phenyl, -(CH_2)-O-(CH_2)-phenyl or

R⁶ is H; and R⁷ is H.

[0013] In another aspect, the present invention is directed to a compound of formula (II),

the racemic-diastereomeric mixtures and optical isomers of said compound of formula (II), the pharmaceutically-acceptable salts or prodrugs thereof or a pharmaceutically acceptable salt of said prodrug, wherein

45 ---- represents an optional bond;

J1 is N-R6 or S;

J² is N-R¹, O or S;

X is N or N-R⁴, where X is N when both optional bonds are present and X is N-R⁴ when the optional bonds are not present;

 R^1 is H, $-(CH_2)_m$ -C(O)- $(CH_2)_m$ -Z¹, $-(CH_2)_m$ -Z¹, $-(CH_2)_m$ -O-Z¹ or $(C_0$ -C₆)alkyl-C(O)-NH- $(CH_2)_m$ -Z³; Z¹ is an optionally substituted moiety selected from the group consisting of $(C_1$ -C₁₂)alkyl, benzo[b]thiophene, phenyl, naphthyl, benzo[b]furanyl, thiophene, isoxazolyl, indolyl,

55

 R^2 is (C_1-C_{12}) alkyl, (C_0-C_6) alkyl- $C(O)-O-Z^5$, (C_0-C_6) alkyl- $C(O)-NH-(CH_2)_m-Z^3$ or optionally substituted phenyl;

10

5

 Z^5 is H, (C_1-C_{12}) alkyl or $(CH_2)_m$ -aryl;

 Z^3 is amino, (C_1-C_{12}) alkylamino, N,N-di- (C_1-C_{12}) alkylamino, -NH-C(O)-O- $(CH_2)_m$ -phenyl, -NH-C(O)-O- $(CH_2)_m$ -(C₁-C₆)alkyl or an optionally substituted moiety selected from the group consisting of phenyl, imidazolyl, pyridinyl and morpholinyl, piperidinyl, piperazinyl, pyrazolidinyl, furanyl and thiophene;

15

20

 R^3 is H, (C_1-C_6) alkyl or optionally substituted phenyl; R^4 is H, $-C(=Y)-N(X^1X^2)$, $C(=O)X^2$ or X^2 ;

Y is O or S:

 X^2 is H or -(CH₂)_m-Y¹-X³;

 X^3 is H or an optionally substituted moiety selected from the group consisting of (C_1-C_{12}) alkyl, (C_3-C_8) cycloalkyl, (C_1-C_{12}) alkoxy, aryloxy, (C_1-C_{12}) alkylamino, N,N-di- (C_1-C_{12}) alkylamino, -CH-di- (C_1-C_{12}) alkoxy or phenyl;

25

 R^5 and R^8 are each independently selected from the group consisting of H, (C_1-C_{12}) alkyl, $-(CH_2)_m-Y^1-(CH_2)_m$ -phenyl- $(X^1)_n$, (C_3-C_{12}) cycloalkyl, (C_3-C_{12}) cycloalkenyl, $-(CH_2)_m-S-(C_1-C_{12})$ alkyl, (C_1-C_{12}) alkyl-S-S- (C_1-C_{12}) alkyl, $-(CH_2)_m-(C_1-C_{12})$ alkenyl and an optionally substituted moiety selected from the group consisting of phenyl, furanyl, thiophene, pyrrolyl, pyridinyl and

30

$$C_1$$
- C_4)alkyl C_0

35

provided that R^5 and R^8 are not both H at the same time; or R^5 and R^8 are taken together with the carbon atom to which they are attached to form

40

45

spiro(C₄-C₁₂)cycloalkyl,

50

55

Y¹ is O, S, NH or a bond;

A is a bond, -CO-, -C(O)O-, -C(O)NH-, -C(S)NH-, or -SO₂-;

B is a bond or $-(CH_2)_{q}$, where q is an integer from 1 to 6;

J³ is H, (C₁-C₆)alkyl, optionally substituted phenyl, optionally substituted heteroaryl or N(R⁹R¹⁰), where R⁹

and R¹⁰ are each independently selected from the group consisting of (C_1-C_6) alkyl, and optionally substituted phenyl, or R⁹ and R¹⁰ are taken together with the nitrogen to which they are attached to form a ring having 5 to 8 members including the nitrogen atom that R⁹ and R¹⁰ are attached to, where one of the ring members may optionally be an oxygen atom or NR¹¹, where R¹¹ is (C_1-C_6) alkyl, $-C(O)-(C_1-C_6)$ alkyl, $-C(O)-N(V^1V^2)$, $-C(S)-N(V^1V^2)$, or optionally-substituted-phenyl- (C_0-C_6) alkyl-, where V¹ and V² are each independently H, (C_1-C_6) alkyl or optionally-substituted-phenyl- (C_0-C_6) alkyl;

R⁶ is H or SO₂-phenyl;

5

10

15

20

25

30

35

40

45

50

55

wherein an optionally substituted moiety or optionally substituted phenyl is optionally substituted by one or more substituents, each independently selected from the group consisting of CI, F, Br, I, CF₃, NO₂, OH, SO₂NH₂, CN, N₃, -OCF₃, (C₁-C₁₂)alkoxy, -(CH₂)_m-phenyl-(X¹)_n, -NH-CO-(C₁-C₆)alkyl, -S-(C₁-C₁₂)alkyl, -S-phenyl-(X¹)_n, -O-(CH₂)_m-Phenyl-(X¹)_n, -(CH₂)_m-C(O)-O-(C₁-C₆)alkyl, -(CH₂)_m-C(O)-(C₁-C₆)alkyl, -O-(CH₂)_m-NH₂, -O-(CH₂)_m-NH-(C₁-C₆)alkyl, -O-(CH₂)_m-N-di-((C₁-C₆)alkyl) and -(C₀-C₁₂)alkyl-(X¹)_n;

 X^1 for each occurrence is independently selected from the group consisting of hydrogen, Cl, F, Br, I, NO₂, OH, -CF₃, -OCF₃, (C₁-C₁₂)alkyl, (C₁-C₁₂)alkoxy, -S-(C₁-C₆)alkyl, -(CH₂)_m-amino, -(CH₂)_m-NH-(C₁-C₆)alkyl, -(CH₂)_m-NH-(C₃-C₆)cycloalkyl;

m for each occurrence is independently 0 or an integer from 1 to 6; and

n for each occurrence is independently an integer from 1 to 5.

[0014] A preferred group of compounds of the compounds of formula (II) are those having the formula (IIa)

wherein R3 is H or methyl;

R4 is H or methyl:

R⁵ is H, methyl, ethyl, butyl, pentyl or hexyl;

R8 is ethyl, butyl, pentyl, hexyl, or cyclohexyl;

or R^5 and R^8 are taken together with the carbon to which they are attached to form spirocyclohexyl, spirocycloheptyl, spiroadamantyl,

or

5

; where A is a bond or -C(O)O- ; B is a bond, -(CH $_2$)- or -(CH $_2$) $_2$ -; J 3 is H, or phenyl ; and R 7 is H, Me, F, Cl, OH, -O-methyl or -O-CH $_2$ -phenyl

10

[0015] A more preferred group of compounds of the formula (IIa) are those compounds wherein:

 ${\sf R}^3,\,{\sf R}^4$ and ${\sf R}^7$ are each hydrogen, ${\sf R}^5$ and ${\sf R}^8$ are together

15

$$\langle \ \rangle$$

20

and the imidazolyl is in the R-configuration; R^3 , R^4 and R^7 are each hydrogen, R^5 and R^8 are together

25

30

and the imidazolyl is in the R-configuration; R^3 , R^4 and R^7 are each hydrogen, R^5 and R^8 are together

35

40

and the imidazolyl is in the R-configuration;

R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are together

45

and the imidazolyl is in the R-configuration or its hydrochloride salt; R^3 is methyl, R^4 and R^7 are each hydrogen, R^5 and R^8 are each n-butyl and the imidazolyl is in the R-configuration;

50 R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are together

and the imidazolyl is in the R-configuration, or its hydrochloride salt;

R³ and R⁴ are each hydrogen, R⁷ is 6-O-CH₂-phenyl, R⁵ and R⁸ are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations:

R3, R4 and R7 are each hydrogen, R5 and R8 are together

5

N-COOEt

10

and the imidazolyl is in the R-configuration, or its hydrochloride salt; R^3 , R^4 and R^7 are each hydrogen, R^5 and R^8 are together

15

20

25

30

and the imidazolyl is in the R-configuration;

 R^3 and R^7 are each hydrogen, R^4 is methyl, R^5 and R^8 are each n-butyl and the imidazolyl is in the R-configuration; R^3 , R^4 and are each hydrogen, R^7 is 7-fluoro, R^5 and R^8 are each n-pentyl and the imidazolyl is the racemic mixture of the S- and R-configurations;

R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are each n-hexyl and the imidazolyl is in the R-configuration;

 R^3 , R^4 and R^7 are each hydrogen, R^5 is hydrogen and R^8 is hexyl in the S-configuration and the imidazolyl is in the R-configuration, or its fumarate salt;

R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are each n-butyl and the imidazolyl is in the R-configuration, or its fumarate salt;

R3, R4 and R7 are each hydrogen, R5 and R8 are together

35

40

45

50

55

and the imidazolyl is in the R-configuration;

R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are each n-butyl and the imidazolyl is in the S-configuration;

R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are each ethyl and the imidazolyl is in the R-configuration:

R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are each n-pentyl and the imidazolyl is in the R-configuration:

R³, R⁴ and R⁷ are each hydrogen, R⁵ is methyl and R⁸ is cyclohexyl and the imidazolyl is in the R-configuration; R³ and R⁴ are each hydrogen, R⁷ is 6-methyl R⁵ and R⁸ are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations;

R³ and R⁴ are each hydrogen, R⁷ is 7-fluoro, R⁵ and R⁸ are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations;

R³ and R⁴ are each hydrogen, R⁷ is 6-methoxy, R⁵ and R⁸ are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations:

R³ and R⁴ are each hydrogen, R⁷ is 6-hydroxy, R⁵ and R⁸ are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations;

R³ and R⁴ are each hydrogen, R⁷ is 6-fluoro, R⁵ and R⁸ are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations, or its hydrochloride salt:

R³ and R⁴ are each hydrogen, R⁷ is 8-methyl, R⁵ and R⁸ are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations;

 R^3 and R^4 are each hydrogen, R^7 is 6-methyl, R^5 and R^8 are each n-pentyl and the imidazolyl is a racemic mixture of the S- and R-configurations; or

R³ and R⁴ are each hydrogen, R⁷ is 6-chloro, R⁵ and R⁸ are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations.

[0016] An even more preferred group of compounds of the formula (IIa) are those compounds selected from the group consisting of

 R^3 , R^4 and R^7 are each hydrogen, R^5 is hydrogen and R^6 is hexyl in the S-configuration and the imidazolyl is in the R-configuration, or its fumarate salt;

R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are each n-butyl and the imidazolyl is in the R-configuration, or its furnarate salt:

R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are together

15

25

30

35

40

50

5

10

and the imidazolyl is in the R-configuration;

R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are each n-butyl and the imidazolyl is in the S-configuration;

R3, R4 and R7 are each hydrogen, R5 and R8 are each ethyl and the imidazolyl is in the R-configuration;

R3, R4 and R7 are each hydrogen, R5 and R8 are each n-pentyl and the imidazolyl is in the R-configuration;

R³, R⁴ and R⁷ are each hydrogen, R⁵ is methyl and R⁸ is cyclohexyl and the imidazolyl is in the R-configuration; R³ and R⁴ are each hydrogen, R⁷ is 6-methyl R⁵ and R⁸ are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations;

R³ and R⁴ are each hydrogen, R⁷ is 7-fluoro, R⁵ and R⁸ are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations;

 R^3 and R^4 are each hydrogen, R^7 is 6-methoxy, R^5 and R^8 are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations;

R³ and R⁴ are each hydrogen, R⁷ is 6-hydroxy, R⁵ and R⁸ are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations;

R³ and R⁴ are each hydrogen, R⁷ is 6-fluoro, R⁵ and R⁸ are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations, or its hydrochloride salt;

R³ and R⁴ are each hydrogen, R⁷ is 8-methyl, R⁵ and R⁸ are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations;

R³ and R⁴ are each hydrogen, R⁷ is 6-methyl, R⁵ and R⁸ are each n-pentyl and the imidazolyl is a racemic mixture of the S- and R-configurations; and

 R^3 and R^4 are each hydrogen, R^7 is 6-chloro, R^5 and R^8 are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations.

[0017] In another aspect, this invention is directed to a pharmaceutical composition comprising one or more of a compound of formula (I) or formula (II) or a pharmaceutically acceptable salt thereof, as defined hereinabove, and a pharmaceutically acceptable carrier.

[0018] In yet another aspect, the present invention is directed to a method of eliciting an agonist effect from one or more of a somatostatin subtype receptor in a subject in need thereof, which comprises administering a compound of formula (I) or (II) or a pharmaceutically acceptable salt thereof, as described hereinabove, to said subject.

[0019] In still another aspect, the present invention is directed to a method of eliciting an antagonist effect from one or more of a somatostatin subtype receptor in a subject in need thereof, which comprises administering a compound of formula (I) or (II) or a pharmaceutically acceptable salt thereof, as described hereinabove, to said subject.

[0020] In a further aspect, the present invention is directed to a method of binding one or more somatostatin subtype receptor in a subject in need thereof, which comprises administering a compound of formula (I) or (II) or a pharmaceutically acceptable salt thereof, as described hereinabove, to said subject.

[0021] In an even further aspect, this invention is directed to a method of treating acromegaly, restenosis, Crohn's disease, systemic sclerosis, external and internal pancreatic pseudocysts and ascites, VIPoma, nesidoblastosis, hyperinsulinism, gastrinoma, Zollinger-Ellison Syndrome, diarrhea, AIDS related diarrhea, chemotherapy related diarrhea, scleroderma. Irritable Bowel Syndrome, pancreatitis, small bowel obstruction, gastroesophageal reflux, duodenogastric reflux, Cushing's Syndrome, gonadotropinoma, hyperparathyroidism, Graves' Disease, diabetic neurop-

athy, Paget's disease, polycystic ovary disease, cancer, cancer cachexia, hypotension, postprandial hypotension, panic attacks, GH secreting adenomas and TSH secreting adenomas, in a subject in need thereof, which comprises administering a compound of formula (I) or (II) or a pharmaceutically acceptable salt thereof, as described hereinabove to said subject.

[0022] Another aspect of this invention provides a method of treating diabetes mellitus, hyperlipidemia, insulin insensitivity, Syndrome X, angiopathy, proliferative retinopathy, dawn phenomenon and Nephropathy; inhibition of gastric acid secretion and more particularly peptic ulcers, enterocutaneous and pancreaticocutaneous fistula, Dumping syndrome, watery diarrhea syndrome, acute or chronic pancreatitis and gastrointestinal hormone secreting tumors, inhibition of angiogenesis, treatment of inflammatory disorders such as arthritis, chronic allograft rejection, angioplasty, preventing graft vessel and gastrointestinal bleeding in a subject in need thereof, which comprises administering a compound of formula (I) or (II) or a pharmaceutically acceptable salt thereof, as described hereinabove to said subject. [0023] In still another aspect, this invention provides a method of inhibiting the proliferation of helicobacter pylori in a subject in need thereof, which comprises administering a compound of formula (I) or (II) or a pharmaceutically acceptable salt thereof, as described hereinabove, to said subject.

[0024] In still another aspect, this invention provides a method of blocking sodium channel in a subject in need thereof, which comprises administering a compound of formula (I) or a pharmaceutically acceptable salt thereof, to said subject.

[0025] In still another aspect, this invention provides a method of blocking sodium channel in a subject in need thereof, which comprises administering a compound of formula (II) or a pharmaceutically acceptable salt thereof, to said subject.

20

30

[0026] In still another aspect, this invention provides a method of alleviating neuropathic pain in a subject in need thereof, which comprises administering a compound of formula (I) or a pharmaceutically acceptable salt thereof, to said subject.

[0027] In still another aspect, this invention provides a method of alleviating neuropathic pain in a subject in need thereof, which comprises administering a compound of formula (II) or a pharmaceutically acceptable salt thereof, to said subject.

[0028] In still another aspect, this invention provides a pharmaceutical composition for use as a local anesthetic, comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof, and optionally a pharmaceutically acceptable diluent.

[0029] In still another aspect, this invention provides a pharmaceutical composition for use as a local anesthetic, comprising a compound of formula (II) or a pharmaceutically acceptable salt thereof, and optionally a pharmaceutically acceptable diluent.

[0030] In still another aspect, this invention provides a method of treating any pathology, disorder or clinical condition involving glutamate release in their etiology in a subject in need thereof, comprising administering a compound of formula (I) or a pharmaceutically acceptable salt thereof, to said subject. A preferred method of the immediately foregoing method is wherein the pathology, disorder or clinical condition is selected from the group consisting of psychiatric disorders, hormonal conditions, metabolic inducted brain damage, sulphite oxidase deficiency, hepatic encephalopathy associated with liver failure, emesis, spasticity, epilepsy, tinnitus, pain and drug abuse and withdrawal.

[0031] In still another aspect, this invention provides a method of treating any pathology, disorder or clinical condition involving glutamate release in their etiology in a subject in need thereof, comprising administering a compound of formula (II) or a pharmaceutically acceptable salt thereof, to said subject. A preferred method of the immediately foregoing method is wherein the pathology, disorder or clinical condition is selected from the group consisting of psychiatric disorders, hormonal conditions, metabolic inducted brain damage, sulphite oxidase deficiency, hepatic encephalopathy associated with liver failure, emesis, spasticity, epilepsy, tinnitus, pain and drug abuse and withdrawal.

[0032] In still another aspect, this invention provides a method of treating any pathology involving neuronal damage in a subject in need thereof, comprising administering a compound of formula (I) or a pharmaceutically acceptable salt thereof, to said subject. A preferred method of the immediately foregoing method is wherein the pathology is selected from the group consisting of Alzheimer's disease, Huntington's disease, Parkinson's diseases, virus (including HIV)-induced neurodegeneration, amyotrophic lateral sclerosis (ALS), supra-nuclear palsy, olivoponto-cerebellar atrophy (OPCA), and the actions of environmental, exogenous neurotoxins.

[0033] In still another aspect, this invention provides a method of treating any pathology involving neuronal damage in a subject in need thereof, comprising administering a compound of formula (II) or a pharmaceutically acceptable salt thereof, to said subject. A preferred method of the immediately foregoing method is wherein the pathology is selected from the group consisting of Alzheimer's disease, Huntington's disease, Parkinson's diseases, virus (including HIV)-induced neurodegeneration, amyotrophic lateral sclerosis (ALS), supra-nuclear palsy, olivoponto-cerebellar atrophy (OPCA), and the actions of environmental, exogenous neurotoxins.

[0034] In still another aspect, this invention provides a method of treating arrhythmia in a subject in need thereof, comprising administering a compound of formula (I) or a pharmaceutically acceptable salt thereof, to said subject.

[0035] In still another aspect, this invention provides a method of treating arrhythmia in a subject in need thereof, comprising administering a compound of formula (II) or a pharmaceutically acceptable salt thereof, to said subject.

[0036] In still another aspect, this invention provides a method of treating epilepsy in a subject in need thereof, comprising administering a compound according to claim 1 or a pharmaceutically acceptable salt thereof, to said subject.

[0037] In still another aspect, this invention provides a method of treating epilepsy in a subject in need thereof, comprising administering a compound according to claim 12 or a pharmaceutically acceptable salt thereof, to said subject.

Detailed Description of the Invention

5

10

15

25

30

35

[0038] One of ordinary skill will recognize that certain substituents listed in this invention may have reduced chemical stability when combined with one another or with heteroatoms in the compounds. Such compounds with reduced chemical stability are not preferred.

[0039] In general, the compounds of Formula (I) and (II) can be made by processes which include processes known in the chemical arts for the production of compounds. Certain processes for the manufacture of Formula (I) and (II) compounds are provided as further features of the invention and are illustrated by the following reaction schemes and examples.

[0040] All of the references and patents cited throughout this disclosure are incorporated herein by reference.

20 [0041] In the above structural formulae and throughout the instant application, the following terms have the indicated meanings unless expressly stated otherwise:

[0042] The alkyl groups are intended to include those alkyl groups of the designated length in either a straight or branched configuration. Exemplary of such alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tertiary butyl, pentyl, isopentyl, isopentyl, isopentyl, and the like.

[0043] When the definition C₀-alkyl occurs in the definition, it means a single covalent bond.

[0044] The alkoxy groups specified above are intended to include those alkoxy groups of the designated length in either a straight or branched configuration. Exemplary of such alkoxy groups are methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, tertiary butoxy, pentoxy, isopentoxy, hexoxy, isohexoxy and the like.

[0045] The term halogen or halo is intended to include the halogen atoms fluorine, chlorine, bromine and iodine.

[0046] The term cycloalkyl is intended to include a mono-cycloalkyl (e.g., cyclopentyl, cyclohexyl, etc.), a bi-cycloalkyl (e.g., bicyclo[2.2.1]hepta-2,5-diene, etc.) or a tricycloalkyl group (e.g., adamantyl, etc.) of the indicated carbon number known to those of skill in the art, optionally having double or triple bonds therein.

[0047] The term anyl is intended to include aromatic rings known in the art, which can be mono-cyclic, bi-cyclic or tri-cyclic, such as phenyl, naphthyl, indenyl, azulenyl and anthracene.

[0048] The term heterocycle includes mono-cyclic, bi-cyclic and tri-cyclic systems having one or more heteroatoms, such as oxygen, nitrogen and/or sulfur. The ring systems may be aromatic, for example pyridine, indole, quinoline, pyrimidine, thiophene (also known as thienyl), furan, benzothiophene, tetrazole, dihydroindole, indazole, N-formylindole, benzimidazole, thiazole, and thiadiazole. The ring systems may be nonaromatic, for example pyrrolidine, piperidine, morpholine and the like.

40 [0049] What is meant by the following description, which appears in the claims:

"R9 and R10 are taken together with the nitrogen to which they are attached to form a ring having 5 to 8 members including the nitrogen atom that R9 and R10 are attached to, where one of the ring members may optionally be an oxygen atom or NR11, where R11 is (C_1-C_6) alkyl, $-C(O)-(C_1-C_6)$ alkyl, $-C(O)-NH_2$ $-C(O)-NH-(C_1-C_6)$ alkyl, $-C(O)-N((C_1-C_6)$ alkyl)₂, or optionally-substituted-phenyl- (C_0-C_6) alkyl-"

is that the following types of moities result:

50

55

where R¹¹ is as defined hereinabove and the arcs represent the carbon members of the ring (however, the symmetry of the arcs is not intended to indicate that they are necessarily of equal number of carbons).

[0050] The chemist of ordinary skill will recognize that certain combinations of heteroatom-containing substituents listed in this invention define compounds which will be less stable under physiological conditions. Accordingly, such compounds are less preferred.

[0051] When a chemical structure as used herein has an arrow emanating from it, the arrow indicates the point of attachment. For example, the structure

is a pentyl group. When an arrow is drawn through a cyclic moiety, the arrow indicates that the cyclic moiety can be attached at any of the available bonding points, for example

10

15

20

25

30

35

40

50

55

means that the phenyl can be bonded ortho, meta or para to the X group. When an arrow is drawn through a bi-cyclic or a tri-cyclic moiety, the arrow indicates that the bi-cyclic or tri-cyclic ring can be attached at any of the available bonding points in any of the rings, for example

means that the indole is bonded either through the phenyl portion of the ring or the nitrogen containing ring portion.

[0052] In the definition for formula (II) when R⁵ and R⁸ are taken together with the carbon atom to which they are attached is defined to be for example

45 , the * in the ring indicates that it is the carbon atom that R⁵ and R⁸ are attached to, thus, forming a spiro compound.
[0053] Compounds of the present invention having the following core structure are numbered according to the following scheme:

[0054] "Treatment" means any treatment of a condition in a mammal, particularly a human, and includes:

- (i) preventing the disease from occurring in a subject which may be predisposed to the disease, but has not yet been diagnosed as having it;
- (ii) inhibiting the condition, i.e., arresting its development; or
- (iii) relieving the condition. i.e. relieving the symptom of pain.

