

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DEPARTAMENTO DE MATEMÁTICA

Nome Sobrenome

Métodos Numéricos

SEROPÉDICA 2025

Nome Sobrenome

MÉTODOS NUMÉRICOS

Monografia apresentada à Banca Examinadora da Universidade Federal Rural do Rio de Janeiro, como parte dos requisitos para obtenção do título de Bacharel em Matemática sob orientação do Prof. Dr. Nome Sobrenome do Orientador

SEROPÉDICA

2025

UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE MATEMÁTICA

COORDENAÇÃO DO CURSO DE GRADUAÇÃO EM MATEMÁTICA

A monografia "Métodos Numéricos", apresentada e defendida por NOME SOBRENOME, matrícula 2022019000-0, foi aprovada pela Banca Examinadora com conceito "X", recebendo o número 000.

Seropédica, 30 de setembro de 2025

BANCA EXAMINADORA:

Prof. Dr. Presidente da Banca Orientador

Prof. Dr. Membro 1 Convidado 1

> Prof. Dr. Membro 2 Convidado 1

Agradecimentos

Aqui está um agradecimento.

Resumo

Aqui está um resumo.

Abstract

Here is an (optional) abstract.

Sumário

In	ntrodução			ii
1	Pon	itos Fl	utuantes	1
	1.1	Aritm	ética de Ponto Flutuante	2
		1.1.1	Precisão Simples e Precisão Dupla	3
		1.1.2	Representação de Números em Sistemas de Ponto Flutuante	6
		1.1.3	Representação Especial do Zero	9
	1.2	Erros	e Limitações	10
		1.2.1	Erro Absoluto e Relativo	10
	1.3	Perda	de Significância em Operações com Pontos Flutuantes	11
	1.4	Anális	se de Instabilidades e Casos Peculiares	14
		1.4.1	Units in Last Place (ULP's)	14
		1.4.2	Imprecisão de operações de Ponto flutuante	14
		1.4.3	Discussão	18
2	Mét	todos l	Iterativos para Zeros de Função	19
	2.1	Locali	zação de Raízes	19
	2.2	Critér	io de Parada	21
	2.3	Métod	lo do Ponto Fixo	22
		2.3.1	Ordem de convergência	24
	2.4	Métod	lo de Newton-Raphson Unidimensional	26
		2.4.1	Interpretação Geométrica	27
		2.4.2	Convergência	27
		2.4.3	Ordem de Convergência	27
		2.4.4	Ciladas	29

Referê	ncias I	Bibliográficas	58	
2.6	Aplica	ações	55	
	2.5.3	Fractais de Newton	44	
	2.5.2	Calculo do Jacobiano	40	
	2.5.1	Definições	39	
2.5	Método de Newton-Raphson N-dimensional			

Introdução

Capítulo 1

Pontos Flutuantes

Na matemática, um sistema numérico é um conjunto de regras e símbolos utilizados para representar quantidades através do que chamamos de números. Existem dois tipos de sistemas: os posicionais e os aditivos.

O sistema aditivo é aquele em que os números são representados pelas somas dos valores dos símbolos, geralmente agrupados lado a lado em ordem decrescente, como, por exemplo, os sistemas romano e egípcio. Já o sistema posicional leva em conta não só os dígitos mas também a posição que eles ocupam no número. A quantidade de símbolos diferentes que são utilizados para representar os dígitos está ligada à **base** desse sistema, e cada posição do dígito no número refere-se a uma potência dessa base. Por exemplo, no sistema decimal (base 10), usamos os dígitos de 0 a 9. No sistema binário (base 2), usamos os dígitos 0 e 1. E já no sistema hexadecimal (base 16), usamos de 0 a 9 e as letras A a F (que representam 10 a 15). A quantidade de símbolos diferentes que são utilizados para representar os dígitos está ligada à **base** desse sistema, e cada posição do dígito no número refere-se a uma potência dessa base. Por exemplo, no sistema decimal (base 10), usamos os dígitos de 0 a 9. No sistema binário (base 2), usamos os dígitos 0 e 1. E já no sistema hexadecimal (base 16), usamos de 0 a 9 e as letras A a F (que representam 10 a 15).

Com essas diferentes formas de representar um número, a escolha do sistema depende do contexto e da aplicação. No uso cotidiano, a base decimal é a mais utilizada. Já as bases binária e hexadecimal, são amplamente utilizadas na ciência da computação em operações aritméticas dos processadores e em algumas linguagens de programação para endereçamento de memória.

Um número N pode ser representado em uma base b no seguinte formato

$$N = \pm \sum_{i=-k}^{n} d_i b^i, \tag{1.1}$$

em que d_i são os dígitos na base b, k é o número de casas decimais à direita do ponto, e n+1+k é o número de dígitos significativos. Vejamos alguns exemplos.

Exemplo 1.0.1. Vamos escrever o número 13 nas bases 10 e 2.

- Número na base decimal: $13 = 1 \times 10^1 + 3 \times 10^0 = 13_{10}$
- Número na base binária: $13 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 1101_2$

Exemplo 1.0.2. Agora vamos escrever o número 3,5625 nas bases 10 e 2.

• Número na base decimal:

$$3.5625 = 3 \times 10^{0} + 5 \times 10^{-1} + 6 \times 10^{-2} + 2 \times 10^{-3} + 5 \times 10^{-4} = 3.5625_{10}$$

• Número na base binária:

$$3,5625 = 1 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4} = 11,1001_{2}$$

1.1 Aritmética de Ponto Flutuante

A aritmética de ponto flutuante é o sistema adotado por computadores para que lidem com números reais utilizando uma notação compacta e eficaz. Essa técnica é utilizada para representar e manipular números reais de forma prática e eficiente. Ela permite representar números de grandezas diversas, que não podem ser armazenados com precisão, utilizando apenas números inteiros.

Um sistema de ponto flutuante F pode ser definido como

$$F(\beta, t, L, U)$$

cuja representação normalizada de um número real N nesse sistema é dada por

$$N = \pm (d_1.d_2...d_t)_{\beta} \times \beta^e \tag{1.2}$$

em que

- N é o número real;
- β é a base que a máquina opera;
- t é o número de dígitos na mantissa, tal que $0 \le d_j \le \beta 1$, $j = 1, ..., t, d_1 \ne 0$;
- L é o menor expoente inteiro;
- *U* é o maior expoente inteiro;
- e é o expoente inteiro no intervalo [L,U].

No padrão IEEE 754 (usado na maioria dos sistemas eletrônicos), um número de ponto flutuante é dividido em três partes:

- Sinal (S): 1 bit indicando se o número é positivo (S=0) ou negativo (S=1),
- Expoente (E): campo que representa o expoente com viés (bias),
- Mantissa (M): parte fracionária significativa do número.

A fórmula completa de reconstrução do número é:

$$Valor = (-1)^S \times (1.M) \times 2^{E-bias}$$

onde:

- S é o bit de sinal,
- 1.M indica que há um bit implícito "1" antes da mantissa nos números normalizados,
- bias é um valor constante que depende da precisão (por exemplo, 127 para 32 bits).

1.1.1 Precisão Simples e Precisão Dupla

Em sistemas computacionais, os números em ponto flutuante podem ser representados em diferentes níveis de precisão. Os dois mais comuns são:

• Precisão Simples (32 bits)

• Precisão Dupla (64 bits)

Esses formatos seguem o padrão IEEE 754 de representação binária de números reais.

Comparação entre os formatos

Característica	Precisão Simples (32 bits)	Precisão Dupla (64 bits)	
Bits totais	32	64	
Bit de sinal	1	1	
Bits de expoente	8	11	
Bits de mantissa	23	52	
Bias	127	1023	
Intervalo do expoente real	-126 a + 127	-1022 a + 1023	
Precisão (dígitos decimais)	Aproximadamente 7	Aproximadamente 16	

Exemplo: Representação em Precisão Simples

Considere o número decimal x=-12,25. Sua representação em binário é:

$$x = -1100,01_2 = -1,10001 \times 2^3$$

Formato:

• Sinal: s = 1

• Expoente: $e = 3 + 127 = 130 = 10000010_2$

Portanto, o número seria representado, em binário de 32 bits, como:

s_n	e	m
1	10000010	100010000000000000000000000000000000000

Exemplo: Representação em Precisão Dupla

Vamos representar o número decimal $x=12{,}375$ em ponto flutuante com **precisão dupla (64 bits)**.

