Name: Mohammad Sadat Hossain Student ID: 1905001

Max Cut Problem:

The Maximum Cut (Max-Cut) problem is a well-known combinatorial optimization problem that belongs to the class of NP-hard problems, specifically categorized as an NP-complete problem. It's a graph-based problem that involves partitioning the vertices of an undirected graph into two disjoint sets, such that the sum of the weights of the edges crossing the partition is maximized. In other words, the goal is to find a way to split the vertices into two groups in such a way that the total weight of the edges between these groups is as large as possible.

Figure: An example of a maximum cut

Formally, the Max-Cut problem can be defined as follows:

Given an undirected graph G(V, E) where V is the set of vertices and E is the set of edges, each edge (i, j) has a weight w(i, j), the task is to find a partition of V into two disjoint subsets V_1 and $V_2(V_1 \cup V_2 = V, V_1 \cap V_2 = \emptyset)$ such that the sum of the weights of the edges crossing the partition is maximized. Basically, the following has to be maximized:

$$Cut\ Value = \sum_{i \in V_1, j \in V_2} w(i, j)$$

The Max-Cut problem has practical applications in fields such as computer science, operations research, physics, and network analysis. Due to its NP-complete nature, finding an optimal solution for Max-Cut is computationally challenging and often infeasible for large instances.

GRASP:

The Greedy Randomized Adaptive Search Procedure (GRASP) is an algorithmic approach used to solve combinatorial optimization problems. It combines elements of greedy construction with randomization and iterative improvement.

In summary, the GRASP approach involves the following key characteristics:

- 1. Greedy Construction Phase: During each iteration of GRASP, a greedy construction algorithm is applied to build a candidate solution. The construction algorithm makes locally optimal choices based on some heuristic criteria. This produces a feasible solution that might not be of the highest quality.
- **2. Randomized Component:** A certain level of randomness is introduced. The algorithm randomly perturbs or diversifies the constructed solution to explore different areas of the solution space. This randomization helps the algorithm avoid getting stuck in suboptimal solutions.
- **3.** Local Search and Iterative Improvement: Following the greedy and randomization step, a local search or iterative improvement procedure is executed. The local search explores the neighborhood of the current solution, making small adjustments to obtain the local optima.

The GRASP approach can potentially play a very important role in solving this problem of our consideration, the max cut problem. At each iteration of the GRASP algorithm, at first a decent solution is prepared by the usage of any constructive algorithm. Since GRASP demands inclusion of some randomness to the solution, the semi greedy and randomized approaches were useful in this regard. The solution benefited from random restarts introduced by this randomness, and thus consistently worked on different search regions across different iterations. In the next step, a local search technique was used to try to reach the local optima, which is obviously an improved version of the constructed solution.

Summary of Work:

The assignment specification asked for some approaches to attain an approximate solution to the problem. In this regard, five constructive approaches (one randomized, two greedy and two semi-greedy) were adopted. In each of these cases, to improve the solution, a local search technique was used. The results of all the constructive algorithms, the subsequent applications of local search technique on them and the GRASP approaches have been presented in a spreadsheet for more vivid comparison. As benchmark test set, 54 graphs of different nature (with different size, node or edge count, edge weight variations) were used. To run the implemented solutions on 54 graphs simultaneously, a shell script was written. A python script was also introduced to automate filling up the spreadsheet with test results.

Constructive Algorithms:

Two greedy approaches were used for this problem, both of which also saw their semi-greedy versions used. Basically, instead of choosing the best vertex (or edge depending on the approach), a certain number of best solutions were taken to construct an RCL (Restricted Candidate List).

Then, a candidate was randomly selected from this list and used to extend the solution. To build the RCL, we used a value-based approach. The threshold was set to be $(max - min) * \alpha + min$, where α is a randomly generated number. Candidates having the designated value above or equal to this threshold were added to the RCL. Needless to say, $\alpha = 1$ can mimic the greedy version of the semi-greedy approaches.

