Intuitionistic Logic Syntax, Semantics and Completeness

Yoshihiro Maruyama

Intuitionsitic Propositional Logic and its Basic Properties

Intuitionistic Propositional Logic (IPL)

- 1. Formulae: \land , \lor , \rightarrow , \bot (n.b. $\neg A := A \rightarrow \bot$);
- 2. **Provability:** classical propositional logic (CPL) = *intuitionistic propositional logic (IPL)* + law of excluded middle (LEM);
- 3. Formal system: natural deduction in sequent style;
- 4. Sound and complete semantics: Kripke semantics.

Provability of IPL (natural deduction)

Notation: Let φ , ψ range over formulae, and Γ over finite sets of formulae.

Recall: Sequents are $\Gamma \Rightarrow \varphi$.

$$\frac{\Gamma, \varphi \Rightarrow \varphi}{\Gamma, \varphi \Rightarrow \varphi} \text{ Assumption}$$

$$\frac{\Gamma \Rightarrow \varphi}{\Gamma \Rightarrow \varphi \land \psi} \land \Gamma \qquad \frac{\Gamma \Rightarrow \varphi_0 \land \varphi_1}{\Gamma \Rightarrow \varphi_i} \land E_i$$

$$\frac{\Gamma \Rightarrow \varphi_i}{\Gamma \Rightarrow \varphi_0 \lor \varphi_1} \lor I_i \qquad \frac{\Gamma \Rightarrow \varphi \lor \psi}{\Gamma \Rightarrow \varphi} \lor \Gamma, \varphi \Rightarrow \theta \qquad \Gamma, \psi \Rightarrow \theta}{\Gamma \Rightarrow \varphi} \lor E$$

$$\frac{\Gamma, \varphi \Rightarrow \psi}{\Gamma \Rightarrow \varphi \rightarrow \psi} \rightarrow \Gamma \qquad \frac{\Gamma \Rightarrow \varphi \rightarrow \psi}{\Gamma \Rightarrow \psi} \rightarrow E$$

For intuitionistic logic, add ex falso sequitur quodlibet:

$$\frac{\Gamma \Rightarrow \bot}{\Gamma \Rightarrow \varphi} \bot \to E$$

For classical logic, add reductio ad absurdum:

$$\frac{\Gamma, \neg \varphi \Rightarrow \bot}{\Gamma \Rightarrow \varphi} RAA$$

Examples of Sequents Provable in IPL

• We have $\vdash A \Rightarrow \neg \neg A$ in IPL:

$$\begin{array}{c}
A, \neg A \Rightarrow A \\
A, \neg A \Rightarrow \bot \\
A \Rightarrow \neg \neg A
\end{array}$$

• We have $\vdash \neg \neg A \Rightarrow A$ in CPL:

Remark: The last rule is impossible in IPL; in fact, $ot \vdash \neg \neg A \Rightarrow A$ in IPL.

Kripke Semantics

A Kripke structure is a triple $\mathcal{M} = (W, \leq, \nu)$ of

- A nonempty set W of possible worlds;
- A partial order \leq on W, called the accessibility relation;
- A function $\nu: \mathcal{V} \to \mathcal{D}(W)$, called the *valuation*, that satisfies *monotonicity*:

if
$$w \in \nu(p)$$
 and $w \leq w'$, then $w' \in \nu(p)$,

where \mathcal{V} is the set of all propositional variables.

Intuition: $w \le w'$ if w' is a possible future of w.

