Applied differential equations

TW244 - Lecture 02

Introduction: Definitions & terminology, IVPs

Prof Nick Hale - 2020

1.1: Definitions and terminology

1.1 Definitions and terminology Classification of DEs

Differential equation (DE): An equation containing the derivatives of one or more unknown functions with respect to one or more independent variables. Examples:

$$\frac{dy}{dx} = x\sqrt{y}, \quad y'' - 2y' + y = 0, \quad \ddot{x} + \sin(\pi x) = \cos(t).$$

Classification of DEs

Type: Ordinary (ODE): 1 independent variable, e.g., $\frac{dy}{dx} = x - y$.

Partial (PDE): 2 or more independent variables, e.g., $\frac{\partial \dot{u}}{\partial x} + \frac{\partial u}{\partial y} = x - y$.

Order: The order of a DE is the order of the highest appearing derivative.

Linearity: A DE is linear if the dep. variable and its derivatives are linear,

e.g.,
$$\frac{dy}{dx} = x - y$$
, $\frac{dy}{dx} = x^2 - y$, or $\frac{d^2y}{dx^2} + xy = 0$.

Otherwise it is nonlinear,

e.g.,
$$\frac{dy}{dx} = x - y^2$$
, or $(1 - y)\frac{dy}{dx} + 2y = e^x + x$.

1.1 Definitions and terminology Solutions and solution curves

Solution of a DE: Any function with <u>n continuous</u> derivatives that satisfies an nth-order DE on some interval I is said to be "a solution of the DE on I".

Example:

DE:
$$\frac{dy}{dx} = x - y$$

solution:
$$y = x - 1 + ce^{-x}$$
, $I = (-\infty, \infty)$ and $c \in \mathbb{I}$

solution:
$$y = x - 1 + ce^{-x}$$
, $I = (-\infty, \infty)$ and $c \in \mathbb{R}$ verify: $\frac{dy}{dx} = 1 - ce^{-x} = x - (x - 1 + ce^{-x}) = x - y$

Example:

DE:
$$x\frac{\partial y}{\partial x} + y = 0$$

solution:
$$V = (-\infty, 0) \cup (0, \infty)$$
 (NB, y is not cts at $x = 0$)

verify:
$$x \frac{dy}{dx} + y = x(-\frac{c}{x^2}) + \frac{c}{x} = -\frac{c}{x} + \frac{c}{x} = 0.$$

Solution curve: The graph of a solution over the interval *I*.

1.1 Definitions and terminology

Explicit vs implicit solutions

Explicit solutions: Dep. variable is expressed in terms of indep. variable. For example,

DE: $\frac{dy}{dx} = x - y$ solution: $y = x - 1 + ce^{-x}$

Implicit solutions: Otherwise. For example,

DE: $\frac{dy}{dx} = (-\frac{x}{y})$ solution: $x^2 + y^2 = c^2$ (implicit) or $y = \pm \sqrt{c^2 - x^2}$ (explicit)

verify: $\frac{d}{dx}(x^2+y^2) = \frac{d}{dx}(c) \implies 2x+2y\frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -\frac{x}{y}$

Note that in example 2 we require $x \in [-c, c]$ for the solution to be real. However, $y \neq 0$ (look at the original DE), so $x \neq \pm c$, and hence l = (-c, c).

1.1 Definitions and terminology

Family of solutions

Family of solutions: Set of solutions parameterized by integration constant(s). For example, $x^2 + y^2 = c^2$ forms one-parameter family of solutions for $\frac{dy}{dx} = -\frac{x}{y}$. Here are some other examples:

Exercise: Verify that the one-parameter family of solutions to $\frac{dy}{dx} = x\sqrt{y}$ is given by $y = (\frac{1}{4}x^2 + c)^2$.

Special cases:

Particular solution: A solution free from arbitrary parameters

Singular solution: Not a member of any family, e.g., y=0 for $\frac{dy}{dx}=x\sqrt{y}$

1.2: Initial value problems (IVPs)

1.2 Initial value problems IVPs and BVPs

Typically, additional information is given, from which the integration constant can be determined. (E.g., our skydiver had velocity v(0) = 0.)

