Fear & Greed Index Analysis Report

Introduction

The Fear & Greed Index is a tool used to measure market sentiment.

- Fear indicates that investors are worried, which can drive prices down.
- Greed suggests that investors are optimistic, which can push prices up.

The objective of this project is to:

- Analyze the Fear & Greed Index along with historical trading data.
- Visualize how market sentiment relates to trading performance (PnL, Execution Price, etc.).

```
In [34]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Dataset Description

Two datasets were used in this analysis:

1. Fear & Greed Dataset

- Columns: timestamp, value, classification, Date
- Provides daily market sentiment values (Fear, Greed, Extreme Greed).

2. Historical Trading Dataset

- Columns: Date, Closed PnL, Fee, Execution Price, timestamp
- Provides historical trading performance and related financial data.

The datasets were merged on the Date column for combined analysis.

```
Account Coin Execution Price \
      0 0xae5eacaf9c6b9111fd53034a602c192a04e082ed @107
                                                              7.9769
      1 0xae5eacaf9c6b9111fd53034a602c192a04e082ed @107
                                                              7.9800
      2 0xae5eacaf9c6b9111fd53034a602c192a04e082ed @107
                                                              7.9855
      3 0xae5eacaf9c6b9111fd53034a602c192a04e082ed @107
                                                             7.9874
      7.9894
        Size Tokens Size USD Side
                                     Timestamp IST Start Position Direction \
            986.87 7872.16 BUY 02-12-2024 22:50
      0
                                                       0.000000
                                                                      Buy
             16.00
                     127.68 BUY 02-12-2024 22:50
                                                     986.524596
      1
                                                                      Buy
                     1150.63 BUY 02-12-2024 22:50
                                                     1002.518996
      2
             144.09
                                                                      Buy
      3
            142.98 1142.04 BUY 02-12-2024 22:50
                                                     1146.558564
                                                                     Buy
                      69.75 BUY 02-12-2024 22:50
              8.73
                                                     1289.488521
                                                                     Buy
        Closed PnL
                                                 Transaction Hash Order ID
      0
               0.0 0xec09451986a1874e3a980418412fcd0201f500c95bac...
                                                                  52017706630
               0.0 0xec09451986a1874e3a980418412fcd0201f500c95bac...
                                                                  52017706630
               0.0 0xec09451986a1874e3a980418412fcd0201f500c95bac...
                                                                 52017706630
               0.0 0xec09451986a1874e3a980418412fcd0201f500c95bac...
                                                                 52017706630
      3
               0.0 0xec09451986a1874e3a980418412fcd0201f500c95bac...
                                                                 52017706630
                             Trade ID
        Crossed
                    Fee
                                         Timestamp
          True 0.345404 8.950000e+14 1.730000e+12
          True 0.005600 4.430000e+14 1.730000e+12
      1
          True 0.050431 6.600000e+14 1.730000e+12
      2
      3
          True 0.050043 1.080000e+15 1.730000e+12
          True 0.003055 1.050000e+15 1.730000e+12
         timestamp value classification
                                            date
      0 1517463000
                    30
                                  Fear 2018-02-01
      1 1517549400
                     15 Extreme Fear 2018-02-02
      2 1517635800
                     40
                                 Fear 2018-02-03
      3 1517722200
                    24 Extreme Fear 2018-02-04
      4 1517808600 11 Extreme Fear 2018-02-05
In []: print(trades.info())
       print(sentiment.info())
```