1. Conversão para binário:

$$12,375_{10} = 1100,011_2 = 1,100011 \times 2^3$$

2. Identificação dos componentes:

- Sinal (s): Como o número é positivo, s = 0
- Expoente real (e): 3
- Bias: Para precisão dupla, bias = 1023
- Expoente com bias: e + bias = 3 + 1023 = 1026
- Expoente em binário (11 bits): $1026_{10} = 10000000010_2$
- Mantissa (m): Os bits após o ponto da parte fracionária normalizada: 100011000000... (completando até 52 bits)

3. Representação final (64 bits):

Essa é a representação de 12,375 em ponto flutuante com precisão dupla.

Resumo:

- Bits de sinal: 0
- Bits do expoente: 10000000010
- Bits da mantissa: 100011 seguidos de zeros até completar 52 bits

Considerações

A escolha entre precisão simples e dupla depende da aplicação:

- Precisão Simples: adequada para aplicações com memória limitada e que não exigem alta precisão.
- Precisão Dupla: usada em aplicações científicas, cálculos de engenharia, simulações e algoritmos numéricos mais sensíveis. Apesar do ganho de precisão, o uso de precisão dupla demanda mais memória e tempo de processamento.

1.1.2 Representação de Números em Sistemas de Ponto Flutuante

Em máquinas que operam em sistemas de ponto flutuante, apenas um subconjunto finito de \mathbb{R} pode ser representado de maneira exata. Por isso, frequentemente, é necessário limitar a quantidade de dígitos significativos na representação de números a fim de adequá-los ao sistema que a máquina opera. Dois dos principais processos empregados para este fim são o **truncamento** e o **arredondamento**.

O truncamento consiste na supressão de todos os dígitos após uma determinada posição, sem qualquer ajuste adicional no último dígito mantido. Formalmente, dado um número real x, sua aproximação truncada com n dígitos na base b é expressa por

$$T(x) = \sum_{i=-k}^{n-1} d_i b^i$$

onde os dígitos d_i com i < -k são descartados.

O erro introduzido por este processo, dado por $E_T = x - T(x)$, é denominado erro de truncamento. Ele é limitado superiormente por

$$|x - T(x)| < b^{-k}. (1.3)$$

Exemplo 1.1.1. Considere a aproximação com oito casas decimais de $\pi = 3,14159265$. Para truncar π com precisão de 4 casas decimais, descartamos todos os termos da sexta casa em diante. Assim, o valor truncado fica $T(\pi) = 3,1415$. O erro do truncamento é, nesse caso, $E_T = 3,14159265 - 3,1415 = 0,00009265$. Diante disso, podemos observar que $|E_T| < 10^{-4}$.

O arredondamento, por outro lado, ajusta o último dígito mantido com base no valor do primeiro dígito descartado, buscando minimizar o erro absoluto da aproximação. No arredondamento simétrico (ou clássico), se o primeiro dígito descartado for maior ou igual a $\frac{b^{-n}}{2}$, incrementa-se o último dígito mantido em uma unidade; caso contrário, seu valor permanece inalterado.

Seja x um número real e R(x) sua aproximação arredondada com n dígitos na base b. O erro de arredondamento satisfaz:

$$|x - R(x)| \le \frac{1}{2}b^{-n}$$

Exemplo 1.1.2. Ainda considerando a mesma aproximação de $\pi=3,14159265$. Para arredondar π com precisão de 4 casas decimais, vamos analisar o número da próxima casa em que queremos arredondar. Nesse caso, o número na quinta posição é 9, então vamos arredondar a quarta casa para cima

$$R(\pi) = 3,1416.$$

O erro do arredondamento é, nesse caso,

$$E_R = 3,14159265 - 3,1416 = -0,00000735.$$

Diante disso, podemos observar que $|E_R| \le \frac{1}{2} 10^{-4}$.

Em geral, o erro máximo introduzido pelo arredondamento é metade daquele introduzido pelo truncamento, razão pela qual o arredondamento tende a produzir aproximações mais precisas.

Para compreendermos melhor as limitações na representação de números em um sistema de ponto flutuante, vamos explorar o exemplo a seguir. Suponha que uma máquina opere no sistema F(10, 5, -5, 5). Nesse sistema, os números serão representados da seguinte maneira

$$\pm (0.d_1 d_2 \dots d_t) \times 10^e, 0 \le |d_i| \le 9, d_1 \ne 0, e \in [-5, 5]. \tag{1.4}$$

O menor valor, em módulo, representado nesse sistema é

$$m = 0.10000 \times 10^{-5} = 10^{-6}$$

enquanto que o maior é

$$M = 0.99999 \times 10^5 = 99999.$$

 $G = \{x \in \mathbb{R} \mid x \text{ corresponde a um número representado no sistema } \mathcal{F}(\beta, t, L, U)\}$

@LucasM: aqui vale a pena trocar por algo do tipo pontos flutuantes e inclusive inserir uma imagem mostrando que trata-se de um conjunto discreto

é o conjunto dos números que são representáveis por esse sistema de ponto flutuante. Nesse conjunto m é a mantissa Dado um número real x, as seguintes situações podem ocorrer:

Caso 1: $x \in G$ (Número representável)

Seja
$$x = 12237, 76.$$

Na forma normalizada temos $x=1,223776\times 10^4$. Porém, esse número não pode ser representado precisamente no sistema F e, portanto, precisamos aplicar uma das técnicas de aproximação. Utilizando o truncamento o resultado é $\bar{x}=1,22377\times 10^4$. Já com o arredondamento $\bar{x}=1,22378\times 10^4$.

O número está dentro da faixa de expoente permitida e é representável com perda controlada de precisão.

Caso 2: |x| < m (Underflow)

Seja
$$x = 0.582 \times 10^{-6}$$
.

O expoente é -6, menor que o limite inferior L=-5. Portanto, o número não pode ser representado e ocorre **underflow**. Nesse caso, na maioria das vezes o valor é tratado como zero.

Caso 3: |x| > M (Overflow)

Seja
$$x = 0.927 \times 10^6$$

O expoente é +6, maior que U=5. Portanto, ocorre **overflow** e o número não pode ser representado precisamente. Neste caso, o valor pode ser tratado como infinito ou como uma flag indicando o **overflow**.

Vejamos a seguir uma comparação da técnicas de arredondamento e de truncamento.

Considere uma máquina decimal com 3 dígitos na mantissa e expoentes variando de -4 a 4:

Número Real	Arredondamento	E_R	Truncamento	E_T
5,678	$0,568 \times 10^{1}$	0.2×10^{-3}	$0,567 \times 10^{1}$	0.8×10^{-3}
-192,73	-0.193×10^3	0.27×10^{1}	$-0,192 \times 10^3$	0.73×10^{1}
3,14159	0.314×10^{1}	0.159×10^{-2}	0.314×10^{1}	0.159×10^{-2}
0,0000063	Underflow			
920000,0	Overflow			

1.1.3 Representação Especial do Zero

Na representação de ponto flutuante, um número real é geralmente expresso na forma normalizada:

$$N = \pm (d_1, d_2 d_3 \dots d_t)_{\beta} \times \beta^e,$$

com $d_1 \neq 0$, garantindo o aproveitamento máximo da precisão disponível e evitando representações redundantes. Contudo, o número zero não pode ser representado nesta forma, pois exigiria $d_1 = 0$, o que contraria a normalização.

Assim, o zero recebe uma representação especial denotada por

$$N = \pm (0,000 \dots 0_t)_{\beta} \times \beta^{L-1},$$

em que L é o menor expoente permitido no sistema. Este tratamento especial assegura que o zero seja manipulado de forma única e consistente dentro do sistema de ponto flutuante, evitando, assim, a perda de informação ao realizar operações aritméticas que o envolvam. Essa perda de informação será discutida na seção 1.2.

1.2 Erros e Limitações

TODO: adicionar nessa seção uma subseção falando sobre epsilon de maquina, contextualizando para o experimento com as ULPS nos próximos capitulos

Erros em operações com pontos flutuantes podem se propagar e aumentar em cálculos mais complexos. Por exemplo, pequenos erros de arredondamento em etapas iniciais podem afetar significativamente o resultado final, especialmente em somas repetitivas ou subtrações de números muito próximos. Isso torna importante considerar a ordem das operações e o impacto da precisão em aplicações sensíveis.

1.2.1 Erro Absoluto e Relativo

Em cálculos numéricos, frequentemente lidamos com aproximações devido a arredondamentos e truncamentos. Para avaliar a precisão dessas aproximações, utilizamos as métricas de erro absoluto e erro relativo.

