INFORMED SEARCH ALGORITHMS

Chapter 3, Sections 5–6

Straight Line Distance

Outline

- ♦ Evaluation functions
- ♦ Greedy search
- \Diamond A* search \not
- ♦ Designing heuristics
- ♦ Graph search

Review: Tree search

```
function Tree-Search (problem, frontier) returns a solution, or failure

frontier \leftarrow Insert (Make-Node (Initial-State [problem]), frontier)

loop do

if frontier is empty then return failure

node \leftarrow Remove-Front (frontier)

if Goal-Test (problem, State (node)) then return node

frontier \leftarrow InsertAll (Expand (node, problem), frontier)

Kecal Van
```

Note: the goal test is performed when the node is popped from the frontier, NOT when it is generated during expansion. This is important when looking for optimal solutions. $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty}$

A strategy is defined by picking the order of node expansion

Evaluation function

Evaluation function f(n) = g(n) + h(n)

- estimate of "desirability", usually problem-specific.

 $g(n) = \cos t$ so far to reach n

h(n) =estimated cost from n to the closest goal (heuristic)

f(n) =estimated total cost of path through n to goal

The lower f(n), the more desirable n is f(n) with with

Implementation:

frontier is a queue sorted in ascending value of f(n)

Special cases:

uniform cost search (uninformed): f(n) = g(n) greedy search (informed) f(n) = h(n) A* search (informed) f(n) = g(n) + h(n)

Romania with step costs in km

to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80

199

374

Greedy search

Evaluation function f(n) = h(n) (entirely heuristic) = estimate of cost from n to the closest goal

E.g., $h_{\rm SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest}$

Greedy search expands the node that appears to be closest to goal

Complete??

<u>Complete</u>?? No–can get stuck in loops, e.g., with going from lasi to Fagaras, lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow Complete in finite space with repeated-state checking

Time??

Complete?? No–can get stuck in loops, e.g., with going from lasi to Fagaras, lasi \to Neamt \to lasi \to Neamt \to

Complete in finite space with repeated-state checking

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space??

Complete?? No-can get stuck in loops, e.g., with going from lasi to Fagaras, lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow

Complete in finite space with repeated-state checking

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$

Optimal??

Complete?? No-can get stuck in loops, e.g., with going from lasi to Fagaras, $\mathsf{lasi} \to \mathsf{Neamt} \to \mathsf{lasi} \to \mathsf{Neamt} \to$

Complete in finite space with repeated-state checking

<u>Time??</u> $O(b^m)$, but a good <u>heuristic</u> can give dramatic improvement

Space?? $O(b^m)$

Optimal?? No

quink, but cannot gnavantee optimal result [sometimes even cause loops]

enabling sth/sb, to discover/learn | In (S. it refers to "shortcut" methods
sth. for themselves (compand to the classic ones). They
todale optimality completeness, according or precision for speed or availability [whether an exact solution can be provided 7

how. it refers to methods that rank search afternatives at each step so as to decide which steps to follow.

\mathbf{A}^* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

 $g(n) = \cos t$ so far to reach n

h(n) =estimated cost from n to the closest goal

f(n) =estimated total cost of path through n to goal

start node

Admissible heuristic: $\langle\!\langle$ New overestimate the true cost to the goal $\forall n\ h(n) \leq h^*(n)$ where $h^*(n)$ is the true cost from n. (Also require $h(n) \geq 0$, so h(G) = 0 for any goal G.)

goal node

E.g., $h_{\rm SLD}(n)$ never overestimates the actual road distance

When h(n) is admissible, f(n) never overestimates the total cost of the shortest path through n to the goal

Theorem: if h is admissible, A^* search finds the optimal solution

from \Rightarrow a queue sorted in ascending value of $f(n)_{3, \text{ Sections 5-6}}$ 17

A^* search example

A^* search example

\mathbf{A}^* search example

A^* search example

A* search example

A^* search example

Optimality of A* (based on admissibility)

Suppose some suboptimal goal G_2 has been generated and is in the frontier. Let n be a frontier node on a shortest path to an optimal goal G_1 .

 $f(G_2) = g(G_2)$ since $h(G_2) = 0$ > $g(G_1)$ since G_2 is suboptimal $\geq f(n)$ since h is admissible, f(n) does not overestimate $g(G_1)$

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion

Consistency

A heuristic is consistent if

$$h(n) \le c(n, a, n') + h(n')$$

If h is consistent, then h is admissible, and f(n) is nondecreasing along any path:

$$f(n') = g(n') + h(n')$$

$$= g(n) + c(n, a, n') + h(n')$$

$$\geq g(n) + h(n)$$

$$= f(n)$$

Consequently, when expanding a node, we cannot get a node with a smaller f, and so the value of the best node on the frontier will never decrease.

