

A Framework for Compositional Model Checking

Yu-Yang Lin Nikos Tzevelekos

Model Checking

Model checking: verification technique where a model of a system is exhaustively and automatically checked against some specification

Some **limitations** of model checking:

1) State Explosion Problem

Solution 1: Bounded Model Checking; monolithic, however.

Solution 2: *Game Semantics* allows compositional verification to individually check components that do fit in memory

2) **Environment Problem:** external components (e.g. libraries, modules, system calls, remote procedure calls) typically have no model since code might not be available

Solution: *Game Semantics* models the interaction between a program and its environment as a *sequence of moves* (trace)

Why open code matters

```
#in The DAO
def withdraw(user,m):
   if funds[user] >= m:
        user.send(m)
      funds[user] -= m
      assert(funds[user]>=0)
```

The DAO is a *Decentralized Autonomous Organization* (DAO) in the Ethereum platform

DAOs are a set of *smart contracts* (scripts) in the blockchain

The DAO had a bug, in their smart contract, analogous to the Python code above

Why open code matters

```
#in The DAO
def withdraw(user,m):
    if funds[user] >= m:
        user.send(m)
        funds[user] -= m
        assert(funds[user]>=0)
#in the attacker
def send(m):
    wallet.add(m)
    withdraw(self,1)
```

Recursive call drained The DAO for over 3.6 million ether

Price of ether dropped from \$20 to \$13

The Ethereum network was **hard-forked** to undo the "attack"

Members reject the hard-fork, claiming it violates the principles of a decentralized network, and continue on the original blockchain, now called **Ethereum Classic**

Our Approach

Combine Bounded Model Checking with Game Semantics to model check open code with free variables of arbitrary order

Focus on higher-order functions and higher-order store

Use the Library(L)-Client(C) paradigm

Goal 1: model check libraries independent of a client

Goal 2: compose the semantics of a library and a client to obtain the semantics of the whole program

A Syntax for Libraries

Terms are a lambda-calculus with higher-order store

$$M \coloneqq \operatorname{assert}(M) \mid x \mid m \mid i \mid () \mid r \coloneqq M \mid !r \mid M \oplus M \mid \langle M, M \rangle$$

$$\mid \pi_1 M \mid \pi_2 M \mid xM \mid \text{if } M \text{ then } M \text{ else } M$$

$$\mid \operatorname{let} x = M \text{ in } M \mid \operatorname{letrec} x = \lambda x.M \text{ in } M \mid \lambda x.M$$

$$\frac{M: \mathtt{int}}{\mathtt{assert}(M): \mathtt{unit}} \quad \frac{x \in \mathtt{Vars}_{\theta}}{i: \mathtt{int}} \quad \frac{x \in \mathtt{Vars}_{\theta}}{x: \theta} \quad \frac{m \in \mathtt{Meths}_{\theta, \theta'}}{m: \theta \to \theta'}$$

$$\frac{M: \texttt{int} \quad M_0, M_1: \theta}{\texttt{if} \quad M \; \texttt{then} \; M_1 \; \texttt{else} \; M_0: \theta} \quad \frac{r \in \texttt{Refs}_{\theta}}{!r: \theta} \quad \frac{r \in \texttt{Refs}_{\theta} \quad M: \theta}{r:= M: \texttt{unit}} \quad \frac{M': \theta \to \theta' \quad M: \theta}{M' \, M: \theta'}$$

Libraries consist of a sequence of *method declarations*

 may themselves depend on unknown/abstract methods provided by the environment

Bounded Operational Semantics

Configurations of the form (M,R,S,k)

