Machine Learning course 2023. Final Project 11.

Contrastive Learning for Event Sequences with Self-Supervision on multiple domains

Replication study

Denis Grankin

Ekaterina Andreichuk

Ivan Apanasevich

Irena Gureeva

Mikhail Konenkov

Motivation

Learning best algorithms for lifestream data embeddings

Extracting embeddings from event sequences is a useful approach that can be used for learning users preferences, advising customers products based on their clickstream data and many other real-world applications.

However, classical methods for analyzing event sequences that are attributed to a person and capture their regular and routine behavior do not capture relationships between single object and its immediate neighborhood very well. Also, it usually requires a labeled data to operate this.

Therefore, new methods for data augmentation and event sequences extraction are needed.

Related work

Event sequence metric learning

Dmitrii Babaev* Ivan Kireev Nikita Ovsov Sberbank AI Lab Sberbank AI Lab Sberbank AI Lab

Mariya Ivanova Gleb Gusev Alexander Tuzhilin Sberbank AI Lab Sberbank AI Lab New York University

The paper on which our replication study is based on.

Metric learning method for producing embeddings of complex event sequences. The main advantage is that almost no pre-processing is needed for complex even streams to get their compact embedding.

Attributed Sequence Embedding

Zhongfang Zhuang, Xiangnan Kong, Elke, Rundensteiner Worcester Polytechnic Institute {zzhuang, xkong, rundenst}@wpi.edu Jihane Zouaoui, Aditya Arora Amadeus IT Group {jihane.zouaoui, aditya.arora}@amadeus.com

Study about extracting data embeddings from attributed sequences.

A Framework For Contrastive Self-Supervised Learning And Designing A New Approach

Technical Report

William Falcon New York University, NY Lightning Labs, NY waf251@nyu.edu Kyunghyun Cho New York University, NY kc119@nyu.edu

Study with analysis of contrastive learning approaches and conceptual framework for Contrastive Learning.

Project main goal

Replicate the methods, proposed in the paper, on different types of event sequence data and compare its results.

- 1. Get familiar with the pytorch-lifestream library
- 2. Run the proposed methods for learning embeddings on two types of data(transactions and clickstream)
- 3. Implement downstream machine learning task on both types of data and compare its results

Contrastive Self-Supervised Learning for Data Embeddings

How we thought it works

How it actually works

Contrastive Self-Supervised Learning for Data Embeddings

Self-Supervised Learning (SSL) is one such methodology that can learn complex patterns from unlabeled data. Contrastive self-supervised learning (CSL) has been recently found successful for semi-supervised learning (SSL).

In CSL, the goal is to generate representations of instances such that similar instances are near each other and far from dissimilar ones. In supervised learning, associative labels determine the similarities among instances.

Different from conventional multidimensional data, the sequential data are not represented as feature vectors of continuous values, but as sequences of categorical items with variable-lengths. Examples of sequential data include click streams of web users, purchase histories of online customers, and DNA sequences of genes.

Sequential data usually requires a careful design of itsembedding before being fed to data mining algorithms. One of the feature learning problems on sequential data is called sequence embedding, where the goal is to transform a sequence into a fixed-length embedding.

CoLES framework

Figure 1: General framework. Phase 1: Self-supervised training. Phase 2.a Self-supervised embeddings as features for supervised model. Phase 2.b: Pre-trained encoder fine-tuning.

Our implementation consists only of **Phase 1** and **Phase 2.a** steps. Also we've implemented **aggregate baseline encoder** and **random feature encoder** on both datasets in order to investigate more data embeddings' extraction methods and to compare the resulting scores of these three methods.

Baseline methods

Random feature encoder has architecture which is similar to CoLES, but it is not pretrained. Therefore, all weights are random.

In aggregate baseline encoder categorical features are decomposed into One-Hot Encoder. Numerical features are decomposed according to the resulting columns. A separate encoder is used to generate features. The encoder interface is the same as that of RNN CoLES. Aggregate baseline encoder doesn't take into account the sequential nature of data, unlike CoLES.

📵 ClosedAI

General pipeline

Tuning

Configuring the model, choosing hyper-parameters, tuning the model and obtaining embeddings

Metrics

Achieve metrics for further comparison

We combine information about each user by implementing ptls library

Preprocessing

Tune CatBoost using embeddings from previous step to predict whether a client has a higher education

Down-stream task

DataFusion 2022 datasets

We have datasets with industrial data of transactions and clickstreams. Due to this data we need to predict whether a client has a higher education.