O erro absoluto mede a diferença entre o valor real x_r e o valor aproximado x_a , ou seja, a quantidade exata de erro na aproximação. Ele é definido como:

$$EA = |x_a - x_r|. (1.5)$$

Quanto menor for o erro absoluto, mais próximo o valor aproximado está do valor real. No entanto, essa métrica não fornece informações diretas sobre o impacto do erro em relação à magnitude do número em questão.

O erro relativo indica o quão preciso é o valor aproximado em relação ao valor real. Ele pode ser tratado como um decimal ou na forma de porcentagem. Ele é definido como

ER =
$$\frac{|x_a - x_r|}{|x_r|}$$
 ou $\frac{|x_a - x_r|}{|x_r|} \times 100\%$. (1.6)

Isso pode ser reescrito como

$$ER = \frac{EA}{|x_r|} \text{ ou } \frac{EA}{|x_r|} \times 100\%. \tag{1.7}$$

Essa métrica é útil quando lidamos com valores de grandezas muito diferentes. Por exemplo, um erro absoluto de 0.1 pode ser insignificante se estivermos tratando de números na ordem de milhares, mas pode ser relevante se estivermos lidando com valores decimais.

Vamos analisar dois casos com mesmo erro absoluto mas diferentes erros relativos. Considere um valor real $x_{r1}=10.5$ com uma aproximação de $x_{a1}=10.3$. O seu erro absoluto é |10.3-10.5|=0.2 e seu erro relativo $\frac{0.2}{10.5}\approx 0.019$ (ou 1.9%). Agora considere um segundo valor real de $x_{r2}=0.4$ com uma aproximação de $x_{a2}=0.2$, seu erro absoluto é |0.4-0.2|=0.2, o seu erro relativo será $\frac{0.2}{0.4}=0.5$ ou seja, 50%.

Número Real	Aproximação	Erro Absoluto	Erro Relativo
10.5	10.3	0.2	0.019 ou 1.9%
0.4	0.2	0.2	0.5 ou 50.0%

Apesar dos dois casos terem o mesmo erro absoluto (EA = 0.2), o erro relativo relacionado à aproximação no primeiro caso representa menos de 2% do valor real, indicando que a aproximação é razoavelmente precisa. Em contrapartida, no segundo caso, o erro relativo é de 50%, um valor relativamente alto comparado ao primeiro, o que indica uma aproximação deficiente. Dessa forma, o erro relativo é uma ferramenta importante para interpretar melhor a qualidade de uma aproximação, independentemente da escala dos números envolvidos.

1.3 Perda de Significância em Operações com Pontos Flutuantes

A perda de significância (também conhecida como cancelamento catastrófico) ocorre de modo mais evidente quando há grande diferença de ordem de grandeza entre os números envolvidos na operação. Por exemplo, considere:

$$x = 1,000 \times 10^4$$
 e $y = 0,276 \times 10^{-2}$.

Para realizar a soma, ambos os operandos precisam ser expressos com o mesmo expoente:

$$x = 1,0000000000 \times 10^4, \quad y = 0,000000276 \times 10^4.$$

A soma exata seria:

$$x + y = (1,0000000000 + 0,0000000276) \times 10^4 = 1,0000000276 \times 10^4.$$

Contudo, devido à precisão limitada do sistema (7 dígitos significativos), a aritmética de ponto flutuante armazena apenas:

$$x + y \approx 1,0000002 \times 10^4$$
.

Uma parte do termo y é completamente desprezada, e a soma não resulta numericamente igual a x+y, evidenciando a perda catastrófica de significância.

Outro caso peculiar é a soma de um número muito grande com uma sequência de números pequenos. Dependendo da ordem em que as somas são realizadas, o número grande pode "mascarar" os pequenos, resultando em diferentes valores finais.

Por exemplo:

$$S = 10^8 + 10^{-1} + 10^{-2} + 10^{-3} + \ldots + 10^{-10}.$$

Se somarmos primeiro o número grande (10^8) e depois os números pequenos, muitos destes podem ser ignorados devido à falta de precisão da mantissa. Por outro lado, ao somar os números pequenos antes, o valor final será mais próximo do esperado.

Para ilustrar, suponha a seguinte ordem de cálculo:

• Caso 1:
$$S = 10^8 + (10^{-1} + 10^{-2} + \dots + 10^{-10}).$$

• Caso 2:
$$S = (10^{-1} + 10^{-2} + \dots + 10^{-10}) + 10^8$$
.

No primeiro caso, muitos números pequenos são ignorados devido ao arredondamento. No segundo, o somatório dos números pequenos é calculado antes de adicionar o número grande, preservando mais informações significativas.

Prevenção da perda de significância em operações com Zero

O zero possui uma representação especial na aritmética de ponto flutuante devido à sua importância nas operações numéricas e à necessidade de evitar ambiguidades. Essa representação permite o tratamento adequado de operações que envolvem valores nulos,

prevenindo erros numéricos e a perda de significância em cálculos sensíveis. Considere um sistema de ponto flutuante F(10, 7, -5, 5). Sejam

$$x = 0.000 \times 10^{-6}$$
 (o número zero), $y = 0.276 \times 10^{-2}$.

Na operação de soma:

$$x + y = 0.276 \times 10^{-2}$$
.

como x é exatamente zero, o resultado mantém integralmente os dígitos significativos de y.

@EnzoR: @LucasM por favor, verifique se o exemplo ficou bom

Se o zero não tivesse uma representação especial e fosse tratado como um número subnormal com expoente mínimo, o alinhamento das mantissas poderia comprometer a precisão de y, deslocando seus dígitos significativos e resultando em perda de informação. Nesse sentido, suponha que x não tivesse uma representação especial e fosse tratado como um número subnormal com o expoente mínimo -5, com mantissa ajustada para

$$x' = 0.000000 \times 10^{-5}$$
.

Para somar x' e y, é necessário alinhar os expoentes, o que implica deslocar a mantissa de y para a direita:

$$y = 0.276 \times 10^{-2} = 0.00000276 \times 10^{-5}$$
.

Ao realizar a soma,

$$x' + y = (0.000000 + 0.00000276) \times 10^{-5} = 0.00000276 \times 10^{-5}.$$

Devido à precisão limitada do sistema (7 dígitos significativos), essa operação pode fazer com que os dígitos significativos de y sejam deslocados para posições menos precisas, causando perda de informação relevante.

$$x' + y = 0,0000027 \times 10^{-5}.$$

Portanto, a representação especial do zero evita esse problema, preservando a precisão e assegurando a estabilidade numérica das operações.

1.4 Análise de Instabilidades e Casos Peculiares

@EnzoR: @LuisD preciso que verifique se a seção está coerente e se os exemplos estão corretos.

Na aritmética de ponto flutuante, certos casos resultam em erros devido à limitação da precisão e à maneira como os números são representados.

1.4.1 Units in Last Place (ULP's)

Diferentemente dos conjuntos matatemáticos comuns (\mathbb{R} , \mathbb{Z} , etc.), todo conjunto de números de um sistema de ponto flutuante (PF) é, por natureza, discreto, ou seja, possui uma quantidade finita de números representáveis. Para cada número real x existe um X que será a sua representação num dado sistema de PF. Definimos ulp(x) pela lacuna entre dois números X_1 e X_2 mais próximos de x, mesmo que x seja um deles. Tome o sistema $F(\beta=2,t=3,L=3,U=5)$. O menor número que pode ser representado nesse sistema é $1,00_2$ x $2^3=8_{10}$, o seu sucessor é $1,01_2=1,25_{10}$ x $2^3=10_{10}$. Em $x \in [8_{10},10_{10}]$ ulp (x)=2.

Para definir para qual PF x o número real x será aproximado, existem várias estratégias, como o truncamento e o arredondamento. A escolha da estratégia de aproximação pode afetar o valor de ulp(x). Por exemplo, se $x=9.6_{10}$, no sistema $F(\beta=2,t=3,L=3,U=5)$, o valor de ulp(x) é 2. Se usarmos truncamento, $X=8_{10}$ e o erro absoluto é $|x-X|=1.6_{10}$, ou seja, $0.8 \times ulp(x)$. Se usarmos arredondamento, $X=10_{10}$ e o erro absoluto é $|x-X|=0.4_{10}$, ou seja, $0.2 \times ulp(x)$.

TODO: Adidicionar gráfico ilustrando as ulps

A seguir, descrevemos dois exemplos clássicos que ilustram essas instabilidades.

