

Indian Institute of Technology Ropar Department of Mathematics

MA102 - Linear Algebra and Integral Transforms and Special Functions

Second Semester of Academic Year 2023-24

Tutorial sheet - 3

- 1. Let $\{v_1, v_2, v_3\}$ be a basis of vector space $V(\mathbb{R})$. Show that the set $\{v_1, v_1 + v_2, v_1 + v_2 + v_3\}$ is also a basis of $V(\mathbb{R})$.
- 2. Show that $\{(1,4),(0,1)\}$ form a basis of \mathbb{R}^2 over \mathbb{R} .
- 3. Find a basis and hence give the dimension of each of the following subspaces of $V = M_n(\mathbb{R})$
 - (a) $W_1 = \{ A \in V \mid A_{ij} = 0, \forall i \neq j \}$
 - (b) $W_2 = \{ A \in V \mid A = -A^T \}$
 - (c) $W_3 = \{A \in V \mid \text{Trace}(A) = 0\}$
 - (d) $W_4 = \{ A \in V \mid A_{ij} = 0, \forall i < j \}.$
- 4. Find a basis and dimension of following subspace S of vector space of polynomials $P_n(\mathbb{R})$ over \mathbb{R} , where:
 - (a) $S = \{p(x) \in P_n(\mathbb{R}) \mid p(0) = 0\}.$
 - (b) $S = \{p(x) \in P_n(\mathbb{R}) \mid p(x) \text{ is an odd function}\}.$
 - (c) $S = \{p(x) \in P_n(\mathbb{R}) \mid p(0) = p''(0) = 0\}.$
- 5. Check whether the vector space $V = P(\mathbb{R})$, set of all real polynomials over \mathbb{R} is finite dimensional or not.
- 6. Find a basis and dimension for the subspaces W_1 and W_2 of $\mathbb{R}^5(\mathbb{R})$, where:
 - (a) $W_1 = \{(a_1, a_2, a_3, a_4, a_5) \in \mathbb{R}^5 \mid a_1 a_3 a_4 = 0\}.$
 - (b) $W_2 = \{(a_1, a_2, a_3, a_4, a_5) \in \mathbb{R}^5 \mid a_2 = a_3 = a_4, a_1 + a_5 = 0\}.$
- 7. Prove that if W_1 and W_2 are finite dimensional subspaces of a vector space V, then the subspace W_1+W_2 is finite dimensional and $\dim(W_1+W_2)=\dim(W_1)+\dim(W_2)-\dim(W_1\cap W_2)$. Hint: Start with a basis $\{u_1,u_2,\ldots,u_k\}$ for $W_1\cap W_2$ and extend this set to a basis $\{u_1,u_2,\ldots,u_k,v_1,v_2,\ldots v_m\}$ for W_1 and to a basis $\{u_1,u_2,\ldots,u_k,w_1,w_2,\ldots w_p\}$ for W_2 .
- 8. Let V and W be following subspaces of $\mathbb{R}^4(\mathbb{R})$: $V = \{(a,b,c,d) \mid b-2c+d=0\}, W = \{(a,b,c,d) \mid a=d,\ b=2c\}.$ Find bases and the dimensions of V,W and $V \cap W$. Hence prove that $\mathbb{R}^4(\mathbb{R}) = V + W$.
- 9. Suppose that U and V are subspaces of $\mathbb{R}^8(\mathbb{R})$ such that dim U=3 and dim W=5 and $U+W=\mathbb{R}^8$. Prove that $\mathbb{R}^8=U\oplus V$.
- 10. Suppose V is finite dimensional vector space over the field \mathbb{F} and U is a subspace of V such that dim $U = \dim V$. Prove that U = V.
- 11. Suppose $U_1,U_2...,U_m$ are finite-dimensional subspaces of V over the field $\mathbb F$. Prove that $U_1+U_2+...+U_m$ is finite-dimensional and

$$\dim (U_1 + U_2 + \ldots + U_m) \le \dim (U_1) + \dim (U_2) + \ldots + \dim (U_m)$$

- 12. Find an example of subspaces W_1 and W_2 of $\mathbb{R}^3(\mathbb{R})$ with dimensions m and n, where $m \geq n$, such that both dim $(W_1 \cap W_2) < n$ and dim $(W_1 + W_2) < m + n$.
- 13. Let $M_{m\times n}(\mathbb{F})$ is the collection of all $m\times n$ matrix over the field \mathbb{F} . Define $W_1 = \{A \in M_{m\times n}(\mathbb{F}) : A_{ij} = 0 \text{ whenever } i > j\}$ and $W_2 = \{A \in M_{m\times n}(\mathbb{F}) : A_{ij} = 0 \text{ whenever } i \leq j\}$. Show that $M_{m\times n}(\mathbb{F}) = W_1 \oplus W_2$.
- 14. Give two different bases for $\mathbb{R}^2(\mathbb{R})$ and for $M_{2\times 2}(\mathbb{R})$.
- 15. Let V be a vector space having dimension n, and let S be a subset of V that generates V then Prove that S contains at least n vectors.

***** END *****