Forcing Relation

To define *validity* of formulae in IPL w.r.t. a given Kripke structure $\mathcal{M} = (W, \leq, \nu)$, we first define a *forcing relation* \vdash (or $\mathcal{M}, _$ \vdash $_$) by induction on formulae:

Intuition:

- $\mathcal{M}, w \Vdash \varphi \text{ if } \varphi \text{ holds at } w;$
- φ is valid w.r.t. \mathcal{M} if $\mathcal{M}, w \Vdash \varphi$ for all $w \in W$.
- 1. $\mathcal{M}, w \Vdash p :\Leftrightarrow w \in \nu(p)$
- 2. $\mathcal{M}, w \not\Vdash \bot$
- 3. $\mathcal{M}, w \Vdash \varphi \land \psi : \Leftrightarrow \mathcal{M}, w \Vdash \varphi \text{ and } \mathcal{M}, w \Vdash \psi$
- 4. $\mathcal{M}, w \Vdash \varphi \lor \psi : \Leftrightarrow \mathcal{M}, w \Vdash \varphi \text{ or } \mathcal{M}, w \Vdash \psi$

5. $\mathcal{M}, w \Vdash \varphi \rightarrow \psi : \Leftrightarrow \mathcal{M}, w' \not\Vdash \varphi \text{ or } \mathcal{M}, w' \Vdash \psi$ for all $w' \geqslant w$.

Notation: We write $w \Vdash \varphi$ for $\mathcal{M}, w \Vdash \varphi$ if \mathcal{M} is clear from the context.

Theories and Models for IPL

Let $\mathcal{M} = (W, \leq, \nu)$ be a Kripke structure, and T a theory (i.e., a set of formulae in IPL).

- 1. φ is valid w.r.t. \mathcal{M} , written $\mathcal{M} \models \varphi$, if \mathcal{M} , $w \Vdash \varphi$ for all $w \in W$;
- 2. If $\mathcal{M} \models \varphi$ for all $\varphi \in T$, then \mathcal{M} is called a *model* of T and written $\mathcal{M} \models T$;
- 3. φ is valid w.r.t. T, written $T \models \varphi$, if $\mathcal{M} \models \varphi$ for all models \mathcal{M} of T.

Notation: We write $T \vdash \Gamma \Rightarrow \varphi$ if $\Gamma \Rightarrow \varphi$ is derivable in IPL with formulae in T potentially used as <u>assumptions</u> (in addition to those in Γ).

An Example of Forcing Relation

In the Kripke structure $\mathcal{M} = (\{0,1,2\}, \{(0,1), (0,2)\}, p \mapsto \{1\})$, or diagramatically

LEM is *invalid* because at 0 we do not have $p \lor \neg p$ (i.e., $\mathcal{M}, 0 \not\Vdash p \lor \neg p$).

This motivates us to use Kripke structures as semantics of IPL (not of CPL).

—> As we shall see, Kripke semantics is *sound* and *complete* for IPL.

Monotonicity

Proposition (monotonicity). If $w \Vdash \varphi$ and $w \leqslant w'$ then $w' \Vdash \varphi$.

Proof. We prove it by induction on φ . Atomic case follows from definition, and the cases of \wedge , \vee follow from the induction hypothesis.

It remains to consider the case of implication. Assume $w \Vdash \varphi \to \psi$, $w' \geqslant w$ and $w'' \geqslant w'$. It then suffices to assume $w'' \Vdash \varphi$ and show $w'' \Vdash \psi$. But because $w \Vdash \varphi \to \psi$ and $w'' \geqslant w' \geqslant w$, it follows that $w'' \Vdash \varphi$ implies $w'' \Vdash \psi$.

Soundness

Theorem (soundness). If $\vdash \Gamma \Rightarrow \varphi$ then $\models \bigwedge \Gamma \rightarrow \varphi$.

Proof. By induction on proofs by using monotonicity (on implication \rightarrow).

Completeness Theorem

Overview on the Proof of Completeness

Theorem (completeness of IPL). If $T \models \varphi$ then $T \vdash \varphi$.

Plan of the Proof. We shall prove the theorem by contraposition, i.e., show $T \nvdash \varphi$ implies $T \not\models \varphi$.

