A Decade-long Landscape of Advanced Persistent Threats: Longitudinal Analysis and Global Trends

Shakhzod Yuldoshkhujaev Sungkyunkwan University shakzod02@g.skku.edu Mijin Jeon Sungkyunkwan University jinijxxn@g.skku.edu

Doowon Kim
University of Tennessee
doowon@utk.edu

Nick Nikiforakis Stony Brook University nick@cs.stonybrook.edu Hyungjoon Koo Sungkyunkwan University kevin.koo@skku.edu

Introduction

Advanced Persistent Threats Overview

√ Advanced Persistent Threats (APTs)

- Sustained, targeted, and highly sophisticated attacks
- Motives: political, economic, and military

	Traditional Attacks	APT Attacks
Attacker	Individuals	Highly organized group
Target	Unspecified, mostly individual	Specific entities, organizations
Purpose	Financial benefits, demonstrating abilities	Competitive advantages, strategic benefits
Approach	Short-term, "smash & grab"	Long-term, stealthy

A Survey on Advanced Persistent Threats: Techniques, Solutions, Challenges, and Research Opportunities. IEEE Communications Surveys & Tutorials, 2019

Existing APT Documentation

- ✓ Plethora of publicly available APT dossiers
 - BUT! Limited research on longitudinal APT analysis
 - Previous works → *microscopic focus*

This Work

- ✓ **Decade-long analysis** of APT incidents (2014 2023) → macroscopic focus
- ✓ Analyze existing dossiers to understand
 - Evolution of APT campaigns
 - Trends in Cyber Threat Intelligence (CTI) records
 - Common traits of APTs
 - Influence of external factors
- ✓ Method: Hybrid (rule-based extraction + LLM)

Methodology

Methodology Overview

Source Collection

Identified threat actors

Trustworthy news articles

Information Retrieval

Data Sanitization

Normalization Categorization Deduplication Filtering

In-depth Analysis

Evolution of APTs
CTI records
Common traits
External dynamics
Visualization

Source Collection

√ Technical reports (TRs)

- Combined from three sources
- 2,563 reports on APT campaigns (2014 2023)

Source Collection

√ Technical reports (TRs)

- Combined from three sources
- 2,563 reports on APT campaigns (2014 2023)

√ Threat actors (TAs)

- No APT group information in TRs
- Combined from three sources
- 1,684 APT groups with metadata

Source Collection

√ Technical reports (TRs)

- Combined from three sources
- 2,563 reports on APT campaigns (2014 2023)

√ Threat actors (TAs)

- No APT group information in TRs
- Combined from three sources
- 1,684 APT groups with metadata

✓ News articles

- News articles and media reports
- 177 articles on APT campaigns

✓ LLM-based approach

- Evaluated three LLMs against ground truth
- Ground truth: manually inspected answers (around 10% of TRs collection)
- Selected GPT-4-Turbo for best performance (F1 score: 0.90)

✓ LLM-based approach

- Evaluated three LLMs against ground truth
- Ground truth: manually inspected answers (around 10% of TRs collection)
- Selected GPT-4-Turbo for best performance (F1 score: 0.90)

✓ Rule-based approach

- Chose IoCParser
- Outperformed GPT-4-Turbo in extracting IoCs

✓ LLM-based approach

- Evaluated three LLMs against ground truth
- Ground truth: manually inspected answers (around 10% of TRs collection)
- Selected GPT-4-Turbo for best performance (F1 score: 0.90)

✓ Rule-based approach

- Chose IoCParser
- Outperformed GPT-4-Turbo in extracting IoCs

√ Manual inspection

- Verified the attack duration from LLM outputs
- Helps estimate the lifecycle of APTs

✓ LLM-based approach

- Evaluated three LLMs against ground truth
- Ground truth: manually inspected answers
- Selected GPT-4-Turbo for best performance

✓ Rule-based approach

- Chose IoCParser
- Outperformed GPT-4-Turbo in extracting IoCs

✓ Manual inspection

- Verified the attack duration from LLM outputs
- Helps estimate the lifecycle of APTs

Search Item	Retrieval Approach	# of TRs	Ratio
CVE	Rule	416	27.6%
MITRE ID	Rule	175	11.6%
YARA	Rule	131	8.7%
Threat actor	LLM	1,089	72.2%
Victim country	LLM	886	58.7%
Zero-day	LLM	839	55.6%
Attack vector	LLM	1,186	78.6%
Malware	LLM	1,287	85.3%
Target sector	LLM	1,228	81.4%
Attack duration LLM		235	15.6%

Refining Responses

- ✓ Normalization: Victim country names → two-letter country code
- ✓ Categorization: Attack vectors and target sectors → 12 groups each
- ✓ Deduplication: Removed duplicates
 - TR collection: 2,563 → 1,509
 - TA collection: 1,684 → 884
- ✓ Filtering: Excluded TAs with insufficient metadata (884 \rightarrow 603)

Decadal Landscape of APT Campaigns

Research Questions

- ✓ RQ1: Evolution of APTs over a decade
- **✓ RQ2: Cyber Threat Intelligence records for APTs**
- **✓ RQ3: Common traits of APTs**
- ✓ RQ4: External dynamics affecting APTs

✓ Victim countries:

- 154 out of 195 countries were victimized
- Top 10: 43% of all incidents

√ Victim countries:

- 154 out of 195 countries were victimized
- Top 10: 43% of all incidents

√ Threat actors:

- 446 groups were identified
- Top 10: 21.6% of all incidents

✓ Victim countries:

- 154 out of 195 countries were victimized
- Top 10: 43% of all incidents

√ Threat actors:

- 446 groups were identified
- Top 10: 21.6% of all incidents

✓ Zero-day usage:

- General downward trend from 2016 (lighter red)
- Usage of one-day vulnerabilities increased

✓ Target Sectors

Consistent targets:

✓ Initial Attack Vectors

Consistent vectors:

RQ2: CTI Records in APT Campaigns

- ✓ MITRE IDs: Total 2,582 extracted (263 unique)
 - Top tactics: execution, defense evasion, discovery

MITRE ID	Description	Tactic	Count	Ratio
T1059	Command/scripting interpreter	Execution	77	3.0%
T1071	Application layer protocol	Command and control	76	2.9%
T1082	System information discovery	Discovery	65	2.5%
T1027	Obfuscated files or information	Defense evasion	60	2.3%
T1140	Deobfuscate/decode files or information	Defense evasion	56	2.2%
T1041	Exfiltration over C2 channel	Exfiltration	54	2.1%
T1204	User execution	Execution	51	2.0%
T1053	Scheduled task/job	Execution, persistence, privilege escalation	49	1.9%
T1083	File/directory discovery	Discovery	47	1.8%
T1036	Masquerading	Defense evasion	45	1.7%

RQ2: CTI Records in APT Campaigns

- ✓ CVEs: Total 1,088 extracted (431 unique)
 - Top vulnerabilities: RCE, memory corruption
- ✓ YARA Rules: Total 419 extracted (all unique)
 - Limited coverage due to sensitivity of APTs

CVE	Severity	Vuln	Affected S/W	Count	Ratio
CVE-2012-0158	8.8 (High)	RCE	19	59	5.4%
CVE-2017-11882	7.8 (High)	Memory Corruption	4	44	4.0%
CVE-2017-0199	7.8 (High)	RCE	8	33	3.0%
CVE-2018-0802	7.8 (High)	Memory Corruption	4	20	1.8%
CVE-2015-5119	9.8 (Critical)	UAF	7	18	1.7%
CVE-2015-1641	7.8 (High)	Memory Corruption	11	16	1.5%
CVE-2010-3333	7.8 (High)	Stack Overflow	8	15	1.4%
CVE-2014-6332	9.3 (High)	RCE	11	15	1.4%
CVE-2015-1701	7.8 (High)	PE	3	15	1.4%
CVE-2014-4114	7.8 (High)	RCE	10	13	1.2%

✓ APT duration

- Median: 137 days
- Longest APT: 1,766 days → Project Sauron
- Shortest APT: one day → TV5Monde attack

✓ APT duration

- Median: 137 days
- Longest APT: 1,766 days → Project Sauron
- Shortest APT: one day → TV5Monde attack

✓ Vulnerabilities and Patches

- CVE attack duration analysis
- ~50% exploited as zero-day
- Avg patching time: ~200 days

√ Two-sided Nature as Both Attacker and Victim

- √ Two-sided Nature as Both Attacker and Victim
 - Top attack pairs:
 - CN-US, KP-KR, RU-US

√ Two-sided Nature as Both Attacker and Victim

- Top attack pairs:
 - CN-US, KP-KR, RU-US
- Asymmetry ratios:
 - CN-US: 31 to 1
 - KP-KR, RU-US: 15 to 1

√ Self-directed APT Attacks

- Origin and target countries are same
 - RU-RU, CN-CN, US-US
- Reasons:
 - Domestic targeting of individuals
 - Foreign organizations within a country
 - Geopolitical/territorial disputes

RQ4: External Dynamics of APT Campaigns

✓ Political Events

• 2016 US presidential election: APT28's attack campaign

✓ International Conflicts

Russo-Ukrainian war: Sandworm's attack on energy sector

U.S. firm blames Russian 'Sandworm' hackers for Ukraine outage

RQ4: External Dynamics of APT Campaigns

√ Global Pandemics

• COVID-19 pandemic: Lazarus's attempt to steal intelligence

√ Economic Gains

Rise of cryptocurrencies: Lazarus's crypto heist

Lazarus covets COVID-19-related intelligence

APT REPORTS 23 DEC 2020

North Korean hackers target gamers in \$615m crypto heist - US

Share **<** Save ☐

Visual Representations

✓ APT Map

Interactive map of worldwide APT campaigns

✓ Sankey Diagram

Relationship between top 10 threat actors and top 30 victim countries

Limitations

√ Representativeness of APT Campaigns

Not all APT cases can be captured

√ Limited Responses from an LLM

LLM retrieval limited by model capability

√ Attack Duration

Challenging to determine precise attack duration

√ CVE and Patch Timing

Patch not always aligned with CVE release

Conclusion

- ✓ Decade-long APT study (2014-2023):
 - 1,509 reports analyzed with a hybrid (LLM + rule-based) approach
- **✓** Research questions:
 - Evolution of APTs, CTI records, common traits, and external factors

Sankey Diagram

Thank you

Appendix

Collection	Source of TA's Information	# of TAs
TA#1	MISP Project	562
TA#2	Palo Alto, IBM X-Force, Malpedia, Kaspersky, Crowdstrike, Mandiant, Secureworks, Dragos, Venafi, CERT-UA, Microsoft	692
TA#3	MITRE ATT&CK, ETDA, VX- underground	430
Total	_	603 (1,684)

Total: 1,412 (93.6%) TRs