1.4.2 Imprecisão de operações de Ponto flutuante

Considere o cálculo de $f(x) = x^{10} + 1 - x^{10}$ para $x \in [-60, 60]$. As partes envolvendo x são variáveis e a parte "1" é o literal, ou seja, um valor fixo. Analiticamente, o resultado deveria ser exatamente 1. No entanto, em implementações numéricas, pequenas imprecisões na representação de x^{10} podem levar a resultados instáveis, especialmente para valores de |x| além de um limiar. Isso ocorre devido ao erro relacionado às operações de ponto flutuante, como mostrado na Figura 1.1.

Figura 1.1: Comportamento da expressão $x^{10}+1-x^{10}$ no intervalo [-40,40].

Figura 1.2: Comportamento da expressão $x^{10}+1-x^{10}$ no intervalo [-43,-39].

Podemos observar que em um determinado limiar, a função para de se comportar como esperado f(x) = 1 e passa a assumir valores os de f(x) = 2 e f(x) = 0.

Vamos manipular essa expressão e ver como ela se comporta em diferentes situações.

Figura 1.3: Comportamento da expressão $x^{10} + 79 - x^{10}$ no intervalo [38, 65].

Na figura 1.3. é possível observar que a função assume mais de dois valores inesperados para f(x), nesse caso, o conjunto imagem no intervalo [38,65] é $Im(f) = \{0.64,78,79,80,128\}$. O seguinte conjunto de valores para o literal foi testado

{3,12,79,98}, e acreditamos que para valores que não podem ser escritos como uma potência de base 2, esse padrão ocorra.

TODO: adicionar explicação

Explicação: blablabla

Uma dúvida comum é se a precisão desses sistemas afeta nessa expressão. Vamos comparar então um sistema de float32 (Cerca de 7-8 bits dígitos decimais de precisão) a um sistema float64 (Cerca de 15-16 dígitos decimais de precisão)

Figura 1.4: Comportamento da expressão $x^{10} + 2 - x^{10}$ no intervalo [-40, 40].

Figura 1.5: Comportamento da expressão $x^{10} + 79 - x^{10}$ no intervalo [0,60].

Dos testes experimentais, exemplificado nas figuras 1.4 e 1.5, foi concluído que o |x| onde a instabilidade ocorre é menor na precisão dupla.

A instabilidade na precisão dupla (Figura 1.7) produz imagem em torno de $[-4 \times 10^{-23}, 2 \times 10^{-23}]$, enquanto na precisão simples (Figura 1.6) está em torno de $[-20^{-15}, 20^{-15}]$ ([-20femto, 20femto]). Observa-se, portanto, que a diferença de instabilidade é extremamente menor na precisão dupla em comparação com a simples.

Uma outra situação é a diferença de como o computador interpreta algumas funções se forem reescritas de maneiras diferentes. Seja $p(x) = (x-1)^6$ e $q(x) = x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 1$, analiticamente essas funções são idênticas, porém existem problemas de cancelamento catastrófico na hora de analisarmos ambas em um sistema de ponto flutuante.

Função $p(x)=(x-1)^6$ Vs. $q(x)=x^6-6x^5+15x^4-20x^3+15x^2-6x+1$

Figura 1.8: Comparação entre as funções $p(x)=(x-1)^6$ e $q(x)=x^6-6x^5+15x^4-20x^3+15x^2-6x+1$.

TODO: adicionar explicação

Explicação: yada yada yada

1.4.3 Discussão

Esses exemplos destacam a importância da ordem das operações e da análise cuidadosa ao trabalhar com algoritmos numéricos. Técnicas como a reordenação de cálculos e o uso de formatos de precisão estendida podem ajudar a minimizar esses erros em contextos críticos.

Capítulo 2

Métodos Iterativos para Zeros de Função

Em muitas aplicações, as soluções buscadas se resumem a encontrar os zeros (ou raízes) de uma função. Entretanto, nem sempre é possível fazê-lo analiticamente, devido à natureza das componentes envolvidas na função como, por exemplo, funções polinomiais a partir do 3º grau, somas de funções trigonométricas e logarítmicas, entre outras. Nesse ínterim, recorremos então a maneiras de obter valores aproximados para tais raízes.

Uma classe de métodos utilizados para aproximar raízes de funções são os **métodos iterativos**. A essência desses métodos está em, partindo de um chute inicial e de uma função apropriada φ , obter uma sequência x_k onde cada termo é obtido do anterior recursivamente como $x_{k+1} = \varphi(x_k)$. Essa sequência, sob certas hipóteses, converge para a raiz ξ da função.

Ao longo do capítulo, reservaremos o símbolo ξ para representar raízes de funções.

2.1 Localização de Raízes

Nos métodos que trataremos nesse capítulo, para garantir a convergência da sequência iterativa, é necessário que o primeiro termo esteja suficientemente próximo da raiz e, desse modo, faz-se necessário restringir as funções a intervalos que contenham raízes. Quando as funções envolvidas são contínuas, o resultado a seguir garante a existência de raízes em um intervalo [a,b] desde que as imagens dos extremos tenham sinais opostos.

Proposição 2.1.1. Seja f(x) uma função contínua no intervalo [a,b]. Se f(a)f(b) < 0, então há pelo menos uma raiz $\xi \in (a,b)$. Se, além disso, existir f'(x) e f'(x) preservar o sinal em (a,b), então a raiz é única.

Por exemplo, considere a função $f(x)=x^3-9x+3$. Utilizando a Proposição 2.1.1, observamos que

- f(0)f(1) = -15 < 0, portanto há raiz no intervalo (0, 1);
- f(2)f(3) = -21 < 0, portanto há raiz no intervalo (2, 3).

Além disso, a derivada de f(x) é $f'(x) = 3x^2 - 9$, cujas raízes são $\pm \sqrt{3}$, então nos intervalos $(-\infty, -\sqrt{3})$, $(-\sqrt{3}, \sqrt{3})$ e $(\sqrt{3}, \infty)$ o sinal da derivada é preservado. Portanto, nos intervalos (0,1) e (2,3) há apenas uma raiz.

Figura 2.1: Raiz entre A e B, e entre C e D

Outra forma de localizar raízes de uma dada função f(x) é escrevê-la como a diferença entre as funções g(x) - h(x), pois se $f(\xi) = 0$ temos que $g(\xi) - h(\xi) = 0$ ou, equivalentemente, $g(\xi) = h(\xi)$. Graficamente, ξ é a abscissa do ponto de interseção entre as funções g(x) e h(x).

Da mesma função, podemos obter, por exemplo, as interseções entre x e x^3-8x+3

Figura 2.2: Interseções entre x e $x^3 - 8x + 3$

2.2 Critério de Parada

FIXME: Completar

@DanielP: gráficos estilo Vera

O processo é repetido até que a diferença entre duas iterações consecutivas seja inferior a uma tolerância pré-estabelecida ou até que um número máximo de iterações seja atingido.

- $|\overline{x} \xi| < \epsilon$
- $f(\overline{x}) < \epsilon$

@LucasM: Definir raiz aproximada

2.3 Método do Ponto Fixo

O método do ponto fixo é um método iterativo que transforma o problema de buscar as raízes de uma função f(x) no problema de encontrar os pontos fixos de uma outra função $\varphi(x)$, denominada de **função de iteração de ponto fixo**. A partir dessa função de iteração, uma sequência é construída recursivamente começando em um valor inicial x_0 que convergirá para a raiz ξ de f(x), desde que sejam observadas certas condições sob a função $\varphi(x)$ e o dado inicial x_0 .

O primeiro passo é gerar funções de iteração φ para f(x), o que pode ser feito isolando x na equação f(x)=0. Por exemplo, manipulando a função x^3-9x+3 da seguinte forma

$$x^3 - 8x + 3 = x$$

obtemos a função de iteração $\varphi(x)=x^3-8x+3$. Com a mesma lógica, outras possíveis funções de iteração para f são

a)
$$\varphi_1(x) = \frac{x^3}{9} + \frac{1}{3}$$

d)
$$\varphi_4(x) = \sqrt{9 - \frac{3}{x}}$$

b)
$$\varphi_2(x) = \sqrt[3]{9x - 3}$$

e)
$$\varphi_5(x) = -\sqrt{9 - \frac{3}{x}}$$

c)
$$\varphi_3(x) = \frac{9}{x} - \frac{3}{x^2}$$

f)
$$\varphi_6(x) = x^3 - 8x + 3$$

A forma geral da função de iteração é

$$\varphi(x) = x + A(x)f(x) \tag{2.1}$$

com $A(\xi) \neq 0$. Por exemplo, a $\varphi_1 = \frac{x^3}{9} + \frac{1}{3}$ na forma geral ficaria

$$\varphi_1(x) = x + \frac{1}{9}f(x)$$

em que $A(x) = \frac{1}{9}$. Nesse caso, pode-se observar que $A(\xi) \neq 0$.

