课程名称: 高等数学下(兰大版) 任课教师: ______

学院: _____ 专业: ____ 年级: _2024_

姓名: _____校园卡号: _____

题 号	 _	三	四	五	六	七	八	总分
分数								
阅卷教师								

温馨提醒:请将所有题的答案写在答题纸指定的位置.

- 一. (每小题5分, 共20分) 填空题.
 - 1. $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{xy+1}-1} = \underline{\hspace{1cm}}.$
 - 2. 函数 z = arctan(xy) 在 (1,1) 点沿方向角 $\alpha = \frac{\pi}{4}$ 的方向导数是 ______.
 - 3. 曲面 $e^z z + xy = 3$ 在点 (2,1,0) 处的切平面方程是 _____.
 - 4. 设函数 z=z(x,y) 是由方程 $z^2-5xz+2y=0$ 所确定的隐函数, 则 $\frac{\partial z}{\partial x}=$
- 二. (每小题5分, 共20分) 选择题.
 - 1. 直线 $L_1: \frac{x-1}{1} = \frac{y-5}{-2} = \frac{z+8}{1}$ 与 $L_2: \begin{cases} x-y=6, \\ 2y+z=3 \end{cases}$ 的夹角为 ()
 - (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$
 - 2. 二元函数 f(x,y) 在点 (x_0,y_0) 处的两个偏导数存在是 f(x,y) 在该点连续的().
 - (A) 既非充分又非必要条件 (B) 充分必要条件
 - (C) 充分而非必要条件
- (D) 必要而非充分条件

- 3. 函数 $z = e^{2x}(x + y^2 + 2y)$, 则点 $(\frac{1}{2}, -1)$ 是该函数的 ().
- (A) 临界点, 但不是极值点 (B) 临界点, 且是极小值点
- (C) 临界点, 且是极大值点 (D) 偏导数不存在的点
- 4. 己知 F(x,y) 具有一阶连续偏导数,且 F(x,y)(ydx+xdy) 为某一函数的全微分,则 ().
- (A) $\frac{\partial F}{\partial x} = \frac{\partial F}{\partial y}$ (B) $y \frac{\partial F}{\partial x} = x \frac{\partial F}{\partial y}$ (C) $-x \frac{\partial F}{\partial x} = y \frac{\partial F}{\partial y}$ (D) $x \frac{\partial F}{\partial x} = y \frac{\partial F}{\partial y}$
- 三. (每小题10分, 共60分) 解答题.
 - 1. 求微分方程 $(y + x^2e^{-x})dx xdy = 0$ 的通解.
 - 2. 求二阶常系数非齐次线性微分方程 $y'' 4y' + 3y = 2e^{2x}$ 的通解.
 - 3. 己知函数 z = f(x, y) 的全微分 dz = 2xdx 2ydy, 并且 f(1, 1) = 2. 求 f(x, y) 在椭圆域 $D = \left\{ (x, y) \mid x^2 + \frac{y^2}{4} \le 1 \right\}$ 上的最大值和最小值.
 - 4. 设 z = f(x+y, x-y, xy), 其中 f 具有二阶连续偏导数, 求 dz 与 $\frac{\partial^2 z}{\partial x \partial y}$
 - 5. 判断函数 $f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2+y^2}}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0) \end{cases}$ 在 (0,0) 点的可导性与可微性.
 - 6. 求曲线 $\begin{cases} x^2 + y^2 + z^2 = 6, \\ x + y + z = 0 \end{cases}$ 在点 (1, -2, 1) 处的切线和法平面方程.