Chapitre 16 : Intégration de fonctions continues par morceaux sur un intervalle non compact

But:

Donner un sens aux intégrales $\int_{-\infty}^{+\infty} e^{-t^2} dt$, $\int_{0}^{1} \frac{dt}{\sqrt{t(t-1)}}$, $\int_{-\infty}^{+\infty} f(t)e^{-i\omega t} dt$...

Rappel sur les fonctions continues par morceaux :

- Sur un segment, $f:[a,b] \to \mathbb{C}$ est continue par morceaux s'il existe une subdivision $a=a_0 < a_1 < ... < a_p = b$ telle que $\forall i \in [0, p-1]$, $f_{i,a_i,a_{i+1}}$ est continue, et f a des limites à droite et à gauche (finies) en tous les a_i .

Proposition:

Une fonction continue par morceaux sur un segment a un nombre fini de discontinuités qui sont de première espèce (il y a une limite finie à droite et à gauche en tout point) Une fonction continue par morceaux sur un segment est bornée.

- Sur un intervalle non compact *I* :

 $f: I \to \mathbb{C}$ est continue par morceaux lorsque la restriction de f à tout segment inclus dans I est continue par morceaux.

Attention : une telle fonction peut avoir une infinité de points de discontinuité (toujours de première espèce) et peut ne pas être bornée.

Exemples:

Sur $I = [0; +\infty[$

Une application $f: I \to \mathbb{C}$ continue par morceaux a soit un nombre fini de discontinuités, soit une infinité qu'on peut classer dans une suite a_n qui tend vers $+\infty$

Exemple : E(x)

Sur I =]0;1]. Dans le pire des cas, il existe une suite ε_n tendant vers 0 de discontinuités de première espèce.

Exemple: $E(\frac{1}{x})$

Si $I = \mathbb{R}$, $f : \mathbb{R} \to \mathbb{C}$ continue par morceaux peut avoir deux suites de points de discontinuité qui tendent l'une vers $+\infty$, l'autre vers $-\infty$

Définition (locale):

On appelle singularité d'un intervalle I non compact les bornes de I (éventuellement infinies) qui ne sont pas dans I.

I Cas des fonctions positives (sur I non compact)

A) Définition

Soit $f: I \to \mathbb{R}$ continue par morceaux et positive. f est dite intégrable (sommable) s'il existe $M \ge 0$ tel que $\forall [a,b] \subset I, \int_a^b f(t)dt \le M$.

Pour une telle fonction, on pose $\int_{I} f = \sup_{[a,b] \subset I} \int_{a}^{b} f(t)dt$

Remarque:

Cette définition a un sens même si *I* est compact ; on retrouve alors la définition de l'intégrale d'une fonction continue par morceaux positive sur un segment.

En effet, si $I = [\alpha, \beta]$, $f: I \to \mathbb{R}$ continue par morceaux positive, alors

$$\forall [a,b] \subset I, \int_{\alpha}^{\beta} f = \underbrace{\int_{\alpha}^{a} f}_{>0} + \int_{a}^{b} f + \underbrace{\int_{b}^{\beta} f}_{>0} \ge \int_{a}^{b} f$$

B) Caractérisation de l'intégrale à l'aide de primitive

• Cas d'une seule singularité :

Théorème:

Soit I = [a,b[où $a \in \mathbb{R}, b \in \mathbb{R} \cup \{+\infty\} (b > a)$

Et $f:[a,b] \to \mathbb{R}$ continue par morceaux positive.

Pour $x \in I$, on pose $F(x) = \int_a^x f(t)dt$.

Alors f est intégrable sur I si et seulement si F est bornée ou si F tend vers une limite finie quand $x \to b^-$, et dans ce cas, $\int_{[a,b[} f(t)dt = \lim_{x \to b^-} F(x) = \lim_{x \to b^-} \int_a^x f(t)dt$

Remarque

On a l'énoncé analogue pour [a,b], $a \in \mathbb{R} \cup \{+\infty\}$, $b \in \mathbb{R} \ (a < b)$

Si f est partout continue, F est une primitive de f.

Démonstration :

- Comme f est positive, F est croissante et positive.

Donc F est majorée si et seulement si elle est bornée donc si et seulement si F a une limite finie en b.

- Si f et intégrable, par définition de $\int_{[a,b[} f(t)dt$, on a, pour tout $x \in [a,b[$,

$$[a,x] \subset [a,b[$$
. Donc $F(x) = \int_a^x f \le \int_{[a,b]} f$, et F est bornée.

Inversement, si F est bornée, alors pour tout $[\alpha, \beta] \subset [a, b[$,

$$\int_{\alpha}^{\beta} f(t)dt \le \int_{a}^{\beta} f(t)dt = F(\beta) \le \sup_{t \in [a,b[} F(t)$$

- Calcul de l'intégrale :

Par définition, pour tout $x \in [a,b[, x \in [a,b[,F(x) \le \int_{[a,b[}f$

Donc
$$\lim_{x \to b^{-}} F(x) \le \int_{[a,b[} f$$
.

Par ailleurs, pour tout $[\alpha, \beta] \subset [a, b[$, on a:

$$\int_{\alpha}^{\beta} f = F(\beta) - \underbrace{F(\alpha)}_{\geq 0} \leq F(\beta) \leq \lim_{x \to b^{-}} F(x)$$

Donc $\int_{[a,b[} f \le \lim_{x \to b^-} F(x)$

Ce qui montre l'égalité.

• Cas de deux singularités :

Théorème:

Soit I =]a,b[, où $a \in \mathbb{R} \cup \{-\infty\}$, $b \in \mathbb{R} \cup \{+\infty\}$.

Soit $f: I \to \mathbb{R}$ continue par morceaux positive, et $c \in]a,b[$

Alors f est intégrable si et seulement si $f_{/[c,b[}$ et $f_{/[a,c]}$ le sont, et dans ce cas

$$\int_{]a,b[} f = \int_{]a,c]} f + \int_{[c,b[} f$$

Corollaire

Dans ces conditions, f est intégrable si et seulement si $\int_c^x f(t)dt$ a des limites finies quand $x \to b$ et $x \to a$ et dans ce cas $\int_{]a,b[} f = \lim_{x \to a} \int_x^c f + \lim_{x \to b} \int_c^x f$.

Démonstration:

Lemme:

Soit f continue par morceaux, $J \subset I$ un intervalle.

Si f est intégrable sur I, alors f est intégrable sur J et $\int_{I} f(t)dt \le \int_{I} f(t)dt$.

En effet, tout segment $[a,b] \subset J$ est aussi inclus dans I...

Ainsi, si f est intégrable, alors $f_{/|a,c|}$ et $f_{/|c,b|}$ aussi.

Réciproquement:

Si $f_{/[a,c]}$ et $f_{/[c,b[}$ sont intégrables, alors pour tout $[\alpha,\beta]\subset]a,b[$:

Soit $c \notin [\alpha, \beta]$ et donc

Soit
$$[\alpha, \beta] \subset]a, c]$$
 et $\int_{\alpha}^{\beta} f \le \int_{]a, c]} f \le \int_{]a, c]} f + \int_{[c, b[} f \le f] f$
Soit $[\alpha, \beta] \subset [c, b[]$ et $\int_{\alpha}^{\beta} f \le \int_{[c, b]} f \le \int_{[a, c]} f + \int_{[c, b]} f = \int_{[c, b]} f = \int_{[a, c]} f + \int_{[c, b]} f = \int_{[a, c]} f = \int_{[a,$

Si
$$c \in [\alpha, \beta]$$
, alors $\int_{\alpha}^{\beta} f = \int_{\alpha}^{c} f + \int_{c}^{\beta} f \le \int_{[a,c]} f + \int_{[c,b]} f$

Donc dans tous les cas l'intégrale est majorée.

