Physics 220 Equations

Chapter 22: Electric Forces

$$F = \frac{kq_1q_2}{r^2}$$
 Coulomb's law.

Chapter 23: The Electric Field

	Chapter 23: The Electric Field		
$\vec{E} = \frac{kq}{r^2}\hat{r}$	Electric Field of a point charge.		
$\vec{F}=q\vec{E}$	Force on a point charge in presence of electric field.		
$\vec{p} = q\vec{s}$	Dipole moment (vector points from negative to positive		
$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{2\vec{p}}{r^3}$	Electric field created by a dipole on a line going through both point charges.		
$\vec{E} = \frac{kQ}{r\sqrt{r^2 + (\frac{L}{2})^2}}$	Electric field created by a $\underline{\text{finite}}$ line of $\underline{\text{uniformly}}$ distributed charge on a line that $\underline{\text{bisects}}$ the line charge.		
$\vec{E} = -\frac{1}{4\pi\epsilon_0} \frac{\vec{p}}{r^3}$	Electric Field of dipole (on line perpendicular to dipole passing through its center)		
$ec{ au} = ec{p} imes ec{E}$	torque on dipole in uniform field		
$\lambda = \frac{Q}{L}$	linear charge density (one dimensional)		
$\eta = \frac{Q}{A}$	Surface charge density (two dimensional)		
$\rho = \frac{Q}{V}$	Volume charge density (three dimensional)		
$\frac{2k\lambda}{r}$	E-field created by an infinite line of charge		
$E = \frac{\eta}{2\epsilon_0}$	E-field created by an infinite plane of charge		
$E = \frac{\eta}{\epsilon_0}$	E-field inside of a parallel plate capacitor		
$E = \frac{kzQ}{(z^2 + R^2)^{3/2}}$	E-field created by a uniformly charge ring (on axis perpendicular to ring and passing through the center of the ring)		
$E = \frac{\eta}{2\epsilon_0} \left[1 - \frac{z}{\sqrt{z^2 + R}} \right]$	E-field created by a uniformly charged disk (on axis perpendicular to ring and passing through the center of the ring)		

Chapter 24: Gauss's Law

$$\Phi_e = \int_{\mathrm{surface}} \vec{E} \cdot d\vec{A}$$
 Definition of Flux

 $\int_{\rm surface} \vec{E} \cdot d\vec{A} = \frac{q_{\rm in}}{\epsilon_0} \quad {\rm Gauss's\ Law}$

 $\vec{E}=(\frac{\eta}{\epsilon_0}, \, {\rm perpendicular} \, {\rm to} \, {\rm surface})$ Electric field at surface of conductor

Chapter 25: The Electric Potential

$K = \frac{1}{2}mv^2$	Kinetic Energy
$\Delta U = Eq\Delta s$	Difference in electric potential energy of a point charge in a uniform field.
$U = \frac{kq_1q_2}{r}$	electric potential energy of two point charges
$U = -\vec{p} \cdot \vec{E}$	electric potential energy of a dipole in uniform field:
$V = \frac{U}{q}$	Electric potential (not potential energy)
V = Es	electric potential inside parallel plate capacitor
$V = \frac{kq}{r}$	electric potential of a point charge
$V = \frac{kq}{r} = \frac{R}{r}V_0$	electric potential of a charged solid sphere
$V = \frac{kQ}{\sqrt{x^2 + R^2}}$	electric potential of a uniformly charged ring(on symmetry axis)
$V = \frac{Q}{2\pi\epsilon_0 R^2} \left(\sqrt{R^2 + 1} \right)$	$(-x^2 - x)$ electric potential of a uniformly charged disk(on symmetry axis)

Chapter 26: Potential and Field

$\Delta V = -\int E_s ds$	Relationship between electric potential and the electric field	
$E_S = -\frac{dV}{ds}$	Inverse relationship between the electric field and the electric potential in one dimension	
$E_s = -\nabla V$	Electric field from the electric potential in <u>three dimension</u>	
$\Delta V_{ m loop} = 0$	Kirchoff's loop law	
$C = \frac{Q}{\Delta V_C}$	Definition of capacitance	
$C = \frac{\epsilon_0 A}{d}$	Capacitance of a parallel-plate capacitor	
$C_{\rm eq} = C_1 + C_2 + C_3 + \dots$ Equivalent capacitance of capacitors in <u>parallel</u>		
$\frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$ Equivalent capacitance of capacitors in <u>series</u> .		
$U = \frac{1}{2}C(\Delta V_C)^2 = \frac{Q}{20}$	$\frac{2}{C}$ Energy stored in a capacitor.	