Note:
$$T \not\models \varphi \Leftrightarrow \exists \mathcal{M} \models T.\mathcal{M} \not\models \varphi$$

 $\Leftrightarrow \exists \mathcal{M} \models T, \exists w \in W.\mathcal{M}, w \not\models \varphi,$

where W is the set of all possible worlds of \mathcal{M} . We shall then proceed as:

- 1. Lindenbaum's lemma: construct a *prime* theory $T' \supseteq T$ such that $T' \not\vdash \varphi$
- 2. Truth lemma: $\mathcal{M}(T')$, $\langle \rangle \Vdash \varphi \Leftrightarrow T' \vdash \varphi$ for all prime theories T',

where $\mathcal{M} := \mathcal{M}(T')$ is the *canonical* model of T, and $w := \langle \rangle$ is a possible world of \mathcal{M} .

Prime Theory

Definition (prime theories). A theory T of IPL is <u>prime</u> if

- 1. T is consistent, i.e., $T \nvdash \bot$
- 2. T is closed under provability, i.e., $T \vdash \varphi$ implies $\varphi \in T$
- 3. If $\phi \lor \psi \in T$, then $\phi \in T$ or $\psi \in T$.

Lindenbaum's Lemma (1/6)

Lemma (Lindenbaum). If $T \nvdash \varphi$, then there is a prime theory $T' \supseteq T$ such that $T' \nvdash \varphi$.

Proof idea. For each $T \vdash \psi \lor \chi$ such that $\psi \not\in T$ and $\chi \not\in T$, update T by

$$T \leftarrow T \cup \{\psi\} \text{ or } T \leftarrow T \cup \{\chi\}$$

in such a way that T keeps $T \nvdash \varphi$. Then, $T \mapsto T_1 \mapsto T_2 \mapsto \ldots \mapsto T'$ will get the desired T':

- $T' \not\vdash \varphi$ by construction
- $T' \nvdash \bot$ because $T' \nvdash \varphi$ (n.b., $T' \vdash \bot$ implies $T' \vdash \varphi$)
- T' is closed under provability: If $T_n \vdash \theta$ and $\theta \notin T_n$, then $T_n \vdash \theta \lor \theta$ so that $\theta \in T_{n+1}$ \Rightarrow If $T' \vdash \theta$, then $\theta \in T'$
- $\psi \lor \chi \in T'$ implies $\psi \in T'$ or $\chi \in T'$ because $\psi \lor \chi \in T_n$ implies $T_n \vdash \psi \lor \chi$ so that $\psi \in T_{n+1}$ or $\chi \in T_{n+1}$.

Lindenbaum's Lemma (2/6)

Proof. Let $(\psi_k \vee \chi_k)_{k \in \mathbb{N}}$ be an enumeration of all disjunctions. We define a theory T_n for each $n \in \mathbb{N}$ such that $T = T_0 \subseteq T_1 \subseteq T_2...$ by induction on n. Our plan is then to define $T' := \bigcup_{n \in \mathbb{N}} T_n$.

1.
$$T_0 := T$$

2.
$$T_{n+1} := \begin{cases} T_n \cup \{\psi_{i(n)}\} & \text{if } i(n) < \infty \text{ and } T_n \cup \{\psi_{i(n)}\} \not\vdash \varphi \\ T_n \cup \{\chi_{i(n)}\} & \text{if } i(n) < \infty \text{ and } T_n \cup \{\psi_{i(n)}\} \vdash \varphi \\ T_n & \text{otherwise} \end{cases}$$

where

$$i(n) := \inf\{k \in \mathbb{N} \mid T_n \vdash \psi_k \lor \chi_k, \psi_k \notin T_n, \chi_k \notin T_n\}.$$

Remark: $T_n \vdash \psi_{i(n)} \lor \chi_{i(n)}, \psi_{i(n)} \notin T_n \text{ and } \chi_{i(n)} \notin T_n, \text{ so } T_{n+1} \not\vdash \varphi \text{ (n.b., in the 2nd case of } T_{n+1}, T_n \vdash \chi_{i(n)}.$

Lindenbaum's Lemma (3/6)

Claim. $T' \not\vdash \varphi$.

