MouseNet Similarity to Mouse Brain with simulated mouse vision dataset and retinotopy

BME 499 Final Presentation

Jessy Song

Project Background

Modelling Mouse Visual Cortex: MouseNet

- CNN architecture inspired from neural architecture of visual system in primates [1].
- Mice architecture shallower than primates [1].
- To better understand mouse brain architecture → MouseNet, Biologically constrained neural network [1].

Research Scope

- Impact of training on similarity with brain: training performance does not necessarily correlate with improvements on similarity with brain.
- My research: investigate the impacts to similarity between MouseNet and mouse brain after changes:
 - 1) Network design: retinotopic mapping of neurons within visual cortex
 - 2) Training task and input: with realistic mouse vision data and prediction task.
- Goal and Impacts:
 - Improve the MouseNet architecture to be more realistic to mouse cortex
 - Assess the MouseNet model after making the modelling process closer to biology → contributes to computational neuroscience modelling research.

Retinotopic mapping

- Original MouseNet: approximate input passing and propagation.
- Retinotopic mapping: mapping of retina to neurons within different areas in the visual stream [2].
- allows different areas of previous layer output to be used for downstream layers according to retinotopy.

Mouse Vision Data

- Original MouseNet: trained with ImageNet dataset.
- Training task: image classification
 - image not visually close to mouse vision (blurring, angle etc. not close to mouse)
 - image classification may not be appropriate for describing the functions of mouse visual cortex.
- construct videos simulating mouse vision

Project Workflow

1. Constructing Biologically Realistic Mouse Vision Dataset

Unity Meadow Field Simulation

- Cameras located on left and right eyes of the mouse.
- Mouse simulated to run in meadow field with random path and head motions.

Mouse Vision Properties

- Adjust camera settings based on mouse vision properties.
- Mouse Vision Properties gathered from research:
 - Eye orientation, interocular distance
 - Angle of convergence
 - Focal Length/Field of view
- Determines camera settings located on the mouse eyes.
 - Position of camera on eye, orientation and rotation.
 - Focal length settings and recording resolution.

1. Unity Data Generation

Results: Camera Settings

	Interocular Distance [3]	Orbit of Convergence [4]	Upward Tilt [5]	Focal Length [6, 7]	Visual Acuity [1]
Mouse Vision	1cm	38.6 degrees	6 degrees	2.6mm,	0.5 cycles/degree
Camera Settings	+/- 0.5cm Z-axis translation	+/- 38.6 deg Y- axis rotation	+6 deg Z-axis rotation	2.6mm focal length and 140 deg monocular field of view (vertical and horizontal)	2 pixels/cycle x 0.5 cycles/degree = 1.0 pixel/degree. 140x140px resolution

Orbit of convergence angle

Results: Generated Videos Using Unity

High Resolution (as example)

Mouse Eye Resolution (final results)

2. Training Modified MouseNet

Input to Model Training

- VISp included representation of the right visual hemifield between ~0 (from the vertical meridian) and 90° field of view and ~25–35° above and below the horizontal meridian [2].
- There are around 40 degree overlap between left and right visual field [4].

Training Setup

- Dense Predictive Coding framework (DPC): trained to predict future frames of the video, by comparing predictions with correct future states.
- 1. Get features from 5 frames of input video block.
- 2. Predict future frames (multiple steps into future) from features.
- 3. Learns contrastive loss comparing predicted frames and ground truth frames.

Results: Trained Model

- Training settings:
 - 100 epochs, Adam optimizer
 - Input: 8 Unity videos recorded at 30 frames per second, 15min each.
 - Using right eye video only.
 - Total training data frames: 216,000
 - Model checkpoint saved after each training epoch.

3. Similarity Analysis Between MouseNet and Mouse Brain

Representational Similarity Analysis and Similarity of Similarity Matrix (SSM)

- Similarity matrix (SM): similarity between group of stimuli vs. group of representations of these stimuli in brain/MouseNet [1].
- Similarity of Similarity Matrix (SSM): similarity between mouse cortex SM and MouseNet SM [1].