Once a node is expanded, the cost by which it was reached is the lowest possible. f(x)

Optimality of A* (based on consistency)

Consistency: A* expands nodes in order of increasing f value A

Gradually expands "f-contours" of nodes

Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$ (breadth-first expands layers, uniform-cost expands g-contours)

Properties of A*

Complete??

Complete?? Yes, unless there are infinitely many nodes with $f \leq C^*$

Time??

Properties of A^*

Complete?? Yes, unless there are infinitely many nodes with $f \leq C^*$

<u>Time??</u> Exponential in [relative error in $h \times length$ of soln.]

Space??

Properties of A^*

Complete?? Yes, unless there are infinitely many nodes with $f \leq C^*$

<u>Time??</u> Exponential in [relative error in $h \times length$ of soln.]

Space?? Exponential

Optimal??

Properties of A^*

Complete?? Yes, unless there are infinitely many nodes with $f \leq C^*$

<u>Time</u>?? Exponential in [relative error in $h \times length$ of soln.]

Space?? Exponential

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

 A^* expands all nodes with $f(n) < C^*$

 A^* expands some nodes with $f(n) = C^*$ (but only one goal node)

 A^* expands no nodes with $f(n) > C^*$

IDA* is an iterative deepening version of A*with a cutoff on f

Admissible heuristics

E.g., for the 8-puzzle:

$$\frac{h_1(S) =??}{h_2(S) =??}$$

O < Admissible heuristics < optimal true cos

E.g., for the 8-puzzle:

 $h_1(n) = \text{number of misplaced tiles}$

 $h_2(n) = \text{total Manhattan distance}$

(i.e., no. of squares from desired location of each tile)

Start State

Goal State

$$\frac{h_1(S) = ??? 6}{h_2(S) = ??} \leftarrow higher number$$

thus the higher the less we have to expand

Admissible heuristics

E.g., for the 8-puzzle:

$$h_1(n) = \text{number of misplaced tiles}$$

$$h_2(n) = \text{total Manhattan distance}$$

(i.e., no. of squares from desired location of each tile)

$$\frac{h_1(S)}{h_2(S)} = ??$$
 6
 $\frac{h_2(S)}{h_2(S)} = ??$ 4+0+3+3+1+0+2+1 = 14

Dominance

Given two admissible heuristics h_a , h_b , if $h_b(n) \ge h_a(n)$ for all n then h_b dominates h_a and is better for search

In the 8-puzzle h_2 dominates h_1 . Typical search costs:

$$d=14$$
 IDS = 3,473,941 nodes $d=24$ IDS \approx 54,000,000,000 nodes $\mathsf{A}^*(h_1)=539$ nodes $\mathsf{A}^*(h_2)=113$ nodes $\mathsf{A}^*(h_2)=1,641$ nodes

There is a tradeoff between the accuracy of h and the time to compute h

Given two admissible heuristics h_a , h_b ,

 $h(n) = \max(h_a(n), h_b(n))$ if neither dominates

 $\frac{\text{Is } h_a(n) + h_b(n) \text{ admissible??}}{\text{double-count sometimes}} \text{ by taking the max no higher & have both doubles, a partial of the property of the max no higher & have both doubles, and have the property of the max no higher & have both doubles, and have the property of the max no higher & have both doubles, and have the max no higher & have both doubles, and have the max no higher & have both doubles, and have the max no higher & have been doubles, and have the max no higher & have been doubles, and have been do$

fort & accurate enough

Relaxed problems

Admissible heuristics can be derived from the **optimal** solution cost of a **relaxed** version of the problem

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Rules of the 8-puzzle:

a tile can move from square A to square B if A is adjacent to B and B is blank; get all tiles in their correct positions.

If we relax the rules so that a tile can move **anywhere**, then $h_1(n)$ gives the shortest solution

If we relax the rules so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Relaxed problems

Rules of the 8-puzzle:

a tile can move from square A to square B if A is adjacent to B and B is blank; get all tiles in their correct positions.

Relaxing the rules so that only **some** tiles need to get in their correct positions and solving the relaxed problem optimally yields another admissible heuristic

Heuristics derived from the cost of an optimal solution to a smaller subproblem are used in pattern databases to store solutions for every possible subproblem up to a given size.