5

15

20

30

35

40

45

50

[0055] The term "subject" means the recipient of a compound of the present invention, preferrably a mammal and most preferrably a human.

[0056] "Disease state which is treatable by administration of a sodium channel blocker" is intended to cover all disease states which are generally acknowledged in the art to be usefully treated with sodium channel blockers in general, and those disease states which have been found to be usefully treated by the specific sodium channel blocker of our invention, the compounds of formula (I) or (II). Such disease states include, but are not limited to peripheral neuropathies, such as trigerinal neuralgia, postherapeutic neuralgia, diabetic neuropathy, glossopharymgeal neuralgia, lumbar and cervical radiculopathy, reflex sympathetic dystrophy and causalgia, and neuropathy secondary to metastatic infiltration, adiposis dolorosa, and burn pain; and central pain conditions following stroke, thalmic lesions and multiple sclerosis.

[0057] "Therapeutically effective amount" refers to that amount of a compound of formula (I) or (II) or a pharmaceutically acceptable salt thereof which is sufficient to effect treatment, as defined above, when administered to a mammal in need of such treatment. The therapeutically effective amount will vary depending on the subject and disease state being treated, the severity of the affliction and the manner of administration, and may be determined routinely by one of ordinary skill in the art. The term "therapeutically effective amount" is implicitly incorporated in the amount of compound administered in a method of the present invention or when said compound is a component in a pharmaceutical composition of the present invention.

[0058] The compounds of the instant invention have at least one asymmetric center as noted by the asterisk in the structural formula (I) and (II), above. Additional asymmetric centers may be present on the molecule depending upon the nature of the various substituents on the molecule. Each such asymmetric center will produce two optical isomers and it is intended that all such optical isomers, as separated, pure or partially purified optical isomers, racemic mixtures or diastereomeric mixtures thereof, be included within the scope of the instant invention.

[0059] The instant compounds can be generally isolated in the form of their pharmaceutically acceptable acid addition salts, such as the salts derived from using inorganic and organic acids. Examples of such acids are hydrochloric, nitric, sulfuric, phosphoric, acetic, propionic, maleic, succinic, D-tartaric, L-tartaric, malonic, methane sulfonic and the like. In addition, certain compounds containing an acidic function such as a carboxy can be isolated in the form of their inorganic salt in which the counter-ion can be selected from sodium, potassium, lithium, calcium, magnesium and the like, as well as from organic bases.

[0060] The pharmaceutically acceptable salts are formed by taking about 1 equivalent of a compound of formula (I) or (II) and contacting it with about 1 equivalent of the appropriate corresponding acid of the salt which is desired. Work-up and isolation of the resulting salt is well-known to those of ordinary skill in the art.

[0061] As is known in the art, agonists and antagonists of somatostatin are useful for treating a variety of medical conditions and diseases, such as inhibition of H. pylori proliferation, acromegaly, restenosis, Crohn's disease, systemic sclerosis, external and internal pancreatic pseudocysts and ascites, VIPoma, nesidoblastosis, hyperinsulinism, gastrinoma. Zollinger-Ellison Syndrome, diarrhea, AIDS related diarrhea, chemotherapy related diarrhea, scleroderma, Irritable Bowel Syndrome, pancreatitis, small bowel obstruction, gastroesophageal reflux, duodenogastric reflux and in treating endocrinological diseases and/or conditions, such as Cushing's Syndrome, gonadotropinoma, hyperparathyroidism, Graves' Disease, diabetic neuropathy; Paget's disease, and polycystic ovary disease; in treating various types of cancer such as thyroid cancer, hepatome, leukemia, meningioma and conditions associated with cancer such as cancer cachexia; in the treatment of such conditions as hypotension such as orthostatic hypotension and postprandial hypotension and panic attacks; GH secreting adenomas (Acromegaly) and TSH secreting adenomas. Activation of type 2 but not type 5 subtype receptor has been associated with treating prolactin secreting adenomas. Other indications associated with activation of the somatostatin subtypes are inhibition of insulin and/or glucagon and more particularly diabetes mellitus, hyperlipidemia, insulin insensitivity, Syndrome X, angiopathy, proliferative retinopathy, dawn phenomenon and Nephropathy; inhibition of gastric acid secretion and more particularly peptic ulcers, enterocutaneous and pancreaticocutaneous fistula, Dumping syndrome, watery diarrhea syndrome, acute or chronic pancreatitis and gastrointestinal hormone secreting tumors; inhibition of angiogenesis, treatment of inflammatory disorders such as arthritis; chronic allograft rejection; angioplasty; preventing graft vessel and gastrointestinal bleeding. Somatostatin agonists can also be used for decreasing body weight in a patient. Accordingly, the compounds of the instant invention are useful for the foregoing methods.

[0062] Accordingly, the present invention includes within its scope pharmaceutical compositions comprising, as an active ingredient, at least one of the compounds of Formula (I) or (II) in association with a pharmaceutically acceptable carrier.

[0063] The compounds of this invention can be administered by oral, parenteral (e.g., intramuscular, intraperitoneal, intravenous or subcutaneous injection, or implant), nasal, vaginal, rectal, sublingual or topical routes of administration and can be formulated with pharmaceutically acceptable carriers to provide dosage forms appropriate for each route of administration.

5 [0064] Solid dosage forms for oral administration include capsules, tablets, pills, powders and granules. In such solid dosage forms, the active compound is admixed with at least one inert pharmaceutically acceptable carrier such as sucrose, lactose, or starch. Such dosage forms can also comprise, as is normal practice, additional substances other than such inert diluents, e.g., lubricating agents such as magnesium stearate. In the case of capsules, tablets and pills, the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings.

[0065] Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, the elixirs containing inert diluents commonly used in the art, such as water. Besides such inert diluents, compositions can also include adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring and perfuming agents.

[0066] Preparations according to this invention for parenteral administration include sterile aqueous or non-aqueous solutions suspensions, or emulsions. Examples of non-aqueous solvents or vehicles are propylene glycol, polyethylene glycol, vegetable oils, such as olive oil and corn oil, gelatin, and injectable organic esters such as ethyl oleate. Such dosage forms may also contain adjuvants such as preserving, wetting, emulsifying, and dispersing agents. They may be sterilized by, for example, filtration through a bacteria-retaining filter, by incorporating sterilizing agents into the compositions, by irradiating the compositions, or by heating the compositions. They can also be manufactured in the form of sterile solid compositions which can be dissolved in sterile water, or some other sterile injectable medium immediately before use.

[0067] Compositions for rectal or vaginal administration are preferably suppositories which may contain, in addition to the active substance, excipients such as coca butter or a suppository wax.

[0068] Compositions for nasal or sublingual administration are also prepared with standard excipients well known in the art.

[0069] Further, a compound of this invention of formula (I) or (II) can be administered in a sustained release composition such as those described in the following patents. U.S. Patent No. 5,672,659 teaches sustained release compositions comprising a bioactive agent and a polyester. U.S. Patent No. 5,595,760 teaches sustained release compositions comprising a bioactive agent in a gelable form. U.S. Application No. 08/929,363 filed September 9, 1997, teaches polymeric sustained release compositions comprising a bioactive agent and chitosan. U.S. Application No. 08/740,778 flied November 1, 1996, teaches sustained release compositions comprising a bioactive agent and cyclodextrin. U.S. Application No. 09/015,394 filed January 29, 1998, teaches absorbable sustained release compositions of a bioactive agent. The teachings of the foregoing patents and applications are incorporated herein by reference.

[0070] In general, an effective dosage of a compound of the present invention of the formula (I) or (II) in the compositions of this invention may be varied; however, it is necessary that the amount of the active ingredient be such that a suitable dosage form is obtained. The selected dosage depends upon the desired therapeutic effect, on the route of administration, and on the duration of the treatment, all of which are within the realm of knowledge of one of ordinary skill in the art. Generally, dosage levels of between 0.00 to 100 mg/kg of body weight daily are administered to humans and other animals, e.g., mammals.

[0071] A preferred dosage range is 0.01 to 10.0 mg/kg of body weight daily, which can be administered as a single dose or divided into multiple doses.

[0072] Compounds of the instant invention can be and were assessed for its ability to bind to a somatostatin subtype receptor according to the following assays.

45 Human somatostatin subtype receptor binding studies:

15

20

30

[0073] The affinity of a compound for human somatostatin subtype receptors 1 to 5 (sst_1 , sst_2 , sst_3 , sst_4 and sst_5 , respectively) is determined by measuring the inhibition of [125 I-Tyr 11]SRIF-14 binding to CHO-K1 transfected cells.

[0074] The human sst, receptor gene was cloned as a genomic fragment. A 1.5 Kb *Pstl-Xmn*l segment containg 100 bp of the 5'-untranslated region, 1.17 Kb of the entire coding region, and 230 bp of the 3'-untranslated region was modified by the Bg1ll linker addition. The resulting DNA fragment was subcloned into the *BamH*l site of a pCMV-81 to produce the mammalian expression plasmid (provided by Dr. Graeme Bell, Univ. Chicago). A clonal cell line stably expressing the sst_t receptor was obtained by transfection into CHO-K1 cells (ATCC) using the calcium phosphate coprecipitation method (1). The plasmid pRSV-neo (ATCC) was included as a selectable marker. Clonal cell lines were selected in RPMI 1640 media containing 0.5 mg/ml of G418 (Gibco), ring cloned, and expanded into culture.

[0075] The human sst₂ somatostatin receptor gene, isolated as a 1.7Kb *BamHI-Hind*III genomic DNA fragment and subcloned into the plasmid vector pGEM3Z (Promega), was kindly provided by Dr. G. Bell (Univ. of Chicago). The mammalian cell expression vector is constructed by inserting the 1.7Kb *BamH1-Hind*II fragment into compatible restriction endonuclease sites in the plasmid pCMV5. A clonal cell line is obtained by transfection into CHO-K1 cells

using the calcium phosphate co-precipitation method. The plasmid pRSV-neo is included as a selectable marker.

[0076] The human sst₃ was isolated at genomic fragment, and the complete coding sequence was contained within a 2.4 Kb *BamHI/Hind*III fragment. The mammalian expression plasmid, pCMV-h3 was constructed by inserting the a 2.0 Kb *Ncol-Hind*III fragment into the EcoR1 site of the pCMV vector after modification of the ends and addition of EcoR1 linkers. A clonal cell line stably expressing the sst₃ receptor was obtained by transfection into CHO-K1 cells (ATCC) using the calcium phosphate co-precipitation method. The plasmid pRSV-neo (ATCC) was included as a selectable marker. Clonal cell lines were selected in RPMI 1640 media containing 0.5 mg/mI of G418 (Gibco), ring cloned. and expanded into culture.

[0077] The human sst₄ receptor expression plasmid, pCMV-HX was provided by Dr. Graeme Bell (Univ. Chicago). The vector contains the 1.4 Kb *Nhel-Nhel* genomic fragment encoding the human sst₄, 456 bp of the 5-untranslated region and 200 bp of the 3'-untranslated region. clone into the *Xbal/Eco*R1 sites of PCMV-HX. A clonal cell fine stably expressing the sst₄ receptor was obtained by transfection into CHO-K1 cells (ATCC) using the calcium phosphate coprecipitation method. The plasmid pRSV-neo (ATCC) was included as a selectable marker. Clonal cell lines were selected in RPMI 1640 media containing 0.5 mg/ml of G418 (Gibco), ring cloned, and expanded into culture.

[0078] The human sst₅ gene was obtained by PCR using a λ genomic clone as a template, and kindly provided by Dr. Graeme Bell (Univ. Chicago). The resulting 1.2 Kb PCR fragment contained 21 base pairs of the 5'-untranslated region, the full coding region, and 55 bp of the 3'-untranslated region. The clone was inserted into EcoR1 site of the plasmid pBSSK(+). The insert was recovered as a 1.2 Kb *Hind*III-*Xba*I fragment for subcloning into pCVM5 mammalian expression vector. A clonal cell line stably expressing the SST₅ receptor was obtained by transfection into CHO-K1 cells (ATCC) using the calcium phosphate co-precipitation method The plasmid pRSV-neo (ATCC) was included as a selectable marker. Clonal cell lines were selected in RPME 1640 media containing 0.5 mg/ml of G418 (Gibco), ring cloned, and expanded into culture.

[0079] CHO-K1 cells stably expressing one of the human sst receptor are grown in RPMI 1640 containing 10% fetal calf serum and 0.4 mg/ml geneticin. Cells are collected with 0.5 mM EDTA, and centrifuged at 500 g for about 5 min. at about 4°C. The pellet is resuspended in 50 mM Tris, pH 7.4 and centrifuged twice at 500 g for about 5 min. at about 4°C. The cells are lysed by sonication and centrifuged at 39000 g for about 10 min. at about 4°C The pellet is resuspended in the same buffer and centrifuged at 50000 g for about 10 min. at about 4°C and membranes in resulting pellet are stored at - 80°C.

[0080] Competitive inhibition experiments of [125I-Tyr11]SRIF-14 binding are run in duplicate in polypropylene 96 well plates. Cell membranes (10 µg protein/well) are incubated with [125I-Tyr11]SRIF-14 (0.05 nM) for about 60 min. at about 37°C in 50 mM HEPES (pH 7.4), 0.2% BSA, 5 mM MgCl₂, 200 KIU/ml Trasylol, 0.02 mg/ml bacitracin and 0.02 mg/ml phenylmethylsulphonylfluoride.

[0081] Bound from free [125]-Tyr11]SRIF-14 is separated by immediate filtration through GF/C glass fiber filter plate (Unifilter, Packard) presoaked with 0.1 % polyethylenimine (P.E.I.), using Filtermate 196 (Packard) cell harvester. Filters are washed with 50 mM HEPES at about 0-4°C for about 4 sec. and assayed for radioactivity using Packard Top Count.

[0082] Specific binding is obtained by subtracting nonspecific binding (determined in the presence of 0.1 μ M SRIF-14) from total binding. Binding data are analyzed by computer-assisted nonlinear regression analysis (MDL) and inhibition constant (Ki) values are determined.

[0083] The determination of whether a compound of the instant invention is an agonist or an antagonist is determined by the following assay.

Functional assay: Inhibition of cAMP intracellular production:

20

30

50

[0084] CHO-K1 Cells expressing human somatostatin (SRIF-14) subtype receptors are seeded in 24-well tissue culture multidishes in RPMI 1640 media with 10% FCS and 0.4 mg/ml geneticin. The medium is changed the day before the experiment.

[0085] Cells at 10⁵ cells/well are washed 2 times by 0.5 ml and fresh RPMI with 0.2% BSA supplemented with 0.5 mM (1) 3-isobutyl-1-methylxanthine (IBMX) and incubated for about 5 min at about 37°C.

- Cyclic AMP production is stimulated by the addition of 1mM forskolin (FSK) for about 15-30 minutes at about 37°C.
- The agonist effect of a compound is measured by the simultaneous addition of FSK (1μM), SRIF-14 (10⁻¹² M to 10⁻⁶ M) and a test compound (10⁻¹⁰ M to 10⁻⁵ M).
- The antagonist effect of a compound is measured by the simultaneous addition of FSK (1μM), SRIF-14 (1 to 10 nM) and a test compound (10⁻¹⁰ M to 10⁻⁵ M).

[0086] The reaction medium is removed and 200 ml 0.1 N HCl is added. CAMP is measured using radioimmunoassay method (Kit FfashPlate SMP001A, New England Nuclear).

[0087] The compounds of the present invention can be tested for activity in blocking Na channels. The compounds of the invention display binding to the veratridine-sensitive sodium channel. For the binding procedure see for example J. B. Brown, Journal of Neuroscience <u>6</u>, 2064-2070 (1986), the contents of which are incorporated herein by reference.

They block veratridine-induced glutamate release in rat hippocampal slice preparations. The experiment is performed according to a modification of M.J. Leach et al., in Epilepsia <u>27</u>, 490-497 (1986) and Stroke <u>24</u>, 1063-1067 (1993), using exogenous glutamate.

[0088] The compounds of the instant invention are synthesized according to the following procedures and examples.

β-CARBOLINES

Tetrahydro-β-carbolines

10 [0089]

5

15

20

25

30

40

45

50

55

NH₂ TFA/CHCl₃ O N H R⁵

[0090] General procedure: An amine of formula (a) is treated with an aldehyde in a protic or aprotic solvent with or without an acid. preferrably chloroform with TFA, at about 20-80°C for about 5-72 hours. The resulting carboline (obtained as a mixture of diastereoisomers) can be isolated either by aqueous work-up followed by flash chromatography on silica gel, or by addition to the reaction mixture of a nucleophile supported on polymer (to trap the excess of aldehyde) such as aminomethylpolystyrene resin followed by filtration and then rapid purification of the resulting residue on a silica gel pad (using Alltech silica cartridge and Alltech manifold).

Example 1

Diastereomic mixture at C₁ of 1.2.3.4-tetrahydro-1-(4-methoxyphenyl)-3(S)-(4-phenyl-1H-imidazol-2-yl)-9H-pyrido [3,4-b]indole:

[0091]

ZH ZH

[0092] To 2-[1(S)-amino-2-(3-indolyl)ethyl]-)-4-phenyl-1H-imidazole (100 mg, 1 eq) in solution in chloroform (0.8 mL) were successively added p-anisaldehyde (80 mL, 2 eq) and TFA (256 mL, 10 eq). After about 2 days of stirring at about 20°C, the mixture was concentrated under reduced pressure and the residue was dissolved in THF (5 mL). Aminometh-

ylpolystyrene resin (Novabiochem, loading = 1.2 mmol/g, 550 mg, 2eq) was added and the mixture was stirred overnight at about 20°C and then filtered. The filtrate was then concentrated under reduced pressure and then purified by a rapid filtration on a silica gel pad (Alltech silica cartridges) with ethylacetate as eluent to afford the tetrahydro-β-carboline as a mixture of diastereoisomers (65:35) (yield = 78%).

NMR (1H, 400 MHz, CDCl₃): 12.2 (m, 1H, NH), 7.77-6.83 (m, 15H, Harom, NH), 5.29, 5.17 (2s, 1H, H₁), 4.42 (m, 1H, H₃), 3.82, 3.78 (2s, 3H, OCH₃), 3.49 (m, 1H, H₄), 3.17 (m, 1H, H₄), 1.90 (s, 1H, NH). *LC/MS*: calculated MW= 420.51, m/z = 421.05 (M+H), m/z = 419.07 (M-H).

Examples 2 - 1303

10

[0093] The following compounds can be prepared analogously to the procedure described for Example 1 using the appropriate starting materials, which can be obtained from commercial sources or synthesized according to methods known to those skilled in the art or as enabled by the teachings herein. Each combination of R2 and R5, shown below, were or can be synthesized, therefore, the number of Examples are calculated by multiplying (R2 (21 substituents)) $(R^5 (62 \text{ substituents})) = 1302.$

15

25

35

NH

40

45

55

N-SUBSTITUTED TETRAHYDRO-β-CARBOLINES

[0094]

[0095] General procedure: A compound of formula (b) can react with isocyanates, isothiocyanates, *N*-succinimidyl carbamates, acyl chlorides or activated carboxylic acids in aprotic solvent at 20-70°C for 2-18 hours. The resulting derivative can be isolated by evaporation of the mixture followed by flash chromatography on silica gel or by addition to the mixture of a nucleophile supported on polymer such as aminomethyl or thiomethyl polystyrene resin followed by filtration.

[0096] For protected basic derivatives (R⁴ = (CH₂)_nNHBoc), the corresponding deprotected compounds (R⁴ = (CH₂)_nNH₂) were obtained by treating the *N*-protected compound under acidic conditions (DCM/TFA 10%).

Example 1304

Diastereomic mixture at C_1 of 1,2,3,4-tetrahydro-1-(4-methoxyphenyl)-2-[(phenylamino)carbonyl]-3(S)-(4-phenyl-1H-imidazol-2-yl)-9H-pyrido[3,4-b]indole:

[0097]

35

25

30

45

40

[0098] To a solution of a diastereomeric mixture of 1,2,3,4-tetrahydro-1-(4-methoxyphenyl)-3(S)-(4-phenyl-1H-imidazol-2-yl)-9H-pyrido[3.4-b]indole (50 mg) in chloroform (700 mL) was added benzyl isocyanate. The mixture was stirred overnight at about 20°C and then diluted with chloroform (2 mL). Aminomethylpolystyrene resin (Novabiochem, loading 1.2 mmol/g, 198 mg, 2eq) was added to the mixture. After about 15 hours of shaking at about 20°C, the mixture was filtered and the filtrate concentrated under reduced pressure to yield the title compound (60 mg, 92%yield).
NMB (1H, 400 MHz, CDCl₂) & 9,2-6.7 (m, 22H, arom, H, NH), 6.25 (m, 1H, H₂), 5.80 (m, 1H, H₃), 4.52-4.32 (m, 2H, H₄)

NMR (¹H, 400 MHz, CDCl₃) δ: 9.2-6.7 (m, 22H, arom. H, NH), 6.25 (m, 1H, H₁), 5.80 (m, 1H, H₃), 4.52-4.32 (m, 2H, C H_2 Ph), 3.81-3.28 (m, 5H, OCH₃, H₄, H₄). LC/MS: calculated MW: 553.66, m/z = 554.2 (M+H).

Examples 1305-1332

[0099] The following compounds can be prepared analogously to the procedure described for Example 1304 using the appropriate starting materials, which can be obtained from commercial sources or synthesized according to methods known to those skilled in the art or as enabled by the teachings herein. Each combination of R^4 and R^5 , shown below, were or can be synthesized, therefore, the number of Examples are calculated by multiplying (R^4 (9 substituents)) (R^5 (3 substituents)) = 27.

 $R^4 =$

$$R^{5} =$$

β-carbolines

[0100]

5

10

15

20

[0101] General procedure: The tetrahydro- β -carboline of formula (c) is oxidized to the corresponding fully aromatised β -carbolines using palladium on carbon or DDQ in an aprotic solvent such as toluene or xylene, chromic acid in a protic solvent, KMnO₄ in THF or manganese dioxide in an aprotic solvent preferrably chloroform, at 20-80°C for 2-48 hours.

Example 1333

1-Butyl-3-(4-phenyl-1H-imidazol-2-yl)-9H-pyrido[3,4-b]indole:

[0102]

30

35

25

40

[0103] A mixture of 1,2,3,4-tetrahydro-1-butyl-3(R)-(4-phenyl-1H-imidazol-2-yl)-9H-pyrido[3.4-b]indole (100 mg, 1 eq) and manganese dioxide (600 mg) in chloroform (7 mL) was heated at about 40°C for about 3 hours. The mixture was cooled down to about 20°C and filtered over a CELITE® pad. The filtrate was concentrated under reduced pressure to yield quantitatively the fully aromatized β -carboline (97 mg).

NMR (¹H, 400 MHz, CDCl₃): 10.8 (s, 1H, NH), 8.77-7.25 (m, 11H, arom. H, NH), 3.07 (t, 2H, 3 J = 8Hz, CH₂), 1.85 (m, 2H, CH₂), 2.42 (m, 2H, CH₂), 0.91 (t, 3H, 3 J = 8Hz, CH₃). *LC/MS*: calculated MW = 366.46, m/z = 367.19 (M+H), m/z = 479.15 (M+TFA).

50 Example 1334-1336

[0104] The following compounds were prepared analogously to the procedure described for Example 1333 using the appropriate starting materials, which can be obtained from commercial sources or synthesized according to methods known to those skilled in the art or as enabled by the teachings herein.

Example 1337-1493

³⁵ [0105] The following Examples can be made substantially according to the procedure of Example 1333 using the appropriate starting materials, which are commercially available or can synthesized according to literature methods known to those skilled in the art or as enabled by the teachings herein. The number of examples are calculated as follows (R2 (4 substituents))(R5(39 substituents)) = 156.

