On the Equivalence of Tests for Outliers for Pareto and Exponential Distributions

Fang Wang

McMaster University

April 9, 2020

Outline

- * Introduction
- * Discordancy tests
- * Distribution of order statistics under monotone transformation
- * Power comparision and real dataset application

Introduction: Outliers

The outliers, in a sample of observations, is a subset of observations that appears to be inconsistent with the rest of the data and the assumption proposed on the dataset.

Introduction: H_0

Definition (null hypothesis of contamination model)

Let x_1, \ldots, x_n be a sample of n observations. Then under the null hypothesis H_0, x_1, \ldots, x_n are observations of X_1, \ldots, X_n , where X_1, \ldots, X_n are independent random variables with common distribution F.

Introduction: H_r

Definition (slippage alternative of the contamination model)

Let x_1,\ldots,x_n be a sample of n observations with null hypothesis x_1,\ldots,x_n that they are independently from a distribution F. Let $x_{(1)} < x_{(2)} < \cdots < x_{(n)}$ be the order statistics of x_1,\ldots,x_n . Then under the slippage alternative H_r , the sample $x_{(1)},\ldots x_{(n-r)}$ are independent observations from distribution F and $x_{(n-r+1)},\ldots,x_{(n)}$ are independent observations from distribution \overline{F} with $F \neq \overline{F}$.

Contamination Model

A: Contaminated samples with H_r

B: Contaminated samples without H_r

Exponential Distribution

Definition (Exponential distribution)

A random variable X follows exponential distribution with mean parameter $\theta>0$ if it has pdf of

$$f(x) = \frac{1}{\theta}e^{-x/\theta}, \quad x > 0$$

and we denoted it by $X \sim \text{Exp}(\theta)$.

Poission Process

- * Let N(t) be a Poisson process with rate parameter $1/\theta$, and stage space $\{0,1\}$, then the sojourn time of N_t follows $\operatorname{Exp}(\theta)$ distribution.
- * If Y_1, \ldots, Y_k are iid exponential samples, they are also sojourn times of some Poisson processes N_1, \ldots, N_k .
- * Let $N = N_1 + \ldots + N_k$, then $Y_{(i)} Y_{(i-1)}$ are sojourn time of N in stage i_1

Pareto Distribution

Definition (Pareto distribution)

A random variable X follows $\operatorname{Pareto}(\alpha, \theta)$ distribution if its pdf is given by

$$f(x; \alpha, \theta) = \frac{\alpha \theta^{\alpha}}{x^{\alpha+1}}, \quad x \geqslant \theta > 0$$

where θ and α are both positive parameters.

Remark

Suppose $X \sim \operatorname{Pareto}(\alpha, \theta)$ and $Y = \log(X/\theta)$. Then, $Y \sim \operatorname{Exp}(\alpha)$.

H_r for Exponential and Pareto Distributions

Let α and θ be two positive real numbers and $b \in (0,1)$. **Exponential Case** F is $\operatorname{Exp}(\theta)$ and \overline{F} is $\operatorname{Exp}(\theta/b)$ **Pareto Case** F is $\operatorname{Pareto}(\alpha,\theta)$, \overline{F} is $\operatorname{Pareto}(\alpha b,\theta)$

Simulate Exponential Sample Under H_r

- 1 Generate n-r observations from F and r observation from \overline{F} .
- 2 Combined total n observations into a single observation \mathbf{x}
- 3 Accept **x** if it satisfies H_r .

If F is $\mathsf{Exp}(\theta)$ and \overline{F} is $\mathsf{Exp}(\theta/b)$,the acceptance probability is

$$\mathbb{P}\left(\mathsf{Acceptance}\right) = \mathbb{P}\left(\mathsf{max}\{X_1, \dots, X_{n-r}\} < \mathsf{min}\{X_{n-r+1}, \dots, X_n\}\right)$$
$$= rbB(rb, n-r+1),$$

where B(r, s) is the complete beta function.

Acceptance Probability for Various Parameters

Discordancy Test Statistics for Exponential H_r

$$D_r(\mathbf{X}) = \frac{X_{(n)} - X_{(n-r)}}{X_{(n)}},$$

$$R_r(\mathbf{X}) = \frac{X_{(n-r)} - X_{(1)}}{X_{(n)} - X_{(n-r+1)}},$$

$$Z_r(\mathbf{X}) = \frac{X_{(n-r)} - X_{(1)}}{\sum_{j=n-r+1}^{n} X_{(j)} - X_{(1)}}.$$

Discordancy Test Statistics for Pareto H_r

$$\begin{split} \tilde{D}_r(\mathbf{Y}) &= \frac{\ln\left(Y_{(n)}\right) - \ln\left(Y_{(n-r)}\right)}{\ln\left(Y_{(n)}\right)}, \\ \tilde{R}_r(\mathbf{Y}) &= \frac{\ln\left(Y_{(n-r)}\right) - \ln\left(X_{(1)}\right)}{\ln\left(Y_{(n)}\right) - \ln\left(Y_{(n-r+1)}\right)}, \\ \tilde{Z}_r(\mathbf{Y}) &= \frac{\ln\left(Y_{(n-r)}\right) - \ln\left(Y_{(1)}\right)}{\sum_{i=n-r+1}^{n} \ln\left(Y_{(i)}\right) - \ln\left(Y_{(1)}\right)}. \end{split}$$

Distributional Result

Theorem

Let X_1, X_2, \ldots, X_n be continuous random variables with density f_1, \ldots, f_n , respectively, where f_i has the same support (a,b) with $-\infty \leqslant a < b \leqslant \infty$. Let g_1, \ldots, g_n be a collection of strictly increasing differentiable functions with domain (a,b) and range $(c,d) \subseteq \mathbb{R}$. Define random variable $Y_i = g_i(X_{(i)})$, for $i=1,\ldots,n$. Then, the joint pdf of Y_1,\ldots,Y_n is given by

$$f_{Y_1,\ldots,Y_n}(y_1,\ldots,y_n) = \begin{cases} n! \prod_{i=1}^n \left| \frac{\mathrm{d}g_i^{-1}}{\mathrm{d}y} \right| f_i(y_i), & c < y_1 < y_2 < \cdots < y_n < d \\ 0, & elsewhere. \end{cases}$$

Corollary

Let $X_1, \ldots X_n$ and E_1, \ldots, E_n be independent random variables with $X_k \sim \operatorname{Pareto}(\alpha_k, \theta_k)$ and $E_k \sim \operatorname{Exp}(\alpha_k)$ for $k = 1, \ldots, n$. Let $Y_k = E_{(k)}$ and $U_k = \ln(X_{(k)}/\theta_k)$, for $k = 1, \ldots, n$. Then the random vector $\mathbf{U} = (U_1, \ldots, U_n)$ has the same distribution as $\mathbf{Y} = (Y_1, \ldots, Y_n)$.

Remark

The conclusion holds under H_r .

Equivalence of Tests

- * $D_r(\mathbf{Y}) \stackrel{\mathrm{D}}{=} \tilde{D}_r(\mathbf{X}), \ Z_r(\mathbf{Y}) \stackrel{\mathrm{D}}{=} \tilde{Z}_r(\mathbf{X}) \ \text{and} \ R_r(\mathbf{Y}) \stackrel{\mathrm{D}}{=} \tilde{R}_r(\mathbf{X}) \ \text{under} \ H_r.$
- * Statistics tests based on D_r , R_r and Z_r would have the same power and critical values as \tilde{D}_r , \tilde{R}_r and \tilde{Z}_r , respectively.
- * statistics used for testing slippage alternative hypothesis of exponential samples can be easily adapted to test for the Pareto case

Power of Tests

Real Dataset Application

- * Haberman's survival dataset
- * Mean of parameter of two distribution: $\theta_1 = 2.80, \theta_2 = 7.46,$
- * Sample size: $N_1 = 85, N_2 = 244$
- * Estimated power:

$$\gamma(\hat{D}_r) = 0.475, \gamma(\hat{Z}_r) = 0.455, \gamma(\hat{R}_r) = 0.28.$$

