Iftach Haitner, Tel Aviv University

December 27, 2011

Message Authentication Code (MAC)

Definition 1 (MAC)

Message Authentication Code (MAC)

A trippet of PPT's (Gen, Mac, Vrfy) such that

- Gen(1ⁿ) outputs a key $k \in \{0, 1\}^*$
- Mac(k, m) outputs a "tag" t
- \bigcirc Vrfy(k, m, t) output 1 (YES) or 0 (NO)

Message Authentication Code (MAC)

Definition 1 (MAC)

Message Authentication Code (MAC)

A trippet of PPT's (Gen, Mac, Vrfy) such that

- Gen(1ⁿ) outputs a key $k \in \{0, 1\}^*$
- Mac(k, m) outputs a "tag" t
- \bigcirc Vrfy(k, m, t) output 1 (YES) or 0 (NO)

Consistency: $Vrfy_k(m, t) = 1$ for any $k \in Supp(Gen(1^n))$, $m \in \{0,1\}^n$ and $t = \operatorname{Mac}_k(m)$

Definition 1 (MAC)

A trippet of PPT's (Gen, Mac, Vrfy) such that

- Gen(1ⁿ) outputs a key $k \in \{0, 1\}^*$
- 2 Mac(k, m) outputs a "tag" t
- Vrfy(k, m, t) output 1 (YES) or 0 (NO)

Consistency: Vrfy_k(m, t) = 1 for any $k \in \text{Supp}(\text{Gen}(1^n))$, $m \in \{0, 1\}^n$ and $t = \text{Mac}_k(m)$

Definition 2 (Existential unforgability)

A MAC (Gen, Mac, Vrfy) is existential unforgeable (EU), if for any oracle-aided PPT A:

$$\Pr[k \leftarrow \text{Gen}(1^n); (m, t) \leftarrow A^{\text{Mac}_k, \text{Vrfy}_k}(1^n): \text{Vrfy}_k(m, t) = 1 \land \text{Mac}_k \text{ was not asked on } m] = \text{neg}(n)$$

"Private key" definition

Message Authentication Code (MAC)

"Private key" definition

Message Authentication Code (MAC)

Security definition too strong?

"Private key" definition

Message Authentication Code (MAC)

• Security definition too strong? Any message? Use of Verifier?

- "Private key" definition
- Security definition too strong? Any message? Use of Verifier?
- "Replay attacks"

- "Private key" definition
- Security definition too strong? Any message? Use of Verifier?
- "Replay attacks"
- strong MACS

Length-restricted MACs

Definition 3 (Length-restricted MAC)

Same as in Definition 1, but for $k \in \text{Supp}(G(1^n))$, Mac_k and Vrfy_k only accept messages of length n.

Bounded-query MACs

Definition 4 (ℓ**-time MAC**)

A MAC scheme is existential unforgeable against ℓ queries (for short, ℓ -time MAC), if it is existential unforgeable as in Definition 2, but A can only ask for ℓ queries.

Section 2

Constructions

Construction 5 (Zero-time, restricted length, MAC)

- Gen(1ⁿ): outputs $k \leftarrow \{0, 1\}^n$
- $Mac_k(m) = k$
- $Vrfy_k(m, t) = 1$, iff t = k

Zero-time, restricted length, MAC

Message Authentication Code (MAC)

Construction 5 (Zero-time, restricted length, MAC)

- Gen(1ⁿ): outputs $k \leftarrow \{0, 1\}^n$
- $Mac_k(m) = k$
- $Vrfy_k(m, t) = 1$, iff t = k

Claim 6

The above scheme is a length-restricted, zero-time MAC

ℓ-wise independent hash

Message Authentication Code (MAC)

Definition 7 (ℓ -wise independent)

A function family \mathcal{H} from $\{0,1\}^n$ to $\{0,1\}^m$ is ℓ -wise independent, where $\ell \in \mathbb{N}$, if for every distinct $x_1,\ldots,x_\ell\in\{0,1\}^n$ and every $y_1,\ldots,y_\ell\in\{0,1\}^m$, it holds that $\Pr_{h \leftarrow \mathcal{H}}[h(x_1) = y_1 \wedge \cdots \wedge h(x_\ell) = y_\ell] = 2^{-\ell m}.$

Constructions

ℓ-times, restricted length, MAC

Construction 8 (ℓ-time MAC)

Let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ be an efficient $(\ell+1)$ -wise independent function family.

- Gen(1ⁿ): outputs $h \leftarrow \mathcal{H}_n$
- Mac(h, m) = h(m)
- Vrfy(h, m, t) = 1, iff t = h(m)

ℓ-times, restricted length, MAC

Construction 8 (ℓ**-time MAC)**

Let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ be an efficient $(\ell+1)$ -wise independent function family.

- Gen(1ⁿ): outputs $h \leftarrow \mathcal{H}_n$
- $\bullet \ \operatorname{Mac}(h,m) = h(m)$
- Vrfy(h, m, t) = 1, iff t = h(m)

Claim 9

The above scheme is a length-restricted, ℓ-time MAC

ℓ-times, restricted length, MAC

Message Authentication Code (MAC)

Construction 8 (\ell-time MAC)

Let $\mathcal{H} = \{\mathcal{H}_n : \{0,1\}^n \mapsto \{0,1\}^n\}$ be an efficient $(\ell+1)$ -wise independent function family.