Bound k on nested method application

M: term to evaluate

R: method repository

S: store

k: bound

Example rules:

$$(E[assert(i)], R, S, k) \rightarrow (E[()], R, S, k) \quad (i \neq 0)$$
 $(E[!r], R, S, k) \rightarrow (E[S(r)], R, S, k)$
 $(E[if 0 then $M_1 else M_0], R, S, k) \rightarrow (E[M_0], R, S, k)$
 $(E[if i then $M_1 else M_0], R, S, k) \rightarrow (E[M_1], R, S, k) \quad (i \neq 0)$$$

$$(E[mv], R, S, k) \to (E[(M\{v/x\})], R, S, k - 1) \quad \text{where } R(m) = \lambda x.M$$

$$(E[(v)], R, S, k) \to (E[v], R, S, k + 1)$$

$$E ::= \bullet \mid \mathtt{assert}(E) \mid r := E \mid E \oplus M \mid v \oplus E \mid \langle E, M \rangle \mid \langle v, E \rangle \mid \pi_j E \mid mE \mid \mathsf{let} \ x = E \ \mathsf{in} \ M \mid \mathsf{if} \ E \ \mathsf{then} \ M \ \mathsf{else} \ M \mid (\!|E|\!|)$$

Bounded Games

We present game semantics in operational form

• i.e. a trace semantics for open terms

Traces: sequences of moves of the form call(m,v)/ret(m,v)

The semantics is **bounded** for both players:

- For P we bound nested method calls with bound k
- For O we bound *chattering*, which is when O keeps playing at the same *level* of the game, with bound l

$$(\mathcal{E}, M, R, \mathcal{P}, \mathcal{A}, S, k, -)$$
 $(\mathcal{E}, -, R, \mathcal{P}, \mathcal{A}, S, k, l)$

P-configuration

O-configuration

M,R,S,k as before, ${\cal E}$ is a call stack, ${\cal P}$ and ${\cal A}$ are the method names of ${\cal P}$ and ${\cal O}$

Back to The DAO Attack

Consider the following library:

```
public withdraw;
abstract send;
funds := 50;
withdraw = λm.
  if !funds >= m
  then send(m);
    funds := !funds - m;
    assert(!funds >= 0)
  else skip
```

where A;B is syntax sugar for let = A in B

We start from an opponent configuration (with k,l=2):

```
C_0=(2,\text{-},R,\{\textit{withdraw}\},\{\textit{send}\},\{(\textit{funds}\text{:=}50)\},2,2)_{_0} where R(\textit{withdraw})=\lambda m. ... and dom(R)=\{\textit{withdraw}\}
```

Back to The DAO Attack

```
C_0 \xrightarrow{withdraw(42)?} (1 :: withdraw :: 2, withdraw(42), S, 2, -)_p
                                                                                public withdraw:
                                                                                 abstract send:
    \rightarrow^* (1 :: withdraw :: 2, E[send(42)], S, 1, -)_p
                                                                                funds := 50:
    \xrightarrow{send(42)?} (send :: E :: \dots, -, S, 1, 1)_o
                                                                                withdraw = \lambda m.
                                                                                  if !funds >= m
                                                                                  then send(m);
     \xrightarrow{withdraw(42)?} (0::withdraw::...,withdraw(42),S,1,-)_p
                                                                                         funds := !funds - m;
                                                                                         assert(!funds >= 0)
    \rightarrow^* (0 :: withdraw :: \dots, E'[send(42)], S, 0, -)_p
                                                                                  else skip
    \xrightarrow{send(42)?} (send :: E' :: \dots, -, S, 0, 0)_o
     \xrightarrow{send(())!} (0 :: withdraw :: \dots, E'[()], S, 0, -)_p
    \rightarrow^* (0 :: withdraw :: ..., (), S[funds \mapsto 8], 0, -)_n
    \xrightarrow{withdraw(())!} (send :: E :: ..., -, S[funds \mapsto 8], 0, 0)_o
     \xrightarrow{send(())!} (1 :: withdraw :: ..., E[()], R, \mathcal{P}, \mathcal{A}, S[funds \mapsto 8], 1, -)_p
     \rightarrow^* (1 :: withdraw :: \dots, E[assert(-34 \ge 0)], S[funds \mapsto -34], 1, -)_p
```