Relaxed problems

Well-known example: travelling salesperson problem (TSP) Find the least-cost tour visiting all cities exactly once

Minimum spanning tree can be computed in $O(n^2)$ and the sum of the edge costs in an MST is a lower bound on the optimal (open) tour cost

Tree Search and Repeated States

- \diamondsuit For many problems, the state space is a graph rather than a tree
- ♦ Cycles can prevent termination
- ♦ Failure to detect repeated states can turn a linear problem into an exponential one!

Graph search

```
function GRAPH-SEARCH (problem, frontier) returns a solution, or failure
   explored \leftarrow an empty set of nodes
   frontier \leftarrow Insert(Make-Node(Initial-State[problem]), frontier)
   loop do
        if frontier is empty then return failure
        node \leftarrow \text{Remove-Front}(frontier)
        if Goal-Test(problem, State[node]) then return node
        add node to explored
        frontier \leftarrow \underline{INSERTNODES}(EXPAND(node, problem), frontier)
function INSERTNODES (nodes, frontier) returns updated frontier
   for each n in nodes do
     if \not\exists m \text{ in } explored \cup frontier \text{ s.t. } State[m] = State[n] \text{ then}
        add n to frontier
   return frontier
```

At most one instance of each state in $explored \cup frontier$. All expanded nodes kept in memory!!

♦ When seeking optimal solutions, mutliple paths to the same state may need to be explored and compared to find the optimal

♦ When seeking optimal solutions, mutliple paths to the same state may need to be explored and compared to find the optimal

♦ We may need to keep the better node and update the depths and path-costs of the descendants of the worst one.

♦ Trick to avoid updating descendants: re-open the explored node; its descendants will be updated when it is re-expanded.

♦ Trick to avoid updating descendants: re-open the explored node; its descendants will be updated when it is re-expanded.

♦ Trick to avoid updating descendants: re-open the explored node; its descendants will be updated when it is re-expanded.
• We have the explored node; its descendants will be updated when it is re-expanded.
• Trick to avoid updating descendants: re-open the explored node; its descendants will be updated when it is re-expanded.
• Trick to avoid updating descendants: re-open the explored node; its descendants will be updated when it is re-expanded.
• Trick to avoid updating descendants: re-open the explored node; its descendants will be updated when it is re-expanded.
• Trick to avoid updating descendants: re-open the explored node; its descendants will be updated when it is re-expanded.


```
function InsertNodes (nodes, frontier) returns updated frontier

for each n in nodes do

if ∄ m in explored ∪ frontier s.t. State[m] = State[n] then
add n to frontier

else if Path-Cost[n] < Path-Cost[m]

Path-Cost[m] ← Path-Cost[n]

Parent[m] ← Parent[n]

Action[m] ← Action[n]

Depth[m] ← Depth[n]

if m in explored then
move m back to frontier // reopen m

return frontier
```

The extra square is needed with A^* . It is also needed with uniform cost unless step costs are equal. If h is consistent (not just admissible), no re-opening (last 2 lines) is needed. h=0 is consistent so no reopening is needed with uniform cost.

Which algorithm and strategy to use

strategy	solution	useful when	frontier	algorithm and state space
DFS	arbitrary	many solutions	LIFO	tree-search for finite acyclic graphs
		exist		graph-search (simple) for finite graphs
BFS	shortest	shallow solutions	FIFO	tree search
		exist		graph search (simple) may improve performance
UC	optimal	good admissible	priority queue	tree search for trees
		heuristic lacking	ordered by g	graph-search (simple) for equal step costs
				graph-search (optimal) for arbitrary step costs
				(no reopening needed)
A*	optimal	good admissible	priority queue	tree search for trees and admissible heuristics
		heuristics exist	ordered by f	graph-search (optimal) for admissible heuristics
				(no reopening needed for consistent heuristics)
greedy	arbitrary but	good (inadmissible)	priority queue	tree search for finite acyclic graphs
search	maybe good	heuristics exist	ordered by \boldsymbol{h}	graph search (simple) for finite graphs

Summary

- Heuristic functions estimate costs of shortest paths
 - good heuristics can dramatically reduce search cost
- \Diamond **Greedy best-first** search expands lowest h
 - incomplete and not always optimal
- \diamondsuit **A*** search expands lowest g + h
 - complete and optimal
- ♦ Admissible heuristics underestimate the optimal cost
 - they can be derived from exact solutions to relaxed problems
- \diamondsuit \mathbf{Graph} \mathbf{search} can be exponentially more efficient than tree search
 - often needed to ensure termination and optimality
 - stores all expanded nodes and requires extra tests