Élève 1*

Exercice. Soit (f_n) une suite de fonctions $[a,b] \to \mathbb{R}$ convergeant simplement vers $f \colon [a,b] \to \mathbb{R}$. On suppose que toutes les fonctions f_n sont k-lip avec le même k > 0. Montrer que (f_n) converge uniformément vers f sur [a,b].

Remarques.

- 1. Le résultat de l'exercice devient totalement faux si on remplace [a, b] par un intervalle quelconque. Pouvez-vous voir pourquoi?
- 2. Le résultat subsiste si au lieu du caractère k-lipschitzien, on demande aux fonctions f_n d'être continues et convexes et à la fonction f d'être continue. Petit exercice : le démontrer à la maison.

Exercice. Convergence simple, normale et uniforme de $\sum \frac{xe^{-nx}}{\ln n}$.

Élève 2*

Exercice.

- 1. Que dire de l'intersection d'une suite décroissante de compacts non vides dans un evn?
- 2. En déduire que si $(f_n \colon [a,b] \to \mathbb{R})$ est une suite *croissante* de fonctions continues qui converge simplement vers une fonction f continue sur [a,b], alors la convergence est uniforme.

Éléments de réponse.

- 1. L'intersection est non vide.
- 2. Par croissance de la suite (f_n) , la convergence uniforme est équivalente à

$$\forall \varepsilon > 0, \ \exists N \ge 0, \ \forall n \ge N, \quad f_n + \varepsilon > f$$

puisque $f \geq f_n$ pour tout entier $n \geq 0$. Soit $\varepsilon > 0$, on va montrer le reste de la phrase ci-dessus par l'absurde. Supposons sa négation, autrement dit, si on pose $K_n = \{x \in [a,b] \colon f_n(x) + \varepsilon \leq f(x)\},$

$$\forall N \ge 0, \ \exists n \ge N, \ K_n \ne \emptyset \tag{1}$$

Via (1), on peut trouver une applicaiton $\varphi \colon \mathbb{N} \to \mathbb{N}$ strictement croissante telle que pour tout $n \in \mathbb{N}$, $K_{\varphi(n)} \neq \emptyset$. On peut voir que les $K_{\varphi(n)}$ sont des compacts en tant que fermés (vu la continuité de $f_{\varphi(n)} - f$) du compact [a,b], et que la suite $(K_{\varphi(n)})$ est décroissante en vertu de la croissance de (f_n) . On se retrouve alors dans le cadre des hypothèses de la première question, on peut alors trouver un élément $x \in \bigcap_n K_{\varphi(n)}$. Ainsi,

$$\forall n \in \mathbb{N}, \ f_{\varphi(n)}(x) + \varepsilon \leq f(x)$$

Soit, en passant à la limite $f(x) + \varepsilon \le f(x)$, soit $\varepsilon \le 0$, ce qui n'est pas. En conclusion, (f_n) converge uniformément vers f sur [a,b].

Exercice. On définit une suite (u_n) de fonctions de [0,1] dans $\mathbb R$ par $u_0(x)=1$ et pour tout $n\geq 0$,

$$u_{n+1}(x) = 1 + \int_0^x u_n(t-t^2) \,\mathrm{d}t$$

- 1. Démontrer que (u_n) converge uniformément sur [0,1].
- 2. Démontrer que la limite uniforme de (u_n) est solution de l'équation différentielle $u^\prime(x)=u(x-x^2).$

Éléments de réponse. Vous pouvez trouver une correction d'une version plus détaillée de l'exercice ici (exercice 21).

Élève 3

Exercice CCP.

- 1. Rappeler et démontrer le CSSA.
- 2. On pose $f_n(x) = (-1)^n e^{-nx}/n$.
 - a) Étudier la convergence simple sur \mathbb{R} de $\sum_{n\geq 1} f_n$.
 - b) Étudier la convergence uniforme sur \mathbb{R}_+ de $\sum_{n>1} f_n$.

Exercice. Pour tout $n \in \mathbb{N}^*$, on définit l'applicaiton

$$u_n \colon \mathbb{R}^+ \to \mathbb{R} \quad x \mapsto \frac{x}{n^2 + x^2}$$

- 1. Montrer que la série de fonctions $\sum u_n$ converge simplement sur \mathbb{R}^+ vers une fonction continue f, mais que la convergence n'est pas uniforme sur \mathbb{R}^+ .
- 2. Montrer que la série de fonctions $\sum (-1)^n u_n$ converge uniformément sur \mathbb{R}^+ tout entier, mais que la convergence n'est pas normale sur \mathbb{R}^+ .

