Section 2.5 Continuous Random Variables

School of Sciences, BUPT

Contents

1 Uniform Distribution

2 Exponential Distribution

Normal Distribution

Let a and b be two given real numbers such that a < b.

Definition

The distribution of the random variable X is called the **uniform** distribution of the interval [a,b] if the p.d.f. of X is

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \leqslant x \leqslant b, \\ 0 & \text{otherwise.} \end{cases}$$

We write that by $X \sim U(a, b)$.

The corresponding d.f. of X is

$$F(x) = \begin{cases} 0 & \text{for } x < a, \\ \frac{x-a}{b-a} & \text{for } a \le x < b, \\ 1 & \text{for } x \ge b. \end{cases}$$

The constant a is the *location parameter* and the constant b-a is the *scale parameter*.

(a) probability density function f(x)

(b) distribution function F(x)

The case where a = 0 and b = 1 is called the **standard uniform distribution**. The p.d.f. for the standard uniform distribution is

$$f(x) = \begin{cases} 1 & \text{for } 0 \leqslant x \leqslant 1, \\ 0 & \text{otherwise.} \end{cases}$$

and the d.f. of the standard uniform distribution is

$$F(x) = \begin{cases} 0 & \text{for } x < 0, \\ x & \text{for } 0 \leqslant x < 1, \\ 1 & \text{for } x \geqslant 1. \end{cases}$$

Proposition

Suppose that X is a random variable which has uniform distribution of the interval [a,b]. Then we have

$$E(X) = \frac{a+b}{2}$$
 and $Var(X) = \frac{(b-a)^2}{12}$. (1)

Proof. Using the basic definition of expectation, we know

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{a}^{b} x \cdot \frac{1}{b-a} dx = \frac{a+b}{2}.$$

We have

$$Var(X) = E(X^{2}) - [E(X)]^{2}$$
$$= \int_{a}^{b} x^{2} \cdot \frac{1}{b-a} dx - \left(\frac{a+b}{2}\right)^{2} = \frac{(b-a)^{2}}{12}.$$

Example

The current (in mA) measured in a piece of copper wire is known to follow a uniform distribution over the interval [0, 25]. Write down the formula for the probability density function f(x) of the random variable X representing the current. Calculate the expectation and variance of the distribution and find the distribution function F(x).

Solution. Over the interval [0, 25] the probability density function f(x) is given by the formula

$$f(x) = \begin{cases} \frac{1}{25 - 0} = 0.04 & \text{for } 0 \leqslant x \leqslant 25, \\ 0 & \text{otherwise.} \end{cases}$$

Using equation (1), we have

Solution. Using equation (1), we have

$$E(X) = \frac{25+0}{2} = 12.5mA$$
 and $Var(X) = \frac{(25-0)^2}{12} = 52.08mA^2$.

The distribution function is obtained by integrating the probability density function as shown below,

$$F(x) = \int_{-\infty}^{x} f(t)dt.$$

Hence, choosing the three distinct regions $x < 0, 0 \le x < 25$ and $x \ge 25$ in turn gives:

$$F(x) = \begin{cases} 0 & \text{for } x < 0, \\ \frac{x}{25} & \text{for } 0 \le x < 25, \\ 1 & \text{for } x \ge 25. \end{cases}$$

Example

Suppose that $X \sim U(0,1)$. Let Y = g(X) = aX + b, a > 0.

- (a) Find the p.d.f. $f_Y(y)$ of Y.
- (b) Calculate the value of E(Y) and Var(Y).

Solution. (a) Obviously, the possible values taken by Y is between b and a + b. If $b \le y \le a + b$, then

$$f_Y(y) = f_X(\frac{y-b}{a})\frac{1}{a} = \frac{1}{a}.$$

Otherwise, we have $f_Y(y) = 0$. That means $Y \sim U(b, a + b)$.

(b)
$$E(Y) = E(aX + b) = aE(X) + b = \frac{a}{2} + b$$
.

$$Var(Y) = Var(aX + b) = a^2 Var(X) = \frac{a^2}{12}.$$

Example

Suppose that $X \sim U(-1,1)$. Let $Y = g(X) = X^2$.

- (a) Find the p.d.f. $f_Y(y)$ of Y.
- (b) Calculate the value of E(Y) and Var(X).

Solution. (a) Since $X \sim U(-1, 1)$, the p.d.f. of X is

$$f(x) = \begin{cases} \frac{1}{2} & \text{for } -1 \leq x \leq 1, \\ 0 & \text{otherwise.} \end{cases}$$

Because $y = g(x) = x^2$, the possible values taken by Y is between 0 and 1.

