1. Induced Graphs. Answer questions about the graph G = (V,E) displayed below.



- A. Let  $U = \{A, B\}$ . Draw G[U].
- B. Let  $W = \{A, C, G, F\}$ . Draw G[W].
- C. Let  $Y = \{A, B, D, E\}$ . Draw G[Y].
- D. Consider the following subgraph H of G:



Is there a subset X of the vertex set V so that H = G[X]? Explain.

E. Find a way to partition the vertex set V into two subsets  $V_1$ ,  $V_2$  so that each of the induced graphs  $G[V_1]$  and  $G[V_2]$  is connected and  $G = G[V_1] \cup G[V_2]$ .

- 2. *Graph Implementation*. Use the BFS class to solve the following problems. Implement by implementing the unimplemented methods in the Graph class.
  - Given two vertices, is there a path that joins them?
  - Is the graph connected? If not, how many connected components does it have?
  - Does the graph contain a cycle?

*Hint:* For the third problem, you may use the following Fact (which we will prove in tomorrow's class):

**Fact**: Suppose G is a graph and T is a spanning tree/forest for G. Then G has a cycle if and only if G has more edges than T.

- 3. Graph Exercises.
  - A. Suppose G = (V, E) is a connected simple graph. Suppose  $V_1, V_2, \ldots, V_k$  are disjoint subsets of V and that  $V_1 \cup V_2 \cup \ldots \cup V_k = V$ . Show that there is an edge (x,y) in E such that for some  $i \neq j$ , x is in  $V_i$  and y is in  $V_i$ .
  - B. In class it was shown that a graph G = (V, E) is connected whenever the following is true,

$$\epsilon > {\nu-1 \choose 2}$$
 (\*)

where  $\nu$  is the number of vertices and  $\epsilon$  is the number of edges. Is the following true or false?

Every connected graph satisfies the inequality (\*).

Prove your answer.

C. Suppose G is a graph with two vertices. What is the minimum number of edges it must have in order to be a connected graph? Suppose instead G has three vertices; what is the minimum number of edges it must have in order to be connected? Fill in the blank with a reasonable conjecture:

If G has n vertices, G must have at least \_\_\_\_\_ edges in order to be connected.

4. *IsPrime Problem, Revisited*. The goal of this exercise is to devise a feasible algorithm that decides whether an input integer is prime. The key fact that you will make use of is the following:

<u>Fact</u>: There is a function f, which runs in  $O(\log n)$  (that is,  $O(\operatorname{length}(n))$ ), such that for any odd positive integer n and any a chosen randomly in [1, n-1], if f(a, n) = 1, then n is composite, but if f(a,n) = 0, n is "probably" prime, but is in fact composite with probability  $< \frac{1}{2}$ .

A first try at such an algorithm would be: *Algorithm* **FirstTry**:

```
Input: A positive integer n
Ouptut: TRUE if n is prime, FALSE if n is composite
   if n % 2 = 0 return FALSE
   a ← random number in [1, n-1]
   if f(a,n) = 1
      return FALSE
   return TRUE
```

Notice that **FirstTry** runs in  $O(\log n)$ . It also produces a correct result more than half the time.

What could be done to improve the degree of correctness of **FirstTry** but still preserve a reasonably good running time? Explain.