Universidade Federal de Santa Maria Departamento de Computação Aplicada Disciplina: Computação Gráfica – ELC1015 Prof. Cesar Tadeu Pozzer 05/03/2024

Conteúdo:

- 1. Programa da disciplina
- 2. Relação dos conteúdos
- 3. Conhecimentos de programação e exercícios introdutórios

Aula	Conteúdo
1	Apresentação
2	Aula prática 1: Canvas2D, click e drag de objetos, refresh teclado, manager de botões, pac-man
3	Aplicações, áreas, evolução, HW e SW, Cor
4	Cor, Imagem
5	DCT e JPEG
6	API para vetores e Programação em C++
7	Fundamentos Matemáticos – Vetores
8	Aula prática 2: coordenada polar
9	Aula prática 3: vetor direção, equação paramétrica da reta
10	Computação gráfica 2D
11	Computação gráfica 2D – transformações, primitivas
12	Aula prática 4: Última questão da P1. Enviar código fonte.
13	Curvas 2D
14	Curvas 2D
15	Aula prática 5: curvas – plotagem das blending functions e geração de curva
16	Exercícios de provas passadas
17	Prova 1
18	Transformação 3D – pilha de transformações
19	Projeção e câmera sintética
20	Modelagem 3D, csg, octree, superfícies curvas
21	Aula prática 6: projeção perspectiva do cubo e do cilindro
22	OpenGL – Introdução
23	OpenGL – primitivas, transformações
24	OpenGL – câmera, Iluminação Fixa
25	Aula prática 7: OpenGL – fazer um plano formado por triângulos. Demo LookAt
26	Síntese de Imagens, iluminação
27	Ray-tracing, bump mapping
28	Exercícios
29	Prova 2
30	Apresentação de Trabalhos
	Exame Final

Relação de dependência entre conteúdos e trabalhos práticos

Revisão de conceitos de programação em linguagem C

Desenvolva programas para os seguintes problemas, utilizando a API Canvas2D:

- 1. Desenhar um tabuleiro de xadrez.
 - a. Associar uma cor a cada quadrado.
 - b. Utilizar estruturas de dados para armazenamento dos dados.
 - c. Utilizar alocação dinâmica.
 - d. Permitir que o usuário altere a dimensão e tamanho do tabuleiro.
 - e. Após, refazer usando orientação a objetos.
- 2. Gerar uma sequência de 30 números randômicos entre [-200 e 200] e plotar um gráfico de barras/linhas que ocupe quase toda tela da canvas2D. Plotar os 2 eixos com legendas e valores.
- 3. Plotar na Canvas2D os seguintes polinômios e funções trigonométricas
 - a. sin(x), cos(x), tg(x)
 - b. x^2 , x^3 , $3x^2 + 4$, $x^4 + x^3 x 2$ para x entre [-10, 10]
- 4. Fazer a multiplicação de duas matrizes
 - a. Com dimensões 3x3
 - b. Com dimensão 3x3 com 3x1.
 - c. Alocar as matrizes com alocação estática e com alocação dinâmica
 - d. Função para inicialização da matriz
 - e. Função para impressão do resultado
 - f. Função para desenho na tela de uma matriz e seus valores
- 5. Programa para criar uma árvore binária de busca a partir de uma sequência de números inteiros randômicos entre [0, 50]. Os números não podem se repetir. Após, fazer funções recursivas para:
 - a. Contar o número de elementos da árvore;
 - b. Fazer a busca por um elemento específico;
 - c. Calcular a soma dos elementos da árvore;
 - d. Fazer a exibição gráfica da árvore binária.
- 6. Programa para fazer o carregamento de um arquivo PPM (com alocação dinâmica) e após:
 - a. Fazer a exibição na tela
 - b. Fazer a rotação da imagem em 90 graus. Equivale a uma matriz transposta
- 7. Em relação a programação bitwise, fazer programa para
 - a. Fazer a união e interseção entre duas máscaras de bits.
 - b. Imprimir um número inteiro em formato binário