$C = \kappa C_0$	How dielectric affects the capacitance.		
Chapter 27: Current and Resistance			
$i_e = n_e A v_d = \frac{n_e e \tau A}{m}$	E Electron current given the physical properties/dimensions of the material.		
$v_d = \frac{e\tau}{m}E$	Drift velocity of electrons moving through a conductor.		
$I = \frac{dq}{dt}$	Definition of current.		
$J = \frac{I}{A}$	Definition of current density.		
$\sum I_{\rm in} = \sum I_{\rm out}$	Conservation of current/ Kirchoff's junction rule.		
$\vec{J} = \sigma \vec{E}$	Relationship between current density (J) and the applied E field (E)		
$\rho = \frac{1}{\sigma}$	Relationship between conductivity (σ) and resistivity (ρ) .		
$I = \frac{\Delta V}{R}$	Ohm's law stating how much current will flow when a given potential difference is applied.		
$R = \frac{\rho l}{A}$	Resistance of a conductor.		
	Chapter 28: DC circuits		
$P = I\Delta V = I^2 R = \frac{Q}{2}$	$\frac{\Delta V)^2}{R}$ Power delivered by a source or power dissipated by a resistor.		
$R_{\text{eq}} = R_1 + R_2 + R_3 + \dots$	Equivalent resistance of resistors in <u>series</u> .		
$\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$	+ Equivalent resistance of resistors in <u>parallel</u> .		
$Q = Q_0 e^{-t/RC}$	Charge on a capacitor, or network of capacitors, as a function of time as it discharges through a resistor, or network of resistors.		
$Q = Q_0(1 - e^{-t/RC})$	Charge on a capacitor in an RC circuit as a function of time as it is charged by a battery.		
$\tau = RC$	Time constant found in charge/discharge of a capacitor for RC circuits.		
Chapter 29: Magnetic Fields			
$\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$	Magnetic field created by a moving point charge.		
$B = \frac{\mu_0 I}{2\pi d}$	Magnetic field created by a long, straight wire.		

Definition of the dielectric constant κ .

 $\kappa \equiv \frac{E_0}{E}$

$B = \frac{\mu_0}{2} \frac{IR^2}{(z^2 + R^2)^{3/2}}$	Magnetic field created by a circular loop of wire of radius R .
--	---

Magnetic field created by a steady state current.

$$\vec{\mu} = AI$$
 , south to the north pole. Magnetic dipole moment.

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{\rm through} \quad {\rm Ampere's\ Law}.$$

 $\vec{B} = \frac{\mu_0}{4\pi} \frac{I\Delta \vec{s} \times \hat{r}}{r^2}$

$$B_{\rm solenoid} = \frac{\mu_0 NI}{l} \qquad {\rm Magnetic~field~created~by~a~solenoid(inductor~if~you~like)}.$$

$$\vec{F} = q\vec{v} \times \vec{B}$$
 Magnetic force on a moving charge.

$$f = \frac{qB}{2\pi m}$$
 Cyclotron motion frequency.

$$\vec{F} = I\vec{l} \times \vec{B}$$
 Magnetic force on a current carry wire.

$$\vec{ au} = \vec{\mu} \times \vec{B}$$
 Torque on magnetic dipole.

Chapter 30: Induced fields

$$\Phi_M = \vec{A} \cdot \vec{B}$$
 Magnetic flux.

$$\oint \vec{E} \cdot d\vec{s} = \mathcal{E} = |\frac{d\Phi_M}{dt}| \quad \text{Faraday's law}.$$

$$L = \frac{\mu_0 N^2 A}{l}$$
 Inductance.

$$\Delta V_L = -L \frac{dI}{dt}$$
 Potential difference across an inductor.

$$U = \frac{1}{2}LI^2$$
 Energy stored in an inductor.

$$I(t) = I_{\text{max}} \sin \omega t$$
 Current as a function of time in an LC circuit.

$$Q(t) = Q_{\text{max}} \cos \omega t$$
 Charge as a function of time in an LC circuit.

$$\omega = \sqrt{\frac{1}{LC}}$$
 Frequency for an LC circuit.

$$I(t) = I_0 e^{-tR/L}$$
 Current as a function of time in an LR circuit.

Chapter 31: EM Waves

$$\oint \vec{B} \cdot d\vec{A} = 0$$
 Gauss's law for magnetism.

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{\rm through} + \epsilon_0 \mu_0 \frac{d\Phi_{\rm E}}{dt} \quad \text{Ampere-Maxwell law}$$

$ec{E}_{ m B} = ec{E}_{ m A} + ec{v}_{ m BA} imes ec{B}_{ m A} \hspace{0.5cm} ext{Field transformation equation}$		
$\vec{B}_{ m B} = \vec{B}_{ m A} - \frac{1}{c^2} \vec{v}_{ m BA} imes \vec{E}_{ m A}$ Field transformation equation		
$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$ Poynting vector		
$c^2 = \frac{1}{\epsilon_0 \mu_0}$ speed of EM wave		
$I = \frac{P}{A} = \frac{E_0^2}{2c\mu_0} = \frac{E_0^2c\epsilon_0}{2}$ Definition of intensity in general (first equation) and specifically for EM waves (last two equations)		
E=cB Relationship between E and B fields		
$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$ Lorentz Force law		
Chapter 32: AC circuits		
$\omega = \frac{1}{RC}$ Crossover frequency (RC AC circuit).		
$X_L = \omega L$ Inductive reactance.		
$X_C = \frac{1}{\omega C}$ Capacitive reactance.		
$I = \frac{\mathcal{E}_0}{\sqrt{R^2 + (X_L - X_C)^2}}$ Ohm's law for AC circuits.		
$\tan \phi = \frac{X_L - X_C}{R}$ Phase angle.		
$\omega_0 = \frac{1}{\sqrt{LC}}$ Resonant frequency.		
$P_{\text{avg}} = \frac{1}{2}I_R^2 R = (I_{\text{rms}})^2 R = \frac{(V_{\text{rms}})^2}{R} = I_{\text{rms}}V_{\text{rms}}$ Power dissipated by resistor.		
$V_{\rm rms}(I_{\rm rms}) = \frac{V_R(I_R)}{\sqrt{2}}$ Relationship between peak value and root mean square value.		

Useful Math equations

 $P = I_{\rm rms} \mathcal{E}_{\rm rms} \cos \phi$

Power delivered by a source in AC circuit.

quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Trigonometric functions:

 $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$ $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$

 $\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$

Dot Product: $\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y = |A||B| \cos \alpha$ (α is the angle between the two vectors)

Cross Product: $\vec{A} \times \vec{B} = |A| |B| \sin \alpha$ (α is the angle between \vec{A} and \vec{B} . Direction given by the right-hand rule) surface area of sphere: $4\pi r^2$

volume of a sphere: $\frac{4}{3}\pi r^3$

differential volume in spherical coordinates: $dV = r^2 \sin \phi dr d\phi d\theta$

differential area in polar coordinates: $dA = rdrd\theta$

differential area in spherical coordinates: $dA = R^2 \sin \phi d\theta d\phi$

Logarithmic properties

$$\log_{b}(mn) = \log_{b}(m) + \log_{b}(n)$$
$$\log_{b}(m/n) = \log_{b}(m) - \log_{b}(n)$$
$$\log_{b}(m^{n}) = n \cdot \log_{b}(m)$$

Helpful Integrals

$$\int \frac{dx}{(x^2 \pm a^2)^{3/2}} = \frac{\pm x}{a^2 \sqrt{a^2 + x^2}}$$

$$\int \frac{x \, dx}{(x^2 \pm a^2)^{3/2}} = -\frac{1}{\sqrt{x^2 \pm a^2}}$$

$$\int \frac{dx}{a + x} = \ln(a + x)$$

$$\int \frac{x \, dx}{a + x} = x - a \ln(a + x)$$

$$\int \frac{1 \, dx}{((x - b)^2 + a^2)^{3/2}} = \frac{x - b}{a^2 \sqrt{a^2 + (b - x)^2}}$$

$$\int \frac{x \, dx}{((x - b)^2 + a^2)^{3/2}} = \frac{x - a^2}{a^2 \sqrt{a^2 + (b - y)^2}}$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln(x + \sqrt{x^2 \pm a^2})$$

$$\int \sin(ax) dx = -\frac{1}{a} \cos(ax)$$

$$\int \cos(ax) dx = \frac{1}{a} \sin(ax)$$

$$\int x^n e^{-ax} dx = \frac{n!}{a^{n+1}}$$

$$\int \cos^2 \theta d\theta = \frac{\theta}{2} + \frac{\sin 2\theta}{4}$$

$$\int \frac{1}{x} dx = \ln(x)$$

$$\int \frac{dx}{\sqrt{x^2 + b^2}} = \ln\left[x + \sqrt{x^2 + b^2}\right]$$

Mass of Earth: $5.98 \times 10^{24} \ \mathrm{kg}$ Radius of Earth: $6.37 \times 10^6 \ \mathrm{m}$

Free fall acceleration: $g = 9.80 \text{ m/s}^2$ Gravitational constant: $G = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2$

Fundamental charge: $e = 1.60 \times 10^{-19} \text{ C}$

Coulomb constant: $k = 1/4\pi\epsilon_0 = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}$ Permittivity of free space: $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$ mass of proton: $m_{\text{p}} = 1.67 \times 10^{-27} \text{ kg}$

mass of electron: $m_{\rm e}=9.11\times 10^{-31}~{\rm kg}$ permeability of free space: $\mu_0=1.26\times 10^{-6}~{\rm N}~/~{\rm A}^2$

Conversions

1 in = 2.54 cm

 $1~\mathrm{mile} = 1.609~\mathrm{km}$

 $1\ \mathrm{meter} = 39.37\ \mathrm{in}$

 $1~\mathrm{mph} = 0.447~\mathrm{m/s}$

1 rad = $180^{\circ}/\pi = 57.3^{\circ}$ 1 rev = $360^{\circ} = 2\pi$ rad