Brain vs. MouseNet Representations of stimuli

- Allen Brain Observatory dataset [8]
 - Contains experimental neuron activation data from showing different stimuli to mouse.
- Stimuli Types:
 - Natural Scenes
 - Natural Movie
- Stimuli passed to MouseNet:
 - Rescaled to 140x140
 - Same cropping as training
- Focus on activation data from 2/3 cortical layers.

scene 4

scene 83

frame 0

frame 400

Similarity Matrix (SM) - MouseNet

Primary Layer

Secondary Layers

Final Layer

Mouse Brain vs. MouseNet SSM – Movie Stimuli

Mouse Brain vs. MouseNet SSM — Natural Scenes Stimuli

Change in SSM Sum over training epoch

- Sums of SSM for model trained at epoch 0 (initialization), 5, 25, 50, 75, 100 are calculated.
- Highest SSM sum observed at epoch 25 for natural scene.
- training did not improve similarity.

Summary of Results and Conclusions

- Task Training does not necessarily improve similarity with brain.
 - Training MouseNet with retinotopic mapping using video inputs using prediction framework did not improve similarity based on current analysis.
 - More analysis is needed to make a conclusion on particular impacts of retinotopic mapping: compare the current results with paper results to get a better conclusion on the impact of these 2 changes.

Limitations and Future Work

• Dataset:

- Present of unknown artefacts on the camera. Less on the trained right eye camera but impact is unknown.
- Variation in scenes: differences in scenes may not be sufficient to train a model that encodes different natural scenes well.

Analysis:

- Did not use all available mouse brain data due to time and resource constraints. Analysis only contains some areas of brain vs. MouseNet. → lacks comparison with original MouseNet SSM due to difference in brain data used.
- SSM analysis was simplified comparing with original paper: Comparison of the performance with a previously trained network without retinotopic changes not available (lack of noise-ceiling calculations)

References

- [1] J. Shi, B. Tripp, E. Shea-Brown, S. Mihalas, and M. A. Buice, "MouseNet: A biologically constrained convolutional neural network model for the mouse visual cortex," PLOS Computational Biology, vol. 18, no. 9, p. e1010427, Sep. 2022, doi: https://doi.org/10.1371/journal.pcbi.1010427.
- [2] J. Zhuang et al., "An extended retinotopic map of mouse cortex," eLife, Jan. 06, 2017. https://elifesciences.org/articles/18372 (accessed Apr. 18, 2023).
- [3] J. M. Samonds, V. Choi, and N. J. Priebe, "Mice Discriminate Stereoscopic Surfaces Without Fixating in Depth," The Journal of Neuroscience, vol. 39, no. 41, pp. 8024–8037, Aug. 2019, doi: https://doi.org/10.1523/jneurosci.0895-19.2019.
- [4] C. P. Heesy, "On the relationship between orbit orientation and binocular visual field overlap in mammals," The Anatomical Record, vol. 281A, no. 1, pp. 1104–1110, 2004, doi: https://doi.org/10.1002/ar.a.20116.
- [5] M. E. Stabio et al., "A novel map of the mouse eye for orienting retinal topography in anatomical space," Journal of Comparative Neurology, vol. 526, no. 11, pp. 1749–1759, Apr. 2018, doi: https://doi.org/10.1002/cne.24446.
- [6] Y. Geng et al., "Optical properties of the mouse eye," Biomedical Optics Express, vol. 2, no. 4, p. 717, Feb. 2011, doi: https://doi.org/10.1364/boe.2.000717.
- [7] A. F. Meyer, J. O'Keefe, and J. Poort, "Two distinct types of eye-head coupling in freely moving mice," Feb. 2020, doi: https://doi.org/10.1101/2020.02.20.957712.
- [8] "Visual Coding Overview," Brain-map.org, 2023. https://observatory.brain-map.org/visualcoding/ (accessed Apr. 18, 2023).