- Gen(1ⁿ): outputs $h \leftarrow \mathcal{H}_n$
- \bullet Mac(h, m) = h(m)
- Vrfy(h, m, t) = 1, iff t = h(m)

Claim 9

The above scheme is a length-restricted, ℓ -time MAC

Proof: HW

OWF \implies existential unforgeable MAC

Construction 10

Message Authentication Code (MAC)

Same as Construction 8, but uses function $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ instead of \mathcal{H} .

Claim 11

Assuming that \mathcal{F} is a PRF, then Construction 10 is an existential unforgeable MAC.

OWF \implies existential unforgeable MAC

Construction 10

Message Authentication Code (MAC)

Same as Construction 8, but uses function $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$ instead of \mathcal{H} .

Claim 11

Assuming that \mathcal{F} is a PRF, then Construction 10 is an existential unforgeable MAC.

Proof:

OWF \implies existential unforgeable MAC

Construction 10

Message Authentication Code (MAC)

Same as Construction 8, but uses function $\mathcal{F} = \{\mathcal{F}_n : \{0,1\}^n \mapsto \{0,1\}^n\} \text{ instead of } \mathcal{H}.$

Claim 11

Assuming that \mathcal{F} is a PRF, then Construction 10 is an existential unforgeable MAC.

Proof: Easy to prove if \mathcal{F} is a family of random functions. Hence, also holds in case \mathcal{F} is a PRF.

Collision Resistant Hash Family

Definition 12 (collision resistant hash family (CRH))

Constructions

A function family $\mathcal{H}=\{\mathcal{H}_n\colon\{0,1\}^*\mapsto\{0,1\}^n\}$ is collision resistant, if

$$\Pr[h \leftarrow \mathcal{H}_n, (x, x') \leftarrow \mathsf{A}(1^n, h) \colon x \neq x' \in \{0, 1\}^* \\ \wedge h(x) = h(x')] = \mathsf{neg}(n)$$

for any PPT A.

Collision Resistant Hash Family

Definition 12 (collision resistant hash family (CRH))

Constructions

A function family $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^* \mapsto \{0,1\}^n\}$ is collision resistant, if

$$\Pr[h \leftarrow \mathcal{H}_n, (x, x') \leftarrow \mathsf{A}(1^n, h) \colon x \neq x' \in \{0, 1\}^* \\ \wedge h(x) = h(x')] = \mathsf{neg}(n)$$

for any PPT A.

Not known to be implied by OWF

Message Authentication Code (MAC)

Length restricted MAC \implies MAC

Construction 13 (Length restricted MAC ⇒ **MAC)**

Let (Gen, Mac, Vrfy) be a length-restricted MAC, and let $\mathcal{H} = \{\mathcal{H}_n : \{0,1\}^* \mapsto \{0,1\}^n\}$ be an efficient function family.

- Gen'(1ⁿ): $k \leftarrow$ Gen(1ⁿ), $h \leftarrow \mathcal{H}_n$. Set k' = (k, h)
- $\operatorname{Mac}'_{k,h}(m) = \operatorname{Mac}_k(h(m))$
- $Vrfy'_{k,h}(t,m) = Vrfy_k(t,h(m))$

Length restricted MAC ⇒ **MAC**

Construction 13 (Length restricted MAC ⇒ **MAC)**

Constructions

Let (Gen, Mac, Vrfy) be a length-restricted MAC, and let $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^* \mapsto \{0,1\}^n\}$ be an efficient function family.

- $\operatorname{Gen}'(1^n)$: $k \leftarrow \operatorname{Gen}(1^n)$, $h \leftarrow \mathcal{H}_n$. $\operatorname{Set} k' = (k, h)$
- $\bullet \operatorname{Mac}'_{k,h}(m) = \operatorname{Mac}_k(h(m))$
- $Vrfy'_{k,h}(t,m) = Vrfy_k(t,h(m))$

Claim 14

Assume \mathcal{H} is an efficient collision-resistant family and (Gen, Mac, Vrfy) is existential unforgeable, then (Gen', Mac', Vrfy') is existential unforgeable MAC.

Message Authentication Code (MAC)

Length restricted MAC \implies MAC

Construction 13 (Length restricted MAC \implies MAC)

Let (Gen, Mac, Vrfy) be a length-restricted MAC, and let $\mathcal{H} = \{\mathcal{H}_n : \{0,1\}^* \mapsto \{0,1\}^n\}$ be an efficient function family.

- Gen'(1ⁿ): $k \leftarrow$ Gen(1ⁿ), $h \leftarrow \mathcal{H}_n$. Set k' = (k, h)
- $\operatorname{Mac}'_{k,h}(m) = \operatorname{Mac}_k(h(m))$
- $Vrfy'_{k,h}(t,m) = Vrfy_k(t,h(m))$

Claim 14

Assume \mathcal{H} is an efficient collision-resistant family and (Gen, Mac, Vrfy) is existential unforgeable, then (Gen', Mac', Vrfy') is existential unforceable MAC.

Proof: ?

