ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук Департамент программной инженерии

СОГЛАСОВАНО

УТВЕРЖДАЮ

	Аналитик-разработчик АО «Тинькофф банк»	Академический руководитель образовательной программы «Программная инженерия» профессор департамента программной инженерии, канд. техн. наук
	Весельев А.Н.	В. В. Шилов
Подп. и дата	«» 2020 г. Модуль для мовильных при	«» 2020 г. пложений для определения
Инв. № дубл.	ЭМОЦИОНАЛЬНОГО ОТКЛИКА ПО Пояснительн	
	ЛИСТ УТВЕ	РЖДЕНИЯ
B3am. MHB. Nº	RU.17701729.04	1.06-01 34 01-1
Подп. и дата		
Инв. № подл		Исполнитель: студент группы БПИ 199
		Д.А. Щербаков «» 2020 г.

Аннотация

Данный документ содержит пояснительную записку к модулю «Facial Expression Recognition Mobile Library» («Модуль для мобильных приложений для определения эмоционального отклика по изображению пользователя»). Модуль служит для определения эмоций человека по изображению его лица, в том числе в режиме реального времени (например, по изображению с камеры). В разделе «Введение» текущего документа указано наименование программы и документы, на основании которых ведется разработка. Раздел «Назначение и область применения» содержит функциональное и эксплуатационное назначение ПО и краткую характеристику области применения. Раздел «Технические характеристикии» описывает постановку задачи на разработку, описание алгоритмов и схему функционирования программы, методы организации входных и выходных данных, состав технических и программых средств и обоснование выбора алгоритма, метода организации ввода и вывода и состава технических средств. В разделе «Технико-экономические показатели» отражены предполагаемая потребность и экономические преимущества разработки в сравнении с аналогами. Настоящий документ разработан в соответствии с требованиями:

- 1. ГОСТ 19.101-77 Виды программ и программных документов [1];
- 2. ГОСТ 19.103-77 Обозначения программ и программных документов [2];
- 3. ГОСТ 19.102-77 Стадии разработки [3];
- 4. ГОСТ 19.104-78 Основные надписи [4];
- 5. ГОСТ 19.105-78 Общие требования к программным документам [5];
- 6. ГОСТ 19.106-78 Требования к программным документам, выполненным печатным способом [6];
- 7. ГОСТ 19.404-79 Пояснительная записка. Требования к содержанию и оформлению [7].

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.06-01 34 01-1				
Инв. № подл.	Подп. и дата	Взам. инв. №	Инв. № дубл.	Подп. и дата

Содержание

1	Вве	Введение					
	1.1	Наиме	енование программы	4			
	1.2	Докум	иенты, на основании которых ведется разработка	4			
2	Has	вначен	ие и область применения	5			
	2.1	Назна	чение программы	5			
		2.1.1	Функциональное назначение	5			
		2.1.2	Эксплуатационное назначение	5			
		2.1.3	Область применения	5			
3	Tex	ничесі	кие характеристики	6			
	3.1	Поста	новка задачи на разработку программы и программного модуля	6			
	3.2	Описа	ние алгоритмов и функционирования программного модуля	6			
		3.2.1	Описание алгоритмов программного модуля	6			
		3.2.2	Обоснование выбора алгоритмов программного модуля	7			
		3.2.3	Описание схемы функционирования программного модуля	8			
	3.3	Описа	ние и обоснование выбора метода организации входных и выходных				
		данны	IX	9			
		3.3.1	Описание метода организации входных и выходных данных	9			
		3.3.2	Обоснование выбора метода организации входных и выходных дан-				
			ных	9			
		3.3.3	Состав технических и программных средств	9			
	3.4	Описа	ние и обоснование выбора состава технических и программных средст	В			
4	Tex	нико-з	окономические показатели	10			
	4.1	Предп	полагаемая потребность	10			
	4.2	Эконо	мические преимущества разработки и аналоги	10			
Cı	писо	к исто	чников	11			
П	рило	жение	\mathbf{A}	12			
Π	рило	жение	e B	13			

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.06-01 34 01-1				
Инв. № подл.	Подп. и дата	Взам. инв. №	Инв. № дубл.	Подп. и дата

1 Введение

1.1 Наименование программы

Наименование программы: «Модуль для мобильных приложений для определения эмоционального отклика по изображению пользователя». Краткое наименование – «facialExpressionRecognitionLib».

1.2 Документы, на основании которых ведется разработка

Основанием для разработки является учебный план подготовки бакалавров по направлению 09.03.04 «Программная инженерия» и утвержденная академическим руководителем тема курсового проекта «Модуль для мобильных приложений для определения эмоционального отклика по изображению пользователя».