R2 =

R5 =

Example 1494

(1R)-1-(4,5-Dimethyl-1,3-oxazol-2-yl)-2-(1H-Indol-3-yl)-1-ethanamine hydrochloride

5 [0106]

10

15

[0107] A solution of tert-butyl(1R)-1-(4,5-dimethyl-1,3-oxazol-2-yl)-2-(1H-indol-3-yl)ethyl-carbamate (3g, 8.4mmol) in HCl/AcOEt 1N (80ml) was stirred at room temperature for about 2.5 hours. The mixture was concentrated under reduced pressure, diethyl ether (100ml) added, and the white precipitate collected by filtration, and washed with diethyl ether to afford the hydrochloride salt of the desired product (2.4g). Melting point:172-174°C.

25 (3R)-1,1-Dibutyl-3-(4,5-dimethyl-1,3-oxazol-2-yl)-2,3,4,9-tetrahydro-1H-β-carboline hydrochloride
[0108]

40

30

35

[0109] To a solution of (1R)-1-(4,5-dimethyl-1,3-oxazol-2-yl)-2-(1H-indol-3-yl)-1-ethanamine hydrochloride (1.2g, 3.6mmol) in isopropanol (20ml) was added 5-nonanone (3.1ml, 20mmol) and the mixture was refluxed for about 24 hours. The solvent was evaporated under reduced pressure. To the residue was added water (20ml) followed by NaHCO₃ (10%) solution until neutral pH, followed by ethyl acetate (3x15ml). After decantation and extraction the combined organic extracts were washed with water (20ml) and dried over MgSO₄. The solvent was evaporated under reduced pressure to afford an oil which was purified by column chromatography on silica gel using ethyl acetate/heptane 7:3 as eluent. The resulting oil was dissolved in ethyl acetate (15ml) and a solution of HCI in ethyl acetate (1N) was slowly added at about 20°C to give a precipitate. The suspension was stirred a few minutes and the precipitate collected by filtration, washed with diethyl ether, and dried to afford 0.14g the desired product as the hydrochloride salt. Melting point :128-134°C.

55

Example 1495

 $(3R)-3-(4-Phenyl-1H-imidazol-2-yl)-2, 3, 4, 9-tetra hydro-1'-benzoyl-spiro [1H-\beta-carboline-1, 4'-piperidine] \\ hydrochloride$

[0110]

10

15

5

NH NH HCI

20

[0111] To a solution of (1R)-2-(1H-indol-3-yl)-1-(4-phenyl-1H-imidazol-2-yl)-1-ethanamine hydrochloride (1g, 2.65mmol) in isopropanol (15ml) was added N-benzoyl-4-piperidone (2.64g, 13mmol). The solution was refluxed for about one hour and cooled to about 20°C. The solvent was removed under reduced pressure. The residue was treated with dichloromethane (30ml) and stirred for about 30 min at about 20°C. The resulting precipitate was collected by filtration, washed with dichloromethane and diethyl ether, and dried to afford 1.2g of the title product as the hydrochloride salt. Melting point :240-244°C.

Example 1496

(3R)-3-(4-Phenyl-1H-imidazol-2-yl)-2,3,4,9-tetrahydro-1'-(tert-butoxycarbonyl)-spiro[1H- β -carboline-1,4'-piperidine]

[0112]

40

45

35

55

50

[0113] To a solution of (1R)-2-(1H-indol-3-yl)-1-(4-phenyl-1H-imidazol-2-yl)-1-ethanamine hydrochloride (14g,

35mmol) in isopropanol (210ml) was added 1-tert-butoxycarbonyl-4-piperidone (35g, 170mmol) and the mixture refluxed for about two hours. The solvent was evaporated under reduced pressure. Water (150ml) was added to the residue followed by 10% NaHCO₃ solution until neutral pH and extracted by ethyl acetate (4x50ml). The combined organic extracts were washed with water (2x50ml) and dried over MgSO₄. The solvent was removed under reduced pressure to afford an oil which solidified on addition of diisopropyl ether (150ml). The precipitate was collected by filtration, washed with diisopropyl ether and dried to afford 13.5g of the desired product. Melting point :118-120°C.

Example 1497

 ${\it (3R)-3-(4-Phenyl-1H-imidazol-2-yl)-2,3,4,9-tetrahydro-spiro[1H-\beta-carboline-1,4'-piperidin$

[0114]

15

20

25

[0115] A solution of (3R)-3-(4-phenyl-1H-imidazol-2-yl)-2,3,4,9-tetrahydro-1'-(tert-butoxycarbonyl)-spiro[1H-β-carboline-1,4'-piperidine] (13.5g, 28mmol) in ethyl acetate (400ml) was cooled to about O°C with an ice-bath and treated by a stream of anhydrous HCl gas for two hours. The solvent was removed under reduced pressure to afford a semi-solid. Trituration with acetone gave a white solid which was collected by filtration and washed with acetone and diethyl ether. The hydrochloride salt was converted to the free base with NaHCO₃ 10% solution and the aqueous layer was extracted with ethyl acetate (3x50ml). The combined organic extracts were washed with water (2x50ml), dried (MgSO₄), filtered and evaporated to afford 10g of the desired product. Melting point :>250°C.

Example 1498

40 (1R)-2-(1-Benzothiophen-3-yl)-1-(4-phenyl-1H-imidazol-2-yl)-1-ethanamine HCl

[0116]

45

50

55

[0117] A solution of tert-butyl (1R)-2-(1-benzothiophen-3-yl)-1-(4-phenyl-1H-imidazol-2-yl) ethylcarbamate (4g, 9.5mmol) in 70ml of 1N HCl/AcOEt was warmed up to about 50°C for one hour. The mixture was concentrated and diethyl ether (50ml) added. The resulting white precipitate was collected by filtration and washed with diethyl ether to

afford the hydrochloride salt of the desired product (3g). Melting point:190-192°C

(3R)-3-(4-Phenyl-1H-imidazol-2-yl)-2,3,4,9-tetrahydro-1'-[N-(3-pyridinyl)carbothlo amide]spiro[1H-β-carboline-1,4'-piperidine]

[0118]

5

10

15

20

25

30

35

40

45

50

ZI Z S

[0119] To a solution of (3R)-3-(4-phenyl-1H-imidazol-2-yl)-2,3,4,9-tetrahydro-spiro[1H-β-carboline-1,4'-piperidine] (0.38g, 10mmol) in dichloromethane (5ml) was added 3-pyridyl isothiocyanate (0.136g, 10mmol). The mixture was stirred for about 30 min at about 20°C and the resulting precipitate was collected by filtration and washed with dichloromethane and diethyl ether to afford 0.38g of the desired product. Melting point :234-236°C.

Example 1499

(3R)-1,1-Dibutyl-3-(4-phenyl-1H-imidazol-2-yl)-1,2,3,4-tetrahydro[1]benzothieno [2,3-c] pyridine

[0120]

[0121] To a solution of (1R)-2-(1-benzothiophen-3-yl)-1-(4-phenyl-1H-imidazol-2-yl)-1-ethanamine (1g, 2.5mmol) in n-butanol (20ml) was added 5-nonanone (2.2ml, 13mmol) and the mixture refluxed overnight. The solvent was removed under reduced pressure. To the residue was added water (15ml) followed by a 10% NaHCO₃ solution until neutral pH and extracted with ethyl acetate (3x20ml). The combined organic extracts were washed with water (2x10ml). dried over MgSO₄, filtered. The solvent was evaporated under reduced pressure to afford an oil which was purified by column chromatography on silica gel using ethyl acetate/heptane 1:1 as eluent. After removing the solvent, diisopropyl ether was added to the residue. The resulting white precipitate was filtered off and washed with diisopropyl

ether to afford 0.1g of the title product. Melting point :198-200°C.

Example 1500

(3R)-1,1-Dibutyl-3-(4-phenyl-1H-imidazol-2-yl)-2,3,4,9-tetrahydro-1H-β-carboline fumarate

[0122]

5

25

30

35

40

45

50

55

15 OH OH OH OH

[0123] A mixture of (10g, 33mmol) of (1R)-2-(1H-indol-3-yl)-1-(4-phenyl-1H-imidazol-2-yl)-1-ethanamine hydrochloride, n-butanol (150ml) and 5-nonanone (23.44g, 165mmol) was refluxed for about 4 hours and then 10ml of n-butanol were removed using a Dean-Stark apparatus. After refluxing for about a further 2 hours, the mixture was heated at about 100°C overnight. The solvent was evaporated and the resulting residue partitioned between ethyl acetate (100ml) and 10% NaHCO₃ solution (50ml). After decantation the organic layer was washed with 10% NaHCO₃ solution (50ml) and water and dried over MgSO₄. Evaporation of the solvent afforded a brown residue which was purified by flash chromatography on silica gel (eluent: dichforomethane /ethylacetate 9:1). The pure fractions were collected and concentrated to give, after washing with diisopropyl ether, 3.6g of the title compound as the free base. Melting point: 160-162°C

[0124] The free base (1.3g, 3mmol) was dissolved in acetone (5ml). Fumaric acid (448mg, 3mmol) was added. The mixture was warmed to about 50°C to obtain a solution. On standing overnight white crystals appeared. Diethyl ether (20ml) was added and the dried compound (1.05g) was collected by filtration. Melting point :168-170°C.

Example 1501

(3R)-3-(4-Phenyl-1H-imidazol-2-yl)-2,3,4,9-tetrahydro-spiro[1H-β-carboline-1,1-cycloheptyl]

[0125]

[0126] To (0.75g, 2.5mmol) of (1R)-2-(1H-indol-3-yl)-1-(4-phenyl-1H-imidazol-2-yl)-1-ethanamine was added

20ml of 1,2-dichloroethane, trifluoroacetic acid (2ml, 25mmol) and cycloheptanone (560mg, 5mmol). The mixture was refluxed for about 4 hours. Further trifluoroacetic acid (1ml) and cycloheptanone (560mg) were added and reflux was continued for about 4 hours. The solvent was removed under reduced pressure. To the residue was added 20ml of ethyl acetate and 10% NaHCO₃ solution After decantation the organic layer was washed with water and dried over MgSO₄. Evaporation of the solvent afforded a residue which was purified by flash chromatography on silica gel (eluent: heptane/ethyl acetate 3:7). The pure fractions were collected and concentrated to give 80mg of the title compound. Melting point :208-210°C.

Example 1502

10 <u>Example 13</u>

(3R)-3-(4-Phenyl-1H-imidazol-2-yl)-2,3,4,9-tetrahydro-1'-[3-(4methylphenyl)-1-propionyl] spiro[1H-β-carboline-1,4'-piperidine]

[0127]

[0.2

15

20

25

30

35

[0128] To 20ml of anhydrous tetrahydrofurane were added (192mg, 1mmol) of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and (0.14ml, 1mmol) of triethylamine. The mixture was stirred for about 15 min then (3R)-3-(4-phenyl-1H-imidazol-2-yl)-2,3,4,9-tetrahydro-spiro[1H-β-carboline-1,4'-piperidine] (383mg, 1mmol) and 3-(4-methylphenyl) propionic acid (164mg, 1mmol) were added. The reaction mixture was warmed to about 40°C and stirred overnight at this temperature. The solvent was removed under reduced pressure. The residue was partitioned between ethyl acetate (20ml) and water (10ml). After decantation the organic layer was washed with 10% NaHCO₃ solution, water and dried over MgSO₄. Evaporation of the solvent afforded a residue which was purified by flash chromatography on silica gel (eluent: ethyl acetate/dichloromethane 1:1). The pure fractions were collected and concentrated. The white solid obtained was washed with diethyl ether and collected by filtration to give 100mg of the title compound. Melting point:180-182°C.

45

50

Example 1503

(3R)-3-(4-Phenyl-1H-imidazol-2-yl)-2,3,4,9-tetrahydro-1'-[N-(4-trifluoromethylphenyl)carboxamide]spiro[1H-βcarboline-1,4'-piperidine]

[0129]

10

15

5

20

25

30

[0130] To a solution of (383mg, 1mmol) (3R)-3-(4-phenyl-1H-imidazol-2-yl)-2,3,4,9-tetrahydro-spiro[1H-β-carboline-1,4'-piperidine] in dichloromethane was added (187mg, 1mmol) of 4-trifluoromethylphenyl isocyanate. The mixture was stirred for about one hour and diluted with 20ml diethyl ether. The light cream precipitate was collected by filtration, and washed with diethyl ether to give 140mg of the title product. Melting point:222-224°C.

Example 1504

tert-Butyl(1R)-2-amino-1-(1H-indol-3-ylmethyl)-2-oxoethylcarbamate

[0131]

35

40

45

50

[0132] In a reactor under 200 psi of pressure was added (6.2g, 22mmol) of methyl (2R)-2-[(tert-butoxycarbonyl) amino]-3-(1H-indol-3-yl)propanoate, and 120 ml of methanol saturated with NH3. The solution was stirred at about 85°C for about 24 hours. After cooling, the solution was evaporated and the residue precipitated by the addition of diisopropyl ether. Filtration gave 5.4g of the title product as a white powder. Melting point :142-143°C.

tert-Butyl (1R)-2-amino-1-(1H-indol-3-ylmethyl)-2-thiooxoethylcarbamate

[0133]

[0134] To a solution of (5g, 160mmol) of tert-butyl (1R)-2-amino-1-(1H-indol-3-ylmethyl)-2-oxoethylcarbamate in 85ml of 1.2-dimethoxyethane was added 5.2g (62mmol) of NaHCO $_3$ and then (7.3g. 32mmol) of P $_2$ S $_5$ over a period of about 45 min. The mixture was stirred overnight and the solvent was evaporated. The residue was suspended in ethyl acetate and washed with water, 10% NaHCO $_3$ solution and water. After drying over MgSO $_4$ the organic layer was concentrated and the crude product precipitated by addition of isopentane/diisopropyl ether 1:1. Filtration gave 4.3g of the title product as a cream powder. MS:320.2 (MH+) TLC: Rf = 0.7 (CH $_2$ CI $_2$ /MeOH 90:10)

tert-Butyl (1R)-2-(1H-indol-3-yl)-1-(4-phenyl-1,3-thiazol-2-yl)ethylcarbamate

[0135]

[0136] A mixture of (2.24g, 7mmol) of tert-butyl (1R)-2-amino-1-(1H-indol-3-ylmethyl)-2-thiooxoethylcarbamate and (1.4g, 7mmol) of α -bromoacetophenone was heated until complete melting (90°C). The temperature was maintened at about 90°C for about 10 min and after cooling ethyl acetate (50ml) and water (25ml) were added. The organic layer was decanted. washed with 10% NaHCO₃ solution, water, dried over MgSO₄. Evaporation of the solvent afforded a residue which was purified by flash chromatography on silica gel (eluent: dichloromethane/ethyl acetate 95:5). The pure fractions were collected and concentrated to give 1.1g of the desired product as a cream powder. MS:420.2 (MH+); TLC: R_f= 0.7 (SiO₂; CH₂Cl₂/EtOAc 95:5).

(1R)-2-(1H-Indol-3-yl)-1-(4-phenyl-1,3-thiazol-2-yl)-1-ethanamine hydrochloride

[0137]

5

10

15

[0138] To (1.2g, 2.85mmol) of **tert-butyl (1R)-2-(1H-indol-3-yl)-1-(4-phenyl-1,3-thiazol-2-yl)ethylcarbamate** was added ethyl acetate (10ml) and 20ml of a 1N HCl solution in ethyl acetate. The solution was stirred for about 2 hours at about 20°C followed by about 2 hours at about 50°C The crystals which formed on cooling were collected by filtration and washed with diethyl ether to give 1g of the title product as an orange powder. Melting point: 170-172°C.

$(3R)-1,1-Dibutyl-3-(4-phenyl-1,3-thiazol-2-yl)-2,3,4,9-tetrahydro-1H-\beta-carboline$

give 85mg of the title product as an orange powder. Melting point :134-136°C.

[0139]

25

20

35

[0140] To a solution of (1R)-2-(1H-indol-3-yl)-1-(4-phenyl-1,3-thiazol-2-yl)-1-ethanamine hydrochloride (210mg, 0.59mmol) in n-butanol (15ml) was added 0.45ml (2.5mmol) of 5-nonanone. The mixture was heated under reflux for about two hours and then 5ml of n-butanol was removed by Dean-Stark. Reflux was continued for about 3 hours. The mixture was concentrated under reduced pressure and the residue partitioned between 15ml ethyl acetate and 15ml 10% NaHCO₃ solution. After decantation the organic layer was washed with water and dried over MgSO₄. Evaporation of the solvent afforded a residue which was purified by flash chromatography on silica gel (eluent: dichloromethane/ ethyl acetate 97:3). The pure fractions were collected and concentrated. The residue was dissolved in diethyl ether, and 1N HCl in ethyl acetate was added. The hydrochloride was collected by filtration and washed with diethyl ether to

50

Preparation 1

Tert-butyl(1R)-2-(1-benzothiophen-3-yl)-1-(4-phenyl-1H-imidazol-2-yl)ethyl carbamate

[0141]

5

10

15

H₃C O HN N

20

25

30

35

[0142] To a solution of **Boc-D-3-benzothienylalanine** (5g, 15mmol) in absolute ethanol (60ml) and water (20ml) was added cesium carbonate (2.4g, 7.5mmol) and the mixture stirred for about two hours at about 20°C. The solvent was removed under reduced pressure to afford a white powder which was dissolved in dimethylformamide (100ml) and treated with 2-bromoacetophenone (3g, 15mmol). After stirring overnight at about 20°C, the solvent was concentrated under reduced pressure. The residue was treated with ethyl acetate (100ml) and the precipitate thus obtained (CsBr) was filtered off, washed with ethyl acetate and the filtrate was concentrated under reduced pressure to afford a light brown solid. This solid was dissolved in xylene (100ml), ammonium acetate (23g, 300mmol) was added and the mixture refluxed for about two hours. After cooling to about 20°C, water (50ml) and ethyl acetate (100ml) were added. The organic layer was decanted and washed with water (50ml), 10% NaHCO₃ solution (2x50ml), brine (50ml) and dried over MgSO₄. The solvent was evaporated under reduced pressure. Isopentane (60ml) was added to the residue which was then filtered to afford 4g of the title compond as a white powder. Melting point: 116-120°C.

Preparation 2

Tert-butyl (1R)-1-(4,5-dimethyl-1,3-oxazol-2-yl)-2-(1H-indol-3-yl)ethylcarbamate

[0143]

40

45

50

55

[0144] To a solution of **Boc-D-TRP-OH** (15g, 34mmol) in absolute ethanol (80ml) was added cesium carbonate (5.5g, 17mmol) The mixture was stirred for about one hour at about 20°C and concentrated under reduced pressure to afford a white powder which was dissolved in dimethylformamide (100ml) and treated with 3-bromo-2-butanone (3.56ml. 34mmol). After stirring for about two hours at about 20°C, the solvent was removed under reduced pressure to afford a suspension which was treated with ethyl acetate. The precipitate (CsBr) was filtered off and the filtrate evaporated to afford an oil which was dissolved in xylene (400ml). Ammonium acetate (52g, 680mmol) was added and the mixture was refluxed for about 45 min. After cooling to about 20°C, water (150ml) and ethyl acetate (100ml) were added. After

decantation the organic layer was washed with water (100ml), NaHCO $_3$ 10% (2x100ml) and brine (100ml), dried over MgSO $_4$ and the solvent evaporated under reduced pressure. The residue was purified by column chromatography on silica gel using ethyl acetate/heptane 1:1 as eluent to afford 3g of the desired product as a white powder. Melting point: 138-140°C.

⁵ [0145] The following tables of compounds illustrate some of the compounds of the present invention that were synthesized and provide the HPLC retention time in minutes and mass spectra results of each compound.

[0146] Mass spectra were acquired on a single quadrupole electrospray mass spectrometer (Micromass, Platform model), 0.8 Da resolution. A monthly calibration, between 80 and 1000 Da, is performed with sodium and rubidium iodide solution isopropanol/water (1/1 Vol.).

[0147] HPLC retention times were acquired on an HPLC system: HP1100 (Hewlett-Packard) equipped with a photodiode array UV detector.

[0148] The HPLC conditions are as follows and the conditions used for each of the following tables of compounds are indicated in the column heading.

15 Condition A:

[0149]

25

30

Solvent: A: Water + 0.02% Trifluoroacetic acid B: Acetonitrile			
T(min)	Α%	В%	
0	100	0	
. 1	100	0	
8	30	70	
10	30	70	

Flow rate : 1.1 ml/min Injection volume : 5 μL

Column: Uptisphere ODS 3µm 33*4.6 mm i.d.

Temp.: 40 °C Wavelength: 220 nm

35 [0150] Condition A was employed for the HPLC analysis of the compounds in the Tables of Compounds of Formulas 2, 3 and 4.

Condition B:

₄₀ [0151]

45

50

55

Solvent : A : Water + 0.04% Trifluoroacetic acid B : Acetonitrile		
T(min)	Α%	В%
0	100	0
1	100	0
8	30	70
10	30	70

Flow rate: 1.1 ml/min Injection volume: 5 µL

Column: Uptisphere ODS 3µm 33*4.6 mm i.d

Temp.: 40°C Wavelength: 220 nm

[0152] Condition B was employed for the HPLC analysis of the compounds in the Table of Compounds of Formula 1.

EP 1 086 101 B1

Condition C:

[0153]

5

Solvent : A : W B : Aceto	ater + 0.04% Trif onitrile	luoroacetic acid
T(min)	Α%	В%
0	90	10
1	90	10
8	0	100
10	0	100

15

10

Flow rate : 1.1 ml/min

Injection volume : 5 μL

Column : Uptisphere ODS 3µm 33*4.6 mm i.d

Temp: 40 °C Wavelength: 250 nm

20

[0154] Condition C was employed for the HPLC analysis of the compounds in the Table of Compounds of Formula 5.

25

30

35

40

45

50

	r				
5			R2		
10	FORMULA	•	R3	Ana	lyses
	 	82			
15	1	R2	R3	Rt (min) 4.6	(M+H)+ 493.3
20	2	NH.	<i>~</i> ∙ ∙ .	5.1	553.3
25	3	N-N N-N	~·.	49	506.4
30	4	" - HN N	~.	5.0	471.3
	5	· \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~ · .	47	493.4
35	6	N= NH .	~ .	4.7	4713
40	7	н	~~·.	5.8	500.3
45	8	HN HN	~~.	7.2	574.3
50	9	HN	~ ` .	47	477 4
55	10	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~.	44	520.4

5	FORMULA	1	O R2 N NH NH NH TR3		
	FORMULA			Ana	yses
		R2	R3	Rt (min)	(M+H)+
15	10	· , ~ , ~ , ~ , ~ , ~ , ~ , ~ , ~ , ~ ,	~·.	4.4	520.4
20	11	HN NO	O.	4.8	519.3
25	12	NN NH .	·	5.3	579.4
30	13	N-N NH	· ·	5 1	532.4
35	14	HN N		5.2	497.3
40	15	· ,		4.9	519.4
45	16	N= NH .	0.	4.9	497.3
,	17	ни	0.	6 .0	526.3
55	18	HN		74	600.4

10	FORMULA	1	O R2 NH NH NH R3		•
				Anal	yses
		R2	R3	Rt (min)	(M+H)+
15	19	, HN _ N	O	4,9	503.4
20	20	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	O.,	4.6	546.4
25	21	· hn o	NO.	5.0 ; 4 9	588.3
30	22	NH .	NO.	5.4 : 5.3	648.3
35	23	N-N N-N	NO.	5.2 : 5.1	601.3
. 45	24	HN N	NO.	5.4 ; 5.3	566.2
50	25	·	NO.	5.05 ; 4.97	588.3
55	26	NH	NO.	51,5.0	566.2

5			N NH	•	
10	FORMULA	1	NH R3		
	TORMOOR	<u>i </u>		Anai	VSPS
	<u> </u>	R2	R3		
15		R2	R3	Rt (min)	(M+H)+
20	27	ни	NO ₂	6.2 ; 6.1	595.3
25	28	. HN	NO ₂	. 74	669.3
30	29	HN N	NO _z	5.05 ; 4.95	572.3
35	30	· , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	NO ₂	47	615.3
40	31	HN N	Q.o	5.0	557.3
45	32	ON NH.	C	5.4	617.4
50	33	N-N NH	Q.o	5.2	570.3
55	}	}	·		1

5			
10	FORMULA	1	ſ
15	34	R2	
20	35	N.	
25	36	N NH	
30	37	н	
35	38	HN	
40	39	HN N	
45	40	·	
50	41	HN NO	
	42	NH .	