Section 3

Signature Schemes

Definition

Message Authentication Code (MAC)

Definition 15 (Signature schemes)

A trippet of PPT's (Gen, Sign, Vrfy) such that

- Gen(1ⁿ) outputs a pair of keys $(s, v) \in \{0, 1\}^* \times \{0, 1\}^*$
- 2 Sign(s, m) outputs a "signature" $\sigma \in \{0, 1\}^*$
- 3 Vrfy(v, m, σ) outputs 1 (YES) or 0 (NO)

Message Authentication Code (MAC)

Definition 15 (Signature schemes)

A trippet of PPT's (Gen, Sign, Vrfy) such that

- Gen(1ⁿ) outputs a pair of keys $(s, v) \in \{0, 1\}^* \times \{0, 1\}^*$
- 2 Sign(s, m) outputs a "signature" $\sigma \in \{0, 1\}^*$
- **3** Vrfy(v, m, σ) outputs 1 (YES) or 0 (NO)

Consistency: $Vrfy_{\nu}(m,\sigma) = 1$ for any $(s,\nu) \in Supp(Gen(1^n))$, $m \in \{0,1\}^*$ and $\sigma \in \text{Supp}(\text{Sign}_s(m))$

Definition

Message Authentication Code (MAC)

Definition 15 (Signature schemes)

A trippet of PPT's (Gen, Sign, Vrfy) such that

- Gen(1ⁿ) outputs a pair of keys $(s, v) \in \{0, 1\}^* \times \{0, 1\}^*$
- 2 Sign(s, m) outputs a "signature" $\sigma \in \{0, 1\}^*$
- 3 Vrfy(v, m, σ) outputs 1 (YES) or 0 (NO)

Consistency: $Vrfy_{\nu}(m,\sigma) = 1$ for any $(s,\nu) \in Supp(Gen(1^n))$, $m \in \{0,1\}^*$ and $\sigma \in \text{Supp}(\text{Sign}_{\varepsilon}(m))$

Definition 16 (Existential unforgability)

A signature scheme is existential unforgeable (EU), if for any oracle-aided PPT A

$$\Pr[(s, v) \leftarrow \text{Gen}(1^n); (m, \sigma) \leftarrow A^{\text{Sign}_s}(1^n, v):$$

 $\text{Vrfy}_v(m, \sigma) = 1 \land \text{Sign}_s \text{ was not asked on } m] = \text{neg}(n)$

Signature ⇒ MAC

- Signature ⇒ MAC
- "Harder" to construct than MACs: (even restricted forms) require OWF

- Signature ⇒ MAC
- "Harder" to construct than MACs: (even restricted forms) require OWF
- Oracle access to Vrfy is not given

- Signature ⇒ MAC
- "Harder" to construct than MACs: (even restricted forms) require OWF
- Oracle access to Vrfy is not given
- Strong existential unforgeable signatures (for short, strong signatures): infeasible to generate any new valid signatures (even for message for which a signature was asked)

- Signature ⇒ MAC
- "Harder" to construct than MACs: (even restricted forms) require OWF
- Oracle access to Vrfy is not given
- Strong existential unforgeable signatures (for short, strong signatures): infeasible to generate any new valid signatures (even for message for which a signature was asked)

Theorem 17

OWFs imply strong existential unforgeable signatures.

Section 4

OWFs \Longrightarrow **Signatures**

Length-restricted Signatures

Definition 18 (Length-restricted Signatures)

Same as in Definition 15, but for $(s, v) \in \text{Supp}(G(1^n))$, Sign_s and Vrfy_v only accept messages of length n.

Bounded-query Signatures

Definition 19 (*ℓ***-time signatures)**

A signature scheme is existential unforgeable against ℓ-query (for short, ℓ-time signature), if it is existential unforgeable as in Definition 16, but A can only ask for ℓ queries.

Message Authentication Code (MAC)

Bounded-query Signatures

Definition 19 (*ℓ***-time signatures)**

A signature scheme is existential unforgeable against ℓ-query (for short, ℓ-time signature), if it is existential unforgeable as in Definition 16, but A can only ask for ℓ queries.

Claim 20

Assuming CRH exists: length restricted, one-time signatures, imply one-time signatures.

Message Authentication Code (MAC)

OWF \implies length restricted. One Time Signature

Construction 21 (length restricted, one time signature)

Signature Schemes

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$.

- **1** Gen(1ⁿ): $s_1^0, s_1^1, \dots, s_n^0, s_n^1 \leftarrow \{0, 1\}^n$, let $s = (s_1^0, s_1^1, \dots, s_n^0, s_n^1)$ and $v = (v_1^0 = f(s_1^0), v_1^1 = f(s_1^1), \dots, v_n^0 = f(s_n^0), v_n^1 = f(s_n^1))$
- 2 Sign(s, m): Output ($s_1^{m_1}, \ldots, s_n^{m_n}$)
- 3 Vrfy $(v, m, \sigma = (\sigma_1, \dots, \sigma_n))$ check that $f(\sigma_i) = v_{m_i}$ for all $i \in [n]$

OWF \implies length restricted, One Time Signature

Construction 21 (length restricted, one time signature)

Signature Schemes

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$.

- **1** Gen(1ⁿ): $s_1^0, s_1^1, \dots, s_n^0, s_n^1 \leftarrow \{0, 1\}^n$, let $s = (s_1^0, s_1^1, \dots, s_n^0, s_n^1)$ and $v = (v_1^0 = f(s_1^0), v_1^1 = f(s_1^1), \dots, v_n^0 = f(s_n^0), v_n^1 = f(s_n^1))$
- 2 Sign(s, m): Output ($s_1^{m_1}, \ldots, s_n^{m_n}$)
- 3 Vrfy $(v, m, \sigma = (\sigma_1, \dots, \sigma_n))$ check that $f(\sigma_i) = v_{m_i}$ for all $i \in [n]$

Lemma 22

Assume that f is a OWF, then scheme from Construction 21 is a length restricted one-time signature scheme

Proving Lemma 22

Message Authentication Code (MAC)

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly that break the security of}$ Construction 21, we use A to invert f.