O resultado a seguir relaciona a raiz de uma função com pontos fixos de uma função de iteração associada a essa função.

Proposição 2.3.1. Seja ξ uma raiz de uma função f(x) e seja $\varphi(x)$ uma função de iteração associada a f(x). Então, $f(\xi) = 0$ se, e somente se, $\varphi(\xi) = \xi$.

Demonstração. (\Rightarrow) Pela forma geral da função de iteração temos que $\varphi(\xi) = \xi + A(\xi)f(\xi)$. Uma vez que $f(\xi) = 0$, então $\varphi(\xi) = \xi$.

 (\Leftarrow) Começando novamente pela forma geral da função de iteração, temos que $\varphi(\xi) = \xi + A(\xi)f(\xi)$. Como $\varphi(\xi) = \xi$, concluímos que $A(\xi)f(\xi) = 0$. Tendo como hipótese que $A(\xi) \neq 0$, então $f(\xi) = 0$.

@LucasM: Aqui, antes de ir para o resultado principal, dar exemplos de funções de iteração que fazem a sequencia convergir e divergir. Inserir gráficos assim como no livro da Vera.

@DanielP: ok! uma redemoinho $(\varphi_6: [-\sqrt{3}, -\sqrt{\frac{7}{3}}])$, uma escadinha $(\varphi_1: [0, \sqrt{3}])$ e uma divergente $(\varphi_4 \in \varphi_5; \varphi_2 \in \varphi_3 I)$

Sob condições a respeito da função de iteração, sua derivada e o dado inicial, a convergência da sequência iterativa é garantida, como pode-se observar a seguir.

Teorema 2.3.1. Convergência Iterativa

Seja ξ uma raiz de f(x), isolada num intervalo I centrado nessa raiz. Considere uma função de iteração $\varphi(x)$ associada a f(x). Sob as seguintes hipóteses:

- i) $\varphi(x)$ e $\varphi'(x)$ são contínuas em I,
- $|\varphi'(x)| < M < 1 \text{ em } I,$
- $iii) x_0 \in I$,

a sequência $x_{k+1} = \varphi(x_k)$ converge para a raiz ξ .

Demonstração. Como $x_{k+1} = \varphi(x_k)$, subtraindo ξ de ambos os lados da igualdade e usando o fato de que $\varphi(\xi) = \xi$ temos

$$x_{k+1} - \xi = \varphi(x_k) - \varphi(\xi). \tag{2.2}$$

Pelo Teorema do Valor Médio (TVM) podemos escrever

$$\varphi(x_k) - \varphi(\xi) = \varphi'(c_k)(x_k - \xi) \tag{2.3}$$

com c_k entre x_k e ξ . Então, substituindo (2.3) em (2.2), temos

$$|x_{k+1} - \xi| = |(x_k - \xi) \varphi'(c_k)|$$

$$= |x_k - \xi| |\varphi'(c_k)|$$

$$< |x_k - \xi|$$
(2.4)

uma vez que $|\varphi'(x)| < 1$. Como $x_0 \in I$, podemos concluir que $x_k \in I$ para todo k já que, por (2.4), $|x_k - \xi| < |x_0 - \xi|$.

Na sequência, provaremos que x_k converge para a raiz ξ . Vamos começar mostrando que

$$|x_1 - \xi| \le M |x_0 - \xi|. \tag{2.5}$$

Observe que, como $x_1 = \varphi(x_0)$, temos que $x_1 - \xi = \varphi(x_0) - \varphi(\xi)$. Pelo Teorema do Valor Médio temos que $\varphi(x_0) - \varphi(\xi) = (x_0 - \xi) \varphi'(c_0)$, para algum c_0 entre x_0 e ξ . Uma vez que $|\varphi'(x)| \leq M$ no intervalo I, a seguinte designaldade é válida

$$|x_1 - \xi| = |x_0 - \xi| |\varphi'(c_0)|$$

$$\leq M |x_0 - \xi|$$

e provamos a desigualdade (2.5). De modo similar prova-se que $|x_2 - \xi| \le M |x_1 - \xi|$ que, combinado com (2.5), implica que $|x_2 - \xi| \le M^2 |x_0 - \xi|$. Repetindo o processo k vezes pode-se concluir que

$$|x_k - \xi| \le M^k |x_0 - \xi|. \tag{2.6}$$

Como 0 < M < 1, se k tende a infinito, M^k tende a 0 e, portanto, M^k $|x_0 - \xi|$ também tende a 0. Assim, provamos que

$$\lim_{k \to \infty} x_k = \xi,\tag{2.7}$$

ou seja, x_k converge para a raiz.

2.3.1 Ordem de convergência

A ordem de convergência de um método iterativo é uma medida de quão rapidamente a sequência de iterações converge para a solução desejada. Em termos

práticos, isso significa que, se um método tem uma ordem de convergência alta, ele será capaz de reduzir o erro de aproximação de forma mais eficaz a cada iteração.

Definição 2.3.1. Seja $\{x_k\}$ uma sequência que converge para ξ e

$$e_k = x_k - \xi \tag{2.8}$$

o erro na k-ésima iteração. Se existirem p > 1 e C > 0 tais que $\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^p} = C$, então p é chamada de ordem de convergência da sequência e C é a constante assintótica de erro.

Proposição 2.3.2. Se

$$\lim_{k \to \infty} \frac{e_{k+1}}{e_k} = C, \ 0 \le |C| < 1, \tag{2.9}$$

então a convergência é pelo menos linear. O MPF tem convergência pelo menos linear.

Demonstração. Partindo de (2.2) e (2.3), e tomando o limite com k tendendo a infinito, podemos escrever (2.9) como

$$\lim_{k \to \infty} \frac{x_{k+1} - \xi}{x_k - \xi} = \lim_{k \to \infty} \varphi'(c_k)$$

com c_k entre x_k e ξ . Como por hipótese $\varphi'(x) < 1$ então |C| < 1, portanto, a convergência do MPF é pelo menos linear.

2.4 Método de Newton-Raphson Unidimensional

TODO: talvez reescrever todas as condições como i) derivada limitada ii) f e g continuas , etc...

@DanielP: conv quadrática

@EnzoR: escolhendo a func de iter

O método de Newton é um caso particular do **Método do Ponto Fixo** amplamente utilizado para encontrar raízes reais de funções não lineares, cuja ordem de convergência é pelo menos quadrática. A função de iteração específica para este método produz uma sequência em que cada termo x_{k+1} corresponde, geometricamente, à **interseção da reta tangente** a f(x) no ponto $(x_k, f(x_k))$ com o eixo x.

@DanielP: só tem que colocar no lugar certo

No método do ponto fixo, vimos que se a função satisfaz o Teorema 2.5.1 a sequência $x_{k+1} = \varphi(x_k)$ converge para ξ . Além disso, a desigualdade (2.6) na demonstração desse resultado nos diz que quanto menor for $|\varphi'(x)|$, mais rápido a sequência $\{x_k\}$ converge.

Dada uma função f(x), o processo parte de uma estimativa inicial x_0 e aplica a seguinte fórmula iterativa, a partir da escolha da derivada em (2.1)

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)},\tag{2.10}$$

onde $f'(x_k)$ é a derivada da função f avaliada em x_k . Para que o método convirja para a raiz correta, é necessário que f(x) seja continuamente diferenciável em uma vizinhança da raiz e que $f'(x) \neq 0$ nessa região. Além disso, a escolha adequada do ponto inicial x_0 é crucial para garantir a convergência do método.

Aplicando a derivada na forma geral de φ pela regra da cadeia obtemos $\varphi'(x) = 1 + A'(x)f(x) + A(x)f'(x)$ e, calculando-a na raiz, resta $\varphi'(\xi) = 1 + A(\xi)f'(\xi)$. Impomos que $\varphi'(\xi) = 0$, o que nos leva a $A(\xi) = \frac{-1}{f'(\xi)}$. Generalizando, temos $A(x) = \frac{-1}{f'(x)}$. Portanto, desde que $f'(x) \neq 0$, a forma da função de iteração do método de Newton-Raphson é

$$\varphi(x) = x - \frac{f(x)}{f'(x)}. (2.11)$$

2.4.1 Interpretação Geométrica

@DanielP: ficou paia o alinhamento em

$$f'(x_0)(x - x_k) = y - y_k$$

$$f'(x_k)(x_{k+1} - x_k) = -y_k$$

$$x_{k+1} - x_k = \frac{-y_k}{f'(x_k)}$$

$$x_{k+1} = x_k - \frac{y_k}{f'(x_k)}$$

2.4.2 Convergência

Teorema 2.4.1. Sejam f(x), f'(x) e f''(x) contínuas num intervalo I que contém a raiz ξ de f, supondo $f'(\xi) \neq 0$. Então, existe um intervalo $\overline{I} \subset I$, contendo a raiz ξ , tal que $x_0 \in \overline{I}$, a sequência x_k gerada pela função de iteração $\varphi(x) = x - \frac{f(x_k)}{f'(x_k)}$ convergirá para a raiz.