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.06-01 34 01-1				
Инв. № подл.	Подп. и дата	Взам. инв. №	Инв. № дубл.	Подп. и дата

2 Назначение и область применения

2.1 Назначение программы

2.1.1 Функциональное назначение

Модуль позволяет определить эмоции человека на изображении по заданной шкале эмоций.

Прилагаемый к модулю пример эксплуатации позволяет определять эмоциональный отклик на различные записи в социальной сети «Reddit» с помощью данных с камеры пользователя.

2.1.2 Эксплуатационное назначение

Модуль и пример использования должны эксплуатироваться на смартфонах под управлением операционной системы Android.

2.1.3 Область применения

Программа может быть использована в мобильных приложениях для Android в качестве аналитического модуля для улучшения пользовательского опыта или сбора информации о предпочтениях пользователя.

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.06-01 34 01-1				
Инв. № подл.	Подп. и дата	Взам. инв. №	Инв. № дубл.	Подп. и дата

3 Технические характеристики

3.1 Постановка задачи на разработку программы и программного модуля

Разработать программный модуль для использования в программах для смартфонов под управлением операционной системы Android с целью анализа эмоций пользователя по его изображению.

Разработать пример эксплуатации модуля в виде программы для смартфона под управлением операционной системы Android, который позволяет определять эмоциональный отклик на различные записи в социальной сети «Reddit» с помощью данных с камеры пользователя.

3.2 Описание алгоритмов и функционирования программного модуля

3.2.1 Описание алгоритмов программного модуля

3.2.1.1 Описание алгоритма работы алгоритма для распознавания эмоций на изображении лица

Для распознавания эмоций по изображению используются сверточные нейронные сети (Convolutional Neural Networks).

Так как создание архитектуры нейронной сети — трудоемкая задача, в основу данного программного модуля легла архитектура, предложенная исследователями Octavio Arriaga, Matias Valdenegro-Toro и Paul Plöger [8]. Она, в свою очередь, опирается на еще более фундаментальные труды в области нейронных сетей и машинного обучения, такие как Xception [9] и Mobilenets [10].

Отличительной особенностью данной архитектуры является ее простота в сравнении со state-of-the-art архитектурами (то есть самыми точными) при довольно высокой точности. Такой результат достигается за счет более эффективной утилизации признаков – например, использование разделенных по глубине сверток или отсутствие полносвязных слоев.

Ниже кратко описаны подходы, используемые в данной нейросети для распознавания эмоций по изображению лица человека.

Разделенные по глубине свертки — метод, при котором для входного сигнала используются две матрицы свертки. Одна поточечно для каждой карты признаков, а другая — в глубину между полученными результатами. Такой подход позволяет сократить количество операций при большем количестве признаков. В приведенной модели данная свертка используется множество раз на тензорах с глубиной 64–128, так что использование разделенной свертки значительно ускоряет время работы сети.

Глобальный пулинг средних (Global average pooling) — операция, обычно используемая для классификации вместо полносвязных слоев. Обычно в последних слоях нейросети используют полносвязные слои, на вход нейронов которых подаются все извлеченные признаки с предыдущего слоя. Такие слои требуют множества вычислений, поэтому для упрощения было предложено использовать метод глобального пулинга когда последний слой содержит столько карт признаков, сколько мы имеем классов, и затем из каждой карты извлекается среднее и передается в функцию активации.

Остаточные блоки (Residual blocks) – блоки нейросети, используемые для того, чтобы нейросеть при увеличении слоев не теряла точности. В таких блоках резуль-

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.06-01 34 01-1				
Инв. № подл.	Подп. и дата	Взам. инв. №	Инв. № дубл.	Подп. и дата

тат получается сложением с функцией идентичности F(x) = H(x) + x. В современном распознавании изображений с помощью нейронных сетей сложно обойтись без таких блоков [11].

Рисунок 1 — Схема приведенной нейронной сети

На вход нейросети подается изображение в виде тензора формата float размера 1x1x44x44, соответствующие черно-белой картинке размера 44x44. На выходе мы получаем тензор размера 1x1x1x7 и извлекаем из него комбинации из 7 различных эмоций.

Для обучения сети используется метод оптимизации «стохастический градиентный спуск» и функция для минимизации «перекрестная энтропия». Это довольно стандартные методы для машинного обучения классификаторов с заданным количеством классов.