C/L-Compositionality

Intuitively: For any client (C) that imports library (L), the semantics of the linked program can be obtained by composing the semantics of L and C

This requires a correspondence between *semantic composition* and *syntactic composition* for any terminating configuration

Formally:

For any library L and compatible client C:

- there exists a bound k such that L; C with k terminates with χ , iff
- there exist traces $\tau \in \llbracket L \rrbracket_{kl,ll}$ and $\tau^{\perp} \in \llbracket C \rrbracket_{k2,l2}$, such that $\llbracket L \rrbracket_{kl,ll}$ terminates with χ by playing the moves in τ

where χ is a terminal configuration holding a term v or assert(0).

Lemma A.1. Given $\rho \times \rho'$ where ρ is an L-configuration and ρ' is a C-configuration, it is the case that $(\rho \otimes \rho') \sim (\rho \wedge \rho')$.

From Concrete to Symbolic

Model checking: we place our semantics in a symbolic setting **Two approaches** considered for Bounded Model Checking:

- CBMC approach: translating all paths in the program into a single SAT formula with joins
- Bounded Symbolic Execution: symbolically explore every possible path up to a given depth, keeping track of a path condition formula for each path explored

For our semantics, symbolic execution is more fitting

Symbolic Execution

Add symbolic environment and path condition, and check for reachability of keyword fail

Symbolic branching on assertions:

$$(E[\texttt{assert}(0)], R, \sigma, pc, k) \xrightarrow{sym} (\texttt{fail}, \sigma, pc)$$

$$(E[\texttt{assert}(x)], R, \sigma, pc, k) \xrightarrow{sym} (\texttt{fail}, \sigma, pc \land (\sigma(x) = 0))$$

$$(E[\texttt{assert}(i)], R, \sigma, pc, k) \xrightarrow{sym} (E[()], R, \sigma, pc, k) \text{ where } i \neq 0$$

$$(E[\texttt{assert}(x)], R, \sigma, pc, k) \xrightarrow{sym} (E[()], R, \sigma, pc \land (\sigma(x) \neq 0), k)$$

Updating the symbolic environment:

$$(E[!r], R, \sigma, pc, k) \xrightarrow{sym} (E[\sigma(r)], R, \sigma, pc, k) \quad \text{where } x \text{ is fresh}$$

$$(E[r := v], R, \sigma, pc, k) \xrightarrow{sym} (E[()], R, \sigma[r \mapsto \sigma(v)], pc, k)$$

Symbolic branching on conditionals:

$$(E[\text{if } 0 \text{ then } M_1 \text{ else } M_0], R, \sigma, pc, k) \xrightarrow{sym} (E[M_0], R, \sigma, pc, k)$$

$$(E[\text{if } i \text{ then } M_1 \text{ else } M_0], R, \sigma, pc, k) \xrightarrow{sym} (E[M_1], R, \sigma, pc, k) \text{ where } i \neq 0$$

$$(E[\text{if } x \text{ then } M_1 \text{ else } M_0], R, \sigma, pc, k) \xrightarrow{sym} (E[M_0], R, \sigma, pc \land (\sigma(x) \neq 0), k)$$

$$(E[\text{if } x \text{ then } M_1 \text{ else } M_0], R, \sigma, pc, k) \xrightarrow{sym} (E[M_1], R, \sigma, pc \land (\sigma(x) \neq 0), k)$$

Symbolic Games

Symbolic games: games where moves involve symbolic values, and a symbolic environment and path condition are used to model each path

Obtain symbolic games by:

- Extending game configurations with a symbolic environment (σ) and a path condition (pc)
- Transforming concrete moves into symbolic moves by allowing players to play symbolic values (free variables)
- Using symbolic execution as internal moves

