FORMULA SHEET (MAT E 201, Midterm Exam)

Number of atoms
$$=\frac{\text{mass} \times N_A}{\text{Atomic Mass}};$$

 N_A = 6.023 x 10^{23} atoms/mol; R= 8.314 J/mol·K

$$\rho = \frac{m}{V} \quad \text{ PF} = \frac{\textit{Number of atoms per unit cell} \times V_{at}}{V_{uc}};$$

$$V = \frac{4}{3}r^3\pi \qquad V = \frac{d^2\pi}{4}1$$

Volume of orthorhombic cell = $a_ob_oc_o$

$$\rho = \frac{nA_r}{V_{uc}N_A}$$
; Volume of cubic cell= a_0^3 ; Volume of HCP cell = 0.866 $a_0^2c_0$, $c_0 = 1.633a_0$

$$D = D_0 \exp(-\frac{Q}{RT})$$
 $n_V = n \exp(-\frac{Q}{RT})$

Relations between the atomic radius and lattice parameters for various cells:

SC	$a_0 = 2r$
BCC	$a_0 = \frac{4r}{\sqrt{3}}$
FCC	$a_0 = \frac{4r}{\sqrt{2}}$
HCP	$a_0 = 2r$
DC	$a_0 = \frac{8r}{\sqrt{3}}$

First Fick's Law:
$$J = -D \frac{dc}{dx}$$
; Second Fick's Law: $\left(\frac{C_s - C_x}{C_s - C_0}\right) = erf\left(\frac{x}{2\sqrt{Dt}}\right)$