Metode Numerik EE221

Bab 6. Pencocokan kurva (Curve Fitting) dengan Regresi

Dirangkum dan diterjemahkan dari : Thomson Brooks Chapra, Steven and Raymond Canale. 2009.

Numerical Methods for Engineers 6th Edition, **Chapter 17**

Nabila Husna Shabrina Fakultas Teknik dan Informatika, Universitas Multimedia Nusantara

Sub Bahasan:

- Regresi Linier
- Regresi Polinomial
- Regresi Linier Multiple

Regresi adalah metode analisis statistik yang digunakan untuk melihat hubungan antara 2 variabel yang berberda

FIGURE PT5.1

Three attempts to fit a "best" curve through five data points. (a) Least-squares regression, (b) linear interpolation, and (c) curvilinear interpolation.

Regresi Linier

• Regresi linier dapat dilakukan dengan memasangkan dua variable yang berbeda (x_1, y_1) , (x_2, y_2) ,, (x_n, y_n) dan menyatakannya dalam persamaan linier

FIGURE 17.1

(a) Data exhibiting significant error. (b) Polynomial fit oscillating beyond the range of the data. (c) More satisfactory result using the least-squares fit.

Kriteria 'best fit'

- 'best fit' \rightarrow perbedaan antara nilai y sebenarnya dan y prediksi bernilai minimum
- Dinyatakan dengan persamaan $\sum_{i=1}^{n} e_i = \sum_{i=1}^{n} (y_i a_0 a_1 x_i)$

FIGURE 17.2

Examples of some criteria for "best fit" that are inadequate for regression: (a) minimizes the sum of the residuals, (b) minimizes the sum of the absolute values of the residuals, and (c) minimizes the maximum error of any individual point.

Least-Squares Fit of a Straight Line

Contoh 1.

Lakukan pencocokkan untuk nilai x dan y pada kolom pertama dan kedua dari tabel di bawah.

TABLE 17.1 Computations for an error analysis of the linear fit.

1 0.5 8.5765	0.1687
2 2.5 0.8622	0.5625
3 2.0 2.0408	0.3473
4 4.0 0.3265	0.3265
5 3.5 0.0051	0.5896
6 6.0 6.6122	0.7972
75.54.2908	0.1993
Σ 24.0 22.7143	2.9911

$$n = 7$$
 $\sum x_i y_i = 119.5$ $\sum x_i^2 = 140$
 $\sum x_i = 28$ $\bar{x} = \frac{28}{7} = 4$ $a_1 = \frac{7(119.5) - 28(24)}{7(140) - (28)^2} = 0.8392857$
 $\sum y_i = 24$ $\bar{y} = \frac{24}{7} = 3.428571$ $a_0 = 3.428571 - 0.8392857(4) = 0.07142857$

FIGURE 17.3

The residual in linear regression represents the vertical distance between a data point and the straight line.

Error pada regresi linier

Standar error untuk nilai estimasi

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2 \longrightarrow S_{y/x} = \sqrt{\frac{S_r}{n-2}}$$

$$r^2 = \frac{S_t - S_r}{S_t}$$

$$r = \frac{n\Sigma x_i y_i - (\Sigma x_i)(\Sigma y_i)}{\sqrt{n\Sigma x_i^2 - (\Sigma x_i)^2} \sqrt{n\Sigma y_i^2 - (\Sigma y_i)^2}}$$
Koefisien determinan

Koefisien korelasi

FIGURE 17.4

Regression data showing (a) the spread of the data around the mean of the dependent variable and (b) the spread of the data around the best-fit line. The reduction in the spread in going from (a) to (b), as indicated by the bell-shaped curves at the right, represents the improvement due to linear regression.

FIGURE 17.5

Examples of linear regression with (a) small and (b) large residual errors.

Contoh 2.