Solution. If 0 < y < 1, then

$$f_Y(y) = \frac{1}{2\sqrt{y}} \left[f_X(\sqrt{y}) + f_X(-\sqrt{y}) \right] = \frac{1}{2\sqrt{y}} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2\sqrt{y}}.$$

If $y \leq 0$ or $y \geq 1$, then $f_Y(y) = 0$.

(b)

$$E(Y) = E(X^2) = \int_{-\infty}^{+\infty} x^2 f_X(x) dx = \int_{-1}^{1} x^2 \cdot \frac{1}{2} dx = \frac{1}{3}.$$

$$Var(Y) = E[(X^{2})^{2}] - [E(X^{2})]^{2} = \int_{-1}^{1} x^{4} \cdot \frac{1}{2} dx - \frac{1}{9} = \frac{1}{5} - \frac{1}{9} = \frac{4}{45}.$$

Example

Given a random variable X with distribution $F_X(x)$ which is strict increasing, prove that $Y = F_X(X)$ is uniformly distributed in the interval (0, 1).

(Hint: if
$$Y = g(X) = F_X(X)$$
, then $F_Y(y) = y$ for $0 \le y \le 1$.)

Example

Given a random variable Y with uniform distribution of the interval (0, 1). Prove that the distribution of the random variable $X = F_X^-(Y)$ is a specified function $F_X(x)$.

Solution. For the random variable $X = F_X^{-1}(Y)$ and $x \in \mathbb{R}$, $P(X \leqslant x) = P(F_X^{-1}(Y) \leqslant x) = P(Y \leqslant F_X(x)) = F_X(x)$.

Contents

1 Uniform Distribution

2 Exponential Distribution

Normal Distribution

Definition

Let X be a continuous random variable whose density function is of the form

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{for } x > 0, \\ 0 & \text{for } x \leq 0, \end{cases}$$

where $\lambda > 0$ is the scale parameter. We say that X follows a **exponential distribution** with parameter λ . We write that $X \sim Exp(\lambda)$. The case where $\lambda = 1$ is called the standard exponential distribution.

The corresponding d.f. of X is

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & \text{for } x \ge 0, \\ 0 & \text{for } x < 0. \end{cases}$$

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{for } x > 0, \\ 0 & \text{for } x \le 0, \end{cases}$$

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & \text{for } x \ge 0, \\ 0 & \text{for } x < 0. \end{cases}$$

We are sure about f(x) is a p.d.f. since

$$\int_{-\infty}^{\infty} f(x)dx = \int_{0}^{+\infty} \lambda e^{-\lambda x} dx = 1.$$

The exponential distribution is usually used to model the time until something happens in the process.

Proposition

Suppose that X is a random variable which has exponential distribution with parameter λ . Then we have

$$E(X) = \frac{1}{\lambda}$$
 and $Var(X) = \frac{1}{\lambda^2}$. (2)

Solution. By using integration by parts,

$$E(X) = \int_0^{+\infty} \lambda x e^{-\lambda x} dx$$

$$= \lambda \left(\frac{-x e^{-\lambda x}}{\lambda} \Big|_0^{+\infty} + \frac{1}{\lambda} \int_0^{+\infty} e^{-\lambda x} dx \right)$$

$$= \lambda \left(0 + \frac{1}{\lambda} \frac{-e^{-\lambda x}}{\lambda} \Big|_0^{+\infty} \right) = \frac{1}{\lambda}.$$

From the first and second moments we can compute the variance as

$$Var(X) = E(X^2) - [E(X)]^2$$

$$= \int_0^{+\infty} x^2 \lambda e^{-\lambda x} dx - (1/\lambda)^2$$

$$= \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}.$$

Exponential Distribution: memoryless property

If $X \sim Exp(\lambda)$, then

$$P(X > t + s | X > t) = P(X > s) \quad \text{for } s, t \geqslant 0.$$

$$F(x) = P(X \le x) = \begin{cases} 1 - e^{-\lambda x} & \text{for } x \ge 0, \\ 0 & \text{for } x < 0. \end{cases}$$

Example

The lifetime (in years) of a radio has an exponential distribution with parameter $\lambda = 1/10$. If we buy a five-year-old radio, what is the probability that it will work for less than 10 additional years?

