ELECTRIC CABLES THEIR CONSTRUCTION & COST COYLE & HOWE

Heading COYLE

Classmark S/TK3351

Book No. 1002971216

UNIVERSITY OF NOTTINGHAM

George Green Library of Science and Engineering

Z PRESENTED TO THE UNIVERSITY OF NOTTINGHAM BY

DR A HOWE

DIRECTOR of TEACHING ENHANCEMENT

2002

UNIVE10 0297Y210F NOTTING HAM

FROM THE LIBRAR

CENTRAL STORE

DATE DUE FOR RETURN

ELECTRIC CABLES THEIR CONSTRUCTION AND COST

Digitized by the Internet Archive in 2024

ELECTRIC CABLES

THEIR CONSTRUCTION AND COST

BY

D. COYLE, M.I.E.E.

Of Max Sievert's Fabriks Aktiebolag, Stockholm; and for many years with Messrs. Siemens Bros. & Co., Ltd., London; Kabelwerk Duisburg; and Kabelwerk Oberspree (A.E.G.)

AND

F. J. O. HOWE

For many years with Messrs. Siemens Bros. & Co., Ltd., London; and Kabelwerk Oberspree (A.E.G.)

London

E. & F. N. SPON, LIMITED, 57 HAYMARKET

Mew York

SPON & CHAMBERLAIN, 123 LIBERTY STREET

1909

PREFACE

- FRN9127-

In view of the scarcity of published data relating to the manufacture and cost of electric cables, the Authors believe they will be placing in the hands of Electrical Engineers generally, a book that will be of the greatest utility in connection with all types of Light, Power and Telephone cable work.

The aim throughout the book has been to enable an engineer to determine the dimensions and approximate cost of any type of cable, by taking the component parts of the cable at the market price of the day, adding the items together with a percentage for labour and shop expenses.

The chapters are arranged according to the manufacturing processes, and details of the average English and Continental practice are given together with the recommendations of the various electrical institutions.

Conductors are treated exhaustively, and tables given based on square inch and square millimetre sections, and also Legal Standard, Birmingham, and Brown and Sharpe wire gauges.

The dielectric thickness required for any working pressure is considered in Chapter XIII., whilst numerous tables are given showing the thicknesses of dielectric for cables working at ordinary pressures.

Air Space Telephone Cable construction is fully considered in Chapter V.; the diameter of the cable being calculated direct from the electrostatic capacity required. Tapes, Braids, Lead Sheath, Wire and Steel Tape armours are also fully considered.

The practical formulæ for the calculation of the various cable constants are given in Chapter XIII., and also various data obtained from tests on large numbers of actual cables.

A good deal of emphasis is given to the employment of the metric system generally, and it is hoped that the book will be more valuable on that account.

As this book is based on the Authors' many years (46 years in total) experience in some of the largest cable works in England and on the Continent, and represents the current practice, it is hoped that it will supply a long-felt want.

The recommendations of the Engineering Standards Committee, inserted in the various sections of the book, are extracted by their kind permission from Report No. 7, "British Standard Tables of Copper Conductors and Thicknesses of Dielectrics."

THE AUTHORS.

LONDON, 1909.

CONTENTS

-00400-

CHAPTE	CR					PAGI
Ι	Conductors					1
Π	IMPREGNATED PAPER IN	NSULATIO	ON			102
III	IMPREGNATED JUTE INS	SULATION	4			118
IV	India-Rubber and Gur	TTA-PER	СНА			128
V	Paper and Air Space	ТЕГЕРН	ONE (CABLE		157
VI	Vulcanised Bitumen		•			172
VII	Tapes and Braids .					176
VIII	LEAD SHEATH	•		•		191
IX	STEEL WIRE ARMOUR	•				214
X	STEEL TAPE ARMOUR	•			•	248
XI	LABOUR, CHARGES AND	EXAMPL	ES			280
XII	COMPLETE CABLES .					321
XIII	Miscellaneous .				•	395
	INDEX					457
	INDEX TO TABLES .		•			465

ELECTRIC CABLES:

THEIR CONSTRUCTION AND COST.

CHAPTER I.

CONDUCTORS.

(A) Copper.

CABLE conductors are at present almost exclusively constructed of copper, either a single wire or a strand of wires, according to the desired cross section of copper and the working conditions of the cable. For small cross sections, the strand may consist of 3 or 4 wires, but the usual strands are of 7, 19, 37, 61, 91 and 127 wires; these numbers form a series of the equation 3n(n+1)+1 where n is any integer. The wires of these latter strands are laid up round a centre wire. the successive layers being formed of 6, 12, 18, 24 and 30 wires, which layers are generally applied with a left-handed and right-handed lay alternately.

Having decided upon the requisite cross section of the conductor, the weight of the copper and also the strands of wire, which form this cross section, can be seen from the following Tables, Nos. 1 and 2. When deciding upon the strand, it must be remembered that for rubber-insulated cables it is advisable not to use wires of greater diameter than 2.5 millimetres, owing to the strain which they would exert upon the rubber insulation when the cable is bent. For paperinsulated and other cables it is not advisable to use wires of greater diameter than 4.2 millimetres, on account of the lesser flexibility of cables constructed with wires of large diameter.

In the case of extra high tension cables, it is very important that curves of small radius be avoided in the periphery of the conductor; in some cases it may be advisable to provide the conductor with a circular metallic periphery, by encasing it in a thin tube of lead, or by lapping it with metallic foil.

Further, it may be economical to use conductors of lower conductivity than copper, such as aluminium, or even lay the copper wires round a dummy centre

of jute packing; this will be considered fully in Chapter XIII.

The weights given in Tables Nos. 1 and 2 are based upon a specific gravity for copper of 8.912, that is to say, 1 kilometre of copper of 1000 square millimetre cross section weighs 8912 kilogrammes; therefore, I statute mile of copper of one square inch cross section weighs

$$\frac{8912 \times 645 \cdot 136 \times 1 \cdot 6093 \times 2 \cdot 2046}{1000} = 20,400 \text{ lb.}$$

The Engineering Standards Committee have recently recommended a basis of 555 lb. as the weight of one cubic foot of copper; therefore 1 statute mile of copper of one square inch cross section weighs

$$\frac{555 \times 1760 \times 3}{144} = 20,350 \text{ lb.}$$

The difference between these two bases is therefore less than $\frac{1}{4}$ per cent.

TABLE No. 1.—Copper Strands.

Cross	s Section	Weight	of Copper		Stra	ınd (Dian	neters in	mm.)	
sq. in.	mm 2	Kilog. per km	lb. per mile	127	91	61	37	19	7
.000	645.136	5750	20400	2.54	3.00	3.66	1	1	
•999	644.570	5745	20380	2.54	3.00	3.66			
•998	643.930	5739	20360	2.54	3.00	3.66			
•997	643.300	5734	20338	2.53	3.00	3.66			٠.
•996	642.620	5728	20318	2.53	2.99	3.66			
•995	642.000	5722	20298	2.53	2.99				
•994	641 350	5716	20298	2.53	2.99	3.66			
						3.65			
•993	640.720	5711	20257	2.53	2.99	3.65			
•992	640.090	5705	20236	2.53	2.99	3.65	. 1		
•991	639 • 440	5699	20216	2.53	2.99	3.65			٠.
-990	638.800	5693	20196	2.53	2.98	3.65			
+989	638 • 150	5687	20175	2.53	2.98	3.64			
•988	637.495	5681	20155	2.52	2.98	3.64			
•987	636 844	5676	20134	2.52	2.98	3.64			
.986	636 · 200	5670	20114	2.52	2.98	3.64			
985	635 550	5664	20093	2.52	2.98	3.64			
·981	634.910	5658	20073	2.52	2.98	3.64			
.983	$634 \cdot 270$	5652	20053	$2 \cdot 52$	2.97	3.63			
•982	633.610	5647	20033	2.51	2.97	3.63			
•981	$632 \cdot 970$	5641	20012	2.51	2.97	3.63			
.980	632.320	5635	19992	2.51	2.97	3.63			
.979	631.680	5629	19972	2.51	2.97	3.63		• • •	
.978	631.030	5625	19952	2.51	2.97	3.62	* *		
977	630 360	5619	19932	2.51	2.96	3.62	* *		
.976	629.710	5613	19911	2.51	2.96	3.62			
975	629 • 090	5607	19890	2.51	2.96	3.62	* *	• •	
974	628 • 410	5601	19870	2.50	2.96	3.62	* *		
973	$627 \cdot 780$	5595	19850	2.50	2.96	3.61			
972	627 · 130	5589	19830	2.50	2.96	3.61	• •		
971	626.505	5584	19809	2.50	2.96	3.61	* *		
970	625 · 830	5578	19788	2.50	2.95				
969	625 160	5572	19768	2.50	2.95	3.61			
968	624 · 520	5566	19747	$\frac{2.50}{2.50}$		3.61			
967	623 · 870	5560	19727		2.95	3.61			
966	623 · 220	5555		2.50	2.95	3.60	• •		
965	622 590	5548	19707	2.49	2.95	3.60			
964	621 950		19686	2.49	2.95	3.60			
963		5543	19666	2.49	2.95	3.60			
	621 · 290	5537	19646	2.49	2.94	3.60			
962	620.650	5532	19624	2.49	2.94	3.59			
961	620.000	5526	19604	2.49	2.94	3.59			
960	619.380	5520	19584	2.49	2.94	3.59			
959	618.720	5514	19564	2.49	2.94	3.59			
958	618.090	5508	19543	2.48	2.94	3.59			
957	$617 \cdot 470$	5503	19523	2.48	2.93	3.58			
956	616.800	5497	19503	2.48	2.93	3.58			

TABLE No. 1.—COPPER STRANDS—continued.

Cross	Section	Weight	of Copper	Strand (Diameters in mm.)					
sq. in.	mm.2	Kilog. per km.	lb. per mile	127	91	61	37	19	7
0.055	C10.17	5492	10400	2.48	2.93	0.50			
0.955	616.17		19482	2.48	2.93	3.58	• •		• •
954	615.52	5486	19462			3.28			
•953	614.87	5480	19441 1942 1	2.48	2.93	3 58			
•952	614.25	5474					• •		
•951 •	613.60	5468	19400	2.48	2.93 2.92	3.57			
•950	612.96	5463	19380	2.47		3.57	* *		
•949	612.30	5457	19360	2.47	2.92	3.57		• •	
•948	611.65	5451	19339	2.47	2.92	3.57			
.947	611.00	5445	19319	2.47	2.92	3.57			
.946	610.38	5439	19299	2.47	2.92	3.56			
.945	609.73	5434	19278	2.47	2.92	3.56			
.944	609.10	5428	19258	2.47	2.91	3.56			٠.
•943	608.48	5423	19237	2.46	2.91	3.26			
•942	$607 \cdot 80$	5417	19217	2.46	2.91	3.26			
•941	607.15	5411	19196	2.46	2.91	3.56			
•940	606.53	5405	19176	2.46	2.91	3.55			
•939	$605 \cdot 90$	5400	19156	2.46	2.91	3.55			
.938	$605 \cdot 26$	5394	19136	2.46	2.91	3.55			
.937	604.58	5388	19115	2.46	2.90	3.55			
•936	603.94	5383	19095	2.45	2.90	3.55			
.935	603 · 28	5377	19074	2.45	2.90	3.54			
.934	$602 \cdot 62$	5371	19054	2.45	2.90	3.54			
•933	602:00	5365	19034	2.45	2.90	3.54			
•932	601.34	5359	19013	$\frac{1}{2} \cdot 45$	2.90	3.54	١.		
•931	600.72	5354	18993	2.45	2.89	3.54			
•930	600 12	5348	18973	2.45	2.89	3.54			
	599.40	5342	18952	2.45	2.89	3.53			
*929	598.78	5337	18932	2.44	2.89	3.53			
•928		5331	18911	2.44	2.89	3.53	• •	• • •	
•927	598.12	5325	18891	2.44	2.89	3.53	• •		
•926	597.46	5319	18870	2.44	2.88	3.52			
•925	596.80		18850	2.44	2.88	3.52		• •	
•924	596 • 14	5313	18830	2.44	2.88	3.52			
•923	595.53	5308		2.44	2.88	3.52			
•922	594.88	5302	18809			3.52	• •		
•921	$594 \cdot 22$	5296	18789	2.44	2.88	3.52	• •	• •	
•920	$593 \cdot 58$	5290	18768	2.43	2.88	0 0=	• •	• •	
•919	$592 \cdot 95$	5284	18748	2.43	2.88	3.51	• •	• •	
•918	$592 \cdot 30$	5279	18727	2.43	2.87	3.51			
.917	$591 \cdot 64$	5273	18707	2.43	2.87	3.51		• •	
•916	$591 \cdot 00$	5267	18686	2.43	2.87	3.51	• •		
.915	$590 \cdot 35$	5262	18665	2.43	$2 \cdot 87$	3.21			
•914	$589 \cdot 70$	5256	18645	2.43	2.87	3.50			
•913	589.08	5250	18624	$2 \cdot 43$	$2 \cdot 87$	3.20		٠.	
•912	588.44	5244	18604	2.42	2.86	3.50			
•911	587.78	5238	18583	2.42	2.86	3.50			
044									

TABLE No. 1.—COPPER STRANDS—continued.

Cross	Section	Weight	of Copper		Strai	nd (Diame	ters in n	nm.)	
sq. in.	mm.²	Kilog. per km.	lb. per mile	127	91	61	37	19	7
0.910	587.15	5233	18563	2.42	2.86	3.50			
.909	586.50	5227	18542	2.42	2.86	3.49			
•908	585.87	5222	18522	2.42	2.86	3.49			
.907	585 23	5216	18501	2.42	2.86	3.49			
.906	584.60	5211	18481	2.42	2.86	3.49			
.905	583.95	5205	18461	2.41	2.85	3.49			
.904	583 - 32	5199	18440	2.41	2.85	3.49			
•903	582.68	5193	18420	2.41	2.85	3.48			
.902	582 04	5188	18400	2.41	2.85	3.48			
•901	581.39	5182	18380	2.41	2.85	3.48			
. 900	580.74	5176	18360	2.41	2.85	3.48			
-899	580.10	5170	18339	2.41	2.84	3.47			
.898	579.45	5165	18319	2.40	2.84	3.47			
.897	578.80	5159	18299	2.40	2.84	3.47			
•896	578 · 15	5153	18278	2.40	2.84	3.47			
*895	577.50	5147	18258	2.40	2.84	3.47			
*894	576.86	5142	18238	2.40	2.84	3.47			
+893 +892	576·23 575·57	5136	18218 18197	2.40	2·83 2·83	3.46			
.891	574.90	5124	18177	2.40	2.83	3.46			
.890	574.25	5118	18157	2.39	2.83	3.46	• •	• •	
.889	573.60	5113	18137	2.39	2.83	3.46			
-888	572.97	5107	18116	2.39	2.83	3.45		• •	
.887	572.33	5102	18095	2.39	$\frac{2}{2} \cdot 82$	3.45			
-886	571.67	5096	18075	2.39	2.82	3.45			
.885	571.04	5090	18054	2.39	2.82	3.45			
.884	570.38	5084	18034	2.39	2.82	3.45		• •	
.883	569.74	5078	18013	2.38	2.82	3.44			
.882	569.08	5072	17993	2.38	2.82	3.44			
.881	568.44	5067	17972	2.38	2.82	3.44			
.880	567.78	5061	17952	2.38	2.81	3.44		* *	
·879	567 · 15	5055	17931	2.38	2.81	3.44			
·878	566 · 50	5049	17911	2.38	2.81	3.43	, ,		
.877	565.87	5044	17891	2.38	2.81	3.43			
.876	$565 \cdot 22$	5038	17870	2.38	2.81	3.43			
.875	564.58	5033	17850	$ 2 \cdot 37 $	2.81	3.43			
.874	563.93	5027	17830	$2 \cdot 37$	2.80	3.43			
•873	563.30	5021	17809	2.37	2.80	3.42			
.872	562.66	5015	17789	2.37	2.80	3.42			
.871	562.00	5009	17768	2.37	2.80	3.42			1.
.870	561.35	5004	17748	2.37	2.80	3.42			
·869 ·868	560·72 560·08	4998	17727	2.36	2.80	3.42			
· 868 · 867	559.43	4992	17707	2.36	2.79	3.41			
.866	558.80	4981	17687	2.36	2.79	3.41			
000	1100 00	1001	17006	2.36	2.79	3.41	٠.		
				1					

TABLE No. 1.—COPPER STRANDS—continued.

	1 A1		1. COI	TER OI	GANDS	-00160160			
Cross	Section	Weight	of Copper		Strai	nd (Diam	eters in 1	nm.)	
sq. in.	mm.²	Kilog. per km.	lb. per mile	127	91	61	37	19	7
0.865	558.15	4975	17646	2.36	2.79	3.41			
*864	557.50	4969	17626	2.36	$\frac{1}{2} \cdot 79$	3.41	• •	• •	• •
.863	556.86	4963	17605	2.36	2.79	3.40	• • •	• •	• •
.862	556.22	4958	17585	2.36	2.78	3.40			• •
861	555.60	4952	17564	2.35	2.78	3.40			• •
.860	554.94	4946	17544	2.35	2.78	3.40			
.859	554.28	4940	17523	2.35	2.78	3.40			
.858	553.62	4935	17503	2.35	2.78	3.39			
.857	553.00	4929	17482	2.35	2.78	3.39			
.856	552.36	4923	17462	2.35	2.78	3.39			
.855	551.70	4917	17442	2.35	2.77	3.39			
.854	551.05	4912	17422	2.34	2.77	3.39			
.853	550.40	4906	17402	2.34	2.77	3.38			
.852	549.75	4900	17381	2.34	2.77	3.38			
.851	549.08	4894	17361	2.34	2.77	3.38			
.850	548.45	4889	17340	2:34	2.77	3.38			
.849	547.80	4883	17320	2.34	2.76	3.38			
.848	547.18	4877	17300	2.34	2.76	3.37			
.847	546.52	4871	17279	2.34	2.76	3.37			
846	545.86	4865	17259	2.33	2.76	3.37			
845	545.22	4859	17238	2:33	2.76	3.37			
.844	544.56	4854	17218	2.33	2.76	3.37			
.843	543.94	4848	17198	2.33	2.75	3.36			
.842	543 · 27	4842	17177	2.33	2.75	3.36			
.841	542.63	4836	17157	2.33	2.75	3.36			
.840	541.98	4830	17136	2.33	2.75	3.36			
.839	541.34	4825	17116	2:32	2.75	3.36			
*838	540.70	4819	17095	2:32	2.75	3.35			
.837	540.05	4813	17075	2.32	2.74	3.35			
.836	539 · 43	4807	17054	2.32	2.74	3.35			
.835	538.76	4801	17035	2.32	2.74	3.35			
.834	538 · 12	4796	17013	2.32	2.74	3.35			
*833	537.47	4790	16993	2.32	2.74	3.34			
.832	536.83	4784	16972	2.32	2.74	3.34			
.831	536.20	4779	16952	2.31	2.73	3.34			
.830	535.55	4773	16932	2.31	2.73	3.34			
.829	534.90	4767	16911	2.31	2.73	3.34			
-828	534.25	4761	16891	2.31	2.73	3,33			
.827	533.60	4755	16870	2.31	2.73	3.33			
.826	533.00	4750	16850	2.31	2.73	3.33			
.825	532.34	4744	16830	2.30	2.72	3.33			
-824	531.70	4738	16810	2.30	2.72	3.33			
-823	531 · 04	4733	16789	2.30	2.72	3.32			
.822	530.40	4727	16769	2:30	2.72	3.32			
.821	529.75	4721	16748	$2 \cdot 30$	2.72	3.32			

Table No. 1.—Copper Strands—continued.

Cross	Section	Weight	of Copper	_	Stran	nd (Diame	eters in n	ım.)	
sq. in.	mm.2	Kilog. per km.	lb. per mile	127	91	61	37	19	î
0 820	529:12	4715	16728	2.30	2.72	3.32			
.819	528.46	4710	16707	2.30	2.71	3.32			
·818	527 · 82	4704	16687	2.30	2.71	3.31		1	
·817	527 · 18	4698	16667	2.29	$2 \cdot 71$	3.31			
·816	526.53	4 193	16646	2.29	2.71	3.31			
.815	525.88	4687	16626	2.29	2.71	3.31			
.814	525 · 22	4681	16606	2.29	2.71	3.31			
·813	524.58	4675	16585	2.29	2.0	3.30			
.812	523 · 92	4670	16565	2.29	2.70	3.30			
·811	523 · 28	4664	16544	2.29	2.70	3.30			
.810	522:64	4658	16524	$2 \cdot 28$	2.70	3.30			
.809	521.99	4652	16504	2.28	2.70	3.30			
.808	521.33	4647	16483	$2 \cdot 28$	$\frac{1}{2} \cdot 70$	3.29			
.807	520:69	4641	16463	2.28	2.69	3.29			
.806	520.03	4635	16443	2.28	2.69	3.29			
.805	519.38	4629	16422	2.28	2.69	3.29			
.804	518.73	4623	16402	2.28	2.69	3.29	• •		
.803	518:10	4618	16381	2.27	2.69	3.28		٠.	
.802	517.47	4612	16361	$2 \cdot 27$	2.69	3.28	4.21		
.801	516.80	4606	16340	$2.\overline{27}$	2.68	3.28	4.21		
.800	516:18	4601	16320	$\tilde{2} \cdot \tilde{27}$	2.68	3.28	4.21		
•799	515.52	4595	16300	$2 \cdot 27$	2.68	3.28	4.21		
.798	514.89	4589	16280	$\frac{2}{2} \cdot \frac{27}{27}$	2 68	3.27	4.20		
.797	514.23	4583	16259	$\frac{2}{2} \cdot \frac{21}{27}$	2.68	3.27	4.20	• •	
.796	513.58	4578	16239	2.26	2.68	3.27	4.20		
.795	512.96	4572	16218	$\frac{2}{2} \cdot \frac{26}{26}$	2.67	3.27	4.20		
.794	512.23	4566	16198	$\frac{2}{2} \cdot \frac{26}{26}$	2.67	3.27	4.19	٠.	
.793	511.67	4561	16177	2.26	2.67	3.27	4.19		
.792	511.03	1 4555	16157	$\frac{2}{2} \cdot \frac{26}{26}$	2.67	3.26	4.19		
•791	510.38	4549	16136	2.26	$\frac{2.67}{2.67}$	3.26	4.19		
.790	509.73	4543	16116	$\frac{1}{2} \cdot \frac{20}{26}$	2.67	3.26	4.18		
· 789	509.08	4537	16096	2.25	2.66	3.26			
.788	508.45	4532	16075	2 25	2.66	3.26	4.18	٠.	
.787	507.80	4526	16055	$2.25 \\ 2.25$	2.66				
.786	507.16	4520	16033	$\frac{2 \cdot 25}{2 \cdot 25}$	2.66	3.25	4.17		
.785	506.52	4515	16034	2.25	2.66	3.25	4.17		
.784	505.89	4509	15993	2.25		3.25	4.17		
·783	505.22	4503	15973	2.25	2.66	3.24	4.17		
.782	504.58	4497	15953		2.66	3.24	4.16		٠.
.781	503.94	4492	15933	$2 \cdot 24 \\ 2 \cdot 24$	2.65	3.24	4.16		
.780	503.28	4486	15913		2.65	3.24	4.16		
.779	502.63	4480		2.24	2.65	3.24	4.16		
.778	502.00	4474	15892	2.24	2.65	3.53	4.15	٠.	
	501.35		15872	2.24	2.65	3.53	4.15		
·777		4468	15851	2.24	2.64	3.53	4.15		
•776	500.70	4463	15831	2.24	2.64	3.23	4.15		
	1		l		1				

TABLE No. 1.—COPPER STRANDS—continue l.

	. A.B.	LE NO.	1COP1	PER STI	- ANDS	-concent			
Cross	Section	Weight	of Copper		Strai	nd (Diamo	eters in m	ım.)	
sq. in.	mm.2	Kilog. per km.	lb. per mile	127	91	61	37	19	7
0.775	500.04	4457	15810	2.23	2.64	3.23	4.14		
.774	499.40	4451	15790	2.23	2.64	3.22	4.14		
.773	498.76	4445	15770	2.23	2.64	3.22	4.14		
.772	498.12	4440	15750	2.23	2.64	3.22	4.13		
.771	497.48	4434	15729	2.23	2.63	3.22	4.13		
.770	496.83	4428	15709	2.23	2.63	3.22	4.13		
.769	496.17	4422	15689	2.23	2.63	3.21	4.13		
.768	495.52	4417	15668	2.22	2.63	3.21	4.12		
.767	494.87	4411	15648	2.22	2.63	3.21	4.12		
.766	494.22	4405	15628	2.22	2.62	3.21	4.15		
.765	493.57	4399	15607	2.22	2.62	3.21	$4 \cdot 12$		
.764	492.93	4393	15587	2.22	2.62	3.50	4.11		
•763	492.30	4388	15566	2.22	2.62	3.50	4.11		
.762	491.65	4382	15546	2.21	2.62	3.50	4.11		
.761	491.00	4376	15525	2.21	2.62	3.50	4.11		• •
.760	490.35	4370	15505	2.21	2.61	3.19	4.10		
.759	489.70	4365	15484	2.21	2.61	3.19	4.10		
.758	489.07	4359	15464	2.21	2.61	3.19	4.10		
.757	488.42	4353	15443	2.51	2.61	3.19	4.09		
.756	487.80	4348	15423	2.51	2.61	3.19	4.09		
.755	487.16	4342	15402	2.20	2.61	3.18	4.09		
.754	486.50	4336	15382	2.20	2.60	3.18	4.09		
•753	485.86	4330	15361	2.20	2:60	3.18	4.08		
$\cdot 752$	485.23	4324	15341	2.20	2:60	3.18	4.08		
.751	484.59	4318	15320	2.20	2.60		4.08		
.750	483.95	4313	15300	2.20	$\frac{2.60}{2.60}$	3.17	4.07		
.749	483.30	4307	15279	2.20	2.59	3.17	4.07		
.748	482.65	4301	15259	2.19	2.59	3.17	4.07	• •	
.747	482.00	4295	15238	2.19	2.59	3.17	4.06		
.746	481.37	4290	$15218 \\ 15198$	2.19	2.59	3.16	4.06	• •	
•745	480.73	4284 4278	15178	2.19	$\frac{2.59}{2.59}$	3.16	4.06		
.744	480.08	4273	15178	$\frac{2}{2} \cdot 19$	$\frac{2.58}{2.58}$	3.16	4.06		
.743	479.44	4267	15137	2.19	$\frac{2.58}{2.58}$	3.16	4.05	1	1
.742	478.76	4261	15117.	$\frac{2}{2} \cdot 18$	$\frac{2}{2} \cdot 58$	3.15	4.05		
.741	478.12	4255	15097	2.18	2.58	3.15	4.05		
.740	477.48	4249	15076	2.18	2.58	3.15	4.05		
.739	476 .17	4244	15056	2.18	2.58	3.15	4.04		
•738	475.53	4238	15035	$\frac{2}{2} \cdot 18$	$\frac{5}{2} \cdot 57$	3.15	4.04		
.737	474.90	4232	15015	2.18	2.57	3.14	4.04		
·736 ·735	474 90	4227	14994	2.18	2.57	3.14	4.04		
	473.58	4221	14974	$\frac{2}{2} \cdot 17$	2.57	3.14	4.03		
·734 ·733	472.93	4215	14954	$\frac{1}{2} \cdot \frac{1}{17}$	2.57	3.14	4.03		
• • -	472.30	4209	14933	2.17	2.57	3.14	4.03		
·732 ·731	471.65	4203	14913	2.17	2.56	3.13	4.02		
191	. I/I 00	1200	12020						

TABLE No. 1.—COPPER STRANDS—continued.

					. 2022 21 200	COMUNI			
Cross	Section	Weight	of Copper		Stran	d (Diam	eters in n	nm.)	
sq. in.	mm. ²	Kilog. per km.	lb. per mile	127	91	61	37	19	7
0.730	471.00	4198	14893	2.17	2.56	3.13	4.02		
•729	470.36	4192	14872	2.17	2.56	3.13	4.02		
.728	469.73	4186	14852	2.16	2.56	3.13	$4 \cdot 02$		
.727	469.08	4180	14831	2.16	2.56	3.12	4.01		
•726	468.42	4175	14811	2.16	2.56	3.12	4.01		
•725	467.78	4169	14790	2.16	2.55	3.15	4.01		
$\cdot 724$	467.14	4163	14770	2.16	2.55	3.12	4.00		
•723	466.50	4157	14749	2.16	2.55	3.12	4.00		
$\cdot 722$	465.85	4152	14729	2.16	2.55	3.11	4.00		
.721	465.22	4146	14708	2.15	2.55	3.11	4.00		
•720	464.58	4140	14688	2.15	2.54	3.11	3.99		
.719	463.92	4134	14668	2.15	2.54	3.11	3.99		
.718	463.28	4129	14647	2:15	2.54	3.10	3.99		
.717	462.62	4123	14627	2.15	2.54	3.10	3.98		
.716	462.00	4117	14607	2.15	2.54	3.10	3.98		
•715	461.35	4111	14586	2.15	2.54	3.10	3.98	1	
.714	460.70	4106	14566	2.14	2.53	3.10	3.98		
•713	460.06	4100	14545	2.14	2.53	3.09	3.97		
.712	459.40	4094	14525	2.14	2.53	3.09	3.97		
•711	458.77	4088	14504	2.14	2.53	3.09	3.97		
.710	458.12	4083	14484	2.14	2.53	3.09	3.97	!	
.709	457.47	4077	14464	2.14	2.52	3.09	3.96		
.708	456.82	4071	14444	2.14	2.52	3.08	3.96		
.707	456.17	4065	14423	2.13	2.52	3.08	3.96		
.706	455.50	4059	14403	2.13	2.52	3.08	3.95		
.705	454.88	4054	14383	2.13	2.52	3.08	3.95		
•704	454.23	4048	14362	2.13	2.52	3.07	3.95		
.703	453.58	4042	14342	2.13	2.51	3.07	3.95		• •
•702	452.93	4037	14322	2.13	2.51	3.07	3.94		
.701	452.28	4031	14301	2.12	2.51	3.07	3.94		
.700	451.65	4025	14281	2.12	2.51	3.07	3.94		
.699	451.00	4019	14260	2.12	2.51	3.06	3.93		
.698	450.37	4014	14240	2.12	2.51	3.06	3.93		
697	449.72	4008	14220	2.12	2.50	3.06	3.93		
.696	449.06	4002	14199	2.12	2.50	3.06	3.93		
• 695	448.42	3996	14179	2.12	2.50	3.05	3.92		
•694	447.80	3991	14158	2.11	2.50	3.05	3.92		
•693	447.14	3985	14138	2.11	2.50	3.05	3.92		
.692	446.50	3979	14118	$^{+}2 \cdot 11$	2.49	3.05	3.91		
•691	445.85	3973	14097	2.11	2.49	3.05	3.91		
.690	445.20	3968	14077	2.11	2.49	3.04	3.91		
.689	444.57	3962	-14056	2.11	2.49	3.04	3.91	* *	
.688	$443 \cdot 92$	3956	14036	2.10	2.49	3.04	3.90	• •	• •
.687	443.28	3950	14016	2.10	2.49	3.04	3.90		
.686	442.63	3945	13995	2.10	2.48	3.03	3.90		
			there are		1 - 10	0.00	0 00	• •	

TABLE No. 1.—COPPER STRANDS—continued.

	TAL	BLE NO.	1.—COP.	PER ST	TANDS-	-001666766	.ea.		
Cross 8	Section	Weight	of Copper		Stran	d (Diam	eters in n	nm.)	
sq. in.	mm.2	Kilog, per km.	lb. per mile	127	91	61	37	19	7
0.685	442.00	3939	13975	2.10	2.48	3.03	3.89		
.684	441.35	3933	13954	2.10	2.48	3.03	3.89		
•683	440.70	3927	13934	2.10	2.48	3.03	3.89		
.682	440.07	3922	13913	2.10	2.48	3.03	3.89		
•681	439.42	3916	13893	2.09	2.47	3.02	3.88		
•680	438.75	3910	13872	2.09	2.47	3.02	3.88		
•679	438.10	3904	13852	2.09	2.47	$2 \cdot 02$	3.88		
•678	437.48	3899	13832	2.09	$2 \cdot 47$	3.02	3.87		
-677	436.82	3893	13812	2.09	$2 \cdot 47$	3.01	3.87		
.676	436.17	3887	13791	2.09	2.47	3.01	3.87		
•675	435.52	3881	13771	2.08	2.46	3.01	3.87		
•674	434.88	3875	13751	2.08	2.46	3.01	3.86		
•673	434.22	3870	13730	2.08	2.46	3.01	3.86		
.672	433.58	3864	13710	2.08	2.46	3.00	3.86		
•671	432.94	3858	13689	2.08	2.46	3.00	3.85		
670	432.30	3853	13669	2.08	2.45	3.00	3.85		٠.
•669	431.63	3847	13648	2.08	2.45	3.00	3.82		
•668	431.00	3841	13628	2.07	2.45	2.99	3.85		
•667	430.35	3835	13608	2.07	2.45	2.99	3.84		
.666	429.72	3829	13587	2.07	2.45	2.99	3.84		
.665	429.07	3824	13567	2.07	2.45	2.99	3.84		
•664	428.43	3818	13546	2.07	2.44	2.99	3.83		
•663	427.80	3812	13526	2.07	2.44	2.98	3.83		
662	427.14	3807	13505	2.06	2.44	2.98	3.83		
.661	426.48	3801	13485	2.06	2.44	2.98	3.83		
.660	425.85	3795	13465	2.06	2.44	2.98	3.82		
.659	425.20	3789	13444	2.06	2.43	2.97	3.82		
•658	424.57	3784	13424	2.06	2.43	2.97	3.85		
.657	423 · 92	3778	13403	2.06	2.43	2.97	3.81		
656	423.28	3772	13383	2.05	2.43	2.97	3.81		
.655	422.62	3766	13362	2 05	2.43	2.97	3.81		
•654	422.00	3761	13342	2.05	2.43	2.96	3.81		
.653	421.34	3755	13322	2.05	2.42	2.96	3.80		
.652	420.69	3749	13301	2.05	2.42	2.96	3.80		
•651	420.05	3743	13281	2.05	2.42	2.96	3.80		
-650	419.40	3738	13260	2.05	2.42	2.95	3.79		
•649	418.76	3732	13240	2.04	2.42	2.95	3.79		
•648	418.12	3726	13219	2.04	2.41	2.95	3.79		
•647	417 · 47	3721	13199	2.04	2.41	2.95	3.79		
•646	416.82	3715	13179	2.04	2.41	2.95	3.78		
•645	416.18	3709	13158	2.04	2.41	2.94	3.78		
•644	415.52	3703	13138	2.04	2.41	2.94	3.78		
•643	414.88	3697	13118	2.03	2.40	2.94	3.77		
•642	414.23	3692	13097	2.03	2.40	2.94	3.77		
.641	413.58	3686	13077	2.03	2.40	2.93	3.77		
- Card									

Table No. 1.—Copper Strands—continued.

sq. in. mm. ² Kilog. lb. per per km. mile 127 91 61 37	19	7
0.640 412.93 3680 13057 2.03 2.40 2.93 3.76		
·639 412·28 3674 13036 2·03 2·40 2·93 3·76		1
·638 411·65 3669 13016 2·03 2·40 2·93 3·76		
$\cdot 637$ $411 \cdot 00$ 3663 12995 $2 \cdot 02$ $2 \cdot 39$ $2 \cdot 92$ $3 \cdot 76$		
·636 410·36 3657 12975 2·02 2·39 2·92 3·75		1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
·634 409·08 3646 12934 2·02 2·39 2·92 3·75		· · ·
633 408.42 3640 12914 2.02 2.39 2.92 3.74		, .
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. ,	
·631 407·14 3628 12873 2·02 2·38 2·91 3·74		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
*699 401.95 9577 10000 0 00 2 00 3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
690 400.05 9565 12040 2 00 2 00 5 11		
619 399.10 2550 13000 2 00 2 00 2 00 3 11	• •	
1618 200.75 2550 10000		
:617 308:10 25:10 12:07		1
616 397.46 3519 13507 1 30 2 30 3 70		
615 300.00 2520 12545 1 20 2 30 3 68		٠.
· 614 900. 10 9500		٠.
613 305.59 3595 12506 1 00 2 00 2 07 0 09		
619 301.00 2510 10400 1 20 2 01 5 08	• •	• •
611 394.01 9519 12405 1 30 2 30 2 87 3 68	٠.	٠.
610 202.50 2507 12445 1 20 2 2 3 2 6 8 6		
600 300.05 2500 12115 1 98 2 54 2 86 3 68		
608 200:20 2100 12424 1 30 2 31 2 80 3 67	٠.	
·607 301 · ce 9 · 00 1 · 00 2 · 01 2 · 00 5 · 01		
606 301.00 3194 1200 1 30 2 34 2 80 3 67		
605 200.90 2470 10040 7 2 00 2 00 5 00	٠.	
604 990.70 9470 7000		
603 380.08 3167 10000 1 07 2 00 3 00		٠.
609 388.47 3169 12999 1 07 2 35 2 85 3 65	٠.	
· 601 387·80 345e 120c1 1.07 2.55 2.84 3.65	٠.	
600 387.15 3450 12241 1.97 2.32 2.84 3.65		
599 386:50 3441 40000 1 96 2:32 2:84 3:64		
· 598 385 · 87 3490 1220 1 80 2 · 32 2 · 84 3 · 64		
597 385.99 3499 19170 1 96 2 32 2 83 3 64		
·506 384.56 2407 10170 1 36 2.32 2.83 3.64		
·595 383·92 3491 12139 1.96 2.31 2.83 3.63		
393 383.92 3421 12138 1.96 2.31 8.83 3.63		

TABLE No. 1.—COPPER STRANDS—continued.

		BLE NU.	1		MANDO				
Cross	Section	Weight	of Copper		Stra	nd (Diam	eters in n	nm.)	
sq. in.	mm.2	Kilog. per km.	lb. per mile	127	91	61	37	19	7
0.504	000.00	9416	12118	1.95	2.31	2.82	3.63		
0.594	383.28	3416	12098	1.95	2.31	$\frac{2.82}{2.82}$	3.62		
·593 ·592	382· 62 382·00	3404	12077	1.95	2.31	2.82	3.62		
•591	381.34	3398	12057	1.95	2.31	2.82	3.62		
		3393	12037	1.95	2.30	2.81	3.61		
· 590 · 589	380·70 380·06	3387	12016	1.95	2.30	2.81	3.61		
	379.40	3381	11996	1.95	2.30	2.81	3.61		
·588 ·587	378.76	3375	11975	1.94	2.30	2.81	3.61		
•586	378 10	3369	11955	1.94	2.30	2.80	3.60		
•585	377.46	3364	11935	1.94	2.29	2.80	3.60		
•584	376.82	3358	11914	1.94	2.29	2.80	3.60		
.583	376.18	3352	11894	1.94	2.29	2.80	3.59		
.582	375.52	3347	11873	1.94	2.29	2.80	3.59	. ,	
• 581	374.88	3341	11853	1.93	2.29	2.79	3.59		
.580	374.22	3335	11833	1.93	2.28	2.79	3.58		
.579	373.60	3329	11812	1.93	2.28	2.79	3.58		
.578	372.96	3324	11792	1 93	2.28	2.79	3.58		
.577	372 30	3318	11771	1.93	2.28	2.78	3.57		
•576	371.68	3312	11751	1.93	2.28	2.78	3.57		
•575	371.04	3306	11731	1.92	2.27	2.78	3.57		
.574	370.38	3301	11710	1.92	2.27	2.78	3 57		
•573	369.72	3295	11690	1.92	2.27	2.77	3.56		
.572	369 12	3289	11669	1.92	2.27	2.77	3.56		
.571	368 · 45	3283	11649	1.92	2.27	2.77	3.56		
.570	367 80	3278	11628	1.91	2.26	2.77	3.55		
.569	367.14	3272	11608	1.91	2.26	2.76	3.55		
•568	366.50	3266	11588	1.91	2.26	2.76	3.55		
.567	365.86	3260	11567	1.91	2.26	2.76	3.54		
.566	365 22	3255	11547	1.91	2.26	2.76	3.54		
. 565	364.58	3249	11527	1.91	2.25	2.75	3.24		
.564	363.92	3243	11507	1.90	2.25	2.75	3.23		
•563	363 · 27	3237	11486	1.90	2.25	2.75	3.23		
.562	362.62	3231	11466	1.90	2.25	2.75	.3.23		
.561	361.98	3226	11446	1.90	2.25	2 74	3.52		
.560	361.34	3220	11425	1.90	2.24	2.74	3.25		
.559	360.70	3214	11405	1.90	2.24	2.74	3.25		
.558	360.04	3208	11385	1.89	2.24	2.74	3.25		
•557	359 · 40	3203	11364	1.89	2.24	2.73	3.21		
•556	358.76	3197	11344	1.89	2.24	2.73	3.51		
.555	358.10	3191	11323	1.89	2.23	2.73	3.51		
. 554	357 · 47	3186	11303	1.89	2.23	2.73	3.50		
.553	356.82	3180	11282	1.89	2.23	2.72	3.50		
.552	356.18	3174	11262	1.88	2.23	2.72	3.50		
.551	355.54	3168	11241	1.88	2.23	2.72	3.49		
.550	354.90	3163	11221	1.88	2.22	2.72	3.49		
•549	354.24	3157	11200	1.88	2.22	2.71	3.49		
010		1	l	ļ			1		

Table No. 1.—Copper Strands—continued.

Cross	s Section	Weight	of Copper	-	Stra	nd (Dian	neters in r	nm.)	
		-							
sq. in.	mm.2	Kilog. per km.	lb. per mile	127	91	61	37	19	7
0.548	353.60	3151	11180	1.88	2.22	2.71	3.48		
.547	352.97	3145	11160	1.88	2.22	2.71	3.48		
•546	352.30	3139	11139	1.87	2.22	2.71	3.48		
.545	351 · 64	3133	11118	1.87	2.21	$\frac{2}{2} \cdot 70$	3.47		
.544	351.00	3128	11098	1.87	2.21	2.70			
•543	350.38	3122	11077	1.87	2.21		3.47		
•542	349.72	3117	11057	1.87	2.21	2.70	3.47		
.541	349.08	3112	11037	1.87	2.21	2.70	3.46		
.540	348.44	3105	11016	1.86		2.69	3.46		
•539	347.78	3099	10996	1.86	2.20	2.69	3.46		
•538	347.12	3093	10975		2.20	2.69	3.45		
.537	346.50	3088		- 00	2:20	2.69	3.45		
•536	345.84	3082	10955	1.86	2.20	2.68	3.45		
·535	345.20	3076	10934	1.86	2.19	2.68	3.45		
.534	344.20	3076	10914	1.86	2.19	2.68	3.44		
.533	343.92		10894	1.85	2.19	2.68	3.44		
•532		3065	10873	1.85	2.19	2.67	3.44		
.531	343.26	3059	10853	1.85	2.19	2.67	3.43		
.230	342.62	3053	10832	1.85	2.18	2.67	3.43	!	
•529	341.98	3047	10812	1.85	2.18	2.67	3.43		
	341.32	3042	10792	1.84	2.18	2.66	3.42		
·528 ·527	340.68	3036	10771	1.84	2.18	2.66	3.42		
	340.04	3031	10751	1.84	2.18	2.66	3.42		
•526	339.40	3025	10731	1.84	2.17	2.66	3:41		
525	338.76	3019	10710	1.84	2.17	2.65	3.41		
524	338.12	3013	10690	1.84	2.17	2.65	3.41		* *
523	337:46	3007	10669	1.83	2.17	2.65	3.40		
522	336.80	3001	10649	1.83	2.17	2.65	3.40		
•521	336.18	2996	10628	1.83	2.16	2.64	3.40		
520	335.24	2990	10608	1.83	2.16	2.64	3.39		
519	334.80	2985	10588	1.83	2.16	2.64	3 39	٠.	٠.
.218	334 · 24	2979	10567	1.83	2.16	2.64	3.39		
•517	333.60	2973	10547	1.82	2.16	2.63	3.38		
516	332:96	2967	10526	1.82	2.15	2.63	3.38	• •	
515	335.30	2961	10506	1.82	$\frac{2.15}{2}$	2.63	3.38		
514	331.65	2955	10486	1.82	2.15	2.63			
513	331.00	2950	10165	1.82	$\frac{2}{2} \cdot 15$	$\frac{2.62}{2.62}$	3.37		٠.
512	330.36	2944	10445	1.81	2.15	2.62	3.37		٠.
.511	329.72	2938	10425	1.81	2.14	2.62	3.37		
•510	329:08	2933	10404	1.81	$\frac{2 \cdot 14}{2 \cdot 14}$		3.36		
.509	328:44	2927	10384	1.81	2.14	2.62	3.36		٠.
.508	327.78	2921	10363	1.81		2.61	3.36		
.507	327.13	2915	10343	1.81	2.14	2.61	3.35		
506	326.50	2910	10323	1.80	2.13	2.61	3.32		
•505	325.84	2904	10323	!	2.13	2.61	3.32		
.504	325 · 20	2898	10282	1.80	2.13	2.60	3.34		
•503	324.56	2893		1.80	2.13	2.60	3.34		
	021 00	2000	10261	1.80	2.13	2.60	3.34		

TABLE No. 1.—Copper Strands—continued.

Cross	Section	Weight	of Copper		Strai	nd (Diame	eters in m	m.)	
sq. in.	mm.²	Kilog. per km.	lb. per mile	127	91	61	37	19	7
0.502	323.90	2887	10241	1.80	2 · 12	2.60	3.33		
•501	323 · 26	2881	10221	1.79	2.12	2.59	3+33		
•500	322.61	2875	10200	1.79	2.12	2.59	3.33		
•499	321 · 97	2869	10180	1.79	$2 \cdot 12$	2.59	3.32		
•498	321:32	2864	10159	1.79	2.12	2.58	3.32		
•497	320.67	2858	10139	1.79	$2 \cdot 11$	2.58	3.32		
•496	320 : 03	2852	10119	1.79	2.11	2.58	3.31		
495	319:40	2847	10098	1.78	$2 \cdot 11$	2.58	3.31		
• 494	318.74	2811	10078	1.78	$2 \cdot 11$	2.57	3.31		
•493	318.10	2835	10057	1.78	2.11	2.57	3.30		
•492	317.46	2829	10037	1.78	2.10	2.57	3.30		
•491	316.80	2822	10017	1.78	$2 \cdot 10$	2.57	3.30		
•490	316 · 17	2818	9996	1.78	$2 \cdot 10$	2.56	3.29		
•489	315.52	2812	9976	1.77	2.10	2.56	3.29		
•488	314.87	2806	9955	1.77	2.09	2.56	3.29		
•487	314.22	2800	9935	1.77	2.09	2.56	3.28		
•486	313.58	2795	9914	1.77	2.09	2.55	3.28		
•485	312.93	2789	9894	1.77	2.09	2.55	3.28		
•484	312.28	2783	9873	1.76	$2 \cdot 09$	2.55	3.27		
•483	311.65	2777	9853	1.76	2.08	2.55	3.27		
•482	311.00	2772	9832	1.76	2.08	2.54	3.27		
•481	310.37	2766	9812	1.76	2.08	2.54	3.26		
•480	309.70	2760	9791	1.76	2.08	2.54	3.26		
•479	309.06	2754	9771	1.76	2.07	2.53	3.26		
•478	308.42	2748	9751	1.75	2.07	2.53	3.25		
•477	307.78	2742	9730	1.75	$2 \cdot 07$	2.53	3.25		
•476	307.12	2737	9710	1.75	2.07	2.53	3.25		
•475	306.50	2731	9689	1.75	2.07	2.52	3.24		
.474	305.84	2725	9669	1.75	2.06	2.52	3.24		
•473	305.20	2720	9649	1.74	2.06	2.52	3.24		
•472	304.55	2714	9628	1.74	2.06	2.52	3 · 23		
•471	303.90	2708	9608	1.74	2.06	2.51	3 · 23		
•470	303.25	2702	9588	1.74	2.06	2.51	3.23		
•469	302.62	2696	9567	1.74	2.05	2.51	3.22		
•468	301.96	2691	9547	1-74	2.05	2.51	3.22		
•467	301.32	2685	9527	1.73	2.05	2.50	3.22		
•466	300.68	2679	9506	1.73	2.05	2.50	3.21		
•465	300.03	2673	9486	1.73	2.04	2.50	3.21		
•464	299 · 40	2668	9465	1.73	2.04	2.50	3.21		
•463	298.73	2662	9445	1.73	2.04	2.49	3.20		
•462	298 · 10	2657	9425	1.72	2.04	2.49	3.20		
•461	297 · 46	2651	9404	1.72	2.04	2.49	3.19		
•460	296 · 80	2645	9384	1.72	2.03	2.48	3.19		
•459	296.16	2639	9363	1.72	2.03	2.48	3-19		
•458	$295 \cdot 50$	2633	9343	1.72	2.03	2.48	3.18		
•457	294.87	2627	9322	1.71	2.03	2.48	3.18		
401	201 01	2021						1	

TABLE No. 1.—COPPER STRANDS—continued.

Cros	ss Section	Weight	of Coppe	r	Str	and (Dia	meters ir	mm.)	
sq in.	mm.2	Kilog. per km.	lb. per mile	127	91	61	37	1 19	7
0.456	294 · 22	2622	9302	11.71	2.02	2.47	3.18		
•455	293.58	2616	9282	1.71	2.02	2.47	3.17		1
.454	292.94	2610	9261	1.71	2.02	2.47	3.17		1
•453	292.30	2604	9241	1.71	2.02	2.47	3.17		
• 452	291.65	2599	9220	1.71	2.02	2.46	3.16		
.451	291.00	2593	9200	1.70	2.01	2.46	3.16		
•450	290.36	2587	9180	1.70	2.01	2.46	3.16		• •
·449	289.72	2581	9159	1.70	2.01	2.45	3.15		
·448	289.06	2575	9139	1.70	2.01	2.45	3.15	• •	• •
$\cdot 447$	288.40	2570	9118	1.70	2.00	2.45	3.15		
· 44 6	287.77	2564	9098	1.69	2.00	2:45	3.14		
$\cdot 445$	287 - 12	2558	9078	1.69	2.00	2.44	3.14	• •	
·444	286.48	2553	9057	1.69	2.00	2.44	3.13		• •
•443	285.83	2547	9037	1.69	1.99	2.44	3.13	• •	• •
$\cdot 442$	285 · 20	2542	9017	1.68	1.99	2.44	3.13	• •	
•441	284.56	2536	8996	1.68	1.99	2.43	3.12		
$\cdot 440$	283.90	2530	8976	1.68	1.99	2.43	3.12	• •	,
$\cdot 439$	283 · 25	2524	8955	1.68	1.99	2.43	3.12	• •	
·438	282.60	2518	8935	1.68	1.98	2.42	3.11	• •	• •
•437	281.97	2512	8915	1.68	1.98	2.42	3.11		• •
· 43 6	281.32	2507	8894	1.67	1.98	2.42	3.11	• •	* *
·435	280.68	2501	8874	1.67	1.98	$2 \cdot 42$	3.10	• •	
•434	280.03	2495	8854	1.67	1.97	2.41	3.10	• •	
•433	279 - 38	2489	8833	1.67	1.97	2.41	3.10	• • •	
•432	278.73	2483	8813	1.67	1.97	2.41	3.09	• •	
·431	278.10	2478	8792	1.67	1.97	$2 \cdot 40$	3.09	• •	* *
•430	277 · 45	2472	8772	1.66	1.97	2.40	3.08	• •	• •
$\cdot 429$	$276 \cdot 80$	2466	8751	1.66	1.96	2.40	3.08	• •	• •
•428	276 · 16	2461	8731	1.66	1.96	2.40	3.08		• •
•427	$275 \cdot 50$	2455	8710	1.66	1.96	2.39	3.07	• •	
•426	$274 \cdot 86$	2449	8690	1.66	1.96	2.39	3.07		٠.
•425	$374 \cdot 21$	2443	8669	1.65	1.95	2.39	3.07	• •	
•424	$273 \cdot 57$	2438	8649	1.65	1.95	2.38	3.06	• •	
•423	$272 \cdot 93$	2432	8628	1.65	1.95	2.38	3.06		• •
•422	$272 \cdot 30$	2426	8607	1.65	1.95	2.38	3.06	• •	
•421	$271 \cdot 64$	2421	8587	1.65	1.94	2.38	3.05	• •	• •
•420	$271 \cdot 00$	2415	8566	1.64	1.94	2.37	3.05	* *	
•419	$270 \cdot 35$	2409	8546	1.64	1.91	2.37	3.05	• •	• •
•418	$269 \cdot 70$	2403	8526	1.64	1.94	2.37	3.01	• •	* *
•417	269.06	2397	8505	1.64	1.94	2.36	3.04	• •	• •
•416	268 · 40	2392	8485	1.64	1.93	2.36	3.03		• •
•415	$267 \cdot 77$	2386	8464	1.63	1.93	2.36	3.03		• •
•414	$267 \cdot 12$	2380	8444	1.63	1.93	$\frac{2.36}{2.36}$	3.03		
•413	266.50	2375	8424	1.63	1.93	$\frac{2.35}{2.35}$	3.02		• •
•412	265 · 83	2369	8403	1.63	1.92	2.35	$\frac{3.02}{3.02}$		
•411	265.18	2363	8383	1.63	1.92	2.35	3.02	4.01	
					. 02	4 00	0.02	4.21	

TABLE No. 1.—COPPER STRANDS—continued.

Cross	Section	Weight	of Copper		Stra	nd (Diam	eters in	nm₊)	
sq. in.	mm,2	Kilog. per km.	lb. per mile	127	91	61	37	19	7
0.410	264.54	2357	8363	1.62	1.92	2.35	3.01	4.21	
•409	263.90	2352	8342	1.62	1.92	2.34	3.01	4.20	
•408	263.26	2346	8322	1.62	1.91	2.34	3.00	4.20	
.407	262.60	2340	8301	1.62	1.91	2.34	3.00	4.19	
•406	261.96	2334	8281	1.62	1.91	2.33	3.00	4.19	
.405	261 · 32	2328	8261	1.61	1.91	2.33	2.99	4.18	
•404	260.66	2322	8240	1.61	1.90	2.33	2.99	4.18	
•403	260.02	2317	8220	1.61	1.90	2.33	2.99	4.17	
•402	259.38	2311	8199	1.61	1.90	2.32	2.98	4.17	
•401	258.74	2305	8179	1.61	1.90	2:32	2.98	4.16	
•400	258.08	2299	8158	1.60	1.90	2.32	2.98	4.15	
•399	257.46	2294	8138	1.60	1.89	2.31	2.97	4.15	
•398	256.80	2288	8118	1.60	1.89	2.31	2.97	4.14	
.397	256.16	2282	8097	1.00	1.89	2.31	2.96	4.14	
•396	255 · 50	2277	8077	1.60	1.89	2:30	2.96	4.13	
.395	254.88	2271	8056	1.59	1.88	2.30	2.96	4.13	
.394	254 · 21	2265	8036	1.59	1.88	2.30	2.95	4.12	
•393	253 · 58	2259	8016	1.59	1.88	2.30	2.95	4.12	r +
•392	252.92	2254	7995	1.59	1.88	2.29	2.95	4.11	
•391	252 · 28	2247	7975	1.59	1.87	2.29	2.94	4.11	
•390	251.64	2242	7955	1.58	1.87	2.29	2.94	4.10	
•389	251.00	2236	7934	1.58	1.87	$2 \cdot 28$	2.93	4.10	
•388	250.35	2231	7914	1.58	1.87	2.28	2 . 93	4.09	٠.
•387	249.70	2225	7893	1.58	1.86	2.28	2.93	4.09	
.386	249.06	2219	7873	1.58	1.86	2.28	2.92	4.08	
.385	248.40	2213	7853	1.57	1.86	2.27	2.92	4.08	
•384	247.78	2208	7832	1.57	1.86	2.27	2.92	4.07	
•383	247.12	2202	7812	1.57	1.85	2.27	2.91	4.07	
•382	246.48	2196	7791	1.57	1.85	2.26	2.91	4.06	
•381	245.82	2190	7771	1.57	1.85	2.26	2.90	4.06	
.380	245.12	2185	7750	1.56	1.85	2.26	2.90	4.05	
•379	244 · 49	2179	7730	1.56	1.84	2.25	2.89	4.04	
•378	243.84	2173	7710	1.56	1.84	2.25	2.89	4.04	
.377	243 · 20	2167	7690	1.56	1.84	2.25	2.89	4.03	
•376	242.64	2162	7669	1.55	1.84	2.25	2.88	4.03	
.375	241.91	2156	7649	1.55	1.83	2.24	2.88	4.02	
•374	241 · 28	2150	7629	1.55	1.83	2.24	2.88	4.02	
.373	240.62	2144	7608	1.55	1.83	2.21	2.87	4.01	
•372	239 • 99	2138	7588	1.55	1.83	2.23	2.87	4.01	
.371	239 · 34	2133	7568	1.54	1.83	2.23	2.87	4 00	
·370	$238 \cdot 79$	2128	7548	1.54	1.82	2.23	2.86	4.00	
.369	$238 \cdot 05$	2121	7527	1.54	1.82	$2 \cdot 22$	2.86	3.99	
.368	237.38	2115	7507	1.54	1.82	$2 \cdot 22$	2.85	3.98	٠.٠
•367	236.74	2110	7486	1.54	1.82	$2 \cdot 22$	2.85	3.98	
.366	236 · 10	2104	7466	1.53	1.81	$2 \cdot 22$	2.85	3.97	
.365	235 · 47	2099	7446	1.53	1.81	$2 \cdot 21$	2.84	3.97	
,,,,,									

TABLE No. 1.—COPPER STRANDS—continued.

Cross	Section	Weight	of Copper		Stra	nd (Diam	eters in 1	mm.)	
sq. in.	mm.2	Kilog. per km.	lb. per mile	127	91	61	37	19	7
0.364	234.80	2093	7425	1.53	1.81	2.21	2.84	3.96	
•363	234 · 14	2086	7405	1.53	1.80	2.21	2.83	3.96	
•362	233.52	2081	7385	1.53	1.80	2.20	2.83	3.95	
.361	232.88	2075	7364	1.52	1.80	2.20	2.83	3.95	
.360	232 · 23	2069	7344	1.52	1.80	2.20	2.82	3.94	
.359	231.59	2063	7323	1.52	1.80	2.19	2.82	3.94	
•358	230.95	2059	7303	1.52	1.79	2.19	2.81	3.93	
.357	230 · 30	2052	7283	1.51	1.79	2.19	2.81	3.92	
•356	229.68	2047	7262	1.51	1.79	2.18	2.81	3.92	
•355	229 · 01	2041	7242	1.51	1.79	2.18	$\frac{2.80}{2.80}$	3.92	
.354	228.38	2035	7221	1.51	1.78	2.18	$\frac{2.80}{2.80}$	3.91	
•353	227 · 72	2029	7201	1.51	1.78	$\frac{2}{2} \cdot 18$	$\frac{2.79}{2.79}$	3.90	
• 352	227.09	2023	7181	1.50	1.78	2.17	2.79	3.90	
•351	226.42	2018	7160	1.50	1.78	2.17	$\frac{2}{2} \cdot 79$	3.89	
350	225.89	2013	7140	1.50	1.77	$\frac{2}{2} \cdot \frac{17}{17}$	$\frac{2}{2} \cdot 78$	3.89	
.349	225.14	2007	7119	1.50	1.77	2.16	2.78	3.88	
.348	224.49	2001	7099	1.50	1.77	2.16	2.77	3.87	
.347	223 85	1995	7079	1.49	1.76	$\frac{1}{2} \cdot 16$	2.77	3.87	
.346	223 • 20	1989	7058	1.49	1.76	$\frac{2}{2} \cdot 15$	2.77	3.86	
•345	222.58	1984	7038	1.49	1.76	2.15	2.76	3.86	
•344	221.91	1977	7017	1.49	1.76	2.15	2.76	3.85	
•343	221.29	1971	6997	1.48	1.75	2.14	2.75	3.85	
.342	220.62	1965	6977	1.48	1.75	2.14	$\frac{2}{2} \cdot 75$	3.84	•
·341	$219 \cdot 99$	1960	6956	1.48	1.75	2.14	2.75	3.84	
•340	219.34	1954	6936	1.48	1.75	2.14	$\frac{2}{2} \cdot 74$	3.83	
.339	218.70	1948	6915	1.48	1.74	2.13	2.74	3.82	
.338	218.08	1942	6895	1.47	1.74	2.13	2.73	3.82	
•337	217.40	1937	6875	1.47	1.74	2.13	2.73	3.81	
.336	216.78	1931	6854	1.47	1.74	$\frac{1}{2 \cdot 12}$	2.73	3.81	
1335	216.12	1925	6834	1.47	1.73	$2 \cdot \hat{1}\hat{2}$	$\frac{2.72}{2.72}$	3.80	
•334	215.48	1920	6813	1.46	1.73	$2 \cdot 12$	$\overline{2} \cdot \overline{72}$	3.80	
.333	214.82	1914	6793	1.46	1.73	2.11	$\frac{5}{2} \cdot 71$	3.79	
•332	214.18	1908	6773	1.46	1.73	$2 \cdot 11$	$\tilde{2} \cdot 71$	3.78	
.331	213.52	1902	6752	1.46	1.72	2.11	$\tilde{2}\cdot\tilde{71}$	3.78	٠.
.330	212.89	1897	6732	1.46	1.72	2.10	[2.70]	3.77	
.329	212.24	1891	6712	1.45	1.72	2.10	$\frac{2}{2} \cdot 70$	$\frac{3.77}{3.77}$	
.328	211.60	1885	6691	1.45	1.72	2.10	$\frac{5}{2} \cdot 69$	3.76	
.327	$210 \cdot 97$	1879	6671	1.45	1.71	2.09	2.69	3.76	• •
.326	210.32	1874	6650	1.45	1.71	$\frac{2}{2} \cdot 09$	2.69	3.75	
•325	209.68	1868	6630	1.45	$\hat{1}\cdot\hat{7}\hat{1}$	$\frac{2}{2} \cdot 09$	2.68	3.75	
.324	$209 \cdot 02$	1862	6610	1.44	1.71	2.08	2.68	3.74	
.323	208:39	1856	6589	1.44	1.70	$\frac{2.08}{2.08}$	$\frac{2.68}{2.67}$	3.74	
.322	207.74	1850	6569	1.44	1.70	2.08	$\frac{2 \cdot 67}{2 \cdot 67}$	3.73	
•321	207.09	1844	6548	1.44	1.70	$\frac{2.08}{2.07}$	2.66		
•320	206.42	1839	6528	1.43	1.69	$\frac{2}{2} \cdot 07$	2.66	$\frac{3.72}{3.72}$	
•319	205.79	1833	6508	1.43	1.69	$\frac{2}{2} \cdot 07$	2.66	3.72	

C

TABLE No. 1.—Copper Strands—continued.

Cross	Section	Weight	of Copper		Strai	nd (Diam	eters in 1	nm.)	
sq. in.	mm.2	Kilog. per km.	lb. per mile	127	91	61	37	19	7
0.318	205 · 14	1828	6487	1 · 43	1:69	2:06	2.65	3.70	
•317	204 · 49	1822	6467	1.43	1.69	2.06	2.64	3.70	
•316	203.95	1817	6446	1.43	1.68	2.06	2.64	3.69	
.315	203 · 20	1810	6426	1.42	1.68	2.05	2.64	3.69	
.314	202.59	1805	6405	1.42	1.68	2.05	2.64	3.68	
.313	201.95	1799	6385	1.42	1.68	2.05	2.63	3.68	
•312	201 · 29	1793	6365	1 · 42	1.67	2.0 £	$2 \cdot 63$	3.67	
•311	200.64	1787	6344	1.41	1.67	2.04	2.62	3.66	
.310	200.00	1782	6324	1.41	1.67	2.04	2.62	3.66	
•309	199.34	1776	6303	1.41	1.67	2.04	2.61	3.65	
.308	198.70	1770	6283	1.41	1.66	2.03	2.61	3.65	
•307	198.09	1764	6262	1.40	1.66	2.03	2.61	3.64	
•306	197 · 40	1759	6242	1.40	1.66	2.03	2.60	3.63	
•305	196.79	1753	6222	1.40	1.65	2.02	2.60	3.63	
.304	196 · 11	1747	6201	1.40	1.65	2.02	2.59	3.62	
.303	195.48	1742	6181	1.40	1.65	2.02	2.59	3.62	
.302	194.81	1736	6160	1.39	1.65	2.01	2.58	3.61	
.301	194 · 19	1730	6140	1.39	1.65	2.01	2.58	3.60	
.300	193.52	1724	6120	1.39	1.64	2.00	2.58	3.60	
•299	192.88	1718	6099	1.39	1.64	2.00	2.57	3.59	
•298	192.24	1712	6079	1.38	1.63	2.00	2.57	3.59	
•297	191.60	1707	6058	1.38	1.63	2.00	2.56	3.58	
•296	190.98	1701	6038	1.38	1.63	1.99	2.56	3.57	
295	190.31	1695	6018	1.38	1.63	1.99	2.55	3.57	
294	189.68	1690	5997	1.37	1.62	1.98	2.55	3.56	
•293	189.02	1684	5977	1.37	1.62	1.98	$2.55 \\ 2.54$	3·56 3·55	
•292	188.38	1678	5956	1.37	1.62	1.98	2.54	3.54	
•291	187.72	1672	5936	1.37	1.62	1.97	2.53	3.54	
•290	187.09	1667	5916	1.36	1.61	1.97	2.53	3.23	
•289	186.42	1661	5895	1.36	1.61	1.96	$\frac{2}{2} \cdot 52$	3.53	• •
•288	185.79	1655 1649	5875 5854	1.36	1.60	1.96	2.52	3.52	
287	185.16	1644	5834	1.36	1.60	1.96	2.52	3.51	
•286	184.51	1638	5814	1.35	1.60	1.95	2.51	3.51	
•285	$183 \cdot 86 \\ 183 \cdot 21$	1632	5793	1.35	1.60	1.95	2.51	3.50	
*284	182.58	1626	5773	1.35	1.59	1.95	2.50	3.49	
*283	181.94	1620	5753	1.35	1.59	1.94	2.50	3.49	
·282 ·281	181 • 29	1615	5732	1.34	1.59	1.94	2.49	3.48	
	180.66	1609	5712	1.34	1.59	1.94	2.49	3.48	
.280	179.99	1603	5691	1.34	1.58	1.93	2.48	3.47	
·279 ·278	179 35	1598	5671	1.34	1.58	1.93	2.48	3.46	
277	178.70	1592	5651	1.33	1.58	1.93	2.48	3.46	
•276	178.09	1586	5630	1.33	1.57	1.92	2 47	3.45	
275	177.42	1580	5610	1.33	1.57	1.92	2.47	$3 \cdot 45$	
•274	176.79	1574	5589	1.33	1.57	1.92	2.46	3.44	
•273	176 12	1569	5569	1.32	1.57	1.91	2.46	3.43	
410	110 12	1000	3000						

TABLE No. 1.—COPPER STRANDS—continued.

Cross	Section	Weight	of Copper	1	Stra	nd (Diam	eters in r	nm.)	
sq. in.	mm.2	Kilog. per km.	Ib. per mile	127	91	61	37	19	7
0.272	175 · 49	1563	5549	1.32	1.56	1.91	2.45	3.43	
271	174 · 86	1557	5528	1.32	1.56	1.91	2.45	3.42	
$\cdot 270$	174 · 20	1552	5508	1.32	1.56	1.90	2.44	3.41	
•269	173.56	1546	5487	1.31	1.55	1.90	2.44	3.41	
.268	172.91	1540	5467	1.31	1.55	1.90	2.43	3.40	
267	172.26	1534	5447	1.31	1.55	1.89	2.43	3.40	
•266	171.60	1529	5426	1.31	1.54	1.89	2.43	3.39	
.265	170.98	1523	5406	1.30	1.54	1.88	2.42	3.38	
.264	170.31	1517	5386	1.30	1.54	1.88	2.42	3.37	
.263	169.68	1511	5365	1.30	1.54	1.88	2.41	3.37	
•262	169.04	1506	5345	1.30	1.53	1.87	2.41	3.36	
•261	168.38	1500	5324	1.29	1.53	1.87	2.40	3.36	
.260	167.74	1494	5304	1.29	1.53	1.87	2.40	3.35	
•259	167.10	1488	5284	1.29	1.52	1.86	2.39	3.34	
•258	166.46	1483	5263	1.29	1.52	1.86	2.39	3.34	
•257	165.81	1477	5243	1.28	1.52	1.86	2.38	3.33	
•256	165.18	1471	5222	1.28	1.52	1.85	2.38	3.32	
•255	164.51	1465	5202	1.28	1.51	1.85	2.37	3.32	
• 254	163.86	1459	5182	1.28	1.21	1.85	2.37	3.31	
•253	163 · 21	1454	5161	$1 \cdot 27$	1.21	1.84	2.37	3.30	
•252	162:59	1449	5141	1.27	1:50	1.84	2.36	3.30	
•251	161.92	1442	5120	1.27	1.20	1.83	2.36	3.29	
•250	161 · 24	1436	5100	1.27	1.50	1.83	2.35	3.28	
•249	160.64	1431	5079	1.26	1.49	1.83	2.35	3.28	
248	160.01	1425	5059	1.26	1.49	1.82	2.34	3.27	
247	159:36	1420	5039	1.26	1.49	1.82	2.34	3.27	
•246	158.72	1414	5018	1.26	1.49	1.85	2.33	3.26	
.245	158.09	1407	4998	1.25	1.48	1.81	2.33	3.25	
•244	157.41	1402	4978	1.25	1.48	1.81	2.32	3.25	
.243	156.78	1397	4957	1.25	1.48	1.80	2.32	3.24	
•242	156.12	1391	4937	1.25	1.47	1.80	2.31	3.23	
•241	155.49	1385	4916	1.24	1.47	1.80	2.31	3.22	٠.
•240	154.83	1379	4896	1.24	1.47	1.79	2.30	3.22	٠.
•239	154.19	1374	4875	1.24	1.46	1.79	2.30	3.21	٠.
238	153.56	1368	4855	1.24	1.46	1.79	2.29	3.20	
•237	152.91	1362	4835	1.23	1.46	1.78	2.29	3.20	
'236	152.28	1356	4814	1.23	1.45	1.78	2.28	3.19	٠.
•235	151.62	1350	4794	1.23	1.45	1.77	2.28	3.18	
•234	150.99	1344	4773	1.23	1.45	1.77	2.27	3.18	
1233	150.32	1339	4753	1.22	1.45	1.77	2.27	3.17	٠.
•232	149.68	1334	4733	1.22	1.44	1.76	2.26	3.16	
•231	149.04	1327	4712	1.22	1.44	1.76	2.26	3.16	
•230	148.38	1322	4692	1.22	1.44	1.76	2.25	3.12	
•229	147.74	1316	4671	1.21	1.43	1.75	2.25	3.14	
•228	147.10	1310	4651	1.21	1.43	1.75	2.24	3.14	
•227	146.46	1304	4631	1.21	1.43	1.74	2.24	3.13	

TABLE No. 1.—COPPER STRANDS—continued.

							wor.		
Cros	s Section	Weight	of Copper		Stra	nd (Dian	neters in	mm.)	
sq. in.	mm.2	Kilog. per km.	lb. per mile	127	91	61	37	19	7
0.226	145.82	1299	4610	1.20	1.42	1.74	2.24	3.13	
.225	145.18	1293	4590	$1 \cdot 20$	1.42	1.73	2.23	3.12	
.224	144.53	1287	4569	1.20	1.42	1.73	2.23	3.11	
•223	143.89	1282	4549	1.20	1.41	1.72	2.22	3.10	• •
•222	143.23	1276	4529	1.19	1.41	1.72	2.22	3.10	
.221	142.59	1270	4508	1.19	1.41	1.72	2.21	3.09	
.220	141.94	1264	4488	1.19	1.40	1.72	$2 \cdot 21$	3.08	
•219	141.29	1258	4467	1.19	1.40	1.71	2.20	3.07	
.218	140.66	1253	4447	1.18	1.40	1.71	2.20	3.07	• •
.217	140.00	1248	4427	1.18	1.39	1.70	2.19	8.06	
.216	139.38	1242	4406	1.18	1.39	1.70	2.19	3.05	
.215	138.72	1236	4386	1.17	1.39	1.70	2.18	3.05	
•214	138.09	1229	4365	1.17	1.39	1.69	2.17	3.04	
.213	137.42	1224	4345	1.17	1.38	1.69	2.17	3.03	
•212	136.78	1218	4325	1.17	1.38	1.68	2.16	3.02	
•211	136.12	1212	4304	1.16	1.38	1.68	2.16	3.02	
.210	135.49	1207	4284	1.16	1.37	1.68	2.15	3.01	
.209	134.84	1201	4263	1.16	1.37	1.67	2.15	3.00	
. 208	134.19	1195	4243	1.16	1.37	1.67	2.14	3.00	
.207	133.56	1189	4223	1.15	1.36	1.66	2.14	2.99	
•206	132.91	1184	4202	1.15	1.36	1.66	2.13	2.98	
.205	132.28	1177	4182	1.15	1.36	1.65	2.13	2.97	
•204	131.61	1172	4161	1.14	1.35	1.65	2.12	2.97	
•203	130.98	1166	4141	1.14	1.35	1.64	$2 \cdot 12$	2.96	
.202	130.32	1161	4121	$1 \cdot 14$	1.35	1.64	2.11	2.95	
201	129.68	1156	4100	1.14	1.34	1.64	2.11	2.95	
•200	129.03	1150	4080	1.13	1.34	1.63	2.11	2.94	
.199	128.38	1144	4060	1.13	1.34	1.63	2.10	2.93	
•198	127.75	1137	4039	1.13	1.33	1.62	2.09	2.92	
•197	127.10	1132	4019	1.12	1.33	1.62	2.09	2.92	* *
•196	126.48	1126	3998	1.12	1.33	1.62	2.08	2.91	
•195	125.82	1120	3978	1.12	1.33	1.61	2.08	2.90	
194	125.18	1114	3958	1.12	1.32	1.61	2.07	2·89 2·89	
.193	124.51	1109	3937	1.11	1.32	1.60	2.07		
192	123.88	1103	3917	1.11	1.31	$\frac{1.60}{1.60}$	2·06 2·05	$2.88 \ 2.87$	• •
191	123.22	$1097 \\ 1092$	3896 3876	1.11	1.31	1.59	2.05	2.86	
·190 ,	$122.58 \\ 121.96$	1092	3855	1.10	1.30	1.59	$2 \cdot 04$	2.86	
·188	121·30 121·30	1080	3835	1.10	1.30	1.59	2.04	2.85	
·187	120.66	1075	3815	1.10	1.29	1.58	2.03	2.84	• •
186	120.00	1069	3794	1.09	1.29	1.58	$\frac{2}{2} \cdot 03$	2.83	
•185	119.39	1063	3774	1.09	1.29	1.57	2.02	2.82	
•184	118.71	1057	3753	1.09	1.28	1.57	2.02	2.82	
•183	118.09	1052	3733	1.08	1.28	1.57	2.01	2.81	
182	117.42	1046	3713	1.08	1.28	1.56	2.01	2.80	
.181	116.79	1040	3692	1.08	1.27	1.56	2.00	2.80	

0 2

TABLE No. 1.—COPPER STRANDS—continued.

Cross	Section	Weight o	f Conner		Stran	d (Diame	ters in m	ım)	
01088	Decolor	Tr eight o	r copper		Stran	d (Diam)	-		
sq. in.	mm.²	Kilog. per km.	lb. per mile	127	91	63	37	19	7
0.180	116.15	1034	3672	1.07	1.27	1.55	1.99	2.79	
•179	115.42	1028	3651	1.07	1.27	1.55	1.99	2.78	
.178	114.86	1022	3631	1.07	1.26	1.54	1.98	2.77	
.177	114 · 20	1017	3610	1.07	1.26	1.54	1.98	2.76	
.176	113.57	1011	3590	1.06	1.26	1.53	1.97	2.75	
.175	112.90	1006	3570	1.06	1.25	1.53	1.97	2.75	
.174	112.26	1000	3549	1.06	1.25	1.53	1.96	2.74	
.173	111.62	995	3529	1.05	1.24	1.52	1.95	2.73	
.172	110.98	988	3509	1.05	1.24	1.52	1.95	2.72	
.171	110.34	983	3488	1.05	1.24	1.51	1.94	2.72	
.170	109.68	977	3468	1.04	1.23	1.51	1.94	2.71	
.169	109.05	971	3447	1.04	1.23	1.50	1.93	$\frac{1}{2} \cdot 70$	
.168	108.39	966	3427	1.04	1.23	1.50	1.93	2.69	
.167	107.74	960	3406	1.03	1.22	1.50	1.92	2.68	
.166	107.09	954	3386	1.03	1.22	1.49	1.91	2.68	
•165	106.47	948	3366	1.03	1.22	1.49	1.91	2.67	
.164	105.81	943	3345	1.03	1.21	1.48	1.90	2.66	
•163	105.18	937	3325	1.02	1.21	1.48	1.90	2.65	
•162	104.53	931	3305	1.02	1.20	1.47	1.89	2.64	
.161	103.88	925	3284	1.02	1.20	1.47	1.89	2.64	
• 160	103.24	920	3264	1.01	1.20	1.46	1.88	2.63	
·159	102.58	914	3243	1.01	1.19	1.46	1.87	2.62	
.158	101.94	908	3223	1.01	1.19	1.45	1.87	2.61	
.157	101.30	903	3203	1.00	1.19	1.45	1.86	2.60	
.156	100.64	897	3182	1.00	1.18	1.44	1.86	2.60	
155	100.00	891	3162	1.00	1.18	1.44	1.85	2.59	
154	99.32	885	3141	• 99	1.17	1.44	1.84	2.58	
153	98.70	879	3121	. 99	1.17	1.43	1.84	2.57	
152	98.02	873	3101	.99	1.17	1.43	1.83	2.56	
151	97.40	868	3080	.98	1.16	1.42	1.83	2.55	4.21
150	96.77	862	3060	.98	1.16	1.42	1.83	2.54	4.19
149	96.11	856	3039	.98	1.16	1.41	1.82	2.54	4.18
148	95.435	850	3019	.97	1.15	1.41	1.81	2.53	4.17
•147 •146	94.81	845	2999	.97	1.15	1.40	1.80	2.52	4.15
•145	94.14	839	2978	.97	1.14	1.40	1.80	2.21	4.13
145	93:515 92:89	833	2958	. 96	1.14	1.39	1.79	2.50	4.12
143	92.89	828	2937	1 .96	1.14	1.39	1.78	2.49	4.11
143	91.60	822	2917	•96	1.13	1.38	1.78	2.48	4.09
142	90.94	816 810	2897	•95	1.13	1.38	1.77	2.47	4.08
•140	90.32	804	2876	•95	1.12	1.37	1.76	2.47	4.06
.139	89.66	798	2856	.95	1.12	1.37	1.76	2.46	4.02
•138	89.02	798	2835	.94	1.12	1.36	1.75	2.45	4.04
.137	88.37	787	2815	.91	1.11	1.36	1.75	2.44	4.02
·136	87.74	781	2795	•94	1.11	1.35	1.74	2.43	4.01
.135	87.09	775	2774	.93	1.10	1.35	1.73	2.42	3.55
100		110	2754	. 93	1.10	1.34	1.73	2.41	3.98

TABLE No. 1.— COPPER STRANDS—continued.

Cross	Section	Weight of	Copper		Stran	d (Diame	ters in m	m.)	
sq. in.	mm.²	Kilog. per km.	lb. per mile	127	91	61	37	19	7
0.134	86.440	770	2733	0.93	1.10	1.34	1.72	2.40	3.96
133	85.795	764	2713	.92	1.09	1.33	1.71	2.40	3.95
132	85.150	758	2693	.92	1.09	1.33	1.71	2.39	3.93
•131	84.500	753	2672	.92	1.08	1.32	1.70	2.38	3.92
.130	83.860	747	2652	.91	1.08	1.32	1.69	2.37	3.90
•129	83 · 220	741	2631	.91	1.07	1.31	1.69	2.36	3.89
.128	82.570	735	2611	.91	1.07	1.31	1.68	2.35	3.88
.127	81.920	730	2591	•90	1.07	1.30	1.67	2.34	3.86
126	81.280	724	2570	+90	1.06	1 30	1.67	2.33	3.85
.125	80.640	718	2550	-89	1.06	1.29	1.66	2.32	3.85
.124	79 - 990	712	2529	.89	1:05	1.29	1.65	2.31	$3 \cdot 82$
.123	79.350	707	2509	.89	1.05	1.28	1.65	2.30	3.79
122	78.700	701	2489	•88	1.05	1.28	1.64	2.29	3.78
.121	78.050	695	2468	-88	1.04	1.27	1.63	2.29	3.76
.120	77.410	690	2448	-88	1.04	1.27	1.63	$2 \cdot 28$	3.75
.119	76.760	684	2427	.87	1.03	1.26	1.62	$2 \cdot 27$	3.73
.118	76.120	678	2407	87	1.03	1.26	1.61	2.26	3.72
.117	75.480	672	2386	-87	1.02	1.25	1.61	$2 \cdot 25$	3.70
•116	74.830	667	2366	.86	1.02	1.24	1.60	$2 \cdot 24$	3.69
.115	74.180	660	2346	-86	1.01	1.24	1.59	2.23	3.67
•113	73.540	655	2325	-85	1.01	1.23	1.59	2.22	3.65
.113	72.900	649	2305	.85	1.01	1.23	1.58	2.21	3.63
·113	72.250	643	2284	.85	1.00	1.22	1.57	2.20	3.62
•112	71.600	638	2264	.84	1.00	1.22	1.57	2.19	3.61
.111	70.960	632	2244		. 99	1.21	1.56	2.18	3.60
	70.320	626	2223		•99	1.21	1.55	$2 \cdot 17$	3.57
•109	69.675	620	2203		-98	1.20	1.54	2.16	3.56
•108	69.025	615	2182		98	$1.1 \cdot 20$	1.54	2.15	3.54
.107	68.380	609	2162		.97	1.19	1.53	2.14	3.52
•106	67.735	603	2142	1	.97	1.18	1.52	2.13	3.51
•105	67 733	597	2121	-82	.96	1.18	1.51	2.12	3.49
104	66:440	592	2101	-81	•96	1.17	1.51	2.11	3.47
• 103	65.800	586	2081	.81	1 .96	1.17	1.50	2.10	3.46
.102		580	2060		.95	1.16	1.49	2.09	3.44
.101	65.155	575	2040		•95	1.16	1.49	2.08	3.42
•100	64.515	568	2019		• 94	1.15	1.48	2.07	3.40
•099	63.860	563	1999		•94	1.14	1.47	2.06	3.39
•098	63.220	557	1978		.93	1.14	1.46	2.04	3.37
.097	62.575		1958		1 .93	1.13	1.45	2.04	3.35
.096	61.920	552 546	1938		1 .92	1.13	1.45	2 02	3.33
.095	61.285		1917		.92	1.12	1.44	2.01	3.32
• 094	60.640	540 534	1897		91	1.11	1.43	2.00	3.30
•093	59.995				91	1.11	1.42	1.99	3.28
.092	59.350	529	1877		•90	1.10	1.42	1.98	3.27
.091	58.700	523	1856		.90	1.10	1.41	1.97	3.25
.090	58.060	517	1836		-89	1.09	1.40	1.96	3.23
•089	57.420	512	1815) .,	. 09		1 10		

TABLE No. 1.—COPPER STRANDS—continued.

Cros	ss Section	Weight	of Copper		Str	and (Diar	net ers in	mm.)	
sq. in.	mm.2	Kilog. per km	lb. per mile	127	91	61	37	19	7
0.088	56.760	506	1795		0.89	1.08	1.39	1.95	3.21
.087	56.120	500	1775		-88	1.08	1.38	1.94	3.19
.086	55.480	494	1754		.87	1.07	1.38	1.93	3.17
.085	54.840	489	1734		- 87	1.06	1 37	1.92	3.16
.084	54.190	483	1713		-87	1.06	1.37	1.90	3.14
.083	53.550	477	1693		-86	1.05	1.35	1.89	3.15
.082	52.900	471	1673		-86	1.05	1.34	1.88	
.081	52.260	466	1652		-85	1.04	1.34	1.87	3.10
.080	51.610	460	1632		-85	1.03	1.33	1.86	
.079	50.965	454	1611		84	1.03	1.32	1.85	3.06
.078	50.320	448	1591		.83	1.02			3.04
.077	49.680	443	1571		-83	1.01	1·31 1·30	1.84	3.02
.076	49.035	437	1550		-82	1.01	1.29	1.83	3.00
.075	48.385	431	1530		82	1.00		1.81	2.98
.074	47.740	425	1509		-81	.99	$\frac{1 \cdot 29}{1 \cdot 28}$	1.80	2.96
.073	47.095	419	1489	* *	-81	•99		1.79	2.94
.072	46.450	414	1469		-80	.98	1.27	1.78	2.92
.071	45.810 "	408	1448			.97	1.26	1.76	2.90
.070	45.160	402	1428	* *			1.25	1.75	2.88
.069	44.515	397	1407			.97	1.24	1.74	2.86
.068	43.870	391	1387			.96	1.23	1.72	2.84
.067	43.230	386	1367		0 4	•95	1.22	1.71	2.82
.066	42.580	379	1346			95	1.22	1.70	2.80
•065	41.935	374	1326	* *		•94	1.21	1.69	2.78
.064	41.290	368	1305		0 -	•93	1.20	1.68	2.76
•063	40.650	362	1285			•92	1.19	1.66	2.74
•062	40.000	356	1265	• •	* *	•92	1.18	1.65	2.72
.061	39.355	351	1244			.91	1.17	1.64	2.69
.060	38.710	345	1224			.90	1.16	1.62	2.67
.059	38.065	339	1203	• •		.89	1.15	1.61	2.65
.058	37 · 420	333	1183		,	•89	1.14	1.59	2.63
.057	36.775	328	1163			.88	1.13	1.28	2.60
.056	36.130	322	1142			.87	1.12	1.57	2.58
.055	35.480	316	1122			.86	1.11	1.55	2.56
.054	34.840	310	1101			.86	1.10	1.54	2.54
.053	34 · 195	305	1081			•85	1.09	1.53	2.52
.052	33.545	299	1061	• •		.84	1.08	1.21	2.49
.051	32.910	293	1040			•83	1.07	1.50	2.47
.050	32.260	287	1020			.82	1.06	1.48	2.44
.049	31.615	282	999.8	• •		.82	1.05	1.47	2.42
.048	30.970	276	979.2	• •		•81	1.04	1.45	2.40
.047	30.320	270	958.8	• •		.80	1.03	1.44	2.37
.046	29 · 675	264	938.4	• •			1.02	1.43	2:35
.045	29.030	259		• •			1.01	1.41	2.32
.044	28.385	253	918.0				•99	1.40	2.30
.043	27.745	247	897.6		٠.		.98	1.38	2.27
010	#1 (TO	241	877.2				•97	1.36	$2 \cdot 25$

TABLE NO. 1.—COPPER STRANDS—continued.

Cross	Section	Weight	of Copper		Stran	nd (Diam	eters in n	nm.)	
sq. in.	mm.2	Kilog. per km.	lb. per mile	127	91	61	37	19	7
0.042	27.095	241	856.8				0.96	1.34	2.22
0 042	26.450	236	836.4				•95	1.33	2.19
.040	25.810	230	816.0				•94	1.32	2.17
.039	25.160	224	795.6				.93	1.30	2.14
.038	24.515	218	775.2	• •			•91	1.28	2.11
.037	23.870	213	754.8				90	1.27	2.08
.036	23 225	207	734.4				- 89	1.25	2.05
.035	22.575	201	714.0				.88	1.23	2.02
.034	21.935	195	693 · 6				.86	1.21	1.99
.033	21.290	190	673 · 2	• •			-85	1.19	1.97
.032	20.645	184	652.8				.84	1.18	1.94
.031	20.000	178	632 • 4				.82	1.16	1.91
.030	19.355	172	612.0				•81	1.14	1.87
.029	18.710	167	591.6				.80	1.12	1.84
.028	18.065	161	571.2					1.10	1.81
.027	17.420	155	550.8					1.08	1.78
.026	16.775	149	530.4					1.06	1.75
.025	16.130	144	510.0					1.04	1.71
.024	15.485	138	489.6					1.01	1.68
.023	14.840	132	469.2					.99	1.64
.022	14.195	126	448.8					•97	1.61
.021	13.550	121	428.4					.95	1.57
.020	12.905	115	408.0					+93	1.53
.019	12.260	109	387.6					•90	1.49
.018	11.615	104	-367 - 2					*88	1.45
.017	10.970	98	346.8					85	1.41
.016	10.320	92	326.4					•83	1.37
.015	9.676	86	306.0					.80	1.33
.014	9.031	81	285.6						1.28
.013	8 · 386	75	265 · 2						1.24
.012	7.740	69	244.8						1.19
.011	7.096	63	$224 \cdot 4$						1.13
.010	6.451	57	204.0						1.08
.009	5.806	52	183.6						1.03
.008	5.161	46	$163 \cdot 2$						•97
.007	4.516	40	142.8						•90
.006	3.871	34	122.4						*84
.005	3 · 225	29	102.0						•77
.004	2.580	23	81 6						
.003	1.935	17	$61 \cdot 2$						• •
.002	1.290	11	40.8						
.001	645	6	20.4						
002					,				-

Conversion of mm. to inches, multiply mm. by $0\cdot 03937.$

TABLE No. 2.—Copper Strands.

Cross	Section	Weight o	of Copper		Stran	d (Diam	eters in 1	nm.)	
nım.2	sq. in.	Kilog. per km.	lb. per mile	127	91	61	37	19	276
-	1.550	0010			-				
000	1.550	8912	31618	3.17	3.74				
999	1.548	8903	31587	3.17	3.74				
998 997	1.546	8894	31556	3.16	3.74				
	1.545	8885	31525	3.16	3.74		٠,		
996 995	1.543	8876	31494	3.16	3.73				
994	1 · 542 1 · 540	8867	31442	3.16	3.73				
993		8859	31430	3.16	3.73				
992	1.539	1 8850	31400	3.16	3.73				
991	1·537 1·536	8841	31368	3.12	3.73				
990		8832	31336	3.12	3.72		٠.		
989	1.534	8823	31304	3.12	3.72				
988	1.582	8814	31272	3.15	3.72				
987	1.531	8805	31241	3.15	3.72				
	1.529	8796	31210	3.12	3.72				
986	1:528	8787	31178	3.14	3.71				
985	1:526	8778	31146	3.14	3.71				
984	1.525	8769	31113	3.14	3.71				
983	1.523	8761	31081	3.14	3.71				
982	1.522	8752	31050	3.14	3.71				
981	1.520	8743	31019	3.13	3.70				
980	1.519	8734	30988	3.13	$3 \cdot 70$				
979	1:517	8725	30956	3 - 13	3.70				
978	1.515	8716	30924	3 · 13	$3 \cdot 70$				
977	1.514	8707	30892	3.13	$3 \cdot 70$				
976	1.512	8698	30860	3.13	3.70				
975	1.511	8689	30829	3.12	3.69				
974	1.509	8680	30797	3.12	3.69				
973	1.508	8671	30766	$3 \cdot 12$	3 · (3)				
972	1.506	8663	30734	$3 \cdot 12$	3.69				
971	1.505	8654	30702	3.12	3.69				• •
970	1.503	8645	30670	3.12	3.68				
969	1.501	8636	30639	$3 \cdot 12$	3.68				• •
968	1.500	8627	30607	3.11	3.68				
967	1.498	8618	30575	3.11	3.68				
966	1.497	8609	30544	3.11	3.68				
965	1.495	8600	30512	3.11	3.68				
964	1.494	8591	30480	3.11	3.67				
963	1.492	8582	30448	3.11	3.67		* *	• •	
962	1.491	8573	30417	3.11	3.67		• •	• •	
961	1.489	8564	30385	3.10	3.67				
960	1.488	8556	30353	3.10	3.66				
959	.1.486	8547	30322	3.10	3.66		• •	• •	
958	1.484	8538	30290	3.10	3.66	• •			
957	1.483	8529	30259	3.10	3.66			• •	
956 - 1	1.481	8520	30227	3.10	3.66				

TABLE No. 2.—Copper Strands—continued.

Cross	Section	Weight o	f Copper		Stran	d (Diame	eters in n	am.)	
mm.2	sq. in.	Kilog. per km.	lb. per mile	127	91	61	37	19	7
955	1.480	8511	30195	3.09	3.65	-			
954	1.478	8502	30163	3.09	3.65			• •	• •
953	1.477	8493	30132	3.09	3.65	٠. ا	• •	• •	• •
952	1.475	8484	30100	3.09	3.65			• •	• •
951	1.474	8475	30069	3.09	3.65	• •	• •	• •	
950	1.472	8466	30038	3.09	3.65			• •	
949	1.470	8458	30006	3.08	3.64				
948	1.469	8149	29974	3.08	3.64				
947	1.467	8440	29943	3.08	3:64				
946	1.466	8431	29911	3.08	3.64				
945	1.464	8422	29879	3.08	3.64				
944	1.463	8413	29848	3.08	3.63			1	
943	1.461	8404	29816	3.07	3.63				
942	1.460	8395	29785	3.07	3.63				
941	1.458	8386	29753	3.07	3.63	• •			
940	1.457	8377	29722	3.07	3.63				
939	1.455	8368	29690	3.07	3.62				
938	1.453	8359	29659	3.07	3.62				
937	1.452	8351	29627	3.07	3.62				
936	1.450	8342	29595	3.06	3.62	• •			
935	1.449	8333	29564	3.06	3.62				
934	1.447	8324	29532	3.06	3.62				
933	1.446	8315	29500	3.06	3.61				
932	1.444	8306	29469	3.06	3.61				
931	1.443	8297	29437	3.06	3.61		• •		
930	1.441	8288	29405	3.05	3.61				
929	1.439	8279	29374	3.05	3.61			1	
928	1.438	8270	29342	3.05	3.60			١.,	
927	1.436	8261	29310	3.05	3.60				
926	1.435	8253	29279	3.05	3.60				
925	1.433	8244	29247	3.05	3.60		1	1	
$925 \\ 924$	1.432	8235	29216	3.04	3.60				1
923	1.430	8226	29184	3.04	3.59			1	
923	1.429	8217	29152	3.04	3.59				
	1.427	8208	29121	3.04	3.59				
$\frac{921}{920}$	1.426	8199	29089	3.04	3.59				
	1.424	8190	29057	3.04	3.58				
919	1.422	8181	29026	3.03	3.58				
918		8172	28994	3.03	3.58				
917	1.421	8163	28962	3.03	3.58				
916	1.419	8155	28931	3.03	3.58				
915		8146	28899	3.03	3.58				
914	1.416	1	28867	3.03	3.57				
913	1.415	8137	28835	3.03	3.57	• •		• •	
912	1.413	8128	28804	$\frac{3.02}{3.02}$	3.57	• •			
911	1.412	8119	20004	0.07	0 01			* *	

TABLE No. 2,—COPPER STRANDS—continued.

Cross	s Section .	Weight	of Copper		Strai	nd (Diam	eters in r	nm.)	
mm.²	sq. in.	Kilog. per km.	lb. per mile	127	91	61	37	19	7
910	1.410	8110	28772	3.02	3.57				
909	1.408	8101	28741	3.02	3.57				
908	1.407	8092	28709	3.02	3.56			• •	
907	1.405	8083	28677	3.02	3.56				
906	1.404	8074	28646	3.01	3.56				
905	1.402	8065	28614	3.01	3.56				
904	1.401	8056	28583	3.01	3.56				
903	1.399	8048	28552	3.01	3.56				
902	1.398	8039	28520	3.01	3.55				
901	1.396	8030	28489	3.00	3.55				
900	1.395	8021	28458	3.00	3.55				
899	1.393	8012	28426	3.00	3.55				
898	1.391	8003	28395	3.00	3.54				
897	1.390	7994	28363	3.00	3.54	• •			
396	1.388	7985	28331	3.00	3.54				
395	1.387	7976	28300	3.00	3.54				٠.
394	1.385	-7967	28268	2.99	3.54		٠.		
393	1.384	7958	28236	2.99	3.54				
892	1.382	7950	28205	2.99	3.53				
391	1.381	7941	28173	2.99	3.53	* *			٠.
390	1.379	7932	28142	$\frac{1}{2} \cdot 99$	3.53			• •	
889	1.377	7923	28110	$\frac{2.98}{2.98}$	3.53	* *	• •		
388	1.376	7914	28079	$\frac{2.98}{2.98}$	3.53	* *			
887	1.374	7905	28047	$\frac{2.98}{2.98}$	3.52	!			
386	1.373	7896	28015	$\frac{2.98}{2.98}$	3.52				
885	1.371	7887	27983	$\frac{5}{2} \cdot 98$	3.52				
384	1.370	7878	27951	$\frac{2.98}{2.98}$	3.52				
383	1.368	7869	27919	2.97	3.52				
882	1.367	7860	27887	$\frac{2 \cdot 97}{2 \cdot 97}$	3.51		• •		
881	1.365	7852	27855	$\frac{2.97}{2.97}$	3.21		• •		
880	1.364	7843	27823	$\frac{2.97}{2.97}$					٠.
379	1.362	7834	27792	$\frac{2.97}{2.97}$	3.51				
78	1.360	7825	27760	2.97	3.51				٠.
77	1.359	7816	27728	2.96			٠٠,	'	
376	1.357	7807	27697	2.96	3.50				
375	1.356	7798		2.96	3.50				
74	1.354	7789	27665		3.50				
373	1.353	7780	27634	2.96	3.50				
72	1.351		27602	2.96	3.50				
71	1.350	7771	27571	2.96	3.49				
70	1.348	7762	27540	2.95	3.49				
69	1.346	7753	27508	2.95	3.49				
68	1.345	7745	27477	2.95	3.49]	
67	1.343	7736	27445	2.95	3.49				
66	1.343	7727	27413	2.95	3.48				
00	1.947	7718	27382	$2 \cdot 95$	3.48				

TABLE No. 2.—Copper Strands—continued.

Cros	s Section	Weight	of Copper		Stra	nd (Diam	eters in 1	nm.)	
mm.2	sq. in.	Kilog. per km.	lb. per mile	127	91	61	37	19	7
865	1.340	7709	27350	2.95	3.48		١,.		
864	1.339	7700	27318	2.94	3.48				
863	1.337	7691	27287	2.94	3.48	• •	• •		
862	1.336	7681	27255	2.94	3.47		• •		
861	1.334	7673	27224	2.94	3.47		• •	• •	
860	1.333	7664	27192	2.94	3.47	• •			
859	1.331	7655	27161	2.93	3.47				
858	1.329	7647	27129	1 2 93	3.46		• •		٠.
857	1.328	7638	27098	2.93	3.46		• •	٠.	
856	1 .326	7629	27066	2.93	3.46		• •		
855	1.325	7620	27034	2.93	3.46	• •			• • •
854	1.323	7611	27003	2.93	3.46	• •			• •
853	1.322	7602	26971	2.92	3.45	• •	• •		
852	1.320	7593	26940	$\frac{1}{2} \cdot 92$	3.45	• •			
851	1.319	7584	26908	2.92	3.45	4.21	• •		
850	1.317	7575	26876	2.92	3.45	4.21			
	1.317	7566	26845	2.92	3.45	4.21	• •		• •
849	1.314	7557	26813	$\frac{2 \cdot 92}{2 \cdot 92}$	3.44	4.21	• •		• •
848				2.91	3.44	4.21	• •		• •
847	1.312	7549	26781	2.91	3.44	4.20	• • •		• •
846	1.311	7540	26749	2.91	3.44	4.20		• •	
845	1.309	7531	26718	$\frac{2 \cdot 91}{2 \cdot 91}$	3.44	4.20	• •		
844	1.308	7522	26686	2.91	3.43	4.20	• •	• •	
843	1.306	751 3	26654	2.91	3.43	4.19			
842	1.305	7504	26622	2.90	3.43				
841	1.303	7495	26590	2.90	3.43	4.19		• •	
840	1.302	7486	26558	2.90	3.43	4·19 4·18	• • •		
839	1.300	7477	26527	2.90	3.42		• •		
838	1.298	7468	26495	2.90	3.42	4.18			
837	1.297	7459	26463	2.90	3.42	4.18	• •		
836	1.295	7450	26432	20	3.42	4.17	• •		
835	1.294	7442	26400	$\frac{2.89}{2.89}$	3.42	4.17	• •		
834	1.292	7433	26369		3.41	4.17	• •	• •	
833	1.291	7424	26337	2.89			• •	• •	• •
832	1.289	7415	26306	2.89	3.41	4.17	• •	• •	
831	1.288	7406	26274	2.89	3.41	4.16	• •		
830	1.286	7397	26243	2.88	3.41	4.16	• •		
829	1.284	7388	26211	2.88	3.41	4.16		• •	
828	1.283	7379	26180	2.88	3.40	4.16		• •	
827	1.281	7370	26148	2.88	3.40	4.15	• •		
826	1.280	7361	26116	2.88	3.40	4.15			
825	1.278	7352	26085	2.88	3.40	4.15	• •		
824	1.277	7344	26053	2.87	3.40	4.15			
823	1.275	7335	26022	2.87	3.39	4.14			
822	$1 \cdot 274$	7326	25990	2.87	3.39	4.14			
821	$1 \cdot 272$	7317	25959	$2 \cdot 87$	3.39	4.14		• • • •	

TABLE No. 2.—Copper Strands—continued.

Cross	Section	Weight	f Copper		Strai	nd (Diame	eters in m	m.)	
mm.2	sq. in.	Kilog. per km.	lb. per mile	127	91	61	37	19	7
820	1.271	7308	25928	2.87	3.39	4.14			
819	$1 \cdot 269$	7299	25896	2.87	3.39	4.13			
818	1.267	7290	25864	2.86	3.38	4.13			
817	1.266	7281	25833	2.86	3.38	4.13			
816	1.264	7272	25801	2.86	3.38	4:13			
815	1.263	7263	25770	2.86	3.38	4.13			
814	1.261	7254	25738	2.86	3.38	4.12			
813	1.260	7245	25707	2.85	3.37	4.12			
812	1.258	7237	25675	2.85	3.37	4.12			
811	1.257	7228	25643	2.85	3.37	4.12			
810	1.255	7219	25612	2.85	3.37	4.11			
809	1.253	7210	25580	2.85	3.36	4.11			
808	$1 \cdot 252$	7201	25549	2.85	3.36	4.11			
807	1.250	7192	25518	2.84	3.36	4.10			
806	1.249	7183	25486	2.84	3.36	4.10			
805	1.247	7174	25454	2.84	3.36	4.10			
804	1.246	7165	25422	2.84	3.35	4.10			
803	1.244	7156	25391	2.84	3.35	4.09			
802	1.243	7147	25359	2.84	3.35	4.09			
801	1.241	7139	25327	2.83	3.35	4.09			
800	1.240	7130	25295	2.83	3.35	4.09			
799	1.238	7121	25264	2.83	3.34	4.08			
798	1.236	7112	25232	2.83	3.34	4.08			
797	1.235	7103	25200	2.83	3.34	4.08			
796	1.233	7094	25168	2.83	3.34	4.08		• •	• •
795	1.232	7085	25137	2.82	3.34	4.07	• •		
794	1.230	7076	25105	2.82	3.33	4.07		• •	
793	1.229	7067	25073	2.82	3.33	4.07			
792	1.227	7058	25042	2.82	3.33	4.07		• •	٠.
791	1.226	7049	25010	2.82	3.33	4.06			
790	1.224	7041	24979	2.81	3.32	4.06		• •	
789	1.222	7032	24947	2.81	3.32	4.06		• •	
788	1.221	7023	24915	2.81	3.32	4.06			
787	1.219	7014	24884	2.81	3.32	4.05			
786	1.218	7005	24852	2.81	3.32	4.05	• •		
785	1.216	6996	24820	2.81	3.31	4.05		* * .	
784	1.215	6987	24789	$\frac{2.80}{2.80}$	3.31	4.05		• •	
783	1.213	6978	24757	$\frac{2.80}{2.80}$	3.31	1.04	• •	• •	
782	1.212	6969	24726	2.80	3.31	4.04	• •	• •	
781	1.210	6960	24694	2.80	3.31	4.04		• •	
780	1.209	6951	24663	2.80	3.30	4:03		• •	
779	1.207	6942	24631	2.79	3.30	1 4 • 03			
778	1.205	6934	24600	2.79	3.30				
777	1.204	6925	24569	$\frac{2.79}{2.79}$	3.30	4.03			
776	1.202	6916	24537	$\frac{2.79}{2.79}$	3.30	4.03	• •		
		0010	ZIUUI	4 19	0.00	4.02			

TABLE No. 2.—COPPER STRANDS—continued.

Cross	Section	Weight o	f Copper		Strai	nd (Diam	eters in n	nm.)	
mm.2	sq. in.	Kilog. per km.	lb. per mile	127	91	61	37	19	7
775	1.201	6907	24505	2.79	3.29	4.02			
774	1.199	6898	24473	2.78	3.29	4.02			
773	1.198	6890	24441	2.78	3:29	4.02			
772	1 · 196	6880	24410	2.78	3.59	4.01			
771	1.195	6871	24378	2.78	3.58	4.01			
770	1:193	6862	24347	2.78	3.58	4.01			
769	1.191	6853	24315	2.78	3.58	4.01			
768	1.190	6844	24283	2.77	3.58	4.00			
767	1.188	6836	24252	2.77	3.58	4.00			
766	1.187	6827	24220	2.77	3.27	4.00			
765	1.185	6818	24188	2.77	3.27	4.00	• • •		
764	1.184	6809	24157	2.77	3.27	3.99			
763	1.182	6800	24125	2.76	3.27	3.99	• •		
762	1.181	6791	24094	2.76	3.27	3.99			
761	1.179	6782	24062	2.76	3.26	3.98			
760	1.178	6773	24030	2.76 2.76	3.26	3.98			• •
759	1.176	6764	23999	$\frac{2.76}{2.76}$	3.26	3.98	• •		
758	1.174	6755	23967 23936	$\frac{2.75}{2.75}$	3.25	3.97		• •	• •
757	1.173	6746	23904	$\frac{2}{2} \cdot 75$	3.25	3.97			• •
756	1.171	6738 6729	23873	$\frac{2.75}{2.75}$	3.25	3.97			1
755	1.170	6720	23841	2.75	3.25	3.97			
754	1.168	6711	23810	2.75	3.25	3.96			
753	1.165	6702	23778	$\frac{5}{2} \cdot 75$	3.24	3.96			
752 751	1.164	6693	23746	2.74	3.24	3.96			
751	1.162	6684	23714	2.74	3.24	3.96			
730 749	1.160	6675	23683	2.74	3.24	3.95			
748	1.159	6666	23651	2.74	3.24	3.95			
747	1.157	6657	23620	2.74	3.23	3.95			
746	1.156	6648	23588	2.74	3.23	3.95			
745	1.154	6639	23557	2.73	3.23	3.94			
744	1.153	6631	23525	2.73	3.23	3.94			
743	1.151	6622	23493	2.73	3.22	3.94			
742	1.150	6613	23461	2.73	3.22	3.91			
741	1.148	6604	23430	2.73	3.22	3.93			• •
740	1.147	6595	23398	2.72	3.22	3.33			
739	1.145	6586	23367	2.72	3.21	3.93		• • •	
738	1.143	6577	23335	2.72	3.21	3.92			
737	1.142	6568	23303	2.72	3.21	3.92			
736	1.140	6559	23271	2.72	3.21	3.92			
735	1.139	6550	23240	2.71	3.21	3.92			1
734	1.137	6541	23208	2.71	3.20	3.91		}	
733	1.136	6533	23176	2.71	3.20	3.91			
732	1.134	6524	23144	2.71	3.20	3.91	• •	• •	
731	1.133	6515	23112	2.71	3.50	3.91			

Table No. 2.—Copper Strands—continued.

Cross	s Section	Weight	f Copper		Stra	nd (Dian	neters in	mm.)	
mm.2	sq. in.	Kilog. per km.	lb. per mile	127	91	61	37	19	7
730	1.131	6506	23080	2.71	3.20	3.90		_	
729	1.129	6497	23049	2.70	3.19	3.90			
728	1.128	6488	23017	2.70	3.19	3.90			
727	1.126	6479	22985	2.70	3.19	3.90			
726	1.125	6470	22954	2.70	3.19	3.89			
725	1.123	6461	22922	2.70	3.19	3.89			
724	1.122	6452	22890	2.69	3.18	3.89			
723	1:120	6413	22859	2.69	3.18	3.88			
722	1.119	6435	22828	2.69	3.18	3.88			
721	1.117	6426	22797	2.69	3.18	3.88			
720	1.116	6417	22766	2.69	3.17	3.88			
719	1.114	6408	22734	2.68	3.17	3.87			
718	1.112	6399	22702	2.68	3.17	3.87			
717 716	1.111	6390	22670	2.68	3.17	3.87			
715	1.109	6381	22639	2.68	3.17	3.87			
714	1.108	6372	22607	2.68	3.16	3.86			
713	1.106	6363	22575	2.68	3.16	3.86	15.4		
713 712	1.105	6354	22544	2.67	3.16	3.86		A 40	
711	1.103	6345	22513	2.67	3.16	3.86	``		· · ·
710	1.102	6336	22481	2.67	3.12	3.85			
709	1.100	6328	22450	2.67	3.12	3.85			
$709 \\ 708$	1.098	6319	22418	2.67	3.12	3.85		,	
7007	1.097	6310	22386	2.66	3.12	3.84			
706	1.095	6301	22354	2.66	3.14	3.84			
705	1.094	6292	22323	2.66	3.14	3.84			
704	$\frac{1.092}{1.091}$	6283	22291	2.66	3.14	3.84			
703		6274	22259	2.66	3.14	3.83			
702	1.089 1.088	6265	22227	2.65	3.14	3.83		1	
701	1.086	6256	22196	2.65	3.13	3.83			
700	1.085	6247	22165	2.65	3.13	3.85			
699	1.083	6238	22133	2.65	3.13	3.82			
398	1.081	6230	22102	2.65	3.13	3.85			
597	1.080	6221	22070	2.65	3.13	3.85			
696	1.078	$6212 \\ 6203$	22038	2.64	3.15	3.81			
695	1.077	6194	22007	2.64	3.15	3.81			
694	1.075	6185	21975	2.64	3.12	3.81		1	
393	1.074	6176	21944	2.64	3.12	3.81	٠.		
692	1.072		21912	2.64	3.11	3.80			
391	1.071	$6167 \\ 6158$	21880	2.63	3.11	3.80			
690	1.069	6149	21849	2.63	3.11	3.80			
689	1.067	6149	21817	2.63	3.11	3.79			
688	1.066	6131	21785	2.63	3.11	3.79			٠.
687	1.064	6123	21754	2.63	3.10	3.79			
386	1.063	6114	21722	2.62	3.10	3.79			
	T 000	0114	21690	$2 \cdot 62$	3.10	3.78			

TABLE No. 2.—Copper Strands—continued.

Cross	Section	Weight o	f Copper		Strai	nd (Diam	eters in 1	nm.)	
mm.2	sq. in.	Kilog. per km.	lb. per mile	127	91	61	37	19	7
685	1.061	6105	21659	2.62	3.10	3.78			
684	1.060								
683	1.058	6096	21627 21596	2.62	3.09	$\frac{3.78}{3.78}$			
682	1.058	6087		2.62	3.09	3.77			
	1.057	6078 6069	21564	2.61	3.09	3.77			
681 680	1.054	6060	21532 21501	2.61	3.09	3.77		• •	
				2.61	3.08	3.76			
679	1.052	6051	21469			3.76			
678	1.050	6042	21437	$\frac{2 \cdot 61}{2 \cdot 61}$	$\frac{3.08}{3.08}$	3.76			
677	- 0 20	6033	21406	2.60	3.08	3.76		. ,	
676	1.047	6025	21374			3.75			
675	1.046	6016	21342	2.60	3.07				
674	1.044	6007	21311	2.60	3.07	3.75			
673	1.043	5998	21279	2.60	3.07	3.75			
672	1.041	5989	21247	2.60	3.07	3.75			
671	1.040	5980	21216	2.59	3.06	3.74		1	
670	1.038	5971	21184	2.59	3.06	3.74			
669	1.036	5962	21152	2.59	3.06	3.74			
668	1.035	5953	21121	2.59	3.06	3.73			• •
667	1.033	5944	21089	2.59	3.06	3.73			
666	1.032	5935	21058	2.58	3.05	3.73			
665	1.030	5927	21026	2.58	3.05	3.73			
664	1.029	5918	20994	2.58	3.05	3.72			
663	1.027	5909	20963	2.58	3.05	3.72			
662	1.026	5900	20931	2.58	3.04	3.72			
661	1.024	5891	20900	2.57	3.04	3.71			
660	1.023	5882	20868	2.57	3.04	3.71			
659	1.021	5873	20836	2.57	3.04	3.71			
658	1.019	5864	20805	2.57	3.03	3.71			
657	1.018	5855	20773	2.57	3.03	3.70			* *
656	1.016	5846	20742	2.56	3.03	3.70			
655	1.015	5837	20710	2.56	3.03	3.70			
654	1.013	5828	20679	2.56	3.03	3.69			
653	1.012	5820	20647	2.56	3.02	3.69			
652	1.010	5811	20616	2.56	3.02	3.69			
651	1.009	5802	20584	2.56	3.02	3.69			
650	1.007	5793	20552	2.55	3.02	3.68			
649	1.005	5784	20521	2.55	3.01	3.68			
648	1.004	5775	20489	2.55	3.01	3.68			
647	1.002.	5766	20458	2.55	3.01	3.68			
646	1.001	5757	20427	2.55	3.01	3.67			
645	•999	5748	20395	2.54	3.00	3.67			
644	•998	5739	20364	2.54	3.00	3.67			
643	•996	5730	20332	2.54	3.00	3.66			
642	•995	5722	20301	2.54	3.00	3.66			
641	•993	5713	20269	2.54	3.00	3.66			
-									

TABLE No. 2.—COPPER STRANDS—continued.

Cros	s Section	Weight	of Copper		Stra	nd (Dian	eters in 1	nm.)	
mm.2	sq. in.	Kilog. per km.	lb. per mile	127	, 31	61	37	19	in i
640	0.992	5704	20237	2.53	2.99	3.66			
639	•990	5695	20206	2.53	2.99	3.65	,		
638	-988	5686	20174	2.53	2.99	3.65			
637	.987	5677	20143	2.53	2.99	3.65			
636	.985	5668	20111	2.53	2.98.	3.64			
635	.984	5659	20079	2.52	2.98	3.64			
634	982	5650	20047	2.52	2.98	3.64			
633	1981	5641	20015	2.52	2.98	3.63			
632	•979	5632	19983	2.52	2.97	3.63		•	
631	•978	5624	19951	2.52	2.97	3.63			
630	•976	5615	19919	2.51	2.97	3.63			
629	.974	5606	19888	2.51	2.97	3.62			
628	•973	5597	19856	2.51	2.96	3.62	• •		
627	-971	5588	19825	2.51	2.96	3.62	• •		• •
626	•970	5579	19793	2.51	2.96	3.62	* *		
625	•968	5570	19761	2.50	2.96	3.61	4 .		• •
624	-967	5561	19730	2.50	2.96	3.61			
623	1965	5552	19698	2.50	2.95	3.61	• •		
622	1964	5543	19667	2.50	2.95	3.60			* *
621	•962	5534	19635	2.50	2.95	3.60)	
620	•961	5525	19604	$\frac{2 \cdot 49}{2 \cdot 49}$	2.95	3.60		4 -	٠.
619	•959	5517	19572	2.49	2.94	3.59			* *
618	.957	5508	19541	2.49	2.94	3.29			7 6
617	.956	5499	19509	2.49	2.94	3.59		,	٠.
616	•954	5490	19478	2.49	2.94			٠.	٠.
615	. 953	5481	19446	2.48	2.93	3.59			٠.
614	.951	5472	19414	2.48	2.93	3.58	• •		
613	.950	5463	19383	2.48	2.93	3.28			٠.
612 1	•948	5454	19351	2.48	2.93	3.28			٠.
611	.947	5445	19319	2.47	2.92	3.57			٠.
610	945	5436	19288	2.47	2.92	3.57			٠.
609	.943	5427	19256	2.47	2.92	3.57		P 4	
608	.942	5419	19225	2.47	2.92	3.57			٠.
607	.940	5410	19193	2.47	2.91	3.26			
606	*939	5401	19161	2.46	2.91	3.26			
605	.937	5392	19130	2.46		3.26			
604	.936	5383	19098	2.46	2.91	3.55			٠.
603	1934	5374	19066	2.46	2.91	3.55		:	٠.
602	•933	5365	19035	2.46	2.91	3.55	0 0		٠.
601	.931	5356	19003	2:45	2.90	3:54			٠.
600	.930	5347	18971		2.90	3.54		٠.	٠.
599	-928	5338	18940	2.45	2.90	3.54			٠.
598	.926	5329	18908	2.45	2.90	3.24			٠.
597	.925	5321	18876	2.45	2.89	3.23			٠.
596	923	5312	18845	2.45	2.89	3.53			
	0.817	0012	10040	2.45	2.89	3.28			

TABLE No. 2.—Copper Strands—continued.

Cro	ss Section	Weight	of Copper		Str	and (Diar	neters in	mm.)	
mm;2	eq. in.	Kilog. per km.	lb. per mile	127	91	61	37	19	7
595	0.922	5303	18813	2.44	2.89	3.52			
594	•920	5294	18782	2.44	2.88	3.52			
593	•919	5285	+18750	2.44	2.88	3.52			
592	•917	5276	18719	2.44	2.88	3.52			
591	.916	5267	18687	2.44	2 88	3.51			
590	•914	5258	18656	2.43	2.87	3.51			
589	•912	5249	18624	2.43	2.87	3.51			
588	•911	5240	18592	2.43	2.87	3.50			
587	.909	5231	18561	2.43	2.87	3.20			
586	•908	5222	18529	2.42	2.86	3.20			
585	•906	5214	18498	2.42	2.86	3.49			
584	905	5205	18466	2.42	2.86	3.49			
583	•903	5196	18434	2.42	2.86	3.49			
582	•902	5187	18392	2.42	2.85	3.49			
581	•900	5178	18360	2.41	2.85	3.48			
580	-899	5169	18338	2.41	2.85	3.48			
579	897	5160	18307	2.41	2.85	3.48			
578	*895	5151	18276	2.41	2.84	3.47			
577	894	5142	18244	2.40	2.84	3.47			١
576	892	5133	18213	2.40	2.84	3.47			
575	891	5124	18181	2.40	2.84	3.46			
574	-889	5116	18149	2.40	2.83	3.46			
573	-888	5107	18118	2.40	2.83	3.46	١		
572	.886	5098	18086	2.39	2.83	3.45			
571	·885	5089	18055	2.39	2.83	3.45		1	
570	883	5080	18023	2.39	2.82	3 · 45			
569	.881	5071	17991	2.39	2.82	3.45			
568	.880	5062	17960	2.39	2.82	3,44			
567	-878	5053	17928	2.38	2.82	3.44			
566	•877	5044	17896	2.38	2.81	3.44			
565	875	5035	17865	2.38	2.81	3.43			
56 1	·874	5026	17833	2.38	2.81	3.43			
563	-872	5017	17802	2.38	2.81	3.43			
562	-871	5009	17770	2.38	2.80	3.43			
561	· 869	5000	17739	2.37	2.80	3.42			
560	-868	4991	17708	2.37	2.80	3.42			
559	•866	4982	17676	2.37	2.80	3.42			
558	·864	4973	17645	2.37	2 79	3.41			
557	·863	4964	17613	2.36	2.79	3.41	, ,		
556	.861	4955	17581	2.36	2.79	3.41			
555	.860	4946	17550	2.36	2.79	3.40			
554	·858	4937	17518	2.36	2.78	3.40			
553	·857	4928	17486	2.35	2.78	3.40			
552	.855	4919	17454	2.35	2.78	3.39		::	
551	.854	4911	17422	2.35	2.78	3.39			
-									

TABLE No. 2.—COPPER STRANDS—continued.

Cross	Section	Weight of	f Copper		Stran	id (Diame	ters in m	m.)	
mm.2	sq. in.	Kilog. per km.	lb. per mile	127	91	61	37	19	7
550	0.852	4902	17390	2.35	2.77	3.39			
	850	4893	17359	2.35	2.77	3.39			
549	849	4884	17327	2.34	2.77	3.38		* *	
548	847	4875	17295	2.34	$\frac{5}{2} \cdot 77$	3.38			
547	846	4866	17264	2.34	2.76	3.38			
546	844	4857	17232	$2 \cdot 34$	2.76	3.37			
545	843	4848	17201	2.33	$\frac{2.76}{2.76}$	3.37		٠.	
544	841	4839	17169	2.33	$\frac{2.76}{2.76}$	3.37			
$\frac{543}{542}$	840	4830	17138	$\frac{2}{2} \cdot 33$	$\frac{2}{2} \cdot 75$	3.36			
	1	4821	17106	2.33	2.75	3.36			
541	1838	20-0		2.33	2.75	3.36			
540	837	4813 4804	17075 17043	2.32	2.75	3.35			
539	· 835 · 833	4795	17043	2.32	$\frac{2 \cdot 73}{2 \cdot 74}$	3.35			
538		4786	16980	2.32	2.74	3.35			
537	*832			2.32					
536	*830	4777	16948	2.32	2.74	3.35			
535	-829	4768	16916	2.31	$\frac{2.74}{2.73}$	3.34			
534	*827	4759	16885	2.31	2.73	3.34			
533	826	4750	16853			3.34			
532	*824	4741	16822	2.31	2.73	3.33			
531	823	4732	16790	2.31	2.73	3.33			
5 30	821	4723	16758	2.31	2.72	3.33			
52 9	-819	4714	16727	2.30	2.72	3.32			
528	·818	4706	16695	2.30	2.72	3.32			
527	816	4697	16663	2.30	2.72	3.32			
526	815	4688	16632	2.30	2.71	3.31			
525	.813	4679	16600	2.30	2.71	3.31			
524	·812	4670	16569	2.29	2.71	3.31			
523	·810	4660	16537	2.29	2.70	3.30			
522	-809	4652	16505	2.29	2.70	3.30			
521	807	4643	16474	2.29	2.70	3.30			
520	806	4634	16442	2.28	2.70	3.29			
519	.804	4625	16411	2.28	2.69	3.29			
518	802	4616	16379	$2 \cdot 28$	2.69	3.29			
517	801	4608	16347	$2 \cdot 28$	2.69	3.28			
516	-799	4599	16316	2.28	2.69	3.28	4.21		
515	•798	4590	16284	2.27	2.68	3.28	4.21		
514	•796	4581	16253	2.27	2.68	3.28	4.21		
513	•795	4572	16221	2.27	2.68	3.27	4.20		
512	•793	4563	16190	2.27	2.68	3.27	4.20		
511	.792	4554	16158	2.27	2.67	3.27	4.19		
510	-790	4545	16127	2.26	2.67	3.26	4.19		
509	-788	4536	16095	2.26	2.67	3.26	4.19		
508	.787	4527	16064	2.26	2.66	3.26	4.18		
507	.785	4518	16032	2.26	2.66	3.25	4.18		
506	.784	4510	16001	2.26	2.66	3.25	4.17		

Table No. 2.—Copper Strands—continued.

			. 2 00	TEL O	TIVALIDS	-conv	nuea.		
Cros	ss Section	Weight	of Copper		Stra	ınd (Dian	neters in	m m.)	
mm,2	sq. in.	Kilog. per km.	lb, per mile	127	91	61	37	19	1 7
505	0.782	4501	15969	2.25	2.65	3.25	4.17		
504	.781	4492	15937	2.25	2.65	3.24	4.16		
503	.779	4483	15905	2.25	2.65	3.24	4.16		
502	.778	4474	15873	2.24	2.65	3.24	4.16		
501	-776	4465	15841	2.24	2.64	3.23	4.15		• •
500	.775	4456	15809	2.24	2.64	3.23	4.15		
499	•773	4447	15778	2.24	2.64	3.23	4.14		• •
498	.771	4438	15746	2.23	2.64	3.22	4.14		
497	.770	4429	15714	2.23	2.63	3.22	4.14		•
496	•768	4420	15683	2.23	2.63	3.22	4.13		
495	-767	4411	15651	2.23	2.63	3.21	4.13		
494	.765	4403	15619	2.23	2.63	3.21	4.12		
493	.764	4394	15588	2.22	2.62	3.21	4.12		
492	•762	4385	15556	2.22	2.62	3.20	4.11		
491	.761	4376	15525	2.22	2.62	3.20	4.11		
490	•759	4367	15493	2.22	2.62	3.20	4.11		
489	.757	4357	15461	2.21	2.61	3.20	4.10		
488	•756	4349	15430	2.21	2.61	3.19	4.10		
487	.754	4340	15399	2.21	2.61	3.19	4.09		
486	.753	4331	15367	2.21	2.61	3.19	4.09		
485	.751	4322	15335	2.20	2.60	3.18	4.09		
484	.750	4313	15304	2.20	2.60	3.18	4.08		
483	•748	4305	15272	2.20	2.60	3.18	4.08		
482	•747	4296	15240	2.20	2.59	3.17	4.07		
481	.745	4287	15208	2.20	2.59	3.17	4.07		
480	•744	4278	15176	2.19	2.59	3.17	4.06		
479	•742	4269	15145	2.19	2.59	3.16	4.06		
478	-740	4260	15113	2.19	2.59 2.58	3.16	4.06		
477 476	·739 ·737	4251 4242	$15081 \\ 15050$	$2 \cdot 19 \\ 2 \cdot 18$	2.58	3·16 3·15	4.05		
475		4233	15018	2.18	2.58	3.15	4.05		
474	•736	4224	14987	2.18	2.57	3.15	4.04		• •
473	·734 ·733	4215	14955	2.18	2.57	3.14	4.04		
472	•731	4207	14933	$\frac{2 \cdot 10}{2 \cdot 17}$	2.57	3.14	4.03		
471	•731	4198	14893	$\frac{2}{2} \cdot \frac{17}{17}$	2.57	3.14	4.03		
470	•728	4189	14862	2.17	2.56	3.13	4.02		
469	•726	4178	14830	2.17	2.56	3.13	4.02		
468	.725	4171	14799	$\frac{2}{2} \cdot \frac{17}{17}$	2.56	3.13	4.01		
467	.723	4162	14767	$\frac{2}{2} \cdot 16$	2.56	3.12	4.01	• •	
466	$\cdot 723$	4152	14735	$\frac{2 \cdot 16}{2 \cdot 16}$	$\frac{2}{2} \cdot 55$	3.12	4.00		• •
465	.720	4144	14704	2.16	$\frac{2.55}{2.55}$	$3.12 \\ 3.12$	4.00		
464	.719	4135	14672	2.16	2.55	3.11	4.00		
463	.717	4126	14640	2.16	2.54	3.11	3.99		1
462	-716	4117	14609	2.15	2.54	3.11	3.99		
461	:714	4108	14577	2.15	2.54	3.10	3.98		
101		1100	22011	_ 10	~ 0.1				

Table No. 2.—Copper Strands—continued.

Cross	Section	Weight o	f Copper		Strai	nd (Diam	eters in n	am.)	
mm.2	sq. in.	Kilog. per km.	lb. per mile	127	91	61	37	19	7
460	0.713	4099	14545	2.15	2.54	3.10	3.98		
459	.711	4091	14514	2.15	2.53	3.10	3.97		
458	.709	4082	14482	2.14	2.53	3.09	3.97		
457	.708	4073	14450	2.14	2.53	3.09	3.97		
456	-706	4064	14419	2.14	2.53	3.09	3.96		
455	.705	4055	14387	2.14	2.52	3.08	3.96		
454	.703	4046	14356	2.13	2.52	3.08	3.95		
453	.702	4037	14324	2.13	2.52	3.08	3.95		
452	-700	4028	14293	2.13	2.51	3.07	3.94		
451	-699	4019	14261	2.13	2.51	3.07	3.94		
450	.697	4010	14230	2.12	2.51	3.06	3.94		
449	695	4002	14198	2.12	2.51	3.06	3 . 93		
448	.694	3993	14166	$2 \cdot 12$	2.50	3.06	3.93		
447	•692	3984	14134	$2 \cdot 12$	2.50	3.05	8.92		
446.	-691	3975	14103	2.12	2.50	3.05	3.92		
445	.689	3966	14071	$2 \cdot 11$	2.50	3.05	3.91		
444	.688	3957	14039	2.11	2.49	3.04	3.91		
443	*686	3948	14008	2.11	2.49	3.04	3.90		
442	.685	3939	13976	2.11	2.49	3.04	3.90		
441	.683	3930	13944	2.10	2.48	3.03	3.90	٠.	
440	-682	3921	13913	2.10	2.48	3.03	3.89		
439	-680	3912	13881	2.10	2.48	3.03	3.89		
438	-678	3903	13850	2.10	2.47	3.02	3.88		
437	.677	3895	13818	2.09	2.47	3.02	3.88		
436	.675	3886	13786	2.09	2.47	3.02	3.88		
435	.674	3877	13755	2.09	2.47	3.01	3.87		
434	.672	3868	13723	2.09	2.46	3.01	3.86		
433	.671	3859	13691	2.08	2.46	3.01	3.86		• •
432	-669	3849	13659	2.08	2.46	3.00	3.85		
431	-668	3841	13628	2.08	2.46	3.00	3.85		
430	•666	3832	13597	2.08	2.45	3.00			
429	.664	3823	13565	$\frac{2}{2} \cdot 07$	2.45		3.85	٠.	
428	.663	3814	13533	2.07	2.45	2.99	3.84	٠.	
427	.661	3805	13501	$\frac{2 \cdot 07}{2 \cdot 07}$	2.49	2.99	3.84		
426	.660	3797	13470	$\frac{2.07}{2.07}$		2.99	3.83		
425	-658	3788	13438	2.06	2.44	2.98	3.83		
424	.657	3779	13406	2.06	2.44	2.98	3.82		٠.
423	-655	3770			2.44	2.97	3.82		
422	654		13375	2.06	2.43	2.97	3.82		
421	-652	3761 3752	13343	2.06	2.43	2.97	3.81		
420	.651		13311	2.05	2.43	2.96	3.81		٠.
419	• 649	3743	13280	2.05	2.43	2.96	3.80		
418		3734	13248	2.05	$2 \cdot 42$	2.96	3.80		
417	• 647	3725	13217	2.05	2.42	2.95	3.79		
	•646	3716	13185	2.04	$2 \cdot 42$	2.95	3.79		4.5
416	$\cdot 644$	3707	13153	2.04	2.41	2.95	3.78		

TABLE No. 2.—Copper Strands—continued.

Cross	s Section	Weight o	f Copper	Strand (Diameters in mm.)						
mm.2	sq. in.	Kilog. per km.	lb. per mile	127	91	61	37	19	7	
415	0.643	3699	13122	2.04	2.41	2.94	3.78		1	
414	641	3690	13090	2.04	2.41	2.94	3.77			
413	.640	3681	13059	2.04	2.40	2.94	3.77			
412	-638	3672	13028	2.03	2.40	2.93	3.77			
411	-637	3663	12996	2.03	2.40	2.93	3.76			
410	635	3654	12965	2.03	2.40	2.93	3.76			
409	• 633	3645	12933	2.03	2.39	2.92	3.75			
408	.632	2636	12901	2.02	2.39	2.92	3.75			
407	-630	3627	12870	2.02	2.39	2.91	3.74			
406	629	3618	12838	2.02	2.38	2.91	3.74			
405	-627	3609	12807	2.02	2.38	2.91	3.73			
404	626	3600	12775	2.01	2.38	2.90	3.73			
403	•624	3592	12743	2.01	2.37	2.90	3.72			
402	.623	3583	12712	2.01	2.37	2:90	3.72			
401	621	3574	12680	2.00	2.37	2.89	3.71			
400	•620	3565	12648	2.00	2.37	2.89	3.71			
399	-618	3556	12617	2.00	2.36	2.89	3.71			
398	•616	3546	12585	2.00	2.36	2.88	3.70			
397	-615	3538	12553	2.00	2:36	2.88	3.70			
396	.613	3529	12522	1.99	2.35	2.88	3.69			
395	-612	3520	12490	1.99	2.35	2.87	3.69			
394	.610	3511	12459	1.99	2.35	2.87	3.68			
393	.609	3502	12427	1.98	2.35	2.86	3.68			
392	-607	3494	12395	1.98	2.34	2.86	3.67			
391	.606	3485	12364	1.98	2.34	2.86	3.67			
390	.604	3476	12332	1.98	2.34	2.85	3.67			
389	602	3467	12301	1.97	2.33	2.85	3.66			
388	.601	3458	12269	1.97	2.33	2.85	3.66			
387	• 599	3449	12238	1.97	2.33	2.84	3.65			
386	-598	3440	12206	1.97	2.32	2.84	3.65			
385	• 596	3431	12174	1.96	2.32	2.83	3.64			
384	• 595	3422	12143	1.96	2.32	2.83	3.64			
383	•593	3413	12111	1.96	2.31	2.83	3.63			
382	•592	3404	12080	1.96	2.31	2.82	3.63			
381	•590	3396	12048	1.95	2.31	2.82	3.62			
380	-589	3387	12016	1.95	2.30	2.82	3.62			
379	-587	3378	11985	1.95	$2 \cdot 30$	2.81	3.61	٠.		
378	•585	3369	11953	1.95	$2 \cdot 30$	2.81	3.61			
377	.584	3360	11921	1.94	$2 \cdot 30$	2.81	3.60	• •		
376	.582	3351	11890	1.94	$2 \cdot 29$	2.80	3.60			
375	.581	3342	11858	1.94	$2 \cdot 29$	2.80	3.59			
374	.579	3333	11827	1.94	2.29	2.79	3.59			
373	• 578	3324	11795	1.93	2.28	2.79	3.28			
372	.576	3315	11763	1.93	$2 \cdot 28$	2.79	3.28			
371	.575	3306	11732	1.93	$2 \cdot 28$	2.78	3.57			

Table No. 2.—Copper Strands—continued.

Cross	s Section	Weight o	f Copper		Strand (Diameters in mm.)						
nm.2	sq. in.	Kilog.	lb. per mile	127	91	61	37	19	7		
		per am.	1								
370	0.573	3297	11700	1.93	2.28	2.78	3.57				
369	.571	3289	11668	1.92	2.27	2.77	3.56				
368	•570	3280	11636	1.92	2.27	2.77	3.56				
367	• 568	3271	11605	1.92	2.27	2.77	3.55				
B66	567	3262	11573	1.92	2.26	2.76	3.55		١.,		
365	.565	3253	11541	1.91	2.26	2.76	3.54				
B64	•564	3243	11510	1.91	2.26	2.76	3.54				
363	•562	3235	11478	1.91	2.25	2.75	3.53				
362	.561	3226	11447	1.90	2.25	2.75	3.53				
361	• 559	3217	11415	1.90	2.25	2.75	3.52				
36 0	.558	3208	11383	1.90	2.24	2.74	3.52				
359	.556	3199	11352	1.90	2.24	2.74	3.51				
358	.554	3191	11320	1.90	2.24	2.73	3.51				
357	.553	3182	11288	1.89	2.24	2.73	3.50				
356	• 551	3173	11257	1.89	2.23	2.73	3.50				
355	. 550	3164	11225	1.89	2.23	$\frac{1}{2} \cdot 72$	3.50				
35 4	• 548	3155	11194	1.89	2.23	2.72	3.49				
353	•547	3146	11162	1.88	2.22	2.71	3.49		• •		
352	.545	3137	11130	1.88	2.22	2.71	3.48				
351	. 544	3128	11099	1.88	$2 \cdot 22$	2.71	3.48				
350	*542	3119	11067	1.87	2.21	2.70	3.47		٠.		
349	• 540	3110	11035	1.87	2.21	2.70	3.46				
348	*539	3101	11004	1.87	2.21	2.69	3.46				
347	.537	3093	10972	1.86	2.20	2.69	3.46				
346	.536	3084	10940	1.86	2.20	2.69	3.45		• •		
345	534	3075	10909	1.86	2.20	2.68	3.45				
344	533	3066	10877	1.86	2.19	2.68	3.44	• •			
343	. 531	3057	10846	1.85	2.19	2.68	3.44	٠.			
342	.530	3048	10814	1.85	2:19	2.67	3.43	٠.			
341	.528	3038	10783	1.85	2.18	2.67	3.43	٠. ا			
310	527	3030	10751	1.85	2.18	2.67	3.42				
339	.525	3021	10719	1.84	2.18	2.66	3.42				
338	.523	3012	10688	1.84	2.17	2.66	3.41				
337	. 522	3003	10656	1.84	2.17	2.66	3.41				
336	.520	2994	10624	1.84	2.17	2.65	3.40				
335	.519	2986	10593	1.83	$2 \cdot 17$	2.65	3.40				
334	.517	2977	10561	1.83	2.16	2.64	3.39				
333	.516	2968	10530	1.83	2.16	2.64	3.39				
32	.514	2959	10498	1.82	$\frac{1}{2} \cdot \frac{1}{16}$	2.63	3.38	• •			
31	.513	2950	10466	1.82	2.15	2.63	3.37	• • •			
30	:511	2941	10435	1.82	2.15	$\frac{2.62}{2.62}$	3.37	• •			
29	.509	2932	10403	1.82	$\frac{5}{2} \cdot 15$	2.62	3.36		• •		
28	.508	2923	10371	1.81	2.14	2.62	3.36				
27	506	2914	10340	1.81	2.14	$\frac{2.61}{2.61}$	3.35				
26	•505	2905	10308	1.81	2.14	$\frac{5.61}{2.61}$	3.35				

TABLE No. 2.—COPPER STRANDS—continued.

Cross	Section	Weight of	f Copper		Strai	nd (Diame	eters in n	m.)	
mm.2	sq. in.	Kilog. per km.	lb. per mile	127	91	61	37	19	7
325	0.503	2896	10277	1.81	2.13	2.61	3.34		
324	502	2888	10245	1.80	2.13	2.60	3.34		
323	.500	2879	10213	1.80	2.13	2.60	3.33		
322	•499	2870	10181	1.80	2.12	2.59	3.33		
321	•497	2861	10150	1.79	2.12	2.59	3.32		
320	•496	2852	10118	1.79	2.12	2.58	3.32		
319	•494	2843	10086	1.79	2.11	2.58	3.31		
318	•492	2834	10055	1.79	2.11	2.58	3.31		
317	•491	2825	10023	1.78	2.11	2.57	3.30		
316	*489	2816	9991	1.78	2.10	2.57	3.30		
315	*488	2807	9959	1.78	2.10	2.56	3.29		
314	*486	2798	9928	1.77	2.10	2.56	3.29		• •
313	*485	2789	9896	1.77	2.09	2.56	3.28		
312	·483	2781	9865	1.77	2.09	2.55	3.28		
311	*482	2772	9833	1.77	2.09	2.55	3.27		
310	.480	2763	9802	1.76	2.08	2.54	3.26		
309	• 478	2754	9770	1.76	2.08	2.54	3.26		
308	•477	2745	9739	1.76	2.08	2.54	3.26		
307	•475	2735	9707	1.75	2.07	2.23	3.25		
306	474	2727	9676	1.75	2.07	2.53	3.24		• •
305	472	2718	9644	1.75	2.07	2.52	3.24		
304	•471	2709	9612	1.75	2.06	2.52	3.23		• •
303	•469	2700	9581	1.74	2.06	2.21	3.53		
302	·468	2691	9549	1.74	2.06	2.21	3.22		• •
301	*466	2683	9517	1.74	2.05	2.51	3.22		
300	•465	2674	9486	1.74	2.05	2.50	3.21		
299	•463	2665	9454	1.73	2.05	2.50	3.21	• •	
298	·461	2656	9423	1.73	2.04	2.50	3.20	• •	
297	*460	2647	9391	1.73	2.04	2.49	3.20	• •	
296	*458	2638	9360	1.72	2.04	2.49	3.19	• •	
295	457	2629	9328	1.72	2.03	2.48	3.19	• •	
294	455	2620	9296	1.72	2.03	2.48	3.18	• •	
293	*454	2611	9265	1.71	2.02	2.47	3.18		• •
292	•452	2602	9233	1.71	2.02	2.47	3.17	• •	
291	•451	2593	9201	1.71	2.02	2.46	3.16	• •	• •
290	•449	2585	9170	1.71	2.01	2.46	3.16		
289	•447	2576	9138	1.70	2.01	2.46	3.15		
288	*446	2567	9107	1.70	2.01	2.45	3.15		
287	•444	2558	9075	1.70	2.00	2.45	3.14		
286	•443	2549	9043	1.69	2.00	2.44	3.14	, .	
285	•441	2540	9012	1.69	2.00	2.44	3.13		
284	•440	2531	8980	1.69	1.99	2.43	3.13		
283	•438	2522	8948	1.68	1.99	2.43	3.12	• •	
282	•437	2513	8917	1.68	1.99	2.43	3.12		
281	· 4 35	2504	8885	1.68	1.98	2.42	3.11		

TABLE No. 2.—COPPER STRANDS—continued.

Cross	Section	Weight	of Copper	Strand (Diameters in mm.)						
mm.2	sq. in.	Kilog. per km.	lb. per mile	127	91	61	, 37	19	7	
280	0.434	2495	8853	1.68	1.98	2.42	3.10			
279	•432	2486	8822	1.67	1.98	2.41	3.10			
278	.430	2478	8790	1.67	1.97	2.41	3.09			
277	•429	2469	8759	1.67	1.97	2.40	3.09			
276	• 427	2460	8727	1.66	1.97	2.40	3.08			
275	•426	2451	8695	1.66	1.96	2.40	3.08			
274	• 424	2442	8664	1.66	1.96	2.39	3.07			
273	423	2433	8632	1.65	1.95	2.39	3.06			
272	•421	2424	8601	1.65	1.95	2.38	3.06			
271	.420	2415	8569	1.65	1.95	2.38		0		
270	•418	2406	8537	1.65	1:94		3.05			
269	416	2397			1.94	2.37	3.05		٠.	
$\frac{268}{268}$			8506	1.64		2:37	3.01			
$\frac{268}{267}$	·415 ·413	2388	8474	1.64	1.94	2.37	3.04	• •		
		2380	8443	1.64	1.93	2.36	3.03			
$\frac{266}{265}$	•412	2371	8411	1.63	1.93	2.36	3.03		٠.	
	•410	2362	8379	1.63	1.93	2.35	3.05	4.51		
264	109	2353	8348	1 63	1.92	2.35	3.01	4.51		
263	•407	2344	8316	1.62	1.92	2.34	3.01	4.20		
262	406	2335	8285	1.62	1.91	2.34	3.00	4.19		
261	•404	2326	8253	1.62	1.91	2.33	3.00	4.18		
260	•403	2317	8221	1.61	1.91	2.33	2.99	4.17		
259	*401	2308	8190	1.61	1.90	5.35	2.99	4.17		
258	.399	2299	8158	1.61	1.90	2.32	2.98	4.16		
257	.398	2290	8127	1.61	1.50	2.32	2.97	4.15		
256	396	2282	8095	1.60	1.89	2.31	2.97	4.14		
255	*395	2273	8063	1.60	1.89	2.31	2.96	4.13		
254	.393	2264	8032	1.60	1.89	2.30	2.96	4.13		
253	.395	2255	8000	1.59	1.88	2:30	2.95	4.12		
252	390	2246	7968	1.59	1.88	$2 \cdot 29$	2.94	4.11		
251	.389	2237	7937	1.59	1.87	$2 \cdot 29$	2.94	4.10		
250	•387	2228	7905	1.58	1.87	2.28	2.93	4.09		
249	*385	2219	7873	1.58	1.87	2.28	2.93	4.08		
248	.384	2210	7842	1.58	1.86	2.28	2.92	4.08		
247	.382	2201	7810	1.57	1.86	2.27	2.91	$\frac{1}{4} \cdot 07$		
246	*381	2192	7778	1.57	1.86	$2.\overline{27}$	2.91	4.06		
245	.379	2183	7747	1.57	1.85	$\frac{1}{2} \cdot \frac{1}{26}$	2.90	4.05		
244	*378	2175	7715	1.56	1.85	2.26	$\frac{2.90}{2.90}$	4.04		
243	*376	2166	7683	1.56	1.85	2.25	$\frac{2.89}{2.89}$	4.04		
242	.375	2157	7652	1.56	1.84	$\frac{2}{2} \cdot 25$	2.89	4.03		
241	•373	2148	7620	1.55	1.84	$\frac{2}{2} \cdot \frac{24}{24}$	2.88	4.02		
240	.372	2139	7588	1.55	1.83	2.24	$\frac{2.87}{2.87}$		٠.	
239	.370	2130	7557	1.55	1.83	2.23	2.87	4.01		
238	.368	2121	7525	1.55	1.82	$\frac{2}{2} \cdot \frac{25}{23}$	2.86	4.00	٠.	
237	•367	2112	7493	1.54	1.82	2.23		3.99		
236	•365	2103	7462	1.54	1.82	$\frac{2 \cdot 23}{2 \cdot 22}$	2.86	3.99		
			1102	1 01	1 04	2 22	2.85	3.98		

TABLE No. 2.—COPPER STRANDS—continued.

Cross	Section	Weight	of Copper	1	Stran	nd (Diam	eters in 1	nm.)	
mm.2	sq. in.	Kilog. per km.	lb. per mile	127	91	61	37	19	7
235	0.364	2094	7430	1.54	1.81	2.22	2.84	3.97	
234	.362	2085	7399	1.53	1.81	2.21	2.84	3.96	
233	•361	2077	7367	1.53	1.81	2.21	2.83	3.95	
232	-359	2068	7335	1.53	1.80	2.20	2.83	3.94	
231	-358	2059	7304	1.52	1.80	2.20	2.82	3.93	
230	.356	2050	7272	1.52	1.79	2.19	2.82	3.93	
229	.354	2041	7240	1.52	1.79	2.19	2.81	3.92	
228	•353	2032	7209	1.51	1.79	2.18	2.80	3.91	
227	.351	2023	7177	1.51	1.78	2.18	2.79	3.90	
226	350	2014	7145	1.50	1.78	2.17	2.79	3.89	
225	.348	2005	7114	1.50	1.77	2.17	2.78	3.88	
224	.347	1996	7082	1.50	1.77	2.16	2.78	3.87	
223	.345	1987	7050	1.49	1.77	2.16	2.77	3.87	
222	.344	1979	7019	1.49	1.76	2.12	2.76	3.86	
221	.342	1970	6987	1.49	1.76	2.15	2.76	3.85	
220	•341	1961	6956	1.48	1.76	2.14	2.75	3.84	
219	*339	1952	6924	1.48	1.75	2.14	2.75	3.83	
218	.337	1943	6892	1.48	1.75	2.13	2.74	3.82	
217	.336	1934	6861	1.47	1.74	2.13	2.73	3.81	
216	.334	1925	6829	1.47	1.74	2.15	2.73	3.80	
215	.333	1916	6797	1.47	1.73	2.12	2.72	3.80	
214	.331	1907	6766	1.46	1.73	2.11	2.71	3.79	
213	.330	1898	6734	1.46	1.73	2.11	2.71	3.78	
212	*328	1889	6703	1.46	1.72	2.10	2.70	3.77	
211	•327	1880	6671	1.45	1.72	2.10	2.69	3.76	
210	*325	1872	6640	1.45	1.71	2.09	2.69	3.75	
209	*323	1863	6608	1.45	1.71	2.09	2.68	3.74	
208	.322	1854	6577	1.44	1.71	2.08	2.68	3.73	
207	.320	1845	6545	1 44	1.70	2.08	2.67	3.72	
206	•319	1836	6513	1.44	1.70	2.07	2.66	3.72	
205	*317	1827	6482	1.43	1.69	2.07	2.66	3.71	
204	.316	1818	6450	1.43	1.69	2.06	2.65	3.70	
203	*314	1809	6418	1.43	1.69	2.06	2.64	3.68	• •
202	•313	1800	6387	1.42	1.68	2.05	,		• •
201	•311	1791	6355	1.42	1.68	2.05	2·63 2·62	3.67	
200	.310	1782	6324	1.42	1.67	2.04	2.62	3.65	
199	.308	1774	6292	1.41	1.67	2.04		3.64	
198	.306	1765	6260	1.41	1.67	2.03	2.60	3.63	
197	*305	1756	6229	1.41	1.66	2.03	2.60	3.62	
196	*303	1747	6197	1.40	1.66	$\frac{2.02}{2.02}$	2.59	3.62	
195	*302	1738	6165	1.40	1.65	$2.02 \\ 2.01$	2.58	3.61	
194	.300	1729	6134	1.39	1.65	2.01	2.58	3.60	
193	•299	1720	6102	1.39		2.00	2.57	3.59	
192	•297	1711	6071	1.39	1.64	2.00	$\frac{2}{2} \cdot 56$	3.58	
191	296	1702	6039	1.38	T.07	4 00	2 50	3 00	

Table No. 2.—Copper Strands—continued.

Cross	Section	Weight	of Copper	Strand (Diameters in mm.)						
mm.2	sq. in.	Kilog. per km.	lb. per mile	127	91	61	37	19	7	
190	0.294	1693	6008	1.38	1.63	1.99	2.56	3.57		
189	•292	1684	5976	1.38	1.63	1.99	2.55	3.56		
188	•291	1675	5945	1.37	1.62	1.98	2.54	3.55		
187	-289	1667	5913	1.37	1.62	1.98	2.54	3.54	٠.	
186	.288	1658	5881	1.36	1.61	1.97	2.53	3.23		
185	.286	1649	5850	1.36	1.61	1.96	2.52	3.52		
184	285	1640	5818	1.36	1.60	1.96	2.52	3.51		
183	. 283	1631	5786	1.35	1.60	1.95	2.51			
182	.282	1622	5755	1.35	1.60	1.95		3.50		
181	.280	1613	5723	1.35			2.50	3.49		
180	.279	1604			1.59	1.94	2.50	3.48		
179	.277		5691	1.34	1.59	1.94	2.49	3.47		
178	275	1595	5660	1.34	1.58	1.93	2.48	3.46		
177	.274	1586	5628	1.34	1.58	1.93	2.48	3.45		
176		1577	5596	1.33	1.57	1.92	2.47	3.44		
175	.272	1569	5565	1.33	1.57	1.92	2.46	3.43		
174	271	1560	5533	1.32	1.56	1.91	2.45	3.43		
173	269	1551	5501	1.32	1.56	1.91	2.45	3.42		
	268	1542	5470	1.32	1.56	1.90	2.44	3.41	٠.	
172	266	1533	5438	1.31	1.55	1.90	2.43	3.40	٠.	
171	265	1524	5406	1.31	1.55	1.89	2.43	3.39		
170	263	1515	5375	1.31	1.54	1.88	2.42	3.38		
169	261	1506	5343	1.30	1.54	1.88	2.41	3.37		
168	.260	1497	5311	1.30	1.23	1.87	2.40	3.36		
167	.258	1488	5280	1.29	1.53	1.87	2.40	3.35		
166	.257	1479	5248	1.29	1.52	1.86	2.39	3.34		
165	255	1471	5217	1.29	1.52	1.86	2.38	3.33		
164	254	1462	5185	1.28	1.52	1.85	2.38	3.32		
163	.252	1453	5153	1.28	1.51	1.84	2.37	3.31		
162	.251	1444	5122	1.27	1.21	1.84	2.36	3.29		
161	.249	1435	5090	1.27	1.50	1.83	$\frac{2}{2} \cdot 35$	3.28		
160	.248	1426	5059	1.27	1.50	1.83	$\frac{2.35}{2.35}$	$\frac{3 \cdot 28}{3 \cdot 27}$		
159	.246	1417	5027	1.26	1.49	1.82	2.34	3.26		
158	. 244	1408	4996	1.26	1.49	1.82	2.33			
157	•243	1399	4964	1.26	1.48	1.81	2.32	3.25		
156	. 241	1390	4932	1.25	1.48	1.80		3.24		
155	.240	1381	4901	1.25	1.47		2.32	3.23		
154	·238	1372	4869	1.24	1.47	1.80	2.31	3.22		
153	237	1364	4838	1.24		1.79	2.30	3.21		
152	· 235	1355	4806	1.24	1.46	1.79	2.29	3.50		
151	•234	1346	4774	1.23	1.46	1.78	2.29	3.19		
150	.232	1337	4742		1.45	1.78	2.28	3.18		
149	.230	1328	4711	1.23	1.45	1.77	2.27	3.17		
148	.229	1319		1.22	1.44	1.76	2.27	3.16		
147	$\cdot 227$	1319	4679	1.22	1.44	1.76	2.26	3.15		
146	226		4647	1.21	1.43	1.75	2.25	3.14		
~~0	440	1301	4616	1.21	1.43	1.75	$2 \cdot 24$	3.13		

TABLE No. 2.—Copper Strands—continued.

Cross	Section	Weight	of Copper	1	Stran	nd (Diam	eters in	mm.)	
mm.²	sq. in.	Kilog. per km.	lb. per mile	127	91	61	37	19	7
145	0.224	1292	4584	1.21	1.42	1.74	2.23	3.12	
144	•223	1283	4553	1.20	1.42	1.73	2.23	3.11	
143	.221	1274	4521	1.20	1.41	1.73	2.22	3.10	
142	.220	1266	4490	1.19	1.41	1.72	2.21	3.08	
141	·218	1257	4458	1.19	1.40	1.72	2.20	3.07	
140	•217	1248	4427	1.19	1.40	1.71	2.19	3.06	
139	215	1239	4395	1.18	1.39	1.71	2.19	3.05	
138	•213	1230	4364	1.18	1.39	1.70	2.18	3.04	
137	-212	1221	4332	1.17	1.38	1.69	2.17	3.03	
136	210	1212	4300	1.17	1.38	1.69	2.16	3.02	
135	•209	1203	4269	1.16	1.37	1.68	2.16	3.01	
134	207	1194	4237	1.16	1.37	1.67	2.15	3.00	
133	•206	1185	4206	1.16	1.36	1.67	2.14	2.99	
132	204	1176	4174	1.12	1.36	1.66	2.13	2.97	
131	.203	1168	4142	1.12	1.35	1.65	2.12	2.96	
130	201	1159	4110	1.14	1.35	1.65	2.12	2.95	
129	•199	1150	4079	1.14	1.34	1.64	2.11	2.94	
128	-198	1141	4047	1.13	1.34	1.63	2.10	2.93	
127	.196	1132	4016	1.13	1.33	1.63	2.09	2.92	
126	195	1123	3984	1.12	1.33	1.62	2.08	2.91	
125	•193	1114	3952	1.12	1.32	1.62	2.07	2.89	
124	192	1105	3921	1.11	1.32	1.61	2.07	2.88	
123	•190	1096	3889	1.11	1.31	1.60	2.06	2.87	
122	•189	1087	3857	1.11	1.31	1.60	2.05	2.86	
121	·187	1078	3826	1.10	1.30	1.59	2.04	2.85	
120	·186	1069	3794	1.10	1.30	1.58	2.03	2.84	
119	·184	1061	3762	1.09	1.29	1.58	2.02	2.82	
118	·182	1052	3731	1.09	1.28	1.57	2.02	2.81	
117	·181	1043	3699	1.08	1.28	1.56	2.01	2.80	
116	•179	1034	3668	1.08	1.27	1.56	2.00	2.79	
115	·178	1025	3636	1.07	1.27	1.55	1.99	2.78	
114	•176	1016	3604	1.07	1.26	1.54	1.98	2.76	
113	.175	1007	3573	1.06	1.26	1.54	1.97	2.75	
112	·173	998	3541	1.06	1.25	1.23	1.96	2.74	
111	•172	989	3509	1.05	1.25	1.52	1.95	2.73	
110	•170	980	3478	1.05	1.24	1.52	1.95	2.72	
109	•168	971	3446	1.05	1.23	1.21	1.94	2.70	
108	•167	963	3414	1.04	1.23	1.50	1.93	2.69	
107	•165	954	3383	1.04	1.22	1.50	1.92	2.68	. •
106	•164	945	3351	1.03	1.22	1.49	1.91	2.67	
105	•162	936	3319	1.03	1.21	1.48	1.90	2.65	
104	•161	927	3288	1.02	1.21	1.47	1.89	2.64	
103	•159	918	3256	1.02	1.20	1.47	1.88	2.63	
102	•158	909	3224	1.01	1.20	1.46	1.87	2.61	
101	.156	900	3193	1.01	1.19	1.45	1.86	2.60	

TABLE No. 2.—Copper Strands—continued.

Cross	Section	Weight	of Copper		Strand (Diameters in mm.)					
mm.2	sq. in.	Kilog. per km.	lb. per mile	127	91	61	37	19	7	
100	0.155	891	3162	1.000	1.18	1.44	1.86	2.59		
99	.153	882	3130	0.996	1.18	1.44	1.85	2.58		
98	.151	873	3098	991	1.17	1.43	1.84	2.56	4.22	
97	•150	865	3067	986	1.17	1.42	1.83	2.55	4.20	
96	•148	856	3035	-981	1.16	1.41	1.82	2.54	4.18	
95	•147	847	3004	•976	1.15	1.41	1.81	2.52	4.16	
94	.145	838	2972	.971	1.15	1.40	1.80	2.51	4.13	
93	144	829	2940	.965	1.14	1.39	1.79	2.50	4.11	
92	.142	820	2909	.960	1.13	1:39	1.78	2.48	4.09	
91	.141	811	2877	955	1.13	1.38	1.77	2.47	4.07	
90	*139	802	2846	•949	1.12	1.37	1.76	2.46	4.05	
89	·137	793	2814	•944	1.12	1.36	1.75	2.44	4.02	
88	·136	784	2783	-939	1.11	1.36	1.74	2.43	4.00	
87	•134	775	2751	•934	1.10	1.35	1.73	2.41	3.98	
86	• 133	766	2719	•928	1.10	1.34	1.72	2.40	3.96	
85	.131	758	2688	•923	1.09	1.33	1.71	2:39	3.93	
84	130	749	2656	•917	1.08	1.32	1.70	2.37	3.91	
83	.128	740	2625	•912	1.07	1.32	1.69	2.36	3.88	
82	•127	731	2593	•906	1.07	1.31	1.68	2.34	3.86	
81	125	722	2561	*901	1.06	1.30	1.67	2.33	3.84	
80	•124	713	2530	.895	1.06	1.59	1.66	$2 \cdot 32$	3.81	
79	•122	704	2498	.890	1.05	1.28	1.65	2:30	3.79	
78	120	695	2467	.884	1.02	1.28	1.61	2.29	3.77	
77	1119	686	2435	.878	1.04	1.27	1.63	$2 \cdot 27$	3.74	
76 75	:117	677	2404	873	1.03	1 · 26	1.62	2.26	3.72	
74	·116 ·114	668	2372	.867	1.05	1 · 25	1.61	$2 \cdot 24$	3.69	
73	.113	660	2341	-861	1.05	1.54	1.60	2.23	3.67	
72	11.5	651	2309	855	1.01	1.53	1.20	$2 \cdot 21$	3.64	
71	.110	642	2277	.849	1.00	1.53	1.57	5.50	3:62	
70	. 1085	633 624	2246	.844	0.558	1.22	1.56	2.18	3.59	
69	. 1069	615	2214 2182	-838	. 550,		1.55	2.17	3.57	
68	1054	606	2152	1832	.982	1.50	1.54	2.15	3.24	
67	1038	597	2131	.824	-976	1.19	1.23	2.13	3.52	
66	1023	588	2088	.819	.968	1.18	1.52	2.15	3.49	
65	1007	579	2056	.813	.961	1.17	1.21	2.10	3.46	
64	.0992	570	2024	.807	953	1.16	1.50	2.09	3.44	
63	.0976	561	1993	.505	1946	1.16	1.48	2.07	3.41	
62	.0961	553	1961	.795	.939	1.15	1.47	2.06	3.39	
61	.0945	544	1929		.930	1.14	1.46	2.04	3.36	
60	.0930	535	1897		924	1.13	1.45	2.02	3.33	
59	.0914	526	1866	• •	•916	1.12	1.44	2.01	3.30	
58	.0899	517	1834	• •	.908	1.11	1:42	1.99	3.58	
57	.0883	508	1803		100.	1.10	1.41	1.97	3.25	
56	.0868	499	1771	• •	.893	1.09	1.40	1.95	3.22	
		100	TILT		.885	1.08	1.39	1.94	3.19	

TABLE No. 2.—COPPER STRANDS—continued.

