M4P55 Commutative Algebra

Lectured by Prof Alexei Skorobogatov Typed by David Kurniadi Angdinata

Autumn 2019

Syllabus

Contents

0	Introduction	3
1	Rings and ideals	4
2	Polynomials and formal power series	5
3	Zero-divisors, nilpotents, units	5
4	Prime ideals and maximal ideals	6
5	Nilradical and the Jacobson radical	7
6	Localisation of rings	9
7	$\operatorname{Spec} R$ as a topological space	12
8	Determinants	14
9	Modules	14
10	Localisation of modules	16
11	Chain conditions	18
12	Primary decomposition	2 0
13	Artinian rings and modules	23

0 Introduction

The prerequisites are

- groups,
- rings,
- fields, and
- $\bullet\,$ a solid linear algebra.

This course is good for

- algebraic geometry, and
- algebraic number theory.

The following are books.

- M Reid, Undergraduate commutative algebra, 1995
- M F Atiyah and I G Macdonald, Introduction to commutative algebra, 1969

The following is the structure of the course.

- Generalities on rings, such as ideals, and examples.
- Localisation of rings between a ring R and the fraction field K of R, such as \mathbb{Z} and \mathbb{Q} .
- Finiteness conditions of Noetherian rings and Artinian rings.
- Integral closure and normal rings, such as $\mathbb{Z}[i] \subset \mathbb{Q}(i)$ and $\mathbb{Z}\left[\sqrt{-3}\right] \subset \mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right] \subset \mathbb{Q}\left(\sqrt{-3}\right)$.
- Discrete valuation rings.
- Completion of rings with topology.

Lecture 1 Thursday 03/10/19

1 Rings and ideals

Definition 1.1. A commutative ring is a set $(A, +, \cdot, 0, 1)$ such that

- 1. (A, +, 0) is an abelian group,
- 2. for all $x, y, z \in A$,
 - $(x \cdot y) \cdot z = x \cdot (y \cdot z)$,
 - $\bullet \ x \cdot y = y \cdot x,$
 - $x \cdot (y+z) = x \cdot y + x \cdot z$, and
- 3. for all $x \in A$, $x \cdot 1 = 1 \cdot x = x$.

Remark 1.2.

- One is uniquely determined by 3, since $1' = 1' \cdot 1 = 1$.
- If 1 = 0, then $0 = x \cdot 0 = x \cdot 1 = x$, since

$$x \cdot 0 = x \cdot (0+0) = x \cdot 0 + x \cdot 0$$

so $x \cdot 0 = 0$. So every element is zero. Hence $R = \{0\}$.

Definition 1.3. A homomorphism of rings $f: A \to B$ is a map such that for all $x, y \in A$,

$$f(x + y) = f(x) + f(y),$$
 $f(xy) = f(x) f(y),$ $f(1) = 1.$

Example. If $A \subset B$ is closed under + and \cdot , and $1 \in A$, then

$$\begin{array}{ccc} A & \longrightarrow & B \\ x & \longmapsto & x \end{array}$$

is a homomorphism.

Remark 1.4.

- A composition of homomorphisms is a homomorphism.
- An **isomorphism** is a bijective homomorphism.

Definition 1.5. A subset I of a ring A is an **ideal** if I is a subgroup of the additive group (A, +) which is closed under multiplication by elements of A, so $xI \subset I$ for any $x \in A$. Sometimes this is written as $I \triangleleft A$. In this case the **quotient group** A/I is naturally a ring, where (x + I)(y + I) is defined as xy + I.

Proposition 1.6. Let I be an ideal of a commutative ring A. Then there is a natural bijection between the ideals $J \subset A$ such that $I \subset J$ and the ideals of A/I.

Proof. Let

$$\begin{array}{ccc} A & \longrightarrow & A/I \\ x & \longmapsto & x+I \end{array}$$

be the natural surjective map. Send J to its image under this map.

Definition 1.7. If $f: A \to B$ is a homomorphism, then

$$Ker f = \{x \in A \mid f(x) = 0\}$$

is an ideal in A, and

$$\operatorname{Im} f = f(A) \cong A / \operatorname{Ker} f \subset B.$$

Lecture 2

Tuesday 08/10/19

2 Polynomials and formal power series

Definition 2.1. Let R be a ring. The **polynomial ring** with coefficients in R is

$$R[x] = \{a_0 + \dots + a_n x^n \mid a_i \in R, \ n \in \mathbb{Z}_{\geq 0}\}.$$

The addition is coefficient-wise, and the multiplication is given by the formula

$$\left(\sum_{i\geq 0} a_i x^i\right) \left(\sum_{j\geq 0} b_j x^j\right) = \sum_{i\geq 0} \left(\sum_{j+k=i, \ j\geq 0, \ k\geq 0} a_j b_k\right) x^i,$$

where all but finitely many coefficients are zero. Define

$$R[x_1, \dots, x_n] = R[x_1] \dots [x_n] = \left\{ \sum_{i_1, \dots, i_n \ge 0} a_{i_1, \dots, i_n} x_1^{i_1} \dots x_n^{i_n} \mid a_{i_1, \dots, i_n} \in R \right\},\,$$

where all but finitely many coefficients $a_{i_1,...,i_n}$ are equal to zero.

Definition 2.2. The ring of formal power series with coefficients in R is

$$R[[t]] = \{a_0 + a_1t + \dots \mid a_i \in R\}.$$

The addition is coefficient-wise, and the multiplication is given by the formula

$$\left(\sum_{i\geq 0} a_i t^i\right) \left(\sum_{j\geq 0} b_j t^j\right) = \sum_{i\geq 0} \left(\sum_{j+k=i, \ j\geq 0, \ k\geq 0} a_j b_k\right) x^i.$$

Define

$$R[[t_1,\ldots,t_n]] = R[[t_1]]\ldots[[t_n]].$$

In R[[t]] many products equal one unlike in R[t], for example $(1-t)(1+t+\ldots)=1$.

3 Zero-divisors, nilpotents, units

Definition 3.1. Let A be a ring. An element $x \in A$ is a **zero-divisor** if $x \neq 0$ but xy = 0 for some $y \neq 0$ in A. A ring without zero-divisors is called an **integral domain**. An element $x \in A$ is **nilpotent** if $x^n = 0$ for some $n \in \mathbb{Z}_{>0}$. A **unit** $x \in A$ is an element such that xy = 1 for some $y \in A$. The units of A form a group under multiplication, denoted by A^* , or A^{\times} .

Definition 3.2. Let $x \in A$. Then the set

$$\langle x \rangle = \{ xy \mid y \in A \}$$

is an ideal. Such ideals are called principal ideals.

Remark. $x \in A^*$ if and only if $\langle x \rangle = A$, and R is a field if and only if $R^* = R \setminus \{0\}$.

Proposition 3.3. Let A be a non-zero ring. Then the following are equivalent.

- 1. A is a field.
- 2. There are no ideals in A other than $\langle 0 \rangle$ and A.
- 3. Every non-zero homomorphism $f: A \to B$ is injective.

Proof.

- $1 \implies 2$. Clear.
- $2 \implies 3$. Ker $f \subset A$ is an ideal. Since $f \neq 0$, Ker $f \neq A$. Hence Ker f = 0.
- 3 \Longrightarrow 1. Take any $x \neq 0$ in A. Look at $\langle x \rangle$. Define $B = A/\langle x \rangle$. Then take $f: A \to B$ to be the natural surjective map. If f is not identically zero, we get a contradiction with 3.

4 Prime ideals and maximal ideals

Definition 4.1. An ideal $I \subset A$ is called **prime** if $I \neq A$ and if whenever $xy \in I$, then $x \in I$ or $y \in I$. An ideal $J \subset A$ is called **maximal** if there is no ideal J' such that $J \subseteq J' \subseteq A$.

Lemma 4.2. An ideal $I \subset A$ is prime if and only if A/I is an integral domain.

Proof. Obvious.

Lemma 4.3. An ideal $J \subset A$ is maximal if and only if A/J is a field.

Proof. Obvious. \Box

Definition 4.4. The set of prime ideals of A is called the **spectrum** of A and is denoted by Spec A.

Proposition 4.5. If $f: A \to B$ is a ring homomorphism and $I \subset B$ is a prime ideal, then $f^{-1}(I)$ is a prime ideal of A.

Proof. It is easy to see that $f^{-1}(I)$ is an ideal in A. Suppose $xy \in f^{-1}(I)$ for some $x, y \in A$. Then $f(x) f(y) = f(xy) \in I$. Since I is prime, $f(x) \in I$ or $f(y) \in I$, so $x \in f^{-1}(I)$ or $y \in f^{-1}(I)$.

So we get a canonical map

$$\begin{array}{cccc} f^* & : & \operatorname{Spec} B & \longrightarrow & \operatorname{Spec} A \\ & I \subset B & \longmapsto & f^{-1} \left(I \right) \subset A \end{array}.$$

Lecture 3 Wednesday 09/10/19

Remark 4.6. If $f: A \to B$ is a ring homomorphism, then $f^{-1}(\mathfrak{p})$, where $\mathfrak{p} \subset B$ is a prime ideal, is a prime ideal. But this is false for maximal ideals. Let $A = \mathbb{Z}$, let $B = \mathbb{Q}$, and let f(x) = x. Then $\langle 0 \rangle \subset \mathbb{Q}$ is a maximal ideal and $f^{-1}(\langle 0 \rangle) = \langle 0 \rangle \subset \mathbb{Z}$ is not a maximal ideal. For example, $\langle 0 \rangle \subsetneq \langle 2 \rangle \subsetneq \mathbb{Z}$.

Theorem 4.7. Let A be a non-zero ring. Then A has at least one maximal ideal. In particular, Spec A is not empty.

The proof is based on Zorn's lemma. Let S be a set. Then a partial order is a binary relation \leq such that

- $x \le x$ for all $x \in S$,
- $x \le y \le z$ implies that $x \le z$, and
- $x \le y$ and $y \le x$ imply that x = y,

where not all pairs are comparable. A chain $T \subset S$ is a subset in which every two elements are comparable.

Lemma 4.8 (Zorn). Suppose that S is a partially ordered set such that every chain $T \subset S$ has an upper bound, that is an element $t \in S$ such that $x \leq t$ for all $x \in T$. Then S has a maximal element, that is there exists $s \in S$ such that if $x \in S$ and $x \geq s$, then x = s.

Zorn's lemma is equivalent to the axiom of choice.

Proof of Theorem 4.7. Let Σ be the set of all ideals of A which are not equal to A. Then $\langle 0 \rangle \in \Sigma$, so $\Sigma \neq \emptyset$. Equip Σ with partial order given by inclusion. Enough to check the assumption of Zorn's lemma. Suppose T is a chain of ideals, so it is a collection of ideals J_i for $i \in T$. Consider instead

$$I = \bigcup_{i \in T} J_i.$$

Claim that T is a chain implies that I is an ideal. Then $x \in I$ implies that $x \in J_i$ for some i. Take any $x, y \in I$. Then $x \in J_i$ and $y \in J_k$ for some $i, k \in T$, so T is a chain, hence $i \leq k$ or $k \leq i$, so $J_i \subset J_k$ or $J_k \subset J_i$. Without loss of generality assume $J_i \subset J_k$. Then $x, y \in J_k$, so $x + y \in J_k \subset I$. Clearly, I is an upper bound.

Corollary 4.9. Any ideal of A is contained in a maximal ideal of A.

Proof. If $I \subset A$ is an ideal, apply Theorem 4.7 to A/I.

Corollary 4.10. Any non-unit of A is contained in a maximal ideal.

Proof. Apply Corollary 4.9 to $\langle a \rangle$.

Example. The maximal ideals of \mathbb{Z} are $\langle p \rangle$, where p is prime.

Definition 4.11. A ring A is **local** if A has exactly one maximal ideal.

Example. Any field is a local ring. If k is a field, then k[[t]] is a local ring.

