0.1 Transition Rules

We use the following names to represent different syntactic categories.

FiXme Fatal: M for loop, call fur declerations mås

- $n \in \mathbf{Num}$ Numerals
- \bullet v Values
- $x \in \mathbf{Var}$ Variables
- $r \in \mathbf{Arrays}$ Array names
- $a \in Aexp$ Arithmetic expression
- $b \in Bexp$ Boolean expression
- e
- \bullet env_C
- sto
- \bullet env_V
- \bullet env_A
- C
- env_E beskriv 1 side 79

[VAR-ASS]
$$env_C, \vdash \langle x=e, \ sto \rangle \to sto[l \mapsto v]$$
 where $env_C, \ sto \vdash e \to_e v$ and $env_V \ x=l$

[ARR-ASS]
$$env_C \vdash \langle r[a] = e, sto \rangle \rightarrow sto[l \mapsto v_2]$$
 where env_C , $sto \vdash a \rightarrow_a v_1$ and env_C , $sto \vdash e \rightarrow_e v_2$ and $env_A r[v_1] = l$

[IF-TRUE]
$$\frac{env_C \vdash \langle C, sto \rangle \to sto'}{env_C \langle \mathbf{if}(b) \text{ begin } C \text{ end, } sto \rangle \to sto'}$$

if
$$env_C$$
, $sto \vdash b \rightarrow_b true$

[IF-FALSE]
$$env_C \vdash \langle \mathbf{if}(b) \text{ begin } C \text{ end, } sto \rangle \to sto$$

if env_C , $sto \vdash b \to_b \text{ false}$

[IF-ELSE-TRUE]
$$\frac{env_C \vdash \langle C_1, sto \rangle \to sto'}{env_C \vdash \langle \mathbf{if}(b) \text{ begin } C_1 \text{ end, } \mathbf{else} \text{ begin } C_2 \text{ end, } sto \rangle \to sto'}$$

Continued on the next page

if env_C , $sto \vdash b \rightarrow_b true$

[IF-ELSE-FALSE]
$$\frac{env_C \vdash \langle C_2, sto \rangle \to sto'}{env_C \vdash \langle \mathbf{if}(b) \text{ begin } C_1 \text{ end, else begin } C_2 \text{ end, } sto \rangle \to sto'}$$
if env_C , $sto \vdash b \to_b$ false

[WHL-TRUE]
$$\frac{env_C \vdash \langle C, sto \rangle \to sto'' \ env_C \vdash \langle \mathbf{while}(b) \ \text{begin } C \ \text{end}, \ sto'' \rangle \to sto'}{env_C \vdash \langle \mathbf{while}(b) \ \text{begin } C \ \text{end}, \ sto \rangle \to sto'}$$

if env_C , $sto \vdash b \rightarrow_b true$

if env_C , $sto \vdash b \rightarrow_b$ false

[WHL-FALSE]
$$env_C \vdash \langle \mathbf{while}(b) \text{ begin } C \text{ end, } sto \rangle \rightarrow sto$$

Table 0.1: Commands

$$[\text{EQL-TRUE}] \qquad \frac{env_E,\ sto \vdash e_1 \to_e v_1 \ env_E,\ sto \vdash e_2 \to_e v_2}{env_E,\ sto \vdash e_1 = e_2 \to_b \text{ true}}$$

$$\text{if } v_1 = v_2$$

$$[\text{EQL-FALSE}] \qquad \frac{env_E,\ sto \vdash e_1 \to_e v_1 \ env_E,\ sto \vdash e_2 \to_e v_2}{env_E,\ sto \vdash e_1 = e_2 \to_b \text{ false}}$$

$$\text{if } v_1 \neq v_2$$

$$[\text{NEQ-TRUE}] \qquad \frac{env_E,\ sto \vdash e_1 \to_e v_1 \ env_E,\ sto \vdash e_2 \to_e v_2}{env_E,\ sto \vdash e_1! = e_2 \to_b \text{ true}}$$

$$env_E, \ sto \vdash e_1! = e_2
ightarrow_b ext{ true}$$
 if $v_1
eq v_2$

[NEQ-FALSE]
$$\frac{env_E, \ sto \vdash e_1 \rightarrow_e v_1 \ env_E, \ sto \vdash e_2 \rightarrow_e v_2}{env_E, \ sto \vdash e_1! = e_2 \rightarrow_b \text{ false}}$$

