

コンパイラ及び演習

関澤 俊弦 日本大学 工学部 情報工学科

復習

■(形式)言語

- ロアルファベット(記号)Σ
- 口記号列
- **ロスター閉包** Σ*
- abla上の言語 L

■形式文法

- □終端記号, 非終端記号, 書き換え規則
- ロ文法で生成される言語

復習

- ■これまでの実装(演習)
 - ロコマンドラインからのファイル指定
 - □ 語w ∈ Lの判定

- ■オートマトン
 - ロ有限オートマトン
 - ・決定性有限オートマトン
 - 様相
 - □正規言語
- ■プログラミング技法

■オートマトン

- ロ有限オートマトン
 - ・決定性有限オートマトン
 - 様相
- □正規言語
- ■プログラミング技法

オートマトンとは

- ■オートマトンとは
 - ロ情報科学ではシステムのモデル
 - □ある「入力」に対して、処理を実行し、「出力」する 数学的なモデル

対象となるシステムに応じて、様々なオートマトンがある

■直観的な対応

- ロコンパイラは入力(ソースプログラム)を
- ロ(オートマトンを応用して)処理し、
- ロ中間コードを出力する

- ■オートマトン
 - ロ有限オートマトン
 - ・決定性有限オートマトン
 - 様相
 - □正規言語
- ■プログラミング技法

有限オートマトン

- 有限オートマトン (FA: Finite Automaton)
 - □受け入れ可能な入力記号列を認識し, 受け入れ の可否(受理)で1(yes)または0(no)を出力
 - 認識機械 (リコグナイザ(recognizer))
 - ロ記憶の種類(状態の数)は有限
 - □最終状態(受理状態)をもつ
 - 1 (yes) を出力する状態

有限オートマトン

■有限オートマトン $M = (Q, \Sigma, \delta, q_0, F)$

ロ Q: 状態の有限集合

ロΣ: 入力記号の有限集合

 $\square \delta$: 状態遷移関数

 $\Box q_0 \in Q$: 初期状態

 $\Box F \subseteq Q$: 最終状態(受理状態)の集合

す限オートマトンでは、受理状態を区別するため、出力関数は明示しない

オートマトンの入力(一部再掲)

- 入力記号 ∑
 - ロオートマトンの入力は記号で表わす
 - 0, 1, 2, ... や a, b, c, ... など
 - □個々のオートマトンについては、入力記号を有限 に限定し、有限集合で表わす
 - $\Sigma = \{0, 1\}$ や $\Sigma = \{a, b, c\}$ など
- ■入力記号列,入力系列
 - ロ入力記号を並べてできる系列
 - ・010,010110など

FAの概念

- FAは入力記号列の受理を判定する
 - ロヘッドで入力記号列を読み込む
 - ロ入力記号により有限制御部の状態を変化させる
 - ロ動作を停止したときの状態で受理を判定する

FAの定義と概念

- 有限オートマトン $M = (Q, \Sigma, \delta, q_0, F)$
 - □ Q: 状態の有限集合
 - □ Σ: 入力記号の有限集合
 - □ $\delta: Q \times \Sigma \to Q$, 状態遷移関数
 - $q_0 \in Q$: 初期状態
 - □ F ⊆ Q: 受理状態の集合

FAの動作(1)

■ 入力テープ

- ロコマに分かれている
- ロ各コマには入力記号が1つ入っている
- ロ右端には終わりを示すエンドマーカ\$がある
 - エンドマーカ: どの入力記号とも異なる記号
 ∑∩{\$} = ∅

■入力テープの準備

ロ入力したい記号列 $w = a_1 a_2 \dots a_n$ をセットする

• $a_i \in \Sigma$, $1 \le i \le n$

入力テープ $a_1 a_2$ … a_i … a_n \$

FAの動作(2)

- ヘッド
 - ロ入力テープを1記号(1コマ)ずつ読み込む
- ■入力テープ読み込みの準備
 - ロヘッドを入力テープの左端に置く
 - ロMの内部状態を初期状態q₀とする

FA M: 有限状態制御部 状態 q₀

FAの動作(3)

- 有限オートマトンMの1回の動作
 - ロヘッドの位置にある記号を読み込む
 - ロ状態遷移関数δで定まる状態に遷移する
 - ロヘッドを1コマ右に移動する

FAの動作(4)

- ■動作の終了
 - ロヘッドがエンドマーカの位置に来たら終了する
- ■記号列の受理判定
 - \mathbf{n} 動作を停止したときの状態を q_n とする
 - $\Box q_n$ が受理状態の1つならばMはwを受理する
 - $q_n \in F$
 - ロそうでなければ、Mはwを拒否(非受理)する

■状態

- ロ状態は記号を丸で囲ったもので表わす
 - ・ 初期状態は矢印を付加する
 - ・最終状態は二重丸で表す

■遷移

 $\mathbf{D}\delta(r,a) = s$ のとき、状態rから状態sに向かう矢印を描き、矢印に入力記号aをラベルとして付加する

様々な有限オートマトン

- 決定性有限オートマトン (DFA)
 - □同時に2つ以上の状態にいることはできない
- 非決定性有限オートマトン (NFA)
 - ロ同時に複数の状態にいることができる
- ε-動作を含む非決定性有限オートマトン (ε-NFA)
 - ロ空記号εを使える有限オートマトン

- ■オートマトン
 - ロ有限オートマトン
 - ・決定性有限オートマトン
 - 様相
 - □正規言語
- ■プログラミング技法

決定性有限オートマトン

- 決定性有限オートマトン $M = (Q, \Sigma, \delta, q_0, F)$
 - ロ Q: 状態の有限集合
 - ロΣ: 入力記号の有限集合
 - $\square \delta: Q \times \Sigma \to Q$, 状態遷移関数
 - 現在の状態 $p \in Q$ と入力 $a \in \Sigma$ に対して、遷移先状態 $q \in Q$ を、 $\delta(p,a) = q$ により一意に定める関数.
 - $\square q_0 \in Q$: 初期状態
 - $\Box F \subseteq Q$: 最終状態(受理状態)の集合

DFA (Deterministic Finite Automaton)と呼ばれる

DFAの処理と受理判定

- 与えられた入力記号列の受理判定
 - 1. 入力記号列 $a = a_1 a_2 a_3 \dots a_n$ が与えられたとする
 - 2. 状態を初期状態 q0とする
 - 3. 遷移関数 $\delta(q_0, a_1)$ を用いて、遷移先を調べる
 - 4. 同様に, $\delta(q_{i-1}, a_i) = q_i$ の関係にある状態を見つける
 - 5. 最終的な状態 q_n がFの要素 $(q_n \in F)$ ならば,入力記号列は"受理"される. そうでなければ"非受理"となる.

DFA Mが受理する記号例の全体をMの"言語"と呼ぶ

$$\Sigma = \{a, b\}, L_{21} = \{a^m b^n | m, n > 0\}$$
とする **じ** p.19

- Σ上の語wが与えられたとき, wがL21の要素 かどうか判定する
 - $\mathbf{D} w \in L_{21}$ ならばyes(受理), w ∉ L₂₁ならばno (非受理)と判定する

■判定方法

- ロ入力wを先頭から1文字ずつ読む
- ロaで始まり、いくつかaが続くことを確認する
- □ bが入力された後は、いくつかbが続き、aが入力 されないことを確認する

■ DFA $M_{21} = (Q, \Sigma, \delta, q_0, F)$ を考える

$$\square Q = \{p, q, r, d\}$$

$$\Box \Sigma = \{a, b\}$$

$$\square \delta : Q \times \Sigma \to Q$$

•
$$\delta(p, a) = q, \delta(p, b) = d,$$

•
$$\delta(q, a) = q, \delta(q, b) = r$$
,

•
$$\delta(r, a) = d, \delta(r, b) = r$$

•
$$\delta(d, a) = d, \delta(d, b) = d$$

$$\Box q_0 = p$$

$$\Box F = \{r\}$$

- DFA M₂₁に入力aabbを与えたときの動作
 - ロ動作を停止したときの状態 $r \in F$ である. ゆえに、DFA M_{21} は入力aabbを受理する.

