

Introduction à l'Intelligence Artificielle (L2 Portail Sciences et Technologies)

Andrea G. B. Tettamanzi Laboratoire I3S – Équipe SPARKS

andrea.tettamanzi@univ-cotedazur.fr

univ-cotedazur.fr

Séance 3 Programmation logique et systèmes de règles

Plan pour cette séance

- Systèmes experts
- Quelques notions de logique
- Chaînage avant
- Chaînage arrière
- Programmation logique

Système expert

- Un système qui peut aider à résoudre
 - Des problèmes complexes du monde réel
 - Dans des domaines spécifiques
 - Science
 - Ingénierie
 - Médecine
- Utilisation de connaissances du domaine
 - Faits et procédures glanés d'experts humains
 - Utiles pour résoudre des problèmes typiques d'un domaine
- Très à la mode dans les années 1970 et 1980
- Aujourd'hui on parle plutôt de systèmes d'aide à la décision

Architecture d'un système expert

- Un système expert est une application qui simule l'intelligence et le comportement humain dans un domaine spécifique et limité
- Il se compose de trois modules principaux :
 - Une base de connaissances
 - Un moteur d'inférence
 - Une interface utilisateur

Exemples d'applications

- Chimie : détermination de structure, synthèse
- Maths : résolution de problèmes
- Géologie : prospection
- Médecine :
 - Consultation clinique / aide à la décision
 - Diagnose à partir d'imagerie médicale
- Finance : planification stratégique, trading
- Commerce: marketing, recommandation

Points forts et faibles

- Le systèmes experts sont bons pour :
 - Des domaines limités où des connaissance expert sont disponibles
 - Fournir un avis expert dans des sites distants
 - Améliorer les performances en appliquant des heuristiques suggérées per des experts
 - Planification, diagnostic, manipulation robotisée, exploration, commande
- Ils ne sont pas adaptés pour :
 - Représenter des connaissances temporelles
 - Représenter des connaissances spatiales
 - Faire du raisonnement « de bon sens »
 - Reconnaître leurs limites
 - Exploiter des connaissances incohérentes (c-à-d contradictoires)

Connaissances

- Élément critique d'un système expert
- Nature (déclarative, procédurale, implicite, ...)
- Représentation (voir aussi prochaine séance)
- Phénomène essentiellement social
 - Partage
 - Transfert humain → machine : extraction
 - Transfert machine → humain : explication
- Ressource, avec une valeur économique

Notions de logique

- Si on veut formaliser des connaissances et les utiliser pour faire des raisonnements, la logique semble être l'outil parfait
- La logique est l'étude
 - Du sens de ce que nous affirmons (sémantique)
 - De la façon dont nous raisonnons (ou devrions raisonner)
- Or, l'une des caractéristiques de l'intelligence semble être la capacité de raisonner
- Donc, si nous voulons construire des machines intelligentes, nous devons être capables d'automatiser le raisonnement

Qu'est-ce que la Logique ?

- La logique est l'étude des informations encodées sous forme de phrases (ou formules) logiques.
- Chaque phrase S divise l'ensemble des mondes possibles en l'ensemble des mondes dans lesquels S est vrai (modèles de S) et l'ensemble des mondes dans lesquels S est faux (contre-modèles de S)
- Un ensemble de prémisses implique logiquement une conclusion ⇔ la conclusion est vraie dans tous les mondes où toutes les prémisses sont vraies
- Une logique consiste en :
 - Un langage avec une syntaxe formelle et une sémantique précise
 - Une notion d'implication logique
 - Des règles de manipulation des expressions du langage

Logique Propositionnelle

- Une signature propositionnelle est un ensemble de symboles primitifs, appelés constantes propositionnelles.
- Une constante propositionnelle symbolise une phrase simple, comme
 - "il pleut" → p
 - "le réservoir est vide" → v
- Étant donnée une signature propositionnelle, une phrase propositionnelle est :
 - Soit un élément de sa signature
 - Soit une expression composée à partir d'éléments de sa signature.
 (voir prochaine diapo pour plus de détails)
- Un langage propossitionnel est l'ensemble des phrases propositionnelles qui peuvent être formées à partir de sa signature.

