

쉽게 배우는 데이터 통신과 컴퓨터 네트워크

□프레임

- MAC 프레임 = MAC 헤더 + LLC 프레임 + MAC 트레일러
- 이더넷 프레임 구조
 - 이더넷 프레임 구조 [그림 5-7] 필드 단위는 바이트
 - MAC 헤더: Preamble(서문), Start Delimiter(경계 기호),

Destination Address, Source Address, Length or Type

(IEEE 802.3은 길이, Ethernet ver. II는 상위 프로토콜 타입)

- 이더넷 DATA : LLC 프레임

- MAC 트레일러: CRC 코드, FCS

: Preamble(서문), Start Delimiter(경계 기호)제외하고 검사

□프레임

- 프레임 구조 [그림 5-7]
 - Preamble: 수신 호스트가 송신 호스트의 클록 동기를 맞추는 용도,10101010
 - Start Delimiter: 프레임의 시작 위치 구분, 10101011
 - Source Address: 송신 호스트의 MAC 주소(6바이트)
 - Destination Address: 수신 호스트의 MAC 주소(6바이트)
 - Length or Type: Data 필드에 포함된 전송 데이터 크기(최대 1500)를 지정 데이터와 패딩을 더한 길이는 최소 46바이트임, (예)데이터 1+ 패딩 45 하나의 프레임은 46~1500바이트 사이의 데이터를 보냄
 - CRC 코드, FCS: 데이터 변형 오류를 감지하는 기능(4바이트)

필드 이름	길이	내용
Preamble	7Bytes	패킷이 입력되고 있음을 네트워크 인터페이스에 알리기 위한 부분으로 1과 0이 번갈아 입력된다. 실제 데이터가 들어오니 '이제 정신차려!'라고 알려주 는 것과 같다.
SFD	1Byte	Start Frame Delimiter. 통신을 위한 최초의 패킷에 10101011을 입력하여, 해당 패킷이 최초 패킷임을 알려준다.
Destination MAC Address	6Bytes	패킷을 받을 네트워크 인터페이스에 대한 MAC 주소를 가리킨다. 해당 주소가 모두 1(FF:FF:FF:FF:FF:FF:FF)이면 브로드캐스팅 패킷이 된다.
Source MAC Address	6Bytes	패킷을 보내는 네트워크 인터페이스에 대한 MAC 주소를 가리킨다.
Length or Type	2Bytes	IEEE 802.3은 길이가, 이더넷 버전 2 등의 프로토콜은 타입이 기록된다.
Data	0~1,500Bytes	전송 데이터가 저장된다. 최대 크기는 1,500Bytes다.
Pad	가변	전송하고자 하는 데이터의 길이가 46Bytes보다 작으면 패킷의 최소 길이인 64Bytes를 맞추기 위해 여기에 임의의 데이터를 쓴다.
FCS	4Bytes	Frame Check Sequence. 전송되는 패킷의 오류 등을 확인하기 위해 4Bytes의 CRC를 계산하여 입력한다.

현재 사용 상태: Length or Type: 필드 값이 1500이하 이면 필드의 데이터 크기(length)를 의미하며, 그렇지 않으면(데이터 길이가 1500이면) Type 으로 해석함

• 이더넷 패킷에서 상위 프로토콜의 Type은?

□프레임

- LLC 프레임과의 관계 [그림 5-8]
 - 이더넷 프레임의 Data 필드: LLC 계층에서 보내진 LLC 프레임을 보관

그림 5-8 이더넷 프레임의 Data 필드

허브와 스위치 [그림 5-9]

- CSMA/CD 충돌 감지를 위해 각 호스트에 트랜시버를 사용하지 않고 이더넷을 이용
- 버스 공유 방식 : 버스에 모든 호스트를 연결(구축의 어려움)
- 허브: 박스 형태의 장비에 잭을 연결해서 이더넷 네트워크를 쉽게 연결
- 스위치 허브: 허브의 성능을 향상시킨 장비

□허브와 스위치 [그림 5-9]

- 허브
 - 각 호스트는 외형상 스타형 구조로 허브에 연결
 - 내부적인 동작 원리는 공유 버스 방식을 사용
 - 충돌 발생, 허브의 최대 전송 용량 100Mbps
- 스위치 허브
 - 스위치(교환) 기능
 - 모든 호스트에게 프레임을 전송하지 않음(브로드캐스팅이 아님)
 - 목적지로 지정된 호스트에게만 프레임 전송
 - 따라서 동시에 여러 호스트가 데이터를 전송할 수 있음(A->B, C->D)
 - 장점
 - 스위치 허브의 용량이 충분하면 각각의 호스트는 할당된 LAN 용량을 모두 사용함
 - 일반 허브를 스위치 허브로 교체하는 과정이 간단함

3절. 토큰 버스

□토큰 버스 프레임 구조

- MAC 프레임 = MAC 헤더 + LLC 프레임 + MAC 트레일러
- 프레임 구조 [그림 5-10]
 - MAC 헤더: Preamble, Start Delimiter, Frame Control, Destination Address, Source Address
 - LLC 프레임: DATA
 - MAC 트레일러: CRC 코드/FCS, End Delimiter
 - 이더넷에 비해 FC(Frame Control)과 ED(End Delimiter) 필드를 더 가짐

[그림 5-10] 토큰 버스 프레임

4절. 토큰 링

□토큰 링 프레임 구조

- 토큰 프레임과 데이터 프레임이 별도로 구성
- 토큰 프레임: SD, AC, ED의 세 필드로 구성 [그림 5-13(a)]
- 데이터 프레임 [그림 5-13(b)]
 - FC(Frame Control)과 FS(Frame Status) 필드가 더 추가됨

[그림 5-13] 토큰 링 프레임