Московский государственый университет им. М.В.Ломоносова Механико-математический факультет Кафедра газовой и волновой динамики

Ракитин Виталий Павлович.

Численное решение краевой задачи принципа максимума в задаче оптимального управления методом стрельбы.

Содержание

1	Постановка заадачи	2
2	Формализация задачи	2
3	Система необходимых условий оптимальности	2
4	Анормальный случай и исследование задачи	4
5	Краевая задача	4
6	Аналитическое решение краевой задачи	5
7	Численное решение краевой задачи методом стрельбы	6
8	Оценка глобальной погрешности.	7
9	Правило Рунге	8
10	Тестирование на гармоническом осцилляторе	8
11	Приложения 11.1 Решение задачи о математическом осцилляторе в Wolfram Mathematica 9	11 11

1 Постановка заадачи

Рассматривается задача (номер 33) Лагранжа с фиксированным временным отрезком, без ограничений вида «меньше или равно»:

$$\int_{0}^{1} \frac{\ddot{x}^{2}}{1 + \alpha t^{4}} dt \to extr,$$

$$\int_{0}^{1} x dt = 1, \qquad x(0) = \dot{x}(1) = 0, \qquad \dot{x}(0) = 1,$$
(1)

где α — известная константа, параметр задачи.

Требуется формализовать задачу как задачу оптимального управления, принципом максимума Понтрягина свести задачу к краевой задаче, численно решить полученную краевую задачу методом стрельбы и обосновать точность полученных результатов, проверить полученные экстремали Понтрягина на оптимальность при различных значениях параметра

$$\alpha = \{0.0; 0.1; 1.0; 10.0\}.$$

2 Формализация задачи

Формализуем задачу для оптимального управляения. Для этого введём следующие обозначения

$$y = \dot{x}, \qquad u = \dot{y} = \ddot{x}.$$

где u — управление.

Тогда исходная система (1) перепишется в виде:

$$\begin{cases} \dot{x} = y; \\ \dot{y} = u; \\ u \in \mathbb{R}; \\ \text{при } t = 0: x(0) = 0, \quad y(0) = 1; \\ \text{при } t = 1: y(1) = 0; \\ \int_{0}^{1} x dt = 1; \\ \int_{0}^{1} \frac{u^{2}}{1 + \alpha t^{4}} dt \to \text{extr.} \end{cases}$$
 (2)

3 Система необходимых условий оптимальности

Рассмотртим задачу Лагранжа в пространстве $\Omega = C^1(\Delta, \mathbb{R}^2) \times C(\Delta, \mathbb{R}) \times \mathbb{R}^2$:

$$u(t) \in \mathbb{R}, \quad \overline{x}^T = (x, y) \in \mathbb{R}^2, \quad \dot{\overline{x}}^T - (y, u) = 0, \quad \varphi(t, \overline{x}(t), u(t)) = (y, u);$$

Далее выпишем следующий функционалы

$$B_i(\overline{x},u,t_0,t_1)=B_i(x,y,u,0,1)=\int\limits_0^1 f_i(t,\overline{x},u)dt+\psi_i(0,\overline{x}(0),1,\overline{x}(1)),$$
 где $i=1,\dots,4.$
$$B_0=\int\limits_0^1 \frac{u^2}{1+\alpha t^4}dt, \qquad f_0=\frac{u^2}{1+\alpha t^4}, \qquad \psi_0=0;$$

$$B_1=\int\limits_0^1 xdt-1=0, \qquad f_1=x, \qquad \psi_1=-1;$$

$$B_2=x(0), \qquad f_2=0, \qquad \psi_2=x(0);$$

$$B_3=y(0)-1, \qquad f_3=0, \qquad \psi_3=y(0)-1;$$

$$B_4 = y(1), \qquad f_4 = 0, \qquad \psi_4 = y(1);$$

Далее выпишем функцию Лагранжа

$$\mathcal{L} = \int_{0}^{1} Ldt + l;$$

где

лагранжиан:
$$L=\sum_{i=0}^4 \lambda_i f_i(t,\overline{x},u) + \langle \overline{p}(t),\dot{\overline{x}}-\varphi(t,\overline{x},u) \rangle;$$

терминант:
$$l = \sum_{i=0}^4 \lambda_i \psi_i(0, \overline{x}(0), 1, \overline{x}(1));$$

$$\lambda = (\lambda_0, \dots, \lambda_4), \quad \overline{p}(\cdot) = (p_x, p_y) \in C^1(\Delta, \mathbb{R}^{2*})$$

