Задача 1. НОД

Источник: базовая
Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Наибольшим общим делителем целых чисел A и B называется такое целое число D, что:

- D > 0;
- \bullet A и B делятся на D без остатка;
- D максимально при выполнении первых двух условий.

Заметим, что НОД существует всегда, кроме случая A = B = 0.

Требуется реализовать функцию, которая находит наибольший общий делитель двух чисел, и решить с её помощью тестовую задачу.

Функция должна иметь сигнатуру:

```
int gcd(int a, int b);
```

Функция gcd возвращает значени НОД для заданых чисел a и b.

Формат входных данных

Во входном файле записаны через пробел два целых числа A и B $(0 \le A, B \le 10^9, A + B > 0).$

Формат выходных данных

В выходной файл необходимо вывести одно целое число – наибольший общий делитель заданных чисел.

input.txt	output.txt
40 12	4

Задача 2. Сортировка вставками

Источник: базовая
Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 6 секунд
Ограничение по памяти: разумное

Требуется реализовать функцию, которая сортирует заданный массив методом простых вставок, и решить с её помощью тестовую задачу.

Функция должна иметь сигнатуру:

```
void ins_sort (int a[], int n);
```

Здесь a — имя массива целых чисел, a n — его длина.

Формат входных данных

В первой строке входного файла записано целое число N – длина последовательности (1 $\leq N \leq 10^5$).

В следующей строке через пробел записано N целых чисел. Все числа по модулю не превосходят $10^6.$

Формат выходных данных

В выходной файл необходимо вывести заданную последовательность в отсортированном по возрастанию виде. Числа выводить через пробел в одну строку.

input.txt	output.txt
5	-3 1 4 5 12
12 5 1 -3 4	

Задача 3. Таблица инверсий

Источник: базовая
Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Требуется реализовать функцию, которая для заданной перестановки строит соответствующую ей таблицу инверсий, и решить с её помощью тестовую задачу.

Функция должна иметь сигнатуру:

```
void permut_to_invtab (int a[], int b[], int n);
```

Здесь **a** — имя массива, содержащего перестановку, **n** — его длина, a **b** — имя массива, в который нужно записать построенную таблицу инверсий.

Формат входных данных

В первой строке входного файла записано целое число N — длина перестановки (1 $\leq N \leq 1000$) .

Во второй строке через пробел записаны различные натуральные числа $a_1, a_2, \dots a_N$, принимающие значения от 1 до N — перестановка.

Формат выходных данных

В выходной файл необходимо вывести через пробел N целых чисел, которые будут образовывать таблицу инверсий для заданной перестановки.

input.txt	output.txt
8	7 1 2 4 0 2 0 0
5 2 7 3 8 6 4 1	

Задача 4. Сортировка выбором

Источник: основная Имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 9 секунд Ограничение по памяти: разумное

Требуется реализовать функцию, которая сортирует заданный массив методом выбора, и решить с её помощью тестовую задачу.

Функция должна иметь сигнатуру:

```
void select_sort (int a[], int n);
```

Здесь a - имя массива целых чисел, а <math>n - его длина.

Формат входных данных

В первой строке входного файла записано целое число N – длина последовательности (1 $\leq N \leq 10^5$).

В следующей строке через пробел записано N целых чисел. Все числа по модулю не превосходят 10^6 .

Формат выходных данных

В выходной файл необходимо вывести заданную последовательность в отсортированном по возрастанию виде. Числа выводить через пробел в одну строку.

input.txt	output.txt
5	-3 1 4 5 12
12 5 1 -3 4	

Задача 5. Шейкер-сортировка

Источник: основная имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 14 секунд Ограничение по памяти: разумное

Требуется реализовать функцию, которая упорядочивает по возрастанию заданный массив методом шейкер-сортировки, и решить с её помощью тестовую задачу.

Функция должна иметь сигнатуру:

```
void shake_sort (int a[], int n);
```

Здесь а — имя массива целых чисел, а n — его длина.

Формат входных данных

В первой строке входного файла записано целое число N – длина последовательности (1 $\leq N \leq 10^5$).

