Why SSD developers need pynyme? and why pynyme needs SPDK?

https://github.com/cranechu/pynvme

back Data Center SSDs		×	
Intel® SSD D3-S4610 Series	Intel® SSD DC S3100 Series	Intel® SSD D5-P4326 Series	
Intel® SSD DC S4600 Series	Intel® Optane™ SSD DC P4801X Series	Intel® SSD D5-P4320 Series	
Intel® SSD D3-S4510 Series	Intel® Optane™ SSD DC P4800X Series	Intel® SSD DC P4101 Series	
Intel® SSD DC S4500 Series	Intel® SSD DC P4618 Series	Intel® SSD DC P3700 Series	
Intel® SSD DC S3710 Series	Intel® SSD DC P4610 Series	Intel® SSD DC P3608 Series	
Intel® SSD DC S3700 Series	Intel® SSD DC P4608 Series	Intel® SSD DC P3600 Series	
Intel® SSD DC S3610 Series	Intel® SSD DC P4600 Series	Intel® SSD DC P3520 Series	
Intel® SSD DC S3520 Series	Intel® SSD DC P4511 Series	Intel® SSD DC P3500 Series	
Intel® SSD DC S3510 Series	Intel® SSD DC P4510 Series	Intel® SSD DC P3100 Series	
Intel® SSD DC S3500 Series	Intel® SSD DC P4501 Series	Intel® Optane™ SSD DC D4800X Series	

Intel® SSD DC P4500 Series

Intel® SSD D5-P4420 Series

Intel® SSD DC S3320 Series

Intel® SSD DC S3110 Series

Intel® SSD DC D3700 Series

Intel® SSD DC D3600 Series

NVMe spec:

- 1.0e (Jan. 2013)
- 1.1b (July 2014)
- 1.2 (Nov. 2014)
 - 1.2a (Oct. 2015)
 - 1.2b (June 2016)
 - 1.2.1 (June 2016)
- 1.3 (May 2017)
 - 1.3a (Oct. 2017)
 - 1.3b (May 2018)
 - 1.3c (May 2018)
 - 1.3d (March 2019)
- 1.4 (June 2019)

Agile and TDD

- Challenge
 - NAND is changing
 - Applications and specifications are changing
 - Diversity on NAND and controllers
- SSD development should be ...
 - fast iteration
 - customer-oriented
 - open to change
- Waterfall v.s. Agile
 - Test-driven development (TDD)

Test Driver

- Embedded devices provide very limited resources
- We need A test-dedicated NVMe driver in host platforms:
 - exports device's features to host
 - exports device's flaws to host
 - exports device's performance to host
 - friendly to test script development
 - friendly to firmware debug
 - friendly to Cl

Existed Tools

	tnvme	DM	fio	*Marks
feature	$\sqrt{}$	V	×	×
performance	×	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
scripts	$\sqrt{}$	×	V	×
debug	×	$\sqrt{}$	×	×
CI	$\sqrt{}$	×	V	×
driver	dnvme	OFA	Linux	Windows

pynvme

The pynvme is a python extension module. Users can operate NVMe SSD intuitively in Python scripts. It is designed for NVMe SSD testing with performance considered. Integrated with third-party tools, vscode and pytest, pynvme provides a convenient and professional solution to test NVMe devices.

Why SPDK?

- ✓ user space:
 - easy for debugging
 - maintainness
- ✓ well modularized:
 - jsonrpc: for the vscode plugin
 - memzone: share memory between processers
 - crc32
- ✓ best performance:
 - test efficiency
 - stress test
- ✓ open and active
 - SSD, NVMe, NAND are all keeping changing!

Pynvme is based on SPDK/DPDK

 $\overline{11}$

Pynvme Architecture

Build python library with Cython:

12

- setup.py
- driver.c
- driver.h
- cdriver.pxd
- driver wrap.pyx
- Makefile

<date/time> <footer>

Pynvme Architecture

Organize test cases in pytest:

13

- mvme.so
- pytest.ini
- conftest.py
- driver test.py

<date/time> <footer>

Pynvme Architecture

14

IOWorker

Why Python?

- Many beautiful and mature libraries
 - Cython
 - ✓ pytest
 - ✓ logging
 - ✓ multiprocessing
 - ✓ pydoc, os, io, time, pytemperature, statistics, yaml, json, struct, matplotlib, ...
- ✓ Friendly to test script development
 - VSCode, Emacs, Pycharm, ...
- ✓ Friendly to CI: develop firmware softly

pipeline passed

Introducing software methodologies, processes and tools to firmware.

Pytest Execution

- "The pytest framework makes it easy to write small tests, yet scales to support complex functional testing for applications and libraries."
- "pytest fixtures offer dramatic improvements over the classic xUnit style of setup/teardown functions"
- use "make test" to start pytest sessions
 - make test
 - make test TESTS=scripts
 - make test TESTS=scripts/demo test.py
 - make test TESTS=scripts/utility_test.py::test_download_firmware
- find test logs in test.log

Fixtures of pynvme

- create/delete test objects. in conftest.py:
 - nvme0
 - nvme0n1
 - pcie
 - ...
- parametrize of tests
 - @pytest.mark.parametrize("qcount", [1, 2, 4, 8, 15])
 - @pytest.mark.parametrize("repeat", range(10))
- test control
 - @pytest.mark.skip("nvme over tcp")
- doc: https://docs.pytest.org/en/latest/fixture.html

Visual Studio Code

X

- VSCode is <u>the most popular IDE</u>.
 - root user is not recommended by vscode, so users need to run sudo without a password: sudo visudo
- Pynvme also providers an extension to monitor device status and cmdlog of every qpair, via jsonrpc. To install the extension:
 - code --install-extension pynvme-console-1.x.x.vsix
- Add DUT pci address to .vscode/settings.json
 - get the BDF address with Ispci
- make setup; code . # launch the vscode

直

pynvme goes to 1.x

23

Thanks!