3.2.2 Обоснование выбора алгоритмов программного модуля

3.2.2.1 Обоснование выбора алгоритма для распознавания эмоций на изображении лица

Сверточные нейронные сети являются очень эффективным инструментом для распознования различных характеристик на изображениях.

Выбор в пользу конкретной архитектуры был сделан из-за ее высокого соотношения точности на программную сложность. Малое количество слоев и параметров и отсутствие полносвязных слоев слоев позволяет быстрее реализовать и обучить нейросеть, а также ускоряет ее работу и уменьшает требуемый для работы размер оперативной памяти устройства.

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.06-01 34 01-1				
Инв. № подл.	Подп. и дата	Взам. инв. №	Инв. № дубл.	Подп. и дата

Скорость работы и объем используемой памяти очень критичны для мобильных устройств, имеющих слабые процессоры и работающих от аккумуляторной батареи. На устройстве Huawei Honor 10 с процессором Kirin 970 и при использовании аппаратного ускорения нейронных сетей (технология NNAPI) нейросеть обрабатывает изображение размером 44х44 пикселя за менее чем 50 мс, что является удовлетворительным результатом для работы в режиме реального времени.

3.2.3 Описание схемы функционирования программного модуля

Обученная модель комплируется в JIT-оптимизированный формат вычислительных программ TorchScript [12], который можно запустить с помощью библиотеки pytorch_ android. На устройстве под управлением Android такие скрипты выполняются на CPU и по возможности используют модуль нейронных сетей с помощью NNAPI [13].

Для выделения лица на фото используется библиотека MLKit, которая также работает с помощью нейросетей. Данная библиотека предоставляет высокоуровневое API для анализа изображений в асинхронном режиме и различными методами распознавания объектов, и в рамках данного проекта углубляться в архитектуру этой библиотеки не выглядит целесообразным.

После выделения прямоугольника, в котором находится лицо, необходимо извлечь эту часть изображения и преобразовать ее в тензор, который будет использоваться моделью. Изображения с камеры на смартфонах под управлением Android поступают в формате YUV 420 888, что означает, что каждое изображение состоит из трех буферов, которые с помощью специальных алгоритмов объединяются для вывода на экран. В случае приведенной модели используется черно-белое изображение, поэтому достаточно извлечь только информацию из первого буфера, или Y-буфера, в котором содержится яркость каждого отдельного пикселя, и перевести это число в формат float, нормализовав по модулю 255. Выбираются только те пиксели, что содержат лицо, и ужимаются в небольшой квадрат размером 44х44 пикселя с помощью операций сжатия и растяжения. Далее с помощью библиотеки Pytorch тензор передается в модель, и на выходе получается вектор длины 7, в каждой ячейке которого содержится вес определенной эмоции. Впоследствии этот вектор можно интерпретировать по-разному, например, выбрать самое большое число в качестве главной эмоции, или выбрать только те значения, что выше какого-либо порога. В приведенном примере программы выбирается наибольшее число и конвертируется в строку – например, первому значению соответствует эмоция "Злость".

Рисунок 2 — Схема работы программного модуля

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.06-01 34 01-1				
Инв. № подл.	Подп. и дата	Взам. инв. №	Инв. № дубл.	Подп. и дата

3.3 Описание и обоснование выбора метода организации входных и выходных данных

3.3.1 Описание метода организации входных и выходных данных

В модуль на вход может подаваться изображение в формате YUV_420_888 . Также в модуле имеются средства для инициализации камеры и непосредственного анализа информации с нее.

В качестве выходных данных модуль передает вектор длины 7 с числами от 0 до 1, каждое из которых соответствует вероятности распознанной эмоции из набора стандартных эмоций.

3.3.2 Обоснование выбора метода организации входных и выходных данных

Формат YUV_420_888 является основым стандартом изображений с камеры для смартфонов на OC Android.

Полученный с помощью Softmax вектор с весами различных классов – стандартная практика при решении задач классификации.

3.3.3 Состав технических и программных средств

Для работы программного модуля необходим следующий набор программных средств:

– операционная система Android версии 8.0 и выше

Для работы программного модуля необходим следующий состав технических средств:

- Не менее 512МБ ОЗУ;
- Не менее 150МБ свободного места на внутреннем накопителе;

Для анализа изображения с камеры необходимо наличие на устройстве фронтальной камеры.

3.4 Описание и обоснование выбора состава технических и программных средств

Минимальное количество памяти ОЗУ, необходимое для работы системы Android 8.0 и выше составляет 512МБ [14].

