Implementing Asynchronous Multi-Party Computation

Martin Geisler

BRICS
Department of Computer Science
University of Aarhus

February 21st, 2008

Part I Secure Integer Comparison

Secure Integer Comparison

▶ Given integers a and b, securely compute a > b.

Secure Integer Comparison

- ▶ Given integers a and b, securely compute a > b.
- Many variations:
 - ▶ a, b can be private, public or secret shared.
 - Same for the result.
 - We can have two or more players.

- ► Traditional auction:
 - ▶ Bidders must be on-line.
 - ▶ Bidding continues until a deadline is reached.

- Traditional auction:
 - ▶ Bidders must be on-line.
 - Bidding continues until a deadline is reached.
- Maximum bid auction:

• P_i may submit a maximum bid M_i .

- Traditional auction:
 - Bidders must be on-line.
 - Bidding continues until a deadline is reached.
- Maximum bid auction:

- $ightharpoonup P_i$ may submit a maximum bid M_i .
- A public current price x is incremented until only one M_i > x.

- Traditional auction:
 - Bidders must be on-line.
 - Bidding continues until a deadline is reached.
- Maximum bid auction:

- $ightharpoonup P_i$ may submit a maximum bid M_i .
- A public current price x is incremented until only one M_i > x.

- Traditional auction:
 - Bidders must be on-line.
 - Bidding continues until a deadline is reached.
- Maximum bid auction:

- $ightharpoonup P_i$ may submit a maximum bid M_i .
- A public current price x is incremented until only one M_i > x.

- Traditional auction:
 - Bidders must be on-line.
 - ▶ Bidding continues until a deadline is reached.
- Maximum bid auction:

- $ightharpoonup P_i$ may submit a maximum bid M_i .
- A public current price x is incremented until only one M_i > x.

- Traditional auction:
 - Bidders must be on-line.
 - Bidding continues until a deadline is reached.
- Maximum bid auction:

- P_i may submit a maximum bid M_i .
- A public current price x is incremented until only one M_i > x.

- Traditional auction:
 - Bidders must be on-line.
 - Bidding continues until a deadline is reached.
- Maximum bid auction:

- \triangleright P_i may submit a maximum bid M_i .

Removing Trust in the Auction House

▶ Want to remove trusted party *T*.

Removing Trust in the Auction House

В

- ▶ Want to remove trusted party *T*.
- ► Split *T* into parties *A* and *B*.

 P_i

Removing Trust in the Auction House

- Want to remove trusted party T.
- ▶ Split T into parties A and B.
- ▶ User P_i shares M_i into a and b.
- A gets a, B gets b.
- ► A and B run a comparison protocol.

Homomorphic Encryption Scheme

► Encryption:

$$E_{pk}(m,r) = g^m h^r \mod n$$
.

► Homomorphic:

$$E_{pk}(m,r) \cdot E_{pk}(m',r') \bmod n = E_{pk}(m+m' \bmod u,r+r').$$

▶ Check $c = E_{pk}(m, r)$ for m = 0:

$$c^{v} \mod n = (g^{v})^{m} \mod n$$
.

M: 1 0 1 1 0 1 0 0 1 0

- ▶ We wish to compute M > x for ℓ -bit numbers.
- \triangleright x_i is the *i*'th bit of x, m_i is the *i*'th bit of M.

- ▶ We wish to compute M > x for ℓ -bit numbers.
- \triangleright x_i is the *i*'th bit of x, m_i is the *i*'th bit of M.

- ▶ We wish to compute M > x for ℓ -bit numbers.
- \triangleright x_i is the *i*'th bit of x, m_i is the *i*'th bit of M.

- ▶ We wish to compute M > x for ℓ -bit numbers.
- \triangleright x_i is the *i*'th bit of x, m_i is the *i*'th bit of M.

- ▶ We wish to compute M > x for ℓ -bit numbers.
- ➤ x_i is the i'th bit of x, m_i is the i'th bit of M.
- ▶ Define the following:

$$c_i = x_i - m_i + 1$$
$$+ \sum_{j=i+1}^{\ell} m_j \oplus x_j.$$

- ▶ We wish to compute M > x for ℓ -bit numbers.
- ▶ x_i is the i'th bit of x, m_i is the i'th bit of M.
- ▶ Define the following:

$$c_i = x_i - m_i + 1$$
$$+ \sum_{j=i+1}^{\ell} m_j \oplus x_j.$$

- ▶ We wish to compute M > x for ℓ -bit numbers.
- \triangleright x_i is the *i*'th bit of x, m_i is the *i*'th bit of M.
- ▶ Define the following:

$$c_i = x_i - m_i + 1$$
$$+ \sum_{j=i+1}^{\ell} m_j \oplus x_j.$$

- ▶ We wish to compute M > x for ℓ -bit numbers.
- ➤ x_i is the i'th bit of x, m_i is the i'th bit of M.
- ▶ Define the following:

$$c_i = x_i - m_i + 1$$
$$+ \sum_{j=i+1}^{\ell} m_j \oplus x_j.$$

- ▶ We wish to compute M > x for ℓ -bit numbers.
- \triangleright x_i is the *i*'th bit of x, m_i is the *i*'th bit of M.
- Define the following:

$$c_i = x_i - m_i + 1$$

$$+ \sum_{j=i+1}^{\ell} m_j \oplus x_j.$$

 $M > x \iff \exists i : c_i = 0.$

Α

В

- ightharpoonup A and B know pk, A knows sk.
- ▶ Input x is public, M known to P_i .