Lemma 4.12 (Prime avoidance). Let A be a ring and let $\mathfrak{p} \subset A$ be a prime ideal. Suppose that I_1, \ldots, I_n are ideals in A such that $\bigcap_{j=1}^n I_j \subset \mathfrak{p}$. Then $I_j \subset \mathfrak{p}$ for some j. If, moreover, $\bigcap_{j=1}^k I_j = \mathfrak{p}$, then $I_j = \mathfrak{p}$ for some j.

Proof. Suppose that I_j is not a subset of \mathfrak{p} for any j. Then there exists $x_j \in I_j$ such that $x_j \notin \mathfrak{p}$. Hence

$$x_1, \ldots, x_n \in I_1 \ldots I_n \subset \bigcap_{j=1}^n I_j \subset \mathfrak{p},$$

so $x_1(x_2...x_n) \in \mathfrak{p}$. Then $x_1 \notin \mathfrak{p}$ implies that $x_2...x_n \in \mathfrak{p}$. Since \mathfrak{p} is prime we get a contradiction. For the second claim, we know that some $I_j \subset \mathfrak{p}$. But $\mathfrak{p} = \bigcap_{j=1}^k I_j \subset I_k$ for all k. Hence $\mathfrak{p} = I_j$.

5 Nilradical and the Jacobson radical

Lecture 4 Thursday 10/10/19

Proposition 5.1. The set $\mathcal{N}(A)$ consisting of all nilpotents of the ring A and zero is an ideal. Then $\mathcal{N}(A)$ is called the **nilradical** of A. The quotient $A/\mathcal{N}(A)$ has no nilpotents.

Proof. Suppose $x \in A$ is nilpotent, so $x^n = 0$. For any $a \in A$, $(ax)^n = a^n x^n = 0$. Let x and y be nilpotents. Say $x^n = y^m = 0$. Then

$$(x+y)^{n+m} = \sum_{i,j>0, i+j=n+m} a_{ij}x^iy^j, \quad a_{ij} \in A.$$

Clearly, either $i \geq n$ or $j \geq m$. Then $a_{ij}x^iy^j = 0$. Therefore, $(x+y)^{n+m} = 0$, hence $x+y \in \mathcal{N}(A)$. If $x + \mathcal{N}(A)$ is nilpotent in $A/\mathcal{N}(A)$, then $x^n + \mathcal{N}(A) = \mathcal{N}(A)$ is the trivial coset. Hence $x^n \in \mathcal{N}(A)$. Thus $(x^n)^m = 0$ for some m.

Definition 5.2. A ring A such that $\mathcal{N}(A) = 0$ is called a **reduced ring**.

Proposition 5.3. $\mathcal{N}(A)$ is the intersection of all prime ideals of A.

Proof.

- \subset Let I be the intersection of all prime ideals of A. Let $f \in A$ be such that $f^n = 0$. Take any prime ideal $\mathfrak{p} \subset A$. We know that $f^n = 0 \in \mathfrak{p}$. Then $f(f \dots f) \in \mathfrak{p}$ and \mathfrak{p} prime implies that $f \in \mathfrak{p}$, so $f \in I$.
- \supset Let us prove the converse. Suppose f is not nilpotent, so $f^n \neq 0$ for all $n \geq 1$. We will show that there exists a prime ideal $\mathfrak{p} \subset A$ that does not contain f. Let us consider all ideals of A that do not contain f^m , where $m \in \mathbb{Z}_{>0}$. Let Σ be the set of ideals $J \subset A$ such that

$$J \cap \{f^m \mid m \ge 1\} = \emptyset.$$

The zero ideal $\langle 0 \rangle$ is in Σ . So $\Sigma \neq \emptyset$. Equip Σ with a partial order given by inclusion. Applying Zorn's lemma we obtain that Σ contains a maximal element. Call it \mathfrak{p} . By construction, $\mathfrak{p} \cap \{f^m \mid m \geq 1\} = \emptyset$, so $f \notin \mathfrak{p}$. It remains to prove that \mathfrak{p} is prime. Enough to prove that if $x \notin \mathfrak{p}$ and $y \notin \mathfrak{p}$, then $xy \notin \mathfrak{p}$. Consider the ideal $\mathfrak{p} + \langle x \rangle \supseteq \mathfrak{p}$. Since \mathfrak{p} is maximal in Σ , thus $\mathfrak{p} + \langle x \rangle$ is not in Σ . By definition of Σ there exists $n \geq 1$ such that $f^n \in \mathfrak{p} + \langle x \rangle$. Similarly, there exists $m \geq 1$ such that $f^m \in \mathfrak{p} + \langle y \rangle$. Then $(\mathfrak{p} + \langle x \rangle) (\mathfrak{p} + \langle y \rangle) \subset \mathfrak{p} + \langle xy \rangle$. In particular, $f^{n+m} = f^n f^m \in \mathfrak{p} + \langle xy \rangle$. If $xy \in \mathfrak{p}$, then $f^{n+m} \in \mathfrak{p}$, which is not possible. Therefore, $xy \notin \mathfrak{p}$. So \mathfrak{p} is a prime ideal that does not contain f.

Definition 5.4. The Jacobson radical $\mathcal{J}(A)$ is the intersection of all maximal ideals of A.

Proposition 5.5. $x \in \mathcal{J}(A)$ if and only if $1 - xy \in A^*$ for all $y \in A$.

Proof.

- \implies Let $x \in \mathcal{J}(A)$. Suppose there exists $y \in A$ such that 1-xy is not a unit. By Corollary 4.10 every non-unit is contained in a maximal ideal. Say $M \subset A$ is a maximal ideal and $1-xy \in M$. But $x \in \mathcal{J}(A) \subset M$. Then $1 = (1-xy) + xy \in M$, but then $M \neq A$. A contradiction.
- \Leftarrow Given $x \in A$ such that $1 xy \in A^*$ for all $y \in A$, we must have $x \in \mathcal{J}(A)$. If $x \notin \mathcal{J}(A)$, then there exists a maximal ideal $M \subset A$ such that $x \notin M$. Then $M + \langle x \rangle = A \ni 1$. Thus 1 = m + xy, where $y \in A$. But by assumption $1 xy \in A^*$, so $m \in A^*$. But then M = A. A contradiction.

Definition 5.6. Let I be an ideal of A. The **radical** of I is the set

$$\operatorname{rad} I = \{ x \in A \mid \exists n \ge 1, \ x^n \in I \}.$$

Proposition 5.7. The radical of I is the intersection of all prime ideals of A that contain I.

Proof. Apply Proposition 5.3 to A/I.

Lecture 5 Tuesday 15/10/19

Definition 5.8. Let I be an indexing set. For each $i \in I$ we are given a ring R_i . Consider the product set $\prod_{i \in I} R_i$. This is $(x_i)_{i \in I}$ for $x_i \in R_i$. Define

$$0 = (0)_{i \in I} \in \prod_{i \in I} R_i, \qquad 1 = (1)_{i \in I} \in \prod_{i \in I} R_i.$$

Define addition and multiplication coordinate-wise, so

$$(a_i)_{i \in I} + (b_i)_{i \in I} = (a_i + b_i)_{i \in I}, \qquad (a_i)_{i \in I} \cdot (b_i)_{i \in I} = (a_i \cdot b_i)_{i \in I}, \qquad (a_i)_{i \in I}, (b_i)_{i \in I} \in \prod_{i \in I} R_i.$$

Then $\prod_{i \in I} R_i$ is a ring, the **product of rings**.

A warning is if I has at least two elements, then $\prod_{i \in I} R_i$ has zero-divisors.

Example. $R_1 \times R_2$ has $(1,0) \cdot (0,1) = (0,0) = 0$.

If $h_i: R \to R_i$ is a ring homomorphism for $i \in I$, then $(h_i)_{i \in I}$ is a ring homomorphism $R \to \prod_{i \in I} R_i$.

Remark 5.9. Let \mathfrak{p}_i for $i \in I$ be all prime ideals of R. Let $h_i : R \to R/\mathfrak{p}_i$. Then

$$h = (h_i)_{i \in I} : R \to \prod_{i \in I} R/\mathfrak{p}_i$$

is a homomorphism, and

$$\operatorname{Ker} h = \bigcap_{i \in I} \operatorname{Ker} h_i = \bigcap_{i \in I} \mathfrak{p}_i = \mathcal{N}(R).$$

So there is an injective map

$$R/\mathcal{N}\left(R\right)\hookrightarrow\prod_{i\in I}R/\mathfrak{p}_{i},$$

a product of integral domains. Now take $f_j: R \to R/M_j$, so if we take the indexing set J to be the set of all maximal ideals of R, then we obtain an injective map

$$R/\mathcal{J}(R) \hookrightarrow \prod_{j \in J} R/M_j,$$

a product of fields.

6 Localisation of rings

Example. Fix a prime p. Then

$$\mathbb{Z} \subset \left\{ \frac{m}{p^k} \mid m \in \mathbb{Z}, \ k \in \mathbb{Z}_{\geq 0} \right\} \subset \mathbb{Q}.$$

Definition 6.1. A subset S of a ring A is called a **multiplicative set** if $1 \in S$ and $0 \notin S$, and S is closed under multiplication.

Example 6.2.

- Let $a \in A$ be a non-nilpotent. Then $\{1, a, \dots\}$ is a multiplicative set.
- Let $\mathfrak{p} \subsetneq A$ be a prime ideal. Then $A \setminus \mathfrak{p}$ is a multiplicative set. Indeed, if $x \notin \mathfrak{p}$ and $y \notin \mathfrak{p}$ then $xy \notin \mathfrak{p}$ by the definition of a prime ideal.
- If we have a family \mathfrak{p}_i for $i \in I$ of prime ideals, then $A \setminus \bigcup_{i \in I} \mathfrak{p}_i$ is a multiplicative set.
- A^* is a multiplicative set.
- All non-zero-divisors in A form a multiplicative set.
- Let $I \subseteq A$ be an ideal. Then $1 + I = \{1 + x \mid x \in I\}$ is a multiplicative set.

Definition 6.3. Consider $A \times S$ and the equivalence relation on $A \times S$ defined as

$$(a,s) \sim (b,t)$$
 \iff $\exists u \in S, \ u (at - bs) = 0.$

Check that this is indeed an equivalence relation. ¹ The following is some notation.

- The equivalence class of (a, s) is written as a/s. For example, if $t \in S$, then a/s = at/st.
- The set of equivalence classes is denoted by $S^{-1}A$.

Define

$$\frac{a}{s} + \frac{b}{t} = \frac{at + bs}{st}, \qquad \frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st}, \qquad a, b \in A, \qquad s, t \in S.$$

Need to check that these operations are well-defined. ² Define $\frac{0}{1}$ as the zero of $S^{-1}A$, and $\frac{1}{1}$ as the one of $S^{-1}A$. Then $S^{-1}A$ is a ring, the **localisation of** A **with respect to** S.

Lemma 6.4. There is a ring homomorphism

$$\begin{array}{cccc} f & : & A & \longrightarrow & S^{-1}A \\ & & x & \longmapsto & \frac{x}{1} \end{array}.$$

This f is injective if and only if S has no zero-divisors.

Proof. If S contains a zero-divisor, say u, then there exists $a \in A$ for $a \neq 0$ such that ua = 0. Then

$$f(a) = \frac{a}{1} = \frac{au}{u} = \frac{0}{u} = 0.$$

So Ker f contains a, hence f is not injective. If f has no zero-divisors, then $ua = u(a - 0) \neq 0$ if $a \neq 0$ and any $u \in S$. Hence $f(a) \neq 0$.

If A is an integral domain, then Ker f = 0. So $A \hookrightarrow S^{-1}A$.

Lecture 6 Thursday 16/10/19

¹Exercise

 $^{^2}$ Exercise

Example. Let $R = \mathbb{Z}$.