transactions 19821910 rows

	user_id	mcc_code	currency_rk	transaction_amt	transaction_dttm
0	000932580e	5411	48	-361.07230	2020-08-03 08:05:23
1	000932580e	5499	48	-137.31398	2020-08-05 01:27:40
2	000932580e	5499	48	-138.84981	2020-08-05 03:28:11
3	000932580e	4829	48	-309.47653	2020-08-06 00:36:29
4	000932580e	5411	48	-133.47370	2020-08-09 00:30:13

target 8509 rows

clickstream 126752515 rows

	user_id	cat_id	timestamp	new_uid
0	000143baebad4467a23b98c918ccda19	165	2021-01-30 20:08:12	1873448
1	000143baebad4467a23b98c918ccda19	165	2021-01-31 20:06:29	1873448
2	000143baebad4467a23b98c918ccda19	308	2021-01-31 20:12:00	1873448
3	000143baebad4467a23b98c918ccda19	931	2021-01-31 22:12:00	1873448
4	000143baebad4467a23b98c918ccda19	931	2021-02-01 16:57:00	1873448

	bank	higher_education
0	3755b59782464456bac1aec1a44e0db3	0.0
1	604a550439d644718ea6e1693fbf03dc	0.0
2	542d4776ebe5454fb8ab36f1c276fe0e	1.0
3	ee37fecea44d475ca030cde7ff7d545d	0.0
4	18617a1100f44a99b3a0772341fec3db	0.0

Transactions preprocessing

transactions.csv -> pd.read_csv('transactions.csv') ->

	user_id	event_time	mcc_code	currency_rk	transaction_amt
0	00093	tensor(1596,	tensor(1, 2, 2, 13,	tensor(1, 1,	tensor(-361.0723,
1	0009	tensor(1596,	tensor(1, 10, 26, 26,	tensor(1, 1,	tensor(-44.5269,
2	000b29	tensor(1596,	tensor(3, 21, 1, 3,	tensor(1, 1,	tensor(-334.5844,
3	000cd	tensor(1596,	tensor(74, 1, 1, 3,	tensor(1, 1,	tensor(-1923.6536,
4	000e0d	tensor(1596,	tensor(6, 1, 1, 11,	tensor(1, 1,	tensor(-728.3863,

Clickstreams preprocessing

clickstreams.csv -> pd.read_csv('clickstreams.csv') -> -> PySpark ->

	user_id	cat_id	event_time
0	018d951f	[29, 1, 1, 60, 60, 60, 60, 24, 24, 24, 3, 3, 3	[1611903458, 1612164353,
1	01ef0e6	[4, 2, 2, 3, 23, 3, 3, 23, 23, 3, 3, 3, 3, 3, 3,	[1610973443, 1612144860,
2	0570e0	[12, 8, 11, 36, 36, 36, 12, 12, 31, 1, 7, 1, 3	[1612968600, 1613295720
3	0677be1	[12, 12, 12, 12, 7, 12, 2, 2, 2, 1, 12, 12, 2,	[1622604120, 1622936168,
4	0914be	[1, 1, 9, 9, 9, 31, 33, 1, 9, 9, 9, 31, 9, 9,	[1612744599, 1612756008

Hyper-parameters

Table 1: Hyper-parameters for CoLES training

Model	CoLES	
Embedding size	800	
Loss function	Contrastive loss	
Learning rate	0.001	
Resampling	Sample Slices	
Number of splits	5	
Size of subsequence	25-200	
Encoder	GRU	
Number of epochs	150	

We've tried different parameters on both transactions and clickstream datasets, but the parameters listed in that are the best for models training.

Results

Table 2: Scores on transactions and clickstream datasets with different metrics

	CoLES		Agg baseline	Random encoder
Metrics	Transaction dataset	Clickstream dataset	Transaction dataset	Transaction dataset
F1 score	0.8615	0.8334	0.8522	0.8519
ROC AUC score	0.7583	0.5936	0.5014	0.5047
Precision	0.9605	1	1	1
Accuracy	0.7708	0.7145	0.7427	0.7421

Results

Table 3: ROC-AUC score for different CoLES encoders

Table 4: ROC-AUC score for different CoLES sampling techniques

Metrics	Transaction	Clickstream
GRU	0.7606	0.5978
LSTM	0.7528	0.5766

Metrics	Transaction	Clickstream
SampleSlices	0.7605	0.5978
SplitRandom	0.7493	0.6003
SampleRandom	0.7678	0.5902

Results

- Transaction dataset gives better result than Clickstream dataset
- CoLES performs better than other used models (agg baseline and random encoder)

Embedding dimensionality vs Quality

(ClosedAI

Contribution

Denis Grankin Code

Mikhail Konenkov

Report

Presentaion

Report
Presentaion

Ivan Apanasevich
Code

Ekaterina Andreichuk Code

Conclusion

- Pytorch-lifestream library was implemented for event sequences data extraction and CoLES method was used for embeddings
- Data Fusion 2022 datasets were investigated and prepared for testing
- Downstream tasks were implemented for data embeddings extracted with CoLES, Agg Baseline and Random Encoder
- Results were obtained for different methods and datasets, their performance was compared