

Feature-based Discriminative Classifiers

Making features from text for discriminative NLP models

Christopher Manning

Classifiers

- A classifier is a function f which assigns an input datum d to one of |C| classes, c ∈ C
- The classes might be:
 - {spam, notspam} for an email message
 - {politics, sports, finance, technology, arts, leisure, ...} for news
 - {we-are-coreferent, we-are-not-coreference}

for a coreference candidate mention pair

2

Example problem

- · Classify a capitalized proper noun as a class:
 - LOCATION, DRUG, PERSON
 - For a data example d
 - taking Zantac
- We work by considering each class c for the word:
 - (LOCATION, taking Zantac,)
 - (DRUG, taking Zantac,)
 - (PERSON, taking Zantac,)
- and using features to score each candidate classification

Features for a classifier

- Features f are elementary pieces of evidence that link aspects of what we observe d with a category c that we want to predict
- A feature is a function with a bounded real value: $f: C \times D \to \mathbb{R}$
 - Common special case:
 - binary features $f: C \times D \rightarrow \{0, 1\}$

Example features

- $f_1(c, d) = [c = \text{LOCATION } \land w_{-1} = \text{"in" } \land \text{ isCapitalized}(w)]$
- $f_2(c, d) = [c = \text{LOCATION } \land \text{hasAccentedLatinChar}(w)]$
- $f_3(c, d) = [c = DRUG \land ends(w, "c")]$ 1.8

-0.6 LOCATION in Québec

0.3 DRUG taking Zantac

PERSON saw Sue

- Models will assign to each feature a weight:
 - A positive weight votes that this configuration is likely correct
 - A negative weight votes that this configuration is likely incorrect

Features

- Very commonly, a feature specifies
 - an indicator function a yes/no boolean matching function of properties of the input and
 - a particular class

$$f_i(c, d) = [\Phi(d) \land c = c_i]$$
 [Value is 0 or 1]

• Each feature picks out a data subset and suggests a label for it

Feature-Based Models

 The decision about a data point is based only on the features active at that point.

Data BUSINESS: Stocks hit a yearly low ... Label: BUSINESS

Label: BUSINESS Features {..., stocks, hit, a, yearly, low, ...}

Text Categorization Data ... to restructure bank:MONEY debt.

Label: MONEY
Features $\{..., w_{-1} = \text{restructure}, w_{+1} = \text{debt}, \text{Leng} = 12,$

Word-Sense Disambiguation

Feature-Based Linear Classifiers

- Linear classifiers at classification time:
 - Linear function from feature sets $\{f_i\}$ to classes $\{c\}$.
 - Assign a weight λ_i to each feature f_i .
 - ullet We consider each class for an observed datum d
 - For a pair (c,d), features vote with their weights:
 - vote(c) = $\sum \lambda f_i(c,d)$

PERSON in Québec

LOCATION in Québec

DRUG in Québec

• Choose the class c which maximizes $\sum \lambda f_i(c,d)$

Feature-Based Linear Classifiers

- · Linear classifiers at classification time:
 - Linear function from feature sets {f_i} to classes {c}.
 - Assign a weight λ_i to each feature f_i .
 - \bullet We consider each class for an observed datum d
 - For a pair (*c*,*d*), features vote with their weights:

• vote(c) = $\sum \lambda_i f_i(c,d)$

PERSON in Québec

• Choose the class c which maximizes $\sum \lambda f(c,d) = \text{LOCATION}$

Feature-Based Linear Classifiers

There are many ways to chose weights for features

- Perceptron: find a currently misclassified example, and nudge weights in the direction that corrects classification
- Margin-based methods (Support Vector Machines)
- Maximum entropy models ("softmax regression"; roughly logistic regression), which we will look at next

Feature-based Discriminative Classifiers

Making features from text for discriminative NLP models

Feature-based Linear Classifiers

How to put features into a classifier

Feature-Based Linear Classifiers

- Linear classifiers are a linear function from feature sets $\{f_i\}$ to classes $\{c\}$
- At test time, we consider each class \boldsymbol{c} for a datum \boldsymbol{d}
 - We generate a feature set $\{f_i\}$ for an observed datum-class pair (c,d)
 - Each feature f_i has a weight λ_i
 - We then score each possible class assignment: $vote(c) = \sum \lambda f(c,d)$
 - We choose the class c which maximizes $\sum \lambda f(c,d)$
- At training time we have observed (c,d) pairs from labeled examples
 - We generate sets of features $\{f_i(c,d)\}\$ for them
 - We use information about what features occur and don't occur to set a weight λ_i for each feature

