| Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage) |         |        |        |        |        |         |     |  |  |  |      |       |       |      |     |  |   |     |
|---------------------------------------------------------------------------------------|---------|--------|--------|--------|--------|---------|-----|--|--|--|------|-------|-------|------|-----|--|---|-----|
| Prénom(s) :                                                                           |         |        |        |        |        |         |     |  |  |  |      |       |       |      |     |  |   |     |
| N° candidat :                                                                         |         |        |        |        |        |         |     |  |  |  | N° c | d'ins | scrip | tion | ı : |  |   |     |
|                                                                                       | (Les nu | ıméros | figure | nt sur | la con | vocatio | n.) |  |  |  |      |       |       |      |     |  | ' |     |
| Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE  Né(e) le :                       |         |        |        |        |        | /       |     |  |  |  |      |       |       |      |     |  |   | 1.1 |

| ÉPREUVES COMMUNES DE CONTRÔLE CONTINU                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLASSE: Première                                                                                                                                                                                     |
| <b>E3C</b> : □ E3C1 ⊠ E3C2 □ E3C3                                                                                                                                                                    |
| VOIE : ⊠ Générale □ Technologique □ Toutes voies (LV)                                                                                                                                                |
| ENSEIGNEMENT : Spécialité « Mathématiques »                                                                                                                                                          |
| DURÉE DE L'ÉPREUVE : 2 heures                                                                                                                                                                        |
|                                                                                                                                                                                                      |
| CALCULATRICE AUTORISÉE : ⊠Oui □ Non                                                                                                                                                                  |
| DICTIONNAIRE AUTORISÉ: □Oui ⊠ Non                                                                                                                                                                    |
|                                                                                                                                                                                                      |
| ☐ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation. |
| ☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.                                        |
| ☐ Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.                                                                                |
| Nombre total de pages : 7                                                                                                                                                                            |



# Exercice 1 (5 points)

Ce QCM comprend 5 questions indépendantes. Pour chacune d'elles, une seule des réponses proposées est exacte.

Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n'apporte ni ne retire de point.

**1.** On considère une fonction f définie et dérivable sur l'intervalle [-1;4]. On a tracé sur la figure ci-dessous la courbe  $\mathcal{C}_f$  et la tangente à cette courbe au point A de coordonnées (2;2).



L'équation de la tangente à  $\mathcal{C}_f$  au point A est :

| Réponse a                  | Réponse b                  | Réponse c                  | Réponse d                  |
|----------------------------|----------------------------|----------------------------|----------------------------|
| $y = \frac{2}{3}(x-2) + 2$ | $y = 2(x-2) + \frac{2}{3}$ | $y = \frac{2}{3}(x+2) + 2$ | $y = \frac{3}{2}(x-2) + 2$ |



**2.** Dans un repère orthonormal (0, I, J), le point A, placé cicontre sur le cercle trigonométrique de centre O d'origine I , est associé au nombre réel :



| Réponse a | Réponse b | Réponse c | Réponse d |
|-----------|-----------|-----------|-----------|
| $11\pi$   | $2\pi$    | $2\pi$    | $3\pi$    |
| 6         | 3         | 3         | 4         |

**3.** On considère une fonction du second degré f définie sur  ${\bf R}$  par :

$$f(x) = ax^2 + bx$$

où a et b sont deux nombres réels strictement positifs.

Quelle est la courbe représentative de cette fonction dans un repère orthonormé ?





**4.** Dans le plan muni d'un repère orthonormé une droite  $\mathcal{D}$  a pour équation : x-2y=1. Parmi les propositions suivantes, laquelle est correcte ?

| Réponse a                                                                                                        | Réponse b                                                                                                    | Réponse c                                                                | Réponse d                                                           |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------|
| Le vecteur $\vec{u} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ est un vecteur directeur de la droite $\mathcal{D}$ . | Le vecteur $\vec{u} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ est un vecteur normal à la droite $\mathcal{D}$ . | Le point de coordonnées $A(1,-2)$ appartient à la droite $\mathcal{D}$ . | L'ordonnée à l'origine de la droite $\mathcal{D}$ est égale à $1$ . |

**5.** Un homme marche pendant 10 jours. Le premier jour, il parcourt 12 km. Chaque jour, il parcourt 500 m de moins que la veille. Durant ces dix jours, il aura parcouru au total :

| Réponse a | Réponse b | Réponse c | Réponse d |
|-----------|-----------|-----------|-----------|
| 95 km     | 97,5 km   | 19 km     | 84 km     |

| Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage) |         |        |        |         |        |          |      |  |   |  |      |       |       |      |     |  |  |     |
|---------------------------------------------------------------------------------------|---------|--------|--------|---------|--------|----------|------|--|---|--|------|-------|-------|------|-----|--|--|-----|
| Prénom(s) :                                                                           |         |        |        |         |        |          |      |  |   |  |      |       |       |      |     |  |  |     |
| N° candidat :                                                                         |         |        |        |         |        |          |      |  |   |  | N° ( | d'ins | scrip | otio | n : |  |  |     |
| Liberté · Égalité · Fraternité RÉPUIR LOUIF FRANÇAISE NÉ(e) le :                      | (Les no | uméros | figure | ent sur | la con | vocation | on.) |  | ] |  |      |       |       |      |     |  |  | 1.1 |