Cross	Section	Weight o	of Copper		Stra	nd (Diam	eters in n	n m .)	
mm.2	sq. in.	Kilog. per km.	lb. per mile	127	91	61	37 .	19	7
55	0.0852	490	1739		0.874	1.07	1.37	1.92	3.16
54	:0837	481	1708		.869	1.06	1.36	1.90	3.13
53	-0821	472	1676		*860	1.05	1.35	1.88	3.10
52	.0806	463	1644		.853	1.04	1.34	1.87	3.08
51	.0790	455	1612.7		845	1.03	1.32	1.85	3.05
50	.0775	446	1581.0		.836	1.02	1.31	1.83	3.05
. 49	.0759	437	1549.3		*828	1.01	1.30	1.81	$2 \cdot 99$
48	0744	428	1517.6		-819	1.00	1.29	1.79	$2 \cdot 95$
47	0728	419	1486.2		-810	0.990	1.27	1.78	2.92
46	.0713	410	1454.5		800	.980	1.26	1.76	2.89
45	.0697	401	1423.0			.969	1.24	1.74	2.86
44	.0682	392	1391.3			•958	1.23	1.72	2 ·83
43	.0666	383 .	1359 · 7			•948	1.22	1.70	2.80
42	.0651	374	1328 • 0			•936	1.20	1.68	2.77
41	.0635	365	1296.5			•925	1.19	1.66	2.73
40	.0620	356	1265.0			•914	1.17	1.64	2.70
39	.0604	348	1233 · 2			•902	1.16	1.62	2.66
38	0589	339	1201 · 6			.891	1.14	1.60	2.63
37	-0573	330	1170.0			·878	1.13	1.58	2.59
36	0558	321	1138.3			·867	1.11	1.55	2.56
35	.0542	312	1106.7			.855	1.10	1.53	$2 \cdot 52$
34	0527	303	1075.1			.842	1.08	1.21	2.48
33	0511	294	1043.5			830	1.07	1.49	2.45
32	-0496	285	1011-8			·818	1.05	1.46	$2 \cdot 41$
31	.0480	276	980 - 2			.804	1.03	1.44	$2 \cdot 37$
30	.0465	267	948.8			.792	1.02	1.42	2.34
29	0449	258	917.0				0.999	1.39	2.30
28	0434	250	885.3				•982	1.37	2.26
27	0418	241	853.7				•964	1.35	$2 \cdot 21$
26	.0403	232	822 · 1				•947	1.32	2.18
25	0387	223	790.5				•928	1.29	$2 \cdot 13$
24	0372	214	758 · 8		4 +		909	1.27	2.09
23	0356	205	727 - 2				*890	1.24	2.01
22	0341	196	695.6				870	1.21	2.00
21	.0325	187	664.0				850	1.19	1.96
20	0310	178	632.4				. 830	1.16	1.91
19	0294	169	600.8				*808	1.13	1.86
18	0279	160	569 · 1				•787	1.10	1.81
17	.0263	152	537.5					1.07	1.76
16	0248	143	505.9					1.04	1.71
15	.0232	134	474.2					1.00	1.65
14	0202	125	442.7					0.969	1.60
13	0201	116	411.0					.933	1.54
12	.0186	107	379.4					.896	1.48
11	0170	98	347.8					.859	1.41
1.1	01,0								

Table No. 2.—Copper Strands—continued.

Cross	S Section	Weight of Copper		Strand (Diameters in mm.)							
mm.²	sq. in.	Kilog. per km.	lb. per mile	127	91	61	37	19	7		
10	0.0155	89	316.2	1	1			0.818	1.35		
9	.0139	80	284.6				* * *	•777	1.33		
8	.0124	71	253.0				• •		1 20		
7	.0108	62	221.4					* *	1.07		
6	•0093	53	189.7					* *	1.05		
5	*00775	45	158.1					**	0.95		
4	0062	36	126.5						*853		
3	*00465	27	94.9						•738		
2	.0031	18	63.2								
1	.00155	9	31.6								

Conversion of mm. to inches, multiply mm. by 0.03937.

Diameter of Strand.—Table 3 gives the pitch and overall diameters of the standard strands, taking the diameter of the wire composing the strand as unity. These constants multiplied by the diameter of the wire give the diameters of the strand.

TABLE No. 3.—DIAMETERS OF STRANDS.

Number of Wires	Pitch Diameter	Overall Diameter
in Strand	of Strand	of Strand
3 4 7 19 37 61 91	1·1547 1·414 2·0 4·0 6·0 8·0 10·0	2·1547 2·414 3·0 5·0 7·0 9·0 11·0 18·0

The Pitch Diameter is twice the distance between the centre of the strand and the centre of any wire forming the outside layer.

The Overall Diameter is, of course, the maximum diameter of the strand,

and is equal to the pitch diameter plus the diameter of the wire.

Lay.—The length of lay of the wire in any layer is generally considered as a multiple of the pitch diameter of the strand. The standard length of lay adopted by the Cable Makers' Association is twenty times the pitch diameter, but in special cases this would be increased or decreased as required.

The extra length of wire required in a strand can be calculated in the following way:—

Fig. 2.

In Fig. 2, let d= the pitch diameter of the strand l= the length of lay a= the ratio $\frac{l}{d}$ x= actual length of any wire in the strand,

then the lengths (πd) , l and x form a right-angled triangle, with x as hypotenuse.

$$\therefore x = \sqrt{l^2 + (\pi d)^2} = \sqrt{(a d)^2 + (\pi d)^2}.$$
$$= d\sqrt{a^2 + \pi^2}.$$

Therefore, the increment of length of wire on account of the lay per unit length of strand is equal to

$$\lambda = \frac{x - l}{l} = \frac{d\sqrt{a^2 + \pi^2} - a d}{a d} = \frac{\sqrt{a^2 + \pi^2}}{a} - 1.$$

The sine of the angle of lay is equal to $\frac{l}{x}$.

$$\frac{l}{x} = \frac{a \ d}{\sqrt{a^2 + \pi^2}} = \frac{a}{\sqrt{a^2 + \pi^2}}.$$

Table 4 shows the percentage of weight or length to be added to that of a straight wire of length equal to the axial length of the strand, to compensate for the lay.

TABLE No. 4.—HELICAL LAY.

to length of Lay be added of									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pitch Diameter to length	Angle of	to	Pitch Diameter to length	7	to	Pitch Diameter to length	Angle of	
10 07 19 8.4	1·1 1·2 1·3 1·4 1·5 1·6 1·7 1·8 1·9 2·0 2·1 2·2 2·3 2·4 2·5 2·6 2·7 2·8 2·8 2·8 2·8 3·9 3·1 3·3 3·4 3·5 3·6 3·7 3·7 3·7 3·7 3·7 3·7 3·7 3·7 3·7 3·7	19 20 20 50 22 30 24 0 25 30 27 0 28 25 29 50 31 10 32 35 33 45 35 0 36 10 37 25 38 35 39 35 40 40 41 40 42 40 43 40 44 35 45 33 46 26 47 15 48 5	202·6 180·2 161·5 145·7 132·1 120·4 110·1 101·1 93·2 86·2 79·9 74·3 69·3 64·8 60·6 56·8 53·4 50·3 47·4 44·8 42·4 40·1 38·0 36·2	3:8 3:9 4:1 4:2 4:3 4:5 4:5 4:7 4:5 5:0 5:1 5:2 5:4 5:5 6:5	50 27 51 9 51 50 52 31 53 19 53 53 54 28 55 3 56 49 57 21 57 52 58 20 58 54 59 48 60 49 60 40 61 8 61 38 61 49	29·7 28·4 27·5 26·0 24·7 23·8 22·9 22·0 21·1 20·3 19·5 16·8 16·3 15·7 15·7 14·2 13·7 14·2 13·7 14·2 13·8 12·8 11·0	8·5 9·0 9·5 10·0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	69 45 70 46 71 25 72 35 73 59 75 21 76 25 77 22 78 15 78 52 79 33 80 5 80 3 81 28 81 28 81 52 82 16 82 31 82 50 83 7 83 19 83 34 83 46	$\begin{array}{c} 6\cdot 60 \\ 5\cdot 92 \\ 5\cdot 50 \\ 1\cdot 82 \\ 4\cdot 04 \\ 3\cdot 37 \\ 2\cdot 88 \\ 2\cdot 48 \\ 2\cdot 17 \\ 1\cdot 91 \\ 1\cdot 69 \\ 1\cdot 51 \\ 1\cdot 35 \\ 1\cdot 135 \\ 1\cdot 113 \\ 1\cdot 012 \\ 0\cdot 919 \\ \cdot 853 \\ \cdot 787 \\ \cdot 727 \\ \cdot 675 \\ \cdot 628 \\ \cdot 585 \end{array}$

Е

The following constants are calculated, taking a lay of twenty times the pitch diameter as adopted by the C.M.A.

```
(resistance of single wire of length
Resistance of 3 strand cable = 0.33742
                                                  equal to the axial length of strand
               4
                               = 0.253065
                                               ×
                               = 0.1443557
              19
                               = 0.0532424
                                               ×
                               = 0.0273493
                                               X
              61
                               = 0.0165911
                                               ×
                               = 0.0111222
                                               X
             127
                               = 0.00796978
                                              X
                                                 (weight of single wire of length
Weight of
               3 strand cable =
                                    3.03678
                                                 equal to the axial length of strand
                                    4 \cdot 04904
               4
                                    7.07356
                                               X
                                                                              99
              19
                                   19:2207
                                               ×
                                   37.4414
                                               ×
     22
                                   61.7356
              61
                                               ×
                                   92 \cdot 1034
                                               X
                                 128:5447
                                               ×
     2.2
Effectual area of 3 strand cable =
                                       2.96366 \times \text{area of single wire.}
                 4
                                      3.95155
                                                X
                                      6.92733
                19
                                     18.7820
```

The Engineering Standards Committee have since standardised an increase of 2 per cent. on account of lay, in all wires except the centre wire, which corresponds to a lay of approximately 15.5 times the pitch diameter. The following constants are calculated on this allowance:—

36.5640

 $60 \cdot 2733$

89:9100

 $125 \cdot 4740$

X

X

21

91

,, 91

```
Resistance of 3 strand cable = 0.34000
                                                    × resistance of single wire.
                 4
                                     = 0.25500
                                                    ×
                 7
                                     = 0.14530
                                                    ×
                                                                           19
                19
                                     = 0.053628 \times
                                     = 0.027553 \times
                                     = 0.016716 \times
                61
                91
                                     = 0.011206 \times
                                     = 0.008030 \times
               127
                       22
                                           3.0600 \times \text{weight of single wire.}
 Weight of
                    strand cable =
                 4
                                           4.0800 ×
   99
                                           7.1200 \times
                                          19:3600 ×
                19
                                                                       3.9
                               9.5
                                                                               99
   95
                                         37.7200 \times
                               22
                                          62 \cdot 2000 \times
                61
                       9.5
                               2.9
                                          92.8000 ×
                       99
                                     = 129.5200 \times
                       9.9
```

Effectual	area	of 3	strano	l cabl	le =	2.	94117	×	area of	single	wire	۵.
,,	33	$\frac{4}{}$	29	99	=		92157		22	22	99	
4.9	99	7	99	99	=		88235		23	22	22	
59	22	19	77	23	=		64706		22	21	22	
29	72	37	22	72	=		29411		29	22	99	
22	99	61 91	99	97			82353		59	29	93	
52	59	127	59	79			23529 5294		79	22	99	
29	27	121	22	99	Parmer.	141	0404	X	99	2.2	99	
Effectua	l are	a of	' 3 st	rand	cable	е =	total	C8	alculate	d area		1.0200
Effectua	l are		4	rand	cable	e = =	total	CE	alculate	ed area	**	1.0200
		,	$\frac{4}{7}$					CE			*	1·0200 1·01714
27	9	, ,	4 7 19	27	29	=======================================	53	C	99	22	÷	1·0200 1·01714 1·01895
27 22	9:	, , ,	4 7 19 37	27 22	? 9 9 ?	= = =	99 99	e	99 99	22	÷ ÷	1·0200 1·01714 1·01895 1·01946
27 72 27 72 72	9 9; 9;	, , ,	4 7 19 37 61	27 23 21	29 97 29	= = = = =	99 99 99	G	99 99 99	27 11		1·0200 1·01714 1·01895 1·01946 1·01967
27 72 27 79	9 9; 9;	, , ,	4 7 19 37 61 91	27 23 23 23	29 97 29 29	= = =	27 29 23 23	CE	97 98 97 99	22 33 32 33		1·0200 1·01714 1·01895 1·01946

COPPER.

Copper weighs 555 lb. per cubic foot at 60° F., which gives a specific gravity of 8.90.

A 2 per cent. variation from the adopted standard weight is allowed for all conductors.

Weight in lb. per mile = 20350 × area in square inches

Weight in lb. per yard = 11.575 × area in square inches

1 cubic inch weighs 145.66 grammes.

1 cubic centimetre weighs 8.90 grammes.

Weight in kilogrammes per kilometre = $8.90 \times \text{area in mm.}^2$

Weight in lb. per mile = $31.57 \times area$ in mm.²

Weight in lb. per mile = $\frac{(d \text{ in mils})^2}{(20.700)^2}$ 62:506

Diameter in mils = 7.906 \(\square\) weight in lb. per mile.

Annealed High-conductivity Commercial Copper. A wire 1 metre long, weighing I gramme, and having a resistance of 0.1508 ohm at 60° F., is the standard (E.S.C.) for annealed high-conductivity commercial copper.

A 2 per cent, variation from the adopted standard of resistance is allowed in

all conductors.

An allowance of I per cent. increased resistance, as calculated from the diameter, is allowed on all tinned copper conductors between diameters 0 104 in.

and 0.028 in. (Nos. 12 to 28 S.W.G.) inclusive.

An increase of 2 per cent in each wire, except the centre wire, is allowed in all strands, on account of lay. The average temperature coefficient of 0.00238 per degree F. (0.00428 per degree C.) is adopted by the Engineering Standards Committee for commercial purposes. This, according to the authors' opinion, is much too high for commercial copper.

The resistance per mile of annealed copper

= $\frac{0.0423172}{\text{area in square in.}}$ ohms at 60° F.

The resistance per yard of annealed copper

= $\frac{0.000024044}{\text{area in square in.}}$ ohms at 60° F.

The resistance per inch of annealed copper

$$= \frac{0.00000066788}{\text{area in square in.}} \text{ ohms at 60° F.}$$

The resistance per cubic centimetre of annealed copper = 0.00000169639 ohm at 60° F.

The resistance per mile of annealed copper

$$=\frac{862}{\text{lb. per mile}}$$
 ohms at 60° F.

The resistance per mile of annealed copper

$$=\frac{53880}{(d \text{ in mils})^2}$$
 ohms at 60° F.

Hard-drawn Copper Wire.-A wire 1 metre long, weighing 1 gramme, and having a resistance of 0.1539 ohm at 60° F., is the standard (E.S.C.) for harddrawn, high-conductivity commercial copper.

Hard-drawn copper is defined by the Engineering Standards Committee as

that which will not elongate more than 1 per cent, without fracture,

Resistance per mile of hard-drawn copper

=
$$\frac{0.0431689}{\text{area in square in.}}$$
 ohms at 60° F.

The resistance per yard of hard-drawn copper

$$= \frac{0.0000245277}{\text{area in square in.}} \text{ ohms at } 60^{\circ} \text{ F.}$$

The resistance per inch of hard-drawn copper

=
$$\frac{0.000000681327}{\text{area in square in.}}$$
 ohms at 60° F.

The resistance per cubic centimetre of hard drawn copper = 0.00000173054 ohm at 60° F.

The resistance per mile of hard drawn copper

$$= \frac{879 \cdot 35}{\text{lb. per mile}} \text{ ohms at } 60^{\circ} \text{ F.}$$

The resistance per mile of hard drawn copper

=
$$\frac{54964}{(\text{diameter in mils})^2}$$
 ohms at 60° F.

For paper or gutta percha insulated cables the conductor can be formed of plain copper wires, but for india rubber insulated cables the conductor should be formed of tinned copper wires.

In the case of vulcanised bitumen cables the conductor, or at least the outside layer of wires of the conductor, should be formed of tinned copper wires. If the bitumen cable has a separator of paper or jute between the conductor and the bitumen, the tinning of the conductor wires becomes unnecessary.

Copper elongates with rise of temperature 0.001718 per cent. per degree Centigrade; a length l, when raised t° Centigrade in temperature, becomes:

$$L = (1 + 0.00001718 t) l.$$

This coefficient holds good for temperatures between 0 - 100° Centigrade

Sector Conductors.—In order to reduce the diameter of multicore cables, the conductors are sometimes given a more or less sector form by one of the following methods:—

- (i) The ordinary circular strand of wires, previous to being insulated, is given the required shape by passing it through a roller die.
- (ii) The sector conductor is directly formed by using wires of different diameters in the centre of the strand.
- (iii) The conductor is built up, in the case of a 3-core cable, on a 6-wire basis, instead of a 7-wire basis, the 6 wires being fed unstranded through a die plate so as to form the base as shown in Fig. 3. On this base of 6 wires, a further 12 wires are stranded to form an 18-wire sector conductor as shown in Fig. 4.

FIG. 3.—SECTOR BASIS.

The most economical sector shape—that is, a true 120° sector—cannot be adopted owing to the sharp corners, which would crack and damage the insulating material, and in the case of extra high tension cables, produce excessive

FIG. 4.—18-WIRE SECTOR CONDUCTOR.

electric stress in the dielectric. Sector conductor cables have practically no advantage when the section of the conductors is less than 0.1 square inch owing to the springiness of the strand.

Table No. 5.—Weight of Copper Wire in Lb. per Nautical Mile.

Dia	meter	lb per	Dia	ımeter	lb. per	Dia	meter	lb. per
mm.	inch	n. mile	mm.	inch	n. mile	mm.	inch	n. mile
		1b. per n. mile 0 · 2857 1 · 1427 2 · 5711 4 · 5708 7 · 1419 10 · 284 13 · 998 18 · 283 23 · 140 28 · 568 34 · 567 41 · 137 48 · 279 55 · 992 64 · 277 73 · 133 82 · 560 92 · 559 103 · 13 114 · 27 125 · 98 138 · 27 151 · 12 164 · 55 178 · 55 193 · 12 208 · 26 223 · 97 240 · 25 257 · 11 274 · 53		1	1b. per n. mile 631·06 658·20 685·91 714·19 743·04 772·47 802·46 833·03 864·17 895·88 928·16 961·01 994·44 1028·4 1063·0 1098·1 1133·8 1170·1 1207·0 1244·4 1321·0 1360·1 1399·8 1440·1 1480·9 1522·4 1564·4 1666·9 1650·1 1693·8	mm. 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0 12.1 12.2 12.3	0.3661 -3701 -3780 -3819 -3859 -3859 -3897 -3976 -4016 -4055 -4095 -4134 -4173 -4252 -4291 -4381 -4370 -4409 -4449 -4488 -4528 -4567 -4666 -4646 -4685 -4724 -4764 -4883 -4843	2470 · 8 2524 · 2 2578 · 2 2632 · 8 2687 · 9 2743 · 6 2799 · 9 2856 · 8 2914 · 2 2972 · 2 3030 · 7 3089 · 9 3149 · 6 3209 · 8 3270 · 7 3332 · 1 3394 · 1 3456 · 7 3519 · 8 3583 · 5 3647 · 8 3712 · 6 3778 · 1 3844 · 0 3910 · 6 3977 · 7 4045 · 5 4113 · 7 4182 · 6 4252 · 1 4322 · 1
3·2 3·3 3·4 3·5 3·6 3·7 3·8 3·9 4·0 4·1 4·2 4·3 4·6	·1260 ·1299 ·1378 ·1378 ·1417 ·1457 ·1496 ·1535 ·1614 ·1654 ·1654 ·1672 ·1772 ·1772 ·1811	292·53 311·10 330·24 349·95 370·24 391·09 412·52 434·51 457·08 480·22 503·93 528·21 553·07 578·49 604·49	7·8 7·9 8·0 8·1 8·2 8·3 8·4 8·5 8·6 8·7 8·8 9·0 9·1 9·2	.3071 .3110 .3150 .3159 .3228 .3268 .3307 .3386 .3425 .3465 .3455 .3504 .3543 .3583 .3623	1738·0 1782·9 1828·3 1874·3 1920·9 1968·0 2015·7 2064·0 2112·9 2162·3 2212·3 2262·8 2314·0 2365·7 2418·0	12·4 12·5 12·6 12·7 12·8 12·9 13·0 13·1 13·2 13·3 13·4 13·5 13·6 13·7 13·8	·4882 ·4921 ·5000 ·5039 ·5079 ·5118 ·5157 ·5236 ·5276 ·5236 ·5276 ·5315 ·5354 ·5394 ·5433	4392·6 4463·8 4535·1 4607·7 4680·6 4754·0 4828·0 4902·6 4977·7 5053·4 5129·7 5206·5 5283·9 5361·9 5440·5

Table No. 5.—Weight of Copper Wire in Lb. per Nautical Mile—
continued.

Di	ameter	lb. per	Di	ameter	lb. per	Di	ameter	lb. per
mm.	inch	n. mile	mm.	inch	n. mile	mm.	inch	n. mile
13.9	0.5472	5519.6	17.7	0.6968	8950 · 1	21.4	0.8425	13083
14.0	. 5512	5599 - 3	17:8	.7008	9051.5	21.5	8465	13206
14.1	•5551	5679 6	17:9	.7047	9153.5	21.6	1 .8504	13329
$\frac{14 \cdot 2}{14 \cdot 3}$	•5591	5760.5	18.0	.7087	9256 · 1	21.7	.8543	13452
14.4	-5630	5841.9	18.1	.7126	9359 · 2	21.8	.8583	13577
14.2	- 5669	5923 · 9	18.2	.7165	9485 - 0	21.9	8622	13702
14.6	·5709 ·5748	6006 - 4	18.3	•7205	9567 1	55.0	.8661	13827
14.7	.5787	6089 6	18.4	.7244	9672.0	22.1	.8701	13953
14.8	-5827	6173 · 3	18.5	-7283	9777.4	22 2	.8740	14080
14.9	.5866	6256.6	18.6	•7323	9883-4	25.3	-8780	14207
15 0	-5906	6342 4	18.7	.7362	9989 9	25.4	-8819	14334
15.1	-5945	6427·8 6513·7	18.8	.7402	10097	22.2	.8858	14463
$15 \cdot 2$	•5984	6600.4	18.9	.7441	10205	22.6	.8898	14592
15.3	.6024	6687.5	19.0	•7480	10313	22.7	8937	14721
15.4	.6063	6775 2	19.2	7520	10422	22.8	8976	14851
15.5	-6102	6863.5	19.3	7559	10531	22.9	-9016	14981
15.6	-6142	6952 · 3	19.4	-7598	10641	23 · ()	9055	15113
15.7	-6181	7011.7	19.5	· 7638 · 7677	10752	23 · 1	.0094	15244
15.8	.6220	7131 - 7	19.6		10863	28 - 2	.9134	15377
15.9	-6260	7222 - 3	19.7	·7717 ·7756	10975	23.3	.9173	15509
16.0	· 6299	7313.4	19.8	7795	11087	23.4	-9213	15643
16.1	· 6339	7405 1	19.9	7835	11200	23.5	+9252	15777
$16 \cdot 2$	·6378	7497 - 4	20.0	.7874	11313	23.6	• 9291	15911
16.3	-6417	7590 - 2	20.1	-7913	11427 11542	23.7	.9331	16047
16.4	.6457	7683 - 6	20.2	7913		23.8	.9370	16182
16.5	-6496	7777.6	20.3	· 7992	11657	23.9	.94()()	16318
16.6	6535	7872 2	$\frac{20.3}{20.4}$	8031	11773 11889	24:0	•9449	16455
16.7	.6575	7967 - 3	20.5	8071	12006	$24 \cdot 1 \\ 24 \cdot 2$.9488	16593
16.8	-6614	8063.0	20.6	8110	12123		9528	16731
16.9	-6654	8159.3	20.7	8150	12125	24.3	9567	16869
17.0	-6693	8256 · 2	20.8	·8189	12360	24.4	.9606	17008
17.1	6732	8353 · 6	20.9	-8228	12479	24:5	.9646	17148
17.2	6772	8451.6	$\frac{1}{21 \cdot 0}$	· 8268	12599	24.6	9685	17288
17:3	-6811	8550.3	21.1	·8307	12719	$\frac{24 \cdot 7}{24 \cdot 8}$.9724	17429
17.4	.6850	8649 2	$\frac{21 \cdot 2}{21 \cdot 2}$	· 8346	12840	24.8	.9764	17570
17.5	.6890	8749.0	21.3	8386	12961		19803	17712
17.6	.6929	8849 · 2		0000	12001	25.0	·9843	17855

TABLE No. 6.—WEIGHT OF COPPER WIRE IN LB. PER NAUTICAL MILE.

Di	ameter	lb. per	Dia	meter	lb. per	Dia	meter	lb. per
inch	mm.	n. mile	inch	mm.	n. mile	inch	mm.	n. mile
0 • 001	0.0254	0.01843	0.047	1.1938	40.712	0.093	2.3622	159.40
.002	.0508	.07372	.048	1.2192	42:463	•094	2.3876	162.85
.003	0.0762	.16587	.049	1 · 2446	44.250	.095	2.4130	166:33
.004	.1016	•29488	.050	1.2700	46.075	•096	2.4384	169.85
•005	$\cdot 1270$	•46075	.051	1.2954	47.936	.097	2.4637	$173 \cdot 41$
.006	. 1524	.66348	.052	1.3208	49.835	.098	2.4891	177.00
•007	.1778	90307	.023	1.3462	51.770	•099	2.5145	180.63
.008	•2032	1.1795	.054	1:3716	53.742	•100	2.5399	184.30
• 009	·2286	1 4928	.055	1.3970	55.751	•101	2.5653	188.00
.010	.2540	1.8430	.056	1.4224	57:796	•102	2.5907	191.75
.011	·2794	2.2300	.057	1.4478	59.879	•103	2.6161	195.52
.012	.3048	2.6539	.058	1.4732	61.998	·104	2.6415	199.34
•013	.3302	3.1147	.059	1.4986	64.155	•105	2.6669	203 · 19
.014	•3556	3.6123	.060	1.5240	66.348	106	2.6923	207.18
.015	*3810	4.1467	.061	1.5494	68.578	107	2.7177	211.00
•016	•4064	4.7181	.062	1.5748	70.845	108	2.7431	214.97
.017	•4318	5.3263	.063	1.6002	73 · 149	109	2.7685	218.97
.018	•4572	5.9713	.064	1.6256	75.489	•110	2.7939	223:00
.019	.4826	6:6532	-065	1.6519	77.867	•111	2.8193	227:08
.020	.5080	7:3720	.066	1:6764	80.281	1112	2.8447	231 · 19
.021	•5334	8:1276	•067	1.7018	82.732	113	2.8701	235.33
.022	.5588	8.9201	.068	1.7272	85.220	114	2.8955	239.52
.023	•5842	9.7495	.069	1.7526	87.745	115	2.9209	$243 \cdot 74 \\ 247 \cdot 99$
.024	.6096	10.616	•070	1.7780	90.307	116	2.9463	252.29
•025	•6350	11.519	.071	1.8034	92.906	117	2.9717 2.9971	256.62
.026	•6604	12.459	.072	1.8288	95.541		3.0225	260.99
.027	.6858	13.435	•073	1.8542	98.213	·119 ·120	3.0479	265.39
•028	.7112	14.449	.074	1.8796	100.92 103.67	120	3.0473	269 - 83
•029	•7366	15.500	.075	1.9050		121	3.0987	$274 \cdot 31$
•030	•7620	16.587	:076	1.9304	106 · 45 109 · 27	123	3.1241	278 · 83
.031	.7874	17.711	:077	1.9812	112.13	123	3.1495	283 38
.032	*8128	18.872	:078	2.0060	115.02	•125	3 1749	287.97
.033	•8382	20:070	·079 ·080	2.0320	117.95	123	3.2003	292.59
.034	*8636	21.305	080	2.0574	120.92	120	3 · 2257	297 26
.035	·8890	22.577	081	2.0828	123 92	128	3.2511	301.96
•036	•9144	23.885	082	2.1082	126.96	129	3.2765	306.69
.037	•9398	25.231	084	2.1336	130.04	130	3.3019	311.47
.038	•9652	26.613	084	2.1590	133.16	131	3.3273	316 28
•039	9906	28.032	.086	2.1844	136.31	132	3.3527	321 · 12
.040		29.488	080	2.2098	139.50	133	3.3781	326.01
.041	1.0414		.088	$2 \cdot 2352$	142.72	134	3.4035	330.93
.042	1,0668	32.510	089	2.2606	145.98	135	3.4289	335.89
.043		34·077 35·680	.090	2.2860	149.28	136	3.4543	340.88
.044	1.1176	37.321	.091	2.3114	152.62	137	3.4797	345.91
.045	1.1430	38.998	091	2.3368	155.99	138	3.5051	350.98
•046	1.1684	99,930	004	2 0000	100 00	1		

TABLE No. 6.—WEIGHT OF COPPER WIRE IN LB. PER NAUTICAL MILE—cont.

D	iameter	lb. per	. D:	iameter	lb. per	Di	iameter	lb. per
inch	mm,	m. mile	inch	mm.	n. mue	inch	mm.	n. mile
139	3.5305	356.09	0.185	4.6989	630.77	0.231	5.8673	983.4
.14()	3.5559	361.23	186	4.7243	637.60	-232	5.8927	991.98
•141	3.2813	366:41	187	4 · 7497	644.48	233	5.9181	1000.5
142	3.6067	371 - 62	.188	4.7751	651 · 39	.234	5.9435	1000 5
•143	3.6321	376.87	189	4.8005	658.34	235	5.9689	1017.8
.144	3.6575	382.16	•190	4.8259	665.32	236	5.9943	1026.5
.145	3.6829	387.49	-191	4.8513	672.34	237	6.0197	1035.2
146	3.7083	392.85	192	4.8767	679.40	238	6.0451	
.147	3.7337	398 · 25	•193	4.9021	686.50	239	6.0705	1043.9
148	3.7591	403.69	•194	4.9275	693.63	239		1052.7
•149	3.7845	409.16	195	4.9529	700.80	•241	6.0959	1061.6
150	3.8099	414.67	•196	4.9783	708.01		6.1213	1070 4
151	3.8353	420.22	•197	5.0037		• 242	6.1467	1079.3
152	3.8607	425.81	197	5.0291	715.25	•243	$6 \cdot 1721$	1088.3
153	3.8861	431.43	•199		722.53	•244	6.1975	1097.2
154	3.9115	437.09		5.0545	729.85	•245	6.2229	1106.3
155	3.9369	442.78	•200	5.0799	737 · 20	246	6.2483	1115.3
156			•201	5.1053	744.59	•247	6.2737	1124.4
157 - 157	3.9623	448.51	•202	5.1307	752.02	•248	6.2991	1133.5
	3.9877	454.28	•203	5.1561	759.48	•249	6.3245	1142.7
158	4.0131	460.09	.204	5.1812	766.98	•250	6.3499	1151.9
159	4.0385	465.93	•205	5.2069	774.52	•251	6.3753	1161 · 1
160	4:0639	471.81	•206	5.2323	782.09	.252	6.4007	1170.4
161	4.0893	$477 \cdot 72$.207	5.2577	789.71	.253	6.4261	1179.7
162	4.1147	483.68	.208	5.2831	797.35	.254	6.4515	1189.0
163	4.1401	489.67	•209	5.3085	805.04	.255	6.4769	1198.4
164	4.1655	495.69	•210	5.3339	812.76	.256	6.5023	1207.8
165	4.1909	501.76	•211	5.3593	820.52	257	6.5277	
166	4.2163	507.86	•212	5.3847	828.32	.258	6.5531	1217.3
167	4.2417	513.99	•213	5.4101	836.15	•259		1226.8
168	4.2671	520 - 17	•214	5.4355	844.02	-260	6.5785	1236.3
169	4 · 2925	526.38	·215	5.4609	851.93		6.6039	1245.9
170	4.3179	532 · 63	.216	5.4863	859.87	261	6.6293	1255.5
171	4 · 3 4 3 3	538-91	.217	5.2117		-262	6.6547	$1265 \cdot 1$
172	4.3687	545 28	.218	5.5371	867.85	-263	6.6801	1274.8
173	4 · 3941	551 - 59	219		875.87	.264	6.7055	1284.5
174	4.4195	557 99	220	5.5625	883.92	265	6.7309	$1294 \cdot 2$
175	4.4449	564.42	•221	5.5879	892.01	.266	6.7563	1304.0
176	4.4703	570.89		5.6133	900.14	.267	6.7817	1313.9
177	4.4957		•222	5.6387	908.30	268	6.8071	1323.7
178	4.5211	577.39	*223	5.6641	916.50	•269	6.8325	1333.6
$\frac{178}{179}$		583.94	•224	5.6895	924.74	270	6.8579	1343 · 5
	4.5465	590.52	•225	5.7149	933.02	-271	6.8833	1353.5
180	4.5719	597.13	226	5.7402	941.33	.272	6.9087	1363 5
181	4.5973	$603 \cdot 78$	•227	5.7657	949.68	273	6.9341	1373.6
182	4.6227	610.47	.228	5.7911	958.06	274	6.9395	1383.7
183	4.6481	617 20	.229	5.8165	966.49	275	6.9849	
184	4.6735	623 97	*230	5 8419	974.95	276	7.0103	1393.8
					0 1 T 00	210	1.0103	$1403 \cdot 9$

TABLE No. 6.—Weight of Copper Wire in Lb. Per Nautical Mile-cont.

Di	ameter	Lb. per	Dia	ameter	Lb. per	Di	iameter	Lb. per
inch	mm.	n, mile	inch	mm.	n. mile	inch	mm.	n. mile
0.277	7.0357	1414.1	0.323	8.2040	1922.8	0.369	9.3724	2509 • 4
.278	7.0611	1424.3	*324	8.2294	1934.7	•370	9.3978	2525.1
-279	7.0865	1434.6	.325	8.2548	1946.7	•371	9.4232	2536 · 7
.280	7.1119	1444.9	*326	8.2802	1958.7	.372	9.4486	2550 · 4
.281	7.1373	1455.3	•327	8.3056	1970 · 7	•373	9.4740	2564 · 1
.282	7.1627	1465.6	+328	8.3310	1982 · 8	.374	9 • 4994	2577 · 9
.283	7.1881	1476.0	•329	8.3564	1994 9	.375	9 5248	2591.7
.284	$7 \cdot 2135$	1486.5	•330	8.3818	2007.0	•376	9.5502	2605.6
.285	7.2389	1497.0	•331	8.4072	2019.2	.377	9.5756	2619.4
.286	7.2643	1507.5	.332	8 · 4326	2031 · 4	•378	9.6010	2633.4
.287	7.2897	1518 · 1	•333	8.4580	2043.7	•379	9.6264	2647.3
.288	7.3151	1528.7	.334	8 • 4834	2056.0	.380	9.6518	2661.3
•289	7.3405	1539.3	•335	8.5088	2068.3	•381	9.6772	2675.3
-290	7.3659	1550.0	-336	8.5342	2080.7	.382	9.7026	2689 • 4
.291	7.3913	1560.7	•337	8.5596	2093 · 1	.383	9.7280	2703 · 5
•292	7.4167	1571:4	•338	8.5850	2105.5	+384	9.7534	2717.6
·293	7.4421	1582.2	•339	8.6104	2118.0	+385	9.7788	2731.8
.294	7:4675	1593.0	•340	8:6358	2130.5	+386	9.8042	2746:0
-295	7 · 4929	1603.9	.341	8.6612	2143 · 1	•387	9.8296	2760 · 2
.296	7.5183	1614.8	•342	8.6866	2155.6	+388	9.8550	2774.5
·297	7.5437	1625.7	+343	8.7120	2168.3	•389	9.8804	2788 · 9
.298	7.5691	1636 · 7	·344	8.7374	2180.9	.390	9.9058	2803 · 2
·299	7.5945	1647.7	•345	8.7628	2193.6	-391	9.9312	2817.6
•300	7.6199	1658.7	•346	8.7882	2206.4	•392	9 • 9566	2832 • 0
.301	7.6453	1669.8	•347	8.8136	2219.1	•393	9.9820	2846 · 5
$\cdot 302$	7.6707	1680.9	•348	8 -8390	2231.9	•394	10.007	2861.0
.303	7.6961	1692.0	•349	8.8644	2244.8	•395	10.033	2875.5
.304	7.7215	1703.2	•350	8.8898	2257.7	*396	10.058	2890 · 1
•305	7.7469	1714.5	•351	8.9152	2270.6	•397	10.084	2904.7
.306	7.7723	1725.7	•352	8.9406	2283.6	*398	10.109	2919 • 4
.307	7.7977	1737.0	•353	8.9660	2296.5	-399	10.134	2934 · 1
.308	7.8231	1748.3	•354	8.9914	2309 • 6	**400	10.160	2948.8
.300	7.8485	1759.7	*355	9.0168	2322.6	•401	10.185	2963 · 6
•310	7.8739	1771 1	•356	9.0422	2335.7	•402	10.211	2978.4
•311	7.8993	1782 · 6	•357	9.0676	2348.9	*403	10.236	2993 · 2
•312	7.9247	1794.0	•358	9.0930	2362 · 1	.404	10.261	3008.1
.313	7.9501	1805.6	•359	9.1184	2375 · 3	·405 ·406	10.287 10.312	3023 · 0 3037 · 9
•314	7.9754	$1817 \cdot 1$	•360	9.1438	2388.5	•407	10.338	3052 9
•315	8.0008	1828.7	•361	9.1692	2401.8	•408	10 356	3067 • 9
.316	8.0262	1840.3	362	9.1946	2415.1	·408	10.388	3083:0
•317	8.0516	1852.0	*363	9.2200	$2428 \cdot 5 \\ 2441 \cdot 9$	•410	10.999	3098.1
.318	8.0770	1863.7	*364	9.2454		•411	10.439	3113.2
•319	8.1024	1875.5	*365	9.2708	$2455 \cdot 3$ $2468 \cdot 8$	•412	10.465	3128.4
•320	8.1278	1887.2	*366	9 · 2962	2482.3	•413	10.490	3143.6
•321	8.1532	1899.0	*367	9.3216	2495.9	.414	10.515	3158.8
•322	8.1786	1910.9	.368	$9 \cdot 3470$	2430 9	TIT	10 910	1000

Table No. 6.—Weight of Copper Wire in Lb. per Nautical Mile—continued.

Dia	ımeter	Lb. per	Dia	ımeter	Lb. per	Di	ameter	Lb. per
inch	mm.	n. mile	inch	mm.	n. mile	inch	mm.	n. mile
0·415 ·416 ·417 ·418 ·420 ·421 ·422 ·423 ·424 ·425 ·426 ·427 ·428 ·429 ·431 ·432	10·541 10·566 10·592 10·617 10·642 10·668 10·693 10·719 10·795 10·820 10·871 10·896 10·922 10·947 10·973	3174·1 3189·4 3204·8 3220·2 3235·6 3251·0 3266·6 3282·1 3297·7 3313·3 3328·9 3344·6 3360·3 3376·1 3391·9 3407·7 3423·6 3439·5	0·444 ·445 ·446 ·447 ·448 ·449 ·450 ·451 ·452 ·453 ·454 ·456 ·457 ·458 ·459 ·461	11·277 11·303 11·328 11·354 11·354 11·359 11·404 11·455 11·481 11·506 11·531 11·557 11·608 11·638 11·638 11·658 11·684 11·709	3633 · 2 3649 · 6 3666 · 0 3682 · 5 3699 · 0 3715 · 5 3732 · 1 3748 · 7 3765 · 3 3782 · 0 3798 · 7 3815 · 5 3832 · 3 3849 · 1 3866 · 0 3882 · 9 3899 · 8	0·473 ·474 ·475 ·476 ·477 ·478 ·479 ·481 ·482 ·483 ·484 ·485 ·486 ·487 ·489 ·490	12·013 12·039 12·065 12·090 12·116 12·141 12·166 12·192 12·217 12·243 12·268 12·293 12·319 12·344 12·370 12·395 12·420 12·420 12·446	4123·3 4140·8 4158·3 4175·8 4193·4 4211·0 4228·6 4246·3 4264·0 4281·7 4299·5 4317·2 4335·2 4353·1 4371·0 4489·0 4407·0 4425·0
· 433 · 434 · 435 · 436 · 437 · 438 · 439 · 440 · 441 · 442 · 443	10 · 998 11 · 023 11 · 049 11 · 074 11 · 100 11 · 125 11 · 150 11 · 176 11 · 201 11 · 227 11 · 252	3455·4 3471·4 3487·4 3503·5 3519·6 8535·7 3551·8 3568·0 3584·3 3600·6 3619·9	·462 ·463 ·464 ·465 ·466 ·467 ·468 ·469 ·470 ·471 ·472	11:785 11:760 11:785 11:811 11:836 11:862 11:887 11:912 11:938 11:963 11:989	3933 · 8 3950 · 8 3967 · 9 3985 · 0 4002 · 2 4019 · 4 4036 · 6 4053 · 9 4071 · 2 4088 · 5 4105 · 9	· 491 · 492 · 493 · 494 · 495 · 496 · 497 · 498 · 499 · 500	12·471 12·497 12·522 12·547 12·573 12·598 12·624 12·649 12·674 12·700	4443·1 4461·2 4479·4 4497·6 4515·8 4534·1 4552·4 4570·7 4589·1 4607·5

Conversions for Tables 5 and 6.

The weights given in lb. per nautical mile when multiplied

by 0.8673 give lb. per statute mile.

by 0.4929 give lb. per 1000 yards.

by 0.5390 give lb. per kilometre.

by 0.2444 give kilogrammes per kilometre.

TABLE No. 7.—Brown and Sharpe, or American Gauge Wires.

No.	Diameter in inches	Weight, lb. per s. mile	No.	Diameter in inches	Weight, Ib. per s. mile	No.	Diameter in inches	Weight, lb. per s. mile
0000 000 00 0 1 2 3 4 5 6 7 8 9 10	0·460 ·40964 ·3648 ·32495 ·2893 ·25763 ·22942 ·20431 ·18194 ·16202 ·14428 ·1285 ·11443 ·1019 ·09074	3391 · 4 2689 · 0 2133 · 0 1692 · 0 1341 · 4 1063 · 6 843 · 4 669 · 0 530 · 3 420 · 6 333 · 7 264 · 6 209 · 7 166 · 4 131 · 8	12 13 14 15 16 17 18 19 20 21 22 23 24 25	0·08081 ·0720 ·06408 ·05706 ·05082 ·0453 ·0403 ·0359 ·0320 ·0285 ·0253 ·0226 ·0201 ·0179 ·0159	$\begin{array}{c} 104 \cdot 6 \\ 83 \cdot 09 \\ 65 \cdot 85 \\ 52 \cdot 26 \\ 41 \cdot 36 \\ 32 \cdot 89 \\ 26 \cdot 03 \\ 20 \cdot 30 \\ 16 \cdot 41 \\ 13 \cdot 018 \\ 10 \cdot 259 \\ 8 \cdot 186 \\ 6 \cdot 475 \\ 5 \cdot 135 \\ 4 \cdot 052 \\ \end{array}$	27 28 29 30 31 32 33 34 35 36 37 38 39 40	0·0142 ·0126 ·0113 ·01003 ·00893 ·00795 ·00708 ·00603 ·00561 ·00500 ·00445 ·00397 ·00353 ·00314	3·232 2·544 2·050 1·612 1·278 1·013 0·8034 ·5830 ·5044 ·4007 ·3174 ·2526 ·1997 ·1580

Table No. 8.—Brown and Sharpe, Rope Strands.

Rope Strand	Construction	Diameter in inches	Weight, lb. per s. mile	Rope Strand	Construction	Diameter in inches	Weight, lb. per s. mile
$\begin{array}{c} 427/16 \\ 427/17 \\ 427/18 \\ 427/19 \\ 427/20 \\ 259/19 \\ 427/22 \\ 259/21 \end{array}$	$\begin{array}{c} 61 \times \frac{7}{166} \\ 61 \times \frac{7}{17} \\ 61 \times \frac{7}{17} \\ 61 \times \frac{7}{18} \\ 61 \times \frac{7}{19} \\ 61 \times \frac{7}{2} \\ 37 \times \frac{7}{19} \\ 37 \times \frac{7}{21} \\ 37 \times \frac{7}{21} \\ \end{array}$	1·372 1·222 1·088 0·969 ·863 ·754 ·684 ·598	18062 14363 11367 8865 7167 5377 4480 3448	259/22 133/21 133/22 49/21 49/22 49/23 49/24	$\begin{array}{c} 37 \times \frac{7}{29} \\ 19 \times \frac{7}{21} \\ 19 \times \frac{7}{22} \\ 7 \times \frac{7}{22} \\ 7 \times \frac{7}{22} \\ 7 \times \frac{7}{23} \\ 7 \times \frac{7}{24} \\ \end{array}$	0·532 ·427 ·380 ·256 •228 ·203 ·181	2717 1770 1395 657 513 410 319

TABLE No. 9V	VEIGHT OF	COPPER	WIRE.	KILOG.	PER	KM.
--------------	-----------	--------	-------	--------	-----	-----

Area in mm.2	0	0.1	0.2	0.3	0.4	0.2	0.6	0.7	0.8	0.9
0	0	0.89	1.78	2.67	3.56	4.45		6.23	7.12	8.01
1	8.9	9.8	10.7	11.6	12.5	13.4	14.2	15.1	16.0	16.9
2	17.8	18.7	19.6	20.5	21.4	22.2	23.1	24.0	24.9	25.8
3	26.7	27.6	28.5	29.4	30.3	31 · 2	32.0	32.9	33.8	34.7
4	35.6	36.5	37.4	38.3	$39 \cdot 2$	40.0	41.0	41.9	42.7	43.6
5	44.5	45.4	46.3	47.2	48.1	49.0	49.9	50.8	51.6	52 - 5
6	53.4	54.3	55.2	56.1	57.0	57.9	58.8	59.7	60.6	61 · 4
7	62.3	63.2	64 · 1	65.0	65.9	66.8	67.6	68.5	69.4	70.3
8	71.2	72.1	73.0	73.9	74.8	75.7	76.6	77.5	78.3	79.2
9	80.1	81 0	81.9	82.8	83.7 !	84.6	85.5	86.3	87.2	88.1
10	89.0									**
									••	••

The above table can be used for any section of copper by shifting the decimal point,

Table No. 10.—Continental Normal Sections and Strands. Diameter of wire given in millimetres.

Area in min.2	Strand	Strand if Test Wire is included	Area in mm.2	Strand	Strand if Test Wire is included
10 16 25 35 50 70 95 120 150 185 210	$7 \times 1 \cdot 35$ $7 \times 1 \cdot 71$ $7 \times 2 \cdot 13$ $19 \times 1 \cdot 58$ $19 \times 1 \cdot 83$ $19 \times 2 \cdot 17$ $19 \times 2 \cdot 53$ $19 \times 2 \cdot 83$ $19 \times 3 \cdot 17$ $19 \times 3 \cdot 52$ $19 \times 3 \cdot 75$	$\begin{array}{c} 6\times1\cdot46\\ 6\times1\cdot85\\ 6\times2\cdot30\\ 18\times1\cdot57\\ 18\times1\cdot88\\ 18\times2\cdot23\\ 18\times2\cdot59\\ 18\times2\cdot91\\ 18\times3\cdot26\\ 18\times3\cdot62\\ 18\times3\cdot62\\ 18\times3\cdot86 \end{array}$	240 280 310 355 400 500 625 725 800 1000	$\begin{array}{c} 19 \times 4 \cdot 01 \\ 37 \times 3 \cdot 10 \\ 37 \times 3 \cdot 27 \\ 37 \times 3 \cdot 50 \\ 37 \times 3 \cdot 71 \\ 37 \times 4 \cdot 15 \\ 61 \times 3 \cdot 62 \\ 61 \times 3 \cdot 90 \\ 61 \times 4 \cdot 09 \\ 91 \times 3 \cdot 74 \\ \end{array}$	$\begin{array}{c} 18 \times 4 \cdot 12 \\ 36 \times 3 \cdot 15 \\ 36 \times 3 \cdot 51 \\ 36 \times 3 \cdot 55 \\ 36 \times 3 \cdot 76 \\ 36 \times 4 \cdot 21 \\ 60 \times 3 \cdot 65 \\ 60 \times 3 \cdot 92 \\ 60 \times 4 \cdot 12 \\ 90 \times 3 \cdot 76 \\ \end{array}$

Table No. 11.—Birmingham Wire Gauge. (Resistance given is that of plain annealed copper.)

Lb. per	ohm	12610	0696	6184	3965	2404	1930	1335	952.4	694.9	504.0	311.5	219.9	142.3	95.60	61.54	41.89	24.15	14.08	7.974	5.294	3.358	1.488	0.9225	. 4454	.3111
Ohms	per lb.	~	_	-0001617		_	_	-					_	_											2.245	,
Yards per	ndo	6734	5903	4717	3776	5940	2635	2192	1851	1581	1346	1059	7.688	715.3	586.5	470.4	388.2	294.8	225.1	169.4	138.0	109.9	78.43	57-60	40.03	. 33.46
Obms	per yard	0.0001485																								
Lb. ner	s, mile	3295	2888	2308	1848	1439	1289	1072	905.4	773.5	658 7	517.9	435.1	350.0	286.9	230.2	189.9	144.2	110.1	82.87	67.52	53.76	33.38	28-18	19.58	16.37
Lb. ner	yard	1.872	1.641	1.311	1.050	0.8176	.7324	1609.	.5144	.4395	.3743	.2943	.2472	.1989	• 1630	.1308	.1079	.08193	.06256	.04709	.03836	.03055	.01897	.01601	.01113	·009301
	mm.2	104.4	91.54	73.15	58.57	45.60	40.87	33.99	28.70	24.52	20.88	16.42	13.79	11.10	960.6	7.296	6.019	4.572	3.491	2.627	2.140	1.704	1.217	0.8935	.6207	.5188
Area	sq. inch	6191-0	.1419	1134	62060	69020	.06335	.05269	.04449	.03801	.03237	.02545	.02138	.01720	.01410	.01131	.009331	-007088	.005411	.004072	.003318	.002642	.001886	001385	.0009621	.0008042
	Circular			_			_		_	-			_	_	_											1024
Diameter	mm.	11.530	10.800	9.652	8.636	7.620	7.214	6.22	6.045	5.588	5.156	4.572	4.191	3.759	3.404	3.048	2.769	2.413	2.108	1.829	1.651	1.473	1.945	1.067	688.0	.8128
Dia	inch	0.454	.425	.380	.340	.300	- 584	.259	.238	.220	.203	.180	•165	•148	.134	.120	•109	.095	.083	-072	.065	.058	.049	.045	• 035	.032
	04	4/0	3/0	2/0	,0	-	27	co	4	10	9	1	00	6	10	-	12	60	14	10	16	17	00	61	20	21

Table No. 11.—Birmingham Wire Gauge—continued. (Resistance given is that of plain annealed copper.)

	Lb. per ohm	:	0.1823	.1159	67690	.04748	-03115	.01946	.01140	.0084437	.006151	750000	.001918	010100	-012100	.0001027	0020000	0010000
	Ohms per lb.		5.484	8.628	14.39	21.06	32.10	51.40	87.75	118:1	169.5	337.0	513.4	2000	1.102.9	F000.0	13158.0	0 00.101
	Yards per ohm		25.61	20.42	15.81	13.07	10.59	8988	6.102	5.519	4.704	3.267	2.648	6.00-6	1 - 609	0.00	0.593	21
	Ohms per yard		0.03304	.04897	.06325	.07651	.09116	.1195	-1562	.1812	.2126	.3081	3778	.4789	69.16	1.9945	1.9130	
	Lb. per s. mile		12.53	006.6	7.735	6.394	5.179	4.092	3.132	2.700	2.302	1.598	1.295	1.023	0.7831	0-3996	0.2557	
	yard		0.007119	929900	·004395	.003633	.002943	.002325	.001780	.001535	.001308	1806000.	.0007359	.000.5814	.0004451	.0002971	10001454	
	mm.2	-,-	0.3973	.3167	.2452	.2027	.1642	.1297	.09928	.08580	.07296	.02067	.04105	.03243	.02483	.01267	.008110	
Area	sq. inch		0 0006158	6065000.	1086000	.0003142	.0002545	.0005011	.0001539	.0001327	.0001131	.00007854	-000006362	.000005027	6F8E0000.	·00001964	.00001257	
	Circular	-	784	620	484	400	525	962	196	169	144	100	81	64	49	25	91	
Diameter	mm.	1	0.7112	0000	5500	0800.	7/04.	£90£.	9008.	23302	.3048	0±cz.	.2286	- 5035	8771.	.1270	9101.	
Die	fnch		0.028	000.	770	020	010	910.	#T0.	.013	210.	010.	600.	800.	. 200.	.005	· 004	
2	No.		22	0.40	H7C	300	070	770	070	67	30	201	220	33	45	35	36	

TABLE No. 12.—MAINS.

Weight, Ib. per 1000 Yards	Mini- mum	293	447	572	893	1158	1458	1757	1740	2257	2842	3424	4062	4674	4685	5317	5647	6456	6699	7708	7932	8425	8933	9993	11500	11760
Weight, lb. per 1000 Yards	Stan-	- 299	456	594	911	1182	1488	1793	1776	2303	2900	3494	4145	4770	4781	5425	5762	6588	9889	7865	8094	8597	9115	10200	11730	12000
Weight, lb. per Mile	Stan-	526	803	1027	1604	2080	2619	3156	3125	4054	5103	6150	7295	8395		9548	10140	11600	12030	13840	14240	15130	16040	17950	20650	21120
60° F.	98 % Tinned Copper	1.74437	1.14313	0.893736	.574253	.442734	.351716	.291828	.295031	.227460	.180700	·149931	.126400	.109842	.109601	.0966135	.09095931	0795502 11600	.0760282 12030	.0666388 13840	0647693 14240	.060978715130	.0575115 16040	.05140861795	•	•
Resistance in Ohms per Mile at 60°	100% Tinned 98 % Tinned Copper	1.71016	1.12072	0.876212	.562993	.434053	.344820	.286105	.289246	.223000	.177156	.146991	123921	.107688	.107452	.0947191	.0891758	7066770	.0745374	.0653321	.0634993	.0597831	.0563839	.0504006	*	.0428410
ance in Ohms	98 % Plain Copper	1.72779	1.13227	1.885241	.568795	.438526	-348373	.289054	.292277	.225298	.178982	.148505	.125198	108798	108584	.0956952	.0900948	.0787944	.0753056	•0660054	.0641537	16680901	.0569649	.0509200	•0442496	.0432824
Resist	100 % Plain Copper	1.69323	1.10962	986798.	.557420	.429755	.341405	.283273	-286382	.250792	175402	.145535	152694	106622	.106412	.0937813	.0885929	•0772185	·0737994	.0646853	•0628706	1161690.	.0558256	.0499016	.0433646	.0424168
Effective	sq uare inch	.0249919	0387924 03813641 10962	0501995 0496235 858997	.0759163	.0984681	123950	.149386	147764	191660	.241257	- 530769	.344898	.396888	.397671	.451233	479282	.548019	.573408	.654201	.673084	.714924	.758025	.848013	.975845	.997652
Calculated Area	square	0.0254218 0249919 1.69323	.0387924	2661020.	.0773587	.100339	126305	152225	150646	.195398	.245962	.296439	.351624	.404628	.405505	.460122	488724	.558815	.584704	680299	.686411	.729080	.773034	.864804	.995167	1.017506
Diameter of Strand	mm.			7.366	9.145	41010.416	46011.687	50512-827	508.21 +00	574 14 583	644 16 360	707 17 - 957	770 19.560	826 20-980	828 21 . 034	882 22 - 402	90923.087	97224.688	990 25 148	062 26 974	.078 27-380	28.217		30.737	32.969	33.345
Diar	inch	ò	•	.290	•	•	*	•	•	•	•	•	٠	*	٠.	•	•	•	•	-				1.21030	1.29832.	565 1 · 313 33 ·
Diameter of each Wire	m m	068 1.727 0.204	0842.134	1.473	1.829	2.083			000 0 000				461. Z (52.887	755.75	SI 6	NI 6	1082.743	1102.794		82.489	1,2,565 1	1042.6421	12.7941	$118^{1}2 \cdot 997$	101,2.565
Dia of W	inch										7760.	1101.101.2	2011.			2 860			~ '	- `		_				•
Copper	inch	2/.068	7/-084	19/	19/	• .		101./81	300-/26	220.//6	. 260.//6	01.//0	011.//26	811.//9	01/1092	260./19	101./10	61/.108	61/.110	61/.118	81/.098	91/-101	91/.104	91/.110	` `	127/-101
Nomi- nal Area	square	0.025	.040	.050	.075	1001.	071	15	01.0	046	0.00	00.	000	04.	04.	04.	0 10	CC.	ng.	00.	2 1	9.	20 S	06.	00.1	00.1

TABLE No. 13.—LEGAL

	Diameter Area						L 31.D.	DE 140. 1	.—LEGAL
	D	iameter	·	Area		Amps.	Amp.,	Re	esistance per
No.	inch	mm.	circular mils	square inch	square	1000 per	I.E.E.	Plain	Copper
					millimetre	sq. in.		100 %	98 %
7/0	0.500	12.700	250000	0.196350	126.68	196	197	0.216016	0.220424
6/0	.464	11.785	215300	169093	109.09	169	174.6	0.250836	0.255955
5/0	•432	10.973	186600	.146574	94.562	146.6	155.3	0.289374	0.295280
4/0	.400	10.160	160000	125664	81.072	125 • 7	136.9	0.337525	0.344413
3/0	.372	9.4487	138400	108687	70.119	108.7	121.5	0.390247	0.398220
2/0	.348	8.8391	121100	.095115	61.363	95.11	108.9	0.444906	0.453985
n	*324	8 * 2295	105000	.082448	53.191	82.45	96.90	0.513259	0.523733
1	.300	7.6200	90000	.070686	45.603	70.69	85.41	0.598664	0.610882
2	.276	7.0103	76180	.059828	38+598	59.83	74.49	0.707307	0.721742
3	•252	6.4008	63500	.049876	32-178	49.88	61.17	0.848448	0.865763
4	*232	5.8927	53820	.042273	27 · 273	42.27	56.02	1.00103	1.02145
5	.212	5.3817	44940	.035299	22.773	32.30	48.33	1.19882	1.22329
6	*192	4.8768	36860	028953	18.679	28.95	41.07	1.46159	1.49141
7	.176	4.4703	30980	.024329	15.695	24.33	35.61	1.74342	1.77891
8	-160	4.0640	25600	.020106	12.972	20.11	30.46	2.10468	2.14763
. 9	144	3.6576	20740	.016286	10.507	16:29	25.63	2.59838	2.65141
10	.128	3:3512	16380	.012868	8.3018	12.87	21.13	3.28783	3.35493
11	.116	2.9463	13460	*010568	6.8182	10.57	17.98	4.00416	4.08588
12	*104	2.6416	10820	.008495	5.4804	8.495	15.03	4.98149	5.08316
13	.092	2.3368	8464	.006648	4.2887	6.618	12.29	6.36577	
14	.080	2:0320	6400	.005026	3 · 2429	5.027	9.775	8.41872	6.49568
15	.072	1.8288	5184	*004071	2.6267	4.072	8.223	10.3935	8·59093 10·6056
16	.061	1.6256	4096	.003217	2.0755	3.217	6.779	13.1542	
17	.056	1,4224	3136	.002463	1.5890	2.463	5.445		13*4227
18	.048	1:2192	2304	.0018095	1.1675	1.810	4.230	17.1811	17.5317
19	.040	1.0160	1600	.0012567	0.81072	1.257	3.137	23.3853	23.8626
20	.036	0.91439	1296	.0010179	0.65668	1.018		33.7525	34.4413
21	.032	0.81280	1024	.0008042	0.51886	0.8042	2.638	41·5742 52·6169	42.4227
				TDI. T. I			~ 112	04 0109	53.6908

The Inst.E.E. rule for the carrying capacity of a conductor is:—

STANDARD WIRE GAUGE.

mile at 60° I	ř.		*7		F 1.	Mini-	Ohms	Lb.
Tinned	Copper	Lb. per	Yards per lb.	Lb. per km.	Lb. per mile	mum lb. per	per lb.	per ohm
100 %	98 %	yard	ıņ.	KIII,	шие	mile	104	Othin
0.218176	0*222539	2.270	0.4405	2482	3995	3915	0.00005397	18530
0.253345	0.258412	1.955	0.5115	2138	3441	3372	0.00007274	13750
0.292268	0.298113	1.695	0.5900	1854	2983	2923	0.00009678	10330
0.340900	0 2 3 3 1 7 1 8	1.453	0.6882	1590	2558	2507	0.0001316	7599
0 394149	0.402032	1.257	0.7955	1375	2212	2168	0.0001760	5682
0 334149	0 458342	1 099	0.9099	1202	1935	1896	0.0002300	4348
0.442000	0 456542	1 055						
0.518391	0.528759	0.9534	1.049	1043	1678	1644	0.0003059	3269
0.604651	0.616744	0.8176	1.223	894.2	1439	1410	0.0004166	2403
0.714380	0.728668	0.6921	1.445	756.9	1218	1194	0.0005807	1722
0.856933	0.874071	0.5767	1.734	630.7	1015	994.7	0.0008359	1196
1.01105	1.03127	0.4888	2.046	534.5	860 2	843.0	0.001164	859 - 1
1.21081	1.23502	0.4082	2.450	446.4	.718.4	704.0	0.001669	599.2
1.47620	1.50573	0.3374	2.988	366.1	589.1	577.3	0.002482	402.9
1.76085	1.79607	0.2813	3.555	307.7	495.1	485 · 2	0.003512	284.7
2.12573	2.16824	0.2325	4.301	254.3	409.2	401.0	0.005142	194'5
2*62436	2.67685	0.1884	5.308	206.0	331,5	324.9	0.007837	127.6
3.32071	3.38712	0.1488	6 • 720	162.7	261.9	256.7	0.01225	79.68
4.04420	4.12509	0.1222	8.183	133.7	215.1	210.8	0.01861	5 3·7 3
5.03131	5·13193	0.09824	10.18	107.4	172.9	169.4	0.02881	34 71
6.42950	6.43832	0.07688	13.01	84.08	135 '3	132.6	0.04705	21.25
8.50330	8 • 67336	0.05813	17.20	63.57	102.3	100.3	0.08230	12:15
10.4974	10.7078	0.04709	21.24	51.50	82.87	81.21	0.1254	7.974
13.2858	13.5515	0.03720	26.88	40.68	65 - 47	64.16	0.2010	4.975
17.3529	17.6999	0.02848	35.11	31.14	50.12	49.12	0.3428	2.917
23.6192	24.0916	0.02093	47.78	22.89	36.83	36.09	0.6348	1.575
34.0900	34.7718	0.01453	68.82	15.90	25.58	25.07	1.316	0.7599
41.9900	42.8298	0.01177	84.96	12.88	20.72	20:31	2.006	, 0.4985
53.1431	54.2060	0.009301	107.5	10.17	16:37	16.04	3-214	0.3111

TABLE No. 13.—LEGAL

_	-		1				T	ABLE No.	13.—LEGAL
No.		iameter	-	Area		Amps.	Amp.	.	Resistance per
-101	inch	mm.	Circular mils	square	square millimetr	per e sq. in.	I.E.E.		n Copper
22	0.028							100 %	98 %
23		0.71119	784	0.00061575	0.39725	0.6158	1:747	68.72	47 70-1272
24	*024	-60960	576	.00045239	.29186	.4524		93.54	95.4504
	.022	*55880	484	.00038013	• 24524	.3401		111.32	2 113.594
25	*020	*50800	400	.00031416	-20268	.3142		134 · 69	137.448
26	•018	*45720	324	.00025446	•16417	*2545		166 · 296	100.000
27	*0164	41656	269	.00021124	·13628	.2112		200:326	
28	*0148	.37592	219	.00017203	1 -11099	1720			201 110
29	'0136	.34544	185	.00014527	.093719	1453	• •	245-981	
30	.0124	*31496		.00012076	079100	1208	٠.	291.978	
31	.0116	*29464	134 • 6			1200		350.415	357.567
32	.0108	27432		*00010569	.068181	1057		400-416	408+588
33	*0100			.000091609	.059102	.0916		461.933	471.360
34	*0092	*25398		000078540	.050670	.0785		538 - 798	549.794
35		*23398		000066476	.042887	.0665		636-577	649.568
30	*0084	*21336	70.56 .	000055417	035752	.0554		763 603	779.187
36	.0076	19304	57.76	000045365	029267	0454		020.000	
37	.0068	17272	46.24	000036317	*023430	.0363		932.822	951.859
38	.0060	15240	36.00	000028274	.018241	.0283	• •	1165.22	1189.00
39	.0052	*13508	27.04	000021237	.013701	0203	• •	1496.66	1527-20
40	*0048	12192		000018095	013701		• •	1992-60	2033 · 26
41	.0044	11176			011014	.0181	••	2338 · 53	2386 · 26
42	*0040	*10160		000015205	*0098097	10152		2783.05	2839.85
43	.0036			000012566	.0081072	0126		3367.5	3436.2
44	*0032	*09144		000010179	*0065668	.0102		4157.4	4242.3
		*08128		0000080425	.0051886	.0080		5261.7	5369 • 1
	.0028	*07119	7 · 840 · (0000061575	.0039725	.0062		6872.4	7012.7
46	*0024	*06096	5.760 -6	0000045239	*0029186	.0045			
47	.0020	.05080	4.000	0000031416	*0020268	.0031	••	9354-1	9545
48	0016	.04064		000020106	.0012972		••		13745
19	0012	.03048		000011310	.00072965	.0020	• •	21047	21476
50 .	0010	02540	1	000007854	į	.0011	• •	37417	38180
					.00050670	.0008		53880	54979

The Inst.E.E. rule for the carrying capacity of a conductor is :—

STANDARD WIRE GAUGE—continued.

mile at 60°	F.			7.1			0.1	
Tinned	Copper	Lb. per yard	Yards per lb.	Lb. per km,	Lb. per mile	Minimum lb. per mile	Ohms per lb.	Lb. per ohm
100 %	98 %							
69.4119	70.8001	0.007120	140 · 4	7.786	12.53	12.28	5.484	0.1823
94-6946	96.3664	-005231	191.2	5.721	9.206	9.022	10.16	.09843
112.435	114.684	.004395	227.5	4.807	7 - 735	7.850	14.39	.06949
136.046	138.767	•003633	275.3	3·97 3	6.394	6.266	21.07	.04746
167· 9 59	171.318	•002943	339 • 8	3.218	5.179	5.075	32.11	.03114
202:330	206.091	.002442	409.5	2.671	4.298	4.212	46.63	.02145
248 · 441	253.410	.001989	502.8	2.175	3.500	3.430	70.29	.01423
294 · 898	300.796	·001680	505.2	1.837	2.957	2.898	98.51	.01015
353.919	360.998	.001397	715.8	1.527	2-458	2.409	142.5	.007018
404.420	412-509	-001222	818.3	1.337	2.151	2.108	186.1	.005373
466.552	475.883	.001059	944.3	1.158	1.864	1.827	247.9	.004034
544.186	555.070	·0009080	1101	0.9930	1.598	1.566	337 • 2	.002966
642.943	655 · 801	.0007688	1301	0.8408	1.353	1.326	. 470.5	.002125
771-239	786 - 664	0006409	1560	0.7009	1.128	1.105	677.0	001477
942.150	960.994	0005245	1907	0.5736	0.9231	0.9046	1011	0009891
1176.87	1200.41	.0004200	2381	0.4593	0.7391	0.7243	1576	.0006345
1511.62	1541.86	.0003269	3059	0.3575	0.5753	0.5638	2602	.0003843
2012.52	2052.77	.0002456	4072	0.2686	0.4322	0.4236	4609	.0002170
2361-92	2409.16	•0002093	4778	0.2289	0.3683	0.3609	6348	.0001575
2810.9	2867.1	.0001759	5685	0.1923	0.3095	0.3003	8989	.0001112
3401.2	3469.2	.0001453	6882	0.1590	0.2558	0.2507	13160	.00007599
4199.0	4282.9	.0001177	8496	0.1288	0.2072	0.2031	20060	.00004985
5314.3	5420.6	.00009301	10750	0.1017	0.1637	0.1604	32140	.00003111
6941.2	7080 • 0	00007120	14040	0.07786	0.1253	0.1228	54840	· 0 0001823
9447.7	9636+6	00005231	19120	0.05721	0.09206	0.09022	101620	.000009841
13605	13877	00003632	27530	0.03972	0.06392	0.06264	210730	.000004745
21257	21682	*00002325	43010	0.02543	0.04092	0.04010	514170	.000001945
37791	38547	.00001308	76450	0.01430	0.02302	0.02256	1625540	.0000006152
54419	55507	-00000908	110100	0.009930	0.01598	0.01566	3371710	.0000002966

Wire	Diam.	of Wire	Diam.	of Strand	Amperes	Amperes	Calculated	Effective
Strand L.W.G.	inch	mm,	inch	mm.	1000 per sq. in.	I.Ê.E. rule	Area sq. in.	Area sq. in.
1 /00	0.028	0.7112	0.000	0.7110		1 - 1 -		
$\frac{1/22}{1/21}$	0.028	8128	$0.028 \\ 0.032$	$0.7112 \\ -8128$		1 · 747 2 · 142	0.00061575	0.00061575
3/25	.020	•5080	032	1.092	9240	2.452	·0008042 ·00094248	0008042
1/20	.036	9144	.036	0.9144	1.018	2.638	.0010179	·00092399 ·0010179
3/24	.022	•5588	•047	1.194	1.115	2.868	.0011404	-00111546
1/19	*040	1.016	.040	1.016	1.257	3.137	.0012567	.0012567
3/23	*024	0.6096	.052	1.321	1.330	3 307	.00135717	00133056
1/18	•048	1.219	.048	1.219	1.810	1.530	.0018092	. 10018095
3/22	*028	0.7112	•060	1.524	1.811	4.258	.00184725	.00181103
7/25	020	•5080	.060	1.524	2.162	4.921	*00219912	*00216193
$\frac{3}{21}$ $\frac{1}{17}$	· 032 · 056	*8128 1:422	069	1.753	2.365	5.301	.00241265	00236534
1/1/	000	1 122	.056	1.422	2.463	5.445	.002463	002463
7/24	.022	0.5588	.066	1.676	2.610	5.751	·00266093	*0026099
3/20	.036	•9144	-078	1.981	2.994	6.444	.00305361	*00299373
7/23	.024	*6096	072	1.829	3.113	6.636	.00316673	.00311318
1/16	.064	1.625	.064	1.625	3.217	6.779	.003217	003217
3/19	*040	1.016	.086	2.184	3.696	7 · 644	.00376992	•00369599
1/15	.072	1.829	.072	1.829	4.072	8 · 223	.00407151	00407151
$\frac{7/22}{7/21\frac{1}{2}}$	·028 ·030	$0.7112 \\ -7620$	084	2.134	4.266	8.543	00431025	00423736
. ~	000	1020	.090	2.286	4.896	9.565	.00494802	*00486435
1/14	.080	2.032	.080	2.032	5.027	9.775	.00502656	.00502656
3/18	.048	1.219	.103	2.616	5.361	10.31	.00542868	00532223
7/21	032	0.8128	.096	2.483	5.571	10.63	.00562975	00553455
$7/20\frac{1}{2}$.033	*8380	.099	2.515	5.925	11.19	.00598710	.00588586
1/13	.092	$2 \cdot 337$.092	2.337	6.648	12 · 29	.00664762	*00664762
7/20	.036	0.9144	.108	2.743	$7 \cdot 052$	12.90	00712509	*00700461
$\frac{1}{7}$	104	2.642	104	2.642	8 • 495	15.03	00849488	.00849488
7/19	.040	1.016	120	3.048	8.708	15.34	.00879648	00864774
1/11	.116	2.946	.116	2.946	10.57	17.98	.0105683	.0105683
19/22	1028	0.7112	140	3.556	11.57	19.36	.0116992	.0114546
7/18	1048	1.219	*144	3.658	12.54	20.68	.0126699	0124556
1/10	•128	3.251	128	3.251	12.87	21.13	.0128679	.0128679
19/21	.032	0.8128	•160	4.064	15.10	24 · 09	*0152813	.0149963
1/9	144	3.658	•144	3.658	16.29	25.63	0162860	0149965
7/17	*056	1.422	.168	4.267	17.06	26:62	.0172411	0162860
19/20	*036	0.9144	*180	4.572	19.12	29.23	.0193395	0103433
1/8	.160	4.064	160	4.064	20.11	30:46	.0201062	.0201062

STANDARD WIRES AND STRANDS.

Resi	istance in Ohm	s per mile at 6	30° F.	Star	ndard Weig	ht	Mini- mum
100 per cent. Plain Copper	98 per cent. Plain Copper	100 per cent. Tinn'd Copper	98 per cent. Tinn'd Cop _i er	lb. per mile	lb. per km.	1b. per 1000 yd.	Weight lb. per mile
68.7247	70.1272	69 · 4119	70.8001	12.53	7.786	7.12	12.28
52.6169	53.6908	53 · 1431	54.2060	16.37	10.17	9.30	16.04
45.7979	46.7325	46.2558	47.1809	19.42	12.07	11.04	19.03
41.5742	42.4227	41.9900	42.8298	20.72	12.88	11.77	20.31
37.9367	38.7109	38.3161	39.0824	23.49	14.60	13.35	23.02
33.7525	34 · 4413	34.0900	34.7718	25.58	15.90	14.53	25.07
31.8041	32.4531	32 · 1221	32.7645	27.96	17:37	15.89	27.40 36.09
23.3853	23.8626	23.6192	24.0916	36.83	22.89	20.99	90.09
23:3664	23 · 8432	23.6000	24.0720	38.05	23.64	21.62	37.29
19.5737	19.9732	19.7695	20.1649	45.23	28.11	25.70	44.33
17.8905	18.2556	18.0694	18.4308	49.71	30.89	28·24 28·48	48.72
17.1811	17.5317	17:3529	17 6999	50.12	31.14	20.40	19 12
16.2139	16.5449	16:3761	16.7036	54.71	34.00	31.08	53.62
14 • 1352	14 · 4237	14 · 2766	14.5621	62.92	39.10	35 75	61.67
13.5929	13.8703	13.7288	14.0034	65.12	40.47	37.00	63.83
13 · 1542	13 · 4227	13.2858	13.5515	65.47	40.68	37.20	64.16
11.4494	11.6831	11.5639	11.7952	77.68	48.27	44.14	76 · 14
10.3935	10.6056	10.4974	10.7073	82.87	51.50	47:09	81.21
9.98668	10.1905	10.0865	10.2882	88.63	55.07	50.36	86.87
8.69943	8.87697	8.78643	8.96216	101.8	61 · 40	57.84	99.76
8.41872	8.59053	8.50330	8.67336	102.3	63.57	58.13	
7.95102	8.11328	8.03053	8.19114	111.8	69.47	63.52	109.6
7.64600	7.80204	7.72246	7.87691	115.8	71.95	65.79 70.00	
7.18963	7.33636	7.26153	7 · 40676	123.2	76.55	70 00	120 /
6.36577	6.49568	6.42950	6.43832	135.3	84.08	76.88	
6.04133	6.16463	6.10175	$6 \cdot 22378$	146.6	91.10	83.30	
4.98149	5.08316	5.03131	5.13193	172.9	107.4	98.24	169.4
4.89344	4.99331	4.94238	5.04122	180.9	112.4	102.8	177.3
4.00416	4.08588	4.04420	4 · 12509	215.1	133.7	122.2	210.8
3.69432	3.76972	3.73127	3.80589	240.8	149.6	136.8	236.0
3.39742	3.46676	3.43140	3.50003	260.5	161.9	148.0	$255 \cdot 3$ $256 \cdot 7$
3.28783	3.35493	3.32071	3.38712	261.9	162.7	148.8	200.7
2.82183	2.87942	2.85005	2.90705	314.6	195.5	178.7	308.3
2.59838	2.65141	2.62436	2.67685	331.5	206.0	188.4	324.9
2.49665	2.54760	2.52162	2.57205	354.5	220.3	201.4	347.4
$2 \cdot 22969$	2.27520	2.25199	2.29703	398.3	247.5	226.3	390.3
2.10468	2.14763	2 · 12573	2 · 16824	409.2	254.3	232.5	401.0

TABLE No. 14.—

							TUDIE	10. 14
	Diam	of Wire	Diam	of Strand				
Wire or	Diam	. OI WITE	, Diam.	or Strand	Amperes	Amperes	Calculated	Effective
Strand		1			at 1000 per	TENT	Area	Area
L.W.G.	inch	mm.	inch	mm.	sq. in.	rule	sq. in.	sq. in.
			1					
								'
7/16	0.064	1.626	0.195	1 4.877	22.27	33 · 12	0.0225189	0.0991991
19/19	* ()4()		. 200	5.080	23.60	34.74	0238762	0221381
1/7	176	4.470	.176	4:470	24.33	35.61	0243285	0243285
7/15	. 072	1.829	·216	5.480		40.22	.0285006	0280187
							0200000	0200107
1/6	192	4.877	192	4.877	28:95	41.07	0289529	0289529
19/18	.048	1.219	.240	6.096	33 - 99	46.85	.0343816	0283325
7/14	.080	$2 \cdot 032$. 240	6.096		47.80	.0351859	0345909
1/5	.212	5.385	.212	5.385		48.33	.0352990	0352990
						00	(1002000	0002000
37/20	.036	0.9144	.252	6:401	37.22	50.47	.0376612	.0369408
1/4	•232	5.893	.232	5.893	42.27	56.02	.0422733	0422733
37/19	.040	1.016	.280	7.112	45.96	61.07	.0464957	
7/13	.092	$2 \cdot 337$.276	7.010	46.05	60.10	.0465333	.0456064
							6666010	.0457465
19/17	.056	1.422	.280	7.112	46.27	60.33	.0467972	.0450045
1/3	•252	6.401	.252	6.401	49.88	64.17	.0498760	0459247
7/12	.104	2.642	*312	7.925	58.84	73 - 47	.0594642	.0498760
1/2	•276	7.010	.276	7.010	59.83	74 - 49	0598286	0584587
					. 00 0.0		10000280	.0598286
19/16	.064	1.626	. 320	8.128	60.39	75.06	.0611228	.0500001
37/18	.048	1.219	•336	8.534	66.19	80.91	.0669537	.0599831
1/1	.300	$7 \cdot 620$	*300	7.620	70.69	85.41	0706860	.0656730
7/11	.116	2.946	.348	8.839	73.22	87.90	.0739781	.0706860
							0100101	0727272
19/15	.072	1.829	.360	9.144	76:50	91.12	.0773587	.0550100
1/0	*324	8.230	.324	8.230		96.90	.0824481	0759163
7/10	.128	3.251	.384	9.754	89.17	103.3	0900754	0824481
37/17	.056	1.422	.392	9.957	90.06	104.2		.0885523
							.0911314	-0893883
19/14	.080	2.032	.400	10.16	94 • 42	108.3	.0955046	0007.000
1/00		8.839	.348	8.8391	95.11	108.9	0951150	.0937239
1/000		9.449	.372	9.449	108.7	121.5	108687	.0951150
61/18	.048	1.219	•432	10.97	109 · 1	121.9		108687
= 10					-00 1		•110383	.108250
7/9		3.658	.432	10.97	112.9	125.4	.114002	.110074
37/16		1.626	.448	11.38	117.6	129.6		112074
19/13		2.337	.460	11.68	124.9	136.2	119029	116752
1/0000	1001	0.16	.400	10.16	125.7	136.9	•126305	123950
FF 113						200 0	•125664	125664
7/8		4.064	.480	$12 \cdot 19^{-1}$	139.3	149.0	•140719	100000
1/00000	*432 1	0.97	432	10.97	146.6	155.3	140743	138363
61/17		1.422	.504	12.80	148.5	157.0	146574	146574
37/15	.072	1.829	.504	12.80	148.9	157.3	150244	•147341
# O / 4 · ·					-10 (/	1010	.150646	147764
19/12	•104	$2.642 \pm$.520	13.21	159.5	166.4	1161100	1800-
					2000	100 1	161403	158393

STANDARD WIRES AND STRANDS—continued.

Resi	stance in Ohms	per mile at 60	° F.	Star	ndard Wei	ght	Mini- mum
100 per cent. Plain Copper	98 per cent. Plain Copper	100 per cent. Tinn'd Copper	98 per cent. Tinn'd Copper	lb. per mile	lb. per km.	lb. per 1000 yd.	Weight lb. per infle
1.91150	1.95052	1.93062	1.96923	463.1	287.8	263.1	453.9
1.80603	1.84289	1.82409	1.86057	491.7	$305 \cdot 5$	279 • 4	481.9
1.74342	1.77891	1.76085	1.79607	$495 \cdot 1$	307.7	281.3	485.2
1.51032	1.54114	1:52542	1.55593	586.2	364.3	333.1	574.5
1.46159	1.49141	1 · 47620	1.50573	589.1	366.1	337.4	577.3
1.25419	1.27976	1.26673	1.29207	707.9	439.9	402.2	693.7
1.22336	1.24832	1.23559	1.26031	723.6	449.6	$\frac{411.1}{408.2}$	709·1 704·0
1.19882	1 · 22329	1.21081	1 23502	718.4	446.4	108.2	704.0
1.14554	1.16891	1.15699	1.18285	775.8	482.1	440.8	760.3
1.00103	1.02146	1.01105	1.03127	860 · 2	534.5	488.8	843.0
0.927879	0.946815	0.937158	0.955901	$957 \cdot 9$	$595 \cdot 2$	544.3	938.7
•925038	•943916	•934288	•952974	957.1	594.7	543.8	938.0
•921447	·940252	.930661	•949275	963.3	598.6	547.3	944.0
·848448	865763	·856933	·874071	1015	630.7	576.7	994.7
.723882	.738655	·731121	·745743	1223	$759 \cdot 9$	694.9	1199
.707307	.721742	.714380	•728668	1218	756.9	692.1	1194
·705485	·719883	.712540	.726791	1258	781.7	714.8	1233
•644361	657512	650805	663821	1379	856.9	783.5	1352
•598664	610882	604651	.616744	1439	894.2	817.6	1410
.581862	•593737	•587681	• 599434	1522	945.7	864.8	1492
.557420	• 568795	•562993	.574253	1593	989 · 9	905.1	1561
•515259	•523733	.518391	•528759	1678	1043	953.4	1644
•477878	•487631	.482657	•492310	1853	1151	1053	1816
•473408	•483070	•478143	•487705	1877	1166	1066	1839
•451509	460724	•456024	•465145	1966	1222	1117	1927
•444906	453985	• 449355	•458342	1935	1202	1099	1896
·390247	•398220	•394149	•402032	2212	1375	1257	2168
•390919	•398897	•394828	·402725	2274	1413	1292	2229
.977501	385287	-381357	•388985	2345	1457	1332	2298
·377581 ·362453	369850	366077	•373399	2451	1523	1393	2403
	•348373	•344820	•351716	2601	1616	1478	2549
·341405 ·337525	•344413	•340900	•347718	2558	1590	1453	2507
.005040	•312083	*308900	·315078	2894	1798	1644	2836
*305842	•295280	292268	298113	2983	1854	1695	2923
289374 287205	•293066	290077	•295879	3094	1923	1758	3032
286382	•292227	289246	295031	3103	1928	1763	3041
			•275233	3323	2065	1888	3257
•267165	•272617	•269836	210200	0020			

Table No. 14.—

Wire or Strand	Diam	. of Wire	Diam.	of Strand	Amperes	Amperes	Calculated	Effective
L.W.G.	inch	mm.	inch	mm.	1000 per sq. in.	I.E.E.	Area sq. in.	Area sq. in.
$\begin{array}{c} 1/000000\\ 37/14\\ 61/16\\ 1/0000000\end{array}$	·080 ·064	11·79 2·032 1·626 12·70	0:464 :560 :576 :500	11·79 14·22 14·63 12·70	169·1 183·8 193·9 196·3	174 · 6 187 · 0 195 · 4 197 · 3	0·169093 ·185983 ·196236 ·196350	0·169093 ·182425 ·192444 ·196350
19/11 7/6 19/10 37/13	·116 ·192 ·128 ·092	2·946 4·877 3·251 2·337	·580 ·576 ·640 ·644	14·73 14·63 16·26 16·36	198·5 200·6 241·7 243·1	199 2 200 · 9 234 · 0 235 · 2	·200798 ·202670 ·244490 ·245962	·197054 ·199243 ·239931 ·241257
61/15 61/14 37/12 61/13	·072 ·080 ·104 ·092	1·829 2·032 2·642 2·337	·648 ·720 ·728 ·828	16:46 18:29 18:49 21:03	245·5 302·9 310·5 400·8	237·0 281·6 287·4 354·3	·248362 ·306620 ·314311 ·405505	·243003 ·300696 ·308299 ·397671
$\begin{array}{c} 91/14 \\ 61/12 \\ 91/13 \\ 61/11 \end{array}$	·080 ·104 ·092 ·116		880 •936 1•012 1•044	22·35 23·77 25·70 26·52	451:9 512:0 597:7 637:1	391·0 433·1 491·7 518·2	·457417 ·518188 ·604983 ·644666	·448536 ·508177 ·593188 ·632211
91/12 61/10 91/11	·104 ·128 ·116	3.251	1 · 144 1 · 152 1 · 276	29 · 06 29 · 26 32 · 41	763·8 775·8 950·4	600·1 609·0 719·3	·773034 ·784942 ·961715	·758025 ·769777 ·943042

THEIR CONSTRUCTION AND COST.

STANDARD WIRES AND STRANDS.

Resi	stance in Ohms	s per mile at 6	0° F.	Star	ndard Wei	ght	Mini- mum
100 per cent. Plain Copper	98 per cent. Plain Copper	100 per cent. Tinn'd Copper	98 per cent. Tinn'd Copper	lb. per mile	lb. per km.	Ib. per 1000 yd.	Weight lb. per mile
0·250836 ·231970 ·219892 ·216016 ·214749 ·212390 ·176372 ·175402 ·174142	0·255955 ·236703 ·224380 ·220424 ·219132 ·216724 ·179971 ·178982 ·177696	0·253345 ·231289 ·222091 ·218176 ·216896 ·214514 ·178136 ·177156 ·175883	0·258412 ·238975 ·226533 ·222539 ·221234 ·218804 ·181698 ·180700 ·179401	3441 3830 4042 3995 4134 4167 5034 5066	2138 2380 2512 2482 2569 2589 3128 3148	1955 2176 2297 2270 2349 2368 2860 2878	3372 3753 3961 3915 4051 4084 4933 4965 5094
140731 137260 106412	·143602	·142138	·144981	6316	3925	3589	6190
	·140061	·138632	·141405	6474	4023	3678	6345
	·108584	·107452	·109601	8353	5191	4746	8186
0943452 0832726 0713386 0669352	· 0962706	*0952886	*0971944	9422	5855	5353	9234
	· 0949720	*0841053	*0857874	10674	6633	6065	10460
	· 0727945	*0720520	*0734930	12462	7744	7081	12210
	· 0683012	*0676046	*0689566	13279	8252	7545	13010
·0558256	·0569649	$ \begin{array}{c} \cdot 0563839 \\ \cdot 0555230 \\ \cdot 0453218 \end{array} $	· 0575115	15925	9896	9048	15610
·0549733	·0560952		· 0566335	16169	10050	9187	15850
·0448730	·0457888		· 0462282	19811	12310	11256	19410

TABLE NO. 15.—FLEXIBLE CONDUCTORS.

ं ह	98 % Tinned Copper	106.738 104.765 71.4181 70.1754	68+3113 61+4038 60+4212 43+6654	42.5765 39.2984 35.0949 34.9388	24.5687 21.5662 21.4937 15.7239	13 · 9990 13 · 9165 13 · 6101
Resistance in Oluns per Mile at 60°	100 % Tinned Copper	104 · 645 102 · 711 70 · 0178 68 · 7994	66.9718 69.1998 59.2365 42.8092	41 · 7417 38 · 5278 34 · 4067 34 · 2537	24·0870 24·0815 24·0133 15·4155	13·7245 13·6436 13·3433
stance in Ohms	98 % Plain Copper	105.724 103.769 70.7393 69.5083	67 · 6620 60 · 8201 59 · 8469 43 · 2504	42·1718 38·9248 31·7613 34·6067	24 · 3352 24 · 3327 24 · 2609 15 · 5744	13.8659 13.7842 13.4808
Resi	100 % Plain Copper	103.609 101.693 69.3245 68.1182	66:3087 59:6037 58:6500 42:3854	41 · 3284 38 · 1464 34 · 0661 33 · 9146	23 · 8485 23 · 8460 23 · 7756 15 · 2629	13.5886 13.5085 13.2111
Weight	lb. per mile	8.614 8.803 12.909 13.149	13.495 15.028 15.256 21.123	21.656 23.470 26.299 26.404	37.567 37.550 37.663 58.681	65.906 66.300 67.794
Effective	8q. mm.	0.263502 0.268466 0.393820 0.400794	$\begin{array}{c} 0.411731 \\ 0.458048 \\ 0.465496 \\ 0.644122 \end{array}$	0.660595 0.715700 0.801423 0.805904	1.14478 1.14490 1.14829 1.78873	2.00913 2.02104 2.06653
Effective	sq. Ir.	$\begin{array}{c} 0.6578 \cdot 000041619 \cdot 000040843 \\ 0.6756 \cdot 00042403 \cdot 0000416124 \\ 0.8205 \cdot 00062202 \cdot 0000610422 \\ 0.8370 \cdot 00063335 \cdot 0000621232 \end{array}$	$\begin{array}{c} 0.8255 \cdot 00065031 \cdot 000033184 \\ 0.8636 \cdot 00072382 \cdot 000769976 \\ 0.8940 \cdot 00073523 \cdot 009721521 \\ 1 \cdot 052 \cdot \cdot 00101786 \cdot 000938392 \end{array}$	001102392 000110933 00124221 00124776	00177142 00177460 00177985 00277254	00311417 00313262 00320314
Calculated	8q. in.	9-6578 - 00041619 - 00040843 0-6756 - 00042403 - 000416124 0-8205 - 00062202 - 000610422 0-8370 - 00063335 - 000621232	0.8255 00065031 0000538184 0.8636 00072382 000709976 0.8940 00075523 0009721521 1.052 00101786 000998392	· 00104338 · 00102392 · 00113097 · 00110933 · 03126668 · 00124221 · 00127209 · 00124776	$\begin{array}{c} \cdot 00180955 \\ \cdot 00180956 \cdot 001771460 \\ \cdot 00181456 \cdot 00177985 \\ \cdot 00282744 \cdot 00277254 \end{array}$	$\begin{array}{c} \cdot 00317552 \\ \cdot 00319496 \\ \cdot 00326624 \\ \cdot \cdot 00320314 \\ \end{array}$
Diameter of Strand	mm.	0.6578 0.6756 0.8205 0.8370	0.8255 0.8636 0.8940 1.052	1.072 1.082 1.163 1.176	1.397 1.405 1.410 1.803	1.829 1.890 1.854
Diar	ii	.0259 .0266 .0323 .0330	.0325 .0340 .0352 .0414	.0422 .0426 .0458 .0463	.0550 .0553 .0555 .0555	
Diameter of Wire	mm.	.1219 .1524 .1524 .1219	.0060 .1524 .0325 .0048 .1219 .0840 .0060 .1524 .0352 .0060 .1524 .0414	0076 1930 0422 0060 1524 0426 0048 1219 0458 0060 1524 0463	.1219 .1524 .1930 .1524	.1930 · 0720 .1524 · 0744 .1930 · 0730
	ii	-0048 -0060 -0060 -0048	.0060 .0048 .0060 .0060	.0076 .1930 .0060 .1524 .0048 .1219 .0060 .1524	.0048 .1219 .0550 .0060 .1524 .0553 .0076 .1930 .0555 .0060 .1524 .0710	.0076 .1930 .0720 .0060 .1524 .0744 .0076 .1930 .0730
Conductor	L.S.W.G	23/40 15/38 2 2/38 35/40	23/38 40/40 26/38 36/38	23/36 40/38 70/40 45/38	100/40 64/38 40/36 100/38	70/36 113/38 72/36

TABLE No. 15.—FLEXIBLE CONDUCTORS—continued.

٥ ت	98 % Tinned Copper	13 · 0657 10 · 8893 10 · 3160 8 · 93592	8.90932 6.72103 5.24027 4.27367	3.71865 2.97806 2.48793 2.13252	$\begin{array}{c} 1.85969 \\ 1.65120 \\ 1.48479 \\ 1.26972 \end{array}$	1.11581 0.995190 0.898049
per Mile at 60	100 % Tinned Copper	12.8094 10.6757 10.1137 8.76071	8.73462 6.58925 5.13752 4.18987	3·64574 2·91967 2·43915 2·09071	$\begin{array}{c} 1.82322\\ 1.61882\\ 1.45564\\ 1.24482\end{array}$	$1.09394 \\0.975677 \\0.880485$
Resistance in Ohms per Mile at 60°	98 % Plain Copper	12.9415 10.7858 10.2179 8.85098	8 · 82463 6 · 65715 5 · 19046 4 · 23305	3.68331 2.9±976 2.46428 2.11225	$\begin{array}{c} 1.84201 \\ 1.68551 \\ 1.47065 \\ 1.25765 \end{array}$	$\begin{array}{c} 1.10521 \\ 0.985731 \\ 0.889558 \end{array}$
Pesis	100 % Plain Copper	12.6823 10.5741 10.0136 8.67396	8·64814 6·52401 5·08665 4·14838	3.60964 2.89076 2.41500 2.07001	1.80517 1.60280 1.44123 1.23250	1.08300 0.966017 0.871767
Weight	lb. per mile	70.615 84.742 89.449 103.255	103·571 137·292 174·848 215·924	248·20 310·87 371·06 433·77	496·40 559·00 621·78 727·00	827.37 927.60 1027.8
Effective	sq. mm.	2.15265 2.58289 2.72642 3.14751	3.15690 4.18475 5.36725 6.58120	7.56345 9.44435 11.3049 13.1890	15 · 1239 17 · 0335 18 · 9430 22 · 1512	25.2065 28.2618 31.3172
Effective	sq. in.	00333662 00400349 00422596 00487864	00489321 00648638 00831927 0102008	.0117234 .0146387 .0175226 .0204430	.0234421 .0264020 .0293617 .0313345	.0390702 .0438058 .0485418
Calculated	sq. in	.00340231 .003108276 .00430964 .00430964 .00497622 .00487864	$\begin{array}{c} \cdot 00499010 \cdot 00489321 \\ \cdot \cdot 00661611 \cdot 00648638 \\ \cdot \cdot 00848565 \cdot \cdot 00831927 \\ \cdot \cdot \cdot 0104049 \cdot \cdot \cdot 102008 \end{array}$.01195555 .0149645 .0178731 .0208999	.0239110 .0269301 .0299490 .0350212	.0398516 .0446820 .0495127
ter of	mm.	1.905 2.123 2.184 2.705	2.365 3.124 3.521 3.911	4.199 4.694 5.125 5.540	5.936 6.297 6.638 7.176	7.664 8.113 8.534
Diameter of Strand	in.		.0931 .1230 .1386 .1540	1653 1848 2018 2018	.2337 .2479 .2613 .2825	.3017 .3194 .3360
er of	mm.	0076 - 1930 - 0750 0076 - 1930 - 0836 0076 - 1930 - 0860 0060 - 1524 - 1065	0076 -1930 -0931 0060 -1524 -1230 0060 -1524 -1386 0060 -1524 -1540	.3150 .1653 .3150 .1848 .3150 .2018 .3150 .2181	.3150 .3150 .3150	.3150 - .3150 - .3150 -
Diameter of Wire	in.	.0076 1930 .0076 1930 .0076 1930 .0060 1524	0900.	.0124 .0124 .0124 .0124	.0124 .0124 .0124 .0124	.0124 .0124 .0124
Conductor	L.S.W.G.	75/36 90/36 95/36 176/38	110/36 234/33 298/38 368/38	99/30 124/30 148/30 173/30	198/30 223/30 248/30 290/30	330/30 370/30 410/30

In the preceding tables, Nos. 12, 13, 14, and 15, the resistance of tinned copper wire has been calculated with a 1 per cent, allowance on all sizes of wire. The Engineering Standards Committee, however, recommend this allowance only for wires No. 12 and No. 28, L.S.W.G., inclusive.

TABLE NO. 16.—VOLTAGE DROP IN COPPER CONDUCTORS.

	9.0 volts	798.8 1328 1328 2117 3176 5292 8467 13230 138520 26460 56270 50270 50270 63510 63510 63510 63510 63510 63510 63510 63510 52270 523800 523800 523800
	8.0 volts	470.4 1176 1882 2823 4704 7526 11760 11760 223520 223520 24680 1645830 112900 1
C.):-	7.0 volts	411.6 617.4 1029 1646 1646 1166 6586 220580 220580 2810 49400 61740 76140 76140 76140 1127600 1127600 1127600 711600 711600
. = 35° C.	6.0 volts	552.8 529.2 1411 1411 251.7 251.7 251.7 251.7 252.0 1250.0 1
1 as 95° F	5.5 volts	323.4 485.1 1294 1294 1294 1294 5174 8085 11320 16170 38810 48510 59820 77610 100240 120400 1
$ m Yard$ -ampere for a Voltage drop of (Temperature of Conductor taken as 95°	5.0 volts	294.0 441.0 1176 1176 1176 1764 2940 4704 14700 20580 20580 44100 564890 564890 1176000 117600 117600 117600 117600 117600 117600 117600 117600 11760
of Condu	4.5 volts	264.6 9961.5 1058 1058 1588 2646 4234 6613 9260 18230 18230 18230 18230 18230 18230 18230 18230 18240 25140 25140 25140 25140
operature	4 0 volts	235-2 352-75 358-0 940-6 1411 2332 3763 5880 11760 11760 28230 28230 35275 43510 54500 117600 117600 117600 288160
p of (Fer	3.5 volts	205 - 8 30.8 - 7 31.4 - 5 523 - 0 1235 2058 - 3 2058 - 2 51.45 7202 11407 110290 110290 82300 82300 1128630 1128630 1128630 1128630
itage dro	3.0 volts	176.4 264.6 426.7 1055.5 1055.1 1764.2 2822 4410 6174 8820 112350 15550 26460 21170 26460 21170 26460 21170 26460 16750 17050
e for a Vo	2.5 volts	147.0 220.5 367.5 587.9 882.0 1470. 2852 3675 5145 5145 5180 17640 22050 22050 22050 22050 22050 257190 257190 55790 17640 17640 17640 17640 17650 176
rd-ampere	2.0 volts	117.6 176.4 170.3 170.5 1176 1176 1176 1177 1177 1177 1177 117
Yaı	1.5 volt	58.8 147.0 2132.3 147.0 2132.3 147.0 2132.3 285.2 352.8 528.0 882 940.8 1411 1470 2205 2940 4410 1820 5730 1820 5730 1820 5730 2350 5730 2350 5730 2410 6174 5705 1058 10878 16320 10878 16320 1087
	1.0 volt	0 58.8 0 187.0 187.0 197.0
	0.5 volt	29.40 5 78.50 176.4 176.4 175.0 175.0 1470 1470 1470 1470 1470 1470 1470 147
Section	sq. in.	0.00155 0.00155 0.00155 0.00155 0.00155 0.00155 0.00175 0.00185 0.00185 0.00186 0.1872 0.00186 0.286 0.286 0.286 0.286 0.286 0.286 0.286 0.286 0.286 0.286 0.286 0.286
Cross	mm.2	1:000 1:000 2:000 6:000 6:000 1:

The above table can be used for any voltage drop, e.g. for 15 volts the 1.5 volt column must be multiplied by ten. By the above table any one of the following quantities can be determined, providing the other three are given: cross section, length in yards (go and return), load in amperes, drop in voltage.

TABLE No. 17.—VOLTAGE DROP

1/21 3/25 1/20 3/24 1/19 3/23 1/18 3/22 7/25 3/21 1/17 7/24 3/20 7/23	sq. in. 0.00061575 0.0080425 0.00092400 0.00101787 0.0011546 0.0133056 0.0180956 0.0180956 0.0181103 0.00216193	0:397257 :518870 :596127 :656689 :719655 :810900 :858423	11.7 15.2 17.5 19.3 21.2	23·4 30·4 35·0 38·6	1.5 volt 35.1 45.7	1 _{2:0} volts 46:7 60:9	2.5 volts	
1/22 1/21 3/25 1/20 3/24 1/19 3/23 1/18 3/22 7/25 3/21 1/17 7/24 3/20 7/23	0:00061575 :00080425 :00082400 :00101787 :00111546 :00125664 :00133056 :00180956 :00181103	0·397257 ·518870 ·596127 ·656689 ·719655 ·810900 ·858423	11·7 15·2 17·5 19·3	23·4 30·4 35·0	35·1 45·7	46·7 60·9	58.4	70.0
1/21 3/25 1/20 3/24 1/19 3/23 1/18 3/22 7/25 3/21 1/17 7/24 3/20 7/23	· 00080425 · 00092400 · 00101787 · 00111546 · 00125664 · 00133056 · 00180956 · 00181103	·518870 ·596127 ·656689 ·719655 ·810900 ·858423	15·2 17·5 19·3	30·4 35·0	45.7	60.0		
3/25 1/20 3/24 1/19 3/23 1/18 3/22 7/25 3/21 1/17 7/24 3/20 7/23	·00092400 ·00101787 ·00111546 ·00125664 ·00133056 ·00180956 ·00181103	*596127 *656689 *719655 *810900 *858423	17·5 19·3	35.0	45.7	60.0		
1/20 3/24 1/19 3/23 1/18 3/22 7/25 3/21 1/17 7/24 3/20 7/23	·00101787 ·00111546 ·00125664 ·00133056 ·00180956 ·00181103	.656689 .719655 .810900 .858423	17·5 19·3		52.5			91.4
3/24 1/19 3/23 1/18 3/22 7/25 3/21 1/17 7/24 3/20 7/23	·00111546 ·00125664 ·00133056 ·00180956 ·00181103	·719655 ·810900 ·858423		38.6		70.0		
1/19 3/23 1/18 3/22 7/25 3/21 1/17 7/24 3/20 7/23	·00125664 ·00133056 ·00180956 ·00181103	·810900 ·858423	21.2		57.9			
3/23 1/18 3/22 7/25 3/21 1/17 7/24 3/20 7/23	·00133056 ·00180956 ·00181103	.828453		42 · ;;	63.5			127
1/18 3/22 7/25 3/21 1/17 7/24 3/20 7/23	$\substack{+00180956 \\ -00181103}$.828453	23.8	47.6	71.5	95.3	119	143
3/22 7/25 3/21 1/17 7/24 3/20 7/23	:00181103		25.2	50.5			126	152
7/25 3/21 1/17 7/24 3/20 7/23		1:16745	34.3	68.6		137	171	206
3/21 1/17 7/24 3/20 7/23	.00216193	1.16840	34.4	68.7		137	172	206
1/17 7/24 3/20 7/23		1.39479	41.0	82.1	123	161	206	246
7/24 3/20 7/23	.00236534	1:52602	41.9	89.7	135	180	224	269
3/20 7/23	.0024630	1.58903	46.8	93.5		188	234	281
7/23	.0056099	1:68381	49.5	98.0	148	198	248	297
	.0029937	1.93143	56.9	114	171	228	284	342
1/16	.0031132	2.00850	59.0	118	177	236	296	354
	.0032170	2:07547	60.9	122	183	244	304	366
	.0036960	2.38451	70.1	140	210	280	350	421
	.00407151	2.62677	77.1	154	232	309	386	463
	.00423736	2.73378	80.4	161	241	322	402	482
7/211	.00486435	3.13829	92.2	184	277	369	461	554
	.00502656	3.24203	95.2	191	286	381	476	572
	.00532223	3 · 43369	101	202	303	404	505	
	.00223422	3.57067	104.8	210	314	419	524	60 6 629
	.00288286	3.79732	111.6	223	335	446	558	670
1/13	00664762	4.28878	126	252	378	504	630	756
7/20	.00700461	4.51909	133	266	399	532	665	707
	.00849488	5.48055	161	322	483	645	806	797
	00861774	5.57917	164	328	492	655	819	967 983
	0105683	6.81824	200	401	601		1001	1201
9/22	0114546	7:39008	217	435	652		087	1304
7/18	0124556	8:03589	236	473	709	945	182	
	0128679	8:30185	24.4	488	732		.221	1418
	0149963	$9 \cdot 67505$	284	569			.423	1465
	0162860	10.5071	309	618				1707
7/17	0169495	10.9352	322	643				1854 1930
	0189789	12.2443	360	720	1080 1	440 1		
		12:9717	381				.800	2160
	0201062				14.5	506 1		
9/19		14·2826 15·1167	420				907	2289 2520

IN COPPER CONDUCTORS.

Voltage Drop of (Temperature taken at 95° F. = 35° C. Yards = lead and return):—

	1 -							
3.5 volts	4.0 volts	4.5 volts	5.0 volts	5.5 volts	6.0 volts	7.0 volts	8.0 volts	9.0 volts
81.7	93.4	105.0	117.0	128.6	140.0	163.7	187	210.0
106.7		137 · 1	152.3	167.7	182.8	213.5	244	$274 \cdot 1$
122.6		157.6	175.0	192.7	210.0	$\frac{215}{245 \cdot 2}$	280	
135.0		173.7	192.9	212.0	232.0	270.0		315.2
148	169	190	212	232			309	347.0
140	109	190	212	202	254	296	338	380
167	191	214	238	262	286	334	381	429
177	202	227	252	278	303	354	404	455
240	274	308	343	377	412	480	549	617
240	275	3 09	344	378	412	481	550	618
288	328	370	410	452	493	5 75	657	740
314	359	404	449	494	539	628	718	808
328	374	421	468	515	561	655	748	842
346	396	445	495	545	594	693	792	891
398	455	512	569	625	682	796	910	1023
413	472	532	590	650	709	827	945	1062
427	487	548	609	670	731	853	975	1097
491	561	631	701	771	841	981	1120	1261
540	617	695	771	848	926	1080	1234	1389
563	643	723	804	884	964	1124	1286	1446
646	738	830	922	1014	1107	1291	1474	1660
0.05	762	857	95 2	1048	1142	1833	1524	1714
667		908	1010	1110	1211	1413	1617	1818
707	808	943	1010	1152	1258	1468	1678	1888
734	838			1228	1339	1562	1786	2010
781	893	1003	1116					
882	1007	1133	1260	1385	1511	1763	2017	2267
930	1063	1196	1328	1461	1594	1860	2125	2390
1128	1289	1450	1610	1771	1932	2255	2576	2898
1148	1311	1474	1639	1803	1967	2295	2624	2950
1402	1603	1803	2003	2202	2401	2802	3202	3602
1522	1739	1956	2174	2391	2608	3043	3478	3913
1654	1890	2127	2363	2600	2836	3308	3781	4254
1709	1953	2197	2441	2685	2929	3418	3906	4394
1992	2276	2561	2845	3130	3414	3983	4552	5121
2163	2472	2781	3090	3399	3708	4326	4944	5562
2251	2573	2894	3216	3537	3859	4502	5146	5789
2520	2880	3241	3600	3961	4321	5041	5761	6481
	3052	3433	3815	4196	4578	5340	6103	6867
2670 2940	3360	3780	4200	4620	5040	5880	6721	7560
		4001	4445	4890	5334	6223	7112	8002
3112	3556	1001	1110	1000	3001	James	1114	0004
							. —	

TABLE No. 17.—VOLTAGE DROP

$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
1/7	for a	ards	eres and	nct of Amp	Produ			oss Section	Effective Cr	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	volts	3.0 v	2.5 volts	2.0 volts	1.5 volt	1.0 volt	0.5 volt	mm.2	εq. in.	or inch
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	770	27	2308	1847	1385	923	462	15.6596	0.0243285	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	845	28	2371	1897						7/.068"
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	190									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	296									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	841	38	3201	2561	1921	1280	640	21.7680	10007400	19/18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	938	39								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	019									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	206									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	342									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	813	48	4011	3209	2406	160±	802	21.2130	0422100	1/4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	192	51	4327	3461	2596	1731	865	29 · 4234	.0456064	
$\begin{array}{c} 19/17 & 0459247 & 29 \cdot 6288 \\ 7/\cdot 095'' & 0487786 & 31 \cdot 4700 & 926 & 1851 & 2777 \\ 19/\cdot 058'' & 0496235 & 31 \cdot 7828 & 942 & 1883 & 2825 & 3766 & 4708 \\ \hline \\ 1/3 & 0498760 & 32 \cdot 1780 & 946 & 1893 & 2839 & 3786 & 4732 \\ 7/12 & 0584587 & 37 \cdot 7152 & 1109 & 2219 & 3328 & 4437 & 5547 & 6 \\ 1/2 & 0598286 & 38 \cdot 5990 & 1135 & 2270 & 3406 & 4541 & 5677 & 6 \\ 19/16 & 0599831 & 38 \cdot 6987 & 1138 & 2276 & 3414 & 4552 & 5691 & 6 \\ 37/18 & 0656730 & 42 \cdot 3696 & 1246 & 2492 & 3738 & 4984 & 6231 & 7 \\ \hline \\ 1/1 & 0706860 & 45 \cdot 6038 & 1341 & 2683 & 4024 & 5365 & 6706 & 8 \\ 7/11 & 0727272 & 46 \cdot 9207 & 1380 & 2760 & 4140 & 5520 & 6900 & 8 \\ 1/0 & 0824481 & 53 \cdot 1922 & 1564 & 3129 & 4693 & 6258 & 7823 & 9 \\ 7/10 & 0883523 & 57 \cdot 1304 & 1680 & 3361 & 5041 & 6721 & 8402 & 10 \\ \hline \\ 37/17 & 0893883 & 57 \cdot 6697 & 1696 & 3392 & 5869 & 6785 & 8481 & 10 \\ \hline \\ 37/17 & 0893883 & 57 \cdot 6697 & 1696 & 3392 & 5869 & 6785 & 8481 & 10 \\ \hline \\ 37/17 & 0893883 & 57 \cdot 6697 & 1696 & 3392 & 5869 & 6785 & 8481 & 10 \\ \hline \\ 37/17 & 0893883 & 57 \cdot 6697 & 1696 & 3892 & 5869 & 6785 & 8481 & 10 \\ \hline \\ 37/17 & 0893883 & 57 \cdot 6697 & 1696 & 3892 & 5869 & 6785 & 8481 & 10 \\ \hline \\ 37/17 & 0893883 & 57 \cdot 6697 & 1696 & 3892 & 5869 & 6785 & 8481 & 10 \\ \hline \\ 37/17 & 0893883 & 57 \cdot 6697 & 1696 & 3892 & 5869 & 6785 & 8481 & 10 \\ \hline \\ 37/17 & 0893789 & 60 \cdot 16690 & 1579 & 2587 & 5869 & 6785 & 8481 & 10 \\ \hline \\ 37/17 & 0893789 & 60 \cdot 16690 & 1579 & 2587 & 5869 & 6785 & 8481 & 10 \\ \hline \\ 37/17 & 0893789 & 60 \cdot 16690 & 1579 & 2587 & 5869 & 6785 & 8481 & 10 \\ \hline \\ 37/17 & 0893789 & 60 \cdot 16690 & 1579 & 2587 & 5869 & 6785 & 8481 & 10 \\ \hline \\ 37/18 & 0937789 & 60 \cdot 16690 & 1579 & 2587 & 5869 & 6785 & 8481 & 10 \\ \hline \\ 37/19 & 0893789 & 60 \cdot 16690 & 1579 & 2587 & 5869 & 6785 & 8481 & 10 \\ \hline \\ 37/18 & 093789 & 60 \cdot 16690 & 1579 & 2587 & 5869 & 6785 & 8481 & 10 \\ \hline \\ 37/19 & 0808789 & 080878 & 1180 & 1579 & 2587 & 5869 & 6785 & 8481 & 10 \\ \hline \\ 37/19 & 0808789 & 080878 & 11808 & 11808 & 11808 & 11808 & 11808 & 11808 & 11808 & 11808 & 11808 & 11808 & 11808 & 11808 & 11808 & 11808 & 11808 & 1$	208				2604	1736	868	29.5138		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	229	52	4357	3486	2614	1743				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	554	55	4628	3702						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	649	56	4708	3766	2825	1883	942	31.7828	.0496235	19/*058"
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	679	56	4732	3786	2839	1893	946			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	656		5547	4437	3328					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	812	68	5677							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	829	68								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	477	74	6231	4984	3738	2492	1246	47,2090	.0090190	01/10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	048	80	6706	5365	4024	2683				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	280		6900	5520	4140					
7/10 ·0885523 57·1804 1680 3361 5041 6721 8402 10 37/17 ·0893883 57·6697 1696 3392 5089 6785 8481 10	644	86	7203	5763						
37/17 ·0893883 57·6697 1696 3392 5089 6785 8481 10	388	93	7823	6258						
19/14 :0037930 60:1680 1770 9777 7007 9781 10	082	100	8402	6721	5041	3361	1680	94,1304	10889925	1/10
19/14 10937939 60:1680 1550 9650 6000 6771	178	101	8481	6785	5089	3392				
		106	8893	7114	5335	3557	1779	60.4669	*0937239	
1/00 0951130 61 3614 1805 3610 5414 7220 9024 10		108	9024	7220	5414	3610			.0951150	1/00
13/082 038681 03.3277 1869 3737 5605 7474 9342 11		112	9342	7474	5605					
$61/18$ $\cdot 108250$ $69 \cdot 8389$ 2054 4108 6162 8216 10270 12	326	123	10270	8216	6162	4108	2054	69.8389	108250	01/18
1/000 ·108687 70·119 2062 4125 6187 8249 10312 12	376	123	10312	8249	6187					
$\frac{7/9}{27/16}$ $\frac{112074}{11272}$ $\frac{72 \cdot 3059}{3059}$ $\frac{2127}{4253}$ $\frac{4253}{6380}$ $\frac{6380}{8506}$ $\frac{10633}{10633}$ $\frac{12}{12}$	760							72:3059		1/9
$\frac{37/16}{10/13}$ $\frac{116752}{10/13}$ $\frac{75 \cdot 3239}{10/13}$ $\frac{2215}{10/13}$ $\frac{4431}{10/13}$ $\frac{6646}{10/13}$ $\frac{8860}{10/13}$ $\frac{11077}{13}$	290				6646	4431				
$\frac{19/13}{1/0000}$ $\frac{123950}{1125664}$ $\frac{79.9676}{91.072}$ $\frac{2352}{4704}$ $\frac{4704}{7055}$ $\frac{9408}{11760}$ $\frac{11}{14}$	112			9408						
		143	11922	9538	7153	4769	2385	81.072	12.0004	1/0000
7/8 138363 89.2663 2625 5250 7875 10500 13124 15	750	157	13124	10500	7875	5250				
$\frac{1}{10000}$ $\frac{140374}{140000}$ $\frac{94.562}{140000}$ $\frac{2781}{15562}$ $\frac{8342}{11125}$ $\frac{13906}{13906}$		166				5562				
$\frac{61/17}{27/15}$ $\frac{14/341}{117794}$ $\frac{95.0587}{95.0587}$ $\frac{2795}{5591}$ 8387 $\frac{11183}{13978}$ $\frac{1}{16}$		167			8387					,
0(/10) 147/64 95.8318 9802 5607 6410 17014		168			8410	5607	2803	99.3318	147764	07/10

IN COPPER CONDUCTORS—continued.

Voltage Drop of (Temperature taken at 95° F. = 35° C. Yards = lead and return)

3.5 volts	4.0 volts	4.5 volts	5.0 volts	5.5 volts	6.0 volts	7.0 volts	5.0 volts	9.0 volts
3231	3693	4154	4616	5077	5539	6462	7386	8308
3320	3794	4268	4742	5217	5691	6640	7588	8536
3722	4253	4785	5316	5848	6380	7443	8506	9570
3846	4395	4944	5494	6043	6592	7692	8790	9889
4482	5122	5762	6402	7042	7683	8962	10243	11523
	0122	0102	7 0102		1000	0002	10210	11020
4594	5251	5907	6563	7220	7876	9189	10500	11816
4689	5 358	6029	6698	7368	8038	9378	10717	12057
4 906	5608	6309	7010	7710	8411	9813	11214	12617
5065	5789	6512	7236	7959	8683	10130	11577	13024
5 615	6417	7219	8021	8824	9626	11230	12834	14440
6058	6923	7788	8654	9519	10385	12115	13846	15577
6076	6944	7812	8680	9548	10416	12152	13888	15624
6100	6972	7843	8714	9586	10458	12200	13942	15686
6479	7404	8330	9256	10182	11107	12958	14810	16660
6591	7533	8474	9416	10358	11300	13182	15066	16950
6625	7572	8518	9465	10411	11357	13250	15142	17036
7765	8874	9984	11093	12203	13311	15530	17748	19968
7947	9082	10218	11352	12488	13623	15894	18164	20436
7966	9105	10243	11381	12520	13657	15934	18210	20187
8723	9970	11216	12460	13708	14954	17447	19938	22432
9389	10730	12072	13413	14754	16097	18778	21460	24143
9660	11040	12420	13800	15180	16560	19320	22080	24840
10085	11525	12966	14408	15847	17288	20170	23050	25932
10055	12518	14082	15645	17210	18774	21903	25032	28162
	13442	15122	16802	18485	20163	23527	26884	30244
11763	19444	10144		10100				
11873	13570	15266	16962	18658	20354	23750	27140	30533
12450	14230	16010	17790	19566	21343	24900	28460	32017
12634	14440	16245	18048	19853	21660	25270	28880	32490
13080	14950	16817	18686	20550	22420	26160	29900	33634
14380	16430	18486	20542	22596	24650	28755	32864	36975
14438	16500	18560	20625	22688	24750	28873	33000	37124
14886	17013	19140	21266	23390	25520	29770	34030	38280
15510	17720	19937	22150	24370	26584	31014	35445	39872
16464	18816	21168	23520	25870	28220	32930	37630	42335
16690	19076	21460	23846	26230	28610	33380	38150	42920
18375	21000	23626	26250	28870	31500	36750	42000	47250
	$\frac{21000}{22250}$	25030	27810	30590	33370	38936	44496	50060
19467	22365	25160	27955	30750	33546	39140	44730	50320
19570	22430	25230	28035	30840	33640	39250	44850	50470
19623	44.100	20200	20000	50010	30023			0.00

TABLE No. 17.—VOLTAGE DROP

L.S.W.G.	Effective (Cross Section			Prod	uct of Am p	eres and	ards for a
or inch	sq. in.	mm.2	0.5 volt	1.0 volt	1.5 volt	2.0 volts	2.5 vols	3.0 volts
19/.101"	0.149386	96:3783	2835	5669	8504	11340	14173	17010
19/12	·158393	102 · 189	3005	6011	9016	12022	15028	18033
1/000000	169093	109.09	3208	6416	9625	12833	16040	19250
37/14	182425	117:693	3462	6922	10380	13850	17310	20770
37/·082"	·191660	123.651	3636	7273	10910	14550	18180	21820
′					10010	11000	10100	21020
61/16	192444	124 · 157	3652	7304	10955	14610	18260	21910
1/00000000	196350	126.68	3726	7452	11180	14900	18630	22350
19/11	-197054	127 · 131	3739	7478	11220	14960	18700	22430
7/6	199243	128 · 543	3781	7562	11340	15120	18900	22685
19/10	.239910	154 · 794	4552	9104	13660	18210	22760	27310
			***************************************	0101	10000	10210	22100	27510
37/13	$\cdot 241257$	155.649	4578	9156	13730	18310	22890	27470
61/15	·243003	156.776	4611	9222	13830	18450	23060	27670
37/*101"	290769	187 - 592	5504	11010	16510	22020	27520	33030
61/14	•300696	193 - 997	5705	11410	17120	22820	28530	34230
37/12	*308299	198 - 902	5850	11700	17550	23400	29250	
,		200 002	00.00	11100	11000	20100	40400	35100
37/-110"	*344898	222.514	6544	13090	19630	26180	32720	39270
37/118"	·396888	256.056	7531	15060	22590	30120	37660	45190
61/13	*397671	256 - 561	7545	15090	22635	30180	37730	45270
61/:098"	451233	291.117	8562	17125	25690	34250	42810	
91/14	.448536	289 · 377	8510	17020	25530	34040	42550	51370 51070
					20000	01010	12000	91070
61/.101"	+479282	309 · 213	9094	18190	27280	36380	45470	54560
61/12	508177	327 · 855	9642	19284	28926	38570	48210	57850
61/-108"	. 548019	353 - 560	10400	20800	31200	41600	52000	62400
61/:110"	.573408	369 · 940	10880	21760	32640	43520	54400	
91/13	.593188	382.701	11255	22510	33770	45020	56270	65280
					00110	10020	90210	67530
61/11	*632211	407.877	11990	23990	35990	47980	59980	71970
61/-118"	-654201	422.064	12410	24825	37240	49650	62060	74480
$-91/\cdot098''$	673084	434 · 247	12770	25540	38320	51090	63860	
$-91/\cdot 101''$	$\cdot 714924$	461.241	13565	27130	40690	54260	67820	$76640 \\ 81390$
91/12	*758025	489.047	14380	28770	43150	5 75 30	71920	
					20100	01000	11020	86300
61/10	-769777	496.629	14606	29210	43820	58430	73030	87640
91/11	•943042	608.413	17890	35790	53680	71580	89470	87640
91/+110"	*848013	547 104	16090	32180	48280	64360	80460	107400
91/-118"	+975845	$629 \cdot 576$	18520	37030	55550	74060		96550
127/-101"	+997652	643.680	18930	37860	56790	75720	94660	111100
					50100	10120	24000	113600

IN COPPER CONDUCTORS-continued.

Voltage Drop of (Temperature taken at 95° F. = 35° C. Yards = lead and return)

3.5 volts	4.0 volts	4.5 volts	5.0 volts	5°5 volts	6.0 volts	7.0 volts	8.0 volts	9.0 volts
		-						
19840	22680	25510	28348	31180	34010	39680	45350	51020
21040	24040	27050	30055	33060	36065	42080	48090	54100
22460	25670	28880	32085	3 5290	38500	44920	51330	57750
24230	27690	31150	34620	38080	41530	48470	5 5380	62310
25450	29090	32730	36360	40000	43640	50910	58180	65460
25560	29210	32870	36520	40170	43820	51130	58420	65730
26080	29810	33530	37260	40980	44710	52160	59610	67060
26170	29910	33650	37390	41130	44870	52340	59820	67300
26470	30250	34030	37810	41590	45370	52930	60490	68060
31870	36420	.40970	45520	50080	54630	63740	72840	81940
32010	36620	41200	45780	50360	54940	64090	73240	82400
32280	36890	41500	46110	50720	55340	64560	73780	83000
38530	4.4030	49540	55040	60550	66050	77060	88060	99080
39940	45640	51350	57050	62760	68470	79880	91290	102700
40950	46800	52650	58500	64350	70200	81900	93600	105300
45810	52360	58900	65440	71980	78540	91620	104700	117800
52720	60250	67780	75310	82840	90370	105430	120500	135600
52820	60360	67900	75450	82990	90540	105600	120700	135800
59930	68500	77060	85620	94180	102740	119870	137000	154100
5 9580	68080	76600	85100	93620	102130	119160	136180	153200
63660	72750	81840	90940	100100	109100	127300	145500	163700
67500	77140	86780	96420	106070	115700	135000	154300	173550
72790	83200	93580	104000	114400	124800	145600	166400	187200
76160	87040	97920	108800	119700	130600	152300	174100	195860
78780	90010	101300	112550	123800	135070	157570	180100	202600
83960	95960	108000	119900	131950	144000	167900	191900	215950
86880	99300	111700	124100	136500	149000	173800	198600	223400
89400	102200	114940	127700	140500	153300	178800	204300	229900
94950	108500	122100	135650	149200	162800	189900	217000	244200
100700	115060	129460	143800	158200	172600	201400	230150	258900
102240	116840	131450	146060	160700	175300	204500	233700	262900
125250	143150	161040	178900	196800	214700	250500	286300	322100
112650	128700	144800	160900	177000	193100	225300	257500	289700
129600	148150	166700	185200	203700	222200	259300	296300	333300
132500	151460	170400	189300	208300	227200	265100	302900	340800
	1			1	1		1	

The voltage drop for any copper conductor can be worked out from the following formula:—

Let V = voltage drop.

A = current in amperes.

L = length of circuit (go and return) in yards.

R = resistance of the conductor.

S = cross section of conductor in square mm.

Taking the working temperature as 95° F., at which temperature copper has a specific resistance of 1.86×10^{-6} ohms per cubic centimetre, then:—

$$R = \frac{0.0186 \text{ L}}{1.094 \text{ s}}$$
... $V = AR = \frac{0.0186 \text{ LA}}{1.094 \text{ S}} = 0.0170 \frac{\text{LA}}{\text{S}}$

If the section is expressed in square inches, the voltage drop is-

$$\mathbf{V} = 0.00002635 \, \frac{\mathbf{LA}}{\mathbf{S}}$$

Table No. 18.—Weight and Resistance (Standard) of Soft Annealed Copper Wire.

Dia- meter, mm.	Section, square mm.	Standard Weight, lb. per mile	Standard Resistance ohms per mile	Dia- meter, mm.	Section, square mm.	Standard Weight, lb. per mile	Standard Resistance, ohms per mile
0·05 ·06 ·07 ·08 ·09 ·10 ·12 ·14 ·15 ·16 ·18	0·00196 ·00283 ·00385 ·00503 ·00636 ·00785 ·0113 ·0154 ·0177 ·0201 ·0251	0.0621 .0894 .1217 .1590 .2012 .2184 .3577 .4868 .5589 .6359 .8048	00000000000000000000000000000000000000	0.45 .46 .48 .50 .52 .54 .55 .56 .58 .60	0·1590 ·1662 ·1810 ·1963 ·2124 ·2290 ·2376 ·2463 ·2642 ·2827	5:030 5:256 5:723 6:210 6:717 7:242 7:516 7:788 8:356 8:942	168 · 25 161 · 00 147 · 88 136 · 29 126 · 00 116 · 84 112 · 64 101 · 29 94 · 63
· 20 · 22 · 24 · 25 · 26 · 28 · 30 · 32 · 34 · 35 · 36 · 38 · 40 · 42 · 44	0314 0380 0452 0191 0531 0616 0707 0804 0908 0962 1018 1134 1257 1385 1521	\$9936 1·202 1·431 1·553 1·679 1·947 2·236 2·544 2·872 3·043 3·219 3·587 3·971 4·381 4·808	851-6 703-9 591-4 545-1 504-0 434-5 378-6 332-7 294-7 294-7 278-1 262-9 235-9 212-9 193-15 176-00	62 64 65 66 68 70 72 74 75 76 78 80 82 84 85	*3019 *3217 *3318 *3421 *3632 *3848 *4072 *4301 *4418 *4536 *4778 *5027 *5281 *5542 *5675 *5809	9·549 10·174 10·498 10·82 11·49 12·17 12·88 13·60 13·97 14·35 15·11 15·90 16·70 17·53 17·95 18·37	88 · 62 83 · 18 80 · 64 78 · 21 73 · 68 69 · 52 62 · 22 60 · 57 58 · 99 53 · 94 50 · 67 48 · 29 47 · 16 46 · 07

Table No. 18.—Weight and Resistance (Standard) of Soft Annealed COPPER WIRE—continued.

Dia-	Section,	Standard	Standard	Dia-	Section,	Standard	Standard
meter,	square	Weight,	Resistance	meter,	square	Weight,	Weight
mm.	mm.	10. per mile	ohms per mile	mm.	mm.	lb. per mile	ohms per mile
0.88	0.6082	19.24	43.99	2.2	3.801	120.22	7.039
. 90	.6362	20.12	42.06	2.3	4.155	131.40	6.440
.92	•6648	21.03	40.26	2.4	4.524	143.08	5.914
•94	•6940	21.95	38.56	2.5	4.909	155.24	5:451
•95	.7088	22.42	37.75	2.6	5.309	167.90	5.040
•96	.7238	22.89	36.972	2.7	5.726	181.09	4.673
.98	·7543	23.86	35.474	2.8	6.158	194.74	4.346
1.00	-7854	24.84	34.066	2.9	6.605	208.90	4.050
1.05	.8659	27.38	30.900	3.0	7.069	2 23 · 56	3.786
1.10	•9503	30.06	28.157	3.1	7.548	238.70	3.546
1.15	1.0387	32.85	25.760	3.2	8.042	254.36	3.327
1 20	1.1310	35.77	23.659	3.3	8.553	270.50	3 · 128
1.25	$1 \cdot 2272$	38.80	21 803	3.4	9.079	287.14	2.947
1.30	1.3273	41.97	20.160	3.5	9.621	304.27	2.781
1.35	1.4314	45.26	18.694	3.6	10.179	321.90	2.6286
1.40	1.5394	48.68	17:381	3.7	10.752	340.04	2.4886
1.45	1.6513	$52 \cdot 22$	16.206	3.8	11.341	358.63	2.3594
1.50	1.7671	55.88	15.143	3.9	11.946	377.74	2.2399
1.55	1.8869	59.67	14.183	4.0	12.566	397.40	2.1292
1.60	2.0106	63.58	13.310	4.1	13.203	417.50	2.0266
1.65	$2 \cdot 138$	67.62	12.515	4.2	13.854	438.10	1.9314
1.70	2.270	71.78	11.790	4.3	14.522	459.22	1.8427
1.75	$2 \cdot 405$	76.07	11.126	4.4	15.205	480.84	1.7599
1.80	2.545	80.48	10.516	4.5	15.904	502.93	1.6826
1.85	2.688	85.02	9.954	4.6	16.619	525.52	1.6100
1.90	2.835	89.67	9 · 437	4.7	17:349	548.61	1.5422
1.95	2.986	94.46	8.961	4.8	18.096	572.22	1.4788
2.00	3.142	99.35	8.517	4.9	18.857	596.33	1.4191
2.1	3 · 464	109.54	7.726	5.0	19·63 5	620.98	1.3630

RESISTANCE OF COPPER CONDUCTORS TO ALTERNATING CURRENT.

Owing to the eddy currents induced in conductors by the passage of alternating current, the current density becomes a minimum along the axis of the conductor and a maximum near its surface (skin effect). This unequal current density causes an increase in the electrical resistance, which increase can be calculated by a formula given by Lord Kelvin.* The following table has been calculated from Lord Kelvin's formula by Hospitalier and Potier for copper of standard resistance.

Let d = diameter of copper conductor in centimetres.

p = periodicity per second. R = resistance to continuous current.Then kR = resistance to alternating current.

^{*} Presidential Address to Inst.E.E., 1889.

Table No. 19.—Alternating Current Resistance Coefficient for Standard Copper.

d^2p	k	d^2p	k
0	1 · 0000	1280	1 · 6778
20	1 · 0000	1620	1 · 8628
80	1 · 0001	2000	2 · 0430
180	1 · 0258	2420	2 · 2190
320	1 · 0805	2880	2 · 3937
500	1 · 1747	5120	3 · 0956
720	1 · 3180	8000	3 · 7940
980	1 · 4920	18000	5 · 5732

Curve No. 1 has been constructed from the values given in Table No. 19.
Curve No. 2 shows the value of the coefficient k for various sections of copper and for various periodicities.

In the case of large copper sections for use with alternating current, it may be advisable to insulate alternate wires in the strand by means of a layer of paper, in order to reduce the eddy currents.

CONCENTRIC CONDUCTORS.

The diameter and number of the wires necessary to form a concentric conductor of any cross-sectional area can be found in the following way :-

Let Q = section of conductor in square mm. N = number of wires,

D = diameter over insulation of inner conductor,

d = diameter of each wire (both in mm.).

Then
$$Q = \frac{\pi}{4} \frac{d^2 N}{4} \dots N = \frac{4 Q}{\pi d^2}$$

The pitch diameter of the outer conductor will be (D + d) and the pitch circumference π (D + d); therefore the number of wires will be

$$N = \frac{\pi (D + d)}{d}$$

Equating these two equations for N, we get:-

$$\frac{4 Q}{\pi d^2} = \frac{\pi (D + d)}{d} \quad \therefore \quad d (D + d) = \frac{4 Q}{\pi^2}$$

$$\therefore \quad d^2 + D d + \frac{D^2}{4} = \frac{4 Q}{\pi^2} + \frac{D^2}{4} = \frac{1 \cdot 625 Q}{4} + \frac{D^2}{4}$$

$$\therefore \quad d + \frac{D}{2} = \frac{1}{2} \checkmark (1 \cdot 625 Q + D^2)$$

$$\therefore \quad d = \frac{1}{2} \checkmark (1 \cdot 625 Q + D^2) - \frac{D}{2}$$

A variation of 5 per cent. is generally allowed between the resistance of the various conductors in concentric cables.

In the case of concentric cables of large cross section the outer conductor is sometimes formed of segmental copper strips, thereby reducing the diameter and cost of insulating and armouring materials.

TABLE No 20.—TEMPERATURE COEFFICIENTS FOR COPPER.

The resistance of copper at 60° F, is equal to the resistance at t° F, multiplied by the coefficient for t° F.

t° F.	Coefficient						
25	1.0796	38	1.0493	51	1.0199	64	0.9914
.5	1.0784	• 5	1.0482	٠5	1.0188	• 5	•9903
26	1.0772	39	1.0470	52	1.0177	65	-9893
•5	1.0760	•5	1.0459	•5	1.0166	•5	•9882
27	1.0749	40	1.0447	53	1.0154	66	•9871
.5	1.0737	•5	1.0436	.5	1.0143	•5	•9860
28	1.0725	41	1.0425	54	1.0132	67	•9849
• 5	1.0713	•5	1.0413	•5	1.0121	•5	•9839
29	1.0702	42	1.0402	55	1.0110	68	•9828
.5	1.0689	.5	1.0390	•5	1.0099	.5	•9818
30	1.0679	43	1.0379	56	1.0088	69	.9807
.5	1.0667	• 5	1.0368	• 5	1.0077	•5	•9797
31	1.0655	44	1.0356	57	1.0066	70	9786
.5	1.0643	•5	1.0345	.5	1.0055	•5	•9775
32	1.0632	45	1.0334	58	1.0044	71	•9765
• 5	1.0620	•5	1.0322	.5	1.0033	•5	•9754
33	1.0609	46	1.0312	59	1.0022	72	•9744
• 5	1.0597	.5	1.0299	•5	1.0011	•5	•9733
34	1.0585	47	1.0289	60	1.0000	73	9722
.5	1.0574	• 5	1.0277	• 5	0.9989	. 5	•9712
35	1.0562	48	1.0266	61	•9978	74	•9702
.5	1.0551	5	1.0255	. 5	-9968	•5	•9691
36	1.0539	49	1.0244	62	•9957	75	•9681
• 5	1.0528	• 5	1.0232	•5	•9946		
37	1.0516	50	1.0221	63	•9935		
•5	1.0505	.5	1.0210	•5	•9925		

Table No 21.—Temperature Coefficients for Copper.

(As used by Continental Engineers.)

The resistance of copper at 15° C, is equal to the resistance at t C, multiplied by the coefficient for $t^{\rm o}$ C.

t° C.	Coefficient						
0	1.0577	9	1.0226	18	0.9889	27	0.9566
٠5	1.0558	•5	1.0207	•5	-9871	.5	•9549
1	1.0538	10	1.0188	19	•9853	28	.9531
- 5	1.0518	.5	1.0169	• 5	9834	.5	•9514
2	1.0498	11	1:0150	20	-9816	29	9497
• 5	1.0478	•5	1.0131	•5	9798	.5	•9479
3	1.0459	12	1.0112	21	-9780	30	•9463
. 5	1.0439	•5	1.0094	•5	•9762	.5	9445
4	1.0420	13	1.0075	22	.9744	31	9427
. 5	1.0400	• 5	1.0056	.5	•9726	• 5	.9410
5	1.0381	14	1.0037	23	•9708	32	•9392
. 5	1.0361	•5	1.0019	•5	-9690	•5	•9376
6	1.0342	15	1.0000	24	•9673	33	9359
.5	1.0322	٠5	0.9981	.5	•9650	.5	9342
7	1.0303	16	• •9963 •	25	•9637	34	9326
•5	1.0283	•5	•9944	•5	•9620	•5	•9309
8	1.0264	17	•9926	26	•9602	35	9292
• 5	1.0245	•5	•9908	•5	•9584		0.310.22
				J			

The following tests show the clongation of high conductivity annealed copper wire when subjected to gradually increasing strain:— TABLE NO 22.—ELONGATION TESTS ON ANNEALED COPPER WIRE.

Total Elonga- tion	per cent.	30.13	34.5	34.33	35.17	37.17	33.5	29.67	36.33	31.33	36.33	39.5	37.33	36.5
Breaking Strain		42.83	71.33	104.17	143.33	178.0	225.0	290.0	404.0	566.0	726.0	821.33	1232-67	1327-33
20 per cent.		40.67	0.89	99.33	136.5	169.83	217.0	280.0	387-67	545.67	0.969	786.33	1173-67	1245.67
15 per cent.	}	38.33	64.33	94.67	130.0	160.83	0.702	264.67	367.67	516.67	658.0	752.0	11110.33	1172-0
10 per cent.		36.5	59.33	86.17	119.67	146.67	189.5	243.0	337.33	471.0	593.33	699 - 33	1007-67	1055.33
7.5 per cent.	1	34.83	55.5	81.5	112.67	138.17	179.0	224.67	312.0	435.0	546.33	666.33	940.33	972.0
5 per cent.		32.0	50.83	74.0	103.67	123.17	167.33	206.67	285.67	395.0	487.67	630.33	858.67	877.33
3 per cent.		28.33	46.0	67.17	93.33	108.83	149.67	0.181	258.33	352.0	428.0	586.33	0.077	777.33
2 per cent.		26.5	43.5	62.17	0.78	0.101	137.5	175.33	243.0	327-67	391.67	564.67	717.0	723 - 33
i		24.33	27.67	58.17	0.08	0.76	123.0	135.67 159.67	201.33 222.33	298.33	347.67	534.0	650.33	19.899
0.5 per cent.		21.5	30.67	50.67	29.89	81.33	108.0 123.0		201.33	271.0	916.0	486.0	0.009	613.0
		1 lb.=	II	В	II	11	II.	11	-11		11	-11	اا	11
Elongation in 10 inches ==		Strain in 1b.	33	:			33	33	33		33			
Diam.		0.039	.049	•059	020.	820.	880.	.101	.120	.142	191.	.179	-217	.235

TABLE No. 23. MECHANICAL TESTS ON HARD DRAWN COPFER WIRES.

Diamete	r of Wire	Tensile	Strength	Elonga-	Twi	sts in	Bends (co	
milli- metres	mils	kg/mm²	lb. per sq. in.	per cent.	75 mm.	150 mm.	5 mm. radius	10 mm.
3.015 4.00 4.25 5.01 8.00	119 157·5 167 197 315	45·7 42·2 44·1 43·2 40·8	65000 60000 62720 61440 58030	1:33 2:66 0:66 2:33 3:0	14 12·5 8·5 9·5	18 15·5 14·5 15·5 14·5	4/5	6/7 6 6 2/3

PRICE OF COPPER WIRE.

The price of any copper wire can be separated into two parts, viz., the Basis and the Extra. The basis price is equal to the market price of copper plus the price of the rolling and preliminary drawing, which is approximately £4 per ton. The extra price covers the drawing into finer wires and also the tinning. The price of tinning copper is approximately £3 per ton up to basis size. Table No. 24 gives a typical Continental "extras" list. The prices given are in shillings per 100 kilogrammes.

TABLE No. 24.—Copper Extras.

Diameter of Wire in mm.	Extra for Plain Copper	Extra for Double Tinned Copper	Extra for Winding on Spools	Diameter of Wire in mm.	Extra for Plain Copper	Extra for Double Tinned Copper	Extra for Winding on Spools
to 1·40 1·39-1·10 1·09-0·80 0·79-0·70 0·69-0·60 0·59-0·50 0·49-0·40 0·30 0·36 0·35-0·33 0·32-0·30 0·29-0·27 0·26-0·24 0·23-0·21 0·19 0·18 0·17 0·16	0 1·50 2·50 3·50 3·75 4·00 4·25 4·50 4·75 5·25 5·50 5·75 6·25 7·00 8·00	6:00 9:80 10:00 10:50 10:75 11:0 12:0 14:0 15:0 17:5 19:0 28:0 34:0 45:0 51:0	1:45 1:45 1:45 1:45 1:45 1:55 1:75 1:90 2:10 2:30 2:65 3:00 3:25 3:50 4:10 4:70 5:40	0·15 ·14 ·13 ·12 ·11 ·10 ·095 ·090 ·085 ·080 ·075 ·070 ·065 ·060 ·055 ·050 ·045 ·040	10 12 15 18 22 26 30 40 50 60 80 100 150 225 350 450 600 800	62 76 96 126 156 186 260 360 460 560 710 860 1010 1210 1360 1510 1810 2210	6·4 8·5 11·0 14·5 18 22 30 40 53 72 108 132 150 180 240 300 455 600

Up to 0.10 mm. diameter the wire is usually delivered in hanks.

The following list is a typical "extras" list of English manufacturers, the prices given being in pence per lb.

TABLE No. 25,-COPPER EXTRAS.

Diameter inch	Plain	Single Tinned	Double Tinned	Remarks	Diameter inch	Plain	Single Tinned	Double Tinned	Remarks
to ·080 •079-·056 •055-·048 •047-·036 •035-032 •031-·028 •027-·022 •021-·020	0 0 18 14 12 13 1	$egin{array}{c} rac{34}{1} & 1 \ 1rac{14}{12334} & 2 \ 2rac{144}{123} & 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2$	118 127 148 2 2 3 3 3 3 3 3 3 3 4	In hank	**\text{*019} - \cdot 0164 \\ \cdot 0163 - \cdot 0124 \\ \cdot 0123 - \cdot 0116 \\ \cdot 0115 - \cdot 0100 \\ \cdot 0090 - \cdot 0081 \\ \cdot 0083 - \cdot 0076 \\ \cdot 0067 - \cdot 0058 \end{array}	144 11214 244 253 234 4	3 34 6 71 	41/2 5 	In hank

. $\frac{1}{2}d$. per lb. . 1d. per lb. Winding on drums up to 0.036 in. Winding on reels , 0.0124 in.

Owing to the fluctuations of the copper market the prices in cable estimates

are generally protected by a Copper Clause similar to the following: -

"Above prices of cable are subject to fluctuations of Copper market for Electrolytic Copper, and will be regulated according to the prices published in the last issue of the 'Mining Journal' prior to the date when the official order is received.

"Based on £ per ton. "For every variation in the price of Copper £1 per ton the price of the cable will be varied at the rate of £9 per square inch and per mile."

Table No. 26.—Table showing the Amount to be Added to or Subtracted from the Cost of a Cable by A Rise or Fall in the Price of Copper.

Basis.—Copper at 120/- per 100 kilogrammes. Difference given in shillings per kilometre and per conductor.

Condu	Conductor Area	1	64	က	4	ıa	9	1-	00	o,	10
eq. mm.	6q. inch	121	1 2 2 2 3 5 2 5 2 5 5 5 5 5 5 5 5 5 5 5 5	1123	124	1125	126	1123	100 100 100 100	129	$\frac{130}{110}$
9	0.0093	0.55	1.10	1.65	2.20	2.75	3.30	3.85	4.40	4.95	5.50
10	.0155	06.0	1.80	2.70	9.60	4.50	5.40	6.30	7.20	8.10	9.00
16	.0248	1.45	2.90	4.35	2.80	7.25	8:70	10.15	11.60	13.05	14.50
25	.0387	2.25	4.50	6.75	00.6	11.25	13.50	15.75	18.00	20.52	22.50
35	.0542	3.10	6.20	9.30	12.40	15.50	18.60	21.70	24.80	27.90	31.00
50	.0775	4.45	8.90					31.15	35.60	40.05	
70	.1085	6.25	12.50	18.75	25.00	31.25	37.50	43.75	20.00	56.25	62.50
95	.147	8.45	16.90					59.15	67.60	76.05	
120	.186	10.70	21.40					74.90	85.60	96.30	
150	.232	13.35	26.70					93.45	106.8	120-15	
185	.286				65.80	82.25	02.86	115.15	131.6	148.05	164.5
210	.325				74.80	93.50	112.2	130 - 90	149.6	168.30	187.0
240	.372	21.35	42.70	64.05	85.40	106.75	128.1	149.45	170.8	192-15	213.5
280	.434				69-66	124.50	149.4	174.3	199.2	221.1	249.0
310	.480				110.4	138.0	165.6	193.2	220.8	248.4	276.0
355	.550		63.20	94.80	126.4	158.0	189.6	221.2	252.8	284.4	316.0
400	.620		71.20	106.8	142.4	178.0	213.6	249.2	281.8	320.4	356.0
500	.775		00.68	133.5	178.0	222.5	267.0	311.5	356.0	400.5	445.0
625	896.		111.2	166.8	222.4	278.0	333.6	389.2	444.8	500.4	556.0
725	1.123	64.50	129.0	193.5	258.0	322.5	987.0	451.5	516.0	580.5	645.0
800	1.240	71.15	142.3	213.5	284.6	355.8	426.9	498.1	569.2	640.4	711.5
1000	1.550	89.00	178.0	267.0	356.0	445.0	531.0	623.0	712.0	801.0	0.068

Table No. 26—continued.

- 1			The constitution of the co
	20	140	11.0 18.0 29.0 45.0 62.0 89.0 125.0 169.0 214.0 267.0 329.0 374.0 498.0 552.0 632.0 552.0 632.0 712.0 890.0 1112.0 1112.0 1112.0
	19	139	10.45 17.10 27.75 42.75 58.90 58.90 118.8 160.6 203.3 20
	25	138	9 9 9 0 16 2 0 2 6 10 40 5 0 2 6 10 40 5 0 2 6 10 40 5 0 2 6 10 112 5 1 112 5 1 112 5 1 112 5 1 112 5 1 112 5 1 1 112 5 1 1 1 1
	17	137	9.35 15.30 24.65 38.25 52.70 75.65 106.3 143.7 181.9 227.0 207.0 2
	16	136	8.80 114.40 23.20 36.00 49.60 49.60 71.20 177.2 213.6 263.2 229.2 213.6 263.2 249.2
	15	136	8.25 13.50 21.75 23.75 46.50 66.75 93.75 126.8 126.8 226.5 226.5 226.5 226.5 373.5 414.0 474.0 531.0 667.5 834.0 967.5 1067.0
	14	134	220.30 48.40 62.30 62.30 87.50 118.3 149.8 186.9 230.3 251.8 251.8 258.9 2
	13	133	7.15 11.70 11.70 11.70 11.70 11.70 11.85 11.
	12	1 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6.60 17.40 27.20 37.20 37.20 53.40 75.00 101.4 160.2 160.2 224.4 128.4 160.2 197.4 187.4 238.8 331.2 427.2 427.2 427.2 667.2 774.0 667.2 774.0
	11	131	6.05 9.90 15.95 24:75 34:10 48:95 68:75 92:95 117.7 146.9 181.0 2234.9 2234.9 2234.9 2234.9 2234.9 273
	Conductor Area	sq. inch	0.0093 0.0155 0.0248 0.0387 0.0542 0.0542 1.147 1.186 1.286 1.286 1.286 1.286 1.296 1.296 1.290 1.200 1.2
	Conduc	sq. mm.	6 116 255 355 355 355 1120 1150 1150 1150 1150 1150 1150 11

Table No. 26—continued.

	Conductor Area	1	777	22	7.4	20	7.6	27	6.4 00	29	30
sq. mm.	sq. inch	99	98	143	144	145	146	147	14.8	149	150
9	0.0093	11.55	12.10	12.65	1:3.20	13.75		14.85	15.40	15.95	16.5
	.0155	18.90	19.80	02.03	21.60	22.50	23.40	24.30	25.20	26.10	27.0
	0248	30.45	31.90	53.55	34.80	36-25		39-15	40.60	42.05	43.3
	.0387	47.25	49.20	51.75	54.00	56.25		60.75	63.00	65.25	67.5
	2F20.	65.10	68.50	71.30	74.40	77.50		83.70	08.98	89.90	93.0
50	. 0775	93.45	97.90	102.4	106.8	111.3	115.7		124.6	129.1	133.5
	1085	131.3	137.5	143.8	150.0	156.3	162.5		175.0	181	187.5
	.147	177.5	185.9	194.4	202.8	211.3	219.7		236.6	245.1	953.5
	186	224.7	235.4	246.1	256.8	267.5	278.2	288-9	299.6	310.3	321.0
	232	280.4	293.7	307-1	320.4	333.8	347.1	360.5	373.8	387.2	400.2
	.286	345.5	961 9	378-4	394.8	411.3	427.7	444.2	460.6	477.1	493.5
	.325	392.7	411.4	430.1	448.x	467.5	486.2	504.9	523.6	542.3	561.0
	.872	448.4	469.7	491.1	512.4	533.8	555.1	576.5	597.8	619.2	6.049
	.434	522.9	547.8	572.7	597.6	622.5	647.4	672.3	697.2	722.1	0.LTL
	.480	9.629	607.2	634.8	662.4	0.069	717-6	745.2	772.8	800.4	828.0
	.550	9.899	695.2	726.8	4.802	0.062	821.6	853.2	884.8	916.4	948.0
	.620	747.6	783.2	$\frac{x}{x}$	854.4	0.068	959.6	961.2	8.966	1032.0	1068.0
	.775	984.5	0.626	1024.0	1068-0	1113.0	1157.0	1202.0	1246.0	1291.0	1335.0
	896.	1168.0	1223.0	1279.0	1834.0	1390.0	1446.0	1501.0	1557.0	1612.0	1668.0
	1.123	1355.0	1419.0	1484.0	1548.0	1613.0	1677.0	1742.0	1806.0	1871.0	1935.0
	1.240	1494.0	1565.0	1637.0	1708.0	1779.0	1850.0	1921.0	1992.0	2063.0	9134.0
	1.550	1869.0	1950.0	9017.0	9136.0	0.5666	9311.0	0.6016	0.0010	0.1000	0.0000

TABLE No. 26—continued.

	,		Т	11.	MT.	LU (2014	10.1	Iù l		111	JIN	Ai	ענצ	, (OS	Τ.							97
40	160	0.66	36.0	58.0	0.06	124.0	178.0	250.0	338.0	428.0	534.0	658.0	748.0	854.0	0.966	1104.0	1264.0	1424.0	1780.0	2224.0	2580.0	9846.0	3560.0	
39	159	91.45	35.10	56.55	87.75	120.9	173.6	243.8	329.6	417.3	520.7	641.6	729.3	832.7	971 · 1	1076.0	1232.0	1388.0	1735.0	2168.0	2515.0	9775.0	3471.0	
388	10 00 01 00 00 00 00 00 00 00 00 00 00 0	06.06	34.20	55-10	85.50	117.8	169.1	237.5	321.1	406.6	507.3	625.1	710.6	811.3	546.2	1049.0	1201.0	1353.0	1691.0	2113.0	2451.0	9.704.0	3382.0	
37.	157	20.35	33.30	53.65	83.25	114.7	164.7	231.3	312.7	395.9	494.0	2.809	691.9	0.062	921.3	1021.0	1169.0	1317.0	1646.0	2057.0	2386.0	2633 • 0	3293.0	
36	1 6 6	19.80	32.40	52.20	81.00	111.6	160.2	225.0	304.2	385.2	480.6	592.2	673.2	9.892	896.4	993.6	1138.0	1282.0	1602.0	2002.0	2322.0	9561.0	3204.0	
32	85	19.25	31.50	50.75	78.75	108.5	155.8	218.8	295.8	374.5	467.3	575.8	654.5	747.3	871.5	0.996	1106.0	1246.0	1557.0	1946.0	2257.0	2490.0	3115.0	
34	154	18.70	30.60	49.30	76.50	105.4	151.3	212.5	287.3	8.898	453.9	559.3	635.8	725.9	846.6	938.4	1074.0	1210.0	1513.0	1890.0	2193.0	2419.0	3026.0	
88	153	18.15	29.70	47.85	74.25	102.3	146.9	206.3	6.82	853.1	440.6	542.9	617.1	704.6	821.7	8.016	1043.0	1175.0	1468.0	1835.0	2128.0	2348.0	2937.0	
32	00 00 00 00 00 00 00 00 00 00 00 00 00	17.60	28.80	46.40	72.00	99.50	142.40	200.00	270.40	342.40	427.20	526-40	598.40	683.20	796.80	883.5	1011.0	1139.0	1424.0	1779.0	2064.0	2277.0	2848.0	-
31	89	17.05	27.90	44.95	69.75	96.10	137-95						579.70				9.626	1104.0	1379.0	1724.0	1999.0	2206.0	2759.0	1
Conductor Area	sq. inch	0.0093	.0155	.0248	.0387	.0542	.0775	.1085	.147	.186	.232	.286	.325	.372	.434	.480	.550	.620	.775	896.	1.123	1.240	1.550	
Conduct	sq. mm.	9	10	16	25	35	50	70	95	120	150	185	210	240	580	910	355	400	200	625	725	800	1000	

TABLE No. 26-continued.

20	170	27.5 45.0 72.5 112.5 155.0	222.5 312.5 422.5 535.0 667.5	822·5 935·0 1067·0 1245·0 1380·0	1580·0 1780·0 2225·0 2780·0 3225·0	3557·0 4450·0
49	169	27 · 15 44 · 10 71 · 05 110 · 3 151 · 9	218·1 306·3 414·1 523·3 654·1	806·1 916·3 10·46·0 12·20·0 13·52·0	1548.0 1744.0 2180.0 2724.0 3160.0	3486·0 4361·0
. 48	8 5 5	26.60 43.20 69.60 108.0 148.8	213.6 300.0 405.6 513.6 640.8	789·6 897·6 1025·0 1195·0 1325·0	1517.0 1709.0 2136.0 2669.0 3096.0	3415·0 4272·0
47	73	26.05 42.30 68.15 105.8	209-1 203-7 397-1 502-9 627-5	773.2 878.9 1003.0 1170.0	1485.0 1673.0 2091.0 2613.0 3031.0	3374·0 4183·0
46	166	25·30 41·40 66·70 103·5 142·6	204.7 287.5 388.7 492.2 614.1	756·7 860·2 982·1 1145·0 1270·0	1454 · 0 1638 · 0 2047 · 0 2558 · 0 2967 · 0	3273·0 4094·0
45	75	24·75 40·50 65·25 101·3 139·5	200.3 281.3 380.3 481.5 600.8	740.3 841.5 960.5 1121.0	1422·0 1602·0 2002·0 2502·0 2902·0	3202·0 4005·0
44	164	24·20 39·60 63·80 99·00 136·4	195.8 275.0 371.8 470.8 587.4	723 · 8 822 · 8 939 · 4 1096 · 0 1214 · 0	1390.0 1566.0 1958.0 2446.0 2838.0	3131.0 3916.0
43	163	23.65 38.70 62.35 96.75 183.3	191.4 268.8 363.4 460.1	707.4 804.1 918.1 1071.0 1187.0	1359·0 1531·0 1913·0 2391·0 2773·0	3059·0 s827·0
42	162	23·10 37·80 60·90 94·50 130·2	186.9 262.5 354.9 449.4 560.7	690.9 785.4 896.7 1046.0	1327.0 1495.0 1869.0 2335.0 2709.0	2988·0 373\$ 0
41	161	22.55 36.90 59.45 92.25	182.5 256.3 346.5 438.7 547.4	674.5 766.7 875.4 1021.0 1132.0	1296·0 1460·0 1824·0 2280·0 2644·0	2917·0 3649·0
Conductor Area	sq. inch	0.0093 .0155 .0248 .0387 .0542	.0775 .1085 .147 .186	.286 .325 .372 .434 .489	.550 .620 .775 .968 1.123	1.540
Condu	sq. mm.	10 16 25 35	50 70 95 120 150	185 210 240 280 310	355 400 500 625 725	800

Table No. 26—continued.

1								U
09	180	33.0 54.0 87.0	135.0	267·0 375·0 507·0	642.0	987.0 1122.0 1281.0 1494.0 1656.0	1896.0 2136.0 2670.0 3336.0 3870.0	4269·0 5340·0
59	179 6T	32.45 53.10 85.55	132.7	262·6 368·7 498·6	631.3	970.6 1103.0 1260.0 1469.0 1628.0	1864.0 2100.0 2625.0 3280.0 3805.0	4198·0 5251·0
80	178	31.90 52.20 84.10	130.5	258·1 362·5 490·1	620.6	954·1 1085·0 1238·0 1444·0 1601·0	1833.0 2065.0 2581.0 3225.0 3741.0	4127·0 5162·0
120	177	31.35 51.30 82.45	128.2	253.6 356.2 481.6	6.609	937·6 1066·0 1217·0 1419·0 1573·0	1801.0 2029.0 2536.0 3169.0 3676.0	4056·0 5073·0
56	176	30·80 50·40 81·20	126·0 173·6	249·2 350·0 473·2	599·2 747·6	921.2 1047.0 1196.0 1394.0 1546.0	1770·0 1994·0 2492·0 3114·0 3612·0	3984·0 4984·0
10	175	30.25 49.50 79.75	123·s 170·5	244·7 343·7 464·7	588.5	904·7 1028·0 1174·0 1369·0 1518·0	1738.0 1958.0 2447.0 3058.0 3547.0	3913·0 4895·0
45	174	29·70 48·60 78·30	121.5	240·3 337·5 456·3	577.8	888°3 1010°0 1153°0 1345°0 1490°0	1706.0 1922.0 2403.0 3002.0 3483.0	3842·0 4806·0
53	173	29·15 47·70 76·85	119.2	235.8 331.2 447.8	567.1	871.8 991.1 1132.0 1320.0 1463.0	1675.0 1887.0 2358.0 2947.0 3418.0	3771·0 4717·0
223	172	28.60 46.80 75.40	117.0	231.4 325.0 439.4	556.4	855.4 972.4 11110.0 1295.0 1435.0	1643.0 1851.0 2314.0 2891.0 3354.0	3700·0 4628·0
51	69	28.05 45.90 73.95	158.1	226.9 318.7 430.9	545.7	838·9 953·7 1089·0 1270·0 1408·0	1612.0 1816.0 2269.0 2836.0 3289.0	3629·0 4539·0
Conductor Area	sq. inch	0.0093 .0155 .0248	.0542	.0775 .1085 .147	.186	.286 .325 .372 .434 .480	.550 .620 .775 .968 1.123	1.540
Conduct	sq. mm.	6 10 16	320	30 32 32	150	185 210 240 280 310	355 400 500 625 725	1000

(B) Aluminium.

Aluminium wire can now be commercially obtained having a conductivity of 63 per cent. as compared with annualed copper of equal section; therefore, for equal conductivity the area of aluminium will be 1.59 times the area of

annealed copper, or 1.556 times the area of hard-drawn copper.

The specific gravity of pure aluminium is 2.58, cast aluminium 2.64, rolled aluminium 2.68, drawn aluminium 2.71; therefore, for equal conductivity the weight of aluminium will be 0.483 times the weight of annealed copper, or 0.473 times the weight of hard-drawn copper, and for equal area the weight of aluminium will be 0.304 times the copper weight.

For equal conductivity the diameter of aluminium will be 1.26 times the diameter of annealed copper, or 1.247 times the diameter of hard-drawn copper.

The basis for the comparison of the prices of copper and aluminium is given by the formula:

 $\begin{array}{c} \textbf{Specific Gravity of Copper} \times \textbf{Conductivity of Aluminium} \\ \hline \textbf{Specific Gravity of Aluminium} \times \textbf{Conductivity of Copper} \end{array}$

× Price of Copper × Price of Aluminium

Therefore, the cost of a conductor of given conductivity will be the same for aluminium and copper when the price of aluminium is 2·072 times the price of annealed copper, or 2·114 times the price of hard-drawn copper. If aluminium is cheaper than these values, it will be economical to use it as far as the conductor itself is concerned. For an insulated cable, however, the larger diameter of the aluminium conductor would, except in the case of extra high-tension cables, require more insulating material, etc., and therefore these ratios would be materially altered.

In the case of an overhead transmission line these ratios would have to be modified, to allow for the increased wind pressure owing to the larger diameter of the aluminium conductor, and also to allow for the different tensile strength of copper and aluminium. The tensile strength of aluminium varies between 18,000 and 28,000 lb. per square inch, as against 54,000 to 62,000 lb. per square inch for hard-drawn copper. The elastic limit in each case lies at 40-50 per

cent. of the tensile strength.

The mean tensile strength of aluminium is, therefore, about 0.4 times that of hard-drawn copper, or, for equal conductivity, 0.62 times that of hard-drawn copper; but for any given span the weight of aluminium would be only 0.473 times that of hard-drawn copper of equal conductivity; whilst, on the other hand, the coefficient of expansion for aluminium is 0.00002354, as compared with 0.0000165 for hard-drawn copper. Therefore, aluminium has an advantage of approximately 50 per cent. in the length of span if higher poles are used than for copper, or, with equal sag, this advantage reduces to about 25 per cent. in favour of aluminium. But, when the wind pressure is considered, aluminium has a disadvantage of 1.247 times the diameter of copper for equal conductivity; therefore, for an overhead line with a given sag, the length of span for aluminium and for hard-drawn copper would be approximately the same.

Up to the elastic limit the elongation of aluminium is from 0.14 to 0.16 per

cent., and 0.15 per cent. for hard-drawn copper.

The total elongation of aluminium is about 7 per cent., and 0.7 to 3.5 per cent. for hard-drawn copper.

By means of the above given ratios the foregoing tables for copper conductors can be applied to aluminium.

The melting-point of aluminium is about 650° C.

Table No. 27 gives some average mechanical tests on aluminium wire.

Table No. 27.-Mechanical Tests on Aluminium Wire.

Diameter	Tensile S	trength		ber of ists	Number of Bends over	f Complete Quadrant	Elonga- tion in
in mm.	Kilogrammes per sq. mm.	Lb. per sq. inch	In 75 mm.	In 150 mm.	Of Radius 5 mm.	Of Radius 10 mm.	150 mm. per cent.
2.64 4.01 5.50 7.0 9.0 10.0	20·1 18·6 16·6 14·0 15·2 12·6	28590 26450 23610 19910 21620 17920	13½ 1½ 1½ 13 	22 22½ 30 31 22 19	9 7 6	19 11 10 8 6 5	5·3 4·7 7·4 6·5 5·3 9·0

RESISTANCE OF ALUMINIUM CONDUCTORS TO ALTERNATING CURRENT.

The increased resistance of aluminium conductors carrying alternating current (due to skin effect) is equal to k R, where R is the resistance to continuous current, and k is a coefficient depending upon the diameter of the conductor and the periodicity of the current. Curve No. 3 gives the value of k for various aluminium conductors and periodicities.

Aluminium is highly electro-positive, and therefore should be used as little as possible in contact with other metals, especially in damp and exposed positions.

The conductivity of aluminium varies greatly with the purity; thus, a wire of 99 of per cent. purity had a conductivity of 64 per cent. of that of copper,

while a similar wire, but of 99.0 per cent. purity, had a conductivity of only 61 per cent. The purest commercial aluminium consists of 99.6 per cent. aluminium, 0.3 per cent. iron, and 0.1 per cent. silicon.

