Inteligência Artificial

Material elaborado pela Professora: Aurora Pozo

O que é inteligência artificial?

Barr & Feigenbaum (1981)

• "IA é a parte da ciência da computação que se preocupa em desenvolver sistemas computacionais inteligentes, isto é, sistemas que exibem características, as quais nós associamos com a inteligência no comportamento humano - por exemplo, compreensão da linguagem, aprendizado, raciocínio, resolução de problemas, etc."

Nils Nilsson (1982)

 "Muitas atividades mentais -como escrever programas de computadores, matemática, raciocínio do senso comum, compreensão de línguas e até dirigir um automóvel demandam "inteligência". Nas últimas décadas, vários sistemas computacionais foram construídos para realizar estas tarefas. Dizemos que tais sistemas possuem algum grau de Inteligência Artificial."

Nilson & Genesereth (1987)

• "IA é o estudo do comportamento inteligente. Seu objetivo final é uma teoria da inteligência que explique o comportamento das entidades inteligentes naturais e que guie a criação de entidades capazes de comportamento inteligente."

Condições para a emergência de inteligência

- Índice de desempenho: como testar a presença e o grau de inteligência?
- Aspectos funcionais / estruturais: quais são os módulos e mecanismos necessários para que um sistema seja inteligente?
- Condições de contorno: quais são as condições necessárias e suficientes para o comportamento inteligente?
- Testes quantitativos: QI, QE e capacidade de processamento de informação do cérebro.
- Dimensões:
 - Interna: Inteligência como atributo do sistema nervoso;
 - Externa: Inteligência como adaptação do organismo ao seu ambiente

Solução de problemas

Solução de problemas por meio de busca

- Desenvolver programas, não com os passos de solução de um problema, mas que produzam estes passos;
- Construir um espaço de estados para encontrar uma sequência de ações cuja aplicação resolve um problema;
- Recebe um problema e retorna uma solução

Problema: jarros

 Dados uma bica d`agua, um jarro de capacidade 3 litros e um jarro de capacidade 4 litros (ambos vazios). Como obter 2 litros no jarro de 4?

Exemplo

Formulação de um problema

- Objetivo
- Estado inicial
- Função sucessor
 - transição de estados (ações)
 - espaço de estados
- Teste de objetivo
- Custo de caminho

Espaço de Estados

O conjunto de todos os estado acessíveis a partir de um estado inicial é chamado:

ESPAÇO DE ESTADOS

O espaço de estados pode ser interpretado como um grafo em que os nós são estados e os arcos são ações.

野 Dado N cidades, achar a caminho mais curto passando por todas as cidades uma única vez.

Matriz distância

	Springfield	Oldtown	Midtown	Newtown
Springfield	0	54	17	79
Oldtown	54	0	49	104
Midtown	17	49	0	91
Newtown	79	109	91	0

Fonte: Devlin, K. Problemas do Milênio. Record, 2004.

Rota	Milhas totais				
S-0-M-N-S	54+49+91+79	=	273		
S-0-N-M-S	54+104+91+17	=	266		
S-M-N-0-S	17+91+109+54	=	271		
S-M-0-N-S	17+49+104+79	=	249		
S-N-0-M-S	79+109+49+17	=	254		
S-N-M-0-S	79+91+49+54	=	273		

Há um total de $3 \times 2 \times 1 = 6$ rotas.

Para N cidades há (N-1)! rotas.

Para 11 cidades, há 10! = 3.628.800 rotas.

Para 12 cidades, há 11! = 39.916.800 rotas.

Para 26 cidades, há 25! = 15.511.210.043.330.985.984.000.000 rotas.

Número de Passos para Resolver um Problema.

A complexidade de um algoritmo é medido pela quantidade de operações básicas (e.g., comparação de dois números) necessárias para resolver o problema.

錞 Exemplos

- Examinar todas as possibilidades do PCV, requer visitar N cidades em (N-1)! rotas. Logo requer N x (N-1) = N! operações básicas.
- Ordenar um vetor de tamanho N (usando o algoritmo da bolha) requer: $N^2 2N + 1$ operações básicas.

A Explosão Combinatória

Função tempo/	Quantidade de Dados: N					
complexidade	10	20	30	40	50	
N	0,00001s	0,00002s	0,00003s	0,00004s	0,00005s	
N^2	0,0001s	0,0004s	0,0009s	0,0016s	0,0036s	
N^3	0,001s	0,008s	0,027s	0,064s	0,125s	
2 ^N	0,001s	1,0s	17,19 min	12,7 dias	35,7 anos	
3 ^N	0,059s	58 min	6,5 anos	3.855 séculos	200.000.000 séculos	

Obs: usando um computador capaz de realizar um milhão de operações aritméticas básicas por segundo.

Problemas com Tempo Exponencial

- Muitos problemas de engenharia são problemas que não podem ser resolvidos com um algoritmo de tempo polinomial.
- 錞 Estes problemas são computacionalmente intratáveis.
- 錞 NP-completude é a teoria que estuda estes problemas.
- Esta teoria chama alguns desses problemas de NP-Difícil (do inglês, *NP-hard*).

Solução de Problemas Complexos

- Metaheuristicas
 - Otimização
 - Computação Bio-Inspirada

Computação Bio-Inspirada

- Toma os seres vivos como fonte de inspiração para o desenvolvimento de técnicas de solução de problemas;
- Busca desenvolver ferramentas (algoritmos) para solução de problemas complexos;
- Principais frentes:
 - Redes Neurais Artificiais;
 - Computação Evolutiva;
 - Inteligência Coletiva;
 - Sistemas Imunológicos Artificiais

INTELIGÊNCIA COLETIVA

Otimização por Colônia de Formigas