Donc f est intégrable, et en passant au sup sur $[\alpha, \beta] \subset]a,b[$, on aura

$$\int_{]a,b[} f \le \int_{]a,c[} f + \int_{[c,b[} f.$$

Pour l'autre inégalité :

Soit $\varepsilon > 0$. Par définition de $\int_{[a,c]} f$ et $\int_{[c,b[} f$, il existe $\beta \in [c,b[$ et $\alpha \in]a,c]$ tels

que
$$\int_{\alpha}^{c} f(t)dt \ge \int_{]a,c]} f - \varepsilon/2$$
 et $\int_{c}^{\beta} f(t)dt \ge \int_{[c,b[} f - \varepsilon/2$

Alors
$$\int_{]a,b[} f \ge \int_{\alpha}^{\beta} f = \int_{\alpha}^{c} f(t)dt + \int_{c}^{\beta} f(t)dt \ge \int_{]a,c]} f + \int_{[c,b[} f - \varepsilon$$

Et comme c'est valable pour tout $\varepsilon > 0$, on a bien $\int_{]a,b[} f \ge \int_{]a,c[} f + \int_{[c,b[} f] f = \int_{]a,c[} f =$

C) Exemples fondamentaux

Théorème:

Soit $\alpha \in \mathbb{R}$

Alors $t \mapsto \frac{1}{t^{\alpha}}$ est intégrable sur $[1,+\infty[$ si et seulement si $\alpha > 1$, et dans ce cas

$$\int_{1}^{+\infty} \frac{dt}{t^{\alpha}} = \frac{1}{\alpha - 1}$$

 $t\mapsto \frac{1}{t^{\alpha}}$ est intégrable sur]0;1] si et seulement si $\alpha<1$ et dans ce cas $\int_0^1 \frac{dt}{t^{\alpha}} = \frac{1}{1-\alpha}$.

Remarque:

 $t \mapsto \frac{1}{t^{\alpha}}$ n'est jamais intégrable sur]0;+ ∞ [.

Démonstration :

Déjà, f est positive sur $[1,+\infty[$. Il suffit donc d'étudier $\int_1^x \frac{dt}{t^{\alpha}}$ pour $x \in [1,+\infty[$

Si
$$\alpha \neq 1$$
, on a $\int_{1}^{x} \frac{dt}{t^{\alpha}} = \left[\frac{t^{1-\alpha}}{1-\alpha} \right]_{1}^{\alpha} = \frac{x^{1-\alpha}-1}{1-\alpha}$

Qui a une limite finie si et seulement si $\alpha > 1$, et dans ce cas cette limite est $\frac{1}{1-\alpha}$

Si
$$\alpha = 1$$
, $\int_1^x \frac{dt}{t^{\alpha}} = \ln x \to +\infty$.

Autre exemple

Pour $a \in \mathbb{R}$, $t \mapsto e^{-a.t}$ est intégrable sur $[0,+\infty[$ si et seulement si a > 0 et dans ce cas $\int_0^{+\infty} e^{-a.t} dt = \frac{1}{a}$

II Cas des fonctions complexes

En pratique, pour $f:I\to\mathbb{C}$, il faudra séparer l'étude du caractère intégrable et le calcul éventuel de $\int_{\mathbb{C}}f$.

• Fonctions intégrables à valeurs complexes :

Définition:

Soit *I* un intervalle de \mathbb{R} , $f: I \to \mathbb{C}$ continue par morceaux.

f est dite intégrable (sommable) lorsque |f| l'est.

Remarque:

Si f est continue par morceaux, alors |f| aussi.

On note " $L_1(I)$ " l'ensemble des fonctions complexes intégrables sur I.

• Structure:

Théorème:

" $L_1(I)$ " est un sous-espace de $C_{pm}(I,\mathbb{C})$, stable par domination, c'est-à-dire que si $\varphi \in L_1(I)$ " et si $f \in C_{pm}(I,\mathbb{C})$ vérifient $|f| \le |\varphi|$, alors f est intégrable.

Démonstration:

Déjà, " $L_1(I)$ " $\subset C_{nm}(I,\mathbb{C})$ et est non vide car contient la fonction nulle.

Soit $\varphi: I \to \mathbb{C}$ continue par morceaux intégrable, et $f: I \to \mathbb{C}$ continue par morceaux; supposons que $|f| \le |\varphi|$.

Alors |f| est intégrable car pour tout $[a,b] \subset I$, on a :

$$\int_{a}^{b} |f| \le \int_{a}^{b} |\varphi| \le \int_{a} |\varphi|, \text{ donc } \int_{a}^{b} |f| \text{ est major\'ee.}$$

Donc f est aussi intégrable.

Supposons que $f,g:I\to\mathbb{C}$ continues par morceaux sont intégrables, et soit $\lambda\in\mathbb{C}$.

Alors $f + \lambda g$ est continue par morceaux et pour tout segment $[a,b] \subset I$, on a :

 $\int_{a}^{b} |f + \lambda g| \le \int_{a}^{b} (|f| + |\lambda||g|)(t)dt = \int_{a}^{b} |f|dt + |\lambda| \int_{a}^{b} |g|dt \le \int_{f} |f| + |\lambda| \int_{f} |g|$ car f et g sont intégrables.

- Intégrale d'une fonction intégrable :
- (1) Pour f à valeurs réelles, on pose :

$$f^+ = \max(f,0)$$
 (partie positive de f)

$$f^- = \max(-f,0)$$
 (partie négative de f)

Ainsi,
$$f = f^+ - f^-$$
, $|f| = f^+ + f^-$ (et $f^+ = \frac{f + |f|}{2}$, $f^- = \frac{|f| - f}{2}$)

Pour $f: I \to \mathbb{R}$ intégrable,

On a $0 \le f^+ \le |f|$, $0 \le f^- \le |f|$, et f^+, f^- sont continues par morceaux donc sont intégrables

Et on peut poser $\int_{I} f = \int_{I} f^{+} - \int_{I} f^{-}$.

(2) Pour f à valeurs complexes, on écrit f = Re f + i Im f

Pour f intégrable, $\operatorname{Re} f$ et $\operatorname{Im} f$ sont continus par morceaux, et intégrables car $|\operatorname{Im} f| \leq |f|$ et $|\operatorname{Re} f| \leq |f|$.

On peut donc poser $\int_{I} f = \int_{I} \operatorname{Re} f + i \int_{I} \operatorname{Im} f$.

• Calcul de $\int_{\Gamma} f$ pour f intégrable complexe :

Théorème :

(1) Cas d'une seule singularité I = [a,b[

Si $f: I \to \mathbb{C}$ est continue par morceaux intégrable, alors $\int_I f = \lim_{x \to b} \int_a^x f(t) dt$

Et en particulier la limite de droite existe pour $f \in L_1(I)$ "

(2) Cas de deux singularités :

Si
$$I =]a,b[$$
, soit $c \in I$.

Pour $f: I \to \mathbb{C}$, les limites suivantes existent et on a :

$$\int_{I} f = \lim_{x \to b} \int_{c}^{x} f + \lim_{y \to a} \int_{y}^{c} f.$$

Démonstration

Pour une singularité I = [a,b[. On doit montrer que $\int_I f = \lim_{x \to b} \int_a^x f(t) dt$

Si f est réelle, alors $\int_I f^+ = \lim_{x \to b} \int_a^x f^+(t) dt$, $\int_I f^- = \lim_{x \to b} \int_a^x f^-(t) dt$.

