第五章

模拟调制系统简介

主要内容

- ■调制基本概念
- 幅度调制基本原理
- 频分复用

5.1 调制基本概念

■调制

用调制信号(基带信号)去控制载波的参数, 使载波参数按照调制信号的规律变化

- 调制目的

- 解决基带信号在信道中传输
- ■解决多路复用传输,提高信道利用率
- 提高抗噪声能力,提高信号传输质量

$A\cos(\omega_c t + \varphi)$

调制分类

载波	正弦调制	模拟调制	幅度调制 (线性调制) 角度调制 (非线性调制)	标准调幅 AM 双边带调制 DSB 单边带调制 SSB 残留边带调制 VSB 调频 FM 调相 PM
调制方		数字调制		振幅键控 ASK 频移键控 FSK 相移键控 PSK, DPSK 其他 QAM, MSK
式	脉冲调制	脉冲模拟调制		脉幅调制 PAM 脉宽调制 PDM 脉位调制 PPM
		脉冲	数字调制	脉码调制 PCM 增量调制 ΔM 差分脉码调制 DPCM

■ 模拟调制系统模型

- 调制信号——来自信源的原始模拟电信号 (基带信号)
- 载波——周期性高频振荡信号,适合在信道中传送,模拟调制载波为正弦信号
- 已调信号——载波经调制后的信号,含有调制信号的全部特征

■ 正弦载波: $s(t) = A\cos(\omega_c t + \varphi_0)$

A — 振幅

 φ_0 — 初始相位]

 ω_c — 角频率 \Rightarrow 载波的三个参量恒定

$$m(t)$$
 。 调制器 $s_m(t)$

$$S_m(t) = A(t)\cos(\omega_c t + \varphi_0)$$
$$= K_m m(t)\cos(\omega_c t + \varphi_0)$$

调幅灵敏度

5.2 幅度调制原理

■ 幅度调制系统原理图

- 假设信道特性理想
- *n*(*t*): 高斯白噪声
- n_i(t): 窄带噪声
- n_o(t): 低通噪声

一. 幅度调制(线性调制)原理

幅度调制:正弦载波的幅度随调制信号的规律变化,频谱实现线性搬移的过程

基带信号: m(t)

正弦载波: $s(t) = A\cos(\omega_c t + \varphi_0)$

设:
$$A = 1$$
, $\varphi_0 = 0$, $m(t) = 0$

已调信号: $s_m(t) = m(t) \cos \omega_c t$

$$S_m(\omega) = \frac{1}{2} \left[M(\omega - \omega_c) + M(\omega + \omega_c) \right]$$

$$m(t) \Leftrightarrow M(\omega)$$

$$s_m(t) = m(t)cos\omega_c t = m(t) \cdot \frac{1}{2} \left(e^{j\omega_c t} + e^{-j\omega_c t} \right)$$

$$\therefore S_m(\omega) = \frac{1}{2} [M(\omega - \omega_c) + M(\omega + \omega_c)]$$

- 或

$$cos\omega_c t \Leftrightarrow \pi[\delta(\omega + \omega_c) + \delta(\omega - \omega_c)]$$

$$m(t)cos\omega_c t \Leftrightarrow \frac{1}{2\pi}M(\omega) * \pi[\delta(\omega + \omega_c) + \delta(\omega - \omega_c)]$$

$$\therefore S_m(\omega) = \frac{1}{2} [M(\omega + \omega_c) + M(\omega - \omega_c)]$$

幅度调制器一般模型

■ 乘法器用于基本调制,发送滤波器h(t)控制产生 不同的调幅波 (AM、DSB、SSB、VSB)

$$s_m(t) = [m(t)\cos\omega_c t] * h(t)$$

$$S_m(\omega) = \frac{1}{2} [M(\omega - \omega_c) + M(\omega + \omega_c)] \cdot H(\omega)$$

■ DSB-SC——双边带抑制载波调制信号

$$S_{DSB}(t) = m(t)\cos\omega_c t$$

$$S_{DSB}(\omega) = \frac{1}{2}[M(\omega + \omega_c) + M(\omega - \omega_c)]$$

■ 设 h(t) 为理想带通滤波器

$$|H_{BPF}(f)| = 1$$
, $B_{BPF} = 2f_H$, $B_{DSB} = 2f_H$

- 特点
 - 频带浪费, 信道利用率低
 - ■节省了载波发射功率
 - 过零调制导致包络失真,接收时不能用包络 检波,只能做相干解调

DSB-SC时域和频域特性

2. 标准振幅调制AM (常规调幅)

■ 设h(t) 为理想带通滤波器, $B_{AM} = 2f_{H}$

$$s_{AM}(t) = [A_0 + m(t)]\cos \omega_c t = A_0 \cos \omega_c t + m(t) \cos \omega_c t$$

$$S_{AM}(\omega) = \pi A_0 [\delta(\omega + \omega_c) + \delta(\omega - \omega_c)] + \frac{1}{2} [M(\omega + \omega_c) + M(\omega - \omega_c)]$$

■调制效率

$$\eta_{AM} = \frac{边带功率}{平均功率} = \frac{P_s}{P_c + P_s}$$

 P_c 为载波功率, P_s 为边带功率

AM信号的平均功率为:

$$P_{AM} = \overline{S_{AM}^2(t)} = \frac{A_0^2}{2} + \frac{m^2(t)}{2} = P_c + P_s$$

 $A_0 = |m(t)|_{\text{max}}$, 称为满调制, 效率最高

m(t)与载波相互独立

$$\overline{m(t)} = 0$$

$$P_{AM} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} S_m^2(t) dt = \overline{S_m^2(t)}$$
$$= \overline{[A_0 + m(t)]^2 cos^2 \omega_c t}$$

$$=\overline{A_0^2cos^2\omega_ct+m^2(t)cos^2\omega_ct+2A_0m(t)cos^2\omega_ct}$$

$$= \frac{A_0^2}{2}(1 + \cos 2\omega_c t) + \frac{m^2(t)}{2}(1 + \cos 2\omega_c t) + A_0 m(t)(1 + \cos 2\omega_c t)$$

$$= \frac{A_0^2}{2} + \frac{\overline{m^2(t)}}{2} = P_c + P_s \qquad \qquad \eta_{AM} = \frac{P_s}{P_c + P_s} = \frac{\overline{m^2(t)}}{A_0^2 + \overline{m^2(t)}}$$

• 例: m(t)为单频正弦信号, 求满调制时 AM信号的调制效率?

