Chapter 18

18.1 Eq. (18.6):
$$A_R(\%) = \frac{D_o^2 - D_i^2}{D_i^2} (100) = \frac{(3.5)^2 - (3.375)^2}{(3.375)^2} \times 100 = 7.54\%$$

18.2
$$A_R(\%) = \frac{D_o^2 - D_i^2}{D_i^2} (100) = \frac{(114)^2 - (111)^2}{(111)^2} \times 100 =$$
5.48%

18.3 Depth
$$\sigma'_{o}$$
 $C_{N} = 9.78 \sqrt{\frac{1}{\sigma'_{o}}}$ N_{60} $(N_{1})_{60} = C_{N}N_{60}$

1.5 23.25 2.03 8 ≈ 16
3.0 46.4 1.43 7 ≈ 10
4.5 69.75 1.17 12 ≈ 14
6.0 93.0 1.01 14 ≈ 14
7.5 116.25 0.907 13 ≈ 12

18.4
$$\phi' = \tan^{-1} \left[\frac{N_{60}}{12.2 + 20.3 \left(\frac{\sigma'_o}{p_a} \right)} \right]; \ p_a \approx 100 \text{ kN/m}^2$$

Depth	σ'_o	p_o	N_{60}	φ' (deg)
(m)	(kN/m^2)	(kN/m^2)		[Eq. (18.16)]
1.5	23.25	100	8	37.8
3.0	46.4	100	7	34.3
4.5	69.75	100	12	37.4
6.0	93.0	100	14	37.3
7.5	116.25	100	13	35.3

Average $\phi' \approx 36.5^{\circ}$

18.5 Eq. (18.14):
$$D_r$$
 (%) =
$$\left[\frac{N_{60} \left(0.23 + \frac{0.06}{D_{50}} \right)^{1.7}}{9} \left(\frac{98}{\sigma'_o} \right) \right]^{0.5}$$
 (100)

Given $\gamma = 15.5 \text{ kN/m}^3$. The following table can now be prepared.

Depth z	$\sigma'_o = \gamma z$	D_{50}	N_{60}	D_r
(m)	(kN/m^2)	(mm)		(%)
1.5	23.25	0.26	6	86.8 ≈ 87
3.0	46.5	0.26	12	$86.8 \approx 87$
4.5	69.75	0.26	17	84.3 ≈ 84
6.0	93.0	0.26	21	81.2 ≈ 81
7.5	116.25	0.26	23	76.0

18.6
$$(N_1)_{60} = C_N N_{60} = \left(\frac{2}{1 + \sigma_o'}\right) N_{60}$$

Depth z (m)	$\sigma_o' (ton/ft^2)$	N_{60}	C_N	$(N_1)_{60}$
5	$\frac{5 \times 115}{2000} = 0.2875$	6	1.55	10.85 ≈ 11
10	$\frac{10 \times 115}{2000} = 0.575$	7	1.27	7.62 ≈ 8
15	$\frac{15 \times 115}{2000} = 0.8625$	9	1.07	9.63 ≈ 10
20		10	0.963	9.63 ≈ 10
25	$1.076 + \frac{5(118 - 62.4)}{2000} = 1.215$	12	0.903	10.84 ≈ 11
30	$1.215 + \frac{5(118 - 62.4)}{2000} = 1.354$	14	0.85	11.9 ≈ 12

18.7 a. The average value of N_{60} is about 11.

b.
$$F_d = 1 + 0.33 \left(\frac{D_f}{B} \right) = 1 + (0.33) \left(\frac{1}{2} \right) = 1.165$$

$$q_{\text{net}} = \frac{N_{60}}{0.08} \left(\frac{B + 0.3}{B}\right)^2 F_d \left(\frac{S_e}{25}\right) = \frac{11}{0.08} \left(\frac{2 + 0.3}{2}\right)^2 (1.165) \left(\frac{25}{25}\right) = 211.8 \text{ kN/m}^2$$

18.8 Eq. (18.30):
$$\frac{\left(\frac{q_c}{p_a}\right)}{N_{60}} = 7.64 D_{50}^{0.26}$$
. Use $p_a \approx 100 \text{ kN/m}^2$.

Depth z (m)	N_{60}	D_{50} (mm)	$q_c (kN/m^2)$
1.5	6	0.26	3,230
3	12	0.26	6,460
4.5	17	0.26	9,151
6	21	0.26	11,304
7.5	23	0.26	12,381

18.9 Eq. (18.26):
$$c_u = \frac{q_c - \sigma_c}{N_k}$$
; $N_k \approx 18.3$

$$c_u = \frac{1400 - (10)(18)}{18.3} =$$
66.7 kN/m²

18.10 From Eqs. (18.23) and (18.24):

$$E_s = 2 \text{ to } 3q_c = 2 \text{ to } 3(205) = 410 \text{ to } 615 \text{ kN/m}^2$$

18.11 From Eq. (18.34):

Recovery ratio,
$$R = \left(\frac{3}{4}\right)(100) = 75\%$$