Algorithm 23 (Inv)

Input: $y \in \{0, 1\}^n$

- Choose $(s, v) \leftarrow Gen(1^n)$ and replace $v_{i^*}^{i^*}$ for a random $i^* \in [n]$ and $i^* \in \{0, 1\}$, with v.
- ② If A(1ⁿ, v) asks to sign message $m \in \{0, 1\}^n$ with $m_{j^*} = j^*$ abort, otherwise use s to answer the query.
- **3** Let (m, σ) be A's output. If σ is not a valid signature for m, or $m_{i^*} \neq i^*$, abort. Otherwise, return σ_{i*} .

Proving Lemma 22

Message Authentication Code (MAC)

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly that break the security of}$ Construction 21, we use A to invert f.

Algorithm 23 (Inv)

Input: $y \in \{0, 1\}^n$

- Choose $(s, v) \leftarrow Gen(1^n)$ and replace $v_{i^*}^{i^*}$ for a random $i^* \in [n]$ and $i^* \in \{0, 1\}$, with v.
- ② If A(1ⁿ, v) asks to sign message $m \in \{0, 1\}^n$ with $m_{j^*} = j^*$ abort, otherwise use s to answer the query.
- **3** Let (m, σ) be A's output. If σ is not a valid signature for m, or $m_{i^*} \neq i^*$, abort. Otherwise, return σ_{i*} .

v is distributed as it is in the real "signature game" (ind. of i^* and i^*).

One Time Signatures

Proving Lemma 22

Message Authentication Code (MAC)

Let a PPT A, $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly that break the security of}$ Construction 21, we use A to invert f.

Algorithm 23 (Inv)

Input: $y \in \{0, 1\}^n$

- ① Choose $(s, v) \leftarrow Gen(1^n)$ and replace v_{i*}^{i*} for a random $i^* \in [n]$ and $j^* \in \{0, 1\}$, with y.
- 2 If A(1ⁿ, v) asks to sign message $m \in \{0, 1\}^n$ with $m_{i^*} = i^*$ abort, otherwise use s to answer the query.
- **1** Let (m, σ) be A's output. If σ is not a valid signature for m, or $m_{i^*} \neq i^*$, abort. Otherwise, return σ_{i*} .

v is distributed as it is in the real "signature game" (ind. of i^* and j^*). Therefore Inv inverts f w.p. $\frac{1}{2np(n)}$ for any $n \in \mathcal{I}$.

Stateful schemes (also known as, Memory-dependant schemes)

Definition 24 (Stateful scheme)

Same as in Definition 15, but Sign might keep state.

Message Authentication Code (MAC)

Stateful schemes (also known as, Memory-dependant schemes)

Signature Schemes

Definition 24 (Stateful scheme)

Same as in Definition 15, but Sign might keep state.

Make sense in many applications (e.g., , smartcards)

Message Authentication Code (MAC)

Stateful schemes (also known as, Memory-dependent schemes)

Signature Schemes

Definition 24 (Stateful scheme)

Same as in Definition 15, but Sign might keep state.

- Make sense in many applications (e.g., , smartcards)
- We'll use it a building block for building a stateless scheme

Naive construction

Message Authentication Code (MAC)

Let (Gen, Sign, Vrfy) be a one-time signature scheme.

Construction 25 (Naive construction)

- **1** Gen'(1ⁿ) outputs $(s_1, v_1) = \text{Gen}(1^n)$.
- 2 Sign'_{S₁} (m_i), where m_i is *i*'th message to sign: Let $((m_1, \sigma'_1), \dots, (m_{i-1}, \sigma'_{i-1}))$ be the previously signed pairs of messages/signatures.
 - **1** Let (s_{i+1}, v_{i+1}) ← Gen (1^n)
 - 2 Let $\sigma_i = \operatorname{Sign}_{s_i}(m_i, v_{i+1})$, and output $\sigma'_i = (\sigma'_{i-1}, m_i, v_{i+1}, \sigma_i)^a$
- **3** Vrfy'_{ν} $(m, \sigma' = (m_1, \nu_2, \sigma_1), \dots, (m_i, \nu_{i+1}, \sigma_i))$:
 - Verify $Vrfy_{v_i}((m_j, v_{j+1}), \sigma_j) = 1$ for every $j \in [i]$
 - 2 Verify $m_i = m$

^aWhere σ'_0 is the empty string.

• State is used for maintaining the private key (e.g., s_i) and to prevent using the same one-time signature twice.

Signature Schemes

2 Inefficient scheme, thought still polynomial, both running time and signature size are linear in number of signatures

• State is used for maintaining the private key (e.g., s_i) and to prevent using the same one-time signature twice.

Signature Schemes

- Inefficient scheme, thought still polynomial, both running time and signature size are linear in number of signatures
- Oritically uses the fact that (Gen, Sign, Vrfy) is works for any length

Lemma 26

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful existential unforgeable signature scheme.

Lemma 26

Message Authentication Code (MAC)

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful existential unforgeable signature scheme.

Proof: Let a PPT A', $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly that breaks the security}$ of (Gen', Sign', Vrfy'), we present a PPT A that breaks the security of (Gen, Sign, Vrfy).

Lemma 26

Message Authentication Code (MAC)

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful existential unforgeable signature scheme.

Signature Schemes

Proof: Let a PPT A', $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly that breaks the security}$ of (Gen', Sign', Vrfy'), we present a PPT A that breaks the security of (Gen, Sign, Vrfy).

 We assume for simplicity that p also bounds the query complexity of A'

Proving Lemma 26 cont.

