Worksheet 11 for November 10th and 12th

1. a. Compare
$$\det \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and the "row flipped" determinant $\det \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$.

a. Compare
$$\det \begin{bmatrix} 3 & 4 \end{bmatrix}$$
 and the Tow Jupped alternment $\det \begin{bmatrix} 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$, what is $\det(A)$?

c. If $A = \begin{bmatrix} 1 & 1 & 4 \\ 2 & 2 & 5 \\ 3 & 3 & 6 \end{bmatrix}$, what is $\det(A)$?

d. If $A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 5 & 7 \\ 3 & 6 & 9 \end{bmatrix}$, what is $\det(A)$?

e. If $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 1 & 3 \end{bmatrix}$, find $\det(A)$ by expanding along the last column.

c. If
$$A = \begin{bmatrix} 1 & 1 & 4 \\ 2 & 2 & 5 \\ 3 & 3 & 6 \end{bmatrix}$$
, what is $\det(A)$?

d. If
$$A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 5 & 7 \\ 3 & 6 & 9 \end{bmatrix}$$
, what is $\det(A)$?

e. If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$
, find $det(A)$ by expanding along the last column.

- 2. True or False? Justify your answers!
 - **a.** Let Q be a 3×3 orthogonal matrix. Then det(Q) = 1.
 - **b.** If det(A) = det(B) = 0 then det(A + B) = 0.
 - **c.** Let A be a 3×3 matrix so that det(A) = 0. Then $A\mathbf{x} = \mathbf{b}$ has exactly one solution for each vector **b**.
 - **d.** Let A be a 3×3 matrix so that det(A) = 9. Then det(2A) = 18.
 - **e.** Let R be a 2×3 matrix. Then $det(R^TR) = 0$.
 - **f.** Let R be a 2×3 matrix. Then $det(RR^T) = 0$.
- **3.** True or False? Justify your answers!
 - **a.** We say A and B $(n \times n \text{ matrices})$ are similar if $A = DBD^{-1}$ for an invertible matrix D. Let A and B be similar matrices, then det(A) = det(B).
 - **b.** Let A and B be 3×3 matrices. If det(A) = det(B) then A and B are similar. [Note: number of pivots in DBD^{-1} is equal to the number of pivots in B. (Why?) Use this fact to find a counter example.
 - **c.** Someone tells you that the zero vector is an eigenvector of a 2×2 matrix A. Is this possible?
 - **d.** An $n \times n$ matrix A always has n distinct eigenvalues.
- **4.** For each of the following matrices, determine the characteristic polynomial $p(\lambda)$ of the matrix, determine the eigenvalues of the matrix and for each eigenvalue, determine (a basis for) the eigenspace that is associated to that eigenvalue.

Tutoring Room (443 Altgeld Hall): Mon 4-6 PM, Tue 5-7 PM, Wed 6-8 PM

Midterm Date: November 19 7-8:15 PM, Conflict November 20, 8-9.20AM and 9:30-10:50AM, Conflict sign up deadline: November 13

Final Date: December 17 8-11AM, Conflict December 15, 8-11AM. You are allowed to take the conflict exam if you have more than two examination within 24 hours. Conflict sign up deadline: November 30

a.
$$\begin{bmatrix} 4 & 0 & -2 \\ 1 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix},$$
b.
$$\begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix},$$
c.
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

- **5.** Let A be an $n \times n$ -matrix with eigenvalue λ . Which of the following statements are true:
 - **a.** λ^2 is an eigenvalue of A^2 ,
 - **b.** λ^{-1} is an eigenvalue of A^{-1}
 - **c.** $\lambda + 1$ is an eigenvalue of A + I.
- **6.** Let A, B be two $n \times n$ -matrices such that AB = BA.
 - **a.** Suppose v is an eigenvector of A with eigenvalue λ . Is Bv an eigenvector of A? If so, what is the eigenvalue of that eigenvector?
 - **b.** Suppose A has eigenvectors v_1, \ldots, v_n with distinct eigenvalues $\lambda_1 \neq \ldots \neq \lambda_n$. Is each v_i also an eigenvector of B? (This question is a bit tricker. Hint: Note that each of the eigenspaces of A has dimension 1 and then use your answer to a.).

7. Let
$$A = \begin{bmatrix} -3 & 4 \\ 4 & 3 \end{bmatrix}$$
, $T : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto A \begin{bmatrix} x \\ y \end{bmatrix}$, and $\mathcal{B} = \{\begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix}, \begin{bmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix} \}$.

a. If
$$\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
, what is $\mathbf{v}_{\mathcal{B}}$?

b. If
$$\mathbf{v}_{\mathcal{B}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
, what is \mathbf{v} ?

c. What is
$$T_{\mathcal{B},\mathcal{B}}$$
?

8. Let
$$\mathcal{B} := \{b_1, b_2\}$$
 and $\mathcal{C} := \{c_1, c_2\}$ be two bases of \mathbb{R}^2 such that

$$b_1 = 6c_1 - 2c_2 \text{ and } b_2 = 9c_1 - 4c_2.$$

Determine $I_{\mathcal{C},\mathcal{B}}$ and $I_{\mathcal{B},\mathcal{C}}!$

- **9.** Let A be a $n \times n$ -matrix and let $T: \mathbb{R}^n \to \mathbb{R}^n$ be the linear transformation such that $T(\mathbf{v}) = A\mathbf{v}$ for all \mathbf{v} in \mathbb{R}^n . Let \mathcal{E} be the standard basis of \mathbb{R}^n . True or false?
 - **a.** Let $\mathcal{B} := \{b_1, \dots, b_n\}$ be a basis of \mathbb{R}^n . All b_i 's are eigenvectors of A if and only if $T_{\mathcal{B},\mathcal{B}}$ is diagonal.
 - **b.** The matrix A is invertible if and only if there is a basis $\mathcal{C} := \{c_1, \ldots, c_n\}$ of \mathbb{R}^n such that $T_{\mathcal{C},\mathcal{E}} = I_{n \times n}$.