Example features

- $f_1(c, d) = [c = \text{LOCATION } \land w_{-1} = \text{"in" } \land \text{ isCapitalized}(w)]$
- $f_2(c, d) = [c = \text{LOCATION } \land \text{hasAccentedLatinChar}(w)]$
- $f_3(c, d) = [c = DRUG \land ends(w, "c")]$

PERSON Saw Sue

Feature-Based Linear Classifiers

- Maxent (softmax, multiclass logistic, exponential, conditional log-linear, Gibbs) models:
 - Make a probabilistic model from the linear combination $\Sigma \lambda_f(c,d)$

$$P(c \mid d, \lambda) = \frac{\exp \sum_{i} \lambda_{i} f_{i}(c, d)}{\sum_{i} \exp \sum_{i} \lambda_{i} f_{i}(c', d)} \underbrace{\qquad \qquad \text{Makes votes positive}}_{\text{Normalizes votes}}$$

- $P(LOCATION|in\ Qu\'ebec) = e^{1.8}e^{-0.6}/(e^{1.8}e^{-0.6} + e^{0.3} + e^0) = 0.586$
- P(DRUG|in Québec) = $e^{0.3}/(e^{1.8}e^{-0.6} + e^{0.3} + e^{0}) = 0.238$
- $P(PERSON|in\ Qu\'ebec) = e^0/(e^{1.8}e^{-0.6} + e^{0.3} + e^0) = 0.176$
- The weights are the parameters of the probability model, combined via a "soft max" function

Feature-Based Linear Classifiers

- Maxent models:
 - Given this model form, we choose parameters $\{\lambda_i\}$ that maximize the conditional likelihood of the data according to this model (as discussed later)
 - We construct not only classifications, but probability distributions over classifications.
 - There are other (good!) ways of discriminating classes SVMs, boosting, even perceptrons – but these methods are not as trivial to interpret as distributions over classes.

Feature Expectations

- We will crucially make use of two expectations
 - actual or predicted counts of a feature firing:
 - Empirical count (expectation) of a feature: $\text{empirical } E(f_i) = \sum_{(c,d) \in \text{observed}(C,D)} f_i(c,d)$
 - Model expectation of a feature:

$$E(f_i) = \sum_{(c,d) \in (C,D)} P(c,d) f_i(c,d)$$

Building a Maxent Model

- We define features (indicator functions) over data points
 - Features represent sets of data points which are distinctive enough to deserve model parameters.
 - Words, but also "word contains number", "word ends with ing", POS, syntactic structure, relation between two phrases, etc.
- We might simply encode each Φ feature as a unique String
 - A datum will give rise to a set of Strings: the active $\boldsymbol{\Phi}$ features
 - Each feature $f_{i}\!(c,\,d) = [\Phi(d) \ \mathbf{\Lambda} \ c = c_{j}]$ gets a real number weight
- We concentrate on Φ features but the math uses i indices of f_i

Building a Maxent Model

- Features are normally added in big batches via feature templates
 - E.g., one feature template adds $\forall i,j$ observed: lastWord= $\mathbf{w_i} \wedge c = c_j$
 - Another is: nextWord= $\mathbf{w}_i \wedge c = c_i$. Each may add tens of thousands of features
- A model may be specified by the set of feature templates used
- Features are often added during model development to target errors
 - Often, the easiest thing to think of are features that mark bad combinations

Maxent Models and Discriminative Estimation

Generative vs. Discriminative models

Christopher Manning

Introduction

- So far we've mainly looked at "generative models"
 - · Language models, IBM alignment models, PCFGs
- But there is much use of conditional or discriminative models in NLP, Speech, IR, and ML generally
- Because:
 - They give high accuracy performance
 - $\bullet\;$ They make it easy to incorporate lots of linguistically important features
 - They allow automatic building of language independent, retargetable NLP modules

Joint vs. Conditional Models

- We have some data {(d, c)} of paired observations d and hidden classes c.
- Joint (generative) models place probabilities over both observed data and the hidden stuff
- P(c,d)
- They generate the observed data from the hidden stuff
- All the classic StatNLP models:
 - n-gram models, Naive Bayes classifiers, hidden Markov models, probabilistic context-free grammars, IBM machine translation alignment models

Joint vs. Conditional Models

- Discriminative (conditional) models take the data as given, and put a probability/score over hidden structure given the data:
- P(c|d)
- Logistic regression, conditional loglinear or maximum entropy models, conditional random fields
- Also, SVMs, (averaged) perceptron, etc. are discriminative classifiers (but not directly probabilistic)

Conditional vs. Joint Likelihood

- A *joint* model gives probabilities $P(d,c) = P(c)P(d \mid c)$ and tries to maximize this joint likelihood.
 - It ends up trivial to choose weights: just count! (relative frequencies)
- A conditional model gives probabilities P(c|d). It takes the data as given and models only the conditional probability of the class.
 - We seek to maximize conditional likelihood.
 - Harder to do (as we'll see...)
 - More closely related to classification error.