Tentukan standar deviasi, estimasi error dan koefisien korelasi dari soal contoh 1.

$$s_y = \sqrt{\frac{22.7143}{7 - 1}} = 1.9457$$

$$s_{y/x} = \sqrt{\frac{2.9911}{7 - 2}} = 0.7735$$

$$r^2 = \frac{22.7143 - 2.9911}{22.7143} = 0.868$$

atau

$$r = \sqrt{0.868} = 0.932$$

Pseudocode

```
SUB Regress(x, y, n, a1, a0, syx, r2)
 sumx = 0: sumxy = 0: st = 0
 sumy = 0: sumx2 = 0: sr = 0
 DOFOR i = 1. n
   sumx = sumx + x_i
   sumy = sumy + y_i
   sumxy = sumxy + x_i * y_i
   sumx2 = sumx2 + x_i * x_i
 END DO
 xm = sumx/n
 ym = sumy/n
 a1 = (n*sumxy - sumx*sumy)/(n*sumx2 - sumx*sumx)
 a0 = ym - a1*xm
 DOFOR i = 1. n
   st = st + (y_i - ym)^2
   sr = sr + (y_i - a1*x_i - a0)^2
 END DO
 syx = (sr/(n-2))^{0.5}
 r2 = (st - sr)/st
END Regress
```

- Regresi polinomial dinyatakan dalam $y = a_0 + a_1x + a_2x^2 + e^2$
- Persamaan regresi polinomial untuk derajat m

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m + e$$

$$(n)a_0 + (\sum x_i)a_1 + (\sum x_i^2)a_2 = \sum y_i$$
$$(\sum x_i)a_0 + (\sum x_i^2)a_1 + (\sum x_i^3)a_2 = \sum x_i y_i$$
$$(\sum x_i^2)a_0 + (\sum x_i^3)a_1 + (\sum x_i^4)a_2 = \sum x_i^2 y_i$$

Persamaan standar error

$$s_{y/x} = \sqrt{\frac{S_r}{n - (m+1)}}$$
 dengan S_r

dengan
$$S_r = \sum_{i=1}^n (y_i - a_0 - a_1 x_i - a_2 x_i^2)^2$$

Contoh 3. Tentukan regresi polinomial untuk nilai x dan y pada tabel di bawah.

x _i	y i	$(y_i - \overline{y})^2$	$(y_i - a_0 - a_1x_i - a_2x_i^2)^2$
0	2.1	544.44	0.14332
1	7.7	314.47	1.00286
2	13.6	140.03	1.08158
3	27.2	3.12	0.80491
4	40.9	239.22	0.61951
4 5	61.1	1272.11	0.09439
Σ	152.6	2513.39	3.74657
m = 2	$\sum x_i = 15$	$\sum x_i^4 = 979$	
n = 6	$\sum y_i = 152.6$	$\sum x_i y_i = 585.6$	
$\overline{x} = 2.5$	$\sum x_i^2 = 55$	$\sum x_i^2 y_i = 2488.8$	
$\bar{y} = 25.433$	$\sum x_i^3 = 225$		

FIGURE 17.11
Fit of a second-order polynomial.

$$\begin{bmatrix} 6 & 15 & 55 \\ 15 & 55 & 225 \\ 55 & 225 & 979 \end{bmatrix} \begin{Bmatrix} a_0 \\ a_1 \\ a_2 \end{Bmatrix} = \begin{Bmatrix} 152.6 \\ 585.6 \\ 2488.8 \end{Bmatrix}$$

$$y = 2.47857 + 2.35929x + 1.86071x^2$$

$$s_{y/x} = \sqrt{\frac{3.74657}{6-3}} = 1.12$$

$$r^2 = \frac{2513.39 - 3.74657}{2513.39} = 0.99851 \qquad r = 0.99925.$$

Bentuk umum

$$y = a_0 + a_1 x_1 + a_2 x_2 + e$$

FIGURE 17.14

Graphical depiction of multiple linear regression where y is a linear function of x_1 and x_2 .