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.06-01 34 01-1				
Инв. № подл.	Подп. и дата	Взам. инв. №	Инв. № дубл.	Подп. и дата

4 Технико-экономические показатели

4.1 Предполагаемая потребность

Данный программный модуль позволит разработчикам приложений для Android быстро и легко решить задачу распознавания эмоций пользователя.

4.2 Экономические преимущества разработки и аналоги

Преимущества данного модуля заключаются в быстродействии анализатора, а также в легкой интеграции с программами для ОС Android. Других общедоступных библиотек, включающих в себя все функции данного модуля, такие как: предварительная обработка изображения, подключение к камере и запуск модели, найдено не было. Экономическая выгода использования данной разработки заключаются в экономии времени разработчиков приложений.

	Подготовка изображе- ния	Подклю- чение камеры	Анализ изображе- ний	Распозна- вание эмоций	Быстродей- ствие
PyTorch Android	-	-	+	-	Зависит от модели
TensorFlow Lite	-	-	+	-	Зависит от модели
Google MLKit	-	+	+	-	+
facialExpression RecognitionLib	+	+	+	+	+

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.06-01 34 01-1				
Инв. № подл.	Подп. и дата	Взам. инв. №	Инв. № дубл.	Подп. и дата

Список источников

- [1] "ГОСТ 19.101-77 Виды программ и программных документов. //Единая система программной документации. М.: ИПК Издательство стандартов, 2001.."
- [2] "ГОСТ 19.103-77 Обозначения программ и программных документов. //Единая система программной документации. М.: ИПК Издательство стандартов, 2001."
- [3] "ГОСТ 19.102-77 Стадии разработки. //Единая система программной документации. М.: ИПК Издательство стандартов, 2001.."
- [4] "ГОСТ 19.104-78 Основные надписи. //Единая система программной документации. М.: ИПК Издательство стандартов, 2001.."
- [5] "ГОСТ 19.105-78 Общие требования к программным документам. //Единая система программной документации. М.: ИПК Издательство стандартов, 2001.."
- [6] "ГОСТ 19.106-78 Требования к программным документам, выполненным печатным способом. //Единая система программной документации. М.: ИПК Издательство стандартов, 2001."
- [7] "ГОСТ 19.404-79 Пояснительная записка. Требования к содержанию и оформлению. //Единая система программной документации. М.: ИПК Издательство стандартов, 2001.."
- [8] O. Arriaga, M. Valdenegro-Toro, and P. Plöger, "Real-time convolutional neural networks for emotion and gender classification," *CoRR*, vol. abs/1710.07557, 2017.
- [9] F. Chollet, "Xception: Deep learning with depthwise separable convolutions," 2017.
- [10] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, "Mobilenets: Efficient convolutional neural networks for mobile vision applications," 2017.
- [11] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," 2015.
- [12] "Torchscript [Электронный ресурс]." // URL: https://pytorch.org/docs/stable/jit.html. (Дата обращения: 17.05.2021, режим доступа: свободный).
- [13] "Neural networks api [Электронный ресурс]." // URL: https://developer.android. com/ndk/guides/neuralnetworks. (Дата обращения: 17.05.2021, режим доступа: свободный).
- [14] "Android 8.0 compatibility definition [Электронный ресурс]." // URL: https://source.android.com/compatibility/8.0/android-8.0-cdd.pdf. (Дата обращения: 17.05.21, режим доступа: свободный).

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.06-01 34 01-1				
Инв. № подл.	Подп. и дата	Взам. инв. №	Инв. № дубл.	Подп. и дата

ПРИЛОЖЕНИЕ А

Используемые понятия и определения

- Тензор математический объект, в случае данного модуля удобно понимать его как многоиндексный набор компонент.
- Сверточная нейронная сеть математическая модель, которая работает по принципу биологических нейронных сетей, то есть с помощью нейронов, преобразующих и передающих сигнал друг другу, в которой используется операция свертки, то есть матричного умножения рядом стоящих нейронов. Такие модели хорошо подходят для обработки изображений, так как используют пространственное расположение нейронов.
- Формат изображений YUV_420_888 формат с цветовой моделью YUV, содержащей три компонента: яркость и два цветоразностных компонента. 420 обозначает формат дискретизации сигнала 4:2:0, когда на каджые 4 пикселя с яркостью по 1 цветовому пикселю каждого слоя.