Demonstração. Sendo o método de Newton-Raphson um caso particular do MPF, basta provar que para $\varphi(x) = x - \frac{f(x)}{f'(x)}$ as hipóteses do Teorema 2.5.1 são satisfeitas.

Primeiramente, observe que

$$\varphi'(x) = \frac{f(x)f''(x)}{[f'(x)]^2}. (2.12)$$

Como $f'(\xi) \neq 0$ e f'(x) é contínua em I, é possível obter $I_1 \subset I$ tal que $f'(x) \neq 0$ no intervalo I_1 . Assim, a função f e suas derivadas primeira e segunda são contínuas em I_1 e, consequentemente, a função de iteração e sua derivada também.

Uma vez que a $\varphi'(x)$ é contínua em I_1 e $\varphi'(\xi) = 0$, é possível escolher $I_2 \subset I_1$ de modo que $|\varphi'(x)| < 1$ em I_2 tendo ξ como centro do novo intervalo.

Por fim, tomando, $\overline{I}=I_2$, satisfazem-se as hipóteses do Teorema 2.5.1. \square

2.4.3 Ordem de Convergência

No MPF espera-se uma ordem de convergência ao menos linear, entretanto ao escolher uma função de iteração que satisfaça $\varphi'(\xi) = 0$, provaremos que sua ordem de convergência será ao menos quadrática.

Proposição 2.4.1. A ordem de convergência do método de Newton é pelo menos quadrática.

Demonstração. Suporemos todas as hipóteses do Teorema 2.4.1. Partindo de $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$, subtraindo ξ em ambos os lados da igualdade, obtemos

$$e_{k+1} = e_k - \frac{f(x_k)}{f'(x_k)} \tag{2.13}$$

O polinômio de Taylor de grau 2 para f(x) centrado em x_k é

$$f(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{f''(c_k)}{2}(x - x_k)^2$$

com c_k entre x e x_k . Assim, $f(\xi) = f(x_k) - f'(x_k)(x_k - \xi) + \frac{f''(c_k)}{2}(x_k - \xi)^2$ dado que $f(\xi) = 0$, dividindo a equação pela derivada de f temos, aplicando a fórmula do erro 2.8 e a da sequência 2.10

$$e_k - \frac{f(x_k)}{f'(x_k)} = \frac{f''(c_k)}{2f'(x_k)} e_k^2$$

$$e_{k+1} = \frac{f''(c_k)}{2f'(x_k)} e_k^2$$

$$\frac{e_{k+1}}{e_k^2} = \frac{1}{2} \frac{f''(c_k)}{f'(x_k)}$$

Aplicando limite no termo esquerdo da equação acima e, dada a continuidade das funções, nos argumentos à direita, obtemos

$$\lim_{k \to \infty} \frac{e_{k+1}}{e_k^2} = \frac{1}{2} \frac{f''(\xi)}{f'(\xi)}$$

Calculando a φ'' a partir de φ' 2.12 em ξ obtemos $\frac{[f'(\xi)]^3 f''(\xi)}{[f'(\xi)]^4}$, que é um C concluindo então que a convergência do método de Newton Raphson é ao menos quadrática.

$$\lim_{k \to \infty} \frac{e_{k+1}}{e_k^2} = \frac{1}{2} \varphi''(\xi)$$
$$= C$$

2.4.4 Ciladas

O Método de Newton é amplamente utilizado na prática devido à sua rapidez e precisão em condições ideais. Contudo, em algumas situações ele pode falhar ou convergir para raízes incorretas se essas condições não forem satisfeitas. Estes problemas geralmente estão associados a fatores como: pontos de máximo e mínimo, pontos de inflexão, multiplicidade da raiz e escolha inadequada do chute inicial.

Alta multiplicidade

Polinômios de grau elevado tendem a ter alta multiplicidade nas raizes, como no caso do polinômio $x^{10}-1$. A convergencia lenta é causada pela multiplicidade da raiz. Quando uma raiz tem multiplicidade m>1— neste caso m=10— a derivada próxima a raiz se aproxima de zero, aumentando o número de iterações necessárias para convergir para a raiz. Isso faz com que a taxa de convergência do metodo de Newton reduza-se para linear em vez da esperada taxa quadrática.

Newton-Raphson Method: Root at x = 1.0000 Function: $x^{10} - 1$

Newton-Raphson Absolute Error per Iteration

Figura 2.3: Gráfico da Cilada relacionada a multiplicidade da raiz.

Ao analisar a função geometricamente, é possível observar que a inclinação da tangente à curva em torno da raiz é muito próxima de zero, o que resulta em saltos minúsculos a cada iteração, causando uma convergencia lenta.

Iteração	Valor de x_k	f(x)	Erro e_k
1	x = 0.50000000000000000000000000000000000	f(x) = -0.99902343750000000	0.500000000000000000
2	x = 51.6499999999999858	f(x) = 135114904483913696	50.6499999999999858
3	x = 46.4849999999999999	f(x) = 47111654129711536	45.4849999999999943
4	x = 41.8365000000000000000000000000000000000000	f(x) = 16426818072478544	40.836500000000000091
5	x = 37.652850000000000082	f(x) = 5727677301318307	36.652850000000000082
:	i i	i i	÷
43	x = 1.00000000257760013	f(x) = 0.00000002577600156	0.00000000257760013
44	x = 1.0	f(x) = 0.0	0.0

Pontos de extremo

Outro fator que é um problema quando se trata de taxa de convergência são os pontos de máximo e mínimo da função. Quando uma iteração é iniciada perto de um ponto de máximo ou mínimo um dos problemas que podem ocorrer é a função de iteração convergir para um ponto de máximo ou mínimo ao invés da raiz. Oque pode causar uma diminuição na taxa de convergência.

Newton-Raphson Method: Root at x = 1.9333 Function: $x^{3} - x + \cos(\left(x \right))$

Newton-Raphson Absolute Error per Iteration

Figura 2.4: Cilada de ponto de Mínimo diminuindo a taxa de convergência.

Iteração	Valor de x_k	f(x)	Erro e_k
1	x = 0.90000000000000000000000000000000000	f(x) = 0.45060996827066446	2.05960580450169983
2	x = 0.20318738327105890	f(x) = 0.78462959591676906	1.36279318777275882
3	x = 0.93108680836493152	f(x) = 0.47305585213356149	2.09069261286663144
4	x = 0.33865524784873213	f(x) = 0.64338650465768399	1.49826105235043205
5	x = 0.98975277280548202	f(x) = 0.52871601875798535	2.14935857730718194
6	x = 0.51038365868141022	f(x) = 0.49512408543110442	1.66998946318311026
7	x = 1.21066335888968579	f(x) = 0.91621158441747408	2.37026916339138571
8	x = 0.83841140043105933	f(x) = 0.41958113044930967	1.99801720493275914
9	x = -0.31043606990472872	f(x) = 1.23271962647527022	0.84916973459697120
10	x = 2.73020451984058488	f(x) = 16.70421900417551697	3.88981032434228480
11	x = 1.93332993606072678	f(x) = 4.93835804267838796	3.09293574056242671

Em casos extremos, na vizinhança de um ponto de máximo ou mínimo, a intercessão da reta tangente de uma iteração pode coincidir com a coordenada da abscissa da iteração anterior, fazendo com que o método fique preso.

Newton-Raphson Method: Root at x = 0.0000 Function: $x^{3} - 2x + 2$

Newton-Raphson Absolute Error per Iteration

Figura 2.5: Cilada de ponto de Mínimo presa.

