

Experience: 6 N:111100 Tirer Succ. Sour nemise
2 je fors: $card D = A_{10}^2 = 10 \times 9$
1) p (1 ^{ch} Jeton et le 2 ^{ch} Sont rouges) $p (R) P = A^{2}_{4} - 4 \times 3$ $A^{2}_{10} = 90$
- 4 x 3 10 3
$\frac{3}{10} \Rightarrow R \qquad P(R \cap R) = \frac{4}{10} \times \frac{3}{9}$
6 y 7 3) R 10 5 y 7
2) $p(2^{oue} ronge) = p(R_1R) pn(R_1P)$

$$= p((2, 2)) + p(\overline{2}, R) = 0$$

$$p(2^{ene}(R)) = \frac{4 \times 3}{10 \times 9} + \frac{6}{10} \times \frac{4}{9} = \frac{36}{30}$$

Tiren succ 2 ptons

Sous remise. $\Delta \Delta \Delta O$ $\Delta \Delta O$

P (2 eul jeton D Sachaut le 1er ())

$$p(10 \text{ et } \Delta) = \frac{3}{10} \times \frac{5}{9}$$

$ \begin{array}{c c} & \Delta \Delta O \\ & \Delta \Delta D \\ & \Delta D $	P (2 one)	<u>- 4</u> 3
$\frac{1}{1-p(A)} \stackrel{>}{A} \stackrel{>}{\longrightarrow} \stackrel{B}{B}$ $p(A) \times p(B/A) = p(A \cap B)$	P(B/A)	ΔΔΟΛ
	1-P(A)) A	
$P(B/A) = \frac{P(A \cap B)}{P(A)}$		

3(E) : 0 , 1 1
4B 0011
301 , 0 , 1
1 Tirer Simultanement 3 bonles:
$cond \Omega = C_{10}^3 = 120$
\rightarrow A = $(3R)$ on 3B or 3N
3 3
$P(A) = \frac{C_3 + C_4 + C_3}{120} = \frac{6}{120}$
120
$\rightarrow B = \left\{ 10 \text{ et 21} \right\} \text{ on } \left\{ 20 \text{ et 1} \right\} \text{ on } \left\{ 20 \text{ et 2} \right\}$
on {10 1 (2) et 1 (2) on {30}

on {10 1 (30), on {30},

$$B = \{10et 20\}, ou \} 20et 10\} ou \{30\}$$

$$P(B) = \frac{C_4 \times C_6}{4} + \frac{C_4 \times C_6}{4} +$$

120

$$= \frac{4 \times 15}{120} + 6 \times 6 + 4 = \frac{100}{120}$$

$$\overline{B} = \frac{1}{3} \overline{O} \cdot \frac{3}{120}$$

$$\overline{B} = \frac{120}{120} = \frac{20}{120}$$

dnc
$$p(B) = 1 - p(B) = \frac{100}{4} = \frac{5}{6}$$

$$C = \left\{ 36 \right\} \text{ on } \left\{ 16, 0 \text{ et } \Theta \right\}$$

$$P(c) = \frac{C_4 \times C_5 \times C_1}{4} = \frac{1}{5}$$

$$\star P(A/B) = \frac{P(A\cap B)}{P(B)} = \frac{?}{\frac{5}{6}}$$

$$A \cap B = 3(R)$$
 or $3(N)$ or $\{O_{B_1}, 2B_{\overline{b}}\}$ or $\{2O_{B_1}, 1B_{\overline{b}}\}$

$$P(A \cap B) = \frac{C_3^3 + C_3^3 + C_2 \times C_2}{4} + \frac{C_2^2 \times C_2}{2}$$

$$P\left(A\cap B\right) = \frac{6}{120} = \frac{1}{20}$$

$$d\sin \rho(A/B) = \frac{P(A\cap B)}{P(B)} = \frac{2\omega}{50} = \frac{6}{4\pi 0} = \frac{3}{50}$$

Lemanque?

$$P(A|B) + P(A|B) = 1$$

puisque
$$p(A/B) - 1 - p(A/B) = 1 - \frac{6}{100}$$

= $\frac{34}{100}$

$$\times p(AUC) = p(A) + p(C) - p(ACC)$$

$$=\frac{6}{120}+\frac{1}{5}-\frac{1}{120}-\frac{1}{120}$$

$$\times$$
 P(A/c) = ?

$$P_{c}(A) = P(A/c) = \frac{P(A\cap C)}{P(C)} = \frac{1}{20}$$

$$P(A/\overline{c}) = \frac{P(A\cap\overline{c})}{P(\overline{c})} = \frac{y}{5}$$

$$(A \cap \overline{C}) = 3$$
 \otimes \otimes \otimes \otimes

$$P(A \cap \overline{C}) = \frac{C_3 + C_4}{120} = \frac{5}{120}$$

$$P(A/\overline{c}) = \frac{5/120}{4} = \frac{25}{480} = \dots$$

$$2$$
 $52 = \{1,2,3,4,5,6\}$

$$P(E) = \frac{3}{6} = \frac{1}{2}$$

$$P(F/E) = \frac{P(F \cap E)}{P(E)}$$
?

$$F \cap E = (Pair, 0) \text{ on } (E, 1, 1) \text{ on } (E, -1, -1)$$

$$P(F \cap E) = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \times \frac{4}{10} \times \frac{4}{10} \times \frac{5}{10} \times \frac{5}{10} \times \frac{1}{10} \times \frac{1}{10}$$

$$\frac{4^{2}}{10^{2}}$$

$$P(F/E)$$

$$\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} N^n = F$$

$$P(F/E) = P(00) \quad \text{on} \quad (20) \quad \text{on} \quad 20$$

$$-\frac{4^{2}+5+1^{2}}{10^{2}}$$

$$\times P(F/E) = P(0,0) ou(1,1)$$

$$-\frac{4}{10} \times \frac{3}{9} + \frac{5}{10} \times \frac{4}{9}$$

$$=\frac{A^{2}+A^{2}S}{A^{2}_{10}}$$

$$p(F) = p(E \cap F) + p(E \cap F) = 0$$

$$=\frac{1}{2} \times \frac{4^2}{100} + \frac{1}{2} \times \frac{3^2}{90}$$

$$\frac{b}{p(E/F)} = \frac{p(E \cap F)}{p(F)}$$

$$\frac{1}{2} \times \frac{4^2}{100}$$

$$= \frac{2}{100} = \frac{1}{2} = \frac{1}{100} = \frac{32}{20}$$

$$p(G \cap AL) = \frac{12}{20} \times \frac{4}{12} = \frac{4}{20}$$

$$P(AL) = ?$$

$$AL = (AL \Omega G) ou (AL \Omega G)$$

$$P(AL) = \frac{12}{20} \times \frac{4}{12} + \frac{8}{20} \times \frac{6}{8}$$