Conditional models work well: **Word Sense Disambiguation**

Training Set	
Objective	Accuracy
Joint Like.	86.8
Cond. Like.	98.5

Test Set	
Objective	Accuracy
Joint Like.	73.6
Cond. Like.	76.1

(Klein and Manning 2002, using Senseval-1 Data)

Even with exactly the same features, changing from ioint to conditional estimation increases performance

That is, we use the same smoothing, and the same word-class features, we just change the numbers

Maxent Models and Discriminative **Estimation**

Maximizing the likelihood

Exponential Model Likelihood

- Maximum (Conditional) Likelihood Models:
- Given a model form, we choose values of parameters λ_i to maximize the (conditional) likelihood of the data.
- For any given feature weights, we can calculate:
 - · Data conditional likelihood

• Data conditional likelihood
$$\begin{aligned} \bullet & \text{ Derivative of the likelihood wrt each feature weight} \\ \log P(C \mid D, \lambda) &= \sum_{(c,d) \in (C,D)} \log P(c \mid d, \lambda) = \sum_{(c,d) \in (C,D)} \log \frac{\exp \sum_i \lambda_i f_i(c,d)}{\sum_{c'} \exp \sum_i \lambda_i f_i(c',d)} \end{aligned}$$

The Likelihood Value

The (log) conditional likelihood of iid* data (C,D) according to a maxent model is a function of the data and the parameters λ :

$$\log P(C \mid D, \lambda) = \log \prod_{(c,d) \in (C,D)} P(c \mid d, \lambda) = \sum_{(c,d) \in (C,D)} \log P(c \mid d, \lambda)$$

If there aren't many values of c, it's easy to

te:
$$\log P(C \mid D, \lambda) = \sum_{(c, d) \in (C, D)} \log \frac{\exp \sum_{i} \lambda_{i} f_{i}(c, d)}{\sum_{i} \exp \sum_{i} \lambda_{i} f_{i}(c', d)}$$

The Likelihood Value

• We can separate this into two components:

$$\begin{split} \log P(C \mid D, \lambda) &= \sum_{(c, d) \in C, D} \log \exp \sum_i \lambda_i f_i(c, d) - \sum_{(c, d) \in C, D} \log \sum_c \exp \sum_i \lambda_i f_i(c', d) \\ &\log P(C \mid D, \lambda) = N(\lambda) - M(\lambda) \end{split}$$

- We can maximize it by finding where the derivative is 0
- The derivative is the difference between the derivatives of each component

 $(c,d) \exists (C,D)$

Derivative of the numerator is: the empirical count ($f_{i'}$ c)

The Derivative II: Denominator

$$\frac{\partial M(\lambda)}{\partial \lambda_{i}} = \frac{\partial}{\partial c_{s,d} \boxtimes (c,d)} \frac{\log \sum_{c'} \exp \sum_{i} \lambda_{i} f_{i}(c',d)}{\partial \lambda_{i}}$$

$$= \frac{1}{\sum_{(c,d) \boxtimes (c,D)} \sum_{j} \exp \sum_{i} \lambda_{i} f_{i}(c'',d)} \frac{\partial \sum_{c'} \exp \sum_{j} \lambda_{i} f_{i}(c',d)}{\partial \lambda_{i}}$$

$$= -\frac{1}{\sum_{(c,d) \boxtimes (c,D)} \sum_{j} \exp \sum_{j} \lambda_{i} f_{i}(c'',d)} \frac{\partial \sum_{c'} \exp \sum_{j} \lambda_{i} f_{i}(c',d)}{\partial \lambda_{i}} \frac{\partial \sum_{j} \lambda_{i} f_{i}(c',d)}{\partial \lambda_{i}}$$

$$= -\frac{\exp \sum_{i} \lambda_{i} f_{i}(c',d)}{\sum_{c'} \exp \sum_{j} \lambda_{i} f_{i}(c'',d)} \frac{\partial \sum_{j} \lambda_{i} f_{i}(c',d)}{\partial \lambda_{i}}$$