Solution. Let X be the total lifetime of the radio. We have that $X \sim Exp(\lambda = 1/10)$. We seek

$$\begin{split} P(X\leqslant 15|X>5) &= 1 - P(X>15|X>5) \\ &= 1 - P(X>10) = P(X\leqslant 10) \\ &= \int_0^{10} \frac{1}{10} e^{-x/10} dx = -e^{-x/10} \Big|_0^{10} \\ &= 1 - e^{-1} \approx 0.6321. \end{split}$$

Example

Jobs are sent to a printer at an average of 3 jobs per hour. (a) What is the expected time between jobs? (b) What is the probability that the next job is sent within 5 minutes?

Solution. Job arrivals represent rare events, thus the time T between them is exponential with rate 3 jobs/hour, i.e., $\lambda = 3$.

- (a) Thus $E(T) = 1/\lambda = 1/3$ hours or 20 minutes.
- (b) Using the same units (hours) we have 5 min.= 1/12 hours. Thus we compute

$$P(T < 1/12) = 1 - e^{-3 \cdot \frac{1}{12}} = 1 - e^{-\frac{1}{4}} = 0.2212.$$

Example

There is an equipment. Let N(t) be the failure time of this equipment at any time length t. Assume that N(t) has the Poisson distribution $P(\lambda t)$. Find the distribution of the interval time T between two failure time.

Solution. Since $N(t) \sim P(\lambda t)$,

$$P(N(t) = x) = e^{-\lambda t} \frac{(\lambda t)^x}{x!}, \qquad x = 0, 1, 2, \dots$$

If t > 0, $\{T > t\} = \{N(t) = 0\}$, then

$$P(T > t) = P(N(t) = 0) = e^{-\lambda t}.$$

So

$$P(T \leqslant t) = \begin{cases} 1 - \exp(-\lambda t) & \text{for } t > 0, \\ 0 & \text{for } t \leqslant 0. \end{cases}$$

That means $T \sim Exp(\lambda)$.

In fact, the exponential distribution is the probability distribution that describes the time between events in a Poisson process, i.e., a process in which events occur continuously and independently at a constant average rate.

Contents

1 Uniform Distribution

2 Exponential Distribution

Normal Distribution

Definition

Let X be a continuous random variable that can take any real value. If its density function is given by

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}, \quad for -\infty < x < \infty,$$
 (3)

then we say that X has a **normal** (or Gaussian) distribution with parameters μ and σ^2 , where $\mu \in \mathbb{R}$ and $\sigma > 0$. We write that $X \sim N(\mu, \sigma^2)$.

Now, let's verify

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}, \quad for -\infty < x < \infty,$$

is a valid probability density function by showing that

$$\int_{-\infty}^{\infty} f(x)dx = 1.$$

If we let $y = (x - \mu)/\sigma$, then

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}y^2} \sigma dy.$$

$$(\uparrow dx = \sigma dy)$$

Next, let's prove $\int_{-\infty}^{\infty} e^{-\frac{1}{2}y^2} dy = \sqrt{2\pi}$. Let

$$I = \int_{-\infty}^{\infty} e^{-\frac{1}{2}y^2} dy.$$

It follows that

$$I^{2} = I \cdot I = \int_{-\infty}^{\infty} e^{-\frac{1}{2}y^{2}} dy \int_{-\infty}^{\infty} e^{-\frac{1}{2}z^{2}} dz$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(y^{2} + z^{2})} dy dz$$

$$= \int_{0}^{2\pi} \int_{0}^{\infty} e^{-\frac{1}{2}r^{2}} r dr d\theta \quad (y = r \cos \theta, z = r \sin \theta)$$

$$= 2\pi.$$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

- 1. $f(\mu x) = f(\mu + x)$ for all $x \in R$.
- 2. $f_{\text{max}} = f(\mu) = \frac{1}{\sqrt{2\pi}\sigma}$.

$$X_1 \sim N(\mu_1, \sigma_1^2), \quad f_1(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{\frac{-(x-\mu_1)^2}{2\sigma_1^2}},$$

 $X_2 \sim N(\mu_2, \sigma_2^2), \quad f_2(x) = \frac{1}{\sqrt{2\pi}\sigma_2} e^{\frac{-(x-\mu_2)^2}{2\sigma_2^2}},$

- 3. μ : positional parameter
- 4. σ^2 : shape parameter $(f_{\text{max}} = f(\mu) = \frac{1}{\sqrt{2\pi}\sigma})$

Proposition

Suppose that $X \sim N(\mu, \sigma^2)$. Then we have

$$E(X) = \mu$$
 and $Var(X) = \sigma^2$. (4)

Proof.

