Iuliaa. Ion Qyaha.a Yon Yulia!

Digam Zatron

Nathernatical logic

the :/ math wholly 40/ ~ marcus section "Teaching -> lecture notes (in Romanian)

exorw: → wo exorw -> 2 tests / Week 7 (Nov. 17) saturday / 18/each week 14 (Jam. 19) saturday

(+ paum beguts of the seminar)

(vouch 81 = cranimes P) cranimes aft to 0,64 1/2: examinate preneguisites: nets, functions etc.

Imbroduction

- afair lasitam set explano yllamort sev = aigal lasitamsettam to ~ 000 not contained mathetical to ~ 000 not computation lasit ton -

 - includes: -> prooftheony
 - -> but theavy
 - → calculability (recursium) theory
 - -> madel theavy

Ch I - Propositional logic

"Nowely" > a preparation (sontence) is a statement about which use know that it is true on false.

→ use can also form composite remtances using vonds lone "and", "on",...

. We introduce a formal language.

Det: the language of propositional logic consider of:

1) stumper - torrentheres

disjunction megation implication ond mot it... then

fi yelno bno fi

2) atoms (atomic formulas)

P, 9, 77, ..., P1, P2, ...

· propositional formulas are defined reconsidely:

1) atamic formulas are formulas

2) If A,B one formulas them (TA), (AVB), (ANB)

 $(A \rightarrow B)$, $(A \longleftrightarrow B)$ one also formulas

3) no other requences of symbols is a formula.

ex: 1)
$$((p \rightarrow g) \leftrightarrow (7(p \vee (7n))))$$
 is a formula.
2) $((7p) \vee g \wedge) \rightarrow \pi$ is not a formula.

columnot to nationsystem?.

some we have a function

o: A -> fo, if

set of

loss true

contain Aturt)

then we give a truth value to any farmula, by induction (recursion), using the following definitions:

P	7P
0	٨
•	0

P	2	P/2
0	0	0
0	١	٨
٨	0	٨
1	٨	1

after	nation	re lug te:	, we
1	0	1	
0	0	٨	
٨	1	0	

P	2	p \rightarrow g
0	1	0
٨	0	0
1	1	1

Remark in practice, we may omit some paramtheres by

1)]

2) V, A

 $3) \rightarrow , \longleftrightarrow$

ex: (p > g) (p V In) (is the same as Ex. 1 above)

Relations between formulas

Def: a) $A \Rightarrow B$ (B is consequence of A) implies

1= (8 - A) en

b) $A \iff B$ $A \iff B$ $A \iff A \iff B$ $A \iff A \iff B$

Def: a) the formula A is a toutology.

If o(A) = 1 for any interpretation.

- b) A is a <u>combradiction</u> for any interpretation if o(A) = 0.
- c) A is ratisfiable if it's not a combradiction.

The decision problem

- given a formula A, find whether A is a

tautology contradiction or it is satis fiable

Methods for rolling the decision pth.

1) by using truth tables

2) by using marmal forms

Del: a) use say that a formula A has disjunctive marmal form (DNF)

if A is a disjunction of elementary conjunctions:

A=A, V...VAm, where each A? is a

conjunction of atoms or negations of atoms.

2.9. A?=P179177 is an elementary conjunction

6) the formula A has <u>conjunctive monmal</u> form (CNF) if it is a conjunction of <u>shementary</u> disjunctions: $A = A_1 \wedge ... \wedge A_m$

Ushere sach A? is an elem. disj. e.g. A? = 7px7g VT is an elem. disjanction

Theorem: Every formula A is equivlent to a formula in DNF on in CNF, which can be found by using certain fundamental toutologies

(see: Thm 1.2.11, p.8)

ex: let us prove that (MP) is a valid inference rule 1) by truth tables:

A	В	$A \rightarrow B$	AN(A>B)	C
0	0	1	0	À
0	0	1	0	h
	0	O	0	٨
N	1	٨	1	٨

2) by wring monmal forms:

DeMongain (TAV 1 (TAVB) VB (=> TAU (TTA A TB) VB (=>,

Hwisa CNF

Hamewark.