множетели лагранжа задачи, а так же функцию Понтрягина

$$H(t, \overline{x}, u, \overline{p}, \lambda) = \langle \overline{p}(t), \varphi(t, \overline{x}, u) \rangle - \sum_{i=0}^{4} \lambda_i f_i(t, \overline{x}, u).$$

А теперь выпишем функции Лагранжа и Понтрягина в явном виде:

$$L = \lambda_0 \left(\frac{u^2}{1 + \alpha t^4} \right) + \lambda_1 x + p_x (\dot{x} - y) + p_y (\dot{y} - u);$$

$$l = -\lambda_1 + \lambda_2 x(0) + \lambda_3 (y(0) - 1) + \lambda_4 y(1);$$

$$H = p_x y + p_y u - \lambda_0 \left(\frac{u^2}{1 + \alpha t^4} \right) - \lambda_1 x;$$
(3)

Далее применим к задаче оптимального управления (2) принцип максимума Понтрягина. Необходимые условия оптимальности:

1. Уравнения Эйлера-Лагранжа (сопряжённая система уравнений, условие стационарности по \overline{x}):

$$\begin{cases} \dot{p}_x = -\frac{\partial H}{\partial x} = \lambda_1; \\ \dot{p}_y = -\frac{\partial H}{\partial y} = -p_x. \end{cases}$$
(4)

2. условие оптимальности по управлению,

$$u = \arg \underset{u \in \mathbb{R}}{\text{abs }} \max H(u) = \arg \underset{u \in \mathbb{R}}{\text{abs }} \max \left(p_y u - \left(\frac{\lambda_0}{1 + \alpha t^4} \right) u^2 \right) = \frac{p_y \left(1 + \alpha t^4 \right)}{2\lambda_0}$$

при $\lambda_0 \neq 0$, так как H(u) — парабола, с ветвями, направленными вниз (т.к. $\lambda_0 \geqslant 0$ — см.п. 6), достигает максимума в вершине, при указанном значении аргумента u;

3. условия трансверсальности по \bar{x} :

$$p_x(t_k) = (-1)^k \frac{\partial l}{\partial x(t_k)}, \qquad p_y(t_k) = (-1)^k \frac{\partial l}{\partial y(t_k)}.$$

В нашем случае $k = 0, 1, t_0 = 0, t_1 = 1$. Значит

$$p_x(0) = \lambda_2,$$
 $p_x(1) = 0,$ $p_y(0) = \lambda_3,$ $p_y(1) = -\lambda_4.$

- 4. условия стационарности по t_k : нет, так как в задаче (2) t_k известные константы;
- 5. условия дополняющей нежёсткости: нет, так как в задаче (2) отсутствуют условия вида «меньше или равно»;
- 6. условие неотрицательности: $\lambda_0 \ge 0$;
- 7. условие нормировки (множители Лагранжа могут быть выбраны с точностью до положительного множителя);
- 8. НЕРОН (множители Лагранжа НЕ Равны Одновременно Нулю).

4 Анормальный случай и исследование задачи

Исследуем возможность анормального случая $\lambda_0 = 0$. При $\lambda_0 = 0$ из (2) и (4) получим систему дифференциальных уравнений:

$$\begin{cases}
\dot{x} = y; \\
\dot{y} = u; \\
\dot{p}_x = \lambda_1; \\
\dot{p}_y = -p_x;
\end{cases}$$
(5)

Отсюда получаем,

$$p_x(t) = \lambda_1 t + C,$$
 $p_y(t) = -\lambda_1 t - C.$

Так же из условия (п. 2), имеем

$$p_y(t) \equiv 0, \qquad \dot{p}_y(t) \equiv 0,$$

иначе

$$u(t) = \pm \infty$$
,

и такой управляемый процесс не является допустимым. Следовательно,

$$\lambda_1 t + C = 0, \qquad \lambda_1 t = C,$$

где $t \in \mathbb{R}$, $\lambda_1, C = \mathrm{const}$, тогда

$$\lambda_1 = C = 0, \qquad p_x(t) \equiv 0.$$

Из условий трансверсальности (п. 3) получаем

$$\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 0.$$

Таким образом, если $\lambda_0 = 0$, то все множители Лагранжа равны 0 и получается противоречие с условием (п. 8). Значит, анормальный случай невозможен.