$$= -\frac{\exp \sum_{i} \lambda_{i} f_{i}(c'',d)}{\sum_{c'} \exp \sum_{j} \lambda_{i} f_{i}(c'',d)} \frac{\partial \sum_{j} \lambda_{i} f_{i}(c',d)}{\partial \lambda_{i}}$$

$$= -\frac{\exp \sum_{i} \lambda_{i} f_{i}(c'',d)}{\sum_{c'} \exp \sum_{j} \lambda_{i} f_{i}(c'',d)} \frac{\partial \sum_{j} \lambda_{i} f_{i}(c',d)}{\partial \lambda_{i}}$$

$$= -\frac{\exp \sum_{i} \lambda_{i} f_{i}(c'',d)}{\sum_{c'} \exp \sum_{j} \lambda_{i} f_{i}(c'',d)} \frac{\partial \sum_{j} \lambda_{i} f_{i}(c',d)}{\partial \lambda_{i}}$$

$$= -\frac{\exp \sum_{i} \lambda_{i} f_{i}(c'',d)}{\sum_{i} \exp \sum_{j} \lambda_{i} f_{i}(c'',d)} \frac{\partial \sum_{j} \lambda_{i} f_{i}(c',d)}{\partial \lambda_{i}}$$

$$= -\frac{\exp \sum_{i} \lambda_{i} f_{i}(c'',d)}{\sum_{i} \exp \sum_{j} \lambda_{i} f_{i}(c'',d)} \frac{\partial \sum_{j} \lambda_{i} f_{i}(c',d)}{\partial \lambda_{i}}$$

$$= -\frac{\exp \sum_{i} \lambda_{i} f_{i}(c'',d)}{\sum_{i} \exp \sum_{j} \lambda_{i} f_{i}(c'',d)} \frac{\partial \sum_{j} \lambda_{i} f_{i}(c',d)}{\partial \lambda_{i}}$$

$$= -\frac{\exp \sum_{i} \lambda_{i} f_{i}(c'',d)}{\sum_{i} \exp \sum_{j} \lambda_{i} f_{i}(c'',d)} \frac{\partial \sum_{j} \lambda_{i} f_{i}(c',d)}{\partial \lambda_{i}}$$

$$= -\frac{\exp \sum_{i} \lambda_{i} f_{i}(c'',d)}{\sum_{i} \exp \sum_{j} \lambda_{i} f_{i}(c'',d)}$$

$$= -\frac{\exp \sum_{i} \lambda_{i} f_{i}(c'',d)}{\sum_{i} \exp \sum_{j} \lambda_{i} f_{i}(c'',d)}$$

$$= -\frac{\exp \sum_{i} \lambda_{i} f_{i}(c'',d)}{\sum_{i} \exp \sum_{j} \lambda_{i} f_{i}(c'',d)}$$

$$= -\frac{\exp \sum_{i} \lambda_{i} f_{i}(c'',d)}{\sum_{i} \exp \sum_{j} \lambda_{i} f_{i}(c'',d)}$$

$$= -\frac{\exp \sum_{i} \lambda_{i} f_{i}(c'',d)}{\sum_{i} \exp \sum_{j} \sum_{i} \exp \sum_{j} \lambda_{i} f_{i}(c'',d)}$$

S NLP

The Derivative III

 $\frac{\partial \log P(C \mid D, \lambda)}{\partial \lambda_i} = \text{actual count}(f_i, C) - \text{predicted count}(f_i, \lambda)$

- The optimum parameters are the ones for which each feature's predicted expectation equals its empirical expectation. The optimum distribution is:
 - Always unique (but parameters may not be unique)
 - Always dringue (but parameters may not be dringue)
 Always exists (if feature counts are from actual data).
- These models are also called maximum entropy models because we find the model having maximum entropy and satisfying the constraints: $E_p(f_j) = E_{\widetilde{p}}(f_j), \forall j$

Finding the optimal parameters

• We want to choose parameters λ_1 , λ_2 , λ_3 , ... that maximize the conditional log-likelihood of the training data

$$CLogLik(D) = \sum_{i=1}^{n} \log P(c_i \mid d_i)$$

 To be able to do that, we've worked out how to calculate the function value and its partial derivatives (its gradient)

Finding the optimal parameters

- Use your favorite numerical optimization package....
 - Commonly (and in our code), you minimize the negative of CLogLik
 - 1. Gradient descent (GD); Stochastic gradient descent (SGD)
 - 2. Iterative proportional fitting methods: Generalized Iterative Scaling (GIS) and Improved Iterative Scaling (IIS)
 - 3. Conjugate gradient (CG), perhaps with preconditioning
 - Quasi-Newton methods limited memory variable metric (LMVM) methods, in particular, L-BFGS