Phrases Composées

- Négations : ¬pluvieux
- Conjonction : (pluvieux \(\n \) neigeux)
- Disjonction : (pluvieux v neigeux)
- Implication : (*pluvieux* ⇒ *nuageux*)

L'argument de gauche d'une implication s'appelle l'antécédent.

L'argument de droite s'appelle le conséquent.

Équivalence : (nuageux ⇔ couvert)

Interprétation propositionnelle

 Une interprétation propositionnelle est une fonction qui met en correspondance chaque constante propositionnelle dans un langage propositionnel avec les valeurs de vérité V ou F

$$\mathcal{I}: \text{Constantes} \to \{F, V\}$$

 Nous considérons parfois une interprétation comme un vecteur booléen de valeurs pour les éléments de la signature de la langue (lorsque la signature est ordonnée) : VFV

Interprétation d'une phrase

 Une interprétation de phrase est une fonction qui met en correspondance chaque phrase propositionnelle avec les valeurs de vérité V or F.

$$p^{\mathcal{I}} = V$$
 $(p \lor q)^{\mathcal{I}} = V$
 $q^{\mathcal{I}} = F$ $(\neg q \lor r)^{\mathcal{I}} = V$
 $r^{\mathcal{I}} = V$ $((p \lor q) \land (\neg p \lor r))^{\mathcal{I}} = V$

• Une interprétation propositionnelle définit une interprétation de phrase par application de la sémantique des opérateurs.

Sémantique des opérateurs

$$egin{array}{c|c} \phi & \neg \phi \ \hline F & V \ V & F \ \end{array}$$

$$egin{array}{c|cccc} \phi & \psi & \phi \wedge \psi \\ \hline F & F & F \\ F & V & F \\ V & F & F \\ V & V & V \\ \hline \end{array}$$

$$egin{array}{c|cccc} \phi & \psi & \phi ee \psi \ \hline F & F & F \ F & V & V \ V & F & V \ V & V & V \ \end{array}$$

ϕ	ψ	$\phi \Rightarrow \psi$
\overline{F}	F	V
F	V	V
V	F	$\mid F \mid$
V	V	ig V

$$egin{array}{|c|c|c|c|c|} \phi & \psi & \phi \Leftrightarrow \psi \\ \hline F & F & V \\ F & V & F \\ V & F & F \\ V & V & V \\ \hline \end{array}$$

Interprétations multiples

- La logique ne prescrit pas quelle interprétation est "correcte". En l'absence d'informations supplémentaires, une interprétation est aussi bonne qu'une autre.
- Exemples:
 - Des jours de la semaine différents
 - Des lieux différents
 - Opinions de gens différents
- Nous pouvons penser à une interprétation comme un monde possible
- L'ensemble de toute les interprétations (mondes possibles) est

$$\Omega = \{F, V\}^{\text{Constantes}}$$
 $\|\Omega\| = 2^{\|\text{Constantes}\|}$

Tables de vérité

• Une table de vérité est une table de toutes les interprétations possibles des constantes propositionnelles dans un langage (c'est-à-dire une représentation de Ω).

p	q	r
\overline{F}	\overline{F}	\overline{F}
F	F	V
F	V	F
F	V	V
V	F	F
V	F	V
V	V	F
V	V	V

Une ligne par interprétation

Une colonne par constante

Pour un langage avec n constantes, il y a 2^n interprétations

Propriétés des phrases

Valides (tautologies)

Une phrase est *valide* si et seulement si *toute* interpretation la satisfait.

Contingentes

Une phrase est *contingente* si et seulement si au moins une interprétation la satisfait et au moins une interprétation la falsifie.

Insatisfaisables

Une phrase est *insatisfaisable* si et seulement si *aucune* interprétation ne la satisfait.