TABLE NO. 28.—TEMPERATURE COEFFICIENTS FOR ALUMINIUM.

The resistance of aluminium at 15° C., is equal to the resistance at t° C., multiplied by the coefficient for t° C.

t° C.	Coefficient	t° C.	Coefficient	t° C.	Coefficient	t° C.	Coefficient
0.0 0.5 1.0 2.0 2.5 3.5 4.0 4.5 5.0 6.5 7.0 7.0 8.0 8.5	1.0577 1.0558 1.0538 1.0518 1.0498 1.0478 1.0459 1.0439 1.0420 1.0381 1.0361 1.0342 1.0322 1.0303 1.0283 1.0264	9·0 9·5 10·0 11·0 11·5 12·0 13·5 14·0 14·5 15·0 16·5 17·5	1.0226 1.0207 1.0188 1.0169 1.0150 1.0131 1.0112 1.0094 1.0056 1.0037 1.0019 1.0000 0.9981 .9963 .9944 .9926 .9908	18·0 18·5 19·0 19·5 20·0 20·5 21·0 21·5 22·5 23·0 23·5 24·5 25·0 25·5 26·0 26·5	0.9889 9871 9853 9834 9816 9798 9780 9762 9744 9726 9708 9690 9673 9650 9637 9620 9690 9584	27·0 27·5 28·0 28·5 29·5 30·0 30·5 31·5 32·0 32·5 33·0 33·5 34·0 34·5 35·0	0·9566 ·9549 ·9531 ·9514 ·9497 ·9479 ·9463 ·9445 ·9427 ·9410 ·9392 ·9376 ·9359 ·9342 ·9326 ·9309 ·9292

CHAPTER II.

IMPREGNATED PAPER INSULATION.

The specific gravity of cable paper averages 0.80, although some cable manufacturers calculate with a specific gravity as high as 1.10, which allows for the greater proportionate waste of insulating paper as compared with the other materials used in the manufacture of cables.

The paper used generally consists of Manila fibre, hemp fibre, and wood cellulose (chemical wood pulp), in various proportions. At one time it was thought necessary to specify that the paper should consist of pure Manila fibre, but experiments and experience have proved that such limitation is not necessary and even not advisable, for mixtures of Manila fibre with wood cellulose produce papers equally suitable for cable work and possessing probably greater tensile strength; moreover, the cellulose paper is much cheaper than the Manila fibre paper. Cable paper should, however, not contain mechanical wood pulp, esparto, jute or straw.

Table No. 29 shows the results of tests carried out by the Versuchsanstalt Berlin (1901) on various papers, to determine their durability and suitability

TABLE NO. 29.—TESTS ON PAPER.

Composition of	the Paper		Manila 65 (Cellulose 35	Manila 50 Cellulose 50	Manila 70 Cellulose 25 Rag stuff 5	Cellulose 100
Moisture during Test	After drying per cent.	0.8	8.2	7.4	8.1	6.31
Amount of Moisture in Paper during Tensile Test	Before drying per cent.	8.6	9.5	\$0 10	0.6	8.0
ce after drying	Elon- gation per cent.	:	- 19	- 22		+ 4
Difference after 24 hours drying at 135° C.	Breaking Strain per cent.	° 000 €	9 -	6 -	e 1	+ 2
Length	After 24 hours drying at 185° C.	1650	2700	2800	5500	4575
Breaking Length in Metres	Before	5050	8200	. 6400	5650	4500
tion in ent.	After 24 hours drying at 135° C.	1.7	2.5	1.8	25.1	1.6
Elongation in per cent.		6.1	2.7		 4.5	1.5
g Strain	After 24 hours drying at 135° C.	4.26	5.40	**************************************	29.4	11.32
Breaking Strain in Kilogrammes.	Before	4.61	5.73	5.46	4.79	10.91
Width	Paper in mm.	10	10	10	10	19.5

with regard to the insulating of cables. The tests were in two series, the first being conducted on the papers in their commercial state, that is to say, without being subjected to any drying or other operation; the second series of tests was carried out on the papers after they had been artificially aged by long drying and heating, and allowed to regain their original amount of moisture.

The figures given for the first four samples are really mean values of ten tests in each case; the figures given for the last sample are the means of twenty tests.

The tensile tests were carried out on strips of paper 180 mm. long, at a temperature of 19° C. and 65 per cent. humidity of air.

The quality of paper, with reference to cable manufacture, can be relatively determined by measuring the distance that oil is sucked up by the paper. Strips of the papers are supported in a small frame over a bath of cable-impregnating oil, which bath is adjustable on standards to any height on the frame. temperature of the oil is raised to say 100°C., and maintained at that temperature throughout the test. When the oil has assumed the chosen temperature, the bath is raised (or the papers lowered) so that the strips of paper dip into the oil; the suction height is measured at intervals of say 10, 30 and 60 minutes.

Table No. 30 shows a set of tests on various papers used in cable manufacture, the "breaking length" is the length of paper which, when supported at one end, would break owing to its own weight. These tests were carried out on the papers

as received, without being subjected to any drying or other operation.

TABLE No. 30.—Tests on Insulating Paper.

Width Thickness of Strip in mm.	Breaking Elonga- Ten Length tion Strer in Per cent. kg. se	igth. at 100° C. a	stor Oil after Weight kg. sq.r	
			-	
25 0.15 30 .155 35 .155 10 15 22 13/.15 135	$ \begin{vmatrix} 8000 & 1.75 & 5.2 \\ 8440 & 1.86 & 5.5 \\ 7620 & 1.66 & 4.8 \\ 4710 & 8.00 & 2.7 \\ 3210 & 3.70 & 2.5 \\ 6250 & 1.50 & 4.4 \\ 6270 & 2.15 & 4.3 \\ 8210 & 2.20 & 6.6 \\ \end{vmatrix} $	59 8 11 33 8 11 66 57	15 0.096 15 1010 15 10.5 10.5 16.5 13.0 15.1	

Paper used in the manufacture of impregnated paper cables varies between 0.08 and 0.16 mm. (3.1 and 6.3 mils) in thickness; it is advisable not to use paper of greater thickness than 0.16 mm., whilst numerous experiments on cables insulated with papers of various thicknesses show very conclusively the superiority of thin paper with respect to bending qualities and dielectric strength. In the case of high-tension cables with a total thickness of paper of 5 or 6 mm. or more, the use of thin paper is to be strongly recommended.

The paper, after being cut into strips, is spirally lapped on to the conductor with a slight overlap, so that the successive layers break joint with one another. The layers are usually applied in one direction, so that all the layers can be lapped on by means of one "cage" in one operation. When insulated with the requisite thickness of paper, the cable is placed in the drying-pan and dried under vacuum at a temperature of about 135° C. (275° F.) for from 12 to 30 hours, according to the thickness of the paper insulation. The cable is next impregnated with insulating compound at a temperature of about 116° C. (241° F.) for from 4 to 30 hours, after which it is fed direct from the pan through the lead press or bitumen forcing machine, as the case may require.

The paper insulated core is sometimes taped with one layer of fine cotton tape, which increases the diameter by 0.6 mm. Such a tape is distinctly beneficial in the case of extra high tension cables, as it reduces the liability of the paper layers to crack when the cable is bent; coloured tapes allow of the cores being easily identified in the case of multicore cables. Another method of identification of the cores in multicore cables is to provide the conductors with one, two, or more tinned-copper wires respectively in place of the plain copper wires.

THICKNESS OF PAPER INSULATION.

The thickness of paper required to insulate a conductor for a given working pressure varies with the size of the conductor and with the factor of safety allowed. Theoretically the required thickness of insulation diminishes with increasing cross section of conductor, but for mechanical reasons the thickness should increase with increasing size of the conductor. These variations approximately balance one another on low and high tension cables—that is to say, for any given factor of safety and for any given working pressure (up to certain limits) the thickness of paper insulation should be approximately the same for all sizes of conductor. In the case of extra high tension cables above say, 10,000 volts, the increased thickness required for mechanical reasons is overbalanced by the decrease of thickness allowable by reason of the less peaked nature of the electric stress curve with increasing cross section of conductor; therefore a less thickness is required for large conductors than for small conductors. The theoretical value for the paper thickness can be determined from the following formula:—

Let V = working pressure in volts

r = radius of conductor in mm.

R = radius over paper insulation in mm.

x = distance from centre to point P in mm. S = stress at point P in volts per mm.

then

$$\mathbf{S} = \frac{0.434 \text{ V}}{x \log_{10} \frac{\mathbf{R}}{r}}.$$

If the insulation consists of a homogeneous material, the stress will be a maximum at the surface of the conductor, therefore with x=r

$$S = \frac{0.434 \text{ V}}{r \log_{10} \frac{R}{r}}.$$

For example:

Let V=20,000 volts, and the maximum stress allowable S=3000 volts per millimetre; then:

(i) for a conductor section of 0.05 square inch

r = 7.26 mm. and R = 18.1 mm.;

therefore the required thickness of insulation = 10.8 mm.

(ii) for a conductor section of 0.25 square inch

r = 16.45 mm., and R = 24.54 mm.;

therefore the required thickness of insulation = 8.09 mm.

The maximum thickness of paper allowable in any case with the present thicknesses the outer layers of paper are liable to crack when the cable is bent, with advantage, be subjected to a preliminary impregnation previous to its

TABLE NO. 31.—PAPER THICKNESSES RECOMMENDED

Sect:	ion of luctor	Con	igle, cen- and iple		oncen 2200			C	3300				oncen 6600				ncen 11,000		
sq.	RQ.		c. for Volts	In	ner		er, if	In	ner		er, if thed	In	ner		er, if	Im	ner		er, if thed
in.	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.
• Ú 25	16.13	80	2.03	120	3.02	80	5.03	150	3.81	90	2 - 29	230	5.84	100	2.54	350	5.89	120	3.05
050	32.26	80	2.03	120	3.05	80	2.03	150	3.81	90	2 · 29	230	5.84	100	2.54	350	8.89	120	3.05
075	48.4	80	2.03	120	3.05	80	2.03	150	3.81	90	2 · 29	230	5.81	100	2.54	350	8.89	120	3.05
100	64.5	90	2 · 29	130	3.30	90	2.29	160	4.06	100	2.54	240	6.10	110	2.79	360	9 · 14	120	3.05
125	80.6	90	2.29	130	3.30	90	2 - 29	160	4.06	100	2.54	240	6.10	110	2.79	360	9.14	120	3.05
150	96.8	90	2 · 29	130	3.30	90	2.29	160	4.06	110	2.79	240	6.10	12)	3.05	360	9.14	120	3.08
.200	129	90	2 - 29	130	3.30	90	2 · 29	160	4.06	110	2.79	240	6.10	120	3.05	360	9.14	120	3.0
•250	161	100	2.54	140	3.56	100	2.54	170	4.32	110	2.79	250	6.35	120	3.05	370	9 · 40	120	3.0
•300	193	100	2.54														1		
350	226	100	2.54				٠	٠.											
.400	258	100	2.54											٠			١		
.500	322	100	2.54				٠.		٠.			٠.			٠,			٠٠.	
600	387	110	2 79	٠.					٠.	٠	• •						••		
-700	451	110	,2.79				٠.				٠.				1				
.750	184	110	2:79	٠.			٠.												
-800	516	120	3.05			٠.											٠.		
900	581	120	3.05					٠.							٠,	٠.			
1.00	645	130	3.30				,									١	1		

Two and Three Core Cables.—For ordinary working the cables are to be inbetween conductors and lead case. For three-phase working with the star point column B the thickness between conductors and lead. impregnating practice is approximately 18 to 20 mm.; even with these and the inner layers of paper are liable to scanty impregnation; the paper may, application to the cable.

BY THE ENGINEERING STANDARDS COMMITTEE.

C	nd 3 ore volts	2		3 Core	9		and 3 3300			:	2 and : 6600				2 and 3 11,000		
-000	V (7103	A	A.	F	3	I	1	1	3	1	1	I	3	1	7	F	3
mile	mm.	mils	mm.	mils	mm	mils	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm	mils	mm.
90	2.29	130	3.30	100	2.54	150	3.81	120	3.05	230	5.84	170	4.32	350	8.83	230	5.84
90	2.29	130	3.30	100	2.54	150	3.81	120	3.05	230	5.84	170	4.32	350	8.89	230	5 * 84
90	2.29	130	3.30	100	2.54	150	3.81	120	3.05	239	5.84	170	4.32	350	8.89	230	5 • 84
100	2.51	140	3.56	110	2.79	160	4 · 06	130	3.30	240	6.10	180	4.57	360	9.14	240	6.10
100	2.54	140	3.56	110	2.79	160	4.06	130	3.30	240	6:10	180	4.57	360	9.14	240	6.10
100	2.54	140	3.56	110	2.79	160	4.06	130	3.30	240	6.10	180	4.57	360	9.14	240	6.10
100	2.54	140	3.56	110	2.79	160	4.06	130	3.30	240	6.10	180	4.57	360	9.14	240	6 · 10
110	2.79	150	3.81	120	3.05	170	4.32	140	3.56	250	6.35	190	4.83	370	9.40	250	6.35
110	2.79																
110	2.79														• •		
110	2.79																• •
110	2.79											• • •					
٠.			• •	• •								• •				• •	
٠.						٠.							• •				
						• •							• •			• • •	
													٠.		٠.		
	••						• •			• •							

sulated with the thickness shown in column A, both between conductors and earthed, column A gives the insulation thickness between conductors, and

The thickness of paper insulation for general cables up to 11,000 volts working pressure has recently been standardised by the Engineering Standards Committee; Table No. 31 gives the thickness of insulation as recommended by this Committee for various cables.

Table No. 32 gives the thickness of paper insulation for various low tension

cables as recommended by the Institution of Electrical Engineers.

Table No. 33 gives the thickness of paper insulation for various low tension (up to 700 volts working pressure) cables as recommended by the Verband Deutscher Elektrotechniker, the thickness of insulation for higher working pressures being left for the manufacturer to decide.

Table No. 34 gives the thickness of paper insulation as generally used by the Continental cable manufacturers; the insulation thickness is not usually increased with increasing size of conductor, except in the case of low tension

cables.

Table No. 35 gives the thickness of paper insulation recommended by H. W. Fisher in his paper read before the American Institution of Electrical Engineers (1905).

Table No. 32.—Thickness of Paper Insulation for Low Tension Cables.

(As recommended by the Institution of Electrical Engineers.)

Conductor, L.S. W.G. or in.	Conducto	r Section		aper ckness	Conductor, L.S.W.G.	Conducto	or Section		per kness
	sq. in. 0.012456	sq. mm. 8:036	mils 80	mm. -	or in.	sq. in.	sq. mm.	mils	mm.
7/17 19/20 7/16 19/19 7/068" 7/15 19/18 7/14 19/17 7/095" 19/16 19/15 19/15 19/14 19/082" 37/16 19/13	**O12430** **O18979** **O22138** **O22438** **O234902** **O28019** **O34591** **O45925** **O48778** **O49623** **O5983** **O75916** **O93724** **O98468** **11675** **12395**	$\begin{array}{c} 10\cdot 935 \\ 12\cdot 244 \\ 14\cdot 283 \\ 15\cdot 117 \\ 16\cdot 124 \\ 18\cdot 076 \\ 21\cdot 768 \\ 22\cdot 317 \\ 29\cdot 629 \\ 31\cdot 470 \\ 31\cdot 783 \\ 38\cdot 699 \\ 48\cdot 978 \\ 60\cdot 467 \\ 63\cdot 528 \\ 75\cdot 324 \end{array}$	80 80 80 80 80 80 80 80 80 80 80 80 90 90	2·03 2·03 2·03 2·03 2·03 2·03 2·03 2·03	19/·101" 37/·14 37/·082" 37/·092" 37/·101" 37/·110" 61/·13 61/·108" 61/·108" 61/·110" 61/·118" 91/·098" 91/·101" 91/12 91/·1118" 91/·118"	*18242 *19166 *24126 *29077 *34490 *39767 *45123 *47928 *54802 *57341 *65420 *67308 *71492 *75892 *97584	117·69 123·65 155·65 155·65 157·59 222·51 256·56 291·12 309·21 353·56 369·94 422·06 434·25 461·24 489·05 547·10 629·58	90 90 90 100 100 100 100 110 110 110 110	2:29 2:29 2:29 2:54 2:54 2:54 2:54 2:54 2:79 2:79 2:79 2:79 2:79 3:05 3:05 3:30
37/15	12395	79·967 95·332	90	$2 \cdot 29 \\ 2 \cdot 29$	127/·101"	•99765	643.68	130	3.30

Table No. 33.—Thickness of Paper Insulation for Cables up to 700 Volts Pressure. (As recommended by the Verband Deutscher Elektrotechniker.)

Cross Sectio	n of Conductor	Single	e Cable	Concentric and	Multicore Cable
square mm.	square inch	mm.	mils	mm.	mils
1.0	0.00155	1.75	69	2.3	90.7
1.5	.00232	1.75	69	2.3	90.7
2.5	.00387	1.75	69	2.3	90.7
4.0	•0062	1.75	69	2.3	90.7
6	.0093	1.75	69	2.3	90.7
10	.0155	1.75	69	2.3	90.7
16	.0248	2.00	79	2.3	90.7
25	-0387	2.00	79	2.3	80.7
35	.0542	2.00	79	2.3	90.7
50	.0775	2.00	79	* 2.3	90.7
70	1085	2.00	79	2.3	90.7
95	•147	2.00	79	2.3	90.7
120	•186	2.00	79	2.3	90.7
150	• 232	2.25	88.5	2.3	90.7
185	•286	2.25	88.5	2.5	98.5
240	•372	2.50	98.5	2.5	98.5
310	•480	2.50	98.5	2.8	110
400	620	2.50	98.5	2.8	110
500	•775	2.75	108		**
625	968	2.75	108	**	**
800	1.240	3.00	118		**
1000	1.550	3.00	118		**

TABLE No. 34.—THICKNESS OF PAPER INSULATION. (Continental practice.)

Туре	of Cable.	Paper Thickness						
Single, concentric, and """ """ """ Single and multicore """ """ """ """ """ """ """ """ """ "	multicore "" "" "" "" ""	660 volts 750 " 1000 " 2000 " 3000 " 4000 " 5000 " 7000 " 11500 " 16000 " 20000 "	mm. 1.5 to 2.0 1.75 , 2.3 2.0 , 2.3 2.25 , 3.3 2.5 , 4.5 5.0 5.5 to 6.0 6.0 , 7.0 8.5 to 10.0 9.0 12.5 14 to 16	mils 59·2 to 78·8 69·0 ,, 90·7 78·8 ,, 90·7 88·5 ,, 130 98·5 ,, 177 197 216 to 236 236 ,, 276 276 335 to 394 493 552 to 630				

Concentric cables are not used for working pressures higher than 3000 volts.

TABLE No. 35.—THICKNESS OF PAPER INSULATION. (As recommended by H. W. Fisher.*)

Working Pressure in Volts	Paper Thickness	
1000 to 1900 1900 , 2250 2250 , 3800 3800 , 5000 5000 , 6500 6500 , 8000 8000 , 9500 9500 , 11000 11000 , 13000 13000 , 15000 15000 , 17000 17000 , 19000 19000 , 21000 21000 , 23000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ils 50 156 50 156 50 156 70 188 70 219 70 312 70 345 70 406 70 407 70 500 70 532 70 564 70 595

WEIGHT OF PAPER.

If d =the diameter of the conductor in millimetres, and D =the diameter of the insulated core in millimetres, then the weight of paper is equal to-

kilogrammes per kilometre = $\frac{\pi}{4}$ (D² - d²) × specific gravity.

Taking the specific gravity of paper as 0.8, this equation reduces to-

kilogrammes per kilometre = $0.63 ext{ (D}^2 - d^2)$; lb. per statute mile = $2 \cdot 23$ ($D^2 - d^2$).

If the diameters $\mathbf D$ and d be given in inches, then the weight of paper will be -

kilogrammes per kilometre = $406 (D^2 - d^2)$; or, lb. per statute mile = $1440 \text{ (D}^2 - d^2)$.

Table No. 36 gives the weight of paper in kilogrammes per kilometre, based, however, on a specific gravity of 1.10, as used in several large cable works. This table is used as follows-

E.g.: 0.46 square inch conductor insulated with 3 mm, of paper.

Conductor 0.46 sq. in. = strand of 37×3.19 mm. (from Copper Table).

Diameter of strand = $7 \times 3.19 = 22.33$ mm.

Therefore, diameter over paper = $22 \cdot 33 + 6 = 28 \cdot 33$ mm.

Weight of paper for diameter of 28:33 mm. = 696.8 kilog. $22 \cdot 33 \text{ mm.} = 433 \cdot 5$

Therefore, weight of the paper annulus per kilometre = $263 \cdot 3$

Therefore, weight of paper per statute mile = $263 \cdot 3 \times 3 \cdot 548 = 934$ lb.

To obtain the bare weight of paper (specific gravity 0.80) these values must be multiplied by $\frac{0.80}{1.10} = 0.727$.

^{*} Proceedings of the American Inst. E.E., vol. xxiv. p. 687.

Table No. 36.—Weight of Paper in Kilogrammes per Kilometre. (Specific Gravity 1.10.)

Diam. in mm.	•0	•1	*2	•3	•4	*5	•6	-7	*8	• 9
1	0.9	1.1	1.3	1.5	1.7	2.0	2.3	2.5	2.8	3.2
$\frac{1}{2}$	3.5	3.9	4.2		5.0	5.4	5.9	6.3	6.8	7.3
3	7.8	8.4	8.9		10.0	10.6	11.2	11.9	12.5	13.2
4	13.9	14.6	15.3		16.8	17.5	18.3	19.1	20.0	20.8
5	21.6	22.5	23.4	24.3	25.2	26.2	$27 \cdot 1$	28.1	29 · 1	30.1
6	31.1	32.2	33.3		35.4	36.5	37.7	38-8	40.0	41.2
7	42.4	43.6	44.8		47.3	48.6	49.9	51 · 3	52.6	54.0
8	55.3	56.7	58.1	59.6	61.0	62.5	63.9	65.4	66.9	68.5
9	70.0	71.6	73 · 2		76.4	78.0	79.7	81.3	83.0	84.7
10	86.4	88.2	89.9	91.7	93.5	95.3	97.1		100.8	$102 \cdot 7$
11	104.6	106.5	108.4	110.3	112.3	114.3	116.3	118.3	120.3	122.4
$\overline{12}$	124.4	126.5	128.6	130 · 7	132.9	135.0	137.2	139.4	141.6	143.8
13	146.0	148.3	150.6		155.2	157.5	159.8	$162 \cdot 2$	164.6	167.0
14	169.4	171.8	174.2	176.7	179.2	181.7	184.2	186.7	189.3	191.8
15	194.3	197.0	199.6	202.3	204.9	207.6	210.3	213	$215 \cdot 7$	218.4
16	221.2	224	226.8	229 · 6	$232 \cdot 4$	235.2	238 · 1	241	$243 \cdot 9$	246.8
17	249 · 7	252 - 7	255.6	258 6	261.6	264.6	267.6	270.7	273.8	276.8
18	279 . 9	283	286.2	289 . 4.	$292 \cdot 5$	$295 \cdot 7$	298.9	302:1	305.4	308.6
19	311.9	315.2	318.5	321.8	$325 \cdot 2$	328.5	331.9	335.3	338.7	342.2
20	345.6	349 1	352.5	356.0	359.6	363.1	366.6	370.2	373.8	$377 \cdot 4$
21	381 .	384.6	388.3	392	$395 \cdot 7$	$399 \cdot 4$	403.1	406.8	410.6	414.3
22	418.2	422	425.8	429.6	433.5	437 · 4	441.3	445.2	449.1	453
23	457	461	465	469	$473 \cdot 1$	477.1	$481 \cdot 2$	485.3	489.4	493.5
24	497.6	501.8	506	510.1	514.3	518.6	522.8	527 · 1	531.4	535.6
25	540	$544 \cdot 3$	548.7	553	557.4	561.8	566.2	$570 \cdot 7$	$575 \cdot 1$	579:6
26	584	588.6	$593 \cdot 1$	597.6	$602 \cdot 1$	$-606 \cdot 7$	611.3	615.9	620.5	625.2
27	629 • 9	634.5	$639 \cdot 2$	0.43 . 9	648.6	653 · 4	658 · 2	663	667.7	672.5
28	677.3	$682 \cdot 2$	687	692	696.8	701.8	706.7	711.6	716 · 6	721 6
29	726.6	731.6	$736 \cdot 7$	741.7	746.8	751.9	757	762 1	767.2	772.3
30	777 * 6	$782 \cdot 7$	788	793 · 2	$798 \cdot 4$	803.7	809	814.3	819.6	825
31	830 · 2	835.6	841	846.4	851.8	857.2	862.8	868 · 2	873 · 7	879 2
32	884.7	$890 \cdot 2$	895.7	901.3	907	912.6	918.2	923.8	929.4	935.1
33	940.8	946.6	952:3	958	963 · 7	969.6	975.4	981.1	987	992.8
34	998.7	1005	1010.5	1016.5	1022.5	1028.5		1040.9	1046.9	100210
35	1058.5	1064.5	1070.5	1076.8	1082.8	1089		1101	1107 · 4	
36	1119.8	$1125 \cdot 8$	1132	1138.4	1144.8	1150.8	1157 . 4		1170	1176:4
37	$1182 \cdot 8$	$1189 \cdot 2$	1195.6	1201 · 9	1208 5	1215	1222.5	1228	1234.5	124019
38	1247.5	$1254 \cdot 2$	1260.7	1267 · 3	$1273 \cdot 9$	1280.6	1287.2	1293.8	1300.5	13077 1
39	1313 • 9	$1320 \cdot 7$	$1327 \cdot 5$	1334 · 3	1341	1348			1368 5	
40	1382.2	$1389 \cdot 2$	1396 · 2	1403 • 4	1410		1424 · I		1438-1	
41	1452.4	1459.5	1466 - 5	1473 6	1480.7	1487.9	1495	1502.3	1509 - 7	1500
42	1524	1531 · 2	$1538 \cdot 7$	1545.9	1553.3	1560.4	1567.8	1070.3	108213	1001.9
43	1597.5	1604.9	1612.4	1619.8	1627.3	1634.8	1047.4	1049.8	17007 4	1711.6
44				1695.4	1703 • 2	1710.7	1718.4	1726.2	1/35.8	1/41.0
45	1749 4						1796.5	1804.3	1812.2	1000+1
46			1844	1852	1860	1868	1876	198E.T	1892.4	1982 1
47	1908 • 4	1916.7	1924.5	1933	1941	1949.4	1957 • 4	1909.6	1347	1004 1
				t.			1			

Table No. 36.—Weight of Paper in Kilogrammes per Kilometre.—cont. (Specific Gravity 1·10,)

Diam. in mm.	-0	•1	•2	•3	•4	•5	•6	.7	*8	•9
48 49 50 51 52 53 54 55 56 57	1990 · 3 2074 2160 2247 2336 2427 2519 2613 2709 2807	5 1998 · 2083 2169 2256 2345 2436 2529 2623 2719 2817	8 2007 2091 2177 2265 2354 2445 2538 2632 2729 2827	2015 · · · 2100 2186 2274 2363 2454 2547 2642 2738 2837	4 2023 · 2108 2195 2282 2372 2464 2557 2652 2748 2846	8 2032 2117 2203 2291 2381 2473 2566 2661 2758 2856	2041 2126 2212 2300 2390 2482 2575 2671 2768 2866	2049 2134 2221 2309 2399 2491 2585 2680 2777 2876	2058 2143 2230 2318 2409 2501 2594 2690 2787 2886	2066 2151 2238 2327 2418 2510 2604 2700 2797 2896

MULTICORE CABLES.

Prior to impregnating, the paper-insulated cores are laid up together and wormed with jute. The lay generally adopted is 20 times the pitch diameter. (See Chapter I., page 47.)

The diameter of a multicore cable is given in Table No. 37.

Table No. 37.—Multicore Cables formed of similar cores of diameter d.

Number of Cores	Pitch Diamete	O COLUMN DIGITIES OF	
2 3 4 5 6 7	1:0 d 1:1547 d 1:414 d 1:7 d 2:0 d 2:0 d	$egin{array}{c} 2 \cdot 0 \ d \\ 2 \cdot 1547 \ d \\ 2 \cdot 414 \ d \\ 2 \cdot 7 \ d \\ 3 \cdot 0 \ d \\ 3 \cdot 0 \ d \\ \end{array}$	

The laid-up cores are next insulated with paper, and the whole dried and impregnated. In the case of unequal cores, as for a 3-wire system, the smaller core is generally insulated with sufficient paper to bring its diameter equal to the other cores.

The specific gravity of the worming jute is 0.54, and the weight in kilogrammes per kilometre is given by (A-a) 0.54, where A is the overall area of the laid-up cores, and a is the total area of the insulated cores; in other words, (A-a) is the worming area in square millimetres.

If d represents the diameter of any one core, then the sectional area of the worming jute is given by—

	Cu by—					
2 core	cables				1.571	d^2
4	29		•		1.292 6	d^2
5	39	•	•		1.435 6	
6	**	•	•		1.800 c	
7	"	•	•		2.356	
	21	*			1:571	72

The weight of jute worming in kilogrammes per kilometre is therefore given by-

	ore cables						$0.85 d^2$	
3	99					14	$0.70 d^2$	
4	29						$0.775 d^2$	d in
5	99			•			$0.972 d^2$	millimetres.
6	99	•	•		۰		$1 \cdot 272 d^2$	
- 4	22						$0.85 d^2$	

For low and medium tension cables it is sometimes economical to use sector-shaped conductors in the construction of multicore cables. The most economical sector-shape of the conductor can, however, not be used, due to the fact that the paper is cracked by the sharp angles. These angles have therefore to be rounded, and a small amount of jute packing is necessary to bring the cable up to circular form. The overall area of sector cores laid up to form a 3-core cable is equal to—

area of equivalent circular core × 3 × constant.

The value of this constant depends upon the shape of the conductor; for sector cores built up on the 6-wire basis (see Chapter I., page 52), its value is about 1·155, therefore the diameter of 3 such sector cores laid up together is equal to

$$D = d \sqrt{3 \times 1.155} = 1.861 d.$$

Thus, for a 3×100 sq. mm. sector conductor cable insulated with 4 mm. of paper, copper to copper and also copper to lead sheath; the equivalent circular conductor would consist of a strand of 19 wires of diameter 2·59 mm. diameter of strand = $5\times 2\cdot 59=13$ mm., diameter of insulated circular core = 13+4=17 mm., therefore the diameter over the three laid up sector cores would equal $17\times 1\cdot 861=31\cdot 7$ mm., and the diameter under the lead sheath would equal $31\cdot 7+4=35\cdot 7$ mm.

The compounds used for the impregnation of paper cables can be divided into two groups, viz. resin oil compounds and castor oil compounds. Castor oil has the important property of retaining its greasiness at very low temperatures, and thus allows of the sliding of the paper layers on one another when the cable is bent. Resin oil, however, is much cheaper than castor oil, and at ordinary temperatures appears to equal it in useful properties. The impregnating compounds generally used are composed of some or all of the following ingredients in various proportions:—

Resin oil or castor oil.

Resin.

Yellow ceresine (cerasin).

Vaseline (petroleum jelly).

Venice turpentine.

Palm oil.

The following compounds, used by various cable manufacturers in England or on the Continent, show the percentage of the various ingredients used:—

A.—Resin oil		68 per cent.
Resin .		20 , (Price 27.0/- per 100 kilog.
Ceresine		6 ,, or 12.3/- per 100 lb.
Vaseline		6 ,, 1
B.—Resin oil		50 per cent. Price 20 · 15/- per 100 kilog.
Resin .		50 ,, or 9.16/- per 100 lb.

C.—Castor oil		55 per cent.	
Resin .			Price 57 · 75/- per 100 kilog.
Ceresine		22 ,,	or 26.2/- per 100 lb.
${f Vaseline}$,		6 ,,	, ,
D.—Castor oil		70 per cent.	Price 44:0/- per 100 kilog.
Resin .		30	or 20:0/- per 100 lb

Generally speaking, the percentage of oil varies from 45 or 50 for low tension cables, to 70 for high tension cables.

All the ingredients should, of course, be quite free from acids.

Paper soaks up approximately 80 per cent. of its weight of impregnating ombound.

Table No. 38 gives the approximate prices of various materials, which prices are, of course, liable to variation from time to time.

Table No. 38.—Prices of Materials.

Material	Prices in Shillings per					
Maveriar	100 kilog.	100 lb. avoir.				
Manila paper .	80.0	36.30				
Cellulose paper .	40.0	18.15				
Castor oil .	55.0	24.95				
Resin oil	22.0	9.98				
Yellow ceresine .	100.0	45.36				
Vaseline	40.0	18.15				
Resin	18.3	8.33				
Venice turpentine	40.0	18.15				
Palm oil ,	60.0	27.22				
Jute worming .	35.0 to 37.5	15.9 to 17.0				
Cotton tape .		25.0 per 100 sq. yards				

DIELECTRIC RESISTANCE.

The dielectric resistance of paper insulated cables can be varied between very wide limits by the alteration of the composition of the impregnating compound, and also by varying the temperature of the drying operation.

Abnormally high dielectric resistance, therefore, indicates either a very hard (resinous) impregnating compound, or else a degree of charring of the paper due to drying at an excessive temperature; in either case the paper will be very liable to crack or buckle when the cable is bent.

Abnormally low dielectric resistance may indicate either insufficient drying of the paper or compound, or else a very soft (oily) impregnating compound.

In the case of low tension cables, the dielectric resistance of normal cables should be between 400 and 60 megohms per mile at 60° Fahr. (after one minute's electrification), according to the size and requirements. With increasing thickness of insulating paper, the impregnating compound must necessarily be made softer in order to allow of the cable being bent without cracking the paper; therefore, in the case of high tension cables having a dielectric thickness of even 500 mils or more, 400 to 60 megohms per mile at 60° F. is a normal value for the dielectric resistance.

The Engineering Standards Committee have issued no recommendations on the dielectric resistance of impregnated paper cables.

Table No. 39 gives the minimum dielectric resistance of various low-tension cables as recommended by the Institution of Electrical Engineers.

Table No. 39.—MINIMUM DIELECTRIC RESISTANCE OF IMPREGNATED PAPER INSULATED L.T. Cables. (Recommended by the Institution of Electrical Engineers.)

Size of Conductor	- Effective Ar	ea of Conductor	Megohms per Mile at 60° F.
L.S.W.G. or inch	square inch	square millimetre	minimum
up to 7/15 19/18 ,, 19/-058" 19/16 ,, 19/15 19/14 ,, 19/-082" 37/16 ,, 37/-082" 37/-092",, 61/-118" 91/-098",, 127/-101"	up to 0 · 028 0 · 034 ,, · 05 · 06 ,, · 076 · 094 ,, · 0985 · 117 ,, · 192 · 241 ,, · 654 · 673 ,, · 998	up to 18·0 21·8 ,, 31·8 38·7 ,, 49·0 60·5 ,, 63·5 75·3 ,, 123·6 155·6 ,, 422 434 ,, 644	140 120 110 100 90 80 70

Temperature Coefficient.—The rate at which the dielectric resistance of impregnated paper decreases with increasing temperature varies with the composition of the impregnating compound; it also varies considerably for any given impregnating compound according to the temperature—that is to say, the dielectric resistance variation per degree of temperature is not a constant throughout the range of ordinary working temperatures.

throughout the range of ordinary working temperatures.

These variations can be seen from the following figures taken from dielectric resistance/temperature curves of paper insulated cables impregnated with five

standard compounds.

Table No. 40.—Temperature Coefficients for the Dielectric Resistance of Impregnated Paper Cables.

Impregnating Compound	Coefficient for 5° C. (15° C. to 20° C.) or 9° F. (60° F. to 69° F.)	Coefficient for 10° C. (15° C. to 25° C.) or 18° F. (60° to 78° F.)
	·	
A	1.620	2.680
В	1.590	2.440
C	1.940	5.000
D	1.606	2.956
E	2.460	4.910

Curve No. 4 shows the specific dielectric resistance of impregnating compound A at various temperatures.

The dielectric constant (or specific inductive capacity) of unimpregnated dried paper varies between 1.8 and 2.2; of impregnated paper as used for cables between 2.8 and 3.8.

The dielectric strength of a 6 mil dried and impregnated paper averages 3500 volts, that is, 23,000 volts per millimetre. This figure varies for different impregnating cable compounds.

The average dielectric strength of an impregnated paper cable of best manu-

TEMPERATURE OF CABLE, DEGREES CENTIGRADE.

facture is 20,000 volts per millimetre. Higher dielectric strength can often be obtained, but generally by sacrificing one or more of its other essential properties. There are various "silk waste" papers which have a dielectric strength of 30,000 volts per millimetre when dried and impregnated with cable

compound.

The dielectric strength of a cable varies with the temperature. To determine the amount of this variation for impregnated paper cables tests were carried out on 18 lengths of cable, each 1 yard long. The cable consisted of a conductor of 120 square millimetres cross section, insulated with 4 millimetres of paper, impregnated and lead covered. These lengths were immersed in oil at various temperatures, and when they had assumed the temperature of the oil, voltage was applied, and increased by steps of 5000 volts, at intervals of 10 seconds, until breakdown occurred.

Table No. 41 gives the results of these tests, which are also set out in

Curve No. 5.

Table No. 41.—Effect of Temperature on Dielectric Strength of Impregnated Paper Cable.

Tem- perature of Cable	Breakdown Voltage	Average Value	Tem- perature of Cable	Breakdown Voltage	Average Value
4° C 4 4 9 9 9 30 30 30	50000 55000 55000 65000 60000 62500 60000 70000 65000	53300 62500 65000	45° C. 45 45 60 60 60 75 75	60000 55000 55000 55000 65000 50000 50000 50000 55000	56600 56600 58300

The dielectric loss in impregnated paper cables varies between 0.9 per cent. and 5 or 6 per cent. of the capacity current according to the electric stress per unit thickness of the dielectric, and according to the temperature of the dielectric. Even higher percentage loss has been observed at high temperatures, and also when the dielectric is strained by excessive voltage. The average dielectric loss at ordinary temperatures and when working with a normal factor of safety, can be taken as 1.8 per cent. of the capacity current. The effects of high temperature and excessive electric strain on the dielectric can be seen from Curve No. 6, which shows the dielectric loss on 1328 metres of 16,000 volt paper cable at temperatures 16.6° C. and 27.4° C., and with voltages up to 40,000 volts. Paper cables should on no account attain a temperature higher than 90° C.; the Institution of Electrical Engineers recommend a maximum temperature of 80° C. (176° F.).

CHAPTER III.

IMPREGNATED JUTE INSULATION.

IMPREGNATED jute is, at present, very seldom used for insulating cables, having been almost completely supplanted by impregnated paper.

Its use is considered only in the case of small conductor multicore cables such as signal cable, pilot cable, and the test wires in paper insulated cables.

Jute Scale.—Jute yarns are measured by the yarn trade by their weight per 14,400 yards, thus 48 lb. jute weighs 48 lb. per 14,400 yards of yarn; or by the number of yards that weigh one-three-hundredth part of a pound avoirdupois, thus 48 lb. jute weighs 1 lb. per 300 yards or $_{3\,\bar{0}\,0}$ lb. per 1 yard, which size is known as 1 Lea jute.

The following Table No. 42 shows this yarn trade method:-

TABLE No. 42.—JUTE SCALE.

Number of Leas	A = Yards of Yarn per lb.	B = Weight of Yarn per 14,400 yards
1 2 3 6 9.6 16	300 600 900 1800 2880 4800	48 lb. 24 " 16 " 8 " 5 " 3 "

Basis = 14,400 yards = $A \times B$, and $A = number of Leas <math>\times 300$.

Cable manufacturers, however, measure the jute by its weight in lb. avoir. per nautical mile (2029 yds.) of yarn; the relation between these two methods is shown in Table No. 43.

TABLE No. 43.—CABLE TRADE JUTE SCALE.

Cable Trade Jute Measure, i.e. weight per 2029 yards	Weight per 14,400 yards (Jute Trade Measure)	Number of Leas
4 oz. 8 ,, 16 ,, 5 lb. 8 ,, 10 ., 12 ,, 16 ,, 24 ,,	1·77 lb. 3·55 ,, 7·1 ,, 35·5 ,, 56·8 ,, 71 ,, 85 ,, 113 ,, 170 ,,	27 13.5 6.8 1.35 0.85 .68 .56 .42 .28

Continental cable manufacturers measure jute by its weight in kilogrammes per kilometre of yarn. Table No. 44 shows the corresponding (approximate) English yarns.

TABLE No. 44.—CONTINENTAL JUTE SCALE.

Weight of Yarn per kilometre	Weight per nautical mile of Yarn	Number of Leas
0·125 kilog. ·25 ,, ·5 ,, ·75 ,, 1·25 ,, 2·0 ,, 2·5 ,,	8 oz. 16 ", 2 lb. 3 ", 5 ", 8 ", 10 ",	13·5 6·8 3·4 2·27 1·35 0·85 ·68

The number of yarns required to completely cover any conductor (or cylinder) depends upon the diameter of the conductor, the length of lay adopted, and the size of the yarn used. In Fig. 5 let A B represent the circumference of the conductor; draw B C perpendicular to A B, marking off B D equal to the length of lay of the yarns; join A D. Then A D gives the lay of the jute yarns on the conductor. Upon A B draw a semicircle, cutting A D at E; join B E. Then B E gives the width of the ribbon of yarns which will just cover the conductor of circumference A B with a length of lay equal to B D.

Curve No. 7 shows the method of determining the width of the necessary ribbon of jute yarns to completely cover any conductor: the number of jute yarns necessary

ductor; the number of jaco statistics and the number of yarns of various size which form a ribbon 1 in. in width. This table also gives the increase of diameter due to one layer of the various yarns.

TABLE No. 45.—THICKNESS OF JUTE YARNS.

Size of	Size of Yarn			Diameter for layer	Increase of Radial Thick- ness for one layer		
lb. per Nautical Mile	Kilogrammes per Kilometre	form a rib- bon one inch wide	mils	mm.	mils	mm.	
1 2 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17	0·125 ·25 ·75 1·25 1·5 1·75 2·0 2·25 2·5 2·7 2·9 3·17 3·4 3·75 3·9 4·15		20 30 40 60 79 87 95 102 110 118 126 134 142 150 158 165 173	0.5 .75 1.0 1.5 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2	10 15 20 30 39·5 43·5 47·5 51 55 59 63 67 71 75 79 82·5 86·5	0·25 ·375 ·5 ·75 1·0 1·1 1·2 1·3 1·4 1·5 1·6 1·7 1·8 1·9 2·0 2·1 2·2	

The layers of jute yarn are applied to the conductor with a right and left-handed lay alternately. When insulated to the requisite thickness the cable is

dried and impregnated.

By the older method the cable is subjected to a temperature of about 270° F. (133° C.) in a steam-coil chest, or pan, for 70 to 100 hours; this method is very slow, and the jute becomes more or less perished. By the new (comparatively) method the cable is subjected to a temperature of about 230° F. (110° C.) in a steam-coil vacuum chamber for from 16 to 36 hours.

The cable, after drying, is impregnated with compound for from 2 hours to even 24 hours in the case of concentric conductor cables, according to the thickness of jute insulation and the nature of the impregnating compound. The

cable is next lead or bitumen sheathed, as required.

Table No. 46 gives the thickness of jute for low tension cables as recommended by the Engineering Standards Committee; for high tension cables this body consider only paper and rubber insulation.

Table No. 47 shows the thickness of jute insulation for low tension cables as recommended by the Institution of Electrical Engineers.

Table No. 48 shows the thickness of jute insulation for low tension cables as recommended by the Verband Deutscher Elektrotechniker; for high tension cables the thickness is left to the cable manufacturer to decide.

Table No. 46.—Thickness of Jute Insulation for Cables up to 660 Volts Pressure. (As recommended by the Engineering Standards Committee.)

Section of Conductor		Singl	e Cables	Cables	Concentric Cables (over each Conductor)		Concentric (over each ductor)	Twin and 3-Core (between Conductors and between any Conductor and Lead)		
sq. inch	sq. mm.	mils	nm.	mils	mm.	mils	mm.	mils	mm.	
0.025	16.13	80	2.03	80	2.03	80	2.03	90	2.29	
.050	32.26	80	2.03	80	2.03	80	2.03	90	2.29	
.075	48.4	80	2.03	80	2.03	80	2.03	90	2.29	
.100	64.5	90	5 - 50	90	2+29	90	2.29	100	2.54	
•125	80.6	90	2.29	90	2.29	90	2.29	100	2.54	
•15	96.8	90	2.29	90	2.29	90	2.29	100	2.54	
•20	129	90	2.29	90	2.29	90	2.29	100	2.54	
•25	161	100	2.54	100	2.54	100	2.54	110	2.79	
•30	193	100	2.54	100	2.54	100	2.54	110	2.79	
*35	226	100	2.54	100	2.54	100	2.54	110	2.79	
•40	258	100	5.24	100	2.54	100	2.54	110	2.79	
•50	322	100	2.54	100	2.54	100	2.54	110	2.79	
. 60	387	110	$2 \cdot 79$	110	2.79					
-70	451	110	2.79	110	2.79				* *	
•75	484	110	2.79	110	2.79			* *	• •	
.80	516	120	3.05	120	3.05	**		• •	* *	
•90	581	120	3.05	120	3.05			* *	**	
1.00	645	130	3.30	130	3.30		* *	• •	• •	

Table No. 47. -Thickness of Jute insulation for Low Tension Cables. (As recommended by the Institution of Electrical Engineers.)

Conductor L.S.W.G. or inch sq. inch sq. mm. mils r	Conductor L.S.W.G. or inch sq. inch sq. mm. mils mm.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table No. 47.—Thickness of Jute insulation for Low Tension Cables. (As recommended by the Institution of Electrical Engineers.)—continued.

Conductor L.S.W.G.	Conducto	r Section	Jute T	'hickness	Conductor L.S.W.G.	Conducto	or Section	Jute T	hickness
or inch	sq. inch	·sq. mm.	mils	mm.	or inch	sq. inch	sq. mm.	mils	mm.
7/14 19/17 7/095" 19/058" 19/16 19/15 19/14 19/082" 37/16 19/13 37/15	0:034591 :045925 :048778 :049623 :059983 :075916 :093724 :098468 :11675 :12395 :14776	29·629 31·470 31·783 38·699 48·978 60·467 63·528	80 80 80 80 80 80 90 90 90 90 90	2·03 2·03 2·03 2·03 2·03 2·03 2·29 2·29 2·29 2·29 2·29	61/·101" 61/·108" 61/·110" 61/·118" 91/·098" 91/·101" 91/12 91/·110" 91/·118" 127/·101"	·54802 ·57341 ·65420 ·67308 ·71492 ·75802 ·84801 ·97584		100 110 110 110 110 110 120 120 130 130	2·54 2·79 2·79 2·79 2·79 2·79 2·79 3·05 3·05 3·30 3·30

Table No. 48.—Thickness of Jute Insulation for Cables up to 700 Volts Pressure. (As recommended by the Verband Deutscher Elektrotechniker.)

Section of	Conductor	Single	Cables	Concentric a	nd Multicore
sq. mm.	sq. inch	mm.	mils	mm.	mils
$1 \cdot 0$ $1 \cdot 5$ $2 \cdot 5$ $4 \cdot 0$ 6 10 16 25 35 50 70 95 120 150 185 240 310 400 500 625	0:00155 :00232 :00287 :0062 :0093 :0155 :0248 :0387 :0542 :0775 :1085 :147 :186 :232 :286 :372 :480 :620 :775 :968	$\begin{array}{c c} 1 \cdot 75 \\ 2 \cdot 00 \\ 2 \cdot 50 \\ 2 \cdot 50 \\ 2 \cdot 50 \\ 2 \cdot 50 \\ 2 \cdot 75 \\ 2 \cdot 75 \\ \end{array}$	69 69 69 69 69 79 79 79 79 79 79 88 · 5 88 · 5 98 · 5 98 · 5	2·3 2·3 2·3 2·3 2·3 2·3 2·3 2·3 2·3 2·3	90·7 90·7 90·7 90·7 90·7 90·7 90·7 90·7
800 1000	1·240 1·550	3·00 3·00	118 118		•

Table No. 49 gives the thickness of jute insulation generally adopted by Continental cable manufacturers.

Table No. 49.—Thickness of Jute Instlation in Millimetres. (Continental Practice.)

Type of Cable		Working Pressure in Volts								
	Up to 500	700	1000	2000	3000					
Single Twin Three core . Concentric . Triple concentric	1.1 to 1.5 1.5 ,, 1.8 1.5 ,, 1.8 2.3 2.3		2.0 ,, 2.5	2.5 to 3.0 3.0 3.0 5.0 5.0	3.0 4.0 4.0 6.25 6.25					

Jute yarn under lead sheathing has, owing to compression, a specific gravity of 0.875; therefore, if the under and over diameters of any layer or layers be d and D millimetres respectively, the weight of the jute can be calculated from the following formulæ—

weight in kilogrammes per kilometre =
$$0.687 \text{ (D}^2 - d^2)$$
; weight in lb. per 1000 yards = $1.385 \text{ (D}^2 - d^2)$; weight in lb. per statute mile = $2.438 \text{ (D}^2 - d^2)$.

There are two classes of impregnating compounds used for jute cables :-

(i) Ceresine compound, consisting of approximately equal weights of ceresine and Venice turpentine, with which the cables are impregnated for from 2 to 5 hours at a temperature of about 230° F. (110° C.).

(ii) Asphaltum compound, consisting of varying proportions of asphaltum and resin oil: the compounds average 70-80 per cent. of asphaltum to 30-20 per cent. of resin oil; the cables are impregnated for from 2 to 24 hours at a temperature of about 230° F. (110° C.).

Jute yarns soak up approximately 80 per cent. of their weight of impregnating

compound.

Table No. 50 gives the approximate prices of the various materials, which prices are, of course, liable to variation from time to time.

TABLE No. 50.—PRICES OF MATERIALS.

	Mate	rial			,	Price in S	hillings per		
	~ _			-		100 kg.	100 lb.		
Ceresine . Venice turpentin			٠		• 1	100	45:36		
Asphaltum . Resin oil .						. 40 28 22	18.15 12.70		
Insulating jute,	best q				•	43 to 45	9.98 19.5 to 20.4		
Worming jute	•	•	•		• 1	40 to 42 35 to 37.5	18.15 to 19.1 15.9 to 17.0		

Dielectric Resistance.—The dielectric resistance of impregnated jute cable varies with the composition of the impregnating compound, and also with the time and temperature of the drying operation. The average value is about 30×10^8 megohns per cubic centimetre at 15° C. after one minute's electrification.

Table No. 51 gives the minimum dielectric resistance of cables insulated with various thicknesses of jute yarn, and impregnated with a standard compound.

Table No. 51.—Difference Resistance of Impregnated Jute Cables, in Megohms per Kilometre at 15° C. after One Minute's Electrification.

	ection onductor			Т	hicknes	s of Die	electric	in Milli	imetres				
mm.2	sq. inch	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	4.00	5.00	
4 6 10	0·0062 ·0093 ·0155	3450 2960 2180	4030 3510 2630	4580 ¹ 3990 3010	4980 4440 3390	5530 4870 3740	5950 5250 40 5 0	6340 5620 4370	6700 5950 4670	7050 6270 5180	8210 7400 5920	8300 6750	
16 25 35	·0248 ·0387 ·0542	$\begin{array}{c} 1800 \\ 1380 \\ 1220 \end{array}$	$\begin{array}{c} 2170 \\ 1670 \\ 1500 \end{array}$	2510 1960 1750	2840 2240 2000	3130 2480 2220	3430 2720 2450	3700 2980 2660	3970 3180 2880 2500	4210 3400 3070 2680	5100 4180 3800 3340	5870 4850 4440 3930	
50 70 95	·0775 ·1085 ·147	1050 900 785	1300 1100 960	1510 1290 1130	1710 1460 1300 1180	1925 1660 1460 1320	$ \begin{array}{c} 2120 \\ 1820 \\ 1610 \\ 1460 \end{array} $	2310 2000 1760 1600	2170 1920 1740	2330 2060 1880	2930 2610 2380	3460	
120 150 185	*186 *232 *286 *325	700 630 565 535	860 770 685 655	1020 915 820 775	1050 1050 945 900	1190 1060 1015	1320 1180 1090	1460 1300 1230	1590 1410 1350	1710 1520 1450	2160 1950 1865	2580 2340 2250	
210 240 280 310	· 372 · 434 · 480	500 470 445	625 585 555	740 690 665	850 800 770	960 900 865	$1080 \\ 1025 \\ 965$	$\frac{1180}{1105}$ $\frac{1060}{1060}$	1300° 1210 1160	1390 1300 1250	1780 1680 1610	1940	
355 400 500	·550 ·620 ·775	415 400 360	515 495 440	615 585 535	710 675 605	810 765 690	900 860 770	995 945 850	1080 1035 930	1170 1110 1000	1510 1440 1300	$1750 \\ 1580$	
625 725 800	·968 1·123 1·240	320 300 280	400 380 350	470 450 415	540 515 480	620 585 550	690 655 615 560	770 725 675 625	840 795 740 675	910 855 810 735	1180 1110 1050 960	$\frac{1350}{1280}$	
1000	1.550	255	275	380	445	500	360	02.7		100			

Temperature Coefficient.—The rate at which the dielectric resistance decreases with increasing temperature varies with the composition of the impregnating compound. Tables Nos. 52 and 53 show the coefficients for two standard classes of cables.

TABLE No. 52.—TEMPERATURE COEFFICIENTS FOR IMPREGNATED JUTE CABLES.

The dielectric resistance at 15° C, is equal to the D.R. at t° C, multiplied by the coefficient for t° C.

t° C.	Coefficient	t° C.	Coefficient	t° C.	Coefficient	t- C.	Coefficient
0.0	0.0639	10.5	0.409	21.0	2.90	31.5	10.9
0.5	.0672	11.0	•453	21.5	3.11	32.0	11.3
1.0	.0709	11.5	.500	22.0	3.38	32.5	11.7
1.5	.0748	12.0	• 553	22.5	3.58	33.0	11.9
2.0	.0794	12.5	.614	23.0	3.80	33.5	12.2
2.5	.0845	13.0	• 675	23.5	4.10	34.0	12.4
3.0	.0901	13.5	.744	24.0	4.35	34.5	12.7
3.2	*0965	14.0	.821	24.5	4.54	35.0	12.9
4.0	.1030	14.5	907	25.0	4.91	35.5	13.2
4.5	.1130	15.0	1.000	25.5	5.25	36.0	13.2
5.0	•1230	15.5	1.10	26.0	5.53	36.5	13.8
5.2	.136	16.0	1.22	26.5	5.96	37.0	14.2
6.0	·152	16.5	1.34	27.0	6.34	37.5	14.5
6.5	•172	17.0	1.46	27.5	6.91	38.0	14.8
7.0	•194	17.5	1.60	28.0	7.60	38.5	15.2
7.5	•219	18.0	1.76	28.5	8.00	39.0	16.0
8.0	•244	18.5	1.90	29.0	8.69	39.5	17.4
8.2	•273	19.0	2.07	29.5	9.50	40.0	19.0
0.0	• 303	19.5	2.26	30.0	9.81		
.5	.336	20.0	2.46	30.5	10.1	*1	* *
0.0	•370	20.5	2.65	31.0	10.5		

The dielectric constant (specific inductive capacity) of impregnated jute varies between 3 and 4.

The dielectric strength of impregnated jute varies between 4000 and 7000 volts per millimetre.

The dielectric loss in impregnated jute cables averages 2-3 per cent. of the capacity current, according to working temperature and the electric stress upon

Table No. 53.—Temperature Coefficients for Impregnated Jute Cables.

The dielectric resistance at 60° F, is equal to the D.R. at t° F, divided by the coefficient for t° F.

t° F.	Coefficient	t° F.	Coefficient	t° F.	Coefficient	t° F.	Coefficient
25.0	19.77	38.0	6.526	51.0	2.154	64.0	0.7110
25.5	18.95	38.5	$6 \cdot 254$	51.5	2.064	64.5	.6813
26.0	18.16	39.0	5.993	52.0	1.979	65.0	.6529
26.5	17.40	39.5	5.743	52.5	1.895	65.5	6257
27.0	16.67	40.0	5.503	53.0	1.816	66.0	•5995
27.5	15.98	40.5	5.273	53.5	1.741	66.5	•5745
28.0	15.31	41.0	5.053	54.0	1.668	67.0	•5505
28.5	14.67	41.5	4.842	54.5	1.598	67.5	•5275
29.0	14.06	42.0	4.640	55.0	1.532	68.0	*5055
29.5	13.47	42.5	4.446	55.5	1.468	68.5	•4845
30.0	12.91	43.0	4.261	56.0	1.406	69 • 0	•4642
30.5	12.37	43.5	4.083	56.5	1.348	69.5	•4449
31.0	11.85	44.0	3.913	57.0	1.291	70.0	•4263
31.5	11.36	44.5	3.749	57.5	1.238	70.5	•4085
32.0	10.89	45.0	3 · 593	58.0	1.186	71.0	•3914
32.5	10.43	45.5	3.443	58.5	1.136	71.5	•3751
33.0	9.996	46.0	3.299	59.0	1.089	72.0	•3594
33.5	9.578	46.5	3.162	59.5	1.044	72.5	•3445
34.0	9.179	47.0	3.030	60.0	1.0000	73.0	•3301
34.5	8.795	47.5	2.902	60.5	0.9583	73.5	*3163
35.0	8.428	48.0	2.782	61.0	.9183	74.0	•3031
35.5	8.077	48.5	2.666	61.5	.8800	74.5	•2904
36.0	7.740	49.0	2.555	62.0	•8432	75.0	•2783
36.5	7.416	49.5	2.448	62.5	.8080		
37.0	7.107	50.0	2.346	63.0	.7743		
37.5	6.810	50.5	2.248	63.5	•7420		••

CHAPTER IV.

INDIARUBBER AND GUTTA-PERCHA.

(A) Indiarubber.

The species of rubber used for insulating electric conductors are chiefly: Para, Plantation Para, Mozumbique, Accra Strip, Para Negroheads, Mollendo, Congo.

Cameta Head, Gold Coast, Singapore, Santos Sheet, etc.

For the manufacture of cable, the raw rubber is cut up into small pieces, soaked in hot water, and then masticated in rollers under a stream of water in order to separate and wash out the impurities. Table No. 54 shows the average loss in weight by washing, and also the relative price of raw and cleaned rubber; these figures are of course approximate, and vary from time to time.

After the masticating process, the rubber sheets are dried either by being hung in steam-heated rooms for several weeks, or by being hung in shafts in a current of dry air, or by the more modern process—a few hours in a suitable

vacuum heating cupboard.

When thoroughly dry, the rubber is worked up again in the mixing rollers, and the mineral ingredients added and thoroughly mixed in. The rubber batch is next calendered into a sheet of the required thickness, and finally cut into strips ready for the rubber-covering machine.

TABLE No. 54.—INDIARUBBER.

		Loss	Relative Price				
Rubber Species		in Washing	Raw	Cleaned, exclusive of Wages			
Para		17	100	120.5			
Plantation sheet .		i	92.3	93.3			
Plantation crêpé.		ĩ	80.8	81.6			
Para negroheads .		31	63.2	91.6			
Cameta		27	80.8	110.7			
Mozambique spindles		28	61.9	86.0			
Accra strip		24	65.8	86.6			
Borneo		40	52.6	87.7			
Common Borneo .		53	28.9				
Mozambique ball.		20	71.0	61.5			

The chief ingredients mixed with the rubber to form the rubber compounds are: zinc oxide, French chalk, whiting, zinc white, magnesia, prepared lime, ceresine, litharge, plaster of Paris, and sulphur.

There are three standard methods of applying the rubber to the conductor:—
(1) Lapping.—The conductor is spirally lapped with the rubber in the form of a ribbou. The first layer generally consists of pure rubber; the separator rubber is next applied, and finally the jacket rubber. The rubber-covered conductor is next lapped with indiarubber-saturated tape and then vulcanised. This method of covering is generally only adopted in the case of large cable.

(2) Longitulinally Covering.—This method is universally used for covering ordinary size conductors, one machine applying the pure, separator and jacket rubbers in one operation. The conductor or conductors are fed through rollers between two ribbons of rubber, semicircular grooves in each roller forcing the rubber round the conductors and cutting off the excess rubber, the pressure at the joint being sufficient to make the freshly-cut rubber to adhere, thus forming a circular tube of rubber round the conductor. In the case of the small-size cable, one three-headed longitudinal machine can apply the three rubber coats to as many as 24 conductors in one operation. Some engineers specify that the pure rubber shall be spirally lapped on to the conductor, and not longitudinally applied. The rubber-covered core is next lapped with india-rubber coated tape, and finally the whole vulcanised together.

(3) Forcing.—This method is extensively used on the Continent and in America for insulating the lower qualities of cable. The tinned conductor is passed through a forcing machine, which, by means of a worm wheel, forces the rubber through a die around the conductor. The core is coiled direct into chalk pans and yulcanised, the layer of tape, if needed, being applied after yulcanisation,

Vulcanisation is generally effected by coiling the rubber-covered core on to an iron drum, which is placed inside a steam-jacketed vulcaniser. The steam pressure in the vulcaniser should not, generally speaking, exceed 40 lb., nor should the time of vulcanising greatly exceed 1½ hours. Of course, no hard and fast rule can be given for the pressure and time, but extensive tests (given later) show that the above given values should only be exceeded in exceptional cases. It must also be remembered that although over-vulcanised rubber has a very high dielectric resistance (electric) its mechanical properties are poor and its durability is considerably diminished as oxidisation of the rubber may follow in a comparatively short time.

Table No. 55 gives the thickness of rubber insulation for internal wiring

cables, as recommended by the Engineering Standards Committee.

Table No. 56 gives the thickness of rubber insulation for various cables also recommended by the E.S.C.

Table No. 55.—Thickness of Rubber. (As recommended by the Engineering Standards Committee for internal wiring cables.)

Con- ductor	Effective Area	Min.Thicknes	ductor	Effectiv	ve Area	Min.Thickness		
L.S.W.G. or inch	sq. in. sq. mm.	mils mm.	L.S.W.G. or inch	sq. in.	sq. mm.	mils	mm.	
3/22 1/17 3/20 1/16 1/15 7/22 1/14 3/18 7/20 7/18	0·001809 1·1675 ·001811 1·1684 ·002463 1·5890 ·002994 1·9814 ·003217 2·0755 ·004071. 2·0267 ·004237 2·7338 ·005026 3·2429 ·005322 3·4837 ·007005 4·5191 ·012456 8·036	35 0 · 889 36 · 914 36 · 914 38 · 965 36 · 914 37 · 940 39 · 991 38 · 965 40 1 · 016 41 1 · 041 44 1 · 118 48 1 · 219	19/18 7/14 7/-095" 19/-058" 19/16 19/14 19/-082" 37/16 19/-101" 37/15	0·033740 ·034591 ·048778 ·049623 ·059983 ·093724 ·098468 ·11675 ·12395 ·14939 ·14776 ·15839	22.317 31.470 31.783 38.699 60.467	54 54 59 59 62 70 71 75 76 81 80 82	1:372 1:372 1:499 1:499 1:575 1:778 1:803 1:905 1:930 2:057 2:057 2:083	
$\frac{19/20}{7/16}$	·01897912·244 ·02213814·283	49 1.245	19/12 37/14	•18242	117.69	86	2.184	

TABLE No. 56.—THICKNESS OF RUBBER INSULATION.

	ion of			5	Single (Cables	for Pr	essur	e of			Concentric				
		660	660 volts 2		2200 volts 33		00 volts 6600		0 volts 11,000 volts		660 volts		2200 volts '			
inch	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.	mils	s mm.	mils	mm.	
0.028	16 · 18	62	1.57	110	2.79	130	3.30	200	5.08	290	7.37	62	1.57	<	1.78	
.050	$32 \cdot 26$	62	1.57	110	2.79	130	3.30	200	5.08	290	7.37	62	1.57	1110	2.79	
.075	48.4	66	1.68	120	3.02	140	3.56	210	5.33	300	7.62	66	1.68	120	3.05	
.100	64.5	71	1.80	120	3.05	140	3.26	210	5.33	300	7.62	71	1.80	1120	$\begin{vmatrix} 3.05 \\ 2.03 \end{vmatrix}$	
.125	80.6	76	1.93	120	3.05	140	3.56	210	5.33	300	7.62	76	1.93	120 ر	3·05 2·03	
•15	96.8	80	2.03	130	3.30	150	3.81	220	5.59	310	7.87	80	2.03		3·30 2·29	
•20	129	87	2.21	130	3.30	150	3.81	220	5 . 58	310	7.87	87	2.21	130	3·30 2·29	
•25	161	94	2.39	130	3.30	150	3.81	220	5 · 59	310	7.87	94	2.39	130	$\begin{vmatrix} 2 & 29 \\ 3 & 30 \\ 2 \cdot \overline{29} \end{vmatrix}$	
.30	193	101	2.56	* *		• •						101	2.56			
*35	226	107	2.72		• •		• •	• •		• •		107	2.72		• •	
°40	258	1 13	2.87	• •				• •	••		4.0	113	2.87	••		
• 50	322	121	3.07	• •		• •						121	3.07			
.60	387	125	3.17	••								125	3.17			
.70	451	129	3.28									129	3.28			
.75	484	131	3.33									131	3.33			
.80	516	133	3.38		!							133	3 ·38			
•90	581	137	3.48										3.48			
1.00	645	141	3.58	01									3.58	* *		

In the case of concentric cables having the outer earthed, a reduction can be as e.g. 130/80 mils, which means that for unearthed working the inner and outer shall have a thickness of 130 mils and the outer dielectric a thickness of 80 mils.

(As recommended by the Engineering Standards Committee.)

Cables for Pressure of							Three-Core Cables for Pressure of									
3300	0 volts	6600	volts	- 11,00	0 volts	660	volts	2200	volts	3300	volts	6600	volts	11,00	0 volts	
mila	s mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.	
130 80	3.30	200 90	5·08 2·29	290 100	7·37 2·54	62	1.57	110	2.79	130	3.30	200	5.08	290	7.37	
130 80	3.30		$\begin{array}{ c c c }\hline 5.08\\\hline 2.29\end{array}$	$\frac{290}{100}$	7·37 , 2·54	62	1.57	110	2.79	130	3.30	200	5.08	290	7.37	
140 90		$\frac{210}{100}$	2.54	$\frac{300}{110}$	$\begin{array}{c} 7.62 \\ \hline 2.79 \end{array}$	}66	1.68	120	3.05	140	3.56	210	5+33	300	7.62	
$\frac{140}{90}$	$\frac{3.56}{2.29}$	$\begin{array}{c} 210 \\ 100 \end{array}$	5·33 2·54	300 110	$\begin{array}{ c c }\hline 7.62\\ \hline 2.79\end{array}$	}71	1.80	120	3.05	140	3.56	210	5.33	300	7.62	
140 90	2.29	$\begin{array}{c} 210 \\ \overline{100} \end{array}$	$\begin{array}{c} 5.33 \\ \overline{2.54} \end{array}$	$\frac{300}{11\bar{0}}$	7·62 2·79	}76	1.93	120	3.05	140	3.56	210	5.33	300	7.62	
150			5·59 2·79	$\frac{310}{120}$	7·87 3·05	}80	2.03	130	3.30	150	3.81	220	5.59	310	7.87	
$\begin{array}{ c c }\hline 150\\\hline 100\\\hline \end{array}$	2.54	$\frac{220}{110}$	$\frac{5.59}{2.79}$	$\begin{array}{c} 310 \\ 120 \end{array}$	7·87 3·05	}87	2.21	130	3.30	150	3.81	220	5 · 59	310	7.87	
150 100	3·81 2·54	220 110	5·59 2·79	310 120	7·87 3·05	}94	2.39	130	3.30	150	3.81	220	5 - 59	310	7.87	
		••				101	2.56						• •			
•••			••			107	2.72		• •			٠,				
	••	••			.,	113	2.87		••)					• •	• •	
	**	• •		••		121	3.07			{	••	••	••			
••		••		••				[• •		,					
						••					••				.,	
••	••			• •					••	1			٠٠ (• •	
		.,	••	'												
••								••								
		1							••				•• 1	•		

made in the thickness of the outer dielectric; this is shown in the above table, thickness shall be 130 mils each, but for earthed working the inner dielectric

Table No. 57 gives the thickness of rubber insulation for various cables as recommended by the Institution of Electrical Engineers.

Table No. 58 gives the thickness of rubber insulation for cables up to 1000 volts working pressure, as recommended by the Verband Deutscher Elektrotechniker.

Table No. 59 gives the thickness of pure and vulcanised rubber for ordinary low tension cables according to the average English practice, the tendency at present, however, being to increase the thickness of pure rubber very considerably (from 50 to 100 per cent.).

Curve No. 8 gives the thickness of rubber insulation usually adopted by

Continental manufacturers.

TABLE No. 57.—THICKNESS OF RUBBER INSULATION. (Recommended by the Institution of Electrical Engineers.)

Size of	Effective		1	Up to 25	0 Volts] . 1	Up to 65	0 Volts
Conductor L.S.W.G. or inches	Cond	uctor		imum ckness	Minimum Insulation in Megohms		imum kness	Minimum Insulation in Megohms
	Square inch	Square millimetre	mils	mm.	per mile 60° F.	mils	mm.	per mile 60° F.
3/25	0.000924	0.5961	34	0.86	2000	62	1.57	5000
3/24	*001115	.7196	34	.86	2000	62	1.57	5000
3/23	.001330	*8584	35	•89	2000	62	1.57	5000
1/18	.001809	1.1674	35	.89	2000	62	1.57	5000
3/22	.001811	1:1684	36	.91	2000	62	1.57	5000
7/25	*002162	1.3948	36	.91	2000	62	1.57	5000
3/21	.002365	1.5260	38	.96	2000	62	1.57	5000
1/17	.002463	1.5890	36	•91	2000	62	1.57	5000
7/24	.002610	1.6838	37	.94	2000	62	1.57	5 000
3/20	.002994	1.9314	38	•96	2000	62	1.57	5000
7/23	.003113	2.0085	37	.94	2000	62	1.57	5000
1/16	.00322	2.075	36	•91	2000	62	1.57	5000
3/19	*00369	2.384	39	99	1250	62	1.57	4500
1/15	.00407	2.627	37	.94	1250	62	1.57	4500
7/22	.00424	2.734	39	•99	1250	62	1.57	4500
1/14	.00503	3.243	38	•96	1250	62	1.57	4500
3/18	00532	3.434	40	1.02	1250	62	1.57	4500
7/21	.00553	3.571	40	1.02	1250	62	1.57	4500
7/20	.00700	4.519	41	1.04	900	62	1.57	4000
7/19	*00865	5.579	42	1.07	900	62	1.57	4000
7/18	.0124	8.036	44	1.12	900	62	1.57	4000
7/17	.0169	10.93	47	1.19	900	62	1.57	4000
9/20	.0190	12.24	48	1.22	900	62	1.57	3500
7/16	0221	14.28	49	1.24	900	62	1.57	3500
9/19	0234	15.12	50	$1.\overline{27}$	750	62	1.57	3500
7/.068"	0250	16.12	51	1.30	750	62	1.57	3500
7/15	.0280	18.07	52	1.32	750	62	1.57	3500
9/18	.0337	21.77	54	1.37	750	62	1.57	3000
7/14	0346	$22 \cdot 32$	54	1.37	750	62	1.57	3000

Table No. 57.—Thickness of Rubber Insulation—continued. (Recommended by the Institution of Electrical Engineers.)

Size of	Effective Cond	e Area of	ī	Jp to 250	Volts	τ	Up to 656	Volts
Conductor L.S.W.G. or inches	Cond			imum kness	Minimum Insulation in Megohms		imum kness	Minimum Insulation in Megohms
	Square inch	Square millimetre	mils	mm.	per mile 60° F.	mils	nım.	per mile 60° F.
19/17	0.0459	29.63	58	1.47	750	62	1.57	3000
7/ 095"	.0488	31 · 47	59	1.20	750	62	1.57	3000
19/-058"	.0496	31.78	59	1.50	750	62	1.57	3000
19/16	.0600	38.70	62	1.57	750	66	1.68	3000
19/15	0759	48.98	66	1.68	600	66	1.68	3000
19/14	.0937	60.47	71	1.80	600	71	1.80	3000
19/ 082"	.0985	63.53	71	1.80	600	71	1.80	3000
37/16	1167	75.32	76	1.93	600	76	1.93	3000
19/13	-1239	79.97	76	1.93	600	76	1.93	3000
37/15	· 1478	95.33	80	2.03	600	80	2.03	3000
19/-101"	1494	96.38	80	2.03	600	80	2.03	3000
37/14	1824 "	117.7	87	$2 \cdot 21$	600	87	2.21	2500
37/.082"	1916	123.6	87	$2 \cdot 21$	600	87	2.21	2500
37/:092"	*2413	155.6	94	2.39	600	94	2.39	2500
37/101"	2907	187.6	101	2.56	600	101	2.56	2500
37/-110"	• 3449	222.5	107	2.72	600	107	2.72	2500
61/13	3977	256:6	113	2.87	600	113	2.87	2500
61/.098"	4512	291 · 1	121	3.07	600	121	3.07	2500
61/.101"	4793	$309 \cdot 2$	121	3.07	600	121	3.07	2500
61/.108"	• 5480	353.6	125	3.17	600	125	3.17	2500
61/.110"	• 5734	369 · 9	125	3.17	600	125	3.17	2500
61/.118"	6542	422.1	129	3.28	600	129	3.28	2500
917.098"	6730	434 · 2	129	3.28	600	129	3.28	2500
91/-101"	.7149	461.2	133	3.38	600	133	3.38	2500
91/12	.7580	489.0	133	3.38	600	133	3.38	2500
91/-110"	.8480	547.1	137	3.48	600	137	3.48	2500
91/-118"	.9758	629.6	141	3.58	600	141	3.58	2500
127/101"	-9976	643.7	141	3.58	600	141	3.58	2500
		1		1	000	111	9 90	2500
					1			1

Table No. 58.—Thickness of Rubber Insulation. (As recommended by the Verband Deutscher Elektrotechniker for 1000 Volts Working Pressure.)

Section	of Conductor	Minimur	n Thickness	Maximu	m Thickness
sq. mm.	sq. inch	mm.	mils	mm.	mils
		-			
1.0	0.00155	0.8	31.5	1.1	43
1.5	.00232	0.8	31.5	1.1	43
2.5	.00387	1.0	39	1.4	55
4.0	.0062	1.0	39	1.4	55
6 .	.0093	1.0	39	1.4	55
10	.0155	1.2	47	1.7	67
16	.0248	1.2	47	1.7	67
25	.0387	1.4	55	2.0	79
35	.0542	1.4	55	2.0	79
50	.0775	1.6	63	2.3	90.7
70	.1085	1.6	, 63	2.3	90.7
95 ·	·147	1.8	71	2.6	102
120	.186	1.8	71	2.6	102
150	•232	2.0	79	2.8	110
185	•286	$2 \cdot 2$	86.6	3.0	118
240	372	$2 \cdot 4$	94.5	3.2	126
310	•480	2.6	102	3.4	134
400	•620	2.8	110	3.6	142
500	.775	3.2	126	4.0	157.5
625	•968	3.2	126	4.0	157.5
800	1.240	3.5	138	4.5	177
1000	1.550	3.2	138	4.5	177

Table No. 59.—Thickness of Rubber Insulation for Low Tension Cables. (Average English practice.)

Conductor	Diam	, in m i	ls over	Con-	Diam	ı. in mi	Is over	Con-	Dian	ı. in mi	ls over
L.S.W.G.	Con- ductor	Pure	V.I.R	ductor L.S.W.G.	Con- ductor	Pure	V.I.R.	ductor L.S.W.G.	Con- ductor	Pure	V.I.R.
23/36 40/36 70/36 41/30 83/30 124/30 172/38 1/20 1/19 1/18 1/17 1/16 1/15 1/14 1/13 1/12 3/25	45 60 72 86 130 156 100 36 40 48 56 64 72 80 92 104 43	61 76 88 102 146 172 116 52 56 64 72 80 88 96 108 120 59	113 132 146 162 216 246 180 104 108 118 127 136 146 156 170 184 111	3/18 7/25 7/23 7/21 7/21 7/21 7/20 7/19 7/18 7/17 7/16 7/15 7/14 19/22 19/21 19/20 19/19	103 60 72 84 90 96 108 120 144 168 192 216 240 140 160 180 200	119 76 88 100 106 112 124 140 164 188 212 240 264 160 180 220	183 132 146 160 168 175 189 204 232 261 290 319 348 228 252 276 300	19/14 19/13 19/12 37/18 37/17 37/16 37/15 37/14 37/13 37/12 61/18 61/16 61/14 61/13 61/12 91/14	400 460 520 336 392 448 504 560 644 728 432 576 720 828 936 980	424 484 544 360 416 472 528 584 668 752 456 600 744 852 960 904	540 612 684 463 597 664 732 832 933 580 750 924 1052 1183 1116 1274
3/23 $3/22$ $3/21$ $3/20$	52 60 69 78	68 76 85 94	122 132 143 153	19/18 19/17 19/16 19/15	240 280 320 360	264 304 344 384	348 396 444 492	91/12 91/11	1144 1276	1168 1300	1432 1591

The weight of an annulus of rubber in kilogrammes per kilometre is equal to

 $(A - a) \times \text{specific gravity},$

where A is the area in square millimetres corresponding to the over-all diameter of the annulus, and a is the area in square millimetres corresponding to the internal diameter of the annulus.

Table No. 60 gives the areas of circles for diameters from 0 to 100.

	T.0	N . 0	e .0	0.4	0.0	9.0	1.0	8.0	۵. 0
0000	6200.0	0.0314	200-0	0.1257	0.1964	0.2827	0.3848	0.5026	0.6362
.7854	0.9503	1.1310	1.3273	1.5394	1.7671	2.0106	2.2698	2.5447	2.8353
1416	3.4636	3.8013	4.1548	4.5239	4.9087	5.3093	5.7236	6.1575	6.6052
9890-7	7.5477	8.0425	8.5530	9.0792	9.6211	10.179	10.752	11.341	11.946
2.566	13.203	13.854	14.522	15.205	15.904	16.619	17.349	18.096	18.857
9.635	20.428	21.237	22.062	22.905	23.758	24.630	25.518	26.421	27.340
8.274	29.225	30.191	31.172	32.170	33 183	34.212	35.257	36.317	37.393
8.485	39.592	40.715	41.854	43.008	44.179	45.365	46.566	47-784	49.017
0.265	51.530	52.810	54.106	55.418	56.745	58.088	59.447	60.821	$62 \cdot 211$
3.617	65.039	66.476	62.65	69.398	70.882	72.382	73.898	75.430	76.977
8.540	80.118	81.713	83.323	84.949	86.590	88.247	89.950	609.16	93.313
5 033	692.96	98.520	100.29	102.07	103.87	105.68	107.51	109.36	111.22
113.10	114.99	116.90	118.82	120.76	122.72	124.69	126.68	128.68	130.70
2.73	134.78	136.85	138.93	141.03	143.14	145.27	147.41	149.57	151.75
3.94	156.15	158.37	19.091	162.86	165.13	167.42	169.72	172.03	174.37
12.9	179.08	181.46	183.85	186.27	188.69	191.13	193.59	196.07	198.56
90-11	203.58	206.12	208.67	211.24	213.82	216.42	219.04	221.67	224.32
86.98	229.66	232.35	235.06	237.79	240.53	243.28	246.06	248.85	251.65
54.47	257.30	260.16	263.02	265.90	268.80	271.72	274.65	277.59	280.55
33 - 53	286.52	289.53	292.55	295.59	298.65	301.72	304.81	307.91	$311 \cdot 03$
14.16	317.31	320.47	323.65	326.85	330.06	333.29	336.54	339.79	343.07
16.36	349.67	852.99	356.33	359.68	363.05	366.44	369.84	373.25	376.68
80 - 13	383.60	387-08	390-57	394.08	397.61	401.15	404.71	408.28	411.87
15.48	419.10	422.73	426.38	430.05	433.74	437.44	441.15	444.88	448.63
52.39	456-17	459.96	463.77	: 467.59	471.44	475.29	479.16	483.05	486.95
20.87	494-81	498.76	502.73	506.71	510.71	514.72	518.75	522.79	526.85
30.02	585.09	539-13	543.95	547.39	551.55	555.72	559.90	564-10	568.32

TABLE NO. 60.—AREAS OF CIRCLES—continued.

1	T_0	24	e · 0	0.4	0	9.0	4.0	8.0	6.0
56	576.80	581-07	585.35	589.65	593 · 96		600.63	000.000	00110
75	620.16	624.58	629.02	633.47	637-94		616.00	000 33	98.119
52	665.08	99.699	96.479	120.00	683.49		010 000 000	607.46	16.000
98	711.58	716.31	791.07	795.88	780-69		740.00	04.760	GI.Z0/
17	759.64	764.54	769.44	774.97	100.02		62.04/	90.07/	16.61/
25	803.58	814.33	819-40	894.48	690.20		#Z.60/	104.73	799-23
30	860-49	865.70	CD - CLS	876.16	201.11	00, 100	28.63.60	96.748	850.12
66	918.97	918.63	007:01	050 10	001 11		76.160	17.168	902.29
1 -	067.69	000011	027 01	14.676	28.456		945.69	951-15	956.62
17	20 100	#I.0/6	89.878	984.23	08.686		1001.0	9.9001	1012.2
	c.820I	1029.2	1034.9	1040.6	1046.3		1057.8	1063.6	1069.4
21	1081.0	1086.9	1092.7	1098.6	1104.5		1116.3	1192.2	1198.1
_	1140.1	1146.1	1152-1	1158-1	1164.2		1176.3	1189.4	1100.1
- 9	12000-7	1206.9	1213.0	1219.2	1225.4		1937-9	1974-1	1050.4
9	1262.9	1269.2	1275.6	1281.9	1288.2		1301.0	1.307.4	1010.0
<u></u>	1326.7	1333.2	1339-6	1346.1	1352.7		1365-7	1379.2	1970.0
4	1392.0	1398.7	1405.3	1412.0	1418.6		14.59.0	14.00.7	10/0/2
2	1459.0	1465.7	1472.5	1479.3	1486.2		1490.0	1500.7	0.0447
10	1527.5	1534.4	1541.3	1548.3	1555 3		1560.9	1.0001	1513.6
-	1597.5	1604.6	1611.7	1618.8	1696.0		1640.9	1007.5	1000.4
6.1991	1.6991	1676.4	1683.7	1690.9	1698.9		1710.0	1700.0	1001
6	1742.3	1749.7	1757.2	1764.6	1779.1		1707.0	1704.8	1/2/10
	1817.1	1824.7	1839.9	18:40.8	1011		1000	1 0200	0.2081
1	1893.4	1901-9	1908-9	1916.7	1004.4		1007	4.0/81	18/8.1
- 10	1071.4	10000	1001	1002	1 1701		0.0561	1947.x	1955.6
-	1010	7 6161	1.7061	0.0861	2003.0		2018.9	2026.8	2034.8
	8.0002	6.8002	6.9907	2075.0	208:3.1		2099 - 3	2107.4	9115.6
_	2131.9	2140.1	2148.3	2156.5	2164.8		2181.3	9189.6	9197.0
~7	2214.5	2222.9	2231.2	2239.6	2248.0		9964.8	9978.8	9981.7

6.0	2367.2	2454.2	2542.8	2633.0	2724.7	2818	2913	3009	3107	3207	3308	3411	3515	3621	3728	3837	3948	4060	4174	4289	4406	4524	4644	4766	4889	5014	5140
8.0	2358.6	2445.4	2533.9	2623.9	2715.5	5809	2903	3000	3097	3197	3298	3400	3505	3610	3718	3826	3937	4049	4162	4278	4394	4513	4632	4754	4877	5001	5128
1.0	2350.0	2436.7	2525.0	2614.8	2706.2	2799	2894	2990	8808	3187	3288	3390	3494	3600	3707	3815	3926	4038	4151	4266	4383	4501	4620	4742	4864	4989	5115
9.0	2341.4	2427.9	2516.1	2605.8	2697.0	2790	2884	2980	3078	3177	3278	3380	3484	3589	9698	3805	3915	4026	4140	4254	4371	4489	4608	4729	4852	4976	5102
0.2	2332 8	2419.2	2507.2	2596.7	2687.8	2780	2875	2971	8908	3167	3267	3370	3473	3578	3685	3794	3904	4015	4128	4243	4359	4477	4596	4717	4840	4964	5090
0.₹	2324.3	2410.5	2498.3	2587.7	2678.6	2771	2865	2961	3058	3157	3257	3359	3463	3568	3674	3783	3893	4004	4117	4231	4347	4465	4584	4705	4897	4957	5077
0.3	2315.7	2401.8	2489.5	2578.7	9669.5	2762	2856	2951	3048	3147	3247	3349	3452	3557	3664	3772	2000	3993	4105	4220	4336	4453	4579	4693	4815	4030	5064
0.3	2307.2	9393 - 1	2480.6	2569.7	8.0996	2752	2846	2945	3039	3137	3237	3339	3442	3547	3653	3761	3870	3981	4034	4208	4394	4441	4560	4681	4802	4096	5052
0.1	7-8666	9384.5	9471.8	9560.7	9651 - 9	9743	2837	9939	30.59	3127	3227	3328	3432	3536	3642	3750	3859	3970	4083	4197	4319	4430	4548	4660	4701	4014	5039
0.0	6.0666	9878.9	9463.0	9551.8	9649.1	9734	2887	6666	3019	3117	3217	3318	349.1	3526	3632	8739	3848	3959	4071	4185	4301	4418	4526	4687	1001	4000	±302 5026
Diam.	45	1 LC	3 20	27.0	5 10	200	909	25	69	2 65	5 6	655	99	67	889	69	202	2.5	7.0	7 6	7.4	- L	7.0	3 5	- 0	0 6	80

TABLE NO. 60.—AREAS OF CIRCLES—continued.

6.0	5268 5529 5529 5561 5795 5795 6683 6683 6683 6778 6778 6778 7223 7223 7223 7223 7223 7355 7355 7355
8.0	5225 5385 5515 5648 5648 5782 5617 6619 6610 6761 6761 6761 7268 7268 7268
2.0	5242 53372 5502 5503 5768 5768 5904 6011 6179 6319 6319 6319 6319 7793 7793 77631 7807
9.0	5230 5359 5359 5520 5721 5735 6027 6165 6305 6305 6307 6735 77023 77023 7723 7723 7723 7723 7723 77
0 .0	5217 5346 5476 5608 5771 6013 61151 6291 6720 6720 6720 6720 6724 7781 7781 7786 7776
0.4	5204 5333 5583 5583 5585 5788 5788 6417 6417 6418 6418 6418 6705 671 6705 77005 77005
. 8.0	5191 5320 5320 5531 5715 5715 5849 6124 6263 6404 6201 637 7728 7728 7728 7738
0 0	5178 5807 5568 5568 5701 5701 6110 6249 6322 6476 6872 6676 6872 7268 7268 77268 77268
I+0	5166 5294 5525 5555 5682 5882 5882 6896 6876 6876 6867 77103 77253 77405 7757
0.0	5153 5281 5411 5542 5542 5564 5609 6304 6304 6304 6304 6304 6304 6304 6304
Diam.	882 883 884 885 886 887 890 991 992 993 993 994 996

The specific gravity of the compound rubber used for insulating cables varies between 1·3 and 1·7, according to the amount and nature of the added minerals. Table No. 61 gives the average values for various rubbers.

TABLE NO. 61.—Specific Gravity of Rubbers.

Grade of Rubber	Specific Gravity
Pure rubber Compound rubber for 300 and 600 megohm grade low tension ,, ,, ,, 2500 megohm grade low tension ,, ,, ,, high-tension cable Best quality compound rubber	0.935 or 1.0 1.6 to 1.7 1.6 1.5 1.3 to 1.4

The thickness of the pure rubber layer applied by the various manufacturers varies considerably. Table No. 62 gives the approximate maximum and minimum values for various diameters of the conductor.

TABLE NO. 62.-THICKNESS OF PURE RUBBER.

Diameter	of Conductor	Minimur	n Thickness	Maximun	n Thickness
mils	mm.	mils	mm,	mils	mm.
40 80 100 150 200 250 300 350 400 500 600 700	1·01 2·03 2·54 3·82 5·09 6·35 7·63 8·90 10·16 12·70 15·23 17·80	8 8 8 10 10 12 12 12 12 12 12 12 12 12 12 12 12 12	0·2 0·2 0·2 0·25 0·30 0·30 0·30 0·30 0·30 0·30 0·30	16 20 24 30 34 36 40 42 48 50 58	0·41 0·51 0·61 0·76 0·86 0·915 1·02 1·065 1·22 1·22 1·27 1·47

WEIGHT OF PURE RUBBER.

Let x = thickness of pure rubber tape in millimetres, d = diameter over the conductor in millimetres.

then d + 2x = equivalent diameter over the pure rubber.

In the case of stranded conductors, (d+2x) is not the actual diameter over the pure rubber, owing to the fact that the rubber is forced into the spaces between the outer wires of the strand.

The sectional area of the pure rubber will be equal to

$$\frac{\pi}{4} \left\{ (d+2x)^2 - d^2 \right\} = \pi (x^2 + dx).$$

Taking the specific gravity of pure rubber as $1\cdot 0$, the weight of pure rubber will be equal to

 $\pi x (d + x)$ kilogrammes per kilometre.

Table No. 63 gives the weight of pure rubber for various thicknesses; d is the diameter over the conductor in millimetres.

TABLE No. 63.—WEIGHT OF PURE RUBBER.

Thickness o	f Pure Rubber	Weight of Pu	re Rubber
mils	mm.	kilogrammes per kilometre	lb, per statute mile
8 10	0.203 0.254	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$2 \cdot 26 d + 0 \cdot 458$ $2 \cdot 83 d + 0 \cdot 713$
12 14	0·305 0·356	0.957 d + 0.292 1.117 d + 0.398	$3 \cdot 40 d + 1 \cdot 04$
16 20	0·407 0·510	1.278 d + 0.520	$ \begin{array}{r} 3.98 d + 1.41 \\ 4.54 d + 1.85 \end{array} $
24 30	0.610	1.9 d + 1.16	5.68 d + 2.89 6.75 d + 4.12
34	0.760 0.860	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.52 d + 6.50 9.58 d + 8.25
36 40	0.915 1.020	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 10.3 d + 9.41 \\ 11.3 d + 11.6 \end{array} $
42 48	1.065 1.220	$3 \cdot 34 d + 3 \cdot 56$ $3 \cdot 83 d + 4 \cdot 66$	11.8d + 12.6
50 58	$1.270 \\ 1.470$	3.98 d + 5.06 4.61 d + 6.78	13.6 d + 16.6 $14.1 d + 18.0$ $16.35 d + 24.0$

The weight of compound rubber applied over the pure rubber can be calculated in the following way:—

Let D be the diameter over the compound rubber and d the diameter of the conductor, then the total cross section of rubber (pure and compound) is equal to $\frac{\pi}{4}$ ($\dot{D}^2 - d^2$) plus the area of the small amount of rubber forced between the wires composing the outside layer of the conductor strand. The total cross section of rubber can be written equal to

$$\left(\frac{\pi}{4}\,\mathrm{D}^2\,-\,c\,\frac{\pi}{4}\,d^2\right)\!,$$

where c is a constant, depending upon the number of wires in the outside

layer of the strand, or, of course, depending upon the total number of wires in the strand. Its value is as follows:—

For	a strand	of 7	wires	,		. C	= 0.80
29	23	,, 14	. ,,				0.81
32	22	,, 19	77				0.85
99	29	-,, 37	. 22			•	0.87
97	>>	,, 61	77				0.88
99	. 91		e 61 wires				0.90
22	solid c	onduc	tor				1.00

If P be the weight of pure rubber in kilogrammes per kilometre, then the cross section of the pure rubber will be P square millimetres (because specific gravity is approximately 1.0).

Therefore the cross section of the compound rubber will be

$$\frac{\pi}{4} \left\{ \mathbf{D}^2 - c \, d^2 \right\} - \mathbf{P},$$

and the weight of compound rubber in kilogrammes per kilometre will be (d and D being given in millimetres)

$$\left[\left. \frac{\pi}{4} \left\{ \mathrm{D}^2 - c \, d^2 \right\} - \mathrm{P} \right] imes \mathrm{specific gravity}, \right.$$

or,

$$\left\{ \frac{\pi D^2}{4} - c \left(\frac{\pi d^2}{4} \right) - P \right\} \times \text{ specific gravity.}$$

The areas $\frac{\pi D^2}{4}$ and $\frac{\pi d^2}{4}$ can be seen in Table No. 60.

The weights of pure and compound rubber can be also calculated from the actual diameter over the pure rubber, and the diameter over the compound rubber; thus:

Let d = diameter of conductor in mm.

D₁ = diameter over the pure rubber in mm.,

 $D_2 = \text{diameter over the compound rubber in mm.,}$

then the weight of pure rubber will be

$$\left\{ rac{\pi \; {
m D_1}^2}{4} - c \left(rac{\pi \; d^2}{4}
ight)
ight\}$$
kilogrammes per kilometre,

and the weight of compound rubber will be

$$\left\{ \left(\frac{\pi}{4}\frac{|D_2|^2}{4} = \frac{\pi}{4}\frac{|D_1|^2}{4}\right) \times (\text{specific gravity}) \right\} \text{ kilogrammes per kilometre.}$$

The following Table No. 64 gives the price of washed Para Rubber exclusive of wages for various market prices of the raw Para rubber; the table is based

upon a 17 per cent. loss in washing, which is the average value.

The prices of the various compound rubber ingredients vary from time to time, but the effect of such variation upon the price of the compound rubber is very small; further, the price of a compound rubber containing a given percentage of Para rubber, varies only with the market price of Para, for although each manufacturer may have his own particular mixing, the allowable differences in the percentages of the various ingredients influence the price of the compound rubber very little.

TABLE No. 64.—PRICE OF PARA RUBBER IN SHILLINGS.

Market Price	Price Cleaned	excluding Wages	Market Price	Price Cleaned e	xcluding Wages
per lb.	per lb.	per kilog.	per lb.	per lb.	per kilog.
s. d.			s. d.		
7 0	8.43	18.58	5 0	6.02	13.27
6 11	8.33	18.36	4 11	5.92	13.05
6 10	8.23	18.14	4 10	5.82	12.83
6 9	8.13	17.92	4 9	5.72	12.61
6 8	8.03	17.70	4 8	5.62	12.39
6 7	7.93	17.48	4 7	5.52	12.17
6 6	7.83	17.26	4 6	5.42	11.95
6 5	7.73	17.04	4 5	5.32	11.73
6 4	7.63	16.82	4 4	5.22	11.51
6 3	7.53	16.60	4 3	5.12	11.29
6 2	7.43	16.38	4 2	5.02	11.07
6 1	7.33	16.16	4 1	4.92	10.85
6 0	7.23	15.94	4 0	4.82	10.63
5 11	7.13	15.72	3 11	4.72	10.41
5 10	7.03	15.50	3 10	4.62	10.18
5 9	6.93	15.28	3 9	4.52	9.96
5 8	6.83	15.06	3 8	4.42	9.74
5 7	6.73	14.86	3 7	4.32	9.52
5 6	6.63	14.62	3 6	4.22	9.29
5 5	6.53	14.40	3 5	4.12	9.08
5 4	6.43	14.18	3 4	4.02	8.95
5 3	6.33	13.96	3 3	3.92	8.63
5 2	$6 \cdot 22$	13.71	3 2	3.82	8.41
5 1	$6 \cdot 12$	13.49	3 1	3.72	8.19

TABLE No. 65. -PRICES OF COMPOUND RUBBER INGREDIENTS.

Material	Average Specific	Chemical Formula	Price in Sh	illings per
	Gravity	Chemical Formula	100 lb.	100 kilog
Zinc Oxide French Chalk Sulphur Ceresine Magnesia Prepared Lime Red Lead Chalk Plaster of Paris Vegetable Black Lamp Black Zinc White (Lithophone) Whiting (Paris White) Litharge Gypsum (Pearl White)	5·0 2·5 2·06 0·86 3·0 2·38 7·6 2·65 2·5 2·5 4·2 2·7 9·0 3·2	ZnO Mg3Si ₄ O ₁₂ H ₂ MgO CaO Pb ₃ O ₄ CaCO ₃ CaSO ₄ C C ZnS: BaSO ₄ CaCO ₃ Pb ₀ CaCO ₃ CaSO ₄ CaCO ₃ CaSO ₄ CaCO ₃ CaCO ₃ Pb ₀ CaSO ₄ : 2H ₂ O	12·5 3·64 11·4 45·5 86·3 9·08 13·6 2·0 2·0 25·0 12·5 2·0 23·6 7·7	27·5 8·0 25·0 100·0 190·0 30·0 4·4 4·4 55·0 27·5 4·4 52·0 17·0

Since going to press, the market price of raw Para rubber has increased to such a high figure that an extension to Table No. 64 is necessitated.

TABLE No. 64.—PRICE OF PARA RUBBER IN SHILLINGS—(continued).

Marke		Price Cleaned ex	cluding Wages.		et Price	Price Cleaned e	xcluding Wages.
per	1b.	per lb.	per kilog.	pe	r lb.	per lb.	per kilog,
s. 10	d. 0	12.05	26.56	s. 8	d. 6	10.24	22.57
9	11	11.95	26.33	8	5	10.14	22.35
9	10	11.85	26.11	8	4	10.04	22.13
9	9	11.75	25.89	8	3	9.94	21.91
9	8	11.65	25.67	S	2	9.84	21.69
9	7	11.55	25.45	8	1	9.74	21.47
9	6	11.45	25.23	8	0	9.64	21 · 24
9	5	11.35	25.01	7	11	9.54	21.02
9	4	11.24	24.78	7	10	9.44	20.80
9	3	11.14	24.56	7	9	9.34	20.58
9	2	11.04	24 · 34	7	8	9.24	20.36
9	1 .	10.94	$24 \cdot 12$	7	7	9.14	20.14
9	0	10.84	23.90	7	6	9.04	19.92
8	11	10.74	23.68	7	5	8.94	19.70
8	10	10.64	23.46	7	4	8.84	19.47
8	9	10.54	23 · 24	7	3	8.74	19.25
8	8	10.44	23.02	7	2	8.63	19.03
8	7	10.34	22.79	7	1	8.53	18.81

Table No. 65 gives the prices of the various compound rubber ingredients, and also their average specific gravities.

Table No. 66 shows the variation of the price of compound rubber with the market price of raw Para rubber, for 28, 40, and 55 per cent. of Para rubber.

TABLE No. 66.—PRICE OF COMPOUND RUBBER IN SHILLINGS.

Market Price of	Price o	f Compound	Rubber	Market Price of	Price o	of Compound	l Rubber
Para	28 per cent.	. 40 per cent	. 55 per cent		28 per cent	. 40 per cen	t. 55 per cent.
s. d. 10 0 9 11 9 10 9 9 9 8	2.96 2.94 2.92 2.89 2.87	$ \begin{array}{c cccc} & 4 \cdot 15 \\ & 4 \cdot 12 \\ & 4 \cdot 09 \\ & 4 \cdot 05 \\ & 4 \cdot 02 \end{array} $	5.63 5.59 5.54 5.50 5.46	s. d. 7 1 7 0 6 11 6 10 6 9	$ \begin{array}{c cccc} 2 \cdot 14 \\ 2 \cdot 12 \\ 2 \cdot 10 \\ 2 \cdot 07 \\ 2 \cdot 05 \end{array} $	2·99 2·95 2·92 2·89 2·85	4.03 3.98 3.93 3.89 3.84
9 7	2·84	3·99	5·41	6 8	2·02	2·82	3.80
9 6	2·82	3·95	5·37	6 7	2·00	2·79	3.75
9 5	2·80	3·92	5·32	6 6	1·98	2·75	3.71
9 4	2·78	3·89	5·28	6 5	1·95	2·72	3.66
9 3	2·75	3·85	5·23	6 4	1·93	2·69	3.61
9 2	2.73 2.70 2.68 2.66 2.64	3·82	5·18	6 3	1.91	2.65	3·57
9 1		3·79	5·13	6 2	1.89	2.62	3·52
9 0		3·75	5·08	6 1	1.87	2.59	3·47
8 11		3·72	5·04	6 0	1.85	2.56	3·43
8 10		3·69	5·00	5 11	1.83	2.52	3·38
8 9	2·61	3.65	4.95	5 10	1·81	2·49	3.34
8 8	2·59	3.62	4.90	5 9	1·79	2·46	3.30
8 7	2·56	3.59	4.86	5 8	1·75	2·42	3.26
8 6	2·54	3.55	4.81	5 7	1·73	2·39	3.21
8 5	2·52	3.52	4.77	5 6	1·71	2·36	3.15
8 4	2:49	3·49	4·72	5 5 5 5 5 5 3 5 2 5 1	1:69	2·32	3·11
8 3	2:47	3·45	4·67		1:66	2·30	3·07
8 2	2:44	3·42	4·63		1:64	2·25	3·02
8 1	2:42	3·39	4·58		1:62	2·21	2·98
8 0	2:40	3·35	4·53		1:58	2·19	2·92
7 11	2·37	3·32	4.48	5 0	1·56	$\begin{array}{c} 2 \cdot 15 \\ 2 \cdot 13 \\ 2 \cdot 08 \\ 2 \cdot 04 \\ 2 \cdot 02 \end{array}$	2·88
7 10	2·35	3·29	4.44	4 11	1·54		2·84
7 9	2·38	3·25	4.39	4 10	1·52		2·80
7 8	2·30	3·22	4.35	4 9	1·50		2·76
7 7	2·28	3·19	4.30	4 8	1·48		2·69
7 6	2·26	3·15	4·25	4 7	1.46	1.98	2.65
7 5	2·23	3·12	4·21	4 6	1.44	1.96	2.60
7 4	2·21	3·09	4·17	4 5	1.40	1.92	2.56
7 3	2·19	3·05	4·11	4 4	1.37	1.88	2.52
7 2	2·16	3·02	4·07	4 3	1.35	1.85	2.46

TABLE No. 66.—PRICE OF COMPRUND RUBBER IN SHILLINGS—(continued).

Market Price of	Price of	Compound	Rubber	Mar Pric		Price of	Compound	Rubber
Para	28 per cent.	40 per cent.	55 per cent.	Pa		28 per cent.	40 per cent.	55 per cent
s. d.		1		s.	d.			
4 2	1.33	1.81	2.42	3	6	1.14	1.54	2.06
4 1	1.31	1.79	2.38	3	5	1.12	1.52	2.00
4 0	1.29	1.75	2.33					
3 11	1.27	1.71	2.28	3	4	1.10	1.48	1.96
3 10	1.25	1.69	2.23	3	3	1.08	1.46	1.92
				3	2	1.06	1.42	1.88
3 9	1.23	1.65	2.19	3	1	1.04	1.37	1.83
3 8	1.19	1.63	2.15	3	0	1.00	1.35	1.77
3 7	1.17	1.58	2.10					

Vulcanisation.—Numerous experiments have been carried out to determine the most suitable time and pressure for the vulcanisation of rubber-insulated cables, the results, of course, varying to a great extent with the composition of the vulcanising rubber. However, it appears advisable to keep both the time and the pressure as low as possible. Rubber which has been over-vulcanised generally becomes "short" and cracked after a comparatively short time, whilst on the other hand rubber under-vulcanised to any great extent may become "tacky" after some time; a slightly under-vulcanised rubber appears to suffer from no rapid deterioration. The following Table, No. 67, gives characteristic results:—

TABLE No. 67.-VULCANISATION.

Time =	1 hour	r	2 hour	8	2½ hou	rs -
Steam Pressure, lb. per sq. in.	Result	Deteriora- tion after	Result	Deteriora- tion after	Result	Deteriora- tion after
20	under- vulcanised	ΑΥ	$\left\{ egin{array}{l} ext{under-} \ ext{vulcanised} \end{array} ight\}$		$\left\{ egin{array}{l} ext{under-} \\ ext{vulcanised} \end{array} ight\}$	
30	vulcanised		vulcanised		vulcanised	3 years
40	ditto		$\left\{ egin{array}{l} { m over-} \\ { m vulcanised} \end{array} ight\}$	1 year	over- vulcanised	at once
50	$\left\{ egin{array}{l} ext{over-} \\ ext{vulcanised} \end{array} ight\}$	2 years	ditto	at once	ditto	at once

TABLE NO. 68.—PRESSURE AND TEMPERATURE OF STEAM.

Pressure in lb. per square inch	Temperature in degrees F.	Pressure in lb. per square inch	Temperature in degrees F.	Pressure in lb. per square inch	Temperature in degrees F.
1 2 3 4 4 5 6 6 7 8 8 9 10 11 12 13 14 14 7 15 16 17 18 19 20 21 1 22 23	102·02	24	287·80	48	278·35
	126·30	25	240·05	49	279·64
	141·65	26	242·23	50	280·90
	153·12	27	244·33	51	282·15
	162·37	28	246·38	52	283·38
	170·17	29	248·36	53	284·59
	176·94	30	250·29	54	285·78
	182·95	31	252·17	55	286·95
	188·36	32	254·00	56	288·11
	193·28	33	255·78	57	289·25
	197·81	34	257·52	58	290·37
	202·01	35	259·22	59	291·48
	205·93	36	260·88	60	292·57
	209·60	37	262·51	61	293·65
	212·00	38	264·00	62	204·72
	213·07	39	265·65	63	295·77
	216·35	40	267·17	64	296·81
	219·45	41	268·66	65	297·83
	222·42	42	270·12	66	298·84
	225·26	43	271·56	67	299·84
	227·96	44	272·97	68	300·83
	230·57	45	274·35	69	301·81
	233·07	46	275·70	70	302·77
	235·48	47	277·04	71	303·73

Dielectric Resistance.—The dielectric resistance of pure rubber is approximately 18 × 109 megohms per c.c. at 15° C. after one minute's electrification. The pure and compound rubbers forming the insulation of a cable have a joint resistance varying between 10×10^9 megohms per c.c. at 15° C. after one minute's electrification, and, say, 5×10^8 megohms, according to the quality of

Temperature Coefficient. - The rate at which the dielectric resistance of rubber decreases with increasing temperature varies somewhat with the quality and composition of the rubber. Table No. 69 gives the correction coefficients generally recognised in England, while Table No. 70 gives the coefficients used by Continental cable manufacturers.

Dielectric Constant. -The dielectric constant or specific inductive capacity of a rubber insulated cable varies between 3.0 and 5.5, according to the quality

and composition of the rubber.

Dielectric Strength.—The dielectric strength of a rubber insulated cable varies between 16,000 and 25,000 volts per mm., according to the quality and composi-

Dielectric Hysteresis.—The dielectric loss in rubber cables averages between 2.8 and 3.2 per cent. of the capacity current. Higher values can, of course, be observed on rubber cables of poor quality or bad design.

Working Temperature.—Rubber insulated cables should not be allowed to

attain a higher temperature than 65° C. (149° F.).

Table No. 69.—Temperature Coefficients for the Dielectric Resistance of Rubber Cables.

The dielectric resistance at 60° F. is equal to the resistance at t° F., divided by the coefficient for t° F.

t° F. │	Coefficient	t° F.	Coefficient	t⁰ F.	Coefficient	t⁰ F.	Coefficient
75 74 $\cdot 5$ 73 $\cdot 5$ 72 $\cdot 5$ 71 $\cdot 5$	0.6804 .6892 .6981 .7071 .7162 .7255 .7348 .7540 .7637	62 · 5 61 · 5 60 · 5 59 · 5 58 · 5	0·9499 ·9622 ·9746 ·9872 1·000 1·013 1·026 1·039 1·053 1·066	49 • 5 48 • 5 • 5 • 6 • 5 • 45 • 5	1·326 1·343 1·362 1·378 1·396 1·414 1·433 1·451 1·470 1·489	36 · 5 35 · 5 34 · 5 33 · 5 32 · 5	1.852 1.876 1.900 1.924 1.949 1.975 2.000 2.026 2.052 2.079
5 70 5 69 5 68 5 67 5 66 5	· 7637 · 7736 · 7836 · 7937 · 8039 · 8143 · 8248 · 8355 · 8463 · 8572 · 8683	55 56 55 55 54 53 53					
65 64 5 63 5	*8795 *8909 *9024 *9140 *9259 *9378	52 51 51 50 50	1 · 228 1 · 244 1 · 260 1 · 276 1 · 293 1 · 309	39 .5 38 .5 37 .5	1·713 1·737 1·759 1·782 1·805 1·828	25	2·425 2·456

or

Or

or

Table No. 70.—Temperature Coefficients for the Dielectric Resistance of Rubber Cables.

The dielectric resistance at 15° C, is equal to the resistance at t° C, multiplied by the coefficient for t° C.

t ³ C.	Coefficient	t° C.	Coefficient	to C.	C'oefficient	to C.	Coefficient
5.566.577.588.5599.510.511.512	0.540 .550 .560 .575 .590 .605 .620 .640 .690 .710 .740 .790 .810	12·5 13 ·5 14 ·5 15 -5 16 ·5 17 ·5 18 ·5 19	0·840 ·870 ·900 ·930 ·970 1·00 1·04 1·07 1·11 1·15 1·20 1·24 1·34 1·39	20 -5 21 -5 22 -5 23 -5 24 -5 25 -5 26 -5 27	1·44 1·49 1·55 1·60 1·66 1·72 1·79 1·85 1·92 1·99 2·07 2·14 2·22 2·29 2·37	27·5 28 -5 29 -5 30 -5 31 -5 32 -5 33 -5 34	2·44 2·52 2·59 2·67 2·74 2·82 2·89 2·97 3·04 3·12 3·19 3·27 3·34 3·42

(B) Gutta-Percha.

The specific gravity of gutta-percha varies between 0.97 and 0.98.

1 cubic foot weighs between 60 and 61.5 lb.

1 circular inch weighs approximately 2036 lb. per nautical mile.

The weight of gutta-percha is given by :-

$$(\mathrm{D}^2 + d^2) \times 3.146 = \mathrm{lb.}$$
 per nautical mile (D and d in mm.);

 $\frac{(D^2-d^2)}{493}=$ lb. per nautical mile (D and d in mils);

$$(D^2 - d^2) \times 2.73 = 1b$$
. per statute mile (D and d in mm.);

$$\frac{(D^2 - d^2)}{568}$$
 = lb. per statute mile (D and d in mils).

The external diameter in mils of any gutta-percha core is given by :-

For solid conductor
$$\sqrt{55}$$
 w + 493 W
For strand conductor . . . $\sqrt{70.4}$ w + 493 W

where \boldsymbol{w} and W are the weights per nautical mile of the copper and gutta-percha respectively.

If the dimensions of the core are given by the weights of copper and gutta-perchaper nautical mile (w and W respectively), then the ratio of $\frac{\mathbf{D}}{d}$ can be calculated from the formula:

Solid conductor
$$\frac{\mathrm{D}}{d} = \sqrt{1 + 8.93} \, \frac{\bar{\mathrm{W}}}{w};$$

Strand conductor $\frac{\mathrm{D}}{d} = \sqrt{1 + 8.94} \, \frac{\mathrm{W}}{w}.$

The following Table No. 71 gives the chief species of gutta-percha used in the manufacture of cables, together with their relative prices.

TABLE No. 71.—GUTTA-PERCHA SPECIES.

Species	Relati	ve Price	Species	Relati	ve Price
pecies	Raw	Cleaned	ispecies	Raw	Cleaned
Pahang Grade I. " " II. " " IV. Bagan Bagan Soonie I. " " II. " " III. Padang Rib . Cotee Red . Gutta Siak . Gutta Soh .	. 100 . 94·5 . 88·5 . 82·9 . 57·2 . 56·7 . 52·2 . 47 . 11·9 . 52·6 . 3·5 . 8·9	159 145 134·6 125·6 92 74·4 64 58·5	Banjer Red Grade I. , , , , , II. Mixed Serapong . Goolie Red Soondi . Sarawak Soonie . Mixed Sarawak . Serapong Soonie . Bulongan White . Balata . White Bulug .	62 59·3 52·7 27·9 58·5 27 17·7 57·1 8·0 38 28·4	149 145 136 46 78 63·7 38 92 51·4 53·1

Tables Nos. 72 and 73 give the weight of solid circular gutta-percha in 1b. per nautical mile.

TABLE NO. 72.-WEIGHT OF GUTTA-PERCHA IN LB. PER NAUTICAL MILE. (Diameter in millimetres.)

0 0.0000 0.01278 1 3.1960 0.1278 2 12.784 14.994 15.469 3 28.764 30.714 32.727 4 51.136 53.725 56.378 5 115.06 116.11 12.68 8 204.55 209.69 1214.90 9 258.88 264.65 270.51 10 319.60 326.02 214.90 11 386.72 326.02 332.51 12 460.23 467.93 475.69 13 460.23 467.94 475.69 14 626.42 635.40 644.41 15 719.10 728.72 738.40 16 818.18 828.43 838.76 17 923.64 934.54 945.50 18 1035.5 1047.0 1058.6 19 153.8 1165.9 1364.4 20 1240.9 1420.9 1364.4	4 · 6028 4 · 6028 15 · 463 82 · 727 56 · 87 86 · 420 105 · 68 214 · 90 214 · 90 210 · 91 400 · 91	0.2876 5.0.2876 16.907 34.805 59.094 89.776 126.85 170.32 220.17 276.42	0.5114 6.2642 18.409 36.946 61.875 93.196 130.91	0.7990 7.1910 19.975				1
3.1960 0.0328 3.1960 3.8671 12.754 11.094 28.754 30.711 51.136 53.725 79.901 18.92 115.06 118.92 115.06 118.92 115.06 118.92 258.88 264.66 319.60 326.02 386.72 386.72 460.23 467.93 540.12 548.47 626.42 635.40 719.10 728.72 818.18 828.43 923.64 934.54 1035.5 1165.9 1409.4 1222.9 1409.4 1222.9	0.1278 4.6023 15.463 52.727 56.728 86.420 122.83 1152.68 214.90 214.90 332.51 400.91	0 · 2876 5 · 4013 16 · 907 34 · 805 59 · 776 89 · 776 170 · 32 220 · 17	6.2642 18.409 36.946 01.875 93.196 175.01	0.7990 7.1910 19.975				
3-1960 3-8672 12-784 14-094 28-764 30-725 79-901 83-129 115-06 118-92 156-60 116-11 204-55 209-69 258-88 264-06 319-60 326-02 348-72 467-93 540-12 548-47 626-42 655-40 719-10 728-72 818-18 828-43 923-64 93-78 400-23 64-06 318-60 326-02 340-12 548-47 1035-5 1165-9 1278-4 1291-2 1409-4 1221-9 156-9 1165-9 1278-4 1291-2	4 · 6023 15 · 469 32 · 727 56 · 378 86 · 420 122 · 85 165 · 68 2714 · 90 270 · 51 332 · 51 400 · 91	5 + 4013 16 + 907 34 + 805 59 + 094 89 + 776 170 + 32 220 + 17 276 + 42 3339 + 07	6.2642 18.400 36.946 61.875 93.196 130.91	7.1910	1.1506	1.5660		2.5888
28.764 14.094 28.764 30.714 51.136 53.725 79.901 83.129 115.06 116.11 204.55 20.69 258.88 264.00 319.60 326.02 386.72 393.78 460.23 467.93 540.12 393.78 460.23 540.70 728.72 88.18 828.43 923.64 728.72 818.18 828.43 923.64 1035.5 1047.0 1158.8 1165.9 1278.4 1291.2 1409.4 1222.9 1546.9 1561.9	15.469 32.727 56.378 86.420 122.85 165.68 214.90 270.51 400.91	16.907 34.805 59.094 89.776 126.85 170.32 226.17 226.17	18.409 36.946 61.875 93.196 130.91	19.975	8.1818	9.2365		11.538
28.764 30.714 51.136 53.725 79.901 88.129 115.66 116.11 204.55 209.69 258.88 264.60 319.60 326.02 386.72 393.78 460.23 467.93 540.12 548.47 626.42 635.40 719.10 728.72 818.18 828.43 923.64 934.54 1035.5 1047.0 1153.8 1165.9 1278.4 1291.2 1409.4 1222.9 1546.9 1561.9	32.727 56.378 86.420 122.83 165.68 214.90 270.51 332.51 400.91	34.805 59.094 89.776 126.85 170.32 220.17 276.42	36.946 61.875 93.196 130.91		21.605	23.299		26.879
51-136 53-725 79-901 83-129 115-06 118-92 156-60 116-11 204-55 209-69 258-88 264-66 319-60 326-02 386-72 893-78 460-23 540-12 548-47 626-42 655-40 778-72 818-18 828-43 923-64 934-54 1035-5 1165-9 1278-4 1221-9 1409-4 1222-9 1546-9 1561-9	56.378 86.420 122.85 165.68 214.90 270.51 332.51 400.91	59 · 776 89 · 776 126 · 85 170 · 32 220 · 17 276 · 42 339 · 07	61.875 93.196 130.91 175.01	39 · 151	41.420	43.753		48.611
79 901 83 129 115 06 118 92 156 60 116 11 204 55 209 69 258 88 264 66 319 60 326 02 346 72 393 78 460 23 467 93 540 12 548 47 (226 42 655 40 719 10 728 72 818 18 828 43 923 64 19 1035 5 1165 9 1278 4 129 12 1278 4 129 12 1409 4 122 9 1546 9 1561 9	86.420 122.85 165.68 214.90 270.51 332.51 400.91	89.776 126.85 170.32 220.17 276.42	93-196 130-91 175-01	64 - 719	67.628	70-600		76.736
115 06 118 92 156 60 116 11 204 55 209 69 258 88 264 06 319 60 326 02 386 72 393 78 460 23 467 93 540 12 548 47 (226 42 635 40 719 10 728 72 818 18 828 43 923 64 1035 5 1165 9 1178 4 1291 2 1278 4 1222 9 1546 9 1561 9	122.85 165.68 214.90 270.51 332.51 400.91	126.85 170.32 220.17 276.42 339.07	130.91	089.96	100.23	103.84		111.25
204.55 204.55 228.88 258.88 26.05 319.60 386.72 386.72 386.72 386.72 540.12 540.12 548.47 626.42 655.40 719.10 728.43 923.64 1035.5 1165.9 1278.4 1278.4 126.9 1278.4 126.9 1278.4 126.9 1278.4 126.9	165·68 214·90 270·51 332·51 400·91	220 · 17 220 · 17 276 · 42 339 · 07	175.01	135.03	139.22	14:3:47		152.16
204 55 209 69 528 88 264 66 319 60 326 02 386 72 467 93 72 467 93 72 47 91 91 91 923 64 127 81 1153 81 1155 91 1278 4 122 91 1546 91 1561 9	214.90 270.51 532.51 400.91	220·17 276·42 339·07		179.78	184.60	189.49		199.46
258.88 264.66 319.60 326.02 386.72 393.78 460.23 467.93 540.12 548.47 626.42 685.40 7719.10 728.72 818.14 824.54 1035.5 1165.9 1278.4 1291.2 1409.4 1222.9 1546.9 1561.9	270.51 332.51 400.91	276.42	225.51	2:30 - 91	236.38	241.91		253 · 16
386.72 393.78 460.23 467.93 540.12 548.47 626.42 635.40 719.10 728.72 818.18 828.43 923.64 1047.0 1158.8 1165.9 1278.4 1291.2 1409.4 1422.9 1546.9 1561.9	332 · 51 400 · 91	339.07	282-40	288.44	294-55	300.71		313.24
386.72 393.78 460.23 467.93 526.12 548.47 626.42 655.40 719.10 728.72 818.18 828.43 923.64 934.54 1035.5 1047.0 1153.8 1165.9 1278.4 1291.2 1409.4 1422.9 1546.9 1561.9	400.91		345.68	352.36	359.10	365.91		379-72
460.23 467.93 540.12 548.47 626.42 655.40 719.10 728.72 818.18 828.43 923.64 934.54 1035.5 1165.9 1278.4 1291.2 1409.4 1422.9 1546.9 1561.9		408.10	415.35	422.67	430.06	4:37.20		452.59
540.12 548.47 626.42 635.40 728.72 818.18 828.43 923.64 934.54 1035.5 1165.9 1278.4 1291.2 1409.4 1222.9 1546.9 1561.9	47.5.69	483.52	491.42	499.38	507.40	515-17		531.85
626.42 635.40 719.10 728.72 818.18 828.43 923.64 934.54 1035.5 1047.0 11.53.8 1165.9 1278.4 1291.2 14.09.4 14.22.9 1546.9 1561.9	556.87	565.34	573.87	582.47	591-13	599.86		617.50
719·10 728·72 818·18 828·43 923·64 934·54 1035·5 1047·0 1153·8 1165·9 1278·4 1291·2 1409·4 1422·9 1546·9 1561·9	14.459	653.60	662.72	96-129	$681 \cdot 25$	690-62		709 - 54
818 · 18 828 · 43 923 · 64 934 · 54 1035 · 5 1047 · 0 1153 · 8 1165 · 9 1278 · 4 129 · 2 1409 · 4 1422 · 9 1546 · 9 1561 · 9	788.40	748.15	757.96	767-84	81.117	787.78		807.08
923.64 984.54 1085.5 1047.0 1153.8 1165.9 1278.4 1291.2 1409.4 1422.9 1546.9 1561.9	838.76	849.05	829.60	869 - 91	880.69	891.13		912.81
1035.5 1047.0 1153.8 1165.9 1278.4 1291.2 1409.4 1422.9 1546.9 1561.9	945.50	956.53	967-62	978-78	66-686	1001:3		1024.0
1153.8 1165.9 1278.4 1291.2 1409.4 1422.9 1546.9 1561.9	9.8201	107013	0.7801	1093.8	1105.7	1117.1		1141.6
1278.4 1291.2 1409.4 1422.9 1546.9 1561.9	1178.2	1189.5	8.707.8	1215.3	1227.8	1240+3		1265.6
1409.4 1422.9 1546.9 1561.9	1304-1	1317.0	0.022	1343 1	1356.2	1368.5		1396+0
1546.9 1561.9	1436.4	1450.1	1463.6	1477.8	1491 · I	1505.0		1532.8
	575.1	1589 - 3	9.5091	1617.0	1632.4	1646.9		1676.0
1690.7 1705.4	721.2	1736-1	0.092	1765-0	1780.0	1795 - 2		1825.6
1840.9 1856.3	871.7	1887.2	8.7061	1918-4	1984-1	1949.8	1965-7	1981-6
1997.5	*	:	:	:	:	;		:

Lb. per nautical mile $\times 0.8673 = 1b$. per statute mile. Lb. per nautical mile $\times 0.2444 = \text{Kilog}$, per Kilometre.

Table No. 73.—Weight of Gutta-Percha in lb. per Nautical Mile. (Diameter in mils.)

6	0.16701	3.1361	7.1773	9.8165	16.332	20.208	24.497	29.198	34.311	39.837	677.54	52.126	58.889	66.064	73.652	81.652	90.064	688.86	108.13	117-77	127.84
00	0.13196	1.6165 2.9773 4.7505	1986.9	9.5340	12.544 15.967	19.805	24.049	58.709	33:781	39.766	45.163	51.472	58-194	65.328	72.874	80.833	89.204	97.988	107.18	116.79	126.81
12	0.10103																				
9	0.07423	1.8988 9.6722 4.9690	0.4660	8-9814	11.909	19.005	23-167	27 - 744	32 - 734	38.136	4:3-950	50.177	56.816	898.89	71 - 332	79-208	87.497	96.198	105.31	114.84	124.77
ıc	0.05155 0.46392															-					
₩,	0.03299																				
က	0.01856																				
63	0.00825																				
, H 1	0.00206																				
0	0.00000																		-		
Diam.		888					-		-					-	_				. ~		_

Lb. per nautical mile $\times 0.8673 = lb$, per statute mile. Lb. per nautical mile $\times 0.2444 = kilog$, per kilometre.

Table No. 73.—Weight of Gutta-Percha in 1.B. per Nautical Mile—continued. (Diameter in mils.)

6	138.31	149.90	100.50	179.91	184.83	196.87	209.82	223 - 18	236 - 95	251-14	265 - 73	280.74	296-17	312.00	328.25	344.91	361-98	379-47	397.36	415.67	431-39	453.53	47.8 - 0.7	40.00	CO COE	04.910	
000	187-24	148.09	159.85	171.02	183.10	195.60	208.50	221.82	235.55	249.70	264.26	279 - 22	291.61	310.40	326.61	343.22	360-26	02.778	395.55	413.82	482.50	09.100	471.10	409.00	10. UE	66.116	
1-	136.18	146.99	158.20	169.83	181.87	194.33	207-19	220.47	234 · 16	248.27	262.78	277-71	29:3 · 05	308.80	324-97	341+54	358.53	375 194	393.75	411.98	430.62	449.67	469 - 13	480.01	500.90	00 000	:
9	185.13	145.89	157.06	168.65	180.65	19:3:06	20.5 · 89	219 · 13	232-77	246.84	261 - 31	276.20	291.50	307.21	323 - 33	339.87	856.82	374.18	391-95	410.14	428-73	447-94	467.17	487.00	507.98	67 100	:
ro	134.07	144.79	155.93	167.47	179.43	191-80	204.59	217.78	231.39	245.41	259.84	274.69	280.02	305.62	321.70	338.70	855.10	372.42	390.15	408.30	456.86	445.82	465 · 21	485.00	505-91	1	
4	133.02	143.70	154.80	166.30	178.22	190.55	20:3-29	216.44	230.01	243.99	258.38	273.19	288.40	304.03	820.07	336.73	858.39	220.02	388.30	406.47	424.98	443.91	463.25	483.00	503-17		
m	131.98	142.62	153.67	165.13	177.01	189.30	202-00	21.0.11	228.61	75.242	256.93	271.69	286.86	302.45	318.45	334.86	351.69	368-92	286.57	401.61	123.11	445.00	461.30	481.01	501-13		
23	130.94	141.53	152-54	163.97	175.80	188.05	17.002	213.78	12.122	91.147	255 47	61.072	280.33	200:87	316.83	333.20	349.99	367.18	67.400	402.81	421.24	440.05	459.35	479.02	499.10		
1	129.90	140.46	74.101	162.81	174.60	186.81	133.42	04.717	900.72	07.007	20.4.02	208.70	283.80	09.867	27.019	651.55	348.Z9	900.44	400.00	410-50	419.68	41.004 13	04.704	477.03	497.07		
0	128.87	158.58	19.0.31	(9.191	1/3.40	1000.14	130 14	904 24	#C: #77	950.50	00 707	77 707	12.797	919.61	10.010	242.30	940.01	2000 /1	500.17	417.80	406.90	425.40	45.00	60.6/4	495.05	515.46	
Diam.	250	0070	000	280	000	000	250	070	840	950	260	000	000	000	1000	410	490	420	440	450	460	476	400	450	490	200	

Lb. per nautical mile \times 0·8673 = lb. per statute mile. Lb. per nautical mile \times 0·2444 = kilog, per kilometre.

Dielectric Resistance.—The dielectric resistance of a gutta-percha insulated cable is approximately 3.5×10^8 megohms per c.c. at 75° F. after one minute's electrification.

Temperature Coefficient.—The rate at which the dielectric resistance of gutta-percha decreases with increasing temperature varies somewhat with the quality and newness of the gutta-percha. Table No. 74 gives the coefficients for 1.082, 1.089, and 1.090 per degree F.; the latter and higher coefficients being for new gutta-percha cable.

Table No. 75 gives the coefficients founded on the tests of Winnertz published in the "Elektrotechniker Zeitschrift" (November 29, 1906). Herr Winnertz pointed out peculiarities in the dielectric resistance curve at certain temperatures.

Dielectric Constant.—The dielectric constant or specific inductive capacity of

a gutta-percha insulated cable is approximately 3.6.

Dielectric Strength.—The dielectric strength of gutta-percha is approximately 18,000 volts per mm.

Table No. 74.—Temperature Coefficients for the Dielectric Resistance of Gutta-Percha Cable,

The dielectric resistance at 75° F. is equal to the resistance at t° F. divided by the coefficient for t° F.

t°F.	0.082 per deg.	0.085 per deg.	0.089 per deg.	0·090 per deg.	t° F.	0·082 per deg.	0.085 per deg.	0.089 per deg.	0.090 per deg.
90	0.3066	0.2941	0.2783	0.2745	75	1.000	1.000	1.000	1.000
• 5	*3189	.3065	2904	2866	.5	1.040	1.042	1.044	1.044
89	.3317	*3191	.3031	•2992	74	1.082	1.085	1.089	1.090
.5	·3451	•3325	3163	*3124	.5	1.126	1.130	1.136	1.138
88	.3590	.3463	.3301	.3261	73	1.171	$1 \cdot 177$	1.186	1.188
.5	.3734	.3608	.3445	.3405	.5	1.218	1.226	1.238	1.240
87	•3884	.3757	$\cdot 3594$.3555	72	1.267	1.277	1.291	1.295
.5	.4040	*3914	.3751	.3711	-5	1.318	1.331	1.348	1.352
86	+4202	.4076	.3914	.3875	71	1.371	1.386	1.406	1.412
• 5	•4371	•4247	.4085	•4046	•5	1.426	1.444	1.468	1.474
85	.4547	4423	4263	+4222	70	1.483	1.503	1.532	1.539
. 5	•4730	•4600	.4449	.4410	• 5	1.543	1.566	1.598	1.606
84	•4920	•4799	.4642	.4604	69	1.605	1.632	1.668	1.677
• 5	•5117	•4999	•4845	•4807	• 5	1.669	1.700	1.741	1.751
83	• 5323	• 5207	$\cdot 5055$.5018	68	1.736	1.770	1.816	1.828
.5	•5537	. 5424	• 5275	-5239	. 2	1.806	1.844	1.895	1.909
82	.5759	.5619	.5505	•5470	67	1.878	1.921	1.979	1.993
- 5	•5999	.5885	.5745	.5711	• 5	1.954	2.001	2.064	2.081
81	.6232	· 6130	•5995	•5962	66	$2 \cdot 033$	2.084	$2 \cdot 154$	$2 \cdot 172$
• 5	.6482	.6385	6257	-6225	• 5	2.114	2:170	$2 \cdot 248$	2.268
80	.6743	•6650	6529	•6499	65	$2 \cdot 199$	2.261	$2 \cdot 346$	2.368
. 5	.7014	6928	•6813	6785	. 5	$2 \cdot 288$	$2 \cdot 355$	2.448	2.472
79	•7297	•7216	.7110	.7084	61	2 • 380	2.453	2.555	2.581
.5	·7589	·7516	•7420	•7396	•5	2.475	2.555	2.666	2.694
78	$\cdot 7894$	•7829	•7743	-7722	63	2.575	2.662	2.782	2.813
• 5	+8212	·8155	.8080	*8070	.5	2.678	2.773	2.902	2.937
77	$\cdot 8542$	·8495	.8432	.8417	62	2.786	2.890	3.030	3.066
5	8885	·8848	.8800	·8787	. 5	2.898	3.006	$3 \cdot 162$	3.201
76	$\cdot 9242$	•9217	•9183	.9174	61	3.014	3.133	3.299	3.342
.5	.9613	.9600	•9583	•9578	•5	$3 \cdot 135$	3.264	3.443	3.489

Table No. 74.—Temperature Coefficients for the Dielectric Resistance of Gutta-Percha Cable—continued.

The dielectric resistance at 75° F, is equal to the resistance at t° F, divided by the coefficient for t° F.

	0.082	0.085 ~	0.089	0.090		0.082	0.085	0.089	0.090
t° F.	per deg.		per deg.		to F.	per deg.		per deg.	
		_						F	
60	3.262	3.400	3.593	3.643	50.5	7.461	8.006	8.795	9.005
•5	3.393	3.541	3.749	3.802	49	7.761	8.340	9.179	9.401
59	3.529	3.688	3.913	3.971	• 5	8.073	8.688	9.578	9.815
. 5	3.671	3.841	4.083	4.146	48	8.397	9.049	9.996	10.25
58	3.818	4.002	$4 \cdot 261$	4.328	•5	8.735	9.425	10.43	10.70
• 5	3.970	4.170	4.446	4.518	47	9.086	9.818	10.89	111.17
57	4.131	4.342	4.640	4.718	.5	9.451	.10.23	11.36	11.66
· 5	$4 \cdot 297$	4.523	4.842	4.926	46	9.831	10.65	11.85	12.17
56	4.470	4.712	5.053	5.142	• 5	10.23	11:10	12.37	12.71
.5	4.650	4.908	$5 \cdot 273$	5.369	45	10.64	.11.56	12.91	13.27
55	4.837	5.112	5.503	5.605	.5	11.06	12.04	13.47	13.85
• 5	5.031	$5 \cdot 325$	5.743	5.852	44	11.51	12.54	14.06	14.46
54	$5 \cdot 233$	5.546	$5 \cdot 993$	6.110	.5	11.97	13:06	14.67	15.10
'5	5.444	5.777	$6 \cdot 254$	6.379	43	12.45	13.61	15.31	15.77
5 3	5.662	6.017	6.526	6:660	• 5	12.95	14:17	15.98	116.46
• 5	5.890	6.269	6.810	6.953	42	13.47	14.76	16.67	17.19
52	$6 \cdot 127$	6.530	7.107	$7 \cdot 259$	• 5	14:02	15.35	17.40	17.94
. 5	6.373	6.801	7.416	7.579	41	14.58	16.02	18.16	18.73
51	6.629	$7 \cdot 085$	7.740	7.913	• 5	15.16	16.68	18.95	19.56
- 5	6.896	7.380	8.077	8.261	40	15.77	17:40	19.77	20.42
50	$7 \cdot 173$	7.686	8.428	8.625					

Table No. 75. -Temperature Coefficients for the Dielectric Resistance of Gutta Peroha Cables (Winnertz).

The dielectric resistance at 75° F, is equal to the resistance at t° F, divided by the coefficient for t° F.

1				1		1	
t° F. ∣	Coefficient	t° F.	Coefficient	to F.	Coefficient	to F.	Coefficient
# F. 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80	Coefficient 0 · 1415 · 1561 · 1721 · 1898 · 2105 · 2332 · 2574 · 2836 · 3125 · 3442 · 3833 · 4304 · 4801 · 5251 · 5848 · 6458	79 78 77 76 75 74 73 72 71 70 69 68 67 66 65	Coefficient 0 · 7066	63 62 61 60 59 58 57 56 55 54 53 52 51	Coefficient 2.790 3.035 3.302 3.588 3.896 4.223 4.564 4.919 5.282 5.650 6.015 6.373 6.722 7.057 7.377	47 44 45 44 43 42 41 40 39 38 37 36 35 34 33	7 · 943 8 · 178 8 · 383 8 · 499 8 · 585 8 · 637 8 · 678 8 · 719 8 · 757 8 · 796 8 · 834 8 · 880 8 · 932 8 · 990 9 · 053

CHAPTER V.

DRY CORE TELEPHONE CABLES.

The conductors of telephone cables are generally of solid copper wire, drawn through diamond dies, which allows of the greatest accuracy in the diameter of the wire being obtained. The conductors used vary between 0.4 mm. (15.75 mils) in diameter for local telephone services, and 3.0 mm. (118 mils) in diameter for trunk lines. Table No. 76 gives the details of various standard telephone conductors; the smaller sizes, viz.: 0.4, 0.5 and 0.6 mm. diameter, are largely used in Scandinavia for local services; in Germany 0.8 mm. diameter wire is largely used, whilst in England 0.635, 0.711 and 0.901 mm. diameter wires are used for these services.

A strand of three wires is sometimes used to form the heavier conductors.

The conductors are individually insulated with one, two or even three layers of paper, loosely applied so as to enclose more or less air space around the conductor. There are two methods of applying the paper, firstly, by spirally lapping a paper ribbon round the conductor and thus forming a closed paper helix; and secondly, by laying the paper ribbon longitudinally along the conductor and folding it round the wire by means of a suitable die, the paper being secured by a whipping of thread. The spiral method of covering is often adopted for small conductors, but the longitudinal method is much more

TABLE No. 76.—DETAILS OF CONDUCTORS FOR TELEPHONE CABLES.

Weight in lb.	Diameter	of Wire	Maximum Resis	tance at 60° F.
per statute mile	mils	mm.	per statute mile	per kilometre
3.98	15.75	0.4	209.0	136.0
6.21	19.7	0.5	140.0	87.0
8.94	23.6	0.6	97.3	60.5
10.0	25.0	0.635	87.8	51.6
12.16	27.6	0.7	71.6	44.5
12.5	28.0	0.711	70.3	43.6
15.9	31.5	0.8	54.9	34.1
20.0	35.5	0.901	43.9	$26 \cdot 96$
24.8	39 · 4	1.0	35.0	21.75
40.0	50.0	$1 \cdot 27$	22.0	13.63
55.7	59.1	1.5	15.6	9.67
70.0	66	1.67	12.6	$7 \cdot 805$
100	79	2.01	8.8	5.42
150	97	$2 \cdot 46$	5.85	3.64
200	112	2.85	4.39	2.73

extensively adopted for covering conductors with one layer of paper. When two or more layers of paper are specified, the first layer is generally longitudinally applied, and the second (and third) layer spirally lapped.

There are three methods of cabling the wirestogether to form a cable, known

as ordinary twin, multiple twin, and quadruple twin.

Ordinary Twin .- Two insulated conductors are layed up together to form a pair, the length of lay of the wires varying between 10 cm. (4 in.) and and 30 cm. (12 in.). The two cores of a pair are made distinguishable from each other either by having one conductor of tinned copper wire, and the other of plain copper wire (Continental method), or by having differently coloured insulating paper or thread whipping (English method). The required number of such pairs are stranded together in layers, the length of lay of the neighbouring pairs being different in order to prevent inductive interference or cross talk in the circuits. The successive layers are applied with a left-handed and right-handed lay alternately, and are sometimes taped over with one layer of paper, the final layer being taped with paper or calico tape.

The cable is next dried in a vacuum heater at a temperature of approximately

130° C. (260° F.) for from 12 to 18 hours, and then lead cased.

One or two pairs of conductors in each layer are generally provided with distinctive colours, so that any wire in the cable can be identified. The ordinary twin type of cable is the most extensively used, having the advantage in economy of space; with this type of cable, however, the system of bunching the conductors to form heavier circuits is only efficiently possible on short lengths, whilst the method of telephone working, known as superimposing circuits, is efficiently impossible owing to the inductive interference inherent with this arrangement of pairs.

Multiple Twin.—The multiple twin method of cabling was suggested by Jacob (British Patent No. 3821, 1882), and consists in the successive twinning of the wires; thus two insulated conductors are layed up together to form a pair, this pair is again twinned with a similar pair to form a four-wire unit; this twinning is continued until the requisite number of conductors is obtained. which number can, of course, only be one of the geometrical progression series 4, 8, 16, 32, 64, etc.

Cables made as above described are not so economical in respect to space as the ordinary twin cables, nor have they any advantage unless the length of lay be varied for each twinning operation—an arrangement patented in 1903 by Messrs. Dieselhorst and Martin (British Patent No. 12526, 1903). This latter arrangement allows of the circuits being bunched and also of superimposed

circuit working.

Quadruple Pair.-Four insulated cores are stranded together to form a "quad pair," then the requisite number of such units are stranded together to form a cable. Such cables can also be worked on the superimposed system, and also allow of the circuits being bunched together efficiently, but they have two disadvantages, firstly, the amount of unprofitable space in the cable, which disadvantage is sometimes lessened by laying in pairs of smaller conductors; secondly, the liability of cross talk between the circuits, owing to want of symmetry in the position of the four conductors. This want of symmetry, which is caused by the almost unavoidable inequality of the friction on the four bobbins of the laying-up machine, can be lessened by increasing the length of lay of the wires, but this cannot be increased beyond certain limits, else the cable would be liable to damage when handled. If, however, the four wires are laid up round a jute centre, the diagonals can be maintained at right angles to one another, and therefore cross talk cannot occur because the inductive effects of any two diagonal wires upon the other two wires will be equal and opposite,

The electrostatic capacity of the quadruple pair circuits is less than that of similar wires laid up in twins, because the diagonal wires are used to form the

The copper wire used for telephone cables is usually tested to withstand wrapping in six turns round its own diameter, unwrapping, wrapping on again,

and unwrapping a second time.

The paper used to insulate the conductors should be specially tough, long fibred, having a breaking length of at least 5 kilometres (5500 yards). It is used in widths varying from 5 to 20 mm. (197 to 790 mils), and of thickness

0.0635 to 0.254 mm. (2.5 to 10 mils).

Various tensile strength tests are specified for the paper, such as :- "A strip one inch in width to support a weight of 4 lb. for each mil of thickness," or "a strip of paper 1 cm. wide and I metre long, after having been in water for 24 hours, and afterwards dried, shall bear a weight of 2:25 kilogrammes and allow of being turned ten times through an angle of 180° in the same direction without breaking."

Table No. 77 shows the results of various mechanical tests on paper used for

the manufacture of telephone cables.

TABLE No. 77.—TESTS ON TELEPHONE CABLE PAPER.

Width mm.	Thick- ness mm.	Tensile Strength, kilogrammes per sq. mm.	Elonga- tion per cent.	Break- ing Length, metres		Test. I		Weight in kilogrammes per sq. metre	
6 6 10 10	0·090 ·085 ·155 ·120	5·63 7·25 5 ·08 5·4 0	1·1 1·0 1·6 1·6–2·0	7760 8800 6760 7660	5 7 9	9 10 13	13 14 17	0·0653 ·0697 ·1090	0·725 ·820 ·705

The thread used for whipping the cores and pairs has an elongation of about 2.1 per cent., and an average total tensile strength of about 1.25 kilo-

grammes (2.75 lb.).

Paper and air space telephone cables are usually specified to admit of the free passage of air, so that after the removal and repair of a fault any moisture that may have found its way into the cable at the faulty place can be removed by pumping dried air through the cable. The looseness of the cable is sometimes guaranteed by specifying that air at a certain pressure (say 2 atmospheres) applied to one end of a length of cable shall reach the other end within a certain time.

On the other hand, the cables of some telephone systems are filled with wax compound for a short distance on each end, so that each length of cable is

sealed.

The mechanical protection applied to telephone cable depends upon the method of laying adopted; thus, plain lead-sheathed cables are used for suspended aerial systems, and also for duct and pipe systems where only one cable, or at most two, are drawn into one duct or pipe. When several cables are to be drawn into one duct, the lead-covered cable is generally protected by a layer of segmental strip armour of steel applied on a bedding of jute; the armouring can be of the open or closed type, the number of strips used for open armour being usually half the number that would close armour the cable. For telephone cables to be laid direct into the ground, the steel-strip armour should be protected by a serving of jute and thoroughly compounded.

DIAMETER OF ORDINARY TWIN CABLES.

Let D = diameter of cable under the lead sheath p = diameter of one pair of insulated wires

l =number of layers in the strand

x(p) = diameter of the strand basis

therefore, as each layer of pairs increases the diameter by 2 p, it follows that $\mathbf{D} = xp + 2 p l = p (x + 2 l)$.

The value of the coefficient x for various strand bases is given in Table No. 78.

TABLE No. 78.—DIAMETER OF STRAND CENTRES.

Strand Basis—i.e. Number of Pairs in Centre	Value of Coefficient x
1	1 · 0
2	1 · 6
3	2 · 155
4	2 · 414
5	2 · 7
6	3 · 0

Table No. 79 gives the number of pairs in the successive layers for the construction of various cables, also the diameter coefficient or value of (x + 2l).

TABLE No. 79.—TELEPHONE CABLE CONSTRUCTION.

No.	Diam.	re					N	umb	er of	Paire	in 8	Succe	ssive	Lay	rers				
Pairs	coefficient	Centre	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
2	1.6	2								- 1									
3	2.155	3												.,		,	• •	• •	
4	2.414	4																	
5	3.0	1	4												,.				
5	2.7	5																	
7	3.0	1	6																
8	3.0	1	7																
10	3.6	2	8																
12	4.155	3	9												,				
14	4.414	4	10																
15	4.414	4	11							• •									
15	4.7	5	10				• •	• •			• •	• •			• •				
16	4.7	5	11	**	• •		• •			• •		••			• •		• •	• •	
19	5.0	1	6	12					• •			• •		• •	• •	• •	• •	• •	• •
$\frac{20}{21}$	5.6	$\frac{2}{2}$	6	12					• •	••	• •	• •		••	• •	• •	* *	• •	**
$\frac{21}{24}$	5·6 5·6	2	8	12 14			• • •		• •	**	• •	• •		• •	• •	• •	**	• •	• •
2 4 25	6.155	3	8	14	• •						• •	• •	• •			• •	• •	• •	• •
25 25	6.155	3	9	13						• •	• •		• •			• •	• •	••	• •
26	6.155	3	9	14	• •		• •		- •	••	• •	••	• •	•••	• •	••	• •	••	••
27	6.155	3	9	15												••		::	• •
28	6.155	3	9	16				,.							,.				
30	6.414	4	10	16															
33	6.7	5	11	17					1										
37	7.0	1	6	12	18														
42	7.6	2	8	13	19														
44	7.6	2	8	14	20														
48	8.155	3	9	15	21														
50	8.155	3	9	16	22														
50	8.414	4	10	16	20														
52	8.414	4	10	16	22														
56	8.7	5	11	17	23														
61	9.0	1	6	12	18	24												• 1	
62	9.0	1	6	12	18	25										1.0		• •	
70	9.6	2	8	14	20	26					• •								
75	10.155	3	9	15	21	27	0.5			• •									
75	10.414	4	10	15	20	26	* *	* *			••	• •							
77	10.155	3	9	15	22	28						••	• •				• •		
77	10.414	4	10	15	21	27				• •	• •			• •	• •	• •	• •		• •
80	10.414	4	10	16	22	28	• •	• •		• •	••						• •		••
84	10.7	5	11	17	23	28	• •	• •	• •	• •	• •	• •	4.0	• •		* *	• •		••
85	10.7	5	11	17	23	29	20			• •	• •				0 1			**	••
91	11.0	1	6	$\frac{12}{12}$	18	24 25	30 30		• •	* *									•••
92	11.0	1	6	13	18 19	26	33	**	• •	••		••	• •		* *	**	* *	1	
100	11.6	2 3	9	13	19	25	31	•••		••	• •	**	• •	••	• •	• •			
100	12.155	9	9	19	19	20	OI				• •	**		0.0		• •			
														1				1	

Table No. 79.—Telephone Cable Construction continued.

No.	Diam.	ø					N	umb	er of	Pair	s in	Succe	ssiv	e Lay	ers				
of Pairs	coefficient	Centre	,	0			_		1										
2 0110		ರ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	_																		
102	11.6	2	8	14	20	26													
108	12.155	3	9	15	21	27	33												
112	12.414	4	10	,16	22	27	30				0.0								
114	12.414	4	10	16	22	28	34												
$\frac{120}{120}$	$\begin{bmatrix} 12.7 \\ 13.0 \end{bmatrix}$	5	11 6	17 11	23	29	35	0.4											
127	13.0	1	6	12	17	23	28	34											
128	13.0	1	6	12	18	24	30	36 37	• •		• •	• •							
129	. 13.0	ī	6	12	18	24	31	37			• •	• •	• •	• •	• •	• •	• •		
140	13.6	2	8	14	20	26	32	38					• •		• •			• •	
147	14.155	3	9	15	21	27	33	39		• •		• •	• •		• •	• •	• •	• •	
150	14.155	3	9	15	21	27	34	41				• •	• •				• •		• •
150	14.414	4	10	16	21	27	33	39						• •	• •				• •
153	14.414	4	10	16	22	128	34	39								••	• •		
153	14.7	5	11	16	21	.27	33	40				,	·	• •	• •				
154	14.414	4	10	16	22	128	34	40											• •
161	14.7	5	11	17	23	29	35	41											
168	15.0	1	6	12	18	24	30	36	41										
169	15.0	1	6	12	18	24	30	36	42			1		!					
170	15.0	1	6	12	18	24	30	36	43										
171	15.0	1	6	12	18	24	30	37	43		!	,						,,	
179 184	$15.0 \\ 15.6$	1	6	12	18	25	32	39	46										
192	16.155	2	8	14	20	26	32	38	44										
200	16 414	3 4	9	15	21 22	27	33	39	45										
204	16.414	4	10	16 16	22	28 28	34	40	46										
204	16.7	5	11	17	23	28	34	41	49			1							
208	16.7	5	11	17	23	29	35	41	46 47				• •		٠.				
217	17.0	ï	6	12	18	24	30	36	42	10	• •								
218	17.0	î	6	12	18	24	30	36	42	48		• •	• •	• •					
219	17.0	1	6	12	18	24	30	36	13	49	,		• •			• •			
224	17.6	2	7	13	19	25	31	37	42	48	0 .			• •		• •	• •		• •
234	17.6	2	8	14	20	26	32	38	44	50					• •				• •
243	18.155	3	91	15	21	27	33	39	45	51				• •	• •		• •	• •	• •
250	18 · 155	3	9	15	21	27	34	40	47	54	• •	• •		• •		• •	.	• •	• •
250	18.414	4	10	16	21	27	34	1()	46	52				,		1		* *	• •
252	18.414	4	1()	16	22	28	34	40	46	52						• •		** 1	• •
255	18.414	1	10	16	22	28	34	40	47	54									• •
255	18.7	5	11	17	22	28	34	40	46	52									
$\frac{261}{271}$	18.7	5	11	17	23	29	35	41	47	53									
271	19·0 19·0	1	6	12	18	24	30	36	42	48	54							••	
290	19.6	I	6	12	18	24	30	36	42	48	55								
300	20.155	2 3	8	14	20	26	32	38	44	50	56								
300	20.155	3	9	15	21	27	33	39	45	51	57		1						
306	20 155	3	9	14 15	20 21	26	32	38	46	52	60								
200	20 1111	+)	-7	10	41	28	34	40	46	52	58								
		-						_											

TABLE No. 79.—TELEPHONE CABLE CONSTRUCTION—continued.

	ı									D .									
No. of	Diam.	Te					N	umb	er of	Pair	s in	Succ	essiv	e La	yers				
Pairs	coefficient	Centre	1	2	3	4	5	6	7	1 8	9	10	, 11	12	13	14	15	1.0	7 27
	·	0							ļ '	,	0	10	1 11	12	13	1.7	13	16	17
306	20.7	بيع	1,0	la r	. 00	00			4.0		1 00								1
310	20.7 20.414	$\begin{bmatrix} 5\\4 \end{bmatrix}$	10	15 16	$\frac{20}{22}$	26	32	39		53	60	٠.							
320	20 414	5	11	17	23	28 29	34 35	40	46	52	58	٠.				٠.			
331	21.0	1	6	12	18	24	30	36	47 42	53 48	59 54	00				• •			
333	21.0	1	6	12	18	24	30	36	42	48	55	60							
350	21.0	1	7	14	20	26	32	38	44	50	56	62					• •		٠.
352	21.6	2	8	114	20	26	32	38	44	50	56	62		1		• •			• •
363	22.155	3	9	15	21	27	33	39	45	51	57	63			• •		,		
374	22.414	4	10	16	22	28	34	40	46	.52	58	64							
385	22.7	5	11	17	23	29	35	41	47	53	59	65							
397	23 0	1	6	12	18	24	30	36	42	48	54	60	66						
400	23.0	1	6	12	18	24	, 30	36	42	48	54	61	68	١					
403	23.0	1	6	12	18	24	30	36	42	48	55	62	69	١			,		
420	23.6	2	8	14	20	26	32	38	144	50	56	62	68					,	
432	24.155	3	9	15	21	27	33	39	45	51	57	63	69	٠.					
444	24.414	4	10	16	22	28	34	40	46	52	58	64	70			٠.			
450	24.414	4	10	16	22	28	34	40	46	52	59	66	73				٠.		
456	24.7	5	11	17	23	29	35	41	17	53	59	65	71						
$\frac{469}{494}$	$25.0 \\ 25.6$	$\frac{1}{2}$	6	12 14	18 20	24 26	30	36 38	42	48	54	60	66	72	٠.				
500	25.6	2	8	14	20	26	32	38	44	50 50	56 56	62	68 70	74	٠.				
500	25.6	2	8	14	20	26	32	38	45	51	57	63	69	77 75			٠.		
507	26.155	3	9	15	21	27	33	39	45	51	57	63	69	75	٠.				
520	26.414	4	10	16	22	28	34	40	46	52	58	64	70	76					
533	26.7	$\hat{5}$	11	17	23	29	35	41	47	53	59	65	71	77					
547	27.0	1	6	12	18	24	30	36	42	48	54	60	66	72	78				
550	27.0	1	6	12	18	24	30	36	42	48	54	60	66	73	80				
574	27.6	2	8	14	20	26	32	38	44	50	56	62	68	74	80	٠.			
588	28.155	3	9	15	21	27	33	39	15	51	57	63	69	75	81	٠.			
600	$28 \ 155$	3	9	16	22	28	31	4()	46	52	58	64	70	76	82				
600	28.414	4	10	16	22	28	34	40	46	52	.58	64	70	75	81				
602	28 414	4	10	16	22	28	34	40	46	52	58	61	70	76	82				
604	28.414	4	10	16	22	28	34	4()	46	52	58	64	70	75	85				
616	28.7	5	11	17	23	29	35	41	47	53	59	65	71	77	83	0.4			
631	29.0	1	6	12	18	24	30	36	42	48 50	54 56	60	66	72 74	78 80	84	١		
660	29.6	2	8	14 15	20 21	26 27	32 33	39	44 45	51	57	63	69	75	81	86			
675	$30 \cdot 155$ $30 \cdot 414$	3	10	16	22	28	34	40	46	52	58	64	70	76	82	87 88			• •
690	30.414	5	11	17	23	29	35	41	47	53	59	65	71	77	83	89			
705 784	32.414	4	10	16	22	28	34	40	46	52	58	64	70	76	82	88	94		
800	32 414	4	10	16	22	28	34	40	46	52	58	64	71	78	85	92	100		
800	32.7	5	11	17	23	29	35	41	47	53	59	65	71	77	83	89	95		
804	32.7	5	11	17	23	29	35	41	47	53	59	65	71	77	83	89	99		
900	34.414	4	10	16	22	28	31	40	46	52	58	64	70	77	84	16	98	106	
1000	36.414	4	10	16	22	28	34	40	46	52	58	64	70	77	83	89	96	103	110
													3						

RELATION BETWEEN NUMBER OF WIRES AND DIAMETER OF CABLE.

In the case of a ring formed of n wires of equal diameter d, by joining up the centres of the wires a regular polygon of n sides is formed, and the angle at the centre of the system subtended by any one wire is $\frac{360^{\circ}}{n}$. In any such figure (Figs. 6 and 7)

$$\mathbf{A} \stackrel{\text{C}}{=} d = 2 \mathbf{A} \stackrel{\text{E}}{=} ;$$

$$\therefore \text{ the angle A D E} = \frac{180^{\circ}}{n};$$

$$\therefore \frac{\mathbf{A} \stackrel{\text{D}}{=}}{\mathbf{A} \stackrel{\text{E}}{=}} \operatorname{cosec} \frac{180^{\circ}}{n};$$

$$\therefore \mathbf{A} \stackrel{\text{D}}{=} \frac{d}{2} \operatorname{cosec} \frac{180^{\circ}}{n}.$$

Let D₀ be the diameter over the layer of wires, D₁ be the diameter under the layer of wires;

...
$$D_0 = 2 D F = 2 A D + d = d \left(cosec \frac{180^{\circ}}{n} + 1 \right)$$

 $D_1 = 2 D F - 2 d = d \left(cosec \frac{180^{\circ}}{n} - 1 \right).$

and

Therefore the number of wires (n) of equal diameter (d) which can be placed in one layer round a cylinder of diameter D_1 is given by

$$D_i = d\left(\operatorname{cosec} \frac{180^{\circ}}{n} - 1\right),\,$$

and the number of wires (n) of equal diameter (d) which can be placed around the inside of a cylinder of diameter D_0 is given by

$$D_{o} = d \left(\operatorname{cosec} \frac{180^{\circ}}{n} + 1 \right).$$

When the number of wires (n) becomes large, the sine of the angle A D E is approximately equal to the angle itself, for

$$\sin \mathbf{A} \, \mathbf{D} \, \mathbf{E} = \frac{\mathbf{A} \, \mathbf{E}}{\mathbf{A} \, \mathbf{D}} \quad \text{and} \quad \text{angle } \mathbf{A} \, \mathbf{D} \, \mathbf{E} = \frac{\text{chord } \mathbf{A} \, \mathbf{E}}{\mathbf{A} \, \mathbf{D}}.$$

$$\text{But the chord } \mathbf{A} \, \mathbf{E} = \frac{\pi \, (\mathbf{D}_{\circ} - d)}{2 \, n}, \quad \text{and} \quad \mathbf{A} \, \mathbf{D} = \frac{\mathbf{D}_{\circ} - d}{2};$$

$$\cdot \cdot \cdot \quad \text{cosec } \mathbf{A} \, \mathbf{D} \, \mathbf{E} = \text{cosec} \, \frac{180^{\circ}}{n} = \frac{(\mathbf{D}_{\circ} - d) \, 2 \, n}{2 \, \pi \, (\mathbf{D}_{\circ} - d)} \, \text{(approximately)};$$

$$\cdot \cdot \cdot \quad \mathbf{D}_{\circ} = d \left(\frac{n}{\pi} + 1\right);$$

$$\cdot \cdot \cdot \quad n = \frac{\pi \, (\mathbf{D}_{\circ} - d)}{d} = \frac{3 \, (\mathbf{D}_{\circ} - d)}{d} \, \text{(approximately)}$$

Every layer of wires increases D_o by 2 d; therefore the increase in the number of wires per layer is

 $\frac{3 \cdot 14 \ (2 \ d)}{d} = 6 \cdot 24;$

that is. 6 wires per layer.

In telephone cables, when the number of pairs of wires reaches 40 or 50 per layer, it is found in practice that an increase per layer of 7 or even 8 pairs of wires is possible.

For the construction of telephone cables it is necessary to know (1) the size of each conductor; (2) the number of pairs of conductors; (3) the wire-to-wire electrostatic capacity of the conductors; and (4) the diameter of the cable.

Generally speaking, the size of the conductor, the number of pairs of conductors, and the wire-to-wire electrostatic capacity, are given, and it is required to determine the minimum diameter of cable.

Let d = diameter of each conductor in mm.

n = number of pairs of conductors

c = wire-to-wire electrostatic capacity in microfarads per km.

D = diameter of cable under the lead sheath in mm.

p = diameter of one insulated pair of conductors in mm.

l =number of layers of pairs in the cable

x =strand basis coefficient.

Let d, n, and c be given; required to find D.

Table No. 79 gives the value of D in terms of p; thus, a cable of 500 pairs would be constructed by stranding 12 layers of pairs round a basis of 2 pairs; therefore

$$D = p(x + 2l) = p(1.6 + 24) = 25.6 p;$$

therefore it is required to determine the diameter p of one pair of insulated conductors, so that the wire-to-wire electrostatic capacity of the pair will be less than c microfarads per kilometre. The capacity of two cylinders of radii r_1 and r_2 lying parallel to each other, the distance apart a being great as compared with their radii, is equal to

$$\frac{1}{2\log_{\circ}\frac{a^{2}}{r_{1}r_{2}}} \text{ electrostatic units per. cm. of length.}$$

$$= \frac{1}{4\cdot6\log_{10}\frac{a^{2}}{r_{1}r_{2}}} \cdot \frac{10^{5}}{9\times10^{5}} \text{ microfarads for kilometre.}$$

$$= \frac{0\cdot02416}{\log_{10}\frac{a^{2}}{r_{1}r_{2}}} \text{ microfarads per kilometre.}$$

Therefore the wire-to-wire capacity of equal conductors twinned together will be approximately

$$\frac{0.02416 \ k}{\log_{10} \frac{a^2}{r^2}}$$

where k is the dielectric constant of the insulating material; its value for paper is approximately 2.0, and for paper and air space cables 1.7 to 1.9.

The value of a, that is, the distance between the centres of the conductors, depends upon the twinning operation, for the conductors are pulled nearer together the greater the triction on the bobbins of the twinning machine, and can therefore only be estimated; its maximum value will be equal to the diameter of the insulated conductor. If therefore, the value of the equivalent diameter b of an insulated conductor be inserted in the formula

$$rac{0\cdot 02416}{\log_{10}rac{a^2}{r^2}}=$$
 microfarads per kilometre,

in place of the value a we obtain the approximate equation

 $\frac{0\cdot 02416\ (k\ x)}{\log_{10}\frac{b^2}{e}}=\ {\rm microfarads\ per\ kilometre},$

$$\frac{0.01208 \ (k \ x)}{\log_{10} \ b} = \text{microfarads per kilometre};$$

where b, the equivalent diameter of the core, is equal to $\frac{p}{\sqrt{g}}$ The factor (k|x)

can be treated as a constant, and its value determined from actual cables. For example: -153 pair telephone cable, with 20 lb. conductors insulated with one paper, diameter over lead = 59.6 mm., thickness of lead 3.6 mm., wire-towire capacity = 0.0334 microfarad per kilometre.

Table No. 79 gives the construction 6 layers of pairs round a centre of 4 pairs, therefore the diameter coefficient is 14.414.

Diameter under lead sheath = 59.6 - 2(3.6) = 52.4 mm.

Diameter of pair
$$=\frac{52 \cdot 4}{14 \cdot 414} = 3 \cdot 63$$
 mm.

... Equivalent diameter of one core =
$$\frac{3.63}{\sqrt{2}}$$
 = 2.568 mm.

. · .
$$(k x) = \frac{\text{microfarads per kilometre} \times \log_{10} \frac{b}{r}}{0.01208}$$
$$= \frac{0.0334 \times \log_{10} \frac{2.568}{0.457}}{0.01208} = 2.07$$

which agrees fairly closely with the value of the dielectric constant k of 1.7 to 1.9.

