Math 29: Computability Theory

Spring 2024

Student: Amittai Siavava

PSET
$$6 - 05/17/2024$$

Prof. Miller

Define a set X such that X computes $\emptyset^{(n)}$ for all n uniformly, i.e. there is an e such that

$$\Phi_e^X(n,k) = \chi_{\varnothing^{(n)}}(k)$$

Problem 1.

for all n, k. Justify your answer.

We define X to be the set of all possible turing jumps of \varnothing :

$$X = \left\{ \langle n, k \rangle \mid n \in \omega, k \in \varnothing^{(n)} \right\}.$$

We claim that X computes $\emptyset^{(n)}$ for all n. Define

$$\Phi_e^X(n,k) = \begin{cases} 1 & \text{if } \langle n,k \rangle \in X \\ 0 & \text{otherwise.} \end{cases}$$

For all n, k;

- 1. If $k \in \emptyset^{(n)}$, then $\langle n, k \rangle \in X$, so $\Phi_e^X(n, k) = 1 = \chi_{\emptyset^{(n)}}(k)$.
- **2.** If $k \notin \emptyset^{(n)}$, then $\langle n, k \rangle \notin X$, so $\Phi_e^X(n, k) = 0 = \chi_{\emptyset^{(n)}}(k)$.
- **3.** Therefore, $\chi_{\varnothing^{(n)}}(k)$ is X-computable.

Problem 2.

Prove that, for all n and $f:\omega\to\omega$, there is a computable function $g:\omega^{n+1}\to\omega$ such that

$$f(x) = \lim_{s_0 \to \inf} \lim_{s_1 \to \inf} \cdots \lim_{s_{n-1} \to \inf} g(x, s_0, s_1, \dots, s_{n-1})$$

if and only if $f \leq_T \emptyset^{(n)}$.

We will use the *limit lemma*, which states that a function $f: \omega \to \omega$ is limit computable if and only if $f \leq_T \varnothing'$.

Suppose $f(x) = \lim_{s_0 \to \inf} \lim_{s_1 \to \inf} \cdots \lim_{s_{n-1} \to \inf} g(x, s_0, s_1, \dots, s_{n-1}).$ First, we see that f is Σ_{n+1}^0 :

$$\exists s_{0} \forall (s_{0'} > s_{0})$$

$$\exists s_{1} \forall (s_{1'} > s_{1})$$

$$\vdots$$

$$\exists s_{n-1} \forall (s_{n-1'} > s_{n-1})$$

$$g(x, s_{0'}, s_{1'}, \dots, s_{(n-1)'}) = f(x).$$

Similarly, f is Π_{n+1}^0 :

$$\forall s_0 \exists (s_{0'} > s_0)$$
 $\forall s_1 \exists (s_{1'} > s_1)$
 \vdots
 $\forall s_{n-1} \exists (s_{n-1'} > s_{n-1})$
 $g(x, s_{0'}, s_{1'}, \dots, s_{(n-1)'}) = f(x).$

Thus, f(x) is Δ_{n+1}^0 .

By the limit lemma (Lemma 4), f is computable from \varnothing' if and only if f is Δ_2^0 . Since the limit lemma relativizes, f is computable from $\varnothing^{(n)}$ if and only if f is Δ_{n+1}^0 .

Furthermore, since every computable function is c.e., and every c.e. function is limit computable, f is n-limit computable

Finally, by relativizing Lemma 2. of the limit lemma, f is n-limit computable if and only if $f \leq_T \varnothing^{(n)}$.

Problem 3.

Give an example of a set X such that $X \perp_T \emptyset^{(n)}$ for all n > 1.

Hint: we are only required to perform (priority) constructions computably.

We use a priority construction to define X.

