Algorithmic Methods for Mathematical Models Course Project

Mathematics of Baking

Tim Wichelmann Jakob Eberhardt

December 19th

Instance Input Data

- Number of items (n)
- Time periods (t)
- Profits (profit)
- Lengths (length)
- Minimum deliveries (min_deliver)
- Maximum deliveries (max_deliver)
- Surfaces (surface)
- Surface capacity (surface_capacity)

Decision Variables and Objective Function

- y is a matrix of size $n \times t$ consisting of binary variables which indicate if the order i will be baked in time slot j.
- x_i is a binary variable indicating whether order i has the right amount of time slots assigned to it.
- start_i denotes the time slot in which the baking process of order i is started.
- end_i denotes the time slot in which the baking process of order i will be finished.

$$\max \sum_{i=1}^{n} profit_{i} \times x_{i}$$

Goal: The objective is to maximize the total profit, calculated as the sum of profits of each order that is successfully scheduled while respecting the constraints.

Surface Constraint

Problem: The naive schedule would exceed our oven capacity **Constraint:** In every time slot, the space capacity is respected.

$$\sum_{i=1}^{n} surface_{i} y_{ij} \leq surface_capacity, \qquad (1 \leq j \leq t)$$
 (1)

Continuity & Length Constraint

Problem: Once started, an order has to be continuously processed for the needed time lots associated with it.

Constraint: If an order i is part of the schedule, it is assigned the $length_i - 1$ contiguous time slots from $start_i$ to end_i :

$$y_{ij} = (j \ge start_i) \land (j \le end_i),$$
 $(1 \le i \le n, 1 \le j \le t).$ (2)

Can also be done without logic operators (see report).

Optimization: Check only feasible slots for order *i*.

Lets consider this optimal solution

Objective function value: 164.

Greedy cost function

Greedy cost function is split into two parts:

- For an order i: Only consider its profit.
- For a possible starting time slot j (for a fixed order i): The average percentage of space used during the baking

$$\frac{\sum_{l=j}^{j+length_i} (\sum_{k=1}^{n} y_{kj} surface_k / surface_capacity)}{length_i}$$

- Objective function value: 97
- Optimality gap: 41%

Greedy only considering profit

8 / 21

Greedy cost function

Improvement for greedy

For an order *i*:

Also consider other attributes:

$$\frac{profit_{i}(max_deliver_{i} - min_deliver_{i})}{(length_{i} \cdot surface_{i})}$$

- Objective function value: 126
- Optimality gap: 23%

Scoring the orders

Local search criteria

Local Search

- Remove the order with the highest surface from the current schedule.
- Try to fit in the previously unused orders (in order of descending profit).
- 45 seconds of local search
- Objective value: 127
- Optimality gap: 22.5%

Greedy cost function

GRASP

- Best results: select orders the same way as in greedy, according to their greedy cost function.
- ullet Use an RCL with parameter lpha for selecting the time slot.
- 60 seconds, $\alpha = 0.8$
- Objective value: 146
- Optimality gap: 11%

GRASP after 1 minute and 5 improvements

Tuning the α -parameter

Time and α -parameter

Problem size vs. solution quality

Greedy and very big instances

Conclusion and Future Prospects

Results

- Developed the model
- Obtained optimal solutions using CPLEX

- Implemented and benchmarked different greedy cost functions
- Improved the greedy solutions using local search
- Applied the GRASP meta-heuristic
- \bullet Tuned α towards a consistent single-digit optimality gap in 60 seconds

Additional Considerations

- Greedy: Try different combinations of order/time slot greedy cost functions.
- GRASP: Apply the RCL to the list of sorted orders to explore more diverse solutions.

Conclusion and Future Prospects

Backup Slides

Continuity & Length Constraint

Problem: Once started, an order has to be continuously processed for the needed time lots associated with it.

Constraint:

If an order i is part of the schedule, it is assigned the $length_i - 1$ contiguous time slots from $start_i$ to end_i :

$$j \ge start_i - (t+1) * (1 - geq_start_{ii})$$
(3)

$$start_i \ge j - (t+1) * geq_start_{ij}$$
 (4)

$$end_{i} \ge j - (t+1) * (1 - leq_{-}end_{ii})$$
 (5)

$$j \ge end_i - (t+1) * leq_end_{ii}$$
 (6)

$$0 \leq \textit{geq_start}_{ij} + \textit{leq_end}_{ij} - 2 * \textit{y}_{ij}, \qquad (1 \leq i \leq \textit{n}, \textit{min_start}_i \leq j \leq \textit{max}_i)$$

(7)

CPLEX execution time

