Announcements for Wednesday, 11DEC2024

- End-of-Semester Surveys due Monday, 16DEC2024, at 11:59 PM (EST)
- Week 14 Homework Assignments available on eLearning
 - Graded and Timed Quizzes 12a & 12b "Gases Intermolecular Forces" due tonight at 6:00 PM (EST)
- Final Exam Conflict Requests
 - Due by Friday, 13DEC2024, 11:59 PM
 - See Canvas Announcement from 09DEC2024
- Final Exam is Wednesday, 18DEC2024, 4:00-7:00 PM (EST)
 - Coverage: Chapters E-11
 - Exam details and locations will be announced on Canvas

ANY GENERAL QUESTIONS? Feel free to see me after class!

Final Exam Format

- ACS Exam Only
 - 70 multiple-choice questions, 110 minutes
 - YOU MUST NOT WRITE IN THE EXAM BOOKLET!!
 - 10-point penalty if you do
 - everything will be collected after 110 minutes
 - see Canvas Announcement from 11DEC2024 for more information

Try This On Your Own

Choose the compound that is most likely a gas at room temperature:

The Critical Point

- critical point of a liquid = the temperature and pressure at which the liquid and gas of a substance cease to exist as separate phases
 - the gas and liquid phases transitions into a single, homogeneous phase
- supercritical fluid
 - has properties of both gases and liquids
 - can expand to fill container like a gas but has the density more of a liquid
- critical temperature (T_c) = the temperature at which a substances becomes a supercritical fluid
 - above this temperature the supercritical fluid cannot condense into a traditional liquid no matter how much pressure is applied
- critical pressure (P_c) = the pressure at which a substance becomes a supercritical fluid
- for water, critical point is at 374 °C and 218 atm
- for CO₂, critical point is at 31.1 °C and 72.9 atm

Phase Changes – Melting vs. Freezing

- melting = (s) \rightarrow (ℓ)
 - also known as "fusion"
 - IMFs within the solid must be overcome
 - endothermic

- freezing = $(\ell) \rightarrow (s)$
 - exothermic process

- strong intermolecular forces = high melting points and high freezing points
 - H₂O(s) melts at 0 °C
 - CH₄(s) melts at −182 °C

Heat of Fusion (ΔH_{fus})

• ΔH_{fus} = the amount of energy needed to convert 1 mole of a substance from a solid to a liquid at its melting point

TABLE 11.9 Heats of Fusion of Several Substances

Liquid	Chemical Formula	Melting Point (°C)	$\Delta H_{ m fus}$ (kJ/mol)
Water	H ₂ O	0.00	6.02
Rubbing alcohol (isopropyl alcohol)	C ₃ H ₈ O	-89.5	5.37
Acetone	C ₃ H ₆ O	-94.8	5.69
Diethyl ether	C ₄ H ₁₀ O	-116.3	7.27

© 2018 Pearson Education, Inc.

- in general lower melting points indicate weaker intermolecular forces
- at 0 °C, $H_2O(s) \rightarrow H_2O(\ell) \Delta H = +6.02 \text{ kJ/mol}$
- for liquid water at 0 °C, $\Delta H_{freezing} = -(\Delta H_{fus}) = -6.02$ kJ/mol

Try This On Your Own

How much heat must be removed to freeze 1.25 kg of water at 0 °C given that ΔH_{fus} = +6.02 kJ/mol? 418 kJ

$$\Delta H_{\text{fus}}$$
 = +6.02 kJ/mol, so $\Delta H_{\text{freezing}}$ = -6.02 kJ/mol

1.25 kg H₂O ×
$$\frac{1000 \text{ g}}{1 \text{ kg}}$$
 × $\frac{1 \text{ mol H}_2\text{O}}{18.02 \text{ g}}$ × $\frac{-6.02 \text{ kJ}}{1 \text{ mol H}_2\text{O}}$ = -418 kJ

418 kJ must be removed

Phase Changes – Sublimation vs. Deposition

- sublimation = (s) \rightarrow (g)
 - IMFs within the solid must be overcome
 - endothermic
 - sublimation of CO₂

- deposition = $(g) \rightarrow (s)$
 - exothermic process

© 2018 Pearson Education, Inc.

CO₂(s) (dry ice)

strong intermolecular forces = high sublimation temperatures

A Summary of Phase Changes

liquid (
$$\ell$$
)

 $\Delta H_{\text{condensation}}$
 $\Delta H_{\text{condensation}}$

solid (s)

 ΔH_{fusion} (+)

 $\Delta H_{\text{freezing}}$ (-)

 $\Delta H_{\text{sublimation}}$ (+)

solid (s)

 $\Delta H_{\text{sublimation}}$ (+)

 $\Delta H_{\text{deposition}}$ (-)

in general when undergoing phase changes, substances exhibiting relatively strong intermolecular forces require greater amounts energy (or release greater amounts of energy) than substances with weaker intermolecular forces

Heating Curves

- heating curve = a plot that shows how the temperature of a substance changes as it is heated up at a constant rate
- as heat is added to a substance, it will be used to do two things
- 1. increase the temperature of a substance
 - slope (rate of temperature change) depends on the substance's specific heat
 - $q = m C_s \Delta T$ (Chapter 9)
- 2. cause phase transitions at specific temperatures
 - for H₂O, melting point at 0 °C and boiling point at 100 °C
 - during phase transitions, the temperature of the substance does NOT change as heat is added