Properties of Sentences

Valides (tautologies)

Contingentes

Insatisfaisables

Un phrase est *satisfaisable* si et seulement si elle est soit valide, soit contingente.

Une phrase est *falsifiable* si et seulement si elle est soit contingente, soit insatisfaisable.

Exemple d'une tautologie

p	q	r	$p \Rightarrow q$	$q \Rightarrow r$	$(p \Rightarrow q) \lor (q \Rightarrow r)$
\overline{F}	F	F			
F	F	V			
F	V	F			
F	V	V			
V	F	F			
V	F	V			
V	V	F			
V	V	V			

Exemple d'une tautologie

p	q	r	$p \Rightarrow q$	$q \Rightarrow r$	$(p \Rightarrow q) \lor (q \Rightarrow r)$
\overline{F}	F	F	V	V	
F	F	V	V	V	
F	V	F	V	F	
F	V	V	V	V	
V	F	F	F	V	
V	F	V	F	V	
V	V	F	V	F	
V	V	V	ig V	ig V	

Exemple d'une tautologie

p	q	r	$p \Rightarrow q$	$q \Rightarrow r$	$(p \Rightarrow q) \lor (q \Rightarrow r)$
\overline{F}	F	F	V	V	V
F	F	V	V	$\mid V \mid$	V
F	V	F	V	F	V
F	V	V	V	V	V
V	F	F	F	V	V
V	F	V	F	V	V
V	V	F	V	F	V
V	V	V	ig V	ig V	ig

Quelques autres tautologies

Double Négation :

$$p \Leftrightarrow \neg \neg p$$

Lois de de Morgan :

$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$
$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$

Introduction de l'implication : $p \Rightarrow (q \Rightarrow p)$

Distribution de l'implication :

$$(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$$

Implication logique

 Un ensemble de prémisses Δ implique logiquement une conclusion φ, écrit

$$\Delta \models \phi$$

si et seulemement si toute interprétation qui satisfait les prémisses satisfait aussi la conclusion.

Exemples:

$$\{p\} \models p \lor q$$

$$\{p\} \not\models p \land q$$

$$\{p,q\} \models p \land q$$

Implication logique ≠ Équivalence !

Méthode de la table de vérité

- Pour calculer si un ensemble de prémisses entraîne logiquement une conclusion :
 - 1)Former un tableau de vérité pour les constantes propositionnelles se produisant dans les prémisses et la conclusion ; ajouter une colonne pour les prémisses et une colonne pour la conclusion
 - 2)Évaluer les prémisses pour chaque ligne de la table
 - 3)Évaluer la conclusion pour chaque ligne de la table
 - 4)Si toute ligne qui satisfait les prémisses satisfait aussi la conclusion, alors les prémisses entraînent logiquement la conclusion

Implication logique et satisfaisabilité

- Théorème : $\Delta \models \phi$ si et seulement si $\Delta \cup \{\neg \phi\}$ est insatisfaisable.
- **Corollaire**: nous pouvons déterminer l'implication logique en déterminant la satisfaisabilité (preuve par réfutation).

De la logique propositionnelle à la logique des prédicats

- En logique propositionnelle nous pouvons exprimer cela :
 - Prémisses:
 - Si Jaques connaît Gilles, alors Gilles connaît Jacques;
 - Jacques connaît Gilles.
 - Conclusion:
 - Gilles connaît Jacques
- Mais qu'en est-il de cela ?
 - Premisses:
 - Si une personne en connaît une autre, alors cette autre personne connaît la première ;
 - Jacques connaît Gilles.
 - Conclusion: ...

Logique relationnelle

- Il nous faut des nouveaux ingrédients :
 - Variables
 - Quantificateurs

Par exemple,

$$\forall x \forall y (\mathsf{connaît}(x,y) \Rightarrow \mathsf{connaît}(\mathsf{y},\mathsf{x}))$$

Logique relationnelle : Syntaxe

- Objets constants (individus): Jacques, Nice, France, 0, 2345, 3.1415
- Relation constantes (prédicats): connaît, aime, identique
- Les prédicats ont une « arité »:
 - Unaire 1 argument
 - Binaire 2 arguments
 - Ternaire 3 arguments
 - *n*-aire *n* arguments
- Signature:
 - Ensemble d'objets constants
 - Ensemble de prédicats avec leur arité
- Variables: *x*, *y*, *z*, etc.