1. Greedy-1: This is basically implementation of the method mentioned in the problem specification and respective reference book. We iterate over the vertices one by one. For each vertex, we calculate the cumulative contribution it can make to the cut as a result of being added to set X or Y. For a certain node, the greedy function value is the maximum of the possible contributions to either of the sets.

$$f(v) = \{\sigma_X(v), \sigma_Y(v)\}$$
 Here,
$$\sigma_X(v) = \sum_{u \in X} w(v, u) \, ; \, \sigma_Y(v) = \sum_{u \in Y} w(v, u)$$

- 2. Semi Greedy-1: This is same as the greedy-1 approach except for the fact that α can be any random value here, not just 1 like greedy-1. Because of this random value, randomness was introduced which enabled us to perform the search across different search regions. If α was 1, then every time we would construct the same initial solution, and thus potentially we could get stuck in some local optima. We will see later how this randomness essentially improved the solution from the purely greedy version.
- 3. Greedy-2: In this method, we iterated over the edges in non-increasing order of weights. For each edge (u, v), we considered its two end points u and v. There were some cases to consider here:
 - ♣ If both the vertices are already added to any of the sets, do nothing.
 - \bullet Otherwise, at least one vertex is yet to be added. For ease of decision making, we compute σ_X , σ_Y for the vertices u and v. The following cases arise then:
 - \bullet Both vertices are yet to be added. We then consider the four cases of adding both of them to X or Y; one to X, the other to Y and vice versa. The addition that contributes the highest is implemented and both u and v get added to the sets.
 - \star v is added already. u is left for consideration. We again consider whether it is better to add this vertex to the set of v or the opposite one. It is important to note here that adding u to the opposite set allows us to include the current edge w(u, v) in the cut. However, the comparison of the values gives us a deterministic decision regarding where to add the vertex u.
 - \diamond u has been added, v left. This case is handled similarly like the previous one.

Interestingly, this approach performed almost as good as greedy-1 approach and, in some cases, even outperformed that. We will later see the comparison.

- **4. Semi Greedy-2:** Again, this was same as greedy-2 approach with some random value as a. So, instead of considering the endpoints of the maximum weighted edge, we considered edges with weight above a threshold value and chose one of them randomly. The cases were then similarly considered as stated earlier.
- **5. Randomized-1:** This was a purely randomized approach. For each vertex, we just randomly added it to any of the sets with equal probability, without considering anything else at all.

Problem			Constructive Algorithm				
Test Set Name	V or n	E or m	Simple Randomized or Randomized-1	Greedy-1	Semi Greedy 1	Greedy-2	Semi Greedy 2
G1	800	19176	9588	11225	11176	10914	10949
G2	800	19176	9585	11250	11179	10919	10962
G3	800	19176	9585	11222	11184	10907	10952
G4	800	19176	9597	11287	11191	10922	10965
G5	800	19176	9588	11248	11194	10969	10965
G6	800	19176	85	1796	1646	1502	1495
G7	800	19176	-76	1552	1489	1356	1325
G8	800	19176	-90	1635	1505	1330	1334
G9	800	19176	-27	1629	1543	1357	1366
G10	800	19176	-89	1665	1482	1399	1321
G11	800	1600	19	485	424	457	461
G12	800	1600	0	479	414	443	456
G13	800	1600	21	505	433	463	471
G14	800	4694	2352	2927	2936	2799	2785
G15	800	4661	2331	2890	2915	2754	2765
G16	800	4672	2328	2886	2918	2751	2769
G17	800	4667	2334	2904	2917	2753	2767
G18	800	4694	29	839	762	631	665