Or, par définition, $\int_{I} f = \int_{I} f^{+} - \int_{I} f^{-}$.

Donc
$$\int_{I} f = \lim_{x \to b} \int_{a}^{x} (f^{+}(t) - f^{-}(t)) dt = \lim_{x \to b} \int_{a}^{x} f(t) dt$$

Si f est complexe, c'est la même chose avec la partie réelle et imaginaire. Pour deux singularités, on coupe l'intervalle I = [a,b[en $I = [a,c] \cup [c,b[$

• Propriétés de l'intégrale :

Théorème:

- (1) L'application $f \in "L_1(I)" \mapsto \int_I f$ est linéaire.
- (2) Pour $f \in L_1(I)$, $\left| \int_I f \right| \le \int_I |f|$

Démonstration:

Résulte du calcul de $\int_{r} f$ et de la linéarité du passage à la limite.

• Calcul à l'aide d'une suite exhaustive d'intervalles.

Théorème:

Soit *I* un intervalle de \mathbb{R} , $f: I \to \mathbb{C}$ continue par morceaux intégrable.

On suppose que $(I_n)_{n\in\mathbb{N}}$ est une suite croissante (au sens de l'inclusion) de segments inclus dans I et recouvrant I. Alors $\int_I f(t)dt = \lim_{n\to+\infty} \int_{I_n} f(t)dt$

Démonstration :

On pose $I_n = [a_n, b_n]$.

Si I = [a,b[, alors comme $(I_n)_{n \in \mathbb{N}}$ est exhaustive, la suite $(b_n)_{n \in \mathbb{N}}$ est croissante et tend vers b, la suite $(a_n)_{n \in \mathbb{N}}$ décroît vers a et est stationnaire en a. On peut donc supposer que $\forall n \in \mathbb{N}, a_n = a$. Alors $\int_{a_n}^{b_n} f(t) dt = \int_a^{b_n} f(t) dt = F(b_n) \xrightarrow[n \to +\infty]{} \int_I f(t) dt$

Si I a deux singularités, on fait la même chose en coupant en deux.

• Fonctions à valeur dans un espace de Banach.

Définition:

Soit $f: I \to E$ continue par morceaux où E est un espace de Banach.

On dit que f est intégrable lorsque $t \mapsto ||f(t)||$ l'est (l'application est aussi continue par morceaux).

Définition de l'intégrale :

Si E est de dimension finie, on utilise une base $(e_1,...e_n)$ de E et on écrit $f(t) = \sum_{i=1}^n f_i(t)e_i$ où $f_i: I \to \mathbb{K} =_{\mathbb{R}}^{\mathbb{C}}$ sont continues par morceaux et intégrables (par

équivalence des normes dans E), et on pose $\int_I f = \sum_{i=1}^n \left(\int_I f_i \right) e_i$.

Si *E* n'est pas de dimension finie, on a le théorème :

Si $f: I \to E$ continue par morceaux est intégrable (où I = [a,b[), alors $\int_a^x f(t)dt$ a une limite finie quand x tend vers b, et on pose alors $\int_I f = \lim_{x \to b} \int_a^x f$.

(analogue pour deux singularités)

Démonstration:

Comme E est complet, il suffit de montrer que $F: x \to \int_a^x f(t)dt$ vérifie le critère de Cauchy pour les fonctions lorsque $x \to b$, c'est-à-dire:

$$\forall \varepsilon > 0, \exists A \in [a, b[, \forall x, y \in [A, b[, ||F(x) - F(y)|| \le \varepsilon])]$$

Soit $\varepsilon > 0$. Comme ||f|| est intégrable, $\int_a^x ||f||$ a une limite finie L quand $x \to b$

Donc il existe A tel que $\forall x \ge A, \left| \int_a^x ||f|| - L \right| \le \varepsilon/2$

Alors pour tous $x, y \in [A, b[$, on a :

$$||F(x) - F(y)|| = ||\int_{x}^{y} f(t)dt|| \le \pm \int_{x}^{y} ||f(t)|| dt$$

$$= \pm \left(\int_{a}^{y} ||f(t)|| dt - L - \int_{a}^{x} ||f(t)|| dt + L\right)$$

$$\le \varepsilon / 2 + \varepsilon / 2 = \varepsilon$$

III Intégrales orientées et relation de Chasles

• Notation:

Si f est continue par morceaux et intégrable sur I = [a,b],]a,b], [a,b[,]a,b[, on pose $\int_a^b f(t)dt = \int_I f(t)dt$

NB : lorsque $a \in \mathbb{R}$, si f est continue par morceaux sur [a,b[et intégrable, alors f est continue par morceaux et intégrable sur]a,b[et $\int_{]a,b[}f(t)dt=\int_{[a,b[}f(t)dt$, ce qui justifie d'utiliser la même notation.

Si b < a et f est continue par morceaux intégrable sur [b,a], [b,a], [b,a[, b,a[, on pose alors $\int_a^b f(t)dt = -\int_b^a f(t)dt$.

• Relation de Chasles :

Théorème:

Soit I un intervalle de \mathbb{R} , $f: I \to \mathbb{C}$ continue par morceaux intégrable.

Alors pour $a,b,c \in \overline{I}$, f est intégrable sur [b,a[, b,c[, a,c[et

$$\int_{a}^{c} f(t)dt = \int_{a}^{b} f(t)dt + \int_{b}^{c} f(t)dt$$

Démonstration :

On peut supposer que $I = |\alpha, \beta|$ et que $\alpha \le a < b < c \le \beta$.

Pour f réelle, on utilise $f = f^+ - f^-$ et on se ramène au cas des fonctions positives Pour f complexe, on utilise la partie imaginaire et réelle.

IV Règles usuelles d'intégrabilité

Problème:

Etant donnée $f: I \to \mathbb{C}$, f est-elle intégrable sur I?

On travaille ici avec |f| car f est intégrable si et seulement si |f| l'est.

• Utilisation des relations de comparaison

Théorème (inégalités):

Soit $f: I \to \mathbb{C}$ continue par morceaux, $g: I \to \mathbb{R}$ continue par morceaux et positive.

On suppose que $\forall t \in I, |f(t)| \le g(t)$

Alors si g est intégrable, f l'est aussi.

Contraposée : si f n'est pas intégrable, g ne l'est pas non plus.

Démonstration :

Déjà vue.

Théorème (cas d'une singularité : utilisation des relations de comparaison)

Soit I = [a,b[où $a \in \mathbb{R}$ fini, et $b \in \mathbb{R} \cup \{+\infty\}$

Soit $f: I \to \mathbb{C}$ continue par morceaux, $g: I \to \mathbb{R}$ continue par morceaux positive

- Si g est intégrable, et si f(x) = O(g(x)), alors f est intégrable.
- Si $f(x) \underset{x \to b}{\sim} g(x)$, alors f est intégrable si et seulement si g l'est.

L'énoncé est analogue pour une singularité de l'autre côté.

Démonstration:

- Si f(x) = O(g(x)), alors il existe $c \in [a,b[$ et $M \ge 0$ tels que

 $\forall x \in [c, b[, |f(x)| \le Mg(x)]$

Comme g est intégrable sur [a,b[, elle l'est sur [c,b[et f aussi.