Так как $\lambda_0 \neq 0$, то в силу однородности функции Лагранжа по множителям Лагранжа выберем следующее условие нормировки:

$$\lambda_0 = \frac{1}{2},$$

тогда из условия (п. 2) определяется управление

$$u = p_u(1 + \alpha t^4),\tag{6}$$

5 Краевая задача

Ко всему вышесказанному добавим, что

$$\int_{0}^{1} x dt = 1.$$

Введём обозначение

$$arphi(t) = \int\limits_0^t x(au)d au, \quad {
m a} \ {
m Tak} \ {
m xe} \ \lambda_1 = a;$$

тогда

$$\begin{cases} \varphi(0) = 0, \\ \dot{\varphi} = x; \\ \varphi(1) = 1; \end{cases}$$

$$(7)$$

Таким образом, на основе принципа максимума Понтрягина задача оптимального управления (2) сводится к краевой задаче (8).

$$\begin{cases} \dot{x} = y; \\ \dot{y} = p_y(1 + \alpha t^4); \\ \dot{p}_x = a; \\ \dot{p}_y = -p_x; \\ \dot{\varphi} = x; \\ \dot{a} = 0. \end{cases}$$

$$(8)$$

$$x(0) = 0,$$
 $y(0) = 1,$ $\varphi(0) = 0;$ $y(1) = 0,$ $\varphi(1) = 1;$

$$\alpha = \{0.0; 0.1; 1.0; 10.0\}.$$

6 Аналитическое решение краевой задачи

Полученная краевая задача решается аналитически.

1. невооружённым глазом видно, что последнее уравнение очень простое, поэтому

$$\dot{a} = 0 \quad \Rightarrow \quad a = C_1, \quad \text{где } C_1 = \text{const.}$$

2. далее из уравнения $\dot{p}_x = a = C_1$ следует, что

$$p_x = C_1 t + C_2$$
, где $C_2 = \text{const.}$

Так же из краевых условий видим, что

$$p_x(1) = 0 \quad \Rightarrow \quad 0 = C_1 + C_2, \qquad C_2 = -C_1.$$

3. из уравнения

$$\dot{p}_y = -p_x = C_1 t - C_1,$$

получим, что

$$p_y = \frac{1}{2}C_1t^2 - C_1t + C_3,$$
 где $C_3 = \text{const.}$

4. теперь рассмотрим уравнение

$$\dot{y} = p_y(1 + \alpha t^4) = \left(\frac{1}{2}C_1t^2 - C_1t + C_3\right)(1 + \alpha t^4),$$

из которого не сложно получить

$$y = \frac{1}{2} \left(\frac{1}{7} \alpha C_1 t^7 - \frac{1}{3} \alpha C_1 t^6 + \frac{2}{5} \alpha C_3 t^5 + \frac{1}{3} C_1 t^3 - C_1 t^2 + 2C_3 t \right) + C_4, \qquad \text{где } C_4 = \text{const.}$$

Из краевых условий

$$y(0) = 1, \quad y(1) = 0$$

следует

$$1 = C_4,$$

$$0 = \frac{1}{7}\alpha C_1 - \frac{1}{3}\alpha C_1 + \frac{2}{5}\alpha C_3 + \frac{1}{3}C_1 - C_1 + 2C_3$$

Значит

$$C_3 = \frac{5(2\alpha + 7)c_1}{21(\alpha + 5)}$$

5. из уравнения

$$\dot{x} = y = \frac{1}{2} \left(\frac{1}{7} \alpha C_1 t^7 - \frac{1}{3} \alpha C_1 t^6 + \frac{2\alpha (2\alpha + 7)C_1 t^5}{21(\alpha + 5)} + \frac{C_1 t^3}{3} - C_1 t^2 + \frac{10(2\alpha + 7)C_1 t}{21(\alpha + 5)} \right) + 1$$

следует

$$x = \frac{1}{42(\alpha+5)} \left(\frac{3}{8} \alpha^2 C_1 t^8 + \frac{15}{8} \alpha C_1 t^8 - \alpha^2 C_1 t^7 - 5\alpha C_1 t^7 + \frac{2}{3} \alpha^2 C_1 t^6 + \frac{7}{3} \alpha C_1 t^6 + \frac{7}{4} \alpha C_1 t^4 + \frac{35C_1 t^4}{4} - 7\alpha C_1 t^3 - 35C_1 t^3 + 10\alpha C_1 t^2 + 35C_1 t^2 + 42\alpha t + 210t \right) + C_5.$$