G19	800	4661	-55	756	663	590	584
G20	800	4672	-24	777	703	579	606
G21	800	4667	-31	793	689	646	619
G22	2000	19990	9999	12747	12687	12183	12143
G23	2000	19990	9993	12785	12685	12179	12158
G24	2000	19990	10007	12811	12681	12157	12143
G25	2000	19990	9994	12831	12688	12119	12158
G26	2000	19990	9993	12818	12685	12114	12148
G27	2000	19990	-12	2707	2513	2121	2150
G28	2000	19990	-50	2635	2475	2116	2108
G29	2000	19990	37	2724	2559	2286	2208
G30	2000	19990	64	2718	2580	2182	2221
G31	2000	19990	-47	2668	2475	2168	2115
G32	2000	4000	9	1225	1052	1128	1141
G33	2000	4000	-15	1207	1028	1144	1132
G34	2000	4000	-24	1211	1020	1097	1127
G35	2000	11778	5887	7334	7365	7003	6977
G36	2000	11766	5888	7273	7353	6927	6975
G37	2000	11785	5894	7315	7363	6986	6987
G38	2000	11779	5882	7307	7362	6987	6979
G39	2000	11778	22	2034	1779	1570	1597
G40	2000	11766	-38	2042	1803	1536	1551
G41	2000	11785	-9	2052	1811	1547	1570
G42	2000	11779	62	2117	1871	1647	1661
G43	1000	9990	4990	6384	6323	6061	6066
G44	1000	9990	4981	6371	6320	6088	6058
G45	1000	9990	5003	6423	6315	6108	6070
G46	1000	9990	5004	6410	6324	6041	6071
G47	1000	9990	4991	6330	6324	6126	6078
G48	3000	6000	2998	5999	5706	4927	4896
G49	3000	6000	3002	5999	5714	4899	4910
G50	3000	6000	3002	5879	5679	4975	4911
G51	1000	5909	2948	3659	3689	3476	3503
G52	1000	5916		3664	3688		
			2953		_	3540	3503
G53	1000	5914	2953	3634	3689	3523	3496
G54	1000	5916	2952	3664	3684	3506	3499

 Table 1: Constructive Algorithm Cut Values (Average)

The cut values here are the averages found over all the iterations. Quite expectedly, both the greedy (or semi-greedy) approaches outperformed the randomized approach by some huge margin. In almost all the cases, the first greedy approach was the best performing one. This is not unexpected since this approach goes through some very rigorous calculations before adding a vertex to the sets. But it is also important to note, no matter how bad a constructive algorithm performs, local search technique may well transform this to a very decent solution, as we will see later with the application of local search technique on randomized algorithm.

Local Search Technique:

We used a simple local search technique. The technique works like this: for each vertex, we try moving this vertex from its current one to the opposite one. If it results in a better cut, we keep the change. As soon as we find a better solution by moving a vertex, we resort to that. We keep iterating like this and stop when no improvement is found any more. This technique essentially finds us the local optima. As said earlier, even this simple local search technique can improve the construction cut to a great extent. Another point to note here is that the better the initial construction cut value, the less the subsequent local search iteration counts. Because it is more probable that a better algorithm will be closer to a local optimum than a worse one.

In the following tables, the no. of iterations and best value are both averages of respective values found over all iterations.

		Simple Local Search for Randomized-1	
Test Set Name	Simple Randomized or Randomized-1	No. of Iterations	Best Value
G1	9588	630	11369
G2	9585	629	11379
G3	9585	631	11377