Heating Curve of Water

How much heat (kJ) is required to warm 1.00 mole of ice at -50.0 °C to liquid water at 95.0 °C? 15.04 kJ

For <u>ice</u>: $C_s = 2.09 \text{ J/g} \cdot {}^{\circ}\text{C}$, melting point = 0 ${}^{\circ}\text{C}$, and $\Delta H_{fus} = 6.02 \text{ kJ/mol}$

For <u>liquid water</u>: $C_s = 4.18 \text{ J/g} \cdot ^{\circ}\text{C}$

- 1. warm ice from -50.0 °C to 0 °C ($\Delta T = 50.0$ °C) $q = (18.0 g)(2.09 J/g \cdot ^{\circ}C)(50.0 ^{\circ}C) = 1.88 kJ$
- 2. convert ice to liquid (q = n ΔH_{fus}) q = (1.00 mole)(6.02 kJ/mol) = 6.02 kJ
- 3. warm liquid from 0 °C to 95.0 °C ($\Delta T = 95.0$ °C) $q = (18.0 g)(4.18 J/g^{\circ}C)(95.0 °C) = 7.14 kJ$

$$q_{TOTAL} = 1.88 + 6.02 + 7.14 = 15.04 \text{ kJ}$$

Heat Added (kJ/mol)

Phase Diagrams

- phase diagram = a map of the state of a substance as a function of temperature and pressure
 - we can predict the state of a substance under a given set of conditions
 - we can predict whether a change of state will occur when conditions are changed
- regions vs. lines vs. points on a phase diagram
 - regions = areas that represent conditions where a particular state is stable
 - lines = sets of temperatures and pressures at which the substance is in equilibrium between two states
 - points = unique sets of temperatures and pressures at which specific phenomena occur

Phase Diagram – General Features

- gas phase
 - favored at high temp and low pressure
- liquid phase
- solid phase
 - favored at low temp and high pressure
- sublimation curve
 - solid and gas in equilibrium
- fusion curve
 - solid and liquid in equilibrium
- vaporization curve
 - liquid and gas in equilibrium
- triple point
 - temperature and pressure at which three phases are in equilibrium
- normal melting point and boiling point at 1 atm

temperature (not to scale)

Navigating Within a Phase Diagram

- changing temperature = horizontal movement
- changing pressure = vertical movement

consider the phase diagram shown

- What phase is present at 140 °C and 900 mmHg? solid
- What happens when the substance initially at 160 °C and 800 mmHg is put under increased pressure at constant temperature? condensation
- Which point has solid in equilibrium with gas? point C
- How many points have at least two states in equilibrium? four
- Does the substance have a normal melting point or boiling point? no
- What is the densest phase for this substance? solid

Temperature

Phase Diagrams – Water vs. CO₂

- unusual negative slope of fusion curve
 - the liquid is more dense than the solid
- triple point at 0.01 °C and 0.006 atm
- liquid exists at normal atmospheric pressure

- positive slope of fusion curve
 - solid is the most dense phase
- triple point at –56.7 °C and 5.1 atm
- liquid cannot exist at normal atmospheric conditions
 - solid sublimes directly into gas
- critical point at 31 °C and 72.9 atm

Try This On Your Own

$$C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g)$$
 $\Delta H_{rxn} = -2044 kJ$

20.0 g C₃H₈(g) is burned in excess oxygen and all the heat generated is absorbed by a 2.00-kg block of ice at -80 °C? Assuming no heat is lost to the surroundings, determine the temperature and physical state of H_2O that results.

For <u>ice</u>: $C_s = 2.09 \text{ J/g} \cdot {}^{\circ}\text{C}$, melting point = 0 ${}^{\circ}\text{C}$, and $\Delta H_{\text{fus}} = 6.02 \text{ kJ/mol}$

For <u>liquid water</u>: $C_s = 4.18 \text{ J/g} \cdot {}^{\circ}\text{C}$, boiling point = 100 ${}^{\circ}\text{C}$, and $\Delta H_{\text{vap}} = 40.7 \text{ kJ/mol}$

 H_2O (s) AND $H_2O(\ell)$ at 0 °C

heat released by combustion:
$$20.0 \text{ g C}_3\text{H}_8 \times \frac{1 \text{ mol C}_3\text{H}_8}{44.09 \text{ g}} \times \frac{-2044 \text{ kJ}}{1 \text{ mol C}_3\text{H}_8} = 927 \text{ kJ released by combustion into the ice}$$

heat needed to raise temperature of ice from -80 °C to melting point (0 °C):

$$q = m C_s \Delta T = (2000 g)(2.09 J/g \cdot {}^{\circ}C)(0 {}^{\circ}C - (-80 {}^{\circ}C) = 3.34 \times 10^5 J = 334 kJ$$

heat needed to completely melt ice at 0 °C:

$$q = n \Delta H_{fus} = (\frac{2000 \text{ g}}{18.02 \text{ g/mol}})(6.02 \text{ kJ/mol}) = 668 \text{ kJ}$$

total heat required = 334 kJ + 668 kJ = 1002 kJ; but only 927 kJ available

there is enough heat to bring ice to 0 °C but not enough to completely convert all ice into water at 0 °C