Proof of the claim. If $T' \vdash \varphi$, then there is some $T'_{\text{fin}} \subseteq T'$ such that T'_{fin} is finite and $T'_{\text{fin}} \vdash \varphi$. Taking any $n \in \mathbb{N}$ such that $T'_{\text{fin}} \subseteq T_n$, we have $T_n \vdash \varphi$. Hence, it suffices to prove $T_n \nvdash \varphi$ for all $n \in \mathbb{N}$.

We prove it by induction on $n \in \mathbb{N}$:

Lindenbaum's Lemma (4/6)

Base case: Since $T_0 := T$ and $T \nvdash \varphi$, we have $T_0 \nvdash \varphi$.

Inductive step: By contraposition, i.e., we assume $T_{n+1} \vdash \varphi$ and show $T_n \vdash \varphi$.

- Case 1 $T_{n+1} = T_n \cup \{\psi_{i(n)}\}$. This case is impossible since $T_{n+1} = T_n \cup \{\psi_{i(n)}\}$ if and only if $T_n \cup \{\psi_{i(n)}\} \not\vdash \varphi$.
- Case 2 $T_{n+1} = T_n \cup \{\chi_{i(n)}\}$. We have $T_n \cup \{\psi_{i(n)}\} \vdash \varphi$ by the definition of T_{n+1} , and $T_n \vdash \psi_{i(n)} \lor \chi_{i(n)}$ by the definition of i(n). Thus, we have $T_n \vdash \varphi$ by the elimination rule on disjunction \lor .
- Case 3 $T_{n+1} = T_n$. This case is immediate.

Lindenbaum's Lemma (5/6)

Claim. T' is consistent.

Proof of the claim. By $T' \not\vdash \varphi$, we have $T' \not\vdash \bot$ i.e., T' is consistent.

Claim. If $T' \vdash \psi \lor \chi$, then $\psi \in T'$ or $\chi \in T'$.

Proof of the claim. Assume $T' \vdash \psi \lor \chi$ and $\psi \lor \chi = \psi_i \lor \chi_i$.

We have $T_n \vdash \psi_i \lor \chi_i$ for some $n \in \mathbb{N}$.

Then, we have $\psi_i \in T_{k+1}$ or $\chi_i \in T_{k+1}$ for some $k \in \mathbb{N}$.

Hence, $\psi_i \in T'$ or $\chi_i \in T'$.

Lindenbaum's Lemma (6/6)

Claim. T' is closed under provability.

Proof of the claim. Assume $T' \vdash \varphi$. We have $T' \vdash \varphi \lor \varphi$, thus $\varphi \in T'$.

This completes the proof of Lindenbaum's lemma.

Canonical Model

Definition (canonical model). Let T be a prime theory, and $(\langle \psi_n, \chi_n \rangle)_{n \in \mathbb{N}}$ an enumeration of all pairs of formulae. We define the canonical model $\mathcal{M}(T) := \langle W, \leq, \nu \rangle$ by:

- 1. $W := \mathbb{N}^{<\omega}$, i.e., the set of all finite sequences of natural numbers
- 2. $w \le w' :\Leftrightarrow w$ is an initial segment of w'
- 3. $\nu(p) := \{ w \in W \mid p \in T_w \}$, where T_w is defined by
 - $\bigcirc T_{\langle \rangle} := T$
 - $(2) T_{w \cap \langle n \rangle} := \begin{cases} (T_w \cup \{\psi_n\})' & \text{if } T_w \cup \{\psi_n\} \not\vdash \chi_n \\ T_w & \text{otherwise.} \end{cases}$

Truth Lemma (1/3)

Remark: T_w is prime by construction since so is T.

Lemma (truth lemma). $\mathcal{M}(T)$, $w \Vdash \varphi \Leftrightarrow T_w \vdash \varphi$ for all prime theories T.

Proof. By induction on φ . We focus on the cases of disjunction and implication.