This constant (kx) can now be used to determine, within limits, the variation of the wire-to-wire capacity with the diameter of the pair for 20 lb. conductors, as shown in Table No. 80 and Curve No. 9.

The constant kx is found to vary somewhat with the size of the conductor and with the number of pairs of conductors in the cable. Table No. 81 gives the safe value of kx for various telephone cables, the figures being deduced from tests on over 500 telephone cables.

Suppose it is required to construct a telephone cable to consist of 600 pairs of conductors, each 0.5 mm. in diameter, to have a wire-to-wire capacity of 0.039 microfarads per kilometre (0.0627 microfarads per mile).

TABLE No. 80.—RELATION BETWEEN WIRE-TO-WIRE CAPACITY AND DIAMETER OF INSULATED PAIR FOR 153-PAIR CABLE OF 20 LB. CONDUCTORS.

Calculated from the equation :-

$$\frac{0.01208 \times 2.07}{\log_{10} \frac{b}{r}} = \text{microfarads per kilometre}.$$

Diam. of Pair	Equivalent Diam.	$Log_{10}\frac{b}{a}$	Wire-to-Wir	e Capacity
-	or core in min.	· · · · · · · · · · · · · · · · · · ·	Per kilometre	Per mile
2·5 3·0 3·5 4·0 4·5 5·0	1·767 2·120 2·480 2·830 3·180 3·540	0·5877 0·6674 0·7356 0·7924 0·8432 0·8899	0·0426 0·0375 0·0340 0·0316 0·0297 0·0281	0°0685 0°0602 0°0546 0°0508 0°0476 0°0451

The value of the constant kx for 600 pairs of 0.5 mm. diameter conductor is given in the table as 2.42; therefore the equivalent diameter of a single insulated conductor will be given by the equation:—

$$\log_{10} \frac{b}{r} = \frac{0.01208 (k x)}{\text{mfds. per kilometre}} = \frac{0.01208 \times 2.42}{0.039}$$

$$\therefore \log_{10} b - \log_{10} 0.25 = 0.75$$

... b = 1.406 mm.

TABLE No. 81.—VALUE OF kx FOR TELEPHONE CABLES.

	Conducto	r				Num	ber of l	Pairs in	Cable			
Diam, mm.	Diam. mils	Lb. per mile	50	100	200	300	400	500	600	800	900	1000
$\begin{array}{c} 0.4 \\ 0.5 \\ 0.6 \\ 0.635 \\ 0.7 \\ 0.711 \\ 0.8 \\ 0.91 \\ 1.0 \\ 1.27 \\ 1.676 \\ 2.006 \\ 2.46 \\ 2.84 \end{array}$	15·75 19·7 23·6 25·0 27·6 28·0 31·5 35·4 50·0 66 79 97 112	3·98 6·21 8·94 10·0 12·16 12·5 15·9 20·0 24·8 40·0 70 100 150 200	$\begin{vmatrix} \\ 1.90 \\ 2.06 \\ 2.04 \\ 2.09 \\ 2.06 \end{vmatrix}$	2·30 1·90 2·06 2·01 2·09 2·00 2·00 2·00 2·17 	2·40 2·15 1·92 2·06 2·00 2·14 2·05 2·08 2·10	$2 \cdot 20$ $1 \cdot 97$ $2 \cdot 06$ $2 \cdot 04$ $2 \cdot 20$	2.30 2.10 2.15		2.50	2·42 2·50 2·40	2:42	2.45
												1.6

Therefore, the diameter of the insulated pair will be

 $1.406 \ \ 2 = 1.988$, or, roundly, $2.0 \ \text{mm}$.

The diameter coefficient for a 600-pair cable is found from the table to be 28.155, and the construction would be 13 layers over a centre of 3 pairs, the layers consisting of 9, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76, and 82 pairs respectively. Therefore, the diameter of the cable under the lead sheath would be

 $28.155 \times 2.0 = 56.31$ mm.

WIDTH OF PAPER.

If b = the equivalent diameter of an insulated core, then $\pi b =$ the circumference of the core; if the paper be longitudinally applied and an allowance of 10 per cent. overlap be made, the width of the paper will be $(\pi b + 10 \text{ per cent.}).$

If the paper be spirally lapped, then the width of paper necessary to form

a closed helix is given by BD in fig. No. 8, where A B is equal to the circumference πb of the core and BC is equal to the length of lay of the paper, BD

being perpendicular to A C.

The necessary overlap must be added to the width BD. The approximate width of the paper necessary is given by 10 times the diameter of the conductor plus 10 per cent.; thus, for 0.8 millimetre conductors the paper should have a width of $(10 \times 0.8) + 10$ per cent. = 8.8 mm.

The specific gravity of the paper used for insulating telephone conductors is approximately 0.85; as, however, the weight of the paper is generally calculated from the thickness, which varies somewhat, it is usual to assume a specific gravity of 1.0. If the paper is applied

to the conductor longitudinally, its weight in kilogrammes per kilometre per layer of paper is equal to:-

(width of paper in millimetres × thickness of paper in millimetres),

or, in lb. per statute mile:-

(width in millimetres × thickness in millimetres) 3.55.

The weight of the thread whipping averages one-tenth of the weight of the paper.

An increase of 1 per cent. in the weights is allowed for the lay of the individual insulated wires in pairing, and a further 2 per cent. for the stranding together of the pairs.

If the paper be spirally lapped on to the conductor, its weight is approxi-

mately equal to:-

 $\pi dt + 20$ per cent. = (3.77 dt) kilogrammes per kilometre, (13.4 dt) lb. per statute mile,

or. d =diameter of the insulated conductor in millimetres, where

t =thickness of the paper in millimetres. and

The layer of paper over the laid-up pairs increases the diameter of the cable by 0.5 mm. A layer of calico tape sometimes applied to the cable directly under the lead sheath also increases the diameter of the cable by 0.5 mm.

The approximate price of telephone paper is 80s. per 100 kilogrammes (36.4s. per 100 lb.), and of the whipping (hemp netting) 350s. per 100 kilogrammes

grammes (159s. per 100 lb.).

Dielectric Resistance.—It is usual to specify a minimum dielectric resistance of 5000 megohms per mile, measured with a battery voltage; very much higher resistance is easily obtainable.

Table No. 82 shows the variation of the dielectric resistance with the

temperature.

The dielectric resistance when measured with high-frequency voltage is very much less than that obtained when testing with a battery. According to Béla Gáti, a cable consisting of a few pairs of conductors insulated with paper and air space has a dielectric resistance of approximately one-third of a megohm, and a cable of many pairs only one-tenth of a megohm when tested with a voltage of 1000 periods per second.

The Dielectric Constant for paper and air-space cables varies between 1.7

and 1.9.

Table No. 83 shows the variation of the electrostatic capacity of a paper and air-space cable with the temperature.

Table No. 82.—Temperature Coefficients for the Dielectric Resistance of Paper Telephone Cables.

The dielectric resistance of a cable at 15° C. is equal to the dielectric resistance at t° C. multiplied by the coefficient for t° C.

t° C.	Coefficient	t [⊙] C.	Coefficient	t° ℃.	Coefficient	t° C.	Coefficient	t° C.	Coefficient
- 10 - 9·5 - 9·0 - 8·5 - 8·0 - 7·5 - 6·0 - 5·5 - 4·0 - 3·5 - 3·0 - 2·5 - 1·0 - 0·5 - 0·5		0.5 1.0 1.5 2.5 3.0 3.5 4.0 4.5 5.5 6.0 6.5 7.5 8.0 8.5 9.5 10.0	0·584 ·5925 ·6025 ·609 ·622 ·6325 ·645 ·676 ·688 ·700 ·711 ·717 ·7365 ·752 ·766 ·7815 ·7955 ·810 ·8255	11:0 11:5 12:0 13:0 13:5 14:0 14:0 15:5 16:0 17:5 18:0 17:5 18:0 19:5 20:0 20:5	0·841 ·859 ·8775 ·895 ·914 ·933 ·954 ·975 1·000 1·022 1·047 1·100 1·129 1·159 1·186 1·222 1·255 1·290 1·326 1·362	$\begin{array}{c} 21 \cdot 5 \\ 22 \cdot 0 \\ 22 \cdot 5 \\ 23 \cdot 5 \\ 24 \cdot 0 \\ 24 \cdot 5 \\ 25 \cdot 0 \\ 26 \cdot 0 \\ 26 \cdot 5 \\ 27 \cdot 0 \\ 28 \cdot 0 \\ 28 \cdot 5 \\ 29 \cdot 0 \\ 30 \cdot 5 \\ 31 \cdot 0 \\ 31 \cdot 5 \end{array}$	1 · 403 1 · 445 1 · 490 1 · 535 1 · 583 1 · 633 1 · 688 1 · 741 1 · 796 1 · 850 1 · 920 1 · 975 2 · 040 2 · 105 2 · 180 2 · 245 2 · 325 2 · 400 2 · 488 2 · 570 2 · 666	32·0 32·5 33·0 33·5 34·5 35·0 35·5 36·0 37·5 38·0 38·5 39·0 39·5 40·0	2·740 2·840 2·930 3·025 3·135 3·230 3·340 3·565 3·670 3·810 4·060 4·21 4·34 4·63

Table No 83.—Temperature Coefficients for the Electrostatic Capacity of Paper Telephone Cables.

The capacity of a cable at 15° C, is equal to the capacity at $t^{\rm o}$ C, multiplied by the coefficient for $t^{\rm o}$ C.

t° C.	Coefficient	t° U.	Coefficient	t° C.	Coefficient
- 10	1.0290	7	1.0090	24	0.9900
- 9	1.0275	8	1.0085	25	0.9890
- 8	1.0260	9	1.0065	26	0.9878
- 7	1.0250	10	1.0055	27	0.9865
- 6	1.0235	11	1.0040	28	0.9852
- 5	1.0225	12	1.0028	29	0.9840
- 4	1.0210	13	1.0015	30	0.9822
- 3	1.0200	14	1.0005	31	0.9810
- 2	1.0190	15	1.0000	32	0.9798
- 1	1.0180	16	0.999	33	0.9790
0	1.0165	17	0.998	34	0.9780
1	1.0155	18	0.9965	35	0.9762
2	1.0150	19	0.995	36	0.9750
3	1.0130	20	0.994	37	0.9740
4	1.0120	21	0.993	38	0.9725
5	1.0100	22	0.9918	39	0.9705
6	1.0095	23	0.9905	40	0.9692

CHAPTER VI.

VULCANISED BITUMEN.

BITUMEN compound, as used in the manufacture of electric cables, is generally composed of refined Trinidad bitumen and elastic or cotton-seed pitch in about equal proportions, to which is added from 5 to 10 per cent. of sulphur, in order to effect vulcanisation.

Bitumen compound is used either as an insulating material, or as a water-

proof protection to paper, jute, or rubber insulated cables.

As an insulator, the bitumen is either applied directly to the tinned conductor, or the conductor (of plain copper) is first lapped with a thin separating layer of impregnated paper or jute, on to which the bitumen is applied; in either case the insulated conductor is lapped with a bitumen-impregnated tape, and finally braided with jute, or armoured with steel wires.

As a waterproof sheath, bitumen is applied directly on to the paper insulated, jute insulated, or taped rubber-insulated conductor, instead of the more usual

sheathing of lead.

There are two general methods of applying the bitumen to the cable, viz. lapping and forcing; application of the bitumen by the longitudinal machine

also gives good results for smaller cables.

Lapping Method.—The bitumen, in the form of a tape, is spirally lapped on to the cable with an overlap equal to one half the width of the tape; the insulated cable is next taped with a bitumen-impregnated tape, and the whole vulcanised for 1 to 2 hours at approximately 35 lb. steam pressure.

Forcing Method.—This method is more extensively used than the lapping method. The bitumen compound is first vulcanised in small pans for several hours at a moderately high steam pressure, and then calendered into thick

tapes, suitable for feeding into the forcing machine.

The conductor, bare, or insulated with the paper or jute separator, is fed through the forcing machine, and covered with bitumen to the necessary thickness by means of a suitable die.

The bitumen-covered cable is immediately passed through a cooling tank

containing cold water, and then lapped with bitumen-impregnated tape.

Three-core solid bitumen cables, largely used for mining work, are manufactured with a triangular-shaped centre core of bitumen, on which the three bitumen insulated conductors are stranded, the whole being next passed through a forcing machine, which applies the outer covering, ribbed internally to exactly fit the stranded cores.

For bitumen-insulated cables, it is necessary to run the conductor strand through hot bitumen compound, in order to fill up the interstices and prevent

the passage of any water down the conductor.

Thickness of Bitumen.—(i) As dielectric. The thickness of bitumen is generally taken as 150 to 200 per cent, of the corresponding paper thickness, with 100 mils as a minimum. When a paper or jute separator is used, its radial thickness is usually 1 mm. (40 mils), this thickness being quite sufficient for all ordinary cases.

Curves Nos. 10 and 11 give the thickness of bitumen for various diameters of

conductors, according to the average practice.

(ii) As waterproof sheath. The thickness of bitumen is generally taken as 150 to 200 per cent. of the corresponding lead thickness, with 100 mils as a minimum.

Weight of Bitumen.—The specific gravity of bitumen compound varies between 1·20 and 1·30; the value 1·25 being a safe average.

The weight of bitumen is, therefore, equal to

$$\frac{\pi}{4} \, (\mathrm{D^2} - c \, d^2) \, 1 \cdot 25 = 0 \cdot 982 \, (\mathrm{D^2} - c \, d^2)$$
 kilog. per km.,

where

D = diameter over the bitumen in millimetres.

d = diameter over the conductor in millimetres.

c = a constant, depending upon the number of wires in the conductor strand; its value is as follows:—

ATO A CON	ac ab e	NO LOLLO	1110 0			
For	7-wi	re stra	\mathbf{nd}			c = 0.8
	19 ,					c = 0.85
	37,					c = 0.87
	61 ,				٠	c = 0.88
	above					o = 0.90
	a hilos	andnet	Or			a - 1.00

or the weight of bitumen in lb. per statute mile is equal to

$$3.484 (D^2 - c d^2).$$

If the conductor be provided with a paper separator, then the weight of bitumen is equal to

 $0.982 \, (D^2 - d^2)$ kilogrammes per kilometre,

or

$$3.484$$
 (D² – d^2) lb. per statute mile,

where

D = diameter over bitumen in millimetres

d = diameter over the paper separator in millimetres.

In the case of a three-core solid bitumen cable the weight of bitumen is equal to

 $0.982 (D^2 - 3.06 c d^2)$ kilogrammes per kilometre,

or

$$3.484 \text{ (D}^2 - 3.06 \text{ } c \text{ } d^2) \text{ lb. per statute mile,}$$

where

d =the diameter of the conductor in millimetres

c = the constant depending on the number of wires in the conductor strand

D = the diameter over the outside insulating bitumen in millimetres.

The factor 3.06 allows for the three conductors with 2 per cent. for lay.

The price of bitumen compound for cable manufacture varies between 60/-and 80/- per 100 kilogrammes, or 27.2/. and 36.3/- per 100 lb.

The dielectric constant of vulcanised bitumen compound is approximately 3.8.

The specific dielectric resistance of vulcanised bitumen compound varies between 200×10^7 and 100×10^7 megohms per c.c. after one minute's electrification at 60° F.

The variation of the dielectric resistance with temperature depends, of course, to a certain extent, on the composition of the vulcanised bitumen. Table No. 84 gives the coefficients for a standard mixture largely used for insulating cables.

Table No. 84.—Temperature ('oefficients for the Dielectric Resistance of Vulcanised Bitumen.

The dielectric resistance at 60° F. is equal to the dielectric resistance at t° F., multiplied by the coefficient for t° F.

The dielectric strength of vulcanised bitumen is approximately 14,000 volts per mm.

CHAPTER VII.

TAPES AND BRAIDS.

(A) Tapes.

Width and Lay of Tape:-

 $\begin{array}{cccc} \text{Let } d = \underset{\text{i.e.}}{\text{mean diameter of tape}}, \\ \text{i.e.} & \text{diameter from} \\ \text{centre to centre of tape} \\ \text{W} = \text{width of tape} \\ \end{array}$

w =width of overlap l =length of lay of tape

Draw A B to represent the circumference, that is equal to πd ; and construct a semicircle on A B; cut off B D equal in length to (W-w) and join A D and produce. Draw B E perpendicular to A B, then B E represents the length of lay of the tape and A E represents

the length of tape necessary to cover a length of core equal to B E.

From the figure :-

$$\frac{\mathbf{B} \mathbf{E}}{\mathbf{B} \mathbf{D}} = \frac{\mathbf{A} \mathbf{B}}{\mathbf{A} \mathbf{D}}$$

(B E =
$$l$$
 and A B = πd)

Quantity of Tape required :-

Let L = length of core to be taped. Tl = length of tape required.Ta = area of tape required.

other symbols as above; then:—
From the figure: —A E represents the length of tape required to cover core of length B E (or l). Therefore for core of L length the required length of tape will be

$$\frac{\mathbf{A} \mathbf{E}}{l} \mathbf{L} = \frac{\mathbf{A} \mathbf{B} \mathbf{B} \mathbf{E} \mathbf{L}}{\mathbf{B} \mathbf{D} l} = \frac{\pi d l \mathbf{L}}{(\mathbf{W} - w) l} = \frac{\pi d \mathbf{L}}{(\mathbf{W} - w)}$$

or direct; area of core to be covered = πdL , effective width of tape = (W-w).

... length of tape =
$$\frac{\pi d L}{(W-w)}$$
 area of tape required =
$$\frac{\pi d L w}{(W-w)}$$

If L is given in yards and d, W and w in inches, then

area of tape required = $\frac{W}{36} \frac{\pi d L}{(W-w)}$ square yards.

In the case of tape with half overlap, the area of tape required becomes:

$$\frac{\pi d L}{18}$$
 sq. yards.

Table No. 85 gives the surface of cylindrical cables in square yards per nautical mile (2029 yards).

The area of tape required per nautical mile of core of diameter (mean tape

diameter) d mm. is equal to;

6.971 d	square	yards	 	• •	for no overlap
8.133 d	99	29	 * *		,, †th lap.
8.366 d	99	99	 • •	• •	· >> 👌 >>
8.714 d	99	77	 	• •	" 章 "
$9 \cdot 295 d$	99	99	 • •	• •	" 李"
10.458 d		,,	 	• •	" 3 "
13.942 d	97	99	 * *		19 🛱 29

The area of tape required per kilometre of core of mean diameter d mm. (i.e. diameter over core plus one layer of tape) is equal to:

motor of or	*			0
3·141 d square metres				for no overlap.
3.665 d , ,	* *		* *	,, †th lap.
3·770 d ,, ,,		* 9		" i "
3.927 d ,, ,	• •	8 0		27 1 27
4·189 d ,, ,,	* *		* *	"
4.713 d ,, ,,				1
6·283 d ,, ,,	* *			22 27

Table No. 85.—Surface of a Cable.

	I Abi		CHEACE OF .	a CADLE.	
Dia	meter	Square Yards per Nautical Mile	Dia	imeter	Square Yards per Nautical Mile
mm.	in.	1	mm.	in.	P
0.5	0.0197	3 • 4855	25.5	1.0039	177.76
1.0	.0394	6.9711	26.0	1.0236	181.25
1.5	.0591	10.456	26.5	1.0433	184.73
2.0	.0787	13.942	27.0	1.0630	
2.5	.0984	17.428	27.5	1.0827	188:39
3.0	1181	20.913	28.0		191.71
3·5		24.399		1.1024	195.19
	1378	27.884	28.5	1.1221	198.68
4.0	1575		29.0	1.1417	202.16
4.5	1772	31.370	29.5	1,1614	205.65
5.0	1968	34.856	30.0	1.1811	209:13
5.5	.2165	38.341	30.5	1.2008	212.62
6.0	2362	41.827	31.0	1.2203	216.11
6.5	• 2559	45.312	31.2	1.2402	219.59
7.0	• 2756	48.798	32.0	1.2599	223.08
7.5	• 2953	52.283	32.5	1.2795	226.56
8*0	*3150	55.769	33.0	$1 \cdot 2992$	230.05
8.5	*3346	59.255	33.5	1.3189	233.53
9.0	*3543	62.740	34.0	1.3386	237.02
9.5	*3740	66.226	34.5	1.3583	240.50
10.0	*3937	69.711	35.0	1.3780	243.99
10.5	·4134	73 · 197	35.5	1.3977	247.48
11.0	4331	76.683	36.0	1.4173	250.96
11.5	•4528	80.168	36.5	1.4370	254 · 45
12.0	•4724	83.654	37.0	1.4567	257.93
12.5	*4921	87 · 139	37.5	1.4764	261.42
13.0	.5118	90.625	38.0	1.4961	264 · 90
13.2	• 5315	$94 \cdot 110$	38.5	1.5158	268.39
14.0	*5512	97.596	39 · 0	1.5355	271.87
14.5	•5709	101.08	39.5	1.5551	275.36
15.0	• 5906	104.57	40.0	1.5748	278.85
15.5	*6102	108.05	40.5	1.5948	282.33
16.0	•6299	111.54	41.0	1.6142	285.82
16.5	• 6496	115.02	41.5	1.6339	289.30
17.0	•6693	118.51	42.0	1.6536	292.79
17.5	*6890	121.99	42.5	1.6733	202.19
18.0	•7087	125.48	43.0	1.6929	$296 \cdot 27$ $299 \cdot 76$
18.5	.7284	128.97	43.5	1.7126	303.24
19.0	.7480	132.45	44.0	1.7323	
19.5	.7677	135 · 94	44.5	1.7520	306.73
20.0	.7874	139 42	45.0	1.7717	310.22
20.5	.8071	142.91	45.5	1.7914	313.70
21.0	·82 6 8	146 · 39	46.0	1.8111	317.19
21.5	*8465	149.88	46.5	1.8307	320.67
22.0	·8661	153 - 36	47.0	1.0507	324.16
22.5	*8858	156.85	47.5	1.8504	327.64
23.0	9055	160.34	48.0	1.8701	331.13
23.5	9252	163.82	48.5	1.8898	334.61
24.0	• 9449	167.31	49.0	1.9095	338.10
24.5	.9646	170.79		1.9292	341.59
25.0	9843	174.28	49·5 50·0	1.9488	345.07
	0010	1/1 40	90.0	1.9685	348.56

TABLE No. 85.—SURFACE OF A CABLE—continued.

	TABLE N	o. 85.—SURFA	CE OF A C	ABLE—continue	ed.
D	iameter	Square Yards	, D	liameter	Square Yards
mm	*	per Nautical Mil	e -		per Nautical Mile
50·5	in. 1.9882	352.04	mm.	in.	1 200 00
51.0	2:0079		75.5	2.9725	526.32
51.5		355.53	76.0	2.9922	529.81
52.0	2.0276	359.01	76.5	3.0119	533 · 29
	2.0473	362.50	77.0	3.0315	536.78
52.5	2.0670	365.98	77.5	3.0512	540 · 26
23.0	2.0866	369.47	78.0	3.0709	543.75
53.5	2.1063	372.96	78.5	3.0906	547.24
51.0	2.1260	376.44	79.0	3.1103	550.72
54.5	2.1457	379 - 93	79.5	3.1300	554.21
55.0	2.1654	383.41	80.0	3 · 1497	557 · 69
55.5	2.1851	386.90	80.5	3.1693	561.18
56.0	2.2048	390.38	81.0	3.1890	564.66
56.5	2.2214	393 · 87	81.5	3.2087	568.15
57.0	2.2441	397:35	82.0	3.2284	571.63
57.5	2 · 2638	400.84	82.5	3.2481	575.12
58.0	$2 \cdot 2835$	404:33	83.0	3.2678	578.60
58.5	2.3032	407.81	83.5	3.2875	582.09
59.0	2.3229	411:30	84.0	3.3071	585.58
59.5	2:3426	414.78	84.5	3.3268	589.06
60.0	2.3622	418:27	85.0	3.3465	592.55
60.5	2.3819	421.75	85.2	3.3662	596.03
61.0	2.4016	425 24	86.0	3.3859	
61.5	2 4010	428.73			599.52
			86.2	3.4056	603:00
62.0	2.4410	432.21	87.0	3.4253	606:49
62.5	2.4607	435.70	87.5	3.4449	609.98
63.0	2.4804	439.18	88.0	3.4646	613 · 46
63.5	2.5000	442.67	88.5	3.4843	616.95
64.0	2.5197	446 1.5	89.0	3:5010	620.43
64:5	2.5394	449.64	89.5	3:5237	623 · 92
65:0	2.5591	453.12	90.0	3.2434	627.40
65.5	2.5788	456:61	90.5	3.1631	630.89
66.0	2.5985	460.10	91.0	3.5827	634 · 37
66.5	2.6182	463:58	91.5	3:6024	637.81
67:0	2.6378	467:07	92.0	3.6221	641.37
67.5	2.6575	470.55	92.5	3.6418	644.83
68.0	$2 \cdot 6772$	474 · 04	93.0	3.6615	648:32
68:5	2.6969	477:52	93.5	3.6812	651.80
69.0	2.7166	481.01	94.0	3.7008	655 · 29
69.5	2.7363	481.50	94.5	3.7205	658.77
70.0	$\frac{2.7559}{1}$	487.98	95.0	3.7402	662 • 26
70.5	2.7756	491.47	9 5 ·5	3.7599	665.74
71.0	2.7953	494 · 95	96:0	3.7796	669 23
	2.8150	498.44	96.5	3.7993	672.72
71.5		501.92	97.0	3.8190	676 · 20
72.0	2.8347		97.5	3.8386	679 69
72.5	2.8544	505.41			683.17
73.0	2.8741	508.89	98.0	3.8583	
73 · 5	2.8937	512.38	98.5	3.8780	686.66
74.0	2.9134	515.86	99.0	3.8977	690 · 14
74.5	2.9331	519.35	99.5	3.9144	693.63
75.0	2.9528	522.84			
				1	

Rubber Saturated Tape.—India-rubber cables are generally taped with rubber saturated tape, which weighs approximately 0.36 lb. per square yard; its thickness is 0.3 mm. (11.8 mils). One-fifth overlap is usually adopted, which gives for the area of tape required for any core:—

(Mean tape diameter in mm.) 8.714 = square yards per nautical mile of core.

The weight of the tape will therefore be:-

(Mean tape diameter in mm.) $8.714 \times 0.36 = 1b$, per nautical mile of core.

But $(8.714 \times 0.36) = 3.137$, or approximately equal to π ; therefore the number of lb. of tape required per nautical mile of core is approximately equal to the circumference of the core in millimetres corresponding to the mean tape diameter.

Table No. 86 gives the circumference of circles of various diameters.

Again, if d be the mean tape diameter of any core in millimetres (that is, equal to the diameter of the core, plus 0.3 mm. for one layer of tape), then the number of square metres required to cover 1 kilometre of core will be

$$\frac{3.1416 d \times 1000 \times 1000}{1000 \times 1000} + \frac{4}{5} \text{th overlap} = (3.1416 + 0.7854) d$$

$$= 3.927 d.$$

or, roundly, 4 d.

The weight of the tape being approximately 0.2 kilogrammes per square metre, therefore the weight of tape required in kilogrammes per kilometre is equal to $0.8\,d.$

Table No., 86.—Circumference of Circles of Valious Diameters.

6.0	24 10 0	12:52 18:00	6 21.68 0 24.82 5 27.96 31.10 3 34.24	377. 40°. 48°. 46°. 46°.	53.09 2 56.23 6 59.38 0 62.52 5 65.66	777.
8.0	20 00 00 00 00 00 00 00 00 00 00 00 00 0	15.00	21.36 24.50 27.65 30.79 33.93	37.07 40.21 43.35 46.50 49.64	52.78 55.92 59.06 62.20 65.35	68.48 711.68 774.77
0.1	2.199 5.341 8.482	11.62	21.05 24.19 27.33 30.47 33.62	36.76 39.90 43.04 46.18 49.32	52.46 55.61 58.75 61.89 65.03	68·17 71·31 74·46 77·60
9.0	1.885	11.31 14.45 17.59	20.73 23.88 27.02 30.16 33.30	36.44 39.58 42.73 45.87 49.01	52.15 55.29 58.43 61.58 64.72	67.86 71.00 74.14 77.28
0.2	1.571 4.712 7.854	11.00 14.14 17.28	20 · 42 23 · 56 26 · 70 29 · 85 32 · 99	36·13 39·27 42·41 45·55 48·69	51.84 54.98 58.12 61.26 64.40	67.54 70.69 73.83 76.97
7.0	1.257 4.398 7.540	10.68 13.82 16.96	20.11 23.25 26.39 29.53 32.67	35.81 38.96 42.10 45.24 48.38	51.52 54.66 57.81 60.95 64.09	67.23 70.37 73.51 76.65
0.3	0.942 4.084 7.996	10.37 13.51 16.65	19.79 22.93 26.08 29.22 32.36	35·50 38·64 41·78 44·92 48·07	51.21 54.35 57.49 60.63 63.77	66.92 70.06 73.20 76.34
0.5	0.628 3.770 6.919	10.05 13.19 16.34	19.48 22.62 25.76 28.90 32.04	35.19 38.33 41.47 44.61 47.75	50.89 54.04 57.18 60.32 63.46	66.60 69.74 72.88 76.03
0.1	0.314 3.456 6.597	9.739 12.88 16.02	19·16 22·31 25·45 28·59 31·73	34·87 38·01 41·15 44·30 47·44	53.72 53.72 56.86 60.00 63.15	66.29 69.43 72.57 75.71
0.0			18.85 21.99 25.13 28.27 31.42	34.56 37.70 40.84 43.98 47.12	50.27 53.41 56.55 59.69 62.83	65.97 69.12 72.26 75.40
Diam.	0 1 2	100 41 70	9 6 7 9 8 7 9	11 12 13 14 15 15	16 17 18 19 20	22222

TABLE NO. 86.—CIRCUMFERENCE OF CIRCLES OF VARIOUS DIAMETERS—continued.

6.0				93.93	80.46	100.2	103.4	106.5	9.601	112.8	6.611	119.1	122.2	125.3	128.5	131.6	134.8	137.9	141.1	1.14.2	147.3	150.5	153.6	156.8	159.9
8.0	84.19	87.34	90.48	93.62	92.96	06.66	103.0	106.2	109.3	112.5	115.6	118.8	121.9	125.0	128.2	131.3	134.5	137.6	140.7	143.9	1.47.0	150.2	158.3	156.5	159.6
2.0	88.88			93.31		99.59	102.7	105.9	109.0	112.2	115.3	118.4	121.6	124.7	127.9	131.0	134 · 1	137.3	140.4	143.6	146.7	149.9	153.0	156.1	159.3
9.0	83.57	86.71	89.68	92.99	96.13	99.57	102.4	105.6	108.7	111.8	115.0	118.1	121.3	124.4	127.5	130.7	133.8	137.0	140.1	143.3	146.4	149.5	152.7	155.8	159.0
0.0	83.25	86.33	89.54	95.68	95.85	96.86	102.1	105.2	108.4	1111.5	114.7	117.8	121.0	124-1	127.2	130.4	133.55	1:36.7	139.8	142.9	146.1	149.2	152.4	155.5	158.7
4.0	82.94					98.65	101.8	104.9	108.1	1111.2	111.1	117.5	120.6	120.8	126.9	130-1	133.5	186.3	139.5	142.6	145.8	148.9	152.1	155.2	158.3
0 - 3	82.62	85.77	88.91	92.02	95.19	98.33	101.5	104.6	107.8	110.9	114.0	117.2	120.3	123.5	,126.6	129.7	132.9	136.0	139.2	142.3	145.5	148.6	7.151	154.9	158.0
0.5	82.31	85.45	88.59	91.73	94.88	98.02	101.2	104.3	107.4	110.6	113.7	116.9	120.0	123.2	126.3	129.4	132.6	135.7	138.9	142.0	145.1	148.3	151.4	154.6	157.7
1.0	85.00	\$5.14	88.2%	91.42	94.26	07.70	S.00I	104.0	107.1	110.3	118.4	116.6	119.7	122.8	126.0	129.1	132.3	135.4	138.5	141.7	144.8	148.0	151.1	154.3	157.4
0.0	81.68	84.82	96.48	91.11	94.25	97.39	100.5	103.7	106.8	110.0	113.1	116.2	119.4	122.5	125.7	128.8	131.9	135.1	138 2	141.4	144.5	147.7	150.8	153.9	1.221
Diam.	56	27	807	66	30	31	32	32	34	35	36	37	500	33	40	41	42	43	44	45	46	47	48	49	50

TABLE NO. 86.—CIRCUMFERENCE OF CIRCLES OF VARIOUS DIAMETERS—continued.

6.0	163.0	169.3	172.5	175.6	178.8	0.181	185.0	188.2	191.3	194.5	197.6	200.7	203.9	207.0	210.2	213.3	216.5	219.6	222.7	995.9	0.666	232.2	235.3	238.4
8.0	162.7	169.0	172.2	175.3	178.4	181.6	184.7	187-9	191.0	194.9	197.3	200.4	203.6	206.7	808.8	213.0	216.1	219.3	222.4	925.6	2.866	231.8	235.0	238.1
4.0	162.4	168.7	171.8	175.0	178-1	201	184.4	187.6	2.061	193.8	197.0	200.1	203.3	206.4	209.5	212.7	215.8	219.0	222 · 1	225.3	928.4	231.5	234 · 7	237.8
9.0	162.1	168.4	2.171	174.7	177.8	181.0	184.1	187.2	190.4	193.5	196.7	199.8	202.9	206.1	209.2	212.4	215.5	218.7	221.8	224.9	228 - 1	231.2	234.4	237.5
0.5	161·8 164·9	168.1	171.2	174.4	177.5	180.6	183.8	186.9	1.061	193.2	8.961	199.5	202.6	205.8	208.9	212.1	215.2	218.3	221.5	224.6	227.8	230.9	234.0	287.2
0.4	161.5 164.6	167.8	6.041	174.0	177.2	180.3	183.5	9.981	189.8	192.9	196.0	199.2	202.3	205.5	208.6	211.7	214.9	218.0	221.2	224.3	227.5	230.6	233.7	236.9
0.3	161.2	167.4	170.6	173.7	176.9	180.0	183.2	186.3	189.4	192.6	195.7	6.861	202.0	205.1	208.3	211.4	214.6	217.7	550.9	224.0	227 · 1	230.3	233.4	236.6
0.3	160·8 164·0	167.1	170.3	173.4	176.6	179.7	185. 28. 38.	0.981	189.1	192.3	195.4	198.5	201.7	204·8	208.0	211.1	214.3	217.4	220.5	223.7	226.8	230.0	233.1	286.2
0.1	160°5 163°7	166.8	170.0	1.67.1	176.2	179.4	182.5	185.7	188.8	192.0	195.1	198.2	201.4	204.5	207.7	210.8	213.9	217.1	220.5	223.4	226.5	229.7	232.8	235.9
0.0	160·2 163·4	166.5	169.6	8.77.1	175.9	1.6/1	182.2	4.021	2.881	9.161	194.8	197.9	201.1	204.2	. 207.3	210.5	213.6	216.8	219.9	223.1	2-927	229.3	232.5	235.6
Diam.	51	50.3	#C	00	56	20	200	96	09	61	29	63	64	69	99	29	89	56	2	71	7.5	73	74	7.5

Table No. 86.—CIRCUMFERENCE OF CIRCLES OF VARIOUS DIAMETERS—continued.

6.0	241.6	244.7	247.9	251.0	254.2	257.3	260.4	263.6	266.7	269.9	273.0	276-1	279.3	282.4	285.6	288.7	201.9	295.0	298.1	301.3	304.4	307.6	310.7	313.8	
8.0	241.3	244.4	247.6	250.7	253.8	257.0	260.1	263.3	7.997	269.5	272.7	275.8	279.0	282.1	285.3	288.4	2:11:5	2:04.7	2.97 · 8	301.0	304.1	307.2	310.4	313.5	:
4.0	241.0	244.1	247.2	250.4	258.5	256.7	259.8	263.0	266.1	200-2	272.4	275.5	278.7	281.8	284 · 9	288-1	2:11.2	294.4	297.5	300.7	303.8	306.9	310.1	313.2	•
9.0	240.6	243.8	246.9	250.1	253.2	256.4	259.5	262.6	265.8	6.897	272.1	275.2	278.3	281.5	284.6	287.8	290.9	294 · 1	297.2	8.008	303.5	9.908	300.8	312.9	
0.0	240.3	24:3 - 5	246.6	249.8	252.9	256.0	259.2	262.3	265.5	268.6	271.7	6.177	278.0	2×1.2	281.3	287.5	530.6	293.7	6.967	300.0	303.2	306.3	309.4	312.6	•
0.4	240.0	243.2	246.3	249.4	252.6	255.7	258.9	562.0	265.2	268.3	271.4	274.6	277.7	6.087	284.0	287.1	290.3	203.4	9.967	299.7	302.8	306.0	300.1	312.3	٠
0.3	239.7	212.8	246.0	249.1	252.8	255.4	258.6	261.7	264.8	268.0	271-1	274.3	277.4	2.087	288.7	286.8	290.0	293.1	296.3	299-4	302.5	305.7	308.8	312.0	
0.3	239.4	242.5	245.7	248.8	252.0	255.1	258.2	261.4	264.5	267.7	270.8	273.9	277.1	280.2	283.4	286.5	7.685	202.8	295.9	299.1	302.2	305.4	308.5	311.6	:
0.1	239 · 1	242.2	245.4	248.5	251.6	254.8	257.9	261.1	264.2	267.3	270.5	273.6	276.8	279.9	283.1	286.2	289.3	292.5	295.6	298.8	301.9	305.0	308.2	311.3	:
0.0	8.88%	941.9	2.45.0	248.2	251.3	254.5	257.6	260.8	263.9	267.0	270.2	273.3	276.5	279.6	282.7	285.9	289.0	292.2	295.3	298.5	301.6	304.7	307.9	311.0	314.2
Diam.	76	77	78.	6.2	80	81	85	000	25	85	86	28	00	68	90	91	92	663	76	95	96	. 26	86	66	100

The price of such rubber saturated tape is approximately 1.5s, per lb., or 3.3s. per kilogramme.

If the taped core is run through ozokerit compound, the weight of compound

taken up by the tape is equal to:

0.1 (circumference of core in mm.) = kilogrammes per kilometre, 1.115 (diameter of core in mm.) = lb. per statute mile,

= lb. per nautical mile. 1.285 (diameter of core in mm.)

The ozokerit compound consists of 3 parts of ozokerit (specific gravity 0.95, melting-point 140°-170° F., price 58s. per 100 kilogrammes) to 1 part of Stockholm tar (specific gravity 1.015, price 21s. per 100 kilogrammes), the Stockholm tar having been previously boiled for four to five hours. The price of the compound is approximately 49s. per 100 kilogrammes, or 22s. 3d. per 100 lb.

Ozokerit Tape .- The tape is first tanned and then saturated with the above

described compound.

or

It is generally applied to india-rubber cores with one-fifth overlap, and therefore the tape required is:

(mean diameter in millimetres) 4 = square metres per kilometre.

The tape usually has a thickness of 0.35 mm. (14 mils), and weighs 0.25 kilogramme per square metre; therefore, the weight of tape required in kilogrammes per kilometre is equal to the mean diameter of the taped core in millimetres. The price of the tape is approximately 0.5s, per square metre. A heavier tape is sometimes used, having a thickness of 0.5 mm. (20 mils), which weighs 0.175 kilogramme per square metre and takes up 0.236 kilogramme of ozokerit compound per square metre. The weight required in kilogrammes per kilometre is given by

(mean tape diameter in millimetres) 1.6.

The cost of tape and ozokerit compound is approximately 0.5s. per square metre.

Gutta-percha core is generally taped with cotton tape, with an overlap of one-fifth the width. The tape required per nautical mile is given by

8.714 (mean diameter in millimetres) = square yards of tape, = square metres of tape per kilometre.

The tape weighs 0.3 lb. per square yard, and its thickness is 0.3 mm. (12 mils).

If the tape is tarred the thickness is increased to 0.5 mm. (20 mils), and the

weight of tar on the tape is 0.4 lb. per square yard.

Dry core telephone cables are generally taped under the lead sheath with one layer of cotton tape applied with an overlap of one-fifth the width. If d is the diameter over the laid-up pairs, plus 0.3 mm. for one layer of tape, then 4 d = square metres of tape required per kilometre, 7.7 d = square yardsof tape required per statute mile, 0.8 d = weight of tape required in kilogrammes per kilometre, 2.84 d = weight of tape required in lb. per statute mile. The price of such cotton tape is approximately 1s. per square metre, or 5s. per kilogramme, or 2.3s. per lb.

Bitumen Cables .- Various tapes are used, such as: Weight per square metre 0.5 kilogramme. Bitumen tape A. Thickness of tape . . . 0.922Price per kilogramme, about . 1.65s. 0.922 lb. 0.5 mm, (20 mils). 0.758.Price per lb., about . . .

(Weight per square metre . 0.235 kilogramme. 0.433 lb. Bitumen tape B. Thickness of tape . 0.4 mm. (16 mils). Price per kilogramme, about . 2.38. Price per lb., about 1 . 08.

TABLE No. 87.—Copper Tape. 0.25 mm. thick (10 mils).

The price of copper tape is equal to the basis price (see page 92), plus the following "extra" price :-

Width	of Tape	Extra	Price
mm.	mils	Shillings per 100 kilog.	Pence per lb.
100 to 80 79 60 59 40 39·9 30 29·9 25 24·9 20 19·9 15 14·9 10 9·9 5	394 to 316 311 236 232 158 157 118 117 99 98 79 78 59 58 39 38 20	22·0 23·5 25·0 27·0 31·0 36·0 46·0 66·0	1·2 1·28 1·36 1·47 1·68 1·96 2·17 2·5 3·6

(B) Braids,

The usual sizes of braiding machines are:-

16 bobbin, which run at approximately 50 revolutions per minute 30 22 24 48

10 99 The usual braiding materials are cotton, jute, hemp, and asbestos yarn; cotton being used for small size cables, jute and hemp for the large size cables, and asbestos yarn for fire-resisting cables.

Cables requiring a flexible armour are sometimes braided with steel wires,

phosphor bronze wires, or raw hide strips.

The angle of lay of the braiding varies between 50° and 35°, according to the size of the cable or special requirements. Curve No. 12 gives lay angles of 50°, 45°, 40°, and 35°, from which the length of cable braided per revolution of the machine can be read off.

Cotton Braid.—Cotton is measured by the following scale:-

54 in. = 1 thread.

4.320 in. = 80 threads = 1 lea.

30,240 in. = 560 threads = 7 leas = 1 hank = 840 yards.

All hanks of cotton measure 840 yards in length, and the number of hanks of any cotton that weigh 1 lb. determines the size of that cotton, and is known as the "count" of the cotton, thus:-

1 lb. = 20×840 yards = 20 hanks of 20's count cotton. 1 lb. = 40×840 yards = 40 hanks of 40's count cotton. 1 lb. = 20×840 yards = 20 hanks of 40/2 double cotton. A spindle of cotton = 18 hanks = 15,120 yards.

Table No. 88 shows the weight of various cottons.

TABLE No. 88.—WEIGHT OF COTTON.

	Single Cotton Counts	Number of Yards per lb.	Doubled Cotton Counts	Number of Yards per 1b.
	6	5040 6720	6/2 8/2	2520 3360
1	12 16	10080 13440	$\frac{12/2}{16/2}$	5040 6720
	20 30	16800 25200	$\frac{20/2}{30/2}$	8400 12600
-	40 60	33600 50400	$\frac{40/2}{60/2}$	16800 25200

A braiding of 30/2 cotton increases the diameter of the cable by 0.75 mm. (30 mils), and

one braiding of 20/2 cotton increases the diameter by 1.0 mm. (39 mils)

The weight of cotton braid is approximately equal to

(sectional area of braid in square mm.) 0.55 = kilogramme per kilometre.

If the diameter under and over the braid be d and D mm. respectively, then the weight of cotton in kilogrammes per kilometre is given by

$$0.432 \text{ (D}^2 - d^2),$$

or the weight of cotton in lb. per statute mile is given by

$$1.53 \, (\mathrm{D}^2 - d^2).$$

If the diameter d and D be expressed in mils, then the weight of cotton in lb. per statute mile is given by

$$\frac{D^2-d^2}{990}$$

The price of braiding cotton varies from time to time; it is quoted in various weekly journals.

Cotton braid soaks up 130 per cent, of its weight of cable-wax compound (black), or 125 per cent. of its weight of ceresine compound (red).

The black wax compound for finishing off cotton-braided cables is usually composed of hard black wax and soft black wax in varying proportions according to their hardness: the price of the compound is approximately 28/- per 100 lb., or 61.7/- per 100 kilogrammes.

The red wax compound is usually composed of ceresine wax, half-white wax and cable crimson (dye), and costs approximately 37.8/- per 100 lb., or 83.3/per 100 kilogrammes.

Jute Braid :--

A braiding of 8 oz. jute increases the diameter by 1.5 mm.

91	99	16 oz.	**			$2 \cdot 0$	
12	17	2 lb.	,,	27	"		22
77	77		99	19	99	3.0	93
99	99	4 lb.	44			4.0	

The weight of jute braid is approximately equal to

$$0.43 \, (\mathrm{D^2} - d^2)$$
 kilogrammes per kilometre

where D and d are the diameters in millimetres over and under the braid respectively; or the weight in lb, per statute mile is equal to

$$1.53 (D^2 - d^2)$$
.

If the diameters D and d are expressed in mils, then the weight of jute in lb. per statute mile is equal to

 $\frac{D^2-d^2}{990}$.

The jute braid is generally run through Stockholm tar and finished off with the wax compound (ozokerit), as used for cotton-braided cables; the weight of the tar soaked up is approximately equal to 80 per cent of the jute weight; the weight of the compound is also approximately 80 per cent, of the interweight.

The price of jute yarn varies between 40/- and 66/- per 100 kilogrammes, or

18·2/- and 30/- per 100 lb.

The price of Stockholm tar is approximately 8/- per 100 lb., or 17.7/- per 100 kilogrammes.

The price of the wax compound is approximately 28/- per 100 lb., or 61.7/-

per 100 kilogrammes.

Jute braiding is sometimes impregnated with a fire-resisting compound consisting of 50 per cent. of magnesium oxide, 25 per cent. of magnesium chloride and 25 per cent. of water; costing, approximately, 12/- per 100 kilogrammes, or 5·45/ per 100 lb. The amount of such compound taken up is approximately 200 per cent. of the weight of the jute braid.

The tensile strength of jute yarn is approximately 4 lb. per 1 lb. weight per nautical mile, that is to say a yarn weighing 2 lb. per nautical mile (known as

2 lb. yarn), should have a tensile strength of 8 lb.

Hemp Braids.—Some engineers prefer hemp braid for the larger cables, due to the fact that its tensile strength is much greater than that of jute; thus Italian hemp has a tensile strength of about 10 to 12 lb, per lb. of weight per nautical mile, Russian hemp a strength of 8 lb, per lb. of weight, whilst jute has a strength of only 4 lb, per lb. of weight. Care must be taken in selecting hemp, for experience has shown that Russian hemp rots very quickly in water, damp ground, and similar positions.

Table No. 89 gives the details of the various hemp braids used.

Table No. 89.—Hemp Braids.

Diameter of core in mils $= d$	Size of Hemp		Diameter Braid	Weight of Hemp in lb.
m mis = a	Tremp	mils	mm.	per statute mile.
40 to 200 200 ,, 1016	4 oz. 8 ,, 16 ,, 32 ,,	40 61 87 140	1·0 1·55 2·21 3·56	$ \begin{array}{c} 0.091 \ (d+20) \\ 0.1415 \ (d+30.5) \\ 0.185 \ \ (d+43.2) \\ 0.296 \ \ (d+70) \end{array} $

The price of hemp yarns is approximately as follows:—

			per 100 lb.	per 100 kilog.
4	OZ.	 	 80/-	 176/-
8	oz.	 	 58/-	 128′/–
16	OZ.	 	 56/	 123/-

Hemp-braided cables are usually run through Stockholm tar, and finished off with ozokerit wax compound. The weight of the tar is approximately equal to 80 per cent. of the weight of hemp, and the cost of the tar is approximately 8/- per 100 lb., or 17·7/- per 100 kilogrammes. The weight of the wax compound is also 80 per cent. of the weight of hemp and costs 28/- per 100 lb., or 61·7/- per 100 kilogrammes.

Asbestos Braid.

or

or

Table No. 90 gives the details of asbestos threads used for braiding; the 60/2 thread being most extensively used.

TABLE No. 90.—DETAILS OF ASBESTOS BRAID.

Size of	Increase of Diameter for	Approximate Pr	ice in shillings
asbestos thread	one braid	per kilog.	per lb.
$\frac{60}{2}$	2 mm.	7·5 6·0	3·4 2·7
20/2	• •	2.75	1.25

The weight of asbestos thread braid is equal to

$$\frac{\pi}{4}(\mathrm{D^2}-d^2)~0.84=\mathrm{kilogrammes}$$
 per kilometre

$$0.66 \text{ (D}^2 - d^2) = \text{kilogrammes per kilometre}$$

 $2.34 \text{ (D}^2 - d^2) = \text{lb. per statute mile}$

where ${\bf D}$ and d are the diameters over and under the braid respectively, in millimetres.

The braid is generally run through an asbestos compound consisting of equal parts of asbestos, magnesium superoxide and waterglass (silicate of soda), which costs approximately 40/- per 100 kilogrammes, or 18/- per 100 lb. The braid soaks up approximately 230 per cent. of its weight of the asbestos compound.

CHAPTER VIII.

LEAD SHEATH.

ALL cables insulated with hygroscopic material, such as paper or jute, must be provided with a continuous sheath of metallic or waterproof material. Rubber cables, for use in damp and exposed positions; are also generally similarly sheathed. The only materials which are commercially employed for this purpose are lead and vulcanised bitumen.

Lead has a specific gravity of 11.37 and a tensile strength of 1.26 kilogramme per square millimetre (= 1792 lb. per square inch).

Lead weighs 30,000 lb. per square inch section per nautical mile, or

23,560 lb. per circular inch section per nautical mile.

The melting-point of lead is 326°C. (619°F.), and it should be applied to cable at a temperature somewhat below 315°C. (599°F.) by means of a hydraulic press. For electric light and power cables pure new lead is generally used, but in the case of air-space telephone cables the lead is generally hardened by the addition of from 2 to 3 per cent. of tin, to insure against the sheath losing its circular section, and thus diminishing the air-space inclosed, on which depends the electrostatic capacity of the cable.

Tin has a specific gravity of 7.29 and melting-point at 228° C. (442° F.).

Owing to the contraction of the lead in passing through the lead-press die, an allowance must be made in order to obtain a given thickness of lead sheath. Curve No. 13 gives the diameter of the lead-press die necessary to obtain various outside diameters of lead sheathing.

The maximum diameter of cable which can be commercially lead-sheathed with the present practice is from 85 to 95 mm. (3.35 to 3.54 inches), owing to

the short manufacturing length and the size of the cable drum.

Lead sheath for telephone cable is often specified to withstand an internal air pressure of from 2 to 5 atmospheres (29 to 75 lb. per square inch) for a period of from 2 to 24 hours; telephone cables immediately after leaving the lead press, and before being drummed, should be passed through a trough of

cold water, so that at least 6 feet of their length is always submerged.

Tables Nos. 91, 92, and 93 show the thickness of the lead sheath as recommended by the Engineering Standards Committee. A variation of 10 per cent, in the thickness below the standard is allowed, but the average thickness must at least equal that specified. In the case of "between" sizes the thickness should be as that of the next larger size; also, for other working pressures the thickness to be the same as for the next higher voltage.

Table No. 91.—Thickness of Lead Sheath for Rubber Cables for Internal Wiring up to 330 Volts.

(As recommended by the Engineering Standards Committee.)

Conductor	Conductor	Section	Lead T	hickness	Conductor	Conducto	r Section	Lead T	hickness
L.W.G.	sq. in.	sq. mm.	mils	mm.	L.W.G.	sq. in.	sq. mm.	mils	mm.
$\begin{array}{c} 1/18\\ 3/22\\ 1/17\\ 3/20\\ 1/16\\ 1/15\\ 7/22\\ 1/14\\ 3/18\\ 7/20\\ 7/18\\ 19/20\\ 7/16\\ \end{array}$	0·001809 ·001811 ·002463 ·002994 ·003217 ·004071 ·004237 ·005026 ·005322 ·007005 ·01245 ·01898 ·02214	1·168 1·589 1·931 2·075 2·627 2·734 3·243 3·434	31 31 32 32 32 33 34 35 37 39 40	0·79 0·79 0·79 0·84 0·81 0·81 0·84 0·86 0·89 0·94 0·99	19/18 7/14 7/·095" 19/·058" 19/16 19/14 19/·082" 37/16 19/·092" 19/·101" 37/15 19/12 37/14	0·0:3374 ·03459 ·04878 ·04962 ·05998 ·09372 ·09847 ·1167 ·1239 ·1494 ·1478 ·1584 ·1824	21·77 22·32 31·47 31·78 38·70 60·47 63·53 75·32 79·97 96·38 95·33 102·2 117·7	43 43 45 46 47 52 53 55 56 59 58 59 62	1·09 1·09 1·14 1·17 1·19 1·32 1·35 1·40 1·42 1·50 1·57

Table No. 92.—Thickness of Lead for Paper or Jute Cables. (As recommended by the Engineering Standards Committee.)

Section	Low T	ension Cab	Low Tension Cables up to 660 Volts	30 Volts	For 2200Vc	lt Pressure	For 3300 V	olt Pressure	For 6600 V	olt Pressure	For 2200 Volt Pressure For 3300 Volt Pressure For 6600 Volt Pressure For 11,000 Volt Pressure	Volt Pr	essure
Conductor		Con-	Triple	Twin or	Concentric	Twin or	Concentric		Cuntompular	Twin or			Twin or
sq. in. sq.	Jute	Paper or Jute	Paper or Jute		Paper	3 Cure Paper	Paper	3 Core Paper	Paper	3 Core Paper	Concentric		3 Core Paper
	mils nm.		mils mm, mils mm, mils mm.		mils mm.	mils' mm.	mils mm. mils mm. mils mm.	mils mm.	mils mm.	mils mm.	mils mm.	mils	mm.
												-	}
				80.2.03	80.2.03	80.2.03	902.28	90 2.59	100 2.54 100	.100 2.54	120 3.05	120	3.05
	601.52		002.53	90.2.29	$902 \cdot 29$	90.2.59	1002	100	110	110 2.	130	130	3.30
.075 48			1002.54	54 100 2 - 54	90.2.29	902-291002-54	1002.54	100	120	120	140	130	3.30
	70]	905	1002.54	54 100 2 54	1002.54	1002.541102.79	1002.51		120	120	140	140	3.56
	9	905.	291102.79	79 110 2 - 79	1002	54 110 2 · 79		120	130	130	140 3	140	3.56
	80 2 · 03	1002.54	541102.79	79 110 2 - 79	1102	79 120 3 · 05		ಛ	130	130	150 3	150	0 cc
-200129	802.031002.	1002.54	54 120 3.05	05 120 3 · 05	1102.79	1303.30		130 3 30	130 3.30	140 3	150 3	160	4.06
$\cdot 250161$	90.2.59	1102.79	79 130 3 30 130 3 30	1303.30	1203.05	1303.30	1303.30	140 3.56	140 3.56	150	160 4.06	170	4.39
$\cdot 300193$	90.2.50	1102.79	$902 \cdot 291102 \cdot 791803 \cdot 801803 \cdot 80$	1303.30	:	:	:					. :	t :
.350 226	902-291203-0	1203.05	051403.561	1403.56	:	:	:	:		: :	: :	: :	: :
.400258	1002.54	1203.05	54 120 8 05 140 8 56 1	1403.56	:	:	;	:		: :	: ;	: :	
$\cdot 500323$	1002.54	54 130 3 30 150 3	1503.81	1503.81	:	:			: :	: ;	: :	: :	•
.600387	1102.79	79 130 3 30	:	:	:	:	: :	: :	: :		: :	: :	:
-700451	1102.79	79 140 3 56	:	:	:	:	: :	: :		: :	: :	: :	:
·750 484	1102.79	1102.791403.56	:	;						-			:
912008	1203.05	1203.051503.81		:		: :							
189,006	1203.05	1203.051503.81		:								•	•
1.000,645	1203.05	1503.81	-	-						•		•	:
	_	_			-	:	:	:	: - :	:	:	:	:
1													1

Table No. 93.—Lead

(As recommended by the

Sect			Low	Tens	ion Ca	bles			For 2	200 V	olt Pre	ssure		Fo	r 3300
	uctor	Sir	ıgle	Conc	entric	Tw:	in or Core	Sir	ıgle	Conc	entric		in or Core	Sir	ngle
sq. in.	sq. mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.
0.025	16	70	1.78	80	2.03	80	2:03	70	1.78	80	2.03	90	2-29	70	1.78
.05	32	70	1.78	80	2.03	90	2 29	70	1.78	90	2.29	100	2.54	80	2.03
.075	48	70	1.78,	90	2.29	100	2.54	80	2.03	90	2.29	110	2.79	80	2.03
.10	64.5	80	2.03	90	2 · 29	110	2.79	80	2.03	100	2.54	120	3.05	80	2.03
•125	80.6	80	2.03	100	2:54	110	2.79	80	2.03	100	2.54	120	3.05	90	2.29
.150	97	80	2.03	100	2.54	120	3.05	90	2 • 29	110	2.79	130	3.30	90	2.29
•20	129	90	2.29	110	2.79	130	3.30	90	2.29	110	2.79	130	3.30	90	2.29
•25	161	90	2.29	110	2.79	130	3.30	90	2:29	120	3.05	140	3.56	100	2.54
•30	193	90	2.29	120	3.05	140	3.56		• •						
•35	226	100	2.54	120	3.05	150	3.81								
•40	258	100	2.54	130	3.30	160	4.06								
•50	323	110	2.79	140	3.56	170	4.32								
•60	387	110	2.79	140	3.56										
•70	451	120	3.05	150	3.81					••					
.75	484	120	3.05	150	3.81										
*80	516	120	3.05	160	4.06										
•90	581	120	3.05	160	4.06										
1.0	645	130	3.30	170	4.32			• •			••				• •

THICKNESS FOR RUBBER CABLES.
Engineering Standards Committee.)

Volt P	ressu	re			For 66	00 T	Volt P	ressu	re		For 11	,000	Volt P	ressu	re		tion
Concentr			in or Core	Si	ngle		Con-		vin or Core	Si	ingle		Con- ntric		in or Jore		of luctor
mils m	m. r	nils	mm.	mils	nm.	nile	s mm.	mils	mm.	mil	s mm.	mils	s mm.	mils	mm.	sq.	sq.
80 2	03 1	.00	2.54	80	2:03	91	2 · 29	110	2.79	90	2 · 29	100	2 : 54	120	3.05	0.025	16
902	29 1	10	2.79	80	2.03	100	2.54	120	3.05	90	2.29	100	2.54	130	3.30	- 105	32
1002	541	10	2.79	90	2.29	100	2.54	130	3.30	100	2.51	110	2.79	140	3.56	075	48
1002	54 1	20	3.05	90	2 29	110	2.79	130	3.30	100	2.54	110	2.79	150	3.81	.10	61.5
1002	541	20	3.05	90	2.29	110	2.79	140	3.56	100	2.54	120	3.05	150	3.81	. 125	80.6
1102.	79 1	30	3.30	100	2.54	120	3.05	140	3.56	100	2.54	120	3.05	160	4 · ()(150	97
1102.	79 1	40	3 ·56	100	2.54	120	3.05	150	3.81	110	2.79	130	3.30	170	4.32	20	129
120 3.	05,1	40	3.56	100	2.54	130	3.30	160	4.06	110	2.79	130	3.30	170	4.32	2 .25	161
								·								.30	193
		1									, .					•35	226
		• •									1					•40	258
. .									ſ '							.50	323
	.															•60	387
													••	.,		.70	451
	. 1.															.75	484
	. .													.,		•80	51 6
																•90	581
	. .		••			• •			• •							1.0	645

The thicknesses of lead sheath recommended by various institutions are given in Tables Nos. 94, 95, and 96.

Table No. 97 gives the thickness of lead sheath generally applied to telephone cables by English manufacturers.

The thicknesses of lead sheath generally adopted by Continental cable manufacturers are given in Tables Nos. 98, 99, 100, 101, 102, and 103, for paper insulated, jute insulated, rubber insulated, paper and air space telephone, and jute telegraph cables.

Curve No. 14 shows the thickness of lead sheath for paper and rubber cables adopted by various Continental manufacturers.

Table No. 94.—Thickness of Lead for Paper or Jute Institution Cables up to 650 Volts Pressure. (As recommended by the Institution of Electrical Engineers.)

Conductor L.S.W.G.	Secti Cond			ead ckness	Conductor L.S.W.G.		ion of uctor		ead kness
inches	sq. in.	sq. mm.	mils	mm.	inches	sq. in.	sq. mm.	mils	mm.
7/18 7/17 19/20 7/16 19/19 7/068" 7/15 19/18 7/14 19/17 7/095" 19/16 19/16 19/14 19/14 19/082"	· 01897; · 022138 · 0224992 · 028018 · 038740 · 034591 · 045926 · 048778 · 049623 · 05098; · 075910 · 09372-	8 8 0 3 6 10 0 9 3 5 12 2 2 4 4 14 2 8 3 15 1 1 7 21 6 1 2 4 21 8 1 7 6 8 22 2 3 7 5 2 9 6 2 9 8 3 1 4 7 9 3 3 3 8 6 9 9 4 8 6 0 4 6 7 8 6 3 5 2 8	60 60 60 60 60 60 60 60 60 60 70 70 70	1·52 1·52 1·52 1·52 1·52 1·52 1·52 1·52	19 101" 37 14 37 102" 37 101" 37 110" 61/13 61/101" 61/101" 61/118" 61/118" 91/1098" 91/101" 91/12 91/110"	· 18242 · 19166 · 24126 · 29077 · 34490 · 39767 · 45123 · 47928 · 54892 · 57841 · 65420 · 67308 · 71492 · 75802	96 · 378 117 · 69 123 · 65 155 · 65 187 · 59 222 · 51 256 · 56 291 · 12 309 · 21 309 · 21 309 · 94 422 · 06 434 · 25 4461 · 24 4489 · 05 5447 · 10	80 80 90 90 90 100 100 110 110 110 110 120 120	2·03 2·03 2·29 2·29 2·29 2·54 2·54 2·79 2·79 2·79 2·79 3·05 3·05
37/16 19/13 37/15	·11675 ·12395 ·14776	75:324 79:967 95:332	70 70 80	$ \begin{array}{r} 1.78 \\ 1.78 \\ 2.03 \end{array} $	91/+118" 127/+101" 		629.58	120 120	3.05

Table No. 95.—Thickness of Lead for Jute or Paper Insulated Cables for 700 Volts Pressure. (As recommended by the Verband Deutscher Elektrotechniker.)

Section o	of Conductor	Thicknes	s of Lead	Section of	f Conductor	Thickness	of Lead
sq. mm.	sq. in.	mils	mm.	sq. mm.	sq. in.	mils	mm.
1.0	0.00155	47	1.2	95	0.147	67	1.7
$\frac{1.5}{2.5}$	·0023 ·0039	47 47	$\frac{1\cdot 2}{1\cdot 2}$	120 150	·186 ·232	71 75	1·8 1·9
4.0	.0062	55	1.4	185	.286	79	2.0
6 10	·0093 ·0155	55 5 5	1·4 1·4	$\frac{240}{310}$	·372 ·480	83 87	2.1
16	.0248	59	1.5	400	620	91	2·2 2·3
25 35	*0387 *0542.	59 63	1·5 1·6	$\frac{500}{625}$	·775 ·968	94.5	2.4
50	.0775	63	1.6	800	1.240	102 110	2·6 2·8
70	1085	67	1.7	1000	1.550	118	3.0

Table No. 96.—Thickness of Lead for Jute and Paper Insulated Carle. (As recommended by the Verband Deutscher Elektrotechniker.)

Diameter	under Lead	Thicknes	s of Lead	Diameter	under Lead	Thicknes	s of Lead
mm.	in.	mm.	mils	mm.	in.	mm,	mils
10 12 14 16 18 20 23 26 29 32 35	0·394 ·473 ·551 ·630 ·709 ·788 ·907 1·024 1·141 1·260 1·378	1.5 1.6 1.7 1.7 1.8 1.9 2.0 2.1 2.2 2.3	59 63 67 67 71 75 79 83 87 91 94·5	38 41 44 47 50 54 58 62 66 70	1 · 496 1 · 614 1 · 732 1 · 850 1 · 968 2 · 126 2 · 280 2 · 440 2 · 600 2 · 757	2·6 2·7 2·8 3·0 3·2 3·4 3·4 3·6 3·6	102 106 110 118 126 126 134 134 142 142

Table No. 97.—Thickness of Lead for Paper and Air-space Telephone Cables. (English practice.)

		Armoured and U	narmoured Cables	
Number of Pairs of Conductors	10 lb. Conductors =	25 mils = 0.635 mm.	20 lb. Conductors =	36 mils = 0.914 mm.
	mils	mm,	mils	mm.
1 2 3 5 8 10 14 15 20 26 52 75 77 102 153 204 255 300 400 500	60 60 60 70 70 70 70 80 80 80 80 90 90 90 90 90 125 125 125	1·52 1·52 1·52 1·78 1·78 1·78 1·78 2·03 2·03 2·03 2·29 2·29 2·29 2·29 2·29 2·29 3·17 3·17 3·17 3·17	70 70 70 80 80 80 80 80 80 90 90 90 110 110 110 130 130 130 130	1·78 1·78 1·78 2·03 2·03 2·03 2·03 2·03 2·03 2·29 2·29 2·29 2·79 2·79 2·79 3·05 3·30 3·30 3·30 3·30
600 700 800	125 125 125	3·17 3·17 3·17		

TABLE No. 98.—LEAD THICKNE

	nductor Section	1	Low T	ension	up to	600 ▽	olt	The second second	For	1000 ∇	olts Pr	ressure		For	2000
sq.	sq.	Si	ingle	T	win	Thre	ee core	Si	ngle	Ty	win	Thre	e core	T	win
	111011	mils	mm.	mils	mm.	mils	mm.	mils	min.	mils	mm.	mils	mm.	mils	mn
1(0.0155	5 59	1.50	65	1.65	67	1 · 70	59	1.50	71	1.80	73	1.85	73	1.8
16	3 . 0248	59	1.50	71	1.80	73	1.85	59	1.50	75	1.90	1	2.00	1	1.9
25	0387	7 59	1.50	77	1.95	79	2.00		1.50		2.05		2.10		2.0
35	0542	2 59	1.50	81	2.05	83	2.10	61	1.55	83	2.10		2.20		2.1
50	0775	61	1.55	85	2.15	87	2.20	63	1.60	89	2.25		2.30		2.2
70	·1085	5 63	1.60	91	2.30	93	2.35		1.65		2.35		2.45		
95	·147	65	1.65	94.5	2.40	98.5	5 2 · 50		1.70			100.5			1
120	·186	69	1.75	98.5	2.50		2 · 60		1 - 1	100.5			$2 \cdot 70$		
150	.232	73	1.85		2.65		2.70		1.90		2.70				2.6
185	286	77	1.95		2.75		2.85		$ 2 \cdot 00 $		$ 2 \cdot 80 $		2.80		2.7
210	.325	79	2.00		2.85		2.95		2.05				2.95		2.8
240	.372		2:05		2.90		3.00				2.90		3.00		2.9
280	.434	ļ.,	2.10		3.00		3.00		2.10		3.00		3.00		3.00
310	.480	1 (2.15		3.00				2.15		3.00		3.00		3.00
355			2.20	110	5 (10)	118	3.00		2.20	118	3.00	118	3.00	118	3.00
400	620							1	2.25						
			2.25						2.30	٠.				• •	٠.
500	.775		2.35		• • ,	• •	1	94.5		٠.					٠.
625		98.5	1	• •	••			$98 \cdot 5$	2.50						
		102	1]	102	2.60						
		104					1	106	2.70	٠.					
1000	1.550	110	2.80					110	2.80						

FOR PAPER CABLES. (Continental Practice.)

	olts ssure		For	3000 V	olts P	ressure		V	6000 olts ssure	For 1 Vo Pres	lts	V	20,000 olts ssure	COL	nductor ection
Thre	e core	Sir	ngle	Tv	vin	Three	core	Thre	e core	Three	core	Thre	e core	sq.	sq.
mils	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.	mm.	inch
7 5	1.90	59	1.50	75	1.90	77	1.95	85	2 · 15	100.5	2.55	110	2.80	10	0.0155
81	2.05	61	1.55	79	2.00	81	2.05	89	2.25	102	2.60	112	2.85	16	.0248
83	2.10	61	1.55	83	2.10	85	2.15	91	2.30	106	2.70	116	2.95	25	•0387
87	2.20	61	1.55	87	2.20	89	2.25	94 · 5	2.40	108	2.75	118	3.00	35	.0542
93	2.35	63	1.60	91	2.30	93	2.35	98.5	2.50	112	2.85	118	3.00	50	.0775
96.5	2.45	67	1.70	94.5	2.40	98.5	2:50	102	2.60	116	2.95	118	3.00	70	1085
102	2.60	69	1.75	100.5	2.55	104	2.65	106	$2 \cdot 70$	118	3.00	118	3.00	95	•147
106	2.70	73	1.85	104	2.65	108	2.75	110	2.80	118	3.00	118	3.00	120	·186
112	2.85	77	1.95	108	2.75	112	2.85	114	2.90	118	3.00	118	3:00	150	.232
116	2.95	81	2.05	114	2.90	118	3.00							185	.286
118	3.00	83	2.10	118	3.00	118	3.00							210	.325
118	3.00	85	2.15	118	3.00	118	3.00							240	372
118	3.00	87	2.20	118	3.00	118	3.00							280	•434
118	3.00	87	2.20	118	3.00	118	3.00							310	.480
		91	2.30				3.00							355	•550
••		93	2.35											400	620
		96.5	$2 \cdot 45$											500	.775
••		100.5	2.55											625	•968
		104	2.65										٠.	725	1.123
		106	2.70											800	1.240
		112	2.85			, .								1000	L·550

TABLE No. 99.—LEAD THICKNESS FOR JUTE

	ction of	F		0 volts	8			For 7	00 vol	ts Pres	ssure					Fo	r 1000
001	Iditotoi	Sing	gle	Tw	in	Sing	gle	Conce	entric		iple entric	Tv	vin	Sir	igle i	Conce	ntrie
Sq.	Sq. in.	mıls	mm.	mils	mm.	mils	mmı.	mils	mm.	mils	mm.	mils	um	mils	mm.	mils	mm.
1.0	0.00155	39 · 4	1.0	43.4	1.1	59	1.5					59	1.5	59	1.5		,
1.5	.0023	39.4	1.0	43.4	1.1	59	1.5					59	1.5	59	1.2		
2.5	.0039	39 • 4	1 · ()	43.4	1.1	59	1.5					59	1.5	59	1.2	• •	
4.0	.0062	43 · 4	1.1	47	1.2	59	1.5					59	1.5	59	1.5		
6	.0093	43 · 4	1.1	47	$1 \cdot 2$	5 9	1.5					59	1.5	59	1.5		
10	.0155	43.4	1 · 1			59	1.5	65	1.65	81	2.05			59	1.5	69	1.75
16	.0248	43 · 4	1.1			59	1.5	67	1.7	83	2 · 1			59	1.9	71	1.8
25	.0387	13 · 4	1.1			59	1.5	69	1:75	85	2.15	٠.			٠	73	1.85
35	.0542	47	1.2			63	1.6	73	1.85	87	2.2		,	٠.		79	2.0
50	.0775	47	1.2			63	1.6	77	1.95	91	2.3					81	2.05
70	·1085	51	1.3			67	1.7	81	2.05	94.5	2.4					85	2.15
95	· 147	51	1.3			67	1.7	85	2.15	98+5	2.5					89	2.25
120	·186	55	1.4			71	1.8	87	2.2	102	2.6			-	1	91	2.3
150	•232	59	1.5			75	1.9	91	2.3	106	2.7					94.5	2.4
185	·286	59	1.5			79	2.0	94.5	2.4	110	2.8					98.5	
210	.325	63	1.6			79	2.0	96.9	2:45	112	2.85					100.5	
240	.372	63	1.6			83	2.1	98.5	2.5	118	3.0					102	2.6
280	· 434	67	1.7			83	2.1	104	2.65	118	3.0						2.65
310	.480	67	1.7			87	2.2	106	2.7	118	3.0						2.75
355	•550	71	1.8			87	2.2	106	2.7					1			2.8
400	•620	71	1.8			91	2.3	110	2.8							116	2.95
500	·775	75	1.9			94.5			2.95							118	3.0
625	.968	83	2.1			102	1 1										
725	1.123	83	2.1			106										1	
800	1.240	87	2.2			110	2.8										
	1.550	91	2.3				3.0							1	• •	• •	
					**	110						• •					

Insulated Cables. (Continental Practice.)

	volts l	Pressur	е			For 2	000 vo	lts Pr	essure			For 3	0 00 vo	lts Pre	essure	
_	T	win	Three	e Core	Conce	entric	T	win	Three	e Core	Conce	entric	T-	win	Thre	e Core
	mils	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.
**	59	1.5									, ,				1	
	59	1.5							1							
	59	1.5														
	61	1.55														
2	61	1.55														
	71	1.8	73	1.85		2.0	79	2.0		2.05	85	2.15		2.15		2.2
	75	1.9	79	2.0	81	2:05	83	2.1		2.15	87	2.2		2.25	91	2.3
	81	2.05	83	2.1	83	2.1	87	2.2	89	2 · 25	89	2 · 25	91	2.3	$94 \cdot 5$	2.4
	83	2.1	87	2.2	83	2.1	89	2 · 25	93	2.35	91	2.3	94.5	2.4	98 - 5	2.5
	87	2.2	91	2.3	87	$2 \cdot 2$	93	2.35	96.5	2.45	94.5	2.4	98.5	2.5	102	2.6
	93	2.35	96.5	2 · 45	91	2.3	98+5	2.5	100:5	2.55	98.5	2.5	102	2.6	108	2.75
	98.5	2.5	100.5	2.55	94.5	2.4	102	2.6	106	2.7	100.5	2.55	108	2.75	112	2.85
	102	2.6	106	2.7	98.5	2.5	106	2.7	110	2.8	104	2.65	112	2.85	118	3.0
	106	2.7	110	2.8	100.5	2.55	110	2.8	116	2.95	108	2.75	118	3.0	118	3.0
Į			116	2.95					118	3.0					118	3.0
			118	3.0					118	3.0					118	3.0
			118	3.0					118	3.0					118	3.0
			118	3.0					118	g·0					118	3.0
1			118	3.0					118	3.0					118	3.()
Ì							٠.									
	[,								
1																
4114													,			
1							,									
								1								
								Î		- 1				- 1		_

TABLE NO. 100.—THICKNESS OF LEAD FOR RUBBER INSULATED CABLES.

(Continental Practice.)

	IOI					o The						ror roon voice Fressure			FOL	2000	roi sono votes rressure	ure	
8q.mm. sc		Sin	Single	T	Twin	Thre	Three Core	Sir	Single	I	Twin	Thre	Three Core	Sin	Single	T	Twin	Thr	Three Core
	sq. in.	mils	mm.	mils	mm.	mil	mm.	mils	mm.	nuilė	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mm.
	0.00155	39.4	1.0					:	. •	:	:	:	4		:	:		:	
1.5	.0053	39.4	1.0	:	:		:			:							:		:
2.5	-0039	39.4	1.0		:				:	:			:	:		:	•		:
4 ·	2900	39.4	1.0	•						:				:		:	:		
). 9	6600	39.4	1.0							0 0					:	:	:		:
10 (2010-	39.4	1.0	47	1.20	47	1.2	39.4	1.0	1.17	1.5	49	1.25	41.4	1.05	53	1.35	53	1.35
16 .0	.0248	39.4	0.1	67	27.I	49	1.25	41.4	1.02	49	1.25	51	1.30	4:3.4	1.10	55	1.40	55	1.40
25 .6	1880	41.4	1.05	51	1.30	53	1.87	41.4	1.05	53	1.85	55	1.40	48.4	1.10	57	1.45	59	1.50
35 0	.0542	43.4	1.1	55	1.4	57	1.45	13.4	<u>.</u>	55	1.4	57	1.45	45.3	1.15	53	1.50	61	1.55
50 ' 0	. 6770	45.3	1.15	59	1.5	59	1.5	45.8	1.15	53	1.5	19	1.55	47	1.20	33	1.60	65	1.65
1. 02	1085	45.3	1.15	61	1.55	63	9.1	11	1.2	639	1.6	65	1.65	64	1.25	65	1.65	69	1.75
95 .1	147	49	1.25	65	1.65	67	1.7	49	1.25	2.5	1.7	69	1.75	51	1.30	93	1.75	7:3	1.85
120 .1	186	49	1.25	69	1.75	11	× :	51	1.8	7.1	1.8	(3	1.85	553	1.35	73	1.85	77	1.95
150 .2	.232	51	1.3	73	.1.85	75	6.1	53	1.35	65,	1.85	17	1.95	53	1.35	77	1.95	73	2.0

Table No. 101.—Thickness of Lead for Paper and Air Space Telephone Cables. (Continental Practice.)

Num-	Diamete	er of Cond	luctor 0	·5/0·8 mn	n. = 20/31	•5 mils	Diameter	of Conduc = 60/79	ctor 1.5/	2 · 0 mm.
ber of Pairs of Wires	Plain Cov	Lead ered		Wire oured	Closed Armor			Lead ered	Closed	Wire oured
	mm.	mils	mm.	mils	mm.	mils	mm.	mils	mils	mm.
2 3 4 5 7 10 14 21 28 56 84 100 112 140 153 168 200 224 250 300 400 500 600	1·3 1·4 1·5 1·5 1·7 1·7 2·0 2·2 2·2 2·5 2·8 2·8 2·8 3·0 3·0 3·0 3·0 3·0 3·0 3·0 3·0	51 51 55 59 67 67 79 87 87 87 887 98·5 110 110 118 118 118 118 118	1·3 1·3 1·3 1·4 1·6 1·6 1·8 2·0 2·0 2·2 2·2 2·5 2·5 2·8 2·8 2·8 2·8 3·0 3·0 3·0 3·0	51 51 51 55 55 63 63 71 79 79 79 87 98 5 98 5 110 110 110 118 118 118 118	$\begin{array}{c} 1 \cdot 2 \\ 1 \cdot 2 \\ 1 \cdot 3 \\ 1 \cdot 4 \\ 1 \cdot 5 \\ 1 \cdot 5 \\ 1 \cdot 7 \\ 1 \cdot 8 \\ 1 \cdot 8 \\ 2 \cdot 0 \\ 2 \cdot 1 \\ 2 \cdot 2 \\ 2 \cdot 5 \\ 3 \cdot 0 \\ \end{array}$	47 47 51 55 59 67 67 71 71 71 79 83 87 88 98:5 98:5 98:5 108 108	1·8 2·0 2·0 2·1 2·3 2·5 3·0 3·0 	71 79 79 83 91 98·5 188 118		59 67 67 71 79 87 887 98·5 98·5

TABLE NO. 102.—LEAD THICKNESS FOR PAPER AND AIR SPACE TELEPHONE CABLES. (Continental Practice.)

Diameter of	Cable under Lead	Unarmoured Cable	Armoured Cable
mm. 26·0 to 28·9 29·0 32·9 33·0 35·9 36·0 38·9 39·0 41·9 42·0 44·9 45·0 48·9 49·0 51·9 52·0 54·9	inches 1 · 0236 to 1 · 1378 1 · 1417	mm. mils 2·0 79 2·1 83 2·2 87 2·3 91 2·4 94·5 2·6 102 2·7 106	mm. mils 1.7 67 1.8 71 1.9 75 2.0 79 2.1 83 2.1 83 2.2 87 2.3 91
55·0 57·9 58·0 and upwards	2·1654 2·2795 2·2835	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2·3 91 2·4 94·5 2·5 98·5

Table No. 103.—Lead Thickness for Telegraph Cable with 1.5 mm. (60 mil) Conductors. (Continental Practice.)

Number of Cores	Unarmo	ured Cable	Armour	red Cable
·	mm.	mils	mm,	mils
4 7 14 28 56 112	1 · 6 1 · 7 1 · 8 2 · 0 2 · 5 3 · 0	63 67 71 79 98·5 118	1·5 1·6 1·7 2·0 2·4 2·8	59 63 67 79 94·5

WEIGHT OF LEAD.

If D and d be the diameters over and under the lead sheath respectively, then the weight of lead is given by:

When D and d are expressed in millimetres-

```
8.93 (D^2 - d^2) = kilogrammes per kilometre,
19.68 (D^2 - d^2) = lb. per kilometre,
18.0 (D^2 - d^2) = lb. per 1000 yards,
31.68 (D^2 - d^2) = lb. per statute mile,
36.52 (D^2 - d^2) = lb. per nautical mile.
```

Or, when D and d are expressed in inches, then-

```
5762 	ext{ } (D^2 - d^2) = \text{kilogrammes per kilometre},  12700 	ext{ } (D^2 - d^2) = \text{lb. per kilometre},  11610 	ext{ } (D^2 - d^2) = \text{lb. per } 1000 \text{ yards},  20440 	ext{ } (D^2 - d^2) = \text{lb. per statute mile},  23560 	ext{ } (D^2 - d^2) = \text{lb. per nautical mile}.
```

Table No. 104 gives the weight of solid cylindrical lead in kilogrammes per kilometre for various diameters: the weight of lead sheath for any cable is equal to the difference between the weights corresponding to the external and internal diameters of the lead pipe.

Table No. 105 gives the weight of solid cylindrical lead in lb. per nautical mile.

The price of lead and tin can be ascertained from various weekly journals.

TABLE No. 101.—WEIGHT OF LEAD IN KILOG. PER KILOMETRE.

Cross section in sq. mm. $\times\,11\,^\circ37=$ kilog, per kilometre. Kilog, per kilometre $\times\,3\,^\circ548=$ lb. per statute mile.

Diam.	•0	-1	•2	.3	•4	•5	•6	-7	•8	1 .9
mm.				-			1	-		
2	36	39	43	47	51	56	60	65	70	75
3	80	86	91	97	103	109	116	122	129	136
4	143	150	157	165	173	181	189	197	206	214
5	223	232	241	251	260	270	280	290	300	311
6	321	332	343	354	366	377	389	401	413	425
7	438	450	463	476	489	502	516	529	543	557
8	572	586	600	615	630	645	660	676	692	707
9	723	739	756	772	789	806	823	840	858	875
10	893	911	929	947	966	984	1003	1022	1042	1061
11	1081	1100	11120	1140	1160	1181	1202	1222	1244	1265
12	1286	1307	1329	1351	1372	: 1395	1418	1440	1463	1486
13	1509	1533	1556	1580	: 1604	1628	1652	1676	1701	1725
14	1750	1775	1801	1826	1852	1878	1903	1930	1956	1983
15	2008	2036	2063	2090	2118	2145	2173	1 2201	2229	2258
16	2286	2315	2344	2373	2402	2431	2461	2490	2520	2550
17	2580	2611	2642	2672	2703	2735	1 2766	2797	2829	2861
18	2893	2925	2958	2991	3023	3056	3089	3123	3156	3190
19	3224	3258	3292	3326	3360	3396	3430	3466	3501	
20	3572	3608	3644	3680	3716	37.53	3789	3826		3536
21	3938	3976	4013	4051	4089	4128	4166		3863	3900
22	4322	4361	4401	4440	4480	4520	4561	$\frac{4205}{4602}$	4244	4282
23	4723	4765	4806	4847	4890	4932	1974		4642	4683
24	5143	5186	5229	5273	5316	5360	5403	5016	5058	5100
25	5580	5626	5670	5716	5761	5807	5852	5147	5492	5536
26	6036	6083	6130	6177	6223	6270	6318	5859	5914	5990
27	6510	6558	6606	6655	6701	6753	6802	6366	6414	6462
28	7000	7051	7101	7152	7202	7253	7301	6852	6900	6950
29	7510	7561	7614	7666	7719	7771		7356	7407	7458
30	8037	8090	8144	8198	8252	8306	7823 8361	7876	7930	7983
31	8580	8636	8692	8748	8804	8860		8416	8471	8526
32	9144	9201	9259	9316	9374	9430	8916 9490	8974	9030	9087
33	9724	9783	9842	9900	9960	10023	10082	9548	9606	9665
34	10323	10384	10445	10506	10567	10629	10691	10142	10202	10262
35	10939	11002	11065	11128	11191	11254	11317	10753	10815	10877
36	11574	11638	11703	11768	11833	11898	11964	11381	11445	11509
37	12225	12291	12358	12424	12491	12558	12625	$ 12027 \\ 12695$	12093	12159
38	12894	12962	13030	13098	13166	13235	13303		12759	12826
39	13579	13648	13718	13792	13862	13932		13372	13441	13510
4()	14286	14358	14430	14503	14575	14647	14002	14074	14144	14216
41	15013	15086	15160	15233	15307	15382	14720	14793	14866	14939
42	15752	15827	15903	15978	16054	16129	15456	15530	15603	15678
43	16510	16587	16663	16740	16817		16205	16281	16357	16434
44	17288	17368	17446	17525	17604	16895	16972	17054	17127	17205
45	18083	18164	18244	18325	18405	17684	17764	17844	17923	18003
46	18895	18978	19061	19144	19226	18488	18568	18650	18732	18814
47	19726	19810	19824	19979	20063	19309	19392	19476	19559	19643
		_0010	10021	19919	20003	20148	20232	20317	20402	20487
-										

Table No. 104.—Weight of Lead in Kilog, per Kilometre-continued.

			1							
Diam.	• 0	.1	-2	•3	•4	•5	• 6	-7	-8	• 9
mm.				·						·
48	20575	20660	20746	20831	20917	21005	21091	21177	21265	21353
49	21440	21528	21617	21704	21793	21880	21969	22058	22147	22235
50	22325	22115	22501	22594	22684	22775	22865	22955	23045	23136
51	23227	23318	23410	23501	23593	23685	23777	23869	23961	24054
52	24146	24239	24332	24425	24518	24612	24705	24799	24896	24990
53	25084	25178	25274	25368	25464	25560	25656	25751	25847	25943
54	26040	26136	26233	26330	26427	26524	26622	26720	26817	26915
55	27013	27112	27208	27308	27407	27506	27605	27705	27801	27904
56	28004	28104	28204	28306	28406	28507		28709	28810	28912
57	29014	29115	29217	29320	29422	29524		29730	29834	29937
58	30041	30144	30248	30352	30456	30560	30665	30769	30875	30980
59	31086	31190	31296	31402	31509	31614	31721	31827	31934	32041
60	32148	32256	32:362	32470	32578	32686	32794	32903	33011	33120
61	33229	33.338	33447	33556	33665	33776	33885	33995	34105	34216
62	34327	34437	34549	34660	34772	34883	31995	35106	35219	35331
63	35443	35.5.5	35669	35781	35895	30003	36121	36235	36349	36462
64	36577	36692	1 36806	36921	37036	37151	37266	37381	37497	37613
65	37729	37845	37962	38078	38195	38312	38429	38547	38664	38781
66	38899	39017	39135	39254	39372	39490	39610	39729	39847	39967
67	40087	40207	40326	40447	40567	40688	40808	40929	41049	41171
68	41292	41111	41536		11779	41902	42025	42146	12269	42393
69	42516	42639	42763	42887	43010	43134	43258		43507	43632
70	437.57	43883	44008	44133	44259	44384	44510	44636	44763	44889
71	45016	45143	15270	4.5397	45524	45653		4.5908	46036	46164
72	46293	46421	465.51	46680	46809	46938	47067	47198	47328	47457
73	47587	47719	47850	47980	48111	48242	48374	48504	48636	48768
74	48900	49033	49165	49298	49431	19561	49697	49830	49963	50097
-75	50228	50566	50500	50634	50768	50903	51037	51173	51308	51141
76	51580	51715	51852	51987	52123	52259	52398	42534	52672	52808 54191
77	52946	53083	53221	58359	53497	53636	53774 55170	539 13 55309	55440	55591
78	54330	54469	54609	54749	54889	55029	56582	56724	56866	57009
79	55732	55873	56014	56156	56297 57724	56440 57869	58012	58156	58301	58445
80	57151	57295	57438 58880	57581 59024	59169	59315		59606	59753	59898
81	58590	58734	60338	60485	60633	60779	60927	61075	61223	61371
82	60045	60192	61815	61961	62113	62262	62411	62561	62710	62860
83	61519	63160	63310	63461	63612	63762	63913	64061	64215	64368
84	63010 64519	64671	64823	64975	65127	65281		65586	65739	65893
85	66046	66200	66354	66508	66662	66816	66970	67126	67281	67435
86	67591	67747	67902	68057	68214		68527	68683	65840	68997
87 88	69153	69312	69468	69626	69783	69941	70099	70259	70417	70576
89	7073±	70893	71052	71211	71372	71531	71691	71852	72012	72172
90	72333	72494	72654	72816	72977	73139	73300	73463	73624	73787
91	73949	74112	71275	74437	74601	74764	74926	75091	75255	75419
$\begin{bmatrix} 91 \\ 92 \end{bmatrix}$	75583	75748	75912	76087	76241	76408	76572	76738	76903	77069
93	77235	77401	77568	77731	77902	78068	78235	78403	78570	78737
94	78906	79074	79241	79409	79579	79747	79916	80085	80254	80423
95	80593	80762	80933	81103	81273	81443	81614	81786	81956	82128

Table No. 105.—Weight of Lead in Lb. per Nautical Mile.

Dia	ameter	Lb. per nautical	Di	iameter	Lb. per nautical	Di	amete r	Lb. per nautical
mm.	inch	mile	mm.	inch	mile	mm.	inch	mile
0.1	0.0039	0.36529	4.7	0.1850	806-92	9.3	0.3661	3159-4
.2	.0079	1 • 4612	4.8	1890	841.63	9.4	3701	3227.7
.3	.0118	3.2876	4.9	•1929	877.06	9.5	3740	3296.7
•4	.0157	5.8446	5.0	1968	913.22	9.6	3780	3366.5
.5	.0197	9.1322	5.1	2008	950.12	9.7	3819	3437.0
. 6	.0236	13.150	5.2	-2047	987.74	9.8	*3858	3508 • 2
.7	.0276	17.899	5.3	2087	1026.1	9.9	*3898	3580 · 2
.8	.0315	23.378	5.4	1 2126	1065.2	10.0	3937	3652.9
•9	.0354	29.588	5.5	.2165	1105.0	10.1	•3976	3726.3
1.0	.0394	36.529	5.6	2205	1145.5	10.2	.4016	3800.5
1.1	•0433	44 200	5.7	•2244	1186.8	10.3	•4055	3875:3
1.2	.0472	52.601	5.8	•2283	1228 · 8	10.4	*4095	3951:0
1.3	·051 2	61.734	5.9	2323	1271 • 6	10.5	•4134	4027:3
1.4	.0551	71.597	(; , ()	.2362	1315.0	10.6	•4173	4104.4
1.5	•0591	82.190	$6 \cdot 1$.2402	1359 · 2	10.7	•4213	4182.2
1.6	.0630	93.214	6.2	.2441	1404.2	10.8	+4252	4260 . 7
1.7	.0669	105.57	6.3	.2480	1449.8	10.9	•4291	4340.0
1.8	*0709	118.35	6.4	.2520	1496.2	11.0	•4331	4420 • 0
1.9	0748	131.87	6.5	2559	1543+3	11.1	•4370	4500.7
2.0	.0787	146.12	6.6	1 2598	1591.2	11.2	•4409	4582.2
2.1	.0827	161.09	6.7	•2638	1639.8	11.3	-4449	4664:3
2.2	0866	176.80	6.8	-2677	1689 · 1	11.4	•4488	4747.3
2.3	.0905	193 · 24	6.9	2717	1739 · 1	11.5	*4528	4830 . 9
2.4	0945	210.41	7.0	2756	1789 · 9	11.6	*4567	4915.3
2.5	•0984	228.31	$7 \cdot 1$	•2795	1841-4	11.7	-4606	5000.4
2.6	1024	246 94	$7 \cdot 2$	-2835	1893.7	11.8	.4646	5086.3
2.7	1063	266:30	$7 \cdot 3$	2874	1946.6	11.9	*4685	5172.8
2.8	•1102	286:39	7.4	2913	2000.3	12.0	•4724	5260.1
2.9	•1142	307 · 21	7.5	2953	2054 · 7	12.1	•4764	5348.2
3.0	1181	328.76	7.6	2992	2109 · 9	12.2	+4803	5437.0
3.1	1220	351.04	7.7	.3031	2165.8	12.3	4843	5526.5
3.2	1260	374.06	7.8	*3071	2222.4	12.4	+4882	5616.7
3.3	1299	397.80	7.9	.3110	2279.8	12.5	•4921	5707.6
3.4	1339	422.27	8.0	.3120	2337.8	12.6	•4961	5799.3
8.5	•1378	447.48	8.1	.3189	2396.7	12.7	•5000	5891.7
3.6	1417	473 42	8.2	.3228	2456 · 2	12.8	•5039	5984.9
3.7	1457	500.08	8.3	*3268	2516.5	12.9	•5079	6078.8
3.8	•1496	527 · 47	8.4	*3307	2577:5	13.0	.5118	6173 4
3.9	1535	555.60	8.5	*8346	2639 · 2	13.1	*5157	6268 • 7
4.0	1575	584.46	8.6	.3386	2701.7	13.2	•5197	6364.8
4.1	•1614	614.05	8.7	*3425	2764.9	13.3	• 5236	6461.6
4.5	1654	644.37	8.8	*3465	2828.8	13.4	•5276	6559 • 1
4.3	*1693	675.42	8.9	*3504	2893 · 5	13.5	•5315	6657 • 4
4.4	1732	707 20	9.0	*3543	2958 · 8	13.6	•5354	6756 • 4
$\frac{4 \cdot 5}{4 \cdot 6}$	1772	739.71	9.1	· 3 583	3025 · 0	13.7	.5394	6856 • 1
	1811	772.95	$9 \cdot 2$	3623	3091.8	13.8	•5433	6956.5

Table No. 105.—Weight of Lead in Lb. per Nautical Mile—cont.

Di	ameter	Lb. per nautical	Di	ameter	Lb. per	D	iameter	Lb. per
mm.	inch	mile	mm.	inch	mile	mm.	inch	nautical mile
13.9	0.5472	7057.8	18.5	0.7283	12502	23.1	0.9091	19492
14.0	-5512	7159 • 7	18.6	•7323		23.2	•9134	19661
14.1	-5551	7262.3	18.7	-7362		23.3	9173	19831
14.2	- 5591	7365.7	18.8	•7402		23.4	9213	20002
14.3	• 5630	7469.8	18.9	·7441	13048	23.5	9252	20173
14.4	- 5669	7574.6	19.0	-7480		23.6	9291	20173
14.5	• 5709	7680 • 2	19.1	7520	13326	23.7	•9331	
14.6	.5748	7786.5	19.2	7559	13466	23.8	•9370	20518 20691
14.7	• 5787	7893.5	19.3	7598	13607	23.9	•9409	
14.8	5827	8001.3	19.4	7638	13748	24.0	9449	20866
14.9	-5866	8109.8	19.5	.7677	13890	24.1	•9488	21041
15.0		8219.0	19.6	-7717	14033	24.2	9528	21216
15.1	• 5945	8329 · 0	19.7	·77ē6	14176	24.3	9528	21393
15.2	•5984	8439.6	19.8	-7795	14321	24.4	9606	21570
15.3	6024	8551.1	19.9	•7835	14466	24.5		21748
15.4	6063	8663.2	20.0	.7874	14611	24.6	9646	21926
15.5	6102	8776 • 1	20.1	.7913	14758	24.7		22106
15.6	6142	8889.6	$\frac{20.1}{20.2}$	7953	14905	24.8	9724	22286
15.7	6181	9004 • 0	20.3	7992	15053	24.9	9803	22467
15.8	6220	9119.1	20.4	8031				22648
15.9	6260	9234.9	20.5	8071	15202 15351	25.0	.9843	22831
16.0	6299	9351.4	20.6	8110	15501	25.2	9882	23014
16.1	6339	9468.6	$\frac{20.0}{20.7}$	8150	15652	25.3	*9921 *9961	23197
16.2	6378	9586.6	20.8	8189	15804	25.4	1.0000	23382
16.3	6417	9705.3	20.9	8228	15956	25.5	1.0000	23567
16.4	6457	9824 · 8	21.0	8268	16109	25.6	1.0039	23753
16.5	6496	9945.0	$\frac{21}{21 \cdot 1}$	*8307	16263	$\frac{25}{25.7}$	1.0118	23940
16.6	•6535	10065.9	$\frac{21}{21 \cdot 2}$	*8346	16417	25.8	1.0118	24127
16.7	6575	10187.6	$\begin{bmatrix} 21 \cdot 2 \\ 21 \cdot 3 \end{bmatrix}$	-8386	16573	25.9	1.0197	24315
16.8			21.4	8425	16729	26.0		24504
16.9	·6614 ·6654	$10309 \cdot 9 \\ 10433 \cdot 0$	21.5	*8465	16885	26.1	$1.0236 \\ 1.0276$	24693 24884
17.0	•6693	10557	$\frac{21.6}{21.6}$	8504	17043	26.2	1.0315	25075
17.1	.6732	10681	$\frac{21}{21.7}$	8543	17201	26.3	1.0354	25267
		10807	21.8	*8583	17201	26.4	1.0394	
17·2 17·3	·6772	10933	$\frac{21 \cdot 6}{21 \cdot 9}$	8622	17500	26.5	1.0433	2545 9
17.4		11059	$\frac{21 \cdot 9}{22 \cdot 0}$	8661	17520 17680	26.6	1.0472	25652 25846
	6850		$\frac{22 \cdot 0}{22 \cdot 1}$	8701		26.7		
17.5	*6890	11187 11315	22.1	*8740	$17841 \\ 18003$	26.8	1.0512	26041 26236
17.6	6929						1.0551	
17.7	6968	11144	22.4	.8780	18165	$\frac{26 \cdot 9}{27 \cdot 0}$	1:0591	26433
17.8	7008	11574	~	8819	18329		1.0630	26629
17.9	.7047	11704	22.5	.8858	18493	27.1	1.0669	26827
18.0	•7087	11835	22.6	*8898	18657	27.2	1.0709	27025
18.1	.7126	11967	22.7	8937	18823	27.3	1.0748	27225
18.2	.7165	12100	22.8	8976	18989	27.4	1.0787	27424
18.3	•7205	12233	22.9	9016	19156	27.5	1.0827	27625
18.4	•7244	12367	23.0	9055	19324	27.6	1.0866	27826

Table No. 105. -Weight of Lead in Lb. Per Nautical Mile-cont.

Dia	meter	Lb. per	Dia	meter	Lb. per	Dia	meter	Lb. per nautical
mm.	inch	" mile	mm.	inch	mile	mm.	inch	mile
27.7	1:0905	28028	32:3	1.2717	38110	36.9	1 · 4528	49738
27.8	1:0945	28231	32.4	1.2756	38347	37.0	1:4567	50008
27.9	1.0984	28434	32.5	1 - 2795	38584	37.1	1.4606	50279
28:0	1.1021	28639	32.6	1.2835	38821	37.2	1.4646	59550
28.1	1.1063	28811	32.7	1.2874	39060	37.3	1:4685	50822
28.2	1.1102	29049	32.8	1.2913	39299	37.4	1.4724	51095
28.3	1.1142	29256	32.9	1 · 2953	39539	37.5	1:4764 .	51369
28.4	1.1181	29463	33.0	1 - 2992	39780	37.6	1.4803	51643
28.5	1 11220	29671	33 · 1	1.3031	40021	37.7	1.4842	51918
28.6	1 1260	29879	33.9	1:3071	40264	37.8	1.4882	52194
$\frac{5}{28 \cdot 7}$	1 1200	30088	33.3	1.3110	40506	37.9	1 : 4921	52470
28.8	1.1339	30298	33.4	1:3150	40750	38.0	1 · 4961	52747
28.9	1.1378	30509	33 · 5	1.3189	40994	38-1	1.5000	53026
29.0	1.1417	30721	33.6	1.3228	41240	38.2	1.5039	53304
29.1	1.1457	30933	33.7	1.3268	41485	38.3	1.5079	53584
29 - 2	1.1496	31146	33.8	1:3307	41732	38.4	1.5118	53864
29.3	1.1535	31360	33.9	1.3346	41979	38.5	1.5157	54145
29.4	1.1575	31574	34.0	1.3386	42227	38.6	1.5197	54426
29.5	1.1614	31789	34.1	1.3425	42476	38.7	1.5236	54709
29.6	1.1653	32005	34.2	1:3465	42726	38.8	1.5276	54992
29.7	1.1693	32222	34.3	1:3504	42976	38.9	1:5315	55276
29.8	1.1732	32439	34.4	1.3543	43227	39.0	1.5354	55560
29.9	1 · 1772	32657	34.5	1.3583	43478	39.1	1 - 5394	55845
30.0	1.1811	32876	34.6	1.3622	43731	39.2	1.5433	56131
30 · 1	1.1850	33095	34.7	1:3661	43984	39.3	1.5472	56418
30.2	1.1889	33316	34.8	1.3701	44238	39.4	1.5512	56706
30.3	1:1929	33537	34.9	1.3740	44492	39.5	1.5551	56994
30.4	1.1968	33758	35.0	1:3779	44748	39.6	1.5591	57283
30.5	1.2008	33981	35.1	1.3819	45004	39.7	1.5630	57573
30.6	1 · 2047	34204	35 - 2	1.3858	45261	39.8	1 : 5669	57863
30.7	1.2087	34428	35.3	1.3898	45518	39.9	1.5709	58154
30.8	1.2126	34653	35.4	1.3937	45776	40.0	1:5748	58446
30.9	1.2165	34878	35.5	1:3976	46035	40.1	1.5787	58739
31.0	1.2205	35104	35.6	1:4016	46295	40.2	1:5827	59032
31.1	1.2244	35331	35.7	1.4055	46556	40.3	1.5866	59326
$31 \cdot 2$	1.2283	35559	35.8	1.4094	46817	40.4	1.5905	59626
31.3	1.2323	35787	35.9	1.4134	47079	40.5	1.5945	59916
31.4	1.2362	36016	36.0	1.4173	47342	40.6	1.5984	60213
31.5	1.2402	36246	36.1	1:4213	47605	40.7	1.6024	60509
31.6	1:2441	36476	36.2	1:4252	47869	40.8	1.6063	60808
31.7	1.2480	36707	36.3	1 · 4291	48134	40.9	1.6102	61106
31.8	1.2520	36939	36.4	1:4331	48399	41.0	1.6142	61405
31.9	1.2559	37172	36.5	1.4370	48666	41.1	1.6181	61705
32.0	1.2598	37406	36.6	1 · 44()9	48933	41.2	1.6220	62006
32.1	1.2638	37640	36.7	1.4449	49200	41.3	1.6260	62308
$32 \cdot 2$	1.2677	37875	36.8	1.4488	49469	41.4	1.6299	62609
						1		

TABLE No. 105.—WEIGHT OF LEAD IN LB. PER NAUTICAL MILE—cont.

Dia	ımeter	Lb. per	Dia	ameter	Lb. per	Die	ameter	Lb. per
mm.	inch	nautical mile	700 700	inch	mile		inch	mile
шш,	инсп		mm.	meu		mm.	men	
47 6	1.0000	40010	40.1	1.8150	77/10/1	F0.7	7 00/27	00007
41.5	1.6339	62912	46.1		77636	50.7	1.9961	93897
41.6	1.6378	63215	46.2	1.8189	77969	50.8	2.0000	94268
41.7	1.6417	63520	46.3	1.8228	78307	50.9	2.0039	94639
41.8	1.6457	63825	46.4	1.8268	78645	51.0	2.0079	95012
41.9	1.6496	64130	46.5	1.8307	78985	51.1	2.0118	95385
42.0	1.6535	64437	46.6	1.8346	79325	51.2	2.0157	95758
42.1	1.6575	64744	46.7	1.8386	79666	51.3	2.0197	96132
42.2	1.6614	65052	46.8	1.8425	80007	51.4	2.0236	96508
42.3	1.6654	65361	46.9	1.8465	80349	51.5	2.0276	96884
42.4	1.6693	65670	47.0	1.8504	80692	51.6	2.0315	97260
42.5	1.6732	65980	47.1	1.8543	81036	51.7	2.0354	97637
42.6	1.6772	66291	47.2	1.8583	81380	51.8	2.0394	98016
$42 \cdot 7$	1.6811	66603	47.3	1.8622	81725	51.9	2.0433	98395
$42 \cdot 8$	1.6850	66915	47.4	1.8661	82072	52.0	2.0472	98774
42.9	1.6890	67228	47.5	1.8701	82418	52.1	2.0512	99154
43.0	1.6929	67542	47.6	1.8740	82765	52.2	2.0551	99535
43.1	1.6968	67856	47.7	1.8779	83114	52.3	2.0591	99917
43.2	1.7008	68172	47.8	1.8819	83463	52.4	2.0630	100299
43.3	1.7047	68488	47.9	1.8858	83812	52.5	2.0669	100682
43.4	1.7087	68804	48.0	1.8898	84163	52.6	2.0709	101067
43.5	1.7126	6912 2	48.1	1.8937	84514	52.7	2.0748	101451
43.6	1.7165	69440	48.2	1.8976	84865	52.8	2.0787	101836
43.7	1.7205	69759	48.3	1.9016	85218	52.9	2.0827	102223
43.8	1.7244	70078	48.4	1.9055	85571	53.0	2.0866	102609
43.9	1.7283	70399	48.5	1.9094	85925	53.1	2:0905	102997
$44 \cdot 0$	1.7323	70720	48.6	1.9134	86280	53.2	2.0945	103386
$44 \cdot 1$	1.7362	71042	48.7	1.9173	86635	53.3	2.0984	103774
44.2	1.7402	71364	48.8	1.9213	86991	53.4	2.1024	104164
44.3	1.7441	71688	48.9	1.9252	87348	53.5	2.1063	104555
$44 \cdot 4$	1.7480	72011	49.0	1.9291	87706	53.6	2.1102	104946
44.5	1.7520	72336	49.1	1.9331	88064	53.7	2.1142	105338
44.6	1.7559	72662	49.2	1.9370	88423	53.8	2.1181	105731
44.7	1.7598	72988	49.3	1.9409	88783	53.9	2.1220	106124
44.8	1.7638	73315	49.4	1.9449	89143	54.0	2:1260	106518
44.9	1.7677	73642	49.5	1.9488	89505	54.1	2.1299	106913
45.0	1.7717	73971	49.6	1.9528	89867	54.2	2.1339	107309
45.1	1.7756	74300	49.7	1.9567	90229	54.3	2.1378	107705
45.2	1.7795	74630	49.8	1.9606	90593	54.4	2.1417	108102
45.3	1.7835	74961	49.9	1.9646	90957	54.5	2.1457	108500
45.4	1.7874	75292	50.0	1.9685	91322	54.6	2.1496	108898
45.5	1.7913	75624	50.1	1.9724	91688	54.7	2 · 1535	109298
45.6	1.7952	75957	50.2	1.9764	92054	54.8	2.1575	109698
45.7	1.7992	76290	50.3	1.9803	92421	54.9	2.1614	110098
45.8	1.8031	76624	50.4	1.9842	92789	55.0	2.1654	110500
45.9	1.8071	76959	50.5	1.9882	93158	55° I	2.1693	110902
46.0	1.8110	77295	50.6	1.9921	93527	55.2	2.1732	111305
						J		

TABLE NO. 105.-WEIGHT OF LEAD IN LB. PER NAUTICAL MILEcontinued.

Di mm,	ameter inch	Lb. per nautical mile	Dia	ameter	Lb. per nautical mile	Diamm.	ameter	Lb. per nautical mile
55·3 55·4 55·5 55·6 55·7 55·8 55·9 56·0 56·1 56·2 56·3 56·4 56·5 56·6 56·7	2:1772 2:1811 2:1850 2:1890 2:1929 2:1968 2:2008 2:2047 2:2126 2:2165 2:2265 2:2244 2:2283 2:2323 2:2362	111709 112113 112518 112924 113330 113738 114146 114555 114964 115374 115785 116197 116609 117022 117436 117851	56·9 57·0 57·1 57·2 57·3 57·4 57·5 57·6 57·6 57·9 58·0 58·1 58·2 58·3	2·2402 2·2441 2·2480 2·2520 2·2559 2·2559 2·2677 2·2716 2·2756 2·2795 2·2835 2·2874 2·2913 2·2953 2·2902	118266 118682 119099 119517 119935 120354 120773 121194 121615 122037 122460 122883 123307 123732 124157 124584	58:5 58:6 58:7 58:8 58:9 59:0 59:1 59:2 59:8 59:4 59:6 59:6 59:7 59:8 59:9 60:0	2·3031 2·3071 2·3110 2·3159 2·328 2·3268 2·3366 2·3346 2·3425 2·3465 2·3544 2·3543 2·3583 2·3682	125011 125439 125867 126296 126726 127157 127589 128021 128453 128887 129821 129756 130192 1306629 131066 131504

The above weights in lb. per nautical mile, when multiplied

by 0.8673 give lb. per statute mile.

by 0.4929 give lb. per 1000 yards. by 0.5390 give lb. per kilometre.

by 0.2444 give kilogrammes per kilometre.

CHAPTER IX.

STEEL WIRE ARMOUR.

WHERE cables are to be laid direct in the ground, or in situations where they may be exposed to mechanical injury, they should be armoured with either steel wire or steel tape. The armour should, generally speaking consist of (1) steel tape, in the case of cable having a diameter over the lead sheath greater than 10 to 12 millimetres (0.4 to 0.47 inch), except when the cable is liable to be subjected to any strain in the longitudinal direction; (2) steel wires, in the case of cable having a diameter over the lead sheath less than 10 to 12 millimetres, and in all cases where the cable is liable to be strained longitudinally.

The cable or core to be wire armoured has to be provided with a bedding of jute yarn, and the armouring wires are generally protected with an overall serving of jute; for armouring lead-covered cables the various layers are applied to the cable in one of the two following orders:-

/ \	m.		cm)	
(a)	Tar	or	(b)	Tarred jute yarn
	Jute yarn			Compound
	Tar			Steel wires
	Steel wires			Compound
	Compound			Tarred jute yarn
	Tarred jute yarn			Compound.
	Compound			*

The servings of jute yarn should be applied in the opposite direction to the lay of the sheathing wires.

Jute yarn servings under the sheathing wires have, owing to the compression, a specific gravity of approximately 0.796 and weigh 2100 lb. per nautical mile

of square inch section.

Tarred jute yarn under sheathing wires has a specific gravity of 0.920 and weighs 24:30 lb. per nautical mile of square inch section. The weight of tar in tarred jute yarn is approximately 44 per cent. of the total weight, or 80 per cent. of the jute weight.

Table No. 106 gives the increase of diameter due to one layer of various

size jute yarn.

TABLE No. 106.—JUTE SERVING UNDER WIRE ARMOUR.

Size of Jute Yarn, i.e. Weight	Increase of Dia	meter per Layer
per Nautical Mile	mils	mm.
5 lb.	118	3.00
6 ,,	128	3.25
8 ,,	148 166	3·75 4·20

JUTE SERVING UNDER WIRE ARMOUR.

Let

n = number of sheathing wires

A = diameter of core

B = pitch diameter of sheath wires

d = diameter of sheath wire.

Therefore the area corresponding to the pitch diameter of the sheathing wires is $\frac{\pi}{4}$ (B²), and the area of the core is equal to $\frac{\pi}{4}$ (A²).

Therefore the area of the jute serving space is equal to $\frac{\pi}{4}$ (B² - A²), less the areas of those portions of the sheathing wires inside the pitch circle of the sheathing wires; these portions are very approximately semicircles, and therefore their total area is equal to $\frac{\pi}{4}$ (d^2) $\frac{n}{2}$.

Therefore the area of the jute serving space is equal to

$$\frac{\pi}{4} \left(\mathbf{B}^2 - \mathbf{A}^2 - \frac{n}{2} d^2 \right).$$

Taking the specific gravity of the yarn under wire armour to be 0.796, of taired jute yarn 0.92, and of cutched jute yarn, as used for submarine cables, 0.626, the constants as given in Table No. 107 are obtained.

By omitting the core in Fig. 10, the jute space becomes

$$\frac{\pi}{4} \Big(\mathbf{B}^2 - \frac{n}{2} \, d^2 \Big)$$

but B, the diameter of the pitch circle, is a function of n and d, therefore, the jute space (considering the core as absent) can be expressed in terms of $(n \ d^2)$ and, therefore, also the weight of inte.

Table No. 108.—Value of the Constant c for Calculating the Weight of Jute or Hemp Serving under Steel-Wire Sheathing, for Lead-Sheathed Cables. (1 square inch section weighs 2100 lb, pqr nautical mile. Specific gravity 0.796.)

No. of Sheath Wires	Constant c for diam. in mm.	Constant c for diam, in inches	No. of Sheath Wires	Constant c for diam.	Constant c for diam. in inches	No. of Sheath Wires	Constant c for diam. in mm.	Constant c for diam. in inches
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	$ \begin{vmatrix} 0.13122 \\ +69855 \\ 1.17665 \\ 3.2729 \\ 5.4374 \\ 8.0474 \\ 11.175 \\ 14.819 \\ 18.982 \\ 23.662 \\ 28.860 \\ 34.575 \\ 40.809 \\ 47.562 \\ 57.832 \\ 62.621 \\ 70.926 \\ 79.750 \end{vmatrix} $	450.66	23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	109 : 333 120 · 228 131 · 643 143 · 574 156 · 025 168 · 994 182 · 482 196 · 487 211 · 011 226 · 043 241 · 609 257 · 687 274 · 298 291 · 402 309 · 039 327 · 189 345 · 852 365 · 027	70584·53 77568·8 84927·8 92625·3 100647 109024 117726 126761 136131 145829 155871 166244 176947 187994 199373 211082 223122 223122	43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 60	424 · 783 446 · 958 468 · 698 491 · 010 513 · 855 537 · 233 561 · 419 585 · 369 661 · 578 688 · 034 714 · 982 742 · 463 770 · 418 799 · 260 828 · 004 857 · 537	274044 288349 302374 316769 351507 346589 362193 377644 394151 410111 426809 443876 461262 478991 497025 515633 534176 553229
21 22	89·094 98·951	57477 · 62 63838 · 71	41 42	384·755 404·937	248220 261240			000220

TABLE No. 107.—Constants for Jute Yarn Serving.

_	Jule Yarn as used over Lead Sheath and under Wire Armour	Cutched Jute Yarn as used over Gutta-Percha Core, and under Wire Armour	Tarred Jute Yarn as used over Lead Sheath and under Wire Armour
	1		
Specific gravity	962.0	0.626	0.920
Weight in Ib. per nautical mile) per square inch section	2100	1650	2430
Weight of jute serving in keloges, per kilometre when A, B and d given in mm.	$0.625\left(\mathrm{B}^{z}-\mathrm{A}^{z}-\frac{n}{2}d^{z}\right)$	$0.492\left(B^{2}-A^{2}-\frac{n}{2}d^{2}\right)$	$0.722\left(\mathrm{B}^{z}-\mathrm{A}^{z}-\frac{n}{2}d^{z}\right)$
Weight of jute serving in 1b. per nautical mile, A, B and d given in mm.	$2 \cdot 56 \left(\mathbf{B}^z - \mathbf{A}^z - \frac{n}{2} d^z \right)$	$2 \cdot 01 \left(\mathbf{B}^z - \mathbf{A}^z - \frac{n}{2} d^z \right)$	$2.95\left(\mathrm{B}^{z}-\mathrm{A}^{z}-\frac{n}{2}d^{z}\right)$
Weight of jute serving in lb. per nautioal mile, A, B and d given in inches	$1650 \left(B^2 - A^2 - \frac{n}{2} d^2 \right)$	$1300 \left(\mathbf{B}^z - \mathbf{A}^z - \frac{n}{2} d^z \right)$	$1900\left(\mathrm{B}^{z}-\mathrm{A}^{z}-\frac{n}{2}d^{z}\right)$
Weight of jute serving in Ib. per statute mile, A, B and d given in inches	$1430\left(\mathbf{B}^2 - \mathbf{A}^2 - \frac{n}{2}d^2\right)$	$1130\left(\mathbf{B}^{z}-\mathbf{A}^{z}-\frac{n}{2}d^{z}\right)$	$1650\left(\mathrm{B}^{z}-\mathrm{A}^{z}-\frac{n}{2}d^{z}\right)$
			C

All serving jute for gutta-percha cores in submarine cables, is cutched by immersing it in a solution of cutch in boiling water; the amount of cutch used is from 5 to 7 per cent. of the jute weight.

The weight of jute serving under wire armour can therefore be written equal to

 $(d^2 c)$ lb. per nautical mile,

where d is the diameter of the sheathing wire, and c is a constant depending upon the number of wires and the specific gravity of the jute yarn. The value of this constant c is given in Table No. 108 for 2100 lb. jute and in Table No. 109 for 1650 lb. jute.

The weight of serving in pounds per nautical mile multiplied by 0.2445 gives

the weight in kilogrammes per kilometre.

The Engineering Standards Committee recommend that for all cables whose diameter over lead is less than 0.50 inch, the sheathing should consist of steel wires of 0.072 inch diameter; further, that for diameters less than 0.50 inch the thickness of the jute serving should be 60 mils thick, and for diameters above 0.50 inch the thickness of jute serving should be 100 mils thick. The Verband Deutscher Elektrotechniker recommend wire armour for cables up to 10 square millimetres conductor cross section, the armouring wires to be of 1.8 millimetre diameter, both the serving under and over the armour to consist of jute 1.5 millimetre thick.

Table No. 109.—Value of Constant c for Calculating the Weight of Jute or Hemp serving under Steel Wire Sheathing, for Gutta-Percha Cables. (1 square inch section weighs 1650 lb. per nautical mile. Specific gravity = 0.626.)

No. of Sheath Wires	Constant c for diam. in mm.	Constant c for diam, in inches	No. of Sheath Wires	Constant c for diam, in mm.	Constant c for diam, in inches
3 4 5 6 7 8 9 10 11 12 13 14 15	$\begin{array}{c} 0\cdot 10310 \\ \cdot 54886 \\ 1\cdot 3872 \\ 2\cdot 5715 \\ 4\cdot 2723 \\ 6\cdot 3230 \\ 8\cdot 7800 \\ 11\cdot 6437 \\ 14\cdot 9142 \\ 18\cdot 5914 \\ 22\cdot 676 \\ 27\cdot 166 \\ 32\cdot 065 \\ 37\cdot 370 \end{array}$	66·513 354·09 894·93 1659·0 2756·2 4079·2 5667·3 7511·8 9621·7 11994 14629 17526 20686 24109	17 18 19 20 21 22 23 24 25 26 27 28 29 30	43·082 49·202 55·728 62·661 70·002 77·749 85·904 94·465 103·434 112·809 122·591 132·781 143·379 154·383	27794 31742 35952 40425 45161 50159 55420 60943 66729 72777 79088 85662 92499 99598

Tables Nos. 110 and 111 give the weight in lb. per nautical mile of jute yarn, as used under the sheathing wires (specific gravity 0.80) of lead-sheathed cables.

Table No. 110.—Weight of Jute Yarn in Lb. Per Nautical Mile. (Diameter in millimetres.)

6.	2.0707	9.2289	21.500	38.884	61.381	88.991	121.71	159.55	202.50	250.56	303.73	362.02	425.42	493.94	567.56	646.30	730.16	819.12	913.20	1012.4	1116.7	1226.1	1340.6	1460.3	1585.0	1714.9	1849.9	1990.0	2135.2	2285.5	2440.9
60							118-21																								
1 4.	1.2527																														
9.	2 0.92033																														
ະຕ	0.63912	5.7521	15.978	31.317	51.768	77.333	108.01	143.80	184.71	230.72	281.85	338.09	399-45	465-92	587.50	61.419	00.969	782-92	874.95	972.10	074-4	181.7	[294-2]	[411·8]	[584.5]	1662.3	1795 - 8 1	1933 - 3	2076-5	2224.8	2378.2
*	8 0.40904	5.0107	14.725	29.553	49.493	74-547	104-71	139.99	180.38	225.90	276.51	882.24	393.08	459·04	530-11	606.29	62.789	774.00	865.52	962-15	1063-9	8.021	1282.7	[399·8	1522.0	1649 - 3	8.181	1919.3	2062-0	2508-7	2362.6
e0.	6 0.2300s	$4 \cdot 3204$	13.524	048.72	47.269	71.811	101-47	136.23	176.12	221.11	271-28	826.43	386.77	452.21	522.77	598-44	679.23	765.13	856.14	952.26	1053.5	8.6211	1271.3	1387.9	1509.6	1636.4	1768.3	1905.3	2047.4	2194.7	2347.1
.53	6 0.10226	3.6813	12.373	26.178	45.096	69-127	98.271	132.53	171.90	216.38	265.98	350.68	380.51	145.44	515.49	590.65	670.92	756.31	08.948	942.49	1043.1	1149.0	1259.9	1376.0	1497-2	1623.5	1754.9	1891.4	2038-0	2179.8	2331.6
T.	0 0.02556	3.0933	11.274	24.568	42.974	66.494	95.126	128.87	167.73	211.70	260-79	314.98	874.29	438.72	508.25	582.90	662.66	747.54	837 . 52	932-63	1032.8	1128.2	1248.6	1364.2	1484.8	1610-6	1741.5	1877.5	2018-6	2164·8	2316.2
0.	0.0000	2.5865	$10 \cdot 226$	23.008	40.04	63.912	92.03	125.27	163.61	207.07	255.65	309.33	368-13	432.04	501.07	575.21	654.46	738.82	828.30	922.89	1022.6	1127.4	1237 - 3	1352.4	1472.5	1597.8	1728-2	1863.7	2004·3	2150.0	2300.8
Diam.	0	<u> </u>	2	ಣ	- j- l		9	i~	00	_	-	_							18												

Table No. 110.—Weight of Jue Yann in Lb. fer Nautical Mile—rontinued. (Diameter in mils.)

	6.	2602	2767	2938	3114	3295	3481	3672	3869	4070	4277	4488	4705	4927	5154	5386	5623	5866	6113	6366	6623	6886	7154	7427	7705	7989	8277	8570	8869	9173
	00	2585	2750	2921	3096	3277	3462	3653	3849	4050	4256	4467	4683	4904	5131	5363	5599	5841	8809	6340	6597	0989	7127	7400	7677	7960	8248	8541	8839	9142
	4.	2569	2734	2903	3078	3258	3443	3634	3829	4029	4235	4445	4661	4882	5108	5339	5575	5817	6063	6315	6571	6833	7100	7372	7649	7931	8219	8511	8809	9111
	9.	2553	2717	2886	3061	3240	3425	3614	8809	4009	4214	4424	4639	4860	5085	5316	5552	5792	6038	6289	6546	6807	7078	7345	7621	7903	8190	8482	8779	1806
marra)	1G *	2537	2700	2869	3043	3222	3406	3595	8789	3989	4193	4403	4618	4838	50.62	5292	5528	5768	6013	6264	6520	6780	7046	7337	7593	7875	8161	8452	8749	9051
	4.	2521	2684	2852	3025	3204	3387	3576	3770	8968	4173	4382	4596	4815	5040	5269	5504	5744	5989	6239	6494	6754	7019	7290	7566	7846	8132	8423	8719	9020
		2505	2667	2835	3008	3186	8369	3557	3750	3948	4152	4361	4574	4793	5017	5246	5480	5720	5964	6213	6468	6728	6993	7263	7538	7818	8103	8394	8689	8990
		2489	2651	2818	2990	3168	3350	3538	3731	3928	4131	4340	4553	4771	4994	5223	5457	5695	5939	6188	6442	6702	9969	7235	7510	7790	8074	8364	8659	8959
	-	2473	2634	2801	2973	3150	3332	3519	3711	3908	4111	4318	4531	4749	4972	5200	5433	5671	5915	6163	6417	9299	6939	7208	7482	9922	8046	8335	8630	8929
	÷	2457	2618	2784	2955	3132	3313	3500	3692	3888	4090	1297	4510	4727	4949	5177	5410	5647	5890	6138	6391	6649	6913	7181	7455	7733	8017	9088	0098	8899 9203
Die	DISH.	33	925	99	34	35	36	37		39	40	41	42	43	44	45	46	47	48	49	20	21	52	500	54	55	56	22	. 28	20 90

TABLE NO. 111.-WEIGHT OF JUTE YARN IN LB. FER NAUTICAL MILE. (Diameter in mils.)

0	П	67		4	ro To	9	7	00	6
								- C	00
0.0000-0	0.001649	0.006597	0.014844	0.026389	3.4	ര	0.080817	80001.0	0.188986
16493	19957		.27874	.32327				55448	19090.
65072	.79736		.879.5	-95002			_	1.2931	1.3871
4044	1.5050	,		1.9066				2.3816	2.5086
TOT	0.0000			3 1031				3.800	3.860
2,000g	07/1.7			4-809				5.548	2.741
1724	4.2033			6.756				7.627	7.852
000	701.0			0.039				10.035	$10 \cdot 294$
700.0	10.01			11.638				12.772	13.064
0000	10.650			14.574				15.840	16.165
16.409	16.295	17.160	17.498	17.839	18.184	18.532	18.883	19.238	19.596
0.087	10 070			9.1 - 435				22.965	23.356
8.750	94.148			25.360				27.023	27.447
7.874	98.304			29.615				31.410	31.867
9.297	39.790			34.200				36 127	36.617
7.110	37.607			39.116				41.174	41.697
011 /	40.750			44.361				46.551	47.107
7.666	48.998			49.965				52.258	52.846
2.428	54.084			55.840				58.294	58.916
0.541	60.169			62.074				64.660	65.315
E. 072	66.625			68-639				71.357	72.045
0.796	79.480			75.533				78.383	79.104
000	00 HOO			89.757				85.739	86.493
070 6	00 000			00.311				93.425	91-212
000 2	010.00			00.105				101.44	102.26
200.0	687.68			106.41				109.79	110.64
3.08	103.91			100.41				118.46	119.35
111.49	112.30			114.20) H	

Table No. 111.—Weight of Jute Yarn in LB. per Nautiola Mile—continued. (Diameter in mils.)

				4	رم 	9 .	t-	00	8
	191.12	100.00	100.00	000					
	190.091	122 02	122.32	128.83	124.73	125.64	126.55	127.47	198.39
	150.02	181.16	132.09	133.03	133.97	134.91	135.85	136.80	187.75
	139.62	140.63	141.59	142.56	143.53	144.51	115-10	146.47	100
-	149.48	150.43	151 - 42	159.49	178-43	154.14	155.45	74 011	C+./+T
	159.52	160.55	161.50	17.9.71	1600.602	11. 101 101	190.40	94.901	157.48
7	160.05	171.61	170.00	102 02	00.001	07.191	165.74	166.79	167.84
2 -	100.70	101.01	1/2.0/	178.14	174.21	175.28	176.36	177.44	178.53
-	101.10	181.80	187.83	183.55	185.10	186.20	187.31	188.43	189.54
2 4	67.161	192.91	194.04	195.18	196.31	197-45	198.59	199.74	08.006
+	203.50	204.36	205.52	506.69	207.86	800-608	910.91	911.90	910.67
0	214.94	216.14	217.33	218.53	219.73	16.0%	909.14	903.966	904.80
62.0	227.02	228.24	229-47	2:30 - 70	231 - 94	233 - 18	934.49	925.60	20.427
:0	289-42	240.68	241-94	243.20	244.47	9.15.74	60.756	240.00	10.007
	252.15	253.44	254.74	256.04	257-34	958-64	950.05	00 017	240.08
9	265.21	266.54	267.87	969-90	970 - 52	100 OH	200 30 070 01	201.20	262.58
, _	278-61	26.626	921-186	00.600	101.00	70. 1/1	17.017	20.472	275.90
	66.606	900.10	00 F . 1 1	100.707	90.4.97	280.43	780.80	288.18	289 - 56
	500 500	27.007	11.067	Te. 967	297 - 91	200-31	300-72	302-13	303.54
	000 100	907.80	30.1.7.2	310.06	312.10	313.53	314.97	316.41	317.86
	97.029	322.22	373.68	325-14	326.61	328.08	329.55	331.02	12.600
	555.48	286.97	338.46	283-95	341.45	249.06	21 - 1 173.	248.07	10. 700
	850.52	359.04	852.57	275.00	080.00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	OF TEC	0.10 37	24.748
	965.00	50.100	20 000	000000	00.000	90.20	07.609	361.24	362 · 79
-	900 00	44. /00	903.00	20.078	372.13	373.70	375.27	376.85	378.43
	60.190	222. IX	384.77	386.37	387 - 96	75.088	391 - 17	309.78	02-102
	29.788	399 - 25	+00·87	402.50	404 - 13	405.76	407.40	100.001	410.00
							07 107	EO COT	40.0TF

Galvanised steel sheathing wire has a specific gravity of approximately 7.8.

The weight of any galvanised steel wire is equal to $\frac{d^2}{62\cdot 6}$ lb. per nautical mile, or $\frac{d^2}{70}$ lb. per statute mile, when d is the diameter of the wire in mils.

The diameter of any galvanised steel wire weighing W lb. per nautical mile is equal to 7.91 VW mils, or weighing W lb. per statute mile 8.49 VW mils.

The length of lay for the sheathing wires is given by the diameter under the inner jute serving multiplied by 24.

The number n of sheathing wires having a diameter d which will completely sheathe a cable is equal to

$$n = \pi \left(\frac{\mathbf{D} + d}{d} \right)$$

where D is the diameter over the jute serving.

Table No. 112 gives the number and diameter of the wires which will completely sheathe cables of various diameters.

Table No. 113 gives the weight of steel wire in lb. per nautical mile for various diameters.

If a cable be completely armoured by N wires, each of diameter d, then the diameter of the pitch circle of the sheathing wires is given by (d|c), where c is a constant depending on the number N of sheathing wires. The diameter over the inner jute serving will therefore be equal to (d|c-d), and the diameter over the sheathing wires will be equal to (d|c+d).

Table No. 114 gives the value of this constant c for various numbers of sheathing wires.

Table No. 112.—Number of Wires Required to Sheathe any Served (able.

4.0		$\begin{array}{c} 3 + 1 + 2 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3$
3,0		57 x 61 2 x 82 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
00 00	-	88 88 88 88 88 88 88 88 88 88 88 88 88
3.7	4	24 4 5 8 6 6 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8
3.6		4677889018445978333388888888888888888888888888888888
3.05		4001112828282828888888888888888888888888
.co	netres	10.00 11.00
 	Diameter of Gable over the Jute Serving in Millinetres	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
, ca	ving it	######################################
3.1	ute Ser	22,22,23,20,20,20,20,20,20,20,20,20,20,20,20,20,
3.0	er the J	4.8.8.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4
5.8	ble ove	2221 2221 22224 22222 22222 22222 22222 22222 22222 2222
F2 00	er of Cu	1121 447 547 547 547 547 547 547 547 547 547
64)iamete	1121 1121 1132 1132 114 114 116 117 118 118 118 118 118 118 118 118 118
13.6		011112121212121212121212121212121212121
2 . 5	1	01111111111111111111111111111111111111
, çı		10.6 10.6 111.4 112.2 12.2 12.2 12.2 12.2 12.2 13.3 13.4 14.4 14.4 14.4 14.4 14.4 14.4
64		100.25 100.25 112.14 113.8.8.14 114.55 114.5
51 C1		22.01.02.02.02.02.02.02.02.02.02.02.02.02.02.
		88.7 100.0 110.0 111.3 111.3 112.0 113.3 114.0 10.0 10
5.0		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Diam. of Sheath Wire, mm.	No. of Sheath Wires	8 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

TABLE NO. 113.—WEIGHT OF IRON WIRE IN LB. PER NAUTICAL MILE.

(Diameter in mils.)

TABLE NO. 113.—WEIGHT OF IRON WIRE IN LB. PER NAUTICAL MILE—continued.

6	1240 1331 1425 1522 1622 1622 1622 1622 1722 1831 2537 2537 2738 2738 2738 3071 3213 3656 3811 3968
− ∞	1232 1322 1415 1512 1512 1611 1714 1714 1821 1821 1821 1821 1821 1821 2022 2024 2053 2053 2053 2054 2053 2054 2053 2054 2053 2054 2053 2054 2055 2055 2056 2056 2056 2056 2056 2056
Į	1223 1318 1318 1406 1502 1601 1704 1810 1810 2011 2146 2265 2640 2771 2771 2845 3845 3828 3828 3828 3828 3828 3838 3838 383
9 .	1214 1303 1492 1596 1591 1694 1799 1799 1799 1799 1799 1799 1799 17
r.c	1205 1295 1287 1587 1587 1688 1788 1788 1788 1788 1788 1788 17
41	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ಣ	1188 1276 1463 1463 1463 1561 1663 1663 1767 1875 1986 2217 2217 2221 2221 2221 2221 2221 222
ca -	1179 1267 1259 1659 1651 1651 1756 1756 1756 1756 1974 1974 1975 1975 1975 1975 1975 1975 1975 1975
1	1170 1258 1444 1444 1541 1541 1541 1746 1746 1746 1746 1746 1746 1746 17
0	1162 1249 1340 1340 1434 1531 1632 1735 1735 1735 1735 2822 2811 2821 2824 2811 2821 2811 2827 2811 2827 3826 38372 3826 38382
Diam.	220 280 280 310 310 320 330 330 330 400 440 440 440 440 440 44

Ib. per nautical mile $\times 0.8673 = 1$ b. per statute mile. Ib. per nautical mile $\times 0.2445 = \text{kilog.}$ per kilometre.

TABLE NO. 114.—TABLE OF CONSTANTS FOR CALCULATING THE PITCH DIAMETER AND DIAMETER OVER SHEATHING WIRES.

Number of Sheath Wires	Constant	Number of Sheath Wires	Constant	Number of Sheath Wires	Constant
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	1·1547 1·4142 1·7013 2·0000 2·3048 2·6131 2·9238 3·2361 3·5495 3·8637 4·1786 4·4940 4·8097 5·1258 5·4422 5·7588 6·0755 6·3924 6·7095 7·0267 7·3439	26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 44 45 46	8:2962 8:6138 8:9314 9:2491 9:5668 9:8845 10:2023 10:5200 10:8387 11:1558 11:4737 11:7862 12:1096 12:4275 13:695 13:3815 13:695 14:0175 14:3356 14:6537	49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69	15·6079 15·9260 16·2441 16·5623 16·8843 17·1984 17·5166 17·8347 18·1529 18·4710 18·7892 19·1073 19·4254 19·7437 20·0615 20·3800 20·6984 21·0163 21·3347 21·6528 21·9710
24 25	7·6613 7·9787	47 48	14·9717 15·2898	70	22.2893

Table No. 115 gives the number and diameter of sheathing wires necessary to completely armour jute served cables of various diameters, together with their weight in kilogrammes per kilometre which is equal to:

7.8 (cross section of one wire in mm.2) \times (number of wires) + 2 per cent. for lay

Kilogrammes per kilometre $\times 2.016$ gives lb. per 1000 yards. Kilogrammes per kilometre $\times 3.548$ gives lb. per statute mile. Kilogrammes per kilometre $\times 4.090$ gives lb. per nautical mile.

Table No. 116 gives particulars of various sheathings as used for submarine cables; the weight of jute serving given is that which would completely fill the space inside the sheathing wires; therefore the weight of the core, considered as jute, must be subtracted from this weight to obtain the amount of serving in the cable. For example:

18 sheathing wires each 10 mm. diameter.

Pitch diameter given 2.267 inches.

Therefore diameter over jute serving = 2.267-0.3937 inch.

Let the diameter over the gutta-percha core be 1.48 inch.

Therefore core area = 1.72 square inch.

Therefore the weight of this core, considered as jute, will be 1.72 × 1650 = 2838 lb. per nautical mile.

Therefore the weight of the jute serving required will be 4940 - 2838

= 2102 lb. per nautical mile.

Table No. 115.—Particulars of Round Steel Wire Sheathing for Cables.

Diam.	Sheat	h Wires	Weight	Diam.	Sheat	h Wires	Weight	Diam.	Sheat	h Wires	Weight
over			of Wires,	over			of Wires,	over			of Wires,
Jute	DT.	Diam.	kilog.	Jute	3.7	Diam.	kilog.	Jute		Diam.	kilog. per km.
mm.	No.	mm.	per km.	mnı.	No.	mm.	per km.	mm.	No.	mm.	per kin.
-		,							!		
3.3	10	1.5	141	10.8	20	2.0	500	15.2	27	2.0	675
3.8	11	1.5	155	10.9	26	1.5	366	15.2	19	3.0	1068
4.3	12	1.5	169	10.9	13	3.5	995	15.2	15	4.0	1499
4.4	10	2.0	250	10.9	10	5.0	1562	15.2	11	6.0	2474
4.7	13	1.5	183	11.1	17	2.5	664	15.3	10	7.0	3061
5.0	11	$\frac{1}{2} \cdot 0$	275	11.3	15	3.0	843	15.5	17	3.5	1301
5.2	14	1.5	197	11.3	11	4.5	1391	15.5	12	5.5	2268
5.5	10	2.5	391	11.4	27	1.2	380	15.6	14	4.5	1770
5.6	12	2.0	300	11.4	21	2.0	525	15.7	36	1.2	506
5.7	15	1.5	211	11.4	12	4.0	1199	15.7	13	5.0	2030
6.1	16	1.5	$\frac{211}{225}$	11.9	18	2.5	703	15.8	23	2.5	899
6.3	11	2.5	430	11.9	28	1.5	394	15.8	28	$2 \cdot 0$	700
6.3	13	2.0	325	12.0	22	2.0	550	16.2	$\frac{28}{20}$	3.0	1124
6.6	17	1.5	239	12.0	10	5.5	1890	16.2			2904
6.6	10	3.0	562	12.1	14	3.5		16.4	$\frac{11}{10}$	6.5	3514
6.9	14	2.0	350	12.4	29	1.5	1071	16.5	29	7.5	
7.1	12	2.5	469	12.4	16	3.0	100	16.5		2.0	725
7.1	18	1.5	253	12.5	11	5.0	900		16 24	4.0	1599
7.5	11	3.0	619	12.5	13	4.0	1717	16.6		2.5	938
7.6	19	1.5	267	12.6	23	2.0	1299	16.6	18	3.5	1377
7.6	15	2.0	375	12.7	19	2.5	575	17-0	15	4.5	1897
7.7	10	3.5	765	12.8	30	1.2	743	17:0	12	6.0	2699
7.8	13	2.5	508	12.8	12	4.5	422	17:1	30	2.0	750
8.1	20	1.5	281	13.1	10	6.0	1517	17.1	21	3.0	1181
8.3	16	2.0	400	13.3	31		2249	17.2	13	5.5	2457
8.5	21	1.5	295	13.3	24	$\frac{1.5}{2.0}$	436	17:4	25	2.5	977
8.5	12	3.0	675	13.3	17	3.0	600	17.4	14	5.0	2186
8.6	14	2.5	545	13.3	15	3.5	956	17.5	10	8.0	3998
8.7	11	3.5	842	13.5	$\frac{10}{20}$	2.5	1148	17.5	11	7.0	3367
8.7	10	4.0	1000	13.8	32		782	17.7	31	2.0	775
8.9	17	2.0	425	13.8	14	1.5	450	17.7	19	3.5	1454
9.0	22	1.5	310	13.8	11		1399	17.7	17	4.0	1699
9 · 4	15	2.5	586	13.9	25	$\begin{bmatrix} 5.5 \\ 2.0 \end{bmatrix}$	2079	18.0	22	3.0	1237
9.4	13	3.0	731	14.1	13		625	18.2	26	2.5	1016
9.5	23	1.5	324	14.2	21	4.5	1644	18.3	32	2.0	800
9.5	18	2.0	450	14.2		2.5	821	18.3	12	6.5	3168
9.8	10	4.5	1265		12	5.0	1873	18.5	16	4.5	2023
9.9	12	3.5	918	14·2 14·3	10	6.5	2640	18.7	10	8.5	4514
10.0	24	1.5	338	14.3		1.5	464	18.8	20	3.5	1531
10.0	11	4.0	1099	14.3	18	3.0	1012	18.9	13	6.0	2924
10.1	19	2.0	175	14.6	16	3.5	1224	19.0	33	2.0	825
10.3	16	2.5	625		26	3.0	650	19.0	27	2.5	1055
10.4	25	1.5	352	14.7	34	1.5	478	19.0	23	3.0	1293
10.4	14	3.0	787	$15.0 \\ 15.2$	22	2.5	860	19.0	18	4.0	1799
10.1	TI	0 0	101	15-2	35	1.5	492	19.0	15	5.0	2344
~ .			1	1	-						

Table No. 115—continued.

Diam.	Sheatl	wires	Weight	Diam.	Sheat	h Wires	Weight	Diam.	Sheat	h Wires	Weight
over			of Wires,	over			of Wires,	over			of Wires,
Jute		Diam.	kilog.	Jute	1	Diam.	kilog.	Jute	**	Diam.	kilog.
mm.	No.	mm.	per km.	mm.	No.	mm.	per km.	mm.	No.	mm.	per km.
	-				1			_			
19.0	14	5.5	2646	23.7	28	3.0	1574	28.5	18	6.0	4048
19.0	11	7.5	3865	23.8	11	9.5	6202	28.6	16	7.0	4897
19.7	34	2.0	850	$\frac{24 \cdot 0}{24 \cdot 0}$	12	8.0	5416	28.7	17	6.5	4488
19.7	10	9.0	5060	$24 \cdot 1$	20	4.5	2509	28.8	29	3.5	2219
19.7	28	2.5	1094	24.2	17	5.5	3213	29.2	26	4.0	2599
19.8	12	$\frac{2}{7} \cdot 0$	3673	24.2	14	7.0	4285	29.5	34	3.0	1911
19.9	17	4.5	2150	24.4	25	3.5	1913	29.5	14	8.5	6319
20.0	24	3.0	1349	24.5	16	6.0	3598	29.5	20	5.5	3780
20.0	21	3.5	1607	24.5	15	6.5	3960	29.9	13	9.5	7330
20.0	11	8.0	4398	24.6	34	2.5	1328	$\frac{29 \cdot 9}{29 \cdot 9}$	24	4.5	3035
20.3	35	2.0	875	$\frac{24 \cdot 7}{24 \cdot 7}$	29	3.0	1620	30.0	30	3.5	2295
20.3	19	4.0	1899	25.0	13	8.0	5198	30.0	22	5.0	3434
20.3	13	6.5	3432	$\frac{25}{25 \cdot 0}$	11	10.0	6872	30.2	15	8.0	5998
20.5	16	5.0	2498	25.0	22	4.0	2199	30.2	19	6.0	4273
20.6	29	2.5	1133	$25 \cdot 1$	19	5.0	2966	30.4	35	3.0	1967
20.8	10	9.5	5639	25.3	23	4.0	2299	30.4	27	4.0	2699
20.8	15	5.5	2835	25.4	35	2.5	1367	30.8	18	6.5	4752
20.9	36	2.0	900	25.5	12	9.0	6072	30.8	16	7.5	5622
20.9	25	3.0	1405	25.5	26	3.5	1989	30.9	17	7.0	5204
20.9	14	6.0	3148	25.6	21	4.5	2656	31.0	31	3.5	2372
21.0	22	3.5	1683	25.7	30	3.0	1686	31.2	14	9.0	7084
$21 \cdot 2$	$\frac{12}{12}$	7.5	4217	26.0	18	5.5	3402	31.2	21	5.5	3968
21.3	11	8.5	4965	26.0	. 14	7.5	4919	31.4	36	3.0	2024
21.3	18	4.5	2276	26.2	36	2.5	1406	31.4	25	4.5	3161
21.4	30	2.5	1172	26.5	17	6.0	3823	31.5	13	10.0	8120
21.6	20	4.0	1999	26.5	15	7.0	4591	31.6	28	4.0	2799
21.9	10	10.0	6247	26.6	31	3.0	1743	31.6	23	5.0	3591
21.9	26	3.0	1462	26.6	27	3.5	2066	$32 \cdot 1$	15	8.5	6770
21.9	13	7.0	3979	26.6	24	4.0	2399	$32 \cdot 2$	32	3.5	2448
22.0	17	5.0	2654	26.6	16	6.5	4223	32.2	20	6.0	4498
22.1	23	3.5	1760	26.7	13	8.5	5868	32.7	16	8.0	6398
22.2	31	2.5	1211	26.8	12	9.5	6766	32.7	26	4.5	3288
22.5	11	9.0	5565	26.8	20	5.0	3123	32.9	19	6.5	5016
22.5	16	5.5	3024	27.0	22	4.5	2782	33.0	14	9.5	7894
22.5	14	6.5	3696	27.5	32	3.0	1799	33.0	29	4.0	2899
22.6	12	8.0	4798	27.5	19	5.5	3591	33.0	22	5.5	4158
22.6	19	4.5	2403	27.7	14	8.0	5598	33.1	17	7.5	5974
22.7	15	6.0	3374	27.7	28	3.2	2142	33.2	33	3.5	2525
22.8	27	3.0	1518	27.9	25	4.0	2499	33.2	24	2.0	3747
22.8	21	4.0	2099	28.2	13	9.0	6578	33.2	18	7.0	5510
22.9	32	2.5	1250	28.2	12	10.0	7496	34.0	15	9.0	7590
23.3	24	3.5	1836	28.3	15	7.5	5271	34.2	30	4.0	2999
23.5	13	7.5	4568	28.4	21	5.0	3279	34.2	21	6.0	4723
23.6	18	5.0	2810	28.5	33	3.0	1855	34.3	27	4.5	3414
23.7	33	2.5	1289	28.5	23	4.5	2908	34.4	34	3.5	2602
										l	

Table No. 115—continued.

	las			1 -				-			
Fiam. over	Sheat	h Wires	Weight of Wires.	Diam.	Sheat	h Wires		Diam.	Sheat	h Wires	Weight
Jute		Ĭ	kilog.	over Jute	,		of Wires,		-		of Wires,
mm.	No.	Diam.	per km.	mm.	No.	Diam.	per km.	Jute mm.	No.	Diam.	kilog. per km.
		111111.	2		1,0,	mm.	per mii.	min.	140.	nım.	per km.
34.7	14	10.0	8744	41.1	32	4.5	4046	49.4	29	6.0	6522
34.7	23	5.5	4347	41.2	29	5.0	4527	49.4	27	6.5	7128
34.8	25	5.0	3903	41.8	36	4.0	3599	49.8	24	7.5	8432
$34 \cdot 9$	16	8.5	7222	41.9	25	6.0	5628	50.2	19	10.0	11870
35.0	20	6.5	5279	42.0	27	5.5	5103	50.5	32	5.5	6047
35.3	17	8.0	6798	42.0	22	7.0	6734	50.5	23	8.0	9196
35.3	19	7.0	5805	42.1	17	9.5	9586	50.8	35	5.0	5464
35.5	35	3.5	2678	42.6	21	7.5	7378	51.0	22	8.5	9930
35.5	31	4.0	3099	42.7	19	8.5	8576	51.0	20	9.5	11275
35.5	18	7.5	6365	42.8	30	5.0	4684	51.1	26	7.0	7958
35.7	28	4.5	3541	43.0	33	4.5	4172	51.2	30	6.0	6748
36.0	15	9.5	8458	43.0	20	8.0	7998	51.2	21	9.0	10630
36.0	22	6.0	4948	43.0	18	9.0	9108	51.4	28	6.5	7392
36.4	26	5.0	4059	43.2	24	6.5	6335	52 · 1	25	7.5	8785
36.5	24	5.5	4536	43.5	28	5.5	5292	52.3	36	5.0	5620
36.6	36	3.5	2751	43.8	26	6.0	5847	52.6	33	5.5	6237
36.8	32	4.()	3199	44.2	34	4.5	4299	53 · 1	27	7.0	8264
37.0	16	9.0	8096	44.3	23	7.0	7040	53 - 2	31	6.0	6972
$37 \cdot 0$	29	4.5	3667	44.4	17	10.0	10620	53.2	24	8.0	9596
37.0	21	6.2	5544	44.2	31	.5 · ()	4880	53.5	29	6.5	7656
37.6	17	8.5	7678	45.0	22	7.5	7730	53.8	20	10.0	12490
37.6	20	7.0	6122	$45 \cdot 2$	19	9.0	9614	54.0	34	5.5	6425
37.8		10.0	9370	45.3	18	9.2	10148	54.0	23	8.5	10380
38.0	33	4.0	3299	45.3	29	5.5	5481	54.0	22	9.0	11300
38.0	18	8.0	7198	45:3	25	6.5	6600	54.0	21	9.51	11840
38.0	23	6.0	5173	45.2	21	8.0	8398	54.7	26	7.5	9136
38.0	27	5.0	4215	42.6	27	6.0	6072	55.0	32	6.0	7196
38.0	19	7.5	6676	45.7	20	8.5	9026	55:3	28	7.0	8570
38:1	25	5.5	4725	45.9	35	4.2	4426	55.6	25	8.0	9996
38.5	$\frac{30}{16}^{-1}$	1.5	3794	46.0	32	2.0	4995	55.7	30	6.5	7920
39.0	90	9.5	9022	46.9	24	7 - ()	7346	55.8	35	5.5	6614
39.4	34	6.9	5808	47.0	30	5.5	5670	56.5	24	8.5	10830
39.5	28	4·0 5·0	3399	17.4	36	4.5	4552	56.8	21	10.0	13120
39.8	17	9.0	4371	47.4		10.0	11240	57.0	23	9.0	11640
39.8	21	7.0	8602	47.5	28	6.0	6 97	57.0	22	9.5	12405
40.0	31		6428	47.5	26	6.5	6864	57.1	27	7.5	9488
40.0	$\frac{51}{26}$	4·5 5·5	3920	47.5	23	7.5	8082	$57 \cdot 2$	33	6.0	7422
40.0	24	9.9	4914	47.7	19	9.5	10710	57:5	36	5.5	6804
40.3	20	7.5	5398	48.0	22	8.0	8796	57.5	29	7.0	8876
40.4	18	8.5	7028	48.1	33	2.0	5152	57:7	31	6.5	8184
40.5	19	8.0	8124	48.2	20	9.0	10120	58.2	26	8.0	10395
40.6	35	4.0	7598	48.3	21	8.5	9478	59.0	34	6.0	7647
41.0		10.0	3499 9994	48.6	25	7.0	7652	59.3	25	8.5	11280
41.0	23	6.5	6071	48.7	31	5.5	5859	$59 \cdot 5$	28	7:5	9839
410	4.7	0 0	0071	49.2	34	5.0	5308	59.6	32	6.5	8447

Table No. 115—continued.

Diam.	Sheat	a Wires	Weight of Wires,	Diam.	Sheatl	ı Wires	Weight of Wires,	Diam. over	Sheatl	h Wires	Weight of Wives,
Jute n.m.	No.	Diam.	kilog. per km.	Jute mm.	No.	Diam. mm,	kilog. per km.	Jute mm.	No.	Diam.	kilog. per km,
59.9	24	9.0	12140	68.3	27	9.0	13660	79.0	28	10.0	17490
60.0	30	7.0	9182	68.5	30	8.0	11995	80.0	31	9.0	15685
60.0	22	10.0	13740	68.7	32	7.5	11240	81.0	33	8.5	14890
60.2	23	9.5	12965	69.0	34	7.0	10410	81.5	35	8.0	13995
61.0	35	6.0	7872	69.4	26	9.5	14660	81.5	30	9.5	16915
61.0	27	8.0	10795	69.6	25	10.0	15610	82.5	29	10.0	18110
61.7	29	7.5	10190	70:5	29	8.5	13090	83.0	32	9.0	16190
62.0	31	7.0	9489	71.0	31	8.0	12395	83.5	34	8.5	15345
62.0	26	8.5	11730	71.0	33	7.5	11592	84.0	36	8.0	14395
62.1	33	6.5	8710	71.0	28	9.0	14170	84.4	31	9.5	17480
62.8	25	9.0	12650	71:5	35	7.0	10710	85.5	32	9.5	18040
63.0	36	6.0	8096	72.1	27	9.5	15222	86.0	35	8.5	15795
63 · 1	24	9.5	13530	73:0	30	8.5	13540	86.0	33	9.0	16700
63.3	28	8.0	11195	73:0	26	10.0	16240	86.0	30	10.0	18740
63.5	34	6.9	8976	73+3	36	7.0	11020	88.2	34	9.0	17200
63.5	23	10.0	14360	78.5	34	7.5	11950	89.0	36	8.5	16250
64.3	30	7.5	10540	73:6	32	8.0	12795	89.0	31	10.0	19360
64.5	32	7.0	9796	74.4	29	0.0	14670	90.5	33	9.5	18605
64.5	27	8.5	12185	75:0	28	9.5	15790	90.5	32	10.0	19985
65.6	26	9.0	13160	75.5	31	8.5	13990	91.0	35	9.0	17710
65 · 9	29	8.0	11595	76.0	33	8.0	13195	93 · 1	34	9.5	19170
66.0	35	6.5	9239	76.0	27	10.0	16860	91.0	36	9.0	18220
66 · 1	25	9.5	14095	76.5	35	7.5	12300	95.0	33	10.0	20610
66.5	33	7.0	10100	77.1	30	9.0	15180	96.9	35	9.5	19732
66.5	24	10.0	14990	78.1	32	8.5	14440	98.2	34	10.0	21235
66.7	31	7.5	10890	78.5	34	8.0	13595	99.2	36	9.5	20298
67.0	28	8.5	12640	78.5	36	7.5	12650	100.8	35	10.0	21860
68.0	36	6.5	9504	78-5	29	9.5	16350	104.8	36	10.0	22185

Table No. 116. Particulars of Steel Wire Armouring for Submarine Cable.

(Jute serving weighing 1650 lb. per sq. in. per nautical mile.)

Diam	of Wire	No. of		Diam. of ires	Weight of a Single Wire, lb.	Total Weight of Wires,	Total Weight of Jute inclosed, lb.
mm.	in.	Wires	mm.	in.	per Nautical Mile	lb. per Nautical Mile	per Nautical Mile
10.0	0.3937	8	26.15	1:029	$2471 + 4\frac{1}{2}\%$	20683	650
29	12	9	29.25	1.151	2 /0	23268	880
51	9.9	10	32.4	1.274	22	25803	1163
29	92	11	35.5	1.397	22	28438	1509
99	19	12	38.65	1.521	,,	31024	1856
22	27	13	41.8	1.645	,,	33600	2225
22	31	14	44.95	1.769	,,	36194	2730
,,	9.2	15	48.1	1.893	"	38879	3200
22	,,	16	51.26	2.018	,,	41365	3750
22	,,	17	54.4	2.142	27	43950	4300
"	22	18	57.6	2.267	"	46535	4940
8.0	0.3150	8	20.9	0.823	$1581 \cdot 25 + 4\frac{1}{2}\%$	13219	420
**	22	9	23.4	0.921	22 /0	14871	570
51	,,	10	25.9	1.019		16521	745
99	22	11	28.4	1.118	75	18174	955
22	72	12	30.9	1.217	22	19828	1189
99	99	13	33.42	1.316	>>	21480	1450
22	22	14	35.95	1.415	. 99	23142	1740
59	,,	15	38.5	1.515	99	24784	2050
29	22	16	41.0	1.614	99	26437	2350
29	99	17	43.55	1.714	25	28088	2720
33	27	18	46.1	1.814	22	29741	3110
6.0	0.2362	8	15:66	0.6172	887.5 + 4%	7384	230
23	99	9	17:56	0.6906		8306	315
32	59	10	19.4	0.7643	***	9230	419
5.5	72	11	21.3	0.8383	59	10152	537
11	,,	12	23.2	0.9126	"	11080	670
2.7	99	13	25.07	0.9870	1	11998	815
22	22	14	26.95	1.061	>>	12922	
2.2	22	15	28.87	1.136	>>	13844	979 1130
22	,,	16	30.8	1.211	, ,,	14768	$\frac{1130}{1290}$
22	22	17	32.61	1.285	31	15690	
7.7	23	18	34.55	1.360	99	16613	1525
,,	2,9	19	36.45	1.435	99	17536	1750
22	99	20	38.4	1.510	29		1980
27	27	21	40.28	1.585	>>	18460	2220
55	39	22	42.18	1.660	99	19382	2485
27		23	44.5	1.753	99	20306	2790
29	99	24	45.95	1.809	99	21228	3150
29	1	- A	10 00	1 000	23	22154	3395

Table No. 116.—continued.

Diam	. of Wire	No. of Wires		oiam. of	Weight of a Single Wire, lb. per Nautical	Total Weight of Wire, lb. per Nautical	Total Weight of Jute inclosed, lb.
mm.	, in.		mm.	in.	Mile	Mile	per Nautical Mile
5.0	0.1969	8	13.08	0.5145	618.5 + 4%	5146	160
22	99	9	14.64	-5757	99	5789	224
77	22	10	16.20	•6372	99	6432	290
57	7,	11	17.74	•6988	99	7075	375
23	. 22	12	19.36	.7607	9.9	7719	464
99	,,	13	20.90	8227	99	8362	570
99	22	14	22.47	*8848	99	9005	679
22	99	15	24.10	•9470	9.9	9648	800
99	52	16	25.65	1.009	**	10292	930
27	22	17	27.20	1.071	9.9	10934	1070
17	99	18	28.80	1.133	9.9	11578	1215
99	77	19	30.40	1.196	12	12221	1400
		20	32.00	1.258	99	12864	1568
99	2.5	21	33.60	1.321	99-	13498	1740
99	27	1)1)	35.15	1.383	41	14151	1910
22	77	23	36.75	1.446	99	14794	2150
99	77	24	38.30	1.508	99	15438	2350
99	97		00 00		7,		
4.0	0.1575	8	10.45	0.4116	393 + 3 %	3238	104
		9	11.70	•4605	220 7 0 /0	3643	141
27	97	10	12.93	• 5096		4048	186
**	97	11	14.20	5590	99	4453	238
22	99	12	15.45	•6085	99	4858	297
99	37	13	16.72	.6581	99	5264	363
99	99	14	18.00	•7078	99	5667	434
77	99	15	19.25	-7575	99	6073	514
22	99		20.50	8073	99	6477	597
27	99	16	21.75	8571	99	6881	688
22	99	17	23.05	•9070	99	7286	779
99	22	18		9569	11	7691	872
22	99	19	24·30 25·58	1.0068	99	8096	985
22	97	20			99	8501	1126
,,	99	21	26.80	1.0567	99	8905	1253
27	29	22	28.10	1.106	29	9310	1392
99	27	23	29.40	1.156	99	9715	1520
22	99	24	30.65	1.206	99	3/10	1020
	0 4 0 11 0		0.0	0.0007	909.5 1 9.0/	9501	77
3.5	0.1378	8	9.2	0.3601	303.5 + 3 %	2501	77 107
22	99	9	10.23	4029	5.9	2813	141
,,	22	10	11.33	*4459	27	3126	
22	99	11	12.42	•4891	99	3439	180
27	77	12	13.52	•5324	99	3751	223
,,	99	13	14.62	• 5758	79	4065	275
,,	99	14	15.72	6193	29	4397	332
99	99	15	16.82	•6628	99	4689	393

Table No. 116.—continued.

Diam	of Wire	No. of Wires		Diam. of ires	Weight of a Single Wire, lb. per Nautical	Total Weight of Wire, lb. per Nautical	Total Weight of Jute inclosed, lb.
mm.	in.		mm.	in.	Mile	Mile	per Nautical Mile
3.5	0.1378	16	17.93	0.7063	303.5 + 3 %	5002	457
,,	,,	17	19.02	.7490	,,	5314	524
99	22	18	20.14	•7935	22	5627	597
22	99	19	21.26	*8372	39	5939	680
22	99	20	22.40	*8808	27	6252	766
99	27	21	23.50	•9245	39	6564	852
22	99	22	24.60	.9682	99	6877	948
25	23	23	25.43	1.0119	99	7189	1043
22	39	24	26.80	1.0557	29	7504	1164
3.0	0.1181	8	7.84	0.3086	222 + 3 %	1829	57
95	99	9	8.77	•3453	99	2058	79
22	99	10	9.71	*3822	99	2287	105
52	29	11	10.62	•4192	99	2515	134
99	99	12	11.60	*4563	33	2744	167
22	99	13	12.52	•4935	99	2972	204
29	22	14	13.50	•5307	***	3201	244
22	99	15	14.43	•5680	>>	3430	289
22	22	16	15.40	6053	99	3658	336
99	59	17	16:32	*6427	29	3887	387
99	99	18 19	$17.30 \\ 18.22$.6801	>>	4116	443
57	22	20	19.20	•7175	25	4345	501
22	,,,	21	$20 \cdot 12$	7549	23	4573	565
29	29	22	21.08	8298	"	4802	628
22	99	23	22.00	8672	99	5030	700
27	99	24	23.00	•9049	"	5260	790
2.5	0.09843	8	6.54	0.2572	150.7 1 0.07	5488	850
		9	7.31	2878	$153 \cdot 1 + 3\%$	1262	48
99	9*	10	8.09	3185	22	1419	65
99	99	11	8.88	*3494	99	1577	75
99	99	12	9.66	.3803	"	1734	95
22	22	13	10.46	•4131	99	$\frac{1892}{2050}$	116
99	99	14	11.25	•4423	"	$\frac{2030}{2207}$	143
97	**	15	12.00	•4734	25	2365	170
19	99	16	12.80	•5045	99	2522	$\frac{201}{233}$
99	99	17	13.60	•5357	"	2680 -	265 265
99	99	18	14.40	• 5668	99 99	2837	308
99	79	19	15.20	•5980	22	2995	349
23	29	20	16.00	6292	22	3154	393
22	99	21	16.80	6604	95	3311	438
22	99	22	17.60	.6916	99	3469	486
22	23	23	18.35	•7229	,,	3627	538
99	29	24	19.15	.7541	,,	3784	591

TABLE No. 116.—continued.