Results in configurations:

$$(\mathcal{E}, M, R, \mathcal{P}, \mathcal{A}, \sigma, pc, k, -)_p$$
 $(\mathcal{E}, -, R, \mathcal{P}, \mathcal{A}, \sigma, pc, k, l)_o$

p-configuration

o-configuration

o-configuration

Symbolic DAO Attack

 $\xrightarrow{withdraw(x)?}$ $(\dots, withdraw(x), \{(funds := 50)\}, \top, 2, -)_p$ C_0 $\rightarrow^* (..., send(x), \{(funds := 50)\}, (x \le 50), 1, -)_p$ $\xrightarrow{send(x)?}$ (..., -, {(funds := 50)}, (x \le 50), 1, 1)_o $\xrightarrow{withdraw(y)?}$ $(\dots, withdraw(y), \{(funds := 50)\}, (x \le 50), 1, -)_p$ $\rightarrow^* (..., send(y), \{(funds := 50 - y)\}, (x < 50) \land (y \le 50), 0, -)_p$ $\xrightarrow{send(y)?}$ $(..., -, \{(funds := 50 - y)\}, (x \le 50) \land (y \le 50), 0, 0)_o$ $\xrightarrow{send(())!} (\dots, \{(funds := 50 - y - x)\}, (x \le 50) \land (y \le 50), 1, 0)_p$ $\rightarrow^* (..., assert(!funds >= 0), \{(funds := 50 - y - x)\}, (x \le 50) \land (y \le 50), 1, 0)_p$ \rightarrow (fail, $(x \le 50) \land (y \le 50) \land \neg (50 - y - x \ge 0)$) $pc = (x \le 50) \land (y \le 50) \land \neg (50 - y - x \ge 0)$ $\{(x \mapsto 1), (y \mapsto 50)\} \models (1 \le 50) \land (50 \le 50) \land \neg(-1 \ge 0)$

Soundness and Correctness

Sound Errors: Model Checking a library will find an assertion violation if and only if the error is reachable by executing the counter example on the linked library-client system

i.e. produces no false positives

Formally:

(I) Soundness: For any L the following are equivalent:

1.
$$L \xrightarrow{\tau}_G (\chi, \sigma, pc)$$
 and $\exists \alpha. \alpha \vDash pc \land \sigma^{\circ}$

2.
$$L \xrightarrow{\tau\{\alpha\}} \chi\{\alpha\}$$

where $\chi' \neq \text{nil}$ and $\chi\{\alpha\}$ is the equivalent concrete configuration.

(II) Correctness: For any L the following are equivalent:

- 1. $L \rightarrow \chi$ with bounds k, l,

where χ is a terminal configuration holding a term v or assert(0).

(III) Sound Errors (I.1) \leftrightarrow (II.2): corollary from (I) and (II)

Further Directions

Extend properties checked

- Currently limited reachability, i.e. safety
- Liveness and other temporal properties

Specification-driven BMC

 Instead of full symbolic execution for clients, we drive path exploration to greatly reduce the number of paths explored

General compositionality

- Currently limited to library and client that close each other
- Library-library composition would allow compositionality at the level of functions

Thank You

Implementing this...

To model check a library *L*:

- 1) $[\![L]\!]^{k,l}$ produces a transition system starting from an opponent configuration with final configurations of the form (χ, τ, σ, pc) , where χ can be a value (v), an assertion violation (fail) or a bound exception (nil)
- 2) For each final configuration of the form $(fail, \tau, \sigma, pc)$, find a model:

$$M \vdash (\sigma^o \land pc)$$

3) If a model is found, τ contains a counterexample in the form of a trace of moves that causes the library to reach an assertion violation

 $[\![L]\!]^{k,l}$ performs form of bounded symbolic execution for programs with higher-order store and free variables of arbitrary order.

Model Checking Clients and Linked Libraries: We write $[\![C]\!]^{k,l,m\theta}$ for the transition system starting from a proponent configuration holding a term M_{ϱ} . We can then compose the separate library and client semantics to obtain the semantics of the linked program (L;C).