## Exercice 2 (5 points)

Une entreprise fabrique chaque jour x tonnes d'un produit. Le coût total mensuel, en milliers d'euros, pour produire chaque jour x tonnes de ce produit est modélisé par la fonction C définie sur l'intervalle [0; 10] par :

$$C(x) = (5x - 2)e^{-0.2x} + 2$$

On a représenté ci-dessous la courbe  $\mathcal{C}_{\mathcal{C}}$  de la fonction  $\mathcal{C}$  dans un repère.



- 1. Par lecture graphique, donner une estimation de la quantité journalière de produit pour laquelle le coût total mensuel est maximal.
- **2.** Le **coût marginal**  $C_m$ , qui correspond au supplément de coût total pour la production d'une unité de valeur supplémentaire, est assimilé à la **dérivée** de la fonction coût total.
- a) Démontrer que le coût marginal  $\mathcal{C}_m$  est défini sur l'intervalle  $[0\ ;\ 10]$  par :

$$C_m(x) = (-x + 5.4)e^{-0.2x}.$$

- b) Pour quelle quantité de produit fabriqué par jour le coût marginal est-il négatif?
- c) Donner le tableau de variations de la fonction C sur l'intervalle [0;10].
- **d)** Déterminer le coût total mensuel maximal sur l'intervalle considéré. On donnera la valeur arrondie à l'euro près.



#### **Exercice 3 (5 points)**

On considère qu'en 2019, 3 300 000 personnes étaient atteintes de diabète en France.

Pour étudier l'évolution de la maladie, des chercheurs appliquent un modèle selon lequel le nombre de personnes atteintes augmente de 2 % par an.

On note  $u_n$  le nombre de personnes atteintes de diabète en France selon ce modèle durant l'année (2019+n). On a donc  $u_0=3\ 300\ 000$ .

- **1.** Justifier que, selon ce modèle, le nombre de personnes atteintes de diabète en France sera de 3 433 320 en 2021.
- **2.** Quelle est la nature de la suite  $(u_n)$ ?
- **3.** Donner l'expression de  $u_n$  en fonction de n.
- **4.** En déduire le nombre de personnes qui, selon ce modèle, seront atteintes de diabète en France en 2025.
- 5. On définit en langage Python la fonction suivante.

```
def seuil(S):
    u=3300000
    n=0
    while u<S:
        u=u*1.02
        n=n+1
    return n</pre>
```

Après exécution dans la console on obtient l'affichage suivant.

```
>>> seuil(5000000)
21
```

Interpréter ce résultat dans le contexte de l'exercice.

| Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage) |         |        |        |         |        |          |      |  |   |  |      |       |       |      |     |  |  |     |
|---------------------------------------------------------------------------------------|---------|--------|--------|---------|--------|----------|------|--|---|--|------|-------|-------|------|-----|--|--|-----|
| Prénom(s) :                                                                           |         |        |        |         |        |          |      |  |   |  |      |       |       |      |     |  |  |     |
| N° candidat :                                                                         |         |        |        |         |        |          |      |  |   |  | N° d | d'ins | scrip | otio | ı : |  |  |     |
| Liberté Égalité Fraternité RÉPUBLIQUE FRANÇAISE  NÉ(e) le :                           | (Les nu | uméros | figure | ent sur | la con | vocation | on.) |  | ] |  |      |       |       |      |     |  |  | 1.1 |

## Exercice 4 (5 points)

Dans un aéroport, les portiques de sécurité servent à détecter les objets métalliques que peuvent emporter les voyageurs.

On choisit au hasard un voyageur franchissant un portique.

#### On note:

- S l'événement « le voyageur fait sonner le portique » ;
- *M* l'événement « le voyageur porte un objet métallique ».

On note  $\bar{S}$  et  $\bar{M}$  les événements contraires des événements S et M.

On considère qu'un voyageur sur  $500\,\mathrm{porte}$  sur lui un objet métallique.

#### On admet que:

- Lorsqu'un voyageur franchit le portique avec un objet métallique, la probabilité que le portique sonne est égale à 0,95.
- Lorsqu'un voyageur franchit le portique sans objet métallique, la probabilité que le portique ne sonne pas est de 0,96.
- **1.** À l'aide des données de l'énoncé, préciser les valeurs de P(M),  $P_M(S)$  et  $P_{\overline{M}}(\overline{S})$ .
- 2. Recopier et compléter l'arbre pondéré ci-dessous, modélisant cette situation :



- **3.** Montrer que P(S) = 0.04182.
- **4.** En déduire la probabilité qu'un voyageur porte un objet métallique sachant qu'il a fait sonner le portique en passant. On arrondira le résultat à  $10^{-3}$ .
- **5.** Les événements M et S sont-ils indépendants ?