$$M = m_{\ell} \dots m_1$$

- ▶ A and B know pk, A knows sk.
- ▶ Input x is public, M known to P_i .
- ▶ Input m_i additively secret shared.

 $\begin{array}{c}
P_i\\
M=m_\ell\dots m_1
\end{array}$

- ▶ A and B know pk, A knows sk.
- ▶ Input x is public, M known to P_i .
- ▶ Input m_i additively secret shared.
- ▶ A and B compute shares of c_i .

$$\begin{array}{c}
P_i\\
M=m_\ell\dots m_1
\end{array}$$

- \triangleright A and B know pk, A knows sk.
- ▶ Input x is public, M known to P_i .
- ▶ Input *m_i* additively secret shared.
- ▶ A and B compute shares of c_i .
- ► A sends $E_{pk}(c_i^A)$ to B.

$$M = m_{\ell} \dots m_1$$

- ▶ A and B know pk, A knows sk.
- ▶ Input x is public, M known to P_i .
- ▶ Input *m_i* additively secret shared.
- ▶ A and B compute shares of c_i .
- ▶ A sends $E_{pk}(c_i^A)$ to B.
- ▶ B calculates $E_{pk}(c_i s_i)$ using the homomorphic property.
- ▶ B sends shuffled $E_{pk}(c_i s_i)$ to A.

$$M = m_{\ell} \dots m_1$$

- \triangleright A and B know pk, A knows sk.
- ▶ Input x is public, M known to P_i.
- ▶ Input *m_i* additively secret shared.
- \triangleright A and B compute shares of c_i .
- ▶ A sends $E_{pk}(c_i^A)$ to B.
- ▶ B calculates $E_{pk}(c_i s_i)$ using the homomorphic property.
- ▶ B sends shuffled $E_{pk}(c_i s_i)$ to A.
- ightharpoonup A checks if any $c_i s_i$ is zero.
- $ightharpoonup \exists i: c_i s_i = 0 \iff M > x.$

► Marc Fischlin's protocol:

▶ Blake and Kolesnikov's protocol:

- Marc Fischlin's protocol:
 - Quadratic residuosity assumption.
 - Encoding expands by λ factor.
- ▶ Blake and Kolesnikov's protocol:

- Marc Fischlin's protocol:
 - Quadratic residuosity assumption.
 - Encoding expands by λ factor.
- ▶ Blake and Kolesnikov's protocol:
 - Paillier encryption.
 - No expansion.

- Marc Fischlin's protocol:
 - Quadratic residuosity assumption.
 - Encoding expands by λ factor.
- Blake and Kolesnikov's protocol:
 - Paillier encryption.
 - No expansion.
- Our protocol: Best of both worlds.

Benchmark Results

Part II

Virtual Ideal Functionality Framework

VIFF Overview

- Framework for specifying MPC.
- Provides building-blocks for larger protocols.
- Asynchronous design.
- Automatic parallel scheduling.

Asynchronous vs. Synchronous

- ► All rounds equally fast.
- Optimal execution.

Asynchronous vs. Synchronous

- ► All rounds equally fast.
- ▶ Optimal execution.

- Processing stalls.
- ▶ Wasted time!

Asynchronous Design

- ▶ Entire tree is scheduled at once.
- Result is a form of "greedy scheduling".
- ▶ Implicit synchronization, no rounds.

Asynchronous Design

- ▶ Entire tree is scheduled at once.
- Result is a form of "greedy scheduling".
- ▶ Implicit synchronization, no rounds.
- Advantages:
 - Automatic parallel scheduling.
 - Software scalability.

Example: Hamming Distance

```
 \begin{aligned} \textbf{def} & \times \text{or}(\mathsf{a}, \ \mathsf{b}): \\ & \textbf{assert} \ \mathsf{a}. \text{field} \ \textbf{is} \ \mathsf{b}. \text{field} \\ & \textbf{if} \ \mathsf{a}. \text{field} \ \textbf{is} \ \mathsf{GF256}: \\ & \textbf{return} \ \mathsf{a} + \mathsf{b} \\ & \textbf{else}: \\ & \textbf{return} \ \mathsf{a} + \mathsf{b} - 2 * \mathsf{a} * \mathsf{b} \end{aligned}
```

- Straight-forward exclusive-or.
- ▶ Fast for $GF(2^8)$ elements.
- ▶ Slower for \mathbb{Z}_p elements.
- ► (Already part of VIFF.)