Comme de plus f est continue par morceaux sur [a,c], f est intégrable sur [a,c], et donc sur [a,b[

- Si $f(x) \underset{x \to b}{\sim} g(x)$, alors $|f(x)| \underset{x \to b}{\sim} |g(x)|$,

donc |f(x)| = O(g(x)) et g(x) = O(|f(x)|) et le résultat découle alors du point précédent.

• Règle de Riemann : comparaison avec une fonction puissance :

Théorème:

- Etude de la singularité +∞ :

Soit $f:[a,+\infty[\to\mathbb{C}]$, continue par morceaux.

- (1) Si $x^2 f(x)$, ou plus généralement $x^{\alpha} f(x)$ pour un certain $\alpha > 1$, a une limite *finie* quand x tend vers $+\infty$, alors f est intégrable sur $[a,+\infty[$.
- (2) Si xf(x) a une limite *non nulle* (éventuellement infinie) quand x tend vers $+\infty$, alors f n'est pas intégrable sur $[a,+\infty[$
- Etude de la singularité 0 :

Soit $f: [0,b] \to \mathbb{C}$, continue par morceaux.

- (1) Si $\sqrt{x} f(x)$, ou plus généralement $x^{\beta} f(x)$ pour un certain $\beta < 1$, a une limite *finie* quand x tend vers 0, alors f est intégrable sur [0,b].
- (2) Si xf(x) a une limite *non nulle* quand x tend vers 0, alors f n'est pas intégrable sur [0,b].

Remarque:

Pour une singularité finie $x_0 \neq 0$, on peut se ramener à 0 avec le changement de variable $t = x - x_0$

Si la singularité est en $-\infty$, on peut faire le changement de variable t = -xDémonstration du théorème :

- (1) On a $f(x) = O\left(\frac{1}{x^{\alpha}}\right)$, et $x \mapsto \frac{1}{x^{\alpha}}$ est intégrable sur $[1,+\infty[$ car $\alpha > 1$. Donc f est intégrable.
- (2) On a $\frac{1}{x} = O(|f(x)|)$. Comme $\frac{1}{x}$ n'est pas intégrable sur $[a, +\infty[$, |f| non plus et ni f.

On fait la même chose pour 0.

Exemples:

$$f(x) = x^{\alpha} e^{-\sqrt{x}}$$
 pour $\alpha \in \mathbb{R}, x > 0$.

f est elle intégrable sur $]0,+\infty[$?

Déjà, f est continue sur $]0,+\infty[$.

Etude en 0:

 $f(x) \underset{x \to 0}{\sim} x^{\alpha}$. Donc f est intégrable sur]0,1] si et seulement si x^{α} l'est c'est-à-dire si et seulement si $\alpha > -1$

Etude en $+\infty$:

On a $\lim_{x \to +\infty} x^2 f(x) = 0$.

Donc f est intégrable sur $[1,+\infty[$, donc sur $]0,+\infty[$ dès que $\alpha > -1$

V Intégrales impropres

Il peut arriver que $\int_a^x f(t)dt$ ait une limite finie quand $x \to b$ alors que f n'est pas intégrable sur [a,b[

Définition:

Soit $f:[a,b[\to \mathbb{C}]$ continue par morceaux.

Si $\int_a^x f(t)dt$ a une limite *finie l* quand $x \to b$, on pose $\int_a^b f(t)dt = \lim_{x \to b} \int_a^x f(t)dt$.

On dit alors que $\int_a^b f(t)dt$ est convergente.

Si $\int_a^b |f(t)| dt$ est convergente, on dit que $\int_a^b f(t) dt$ est absolument convergente.

Si $\int_a^b f(t)dt$ converge mais $\int_a^b |f(t)|dt$ diverge, on dit que $\int_a^b f(t)dt$ est semi-convergente.

On définit de même la convergence pour deux singularités :

Si $f:]a,b[\to \mathbb{C}$ est continue par morceaux et $c \in]a,b[$, on dit que $\int_a^b f(t)dt$ converge lorsque $\int_a^c f(t)dt$ et $\int_c^b f(t)dt$ convergent.

Attention:

Avec une telle définition, $\int_{-\infty}^{+\infty} x dx$ diverge, alors que $\lim_{A \to +\infty} \int_{-A}^{A} x dx = 0$.

Théorème:

Soit $f: [a,b] \to \mathbb{C}$ continue par morceaux.

Les conditions suivantes sont équivalentes :

- f est intégrable sur [a,b[
- $\int_a^b f(t)dt$ est absolument convergente.

Et dans ce cas, $\int_a^b f(t)dt$ est convergente et de plus

$$\int_{a}^{b} f(t)dt = \int_{[a,b[} f(t)dt = \lim_{x \to b} \int_{a}^{x} f(t)dt$$

Démonstration :

Dire que f est intégrable signifie que |f| l'est, c'est-à-dire que $\int_a^x |f(t)| dt$ a une limite finie. De plus, si f est intégrable, on sait que $\int_a^x f(t) dt \xrightarrow[x \to b]{} \int_{[a,b[} f(t) dt$

Exemples:

$$\int_0^{+\infty} \frac{\sin t}{t} dt$$
 est semi-convergente :

Considérons
$$f: t \mapsto \frac{\sin t}{t}$$
 pour $t > 0$

Alors f est continue sur $]0,+\infty[$, prolongeable par continuité en 0 par f(0)=1Etude en $+\infty$:

- f n'est pas intégrable, car pour tout $n \ge 1$, on a :

$$\int_{\pi}^{n\pi} |f(t)| dt = \int_{\pi}^{n\pi} \left| \frac{\sin t}{t} \right| dt = \sum_{k=1}^{n} \int_{k\pi}^{(k+1)\pi} \frac{|\sin t|}{t} dt \ge \sum_{k=1}^{n} \int_{k\pi}^{(k+1)\pi} \frac{|\sin t|}{(k+1)\pi} dt$$

$$\ge \sum_{k=1}^{n} \frac{1}{(k+1)\pi} \int_{0}^{\pi} \sin u du = C \times \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) \xrightarrow[n \to +\infty]{} + \infty$$

Donc $\left\{ \int_{a}^{b} |f(t)| dt, 0 < a < b \right\}$ n'est pas majoré, donc f n'est pas intégrable.

- Mais
$$\int_0^{+\infty} f(t)dt$$
 converge:

On va montrer que $\int_{\pi}^{x} \frac{\sin t}{t} dt$ a une limite finie quand $x \to +\infty$.

Idée : intégration par parties :

$$\int_{\pi}^{x} \frac{\sin t}{t} dt = \left[-\cos t \times \frac{1}{t} \right]_{\pi}^{x} + \int_{\pi}^{x} \frac{\cos t}{t^{2}} dt = \frac{-\cos x}{x} - \frac{1}{\pi} + \int_{\pi}^{x} \frac{\cos t}{t^{2}} dt$$

Comme $\frac{-\cos x}{x} \xrightarrow{x \to +\infty} 0$, et comme $t \mapsto \frac{\cos t}{t^2}$ est intégrable sur $[\pi, +\infty[$ (car

$$\left|\frac{\cos t}{t^2}\right| \le \frac{1}{t^2}$$
), on voit que $\int_{\pi}^{x} \frac{\sin t}{t} dt$ a une limite finie quand $x \to +\infty$

Intégrale de Fresnet:

$$\int_{\mathbb{R}} e^{it^2} dt$$
. On pose $f(t) = e^{it^2}$ pour $t \in \mathbb{R}$

Alors f est continue sur \mathbb{R} , et |f| = 1 donc f n'est pas intégrable.