Diam	. of Wire	No. of Wires		Diam. of ires	Weight of a Single Wire, lb. per Nautical	Total Weight of Wire, lb. per Nautical	Total Weight of Jute inclosed, lb.
mm.	in.	-	mm,	in.	Mile	Mile	per Nautical Mile
2.0	0.07874	8	5.23	0.2057	99.5 + 3 %	820	26
**	99	9	5.85	•2302	72	922	36
,,	99	10	6.47	-2548	99	1025	47
55	,,	11	7.10	•2795	,,,	1127	60
99	99	12	7.73	*3044	,,,	1230	74
22	,,	13	8.36	*3290	,,	1332	89
••	99	14	8.99	-3538	99	1435	108
22	99	15	9.62	•3787	99	1537	130
99	22	16	10.23	4035	29	1640	150
99	99	17	10.90	•4285	29	1742	173
99	99	18	11.50	•4534	99	1845	197
99	99	19	12.15	•4784	99	1947	223
99	29	20	12.80	• 5033	>>	2050	250
99	99	21 .	13.40	•5283	99	2152	281
55	99	22	14.05	• 5533	99	2255	313
99	99	23	14.70	*5783	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2357	344
29	99	24	15.32	•6032	99	2460	378
1.75	0.06890	8	4.57	0.1800	74.75 + 3 %	624	· 20
99	99	9	$5 \cdot 12$.2014	,,	703	26
99	99	10	5.67	· 2230	**	780	36
77	99	11	$6 \cdot 21$. 2445	. 99	858	45
99	99	12	6.76	2662	29	936	57
99	99	13	7.31	.2879	29	1014	70
77	29	14	7.87	3096	99	1092	83
22	22	15	8.42	*3314	77	1170	98
99	99	16	8.97	*3532	**	1248	114
29	22	17	9.53	*3750	27	1327	133
99	29	18	10.10	*3968	99	1404	151
99	99	19	10.60	*4186	99	1482	172
99	99	20	11.20	*4404	99	$1560 \\ 1639$	192 213
59	22	21	11.75	*4623	27	1716	237
55	99	22	12:30	•4841	99	1795	262
77	99	23	12.85	• 5060	99	2097	290
99	**	24	13.40	•5279	27	2091	250
1.5	0.05906	8	3.92	0.1543	55.5 + 3%	457	15
99	99	9	4.39	.1727	77	514	20
7,	99	10	4.85	1910	99	572	27
99	**	11	5.32	• 2094	99	628	34
22	,,	12	5.80	-2282	,,	686	42
79	99	13	6.27	• 2468	99	744	52
,,	25	14	$\frac{6 \cdot 74}{7 \cdot 22}$	$^{\circ}2654 \\ ^{\circ}2841$	·	800 857	61 72
		15					

Table No. 116.—continued.

Diam.	of Wire	No. of		Diam. of	Weight of a Single Wire, lb.	Total Weight of Wire,	Total Weight of Jute inclosed, lb.
mm.	in.	Wires	mm.	in.	per Nautical Mile	lb. per Nautical Mile	per Nautical Mile
1.5	0.05906	16	7:69	0.3027	55.5 + 3%	915	- 81
,,	,,	17	8.17	:3214	99	971	97
99	22	18	8.64	.3401	22	1029	111
39	22	19	9.12	*3588	59	1085	126
99	99	20	9.59	*3775	99	1143	141
27	22	21	10.05	*3963	22	1200	158
22	22	22	10.55	.4150	99	1258	175
99	99	23	11.00	*4337	25	1314	193
22	99 (24	11.20	4525	29	1372	211

The heavier steel wires used for sheathing submarine cables are compounded before application to the cable: the wire is moderately heated and then dipped into a mixture of 4 parts of pitch to 1 part of resin oil. The wire takes up approximately 4 per cent. of its weight of the compound.

The efficiency of the zine coating on galvanised iron or steel wires is generally tested by dipping a piece of the wire four times into a concentrated solution of copper sulphate, the wire being wiped dry after each dip; if the galvanisation is complete there will be no deposition of copper on the wire, although the surface of the zine may become slightly blackened.

Table No. 117 gives some particulars of heavy wire armour, such as is applied to coast submarine cables. The armour consists of a layer of steel wire strands.

Table No. 117. —Particulars of Strand Wire Armour for Shore-end Cables.

Number and Size of Wire Strands, Diam, in inches	Total Weight of Jute inclosed, lb. per mautical mile (1850 lb. per sq. in, per nautical mile)	Diam, inside Sheathing available for reception of core, inches	Diam. over Sheathing, inches
$\begin{array}{c} 12 \times 3 \times 0 \cdot 230 \\ 12 \times 3 \times \cdot 220 \\ 12 \times 3 \times \cdot 210 \\ 12 \times 3 \times \cdot 200 \\ 11 \times 3 \times \cdot 230 \\ 11 \times 3 \times \cdot 220 \\ 11 \times 3 \times \cdot 210 \\ 11 \times 3 \times \cdot 220 \\ 11 \times 3 \times \cdot 210 \\ 10 \times 3 \times \cdot 230 \\ 10 \times 3 \times \cdot 230 \\ 10 \times 3 \times \cdot 220 \\ 10 \times 3 \times \cdot 200 \\ \end{array}$	2838 2715 2591 2468 2277 2178 2079 1980 1778 1700 1623 1546	1·270 1·214 1·159 1·104 1·131 1·081 1·032 0·983 ·992 ·948 ·905 ·862	2:375 2:272 2:168 2:065 2:221 2:125 2:028 1:931 2:068 1:979 1:888 1:798

FLEXIBLE SPIRAL ARMOUR.

Cables requiring partial mechanical protection and maximum flexibility, are armoured with a single galvanised steel wire applied to form an open helix round the cable with a comparatively short length of lay.

Let D = diameter under armour in millimetres.

d = diameter of the armour wire in millimetres.

l = length of lay in millimetres.

s = space between the successive turns in millimetres.

x = length of wire per turn in millimetres.

Then, in Fig. 11, if A B is made equal to the pitch circumference $\pi(D+d)$,

Fig. 11.

and BC equal to the length of lay l, then AC will be equal to the length of wire x, and the perpendicular B D will be equal to (d+s);

therefore

$$x = \sqrt{\{\pi(D+d)\}^2 + l^2}$$

therefore the ratio between the length of wire and the length of cable will be

$$\frac{x}{l} = \csc \alpha = \frac{\sqrt{\left\{\pi\left(D + d\right)\right\}^2 + l^2}}{\frac{1}{d + s}} = \frac{\pi\left(D + d\right)}{\frac{d + s}{d + s}}$$

The weight of steel wire in kilogrammes per kilometre is equal to

7·8 (area of wire in square millimetres) =
$$\frac{7\cdot 8}{4}$$
. d^2

Therefore the weight of steel wire in kilogrammes per kilometre of cable is equal to

 $6 \cdot 13 d^2 \csc \alpha$

and the weight of wire in lb. per statute mile of cable is equal to

 $21 \cdot 7 d^2$ cosec α

Example.-

Diameter of cable = D = 0.362 in.

Diameter of steel wire d = 0.064 in. = 1.626 mm.

Space between wire to be 1 in.

Cosec
$$\alpha = \frac{\pi \left(\mathbf{D} + d \right)}{d + s} = \frac{\pi \left(0.362 + 0.064 \right)}{0.064 + 0.250} = 4.262$$

therefore the weight of wire in lb. per statute mile is equal to

$$21.7 \times (1.626)^2 \times 4.262 = 245$$

or again :---

Diameter of cable = D = 0.566 in. Diameter of steel wire = d = 0.036 in. = 0.9144 mm. Required, 6 turns per in.

therefore the length of lay $l = \frac{1}{6} = 0.167$ in.

Cosec
$$\alpha = \frac{\sqrt{\left\{\pi\left(D+d\right)\right\}^2 + l^2}}{l} = 11.9$$

therefore the weight of wire in lb. per statute mile is equal to

$$21.7 \times (0.9144)^2 \times 11.9 = 216$$

SEGMENTAL OR FACON STRIP ARMOUR.

The usual sizes of steel segmental strip are given in Table No. 118, together with their weight and approximate price.

TABLE No. 118.—SEGMENTAL STRIP.

Dime	nsions in millin	netres	Weight in	
Length, outer side	Length, inner side	Thickness	kilogrammes per kilometre	Approximate Price
4·0 4·9 6·2 6·6 8·4	3:4 4:3 5:0 6:1 7:9	1:4 1:7 1:7 3:0 3:0	41·21 62·22 75·74 151·56 194·52	25 shillings per 100 kilogrammes, or 11/4 per 100 lb.

The weight of armour in kilogrammes per kilometre is equal to the mean cross section of the strip in square millimetres multiplied by the number of strips multiplied by 7.8. A further 2 per cent, must be added for the lay.

Table No. 119 gives particulars of segmental strip armour for cables of various diameters.

Telephone cables for drawing-in systems are often "open" armoured; the lead-sheathed cable is served with jute in the usual manner and then sheathed with half the number of segmental strips which would completely armour the cable; for draw-in systems the armour is left bright, that is, no serving is applied over the armouring wires.

TABLE No. 119.—SEGMENTAL STEEL ARMOUR.

Diam. over Jute,		Segmental Wires	Weight of Sheath in	over		Segmental Wires	Weight of Sheath in
mm.	No.	Dimensions, mm.	kilog. per km.	Jute, mm.	No.	Dimensions, mm.	kilog. per km.
6.3	6	4·0×3·4×1·4	248	34.3	23	4.9×4.3×1.7	1431
7.6	7	4.0×3.4×1.4	289	35.8	24	4.9×4.3×1.7	1494
9.6	8	4.0×3.4×1.4	330	36.0	19	6.2×5.0×1.7	1439
10.1	9	4.0×3.4×1.4	371	37.3	25	4.9×4.3×1.7	1556
11.3	10	4.0×3.4×1.4	412	37.8	20	6.2×5.0×1.7	1515
12.6	11	4.0×3.4×1.4	454	39.0	26	4.9×4.3×1.7	1618
13.9	12	4.0×3.4×1.4	495	39.8	21	6.2×5.0×1.7	1591
13.9	10	4.9×4.3×1.7	622	40.6	27	4.9×4.3×1.7	1681
15.2	13	4.0×3.4×1.4	536	41.8	22	6.2×5.0×1.7	1666
15.5	11	4.9×4.3×1.7	685	42.1	28	4.9×4.3×1.7	1743
16.5	14	4.0×3.4×1.4	577	43.6	29	4.9×4.3×1.7	1805
17.1	12	4.9×4.3×1.7	747	43.8	23	6.2×5.0×1.7	1742
17.7	15	4.0×3.4×1.4	619	45.3	30	$4.9 \times 4.3 \times 1.7$	1867
18.1	10	$6.2 \times 5.0 \times 1.7$	758	45.8	24	$6 \cdot 2 \times 5 \cdot 0 \times 1 \cdot 7$	1818
18.7	13	4.9×4.3×1.7	809	46.8	31	4.9×4.3×1.7	1929
20.2	11	6.2×5.0×1.7	833	47.8	25	$6 \cdot 2 \times 5 \cdot 0 \times 1 \cdot 7$	1894
20.2	14	4.9×4.3×1.7	872	48.3	32	4.9×4.3×1.7	1992
21.8	15	4.9×4.3×1.7	934	49.6	26	$6 \cdot 2 \times 5 \cdot 0 \times 1 \cdot 7$	1969
22.0	12	6.2×5.0×1.7	909	49.9	33	4.9×4.3×1.7	2054
23.3	16	4.9×4.3×1.7	996	51.5	34	4.9×4.3×1.7	2116
24.0	13	$6.2 \times 5.0 \times 1.7$	985	51.6	27	6.2×5.0×1.7	2045
24.8	17	4.9×4.3×1.7	1058	53.1	35	4.9×4.3×1.7	2178
26.0	14	$6.2 \times 5.0 \times 1.7$	1061	53.6	28	6.2×5.0×1.7	2121
26.4	18	4.9×4.3×1.7	1120	54.5	36	4.9×4.3×1.7	2240
28.0	19	$4.9 \times 4.3 \times 1.7$	1183	55.6	29	$6 \cdot 2 \times 5 \cdot 0 \times 1 \cdot 7$	2197
28.0	15	6.2×5.0×1.7	1136	57.5	30	$6 \cdot 2 \times 5 \cdot 0 \times 1 \cdot 7$	2273
29.6	20	4.9×4.3×1.7	1245	59.5	31	$6 \cdot 2 \times 5 \cdot 0 \times 1 \cdot 7$	2348
30.0	16	$6.2 \times 5.0 \times 1.7$	1212	61.5	32	$6.2 \times 5.0 \times 1.7$	2424
31.1	21	4.9×4.3×1.7	1307	63.5	33	$6.2 \times 5.0 \times 1.7$	2500
32.0	17	6.2×5.0×1.7	1288	65.5	34	$6 \cdot 2 \times 5 \cdot 0 \times 1 \cdot 7$	2576
32.8	22	4.9×4.3×1.7	1369	67.5	35	$6 \cdot 2 \times 5 \cdot 0 \times 1 \cdot 7$	2651
34.0	18	$6.2 \times 5.0 \times 1.7$	1364	69.5	36	$6 \cdot 2 \times 5 \cdot 0 \times 1 \cdot 7$	2727

JUTE SERVING BETWEEN TWO WIRE SHEATHS.

In Fig. 12 let the outer sheath consist of ρ wires each of diameter a, and let

Fig. 12.

the inner sheath consist of q wires each of diameter b, then the section of jute serving between the two sheaths will be

$$\begin{split} &\frac{\pi}{4}(x+y)^2 - \frac{\pi}{4}(x-y)^2 - \frac{\pi}{4} \cdot \frac{p}{2} \cdot a^2 - \frac{\pi}{4} \cdot \frac{q}{2} \cdot b^2 \\ &= \frac{\pi}{4} \Big(4xy - \frac{p}{2} \cdot a^2 - \frac{q}{2} \cdot b^2 \Big) = \pi \Big(xy - \frac{p}{2} \cdot a^2 + q \cdot b^2 \Big) \end{split}$$

The specific gravity of jute yarn compressed between two rings of sheath wires is 0.625, and weighs 1650 lb. per nautical mile per square inch section.

If the dimensions a, b, x and y are given in inches the weight of jute yarn is given by

5184
$$\left(x y - \frac{p a^2 + q b^2}{8}\right)$$
 = 1b. per nautical mile;

or if the dimensions are given in millimetres, the weight of jute yarn is given by

$$8.03\left(xy - \frac{pa^2 + qb^2}{8}\right) = 1$$
b. per nautical mile;

or

l 964
$$\left(x \, y - \frac{p \, a^2 + q \, b^2}{8}\right)$$
 = kilogrammes per kilometre.

SERVING OVER SHEATHING WIRES.

Let D be the pitch diameter of the sheathing wires (Fig. 13), and D_1 the overall diameter of the cable, and d the diameter of the sheathing wires; then the sectional area of the outside jute serving is

$$\frac{\pi}{4} D_1{}^2 - \frac{\pi}{4} D^2 - \frac{n}{2} \cdot \frac{\pi}{4} \cdot d^2 = \frac{\pi}{4} \Big(D_1{}^2 - D^2 - \frac{n}{2} d^2 \Big).$$

The specific gravity of jute as outer serving of a cable is 0.417, therefore, the weight of jute is given by

when D_1 , D and d in inches,

864
$$\left(D_1^2 - D^2 - \frac{n}{2}d^2\right) = \text{lb. per}$$

nautical mile;

when D, D and d in millimetres

$$1 \cdot 34 \left(D_1^2 - D^2 - \frac{n}{2} d^2 \right) = 1$$
b. per nautical mile;

$$0\cdot 3275 \left(\mathbf{D_1}^2 - \mathbf{D^2} - \frac{n}{2} d^2 \right) = \text{kilogrammes}$$
 per kilometre.

The weight of such jute is 1100 lb. per nautical mile per square inch section.

The outer serving over the sheathing wires generally consists of 5 lb. jute yarn, which increases the diameter of the cable by 3.2 millimetres (125 mils) per layer. If D be the diameter over the sheathing wires in inches, then the weight of jute yarn is approximately equal to

$$\frac{\pi}{4} \left\{ (D + 0.125)^2 - D^2 \right\} 1100$$

= (D + 0.0625) 216 = 216 D + 13.5 lb. per nautical mile for one layer.

The weight for two layers is equal to

$$(D + 0.125) 432 = 432 D + 54 lb.$$
 per nautical mile.

If the diameter D is given in millimetres, the weight is equal to

8.503 (D + 1.59) lb. per nautical mile for one layer

and

17.006 (D + 3.18) lb. per nautical mile for two layers.

TABLE No. 120.—HEMP SERVING.

_	Descri	iption of	Serving		Thickness of Serving, mils	Increase of Diameter, mils	Weight of Serving in lb, per Nautical Mile (where D is the diameter over the Sheathing Wires in inches)
1 layer ,,	3-ply	10 lb. 8 6 5	Russian " " "	hemp	83 74 64 59	166 148 128 118	332 D + 28 296 D + 22 256 D + 16 236 D + 14
2 layers	8-ply	10 lb. 8 6 5	Russian	hemp	166 148 128 118	332 296 256 236	664 D + 112 592 D + 88 512 D + 64 472 D + 56

Jute yarn servings absorb 80 per cent. of their weight of tar; the weight of

compound taken up is equal to the weight of tar.

In the case of submarine cables served with tarred yarn and compounded after each operation, the weight of compound taken up is taken as: for I layer of jute and 2 layers of compound, 210 per cent. of the jute weight; for 2 layers of jute and 3 layers of compound, 280 per cent. of the jute weight.

The compound consists of 4 parts of pitch to 1 part of gas tar.

Table No. 121 gives the approximate price of galvanised steel wire.

Table No. 122 gives the approximate prices of various sheathing materials. The breaking strain of galvanised steel wire is approximately as follows:

Diameter 0.080 inch and smaller . 70 to 75 tons per square inch Diameter 0:110/0:130 inch . . 55 tons per square inch Diameter 0:130/0:165 inch . 50 tons per square inch Larger diameters . 28 to 30 tons per square inch.

d = diameter of wire in inches

w =breaking strain of the wire in 1b.

W = breaking strain of the wire in tons per square inch

and then

$$W = \frac{w}{\frac{\pi}{4} d^2 2240}$$

Table No. 123 gives the value of the divisor $\frac{\pi}{4} d^2 2240$ for various diameters.

If the diameter d be expressed in millimetres, then

$$W = \frac{w \ 645 \cdot 16}{\frac{\pi}{4} d^2 \ 2240}$$

Table No. 124 gives the value of the divisor

$$\frac{\pi}{4} d^2 2240$$

for various diameters.

Table No. 121.—Price of Galvanised Steel Wire.
(Approximate.)

L.S.W.G.	Diam	eter of Wire	Price in	Price in Shillings per				
13.0. W.or.	inch	millimetre .	100 lb.	100 kilogrammes				
6	0.192	4.877	8.17	18.0				
7	.176	4.470	8.17	18.0				
8	•160	4.064	8.40	18.5				
9	144	3.658	8.64	19.0				
10	128	$3 \cdot 251$. 8.85	19.5				
11	116	$2 \cdot 946$	$9 \cdot 32$	20.5				
12	104	$2 \cdot 642$	10.0	22.0				
13	.092	$2 \cdot 337$	10.4	23.0				
14	.080	$2 \cdot 032$	11.1	24.5				
15	.072	1.829	11.8	26.0				
16	.064	1.626	12.5	27.5				
17	.056	1.422	13.4	29.5				
18	.048	$1 \cdot 219$	13.95	30.75				
19	.040	1.016	15.3	53.75				
20	. 036	0.9144	16.65	36.75				

TABLE NO. 122.—APPROXIMATE PRICES OF SHEATHING MATERIALS.

		,	Taterial					Price in Sh	illings per
		7/	ateriai					100 lb.	100 kilogrammes
2011 1	r of pi of pi of pi of pi	itch itch itch itch itch	to 1 or to 1 or to 1 or rit to	f gas f resi f Sto f Arc l of S	n oil) ekholm ehange: Stockh	l tar)	ar)	15 · 9 to 17 · 0 27 · 2 2 · 01 1 · 82 5 · 58 35 · 7 8 · 04 5 · 35 1 · 86 2 · 60 3 · 10 2 · 53 28 · 8 11 · 36	35 to 37·5 60·0 4·43 4·0 12·3 78·6 17·7 11·8 4·1 5·74 6·83 5·58 63·5 25·0

TABLE NO. 123.—TENSILE STRESS OF WIRES.

Value of the divisor $\frac{\pi}{4} d^2 2240$ for diameters expressed in inches.

8	0.1425	1930-0	027-1	005 7	1.00-1	101-10	20100.00	10.98	13.94	17.24	20.00	16. FI	2007-001	66.13	90.68	8+.++	50.25	56.37	62.81	29.69	10.80	200	95.76	100.9	109.1	- ×-
00	0.1126	0.5700	522.1	070.5	57 T T	2 E : C	8.135	10.70	13.62	16.90	20.95	21.50	78.87	33.50	T: . S:	43.92	49.62	17.00	62.18	26.89	76.11	83.61	91.15	99.05	108.5	117.1
Į.						5.716																				
9						5.517																				
10	0.04398	8988.0	1.099	2.155	100	5.822	7 - 1:::3	9.806	12.71	15.88	19.40	28.27	27.49	32.06	36.38	42.27	47.90	53.88	60.21	66:39	73.83	81 - 32	90.68	97.16	05.6	14.4
4	5 0.02815	0.3448	1.013	2.043	901-5	5-130	7.206	9.634	12.41	15.55	19.03	22.86	27.05	31.59	26.48	41.72	47.32	53.26	50.56	66-21	73.21	80.57	88.27	96.33	101.7	18.5
ବର	0.01583	0.2973	0.9307	1.916	2.253	77.7	6.983	9.375	12.12	15.22	18.66	22.46	79.97	31.12	35.98	41.18	£1.9f	52.65	58.92	05.53	72.50	79.82	87.49	95.51	03.9	12.6
23	0.00704	0.2533	0.8515	1.802	3.103	4.757	6.763	9.120	11.83	14.89	18:30	22.07	26.18	30.65	35.17	40.65	46.17	52.05	58.27	64.85	71.79	70.62	86.71	94 · 69	08.0	11.7
-	0.00176	0.2129	X0111-0	22.1.	2.957	4.576	6.546	698.8	11.54	14.57	17-95	21.68	25.76	30.19	34.98	40.11	45.60	51.44	57.64	64.18	71.08	78.32	85.93	93.88	102.2	110.8
0		0.1759	7502.0	- 1. S.C.	2.815	4.398	6.333	8.621	11.26	14.25	17.59	21.29	25.33	29.73	34.48	39.58	45.04	50.84	57.00	63.51	70.37	77.58	85.15	93.07	01.3	10.01
Diam.	00.0																	-					_	-		

Table No. 123.—continued.

ō	127.3 136.9 146.9 167.3 167.3 168.0 179.0
00	126.4 1165.9 1165.9 1165.9 1165.9 120.1 177.9 120.1 177.9 17
Į-a	125.0 1155.0 1155.2 1155.2 1155.2 1155.2 1155.2 1155.3 1155.2 1155.3 115
ę	124.5 134.0 154.1 154.1 154.1 175.7
ಭಾ	123.5 138.0 138.0 152.9 152.9 153.7 174.6 185.8 185.8 221.7 247.4 260.8 274.5 288.6 288.6 288.6 386.9 386.9 418.8 431.1
الثان	152.6 152.1 152.1 152.1 152.6 173.5 173.5 173.5 173.5 173.5 173.1 173.1
, w	121.7 181.1 140.9 161.0 161.0 161.5 172.4 183.5 172.4 183.5 231.8 231.8 231.8 231.8 231.8 231.8 231.8 231.8 231.8 231.8 231.8 231.8 241.6 410.1 410.1 410.1 410.1 410.1
7	120.8 139.9 159.9 171.3 171.3 171.3 182.4 182.4 182.4 183.4 183.3
Н	1119.8 129.2 149.0 158.9 158.9 170.2 181.3 181.3 181.3 182.7 229.3 242.2 255.4 265.0 282.9
0	118.9 128.3 137.9 148.0 158.3 169.2 169.2 180.2 191.6 228.0 228.0 226.0
Diam.	0. 529. 528. 528. 528. 528. 528. 528. 528. 528

TABLE NO. 124.—TENSILE STRENGTH OF WIRES.

Value of the divisor $\frac{\pi}{4} d^2 2240$ for diameters expressed in millimetres.

6.	2.209	9.845	22.93	41.48	6.5.48	91.93	129.8	2-071	216.0	267.3	321.0	386.2	:
~ _	1.745	988.8	21.38	86.68	62.8:3	91-74	126.1	165.9	211.2	261.9	318.1	7.678	:
F-	1.336	7.881	19.88	27.33	60.24	88.60	122.1	7.191	206.1	256.6	312.2	373.3	:
9.	0.9817	6.979	18.43	35.34	57.70	85.52	118.8	157.5	201.7	251.3	306.4	366.9	
10	7189.0	6.134	17.01	33.41	55.22	82.49	115.2	158.4	197.0	216.1	300.7	9.098	:
4,	0.4363	5.343	15.71	31.52	52.79	79.52	7.111	149.3	192.4	241.0	295.0	354.4	:
60	0.2454	4.609	14.43	29.70	50.42	09.92	108.2	145.8	187.9	235.9	289.3	348.2	•
2.	0.10908	3.927	13.20	76.17	48.10	73.74	104.8	141.4	183.4	230.8	283.7	342.1	:
-	0.02727	3.300	12.03	26.21	45.84	70.93	101.5	137.5	178.9	225.8	278.3	336.0	:
0.	:	2.727	10.91	24.54	43.63	68.18	98.17	133.6	174.5	220.9	272.7	330.0	392.7
Diam.	0	-	67	50	4	50	9	L-	00	6	10	11	12

The tensile strength of yarns is generally expressed per lb. of weight per nautical mile; the average values are :—

Jute .	۰		4	4 lb. strength	per 1	lb. weight.
Italian hemp			٠	10 to 12 lb.	99	99
Russian hemp White manila	•		۰	8 lb.	22	99
Tarred manila		•	•	12 lb. 10 lb.	59	99
Lailed manna				TO ID.	9.6	9.9

thus, a 5 lb. jute yarn (i.e. weighing 5 lb. per nautical mile) should have a tensile strength of 5 \times 4 lb. = 20 lb.

CHAPTER X.

STEEL TAPE ARMOUR.

Cables having a diameter of less than 10 to 12 mm. (0.4 to 0.47 inch) should

not be armoured with steel tapes, but with steel wires.

The cable to be armoured is first served with a layer of 10 lb. jute yarn, which increases the diameter of the cable by 4 mm., and then lapped with two layers of steel tape, applied so as to break joint one with the other, each tape forming an open spiral round the cable, with a gap between the convolutions of generally one-seventh of the width of the tape. The cable is finally served with a layer of 8 lb. jute yarn, which increases the diameter of the cable by another 4 mm. Between each operation the cable is thoroughly saturated with boiled gas tar, and finally run through a compound consisting of 4 parts of pitch to I part of gas tar. The complete armour, therefore, increases the diameter of any cable by approximately 12 mm., that is, 4 mm. for each serving, and approximately 4 mm. for the two layers of steel tape. Some makers serve the cable with tarred jute yarn, and compound the cable between each operation. By this method the diameter of the cable is increased by 16 to 18 mm. by the complete armour.

On the Continent it is the usual practice to lap the cable immediately over the lead sheath with one layer of paper, the cable being tarred over the lead sheath and over the paper. This layer of paper has proved to be very effectual in protecting the lead sheath from the action of ammonia and other corroding substances, which percolate through the earth on all roads with considerable

horse traffic, especially near cab ranks, etc.

This layer of paper increases the diameter of the cable by only 0.5 mm., and costs approximately 40s. per 100 kilogrammes, or 18.2s. per 100 lb. The weight of paper in kilogrammes per kilometre is given by:-

Diameter over lead in millimetres $\times 0.6 =$ weight of paper.

The jute serving under the steel tapes generally consists of one layer of 10 lb. jute yarn, which increases the diameter of the cable by approximately 4 mm. Curve No. 15 shows the weight of such a serving for cables of various diameters.

The jute serving over the steel tapes generally consists of one layer of 8 lb. jute yarn, which also increases the diameter of the cable by 4 mm. Curve No. 16

shows the weight of such a serving for cables of various diameters.

The weight of steel tape required for any cable is given by multiplying the pitch diameter of the cable by a constant depending on the thickness of the steel tape. The pitch diameter of a cable is equal to the diameter over the lead sheath, plus 4 mm. for one layer of 10 lb. jute yarn, plus twice the thickness of the steel tape.

Provided that an equal percentual gap is allowed for all sizes of steel tape,

the width has no effect upon the weight of the tapes.

TABLE NO. 125.—DETAILS OF STEEL TAPE ARMOUR.

Diameter of Cable	Steel T	ape Used	Length	Weight of Steel Tape i	n Lb. per Nautical Mile
over Lead Sheath, mm.	Width,	Thickness,	of Lay.	Mean Pitch Circum- ference in mm. multiplied by the following Constant	Pitch Diameter in mm. multiplied by the following Constant
43·1 to 60	2.0	0.0495	2.4375	69.20	217.40
32.1 43	1.5	• 044	1.75	61.51	193.24
23.1 32	1.25	.0392	1.5	54.80	$172 \cdot 20$
16 23	1.0	• 0349	1.0	48.79	153.30
Special	1.0	.036		50.33	158 · 10
Special	0.75	.036		50.33	158.10
-					

Table No. 126 gives the sizes and particulars of steel tapes usually used by Continental cable manufacturers; the constants given, multiplied by the pitch diameter of the cable in millimetres, gives the weight of steel tape in kilogrammes per kilometre.

TABLE NO. 126.—DETAILS OF STEEL TAPE ARMOUR.

Diameter of Cable over	Dimensions	of Steel Tapes	Weight
Lead Sheath	Width	Thickness	Constant
mm.	mm.	mm.	
10.0 to 13.8	20	0.5	2 1.50
13.9 16.0	20	0.8	34.40
16.1 23.0	25	0.9	38.63
23.1 32.0	33	0.9	38.63
32.1 43.0	43	1.0	42.96
Larger than 43·1	55	1.1	$46 \cdot 20$
Special		0.6	25.36
"		1.2	50.4
22		1.3	54.9
99	* *	1.42	$60 \cdot 2$
		1.5	63.9
27	**	1.6	68.6
57	**		

Another method of calculating the weight of steel tape armour is as follows:— Let A and a= sectional areas in square mm. corresponding to the diameters over and under the steel tape respectively. As the tapes are applied with a gap of one seventh of the tape width, the sectional area of the steel tape will be $\frac{7}{8}(A-a) \text{ square mm.}$ Therefore the weight of steel tape in kilog. per kilometre will be $\frac{7 \cdot 8 \times 7 (A-a)}{8} = 6 \cdot 825 (A-a).$

The areas A and a can be obtained from Table No. 60, page 137.

For example:—Let diameter over lead $=40\cdot0$ mm., then diameter under steel tapes =40+4=44 mm., and diameter over steel tapes =44+4=48 mm., therefore the weight of steel tapes is equal to $6\cdot825$ ($1809\cdot6-1520\cdot5$) =1973 kilog. per kilometre.

By the "weight constant" method:-

Diameter over lead sheath . . = 40.01 layer 10 lb. jute yarn . = 4.02 thicknesses of 43×1.0 mm. tape = 2.0Therefore pitch diameter of tape = 46.0

The weight constant for 1.0 mm, tape is 42.96. Therefore the weight of steel tape is equal to $42.96 \times 46.0 = 1976$ kilogrammes per kilometre.

Lacquered Steel Tape.—When lacquered steel tape armouring is required, the tapes are dipped into a compound consisting of 3 parts of cable pitch to 1 part of resin oil; the steel tape takes up approximately 4 per cent. of its weight of the compound.

The jute serving over the steel tapes generally consists of one layer of 8 lb. jute yarn, which increases the diameter of the cable by 4 mm. Its weight is approximately equal to the weight of the 10 lb. jute serving under the steel tapes.

Before each operation (i.e., paper lapping, serving, tape armouring and final serving), the cable is well saturated with boiled gas tar: the weight of tar taken up by the cable is approximately equal to 80 per cent, of the total jute weight. The tar must be efficiently boiled, as the crude tar contains ammonia and other substances which will corrode the steel tape, the rust from which will in turn corrode the lead sheathing.

The cable is finally compounded with a mixture of 4 parts by weight of pitch to 1 part of gas tar. The weight of compound taken up by the cable is 50 per cent. of the weight of tar, that is to say, 40 per cent. of the total jute serving weight.

Table No. 127.—Particulars of Stiel Tape Armour for Lead-covered Cables up to 700 volts Working. (Recommended by the Verband Deutscher Elektrotechniker.)

Section of Conductor,	Jute Serving, Thickness	Steel Tape	Serving over	Overall Dian	neter in mm.
sq. mm.	in mm.	Armour, Thick- ness in mm.	ness in mm.	Without Test Wire	With Test Wire
Up to 10 16 25 35 50 70 95 120 150 185 240 310 400 500 625 800 1000	$\begin{array}{c ccccc} 1 \cdot 5 & & & \\ 2 \cdot 0 & & & \\ 2 \cdot 0 & & \\ 2 \cdot 5 & & \\ 2 \cdot 5 & & \\ 2 \cdot 5 & & \\ 3 \cdot 0 & & \\ 3 \cdot 0 & & \\ 3 \cdot 0 & & \\ \end{array}$	Wire Armour 2×0.5 2×0.5 2×0.8 2×0.8 2×0.8 2×0.8 2×1.0	1·5 2·0 2·0 2·0 2·0 2·0 2·0 2·0 2·0 2·0 2·0	23 24 25 29 31 32 35 37 40 43 46 49 54 58 63 67	24 25 26 30 32 33 36 38 41 44 47 50 55 59 64 68

The Engineering Standards Committee have issued the following recommendations with regard to steel tape armour:—

That cables of less than 0.5 inch (12.7 mm.) diameter over the lead sheath be wire armoured and not tape armoured.

That the following thicknesses of steel tape be used:--

Cables of	diameter	over lead	sheath	from 0:50 to 1:0 inch	30 mils
29	99	99 "	>>	1.01 to 2.0	40 ,,
99	22	99	22	above 2.0	60 ,,

The cable to be armoured with two such tapes in all cases.

That jute servings in all cases be 100 mils thick.

Tables Nos. 127 and 128 show the thicknesses and particulars of the recommendations of the Verband Deutscher Elektrotechniker with regard to steel tape armour.

Table No. 128.—Particulars of Steel Tape Armour. (Recommendations of the Verband Deutscher Elektrotechniker.)

Diameter under Lead Sheath, mm.	Thickness of Jute Serving in mm.	Thickness of Steel Tape in mm.	Diameter under Lead Sheath, mm.	Thickness of Jute Serving in mm.	Thickness of Steel Tape in mm.
10 12 14 16 18 20 23 26 29 32 35	$\begin{array}{c} 2 \cdot 0 \\ 2 \cdot 5 \end{array}$	$\begin{array}{c} 2\times0.8\\ 2\times0.8\\ 2\times0.8\\ 2\times0.8\\ 2\times0.8\\ 2\times1.0\\ 2\times1.0\\ 2\times1.0\\ 2\times1.0\\ 2\times1.0\\ 2\times1.0\\ 2\times1.0\\ 2\times1.0\\ \end{array}$	38 41 44 47 50 54 58 62 66 70	3·0 3·0 3·0 3·0 3·0 3·0 3·0 3·0	$\begin{array}{c} 2 \times 1 \cdot 0 \\ 2 \times 1 \cdot 0 \end{array}$

Table No. 129 gives the weights and prices of steel tape armour for cables of various diameters over lead sheath, based upon the following prices:—

Paper .		@ 40/- per 100	kilogrammes
Jute .		41/- , ,,	29
Steel tape		18/- "	99
Tar .		6.6/- ,,	22
Compound		6.3/- "	29

Waste at 2.5 per cent. of material.

TABLE No. 129.—STEEL TAPE ARMOUR.

					TABLE	No. 1	129.—STEE	L TAPE	ARMOUR
Diam.	P	aper		Jute		Steel Ta	ipe		Jute
Lead, mm.	Kilog. per km.	Price, shillings	Kilog. per km.	Price, shillings	Dimensions mm.	Kilog per km.	Price, shillings	Kilog. per km.	Price, shillings
10.0	6	2.4	32	13.12	20×0·5	323	58.14	32	13.12
10.1	6	2.4	32	13.12	20×0·5	325	58.50	32	13.12
10.2	7	2.8	33	13.53	20×0·5	327	58.86	33	13.53
10.3	7	2.8	33	13.53	20×0·5	329	59.22	33	13.53
10.4	7	2.8	33	13.53	20×0·5	1 332	59.76	33	13.53
10.5	7	2.8	34	13.94	20×0·5	334	60.12	34	13.94
10.6	7	2.8	34	13.94	20×0·5	336	1 60.48	34	13.94
10.7	7	2.8	34	13.94	20×0·5	338	60.84	34	13.94
10.8	7	2.8	34	13.94	20×0·5	340	61.20	34	13.94
10.9	7	2.8	34	13.94	20×0.5	342	61.56	34	13.94
11.0	7	2.8	35	14.35	20×0·5	344	61.92	35	14.35
11.1	7	2.8	35	14.35	20×0·5	346	62.28	35	14.35
11.2	7	2.8	35	14.35	20×0.5	349	62.82	35	14.35
11.3	7	2.8	35	14.35	20×0.5	351	63.18	55	14.35
11.4	7	2.8	36	14.76	20×0·5	353	63.54	36	14.76
11.5	7	2.8	36	14.76	20×0·5	355	63.90	36	14.76
11.6	7	2.8	36	14.76	20×0.5	357	64.26	36	14.76
11.7	8	3.50	36	14.76	20×0·5	359	61.62	36	14.76
11.8	8	3.20	37	15.17	20×0.5	362	65.16	37	15.17
11.9	8	3.50	37	15.17	20×0.5	364	65.52	37	15.17
$\frac{12 \cdot 0}{12 \cdot 1}$	8	3.20	37	15.17	20×0.5	366	65.88	37	15.17
12.1	8	3.20	37	15.17	20×0.5	368	66.24	37	15.17
12.3	8	3.20	38	15.58	20×0.5	370	66.60	38	15.58
12.4	8	3.20	38	15.58	20×0.5	372	66.96	38	15.58
12.5	8	3.20	38	15.58	20×0.2	374	67:32	38	15.58
12.6	8	3.20	38	15.58	20×0.5	377	67.86	38	15.58
$\frac{12}{12} \cdot 7$	8	3 · 20	39	15.99	20×0.5	379	68.22	39	15.99
12.8	8	3.20	39	15.99	20×0.5	381	68.58	39	15.99
12.9	8	$\frac{3}{3} \cdot \frac{20}{20}$	39 39	15.99	20×0.5	383	68.94	39	15.99
13.0	8	$\frac{3}{3} \cdot \frac{20}{20}$	40	15.99	20×0.5	385	69.30	39	15.99
13.1	8	3.20	40	16:40	20×0.5	387	69 · 66	40	16.40
13.2	8	$3 \cdot 20$	40	16:40	20×0.5	390	70.20	40	16.40
13.3	8	3.20	41	16.40	20×0.5	392	70.56	40	16.40
13.4	9	3.60	41	16.81	20×0.5	394	70.92	41	16.81
13.5	9	3.60	42	17.22	20×0.5	396	71.28	41	16 81
13.6	9	3.60	42	17.22	20×0.5	398	71.64	42	17.22
13.7	9	3.60	43	17.63	20×0.5	400	72.00	42	17.22
13.8	9	3.60	43	17.63	20×0.5	402	72.36	43	17:63
13.9	9	3.60	44	18.04	20×0·5	405	72.90	43	17:63
14.0	9	3.60	45	18.45	20×0.5	407	73 · 26	44	18.04
14.1	9	3.60	45	18.45	20×0.8	675	121.50	45	18:45
14.2	9	3.60	46	18.86	20×0.8	678	122 10	45	18.45
14.3	9	3.60	47	19.27	20×0.8 20×0.8	681	122.60	46	18.86
14.4	9	3.60	47	19.27	20×0.8	685	123.30	47	19.27
14.5	9	3.60	48	19.68	20×0.8	688	123.84	47	19.27
				20 00	70 7 0.8	692	124.56	48	19.68

(All Weights and Prices are per Kilometre.)

_					Total	,			1		
		Гат	Com	pound	Total Weight		Waste	,	Shop		Diam.
	Kilog.	1	Kilog.		of Materials,	of Mate-	2½ per	Wages,	Ex-	Total Price.	over
	per	Price,	per	Price,	kilog	rials,	cent.,	shillings	penses, shillings	3 2711	Lead,
	km.	shillings	kт.	shillings	per km	shillings					124
	52	3.44	26	1.64	471	01.00	0.00	-		101 00	100
	52	3.44	26	1.64	473	91.86	2.30	30 30	7·50 7·50	131·66 132·03	10.0
	53	3.50	27	1.70	480	93.92	2.35	30	7.50	133.77	$\frac{10.1}{10.2}$
	53	3.50	27	1.70	482	94.28.	2.36	30	7 50	134.14	10.3
	53	3.50	$\tilde{27}$	1.70	485	94.82	2.37	30	7.50	134 69	10.4
	55	3.63	28	1.77	492	96.20	2.41	30	7.50	136.11	10.5
	55	3.63	28	1.77	494	96.56	2.42	30	7.50	136.48	10.6
	55	3.63	28	1.77	496	96.92	2.43	30	7.50	136.85	10.7
1	55	3.63	28	1.77	498	97.38	2.44	30	7.50	137.32	10.8
	55	3.63	28	1.77	500	97.73	2.45	30	7.50	137.68	10.9
	56	3.70	28	1.77	505	98.89	2.47	30	7.50	138.86	11.0
	56	3.70	28	1.77	507	99.25	2.48	30	7.50	139 · 23	11.1
	56	3.70	28	1.77	510	99.79	2.50	30	7.50	139.79	11.2
	56	3.70	28	1.77	512	100.15	2.51	30	7.50	140.16	11.3
	58	3.83	29	1.83	519	101.52	2.54	30	7.50	141.56	11.4
	58	3.83	29	1.83	521	101.88	2.55	30	7.50	141.93	11.5
	58	3.83	29	1.83	523	102.24	2.56	30	7.50	142.30	11.6
	58	3.83	29	1.83	526	103.00	2.58	30	7.50	143.08	11.7
	60	3.96	30	1.89	534	104.55	2.62	30	7.50	144.67	11.8
	60	3.96	30	1.89	536	104.91	2.63	30	7.50	145.04	11.9
	60	3.96	30	1.89	538	105 27	2.64	30	7.50	145.41	12.0
	60	3.96	30	1.89	540	105.63	2.64	30	7.50	145.77	12.1
- 1	61	4.03	31	1.96	546	106.96	2.67	30	7.50	147.13	12.2
	61	4.03	31	1.96	$\frac{548}{550}$	107.32	$\frac{2.69}{2.70}$	30 30	$7.50 \ 7.50$	$147 \cdot 51 \\ 147 \cdot 87$	$12 \cdot 3$ $12 \cdot 4$
	61 61	4.03	31 31	1.96	553	$107.67 \\ 108.21$	$\frac{2 \cdot 70}{2 \cdot 71}$	30	$7.50 \ 7.50$	148.42	12.5
	63	4.16	32	2.02	560	109.58	2.74	30	7.50	149.82	12.6
	63	4.16	32	2.02	562	109.94	2.75	30	7.50	150 • 19	12.7
	63	4.16	$\frac{32}{32}$	2.02	564	110.30	$\frac{2}{2} \cdot 76$	30	7.50	150.56	12.8
	63	4.16	32	2.02	566	110.66	2.77	30	7.50	150.93	12.9
	64	4.23	32	2.02	571	111.91	2.80	30	7.50	$152 \cdot 21$	13.0
	64	4.23	32	2.02	574	112.45	2.81	40	10.00	$165 \cdot 26$	13.1
	64	4.23	32	2.02	576	112.81	2.82	40	10.00	$165 \cdot 63$	13.2
	66	4.36	33	2.08	583	114.18	2.86	40	10.00	$167 \cdot 04$	13.3
	66	4.36	33	2.08	586	115.04	2.88	40	10.00	167.92	13.4
	68	4.49	34	2.14	593	116.31	2.91		10.00	$169 \cdot 22$	13.5
	68	4.49	34	2.14	595	116.67	2.92	40	10.00	169.59	13.6
	69	4.56	35	$2 \cdot 21$	601	117 · 99	2.95		10.00	170 • 94	13.7
	69	4.56	35	2.21	604	118.53	2.97		10.00	171.50	13.8
	71	4.69	36	2.27	611	119.90	3.00		10.00	172.90	13.9
	72	4.76	36	2.27	882	169.03	4.22		10.00	223 · 25	14.0
	72	4.76	36	2.27		170.63	4.27		12.50	237 • 40	14.1
	74	4.89	37	2.33		171.14	4.28		12.50	237 · 92	14.2
	76	5.02	38	2.40		172.86	4.32		$\frac{12.50}{12.50}$	$239.68 \\ 240.24$	14·3 14·4
	76	5.02	38	2.40		173.40	4.34		$\begin{vmatrix} 2 \cdot 50 \\ 2 \cdot 50 \end{vmatrix}$	240.24	14.5
	77	5.09	39	2.46	913	175.07	7 90	30	2 00	211 00	11 0

TABLE No. 129.—Steel Tape Armour.

Diam.	P	aper	J	ute	s	teel Tap	е	J	ute
over	17:1		-			L' il		1-	
Lead, mm.	Kilog.	Price,	Kilog.	Price,	· Dimensions,	Kilog.	FIRE,	Kilog.	
min.	km.	shillings	per km.	shillings	mm.	km.	shillings,	per km.	shillings
14.6	9	3.60	48	19.68	20×0·8	695	125.10	48	19.68
14.7	9	3.60	48	19.68	50×0.8	699	125.82	48	19.68
14.8	9	3.60	49	20 09	20×0·8	702	126.36	49	20.09
14.9	9	3.60	50	20.50	20×0·8	705	$126 \cdot 90$	59	20.50
15.0	9	3.60	50	20.50	20×0.8	709	$127 \cdot 62$	50	20.50
15.1	10	4.00	51	20.91	20×0.8	712	128.16	51	20.91
15.2	10	4.00	51	20.91	20×0·8	716	128.88	51	20.91
15.3	10	4.00	52	21.32	20×0.8	719	$129 \cdot 42$	52	21.32
15.4	10	4.00	52	21.32	20×0·8	723	130 · 14	52	21.32
15.5	10	4.00	53	21.73	20×0·8	726	130.68	53	21.73
15.6	10	4.00	53	21.73	20×0.8	730	131 · 40	53	21.73
15.7	10	4.00	54	$22 \cdot 14$	20×0.8	733	$131 \cdot 94$	54	22 · 14
15.8	10	$4 \cdot 00$	55	22.55	20×0·8	737	132.66	55	22.55
15.9	10	4.00	55	22.55	20×0.8	740	133.20	55	22.55
16.0	10	4.00	56	22.96	20×0.8	743	$133 \cdot 74$	56	22.96
16.1	10	4.00	56	22.96	25×0.9	846	$152 \cdot 28$	56	22.96
16.2	10	4.00	57	23.37	25×0·9	850	153.00	57	23.37
16.3	10	4.00	57	23.37	25×0.9	853	$153 \cdot 24$	57	23.37
16.4	10	4.00	58	23.78	25×0.9	857	$154 \cdot 26$	58	23.78
16.5	10	4.00	58	23.78	25×0.9	861	154.98	58	23.78
16.6	10	4.00	59	24.19	25×0.9	865	$155 \cdot 70$	59	24.19
16.7	11	4.40	59	24 · 19	25×0.9	869	156.42	59	24.19
16.8	11	4.40	60	24.60	25×0.9	873	$157 \cdot 14$	60	24.60
16.9	11	4.40	61	25.01	25×0.9	877	157.86	61	25.01
17.0	11	4.40	61	25.01	25×0.9	881	158.58	61	25.01
17.1	11	4.40	62	25.42	25×0.9	884	$159 \cdot 12$	62	25.42
17.2	11	4.40	62	25.42	25×0.9	888	159.84	62	25.42
17.3	11	4.40	63	25.83	25×0.9	892	160.56	63	25.83
17.4	11	4.40	63	25.83	25×0.9	896	161.28	63	25.83
17·5 17·6	11	4:40	64	26.24	25×0·9	900	162.00	64	26.24
17.7	11	4.40	64	26.24	25×0.9	904	$162 \cdot 72$	64	26.24
17.8	11	4.40	65	26.65	25×0.9	908	163.44	65	26.65
17.9	11	4.40	65 66	26.65	25×0.9	912	164.16	65	26.65
18.0	11	4.40	67	27.06	25×0·9	916	164.88	66	27.06
18-1	11	4.40	67	27.47	25×0·9	919	165.42	67	27.47
18.2	11	4.40	68	27.47	25×0·9	923	166.14	67	27.47
18-3	11	4.40	68	27.88	25×0.0	927	166.86	68	27.88
18.1	12	4.80	69	$27.88 \ 28.29$	25×0.9	931	167.58	68	27.88
18.5	12	4.80	69	28:29	$25 \times 0.9 \\ 25 \times 0.9$	935	168.30	69	28.29
18.6	12	4.80	70	28.70	25×0.9 25×0.9	939	169.02	69	28.29
18.7	12	4.80	70	28.70	25×0.9	943	169.74	70	28.70
18-8	12	4.80	71	$\frac{28 \cdot 70}{29 \cdot 11}$	25×0.9	946	170.28	70	28.70
18.9	12	4.80	71	29.11	25×0.9	950	171.70	71	29.11
19.0	12	4.80	72	29 - 52	25×0.9	954 958	171.72	71	29.11
19.1	12	4.80	72	$\frac{29 \cdot 52}{29 \cdot 52}$	25×0.9	962	172.44	72	29.52
1		1 00		20 02	20 / () 8	304	173.16	72	29· 5 2

THEIR CONSTRUCTION AND COST.

	1	?ar	Comp	pound	Total Weight	Total Price	Waste		Shop	Total	Diam.
	Kilog. per km.	Price, shillings	Kilog. per km.	Price, shillings	of Mate- rials, kilog. per km.	of Mate- rials, shillings	2½ per cent., shillings	Wages, shillings	Ex- penses, shillings	Price, shillings	over Lead, mm.
	77	5.09	39	2.46	916	175.61	4.39	50	12.50	242.50	14.6
	77	5.09	39	2.46	920	176.33	4.41	50	12.50	243 · 24	14.7
	79	5.22	40	2.52	928	177.88	4.45	50	12.50	244.83	14.8
	79	5.22	40	2.52	934	179:30	4.49	50	12.50	$246 \cdot 29$	14.9
	80	5.28	40	2.52	938	180.02	4.50	50	12.50	$247 \cdot 12$	15.0
	82	5.42	41	2.59	947	181.99	4.55	50	12.50	249.04	15.1
	82	5.42	41	2.59	951	183.71	4.60	50	12.50	250.81	15.2
	84	5.55	42	2.65	959	184.26	4.61	50	12.50	251.37	15.3
	84	5.55	42	2.65	963	184.98	4.63	50	12.50	252.11	15.4
	85	5.61	43	2.71	970	186.46	4.66	50	12.50	253.62	15.5
	85	5.61	43	2.71	974	187.18	4.68	50	12.50	254.36	15.6
	87	5.75	44	2.78	982 989	188·75 190·36	$ \begin{array}{c} 4.72 \\ 4.76 \end{array} $	50 50	$12.50 \ 12.50$	255·97 257·62	15.7
	88	5.81	44	$2.78 \\ 2.78$	992	190.89	4.78	50	12.50	258.17	15.9
	88 90	5·81 5·94	44 45	2.84	1000	192.44	4.82	50	12.50	259.76	16.0
	90	5.94	45	2.84	1103	210.98	5.28	60	15	291.26	16.1
	92	6.08	46	2.90	1112	212.72	5.32	60	15	293.04	16.2
	92	6.08	46	$\frac{2}{2} \cdot 90$	1115	213 · 26	5.34	60	15	293 · 60	16.3
	93	6.14	47	2.96	1123	214.93	5.38	60	15	295.31	16.4
	93	6.14	47	2.96	1127	215.44	5.39	60	15	295.83	16.5
	95	6.27	48	3.03	1136	217.38	5.44	60	15	297.82	16.6
	95	6.27	48	3.03	1141	218.50	5.47	60	15	$298 \cdot 97$	16.7
	96	6.34	48	3.03	1148	220:11	5.50	60	15	300.61	16.8
	98	6.47	49	3.09	1157	221 · 84	5.55	60	15	302.39	16.9
	98	6.47	49	3.09	1161	222.56	5.57	60	15	303.13	17.0
	100	6.60	50	3.12	1169	224.11	5.61	60	30	319.72	17.1
	100	6.60	50	3.15	1173	224.83	5.62	60	30	320.45	17.2
i	101	6.67	51	3.22	1181	226.51	5.67	60	30 30	$322 \cdot 18$ $322 \cdot 21$	17·3 17·4
	101	6.67	51	3.22	1185	227 · 23	$5.68 \\ 5.72$	60	30	324.68	17.5
	103	6.80	52	3.28	1194 1198	228.96 229.78	5.75	60	30	325.53	17.6
	103	6.80	52	3.28	1205	231 · 29	5.78	60	30	327 . 07	17.7
	104	6.87	52 5 2	3.28	1209	232.01	5.80	60	30	327.81	17.8
	104	7.00	53	3.34	1218	233.74	5.85	60	30	329.59	17.9
	106 108	7.13	54	3.41	1226	235.30	5.89	60	30	331 · 19	18.0
	108	7.13	54	3.41	1230	236.02	5.90	60	30	331 · 92	18.1
	109	7.20	55	3.47	1238	237.69	5.94	60	30	333 • 63	18.2
	109	$7.\tilde{20}$	55	3.47	1242	238.41	5.96	60	30	334.37	18.3
	111	7.33	56	3.53	1252	240.54	6.02	60	30	336.56	18.4
	111	7.33	56	3.53	1256	241.26	6.04	60	30	337.30	18.5
	112	7.39	56	3.53	1263	2 42 · 90	6.08	60	30	338.98	18.6
	112	7.39	56	3.53	1266	243.40	6.09	60	30	339 · 49	18.7
	114	7.53	57	3.59	1275	245.14	6.13	60	30	341.27	18.8
	114	7.53	57	3.59	1279	245.86	6.15	60	30	342.01	18.9
	116	7.66	58	3.66	1288	247.60	6.19	60	30	343.79	19.0
	116	7.66	5 8	3.66	1292	248.32	6.51	62	31	347.50	19.1
				<u> </u>							

Table No. 129.—Steel Tape Armour.

Diam.	P	aper	·	Jute		Steel Ta	pe		Jute
over Lead.	Kilog.								1
mm.	per km.	Price, shillings	Kilog. per km	Price.	Dimension mm.	8, Kilog. per km	Price, shillings	Kilog. per km.	Price,
19.2	12	4.80	73	29.93	25×0·9	966	170.00		
19.3	12	4.80	73	29.93	25×0.9	970	173.88	73	29.93
19.4	12	4.80	74	30.34	25×0.9	973	174.60	73	29.93
19.5	12	4.80	74	30.34	25×0.9	977	175 14	74	30.34
19.6	12	4.80	75	30.75	25×0·9	981	175.86	74	30.34
19.7	12	4.80	76	31.16	25×0.9	985	176.58	75	30.75
19.8	12	4.80	77	31.57	25×0.9		177:30	76	31.16
19.9	12	4.80	77	31.57	25×0.9	989	178.02	77	31.57
20.0	12	4.80	78	31.98	25×0.9	993	178.74	77	31.57
20.1	13	5.20	78	31.98	25×0.9	997	179.46	78	. 31.98
20.2	13	5.20	79	32.39	25×0.9	1001	180.18	78	31.98
20.3	13	5.20	79	32.39		1004	180.72	79	32.39
20.4	13	5.20	80	32.80	25×0·9	1008	181.44	79	32.39
20.5	13	5.20	81	33.21	25×0.9	1012	185.10	80	32.80
20.6	13	5.20	81	33.21	25×0.9	1016	182.88	, 81	33.21
20.7	13	5.20	82	33.62	25×0.9	1020	183.60	81	33.21
0.8	13	5.20	82	33.62	25×0·9	1024	184.35	82	33.62
0.9	13	5.20	83		25×0.9	1027	184.86	82	33.62
1.0	13	5.20	83 .	34.03	25×0.9	1031	185.58	83	34.03
1.1	13	5.20	84 .	34.03	25×0.9	1035	186.30	83	34.03
1.2	13	5 20		34.44	25×0.9	1039	187.02	84	34.44
1.3	13	5.20	84	34.44	25×0.9	1043	187.74	84	34.44
1.4	13	5.20	85	34.85	25×0.9	1047	188.46	85	34.85
1.5	13	5 20	85	34.85	25×0.9	1051	189.18	85	34.85
1.6	13	5.20	86	35.26	25×0.9	1055	189 · 90	86	35.26
1.7	14	5.60	86 .	35.26	25×0.9	1058	190.44	86	35.26
1.8	14	5.60	87	35.67	25×0.9	$1062 \pm$	191 · 16	87	35.67
1.9	14	5.60	88	36 08	25×0.9	1066	191.88	88	36.08
2.0	14		88	36.08	25×0.9	1070	$192 \cdot 60$	88	36.08
2.1	14	5.60	89	36 49	25×0.9	1074	193.32	89	36.49
2.2	14		89	36.49	25×0.9	1079	194.22	89	36.49
2 3	14	5.60	90	36.90	25×0.9	1082	194.76	90	36.90
7.4	14	5.60	90	36.90	25×0.9	1086	195.48	90	36.90
2.5	14	5.60	91	37:31	25×0·9	1089	196.02	91	
2.6	14	5.60		37.31	25×0.9	1093	196.74	91	37.31
2.7	14	5.60		$37 \cdot 72$	25×0.9	1097	197.46	92	37.31
8.8		5.60		$38 \cdot 13$	25×0.9^{-1}	1101	198 · 18		37.72
2.9	14	5.60		38.13	25×0.9	1105	198.90		38.13
0		5.60		38.54	25×0.9	1109	199.62		38.13
. 1		5.60		38.54	25×0.9	1113	200.31		38.54
.2		5.60		38 - 95	33×0·9	1116	200 88		38.54
		5.60		38 - 95	33×0.9	1120	201.60		38.95
.3		5.60		39 - 36	33×0·9	1124	202.32		38.95
.4		6.00		39.77 +	33×0·9	1128	203.04	->=	39.36
.5		6.00	97		33×0·9	1131			39.77
.6		6.00		4.00	33×0.9	1135	203.58		39.77
.7	15	6.00		10 1	33×0.9	1140	204.30		40.18
					~~	TIIU	205.20	98 4	40.18

_		Tar	Com	pound	Total Weight		Waste	1	Shop		Diam.
	Kilog	. Duine	(7.1)	11.1	of Mate	of Mate-	2½ per	Wages, shillings	Ex-	Total Price,	over Lead,
	per km.	Price, shillings	per km	Price, shillings	kilog.	rials, shillings	shillings	3212711180	shillings	shillings	mm.
		_	,		per km						
	117	7.73	59	3.72	1300	249 - 99	6.25	62	31	349 · 24	19.2
	117	7.73	59	3.72	1304	250.71	6.27	62	31	349.98	19.3
	119	7.86	60	3.78	1311	252:20	6.31	62	31	351.53	19.4
	119	7.86	(50)	3.78	1315	252.92	6.33	62	31	352 - 25	19.5
	120	7.92	60	3.78	1323	254.58	6.37	62	31	$353 \cdot 95$	19.6
	122	8.05	61	3.85	1332	$256 \cdot 32$	6.41	62	31	355.73	19.7
	124	8.19	62	3.91	1341	258:06	6.45	62	31	357.51	19.8
	124 125	8-19	62 63	3.91	1345	258.78	6.47	62	31	358 · 25	19.9
	125	8·25 8·25	63	3·97 3·97	1353	260:44	G·51	62	31	359.95	20.0
	127	8.38	64	4.04	1358 1366	261.56	6.54	64	32	364.10	20.1
	127	8.38	64	4.04	1370	263·12 263·84	6.58	64	32	365.70	20.2
	128	8.45	64	4.01	1377	265 45	6.61	64 64	32 32	366.44	20.3
	130	8.58	65	4.10	1386	267 18	6.68	64	32	368·09 369·86	20.4
	130	8.58	65	4.10	1390	267 90	6.70	64	32	370.60	20.5
	132	8.71	66	4.16	1399	269.63	6.74	61	32	372.37	20.7
	132	8.71	66	4.16	1402	271 . 17	6.78	64	32	373.95	20.8
	133	8.78	67	4.23	1410	271.85	6.80	64	32	374.65	20.9
	133	8.78	67	4.23	1414	272.57	6.82	64	32	375.39	21.0
	135	8.91	68	4.29	1423	274.30	6.86	64	32	377 · 16	21.1
	135	8.91	68	4.29	1427	275.02	6.88	64	32	377.90	21.2
	136	8.98	68	4.29	1434	276.63	6.92	64	32	$379 \cdot 55$	21.3
	136	8.98	68	4.29	1438	277.36	6.94	64	32	380.30	21.4
	138	9.11	69	4.35	1447	279.08	6.98	64	32	382.06	21.5
	138	9.11	69	4.35	1450	279.62	7:00	64	32	382.62	21.6
	140	9.24	$\frac{70}{71}$	4.41	1460	281.75	7.05	64	32	384.80	21.7
	141	9.31	$\frac{71}{71}$	4·48 4·48	1468	283 43	7:09	64	32	386.52	21.8
	143	9.44	72	4.54	$\frac{1472}{1481}$	284 · 15	7.11	64 64	$\frac{32}{32}$	387.26	$\begin{vmatrix} 21 \cdot 9 \\ 22 \cdot 0 \end{vmatrix}$
	143	9.44	72	4.54	1486	286.78	7.17	66	33	$389.01 \\ 392.95$	22.1
	144	9.51	$7\tilde{2}$	4.54	1492	288.21	7.21	66	33	394 · 42	22.2
	144	9.51	$7\overline{2}$	4.54	1496	288.93	$7 \cdot \widetilde{2} \widetilde{2}$	66	33	395.15	22.3
	146	9.64	73	4.60	1504	290.48	$7 \cdot 26$	66	33	396.74	22.4
	146	9.64	73	4.60	1508	291 · 20	7.28	66	33	397.48	22.5
	148	9.77	74	4.67	1517	292.94	7.33	66	33	399 · 27	22.6
	149	9.84	75	4.73	1525	294.61	7.37	66	33	400.98	22.7
	149	9.84	75	4.73	1529	295.33	7.38	66	33	401.71	22.8
	151	9.97	76	4.79	1538	297:06	7.43	66	33	403.49	22.9
	151	9.97	76	4.79	1542	297.78	7.45	66	33	404.23	23.0
		10.03	76	4.79	1548	299.20	7.48	66	33	405.68	23.1
	152	10.03	76	4.79	1552	299.72	7.50	66	33	406.42	23.2
1	154	10.17	77	4.86	1561	301.67	7.54	66	33	408.21	23.3
	156	10.30	78	4.92	1571	303.80	7.60	66	33	410.40	23.4
	156 157	10.30	78 79	$\frac{4 \cdot 92}{4 \cdot 98}$	1574 1582	301.34	$\frac{7.61}{7.65}$	66	33 33	$\frac{410.95}{412.56}$	23.5
	157	10·37 10·37	79	4.98	1587	306.91	7.67	66	33	412.58	23·6 23·7
1	101	10 31	10	1 00	1001	000 01	1 01	- 00	33	110 00	20 1

TABLE No. 129.—STEEL TAPE ARMOUR.

			.	T4-				1 .	
Diam.		aper ————		Jute 		teel Tap	е	, ,	Tute
Lead, mm.	Kilog.	Price,	Kilog.	Price,	Dimensions,	Kilog.	Price,	Kilog.	Price,
	per km.	shillings	km.	shillings	mm.	per kin.	shillings	km.	shillings
23.8	15	6.00	99	40.59	33×0·9	1143	205.74	99	40.59
23.9	15	6.00	99	40.59	33×0·9	1147	206 · 46	99	40.59
24.0	1.5	6.00	100	41.00	33×0.9	1151	207.18	100	41.00
24.1	15	6.00	101	41.41	33×0.9	1155	207.90	101	41.41
24.2	15	6.00	101	41.41	33×0.9	1159	208:62	101	41.41
24.3	15	6.00	. 102	41.82	33×0.9	1163	209.34	102	41.82
24.4	15	0.00	102	41.82	33×0.9	1167	210.06	102	41.82
24.5	15	6.00	103	42.23	33×0.9	1170	210.60	103	42.23
24.6	15	6.00	103	42.23	33×0.9	1174	211.32	103	42.23
24.7	15	6.00	104	42.64	33×0.9	1178	212.04	104	42.64
24.8	15	6.00	104	42.64	33×0.9	1182	212.76	104	42.64
24.9	15	6.00	105	43.05	93×0.8	1186	213.48	105	43.05
25.0	15	6.00	105	43.05	33×0.9	1190	214.20	105	43.05
25.1	16	6.40	106	43.46	33×0·9	1193	214.74	106	43.46
25.2	16	6.40	107	43.87	33×0.9	1197	215.46	107	43.87
25.3	16	6.40	107	43.87	33×0.9	1201	216.18	107	43.87
25.4	16	6.40	108	44.28	33×0.9	1205	216.90	108	44.28
25.5	16	6.40	108	44.28	33×0·9	1209	217.62	108	44.28
25.6	16	6.40	109	44.69	33×0·9	1213	218:34	109	44.69
25.7	16	6.40	109	44.69	33×0·9	1217	219.06	109	44.69
25.8	16	6. 40	110	45.10	33×0.9	1221	219.78	110	45.10
25.9	16	6.40	110	45.10	33×0·9	1224	220.32	110	45.10
26.0	16	6.40	111	45.51	33×0.9	1228	221.04	111	45.51
26.1	16	6.40	112	45.92	33×0.9	1232	$221 \cdot 76$	112	45.92
26.2	16	6.40	112	45.92	33×0.9	1236	222.48	112	45.92
26.3	16	6.40	113	46.33	33×0.9	1240	223 · 20	113	46.33
26.4	16	6.40	113	46.33	33×0·9	1244	223.92	113	46.33
26.5	16	6.40	114	46.74	33×0.9	1248	224 · 64	114	46.74
26.6	16	6.40	114	46.74	33×0.9	1251	225 · 18	114	46.74
26.7	17	6.80	115	47.15	33×0.9	1256	226.08	115	47.15
26.8	17	6.80	116	47.56	33×0·9	1259	226.62	116	47.56
26.9	17	6.80	116	47:56	33×0·9	1263	227.34	116	47.56
27.0	17	6.80	117	47.97	33×0·9	1267	228.06	117	47.97
27.1	17	6.80	117	47.97	33×0·9	1271	228.78	117	
$27 \cdot 2$	17	6.80	118	48.38	33×0.9	1275	229.50	118	47.97
27.3	17	6.80	118	48.38	33×0·9	1279	$230 \cdot 22$	118	48.38
27.4	17	6.80	119	48.79	33×0·9	1282	230 - 76	119	48.38
27.5	17	6.80	120	49.20	33×0·9	1286	$231 \cdot 48$	120	48.79
27.6	17	6.80	120	49.20	33×0·9	1290	232 · 20	120	49.20
27.7	17	6.80	121	49.61	33×0·9	1294	$232 \cdot 92$		49.20
27.8	17	6.80	121	49.61	33×0·9	1298	233.64	121 121	49.61
27.9	17	6.80	122	$50 \cdot 02$	33×0·9	1302	234 · 36		49.61
28.0	17	6.80	122	50.02	33×0·9	1306	235.08	122	50.02
28.1	17	6.80	123	50.43	33×0.9	1310		122	50.02
28.2	17	6.80	124	50.84	33×0.9	1313	235.80	123	50.43
28.3	17	6.80	124	50.84	33×0.9	, , ,	236.34	124	50.84
		3 00	122	00 04	22 X 0. 8	1317	237.06	124	50.8

(All Weights and Prices are per Kilometre.)—continued.

	Tar	Com	pound	Total Weight of Mate-	Total Price	Waste	Wages,	Shop Ex-	Total Price,	Diam.
Kilog.	Price,	Kilog.	Price.	rials,	of Materials,	cent.,	shillings	penses,	shillings	Lead,
per	shillings	per	shillings	kilog.	shillings	shillings		shillings	001111116	шш.
km.	Dittings	km.	Julian	per km.						
7.50	30.50		5.04	1595	308.46	7.71	66	33	415.17	23.8
159	10.50	80	5.04	1599	309 18	7.73	66	33	415.91	23.8
159	10.50	80	5.04	1606	310.79	7.77	66	33	417.56	24 • (
160	10.57	80		1615	312.53	7.81	70	43.75	434.09	24 · 1
162	10.70	81	5.11	1619	313.25	7.83	70	43.75	434.83	24.2
162	10.70	81			314.98	7.88	70	43.75	436.61	24:3
164	10.83	82	5:17	1628		7.90	70	43.75	437.35	24 . 4
164	10.83	82	5.17	1632	315.70	7.93	70	43.75	438.86	24 :
165	10.89	83	5.23	$1639 \\ 1643$	317.18	7.95	70	43.75	439.60	24 (
165	10.89	83	5.23			8.00	70	43.75	441.40	24.7
167	11.03	84	5.30	1652	319.65	8:00	70	43.75	442.13	24 .
167	11.03	84	5:30	1656	320.37	8:05	70	43.75	443.78	24 .
168	11.10	84	5.30	1663	321.98	8.03	70	43.75	444.52	25.
168	11.10	84	5.30	1667	322.70	8.12	70	43.75	446.51	25.
170	11.22	85	5.36	1676	324.64	8.16	70	43.75	448 · 29	25
172	11.36	86	5.42	1685	326.38		70	43.75	449.03	25.
172	11.36	86	5.42	1689	327.10	8.18	70	43.75	450.75	25.
173	11.42	87	5.49	1697	328.78	8.22	70	43.75	451.48	25.
173	11.42	87	5.49	1701	329 · 49	8.24		43.75	453 · 25	25.
175	11.55	88	5.22	1710	331.22	8.28	70	43.75	453 29	$\frac{1}{25}$.
175	11.55	88	5.55	1714	331.94	8.30	70	43.75	455.65	25
176	11.63	88	5.55	1721	333.56	8:34	70	43.75	456.21	25.
176	11.63	88	5.22	1724	334.10	8.36	70	43.75	$450 \cdot 21$ $457 \cdot 97$	26
178	11.75	89	5.61	1733	335.82	8.40		45	462.99	26.
180	11.88	90	5.67	1742	337.55	8.44	72	45	463.73	26.
180	11.88	90	5.67	1746	338.27	8.46	72	45	465.45	26.
181	11.95	91	5.74	1754	339.95	8.50	72 72	45	466.19	26.
181	11.95	91	5.74	1758	340.67	8.52		45	468.07	26.
183	12.08	92	5.80	1767	342.50	8.57	72 72	45	468.52	26.
183	12.08	92	5.80	1770	342.94	8.58	72	45	470.76	26.
184	12.15	92	5.80	1779	345.13	8.63		45	472.35	26.
186	12.28	93	5.86	1787	346.68	8.67	72 72	45	473.09	26.
186	12.28	93	5.86	1791	347:40	8:69	72	45	474.87	27.
188	12.41	94	5.93	1800	349.14	8.73		46.87	481.50	27.
188	12.41	94	5.93	1804	350.86	8.77	75	46.87	482.20	27.
189	12.48	95	5.99	1812	351.54	8.79	75	46.87	482 20	27.
189	12.48	95	5.99	1816	352.25	8.81	75	46.87	484.52	27.
191	12.61	96	6.05	1824	353.80	8.85	75		486.63	27.
192	12.68	96	6.05	1831	355.86	8.90	75	46.87	486.91	27.
192	12.68	96	6.05	1835	356.13	8.91	75	46.87	1	27
194	12.81	97	6.15	1844	357.84	8.95	75	46.87		27
194	12.81	97	6.12	1848	358.59	8.97	75	46.87	1	27
196	12.94	98	6.18	1857	360.32	9.01	75	46.87		28
196	12.94	98	6.18	1861	361.04	9.03	75	46.87		0.00
197	13.00	99	6.24	1869	362.70	9.07	75	46.87		
199	13.14	100	6.30	1877	364.26	9.11	75	46.87		
199	13.14	100	6.30	1881	364.98	9.13	75	46.87	495.98	20
200					1		1			

TABLE No. 129.—STEEL TAPE ARMOUR.

					- I ADUL	110. 12	J. STEE	i IAP	E ARMOUI	R.
Dian over	1.	Paper		Jute		Steel Ta	pe		Jute	
Lead mm.	Kilog	Price, shilling	Kilog per km.	Price, shillings	Dimensions mm.	Hilog.		Kilog Jer km.	g. Price,	
28.4	18	7.20	7.15							1
28 - 5		7.20	125	51.25	33×0.9	1321	237.78	125	51.25	ı
28.6			125	51.25	33×0.5	1325	238:50	125	51.25	
28.7		7.20	126	51.66	33×0.9	1329	239 - 22	126	51.66	
28.8		7 20	126	51.66	33×0.9	13.33	239 · 94	126	51.66	
28.9		$\frac{1}{7} \cdot \frac{7}{20}$	127	52:07	33×0.0	1337	240.66	127	52.07	1
29.0		7.20	127	52:07	33×0.9	1340	241 - 20	127	52.07	ı
29.1	18	7.20	128	52.48	33 × 0 · 9	1:344	241 - 92	128	52.48	
29-2		7.20	128	52.48	33×0.9	1347	242.46	128	52.48	
29.3		7.20	129	52.89	33×0.9	1352	243-56	129	52.89	
29.4		7.20	130	52·89 53·30	33×0.9	1356	544.08	129	52.89	
29.5	18	7.20	130	53:30	33×0.8	1360	244.80	133	53.30	1
29.6	18	7.20	131		33×0.9	1:364	245 : 52	130	53:30	
29.7	18	$7.\overline{20}$	132	58:71 -54:12	33 × 0.9	1367	246.06	131	53.71	
29.8	18	7.20	132	54.12	33×0.9	1371	246:78	132	54.12	
$29 \cdot 9$	18	7-20	133	54 : 53	33×0.9	1375	247 - 50	132	54.12	
30.0	18	7.20	133	54.53	33×0.9	1379	248 - 22	133	54:53	
30.1	19	7.60	134	54.94	33×0.9	1383	548.94	133	54 · 53	
30.2	19	7.60	134	54.94	33×0.0	1387	249.66	134	54.94	
30.3	19	7.60	135	55:35	33×0.0	1391	250.38	1:34	54.91	
30.4	19	7:60	136	55.76	33×0.8 33×0.8	1395	251.10	135	55.35	
30.5	19	7.60	137	56.17		1398	251.64	136	55.76	
30.6	19	7:60	137	56:17	33×0.8 32×0.8	1402	252.36	137	56.17	
30.7	19	7.60	138	56.58	33×0.8	1406	253.08	137	56:17	
30.8	19	7.60	138	96.98	33×7.0	1410	253.80	138	56.58	
30.9	19	7:60	139	56.99	33×0.8	1414	524 - 25	138	56.58	
31.0	19	7.60	139	56.99	33×0.8	1418	522.54	139	56.55	
31.1	19	7:60	140	57:40	33×0.9	1421 ,	255.78	139	56.99	
31.2	19	7:60	140	57:40	$33 \times 0 9$	$\frac{1425}{1429}$	256.50	140	57:40	
31.3	19	$7 \cdot 60^{-1}$	141	57:81	33×0.9		257 - 22	140	57:40	
31.4	19	7:60	141	57.81	33×0.8	1433 1437	257.94	141	57:81	
31.2	19	7:60	142	58.22	33×0.9		258.66	141	57.81	
31.6	19	7.60	142	58.22	33×0·9	1441	259:38	142	58.22	
31.7	20	8	143 .	58.63	33×0.9	1449	260.08	142	58.22	
31.8	20	8	143	58.63	33×0·9	1452	260.80	143	58.63	
31.9	20	8	111	59.04	33×0.9	1456	261.34	14:3	58.63	
32.0	20	8 .	144	59.04	33×0.9	1460	262.06	144	59:04	
32.1	20	8 '	145		43×1	1637	262.78	144	59.04	
32.2	20	8	145		43×1	1641	294.66	14.5	59.45	
32.3	20	8	146		43×1	1645	295:38	145	59.45	
32.4	20	8	147	0.0	43×1	1650 +	296.10	146	59.86	
32.5	20	8	147		43×1	1654	297:00	147	60.27	
35.6	20	8	148	60.68	#3×1	1658	297.72	147	60 · 27	
32.7	20	8	148		43×1	$\frac{1668}{1663}$.	298 · 44	148	60.68	
32.8	20	8	149	01	43×1	1667	299:34	148	60.68	
32.9	20	8	149		43×1	1671	300.70	149	61.09	
,						1011	300.78	149	61.09	

(All Weights and Prices are per Kilometre.)—continued.

	7	Tar	Com	pound	Total Weight of Mare-	Total Price of	Waste	W	Shop Ex-	Total	Diam.
	Kilog.		Kilog.		rials,	Materials,	2½ per cent.,	Wages, shillings		Price,	Lead,
1	per	Price,	per	Price,	kilog.	shillings	shillings	54444160	shillings	shillings	mm.
	km.	shillings	km.	shillings	per km.	_					_
	200	13.20	100	6.30	1889	366.98	9.18	75	46.87	498.03	28.4
	200	13.20	100	6.30	1893	367.70	9.20	75	46.87	498.77	28.5
	202	13.34	101	6.37	1902	369 · 45	9.24	75	46.87	500.56	28.6
	202	13.34	101	6.37	1906	370.17	9.26	75	46.87	501.30	28.7
	201	13.47	102	6.43	1915	371.91	9.30	75	46.87	503.08	28.8
	201	13.47	102	6.43	1918	372.44	9.31	75	46.87	503.62	28.9
	205	13.53	103	6.49	1926	374.10	9.35	75	46.87	505.32	29.0
	205	13.53	103	6.49	1929	374.61	9.37	80	20.00	514.01	29.1
	207	13.67	101	6.26	1939	376.57	9.42	80	50.00	515.99	29.2
	207	13:67	104	6.26	1943	377.29	9.44	80	50.00	516.73	29.3
	208	13.73	101	6:56	1950	378.89	9.47	80	50.00	518.36	29.4
	208	13.73	104	6.56	1954	380.61	9.52	80	50.00	520.13	29.5
	210	13.87	105	6.62	1962	381.17	9.53	80	50.00	520.70	29.6
	212	14.00	106	6.68	1971	382.90	9.57	80	50 00	522.48	29.7
	212	14.00	106	6.68	1975	383.62	9.59	80	50.00	523.27	29.9
	213	14.07	107	6.74	1983	385.29	9.63	80	50.00	524.91	30.0
	213	14.07	107	6.74	1987	388.01	9.65	80	50.00	525.62	30.1
	215	14.50	108	6.81	1997	388.15	9.70	82	51.25	531.16	30.2
	215	14.50	108	6.81	2001	388.87	9.72	82 82	51.25	533.48	30.3
	216	14.26	108	6.81	2008	390.47	9.76	82	$51 \cdot 25$	535 40	30.4
	218	14.39	109	6.87	2016	392.02	9.85	82	51 25	536.85	30.5
	220	14.25	110	6.93	2025	393.75	9.87	82	51 25	537.59	30.6
	220	14.52	110	6.93	2029	394.47	9.91	82	51 25	539.31	30.7
	221	14.59	111	7:00	2037	396.15	9.93	82	51 25	540.05	30.8
	221	14.59	111	7:00	$\begin{vmatrix} 2041 \\ 2050 \end{vmatrix}$	396.87	9.97	82	51.25	541.82	30.9
	223	14.72	112	7.06	2050	399.14	9.98	82	51.25	542.37	31.0
	223	14.72	112	7.06	2060	400.75	10.02	82	51.25	544 02	31.1
	224	14.79	112	7.06	2064	401.47	10.04	82	51.25	514.76	31.2
	224	14.79	113	7.12	2073	403.20	10.08	82	51.25	546.53	31.3
	226		113	7.12	2077	403.92	10.10	82	51.25	547 - 27	31.4
	226	14·92 15·05	114	7.18	2086	405.65	10.14	82	51.25	549.04	31.5
	228	15.05	114	7.18	2090	406.35	10.16	82	51.25	549.76	31.6
	228	15.12	115	7.25	2099	408.43	10.21	82	51.25	551.89	31.7
	229	15.12	115	7.25	2102	408.97	10.22	82	51.25	552.44	31.8
	231	15.25	116	7.31	2111	410.70	10.27	82	51.25	554.22	
	231	15.25	116	7.31	2115	411.42	10.29	82	51.25	554.96	
	232	15.32	116	7.31	2295	444.19	11.11	85	53.13	593.43	
	232	15.32	116	7.31	2299	444.91	11.13	85	53.13	594.17	
	234	15.45	117	7.37	2308	446.64	11.17	85	53.13		
	236	15.58	118	7.44	2318		11.22	85	53.13		
	236	15.58	118	7.44	2322		11.23	85	53.13		
	237	15.65	119	7.50	2330		11.28	85	53.13		1
	237	15.65	119		2335		11.30		53.13		
	239	15.78	120	7.56	2344		11.34		53.13		
	239	15.78	120	7.56	2348	454.30	11.36	85	53.18	603.79	32.9
	200	10					1			-	

TABLE No. 129.—STEEL TAPE ARMOUR.

Diam.	P	aper		Jute		Steel Ta	.pe	-	Jute
over Lead, mm.	Kilog. per km.	Price, shillings	Kilog.	Price, shillings	Dimen- sions, mm.	Kilog. per km.	Price, shillings	Kilog per km.	Price,
33.0	20	8.00	150	61.50	1 43×1	1676	301.68	150	61:50
33.1	20	8.00	151	61.91	43×1	1680	302 - 40	151	61.91
33.2	20	8.00	151	61.91	43×1	1684	303 - 12	151	61.91
33.3	20	8.00	152	62.32	43×1	1688	303.84	152	62.32
33.4	21	8.40	152	62.32	43×1	1693	304.74	152	62.32
33.5	21	8.40	153	62.73	43×1	1697	305.46	153	62.78
33.6	21	8.40	153	62.73	43×1	1701	306.18	153	62.73
33.7	21	8.40	154	63.14	43×1	1706	307.08	154	63 · 14
33.8	21	8.40	155	63.55	43×1	1710	307 80	155	63.55
33.9	21	8.40	155	63.55	43×1	1714	308 · 52	155	63.55
34.0	21	8.40	156	63.96	43×1	1718	309 - 24	156	63.96
34.1	21	8.40	156	63.96	43×1	1723	310.14	156	63.96
34.2	21	8.40	157	64 - 37	43×1	1727	310.86	157	
34.3	21	8.40	157	64:37	43×1	1731	311.58	157	64.37
34.4	21	8.40	158	64.78	43×1	1736	312.48	158	64.37
34.5	21	8.40	158	64.78	43×1	1740	313.20	158	64.78
34.6	21	8.40	159	65.19	43×1	1744	313 20	1.59	64.78
34.7	21	8.40	159	65.19	43×1	1749	314.82		65.19
34.8	21	8.40	160	65.60	43×1	1753	315.54	159	65.19
34.9	21	8.40	161	66.01	43×1	1757		160	65.60
35.0	21	8.40	161	66.01	43×1	1761	316·26 316·98	161	66.01
35.1	22	8.80	162	66.42	43×1	1766	317.88	161	66.01
35.2	22	8.80	162	66.42	43×1	1770	318.60	162	66.42
35.3	22	8.80	163	66.83	43×1	1774	319.32	162	66.42
35.4	22	8.80	163	66.83	43×1	1779	320 · 22	163	66.83
35.5	22	8.80	164	67.24	43×1	1783		163	66.83
35.6	22	8.80	164	67.24	43×1	1787	320 - 94	164	$67 \cdot 24$
35.7	22	8.80	165	67.65	43×1	1791	321.66	164	$67 \cdot 24$
35.8	22	8.80	165	67 · 65	$\frac{13\times1}{43\times1}$	1791	322.38	165	67.65
35.9	22	8.80	166	68.06	43×1	1800	323 - 28	165	67.65
86.0	22	8.80	166	68.06	43×1	1804	324 . 00	166	68.06
6.1	22	8.80	167	68.47	43×1	1809	324 · 72	166	68.06
86.2	22	8.80	167	68.47	43×1		325.62	167	68.47
6.3	22	8.80	168	68.88	43×1	1813	326:34	167	68.47
6.4	22	8.80	168	68.88	43×1	1817	327.06	168	68.88
86.5	22	8.80	169	69 - 29	43×1	1821	327.78	168	68.88
6.6	22	8.80	169	69 - 29	43×1	1826	328.68	169	69.29
6.7	23	9.20	170	69.70		1830	329 · 40	169	$69 \cdot 29$
6.8	23	9.20	170	69.70	43×1	1835	330.30	170	69.70
6.9	23	9.20	171	70.14	43×1	1839	331.02	170	69.70
7.0	23	9.20	172	70 - 52	43×1	1843	331.74	171	70.14
7.1	23	9.20	173	70.93	43×1	1848	332.64	172	70.52
$7 \cdot 2$	23	9.20	173	70 93	43×1	1852	333.36	173	70.93
7.3	23	9.20	174	71.34	43×1	1856	334.08	173	70.93
7.4	23	9.20	174	71.34	43×1	1860	334.80	174	71.34
7.5	23	9.20	175		43×1	1865	335.70	174	71.34
		20	110	71.75	43×1	1869	336.42	175	71.75

	Гаг	Com	pound	Total Weight of Mate-	Total Price	Waste	Wages,	Shop	Total	Diar
Kilog. per km.	Price, shillings	Kilog. per km.	Price, shillings	rials, kilog. per km.	of Materials, shillings	2½ per cent. shillings	wages, shillings	Ex- penses, shillings	Price, shillings	Lea mn
240	15.85	120	7.56	2356	456.09	11.40	85	53.13	605.62	33
242	15.98	121	7.63	2365	457.83	11.45	90	56.25	615.53	33
242	15.98	121	7.63	2369	458.55	11.47	90	56.25	616.27	33
244	16.11	122	7.69	2378	460.28	11.51	90	56.25	618.04	33
244	16.11	122	7.69	2384	462.58	11.57	90	56.25	620 · 40	33
245	16.17	123	7.75	2392	463 · 27	11.58	90	56.25	621.10	33
245	16.17	123	7.75	2396	463.96	11.60	90	56.25	621.81	33
247	16.31	124	7.82	2406	465.89	11.65	90	56.25	623.79	33
248	16.37	124	7.82	2413	467.49	11.69	90	56.25	625.43	33
248	16.37	124	7.82	2417	468.21	11.71	90	56.25	626.17	33
250	16.50	125	7.88	2426	469.94	11.75	90	56.25	627.94	34
250	16.50	125	7.88	2431	470.84	11.77	90	56.25	628.86	34
252	16.63	126	7.94	2440	472.57	11.82	90	56.25	630.64	34
252	16.63	126	7.94	2444	473.29	11.84	90	56.25	631.38	34
253	16.70	127	8.00	2453	475.14	11.88	90	56.25	633 27	34
253	16.70	127	8.00	2457	475.86	11.90	90	56.25	634.01	34
255	16.83	128	8.07	2466	477.60	11.95	90	56.25	635.80	34
255	16.83	128	8.07	2471	478.50	11.97	90	56.25	636.72	34
256	16.90	128	8.07	2478	480.11	12.00	90	56.25	638.36	34
258	17.03	129	8.13	2487	481.84	12.05	90	56.25	640.14	34
258	17.03	129	8.13	2491	482.57	12.07	90	56.25	640.89	35
260	17.17	130	8.19	2502	484.88	12.12	100	62.50	659.50	35
260	17.17	130	8.19	2506	485.60	12.14	100	62.50	660.24	35
261	17.23	131	8.23	2514	487.24	12.18	100	62.50	661.92	35
261	17.23	131	8.23	2519	488.14	12.20	100	62.50	662.84	35
263	17:36	132	8.32	2 528	489.90	12.25	100	62.50	664.65	35
263	17.36	132	8.32	2 532	490.62	12.27	100	62.50	665.39	35
264	17.43	132	8.32	2539	492.23	12.31	100	62.50	667.04	35
264	17.43	132	8.32	2544	493.13	12:33	100	62.50	667.96	35
266	17.56	133	8.38	2553	494.86	12.40	100	62.50	669.76	35
266	17.56	133	8.38	2557	496.58	12.42	100	62.50	671.50	36
268	17.69	134	8.45	2567	498.50	12.46	100	62.50	673.46	36
268	17.69	134	8.45	2571	499.22	12.48	100	62.50	674.20	36
269	17.76	135	8.51	2579	499.89	12.50	100	62.50	674 89	36
269	17.76	135	8.51	2583	500.61	12.52	100	62.50	675.63	36
271	17.89	136	8.57	2593	$502 \cdot 52$	12.56	100	62.50	677.58	36
271	17.89	136	8.57	2597	$503 \cdot 24$	12.58	100	$62 \cdot 50$	678 32	36
272	17.95	136	8.57	2606	505.42	12.64	100	62.50	680.56	36
272	17.95	136	8.57	2610	$506 \cdot 14$	12.65	100	62.50	681 · 29	36
274	18.09	137	8.63	2619	507.88	12.70	100	62.50	683.08	36
276	18.23	138	8.70	2629	509.81	12.75	100	62.50	685.06	37
277	18.29	139	8.76	2637	511.47	12.78	100	62.50	686.75	37
277	18.29	139	8.76	2641	512.19	12.81	100	62.50	687.43	37
279	18.42	140	8.82	2650	513.92	12.85	. 100	62.50	689 27	37
279	18.42	140	8.82	2655	514.82	12.87	100	62.50	690 · 19	37
280	18.49	140	8.82	2662	516.43	12.91	100	62.50	691.84	37

TABLE No. 129.—STEEL TAPE ARMOUR.

Diam.	F	aper		Jute		Steel Taj	pe		Jute
over Lead,	Kilog.		Kilog.		Dimen-	T/tlan		Tree	1
mm.	per	Price,	per	Price	sions,	Kilog.	Price,	Kilog.	Price,
	km.	shillings	km.	shillings	mm.	km.	shillings	km.	shillings
37.6	23	9.20	175	71.75	43×1	1873	337.14	175	71.75
37.7	23	9.20	176	72.16	43×1	1877	337.86	176	72.16
37.8	23	9.20	176	72.16	43×1	1881	338.58	176	72.16
37.9	23	9.20	177	72.57	43×1	1886	339 48	177	
38.0	23	9.20	178	72.98	43×1	1 1890	340.20	178	72.57
38.1	23	9.20	178	72.98	43×1	1895	341.10	178	72.98
38.2	23	9.20	179	73.39	43×1	1899	341.82		72.98
38.3	23	9.20	179	73.39	43×1	1903		179	73.39
38.4	24	9.60	180	78.80	43×1	1908	342.54	. 179	73.39
38.5	24	9.80	180	73.80	43×1	1912	343.44	180	73.80
38.6	24	9.60	181	74.21	43×1	1912	344.16	180	73.80
38.7	24	9.60	181	74.21	43×1	1920	344.88	181	74.21
38.8	24	9.60	182	74.62			345.60	181	74.21
38.9	24	9.60	182	74 62	48×1	1925	346.50	182	74.62
39.0	24	9.60	183	75.03	43×1	1929	347.22	182	74.62
39 · 1	24	9.60	183	75.03	43×1	1933	347.94	183	75.03
39 · 2	24	9.60	184	75.44	43×1	1938	348.84	183	75.03
39.3	24	9.60	185		43×1	1942	349.56	184	75.44
39.4	24	9.60		75.85	43×1	1946	350.28	185	75.85
39.5	24	9.60	185	75.85	43×1	1950	351.00	185	75.85
39.6	24	9.60	186	76:26	43×1	1955	351.90	186	76.26
39.7	24		186	76.26	43×1	1959	352.62	186	76.26
39.8	24	9.60	187	76.67	43×1	1963	353:34	187	76.67
39 · 9	24	9.60	187	76.67	43×1	1967	354.06	187	76.67
40.0	24	9.60	188	77:08	43×1	1972	354.96	188	77.08
40.1	25	9.60	188	77:08	43×1	1976	355.68	188	77.08
40.2	25	10.00	189	77.49	43×1	1980	356.40	189	77.49
10.3	25	10.00	189	77.49	43×1	1985	357:30	189	77.49
10.4	25 25	10.00	190	77:90	43×1	1989	358.02	190	77.90
10.5	25	10.00	191	78.31	43×1	1993	358.74	191	78.31
10.6		10.00	191	78:31	43×1	1998	359.64	191	78.31
10.7	25	10.00	192	78.72	43×1	2002	360.36	192	78.72
10.8	25	10.00	192	78.72	43×1	2007	361.26	192	78.72
	25	10.00	193	79.13	43×1	2011	361.98	193	79.13
10.9	25	10.00	193	79.13	43×1	2015	362.70	193	79.13
11.0	25	10.00	194	79.54	43×1	2019	363.42	194	79.54
41.1	25	10.00	195	79.95	43×1	2024	364.32	195	79 95
11.2	25	10.00	196	80.36	43×1	2028	365.04	196	
11.3	25	10.00	197	80.77	43×1	2032	365.76		80.36
11.4	25	10.00	198	81.18	43×1	2036	366.48	197 198	80.77
11.5	25	10.00	198	81.18	43×1	2041	367:38		81.18
11.6	25	10.00	199	81 · 59	43×1	2045	368.10	198	81.18
11.7	26	10.40	199	81.59	43×1	2049		199	81.59
11.8	26	10.40	199	81.59	43×1	2049	368.82	199	81.59
11.9	26	10.40	200	82.00	43×1	2054	369.72	199	81.59
12.0	26	10.40	200	82.00	43×1		370.44	200	82.00
12.1	26	10.40	200	82.00	$\frac{43\times1}{43\times1}$	2062	371.16	200	85.00
				- O	TO V 1	2066	371.88	200	82.00

	Tar	Com	pound	Total Weight	Total Price	Waste		Shop	Total	Diam.
Kilog.		Kilog.		of Mate-	of	2½ per	Wages,	Ex-	Price.	over
per	Price,	per	Price,	rials, kilog.	Materials,	cent,	shillings	penses, shillings	shillings	Lead, mm.
km.	shillings	km,	shillings	per km.	shillings	'emme		till till go		mui,
							-			
280	18.49	140	8.82	2666	517.15	12.93	100	62:50	692.58	37.6
282	18.62	141	8.89	2675	518.89	12.97	100	62.50	691.36	37.7
282	18.62	141	8.89	2679	519.61	12.99	100	62.50	695.10	37.8
284	18.75	142	8.95	2689	521.52	13.04	100	62.50	697.06	37.9
285	18.82	143	9.01	2697	523.19	13.08	100	62.50	698.77	38.0
285	18.82	143	9.01	2702	$523 \cdot 10$ $524 \cdot 09$	13.10	105	78.75	720.94	38.1
287	18.95	144	9.07	2711	525.82	13.15	105	78.75	$720 \cdot 31$	38.2
287	18.95	144	9.07	2715	526.54	13.17	105	78.75	723.46	38.3
288	19.01	144	9.07	2724		13.22	105	78.75	725 69	38,4
288	19.01	144	9.07		528.72		105	78.75	726.43	38.5
290		144		2728	529.44	13.24	105			38.6
	19.15		9.14	2737	531 19	13.28		78.75	728 22	
290	19.15	145	9.14	2741	531.91	13:30	105	78.75	728.96	38.7
292	19.28	146	9.20	2751	533.82	13.35	105	78.75	730 92	38.8
292	19.28	146	9.20	2755	534.54	13.36	105	78.75	731.65	38.9
293	19.35	147	9.26	2763	536 21	13.41	105	78.75	733:37	39.0
293	19.35	147	9.26	2768	537.11	13.43	105	78.75	734 · 29	39.1
295	19.48	148	9.33	2777	538.85	13.47	105	78.75	736.07	39.2
296	19.54	148	9.33	2784	540.45	13.21	105	78.75	737.71	39.3
296	19.54	148	9.33	2788	541.17	13.53	105	78.75	738.45	39.4
298	19.67	149	9.39	2798	543.08	13.28	105	78.75	740.41	39.5
298	19.67	149	9.39	2802	543.80	13.59	105	78.75	741.14	39.6
300	19.80	150	9.45	2811	545.53	13.64	105	78.75	$742 \cdot 92$	39.7
300	19.80	150	9.45	2815	546.25	13.66	105	78.75	743.66	39.8
301	19.87	151	9.52	2824	548.11	13.70	105	78.75	745.56	39.9
301	19.87	151	9.52	2828	548.86	13.72	105	78.75	746.33	46.0
303	20.00	152	9.58	2838	550.96	13.78	105	78.75	748.49	40.1
303	20:00	152	9.58	2843	551.86	13.80	105	78.75	749.41	40.2
304	20:07	152	9.58	2850	553.47	13.84	105	78.75	751.06	40.3
306	20.20	153	9.64	2859	555.20	13.88	105	78.75	752.83	40.4
306	20.20	153	9.64	2864	556.10	13.90	105	78.75	753.75	40.5
308	20.33	154	9.70	2873	557.83	13.94	105	78.75	755.52	40.6
308	20.33	154	9.70	2878	558.73	13.97	105	78.75	756.45	40.7
309	20.40	155	9.77	2886	560.41	14.01	105	78.75	758.17	40.8
309	20.40	155	9.77	2890	561.13	14.03	105	78.75	758.91	40.9
311	20.53	156	9.83	2899	562.86	14.07	105	78.75	760.68	41.0
312	20.60	156	9.83	2907	564.65	14.12	105	78.75	762.52	41.1
314	20.73	157	9.89	2916	566.38	14.16	105	78.75	764 29	41.2
316	20.86	158	9.96	2925	568.12	14.20	105	78.75	766:07	41.3
317	20.93	159	10.02	2933	569.79	14.24	105	78.75	767 · 78	41.4
317	20.93	159	10.02	2938	571.69	14.29	105	78.75	769.73	41.5
319	21.06	160	10.08	2947	572.42	14.31	105	78.75	770.48	41.6
319	$\frac{21.06}{21.06}$	160	10.08	2952	573.54	14.34	105	78.75	771 63	41.7
	21.06	160	10.08	2957	574.44	14.36	105	78.75	772.55	41.8
319			10.08	2964	576.05	14.40	105	78.75	771.20	41.9
320	21.13	160		2968	576.77	14.42	105	78.75	774.90	42.0
320	21.13	160	$\frac{10.08}{10.08}$	$\frac{2968}{2972}$	577.49	14.44	110	82.50	784 • 43	42.1
320	21.13	160	10 00	2312	011 10	11 11	110			

TABLE No. 129.—STEEL TAPE ARMOUR.

					LADUE		O. DIEBLI	LAPE	ARMOUK.
Diam.	1	Paper		Jute		Steel Tay	oe e	1	Jute
over	i	1			-				
Lead,		Price.	Kilog.	D .	D	Kilog.		Kilog	
mm.	per	shillings	per	Price, shillings	Dimensions mm.	, per	Price, shillings	per	Price,
_	km.	· mingo	km.	Buildings	mm.	km.	summgs	km.	shillings
42.2	26	10.40	201	82.41	43×1	2070	372:60	201	82.41
42.3	26	10.40	201	82.41	43×1	2075	373.50	201	82.41
42.4	26	10:40	202	82.82	43×1	2079	374 - 22	202	82.82
42.5	26	10.40	202	82.82	43×1	2084	375.12	202	82.82
42.6	26	10.40	203	83 · 23	43×1	2088	375.84	203	83.23
42.7	26	10.40	203	83 · 23	43×1	2092	376.56	203	83 23
42.8	26	10.40	204	83.64	43×1	2097	377 46	203	83.64
$42 \cdot 9$	26	10.40	204	83.64	43×1	2101	378.18	204	83.64
43.0	26	10.40	205	81.05	43×1	2105	378.90	205	84.05
43.1	26	10.40	205	84.05	55×1·1	2278	410.04	205	84.05
$43 \cdot 2$	26	10.40	206	84.46	55×1·1	2282	410.76	206	84.46
43.3	26	10.40	206	84.46	55×1·1	2287	411.66	206	84.46
43.4	27	10.80	207	84.87	55×1·1	2292	412.56	207	84.87
43.5	27	10.80	208	85.28	55×1·1	2296	413.28	208	85.28
43.6	27	10.80	209	85.69	55×1·1	2301	414.18	209	85.69
43.7	27	10.80	209	85.69	55×1·1	2306	415.08	209	85.69
43.8	27	10.80	210	86.10	55×1·1	2310	415.80	210	86.10
43.9	27	10.80	210	86.10	55×1·1	2315	416.70	210	86.10
44.0	27	10.80	211	86.51	55×1·1	2319	417.42	211	86.21
44.1	27	10.80	211	86:51	55×1·1	2324	418:32	211	86.21
44.2	27	10.80	212	86.92	55×1·1	2328	419.04	212	86.92
44.3	27	10.80	213	87.33	55×1·1	2333	419.94	213	87.33
44.4	27	10.80	213	87:33	55×1·1	2338	420.84	213	87.33
44.5	27	10.80	214	87.74	55×1·1	2342	421.56	214	87.74
44.6	27	10.80	214	87.74	55×1.1	2347	422.46	214	87.74
44.7	27	10.80	215	88.15	55×1·1	2352	423.36	215	88.15
44.8	27	10.80	215	88.15	55×1·1	2356	424.08	215	88.15
44.9	27	10.80	216	88.56	55×1·1	2361	424.98	216	88.26
45.0	27	10.80	216	88.56	55×1·1	2365	425.70	216	88.56
45.1	28	11.50	217	88.97	55×1·1	2370	426.60	217	88.97
45.2	28	11.20	218	89.38	55×1·1	2375	427:50	218	89.38
45.3	28	11.20	218	89.38	55×1.1	2379	428.22	218	89.38
45.4	28	11.20	219	89.79	55×1.1	2384	429 · 12	219	89.79
45.5	28	11.20	219	89.79	55×1·1	2389	430.02	219	89.79
45.6	28	11.20	220	90.50	55×1.1	2393	430.74	220	90.20
45·7 45·8	28	11.20	221	90.61	55×1·1	2398	431.64	221	90.61
45.9	28	11.20	221	90.61	55×1·1	2403	432.55	221	90.61
46.0	28	11.20	222	91.02	55×1.1	2407	433 · 22	222	91.02
46.0	28	11.20	222	91.02	55×1·1	2412	434 · 12	222	91.02
46.2	28	11.20	223	91.43	55×1·1	2416	434.84	223	91.43
46.3	28	11.20	223	91.43	55×1·1	2421	435.74	223	91.43
46.4	28	11.20	224	91.84	55×1·1	2426	436.64	224	91.84
46.5	28	11.20	224	91.84	55×1·1	2430	437.40	224	91.84
46.6	28	11.20	225	92.25	55×1·1	2435	438:30	225	92.25
46.7	28 29	11.20	225	92.25	55×1·1	2440	439 · 20	225	$92 \cdot 25$
10.7	40	11.60	226	92.67	55×1·1	2444	439 · 92	226	92.67

	1	Tar	Com	pound	Total Weight	Total Price	Waste	XX7	Shop	Total	Diam.
	Kilog. per km.	Price, shillings	Kilog. per km.	Price,	of Mate- rials, kilog. per km.	of Materials, shillings	2½ per cent., shillings	Wages, shillings	Ex- penses, shillings	Price, shillings	over Lead, mm.
1	322	21.26	161	10.15	2981	579 23	14.48	110	82.50	786 · 21	42.2
	322	21.26	161	10.15	2986	580 · 13	14.50	110	82.50	787 13	42.3
	324	21.38	162	10.21	2995	581.85	14.54	110	82.50	788 · 89	42.4
	324	21.38	162	10.21	3000	582.75	14.57	110	82.50	789.82	42.5
	325	21.46	163	10.27	3008	584.43	14.61	110	82.50	791.54	42.6
	325	21.46	163	10.27	3012	585.15	14.63	110	82.50	792.28	42.7
	327	21.59	164	10.34	3022	587.07	14.68	110	82.50	794 25	42.8
	327	21.59	164	10.34	3026	587.79	14.70	110	82.50	794.99	42.9
	328	21.65	164	10.34	3033	589 - 39	14.74	. 110	82.50	796.63	43.0
	328	21.65	164	10.34	3206	620.53	15.51	110	82.50	828.54	43.1
	330	21.78	165	10.40	3215	622 · 26	15.56	110	82.50	830.32	43.2
	330	21.78	165	10.40	3220	623 · 16	15.58	110	82.50	831 · 24	43.3
	332	21.92	166	10.46	3 2 31	625 48	15.64	110	82.50	833.62	43.4
	333	21.98	167	10.52	3239	627 · 14	15.68	110	82.50	835.32	43.5
	335	22.12	168	10.59	3249	629.07	15.74	110	82.20	837.31	43.6
	335	22.12	168	10.59	3254	629 · 97	15.75	110	82.50	838 - 22	43.7
	336	22.18	168	110.59	3261	631.57	15.79	110	82.50	839.86	43.8
	336	22.18	168	10.59	3266	632.47	15.82	110	82:50	840.79	43.9
	338	22:31	169	10.65	3275	634.20	15.85	110	82.50	842.55	44.0
	338	22:31	169	10.65	3280	635.10	15.88	115	86.25	852 23	44.1
	340	22.44	170	10.71	3289	637 · 19	15.93	115	86.25	854.37	44.2
	341	22.51	171	10.78	3298	638.70	15.97	115	86.25	855.92	44.3
	341	22.51	171	10.78	3303	639.55	15.99	115	86.25	856.83	44.4
	343	22.64	172	10.84	3312	641.32	16.03		86.25	858.60	44.5
	343	22.64	172	10.84		642.22	16.05	115	86.25	859.52	44.6
	344	22.71	172	10.84		644.01	16.10	115	86.25	861.36	44.7
	344	22.71	172	10.84		644.73	16.12		86.25	862.10	44.8
	346	22.84	173	10.90		646.64	16.16		86.25	864.05	44.9
	346	22.84	173	10.90		647.46	16.18		86.25	864.89	45.0
	348	22.97	174	10.97		649.68	16.24		86.25	867.17	45.1
	349	23.04	175	11.03		651.80	16.29		$86.25 \\ 86.25$	869.34	45.3
	349	23.04	175	11.03		652.25	16.31	115		871.76	45.4
	351	23.17	176	11.09		654.16	16.35		$\begin{vmatrix} 86.25 \\ 86.25 \end{vmatrix}$	872.68	45.5
	351	23.17	176	11.09		655.06	$\begin{vmatrix} 16.37 \\ 16.41 \end{vmatrix}$	115	86.25	874.33	45.6
	352	23.24	176	11.09		656.67			86.25		45.7
	354	23.37	177	11.15		658·58 659·49	16·46 16·49		86.25		45.8
	354	23.37	177	11.15			16.53		86.25	1	45.9
	356	23.50	178	11.22		661.18	16.56		86.25		46.0
	356	23.50	178	11.22		662.26	16.59		90.00	1	46.1
	357	23:56	179	11.28		663.74	16.61		90.00		
	357	23.56	$\begin{array}{ c c c c c } & 179 \\ 180 \end{array}$	$ 11 \cdot 28 \\ 11 \cdot 34$		666.56	16.66		90.00		
	359	23.70				667.32	16.68		90.00		
	359	23.70	180 180	$\begin{vmatrix} 11.34 \\ 11.34 \end{vmatrix}$		669 10	16.72		90.00	1	
	360	23.76	180	11.34		670.00	16.75		90.00		
	360	$\begin{vmatrix} 23.76 \\ 23.90 \end{vmatrix}$	181	11.40		672.14	16.80		90.00	1 1 1 1 1 1 1	
	362	25 90	101	11 10	0100	012 11	1000		1		

TABLE No. 129.—STEEL TAPE ARMOUR.

Diam.	Kilog. Kilog		Jute	1	Steel Tar		1	r.,	
over					_	Dicci Taj	RC		Jute
Lead,		Det	Kilog	7° n.	*	Kilog.		Kilog	. 1
mm.	per	shilling	. her	Price, shillings	Dimension	s, per	Price,	nor	Price,
	km.	Juliling	s km.	ontuings	mm.	km.	shillings	km.	shillings
46.8	29	11.60	227	93.07	55×1·1	2449	440.82	227	000.07
46.9	29	11.60	227	93.07	55×1·1	2453	141 54	227	93.07
47.0	29	11.60	228	93.48	55×1·1	2458	442.44	228	93.07
47.1	29	11.60	228	93.48	55×1·1	2463	443.31		93.48
$47 \cdot 2$	29	11.60	229	93.89	55×1.1	2467	444.06	228 229	93.48
47.3	29	11.60		93.89	55×1.1	2472	444.96		93.89
$47 \cdot 4$	29	11.60	230	91.30	55×1·1	2477	445.86	229	93.89
47.5	29	11.60		94.30	55×1.1	2481		230	94.30
47.6	29	111.60	231	94.71	55×1.1	2486	446.58	230	94.30
$47 \cdot 7$	29	11.60	231	94.71	55×1.1	2480	447.48	231	94.71
47.8	29	11.60	232	95.12	55×1.1		448.20	231	94.71
47.9	29	11.60	232	95.12	55×1.1	2495	449.10	232	95.12
48.0	29	11.60	233	95.53	55×1.1	2500	450.00	232	95.12
48.1	29	11.60	233	95.53	1.99×1.1	2504	450.72	233	95.23
48.2	29	11.60	234	95.94		2509	451.62	233	95.53
48.3	29	11.60	235	96.35	55×1·1	2514	452.52	234	95.94
48.4	30	12.00	235	96.35	55×1·1	2518	453 - 24	235	96.35
48.5	30	12.00	236	96.76	55×1·1	2523	424.14	235	96.35
48.6	30	12.00	236	96.76	22×1.1	1 2527	454.86	236	96.76
48.7	30	12.00	237	97.17	55×1·1	2532	455.76	236	96.76
48.8	30	12.00	237	97.17	55×1·1	2537	456.66	237	97.17
48.9	30	12.00	238	97.58	55×1·1	2541	457.38	237	97.17
49.0	30	12.00	238	97.58	55×1·1	2546	458.28	238	97.58
49.1	30	12.00	239		55×1.1	2550	459.00	238	97.58
49.2	30	12.00	240	97·99 98·40	55×1.1	2555	$459 \cdot 90$	239	97.99
49.3	30	12.00	240		55×1.1	2560	460.80	240	98.40
49.4	30	12.00	241	98.40	55×1.1	2564	461 - 52	240	98.40
19.5	30	12.00	242	98.81	22×1.1	2569	462.42	241	98.81
49.6	30	12.00	242	99.22	55×1·1	2573	463 · 14	242	99.22
19.7	30	12.00	243	99.22	55×1.1	2578	464 . ()4	242	99-22
19.8	30	12.00	243	99.63	55×1.1	2583	464.94	243	99.63
19.9	30	$\frac{12.00}{12.00}$	243	99.63	22×1.1	2588	465.84	243	99.63
50.0	30	12.00	244	100.04	22×1.1	2592	466.56	244	100.04
50.1	31	12.40	245	100.04	55×1.1	2597	467.46	244	100.04
50.2	31	12.40		100 45	55×1.1	2601	468.18	245	100.45
0.3	31	12.40	245	100.45	55×1·1	2606	469.08	3 4 a 1	100.45
50.4	31	12.40	246	100.86	55×1.1	2611	469.98		100.86
0.5	31		247	101.27	55×1.1	2615	470.70		101 27
0.6	31	12:40	247	101.27	55×1·1	2620	471:60		101 . 27
0.7	31	12.40	248	101.68	55×1.1	2624	472.32		101.68
0.8	31	12:40	248	101.68	55×1·1	2629	473 - 22	4	101.68
0.9		12.40	249	102.09	55×1.1	2634	474.12		102.09
1.0	31	12:40	250	102.50	55×1·1	2638	474.84		
1.1	31	12.40	251	102.91	55×1·1	2643	475.74		102.50
1.2	31	12.40	251	102.91	$55 \times 1 \cdot 1$	2648	476.64		102.91
1.3	31	12.40	251	102.91	55×1·1	2652	477.36		02.91
1 3	31	12:40	252	103.35	55×1·1	2657	478.26		02.91
							110 40	252 1	.03:32

_											
		Tar		npound	Total Weight of Mate	Price	Wastell	Wages,	Shop Ex-	Total	Diam.
	Kilog.	Price.	Kilog.	D-1	rials,	of	cont	shillings	penses,	Price,	Lead.
	per	shillings	per	Price,	kilog.	Materials,	shillings		shillings	shillings	mm.
	km.	emittings	km.	shillings	per km	shillings	_				********
	363	23.96	182	11.47	3477	673.99	16.85	120	90	900.84	46.8
	363	23.96	182	11.47	3481	674.71	16.86	120	90	901.57	46.9
	365	24.10	183	11.53	3491	676.63	16.91	120	90	903.54	47.0
	365	24.10	183	11.53	3496	677:53	16.94	120	90	901.47	47.1
	367	24.23	1 184	11.60	3505	679 · 18	16.98	120	90	906.16	
	367	24.23	184	11.60	3510	680 · 17	17.00	120	1		47.2
	368	24.29	184	11.60	3518	681.95	17.05	120	90	907.17	47.3
	368	24.29	184	11.60	3522	682.67	17.07	120	90	909.00	47.4
	370	24.42	185	11.66	3532	684.58	17.12		90	909.74	47.5
	370	24.42	185	11.66	3536	685.30		120	90	911.70	47.6
	372	24.56	186		3546		17:14	120	90	912.44	47.7
				11.73		687 23	17.18	120	90	914.41	47.8
	372	24·56 24·62	186 187	11.73	3551 3559	688.13	17:20	120	90	915.33	47.9
	373			11.79		689.79	17.25	120	90	917.04	48.0
	373	24.62	187	11.79	3564	690.69	17.27	120	90	917.96	48.1
	375	24.75	188	11.85	3574	692.60	17:31	120	90	919.91	48.2
	376	24.82	188	11.85	3581	694.21	17:35	120	90	921.56	48.3
	376	24.82	188	11.85	3587	695.61	17:39	120	90	923.00	48.4
	378	24.95	189	11.91	3596	697.24	17.43	120	90	924.67	48.5
	378	24.95	189	11.91	3601	698.14	17.45	120	90	925.59	48.6
	380	25.08	190	11.98	3611	700.06	17.50	120	90	927.56	48.7
	380	25.08	190	11.98	3615	700.78	17.52	120	90	928.30	48.8
	381	25.15	191	12.04	3624	702.63	17.56	120	90	930 · 19	48.9
	381	25.15	191	12.04	3628	703.35	17.58	120	90	930.93	49.0
	383	25.28	192	12.10	3638	705.26	17:63	120	90	932 89	49.1
	384	25.35	192	12.10	3646	707.05	17.67	120	90	934.72	49.2
	384	25.35	192	12.10	3651	$707 \cdot 77$	17.70	120	90	935 · 47	49.3
	386	25.48	193	12.17	3660	709 · 69	17.74	120	90	937 · 43	49.4
	388	25.61	194	12.23	3669	711.42	17.78	120	90	$939 \cdot 20$	49.5
	388	25.61	194	12.23	3674	712.32	17.80	120	90	$940 \cdot 12$	49.6
	389	25.67	195	12.29	3683	714.09	17.85	120	90	941.94	49.7
Ì	389	25.67	195	12.29	3688	714.99	17.87	120	90	942.86	49.8
	391	25.82	196	12.35	3697	716.81	17.92	120	90	944.73	49.9
Ì	391	25.82	196	12.35	3702	717.71	17.94	120	90	945.56	50.0
	392	25.87	196	12.35	3710	719.70	17.99	120	90	947.69	50.1
	392	25.87	196	12:35	3715	720.70	18.02	120	90	$948 \cdot 72$	$50 \cdot 2$
1	394	26.01	197	12.41	3725	722 · 52	18.06	120	90	950.58	50.3
	396	26.14	198	12.48	3734	724 · 27	18.10	120	90	952.37	50.4
	396	26.14	198	12.48	3739	725 16	18.13	120	90	953 · 29	50.5
	397	26.20	199	12.54	3747	726.82	18.17	120	90	954.99	50.6
	397	26 · 20	199	12.54	3752	727.72	18.19	120	90	955.91	50.7
	399	26.34	200	12.60	3762	729.64	18.24	120	90	957.88	50.8
	400	26.40	200	12.60	3769	731 · 24	18.28	120	90	959.52	50.9
	402	26.54	201	12.66	3779	733 · 16	18.33	120	90	961 · 49	51.0
	402	26.24	201	12.66	3784	734 10	18:35	125	93.75	971 20	51.1
	402	26.54	201	12.66	3788	734.78	18:37	125	93.75	971.90	51.2
-	404	26.67	202	12.73	3798	736.70	18.41	125	93.75	973.86	51.3
		1		-							

TABLE No. 129.—STEEL TAPE ARMOUR.

Diam.	I	Paper		Jute	s	teel Tap	e		Jute
over Lead.	Kilog.		Kilog.	-		YEAR	1		
mm.	per	Price,	per	Price,	Dimensions,	Kilog.	Price,	Kilog.	Price.
	km.	shillings	km.	shillings	mm.	per km.	shillings	per km.	shillings
						νщ.	· ·	WIII.	
51.4	31	12:40	252	103:32	55×1·1	2661	(50.00	1 0-0	7.00
51.5	31	12.40	253	103.73	55×1.1		478.98	252	103.32
51.6	31	12.40	253	103 73		2666	479.88	253	103.73
51.7	32	12.80	254	104.14	55×1·1	2671	480.78	253	103.73
51.8	32	12.80	254		55×1·1	2675	481.50	254	104.14
51.9	32	12.80	255	104.14	55×1.1	2680	482.40	254	104.14
52.0				104.22	55×1·1	2684	483.12	255	104.55
	32	12.80	255	104.55	55×1.1	2689	484.02	255	104.55
52.1	32	12.80	256	104.96	55×1.1	2694	484.92	256	104.96
52.2	32	12.80	256	104.96	55×1·1	2698	485.62	256	104.96
52.3	32	12.80	257	105.37	55×1·1	2703	486.54	257	105.37
52.4	32	12.80	258	105.78	55×1·1	2707	487.26	258	
52.5	32	12.80	258	105.78	55×1·1	2712	488.16	258	105.78
52.6	32	12.80	259	106.19	55×1·1	2717	489.06	259	105.78
$52 \cdot 7$	32	12.80	259	106.19	55×1·1	2722			106.19
52.8	32	12.80	260	106.60	55×1·1		489.96	259	106.19
52.9	32	12.80	260	106.60		2726	490.68	260	106.60
53.0	32	12.80	261	107.01	55×1.1	2731	491.58	260	106.60
53 · 1	32	12.80	262		55×1.1	2736	492.48	261	107.01
53.2	32			107.42	55×1·1	2740	493.20	262	107.42
53.3		12.80	262	107.42	55×1·1	2745	494.10	262	107.42
	32	12.80	263	107.83	55×1.1	2749	494.82	263	107.83
53.4	33	13.20	263	107.83	55×1·1	2754	495.72	263	107.83
53.5	33	13.20	264	108.24	55×1·1	2758	496.44	264	108.24
53.6	33	13.20	264	108.24	55×1·1	2763	497.34	264	108 24
53.7	33	13.20	265	108.65	55×1·1	2768	498.24	265	
53.8	33	13.20	265	108.65	55×1·1	2772	498.96		108.65
53.9	33	13.20	266	109.06	55×1·1	2777		265	108.65
54.0	33	13.20	266	109.06	$55\times1\cdot1$	2781	499.86	266	109.06
54.1	33	13.20	267	109.47			500.58	266	109.06
54.2	33	13.20	268	109.88	55×1·1	2786	501.48	267	109.47
54.3	33	13.20	268	109.88	55×1·1	2791	502:38	268	109.88
54.4	33	13.20	269		55×1.1	2795	503.16	268	109.88
54.5	33	13 · 20	270	110.29	55×1.1	2800	504.06	269	110.29
54.6	33	13.20		110.70	55×1.1	2805	504.96	270	110.70
54.7	33		270	110.70	55×1.1	2809	505.68	270	110.70
54.8		13.20	271	111.11	55×1.1	2814	506.58	271	111.11
	33	13.20	271	111.11	55×1·1	2818	507:30	271	111.11
54.9	33	13.20	272	111.52	55×1·1	2823	508.20	272	
55.0	33	13.20	272	111.52	55×1·1	2828	509.10		111.52
55.1	34	13.60	273	111.93	55×1·1	2832	509.82	272	111.52
55.5	34	13.60	273	111.93	55×1·1	2837		273	111.93
55.3	34	13.60	274	112.34	$55\times1\cdot1$	2842	510.72	273	111.93
55:4	34	13.60	274	112.34	$55 \times 1 \cdot 1$		511.62	274	112.34
55.5	34	13.60	275	112.75		2846	512.28	274	112.34
55.6	34	13.60	275	112.75	55×1·1	2851	513.18	275	112.75
55.7	34	13.60	276		55×1.1	2855	513.90	275	112.75
55.8	34	13.60	276	113.16	55×1.1	2860	514.80	276	113.16
55.9	34	13.60	277	113·16 113·57	55×1·1	2865	515.70	276	113.16
UU	OX	TO . DO .	1.1.1	2 - 57	55×1.1	2869	516.42		710 70

	Гаг	Com	pound	Total Weight of Mate-	Total Price	Waste	Wages,	Shop Ex-	Total	Dia
Kilog. per km.	Price, shillings	Kilog. per km.	Price, shillings	rials, kilog. per km.	of Materials, shillings	cent	shillings		Price, shillings	Lea
404	26.67	202	12.73	3802	737 · 42	18.43	125	93.75	974.60	51
405	26.74	203	12.79	3811	739 27	18.48	125	93.75	976.50	51
405	26.74	203	12.79	3816	740 · 17	18.50	125	93.75	977.42	51
407	26.86	201	12.85	3826	$742 \cdot 29$	18:56	125	93.75	979.60	51
407	26.86	204	12.85	3831	$743 \cdot 19$	18.58	125	93.75	980.52	51
408	26.93	204	12.85	3838	744.80	18.62	125	93.75	982.17	51
408	26.93	204	12.85	3843	745.70	18.64	125	93.75	883.09	52
410	27.06	205	12.92	3853	747.62	18.69	125	93.75	985.06	52
410	27:06	205	12.92	3857	748.34	18.71	125	93.75	985.80	52
411	27.13	206	12.98	3866	750.19	18.75	125	93.75	987.69	52
413	27.26	207	13.04	3875	751.93	18.80	125	93.75	989.48	52
413	27.26	207	13.04	3880	752.81	18.82	125	93.75	990.38	52
415	27:40	208	13.11	3890	754.75	18.87	125	93.75	992.37	52
415	27.40	208	13.11	3895	755.65	18.89	125	93.75	993 · 29	52
416	27.46	208	13.11	3902	757:25	18.93	125	93.76	994.93	52
416	27.46	208	13.11	3907	758.15	18.95	125	93.75	995.85	52
418	27:59	209	13.17	3917	760 · 0 6	19.00	125	93.75	997.81	53
420	27.73	210	13.73	3926	761.80	19.05	130	97.50	1008:35	53
420	27.73	210	13.23	3931	763.70	19.09	130	97.50	1010 29	53
421	27.79	211	13.30	3939	764:37	19.11	130	97.50	1010.98	53
421	27.79	211	13.30	3945	765.67	19.14	130	97.50	1012.31	53
423	27.92	212	13.36	3954	767.40	19.18	130	97.50	1014.08	53
423	27.92	212	13.36	3959	768:30	19.21	130	97.50	1015.01	53
424	27.99	212	13.36	3967	770.09	19.25	130	97.50	1016.84	58
424	27.99	212	13.36	3971	770.81	19.27	130	97.50	1017.58	58 58
426	28.13	213	13.42	3981	772.73	19.32	130	97.50	1019:55	54
426	28.13	213	13.42	3985	773.45	19:34	130	97:50	1020 - 29	$\frac{54}{54}$
428	28.25	214	13.48	3995	775.35	19.38	130	97.50	1022.23	54
429	28:32	215	13.55	4004	777:31	19.43	130	97.50	1024.24	54
429	28.32	215	13.55	4008	777.99	19.45	130	97.50	$\begin{bmatrix} 1024 \cdot 91 \\ 1026 \cdot 90 \end{bmatrix}$	54
431	28.45	216	13.61	4018	779.90	19:50	130	97.50	1028 30	54
432	28.52	216	13.61	4026	781 69	19.54	130	97.50	1029 47	54
432	28.52	216	13.61	4030	782.41	19:56	130	97.50	1031.43	54
434	28.65	217	13.67	4040	784 32	19:61	130	97.50	1031 43	54
434	28.65	217	13.67	4044	785.04	19.62	130 130	97.50	1034 13	54
436	28.78	218	13.74	4054	786.96	19:67	130	97.50	1035.06	55
436	28.78	218	13.74	4059	787.86	19.70	135	101.25	1045 93	55
437	28.85	219	13.80	4068	789.93	19.75	135	101.25	1046.85	55
437	28.85	219	13.80	4073	790.83	19.77	135 135	101.25 101.25	1048.81	55
439	28.98	220	13.86	4083	792.74	19.82	135	$101 \cdot 25$ $101 \cdot 25$	1049 49	55
439	28.98	220	13.86	4087	793.40		135	101 25	1043 43	55
440	29.04	220	13.86	4095	795.18	19.88	135	101 25	$1051 \cdot 31$ $1052 \cdot 05$	55
440	29.04	220	13.86	4099	795.90	19.90	135	101.25	$1054 \cdot 02$	55
442	29.17	221	13.93	4109	797.82	19.95	135	101.25	1054 94	55
442	29.17	221	13.93	4114	798.72	$\frac{19.97}{20.01}$	135	101.25	1056.71	55
444	29:30	222	13.99	4123	800.45	20.01	199	101 20	1000 11	90

TABLE No. 129.—STEEL TAPE ARMOUR.

						2101 12	JO. STEE	LIAP	E ARMOUR
Diam.]	Paper		Jute		Steel Tap	e		Jute
Lead,	Kilog.	Price,	Kilog.	Price,	Dimensions	Kilog.	D	Kilog.	
mm.	per km.	shillings	per km.	shillings	nim.	, per km.	Price, shillings	per km.	Price, shillings
56.0	34	13.60	278	113.98	55×1·1	2874	517:32	278	113.98
$56 \cdot 1$	34	13.60	279	114.39	55×1·1	2878	518.04	279	114.39
$56 \cdot 2$	34	13.60	279	114.39	55×1·1	2883	518.94	279	114 39
56.3	34	13.60	280	114.80	55×1·1	2888	519.84	280	114.80
$56 \cdot 4$	34	13.60	280	114.80	55×1·1	2892	520.56	280	114.80
56.5	34	13.60	281	115.21	55×1·1	2897	521.46	281	115.21
56.6	34	13.60	281	115.21	55×1·1	2901	522.18	281	115.21
56-7	35	14.00	282	115.62	55×1·1	2906	523.08	282	115.62
56.8	35	14.00	283	116.03	55×1·1	2911	523.98	283	116.03
56.9	35	14:00	283	116.03	55×1.1	2916	524 . 88	283	116.03
57.0	35	14.00	284	116.44	55×1.1	2920	525.60	284	116.44
57.1	35	14.00	284	116.44	55×1.1	2025	526:50	284	116.44
57.2	35	14.00	285	116.85	55×1.1	2929	527 - 22	285	116.85
57.3	35	14.00	286	117 · 26	, 55×1·1	2934	528 - 12	286	117.26
57.4	35 35	14:00	286	117.26	55×1.1	2939	529:02	286	117 - 26
57.5	35	14.00	287	117.67	55×1·1	2942	529.74	287	117.67
$\begin{array}{c} 57 \cdot 6 \\ 57 \cdot 7 \end{array}$	35	14.00	287	117.67	55×1.1	2948	530.64	287	117.67
57.8	35	14.00	288	118.08	55×1.1	2952	531.36	288	118.08
57.9	35	14.00	288 289	118.08	55×1.1	2957	532 - 26	288	118.08
58.0	35	14.00	290	118.49	55×1.1	2962	533:16	289	118.49
58.1	35	14.00	290	118·90 118·90	55×1.1	2966	533.88	290	118-90
58.2	35	14.00	291	118.31	55×1·1	2971	534.78	290	118.90
58.3	35	14.00	291	119.31	55×1.1	2976	535.68		119.31
58.4	36	14.40	292	119.72	55×1·1	2980	536.40	291	119.31
58.5	36	14.40	292	119.72	55×1·1	2985	537 · 30	292	119.72
58.6	36	14.40	293	120 - 13	55×1.1 55×1.1	2989	538 - 02	292	119.72
58.7	36	14.40	293	120.13	$55\times1\cdot1$	2994	538.74	293	120.13
58.8	36	14.40	294	120.54	$55 \times 1 \cdot 1$	2999 3003	539.82	293	120.13
58.9	36	14.40	294	120.54	$55\times1\cdot1$	3008	540.54	294	120.54
59.0	36	14.40	295	120.95	55×1·1	3012	541.44	294	120.54
59.1	36	14.40	296	121.36	55×1·1	3017	542·16 543·06	295	120.95
59.2	36	11.40	296	121:36	55×1·1	3022	543.96	296	121.36
59.3	36	14.40	297	121.77	$55 \times 1 \cdot 1$	3026	544.68	296	121.36
59.4	36	14.40	297	121.77	55×1·1	3031	545.58	297	121.77
59.5	36	14.40	298	122.18	55×1·1	3035	546.30	297	121.77
59.6	36	14.40	298	122.18	55×1·1	3040	547.20	298 298	122.18
59.7	36	14.40	299	122:59	55×1·1	3045	548.10	299	122.18
59.8	36	14.40	299	$122 \cdot 59$	55×1·1	3049	548.82	299	122.59
59.9	36	14.40	300	123.00	55×1·1	3054	549.72	300	122.59
60.0	36	14.40	300	123.00	55×1·1	3059	550.62	300	123.00
60.1	37	14.80	301	123.41	$55 \times 1 \cdot 1$	3063	551.34	301	123.00
60.2	37	14.80	302	123.82	55×1·1	3068	$552 \cdot 24$	302	123.41
60.3	37	14.80	303	124 · 23	55×1·1	3072	552.96	303	$123 \cdot 82$ $124 \cdot 23$
60.4	37	14.80	303	124 · 23	55×1·1	3077	553.86	303	124·23 124·23
60.6	37	14.80	303	124 · 23	55×1·1	3081	554.58	303	124 23
00 0	97	14.80	304	124.64	55×1·1	3086	555.48	304	
							10	OUI	124.64

				- 1						
	Tar	Con	pound	Total Weight of Mate-	Total Price	Waste	Wages,	Shop Ex-	Total	Diam.
Kilo		Kilog.	V	rials,	of Mate-	cent.,	shillings	penses	Price,	Lead,
per	Price, shillings	per	Price,	kilog.	rials,	shillings		shillings	shillings	mm.
km	, grimme	km.	shillings	per km.	shillings	_				
1										
443		223	14.05	4132	802.30	20.05	135	101.25	1058.60	56.0
447		224	14.12	4141	804.04		135	101.25	1060:39	56.1
447		224	14.12	4146		. 20.15	135	101.25	1062:34	56.2
448		224	14.12	4154	806.73	20.17	135	101.25	1063.15	56.3
448		224	14.12	4158	807.46	20.19	135	101.25	1063.90	56.4
450		225	14.18	4168	809.36	$20 \cdot 24$	135	101.25	1065.85	56.5
450		225	14.18	4172	810.08	$20 \cdot 25$	135	101.25	1066.58	56.6
452		226	$14 \cdot 25$	4183	812.41	$20 \cdot 31$	135	101.25	1068 97	56.7
453	29.90	227	14.31	4192	814.25	20.35	135		1070.85	56.8
453	3 29.90	227	14.31	4197	815.15	20.38	135	101.25	1071 - 78	56.9
455	30.03	228	14.37	4206	816.88	20.42	135	101.25	1073.55	57.0
455	30.03	228	14.37	4211	317.78	20.45	140	105.00	1083 · 23	57.1
456	30.10	228	14.37	4218	819.59	20.49	140	105.00	1085.08	57.2
458	30.22	229	14.44	4228	821.30	20.53	140	105.00	1086.83	57.3
458	30.22	229	14.44	4233	822 - 20	20.55	140	105.00	1087.75	57.4
460	30.36	230	14.50	4242	823 - 94	20.60	140	105.00	1089.54	57.5
460	30.36	230	14.50	4247	824 · 84	20.62	140	105.00	1090 46	57.6
461		231	14.56	4255	826.51	20.66	140	105.00	$1092 \cdot 17$	57.7
461		231	14.56	4260	827.41	20.68	140	105.00	1093.09	57.8
468		232	14.63	4270	829 - 33	20.73	140	105.00	1095 06	57.9
464		232	14.63	4277	830 - 93	20.77	140	105.00	1096.70	58.0
464		232	14.63	4282	831 · 83	20.80	150	112.50	1115.13	58.1
466		233	14.69	4292	833.75	20.84	150	112.50 112.50	1117 13	58 · 2
466		233	14.69	4296	834 · 47	20.86	150	112.50	1117 03	58.3
467		234	14.75	4306	836.31	20.91	150	112.50	1119.72	58.4
467		234	14.75	4310	837 · 43	20.91	150	112.50	1120.87	58.5
469		235	14.81	4320	839 · 17	20.98	150	112.50 112.50	1120 65	58.6
469		235	14.81	4325	840 · 25	21.00	150	112.50 112.50		58.7
471		236	14.87	4334	841.58	21.04	150	112.50 112.50	1123.75	58.8
471		236	14.87				150		1125.12	
472		236	14.87	4339 4346	842.88	21.07	150	112.50	1126.45	58.9
474		237	14.93	4356	844·49 846·40	$21 \cdot 11 \\ 21 \cdot 16$	150	112.50	1128.10	59.0
								112.50	1130.06	59.1
474		23 7 238	14·93 15·00	4361 4370	847.30	21.18	150	112.50	1130.98	59.2
476					849.04	21.22	150	112.50	1132.76	59.3
476		238	15.00	4375	849.94	21.25	150	112.50	1133.69	59.4
477		239	15.06	4383	851.61	21.29	150	112.50	1135.40	59.5
477		239	15.06	4388	852.51	21.31	150	112.50	1136.32	59.6
479		240	15.13	4398	854 · 43	21.36	150	112.50	1138 · 29	59.7
479		240	15.13	4402	855 15	21.38	150	112.50	1139.03	59.8
480		240	15.13	4410	856.94	21.42	150	112.50	1140.86	59.9
480		240	15.13	4415	857.84	21.44	150	112.50	1141.78	60.0
482		241	15.19	4425	859.97	21.50	150	112.50	1142.97	60·I
484		242	15.25	4435	861.88	21.55	150	112.50	1145.93	60.2
485		243	15.31	4443	863.54	21.58	150	112.50	1147.62	60.3
485		243	15.31	4448	864.44	21.61	150	112.50	1148.55	60.4
485		243	15.31	4452	865.16	21.63	150	112.50	1149 29	60.5
487	32.14	244	15.38	4462	866.73	21.66	150	112.50	1150.89	60.6
1										

TABLE No. 129.—STEEL TAPE ARMOUR.

Diam.		Paper		Jute	8	steel Tap	e		Jute
Lead, mm.	Kilog per km.	Price, shillings	Kilog.	Price, shillings	Dimensions mm.	Kilog. per km.	Price, shillings	Kilog.	Price, shillings
60.7	37	14.80	304	121.61	55×1·1	3091	556.38	304	124.61
60.8	37	14.80	305	125.05	55×1·1	3096	557.28	305	125.05
60.9	37	14.80	306	125.46	55×1·1	3100	558.00	306	125.46
61.0	37	14.80	306	125.46	55×1.1	3105	558.90	306	125.46
61.1	37	14.80	307	125.87	55×1.1	3109	559.62	307	125.87
61.2	37	14.80	307	125.87	55×1.1	3114	560.52	307	125.87
61.3	37	14.80	308	126.28	55×1.1	3118	561 . 24	308	126.28
61.5	37	14.80	308	126.28	55×1.1	3123	562.14	308	126 · 28
61.6	37	14.80	309	126 · 69	55×1.1	3128	563:04	309	126.69
61.7	38	14·80 15·20	310	127.10	55×1.1	3132	563.76	310	127 · 10
61.8	38	15.20	310	127.10	55×1.1	3137	564.66	310	127.10
61.9	38	15.20	311	127.51	1.52×1.1	3141	565:38	311	127:51
62.0	38	15.20	312	127.51	55×1.1	3146	566.28	311	127.51
62.1	38	15.20	312	127.92	55×1·1	3151	567.18	312	127.92
62.2	38	15.20	313	127 · 92 128 · 32	55×1·1	3155	567.90	312	127.92
62.3	38	15.20	313	128.32	55×1·1	3160	568.80	313	128:32
62.4	38	15.20	311	128.74	55×1·1	3164	569.52	313	128.32
62.5	38	15.20	314	128.74	55×1·1	3169	570.42	314	128.74
62.6	38	15.20	315	129.15	55×1·1	3174	571.32	314	128.74
62.7	38	15.20	316	129.56	$\begin{array}{c c} 55 \times 1 \cdot 1 \\ 55 \times 1 \cdot 1 \end{array}$	3178	572.04	315	129.15
62.8	38	15.20	316	129.56	$55\times1\cdot1$	3183	572.94	316	129.56
62.9	38	15.20	317	129 97	55×1·1	3192	573.84	316	129.56
63.0	38	15.20	317	129 - 97	55×1.1	3197	574 - 56	317	129.97
63 · 1	38	15.20	318	130.38	55×1·1	3201	575.46	317	129.97
63 · 2	38	15.20	318	130.38	55×1·1	3206	576·18 577·08	318	130.38
63.3	38	15.20	319	130 - 79	55×1·1	3210	577.80	318	130.38
63 · 4	39	15.60	320	131.20	55×1.1	3216	578.88	319	130.79
63.5	39	15.60	320	131.20	55×1·1	3220	579.60	320	131.20
33.6	39	15.60	321	131.61	55×1·1	3225	580.50	320 3 2 1	131.20
33.7	39	15.60	321	131.61	55×1·1	3230	581 · 40	321	131·61 131·61
33.8	39	15.60	322	132.02	55×1·1	3234	582.12	321	132.02
33.9	39	15.60	322	$132 \cdot 02$	55×1·1	3238	582 84	322	133.02
31.0	39	15.60	323	132.43	55×1·1	3243	583.74	323	132.43
34.1	39	15.60	323	132.43	55×1·1	3248	584.64	323	132 43
34.2	39	15.60	324	132.84	55×1·1	3252	585.36	324	132 .84
34.3	39	15.60	324	132.84	55×1·1	3257	586.26	324	132.84
31.4	39	15.60	325	133.25	55×1·1	3261	586.98	325	133.25
34.5	39	15.60	326	133.66	55×1·1	3266	587.88	326	133 · 66
34·6 34·7	39 39	15.60	326	133.66	55×1·1	3271	588.78	326	133.66
4.8	39	15.60	327	134.07	55×1·1	3276	589.68	327	134.07
4.9	39	15.60	328	134.48	55×1.1	3280	590.40	328	134 · 48
5.0	39	15.60	328	134.48	55×1.1	3285	591.30	328	134 · 48
5.1	40	15.60	329	134 89	55×1·1	3290	592.20	329	134.89
35.2	40	16	329	134.89	55×1·1	3294	592.92	329	134.89
5.3	40	16 16	330	135.30	55×1.1	3299	593.82	330	135.30
0	TEU .	10	330	135.30	55×1·1	3303	594 · 54	330	135.30

(All Weights and Prices are per Kilometre.)-continued.

	Т	ar	Com	pound	Total Weight	Total	Waste		Shop		Diam.
					of Mate-	Price	2½ per	Wages,	Ex-	Total	over
	Kilog.		Kilog.		rials.	of Mate-	cent.,	shillings	penses,	Price,	Lead.
	per	Price,	per	Price,	kilog.	rials,	shillings	onimingo	shillings	shillings	mm.
	km.	shillings	km.	shillings	per km.	shillings	011111111111111111111111111111111111111		pn		200.000
					F					· · · · · · · · · · · · · · · · · · ·	
	487	32.14	244	15.38	4467	867.98	21.70	150	112.50	1152.18	60.7
-	488	32.21	244	15.38	1475	869.77	21.74	150	112.50	1154.01	60.8
	490	32.35	245	15.44	4484	871.51	21.78	150	112.50	1155.79	60.9
	490	32.35	245	15.44	4489	872.41	21.81	150	112.50	1156.72	61.0
	492	32.48	246	15.50	4498	874.14	21.85	150	112.50	1158.49	61.1
	492	32.48	246	15.50	4503	875.04	21.88	150	112.50	1159.42	61.2
	493	32.54	247	15.57	4511	876.71	21.91	150	112.50	1161.12	61.3
	493	32.54	247	15.57	4516	877.61	21.94	150	112.50	1162.05	61.4
	495	32.67	248	15.63	4526	879.52	21.99	150	112.50	1164.01	61.5
	496	32.74	248	15.63	4533	881 · 13	22.03	150	112.50	1165.66	61.6
	496	32.74	248	15.63	4539	882.43	22.06	150	112.50	1166.99	61.7
		32.87	249	15.69	4547	884 · 16	22.10	155	116.50	1177.76	61.8
	498		249	15.69	4553	885.06	$\frac{22 \cdot 13}{22 \cdot 13}$	155	116.50	1178.69	61.9
	498	32.87	250	15.75	4563	886.97	$\frac{22 \cdot 17}{22 \cdot 17}$	155	116.50	1180.64	62.0
	500	33.00		15.75	4567		22.19	155	116.50	1181.38	62.1
	500	33.00	250			887.69	22 24	155	116.50	1183 · 29	62.2
	501	33.07	251	15.82	4576	889.55				1184.03	62.3
	501	33.07	251	15.82	4580	890.27	22.26	155	116.50		62.4
	503	33.50	252	15.88	4590	892.18	22:30	155	116.50	1185.98	
	503	33.20	252	15.88	4595	893.08	22:32	155	116.50	1186.90	62.5
	504	33.26	252	15.88	4602	894.68	22.37	155	116.50	1188.55	62.6
	506	33.33	253	15.94	4612	896.53	22.41	155	116.50	1190 · 44	62.7
i	506	33.33	253	15.94	4617	897 • 43	22.43	155	116.50	1191.36	62.8
	507	33.46	254	16.00	4625	899.16	22.48	155	11.6.50	1193 · 14	62.9
	507	33.46	254	16.00	4630	900.06	22.50	155	116.20	1194.06	63.0
	509	33.60	255	16.07	4639	901.81	22.54	155	116:50	1195.85	63.1
	509	33.60	255	16.07	4644	$902 \cdot 71$	22.56	155	116.20	1196.77	63.5
	511	33.73	256	16.13	4653	904.44	22.61	155	116.20	1198.55	63.3
	512	33.80	256	16.13	4663	905.81	22.64	155	116.50	1199.95	63.4
	512	33.80	256	16.13	4667	$907 \cdot 53$	22.69	155	116.50	1201.72	63.5
	514	33.93	257	16.20	4677	909.45	22.73	155	116:50	1203.68	63.6
	514	33.93	257	16.20	4682	910.34	22.75	155	116.50	1204.59	63.7
	516	34.06	258	16.26	4691	912.08	22.80	160	120	1214.88	63.8
	516	34.06	258	16.26	4695	912.80	22.82	160	120	1215.62	63.9
	517	34.13	259	16.32	4704	914.65	22.87	160	120	1217.52	64.0
	517	34.13	259	16.32	4709	915.54	22.88	160	120	1218 · 42	64.1
	519	34.26	260	16.38	4717	917.22	22.93	160	120	1220 · 15	64.2
			260	16.38	4722	918.12	22.95	160	120	1221.07	64.3
	5 19	34.26	260	16.38	4730	919.78	23.00	160	120	1222.78	64.4
	520	34.32		16.45	4740	921.70	23.04	160	120	1224.74	64.5
	522	34.45	261			922.60	23.07	160	120	1225 · 67	64.6
	522	34.45	261	16.45	4745	924.52	23 11	160	120	1227 · 63	64.7
	524	34.59	262	16.51	4755		23.15	160	120	1229 · 33	64.8
	525	34.65	263	16.57	4763	926.18			120	1230 · 26	64.9
	525	34.65	263	16.57	4768	927.08	23.18	160	120	$1232 \cdot 20$	65.0
	527	34.79	264	16.64	4778	928.98	23.22	160		1233 · 38	65.1
	527	34.79	264	16.64	4783	930.13	23.25	160	120	1235 21	65.2
	528	34.85	264	16.64	4791	931.91	23.30	160	120		65.3
	528	34.85	264	16.64	4795	932.63	23.32	160	120	1235.95	00.0
				I							

TABLE No. 129.—STEEL TAPE ARMOUR.

Diam.	F	aper					TABLE NO. 129.—STEEL TAPE ARMOUN					
				Jute	S	teel Tap	Jute					
Lead, mm.	Kilog. per km.	Price, shillings	Kilog. per km.	Price, shillings	Dimensions,	Kilog. per km.	Price, shillings	Kilog. per mm.	Price, shillings			
65.4	40	16	331	135.71	55×1·1	3308	595 - 44	331	135.71			
65.5	40	16	331	135.71	. 55×1·1	3312	596.16	331	135 71			
65.6	40	16	332	136.12	55×1·1	3317	597.06	332	136.12			
65.7	40	16	332	136.12	55×1·1	3322	597.96	332	136 12			
65.8	40	16	333	136.53	55×1·1	3326	598.68	333	136.53			
65.9	40	16	334	$136 \cdot 94$	55×1·1	3331	599 · 58	334	136.94			
66.0	40	16	334	136.94	55×1·1	3336	600.48	334	136.94			
66.1	40	16	335	137.35	55×1·1	3340	601-20	335	137.35			
66.2	40	16	335	137.35	55×1·1	3345	602-10	335	137.35			
66.3	40	16	336	137.76	55×1·1	3350	603.00	336	137.76			
66.4	40	16	336	137.76	55×1·1	3354	603.72	336	137.76			
66.5	40	16	337	138 · 17	55×1·1	3359	604 - 62	337	138 · 17			
66.6	40	16	338	138.61	55×1·1	3363	605.34	338	138.61			
66.7	41	16.40	338	138.61	55×1.1	3368	606 - 24	338	138.61			
66.8	41	16:40	339	139.02	$55 \times 1 \cdot 1$	3372	606.96	339	139.02			
66.9	41	16.40	339	$139 \cdot 02$	$55 \times 1 \cdot 1$	3377	607.86	339	139 · 02			
67.0	41	16.40	340	139.43	$55 \times 1 \cdot 1$	3382	608-76	340	139 43			
67.1	41	16.40	340	139.43	55×1.1	3386	609 - 48	340	139.43			
67.2	41	16.40	341	139.84	$55 \times 1 \cdot 1$	3391	610.38	341	139.84			
67.4	41	16.40	341	139.84	55×1.1	3396	611.28	341	139.84			
67.5	41	16.40	342	140.25	29×1·1	34()()	612.00	342	140.25			
67.6	41	16.40	343	140.66	55×1.1	3405	$612 \cdot 90$	343	140.66			
67.7	41	16.40	343	140.66	$55 \times 1 \cdot 1$	3410	613.80	343	140.66			
67.8	41	16·40 16·40	344	141.04	$55 \times 1 \cdot 1$	3414	614.52	344	141.04			
67.9	41	16.40	315	141.45	55×1.1	3419	615.42	345	141.45			
68.0	41	16.40	346	141.86	55×1·1	3423	616.14	346	141.86			
68.1	41	16.40	316	141.86	$55 \times 1 \cdot 1$	3428	617.04	346	141.86			
68.2	41	16.40	347	142 27	$55 \times 1 \cdot 1$	3432	617.76	347	142.27			
68.3	41	16.40	347	142.27	55×1·1	3437	618.66	347	142.27			
68.4	41	16.40	348	142.68	$55 \times 1 \cdot 1$	3442	619.56	348	142.68			
68.5	41	16.40	349	142.68	$55 \times 1 \cdot 1$	3446	$620 \cdot 28$	348	142.68			
68.6	41	16.40	349	143.00	55×1.1	3451	621 · 18	349	143.09			
68.7	42	16.80	350	143.09	$55\times1\cdot1$	3456	622.08	349	143.09			
68.8	12	16.80	350	$\frac{143 \cdot 50}{143 \cdot 50}$	55×1.1	3460	622.80	350	143.50			
68.9	12	16.80	351	143.50	55×1.1	3465	623.70	350	143.50			
69 · 0	42	16.80	351	143.91	55×1.1	3469	624 · 42	351	143.91			
69 · 1	42	16.80	352	143.31	55×1.1	3474	$625 \cdot 32$	351	143.91			
69.2	42	16.80	353	144.73	55×1.1	3479	626 · 22	352	144.32			
69.3	42	16.80	353	144.73	55×1.1	3483	626.94	353	144.73			
69.4	42	16.80	354	145.14	55×1.1	3488	627 · 84	353	144.73			
69.5	12	16.80	355	145.55	55×1.1	3492	$628 \cdot 56$	354	145.14			
69.6	42	16.80	356	145.96	55×1·1	3497	629 · 46	355	145.55			
69.7	42	16.80	3 5 6	145 96	55×1.1	3502	630 · 36	356	145.96			
69.8	42	16.80	357	146.37	55×1.1	3507	631.26	356	145.96			
69.9	42	16.80	357	146.37	55×1·1	3511	631.98	357	146.37			
70.0	42	16.80	358	146.78	55×1.1	3516	632.88	357	146.37			
					55×1·1	3520	633.60	358	146.78			

(All Weights and Prices are per Kilometre.)-continued.

	J	[ar	Com	pound	Total Weight	Total 1 Price	Waste		Shop	Total	Diam.
	F7:1		77.7		of mate-	of	2½ per	Wages,	Ex-	Price,	over
	Kilog.	Price,	Kilog.	Price,	rials, kilog.	Materials,	cent.,	shillings	penses, shillings	shillings	Lead, mm.
	per km.	shillings	per km.	shillings	per km.	shillings	omittings		gminings		шш,
	530	34.98	265	16.70	4805	934.54	23:36	160	120	1237 · 90	65.4
	530	34.98	265	16.70	4809	935.26	23 : 38	160	120	1238 · 64	65.5
	532	35.12	266	16.76	4819	937 18	23.43	160	120	1240.61	65.6
	532	35.12	266	16.76		938.08	23 45	160	120	1241.53	65.7
	533	35 12		16.83	4832	939.75	23 49	160	120	1243 · 24	65.8
			267		4842				120	1245 24	65.9
	535	35.32	268	16.89		941.67	23.54	160			
	535	35.32	268	16.89	4847	942.57	23:56	160	120	1246 · 13	66.0
	536	35.38	268	16.89	4854	944.17	23.60	160	120	1247.77	66.1
	536	35.38	268	16.89	4859	945.07	23.62	160	120	1248.69	66.2
	538	35.21	269	16.95	4869	946.98	23.67	160	120	1250.65	66.3
	538	35.21	269	16.95	4873	947.70	23.70	160	120	1251.40	66.4
	540	35.65	270	17.01	4883	949.62	23.74	160	120	1253 · 36	66.5
	541	35.72	271	17.08	4891	951:36	23.78	160	120	1255 14	66.6
	541	35.72	271	17.08	4897	952.66	23.82	160	120	1256.48	66.7
	543	35.84	272	17.14	4906	954.38	23.86	160	120	1258 24	66.8
	543	35.84	272	17.14	4911	955.28	23.88	160	120	1259 16	66.9
	544	35.91	272	17.14	4919	957.07	23.93	160	120	1261.00	67.0
	544	35.91	272	17:14	4923	957.79	23.95	160	120	1261.74	67.1
	546	36.04	273	17.20	4933	959.70	24:00	160	120	1263.70	67.2
	546	36.04	273	17.20	4938	960.60	24.02	160	120	1264.62	67.3
	548	36.17	274	17.27	4947	962.34	24.06	160	120	1266 40	67.4
	549	36.24	275	17:33	4956	964 · 19	24.10	160	120	1268 · 29	67.5
	549	36.24	275	17:33	4961	965.09	24.13	160	120	1269 · 22	67.6
	551	36.37	276	17:39	4970	966.76	24.17	160	120	1270.93	67.7
	552	36.44	27 6	17:39	4978	967:55	24.19	160	120	1271.74	67.8
	554	36.57	277	17:46	4987	970.29	24.26	165	124	1283.55	67.9
	554	36.57	277	17.46	4992	971 · 19	24.28	165	124	1284.47	68.0
	556	36.70	278	17.52	5001	$972 \cdot 92$	24.32	165	124	1286 · 24	68.1
	556	36.70	278	17:52	5006	973.83	24:34	165	124	1287 - 17	68.2
	557	36.76	279	17:58	5015	975.66	24:39	165	124	1289.05	68.3
	557	36.76	279	17:58	5019	976.38	24.41	165	124	1289 · 79	68.4
	559	36.90	280	17:65	5029	978:31	24.46	165	124	1291.77	68.5
	559	36.90	280	17:65	5034	979.21	24.48	165	124	1292 69	68.6
	560	36.96	280	17.65	5042	981.21	24:53	165	124	1294.74	68.7
	560	36.96	280	17.65	5047	982.11	24.55	165	124	1295.66	68.8
	562	37.10	281	17:71	5056	983.85	24.60	165	124	1297 45	68.9
	562	37.10	281	17.71	5061	984.75	24.62	165	124	1298 · 37	69.0
	564	37.22	282	17.77	5071	986.65	24.67	165	124	1300.32	69.1
	565	37.30	283	17.83	5079	988:33	24.71	165	124	1302.04	69.2
	565	37.30	283	17.83	5084	989 · 23	24.73	165	124	1302.96	69.3
Į	567	37.42	284	17.90	5093	990.96	24.78	165	124	1304.74	69.4
	568	37.49	284	17.90	5101	$992 \cdot 75$	24.82	165	124	1306.57	69.5
	570	37.62	285	17.96	5111	994.66	24.87	165	124	1308 - 53	69.6
Ì	570	37.62	285	17.96	5116	995.56	24.89	165	124	1309 · 45	69.7
	572	37.76	286	18.02	5125	997.30	24.93	165	124	1311 23	69.8
	572	37.76	286	18.02	5130	998.20	24.95	165	124	1312.15	69.9
	573	37.82	287	18.08	5138	999.86	25.00	170	127.50	1322.36	70.0
	3.0										

TABLE No. 130.—APPROXIMATE PRICES OF MATERIALS.

	Mate	wio I				Price in Shillings per:—			
	mate				100 kilogrammes	100 lb.			
Paper						40.0	18.15		
Jute yarns, 5 t	o 10 lb.				. 1	35 to 37.5	15.9 to 17.0		
Gastar						4.43	2.01		
Pitch						4.0	1.82		
Resin oil .				۰		12.3	5.58		
Steel tape .						19.0	8.65		
Galvanised stee	l tape					30.0	13.64		
Compound (4 p	oitch to	I gas	tar)			4.1	1.86		
Compound (3 p	itch to .	l resi	n oil)		. 1	12.15	5.53		

CHAPTER XI.

LABOUR CHARGES AND EXAMPLES.

The additions to be made to the price of the materials in order to arrive at the cost of a cable are:—(1) Labour; (2) waste of materials; (3) shop expenses; (4) carriage, discount, and profit. The fourth division need not be here considered.

(1) Labour.—In the manufacture of cables in large works and with modern machinery the cost of the labour varies between 5 and 15 per cent. of the cost of the material. From the consideration of the actual costs of a large number of cables of various types, the cost of the labour is found to be approximately expressible by the percentage of the cost of material shown in Table No. 131. These percentages represent average values, and in the case of relatively short lengths of cable the cost of labour will be higher; whilst, on the other hand, for long lengths of cable, where a machine would run for several days without alteration, only requiring replenishment of material, the cost of the labour will be lower than that represented by these percentages.

TABLE No. 131.—Cost of LABOUR.

Type of Cable	Percentage of Co of Material			
Paper or jute insulated single conductor, lead sheathed and Paper or jute insulated concentrice.	7.5 per cent.			
Paper or jute insulated concentric conductors, lead sheathed and armoured Paper or jute insulated multicore conductors, lead sheathed and armoured.	12 "			
Paper and air space telephone cables	10 ,,			
Rubber insulated cables	12 10 ",			

The following curves have been constructed from the actual costs of labour for cables of various types.

(2) Waste of Material.—The waste of material is generally allowed for by an addition of $2\frac{1}{2}$ per cent. of the cost of material in the case of all cables excepting paper and air space telephone cables, and sometimes rubber insulated

cables, for which a waste of 5 per cent, is allowed.

(3) Shop Expenses.—The shop expenses include rents, rates, taxes, water, heating, lighting, cleaning, and offices, or salaries of unproductive labour. The shop expenses are usually taken as a percentage on the cost of the labour, and vary between 100 per cent. and 200 per cent. Table No. 132 gives the percentages usually charged. The conductor cross section taken is the total; thus, for a 3-core cable of 50 square mm. section conductor, the total cross section is $3 \times 50 = 150$ square mm.

TABLE No. 132.—Shop Expenses.

			Type	of Cable						Percent	age of Labour
Paper	or jute	insulated	l: total	conduc	etor	;;	51 - 151-	·150 ·500	mm. ² mm. ² mm. ²	100 150 175 200	per cent.
		space tel ted cable		cable.		,, 8			•	125 100	27 29 39

The shop expenses can also be charged as a percentage on the cost of material and labour, and should be approximately 7 per cent. in general cases. For example:—

Let cost of material = 1000 shillings.
and cost of labour =
$$\frac{100}{1100}$$
,

Shop expenses at 7 per cent. = $\frac{77}{1100}$,

Total cost = $\frac{1177}{1100}$,

EXAMPLES IN ESTIMATING.

(A) Paper Cables.

Required: a three-core, paper insulated, lead covered and steel-tape armoured cable for 1000 volts working pressure, each conductor to have a cross section of 0.25 sq. in., thickness of dielectric between copper and copper and copper and lead 2.8 mm.

From Table No. 1:

or approximately 128/- per 100 kilog.

Price of copper = $14.36 \times 128 = 1838/-$.

Thickness of paper copper to copper = $2 \cdot 8$ mm.

... Diameter over insulated core = 16.5 + 2.8 = 19.3 mm.

From Table No. 36:

Weight of paper for diameter 19:3 mm. = 321:8 $16.5 \dots = 235.2$

Weight of paper per core = 86.6 kilog. per kilometre, or roundly 87 kilog. at 40/- per 100 kilog.

Price of paper = 35/-.

Weight of impregnating compound

= 80 per cent. of paper weight = 70 kilog. per kilometre. Price of compound at 40/- per 100 kilog. = 28/- per kilometre.

Therefore weight of insulated core = 1593 kilog, per kilometre ", = 1901/- per kilometre.

Therefore weight of three insulated cores = 4779 kilog.

Price , , , , = 5703/-Plus I per cent. for lay of cores = 4827 kilog, per kilometre " = 5760/- per kilometre

The diameter of the three laid up cores with sector-shaped conductors will be

 $1.861 \times 19.3 = 35.93$ mm. (or 36.0). Therefore diameter over the outer insulating paper

 $= 36.0 + 2.8 = 38.8 \,\mathrm{mm}$

Weight of paper for 38.8 mm. diameter = 1300.5 36.0 mm. , = 1119.8

. . Weight of paper over laid up cores = 180 7 kilog, per kilometre. Price of 181 kilog., at 40/- per 100 kilog. = 72.4/-, Weight of impregnating compound = 80 per cent. of 181 = 145.

Price, at 40/- per 100 kilog. = 58/-.

Lead thickness = 3.3 mm.

Therefore diameter over lead = $6 \cdot 6 + 38 \cdot 8 = 45 \cdot 4$ mm.

Weight of lead for diameter 45 4 mm. = 18405 38.8 mm. = 13441

. · . Weight of lead sheath . · . = 4964 kilog. per kilometre Price, at 24/- per 100 kilog. · . · = 1192/- per kilometre

From Steel Tape Table for diameter 45.4 mm.:

Weight of steel tape armour = 3377 kilog, per kilometre Price of steel tape armour = 654·16/ per kilometre Diameter of finished cable = $45 \cdot 4 + 4 \cdot 4 + 4 \cdot 4 + 4 = 57 \cdot 8$ mm.

						Diam. in. mm.	Weight in kilog. per km.	Price in shillings per kilometre
Copper, 37/2·35 mm.				per ce	ore	16.5	1436	1838
Paper		• •		99 99		19.3	87 70	35 28
Each core							1593	1901
Three such cores .							4779	5703
1 per cent. for lay . Paper					:	36.0	48 181	57 $72 \cdot 4$
Impregnating compound Lead, 3.3 mm. thick	d .				٠	38·8 45·4	145 4964	58 1192
Steel tape armour					÷	57.8	8377	654.16
	Total	l diamete	r.			57.8		
	Total	l weight		٠		* *	13494	••
		l price of						7736.56
Wages (approximately I					•	4.0	*4	773 · 65 193 · 41
Waste of material $2\frac{1}{2}$ pe Shop expenses (3×0)					m.	**	• •	IUU II
= 200 per cent.)						**		1547:31
Total price	in shi	llings pe	r kilo	metre		4.0		10250.93

(B) Jute Cables.