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{-\infty}^{+\infty} x \cdot \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

$$\stackrel{\frac{x-\mu}{\sigma} = z}{=} \int_{-\infty}^{+\infty} (\mu + \sigma z) \cdot \frac{1}{\sqrt{2\pi}\sigma} e^{-z^2/2} \sigma dz$$

$$= \mu + \sigma \int_{-\infty}^{+\infty} z \cdot \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz$$

$$= \mu + \sigma \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz = \mu,$$

Proof.

$$Var(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx$$

$$= \int_{-\infty}^{+\infty} (x - \mu)^2 \cdot \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x - \mu)^2}{2\sigma^2}} dx$$

$$= -\sigma^2 \cdot (x - \mu) \cdot \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x - \mu)^2}{2\sigma^2}} \Big|_{-\infty}^{+\infty}$$

$$+ \sigma^2 \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x - \mu)^2}{2\sigma^2}} dx$$

$$= \sigma^2.$$

If $\mu = 0$, $\sigma^2 = 1$, then the distribution is called **standard normal distribution**.

We denote the r.v. by Z. The p.d.f. of Z is

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} \quad \text{for } -\infty < z < \infty, \tag{5}$$

Proposition

If $X \sim N(\mu, \sigma^2)$, then the d.f. F(x) of X is given by $\Phi\left(\frac{x-\mu}{\sigma}\right)$, i.e.,

$$F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right).$$

Proposition

If $X \sim N(\mu, \sigma^2)$, then the d.f. F(x) of X is given by $\Phi\left(\frac{x-\mu}{\sigma}\right)$, i.e.,

$$F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right).$$

Proof. Let $s = \frac{t-\mu}{\sigma}$.

$$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{x-\mu}{\sigma}} e^{-\frac{s^2}{2}} ds = \Phi\left(\frac{x-\mu}{\sigma}\right).$$

Thus

$$P(a \leqslant X \leqslant b) = F(b) - F(a) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right),$$

$$P(X \leqslant a) = \Phi\left(\frac{a-\mu}{\sigma}\right), \qquad P(X \geqslant b) = 1 - \Phi\left(\frac{b-\mu}{\sigma}\right).$$

Proposition

If $X \sim N(\mu, \sigma^2)$, then

$$Z = g(X) = \frac{X - \mu}{\sigma}$$

has a standard normal distribution. Thus

$$P(a \leqslant X \leqslant b) = P(\frac{a-\mu}{\sigma} \leqslant Z \leqslant \frac{b-\mu}{\sigma})$$
$$= \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right),$$

$$P(X \leqslant a) = \Phi(\frac{a-\mu}{\sigma}), \qquad P(X \geqslant b) = 1 - \Phi(\frac{b-\mu}{\sigma}).$$

Proposition

(i)
$$\Phi(x) + \Phi(-x) = 1$$
, (ii) $\Phi(0) = 1/2$.

Table of Normal Probabilities in Appendix gives $\Phi(z) = P(Z \leq z)$, the area under the standard normal density curve to the left of z, for $z = 0, 0.01, \dots, 3.98, 3.99$.

Example

Let us determine the following standard normal probabilities: (a) $P(Z \le 1.25)$, (b) P(Z > 1.25), (c) $P(Z \le -1.25)$, (d) $P(-0.38 \le Z \le 1.25)$.

Solution. (a)
$$P(Z \le 1.25) = \Phi(1.25) = 0.89435$$
.

(b)
$$P(Z > 1.25) = 1 - P(Z \le 1.25) = 1 - \Phi(1.25) = 0.10565.$$

(c)
$$P(Z \leqslant -1.25) = \Phi(-1.25) = 1 - \Phi(1.25) = 0.10565$$
.

(d)

$$P(-0.38 \leqslant Z \leqslant 1.25) = \Phi(1.25) - \Phi(-0.38)$$
$$= \Phi(1.25) - [1 - \Phi(0.38)]$$
$$= 0.89435 - 0.35197 = 0.54238.$$

Example

The time that it takes a driver to react to the brake lights on a decelerating vehicle is critical in helping to avoid rear-end collisions. Suppose that reaction time for an in-traffic response to a brake signal from standard brake lights can be modeled with a normal distribution having mean value 1.25sec and standard deviation of 0.46sec. What is the probability that reaction time is between 1.00sec and 1.75sec?

