Connectomics through nonlinear dynamics?

Jose Casadiego¹, Dimitra Maoutsa¹, Marc Timme^{1,2,3}

¹Network Dynamics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen

² Technical University of Darmastadt, Darmstadt

³ Bernstein Center for Computational Neuroscience (BCCN), Göttingen

Revealing synaptic connectivity from spike train data

gottingen

Constructing events from spike trains:

Event space representation:

Local samplings reveal synaptic connections:

Dynamics of N-coupled neurons:

$$egin{aligned} \Delta T^i &= h_i \left(\Lambda^i oldsymbol{w}^i
ight) \ oldsymbol{w}^i &= \left[w_1^i, w_2^i, \dots, w_N^i
ight]^ op \in \mathbb{R}^N \ \Lambda^i_{jj} &= egin{cases} 0, & ext{if } rac{\partial h_i}{\partial w_j} \equiv 0 \ 1, & ext{if } rac{\partial h_i}{\partial w_j}
otin \end{cases} = 0 \end{aligned}$$

Inferring networks from spike trains:

Correct predictions for erroneous delays

Take-home messages:

- We developed a model-independent approach for revealing synaptic connections from spike train data only.
- •Event space representations do not require prior knowledge of physiological parameters.
- •Transmission delays may be estimated from the same spike train data.

Inferring transmission delays:

Linear approximation error:

Actual delay vector minimises the approximation error

Radial Basis Function Approximation $\tilde{E}\left(\boldsymbol{\tau}_{i}\right)$ rough landscape $\boldsymbol{\tau}_{i,j}$ actual delay

This work was supported by the German Federal Ministry of Education and Research BMBF (Grant 01GQ1005B) and the IMPRS Physics of Biological and Complex Systems.