Required: a concentric conductor, jute insulated lead sheathed and steel wire armoured cable; each conductor of 240 sq. mm. cross section; thickness of inner dielectric 3 mm., and of outer dielectric 2 5 mm.

From Table No. 2: for 240 mm.2—

Weight of copper = 2139 kilog. per kilometre Strand of copper = 37/2.87 mm.

. Diameter of strand = $7 \times 2.87 = 20.1$ mm.

Taking market price of copper as . . . £60 per ton. Rolling and preliminary drawing . . . £4 ,,

Price of copper . £64 ,

that is approximately 128/- per 100 kilog.

... Cost of copper = $21.39 \times 128 = 2738$ /- per kilometre.

Diameter over jute = $20 \cdot 1 + 6 = 26 \cdot 1$ mm.

Therefore the weight of jute

=
$$0.687 (D^2 - d^2) = 0.687 (26.1^2 - 20.1^2)$$

= 190 kilog. per kilometre,

and cost of jute at 44/- per 100 kilog.

$$= 1.9 \times 44 = 83.6$$
/- per kilometre.

Weight of impregnating compound

$$= 80$$
 per cent. of $190 = 152$,

and price at 26/- per 100 kilog.

$$= 1.52 \times 26 = 39.5/-$$

Outer Conductor.—Diameter of the wires (d)

$$= \frac{1}{2} \sqrt{(1.625 \text{ Q} + \text{D}^2)} - \frac{\text{D}}{2}$$

$$\therefore d = \frac{1}{2} \sqrt{\{1.625 (240) + 26.1^2\}} - 13.05$$

$$= 3.3 \text{ mm}.$$

The number of such wires (N)

$$=\frac{\pi (D + d)}{d} = 28$$
 wires.

The weight and price of the outer conductor will be the same as for the inner conductor.

The diameter over the outer conductor = 26.1 + 6.6 = 32.7 mm.

Outer jute insulation 2.5 mm. thick

Weight of jute = $0.687 (37.7^2 - 32.7^2) = 242$ kilog, per kilometre. Cost of jute at 44/- per 100 kilog. = $2.42 \times 44 - 106.5$ /- per, kilometre. Weight of impregnating compound = 80 per cent, of 242 = 194 kilog.

Cost at 26/- per 100 kitog = $1.94 \times 26 = 50.5/-$.

Lead sheath 2.6 mm, thick.

... Diameter over lead = 37.7 + 5.2 = 42.9 mm. Weight of lead for diameter 42.9 mm. = 16434 22 22 $37.7 \dots = 12695$

Weight of lead in kilog, per kilometre = 3739

and cost at 24/- per 100 kilog, = $37 \cdot 39 \times 24 = 897/-$.

Wire Armour—Diameter over lead $\cdot = 42.9 \text{ mm}.$ Jute serving 1.5 mm. thick = 45.9 mm.

From Table No. 115: Sheath will be 35×4.5 mm., and Weight = 4426 kilog, per kilometre, and Cost at $18/\cdot$ per 100 kilog, $=44\cdot26\times18=797/-$.

Pitch diameter of sheath = 45.9 + 4.5 = 50.4 mm. Diameter over sheath = 45.9 + 9.0 = 54.9 ,

Jute under wires

$$=0.625\left(50.4^{2}-42.9^{2}-\frac{35}{2}\times4.5^{2}\right)$$

= 216 kilog. per kilometre and cost at 35/- per 100 kilog. = 75.6/-.

Jute over wires = 1 layer 5 lb. jute (thickness 1.6 mm.). ... Diameter over jute = 54.9 + 3.2 = 58.1 mm.

Weight of jute

$$= 0.3275 \left(58.1^2 - 50.4^2 - \frac{35}{2} \times 4.5^2 \right)$$

= 158 kilog. per kilometre

cost at 35/- per 100 kilog. = 55·3/-.

Weight of tar = 80 per cent. of jute weight

= 0.8(216 + 158) = 300 kilog. per kilometre,

cost at 4.43/- per 100 kilog. = 13.3/-.

Weight of compound = weight of tar

= 300 kilog. per kilometre,

cost at $4 \cdot 1/$ - per 100 kilog. = $12 \cdot 3/$ -.

							,	
						Diam.	Weight in kilogs. per km.	Price in shillings per kilometre
Copper 37/2.87 mm						20.1	2139	2738
Jute 3.0 mm.						26.1	190	83.6
Impregnating compound			-	Ī		26.1	152	39.5
Outer copper 28/3.3 mm		•	•	•		32.7	2139	2738
Jute 2.5 mm.		*		•	•	37.7	242	106.5
Impregnating compound			•	•	٠	37.7	194	50.5
Lead 2.6 mm.		•	•		•	42.9	3739	897
Jute 1.5 mm.		•	•			45.9	216	75.6
			•	•	•	54.9	4426	
Steel wires 35/4·5 mm.		•		•	•	58.1	158	797
Jute 1.6 mm		•	۰			99.1		55.3
Tar							300	13.3
Compound						• •	300	12.3
								••
Total diameter .						58.1		**
							14195	
Total weight .							22200	
Total cost of mate	erial .							7607
Wages (approximately I	2 per e	cent.)						913
Waste of material 21 per								190
Shop expenses (for 2×2	40 sa	mm =	175	ner ce	nt.)			1589
bliop expenses (for 2 × 2	, 10 sq.			por oc				1000
Total price in shillings p	er kile	ometre						10308
2010-1-1-1-0-1								

(C) Rubber Cable.

Required: 19/20 L.S.W.G. rubber insulated, braided, and compound, 40 per cent. rubber.

Conductor $19/20 = 19/\cdot036$ inch = $19/0\cdot914$ mm. Diameter of strand = $5 \times 0\cdot914 = 4\cdot57$ mm. From Table No. 14, weight of copper

= 247.5 lb. per kilometre, = 112.3 kilog. per kilometre

Taking market price of copper at £60 per ton, plus, for rolling and preliminary drawing, £4.

... Price of 1.4 mm. diameter plain wire = £64 per ton, or approximately 128/- per 100 kilog.

Cost of drawing to 0.914 mm. diameter = 2.5/- per 100 kilog. Cost of double tinning = 10/- per 100 kilog.

... Price of wire = $140 \cdot 5$ /- per 100 kilog. ... Price of $19/20 = 157 \cdot 7$ /- per kilometre.

Pure Rubber (say 0.2 mm. thick).

From Table No. 63:

Weight = 0.637 d + 0.129 = 3.04 kilog, per kilometre.

If the market price of Para rubber be 6/- per lb., the price of cleaned Para will be (from Table No. 64) 15.94/- per kilog.

. . Cost of pure rubber = $3.04 \times 15.94 = 48.45/$ - per kilometre.

Compound Rubber.—Taking total thickness of rubber as 1.3 mm.

Diameter of strand = 4.6 mm. . . Area = 16.619 mm.² Then the reduced area = 0.85 (16.619) = 14.126Diameter over rubber = 7.2 mm. . . Area = 40.715

Pure rubber section (specific gravity = 1.0) = 3.04

·. Compound rubber section = 23.549 mm.

Therefore the weight of compound rubber will be (specific gravity = 1.6) —

 $23.549 \times 1.6 = 37.7$ kilog, per kilometre,

Taking raw Para at 6/- per lb., then the price of 40 per cent. compound rubber (Table No. 66) will be approximately $2/6\frac{1}{2}$ per lb.

... Cost of compound rubber = 211.25/- per kilometre.

Tape.—Weight of tape = 0.8 d = 0.8 (7.2 + 0.3)= 6.0 kilog. per kilometre.

Cost of tape at 3.5/- per kilog. = 21/- per kilometre. Diameter over tape = 7.2 + 0.6 = 7.8 mm.

Braid.—8/2 cotton: increase of diameter = 1.4 mm.

. . Diameter over braid = $7 \cdot 8 + 1 \cdot 4 = 9 \cdot 2$ mm. Weight of cotton = $0 \cdot 432 (9 \cdot 2^2 - 7 \cdot 8^2) = 10 \cdot 2$ kilog. Cost at 60/- per 100 lb. = $13 \cdot 5$ /- per kilometre.

Compound.-At 130 per cent. of cotton weight.

Weight = $1.3 \times 10.2 = 13.26$ kilog. per kilometre, and cost at 61.7/- per 100 kilog. = 8.2/- per kilometre.

							Diameter in mm.	Weight in kilog, per km.	Cost in shillings per km.
Copper 19/20 L.S.W. Pure 0.2 mm.							4.57	112·3 3·04	157·7 48·45
Compound rubber 40	per e	ent.					7.2	37.7	211.25
Tape							7.8	6.0	21.0
Braid 8/2 cotton							9.2	10.2	13.5
Compound .	•		* 1 - 1	• "	•	*	• •	13.26	8.2
Total weight	*			٠			• •	182.5	
Total cost of mater	ial								460.1
Wages (10 per cent	i.)								46.0
Waste of material							• •	**	11.5
Shop expenses (100	per o	cent. o	f wag	es)				• •	46:0
Total price in	shilli	ngs pe	r kilo	metre		-	••	1	563.6

(D) Paper and Air Space Telephone Cable.

Required: 600 pair 0.5 mm. conductor, lead sheathed, telephone cable, each conductor insulated with one longitudinal paper; wire to wire capacity, 0.01 microfarads per kilometre.

From Table No. 81: Kx = 2.42.

... Equivalent diameter of core (b) is given by:-

Log₁₀
$$\frac{b}{r} = \frac{0.01208 \times 2.42}{0.040} = 0.73 \text{ mm.}$$

 \therefore Log₁₀ $b - \log_{10} 0.25 = 0.73$.
 \therefore $b = 1.35 \text{ mm.}$

... Diameter of insulated pair will be

$$1.35 \sqrt{2} = 1.91 \text{ mm}.$$

Diameter coefficient given in Table No. 79 = 28 155.

Therefore diameter over laid-up pairs

$$= 28.155 \times 1.91 = 53.7 \text{ mm}.$$

1 layer of paper over pairs = 54.2 mm.

1 layer of cotton tape over pairs = 54.7 ,,

Lead 3.0 mm. thick to diameter 60.7 mm.

Copper.—0.5 mm. diameter weighs 1.75 kilog. per kilometre.

Taking market price of copper at . £60 per ton. Plus rolling and preliminary drawing 4 ,,

Paper.—Width = $\pi\,b+10$ per cent. = $\pi\,(1.35\times1.1)=4.66$, or 5 mm, paper, taking paper 0.07 mm, thick the weight will be $5\times0.07=0.35$ kilog, per kilometre.

Paper over laid up pairs .--

Weight = diameter \times 0.6 = 53.7 \times 0.6 = 32 kilog, per kilometre. Cost, at 40/- per 100 kilog. = 13/- per kilometre.

Cotton Tape under lead .-

Weight = diameter \times 0·8 = 54·2 \times 0·8 = 44 kilog, per kilometre. Cost, at 200/- per 100 kilog. = 88/- per kilometre.

Lead.— Weight for diameter 60.7 mm, = 32903 , 51.7 mm, = 26720

Therefore weight of lead sheath = 6183 kilog, per kilometre. Cost at 24/– per 100 kilog. = 1484/– per kilometre.

			_				Price per 100 kilog.	Weight in kilog, per km.	Cost in Sbillings per km
∫1 km., 0.5 mm. pla	ain c	eopper					132/-	1.75	2.31
(1 longitudinal pap	er			Ĭ			80/-	0.35	- 17.4
11 km, 0.5 mm, tin	ned	coppe	r.		۰	•	143/-	1.75	0.28
(1 longitudinal pap	er	оорро.		•	•				2.50
(O.	•	٠	•	٠		80/-	0.35	0.58
1 km. of insulated p	air							4.00	
Plus 1 per cent. for	la.v	•		•	•	•	• •	4.20	5.37
Por contract	Luy	•	٠	•	٠	* .		0.04	0.05
Cost of pair .	•		٠	٠			٠,	4.24	5.42
600 such pairs	•							2544	3252
								51	65
I layer of paper								32	13
1 layer of cotton tap	ю				Ĭ.			44	
Lead sheath					•		* *	6183	88
					•	•	**	0100	1484
To	otal	weigh	t pe	r kilo	metre		••	8854	* *
To	otal	cost of	ma	teria.l					4000
Wages (approximate	elv 1	2 per a	ent)	•		**	• •	4902
Waste of material 5	per .	eent.				*	** .		588
Shop expenses (125	per i	cent (of was	2000)	•	•			243
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.01	COLLEG. (,	(808)		•			735
Total price i	in sh	illings	per	kilor	netre		••	••	6468

CHAPTER XII.

COMPLETE CABLES.

The following tables give the constructional data of various series of cable, insulated with paper, paper and jute, jute, india-rubber, and paper and air space.

The larger sizes of cable in Table No. 152 will not be very economical when

The larger sizes of cable in Table No. 152 will not be very economical when used for alternating current, on account of the increased resistance due to skin effect; if single conductor cable of large conductor cross-section is required for the transmission of alternating current, it will be more economical to construct a rope stranded conductor, each unit or alternate unit being lapped with a layer of paper in order to reduce the eddy currents in the conductor.

The over-all diameter of the larger sizes in Tables Nos. 153-4-6-7-8 may be reduced by using segmental copper strips to form the concentric conductors

instead of the circular wires as shown.

Table No. 133.—Constructional Data for Single Conductor, Paper Insulated, Armoured Cable with Test Wire. Thickness of Paper Insulation = 1.5 mm. (= 59 mils). (For 600 volts working pressure.)

Sec- tional Area of	St	ails of rand	1	Diame	ter in m	m. over		Thick-	Dimensions of Steel	Total Weight
Con- ductor, sq.mm.		Diam. of Wire, mm.	Copper	Paper	Lead	Steel Tape Armour	Outside Serving	Lead Sheath, mm.	Tape Armour, mm.	of Cable, kilog. per k m .
10 16 25 35 50 70 95 120 150 185 210 240 280 310 355 400 625 725	3 3 6 6 6 6 6 18 18 18 18 18 36 36 36 60 60 60 60 60 60 60 60 60 60 60 60 60	2·06 2·6 2·3 2·72 3·26 3·86 2·59 2·91 3·26 3·86 3·82 3·15 3·31 3·56 4·21 3·62 4·21 3·92 4·12	5·0 6·3 6·9 8·2 9·8 11·6 13·0 14·6 16·3 18·1 19·3 20·6 22·1 23·2 24·9 35·6 37·1	8·0 9·3 9·9 11·2 12·8 14·6 16·0 17·6 19·3 21·1 22·3 23·6 25·1 26·2 27·9 33·5 35·9 38·6 40·1	11·0 12·3 12·9 14·2 15·9 17·8 19·3 21·1 23·0 25·0 26·3 27·7 29·3 30·5 32·3 33·8 37·2 40·9 43·8 45·4	18.6 19.9 20.1 21.4 23.1 25.4 26.9 28.7 30.6 32.6 33.9 35.9 35.9 36.9 140.3 41.8 45.2 48.9 52.2 53.8	22.6 23.9 24.1 25.4 27.1 29.4 30.9 32.7 34.6 36.6 37.9 39.3 40.9 42.1 44.3 45.8 49.2 52.9 56.2	1·5 1·5 1·5 1·5 1·6 1·65 1·75 1·85 1·95 2·0 2·05 2·1 2·1 2·2 2·25 2·35 2·6	20×0·8 20×0·8 20×0·8 20×0·8 20×0·8 25×0·9 25×0·9 25×0·9 33×0·9 33×0·9 33×0·9 43×1·0 43×1·0 43×1·0 55×1·1	1150 1560 1700 1920 2270 2780 3240 3720 4810 4950 5890 7680 8520 10010 11850 13360
800 1000	60 90	3.76	41.4	44.1	20.0	58.4	62.4	2.8	55×1.1	14390 17140

Table No. 134.—Diameter and Weight of Lead-covered Single Cable.

Insulated with 2 mm. thickness of paper (= 79 mils).

Section of Conductor	r	Thick-	Diame	ter in m	n. over	Weig	ht in k	ilog. per	km.
	Strand of Copper Wires m.	ness of Lead D 20×0·9	Con- ductor	Paper	Lead	Copper	Paper	Im- preg- nating Com- pound	Lead
100 64 125 80 150 96 20 11 25 10 30 12 35 22 40 24 50 3 60 3 70 4 75 4 80 5 90 5	$6 19 \times 2 \cdot 34$	$\begin{array}{c} 1 \cdot 5 \\ 1 \cdot 6 \\ 1 \cdot 7 \\ 1 \cdot 75 \\ 1 \cdot 85 \\ 1 \cdot 9 \\ 2 \cdot 0 \\ 2 \cdot 15 \\ 2 \cdot 25 \\ 2 \cdot 4 \\ 2 \cdot 45 \\ 2 \cdot 55 \\ 2 \cdot 65 \\ 2 \cdot 75 \\ \end{array}$	$\begin{array}{c} 7\cdot 4 \\ 10\cdot 4 \\ 11\cdot 7 \\ 12\cdot 8 \\ 14\cdot 6 \\ 16\cdot 4 \\ 18\cdot 0 \\ 19\cdot 5 \\ 21\cdot 1 \\ 23\cdot 1 \\ 25\cdot 7 \\ 27\cdot 4 \\ 28\cdot 3 \\ 29\cdot 0 \\ 30\cdot 7 \\ 33\cdot 4 \end{array}$	11:4 14:4 15:7 16:8 18:6 20:4 22:0 23:5 25:1 27:1 29:7 31:4 32:3 33:0 34:7 37:4	$\begin{array}{c} 14 \cdot 4 \\ 17 \cdot 6 \\ 19 \cdot 1 \\ 20 \cdot 3 \\ 22 \cdot 3 \\ 24 \cdot 2 \\ 26 \cdot 0 \\ 27 \cdot 7 \\ 29 \cdot 4 \\ 31 \cdot 6 \\ 34 \cdot 5 \\ 36 \cdot 3 \\ 38 \cdot 1 \\ 40 \cdot 0 \\ 42 \cdot 9 \end{array}$	287 575 719 862 1150 1437 1724 2012 2300 2874 3449 4025 4311 4599 5173 5748	65 86 95 102 115 127 138 149 160 173 191 203 209 214 226 245	52 69 76 82 92 102 110 119 128 138 153 162 167 171 181	691 914 1057 1160 1352 1513 1715 1871 2085 2303 2640 3028 3107 3238 3535 3944

Table No. 135.—Constructional Data for Single Conductor, Paper Insulated, Armoured Cable with Test Wire. For 1000 volts working pressure. Thickness of Paper Insulation = 2 mm. (= 79 mils).

Sec- tional Area of		ails of rand		Diam	eter in n	m. over		Thick- ness of	Dimensions	Total Weight of
Con- ductor, sq.mm.	Num- ber of Wires	Diam. of Wire, mm.	Copper	Paper	Lead	Steel Tape	Outer Serving	Lead Sheath, mm.	Steel Tape, mm.	Cable, kilog. per km.
10	3	2.06	5.0	9.0	12:0	19.2	23.2	1.5	20×0·8	1260
16	3	2.6	6.3	10.3	13.3	20.5	24.5	1.5	20×0·8	1450
25	6	2.3	6.9	10.9	13.9	21.1	25.1	1.5	20×0·8	1580
35	6	2.72	8.2	12.2	15.3	22.5	26.5	1.55	20×0·8	2100
50	6	3.26	9.8	13.8	17.0	24.6	28.6	1.6	25×0.9	2550
'70	6	3.85	11.6	15.6	18.9	26.5	30.5	1.65	25×0.9	2980
95	18	2.59	13.0	17.0	20.4	28.0	32.0	1.7	25×0.9	3440
120	18	2.91	14.6	18.6	22.2	29.8	33.8	1.8	25×0.9	3940
150	18	3.26	16.3	20.3	24.1	31.7	35.7	1.9	33×0.9	4550
185	18 ,	3.62	18.1	22.1	26.1	33.7	37.7	2.0	33×0.9	5200
210	18	3.86	$19 \cdot 3$	23.3	27.4	35.0	39.0	2.05	33×0.9	5650
240	18	4.12	20.6	24.6	28.8	36.4	40.4	2.1	33×0.9	6160
280	36	3.15	22.1	26.1	30.4	38.0	42.0	2.15	33×0.9	6770
310	36	3.31	23.2	27.2	31.6	39:2	43.2	2.2	33×0·9	7280
355	36	3.55	24.9	28.9	33.4	41.4	45.4	2.25	43×1·0	8140
400	36	3.76	26.3	30.3	34.9	42.9	46.9	2.3	43×1·0	8830
500	36	4.21	29.5	33.2	38.3	46:3	50.3	2.4	43×1.0	10330
625	60	3.65	32.9	36.9	41.9	49.9	53.9	2.5	43×1.0	12120
725	60	3.92	35.6	39.6	44.8	53.2	57.2	2.6	55×1.1	13740
800	60	4.12	37.1	41.1	46.5	54.9	58.9	2.7	55×1·1	14780
1000	90	3.76	41.4	45.4	51.0	59.4	63.4	2.8	55×1.1	17550

Table No. 136.—Diameter and Weight of Lead-Covered Single Conductor Cable. Insulated with 2.5 mm. (= 98.5 mils) of paper.

Section of Conductor		Thick-	Diame	ter in mm	ı. over	Weigh	at in ki l	log. per	km.
square square inch mm.	Strand of Copper Wires	$ \begin{array}{c} \text{ness} \\ \text{of} \\ \text{Lead} \\ \frac{D}{20} + 0.9 \end{array} $	Con- ductor	Paper	Lead	Copper	Paper	Im- preg- nating Com- pound	Lead
$\begin{array}{cccc} 0\cdot050 & 32\cdot25 \\ \cdot100 & 64\cdot5 \\ \cdot125 & 80\cdot6 \\ \cdot15 & 96\cdot7 \\ \cdot20 & 129 \\ \cdot25 & 161 \\ \cdot30 & 193 \\ \cdot35 & 226 \\ \cdot40 & 258 \\ \cdot50 & 322 \\ \cdot60 & 387 \\ \cdot70 & 452 \\ \cdot75 & 484 \\ \cdot80 & 516 \\ \cdot90 & 581 \\ 1\cdot0 & 645 \\ \end{array}$	$\begin{array}{c} 19 \times 1 \cdot 47 \\ 19 \times 2 \cdot 08 \\ 19 \times 2 \cdot 34 \\ 37 \times 1 \cdot 83 \\ 37 \times 2 \cdot 08 \\ 37 \times 2 \cdot 57 \\ 37 \times 2 \cdot 57 \\ 61 \times 2 \cdot 34 \\ 61 \times 2 \cdot 57 \\ 91 \times 2 \cdot 34 \\ 91 \times 2 \cdot 49 \\ 91 \times 2 \cdot 57 \\ 91 \times 2 \cdot 64 \\ 91 \times 2 \cdot 57 \\ 127 \times 2 \cdot 57 \end{array}$	1.5 1.6 1.65 1.7 1.8 1.95 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	$\begin{array}{c} 7 \cdot 4 \\ 10 \cdot 4 \\ 11 \cdot 7 \\ 12 \cdot 8 \\ 14 \cdot 6 \\ 16 \cdot 4 \\ 18 \cdot 0 \\ 19 \cdot 5 \\ 21 \cdot 1 \\ 23 \cdot 1 \\ 25 \cdot 7 \\ 27 \cdot 4 \\ 28 \cdot 3 \\ 29 \cdot 0 \\ 30 \cdot 7 \\ 33 \cdot 4 \end{array}$	$\begin{array}{c} 12\cdot 4\\ 15\cdot 4\\ 16\cdot 7\\ 17\cdot 8\\ 19\cdot 6\\ 21\cdot 4\\ 23\cdot 0\\ 24\cdot 5\\ 26\cdot 1\\ 28\cdot 1\\ 30\cdot 7\\ 32\cdot 4\\ 33\cdot 3\\ 34\cdot 0\\ 35\cdot 7\\ 38\cdot 4\\ \end{array}$	$\begin{array}{c} 15 \cdot 4 \\ 18 \cdot 6 \\ 20 \cdot 0 \\ 21 \cdot 2 \\ 23 \cdot 2 \\ 25 \cdot 3 \\ 27 \cdot 0 \\ 30 \cdot 5 \\ 32 \cdot 7 \\ 35 \cdot 5 \\ 37 \cdot 4 \\ 38 \cdot 5 \\ 39 \cdot 2 \\ 41 \cdot 1 \\ 44 \cdot 0 \end{array}$	287 575 719 862 1150 1437 1724 2012 2300 2874 3449 4025 4025 1431 4599 5173 5748	86 111 123 132 148 163 177 190 203 221 238 258 266 272 287 310	69 89 98 106 118 130 142 152 162 177 190 206 213 218 230 248	745 1039 1153 1260 1459 1672 1834 1995 2224 2497 2901 3117 3266 3400 3704 4120

Table No. 137.—Constructional Data for Single Conductor, Paper Insulated, Armoured Cable. With test wire for 3000 volts working pressure. Thickness of Paper Insulation = 2.5 mm. (= 98.5 mils).

Sec- tional Area of		ils of and		Diame	ter in mi	n. over		Thick- ness of	Dimensions of	Total Weight of
Con- ductor, sq. mm.	ber of	Diam. of Wire, mm.	Copper	Paper	Lead	Steel Tape	Outer Serving	Lead Sheath, mm.	Steel Tape, mm.	Cable, kilog. per km.
10 16 25 35 50 70 95 120 150 185 210 240 280 310 355	3 3 6 6 6 6 18 18 18 18 18 36 36	2·06 2·6 2·3 2·72 3·26 3·85 2·59 3·26 3·62 3·86 4·12 3·31 3·31 3·55	5·0 6·3 6·9 8·2 9·8 11·6 13·0 14·6 16·3 18·1 19·3 20·6 22·1 23·2 24·9	10·0 11·3 11·9 13·2 14·8 16·6 18·6 21·3 23·1 24·3 25·6 27·1 28·2 29·9	13·0 14·4 15·0 16·3 18·0 20·0 21·5 23·3 25·2 27·2 28·5 29·9 31·5 32·6 34·5	20·2 21·6 22·2 23·9 25·6 27·6 29·1 30·9 32·8 34·8 36·1 37·5 39·1 40·6 42·5	24·2 25·6 26·2 27·9 29·6 31·6 33·1 34·9 36·8 38·8 40·1 41·5 43·1 44·6 46·5	1.5 1.55 1.55 1.55 1.6 1.7 1.75 1.85 1.95 2.05 2.15 2.2 2.2	20×0·8 20×0·8 20×0·8 25×0·9 25×0·9 25×0·9 33×0·9 33×0·9 33×0·9 33×0·9 43×1·0	1590 1800 1980 2340 2710 3092 3660 4180 5460 5910 6370 6990 7660 8360
500 500 625 725 800	36 36 60 60	3·76 4·21 3·65 3·92 4·12	26·3 29·5 32·9 35·6 37·1	$ \begin{array}{r} 31 \cdot 3 \\ 34 \cdot 5 \\ 37 \cdot 9 \\ 40 \cdot 6 \\ 42 \cdot 1 \end{array} $	36·0 39·4 43·0 45·9 47·5	44·0 47·4 51·0 54·3 55·9	48.0 51.4 55.0 58.3 59.9	2·35 2·45 2·55 2·65 2·7	$\begin{array}{c} 43 \times 1 \cdot 0 \\ 43 \times 1 \cdot 0 \\ 43 \times 1 \cdot 0 \\ 55 \times 1 \cdot 1 \\ 55 \times 1 \cdot 1 \end{array}$	9070 10660 12470 14100 15150
1000	90	3.76	41.4	46.4	52.1	60.5	64.5	2.85	55×1·1	17960

Table No. 138.—Particulars of Concentric, Paper Insulated, Lead Covered Cable. Thickness of Paper Insulation = 1.75 mm. (= 69 mils). (Weights given in kilog, per km.)

	2	over Lead, nm.	-	7.5	1.4.7	0.01	10.01	10.7	0.01	10.2	0 0 0	10.01	2 5	0.10	# 01.00	522.5	56.1	7 07	0.00	4 - 00	20.2		0 · F2	37.9	10.00	20.01	4 5 5	70.00	10 CH	9.19
+	Lead Sheath	Weight	0000	200	70.6	000	000	807	200		0 9	070	0.001	1969	1.201	1561	500	0000	1790	107.5	1.000	2335	2657	3009	3944	181.	6700	2010	6940	7458
		Thick- ness			; ;	200	1 . 6	9 9	000	.55		1.65	1.70	- 7	2 0:	20.	20.6	100	0.0		2.5	2.55	2.35	0.73	2.75	0.00	19.0%	2.0.5	2.35	9.8
(;)	Im-	nating Com- pound, weight	.46	0 7	512	12	1 12	3 3	-5	25.5	(C)	15	100	2 (2	- - ×	- -	3 =	=	6	60	20	121	-	1.17	17:3	961	217	201	866	254
er kn	_	Paper, weight	7.5	2.5	7	(1)	- 1-	7.5	3	69	7.5	2	. X	765	105	=======================================	126	68.1	124	136	117	152	167	181	216	245	070	251	285	318
kilog. 1	Diam	over Paper, nnm.	11-23	11.7	12.3	6-61	1 55		6.41	13.2	13.7	6.1	2::9	2.00	- 6:	20.5	22.6	24 - 7	22.2	21.2	26.1	S.97	29.3	32.5	:37.4	42.2	46.7	43.2	4x.x	54.4
ven in	Diam.	con- Con- ductor, mm.). !-	- 00	× ×	6.	0.01	9.01	1.4	6.4	10.5	7 =	12.x	.:	9.91	0.71	19.1	21.2	X - Z	20.1	9.77	23.3	25.8	28.7	6.68	L. X.	4:3.2	7.68	45.3	50.8
Weights given in kilog, per km.	Outer Conductor	Diam. of Wire, mm.	08.0	÷.	08.	.sc	- SC	. S.	06.	98.	98.	. X.	-08	1.32	1.46	1.67	1.97	2.56	× × × ×	5. To	2.47	2.25	7.35	3.46	1.04	1.76	5.37	4.88	5.63	6.53
[\ \ e	`	to oZ souiW	6	12	17	22	5.1	98	98	2.5	~~	:36	::	6:7	08:										23	22	22	7.7	7.5	21
1118).	Tm.	Com- Pound, Weight	33	24	56	53	22:	500	×	=======================================	33	300	433	200		Si	6.5	75	64	-02	17	2	X	25	9	200	149	136	156	174
= 69 mils).		Paper, weight	27	53	33	::7	0	+	4. X		:12	X.	1.14	00	99	7.5	7.	96	<u>\$</u>	X	25.	90	011	121	14.)	100	3.5	170	194	812
-) mm c	Diam.	Paper ram.		9.9							 		9.01		12.7	13.4	15.2	2.91	6.71	2.91	17.7	2.5	0.02	× 17.	×	7.67	27.72	6.67	9:00	87.8
		Copper,	6.04	0.10	12.9	:5x-x	130.5	164-1	201.9	111.1	000	197.3	7.897	.::::::	145.3	0.850	728.2	926.9	- XS:	2.7.3	1066.7	134.0	0.6241	17.00.1	0.470		4438.0	3662.8	1867.7	6195.6
History	Area of	Conductor,	4.59	5.12	x .x	60.11	19.4	18.40	52.06	12.47	- Se. C.	12.22	80.08	£3.65	40.68 40.68	67.19	21.12	- - - - - -	7.17	9.76	x :: 1						-	10.114		
	D:am.	Strand,	2.7	 			5.4	3.3		9.7									4.11				10.01			-	F 0.62	÷ ÷ . 9		34.3 6
	Strand	of Wire,	10.014	1.05	22.	27 /	9	2	9 9	1.0014	70.7	77.	74.7				-	-	-	-	1.60	-	-	-			7 0.7	2.02		7.64
1	3°'' 	to .oN gariW	1-1	- 1	- 1	- 1	- 1	- 1	-			2		67		2 2	2 2	2 !	57	- L		6.1	100	10	100		<u> </u>	121	7 1	17
	Con-	ductor L.S.W.G.	7/20	61/2	2/2	71/1	01//	2/13	10 (20	19/20	13/13	10/10	19/1/	13/16	13/15	19/14	13/13	21/61	57/16	57/10	61/16	61/10	61/13	91/14	01/18	61/10	107/12	12//14 1		

Thick-Table No. 139.—Construction Data and Weights of Concentric, Paper Insulated. Lead-cased Cable. ness of Paper Insulation = 2.0 mm. (= 79 mils). (Weights given in kilog, per km.)

			1	п.	Ea L.	II.	U	JIN	2.1	JIL.	U	т	10.	IN	Α.	NT	,	CU	51									52	56
Diam.	Lead, mm.	15.3	15.8	16.4	17.1	17.8	18.4	19.5	17.4	18.0	19.5	20.7	22.4	23.8	25.3	27.7	30.1	27.2	29.4	31.5	32.3	35.0	37.9	44.0	49.3	54.5	51.1	9.99	62.5
Lead	Weight	739	582	855	988	952	286	1081	903	964	1081	1184	1358	1486	1626	1920	2192	1842	2093	2351	2465	2795	3220	4421	5039	6035	5395	6461	7674
Le	Thick- ness, mm.	1.5	1.55	1.55	9.1	1.65	1.65	1.7	9.1	1.65	1.7	1.75	1.85	1.9	1.95	2.1	2.5	2.05	2.15	2.55	2.3	2.4	2.55	5.8	3.05	3.30	3.15	3.4	3.65
Im- preg-	Com- pound, weight	57	59	63	99	69	72	282	89	70	78	84	93	100	107	119	131	117	128	138	142	156	171	201	228	254	237	264	994
	Paper, weight	71	14	78	85	98	06	97	84	œ œ	97	105	116	124	134	149	164	146	160	173	178	195	213	252	285	317	297	330	368
Diam.	over Paper, mm.	12.3	12.7	13.3	13.9	14.5	15.1	16.1	14.2	14.7	16.1	17.2	18.7	20.1	21.4	23.5	25.7	23.1	25.1	27.0	27.7	30.5	35.8	38.4	43.2	6.74	6.44	49.8	55.9
Diam.	Con- ductor, mm.	00	×.7	9.3	6.6	10.5	11.1	12.1	10.5	10.7	12.1	13.2	14.7	16.1	17.4	19.5	21.7	19.1	21.1	23.0	23.7	26.5	28.8	34.4	39.5.	43.9	40.9	45.8	51.9
Outer	Diam. of Wires, mm.	8.0	8.0	8.0	8.0	8.0	8.0	1.0	8.0	8.0	1.0	1.04	1.24	1.43	1.62	1.92	2.2:3	1.86	2.14	2.42	2.5	5.86	3.23	4.05	4.74	5.46	5.25	5.68	6 - 47
Cond	No. of Wires	10	12	16	22	53	36	53	25	31	58	35	99	31	30	28	27	53	27	56	56	25	24	23	22	21	19	22	0.1
Im- preg-		26	58	31	35	30	43	45	37	43	45	0.0	57	62	67	92	文	74	85	90	93	102	112	134	153	172	157	180	901
F	raper, weight	32	55.	689	44	48	52	56	46	49	56	63	71	202	804	95	105	93	102	112	116	128	140	168	192	215	196	224	150
Diam,	over Paper, mm.	2.9	7.1	1.1	00 00	6.8	9.2	10.1	9.8	9.1	10.1	11.1	12.2	13.2	14.2	15.7	17.2	15.4	16.8	18.5	18.7	20.2	22.3	26.3	29.7	33.0	30.4	34.4	30 30 30 30 30 30 30 30 30 30 30 30 30 3
	Copper, weight	40.9	51.0	72.9	8.86	130.2	164.1	201.9	1111.1	138.3	197.3	268.2	353.4	445.3	548.0	728.2	6.976	688.1	867.3	1066.7	1134.5	1429.5	1759.2	2624.6	3487.3	4439.0	3662.8	4867.7	6195.6
A Tog of	Sonductor,	4.59													61.49	81.71	0.101	77.2	97.3	119.8	127.3	160.4	197.4	294.5	391.3	1.864	411.0	546.2	695.2
Diam.	of Strand, mm.	2.7		2.3	4·3	6.4	5.5	6.1	4.6	1.0	6.1	7.1	% 22	9.5	10.5	11.7	13.5	11.4	12.8	14.5	14.7	16.5	18.3	22.3	25.7	29.0	26.4	30.4	34.3
Conductor	Diam.,	0.914	1.05	1.22	1.42	1.63	1.00	2.03	0.914	1.05	1.55	1.42	1.63		2.03	2.34	F9.7	1.63	1.83	2.03	1.63	1.83	2.03	2.03	2.34	5.64	2.03	2.34	12.64
Con	No.	1	-	-	<u>-</u> 1	<u>-</u>	-	-	19	13	13	19	19	19	19	13	5:	37	37	60	19	19	61	91	91	91	127	127	127
- Con-	ductor L.S.W.G.	7/20	61//	7/18	7/17	1/16	61/2	7/14	19/20	19/19	19/18	19/17	19/16	19/15	19/14	19/13	19/12	37/16	37/15	37/14	61/16	61/15	61/14	91/14	91/13	91/12	127/14	127/13	127/12

Thick-

Table No 140.—Construction Daya and Weights of Concentric, Paper Insulated. Lead-cased Cable. ness of Paper Insulation = 2.25 mm. (= 89 mils). (Weights given are kilog, der km.)

													U23	دوند	Cardio.														
Diam.	Lead, mm.	16.4	16.9	17.5	18.2	6.81	19.5	20.4	18.5	19.1	20.4	21.8	23.4	24.8	26.3	28.6	1.18	28.2	30.3	32.5	33.3	35.6	8.88	6.44	50.5	55.5	51.5	57.5	63.4
Lead	Weight	822	874	606	97.5	1045	1801	1166	993	1057	9911	1286	1459	1591	1736	1988	2319	1958	2208	2481	2598	2901	3362	4281	5215	6204	5406	6570	7890
	Thick- ness, mm.	1.55	9.1	9.1	1.65	1.7	1.7	1.75	1.65	1.7	1.75	8.1	6.1	1.95	0.7	2.1	2.25	2.1	2.5	2.3	2.35	2.45	9.7	2.85	3.1	3.35	3.15	3.4	2.7
Im- preg-	nating Com- pound, weight	69	7.1	75	7.9	25	98	91	8	8.4	- G:	66	108	116	125	138	151	185	147	160	164	177	195	230	260	288	265	301	304
-	Paper, weight	98	68	54	98	103	108	114	101	105	114	124	13.5	145	156	172	5%	169	184	199	205	221	244	287	325	360	332	377	380
Diam.	over Paper, mm.	13.3	13.7	14.3	14.9	15.5	16.1	16.9	15.2	15.7	6.91	18.5	19.6	6-07	22.3	24 .4	56.6	24.0	55.9	18.12	28.6	20.08	9.88	39.5	44.0	48.5	44.9	2.09	26.0
Diam.	Con- ductor, mm.	000	3.5	8.6	10.4	11.0	11.6	12.4	10.7	11.2	12.4	18.7	15.1	16.4	17.8	19.8	22.1	19.5	21.4	23.4	24 · 1	76.5	29.1	34.7	39.5	44.0	40.4	46.2	51.5
Outer	Diam. of Wires, mm.	8.0	8.0	 	8.0	8.0	0.81		8.0			•	-	-				1.81					3.17		1.66	5.25	1.77	5.63	3.35
Cone	lo oN seriW	6.	12	17	22	53	36	36	2.5	20	98	:36	36	34	35	30	22	08	077	-22	27	000	25	24	23	23	23	77	7.5
Im- preg-	Com- pound.	31	33	557	41	4.5	1 ∞	52	400	46	52	 	65	71	78	87	96	£	#:	102	105	117	128	153	174	194	178	203	227
6	Paper, weight	939																										254	-
Diam.	over Paper, mm.	7.2	9.7	8.5	00	4.6	10.0	9.01	- 6:	9.6	10.6	11.6	12.7	18.7	14.7	16.5	17.7	15.9	17.3	18.7	19.5	21.0	22.8	56.8	30.5	533.5	80.0	34.9	38.88
	Copper, weight	40.9	51.0	72.9	200 × × ×	130.5	164.1	201.9	1111.1	138.3	197.3	768.5	353.4	145.3	0.810	728.2	926.9	1.889	867.3	1066.7	1134.5	1429.5	1759-2	2624.6	3487.3	4439.0	8.7998	4867.7	9.2619
Area of	Conductor,	4.59	2.15	∞ .∞	11.09	14.61	- x	22.66	12.47	15.53	22.21	30.03	39.65	49.68	61.48	81.71	104.0	77.2	97.3					5	ئن	[98·1	. 0.	546.5	95.5
Diam.	of Strand, mm.	2.7		-	22 (0	_ <	9			_		2	7	11.7	~ ~	4	 oo o	<u>-</u>	_	6.91		22.3	25.7	5 -0.67	56.4	30.4	34.3 (
Conductor Wires	Diam. mm.	0,	· ,	77.1	- ,		- (N		٠,	- 1	- 1	1.63	<u> </u>		N		<u>.</u> ,	T . 83	2.03	1.63	1.83	2.03	2.03	2.34	7.64	5.03	7.84	ò
Cor	No.		<u>- 1</u>	- 1	- 1	~ 1	- 1	- 9	67	57	57	5	13	67	61	61	13	27	37	37,	61	- 19	19	91	16	91	27	27	27
Con-	ductor L.S.W.G.	7/20																					61/14	91/14	91/13	91/12	127/14 1	127/13 1	127/12 1.

Table No. 141.—('Onstruction Data and Weights of Concentric, Paper Insulated, Lead-cased Cable. Thickness of Paper Insulation = 2.5 mm, (= 98.5 mils). (Weights given are kilog, per kilometre.)

Diam. over Lead, mm.	187. 188. 288. 288. 288. 288. 288. 288. 288	64.5
Lead	909 9699 11069 11141 11178 11166 11168 1168 1	8138
Le Thick- ness, mm.		3.75
Im- preg- nating Com- pound, weight	882 883 884 885 886 887 887 887 888 888 888 888	377
Paper, weight	102 101 111 111 111 112 113 113 113 113 114 114 116 116 117 118 119 119 119 119 119 119 119 119 119	471
Diam. over Paper, mm.	447774 447779 50000000000000000000000000000000000	57.0
Diam. over Con- ductor, mm.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$52 \cdot 0$
Outer Conductor Diam. of Mires, mm.	88.0 88.0	6.34
No. of Conduct	~ 2153288822888882288888222888	22
Im- preg- nating Com- pound,	36 56 57 57 57 57 57 57 57 57 57 57	254
Paper, weight	55 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	318
Diam. over Paper, mm.	200	39.3
Copper,	40.9 51.0 98.8 98.8 130.2 111.1 111.	9.9619
Area of Conductor, sq. mm.	4.59 8.18 111.09 111.09 114.61 112.47 112.47 112.47 1104.0 1104.0 1104.0 1104.0 1104.0 1100.4	695.2
Diam. of Strand, mm.	82898888888888888888888888888888888888	34.3
Conductor Wires Wies No. Diam.	0.091 1.022 1.1.1.22 1.63.1.22 1.63.2.33 1.63.	5.64
Cond W W No.	77777777777777777777777777777777777777	127
Con- ductor, L.S.W.G.	7772 7719 7719 7719 7717 7716 1997 1997 1997	127/12

Table No. 142.—Construction Data and Weights of Concentric, Paper Insulation, Lead-cased Cable. Thickness of Paper Insulation = 2.75 mm. (= 108 mils). (Weights given are kilog, ner km.)

		Diam. over Lead, mm.	. !	9.81	1.6.	1.67	20.4	1.12	90.00	0.77	01.9	0.17	9.77.	0.470	9.67	0.72	1 50	1.00	6.79	80.8	2.4 2.4 3.7	35.2	38.0	40.7	46.9	50.0	20 00	52.0	50.4	65.3
	Lead Sheath	Weight		666	7.001	1400	1100	1570	1571	1101	1954	1001	1/0/	1000	1000	1020	9940	02210	9006	9465	2752	2812	3229	3609	4631	5601	GENA	5700 5700	0000	8348
r km.)		- E = =	0	C9. T	7 - 1	- 1	C) . T	0 0	0 00	1 . 7 . 7 . 7 . 7 . 7 . 7	20:1	0 0	1 :00	0.0	0.40	00.7	4 0	7 0 0	9 6	1 00	2.4	2.4	2.55	2.65	2.95	0.00	1 7.0	3.95	2 10	် တ
og. be	Im-	preg- nating Com- pound, weight	, 0	000	100	100	11.9	117	193	110	114	109	122	149	150	163	201	194	176	190	205	210	229	248	291	397	698	334	278	418
re kil	-	Paper, weight	110	, 113 199	190	184	140	146	154	337	149	154	166	170	100	904	1.00	943	220	237	256	263	287	310	364	409	459	100	479	522
given are kilog. per km.	2	over Paper, mm.	6.5	5.7	16.2	16.0	17.5	- 8	5.8	17.9	17.7	- x	20.9	3.17	0.00	24.5	26.3	0.00	25.9	7.1.2	7.67	30.4	85.8	35.4	41.0	000	50.3	2.91	52.4	2.7.2
(Weights	Dlam.		3 0	10.9	200	11.4	12.0	12.6	5.5	11.7	12.5	7:5:	1.4.7	1.91	7.4	2.7	8.07	22.8	20.4	22.2	2.1.2	6.47			10					52.2
	Outer Conductor	Diam. of Wire, mm.) c	ó	÷	×	000	Š	6.	÷	×	£.	1.03	1.19		1.48	87.1	2.07	1.73	1.97	2.56	2.33	1.7	3.05	2.87	1.55	5.13	1.0.4	5.5	6.21
= 108 mils).		_ 10 ,0 N	5.	=	17	22	53	98.	36	255	:31	36	36	36	98:	98	000	188	333	???	9::	000	201	77	25	2.1	24	24	23	23
$\overline{}$	Im-	nating Com- pound,		45															108				146				211	222	252	282
o mm.		Paper, weight	.52	999	61	67	::	200	ž	02	13	茫	16	104	114	123	1:37	152	134	14x	191	991	185	200	X:32	270	305	217	315	352
2.2=1	Diam	over Paper, mm.	8.5	9.8	9.5	8.6	10.4	11.0	9.11	10.1	9.01	9.11	12.6	18.7	14.7	15.7	17.2	 100	6.91	00	2.6	7.0	0.7	x :	×	7.7	0.7	6.1	5.9	8.6
nsulation		Copper, weight	6.0f	51.0	6.72	8.x6	130.2	164.1	201.9	111.	200.00	197.3	268.2	353.4	445.3	548.0	7.28.5	6.976		2.798	1.000.1	104.0	7.00 C	7.600	4. FZ0	9.785	139.0	662.8	2.198	195.6
raper 1		Area of Conductor, Sq. nun.	4.59	5.12	×.1×	11.03	14.61	18.4 4.00	22.66	12.47	50.01	72.71	30.08	39.65	49.38	61.49	81.71	104.0	67.17	0.76	0.7.0	60.77	F 20	0.4.5	2 04.10	6.16	T	0.11	46.2	9 7.06
o section	Diam.	of Strand, n.m.	2.7	28.1	00	÷.	6.4						7.1		77.5	70.5	7.11	2.5	4.11	00	7.7	6.5	000	0.00	01.0	0 0	f 0.62		30.4 D	
THIC	Conductor Wires	Diam.	0.914	1.05	1.55	74.1	. 63	200	2.03	1.001	7.07	77. 1	7.47	73. I						00.0		****	9.62		-	2 - 1 - 7	7 40.5	2.02		104
		No.	1	[~]	~ I	-1	~ ı	~ t	101	13	2 0	13	67	67,	2:	67	10	33 t	100	100	2 2	19		16		11	1	771	- 1	7
	Con-	ductor L.S. W.G.	7/20	61/2	2/18	1/1/	1/16	0/10	10/14	10/20	10/10	01/01	10/1/	12/10	61/61	61/61						1/15 - (1/14 (1/14	1/12			12//14 12		-
															, ,	, ,	-1 1-	-1 G	12 01	2 G/	. cc	9	9	0.	0	2 3	2.0	100	150	177

Thick-Table No. 143.—Construction Data and Weights of Concentric, Paper Insulated, Lead-card Carle. ness of Paper Insulation = 3.0 nm. (= 118 mils). (Weights given in kilog, per km.)

Diam.	over Lead, mm.	19.7	20.5	8.07	21.5	22.2	027.7	- 8-13	22.4	23.6	25.1	26.7	28.1	29.5	31.3	34.0	81.8	33.4	35.5	36.2	39 · 1	41.7	47.9	53.1	58.1	54.2	6.09	99
Lead	Weight	1093	1153	1191	1266	1345	1479	1286	1358	1473	1612	1805	1950	2100	2335	2657	2835	5606	2892	2953	3390	3761	4811	5787	6734	0009	7196	8675
	Thick- ness, mm.	1.7	1.75	1.75	<u></u>		60.1	, .	1.85	6.1	1.95	2.05	2.1	2.15	2.25	2.35	2.25	2.35	2.45	2.45	5.6	2.7	3.0	3.25	3.45	30	3.55	3.85
lm- preg-	nating Com- pound, weight	110	114	119	124	123	1.40	126	130	139	151	163	173	184	197	218	197	213	229	235	256	276	323	362	400	370	416	460
	Paper, weight	300	142	148	155	191	175	158	163	174	189	203	217	2:30	247	273	247	267	286	293	320	345	403	452	500	462	520	578
Disas	over Paper, mm.	16.3	16.7	17.3	17.9	28.5	19.0	<u>x</u>	18.7	19.8	21.2	22.6	23.9	25.9	26.8	29.3	8.97	28.7	30.6	31.3	33.9	80.3	41.9	9.91	51.2	47.6	53.2	58.8
Diam.	over Copper, mm.	10.3	10.7	11.3	11.9	12.01 12.01	13.0	12.2	12.7	3.8	15.2	16.6	17.9	19.5	50.8	53.53	20.8	22.7	24.6	25.3	27.9	30.3	35.0	9.01	45.2	41.6	47.2	52.8
Outer	Diam. of Wires, mm.		s:c	8.0	s.o	x 5	68.0	0000	8.0	0.87	1.03	1.18	1.33	1.48	1.57	5.04	1.68	1.94	2.22	5.53	2.7	3.0	:0 :0	1.4.	5.14	1.58	5.38	6.21
	lo .oV	_ G.	21	17	22.5	RZ S	36.5	25	33	36	36	36	36	36	<u>*</u> :	27	35	33	31	53	28	% %	56	25	24	25	24	23
Im- preg-	nating Com- pound, weight	47	51	56	61	96	192	33	67	97	84	93	101	110	122	134	119	131	143	147	162	177	210	238	265	244	277	310
	Paper, weight	59	63	2	92	200	3 6	62	$\frac{1}{x}$	76	105	116	127	137	152	168	149	164	178	184	202	221	262	2:08	332	305	346	388
Diam	over Paper, mm,	8.7	9.1	2.6	10.3	a (1	12.1	10.6	11.1	12.1	13.1	14.5	15.2	16.2	17.7	10.5	17.4	18.8	20).5	20.1	6.22	24.3	28.3	31.7	85.0	32.4	36.4	40.4
	Copper, weight	6.05	51.0	72.9	200 c	164.1	201.9	1111.1	138.3	197.3	268.2	353.4	445.3	0.849	728.5	6.976	688.1	867.3	1066.7	1184.5	1429.5	1759.2	2624.6	3487.3	1439.0	3662.8	1. L98F	6195.6
, v	Conductor, sq. mm.		5.45		60.II	10.41	22.66	12.47	15.53	22.21	30.00	39.65	86.64	61.49	81.71	104.0	77.5	97.3	S-611	127.3	160.4	197.4	294.5	391.3	498.1	411.0	546.2	695.2
Diam.	of Strand, mm.	2.7	 	200	70.4 70.4	H 10	6.1	4.6	5.1	6.1	7.1	≈ 	27.6	70.5	11.7	13.5	11.4	2.7.	74.5	7.4.7	6.91	:: : :::::::::::::::::::::::::::::::::	27.3	7.27	79.0	1.97	30.4	34.4
Conductor Wires	Diam.,	0.914	1.05	1.22	21.12	0 00 0 00 	2.03	0.914	1.05	1.22	1.45	1.63		6:0.7	2.34	7.64	I · 63	28. T	2.03	1.63	. S.	2.03	5.03	±5.21	7.64	5.03	2.34	2.64
Conc	No.	7		[~ I	- [- [-	-1	19	G :	19	6	13	19	13	61	61	22.7	37	37	19	<u> </u>	61	16 16	91	16	127	127	127
Con-	ductor L.S.W.G.	7/20	7/19	7/18	7/1/2	7/15	7/14	19/20	19/19	19/18	19/17	19/16	19/15	19/14	19/13	19/12	3//16	61//2	5//14	91/19	61/10	61/14	91/14	91/13	91/12	127/14	127/13	127/12

Table No. 144.—Construction Data and Weights of Concentric, Paper Institation — 3.2 mm. (= 126 mils). (Weights given are kilogrammes per kilometre.)

Diam- over Lead, mm.	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	55.0 61.2 67.1
Lead Weight	1178 1249 1358 1358 1358 1452 1452 1452 1452 1452 1452 1454 1278 1774 1774 1774 1774 1774 1774 1774 17	6094 7407 8804
Thick ness, weigh	$\begin{array}{c} -111111111111111111111111111111111111$:: :: :: :: : : : : : : : : : : : : :
Im- preg- t, nating t Com- pound,	128 132 132 132 133 134 134 137 147 153 154 154 154 154 154 154 154 154 154 154	400 450 496
Paper, weight	154 154 173 173 173 173 173 173 173 173 173 173	500 562 620
Diam. over Paper, mm.	17771 17871 18871 19874 19875	48.4 54.0 59.3
Diam. over Con- ductor, mm.	10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7	42.0 47.6 52.9
Outer Sonductor	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4.58 5.38 6.08
To .oV	44 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	25 24 24
Im- preg- nating Com- pound, weight	55 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	262 297 33 2
Paper, weight	65 65 70 70 88 88 88 90 90 90 90 90 90 90 90 90 90	
Diam. over Paper, mm.	9.1 10.1 10.1 10.1 11.0 11.0 11.0 11.0 1	32.8 36.8 40.7
Copper, weight	40.0 98.8 130.2 130.2 130.2 164.1 111.1 138.3 197.8 268.2 926.9 926.9 688.1 868.1 1759.2 266.7 1134.5 11429.5 1134.5 3487.3	3662·8 1867·7 3195·6
Area of Conductor, sq. mm.	8 - 18 8 - 18 11 - 09 114 - 61 11 - 09 11 - 09 12 - 47 12 - 47 12 - 49 12 - 65 13 - 65 14 - 98 11 - 10 10 - 65 11 - 10 10 - 65 11 - 10 11 - 10	
Diam. of Strand, mm.	4 4 2 3 3 3 3 4 4 4 1 2 4 4 1 1 2 4 4 1 1 2 4 4 1 1 2 4 4 1 1 2 4 4 1 1 2 4 4 1 1 2 4 4 1 1 2 4 4 1 1 2 4 2 4	
Vires Wires Diam.,	0.91 1.02 1.63	2.03 4.03 2.24 2.25
Con No.	100 001 100 00	27 72
Conductor	000/004000/00/	127/14 15 127/13 15 127/12 12

TABLE No. 145.—Construction Data and Weights of Concentric, Paper Insulated, Lead-cased Cable. Thickness of Paper Insulation = 1.75 mm. (= 69 mils). Weights given in kilog, per km.

		IHEIR CONS	INCULTON	AND COS	1.	999
Diam. over	Lead, mm.	16.9 20.2 22.6 24.8	26.8 28.3 30.0 31.4	32.8 34.3 35.5 36.6	37.7 38.9 40.0 40.9	42.8 43.8 44.9
Sheath	Weight	874 1153 1371 1591	1812 1965 2185 2343	2506 2735 2892 3045	3202 3371 3535 3684	3855 3934 4101 4281
Lead Sheath	Thick- ness, mm.	1.6 1.75 1.85 1.95	2.05 2.1 2.2 2.25	22.23 24.45 2.55	2.55 2.6 2.65 2.7	2.75 2.75 2.85 2.85
	Com- pound, weight	93.22.28	101 108 115 122	128 134 140 144	149 155 159 163	168 172 176 176 181
Paner	weight	72 90 104 116	127 135 144 152	160 168 175 181	187 193 199 204	210 215 220 226 226
Diam.	Paper, mm.	13.7 16.7 18.9 20.9	22.7 24.1 25.6 26.9	28.2 29.5 30.6 31.6	32.6 33.7 34.7 35.5	36.5 39.2 39.2
Diam.	Con- ductor, mm.	10.2 13.2 15.4	19.2 20.6 22.1 23.4	24·7 26·0 27·1 28·1	29·1 30·2 31·2 32·0	33.0 33.8 34.7 35.7
Outer	Diam. of Wires, mm.	0.8 1.13 1.46 1.75	1.99 2.22 2.4 2.62	2.78 2.99 3.14 3.28	3.41 3.62 3.74 3.87	3.99 4.1 4.21 4.43
Cond	No. of Wires	333	25 25 25 24	23 23 23 23	82223	22221
Im- preg-	nating Com- pound, weight	. 33 52 52 59	65 70 75 80	88 92 96	99 103 106 109	112 115 119 121
	raper, weight	45 65 74	81 87 94 100	105 110 115 119	124 129 133 136	141 144 148 148 152
Diam.	over Paper, mm.	8.6 10.9 12.5 13.9	15.2 16.2 17.3 18.2	19.1 20.0 20.8 21.5	22.3 23.0 23.7 24.3	25.0 25.6 26.3 26.8
	Copper, weight	144 287 431 575	718 862 1006 1150	1293 1436 1580 1724	1868 2013 2156 2299	2443 2587 2731 2875
	Conductor, sq. mm.	16.3 32.3 48.4 64.5	80.64 96.77 112.9 129.0	145·18 161·25 177·42 193·52	209.68 225.89 241.9 258.1	274·2 290·36 306·5 322·6
	of Strand, mm.	5.1 7.4 9.0 10.4	11.7 12:7 13:8 14:7	15.6 16.5 17.3 18.0	18.8 19.5 20.2 20.8	21.5 22.1 22.8 23.3
Conductor Wires	Diam.	1.71 1.47 1.8 2.08	2.33 2.75 2.94	3.12 3.29 3.45 3.6	3.75 3.89 4.03 4.15	3.25 3.25 3.33
Cond	No.	7 19 19	19 19 19	19 19 19 19	19 19 19	87 87 87 87
Con-	ductor Section, sq. in.	0.025 .050 .075	.12 5 .150 .175	.225 .250 .275	.325 .350 .375	.425 .450 .475 .500

Table No. 145.—Construction Data and Weights of Concentric. Paper Instlated, Lead-cased Cable. Thickness of Paper Insulation = 1.75 mm. (= 69 mils). Weights given in kilog, per km.—continued.

Diam.	over Lead, mm.	45.74 47.58	49:1 50:6 51:4	7.25.25 7.35.82 7.35.83 8.68 8.68 8.68 8.68 8.68 8.68 8.68 8	55.2 56.7 56.5	58.0 59.7 59.8 59.8
Lead Sheath	Weight	4444 4610 4769 4854	5017 5182 5260 5429	5601 5669 5845 6012	6204 6264 6149 6546	6722 6900 6988 7038
	Thick- ness, mm.	2 2 2 3 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	######################################	* * * * * * * * * * * * *	:: 40 00 :: ::: 22 4 4	9 9 9 9 9 4 6 6 6
	nating Com- pound, weight	185 189 192 196	200 203 203 206 210	213 216 219 222	226 229 239 235 236	239 242 215 247
	Faper, weight	231 236 240 245	252 253 262 262	266 270 271 278	286 286 290 295	298 302 306 309
	Paper, mm.	40.0 40.8 41.5 42.3	45.7 45.7 45.4	45.8 46.4 17.1	48.5 49.0 19.7 50.5	51.1 51.7 52.4 52.8
Diam.	Con- f ductor, mm.	36.5 37.3 38.0 38.8	39.5 40.2 40.9 41.6	22.23 22.33 2.44 2.45 2.44	45.0 45.5 46.2 47.0	47.6 48.2 48.9 49.3
Outer	Diam. of Wires, mm.	4.54 4.64 4.75 4.85	5.04 5.04 5.14 5.24	5.38 5.42 5.51 5.6	5.69 5.77 5.85 6.08	6.25 6.25 6.33 6.41
	of of Wires	2222	2222	2222	22 22 22 22 22 22 22 22 22 22 22 22 22	20 20 20 20 20 20
Jm- preg-	Com- pound, weight	124 127 129 132	135 137 140 142	144 147 149 151	154 156 158 160	162 164 167 168
Paner	weight	155 159 162 165	168 171 175 175	181 187 189	193 195 198 200	203 205 208 210
	Paper, mm.	27.4 28.0 28.5 29.1	29·6 30·1 30·6 31·1	31.6 32.1 32.6 33.0	34.0 34.0 34.5 34.8	35.3 36.2 36.5
	weight	3019 3163 3306 3450	3594 3738 3881 4025	4169 4313 4457 4601	4744 4889 5033 5176	5319 5463 5607 5750
Area of Conductor	8q. mm.	338·76 354·9 371·04 387·15	403.28 419.4 435.52 451.65	467.8 483.95 500.0 516.2	532.3 548.45 564.58 580.7	596.8 612.96 629.09 645.14
Diam.	Strand, mm.	23.9 24.5 25.0 25.6	26·1 26·6 27·1 27·6	28.1 28.6 29.1 29.5	30.1 30.5 31.0 31.3	31.8 32.2 32.7 33.0
Conductor Wires	Diam.	3.5 3.5 3.5 5.6 5.6 5.6	3.73 3.87 3.94 4.94	4·01 4·08 4·15 4·22	3.34 3.44 3.48	3.53 3.63 6.7
	No.	37 37 37	3 3 3 7 3 3 7 3 3 7 3 7 3 7 3 7 3 7 3 7	37 37 37 37	61 61 61	61 61 61
Con-	sq. in.	0.525 .550 .575 .600	.625 .650 .675	.725 .750 .775	.825 .850 .875	.925 .950 .975 1.000

Table No. 146. Constructional Data and Weights of Concentric, Paper Insulation = 2.0 mm. (= 79 mils). (Weights given in kilog, per km., and dimensions in mm.)

Diam.	over Lead	18·0 21·2 23·6 25·8	27.7 29.3 31.0 32.4	35.2 27.4 27.4	38·7 39·9 40·9 41·8	42.8 43.9 44.9 7.7
Lead Sheath	Weight	964 1247 1473 1700	1920 2085 2311 2473	2631 2812 2962 3116	3353 3526 3684 3771	3934 4111 4281 4433
Lead	Thick-	$\frac{1.65}{1.8}$	2·15 2·25 2·25 2·30	2.35 2.40 2.45 2.50	2.60 2.65 2.70 2.70	2.75 2.80 2.85 2.90
lm- preg-	Com- pound, weight	70 86 98 109	119 127 136 143	149 157 163 168	175 181 185 190	195 201 206 210
Danor	weight	88 108 123 137	149 159 169 178	187 196 203 210	218 226 232 232	244 251 257 262
Diam.	over Paper	14.7 17.6 19.8 21.8	23.5 25.0 26.5 27.8	29·0 30·4 31·4 32·4	. 33.5 34.6 35.5 36.4	87.3 88.3 89.5
Diam.	Con- ductor	10.7 13.6 15.8 17.8	19.5 21.0 22.5 23.8	25.0 26.4 27.4 28.4	29.5 30.6 31.5	88 83 84 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Outer	Diam. of Wires	0.8 1.09 1.41 1.69	1.92 2.14 2.36 2.57	2.72 2.93 3.07 3.21	3.34 3.54 3.78	3.9 4.21 4.32
Cond	No. of Wires	23 20 20 20 20 20 20 20 20 20 20 20 20 20	28 27 26 25	22 24 24 24	23 23 23 23	22222
Im- preg-	Com- pound, weight	39 52 61 69	76 81 87 93	97 102 107 111	115 119 123 126	130 133 137 140
Paner	weight	49 65 76 86	95 102 109 116	122 128 133 138	144 149 154 158	162 167 171 175
Diam.	over Paper	9.1 11.4 13.0 14.4	15.7 16.7 17.8 18.7	19.6 20.5 21.3 22.0	22.8 23.5 24.2 24.8	25.5 26.1 26.8 27.3
Conner	weight	144 287 431 575	718 862 1006 1150	1293 1436 1580 1724	1868 2013 2156 2299	2443 2587 2731 2875
Area of	Conductor, sq. mm.	16.3 48.4 64.5	80.6 96.8 112.9 129.0	145.2 161.2 177.4 193.5	209.7 225.9 241.9 258.1	274-2 290-4 306-5 322-6
Diam.	of Strand	5.1 7.4 9.0 10.4	11.7 12.7 13.8 14.7	15.6 16.5 17.3 18.0	18.8 19.5 20.2 20.8	21.5 22.1 22.8 22.8
Conductor	Diam.	1.71 1.47 1.80 2.08	2.33 2.75 2.94	3.12 3.29 3.45 3.60	3.75 3.89 4.03 4.15	3.07 3.25 3.25 3.33
Cond	No.	7 19 19 19	19 19 19 19	19 19 19	19 19 19	2002
Con-	Section, sq. in.	0.025 .050 .075 .100	.125 .150 .175	.225 .250 .275	.325 .350 .875	.425 .450 .475

Table No. 146.—Constructional Data and Weights of Concentric, Paper Insulated, Jiead-Cased Cable. Thickness of Paper Insulation = 2.0 mm. and 79 mils (Weights given in kilog, per km., and dimensions in mm.)—continued.

Diam.	over Lead	46.6 47.6 48.3 49.2	50.0 50.8 51.4 52.2	53.3 53.9 54.7 55.4	56.3 56.8 57.6 58.1	58.8 59.2 60.2 60.7
Sheath	Weight	4599 4779 4854 5028	5193 5361 5429 5601	5810 5880 6059 6228	6424 6485 6583 6734	6914 6963 7184 7349
Lead	Thick- ness	3.00 3.00 3.00	3·10 3·15 3·15 3·20	3. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	3. 3. 4 4. 3. 4 4. 5 4. 5	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Im- preg-	Com- pound, weight	214 219 223 227	231 235 238 242	248 251 255 258	263 266 270 272	276 278 283 283
Paner	weight	268 274 279 284	289 294 298 308	310 314 313 323	328 332 337 340	344 347 353
Diam.	Paper	40.7 41.6 42.3 43.1	45.8 45.8 45.8	46.8 47.1 48.1	49.5 50.0 50.8 51.2	52.2
Diam.	Con-	36·7 37·6 38·3 39·1	39.8 40.5 41.1 41.8	42.8 43.4 44.1 44.7	45.5 46.0 46.8 47.2	47.8 48.2 49.1 7.64
Outer	Diam. of Wires	4 · 4:3 4 · 54 4 · 6:3 4 · 74	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	5.33 5.42 5.51 5.60	5.65 5.77 5.94	6.10 6.10 6.26
	No. of Wires	22222	3233	2222	23 22 23 23 23 23 23 23 23 23 23 23 23 2	7222
Im- preg-	t Com- pound, weight	143 149 153	155 158 161 164	167 169 172 172	178 180 183 183	180 189 189
Paner	weight	179 183 187 191	194 198 201 205	208 212 215 215 218	222 225 225 229 230	234 236 240
Diam.	over Paper	27.9 28.5 29.0 29.6	30.0 31.1 31.4	32.1 32.6 33.5	34·1 34·5 35·0 35·3	35.8
Copper.	weight	3019 316 3 3306 3450	3594 3738 3881 4025	4169 4813 4457 4601	4744 4889 5033 5176	5319 5463 5607 5750
Area of	Conductor, sq. mm.	338·8 354·9 371·0 387·2	408.8 419.4 435.5 451.6	467.8 484.0 500.0 516.2	532·3 548·5 564·6 580·7	596·8 613·0 629·1 645·1
Diam.	Strand.	23.9 24.5 25.0 25.6	26.1 26.6 27.1 27.6	28·1 28·6 29·1 29·5	30.1 30.5 31.0	31.8 32.2 32.7
Conductor Wires	Diam.	3.42 3.5 3.57 3.65	3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.	4.08 4.15 4.22	3.34 3.39 3.44 3.48	3 3 5 3 3 5 3 5 3 5 5 5 5 5 5 5 5 5 5 5
Con	No.	000000000000000000000000000000000000000	2007	37 37 37 37	61 61 61 61	61
Con-	Section, 8q. in.	0.525 .550 .575 .600	.625 .650 .673 .700	.725 .750 .775	.825 .850 .875	.925 .950 .975

Table No. 147.—Constructional Data and Weights of Concentrio, Paper Insulated, Lead-cased Cable. Dimensions in mm.) (Weights given in kilog, per km. Thickness of Paper Insulation = 2.25 mm, (= 88.5 mils).

		illilit complitionion and c		001
1	Diam. over Lead	1.614242 82 82 82 82 82 82 82 82 82 82 82 82 82	39.8 40.7 41.8 42.9	43.9 44.8 45.8 46.7
	heath Weight	1057 1351 1578 1812 22047 2208 2208 2606 2769 2769 3108 3274	3516 3602 3771 3944	4111 4270 4444 4610
	Lead Sheath Thick- Weig	11.87 1.87 1.82 2.22 2.22 2.22 2.22 2.23 2.23 2.23 2	2.65 2.70 2.70 2.75	2.80 2.90 2.90 2.95
	Im- preg- nating Com- pound,	84 102 1115 1127 1138 1147 1165 1165 1180 1180 1181 1181 1181	201 206 21 2 218	224 229 235 240
	Paper, weight	105 127 143 159 159 173 184 196 206 206 225 225 242	251 258 266 273	280 287 293 300
	Diam. over Paper	22 22 22 22 23 25 25 25 25 25 25 25 25 25 25 25 25 25	34.5 35.4 36.4 37.4	38.3 39.1 40.0 40.8
	Diam. over Con- ductor	22.52 22 22 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	30.0 30.9 31.9 32.9	33.8 34.6 35.5
	Outer Conductor o. of Diam. of ires Wires	3 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3.34 3.47 3.59 3.78	3.9 4.01 4.12 4.23
	Ou Cond No. of Wires	2222 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	24 24 25 23	. 52 52 53
	Im- preg- nating Com- pound,	46 60 70 70 70 70 100 100 111 111 112 122 126	131 135 140 143	148 151 156 156
	Paper, weight	757 757 88 88 1168 1168 1132 1132 1152 1152 1152 1152	164 169 175 179	185 189 195 199
	Diam. over Paper	9.6 111.9 113.5 114.9 11	23.3 24.0 24.7 25.3	26.0 26.6 27.3 27.8
	Copper, weight	144 287 431 575 718 862 1006 1150 1293 1436 1580 1724	1868 2013 2156 2299	2443 2587 2731 2875
	Area of Conductor, sq. mm.	16.3 32.3 48.1 64.5 80.64 96.77 112.9 129.03 145.18 161.25 177.22	209·7 225·9 241·9 258·1	274·2 290·4 306·5 322·6
	Diam. of Strand	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	18.8 19.5 20.2 20.8	21.5 22.1 22.8 23.3
	nctor res Diam.	1.47 1.87 1.88 2.08 2.08 2.75 2.75 2.94 3.12 3.12 3.29 3.29 3.29 3.29 3.29 3.29	3.75 3.89 4.03 4.15	3.16 3.25 3.33
	Conductor Wires No. Dian	19 19 19 19 19 19 19 19	61 61 61 61	
	Con- ductor Section, sq. in.	0.025 .050 .075 .100 .125 .150 .175 .200 .225 .225 .300	.325 .350 .400	.425 .450 .475 .475
				21

Table No. 147.—Constructional Data and Weights of Concentric, Paper Insulated, Lead-cased Cable. Thickness of Paper Insulation = 2.25 mm. (=88.5 mils). (Weights given in kilog, per km. Dimensions in mm.)—continued.

Diam.	over Lead	47.6 48.8 49.4 50.3	51.1 51.9 52.5 53.3	54·1 54·8 55·6 56·1	57.0 57.7 58.3 59.2	59.9 60.5 61.3
Lead Sheath	Weight	4779 4984 5050 5226	5395 5567 5635 5810	5988 6071 6252 6312	6510 6684 6759 6963	7145 7222 7419 7470
	Thick- ness	3.00 3.05 3.10	3.15 3.20 3.20 3.25	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3.40 3.45 3.45 3.50	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	Com- pound, weight	245 252 255 255 260	265 269 273 277	281 286 290 293	208 302 306 311	314 318 322 325
Paper	weight	306 315 319 325	25.5 25.5 1.5 2.5 2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	352	3773 3777 388 388	398 398 403 406
Diam.	Paper	42.7 42.7 43.3 44.1	44.8 45.5 46.1 46.8	47.5 48.2 48.9 49.4	50.2 50.8 51.4 52.2	52.8 53.4 54.1
Diam.	Con-	38.2 38.2 38.8 39.6	40.3 41.0 41.6 42.3	13.0 43.7 44.4 41.9	45.7 46.3 46.9 47.7	48.3 48.9 50.0
Outer	No. of Diam. of Wires	4.53 4.59 4.64 4.74	4.83 4.93 5.02 5.12	5.21 5.3 5.38 5.47	5.55 5.64 5.72 5.94	6.02 6.10 6.18 6.26
	No. of Wires	22 23 25 25 25 25 25 25 25 25 25 25 25 25 25	222	22.22.22	22 22 22 22 22 22 22 22 22 22 22 22 22	221221221221
Im- preg- nating	Com- pound, weight	168 169 173	176 179 183 186	189 192 195 197	201 204 207 209	212 214 214 217 219
		208 208 212 212	220 224 228 232	236 240 244 244 247	252 255 255 259 261	265 208 272 274
Diam.		28.4 29.0 29.5 30.1	30.6 31.1 31.6 32.1	32.6 33.1 33.6 34.0	34.6 35.0 35.5	36.3 36.7 37.2
	weight	3019 3163 3306 3450	3594 3738 3881 4025	4169 4313 4457 4601	4744 4889 5033 5176	5319 5463 5607 5750
Area of	sq. mm	338.8 354.9 371.0 387.2	403.3 419.4 435.5 451.7	467.8 484.0 500.0 516.2	532.3 548.5 564.6 580.7	556.8 613.0 629.1 645.1
Diam.	Strand	23.9 24.5 25.0 25.6	26·1 26·6 27·1 27·6	28·1 28·6 29·1 29·5	30.1 30.5 31.0 31.3	31.8 32.2 32.7 33.0
Conductor Wires	Diam.	3.42 3.57 3.65	3.73 3.87 3.94	4.01 4.08 4.15 4.22	3.34 3.39 3.44 3.48	3.58 3.58 3.67
	No.	337	327	37 37 37 37	61 61 61 61	61 61 61 61
Con-	Section, sq. in.	0.525 .550 .575 .600	.625 .650 .675	.725 .750 .775 .800	.825 .850 .875	.925 .950 .975

Table No. 148.—Constructional Data and Weights of Concentric, Paper Insulated, Lead-cased Cable. Thickness of Paper Insulation = 2.5 mm. (= 98.5 mils). (Weights given in kilog. per km., and dimensions in mm.)

	THEIR CONST	RUCTION AND COST.	339
Diam. over Lead	20.2 23.3 25.7 27.8	332.9 34.0 382.9 37.0 388.2 441.7 441.7 442.9	44.8 45.8 46.8 47.6
Sheath	1153 1452 1693 1928	2335 2514 2657 2657 2910 3081 3247 3427 3592 3761 3944 4101	4270 4444 4621 4779
Lead Thick- ness	1.75 1.9 2.0 2.1	23.8.8. 4.7.7.2.9 21.21.21 23.8.8. 4.7.7.7.9. 6. 6. 7.7.7.8.	2.85 2.9 2.95 3.0
Im- preg- nating Com- pound,	98 118 133 146	168 178 185 196 202 220 227 227 227 227 227 227 227 227	253 259 265 270
Paper, weight	123 147 166 182 197	2210 2223 2322 245 245 245 245 275 275 275 275 275 275 275 275 275 27	316 324 332 338 338
Diam. over Paper	16.7 19.5 21.7 23.6 25.3	25222 2522 2522 25222 25222 25222 25222 25222 25222 25222 25222 25222 25222 2522 25222 25222 25222 252 252 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 252 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 252 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 252 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 2522 252 2522 2522 2522 2522 2522 25	39·1 40·0 40·9 41·6
Diam. over Con- ductor	11.7 14.5 16.7 18.6	221.8 223.33 24.33 25.8 26.11.3 26.11.3 27.0 28.11.3 28.11.3 28.11.3 28.11.3	34·1 35·0 35·9 36·6
ide actor Diam, of Wires	0.8 1.58 1.88 1.88	2.527 2.527 2.527 2.527 2.527 3.539 3.539 3.539	3.82 3.93 4.03 4.14
Outside Conductor No. of Dian Wires Wir	20 55 55 55 55 55 55 55 55 55 55 55 55 55	2222 2222 2222 2222 2222 22222 4422 2222	4444
Im- preg- nating Com- pound,	58 69 89 89 89	105 113 119 119 125 131 137 142 157 157 161	166 170 175 175
Paper, weight	66 86 99 112	131 141 149 164 171 171 184 190 190 201	207 213 219 223
Diam. over Paper	10.1 12.4 14.0 15.4	25.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	26.5 27.1 27.8 28.3
Copper,	144 287 431 575 718	862 1006 1150 1293 1436 1580 1724 1868 2013 2209	2443 2587 2731 2875
Area of Conductor. sq. mm.	16.3 32.3 48.4 64.5	96.8 112.9 112.9 112.9 1145.2 1161.2 177.4 193.5 209.7 225.9 241.9	274.2 290.4 306.5 322.6
Diam. of Strand	5.1 7.4 9.0 10.4	18.00 18.00	21.5 22.1 22.8 23.3
Conductor Wires No. Diam.	1.71 1.47 1.8 2.08	2.22.22 2.22.22 2.22.23 2.22.29 2.23.23 2.23.23 2.24.03 2.25.25.23 2.25.23 2.25.23 2.25.23 2.25.23 2.25.23 2.25.23 2.25.23 2.2	3.07 3.16 3.25 3.33
Cond Wj Wj	P 10 01 01 01	61 61 61 61 61 61 61 61 61 61 61 61 61 6	
Conductor Section, 8q. in.	0.025 .050 .075 .100	.150 .175 .225 .250 .275 .275 .300 .325 .350 .375 .375	254. 254. 254. 254. 250. 254. 250.

Thickness Table No. 148—Constructional Data and Weights given in kilog, per km., and dimensions in mm.)—continued. of Paper Insulation = 2·5 mm. (= 98·5 mils). (Weights given in kilog, per km., and dimensions in mm.)—continued.

Diam.	over	48.4 49.3 50.1 51.2	52.0 52.6 53.4 54.2	54.9 55.7 56.7 57.2	58.1 58.8 59.4 60.0	60.8
Sheath	Weight	4865 5039 5204 5406	5578 5647 5822 6000	6082 6264 6173 6534	6733 6914 6988 7156	7354 7419 7620
Lead	Thick- ness	3.0 3.1 3.1 3.1	00 00 00 00 00 00 00 00 00 00 00 00 00	22 22 22 24 22 24 24	89 89 89 89 89 89 89 89 89 89 89 89 89 8	မေးမေးမေး မေးမေးမေးမေး
Im- preg-	Com- pound, weight	276 282 286 293	298 302 307 312	317 321 328 331	337 341 345 348	353 357 362
- Dang	weight	345 352 358 367	373 381 381 390	396 402 410 414	421 431 431	446
Diam.	Paper	42.4 43.2 43.9 44.9	45.6 46.2 46.9 47.6	48.3 49.0 49.9 50.4	51 · 2 51 · 8 52 · 4 52 · 9	53.6 54.1 54.8
Diam.	Con- ductor	38.5 38.5 38.9	40.6 41.2 41.9 42.6	43.3 44.0 44.9 45.4	46.2 46.8 47.4 47.9	48.6 49.1 49.8
Outside Conductor	Diam. of Wires	4.24 4.34 4.44 4.63	4.73 4.82 4.91 5.0	5.09 5.18 5.38 5.46	5.56 5.64 5.72 5.8	5.88 5.95 6.04
Cond	No. of Wires	22 24 4 25 23 23 23 23 23 23 23 23 23 24 23 23 23 23 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	23 23 23 23 23 23 23 23 23 23 23 23 23 2	22 23 25 25 25 25 25 25 25 25 25 25 25 25 25	22222	22 22 2
Im- preg-		183 187 190 194	198 201 205 208	212 215 215 218 221	225 228 232 234	237 240 244 945
Paper	weigh	228 233 243	247 251 256 260	265 269 273 277	282 285 290 292	297 300 304 304
Diam.	Paper	28.5 29.5 30.0 30.0	31.1 31.6 32.1 32.6	333.1 33.6 34.1 34.5	35.1 35.5 36.0	36.8 37.2 37.7
Copper.	weight	3019 3163 3306 3450	3594 3738 3881 4025	4169 4313 4457 4601	4744 4889 5033 5176	5319 5463 5607 5750
Area of	sq. mm.	338.8 354.9 371.0 387.1	403·3 419·4 435·5 451·6	467.8 484.0 500.0 516.2	532·3 548·5 564·6 580·7	596.8 613.0 629.1 645.1
Diam.	Strand	23.9 24.5 25.0 25.6	26·1 26·6 27·1 27·6	28·1 28·6 29·1 29·5	30.1 30.5 31.0 31.3	31.8 32.2 32.7
Conductor	Diam.	3.42 3.57 3.65	3.73 3.88 3.94	4.01 4.08 4.15 4.22	3.34 3.39 3.44 3.48	3 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 .
Cor	No.	377	37 37 37 37	37 37 37	61 61 61 61	61 61 61 61 61
Con-	Section, sq. in.	0.525 .550 .575 .600	.625 .650 .675	.725 .775 .800	.825 .850 .875	.925 .950 .975

Table No. 149.—Constructional Data and Weights of Concentric, Paper Insulated, Lead-cased Cable. Thickness of Paper Insulation = 3.2 mm, (= 126 mils). (Weights given in kilog, per km., and dimensions in mm.)

Diam.	Lead	28.6 28.6 30.6	32.5 34.1 35.7 37.1	38.5 39.9 41.1 42.2	43.4 44.5 45.6 46.6	47.6 48.4 49.5 50.4
beath	Weight	1452 1736 1988 2232	2481 2665 2910 3090	3526 3526 3703 3875	4240 4240 4423 4599	4779 4865 5060 5238
Lead Sheath	Thick- ness	1.9 2.1 2.2	2.3 2.35 2.45 2.5	2.55 2.65 2.7 2.7	2.8 2.85 2.9 2.95	3.0 3.0 3.1
Im- preg- nating	Com- pound, weight	144 169 188 203	219 232 244 256	267 278 288 296	306 315 324 332	347 347 356 363
Paper,	weight	180 211 234 254	273 290 305 320	334 347 359 371	383 394 405 415	425 434 444 453
Diam.	Paper	19.5 22.3 24.4 26.2	27.9 29.4 30.8 32.1	33.4 34.6 35.7 36.7	37.8 38.8 39.8 40.7	41.6 42.4 43.4 44.2
Diam.	Con- ductor	13.1 15.9 18.0 19.8	21.5 23.0 24.4 25.7	27.0 28.2 29.3 30.3	32.4 33.4 34.3	35.2 36.0 37.0 37.8
er	Diam. of Wires	0.8 1.07 1.31 1.51	1.71 1.94 2.12 2.3	2.49 2.66 2.79 2.97	3.56 3.56	3.67 3.77 3.88 4.06
Outer	No. of Wires		32.23	28 28 28 28 28	28 27 27 26	25 26 25 26 25 26
Im- preg- nating	Com- pound, weight	74 108 120	132 141 150 158	166 174 181 188	195 201 207 212	219 224 230 234 234
Paper,	weight	22 117 135 150	165 176 188 198	208 218 227 234	243 251 259 265	273 280 287 287 293
Diam.	Paper	11.5 13.8 15.4 16.8	18.1 10.1 20.2 21.1	22.0	25.2 25.9 26.6 27.2	27.9 28.5 29.2 29.7
Copper,	weight	144 287 431 575	718 862 1006 1150	1293 1436 1580 1724	1868 2013 2156 2299	2443 2587 2731 2875
	sq. mm.	16.3 32.3 48.4 64.5	80.6 96.8 112.9 129.0	145.2 161.3 177.4 193.5	209.7 225.9 241.9 258.1	274.2 290.4 306.5 322.6
	Strand	5.1 7.4 9.0	11.7 12.7 13.8 14.7	15.6 16.5 17.3 18.0	18.8 19.5 20.2 20.8	21.5 22.1 22.8 22.8
Conductor Wires	Diam.	1.71	2.33 2.74 2.75 2.94	3.12 3.23 3.45 8.60	3.75 3.89 4.03 4.15	3.35 3.35 3.33
	No.	100 100 100 100 100 100 100 100 100 100	19 19 19	21 21 20 10 10	01 01 01 01 01	00000
Con-	Section, sq. in.	0.025 .050 .075	.125 .150 .175	.225 .250 .275	.325 .350 .375	.425 .450 .475

Table No. 149.—Constructional Data and Weights of Concentric, Paper Insulated, Lead-cased Cable. Thickness of Paper Insulation = 3.2 mm. (= 126 mils). (Weights given in kilog, per km., and dimensions in mm.)—continued.

waeu. Diam.	over	51.3 52.5 53.2 54.1	51.8 55.5 56.3 57.0	57.8 58.4 59.2 59.9	61.0 61.5 62.3 62.7	63.5 64.1 65.4
Sheath	Weight	5418 5635 5799 5988	6071 6240 6421 6510	6698 6771 6969 7144	7381 7145 7646 7698	7902 7982 8176 8360
Lead	Thick- ness	3.25 3.25 3.30	: : : : : : : : : : : : : : : : : : :	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	33 33 33 34 35 35 35 35 35 36 3	::::::::::::::::::::::::::::::::::::::
Im- preg- nating	Com- pound, weight	870 879 885 892	398 403 410 416	427 434 439	418 452 458 462	468 474 478 483
Paper,	weight	462 474 481 490	498 504 512 520	527 531 542 549	560 565 573 577	585 592 598 604
Diam.	Paper	46.1 46.1 46.7 47.5	48.2 48.2 49.5 50.2	50.9 51.5 52.2 52.8	53.8 55.0 55.0	56·1 56·7 57·3 57·8
Diam.	Con-	38·6 39·7 40·3 41·1	8: 134 8: 524 1: 8: 53 8: 4: 53	41.5 45.1 45.8 46.4	47.4 47.9 48.6 49.0	49.7 50.3 50.9 51.4
Outer Conductor	Diam. of Wires	4.16 4.39 4.44 4.54	4.63 4.72 4.81 4.90	4.98 5.07 5.15 5.24	5.43 5.51 5.59	5.75 5.83 5.90 5.98
,	No. of Wires	22 24 25 24 25 24 25	2222	2222	25 25 25 25	22222
Im- preg- nating		240 245 249 255	259 261 268 272	2777 2881 2886 2889	295 298 303 305	313 313 320
Paper,	weight	300 300 318 318	324 330 335 341	346 352 357 362	368 373 381 381	387 391 397 400
Diam.	Paper	300.0 31.4 32.0	32.5 33.0 33.5 34.0	34.5 35.0 35.5	36.5 36.9 37.4	38.2 38.6 39.1 39.4
	weight	3019 3163 3306 3450	3594 3738 3881 4025	4169 4313 4457 4601	4744 1889 5033 5176	5319 5463 5607 5750
Area of Conductor.	sq. mm.	338.8 354.9 371.0	403°3 419°4 435°5 451°6	467.8 484.0 500.0 516.2	532.3 548.5 564.6 580.7	596·8 613·0 629·1 645·1
Diam.	Strand	23.9 24.5 25.0 25.6	26·1 26·6 27·1 27·6	28·1 28·6 29·1 29·5	30·1 30·5 31·0 31·3	31.8 32.2 32.7 33.0
Conductor	Diam.	3.57 3.57 3.657	3.73 3.80 3.87 3.94	4·01 4·08 4·15 4·22	3.34 3.44 3.48	3.53 3.58 3.63 3.67
Cer	No.	00 00 00 00	20 00 27	20 20 20 20 20 20 20 20 20 20 20 20 20 2	61 61 61 61	61 61 61 61
Con- ductor	sq. in.	0.525 .550 .575 .600	·625 ·650 ·675 ·700	.725 .750 .775 .800	.825 .850 .875	.925 .950 .975 1.000

Table No. 150.—Constructional Data and Weights of Triple Concentric, Paper Insulated, Lead-Cased Cable. Thickness of Paper Insulation = 2.0 mm. (= 79 mils). (Dimensions given in mm., and weights in kilog, per km.)

	THEIR CONSTRUCTION AND COST. 343
Diam. over	2 4 1 4 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2
Lead Sheath Weight Weight	1266 1292 1493 1493 1578 1478 1472 1722 1722 1722 1722 1722 1722 1722
Thick-	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Im- preg- nating Com- pound, weight	88 99 99 99 99 99 99 99 99 99 99 99 99 99
Paper ————————————————————————————————————	9 110 9 1113 9 1113 1 125 1 125
.msi I	$ \sim$ \sim \sim \sim \sim \sim \sim \sim \sim \sim
Diam, over	2525250 652520 65250 65250 65250 65250 65250 65250 65250 65250 65250 65250 65250 65250 65250 65250 652
Wires Outer Wires Outer Outer Wires Wires Wires	000000000000000000000000000000000000000
1 0	2 2 2 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Im- preg- nating Com- pound, weight	66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Toyo Tayo	888 27 27 37 37 37 37 37 37 37 37 37 37 37 37 37
Diam.	78 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Diam, over Conductor	21 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +
Mo. of Conductor Wires Diam. of Wires Wires	000000000000000000000000000000000000000
1	2223538655885888888888888888888888888888
Im- preg- nating Com- pound, weight	28.88.88.88.88.88.88.88.88.88.88.88.88.8
Paragis Weight	25.24
Diam.	97778890886865555555556980888888888888888888
Copper,	72.9 72.9 72.9 72.9 72.9 72.9 72.9 72.9 73.9 74.9 75.9
ductor Area, sq. mm.	8 - 18 - 18 - 18 - 18 - 18 - 18 - 18 -
Conductor Over Are	200 x 4 4 7 0 4 7 0 0 5 x 0 0 1 1 2 1 1 2 1 4 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Diam. of each Wire	20 0-914 1191 02 1181 22 1171 42 1161 63 1161 63 1161 03 1161
Con- ductor L.S. W.G.	7/20 7/191.0 7/181.2 7/181.2 7/181.9 7/161.6 19/191.0 19/19

Table No. 151.—Constructional Data and Weights of Thickness of Paper Insulation = $2\cdot 0$ mm. (= 79 mils).

	ductor rea		nductor trand	Diam	ght,	Pa	per	Im- preg-	Cor	iddle iductor	Diam.		per
Sq. inch —	Sq. mm.	No. of Wires	Diam, of Wires	Con- ductor	Copper, weight	Diam. Over	Weight	Com- pound, weight		Diam, of Wires	Con- ductor		Weight
· 200 · 225 · 250 · 275 · 300 · 325 · 350 · 375	80·6 96·8 112·9 129·0 145·2 161·25 177·4 193·5 209·7 225·9 241·9	7 19 19 19 19 19 19 19 19 19 19 19 19 19	1·71 1·47 1·8 2·08 2·33 2·54 2·75 2·94 3·12 3·29 3·45 3·6 3·75 4·03 4·15 3·07	5·1 7·4 9·0 10·4 11·7 12·7 13·6 16·5 17·3 18·0 18·8 19·5 20·2 20·8 21·5	144 287 431 575 718 862 1006 1150 1293 1436 1580 1724 1868 2013 2156 2299 2443	$\begin{array}{c} 9\cdot 1 \\ 11\cdot 4 \\ 13\cdot 0 \\ 14\cdot 4 \\ 15\cdot 7 \\ 16\cdot 7 \\ 17\cdot 8 \\ 18\cdot 7 \\ 19\cdot 6 \\ 20\cdot 5 \\ 22\cdot 0 \\ 22\cdot 8 \\ 22\cdot 0 \\ 22\cdot 8 \\ 22\cdot 8 \\ 24\cdot 2 \\ 24\cdot 8 \\ 25\cdot 5 \end{array}$	49 65 76 86 95 102 109 116 122 128 133 138 144 149 154 158 162	39 52 61 69 76 81 87 98 97 102 107 111 115 119 123	33 35 31 29 28 27 26 25 24 24 24 24 23 23 23	0·8 1·09 1·41 1·69 1·92 2·14 2·36 2·57 2·72 2·93 3·07 3·21 3·34 3·54 3·66 3·78	13·6 15·8 17·8 19·5 21·0 22·5 23·8 25·0 26·4 27·4 28·4 29·5 30·6 31·5 32·4	14.7 17.6 19.8 21.8 23.5 25.0 26.5 27.8 29.0 30.4 31.4 32.4 33.5 34.6 35.5 36.4	88 108 123 137 149 159 178 178 187 196 203 210 218 226 232 238
·475; ·500;	290 · 4 306 · 5 322 · 6	37 37 37	3·16 3·25 3·33	22·1 22·8 23·3	2587 2731 2875	26·1 26·8 27·3	167	133 137 140	22 22 22 22	3·9 4·1 4·21 4·32	34·3 35·2	39.2	$244 \mid \\ 251 \mid \\ 257 \mid \\ 262 \mid$
*525 ; *550 ; *575 ; *600 ; *625 4	354·9 371·0 387·1 403·3	37 37 37 37 37	3·42 3·5 3·57 3·65 3·73		3594	27:9 28:5 29:0 29:6 30:1	179 183 187 191 194	143 147 149 153 155	22 22 22 22 22 22 22	4·43 4·54 4·63 4·74 4·83	36·7 37·6 38·3 39·1 39·8	40·7 41·6 42·3 43·1	268 274 279 284 289
· 675 9 · 700 4 · 725 4 · 750 4	135·5 151·6 167·8 184·0	37 37 37 37 37	3·8 3·87 3·94 4·01 4·08 4·15	26 · 6 27 · 1 27 · 6 28 · 1 28 · 6	3738 3881 4025 4169 4313	31·6 32·1 32·6	198 201 205 208 212	158 161 164 167 169	21	5.42	41.1	45·1 45·8 46·8	310
· 800 5 · 825 5 · 850 5 · 875 5	32·3 48·4 64·6	37 61 61 61	4·22 3·34 3·39 3·44	29·1 29·5 30·1 30·5 31·0	5033	33·5 34·1 34·5 35·0	215 218 222 225 229	172 175 178 180 183	21 21 21 21 21 21	5·69 5·77	$\frac{44 \cdot 7}{45 \cdot 5} = \frac{46 \cdot 0}{46 \cdot 0} = \frac{44 \cdot 7}{46 \cdot 0} = 44$	48·1° 3 48·7° 3 49·5° 3 50·0° 3 50·8° 3	323 328 332
1.000 6	96·8 13·0 29·1	61 61 61 61	3·48 3·53 3·58 3·63 3·67	31·3 31·8 32·2 32·7 33·0	5319 . 5463 . 5607	35·8 36·2 36·7	230 234 236 240 242	184 187 189 192 194	21 21 21 21 21 21	6·02 6·10 6·18		51 · 2 3 51 · 8 3 52 · 2 3 53 · 1 3	340 344 347 353

TRIPLE CONCENTRIC, PAPER INSULATED. LEAD-CASED CABLE. (Dimensions given in mm., and weights in kilog. per km.)

Im- preg-	preg- Conductor D		Conductor Diam.		er	Im- preg- nating Lead Sheath			Diam.	Conductor Area		
Com- pound, weight	No. of Wircs	Diam. of Wires	Con- ductor	Diam. Over	Weight	Com- pound, weight	Thick- ness	Weight	Lead	Sq.	Sq. mm.	
70 86 98 109 119	33 35 31 29 28	0·8 1·09 1·41 1·69 1·92	16·3 19·8 22·6 25·2 27·3	20·3 23·8 26·6 29·2 31·3	127 151 170 188 203	101 121 136 150 162	1·9 2·1 2·25 2·35 2·45	1507 1943 2319 2648 2953	24·1 28·0 31·1 33·9 36·2	0·025 ·050 ·075 ·100 ·125	16·3 32·3 48·4 64·5 80·6	
127 136 143 149 157	27 26 36 36 36	2·14 2·36 2·14 2·27 2·39	29·3 31·2 32·1 33·5 35·2	33·3 35·2 36·1 37·5 39·2	217 230 236 245 257	173 184 189 196 206	2.55 2.65 2.7 2.8 2.85	3265 3583 3742 4031 4281	38·4 40·5 41·5 43·1 44·9	·150 ·175 ·200 ·225 ·250	96·8 112·9 129·0 145·2 161·25	
163 168 175 181 185	36 36 36 36 36	$\begin{array}{c c} 2.51 \\ 2.62 \\ 2.73 \\ 2.89 \\ 2.93 \end{array}$	36·4 37·6 39·0 40·4 41·4	40·4 41·6 43·0 44·4 45·4	265 274 283 293 300	212 219 227 235 240	2·9 3·0 3·05 3·1 3·15	4485 4779 5017 5260 5463	46·2 47·6 49·1 50·6 51·7	·275 ·300 ·325 ·350 ·375	177 · 4 193 · 5 209 · 7 225 · 9 241 · 9	
190 195 201 206 210	36 36 36 36 36	3·02 3·12 3·21 3·3 3·38	42·4 43·5 44·7 45·8 46·7	46·4 47·5 48·7 49·8 50·7	307 315 323 330 337	246 252 258 264 269	3·2 3·3 3·35 3·4 3·4	5669 5988 6228 6461 6570	52·8 54·1 55·4 56·6 57·5	·400 ·425 ·450 ·475 ·500	258·1 274·2 290·4 306·5 322·6	
214 219 223 227 231	36 36 36 36 36	3·47 3·54 3·63 3·7 3·78	47.6 48.7 49.6 50.5 51.4	51.6 52.7 53.6 54.5 55.4	343 351 357 363 369	274 280 285 290 295	3·5 3·6 3·6 3·65	6888 7026 7354 7470 7698	58.6 59.7 60.8 61.7 62.7	· 525 · 550 · 575 · 600 · 625	338 · 8 354 · 9 371 · 0 387 · 1 403 · 3	
235 238 242 248 251	36 36 36 36 36 36	3·85 3·93 4·0 4·06 4·14	52·2 53·0 53·8 54·9 55·7	56·2 57·0 57·8 58·9 59·7	375 380 386 393 399	300 304 309 314 319	3.7 3.75 3.8 	7916 8136 8361	63.6 64.5 65.4	*650 + *675 + *700 *725 *750 + **	419·4 435·5 451·6 467·8 484·0	
255 258 263 266 270	36 36 36 36 36	4·2 4·27 4·34 4·4 4·47	56.5 57.2 58.2 58.8 59.7	60·5 61·2 62·2 62·8 63·7	404 409 416 420 426	323 327 333 336 341			•	·775 ·800 ·825 ·850 ·875	500·0 516·2 532·3 548·4 564·6 580·7	
272 276 278 283 285	36 36	4·53 4·59 4·66 4·72 4·78	60·3 61·0 61·5 62·5 63·1	64·3 65·0 65·5 66·5 67·1	431 435 439 446 450	345 348 351 357 360				.900 .925 .950 .975 1.000	596·8 613·0 629·1 645·1	

Table No. 152.—Construction Data and Prices of Single
Thicknesses according to the Rules of
Based on: Copper at £60 per ton; Lead at £1 4s. per 100 kilog.;

Area of Conductor in	Number and Size of Wires in Strand	Co	pper	Thickness of Dielectric	Dielectric a.	Pa	per	nat	oreg-
sq. in. sq. mm.	Strand Strand Strand No Journal Wires Manual Wires Mires On Hard Wires Wires On Hard Manual Wires Mires Manual Wires Mires Manual Wires	Weight, kilog.	Price, Shil- lings per km.	inch mm.	Diam. over Dielectric in mm.	Weight, kilog.	Price, Shil- lings per km.	Weight, kilog.	Price, Shil- lings per km.
0.02516.13	7 .067 1.71 5.1	144	184	0.082.0	9.1	49	20	39	16
.050 32.26	19 '0581'47 7'4	287	367	.082.0	11.4	65	26	52	21
.075 48.39	19 :071 1:80 9:0	431	552	.082.0	13.0	76	30	61	24
100 64.52	19 .0822.0810.4	575	736	.092.3	15.0	101	40	81	32
125'80.64	19 .091 5.35 11.6	718	919	.092.3	16.2	111	41	89	36
·150'96·77	37 .0721.8312.8	862	1103	.092.3	17.4	120	48	96	38
200 129	37 0832.1114.8	1150	1472	.092.3	19.4	136	54	109	44
250 161	37 1093 2 135 16 5	1436	1838	102.55	21.6	168	67	134	54
300 193	37 1.102 2.58 18.1	1724	2207	102.55	23 - 2	182	73	146	58
*350 226	37 1.109 2.78 19.5	2013	2577	102.55	24.6	194	78	155	62
1400 258	61 091 2 32 20 9	2299	2943	102.55	26:0	207	83	166	66
*500 323	61 [1922.5923.3]	2875	3680	10 2 - 55	28.4	228	91	182	73
600 387	91 .091 2 . 32 25 . 5	3450	4416	.11 2.8	31.1	274	110	219	88
700 452	91 - 099 2 · 51 27 · 6	4025	5152	112.8	33 · 2	294	118	235	94
750 484	91 1022.6028.6	4313	5521	112.8	34.2	304	122	243	97
.800 516	91 · 106 2 · 68 29 · 5	4601	5889	.123.05	35.6	343	137	274	110
.900 581	91 -1122-8531-4	5176	6625	123.05	37.5	363	145	290	116
1.00 645	61 ·1183·0 ·33·0	5750	7360	.133.3	39.6	414	166	331	132

CONDUCTOR, LOW TENSION, PAPER INSULATED, LEAD-COVERED CABLES. the Cable Makers' Association.

Paper and Impregnating Compound at £2 per 100 kilog.

Thickness of Lead se	Le	Weight, kilog. per km. Price, Shil- lings per km. Total Weight of Materials in kilog. per km. Total Price of		Price of in Shillings km.	Waste of Materials	shillings m.	enses, er km.	Total Price in Shillings			
inch mm.	Weight, kilog. per km.			Total Price of Materials in Shillings per km.	Materials in Shilling Per km. Waste of Materials Wages in Shillings		Shop Expenses, Shillings per km.	Per km.	Per 1000 yards	Per Statute Mile	
0.061.5 12.1	568	136	800	356	9	27	27	419	383	674	
.061.2 14.6	743	178	1147	592	15	46	46	699	639	1125	
.071.8 16.6	952	228	1520	834	21	64	64	983	899	1582	
.071.8 18.6	1081	259	1838	1067	27	82	123	1299	1188	2090	
07 1.8 19.8	1157	278	2075	1277	32	98	147	1554	1421	2501	
.082.05 21.5	1425	342	2503	1531	38	118	177	1864	1705	3000	
.08 2 .05 23 .5	1572	377	2967	1947	49	150	225	2371	2168	3816	
.092.3 26.2	1964	471	3702	2430	61	187	327	3005	2748	4836	
.092.3 27.8	2094	503	4146	2841	71	218	382	3512	3212	5651	
.092.3 29.2	2211	531	4573	3248	81	250	437	4016	3673	6462	
10 2 55 31 1	2600	624	5272	3716	93	286	501	4596	4203	7396	
.10 2.55 33.5	2821	677	6106	4521	113	348	609	5591	5113	8997	
11,2.8 36.7	3391	814	7334	5428	136	417	834	6815	6232	10970	
112.8 38.8	3599	861	8153	6228	156	479	958	7821	7152	12590	
112.8 39.8	3699	888	8559	6628	166	510	1020	8324	7612	13400	
123.0541.7	4213	1011	9431	7147	179	550	1100	8976	8208	14450	
123.05 43.6	4414	1059	10243	7945	199	611	1222	9977	9123	16060	
.123.05 45.7	4648	1116	11143	8771	219	674	1348	11015	10073	17730	

Table No. 153. Construction Data and Prices of Concentric, Low Tension, the Cable Makers' Association. Based on: Copper at £60 per ton; Lead at

Area of each Conductor	Con-	No. and I		over tor in	Cup	per		ckness Paper	over n mm.	Pap	er
sq. in. sq. mm.	ductor	No. in.	mm.	Diam. ove		Price, shillings per km.	in.	mm.	Diam. c	Weight, kilog. per km.	Price, shillings per km.
0.025 16.13	inner outer	$\begin{vmatrix} 7 & .067 \\ 32 & .031 \end{vmatrix}$		5·1 10 7	144 144	184 187	·08	2·0 2·0	9·1 14·7	49 88	20 35
·050 32·26	inner outer	19 · 058 35 · 043		7·4 13·6	287 287	367 373		2·0 2·0	11·4 17·6	65 108	26 43
·075 48·39{	inner outer	19 · 071 31 · 056		9·0 15·8	431 431	552 552		2·0 2·0	13·0 19·8	76 123	20 49
·100 64·52{	inner outer	19 ÷082 31 •064		10.4 18.3	575 575	736 736		2·3 2·3	$\begin{array}{c} 15 \\ 22 \cdot 9 \end{array}$	101 164	40 66
125 80.64	inner outer	19 ·091 29 ·074			718 718	919 919		2·3 2·3	16·2 24·6	111 177	11 71
·150 96·77{	inner outer		1·83 2·09		862 862	1103 1103	·09	2·3 2·3	17:4 26:2	120 190	48 76
·200 129 {	inner outer	$\frac{37}{26} \cdot 083$		14·8 24·4	1150 1150	$\frac{1472}{1472}$	· ()()	2·3 2·3	10·4 29·0	136 212	54 85
-250161	inner outer	37 · 093 27 · 109	2·35 2·76	16:5 27:1	$\frac{1436}{1436}$	1838 1838		2·55 2·55	21·6 32·2	168 261	67 104
.300 193.2 {	inner outer	37 ·102 26 ·121		$\frac{18.1}{29.4}$	$\frac{1724}{1724}$	$\frac{2207}{2207}$		2·55 2·55	23·2 34·5	182 282	73 113
*350 226 {	inner outer	37 ·109 25 ·134	2·78 3·39		2013 2013	$\frac{2577}{2577}$		$\frac{2 \cdot 55}{2 \cdot 55}$	24·6 36·5	194 299	78 120
•400 258	inner outer	61 · 091 25 · 143	2·32 3·63	20·9 3 3 ·3	2299 2299	2943 2943		$\frac{2 \cdot 55}{2 \cdot 55}$	26·0 38·4	207 316	83 126
*500 323 {	inner outer	61 · 102 24 · 163			2875 2875	3680 3680		2·55 2·55	28·4 41·8	228 346	91
*600 387 {	inner outer	91 -091 24 -178	4 · 53	25.5 40.2	3450 3450	4416 4416	·11	2·8 2·8	31·1 45·8	274 416	110 166
-700452	inner	$ \begin{array}{c c} 91 & 099 \\ 23 & 197 \end{array} $		27.6 43.2	$\frac{4025}{4025}$	5152 5152	·11	$\frac{2\cdot 8}{2\cdot 8}$	33·2 48·8	294 445	118 178
.750 484 {	inner outer	91 ·102 23 ·204	2·63 5·18	28·6 44·6	4313 4313	$5521 \\ 5521$	·11	$\frac{2 \cdot 8}{2 \cdot 8}$	34·2 50·2	304 459	12 2 184
*800 516 {	inner outer	91 ·106 23 ·211	2·68 5·35	29·5 46·3	4601 4601	5889 5889	·12 ·12	3·05 3·05	35·6 52·4	343 520	137
.900 581 {	inner outer	$91 \cdot 112 \\ 23 \cdot 223$		31·4 48·8	5176 5176	6625 6625		3·05 3·05	37·5 54·9	363 546	145 218
1.00 645 {	inner	91 ·118 23 ·236		33·0 33·0	5750 5750	7360 7360		3·3	39·6 58·2	414 626	166 250

Paper Insulated, Lead-covered Cables. Thicknesses, according to the rules of £1 4s. per 100 kilog.; Paper and Impregnating Compound at £2 per 100 kilog.

Impr nati Comp	ing	Thie	ckness Lead	over mm.	Le		Total Weight	Total Price	shil- r km.	shil- km.	enses, er km.	Price	in shill	ings
	Price, shillings per km.	in.	mm.	Diam. c	Weight, kilog. per km.		of Material	of Material shillings per km.	Waste, shil- lings per km.	Wages, shillings per km.	Shop expenses, shillings per km	km.	1000 yds.	statute mile
39 70	16 28	.07	1.8	18·3	1061	255	1595	725	18	89	89	9 21	842	1482
52 86	21 34		2:05	21.7	1439	345	2124	1209	30	 149	224	1612	1474	2594
61 98	24 39		2 05	23:9	1599	384	2819	1630	40	200	300	2170	1985	3492
81 131	3 2 52		2.3	27.5	2070	497	3697	2159	53	265	398	2875	2629	4626
89 142	36 57		2:3	29:2	2211	531	4166	2577	65	317	554	3513	3213	 5653
$\frac{96}{152}$	38 61	·10	2.55	31.3	2618	628	4900	3057	76	 376	658	4167	3811	6706
109 170	44 68	.10	$\begin{vmatrix} & & & \\ 2 & 55 \end{aligned}$	3 4 ·1	2874	690	5801	3885	97	478	837	5297	4811	8524
134 209	54 84		2:8	37:8	3500	840	7144	4825	120	594	1040	6579	6016	10588
$\frac{146}{226}$	58 90	11	2:8	40:1	3729	895	8013	5643	140	694	1388	7 865	7192	12658
155 239	62 96	12	3.05	42.6	4307	1034	9220	6544	163	805	1610	9122	8342	14680
166 253	66 101		3.05	44.5	4518	1084	10058	7346	183	904	1808	10241	9364	16480
182 277	73 111	13	3.3	48.4	5314	1275	12097	9048	225	1113	2226	12612	11533	20296
219 333	88 133	13	3.3	52.4	5786	1389	13928	10718	268	1319	2638	14943	13665	24050
235 356	94 142	14	3.55	.55 · 9	6639	1593	16019	12429	310	1529	3058	17326	15843	27880
243 367	97 1 1 7	.14	3.55	57.3	6816	1636	16815	13228	330	1627	3254	18439	16860	29670
274 416	110 166	15	3.8	60:0	7630	1831	18385	14230	355	1750	3500	19835	18140	31920
290 437	116 175	15	3.8	62.5	7968	1912	19956	15816	395	1945	3890	22046	20160	35475
331 501	132 200	.15	3.8	65.8	8416	2020	21788	17488	438	2151	$\begin{vmatrix} \cdot \cdot \cdot \\ 4302 \end{vmatrix}$	24379	22290	39230

Table No. 154.— Construction Data and Prices of Triple Concentric, Low the Rules of the Cable Makers' Association. Based on: Copper at £6 at £

												at £
	of each ductor	Con-	No.	and I of Win	Diam.	ductor in mm.	Co	pper	Thickness of Paper	000	l Paj	per
eq. in.	sq. mm.	ductor	No.	in.	mm.	Diam, over Cor ductor in mm,			s in. mm.	Diam. Paper in	Weight, kilog. per km.	Price, shillings per km.
0.025	16.13	inner middle outer		·067 ·031 ·031	0.8	5·1 10·7 16·3	144 144 144	184 187 187	·082·0 ·082·0 ·082·0	9·1 14·7 20·3	49 88 126	20 35 50
.050	32· 2 6 {	inner middle outer			1·47 1·08 1·07	7:4 13:6 19:7	287 287 287	367 373 373	·08 2·0 ·08 2·0 ·08 2·0	11:4 17:6 23:7	65 108 150	26 43 60
B.C.	48.4	inner middle outer		*056	1.80 1.41 1.31		431 431 431	552 552 556	·08 2·0 ·08 2·0 ·08 2·0	13·0 19·8 26·4	76 123 168	30 49 67
	64.5	inner middle outer	19 31 36	.061	2·08 1·63 1·51	18.3	575 575 575	736 736 736	·09 2·3 ·09 2·3 ·09 2·3	15·0 22·9 30·5	101 164 224	40 66 90
	80.6	inner middle outer	36	·074 ·067	2·32 1·88 1·69	20.0	718 718 718	919 919 919	·092·3 ·092·3	16·2 24·6 32·6	111 177 241	44 71 96
	96.8	inner middle outer	36	·082 ·073	1·83 2·09 1·85	21·6 29·9	862 862 862	1103 1103 1103	·092·3 ·092·3 ·092·3	17:4 26:2 34:5	120 190 256	48 76 102
•200	{	middle outer	26 36	.084	5.14	24·4 33·3	1150 1150 1150	$1472 \\ 1472 \\ 1472$	092·3 092·3 092·3	19·4 29·0 37·9	186 212 283	54 85 113
•250	{	middle outer	27 36	·109 ·094	5.39	27·1 37·0	1436 1436 1436	1838 1838 1838	·102·55 ·102·55 ·102·55	21 · 6 32 · 2 42 · 1	168 261 348	67 104 139
	193.5	middle	$\frac{26}{36}$	·121 ·103	2.65	29·4 39·7	1724 1724 1724	$\frac{2207}{2207}$	·10/2·55 ·10/2·55 ·10/2·55	$23 \cdot 2 \\ 34 \cdot 5 \\ 44 \cdot 8$	182 282 372	73 113 149
1	t	middle outer	25 36	·134 :	2·78 3·39 2·83	31·4 42·2	2013 2013 2013	2577 2577 2577	10 2.55 102.55 102.55	24·6 36·5 47·3	194 299 394	78 120 158
•400	- 1	middle	25 36	·143 ; ·119 ;	2·32 3·63 3·02	33·3 44·4	2299 2299 2299	2943 2943 2943	$10^{6}2 \cdot 55^{6}$ $10^{6}2 \cdot 55$ $10^{6}2 \cdot 55$	26·0 38·4 49·5	207 316 414	83 126 166
.500	323 }	inner middle : outer :	24	.163 -	2·59 4·14 : 3·38 -	36.7	2875 2875 2875	3680 3680	·102·55 ·102·55 ·102·55	28·4 41·8 53·7	228 346 451	91 138 180

Tension, Paper Insulated, Lead-covered Cables. Thicknesses according to per ton; Lead at £1 4s. per 100 kilog.; Paper and Impregnating Compound per 100 kilog.

Comp	pound	Thi of	ckness Lead	rer Le	Le		Total Price of Material	Total Weight	e in per km.	es in per km.	per km.	Price	in shil	llings
Weight, kilog. per km.	Price, shillings per km.	in.	mm.	Diam, over I	Weight, kilog. per km.	Price, shillings per km.	shillings per km.	of Material kilog. per km.	Waste in shillings per km	Wages in shillings per k	Shop Expenses in sbillings per km.	km.	1000 yards	statute mile
39 70 101	16 28 40		2:05	24.4	1636	 3 9 3	2541	1140	29	100	 100	1369	1252	2203
52 86 120	21 34 48	.09	2.3	28.3	2136	513	3578	1858	46	120	180	2204	2016	3547
61 98 134	24 39 54	10	2·55	31.5	2637	633	4590	2556	64	150	225	2995	2739	4820
81 131 179 89	32 52 72 36	10	2:55	35·6	3011	723	5616	3283	82	200	350	3915	3580	6300
142 193 96	57 77 38	11	2·80	38·2	3540	850	6647	3988	100	240	420	4748	4342	7641
152 205 109	61 82 44	•11	2.80	40.1	3729	895	7334	4611	115	290	580	5596	5117	9005
170 226 134	68 90 54	•12	3.05	44.0	4462	1071	9048	5941	149	320	640	70 50	6447	11347
209 278 146	84 111 58	·13	3.3	48.7	5350	1284	11056	7357	184	365	730	8636	7897	13900
226 298 155	90 119 62	13	3.3	51.4	5670	1361	12348	8584	215	415	830	10044	9184	16164
239 315	96 126 66	14	3.55	54.4	6448	1548	14083	9919	248	460	920	11547	105 6 0	18580
253 331 182	101 132 73	•14	3·55	56.6	6728	1615	15312	11118	278	505	1010	12911	11810	20776
277 361	111 144	15	3.8	61.3	7805	1873	18275	13 6 50	341	600	1200	15791	14440	25410

Table No. 156.—Construction Data and Prices of for 2200 Volts working with earthed outer. Thicknesses Based on: Copper at £60 per ton; Lead at £1 4s. per 100 kilog.;

	of Each aductor			Number Diamete Wires	r of	Diam.	Cop	per		kness aper	Paper	Pal	per
Sq.	Sq. mm.	Con- ductor	No.	inch	mm.	over Con- ductor in mm.	Weight, kilog, per km.	Price, shillings per km.	in.	mm	Diam. over I	Weight, kilog, per km.	Price, shillings per km.
•025	16.13	inner outer	7 32	0:067 :031	1·71 0·08	5·1 12·8	144 144	184 187	0.12		11·2 16·9	86 105	34 42
.050	32.26	inner outer	19 36		1·47 1·07	7·4 14·9	287 287	367 373			13·5 19·0	110 120	44 48
•075	48.4 {	inner outer	19 36		1·80 1·31	9.0	431 431	552 560		3·05 2·05	15·1 21·8	127 140	51 56
•100	64.5 {	inner outer	19 36		2·08 1·52	10.4	575 575	736 736			17:0 24:6	156 177	62 71
•125	80.6	inner outer	19 35		2·32 1·72	11.6 21.6	718 718	919 919			18·2 26·2	170 190	68 76
•150	96.8 {	inner outer	37 33		1·83 1·94	12·8 23·3	862 862	1103 1103			19·4 27·9	184 204	74 82
•200	129	inner outer	37 31		2·11 2·31	14·8 26·0	1150 1150	1472 1472		3·3 2·3	$\frac{21 \cdot 4}{30 \cdot 6}$	206 225	82 90
•250	161 {	inner outer	37 30		2·35 2·62	16·5 28·8	1436 1436	1838 1838			23.6	246 276	98 110

CONCENTRIO, PAPER INSULATED, LEAD-COVERED CABLE, according to the Rules of the Cable Makers' Association. Paper and Impregnating Compound at £2 per 100 kilog.

	Imp nat Comp	ing		ckness Lead	Lead	Lea	ıd	Total	Total	ings	lings	ises, km.	Price in shillings p	
The state of the s	Weight, kilog, per km.	Price, shillings per km.	in.	mm.	Diameter over Lead in mm.	Weight, kilog. per km.	Price, shillings per km.	weight of material kilog. per km.	Price of material shillings per km.	Waste, shillings per km.	Wages, shillings per km.	Shop Expenses, shillings per km.	km. 1000 s	tatute mile
	69 84	28 34	·0s	2.05	21:0	1388	 333	2020	842	 21	140	 140	1143 1045	 1839
	88 96	35 38		2:3	23.6	1750	420	2818	1325	33	170	255	1783 1631	2869
	102 112	41 45	9	2:3	26.4	1979	475	3322	1780	45	200	300	2325 2126	3741
	125 142	50 57	.10	2:55	29.7	2473	594	4223	2306	58	230	345	2939 2688	 4729
-	136 152	5 1 61	.10	2.55	31.3	2618	628	4702	2725	68	260	455	3508 3208	5645
	147 163	59 65		2:8	33.5	3073	738	5495	3224	81	290	508	4103 3752	6602
	165 180	66 72		2.8	36.2	3342	802	6418	4056	101	350 	608	5115 4677	 8230
	197 221	79 88	.12	3:05	 40·0	4024	966	7836	5017	125	400	700	6242 5708	10046

Table No. 157.—Construction Data and Prices of Concentric, Working with

Thicknesses according to the Rules

Based on: Copper at £60 per ton; Lead at £1 4s. per 100 kilog.;

	of each ductor			Number Diamete Wire	er of	ver mm.	Coj	pper	1 6	kness of per	Paper	Pa	per
sq.	sq. mm.	Con- ductor	No.	in.	mm,	Diameter over Conductor in mm	Weight, kilog. per km.	Price, shillings per km.	in.	mm.	Diameter over Paper in mm.	Weight, kilog. per km.	Price, shillings per km.
0.025	16.13	inner	7 32	0.067	1·71 0·80	5·1 14·3	144	184 187	0.15	3·8 2·3	12·7 18·9		47 53
.050	$32 \cdot 26 $	inner outer	19 54		1:47 0:87	7·4 16·7	287 287	367 373			15·0 21·3		59 60
•075	48.4 {	inner outer	19 46		1.16	9·0 18·9	431 431	552 556			16·6 2 3 ·5		67 68
•100	64.5 {	inner outer	19 43		2·08 1·38	10·4 21·3	575 575	736 742			18·5 26·4		81 84
•125	80.6	inner outer	19 39		2:32 1:62	11:6 22:9	718 718	919 919			19·7 28·0		88 90
.150	96.8	inner , outer	37 38		1·83 1·80	12·8 24·5	862 862	1103 1103			20·9 30·1		94 106
•200	129 {	inner outer	37 34		2·11 2·20	14·8 27·3	1150 1150	1472 1472	·16 ·11	4·05 2·8	22·9 32·9	264 291	106 116
•250	161 {	inner outer	37 33		2·35 2·49	16·5 30·1	1436 1436	1838 1838	·17 ·11		$\frac{25 \cdot 1}{35 \cdot 7}$		124 128

PAPER INSULATED, LEAD-COVERED CABLES FOR 3300 VOLTS, EARTHED OUTER.

of the Cable Makers' Association.

Paper and Impregnating Compound at £2 per 100 kilog.

na	preg- ting pound	-	ckness Lead		Le	ead	Total	Total	per km.	per km.	ses, km.		ice, sh	
Weight, kilog. per km.	Price, shillings per km.	in.	mm.	Diameter over Lead in mm.	Weight, kilog. per km.	Price, sbillings per km.	rial, kilog.	Price of Mate- rial, shillings per km.	hilli	Wages, shillings per km.	Shop Expenses, shillings per km.	km.	1000 yds.	Statute mile
9 4 106	38 42	.09	2:3	23.5	1742	418	2479	969	24	170	170	1333	1219	2145
118 121	47 48	10	2.55	26.4	2172	521	3283	1475	37	200	300	2012	1840	3237
1 34 135	54 54	10	2.55	28.6	2372	569	3840	1920	48	234	351	2553	2335	4108
162 168	65 67	10	2:55	31.5	2637	633	4529	2408	60	266	399	31 33	2865	5042
1 7 5 179	70 72	.11	2.8	3 3 ·6	3082	740	5315	2898	72	296	518	378 4	3 46 0	6089
189 211	7 6 84	·11	2.8	35.7	3291	790	5915	3356	84	328		4342		6987
211 233	84 93	12	3·05	39.0	3914	939	7213	4282	107	388	679	5456	4989	8780
247 255	$\frac{99}{102}$.13	3:3	42.3	4597	1103	8599	5232	131	450	788	6601	6036	10623

Table No. 158.—Construction Data and Prices of Concentric, Working with

Thicknesses according to the Rules

Based on: Copper at £60 per ton; Lead at £1 4s. per 100 kilog.;

	of each ductor			umber iameter Wires	rof	Diam.	Сор	per	Thick	ness	Paper	Paj	per
sq.	sq.	Con- ductor	No.	in.	mm.	over Con- ductor in mm.	Weight, kilog, per km.	Price, shillings per km.	in.	mm.	Diameter over in mm.	Weight, kilog. per km.	Price, shillings per km.
0.025	16.13	inner outer	32	0.067	1:71 0:80	5·1 18·4	144 144	184 187		5·85 2·55			88 74
•050	$32 \cdot 26$	inner outer	19 64		1:47 0:80	7.4	287 287	367 373		5·85 2·55			107 82
•075	48.4 {	inner outer	19 68		1·80 0·95	9·0 22·6	431 431	552 560		5·85 2·55			120 89
•100	64.5	inner	19 61		2·08 1·16	10.4	575 575	786 742		6.1	22·6		139 107
•125	80.6	inner outer				11·6 26·5	718 718	919 926		6:1	23·8 32·1		149 114
•150	96.8	inner outer				12·8 28·1		1103 1103		6·1 3·05			159 131
•200	129 {	inner outer			2·11 1·91	14·8 30·8	1150 1150	$1472 \\ 1472$		6.1			176 143
•250	161 {	inner outer			2·35 2·19	16·5 33·6	1436 1436	1838 1838		6·35 8:05	29·2	502 386	$\begin{bmatrix} 201\\154 \end{bmatrix}$

Paper Insulated, Lead-covered Cable for $6600~\mathrm{Volts}$, Earthed Outer.

of the Cable Makers' Association.

Paper and Impregnating Compound at £2 per 100 kilog.

Imp nati	ing	ne	nick- ess of lead	Lead	Lea	.d.	Total	Total Price of Mate-	ngg	ings	km,	Prio	e, shil per	lings
Weight, kilog.	Price, shillings per km.	in.	mm.	Diameter over in mm.	Weight, kilog. per km.	Price, shillings per km.	Weight of Mate- rial, kilog. per km.	shillings	ste,	Wages, shillings per km.	Shop Expenses, shillings per km.	km.	1000 yd.	Statute mile
177 148	71 59	·i0	 2·55	28.6	2372	 569	3391	1232	31	210	210	1683	1539	2708
214 164	86 66	·11	2:8	31.4	2860	686	4285	1767	44	242	363	2416	2209	3888
240 178	96 71	·12	3:05	33.8	3350	 804	5152	2292	57	278	417	3044	2784	4898
278 215	111 86		3:05	36·6	3658	 878	5917	2799	70	310	 465	3644	3332	5864
298 227	119 91	.13	3:3	38.7	4171	1001	6789	3319	83	315	605	4352	3980	700 4
318 262	$\begin{array}{c} 127 \\ 105 \end{array}$		3.3	40.8	4421	1061	7 1 51	3789	95	380	665	4929	4507	 7932
3 53 286	141 114	.13	3.3	43.5	4736	1137	 8 47 3	4655	,116	428	7 4 9	59 4 8	5 4 39	9571
402 309	161 124	·14	3·55	46.8	5485	1317	9956	5633	141	515	902	7191	6576	11574

Table No. 159.—Construction Data and Prices of Concentric, Working with

Thicknesses according to the Rules

Based on: Copper at £60 per ton; Lead at £1 4s. per 100 kilog.;

Area of each Conductor		N	o. and of Wir		Diam.	Co	pper		kness of per	aper,	Pa	per
sq. sq. in, mm.	Con- ductor	No.	in.	mm.	over Con- ductor, mm.	Weight, kilog, per km.	Price, shillings per km.	in.	mm.	Diam. over Paper, mm.	Weight, kilog, per km.	Price, shillings per km.
0.02516.13	inner outer	7 32	0·067 ·031	1:71 0:80	5·1 24·5	144	184 187			22·9 36·1	431 607	172 243
*05032*26	inner outer	19 64		1:47 0:80	7·4 26·8	287 287	367 373			25+2 38+4		200 261
.07548.4	inner outer	19 70	.037	1·80 0·94	9·0 28·7	431 431	552 560			26·8 40·3		220 277
100'64.5 {	inner outer	19 70	.043		30.8	575 575	736 747	·36 ·24		28·6 43·0		245 311
·125 80 · 6 {	iuner outer	19 70	·091 ·048	1.22	11·6 32·3	718 718	919 928	·36 ·24	9·1	29·8 44·5	651 809	260 324
,	inner outer	37 70	·072 ·052	1:33	12·8 33·7	862 862	1103 1114	· 54	6·1 9·1	31·0 45·9	689 839	276 336
{		37 65	.083	1.59	14·8 36·2	1150 1150	1472 1472	·36 ·24	9·1	33·0 48·4	752 892	301 357
		37 [†] 60	·093 ·073		16·5 39·0	1436 1436	1838 ¹ 1838	·37 ·25	9·4 6·4	35·3 51·8]	842 1004	337 402

Paper Insulated, Lead-covered Cable for 11,000 Volts, Earthed Outer.

of the Cable Makers' Association.

Paper and Impregnating Compound at £2 per 100 kilog.

Impreg- nating Compound	Thickness of Lead		Lea	ıd	Total	Total	km.	km,	ıses, km.		shillings
Weight, kilog, per km, Price, shillings	in. mm.	Diam. over Lead, mm.	Weight, kilog, per km.	Price, shillings per km.	rial, kilog.	of Material, shillings per km.	Waste, shillings per k	Wages, shillings per l	Shop Expenses, shillings per km.		00 Statute
345 138 486 194	123.05	12:2	4265	1024	6122	2142	54	260	260	2716 24	84 4371
401 160 522 209		$\begin{bmatrix} \\ 45.0 \end{bmatrix}$	4917	1180		2750	69	298	497	3614 33	5816
441+176 554 222	133.3	46:9	5140	1234	8240	3241	81	325	488	413537	6654
490 196 622 249		50·1	5905	1417	9558	3901	98	375	563	4937 45	15 7944
$\begin{array}{c c c} 521 & 208 \\ 647 & 259 \end{array}$	143.55	5i:6	6093	1 4 63	10157	4361	109	410	718	5598 51	i9 900s
551 220 671 268	153.8	53.5	6746	 1619	11220	4936	123	450	788	6297578	58 10135
602 241 714 286	164.05	56.5	7590	1822	12850	5951	149	525	920	7545 696	00 12143
674 270 803 321	174.3	60:4			14812		177	600	1050	890181	10 14325

Table No. 165.—Comparison of Prices of Single Conductor, Lead-covered and Steel Tape Armoured Cable Instlated with various Materials.

(Prices given in shillings.)

•	I	For 600 Vo	lts	F	or 1000 Vo	lts	F	or 3000 Vo	lts
Area of Con- ductor, sq. mm.	Paper 1.5 mm. thick	Jute 2·0 mm. thick	Jute 0-5 mm., plus Paper 1.0 mm. thick	Paper 2·0 mm. thick	Jute 2.5 mm. thick	Jute 0.5 mm., Paper 1.5 mm. thick	Paper 2.5 mm. thick	Jute 3.0 mm. thick	Jute 0.5 mm. Paper 2.0 mm. thick
10	581	616	572	646	725	627	780	785	752
16	750	783	740	770	867	746	932	943	898
25	881	918	869	963	1043	939	1115	1113	1082
35	1046	1146	1031	1199	1245	1171	1323	1325	1284
50	1366	1405	1347	1463	1502	1430	1588	1588	1542
70	1744	1808	1723	1883	1923	1846	2026	2018	1974
95	2157	2169	2128	2250	2313	2209	2424	2425	2367
120	2527	2572	2497	2665	2722	2620	2843	2820	2778
150	3012	3047	2979	3150	3200	3098	3329	3304	3260
185	3589	3637	3553	3755	3810	3699	3956	3900	3881
210	4003	4014	3964	4139	4197	4080	4348	4285	4266
24()	4436	4481	4394	4618	4633	4555	4796	4748	4710
280	5028	5058	4983	5205	5220	5139	5393	5373	5303
310	5494	5470	5443	5646	5696	5578	5888	5824	5796
355	6105	6199	6053	6367	6372	6292	6566	6498	6465
400 -	6824	6838	6771	7020	7037	6943	7244	7169	7139
500	8242	8301	8185	8509	8519	8422	8753	8633	8635
625	10187	10182	10123	10431	10389	10337	10659	10570	
725	11686	11672	11618	11948	11930	11846	12230	12056	10531
800	12750	12750	12677	13046	12999	12940	13317		12092
1000	15575	15607	15493	15952	15829	15834	16192	13159 15967	13173 16032

TABLE NO. 166.—CONSTRUCTIONAL DATA FOR TWO-CORE, PAPER AND JUTE INSULATED, LEAD-CASED AND ARMOURED CABLE FOR 600 VOLTS WORKING PRESSURE.

						Total	0.000					
Area of Con- ductor, sq. mm.	Conductor Strand, mm.	Dia. over Con- ductor, mm.	Dia. over Paper, mm.	Dia. over laid up cores, 'mm.	Dia, over Jute, mm.	thick- ness, mm.	Dia. over lead, mm.	Dia. over Jute serv- ing. mm.	Dimensions of Steel Tapes, mm.	Dia. over Steel Tape, mm.	Dia. over Jute serv- ing, mm.	Weight of Cable, kilog. per km.
10	7×1·35	4.1	7.1	14.9	16.2	1:65	19.5	28.5	25×0·9	27.1	31.1	2980
16	7×1.71	5.1	8.1	$16.\bar{2}$		1.8	21.8	25.8	25×0.9	29.4	33.4	3550
25	$7\times2\cdot13$	6.4		18.8					33×0.9			4310
35	19×1.53		10.7						33×0.9		39.1	5070
50	19×1.83		12.2				30.7	34.7	33×0.9	38.3	42.3	6020
70	$19 \times 2 \cdot 17$	10.9	13.9				34.4	38.4	43×1:0	42.4	46.4	7400
95	19×2·53	12.7	15:7	31.4	33.4	2.4	38.2	42.2	43×1.0	46.2	50.5	8760
120	19×2.83		17.2	34.4	36.4	2.5	41.4	4.5.4	43×1.0	49.4	53.4	10010
150	19×3·17		18.9				45.1	49.1	55×1.1	53.5	57.5	11730
185	19×3.52		20.6	41.2	43.2	2.75	48.7	52.7	5.5×1.1		61.1	13350
210	19×3.75		21.8	43.6	45.6	2.85	51.3	22.3	55×1.1	59.7	63.7	14590
240	19×4:01	20.1	23 1	46.2	48.2	2.9	24.0	58.0	55×1.1	62.4		15900
280	37×3·1	21.7	24.7	49.4	51.4	8:0			55×1.1			
310	$37 \times 3 \cdot 27$	22.9	25.9	51.8	53.8	3.0	28.8	63.8	55×1.1	68+2	72.2	18750

Insulation { 1.5 mm. of Paper on each core. 1.0 mm. of Jute over laid up cores.

Table No. 167.—Constructional Data for Two-Core, Paper and Jute Insulated, Lead-cased and Armoured Cable for 1000 Volts Working Pressure.

Area of Con-	Conductor,	l)ia.	Dia. over	Dia. over laid	Dia.	Lead thick-	Dia.	Dia. over Jute	Dimen- sions of Steel	Dia. over Steel Tapes,	Dia. over Jute serv-	Weight of Cable, kilog.
ductor, sq. mm.		ductor, mm.	Paper, mm.	cores,	Jute, mm.	ness mm.	lead mm.	ing, mm.	Tapes, mm.	mm.	ing, mm.	per km.
10	7×1·35	4.1	8.1	16.2	18.2	1.8			25×0.9			3240
16	7×1.71	5.1	9.1	18.2	20.2	1.9			$33 \! \times \! 0.8$			3760
25	$7 \times 2 \cdot 13$	6.4	10.4	20.8	22.8	2.05			33×0.0			4500
35	19×1·53	7.7	11.7	23.4	25.4	2.1	29.6	33.6	$33\!\times\!0.9$	37.2	41.2	5180
50	19×1·83	9.2	13.2	26.4	28.4	2.25			43×1.0			6330
	19×2·17	10:9	14.9	29.8	31.8	2:35			$43\!\times\!1\cdot0$			7860
95		12.7	16.7	33.4								8810
120		14.2	18.2	36.4	38.4	2:55			22×1.1		55.5	10130
150	19×3·17	15.9	19.9	39.8	41.8	2.7			22×1.1			11640 13200
185	19×3.52	17.6	21.6	43.2	45.5	2.8	20.8	54.8	55×1.1	59.2	63.5	
210	19×3.75	18.8	22.8	45.6	47.6	2.9			$55\!\times\!1.1$			
	19×4·01	20.1	24.1	48.2	50.2	3.0				0 4 0	68.6	15730
280	37×3·1	21.7	25.7	51.4	53.4	3.0	59.4	63.4	55×1.1	67.8	71.8	17210
	$37 \times 3 \cdot 27$	22.9	26.9	53.8	55.8	3.0	61.8	65.8	55×1·1	70.2	7±·2	18480

Insulation $\left\{ \begin{array}{ll} 2 \cdot 0 \text{ mm. of Paper on each core.} \\ 1 \cdot 0 \text{ mm. of Jute over laid up cores.} \end{array} \right.$

Table No. 168.—Constructional Data for Two-Core, Paper and Jute Insulated, Lead Cased and Armoured Cable for 2000 volts Working Pressure.

Area of Conductor, sq. mm.	Conductor Strand, mm.	Diam. over ('on- 'ductor, mm.	Diam, over Paper, mm.	Laid over	, Thick- Di	a. Jute er Serv- ad, ing,	Dimensions of Steel Tapes, mm.	Diam. Dia over Steel Jute Tapes, mm. ing	Cable,
10	7×1.35	4.1	8.6	17.0 10.0	1.05 00	. 0	2=		
16	7×1.71	~ ~	9.6	10.0 01	1 85 22	.8.58.8	25×0.9	30.5 34.	5 3440
25	$7\times2\cdot13$	~ ~	10.9	19.7 21.7	1.89 59	.1 59 . 1	33×0.0	32 - 7 36 -	7 3990
35	19×1.53	~ ~		21.8 23.8	2.09.27	. 9 31 . 9	33×0.0	35.5 39.1	5 4700
50	19×1.83		12.2	24.4 26.4		734.7	33×0.0	38.3 42.	3 5420
70	19×1.85 19×2.17		13.7	27.4 29.4		937.9	43×1.0	41.9 45.9	6520
	1 C me T 1	W () 6.	15.4	30.8 35.8	2.4 37	641.6	43×1.0	45.6 49.6	3 7740
	19×2.53			31.4 30.4	2.2 41	4 45 4	43×1·0	49 4 53 -	9050
	19×2.83			37.4 39.4	5.6 41.	648.6	55×1.1	53.0 57.0	10450
	19×3·17			40.8 42.8	2.75 48	352.3	55×1.1	56 - 7 60 - 7	11980
	19×3.52		55.1	44.5 40.5	2.85 51.	955.9	55×1·1	60.3 64.8	13570
	19×3.75			46.8 48.8	5.32 21.	5.58.5.	55×1.1	62.9 66.9	14760
	19×4.01			49.2 51.2	3.0 57.	261.2	55×1·1	65.0 69.0	16010
		21.7		52.4 54.4	3.0 60.	164.4	55×1·1	68.8 72.8	17500
310	$37 \times 3 \cdot 27$	$22 \cdot 9$	27.4	54.8 56.8	3.0 62.	866.8.	$55 \times 1 \cdot 1$	71.2 75.2	18620
								11 - 10 2	10020

Insulation: $\begin{cases} 2 \cdot 25 \text{ mm. of Paper on each core.} \\ 1 \cdot 0 \text{ mm. of Jute over laid up cores.} \end{cases}$

Table No. 169.—Constructional Data for Two-Core, Paper and Jute Insulated, Lead Cased and Armoured Cable for 3000 volts Working Pressure.

Area of Conductor Strand, and mm. One of Congruence Sq. mm. Market of Conductor Strand, and the congruence sq. mm. Sq. mm. Market of Conductor Strand, and the congruence sq. mm. Market of Conductor Strand, and the congruence sq. mm. Diam. Over Dia. Over Dia. Over Steel Steel Steel over Steel mm. Cores, mm. ness, Lead Case Dia. Over Steel Steel sign mm. Steel mm.	Diam. Dia. Weight over Steel Steel Serv-Tapes, ing, per km.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33 · 8 37 · 8 36 · 6 40 · 6 39 · 4 43 · 4 43 · 0 47 · 0 46 · 6 50 · 6 50 · 5 54 · 5 54 57 · 7 · 61 · 7 61 · 4 65 · 4 64 · 0 68 · 0 66 · 6 70 · 6 69 · 8 73 · 8

Insulation: $\begin{cases} 2\cdot 5 \text{ mm. of Paper on each core.} \\ 1\cdot 0 \text{ mm. of Jute over laid up cores.} \end{cases}$

Table No. 170.—Constructional Data for Three-Core, Paper and Jute Insulated, Lead Cased and Armoured Cable for 600 volts Working Pressure

Area of Conductor, sq. mm.	Conductor Strand, mm.	Diam. over Con- ductor, mm.	Diam. over Paper, mm.	Diam. over Laid up Cores, mm.	Jute.	Thick-	Die		Dimensions of Steel Tape, inm.	Diam. over Steel Tape, mm.	Dia. over Jute Serv- ing, mm.	Weight, of Cable, kilog. per km.
10	7×1·35	4.1	7.1	15.3	16.8	1.7	20.2	24.2	25×0·9	27.8	31.8	3020
16	7×1.71	$\hat{5} \cdot \hat{1}$	8.1	17:4	18.9				25×0.9			3650
$\frac{1}{25}$	$7 \times 2 \cdot 13$	6.4	9.4	20.2	21.7	2.0	25.7	29.7	33×0.9	33.3	37.3	4480
35	19×1·53	7.7	10.7	23:0	24.5	$2 \cdot 1$	28.7	$32 \cdot 7$	33×0.9			
50	19×1.83	$9 \cdot 2$	$12 \cdot 2$	26.3	27.8	2.2			43×1.0			6548
70	19×2.17	10.9	13.9	30.0	31.2	2.35			43×1.0			7940
95	19×2.53	12.7	15.7	34.0	35.5	2.5			43×1.0			9600
120	19×2.83	14.2	$17 \cdot 2$	37.1	38.6	2.6			55×1.1			
150	19×3.17	15.9	18.9	40.7	42.2	2.7			55×1.1			12900
185	19×3.52	17:6	20.6	41.1	45.9	2.85			55×1.1			14920
210	19×3.75	18.8	21.8	47:0	48.5	2.95			55×1.1			16350
240	$19\!\times\!4\cdot01$	20.1	$23 \cdot 1$	49.7	51.2				55×1.1	0.0		17860
280	37×3·1	21.7	24.7		54.7				22×1.1			19590
310	37×3·27	22.9	25.9	55.8	57.3	3.0	63.3	67.3	55×1·1	71.7	75.7	21080

Insulation: $\begin{cases} 1.5 \text{ mm. of Paper on each core.} \\ 0.75 \text{ mm. of Jute over laid up cores.} \end{cases}$

Table No. 171.—Constructional Data for Three-Core, Paper and Jute Insulated, Lead Cased and Armoured Cable for 1000 volts Working Pressure.

Area of Con- ductor, sq. mm.	Conductor Strand, mm.	Diam. over Con- ductor mm.	Diam. over Paper, mm.	Diam. over Laid up Cores, mm.	Dia. over Jute, mm.	Thick- ness, mm.	Dia		Dimensions of Steel Tape, mm.	Diam. over Steel Tape, mm.	Dia. over Jute Serv- ing, mm.	Weight, of Cable, kilog, per km.
10	7×1:35	4.1	8.1	17:5	19:5	1.85			33×0.0			3640
16	7×1.71		9.1	19.6	21:6	$2 \cdot 0$			33×0.0			4280
25	$7 \times 2 \cdot 13$		10:4	22.4	24.4	2.1			33×0.9			5110
35	19×1.53	7.7	11.7	$25 \cdot 2$	$27 \cdot 2$	$2 \cdot 2$			33×0.0			5970
50	19×1.83		13.2	28.4	30.4	2.3			43×1.0			7260
70	$19 \times 2 \cdot 17$		14.9	32.1	34.1	2:45			43×1.0			8710
95	19×2.53		16.7	36.0	38.0	2.55			55×1.1			10470
120	19×2·83	14.2	18.2	39.2	41.2	2.7			55×1.1			12060
150	$19 \times 3 \cdot 17$		19.9	42.9	44.9	$2 \cdot 8$	50.5	54.5	55×1.1	58.9	62.9	13840
185	19×3.52		21.6	46.5	48.5	2.95	54.4	58.4	55×1.1	62.8	66.8	15870
210	19×3.75		22.8	49.1	51.1	3.0	57.1	61.1	55×1.1	65.2	69.2	17240
240	19×4.01	20.1	24.1	51.9	$53 \cdot 9$	3.0				68.3		18680
280	37×3·1	21.7	25.7	55.4	57.4	3.0	$63 \cdot 4$	$67 \cdot 4$	55×1.1	71.8	75.8	20540
310	$37 \times 3 \cdot 27$		26.9	58.0			66.0	70.0	55×1·1	74.4	78.4	21920

Insulation: $\begin{cases} 2 \cdot 0 \text{ mm, of Paper on each core.} \\ 1 \cdot 0 \text{ mm, of Jute over laid up cores.} \end{cases}$

Table No. 172.—Constructional Data for Three-Core, Paper and Jute Insulated, Lead Cased and Armoured Cable for 2000 volts Working Pressure.

Area of Con- ductor, sq. mm.	Conductor Strand, mm.	Diam over Con- ductor, mm.	Diam. over Paper. mm.	Diam. over Laid up Cores, mm.	Dia. over Jute, mm.	Thick- ness, mm.	Dia	Dia. over Jute Serv- ing, mm.	Dimensions of Steel Tape, mm.	Diam. over Steel Tape, mm.	Dia. over Jute Serv- ing, mm.	Weight, of Cable, kilog. per km.
10	7×1:35	4.1	8.6	18.4	20.4	1 - 9	91.9	92.0	33×0·9	21.8	25.8	3850
16	7×1.71	5.1	9.6	20.7	22.7	- '			33×0.9			4550
25	7×2.13	6.4	10.9	23.5	25.5	- 0.0	90.7	33.7	33×0.9	37.9	41.9	5330
35	19×1.53	7.7	12.2		28.3		30.7	36.7	#3×1.0	10.7	44.7	6230
50	19×1.83	9.2	13.7		11.4		36.1	40-1	43×1·0	11-1	48.1	7560
70	$19 \times 2 \cdot 17$	10.9	15.4	33.1					43×1.0			8960
95	19×2.53	12.7	17.2	37.0					22×1.1			10820
120	19×2.83	14.2	18.7		12.3				55×1·1		60.1	12360
150	$19 \times 3 \cdot 17$	15.9	20.4			2.85			55×1.1			14230
185	19×3.52	17.6	22.1			2.95			55×1.1			16190
210	19×3.75	18.8	23.3	50.1					55×1.1			17560
240	19×4.01	20.1	24.6	52.9					55×1.1			19000
280	37×3·1	21.7	26.2	56.5					55×1.1			20880
310	37×3·27	22.9	27.4.						55×1.1			22250
									00/11	I	Te I	22200

Insulation : $\begin{cases} 2\cdot 25 \text{ mm. of Paper on each core.} \\ 1\cdot 0 \text{ mm. of Jute over laid up cores.} \end{cases}$

Table No. 173.—Constructional Data for Three-Core, Paper and Jute Insulated, Lead Cased and Armoured Cable for 3000 volts Working Pressure.

Area of Con- ductor, sq. mm.	Conductor Strand, mm.	Diam. over Con- ductor, mm.	Diam. over Paper, mm.	Diam. over Laid up Cores, mm.	Dia.	Thick- ness, mm.	Dia over Lead,		Dimensions of Steel Tape, mm.	Diam. over Steel Tape, mm.	Dia. over Jute Serv- ing, mm.	Weight. of Cable, kilog, per km.
50 70 95 120 150 185 210 240	$19 \times 3 \cdot 17$ $19 \times 3 \cdot 52$ $19 \times 3 \cdot 75$ $19 \times 4 \cdot 01$	5·1 6·4 7·7 9·2 10·9 12·7 14·2 15·9 17·6 18·8 20·1	25.1	21.8 24.6 27.3 30.5 34.3 38.0 41.4 44.9 51.2 54.0	23.8 26.6 29.3 32.5 36.8 40.0 43.4 46.9 50.7 53.2 56.0	2:05 2:15 2:25 2:35 2:5 2:65 2:75 2:85 3:0 3:0	27:9 30:9 33:8 37:2 41:3 48:9 52:6 56:7 59:2	31·9 34·9 37·8 41·2 45·3 49·3 52·9 56·6 60·7 63·2	33×0.9 33×0.9 33×0.9 34×1.0 43×1.0 43×1.0 55×1.1 55×1.1 55×1.1 55×1.1	35.5 38.5 41.8 45.2 49.3 53.7 57.3 61.0 65.1 67.6	$39 \cdot 5$ $42 \cdot 5$ $45 \cdot 8$ $49 \cdot 2$ $53 \cdot 3$ $57 \cdot 7$ $61 \cdot 3$ $65 \cdot 0$ $69 \cdot 1$ $71 \cdot 6$	4100 4760 5610 6650 7760 9560 11180 12760 14540 16650 17900 19240
	$\begin{array}{c} 37 \times 3 \cdot 1 \\ 37 \times 3 \cdot 27 \end{array}$	21·7 22·9	26·7 27·9	57·5 60·1	59·5 62·1	3.0	65.2	69.5	55×1·1 55×1·1	$73 \cdot 9$	77.9	21210 22590

Insulation : $\begin{cases} 2\cdot 5 \text{ mm. of Paper on each core.} \\ 1\cdot 0 \text{ mm. of Jute over laid up cores.} \end{cases}$

Table No. 174.—Constructional Data for Three-Core, Paper and Jute Insulated, Lead Cased and Armoured Cable for 6000 volts Working Pressure.

Area of Conductor Strand, mm.	Diam. over Paper, mm.	Dia. of over L. Jute, mm. Co	ver Dia. aid over up Jute ores, mm	Thick-	Dia.	Dia. over Jute Serv- ing, mm.	Dimensions of Steel Tape, mm.	Diam. over Steel Tape, mm.	Jute Serv-	Weight, of Cable, kilog. per km.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11·1 12·4 13·7 15·2 16·9 18·7 20·2	13·1 23 14·4 3 15·7 33 17·2 3 18·9 4 20·7 4 22·2 4	8·2 30·3 1·0 33·3 3·8 35· 7·1 39· 0·7 42· 4·6 46· 7·8 49·	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34·8 37·8 40·8 44·3 48·2 52·3 55·8	38.8 41.8 44.8 48.3 52.2 56.3 59.8	$\begin{array}{c} 43 \times 1 \cdot 0 \\ 55 \times 1 \cdot 1 \end{array}$	42.8 45.8 48.8 52.7 56.6 60.7 64.2	46.8 49.8 52.8 56.7 60.6 64.7 68.2	13125 14850

Insulation: $\begin{cases} 3 \text{ mm. of Paper plus } 1 \cdot 0 \text{ mm. of Jute on each core.} \\ 1 \cdot 0 \text{ mm. of Jute over laid up cores.} \end{cases}$

Table No. 175.—Constructional Data for Three-Core, Paper and Jute Insulated, Lead Cased and Armoured Cable for 10,000 volts Working Pressure.

Area of Conductor, sq. mm.	Conductor Strand, mm.	Diam, over paper, Jute	Laid up	Dia over Jute, Thick-mm. ness, mm.	Dia. Jute	nim.	over Steel Tape,	Dia. Weight, over of Jute Cable, Serv- kilog. ing. per km.
50 70 95	7×1.71 7×2.13 19×1.53 19×1.83 19×2.17 19×2.53	14·4 '18· 15·7 19·	$egin{array}{cccccccccccccccccccccccccccccccccccc$	40·9 2·75 43·7 2·8 46·5 2·9 40·7 2·95 53·4 3·0 57·2 3·0 60·5, 3·0	44·1 48·1 46·4 50·4 49·3 53·6 52·3 56·6 55·6 59·6 63·2 67·2 66·5 70·1 74·1	55×1.1 55×1.1	54·8 57·7 60·7 64·0 67·8 71·6 74·9	58·8 9910 61·7 10940 64·7 12120 68·0 13460 71·8 15080 75·6 16750 78·9 18280

Insulation: $\begin{cases} 4.0 \text{ mm. of Paper plus } 2.0 \text{ mm. of Jute on each corc.} \\ 2.0 \text{ mm. of Jute over laid up cores.} \end{cases}$

Table No. 176.—Constructional Data for Impregnated Jute Cable, Single Conductor for 500 Volts Installation Work. (All dimensions given in mm.)

	Weight	Cable, kilog. per km.	1	010	240	019	0/0	000	000	0011	1350	1630	2000	21.40	9970	9 9 9 9	333	1.100	4760	00000	0070	0.70	0000	05650	8040	9470	11200	19600	1.0000	100/0	10110
	Diam.	Jute		12.3	9.77	7.01		F. 0.1	10.0	7 0 0 1	0.61	20.2	22.8	:		: :			:	:	:	:	:	:	:	:			:	:	:
	ire r	Diam.	1 3	; ;	9 9	0.01	20.01	12.7	17.5	20.55	0 :	2.7.	9.61	;	:	:	:		: ;		:	:	:	:	:	:			:	:	:
	Steel Wire Armour	Diam., Wire	1	3 1		 	2 0	0 7 3	0.0	1 2	2 :	2.2	0.71	:	:	:	-		: ;		:	:	:	:	:	:			:	:	:
$\hat{}$		No. of Wires	17.	2 !	- 2	<u>q</u>	10	2 5	0	2 - 2	1 3	F7.	7.7	:	:	:	:	:				:	:	:	:	:	:			:	:
un un	Diam.	Jute, Serving		:	:	:	:	:	:	:	:	:	: .	7. x2.	29.9	9.18	9.88	35.2	9.98	6.78	29.7	40.9	19.7	- 27	9.05	10.01	27.8	55.5	57.4	62.1	
s given	ape ur	Diam.		:	:	: :		:	: :		:	:	: :	7.1.7	50.0	9.22	29.5	31.2	37.6	33.9	7.00	6.98	X	41.6	11.0	1.1.1	x.x.	51.3	53.2	58.1	
All dimensions given in mm.	Steel Tape Armour	Dimensions				: :	:				•	:	:	X	×	25×0.9	×	X	X	5.0 × 83		6.0 × 88	· ×	()	0 T X 2	Χ.	0. T × c	5×1.1	55×1.1		-
	Diam.	Serving		29-29	0.1	7-7	× . ×	0.6	10.5	× :	91	15.6				=	6.07			30.3	:: 1.7:	38.8	35.1		0	2 3	# 0 ##	22	49.2 5		_
N WORK	Lead Sheath	Diam.	ro . oc	2.5	9.9	2.9	7.5	2	9.2	10.8	5.6	14.6	0 20	10.01	c	20.0	6.17	23.6		8.97	78.1	29.3	31.1	9.88	50.08	40.0		43.3	45.2	19.7	-
NSI ALLA I IUN	Lead	I hick- ness	1.0	0.1	1.0	1.1	1.1	1.1	1.1		1.9	: 1	4 :	٠ : - :	e . I	÷ ;		. j	9.1	9.	1.7	1.7	8. I				7 :		7.7		-
ALIGIA	Insulating	Diam. over	93	3.8	4.0	4.5	5.0	5.8	2.::	9.8	6.6	19.9	10.01	2 12	101	7.77	6.81	9.07	× 17	23.1	24.5	25.9	27.5	30.0		26.6	D •	33.1	40.8	1.21	
	Insu	Thick- ness	1.1		· -	1 · 1		1.1	1.1	<u>-</u>	-	17		- L	٠ . د ت		e. 1	c. [I . 2	9.1	1.5	1.5	1.5	9.0	000	0 0) (J.7		
	Diam.	ductor	1.13	1.4	×	2.3	2	3.8	5.1	6.4	7.65	9.15	10.85	19.65	20.44	16.56	10.80	9.7.	18.75	00.02	21.12	. 6.27	24.5	26.0	29.05	29.62	0 40	50.1	8.98	41.1	-
	Conductor		1×1.13	1 × 1 · 38	1×1.79	77	3	1 × 3·57	X	X	X	× 1 ·83	F1.6 >	5 5 5 5	200	18 × 2.85	7 T G X	70.00 X	07.50 X	10.4 >	7.0.	< 3.57	- 3.5	8.71	4.15	8-69	7000	D . C .	60.4	3.74	
	Cross Section of Con-	ductor,	_	1.5	2.2	41	9	10	91																						

Table No. 177.—Constructional Data for Impregnated Jute Cables for 600 volts Working Pressure. (Single conductor.) (Dimensions given in mm.)

Area of Con-	Conductor	Diám.	Insulating Jute	Lead Sheat	over	Steel Ta Armou		Diam.
ductor, sq. mm.	Strand	Con- ductor	Thick Diam.	Thick-ness over	Jute L. Serving	Dimensions of Tape	Diam. over	Serving Jute
10	7×1.35	4.05	2.0 8.1	1.2 11.	1 15.1	20 × 0.8	18.3	22.0
16	7 × 1·71	5.13	2.0 9.1	1.5 12.	1 16.1	20 × 0.8	19.3	23 · 0
25	7 × 2·13	6.39	2.0 10.4	1.5 13.	4 17:4	20 × 0.8	20.6	24.0
35	19 × 1.53	7.65	2.0 11.7	1.55 14.	8 18.8	20 × 0.8	22.0	26.0
50	19 × 1·83	9.15	2.0 13.2	1.55 16.	3 20.3	25 × 0·9	23.9	28.0
70	19 × 2·17	10.85	2:0 14:9	1.6 18.	1 22.1	25×0.9	25.7	30.0
95	19 × 2·53	12.65	2.0 16.7	1.7 20.	1 24 · 1	25×0.9	27.7	32.0
120	19 × 2·83	14.15	2.0 18.2	1.8 21.	8 25.8	25 × 0·9	29.4	88.0
150	19 × 3·17	15.85	2.0 19.9	1.9 23.	7 27.7	33 × 0·9	31.3	35.0
185	19 × 3·52	17:60	2.0 21.6	2.0 25.	6 29 6	33 × 0.9	33.2	87.0
210	19 × 3·75	18.75	2.0 22.8	2.05 26.	9 30 9	33 × 0.9	34.5	39.0
240	19 × 4·01	20.05	2.0 24.1	2.1 28.	3 32 3	33 × 0.9	35.9	40.0
280	37 × 3·1	21.70	2.0,25.7	2.15 30.	0 34.0	33 × 0.9	37.6	42.0
310	37 × 3·27	22.89	2.0 26.9	2.2 31.	35.3	33 × 0.9	38.9	43.0
355	37 × 3·5	24.50	2.0 28.5	2.25 33.	0 37.0	43 × 1·0	41.0	45.0
400	37×3.71	25.97	2.0 30.0	2:3 34:	6 38.6	43 × 1·0	42.6	47:0
500	37 × 4·15	29.05	2.0 33.1	2.4 37.	9 41.9	43 × 1·0	45.9	50.0
625	61 × 3·62	32.58	2.0 36.6	2.5 41.	6 45.6	55 × 1·1	50.0	54.0
725	61 × 3·9	35.1	2.0 39.1	2.6 44.	3 48.3	55 × 1·1	52.7	57.0
800	61 × 4·09	36.81	2.0 40.8	2.65 46.	50.1	55 × 1·1	54.5	59.0
1000	91 × 3·74	41.14	2.0 45.1	2.8 50.	7 54.7	55 × 1·1	59.1	63.0
				1				

Table No. 178. - Constructional Data for Single Conductor, Impregnated Jute Cable with Test Wire For 700 volts Working Pressure. (Dimensions given in mm.)

	kilog. per km.	1530	1750					3:300	3925	4936		5800	6270	0889			8730	10540	12500	02681	15120	18030
Dia. over	Jute Serv- ing	0.5	9.1	7.21	9.5	5.5	0.4	28.6	÷.	0.8	0.0	4.9	37.6	739.0	9.68	41.3	3.5	47.9	1.7	÷÷	1.9	1.0
	Dia. S	17.020.2	18.421.6	18-9 22-1	70.45	$\frac{75 \cdot 0.5}{2}$	23.9.27.0	25-12	8-679-8	29.533.0	81-935-0	33.23	34.43	35.73	36.43	38 · 1 4	40.343.5	14-74	18.1.X	0 I - 10	53-1 56-1 1	98.29
trip Armour	Description of Armour	round wire	,	,,	33		5	:	segmental		33	33	9.6	33	"	3.3	3.3					5
Steel Wire or Strip Armour	Dimensions	2.0 diam.	2.0 "	2.0 "	7.0 "	7.0 ,,	2.0 "	2.0 .,	4.9×1.3×1.7	1.9×4.3×1.7				1.0×4.3×1.7	[.0×4.3×1.7	X	1.9×4.3×1.7	≈×:	4.9×1.3×1.7	1.1×8.1×6.	1.0×4.3×1.7	4.9×4.3×1.7
	No. of Wires	23	2.7	26	X 7 X		31		91	17	<u></u>			21 4	7.7	23	24 4	27	29		32 4	35
Dia.	Jute Serv- ing	9.0	4.4	6.4	£.9	0.8	6.6	7:	3.5	1.9	28.5	x.67	0.18	37.3	9.88	35.3	6.5	::	<u>-</u>	1-		4.4
Wght.		1260 13.0	1450 14.4	1580 14.9	213016.4	2160 18.0	2930 19-9	335021.4	1100 23.2	489026-1	56702	0000	66303	71903	774033	83803	915036·9	11:30 41:3	3230 15-1	171017	5880 H	88405
Dia.		22.0	23.4	2:3.9	26.6	28.5	30.1	31.6	34.2	57-1	40.2	x. [+	13.0				5. SF	51.87		60.7.1	62.71	67.4
Steel Tape Jia. Armour	Jute Serv- Dimen- Dia. ing sions over	9.0 1.5 12.0 16.0 20×0·5 18·0 22·0	$1.5 \cdot 13.4 \cdot 17.4 \cdot 20 \times 0.5 \cdot 19.4 \cdot 23.4$	$13.917.920 \times 0.519.923.9$	$1 \cdot 6 \cdot 15 \cdot 4 \cdot 19 \cdot 4 \cdot 20 \times 0 \cdot 8 \cdot 22 \cdot 6 \cdot 26 \cdot 6$	$21.020 \times 0.8 21.228.2$	$22 \cdot 920 \times 0 \cdot 826 \cdot 130 \cdot 1$	$24 - 420 \times 0.827 \cdot 631 \cdot 6$	22.2 26.2 43×1.0 30.2 34.2	$25.129.143 \times 1.033.157.1$	23.5 2.0 27.5 32.5 48×1.0 36.5 40.5,	843×1.037.8	0.48×1.0 39.0	31.336.343×1.040.344.3	643×1.041.6	343×1·043·3	35 · 940 · 9 I3 × I · 0 41 · 9 48 · 9	3 43×1·0/50·3 51·3	30.1 [3×1.054.1 58.1	12.092.9001X812	EXX	$53.459.443 \times 1.063.467.41884054.4$
	Jute Serv- over ing	910.	-4 17	.216.	· 1 1:0 ·	.0.51	.875.	20.424	.5 26.	.129.	.28.9	× 000	.035	.388	.637	339	-076	S 46 · 3		7.25.7	· 10	4.59
Lead	Thick-		.: E	1.5 13	-6.15	.6117.0	6.81-7	07/2		.9 25	.0 27	.0 78	.1 30	.1 31	.2 32	2.2 34	2.8 35	2.4 10.	2.6 44.1	2.7 46.	2.8 48.7	3.0 53.
Insulating,	Dia.		10.4	6.0	12.5	13.8 1	2.0/15.5 1	2.0 17.0 1	2.0 18.6 1.8	2.5 21.3 1.9	23.5 2	24.82	25.8'2	27-11-2	28-2-2-2	20.02	81.3 2	35.5 2	38-9 2	1 · :: 1	43.1, 2	47.4 3
Insu	-MoidT ssan	5.0	5.0	5.0	2.0.4	5.0	2.0	0.7	5.0	20.5	2.5 23.5	2.5.2	10	10	2.5	2.5 2	~	3.03	3.0.3	3.0.4	3.0 4	3.04
Diam.	Com-	4.97	6.4	6.9	×.×	S . S		(5.3)	14.55								8.9	9-5			-	-
		3×2.06			6×2·73	97.8×9	13×2·6	18×2·59]	18×2·91 14·55	18×3·26 16·3	26×3·0 1	26×3·211	29×3·25.20·8	36×3·15 22·05	36×3·312	36×3·552	36×3·7626·3	36×4·21 29·5		60×3·9235·3	60×4·1237·1	90×3·76 41
Sec- tional Area	Con- ductor sq. mm.	10	16	25	35	20	20	95	120	150	185	210	240	280								3, 000

Table No. 179.—Constructional Data for Single Conductor, Impregnated Jute Cable for 1000 volts Working Pressure. (Dimensions given in mm.)