if $v_1 = v_2$

[GRT-TRUE]
$$\frac{env_E, sto \vdash e_1 \rightarrow_e v_1 \ env_E, sto \vdash e_2 \rightarrow_e v_2}{env_E, sto \vdash e_1 > e_2 \rightarrow_b \text{true}}$$

if $v_1 > v_2$

[GRT-FALSE]
$$\frac{env_E, \ sto \vdash e_1 \rightarrow_e v_1 \ env_E, \ sto \vdash e_2 \rightarrow_e v_2}{env_E, \ sto \vdash e_1 > e_2 \rightarrow_b \text{ false}}$$

if $v_1 < v_2$

[GEQ-TRUE]
$$\frac{env_E, \ sto \vdash e_1 \rightarrow_e v_1 \ env_E, \ sto \vdash e_2 \rightarrow_e v_2}{env_E, \ sto \vdash e_1 >= e_2 \rightarrow_b \text{ true}}$$

$$Continued \ on \ the \ next \ page$$

$$| \text{GEQ-FALSE}| \qquad \frac{env_E,\ sto \vdash e_1 \rightarrow_e v_1\ env_E,\ sto \vdash e_2 \rightarrow_e v_2}{env_E,\ sto \vdash e_1 >= e_2 \rightarrow_b \text{ false}}$$

$$| \text{if } v_1 < v_2$$

$$| \text{ELES-TRUE}| \qquad \frac{env_E,\ sto \vdash e_1 \rightarrow_e v_1\ env_E,\ sto \vdash e_2 \rightarrow_e v_2}{env_E,\ sto \vdash e_1 < e_2 \rightarrow_b \text{ true}}$$

$$| \text{if } v_1 < v_2$$

$$| \text{ELES-FALSE}| \qquad \frac{env_E,\ sto \vdash e_1 \rightarrow_e v_1\ env_E,\ sto \vdash e_2 \rightarrow_e v_2}{env_E,\ sto \vdash e_1 < e_2 \rightarrow_b \text{ false}}$$

$$| \text{if } v_1 \geq v_2$$

$$| \text{LEQ-TRUE}| \qquad \frac{env_E,\ sto \vdash e_1 \rightarrow_e v_1\ env_E,\ sto \vdash e_2 \rightarrow_e v_2}{env_E,\ sto \vdash e_1 < e_2 \rightarrow_b \text{ true}}$$

$$| \text{if } v_1 \leq v_2$$

$$| \text{GEQ-FALSE}| \qquad \frac{env_E,\ sto \vdash e_1 \rightarrow_e v_1\ env_E,\ sto \vdash e_2 \rightarrow_e v_2}{env_E,\ sto \vdash e_1 < e_2 \rightarrow_b \text{ false}}$$

$$| \text{if } v_1 > v_2$$

$$| \text{NOT-TRUE}| \qquad \frac{env_E,\ sto \vdash e_1 \rightarrow_e v_1\ env_E,\ sto \vdash e_2 \rightarrow_e v_2}{env_E,\ sto \vdash e_1 < e_2 \rightarrow_b \text{ false}}$$

$$| \text{if } v_1 > v_2$$

$$| \text{NOT-TRUE}| \qquad \frac{env_E,\ sto \vdash b \rightarrow_b \text{ false}}{env_E,\ sto \vdash e_1 \rightarrow_b v_b \text{ true}}$$

$$| \text{env}_E,\ sto \vdash b_1 \land b_2 \rightarrow_b \text{ true}}$$

$$| \text{env}_E,\ sto \vdash b_1 \land b_2 \rightarrow_b \text{ false}}$$

$$| \text{env}_E,\ sto \vdash b_1 \land \text{ND}\ b_2 \rightarrow_b \text{ false}}$$

$$| \text{env}_E,\ sto \vdash b_1 \land \text{ND}\ b_2 \rightarrow_b \text{ false}}$$

$$| \text{env}_E,\ sto \vdash b_1 \land \text{ND}\ b_2 \rightarrow_b \text{ false}}$$

$$| \text{env}_E,\ sto \vdash b_1 \land \text{ND}\ b_2 \rightarrow_b \text{ false}}$$

$$| \text{env}_E,\ sto \vdash b_1 \land \text{ND}\ b_2 \rightarrow_b \text{ false}}$$

$$| \text{env}_E,\ sto \vdash b_1 \land \text{ND}\ b_2 \rightarrow_b \text{ false}}$$

$$| \text{env}_E,\ sto \vdash b_1 \land \text{ND}\ b_2 \rightarrow_b \text{ false}}$$