- DFA M₂₁に入力abaを与えたときの動作
 - ロ動作を停止したときの状態 $d \notin F$ である. ゆえに、DFA M_{21} は入力abaを受理しない.

- ■オートマトン
 - ロ有限オートマトン
 - ・決定性有限オートマトン
 - 様相
 - □正規言語
- ■プログラミング技法

様相

- 様相(コンフィギュレーション(configuration))とは ロオートマトンMの動作の途中の状況
- 様相の表記 (q, y)
 - **□***q* ∈ *Q*: 現在の状態
 - $\mathbf{p} \in \Sigma^*$: 処理されていない入力記号列

□例: 様相(q,ax)

- ■オートマトンMの1回の動作をトMと表わす
 - □Mが明らかなときは省略可. ⊢と表わす.
 - \square 例: $(q,ax) \vdash_M (p,x)$
 - Mの様相が(q,ax)であり, $\delta(q,a)=p$ のとき,Mは動作して様相(p,x)となる.
 - $p_i \in Q, a_i \in \Sigma, 1 \leq i \leq n \text{ として}, \\ (p_1, a_1 a_2 a_3 \dots a_n) \vdash (p_2, a_2 a_3 \dots a_n), \\ (p_2, a_2 a_3 \dots a_n) \vdash (p_3, a_3 \dots a_n), \dots, \\ (p_{n-1}, a_{n-1} a_n) \vdash (p_n, a_n) \\ \text{のとき}, \\ (p_1, a_1 a_2 a_3 \dots a_n) \vdash (p_2, a_2 a_3 \dots a_n) \vdash \dots \vdash (p_n, a_n) \\ \text{ と書く}.$

- Mの複数回の動作を+*/(または+*)と書く
 - □直感的には⊢мの何回かの繰り返し
 - □Mの一連の動作を簡潔に記述できる
 - 例: 最初と最後の様相にのみ関心があるとき $(q_0, a_1 a_2 ... a_n) \vdash_M^* (q_n, \varepsilon)$

□ ⊢ ⊢ は ⊢ ⊢ の推移的閉包であるという

例: 様相を用いた M_{21} の動作の表記

- DFA M₂₁に入力aabbを与えたときの動作
 - $\square (p, aabb) \vdash (q, abb) \vdash (q, bb) \vdash (r, b) \vdash (r, \varepsilon)$
 - 動作を停止したときの状態 $r \in F$ である. ゆえに、DFA M_{21} は入力aabbを受理する.
 - 受理を示すならば, (p, aabb) ⊢* (r, ɛ)とも書ける

- ■オートマトン
 - ロ有限オートマトン
 - ・決定性有限オートマトン
 - 様相
 - □正規言語
- ■プログラミング技法

正規言語(RL: Regular Language)

- DFA $M = (Q, \Sigma, \delta, q_0, F)$ の言語L(M)とは
 - □ 初期状態 q_0 を、受理状態の一つに導く入力記号列の集合
 - $\square L(M) = \{ w \mid w \in \Sigma^*, (q_0, w) \vdash_M^* (q_n, \varepsilon), q_n \in F \}$
 - 初期様相 (q_0, w) から動作を始め、wを読み終わって動作を停止したときの様相を (q_n, ε) とする
- 正規言語(正則言語)(RL)
 - - オートマトンが受理する言語

- ■有限オートマトンの言語
 - ロDFA, NFA, ε-NFAは同じ言語を規定する

$$L(\varepsilon - NFA) = L(NFA) = L(DFA)$$

■ 正規言語(RL)と有限オートマトン

$$RL = L(\varepsilon - NFA) = L(NFA) = L(DFA)$$

- 有限オートマトン M
 - □Mを言語L(M)を生成するシステムとみなす
 - ・受理される語を考え、動作により記号が確定すると捉える
 - $L(M) = \{ w \mid w \in \Sigma^*, (q_0, w) \vdash_M^* (q_n, \varepsilon), q_n \in F \}$