									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Area of Con-	Conductor	Diam.		lating ute		Lead reath	Diam.	Steel 7		Diam over
ductor sq. mm.	Strand	Con- ductor	Thick- ness	Diam.	Thick- ness	Diam.	Jute Serving	Dimen- sions of Tape	Diam.	Jute Serv- ing
10	7×1·35	4.05	2.5	9.1	1.5	12.1	16.1	20×0.8	19.3	23.0
16	7×1·71	5.13	2.5	10.1	1.5	13.1	17.1	20×0·8	20.3	24.0
25	7×2·13	6.39	2.5	11.4	1.55	14.5	18.5	20×0·8	21.7	26.0
35	19×1·53	7.65	2.5	12.7	1.55	15.8	19.8	20×0·8	23.0	27.0
50	19×1·83	9.15	2.5	14.2	1.6	17.4	21.4	25×0·9	25.0	29.0
70	19×2·17	10.85	2.5	15.9	1.65	19.2	23.2	25×0·9	26.8	31.0
95	19×2·53	12.65	2.5	17.7	1.75	21.2	25.2	25×0·9	28.8	33.0
120	19×2·83	14.15	2.5	19.2	1.85	22.9	26.9	25×0·9	30.5	35.0
150	19×3·17	15.85	2.5	20.9	1.95	24.8	28.8	33×0·9	32.4	36.0
185	19×3·52	17.60	2.5	22.6	2.05	26.7	30.7	33×0.9	34.3	38.0
210	19×3·75	18.75	2.5	23.8	2.05	27.9	31.9	33×0·9	35.5	40.0
240	19×4·01	20.05	2.5	25.1	2.10	29.3	33.3	33×0·9	36.9	41.0
280	37×3·1	21.70	2.5	26.7	2.15	31.0	35.0	33×0·9	38.6	43.0
310	37×3·27	22.89	2.5	27.9	2.2	32.3	36.3	43×1·0	40.3	44.0
355	37×3·5	24.50	2.5	29.5	2.25	34.0	38.0	43×1·0	42.0	46.0
400	37×3·71	25.97	2.5	31.0	2.3	35.6	39.6	43×1·0	43.6	48.0
500	37×4·15	29.05	2.5	34.1	2.45	39.0	43.0	43×1·0	47.0	51.0
625	61×3·62	32.58	2.5	37.6	2.55	42.7	46.7	55×1·1	51.1	55.0
725	61×3·9	35.10	2.5	40.1	2.65	45.4	49.4	55×1·1	53.8	58.0
800	61×4·09	36.81	2.5	41.8	2.7	47.2	51.2	55×1·1	55.6	60.0
1000	91×3·74	41.14	2.5	46.1	2.85	51.8	55.8	55×1·1	60.2	64.0
					ĺ	·				

Table No. 180.—Constructional Data for Single Conductor, Impregnated Jute Cable for 3000 Volts Working Pressure. (Dimensions given in mm.)

Area of Con-	Conductor	Diam.		lating ute		ead eath	Diam.	Steel T		Diam.
ductor, sq. mm.	Strand	Con- ductor	Thick- ness	Diam. over	Thick- ness	Diam. over	Jute Serv- ing	Dimen- sions of Tape	Diam.	Jute Serv- ing
10	7×1·35	4.05	3.0	10.1	1.5	13.1	17.1	20×0·8	20.3	24.0
16	7×1·71	5.13	3.0	11.1	1.5	14.1	18.1			
25	7×2·13	6.39	3.0	12.4	1.55			20×0·8	21.3	25.0
						15.2	19.5	20×0·8	22.7	27.0
35	19×1·53	7.65	3.0	13.7	1.6	16.9	20.9	25×0·9	24.5	29.0
50	19×1·83	9.15	3.0	15.2	1.6	18.4	22.4	25×0.9	26.0	30.0
70	$19 \times 2 \cdot 17$	10.85	3.0	16.9	1.7	20.3	24.3	25×0·9	27.9	32.0
95	19×2.53	12.65	3.0	18.7	1.8	22.3	26.3	$25 \!\times\! 0.9$	29.9	34.0
120	19×2·83	14.15	3.0	20.2	1.9	21.0	28.0	33×0.9	31.6	36.0
150	$19 \times 3 \cdot 17$	15.85	3.0	21.9	2.0	25.9	29.9	33×0·9	33.5	38.0
185	$19 \!\times\! 3\!\cdot\! 52$	17.6	3.0	23.6	2.05	27.7	31.7	33×0·9	35.3	39.0
210	19×3·75	18.75	3.0	24.8	2.1	29.0	33.0	33×0·9	36.6	41.0
240	19×4·01	20.05	3.0	26.1	2.15	30.4	34.4	33×0·9	38.0	42.0
280	37×3·1	21.7	3.0	27.7	2.2	32.1	36.1	43×1·0	40.1	44.0
310	37×3·27	22.89	3.0	28.9	2.25	33.4	37.4	43×1·0	41.4	45.0
355	37×3·5	24.5	3.0	30.5	2.3	35.1	39.1	43×1.0	43.1	47.0
400	37×3·71	25.97	3.0	32.0	2.35	36.7	40.7	43×1·0		
500	37×4·15	29.05	3.0	35.1	2.45	40.0			44.7	49.0
625	61×3·62	32.58	3.0				44.0	43×1·0	48.0	52.0
725	61×3.9			38.6	2.6	43.8	47.8	55×1·1	52.2	56.0
		35.1	3.0	41.1	2.7	46.5	50.5	55×1·1	54.9	59.0
800	61×4·09	36.81	3.0	42.8	2.75	48.3	52.3	55×1·1	56.7	61.0
1000	91×3·74	41.14	3.0	47.1	2.9	52.9	56.9	$55 \!\times\! 1\cdot\! 1$	61.3	65.0
							1		Į	

TABLE NO. 181. -- CONSTRUCTIONAL DATA OF TWO-CORE IMPREGNATED JUTE CABLE. (Dimensions given in mm.)

	THERE CONSTRUCTION AND COST.	1 1
Working Pressure and Thick- ness of Dielectric	000 volts working pres- 2000 volts working pres- 1000 volts working pres- re: 4.0 mm. Jute on sure: 2.0 mm. Jute each core; 1.0 mm. Jute each cores.	30
Weight of Cable, kilog. per km.	8330 8310 8210 8220 8220 7630 10400 111840 4200 44200 44200 6450 11670 11	04041
Diam. over Jute Serving	8388444888888848888888444888888444888888	7.89
Diam. over Steel Tape	888484448888448888388884494488888888888	64.2
Dimensions of Steel Tape	52 88 88 84 84 84 75 78 88 88 84 84 84 75 75 75 75 75 75 75 75 75 75 75 75 75	 ×
Diam. over Jute Serving	88888884448 88888444818 4888444888 8008884448888 8008884448888 800888446888 80088844688 80088844688 80088844688 80088844688 80088844888 80088844888 80088844888 80088844888 8008884488 8008884488 800884488 800884488 800884488 800884488 800884488 800884488 800884488 80088448 80088448 80088448 80088448 80088448 80088448 80088448 80088448 80088448 80088448 800884 80088	8.60
Sheath Diam. over Lead	2422288444 8428824444 88888444488 &000000004400 04400100004 1054040010	x . cc
Lead : Thick- ness		0.8
Diam, over Jute	80000000000000000000000000000000000000	49.00
Diam. over laid up Cores	582522222222222222222222242444 58252222222222	
Diam. over Jute	8 8 9 0 1 1 2 4 4 5 8 8 9 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	B. 07
Diam. over Con- ductor	4.00	02.01
Conductor	19	ດ X
Area of Con-ductor, sq. mm.	2 B 2	net

Table No. 182.—Constructional Data for Three-Core Impregnated Jute Cable for 600 Volts Working Pressure. (Dimensions given in mm.)

Area of Con-	Conductor	Diam.		lating	Dia. over		lating ute	She	ead ath	Dia.	Steel T Armo		Dia.
ductor, sq. mm.	Strand	Con- ductor	Thick- ness	Dia. over Jute	up Cores	Thick- ness	Dia. over Jute	Thick- ness	Dia. over Lead	Jute Serv- ing	Dimen- sions of Tape	Dia. over Tape	Jute Serv- ing
													_
10	7×1·35	4.05	3.0	7.0	15.1	1.5	16.6	1.7	20.0	24.0	25×0.9	27.6	32.0
16	7×1·71	5.13	3.0	8.1	17.4	1.5	18.9	1.85	22.6	26.6	25×0.9	30.2	34.0
25	7×2·13	6.39	3.0	9.4	20.2	1.5	21.7	2.0	25.7	29.7	33×0·9	33.3	37.0
35	19×1·53	7.65	3.0	10.7	23.0	1.5	24.5	2.1	28.7	32.7	33×0·9	36.3	4() · ()
50	19×1·83	9.15	3.0	12.2	26.3	1.5	27.8	2 · 2	32.2	36.2	 4 3×1·0	40.2	44.0
70	$19\!\times\!2\!\cdot\!17$	10.85	3.0	13.9	30.0	1.5	31.5	2.35	36.2	40.2	43×1·0	44.2	48.0
95	$19\!\times\!2\!\cdot\!53$	12.65	3.0	15.7	34.0	1.5	35.5	2.5	40.5	44.5	43×1·0	48.5	53.0
120	$19\!\times\!2\!\cdot\!83$	14.12	3.0	17.2	37·1	1.5	38.6	2.6	43.8	47.8	55×1·1	52.2	56.0
150	19×3·17	15.85	3.0	18.9	40.7	1.5	42.2	2.7	47.6	51.6	55×1·1	56.0	60.0
185	$19 \times 3 \cdot 52$	17:60	3.0	20.6	44.4	1.5	45.9	2.85	51.6	55.6	55×1·1	60.0	64.0
210	19×3·75	18.75	3.0	21.8	47.0	1.5	48.5	2.95	54.4	58.4	55×1·1	62.8	67.0
240	$19\times 4\cdot 01$	20.05	3.0	23.1	49.7	1.5	51.2	3.0	57.2	61.2	55×1·1	65.6	70.0
280	37×3·1	21.7	3.0	24.7	53 · 2	1.5	54.7	3.0	60.7	64.7	55×1·1	69 · 1	73.0
310	$37 \times 3 \cdot 27$	22.9	3.0	25.9	55.8	1.5	57.3	3.0	63 · 3	67.3	55×1·1	71.7	76.0

Table No. 183.—Constructional Data for Three-Core Impregnated Jute Cable. (Dimensions given in mm.)

					1.	H.E	ilb	Si !	UU	IN S	ST	κl	JC	ΤI	ON	А	N.	D	CC	S									373
Working Pressure and Thick- ness of	Dielectric				.910	JC	T Z loss sl 1	э п	0 9	anj	J.	J. (uw	0.	1)		'Si		surs ore.	JC	[DR	n e	0 9	m	, la	۵, (uw	0.	I)
Weight of Cable, kilog.	Local Part	3620	4260	2100	5940	7220	8660	10410	12000	18770	15800	17160	18590	90440	21820	4570	5950	6970	7200	8390	0866	11760	13360	15280	17210	18450	19910	21790	23190
Diam. over Jute Serving		34.8	37.2	40.5	43.9	47.0	51.0	55.5	59.0	65.6	8.99	69.5	72.3	75.8	78.4	39.4	41.0	45.9	48.1	51.5	55.8	0.09	63.5	67.4	71.3	73.7	9.94	80.1	82.7
Diam. over Steel Tane	24														74.4				44.1										
Dimensions of Steel Tape	,	O X	0 ×	; ; >	o.	 : ×	: ×	: ×	- : ×	. X	×	; <u>;</u> ;	; -	(×	55 × 1·1	÷	; è	, -	43 × 1·0	×	×	×	$\times \frac{1}{1}$	×	×	×	$\times \frac{1}{1}$	\times 1.	×
Diam. over Jute Serv-	0	27.2	29.6	39.6	357.6	39.0	43.0	47.1	9.09	54.5	58.4	61.1	6.89	67.4	0.04	32	24.50	37.2	40.1	43.5	47.4	9.19	55.1	59.0	6.79	65.3	68.1	7.17	74.3
)ver		23.2	25.6	28.6	31.6	35.0	39.0	43.1	46.6	50.2	54.4	57.1	59.6	63.4	0.99				36.1										
Thick- Dia. c		1.85	2.0	2.1	2.5	2.3	2.45	2.55	2.2	5.8	2.95	3.0	3.0	3.0	3.0	2.05	2.15	2.52	2.35	2.45	2.55	2.2	2.00	2.95	3.0	3.0	3.0	3.0	3.0
Diam. over Jute		19.5	21.6	24.4	27.2	30.4	34.1	38.0	41.2	6.44	48.5	51.1	53.9	57.4	0.09	23.7	26.0	28.7	31.4	34.6	38.3	42.5	45.5	49.1	55.0	55.3	58.1	61.7	64.3
Diam. over laid up Cores		17.5	19.61	22.4	25.2	28.4	32.1	98.0	39.5	45.0	46.5	49.1	51.9	55.4	58.0	21.7	24.0	26.7	29.4	32.6	36.3	40.5	43.5	47.1	50.8	53.3	56.1	29.7	62.3
Diam. over Jufe		÷	1.6	10.4	11.7	13.2	14.9	16.7	18.2	19.9	21.6	22.8	24.1	25.7	26.9	10.5	11 · 13	12.4	13.65	15.15	16.85	18.65	20.5	21.85	23.6	24.75	26.05	27.7	58.9
Diam. over Con-		4.05	5.13	6.40	7.65	9.15	10.85	12.65	14.2	15.85	9.21	18.75	20.02	21.7	55.3	. 4.05	5.13	6.40	7.65	9.15	10.85	12.65	14.5	15.85	17.6	18.75	20.02	21.7	22.9
Conductor	1	7×1.35	×	X S	$\stackrel{\cdot}{\times}$	$\times \frac{1}{\cdot}$	× 2	×	×	ന ×	: : : :	; ×	×	ю Х	% ×	×	$\stackrel{\cdot}{\times}$	× 2	19×1.53	×	×	×	X	in X	÷ ×	Х	×	ش ×	in ×
Area of Con- ductor, sq. mm.	;	01	91	25	35	20	20	95	120	150	185	210	240	280	310	10	16	25	35	20	70	95	120	150	185	210	240	280	310

Table No. 183.—Constructional Data for Three-Core Imprecnated Jute Cable.—continued. (Dimensions given in mm.)

Working Pressure and Thick- ness of Itielectric	3000 volts Working Pressure: 4.0 mm, of Jute on each core.
Weight of Cable, kilog.	5810 7520 7460 8430 11420 13150 13150 13150 13150 13150 13150 13150 13150 13150 13150 13150 1350 23080 2350
Diam. over Jute Serving	4 5 5 6 6 6 6 6 6 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Diam. over Steel Tape	4 4 4 4 7 7 7 6 6 6 6 7 7 7 7 7 7 8 8 7 7 7 7 7
Dimensions of Steel Tape	######################################
Diam. over Jute Serving	888 4 4 4 5 2 6 8 8 8 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Lead Sheath ick- over	9422-44898888888424 4886-8148444600
Lead Thick- ness	対対対対対対対対の必要ののののの 対応を行び続うようななる。
Diam.	22 82 82 82 84 84 84 84 84 86 86 86 86 86 86 86 86 86 86 86 86 86
Diam. over laid up Cores	23 28 28 28 28 28 28 28 28 28 28 28 28 28
Diam. over Jute	25.55 25.55
Diam.	24.05 6.40 6.40 7.65 10.85 112.65 114.2 115.85 117.6 20.05 22.9
Conductor	$\begin{array}{c} 7 \times 1.35 \\ 7 \times 1.35 \\ 7 \times 1.71 \\ 7 \times 2.13 \\ 19 \times 2.13 \\ 19 \times 2.53 \\ 19 \times 2.53 \\ 19 \times 3.52 \\ 19 \times 3.75 \\ 19 \times 4.01 \\ 37 \times 3.1 \\ 3.27 \\ 3$
Area of Conductor, sq. mm.	10 16 25 35 35 10 70 70 120 1150 1150 2210 2240 2280 310

TABLE No. 184.—Constructional Data for Concentric Conductor, Impregnated Jute Cable for 700 Volts (Dimensions given in mm.) WORKING PRESSURE.

Weight of Cable.		2570	2870	3260	3640	4390	5210	0919	7170	8220	9410	10190	11180	13490	14790	16190	19140
Diam.	Serving	30.3	31.4	32.8	34.4	36.5	39.0	41.7	44.4	46.8	49.5	51.1	53.4	57.7	0.09	62.4	67.2
аре	Diam.	26.3	27.4	28.8	30.4	32.5	35.0	37.7	40.4	42.8	45.5	47.1	49.4	53.7	56.0	58.4	63.2
Steel Tape Armour	Dimensions of Tape	25×0·9	25×0·9	25×0·9	25×0·9	33×0·9	33×0·9	33×0·9	43×1·0	43×1·0	43×1·0	43×1·0	43×1.0	55×1·1	55×1·1	55×1·1	55×1·1
Diam.	Serving	22.7	23.8	25.2	8.97	28.9	31.4	34.1	36.4	38.88	41.5	43.1	45.4	49.3	9.19	54.0	58.8
Sheath	Diam.	18.7	19.8	21.2	25.8	24.9	27.4	30.1	32.4	34.8	37.5	39.1	41.4	45.3	9.24	50.0	8.49
Lead S	Thick-	1.65	1.7	1.75	1.85	1.95	2.05	2.15	2.5	2.3	2.4	2.45	2.5	2.65	2.7	8.7	2.95
ulating Jute	Diam.	15.4	16.4	17.7	19.1	21.0	23.3	25.8	28.0	30.2	32.7	34.2	36.4	40.0	42.2	44.4	48.9
Insulating	Thick- ness	2.0	2.0	5.0	2.0	2.0	5.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
uctor	Diam. over	11.4	12.4	13.7	15.1	17.0	19.3	21.8	24.0	26.2	28.7	30.5	32.4	36.0	38.2	40.4	44.9
Outer Conductor	No. and Diam.	10×1·13	16×1·13	25×1.13	32×1.18	33×1.4	31×1·7	29×2·05	27×2·4	$27 \times 2 \cdot 66$	25×3·07	26×3·2	$23 \times 3 \cdot 65$	$24 \times 4 \cdot 05$	24×4·34	23×4·71	$22\times5\cdot38$
ting	Diam.	9.1	10.1	11.4	12.7	14.2	15.9	17.7	19.5	20.9	22.6	23.8	25.1	6.72	29.5	31.0	34.1
Insulating Jute	Thick- ness	2.2	2.2	2.5	2.5	2.2	2.5	2.5	2.5	2.2	2.2	2.5	2.5	2.2	2.5	2.5	2.5
uctor	Diam.	4.1	2.1	6.4	2.2	9.5	10.9	12.7	14.2	15.9	9.21	18.8	20.1	22.9	24.5	26.0	29.1
Inner Conductor	No. and Diam.	7×1·35	7×1·71	7×2.13	19×1·53	19×1·83	19×2.17	19×2.53	19×2·83	19×3·17	19×3·52	19×3·75	19×4·01	37×3·27	37×3·5	37×3·71	37×4·15
Area of each	ductor,	10	16	25	35	20	70	95	120	150	185	210	240	310	355	400	200

Table No. 185.—Constructional Data for Concentric Conductor, Impregnated Jute Cable, FOR 1000 VOLTS WORKING PRESSURE.

(Dimensions given in mm.)

Tur.	of of	kilog.	1.	3080	3390	3810	4480	5150	6010	7200	8090	9190	10430	12400	14670	16030	17960	20740
	Diam.	Jute	,	32.9	31.0	35.4	37.8	40.0	42.5	45.3	47.5	50.0	52.7	8.99	6.09	63.3	67.2	9.12
Cape	our	Diam.	,	28.9	30.0	31.4	33.8	36.0	38.5	41.3	43.5	46.0	48.7	52.x	6.99	59.3	63.2	9.29
Steel Tape	Armour	Dimensions of Tape		$25\!\times\!0\!\cdot\!9$	25×0·9	33×0·9	33×0·9	33×0·9	6.0×88	43×1·0	43×1·0	43×1·0	43×1·0	55×1·1	55×1·1	55×1·1	55×1·1	55×1·1
2	over over	Jute	,	24.9	26.0	27.4	29.8	32.0	34.5	37.3	39.5	42.0	44.7	48.4	52.5	6.49	58.8	63.2
Lead	Sheath	Diam.	1	6.02	22.0	23.4	25.8	0.87	30.5	33.3	35.5	0.88	40.7	44.4	48.5	6.09	5.75	59.2
	Sp	Thick- ness		1.75	1.8	1.85	2.0	2.05	2.15	2.25	2.3	5.4	2.5	9.7	2.75	8.7	2.85	3.0
Insulating	Jute	Diam, over	1	17.4	18.4	19.7	21.8	23.9	26.2	8.87	30.9	23.55	35.7	39.5	43.0	45.3	48.9	53.5
Insu	7	Thick-	1	2.2	2.5	2.5	2.5	2.5	2.5	2.2	2.2	2.5	2.2	2.2	2.2	2.2	2.5	2.2
ter Insulating	stor	Diam, over		12.4	13.4	14.7	16.76	18.86	21.24	23.76	25.86	28.24	30.64	34.22	38.03	40.26	43.86	48.2
Outer	Conductor	No. and Diam.		10×1·13	16×1·13	25×1·13	19×1·53	19×1·83	19×2·17	$19{\times}2{\cdot}53$	19×2·83	19×3·17	19×3·52	19×4.01	19×4.56	19×4·88	19×5·18	19×5·79
Insulating	Jute	Diam.		10.1	11.1	12.4	13.7	15.5	6.91	18.7	20.5	9.12	53.6	76.5	6.87	30.5	33.5	9.98
Insu		Thick- ness		3.0	0.8	3.0	3.0	3.0	3.0	3.0	3.0	9.0	3.0	3.0	3.0	3.0	3.75	3.75
J.	ctor	Diam.		4.05	5.13	4.9	7.65	9.15	10.85	12.65	14.2	15.85	17.64	20.16	68.23	24.5	25.97	29.05
Inner		No. and Diam.		7×1·35	7×1·71	7×2·13	19×1·53	19×1·83	19×2·17	19×2·53	19×2·83	19×3·17	37×2·52	37×2·88	37×3·27	37×3·5	37×3·71	37×4·15 5
Areaof	cach Con-	ductor, sq.mm.		10	16	25	35	20	20	95	120	150	185	240	310	355	400	200

Table No. 186.—Constructional Data for Concentric Conductor, Impregnated Jute Cable with Test Wire for 2000 Volts Working Pressure.

(Dimensions given in mm.)

Area	G	Conduct Wires			lating ute	Le She		Dia.	Steel T Armor		Dia.	Weight of Cable,
Con- ductor, sq. mm.	Con- ductor	Number and Diam.	Diam. over Copper	Thick- ness	Diam. over Jute	Thick- ness	Dia. over Lead	Jute Serv- ing	Dimen- sions	Tia. over Tape	Jute Serv- ing	kilog. per km.
	-											
10 {	inner outer	3×2.06 10×1.13	4·97 17·3	${5 \cdot 0} \atop {2 \cdot 5}$	14·97 22·3	2:0	26.3	30.3	33×0·9	34·3	38.3	4140
16 {	inner outer	$3 \times 2.6 \\ 16 \times 1.13$	6.4 18.66	5·0 2·5	16·4 23·7	2:05	27.8	31.8	33×0.9	35.8	39.8	4500
25 {	inner outer	$6 \times 2.3 \\ 25 \times 1.13$				2:1	28.4	32.4	33×0·9	36.4	40.4	4970
35 {	inner outer	$6 \times 2.75 \\ 35 \times 1.13$	8·2 20·46	5·0 2·5	18.2	2:1	29.7	33·7	33×0.9	37.7	41.3	5390
50 {	inner outer	$6 \times 3.26 \\ 18 \times 1.88$	9·8 23·6	5·0 2·5	19.8	2:2	33.0	37:0	43×1·0	41:0	45.0	6410
70 {	inner outer	$18 \times 2.23 \\ 18 \times 2.23$	11·15 25·66	5·0 2·5	21·2 30·7	2:3	35.3	39.3	 43×1·0	 43·3	47·3	7350
95 {	inner outer	$18 \times 2.59 \\ 18 \times 2.59$	12·95 28·18	5·0 2·5	23.0	2:4	38.0	42.0	43×1·0	46:0	50.0	8420
120 {	inner outer	$18 \times 2.91 \\ 18 \times 2.91$	14·55 30·42	5·0 2·5	24·6 35·4	2.5	4() • 4	44.4	43×1·0	18.4	52.4	9440
150 {	inner	$18 \times 3.26 \\ 18 \times 3.26$	16·3 32·82	5·0 2·5	26·3 37·8	2.55	42.9	46.9	43×1·0	50.9	54.9	10530
										1		

Table No. 187.—Constructional Data for Concentric Conductor, Impregnated Jute Cable with Test Wire for 3000 Volts Working Pressure. (Dimensions given in mm.)

Area of Con- Con-	Conductor Wires	Insulating Jute	Lead Sheath	Dia.	Steel Tape Armour	Dia. over	Weight
ductor, ductor sq. mm.	Number Diam. and over Diam. Copper	Diam. over Jute	Dia. over Lead	Jute Serv- ing	Dimen- Dia. sions over of Tape. Tape	Jute Serv- ing	Cable, kilog. per km.
10 { inner outer	$\begin{vmatrix} 3 \times 2.06 & 4.97 \\ 10 \times 1.13 & 19.76 \end{vmatrix}$	6·25 17·5 3·75 27·3	2.1531.6	25.0	22 10 10 20 10	40.0	6.0
16 { inner outer	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6:2518:9		1			
25 { inner outer	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.9510.4	1 1	- 1	1		6360
35 { inner outer	$6 \times 2.75 - 8.2 \\ 35 \times 1.13 - 23.0$						6940
	$18 \times 2 \cdot 23 \ 11 \cdot 15 \ 18 \times 2 \cdot 23 \ 28 \cdot 2$			14.7		52.7	8840
Outer	$\begin{array}{c} 18 \times 2 \cdot 59 \ 12 \cdot 95 \\ 18 \times 2 \cdot 59 \ 30 \cdot 7 \end{array};$	3.7538.2	2 · 55 43 · 3 ·	 17:35		55.7	9990
(outer	$18 \times 2 \cdot 91 \ 14 \cdot 55 \ 18 \times 2 \cdot 91 \ 32 \cdot 9$	3.7940.4	2.6545.74	19:7	$55 \times 1 \cdot 1 \begin{vmatrix} 54 \cdot 1 \end{vmatrix}$	58.1	11230
150 { inner outer	$18 \times 3 \cdot 26 \ 16 \cdot 3 \ (18 \times 3 \cdot 26 \ 35 \cdot 3 \)$	3·25·28·8 3·75·42·8	2:75 48:35	 52·3 5		60.7	12300
				1			

Table No. 188.—Constructional Data for Triple Concentric, Imprednated Jute Cable for 700 Volts Working Pressure. (Dimensions in mm.)

		2 2 2 2 2		02170										
	kilog. per km.	5030	5900	6200	0099	2600	8900	10400	11800	13600	15400	60.7 64.7 16300	18000	20700
over Jute	Serv- ing	39.4	9.04	41.9	43.4	46.4	49.5	52.9	56.4	59.3	62.8	64.7	68.1	72.5
)iam.	35.4	36.5	87.9	39.4	12.4	15.5	6.8	52.4	55.3	58.8	2.09	64.1	68.5
Steel Tape Armour	Dimen- Diam. sions over of Tape	6.0×88	33×0·9	33×0·9	33×0·9	13×1·0	13×1·0	43×1·0	55×1·1	55×1·1	55×1·1	55×1·1	55×1·1	55×1·1
Diam.		31.8	32.9	34.3	35.8	58.4	41.5	6.44	48.0	50.9	54.4	56.3	2.69	64.1
	Diam over	8.12	6.87	30.3	31.8	34.4	37.5	40.0	44.0	46.9	50.4	52.3	55.7	60.1
Lead	Thick- ness over	2.05	2.1	2.15	2.5	2.3	2.4	2.2	2.6	2.2	2.8	2.85	3.0	3.0
Insulating Jute	Thick- ness over	23.7	24.7	26.0	27.4	29.8	32.7	35.9	38.88	41.5	44.8	46.6	49.7	54.1
Insul	Thick-	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.2	3 2.5	3 2.5	2.2	2.5
tot	Diam.	18.7	19.7	21.0	22.4	24.8	27.7	30.9	82.58	36.5	839.8	41.6	44.7	49.1
Outer Conductor	No. and Diam.	0×1·13	6×1·13	25×1·13	32×1.18	33×1·4	31×1·7	$29 \times 2 \cdot 05$	27×2·4	27×2·66	25×3·07	$30.2 \ 2.5 \ 35.2 \ 26 \times 3.2 \ 41.6 \ 2.5 \ 46.6 \ 2.85 \ 52.3 \ 56.3 \ 55 \times 1.1$	23×3·65	24×4·0
nting '	Thick- ness over	16.4	17.4	18.1	20.1	22.0	24.3	8.97	0.67	31.2	33.7	35.2	37.4	41.0
Insulating Jute	Thick-	2.5	2.2	2.2	2.2	2.5	2.2	2.5	2.2	2.2	2.5	2.5	2.5	2.5
00	Diam.	11.4	12.4	13.7	15.1	17.0	19.3	21.8	24.0	26.5	28.7	30.2	32.4	36.0
Middle Conductor	No. and Diam. Diam. over	$4 \cdot 1 \ \ 2 \cdot 5 \ \ 9 \cdot 1 \ \ 10 \times 1 \cdot 13 \ \ 11 \cdot 4 \ \ 2 \cdot 5 \ \ 16 \cdot 4 \ \ 10 \times 1 \cdot 13 \ \ 18 \cdot 7 \ \ 2 \cdot 5 \ \ 23 \cdot 7 \ \ 2 \cdot 05 \ \ 27 \cdot 8 \ \ 31 \cdot 8 \ \ 33 \times 0 \cdot 9 \ \ 35 \cdot 4 \ \ \ 35 \cdot 4 \ \ \ 35 \cdot 4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$5 \cdot 1 \ \ 2 \cdot 5 \ \ 10 \cdot 1 \ \ 16 \times 1 \cdot 13 \ \ 12 \cdot 4 \ \ 2 \cdot 5 \ \ 17 \cdot 4 \ \ 16 \times 1 \cdot 13 \ \ 19 \cdot 7 \ \ \ 2 \cdot 5 \ \ 24 \cdot 7 \ \ 2 \cdot 1 \ \ \ 28 \cdot 9 \ \ 32 \cdot 9 \ \ 33 \times 0 \cdot 9 \ \ 36 \cdot 5 \ \ 40 \cdot 5 \ \ \ 10 \cdot 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$6 \cdot 4 \cdot 2 \cdot 5 \cdot 11 \cdot 4 \cdot 25 \times 1 \cdot 13 \cdot 13 \cdot 7 \cdot 2 \cdot 5 \cdot 18 \cdot 7 \cdot 25 \times 1 \cdot 13 \cdot 21 \cdot 0 \cdot 2 \cdot 5 \cdot 26 \cdot 0 \cdot 2 \cdot 15 \cdot 30 \cdot 3 \cdot 34 \cdot 3 \cdot 33 \times 0 \cdot 9 \cdot 37 \cdot 9 \cdot 41 \cdot 9 \cdot 37 \cdot 9 \cdot 9 \cdot 37 \cdot 9 \cdot $	$7 \cdot 7 \cdot 2 \cdot 5 \cdot 12 \cdot 7 \cdot 32 \times 1 \cdot 18 \cdot 15 \cdot 1 \cdot 2 \cdot 5 \cdot 20 \cdot 1 \cdot 32 \times 1 \cdot 18 \cdot 22 \cdot 4 \cdot 2 \cdot 5 \cdot 27 \cdot 4 \cdot 2 \cdot 2 \cdot 31 \cdot 8 \cdot 35 \cdot 8 \cdot 33 \times 0 \cdot 9 \cdot 39 \cdot 4 \cdot 43 \cdot 4 \cdot 27 $	$5 \cdot 2 \cdot 2 \cdot 5 \cdot 14 \cdot 2 \cdot 33 \times 1 \cdot 4 - 17 \cdot 0 - 2 \cdot 5 \cdot 22 \cdot 0 \cdot 33 \times 1 \cdot 4 - 24 \cdot 8 - 2 \cdot 5 \cdot 29 \cdot 8 - 2 \cdot 3 - 34 \cdot 4 \cdot 38 \cdot 4 \cdot 43 \times 1 \cdot 0 \cdot 42 \cdot 4 \cdot 46 \cdot 4 \cdot 48 \cdot 4 \cdot 48 \times 1 \cdot 0 \cdot 48 \cdot 4 \cdot 48 \times 1 \cdot 0 \cdot 48 \cdot 4 \cdot 48 \times 1 \cdot 0 \cdot 48 \cdot 4 \cdot 48 \times 1 \cdot 0 \cdot 48 \cdot 4 \cdot 48 \times 1 \cdot 0 \cdot 48 \cdot 4 \cdot 48 \times 1 \cdot 0 \cdot 48 \cdot 4 \cdot 48 \times 1 \cdot 0 \cdot 48 \cdot 4 \cdot 48 \times 1 \cdot 0 \cdot 48 \cdot 4 \cdot 48 \times 1 \cdot 0 \cdot 48 \cdot 4 \cdot 48 \times 1 \cdot 0 \cdot 48 \cdot 4 \cdot 48 \times 1 \cdot 0 \cdot 48 \cdot 4 \cdot 48 \times 1 \cdot 0 \cdot 48 \cdot 4 \cdot 48 \times 1 \cdot 0 \cdot 48 \cdot 4 \cdot 48 \times 1 \cdot 0 \cdot 48 \cdot 4 \cdot 48 \times 1 \cdot 0 \cdot 48 \cdot 4 \cdot 48 \times 1 \cdot 0 \cdot 68 \times 1 \cdot 0 \cdot 0 \cdot 68 \times 1 \cdot 0 \cdot$	$70 \ 19 \times 2 \cdot 17 \cdot 10 \cdot 9 \ 2 \cdot 5 \ 15 \cdot 9 \ 31 \times 1 \cdot 7 \ 19 \cdot 3 \ 2 \cdot 5 \ 24 \cdot 3 \ 31 \times 1 \cdot 7 \ 27 \cdot 7 \ 2 \cdot 5 \ 32 \cdot 7 \ 2 \cdot 4 \ 37 \cdot 5 \ 41 \cdot 5 \ 43 \times 1 \cdot 0 \ 45 \cdot 5 \ 32 \cdot 7 \ 2 \cdot 4 \ 37 \cdot 5 \ 41 \cdot 5 \ 43 \times 1 \cdot 0 \ 45 \cdot 5 \ 41 \cdot 5 \ 42 \times 1 \cdot 0 \ 45 \cdot 5 \ 41 \cdot 5 \ 42 \times 1 \cdot 0 \ 45 \cdot 5 \ 41 \cdot 5 \ 42 \times 1 \cdot 0 \ 45 \cdot 5 \ 41 \cdot 5 \ 41 \cdot 5 \ 42 \times 1 \cdot 0 \ 45 \cdot 5 \ 41 \cdot 5 \ $	$95 19 \times 2 \cdot 53 12 \cdot 7 2 \cdot 5 17 \cdot 7 29 \times 2 \cdot 05 21 \cdot 8 2 \cdot 5 26 \cdot 8 29 \times 2 \cdot 05 30 \cdot 9 2 \cdot 5 35 \cdot 9 2 \cdot 5 40 \cdot 9 44 \cdot 9 43 \times 1 \cdot 0 48 \cdot 9 52 \cdot 9 10400 20 \times 104000 20 \times 1040$	$120 \ 19 \times 2 \cdot 83 \ 14 \cdot 2 \ 2 \cdot 5 \ 19 \cdot 2 \ 27 \times 2 \cdot 4 \ 24 \cdot 0 \ 2 \cdot 5 \ 29 \cdot 0 \ 27 \times 2 \cdot 4 \ 33 \cdot 8 \ 2 \cdot 5 \ 38 \cdot 8 \ 2 \cdot 6 \ 44 \cdot 0 \ 48 \cdot 0 \ 55 \times 1 \cdot 1 \ 52 \cdot 4 \ 56 \cdot 4 \ 11800$	$150 \ 19 \times 3 \cdot 17 \ 15 \cdot 9 \ 2 \cdot 5 \ 20 \cdot 9 \ 27 \times 2 \cdot 66 \ 26 \cdot 2 \ 2 \cdot 5 \ 31 \cdot 2 \ 27 \times 2 \cdot 66 \ 36 \cdot 5 \ 2 \cdot 5 \ 41 \cdot 5 \ 2 \cdot 7 \ 46 \cdot 9 \ 50 \cdot 9 \ 55 \times 1 \cdot 1 \ 55 \cdot 3 \ 59 \cdot 3 \ 13600$	$185 \ 19 \times 3 \cdot 52 \ 17 \cdot 6 \ 2 \cdot 5 \ 22 \cdot 6 \ 25 \times 3 \cdot 07 \ 28 \cdot 7 \ 25 \times 3 \cdot 7 \ 25 \times 3 \cdot 07 \ 89 \cdot 8 \ 2 \cdot 5 \ 44 \cdot 8 \ 2 \cdot 8 \ 50 \cdot 4 \ 54 \cdot 4 \ 55 \times 1 \cdot 1 \ 58 \cdot 8 \ 62 \cdot 8 \ 15400$	210 19×3·75 18·8 2·5 23·8 26×3·2	$240\ 19 \times 4 \cdot 01\ 20 \cdot 1\ 2 \cdot 5\ 25 \cdot 1\ 23 \times 3 \cdot 65\ 32 \cdot 4\ 2 \cdot 5\ 37 \cdot 4\ 23 \times 3 \cdot 65\ 44 \cdot 7\ 2 \cdot 5\ 49 \cdot 7\ 3 \cdot 0\ 55 \cdot 7\ 59 \cdot 7\ 55 \times 1 \cdot 1\ 64 \cdot 1\ 68 \cdot 1\ 18000$	$310\ 37 \times 3\cdot 27\ 22\cdot 9\ 2\cdot 5\ 27\cdot 9\ 24 \times 4\cdot 05\ 36\cdot 0\ 2\cdot 5\ 41\cdot 0\ 24 \times 4\cdot 05\ 49\cdot 1\ 2\cdot 5\ 54\cdot 1\ 3\cdot 0\ 60\cdot 1\ 64\cdot 1\ 55 \times 1\cdot 1\ 68\cdot 5\ 72\cdot 5\ 20700$
eting ate	Thick- ness over	9.1	10.1	11.4	12.7	14.2	15.9	17.7	19.2	20.9	22.6	23.8	25.1	27.9
Insulating Jute	Thick-	2.5	2.5	2.2	2.5	2.5	2.5	0.5	2.5	2.5	2.5	2.5	2.5	2.5
	Diam.		5.1				10.9	12.7	14.2	15.9	17.6	18.8	20.1	22.9
Inner Conductor	No. and Diam. Diam. over	10 7×1·35	16 7×1·71	7×2·13	35 19×1·53	50 19×1·83	19×2·17	19×2·53	19×2·83	19×3·17	19×3·52	19×3·75	19×4·01	37×3·27
rotonbu "Totonbu "	B & Area	10	16	25	35	20	20	95	120	150	185	210	240	310

Table No. 189.—Details of Telegraph Cable. Conductor, 1.5 mm. Diam., Insulated with Two Layers of Impregnated Jute Yarn. Electrostatic Capacity = 0.38 microfarads per mile.

		1			
Number	Diam. over	i in	hickness mm.	Segmental Strip A	krmour
of Cores	Laid up Cores, mm.	For Plain Lead Cable	For Armoured Cable	Dimensions in mm.	Number of Strips
4	7.2	1.6	1.5	4.0×3.4×1.4	12
7	9.0	1.7	1.6	4·0×3·4×1·4	13
14	13.2	1.8	1.7	4.9×4.3×1.7	13
28	19.2	2.0	2.0	4.9×4.3×1.7	18
56	26.1	2.5	2.4	4.9×4.3×1.7	23
112	37.2	3.0	2.8	6·2×5·0×1·7	24
					1

Table No. 190.—Details of Braided Rubber Cables 300 and 600 Megohm Grade. (Dimensions given in mm.; weights in kilog. per km.; prices in shillings per km.)

		,								<u>.</u>							10						5		
	Braid	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.5	20.00	83 TO	3,5	3.1	3.1	3.1	3.1	2.3	3.1	3.1	3.1	3,1	3.5	2.3	3.5	6.0
Wages	Rubber Cover- ing	5.60	5.70	5.80	00.9	6.25	6.40	2.00	8.25	8.35	8.50	8.75	5.80	00.9	6.25	8.25	8.60	6.40	6.40	6.50	8.30	8.50	8.75	00.6	00.11
	Strand- ing and Wind- ing	0.50	0.20	0.20	0.5	0.5	0.5	0.2	0.5	0.5	0.5	0.5	5.0	2.0	2.0	5.0	2.0	2.35	2.30	2.25	2.20	2.15	2.20	2.30	0.40
Weight	Braiding Com-	4.8	4.9	5.5	5.3	5.5	5.8	8.4	6.8	10.3	6.6	10.3	5.0	5.5	5.4	8.4	10.3	5.5	5.6	5.8	8.7	9.1	10.3	6.6	11.0
	Weight	: ::	3.2	3,2	3.6	အ	4.0	2.8	6.5	တ္	7.1	7.4	ಯ ಯ	3,9	3.7	تن 00	00 00	က	6.6	4.0	5.3	6.3	တ	7.1	0.0
Braiding	Diam.	4.3	4.4	4.6	4.8	5.0	5.5	0.9	6.3	9.9	2.0	7.3	4.5	4.7	4.9	0.9	9.9	5.0	5.1	5.2	6.1	6.4	2.9	7.0	0.7
щ	Weight Material	cotton	3.3	: ::		: ::	: :			,			: :			: :	: :		: :	: :	: :	:	: :	:	:
Prepared Tape	Weight	2.4	2.5	5.6	2.8	3.0	3.1	3.5	3.7	9.9	4.3	4.5	5.6	2.7	5.3	ယ က	3.9	3.0	3°.1	3.1	3,2	30	4.0	4.3	, r
Prep Ta	Diam.	3.0 5.0	33	ಯ	9		4	4	4	50	70	10	9	60	ಯ	4	10	4	4.1	4.2	4.7	5.0	5.3	5.6	B. E
Weight of Rubber	Com- pound, sp. gr. = 1.6	7.04	7.4	 	ж ж	9.5	10.2	15.9	14.1	15.3	16.8	18.1	8.05	$\frac{x}{\infty}$	2.6	13.9	17.0	10.55	10.6	11.0	14.4	15.9	17.5	18.45	96.1
Weig Rul	Para	69.0	92.0	.88.0	1.0	1.13	1.26	1.38	1.57	1.76	2.01	2.5	0.85	0.94	1.07	1.54	1.76	1.07	61.1	1.25	1.45	1.63	1.82	2.07	0.45
	Area of Cross Section	5.09	5.37	5.94	6.50	7.07	7.64	9.43	10.37	11.31	12.567	13.51	5.85	6.49	7.14	10.18	12.37	2.66	7.81	8-14	10.44	11.59	12.77	13.6	10.74
Rubber	Diam.	2.7	8.8	3.0	3.5	3.4	3.6	4.0	4.3	4.6	4.95	5.25	2.0	3,1	30 30 30	4.0	4.6	3.4	9 5	9.6	4.1	4.4	4.7	5.0	20.2
	Thick- ness	6.0	6.0	6.0	6.0	6.0	6.0	1.0	1.0	1.0	1.0	1.0	6.0	6.0	6.0	1.0	1.0	6.0	6.0	6.0	1.0	1.0	1.0	1.0	-
я́	Strand 7	0.914	1.05	1.22	1.42	1.62		5		5.64	2.95	3.25	1.09	1.31			C3			1.83		2.44		3.06	2.66
Diam	Single	0.914	$\vec{\vdash}$	1.219	_	$\overline{}$		2			2.946	ů	0	0	0	0.914	-	Ö		Ö	0		0	1.05	1.99
ctor		99.0	0.85	1.17	1.58	5.09				5.47	6.84	∞ 30	9.0	88.0	1.19	1.97	3.5	1.42	1.72	2.05	2.78	3.63	4.59	5.72	8.18
Conductor	Strand, Area, L.S.W.G. sq. mm.	1/20	1/19	1/18	1/17	1/16	1/15	1/14	1/13	1/12	1/11	1/10	3/25	3/23	3/22	3/20	3/18	7/25	7/24	7/23	7/22	7/21	7/20	7/19	4/18

TABLE NO. 199. - DETAILS OF BRAIDED RUBBER CABLES 300 AND 600 MEGOHM GRADE-continued.

	Braid-																					36.0	37.0	40.0	45.0
Wages	Rubber Cover- ing	12.00	15.00	19.00	22.0	96.0	30.0	12.0	0.91	24.0	0.72	30.0	47.0	62.0	0.99	82.0	24.0	25.0	33.0	0.80	0.99	82.0	0.96	0.03	142.0
	Strand- ing and Wind- ing		2.50					_	20	_	90		0.0	0.9	0.8	0.11			13.0			13.0	13.3	0.71	0.12
Weight	Braiding Com- pound	12.2	13.6	14.7	9.61	37-37	40 40	13.1	14.0	9.61	37-37	40-40	45-45	48 48	53-53	59 59	Ŧ::	36	42	47	52	200	63	2	20
NO.	Weight	9.5	10.3	11.3	15.7	46.0	50.0	6.6	10.7	15.7	46.0														0.26
Braiding	Diam.		9.6																			0	0	6.72	00
	Material	Cotton	33	2.5	,,	Jute	33	Cotton	33	23	Jute	33	23	33	"	33	2.0	3.3	33	**				: :	
Prepared Tape	Weight	5.6	8.9	2.0	1.1	9.8	9.6	0.9	9.9	2.2		8.6	11.1	12.1	13.1	15.5	7.9	00 00	10.3	11.8	13.4	6.41	9.91	18.9	21.2
Pre	Diam.	7.3	8.5	0.6	6.6	11.1	12.3	-1.00	:: :::	6.6	11.3	12.6	14.1	15.4	17.4	9.61	10.5	10.7	13.1	15.0	17.0	19.0	21.0	23.9	8.97
Weight of Rubber	Com- pound, sp. gr.	33	43.3	52	64.	85.0	101.1	37.7	45.3	9.79	82.7	102.2	129.2	155.9	199.1	754-1	64.4	65.7	9.801				0.883	1.92	73.8
Wei	Para	2.83	3.21	3.58	3.86	4.52	5.03	3.05	9	50	60.4	5.22	5.90	6.47	7.42	8.42	4.14	4.59	5.47]	6.34]	7 · 22 1	8.172	9.052	10.373	11.704
	Area of Cross Section	23.64	30.59	36.45	44.55	55.81	68.3	9.97	31.66	43.00	56.27	69.30	86.65	03.93	.81-85	67.23	44.39	45.68	73.36	95.89	24.26	54.20		244 - 83	07.83
Rubber	Diam.	6.65	9.2	8.4	٠ ٠ ٠	10.2	11.7	7.5	7.9	00 00	10.1	12.0	13.5	14.8	16.8 1	19.0	9.6	10.1	12.2	14.4	16.4 1	18.4	7	23.3 2	26.2 3
	Thick- ness	1.2	1.35	1.45	9.1	1.75	1.9	1:3	1.4	9.1	1.8	1.95	2.15	2.35	5.6	5.3	9.1	I . 5	5.0	2.25	2.55	x - x	3.1	3.5	ص ص
Diam.	Strand	4.26	88. 1	5.49	6.1	2.0	6.7	4.57	2.08	6.1	7.1	8.15	9.15	10.1	11.6	13.5	6.4	7.1+	8.24	9.84	11.3	12.8	14.5	8.91	18.4
Di	Single Wire	1.42	1.625	30	3.03	.336	40.	-914	.03	. 55	.45	.63		ි ල	.34	.64	·91 +	.03	. 55	.42	659	22 25	 (9)	33	
Conductor	Area, sq. mm.	11.09	14.6	18.4	25.66	30.1	38.31	12.47	15.20	22.20	36.10	39.65	49.98	61.5	81.7	0.4.0	24.26	30.231	43.251	58.6	77.2 1	97.3 1	19.752	$159 \cdot 122$	02.5 ,2
Cond	Strand, L.S.W.G.	7/17	91/2	7/15	7/14	7/13	7/12	9/20	9/19	9/18	19/17	9/16	9/15	9/14	9/13	1/12 1	1/20	7/19	2/18	/17	91/	01/	//14 1	/13 1	/12 21

The Jute Braided Cables are first run through Stockholm tar and then compounded; the first weight given is the weight of Stockholm tar, the second the weight of compound.

Table No. 191.—Details of Braided Rubber Cables 2500 Megorm Grade. (Dimensions given in mm.; weights in kilog. per km.)

i	Braid-	3.1		3,1	3.1	3.1	3. I	3°.1	30 50 50	2.35	3 5	3.0	3.1	3.1	3,1	3,1	2.35	ಎ	2.30	3.1	3.1	60 10	2.35	3.5	6.5
Wages, Shillings per km	Rubber Cover- ing	5.70	5.80	6.10	6.40	08.9	7.30	8.30	8.60	8.80	0.07	11.0	0.9	6.4	6.5	7.3	8.4	6.4	8.9	6.9	7.5	& &	9.8	6.8	10.5
	Strand- ing and Wind- ing	0.0	0.2	0.0	0.2	0.0	0.5	0.0	0.5	0.5	0.2	0.5	2.0	5.0	2.0	2.0	2.0	2.35	2.30	2.25	2.50	2.15	2.20	2.30	2.40
Weight	Braiding Com- pound	5.0	5.1	5.3	5.5	2.8	0.9	8.4	6.8	10.3	6.6	10.6	5.3	7.9	5.6	8.4	10.3	5.6	80	0.9	8:1	9.1	10.3	10.0	11.5
	Weight	60	3.4	9.8	3.8	4.0	4.5	2.8	6.3	∷ ∞	7.1	7.7	30 50	3.7	3.0	5. So	တ္	3.0	6.7	4.5	5.9	6.3	30	7.1	so TO
Braiding	Diam.	4.5	4.6	4.8	$\tilde{5} \cdot 0$	5.2	5.4	0.9	6.3	9.9	2.0	7.4	4.7	4.9	5.1	0.9	9.9	5.1	5.3	5.4	6.1	6.4	2.9	7.1	8.0
H	Weight Material	Cotton	2.9	33	33	3.5				: 6		33				33		33		: :	: :	: ;	: :	: :	, ,,
Prepared Tape	Weight	2.6	2.7	8.8	3.0	3.1	3,3	3,5	3.7	3.0	4.2	9.7	z.	2.9	3.0	3,4	3.3	3.0	3.5	30	3.4	90	4.0	4.3	5.0
Prep Ta	Diam.	3.5	3.6	00 00	4.0	4.5	4.4	4.6	6.4	5.5	9.0	0.9	3.7	3.9	4.1	4.6	5.5	1.1	4.3	4.4	4.7	0.9	50	5.4	9.9
Weight of Rubber	Com- pound, sp. gr. = 1.5	6.7	00	9.4	10.6	11.9	18.3	14.7	17.1	19.65	23.43	27 - 75	8.95	8.6	10.7	13.0	15.9	10.7	11.6	12.1	13.5	14.94	16.4	18:51	25.8
Weig	Para	69.0	92.0	88.0	1.0	1.13	1.26	1.38	1.57	1.76	2.01	2.3	0.85	0.94	1.07	1.54	1.76	1.07	1 · 19	1.25	1.45	1.63	1.82	2.07	2-45
-	Area of Cross Section	5.97	6.28	7.16	80.8	9.02	10.08	11.19	12.95	14.86	17.63	20.1	62.9	7.49	8.21	10.18	12.37	8.3	8.94	9.3	10.43	11.59	19.77	14 · 39	19.67
Rubber	Diam.	2.9	3.0	3.5	3.4	3.6	က	4.0	4.3	4.6	5.0	5.4	3.1	60 60	3.5	4.0	4.6	30	3.7	900	4	4.4	4.7	170	0.9
	ľhick- ness	1.0	0.1	1.0	0.1	1.0	1.0	1.0	1.0	1.0	1.0	1.05	1.0	1.0	1.0	1.0	1.0	1.0	0.	0.1	0.1	0.	9	÷	1.15
m.	Strand	0.914	1.05	1.22	1.42	1.62	1.83	2.03	2.34	2.64	2.95	3.25		1.31	-	<i>-</i>	3/	-	-	-	13	ت ا	13	3.05	39.66
Diam.	Single Wire	0.914	1.016	1.219	1.422	1.626	1.828	2.032	2.336	2.641	2.946	3.251	0.508	609.0	0.711	0.914	1.219	0.508	0.558	609.0	0.711	0.813	0.914	1.09	1.22
ctor	Area, sq. mm.	99.0	0.85	1.17	1.58	2.09																		120	8.18
Conductor	Strand, L.S.W.G.	1/20	1/19	1/18	1/17	1/16	1/15	1/14	1/13	1/12	1/11	1/10	3/25	3/23	3/22	3/20	3/18	7/25	7/24	7/23	66/1	1/6/1	1/20	2/10	7/18

Table No. 191. - Details of Braided Rubber Cables 2500 Megohm Grade-continued. (Dimensions given in mm.: weights in bile

km.	Braid-	2 2 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	28.0 34.0 34.0 37.0 42.0
Wages, Shillings per k	Rubber Cover- ing	12.0 14.0 16.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	29.0 45.0 55.0 62.0 68.0 85.0
Shill	Strand- ing and Wind- ing	имими по по по то	18.0 17.0 17.0
Weight	Braiding Com-	11. 16.55 17	41 41 45 45 50 50 55 55 59 59 67 67 72–72
69	Weight	8 6 7 7 4 8 8 6 7 7 4 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	
er km.)	Diam.	8 6 0 1 1 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	222.0 222.0 223.7 26.3 28.9
Prepared Braiding	Weight Material	Cotton Jute Cotton Jute "" Jute "" "" "" "" "" "" ""	
Prepared Tape	Weight	$\begin{array}{c} \neg \neg$	2.11.3 4.241 5.71 10.75 10.77
Pre	Diam.	7x 2 2 2 1 1 7 x 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	14.4 16.1 18.0 19.7 22.3 24.9
Weight of Rubber	Com- pound, sp. gr. = 1.5	25.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	
Wei	Para	2 : : : : : : : : : : : : : : : : : : :	
ubber Weight of Rubber	Area of Cross Section	24 · 7 28 · 4 · 6 29 · 6 · 6 20 · 70 · 6 20 · 70 · 6 20 · 70 · 70 · 70 · 70 · 70 · 70 · 70 ·	82.61 101.69 125.89 148.72 188.34 1232.47
Rubber	Diam.	800800011 800800011 800800011 800800000000	
	Thick- ness	2444557744557744557745577557575757575757	
j	Strand	2 4 4 7 5 4 4 4 7 9 6 4 4 7 9 6 4 4 7 9 6 7 4 4 7 9 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Diam.	Single		1.42 0 1.63 11 1.83 12 2.03 14 2.64 18
uctor		11.091.42 14.6 J.625 18.6 J.625 22.662.03 38.112.64 12.47 0.914 15.5 J.02 22.2 J.22 22.2 J.22 39.1 J.42 39.65,1.63 49.98 I.3 61.5 2.03 104.0 2.64 30.23,1.02	58.6 1.42 77.2 1.63 97.3 1.83 119.752.03 159.122.33 202.5 2.64
Conductor	o CH	7/15 7/15 7/15 7/15 19/20 19/19 19/16 19/14 19/14 19/15 19/15 19/15 19/15 19/15 19/15	37/17 37/16 37/15 37/14 37/14 37/12

Table No. 192.—Details of Rubber (Okonite) Cores for 500 Volts Working Pressure. (Rubber applied by Forcing Machine.)

Dimensions given in mm.

Area of Con-	Number and Diam.	Diam.	Ru	bber	Area of Rubber	Weight of Rubber in kilog.	Wages, Shillings per km.			
ductor, sq. mm.	of Wires	Con- ductor	Thick- ness	Diam. over Rubber	Section, sq. mm.	per km., sp. gr. = 1.6	Con- ductor	Rubber		
1.0	1×1·13	1.1	1.0	3.1	6.59	10.5	0.5	6.75		
1.5	1×1·4	1.4	1.0	3.4	7.54	12.1	0.5	7.25		
2.5	1×1·8	1.8	1.0	3.8	8.79	14.1	0.5	8.25		
4.0	1×2·25	2.3	1.0	4.3	10.26	16.4	0.5	9 · 25		
6.0	1×2·76	2.8	1.1	5.0	13.47	21.6	0.5	11:00		
10.0	1×3·57	3.6	1.2	6.0	18.09	28.9	0.5	15.00		
1.0	7×0·43	1.3	1.0	3.3	7.79	12.8	2.35	8.25		
1.5	7×0·52	1.6	1.0	3.6	8.57	13.7	2.25	8.50		
2.5	7×0.67	2.0	1.0	4.0	10.05	16.1	2.15	8.75		
4.0	7×0·85	2.6	1.05	4.7	13.10	21.0	2.00	12:00		
6.0	7×1·05	3.2	1.15	5.6	18.19	29.1	2.30	11.00		
10.0	7×1·35	4.1	1.25	6.6	23.65	37.8	2.50	14.50		
16.0	7×1·71	5.1	1.35	7.8	31.44	50.3	2:60	18.50		
25.0	7×2·13	6.3	1.5	9.3	42.99	68.8	2.80	25.00		
35	19×1·53	7.7	1.7	11.1	59.51	$95 \cdot 2$	3.90	30.00		
50	19×1·83	9.2	1.9	13.0	76.23	122.0	5.60	45.00		
70	19×2·17	10.8	2.05	14.9	96.51	154.4	7.80	57.5		
95	19×2·53	12.7	2.2	17.1	121.99	195.1	10.50	72.0		
120	37×2·03	14.2	2.35	18.9	142.77	228.4	13.30	85.0		
150	37×2·27	15.9	2.5	20.9	170.33	272.5	16.70	98.0		
185	37×2·52	17.6	2.6	22.8	196.63	314:6	20:60	115		
210	61×2·09	.18.8	2.7	24.2	216:20	345.8	23:40	• 125		
240	61×2·24	20.2	2.85	25.9	244.84	391.7	26.70	140		
280	61×2·42	21.8	2.95	27.7	274 · 17	438.4	31.10	160		
310	91×2·08	22.9	3.05	29.0	289 · 84	463.7	41.30	165		
355	91×2·23	24.5	3.15	30.8	321.77	514.7	47:30	170		
400	$91 \times 2 \cdot 37$	26.1	3.25	32.6	353.18	564.8	53.30	180		
500	127×2·26	29.4	3.5	36.4	429.7	687 · 2	66.60	195		
								2 c		

Table No. 193.—Details of Rubber (Okonite) Cores for 1000 Volts Working Pressure. (Rubber applied by Forcing Machine.)

Dimensions given in mm.

Area of Con- ductor,	Number and Diam.	Diam. over Con-	Ru	bber	Area of Rubber	Weight of Rubber in kilog.		ages, s per km.
sq. mm.	of Wires	ductor	Thick- ness	Diam. over Rubber	Section, sq. mm.	per km. , sp. gr. = 1.6	Con- ductor	Rubber
1.0	1×1·13	1.1	1.3	3.7	9.80	15.7	0.50	6.75
1.5	1×1·4	1.4	1.3	4.0	11.02	17.6	0.50	7.25
2.5	1×1·8	1.8	1.3	4.4	12.66	20.3	0.50	8.25
4.0	$1 \times 2 \cdot 25$	2.3	1.3	4.9	14.70	23.5	0.50	9.25
6.0	1×2·76	2.8	1.4	5.6	18 · 47	29.5	0.50	11.0
10.0	$1 \times 3 \cdot 57$	3.6	1.5	6.6	24.04	38.5	0.50	15.0
1.0	7×0·43	1.3	1.3	3.9	10.89	17.4	2.35	8.25
1.5	7×0·52	1.6	1.3	4.2	12.24	19.6	2.25	8.50
2.5	7×0.67	2.0	1.3	4.6	14.11	22.6	2.15	8.75
4.0	7×0.85	2.6	1.35	5.3	17.82	28.5	2.00	12.0
6.0	7×1·05	3.2	1.45	6.1	22.79	36.5	2.30	11.0
10	7×1·35	4.1	1.55	7.2	30.15	48.2	2.50	14.5
16	7×1·71	5.1	1.65	8.4	39.08	62.5	2.60	18.5
25	7×2·13	6.3	1.8	9.9	$52 \cdot 04$	83.2	2.80	25.0
35	19×1·53	7.7	2.0	11.7	70.26	112.4	3.90	30.0
50	19×1·83	9.2	2.2	13.6	88.77	142.0	5.60	45.0
70	$19 \times 2 \cdot 17$	10.8	2.35	15.5	110.83	177.3	7.80	57:5
95	19×2·53	12.7	2.5	17.7	138.38	221.4	10.5	72.0
120	37×2·03	14.2	2.65	19.5	160 · 87	257.3	13.3	85.0
150	$37 \times 2 \cdot 27$	15.9	2.8	21.5	190.31	304.4	16.7	98:0
185	37×2.52	17.6	2.9	23.4	218.40	349 · 4	20.6	115
210	•61×2·09	18.8	3.0	24.8	238.78	382.0	23.4	125
240	$61 \times 2 \cdot 24$	20.2	3.15	26.5	269 - 54	431.2	26.7	140
280	61×2·42	21.8	3.25	28.3	300.56	480.8	31.1	160
310	91×2·08	22.9	3.35	29.6	317.45	508.0	41.3	165
355	$91 \times 2 \cdot 23$	24.5	3.45	31.4	350 · 11	560.1	47.3	170
400	91×2·37	26 · 1	3.55	33.2	384.19	614.6	53.3	180
500	127×2·26	29.4	3.8	37.0	464 · 22	742.3	66.6	195
							000	200

Table No. 194.—Constructional Data for Single Conductor, Rubber-covered Cable for 1000 to 2000 Volts Working Pressure.

(Weights in kilog, per km.)

	(Weights in knog, per km.)												
	Conductor			Rubb	oer	We	ight of F	lubber	Weight	Sh	Vages, tillings or km.		
Area sq. mm	of Wires	Diam. over in mm	Dess	Diam over,		Para	Compound for sp. gr.=1.6	Compound for sp. gr. =1.6	Pre-	Wind ing an Strand ing	d Rubber		
1.	0 1×1·13	1.1	1.3	3.7	9.80	0.8	13.5	14.4	3.2	0.5	6.75		
1.	5 1×1·4	1.4	1.3	4.0	11.02	1.0	15.0	16.0	3.4	0.5	7.25		
2.	5 1×1·8	1.8	1.3	4.4	12.66	1.3	17.0	18.2	3.8	0.5	8.25		
4.	$0 1 \times 2 \cdot 25$	2.25	1.3	4.9	14.70	1.6	19:65	21.0	4.2	0.5	9.25		
6.		2.76	1.4	5.6	18.47	1.9	24.9	26.5	4.7	0.5	11.00		
10.	$0 1 \times 3 \cdot 57$	3.57	1-5	6.6	24.01	2.4	32.5	34.6	6.1	0.5	15.00		
1.		1.3	1.3	3.9	10.89	0.9	15.0	16.0	3.4	2.3	8 · 25		
1.		1.6	1.3	4.2	12.24	1.1	16.7	17.8	3.4	2.28	8.50		
2.		2.0	1.3	4.6	14:11	1.4	19.1	20.3	3.9	2.13	8.75		
4.		2.6	1.35	5.3	17.82	1.8	24.0	25.6	4.5	2.00	12.0		
6.0	$0 7 \times 1.05$	3.2	1.45	6.1	22.79	2.1	31.0	33 · 1	5.1	2.30	11.0		
10	7×1·35	4.1	1.55	7.2	30.15	2.7	41.2	43.9	6.0	2.5	14.5		
16	7×1·71	2.1	1.65	8.4	39.08	3.3	53.7	57.2	7.0	2.6	18.5		
25	7×2·13	6.4	1.8	10.0	52.81	4.1	73 · 1	77 9	8.2	2.8	25.0		
35	19×1·53	7.7	2.0	11.7	68.00	5:0	91.5	100.8	9.6	3.9	30.0		
50	19×1·83	9.2	2.5	13.6	88.77	5.9	124 · 3	132.6	11.1	5.6	45.0		
70	19×2·17	10.9	2:35	15.6	111.82	7:2	156:9	167 - 41	12.7	7.8	57.5		
95	19×2·53	12.7	2.5	17.7	138.38	8.10	195.4	208.4	14.4	10.5	72.0		
120	37×2·03	14.2	2.65	19.5	160.87	9:02	227 · 8	243.0	15.8	13.3	85.0		
150	37×2·27	15.9	2.8	21.5	190.311	0.12	270.3	288:3	17.4	16.7	98.0		
185	37×2.52	17.6	2.9	23.4	218:40 1	1.2	310.8	331.5	19.0	20.6	115		
210	61×2·09	18.8	3.0	24.8	238 · 78 1	1.98	40.3	863 · 0	20.1	23.4	125		
240	61×2·24	20.2	3.15	26.5	$269 \cdot 54 1$	2.83	85.0	410·7	21.4	26.7	140		
280	61×2.42	21.8	3.25	28.3	300 · 56 1	3.84	30.1	158.8	22.9	31 · 1	160		
310	91×2·08	22.9	3.35	29.6	317 • 45 1	4.54	54.4	184.7	23.9	41.3	165		
3 5 5	91×2·23 2	24.5	3.45	31.4	350.11	5.55	01.9	535 • 4	25.4	47.3	170		
4 00	$91 \times 2 \cdot 37$	26 · 1	3.55	33 · 2	$384 \cdot 19^{1}$	6.55	51.5	588·3	26.8	53 · 3	180		
500	$127 \times 2 \cdot 26$	29.4	3.8	37.0	164 · 22 1	8.66	68.4 7	13.0	29.8	36.6	195		

Table No. 195.—Details of Braided Rubber Cables for 1000 to 2000 Volts Working Pressure. (Dimensions given in mm.; weights in kilog, per km.)

ji.	Braid- ing		3.5
Wages, shillings per km.	Rubber Cover- ing	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8.75
shill	Wind- ing and Strand ing	2	
ht of ound	Cable Com- pound	12.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11.45
Weight of Compound	Stock- bolm Tar	:::::::::::::::::::::::::::::::::::::::	: :
	Wght.	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.45
Braiding	Diam.	VV000000044444000044-0008 VV0000044-0008 VV00000000000000000000000000000000000	7.3
m m	Ma- terial	Cotton	2 2 2
Prepared Tape	Wgbt.	44400000000000000000000000000000000000	5.1
Pre	Dia.	$\begin{array}{c} \circ \circ$	6.4
ht of	Com- pound, sp. gr.	027444 02744 02744 02744 02	27.3
Weight of Rubber	Para	2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.45
L	Area of Cross Section, sq. mm.	11. 15. 15. 15. 15. 15. 15. 15. 15. 15.	20.63
Rubber	Diam.	$ \begin{array}{c} \varpi \varpi 4 4 4 \omega \omega \omega \omega \omega \omega \omega$	5.3
	Thick-	11.15 11.15 11.10 11.10 11.00	1.20
neter	Strand	2.2.2.2.2.2.2.2.2.3.4.4.2.2.3.3.4.4.3.3.3.3	3.06
Diameter	Single Wire	3 - 251 2 - 646 2 - 646 2 - 634 1 - 6256 1 - 6256 1 - 6256 0 - 914 0 - 914 0 - 508 1 - 625 0 - 508 1 - 625 1 -	1.02
Conductor	Area, sq. mm.	6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8.18
Cond	Strand L.S.W.G.	1,110 1,111 1,112 1,113 1,115 1,115 1,120	

Table No. 195.—Details of Braided Rubber Cables for 1000 to 2000 Volts Working Pressure,—continued. (Dimensions given in mm.: weights in kilog. per km.)

km.	Braid- ing		3.5		3.1	3.1	3.1	35.0	34.0	32.0	30.08	28.0	25.0	2.0	2.0	0.7	40.0	98.0	36.0	35.0	32.0
Wages, . shillings per km.	Rubber Cover- ing		8.50	8.25	8.00	4.60	7.40	65.0							15.0			0.08	0.89		30.0
shill shill	Wind- ing and Strand- ing	2.2			2.20			11.0	0.8	6.5	5.6	4.0	3.9		3.7		21.0	17.0	13.3	13.0	12.8
Weight of Compound	Cable Com-	9.75	9.50	8.9	8.65	5.75	5.5	56	53	48	44	40	37	15.85	14.00	13.15	71	-4			
Weig Comp	Stock- holm Tar	:	:		:	:		99	53	48	44	40	37	:	:		71	64	59	55	50
	Wght.	06.9	6.40	6.15	5.90	3.95	3.80	70.07	0.99	0.09	54.0	50.0	46.0	12.3	10.7	9.95	0.88	0.08	73.0	0.89	62.0
Braiding	Diam.	6.9	6.5	6.3	6.1	5.5	5.0	22.3	20.2					11.2	6.6				23.5	21.8	20.1
A	Ma- terial	Cotton	:	: :	33	,		Jute	2	÷	33			Cotton	33	: :	۵			: :	32
Prepared Tape	Wght.	4.2	3.50	3.7	 	33.1		14.4	13.0	$11 \cdot 6$	9.01	9.6	9.8	9.2	9.9	6.1	19.1	17.1	15.4	14.0	12.7
Prep	Dia.				4	7.5	0.7	?? 8:	16.5	14·s	05.518.6	87.812.3	Π	9.8	8.5	7.9	24.1	21.7	19.5	17.8	16.1
Weight of Rubber	Com- pound, sp. gr. = 1.5		15.4		13.	_	6.6	185.0	152.0	125.714.8	105.5			56.		37.1	$70.286 \cdot 1$	10.37 236.7 21.7	05 200 - 7 19 - 5	168.4	141.7
Weight (Rubber	Para	1.82	1.70	1.58	1.45	1.25	1.07	8.45	7.421	6.47	5.901	5.22	4.59	3.95	3.33	3.05	11.70	10.37	9.05	17	7.55
£.	Area of Cross Section,	14.27	11.98	11.20	10.44	8.14	2.66	129.76	108.73	20.52	76.23	63.45	51.30	41.64	31.66	27.73	202-44	168.17	142.85	120.45	101-69
Rubber	Diam.	6.4		4.3	4.1	9.2		17.7	15.9	14.5	13.0	11.7	10.4	9.5	5.7	3:00	23.5	21.1	18.9	17.2	15.5
	Thick-	1.10	1.00	1.0	1.0	S. 0	6.0	2.52	2.15	2.02	ტ. -	os o	1.65	1.55	1.40					2.20	
eter	Strand		2.51	2.58	2.13	χ	1.54	13.5	9.11	1.01	9.15	8.15	7.10	01.9	80.0	1.24	18.4	16.3	14.2	12.8	
Diameter	Single	0.914	0.838	0.762		0.609		1 9			1.83	979.1	1.422		1.05	0.914	7.64				1.626
uctor	Area, sq. mm.	40			20.00	CO.Z	74.7	104.0	7.18	C. TO	49.98	29.62	01.00 00.10	7.77	0.01	12.47	2.707	159.12	119.75	97.3	7.1.2
Conductor	Strand L.S.W G.	7/20	(ZOS / J	2/2/2	77/7	7/20/1	07/1	21/81	61/81	15/11	01/61	19/10	10/11	10/10	10/13	13/20	21/12	51/13	37/14	37/15	3//16

Table No. 196.—Constructional Data and Weights of Concentric, Rubber-Covered Cable for 2500 VOLTS WORKING PRESSURE.

(Dimensions given in mm. and Weights in kilog per km.; Prices in shillings per km.).

g _S	Rubber Saring		22	26	28	35	4.2	45	47	***	45	10	280	75	36	00	26	0.9	25	42	
Wages	Buibai'W bas Stranding	,		26																	
of Tape	figie''/ Prepared		*	3.6			2.1	12.4	13.1	[-]	6.1	13.0	14.4	16.2.	9.71	2.61	21.5		21.2		
Weight of Rubber	Com- pound, sp. gr. = 1.5		64.6	77.1	24.0	100.5	108.7	126.5	135.5	103.5	0.611	131.3	163.4	205.5	238.7	285.5	352-7	127.2	10	39.663	
	Para		4.6		5.6				7.8	6.4	6.9		00	0:	6.01	6.11	13.5	0	13.5	14.6:	
Area of Rubber	Cross Section, sq. mm.		47.69	56.47	61.97	7:3 . 20	79.18	91.62	91.86	75.40	08.98	92.76	117.76	146.93	170.04	202.25	248.62	299-79	213.53	281.02	
16	Diam. o		10.3	11.2		13.5	11.0	15.2	0.91	0.81	14.6		17.7	19.9	21.7	-1	9.97	::	26.2	9.87	
ckness .	idT IsibsH duH lo	1	<u>.</u>	81.7	_	_	_	÷	÷	30.	_	÷	0.7	31	22	2.2	2.7	2.9	2.7	2.8	
1970	Diam. c		-		òc i	G	-0	<u>:</u>	12.2	9	10.8		13.7	15.			21.2		20.8	23.0	
Outer	lo maidl seril		0.28		4		. 64	.74		99.	.64	· .	1.02	1.19	1 - 37	1.52	1.78	2.03	1 · 7:3	1.98	
Con	to oX		0.71	0 64	.0 24				0.33	0 49			389		:::	: ?:	 	131	35	30	
Wages	Rubber Suirering		11.				50.0				55.0	25.0	.87	85.0	46.0	98.0	80.08	0.88	72.0	85.0	
W	guibalW bas guibasats			25 1													0.01	0.1	0.91	0.07	
	ngisW boreqerT			10.1	0	0	-	·-	òc	9	- 1		Ġ	<u>:</u>	-				9.8	[0.g]	
Weight of Rubber	Conn- pound, Sp. gr.		31.4	37.6	Š1.	•	•	0.89		53.5			87.8	9.01			9.46	2:38.2	89.9	22.5]	
Weig	Para		1.83	2.08							30.00	3.96					·42 I	.45	· 24 I	-17,2	
Area of Rubber	Section, 8q. mm.			21.12	66.00	_		0.1	9.		X.	. 13	=======================================	93	80.86	966-0	7.167	7.238	33.827	6.508	
10	o .msiel dduH _ & _			0.91 9.91				-33	cn.	CV.	c.	B		20	00	·1 11			.71	·4,15	
	Radial Thi of Rub		9.							∞	:::	6	·0 11 ·	2	200	5.1	.717	.9 1	.7,16	.8.1	
1	Con-			3.061	3.661			5.49 I		57	8	_	7.1 2.	_	<u> </u>	_	9	27	11.3 2	00	_
Area	F.			5.72		50	9	4	99	47	50	2/1	30.1	65	86.	5	<u>~</u>	104.0 13	?7	97.3 112	_
Diam.	of each Wire		1.914	0.5	775	.42	.63	.83		1.914	-05	. 22	.45	- 63			-34			.83	_
tor,	Conduc L.S.W	,	7/20	7/191	7/181	7/17,1		7/151		19/20,0	19/19 1	19/18,1	19/17/1	19/161	$^{\prime}15$	/14	19/13.2		37/161	121/18	_

Table No. 197.—Constructional Data for Single Conductor, Rubber Insulated Cable for 3000 Volts Working Pressure, (Dimensions given in mm.; weights in kilog, per km.; prices in shillings per km.)

Weight of Conductor Rubber Weight Wages Rubber of Compound Weight Rubber of Pre-Wind- Rubber pared Tape Comwhen no ing and Cover-Section. Number Radial Area of Diam. Diam. pound, Pure used, Strand-ing and and Diam. Thick-('ross Para sa. sp. gr. sp. gr. of Wires Tapness Section mm. = 1.5 =1.5 ing ing 54 . 47 2 . 7 $7 \cdot 3$ 2.5 $7 \times 1.35 4.1$ 2.5 $9 \cdot 1$ 77.7 81.714.5 10 10.2 8.2 2.6 18.5 16 $7 \times 1.71 5.1$ 2.55 65:38 3.3 $93 \cdot 1$ $98 \cdot 1$ 2.6 4.1 113.8 119.9 9.3 2.8 25.0 25 $7 \times 2.13 - 6.4$ 79.9510.5 13.1 95.21 5.0 135.3 142.8 3.9 30.0 35 $19 \times 1.53 \ 7.7$ $2 \cdot 7$ 14.8 115.53 5.9 164.4 50 $19 \times 1.83 9.2$ 2.8 $173 \cdot 3$ 11.8 5.6 45.0 $19 \times 2 \cdot 17 \cdot 10 \cdot 8$ 2.9 $16 \cdot 7 | 139 \cdot 73 | 7 \cdot 0 | 199 \cdot 1$ 209:6 13:3 7.8 57.5 254.9 15.0 10.5 72.0 3.05 18.8 169.92 8.1 242.7 95 $|19 \times 2.53|12.7$ 20.5 192.28 9.1 274.8 288:4 16:4 13:3 86:0 120 $37 \times 2.03 \cdot 14.2$ 3:15 22 4 221 34 10 1 316 9 332.0 17.916.798.0 $150 \ 37 \times 2 \cdot 27 \ 15 \cdot 9$ 3.25

Table No. 198.—Constructional Data of With 0.8 mm. diameter Conductors insulated with

No.	Dia,	Diam. of Laid	Diam.	. over		ead eath	Weight of Cable.		ead eath	Dia. over Jute	_	Segmental Sheath
	Pair	up Pairs	Paper Tape	Diam.	Thick- ness	Dia. over	kilog. per km.	Thick- ness	Dia.	Serv-	No. of Strips	Dimensions
1	3.45	3.45	3.95	4.5	1.3	7.1	290					
2	3.45	6.9	7.4	7.9	1.3	10.5	460			• •		
4	3.45	9.0	9.5	10.0	1.4	12.8	630	1.3	12.6	13.6	6	4×3·4×1·4
5	3.45	9.3	9.8	10.3	1.4	13.1	660	1.4	13.1	14.1	6	4×3·4×1·4
7	3.45	9.8	10.3	10.8	1.5	13.8	750	1.4	13.6	14.6	7	4×3·4×1·4
10	3.45	12.4	12.9	13.4	1.7	16.8	1050	1.6	16.6	17.6	7	4.9×4.3×1.7
14	3.45	16.6	17.1	17:6	1.7	21.0	1360	1.6	20.8	21.8	7	4.9×4.3×1.7
20	3.45	17.3	17.8	18.3	2 · 0	22.3	1710	1.8	21.9	22 - 9	8	$4 \cdot 9 \times 4 \cdot 3 \times 1 \cdot 7$
28	3.45	21.0	21.5	22.0	2.0	26.0	2080	1.8	25.6	26.6	9	4·9×4·3×1·7
50	3.45	29.0	29.5	30.0	2.2	34.4	3170	2.0	34.0	35.0	11	4.9×4.3×1.7
56	3 45	29.6	30.1	30.6	2.2	35.0	3290	2.0	34.6	35.6	11	4·9×4·3×1·7
100	3.45	40.0	40.5	41.0	2.5	46.0	5140	2.2	45.4	46.4	15	4.9×4.3×1.7
112	3.45	42.6	43.1	43.6	2.5	48.6	5530	$2 \cdot 2$	48:0	49.0	12	6·2×5·0×1·7
150	3.45	49.7	50.2			56.3	7230		55.7		15	$6 \cdot 2 \times 5 \cdot 0 \times 1 \cdot 7$ $6 \cdot 2 \times 5 \cdot 0 \times 1 \cdot 7$
168	3.45	52.2	52.7	53.2	2.8	58.8	7700			59.2	15	$\begin{array}{c} 6 \cdot 2 \times 5 \cdot 0 \times 1 \cdot 7 \\ 6 \cdot 2 \times 5 \cdot 0 \times 1 \cdot 7 \end{array}$
200	3.45	56.6	57.1	57.6			8990			64.6	16	$6 \cdot 2 \times 5 \cdot 0 \times 1 \cdot 7$ $6 \cdot 2 \times 5 \cdot 0 \times 1 \cdot 7$
2 24	3.45	59.6	60.1	60.6	3.0	66.6	9610	3.0	66.6	67.6	16	6·2×5·0×1·7
250	3.45	63.5	64.0	64.5	3.0	70.5	10350	3.0	70.5	71.5	18	6·2×5·0×1·7

PAPER AND AIR SPACE TELEPHONE CABLES. two layers of Paper. (Dimensions in mm.)

Strips	Weight of Open	Lead Sheath	Dia.	s	egmental Sheath Str	rips	Weight of Closed	over	Weight of Armoured	
Dia. over	Armoured Cable, kilog. per km.	Thick-	Jute Serv-	No. of Strips	Dimensions	Dia.	Armoured Cable, kilog. per km.		and Served Cable, kilog. per km.	No. of Pairs
								-		
**	**	1.2 6.	9 7.9	7	4×3·4×1·4	10.7	620	13.9	680	1
••		1.2 10:	311.3	10	$4 \times 3 \cdot 4 \times 1 \cdot 4$	14.1	930	17.3	1020	2
16.4	930	1.3 12.0	6 13 · 6	12	4×3·4×1·4	16.4	1180	19.6	1280	4
16.9	1015	1.3 12.9	9 13 • 9	12	4×3·4×1·4	16.7	1220	19.9	1320	5
17.4	1100	1.4.70.7	,	4.0						
21.0		1.4 13.6	,	13	4×3·4×1·4		1350	20.6	1450	7
	1560	1.2 16.4		12	$4.9\times4.3\times1.7$		1810	24.0	1940	10
25.2	1870	1.5 20.6		14	4.9×4.3×1.7	25.0	2230	28.2	2380	14
26.3	2220	1.7 21.7	22.7	15	$4.9 \times 4.3 \times 1.7$	26.1	2580	59.3	2730	20
30.0	2630	1.7 25.4	26.4	17	4.9×4.3×1.7	29.8	3040	33·0	3210	28
38.4	3930	1.8 33.6	34.6	22	4.9×4.3×1.7	38.0	4360	41.2	4590	50
39.0	3970	1.8 34.2	35.2	22	4.9×4.3×1.7	38.6		41.8	4630	56
49.8	5920	2.0 45.0	46.0	30	4·9×4·3×1·7	1		52.6	6830	100
					- 0,,2 0,,2 1	10 1	0000	,,,,	0000	100
52.4	6240	2.0 47.6	48.6	24	$6\cdot2\!\times\!5\cdot0\!\times\!1\cdot7$	$52 \cdot 0^{'}$	6810	55.2	6910	112
60.1	8170	2.2 55.1	56.1	29	$6 \cdot 2 \times 5 \cdot 0 \times 1 \cdot 7$	59.5	8640	62.7	9010	150
62.6	8610	2 · 2 57 · 6	58.6	29	6:2×5:0×1:7	62:0	9040	65.2	9430	168
68.0	10740	2.5 62.6	63.6	33	$6 \cdot 2 \times 5 \cdot 0 \times 1 \cdot 7$	67.0	10820	70.2	11240	200
	11050					1		- 1		
	J	2.5 65.6		33	$6.2 \times 5.0 \times 1.7$		11300	73 · 2	11750	224
74.9	12230	2.5 69.5	70.5	36	$6.2 \times 5.0 \times 1.7$	73.9	12330	77.1	12800	250

TABLE NO. 199.—DETAILS OF BRAIDED RUBBER ('ABLES FOR 3000 VOLTS WORKING PRESSURE. (Dimensions given in mm.; weights in kilog. per km.)

km.	Braid- ing	36	35	32	32	30	30	28	56	25	42	40	38	36	35
Wages, Shillings per 1	Rubber Cover- ing	75.0	0.09	90.09	45.0	32.0	28.0	20.0	18.0	0.91	120.0	105.0	85.0	72.0	58.0
Shilli	Wind- ing and Strand- ing	10.5	0.6	4.8	5.6	4.0	00 00	50 70	3.5	3.0	17.0	16.7	13.3	13.0	12.8
Weight of	Cable Com- pound	59	56	51	48	45	45	88	35	34	75	69	64	59	54
Weig	Stock- bolm Tar	59	26	51	48	45	45	380	35	34	75	69	64	59	54
	Weight	4.	07	0.1	09	56	52	$\frac{1}{\infty}$	4.1	42	3.	86	26	7.4	89
Braiding	Diam.	94.0	22.2	£0.7	19-4	18.5	17.1	15.9	14.8	14.2	30.0	27.5	25.6	23.5	6.12
	Weight Material Diam.	3 ply	I kilog Inte	,, debc	*	٤	,,	"	9.6	,,	33	F	22	39	ş
Prepared Tape	Weight	15.8	14.4	12.0	12.1	11.2	10.3	6.6	÷.	ż	20.0	18.6	16.7	15.4	14.1
Prep T	Diam.	20.0	<u>x</u>	16.4	15.4	14.2	13.1	6.11	86.6 10.8	78-1 10-2	0.97	23.5	21.6	19.5	17.9
Weight of Rubber	Com- pound, sp. gr.	250.3	213.4	176.8	9-5159-1 15-4	8-7139-2 14-2	8-0121-6 13-1	7.3 102.2		78.1	389.0	328.8	268-9	235.0	205.3
Wei Ru	Para	12.4	311.2	1.018					9.9	, 6.5	16.1	14.5	13.0	12.0	11.0
la l	Area of Cross Section	179-29 12-4 250-3	17-6 158-4611-2213-4 18-2	15.8 127.9810.1176.8 16.4	11.5.54	101-47	89.07	75.45	64.85	58.26	275-41 16-1 389-0 26-0	230 - 37 14 - 5 323 - 8	192.2613.0268.9	18.9 168.6512.0235.0 19.5	3.00 17.3 147.84 11.0 205.3 17.9
Rubber	Thick - Diam.	19.4	17.6		× +	13.6	12.5	11.3	10.2	9.6	25.4	22.9	20.5		17.3
		<u>:</u>	3.0	2.85	1.2.80	2.7.2	7.10 2.7	6.10 2.6	2.55	2.2	3.5	30	3.15	3.05	3.00
Diam.	Strand	.: ::	11.6	10.1	9.15	8.12			5.10	1 4.57	18.4	16.3	14.2		
	Single N ire	2.61	12.34	2.03	49.98 1.83	39-65 1-63	1.42	1.22		12.47 0.914	2.64	2.34	52.03	1.83	1.63
Conductor	Area,	104.0	2.100	61.5	49.98	39.65	30.1	22.2	15.5	12.47	202.5	159-122-34	119-75 2-03	97.3	77.2
Con	Strand, L.S.W.G.	19/12	19/13	19/14.	19/15	19/16	19/17	19/18	61/61	19/20	37/12	37/13	37/14	37/15	37/16

CHAPTER XIII.

MISCELLANEOUS.

Self-Induction of Cables.

The self-induction of a cable circuit can be calculated by assuming either that the current flows equally distributed throughout the cross-section of the conductors, or that the current flows concentrated within a very thin annulus at the surface of the conductors. Owing to the eddy currents induced in conductors carrying alternating current, the distribution of the current is unequal, the current density being a minimum at the axis and a maximum at the surface of the conductor. The exact distribution of the current is difficult to calculate, but depends upon the diameter of the conductor and the periodicity of the current.

The arithmetical mean of the two formulæ obtained when the above assumptions are made, is generally considered to give results quite accurate enough for

commercial calculations.

The following are the formulæ for calculating the self-induction of various types of cable; in each case the formula A, is obtained by assuming equal distribution of current in the conductor, the formula B, is obtained by assuming the concentration of the current in a very thin annulus at the surface of the conductor, and C is the formula generally used and assumed to allow for the skin effect.

Multicore Cables:

A.
$$L_s = \left(0.2 + 0.92 \log_{10} \frac{2a}{d}\right) 10^{-3}$$
 Henry per kilometre loop.

B.
$$L_s = \left(0.92 \log_{10} \frac{2a}{d}\right) 10^{-3}$$
 Henry per kilometre loop.

C.
$$L_s = \left(0.1 + 0.92 \log_{10} \frac{2a}{d}\right) 10^{-3}$$
 Henry per kilometre loop,

C. or L_s =
$$\left(0.05 + 0.46 \log_{10} \frac{2a}{\bar{d}}\right) 10^{-3}$$
 Henry per core per kilometre,

where d is the diameter of each conductor and a is the distance between the centres of gravity of the two conductors. The expression self-induction "per core" has, strictly speaking, no meaning; it is, however, a convenient form for three-phase calculations.

Concentric Cables:

A.
$$L_{N} = 0.46 \left\{ \log_{10} \left(\frac{d_{2}}{\overline{d_{1}}} \right) + \frac{d_{3}^{2}}{d_{3}^{2} - d_{2}^{2}} \log_{10} \left(\frac{d_{3}}{\overline{d_{2}}} \right) \right\} 10^{-3}$$

Henry per kilometre.

B.
$$L_s = \left\{0.46 \log_{10}\left(\frac{d_2}{d_1}\right)\right\} 10^{-3}$$
 Henry per kilometre.

where d_1 is the diameter of the inner conductor.

 d_2 is the diameter over the inner insulation,

 d_3 is the diameter over the outer conductor.

Triple Concentric Cables.—Self-Induction between the middle and outer conductors.

A.
$$L_s = 0.46 \left\{ \log_{10} \frac{d_2}{d_1} + \frac{d_3^2}{d_3^2 - d_2^2} \log_{10} \left(\frac{d_3}{d_2} \right) - \frac{d_0^2}{d_1^2 - d_0^2} \log_{10} \left(\frac{d_1}{d_0} \right) \right\} 10^{-3}$$
Henry per kilometr

B.
$$L_s = 0.46 \left\{ \log_{10} \left(\frac{d^2}{d_1} \right) \right\} 10^{-3}$$
 Henry per kilometre.

C.
$$L_s = 0.46 \left\{ \log_{10} \left(\frac{d^2}{\bar{d}_1} \right) + \frac{1}{2} \left[\frac{d_3^2}{d_3^2 - d_2^2} \log_{10} \left(\frac{d_3}{d_2} \right) - \frac{d_0^2}{d_1^2 - d_0^2} \log_{10} \left(\frac{d_1}{\bar{d}_0} \right) \right] \right\} 10^{-3}$$
Henry per kilometre.

Where d_0 is the diameter over the inner insulation.

 d_1 is the diameter over the middle conductor.

 d_2 is the diameter over the middle insulation.

 d_3 is the diameter over the outer conductor.

In the case of multicore cables the self-induction formula can be written—

$$\mathbf{L}_s = \left\{ \left. x + 0.92 \log_{10} \left(rac{2a}{d}
ight) \right\} 10^{-3} \, \mathrm{Henry \; per \; kilometre \; loop} \right.$$

where x is a constant whose value depends upon the current distribution in the conductor; with equal distribution its value is 0.2, and with complete concentration near the surface its value is zero. Tests on actual cables allow of the value of the constant x being determined experimentally.* Table No. 200 gives the results of tests on various three-core (round conductor) cables.

Table No. 200.—Self-Induction Tests on Three-Core Cables. Value of Constant x.

	of each luctor		Thickne	ss of insul		am. betweeters and		nductors	and b	etween	
sq. mm.	sq.	1.4	1 5	2.3	3.0	4.0	5°5	6.0	7.0	8.0	10.0
10	0.0155			0.151				0.140	0.129		
16	0248			0.138		0.134					
25	•0387			0.121	0.117	0.085	0.103				
35	0542		0.127	0.134			0.086		0.058		
50	.0775			0.090		0.029					0.016
70	1085			0.097	0.078					0.105	
95	•147	0.079	0.047	0.056							
120	.186					0.050					
185	•286			-0.039							
240	•372			-0.045							
310	•480				-0.023						
							1				

^{*} See "Self-Induction of Three-Phase Cables," by F. J. O. Howe. "Electrician," vol. lxii., p. 686, 1909.

ELECTROSTATIC CAPACITY.

The electrostatic capacity of any cable depends upon the dielectric constant of the insulating material and a dimension term or form factor. The dielectric constant should be determined from actual cables and not from samples of the material. Table No. 201 gives the average values of the dielectric constant for various cable dielectrics.

TABLE No. 201.—DIELECTRIC CONSTANTS.

Value of K
2·8 to 3·8 3·0 ,, 4·0 3·6 1·7 to 1·9 3·0 ,, 5·5

The dielectric constant determined from the capacity of the cable as measured by the ballistic method is liable, in the case of paper insulated cables, to be inaccurate owing to the effects of absorption and leakage; the capacity can be accurately determined by means of a secommeter.*

The dielectric constant of rubber insulation varies with the percentage of rubber used in the compound rubbers, and also with the mineral ingredients.

Single and Concentric Conductor Cables.—In cases where the conductor is surrounded by a concentric conductor, lead sheath, or armour, the form factor can be easily determined, and therefore the capacity of any such cable calculated.

The electrostatic capacity of a condenser formed of two concentric conductors is equal to—

$$\frac{\text{K }l}{2\log_{\epsilon}\frac{\text{D}}{d}}$$
 electrostatic units,

where

K = dielectric constant of insulating material.

l = length of cable in centimetres.

d =diameter over the inner conductor.

D = diameter over the dielectric.

Therefore, the capacity in microfarads per kilometre is equal to-

$$\frac{\text{K.}10^{5}}{2\log_{\epsilon}(\frac{\text{D}}{d})9.10^{5}} = \frac{\text{K}}{18\log_{\epsilon}\frac{\text{D}}{d}} = \frac{0.02415 \text{ K}}{\log_{10}\frac{\text{D}}{d}}$$

or the capacity in microfarads per statute mile is equal to-

$$\frac{0.0388 \text{ K}}{\log_{10} \frac{\text{D}}{d}}$$

Table No. 202 gives the value of $\log_{10} \frac{D}{d}$ for various conductors and various thicknesses of dielectric.

^{*} See "Capacity of Cables," by F. J. O. Howe. "The Electrician," vol. lx. p. 864.

TABLE No. 202.—

Cross Section of	Diam. of Con-								Rad	ial Thick	ness of
Cross	mm.	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.5
	-										
4	2.26	0.2758	0:3222) • 366 <u>4</u> () - 3988 () : 4425 ():4751 () : 5070 () - 5359 (u·5634 ().613
6	2.76	.2368	.2806	.3197	.3551	-3897	.4200	· 1 487	.4764	.5017	.549
10	4.05	1740	.2100	.2400	.2710	. 2990	.3240	.3490	.3730	·4140	.435
16	5.13	1440	.1730	2010	.2270	.2500	2740	2960	.3170	.3360	.374
25	6.9	1106	1335	1570	1790	. 1000	.0100		.0550)=00	. 1)11 4
35	7.9	.0980	1200	1400	1600	· 1990 · 1780	-2180	.2380	. 2550	2720	.304
50		.0839	1200	1210	.1370	1540	·1960 ·1700	·2130 ·1850	·2300 ·2000	2460	275
	11.2	.0719	.0878	1210	1170	.1330	.1460	1600	1740	·2150 ·1860	·242
			0070	1000	1110	1000	1100	1000	1/10	1800	211
95	12.95	.0626	.0766	.0906	1()4()	.1170	·1290	.1410	1540	.1660	.188
120	14.2	.0561	.0689	.0817	.0941	.1060	.1170	.1280	1390	1500	171
150	16.3	.0504	0615	.0734	.0842	-0955	.1060	.1170	.1270	1370	.155
185	18:5	.0453	.0220	.0656	.0756	.0846	.0945	.1040	1130	.1220	139
210	19.5	.0430	.0523	.0622	.0719	.0813	·087±	.0986	. 7.00	1770	. 7.00
	20.6	.0402	0500	.0592	.0682	.0774	.0864	•0945	·108	·1170	·133
	22.1	.0378	.0467	.0554	.0641	0726	0821	.0885	.0969		1
	23 · 2	.0358	.0445	.0531	.0615	.0689	·077±	.0846	0903	1040	119
								(/010	0021	1000	114
355	24.9	.0334	.0414	-0495	.0569	.0648	0722	.0795	.0867	.0938	107
400	26.3	.0322	•0390	.0469	0.0245	.0615	.0689	.0756	.0828	.0892	·102
500	29.5	.0286	.035‡	.0430	.0484	.0224	.0618	.0682	.0745	.0803	.092
625	33.0	.0257	.0318	.0378	0434	.0200	.0553	.0616	.0671	.0726	.083
725	35.3	.0241	.0302	.0358	.0414	*0469,	.0523	.0580	+0697	.0000	.050
	37.5	.0224	.0278	.0334	.0386	.0438	0323	0539	.0637	0692	.078
	41.4		.0220	.0306	.0358	.0406	.0450	•0500	0.0592 0.0542	·0645 ·0588	.074
					0000	0200	0.11)(/	0000	0042	0988	.067

VALUE OF LOG $\frac{\mathbf{D}}{d}$.

Dielectric in mm.

_													
	4.0	4.5	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0
							_						
	0.658	0.697	0.734	0.800	0.857	0.908	0.953	0.994	1.012	1.065	1.007	1.127	7.151
	-591				.783	.832				0.987			
	•474			.598	.649	695		.774			0.871	0.899	
	408	•440	.470	. 524	.572	614	1	.690	.723	.754	.783	810	835
									, 20	1	100	010	000
	•334	*362	.389	•438	.481	.521	.557	•591	.622	.651	. 678	.704	.728
	.304	.330	-355	.401	*443	.481	.216	. 248	• 578	•607	•633	.658	.681
	·267	-292	.314	*358	.396	. 131	.465	•495	• 524	.551	• 576	.600	.623
	·234	256	· 277	.316	+352	.382	.416	•445	•472	•497	•521	•544	• 566
	209	.229	· 248	.284	.318	. 9.40	. 050	. 105	. 4017	4~~	450	E00	~
	191	229	248	262		349	*378	.405	431	455	•478	*500	• 520
	173	191	226	-239	·293 ·269	-323	·350 ·323	·376	•401	•424	•446	•467	.487
	175	172	188	217	214	·297 ·270	1295		371	.393	•414	.434	453
	150	114	100	211	211	210	290	.318	·340 '	.361	.381	•400	•418
	149	164	·179	.208	·235	•260	.284	.306	.327	•348	.368	.386	.404
	·142	157,	.171	.199	.225	•249	·272	•294	.316	335	.354	.373	.390
	•134	•148	·162	.188	.513	•236	·258	.280	*300	.319	·3 3 8	.356	.373
	.128	· 142	155	.180	.204	.227	• 249	-270	290	*308	326	.344	*360
	7.01	. 704	7.10	170	100	0.7.5	2000	250	0==		0.10		0.10
	•121	·134 ·128	146	170	193	•215	•236	• 256	•275	•292	*310	*327	*343
	•115	1	140	163	.185	206	226	•245	264	•282	•299	.315	.331
	104	115	126	148	.168	.188	207	• 225	•242	258	274	290	301
	.094	104	114	.134	.153	171	.188	.205	•222	237	252	.267	.281
	.088	.098	.108	127	.145	·163	.179	195	-210	•226	.240	253	·267
	.084	.093	102	.120	·137	154	.170	.185	200	•214	•228	·242	.255
	.076	.058	.094	.110	126	142	.157	171	.185	199	•212	·224	.236
		1				1							
									-				

Multicore Cables.—The capacity of multicore cables can be calculated, but the formulæ are very cumbersome, and give accurate results only in the case of a perfectly homogeneous dielectric.*

The more satisfactory method is to measure the capacity of various cables and plot curves showing the capacity in relation to the thickness of the dielectric,

and the size of the conductor.

At least two values of the capacity are necessary to completely determine the capacity constants of any multicore cable.

In the case of two-core cable, the following tests would be taken: (i) Capacity of conductor 1 against conductor 2 and lead sheath $= c_1$.

(ii) Capacity of conductors 1 and 2 against the lead sheath = c_2 .

The working or apparent capacity per core will be equal to—

$$c = 2c_1 - \frac{c_2}{5}$$

In the case of three-core cable :-

(i) Capacity of conductor 1 against conductors 2 and 3 and lead sheath = c_1 .

(ii) Capacity of conductors 1+2+3, against the lead sheath $=c_2$, or (iii) Capacity of conductors 1+2 against conductor 3 and lead sheath $=c_3$. Then the working or apparent capacity per core will be equal to-

$$c = \frac{3c_1}{2} - \frac{c_2}{6}$$
 or $= 2c_1 - \frac{c_3}{2}$

In the case of four-core cable:-

(i) Capacity of conductor 1 against conductors 2 + 3 + 4 and lead sheath $= c_1$.

(ii) Capacity of conductors 1 + 3 against conductors 2+4 and lead sheath = c₂ (note conductors number 1 and 3 are diagonally situated).

Then the working or apparent capacity per core will be equal to-

$$c = 2 c_1 - \frac{c_2}{2_*^*}$$

The following curves give the value of the various capacities for three-core cables; in each case c1 is the capacity of one conductor against the other two conductors and earth, c2 is the capacity of all three conductors against earth, and

$$c = \frac{3c_1}{2} - \frac{c_2}{6}$$

is the working or apparent capacity per conductor. The figure at the side of the curve gives the thickness of the dielectric between conductors, and between conductors and lead sheath. The capacity values, of course, depend to a certain extent upon the composition of the impregnating compound.

The capacity can also be determined by measuring the charging current when a sine wave voltage is applied to the cable. If A be the effective value of the charging current in amperes, V the effective value of the voltage, which in the case of three-phase working is equal to the voltage between phases divided by √ 3, and

be the frequency, then—

$$\frac{A\cdot 10^{\circ}}{2\:\pi\:\infty\:V}=$$
 Capacity in microfarads.

2 D

DIELECTRIC RESISTANCE.

The dielectric resistance of single conductor and concentric conductor cables can be calculated from the formula—

$$\frac{\sigma \cdot \log_{10} \; D}{439000} = \text{megohms per statute mile at } 60^{\circ} \; \text{F}.$$

where σ is the specific dielectric resistance of the insulating material, i.e. the resistance per cubic centimetre after one minute's electrification at 60° F.

In the case of multicore cables the dielectric resistance is best obtained from curves based upon tests on actual cables.

CARRYING CAPACITY OF CABLES.

The current allowable in any conductor can be determined with regard to either economy or the safe working temperature of the cable. In the case of cable working at fairly low voltages the current that would ultimately raise the cable to the safe working temperature is generally much greater than the economical current, therefore the working current should be determined by means of the well-known Kelvin rule.

In the case of extra high tension cable, however, the economical current may be greater than that corresponding to the safe working temperature of the cable, therefore the working current has to be calculated on the basis of the safe working temperature.

Tables Nos. 13 and 14 (Chapter I.) give the values of the current for various copper conductors according to the old "rule" of 1000 amperes per square inch, and also according to the rule of the Institution of Electrical Engineers for conductors laid in casing or tubing, viz.:—

$$\log c = 0.82 \log_{0.82} A + 0.415$$

$$c = 2.6 A_{0.82}$$

where c is the current in amperes, and A is the sectional area of copper in thousandths of a square inch.

Table No. 203 gives the maximum allowable current for various cables as recommended by the Verband Deutscher Elektrotechniker; the values given for the underground cables are allowable when the cables are laid direct in the earth. For unfavourable conditions, such as when more than two cables are laid together, or when the cables are laid in ducts, it is advisable to allow only 75 per cent, of the values given.

Installation Wires.—Kennelly gives the following formula for determining the allowable current for installation cables enclosed in wood casing—

$$I = 560 d^{\frac{3}{2}}$$

 $I = 138 D^{\frac{3}{2}}$

or I = 138 I

or

where I is the current allowable for a temperature rise of 14° C., d is the diameter of the copper conductor in inches, and D is the diameter of the copper conductor in centimetres. Heavily insulated wires armoured or laid in ducts radiate heat more readily than wires enclosed in wood casings.

Underground Cables.—From the results of numerous experiments, Apt and Mauritius give the following empirical formula for determining the current allowable in underground cables:—

$$I = \sqrt{\frac{tQ}{e}}$$

where t is the allowable rise of temperature in degrees Centigrade, Q is the area of the conductor in square millimetres. I the allowable current in amperes, and e a constant depending upon the type of cable. When more than one cable are laid together, the safe value for t will be about 15° C. The values of e for a temperature rise of 15° C are given as:—

Single Cables		 $e = 1 \times 0.018 = 0.018$
Concentric and twin cables	4.4	 $e = 2 \times 0.018 = 0.036$
Triple concentric and three-core	cables	 $e = 3 \times 0.018 = 0.054$
Four-core cables		 $e = 4 \times 0.018 = 0.072$

Table No. 203.—Current-Carrying Capacity of Cables in Amperes. As recommended by the Verband Deutscher Elektrotechniker.

	Section of onductor	Underground Cables—(see note)									Installa-
sq. mm.	sq. in.	Single Core up to 700 Volts	Twin Core up to 3000 Volts	Twin Core up to 10,000 Volts	Twin Core up to 3000 Volts	Three Core up to 10,000 Volts	Four Core up to 3000 Volts	Four Core up to 10,000 Volts	Con- centric up to 3000 Volts	Triple Con- centric up to 3000 Volts	tion Cables up to 1000 Volts
0 75	0.001162	:									9
1.0	.00155	24				• •		••	• •		- 11
1.5	*002325	31	• •					• •	*		14
2.5	*003875	41							* *		20
4	*0062	55	42		37		34	• •	**	* **	25
6	.0093	70	53		47		43		• •	* *	31
10	.0155	95	70	65	65	60	57	55	70	55	43
16	*0248	130	95	90	85	80	75	70	90	75	75
25	.0387	170	125	115	110	105	100	95	120	100	100
35	.0245	210	150	140	135	125	120	115	145	120	125
50	.0775	260	190	175	165	155	150	140	180	150	160
70	.1085	320	230	215	200	190	185	170	220	185	200
95	• 147	385	275	255	240	225	220	205	270	220	240
120	.186	450	315	290	280	260	250	240	310	255	280
150	+232	510	360	335	315	300	290	275	360	290	325
185	. 286	575	405	380	360	340	330	310	405	- 330	380
240	•372	670	470		420		385	**	470	385	450
310	•480	785	545		490		445		550	455	540
400	· 6 20	910	635		570				645	530	640
500	.775	1035						••	0.10		760
625	968	1190								* *	880
800	1.240	1380				* *				1 44	1050
1000	1.550	1585				4.4		1	1		1250

The relation between current and temperature in underground cables has been very thoroughly investigated by Teichmuller and Humann (see various communications to the "Elektrotechnischer Zeitschrift") who give the formula—

$$\mathbf{I} = \frac{c}{\sqrt{\frac{c}{\nu \rho \tau}}} \sqrt{\left\{ \frac{\mathbf{Q} \tau}{\sigma_{\kappa \tau} \log_{10} \left(\frac{\mathbf{D}_{a^{1}}}{\mathbf{D}_{i^{1}}} \right) + \sigma_{n\tau} \log_{10} \left(\frac{4l}{\mathbf{D}_{a}} \right) \right\}}$$

where I = amperes per conductor.

$$c = \sqrt{\frac{2\pi 10^{-2}}{2\cdot303\times10^{-4}}} = 16\cdot52$$

 $\nu =$ number of conductors.

 $\rho \tau$ = specific resistance of the conducting material in ohms per metre/square millimetre at the temperature corresponding to the temperature rise of τ° Centigrade.

Q = cross section of each conductor in square millimetres.

 $\tau = \text{temperature rise in degrees Centigrade.}$

 $\sigma_{\kappa\tau} = {\rm specific resistance}$ to heat for the insulating material in electrical units. $\sigma_{n\tau} = {\rm specific resistance}$ to heat for the earth in which the cable is laid in electrical units.

 D_{a1} = reduced overall diameter of cable.

l =depth in millimetre at which the cable is laid.

 $\mathbf{D}_{i1} = \text{diameter of the copper enclosing circle reduced to the basis of a single cable.}$

 $D_a = diameter overall.$

The specific resistance of copper in ohms per metre/square millimetre at 15° Centigrade, which may be regarded as the maximum summer temperature at a depth of about one metre, is equal to—

therefore

$$\rho_{\tau} = \begin{array}{c} \rho_{15} = 0.0175 \\ \rho_{\tau} = (1 + 0.004 \tau) \ 0.0175 \end{array}$$

If the safe working temperature of the cable be taken as 40° Centigrade, then the allowable temperature rise will be 25° Centigrade.

$$\rho_{\tau} = \{1 + 25 (0.004)\} 0.0175 = 0.01925$$

 $\sigma_{\kappa\tau}$ the specific heat resistance of the insulating and worming material has been found from experiments to be for paper and jute—

For single conductor low tension cable $\sigma_{\kappa\tau}=650$ For multicore low tension cable ... $\sigma_{\kappa\tau}=600$ For multicore high tension cable ... $\sigma_{\kappa\tau}=550$

and $\sigma_{n\tau}$ for earth can be taken to average 50.

I, the depth of the cable can be taken as approximately 700 millimetres.

Da, the reduced overall diameter of the cable, is equal to—

$$\frac{D_1}{D_2}$$
 · $\frac{D_3}{D_4}$ · D_a

where $D_1 = \text{diameter under the lead sheath.}$

 D_2^1 = diameter over the lead sheath.

 $D_3 = \text{diameter under the metallic armour.}$ $D_4 = \text{diameter over the metallic armour.}$

 $\mathbf{D}_{\alpha}^{4} = \text{diameter over the outer jute serving.}$

D i, the diameter of the substituted single conductor, has been calculated by Professor Mie, who gives the formula—

$$\mathrm{D}i^{1} = \mathrm{D}i \sqrt[\nu]{\frac{\nu \rho}{\mathrm{R}i + (\nu - \iota) \rho}}$$

where

 $R_i = \text{radius of the copper enclosing circle.}$

 $D_i = 2 R_i$

 ρ = radius of any one conductor.

 ν = number of conductors.

By assuming an allowable rise of temperature to 40° C. with paper or jute insulated copper conductors laid 70 centimetres deep, the formula reduces to-

$$I = \frac{119}{\sqrt{\nu}} \sqrt{\frac{25 Q}{550 \log_{10} \left(\frac{Da^1}{Da^1}\right) + 50 \log_{10} \left(\frac{2800}{Da}\right)}}$$

Or for single conductor cables-

$$I = 119 \sqrt{\frac{25 \text{ Q}}{550 \log_{10} \left(\frac{\text{D}a1}{\text{D}i}\right) + 50 \log_{10} \left(\frac{2800}{\text{D}a}\right)}}$$

For 2-core cables-

$$I = 84 \sqrt{\frac{25 \text{ Q}}{550 \log_{10} \left(\frac{\text{D}a\text{1}}{\text{D}_{4}\text{1}}\right) + 50 \log_{10} \left(\frac{2800}{\text{D}a}\right)}}$$

For 3-core cables-

 $D_a = 79.4$

$$I = 68.7 \sqrt{\frac{25 \text{ Q}}{550 \log_{10} \left(\frac{\mathbf{D}a^1}{\mathbf{D}_{i1}}\right) + 50}}$$

In addition to the heating effect of the current, upon which the above formula is founded, there will be further heating effects due to the eddy current losses in the conductor and lead sheath and to dielectric losses, in total from 6 to 10 per cent. of the C2R loss.

The following example shows the application of the formula; 3×0.05 square

inch paper insulated cable to following specification:-

19 × 1·47 mm. copper wires
Paper 14 mm. between conductors
Three cores laid up together and wormed
Paper 14 mm. between copper and lead . diameter = 7.35

 Paper 14 mm. between conductors
 " = 21.35

 Three cores laid up together and wormed
 " = 46.00

 Paper 14 mm. between copper and lead
 " = 60.00

 Lead 3.5 mm. thick
 " = 67.00

 Jute serving
 " = 71.00

 Two steel tapes 55 × 1.1 mm.
 " = 75.4

 Jute serving
 " = 79.4

 $Q = 32 \cdot 2$ sq. mm. $D_{a^1} = \frac{60}{67} \cdot \frac{71}{75 \cdot 4} \cdot 79 \cdot 4 = 67 \cdot 0 \text{ mm},$ $D_{i1} = 18 \sqrt[8]{\frac{3 \times 3.675}{9 + 7.35}} = 15.84 \text{ mm}.$

...
$$I = 68.7 \sqrt{\frac{25 \times 32.2}{550 \log_{10} \frac{67}{15.84} + 50 \log_{10} \frac{2800}{79.4}}} = 95 \text{ amperes.}$$

Allowing 5 per cent. for the losses in dielectric, lead, etc., we obtain

90 amperes as the maximum allowable current.

If $\hat{\mathbf{I}}$ is the allowable current for a single conductor cable, then $0.74~\mathrm{I}$ can be taken as the maximum allowable current for the corresponding concentric cable and $0.66~\mathrm{I}$ for the corresponding triple concentric cable.

VOLTAGE STRESS IN ALTERNATE CURRENT CABLES.

If an alternating voltage be applied to an insulated conductor, the fall of potential across any concentric layer of the dielectric will be inversely proportional to the electrostatic capacity of that layer. In the case of single and concentric conductor cables, the capacity of any layer of the dielectric is directly proportional to the value of the dielectric constant of the dielectric, and inversely proportional to the value of $\log \frac{D}{d}$, where D is the external and d the internal diameter of the layer; therefore, proceeding in layers from the conductor outwards, the value of $\log \frac{D}{d}$ decreases in value, and consequently the capacity increases, assuming a homogeneous dielectric; the electric stress will therefore be a maximum near the conductor and a minimum at the outer surface of the dielectric. It follows that in order to use the dielectric economically, the value of the dielectric constant ought to decrease as the value of $\log \frac{D}{d}$ decreases, so that the capacity of each layer be equal, and therefore the electric stress equal throughout the dielectric.

This method of making the capacity of the successive layers equal, known as

"grading" has been worked out by O'Gorman, Jona, Russell and others.

Table No. 204.—Dielectric Details of an Automobile Cable, Rubber Insulated.

Dielectric	Radii of the Layer		Dielectric Constant	Capacity of Layer, Micro- farads	Relative Stress	Voltage Distribu- tion at 10,000	Potential to Earth in Volts	Dielectric Stress in Volts
	Inner	Outer		per km.		Volts		per mm.
Conductor Pure Rubber "" Separator " Jacket " " " " " " " " " " " " " " " " "	0 1 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.5 6.0 6.5 7.0	1 2·0 2·5 3·0 3·5 4·0 5·0 6·5 7·0 7·5	2·3 2·3 2·3 2·3 3·5 3·5 3·5 5·0 5·0 5·0	 0.315 ·446 ·574 ·703 1.272 1.460 1.65 1.85 2.93 3.19 3.49 3.76 4.06	1000 705 550 450 248 216 191 170 108 99 90 84 77	2510 1766 1378 1127 622 542 479 427 271 248 226 211 193	10000 7490 5724 4346 3219 2597 2055 1576 1149 878 630 404 193 0	0 5020 3532 2756 2254 1244 1084 958 854 542 496 452 422 386

Note.—This cable broke down at 34,000 volts effective.

When the insulation of the conductor consists of various materials having various dielectric constants, the distribution of the electric potential can be determined as shown in Table No. 204, which at the same time shows the waste of material in the ordinary type of automobile cable. The capacity of each layer is first calculated, and the relative stress determined inversely proportional to the capacity; the total "relative" stress is then equated to the total voltage and the actual dielectric stress determined for each layer.

Curve No. 66 shows the fall of potential, and Curve No. 67 the distribution of

the dielectric stress of the automobile cable.

Table No. 205, and Curves Nos. 68 and 69, give the distribution of potential and dielectric stress for the Pirelli exhibition cable working at 100,000 volts; it must be remembered that a dielectric stress of 9000 volts per millimetre for indiarubber, and 6000 volts per millimetre for paper, is hardly allowable in any commercial cable, for the factor of safety in the one case is less than 3 and in the other slightly more than 3,

Table No. 205.—Dielectric Details of Messrs. Pirelli's Milan Exhibition Cable

Dielectric		Radii of the Layer		Dielec- tric Con-	Capacity of the Layer, Micro-	Relative	Voltage Distri- bution	Potential to Earth	Dielectric Stress in
		Inner	Outer	stant	farads per km.	Stress	at 100,000 Volts	in Volts	Volts per mm.
Conducto Rubber	or	0	9		•••	**		100000	0
	* *	9	9.5	6.1	6.13	1000	-4470	95530	8940
33		9.5	10	6.1	6.68	918	4100	91430	8200
25		10	10.5	6.1	7.00	876	3910	87520	7820
22	• •	10·5 11	11	6.1	7.36	833	3720	83800	7440
Rubber	* *	11.5	11.5	6.1	7.74	793	3540	80260	7080
		12	12	4.7	6.29	975	4350	75910	8700
99	* *	12.5	12.5	4.7	6.21	942	4200	71710	8400
25		13	13.0	4.7	6.74	910	4055	67655	8110
22	• •	13.5	13.5	4.7	7.08	867	3870	63785	7740
Rubber	• •	13.8	13.8	4.7	12.2	503	2240	61545	7466
		14	14	4.2	16.9	363	1620	59925	8100
39	• •	14.5	14.5	4.2	6.79	904	4030	55895	8060
59	4 9	15.0	15	4.2	7:13	860	3840	52055	7680
22		16	16 17	4.2	3.67	1670	7450	44605	7450
99	* *	17	18	4.2	3.89	1576	7030	37575	7030
22		18	18.3	4.2	4.12	1488	6645	30930	6645
Paper		18.3	19	4.2	15.1	406	1810	-29120	6033
-	• •	19	20		6.25	981	4380	24740	6257
"		20	21	4·0 4·0	4.6	1334	5960	18780	5960
"	• • •	21	22		4.82	1273	5696	13084	5696
27	* *	22	23	4.0	5.06	1211	5414	7670	5414
59	* *	23	23.5	4·0 4·0	5.33	1151	5150	2520	5150
22	• •	40	49.9	4.0	10.88	564	2520	0	5040
		1			Total =	22398			
				-					

Extra High Tension Cables —The size of the copper conductor for ordinary high and low tension cable is determined by the current required to be transmitted, or by the allowable or economical drop of potential. In the case of extra high tension cables the size of the conductor may also be governed by the working pressure, by the safety factor allowed, and by the dielectric used.

Let R be the radius over the dielectric in millimetres.

r be the radius over the conductor in millimetres.

V be the working pressure in volts.

S be the maximum allowable dielectric stress in volts per millimetre.

Then the electric stress at any point distant x millimetres from the centre of the conductor will be equal to—

$$\frac{V}{x\log\epsilon} \frac{R}{z}$$

If the dielectric be homogeneous, then the electric stress on the dielectric will be a maximum at the surface of the conductor, that is, when x = r, therefore the maximum stress will be—

$$\frac{V}{r \log_{\epsilon} \frac{R}{r}}$$

Therefore the cable must be so proportioned that

$$\frac{\mathbf{V}}{r\log_{\epsilon}\frac{\mathbf{R}}{r}} = \mathbf{S}$$

that is
$$\frac{\mathbf{R}}{r} = \epsilon^{\frac{\mathbf{V}}{r}\hat{\mathbf{S}}}$$
 that is $\frac{\mathbf{R}}{r} = \epsilon^{\frac{\mathbf{T}}{r}}$

where $T = \frac{V}{S}$, or equal to the thickness in millimetres of a plane sheet of the dielectric necessary for the working pressure of V volts.

Therefore

$$\frac{d \mathbf{R}}{d \, \bar{r}} = \epsilon \, \frac{\mathbf{T}}{\bar{r}} \Big(1 - \frac{\mathbf{T}}{r} \Big),$$

therefore, if r is greater than T, then $\frac{d}{dr}$ will be positive, and as the radius of the conductor increases, so the radius over the dielectric must be increased, as is the case with low tension and ordinary high tension cables. If, however, T is greater than r, then $\frac{d}{dr}$ will be negative, and therefore the radius over the dielectric (R) will decrease as the radius of the conductor is increased until r = T.

Therefore, for any given values of the working pressure and maximum allowable dielectric stress, the smallest overall radius will be obtained when

$$r = \frac{\mathbf{V}}{\widehat{\mathbf{S}}} = \mathbf{T}$$

the radius over the dielectric in this case will be

$$R = r(\epsilon)^{\frac{T}{r}} = 2.7183 r.$$

As the radius of the conductor is further increased, so the radius over the dielectric will increase, but the quantity of insulating material will not reach its minimum value until the radius of the conductor reaches the value $r=1\cdot254$ T as shown by Alex Russell (Paper read before the Institution of Electrical Engineers, November 14, 1907). As, however, the quantity of sheathing material increases with the diameter over the dielectric, therefore the "economical" radius of the conductor lies between T and $1\cdot254$ T in value.

Allowable Stress in Paper Cables.—The safe commercial working pressure for any extra high tension cable can be experimentally determined by measuring the dielectric losses with increasing voltages. The curve plotted from these values shows the relation between dielectric loss and voltage to be fairly proportional up to a certain value of the voltage, beyond which the loss increases very rapidly. Experiments carried out on a three-core cable with 70 sq. mm. conductors insulated with 12·5 mm. of paper copper to copper and copper to lead sheath, showed the maximum safe working pressure to be approximately 19,000 volts, from which the maximum stress per mm. is found to be—

$$S = \frac{V}{r \log_{\epsilon} \frac{R}{r}} = \frac{19,000}{5 \cdot 1 \log_{\epsilon} \frac{17 \cdot 6}{5 \cdot 1}} = 3000 \text{ volts per mm.}$$

Further tests were carried out on three-core cable with 0.05 sq. in. conductors insulated with 16 mm. of paper copper to copper and also copper to lead sheath, from which the safe working pressure appeared to be 20,000 volts.

$$\therefore S = \frac{20,000}{3 \cdot 9 \log_{\epsilon} \frac{19 \cdot 9}{3 \cdot 9}} = 3140 \text{ volts per mm.}$$

Numerous breakdown tests on paper insulated cables show the average dielectric strength to be 20,000 volts per mm.; therefore, by taking 3000 volts/mm. as the working pressure, the factor of safety appears to be 6.6.

The minimum diameter of conductor for impregnated paper cable can now be calculated for any working pressure: for example, for a working pressure of 40.000 volts, the minimum radius of conductor will be

$$=\frac{\mathbf{V}}{\mathbf{S}} = \frac{40,000}{3000} = 13.3 \text{ mm}.$$

which corresponds approximately to 0.6 sq. in. section.

If therefore it is required to construct an impregnated paper cable for 40,000 volts working pressure, the conductor should be given an overall diameter of 26.6 millimetres, irrespective of the necessary copper section; this can be done by either (i) using a conductor of copper wires of approximately 0.6 square inch cross-section, which will be out of the question unless it is required to transmit 300 to 500 amperes, or (ii) using a conductor of lower conductivity than copper, such as aluminium, or (iii) stranding the requisite number of copper or aluminium wires round a dummy centre of jute, hemp or like material. The method to be adopted will, of course, depend upon the relation between the minimum diameter of the conductor and the diameter of the copper strand necessary to transmit the required current, and also upon the relative prices of copper, aluminium, etc. The dummy centre might be lapped with thick paper, then the copper wires stranded on, and finally the whole covered with a thin tube of lead.

Table No. 206 shows the minimum diameters of conductor for various working pressures calculated for impregnated paper insulated cables, and also the approximate area of the conductor strand corresponding to these diameters.

TABLE No. 206.--MINIMUM DIAMETERS OF CONDUCTORS.

Working Pressure in Volts	<u>v</u> 8	Diameter of Conductor in mm.	Approximate corresponding effectual Area of Conductor Strand in sq. in.
15,000	5·00	10·0	$\begin{array}{c} 0.093 \\ 0.16 \\ 0.25 \\ 0.37 \\ 0.50 \\ 0.62 \\ 0.94 \\ 1.00 \end{array}$
20,000	6·66	13·3	
25,000	8·34	16·7	
30,000	10·00	20·0	
35,000	11·66	23·3	
40,000	13·30	26·6	
45,000	15·00	30·0	
50,000	16·68	33·4	

Table No. 207 gives the corresponding diameters over the paper insulation and also the thicknesses of the dielectric, from which values it appears that assuming a factor of safety of 6 to 7, the maximum working pressure allowable for single conductor impregnated paper cable is 35,000 to 40,000 volts. This can, of course, be increased to 70,000 to 80,000 volts for single phase working, by using two single conductor cables having their lead sheaths earthed, the transformers feeding the cables being also earthed at their centre points.

TABLE No. 207.—DIMENSIONS OF DIELECTRIC.

Working Pressure in Volts	Diam. over the Dielectric in mm. = 2.7183 d.	Radial Thickness of Dielectric, mm
15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000	27·2 36·2 45·4 54·4 63·4 72·3 81·6 90·8	$\begin{array}{c} 8 \cdot 60 \\ 11 \cdot 45 \\ 14 \cdot 35 \\ 17 \cdot 20 \\ 20 \cdot 05 \\ 22 \cdot 85 \\ 25 \cdot 80 \\ 28 \cdot 70 \\ \end{array}$

CABLE DRUMS.

In cable works it is the usual practice to have standard sizes of drums, at least for the larger cables. The dimensions of such a series of drums are given in Table No. 208.

Table No. 209 gives the manufacturing lengths of cables of various diameters, and the drum of the above series on which they would be packed.

Table No. 210 gives the length of cable of various diameters which can be packed on each of the drums in the above series; such a table is useful for exceptional cases.

TABLE No. 208.—STANDARD CABLE DRUMS.

Drum No.	I	imensions in m	Approximate Weight of	Approximat Weight of	
	Flange	Body	Width	Drum, kilog.	the Lagging, kilog.
I. II. III. IV.	2000 1750 1500 1250	1500 1250 1000 750	800 800 800 800	605 420 316 250	45 • 40 30 24

Table No. 209.—Manufacturing Lengths of Various Cables, coiled on Standard Drums.

On	Drum I.	On I	Orum II.	On D	rum III.
Diam. of Cable, mm.	Length of Cable in metres	Diam. of Cable, mm.	Length of Cable in metres	Diam. of Cable, mm.	Length of Cable in metres
82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58	150 150 150 150 150 150 150 160 160 170 175 175 175 175 175 190 190 190 260 280 280 280 280	54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 	260 275 275 276 277 290 290 290 293 310 335 396 410 420 430 435 460 460 460 485	36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 	485 500 510 530 660 670 725 725 725 725 885 930 930 1085 1160 1340 1420 1640 1720 1950 2559 2917 3360
56 55	300 300			• •	.:

TABLE No. 210.—LENGTH OF CABLE ON DRUMS.

	1		70		umferen		Longt	h of Cab	lo in Ma	2+200
Diam. of	No. of	No. of Rings in	.ly.	tean Circ	eumiereno	e	Lenge	u or cab	не ии ми	20162
Cable,	Layers	each	Drum	Drum	Drum	Drum	Drum	Drum	Drum	Drum
mm.		Layer	I.	II.	III.	IV.	1.	11.	III.	IV.
10	25	81	5.5	4.71	3.93	3.14	11137	9537	7958	6358
11	22	73	5.47	4.68	3.90	3.11	8784	7516	6263	4994
12	20	67	5.46	4.68	3.89	3.11	7316	6271	5212	4167
13	19	62	5.49	4.70	3.92	3.13	6467	5536	4617	3687
14	17	57	5.46	4.67	3.89	3.10	5290	4525	3769	3003
15	16	54	5.46	4.68	3.89	3.11	4717	4043	3360	2687
16	15	50	5.46	4.68	3.89	$3 \cdot 11$	4095	3510	2917	2332
17	14	47	5.46	4.67	3.89	$3 \cdot 10$	3592	3072	2559	2039
18	13	45	5.44	4.66	3.87	$3 \cdot 09$	3182	2726	2263	1807
19	13	42	5.49	4.70	3.92	$3 \cdot 13$	2997	2566	2140	1708
20	12	40	5.46	4.68	3.89	3.11	2620	2246	1867	1492
21	iī	38	5.44	4.65	3.86	3.08	2273	1943	1613	1287
$\frac{1}{22}$	11	36	5.47	4.68	3.90	3.11	2166	1853	1544	1231
23	10	35	5.43	4.65	3.86	3.08	1900	1627	1351	1078
24	10	33	5.46	4.68	3.89	3.11	1801	1544	1283	1026
25	10	32	5.5	4.71	3.93	3.14	1760	1507	1257	1004
26	9	31	5.44	4.66	3.87	3.09	1517	1300	1079	862
27	9	30	5.47	4.69	3.90	3.12	1476	1266	1053	842
28	8	28	5.41	4.63	3.84	3.06	1211	1037	860	685
29	8	28	5.44	4.65	3.87	3.08	1218	1041	866	689
30	8	27	5.46	4.68	3.89	3.11	1179	1010	840	671
31	8	26	5.49	4.70	3.92	3.13	1141	977	815	651
32	7	25	5.41	4.63	3.84	3.06	946	810	672	535
33	7	24	5.44	4.65	3.87	3.08	913	781	650	517
34	7	23	5.46	4:67	3.88	3.10	879	751	624	499
35	7	23	5.48	4.69	3.90	3.15	882	755	627	502
36	6	22	5.39	4.69	3.81	3.03	771	619	502	399
37	6	21	5.41	4.62	3.84	3.05	681	582	484	384
38	6	21	5.43	4.64	3.85	3.07	684	584	485	386
39	6	20	5.44	4.65	3.87	3.08	652	558	464	369
40	6	20	5.46	4.68	3.89	3.10	655	561	466	372
41	6	19	5.48	4.69	3.91	3.12	624	534	445	355
42	5	19	5.37	4.58	3.79	3.01	510	435	360	285
43	5	18	5.39	4.60	3.81	3.03	485	414	342	272
44	5	18	5.40	4.61	3.83	3.05	486	414	344	274
45	5	18	5.42	4.63	3.84	3.06	487	416	345	275
46	5	17	5.43	4.64	3.86	3.07	451	394	328	260
47	5	17	5.44	4.66	3.87	3:09	462	396	338	262
48	5	16	5.46	4.68	3.89	3:10	436	374	311	248
49	5	16	5.47	4.69	3.90	3.12	437	375	312	249 251
50	5	16	5.49.	4.71	3.93	3.14	437	376		
51	4	15	5.35	4.56	3.78	2.99	321	273	226 227	179
52	4	15	5.36	4.57	3.79	3.00	321	274	241	100
								1		

Table No. 210.—Length of Cable on Drums—continued.

Diam. of	No. of	No. of Rings in		Mean Cir	cumferer	nce	Lengt	th of Cal	ole in M	letres
Cable, mm.	Layers	each Layer	Drum I.	Drum II.	Drum III.	Drum IV.	Drum I.	Drum II.	Drum III.	Drun IV.
53	+	1.5	5.37	4.59	3.80	3:02	322	275	228	181
54	4	15	5.38	4.60	3.81	3.03	322	276	228	181
55	4	14	5.40	4.61	3.83	3.04	302	258	214	170
56	4	14	5.41	4.62	3.81	3.02	302	258	215	170
57	4	14	5.42	4.64	3.86	3.07	303	259	216	171
58	4	13	5.43	4.65	3.86	3.08	304	2 60	216	172
59	4	13	5.43	4.66	3.88	3.09	282	242	201	160
60	4	13	5.46	4.68	3.89	3.10	283	242	201	
61	4	13	5.47	4.69	3.50	3.12	284	243		161
62	+	13	5.48	1.70	3.91	3.13	284	24.1	202	162
63	3 '	12	5.33	4.52	3.73	2.94	191	162	203	162
64	3	12	5.31	4.52	3.74	2.95	191		134	105
65	3	12	5.32	4.53	3.75	2.96	191	162	134	106
66	3	12	5.33	4.24	3.76	2.97	191	163	135	106
67	3 1	12	5.31	4.22	3.77	2.98	191 - 192	163	135	106
68	3	11	5.35	4.56	3.78	2.99	176	163	135	107
69	3	îî	5.35	4.57	3.78	3.00	176	150	124	98
70	3	îì	5.36	4.58	3-79	3:00	176	150	124	99
71	3 '	11	5.37	4.59	3.80	3.02		151	125	99
72	3	11	5.38	4.00	3.81	3.03	177	151	12.5	99
73	3	11	5.39	4.6I	3.82	3.04	177	151	125	99
74	3	10	5.40	4.62	3.83	3.02	177	152	126	100
7.5	3	10	5.41	4.63	3.84		162	138	114	91
76 .	3 .	10	5.42	4.61	3.82	3.06	162	138	115	91
77 .	3	10	5.43	4.65	3.86	3:07	162	139	115	92
78	3 '	10	5.44	1.65		3.08	162	139	115	92
79	3	10	5.45	4.66	3.87	3.09	163	139	116 -	92
80	40	10	5.46	4.67	3.88	3.09	163	139	116;	92
31	3	9	5.47		3.89	3.10	163	140	116	99
32	3	9	5.48			* *	148			
33	3	9	5.49				148			
34	2	9	5.23			4 0	148			
35	$\tilde{2}$	9	5.24	7 0			92	~	6 4.	
6	2		5 25	* *			92			
37	2		5.25				92			
	4	9	0 20	0.0			92			

Conversions.

Millimetres to inches	9 - 10 11 37
Inches to millimetres	 See Table No. 105, page 210.
Square millimetres to	 See Table No. 6, page 55.
Square millimetres to square inches	 See Table No. 2, page 24.
Square inches to square millimetres	 g. m 11 37
Circumferences of Circles	
A reas of Canalas	See Table No. 86, page 181.
reas of Officies	 See Table No. 60, page 137

TABLE No. 211.—YARDS TO METRES.

Yards	Metres	Yards	Metres	Yards	Metres	Yards	Metres
1	0.914	26	23.774	51	46.634	76	69 494
$\overline{2}$	1.829	27	24.688	52	47.548	77	70.408
3	2.743	28	25.603	53	48.463	78	71.322
4	3.658	29	26.517	54	49.377	79	$72 \cdot 237$
5	4.572	30	27 · 432	55	50.291	80	73 · 151
6	5.486	31	28:346	56	51.206	81	74.066
7	6.401	32	29:260	57	52.120	82	74.980
8	7.315	33	$30 \cdot 175$	58	53.035	83	75.894
9	8.229	34	31.089	59	$53 \cdot 949$	84	$76 \cdot 809$
10	9.144	35	32.004	60	54.863	85	77·723
11	10.058	36	$32 \cdot 918$	61	55.778	86	$78 \cdot 637$
12	10.973	37	33.832	62	56.692	87	$79 \cdot 552$
13	11.887	38	$34 \cdot 747$	63	57.607	88	$80 \cdot 466$
14	12.801	39	35.661	64	58.521	89	81.381
15	13.716	40	36.576	65	59 • 435	90	$82 \cdot 295$
16	14.630	41	37 · 490	66	60.350	91	$83 \cdot 209$
17	15.545	42	38.404	67	61 · 264	92	$84 \cdot 124$
18	16.459	43	39.319	68	$62 \cdot 178$	93	85.038
19	17.373	44	$40 \cdot 233$	69	63.093	94	85.953
20	18 · 288	45	41 · 147	70	64.007	95	86.867
21	19 · 2 02	46	42.062	71	$64 \cdot 922$	96	87.781
22	20.117	47	42.976	72	65.836	97	88:696
23	21 · 031	48	43.891	73	66.750	98	. 89.610
24	21 · 945	49	44.805	74	67 665	99	$90 \cdot 525$
25	22.860	50	45.719	75	68.579	100	$91 \cdot 439$

Table No. 212.—Metres to Yards.

Metres	Yards	Metres	Yards	Metres	Yards	Metres	Yards
1 2 3 4 5 6 7	1:094 2:188 3:281 4:374 5:468 6:562 7:655	26 27 28 29 30 31 32	28·434 29·528 30·621 31·715 32·809 33·902 34·996	51 52 53 54 55 56 57	55.775 56.868 57.962 59.055 60.149 61.243 62.336	76 77 78 79 80 81	83·115 84·209 85·30 2 86·396 87·490 88·583
10 11 12 13 14 15 16 17 18 19	9 · 843 10 · 936 12 · 030 13 · 123 14 · 217 15 · 311 16 · 404 17 · 498 18 · 591 19 · 685 20 · 779	32 33 34 35 36 37 38 39 40 41 42 43 44	36 · 089 37 · 183 38 · 277 39 · 370 40 · 464 41 · 558 42 · 651 43 · 745 44 · 838 45 · 932 47 · 026	58 59 60 61 62 63 64 65 66 67 68	63·430 64·524 65·617 66·711 67·804 68·898 69·992 71·085 72·179 73·272 74·366	82 83 84 85 86 87 88 89 90 91 92 93	89·677 90·770 91·864 92·958 94·051 95·145 96·239 97·332 98·426 99·519 100·613
20 21 22 23 24 25	21 · 872 23 · 966 24 · 060 25 · 153 26 · 247 27 · 340	46 46 47 48 49 50	48:119 49:213 50:306 51:400 52:494 53:587 54:681	69 70 71 72 73 74 75	75:460 76:553 77:647 78:741 79:834 80:928 82:021	94 95 96 97 98 99 100	102:800 103:894 104:987 106:081 107:175 108:268 109:362

TABLE No. 213.—LB. TO KILOGRAMMES.

Lb.	Kilog.	Lb.	Kilog.	Lb.	Kilog.	Lb.	Kilog,
1	0.454	26	11.793	51	23 · 133	76	34 · 473
$\overline{2}$	0.907	27	12.247	52	23.587	77	34.927
3	1.361	28	12.701	53	24.040	78	35 380
4	1.814	29	13.154	54	24 · 494	79	35.834
5	2.268	30	13.608	55	24 · 948	80	36.287
6	2.722	31	14.061	56	25.401	81	36.741
7	3.175	32	14.515	57	25.855	82	37 · 195
8	3.629	33	14.969	58	26:308	83	37.618
9	4.082	34	15.422	59	26.762	84	38.102
10	4.536	35	15.876	60	27 · 252	85	38.555
11	4.989	36	16:329	61	27.669	86	39.009
12	5.443	37	16.783	62	28.123	87	39.463
13	5.897	38	17:236	63	28.576	88	39.916
14	6.350	39	17.690	64	29:030	89	40.370
15	6.804	40	18.144	65	29.483	90	40.823
16	7.257	41	18.597	66	29 · 937	91	41.277
17	7.711	42	19.051	67	30.391	92	41.731
18	8.165	43	19.504	68	30.844	98	$42 \cdot 184$
19	8.618	44	19.958	69	31 · 298	94	42.638
20	9.072	45	20.412	70	31.751	95	43.091
21	9.525	46	20.865	71	32 205	96	43.545
22	9.979	47	21.319	72	32.659	97	43.998
23	10.433	48	21.772	73	33.112	98	$44 \cdot 452$
24	10.886	49	22 · 226	74	33.566	99	44.906
25	11:340	50	22.680	75	34.019	100	45.359

TABLE No. 214.—KILOGRAMMES TO LB.

Kilog.	Lb.	Kilog.	Lb.	Kilog.	Lb.	Kilog.	Lb.
1	2.205	26	57 · 320	51	112:436	76	167.551
2 3	4.409	27	5 9 · 5 2 5	52	114.640	77	169.756
3	6.614	28	61.729	53	116.845	78	171.960
4 5	8.818	29	63 · 934	54	119.049	79	174.165
5	11.023	30	66.139	55	$121 \cdot 254$	80	176.370
6	$13 \cdot 228$	31	68:343	56	123 · 459	81	178.574
7	$15 \cdot 432$	32	70.548	57	125.663	82	180.779
8	17 · 637	33	$72 \cdot 752$	58	$127 \cdot 868$	83	182.983
9	19.842	34	74.957	59	130.073	84	185.118
10	$22 \cdot 046$	35	$77 \cdot 162$	60	$132 \cdot 277$	85	187 · 393
11	$24 \cdot 251$	36	79:366	61	$134 \cdot 482$	86	189 - 597
12	26.455	37	$81 \cdot 571$	62	136.486	87	191.802
13	28:660	38	83.776	63	138 · 891	88	194.010
14	30 865	39	85.980	64	141.096	89	196.211
15	33.069	40	88.185	65	143.300	90	198:416
16	35.274	41	90.389	66	145.505	91	200:620
17	37 · 479	42	$92 \cdot 594$	67	147.710	92	202 - 825
18	39.683	43	$94 \cdot 799$	68	149.914	93	205.030
19	41.888	44	97.003	69	152.119	94	207 · 234
20	44.092	45	99.208	70	154 · 323	95	209 · 439
21	$46 \cdot 297$	46	101:413	71	156.528	96	211.644
22	48.502	47	103.617	72	158.733	97	213 · 848
23	50:706	. 48	105.822	73	160.937	98	216.053
24	$52 \cdot 911$	49	108.026	74	163 · 142	99	218 · 275
25	55:115	50	110 · 231	75	165:347	100	220 - 462

TABLE No. 215.—PRESSURE.

Atmo- spheres	Lb. per sq. in.	Lb. per sq. ft.	Kilog, per sq. m.	Feet of Water
1 2 3 4 5 6 7 8 9	14·7 29·4 44·1 58·8 73·5 88·2 102·9 117·6 132·3 147·0	2116 4233 6349 8465 10581 12698 14814 16930 19047 21163	10333 20666 30999 41332 51665 61998 72331 82664 92997 103330	$33 \cdot 9$ $67 \cdot 8$ $101 \cdot 7$ $135 \cdot 6$ $169 \cdot 5$ $203 \cdot 4$ $237 \cdot 3$ $271 \cdot 2$ $305 \cdot 1$ $339 \cdot 0$

TABLE No. 216.

	TABLE No. 216.								
No ø	Square x2	Cube x^3	Square Root	Cube Root	Reciprocal $\frac{1}{x}$	Diam d	Circum- ference of Circle π d	Area of (Trcle $\frac{\pi}{4}d^2$	
0 1 2 3 4 5	0 1 4 9 16 25	$\begin{bmatrix} 0 \\ 1 \\ 8 \\ 27 \\ 64 \\ 125 \end{bmatrix}$	$ \begin{vmatrix} 0.0000 \\ 1.0000 \\ 1.4142 \\ 1.7321 \\ 2.0000 \\ 2.2361 \end{vmatrix} $	0.0000 1.0000 1.2599 1.4422 1.5874 1.7100	$ \begin{array}{c} $	0.0 0.1 2 3 4 5	0.000 0.314 0.628 0.942 1.257 1.571	0.0000 0.0079 0.0314 0.0707 0.1257 0.1964	
6 7 8 9 10	36 49 64 81 100	216 343 512 729 1000	2:4495 2:6458 2:8284 3:0000 3:1623	$\begin{array}{c} 1.8171 \\ 1.9129 \\ 2.0000 \\ 2.0801 \\ 2.1544 \end{array}$	0.16667 0.14286 0.12500 0.11111 0.10000	6 7 8 9 1·0	1·885 2·199 2·513 2·827 3·142	0·2827 0·3848 0·5026 0·6362 0·7854	
11	121	1331	3·3166	$\begin{array}{c} 2 \cdot 2240 \\ 2 \cdot 2894 \\ 2 \cdot 3513 \\ 2 \cdot 4101 \\ 2 \cdot 4662 \end{array}$	0.09091	1	3·456	0.9503	
12	144	1728	3·4641		0.08333	2	3·770	1.1310	
13	169	2197	3·6056		0.07692	3	4·084	1.3273	
14	196	2744	3·7417		0.07143	4	4·398	1.5394	
15	225	3375	3·8730		0.06667	5	4·712	1.7671	
16	256	4096	$\begin{array}{c} 4.0000 \\ 4.1231 \\ 4.2426 \\ 4.3589 \\ 4.4721 \end{array}$	2·5198	0.06250	6	5·027	2·0106	
17	289	4913		2·5713	0.05882	7	5·341	2·2698	
18	324	5832		2·6207	0.05556	8	5·655	2·5447	
19	361	6859		2·6684	0.05263	9	5·969	2·8353	
20	400	8000		2·7144	0.05000	2·0	6·283	3·1416	
21	441	9261	4.5826	2.7589	0 · 04762	1	6.597	3·4636	
22	484	10648	4.6904	2.8020	0 · 04545	2	6.912	3·8013	
23	529	12167	4.7958	2.8439	0 · 04348	3	7.226	4·1548	
24	576	13824	4.8990	2.8845	0 · 04167	4	7.540	4·5239	
25	625	15625	5.0000	2.9240	0 · 04000	5	7.854	4·9087	
26	676	17576	5·0990	2·9625	$\begin{array}{c} 0.03846 \\ 0.03704 \\ 0.03571 \\ 0.03448 \\ 0.03333 \end{array}$	6	8·168	5:3093	
27	729	19683	5·1962	3·0000		7	8·482	5:7256	
28	784	21952	5·2915	3·0366		8	8·796	6:1575	
29	841	24389	5·3852	3·0723		9	9·111	6:6052	
30	900	27000	5·4772	3·1072		3·0	9·425	7:0686	
31	961	29791	5.5678	3·1414	$\begin{array}{c} 0 \cdot 03226 \\ 0 \cdot 03125 \\ 0 \cdot 03030 \\ 0 \cdot 02941 \\ 0 \cdot 02857 \end{array}$	1	9·739	7:5477	
32	1024	32768	5.6569	3·1748		2	10·05	8:0425	
33	1089	35937	5.7446	3·2075		3	10·37	8:5530	
34	1156	39304	5.8310	3·2396		4	10·68	9:0792	
35	1225	42875	5.9161	3·2711		5	11·00	9:6211	
36	1296	46656	6:0000	3·3019	0·02778	$ \begin{array}{c c} & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 4 \cdot 0 \end{array} $	11·31	10:1790	
37	1369	50653	6:0828	3·3322	0·02703		11·62	10:752	
38	1444	54872	6:1644	3·3620	0·02632		11·94	11:341	
39	1521	59319	6:2450	3·3912	0·02564		12·25	11:946	
40	1600	64000	6:3246	3·4200	0·02500		12·57	12:566	

TABLE No. 216—continued.

	,							1
к.	61		Square	Cube	Reciprocal		Circum-	Area of
No.	Square	Cube	Root	Root	1	Diam.		Circle
r	, 25	3.3	Nx	\$ x	.r	il	Circle	π_{d^2}
			~ ~		,		πd	4
41	1681	68921	6 · 4031	0.4100	0.0000	4 1	*** ***	
42				3.4482	0.02439	4.1	12.88	13:203
	1764	74088	6.4807	3:4760	0.02881	2	13.19	13.854
43	1849	79507	6.5574	3.2034	0.05356	3	13:51	14:522
4.1	1936	85184	6.6332	3.2303	0.02273	4	13:82	15.205
4.5	2025	91125	6.7082	3.5569	(1.()55555	5	14:14	15.904
46	2116	97336	6.7823	3.5830	0.02174	6	14:45	16:619
47	2209	103823	6.8557	3.6088	0.02128	7	14.77	17:349
48	2304	110592	6.9282	3.6342	0.02083			
49	2401	117649	7:0000			8	15.08	18.096
50	2500	125000		3.6593	0.02041	9	15:39	18.857
Ott	2000	125000	7:0711	3.6840	0.02000	2.0	15.71	19.635
~ 1	11003	10000						
51	2601	132651	7:1414	3.7084	0.01961	1	16.02	20 - 128
52	2704	140608	7:2111	3 - 7325	0.01923	2	16:34	21 - 237
53	2809	148877	7.2801	8.7568	0.01887	3	18.65	22.062
54	2916	157464	7.3485	3.7798	0.01852	4	16.96	22.902
55	3025	166375	7.4162	3.8030	0.01818	5	17.28	
			* *****	0 0000	01 01	e)	11.79	23.758
56	3136	175616	7.4833	3.8259	0.01700	0		
57	3249	185193	7.5498		0.01786	6	17.59	24.630
58	3364			3.8485	0.01754	7	17.91	25.218
		195112	7.6158	3.8709	0.01724	8	18.22	26.421
59	3481	205379	7:6811	3 · 8930	0.01692	9	18:54	27:340
60	3600	216000	7.7460	3.9149	0.01667	6.0	18.85	28.274
								-0 -11
61	3721	226981	7:8102	3:9363	0.01639	1	19:16	29.225
62	3844	238328	7.8740	3.9579	0.01613	2	19.48	30 - 191
63	3969	250047	7:9373	3.9791	0.01587	3		
64	4096.	262144	8.0000	1.0000	0.01563		19.79	31 · 172
65	4225	274625	8.0623			4	20.11	32 · 170
.,,,	1227	at KULU	0 0020	4.0207	0.01538	5	50.45	33.183
66	4356	287496	8.1240	4 (1) 4 7 . 2				
67	4489	300763		4.0415	0.01515	6	20.73	34.212
68	4624		8.1854	4.0612	0.01493	7	21:05	35.257
		314432	8.5465	1.0817	0.01471	8	21:36	36.317
69	4761	328509	8:3066	4.1016	0.01449	9	21.68	37 · 393
70	4900	343000	8:3666	4.1213	0.01429	7.0	21.99	
					0	1 0	21 00	38.485
71	5041	357911	8.4261	4.1408	0.01408	1	22:31	
72	5184	373248	8 · 4853	4.1602				39 · 592
73	5329	389017	8.2110		0.01389	2 '	22.69	40.715
71	5476	405224	8.6023	4.1793	0.01370	3	22.93	41.854
75	5625	421875		4.1983	0.01351	4	23 · 25	43.008
117	110211	421870	8.6603	4.2172	0.01333	5	23.56	44.179
76	5770	400000	0.5.		1		1	
	5776	438976	8.7178	4.2358	0.01316	6	23.88	45.365
77	5929	456533	8.7750	4.2543	0.01299	7	21.19	
78	6084	474552	8.8318	4.2727	0.01282	8		46.566
79	6241	493039	8.8882	4.2908	0.01266	9	24.50	47.784
80	6400	512000	8.9443	4.3089			24.82	49.017
			5 0110	1 0000	0.01250	8.0	25.13	50.265

Table No. 216—continued.

-	. –							_
No.	Square	C1	Square	Cube	Reciprocal		Circum-	Area of
	square x2	Cube	Root	Root	1	. Diam.	ference of	
x	x2	2.3	\sqrt{x}	3/x	J.	d	Circle	
			.,	~ ~			πd	4
81	6561	531441	9.0000	4.3267	0.01235	8.1	25.45	51.530
82	6724	551368	9.0554	4.3445	0.01220	2	25.76	52.810
83	6889	571787	9:1104	4.3621	0.01205	3	26.08	54.106
84	7056	592704	9:1652	4.3795	0.01190	4	26.39	55.418
85	7225	614125	9.2195	4 3968	0.01176			
0+7	1	011320	7 4100	4 0000	0 01170	9	26.70	56.745
86	7396	636056	9.2736	4.4140	0.01163	6	27:02	58:088
87	7569	658503	9:3274	4 4310	0.01149	7	27.33	59.447
88	7744	681472	9-3808	1.4480	0.01136	8	27.65	60.821
89	7921	704969	9.4340	4.4617	0.01124			
90	8100					9	27.96	62.211
90	8100	729000	9.4868	4.4814	0.01111	9.0	28.27	63.617
91	8281	753571	9.5394	4.4979	0.01099	1	28:59	65:039
92	8464	778688	9.5917	4.5144	0.01087			
93	8649	804357	9 6437			2	28.90	66.476
				4.5307	0:01075	3	29.22	67 929
94	8836	830584	9.6954	1.5468	0.01064	4	29.53	69:398
95	9025	857375	9.7468	4.5629	0.01023	5	29.85	70.882
96	9216	884736	9.7980	4.5789	0.01042	6	30.16	72.382
97	9409				0.01037			
	9604	912673		4:5947		7	30.47	73.898
98		941192	9.8995	4.6104	0.01020	8	30.79	75.430
99	9801	970299	9.9499	4.6261	0.01010	9	31:10	76:977
100	10000	1000000	10.0000	4.6416	0.01000	10.0	31.42	78.540
101	10201	1020301	10.0499	4.6570	0.00990	1	31.73	80:118
102	10404	1061208	10.0995	4.6723	0.00980	2	32.04	81.713
103	10609	1092727	10.1489	4.6875	0.00971	3	32.36	83.323
103	10816	1124864	10.1980	4.7027	0.00962	4	32 67	84 · 949
	11025				0.00962	_		
105	11025	1157625	10.2470	4.7177	0.00997	5	32.99	86:590
106	11236	1191016	10 · 2956	4.7326	0.00943	6	33.30	88 · 247
107	11449	1225043	10.3441	4.7475	0.00935	7	33.62	89 - 920
108	11664	1259712	10 3141	4.7622	0.00926	8	33.93	91 · 609
109	11881	1295029	10.4403		0.00920	9	34.24	93.313
				4.7769				
110	12100	1331000	10.4881	4.7914	0.00909	11.0	34.56	95.033
111	12321	1367631	10.5357	4.8059	0.00901	1	34.87	96.769
112	12544	1404928	10.5830	4.8203	0.00893	2	$35 \cdot 19$	98 - 520
					0.00882	3	35.50	100 · 287
113	12769	1442897	10.6301	4.8346				100 287
114	12996	1481544	10.6771	4.8488	0.00877	4	35.81	
115	13225	1520875	10.7238	4.8629	0.00870	5	36.13	103.869
110	13456	1560896	10.7709	4.8770	0.00862	6	36 · 44	105:683
116			10.7703			7		107.513
117	13689	1601613	10.8167	4.8910	0.00855		36.76	
118	13924	1643032	10.8628	4.9049	0.00847	8	37:07	109:359
119	14161	1685159	10.9087	4.9187	0.00840	9	37.38	111.220
120	14400	1728000	10.9545	4.9324	0.00833	15.0	37:70	113.097

TABLE No. 216—continued.

-								_
No. 1	Square	Cube	Square Root	Cube Root	Reciprocal	Diam.	ference of	Area of Circle
æ	x^2	x3	\sqrt{x}	3/x	æ	d	Circle	π_{d^2}
			~ 20	~ ~	30		πd	4
121	14641	1771561	11.0000	4.9461	0.00826	12.1	38.01	114.990
122	14884	1815848	11.0454	4.9597	0.00820	2	38:33	116.899
123	15129	1860867	11.0905	4.9732	0.00813	3	38.64	118.823
124	15376	1906624	11.1355	4.9866	0.00806	4	38.96	120.763
125	15625	1953125	11.1803	5.0000	0.00800	5	39.27	122.72
126	15876	2000376	11.2250	5.0133	0.00794	6	39.58	124.69
127	16129	2048383	11.2694	5.0265	0.00787	7	39.90	126.68
128	16384	2097152	11.3137	5.0397	0.00781	8	40.21	128.68
129	16641	2146689	11.3578	5.0528	0.00775	9	40.53	130.70
130	16900	2197000	11.4018	5.0658	0.00769]	13.0	40.84	132.73
131	17161	2248091	11.4455	5.0788	0.00763	1	41.15	134.78
132	17424	2299968	11.4891	5.0916	0.00758	2	41.47	136.85
133	17689	2352637	11.5326	5.1045	0.00752	3	41.78	138.93
134	17956	2406104	11.5758	5.1172	0.00746	4	42.10	141.03
135	18225	2460375	11.6190	5.1299	0.00741	5	42.41	143.14
136	18496	2515456	11.6619	5.1426	0.00735	6	42.73	145.27
137	18769	2571353	11.7047	5.1551	0.00730	7	43.04	145 41
138	19044	2628072	11.7473	5.1676	0.00725	8	43.35	
139	19321	2685619	11.7898	5.1801	0.00719	9	43.67	149.57
140	19600	2744000	11.8322	5.1925	0.00714	14.0		151.75
	20000	-111000	11 0022	0 1020	0 00711	17 0	43.98	153.94
141	19881	2803221	11.8743	5.2048	0.00709	1	44.30	156.15
142	20164	2863288	11.9164	5.2171	0.00704	2	44.61	158.37
143	20449	2924207	11.9583	5.2293	0.00699	3	44.92	160.61
144	20736	2985984	12.0000	5.2415	0.00694	4	45.24	162.86
145	21025	3048625	12.0416	5.2536	0.00690	5	45.55	165.13
146	21316	3112136	12.0830	5.2656	0.0000		4 10 1000	1.077.40
147	21609	3176523	12.1244	5.2776	0.00685	6	45.87	167.42
148	21904	3241792	12.1655	5 2896	0.00680	7 8	46.18	169.72
149	22201	3307949	12 2066	5.3015	0.00678		46.50	172.03
150	22500	3375000	12 2474	5.3133	0.00667	15.0	46.81	174.37
		10000	12 21/1	0 0100	0 00007	19.0	47.12	176.71
151	22801	3442951	12.2882	5.3251	0.00662	1	47.44	179.08
152	23104	3511808	12.3288	5.3368	0.00658	$\frac{1}{2}$	47.75	181.46
153	23409	3581577	12.3693	5.3485	0.00654	3	48.07	183.85
154	23716	3652264	12.4097	5.3601	0.00649	4	48.38	186.27
155	24025	3723875	12.4499	5.3717	0.00645	5	48.69	188.69
150	0.4000	0700410	HO 405				1	200 00
156	24336	3796416	12.4900	5.3832	0.00641	6	49.01	191.13
157	24649	3869893	12.5300	5-3947	0.00637	7	49.32	193.59
158	24964	3944312	12.5698	5.4061	0.00633	8	49.64	196.07
159	25281	4019679	12.6095	5.4175	0.00629	9	49.95	198.56
160	25600	4096000	12.6491	5.4288	0.00625	16.0	50.27	201.06
_		1	1					

Table No. 216—continued.

					_	1		
2.7	1 0	~ .	Square	Cube	Reciprocal		Circum-	
No.	Square	Cube	Root	Root	1		ference of	
æ	22	23	V 20	3/2	20	đ	Circle π d	$-\frac{\pi}{4}d^2$
		1				1	πu	1 4
			1					
161	$_{1}$ 25921	4173281	12.6886	5 • 4401	0.00621	16.1	50.58	203.58
162	26244	4251528	12.7279	5.4514	0.00617	2	50.89	206.12
163	26569	4330747	12.7671	5.4626	0.00613	3	51.21	208.67
164	26896	4410914	12.8062	5.4737	0.00610	4	51.52	211.24
165	27225	4492125	12.8452	5.4848	0.00606	5	51.84	213.82
7/2/2	17550	4571900	10.0011	5:4959	0.00602	0	50.35	010.40
166 167	27556 27889	4574296 4657463	12·8841 12·9228	5.5069	0.00599	6	52.15	216.42
						7	52.46	219:04
168	28224	4741632	12.9615	5.5178	0.00595	8	52.78	221.67
169	28561	4826809	13.0000	5.5288	0.00592	9	53.09	224.32
170	28900	+ 4913000	13.0384	5.5397	0.00588	17.0	53.41	226.98
171	29241	5000211	13:0767	5.5505	0.00585	1	53.72	229:66
172	29584	5088448	13.1149	5.5613	0.00581	2	54.04	232.35
173	29929	5177717	13.1529	5.5721	0.00578	3	54.35	235.06
174	30276	5268024	13.1909	5.5828	0.00575	4	54.66	237.79
175	30625	5359375	13.2288	5.5934	0.00571	5	54.98	240.53
110	1		10 1100	0 00002			0.2.00	210 00
176	30976	5451776	13:2665	5.6041	0.00568	6	$55 \cdot 29$	243.28
177	31329	5545233	13:3341	5.6147	0.00565	7	55.61	246.06
178	31684	5639752	13:3417	5.6252	0.00562	8	55.92	248.85
179	32041	5735339	13.3791	5.6357	0.00559	9	56.23	251.65
180	32400	5832000	13:4164	5:6462	0.00556	18:0	56.55	$254 \cdot 47$
		E000E44	10 1500	r ares	0.00**0	,	L # 0 00	0.00
181	32761	5929741	13.4536	5.6567	0.00552	1	56.86	257:30
182	33124	6028568	13:4907	5.6671	0.00549	2	57:18	260.16
183	33489	6128487	13.5277	5.6774	0.00546	3	57.49	263.02
184	33856	6229504	13.5647	5.6877	0.00543	4	57.81	265.90
185	34225	6331625	13.6015	5.6980	0.00541	5	58.12	268.80
186	34596	6434856	13:6382	5.7083	0.00538	6	58.43	271.72
187	34969	6539203	13.6748	5.7185	0.00535	7	58.75	274 65
188	35344	6614672	13.7113	5.7287	0.00532	8	59.06	277 : 59
189	35721	6751269	13.7477	5.7388	0.00529	9	59.38	280.55
190	36100	6859000	13.7840	5.7489	0.00526	19.0	59.69	283.53
150	30100	, 0000000	10 1010	0 1100	0 00020	10 0	1767 00	2
191	36481	6967871	13.8203	5.7590	0.00524	1	60:00	286:52
192	36864	7077888	13.8564	5.7690	0.00521	2	60.32	289:53
193	37249	7189057	13.8924	5.7790	0.00218	3	60.63	$292 \cdot 55$
194	37636	7301384	13.9284	5.7890	0.00515	4	60.95	295.59
195	38025	7414875	13.9642	5.7989	0.00513	5	61.26	298:65
		T (.)() T (.)	14 0000	F 0000	0.00510		01.50	001.7N
196	38416	7529536	14.0000	5.8088	0.00510	6	61.58	301.72
197	38809	7645373	14.0357	5.8186	9.00508	7	61.89	304.81
198	39204	7762392	14.0712	5.8285	0.00505	8 '	62.20	307:91
199	39601	7880599	14 · 1067	5.8383	0.00503	9	62.52	311.03
200	40000	8000000	14 · 1421	5.8480	0.00200	20.0	62.83	314.16
1						_		

Table No. 216—continued.