	· .	R2 N NH		
FORMULA		R3		
				yses
	R2	R3	Rt (min)	(M+H)+
34	- HN _N	Q.o	5.4	535.3
35	·	Q.o.,	5.1	557.4
36	N NH	Q.o.,	5.1	535.3
37	н	0	6.2	564.3
38	HN		7.5	638.4
39	HN N	Q.o.,	5.1	541.3
40	· N	Q.o.,	4.8	584.4
41	HN		4.7	557.3
42	NN NH		5.1	617.3

(M+H)+

570.3

535.3

557.3

535.2

564.3

638.3

541.3

570.2

559.3

1				
5		O R2		-
10 FORMULA 1		R3		
<u>.</u>			Anat	
15	N-N NH	R3	Rt (min) 4.9	(M+t
20	HN		5.0	535
25	~ / N		48	557
30 46 N	NH		4.8	535
35	н		5.8	564
40 48	HN		7.2	638
45 49	HN N		4.7	541
50 50 F			6.3	570
55	HN NO	·s.O.	5.0	559

5		·	R2 N NH NH	·	
10	FORMULA	1	R3		
					yses
15		R2	R3	Rt (min)	(M+H)+
	52	ON NH.	·s ·	5.4	619.3
25	53	N-N NH	·s ·	5.2	572.3
30	54	HN N	·s D ·	5.4	537.3
35	55	·	·s O .	5.1	559.3
	56	N= NH	·s C	5.1	537.3
40	57	HN OH	·s C	61	566.3
45	58	HN		7.5	640.3
50		•	`s",		
55	59	HN N	s	5.0	543.3

5			O R2	***************************************	
10			R3		
	FORMULA				yses
15		R2	R3	Rt (min)	(M+H)+
20	60	, F	·s O	6.6	572.2
	61	HN NO	`s^:	4.5	511.3
25	62	NH .	`s^:	5.0	571.3
<i>30</i>	63	Z-Z NH	`s^.	4.7	524.3
40	64	HN N	`s^` '	4.9	489,3
	65	·	`s^`.	46	511.3
45	66	N= NH .	`s^:	4.6	489.3
50	67	ни	`s^···	5.7	518.3

5			R2 N NH NH		
10	FORMULA	1	R3	Anat	yses
		R2	R3	Rt (min)	(M+H)+
15	68	HN	`s^.	7.1	592.3
25	69	HN N	`s^	4.6	495.3
30	70	F	`s^!	6.2	524.3
35	71	HN N	, N O O .	4.1	614.4
40	72	NH .	,×~°°	4.5	674.4
45	73	N-N NH	~~~o.	4.3	627.4
50	74	HN _N	-N~~0	4.4	592.3
55	75	N	,v~~°	4.2	614 4

EP 1 086 101 B1

5	FORMULA	· · ·	N NH NH NH R3		
				Ana	lyses
15		R2	R3	Rt (min)	(M+H)+
20	76	N= NH	`N~~O	4.2	592.3
25	77	н	, N~~ O	4.9	621.4
30	78	HN .		6.1	695.4
35	79	ни	, N~~ O C	4 2	598.4
40	80	· F.	,,~,o.	5.3	627.3

5

		NH R2		
		NH R3		
FORMULA	2		,	
	R2	R3	Ana Rt (min)	lysis (M+H)+
1	~~~~~	~~	4.8	488.4
2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~	4.6	474.4
3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		5.2	552.4
4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	NO:	5.2 : 5 1	583.3
5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		4.8	552.3
6			5 7	564.4
7	, , , , , , , , , , , , , , , , , , ,		4.9	538.4
8		C,	4.9	538.4
9	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Br	5.3	586.2
10	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	O'	5.0	514.4
11	, N. N	`\$^-	4.7	506 4

5			
10			
15			
20			
25			
30			
35			
40			
45			

		H N NH		
		NH' R3		
FORMULA	.2	,,		· · · · · · · · · · · · · · · · · · ·
}	R2	R3	Ana Rt (min)	llysis (M+H)+
12		0,2N	5.1	553.3
13	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	`sC	5.2	554.3
14	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	`p\	4.5	551.4
15		P	5.0	522.4
16	~~~n~n	~~*	5.1	502.4
17		~~	49	485.4
18		~	4.6	471.4
19			5.3	549.4
20		NO ₂	5.3 ; 5.2	580.3
21			4.9	549.3
22		Y	5.8	561.4

5			NH NH		
10	FORMULA	.2	R3		
	<u> </u>			Ana	llysis
15	23	R2	R3	Rt (min) 4 9	(M+H)+ 535.4
20	24		C,	4.9	535.4
25	25		Br	5.3	583.2
30	26		O'	5.1	511.4
35	27		`s~`	48	503.4
	28		0.N	5.1	550 3
40	29		`s C -	5.2	551.3
45	30		-NO	4.6	548.4
50	31		Q .	5 1	519.4
55	32		~~	5.1	499.4

Analysis
Rt (min) (M+H)+

507.4

493.4

571.4

571.4

583.4

557.4

557.4

605.3

533.4

525 4

4.8

4.6

5.2

4.9

5.7

49

4.9

5.3

5.0

47

5.2 . 5.1 602.4

5			NH NH
10	FORMULA	2	N R3
		R2	R3
15	33	~~\n\o	~~
20	34	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~
	35	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.0/
25	36	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	NO,
30	37	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
35	38	~~~	70
40	39	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
45	40 .		O,
	41	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Br
50	42	~~~\o	O'
55	43	~~~~°	s

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

		NH NH		
		N R3		
FORMULA	2		Ana	lysis
	R2	R3	Rt (min)	(M+H)+
44		0 ₂ N	5.1	572.4
45	~~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	`s.C'	5.2	573.4
46	, v	N N	4.6	570.4
47	~~~	Y	5.0	541.4
48	~~~\ ₀	~~ ~	5.1	521.4
49		~~	48	471 4
50	Cu	~	4.6	457 4
51		Q.	5.2	535.4
52	~~~~	NO,	5.2 , 5.1	566.3
53	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		4.8	535.3
54	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X	5.7	547 4

5		
10	FORMULA	. 2
15	55	
20	56	C
25	57	
30	58	
35	60	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
40	61	
45	62	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	63	N
50	64	N
		[` _ _ \\ _ \\ _ \

		O R2 N H		
FORMULA	12	N R3		
	R2	R3	Ana	ilysis
-	R2	N3	Rt (min)	(M+H)+
55		0	49	521.3
56		Ç,	4.9	521.4
57	Cu	- Br	5.2	569.2
58			5.0	497.4
59		`s^_	4.7	489.3
60	~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	O.N.	5.1	536.3
61		s	5.2	537.3
62	2	\\\	4.6	534.4
63	N		5.0	505.4
64		~~	5.1	485.4
65		~~	4.9	479 5

FORMULA		O NH NH NH NH R3		
	R2	R3	Ana Pt (min)	llysis (M+H)+
66		~	4.7	465.4
67	*\^N\	0	5.3	543.4
68	× × ×	NO.	5.2 ; 5.3	574.4
69	*\^\		49	543.4
70			58	555.5
71	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u></u>	5.0	529.5
72	, , ,	Ç	5.0	529.4
73	`^ ~	Br	5.3	577.3
74	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	O'	5.1	505.5
75	\ \ \	`s~~	4.8	497.4
76		0.N.	5.2	544 4

FORMULA	2	NH NH NH R3		
			Ana	lysis
	R2	R3	Rt (min)	
77		's C	5.3	545.4
78	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		4.7	542.5
79	()	P	51	513.5
80	\n_\(\)	~~·	5.2	493.5

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

R1 N NH H				
FORMULA	3	'' R2		
	R1	R2	Analy Rt (min)	(M+H)+
1	(S)	NO ₂ CI	6.7	470.1
2	(s)(NO:	6.4	436.1
3.	(S)	CN	6.2	416 1
4	(5)	ò. ()-ó	6 4	451.2
5	(S)		6.3	435.1
6	(S)[· \\	6.4	451.2
7	(5)	F. ()	6.3	409.1
8	(S)	Ö	64	464.2
9	(5)		5.5 ; 5.3	462.2
10	(5)		6 9	460.2

5			
10			
15			
20			
25			
30			
35			
40			
45			
50			

FORMULA 3				
OKINODA	ř – – – – – – – – – – – – – – – – – – –	· · · · · · · · · · · · · · · · · · ·	Analy	/ses
	R1	R2	Rt (min)	(M+H)+
11	(3)(2)		7,4:7,2	518.3
12	(S)(6.4	405.2
13	(S)	~0	6,7 ; 6,6	419.2
14	(S)	_0	6,5 ; 6,4	395.2
15	(5)	~~	6.6	385.2
16	(5)	~~~	6.9	399.2
17	(S)	~~	6.2	369.2
18	(5)	•<	6.5 ; 6.4	385.2
19	(5)	>\	6.9	435.1
20	(5)		6.9	477.2
21	(R)	NO ₂ CI	6.7	470.1
22	(R)	NO.	6.3	436.1

5	FORMULA	3	
			_
		R1	-
10	23	(R)	
15	24	(R)	
20	25	(R)	
25	26	(R)	
30	27	(R)	_
35	28	(R)	
	29	(R)	
40	30	(R)	_
45	31	(R)	
50	32	(R)	
		(B)	

		R1		
		N		
		N NH H		
FORMULA	3	1	Anah	242
	R1	R2	Rt (min)	[M+H]+
23	(R)	CC	6.2	416.2
24	(R)		6.4	451.2
25	(R)	Š	6.2	435.2
26	(R)		64	451.2
27	(R)	, t	6.3	409.2
28	(R)	o N	6.4	464.2
29	(R)		5.5 ; 5.3	462.2
30	(R)		6.9	460 2
31	(R)		7.4; 7,2	518.3
32	(R)	JO.	6.4	405.2
33	(R)	0	67.6.6	419 2

	_
5	F
10	
15	-
20	
25	-
30	
35	
40	
45	
50	

		R1 N		
FORMULA	3	N NH H		
			Analy	/ses
	R1	R2	Rt (min)	(M+H)+
34	(R)	,0	6.5; 6,4	395.2
35	(R)	~~	6.6	385.2
. 36	(R)	~~~	6.9	399.2
37	(R)	~~	6.2	369.2
38	R	-<	6.5 : 6,4	385.2
39	(R)	\$.s^	6.9	435.1
40	(R)	1000	6.9	477.2
41	(S)	NO ₂ CI	6.6	450.1
42	(8)	NO,	6.3	416.2
43	(8)	CN	6.1 ; 6.0	396.2
44	(S)	ó	6.1	431.2
45	(S)		6.1	415.2

5	FORMULA	3	R1 N N N N N N N N N H R2		
	OKINOS	Ĭ		Anaiy	rses
		R1	R2	Rt (min)	(M+H)+
10	46	(5)		6.1	431.2
15	47	(5)	5	6.24 ; 6,17	389.2
20	48	(5)		5.6	444 2
25	49	(S)		5,1 ; 5.0	442.3
30	50	(S)		6.4	440.2
35	51	(5)		6.8	498.3
40	52	(8)		6.1	385.2
	53	(S)		6.5	399.2
45	54	(S)	\bigcirc	6,2 ; 6,3	375.2
	55	(S)	~ ~~	6.2	365.3
50	56	(S)	~~~	6.6	379.3
55	57	(S)		58	349.2

5		
5		
10		
15		
20		
25		
30		
35		
40		
45		
50		

-		R1 N			
FORMULA	FORMULA 3				
			Analy		
	R1	R2	Rt (min)	[M+H]+	
58	(S)	-<	6.2	365.3	
59	(S)	>\s\s'	6.8	415.1	
60	(S) \		6.8	457.2	
61	(R)	NO ₂ CI	6.6	450.1	
62	(R)	NO ₂	6.3	416.2	
63	(R)	CN	6,0 ; 6,1	396.2	
64	(R)	Ó	6.1	431.2	
65	(R)	S	6.1	415.2	
66	(R)		6.1	431.2	
67	(R)	\$	6,23 ; 6,17	389.2	
68	(R)	O N	5.7	444 3	
69	(R)				
L	<u> </u>		50,5.1	442 3	

EP 1 086 101 B1

5		
10		
15		
20		
25		
30		
35		
40		

	R1 N N NH H					
FORMULA	3	N Y H R2				
		·	Anal			
	R1	R2	Rt (min)	{M+H}+		
70	(R)		6.4	440.2		
71	(R)		6.8	498.3		
72	(R)		6.1	385.2		
73	(R)		6.5	399.2		
74	(R)	~ ~~	6.2	365.3		
75	(R)	~~~	6.6	379.3		
76	(R)	~~	5.8	349.2		
77	(R)		6.2	365.3		
78	(R)	>\	6.8	415.1		
79	(R)		6.8	457.2		

5	FORMUL		R1 N N N N N N N N H R2		
	PORMOL			Ana	lyses
		R1	R2	Rt (min)	[M+H]+
10	1	(S) O .	Ď	6.2	451.2
15	2	(S) O	0,1	6.4	496.3
20	3	(S) O	NO ₂	6.3	466.3
	4	(S) O.	\bigcirc	6.1	421.3
25	5	(S) 0		7.0	477.4
30	6	(S) O	∫S ⁻	6.5	467.3
35	7	(5)	Br	6.5	499.2
40	8	(S)		61	494.4
	9	(5)	0~~n.	5.2	522.4
45	10	(S) O	(1)	6.1	465.3
50	11	(\$)	D'N.	5.8	464.4
55	12	(5)	NO ₂ CI	6.6	500 3

5			
10			
15			
20			
25			
30			
35			
40			
45			
50			

		R1 N		
FORMUL	A 4	NH H H R2		
·		·		lyses
ļ	R1	R2	Rt (min)	(M+H)+
13	(5)	Jo.	6.3	469.3
14	(S) O	~0.0	6.5	465.3
15	(5) 0	✓.	6.1	401.4
16	(S) O.	~~	6.2	401.3
17	(5)	~~	65	415.4
18	(S) O	· ~~~	6.7	429.4
19	(S) O	0	6.4 : 5,9	427.4
20	(S) O.	~~s^	6.0	419.3
21	(R) O.	Ô	6.2	451.3
22	(R) O.	O ₂ N	6.4	496.3
23	(R) O.	NO ₂	6.3	466.3
24	(R) O.	0	6.1	421.3
25	(R) O		7 0	477 4

	5

FORMULA 4					
			Ana	tyses	
	R1	R2	Rt (min)	[M+H]+	
26	(R) O	S− S−	6.5	467.3	
27	(R) O	Br	6.5	499.2	
28	(R) O	0	6.2	494.4	
29	(R) O	0 N.	5.2	522.4	
30	(R) O		6.1	465.3	
31	(R) O		5.8	464.4	
32	(R) O	NO. CI	6.6	500.3	
33	(R) O	F _O .	6.3	469.3	
34	(R) O.	~o_O	6.5	465.3	
35	(R) O.	<u></u>	6 .1	401.3	
36	(R) O.	~~	6.2	401.3	
37	(R) O.	> >>>	6.5	415.3	

6 . ~		·			
5	FORMUL	Α 4	R1 N NH H		
				Ana	yses
		R1	R2	Rt (min)	(M+H)+
10	38	(R) O	~~~	6.7	429.4
15	39	(R) O	.0	6.4 : 5.9	427.4
20	40	(R) O.	~^s′	6.1	419.3
25	41	(s) N.O		6.4	466.3
25	42	(s) N.O	0,1	6.8	511.3
30	43	(S) N.O	NO ₂	6.5	481.3
35	44	(s) , , , o	D	6.3	436.3
40	45	(s) o. i. o		7 1	492.4
45 .	46	(s) N.O	∫S-	6.6	482.3
50	47	(s) , , o	Br	6.7	514.2
55	48	(S) O. O.	o N	6.6	509.3

_	
5	

5

		R1					
		N S					
		$\sim \sim \sim \sim$					
		N NH H					
FORMUL	FORMULA 4						
		R2		lyses			
	R1	RZ	Rt (min)	[M+H]+			
49	(S)	000 N	5.4	537.4			
50	(S) O. N. O		6.3	480.3			
51	(S) (N-O)	J'N	6.4	479.3			
52	(s) N.O	NO ₂ CI	6.9	515.2			
53	(s) , , , ,	F ₀ ,	6.5	484.3			
54	(S) N.O	~°.	67	480.3			
55	(s) N.O	~	6.3	416.3			
56	(s) N.O	~	6.4	416.3			
57	(s) , N.O	~~	6.7	430.3			
58	(S) , , , o	***	69	444.4			

		ě	
5			
10			
15			
20			
25			
30			
35			
40 45			
<i>45</i> <i>50</i>			

		R1		
		CINCH H		
FORMUL	Δ.Α.	N R2		
OKNOL		·		lyses
	R1	R2	Rt (min)	[M+H]+
59	(S) N.O	~~s~	6.6 ; 6,4	442.3
60	(s) , , o		6.3	434.3
61	(R) N.O		6.4	466.3
62	(R) N.O	0.1	6.8	511.3
63	(R) N.O	NO ₂	6.5	481.3
64	(R) 0.0		6.3	436.3
65	(R) N.O		71	492.4
66	(R) N.O	\$-	6:6	482.3
67	(R) N.O	Bi .	6.7	514.2
68	(R) 0.00	, in	6.6	509.3

FORMULA 4				
. 0.0			Ana	lyses
	R1	R2	Rt (min)	[M+H]+
69	(R) 0 NO	Now in	5.4	537.4
70	(R) 0:N.O	,(T°)	6.3	480.3
71	(R) N.O	N.	6.4	479.3
72	(R) N.O	NO ₂ CI	69	515.2
73	(R) N.O	ţ,	6.5	484.3
74	(R) NO		67	480.3
75	(R) NO	<u> </u>	6.3	416.3
76	(R) N.O.	~~	6.4	416.3
77	(R) , NO	~~~	6.7	430.4
78	(R) N.O	~~~	6.9	444.4

EP 1 086 101 B1

442.3

434.3

5 N R2 FORMULA 4 Analyses
Rt (min) [M+H]+ R1 R2 10 79 6,6;6,3 15 80 6.3

20

25

30

35

40

45

50

55

5			
10			
15			
20			
25			
30			
35			
40			
45			
50			

R1 N N NH H								
FORMULA 5 H R2 Analyses								
	R1	R2	Rt (min)	[M+H]+				
1	(S)		5.4	421.1				
2	(R)		5.4	421.1				
3	(S)	ò-<	5.4	421.1				
4	(R)	ò-<->	5.4	421 1				
5	(S)	D°.	54	421.1 _.				
6	(R)	D°.	5.4	421 1				
7	(S)		5.3	481.1				
8	(R)	, o	5.3	481 1				
9	(S)	170	5.3	435.1				
10	(R)	170	5.4	435.1				
11	(S)	0-14-0	5.4	480.1				

0 ~						
5	EORMIII A	5	R1 N NH H			
	CINIOD	FORMULA 5				
		R1	R2	Rt (min)	yses [M+H]+	
10	12	(R)	02N 0	5.4	480.1	
15	13	(S)	02N	5.5	466.1	
20	14	(R)	02N	5 .5	466.1	
25	15	(\$)		5.7	463.2	
30	16	(R)		5.7	463.2	
35	17	(S)		5.4	465.1	
40	18	(R)	0,	5.4	465 1	
	19	(S)	0.1	5.4	436.1	
45	20	(R)	0,2N	5.4	436 1	
50	21	(S)	NO ₃	54	436.1	
	22	(R)	NO.	54	436 1	

ė		
5		
10		
15		
20		
25		
30		
35		
40		
45		
50		

FORMULA	.5	R1 N N NH H R2		
<u> </u>	 			yses
	R1	R2	Rt (min)	[M+H]+
23	(S)	OCF,	5.6	475.1
24	(R)	OCF,	5.6	475.1
25	(s)	CF ₃	5.5	459.1
26	(R)	CF ₃	5.5	459 1
27	(S)	, o	5.4	439.1
_ 28	(R)	ţ,	5.4	439.1
29	(S)	₩ F	5.4	409 1
30	(R)	₩	5.4	409.1
31	(5)	Br	5.5	469.0
32	(R)	Br	5.5	469.0
33	(S)	Br	5.5	469.0
34	(R)	₽r	55	469.0

ē

		R1 N N H H		
FORMULA	5	H Ř ₂		
	R1	R2	Anal Rt (min)	yses [M+H]+
35	(S)	₽ Br	5.5	469.0
36	(R)	Br	5.5	469.0
37	(S)	CI	5.6	459.0
38	(R)	CI	5.6	459.0
39	(S)	ō	5.6	459.0
40	(R)	<u>-</u>	5.6	459.0
41	(S)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4.9	492.2
42		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4.6	492.2
43	(S)		5.3	434.1
44	(R)	-×-	5.3	434.1
45	(S)	12 = 0	5.1	448.1
46	(R)) Szr O-Zr	5 1	448.1

5	

		R1 N N N N N N N N N N N N N N N N N N N		
FORMULA	5	·· R2	A=01	
	R1	R2	Rt (min)	yses (M+H)+
47	(S)		5.7	447.2
48	(R)		5.7	447.2
49	(S)	s	5.6	479.1
50	(R)	s	5.6	479.1
51	(S)	ОН	5.2	407 1
52	(R)	ОН	5.2	407.1
53	(S)	OH O	5.2	437,1
54	(R)	ОН ОН	5.2	437.1
55	(S)		5. 6	467.1
56	(R)		5.6	467.1
57	(S)	Ď	5.4	405.2
58	(R)		5.4	405.2

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

		R1 N		
FORMULA :	- .	N NH H		
FORMULA		R2	Anal Rt (min)	
59	(S)	s-	5.5	(M+H)+ 437.1
60	(R)	\$-	5.5	437.1
61	(S)		5.3	391.1
62	(R)		5.3	391.1
63	(S)	~	5.5	435.1
64	(R)		5.5	435.1
65	(S)		5.5	397.2
66	(R)	\sim	5.4	397.2
67	(5)		5,1	355.2
68	(R)		5.1	355.2
69	(S)	~	5.2	357.2
70	.(R)	~	5.2	357 2
·		<u> </u>	· · · · · · · · · · · · · · · · · · ·	

5	
10	
15	
20	
25	
30	
35	
40	
45	

С	la	ir	n	S

1. A compound of formula (I),

FORMULA 5 Analyses R1 R2 Rt (min) [M+H]+ 71 5.3 371.2 72 5.3 371.2 73 5.3 385.2 74 5.3 385.2 75 5.3 371.2 76 5.3 371.2 77 5.3 389,1 78 5.3 389.1 79 5.6 413.2 80 5.7 413.2

$$\mathbb{R}^7$$
 \mathbb{R}^6
 \mathbb{R}^5
 \mathbb{R}^1

the racemic-diastereomeric mixtures and optical isomers of said compound of formula (I), the pharmaceuticallyacceptable salts or prodrugs thereof or a pharmaceutically acceptable salt of said prodrug, wherein

----represents an optional bond;

5

10

15

20

25

30

35

40

45

50

55

X is N or N-R⁴, where X is N when both optional bonds are present and X is N-R⁴ when the optional bonds are not present;

 R^1 is H, $-(CH_2)_m$ -C(O)- $(CH_2)_m$ -Z¹, $-(CH_2)_m$ -O-Z¹ or $(C_0$ -C₆) alkyl-C(O)-NH- $(CH_2)_m$ -Z³. Z¹ is an optionally substituted moiety selected from the group consisting of $(C_1$ -C₁₂)alkyl,benzo[b]thiophene, phenyl, naphthyl, benzo[b]furanyl, thiophene, isoxazolyl, indolyl,