On a cependant pour
$$x \ge \pi$$
: $\int_{\pi}^{x} e^{i \cdot t^{2}} dt = \int_{\pi}^{x} \frac{2i \cdot t e^{i \cdot t^{2}}}{2it} dt = \left[\frac{e^{i \cdot t^{2}}}{2it}\right]_{\pi}^{x} + \int_{\pi}^{x} \frac{e^{i \cdot t^{2}}}{2it^{2}} dt$

Comme $\lim_{x \to +\infty} \frac{e^{ix^2}}{2ix} = 0$ et comme $t \mapsto \frac{e^{it^2}}{2it^2}$ est intégrable sur $[\pi, +\infty[, \int_{\pi}^{x} e^{it^2} dt]$ a une

limite finie quand $x \to +\infty$.

De même sur $]-\infty,-\pi]$, puis $[-\pi,\pi]$ et enfin \mathbb{R} .

VI Méthode d'étude des intégrales

• Changement de variable :

Théorème:

Soient I, J deux intervalles de $\mathbb{R}, \varphi: I \to J$ un C^1 -difféomorphisme

Soit $f: J \to \mathbb{C}$ continue par morceaux.

On considère les deux intégrales :

$$\int_{I} f(t)dt \text{ et } \int_{I} (f \circ \varphi)(u) \varphi'(u) du.$$

Alors ces deux intégrales ont même nature, c'est-à-dire :

- f est intégrable sur J si et seulement si $f \circ \varphi \times \varphi'$ l'est sur I.
- $\int_{t}^{t} f(t)dt$ est semi-convergente si et seulement si $\int_{t}^{t} (f \circ \varphi)(u)\varphi'(u)du$ l'est.

Et lorsque les intégrales existent, on a :

 $\int_{I} f(t)dt = \varepsilon \int_{I} (f \circ \varphi)(u) \varphi'(u) du \text{ où } \varepsilon \text{ vaut 1 si } \varphi \text{ est croissante, -1 sinon.}$

Démonstration:

En terme de convergence d'intégrales :

Supposons que I = [a, b] $J = [\alpha, \beta]$ (et que φ est croissante et $\varphi(a) = \alpha$)

Alors pour
$$x \in J$$
, $\int_{\alpha}^{x} f(t)dt = \int_{t=\varphi(u)}^{\varphi^{-1}(x)} \int_{a}^{\varphi^{-1}(x)} f \circ \varphi(u) \varphi'(u) du$

Comme $\lim_{x\to\beta} \varphi^{-1}(x) = b$, si $\int_a^y f \circ \varphi(u) \varphi'(u) du$ est convergente, c'est pareil pour

$$\int_{\alpha}^{x} f(t)dt$$

Pour la réciproque, on le fait avec φ^{-1}

Pour l'absolue convergence, on remplace f par $\left|f\right|$

• Utilisation d'une intégration par parties :

Intérêt : permet d'accélérer la convergence d'une intégrale.

Attention : il faut toujours se ramener à des intégrales sur un segment, *puis* passer à la limite.

Exemples:

Etude d'une intégrale impropre : $\int_0^{+\infty} \frac{\sin t}{t^{\alpha}} dt$ pour $\alpha > 0$

L'application $f: t \mapsto \frac{\sin t}{t^{\alpha}}$ est continue sur $]0,+\infty[$, et on a $f(t) \underset{t\to 0}{\sim} t^{1-\alpha}$, donc f est intégrable sur $]0,\pi[$ si et seulement si $1-\alpha>-1$, c'est-à-dire $\alpha>2$

 $En + \infty$

On a
$$\left| \frac{\sin t}{t^{\alpha}} \right| \le \frac{1}{t^{\alpha}}$$
. Déjà, si $\alpha > 1$, f est intégrable sur $[\pi, +\infty[$

Si
$$\alpha \le 1$$
, on a $\int_{\pi}^{x} \frac{\sin t}{t^{\alpha}} dt = \left[-\frac{\cos t}{t^{\alpha}} \right]_{\pi}^{x} + \alpha \int_{\pi}^{x} \frac{\cos t}{t^{\alpha+1}} dt$

Si $\alpha > 0$, alors $\left[-\frac{\cos t}{t^{\alpha}} \right]_{\pi}^{x}$ a une limite finie quand $x \to +\infty$, et $t \mapsto \frac{\cos t}{t^{\alpha+1}}$ est intégrable sur $[\pi, +\infty[$.

Donc $\int_{\pi}^{x} \frac{\sin t}{t^{\alpha}} dt$ a une limite finie en $+\infty$.

Si
$$\alpha \le 0$$
, on a $\int_{2n\pi}^{(2n+1)\pi} \frac{\sin t}{t^{\alpha}} dt \ge \int_{2n\pi}^{(2n+1)\pi} \sin t dt \ge 2$

Donc $\int_{\pi}^{x} \frac{\sin t}{t^{\alpha}} dt$ n'a pas de limite finie quand $x \to +\infty$

car si
$$F(x) = \int_{\pi}^{x} \frac{\sin t}{t^{\alpha}} dt \rightarrow l \in \mathbb{R}$$
,

alors
$$\int_{2n\pi}^{(2n+1)\pi} \frac{\sin t}{t^{\alpha}} dt = F((2n+1)\pi) - F(2n\pi) \to l - l = 0$$

Conclusion;

Si $1 < \alpha < 2$, f est intégrable sur $]0,+\infty[$

Si $0<\alpha\le 1$, $\int_{\pi}^{+\infty}f(t)dt$ est convergente et f est intégrable sur $]0,\pi]$ donc $\int_{0}^{+\infty}f(t)dt$ converge

Si
$$\alpha \le 0$$
, $\int_{\pi}^{+\infty} f(t)dt$ diverge, donc $\int_{0}^{+\infty} f(t)dt$ aussi.

Développement asymptotique en $+\infty$ de $f(x) = e^{-x^2} \int_0^x e^{t^2} dt$

On a
$$f(x) = e^{-x^2} \left(A + \int_0^x e^{t^2} dt \right)$$
 où $A = \int_0^1 e^{t^2} dt$

Dono

$$f(x) = e^{-x^2} \left(A + \int_0^x \frac{2te^{t^2}}{2t} dt \right) = e^{-x^2} \left(A + \left[\frac{1}{2t} e^{t^2} \right]_1^x + \int_1^x \frac{e^{t^2}}{2t^2} dt \right)$$
$$= \frac{1}{2x} + A' e^{-x^2} + e^{-x^2} \int_1^x \frac{e^{t^2}}{2t} dt$$

Avec $A' = A - \frac{1}{2}e$. En refaisant une intégration par parties,

$$f(x) = \frac{1}{2x} + A'e^{-x^2} + e^{-x^2} \left(\left[\frac{1}{4t^3} e^{t^2} \right]_1^x + \frac{4}{3} \int_1^x \frac{e^{t^2}}{t^4} dt \right) = \frac{1}{2x} + \frac{1}{4x^3} + A''e^{-x^2} + \frac{3}{4} e^{-x^2} \int_1^x \frac{e^{t^2}}{t^4} dt$$

Avec $A'' = A' - \frac{1}{4}e$

On cherche une majoration de $\varepsilon(x) = \frac{3}{4}e^{-x^2} \int_1^x \frac{e^{t^2}}{t^4} dt$:

On note
$$\varphi: t \mapsto \frac{e^{t^2}}{t^4}$$
, de classe C^1 et $\varphi'(t) = \frac{e^{t^2}}{t^3} (2t^2 - 4)$

Donc
$$\varphi'(t) \ge 0$$
 si $t \ge \sqrt{2}$, et $\varphi'(t) \le 0$ si $1 \le t \le \sqrt{2}$

Donc $\max_{1 \le t \le x} \varphi(t) = \max(\varphi(1), \varphi(x)) = \varphi(x)$ pour $x \ge A$ assez grand.

