CSE/ISyE 6740 Computational Data Analysis

Density Estimation

08/27/2025

Kai Wang, Assistant Professor in Computational Science and Engineering kwang692@gatech.edu

Outline

- Unsupervised learning
 - Density estimation
 - Parametric models
 - Non-parametric models
 - Kernel density estimation

- Gaussian mixture models (lecture 5 6)
 - Expectation-Maximization algorithm

Density Estimation

Why Do We Need Density Estimation?

Learn more about the "shape" of the data cloud

- Assess the likelihood of seeing a particular data point
 - Is this a typical data point? (high density value)
 - Is this an abnormal data point / outlier? (low density value)
- Building block for more sophisticated learning algorithms
 - Classification, regression, graphical models...
 - A simple recommendation system

Example: Test Scores

Example: Test Scores (conti.)

Example: Test Scores (conti.)

Parametric Models

Parametric Models

- Models which can be described by a fixed number of parameters
- Discrete case: e.g., Bernoulli distribution

$$P(x|\theta) = \theta^x (1-\theta)^{1-x}$$

- One parameter $\theta \in [0,1]$, which generates a family of models: $\mathcal{F} = \{P(x|\theta) \mid \theta \in [0,1]\}$
- Continuous case: e.g., multivariate Gaussian distribution

$$P(x|\mu,\Sigma) = \frac{1}{|\Sigma|^{\frac{1}{2}}(2\pi)^{\frac{n}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^{\mathsf{T}}\Sigma^{-1}(x-\mu)\right)$$

• Two sets of parameters (μ, Σ) , which again generate a family of models: $\mathcal{F} = \{P(x|\mu, \Sigma) \mid \mu \in \mathbb{R}^n, \Sigma \in \mathbb{R}^{n \times n} \ and \ PSD\}$

Estimation of Parametric Models

- A very popular estimator is the maximum likelihood estimator (MLE), which is simple and has good statistical properties.
- Assume that n data points $D = \{x^1, x^2, ..., x^n\}$ drawn independently and identically (i.i.d.) from some distribution $P^*(x)$
- Want to fit the data with a model $P(x|\theta)$ with parameter θ

$$\theta = argmax_{\theta} \log \prod_{i=1}^{n} P(x^{i}|\theta)$$

Example Problem

- Estimate the probability θ of landing in heads using a biased coin
- Given a sequence of n independently and identically distributed (i.i.d.) flips

• E.g.,
$$D = \{x^1, x^2, ..., x^n\}$$
 (e. g., $\{1,0,1,...,0\}$). where $x^i \in \{0,1\}$

• Model: $P(x|\theta) = \theta^x (1-\theta)^x$

•
$$P(x|\theta) = \begin{cases} 1 - \theta \text{. } for \ x = 0 \\ \theta \text{. } for \ x = 1 \end{cases}$$

- Likelihood of a single observation x^i ?
 - $P(\mathbf{x}^i|\theta) = \theta^{x^i}(1-\theta)^{1-x^i}$

MLE of Biased Coin

Objective function, log likelihood

$$l(\theta; D) = \log P(D|\theta) = \log \theta^{n_{head}} (1 - \theta)^{n_{tail}}$$
$$= n_{head} \log \theta + (n - n_{head}) \log(1 - \theta)$$

- n_{head} : number of heads, n_{tail} : number of tails
- Maximize $l(\theta; D)$ w.r.t. θ
- Take derivatives w.r.t. θ

$$\frac{\partial l}{\partial \theta} = \frac{n_{head}}{\theta} - \frac{(n - n_{head})}{1 - \theta} = 0$$

$$\Rightarrow \hat{\theta}_{MLE} = \frac{n_{head}}{n} \text{ or } \hat{\theta}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x^{i}$$

Estimating Gaussian Distribution

Univariate Gaussian distribution in R

$$P(x|\mu,\sigma) = \frac{1}{(2\pi)^{\frac{1}{2}}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