Solution. If we let X denote reaction time, then

$$P(1 \leqslant X \leqslant 1.75)$$

$$= P\left(\frac{1 - 1.25}{0.46} \leqslant Z \leqslant \frac{1.75 - 1.25}{0.46}\right)$$

$$= P(-0.54 \leqslant Z \leqslant 1.09) = \Phi(1.09) - (1 - \Phi(0.54))$$

$$= 0.86214 - (1 - 0.70540) = 0.56754.$$

Similarly, if we view 2sec as a critically long reaction time, the probability that actual reaction time will exceed this value is

$$P(X > 2) = P\left(Z > \frac{2 - 1.25}{0.46}\right)$$
$$= P(Z > 1.63)$$
$$= 1 - \Phi(1.63)$$
$$= 0.05155.$$

Observe the Table of Normal Probabilities in Appendix, we find the largest value of z is 3.99.

$$z = 4.5, 8.9, ?$$

Example

The breakdown voltage of a randomly chosen diode of a particular type is known to be normally distributed. What is the probability that a diode's breakdown voltage is within 1 standard deviation(SD) of its mean value?

Solution. This question can be answered without knowing either μ or σ , as long as the distribution is known to be normal; the answer is the same for any normal distribution:

$$\begin{split} &P(X \text{ is within 1 standard deviation of its mean}) \\ &= P(|X - \mu| \leqslant \sigma) = \ P(\mu - \sigma \leqslant X \leqslant \mu + \sigma) \\ &= P\Big(\frac{\mu - \sigma - \mu}{\sigma} \leqslant Z \leqslant \frac{\mu + \sigma - \mu}{\sigma}\Big) \\ &= P(-1 \leqslant Z \leqslant 1) \\ &= \Phi(1) - \Phi(-1) = 0.6826. \quad \Box \end{split}$$

Similarly,

$$P(|X - \mu| \le 2\sigma) = P(-2 \le Z \le 2) = 0.9544,$$

 $P(|X - \mu| \le 3\sigma) = P(-3 \le Z \le 3) = 0.9974.$

3σ -principle

Proposition

Suppose that $X \sim N(\mu, \sigma^2)$. Let Y = aX + b, $(a \neq 0)$. Then Y has a normal distribution with parameters $a\mu + b$ and $a^2\sigma^2$.

For example,

If
$$X \sim N(0,1)$$
 and $Y = 2X + 3$, then $Y \sim N(3,4)$.

If
$$X \sim N(1,4)$$
 and $Y = 5X + 2$, then $Y \sim N(7,100)$.

Example

Suppose that $X \sim N(3,4)$. Let Y = 2X + 1.

- (a) Find the value of P(7 < Y < 9).
- (b) Let Y = aX + 4, find the value a such that $P(Y \le 7) = 1/2$.

Solution. Let F(x) be the d.f. of X. (a)

$$\begin{split} P(7 < Y < 9) &= P(3 < X < 4) \\ &= F(4) - F(3) \\ &= \Phi\Big(\frac{4-3}{2}\Big) - \Phi\Big(\frac{3-3}{2}\Big) \\ &= 0.69146 - 0.5 = 0.19146. \end{split}$$

Example

Suppose that $X \sim N(3,4)$. Let Y = 2X + 1.

- (a) Find the value of P(7 < Y < 9).
- (b) Let Y = aX + 4, find the value a such that $P(Y \le 7) = 1/2$.

Solution.

(b) Since $P(Y \le 7) = 1/2$ and $F_Y(E(Y)) = 0.5$,

$$E(Y) = 7.$$

We have E(Y) = E(aX + 4) = aE(X) + 4 = 3a + 4. Thus

$$a=1.$$

Examples

- reaction time for an in-traffic response
- the breakdown voltage of a randomly chosen diode
- length of human pregnancy
- stock price
- height, weight, IQ-score, · · ·

History

- 1733 De Moivre, an approximation distribution
- 1783 Laplace, describe the distribution of errors
- 1809 Gauss, analyze astronomical data

Distribution	p.f. or p.d.f.	Parameters
Bernoulli	$p(x) = p^{x}(1-p)^{1-x}, x = 0, 1$	p
Binomial	$p(x) = \binom{n}{x} p^x (1-p)^{n-x}, x = 0, 1, \dots$	n and p
Geometric	$p(x) = (1-p)^{x-1} \cdot p, \ x = 1, 2, \cdots$	p
Poisson	$p(x) = \frac{e^{-\lambda} \lambda^x}{x!}, \ x = 0, 1, \cdots.$	λ
Uniform	$f(x) = \frac{1}{b-a}, \ a \leqslant x \leqslant b$	[a,b]
Exponential	$f(x) = \lambda \exp^{-\lambda x}, x \geqslant 0,$	λ
Normal	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$	μ and σ

Table: some important distributions

Thank you for your patience!