Before you start:

- Separate all the parts in the kit according to component type.
- Use a multimeter as shown to measure all the resistors. It is fine if the resistance you measure is within ±5% of the specified value.
- Arrange the resistors according to their values.

Surface Mount Assembly Instructions

Note

If you are building the full kit including surface mount parts, this is the right

If you are building the kit with the surface mount parts pre-assembled, please skip to the next page.

Tools:

- Solder paste
- 2. Stencil
- 3. Spackle knife
- Tweezers
- Reflow oven

Please wear gloves while working with solder paste.

Step 0: Assemble Main Board Surface Mount Parts

0.0. Resistors

R1, R9: 10 kΩ R7: 0.24 Ω 3.32 kΩ R8:

0.3. Micro USB connector

J2: Micro USB

0.5. ATmega

ATmega328 U1: P-AU

0.8. Op-Amp

U5: Dualoperational amplifier

0.1. Diode

D1: 1N5819

0.4. Inductor

270 uH L1:

0.6. Linear Regulator

U2: Linear regulator

0.2. Ceramic capacitors

C1, C2, 100 nF C8. C11: 12 pF C3. C4: C14: 1500 pF

1.11. Crystal

16 MHz Crystal Y1:

0.7. Inverter

U4: -5V inverter

Oven

Before you start:

- Separate all the parts in the kit according to component type.
- Use a multimeter as shown to measure all the resistors. It is fine if the resistance you measure is within ±5% of the specified value.

MAX038-CPP

Arrange the resistors according to their values.

Waveform Generator DIY Kit User's Manual

Through-Hole Assembly Instructions

Note

If you are building the kit with the surface mount parts pre-assembled, this is the right page!

If you are building the full kit including surface mount parts, please see the previous page.

Tools:

- Soldering iron
- Solder wire
- 3. Snips
- Screwdriver

Step 2: Assemble LCD

2.0. Male-male pin headers

Solder the shorter ends of

the pin headers to the bottom

1 x 8

Step 1: Assemble Main Board

1.0. Resistors

R3, R11: 560 kO R4: 180 kQ R5: 470 Ω R6. R10: 1 kΩ

1.3. Micro USB connector

Micro USB This component is already attached to the board, but the through-hole pins need to be hand-soldered.

1.6. Switch

SW3: Triple throw switch

1.9. BNC connector:

BNC coaxial connector

chip

1.1. Waveform generator

U3:

1.4. Buttons

SW1, SW2: Pushbuttons

1.7. Male-male pin headers

J1: 1 x 6 1 x 2

RV1: RV2: 20 kΩ RV3:

1.10. Potentiometers:

500 kΩ 10 kΩ

1.2. Ceramic capacitors

C5: 4.7 uF C6: 33 nF C7: 15 pF 220 pF C10, C12, C16, C17: 1 uF 100 uF C13, C15: C18: 5 pF

1.5. Electrolytic capacitors

C13, C15: 100 uF Note: The positive side of the capacitor (longer lead) gets soldered to the square pad (unfilled semicircle).

1.8. Male-female pin headers

MOD1: 1 x 8

Step 3: Test and Use

3.1 Power up the board Plug your 5V battery into the micro USB connector (J2). Do not apply more than Disconnect power before step 3.2.

3.2 Attach LCD board Plug the LCD into the female pin headers (MOD1) on the main board.

3.1 Check voltages

- Connect the board to power again.
- Connect the COM probe of your multimeter to TP2 (GND) and the other probe to TP1. You should measure -5 V.
- You should measure about +3.3 V.
- You should measure about +5 V.

- Now connect the probe at TP1 to TP3. - Finally, connect the probe at TP3 to TP4.

3.4 Use

- Connect the BNC cable to the BNC connector (J4) on the waveform generator. 1. Also boot up your oscilloscope and connect the scope probes.
- 2. Attach the waveform generator BNC cable to the oscilloscope probe, making sure to match red to red and black to black.
- Turn the waveform generator 3. to a low frequency, around 5 - 20 Hz.
- Adjust the settings on your oscilloscope until the waveform is satisfactory.

Display and Controls

