Preliminares matemáticos

Facultad de Ciencias de la Electrónica

Benemérita Universidad Autónoma de Puebla

Licenciatura en Ingeniería Mecatrónica

Dr. Fernando Reyes Cortés

Robótica

ftp://ece.buap.mx/pub/profesor/FernandoReyes/Robotica/

Primavera 2020

Parte II

Preliminares Matemáticos

1 Ejercicios en clase

BUAP

Ejercicios en clase

Ejemplos de programación en MATLAB.

Figura 1: Desarrollo en clase.

BUAP

$$x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$y = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

- 2) Desarrollar:
 - a) x^Tx
 - b) xx^T
 - c) $x^T y$
 - d) ux^{3}
 - e) $y^T y$
 - f) y^Tx
- 3) Obtener la norma espectral de la matriz $A \in \mathbb{R}^{2\times 2}$:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

- 4) Deducir la matriz simétrica A_s y antisimétrica A_{sk} de la matriz A.
- 5) Convertir el polinomio $V(x) = 8x_1^2 + 9x_1x_2 + 12x_2^2$ a la forma $V(x) = x^T Ax$

Robótica FCE

RUAP