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.06-01 34 01-1				
Инв. № подл.	Подп. и дата	Взам. инв. №	Инв. № дубл.	Подп. и дата

ПРИЛОЖЕНИЕ В

Описание и функциональное назначение классов и структур

Классы	
CameraFeedAnalyzer	13
Класс анализатора изображения	
${\bf Camera Feed View}$. 14
Фрагмент для предпросмотра изображения с камеры и анализа эмо-	
ций по изображению лица в реальном времени	
FacialExpressionViewModel	15

CameraFeedAnalyzer

Класс анализатора изображения

3.1 Определение

public class CameraFeedAnalyzer
 extends java.lang.Object

3.2 Краткое описание конструкторов

CameraFeedAnalyzer(CameraFeedView)

3.3 Краткое описание методов

analyze(ImageProxy) Основной метод для анализа buildAnalysis(CameraFeedView) Получить анализатор для подключения к камере

3.4 Конструкторы

- CameraFeedAnalyzer

public CameraFeedAnalyzer(CameraFeedView cameraFeedView)

3.5 Методы

- analyze

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.06-01 34 01-1				
Инв. № подл.	Подп. и дата	Взам. инв. №	Инв. № дубл.	Подп. и дата

14 RU.17701729.04.06-01 34 01-1

public void analyze(ImageProxy imageProxy)

- Описание

Основной метод для анализа

- buildAnalysis

public static ImageAnalysis buildAnalysis (CameraFeedView cameraFeedView

- Описание

Получить анализатор для подключения к камере

CameraFeedView

Фрагмент для предпросмотра изображения с камеры и анализа эмоций по изображению лица в реальном времени

4.1 Определение

public class CameraFeedView extends Fragment

4.2 Краткое описание конструкторов

CameraFeedView()

4.3 Краткое описание методов

getViewModel() Получение класса ViewModel
onActivityCreated(Bundle) Завершение создания фрагмента
onCreateView(LayoutInflater, ViewGroup, Bundle) Инициализация визуальных виджетов фрагмента
onViewCreated(View, Bundle) Метод, выполняемый после инициализа-

ции визуальных виджетов фрагмента setOnClickListener(View.OnClickListener)

4.4 Конструкторы

- CameraFeedView

public CameraFeedView()

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.06-01 34 01-1				
Инв. № подл.	Подп. и дата	Взам. инв. №	Инв. № дубл.	Подп. и дата

4.5 Методы

getViewModel

public FacialExpressionViewModel getViewModel()

- Описание

Получение класса ViewModel

onActivityCreated

public void onActivityCreated(Bundle savedInstance)

- Описание

Завершение создания фрагмента

onCreateView

public View on Create View (Layout Inflater inflater, View Group, B

- Описание

Инициализация визуальных виджетов фрагмента

onViewCreated

public void on View Created (View view, Bundle bundle)

- Описание

Метод, выполняемый после инициализации визуальных виджетов фрагмента

- setOnClickListener

public void setOnClickListener(View.OnClickListener listener)

${\bf Facial Expression View Model}$

5.1 Определение

public class FacialExpressionViewModel extends ViewModel

5.2 Краткое описание конструкторов

FacialExpressionViewModel()

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.06-01 34 01-1				
Инв. № подл.	Подп. и дата	Взам. инв. №	Инв. № дубл.	Подп. и дата

5.3 Краткое описание методов

getFaceRect() Получить прямоугольник границ лица
getImageSize() Получить размер изображения
getLabel() Получить название эмоции
getOutput() Получить вектор с вероятностями эмоций
setFaceRect(RectF) Записать прямоугольник границ лица
setImageSize(Size) Записать размер изображения
setLabel(String) Записать название эмоции
setOutput(float[]) Записать вектор с вероятностями эмоций

5.4 Конструкторы

- FacialExpressionViewModel

public FacialExpressionViewModel()

5.5 Методы

getFaceRect

public <any> getFaceRect()

- Описание

Получить прямоугольник границ лица

- getImageSize

public <any> getImageSize()

- Описание

Получить размер изображения

- getLabel

public <any> getLabel()

- Описание

Получить название эмоции

getOutput

public <any> getOutput()

- Описание

Получить вектор с вероятностями эмоций

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.06-01 34 01-1				
Инв. № подл.	Подп. и дата	Взам. инв. №	Инв. № дубл.	Подп. и дата

- setFaceRect

public void setFaceRect(RectF faceRect)

- Описание

Записать прямоугольник границ лица

setImageSize

public void setImageSize(Size imageSize)

- Описание

Записать размер изображения

setLabel

public void setLabel(java.lang.String label)

- Описание

Записать название эмоции

setOutput

public void setOutput(float[] output)

– Описание

Записать вектор с вероятностями эмоций

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.04.06-01 34 01-1				
Инв. № подл.	Подп. и дата	Взам. инв. №	Инв. № дубл.	Подп. и дата