• If $S = \{1, a, \dots\}$, then

$$S^{-1}\mathbb{Z} = \left\{ \frac{n}{a^m} \mid n \in \mathbb{Z}, \ m \in \mathbb{Z}_{\geq 0} \right\}.$$

• If $S = \mathbb{Z} \setminus p\mathbb{Z}$, then

$$S^{-1}\mathbb{Z} = \left\{ \frac{n}{m} \mid p \nmid m \right\}.$$

• If $S = \mathbb{Z} \setminus \bigcup_{p_i \text{ prime}} p_i \mathbb{Z}$, then

$$S^{-1}\mathbb{Z} = \left\{ \frac{n}{m} \mid p_i \nmid m \right\}.$$

- If $S = \mathbb{Z}^* = \{\pm 1\}$, then $S^{-1}\mathbb{Z} = \mathbb{Z}$.
- If $S = \{\text{all non-zero elements}\}$, then $S^{-1}\mathbb{Z} = \mathbb{Q}$.
- If $S = \{1 + I \mid I \subset \mathbb{Z} \text{ ideal}\} = \{1 + nk \mid k \in \mathbb{Z}\}$, then

$$S^{-1}\mathbb{Z} = \left\{ \frac{m}{1+nk} \mid m, k \in \mathbb{Z} \right\},$$

where n is fixed.

Example. Let R = k[x], where k is a field.

- If $S = k[x]^* = k^*$, then $S^{-1}k[x] = k[x]$.
- If $S = \{\text{all non-zero elements}\}$, then

$$S^{-1}k\left[x\right] = k\left(x\right) = \left\{\frac{f\left(x\right)}{g\left(x\right)} \;\middle|\; g\left(x\right) \text{ arbitrary non-zero polynomial}\right\}.$$

Example 6.5. Let k be a field, and let $A = k[x,y]/\langle xy \rangle$. Note that A has zero-divisors, since xy = 0 in A, but $x \neq 0$ in A and $y \neq 0$ in A. Then $S = \{1, x, ...\}$ is a multiplicative set, since $x^n \neq 0$ in A for n = 1, 2, ..., because no power of the polynomial x is in $\langle xy \rangle$. What is $S^{-1}A$? Let $f: A \to S^{-1}A$. Then $a \in \text{Ker } f$ if and only if a/1 = 0/1, if and only if $u \cdot (a \cdot 1 - 0 \cdot 1) = 0$ for some $u \in S$, if and only if ua = 0. Let $a \neq 0$. Then u = 1 is not interesting. Take u = x and a = y, then xy = 0, hence $y \in \text{Ker } f$. Then f is a homomorphism, hence Ker f is an ideal. So $\langle y \rangle = yA \subset \text{Ker } f$. In general,

$$a = \sum_{i,j \ge 0} a_{ij} x^i y^j \equiv a_{00} + \sum_{i \ge 1} a_{i0} x^i + \sum_{j \ge 1} a_{0j} y^j \mod \langle xy \rangle.$$

Then Ker $f = yA = \langle y \rangle$, since $\sum_{j \geq 1} a_{0j} y^j$ goes to zero, since it is annihilated by x, and $x^n \sum_{i \geq 0} a_i x^i$ is never zero in A. Thus f(A) = k[x], and

$$S^{-1}A = \left\{ \frac{f\left(x\right)}{x^{n}} \mid f\left(x\right) \in k\left[x\right], \ n \ge 0 \right\} = k\left[x, x^{-1}\right] = \left\{ \sum_{i \in \mathbb{Z}, \ a_{i} = 0 \text{ for almost all } i} a_{i}x^{i} \mid a_{i} \in k \right\}.$$

Lemma 6.6 (Universal property of localisation). Let A be a ring, and $S \subset A$ a multiplicative set. Let $g: A \to B$ be a ring homomorphism such that g(s) is a unit in B for all $s \in S$. Then there exists a unique ring homomorphism $h: S^{-1}A \to B$ such that $g = h \circ f$ where $f: A \to S^{-1}A$ is the canonical map, so

Lecture 7 Thursday 17/10/19

$$A \\ f \downarrow \qquad g \\ S^{-1}A \xrightarrow{\exists !h} B$$

Proof. Define

This is well-defined, that is if a/s = b/t then $g(a)g(s)^{-1} = g(b)g(t)^{-1}$. This is a ring homomorphism. ⁴ Now easy to check that

$$(h \circ f)(a) = h\left(\frac{a}{1}\right) = \frac{g(a)}{g(1)} = \frac{g(a)}{1} = g(a), \quad a \in A.$$

Moreover, if $h': S^{-1}A \to B$ and $g = h' \circ f$ then for all $a \in A$ we have $(h' \circ f)(a) = g(a)$. Since h' is a ring homomorphism, for all $s \in S$, h'(1/s) = 1/h'(s/1) = 1/g(s). Hence

$$h'\left(\frac{a}{s}\right) = h'\left(\frac{a}{1}\right)h'\left(\frac{1}{s}\right) = \frac{h'\left(f\left(a\right)\right)}{h'\left(f\left(s\right)\right)} = \frac{g\left(a\right)}{g\left(s\right)} = h\left(\frac{a}{s}\right).$$

For all ideal $I \subseteq A$, set

$$S^{-1}I = \left\{ \frac{i}{s} \in S^{-1}A \mid i \in I, \ s \in S \right\},\,$$

the ideal of $S^{-1}A$ generated by f(I).

Proposition 6.7. Let $S \subset A$ be a multiplicative subset, and let I_1, \ldots, I_n be ideals of A. Then

1.
$$S^{-1}(I_1 + \dots + I_n) = S^{-1}I_1 + \dots + S^{-1}I_n$$
,

2.
$$S^{-1}(I_1 \cdot \dots \cdot I_n) = S^{-1}I_1 \cdot \dots \cdot S^{-1}I_n$$

3.
$$S^{-1}(\bigcap_{i=1}^{n} I_i) = \bigcap_{i=1}^{n} S^{-1}I_i$$
, and

4.
$$S^{-1}(\operatorname{rad} I) = \operatorname{rad} S^{-1}I$$
 for every ideal I .

Proof. Exercise. 5

There is a map

$$\{\text{ideals } I \text{ of } A\} \to \{\text{ideals } S^{-1}I \text{ of } S^{-1}A\}.$$

Proposition 6.8. Every ideal of $S^{-1}A$ is of the form $S^{-1}I$ for some ideal $I \subseteq A$.

Proof. Let J be any ideal of $S^{-1}A$. Define $I = f^{-1}A$. Know I is an ideal of A. Claim that $J = S^{-1}I$. Say $a/s \in J$. Since J is an ideal, $s(a/s) \in J$, so $a/1 \in J$, so $a \in I$. Hence $a/s \in S^{-1}I$. So $J \subseteq S^{-1}I$. Conversely, $f(I) = f(f^{-1}(J)) \subseteq J$. Thus $S^{-1}I \subseteq J$.

Theorem 6.9. The only prime ideals of $S^{-1}A$ are of the form $S^{-1}\mathfrak{p}$ where \mathfrak{p} is a prime ideal of A such that $\mathfrak{p} \cap S = \emptyset$. Hence there is a bijection

$$\left\{ \ \ prime \ ideals \ of \ S^{-1}A \ \right\} \qquad \Longleftrightarrow \qquad \left\{ \ \ prime \ ideals \ of \ A \ that \ do \ not \ intersect \ S \ \right\}.$$

Proof. Prove $S^{-1}\mathfrak{p}$ is prime if \mathfrak{p} is prime and $\mathfrak{p} \cap S = \emptyset$. Say $a/s \cdot b/t \in S^{-1}\mathfrak{p}$ for $a/s, b/t \in S^{-1}A$. This implies v(abu-cst)=0 for some $u,v\in S$ and $c\in \mathfrak{p}$. Hence $abuv=cstv\in \mathfrak{p}$, so $ab\in \mathfrak{p}$, as u and v are units, so $a\in \mathfrak{p}$ or $b\in \mathfrak{p}$. Hence $S^{-1}\mathfrak{p}$ is prime. Next note that $f^{-1}\left(S^{-1}\mathfrak{p}\right)=\mathfrak{p}$, assuming $\mathfrak{p} \cap S=\emptyset$. For if $a\in A$ lies in $S^{-1}\mathfrak{p}$ then by definition there exists $s\in S$ such that $sa\in \mathfrak{p}$. Then s is a unit and so $a\in \mathfrak{p}$. Hence \mathfrak{p} is uniquely determined by $S^{-1}\mathfrak{p}$. Now let \mathfrak{q} be an arbitrary prime ideal of $S^{-1}A$. Then certainly $\mathfrak{q}=S^{-1}I$ for $I=f^{-1}(\mathfrak{q})$. But the preimage of a prime ideal is prime. So I is prime. Moreover, $I\cap S=\emptyset$ as no $s\in S$ is in \mathfrak{q} , since \mathfrak{q} is prime, so \mathfrak{q} contains no units.

 $^{^3}$ Exercise

⁴Exercise

⁵Exercise

7 Spec R as a topological space

A set X with a collection \mathcal{U} of subsets $U \subset X$ is called a **topological space** if the following properties hold.

Lecture 8 Tuesday 22/10/19

- 1. \mathcal{U} contains \emptyset and X.
- 2. If U and U' are in \mathcal{U} , then $U \cap U'$ is in \mathcal{U} .
- 3. If U_i are in \mathcal{U} , where i is an element of an indexing set S, then $\bigcup_{i \in S} U_i$ is in \mathcal{U} .

Then the elements of \mathcal{U} are called **open subsets** of X. The following is an equivalent definition. A set X with a family \mathcal{V} of subsets $V \subset X$ is called a **topological space** if the following properties hold.

- 1. \mathcal{V} contains \emptyset and X.
- 2. If V and V' are in V, then $V \cup V'$ is in V.
- 3. If V_i are in \mathcal{V} , where i is an element of an indexing set S, then $\bigcap_{i \in S} V_i$ is in \mathcal{V} .

Then the elements of \mathcal{U} are called **closed subsets** of X. For the equivalence, if U is in \mathcal{U} , then define the closed subsets as $X \setminus U$ for U in \mathcal{U} , and vice versa. Let R be a ring with unity. Let $I \subset R$ be an ideal. Let V_I be the set of all prime ideals in R that contain I. Define $U_I = \operatorname{Spec} R \setminus V_I$.

Proposition 7.1. The collection of subsets $V_I \subset \operatorname{Spec} R$, for all ideals $I \subset R$, satisfies 1, 2, 3 of closed subsets, hence defines a topology on $\operatorname{Spec} R$.

Proof.

- 1. If I = 0 is the zero ideal, then $V_0 = \operatorname{Spec} R$, all prime ideals of R. If I = R, then no prime ideals of R contain R, so $V_R = \emptyset$, so 1 holds.
- 2. It is enough to check that $V_I \cup V_J = V_{IJ} = V_{I\cap J}$. Note that $IJ \subset I \cap J$. An element of V_I is a prime ideal $\mathfrak{p} \supset I$, so $\mathfrak{p} \supset IJ$. Conversely, let \mathfrak{p} be a prime ideal such that $IJ \subset \mathfrak{p}$. Claim that $I \subset \mathfrak{p}$ or $J \subset \mathfrak{p}$. Suppose not. Then there exists $x \in I$ such that $x \notin \mathfrak{p}$ and there exists $y \in J$ such that $y \notin \mathfrak{p}$. Then $xy \in IJ \subset \mathfrak{p}$. This contradicts the definition of prime ideals. So the claim is proved. Thus 2 holds.
- 3. J_i for $i \in S$ is a collection of ideals. Claim that $\bigcap_{i \in S} \mathbf{V}_{J_i} = \mathbf{V}_J$, where $J = \sum_{i \in S} J_i$ is the smallest ideal of R containing all J_i for $i \in S$. The elements of J are finite sums, where each summand is in some J_i . If $\mathfrak{p} \supset J_i$ for $i \in S$, then $\mathfrak{p} \supset J$. Conversely, if $\mathfrak{p} \supset J_i$, then $\mathfrak{p} \supset J_i$ for all $i \in S$.