Из краевых условий видно

$$x(0) = 0 \Rightarrow C_5 = 0$$

6. И наконец рассмотрим последнее уравнение $\dot{\varphi} = x$

$$\varphi = \frac{1}{1008(\alpha+5)} \left(\alpha(\alpha+5)C_1 t^9 - 3\alpha(\alpha+5)C_1 t^8 + \frac{8}{7}\alpha(2\alpha+7)C_1 t^7 + \frac{42}{5}(\alpha+5)C_1 t^5 - 42(\alpha+5)C_1 t^4 + 40(2\alpha+7)C_1 t^3 + 504(\alpha+5)t^2 \right) + C_6.$$

Из краевых условий, в свою очередь, получим явные выражения для C_1 и C_6 .

$$\varphi(0) = 0, \quad \varphi(1) = 1,$$

поэтому

$$C_6 = 0,$$

 $C_1 = \frac{8820(\alpha + 5)}{5\alpha^2 + 777\alpha + 1960}$

Из вышесказанного следует, что решением нашей системы будет следующим

$$\begin{cases} a(t) = -\frac{8820(\alpha+5)}{5\alpha^2+777\alpha+1960}, \\ px(t) = -\frac{8820}{5\alpha^2+777\alpha+1960}(-\alpha+\alpha t+5t-5), \\ py(t) = \frac{210}{5\alpha^2+777\alpha+1960}\left(20\alpha+21\alpha t^2+105t^2-42\alpha t-210t+70\right), \\ y(t) = \frac{1}{5\alpha^2+777\alpha+1960}\left(5\alpha^2+777\alpha+630\alpha^2 t^7+3150\alpha t^7-1470\alpha^2 t^6-7350\alpha t^6+840\alpha^2 t^5+42940\alpha t^5+1470\alpha t^3+7350t^3-4410\alpha t^2-22050t^2+4200\alpha t+14700t+1960\right), \\ x(t) = \frac{1}{4(5\alpha^2+777\alpha+1960)}\left(315\alpha^2 t^8+1575\alpha t^8-840\alpha^2 t^7-4200\alpha t^7+560\alpha^2 t^6+1960\alpha t^6+41470\alpha t^4+7350t^4-5880\alpha t^3-29400t^3+8400\alpha t^2+29400t^2+20\alpha^2 t+3108\alpha t+7840t\right), \\ \varphi(t) = \frac{1}{4(5\alpha^2+777\alpha+1960)}\left(35\alpha^2 t^9+175\alpha t^9-105\alpha^2 t^8-525\alpha t^8+80\alpha^2 t^7+280\alpha t^7+294\alpha t^5+41470t^5-1470\alpha t^4-7350t^4+2800\alpha t^3+9800t^3+10\alpha^2 t^2+1554\alpha t^2+3920t^2\right) \\ \text{(2e. при } alpha = 0; \end{cases}$$

Так же, при alpha = 0:

$$\begin{cases} a(t) = -30, \\ px(t) = -30(t-1), \\ py(t) = 3\left(5t^2 - 10t + 3\right), \\ x(t) = \frac{1}{4}\left(5t^4 - 20t^3 + 18t^2 + 4t\right), \\ y(t) = 5t^3 - 15t^2 + 9t + 1, \\ \varphi(t) = \frac{1}{4}\left(t^5 - 5t^4 + 6t^3 + 2t^2\right) \end{cases}$$

Численное решение краевой задачи методом стрельбы

Краевая задача (8) решается численно методом стрельбы. В качестве параметров пристрелки выбираются недостающие для решения задачи Коши значения при t=0

$$\beta_1 = a(0), \qquad \beta_2 = p_u(0), \qquad \beta = \{\beta_1, \beta_2\}.$$

Задав эти значения каким-либо образом и решив задачу Коши на отрезке $\Delta = [0,1]$ получим соответствующие выбранному значению β функции $x(t)[\beta]$, $y(t)[\beta]$, $p_x(t)[\beta]$, $p_y(t)[\beta]$ и, в частности, значения $p_x(1)[\beta]$, $y(1)[\beta]$. Задача Коши для системы дифференциальных уравнений (8) с начальными условиями в нулевой момент времени решается численно явным методом Рунге-Кутты 5-го порядка, основанным на расчётных формулах Дормана-Принса 5(6) DOPRI5 с автоматическим выбором шага (то есть с контролем относительной локальной погрешности на шаге по правилу Рунге). Для решения краевой задачи необходимо подобрать значения β так, чтобы выполнились условия:

$$\varphi(1)[\beta] = 0, \qquad y(1)[\beta] = 0.$$

Однако всего у нас неизвестны значения трёх переменных в начальный момент времени: p_x, y, a . Заметим, что из краевой задачи (8) видно, что $\dot{p}_x = a$, а значит $p_x(t) = a(t) \cdot (t-1)$, тогда при t=0: $p_x(0) = -a(0)$, но a= const, тогда $a(t) = -p_x(0)$. соответственно вектор-функцией невязок будет функция

$$\mathcal{X}(\beta) = \begin{pmatrix} y(1)[\beta] \\ \varphi(1)[\beta] - 1 \end{pmatrix},$$

Таким образом, в результате выбора вычислительной схемы метода стрельбы, решение краевой задачи свелось к решению системы трёх алгебраических уравнений от трёх неизвестных. Корень β системы алгебраических уравнений $\mathcal{X}(\beta)=0$ находится методом Ньютона с модификацией Исаева-Сонина. Решение линейной системы уравнений внутри модифицированного метода Ньютона осуществляется методом Гаусса с выбором главного элемента по столбцу, с повторным пересчётом.

Схема численного решения краевой задачи методом стрельбы выбрана таким образом, что при отсутствии ошибок в программной реализации решения задачи Коши, найденный методом Ньютона корень будет правильным (без учёта погрешности численного интегрирования), даже если внутри метода Ньютона есть какие-то ишибки. Напротив, ошибка в решении задачи Коши делает бесполезным полученный результат, даже если всё остальное запрограммировано правильно и методу Ньютона удалось найти корень.

Исходя из этого крайне важен следующий тест части программы, решающей задачу Коши, на системе дифференциальных уравнений с известным аналитическим решением.

Итерационный процесс начинается с $\beta_1^0=\beta_2^0=0,$ далее

$$\begin{pmatrix} \beta_1^{n+1} \\ \beta_2^{n+1} \end{pmatrix} = \begin{pmatrix} \beta_1^n \\ \beta_2^n \end{pmatrix} + \begin{pmatrix} \frac{\partial \mathcal{X}_1}{\partial \beta_1^{n+1}} & \frac{\partial \mathcal{X}_1}{\partial \beta_2^{n+1}} \\ \frac{\partial \mathcal{X}_2}{\partial \beta_1^{n+1}} & \frac{\partial \mathcal{X}_2}{\partial \beta_2^{n+1}} \end{pmatrix}^{-1} \cdot \mathcal{X}(\beta)$$

8 Оценка глобальной погрешности.

Для вычисления глобальной погрешности введём множество переменных δ_i :

$$\delta_0 = 0, \qquad \delta_{k+1} = \operatorname{Err}_k + \delta_k \cdot e^{\int_{t_k}^{t_{k+1}} \mu(s) ds}$$

Интеграл в предыдущем выражении можно приблизить следующим образом

$$\int_{t_k}^{t_{k+1}} \mu(s)ds = (t_{k+1} - t_k) \cdot \operatorname{Hmax}\left(\frac{J + J^T}{2}\right),$$

где J- матрица Якоби исходной системы дифференциальных уравнений, а $\operatorname{Hmax}-$ функция, возвращающая максимальное собственное значение полученной матрицы.

где $A = (\alpha t^4 + 1)$. Собственные числа λ матрицы \mathcal{A} находятся из харрактеристического уравнения

$$\lambda^6 - \lambda^4 \left(1 - \frac{A^2}{4} \right) + \lambda^2 \left(\frac{A^2}{8} + \frac{1}{4} \right) - \frac{A^2}{64} = 0 \tag{9}$$

Сделаем замену $\lambda^2 = z$, тогда получим следующее уравнение

$$z^{3} - z^{2} \left(1 - \frac{A^{2}}{4} \right) + z \left(\frac{A^{2}}{8} + \frac{1}{4} \right) - \frac{A^{2}}{64} = 0$$

По теореме Руше если на границе круга B(0,R) на комплексной плоскости $\mathbb C$ с центром в точке 0 и радиусом R имеет место неравенство для двух голоморфных функций f и g следующего вида

$$|g(z)|\big|_{|z|=R} \leqslant |f(z)|\big|_{|z|=R},$$

то количество нулей с учётом кратности суммы f+g в круге B(0,R) совпадает с количеством нулей f(z) в этом же круге B(0,R).