 $\mathsf{R}^2 \text{ is } (\mathsf{C}_1 - \mathsf{C}_{12}) \text{alkyl}, (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl} - \mathsf{C}(\mathsf{O}) - \mathsf{O} - \mathsf{Z}^5, (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl} - \mathsf{C}(\mathsf{O}) - \mathsf{NH} - (\mathsf{CH}_2)_{\mathsf{m}} - \mathsf{Z}^3 \text{ or optionally substituted phenyl};$

 Z^5 is H, (C_1-C_{12}) alkyl or $(CH_2)_m$ -aryl; Z^3 is amino, (C_1-C_{12}) alkylamino, N,N-di- (C_1-C_{12}) alkylamino, -NH-C(O)-O- $(CH_2)_m$ - phenyl, -NH-C(O)-O- $(CH_2)_m$ - (C₁-C₆)alkyl or an optionally substituted moiety selected from the group consisting of imidazolyl, pyridinyl and morpholinyl, piperidinyl, piperazinyl, pyrazolidinyl, furanyl and thiophene;

R3 is H;

 R^4 is H, $-C(=Y)-N(X^1X^2)$, $C(=O)X^2$ or X^2 ;

Y is O or S;

X2 is - (CH₂)_{m-}Y¹_X³:

 X^3 is H or an optionally substituted moiety selected from the group consisting of (C_1-C_{12}) alkyl, (C_3-C_8) cycloalkyl, (C_1-C_{12}) alkoxy, aryloxy, (C_1-C_{12}) alkylamino, N,N-di- (C_1-C_{12}) alkylamino, -CH-di- (C_1-C_{12}) alkoxy or phenyl;

 R_5 is $(C_1.C_{12})$ alkyl, $-(CH_2)_m-Y^1-(CH_2)_m$ -Phenyl- $(X^1)_n$, $(C_3.C_{12})$ cycloalkyl, $-(CH_2)_m-S_-(C_1.C_{12})$ alkyl, $-(CH_2)_m-S_-(C_1.C_{12})$ alkyl-S-S- $-(C_1.C_{12})$ alkyl, $-(CH_2)_m-(C_1.C_{12})$ alkenyl or an optionally substituted moiety selected from the group consisting of phenyl, furanyl, thiophene, pyrrolyl, pyridinyl and

Y₁ is O, S, NH or a bond;

R6 is H or SO2-phenyl;

5

10

15

20

25

30

35

40

45

50

R7 is H, alkyl optionally substituted with alkoxy or dialkylamino;

wherein an optionally substituted moiety or optionally substituted phenyl is optionally substituted by one or more substituents, each independently selected from the group consisting of CI, F, Br, I, CF₃, NO₂, OH, SO₂NH₂, CN, N₃, -OCF₃, (C₁-C₁₂)alkoxy, -(CH₂)_m-phenyl-(X¹)_n, -NH-CO-(C₁-C₆)alkyl, -S-phenyl-(X¹)_n, -O-(CH₂)_m-phenyl-(X¹)_n, -(CH₂)_m-C(O)-O-(C₁-C₆)alkyl, -(CH₂)_m-C(O)-(C₁-C₆)alkyl, -O-(CH₂)_m-NH₂, -O-(CH₂)_m-NH-(C₁-C₆)alkyl, -O-(CH₂)_m-N-di-((C₁-C₆)alkyl)and -(C₈-C₁₂)alkyl-(X¹)_n;

X¹ for each occurrence is independently selected from the group consisting of hydrogen, Cl, F, Br, I, NO₂, OH, -CF₃, -OCF₃, (C₁-C₁₂)alkyl, (C₁-C₁₂) alkoxy, -S-(C₁-C₆)alkyl, -(CH₂)_m-amino, -(CH₂)_m-NH-(C₁-C₆)alkyl, -(CH₂)_m.N-di-((C₁-C₆)alkyl), -(CH₂)_m-phenyl and -(CH₂)_m-NH-(C₃-C₆) cycloalkyl;

m for each occurrence is independently 0 or an integer from 1 to 6; and n for each occurrence is independently an integer from 1 to 5.

A compound according to claim 1 wherein X is NH; R¹ is H; R² is -CH(CH₃)₂-CO-NH-(CH₂)_m-Z³ where m in the definition R² is 1, 2 or 3;

 Z^3 is imidazolyl, pyridinyl, morpholino, or N, N-di-ethylamino; R⁵ is propyl, n-butyl, n-pentyl, -(CH₂)-O-(CH₂)-phenyl, 2-nitro-3-OMe-phenyl, p-t-Bu-phenyl, m-OMe-phenyl, o-OMe-phenyl, p-nitro-phenyl, -(CH₂)₂-S-Me, cyclohexyl, m-Br-phenyl, p-S-Me-phenyl, p-N, N-dimethylamino-phenyl, m-methyl-phenyl or

R⁶ is H; and R⁷ is H.

3. A compound according to claim 1 wherein X is NH: R¹ is H; R² is phenyl; R⁵ is propyl, n-butyl, n-pentyl, n-heptyl, isobutyl, neopentyl, cyclopropyl, cyclohexyl, -(CH₂)₂-S-Me, phenyl, -(CH₂) -O-(CH₂)-phenyl, 2-nitro-3-OMe-phenyl, p-t-Bu-phenyl, o-OMe-phenyl, m-OMe-phenyl, p-OMe-phenyl, 3,4,5-tri-OMe-phenyl, p-butoxy-phenyl, 3-ethoxy-4-methoxy-phenyl, o-nitro-phenyl, p-nitro-phenyl, p-OCF₃-phenyl, o-CF₃-phenyl, 3-F-4-OMe-phenyl, o-F-phenyl, o-BR-phenyl, m-Br-phenyl, p-Br-phenyl, 2,4-di-Cl-phenyl, 3,4-di-Cl-phenyl, p-(3-(N,N-dimethylamino)propoxy)phenyl, -(CH₂)₂-S-Me, cyclohexyl, p-(Me-CO-NH-)-phenyl, p-t-Bu-phenyl, p-OH-phenyl, p-(-S-Me)-phenyl, p(-S-t-Bu)-phenyl, p-N,N-dimethylamino-phenyl, m-methyl-phenyl, 3-OH-4-Ome-phenyl, p-phenyl-phenyl,

R⁶ is H; and R⁷ is H.

4. A compound according to claim 1 wherein X is NH; R¹ is H; R² is p-OMe-phenyl or p-nitro-phenyl; R⁵ is n-butyl, n-pentyl, n-hexyl, isobutyl, cyclohexyl, -(CH₂)₂.S-Me, phenyl, m-OMe-phenyl, 2-nitro-3-OMe-phenyl, p-nitro-phenyl, p-t-Bu-phenyl, p-thiomethyl-phenyl, m-Br-phenyl, 2-OMe-4-dimethylamino-phenyl, p-(3-(N,N-dimethylamino)propoxy)phenyl, p-dimethylamino-phenyl, 3-nitro-4-Cl-phenyl, --(CH₂)-O-(CH₂)-phenyl or

R⁶ is H; and R⁷ is H.

5

15

20

25

30

35

40

45

50

55

- A pharmaceutical composition comprising a compound according to claim 1 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
 - **6.** Use of a compound according to claim 1 or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for eliciting an agonist or an antagonist effect from one or more of a somatostatin subtype receptor in a subject in need thereof.
 - 7. Use of a compound according to claim 1 or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for binding one or more somatostatin subtype receptor or inhibiting the proliferation of helicobacter pylori in a subject in need thereof.
 - 8. Use of a compound according to claim 1 or a pharmaceutically acceptable salt in the manufacture of a medicament for treating acromegaly, restenosis, Crohn's disease, systemic sclerosis, external and internal pancreatic pseudocysts and ascites, VIPoma, nesidoblastosis, hyperinsulinism, gastrinoma, Zollinger-Ellison Syndrome, diarrhea, AIDS related diarrhea, chemotherapy related diarrhea, scleroderma, Irritable Bowel Syndrome, pancreatitis, small bowel obstruction, gastroesophageal reflux, duodenogastric reflux, Cushing's Syndrome, gonadotrophinoma, hyperparathyroidism, Graves' Disease, diabetic neuropathy, Paget's disease, polycystic ovary disease, cancer, cancer cachexia, hypotension, postprandial hypotension, panic attacks, GH secreting adenomas, secreting adenomas, diabetes mellitus, hyperlipidemia, insulin insensitivity, Syndrome X, angiopathy, proliferative retinopathy, dawn phenomenon, Nephropathy, peptic ulcers, enterocutaneous and pancreaticocutaneous fistula, Dumping Syndrome, watery diarrhea syndrome, acute or chronic pancreatitis, gastrointestinal hormone secreting tumors, angiogenesis, inflammatory disorders, chronic allograft rejection, angioplasty, graft vessel bleeding or gastrointestinal bleeding, in a subject in need thereof.
 - 9. A compound of formula (II),

$$\mathbb{R}^7$$
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^5

the racemic-diastereomeric mixtures and optical isomers of said compound of formula (II), the pharmaceuticallyacceptable salts or prodrugs thereof or a pharmaceutically acceptable salt of said prodrug, wherein------represents an optional bond;

J1 is N-R6 or S;

J² is N-R¹ O or S;

X is N or N-R⁴, where X is N when both optional bonds are present and X is N-R⁴ when the optional bonds are not present;

R¹ is H, $-(CH_2)_m$ -C(O)- $(CH_2)_m$ - Z^1 , $-(CH_2)_m$ - Z^1 , $-(CH_2)_m$ -O- Z^1 or $(C_0$ - C_6)alkyl-C(O)-NH- $(CH_2)_m$ - Z^3 ; Z^1 is an optionally substituted moiety selected from the group consisting of $(C_1$ - C_{12})alkyl, benzo[b]thiophene, phenyl, naphthyl, benzo[b]furanyl, thiophene, isoxazolyl, indolyl,

 $\mathsf{R}^2 \text{ is } (\mathsf{C}_1 - \mathsf{C}_{12}) \text{alkyl, } (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl-C(O)-O-Z}^5, (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl-C(O)-NH-(CH}_2)_m. \\ \mathsf{Z}^5 \text{ in the } (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl-C(O)-O-Z}^5, (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl-C(O)-NH-(CH}_2)_m. \\ \mathsf{Z}^5 \text{ in the } (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl-C(O)-O-Z}^5, (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl-C(O)-NH-(CH}_2)_m. \\ \mathsf{Z}^5 \text{ in the } (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl-C(O)-O-Z}^5, (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl-C(O)-NH-(CH}_2)_m. \\ \mathsf{Z}^5 \text{ in the } (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl-C(O)-O-Z}^5, (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl-C(O)-NH-(CH}_2)_m. \\ \mathsf{Z}^5 \text{ in the } (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl-C(O)-O-Z}^5, (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl-C(O)-NH-(CH}_2)_m. \\ \mathsf{Z}^5 \text{ in the } (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl-C(O)-O-Z}^5, (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl-C(O)-NH-(CH}_2)_m. \\ \mathsf{Z}^5 \text{ in the } (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl-C(O)-O-Z}^5, (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl-C(O)-NH-(CH}_2)_m. \\ \mathsf{Z}^5 \text{ in the } (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl-C(O)-O-Z}^5, (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl-C(O)-NH-(CH}_2)_m. \\ \mathsf{Z}^5 \text{ in the } (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl-C(O)-O-Z}^5, (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl-C(O)-NH-(CH}_2)_m. \\ \mathsf{Z}^5 \text{ in the } (\mathsf{C}_0 - \mathsf{C}_6) \text{alkyl-C(O)-O-Z}^5, (\mathsf{C}_0 - \mathsf$

 Z^5 is H, (C_1-C_{12}) alkyl or $(CH_2)_{m-}$ aryl;

 Z^3 is amino, (C_1-C_{12}) alkylamino, N, N-di- (C_1-C_{12}) alkylamino, -NH-C(O)-O- $(CH_2)_m$ -phenyl, -NH-C(O) -O- CH_2)_{m-} (C_1-C_6) alkyl or an optionally substituted moiety selected from the group consisting of phenyl, imidazolyl, pyridinyl and morpholinyl, piperidinyl, piperazinyl, pyrazolidinyl, furanyl and thiophene; R^3 is H, (C_1-C_6) alkyl or optionally substituted phenyl;

 R^4 is H, -C(=Y)-N(X¹X²), C(=O)X² or X²;

Y is O or S;

5

10

15

20

25

30

35

40

45

- 50

55

 X^{2} is H or -(CH₂)_m-Y¹-X³;

 X^3 is H or an optionally substituted moiety selected from the group consisting of (C_1-C_{12}) alkyl, (C_3-C_8) cycloalkyl, (C_1-C_{12}) alkoxy, aryloxy, (C_1-C_{12}) alkylamino, N, N-di (C_1-C_{12}) alkylamino, -CH-di- (C_1-C_{12}) alkoxy or phenyl; R⁵ and R⁸ are each independently selected from the group consisting of H, (C_1-C_{12}) alkyl, - $(CH_2)_m$ -Y¹- $(CH_2)_m$ -phenyl- $(X^1)_n$, (C_3-C_{12}) cycloalkyl, (C_3-C_{12}) cycloalkenyl, - $(CH_2)_m$ -S- (C_1-C_{12}) alkyl, (C_1-C_{12}) alkyl-S-S- (C_1-C_{12}) alkyl, - $(CH_2)_m$ -(CH₂) $(CH_2)_m$ -C(1-C₁₂)alkyl, group consisting of phenyl, furanyl, thiophene, pyrrolyl, pyridinyl and

(C,-C,)alkyt

provided that R^5 and R^8 are not both H at the same time; or R^5 and R^8 are taken together with the carbon atom to which they are attached to form

N-A-B-J³

spiro(C₄-C₁₂)cycloalkyl,

or

· s

Y¹ is O, S, NH or a bond; A is a bond, -CO-, -C(O)O-, -C(O)NH-, -C(S)NH-, or -SO₂.; B is a bond or -(CH₂)_q where q is an integer from 1 to 6;

 J^3 is H, (C_1-C_6) alkyl, optionally substituted phenyl, optionally substituted heteroaryl or N(R⁹R¹⁰), where R⁹ and R¹⁰ are each independently selected from the group consisting of (C_1-C_6) alkyl, and optionally substituted phenyl, or R⁹ and R¹⁰ are taken together with the nitrogen to which they are attached to form a ring having 5 to 8 members including the nitrogen atom that R⁹ and R¹⁰ are attached to, where one of the ring members may optionally be an oxygen atom or NR¹¹, where R¹¹ is (C_1-C_6) alkyl, $-C(O)-(C_1-C_6)$ alkyl, $-C(O)-N(V^1V^2)$, or optionally-substituted-phenyl- (C_0-C_6) alkyl-, where V¹ and V² are each independently H, (C_1-C_6) alkyl or optionally-substituted-phenyl- (C_0-C_6) alkyl; R⁶ is H or SO₂-phenyl;

wherein an optionally substituted moiety or optionally substituted phenyl is optionally substituted by one or more substituents, each independently selected from the group consisting of CI, F, Br, I, CF₃, NO₂, OH, SO₂NH₂, CN, N₃, -OCF₃, (C₁-C₁₂)alkoxy,-(CH₂)_m-phenyl-(X¹)_n, -NH-CO- (C₁-C₆)alkyl, -S-(C₁-C₁₂)alkyl, -S-phenyl-(X¹)_n, -O-(CH₂)_m-Phenyl-(X¹)_n, -(CH₂)_m-C(O)-(C₁-C₆)alkyl, -(CH₂)_m-NH₂, -O-(CH₂)_m-NH-(C₁-C₆)alkyl, -O-(CH₂)_m-N-di((C₁-C₆)alkyl) and -(C₀-C₁₂)alkyl-(X¹)_n;

 X^1 for each occurrence is independently selected from the group consisting of hydrogen, CI, F, Br, I, NO_2 , OH, $-CF_3$, $-OCF_3$, (C_1-C_{12}) alkyI, (C_1-C_{12}) alkoxy, $-S-(C_1-C_6)$ alkyI, $-(CH_2)_m$ -amino, $-(CH_2)_m$ -NH- (C_1-C_6) alkyI, $-(CH_2)_m$ -NH- (C_3-C_6) cycloalkyI; m for each occurrence is independently 0 or an integer from 1 to 6; and n for each occurrence is independently an integer from 1 to 5.

10. A compound according to claim 9 having the formula

R⁷
N
R³
(ila)

Wherein R3 is H or methyl;

R4 is H or methyl;

R⁵ is H, methyl, ethyl, butyl, pentyl or hexyl;

R8 is ethyl, butyl, pentyl, hexyl, or cyclohexyl;

Or R⁵ and R⁸ are taken together with the carbon to which they are attached to form spirocyclohexyl, spirocycloheptyl, spiroadamantyl,

55 or

5

10

15

20

25

30

35

40

45

where A is a bond or -C(O)O-; B is a bond, -(CH₂)- or -(CH₂)₂-; J^3 is H, or phenyl; and R^7 is H, Me, R, Cl, OH, -O-methyl or -O-CH₂-phenyl.

10 11. A compound according to claim 10 wherein:

R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are together

15

and the imidazolyl is in the R-configuration; R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are together

20

25

and the imidazolyl is in the R-configuration; R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are together

30

35

and the imidazolyl is in the R-configuration; R^3 , R^4 and R^7 are each hydrogen, R^5 and R^8 are together

40

and the imidazolyl is in the R-configuration, or its hydrochloride salt;

45 R³ i

 R^3 is methyl, R^4 and R^7 are each hydrogen, R^5 and R^8 are each n-butyl and the imidazolyl is in the R-configuration;

R3, R4 and R7 are each hydrogen, R5 and R8 are together

50

55

and the imidazolyl is in the R-configuration, or its hydrochloride salt;

R³ and R⁴ are each hydrogen, R⁷ is 6-O-CH₂-phenyl, R⁵ and R⁸ are each

 R^3 and R^4 are each hydrogen, R^7 is 6-O-CH₂-phenyl, R^5 and R^8 are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations;

R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are together

and the imidazolyl is in the R-configuration, or its hydrochloride salt; R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are together

and the imidazolyl is in the R-configuration;

5

10

15

20

25

30

35

40

45

50

55

R³ and R⁷ are each hydrogen, R⁴ is methyl, R⁵ and R⁸ are each n-butyl and the imidazolyl is in the R-configuration:

 R^3 , R^4 are each hydrogen, R^7 is 7-fluoro, R^5 and R^8 are each n-pentyl and the imidazolyl is the racemic mixture of the S- and R-configurations;

R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are each n-hexyl and the imidazolyl is in the R-configuration; R³, R⁴ and R⁷ are each hydrogen, R⁵ is hydrogen and R⁸ is hexyl in the S-configuration and the imidazolyl is in the R-configuration, or its furnarate salt;

R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are each n-butyl and the imidazolyl is in the R-configuration, or its fumarate salt;

R3, R4 and R7 are each hydrogen, R5 and R8 are together

and the imidazolyl is in the R-configuration;

R3, R4 and R7 are each hydrogen, R5 and R8 are each n-butyl and the imidazolyl is in the S-configuration;

R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are each ethyl and the imidazolyl is in the R-configuration;

R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are each n-pentyl and the imidazolyl is in the R-configuration;

 R^3 , R^4 and R^7 are each hydrogen, R^5 is methyl and R^8 is cyclohexyl and the imidazolyl is in the R-configuration; R^3 and R^4 are each hydrogen, R^7 is 6-methyl R^6 and R^8 are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations;

R³ and R⁴ are each hydrogen, R⁷ is 7-fluoro, R⁵ and R⁸ are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configuracions;

R³ and R⁴ are each hydrogen, R⁷ is 6-methoxy, R⁵ and R⁸ are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations;

 R^3 and R^4 are each hydrogen, R^7 is 6-hydroxy, R^5 and R^8 are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations;

 R^3 and R^4 are each hydrogen, R^7 is 6-fluoro, R^5 and R^8 are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations, or its hydrochloride salt;

 R^3 and R^4 are each hydrogen, R^7 is 8-methyl, R^5 and R^8 are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations;

R³ and R⁴ are each hydrogen, R⁷ is 6-methyl, R⁵ and R⁸ are each n-pentyl and the imidazolyl is a racemic mixture of the S- and R-configurations; or

 R^3 and R^4 are each hydrogen, R^7 is 6-chloro, R^5 and R^8 are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations.

- 12. A compound according to claim 11 wherein said compound is selected from the group consisting of
 - R³, R⁴ and R⁷ are each hydrogen, R⁵ is hydrogen and R⁸ is hexyl in the S-configuration and the imidazolyl is in the R-configuration, or its furnarate salt:
 - R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are each n-butyl and the imidazolyl is in the R-configuration, or its furnarate salt;

R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are together

and the imidazolyl is in the R-configuration;

5

10

15

20

25

30

35

40

45

50

55

R³, R⁴ and R⁷ are each hydrogen, R⁵ and R⁸ are each n-butyl and the imidazolyl is in the S-configuration;

R3, R4 and R7 are each hydrogen, R5 and R8 are each ethyl and the imidazolyl is in the R-configuration;

R3, R4 and R7 are each hydrogen, R5 and R8 are each n-pentyl and the imidazolyl is in the R-configuration;

R³, R⁴ and R⁷ are each hydrogen, R⁵ is methyl and R⁸ is cyclohexyl and the imidazolyl is in the R-configuration;

R³ and R⁴ are each hydrogen, R⁷ is 6-methyl R⁵ and R⁸ are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations;

 R^3 and R^4 are each hydrogen, R^7 is 7-fluoro, R^5 and R^8 are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations;

R³ and R⁴ are each hydrogen, R⁷ is 6-methoxy, R⁵ and R⁸ are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations;

R³ and R⁴ are each hydrogen, R⁷ is 6-hydroxy, R⁵ and R⁸ are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations;

R³ and R⁴ are each hydrogen, R⁷ is 6-fluoro, R⁵ and R⁸ are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations, or its hydrochloride salt;

 R^3 and R^4 are each hydrogen, R^7 is 8-methyl, R^5 and R^8 are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations;

R³ and R⁴ are each hydrogen, R⁷ is 6-methyl, R⁵ and R⁸ are each n-pentyl and the imidazolyl is a racemic mixture of the S- and R-configurations; and

 ${\sf R}^3$ and ${\sf R}^4$ are each hydrogen, ${\sf R}^7$ is 6-chloro, ${\sf R}^5$ and ${\sf R}^8$ are each n-butyl and the imidazolyl is a racemic mixture of the S- and R-configurations.

- 13. A pharmaceutical composition comprising a compound according to claim 9 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
- **14.** Use of a compound according to clam 9 or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for eliciting an agonist effect or an antagonist effect from one or more of a somatostatin subtype receptor in a subject in need thereof.
- 15. Use of a compound according to claim 9 or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for binding one or more somatostatin subtype receptor in a subject in need thereof.
 - 16. Use of a compound according to claim 9 or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for treating acromegaly, restenosis, Crohn's disease, systemic sclerosis, external and internal pancreatic pseudocysts and ascites, VIPoma, nesidoblastosis, hyperinsulinism, gastrinoma, Zollinger-Ellison Syndrome, diarrhea, AIDS related diarrhea, chemotherapy related diarrhea, scleroderma, Irritable Bowel Syndrome, pancreatitis, small bowel obstruction, gastroesophageal reflux, duodenogastric reflux, Cushing's Syndrome, gonadotropinoma, hyperparathyroidism, Graves' Disease, diabetic neuropathy, Paget's disease, polycystic ovary disease, cancer, cancer cachexia, hypotension, postprandial hypotension, panic attacks, GH secreting adenomas, TSH secreting adenomas, diabetes mellitus, hyperlipidemia, insulin insensitivity, Syndrome X, angiopathy, proliferative retinopathy, dawn phenomenon, Nephropathy, peptic ulcers, enterocutaneous and pancreaticocutaneous fistula, Dumping Syndrome, watery diarrhea syndrome, acute or chronic pancreatitis, gastrointestinal hormone secreting tumors, angiogenesis, inflammatory disorders, chronic allograft rejection, angioplasty, graft vessel bleeding or gastrointestinal bleeding, in a subject in need thereof.
 - 17. Use of a compound according to claim 9 or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for inhibiting the proliferation of helicobacter pylori or blocking sodium channel or alleviating neuropathic pain in a subject in need thereof.