他の代表的なオートマトン

- プッシュダウンオートマトン (pushdown automaton: PDA)
 - □有限オートマトンに、プッシュダウンスタックと呼ばれる補助記憶を付け加えたオートマトン
- 線形拘束オートマトン (linear bounded automaton: LBA) □1本のテープを持つ非決定性TM
- チューリング機械 (Turing machine: TM) □ 有限オートマトンに、作業用テープを加えたもの

- ■オートマトン
 - ロ有限オートマトン
 - ・決定性有限オートマトン
 - 様相
 - □正規言語
- ■プログラミング技法

列挙型

- ■列拳型(enum)
 - ロデータ型の一つ
 - C言語では整数定数に名前を付けて実現される
 - ロtypedefと共に使用することで型を定義できる
 - ・プログラムの意味を明確にできる

列挙型

■例

ロ列挙型を用いた状態の定義. Sp, Sq, Sr, SdをメンバにもつSTATE型をtypedefを 用いて定義し、プログラム中で使用する

```
typedef enum {
    Sp, Sq, Sr, Sd
} STATE;

int main(void) {
    STATE s = Sp;
    :
}

STATE S = Sp;
}

STATE型の変数sの定義と初期化
}
```

まとめ

- ■オートマトン
 - □有限オートマトン(FA)
 - ・決定性有限オートマトン (DFA)
 - 様相
 - □正規言語(RL)

演習

本演習のポイント

■ C言語

- □列挙型(enum)
 - enumは今後も多用します

■処理

- □関数nextChar
 - nextCharは今後も使用する重要な関数
- ロ文字(記号)による処理の振り分け

関数nextCharの実装例

- 関数nextChar, Lesson02, 演習Step2, サンプルコードの意図
 - オートマトンの入力記号列を文字列Strで表わす
 static char *pStr で文字列Strを参照する
 - ・オートマトンが読み込んだ文字を文字cで表わす - ポインタpStrが指している文字をcとして取得する

```
char nextChar(void) {
   static char *pStr = Str;
   char c;

  /* Step2をここに実装する */
  return c;
}
```


演習3-1: DFA M₃₁の実装

オートマトンM₃₁を, C言語で実装する
 □状態・遷移・判定を実現する

*M*₃₁の仕様

■仕様

- □ 実装言語: C言語
- ロ入力記号列:標準入力より、1文として入力する
 - ・入力の最大文字数は256文字と仮定する
- DM_{31} のエラー状態dへの遷移の拡張
 - ・標準入力からは、入力記号の有限集合Σに含まれない文字が入力される可能性があるため 。

- オートマトンM₃₁を;
 - ロ状態は、ラベルとして記述する
 - ロ遷移は、ラベルへのgoto文で記述する

一般に、goto文の使用は推奨されない

- compiler03_1_goto.c(一部)
 - ロラベルによる状態と、goto文を用いた状態遷移

```
0:
    ch = nextChar();
    if (ch == 'a') { printf("d(q, %c) = qYn", ch); goto Q; }
    if (ch == 'b') \{ printf("d(q, %c) = qYn", ch); goto R; \}
    if (ch == '¥0') { goto REJECT; }
    goto D;
R:
    ch = nextChar();
    if (ch == 'b') \{ printf("d(r, %c) = rYn", ch); goto R; \}
    if (ch == '\(\frac{4}{9}\)) { goto ACCEPT; }
    goto D;
/*(略)*/
ACCEPT:
    printf("yes\u00e4n");
    exit(EXIT SUCCESS);
REJECT:
    printf("no\u00e4n");
   exit(EXIT SUCCESS);
```


M₃₁の実装

- オートマトンM₃₁を
 - ロgotoを用いないで実装する
 - □状態は列挙型(enum)で定義する
 - ロ遷移は状態を表わす変数の変化で表わす

■ 仕様・制約・実行例は、演習課題提出システムを参照のこと

演習3-1: 実行例

■入力記号列と期待される判定結果

- 1. aabb yes
- aba no
- abc no

```
gw.cse.ce.nihon-u.ac.jp - PuTTY
sekizawa@cse-ssh[38]: ./3-1
  kizawa@cse-ssh[39]: ./3-1
  kizawa@cse-ssh[40]: ./3-1
sekizawa@cse-ssh[41]: 📘
```