Problemi di decisione

I problemi di decisione sono problemi che hanno come soluzione una risposta SI o NO.

Esempi:

▶ PRIMO: Dato un numero x, x è primo?

Problemi di decisione

I problemi di decisione sono problemi che hanno come soluzione una risposta SI o NO.

Esempi:

- ▶ PRIMO: Dato un numero x, x è primo?
- ► CONNESSO: Dato un grafo G, G è connesso?

Problemi di decisione

I problemi di decisione sono problemi che hanno come soluzione una risposta SI o NO.

Esempi:

- ▶ PRIMO: Dato un numero x, x è primo?
- ► CONNESSO: Dato un grafo *G*, *G* è connesso?
- ▶ ACCETTAZIONE DI UN DFA: Dato un DFA \mathcal{B} e una stringa w, l'automa \mathcal{B} accetta w?

Rappresenteremo i problemi di decisione mediante linguaggi.

Ricorda: l'input per una MdT è sempre una stringa. Se vogliamo dare in input altri oggetti, questi devono essere codificati come stringhe.

Rappresenteremo i problemi di decisione mediante linguaggi.

Es.: il linguaggio che rappresenta il problema "PRIMO" è

$$P = \{\langle x \rangle \mid x \text{ è un numero primo}\}$$

dove $\langle x \rangle$ denota una "ragionevole" codifica di x mediante una stringa su un alfabeto Σ .

Rappresenteremo i problemi di decisione mediante linguaggi.

Es.: il linguaggio che rappresenta il problema "PRIMO" è

$$P = \{ \langle x \rangle \mid x \text{ è un numero primo} \}$$

dove $\langle x \rangle$ denota una "ragionevole" codifica di x mediante una stringa su un alfabeto Σ .

Ad esempio possiamo prendere $\Sigma = \{0,1\}$ e $\langle x \rangle$ come la codifica binaria di x.

NOTA che $\langle x \rangle \in P$ se e solo se PRIMO ha risposta si su input x

Es.: il linguaggio che rappresenta il problema "CONNESSO" è

$$A = \{\langle G \rangle \mid G \text{ è un grafo connesso}\}$$

dove $\langle G \rangle$ denota una "ragionevole" codifica di G mediante una stringa su un alfabeto Σ .

Es.: il linguaggio che rappresenta il problema "CONNESSO" è

$$A = \{\langle G \rangle \mid G \text{ è un grafo connesso}\}$$

dove $\langle G \rangle$ denota una "ragionevole" codifica di G mediante una stringa su un alfabeto Σ .

Possiamo prendere

$$\Sigma = \{0,1,\ldots,9,(,),,\} \text{ e}$$

$$\langle G \rangle = (\{1,2,3\},\{(1,2),(2,3),(3,1)\})$$

oppure possiamo prendere

$$\Sigma = \{0, 1, (,), \#\}$$
 e G può essere codificato dalla stringa

Es. Grafi Connessi

Sia $A = \{\langle G \rangle \mid G \text{ è un grafo connesso} \}$ un linguaggio di stringhe che rappresentano grafi connessi (non orientati) $\langle G \rangle \in A$ se e solo se G è istanza SI per CONNESSO Risolvere CONNESSO equivale a decidere il linguaggio A

In questo modo esprimiamo un problema computazionale come un problema di riconoscimento di un linguaggio (insieme delle codifiche di istanze SI per il problema).