- 18. Use of a compound according to claim 1 or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for blocking sodium channel or alleviating neuropathic pain in a subject in need thereof.
- 19. A pharmaceutical composition for use as a local anesthetic, comprising a compound according to claim 1 or claim 9 or a pharmaceutically acceptable salt thereof, and optionally a pharmaceutically acceptable carrier.
- 20. Use of a compound according to claim 1 or claim 12 or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for treating any pathology, disorder or clinical condition involving glutamate release in their etiology in a subject in need thereof, the pathology, disorder or clinical condition preferably being selected from the group consisting of psychiatric disorders, hormonal conditions, metabolic inducted brain damage, sulphite oxidase deficiency, hepatic encephalopathy associated with liver failure, emesis, spasticity, tinnitus, pain and drug abuse and withdrawal.
- 21. Use of a compound according to claim 1 or claim 12 or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for treating any pathology involving neuronal damage in a subject in need thereof, the pathology preferably being selected from the group consisting of Alzheimer's disease, Huntington's disease, Parkinson's diseases, virus (including HIV)-induced neurodegeneration, amyotrophic lateral sclerosis (ALS), supranuclear palsy, olivoponto-cerebellar atrophy (OPCA), and the actions of environmental, exogenous neurotoxins.
- 20 22. Use of a compound according to claim 1 or claim 9 or a pharmaceutically acceptable salt in the manufacture of a medicament for treating arrhythmia or epilepsy in a subject in need thereof.

Patentansprüche

5

10

15

25

30

35

40

45

50

55

1. Verbindung mit der Formel (I)

$$\mathbb{R}^7$$
 \mathbb{R}^2
 \mathbb{R}^3
 \mathbb{R}^6
 \mathbb{R}^5

, die racemisch-diastereomeren Mischungen und optischen Isomere der Verbindung mit der Formel (I), die pharmazeutisch annehmbaren Salze oder Pro-Pharmaka davon oder ein pharmazeutisch annehmbares Salz des Pro-Pharmakons, wobei

--- eine optionale Bindung wiedergibt,

X N oder N-R⁴ ist, wobei X N ist, wenn beide optionalen Bindungen vorhanden sind, und X N-R⁴ ist, wenn die optionalen Bindungen nicht vorhanden sind;

R¹ H, -(CH₂)_m-C(O)-(CH₂)_m-Z¹, - (CH₂)_m-Z¹, -(CH₂)_m-O-Z¹ oder (C₀bis C₆-)-Alkyl-C(O) -NH- (CH₂)m-Z₃ ist, Z¹ ein gegebenenfalls substituierter Rest ausgewählt aus der Gruppe bestehend aus (C₁- bis C₁₂-)-Alkyl, Benzo [b] thiophen, Phenyl, Naphthyl, Benzo[b] furanyl, Thiophen, Isoxazolyl, Indolyl,

und

ist

5

10

15

20

 R^2 (C_1 - bis C_{12} -)-Alkyl, (C_0 - bis C_6 -)-Alkyl-C(O)-O-Z⁵, (C_0 bis C_6 -)-Alkyl-C(O)-NH-(CH_2)_m-Z³ oder gegebenenfalls substituiertes Phenyl ist;

 Z^5 H, (C₁- bis C₁₂-)-Alkyl oder (CH₂)_m-Aryl ist;

 Z^3 Amino, (C_1 - bis C_{12} -)-Alkylamino, N,N-Di-(C_1 - bis C_{12} -)-alkylamino, -NH-C(O)-O-(CH_2)_m-Phenyl, -NH-C(O)-O-(CH_2)_m-(C_1 bis C_6 -)-Alkyl oder ein gegebenenfalls substituierter Rest ausgewählt aus der Gruppe bestehend aus Imidazolyl, Pyridinyl und Morpholinyl, Piperidinyl, Piperazinyl, Pyrazolidinyl, Furanyl und Thiophen ist;

R³ H ist:

 R^4 H, $-C(=Y)-N(X^1X^2)$, $C(=O)X^2$ oder X^2 ist;

Y O oder S ist;

X2 -(CH₂)_m-Y1-X3 ist;

 X^3 H oder ein gegebenenfalls substituierter Rest ausgewählt aus der Gruppe bestehend aus (C_1 - bis C_{12} -)-Alkyl, (C_3 - bis C_8 -)-Cycloalkyl, (C_1 - bis C_{12} -)-Alkoxy, Aryloxy, (C_1 - bis C_{12} -)-Alkylamino, N,N-Di(C_1 - bis C_{12} -)-alkylamino, -CH-Di-(C_1 - bis C_{12} -)-alkoxy oder Phenyl ist;

R⁵ (C₁- bis C₁₂-)-Alkyl, -(CH₂)_m-Y¹-(CH₂)_m-Phenyl-(X¹)_n, (C₃bis C₁₂-)-Cycloalkyl, -(CH₂)_m-S-(C₁- bis C₁₂-)-Alkyl, (C₁- bis C₁₂-)-Alkyl-S-S-(C₁- bis C₁₂-)-Alkyl, -(CH₂)_m-(C₁- bis C₁₂-)-Alkenyl oder ein gegebenenfalls substituierter Rest ausgewählt aus der Gruppe bestehend aus Phenyl, Furanyl, Thiophen, Pyrrolyl, Pyridinyl und

25

30

35

40

ist;

Y1 O, S oder NH oder eine Bindung ist;

R⁶ H oder SO₂-Phenyl ist;

R⁷ H, Alkyl ist, das gegebenenfalls mit Alkoxy oder Dialkylamino substituiert ist;

wobei ein gegebenenfalls substituierter Rest oder ein gegebenenfalls substitutiertes Phenyl gegebenenfalls mit einem oder mehreren Substituenten substituiert ist, von denen jeder unabhängig ausgewählt ist aus der Gruppe bestehend aus CI, F, Br, I, CF₃, NO₂, OH, SO₂NH₂, CN, N₃, -OCF₃, (C₁bis C₁₂-)-Alkoxy, -(CH₂)_m-Phenyl-(X¹)_n, -NH-CO- (C₁- bis C₆-)-Alkyl, -S-Phenyl-(X¹)_n, -O- (CH₂)_m-Phenyl-(X¹)_n, -(CH₂)_m-C(O)-O-(C₁ - bis C₆-)-Alkyl, -(CH₂)_m-NH₂, -O-(CH₂)_m-NH-(C₁- bis C₆-)-Alkyl, -O-(CH₂)_m-N-Di-((C₁- bis C₆-)-Alkyl) und -(C₈- bis C₁₂-)-alkyl)-(X¹)_n; X¹ jeweils unabhängig ausgewählt ist aus der Gruppe bestehend aus Wasserstoff, CI, F, Br, I, NO₂, OH, -CF₃, -OCF₃, (C₁ - bis C₁₂-)-Alkyl, (C₁- bis C₁₂-) -Alkoxy, -S-(C₁- bis C₆-)-Alkyl, -(CH₂)_m-Amino, -(CH₂)_m-NH-(C₁- bis C₆-)-Alkyl, -(CH₂)_m-NH-Di-((C₁- bis C₆-)-alkyl), -(CH₂)_m-Phenyl und -(CH₂)_m-NH-(C₃- bis C₆-)-Cycloalkyl;

m jeweils unabhängig 0 oder eine ganze Zahl von 1 bis 6 ist; und n jeweils unabhängig eine ganze Zahl von 1 bis 5 ist.

- Verbindung nach Anspruch 1, bei der X NH ist; R¹ H ist; R² -C(CH₃)₂-CO-NH-(CH₂)_m-Z³ ist, wobei m in der Definition R² 1, 2 oder 3 ist;
- . 50 Z³ Imidazolyl, Pyridinyl, Morpholino oder N,N-Diethylamino ist;

 R^5 Propyl, n-Butyl, n-Pentyl, -(CH_2)-O-(CH_2)-Phenyl, 2-Nitro-3-OMe-phenyl, p-t-Bu-phenyl, m-OMe-phenyl, o-OMe-phenyl, p-Nitrophenyl, -(CH_2)₂-S-Me, Cyclohexyl, m-Br-Phenyl, p-S-Me-phenyl, p-N,N-Dimethylaminophenyl, m-Methylphenyl oder

ist:

R⁶ H ist; und R⁷ H ist.

10

5

3. Verbindung nach Anspruch 1, bei der X NH ist; R¹ H ist; R² Phenyl ist; R⁵ Propyl, n-Butyl, n-Pentyl, n-Heptyl, Isobutyl, Neopentyl, Cyclopropyl, Cyclohexyl, -(CH₂)₂-S-Me, Phenyl, -(CH₂)) -O-(CH₂)-Phenyl, 2-Nitro-3-OMe-phenyl, p-t-Bu-phenyl, o-OMe-phenyl, m-OMe-phenyl, p-OMe-phenyl, 3,4,5-Tri-OMe-phenyl, p-Butoxyphenyl, 3-Ethoxy-4-methoxyphenyl, o-Nitrophenyl, p-Nitrophenyl, p-OCF₃-Phenyl, o-CF₃-Phenyl, 3-F-4-OMe-Phenyl, o-F-Phenyl, m-Br-Phenyl, p-Br-Phenyl, 2,4-Di-Cl-phenyl, 3,4-Di-Cl-phenyl, p-(3-(N,N-Dimethylamino)propoxy)phenyl, -(CH₂)₂-S-Me, Cyclohexyl, p-(Me-CO-NH)-Phenyl, p-t-Bu-phenyl, p-OH-Phenyl, p-(-S-Me)-Phenyl, p-(-S-t-Bu)-Phenyl, p-N,N-Dimethylaminophenyl, m-Methylphenyl, 3-OH-4-OMe-Phenyl, p-Phenylphenyl,

20

15

oder

30

25

35

R⁶ H ist und R⁷ H ist.

4.

4. Verbindung nach Anspruch 1, in der X NH ist; R¹ H ist, R² p-OMe-Phenyl oder p-Nitrophenyl ist; R⁵ n-Butyl, n-Pentyl, n-Hexyl, Isobutyl, Cyclohexyl, -(CH₂)₂-S-Me, Phenyl, m-OMe-Phenyl, 2-Nitro-3-OMe-phenyl, p-Nitrophenyl, p-t-Bu-Phenyl, p-Thiomethylphenyl, m-Br-Phenyl, 2-OMe-4-Dimethylaminophenyl, p-(3-(N,N-Dimethylamino) propoxy)phenyl,p-Dimethylaminophenyl, 3-Nitro-4-Cl-phenyl, -(CH₂)-O-(CH₂)-Phenyl oder

45

50

55

ist;

R⁶ H ist und R⁷ H ist.

- 5. Pharmazeutische Zusammensetzung, die eine Verbindung gemäß Anspruch 1 oder ein pharmazeutisch annehmbares Salz davon und einen pharmazeutisch annehmbaren Träger enthält.
- 6. Verwendung einer Verbindung gemäß Anspruch 1 oder eines pharmazeutisch annehmbaren Salzes davon zur Herstellung eines Medikaments zum Hervorrufen einer agonistischen oder antagonistischen Wirkung auf einen oder mehrere von einem Somatostatin-Subtyprezeptor bei einem Individuum, das dessen bedarf.

- 7. Verwendung einer Verbindung gemäß Anspruch 1 oder eines pharmazeutisch annehmbaren Salzes davon zur Herstellung eines Medikaments zur Bindung an einen oder mehrere Somatostatin-Subtyprezeptor(en) oder Inhibieren der Proliferation von Helicobacter pylori bei einem Individuum, das dessen bedarf.
- 5 8. Verwendung einer Verbindung gemäß Anspruch 1 oder eines pharmazeutisch annehmbaren Salzes davon zur Herstellung eines Medikaments zur Behandlung von Akromegalie, Restenose, Morbus Crohn, systemischer Sklerose, externen und internen Pankreas-Pseudocysten und Aszites, VIPom, Nesidioblastose, Hyperinsulinismus, Gastrinom, Zollinger-Ellison-Syndrom, Diarrhoe, mit AIDS zusammenhängender Diarrhoe, mit Chemotherapie zusammenhängender Diarrhoe, Sklerodermie, Reizdarmsyndrom, Pankreatitis, Dünndarmobstruktion, gastroöso-10 phatialem Reflux, duodenalgastralem Reflux, Cushing-Syndrom, Gonadotrophinom, Hyperparathyreoidismus, Morbus Basedow, diabetischer Neuropatie, Morbus Paget, polycystischer Ovarerkrankung, Krebs, Krebs-Kachexie, Hypotonie, postprandialer Hypotension, Panik-Attacken, GH-sekretierenden Adenomen, sekretierenden Adenomen, Diabetis mellitus, Hyperlipidämie, Insulinunempfindlichkeit, Syndrom X, Angiopathie, proliferierender Retinopathie, Dawn-Syndrom, Nephropathie, peptischen Magengeschwüren, enterokutanen und pankreatokuta-15 nen Fisteln, Dumping-Syndrom, Syndrom der wässrigen Diarrhoe, akuter oder chronischer Pankreatitis, gastrointestinalen hormonsekretierenden Tumoren, Angiogenese, entzündlichen Befindlichkeitsstörungen, chronischer Allotransplantatabstoßung, Angioplastie, Transplantatgefäßblutung oder gastrointestinaler Blutung bei einem Individuum, das dessen bedarf.
- 20 9. Verbindung mit der Formel (II)

$$\mathbb{R}^7$$
 \mathbb{R}^3
 \mathbb{R}^5

, die racemisch-diastereomeren Mischungen und optischen Isomere der Verbindung mit der Formel (II), die phar-35 mazeutisch annehmbaren Salze oder Pro-Pharmaka derselben oder ein pharmazeutisch annehmbares Salz des Pro-Pharmakons, wobei

--- eine optionale Bindung wiedergibt,

J1 N-R6 oder S ist;

J² N-R¹, O oder S ist;

X N oder N-R⁴ ist, wobei X N ist, wenn beide optionalen Bindungen vorhanden sind, und X N-R⁴ ist, wenn die optionalen Bindungen nicht vorhanden sind;

R¹ H, -(CH₂)_m-C(O)-(CH₂)_m-Z¹, -(CH₂)_m-Z¹, -(CH₂)_m-O-Z¹ oder (C₀bis C₆-)-Alkyl-C(O)-NH-(CH₂)_m-Z³ ist, Z¹ ein gegebenenfalls substituierter Rest ausgewählt aus der Gruppe bestehend aus (C₁- bis C₁₂-)-Alkyl, Benzo [b]thiophen, Phenyl, Naphthyl, Benzo[b]furanyl, Thiophen, Isoxazolyl, Indolyl,

und

5**5**

25

30

40

45

ist

5

10

15

20

25

 R^2 (C₁- bis C₁₂-) -Alkyl, (C₀- bis C₆-) -Alkyl-C(O) -O-Z⁵, (C₀-bis C₆-)-Alkyl-C(O)-NH-(CH₂)_m-Z³ oder gegebenenfalls substituiertes Phenyl ist;

 Z^5 H, (C₁- bis C₁₂-)-Alkyl oder (CH₂)_m-Aryl ist;

 Z^3 Amino, (C_1 - bis C_{12} -)-Alkylamino, N,N-Di-(C_1 - bis C_{12} -)-alkylamino, -NH-C(O)-O-(CH_2)_m-Phenyl, -NH-C(O) -O-(CH_2)_m-(C_1 bis C_6 -)-Alkyl oder ein gegebenenfalls substituierter Rest ausgewählt aus der Gruppe bestehend aus Phenyl, Imidazolyl, Pyridinyl und Morpholinyl, Piperidinyl, Piperazinyl, Pyrazolidinyl, Furanyl und Thiophen ist; R^3 H, (C_1 - bis C_6 -) -Alkyl oder gegebenenfalls substituiertes Phenyl ist;

 $R^4 H$, $-C(=Y) -N (X^1X^2)$, $C(=O)X^2$ oder X^2 ist;

Y O oder S ist;

 X^2 H oder - $(CH_2)_m$ - Y^1 - X^3 ist;

 X^3 H oder ein gegebenenfalls substituierter Rest ausgewählt aus der Gruppe bestehend aus (C_1 - bis C_{12} -)-Alkyl, (C_3 - bis C_8 -)-Cycloalkyl, (C_1 - bis C_{12} -)-Alkoxy, Aryloxy, (C_1 - bis C_{12} -)-Alkylamino, N,N-Di(C_1 - bis C_{12} -)-alkylamino, -CH-Di-(C_1 - bis C_{12} -) -alkoxy oder Phenyl ist;

R⁵ und R⁸ jeweils unabhängig ausgewählt sind aus der Gruppe bestehend aus H, $(C_1$ - bis C_{12} -)-Alkyl, - $(CH_2)_m$ -Y¹- $(CH_2)_m$ -Phenyl- $(X^1)_n$, $(C_3$ - bis C_{12} -)-Cycloalkyl, $(C_3$ - bis C_{12} -)-Cycloalkenyl, - $(CH_2)_n$ -S- $(C_1$ - bis C_{12} -)-Alkyl, - $(CH_2)_m$ - $(C_1$ - bis C_{12} -)-Alkyl-S-S- $(C_1$ - bis C_{12} -)-alkyl, - $(CH_2)_m$ - $(C_1$ - bis C_{12} -)-Alkenyl und einem gegebenenfalls substituierten Rest ausgewählt aus der Gruppe bestehend aus Phenyl, Furanyl, Thiophen, Pyrrolyl, Pyridinyl und

30

; mit der Maßgabe, dass R⁵ und R⁸ nicht beide gleichzeitig H sind, oder R⁵ und R⁸ zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, zur Bildung von

35

40

, Spiro(C₄- bis C₁₂-)-Cycloalkyl,

45

oder

50

55

verwendet werden

Y¹ O, S oder NH oder eine Bindung ist;

A eine Bindung, -CO-, -C(O)O-, -C(O)NH-, -C(S)NH- oder -SO₂- ist;

B eine Bindung oder -(CH₂)_a ist, wobei q eine ganze Zahl von 1 bis 6 ist;

 J^3 H, (C_1 - bis C_6 -)-Alkyl, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Heteroaryl oder N (R^9R^{10}) ist, wobei R^9 und R^{10} jeweils unabhängig ausgewählt sind aus der Gruppe bestehend aus (C_1 - bis C_6 -)-Alkyl und gegebenenfalls substituierten Phenyl, oder R^9 und R^{10} zusammen mit dem Stickstoff, an den sie gebunden sind, zur Bildung eines Ringes mit 5 bis 8 Gliedern einschließlich des Stickstoffatoms, an das R^9 und R^{10} gebunden sind, verwendet werden, wobei eines der Ringglieder gegebenenfalls ein Sauerstoffatom oder NR¹¹ sein kann, wobei $R^{11}(C_1$ - bis C_6 -)-Alkyl, -C(O)-(C_1 - bis C_6 -)-Alkyl, -C(O)-N(V¹V²), -C(S)-N(V¹V²) oder gegebenenfalls substituiertes Phenyl-(C_0 - bis C_6 -)-Alkyl ist, wobei V¹ und V² jeweils unabhängig H, (C_1 bis C_6 -)-Alkyl oder gegebenenfalls substituiertes Phenyl-(C_0 - bis C_6 -)-Alkyl sind;

R6 H oder SO₂-Phenyl ist;

5

10

15

20

25

30

35

40

45

50

55

 $\begin{array}{l} R^7 \, H, \, CI, \, F, \, Br, \, I, \, CF_3, \, NO_2, \, OH, \, SO_2NH_2, \, CN, \, N_3, \, -OCF_3, \, (C_1 bis \, C_{12}^-) - Alkoxy, \, - (CH_2)_m - Phenyl-(X^1)_n, \, -NH-CO-(C_1 bis \, C_6^-) - Alkyl, \, -S-(C_1^- bis \, C_{12}^-) - Alkyl, \, -S-Phenyl-(X^1)_n, \, -O-(CH_2)_m - Phenyl-(X^1)_n, \, -(CH_2)_m - C(O) - O-(C_1^- bis \, C_6^-) - Alkyl, \, -O-(CH_2)_m - NH_2, \, -O-(CH_2)_m - NH-(C_1^- bis \, C_6^-) - Alkyl, \, -O-(CH_2)_m - N-Di-((C_1^- bis \, C_6^-) - Alkyl) \, und \, (C_0^- bis \, C_{12}^-) \, - Alkyl-(X^1)_n \, ist; \end{array}$

wobei ein gegebenenfalls substituierter Rest oder ein gegebenenfalls substitutiertes Phenyl gegebenenfalls mit einem oder mehreren Substituenten substituiert ist, von denen jeder unabhängig ausgewählt ist aus der Gruppe bestehend aus CI, F, Br, I, CF₃, NO₂, OH, SO₂NH₂, CN, N₃, -OCF₃, (C₁bis C₁₂-)-Alkoxy, -(CH₂)_m-Phenyl-(X¹)_n, -NH-CO-(C₁- bis C₆-)Alkyl, -S-(C₁ bis C₁₂)-Alkyl, -S-Phenyl-(X¹)_n, -O-(CH₂)_m-Phenyl-(X¹)_n, -(CH₂)_m-C(O)-O-(C₁- bis C₆-)-Alkyl, -O-(CH₂)_m-NH₂, -O-(CH₂)_m-NH-(C₁- bis C₆-)-Alkyl, -O-(CH₂)_m-N-Di-((C₁- bis C₆-)Alkyl) und (C₆- bis C₁₂-)-Alkyl)-(X¹)_n;

X¹ jeweils unabhängig ausgewählt ist aus der Gruppe bestehend aus Wasserstoff, Cl, F, Br, I, NO₂, OH, -CF₃, -OCF₃, (C₁ -bis C₁₂-)-Alkyl, (C₁- bis C₁₂-)-Alkoxy, -S-(C₁- bis C₆-)-Alkyl, - (CH₂)_m-Amino, - (CH₂)_m-NH-(C₁- bis C₆-)-Alkyl, - (CH₂)_m-NH-Di-((C₁- bis C₆-)-alkyl), -(CH₂)_m-Phenyl und -(CH₂)_m-NH-(C₃- bis C₆-)-Cycloalkyl;

m jeweils unabhängig 0 oder eine ganze Zahl von 1 bis 6 ist; und

n jeweils unabhängig eine ganze Zahl von 1 bis 5 ist.

10. Verbindung nach Anspruch 9 mit der Formel

R⁷
NR⁴
NR³

in der R3 H oder Methyl ist;

R4 H oder Methyl ist;

R⁵ H, Methyl, Ethyl, Butyl, Pentyl oder Hexyl ist;

R8 Ethyl, Butyl, Pentyl, Hexyl oder Cyclohexyl ist; oder

R⁵ und R⁸ zusammen mit dem Kohlenstoff, an den sie gebunden sind, zur Bildung von Spirocyclohexyl, Spirocycloheptyl, Spiroadamantyl,

oder

verwendet werden, wobei A eine Bindung oder -C(O)O- ist; B eine Bindung, - (CH_2) - oder - $(CH_2)_2$ - ist; J³ H oder Phenyl ist; und

11. Verbindung nach Anspruch 10, bei der R3, R4 und R7 jeweils Wasserstoff sind, R5 und R8 zusammen

R⁷ H, Me, R, OH, -O-Methyl oder -O-CH₂-Phenyl ist.