Let the random variables

$$(m, \sigma = (m_1, v_2, \sigma_1), \dots, (m_q, v_{q+1}, \sigma_q))$$
 be the pair output by A'

Message Authentication Code (MAC)

Let the random variables

$$(m,\sigma=(m_1,v_2,\sigma_1),\ldots,(m_q,v_{q+1},\sigma_q))$$
 be the pair output by A'

Signature Schemes

Claim 27

Whenever A' succeeds, $\exists \tilde{i} = \tilde{i}(m, \sigma) \in [q]$ such that:

- ① Sign' was not asked by A' on $m_{\tilde{i}}$.
- 2 Sign' was asked by A' on m_i , for every $i \in [i-1]$

Proving Lemma 26 cont.

Message Authentication Code (MAC)

Let the random variables

$$(m,\sigma=(m_1,v_2,\sigma_1),\ldots,(m_q,v_{q+1},\sigma_q))$$
 be the pair output by A'

Claim 27

Whenever A' succeeds, $\exists \tilde{i} = \tilde{i}(m, \sigma) \in [q]$ such that:

- ① Sign' was not asked by A' on $m_{\tilde{i}}$.
- 2 Sign' was asked by A' on m_i , for every $i \in [i-1]$

Proof:

Message Authentication Code (MAC)

Let the random variables

$$(\textit{m},\sigma=(\textit{m}_1,\textit{v}_2,\sigma_1),\ldots,(\textit{m}_q,\textit{v}_{q+1},\sigma_q))$$
 be the pair output by A'

Claim 27

Whenever A' succeeds, $\exists \tilde{i} = \tilde{i}(m, \sigma) \in [q]$ such that:

- ① Sign' was not asked by A' on $m_{\tilde{i}}$.
- 2 Sign' was asked by A' on m_i , for every $i \in [i-1]$

Proof: Let *i* be the maximal index such that condition (2) holds (cannot be q+1).

Message Authentication Code (MAC)

Let the random variables

$$(\textit{m},\sigma=(\textit{m}_1,\textit{v}_2,\sigma_1),\ldots,(\textit{m}_q,\textit{v}_{q+1},\sigma_q))$$
 be the pair output by A'

Claim 27

Whenever A' succeeds, $\exists \tilde{i} = \tilde{i}(m, \sigma) \in [q]$ such that:

- ① Sign' was not asked by A' on $m_{\tilde{i}}$.
- ② Sign' was asked by A' on m_i , for every $i \in [i-1]$

Proof: Let i be the maximal index such that condition (2) holds (cannot be q+1).

• Let $\widetilde{m} = (m_{\widetilde{i}}, v_{\widetilde{i}+1})$, and let $s_{\widetilde{i}}$ be the signing key generated together with v_i .

Message Authentication Code (MAC)

Let the random variables

$$(m,\sigma=(m_1,v_2,\sigma_1),\ldots,(m_q,v_{q+1},\sigma_q))$$
 be the pair output by A'

Claim 27

Whenever A' succeeds, $\exists \tilde{i} = \tilde{i}(m, \sigma) \in [q]$ such that:

- ① Sign' was not asked by A' on $m_{\tilde{i}}$.
- ② Sign' was asked by A' on m_i , for every $i \in [i-1]$

Proof: Let i be the maximal index such that condition (2) holds (cannot be q + 1).

- Let $\widetilde{m} = (m_{\widetilde{i}}, v_{\widetilde{i}+1})$, and let $s_{\widetilde{i}}$ be the signing key generated together with v_i .
- Hence, $\operatorname{Sign}_{\mathbf{s}_{i}}(\sigma_{\widetilde{i}},\widetilde{m})=1$, and $\operatorname{Sign}_{\mathbf{s}_{i}}$ was not queried by Sign's on \widetilde{m} .

Definition of A

Algorithm 28 (A)

Input: v, 1^n

Message Authentication Code (MAC)

Oracle: Sign_s

- Choose $i^* \leftarrow [p = p(n)]$ and $(s', v') \leftarrow \text{Gen}'(1^n)$.
- Emulate a random execution of A'Sign's' with a single twist:
 - On the i^* 'th call to $\operatorname{Sign}'_{s'}$, set $v_{i^*} = v$ (rather then choosing it via Gen)

Signature Schemes

- When need to sign using s_{i^*} , use $Sign_s$.
- **3** Let $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_q, v_q, \sigma_q)) \leftarrow A'$
- Output $((m_{i^*}, v_{i^*}), \sigma_{i^*})$ (abort if $i^* > q$))

Definition of A

Algorithm 28 (A)

Input: v, 1ⁿ

Message Authentication Code (MAC)

Oracle: Signs

- ① Choose $i^* \leftarrow [p = p(n)]$ and $(s', v') \leftarrow \text{Gen}'(1^n)$.
- 2 Emulate a random execution of A'Sign'_{s'} with a single twist:
 - On the i^* 'th call to Sign'_{s'}, set $v_{i^*} = v$ (rather then choosing it via Gen)
 - When need to sign using s_{j*}, use Sign_s.
- **3** Let $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_q, v_q, \sigma_q)) \leftarrow A'$
- Output $((m_{i^*}, v_{i^*}), \sigma_{i^*})$ (abort if $i^* > q$))
 - Sign_s is called at most once

Definition of A

Algorithm 28 (A)

Input: v, 1^n

Message Authentication Code (MAC)

Oracle: Signs

- ① Choose $i^* \leftarrow [p = p(n)]$ and $(s', v') \leftarrow \text{Gen}'(1^n)$.
- 2 Emulate a random execution of A'Sign'_{s'} with a single twist:
 - On the i^* 'th call to Sign'_{s'}, set $v_{i^*} = v$ (rather then choosing it via Gen)
 - When need to sign using s_{j*}, use Sign_s.
- **3** Let $(m, \sigma = (m_1, v_1, \sigma_1), \dots, (m_a, v_a, \sigma_a)) \leftarrow A'$
- Output $((m_{i^*}, v_{i^*}), \sigma_{i^*})$ (abort if $i^* > q$))
 - Sign_s is called at most once
 - The emulated game $A^{Sign'_{s'}}$ has the "right" distribution.

Definition of A

Algorithm 28 (A)

Input: v, 1^n

Message Authentication Code (MAC)

Oracle: Signs

- ① Choose $i^* \leftarrow [p = p(n)]$ and $(s', v') \leftarrow \text{Gen}'(1^n)$.
- Emulate a random execution of A'Sign's' with a single twist:
 - On the i^* 'th call to Sign'_{s'}, set $v_{i^*} = v$ (rather then choosing it via Gen)
 - When need to sign using s_{j*}, use Sign_s.
- **3** Let $(m, \sigma = (m_1, v_1, \sigma_1), \ldots, (m_a, v_a, \sigma_a)) \leftarrow A'$
- Output $((m_{i^*}, v_{i^*}), \sigma_{i^*})$ (abort if $i^* > q$))
 - Sign_s is called at most once
 - The emulated game $A^{Sign'_{s'}}$ has the "right" distribution.
 - A breaks (Gen, Sign, Vrfy) whenever $i^* = \tilde{i} > 1$.

Analysis of A

For any $n \in \mathcal{I}$

Message Authentication Code (MAC)

Pr[A(1ⁿ) breaks (Gen, Sign, Vrfy)]

$$\geq \Pr_{i^* \leftarrow [p=p(n)]}[i=\widetilde{i}]$$

$$\geq \frac{1}{p} \cdot \Pr[A' \text{ breaks (Gen', Sign', Vrfy')}] \geq \frac{1}{p(n)^2}$$

Message Authentication Code (MAC)

"Somewhat"-Stateful Schemes

A one-time scheme (Gen, Sign, Vrfy), and $\ell = \ell(n) \in \omega(\log n)$

Construction 29

- $\operatorname{Gen}'(1^n)$: output $(s_{\lambda}, v_{\lambda}) \leftarrow \operatorname{Gen}(1^n)$.
- Sign'_e(m): choose unused $\bar{r} \in \{0, 1\}^{\ell}$
 - For i = 0 to $\ell 1$: if $a_{\overline{r}_1}$, was not set:
 - For both $j \in \{0, 1\}$, let $(s_{\overline{r}_1, \dots, j}, v_{\overline{r}_1, \dots, j}) \leftarrow \text{Gen}(1^n)$
 - **2** $\sigma_{\bar{r}_1,...,i} = \operatorname{Sign}_{s_{\bar{r}_i}} (a_{1,...,i} = (v_{\bar{r}_1,...,i}, v_{\bar{r}_1,...,i}, v_{\bar{r}_1,...,i}))$
 - Output $(\bar{r}, a_{\lambda}, \sigma_{\lambda}, \dots, a_{\bar{r}_1, \dots, \ell-1}, \sigma_{\bar{r}_1, \dots, \ell-1}, \sigma_{\bar{r}} = \operatorname{Sign}_{s_{\bar{r}}}(m))$
- $\operatorname{Vrfy}'_{\nu}(m, \sigma' = (\overline{r}, a_{\lambda}, \sigma_{\lambda}, \dots, a_{\overline{r}-1}, \sigma_{\overline{r}_{1}}, \sigma_{\overline{r}_{1}})$
 - Verify Vrfy_{$v_{\bar{r},...,i}$} $(a_{\bar{r}_{1,...,i}}, \sigma_{\bar{r}_{1,...,i}}) = 1$ for every $i \in \{0, ..., \ell - 1\}$
 - Verify Vrfy_{$v_{\bar{\tau}}$} $(m, \sigma_{\bar{\tau}}) = 1$ (where $v_{\bar{\tau}} = (a_{\bar{\tau}})_{\bar{\tau}[\ell]}$)

Somewhat-Stateful Schemes

Message Authentication Code (MAC)

More efficient scheme

- More efficient scheme
- Sign' does not keep track of the message history.

- More efficient scheme
- Sign' does not keep track of the message history.
- Each leaf is visited at most once.

- More efficient scheme
- Sign' does not keep track of the message history.
- Each leaf is visited at most once.
- Each one-time signature is used once.

Lemma 30

Message Authentication Code (MAC)

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful existential unforgeable signature scheme.

Proof:

Lemma 30

Message Authentication Code (MAC)

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful existential unforgeable signature scheme.

Proof: Let $(m, \sigma' = (\overline{r}, a_{\lambda}, \sigma_{\lambda}, \dots, a_{\overline{r}-1}, \sigma_{\overline{r}_{1}, \dots, \ell-1}, \sigma_{\overline{r}})$ be the output of a cheating A' and let $a_{\overline{r}} = m$

Lemma 30

Message Authentication Code (MAC)

Assume that (Gen, Sign, Vrfy) is one time signature scheme, then (Gen', Sign', Vrfy') is a stateful existential unforgeable signature scheme.

Signature Schemes

Proof: Let $(m, \sigma' = (\overline{r}, a_{\lambda}, \sigma_{\lambda}, \dots, a_{\overline{r}-1}, \sigma_{\overline{r}_1}, \sigma_{\overline{r}_1}, \sigma_{\overline{r}})$ be the output of a cheating A' and let $a_{\bar{r}} = m$

Claim 31

Whenever A' succeeds, $\exists \tilde{i} = \tilde{i}(m, \sigma') \in \{0, \dots, \ell\}$ such that:

- Sign'_s queried Sign_{$s_{\bar{r}_1}$} $(a_{\bar{r}_1,...,i})$ for every $i \in [i-1]$, where $s_{\bar{r}_1}$ is the value sampled by Sign' when sampling $a_{\overline{t}_1}$ (or s_{λ} , if i=0)
- Sign'_s did not query Sign_{$s_{\bar{r}_1}$}, $(a_{\bar{r}_1,...,i})$.

Stateless Scheme

Inefficient scheme:

Let $\Pi_{\ell,q}$ be the set of random functions from $\{0,1\}^*$ to $\{0,1\}^q$.

Stateless Scheme

Message Authentication Code (MAC)

Inefficient scheme:

Let $\Pi_{\ell,q}$ be the set of random functions from $\{0,1\}^*$ to $\{0,1\}^q$.

Signature Schemes

• Gen'(1ⁿ): let $(s, v) \leftarrow \text{Gen}(1^n)$ and $\pi \leftarrow \Pi_{\ell(n), q(n)}$, where $a \in \text{poly}$ is large enough for the application below, and outputs $(s' = (s, \pi), v' = v)$

Message Authentication Code (MAC)

Inefficient scheme:

Let $\Pi_{\ell,q}$ be the set of random functions from $\{0,1\}^*$ to $\{0,1\}^q$.

- Gen'(1ⁿ): let $(s, v) \leftarrow \text{Gen}(1^n)$ and $\pi \leftarrow \Pi_{\ell(n), q(n)}$, where $a \in \text{poly}$ is large enough for the application below, and outputs $(s' = (s, \pi), v' = v)$
- **2** Sign $'(1^n)$:
 - choose $\overline{r} = \pi(0^{\ell} \circ m)_1$

Message Authentication Code (MAC)

Inefficient scheme:

Let $\Pi_{\ell,q}$ be the set of random functions from $\{0,1\}^*$ to $\{0,1\}^q$.

- Gen'(1ⁿ): let $(s, v) \leftarrow \text{Gen}(1^n)$ and $\pi \leftarrow \Pi_{\ell(n), q(n)}$, where $a \in \text{poly}$ is large enough for the application below, and outputs $(s' = (s, \pi), v' = v)$
- **2** Sign $'(1^n)$:
 - choose $\overline{r} = \pi(0^{\ell} \circ m)_{1,\ldots,\ell}$
 - 2 When setting $(s_{\overline{r}_1, \ldots, j}, v_{\overline{r}_1, \ldots, j}) \leftarrow \text{Gen}(1^n)$, use $\pi(\overline{r}_{1, \ldots, j}, j)$ as the randomness for Gen.

Message Authentication Code (MAC)

Inefficient scheme:

Let $\Pi_{\ell,q}$ be the set of random functions from $\{0,1\}^*$ to $\{0,1\}^q$.

- Gen'(1ⁿ): let $(s, v) \leftarrow \text{Gen}(1^n)$ and $\pi \leftarrow \Pi_{\ell(n), q(n)}$, where $a \in \text{poly}$ is large enough for the application below, and outputs $(s' = (s, \pi), v' = v)$
- **2** Sign $'(1^n)$:
 - choose $\overline{r} = \pi(0^{\ell} \circ m)_{1,\ldots,\ell}$
 - 2 When setting $(s_{\overline{r}_1, \ldots, j}, v_{\overline{r}_1, \ldots, j}) \leftarrow \text{Gen}(1^n)$, use $\pi(\overline{r}_{1, \ldots, j}, j)$ as the randomness for Gen.
 - Sign' keeps no state

Message Authentication Code (MAC)

Inefficient scheme:

Let $\Pi_{\ell,q}$ be the set of random functions from $\{0,1\}^*$ to $\{0,1\}^q$.

- Gen'(1ⁿ): let $(s, v) \leftarrow \text{Gen}(1^n)$ and $\pi \leftarrow \Pi_{\ell(n), q(n)}$, where $q \in \text{poly}$ is large enough for the application below, and outputs $(s' = (s, \pi), v' = v)$
- **2** Sign $'(1^n)$:
 - choose $\overline{r} = \pi(0^{\ell} \circ m)_1$
 - 2 When setting $(s_{\overline{r}_1, \ldots, j}, v_{\overline{r}_1, \ldots, j}) \leftarrow \text{Gen}(1^n)$, use $\pi(\overline{r}_{1, \ldots, j}, j)$ as the randomness for Gen.
 - Sign' keeps no state
 - A single one-time signature key might be used several times, but always on the same message

Message Authentication Code (MAC)

Inefficient scheme:

Let $\Pi_{\ell,q}$ be the set of random functions from $\{0,1\}^*$ to $\{0,1\}^q$.

Signature Schemes

- Gen'(1ⁿ): let $(s, v) \leftarrow \text{Gen}(1^n)$ and $\pi \leftarrow \Pi_{\ell(n), q(n)}$, where $q \in \text{poly}$ is large enough for the application below, and outputs $(s' = (s, \pi), v' = v)$
- **2** Sign $'(1^n)$:
 - choose $\overline{r} = \pi(0^{\ell} \circ m)_1$
 - 2 When setting $(s_{\overline{r}_1, \ldots, j}, v_{\overline{r}_1, \ldots, j}) \leftarrow \text{Gen}(1^n)$, use $\pi(\overline{r}_{1, \ldots, j}, j)$ as the randomness for Gen.
 - Sign' keeps no state
 - A single one-time signature key might be used several times, but always on the same message

Efficient scheme:

Message Authentication Code (MAC)

Inefficient scheme:

Let $\Pi_{\ell,q}$ be the set of random functions from $\{0,1\}^*$ to $\{0,1\}^q$.