Recall that if $f: A \to B$ is a homomorphism of rings, then $f^*: \operatorname{Spec} B \to \operatorname{Spec} A$ sends any prime ideal $\mathfrak{p} \subset B$ to the inverse image $f^{-1}(\mathfrak{p})$, which is a prime ideal in A. This breaks down for maximal ideals.

Example. Take $f: \mathbb{Z} \to \mathbb{Q}$, then $f^{-1}(0) = 0$, which is not maximal in \mathbb{Z} .

A map of topological spaces is **continuous** if the inverse image of any open set is open. Equivalently, the inverse images of closed sets are closed.

Proposition 7.2. f^* is a continuous map.

Proof. Let I be an ideal in A. We need to show that $(f^*)^{-1}(V_I) = V_J$ for some ideal J in B. Let J be the smallest ideal in B containing f(I).

- \subset Fix \mathfrak{p} in V_I , a prime ideal in A such that $\mathfrak{p} \supset I$. The elements of the left hand side that are mapped to \mathfrak{p} by f^* are the prime ideals $\mathfrak{q} \subset B$ such that $\mathfrak{p} = f^{-1}(\mathfrak{q})$. We have $I \subset \mathfrak{p}$, so $f(I) \subset f(\mathfrak{p}) \subset \mathfrak{q}$, so $J \subset \mathfrak{q}$, by definition of J.
- \supset Take any prime ideal $\mathfrak{q} \subset B$ such that $J \subset \mathfrak{q}$. We have $I \subset f^{-1}(f(I)) \subset f^{-1}(J) \subset f^{-1}(\mathfrak{q})$, so $f^{-1}(\mathfrak{q})$ is a prime ideal in A containing I. This ideal is exactly $f^*(\mathfrak{q})$, so $f^*(\mathfrak{q})$ is in V_I . Since $\mathfrak{q} \in (f^*)^{-1}(f^*(\mathfrak{q})) \subset (f^*)^{-1}(V_I)$, so we are done.

The following are particular cases.

• Assume f is surjective. Then $B \cong A/\operatorname{Ker} f$. Then

Lecture 9 Wednesday 23/10/19

So in this case f^* is injective and its image is $V_{\text{Ker }f}$.

• Let S be a multiplicative set in A. Let $f: A \to S^{-1}A$ be the associated canonical map. By Theorem 6.9 the prime ideals of $S^{-1}A$ are $S^{-1}\mathfrak{p}$, where \mathfrak{p} is a prime ideal in A such that $\mathfrak{p} \cap S = \emptyset$. Thus $f^*: \operatorname{Spec} S^{-1}A \to \operatorname{Spec} A$ is injective and its image consists of $\mathfrak{p} \subset A$ such that $\mathfrak{p} \cap S = \emptyset$.

Example.

- Let k be a field. Then Spec k is one point.
- Let R = k[x], an integral domain. This is a PID, so every ideal is $\langle p(x) \rangle$, where $p(x) \in k[x]$ is monic. Then $\langle p(x) \rangle$ is prime if and only if p(x) is irreducible, so

Spec
$$k[x] = \{\langle 0 \rangle\} \cup \{\langle p(x) \rangle \mid p(x) \text{ is monic and irreducible}\}.$$

In particular, if k is algebraically closed, such as $k = \mathbb{C}$, then

$$\operatorname{Spec} k [x] = \{ \langle 0 \rangle \} \cup \{ \langle x - a \rangle \mid a \in k \}.$$

• Let $R = \mathbb{Z}$, a PID. Then

$$\operatorname{Spec} \mathbb{Z} = \{ \langle 0 \rangle \} \cup \{ \langle p \rangle \mid p \text{ is a prime number} \}.$$

- Let $R = \mathbb{Z}[i]$ be the Gaussian integers, a PID. The tautological map $f : \mathbb{Z} \to \mathbb{Z}[i]$ gives rise to $f^* : \operatorname{Spec} \mathbb{Z}[i] \to \operatorname{Spec} \mathbb{Z}$. Take a usual prime p and decompose p into a product of primes in $\mathbb{Z}[i]$.
 - $-2 = (1+i)(1-i) = -i(1+i)^2$, where 1+i is a prime in $\mathbb{Z}[i]$.
 - If $p \equiv 1 \mod 4$, then p = (a + bi)(a bi). In this case a + bi and a bi are not associated primes.
 - If $p \equiv 3 \mod 4$, then p stays prime in $\mathbb{Z}[i]$.

Then

$$\begin{array}{ccccc} \operatorname{Spec} \mathbb{Z}\left[i\right] & \longrightarrow & \operatorname{Spec} \mathbb{Z} \\ \langle 0 \rangle & \longmapsto & \langle 0 \rangle \\ \langle 1+i \rangle & \longmapsto & \langle 2 \rangle & \operatorname{ramified} \\ \langle 3 \rangle & \longmapsto & \langle 3 \rangle & \operatorname{inert} \\ \langle 1+2i \rangle, \langle 1-2i \rangle & \longmapsto & \langle 5 \rangle & \operatorname{split} \end{array}$$

- Let R be an integral domain and let k be the fraction field of R, so $f: R \hookrightarrow k$. Then Spec $k = \{\langle 0 \rangle\}$ and $f^*: \operatorname{Spec} k \to \operatorname{Spec} R$.
- Let k be a field, so $f: k \hookrightarrow k[x]$. Then $f^*: \operatorname{Spec} k[x] \to \operatorname{Spec} k$. If $\mathfrak{p} \subset k[x]$, then $\mathfrak{p} \cap k = \{\langle 0 \rangle\}$, otherwise if \mathfrak{p} contains a unit of k[x] then $\mathfrak{p} = k[x]$. A contradiction.

Usually, every point of a topological space is a closed subset. But this is not always true. Recall that if Y is a subset of a topological space X, then the **closure** of Y is the smallest closed subset of X containing Y. It is the same as the intersection of all closed subsets containing Y. Claim that if $\mathfrak{p} \subseteq R$ is a prime ideal, then the closure of \mathfrak{p} is $V_{\mathfrak{p}}$. Any closed subset of Spec R containing \mathfrak{p} is V_J , where $J \subset \mathfrak{p}$. This V_J visibly contains $V_{\mathfrak{p}}$. Hence $V_{\mathfrak{p}}$ is the intersection of all such V_J .

Example. In Spec \mathbb{Z} , the point $\langle p \rangle$ is closed, because $V_{\langle p \rangle} = \{\langle p \rangle\}$. The point $\langle 0 \rangle$ is not closed, as $V_{\langle 0 \rangle} = \operatorname{Spec} \mathbb{Z}$. The closure of $\langle 0 \rangle$ is all of Spec \mathbb{Z} .

Example. Let $R = k[[t]] = \{a_0 + a_1t + \dots \mid a_i \in k\}$, a local ring. Its unique maximal ideal is $\langle t \rangle$. This is also a unique non-zero prime ideal. ⁶ All ideals are $\langle 0 \rangle$ and $\langle t^n \rangle$. Then Spec $k[[t]] = \{\langle 0 \rangle, \langle t \rangle\}$. Similarly, $\langle 0 \rangle$ is not a closed point, since its closure is Spec k[[t]], and $\langle t \rangle$ is a closed point.

 $^{^6{\}rm Exercise}$

8 Determinants

Let R be a commutative ring with unity. Let A be a matrix $A = (a_{ij})_{i,j=1}^n$ for $a_{ij} \in R$. Then

Lecture 10 Thursday 24/10/19

$$\det A = \sum_{\pi \in \mathcal{S}_n} \operatorname{sgn} \pi \cdot a_{1\pi(1)} \cdot \dots \cdot a_{n\pi(n)} \in R,$$

where sgn : $S_n \to \{\pm 1\}$. Let

 $M_{ij} = \det(A \text{ without } j\text{-th column and } i\text{-th row}) \in R.$

Then

$$(-1)^{j+1} a_{i1} \mathbf{M}_{j1} + \dots + (-1)^{j+n} a_{in} \mathbf{M}_{jn} = \begin{cases} \det A & i = j \\ 0 & i \neq j \end{cases}.$$

Define the **adjoint matrix** of A as the $n \times n$ matrix A^{\vee} with entries $(A^{\vee})_{ij} = (-1)^{i+j} M_{ji}$, so

$$A^{\vee} = \left(\left(-1 \right)^{i+j} \mathcal{M}_{ij} \right)^{\mathsf{T}}.$$

Then $A \cdot A^{\vee} = A^{\vee} \cdot A = \det A \cdot I_n$, where I_n is the identity matrix.

9 Modules

Definition 9.1. Let A be a commutative ring with unity. An A-module M is an abelian group with an additional structure $A \times M \to M$ such that

$$\lambda\left(x+y\right)=\lambda x+\lambda y, \qquad \left(\mu+\lambda\right)x=\mu x+\lambda x, \qquad \mu\left(\lambda x\right)=\left(\mu\lambda\right)x, \qquad 1x=x, \qquad \lambda,\mu\in R, \qquad x,y\in M.$$

Example 9.2.

- If R is a field, then an R-module is the same as a vector space.
- If $R = \mathbb{Z}$, then an R-module is the same as an abelian group. Remark that if G is an abelian group then $n \cdot g = g + \cdots + g$.
- \bullet If R is any ring, then subgroups of R that are R-modules are the same as ideals.
- If k is a field, then k[x]-modules are vector spaces V over k equipped with a linear transformation $L:V\to V$. Here x acts on V as L.

Definition 9.3. If M and N are R-modules, then a **homomorphism of** R-modules $f: M \to N$ is a homomorphism of abelian groups such that f(rx) = rf(x) for all $x \in M$ and $r \in R$.

Definition 9.4. Let $\operatorname{Hom}_R(M,N)$ be the set of R-module homomorphisms $M \to N$.

This is an abelian group. Moreover, it is an R-module. If $r \in R$ and $f \in \operatorname{Hom}_R(M, N)$ then $r \cdot f$ sends $x \in M$ to $rf(x) \in N$. Warning that if R is not commutative $\operatorname{Hom}_R(M, N)$ is just an abelian group.

Definition 9.5. Let M and N be submodules of an R-module. Define

$$(N:M) = \{r \in R \mid rM \subset N\}.$$

This is an ideal in R.

Example. The annihilator of M is

$$(0:M) = \{r \in R \mid rM = 0\} = \operatorname{Ann} M.$$

Definition 9.6. An *R*-module *M* is **finitely generated** if there are elements $x_1, \ldots, x_n \in M$ such that for any $m \in M$ there are $r_1, \ldots, r_n \in R$ such that $m = r_1x_1 + \cdots + r_nx_n$.

Example. There is a **free** finitely generated module

$$R^{\oplus n} = \{(t_1, \dots, t_n) \mid t_i \in R\},\,$$

with coordinate-wise addition and multiplication.

Remark. Any finitely generated R-module is a quotient of a free finitely generated R-module. Indeed, define

$$f_i: R^{\oplus n} \longrightarrow M$$

 $(t_1, \dots, t_n) \longmapsto t_1 x_1 + \dots + t_n x_n$

Comment that JM is the smallest submodule of M containing all elements rm for $r \in J$ and $m \in M$, so

$$JM = \{ \text{finite sums } r_1 m_1 + \dots + r_k m_k \} \subset M.$$

Lemma 9.7. Let A be a ring. Let M be a finitely generated A-module. Let $J \subset A$ be an ideal such that JM = M. Then there is an $a \in J$ such that (1 - a)M = 0.