Terms and Sentences

- Un terme est une variable ou un objet constant
- Les termes représentent des objets
- Ils sont l'équivalent des syntagmes nominaux en français
- Phrases
 - Relationnelles (atomes, ≈ propositions simples):
 - Un prédicat d'arité n appliqué à n termes
 - Logiques (≈ proposition complexes):
 - Combinaisons de phrases liées par des opérateurs
 - Quantifiées :
 - Phrases avec variables quantifiées

Phrases

Phrase ::=

- Une constante relationnelle d'arité *n* appliquée à *n* termes.
- $(\neg \phi)$ où ϕ est une phrase.
- $(\phi \ V \ \psi)$, où ϕ et ψ sont des phrases.
- $(\phi \wedge \psi)$, où ϕ et ψ sont des phrases.
- $(\phi \Rightarrow \psi)$, où ϕ et ψ sont des phrases.
- $(\phi \Leftrightarrow \psi)$, où ϕ et ψ sont des phrases.
- $(\forall x \phi)$, où ϕ est une phrase.
- $(\exists x \ \phi)$, où ϕ est une phrase.

Seules les expressions produites par les règles ci-dessus sont des phrases.

Logique des prédicats (avec fonctions)

- La syntaxe est une extension de la syntaxe de la logique Relationnelle
- Constantes fonction avec leur arité : f(.), g(., .), etc.
- La définition d'un terme devient :
 - Une variable
 - Une constante objet
 - Une constante fonction d'arité n appliquée à n termes.
- Seules les expressions produites par les règles ci-dessus sont des termes.
- Par conséquent, l'ensemble des termes sera infini, même si le vocabulaire du langage est fini.

Règles d'inférence

- Un *schéma* est une expression qui suit la grammairede notre langage, mais qui en outre utilise des *méta-variables* (par exemple écrites comme des lettres grèques) à la place de certaines parties d'une expression.
- Exemple:

$$\phi \Rightarrow \psi$$

Une règle d'inférence s'écrit :

Prémisses	
Conclusions	

Modus Ponens

$$\frac{\phi \Rightarrow \psi}{\phi}$$

Décidabilité et complexité

- La logique des prédicats est trop puissante
- Une théorie en logique des prédicats peut être indécidable (Théorème de Gödel)
- Même si la logique propositionnelle est décidable, le problème de décider si un ensemble de phrases est satisfaisable est NPcomplet.
- Il nous faut des fragments plus maniables

Clauses de Horn

$$eg b_1 \lor \neg b_2 \lor \ldots \lor \neg b_n \lor h$$
 c-à-d $(b_1 \land b_2 \land \ldots \land b_n) \Rightarrow h$ (stricte)
$$h \qquad \text{(positive)}$$
 $eg b_1 \lor \neg b_2 \lor \ldots \lor \neg b_n \qquad \text{(négative)}$

Intuitivement, elles représentent des règles « si ... alors ... » et permettent de déduire de nouveaux faits à partir de faits existants

Le problème de la satisfaisabilité d'un ensemble de clauses de Horn est dans la classe P

Moteur d'inférence

- Étant donnée une base de connaissances qui organise les connaissances et l'expertise liées au domaine par des règles et des faits, il y a trois possibilités pour le moteur d'inférence :
 - Chaînage avant (c-a-d guidé par les données essentiellement modus ponens)
 - Chaînage arrière (c-a-d guidé par les hypothèses)
 - Mixte (c-a-d, combinaison de chaînage avant et arrière)
- La plupart des systèmes experts supposent que le fonctionnement du moteur d'inférences est monotone
- Quelques systèmes permettent de raisonner sous incertitude
 - Probabiliste (MYCIN, Bayes, Demster-Shafer)
 - Possibiliste (logique floue)
 - Non-monotone (systèmes de maintien de la cohérence)