This is how we choose a particular solution from the family.

These additional constraints usually come in two varieties

initial conditions:
$$y(x_0) = y_0$$
, $y'(x_0) = y_1$, ,... boundary conditions: $y(x_0) = y_0$, $y(x_1) = y_1$, ,...

boundary conditions:
$$y(x_0) = y_0$$
, $y(x_1) = y_1$, ,...

although it is possible to have more exotic constraints 7

other conditions:
$$\int_{x_0}^{x_1} y(x) dx = 0, ...$$

Let's look at some examples.

1.2 Initial value problems (108) Example 1

$$DE: \frac{dy}{dx} + 2xy^2 = 0$$

solution:
$$y(x) = \sqrt{x^2+c}$$

verify: $\frac{dy}{dx} + 2xy^2 = -2x/(x^2+c)^2 + 2x/(x^2+c)^2 = 0$

Exercise: Verify that this DE also has a singular solution
$$y = 0$$
.

Exercise: Verity that this DE also has a singular solution
$$y=0$$

Given the initial condition y(0) = -1, determine the particular solution.

$$y(0) = -1 \implies -1 = \frac{1}{0+c} \implies c = -1 \implies y = \frac{1}{x^2-1}$$

Exercise: What is the solution interval for $y = 1/(x^2 - 1)$?

y'a 2xy2=0, y(0)=-1

1.2 Initial value problems Example 2

Consider the following DE:

DE:
$$(\frac{d^2y}{dx^2}) + 16y = 0$$

DE:
$$\frac{d^2y}{dx^2} + 16y = 0$$

solution: $y = c_1 \cos(4x) + c_2 \sin(4x)$ \leftarrow (two-parameter family)
verify: exercise

verify: exercise

Suppose we are given initial conditions $y(\frac{\pi}{2}) = -2$ and $y'(\frac{\pi}{2}) = 1$, then

$$y(\frac{\pi}{2}) = -2 \implies c_1.1 + c_2.0 = -2 y'(\frac{\pi}{2}) = -1 \implies 4c_1.0 + 4c_2.1 = 1$$
 $\implies c_1 = -2, c_2 = \frac{1}{4},$

and the particular solution is given by $y = -2\cos(4x) + \frac{1}{4}\sin(4x)$.

Exercise: Find the particular solution given boundary conditions \(\) $y(\frac{-\pi}{2}) = -2$ and $y'(\frac{\pi}{2}) = 1$.

1.2 Initial value problems

Existence of a unique solution: theorem

Consider the first-order IVP $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$.

Theorem 1.2.1: Existence of a unique solution Suppose R is a rectangular region in the xy-plane defined by $a \le x \le b$ and $c \le y \le d$ and containing the point (x_0, y_0) . Suppose further that f(x, y) and $\frac{\partial f}{\partial y}$ are continuous in R. Then there exists an interval $I_0 = (x_0 - h, x_0 + h)$ in [a, b] over which the solution y(x) is unique.

1.2 Initial value problems

Existence of a unique solution: example

Let's look at an example.

Consider the first-order IVP $\frac{dy}{dx} = x\sqrt{y}$ with $y(x_0) = y_0$.

Consider the first-order IVP
$$\frac{\partial f}{\partial x} = X\sqrt{y}$$
 with $y(X_0) = y_0$.
$$f(x,y) = x\sqrt{y} \text{ and } \frac{\partial f}{\partial y} = x\frac{1}{2\sqrt{y}} \text{ are continuous for } y > 0.$$

By the theorem above, solution through (x_0, y_0) is unique as long as $y_0 > 0$:

$$y(0) = 0 \implies y = 0 \text{ or } y = \frac{1}{16}x^4 \implies \text{ solution is not unique }$$

 $y(2) = 1 \implies y = \frac{1}{16}x^4 \implies \text{ and solution is unique}$

Remark: The conditions of Theorem 1.2.1 are sufficient but not necessary. (See p17 of Z&W for details.)