Proof. If M=0, then it is fine. Suppose $M\neq 0$ and m_1,\ldots,m_n are generators of M. Then $m_i\in M=JM$, so

$$m_1 = x_{11}m_1 + \dots + x_{1n}m_n, \qquad \dots, \qquad m_n = x_{n1}m_1 + \dots + x_{nn}m_n,$$

for $x_{ij} \in J$. Define $X = (x_{ij})_{i,j=1}^n$. Then

$$\begin{pmatrix} m_1 \\ \vdots \\ m_n \end{pmatrix} = X \begin{pmatrix} m_1 \\ \vdots \\ m_n \end{pmatrix} \qquad \Longleftrightarrow \qquad (\mathbf{I}_n - X) \begin{pmatrix} m_1 \\ \vdots \\ m_n \end{pmatrix} = 0.$$

Consider the adjoint matrix $(I_n - X)^{\vee}$. Then

$$(\mathbf{I}_n - X)^{\vee} (\mathbf{I}_n - X) \begin{pmatrix} m_1 \\ \vdots \\ m_n \end{pmatrix} = 0 \qquad \iff \qquad \det(\mathbf{I}_n - X) \begin{pmatrix} m_1 \\ \vdots \\ m_n \end{pmatrix} = 0.$$

We have $\det(I_n - X) \in A$. Then $\det(I_n - X)$ is a product of diagonal entries $\prod_{i=1}^n (1 - x_{ii})$, plus other terms but every non-diagonal term contains at least one factor in J, so is in J. Finally, $\det(I_n - X) = 1 - a$, where $a \in J$. Now, $(1 - a) m_i = 0$ for $i = 1, \ldots, n$. Hence (1 - a) M = 0.

Lecture 11 Tuesday 29/10/19

Remark. If M is not finitely generated then this is false, such as $A = \mathbb{Z}$ and $M = \mathbb{Q}$. If p is a prime, then $p\mathbb{Q} = \mathbb{Q}$. So for $J = \langle p \rangle$ we have JM = M. But no non-zero integer annihilates \mathbb{Q} , since \mathbb{Q} is not a finitely generated \mathbb{Z} -module.

Corollary 9.8. Let R be a ring and let M be a finitely generated R-module. If $f: M \to M$ is a surjective R-module endomorphism, then f is an isomorphism.

Proof. Define A = R[t]. Let us equip M with the structure of an A-module. Define $t \cdot m = f(m)$ for $m \in M$. This makes sense because f(rx) = rf(x) for all $r \in R$. Then M is finitely generated also as an A-module. If f(M) = M, then tM = M. Take $J = \langle t \rangle \subset A$. By Lemma 9.7 there exists $a \in \langle t \rangle$ such that (1 - a)M = 0. Take $v \in M$ such that f(v) = 0. Then tv = 0, so av = 0. Since (1 - a)v = 0, we conclude v = 0.

Theorem 9.9 (Nakayama's lemma). Let A be a ring and let $J \subset A$ be an ideal contained in the Jacobson radical $\mathcal{J}(A)$. If M is a finitely generated A-module such that JM = M, then M = 0.

Proof. Lemma 9.7 implies that there exists $a \in J$ such that (1-a)M = 0. But $a \in \mathcal{J}(A)$, so 1-a is a unit in A. Then there exists $u \in A$ such that u(1-a) = 1. Hence M = u(1-a)M = 0.

Corollary 9.10. Let A be a ring and J an ideal contained in the Jacobson radical of A. Suppose M is an A-module, and $N \subset M$ is a submodule such that M/N is a finitely generated A-module. Then M = N + JM implies M = N.

Proof. Apply Nakayama's lemma to M/N. Indeed, we have M/N = J(M/N), so M/N = 0.

Recall a ring is local when it has a unique maximal ideal. The quotient is called the residue field.

Example. For k a field, $k[[t]] \supset \langle t \rangle$ and $k[[t_1, \ldots, t_n]] \supset \langle t_1, \ldots, t_n \rangle$ are local rings. ⁷

Theorem 9.11. Let R be a local ring with maximal ideal J and residue field k = R/J. Let M be a finitely generated R-module.

- 1. M/JM is a finite-dimensional vector space over k.
- 2. Let v_1, \ldots, v_n be a basis of M/JM as a vector space over k. Choose $\widetilde{v_1}, \ldots, \widetilde{v_n} \in M$ to be representatives of v_1, \ldots, v_n respectively. That is, $v_i = \widetilde{v_i} + JM$. Then $\widetilde{v_1}, \ldots, \widetilde{v_n}$ generate M as an R-module. Moreover, this is a minimal set of generators of M. That is, no proper subset generates M.
- 3. All minimal sets of generators of M are obtained in this way. In particular, all such sets have n elements, where $n = \dim_k M/JM$.

Proof. J is the Jacobson radical of A.

- 1. Any quotient of a finitely generated R-module is a finitely generated R-module. Hence M/JM is a finitely generated R-module. But if $x \in J$ then $x \cdot M/JM = 0$. So R acts on M/JM via the quotient k = R/J. One says that the action of R descends to an action of R. Thus M/JM is a R-module, which is finitely generated. In other words, M/JM is a finite-dimensional R-vector space.
- 2. Consider

$$N = R\widetilde{v_1} + \dots R\widetilde{v_n} = \{r_1\widetilde{v_1} + \dots + r_n\widetilde{v_n} \mid r_i \in R\} \subset M.$$

Then M/JM is generated by v_1, \ldots, v_n , hence M = N + JM, since M/JM = N/JN. By Corollary 9.10 we have M = N. If a proper subset of $\widetilde{v_1}, \ldots, \widetilde{v_n}$ generates M, then a proper subset of v_1, \ldots, v_n generates an n-dimensional vector space. A contradiction.

Lecture 12 Wednesday 30/10/19

3. Suppose m_1, \ldots, m_n is any minimal generating set of the R-module M. Consider $\overline{m_1}, \ldots, \overline{m_n} \in M/JM$. Then $\overline{m_1}, \ldots, \overline{m_n}$ span the vector space M/JM. If this is not a basis, then M/JM is spanned by a proper subset of $\overline{m_1}, \ldots, \overline{m_n}$. In particular, a basis is a proper subset. By part 2 a proper subset of m_1, \ldots, m_n generates M. This contradicts the minimality of m_1, \ldots, m_n .

The moral of the story is any finitely generated module M over a local ring R has a minimal set of generators, where m_1, \ldots, m_n is a minimal set of generators of M if and only if $\overline{m_1}, \ldots, \overline{m_n}$ is a basis of the k-vector space M/JM, and n is well-defined.

10 Localisation of modules

Let A be a ring with a multiplicative set $S \subset A$.

Definition 10.1. Let M be an A-module. Consider the set $M \times S$. Equip it with a relation \sim such that

$$(m,s) \sim (n,t) \iff \exists u \in S, \ u (mt - ns) = 0.$$

This is an equivalence relation.

- Define $S^{-1}M$ as the set of equivalence classes.
- The equivalence class of (m, s) is written as m/s.

Turn $S^{-1}M$ into a $S^{-1}A$ -module as follows. Let $\frac{0}{1}, \frac{1}{1} \in S^{-1}M$, and

$$\frac{m}{s} + \frac{b}{t} = \frac{mt + bs}{st}, \qquad \frac{a}{s} \cdot \frac{m}{t} = \frac{am}{st}, \qquad a \in A, \qquad m \in M, \qquad s \in S, \qquad t \in S.$$

This is the localisation of M with respect to S.

 $^{^7 {\}it Exercise}$

Now let us consider a particular kind of multiplicative set.

Definition 10.2. Let $\mathfrak{p} \subset A$ be a prime ideal. Let $S = A \setminus \mathfrak{p}$. This is a multiplicative set. Then the localisation $S^{-1}A$ of A at \mathfrak{p} is written as $A_{\mathfrak{p}}$.

Theorem 10.3. Let $\mathfrak{p} \subset A$ be a prime ideal. Then $A_{\mathfrak{p}}$ is a local ring with unique maximal ideal

$$\mathfrak{p}A_{\mathfrak{p}} = \left\{ \frac{x}{y} \mid x \in \mathfrak{p}, \ y \notin \mathfrak{p} \right\}.$$

Remark. In general, a ring R with an ideal J is a local ring with maximal ideal J if and only if $R^* = R \setminus J$. Indeed, if $J \subset R$ is a maximal ideal, then for any $x \in R \setminus J$, J + xR contains one. This forces x to be a unit. Conversely, if $R^* = R \setminus J$ then J is maximal and is a unique maximal ideal.

Proof. Suppose $a/s \in A_{\mathfrak{p}}^*$. Then $a/s \cdot b/t = 1/1$ for some $b \in A$ and $t \in A \setminus \mathfrak{p}$. By definition u(ab - st) = 0 for $u \in A \setminus \mathfrak{p}$, so $uab = ust \notin \mathfrak{p}$, since all factors are in $S = A \setminus \mathfrak{p}$. Therefore, $a \notin \mathfrak{p}$, hence $a/s \notin \mathfrak{p}A_{\mathfrak{p}}$. Conversely, if $a/s \notin \mathfrak{p}A_{\mathfrak{p}}$ for $s \notin \mathfrak{p}$, then $a \notin \mathfrak{p}$. Thus a/s is a unit in $A_{\mathfrak{p}}$ because $a/s \cdot s/a = 1$.

Example 10.4. Let $R = \mathbb{Z}$ and $\mathfrak{p} = \langle p \rangle$. Then

$$p\mathbb{Z}_{\langle p\rangle} = \left\{\frac{x}{y} \mid p \mid x, \ p \nmid y\right\} \subset \left\{\frac{x}{y} \mid x \in \mathbb{Z}, \ p \nmid y\right\} = \mathbb{Z}_{\langle p\rangle}$$

is the unique maximal ideal.

Proposition 10.5. Let M be an A-module. Consider $M_{\mathfrak{p}} = (A \setminus \mathfrak{p})^{-1} M$, where $\mathfrak{p} \subset A$ is a maximal ideal. Then M = 0 if and only if $M_{\mathfrak{p}} = 0$ for any maximal ideal \mathfrak{p} .

Proof.

 \implies Obvious.

 \iff Assume $M \neq 0$, so there exists $x \in M$ such that $x \neq 0$. Define

$$I = \operatorname{Ann} x = \{ a \in A \mid ax = 0 \},\$$

so $1 \notin I$ since $x \neq 0$. Choose a maximal ideal \mathfrak{p} containing I. If $M_{\mathfrak{p}} = 0$, then x/1 = 0. We know that $x \in \operatorname{Ker}(M \to M_{\mathfrak{p}})$ if and only if ux = 0 for some $u \in A \setminus \mathfrak{p}$. A contradiction, since $I \subset \mathfrak{p}$.

The following is a corollary. Let M be a finitely generated A-module. Then m_1, \ldots, m_n generate M if and only if m_1, \ldots, m_n generate the $A_{\mathfrak{p}}$ -module $M_{\mathfrak{p}}$ for any maximal ideal $\mathfrak{p} \subset A$. By Theorem 9.11 applied to $A_{\mathfrak{p}}$, this is if and only if the images $\overline{m_1}, \ldots, \overline{m_n}$ in $M/\mathfrak{p}M \cong M_{\mathfrak{p}}/\mathfrak{p}M_{\mathfrak{p}}$ generate the $k(\mathfrak{p})$ -vector space for every maximal ideal $\mathfrak{p} \subset A$, where $k(\mathfrak{p}) = A/\mathfrak{p}$.

Corollary 10.6. Assume A is an integral domain with field of fractions K. In this case A is a subring of K. For any prime ideal $\mathfrak{p} \subset A$ the local ring $A_{\mathfrak{p}}$ is also a subring of K. Then

$$A = \bigcap_{\text{all prime ideals } \mathfrak{p} \subset A} A_{\mathfrak{p}},$$

as subsets of K.

Proof. Clearly, $A \subset A_{\mathfrak{p}}$, so the left hand side is in the right hand side. Let us prove that if $x \in K$ is contained in each $A_{\mathfrak{p}}$, then $x \in A$. Consider

$$I = \{ a \in A \mid ax \in A \}.$$

Visibly, I is an ideal in A. We are given that x = m/s, where $m \in A$ and $s \in A \setminus \mathfrak{p}$. Hence $s \in I$. So I contains an element not in \mathfrak{p} for every \mathfrak{p} . Then I = A, because otherwise I is contained in some maximal ideal but maximal ideals are prime. Hence $1 \in I$, so $x \in A$.