В следующей строке через пробел записано N целых чисел. Все числа по модулю не превосходят $10^6.$

Формат выходных данных

В выходной файл необходимо вывести заданную последовательность в отсортированном по возрастанию виде. Числа выводить через пробел в одну строку.

input.txt	output.txt
5	-3 1 4 5 12
12 5 1 -3 4	

Задача 6. Восстановление перестановки

Источник: основная Имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 1 секунда Ограничение по памяти: разумное

Требуется реализовать функцию, которая по заданной таблице инверсий восстанавливает соответствующую ей перестановку, и решить с её помощью тестовую задачу.

Функция должна иметь сигнатуру:

```
int invtab_to_permut (int b[], int a[], int n);
```

Здесь b — имя массива, содержащего таблицу инверсий, n — его длина, a — имя массива, в который нужно записать восстановленную перестановку.

Функция возвращает 1, если восстановление прошло корректно, иначе она возвращает 0.

Формат входных данных

В первой строке входного файла записано целое число N — длина таблицы инверсий $(1\leqslant N\leqslant 10^3).$

Во второй строке через пробел записаны натуральные числа $a_1, a_2, \dots a_N$, принимающие значения в диапазоне от 0 до N-1, образующие таблицу инверсий.

Формат выходных данных

В выходной файл необходимо вывести соответствующую заданной таблице инверсий перестановку.

Если таблица инверсий задана некорректно, то вывести слово NO.

input.txt	output.txt
8	5 2 7 3 8 6 4 1
7 1 2 4 0 2 0 0	
3	NO
1 0 1	

Задача 7. Следующая по алфавиту перестановка

Источник: основная Имя входного файла: input.txt Имя выходного файла: output.txt Ограничение по времени: 1 секунда Ограничение по памяти: разумное

Требуется реализовать функцию, которая для заданной перестановки чисел от 1 до N строит следующую за ней по алфавиту перестановку, и решить с её помощью тестовую задачу.

Функция должна иметь сигнатуру:

```
void next_permut ( int a[], int n);
```

Здесь а — имя массива, содержащего перестановку, n — его длина.

Функция должна записать следующую по алфавиту перестановку в тот же массив, не используя дополнительной памяти. Если исходная перестановка — последняя по алфавиту, то следующей для нее будет первая по алфавиту.

Формат входных данных

В первой строке входного файла записано целое число N — длина перестановки $(1\leqslant N\leqslant 10^3).$

Во второй строке через пробел записаны различные натуральные числа $a_1, a_2, \dots a_N$, принимающие значения от 1 до N.

Формат выходных данных

В выходной файл необходимо вывести через пробел N заданных чисел, которые будут образовывать следующую по алфавиту перестановку для заданной.

input.txt	output.txt
8	5 2 7 4 1 3 6 8
5 2 7 3 8 6 4 1	

Задача 8. НОК

Источник: повышенной сложности

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Наименьшим общим кратным целых чисел A и B называется такое целое число M, что:

- M > 0,
- M делится на A и на B без остатка,
- М минимально при выполнении условий 1 и 2.

Требуется реализовать функцию, которая находит наименьшее общее кратное двух чисел, и решить с её помощью тестовую задачу.

Функция должна иметь сигнатуру:

```
long long lcm(long long a, long long b);
```

Функция 1ст возвращает значени НОК для заданых чисел а и b.

Замечание: Ответ к этой задаче может быть настолько большим, что не войдёт в переменную типа int. Используйте 64-битный тип следующим образом:

```
long long answer;
answer = 1000000000;
answer = answer * 1000000000;
printf("%lld", answer);
```

Формат входных данных

В первой строке входного файла записано число N — количество пар чисел $(1 \le N \le 5000)$.

В каждой из следующих N строк записано по два числа A_i и B_i ($1 \le A_i, B_i \le 10^9$).

Формат выходных данных

Каждая строка выходного файла должна содержать одно целое число – $HOK(A_i, B_i)$.

input.txt	output.txt
6	15
3 5	60
20 12	9999
1 9999	1109889
999 9999	225000
45000 75000	640000
1024 10000	

Задача 9. Функция

Источник: повышенной сложности

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Пусть P — множество целых чисел от 1 до N. Задано отношение R на множестве $P \times P$. Отношение задаётся списком принадлежащих ему элементов: множеством пар $(x,y) \in P \times P$. Для заданного отношения R требуется определить:

- 1. Является ли R функцией: $\forall x \in P$: $(x,u) \in R$ и $(x,v) \in R \Rightarrow u = v$ отсутствует многозначность.
- 2. Является ли R всюду определённой функцией: R является функцией и $\forall x \in N \; \exists \; y \mid (x,y) \in R$ значение определено на всём множестве P.
- 3. Является ли R инъекцией: $(x, u) \in R$ и $(y, u) \in R \Rightarrow x = y$.
- 4. Является ли R сюръекцией: $\forall u \in N \exists x \mid (x, u) \in R$.
- 5. Является ли R биекцией: отношение R и инъективно, и сюръективно.