Define the requirements R_e and Q_e as follows:

$$R_e: \chi_X \neq \Phi_e^{\varnothing^{(e)}}$$

Let $X_0 = \emptyset$. At each step s+1, pick $x \notin X_s$. Simulate $\Phi_x^{\emptyset^{(s)}}(x)$. If $\Phi_x^{\emptyset^{(s)}}(x) \downarrow = 0$, then set $X_{s+1} = X_s \cup \{x\}$. Otherwise, repeat this step until such an x is found.

For each n > 1, let x_n be the n-th element that was added to X, then $\Phi_x^{\varnothing^{(n)}}(x_n) \downarrow = 0$, so $\chi_X(x_n) = 1 \neq \Phi_x^{\varnothing^{(n)}}(x_n)$. Thus, $X \perp_T \varnothing^{(n)}$ for all n > 1.

Problem 4.

We say that $X = {}^*Y$ if X and Y agree on all but finitely many numbers. Show that there are sequences of sets $\{A_n\}_{n\in\omega}$ and $\{B_n\}_{n\in\omega}$ such that $A_n = {}^*B_n$ for all n, but $\bigoplus_{n\in\omega} A_n \neq {}^*\bigoplus_{n\in\omega} B_n$.

Let $A_n = \{2n\}$ and $B_n = \{2n+1\}$. Then $A_n = B_n$ for all n, since A_n and B_n are disjoint, but they are each singleton sets, meaning they agree on all elements except for two: 2n and 2n+1.

However, $\bigoplus_{n \in \omega} A_n = \{0, 2, 4, 6, \ldots\}$ and $\bigoplus_{n \in \omega} B_n = \{1, 3, 5, 7, \ldots\}$, so $\bigoplus_{n \in \omega} A_n \neq^* \bigoplus_{n \in \omega} B_n$ since they disagree on infinitely many numbers.

Problem 5.

Show that HW3 Q5 relativizes. That is, show that A is X-computable if and only if A and A^c are both X-ce.

 (\Longrightarrow)

Suppose A is X-computable. Then there is an e such that $\Phi_e^X = \chi_A$. This means that for each n,

$$\Phi_e^X(n) = \begin{cases} 1 & \text{if } n \in A \\ 0 & \text{if } n \not\in A \end{cases} \quad \text{(hence } n \in A^c\text{)}$$

A can be computably enumerated by a turing machine that goes through all $n=1,2,3,\ldots$ and outputs n if $\Phi_e^X(n)=1$.

$\overline{\mathsf{TM}}$ 1: Enumerate A

- 1 for $n = 0, 1, 2, \dots$ do
- $\mathbf{if}\ \Phi_e^X(n) = 1\ \mathbf{then}$
- 3 output n

Similarly, A^c can be computably enumerated by a turing machine that goes through all n = 1, 2, 3, ... and outputs n if $\Phi_e^X(n) = 0$.

TM 2: Enumerate A^c

- 1 for $n = 0, 1, 2, \dots$ do
- $\mathbf{if}\ \Phi_e^X(n) = 0 \ \mathbf{then}$
- 3 output n

Therefore, A and A^c are both X-ce.

(⇐=)

Suppose A and A^c are both X-ce. Then A is the domain of some X-computable function f, and A^c is the domain of some X-computable function g. We can define a function h that computes A as follows:

$$h(n) = \begin{cases} 1 & \text{if } f(n) \text{ is defined} \\ 0 & \text{if } g(n) \text{ is defined} \end{cases}$$

Specifically, let $f = \Phi_i^X$ and $g = \Phi_j^X$.

Then we can define Φ_h^X as follows:

$\overline{\mathsf{TM}}$ 3: Compute A

1 On input n:

2 for $k = 1, 2, 3, \dots$ do

Since both A and A^c are X-ce and $A \cup A^c = \omega$, for any $n \in \omega$, eventually either one of $\Phi_i^X(n)$ or $\Phi_j^X(n)$, simulated for some finite k steps, will halt. Thus, the TM eventually halts and outputs either 1 or 0 for any $n \in \omega$, effectively computing χ_A .

Therefore, A is X-computable.