

Meta-learning Convolutional Neural Architectures for Multi-target Concrete Defect Classification with the COncrete DEfect BRidge IMage Dataset

Martin Mundt¹, Sagnik Majumder¹, Sreenivas Murali¹, Panagiotis Panetsos², Visvanathan Ramesh¹

1 Goethe University 2 Egnatia Odos A.E. Contact: {mmundt, vramesh}@em.uni-frankfurt.de

Overview

- Multi-class multi-target image dataset with defects in context of concrete bridges.
- ► Evaluation and comparison of best-practice CNN architectures for our task.
- ▶ We adapt and contrast two architecture search methods, MetaQNN and ENAS.

CODEBRIM dataset

1590 high-resolution images, 30 unique bridges, at different scales and resolutions. Overlapping defect classes: crack, efflorescence, spalling, exposed bars, corrosion.

Pixel-wise labels expensive ightarrow 5354 annotated bounding boxes to learn from context.

Hyper-parameters

Validation set based search for cyclical learning rates, batch and patch sizes.

Learning concrete defects from context with meta-learned neural architectures

- ▶ We adapt and compare MetaQNN (Q-learning) and ENAS (policy gradients with RNN) for our multi-target classification task.
- ► Search space includes: convolutional, pooling and fully-connected layers with kernel sizes, number of units, strides and skip-connections. We also use batch-normalization and cyclical learning rates to provide a fair comparison.
- We further search for spatial pyramidal pooling to allow for flexible input image size and ratio and incorporate scale invariance.

Architecture Multi-target accuracy [%] Params [M] Layers

best val	bv-test		
63.05	66.98	57.02	8
64.30	67.93	58.60	8
64.93	70.45	128.79	11
64.00	70.61	134.28	16
52.51	57.19	5.84	28
65.56	70.77	11.50	121
65.47	70.78	3.41	8
64.53	68.91	2.71	8
64.38	68.75	1.70	8
66.02	68.56	4.53	6
65.20	67.45	1.22	8
64.93	72.19	2.88	7
	63.05 64.30 64.93 64.00 52.51 65.56 65.47 64.53 64.38 66.02 65.20	63.0566.9864.3067.9364.9370.4564.0070.6152.5157.1965.5670.7765.4770.7864.5368.9164.3868.7566.0268.5665.2067.45	63.0566.9857.0264.3067.9358.6064.9370.45128.7964.0070.61134.2852.5157.195.8465.5670.7711.5065.4770.783.4164.5368.912.7164.3868.751.7066.0268.564.5365.2067.451.22

Transfer learning

Architecture	Source	Accuracy [%]		
		best val l	ov-test	
Alexnet	ImageNet	60.53	62.87	
VGG-A	ImageNet	60.22	66.35	
VGG-D	ImageNet	56.13	65.56	
Densenet-121	ImageNet	54.71	57.66	
Alexnet	MINC	60.06	66.50	
VGG-D	MINC	61.47	67.14	

Conclusion - takeaways

- ► High-resolution multi-target image dataset in a real-world application domain.
- Meta-learning essential to find suitable architectures for the domain.
 Outperforms literature baselines in terms of higher accuracy, fewer layers and parameters for multi-target concrete defect classification.
- A fair comparison with similar search spaces and hyper-parameters shows that MetaQNN and ENAS perform equally well in our multi-target domain.
- Architecture improvements as seen on ImageNet do not show similar improvements on our task, highlighting the need for different domain datasets.

Outlook: detection and semantic segmentation

Architecture has been trained for defect classification in context \rightarrow slide the model over high-resolution images to obtain multi-target semantic segmentation:

Project open-source content

Dataset: https://zenodo.org/record/2620293

Code: https://github.com/ccc-frankfurt/meta-learning-CODEBRIM

Acknowledgments

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 687384.