Predicting Survival in the Titanic Data Set We will be using a decision tree to make predictions about the Titanic data set from Kaggle. This data set provides information on the Titanic passengers and can be used to predict whether a passenger survived or not.

```
In [49]: #Import pacakges
   import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   %matplotlib inline
```

In [50]: #import dataset Url= 'https://raw.githubusercontent.com/BigDataGal/Python-for-Data-Science/master, titanic = pd.read_csv(Url) titanic.columns = ['PassengerId','Survived','Pclass','Name','Sex','Age','SibSp','

In [51]: titanic.head(5)

Out[51]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabi
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	Na
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C8
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	Na
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C12
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	Na
4											

In [52]: #You use only Pclass, Sex, Age, SibSp (Siblings aboard), Parch (Parents/children of the fare to predict whether a passenger survived.

df = titanic.drop(['PassengerId', 'Name', 'Ticket', 'Cabin', 'Embarked'], axis=1)

In [53]: df.head(5)

Out[53]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare
0	0	3	male	22.0	1	0	7.2500
1	1	1	female	38.0	1	0	71.2833
2	1	3	female	26.0	0	0	7.9250
3	1	1	female	35.0	1	0	53.1000
4	0	3	male	35.0	0	0	8.0500

In [54]: df.describe()

Out[54]:

	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [55]: df = pd.get_dummies(df, columns=['Sex'], drop_first=True)
 df.head()

Out[55]:

	Survived	Pclass	Age	SibSp	Parch	Fare	Sex_male
0	0	3	22.0	1	0	7.2500	1
1	1	1	38.0	1	0	71.2833	0
2	1	3	26.0	0	0	7.9250	0
3	1	1	35.0	1	0	53.1000	0
4	0	3	35.0	0	0	8.0500	1

```
In [56]: | df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 891 entries, 0 to 890
         Data columns (total 7 columns):
         Survived
                     891 non-null int64
         Pclass
                     891 non-null int64
         Age
                     714 non-null float64
         SibSp
                     891 non-null int64
         Parch
                     891 non-null int64
         Fare
                     891 non-null float64
         Sex male
                     891 non-null uint8
         dtypes: float64(2), int64(4), uint8(1)
         memory usage: 42.7 KB
         df['relatives'] = df['SibSp'] + df['Parch']
In [57]:
         df.loc[df['relatives'] > 0, 'not alone'] = 0
In [58]:
         df.loc[df['relatives'] == 0, 'not alone'] = 1
         df['not_alone'] = df['not_alone'].astype(int)
In [59]: | df['Age'].fillna(df['Age'].median(),inplace=True)
In [60]: | df['Fare'] = df['Fare'].astype(int)
         df['Age'] = df['Age'].astype(int)
In [61]: | df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 891 entries, 0 to 890
         Data columns (total 9 columns):
         Survived
                      891 non-null int64
                      891 non-null int64
         Pclass
         Age
                      891 non-null int32
                      891 non-null int64
         SibSp
         Parch
                      891 non-null int64
         Fare
                      891 non-null int32
         Sex male
                      891 non-null uint8
         relatives
                      891 non-null int64
         not alone
                      891 non-null int32
         dtypes: int32(3), int64(5), uint8(1)
         memory usage: 46.2 KB
In [62]: #divide dependent & independent variables
         X = df.drop(['Survived'], axis=1).values
         y = df['Survived'].values
In [63]: # train test split
         from sklearn.model selection import train test split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_s
```

```
In [64]: #decision tree model building
         from sklearn import tree
         dtree = tree.DecisionTreeClassifier()
In [65]:
        dtree.fit(X train, y train)
         y_pred = dtree.predict(X_test)
         acc_decision_tree = round(dtree.score(X_train, y_train) * 100, 2)
         acc_decision_tree
Out[65]: 96.15
In [66]: from sklearn.metrics import classification report, confusion matrix
         print(classification_report(y_test,y_pred))
                                    recall f1-score
                      precision
                                                       support
                   0
                           0.79
                                      0.85
                                                0.82
                                                           154
                                      0.70
                   1
                           0.78
                                                0.74
                                                           114
                           0.79
                                      0.79
                                                0.79
         avg / total
                                                           268
In [67]:
         print(confusion_matrix(y_test,y_pred))
         [[131 23]
          [ 34 80]]
In [68]: # with the precision & recall score of 0.80 the model predict the Survival accura
```