Types and λ -calculus

Problem Sheet 5

- * 1. Give a type derivation/proof tree for the judgements:
 - (a) $\vdash \lambda xy. yxx : a \rightarrow (a \rightarrow a \rightarrow b) \rightarrow b$
 - (b) $x:(b \to b) \to b \to b$, $y:\forall c.c \to c \vdash \lambda z.x (y(\lambda z'.z')) (yz):b \to b$
 - (c) $\vdash \lambda xyz. y(xz): (a \rightarrow b) \rightarrow (b \rightarrow c) \rightarrow a \rightarrow c$
- ** 2. Give terms $M \in \Lambda$ that satisfy each of the following (you are *not* required to justify them with a proof tree, but you may wish to so as to check your answer):
 - (a) $\vdash M : (a \rightarrow b) \rightarrow a \rightarrow b$
 - (b) $x:(a \rightarrow a) \rightarrow c \vdash M:c$
 - (c) $x : \forall ab. \ a \rightarrow a \rightarrow b \vdash M : a$
- ** 3. Prove that $\lambda xy.xy(yx)$ is untypable (not typable).
- ** 4. **(Optional)** Prove: $\forall A$, if $c \notin \{a_1, \dots, a_n\}$ and $\{a_1, \dots, a_n\} \cap \mathsf{FV}(C) = \emptyset$ then

$$A[B_1/a_1,...,B_n/a_n][C/c] = A[C/c][B_1[C/c]/a_1,...,B_n[C/c]/a_n]$$

You will want to consider several cases depending on how variables coincide.

The following is the induction principle for the type system, viewed as a set of triples or three-place relation $- \vdash -:-$.

Suppose $\Phi(\Gamma, M, A)$ is a property of triples comprising a type environment, a term and a monotype. Then if the following can all be proven:

- For all type environments Δ , variables x, type schemes $\forall \overline{a}$. C and sequences of monotypes \overline{B} (of the appropriate length), if $x : \forall \overline{a}$. $C \in \Delta$ then $\Phi(\Delta, x, C[\overline{B}/\overline{a}])$.
- For all type environments Δ , terms P and Q and monotypes B and C, if $\Phi(\Delta, P, B \to C)$ and $\Phi(\Delta, Q, B)$ then $\Phi(\Delta, PQ, C)$.
- For all type environments Δ , terms P, variables x and monotypes B and C, if $x \notin \text{dom}(\Gamma)$ and $\Phi(\Delta \cup \{x : B\}, P, C)$ then $\Phi(\Delta, \lambda x. P, B \to C)$.

It follows that $\forall (\Gamma, M, A) \in \vdash . \Phi(\Gamma, M, A)$.

** 5. Prove, by induction on $\Gamma \vdash M : A$, that:

If
$$\Gamma \vdash M : A$$
 then $\Gamma \lceil C/c \rceil \vdash M : A \lceil C/c \rceil$.

Note: by the variable convention, you may assume $(\forall \overline{a}. A)[C/c] = \forall \overline{a}. A[C/c]$. Also, you will need to use the result of the previous question.

** 6. **(Optional)** Prove the Subject Reduction Theorem by induction on $M \rightarrow_{\beta} N$:

if
$$M \to_{\beta} N$$
 and $\Gamma \vdash M : A$ then $\Gamma \vdash N : A$.

Three tips:

- You will want to have an induction hypothesis of the form $\forall \Gamma$. $\Phi(M, N)$, which will be useful in the (Abs) case, so set up your goal accordingly.
- You will need to use the substitution lemma from the notes.
- You will need to use the Inversion theorem from the notes.