Case of disjunction.

$$\mathcal{M}(T), w \Vdash \varphi \lor \psi \Leftrightarrow \mathcal{M}(T), w \Vdash \varphi \text{ or } \mathcal{M}(T), w \Vdash \psi$$
 $\Leftrightarrow T_w \vdash \varphi \text{ or } T_w \vdash \psi \text{ by the induction hypothesis}$ $\Leftrightarrow T_w \vdash \varphi \lor \psi \text{ by the primeness of } T_w.$

Truth Lemma (2/3)

Case of implication.

We first show that $T_w \nvdash \psi \to \chi$ implies $\mathcal{M}(T)$, $w \nVdash \psi \to \chi$.

Assume $T_w \not\vdash \psi \to \chi$. Then, $T_w \cup \{\psi\} \not\vdash \chi$.

Pick any $n \in \mathbb{N}$ such that $\langle \psi, \chi \rangle = \langle \psi_n, \chi_n \rangle$.

Now, we have $T_{w \cap \langle n \rangle} = (T_w \cup \{\psi\})'$, $T_{w \cap \langle n \rangle} \vdash \psi$ and $T_{w \cap \langle n \rangle} \nvdash \chi$.

By the induction hypothesis, $\mathcal{M}(T)$, $w^{\hat{}}\langle n \rangle \Vdash \psi$ and $\mathcal{M}(T)$, $w^{\hat{}}\langle n \rangle \not\Vdash \chi$.

Hence, we have $\mathcal{M}(T)$, $w \not\Vdash \psi \to \chi$ because $w \leqslant w \land \langle n \rangle$.

Truth Lemma (3/3)

We next show the converse: $T_w \vdash \psi \to \chi$ implies $\mathcal{M}(T)$, $w \Vdash \psi \to \chi$. Assume $T_w \vdash \psi \to \chi$ and $w \leqslant w'$; we have to show $\mathcal{M}(T)$, $w' \not\Vdash \psi$ or $\mathcal{M}(T)$, $w' \vdash \chi$.

Because $T_w \subseteq T_{w'}$, we have $T_{w'} \nvdash \psi$ or $T_{w'} \vdash \chi$.

By the induction hypothesis, this means that $\mathcal{M}(T)$, $w' \not\Vdash \psi$ or $\mathcal{M}(T)$, $w' \vdash\vdash \chi$.

Completeness Theorem

Theorem (completeness of IPL). If $T \models \varphi$ then $T \vdash \varphi$.

Proof. We prove the theorem by contraposition.

Assume $T \nvdash \varphi$; then, we can take a prime theory $T' \supseteq T$ such that $T' \nvdash \varphi$.

Let $\mathcal{M}(T')$ be the canonical model for T'. Note that $T'_{\langle \rangle} = T'$ and $T'_{\langle \rangle} \not\vdash \varphi$.

By the truth lemma, $\mathcal{M}(T')$, $\langle \rangle \Vdash \psi$ for all $\psi \in T$ (thus, $\mathcal{M}(T')$ is a model of T by monotonicity) and $\mathcal{M}(T')$, $\langle \rangle \not\Vdash \varphi$.

Hence, we have shown $T \not\models \varphi$.

Consequences of Completeness Theorem

Double Negation Elimination

Proposition (DNE is not derivable in IPL). $ot \vdash \neg \neg p \rightarrow p$.

Proof. By soundness, it suffices to build a counter model $\mathcal{M} := \langle W, \leq, \nu \rangle$ by

- $W := \{w_0, w_1\}$
- $w_0 \leqslant w_1$
- $\nu(p) = \{w_1\}.$

Then, $\neg \neg p \rightarrow p$ is not valid at w_0 w.r.t. \mathcal{M} .

Law of Excluded Middle

Proposition (LEM is not derivable in IPL). $\nvdash \neg p \lor p$.

Proof. Let \mathcal{M} be the counter model for double negation elimination constructed in the last slide. Then, $\neg p \lor p$ is not valid at w_0 w.r.t. \mathcal{M} . Hence, again, by soundness, we conclude $\nvdash \neg p \lor p$.

