Step-1

(a) Consider matrices of (2×2) with $1\hat{a}\in^{TM}$ s and $0\hat{a}\in^{TM}$ s. Determine how many are invertible.

Recall that a matrix is invertible if its determinant is non-zero.

Step-2

Determinants of all the matrices (2×2) containing $1\hat{a}\in^{TM}$ s and $0\hat{a}\in^{TM}$ s are as follows:

Consider the matrices with only one 1's.

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Determinant of all these matrices are zero. So, none of them are invertible.

Step-3

Consider the matrices with two 1's.

$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$

Determinant of all these matrices are zero. So, none of them are invertible.

Step-4

Consider the matrices with three 1's.

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Determinant of all these matrices are nonzero. So, each one of them are invertible.

Step-5

Consider the matrix with $1 \hat{a} \in TMS$ positioned on the diagonal and anti-diagonal.

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Determinant of all these matrices are nonzero. So, each one of them are invertible.

Step-6

Consider the matrix with all 1's and 0's.

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

Determinant of all these matrices are zero. So, none of them are invertible.

Step-7

Therefore, from sixteen (2×2) matrices with 0's and 1's only 6 are invertible.

Step-8

(b) Consider matrices of (10×10) with 1's and 0's. These entries are done at random. Determine the matrix is more likely to be singular or invertible.

If entries $1\hat{a}\in^{TM}$ s and $0\hat{a}\in^{TM}$ s are filled at random in (10×10) matrix then it is likely to be more singular. As the effect of the element 1 can be cancelled out when multiplied by element 0. Therefore, matrix is more likely to be singular.