Example: Hamming Distance

```
 \begin{aligned} \textbf{def } & \mathsf{xor}(\mathsf{a}, \, \mathsf{b}) \\ & \textbf{assert } \mathsf{a}. \mathsf{field } \mathbf{is } \mathsf{b}. \mathsf{field } \\ & \textbf{if } \mathsf{a}. \mathsf{field } \mathbf{is } \mathsf{GF256} ; \\ & \textbf{return } \mathsf{a} + \mathsf{b} \\ & \textbf{else} ; \\ & \textbf{return } \mathsf{a} + \mathsf{b} - 2 * \mathsf{a} * \mathsf{b} \end{aligned}
```

```
\label{eq:def-hamming} \begin{split} \text{def hamming}(s, \ t): \\ \text{distance} &= 0 \\ \text{for i in range}(\text{len(s)}): \\ \text{distance} &+= \text{xor}(\text{s[i]}, \ \text{t[i]}) \\ \text{return distance} \end{split}
```

- Straight-forward exclusive-or.
- ▶ Fast for $GF(2^8)$ elements.
- ▶ Slower for \mathbb{Z}_p elements.
- ► (Already part of VIFF.)

- Hamming distance.
- Exclusive-ors run in parallel!

Asynchronous Ideal Functionality

- ▶ Reacts on input from \mathcal{Z} via P_i .
- Inputs are tagged with a program counter.
- $ightharpoonup \mathcal{F}$ forwards masked input to \mathcal{S} .
- $ightharpoonup \mathcal{F}$ relays traffic between \mathcal{S} and P_i .

Asynchronous Ideal Functionality

- ▶ Reacts on input from \mathcal{Z} via P_i .
- ▶ Inputs are tagged with a program counter.
- $ightharpoonup \mathcal{F}$ forwards masked input to \mathcal{S} .
- \triangleright \mathcal{F} relays traffic between \mathcal{S} and P_i .
- F queues replies.
- ightharpoonup Released upon signal from S.

Operations

• Assignment: $\langle x := v, pc \rangle$.

▶ Output: $\langle \text{output}, x, P_i, pc \rangle$.

▶ Linear combination: $\langle x := c_1 \cdot x_1 + \dots + c_j \cdot x_j, pc \rangle$.

▶ Multiplication: $\langle x := y \cdot z, pc \rangle$.

Synchronization: $\langle \text{synchronize}, pc \rangle$.

Operations

• Assignment: $\langle x := v, pc \rangle$.

▶ Output: $\langle \text{output}, x, P_i, pc \rangle$.

▶ Linear combination: $\langle x := c_1 \cdot x_1 + \dots + c_j \cdot x_j, pc \rangle$.

▶ Multiplication: $\langle x := y \cdot z, pc \rangle$.

Synchronization: $\langle \text{synchronize}, pc \rangle$.

Direct correspondence to methods in VIFF Runtime.

Real World:

Real World:

Real World:

Real World:

Real World:

▶ Tested on 3 machines: USA, Norway, and Denmark.

- ► Tested on 3 machines: USA, Norway, and Denmark.
- ► Tested multiplications and comparisons.

- ► Tested on 3 machines: USA, Norway, and Denmark.
- ► Tested multiplications and comparisons.
- ► Tested parallel and serial multiplications:

- ► Tested on 3 machines: USA, Norway, and Denmark.
- Tested multiplications and comparisons.
- ► Tested parallel and serial multiplications:

- ► Tested on 3 machines: USA, Norway, and Denmark.
- Tested multiplications and comparisons.
- ► Tested parallel and serial multiplications:

- ► Tested on 3 machines: USA, Norway, and Denmark.
- Tested multiplications and comparisons.
- ► Tested parallel and serial multiplications:

Parallel Multiplications

Serial Multiplications

Parallel Comparisons

Future Work

- ▶ Implement protocols for active security.
- ▶ Self-trust: protocols with t = n 1.

- Comparison protocol for one public and one shared input.
 - ▶ A homomorphic encryption scheme.
 - Low communication complexity.
 - Low computational complexity.

- Comparison protocol for one public and one shared input.
 - ▶ A homomorphic encryption scheme.
 - ► Low communication complexity.
 - Low computational complexity.
- Virtual Ideal Functionality Framework.
 - Light-weight design for doing MPC.
 - Asynchronous design gives automatic parallelism.
 - ► See: http://viff.dk/.

- Comparison protocol for one public and one shared input.
 - ▶ A homomorphic encryption scheme.
 - Low communication complexity.
 - Low computational complexity.
- Virtual Ideal Functionality Framework.
 - Light-weight design for doing MPC.
 - Asynchronous design gives automatic parallelism.
 - ► See: http://viff.dk/.

Thank you for listening!