Lecture 13 is a problem class.

Lecture 14 is a test.

Lecture 13 Thursday 31/10/19 Lecture 14 Tuesday 05/11/19

11 Chain conditions

Lemma 11.1. Let Σ be a partially ordered set. The following are equivalent.

Lecture 15 Wednesday 06/11/19

- Every maximal non-empty subset of Σ has a maximal element, so no element of the subset is bigger.
- Every ascending chain of elements of Σ is stationary, so there exists $i_0 \in I$ such that $a_{i_0} = a_i$ for all $i > i_0$.

Proof.

- \implies Take a maximal element of the chain, say a_{i_0} . Then for any $i \geq i_0$ we have $a_i = a_{i_0}$.
- \Leftarrow Suppose $S \subset \Sigma$ has no maximal element. Then choose any element in S, say a_1 . This is not maximal, so can choose $a_2 \in S$ such that $a_1 < a_2$. Keep doing this, get an infinite chain which is not stationary, because $a_i \neq a_j$ for all $i \neq j$.

Definition 11.2. Let A be a ring and let M be an A-module. Then M is called **Noetherian** if any ascending chain of submodules of M is stationary. In other words, if $M_1 \subset M_2 \subset \cdots \subset M$ are A-submodules, then there exists n such that $M_n = M_{n+1} = \cdots$. Then M is called **Artinian** if any descending chain of submodules of M is stationary. The ring A is **Noetherian**, or **Artinian**, if such is the A-module A.

Proposition 11.3. Let A be a ring and let M be an A-module. The following are equivalent.

- M is Noetherian.
- Every A-submodule of M is finitely generated.

In particular, A is a Noetherian ring if and only if every ideal in A is finitely generated.

Proof.

- \implies Suppose that $N \subset M$ is a submodule which is not finitely generated. Let $N_1 = 0$. Since N is not finitely generated we can find $0 \neq x \in N$ such that $N_2 = Ax$ is the submodule generated by x, where $N \neq N_2$. So we continue. If $0 = N_1 \subsetneq \cdots \subsetneq N_m$ are constructed, then $N_m \neq N$, so there exists $y \in N$ such that $y \notin N_m$. Define $N_{m+1} = N_m + Ay$, the smallest module containing N_m and y. Since N is not finitely generated, this chain is not stationary.
- \longleftarrow Let $M_1 \subset M_2 \subset \cdots \subset M$. Must prove that this chain is stationary. Define

$$N = \bigcup_{i \in I} M_i.$$

This is a submodule of M. We know that $N = Rx_1 + \cdots + Rx_n$ where $x_1, \ldots, x_n \in N$. Then x_k is contained in some M_{i_k} . Suppose that $i_0 = \max\{i_1, \ldots, i_n\}$. Then $x_{i_1}, \ldots, x_{i_n} \in M_{i_0}$, since $M_{i_1} \subset M_{i_0}, \ldots, M_{i_k} \subset M_{i_0}$. But now we see that $M_{i_0} \supset N$. Since $M_{i_0} \subset N$, we must have $N = M_{i_0}$. Hence $M_{i_0} = M_{i_0+1} = \ldots$

Proposition 11.4. Suppose M is an A-module. Let $N \subset M$ be a submodule. Then M is Noetherian if and only if N and M/N are Noetherian, and M is Artinian if and only if N and M/N are Artinian.

Proof. The Noetherian case.

 \implies Suppose M is Noetherian. Ascending chains of submodules of N are ascending chains of submodules of M, so must be stationary. Let $f: M \to N$ be the canonical map. If $L_1 \subset L_2 \subset \ldots$ is a chain of submodules of M/N, then $f^{-1}(L_1) \subset f^{-1}(L_2) \subset \ldots$ is a chain of submodules of M. This is stationary. Since $f(f^{-1}(L_i)) = L_i$, the original chain of L_i 's is stationary.

 \Leftarrow Now assume that N and M/N are Noetherian. We need to prove that an ascending chain $M_1 \subset M_2 \subset \ldots$ of submodules of M is stationary. Then $N \cap M_1 \subset N \cap M_2 \subset \ldots$ is a chain of submodules of N. Similarly, $M_1/N \cap M_1 \subset M_2/N \cap M_2 \subset \ldots$ Indeed, $M_1 \to M_2$ is clearly injective, and $\operatorname{Ker}(M_1 \to M_2/N \cap M_2) = N \cap M_1$. Therefore, $M_1/N \cap M_1$ injectively maps to $M_2/N \cap M_2$. Then

Lecture 16 Thursday 07/11/19

If F and G are submodules of H, then we have a natural map

$$\begin{array}{ccc} F & \longrightarrow & (F+G)/G \\ x & \longmapsto & x+G \end{array}.$$

The kernel of this map is $F \cap G$. The map $F \to (F+G)/G$ is surjective. So we have a canonical isomorphism $F/F \cap G \xrightarrow{\sim} (F+G)/G$. Apply this to $F = M_i$, G = N, and H = M. Then

There exists $a \in \mathbb{N}$ such that $M_i \cap N = M_a \cap N$ for all $i \geq a$. There exists $b \in \mathbb{N}$ such that $(M_i + N)/N = (M_b + N)/N$ for all $i \geq b$. Define $c = \max\{a, b\}$. Then

$$\begin{array}{cccc} \left(M_c + N\right)/N & \stackrel{\sim}{\longrightarrow} & \left(M_i + N\right)/N \\ & \uparrow & & \uparrow \\ y \in M_c & \longrightarrow & M_i \ni x \\ & \uparrow & & \uparrow \\ M_c \cap N & \stackrel{\sim}{\longrightarrow} & M_i \cap N \end{array}$$

Claim that $M_i = M_c$ for all $i \geq c$. It remains to show that any $x \in M_i$ is in fact in M_c . Since the top arrow is an isomorphism, and $M_c \to (M_c + N)/N$ is surjective, we can find $y \in M_c$ whose image in $(M_i + N)/N$ is equal to the image of x. Then $x - y \in M_i$ goes to zero in $(M_i + N)/N$. Thus $x - y \in M_i \cap N$. Hence $x - y \in M_c \cap N \subset M_c$. Hence $x = (x - y) + y \in M_c$. Therefore, $M_c = M_i$.

Corollary 11.5. Let A be a Noetherian ring and let M be a finitely generated A-module. Then M is Noetherian. Similarly, if A is Artinian, then any finitely generated A-module is Artinian.

Proof. Recall that any finitely generated A-module is a quotient of a free module $A^{\oplus n} = A \oplus \cdots \oplus A$. Proposition 11.4 implies that since A is a submodule of $A^{\oplus 2}$ via $x \mapsto (x,0)$, and the quotient is isomorphic to A, that $A^{\oplus 2}$ is Noetherian. Hence $A^{\oplus n}$ is Noetherian. Applying Proposition 11.4 to the surjective map $A^{\oplus n} \to M$ we prove that M is Noetherian.

Corollary 11.6. Let M be an A-module. If $0 = M_0 \subset \cdots \subset M_n = M$ are A-submodules such that M_{i+1}/M_i is a Noetherian A-module, then M is also Noetherian. The same statement is true for Artinian modules.

Proof. Apply Proposition 11.4. Then M_1/M_0 is Noetherian and M_2/M_1 is Noetherian implies that M_2 is Noetherian, etc.

Lemma 11.7. Let A be a Noetherian ring. Let $S \subset A$ be a multiplicative set. Then $S^{-1}A$ is Noetherian.

Proof. By Lemma 11.1 it is enough to prove that any non-empty set of ideals of $S^{-1}A$ has a maximal element. So take J a non-empty set of ideals of $S^{-1}A$. Let $f: A \to S^{-1}A$ be the map f(a) = a/1. Consider $\{f^{-1}(I) \mid I \in J\}$. This is a set of ideals of A. It has a maximal element, say I_0 , since A is Noetherian. Then $I_0 = S^{-1}f(I_0)$ is a maximal element of J.

12 Primary decomposition

Definition 12.1. An ideal $I \subseteq R$ is called **primary** if for all $x, y \in R$ such that $xy \in I$ we have either $x \in I$ or $y^n \in I$ for some $n \ge 1$. Equivalently, every zero-divisor in R/I is a nilpotent element of R/I.

Example. If $R = \mathbb{Z}$ and p a prime number then $\langle p^n \rangle$ is a primary ideal.

Lecture 17 Tuesday 12/11/19

Proposition 12.2. If rad I is a maximal ideal, then I is primary. In particular, any power of a maximal ideal is primary.

Proof. Recall rad I is the intersection of all prime ideals containing I. In particular, if rad I is a maximal ideal, then it is a unique prime ideal containing I. Then R/I has a unique prime ideal rad I/I, so R/I is a local ring. Hence $\mathcal{N}(R/I) = \mathcal{J}(R/I) = \operatorname{rad} I/I$. Clearly, $(R/I) \setminus (\operatorname{rad} I/I) = (R/I)^*$. Thus any element of R/I is either a unit, or a nilpotent element. Hence I is primary. If $M \subset R$ is a maximal ideal, then rad $M^n = M$.

Proposition 12.3. Let $I \subset R$ be a primary ideal. Then rad I is a prime ideal. This is the smallest prime ideal of R that contains I.

Remark.

 $\{\text{ideals }I\subset R\mid \operatorname{rad}I \text{ is a maximal ideal}\}\subset \{\text{primary ideals}\}\subset \{\text{ideals }I\subset R\mid \operatorname{rad}I \text{ is a prime ideal}\}.$

Proof. Suppose $xy \in \operatorname{rad} I$, so $x^m y^m = (xy)^m \in I$, but $x \notin \operatorname{rad} I$, so $x^m \notin I$. So in R/I we have $x^m y^m = 0$ and $x^m \neq 0$. Since I is primary, every zero-divisor in R/I is nilpotent. Hence $(y^m)^n = 0$ for some $n \geq 1$. But then in R we have $y^{mn} \in I$, so $y \in \operatorname{rad} I$. This proves that $\operatorname{rad} I$ is prime. Recall that $\operatorname{rad} I$ is the intersection of all prime ideals containing I. If $\operatorname{rad} I$ is already a prime ideal, it is the smallest ideal containing I.

A **primary decomposition** of an ideal $I \subset R$ is the representation

$$I = \bigcap_{m=1} J_m,$$

where J_1, \ldots, J_m are primary ideals of R. The aim is that any ideal in a Noetherian ring has a primary decomposition.

Example. Let $R = \mathbb{Z}$. Then $n = \prod_{i=1}^m p_i^{a_i}$, where p_i 's are prime numbers, and $a_i \geq 1$, so

$$\langle n \rangle = \prod_{i=1}^{m} \langle p_i^{a_i} \rangle = \bigcap_{i=1}^{m} \langle p_i^{a_i} \rangle.$$

Clearly, $\langle p_i \rangle$ are maximal ideals of \mathbb{Z} . So, $\langle p_i^{a_i} \rangle$ are primary ideals of \mathbb{Z} .

Definition 12.4. Let $I \subseteq R$ be an ideal. Then I is called **irreducible** if for any ideals J and K of R such that $I = J \cap K$ we have I = J or I = K. In other words, I is irreducible if $I \neq J \cap K$, where $I \subseteq J$ and $I \subseteq K$.

Proposition 12.5.

- 1. Any prime ideal is irreducible.
- 2. In a Noetherian ring, any irreducible ideal is primary.

Exercise.

 $\{\text{prime ideals}\} \subset \{\text{irreducible ideals}\} \subset \{\text{primary ideals}\}.$

Show that these are strict in general.

Proof.