G4	9597	629	11386
G5	9588	621	11362
G6	85	636	1927
G7	-76	629	1759
G8	-90	639	1753
G9	-27	626	1796
G10	-89	623	1745
G11	19	182	426
G12	0	185	417
G13	21	186	441
G14	2352	261	2920
G15	2331	269	2904
G16	2328	271	2906
G17	2334	271	2904
G18	29	327	834
G19	-55	329	743
G20	-24	326	772
G21	-31	331	774
G22	9999	1139	12834
G23	9993	1127	12823
G24	10007	1136	12818
G25	9994	1136	12824
G26	9993	1138	12812
G27	-12	1149	2826
G28	-50	1126	2769
G29	37	1141	2878
G30	64	1128	2881
G31	-47	1143	2796
G32	9	466	1059
G33	-15	465	1036
G34	-24	464	1027
G35	5887	670	7327
G36	5888	664	7320
G37	5894	670	7327
G38	5882	660	7323
G39	22	811	2013
G40	-38	828	1990
	-9	818	
G41			1990
G42	62	816	2074
G43	4990	581	6415
G44	4981	569	6397
G45	5003	562	6400
G46	5004	555	6400
G47	4991	574	6402
G48	2998	834	5002
G49	3002	833	5011
G50	3002	833	5012
G51	2948	338	3673
G52	2953	332	3672
			3668
G53	2953	328	
G54	2952	333 ction to Local Search for R	3670

 Table 2: Improvement from Construction to Local Search for Randomized-1

Since the initial solution for Randomized-1 was pretty bad, the local search technique had much to work on, and thus the iteration count is quite high. We can also see the local search technique hugely improved the results in maximum cases.

		f	ocal Search or
		Gree	edy-1
Test Set Name	Greedy-1	No. of Iterations	Best Value
G1	11225	92	11400
G2	11250	69	11386
G3	11222	105	11417
G4	11287	79	11435
G5	11248	58	11365
G6	1796	71	1941
G7	1552	106	1756
G8	1635	109	1818
G9	1629	65	1768
G10	1665	47	1766
G11	485	1	487
G12	479	4	487
G13	505	2	509
G14	2927	33	2972
G15	2890	46	2946
G16	2886	43	2941
G17	2904	38	2957
G18	839	33	884
G19	756	33	801
G20	777	33	827
G21	793	23	826
G22	12747	105	12943
G23	12785	81	12937
G24	12811	77	12944
G25	12831	70	12950
G26	12818	81	12958
G27	2707	129	2923
G28	2635	119	2847
G29 G30	2724 2718	119 126	2945
	2668		2937
G31		158	2931
G32	1225	13	1251
G33	1207	8	1223
G34	1211	11	1233
G35	7334	77	7441
G36	7273	97	7401
G37	7315	88	7443
G38	7307	89	7426
G39	2034	75	2134
G40	2042	53	2123
G41	2052	47	2120
G42	2117	52	2186
G43	6384	33	6437
G44	6371	55	6450
G45	6423	32	6479
G46	6410	42	6490
G47	6330	52	6435
G48	5999	0	5999
		0	
G49	5999		5999
G50	5879	0	5879
G51	3659	58	3733
G52	3664	61	3755
G53	3634	55	3722
G54	3664	46	3729

Table 3: Improvement from Construction to Local Search for Greedy-1

The construction values were good enough, resulting in low iteration count for local search. In some cases, the construction even found the local optimum, resulting in zero average iteration count for local search.

Similarly, the results for local search on rest of the constructive algorithms follow.

		fe	ocal Search or reedy-1
Test Set Name	Semi Greedy-1	No. of Iterations	Best Value
G1	11176	104	11378
G2	11179	104	11384
G3	11184	100	11382
G4	11191	102	11400
G5	11194	97	11386
G6	1646	135	1922
G7	1489	122	1743
G8	1505	121	1754
G9	1543	124	1796
G10	1482	130	1747
G11	424	13	450
G12	414	13	440
G13	433	14	462
G14	2936	24	2968
G15	2915	25	2946
G16	2918	25	2950
G17	2917	26	2949
G18	762	56	852
G19	663	59	760
G20	703	56	794
G21	689	61	787
G22	12687	132	12912
G23	12685	131	12908
G24	12681	133	12907
G25	12688	127	12906
G26 G27	12685	131	12910 2847
G28	2513	192 188	
G29	2475	196	2809 2909
G30	2559 2580	195	2925
G31	2475	195	2822
G32	1052	33	1118
G33	1028	32	1092
G34	1020	35	1091
G35	7365	60	7442
G36	7353	63	7433
G37	7363	62	7442
G38	7362	61	7439
G39	1779	156	2039
G40	1803	141	2038
G41	1811	143	2044
G42	1871	149	2116
G43	6323	70	6439
G44	6320	65	6432
G45	6315	69	
			6433
G46	6324	64	6437
G47	6324	69	6441
G48	5706	3	5711
G49	5714	3	5720
G50	5679	3	5685
G51	3689	32	3729
G52	3688	33	3730