Éléments de réponse. Dans la première question, la convergence uniforme fait défaut parce que pour x>0 et $p\geq 1$

$$\sum_{n=p+1}^{2p} \frac{x}{x^2+n^2} \geq \sum_{n=p+1}^{2p} \frac{x}{x^2+4p^2} \geq \frac{px}{x^2+4p^2}$$

soit que pour $p \ge 1$, en prenant x = p, on a

$$\sup_{x\in\mathbb{R}^+}\sum_{n=p+1}^{2p}\frac{x}{x^2+n^2}\geq\frac{1}{5}$$

Élève 4

Exercice CCP. 1. Soit $(f_n \colon D \to \mathbb{C})$ une suite de fonctions, avec $D \subset \mathbb{C}$, telle que $\sum f_n$ converge uniformément sur D. Démontrer que f_n converge uniformément sur D et donner sa limite.

- 2. On considère la suite de fonctions $(f_n\colon x\in\mathbb{R}^+\mapsto nx^2e^{-x\sqrt{n}}).$
 - a) Démontrer que $\sum f_n$ converge simplement sur \mathbb{R}^+ .
 - b) La série de fonctions $\sum f_n$ converge-t-elle uniformément ? Justifier.

Exercice. Montrer que $x \mapsto S(x) = \sum_{n=1}^{\infty} \frac{1}{n^3 + n^2 x}$ est de classe \mathcal{C}^{∞} sur \mathbb{R}^+ .

Éléments de réponse. En posant $f_n(x)=\frac{1}{n^3+n^2x}=\frac{1}{n^3}u_n(x)$ et $u_n(x)=\frac{1}{1+x/n}$, on peut montrer que

$$\forall n \geq 0, \ \forall k \geq 0, \ \forall x \geq 0, \ u_n^{(k)}(x) = \frac{(-1)^k k!}{n^k} u_n(x)^{k+1}$$

Et on peut en déduire le résultat de l'énoncé.

Élève 5

Exercice CCP.

1. Soit (f_n) une suite de fonctions à valeurs réelles définies et continues sur un segment [a,b] non vide.

Démontrer que si (f_n) converge uniformément sur [a,b] vers une fonction f, alors $\int_a^b f_n \to \int_a^b f$.

2. Montrer que

$$\int_0^{\frac{1}{2}} \left(\sum_{n=0}^{\infty} x^n \right) dx = \sum_{n=1}^{\infty} \frac{1}{n2^n}$$

Exercice. On considère la fonction définie par

$$f(x) = \sum_{n=0}^{\infty} \frac{n^x}{x^n}$$

Déterminer le domaine D de définition de f et étudier la continuité de f sur D.

Éléments de réponse. On peut vérifier que pour |x| > 1, on a $|n^x/x^n| = o(1/n^2)$. Puis le CSSA permet de montrer que f est définie en -1. Si |x| < 1, alors clairement $n^x/x^n \to +\infty$ à mesure que $n \to +\infty$ et f n'est pas non plus définie en 1. On en déduit que $D =]-\infty, -1] \cup]1, +\infty[$.

Pour la continuité, on obtient facilement la convergence uniforme sur tout segment : je le laisse en exercice pour vous. \Box

Élève 6

Exercice CCP. On considère la série de fonctions de terme général définie par

$$\forall n \in \mathbb{N}^*, \ \forall x \in [0,1], \quad f_n(x) = \ln\left(1 + \frac{x}{n}\right) - \frac{x}{n}$$

Lorsque la série converge, on pose $S(x) = \sum_{n=1}^{\infty} f_n(x)$.

- 1. Démontrer que S est bien définie sur [0,1].
- 2. Pour $n \in \mathbb{N}$, on pose $u_n = \ln(n+1) H_n$, où H_n est la somme harmonique d'ordre n. Démontrer que (u_n) converge et en déduire un équivalent de H_n lorsque $n \to \infty$.
- 3. Démontrer que S est \mathcal{C}^1 sur [0,1] et calculer S'(1).

Exercice. Soit (f_n) une suite de fonctions continues qui converge uniformément vers f sur un intervalle I. Soit (x_n) une suite d'éléments de I qui converge vers $x \in I$. Démontrer que $(f_n(x_n))$ converge et déterminer sa limite.