Chaînage avant

- Méthode de déduction qui applique des règles en partant des prémisses pour en déduire de nouvelles conclusions.
- Ces conclusions enrichissent la mémoire de travail et peuvent devenir les prémisses d'autres règles.
- Le chaînage avant est utilisé dans un système expert à base de règles
- Il est complet (toutes les conclusions qui suivent logiquement des prémisses sont générées)

Exemple

- 1)Si X coasse et mange des mouches, alors X est une grenouille.
- 2)Si X piaule et chante, alors X est un canari.
- 3)Si X est une grenouille, alors X est vert.
- 4)Si X est un canari, alors X est jaune.
- 5)Fritz coasse et mange des mouches

Quelle est la couleur de Fritz ?

Chaînage Arrière

- Dans le chaînage arrière, on part des conclusions et on cherche de voir si leurs prémisses sont satisfaites
- Typiquement, on fait une recherche en profondeur d'abord
- Plus rapide que le chaînage avant
- Le chaînage arrière est mis en œuvre dans la programmation logique

Exemple

- 1)Si X coasse et mange des mouches, alors X est une grenouille.
- 2)Si X piaule et chante, alors X est un canari.
- 3)Si X est une grenouille, alors X est vert.
- 4)Si X est un canari, alors X est jaune.
- 5)Fritz coasse et mange des mouches

Quelle est la couleur de Fritz?

Programmation Logique

- Uune forme de programmation qui définit les applications à l'aide
 - d'un ensemble de faits élémentaires les concernant
 - de règles leur associant des conséquences plus ou moins directes
- Ces faits et ces règles sont exploités par un moteur d'inférence, en réaction à une question ou requête
- Cette approche se révèle beaucoup plus souple que la définition d'une succession d'instructions que l'ordinateur exécuterait
- La programmation logique est considérée comme une programmation déclarative plutôt qu'impérative, car elle s'attache davantage au quoi qu'au comment, le moteur assumant une large part des enchaînements
- Elle est particulièrement adaptée aux besoins de l'intelligence artificielle

Prolog

- Langage de programmation logique
- Inventé par Alain Colmerauer (U Marseille) en 1971
- Interprète Prolog d'Édimbourg (1977)
- Prolog II, III, et IV (programmation par contraintes)
- Basé sur les clauses de Horn, l'unification, la résolution et le chaînage avant

Syntaxe du Prolog (1)

 Un programme Prolog se presente comme une suite de règles ou clauses de la forme

qu'on interprète comme :

P est vrai si Q1, Q2, ..., Qn sont vrais.

• Une règle de la forme

Ρ.

est appelée un fait car il n'y a aucune condition pour sa véracité.

- P est appelé la tête et Q1, Q2, ..., Qn le corps de la règle.
- Chacun de ces éléments est appelé un litteral, composé d'un symbole de prédicat et d'arguments entre parenthèses separés par des virgules

Syntaxe du Prolog (2)

 Les variables sont notées par des identifiants débutant par une majuscule ou un souligné :

```
X, Couleur, animal
```

 Les constantes objet sont notées soit par des nombres ou par des identifiants débutant par une minuscule :

```
jaune, vert, mouches, fritz, 2, 3.14
```

• Les termes composés sont notés par un foncteur et des arguments qui sont eux-mêmes des termes :

```
parent(X), parent(parent(fritz)), factoriel(3),
max(0, X).
```

 Les prédicats sont notés (comme les constantes et les foncteurs), par des identifiants débutant par une minuscule

```
mange(X, Y), coasse(fritz)
```

Exemple

```
grenouille(X) :- coasse(X), mange(X, mouches).
canari(X) :- piaule(X), chante(X).
couleur(X, vert) :- grenouille(X).
couleur(X, jaune) :- canari(X).
coasse(fritz).
mange(fritz, mouches).
?- couleur(fritz, Couleur)
Couleur = vert
```

