CR410 AA14/15 (Crittografia a chiave pubblica)					ESAME DI METÀ SEMESTRE					Roma, 31 Marzo, 2015.
<i>Cognome</i>	ognome Nome			$ne \dots$	$Matricola$ $$					
Risolvere il massimo nu	imero di P <i>RISPOS</i>	esercizi STE SC	fornenc	do spieg SU A1	gazioni o LTRI FO	chiare ϵ	sinteti	che. In	serire le rispo	ste negli spazi predisposti. o previsto: 2 ore. Nessuna
	1	2	3	4	5	6	7	8	TOTALE	
1. Rispondere alle seg	guenti doi	nande	che forn	iscono	una gius	stificazi	one di 1	1 riga:		
a. Lo scambio ch	iavi Diffie	e Hellm	ann è d	efinito s	solo ne g	gruppo	ciclico	$\mathbf{F}_{p^n}^*$?		
b. E' vero che es generatori?	istono ca	mpi fir	niti non	isomor	 fi in cui	i rispe	ettivi gi	ruppi m	noltiplicativi h	anno lo stesso numero di
c. Se $f, g \in \mathbf{F}_p[x]$	hanno lo	stesso	grado,	è vero o	che le il	campo	di spez	zament	o di f contiend	e le radici di g ?
d. Scrivere tutti	polinom	i irridu	 cibili in	$\mathbf{F}_2[x]$	 li grado	minore	e uguale	e a 4.		
2. Dopo aver scritto le	e formule	ricorsiv	ve per il	calcolo	dell'ide	ntità di	Bezout	tra due	e interi, si calco	oli quella per (1345, 9875).

In seguito si calcoli il massimo comun divisore (1345, 9875) utilizzando l'algoritmo binario.

3.	Dopo aver d	limostrato che i Baby Steps Gi	3 è una radice pr ant Steps.	rimitiva modulo 3	31, calcolare il loga	ritmo discreto log ₃ 2	$2 \in \mathbf{Z}/30\mathbf{Z}$ utilizzando
		_ say a say a					
	Spiegare il discreto.	funzionamento	di alcuni sisten	ni crittografici cl	ne basano la prop	ria sicurezza sul pr	oblema del logaritmo

6. Fornire un esempio esplicito di campo finito con 32 elementi e tra i suoi elementi si determini una radice primitiva.

7. Determinare il grado su \mathbf{F}_{13} del campo di spezzamento del polinomio

$$(T^{13^8} - 27T^{13^5} + 26T^{13^4})(T^2 + 13T + 27)(T^3 + 14)(T^{13^8} + 25T^{13}) \in \mathbf{F}_{13}[T].$$

8. Dopo aver spiegato brevemente l'algoritmo dei quadrati successivi, calcolare $\alpha^{1047} \in \mathbf{F}_7[\alpha], \alpha^3 = \alpha - 2.$