Формат входных данных

Первая строка входного файла содержит два целых числа N и M, записанных через пробел – размер множества и количество пар $(1 \leqslant N \leqslant 300, 1 \leqslant M \leqslant N^2)$.

В следующих M строках записано по два целых числа x и y – элементы отношения $R(1 \leq x, y \leq N)$. Гарантируется, что все пары различны.

Формат выходных данных

Если отношение R не удовлетворяет ни одному из описанных свойств, то в выходной файл нужно вывести число 0.

В противном случае необходимо вывести через пробел номера свойств, которыми обладает отношение R, в порякде увеличения значений.

input.txt	output.txt
3 5	0
1 2	
3 3	
1 3	
1 1	
2 1	
5 2	1
1 3	
2 3	
5 2	1 3
1 3	
2 5	
3 3	1 2 3 4 5
1 1	
2 3	
3 2	

Задача 10. Бинарный поиск+

Источник: повышенной сложности

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда*
Ограничение по памяти: разумное

Требуется реализовать функцию, которая находит методом бинарного поиска элемент с заданным значением в отсортированном массиве, и решить с её помощью тестовую задачу.

Функция должна иметь сигнатуру:

```
int binsearch (int a[], int l, int r, int x);
```

Здесь a — имя массива целых чисел, 1 и r — индексы элементов, соответсвующие левой и правой границам поиска, x — значение искомого элемента.

Функция binsearch возвращает индекс элемента в массиве, равного \mathbf{x} . Если таких элементов несколько, то выдается самый правый индекс. Если элемент в массиве отсутствует, то функция выдает -1.

Формат входных данных

В первой строке записано одно целое число N — размер отсортированного массива $(1 \le N \le 10^5)$.

Далее записаны элементы массива A_i (N целых чисел, $|A_i| \leq 10^9$).

Затем записано целое число Q — количество запросов, которые нужно обработать $(1\leqslant Q\leqslant 10^5).$

В остальных Q строках записаны целые числа X_j , определяющие запросы на поиск.

Формат выходных данных

Каждый запрос нужно обрабатывать следующим образом. Сначала нужно прибавить к записанному в файле числу X_j ответ на предыдущий запрос R_{j-1} , получив $Y_j = X_j + R_{j-1}$. Затем нужно найти в массиве A элемент, равный Y_j : его индекс будет ответом R_j для этого запроса. Если таких элементов много, то в качестве ответа R_j следует выбрать самый большой индекс. Если таких элементов нет, то ответ R_j равен -1.

Элементы массива нумеруются индексами от 0 до N-1. Для первого запроса предыдущего ответа нет, так что полагаем $Y_0=X_0$.

Пример

input.txt	output.txt
10	1
1 1 3 4 4 7 8 10 10 12	2
10	-1
1	2
2	5
3	-1
4	-1
5	5
6	-1
7	-1
8	
9	
10	

Пояснение к примеру

Первый запрос: нужно найти значение $X_0 = Y_0 = 1$. Таких элементов два и они имеют индексы 0 и 1. В данной задаче нужно всегда выбирать максимальных индекс, если выбор есть, поэтому ответ A_0 равен 1.

Для следующего запроса задано число $X_1=2$. Прибавляем к нему предыдущий ответ $A_0=1$, и получаем число $Y_1=3$, которое нужно искать. Такой элемент есть в массиве под индексом 2, так что выводим ответ $A_1=2$.

Для следующего запроса указано $X_2=3$. Прибавляем предыдущий ответ $A_1=2$, и получаем, что нужно искать $Y_2=5$. Такого числа нет, так что выводим ответ $A_2=-1$.

Теперь рассмотрим запрос $X_3=4$. Сперва прибавляем предыдущий ответ $A_2=-1$, получаем число $Y_3=3$, которое нужно искать. Значит ответ $A_3=2$. И так далее...