- Need to estimate two sets of parameters μ , σ
- Given *n* i.i.d. samples

$$D = \{x^1, x^2, ..., x^n\}, \qquad x^i \in \mathbb{R}$$

$$P(x|\mu,\sigma) \propto \exp\left(-\frac{1}{2\sigma^2}(x^i-\mu)^2\right)$$

The Estimators for μ , σ are Well-Known

Univariate Gaussian distribution in R

$$P(x|\mu,\sigma) = \frac{1}{(2\pi)^{\frac{1}{2}}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

Mean

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x^i$$

Variance

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x^i - \mu)^2$$

MLE for Gaussian Distribution

Objective function, log likelihood

$$l(\mu, \sigma; D) = \log \prod_{i=1}^{n} \frac{1}{(2\pi)^{\frac{1}{2}} \sigma} \exp\left(-\frac{1}{2\sigma^{2}} (x^{i} - \mu)^{2}\right)$$
$$= -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \sigma^{2} - \sum_{i=1}^{n} \frac{(x^{i} - \mu)^{2}}{2\sigma^{2}}$$

- Maximize $l(\mu, \sigma; D)$ with respect to μ, σ
- Take derivatives w.r.t. μ , σ^2

$$\frac{\partial l}{\partial \mu} = 0$$

$$\frac{\partial l}{\partial \sigma^2} = 0$$

MLE for Gaussian Distribution

$$l(\mu, \sigma; D) = -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \sigma^2 - \sum_{i=1}^{n} \frac{(x^i - \mu)^2}{2\sigma^2}$$
$$\frac{\partial l}{\partial \mu} = \sum_{i=1}^{n} \frac{x^i - \mu}{\sigma^2} = 0$$
$$\Rightarrow \sum_{i=1}^{n} x^i = n\mu \quad \Rightarrow \mu = \frac{1}{n} \sum_{i=1}^{n} x^i$$

$$\frac{\partial l}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x^i - \mu)^2 = 0$$

$$\Rightarrow \sum_{i=1}^n (x^i - \mu)^2 = n\sigma^2. \Rightarrow \sigma^2 = \frac{1}{n} \sum_{i=1}^n (x^i - \mu)^2$$

Density Example

Nonparametric Models

Nonparameteric Models

- E.g., histogram
- E.g., kernel density estimator

- What are nonparametric models?
 - "Nonparametric" does NOT mean there are no parameters
 - Nonparametric models can NOT be described by a fixed number of parameters
 - One can think of there are many many (infinite) parameters

1-D Histogram

- One of the simplest nonparameteric density estimator
- Given *n* i.i.d. samples $D = \{x^1, x^2, ..., x^n\}, x^i \in [0,1)$
- Split [0,1) into *m* bins

$$B_1 = \left[0, \frac{1}{m}\right), B_2 = \left[\frac{1}{m}, \frac{2}{m}\right), \dots, B_m = \left[\frac{m-1}{m}, 1\right)$$

- Count the number of points: c_1 points in B_1 , c_2 points in B_2 ,...
- For a new test point x

$$p(x) = \sum_{j=1}^{m} \frac{mc_j}{n} I(x \in B_j)$$
 (probability density function)

Why is Histogram Valid?

• Requirement for density p(x)

•
$$p(x) \ge 0$$
, $\int_{\Omega} p(x) dx = 1$

· For histogram,

$$\int_{\Omega} p(x)dx = \int_{[0,1)} \sum_{j=1}^{m} \frac{mc_j}{n} I(x \in B_j) dx$$

$$= \sum_{j=1}^{m} \int_{\left[\frac{j-1}{m}, \frac{j}{m}\right)} \frac{mc_j}{n} dx$$

$$= \sum_{j=1}^{m} \frac{c_j}{n} = 1$$

Output Depends on Where You Put the Bins

Histogram with breaks at n.0 and n.5 binwidth=0.5

Output Depends on Where You Put the Bins

Higher Dimensional Histogram

- Given n i.i.d. samples $D = \{x^1, x^2, ..., x^n\}, x^i \in [0,1)^d$
- Split $[0,1)^d$ evenly into m^d bins

$$B_{1} = \left[0, \frac{1}{m}\right) \times \left[0, \frac{1}{m}\right) \times \dots \times \left[0, \frac{1}{m}\right),$$

$$B_{2} = \left[\frac{1}{m}, \frac{2}{m}\right) \times \left[0, \frac{1}{m}\right) \times \dots \times \left[0, \frac{1}{m}\right),$$