Ainsi, pour
$$x \ge A$$
: $\left| \mathcal{E}(x) \right| \le \frac{3}{4} e^{-x^2} \int_1^x \varphi(x) dt = \frac{3}{4} (x - 1) \frac{1}{x^4} = O(1/x^3)$

Donc
$$f(x) \sim \frac{1}{2x}$$

• Utilisation d'une série :

Proposition (hors programme):

On suppose que I = [a,b] (une seule singularité)

Soit $(x_n)_{n\in\mathbb{N}}$ une suite strictement croissante de I telle que $x_0=a$ et $\lim_{n\to+\infty}x_n=b$.

Soit $f: I \to \mathbb{C}$ continue par morceaux.

Alors f est intégrable sur I si et seulement si la série de terme général

$$u_n = \int_{x_n}^{x_{n+1}} |f(t)| dt$$
 converge, et dans ce cas on a $\int_I f(t) dt = \sum_{n=0}^{+\infty} \int_{x_n}^{x_{n+1}} f(t) dt$

Démonstration:

Si f est intégrable, alors pour tout
$$n \in \mathbb{N}$$
, $\sum_{k=0}^{n} u_k = \int_a^{x_{n+1}} |f(t)| dt \le \int_a^b |f(t)| dt$

Donc la suite des sommes partielles est croissante majorée, donc converge.

Inversement, si la série de terme général $(u_n)_{n\in\mathbb{N}}$, alors pour tout $[u,v]\subset I$, il existe $n\in\mathbb{N}$ tel que $x_{n+1}\geq v$ et :

$$\int_{u}^{v} |f(t)| dt \le \int_{a}^{x_{n+1}} |f(t)| dt = \sum_{k=0}^{n} u_{k} \le \sum_{k=0}^{+\infty} u_{k}$$

Donc $\left\{ \int_{u}^{v} |f(t)| dt, [u,v] \subset I \right\}$ est borné, donc f est intégrable.

Calcul:

La série de terme général $v_n = \int_{x_n}^{x_{n+1}} f(t)dt$ est absolument convergente (car $|v_n| \le u_n$), et $\sum_{k=0}^n v_k = \int_a^{x_{n+1}} f(t)dt \xrightarrow[n \to +\infty]{} \int_a^b f(t)dt$ car $x_{n+1} \to b$ et f est intégrable.

Remarque:

Cette méthode peut montrer que $\int_a^b f(t)dt$ est convergente même si f n'est pas intégrable :

Soit $f:[a,b[\to \mathbb{C}]$ continue par morceaux, et une suite $(x_n)_{n\in\mathbb{N}}$ strictement croissante telle que $x_0=a$ et tendant vers b. On note $v_n=\int_x^{x_{n+1}}f(t)dt$

(1) Si $\int_a^b f$ converge, alors la série de terme général v_n converge

(2) La réciproque peut être fausse :

Exemple: avec $f(t) = \sin t$ et $x_n = 2n\pi$

Alors $\int_0^{+\infty} f$ diverge, mais $v_n = 0$ converge

(3) Si la série de terme général v_n , et si $\int_{x_n}^{x_{n+1}} |f(t)| dt$, alors $\int_a^b f$ converge.

En effet, pour $x \in [a, b[$, il existe un unique rang n pour lequel $x_n \le x < x_{n+1}$

Donc
$$\int_{a}^{x} f(t)dt = \int_{a}^{x_{n}} f(t)dt + \int_{x_{n}}^{x} f(t)dt = \sum_{k=0}^{n-1} u_{k} + \underbrace{\int_{x_{n}}^{x} f(t)dt}_{\mathcal{E}(x)}$$

Et
$$|\varepsilon(x)| \le \int_{x_n}^x |f(t)| dt \le \int_{x_n}^{x_{n+1}} |f(t)| dt \to 0$$

Done
$$\lim_{x\to b} \int_a^x f = \sum_{n=0}^{+\infty} u_n$$
.

VII Convergence en moyenne et en moyenne quadratique

Soit I un intervalle de \mathbb{R} non vide ni réduit à un point.

On note $L_1*(I)$ l'ensemble des fonctions de I dans \mathbb{C} continues et intégrables.

Et $L_2*(I)$ l'ensemble des fonctions $f:I\to\mathbb{C}$ continues telles que $\left|f\right|^2$ est intégrable.

• Théorème :

 $L_1*(I)$ et $L_2*(I)$ sont des sous-espace vectoriels de $C^0(I,\mathbb{C})$, l'application $L_1*(I) \to \mathbb{R}_+$ est une norme sur $L_1*(I)$ et $L_2*(I)^2 \to \mathbb{R}_+$ est $f \mapsto \|f\|_1 = \int_I |f|$ $(f,g) \mapsto \langle f,g \rangle = \int_I \bar{f}(t)g(t)dt$

défini et est un produit scalaire.

Complément:

 $L_1 * (I)$ n'est pas complet pour $\| \cdot \|_1$

 $L_{2}*(I)$ n'est pas complet pour la norme $\big\|\,\,\big\|_{2}\,$ associée à < , >

Démonstration

On a déjà (quasiment) vu que $L_{\rm l}$ *(I) est un sous-espace vectoriel de $C^0(I,\mathbb{C})$

Pour $L_2*(I)$:

Si $f \in L_2^*(I)$ et $\lambda \in \mathbb{C}$, alors $\lambda f \in L_2^*(I)$...

Soient $f, g \in L, *(I)$.

Alors pour tout $x \in I$, on a:

$$|f(x) + g(x)|^{2} = |f(x)|^{2} + |g(x)|^{2} + 2\operatorname{Re}(\bar{f}(x)g(x))$$

$$\leq |f(x)|^{2} + |g(x)|^{2} + 2|\bar{f}(x)g(x)|$$

$$\leq 2|f(x)|^{2} + 2|g(x)|^{2}$$

(Car $\forall a, b \in \mathbb{R}, 2ab \le a^2 + b^2$)

Donc f + g est intégrable.

Pour | | | : elle est déjà positive, homogène et vérifie l'égalité du triangle.

Elle est de plus séparante :

Soit $f \in L_1^*(I)$, supposons que $||f||_1 = 0$

Alors pour tout $[u, v] \subset I$, $0 \le \int_{u}^{v} |f(t)| dt \le \int_{0}^{u} |f| = ||f||_{1} = 0$

Comme |f| est continue sur [u, v], on a |f| = 0 sur [u, v]

Donc f est nulle sur I.

Pour < , > :

Elle est bien définie car si $f, g \in L_2*(I)$, alors $t \mapsto \bar{f}(t)g(t)$ est intégrable car elle est continue et pour tout $t \in I$, $\left|\bar{f}(t)g(t)\right| \leq \frac{1}{2} \left(\left|f(x)\right|^2 + \left|g(x)\right|^2\right)$.

Elle est bien aussi linéaire à droite, hermitienne, positive,

Et définie positive : si $\langle f, f \rangle = 0$, alors $|f|^2$ vérifie $||f|^2||_1 = 0$ soit $|f|^2 = 0$

Non complétude :

Soit $[a,b] \subset I$ où a < b et intérieurs à I.