- 1. Suppose $\mathfrak{p} \subset R$ is a prime ideal such that $\mathfrak{p} = J \cap K$, and $\mathfrak{p} \neq J$ and $\mathfrak{p} \neq K$. Let $x \in J \setminus \mathfrak{p}$ and $y \in K \setminus \mathfrak{p}$. Then $xy \in JK \subset J \cap K = \mathfrak{p}$. This is a contradiction, since \mathfrak{p} is prime.
- 2. Let I be an irreducible ideal of a Noetherian ring R. Consider R/I. Suppose $x,y \in R/I$ such that xy = 0 and $x \neq 0$. The task is to show that $y^n = 0$ for some $n \geq 1$. Since R is Noetherian, R/I is Noetherian. Consider

$$\operatorname{Ann} y^m = \{ \alpha \in R/I \mid \alpha y^m = 0 \}.$$

Then $\operatorname{Ann} y \subset \operatorname{Ann} y^2 \subset \cdots \subset R/I$. There exists $n \geq 1$ such that $\operatorname{Ann} y^n = \operatorname{Ann} y^{n+i}$, for all $i \geq 0$. Claim that $\langle x \rangle \cap \langle y^n \rangle = \langle 0 \rangle$. Suppose $0 \neq a \in \langle x \rangle \cap \langle y^n \rangle$. Then ay = 0 and also $a = by^n$ for some $b \in R/I$. Then $0 = ay = by^{n+1}$. This says that $b \in \operatorname{Ann} y^{n+1} = \operatorname{Ann} y^n$. Hence $by^n = 0$, so a = 0, a contradiction. But the ideal $I \subset R$ is irreducible, hence the ideal $\langle 0 \rangle \subset R/I$ is irreducible. We know that $\langle x \rangle \neq 0$. Thus $\langle y^n \rangle = \langle 0 \rangle$, so $y^n = 0$. This finishes the proof.

Lecture 18 Wednesday 13/11/19

Theorem 12.6 (Noether). Every ideal in a Noetherian ring has a primary decomposition.

Proof. We shall in fact prove that every ideal is a finite intersection of irreducible ideals. Suppose this does not hold for a Noetherian ring R. Let Σ be the set of proper ideals of R that are not finite intersections of irreducible ideals. Assume $\Sigma \neq \emptyset$. In a Noetherian ring every non-empty set of ideals has a maximal element. Take a maximal element of Σ . This is an ideal $I \subseteq R$. Then I is not a finite intersection of irreducible ideals, in particular I is not irreducible. Thus $I = J \cap K$, where J and K are ideals of R, and $J \supsetneq I$ and $K \supsetneq I$. Since I is a maximal element of Σ , we can write $J = \bigcap_{m=1}^n J_m$ and $K = \bigcap_{s=1}^r K_s$, where each J_m and each K_s is irreducible. Hence

$$I = \left(\bigcap_{m=1}^{n} J_m\right) \cap \left(\bigcap_{s=1}^{r} K_s\right)$$

is a finite intersection of irreducible ideals. This is a contradiction. This shows that $\Sigma = \emptyset$.

Lemma 12.7. Let I_1, \ldots, I_n be primary ideals in R such that $\operatorname{rad} I_1 = \cdots = \operatorname{rad} I_n$. Then $\bigcap_{j=1}^n I_j$ is also a primary ideal and

$$\operatorname{rad} \bigcap_{j=1}^{n} I_j = \operatorname{rad} I_1 = \dots = \operatorname{rad} I_n.$$

Proof. Let $\mathfrak{p}=\operatorname{rad} I_j$ for $j=1,\ldots,n$, and let $I=\bigcap_{j=1}^n I_j$. Suppose $x,y\in R$ such that $xy\in I$, but $x\notin I$. Hence $x\notin I_j$ for some j. We have $xy\in I_j$ but $x\notin I_j$ thus $y\in\operatorname{rad} I_j$, since I_j is primary. So $y\in\mathfrak{p}$. Then

$$\operatorname{rad} I = \operatorname{rad} \bigcap_{j=1}^{n} I_j = \bigcap_{j=1}^{n} \operatorname{rad} I_j = \mathfrak{p},$$

by problem sheet 2 question 2(b). Hence $y \in \operatorname{rad} I$. This shows that I is primary. Moreover, $\operatorname{rad} I = \mathfrak{p}$. \square

Lemma 12.8. Let I be a primary ideal of R such that rad I is a prime ideal \mathfrak{p} . We say that I is a \mathfrak{p} -primary ideal. Then

$$(I:\langle x\rangle) = \begin{cases} R & x \in I \\ a \text{ \mathfrak{p}-primary ideal } & x \notin I \end{cases}.$$

Proof. $x \in I$ implies that $1 \in (I : \langle x \rangle)$. Hence $\langle I : \langle x \rangle \rangle = R$. Now assume $x \notin I$. Then

$$(I:\langle x\rangle) = \{y \in R \mid xy \in I\}.$$

Since I is primary, this implies $y^n \in I$ and $y \in \operatorname{rad} I = \mathfrak{p}$. So $I \subset (I : \langle x \rangle) \subset \mathfrak{p}$, so $\mathfrak{p} = \operatorname{rad} I \subset \operatorname{rad} (I : \langle x \rangle) \subset \mathfrak{p}$, so $\operatorname{rad} (I : \langle x \rangle) = \mathfrak{p}$. It remains to show that $(I : \langle x \rangle)$ is primary. Assume $yz \in (I : \langle x \rangle)$ whereas $y \notin \operatorname{rad} (I : \langle x \rangle) = \mathfrak{p}$. We must show that $z \in (I : \langle x \rangle)$. Then $yz \in (I : \langle x \rangle)$ implies that $y(xz) = xyz \in I$. Since I is primary and $y \notin \mathfrak{p} = \operatorname{rad} I$, no power of y is contained in I, therefore $xz \in I$, so $z \in (I : \langle x \rangle)$.

Call a primary decomposition $I = \bigcap_{i=1}^{k} I_i$ minimal if

- rad $I_j \neq \text{rad } I_k$ for $j \neq k$, and
- for every $j = 1, \ldots, n, \bigcap_{k=1, k \neq j}^{n} I_k \subset I_j$.

Can achieve this by Lemma 12.7.

Theorem 12.9 (First uniqueness theorem). Let $I = \bigcap_{j=1}^n I_j$ be a minimal primary decomposition. Write $\mathfrak{p}_j = \operatorname{rad} I_j$ for $j = 1, \ldots, n$. Then the ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ are precisely the prime ideals of R of the form $\operatorname{rad}(I : \langle x \rangle)$, where $x \in R$. In particular, $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ do not depend on the primary decomposition chosen.

Lecture 19 Thursday 14/11/19

Proof. Take any $x \in R$. Then

$$(I:\langle x\rangle) = \left(\bigcap_{j=1}^k I_j:\langle x\rangle\right) = \left\{y \in R \mid xy \in \bigcap_{j=1}^k I_j\right\} = \bigcap_{j=1}^k \left\{y \in R \mid xy \in I_j\right\} = \bigcap_{j=1}^k \left(I_j:\langle x\rangle\right).$$

Take the radicals of these ideals. Problem sheet 2 question 2(b) says that the radical of an intersection is the intersection of their radicals, so rad $(I : \langle x \rangle) = \bigcap_{i=1}^k \operatorname{rad}(I_i : \langle x \rangle)$. Note that by Lemma 12.8

$$\operatorname{rad}\left(I_{j}:\left\langle x\right\rangle \right)=\begin{cases}R & x\in I_{j}\\ \mathfrak{p}_{j} & x\notin I_{j}\end{cases},$$

so rad $(I:\langle x\rangle) = \bigcap_{x\notin I_j} \mathfrak{p}_j$. So we recover all of $\mathfrak{p}_1,\ldots,\mathfrak{p}_n$ and nothing else. Lemma 4.12 says that $\mathfrak{p} = \bigcap_{i=1}^m J_i$ is prime implies that \mathfrak{p} is one of the J_i 's. Hence if rad $(I:\langle x\rangle)$ is a prime ideal, then it is one of $\mathfrak{p}_i = \operatorname{rad}(I_i:\langle x\rangle)$ for $x\notin I_i$.

Remark. These prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ are called the **associated primes** of I.

Example.

• Let $R = \mathbb{Z}$. Then

$$\begin{split} & \{ \text{prime ideals} \} = \{ \langle 0 \rangle \} \cup \{ \text{maximal ideals} \} = \{ \langle 0 \rangle \} \cup \{ \langle p \rangle \mid p \text{ prime} \} \,, \\ & \{ \text{primary ideals} \} = \{ \text{irreducible ideals} \} = \{ \langle 0 \rangle \} \cup \{ \langle p^n \rangle \mid p \text{ prime} \} \,. \end{split}$$

For example, $\langle 4 \rangle \subseteq \langle 2 \rangle \cap \langle 2 \rangle \subseteq \mathbb{Z}$ is irreducible.

- Let R = k[x]. Then $\{\text{prime ideals}\} = \{\langle 0 \rangle\} \cup \{\text{maximal ideals}\} = \{\langle 0 \rangle\} \cup \{\langle p(x) \rangle \mid p(x) \text{ monic irreducible polynomial}\}$, $\{\text{primary ideals}\} = \{\text{irreducible ideals}\} = \{\langle 0 \rangle\} \cup \{\langle p(x)^n \rangle \mid p(x) \text{ monic irreducible polynomial}\}$.
- Let R = k[x, y]. Then $\langle x \rangle$ is prime, since $k[x, y] / \langle x \rangle \cong k[y]$ is an integral domain, and $\langle x, y \rangle$ is maximal, since $k[x, y] / \langle x, y \rangle \cong k$ is a field.
 - $-\langle x, y^2 \rangle$ is not prime, since $k[x, y] / \langle x, y^2 \rangle \cong k \oplus ky$ is not an integral domain, where $y^2 = 0$. Then rad $\langle x, y^2 \rangle = \langle x, y \rangle$, so Proposition 12.2 implies that $\langle x, y^2 \rangle$ is primary.
 - $-\langle xy \rangle$ is not prime, since $x^n, y^n \notin \langle xy \rangle$ for all $n \geq 1$ and $xy \in \langle xy \rangle$, and $k[x,y]/\langle xy \rangle$ has zero-divisors which are not nilpotent, so $\langle xy \rangle$ is also not primary. Then $\langle xy \rangle = \langle x \rangle = \langle x \rangle \langle y \rangle = \langle x \rangle \cap \langle y \rangle$ is a primary decomposition, where $\langle x \rangle$ and $\langle y \rangle$ are prime, hence primary.
 - $-\langle x^a y^b \rangle = \langle x^a \rangle \cap \langle x^b \rangle$ for $a, b \geq 1$ is a primary decomposition, since $\langle x^a \rangle$ and $\langle y^b \rangle$ are primary. For example, rad $\langle x^a \rangle = \langle x \rangle$, since $k[x,y]/\langle x^a \rangle \cong k[y] \oplus \cdots \oplus k[y] x^{a-1}$ has no non-nilpotent zero-divisors.
 - $-\langle x^2, xy^2 \rangle = \langle x \rangle \langle x, y^2 \rangle$ for $a, b \ge 1$ is not primary, since y gives a zero-divisor in $k[x, y] / \langle x^2, xy^2 \rangle$ which is not nilpotent. Find a primary decomposition. ⁸
 - $-\langle x^2, xy, y^2 \rangle = \langle x, y \rangle^2$, so it is primary but not irreducible, since $\langle x^2, xy, y^2 \rangle = \langle x^2, y \rangle \cap \langle x, y^2 \rangle$.

⁸Exercise

13 Artinian rings and modules

Definition 13.1. Let A be a ring and let M be an A-module. Then M is a **simple** A-module if the only proper submodule of M is zero. A **composition series** is a descending chain of submodules $M = M_0 \supsetneq \cdots \supsetneq M_n = 0$ such that M_i/M_{i+1} is a simple A-module for $i = 0, \ldots, n-1$.

Lecture 20 Tuesday 19/11/19

Proposition 13.2. The following are equivalent.