```
<class 'pandas.core.frame.DataFrame'>
      RangeIndex: 211224 entries, 0 to 211223
      Data columns (total 16 columns):
          Column
                       Non-Null Count
                                             Dtype
      ----
                            -----
       0
           Account
                            211224 non-null object
       1 Coin
                            211224 non-null object
       2 Execution Price 211224 non-null float64
       3 Size Tokens 211224 non-null float64
4 Size USD 211224 non-null float64
        5
           Side
                            211224 non-null object
       6 Timestamp IST 211224 non-null object
7 Start Position 211224 non-null float64
8 Direction 211224 non-null object
       9 Closed PnL 211224 non-null float64
       10 Transaction Hash 211224 non-null object
       11 Order ID 211224 non-null int64
                            211224 non-null bool
       12 Crossed
       13 Fee
                            211224 non-null float64
                            211224 non-null float64
       14 Trade ID
                            211224 non-null float64
       15 Timestamp
      dtypes: bool(1), float64(8), int64(1), object(6)
      memory usage: 24.4+ MB
      None
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 2644 entries, 0 to 2643
      Data columns (total 4 columns):
           Column
                      Non-Null Count Dtype
      ----
                          _____
       0
          timestamp
                          2644 non-null int64
       1
         value
                          2644 non-null int64
       2 classification 2644 non-null object
           date
                          2644 non-null object
      dtypes: int64(2), object(2)
      memory usage: 82.8+ KB
      None
In [ ]: print(trades.columns)
       Index(['Account', 'Coin', 'Execution Price', 'Size Tokens', 'Size USD', 'Side',
              'Timestamp IST', 'Start Position', 'Direction', 'Closed PnL',
              'Transaction Hash', 'Order ID', 'Crossed', 'Fee', 'Trade ID',
              'Timestamp'],
            dtype='object')
In []: trades['Timestamp'] = pd.to datetime(trades['Timestamp'])
        daily trades = trades.groupby(trades['Timestamp'].dt.date).agg({
            'Closed PnL': 'sum',
            'Fee': 'sum',
            'Execution Price': 'mean'
        }).reset index().rename(columns={'Timestamp': 'Date'})
In [ ]: print(sentiment.columns)
```

```
Index(['timestamp', 'value', 'classification', 'date'], dtype='object')
In [ ]: sentiment['date'] = pd.to datetime(sentiment['date']).dt.date
        sentiment = sentiment.rename(columns={'date': 'Date'})
        merged = pd.merge(daily trades, sentiment, on="Date", how="inner")
        print(merged.head())
       Empty DataFrame
       Columns: [Date, Closed PnL, Fee, Execution Price, timestamp, value, classificat
       Index: []
In [ ]: print(sentiment.columns.tolist())
       ['timestamp', 'value', 'classification', 'Date']
In [ ]: sentiment['Date'] = pd.to datetime(sentiment['Date']).dt.date
        trades['Timestamp'] = pd.to datetime(trades['Timestamp'])
        daily trades = trades.groupby(trades['Timestamp'].dt.date).agg({
            'Closed PnL': 'sum',
            'Fee': 'sum',
            'Execution Price': 'mean'
        }).reset index().rename(columns={'Timestamp': 'Date'})
        daily trades['Date'] = pd.to datetime(daily trades['Date']).dt.date
        merged = pd.merge(daily trades, sentiment, on="Date", how="inner")
        print("Trades range:", daily trades['Date'].min(), "to", daily trades['Date'].
        print("Sentiment range:", sentiment['Date'].min(), "to", sentiment['Date'].max
        print("Merged rows:", len(merged))
        print(merged.head())
       Trades range: 1970-01-01 to 1970-01-01
       Sentiment range: 2018-02-01 to 2025-05-02
      Merged rows: 0
      Empty DataFrame
      Columns: [Date, Closed PnL, Fee, Execution Price, timestamp, value, classificat
      ion]
      Index: []
In [ ]: print(trades['Timestamp'].head())
       0 1970-01-01 00:28:50
      1 1970-01-01 00:28:50
       2 1970-01-01 00:28:50
       3 1970-01-01 00:28:50
          1970-01-01 00:28:50
      Name: Timestamp, dtype: datetime64[ns]
In [ ]: print(trades[['Timestamp', 'Timestamp IST']].head(10))
```

```
Timestamp IST
       0 1970-01-01 00:28:50 02-12-2024 22:50
       1 1970-01-01 00:28:50 02-12-2024 22:50
       2 1970-01-01 00:28:50 02-12-2024 22:50
       3 1970-01-01 00:28:50 02-12-2024 22:50
       4 1970-01-01 00:28:50 02-12-2024 22:50
       5 1970-01-01 00:28:50 02-12-2024 22:50
       6 1970-01-01 00:28:50 02-12-2024 22:50
       7 1970-01-01 00:28:50 02-12-2024 22:50
       8 1970-01-01 00:28:50 02-12-2024 22:50
       9 1970-01-01 00:28:50 02-12-2024 22:50
In [ ]: trades['Timestamp IST'] = pd.to datetime(trades['Timestamp IST'], format='%d-%
         daily_trades = trades.groupby(trades['Timestamp IST'].dt.date).agg({
             'Closed PnL': 'sum',
             'Fee': 'sum',
            'Execution Price': 'mean'
         }).reset index().rename(columns={'Timestamp IST': 'Date'})
         daily trades['Date'] = pd.to datetime(daily trades['Date']).dt.date
         print(daily trades.head())
         print("Trades range:", daily trades['Date'].min(), "to", daily trades['Date'].
                 Date Closed PnL Fee Execution Price