On pose $f_n(t) = \begin{cases} 1 \operatorname{si} t \in [a, b] \\ 0 \operatorname{si} t \in I \setminus a - \frac{1}{n}, b + \frac{1}{n} \end{cases}$ et affine sur $[a - \frac{1}{n}, a]$ et $[b, b + \frac{1}{n}]$. Alors

 $(f_n)_{n\in\mathbb{N}}$ est de Cauchy pour $\| \cdot \|_1 (\|f_n - f_m\|_1 \le \frac{2}{m})$ et pour $\| \cdot \|_2 (\|f_n - f_m\|_2 \le \frac{2}{m})$

Et la suite diverge, à la fois pour $\| \cdot \|_1$ et $\| \cdot \|_2$.

Car si elle convergeait vers $g \in L_k * (I)$ pour $\| \cdot \|_k$ (k = 1,2), on aurait alors

 $g(x) = \begin{cases} 1 \text{ si } x \in]a, b[\\ 0 \text{ si } x \in I \setminus [a, b], \end{cases} \text{ qui n'est pas continue en } a \text{ et } b.$

• Comparaison des normes $\| \cdot \|_1$, $\| \cdot \|_2$, $\| \cdot \|_{\infty}$

Propriétés :

(1) Si I = [a,b], alors pour toute function $f: I \to \mathbb{C}$ continue, on a

$$||f||_1 = \int_a^b |f(t)| dt \le \sqrt{b-a} ||f||_2 \le (b-a) ||f||_\infty$$

Mais les trois normes ne sont pas équivalentes sur $C^0([a,b],\mathbb{C})$.

- (2) Si I est borné, alors $L_2*(I) \subset L_1*(I)$ (toute fonction de carré intégrable est intégrable), et pour f de carré intégrable, on a $\|f\|_1 \le \sqrt{b-a} \|f\|_2$, mais $\|\cdot\|_1$ et $\|\cdot\|_2$ ne sont pas équivalentes.
- (3) Si I n'est pas borné, il n'y a pas d'inégalité entre $\| \cdot \|_1$ et $\| \cdot \|_2$.

Démonstration:

(1) Il suffit d'utiliser l'inégalité de Cauchy-Schwarz.

Pour la non équivalence des normes : on peut supposer, quitte à faire un changement de variable affine, que I = [0;1].

On pose alors pour $n \in \mathbb{N}^*$ $f_n : t \mapsto t^n$

Ainsi,
$$\forall n \in \mathbb{N}^*, ||f_n||_{\infty} = 1, ||f_n||_{1} = \frac{1}{n+1}, ||f_n||_{2} = \frac{1}{\sqrt{2n+1}}$$

Et donc
$$\lim_{n \to +\infty} \frac{\|f_n\|_{\infty}}{\|f_n\|_{2}} = +\infty$$
, $\lim_{n \to +\infty} \frac{\|f_n\|_{\infty}}{\|f_n\|_{1}} = +\infty$, $\lim_{n \to +\infty} \frac{\|f_n\|_{2}}{\|f_n\|_{1}} = +\infty$

Donc on ne peut pas trouver c > 0 tel que $\forall n \in \mathbb{N}, ||f_n||_2 \le c ||f_n||_1$ ou ...

(2) Soit $f: I \to \mathbb{C}$ continue par morceaux de carré intégrable.

Alors f est intégrable :

- Déjà, f est continue par morceaux (!)

Et $\forall t \in I, |f(t)| \le \frac{1}{2} (|f(t)|^2 + 1)$. Mais comme I est borné, $t \mapsto |f(t)|^2 + 1$ est intégrable sur I.

- Pour l'inégalité :

Soit f continue par morceaux de carré intégrable sur I = |a,b| borné.

Pour tout $[u,v] \subset I$, on a d'après l'inégalité de Cauchy–Schwarz :

$$\int_{u}^{v} |f(t)| dt \le \sqrt{\int_{u}^{v} 1 dt \int_{u}^{v} |f(t)|^{2} dt} \le \sqrt{(v - u) \int_{u}^{v} |f(t)|^{2} dt} \le \sqrt{b - a} ||f||_{2}$$

Et donc en passant à la borne supérieure pour $[u,v] \subset I$:

$$\left\| f \right\|_1 \le \sqrt{b - a} \left\| f \right\|_2$$

- Non équivalence : voir (1).
- (3) On peut supposer par exemple que $I = [0; +\infty[$

On pose pour $\lambda > 0$ $f_{\lambda}: t \mapsto e^{-\lambda t}$. Alors pour tout $\lambda > 0$, f_{λ} est continue, intégrable et de carré intégrable.

On a de plus
$$\|f_{\lambda}\|_{1} = \int_{0}^{+\infty} e^{-\lambda t} dt = \frac{1}{\lambda}$$
, $\|f_{\lambda}\|_{2} = \sqrt{\int_{0}^{+\infty} e^{-2\lambda t} dt} = \frac{1}{\sqrt{2\lambda}}$

Pour
$$\lambda = n \in \mathbb{N}$$
, on a alors $\frac{\|f_n\|_1}{\|f_n\|_2} = \frac{\sqrt{2n}}{n} \to 0$

Et pour
$$\lambda = \frac{1}{n}$$
: $\frac{\|f_n\|_1}{\|f_n\|_2} = \sqrt{2n} \to +\infty$

VIII Compléments

• Intégrale très utiles :

Proposition (hors programme):

Pour $z \in \mathbb{C}$, l'application $t \in \mathbb{R}_+ \mapsto e^{-t.z} \in \mathbb{C}$ est continue sur $[0,+\infty[$, et intégrable si et seulement si $\operatorname{Re}(z) > 0$, et dans ce cas, $\int_0^{+\infty} e^{-z.t} dt = \frac{1}{z}$

Démonstration

On note, pour $z \in \mathbb{C}$, f_z l'application introduite.

Alors pour tout $z \in \mathbb{C}$, f_z est continue, et $\forall t \in \mathbb{R}_+, \forall t \in \mathbb{R}_+, |f_z(t)| = e^{-\operatorname{Re}(z).t}$

- Si $\operatorname{Re}(z) \le 0$, alors $\forall t \ge 0, |f_z(t)| \ge 1$, donc f_z n'est pas intégrable.
- Si Re(z) > 0, alors $\lim_{t \to +\infty} t^2 f_z(t) = 0$ donc f_z est intégrable.

Calcul:

Pour tout
$$x \ge 0$$
, $\int_0^x e^{-z \cdot t} dt = \left[\frac{1}{-z} e^{-z \cdot t} \right]_0^x = \frac{1}{z} (1 - e^{-z \cdot x})$

Or, comme Re(z) > 0, $\lim_{x \to +\infty} e^{-z \cdot x} = 0$, donc $\int_0^{+\infty} e^{-z \cdot t} dt = \frac{1}{z}$

• Théorème d'intégration des relations de comparaison :

Théorème (hors programme):

On suppose que I = [a,b] (une seule singularité)

Soient $f,g:[a,b[\to \mathbb{C}$ continues par morceaux où g est à valeurs réelles positives. (1) Si f(x) = o(g(x)):

- Si g est intégrable, alors f est intégrable et $\int_x^b f(t)dt = o\left(\int_x^b g(t)dt\right)$.
- Si g n'est pas intégrable, alors $\int_a^x f(t)dt = o\left(\int_a^x g(t)dt\right)$ (on se sait rien sur f)

Remarque:

Dans le premier cas, $\int_{x}^{b} g(t)dt \xrightarrow[x \to b]{} 0$ et dans le deuxième $\int_{a}^{x} g(t)dt \xrightarrow[x \to b]{} +\infty$

- (2) On a un énoncé analogue pour O.
- (3) Si $f(x) \sim g(x)$, alors f est intégrable si et seulement si g l'est et :
- Si elles sont intégrables, alors $\int_x^b f(t)dt \sim \int_x^b g(t)dt$
- Si elles ne le sont pas, alors $\int_a^x f(t)dt \sim \int_a^x g(t)dt$

Démonstration:

(1) Si g est intégrable, alors |f(x)| = o(g(x)) donc f est intégrable.