Iteração	Valor de x_k	f(x)	Erro e_k
1	x = 1.5000000000000000000000000000000000000	f(x) = 2.375000000000000000000000000000000000000	0.59455148154232651
2	x = 1.00000000000000000000000000000000000	f(x) = 1.00000000000000000000000000000000000	1.09455148154232651
3	x = 0.0000000000000000000000000000000000	f(x) = 2.00000000000000000000000000000000000	2.09455148154232651
4	x = 1.00000000000000000000000000000000000	f(x) = 1.00000000000000000000000000000000000	1.09455148154232651
5	x = 0.0000000000000000000000000000000000	f(x) = 2.00000000000000000000000000000000000	2.09455148154232651
:	:	:	:
100	x = 1.00000000000000000000000000000000000	f(x) = 1.00000000000000000000000000000000000	1.09455148154232651
101	x = 0.0000000000000000000000000000000000	f(x) = 2.00000000000000000000000000000000000	2.09455148154232651

Pontos de Inflexão

Pontos de inflexão também podem causar problemas no método de Newton. Se a raiz estiver próxima de um ponto de inflexão da função f(x), onde a derivada segunda muda de sinal, o método pode não convergir para a raiz desejada. Isso acontece porque a tangente à curva nesse ponto pode não fornecer uma boa aproximação da raiz, resultando em saltos grandes na iteração e afastando-a da raiz.

Newton-Raphson Method: Root at x = 8.6784Function: $\operatorname{atan}_{\left(x \right)}$

Newton-Raphson Absolute Error per Iteration

Figura 2.6: Cilada de ponto de Inflexão.

Ao analisar o gráfico é possivel notar que conforme as iterações avançam, a função se afasta da raiz, resultando em saltos cada vez maiores. Isso ocorre porque a tangente à

curva no ponto de inflexão não fornece uma boa aproximação da raiz, levando o método a divergir.

Iteração	Valor de x_k	f(x)	Erro e_k
1	x = 1.4499999999999999999999999999999999999	f(x) = 0.96704699339746025	1.4499999999999999
2	x = -1.55026329701562049	f(x) = -0.99790755802460773	1.55026329701562049
3	x = 1.84593175119723552	f(x) = 1.07432318743154331	1.84593175119723552
4	x = -2.88910905408613594	f(x) = -1.23757558204700402	2.88910905408613594
5	x = 8.67844942653632145	f(x) = 1.45607432393228908	8.67844942653632145

Derivada próxima de zero

Além disso, quando a derivada de uma iteração é muito próxima de zero, o metodo vai ter dificuldades em convergir. Isso ocorre porque a divisão por zero ou por um número muito pequeno pode resultar em saltos grandes na iteração, afastando-a da raiz.

Figura 2.7: Cilada de derivada próxima de zero.

Podemos perceber que a inclinação da tangente à curva em torno da raiz é muito próxima de zero, o que resulta em um salto enorme, levando a iteração para longe da raiz mais próxima.

Iteração	Valor de x_k	f(x)
1	x = 4.750000000000000000	f(x) = -0.04736567741932798
2	x = -11.97301255116330410	f(x) = -0.04486365737362013
3	x = -11.77429070649470333	f(x) = 0.00157340920400228
4	x = -11.78097664313937010	f(x) = -0.00000098775893849
5	x = -11.78097245096321544	f(x) = -0.0000000000035126
6	x = -11.78097245096172507	f(x) = -0.0000000000000000000000000000000000

Em suma, para evitar estes casos, além de analisar o comportamento da função, isto é, analisar pontos de máximo e minimo, derivadas nulas, pontos de inflexão e multiplicidade das raízes, é necessário escolher um bom chute inicial para x_0 , suficientemente perto da raiz e com uma inclinação da tangente que não seja muito pequena.

2.5 Método de Newton-Raphson N-dimensional

O método de Newton-Raphson Unidimensional tem o objetivo de encontrar soluções para zeros de funções em \mathbb{R} , mas pode ser estendido para resolver sistemas de equações não lineares em múltiplas variáveis. Um sistema de equações não lineares pode ser representado como:

HACK: Espaçamento entre os "..."ficou meio porco, se alguém souber como melhorar

$$\begin{cases} f_1(x_1, x_2, \dots, x_n) = 0 \\ f_2(x_1, x_2, \dots, x_n) = 0 \\ \vdots & \vdots \\ f_n(x_1, x_2, \dots, x_n) = 0 \end{cases}$$

onde f_i são as funções não lineares e x_i são as variáveis desconhecidas.

Podemos representar esse sistema de n variáveis como uma função $F:\mathbb{R}^n\to\mathbb{R}^n$, como

$$F((x_1, x_2, \dots, x_n)) = (f_1(x_1, x_2, \dots, x_n), f_2(x_1, x_2, \dots, x_n), \dots, f_n(x_1, x_2, \dots, x_n))^t$$

Esse sistema, de forma mais compacta, pode ser escrito na forma vetorial como F(X) = 0, onde F é uma função vetorial e X é um vetor de variáveis.

2.5.1 Definições

Durante a construção do método de Newton-Raphson unidimensional (2.4), definimos a função de iteração

$$\varphi(x) = x - A(x)f(x).$$

com isso achamos que a função A(x) que satisfazia $\varphi'(\xi) = 0$ é $A(x) = \frac{-1}{f'(x)}$ desde que $f'(x) \neq 0$. Portanto, a forma da função de iteração do método de Newton-Raphson é

$$\varphi(x) = x - \frac{f(x)}{f'(x)}.$$

Similarmente, para o caso n-dimensional, generalizamos a função de iteração como

$$G(\mathbf{x}) = x - A(x)^{-1}F(x)$$

em que A(x) é a matriz não singular que satisfaz $G'(\xi)=0$. A matriz A(x) pode ser representada como

$$A(x) = \begin{bmatrix} a_{11}(x) & a_{12}(x) & \dots & a_{1n}(x) \\ a_{21}(x) & a_{22}(x) & \dots & a_{2n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}(x) & a_{n2}(x) & \dots & a_{nn}(x) \end{bmatrix}$$
(2.14)

onde cada entrada $a_{ij}(x)$ é uma função de $\mathbb{R}^n \to \mathbb{R}$. Seja b_{ij} as entradas da matriz inversa $A^{-1}(x)$. As funções coordenadas $g_i(\mathbf{x})$ são da forma

$$g_i(\mathbf{x}) = x_i - \sum_{j=1}^n b_{ij}(x) f_j(x)$$
 (2.15)

e

$$\frac{\partial g_i(\mathbf{x})}{\partial x_k} = \delta_{ik} - \sum_{j=1}^n \left(\frac{\partial b_{ij}(x)}{\partial x_k} f_j(x) + b_{ij}(x) \frac{\partial f_j(x)}{\partial x_k} \right)$$
(2.16)

onde δ_{ik} é o delta de Kronecker, que é 1 se i=k e 0 caso contrário.

2.5.2 Calculo do Jacobiano

Método de Newton-Raphson N-dimensional.

Proposição 2.5.1. Seja p um ponto fixo de \mathbb{G} . Se existe um $\delta > 0$ tal que

i)
$$\frac{\partial g_i}{\partial x_j}$$
 é contínua em uma vizinhança $N_\delta = \{x \in \mathbb{R}^n : ||x-p|| < \delta\}$ para todo $i, j = 1, 2, \dots, n$

ii)
$$\frac{\partial^2 \mathbb{G}_i}{\partial x_i \partial x_k}$$
 é contínua e $\left| \frac{\partial^2 g_i(x)}{\partial x_j \partial x_k} \right| \leq M$

$$iii)$$
 $\frac{\partial g_i(p)}{\partial x_k} = 0$, para todo $i = 1, 2, \dots, n$

Então existe $\bar{\delta} \leq \delta$ de tal forma que a sequência gerada por $x_{k+1} = \mathbb{G}(x_k)$ converge para \mathbf{p} de forma quadrática, para qualquer escolha de x_0 que satisfaz $||x_0 - \mathbf{p}|| \leq \bar{\delta}$

A demonstração é análoga à do Teorema 2.4.1, considerando a norma vetorial em \mathbb{R}^n e a definição de diferenciabilidade em múltiplas variáveis. E está descrita extensivamente em ref.