- M is both Noetherian and Artinian.
- M has a composition series.

Proof.

- \implies Look at all proper submodules of M. Since M is Noetherian, this set has a maximal element. Call it M_1 . It is also Noetherian, so continue and build a descending chain. Since M_1 is maximal, M/M_1 is simple. All M_i/M_{i+1} are simple. Since M is Artinian, this chain is stationary, so $M_n = 0$ for some n.
- \Leftarrow Corollary 11.6 says that if M_i/M_{i+1} is both Noetherian and Artinian, then so is M. A simple module is both Noetherian and Artinian.

Proposition 13.3. If M has a composition series of length n, then any composition series of M has length n.

Proof. Let us denote by l(M) the smallest length of a composition series of M.

Step 1. For a proper submodule $N \subseteq M$ we have l(N) < l(M). Indeed, let (M_i) be a composition series of length l(M). Define $N_i = N \cap M_i$, so

Then $\operatorname{Ker}(N_i \to M_i/M_{i+1}) = N_{i+1}$, so $N_i/N_{i+1} \subset M_i/M_{i+1}$, which is simple. After eliminating repetitions we get a composition of length at most l(M). If the length is exactly l(M), then $N_{n-1} = M_{n-1}$, $N_{n-2} = M_{n-2}$, etc, and finally N = M.

- Step 2. Any proper chain of submodules of M has length at most 1(M). Passing to a proper submodule decreases 1(M) at least by one. So the chain contains no more than 1(M) terms.
- Step 3. So consider any composition series of M. By step 2, it has length at most l(M). By minimality of l(M), it has length equal to l(M).

Define the **length** of a Noetherian and Artinian module M to be l(M), the length of any composition series.

Exercise. Any chain of submodules of M can be made into a composition series by inserting some submodules.

Proposition 13.4. Let M be a Noetherian and Artinian module. If $N \subset M$ is a submodule, then

$$1(M) = 1(N) + 1(M/N)$$
.

Proof. Exercise. ⁹

 $^{^9 {\}it Exercise}$

Example 13.5. Suppose R is a k-algebra, that is k is a field contained in R and R is a vector space over k. For example, R = k or $R = k [x_1, \ldots, x_n] / I$, where I is an ideal in $k [x_1, \ldots, x_n]$.

Lecture 21 Wednesday 20/11/19

- If $\dim_k R < \infty$, then R is an Artinian ring. Indeed, ideals of R are vector subspaces, so any chain of ideals has finite length. Hence R is both Artinian and Noetherian.
- \bullet If R is a finite set, then R is Artinian and Noetherian.
- Let $k[[x]] = \left\{ \sum_{i \geq 0} a_i x_i \mid a_i \in k \right\}$. Then $\langle x \rangle \supseteq \langle x^2 \rangle \supseteq \dots$ is an infinite descending chain. So k[[x]] is not Artinian. Similarly, k[x] is not Artinian.

Remark. Hilbert's basis theorem says that if R is Noetherian, then so is R[x]. The analogue of this does not hold for Artinian rings.

Lemma 13.6. An Artinian integral domain is a field.

Proof. Take $x \neq 0$ in an Artinian ring A. Consider $\langle x \rangle \supset \langle x^2 \rangle \supset \ldots$, which is stationary, so $\langle x^n \rangle = \langle x^{n+1} \rangle$ for some $n \geq 0$. Therefore, $x^n = ax^{n+1}$, so $x^n (ax - 1) = 0$. Then $x^n \neq 0$, so ax = 1, so x is invertible, that is $x \in A^*$.

Corollary 13.7. In an Artinian ring every prime ideal is maximal.

Corollary 13.8. In an Artinian ring the nilradical is the same as the Jacobson radical.

Lemma 13.9. An Artinian ring has only finitely many maximal ideals.

Proof. Assume this is false, so M_1, M_2, \ldots are pairwise different maximal ideals. Then $M_1 \supset M_1 \cap M_2 \supset \ldots$ is stationary, so for some $n \geq 1$ we have $M_1 \cap \cdots \cap M_n = (M_1 \cap \cdots \cap M_n) \cap M_{n+1}$, so $M_1 \cap \cdots \cap M_n \subset M_{n+1}$. By the prime avoidance lemma, M_{n+1} contains some M_i , where $i \in \{1, \ldots, n\}$. These are maximal ideals, hence $M_i = M_{n+1}$. This is a contradiction.

Definition. An ideal $I \subset R$ is called **nilpotent** if $I^n = 0$ for some $n \ge 1$.

Lemma 13.10. If A is an Artinian or Noetherian ring, then the nilradical $\mathcal{N}(A)$ is a nilpotent ideal, that is $\mathcal{N}(A)^m = 0$ for some m.

Proof.

- Assume A is Artinian. Consider $\mathcal{N}(A) \supset \mathcal{N}(A)^2 \supset \ldots$ There exists $n \geq 1$ such that $\mathcal{N}(A)^n = \mathcal{N}(A)^{n+1}$. Claim that $\mathcal{N}(A)^n = 0$. Assume $\mathcal{N}(A)^n \neq 0$. Consider all ideals $I \subset A$ such that $I\mathcal{N}(A)^n \neq 0$. This set is non-empty. It contains $\mathcal{N}(A)$, since $\mathcal{N}(A)^{n+1} = \mathcal{N}(A)^n = 0$. Then A is Artinian, so this set has a minimal element. Call it I. So we have $I\mathcal{N}(A)^n \neq 0$ hence $x\mathcal{N}(A)^n \neq 0$ for some $x \in I$. We have $\langle x \rangle \mathcal{N}(A)^n \neq 0$ where $\langle x \rangle \subset I$. Then $\langle x \rangle$ belongs to our set, so by minimality of I we must have $I = \langle x \rangle$. We have $0 \neq x\mathcal{N}(A)^n = x\mathcal{N}(A)^n \mathcal{N}(A)^n$, since $\mathcal{N}(A)^n = \mathcal{N}(A)^m$, for any $m \geq n$. So $x\mathcal{N}(A)^n$ is an ideal in our set. Then $x \in I$ so $x\mathcal{N}(A)^n \subset I$. By minimality of I we must have $x\mathcal{N}(A)^n = I$. Therefore $\langle x \rangle \mathcal{N}(A)^n = I = \langle x \rangle$, so x can be written as xy for some $y \in \mathcal{N}(A)^n \subset \mathcal{N}(A)$. Thus $y^r = 0$ for some $r \geq 1$. Then $x = \cdots = xy^r = 0$. This says that $I = \langle x \rangle = 0$. This is a contradiction because $I\mathcal{N}(A)^n \neq 0$.
- Now assume A is Noetherian. Then every ideal is finitely generated, in particular $\mathcal{N}(A) = \langle x_1, \dots, x_n \rangle$. Since each x_i is nilpotent there exists $m \geq 1$ such that $x_i^m = 0$ for all i. Then any product of mn elements of $\mathcal{N}(A)$ is $\sum_{a_1+\dots+a_n=mn} cx_1^{a_1} \dots x_n^{a_n}$. So there exists i, for $1 \leq i \leq n$, such that $a_i \geq m$. Hence $x_1^{a_1} \dots x_n^{a_n} = 0$, so $\mathcal{N}(A)^{mn} = 0$.

Corollary 13.11. Every ideal in a Noetherian or Artinian ring contains some power of its radical.

Proof. If A is Noetherian, then A/I is also Noetherian. We have rad $I/I = \mathcal{N}(A/I)$. By Lemma 13.10 there exists $m \ge 1$ such that $\mathcal{N}(A/I)^m = 0$. Then rad $I^m \subset I$. The same proof works in the Artinian case. \square

Lecture 22 Thursday 21/11/19

Lemma 13.12. Let V be a vector space over a field k. The following are equivalent.

- $\dim_k V < \infty$.
- V is a Noetherian k-module.
- V is an Artinian k-module.

Proof. Obvious. \Box

Lemma 13.13. Let A be a ring. Let I_1, \ldots, I_n be maximal ideals of A, possibly with repetitions. Suppose $I_1 \ldots I_n = 0$. Then A is Noetherian if and only if A is Artinian.

Proof.

- Define $M_r = I_1 \dots I_r$ for $r = 1, \dots, n$, so $A \supset M_1 = I_1 \supset \dots \supset M_n = \prod_{r=1}^n I_r = 0$. Then A is a Noetherian A-module, so every subquotient module is also Noetherian. In particular, M_i/M_{i+1} is a Noetherian A-module. Since $I_{r+1}M_r = M_{r+1}$, I_{r+1} acts trivially on M_r/M_{r+1} . Therefore, M_r/M_{r+1} is naturally an A/I_{r+1} -module. But A/I_{r+1} is a field. Call it k. The A-submodules of M_r/M_{r+1} are the same as the k-submodules of M_r/M_{r+1} . By Lemma 13.12 M_r/M_{r+1} is an Artinian k-module hence M_r/M_{r+1} is an Artinian A-module. Now Proposition 11.4 implies that A is Artinian.
- ⇐ Similar.

Definition 13.14. The **Krull dimension** of a ring A is the supremum of all $n \geq 0$ such that A has an ascending chain of prime ideals $\mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{p}_n$. If the supremum does not exist, the dimension is infinite. It is denoted dim A.

Example 13.15.

- Any field has dimension zero.
- If A is Artinian, then every prime ideal is maximal, hence dim A=0.
- Since $\langle 0 \rangle \subseteq \langle p \rangle$ for p a prime number, dim $\mathbb{Z} = 1$.
- If k is a field, then dim k[t] = 1.
- If k is a field, then dim k[[t]] = 1.
- If k is a field, then dim $k[t_1, \ldots, t_n] = n$.

Theorem 13.16. A ring is Artinian if and only if it is Noetherian and has dimension zero.

Proof.

- ⇒ Suppose A is Artinian. Corollary 13.7 says that every prime ideal is maximal, hence dim A = 0. Lemma 13.9 says that A has only finitely many maximal ideals, say I_1, \ldots, I_n . Then $I_1 \ldots I_n \subset I_1 \cap \cdots \cap I_n = \mathcal{N}(A)$. Lemma 13.10 says $\mathcal{N}(A)^m = 0$ for some $m \geq 1$. Hence $I_1^m \ldots I_n^m = 0$. Lemma 13.13 now implies that A is Noetherian.
- We will be somether that A is Noetherian and $\dim A = 0$. By Emmy Noether's theorem the ideal $\langle 0 \rangle$ has a primary decomposition, that is $\langle 0 \rangle = J_1 \cap \cdots \cap J_n$, where J_i 's are primary. Recall rad J_i is a prime ideal of A. Since $\dim A = 0$, this ideal is maximal. The associated primes of $\langle 0 \rangle$ are maximal ideals. By Corollary 13.11 each J_i contains a power of rad J_i . Therefore, the product of these powers of these maximal ideals is contained in $\prod_{i=1}^n J_i \subset \bigcap_{i=1}^n J_i = \langle 0 \rangle$. Now Lemma 13.13 implies that A is Artinian.

Theorem 13.17. Any Artinian ring is a product of finitely many local Artinian rings.

Definition 13.18. Two ideals $I, J \subset R$ are **coprime** if I + J = R.

Example. Two distinct maximal ideals are coprime.

Suppose I_1, \ldots, I_n are ideals of R. Define

$$\phi : R \longrightarrow \prod_{j=1}^{n} R/I_{j}
x \longmapsto (x+I_{1},\ldots,x+I_{n}).$$

Lemma 13.19 (Chinese remainder theorem).

- If I_r and I_s are coprime whenever $r \neq s$, then $\prod_{j=1}^n I_j = \bigcap_{j=1}^n I_j$.
- ϕ is surjective if and only if I_r and I_s are coprime for $r \neq s$.
- ϕ is injective if and only if $\bigcap_{j=1}^{n} I_j = \langle 0 \rangle$.

Proof. See problem sheet 4 question 2.