No.	Square x2	Cube x^3	Square Root	Cube Root	Reciprocal 1 x	Diam.	Circum- ference of Circle πd	Area of Circle $\frac{\pi}{4}d^2$
201	40401	8120601	14:1774	5·8578	0·00498	20·1	63:15	317·31
202	40804	8242408	14:2127	5·8675	0·00495	2	63:46	320·47
203	41209	8365427	14:2478	5·8771	0·00493	3	63:77	323·65
204	41616	8489664	14:2829	5·8868	0·00490	4	64:09	326·85
205	42025	8615125	14:3178	5·8964	0·00488	5	64:40	330·06
206	42436	8741816	14:3527	5.9059		6	64·72	333·29
207	42849	8869743	14:3875	5.9155		7	65·03	336·54
208	43264	8998912	14:4223	5.9250		8	65·35	339·79
209	43681	9129323	14:4568	5.9345		9	65·66	343·07
210	44100	9261000	14:4914	5.9439		21·0	65·97	346·36
211	44521	9393931	14 · 5258	5·9533	0:00474	1	66 · 29	349·67
212	44944	9528128	14 · 5602	5·9627	0:00472	2	66 · 60	352·99
213	45369	9663597	14 · 5945	5·9721	0:00469	3	66 · 92	356·33
214	45796	9800344	14 · 6287	5·9814	0:00467	4	67 · 23	359·68
215	46225	9938375	14 · 6629	5·9907	0:00465	5	67 · 54	363·05
216	46656	10077696	14 · 6969	6.0000	0:00463	6	67.86	366·44
217	47089	10218313	14 · 7809	6.0092	0:00461	7	68.17	369·84
218	47524	10360232	14 · 7648	6.0185	0:00459	8	68.49	373·25
219	47961	10503459	14 · 7986	6.0277	0:00457	9	68.80	376·68
220	48400	10648000	14 · 8324	6.0368	0:00455	22·0	69.12	380·13
221	48841	10793861	14:8661	6:0459	0:00452	1	69·43	383.60
222	49284	10941048	14:8997	6:0550	0:00450	2	69·74	387.08
223	49729	11089567	14:9332	6:0641	0:00448	3	70·06	390.57
224	50176	11239424	14:9666	6:0732	0:00446	4	70·37	394.08
225	50625	11390625	15:0000	6:0822	0:00444	5	70·69	397.61
226	51076	11543176	15:0333	6:0912	0:00442	6	71 · 00	401·15
227	51529	11697083	15:0665	6:1002	0:00441	7	71 · 31	404·71
228	51984	11852352	15:0997	6:1091	0:00439	8	71 · 63	408·28
229	52441	12008989	15:1327	6:1180	0:00437	9	71 · 94	411·87
230	52900	12167000	15:1658	6:1269	0:00435	23·0	72 · 26	415·48
231	53361	12326391	15·1987	6·1358	0.00433	1	72·57	419·10
232	53824	12487168	15·2315	6·1446	0.00431	2	72·88	422·73
233	54289	12649337	15·2643	6·1534	0.00429	3	73·20	426·38
234	54756	12812904	15·2971	6·1622	0.00427	4	73·51	430·05
235	55225	12977875	15·3297	6·1710	0.00426	5	73·83	433·74
236	55696	13144256	15:3623	6·1797	$\begin{array}{c} 0 \cdot 00424 \\ 0 \cdot 00422 \\ 0 \cdot 00420 \\ 0 \cdot 00418 \\ 0 \cdot 00417 \end{array}$	6	74·14	437 · 44
237	56169	13312053	15:3948	6·1885		7	74·46	441 · 15
238	56644	13481272	15:4272	6·1972		8	74·77	444 · 88
239	57121	13651919	15:4596	6·2058		9	75·08	448 · 63
240	57600	13824000	15:4919	6·2145		24·0	75·40	452 · 39

Table No. 216-continued.

	TABLE NO. 210—continued.									
No w	Square x^2	Cube x3	Square Root ~.c	Cube Root	Reciprocal	Diam.	Circum- ference of Circle π d			
241		+ 13997521	15 · 5242	6·2231	0.00415	24·1	75.71	456·17		
242		14172488	15 · 5563	6·2317	0.00413	2	76.03	459·96		
243		14348907	15 · 5885	6·2403	0.00412	3	76.34	463·77		
244		14526784	15 · 6205	6·2488	0.00410	4	76.65	467·59		
245		14706125	15 · 6525	6·2573	0.00408	5	76.97	471·44		
246 247 248 249 250	60516 61009 61504 62001 62500	$\begin{array}{c c} 14886936 \\ 15069223 \\ 15252992 \\ 15438249 \\ 15625000 \end{array}$	15:6844 15:7162 15:7480 15:7797 15:8114	$\begin{array}{c c} 6.2658 \\ 6.2743 \\ 6.2828 \\ 6.2912 \\ 6.2996 \end{array}$	0.00407 0.00405 0.00403 0.00402 0.00400	6 7 8 9 25.0	77·28 77·60 77·91 78·23 78·54	475 · 29 479 · 16 483 · 05 486 · 95 490 · 87		
251	63001	15813251	15:8430	6:3080	0.00398	1	78.85	494·81		
252	63504	16003008	15:8745	6:3164	0.00397	2	79.17	498·76		
253	64009	16194277	15:9060	6:3247	0.00395	3	79.48	502·73		
254	64516	16387064	15:9374	6:3330	0.00394	4	79.80	506·71		
255	65025	16581375	15:9687	6:3413	0.00392	5	80.11	510·71		
256	65536	16777216	16:0000	6:3496	0.00391	6	80·42	514·72		
257	66049	16974593	16:0312	6:3579	0.00389	7	80·74	518·75		
258	66564	17173512	16:0624	6:3661	0.00388	8	81·05	522·79		
259	67081	17373979	16:0935	6:3743	0.00386	9	81·37	526·85		
260	67600	17576000	16:1245	6:3825	0.00385	26· 0	81·68	530·93		
261	68121	17779581	16:1555	6:3907	0.00383	1	82·00	585·02		
262	68644	17984728	16:1864	6:3988	0.00382	2	82·31	589·13		
263	69169	18191447	16:2173	6:4070	0.00380	3	82·62	543·25		
264	69696	18399744	16:2481	6:4151	0.00379	4	82·94	547·89		
265	70225	18609625	16:2788	6:4232	0.00377	5	83·25	551·55		
266	70756	18821096	16:3095	6:4312	0:00376	$\begin{bmatrix} 6\\7\\8\\9\\27\cdot 0\end{bmatrix}$	83·57	555·72		
267	71289	19034163	16:3401	6:4393	0:00375		83·88	559·90		
268	71824	19248832	16:3707	6:4473	0:00373		84·19	564·10		
269	72361	19465109	16:4012	6:4553	0:00372		84·51	568·32		
270	72900	19683000	16:4317	6:4633	0:00370		84·82	572·56		
271	73441	19902511	16:4621	6·4713	0:00369	1	85·14	576 · 80		
272	73984	20123648	16:4924	6·4792	0:00368	2	85·45	581 · 07		
273	74529	20346417	16:5227	6·4872	0:00366	3	85·77	585 · 35		
274	75076	20570824	16:5529	6·4951	0:00365	4	86·08	589 · 65		
275	75625	20796875	16:5831	6·5030	0:00364	5	80·39	593 · 96		
276	76176	21024576	16:6132	6·5108	0.00362	$\begin{bmatrix} 6 \\ 7 \\ 8 \\ 9 \\ 28 \cdot 0 \end{bmatrix}$	86·71	598·28		
277	76729	21253933	16:6433	6·5187	0.00361		87·02	602·63		
278	77284	21484952	16:6733	6·5265	0.00360		87·34	606·99		
279	77841	21717639	16:7033	6·5343	0.00358		87·65	611·36		
280	78400	21952000	16:7332	6·5421	0.00357		87·96	615·75		

Table No. 216—continued.

			Square	ube	Reciprocal		Circum-	Area of
No.	Square	('uhe	Root	Root	recipiocal	Diam.	ference of	Circle
20	x^2	x2	N/x	2/2	, 1	d	Circle	π_{d^2}
			~ ;5	N 30	w.		πd	4
101	70001	N0100011	10001	.3 = 4444	0 000000			
281	78961	22188041	16.7631	6.2400	0.00356	28.1	88.28	$620 \cdot 16$
282	79524	22425768	16.7929	6.5577	0.00355	2	88:59	624.28
283	80089	22665187	16.8226	6.2024	0.00323	;;	88:91	629.02
284	80656	22906304	16.8523	6.5731	0.00352	4	89.22	633 - 47
285	81225	23149125	16.8819	6.5808	0.00351	5	89.54	637 - 94
							00. 01	001 01
286	81796	23393656	16:9115	6.5885	0.00350	6	89.85	642-42
287	82369	28639903	16.9411	6 · 5962	0.00348			
288	82944	23887872	16.9706	6.6039		7	90.16	646.92
					0.00347	8	90.48	651.44
289	83521	24137569	17.0000	6.6112	0.00346	()	90:79	655-97
290	84100	24389000	17:0294	6.6191	0.00345	59.0	91.11	$660 \cdot 52$
		24.44.48						
291	84681	24642171	17:0587	6.6267	0.00341	1	91.42	665.08
292	85264	24897088	17:0880	6:6343	0.00345	2	91.73	669 - 66
293	85849	25153757	17:1172	6.6419	0.00341	3	92.05	674.26
294	86436	25412184	17:1464	6.6492	0.00340	4	92.36	678.87
295	87025	25672375	17:1756	6.6569	0.00339	56	92.68	683 • 49
				O COOLE		• 0	92.00	68.5.49
296	87616	25934336	17:2047	6.6644	0.00338	43	00.00	202 10
297	88209	26198073	17 2337	6:6719		6	92.99	688 · 13
298	88804	26463592			0.00337	7	93.31	692.79
299	89401		17 - 2627	6.6794	0.00336	8	93.62	697 • 46
		26730899	17 2916	6.6869	0.00334	9	93.93	702 - 15
300	90090	27000000	17:3205	6.6943	0.00333	30.0	94 · 25	706.86
201								
301	90601	27270901	17:3494	6.7018	0.00385	1	94.56	711.58
302	91204	27543608	17:3781	6.7095	0.00331	1)	94.88	716.31
303	91809	27818127	17:4069	6.7166	0.00320	3	95.19	721.07
304	92416	28094164	17.4356	6.7240	0.00329	4	95.50	725.83
305	93025	28372625	17:4642	6.7313	0.00328	5		
					0 00020	O.	95.82	730.62
306	93636	28652616	17:4929	6:7387	0.00327	6	(1/2 . 11)	F1.500 1.5
307	94249	28934413 .	17:5214	6.7460	0.00327		96.13	735 - 42
308	94864	29218112	17:5499	6.7533		7	96.45	740.23
309	95481	29503629	17.5781		0.00325	8	96.76	745.06
310	96100	29791000	17:6968	6.7606	0.00324	9	97.08	749 • 91
010	30100	20101000	11.0.09	6.7679	0.00323	31.0	97:39	754.77
311	96721	30080231	17,0050	O. MMEO				
			17.6352	6.7752	0.00322	1	97.70	759.64
312	97344	30371328	17.6635	6.7824	0.00321	2	98.02	764.54
313	97969	30664297	17.6918	6.7897	0.00319	3	98.33	769.44
314	98596	30959144	17.7200	6:7969	0.00318	4	98.65	774.37
315	99225	31255875	17.7482	6.8041	0.00317	5	98.96	
						U	00 00	779.31
316	99856	31554496	17.7764	6.8113	0.00316	6	00.07	E04 0=
317	100489	31855013	17.8015	6.8182	0.00319		99.27	784.27
318	101124	32157432	17.8326	6.8256		7	99.59	$789 \cdot 24$
319	101761	32461759	17.8606	6.8328	0.00314	8	99.90	794 23
320	102400	32768000	17.8885		0.00313	9	100.2	$799 \cdot 23$
020	102100	02100000	11 0000	6.8399	0.00313	32.0	100.5	804.25
						1		

Table No. 216—continued.

-								
			Square	Cube	Reciprocal		Circum-	Area of
No.	Square	Cube	Root	Root	1	Diam.	ference of	Circle
æ	x^2	x 3	No	3/20	- x	đ	Circle	$-\pi d^2$
			№ 30	N 10	10		πd	4
		and the second of the second				_		-
321	103041	33076161	17.9165	6.8470	0.00312	32 · 1	100.8	000.00
								809.28
322	103684	33386248	17-9414	6.8541	0.00311	. 2	101.2	814:33
323	104329	33698267	17.9722	6:8612	0.00310	3	101.5	819.40
324	104976	34012224	18.0000	6.8683	0.00309	4	101.8	824 · 48
325	105625	34328124	18:0278	6.8753	0.00308	5	102.1	829:58
326	106276	34645976	18:0555	6.8824	0.00307	6	102.4	834.69
327	106929	34965783	18.0831	6.8894	0.00306	7	102.7	839.82
328	107584	35287552	18.1108	6.8964	0.00302	8	103.0	814.96
329	108241	35611289	18-1384	6.5034	0.00304	9	103 · 4	850.12
330	108241	35937000	18.1659	6.9101	0.00303	33.0	103.7	855:30
990	108300	50057000	19, 1099	0.3101	() ()(),)(),)	(ii) U	100 7	099.90
991	100501	00001001	10.1094	0.0174	0.00302	1	104.0	860:49
331	109561	36264691	18.1934	6.9174		1		
332	110224	36594368	18.2209	6.9244	0.00301	. 2	104:3	865.70
333	110889	36926037	18:2483	6.9313	0.00300	3	104.6	870.92
334	111556	37259704	$18 \cdot 2757$	6.9382	0.00555	4	104.9	876:16
335	112225	37595375	18:3030	6.9451	0.00299	5	105.2	881 · 41
336	112896	37933056	18:3303	6.9521	0.00298	6	105.6	886+68
337	113569	38272753	18:3576	6.9589	+0.00297	7	105.9	891.97
338	114244	38614472	18:3848	6:9658	0.00296	8	106:2	897 - 27
339	114921	38958219	18.4120	6.9727	0.00295	9	106.5	902.59
340	115600	39304000	18 4391	6.9795	0.00291	34.0	106.8	907 . 92
940	11.0000	35730/1000	10 4001	0 0700	0 00201	,r1 U	1000	001 02
341	116281	39651821	18:4662	6.9864	0.00293	1	107:1	913 27
				6.9932	0.00292	2	107.4	918.63
342	116964	40001688	18:4932			3		924 · 01
343	117649	40353607	18 - 5203	7.0000	0.00292		107.8	
344	118336	40707584	18:5172	7.0068	0.00291	4	108.1	929 • 41
345	119025	41063625	18:5742	7:0136	0.00290	ā.	108.4	934.82
346	119716	41421736	18.6011	$7 \cdot 0203$	0.00289	- 6	108.7	940.25
347	120409	41781923	18.6279	$7 \cdot 0271$	0.00288	7	109.0	945.69
348	121104	42144192	18:6548	7.0338	-0.00287	8	109:3	951 15
349	121801	42508549	18:6815	7:0106	0.00287	9	$109 \cdot 6$	956:62
350	122500	42875000	18:7083	7:0473	0.00286	35:0	110.0	962 - 11
OHO	122000	12070000	10 1000					
351	123201	43243551	18:7350	7:0540	0:00285	1	110:3	967:62
352	123904	43614208	18.7617	7.0607	0.00281	2	110.6	973:14
				7.0674	0.00283	3	110.9	978.68
353	124609	43986977	18.7883		0.00282	4	111.2	984 - 23
354	125316	44361864	18.8149	7.0740				989.80
355	126025	44738875	18.8414	7.0807	0.00282	5	111.5	303 30
050	10//=00	(511-101-1	10.0000	F. 00=0	0.00281	6	111.8	995.38
356	126736	45118016	18.8680	7.0873		7		1001.0
357	127449	45199293	18.8944	7.0940	0.00280		112.2	
358	128164	45882712	$-18 \cdot 9209$	$7 \cdot 1006$	0.00279	8	112.5	1006.6
359	128881	46268279	18:9473	$7 \cdot 1072$	0.00279	9	112.8	1012.2
360	129600	46656000	18.9737	7:1138	-0.00278	30.0	113.1	1017 9
					1			

Table No. 216—continued.

_						-		-
			Square	Cube	Reciprocal		Circum-	Area of
No.	Square	Cube	Root	Root	*	Diam.	ference of	Circle
2*	22	253			1	d	Circle	
			\sqrt{x}	3/20	25	· · · ·	πd	$-\pi d^2$
			1	1			πα	4
361	130321	47045881	19:0000	7-1204	0.00277			
00.						36.1	113.4	1023.5
362	131044	47437928	19:0263	$7 \cdot 1269$	0.00526	•)	11:3.7	1029 - 2
363	131769	47832147	19 - 0526	7 : 1335	0.00275	3	114.0	1034 . 9
364	132496	48228544	19:0788	7.1400	0.00275	4	114.4	1040.6
365	133225	48627125	19.1050					
000	1-10	1002/120	19 10,00	7:1466	0.00274	. 5	114.7	1046:3
0.0								
366	133956	49027896	19.1311	7 1531	0.00273	6	115.0	1052 - 1
367	134689	49440863	19:1572	7:1596	0.00272	7	115.3	1057.8
368	135424	49836032	19:1833	7 1661	0.00272			
369	136161	50243409				8	115.6	1063.6
			19 · 2094	7:1726	0.00521	1)	115.9	1069 4
370	136900	50653000	19-2354	$7 \cdot 1791$	0.00270	37 · ()	116.2	1075-2
						111		10.100 =
371	137641	51064811	19:2614	7 - 1855	0.00270	1	110.0	1001.0
372	138384	51478848	19 2873	7 1920		1	116.6	1081.0
373	139129				0.00508	• 2	116.9	1086 9
		51895117	19:3132	7.1984	0.00268	3	117.2	1092.7
374	139876	52313624	19.3391	7.2048	0.00267	4	117.6	1098.6
375	140625	52734375	19:3649	7:2112	0.00267	. 5	117.8	
			1	1	1	J	1110	1104.5
376	141376	53157376	19:3907	7.2177	0 00000			
377	142129				0.00266	6	118:1	1110.4
		53582633	19:4165	7 - 2240	0.00502		118:4	1116.3
378	142884	54010152	19:4422	7 : 2304	0.00265	8	118.8	1122 - 2
379	143641	54439939	19:1679	7 - 2368	0.00264			
380	1.11.100	54872000	19:4936	7.2432		9	119-1	1128-1
				1 - 10-	0.00563	38.0	119.4	1134.1
381	145161	55306341	20 220					
382			19:5192	7:2495	0.00505	1	119.7	1140.1
	145924	55742968	19.5448	7 - 2558	0.00565	2)	120.0 (1146 1
383	146689	56181887	19:5704	7 - 2622	0.00261			
381	147456	56623104	19.5959	7.2685	0.00260	3	120.3	1152.1
385	148225	57066625	19.6214			4	120.6	1158-1
			19 0211	7 · 2748	0.00500	5	121 · 0	1164.2
386	148996							
		57512456	19.6469	7.2811	0.00259	6	121.3	1170.0
387	149769	57960603	19:6723	7.2874	0.00258			1170.2
388	150544	58411072	19:6977	7 - 2936		7	151.6	1176:3
389	151321	58863869			0.00258	8	121.9	1182.4
390	152100	59319000	19.7231	7:2999	0.00257	9	122.2	1188.5
000	10=100	93351343(3())	19:7481	7:3061	0.00256	36.0	122.5	1194.6
1107	15000-				1	a	122 0	1101 0
391	152881	59776171	19:7737	7:3124	0.00256	,		
392	153664	60236288	19.7990			1	122.8	1200.7
393	154449	606984.57		7:3186	0.00255	2	123 - 2	1206 - 9
394	155236		19.8242	7:3248	0.00254	3	123.5	1213.0
		61162084	19.8494	7.3310	0.00254	4	123.8	
395	156025	61629875	19.8746	7.3372	0.00253			1219.2
					(1(1200	5	124 · 1	1225.4
396	156816	62099136	19.8997	~,0101	Δ			
397	157609	62570773		7:3434	0.00253	6	124 · 4	1231 - 1
398	158104		19:9249	7:3496 '	0.00252	7	124.7	1237 9
		63044792	19.5455	7:3558	0.00251	ś		
398	159201	63521199	19:9750	7:3619	0.00251		125.0	1244 · 1
400	160000	61000000	20.0000	7:3681	x	9	125.3	1250.4
	t			1 0001	0.00250	40.0	125.7	1256.6

Table No. 216—continued.

No.	Square x2	Cube x3	Square Root	Cube Root $\sqrt[3]{x}$	Reciprocal $\frac{1}{x}$	Diam.	Circum- ference of Circle π d	Area of Circle $\frac{\pi_{d^2}}{4}$
401 402 403 404 405	$\begin{array}{c} 160801 \\ 161604 \\ 162409 \\ 163216 \\ 164025 \end{array}$	64481201 64964808 65450827 65939264 66430125	20:0250 20:0499 20:0499 20:0749 20:0998 20:1246	7:3742 7:3803 7:3864 7:3925 7:3986	0.00249 0.00249 0.00248 0.00248 0.00247	40·1 2 3 4 5	126·0 126·3 126·6 126·9 127·2	1262 · 9 1269 · 2 1275 · 6 1281 · 9 1288 · 2
406 407 408 409 410	164836 165649 166464 167281 168100	66923416 67419143 67917312 68417929 68921000	20:1494 20:1742 20:1990 20:2237 20:2485	7:4047 7:4108 7:4169 7:4229 7:4290	$\begin{array}{c} 0 \cdot 00246 \\ 0 \cdot 00246 \\ 0 \cdot 00245 \\ 0 \cdot 00244 \\ 0 \cdot 00244 \end{array}$	$\begin{bmatrix} 6 \\ 7 \\ 3 \\ 9 \\ 41 \cdot 0 \end{bmatrix}$	127·5 127·9 128·2 128·5 128·8	1294 · 6 1301 · 0 1307 · 4 1313 · 8 1320 · 3
411 412 413 414 415	$\begin{array}{r} 168921 \\ 169744 \\ 170569 \\ 171396 \\ 172225 \end{array}$	$\begin{array}{c} 69426531 \\ 69934528 \\ 70444997 \\ 70957944 \\ 71473375 \end{array}$	20 · 2731 20 · 2978 20 · 3224 20 · 3470 20 · 3715	7 · 4350 7 · 4410 7 · 4470 7 · 4530 7 · 4590	$ \begin{array}{c c} 0.00243 \\ 0.00243 \\ 0.00242 \\ 0.00242 \\ 0.00241 \end{array} $	1 2 3 4 5	129·1 129·4 129·7 130·1 130·4	1326·7 1333·2 1339·6 1346·1 1352·7
416 417 418 419 420	$\begin{array}{c} 173056 \\ 173889 \\ 174724 \\ 175561 \\ 176400 \end{array}$	71991296 72511713 73034632 73560059 74088000	$\begin{array}{c} 20 \cdot 3961 \\ 20 \cdot 4206 \\ 20 \cdot 4450 \\ 20 \cdot 4695 \\ 20 \cdot 4939 \end{array}$	$\begin{array}{c} 7 \cdot 4650 \\ 7 \cdot 4710 \\ 7 \cdot 4770 \\ 7 \cdot 4829 \\ 7 \cdot 4889 \end{array}$	$\begin{array}{c} 0.00240 \\ 0.00240 \\ 0.00239 \\ 0.00239 \\ 0.00238 \end{array}$	$\begin{vmatrix} 6\\7\\8\\9\\42\cdot0 \end{vmatrix}$	130·7 131·0 131·3 131·6 131·9	1359·2 1365·7 1372·3 1378·9 1385·4
421 422 423 424 425	177241 178084 178929 179776 180625	74618461 75151448 75686967 76225024 76765625	$\begin{array}{c c} 20 \cdot 5183 \\ 20 \cdot 5426 \\ 20 \cdot 5670 \\ 20 \cdot 5913 \\ 20 \cdot 6155 \end{array}$	7·4948 7·5007 7·5067 7·5126 7·5185	0·00238 0·00237 0·00236 0·00236 0·00235	1 2 3 4 5	132·3 132·6 132·9 133·2 133·5	1392·0 1398·7 1405·3 1412·0 1418·6
426 427 428 429 430	181476 182329 183184 184041 184900	77308776 77854483 78402752 78953589 79507000	20.6398 20.6640 20.6882 20.7123 20.7364	7:5244 7:5302 7:5361 7:5420 7:5478	0:00235 0:00234 0:00234 0:00233 0:00233	6 7 8 9 43·0	133·8 134·1 134·5 134·8 135·1	1425 · 3 1432 · 0 1438 · 7 1445 · 5 1452 · 2
431 432 433 434 435	185761 186624 187489 188356 189225	80062991 80621568 81182737 81746504 82312875	20·7605 20·7846 20·8087 20·8327 20·8567	7:5587 7:5595 7:5654 7:5712 7:5770	0:00232 0:00231 0:00231 0:00230 0:00230	1 2 3 4 5	$\begin{array}{c} 135 \cdot 4 \\ 135 \cdot 7 \\ 136 \cdot 0 \\ 136 \cdot 3 \\ 136 \cdot 7 \end{array}$	1459:0 1465:7 1472:5 1479:3 1486:2
436 437 438 439 440	190096 190969 191844 193721 193600	82881856 83453453 84027672 84604519 85184000	20 · 8806 20 · 9045 20 · 9284 20 · 9523 20 · 9762	7:5828 7:5886 7:5844 7:6001 7:6059	0:00229 0:00229 0:00228 0:00228 0:00227	6 7 8 9 44·0	137:0 137:3 137:6 137:9 138:2	1493:0 1499:9 1506:7 1513:6 1520:5

TABLE No. 216—continued,

NT.		1	Square	Cube	Reciprocal		Circum-	Area of
No.	Square	Cube	Root	Root	1	Diam.	ference of	Circle
x	x2	253	N 20	3/2	x	d	Circle	π_{d2}
			1 14 10	N. D.	30		πd	4
					-			_
441	194481	85766121	21.0000	E.011E	0.0000			
442				7.6117	0.00227	44.1	138.5	1527.5
	195364	86350888	21.0238	7.6174	0.00226	2	138.9	1534.4
443	196249	86938307	21·0±76	7.6232	0.00226	3	139 · 2	1541.3
444	197136	87528384	21.0713	7:6289	0.00225	4	139.5	1548.3
445	198025	88121125	21.0950	7.6346	0.00225	5	139.8	1555.3
				. 0010	0 00220		100 0	1999 9
446	198916	88716536	21.1187	7.6403	0.00224	0	740.7	7 700 0
447	199809	89314623	21 · 1424	7.6460		6	140.1	1562.3
448	200704	89915392			0.00224	7	140.4	1569.3
449			21.1660	7.6517	0.00223	8	140.7	$1576 \cdot 3$
	201601	90518849	21.1896	7:6574	0.00553	9	141.1	1583.4
450	202500	91125000	21.2132	7.6631	0.00222	45.0	141.4	1590.4
							1	
451	203401	91733851	21 · 2368	7.6688	0.00222	1	141.7	1597.5
452	204304	92345408	21 · 2603	7.6744	0.00551	2	142.0	1601.6
4.53	205209	92959677	21.2838	7.6801	0.00221			
454	206116	93576664	21.3073	7.6857		3	142.3	1611.7
455		94196375	21 3307		0.00220	1	142.6	1618.8
1017	201020	01100070	71,9904	7.6914	0.00220	5	142.9	1626.0
456	207936	Distribute	31 0543					
		94818816	21 · 3542	7:6970	0.00219	6	143:3	1633 · 1
157	208849	95443993	21.3776	7 - 7026	0.00519	7	143.6	1640.3
458	209764	96071912	21 - 4009	7.7082	0.00218	8	143.9	1647.5
459 .	210681	96702579	21:4243	7.7138	0.00218	9	144.2	
460	211600	97336000	21:4476	7.7194	0.00217	46.0		1654.7
				1 1101	0 00211	F() ()	144.9	1661.9
461	212521	97972181	21 - 1709	7 - 7250	0.00217			
462	213444	98611128	21 - 4942			1	144.8	$1669 \cdot 1$
463	214369	99252847		7.7306	0.00216	2	145.1	1676.4
461	215296		21.5174	7:7362	0.00216	3	145.5	1683.7
		99897344	21.5407	7.7418	0.00516	4	145.8	1690 - 9
465	216225	100544625	21:5639	7 · 7473	0.00215	5	146.1	1698 · 2
4.2.3	0.15.5						110 1	1000 2
466	217156	101194696	21:5870	7 - 7529	0.00215	6	146.4	150- 5
467	218089	101847563	21.6102	7.7584	0.00214			1705.5
468	219024	102503232	21 - 6333	7.7639		7	146.7	1712.9
469	219961	103161709	21:6564	7 7695	0.00214	8	147.0	1720.2
470	220900	103823000			0.00513	9	147.3	1727:6
* 10	220000	100020000	21 - 6795	7.7750	0.00213	47:0	147.7	1734 . 9
471	221841	101107111	11 7005					
		104487111	21.7025	7:7805	0.00212	I	148.0	1742 - 3
472	222781	105154048	21.7256	7.7860	0.00212	2	148.3	1749.7
473	223729	105823817	21.7486	7:7915	0.00211	3	148.6	
474	224676	106496424	21.7715	7.7970	0.00211	4		1757 2
475	225625	107171875	21.7945	7.8025	0.00211		148.9	1764.6
				1 (020)	0 00211	5	149.2	$1772 \cdot 1$
476	226576	107850176	21.8174	7.8070	0.00010			
477	227529	108531333	21 8403	7:8079	0.00210	6	149.5	1779.5
478	228484			7.8134	0.00510	7	149.9	1787 · ()
479		109215352	21.8632	7.8188	0.00509	8	150.2	1794 . 5
	229441	109902239	21.8861	7.8243	0 00209	9	150.5	1802.0
480	230100	110592000	21.9089	7.8297		48.0	150.8	
					020(1	10 ()	190.8	1809.6

Table No. 216—continued.

			Square	Cube	Reciprocal		Circum-	Area of
No.	Square	. Cube	Root .	Root	l	Diam.		Circle
x	22	. 283	\sqrt{x}	3/x	20	d	Circle	πd^2
			<i>A</i> √ 20	~~	W		πd	4
401	NUT 0.01	331004043	21 · 9317	7.8352	0.00208	48.1	151.1	1817 · 1
481	231361	111284641			0.00208		151.4	1824.7
482	232324	111980168	21.9545	7.8406	0.00207	2 3	151.4	1832.2
483	233289	112678587	21.9773	7.8460				1839.8
484	234256	113379904	22.0000	7.8514	0.00207	4	152.1	
485	235225	114084125	22.0227	7.8568	0.00206	5	152.4	1847.5
486	236196	114791256	22.0454	7.8622	0.00206	6	152.7	1855 1
487	237169	115501303	22:0681	7.8676	0.00205	7	153.0	1862.7
488	238144	116214272	22:0907	7:8730	0.00205	' 8	153.3	1870.4
489	239121	116930169	22:1133	7.8784	0.00204	9	153.6	1878 1
490	240100	117649000	22 · 1359	7.8837	0.00204	49.0	153.9	1885.7
491	241081	118370771	22 · 1585	7.8891	0.00204	1	154:3	1893 • 4
492	242061	119095488	22 · 1811	7.8944	0.00203	2	154.6	1901.2
493	243049	119823157	22.2036	7.8998	0.00203	2	154.9	1908 • 9
494	244036	120553784	22.2261	7.9051	0.00202	4	155.2	1916.7
495	245025	121287375	22.2486	7.9105	0.00202	5	155.5	1924 · 4
100	210020	1212077777		1				
496	246016	122023936	22.2711	7.9158	0.00202	6	155.8	1932 · 2
497	247009	122763473	22.2935	7.9211	0.00201	7	156.1	1940.0
498	248004	123505992	22:3159	7:9264	0.00201	8	156.5	1947.8
499	249001	124251499	22:3383	7.9317	0.00200	9	156.8	1955.6
500	250000	125000000	22:3607	7:9370	0.00200	50.0	157 1	1963.5
501	251001	125751501	22.3830	7.9423	0.00200	1	157.4	1971 • 4
502	252004	126506008	22:4054	7.9476	0.00199	2	157 . 7	1979 2
503	1 253009	127263527	22.4277	7.9528	0.00199	3	158.0	1987 1
501	254016	128024064	22.4499	7.9581	0.00198	4	158.3	1995.0
505	255025	, 128787625	22 · 4722	7.9634	0.00198	5	158.7	2003:0
FOR	256036	129554216	22:4944	7:9686	0.00198	6	159.0	2010.9
506	257049	130323843	22:5167	7.9739	0.00197	7	159.3	2018:9
507	257049	131096512	22 5389	4.9791	0.00197	8	159.6	2026 · 8
508	259081	131872229	22:5610	7.9843	0.00196	9	159.9	2034 · 8
509			22 5832	7.9896	0.00196	-	160.2	2042.8
510	260100	132651000	22 0004	1 3000	0 00100	+71 (7	2007	
511	261121	133432831	22.6053	$7 \cdot 9948$	0.00196	1	160:5	2050.8
512	262144	134217728	22.6271	8.0000	0.00195		160.8	2058:9
513	263169	135005697	22:6495	8.0052	0.00195	3	161.2	2066 • 9
514	264196	135796744	22.6716	8.0104	0.00195	4	161.5	2075:0
515	265225	136590875	22.6936	8.0156	0.00194	5	161.8	2083 · 1
516	266256	137388096	22.7156	8:0208	0.00194	G	162.1	2091 - 2
517	267289	138188413	22.7376	8.0260	0.00193	1 7	162.4	2099 · 3
518	268324	138991832	22.7596	8.0311	0.00193	1 2	162.7	2107 · 4
519	269361	139798359	22.7816	8.0363	0.00193	9	163.0	2115.6
520	270400	140608000	22.8035	8.0415	0.00192	52.0	163.4	2123 - 7
020	270100	110000000	1					

Table No. 216-continued.

No.		Cube	Square Root	Cuhe	Reciprocal	. Diam.	Circum- ference of	Area of Circle
20	202	23	N/x		1	d	Circle	π_{d2}
			AV 35	3/x	25		π d	4
	-	-						
521	1 271441	141420761	22.8254	8.0466	0.00192	52 1	163.7	2131 . 9
522	272484	142236648	22.8478	8.0517	0.00192	92 L		
523	273529	143055667	22.8692	8:0569	0.00191		164.0	2140 1
524	274576	143877824	22 - 8910	8:0620	0.00191	3	161:3	2148.3
525	275625	144703125	22 9129	8.0071	0.00150	1	161-6	2156.5
		***************************************	(1=(0.0011	O CHILINI	õ	164.0	2164.8
526	276676	145531576	22.9347	8:0723	0.00190	6	105 0	
527	277729	146363183	22.9565	8.0774			165-2	2173.0
528	278781	147197952	22.9783	8.0825	0:00190	7	165.6	2181.3
529	279841	148035889	23.0000			8	165 - 9	2189.6
530	280900	148877000	28 : 0217	8.0876	0.00189	5)	166-2	2197 · 9
		* 10.07 / 0000	-0 0-17	8.0927	0.00185	53.()	166.5	2200.5
531	281961	149721291	23:0434	8.0978	0.00100	7	1.4.	
532	283024	150568768	23 0651	8.1028	0.00188	1	166.8	2214.2
533	281089	151419437	23.0868	8:10.9	0.00188	2	167.1	2222.0
534	285156	152273304	23 · 1084	8:1130	0.00188	.;	167.4	2231 - 2
535	286225	153130375	23 1084		0.00187	1	167.8	2239 6
		***************************************	~ 1->1/1	8:1180	0.00187	5	168.1	2548.0
586	287296	153990656	23 - 1517	8 · 1231	0.0010=			
537	288369	154854153	23 1733		0.00187	6	108.4	2256 • 4
538	289444	155720872	23 1948	8:1281	0.00186	7	168.7	2264 · 8
539	290521	156590819	23.2164	8:1332	0.00186	8	[69:0	2273 - 3
540	291600	157464000		8:1382	0.00186	9	169:3	2281.7
	20.1(7.17	111/10/1000	23 - 2379	8 · 1433	0.00182	24.0	169.6	$2290 \cdot 2$
541	292681	158340421	23 - 2594	3-1483	0.00105			
542	293761	159220088	23 - 2809	8.1533	0.00185	1	17000	2298.7
543	294849	160103007	23:3024	8.1283	0.00185	2	170.3	2307 - 2
544	295936	160989184	23 - 3238	8.1633	0.00181	3	170.6	2315.7
545	297025	161878625	23 - 3452		0.00184	1	170.9	2324 · 8
				8:1683	0.00183	ć,	171.2	2332.8
546	298116	162771336	23:3666	8 1733	11 - 1111 1 - 111			
517	209209	163667323	23 - 3880	8:1783	0.00183	G	171:5	2341 · 4
518	300304	161566592	23 - 1094	8:1833	0.00183	7	171.8	2350 · 0
549	301401	165469149	23 · 1307		0.00185	8	172 - 2	2358.6
550	302500	166375000	23 · 4521	8:1852	0.00185	9	172.5	2367 · 2
			1./_1	8:1932	0.00185	55 · ()	172.8	2575.8
551	303601	167284151	23 - 4734	8.1982	0.00101	_		
552	304704	168196608	23 · 4947		0.00181	1	173.1	2384.2
558	305809 .	169112877	23.5160	8.2031	0.00181	2	173.4	2393 · 1
554	306916	170031464	23 - 5872	8.2081	0.00181	3	$173 \cdot 7$	2401.8
555	308025	170953875	23.5584	8.2130	0.00181	4	174.0	2410.5
	1		70 000±	8.2180	0.00180	อั	174.4	2419.2
556	309136	171879616	23:5797	2.0000	0.001.			
557	310249	172808693	23.0008	8 - 2229	0.00180	6		2427.9
558	311364	173711112	23 6220	8.2278	0.00180	7		2436 • 7
559	312481	174676879	28.6432	8 · 2327	0.00179	8		2445.4
560	313600	175616000	28.6643	8.2877	0.00179	(-)		2454 · 2
		. 1001100000	~0 0043	8 · 2426	0.00179	56.0	4	2463.0

Table No. 216—continued.

No.	Square x^2	Cube	Square Root	Cube Root	Reciprocal	Diam.	Circum- ference of Circle	Area of Circle π_{d2}
			√ x	3/x	20	i	πd	4
561	314721	176558481	23 · 6854	8.2475	0.00178	 EC+1	176.2	0471.0
562	315844	177504328	23.7065	8 2524	0.00178	50.1	176.2	2471·8 2480·6
563	1 316969	178453547	23.7276	8 2573	0.00178	3	176.9	2489.5
564	318096	179406144	23.7487	8 2621	0.00177	4	177.2	2498 · 3
5 65	319225	180362126	23.7697	8.2670	0.00177	ã	177.5	$2507 \cdot 2$
566	320356	181321495	23.7908	8.2719	0.00177	6	177.8	2516:1
567	321489	182284263	23.8118	8.2768	0.00176	7	178 1	2525:0
568	322624	183250432	23.8328	8.2816	0.00176	8	178.4	2533 · 9
569	323761	184220009	23.8537	8.2865	0.00176	9	178.8	2542.8
570	324900	18519300 0	23.8747	8.2913	0.00175	57.0	179 - 1	2551.8
571	326041	186169411	23.8956	8 · 2962	0.00175	1	179.4	2560.7
572	327184	187149248	23.9165	8.3010	0.00175	2	179.7	$2569 \cdot 7$
573	328329	188132517	1 23 9374	8+3059	0.00175	3	180.0	2578.7
574	329476	189119224	1 23 9583	8:3107	0.00174	4	180.3	2587.7
575	330625	190109375	+ 23 • 9792	8.3155	0.00174	5	180.6	2596.7
576	331776	191102976	24.0000	8:3203	0.00174	6	181.0	2605.8
577	332929	192100033	24.0208	8:3251	0.00173	7	181.3	2614.8
578	334084	193100552	124:0416	8:3300	0.00173	8	181.6	2623 · 9
579	335241	194104539	24.0624	8:3348	0.00173	9	181.9	2633:0
580	336400	195112000	24.0832	8:3396	0.00172	58.0	182.2	2642 · 1
581	337561	196122941	24 · 1039	8:3443	0.00172	1	182.5	2651 · 2
582	338724	197137368	$24 \cdot 1247$	8:3491	0.00172	2	182.8	2660.3
583	339889	198155287	24.1554	8.3539	0.00172	3	183.2	2669.5
584	341056	199176704	. 24 1661	8:3587	0.00171	4	183.5	2678.6
585	342225	200201625	24.1868	8:3634	0.00171	5	183+8	2687.8
586	343396	201230056	24 · 2074	8.3682	0.00171	6	184-1	2697:0
587	344569	202262003	$24 \cdot 2281$	8.3730	0.00170	7	184.4	2706.2
588	345744	203297472	24 · 2487	8:3777	0.00170	8	184.7	2715.5
589	346921	204336469	24.2693	8.3825	0.00170	. 9	185.0	2724 - 7
590	348100	205379000	24.2888	8.3872	0.00169	59:0	185 4	2734 · 0
591	349281	206425071	24.3105	8:3919	0.00169	1	185.7	2743 · 2
592	350464	207474688	24.3311	8:3967	0.00169	2	186.0	2752-5
593	3 51649	208527857	2 _₹ ·3516	8.4014	0.00169	3	186.3	2761.8
594	352836	209584584	24.3721	8.4061	0.00168	4	186.6	2771.2
595	354025	210644875	24.3926	8.4108	0.00168	5	186.9	2780.5
596	355216	211708736	24.4131	8.4155	0.00168	6	187.2	2789 • 9
597	356409	212776173	24 · 4336	8.4202	0.00168	7	187.6	2799 - 2
598	357604	213847192	24.4540	8.4249	0.00167	8	187.9	2808.6
599	358801	214921799	24.4745	8 - 4296	0.00167	9	188.2	2818.0
600	360000	216000000	24 · 4949	8 · 4343	0.00167	60.0	188.5	2827 · 4
	_	_						

TABLE No. 216—continued.

		1	Square	Cube	Reciprocal	1	Circum-	Area of
No.	Square	Cube	Root	Root		Diam.	ference of	Circle
æ	202	23			1	d	Circle	πd^2
			\sqrt{x}	3/2	95		πd	4 4 4
601	361201	217081801	24.5153	8.4390	0.00166	60.1	188.8	2836 . 9
602	362404	218167208	24 - 5357	8.4437	0.00166	2	189 · 1	2846.3
603	363609	219256227	24 · 5561	8.4484	0.00166	3	189.4	2855.8
604	364816	220348864	24.5764	8.4530	0.00166	4	189.8	2865.3
605	366025	221445125	24 - 5967	8.4577	0.00165			
000	000020	~=11101=0	-1 0001	C IOII	0 00100	5	190.1	2874.8
606	367236	222545016	01.0171					
			24.6171	8 · 4623	0.00165	6	190.4	2884.3
607	368449	223648543	24.6374	8.4670	0.00162	7	190.7	2893 · 8
608	369664	224755712	24.6577	8.4716	0.00164	8	191.0	2903.3
((())	370881	225866529	21.6779	8.4763	0.00164	9	191:3	2912.9
610	372100	226981000	24 - 6982	8.4809	0.00164	61.0	191.6	2922 - 5
							201 0	(' m m - 67
611	373321	228099131	24.7184	8.4856	0.00164	1	192.0	2932 · 1
612	374541	229220928	24.7386	8.4902	0.00163	2		
613	375769	230346397	24.7588	8 1948			192.3	2941.7
614	376996	231475544			0.00163	3	192.6	2951.3
615			24.7790	8.4994	0.00163	4	192.9	2960 - 9
010	378225	232608375	24 - 7992	8.2040	0.00163	5	193 · 2	2970.6
010								
616	379456	233744896	24:8193	8.2086	0.00165	6	193.5	2980 - 2
617	380689	234885113	24 · 8395	8:5132	0.00162	7	193.8	2989 - 9
618	381924	236029032	24 · 8596	8.5178	0.00162	8	194.2	2999 · 6
619	383161	237176659	24 - 8797	8 - 5224	0.00162	9	194.5	
620	384400	238328000	24.8998	8-5270	0.00161			3009.3
			21 (1111)	0 0-10	(1 (11)11)	62.0	194.8	3019.1
621	385641	239483061	24 - 9199	8.5316	0.00101	1		
622	386884	240641848	24 - 9399		0.00161	1	192.1	3028.8
623	388129	211804367		8.53.2	0.00161	•>	195.4	3038.6
624			54 - 9600	8.2408	0.00101	3	195.7	3048.4
	389376	242070624	24.9800	8:5453	0.00160	4	196.0	3058.2
625	390625	244140625	25:0000	8.5499	0.00160	į,	196.3	3068 · 0

626	391876	245314376	25:0200	8.5544	0.00160	6	196 · 7	3077.8
627	393129	246491883	25:0400	8 - 5590	0.00159	7	197.0	
628	394381	247673152	25.0599	8:5635	0.00159			3087.6
629	395611	248858189	25.0799	8.5681		8	197:3	3097.5
(330)	396900	250047000	25.0998		0.00159	9	197.6	3107.4
	(A) (A) (A)	-1101111101111	20 0000	8.5726	0.00125	63.0	197.9 .	3117.2
631	398161	251239591	0= 110=					
632	399424		25.1197	8.5772	0.00158	1	198.2	3127.1
		252435968	25 · 1396	8.2812	0.00128	2	198.5	3137 1
633	400689	253636137	25 1595	8.5862	0.00158	3	198.9	3147.0
634	401956	254840104	25 1794	8:5907	0.00158	4	199.2	3157.0
635	403225	256047875	25 - 1992	8:5952	0.00157	5	199.5	
					0.01611	6)	100 0	3166.9
636	404496	257259456	25 - 2190	8.5997	0.00157	0	700 0	0.50
637	405769	258474853	25 2389			6	199.8	3176.9
638	407014	259694072	25 2587	8.6043	0.00157	7	200 · 1	3186.9
639	408321			8.6088	0.00157	8	200.4	3196.9
610		260917119	25 · 2784	8.6132	0.00156	9	200.7	3206 9
010	109600	262144000	25 - 2982	8.6177	0.00156	64.0	201.1	3217.0
					,			-2.0

Table No. 216—continued.

				210 007			-	
	1		Square	Cube	Reciprocal		Circum-	Area of
No.	Square	Cube	Root	Root		Diam.	ference of	Circle
œ	x2	203			1	d	Circle	π_{d2}
			~	3/x	25		πd	4
_								
							004	
641	410881	263374721	25.3180	8.6222	0.00156	64.1	201.4	3227 · 1
642	412164	264609288	25:3377	8.6267	0.00156	2	201.7	3237 · 1
643	413449	265847707	25.3574	8.6312	0.00156	3	202.0	$3247 \cdot 2$
644	414736	267089984	25.3772	8.6357	0.00155	4	202:3	3257.3
645	416025	268336125	25.3969	8.6401	0.00155	5	202.6	3267.5
010	110020	200000120				Ŭ		0_0.0
646	417316	269586136	25.4165	8.6446	0.00155	6	202.9	3277.6
	418609	270840023	25 4362	8.6490	0.00155	7	203.3	3287.7
647					0.00154	8	203.6	3297 • 9
648	419904	272097792	25.4558	8.6535				
649	421201	273359149	25.4755	8.6579	0.00154	9	203.9	3308.1
650	422500	274625000	25 • 4951	8.6624	0.00154	65.0	204.2	3318.3
	1							
651	423801	275894451	25.5147	8.6668	0.00154	, 1	204.5	3328.5
652	425104	277167808	25.5343	8.6713	0.00153	2	204-8	3338+8
653	426409	278445077	25.5539	8 • 6757	0.00153	3	205.1	3349.0
654	427716	279726264	25.5734	8.6801	0.00153	4	205.5	3359 3
655	429025	281011375	25.5930	8.6845	0.00153	5	205.8	3369.6
699	423023	201011070	20 0000	0 0010	0 00100	**	200 0	171700 0
656	430336	282300416	25.6125	8.6890	0.00152	6	206.1	3379 • 9
		283593393	25.6320	8.6934	0.00152	7	206.4	3390 - 2
657	431649					8	206.7	3100.5
658	432964	284891312	25.6515	8.6978	0.00152			
659	434281	286190179	25.6710	8.7022	0.00152	9	207:0	3410.8
660	435600	287496000	25.6905	8.7066	0.00152	66.0	207.3	3421.2
					0.00171	,	307.7	0.007 - 0
661	436921	288804781	25.7099	8.7110	0.00151	I	207.7	3431.6
662	438244	290117528	25.7294	8.7154	0.00151	2	208:0	3442.0
663	439569	291434247	25.7488	8.7198	0.00151	3	208.3	3452.4
664	440896	292754944	25.7682	8.7241	0.00151	4	208.6	3462.8
665	442225	294079625	25.7876	8.7285	0.00150	5	208.9	$3473 \cdot 2$
000	11111							
666	443556	295408296	25.8070	8.7329	0.00150	6	209.2	3483.7
667	444880	296740963	25.8263	8.7373	0.00150	7	209.5	$3494 \cdot 2$
668	446224	298077632	25.8457	8.7416	0:00150	8	209 - 9	3504.6
	447561	299418309	25.8650	8.7460	0:00149	9	210.2	3515:1
669			25.8844	8.7503	0.00149	67.0	210.5	3525.7
670	448900	300763000	29.9944	0 1000	0 00110	01 0	210 0	11040
0.00	450047	PERETOOO	25.9037	8.7547	0.00149	1	210.8	3536.2
671	450241	302111711			0.00149	2	211.1	3516.7
672	451584	303464448	25.9230	8.7590				3557.3
673	452929	304821217	$25 \cdot 9422$	8.7634	0.00149	3	211.4	
674	454276	306182024	25.9615	8.7677	0.00148	4	211.7	3567 9
675	455625	307546875	25.9808	8.7721	0.00148	5	212.1	3578.5
								1351111
676	456976	308915776	26:0000	8.7761	0.00148	6	212.4	3589 · 1
677	458329	310288733	26.0192	8.7807	0.00148	7	212.7	3599.7
678	459684	311665752	26.0384	8.7850	0.00147	8	213.0	3610.3
		313046839	26.0576	8.7893	0.00147	9	213.3	3621.0
679	461041	0	26.0768	8.7937	0.00147	68.0	213.6	3631.7
680	462400	314432000	20 0703	0 1001	0 00111	000	210 3	

TABLE No. 216—continued.

-								
	1		Square		1 2	-	Circum-	Area of
No.	Square	Cube	Root	Root	Reciprocal	Diam	ference of	
x	x2	x^3		4	1	d	Circle	$-\pi d^2$
			\sqrt{x}	*\sqrt{x}	x		πd	4 42
							-	
681	463761	915001041	, , , , , , , , , , , , , , , , , , ,					
682	465124	315821241	26:0960	8.7980	0.00147	68 1	213.0	3642.4
		317214568	26:1151	8.8053	0.00147	2	214.3	3653 1
688	466489	318611987	26.1343	8.8066	0.00146	3	214.6	3663.8
684	467856	320013504	26 1534	8.8109	0.00146	-1	214.9	3674.5
685	469225	321419125	26 1725	8.8152	0.00146	5	215.2	3685.3
								0000
686	470596	322828856	26:1916	8.8194	0.00146	6	215.5	3696 · 1
687	471969	324242703	26:2107	8.8237	0.00146	7	215.8	3706.8
688	473344	325660672	26 - 2298	8.8280	0.00145	8	216.1	3717.6
689	474721	327082769	26:2488	8.8323	0.00145	9	216.5	
690	476100	328509000	26:2679	8.8366	0.00145	(39 - ()		3728.5
					(, (,(,[1,)	();) ()	216.8	3739.3
691	477481	329939371	26 - 2869	8.8408	0.00145			
692	178864	331373888	26 - 3059	8.8451		1	217.1	3750-1
693	480249	332812557	26 · 3249		0.00145	2	217.4	3761.0
694	481636	334255384	26:3439	8:8493	0.00144	3	217.7	3771.9
695	483025	335702375		8.8536	0.00144	4	218.0	3782.8
Crerry	1(4)(724)	000702070	56 - 3629	8.8218	0.00144	ć,	218.3	3793 · 7
696	481116	(),) - 1 - 11 - 11.1						
697		337153536	26:3818	8.8621	0.00144	6	218.7	3804 - 6
698	485809	338608873	26 1008	8.8663	0.00143	7	219.0	3815.5
	487204	340068392	26.4197	8.8706	0.00143	8	219.3	3826 - 5
699	188601	341532099	26:4386	8.8748	0.00143	9	219.6	383715
700	190000	343000000	26:4575	8:8790	0.00143	70.0	219.9	3848.5
							~10 0	0040.9
701	191401	344472101	26:4764	8.8833	0.00143	1	99().9	00:0.=
702	492804	345948408	26 : 4953	8.8875	0.00142	2	220.5	3859.5
703	494209	347428927	26:5141	8.8917	0.00142	3	220 5	3870.5
704	495616	348913664	26:5330	8:8959	0.00142	4		3881.5
705	497025	350102625	26.5518	8.9001	0.00142		221.2	3892.6
				C (MM)	0 00142	6	221.5	3903.6
706	498436	351895816	26:5707	8.9043	0.00145			
707	499849	353393243	26.5895	8.9082	0.00142	6	221.8	$3914 \cdot 7$
708	501261	354894912	26.6083		0.00141	7	555. I	3925.8
709	502681.	356400829	26 - 6271	8.9127	0.00141	8 '	555.4	3936 · 9
710	504100	357911000		8.9169	0.00141	9	222.7	3948.0
,	,	· · · · · · · · · · · · · · · · · · ·	26.6428	8.9211	() · ()()141	71.0	223 - 1	3959 - 2
711	505521	359425431					'	
712	506944		26.6646	8 : 9253	0.00141	1	223 4	3970 - 4
713	508369	360944128	26.6883	8.9295	0.00140	2	223.7	3981.5
714		362467097	26:7021	8-9337	0.00140	*)	224.0	3992.7
	509796	363994344	26:7208	8.9378	0.00140	4	224.3	4003 9
715	511225	365525875	26 - 7395	8.9420	0.00140	5	224.6	
71	21.3.12					.,	wrI ()	4015-2
716	512656	367061696	26.7582	8.9462	0.00140	6	224 · 9	1000
717	511089	368601813	26:7769	8.9503	0.00139	7	~ 0	4026 4
718	515524	370146232	26 . 7955	8.9545	0.00139		225.3	4037.6
719 -	516961	371694959	26.8142	8.9587	0.00139	8	225.6	4048.9
720	518400	373248000	26.8328	8.9628	()	9	225.9	$4060 \cdot 2$
			, 5520	0 0020	0 00139	72.0	226 · 2	$4071 \cdot 5$
	2							

Table No. 216—continued.

			Square	Cube	Reciprocal		Circum-	Area of
No.	Square	Cube	Root	Root	-	Diam.	ference of	Circle
20	35 ²	202			1	d	Circle	π_{d2}
			\sqrt{x}	$\sqrt[3]{x}$	x		πd	4
721	519841	374805361	26.8514	8.9670	0.00139	$72 \cdot 1$	226+5	4082.8
722	521284	376367048	26.8701	8:9711	0:00139	2	226.8	$4094 \cdot 2$
723	522729	377933067	26.8887	8.9752	0.00138	3	227 · 1	4105.5
724	524176	379503424	26.9572	8.9794	0.00138	4	227.5	4116.9
725	525625	381078125	26 9258	8.9835	0.00138	5	227.8	
(≟ -)	020020	001040120	20 0200	_ വെറ്റെ	0 00100)	221.0	4128.2
- >						1		
726	527076	382657176	26:9444	8.9876	0.00138	- 6	228:1	4139.6
727	528529	384240583	26.9629	8.9918	0.00138	7	228.4	4151.1
728	529984	385828352	26.9815	$8 \cdot 9959$	0.00137	8	228.7	4162.5
729	531441	387420489	27:0000	9:0000	0.00137	9	229:0	4173.9
730	582900	389017000	27:0185	9:0041	0.00137	73:0	229 - 3	4185.4
100	*/*/_*////	1)(101111111111111111111111111111111111	24 11200	** *******	0 00101			TIOO I
mor	501007	900//17/001	27:0370	9:0082	0.00127		000.7	4100.0
731	534361	390617891			0.00137	1	229.7	4196.9
732	535824	392223168	27 : 0555	9:0123	0.00137	2	230 · 0	4208 • 4
733	537289	393832837	27.0740	9.0164	0.00136	3	230.3	4219.9
734	538756	395446904	27:0924	9 : 0205	0.00136	4	230.6	4231 4
735	540225	397065375	27:1109	9.0246	0.00136	í,	250.9	4242.9
• • • •	.,							
736	541696	398688256	27.1293	9.0287	0.00136	6	231 · 2	4254.5
			27 1477	9.0328	0.00136	7		
737	543169	400315553					231.5	4266.0
738	544644	401947272	27 1662	9.0369	0.00136	8	231.8	4277.6
739	546121	403583419	27.1846	9.0410	0.00135	9	232 · 2	4289 · 2
740	547600	405224000	27 · 2029	9.0450	0.00135	71 ()	232 - 5	4300.8
741	549081	406869021	27 - 2213	9:0491	0.00135	. 1	232 · 8	4312.8
742	550564	408518488	27 - 2397	9.0532	0.00135	2	233 · 1	4324 · 1
			$27 \cdot 2580$	9.0572	0.00135	3	$ 233 \cdot 4 $	4335.8
743	552049	410172407						
744	553536	411830784	27 2764	9.0613	0.00134	4	233.7	4347.5
745	555025	413493625	27 2947	9.0654	0.00134	5	234.0	$4359 \cdot 2$
746	556516	415160936	27:3130	9.0694	0.00134	- 6	234 · 4	4370.9
747	558009	416832723	27:3313	9.0735	0.00134	7	234 · 7	4382.6
748	559504	418508992	27:3496	9:0775	0.00134	s	235.0	4394 · 3
		120189749	27 - 3679	9.0816	0.00134	9	235 · 3	4406 1
749	561001							
750	562500	421875000	27:3861	9.0856	0.00133	75:0	235 6	4417:6
751	564001	423564751	27.4014	9:0896	0.00133	1	235.9	$4429 \cdot 7$
752	565504	425259008	27 · 4226	9:0937	0.00133	2	236 - 2	4441.5
753	567009	426957777	27.4408	9.0977	0.00133	3	236+6	4453.3
754	568516	428661064	27.4591	9.1017	0.00133	4	236.9	4465 1
	0		27 4773	9.1057	0.00132	5	237 · 2	4477:0
755	570025	430368875	=1 41(0)	9 1001	0.00192	,,	ش 100 ش	17// ()
		100001010	05.4055	0.1000	0.00100	0	007.7	1100.0
756	571536	432081216	27.4955	9.1098	0.00132	6	237.5	4188.8
757	573049	433798093	27.5136	9.1138	0.00132	7	237.8	$4500 \cdot 7$
758	574564	435519512	27.5318	9.1178	0.00132	8	238.1	4515.0
759	576081	437245479	27.5500	9.1218	0.00132	9	238.4	4524 - 5
760	577600	438976000	27.5681	9.1258	0.00132	76.0	238.8	1536+5
700	377000	200010000	2, 3001	0 2200	0 0 0 2 0 2	1.00		

Table No. 216—continued.

			Square	Cube	Reciprocal		Circum-	Area of
No.	Square	Cube	Root	Root	-	Diam.	ference of	
20	252	′ 20 ³			1	d	Circle	π_{d^2}
			\sqrt{x}	\$\sqrt{x}.	30	į	πd	4
				·				
m.>=	FF0704	440=***						
761	579121	440711081	27.5862	9.1298	0.00131	76.1	239 · 1	4548.4
762	580644	442450728	27:6043	9:1338	0.00131	2	239 · 4	4560.4
763	582169	444194947	27:6225	9.1378	0.00131	3	239 - 7	4572.3
764	583696	445943744	27:6405	9.1418	0.00131	4	240.0	4584.3
765	585225	447697125	27.6586	9.1458	0.00131	5	240.3	4596.3
							-10 0	1000
766	586756	449455096	27:6767	9.1498	0.00131	6	240.6	4608.4
	588289	451217663	27 - 6948	9 · 1537	0.00130	7	241.0	4620.4
768	589824	452984832	27.7128	9.1577	0.00130			
769	591361					8	241.3	4632.5
		454756609	27.7308	9.1617	0.00130	9	241.6	4644.5
770	592900	456533000	27.7489	9.1657	0.00130	77.0	241.9	4656.6
						1		
771	594441	458314011	27.7669	9.1696	0.00130	1	242 - 2	4668.7
772	595984	460099648	27.7849	9.1736	0.00130	2	242.5	4680.8
773	597529	461889917	27 - 8029	9.1775	0.00129	3	242.8	4693.0
774	599076	463684824	27.8209	9.1815	0.00129	4	243 - 2	4705.1
775	600625	465484375	27.8388	9.1855	0.00129	อั	243.5	4717.3
		100101010	_,	0 1000	0 00120	O	240.0	4/1/.9
776	602176	467288576	27.8568	9.1894	0.00129	6	3 to 0	4=
777	603729	469097433	27 8747	9 1933			243.8	4729.5
778	605284				0.00150	7	244.1	4741.7
		470910952	27.8927	9 · 1973	0.00129	8	244.4	4753.9
779	606841	472729139	27.9106	9 · 2012	0.00128	9	244.7	4766.1
780	608400	474552000	27 - 9285	$9 \cdot 2052$	0.00128	78.0	245.0	4778.4
	1					1		
781	609961	476379541	27:9464	9.2091	0.00128	1	245.4	4790.6
782	611524	478211768	27 - 9643	9.2130	0.00128	2	245.7	4802.9
783	613089	480048687	27.9821	9.2170	0.00128	3	246.0	4815.2
784	614656	481890304	28:0000	9 - 2209	0.00128	4	246.3	
785	616225	483736625	28.0179	9.2248	0.00127	-		4827.5
			20	0 2210	0 00127	5	246.6	4839.8
786	617796	485587656	28:0357	9.2287	0.00127	0		
787	619369	487443403	28.0535			6	246.9	$4852 \cdot 2$
788	620944	489303872		9-2326	0.00127	7	247.2	4864.5
			28.0713	9 · 2365	0.00127	8	247.6	4876.9
789	622521	491169069	28:0891	9.2404	0.00127	9	247.9	4889.3
790	624100	493039000	28:1069	9 · 2443	0.00127	79.0	248.2	4901.7
								2001
791	625681	494913671	28 · 1247	9.2482	0.00126	1	248.5	4914.1
792	627264	496793088	28 · 1425	$9 \cdot 2521$	0.00126	2	248.8	4926.5
793	628849	498677257	28 1603	9.2560	0.00126	3		
794	630436	500566184	28 - 1780	9 · 2599	0.00126		249 1	4939.0
795 .	632025	502459875	28 1957	9.2638		4	249 • 4	4951.4
1			20 1001	9 4008	0.00126	5	249.8	4963.9
796	633616	504358336	28.2135	0.0077	0.004			
797 .	635209			9.2677	0.00126	6	250 · 1	4976.4
		506261573	28.2312	9.2716	0.00125	7	250.4	4988.9
798	636804	508169592	28 · 2489	9.2754	0.00125	8.	250.7	5001.4
799	638401	510082399	28.2666	9.2793	0.00125	9	251.0	5014.0
800	640000	512000000	28.2843	9.2832	43 43 44	80.0	251.3	5026.5
							201 0	0040 0
-								

TABLE No. 216—continued.

	TIBBLE IVO. 210 - CONCENSION.									
No.	Square	Cube	Square Root	Cube Root	Reciprocal	Diam.	Circum- ference of	Area of Circle		
95	252	2/3	\sqrt{x}	3/ x	$\frac{1}{x}$	d	Circle	$_{-d2}^{\pi}$		
			~	N 35	16		πd	4		
801	641601	513922401	28.3019	9.2870	0.00125	80.1	251.6	5039.1		
802	643204	515849608	28.3196	9.2909	0.00125	2	252.0	5051.7		
803	644809	517781627	28.3373	9.2948	0.00125	3	252.3	5064.3		
804	646416	519718464	28:3549	9.2986	0.00124	4	252.6	5076.9		
805	648025	521660125	28.3725	9.3025	0.00124	5	252.9	5089.6		
806	649636	523606616	28:3901	9.3063	0.00124	6	253.2	5102.2		
807	651249	525557943	28.4077	9.3102	0.00124	7	253.5	5114.9		
808	652864	527514112	28.4253	9.3140	0.00124	8	253.8	5127.6		
809	654481	529475129	28.4429	9.3179	0.00124	9	254.2	5140.3		
810	656100	531441000	28.4605	9.3217	0.00123	81.0	254.5	5153.0		
811	657721	533411731	28.4781	9.3255	0.00123	1	254.8	5165.7		
812	659344	535387328	28.4956	9.3294	0.00123	2	255.1	5178.5		
813	660969	537367797	28.5132	$9 \cdot 3332$	0.00123	3	255.4	5191.2		
814	662596	539353144	28.5307	9.3370	0.00123	4	255.7	5204.0		
815	664225	541343375	28.5482	9.3408	0.00123	5	256.0	5216.8		
816	665856	543338496	28.5657	9.3447	0.00123	6	256.4	5229.6		
817	667489	545338513	28.5832	9.3485	0.00122	7	256.7	5242.4		
818	669124	547343432	28.6007	9.3523	0.00122	8	257.0	5255.3		
819	670761	549353259	28.6182	9.3561	0.00122	9	257.3	5268.1		
820	672400	551368000	28.6356	9.3599	0.00122	82.0	257.6	5281.0		
821	674041	553387661	28.6531	9.3637	0.00122	1	257.9	5293 • 9		
822	675684	555412248	28.6705	9.3675	0.00122	2	258.2	5306.8		
823	677329	557441767	28.6880	9.3713	0.00122	3	258.6	5319.7		
824	678976	559476224	28.7054	9.3751	0.00121	4	258.9	5332.7		
825	680625	561515625	28.7228	9.3789	0.00121	5	259 · 2	5345.6		
826	682276	563559976	28.7402	9.3827	0.00121	6	259.5	5358.6		
827	683929	565609283	28.7576	9.3865	0.00121	7	259.8	5371.6		
828	685584	567663552	28.7750	9.3902	0.00121	8.	260.1	5384·6 5397·6		
829	687241	569722789	28.7924	9.3940	0.00121	83.0	260.4	5410.6		
830	688900	571787000	28.8097	9.3978	0.00120	85.0	200.8	3410.0		
831	690561	573856191	28.8271	9.4016	0.00120	1	261.1	5423.7		
832	692224	575930368	28.8444	9.4053	0.00120	2	261.4	5436.7		
833	693889	578009537	28.8617	9.4091	0.00120	3	261.7	5449.8		
834	695556	580093704	28.8791	9.4129	0.00120	4 5	262·0 262·3	5462·9 5476·0		
835	697225	582182875	28.8964	9.4166	0.00120	9	202.9	9470-0		
836	698896	584277056	28.9137	9.4204	0.00120	6	262.6	5489.1		
837	700569	586376253	28.9310	9.4241	0.00119	7	263.0	5502.3		
838	702244	588480472	28.9482	9.4279	0.00119	8	263.3	5515.4		
839	703921	590589719	28.9655	9.4316	0.00119	9	263.6	5528.6		
840	705600	592704000	28.9828	9.4354	0.00119	84.0	263.9	5541.8		
				1		1				

Table No. 216—continued.

No.	Square x2	Cube x^3	Square Boot	Cube Root	Reciprocal	Diam.	Circum- ference of Circle \$\pi d\$	Area of Circle
-								
841	707281	594823321	29.0000	9.4391	0.00119	84 · 1	264.2	5555.0
842	708964	596947688	29:0172	9.4429	0.00119	2	264.5	5568-2
843	710649	599077107	29:0345	9 · 1466	0.00119	3	261.8	5581.4
844 845	712336	601211584 603351125	29:0517 29:0689	9 : 4503	0.00118	4	265 - 2	5594.7
049	714020	000001120	20.0000	9.4541	0.00118	5	265.5	5607 · 9
846	715716	605495736	29:0861	9.4578	0.00118	6	265.8	5621.2
847	717409	607645423	29:1033	9.4615	0.00118	7	266 · 1	5634.5
848	719104	609800192	29 · 1204	9 · 4652	0.00118	8	266.4 .	5647.8
849	720801	611960049	. 29 · 1376	9.4690	0.00118	9	266.7	5661.2
850	722500	614125000	29 · 1548	9 · 4727	0.00118	85.0	267.0	5674.5
851	724201	616295051	29 · 1719	9:4764	0.00118	,	267.3	E007.0
852	725904	618470208	29 1890	9.4801	0.00112	1	267.7	5687·9 5701·2
853	727609	620650477	29 - 2062	9.4838	0.00117	2 3	268.0	5714.6
854	729316	622835864	29 - 2233	9.4875	0.00117	4	268.3	5728.0
855	731025	625026375	29 · 2404	9.4912	0.00117	5	268.6	5741.5
050	50.)50	30,000						
856	732736	627222016	29 · 2575	9.4949	0.00117	6	268 · 9	5754.9
857 858	734449 736164	629422793	29 2746	9-4986	0.00117	7	269 · 2	5768.3
859	737881	631628712	29 - 2916	9.5023	0.00117	8	269.5	5781.8
860	739600	633839779 636056000	29.3087	9.5060	0.00116	9	568.0	5795.3
800	199000	000000000	29.3258	9.5097	0.00116	86.0	270.2	5808.8
861	741321	638277381	29.3428	9.5134	0.00116	1	270.5	5822.3
862	743044	640503928	29.3598	9.5171	0.00116	2	270.8	5835.9
863	744769	642735647	29 - 3769	9.5207	0.00116	3	271.1	5849.4
864	746496	641972544	29 - 3939	9.5244	0.00116	4	271.4	5863.0
865	748225	647214625	29 · 4109	9.5281	0.00116	5	271.7	5876.5
866	749956	649461896	29 · 4279	9.5817	0.00115	o	070.7	F.000 T
867	751689	651714363	29 4449	9.5354	0.00115	6 7	272.1	5890 - 1
868	753424	653972032	29.4618	9.5391	0.00115	8	272.4	5903·8 5917·4
869	755161	656234909	29 - 4788	9.5427	0.00115	9	273.0	5931.0
870	756900	658503000	29 · 4958	9.5464		87.0	273 3	5944.7
871	758641	660776311	DO . ~ 1.0	0 ****				
872	760384	663054848	29.5127	9.5501	0.00115	1	273.6	5958 • 4
873	762129	665338617	29·5296 29·5466	9:5537	0.00115	2	273.9	5972:0
874	763876	667627624	29 5635	9:5574	0.00115	3	274.3	$5985 \cdot 7$
875	765625	669921875	29.5804	9.5610	0.00114	4	274.6	$5999 \cdot 5$
	,00020	0.0021010	20 8004	9.5647	0.00114	5	274.9	6013 · 2
876	767376	672221376	29.5973	9.5683	0.00114	6	275.2	6027:0
877	769129	674526133	29.6142	9.5719	0.00114	7	275.5	6040.7
878	770884	676836152	29.6311	9.5756	0.00114	8	275.8	6054.5
879	772641	679151439	29.6479	9.5792	0.00114	9	276.1	6068.3
880	774400	681472000	29.6648	9.5828	0.00114	88.0	276.5	6082:1

TABLE No. 216—continued.

_	TABLE 110. 210—continueu.							
No.	Square	Control	Square	Cube	Reciprocal		Circum-	Area of
at	aquare x^2	Cube	Root	Root	1		ference of	Circle
-	*O-	300	√ 20	3/x	20	d	Circle π d	π_{d^2}
		-	-				πα	4
881	776161	000707041	00 0010					
882	777924	+ 683797841 - 686128968	29:6816	9.5865	0.00114	88.1	276.8	$6096 \cdot 0$
883	779689	688465387	29:6985	9.5901	0.00113	2	277.1	$6109 \cdot 8$
884	781456		29.7153	9.5937	0.00113	3	277.4	$6123 \cdot 7$
885	783225	690807104 693154125	29.7321	9:5973	0.00113	4	277 · 7	$6137 \cdot 5$
(7(1+)	100220	090104120	29 · 7489	9.6010	0.00113	5	278.0	6151.4
886	784996	695506456	29.7658	9:6046	0.00113		N70. N	0108.5
887	786769	697864103	29.7825	9.6082	0.00113	6	278:3	6165 · 3
888	788544	700227072	29 7993	9.6118	0.00113	7	278.7	6179 3
889	790321	702595369	29.8161	9.6154	0.00113	8 9	279:0	6193 · 2
890	792100	704969000	1 29 8329	9.6190	0.00112	89.0	$\begin{bmatrix} 279 \cdot 3 \\ 279 \cdot 6 \end{bmatrix}$	$6207 \cdot 2$ $6221 \cdot 1$
				0 0200	(/ (///II	0	210 0	0221.1
891	793881	707347971	29.8496	9:6226	0.00112	1	279 9	6235 · 1
892	795664	709732288	29.8664	9:6262	0.00112		~280 · 2	6249 1
893	797449	712121957	29.8831	9.6298	.0.00112	3	280.5	6263 · 1
894	799236	714516984	29.8998	9:6334	0.00112	4	280.9	6277 - 2
895	801025	716917375	29:9166	9:6370	0.00112	5	281.2	6291 · 2
896	802816	719323136	29 · 9333	9:6406	0.00112	6	281.5	6305:3
897	804609	721734273	29:9500	9.6442	0.00111	7	281.8	6319 4
898	806404	724150792	29 : 9666	9:6477	0.00111	8	282 · 1	6333.5
899	808201	726572699	29:9833	9:6513	0.00111	9	282 · 4	6347 · 6
900	810000	729000000	30:0000	9.6549	0.00111	90.0	282.7	6361.7
901	811801	731432701	30:0167	9.6585	0.00111	,		0.155
902	813604	733870808	30.0333	9:6620	0.00111	1	283:1	6375 9
903	815409	736314327	30.0500	9.6656	0.00111	2 3	283·4 283·7	6390 · 0
904	817216	738763264	30.0666	9.6692	0.00111	4	284.0	6404·2 6418·4
905	819025	741217625	30.0832	9.6729	0.00111	5	284 · 3	6432.6
1/1/0	0.100.20	711217020	307 0002	.7 0720	0 00110	• ,	201 0	0402 0
906	820836	743677416	30:0998	9:6763	0.00110	6	284 · 6	6446.8
907	822649	746142643	30 · 1164	9.6799	0.00110	7	284.9	6461.1
908	824464	748613312	30 · 1330	9:6834	0.00110	8	285.3	6475.3
909	826281	751089429	30 · 1496	9.6870	0.00110	9	285 · 6	6489 · 6
910	828100	753571000	30 · 1662	9.6905	0.00110	91.0	285 9	6503.9
911	829921	756058031	30.1828	9.6941	0.00110	1	286 · 2	$6518 \cdot 2$
912	831744	758550528	30.1993	9:6976	0.00110	2	286.5	6532+5
913	833569	761048497	30.2159	9.7012	0.00110	3	286.8	6546.8
914	835396	763551944	30.2324	9.7047	0.00109	4	287 1	6561:2
915	837225	766060875	30 · 2490	9.7082	0.00109	5	287.5	6575 5
010	000050	700171300	20.2055	0.7110	0.00100	0	207 0	0500.0
916	839056	768575296	30.2655	9.7118	0.00109	6	287 · 8	6589 · 8
917	840889	771095213	30.2820	9.7153	0.00109	7	288.1	6604:3
918	842724	778620632 776151559	30·2985 30·3150	9.7188 9.7224	0.00109	$-\frac{8}{9}$	288.4	6618:7
919	844561	778688000	30.3312	$9.7224 \\ 9.7259$		$92 \cdot 0$.	$\frac{288 \cdot 7}{289 \cdot 0}$	6633 · 2 6647 · 6
920	846400	770000000	90 9919	3 1200	0 00109	04 0	400 0	0047.0
								~

Table No. 216—continued.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No.	Square x^2	Cube	Square Root	Cube Root	Reciprocal $\frac{1}{x}$	Diam.	Circum- ference of Circle πd	Area of Circle
922 850081 783777448 30°3645 9°7364 0°00108 2 289°7 6676°5 923 851929 786330467 30°3809 9°7460 0°00108 3 290°0 6696°5 925 855625 791453125 30°4138 9°7435 0°00108 5 290°6 6720°1 926 857476 794022776 30°4802 9°7470 0°00108 6 290°9 6734°6 928 86184 799178752 30°4631 9°7540 0°00108 7 291°2 6749°2 928 86184 49178752 30°4631 9°7560 0°00108 8 291°5 6778°3 930 864900 804357000 30°4959 9°7610 0°00108 9 291°5 6778°3 931 866761 806954491 30°5123 9°7680 0°0107 1 292°5 680°5 932 868624 808575766 30°5410 9°7715 0°0107 1 293°4							-		
923 851920 786330467 30-3809 9-7364 0-00108 3 200-0 6691-0 924 853776 788880244 30-3974 9-7400 0-00108 4 230-3 6705-5 925 855625 791453125 30-44302 9-7470 0-00108 6 290-9 6734-6 927 859329 796597983 30-4467 9-7505 0-00108 6 290-9 6749-2 928 861184 799178752 30-4631 9-7540 0-00108 8 291-5 6763-7 929 863041 801765089 30-4795 9-7575 0-00108 8 291-9 6778-3 933 864900 804357000 30-453 9-7645 0-00107 1 292-5 6807-5 931 866761 806954491 30-5123 9-7645 0-00107 1 292-5 6892-5 933 870489 812166237 30-5430 9-7715 0-00107 3 293-1			781229961	30.3480	9.7294	0.00109	92.1	289.3	6662 · 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									6676.5
925 855625 791453125 30·4138 9·7435 0·00108 5 290·6 6720·1 926 857476 794022776 30·4802 9·7470 0·00108 6 290·9 6734·6 927 859329 796597833 30·4467 9·7505 0·00108 7 291·2 6749·2 928 861184 799178752 30·4939 9·7575 0·00108 8 291·5 6763·7 929 863041 801765089 30·4959 9·7610 0·00108 93·0 292·2 6763·7 930 864900 804357000 30·4959 9·7610 0·00107 1 292·2 6782·9 931 866624 809557568 30·5287 9·7645 0·00107 2 292·8 6822·2 933 870489 81246237 30·5287 9·7715 0·00107 2 292·8 6822·2 934 87268 814780504 30·514 9·7755 0·00107 5 293·7									
$\begin{array}{c} 926 & 857476 & 794022776 & 30\cdot4302 & 9\cdot7470 & 0\cdot00108 & 6 & 290\cdot9 & 6734\cdot6 \\ 927 & 859329 & 706597983 & 30\cdot4467 & 9\cdot7505 & 0\cdot00108 & 7 & 291\cdot2 & 6749\cdot6 \\ 928 & 861184 & 799178752 & 30\cdot4631 & 9\cdot7540 & 0\cdot00108 & 8 & 291\cdot5 & 6763\cdot7 \\ 929 & 863041 & 801765089 & 30\cdot4795 & 9\cdot7575 & 0\cdot00108 & 9 & 291\cdot9 & 6778\cdot3 \\ 930 & 864900 & 804357000 & 30\cdot4959 & 9\cdot7610 & 0\cdot00108 & 93\cdot0 & 292\cdot2 & 6792\cdot9 \\ 931 & 866761 & 806954491 & 30\cdot5123 & 9\cdot7645 & 0\cdot00107 & 1 & 292\cdot5 & 6807\cdot5 \\ 932 & 868624 & 809557568 & 30\cdot5287 & 9\cdot7680 & 0\cdot00107 & 2 & 292\cdot8 & 6822\cdot2 \\ 933 & 870489 & 812166237 & 30\cdot5450 & 9\cdot7715 & 0\cdot00107 & 3 & 293\cdot1 & 6836\cdot8 \\ 934 & 872356 & 814780504 & 30\cdot5614 & 9\cdot7750 & 0\cdot00107 & 4 & 293\cdot4 & 6851\cdot5 \\ 935 & 874225 & 817400375 & 30\cdot5778 & 9\cdot7785 & 0\cdot00107 & 5 & 293\cdot7 & 6866\cdot1 \\ 936 & 876096 & 820025856 & 30\cdot5941 & 9\cdot7819 & 0\cdot00107 & 6 & 294\cdot1 & 6880\cdot8 \\ 937 & 879844 & 823293672 & 30\cdot6268 & 9\cdot7889 & 0\cdot00107 & 8 & 294\cdot7 & 6910\cdot3 \\ 930 & 881721 & 827936019 & 30\cdot6131 & 9\cdot7959 & 0\cdot00106 & 94\cdot0 & 295\cdot3 & 6939\cdot8 \\ 940 & 883600 & 830584000 & 30\cdot6594 & 9\cdot7959 & 0\cdot00106 & 94\cdot0 & 295\cdot3 & 6939\cdot8 \\ 941 & 885481 & 833237621 & 30\cdot6757 & 9\cdot7993 & 0\cdot00106 & 1 & 295\cdot6 & 6925\cdot0 \\ 942 & 887364 & 833886888 & 30\cdot6920 & 9\cdot8028 & 0\cdot00106 & 2 & 295\cdot9 & 6969\cdot3 \\ 943 & 889249 & 838561807 & 30\cdot7346 & 9\cdot8097 & 0\cdot00106 & 4 & 296\cdot6 & 6999\cdot0 \\ 945 & 893025 & 843908625 & 30\cdot7346 & 9\cdot8036 & 0\cdot00106 & 5 & 296\cdot9 & 7013\cdot8 \\ 946 & 894916 & 846590536 & 30\cdot7349 & 9\cdot80132 & 0\cdot00106 & 7 & 297\cdot5 & 7048\cdot5 \\ 947 & 896809 & 819278123 & 30\cdot7346 & 9\cdot8036 & 0\cdot00106 & 7 & 297\cdot5 & 7048\cdot5 \\ 948 & 898704 & 851973392 & 30\cdot7896 & 9\cdot8236 & 0\cdot00106 & 7 & 297\cdot5 & 7048\cdot5 \\ 949 & 906601 & 854670349 & 30\cdot8058 & 9\cdot870 & 0\cdot00106 & 7 & 297\cdot5 & 7048\cdot5 \\ 949 & 906601 & 854670349 & 30\cdot8058 & 9\cdot870 & 0\cdot00105 & 9 & 298\cdot1 & 7073\cdot3 \\ 950 & 902500 & 857375000 & 30\cdot8221 & 9\cdot8036 & 0\cdot00105 & 9 & 298\cdot1 & 7073\cdot3 \\ 950 & 902500 & 857375000 & 30\cdot8221 & 9\cdot8036 & 0\cdot00105 & 9 & 298\cdot1 & 7073\cdot3 \\ 950 & 902500 & 857375000 & 30\cdot8058 & 9\cdot811 & 0\cdot00105 & 5 & 300\cdot0 & 7163\cdot0 \\ 956 & 913936 & 873722816 & 30\cdot$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	925	855625	791453125	30.4138	9.7435	0.00108	5	590.6	6720 · 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	926	857476	794022776	30.4302	9.7470	0.00108	6	290.9	6734 - 6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			796597983	30.4467	$9 \cdot 7505$	0.00108	7	291 · 2	6749 . 2
930 864900 804357000 30·4959 9·7610 0·00108 93·0 292·2 6792·9 931 866761 806954491 30·5123 9·7645 0·00107 1 292·5 6807·5 932 868624 809557568 30·5287 9·7680 0·00107 2 292·8 6822·2 933 870489 812166237 30·5450 9·7715 0·00107 3 293·1 6836·8 934 872356 814780504 30·5614 9·7750 0·00107 4 293·4 6851·5 935 874225 817400375 30·5778 9·7785 0·00107 5 293·7 6866·1 936 876096 820025856 30·5941 9·7819 0·00107 7 294·4 6895·6 937 877969 822656953 30·6105 9·7854 0·00107 7 294·4 6895·6 938 879844 825293672 30·6268 9·7889 0·00107 8 294·7 6910·3 939 881721 827936019 30·6131 9·7924 0·00106 9 295·0 6925·0 940 883600 830584000 30·6594 9·7959 0·00106 94·0 295·3 6939·8 941 885481 833237621 30·6757 9·7933 0·00106 1 295·6 6695·6 942 887364 835886888 30·6920 9·8028 0·00106 2 295·9 6699·8 943 889249 838561807 30·7849 9·8132 0·00106 3 296·3 6984·1 944 891136 841232384 30·7246 9·8097 0·00106 4 296·6 6999·0 948 898704 843908625 30·7409 9·8132 0·00106 7 297·5 7043·5 948 898704 851973392 30·7734 9·8201 0·00106 7 297·5 7043·5 948 898704 851973392 30·7734 9·8201 0·00106 7 297·5 7043·5 948 898704 851973392 30·7734 9·8201 0·00106 7 297·5 7043·5 948 898704 851973392 30·7896 9·8236 0·00105 9 298·1 7073·3 950 902500 857375000 30·8221 9·8305 0·00105 9 298·1 7073·3 950 902500 857375000 30·8221 9·8305 0·00105 9 298·1 7073·3 950 902500 857375000 30·8221 9·8305 0·00105 9 298·1 7073·3 950 902500 857375000 30·8221 9·8305 0·00105 9 298·1 7073·3 950 902500 857375000 30·8221 9·8305 0·00105 5 300·0 7163·0 950 902500 857375000 30·8221 9·8305 0·00105 5 300·0 7163·0 950 902500 857375000 30·8383 9·8339 0·00105 1 298·8 7088·2 951 904401 86085351 30·8383 9·8339 0·00105 5 300·0 7163·0 950 902500 857375000 30·8221 9·8305 0·00105 5 300·0 7163·0 950 902500 857375000 30·8383 9·8339 0·00105 5 300·0 7163·0 950 902500 857375000 30·8383 9·8339 0·00105 5 300·0 7163·0 950 902500 857375000 30·8383 9·8339 0·00105 5 300·0 7163·0 950 902500 857375000 30·8383 9·8339 0·00105 5 300·0 7163·0 950 902500 857375000 30·8385 9·8374 0·00105 5 300·0 7163·0 950 902500 857375000 30·8383 9·83				30:4631	9.7540	0.00108	8	291.5	6763 · 7
$\begin{array}{c} 931 \\ 932 \\ 868624 \\ 809557568 \\ 30 \cdot 5287 \\ 9 \cdot 7680 \\ 0 \cdot 00107 \\ 1 \\ 292 \cdot 8 \\ 6807 \cdot 5 \\$							9	291.9	6778 - 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	930	864900	804357000	30.4959	9.7610	0.00108	93.0	292 - 2	6792 · 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	931	866761	806954491	30.5123	9.7645	0.00107	1	292.5	6807:5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	932	868624	809557568	30.5287	9.7680			- 1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				30 - 5450	9.7715	0.00107		293 · 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				30:5614	9.7750	0.00107	4	293 · 4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	935	874225	817400375	30.5778	9.7785	0.00107	5	293 · 7	6866 • 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	936	876096	820025856	30.5941	9.7819	0.00107	6	904-1	6880.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	937	877969	822656953	30.6105		0.00107			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				30.6268	9.7889	0.00107			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		30.6431	9.7924	0.00106	9	295.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	940	883600	830584000	30.6594	9.7959	0.00106	94.0	295.3	6939 · 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	941	885481	833237621	30.6757	9.7993	0.00106	7	295.6	6051+6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		887364	835896888						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				30.7083	9.8063	0.00106			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				30.7246	9.8097	0.00106			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	949	893025	843908625	30.7409	9.8132	0.00106	5	296.9	7013.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		894916	846590586	30.7571	9.8167	0.00106	6	997.9	7098.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			849278123	30.7734	9.8201				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					9.8236	0.00105			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						0.00105	9	298.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	990	902500	857375000	30.8221	9.8305	0.00105	95.0	298.5	$7088 \cdot 2$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	951	904401	860085351	30.8383	9.8339	0.00105	7	900.0	7102.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	952	906304	862801408						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		908209	865523177	30.8707					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				30.8869					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	955	912025	870983875	30.9031	9.8477				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	956	913936	873722816	30.9192	9.8511	0.00105	C	200.0	F1=0 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	957								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	958	917764	879217912						
960 921600 884736000 30.0830 0.0840 0.00104 0.00104		919681							
1258 2	960	921600	884736000	30.9839					
								301 0	1200 2

TABLE No. 216—continued.

	1		-					
No	. Square	Cube	1 Square	Cube	Reciproca	ul	Circum-	
95	. Square	23	Root	Root	1	Diam		
30	20-	100	√x	3/x	25	d	of Circle	(12
			_	_			πd	4
961	1 923521	887503681	31:0000	9.8688	. 0:0010	1 00 1		
962						- 00 L	301.9	7253 · 3
963								7268 • 4
964			0.2 00==		0.0010		000	7283.5
965							302.8	7298.7
000	001246	000002120	31.0644	9.8819	0.00104	£ 5	303.2	7313.8
960		901428696	$^{+}$ 31 · 0805	9.8854	0.00104	- 6	303.5	7329 • 0
967	7 - 935089	904231063	31:0966	9.8888	0.0010;		1303.8	7344 · 2
968	937024	= 907039232	31:1127	9.8922			304 · 1	7359.4
969	+938961	909853209	31.1288	9.8956			304.4	7374.6
970	940900	912673000	31.1448	9.8990			304.7	7389.8
971	942841	915498611	31.1609	9:9024	10.00100		20.20	
972			31.1769		0 00200		305.0	7405 1
973					0.00103		305.4	7420 · 3
974			31 · 1929	9.9092	0.00103		305.7	7435.6
975			31.2090		0.00103		306.0	7450.9
310	350029	920099919	31.2250	9.9160	0.00103	5	306.3	7466.2
976	202010		31.2410	9.9194	0.00102	6	306.6	7481.5
977	954529	932574833	31.2570	9.9227	0.00102	7	306.9	7496.9
978	956484	935441352	31.2730	9.9261	0.00102	8	307 · 2	7512.2
-979	958141	938312739	31.2890	9.9295	0.00102	9	307.6	7527.6
980	960400	941192000	31.3050	9.9329	0.00102	98.0	307.9	7543.0
981	962361	944076141	31.3209	9.9363	0.00102	1	308.2	7558.4
982	964324	946966168	31.3369	9.9396	0.00102	2	308.5	7573.8
983	966289	949862087	31.3528	9.9430	0.00102	3	308.8	7589 2
984	968256	952763904	31.3688	9.9464	0.00102	4	309.1	7604.7
985	970225	955671625	31.3847	9.9497	0.00102	5	309.4	7620 · 1
0/10	070400	070705050	04 4000					
986	972196	958585256	31.4006	9.9531	0.00101	6	309.8	7635.6
987	974169	961504803	31.4166	9.9565	0.00101	7	310.1	7651 1
988	976144	964430272	31.4325	9.9598	0.00101	8	310.4	7676.6
989	978121	967361669	31.4484	9.9632	0.00101	9	310.7	$7682 \cdot 1$
990	980100	970299000	31.4643	9.9666	0.00101	99.0	311.0	7697.7
991	982081	973242271	31.4802	9.9699	0.00101	1	311.3	7713 · 2
992	984064	976191488	31.4960	9.9733	0.00101	2	311.6	7728.8
993	986049	979146657	31.5119	9.9766	0.00101	3	312.0	7744.4
994	988036	982107784	31.5278	9.9800	0.00101	4	312.3	7760 . 0
995	990025	985074875	31.5436	9.9833	0.00101	5	312.6	7775 · 6
000	009010	000047000	91.5505	0.0000	0.00100	6	312.9	7791.3
996	992016	988047936	31.5595	9.9866	0.00100			7791.3
997	994009	991026973	31.5753	9.9900	0.00100	7	313.2	7806.9
998	996004	994011992	31.5911	9.9933	0.00100	8	313.5	
999	998001	997002999	31:6070	9.9967	0.00100	9	313.8	7838:3
1000	1000000	1000000000	31.6228	10.0000	0.00100	100.0	314.2	7854.0

To convert:-

Inches to centimetres						multiply b	
Centimetres to inches Inches to millimetres			۰	*	*	22	0.3937
Millimetres to inches		•	•	4	•	99	25.399
Variate metres	•				*	93	0.03937
Yards to metres . Metres to yards Feet to metres . Metres to feet . Feet to links	•	•	٠		٠	"	0.9144
Foot to motros	0	۰				22	1.0936
Motros to foot	٠		٠		٠	33	0.30478
Foot to links		•	٠			21	3.3
Feet to links Statute miles to kilome	+400		۰	*	٠	23	1.5151
Kilometres to statute n	tres	•	٠		٠	22	1.60927
Statute miles to nautica			*	0	٠	22	0.62137
Nautical miles to statut			٠	4		22	0.8673
Nautical miles to kilon						22	1.153
Kilometres to nautical					•	22	1.8553
Kilometres to nautical	miles					23	0.5388
Kilometres to yards Yards to kilometres	٠	*				22	1093.6
Millimotros to mile		•				22	0.0009145
Mila to millimeters	•				٠	22	39 · 4
Yards to kilometres Millimetres to mils Mils to millimetres Nautical miles to yards Yards to nautical miles			٠			22	0.0254
Nautical miles to yards	3					>>	2029
lards to nautical miles						22	0.0004928
Square inches to square	centi	ımetr	es			22	6.4516
Square inches to square Square centimetres to s	quare	inch	es			19	0.155
Square yards to square	metre	28			٠	22	0.836126
Square yards to square Square metres to square Square inches to square Square millimetres to	e yarc	is				22	1.196
Square inches to square	milli	metr	es			,,	645 16
					٠	,,	0.00155
Acres to square metres Acres to square yards Square feet to square li	•					>>	4048
Acres to square yards						,,	4840
Square feet to square li	nks					>>	$2 \cdot 2954$
Square feet to square n	etres					22	0.09
Square feet to square n Square metres to square Cubic metres to cubic y Cubic yards to cubic me	e feet					27	10.76
Cubic metres to cubic y	ards		۰			22	1.30795
Cubic yards to cubic me	etres				٠.	22	0.76455
CHOIC THOUGH TO CHOIC GO	emann	etres				23	16.387
Cubic centimetres to cu	ibic ir	ches				22	0.06102
Cubic feet to cubic met	res					,,	0.0283
Cubic metres to cubic f	eet				0	"	35.315
Cubic feet to litres						"	28.3
Cubic feet to litres Litres to cubic feet Imperial gallons to litre Imperial gallons to cub Cubic metres to imperi			4			33	0.035
Imperial gallons to litre	es					,,	4.541
Imperial gallons to cub	ic me	tres				"	0.0045
Cubic metres to imperi	al gal	lons				22	220
Cubic metres to imperial g Cubic feet to imperial g Imperial gallons to cub	gallon	8				. 22	6.2355
Imperial gallons to cub	ic fee	t·				. 27 .	0.1605
Imperial gallons of fres	sh wai	ter to	Th .	o voirdu	noin		10.0
LD avoirdupois of fresh	wate	er to i	innac	minl wal	Ĥ.	s ,,	0.1
LD. avoirdupois of fres	h we.ta	er to	litro	G .			0.454
Dines of fresh water to) lb. a	voird	1111001	0		"	2.2
Cilibie feet of freeh wete	· · · · · · 1	h	- F. J.			75	62.425
LD. avoirdupois of frest) wate	er to i	enbi.	a foot		,,	0.016
CHOIC ICCI OI SEA WHIEL	1.03 (1.11)	3. VOI	2001 13 13	1010		19	
Cubic centimetres of fr	esh w	ater t	o er	ammes		,,	64.05
			0.			2.3	1.000

To convert:

convers.—			
Imperial gallons to cubic inches		multiply by	277 · 27
American gallons to imperial gallons .		"	0.8325
American gallons to cubic inches		22	231
Grammes to grains		22	15.44
Grains to grammes		13	0.065
Tons to kilogrammes	٠	"	1016
Kilogrammes to tons		,,	0.000984
Ounces to grammes		39	28.35
Grammes to ounces		ý j	0.035
Lb. avoirdupois to grains troy		22	7000
Lb. avoirdupois to kilogrammes		39	0.4536
Kilogrammes to lb. avoirdupois		,,	$2 \cdot 2046$
Tons to tonneaux		22	1.0160
Tonneaux to tons		29	0.9842
Grammes to 1b. avoirdupois		22	0.0022046
Lb. avoirdupois to grammes		22	453.5924
Cwt. to kilogrammes		27	5 0·8
Kilogrammes to cwt		22	0.01968
Kilogrammes to ounces		,,	35+3
American tons to lb		22	2 000
American tons to English tons		23	0.8928
American tons to tonneaux		99	0.908
Grammes per metre to lb. per statute mile	٠	22	3.548
Kilogrammes per kilometre to lb. per statute r	nile	,,	3.548
Grammes per metre to lb. per nautical mile		,,,	4.091
Grammes per foot to lb. per statute mile.		53	11.64
Lb. per nautical mile to kilogrammes per kilom	etro	· ,,	0.2445
Lb. per square inch to grammes per square ce	enti	eq.	MO . O
metre		23	70.3
Grammes per square centimetre to lb. per squ	uar	9	0.01400
inch		99	0.01422
Lb. per square inch to head of water in feet		99	2.3
Head of water in feet to lb. per square inch	4	22	0.43
Lb. per square inch to head of water in metres	3	29	0.7
Head of water in metres to lb. per square inch	1	,,	1.4
Lb. per square inch to atmospheres.		22	0.07
Atmospheres to lb. per square inch	•	99	14.7
Kilogrammes per square millimetres to 1b.	ber		1422.3
square inch	0	22	1722 0
Lb. per square inch to kilogrammes per squ	lare)	0.000703
millimetre		23	0 000708
Tons per square feet to kilogrammes per squ	ıare	,	1.09
centimetre		9.1	15.5
Tons per square feet to lb. per square inch.	otric	99	1.033
Atmosphere to kilogrammes per square centime	erre	,,,	1 (100
Kilogrammes per square centimetre to at	що		0.967
spheres .		59	36
Tons per square foot to head of water in feet	10 20	29	
Tons per square inch to kilogrammes per squ	WENT C		1.575
millimetre	nei	99	
Kilogrammes per square millimetre to tons	Pol	39	0.6347
square inch		22	0.737
Joules to foot lb		77	

To convert:

COHVELL"								
Foot 1b. to	Joules .	٠					multiply by	1.35
Lb. degree	s Fahrenheit	to foo	t lb.				99	772
Lb. degree	s Fahrenheit	to kil	ogran	ımes			23	107
Kilogramn	etres to foot	lb.					22	7.2178
Foot 1b. to	kilogrammet	res					39	0.13825
Horse pow	er to watts					۰	22	746
Watts to h	orse power					4	27	0.00134
Horse pow	er to foot lb.	per m	inute				35	33000
Horse pow	er to kilograi	$_{ m mmetr}$	es per	r seco	nd		22	76.0
	oot lb. per mi						29	44
Watts to k	ilogrammetre	es per	secon	d			99	0.1
Joules to l	rilogrammetr	es	4				22	0.1
Kilogramı	netres to Jou	les	•			٠,	99	9.8
Pferdestär	ke to horse p	ower		•			99	0.987
Horse pow	er to Pferdes	tärke					22	1.013
Pferdestär	ke to watts	٠.					99	736
Miles per	hour to feet]	per mi	nute				22	88
Feet per r	ninute to mil	es per	hour		٠	* .	22	0.0113
Metres pe	r second to fe	et per	minu	ıte			23	197
Feet per r	ninute to met	res pe	r seco	ond	•		23	0.005
	it to Réaumu						責(F) 一	$32^{\circ}) = R.^{\circ}$
Réaumur	to Fahrenhei	t					$(R.^{\circ} \times \frac{4}{9}) +$	$32^{\circ} = F.^{\circ}$
Fahrenhe	it to Celsius Fahrenheit					۰	§ (F.° −	32°)= U.°
							(≗ C°,) +	$32^{\circ} = F.^{\circ}$
	Réaumur				٠		• 4 ×	$0.^{\circ} = R.^{\circ}$
	to Celsius						•	$K.^{\circ} = C.^{\circ}$
Common	to hyperbolic	logs.				0	multiply b	y 2.30258
Hyperbol	ic to common	logs.					19	0.43429

Table No 155.—Construction Data and Prices of Three-Core, Sector-Conductor, Low Tension, Paper Insulated, Lead-covered Cables. Thicknesses according to the Rules of the Cable Makers' Association,

Based on: Copper at £60 per ton; Lead at £1 4s. per 100 kilogrammes; Paper and Impregnating Compound at £2 per 100 kilogrammes.

e	ea of ach luctor		Number Diamet of Win	ter	Diam.	Cop	per	Parthick Cu/C	ess u and	07	meter ver of Cure	Pap	er	Impreg. Compo	nating ound	ove	meter r the e Cores		e Cores	1 per			eter over r Paper	Paj	per	Impregn Compo		Thickne Lead		Diame Le	ter over	Le		Total Weight of Material,	Price of	shillings	Wages, shillings	penses.	Price	e in shillin	gs per
sq. in.	sq. mm.	No.	în.	mm.	ductor, mm.		Price, shillings per km.		mm.	mm.	in.		shillings	Weight, kilog. per km.	shillings	mm.	in.	kilog.	Price, shillings per km.	kilog.	shillings	mm.	in.	kilog.	shillings	Weight, kilog. sl per km. p	hillings	mm.	in.	mm.	in.	Weight, kilog. per km.	shillings	per km.	per km.	per km.		per km.		1000 yards	
0.025	16:13	7	() • () • ; _	1.71	5.1	144	184	0.09	2.3	7.4	0.291	25	10	20	8	13.8	0.543	567	606	(;	6	16.1	0.634	59	24	47	19	2.05	0.08	20.2	0.795	1329	319	2008	974	24	130	130	1258	1151	2024
.050	32 · 26	19	.058	1.47	7.4	287	367	.09	2.3	9.7	•382	34	14	27	11	18.1	•713	1044	1176	:10	12	20.4	.803	77	31	62	25	2.3	.09	25.0	•984	1864	447	3057	1691	42	162	243	2138	1955	3440
.075	48.4	19	.071	1.80	9.0	431	552	.09	2.3	11.3	•445	40	16	32	13	21.1	.831	1509	1743	15	17	23.4	-921	89	36	71	28	2.55	·10	28.5	1.16	2363	567	4047	2391	60	192	288	2931	2680	4716
.100	64.5	19	.082	2.08	10.4	575	736	·10	2.5	12:9	.508	50	20	40	16	24 · 1	•949	1995	2316	20	28	26.6	1.05	110	41	88	35	2:55	.10	31.7	1.25	2656	637	4869	3055	77	226	395	3753	3432	6039
.125	80.6	19	.091	2.32	11.6	718	919	·10	2.5	14.1	•555	. 56	22	45	18	26.3	1.04	2457	2877	:25	29	28.8	1.13	119	48	95	38	2.8	·11	34.4	1.35	3106	745	5802	3737	94	258	452	4541	4152	7307
.150	96.8	37	.072	1.83	12.8	862	1103	.10	2.5	15.3	:602	61	24	49	20	28.5	1.12	2916	3441	29	34	31.0	1.22	128	51	102	41	2.8	.11	36.6	1.44	3384	812	6559	4379	110	288	504	5281	4829	8498
•200	129	37	.083	2.11	14.8	1150	1472	-10	2.5	17:3	.681	69	28	55	22	32.3	1:27	3822	4566	38	46	34.8	1.37	145	58	116	46	3.05	·12	40.9	1:62	4124	990	8245	5706	143	350	700	6899	6309	11104
.250	161	37	.093	2:35	16:5	1436	1838	-11	2.8	19.3	.760	87	35	70	28	36.0	1.42	4779	5703	48	57	38.8	1.53	181	72	145	58	3.3	13	45.4	1.79	4964	1192	10117	7082	177	410	820	8489	7762	13660
.300	194	37	.102	2.58	18.1	1724	2207	•11	2.8	20.9	.823	94	38	75	30	39:0	1.54	5679	6825	57	68	41.8	1.65	196	78	157	63	3.3	•13	48.4	1.91	5314	1275	11403	8309	208	476	952	9945	9094	16010
.350	226	37	.109	2.78	19.5	2013	2577	•11	2.8	22.3	.878	101	40	81	32	41.6	1.64	6585	7947	66	79	44.4	1.75	208	83	166	66	3.55	·14	51.5	2.03	6081	1460	13106	9635	241	536	1072	11484	10500	18480
•400	258	61	.091	2.32	20.9	2299	2943	11	2.8	23.7	.933	108	13	86	34	44.2	1.74	7479	9060	75	91	47:0	1.85	221	88	177	71	3.55	·14	54.1	2.13	6410	1539	14362	10849	271	600	1200	12920	11815	20790
• 500	323	61	192	2.59	23.3	2875	3680	.11	2.8	26.1	1.03	120	48	96	38	48.6	1.91	9273	11298	93	113	51.4	2.02	242	97	194	78	3.8	15	59.0	2.32	7493	1799	17295	13385	335	. 720	1440	15880	14520	25554
								ı																	İ			t					-			1	1				

Table No. 160.—Construction Data and Prices of Three-Core, Sector-Conductor, Paper Insulated, Lead-covered Cables for 2200 Volts Working. Thicknesses according to the Rules of the Cable Makers' Association.

Based on: Copper at £60 per ton; Lead at £1 4s. per 100 kilogrammes; Paper and Impregnating Compound at £2 per 100 kilogrammes.

												n: Copper					1		1		1		Imangene	iting	Thickness	of Dian	neter over	Lo	a·1	foto:	Total		111	Sh. 1	Price	in skilli Pel	1.g.
Area of e		Number of	and Dian Wires	j	Diam.	Copper		Paper, thickne in in.	ss c	Diame over Pap Core	er of	Paper	Impr	egnating apound	Diame over t Three (the Cores	Three Cores laid up	for lay	Out	neter over er Paper	101	Dring 1	Compor	and Price	Lead	_	neter over Lead	Weight,	I'rn.	of Mar- rial. kiter.	of Mate- rish, shillings per kin	shain es per kur	seilui g- per km.	persons, subjects per lon.	ku.	36 10	
sq. in. se	q. mm.	No.	in.	(luctor, y	Veight, Prikilog. Shi	llings	to	to 1	mm.	in	Veight, Prickilog. shillinger km. per k	ngs' kilog	. shillings	mm.	in.	Weight, Price kilog. shiling per km.	Weight, Prigs kilog, shill	ings mm.	in.	kilog. per km.	shillings per km.	kilog. sh per kin. p	illings er km.	mm.	n. mm	. 1n. 	per km.	per kin	1						-	
For M	ESH OR	STAR	POINT	INEAR I	HED	WORKI NO	3.	13 0	13	8.4 0	.331	39 16	3 31	12	15.7	0.618	642 630 1143 1213	6	6 19.0	0.748	50	20	40	16	2.05	08 23	1 0.909	2103	370 505	2279	1048	26	150	150 270	1:374 2271	1256 2077	30
0.025					- 4	1307	2657	- 1 - 3	1.5	117 /	T41 .	<i>92</i>														4.11	2 1 . 73	2010	U-0	7., .,	AT AL .						
· 075	48.4	19	.071	1.80	9.0	431	552	.11	• 13	14.0	.551	76 30	0 61	24	26.1	1.03	2136 237	0 + 21 = 2	24 29.	7 1.17	87	35	70	28	2.8	11 35	3 1.39	3471	833	6267	3864	4 97	278	457	4726	4321	7
·125	80.6	19	•091	2:32	11.6	718	919	14	•14	15.2	·598 ; ·646 [†]	91 3	$\frac{3}{6}$ $\frac{6}{73}$	29	30.6	1.21	3078 350	4 31	34.	2 1.35	101	40	. 81	32	3.05	12 40	·3 1 1·59	4058	974	9105	5 5931	1 148	374	745	7201	6584	11
-200	129	37	.083	2.11	14.8	1150	1472 1838	·14 ·15	·14	18.4	·724 ·799	103 4 121 4	1 82 8 97	33	34.3	1:35	3078 350 4005 463 4962 577	5 50	58 41.	6 + 1.64	130	52	104	42	3.3	13 48	.2 1.90	5290	1270	10536	7197	180	440	880	8697	7952	14
·250 For						1																			0.05	.00 91	.6 0.8	50 1431	343	2178	3 1025	26	150) 150	1349	123	1 1
0.025	16.13						0.00	• 12	• 1()	10.7	421	04 4	-1							1					. ~~	. 40 0	1.0 1 7.1	7 . 9483	\$,1570	TLU (tel milet	1(1)					
	48.4	19	.071	1.80	9.0	431	552	•13	•10	12.3	·484 ·551	$\left \begin{array}{c c}61 & 2\\76 & 3\end{array}\right $	2 4 4:	1 24	26.1	1.03	2136 23	70 21	24 28	.1 1.11	94	38	75	30	2.8	.11 3	3.7 1.3	3 3091	1 742 1 798	2 541 5 612	.7 320 20 383	04 80 30 96	j 240 j 278	8 487	7 469	1 429) ()
·100 ·125								. 14	-11	15.9	• 598	83 3	33 ' 0	0 20	1											4.5 1 63	0.77 1.7	999	93.	718	S7 45.	(1) 11±	Ŧ 911	(1 +12+) 614,7	,	
·150		37 37	·072 ·083	1·83 2·11	12·8 14·8	862 1150	1103	14	•11	18.4	•724	103	41 8	2 33	34.3	1:35	3078 35 5 4005 46 9 4962 57	38 40 75 50	46 36 58 46	1.4	$\begin{array}{c c} 3 & 122 \\ 8 & 155 \end{array}$	49 62	98	39 50	3.3	$\begin{array}{c c} \cdot 13 & 4 \\ \cdot 13 & 4 \end{array}$	$6.7 \begin{vmatrix} 1.6 \\ 1.1 \end{vmatrix}$	84 511	8 122	8 1040	09 71	73 179	9 44	0 88	0 867	72 79	30
.250		37	.093	2.35	16.5	1436	1838	·15	•12	20.3	·799	121	40 U													Ì											

Table No. 161.—Construction Data and Prices of Three-Core, Sector-Conductor, Paper Insulated, Lead-covered Cable for 3300 Volts Working. Thicknesses according to the Rules of the Cable Makers' Association.

Based on: Copper at £60 per ton; Lead at £1 4s. per 100 kilogrammes; Paper and Impregnating Compound at £2 per 100 kilogrammes.

	of each luctor		er and Di		Diam.	Cop	oper	Paper	thickness n in.	Dian over P.	aper of	Pap	er	Impregi Comp		0.00	neter r the Cores		Cores d up	l per for	cent.		ter over Paper	. Paj	per	Impregna Compou		Thickno Le		Diamet Le	all		į	l ta Weget d Met lal.	Tetal Frice of Mate-	W	W 2	P P P P P P P P P P P P P P P P P P P		v in shillin pri
sq.	sq. mm.	No.	in.	mm.		KHOg.	summigs	to	r Copper	mm.	in.	Weight, kilog. si per km. p	hillings	kilog. 8	shillings	mm.	in.	Weight, kilog. per km.	Price, shillings per km.	kilog.	shillings	mm.	in.	kilog.	shillings	Weight, I kilog, shi per km. pe	illings	mm.	in.	nını.	in.	Weight, all g. s per km. p	MINU.	10.1 4711.	per am.	per Elin.	pram.	j · j. l	ки) (a) (b)
For	Mesh or	STAR	POINT	UNEAR	THED	WORKI	ING																					The state of the s												
0.025	16.13							0.15	0.15	8.9	0:35	46	18	37	15	16.6	0.654	681	651	7	7	20:4	0.803	122	49	98	39	2.3	0.09	25.0	0.984	1861	417	2772	1193	30	20,5	205	1633	1490
.050	32.26						367			11.2		61	24	49	20	20.9	0.823	1191	1233	12	12	24.7	0.972	150	60	120	48	2.55	·10	29.8	1.17	2483	596	3956	1949	49	250	375	2623	2399
.075			.071							12.8	.504	72	29					1								136											300			3135
•100	64.5	19	.082	2.08	10.4	575	736	.16	·16	14.5	.571	88	35	70	28	27:0	1.06	2199	2397	22	21	31.1	1.22	206		165	1				1	1						1		
.125	80.6	19	.091	2.32	11.6	718	919	·16	.16	15.7	.618	97	39	78	31	29.3	1.15	2679	2967	27	30	33.4	1:32	222	89	178	71	3.05	·12	39.5	1:56	3972	953	7078	4110	103	400	700	5313	4855
.150	96.8	37	.072	1.83	12.8	862	1103	•16	.16	16.9	.665	105	42	84	34	31.5	1.24	3153	3537	32	35	35.6	1 · 4()	238	95	190	76	3.05	•12	41.7	1.61	4213	1011	7 < 24;	4754	119		815		1000
•200	129	37	.083	2.11	14.8	1150	1472	.16		18:9				95	38	35.2	1:39	4092	4674	41	47	39 · :3	1.55	264	106	211	84	3.3	.13	45.9	1.80	4812	1155	(420	6066	152		(16);}		
.250	161	37	.09::	2.35	16.5	1436	1838	.17	.17	20.8	.819	139	56	111	44	38.8	1.53	5058	5814	51	.58	43.1	1.70	305	122	244	98	3.55	-14	50.2	1.98	5917	1420	11575	7512	155	(1.11)	11:38	:+1	8676
_	~																														· ·									
	STAR POI					144	104	0.75	0.10	0.0	0.05	10	10	977	1 E	10.0	0.654	601	251	7	7	18.0	0.741	71	28	57	23	2.3	0.09	23.5	0.92	5 1742	418	2558	1127	28	205	205	1505	1431
0.025	16.13					144			0.12	8.9		46									1					70	1								1871	17	250	375	2543	2325
.050	32.26	19		1.47						11.2																80									2530		300	450	::343	3057
	48.4	19					552					72 88	35	70									1.16			98	39	2.8	.11	35.1	1:38	3231	775	5672	3284	82	3.5.5	622	4343	3971
	64.5	19					736					97			21	20.2	1.15	2199	2001	22	30	31.8	1.25			106												700	5203	4758
	80.6	19	.031	2.32	11.6	000	919	.16	1.0				.19	9.1	8.1	21.5	1.01	2075	2507	20	25	34.0	1.34	142	. 57	114	46	3.05	.12	40.1	1.58	4035	968	7470	1643	116	465	815	6039	5522
	96.8	37							•13					05	38	25.9	1 - 29	9199	1074	41	47	37:7	1.48	158	63	126	50	3.3	.13	44.3	1.74	4 4830	1159	9247	5993	3 150	5.50	()();)	71:51	7002
•200		37	.083	2.11	14.8	1100	1990	.17	• 14	20.8	.810	130	56	111	4.1	28.6	1 .52	5050	5014	51	58	41.6	1:64	196	78	157	63	3.55	.14	48.7	1.92	2 5721	1373	1118:	738	3 185	650	1138	9356	8558
·250	161	37	093	2.30	10.9	1490	1000	17		200	010	1.55	00)	111	11	00 0	1 70	30.38	9814	01	00								1				1				1	4		

-				_																				V some order										_						
		100	- 71	-	11							Fee					-		=									Seeker Seeker		-				75		-	-	12		
					-	-		tugger		-		m		bos par	94	-		-	- 10	jeri kini.	40			le; var	r. B.	0 2 1	· 5 6 a	W0700	-		-		ten, gress	Acres 1	-			-	b4.	==
(Fine)	6	n Mean	8 89-68	T FRES	CHET S	Works.	260.																																	
		0	07 (295)	1 71	5 1	8 6 6	154	0 23	0 2.	100 00 0	0 (2)	19	122	64	26	20.3	0 799	861	7:96	11	7	26 1	1 03	*672.7	;e ;	100	74	2 15 0	10	51 2	1 21	2000	GM.	200	Tan					
		-19-		0.0	0.4	100							11			4.4	17 1	110	1191	11.	-17									MI	1940			1289		11				
	**	1.3	CF?	1 30)	9 0	4.11	133	*P.3	2.	14 %	, e4,	119	45	20,5	881	27.6	1:09	1985	1914	10	19	101-4	11.32	, or ,	122	245	50%	3 45	- 12	1050 5	1 56	.6972	\$0.5 s	HIS	44		war !		1170	
~		5.3	0000	2 100	10 4	17.1	7.00	. 20	24	16.5	650	142	,0 g	114	46	3018	1.21	2493	2517	25	127	.16 0	1.46	.67	14.1	Jew.	114	.1 405	12	43 0	1 60	6.51	1044		(90)	77			ing [N. 100
	-	. 13	000	: 12	11 6	715	919	128	21	17.7	1207	154	62	123	40	13:0	1:30	2985	3090	:10	::1	350 1	1.54	100,	152	,d10-{	131	.: 3	18	45 7	1-80	See on the	1301							
	-	7.	6p 🖰	1 41	15 0	SIM	1100	28	21	15 9	1744	167	17	134	54	35 · 2	1.39	3489	:672	3.5	:17	41:3	1 63	103	161	7 mg - 3 1 mg - 3	120	3 3	13	47 9	1 85	52.74	129.1					1000		
		77.	OTEN	3 11	14 4	1150	1472	- 26	21	201 10	571	188	7.5	150	6301	::9 - 0	1:54	4461	4821	45	48	(5)1	1.78	443	177	054	142	3 35	-14	52 2	2 45	6166	1480	11474			100			THE PERSON
28/	MIC.	2 0	000	2 5	16 5	14.56	153	25	25	20 8	5119	214	141	171	64	12:5	1:67	5463	5076	1.1	ejer	48.8	1 92	497	199	8.3.	1.5	15	11.			700	CILI	1.000						
	-																																							
				1111			156	0.21	0 17	10.9	0 420	540	32	64	26	20.3	0.799	8674	726	50	7	20-1	0:5009	105	42	2-4	34	2 35 6	0 10	28-2	1-11	Single								
		10		145	24	20	10. 6	- 23	-17	13.3	- 520	103	41	82	33	24.6	0.000	1416	1:123	14	13	27 - 4	1:08	126	Ser	101	441	2.8	-11	331-0	1 30	10072911	1				200			-
	20.2			11-60	50 00	9.11	5.08	- 23	17	16:5	- 500	119	48	10.5	38	27 6	1.09	1935	1914	19	19	301-4	1 20	140	563	112	45	3 05	-12	36 5	1 44	2003-6-4	wel.			786				
	15.0			1110	100-4		7 16	- 24	794.		-2741	110		116	10	E00-8	190	2.00				1 801 9	110						110	-	104	Acres.								-
		100					79	76	-1+			114	607	ANT -	1 4	20.0	1000	(es),			- 11		1110	111	14	111			166	OT	1		1134			-61	230			
30.	76.7			- los	177.9	-	1500		2.0	145	114	107	+	les.	6	400	1200	1450				. 1			26					4673	199		THE	679.6	1			-		
-2.0			-		144	1150	5411		(An		900	148		336	200	20-6-	The	1100	1-,1	44	11	1	1-4	997		171	39	714												
		170			16 3	8 6.318	1250	· 23	. 10	222 19	* 945,000	214	860	171	68	42.3	1.67	5463	5976	55				252																

Table No. 163.— Construction Data and Prices of Three-Core, Paper Insulated, Lead-covered Cable for 11,000 Volts Working. Thicknesses according to the Rules of the Cable Makers' Association.

Based on: Copper at £60 per ton; Lead at £1 4s. per 100 kilogrammes; Manila Paper at £4 per 100 kilogrammes; Impregnating Compound at £2 per 100 kilogrammes.

(Note.—Up to and including the 0.125 sq. inch the conductors are circular; above that size they are sector-shaped.)

																			,																					
	of each		er and Di		Diam.	Copl	er	Pap thick in	eness	Diam over F Co	aper	Pap	er	Impregn Compo		Diam over Three	the	Three laid		1 per tor l		Diamet Outer	er over Paper	Pape	r	Impregnat Compour	ting T	l.ead	Diar	Lead		3161	Tetar Weight Hilliam vi	I Mate-	Wa-' . '	M ges Hillius j	Si.c ₁ . 1 > -	P'11 0 1	r sirilir; per	
sq. in.	sq. mm	No.	in.	mm.	Milli.	Weight, kilog, s per km.	shilling:	142	to	nim.	in.	Weight, kileg. si per km. 1	hillings	kilog. sl	aillings	mm.	in.	Weight, kilog. per km	shillings	kilog a	shillings		în.	kilog. sl	hillings	Weight, P kileg, shi per km, pe	llings m	m. in.	mm	in.	Weight, kileg per kin.	Price.	kl. s. Prkm.	1 1 . 1 - 2	er al a j) · · · · · · · · · · · · · · · · · · ·	kin.		y.; s	
FOR	Mesh o	STAR	POINT	UNEAR	THED	WORKI	NG.																													20-	20%	2601	3993	5795
0.025	16.13	3 7	0.067	1.71	5.1	144	184	0.35	0:35	14.0	0.551	147	118	118	47	30 · 2	1.19	1227	1047	12	10	39-1	1:54	538	426	426 1	70 3	05 0.13	45.	2 1.78	4596	1103	6794	2,		(A) (A) (A)	(15.7)	19011	4.567	7984
.050		2 10	.058	1+37	7:4	987	367	• 25	. 35	16:3	.642	182	146	146	58	35 · 1	1.38	1845	1718	18	17	44 · ()	1.73	608	486	486 I	94 3	30 13	90.	6 1.99	9911	10.,,,		*** 10					5403	
.075	48.4	10	+071	1.00	0.0	191	7.70	.95	. 25	17.0	.705	207	166	166	66	38.6	1.52	2412	2352	24	21	47:5	1.87	662	530	530 2	212 3	.30 .13	94.	1 2.19	9000	1 1 1 1 1		1,,,,,					6548	
.100	64.5	19	.000	0.08	10.4	575	786	- 36	• 36	19:5	.768	235	188	188	75	42.0	1:65	2994	2997	30	;}()	51:1	2:01	732	586	586 2	234 3	. 22 . 1-	58.	5 5.59	6930	[() () -)	11-1-	,,,,,,,,	1 1				7378	
•125	80.6		. (10) 7	.)).)	11.0	710	010	+ 26	- 38:	90.7	-815	254	203	203	81	44.6	1.76	3525	3609	35	36	53:7	2.11	. 773	618	618 2	247 3	. 22 . 1	F 60.	8 5.39	7260	1/12	111	1121/2	1 2.,				8002	
•150	96.8	37	050	1.00	70.0	D/**	1109	. 943	• 24	9] • ()	-869	273	218	218	87	40.8	1.61	4059	4224	41	42	49.9	1:97	713	570	570 2	228 3	.80 .1	57	9 5.50	1200	1/10	1 200 1 1 200	(11.71)	1(,,,				**!!	
•200	129.0	37			* 4 0	1150	1.170	.96	. 26	-) Q - Q	-941	304	243	243	97	46.2	1.82	5091	5436	51	51	55.3	2.18	798	638	1 638	255 4	.09 .1	0.5	4 2.90	0901	1 2001	1.,1,,,,,	. 111					11530	
•250	161.2	37	.093	2.35	16.5	1436	1838	•37	•37	25.9	1.02	344	275	275	110	48.3	1.90	6165	6669	62	67	57.7	2.27	861	688	688	275 4	.3 .1	7 66	3 2.61	9524	2286	1 (-)() -	6,6041	40 1 1 1 1	, 6.				
For	STAR P	OT NT E	RTHED	WORK	ING.																											1 049	1 5490	9170	1 42	205	205	3003	2746	4832
0.025		7	0.067	1.71	5.1	144	184	0.35	0.23	14.0	0.551	147	118	118	47	30.2	1.19	1227	1047	12	10	33.0	1.30	153	122	122	49 3	0.1	2 39	1 1.54	3924	942	2438	2170	69	455	682	4292	3925	4832 6906
•050									10	4.0.10	1 440	300	1.47	1.10	50	25 - 1	1.38	1945	1712	19.	17	37.9	$-1 \cdot 49$	176	141	141	.10	1 00	0 11	1 10	1000	1								
.075				1						1 /:		DOE !	1/2/2	100	00	90.0	1 - 59	9.119	1)1)51)	+).1	9.1	41.4	1.63	-194	199	1(0)	04	. 50	20	0										
.100		19											4	4.00	I	4.3 0	7.05	2004	.)00=	43/3	0.0	15.1	1 - 78	1 233	180	190	/T) () ()	T 0.2											
•125								. 0/2	10.	90.7	. 915	954	203	203	81	44.6	1.76	3525	3609	35	36	47.7	1.88	247	198	198	10	1									1132	8000	7:316	11720 12880
150																																								
	129.0																																				1540	11717	10715	15930 18850
	161.2	37	-003	2:35	16.5	1436	1838	•37	•25	25.9	1:02	344	275	275	110	48.3	1.90	6165	6669	62	67	51.6	2.03	285	228	228	91	1.20	1 00	2 2 3	1	, 2000	10020							18850
200	101.2	01	.,,,,,	,																	<u> </u>				1			1			1	-								

Table No. 164.—Construction Data and Prices of Three-Core, Paper Insulated, Lead-covered Cables for 20,000 Volts Working.

Based on: Copper at £60 per ton; Lead at £1 4s. per 100 kilogrammes; Manila Paper at £4 per 100 kilogrammes; Impregnating Compound at £2 per 100 kilogrammes.

Area of Condu		Number	r and Di		Diam.	Copp		Paper th: Cu to and Cu	Cu	Diamo over Ins Cor	ulated	Pap	er	Imprega Compo	nating ound	Diam over Three	the .	Three Co		1 per o	cent.	Diamet Outside	er over e Paper	Pap	er .	Impreg Comp	nating ound	Lea Thick:	nd ness	Diamete Lea	er over	Lea	nd !	Total Weight of Mate- rial, kilog.	Total Price of Mate- rial,	Waste, shillings per km.	Wages, shillings per km. s	Shop Ex- penses,		in shillir per	
sq. in.	sq.mm.	No.	in.		mm.	Weight, kilog. 8 per km.	shillings	in.	mm.	in.	mm.	Weight, kilog. s per km.	hillings	kilog. s	hillings	111111	in.	Weight, l kilog, sh per km. pe	illings	kilog. s	shillings	um.	in.	kilog.	shillings	Weight, kilog. per km.	shilling-	mm.	in.	mm.	in.	Weight, kilog. s per km.	shilling-	Let km.	per km.			per km.	km.	1000 yards	statute mile
FOR M	ESH OR	STAR	POINT	UNEAR	THED	WORKI	NG.		1	!													45	1270	1.)10	1.)1()	121	1.3	0.17	70.7	2.78	10199	2448	15375	5954	119	770	770	7613	6 961	12250
0.025	16.13	7	0.067	1.71	5.1	144	184	0.638	16.2	0.839	21.3	370	296	296	118	45.9	1.81	3204	1794 2550	24																		1275	9334	8534	15020
.050								200	4.3.61	0.000	95.9	170	909	988	153	51.3	9.14	3879	3264	39	33	70.5	2.78	1747	1398	1398 .	559	4.3	. 17	79.1	3.17	11489	2001	18002	0011	100	300	1000	INTER	0020	- 0
.075	48.4	19	.071	1.80	9.0	431	552	·650	16:5	1.06	26.9	532	426	426	170	58.0	2.28	4599	3996	46	4()	74.5	2.93	1889	1511	1911	604	4.0	.18	89.7	9.90	12007	3113	21012	3210	100	0.0	1706 }	12136	11109	19530
				$\begin{bmatrix} 2 \cdot 08 \\ 2 \cdot 32 \end{bmatrix}$									453	453	181	60.6	2.39	5311	4659	53	47	77.1	3.04	1963	1570	1570	628	4.6	.18	86.3	3.40	13425	3222	22322	10126	203	1050	1857	13236	12100	21300
•125	80.6	19	.091	2 32	11.0				,																	1											1			1	

INDEX.

]	PAGE
ALTERNATING CUI	rrent res	istance	, alumi	nium		'				101
37	,,	79	coppe	r			C 0 0			85
Aluminium cond										100
" temp			ent for	resista	nce					102
Areas of circles									137,	429
Asbestos braid		* *		• •	• •	• •		• •	• •	190
BIRMINGHAM WITE	e gauge						• •			61
Bitumen cables										172
Braid, asbestos										190
,, cotton										186
,, hemp			**							189
" jute										188
Brown & Sharpe	wire gau	ıge	• •		* *		• •		• •	59
CABLE drums	4.0	* *								421
Cables, complete	jute inst	ılated								366
	paper in									321
	paper ar	nd jute	insulat	ted						361
51 53	rubber i	nsulate	d						381,	394
20 27	telephor	1e							* 4	392
Cables for high v	oltages									419
Capacity, electro	static									397
Charges for shop	expense	8								313
Circle, area									137,	
" circumfer	ence								181,	42 9
Compound for br	aids									188
", ", ju	te impre	gnation	Lee							124
", ", pa	per impi	regnatio	on							113
	okerit									185
Concentric condu										88
Conversions									425	454
Copper, annealed	l									50
Copper conducto	rs									1
22 27		ngham	gauge				- 4			61
. 22 22		& Sha								59
22 22		red wit				1				100
	Contin	ental r	ormal	section	S					60

									PAGE
Copper	r conductors,				 			• •	74
13	22	legal gauge			 		• •	64	1, 68
22	,,,	price			 			• •	92
29	22	sector			 				52
22	97	square inch s	ections		 				2
52	29	square millin	netre se	ections	 				24
29	**	standard mai			 				63
22	27 .	temperature	coefficie	ent	 			89	9, 90
, ,,	22	tensile streng	th		 			91	l, 92
99		voltage drop			 		7	7 7, 7 8	3, 84
99	Engineerin	g standards c	ommit	tee	 				5 0
57	general dat	a			 				50
22	hard draws	ı			 				50
99	strands				 				1
99	weight from	n diameter in	inch		 				55
22		**	\mathbf{m} illim	etre	 				53
Cotton	braid				 				186
33	" compo				 				188
22	" weigh	nt of			 				188
79	scale				 				186
	of numbers				 				429
	oots of numb				 				429
Curren	t capacity of	O 1 7							
CHILOH	is capacity of	t cables			 		64	4, 68,	411
CHILDE	to capacity of	t cables		• •	 	• •	64	, 68,	411
	TER of sector			• •	 				
		cables			 ••				113
DIAME	TER of sector	cables			 		 47, 5	 69, 68	113 3, 74
Diame	TER of sector of strand of telepl	cables			 			 69, 68 160,	113 3, 74 164
DIAME	TER of sector of strand of teleph over wir	cables ds			 		 47, 5	 69, 68 160,	113 8, 74 164 227
DIAME	TER of sector of strand of teleph over wir	cables ds hone cables e armour gutta-percha			 		 47, 5	 69, 68 160, 	113 8, 74 164 227 155
DIAME" " " Dielect	TER of sector of strand of telepl over wir	cables ds hone cables e armour , gutta-percha	 cable		 		47, 5	 69, 68 160, 	113 8, 74 164 227 155 127
DIAME" " Dielect	TER of sector of strand of telepl over wir tric constant,	cables ds hone cables e armour gutta-percha jute cable	cable		 		 47, 5	 69, 68 160, 	113 8, 74 164 227 155 127 115
DIAME" " Dielect " "	TER of sector of strand of telepl over wir tric constant,	cables ds hone cables e armour , gutta-percha jute cable paper cable	 cable		 		 47, 5	 69, 68 160, 	113 8, 74 164 227 155 127 115 148
DIAME	TER of sector of strand of telepl over wir tric constant,	cables ds done cables e armour gutta-percha jute cable paper cable rubber cable telephone ca	cable		 		47, 5	 69, 68 160, 	113 3, 74 164 227 155 127 115 148 170
DIAME	of steam of teleph over wir tric constant,	cables ds hone cables e armour , gutta-percha jute cable paper cable rubber cable	cable		 		 47, 5	 69, 68 160, 	113 8, 74 164 227 155 127 115 148 170 175
Diame' Dielect property	of sector of strand of teleph over wire constant,	cables ds hone cables e armour gutta-percha jute cable paper cable rubber cable telephone ca vulcanised bi e cable	cable cable ble itumen		 		47, 5	 69, 68 160, 	113 8, 74 164 227 155 127 115 148 170 175 127
DIAME' "" Dielect "" "" "" "" "" "" "" "" ""	TER of sector of strand of teleph over wir tric constant,	cables ds hone cables e armour gutta-percha jute cable paper cable rubber cable telephone ca vulcanised bis e cable er cable	cable cable cable tumen		 		47, 5	69, 68 160,	113 8, 74 164 227 155 127 115 148 170 175 127 118
DIAME' 23 29 39 70 Dielect 29 29 29 29 29 29 29 29 29 29 29 29 29	TER of sector of strand of teleph over wir tric constant,	cables ds hone cables e armour gutta-percha jute cable rubber cable rubber cable telephone ca vulcanised bi e cable er cable ber cable	cable cable ble itumen				47, 5	 69, 68 160, 	113 8, 74 164 227 155 127 115 148 170 175 127 118 148
DIAME' 27 29 39 39 40 Dielect 37 47 47 47 47 47 47 47 47 47 47 47 47 47	of strand of telephover wir tric constant, """ loss, jute ", pape ", rubl	cables ds hone cables e armour gutta-percha jute cable rubber cable rubber cable telephone ca vulcanised bi e cable er cable ber cable	cable cable ble itumen				47, 5	 69, 68 160, 	113 8, 74 164 227 155 127 115 148 170 175 127 118 148 411
DIAME' "" "" "" Dielect "" "" "" "" "" "" "" "" "" "" "" "" ""	of sector of strand of teleph over wir tric constant, """ loss, jute ", pap, ", rubl resistance	cables ds hone cables e armour gutta-percha jute cable rubber cable rubber cable telephone ca vulcanised bi e cable er cable	cable ble itumen a cable				47, 5	69, 68 160,	113 5, 74 164 227 155 127 115 148 170 175 127 118 148 411 155
DIAME' "" "" Dielect "" "" "" "" "" "" "" "" "" "" "" "" ""	of strand of telephover wir constant, "" "" "" "" "" "" "" "" "" "" "" "" "	cables ds hone cables e armour gutta-percha jute cable paper cable rubber cable telephone ca vulcanised bi e cable er cable ber cable e gutta-perch	cable cable titumen cable				47, 5		113 3, 74 164 227 155 127 115 148 170 175 127 118 148 411 155 125
DIAME' '' '' '' '' Dielect '' '' '' '' '' '' '' '' '' '' '' '' ''	of strand of telephover wire constant, "" "" "" "" "" "" "" "" "" "" "" "" "	cables ds hone cables e armour gutta-percha jute cable paper cable rubber cable telephone ca vulcanised bi e cable er cable ber cable gutta-perch jute cable	cable cable ditumen date				47, 5	99, 68 160,	113 3, 74 164 227 155 127 115 148 170 175 127 118 148 411 155 125 114
DIAME' '' '' '' Dielect '' '' '' '' '' '' '' '' '' '' '' '' ''	of strand of telephover wire constant, loss, jute pape, ruble resistance, """ """ """ """ """ """ """	cables ds hone cables e armour gutta-percha jute cable paper cable rubber cable telephone ca vulcanised bi e cable er cable ber cable gutta-perch jute cable paper cable rubber cable	cable cable ble itumen a cable				47, 5	99, 68 160,	113 3, 74 164 227 155 127 115 148 170 175 127 118 148 411 155 125 114
DIAME' '' '' '' '' Dielect '' '' '' '' '' '' '' '' '' '' '' '' ''	ter of sector of strand of teleph over wire constant, """ loss, jute "" pap "" rub resistance "" "" "" "" "" "" "" "" "" "" "" "" ""	cables ds hone cables e armour gutta-percha jute cable rubber cable telephone ca vulcanised bi e cable er cable ber cable gutta-perch jute cable paper cable rubber cable	cable cable ditumen cable ditumen		 		47, 5	69, 688 160,	113 3,74 164 227 155 127 115 148 170 175 127 118 148 411 155 125 114 148 170
DIAME' '' '' '' '' Dielect '' '' '' '' '' '' '' '' '' '' '' '' ''	ter of sector of strand of teleph over wir tric constant, "" loss, jute "" pape "" "" "" "" "" "" "" "" "" "" "" "" ""	cables ds hone cables e armour gutta-percha jute cable paper cable rubber cable telephone ca vulcanised bi e cable er cable ber cable gutta-perch jute cable paper cable rubber cable	cable ble titumen a cable	cable	 		47, 5	69, 688 160,	113 3, 74 164 227 155 127 115 148 170 175 127 118 148 411 155 125 114

IN	r**	30.75	44	

**	vidia.					_	
						F	AGE
Dielectric strength, jute cable							127
				1.			115
" rubber cable							148
,, vulcanised bitumer	n cable						175
stress in cables						,	415
70 11							421
Dry core telephone cables							157
ELECTROSTATIC capacity of cables							397
Elongation of aluminium							
of copper			* *		4.4		, 92
,, of paper				,		104,	
Estimating jute insulated cables							315
" paper insulated cables							313
, rubber insulated cables	,						317
telephone cables							319
Extra high tension cables							419
Extras on price of copper							92
FLEXIBLE conductors				+ +,			74
" wire armour					+ +		237
GALVANIZED steel wire							223
Gutta-percha cables							150
" , tapes for							185
							155
,, resistance							155
							155
,, species							151
,, temperature coefficient							155
,, weight of					* *	150,	152
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
							189
weight of						**	
", serving ···			4.0		4.4	216,	242
							104
IMPREGNATING compound for jute cable	es	* *	* *		• •	• •	124
,, for paper cab	les		4.9	* *	100	001	113
India-rubber cables					128,		
", dielectric constant		* 1					148
loss ,		414	• •		* *	* *	148
93 . 105150011	,,,	+ +			* *		148
strength			* *		* *	• •	148
estimating		4.1	1		* *		317
" " ingredients for con	pound	s					144
, , lead sheath for					192, 194,	197,	204

T., 32	1.1.	. 11	, ,								PAGE
Indi	a-rubbe	er cables,									180
	22	19	-		efficient						148
	13	93	vulcania	sation of	f					129	, 145
	99	22	working	g temper	rature						148
	92	25	prices o	f							143
	99	27	specific	gravity	of						141
	٠,	59	thickne	sses							129
	59	29	weight							6, 141.	
			Ü						A ()	0, 111,	, 111
JUT	E braid	,									188
22.	99	compour									189
92	77	weight									189
	cable					.,					. 366
22	29	dielectri			• • •				• •		127
27	27		loss						• •		
			resista		• •	• •					127
77	99						• •				125
99	99		streng				• •				127
32	27	estimatin	ng	• •							315
79	99	impregn			l for						124
2.2	99	labour fo								280,	293
59	99	lead shea						193,	196, 197	7, 198,	202
27	22	temperat			or						125
22	79	thicknes									121
99	22	weight o	f jute								124
99	scale										118
22	servin	g under a	armour							015	
25	>>	between		ırs						215,	
22	22	over ar							• •		
33		ng							• •	241,	
		0 **		• •	• •	• •			* *		112
LABO	UR, cos	t of									
Lay,	allowa	ace for									280
		of strand								48	3, 49
		of			• •	• •					47
Lead	sheath				• •						48
		thickness	0	• •							191
	99	weight o	10								192
7.000		weight o	ť								207
nega	i wire g	gauge								64	
Mamr	777 A W										, 00
MALL	RIAL, V	vaste of		**							212
mrech	anical i	tests on co	opper w	ire						91	
7.45	,	" on p	aper								,
Multi	core ca	bles							• •	102,	
								• •	••	• •	1.12
UZOKI	ERIT CO	mpound									7.0.F
93	taj	ре	.,						• •		185
								. **	• •		185

								1	PAGE
PAPE	R and air space cable	B							157
29	cables							102,	321
22	,, dielectric co	nstant							115
,,	" " los						• •		118
99	., .,	sistance	+ i					• •	114
99		ength						• •	115
21	" estimating							• •	313
99	" impregnatin	-	l for		• •		• •		113
22	"				••	100	100 107	280,	
11	" lead sheath:				• •		196, 197,		115
99	,, temperature		• •		• •	• •			105
22	,, thickness of	A 4	• •			• •		• •	110
97	" weight of pa	*	• •				••		118
70.11	,, working tem	*	• •	• •		• •	••	• •	47
	diameter of strands		• •		• •	• •	• •	• •	190
Price	of asbestos thread		• •	• •					92
"	of copper wire		• •	• •					190
99	of hemp yarn								143
57			• •	• •					124
22	of jute	·· ··		• •					124
9.9	/- I O	-						114.	170
77	of paper , impregnating								114
99	of sheathing materi								280
79	of steel tape armoun								253
"	of steel wire								243
97	of tapes								185
27	of vulcanised bitum								175
59	of worming jute		.,						114
99	or worming Jaco		• •						
~									429
	T Teo OTT								411
Kesis	stance, dielectric								100
		temperatur							102
	" of copper, Bi	rminchem	wire car	106					61
	,,,	own & Shar							59
	99 77 flox	cible strand							74
	fno	m diameter							84
	" log	al wire gau		.,					64
	ma	ins cable							63
	27 ± a1.	ephone cond							157
	"	perature co	efficien					8	9, 90
	to alternating	current. al	luminiu	m					101
			pper						85
Rubl	er. See India-rubb	""	FI						

SECTOR cables										PAGE
Self induction of cables 395 Shop expenses 313 Skin effect, aluminium conductors 101 " copper conductors 85 Squares of numbers 429 Square roots of numbers 429 Steam: pressure and temperature 148 Steel tape armour 248 , cost of 255, 250 " ", jute serving over 250, 254 ", ", give serving over 250, 254 ", ", withickness of 252, 254 ", ", weight of 251, 254 Strands 24 ", ", weight of 251, 254 Strands 24 " Brown & Sharpe 59 Continental normal 60 " diameter of 47 " legal wire gauge 68 " length of lay of 47 " mains cable 68 Surface of a cable 178 TAPES, bitumen 185 " cookerit 185 " width and lay of 176 Telephone cables 157 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>113</td>										113
Shop expenses 313 Skin effect, aluminium conductors 101 3, ", copper conductors 85 Squares of numbers 429 Square roots of numbers 429 Square roots of numbers 429 Steam: pressure and temperature 148 Steel tape armour 248 253, 280 253, 280 253, 280 253, 280 254, 254 254, 254 255, 254 255, 254 255, 254 255, 255,	" conducto	rs								52
Skin effect, aluminium conductors 101 ", " copper conductors 85 Squares of numbers 429 Square roots of numbers 429 Steam: pressure and temperature 148 Steel tape armour 248 ", " cost of 253, 280 ", ", jute serving over 250, 254 ", ", " thickness of 232, 254 ", ", " thickness of 251, 254 ", ", " weight of 251, 254 Strands 24 ", " Brown & Sharpe 59 Continental normal 60 " diameter of 47 " flexible 74 " legal wire gauge 68 !ength of lay of 47 " mains cable 68 Surface of a cable 176 TAPES, bitumen 185 <	Self induction of	cables								395
""" copper conductors 429 Square roots of numbers 429 Square roots of numbers 429 Steam: pressure and temperature 148 Steel tape armour 248 """ cost of 255, 280 """ jute serving over 250, 254 """ """ under 248, 254 """ """ under 248, 254 250, 254 """ """ under 248, 254 251, 254 251, 254 Strands 251, 254 251 254 </td <td>Y T</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>313</td>	Y T									313
Square sof numbers 429 Square roots of numbers 429 Steam: pressure and temperature 148 Steel tape armour 248 , cost of 253, 280 , jute serving over 250, 254 , my jute serving over 250, 254 , my thickness of 232, 254 , my thickness of 251, 254 Strands 24 , Brown & Sharpe 59 , Continental normal 60 , diameter of 47 , flexible 74 , legal wire gauge 68 , length of lay of 47 , mains cable 63 Surface of a cable 178 TAPES, bitumen 185 , ozokerit 185 , quantity required 177 , ruber saturated 180 , width and lay of 176 Telephone cables 157 , conductors 157 , conductors 157 , conductors			rs							
Square roots of numbers 429 Steam: pressure and temperature 148 Steel tape armour 248										85
Steam: pressure and temperature 148 Steel tape armour 248										429
Steel tape armour cost of										429
, cost of 253, 280 , jute serving over 250, 254 , jute serving over 248, 254 , weight of 252, 254 , weight of 251, 254 Strands 24 Continental normal 60 diameter of 47 flexible 74 legal wire gauge 68 length of lay of 47 mains cable 63 Surface of a cable 178 TAPES, bitumen 185 quantity required 177 rubber saturated 180 width and lay of 176 Telephone cables 157, 392 157, 392 157			re							
""""""""""""""""""""""""""""""""""""	Steel tape armou									
""""""""""""""""""""""""""""""""""""	11 11 21								253,	280
" " " thickness of 252, 254 " " weight of 251, 254 Strands 24 " Brown & Sharpe 59 " Continental normal 60 " diameter of 47 " flexible 74 " legal wire gauge 68 " length of lay of 47 " mains cable 63 Surface of a cable 178 TAPES, bitumen 185 " quantity required 185 " quantity required 176 Telephone cables 176 Telephone cables 157, 392 " capacity temperature coefficient 157 " " conductors 157 " " conductors 157 " " construction table 161 " " diameter of 160, 164 " " " estimating 319 " " estimating 319 " " lead sheath for 199, 205, 206 " " multiple twin 158 " " multiple twin 158 " " " " " " " " " " " " " " " " " " "	77 27 27								250,	254
" " " weight of 251,254 Strands 24 " Brown & Sharpe 59 " Continental normal 60 " diameter of 47 " flexible 74 " legal wire gauge 68 " length of lay of 47 " mains cable 63 Surface of a cable 178 TAPES, bitumen 185 " ozokerit 185 " quantity required 177 " rubber saturated 180 " width and lay of 176 Telephone cables 157, 392 " capacity temperature coefficient 170 " conductors 157, 392 " construction table 161 " diameter of 160, 164 " dielectric constant 170 " " estimating 319 " alabour for 280, 307 " lead sheath for 199, 205, 206 " " lead sheath for 158 " " multiple twin 158 " " multiple twin 158	27 29 21								248,	254
Strands 24 " Brown & Sharpe 59 " Continental normal 60 " diameter of. 47 " flexible 74 " legal wire gauge 68 " length of lay of 47 " mains cable 63 Surface of a cable 178 TAPES, bitumen 185 " quantity required 177 " rubber saturated 180 " width and lay of 176 Telephone cables 157, 392 " capacity temperature coefficient 170 " conductors 157 " conductors 157 " construction table 161 " diameter of 160, 164 " dielectric constant 170 " , resistance 170 " , estimating 319 " labour for 280, 307 " , lead sheath for 199, 205, 206 " , mechanical protection 158 " ordinary twin 158	27 22 22									
"Brown & Sharpe 59 "Continental normal 60 "diameter of 47 "flexible 74 "legal wire gauge 68 "length of lay of 47 "mains cable 63 Surface of a cable 178 TAPES, bitumen 185 "ozokerit 185 "quantity required 177 "rubber saturated 180 "width and lay of 176 Telephone cables 157, 392 "capacity temperature coefficient 170 "conductors 157 "construction table 161 "diameter of 160, 164 "grade of the coefficient 170 "grade of the coefficient </td <td></td> <td>~</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>251,</td> <td>254</td>		~							251,	254
"Continental normal 60 "diameter of. 47 "flexible 74 "legal wire gauge 68 "length of lay of 47 "mains cable 63 Surface of a cable 178 TAPES, bitumen 185 "ozokerit 185 "quantity required 177 "rubber saturated 180 "width and lay of 176 Telephone cables 157, 392 """ conductors 157 """ conductors 157 """ construction table 161 """ diameter of 160, 164 """ dielectric constant 170 """ """ resistance 170 """ """ estimating 319 """ estimating 319 """ lead sheath for 199, 205, 206 """ """ mechanical protection 158 """ """ mechanical protection 158 """ """ ordinary twin 158										24
", diameter of." 47 ", flexible 74 ", legal wire gauge 68 ", length of lay of 47 ", mains cable 63 Surface of a cable 178 TAPES, bitumen 185 ", ozokerit 185 ", quantity required 177 ", rubber saturated 180 ", width and lay of 176 Telephone cables 157, 392 ", capacity temperature coefficient 170 ", conductors 157 ", conductors 157 ", construction table 161 ", diameter of 160, 164 ", dielectric constant 170 ", resistance 170 ", estimating 319 ", lead sheath for 199, 205, 206 ", mechanical protection 158 ", mechanical protection 158 ", ordinary twin 158 ", ordinary twin 158										59
", flexible 74 ", legal wire gauge 68 ", length of lay of 47 ", mains cable 63 Surface of a cable 178 TAPES, bitumen 185 ", ozokerit 185 ", quantity required 177 ", rubber saturated 180 ", width and lay of 176 Telephone cables 157, 392 ", capacity temperature coefficient 170 ", conductors 157 ", construction table 161 ", diameter of 160, 164 ", dielectric constant 170 ", estimating 319 ", estimating 319 ", estimating 319 ", estimating 199, 205, 206 ", mechanical protection 158 ", ordinary twin 158 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>60</td>										60
", legal wire gauge" 68 ", length of lay of" 47 ", mains cable" 63 Surface of a cable 178 TAPES, bitumen 185 ", ozokerit" 185 ", quantity required 177 ", rubber saturated 180 ", width and lay of 176 Telephone cables 157, 392 ", capacity temperature coefficient 170 ", conductors 157 ", construction table 161 ", diameter of 160, 164 ", dielectric constant 170 ", estimating 319 ", estimating 319 ", estimating 199, 205, 206 ", mechanical protection 158 ", mechanical protection 158 ", ordinary twin										47
" length of lay of 47 " mains cable 63 Surface of a cable 178 TAPES, bitumen 185 " ozokerit 185 " quantity required 177 " rubber saturated 180 " width and lay of 176 Telephone cables 157, 392 " capacity temperature coefficient 170 " conductors 157 " construction table 161 " diameter of 160, 164 " dielectric constant 170 " " resistance 170 " " estimating 319 " estimating 319 " lead sheath for 199, 205, 206 " " mechanical protection 158 " " multiple twin 158 " ordinary twin 158	,,,									74
"mains cable" 63 Surface of a cable 178 Tapes, bitumen 185 "ozokerit" 185 "quantity required 177 "rubber saturated 180 "width and lay of 176 Telephone cables 157, 392 "capacity temperature coefficient 170 "conductors 157 "construction table 161 "diameter of 160, 164 "dielectric constant 170 "resistance 170 "resistance 170 "resistance 280, 307 "restimating 319 "restimating 280, 307 "restimating 199, 205, 206 "restimating 159 "restimating 150 "restimating 150 "restimating 150 "restimating<	**									68
Surface of a cable 178 TAPES, bitumen 185 ,, ozokerit 185 ,, quantity required 177 ,, rubber saturated 180 , width and lay of 176 Telephone cables 157, 392 ,, conductors 157 ,, conductors 157 ,, construction table 161 ,, diameter of 160, 164 ,, dielectric constant 170 ,, resistance 170 ,, resistance 170 ,, estimating 319 ,, labour for 280, 307 ,, lead sheath for 199, 205, 206 ,, mechanical protection 159 ,, mechanical protection 158 ,, ordinary twin 158 , ordinary twin 158	,,									47
TAPES, bitumen	**									63
", ozokerit 185 ", quantity required. 177 ", rubber saturated 180 ", width and lay of 176 Telephone cables 157, 392 ", capacity temperature coefficient 170 ", conductors 157 ", construction table 161 ", diameter of 160, 164 ", dielectric constant 170 ", resistance 170 ", estimating 319 ", labour for 280, 307 ", lead sheath for 199, 205, 206 ", mechanical protection 159 ", multiple twin 158 ", ordinary twin 158	Surface of a cable	€								178
", ozokerit 185 ", quantity required. 177 ", rubber saturated 180 ", width and lay of 176 Telephone cables 157, 392 ", capacity temperature coefficient 170 ", conductors 157 ", construction table 161 ", diameter of 160, 164 ", dielectric constant 170 ", resistance 170 ", estimating 319 ", labour for 280, 307 ", lead sheath for 199, 205, 206 ", mechanical protection 159 ", multiple twin 158 ", ordinary twin 158										
"quantity required." 189 "rubber saturated 180 "width and lay of 176 Telephone cables 157, 392 "capacity temperature coefficient 170 "conductors 157 "construction table 161 "diameter of 160, 164 "construction table 170 "construction table 170 "construction table 170 "construction table 160, 164 "construction table 170 "construction table 170 "construction table 170 "construction table 160, 164 "construction table 170 "construction table 170 "construction table 170 "construction table 161 "construction table 160, 164	,									185
"rubber saturated" 180 "width and lay of	" ozokerit									185
"width and lay of										177
Telephone cables 170 " capacity temperature coefficient 157, 392 " conductors 170 " construction table 157 " diameter of 160, 164 " dielectric constant 170 " " resistance 170 " " estimating 319 " labour for 280, 307 " lead sheath for 199, 205, 206 " mechanical protection 158 " ordinary twin 158 " analyzation with 158										180
""" capacity temperature coefficient	* *	*								176
""" conductors 170 """ construction table 161 """ diameter of 160, 164 """ 170 """ """ temperature coefficient 170 """ """ temperature coefficient 170 """ stimating 319 """ labour for 280, 307 """ lead sheath for 199, 205, 206 """ mechanical protection 159 """ multiple twin 158 """ ordinary twin 158	Telephone cables	3							157.	392
""" construction table 161 """ diameter of 160, 164 """ dielectric constant 170 """ " resistance 170 """ " temperature coefficient 170 """ estimating 319 """ labour for 280, 307 """ lead sheath for 199, 205, 206 """ mechanical protection 159 """ multiple twin 158 """ ordinary twin 158 """ anadymule wair 158	22 22		erature	coeffici	ient					170
""" """ 160, 164 """ """ """ 170 """ """ """ 170 """ """ temperature coefficient 170 """ """ temperature coefficient 170 """ """ 180 190 """ """ 199 205 206 """ """ """ 159 """ """ """ 158 """ """ """ """ """ """	22 22									157
	22 27		ıble							161
""" """ " temperature coefficient 170 """ " temperature coefficient 170 """ " estimating 319 """ labour for 280, 307 """ lead sheath for 199, 205, 206 """ " mechanical protection 159 """ " multiple twin 158 """ " ordinary twin 158 """ " analyzada wair 158	27 77								160,	164
""" """ temperature coefficient 170 """ estimating 319 """ labour for 280, 307 """ lead sheath for 199, 205, 206 """ mechanical protection 159 """ multiple twin 158 """ ordinary twin 158 """ analyzinle point 158	27 99									170
""" estimating 319 """ labour for 280, 307 """ lead sheath for 199, 205, 206 """ mechanical protection 159 """ multiple twin 158 """ ordinary twin 158 """ analyzing wair 158	22 22	,, resis	tance	* *						170
""" """ labour for "	27 91		, t	empera	ture co	efficier	ıt			170
""">""">""" lead sheath for	25 25									
""" lead sheath for	99 ' 99								280.	307
""" """ mechanical protection	17 99							199,		
", multiple twin	27 29	*		11						
,, ordinary twin	19 '29									
anodrania noir	22 22	67								
	25 35	quadruple pai	r							

INDEX.

										PAGI
Teleph	one cable	s, tapes fo	r							18
,,	29	weight	of paper							169
22	99		f paper							169
Temper	rature coe	efficient fo	r capacity	of teleph	one c	ables				170
99		,, fo	r dielectri	c resistan	ce of	gutta-p	ercha e	eable		15
22		,,	39	99		jute ca				123
22		99	22	99		paper o				113
,,		95	59	22		rubber				148
99		**	91	19		telepho			1.7	170
99		"	97	27		vulcan				173
19		,, fc	r resistan							105
32	,	79		of copp					88	
99	(4)		or paper c			• •	* *			113
			or rubber		• •					148
Tensile			nium		• •					100
17	"	of copper							91, 92,	
>9	11	of paper							104,	
"	. ,,	of steel v								245
. ,,	99									247
Thickn	ess of die		jute cabl				• •		• •	121 103
22		0	paper cal		* *	• •				129
99		P	rubber ca		 					175
29	0 * 1		vulcanise							121
29		e yarns								199
99		d sheath				• •				141
99		e rubber		• •	• •	• •				25:
,,	steel	tape armo	our	• •	• •		• •			247.
VOLTAG			onductors						77, 78	
22		n cables			• •				100	
		rubber							129,	
Vulcan	ised bitur	ne n cable								17:
>1	,,	,,		constant						175
٠ ,	99	,,	22	resistano	30					173
,,	,,	. 55		strength				•		170
9.2	11	,,		bitumen						173
11	**	,,,	1							
22	**	**		ure coeffic						17:
"	"	,,		s of bitum			• •			17:
,,	,,	**	weight of	f bitumen						1.7+
										กร
	of materi							• •	005	313
		r wires							225,	190
22	of asbest	os braid								188
55	of compo	und for co	otton braic	1	• •	• •			• •	100

XXX 1 3									PAGE
Weigh	t of compound for jute brai								189
٠,	of copper: Birmingham								61
19	" Brown & Shar	rpe gai	age						59
22	" from area in s	q. mm.							60
91	", ", diameter	in inc	hes						55
*9	97 79 27	in mn	α.						3, 84
19	legal wire gau	ıge							. 68
77	,, mains cable								63
**	" sq. inch sectio	ns							2
,,	, sq. mm. sectio	ns							24
,,	of cotton braid								188
41	C 11 1					• •		150,	
,,	0 1 1 0 7					• •	• •		
,,	of impregnating compoun						• •	• •	189
21			aper ca						124
	of india-rubber"	tor b	aper ca	ibies		• •	• •		114
"	of jute as dielectric						• •	136,	
**	7 17					• •			124
**	Trown in a								189
**	0			• •					113
,,	.017 1 47	• •							219
*,									207
19									110
**	" in telephone cabl	les							169
"									142
5 9									251
**	of tapes								180
21	of vulcanised bitumen								175
Wire a	rmour	. ,						${214}$	
**	" compound for								242
17	details of						• •		228
٠,	, diameter over					• •	• •	• •	227
**	" flexible					• •		• •	
22	, hemp serving				• •	• •	• •	• •	237
,,	jute serving between			• •				• •	242
22				••	• •	• •	• •	• •	240
**					• •	• •		• •	241
22	" number of wires req		• •			• •	• •	• •	215
**			• •	• •	• •	• •	• •		244
**	maior of the state						• •		227
,,	20 mm - m t - 1 - 1 - 1 - 1		• •		• •				243
	otnon de d								2 38
**	tonoile atmomath . C	• •		• •					236
11	woight of		• •	• •					242
Wormi	no into			• •	• •			2 25 ,	227
TO LINE	ng jute	• •		• •					112

INDEX TO TABLES OF CONSTRUCTIONAL DATA.

(The numbers refer to the tables, and not to the pages.)

	Size of	Work-	ī	Type of Cabl	e		
Dielectric Material	Conductor expressed in	ing Pressure in Volts	Single	Concentric	2 Core	Triple Concentric	3 Core
Paper	sq. in.	600	134:152	145:146:153		151:154	155
	,,,	700	136	147			
	77	1000		148:149			
77		2000	4.5	156			160
,,,	. 27	3000		157			161
99	11	6000		158	1		162
37	22	11000		159			163
99	27	20000		4.5			164
97	22	20000		**			1 202
	sq. mm.	600	133				
27	. ^	1000	135	1		**	
59	22	3000	137				
22	>>	3000	101	• •		**	
	L.S.W.G.	600	138:139				
27		700	140:141	1.		150	
9.9	77	1000	142:143:144	• •		100	
22	22	1000	112.110.111	**		* *	
Danen 1							
Paper and Jute	sq. m.m.	600	** .	• •	166		170
,		1000			167		171
29	99	2000			1681		172
25	77	3000			169		173
99	27	6000					174
22	97	10000		• •			175
22	99	10000		•			
Total		500	176				
Jute	99	600	177				182
22	22	700	178	184		188	102
2.5	* 97	1000	179	185	181	100	183
99	21			186	181		183
99	25	2000	180	187	181	* *	183
99	99 /	3000	180	101	TOT	* *	100

INDEX TO TABLES—continued.

Dielectric Material	Size of Conductor expressed in	Working Pressu in Volts	re	Grade		Number of Table		
Rubber	L.S.W.G.	••		300/600 Ω 2500 Ω		190 191		
77 77 77	sq. mm.	500 1000 2000 3000		••		192 193:194 194 197		
17	L.S.W.G.	1000 2000 3000	1 5	••		195 195 : 196 199		
Jute	••	Telegraph			.}	189		
Paper		Telephone		• •	*	198		