A partir de (2.16) vamos caracterizar a matriz A. Obseve que, de $\frac{\partial g_i(\mathbf{p})}{\partial x_k} = 0$ para todo $i = 1, 2, \dots, n$, temos que

$$0 = 1 - \sum_{j=1}^{n} \left(b_{ij}(\mathbf{p}) \frac{\partial f_j(\mathbf{p})}{\partial x_i} \right) \quad \text{para i} = k$$
 (2.17)

e

$$0 = -\sum_{j=1}^{n} \left(b_{ij}(\mathbf{p}) \frac{\partial f_j(\mathbf{p})}{\partial x_k} \right) \quad \text{para i} \neq k.$$
 (2.18)

Definimos a matriz Jacobiana J de F como

$$J(\mathbf{p}) = \begin{bmatrix} \frac{\partial f_1(\mathbf{p})}{\partial x_1} & \frac{\partial f_1(\mathbf{p})}{\partial x_2} & \dots & \frac{\partial f_1(\mathbf{p})}{\partial x_n} \\ \frac{\partial f_2(\mathbf{p})}{\partial x_1} & \frac{\partial f_2(\mathbf{p})}{\partial x_2} & \dots & \frac{\partial f_2(\mathbf{p})}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n(\mathbf{p})}{\partial x_1} & \frac{\partial f_n(\mathbf{p})}{\partial x_2} & \dots & \frac{\partial f_n(\mathbf{p})}{\partial x_n} \end{bmatrix}$$
(2.19)

As condições 2.17 e 2.18 implicam que

$$A(\mathbf{p})^{-1}J(\mathbf{p}) = I$$

$$A(\mathbf{p})A(\mathbf{p})^{-1}J(\mathbf{p}) = A(\mathbf{p})I$$

$$IJ(\mathbf{p}) = A(\mathbf{p})$$

$$J(\mathbf{p}) = A(\mathbf{p})$$

Portanto, uma escolha natural para A(x) é a matriz Jacobiana J(x) de F. Assim, a função de iteração do método de Newton-Raphson n-dimensional é dada por

$$G(\mathbf{x}) = x - J(x)^{-1} F(x).$$
 (2.20)

O método de Newton-Raphson n-dimensional (ou **método de Newton-Raphson para** sistemas não lineares) pode ser implementado iterativamente como

$$x_{k+1} = x_k - J(x_k)^{-1} F(x_k)$$
(2.21)

onde \mathbf{x}_k é a aproximação atual da solução, $J(x_k)$ é a matriz Jacobiana avaliada em x_k , e $F(\mathbf{x}_k)$ é o vetor de funções avaliado em x_k . É esperado que a sequência $\{x_k\}$ convirja, **quadraticamente**, para a solução do sistema de equações não lineares, desde que o chute inicial x_0 esteja suficientemente próximo da solução e que a matriz Jacobiana avaliada em $J(x_k)$ seja invertível nesse ponto.

Exemplo

Considere o sistema de equações não lineares:

$$\begin{cases} x^2 + y^2 - 4 = 0 \\ x^2 - y - 1 = 0 \end{cases}$$

Podemos definir a função $F: \mathbb{R}^2 \to \mathbb{R}^2$ como

$$F((x,y)) = \begin{bmatrix} x^2 + y^2 - 4 \\ x^2 - y - 1 \end{bmatrix}$$

A matriz Jacobiana J(x,y) de F é dada por

$$J((x,y)) = \begin{bmatrix} \frac{\partial(x^2 + y^2 - 4)}{\partial x} & \frac{\partial(x^2 + y^2 - 4)}{\partial y} \\ \frac{\partial(x^2 - y - 1)}{\partial x} & \frac{\partial(x^2 - y - 1)}{\partial y} \end{bmatrix}$$

$$J((x,y)) = \begin{bmatrix} 2x & 2y \\ 2x & -1 \end{bmatrix}$$

A iteração do método de Newton-Raphson n-dimensional é então dada por

$$\begin{bmatrix} x_{k+1} \\ y_{k+1} \end{bmatrix} = \begin{bmatrix} x_k \\ y_k \end{bmatrix} - J((x_k, y_k))^{-1} F((x_k, y_k))$$

$$= \begin{bmatrix} x_k \\ y_k \end{bmatrix} - \begin{bmatrix} 2x_k & 2y_k \\ 2x_k & -1 \end{bmatrix}^{-1} \begin{bmatrix} x_k^2 + y_k^2 - 4 \\ x_k^2 - y_k - 1 \end{bmatrix}$$

$$= \begin{bmatrix} x_k \\ y_k \end{bmatrix} - \frac{1}{-2x_k - 4x_k y_k} \begin{bmatrix} -1 & -2y_k \\ -2x_k & 2x_k \end{bmatrix} \begin{bmatrix} x_k^2 + y_k - 4 \\ x_k^2 - y_k - 1 \end{bmatrix}$$

Vamos escolher um chute inicial $(x_0,y_0)=(2,1)$ e aplicar o método iterativamente:

Iteração	x_k	y_k
0	2.000000000000000000	1.0000000000000000000000000000000000000
1	1.500000000000000000	0.250000000000000000
2	1.3095238095238095	0.7142857142857143
3	1.2727272727272727	0.61818181818182
4	1.2679491924311228	0.6180339887498950
5	1.2679491924311228	0.6180339887498950

Após algumas iterações, o método converge para a solução aproximada $(x,y) \approx (1.2679491924311228, 0.618033988749895)$, que satisfaz o sistema de equações não lineares.

@EnzoR: @LucasM, por favor, verifique se era assim que você desejava.

Computacionalmente não é interessante fazer o cálculo da inversa da matriz Jacobiana, então podemos reescrever a sequência iterativa (2.21) criando uma variável auxiliar

$$\gamma = -J(x_k)^{-1} F(x_k)$$
$$J(x_k)\gamma = J(x_k)J(x_k)^{-1} F(x_k)$$
$$J(x_k)\gamma = -F(x_k)$$

Subistituindo γ em (2.21) temos

$$x_{k+1} = x_k + \gamma$$

2.5.3 Fractais de Newton

A aplicação do método de Newton para os pontos do ${\it Plano~Complexo}$ gera os Fractais de Newton.

Figura 2.8: Plano Complexo

Figura 2.9: Propriedades dos Números Complexos

O método de Newton-Raphson no plano complexo é aplicado a funções complexas $f: \mathbb{C} \to \mathbb{C}$. A fórmula de iteração é semelhante à do caso real, mas agora z é um número complexo:

$$z_{n+1} = z_n - \frac{f(z_n)}{f'(z_n)}$$

onde z_n é a aproximação atual, $f(z_n)$ é o valor da função no ponto z_n , e $f'(z_n)$ é a derivada da função no ponto z_n .

A ideia básica para gerar um fractal de Newton é aplicar o método de Newton-Raphson a cada ponto em uma região do plano complexo e colorir o ponto com base na raiz para a qual ele converge e o número de iterações que levou para convergir. Se um ponto não convergir para nenhuma raiz dentro da tolerância estabelecida, ele é colorido de uma forma diferente. Nos gráficos utilizados nessa seção, quanto mais escura uma cor, mais tempo levou para convergir, e preto indica que não convergiu.

Figura 2.10: Fractais de Newton – 2 Unidades da raiz.

Figura 2.11: Fractais de Newton - 3 Unidades da raiz.

Figura 2.12: Fractais de Newton - 4 Unidades da raiz.

Figura 2.13: Fractais de Newton - 5 Unidades da raiz.

Figura 2.14: Fractais de Newton - 8 Unidades da raiz.

Figura 2.15: Fractais de Newton - 20 Unidades da raiz.

Figura 2.16: Fractais de Newton - Polinomio ABCD.

Figura 2.17: Fractais de Newton - Polinomio ABCD.

Figura 2.18: Fractais de Newton - Polinomio ABCD.

Figura 2.19: Fractais de Newton - Polinomio ABCD.

2.6 Aplicações

O método de Newton-Raphson é amplamente utilizado em diversas áreas da ciência e engenharia devido à sua eficiência e rapidez na convergência para soluções de equações não lineares. Algumas das principais aplicações incluem:

• Engenharia Elétrica: Utilizado para análise de fluxo de carga em sistemas de energia elétrica, ajudando a determinar as tensões e correntes em diferentes pontos da rede.

- Mecânica Estrutural: Empregado na análise de estruturas não lineares, como pontes e edifícios, para calcular deformações e tensões sob cargas variadas.
- Economia: Aplicado na resolução de modelos econômicos complexos que envolvem múltiplas variáveis interdependentes, como equilíbrio geral e otimização de recursos.
- Ciência da Computação: Usado em algoritmos de aprendizado de máquina e otimização, especialmente em redes neurais para ajustar pesos e minimizar funções de custo.
- **Física:** Utilizado na simulação de sistemas físicos não lineares, como dinâmica de fluidos e mecânica quântica, para resolver equações diferenciais complexas.
- Química: Empregado na modelagem de reações químicas e equilíbrio químico, ajudando a prever concentrações de reagentes e produtos.

Referências Citadas

Como exemplo, citamos [1].

Referências Bibliográficas

[1] Márcia Aparecida Gomes Ruggiero and Vera Lúcia da Rocha Lopes. *Cálculo numérico:* aspectos teóricos e computacionais. Pearson/Makron, Sao Paulo, 1998.