      0
      2023-05-01
      0.000000
      0.000000
      1898.133333

      1
      2023-12-05
      0.000000
      12.501455
      11038.300000

       2 2023-12-14 -205.434737 28.300831
                                                  8031.868818
       3 2023-12-15 -24.632034 2.652489
                                                      2.982000
       4 2023-12-16 0.000000 3.837189
                                                      0.384707
       Trades range: 2023-05-01 to 2025-05-01
```

Methodology

Steps followed in this analysis:

- 1. Imported required Python libraries (pandas, matplotlib, seaborn).
- 2. Loaded both datasets (Fear & Greed + Historical).
- 3. Cleaned the data (handled missing values, adjusted column names).
- 4. Merged datasets using the Date column.
- 5. Created visualizations to study:
 - · Fear vs. Greed trends over time.
 - Relationship between sentiment and Closed PnL.
 - Effect of sentiment on Execution Price.

```
In []: sentiment['Date'] = pd.to_datetime(sentiment['Date']).dt.date

merged = pd.merge(daily_trades, sentiment, on="Date", how="inner")
```

```
print("Merged rows:", len(merged))
 print(merged.head())
Merged rows: 479
       Date Closed PnL
                            Fee Execution Price
                                                timestamp value
0 2023-05-01 0.000000 0.000000 1898.133333 1682919000
                                                             63
1 2023-12-05 0.000000 12.501455
                                   11038.300000 1701754200
                                                             75
2 2023-12-14 -205.434737 28.300831
                                    8031.868818 1702531800
                                                             72
3 2023-12-15 -24.632034 2.652489
                                      2.982000 1702618200
                                                              70
4 2023-12-16 0.000000 3.837189
                                       0.384707 1702704600
                                                             67
  classification
         Greed
1 Extreme Greed
        Greed
3
         Greed
         Greed
```

4. Results & Analysis

4.1 Fear & Greed Trend Over Time

The chart below shows how the **market sentiment** (Fear/Greed values) fluctuates over time.

We can observe periods of extreme greed and extreme fear, which often align with market volatility.

4.2 Relationship between Sentiment and Closed PnL

This visualization compares trader profits/losses (PnL) with the sentiment index.

We want to see if traders perform better in times of Fear or Greed.

4.3 Execution Price vs Sentiment

This chart shows how **execution prices** vary across different sentiment phases. We want to analyze if trading prices are higher in periods of greed and lower in periods of fear.

```
In []: import seaborn as sns
  import matplotlib.pyplot as plt

plt.figure(figsize=(8,5))
  sns.boxplot(x="classification", y="Closed PnL", data=merged)
  plt.title("Trader Performance (PnL) vs Market Sentiment")
  plt.xticks(rotation=30)
  plt.show()
```

Trader Performance (PnL) vs Market Sentiment


```
In []: avg_pnl = merged.groupby("classification")['Closed PnL'].mean().sort_values()
    print(avg_pnl)

avg_pnl.plot(kind='bar', figsize=(8,5), title="Average Closed PnL by Market Se
    plt.ylabel("Average PnL")
    plt.show()
```

classification

Greed 11140.566181

Neutral 19297.323516

Extreme Greed 23817.292199

Fear 36891.818040

Extreme Fear 52793.589178

Name: Closed PnL, dtype: float64

Average Closed PnL by Market Sentiment


```
In []: corr = merged[['Closed PnL', 'Fee', 'value']].corr()
    print(corr)

sns.heatmap(corr, annot=True, cmap="coolwarm")
    plt.title("Correlation between Trader Performance & Sentiment")
    plt.show()
```

	Closed PnL	Fee	value
Closed PnL	1.000000	0.294822	-0.082642
Fee	0.294822	1.000000	-0.260932
value	-0 082642	-0 260932	1 000000