Regresi multiple linier memiliki bentuk umum

$$y = a_0 + a_1 x_1 + a_2 x_2 + e$$

$$y = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_m x_m + e$$

$$\begin{bmatrix} n & \sum x_{1i} & \sum x_{2i} \\ \sum x_{1i} & \sum x_{1i}^2 & \sum x_{1i} x_{2i} \\ \sum x_{2i} & \sum x_{1i} x_{2i} & \sum x_{2i}^2 \end{bmatrix} = \begin{cases} a_0 \\ a_1 \\ a_2 \end{cases} = \begin{cases} \sum y_i \\ \sum x_{1i} y_i \\ \sum x_{2i} y_i \end{cases}$$

Persamaan standar error

$$s_{y/x} = \sqrt{\frac{S_r}{n - (m+1)}}$$
 $S_r = \sum_{i=1}^n (y_i - a_0 - a_1 x_{1i} - a_2 x_{2i})^2$

Contoh 4.

Data pada table di bawah diperoleh dari persamaan $y = 5 + 4x_1 - 3x_2$:

<i>x</i> ₁	X2	у
0	0	5
0 2	1	10
2.5	2	9
1	3	O
4	3 6	3
4 7	2	27

Gunakan regresi multiple linier untuk mencocokkan data berikut.

TABLE 17.5 Computations required to develop the normal equations for Example 17.6.

	у	x ₁	X ₂	x_1^2	x_2^2	x_1x_2	x_1y	x ₂ y
	5	0	0	0	0	0	0	0
	10	2	1	4	1	2	20	10
	9	2.5	2	6.25	4	5	22.5	18
	0	1	3	1	9	3	0	0
	3	4	6	16	36	24	12	18
	27	7	2	49	4	14	189	54
Σ	54	16.5	14	76.25	54	48	243.5	100

$$\begin{bmatrix} 6 & 16.5 & 14 \\ 16.5 & 76.25 & 48 \\ 14 & 48 & 54 \end{bmatrix} \begin{Bmatrix} a_0 \\ a_1 \\ a_2 \end{Bmatrix} = \begin{Bmatrix} 54 \\ 243.5 \\ 100 \end{Bmatrix}$$

$$a_0 = 5 \quad a_1 = 4 \quad a_2 = -3$$

Pseudocode

```
DOFOR i = 1, order + 1
  DOFOR j = 1, i
    sum = 0
    DOFOR \ell = 1. n
      sum = sum + X_{i-1,\ell} \cdot X_{j-1,\ell}
    END DO
    a_{i,j} = sum
   a_{j,i} = sum
  END DO
  sum = 0
  DOFOR \ell = 1, n
    sum = sum + y_{\ell} \cdot x_{i-1,\ell}
  END DO
  a_{i,order+2} = sum
END DO
```

Rangkuman

TABLE PT5.5 Summary of important information presented in Part Five.

Method	Formulation	Interpretation Graphical	Errors
Linear regression	$y = a_0 + a_1 x$ where $a_1 = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$	y	$s_{y/x} = \sqrt{\frac{S_r}{n-2}}$
	$n\sum x_i^2 - (\sum x_i)^2$ $a_0 = \overline{y} - a_1\overline{x}$	x	$r^2 = \frac{S_t - S_r}{S_t}$
Polynomial regression	$y = a_0 + a_1x + \cdots + a_mx^m$ (Evaluation of a's equivalent to solution of $m + 1$ linear algebraic equations)	y	$s_{y/x} = \sqrt{\frac{S_r}{n - (m+1)}}$
		x	$r^2 = \frac{S_t - S_r}{S_t}$
Multiple linear regression	$y = a_0 + a_1x_1 + \cdots + a_mx_m$ (Evaluation of a's equivalent to solution of $m + 1$ linear algebraic equations)	x ₂	$s_{y/x} = \sqrt{\frac{S_r}{n - (m+1)}}$ $r^2 = \frac{S_t - S_r}{S_t}$
		\tilde{x}_1	

Latihan Soal

Latihan

Problem Chapter 17

Nomor 17.4, 17.5, 17.6