设
$$m(t) = A_m \cos \omega_m t$$
, $s(t) = \cos \omega_c t$ $s_{AM}(t) = [A_0 + m(t)] \cos \omega_c t$ 满调制时, $A_0 = |A_m|$

$$\eta_{AM} = \frac{1}{3}$$

3. 单边带调制SSB

- 双边带信号两个边带中的任意一个都包含了调制信号频谱M(ω)的所有频谱成分,因此仅传输其中一个边带即可。这样节省一半传输频带,节省发送功率,这种方式称为单边带调制
- ■产生SSB信号的常用方法有两种:滤波法和相移法

■边带滤波法

- H(ω)为低通/带通滤波器时,提取下边带
- H(ω)为高通/带通滤波器时,提取上边带

(b) 上边带滤波器特性和信号频谱

(c) 下边带滤波器特性和信号频谱

二.调幅信号的解调

- 相干解调:适用于所有类型的幅度调制系统,相干载波要与调制载波同步
- 包络检波:适用于已调信号包络与调制信号的形状完全相同的情况下的解调, 结构简单,用于AM解调

■ 相干解调(同步检测)

- 适用于所有幅度调制方式
- 不考虑噪声影响,信号无失真传输

■ 相干解调成立条件: 同频 $\omega_L = \omega_c$ 同相 $\Delta \varphi = 0$

■ 假设本地载波 $\cos(\omega_L t + \Delta \varphi)$ $s_m(t) = m(t)\cos\omega_c t$

$$s_p(t) = s_m(t)\cos(\omega_L t + \Delta \varphi) = m(t)\cos\omega_c t \cdot \cos(\omega_L t + \Delta \varphi)$$
$$= \frac{1}{2}m(t)\{\cos[(\omega_c + \omega_L)t + \Delta \varphi] + \cos[(\omega_c - \omega_L)t - \Delta \varphi]\}$$

LPF:
$$m_o(t) = \frac{1}{2}m(t)\cos[(\omega_c - \omega_L)t - \Delta\varphi]$$

若 $\omega_c - \omega_L \neq 0$,则存在低频调制

若 $\omega_c = \omega_L$,则: $m_o(t) = \frac{1}{2}m(t)\cos\Delta\varphi$,有衰减

故: 当 $\omega_c = \omega_L$, $\Delta \varphi = 0$, 时, $m_o(t) = \frac{1}{2}m(t)$

■ DSB相干解调

$$s_m(t) = m(t)\cos\omega_c t$$

$$s_p(t) = s_m(t)\cos\omega_c t = m(t)\cos^2\omega_c t$$

$$= \frac{1}{2}m(t) + \frac{1}{2}m(t)\cos 2\omega_c t$$

$$S_{p}(\omega) = \frac{1}{2}M(\omega) + \frac{1}{4}[M(\omega + 2\omega_{c}) + M(\omega - 2\omega_{c})]$$

$$m_o(t) = \frac{1}{2}m(t)$$

AM相干解调

$$\frac{\cos \omega_c t}{m_o(t)} = \frac{1}{2} m(t)$$

SSB相干解调

$$m_o(t) = \frac{1}{4}m(t)$$

■ 包络检波(非相干解调)

■ 适用条件: 已调信号包络与调制信号相同时, AM信号解调通常的方法, 且要求 $A_0 \ge |m(t)|_{max}$

5.3 频分复用及应用

频分复用(FDM)的目的是同时传输多路信号,分占不同频段,提高信道利用率

解妥用

典型应用

- 多路载波电话系统
 - 采用SSB调制, 频分复用技术来节省传输频带
 - 每路电话信号限带300~3400Hz(f_m =3.1KHz),SSB调制后,为便于接收,另加900Hz保护频带(f_g =0.9KHz),因此每路载波电话取4KHz作为标称带宽
 - 各路载频选择满足: $f_{C_{i+1}} = f_{C_i} + (f_m + f_g)$
 - lackbreak N路复用后总频带为: $B_N = N(f_m + f_g)$

■ 大容量载波电话系统多级调制

分群等级	容量(路数)	带宽KHz	基本频带KHz
基群	12	48	60~108
超群	$5 \times 12 = 60$	240	312~552
基本主群	$5 \times 60 = 300$	1200	812~2044
基本超主群	$3 \times 300 = 900$	3600	8516~12388
12MHz系统	$3 \times 900 = 2700$	10.8MHz	

本章小结

- 调制的基本概念和数学本质
- 调幅信号产生和接收原理
- 调制效率的概念
- 频分复用的概念

作业

- 阅读教材第五章5.1和5.5的内容
- 第五章习题
 - 1 (提示: $m = A_m/A_0 = 60\%$)
 - 4 (不写单边带信号表达式, 只画出频谱图)
- ▶补充题
 - *m*(*t*)为单频正弦信号,求满调制时AM信号的调制效率。