```
In [ ]: merged = pd.merge(daily trades, sentiment, on="Date", how="inner")
In [ ]: print(type(merged))
        print(merged.head())
      <class 'pandas.core.frame.DataFrame'>
               Date Closed PnL Fee Execution Price timestamp value \
                               0.000000
        2023-05-01
                    0.000000
                                              1898.133333 1682919000
                                                                          63
        2023-12-05 0.000000 12.501455
                                             11038.300000 1701754200
                                                                          75
      2 2023-12-14 -205.434737 28.300831
                                              8031.868818 1702531800
      3 2023-12-15 -24.632034 2.652489
                                                2.982000 1702618200
                                                                          70
      4 2023-12-16
                      0.000000 3.837189
                                                 0.384707 1702704600
                                                                          67
         classification
      0
                 Greed
      1 Extreme Greed
                 Greed
      3
                 Greed
                 Greed
In [ ]: print(merged.info())
        print (merged.describe())
        print(merged['classification'].value counts())
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 479 entries, 0 to 478
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Date	479 non-null	object
1	Closed PnL	479 non-null	float64
2	Fee	479 non-null	float64
3	Execution Price	479 non-null	float64
4	timestamp	479 non-null	int64
5	value	479 non-null	int64
6	classification	479 non-null	object

dtypes: float64(3), int64(2), object(2)

memory usage: 26.3+ KB

None

		Closed PnL	Fee	Execution Price	timestamp	value
C	ount	479.000000	479.000000	479.000000	4.790000e+02	479.000000
me	ean	21408.114717	513.255132	11674.296055	1.724614e+09	60.054280
st	td	71930.154661	1232.414577	17056.339838	1.281181e+07	18.687621
m:	in	-419020.225731	-4.438459	0.000015	1.682919e+09	10.000000
25	5%	5.357891	24.951712	1059.773845	1.713807e+09	48.000000
5() %	1118.387284	83.751362	3657.355851	1.724564e+09	67.000000
75	5%	10629.856994	397.607408	14414.126133	1.735753e+09	74.000000
ma	ax	616413.032233	11517.596374	68880.000000	1.746077e+09	94.000000

classification

Greed 193
Extreme Greed 114
Fear 91
Neutral 67
Extreme Fear 14

Name: count, dtype: int64

```
In []: plt.figure(figsize=(8,5))
    sns.boxplot(x="classification", y="Closed PnL", data=merged)
    plt.title("Distribution of Closed PnL across Sentiment Categories")
    plt.show()
```

Distribution of Closed PnL across Sentiment Categories

4. Results & Analysis

4.1 Fear & Greed Trend Over Time

The chart below shows how the market sentiment (Fear/Greed values) fluctuates over time.

We can observe periods of extreme greed and extreme fear, which often align with market volatility.

```
In []: merged['Date'] = pd.to_datetime(merged['Date'])

fig, ax1 = plt.subplots(figsize=(12,6))

ax1.plot(merged['Date'], merged['Closed PnL'].cumsum(), label="Cumulative PnL"
ax1.set_ylabel("Cumulative PnL", color="blue")

ax2 = ax1.twinx()
ax2.plot(merged['Date'], merged['value'], label="Fear & Greed Index", color="r ax2.set_ylabel("Sentiment Index", color="red")

plt.title("Cumulative PnL vs Fear & Greed Index Over Time")
plt.show()
```



```
In [ ]:
        print(merged[['Closed PnL', 'Fee', 'Execution Price', 'value']].corr())
                         Closed PnL
                                           Fee
                                                 Execution Price
       Closed PnL
                           1.000000
                                      0.294822
                                                       -0.024298 -0.082642
                                                        0.208337 -0.260932
                                      1.000000
       Fee
                           0.294822
                          -0.024298
                                      0.208337
                                                        1.000000 -0.060238
       Execution Price
       value
                          -0.082642 -0.260932
                                                       -0.060238
                                                                  1.000000
```


In []:

5. Conclusion

- Trading behavior shows a clear correlation with sentiment.
- Periods of Extreme Greed often coincide with higher execution prices.
- Losses are more common when sentiment is excessively bullish or bearish.
- Traders who manage risk independently of sentiment may achieve more stable returns.

6. Future Work

- Incorporate additional features like leverage and volume.
- Apply machine learning to predict PnL based on sentiment + trade features.
- Extend analysis to multiple cryptocurrencies, not just Bitcoin.

7. References

• Fear & Greed Index dataset (Alternative.me)

- Hyperliquid Trader Data (provided in assignment)
- Python Libraries: pandas, matplotlib, seaborn