Signature Schemes

- Gen'(1ⁿ): let $(s, v) \leftarrow \text{Gen}(1^n)$ and $\pi \leftarrow \Pi_{\ell(n), q(n)}$, where $q \in \text{poly}$ is large enough for the application below, and outputs $(s' = (s, \pi), v' = v)$
- **2** Sign $'(1^n)$:
 - choose $\overline{r} = \pi(0^{\ell} \circ m)_1$
 - 2 When setting $(s_{\overline{r}_1, \ldots, j}, v_{\overline{r}_1, \ldots, j}) \leftarrow \text{Gen}(1^n)$, use $\pi(\overline{r}_{1, \ldots, j}, j)$ as the randomness for Gen.
 - Sign' keeps no state
 - A single one-time signature key might be used several times, but always on the same message

Efficient scheme: use PRF

Signature Schemes

Without CRH

Message Authentication Code (MAC)

Definition 32 (target collision resistant (TCR))

A function family $\mathcal{H} = \{\mathcal{H}_n\}$ is target collision resistant, if any pair of PPT's A₁, A₂:

$$\Pr[(x, a) \leftarrow \mathsf{A}_1(1^n); h \leftarrow \mathcal{H}_n; x' \leftarrow \mathsf{A}_2(a, h): \\ x \neq x' \land h(x) = h(x')] = \mathsf{neg}(n)$$

Signature Schemes

Without CRH

Without CRH

Message Authentication Code (MAC)

Definition 32 (target collision resistant (TCR))

A function family $\mathcal{H} = \{\mathcal{H}_n\}$ is target collision resistant, if any pair of PPT's A₁, A₂:

$$\Pr[(x, a) \leftarrow \mathsf{A}_1(1^n); h \leftarrow \mathcal{H}_n; x' \leftarrow \mathsf{A}_2(a, h): \\ x \neq x' \land h(x) = h(x')] = \mathsf{neg}(n)$$

Theorem 33

OWFs imply efficient compressing TCRs.

Message Authentication Code (MAC)

Definition 34 (target one-time signatures)

A signature scheme (Gen, Sign, Vrfy) is target one-time existential unforgeable (for short, target one-time signature), if for any pair of PPT's A₁, A₂

$$\Pr[(m, a) \leftarrow A_1(1^n); (s, v) \leftarrow Gen(1^n); (m', \sigma) \leftarrow A(a, Sign_s(m)): m' \neq m \land Vrfy_v(m', \sigma) = 1] = neg(n)$$

Message Authentication Code (MAC)

Definition 34 (target one-time signatures)

A signature scheme (Gen, Sign, Vrfy) is target one-time existential unforgeable (for short, target one-time signature), if for any pair of PPT's A₁, A₂

Signature Schemes

$$\begin{aligned} & \text{Pr}\big[(m,a) \leftarrow \mathsf{A}_1(1^n); (s,v) \leftarrow \mathsf{Gen}(1^n); \\ & (m',\sigma) \leftarrow \mathsf{A}(a,\mathsf{Sign}_s(m)) \colon m' \neq m \land \mathsf{Vrfy}_v(m',\sigma) = 1\big] \\ & = \mathsf{neg}(n) \end{aligned}$$

Claim 35

OWFs imply target one-time signatures.

Message Authentication Code (MAC)

Definition 36 (random one-time signatures)

A signature scheme (Gen, Sign, Vrfy) is random one-time existential unforgeable (for short, random one-time signature), if for any PPT A and any samplable ensemble $\mathcal{M} = \{\mathcal{M}_n\}_{n \in \mathbb{N}}$, it holds that

$$\begin{aligned} & \text{Pr}\big[m \leftarrow \mathcal{M}_n; (s, v) \leftarrow \text{Gen}(1^n); (m', \sigma) \leftarrow \text{A}(m, \text{Sign}_s(m)) : \\ & m' \neq m \wedge \text{Vrfy}_v(m', \sigma) = 1\big] \\ & = \text{neg}(n) \end{aligned}$$

Signature Schemes

Message Authentication Code (MAC)

Definition 36 (random one-time signatures)

A signature scheme (Gen, Sign, Vrfy) is random one-time existential unforgeable (for short, random one-time signature), if for any PPT A and any samplable ensemble $\mathcal{M} = \{\mathcal{M}_n\}_{n \in \mathbb{N}}$, it holds that

$$\begin{aligned} & \text{Pr}\big[m \leftarrow \mathcal{M}_n; (s, v) \leftarrow \text{Gen}(1^n); (m', \sigma) \leftarrow \text{A}(m, \text{Sign}_s(m)) : \\ & m' \neq m \land \text{Vrfy}_v(m', \sigma) = 1\big] \\ & = \text{neg}(n) \end{aligned}$$

Claim 37

Assume (Gen, Sign, Vrfy) is target one-time existential unforgeable, then it is random one-time existential unforgeable. Without CRH

Lemma 38

Assume that (Gen, Sign, Vrfy) is a target one-time signature scheme, then (Gen', Sign', Vrfy') from Construction 29 is a stateful existential unforgeable signature scheme.

Without CRH

Lemma 38

Message Authentication Code (MAC)

Assume that (Gen, Sign, Vrfy) is a target one-time signature scheme, then (Gen', Sign', Vrfy') from Construction 29 is a stateful existential unforgeable signature scheme.

Proof: ?