On va montrer que $\forall \varepsilon > 0, \exists c \in [a, b[, \forall x \in [c, b[, \left| \int_{x}^{b} f(t) dt \right| \le \varepsilon \int_{x}^{b} g(t) dt$

Soit $\varepsilon > 0$.

Comme f(x) = o(g(x)), il existe $c \in [a,b[$ tel que $t \in [c,b[$, $|f(t)| \le \varepsilon g(t)$.

Donc pour $x \in [c, b]$, on a $\forall t \in [x, b], |f(t)| \le \varepsilon g(t)$ et donc

$$\left| \int_{x}^{b} f(t)dt \right| \leq \int_{x}^{b} |f(t)|dt \leq \varepsilon \int_{x}^{b} g(t)dt.$$

Cas de divergence :

Déjà, $\lim_{x\to b} \int_a^x g(t)dt = +\infty$ car g est positive et non intégrable.

On va montrer que $\forall \varepsilon > 0, \exists c \in [a, b[, \forall x \in [c, b[, \int_a^x f(t)dt]] \leq \varepsilon \int_a^x g(t)dt$

Soit $\varepsilon > 0$. Il existe $c_1 \in [a, b[$ tel que $\forall t \in [c_1, b[, |f(t)| \le \frac{\varepsilon}{2}g(t)$

Pour
$$x \in [c_1, b[$$
, on a

$$\left| \int_{a}^{x} f(t)dt \right| = \left| \int_{a}^{c_{1}} f(t)dt + \int_{c_{1}}^{x} f(t)dt \right| \le \left| \int_{a}^{c_{1}} f(t)dt \right| + \left| \int_{c_{1}}^{x} f(t)dt \right|$$

$$\le \left| \int_{a}^{c_{1}} f(t)dt \right| + \frac{\mathcal{E}}{2} \int_{c_{1}}^{x} g(t)dt$$

$$\le A + \frac{\mathcal{E}}{2} \int_{c_{1}}^{x} g(t)dt$$

Où $A = \left| \int_a^{c_1} f(t) dt \right|$. Par ailleurs, $\lim_{x \to b} \frac{A}{\int_a^x g(t) dt} = 0$, donc il existe $c_2 \in [a, b[$ tel que

$$\forall x \in [c_2, b[, \frac{A}{\int_a^x g(t)dt} \le \frac{\varepsilon}{2}]$$

En posant $c = \max(c_1, c_2)$, on aura pour $x \in [c, b]$:

$$\left| \int_{a}^{x} f(t)dt \right| \leq A + \frac{\varepsilon}{2} \int_{c_{1}}^{x} g(t)dt \leq \frac{\varepsilon}{2} \int_{c_{1}}^{x} g(t)dt + \frac{\varepsilon}{2} \int_{c_{1}}^{x} g(t)dt$$

D'où le résultat.

- (2) La démonstration est quasiment la même.
- (3) Il suffit de poser h = f g. Ainsi, h(x) = o(g(x)) et on applique (1).

Application de l'intégration des relations de comparaison :

• Intégration des DL généralisés :

Soit $f: [0,a] \to \mathbb{C}$ continue ayant un DL en 0 de la forme

 $f(x) = a_1 x^{\alpha_1} + ... + a_p x^{\alpha_p} + o(x^{\alpha_p})$ où $\forall i \in [1, p], a_i \in \mathbb{C}^*$ et $\alpha_i \in \mathbb{R}$, rangés par ordre croissant.

- (1) Alors f est intégrable sur]0,a] si et seulement si $\alpha_1 > -1$ car $|f(x)| \underset{x \to 0}{\sim} |a_1| x^{\alpha_1}$
- (2) On suppose que $\alpha_1 > -1$. Alors on a le DL généralisé :

$$\int_0^x f(t)dt = a_1 \frac{x^{\alpha_1 + 1}}{\alpha_1 + 1} + \dots + a_p \frac{x^{\alpha_p + 1}}{\alpha_p + 1} + o(x^{\alpha_p + 1})$$

Démonstration:

On pose $\mathcal{E}(x) = o(x^{\alpha_p})$. Alors $x \mapsto x^{\alpha_p}$ est intégrable sur]0,a] et positive (car $\alpha_p > \alpha_1 > -1$).

On a donc
$$\int_0^x \mathcal{E}(t)dt = o\left(\int_0^x t^{\alpha_p} dt\right) = = o\left(x^{\alpha_p+1}\right)$$

Exemple:

 $Arccos: [-1;1] \rightarrow [0;\pi]$

Alors Arccos est de classe C^{∞} sur -1; 1[, et $\forall x \in -1$; 1[, Arccos'(x) = $\frac{-1}{\sqrt{1-x^2}}$

DL généralisé en $x_0 = 1$:

Pour $x \in]-1;1[$, on pose h = 1 - x > 0 et on a :

Arccos'
$$(1-h) = \frac{-1}{\sqrt{2h-h^2}} = \frac{-1}{\sqrt{2h}} \left(1 - \frac{h}{2}\right)^{-1/2}$$

Arccos'
$$(1-h) = \frac{-1}{\sqrt{2}} h^{-1/2} \left(1 + \frac{h}{4} + O(h^2) \right) = \frac{-1}{\sqrt{2}} h^{-1/2} - \frac{1}{4\sqrt{2}} h^{1/2} + O(h^{3/2})$$

Donc en intégrant entre 1-h et 1 :

Arccos(1) - Arccos(1-h) =
$$-\sqrt{2}h^{1/2} - \frac{1}{6\sqrt{2}}h^{3/2} + O(h^{5/2})$$

D'où

Arccos(x) =
$$\sqrt{2}(1-x)^{1/2} + \frac{1}{6\sqrt{2}}(1-x)^{3/2} + O((1-x)^{5/2})$$

 $\underset{x \to 1}{\sim} \sqrt{2}\sqrt{1-x}$

• Exemple déjà fait :

On a pour $x \ge 1$:

$$e^{-x^2} \int_1^x e^{t^2} dt = e^{-x^2} \left(\left[\frac{1}{2t} e^{t^2} \right]_1^x + \int_1^x \frac{e^{t^2}}{2t^2} dt \right)$$
$$= \frac{1}{2x} - \frac{e^{-x^2}}{2} + e^{-x^2} \int_1^x \frac{e^{t^2}}{2t^2} dt$$

Or, $t \mapsto e^{t^2}$ est positive non intégrable sur $[1,+\infty[$

Et de plus
$$\frac{e^{t^2}}{2t^2} = o(e^{t^2})$$
, donc $\int_1^x \frac{e^{t^2}}{2t^2} dt = o\left(\int_1^x e^{t^2} dt\right)$,

Soit
$$e^{-x^2} \left(\int_1^x \frac{e^{t^2}}{2t^2} dt \right)_{x \to +\infty} = o(f(x))$$

Donc
$$f(x) \sim \frac{1}{x \to +\infty} \frac{1}{2x} - \frac{e^{-x^2}}{2} \sim \frac{1}{x \to +\infty} \frac{1}{2x}$$