凸优化 第七次作业

自 61 张嘉玮 2016011528

2019年11月5日

1. 解:

使用牛顿法+Cholesky 方法+精确直线搜索 (0.618):

最优解: (1.00000000000016, 1.00000000000379)

最优值: 2.408427842380484e-25

函数值下降曲线:

二维平面迭代轨迹:

*曲线为等高线,下同

作为对比,下图分别是 L2 最速下降和扭动法:

在相同的优化目标和误差约束下,牛顿法共 2 步、L2 最速下降法共 290 步,可见牛顿法的高效。

2. 解:

使用牛顿法+Cholesky 方法+回溯直线搜索:

使用两组回溯参数:

	α	β
第一组	0.15	0.8
第二组	0.25	0.5

牛顿法迭代步数:

迭代步数	$\alpha = 0.15; \ \beta = 0.8$	$\alpha = 0.25; \ \beta = 0.5$
M=50;N=50	7	7
M=100;N=100	9	9

实验结果表明, 在两组参数下实验迭代步长相同。

2.1. M=50,N=50

 $\alpha = 0.15, \beta = 0.8$

函数值:

对数误差:

迭代步长:

② $\alpha = 0.25, \beta = 0.5$

函数值:

对数误差:

迭代步长:

2.2. M=100,N=100

2.2.1. L1 范数最速下降法

$$\alpha = 0.15, \beta = 0.8$$

函数值:

对数误差:

迭代步长:

$$\alpha = 0.25, \beta = 0.5$$

函数值:

对数误差:

迭代步长:

