Moving Beyond the Basics

Matthew Renze
SOFTWARE CONSULTANT

@matthewrenze www.matthewrenze.com

Overview

Advanced Data Visualization

Best Practices

Demo

Alternatives to R

Course Summary

Qualitative Quantitative Number of Variables Univariate Univariate Analysis **Analysis** Qual. & Quant. Quantitative Qualitative **Bivariate Bivariate** Bivariate Analysis Analysis Analysis

Type of Variable(s)

Qualitative Quantitative Univariate Univariate **Analysis Analysis** Number of Variables Qualitative Qual. & Quant. Quantitative Bivariate Bivariate **Bivariate Analysis Analysis Analysis** Quantitative Qualitative 2 Qual. 1 Qual. **Trivariate** 1 Quant. 2 Quant. **Trivariate Analysis** Analysis Analysis **Analysis** n-variable Multivariate **Analysis**

Type of Variable(s)

Spatial Analysis

Hierarchical Analysis

Graph Analysis

Textual Analysis

Other Types

Qualitative Quantitative Univariate Univariate **Analysis Analysis** Number of Variables Qualitative Qual. & Quant. Quantitative Bivariate Bivariate **Bivariate Analysis Analysis Analysis** Quantitative Qualitative 2 Qual. 1 Qual. **Trivariate** 1 Quant. 2 Quant. **Trivariate Analysis** Analysis Analysis **Analysis** n-variable Multivariate **Analysis**

Type of Variable(s)

Spatial Analysis

Hierarchical Analysis

Graph Analysis

Textual Analysis

Other Types

Start with a Question

How many movies were released in each rating category from 2000 to 2015?

1000 1200 Number of Movies 009 400 200 РG G R PG-13 Rating

Movies by Rating Category

Use the Right Tool for the Job

Movies by Rating Category

Movies by Rating Category

Know Your Audience

Create Clean Data Visualizations

Avoid Information Distortions

Create Bar Chart with Defaults

Add Context

Clean up the Data Visualization

Avoid Information Distortions

Export the Data Visualization

Export Using RStudio

Export using ggsave

Viewing Help Files

Alternatives to R for Data Visualization


```
∇ ∪ Quick Launch (Ctrl+Q)

d3.html - Microsoft Visual Studio
    <u>Edit View Project D</u>ebug Tea<u>m T</u>ools Ar<u>c</u>hitecture Te<u>s</u>t A<u>n</u>alyze <u>W</u>indow <u>H</u>elp
                                                                                                                     Matthew Renze 🔻 M
  G - O | 松 - 🈩 💾 🛂 ヴ - C - | - | → Attach... - | 戸 👙 ե 項 🖫 🧏 🦷 🥫 🧸
d3.html → ×
                var xScale = d3.scale.ordinal()
                    .domain(dataset.map(function (d) { return d[0] }))
                    .rangeRoundBands([leftMargin, width - rightMargin]);
                var yScale = d3.scale.linear()
                    .domain([yMin, yMax])
                    .range([height - bottomMargin, topMargin]);
                var svg = d3
                    .select("body")
                    .append("svg")
                    .attr("width", width)
                    .attr("height", height);
                var bars = svg
                    .selectAll("rect")
                     .data(dataset)
                    .enter()
                    .append("rect")
                    .attr("x", function (d) {
                        return xScale(d[0]) + barGap / 2;
                    .attr("y", function (d) {
                        return yScale(d[1]);
                    })
                    .attr("width", function (d, i) {
                        return ((width - leftMargin - rightMargin) / dataset.length) - barGap;
                    })
                    .attr("height", function (d) {
                        return height - bottomMargin - yScale(d[1]);
                    })
110 %
Output
```


Where to Go Next

R website: http://www.cran.r-project.org

R Studio: http://www.rstudio.com

Pluralsight: http://www.pluralsight.com

Coursera: https://www.coursera.org

Flowing Data: http://flowingdata.com

Matthew Renze: http://www.matthewrenze.com

Feedback

Rate the course
Ask questions
Leave comments
Send a tweet

@matthewrenze

Course Summary

Introduction

Visualizing One Categorical Variable

Visualizing One Numeric Variable

Visualizing Two Categorical Variables

Visualizing Two Numeric Variables

Visualizing Both a Categorical and a Numeric Variable

Moving Beyond the Basics

Special Thanks

Basia Fusińska Anne Herlache Sarah Weno

Thank You!

