MAB298-Elements of Topology: Problem Sheet 3 Continuous maps and homeomorphisms

- 1. Let $f: X \to Y$ be a continuous map between two metric spaces, and (x_n) be a convergent sequence. Is it true that the sequence $y_n = f(x_n)$ converges?
- 2. Prove that the image of an everywhere dense set under a surjective continuous map is everywhere dense.
- 3. Is it true that the image of nowhere dense set under a continuous map is nowhere dense?
- 4. Let $X = C^1[0,1]$ be the space of continuously differentiable functions on [0,1] with the metric $d(f,g) = \max_{x \in [0,1]} |f(x) g(x)|$.

Let $F_1: X \to \mathbb{R}$ be defined by $F_1(f) = \int_0^1 f(x) dx$. Is F_1 continuous?

Let $F_2: X \to \mathbb{R}$ be defined by $F_2(f) = f'(0)$. Is F_2 continuous?

- 5. Prove that the following plane figures are homeomorphic to each other.
 - (a) A half-plane: $\{x \ge 0\}$;
 - (b) a quadrant: $\{x, y \ge 0\}$;
 - (c) an angle: $\{x \ge y \ge 0\}$;
 - (d) a square without two sides: $\{0 \le x, y < 1\}$;
 - (e) a disk without a boundary point: $\{x^2 + y^2 \le 1, y \ne 1\}$;
 - (f) a half-disk without the diameter: $\{x^2 + y^2 \le 1, y > 0\}$;
- 6. Prove that the following plane domains are homeomorphic to each other:
 - (a) punctured plane $\mathbb{R}^2 \setminus (0,0)$;
 - (b) punctured open disk $B^2 \setminus (0,0) = \{0 < x^2 + y^2 < 1\};$
 - (c) annulus $\{a < x^2 + y^2 < b\}$, where 0 < a < b;
 - (d) plane without a disk: $\mathbb{R}^2 \setminus D^2$;

- (e) plane without a segment: $\mathbb{R}^2 \setminus [0, 1]$;
- 7. Let $K = \{a_1, \ldots, a_n\} \subset \mathbb{R}^2$ be a finite set. The complement $\mathbb{R}^2 \setminus K$ is a plane with n punctures. Convince yourself that any two planes with n punctures are homeomorphic, i.e., the position of a_1, \ldots, a_n in \mathbb{R}^2 does not affect the topological type of $\mathbb{R}^2 \setminus \{a_1, \ldots, a_n\}$.
- 8. Let $D_1, \ldots, D_n \subset \mathbb{R}^2$ be pairwise disjoint closed disks. The complement of the union of its interiors is said to be plane with n holes. Convince yourself that any two planes with n holes are homeomorphic, i.e., the location of disks D_1, \ldots, D_n does not affect the topological type of $\mathbb{R}^2 \setminus \bigcup_{i=1}^n \operatorname{Int} D_i$.
- 9. Prove that a mug (with a handle) is homeomorphic to a doughnut.