De Morgan's Laws

Proposition (De Morgan's laws). We have:

1.
$$\vdash \neg \varphi \land \neg \psi \leftrightarrow \neg (\varphi \lor \psi)$$

2.
$$\vdash \neg \varphi \lor \neg \psi \rightarrow \neg (\varphi \land \psi)$$

3.
$$\not\vdash \neg (p \land q) \rightarrow \neg p \lor \neg q$$
.

Proof. We focus on the clause 3. We define a counter model $\mathcal{M} := \langle W, \leqslant, \nu \rangle$ by

- $W := \{w_0, w_1, w_2\}$
- $w_0 \leqslant w_1$ and $w_0 \leqslant w_2$
- $\nu(p) := \{w_1\} \text{ and } \nu(q) := \{w_2\}.$

Then, $(p \land q) \rightarrow (\neg p \lor \neg q)$ is not valid at w_0 w.r.t. \mathcal{M} .

Fig. A courter model hor de Morgais rule.

Disjunction Property (1/2)

Theorem (disjunction property). If $\vdash \varphi_0 \lor \varphi_1$, then $\vdash \varphi_0$ or $\vdash \varphi_1$.

Proof. We prove the contraposition. Assume $\nvdash \varphi_0$ and $\nvdash \varphi_1$.

By completeness, we get counter models

$$\mathcal{M}_0 := \langle W_0, \leqslant_0, \nu_0 \rangle, \mathcal{M}_1 := \langle W_1, \leqslant_1, \nu_1 \rangle \text{ for } \varphi_0, \varphi_1.$$

We then have $\mathcal{M}_0, w_0 \not\Vdash \varphi_0$ and $\mathcal{M}_1, w_1 \not\Vdash \varphi_1$ for some $w_0 \in W_0, w_1 \in W_1$.

Disjunction Property (2/2)

We define a Kripke model $\mathcal{M} := \langle W, \leq, \nu \rangle$ out of \mathcal{M}_0 and \mathcal{M}_1 as follows:

- 1. $W := \{w\} \uplus W_0 \uplus W_1$ where \uplus stands for disjoint union;
- 2. \leq is the minimal partial order containing both \leq_0 and \leq_1 such that $w \leq w_0$ and $w \leq w_1$ (more formally, \leq is the reflexive transitive closure of $\{(w, w_0), (w, w_1)\} \cup \leq_0 \cup \leq_1 \}$;
- 3. $\nu(p) := \nu_0(p) \cup \nu_1(p)$.

By construction, we have $\mathcal{M}, w_0 \not\Vdash \varphi_0$ and $\mathcal{M}, w_1 \not\Vdash \varphi_1$.

Hence, we get \mathcal{M} , $w \not\Vdash \varphi_0 \lor \varphi_1$ by monotonicity.

Fig. Construction af M.

Rasiowa-Harrop Formulae (appendix)

Definition (Rasiowa–Harrop formulae). *Rasiowa–Harrop formulae* are defined by the following induction:

- 1. Atomic formulae are Rasiowa-Harrop;
- 2. $\neg \varphi$ is Rasiowa–Harrop for every formula φ ;
- 3. $\varphi \rightarrow \psi$ is Rasiowa–Harrop if and only if so is ψ ;
- 4. $\varphi \wedge \psi$ is Rasiowa–Harrop if and only if so are both φ and ψ ;
- 5. (Intuitionistic predicate logic) $\forall x . \varphi$ is Rassiowa–Harrop if and only if so is φ .

Rasiowa-Harrop Properties (appendix)

Theorem (Rasiowa-Harrop disjunction property). Let T be a set of Rasiowa-Harrop formulae. If $T \vdash \varphi \lor \psi$, then $T \vdash \varphi$ or $T \vdash \psi$.

Theorem (Rasiowa-Harrop existential property). Let T be a set of Rasiowa-Harrop formulae. If $T \vdash \exists x . \varphi$, then $T \vdash \varphi[x := t]$ for some term t.