$$| \text{env}_E,\ sto \vdash b_1 \land \text{ND}\ b_2 \rightarrow_b \text{ false}}$$

$$| \text{env}_E,\ sto \vdash b_1 \land \text{ND}\ b_2 \rightarrow_b \text{ false}}$$

$$| \text{env}_E,\ sto \vdash b_1 \land \text{ND}\ b_2 \rightarrow_b \text{ false}}$$

$$| \text{env}_E,\ sto \vdash b_1 \land \text{ND}\ b_2 \rightarrow_b \text{ false}}$$

$$| \text{env}_E,\ sto \vdash b_1 \rightarrow_b v_2 \rightarrow_b \text{ false}}$$

$$| \text{env}_E,\ sto \vdash b_1 \rightarrow_b v_2 \rightarrow_b \text{ false}}$$

$$| \text{env}_E,\ sto \vdash b_1 \rightarrow_b v_2 \rightarrow_b \text{ false}}$$

$$| \text{env}_E,\ sto \vdash b_1 \rightarrow_b v_2 \rightarrow_b \text{ false}}$$

$$| \text{env}_E,\ sto \vdash b_1 \rightarrow_b v_2 \rightarrow_b \text{ false}}$$

$$| \text{env}_E,\ sto \vdash b_1 \rightarrow_b v_2 \rightarrow_b \text{ false}}$$

$$| \text{env}_E,\ sto \vdash b_1 \rightarrow_b v_2 \rightarrow_b \text{ false}}$$

$$| \text{env}_E,\ sto \vdash b_1 \rightarrow_b v_2 \rightarrow_b \text{ false}}$$

$$| \text{env}_E,\ sto \vdash b_1 \rightarrow_b v_2 \rightarrow_b \text{ false}}$$

$$|$$

Table 0.2: Boolean expressions

$$[ADD] \qquad \frac{env_E,\ sto \vdash a_1 \rightarrow_a v_1\ env_E,\ sto \vdash a_2 \rightarrow_a v_2}{env_E,\ sto \vdash a_1 + a_2 \rightarrow_a v}$$
 where $v = v_1 + v_2$
$$[SUB] \qquad \frac{env_E,\ sto \vdash a_1 \rightarrow_a v_1\ env_E,\ sto \vdash a_2 \rightarrow_a v_2}{env_E,\ sto \vdash a_1 - a_2 \rightarrow_a v}$$
 where $v = v_1 - v_2$
$$[MUL] \qquad \frac{env_E,\ sto \vdash a_1 \rightarrow_a v_1\ env_E,\ sto \vdash a_2 \rightarrow_a v_2}{env_E,\ sto \vdash a_1 * a_2 \rightarrow_a v}$$
 where $v = v_1 * v_2$
$$[DIV] \qquad \frac{env_E,\ sto \vdash a_1 \rightarrow_a v_1\ env_E,\ sto \vdash a_2 \rightarrow_a v_2}{env_E,\ sto \vdash a_2 \rightarrow_a v_2}$$
 where $v = \frac{v_1}{v_2}$
$$env_E,\ sto \vdash a_1 \rightarrow_a v_1$$

$$env_E,\ sto \vdash a_2 \rightarrow_a v_2$$

$$env_E,\ sto \vdash a_1 \rightarrow_a v_1$$

$$env_E,\ sto \vdash a_2 \rightarrow_a v_2$$

$$env_E,\ sto \vdash a_1 \rightarrow_a v_1$$

$$env_E,\ sto \vdash a_2 \rightarrow_a v_2$$

$$env_E,\ sto \vdash a_1 \rightarrow_a v_1$$

$$env_E,\ sto \vdash a_1 \rightarrow_a v_1$$

$$env_E,\ sto \vdash a_1 \rightarrow_a v_1$$

[NUM]
$$env_E, sto \vdash n \rightarrow_a v$$
 if $\mathcal{N}[n] = v$

where $v = \frac{v_1}{v_2}$

[VAR]
$$env_V, sto \vdash x \to_a v$$

if $env_V x = l$ and sto l = v

where $\mathcal{N}:\ \mathbf{Num} \to \mathbb{R}$

[ARR]
$$env_A, \ sto \vdash r[a_1] \to_a v_2$$
 if $env_A \ r[v_1] = l \ and \ sto \ l = v_2$ where $a_1 \to_a v_1$

Table 0.3: Aritmethic expressions