10

15

sind und das Imidazolyl in der R-Konfiguration vorliegt; R³, R⁴ und R⁷ jeweils Wasserstoff sind, R⁵ und R⁸ zusammen

20

25

sind und das Imidazolyl in der R-Konfiguration vorliegt; R³, R⁴ und R⁷ jeweils Wasserstoff sind, R⁵ und R⁸ zusammen

30

sind und das Imidazolyl in der R-Konfiguration vorliegt; R³, R⁴ und R⁷ jeweils wasserstoff sind, R⁵ und R⁸ zusammen

35

40

sind und das Imidazolyl in der R-Konfiguration vorliegt, oder dessen Hydrochloridsalz; R³ Methyl ist, R⁴ und R³ jeweils Wasserstoff sind, R⁵ und R8 jeweils n-Butyl sind, und das Imidazolyl in der R-Konfiguration vorliegt; R³, R⁴ und R⁷ jeweils Wasserstoff sind, R⁵ und R⁸ zusammen

45

50

sind und das Imidazolyl in der R-Konfiguration vorliegt, oder dessen Hydrochloridsalz; R3 und R4 jeweils Wasserstoff sind, R7 6-O-CH₂-Phenyl ist, R5 und R8 jeweils n-Butyl sind und das Imidazolyl eine racemische Mischung der S- und R-Konfigurationen ist;

55

R³, R⁴ und R⁷ jeweils Wasserstoff sind, R⁵ und R⁸ zusammen

5

sind und das Imidazolyl in der R-Konfiguration vorliegt, oder dessen Hydrochloridsalz; R^3 , R^4 and R^7 jeweils Wasserstoff sind, R^5 und R^8 zusammen

10

15

sind und das Imidazolyl in der R-Konfiguration vorliegt;

R³ und R⁷ jeweils Wasserstoff sind, R⁴ Methyl ist, R⁵ und R⁸ jeweils n-Butyl sind und das Imidazolyl in der R-Konfiguration vorliegt;

R³ und R⁴ jeweils Wasserstoff sind, R⁷ 7-Fluor ist, R⁵ und R⁸ jeweils n-Pentyl sind und das Imidazolyl die racemische Mischung der S- und R-Konfigurationen ist;

20 R³, R⁴ und R⁷ jeweils Wasserstoff sind, R⁵ und R⁸ jeweils n-Hexyl sind und das Imidazolyl in der R-Konfiguration vorliegt:

R³, R⁴ und R⁷ jeweils Wasserstoff sind, R⁵ Wasserstoff ist und R⁸ Hexyl in der S-Konfiguration ist, und das Imidazolyl in der R-Konfiguration vorliegt, oder dessen Fumaratsalz;

R³, R⁴ und R⁷ jeweils Wasserstoff sind, R⁵ und R⁸ jeweils n-Butyl sind, und das Imidazolyl in der R-Konfiguration vorliegt, oder dessen Fumaratsalz;

R³, R⁴ und R⁷ jeweils Wasserstoff sind, R⁵ und R⁸ zusammen

30

40

45

50

55

25

sind, und das Imidazolyl in der R-Konriguration vorliegt;

R³, R⁴ und R⁷ jeweils Wasserstoff sind, R⁵ und R⁸ jeweils n-Butyl sind, und das Imidazolyl in der S-Konfiguration vorlieat:

 R^3 , R^4 und R^7 jeweils Wasserstoff sind, R^5 und R^8 jeweils Ethyl sind, und das Imidazolyl in der R-Konfiguration vorliegt;

R³, R⁴ und R⁷ jeweils Wasserstoff sind, R⁵ und R⁸ jeweils n-Pentyl sind, und das Imidazolyl in der R-Konfiguration vorliegt;

R³, R⁴ und R⁷ jeweils Wasserstoff sind, R⁵ Methyl ist und R⁸ Cyclohexyl ist, und das Imidazolyl in der R-Konfiguration vorliegt;

R³ und R⁴ jeweils Wasserstoff sind, R⁷ 6-Methyl ist, R⁵ und R⁸ jeweils n-Butyl sind und das Imidazolyl eine racemische Mischung der S- und R-Konfigurationen ist;

R³ und R⁴ jeweils Wasserstoff sind, R⁷ 7-Fluor ist, R⁵ und R⁸ jeweils n-Butyl sind und das Imidazolyl eine racemische Mischung der S- und R-Konfigurationen ist;

 R^3 und R^4 jeweils Wasserstoff sind, R^7 6-Methoxy ist, R^5 und R^8 jeweils n-Butyl sind und das Imidazolyl eine racemische Mischung der S- und R-Konfigurationen ist;

R³ und R⁴ jeweils Wasserstoff sind, R⁷ 6-Hydroxy ist, R⁵ und R⁸ jeweils n-Butyl sind und das Imidazolyl eine racemische Mischung der S- und R-Konfigurationen ist:

R³ und R⁴ jeweils Wasserstoff sind, R⁷ 6-Fluor ist, R⁵ und R⁸ jeweils n-Butyl sind und das Imidazolyl eine racemische Mischung der S- und R-Konfigurationen ist, oder dessen Hydrochloridsalz;

R³ und R⁴ jeweils Wasserstoff sind, R⁷ 8-Methyl ist, R⁵ und R⁸ jeweils n-Butyl sind und das Imidazolyl eine racemische Mischung der S- und R-Konfigurationen ist;

R³ und R⁴ jeweils Wasserstoff sind, R⁷ 6-Methyl ist, R⁵ und R⁸ jeweils n-Pentyl sind und das lmidazolyl eine racemische Mischung der S- und R-Konfigurationen ist: oder

R³ und R⁴ jeweils Wasserstoff sind, R⁷ 6-Chlor ist, R⁵ und R⁸ jeweils n-Butyl sind und das Imidazolyl eine racemische Mischung der S- und R-Konfigurationen ist.

- 12. Verbindung nach Anspruch 11, bei der die Verbindung ausgewählt ist aus der Gruppe bestehend aus R³, R⁴ und R⁻ sind jeweils Wasserstoff, R⁵ ist Wasserstoff und R³ ist Hexyl in der S-Konfiguration und das Imidazolyl ist in der R-Konfiguration, oder dessen Fumaratsalz;
 - R³, R⁴ und R⁷ sind jeweils Wasserstoff, R⁵ und R⁸ sind jeweils n-Butyl, und das Imidazolyl ist in der R-Konfiguration, oder dessen Fumaratsalz;
 - R3, R4 und R7 sind jeweils Wasserstoff, R5 und R8 sind zusammen

und das Imidazolyl ist in der R-Konfiguration,

5

10

15

20

25

30

35

- R³, R⁴ und R⁷ sind jeweils Wasserstoff, R⁵ und R⁸ sind jeweils n-Butyl, und das Imidazolyl ist in der S-Konfiguration, R³, R⁴ und R⁷ sind jeweils Wasserstoff, R⁵ und R⁸ sind jeweils Ethyl, und das Imidazolyl ist in der R-Konfiguration, R³, R⁴ und R⁷ sind jeweils Wasserstoff, R⁵ und R⁸ sind jeweils n-Pentyl, und das Imidazolyl ist in der R-Konfiguration.
- R³, R⁴ und R⁷ sind jeweils Wasserstoff, R⁵ ist Methyl und R⁸ ist Cyclohexyl, und das Imidazolyl ist in der R-Konfiguration,
- R³ und R⁴ sind jeweils Wasserstoff, R⁷ ist 6-Methyl, R⁵ und R⁸ sind jeweils n-Butyl, und das Imidazolyl ist eine racemische Mischung der S- und R-Konfigurationen:
- R³ und R⁴ sind jeweils Wasserstoff, R⁷ ist 7-Fluor, R⁵ und R⁸ sind jeweils n-Butyl, und das Imidazolyl ist eine racemische Mischung der S- und R-Konfigurationen;
- R³ und R⁴ sind jeweils Wasserstoff, R⁷ ist 6-Methoxy, R⁵ und R⁸ sind jeweils n-Butyl, und das Imidazolyl ist eine racemische Mischung der S- und R-Konfigurationen;
- R³ und R⁴ sind jeweils Wasserstoff, R⁵ ist 6-Hydroxy, R⁵ und R8 sind jeweils n-Butyl, und das Imidazolyl ist eine racemische Mischung der S- und R-Konfigurationen;
- R³ und R⁴ sind jeweils Wasserstoff, R⁷ ist 6-Fluor, R⁵ und R⁸ sind jeweils n-Butyl, und das Imidazolyl ist eine racemische Mischung der S- und R-Konfigurationen, oder dessen Hydrochloridsalz;
- R³ und R⁴ sind jeweils Wasserstoff, R⁷ ist 8-Methyl, R⁵ und R⁸ sind jeweils n-Butyl, und das Imidazolyl ist eine racemische Mischung der S- und R-Konfigurationen;
- R^3 und R^4 sind jeweils Wasserstoff, R^7 ist 6-Methyl, R^5 und R^8 sind jeweils n-Pentyl, und das Imidazolyl ist eine racemische Mischung der S- und R-Konfigurationen;
- R³ und R⁴ sind jeweils Wasserstoff, R⁷ ist 6-Chlor, R⁵ und R⁸ sind jeweils n-Butyl, und das Imidazolyl ist eine racemische Mischung der S- und R-Konfigurationen.
- 13. Pharmazeutische Zusammensetzung, die eine Verbindung gemäß Anspruch 9 oder ein pharmazeutisch annehmbares Salz davon und einen pharmazeutisch annehmbaren Träger enthält.
- 14. Verwendung einer Verbindung gemäß Anspruch 9 oder eines pharmazeutisch annehmbaren Salzes davon zur Herstellung eines Medikaments zum Hervorrufen einer Agonistwirkung oder einer Antagonistwirkung auf einen oder mehreren von Somatostatin-Subtyprezeptor bei einem Individuum, das dessen bedarf.
- 45 15. Verwendung einer Verbindung gemäß Anspruch 9 oder eines pharmazeutisch annehmbaren Salzes davon zur Herstellung eines Medikaments zum Binden an einen oder mehrere Somatostatin-Subtyprezeptor(en) bei einem Individuum, das dessen bedarf.
- Verwendung einer Verbindung gemäß Anspruch 9 oder eines pharmazeutisch annehmbaren Salzes davon zur Herstellung eines Medikaments zur Behandlung von Akromegalie, Restenose, Morbus Crohn, systemischer Sklerose, externen and internen Pankreas-Pseudocysten und Aszites, VIPom, Nesidioblastose, Hyperinsulinismus, Gastrinom, Zollinger-Ellison-Syndrom, Diarrhoe, mit AIDS zusammenhängender Diarrhoe, mit Chemotherapie zusammenhängender Diarrhoe, Sklerodermie, Reizdamsyndrom, Pankreatitis, Dünndarmobstruktion, gastroösophatialem Reflux, duodenalgastralem Reflux, Cushing-Syndrom, Gonadotrophinom, Hyperparathyreoidismus, Morbus Basedow, diabetischer Neuropatie, Morbus Paget, polycystischer Ovarerkrankung, Krebs, Krebs-Kachexie, Hypotonie, postprandialer Hypotension, Panik-Attacken, GH-sekretierenden Adenomen, THS-sekretierenden Adenomen, Diabetis mellitus, Hyperlipidämie, Insulinunempfindlichkeit, Syndrom X, Angiopathie, proliferierender Retinopathie, Dawn-Syndrom, Nephropathie, peptischen Magengeschwüren, enterokutanen und pankrea-

tokutanen Fisteln, Dumping-Syndrom, Syndrom der wässrigen Diarrhoe, akuter oder chronischer Pankreatitis, gastrointestinalen hormonsekretierenden Tumoren, Angiogenese, entzündlichen Befindlichkeitsstörungen, chronischer Allotransplantatabstoßung, Angioplastie, Transplantatgefäßblutung oder gastrointestinaler Blutung bei einem Individuum, das dessen bedarf.

5

17. Verwendung einer Verbindung gemäß Anspruch 9 oder eines pharmazeutisch annehmbaren Salzes davon zur Herstellung eines Medikaments zum Inhibieren der Proliferation von Helicobacter pylori oder Blockieren des Natriumkanals oder zum Lindern von neuropathischem Schmerz bei einem Individuum, das dessen bedarf.

18. Verwendung einer Verbindung gemäß Anspruch 1 oder eines pharmazeutisch annehmbaren Salzes davon zur Herstellung eines Medikaments zum Blockieren des Natriumkanals oder zum Lindem von neuropathischem Schmerz bei einem Individuum, das dessen bedarf.

10

15

19. Pharmazeutische Zusammensetzung zur Verwendung als Lokalanaesthetikum, das eine Verbindung gemäß Anspruch 1 oder Anspruch 9 oder ein pharmazeutisch annehmbares Salz davon und gegebenenfalls einen pharmazeutisch annehmbaren Träger enthält.

20

20. Verwendung einer Verbindung gemäß Anspruch 1 oder Anspruch 12 oder eines pharmazeutisch annehmbaren Salzes davon zur Herstellung eines Medikaments zur Behandlung von beliebiger Pathologie, Störung oder klinischem Zustand, an dem Glutamatfreisetzung beteiligt ist, in ihrer Ätiologie bei einem Individuum, das dessen bedarf, wobei die Pathologie, Störung oder der klinische Zustand vorzugsweise ausgewählt ist aus der Gruppe bestehend aus psychiatrischen Störungen, hormonellen Bedingungen, metabolistisch induzierten Hirnschäden, Sulfit-Oxidasemangel, hepatischer Enzephalopatie im Zusammenhang mit Leberversagen, Emesis, Spastizität, Tinnitus, Schmerz und Drogenmissbrauch und Entziehungskuren.

25

21. Verwendung einer Verbindung gemäß Anspruch 1 oder Anspruch 12 oder eines pharmazeutisch annehmbaren Salzes davon zur Herstellung eines Medikaments zur Behandlung von jeglicher Pathologie unter Beteiligung von neuronalen Schäden bei einem Individuum, das dessen bedarf, wobei die Pathologie vorzugsweise ausgewählt ist aus der Gruppe bestehend aus der Alzheimer-Krankheit, Huntingdon'scher Chorea, Parkinson-Krankheit, virus-(einschließlich HIV)-induzierter Neurodegeneration, amyotrophischer Lateralsklerose (ALS), supranukleärer Paralyse, olivopontozerebellarer Atrophie (OPCA) und den Auswirkungen von umweltbedingten exogenen Neuroto-

30

35

22. Verwendung einer Verbindung gemäß Anspruch 1 oder Anspruch 9 oder eines pharmazeutisch annehmbaren Salzes davon zur Herstellung eines Medikaments zur Behandlung von Arrhytmie oder Epilepsie bei einem Individuum, das dessen bedarf.

Revendications

40

1. Composé de formule (I),

45

50

55

mélanges racémiques-diastéréoisomères et isomères optiques dudit composé de formule (I), ses sels ou précurseurs de médicament pharmaceutiquement acceptables, ou sel pharmaceutiquement acceptable dudit précurseur de médicament,

formule dans laquelle

---- représente une liaison éventuelle;

 $X \in \Re \widetilde{N}$ ou $N-R^4$, où $X \in \Re N$ lorsque les deux liaisons éventuelles sont présentes et $X \in \Re N$ lorsque les liàisons éventuelles ne sont pas présentes;

 $R^{1} \stackrel{e}{=} tH, -(CH_{2})_{m}-C(O)-(CH_{2})_{m}-Z^{1}, -(CH_{2})_{m}-Z^{1}-(CH_{2})_{m}-O-Z^{1} \text{ ou alkyl(en } C_{0}-C_{6})-C(O)-NH-(CH_{2})_{m}-Z^{3};$

Z¹ est un groupement éventuellement substitué choisi dans le groupe constitué par les groupes alkyle (en C₁-C₁₂), benzo[b]thiophène, phényle, naphtyle, benzo[b]furanyle, thiophène, isoxazolyle, indolyle,

et

5

10

15

20

25

30

35

40

45

50

55

N

R₂ est un groupe alkyle (en C₁-C₁₂), alkyl(en C₀-C₆)-C(O)-O-Z⁵, alkyl(en C₀-C₆)-C(O)-NH-(CH₂)_m-Z³ ou phényle éventuellement substitué;

 Z^5 est H ou un groupe alkyle (en C_1 - C_{12}) ou $(CH_2)_m$ -aryle;

 Z^3 est un groupe amino, alkylamino (en C_1 - C_{12}), N,N-di(alkylmino en C_1 - C_{12}), -NH-C(O)-O-(CH₂)_m-phényle, -NH-C (O)-O-(CH₂)_m-(alkyle en C_1 - C_6) ou un groupement éventuellement substitué choisi dans le groupe constitué par les groupes imidazolyle, pyridinyle et morpholinyle, pipéridinyle, pipérazinyle, pyrazolidinyle, furanyle et thiophène; R^3 est H:

 R^4 est H, $-C(=Y)-N(X^1X^2)$, $C(=O)X^2$ ou X^2 ,

Y est O ou S;

 X^2 est -(CH₂)_{m-}Y¹-X³;

 X^3 est H ou un groupement eventuellement substitué choisi dans le groupe constitué par les groupes alkyle (en C_1 - C_{12}), cycloalkyle (en C_3 - C_8), alcoxy (en C_1 - C_{12}), aryloxy, allcylamino (en C_1 - C_{12}), N,N-di-(alkylamino en C_1 - C_{12}), -CH-di-(alcoxy en C_1 - C_{12}) ou phényle;

 R^5 est un groupe alkyle (en C_1 - C_{12}), - $(CH_2)_m$ - Y^1 - $(CH_2)_m$ -phényle- $(X^1)_n$, cycloalkyle (en C_3 - C_{12}), - $(CH_2)_m$ -S-(alkyle en C_1 - C_{12}), alkyl(en C_1 - C_{12})-S-S-(alkyle en C_1 - C_{12}), - $(CH_2)_m$ (alcényle en C_1 - C_{12}) ou un groupement éventuellement substitué choisi dans le groupe constitué par les groupes phényle, furanyle, thiophène, pyrrolyle, pyridinyle et

Y1 est O, S, NH ou une liaison;

R⁶ est H ou SO₂-phényle;

R⁷ est H ou un groupe alkyle éventuellement substitué par un groupe alcoxy ou dialkylamino;

dans laquelle un groupement éventuellement substitué ou un groupe phényle éventuellement substitué est éventuellement substitué par un ou plusieurs substituants, chacun étant choisi indépendamment des autres dans le groupe constitué par CI, F, Br, I, CF₃, NO₂, OH, SO₂NH₂, CN, N₃, -OCF₃, alcoxy (en C₁-C₁₂), -(CH₂)_m-phényl-(X¹)_n, -NH-CO-(alkyle en C₁-C₆), -S-phényl-(X¹)_n, -O-(CH₂)-phényl-(X¹)_n, -(CH₂)_m-C(O)-O-(alkyle en C₁-C₆), -O-(CH₂)_m-NH-(alkyle en C₁-C₆), O(CH₂)_m-N-di-(alkyle en C₁-C₆) et alkyl (en C₈-C₁₂)-(X¹)_n; et

X1, à chaque fois qu'il apparaît, est choisi indépendamment dans le groupe constitué par un atome d'hydro-

gène, Cl, F, Br, I, NO₂, OH, -CF₃, -OCF₃ ou alkyle (en C₁-C₁₂), alcoxy (en C₁-C₁₂), -S-(alkyle en C₁-C₆), -(CH₂)_m-amino, -(CH₂)_m-NH-(alkyle en C₁-C₆), -(CH₂)_m-NH-(cycloalkyle en C₃-C₆);

m, à chaque fois qu'il apparaît, est indépendamment 0 ou un nombre entier de 1 à 6; et n, à chaque fois qu'il apparaît, est indépendamment un nombre entier de 1 à 5.

2. Composé selon la revendication 1 dans lequel X est NH;

R1 est H;

5

10

15

20

25

30

R² est -CH (CH₃)₂-CO-NH-(CH₂)_m-Z³, où m, dans la définition de R², vaut 1, 2 ou 3;

Z³ est un groupe imidazolyle, pyridinyle, morpholino ou N,N-di-éthylamino;

R⁵ est un groupe propyle, n-butyle, n-pentyle, -(CH₂)-O-(CH₂)-phényle, 2-nitro-3-OMe-phényle, p-t-Bu-phényle, m-OMe-phényle, o-OMe-phényle, p-nitrophényle, -(CH₂)₂-S-Me, cyclohexyle, m-Br-phényle, p-S-Mephényle, p-N, N-diméthylaminophényle, m-méthylphényle ou

R⁶ est H; et R⁷ est H.

3. Composé selon la revendication 1 dans laquelle X est NH;

R¹ est H;

R² est un groupe phényle;

 R^5 est un groupe propyle, n-butyle, n-pentyle, n-heptyle, isobutyle, néopentyle, cyclopropyle, cyclohexyle, $-(CH_2)_2$ -S-Me, phényle, $-(CH_2)$ -O- $-(CH_2)$ -phényle, 2-nitro-3-OMe-phényle, p-t-Bu-phényle, o-OMe-phényle, m-OMe-phényle, p-oMe-phényle, 3,4,5-tri-OMe-phényle, p-butoxyphényle, 3-éthoxy-4-méthoxyphényle, o-nitrophényle, p-nitrophényle, p-OCF₃-phényle, o-CF₃-phényle, 3-F-4-OMe-phényle, o-F-phényle, o-Br-phényle, m-Br-phényle, p-Br-phényle, 2,4-di-Cl-phényle, 3,4-di-Cl-phényle, p-(3-(N,N-diméthylamino)propoxy)phényle, $-(CH_2)_2$ -S-Me, cyclohexyle, p-(Me-CO-NH-)phényle, p-t-Bu-phényle, p-OH-phényle, p-(-S-Me)-phényle, p-(S-t-Bu)-phényle, p-N,N-diméthylaminophényle, m-méthylphényle, 3-OH-4-OMe-phényle, p-phényle, p-phényle,

35

40

45

50

55

ou

NO.

R⁶ est H; et R⁷ est H.