• • •

$$B_{m^d} = \left[\frac{m-1}{m}, 1\right) \times \left[\frac{m-1}{m}, 1\right) \times \dots \times \left[\frac{m-1}{m}, 1\right)$$

• Bin size is $h = \frac{1}{m}$

Class Scores

Computation and Statistical Considerations

- Problem I: too many bins! Not good for high dimensional data
 - If m^d is larger than the number of samples n, most bins are empty
 - E.g., m = 10, d = 6, then we need ~1 million data samples
- Problem II: statistically histogram is not the best
 - Integrated risk:

$$r(\hat{p}, p) \coloneqq \int_{\mathbb{R}} \mathbb{E}_X \left[\left(\hat{p}(x) - p(x) \right)^2 \right] dx$$

• Histogram (with bin size $h \sim n^{-1/3}$) $r(\hat{p}, p) \sim \frac{C}{n^{2/3}}$

Kernel Density Estimation

Kernel Density Estimation

Kernel density estimator

$$p(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x^i - x}{h}\right)$$

- Smoothing kernel function
 - $K(u) \geq 0$
 - $\int K(u)du = 1$
 - $\int uK(u)du = 0$
 - $\int u^2 K(u) du < \infty$
- An example: Gaussian kernel $K(u) = \frac{1}{\sqrt{2\pi}} e^{-u^2/2}$

Smoothing Kernel Functions

• An example: Gaussian kernel $K(u) = \frac{1}{\sqrt{2\pi}} e^{-u^2/2}$

Example

$$p(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x^{i} - x}{h}\right)$$

Effect of the Kernel Bandwidth *h*

$$p(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x^{i} - x}{h}\right)$$

Two-dimensional Example

What is the Best Kernel Bandwidth?

• Silverman's rule of thumb: if using the Gaussian kernel, a good choice is $h \approx 1.06 \, \hat{\sigma} \, n^{-1/5}$

where $\hat{\sigma}$ is the standard deviation of the samples

- A better but more computational intensive approach:
 - Randomly split the data into two sets
 - Obtain a kernel density estimate for the first set
 - Measure the likelihood of the second set
 - Repeat over many random splits and take the average

Wine Dataset (http://archive.ics.uci.edu/ml/datasets/Wine+Quality)

- These data are the results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars. Feature include
 - 1) Alcohol
 - 2) Malic acid
 - 3) Ash
 - 4) Alcalinity of ash
 - 5) Magnesium
 - 6) Toal pheonols
 - 7) Flavanoids
 - 8) Nonflavanoid phenols
 - 9) Proanthocyanins
 - 10) Color intensity
 - 11) Hue
 - 12) OD280/OD315 of diluted wines
 - 13) Proline

Demo: test_wine.py

- Nonparametric models place very mild assumptions on the data distribution and provide good models for complex data
- Parametric models rely on very strong (simplistic) distributional assumptions

- Nonparametric models (not histograms) requires storing and computing with the entire data set.
- Parametric models, once fitted, are much more efficient in terms of storage and computation.

- Data $x \in \mathbb{R}^d$ with fixed dimension d
- Given *n* training data points $\{x^1, x^2, ..., x^n\}$
- Partition m bins in each dimension

Aspects	Gaussian	Histogram	KDE
Flexible	No	Yes	Yes
Assumption	Strong	Mild	Mild
Parameter number	Fixed	Increased with m	Increased with <i>n</i>
Memory requirement	$d + d^2$	m^d	nd
Training computation	Closed form	Binning and counting	Nothing
Test computation	Plug in formula	Find the bin	Evaluate n functions
Statistical guarantee	Only Gaussian case	Arbitrary (worse)	Arbitrary (better)

Announcement

No class on Sep 1st. Happy long weekend!

 Hw1 will be released on Aug 31st (Sunday) and due on Sep 14th (Sunday). Please start working on it earlier!