G53	3689	31	3729
G54	3684	32	3726

Table 4: Improvement from Construction to Local Search for Semi Greedy-1

		fo	cal Search or dy-2
Test Set Name	Greedy-2	No. of Iterations	Best Value
G1	10914	190	11364
G2	10919	243	11434
G3	10907	205	11300
G4	10922	184	11343
G5	10969	184	11369
G6	1502	186	1899
G7	1356	156	1715
G8	1330	171	1720
G9	1357	232	1845
G10	1399	172	1775
G11	457	62	497
G12	443	68	498
G13	463	58	503
G14	2799	93	2939
G15	2754	111	2921
G16	2751	110	2909
G17	2753	90	2891
G18	631	126	834
G19	590	109	785
G20	579	117	801
G21	646	85	776
G22	12183	338	12817
G23	12179	361	12839
G24	12157	353	12850
G25	12119	393	12836
G26	12114	340	12788
G27	2121	335	2793
G28	2116	340	2773
G29	2286	304	2855
G30	2182	341	2826
G31	2168	364	2860
G32	1128	171	1234
G33	1144	155	1251
G34	1097	159	1220
G35	7003	238	7347
G36	6927	273	7328
G37	6986	222	7327
G38	6987	237	7362
G39	1570	265	2021
G40	1536	278	2039
G41		288	2026
	1547		
G42	1647	271	2117
G43	6061	214	6442
G44	6088	151	6386
G45	6108	139	6388
G46	6041	167	6377
G47	6126	193	6442
G48	4927	88	5107
G49	4899	108	5121
G50	4975	110	5201
G51	3476	127	3671

G52	3540	115	3713
G53	3523	111	3709
G54	3506	117	3688

 Table 5: Improvement from Construction to Local Search for Greedy-2

			cal Search or
			reedy-2
Test Set Name	Semi Greedy-2	No. of Iterations	Best Value
G1	10949	197	11361
G2	10962	194	11373
G3	10952	185	11347
G4	10965	194	11369
G5	10965	192	11374
G6	1495	196	1908
G7	1325	194	1745
G8	1334	187	1745
G9	1366	194	1780
G10	1321	191	1736
G11	461	59	504
G12	456	62	497
G13	471	59	517
G14	2785	96	2931
G15	2765	100	2914
G16	2769	100	2920
G17	2767	102	2917
G18	665	109	849
G19	584	108	765
G20	606	107	790
G21	619	111	795
G22	12143	356	12820
G23	12158	354	12824
G24	12143	356	12823
G25	12158	357	12836
G26	12148	357	12819
G27	2150	360	2827
G28	2108	359	2787
G29	2208	356	2883
G30	2221	351	2890
G31	2115	367	2807
G32	1141	151	1249
G33	1132	153	1237
G34	1127	142	1231
G35	6977	248	7356
G36	6975	249	7353
G37	6987	246	7361
G38	6979	247	7357
G39	1597	270	2060
G40	1551	272	2024
G41	1570	270	2032
G42	1661	269	2122
G43	6066	178	6402
G44	6058	184	6406
G45	6070	174	6399
G46	6071	178	6410
G47	6078	180	6414
G48	4896	114	5130
G49	4910	111	5139
G50	4911	111	5141

G51	3503	122	3686
G52	3503	124	3692
G53	3496	124	3684
G54	3499	123	3686

 Table 6: Improvement from Construction to Local Search for Semi Greedy-2

GRASP Results:

Finally, we can analyze the GRASP results. We had two algorithms GRASP-1, GRASP-2, using Semi Greedy-1 and Semi Greedy-2 algorithms respectively. A comparative analysis of them against the available best-known values are given below:

		GRASP				
Test Set	GRASP-1 (using Semi Greedy 1)		GRASP-2 (using Semi Greedy 2)		Known Best Solution	
Name	No. of Iterations	Best Value	No. of Iterations	Best Value	or Upper Bound	
G1	50	11437	50	11432	12078	
G2	50	11460	50	11471	12084	
G3	50	11496	50	11410	12077	
G4	50	11485	50	11442		
G5	50	11470	50	11474		
G6	50	2007	50	2011		
G7	50	1828	50	1849		
G8	50	1863	50	1856		
G9	50	1906	50	1867		
G10	50	1850	50	1871		
G11	50	472	50	527	627	
G12	50	472	50	513	621	
G13	50	486	50	547	645	
G14	50	2985	50	2956	3187	
G15	50	2980	50	2937	3169	
G16	50	2969	50	2947	3172	
G17	50	2976	50	2942		
G18	50	905	50	893		
G19	50	818	50	819		
G20	50	843	50	832		
G21	50	824	50	823		
G22	50	12992	50	12912	14123	
G23	50	13028	50	12953	14129	
G24	50	13013	50	12913	14131	
G25	50	13025	50	12944		
G26	50	12993	50	12904		
G27	50	2914	50	2923		
G28	50	2927	50	2871		
G29	50	2993	50	2955		
G30	50	3017	50	2994		
G31	50	2962	50	2896		
G32	50	1172	50	1283	1560	
G33	50	1144	50	1272	1537	
G34	50	1136	50	1265	1541	
G35	50	7474	50	7402	8000	
G36	50	7477	50	7386	7996	
G37	50	7472	50	7408	8009	
G38	50	7480	50	7395		
G39	50	2107	50			
				2134		
G40	50	2105	50	2089		
G41	50	2092	50	2093		
G42	50	2212	50	2185		
G43	50	6500	50	6454	7027	
G44	50	6474	50	6493	7022	
G45	50	6476	50	6466	7020	

G46	50	6490	50	6511	
G47	50	6493	50	6471	
G48	50	6000	50	5234	6000
G49	50	5910	50	5214	6000
G50	50	5810	50	5236	5988
G51	50	3751	50	3729	
G52	50	3752	50	3729	
G53	50	3752	50	3711	
G54	50	3749	50	3711	

Table 7: Comparison between GRASP-1 and GRASP-2

Out of the 54 test sets, GRASP-1 performed better in 37 of them whereas GRASP-2 did better in the rest 17. Some patterns can also be observed in test sets where GRASP-2 performed better. If we look at the edge weights of G6, G7, G10, G11, G12, G13, G32, G33, G34 where GRASP-2 was better, the edge weights were either 1 or -1. The fact that GRASP-2 dealt with edges of weight 1 first (since they are of higher weight) played a role here. In both of the algorithms, at each step we somehow consider the possible effect of adding a certain vertex to the sets built already. Hence, the edges added earlier play a larger role in all the later computations. Since GRASP-2 considers edges of higher weight first, these higher weight-edges are considered in all the subsequent iterations and possibly generate a higher cost cut.

However, for the maximum of the rest of the test sets, all edge weights were 1 (i.e., equal weight). GRASP-1 performed better in most of those cases. Since all edges are of same weight, GRASP-2's edge ordering does not seem to play much role there. Probably, in a more generalized set with unequal edge weights, GRASP-2 would perform even better.

It is also worth mentioning that because of the intensive computation needed for running all 54 test cases (and 5 instances of each of them running 5 constructive algorithms) simultaneously, GRASP iteration limit was set to 50. If the iteration count was significantly higher, we would probably find results closer to the best-known ones.