Composé selon la revendication 1 dans lequel X est NH;
 R¹ est H:

R² est un groupe p-OMe-phényle ou p-nitro-phényle;

 R^5 est n-butyle, n-pentyle, n-hexyle, isobutyle, cyclohexyle, - $(CH_2)_2$ -S-Me, phényle, m-OMe-phényle, 2-nitro-3-OMe-phényle, p-nitrophényle, p-t-Bu-phényle, p-thiométhylphényle, m-Br-phényle, 2-OMe-4-diméthylamino-phényle, p-(3-(N,N-diméthylamino))propoxy)phényle, p-diméthylaminophényle, 3-nitro-4-Cl-phényle, - (CH_2)

-O-(CH₂)phényle ou

10 R⁶ est H; et R⁷ est H.

5

20

25

30

35

40

45

50

55

- 5. Composition pharmaceutique comprenant un composé selon la revendication 1 ou un de ses sels pharmaceutiquement acceptables et un véhicule pharmaceutiquement acceptable.
- 6. Utilisation d'un composé selon la revendication 1 ou d'un de ses sels pharmaceutiquement acceptables dans la préparation d'un médicament destiné à provoquer un effet agoniste ou antagoniste de la part d'un ou plusieurs récepteurs d'un sous-type de somatostatine chez un sujet en ayant besoin.
 - 7. Utilisation d'un composé selon la revendication I ou d'un de ses sels pharmaceutiquement acceptables dans la préparation d'un médicament destiné à lier un ou plusieurs récepteurs d'un sous-type de somatostatine ou à inhiber la prolifération de Helicobacter pylori chez un sujet en ayant besoin.
 - 8. Utilisation d'un composé selon la revendication 1 ou d'un de ses sels pharmaceutiquement acceptables dans la préparation d'un médicament destiné à traiter l'acromégalie, la resténose, la maladie de Crohn, la sclérose en plaques, les pseudokystes du pancréas externes et internes et l'ascite, le vipome, les maladies des cellules des îlots de Langerhans, l'hyperinsulinie, le gastrinome, le syndrome de Zollinger-Ellison, la diarrhée, la diarrhée liée au SIDA, la diarrhée liée à une chimiothérapie, la sclérodermie, le côlon irritable, la pancréatite, l'obstruction de l'intestin grêle, le reflux gastro-oesophagien, le reflux gastro-duodénal, le syndrome de Cushing, le gonadotrophinome, l'hyperparathyroïdie, la maladie de Basedow-Graves, la neuropathie diabétique, la maladie de Paget; la polykystose ovarienne, le cancer, la cachexie néoplasique, l'hypotension, l'hypotension postprandiale, les crises de panique, les adénomes sécrétant l'hormone de croissance, les adénomes sécrétant l'hormone thyréotrope, le diabète sucré, l'hyperlipémie, l'insensibilité à l'insuline, le syndrome X, l'angiopathie, la rétinopathie proliférante, le phénomène de l'aube, la néphropathie, les ulcères gastroduodénaux, les fistules entérocutanées et pancréaticocutanées, le syndrome de chasse, le syndrome de Verner-Morrison, la pancréatite aiguë ou chronique, les tumeurs sécrétant l'hormone gastro-intestinale, l'angiogenèse, les troubles inflammatoires, le rejet chronique de l'allogreffe, l'angioplastie, l'hémorragie des vaisseaux greffés ou l'hémorragie gastro-intestinale, chez un sujet en ayant besoin.
 - 9. Composé de formule (II),

 \mathbb{R}^7 \mathbb{R}^8 \mathbb{R}^8 (II)

mélanges racémiques-diastéréoisomères et. isomères optiques dudit composé de formule (II), ses sels ou précurseurs de médicaments pharmaceutiquement acceptables, ou sel pharmaceutiquement acceptable dudit précurseur de médicament,

formule dans laquelle

----- représente une liaison éventuelle;

J1 est N-R6 ou S;

J2 est N-R1, O ou S:

X est N ou $N-R^4$, où X est N lorsque les deux liaisons éventuelles sont présentes et X est $N-R^4$ lorsque les liaisons éventuelles ne sont pas présentes;

 $R^{1} \text{ est H, -(CH}_{2})_{m} - C(O) - (CH}_{2})_{m} - Z^{1}, -(CH}_{2})_{m} - Z^{1}, -(CH}_{2})_{m} - O - Z^{1} \text{ ou alkyl(en C}_{0} - C_{6}) - C(O) - NH - (CH}_{2})_{m} - Z^{3};$

 Z^1 est un groupement éventuellement substitué choisi dans le groupe constitué par les groupes alkyle (en C_1 - C_{12}), benzo[b]thiophène, phényle, naphtyle, benzo[b]furanyle, thiophène, isoxazolyle, indolyle,

et

5

10

15

30

35

40

45

55

20 N

25 R² est un groupe allcyle (en C₁-C₁₂), alkyl(en C₀-C₆)-C(O)-O-Z⁵, alkyl(en C₀-C₆)-C(O)-NH-(CH₂)_m-Z³ ou phényle éventuellement substitué;

Z⁵ est H ou un groupe alkyle (en C₁-C₁₂) ou (CH₂)_m-aryle;

 Z^3 est un groupe amino, alkylamino (en C_1 - C_{12}), N, N-di-(alkylamino en C_1 - C_{12}), N-C-(O)-O-(CH₂)_m-phényle, -NH-C(O)-O-(CH₂)_m(alkyle en C_1 - C_6) ou un groupement éventuellement substitué choisi dans le groupe constitué par les groupes phényle, imidazolyle, pyridinle et morpholinyle, pipéridinyle, pipérazinyle, pyrazolidinyle, furanyle et thiophène;

R³ est H ou un groupe alkyle (en C₁-C₆) ou phényle éventuellement substitué;

 R^4 est H, -C(=Y)-N(X¹X²), C(=O)X² ou X²;

Y est O ou S;

 X^2 est H ou - $(CH_2)_m$ - Y^1 - X^3 ;

 X^3 est H ou un groupement éventuellement substitué choisi dans le groupe constitué par les groupes alkyle (en C_1 - C_{12}), cycloalkyle (C_3 - C_8), alcoxy (en C_1 - C_{12}), aryloxy, alkylamino (en C_1 - C_{12}), N,N-di(alkylamino en C_1 - C_1), -CH-di-(alcoxy en C_1 - C_1) ou phényle;

 R^5 et R^8 sont chacun choisis indépendamment des autres dans le groupe constitué par H et les groupes alkyle (en C_1 - C_{12}), -(CH_2)_m- Y^1 -(CH_2)₂phényl-(X^1)_n, cycloalkyle (en C_3 - C_{12}), cycloalcényle (en C_3 - C_{12}), -(CH_2)_m-S-(alkyle en C_1 - C_{12}), alkyl(en C_1 - C_{12})-S-S-(alkyle en C_1 - C_{12}), -(CH_2)_m-(alcényle en C_1 - C_{12}) et un groupement éventuellement substitué choisi dans le groupe constitué par les groupes phényle, furanyle, thiophène, pyrrolyle, pyridinyle et

à condition que R⁵ et R⁸ ne soient pas tous deux H en même temps;
 ou R⁵ et R⁸ sont pris conjointement avec les atomes de carbone auxquels ils sont fixés pour former

spiro(C₄-C₁₂)cycloalkyle,

5

ou

15

10

Y1 est O, S, NH ou une liaison;

A est une liaison, -CO-, -C(O)O-, -C(O)NH-, -C(S)NH- ou -SO₂-;

B est une liaison ou -(CH₂)_q où q est un nombre entier de 1 à 6;

20

25

30

35

40

 J^3 est H ou un groupe alkyle (en C_1 - C_6), phényle éventuellement substitué, hétéroaryle éventuellement substitué ou N(R⁹R¹⁰), où R⁹ et R¹⁰ sont chacun choisis indépendamment dans le groupe constitué par les groupes alkyle (en C_1 - C_6) et phényle éventuellement substitué, ou bien R⁹ et R¹⁰ sont pris conjointement avec l'atome d'azote auxquels ils sont fixés pour former un noyau renfermant 5 à 8 chaînons, y compris l'atome d'azote auquel sont fixés R⁹ et R¹⁰, où un des chaînons du noyau peut être éventuellement un atome d'oxygène ou NR¹¹, où R¹¹ est un groupe alkyle (en C_1 - C_6), -C(O)-(alkyle en C_1 - C_6), -C(O)-N(V¹V²), -C(S)-N(V¹V²) ou phényl-(éventuellement substitué)-alkyle (en C_0 - C_6), où V¹ et V² sont chacun indépendamment H ou des groupes alkyle (en C_1 - C_6) ou phényl-(éventuellement substitué)-alkyle (en C_0 - C_6);

R6 est H ou SO2-phényle;

 $\begin{array}{l} R^7 \operatorname{est} H, \operatorname{CI}, F, \operatorname{Br}, I, \operatorname{CF}_3, \operatorname{NO}_2, \operatorname{OH}, \operatorname{SO}_2 \operatorname{NH}_2, \operatorname{CN}, \operatorname{N}_3, \operatorname{-OCF}_3, \operatorname{alcoxy} \left(\operatorname{en} \operatorname{C}_1 \operatorname{-C}_{12}\right), \operatorname{-(CH}_2)_m \operatorname{-phényl-}(\operatorname{X}^1)_n, \operatorname{-NH-CO-}(\operatorname{alk-yle} \operatorname{en} \operatorname{C}_1 \operatorname{-C}_6), \operatorname{-S-}(\operatorname{alkyle} \operatorname{en} \operatorname{C}_1 \operatorname{-C}_{12}), \operatorname{-S-phényl-}(\operatorname{X}^1)_n, \operatorname{-O-}(\operatorname{CH}_2)_m \operatorname{-phényl-}(\operatorname{X}^1)_n, \operatorname{-(CH}_2)_m \operatorname{-C(O)-O-}(\operatorname{alkyle} \operatorname{en} \operatorname{C}_1 \operatorname{-C}_6), \operatorname{-O-}(\operatorname{CH}_2)_m \operatorname{-NH}_2, \operatorname{-O-}(\operatorname{CH}_2)_m \operatorname{-NH-}(\operatorname{alkyle} \operatorname{en} \operatorname{C}_1 \operatorname{-C}_6), \operatorname{-O-}(\operatorname{CH}_2)_m \operatorname{-N-di-}(\operatorname{alkyle} \operatorname{en} \operatorname{C}_1 \operatorname{-C}_6) \operatorname{et} \operatorname{-alkyl(en} \operatorname{C}_0 \operatorname{-C}_{12}) \operatorname{-(X^1)}_n; \end{array}$

dans laquelle un groupement éventuellement substitué ou un groupe phényle éventuellement substitué est éventuellement substitué par un où plusieurs substituants, chacun étant choisi indépendamment des autres dans le groupe constitué par CI, F, Br, I, CF₃, NO₂, OH, SO₂NH₂, CN, N₃, -OCF₃, alcoxy (en C_1 - C_{12}), -(CH₂)_m-phényl-(X¹)_n, -NH-CO-(alkyle en C_1 - C_6), -S-(alkyle en C_1 - C_1 2), -S-phényl-(X¹)_n, -O-(CH₂)_m-phényl-(X¹)_n, -(CH₂)_m-C(O)-(alkyle en C_1 - C_6), -C(O)-(alkyle en C_1 - C_6), -O-(CH₂)_m-NH₂, -O-(CH₂)_m-NH-(alkyle en C_1 - C_6), -O-(CH₂)_m-N-di (alkyle en C_1 - C_6) et -alkyl(en C_0 - C_1 2)-(X¹)_n;

 X^1 , à chaque fois qu'il apparaît, est choisi indépendamment dans le groupe constitué par un atome d'hydrogène, Cl, F, Br, I, NO₂, OH, -CF₃, -OCF₃, alkyle (en C₁-C₁₂), alcoxy (en C₁-C₁₂), -S-(alkyle en C₁-C₆), -(CH₂)_m-amino, -(CH₂)_m NH-(alkyle en C₁-C₆), (CH₂)_m-N-di(alkyle en C₁-C₆), -(CH₂)_m-phényle et -(CH₂)_m-NH-(cycloalkyle en C₃-C₆);

m, à chaque fois qu'il apparaît, est indépendamment 0 ou un nombre entier de 1 à 6; et n, à chaque fois qu'il apparaît, est indépendamment un nombre entier de 1 à 5.

45

10. Composé selon la revendication 9 répondant à la formule

50

(lla)

15

20

5

10

dans laquelle R3 est H ou un groupe méthyle;

R4 est H ou un groupe méthyle;

R⁵ est H ou un groupe méthyle, éthyle, butyle, pentyle ou hexyle;

R8 est un groupe éthyle, butyle, pentyle, hexyle ou cyclohexyle;

ou R5 et R8 sont pris conjointement avec l'atome de carbone auxquels ils sont fixés pour former un noyau spirocyclohexyle,

spirocycloheptyle, spiroadamarityle,

25

30

35

40

ou

où A est une liaison ou -C(O)O-; B est une liaison, -(CH2)- ou -(CH2)2-; J³ est H ou un groupe phényle; et

R⁷ est H, Me, R, Cl, OH, -O-méthyle ou -O-CH₂-phényle.

11. Composé selon la revendication 10 dans laquelle:

R³, R⁴ et R⁷ sont chacun un atome d'hydrogène, R⁵ et R⁸ sont ensemble

50

45

et le noyau imidazolyle a la configuration R;

R3, R4 et R7 sont chacun un atome d'hydrogène, R5 et R8 sont ensemble

5

et le noyau imidazolyle a la configuration R;

R³, R⁴ et R⁷ sont chacun un atome d'hydrogène, R⁵ et R⁸ sont ensemble

10

15

et le noyau imidazolyle a la configuration R;

 ${\sf R}^3,\,{\sf R}^4$ et ${\sf R}^7$ sont chacun un atome d'hydrogène, ${\sf R}^5$ et ${\sf R}^8$ sont ensemble

20

25

et le noyau imidazolyle a la configuration R; ou son sel chlorhydrate;

R³ est un groupe méthyle, R⁴ et R⁷ sont chacun un atome d'hydrogène, R⁵ et R⁸ sont chacun un groupe nbutyle et le noyau imidazolyle a la configuration R;

R³, R⁴ et R⁵ sont chacun un atome d'hydrogène, R⁵ et R8 sont ensemble

30

35

et le noyau imidazolyle a la configuration R, ou son sel chlorhydrate;

R³ et R⁴ sont chacun un atome d'hydrogène, R⁷ est un groupe 6-O-CH₂-phényle, R⁵ et R⁸ sont chacun un groupe n-butyle et le noyau imidazolyle est un mélange racémique des configurations S et R;

R³, R⁴ et R⁷ sont chacun un atome d'hydrogène, R⁵ et R⁸ sont ensemble

40

45

et le noyau imidazolyle a la configuration R,

ou son sel chlorhydrate;

R3, R4 et R7 sont chacun un atome d'hydrogène, R5 et R8 sont ensemble

50

55

Phényle et le noyau imidazolyle a la configuration R;

R³ et R⁷ sont chacun un atome d'hydrogène, R⁴ est un groupe méthyle, R⁵ et R⁸ sont chacun un groupe nbutyle et le noyau imidazolyle a la configuration R;

R³, R⁴ sont chacun un atome d'hydrogène, R⁷ est un groupe 7-fluoro, R⁵ et R⁸ sont chacun un groupe npentyle et le noyau imidazolyle est le mélange racémique des configurations S et R;

R³, R⁴ et R⁷ sont chacun un atome d'hydrogène, R⁵ et R⁸ sont chacun un groupe n-hexyle et le noyau imidazolyle a la configuration R;

R³, R⁴ et R⁷ sont chacun un atome d'hydrogène, R⁵ est un atome d'hydrogène et R⁸ est un groupe hexyle de configuration S et le noyau imidazolyle a la configuration R, ou son sel fumarate;

R³, R⁴ et R⁷ sont chacun un atome d'hydrogène, R⁵ et R⁸ sont chacun un groupe n-butyle et le noyau imidazolyle a la configuration R, ou son sel fumarate;

R3, R4 et R7 sont chacun un atome d'hydrogène, R5 et R8 sont ensemble

et le noyau imidazolyle a la configuration R;

5

10

15

20

25

30

35

40

45

50

55

R³, R⁴ et R⁷ sont chacun un atome d'hydrogène, R⁵ et R⁸ sont chacun un groupe n-butyle et le noyau imidazolyle a la configuration S;

R³, R⁴ et R⁷ sont chacun un atome d'hydrogène, R⁵ et R⁸ sont chacune un groupe éthyle et le noyau imidazolyle a la configuration R;

R³, R⁴ et R⁵ sont chacun un atome d'hydrogène, R⁵ et R8 sont chacun un groupe n-pentyle et le noyau imidazolyle a la configuration R;

R³, R⁴ et R⁷ sont chacun un atome d'hydrogène, R⁵ est un groupe méthyle et R⁸ est un groupe cyclohexyle et le noyau imidazolyle a la configuration R;

R³ et R⁴ sont chacun un atome d'hydrogène, R⁵ est un groupe 6-méthyle, R⁵ et R8 sont chacun un groupe nbutyle et le noyau imidazolyle est un mélange racémique des configurations S et R;

R³ et R⁴ sont chacun un atome d'hydrogène, R⁷ est un groupe 7-fluoro, R⁵ et R⁸ sont chacun un groupe nbutyle et le noyau imidazolyle est un mélange racémique des configurations S et R;

R³ et R⁴ sont chacun un atome d'hydrogène, R⁵ est un groupe 6-méthoxy, R⁵ et R8 sont chacun un groupe n-butyle et le noyau imidazolyle est un mélange racémique des configurations S et R;

R³ et R⁴ sont chacun un atome d'hydrogène, R⁷ est un groupe 6-hydroxy, R⁵ et R⁸ sont chacun un groupe nbutyle et le noyau imidazolyle est un mélange racémique des configurations S'et R;

R³ et R⁴ sont chacun un atome d'hydrogène, R7 est un groupe 6-fluoro, R⁵ et R8 sont chacun un groupe n-butyle et le noyau imidazolyle est un mélange racémique des configurations S et R, ou son sel chlorhydrate; R³ et R⁴ sont chacun un atome d'hydrogène, R7 est un groupe 8-méthyle, R⁵ et R8 sont chacun un groupe n-butyle et le noyau imidazolyle est un mélange racémique des configurations S et R;

R³ et R⁴ sont chacun un atome d'hydrogène, R⁷ est un groupe 6-méthyle, R⁵ et R⁸ sont chacun un groupe npentyle et le noyau imidazolyle est un mélange racémique des configurations S et R; ou

R³ et R⁴ sont chacun un atome d'hydrogène, R⁷ est un groupe 6-chloro, R⁵ et R⁸ sont chacun un groupe nbutyle et le noyau imidazolyle est un mélange racémique des configurations S et R.

12. Composé selon la revendication 11 dans laquelle ledit composé est choisi dans le groupe constitué par

R³, R⁴ et R⁷ sont chacun un atome d'hydrogène, R⁵ est un atome d'hydrogène et R⁸ est un groupe hexyle de configuration S et le noyau imidazolyle a la configuration R, ou son sel fumarate;

 R^3 , R^4 et R^7 sont chacun un atome d'hydrogène, R^5 et R^8 sont chacun un groupe n-butyle et le noyau imidazolyle a la configuration R, ou son sel fumarate;

R³, R⁴ et R⁷ sont chacun un atome d'hydrogène, R⁵ et R⁸ sont ensemble

et le noyau imidazolyle a la configuration R;

R³, R⁴ et R⁷ sont chacun un atome d'hydrogène, R⁵ et R⁸ sont chacun un groupe n-butyle et le noyau imidazolyle a la configuration S;

- R³, R⁴ et R⁷ sont chacun un atome d'hydrogène, R⁵ et R⁸ sont chacun un groupe éthyle et le noyau imidazolyle a la configuration R;
- R³, R⁴ et R⁷ sont chacun un atome d'hydrogène, R⁵ et R⁸ sont chacun un groupe n-pentyle et le noyau imidazolyle a la configuration R;
- R³, R⁴ et R⁷ sont chacun un atome d'hydrogène, R⁵ est un groupe méthyle, et R⁸ est cyclohexyle, et le noyau imidazolyle a la configuration R;

5

10

15

20

25

30

- R³ et R⁴ sont chacun un atome d'hydrogène, R⁷ est un groupe 6-méthyle R⁵ et R⁸ sont chacun un groupe n-butyle et le noyau imidazolyle est un mélange racémique des configurations S et R;
- R³ et R⁴ sont chacun un atome d'hydrogène, R⁷ est un groupe 7-fluoro, R⁵ et R⁸ sont chacun un groupe nbutyle et le noyau imidazolyle est un mélange racémique des configurations S et R;
- R³ et R⁴ sont chacun un atome d'hydrogène, R⁷ est un groupe 6-méthoxy, R⁵ et R⁸ sont chacun un groupe n-butyle et le noyau imidazolyle est un mélange racémique des configurations S et R;
- R³ et R⁴ sont chacun un atome d'hydrogène, R⁷ est un groupe 6-hydroxy, R⁵ et R⁸ sont chacun un groupe n-butyle et le noyau imidazolyle est un mélange racémique des configurations S et R;
- R³ et R⁴ sont chacun un atome d'hydrogène, R⁷ est un groupe 6-fluoro, R⁵ et R⁸ sont chacun un groupe nbutyle et le noyau imidazolyle est un mélange racémique des configurations S et R, ou son sel chlorhydrate;
- R³ et R⁴ sont chacun un atome d'hydrogène, R⁵ est un groupe 8-méthylë, R⁵ et R³ sont chacun un groupe n-butyle et le noyau imidazolyle est un mélange racémique des configurations S et R;
- R³ et R⁴ sont chacun un atome d'hydrogène, R⁵ est un groupe 6-méthyle, R⁵ et R8 sont chacun un groupe n-pentyle et le noyau imidazolyle est un mélange racémique des configurations S et R; et
- R³ et R⁴ sont chacun un atome d'hydrogène, R⁵ est un groupe 6-chloro, R⁵ et R8 sont chacun un groupe nbutyle et le noyau imidazolyle est un mélange racémique des configurations S et R.
- 13. Composition pharmaceutique comprenant un composé selon la revendication 9, ou un de ses sels pharmaceutiquement acceptables, et un véhicule pharmaceutiquement acceptable.
- 14. Utilisation d'un composé selon la revendication 9 ou d'un de ses sels pharmaceutiquement acceptables dans la préparation d'un médicament destiné à provoquer un effet agoniste ou un effet antagoniste de la part d'un ou plusieurs récepteurs de sous-type de somatostatine chez un sujet en ayant besoin.
- 15. Utilisation d'un composé selon la revendication 9 ou d'un de ses sels pharmaceutiquement acceptables dans la préparation d'un médicament destiné à lier un ou plusieurs récepteurs d'un sous-type de somatostatine chez un sujet en ayant besoin.
- 35 16. Utilisation d'un composé selon la revendication 9, ou d'un de ses sels pharmaceutiquement acceptables, dans la préparation d'un médicament destiné à traiter l'acromégalie, la resténose, la maladie de Crohn, la sclérose en plaques, les pseudokystes du pancréas externes et internes et l'ascite, le vipome, les maladies des cellules des îlots de Langerhans, l'hyperinsulinie, le gastrinome, le syndrome de Zollinger-Ellison, la diarrhée, la diarrhée liée au SIDA. la diarrhée liée à une chimiothérapie, la sclérodermie, le côlon irritable, la pancréatite, l'obstruction de 40 l'intestin grêle, le reflux gastro-oesophagien, le reflux gastro-duodénal, le syndrome de Cushing, le gonadotrophinome, l'hyperparathyroïdie, la maladie de Basedow-Graves, la neuropathie diabétique, la maladie de Paget, la polykystose ovarienne, le cancer, la cachexie néoplastique, l'hypotension, l'hypotension postprandiale, les crises de panique, les adénomes sécrétant l'hormone de croissance, les adénomes sécrétant l'hormone thyréotrope, le diabète sucré, l'hyperlipémie, l'insensibilité à l'insuline, le syndrome X, l'angiopathie, la rétinopathie proliférante, 45 le phénomène de l'aube, la néphropathie, les ulcères gastroduodénaux, les fistules entérocutanées et pancréaticocutanées, le syndrome de chasse, le syndrome de Verner-Morrison, la pancréatite aiguë ou chronique, les tumeurs sécrétant l'hormone gastro-intestinale, l'angiogenèse, les troubles inflammatoires, le rejet chronique de l'allogreffe, l'angioplastie, l'hémorragie des vaisseaux greffés ou l'hémorragie gastro-intestinale, chez un sujet en ayant besoin.
 - 17. Utilisation d'un composé selon la revendication 9, ou d'un de ses sels pharmaceutiquement acceptables, dans la préparation d'un médicament destiné à inhiber la prolifération de Helicobacter pylori ou à bloquer le canal sodique ou à soulager une douleur neuropathique chez un sujet en ayant besoin.
- 18. Utilisation d'un composé selon la revendication 1, ou d'un de ses sels pharmaceutiquement acceptables, dans la préparation d'un médicament destiné à bloquer le canal sodique ou à soulager une douleur neuropathique chez un sujet en ayant besoin.

- 19. Composition pharmaceutique à utiliser comme anesthésique local, comprenant un composé selon la revendication 1 ou la revendication 9, ou un de ses sels pharmaceutiquement acceptables, et éventuellement un véhicule pharmaceutiquement acceptable.
- 20. Utilisation d'un composé selon la revendication 1 ou la revendication 12, ou d'un de ses sels pharmaceutiquement acceptables, dans la préparation d'un médicament destiné à traiter toute pathologie, toute affection ou tout trouble clinique faisant intervenir la libération de glutamate dans son éthiologie, chez un sujet en ayant besoin, la pathologie, l'affection ou le trouble clinique étant de préférence choisi dans le groupe constitué par les troubles psychiatriques, les affections hormonales, la soufrance cérébrale provoquée par le métabolisme, les carences en sulfite oxydase, l'encéphalopathie hépatique associée à une insuffisance rénale, les vomissements, la spasticité, les acouphènes, la douleur et la toxicomanie et le sevrage de drogues.
 - 21. Utilisation d'un composé selon la revendication 1 ou la revendication 12, ou d'un de ses sels pharmaceutiquement acceptables, dans la préparation d'un médicament destiné à traiter toute pathologie impliquant une lésion neuronale, chez un sujet en ayant besoin, la pathologie étant de préférence choisie dans le groupe constitué par la maladie d'Alzheimer, la maladie d'Huntington, là maladie de Parkinson, une maladie dégénérative du système nerveux provoquée par un virus (notamment le HIV), la sclérose latérale amyotrophique (ALS), la paralysie pseudobulbaire, l'atrophie olivo-ponto-cérébelleuse (OPCA), et les actions des neurotoxines exogènes environnementales.

22. Utilisation d'un composé selon la revendication 1 ou la revendication 9, ou d'un de ses sels pharmaceutiquement acceptables, dans la préparation d'un médicament destiné à traiter l'arythmie ou l'épilepsie chez un sujet en ayant besoin.