Возьмём в качестве $f(z)=z^3$ и $g(z)=-z^2\left(1-\frac{{\rm A}^2}{4}\right)+z\left(\frac{{\rm A}^2}{8}+\frac{1}{4}\right)-\frac{{\rm A}^2}{64}$.

Найдём $R>0\colon |f|\geqslant |g|$ при |z|=R.

Положим $R=max\left\{3\left|1-\frac{{\rm A}^2}{4}\right|,\sqrt{\frac{3{\rm A}^2}{8}+\frac{3}{4}},\sqrt[3]{\frac{3{\rm A}^2}{64}}\right\}$. Тогда

$$\left| g(z) \right| \bigg|_{|z|=R} \leqslant z^2 \left| 1 - \frac{\mathbf{A}^2}{4} \right| + z \left(\frac{\mathbf{A}^2}{8} + \frac{1}{4} \right) + \frac{\mathbf{A}^2}{64} \leqslant \frac{R^3}{3} + \frac{R^3}{3} + \frac{R^3}{3} = R^3.$$

9 Правило Рунге

Проверим правило Рунге. А именно, посчитаем отличия всех фазовых и сопряжённых переменных от точного аналитического решения при различных alpha для различных значений максимально допустимой относительной погрешности на шаге. То есть проверим следующее соотношение

$$variation = \frac{y_{-7} - y_{-9}}{y_{-9} - y_{-11}} \approx 100^{\frac{s}{s+1}} = 100^{\frac{5}{5+1}} \approx 46.42$$

После проведения всех расчётов для были получены следующие величины

$$R_x = 7.656930;$$
 (10)

$$R_y = 2.555695;$$
 (11)

$$R_{p_x} = 2.564632;$$
 (12)

$$R_{p_x} = 2.564632;$$
 (12)
 $R_{p_y} = 7.661325;$ (13)

$$R_{\varphi} = 2.558514. \tag{14}$$

(15)

10 Тестирование на гармоническом осцилляторе

Дабы отбросить все сомнения в корректности работы программы для решения задачи Коши, проведём тестирование на более простом случае с заранее известным решением, а именно на гармоническом осцилляторе

$$\begin{cases} \frac{dx}{dt} = y; \\ \frac{dy}{dt} = -x; \\ 0 < t < 30; \\ t = 0: x = 0, y = 8. \end{cases}$$

Визуализация численного решения данной задачи с помощью нашей программы представлена в виде графиков на рис.(3), (2) и (1). Для удобства проверки дополнительно решим нашу задачу с помощью пакета Wolfram Mathematica 9 (см. рис. 11.1). Сравнивая полученные результаты можно заметить, что полученные решения абсолютно идентичны, на основе чего можно сделать вывод о корректности работы программы. Однако, для большей достоверности проверим так же численные оценки отклонений.

1. Для вычисления глобальной погрешности введём множество переменных δ_i :

$$\delta_0 = 0, \qquad \delta_{k+1} = Err_k + \delta_k \cdot e^{\int\limits_{t_k}^{t_{k+1}} \mu(s) ds}$$

Интеграл в предыдущем выражении можно приблизить следующим образом

$$\int_{t_k}^{t_{k+1}} \mu(s)ds = (t_{k+1} - t_k) \cdot \operatorname{Hmax}\left(\frac{J + J^T}{2}\right),$$

где J — матрица Якоби исходной системы дифференциальных уравнений, Err_k — максимум расстояний между соответствующими координатами на k-ом шаге, а Hmax — функция, возвращающая максимальное собственное значение полученной матрицы. В наше случае мы получим следующее

$$J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad A = \frac{J + J^T}{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\lambda_{1,2} = 0, \qquad \delta_0 = 0, \qquad \delta_{k+1} = Err_k + \delta_k.$$

Таким образом были получены следюущие значения глобальной погрешности:

для точности погрешности -7-го порядка $\delta_k=2.433796\cdot 10^{-6}$ для точности погрешности -9-го порядка $\delta_k=3.964618\cdot 10^{-7}$ для точности погрешности -11-го порядка $\delta_k=8.135620\cdot 10^{-9}$

2. А оценка локального отклонения на шаге для каждой точки $t = \{50, 100, 150, 200\}$ для обеих координат получилась равна в районе 100 ± 2 , что намного превышает теоретическую оценку 56.23 и свидетельствуют о большом запасе точности в методе — при уменьшении максимально допустимой относительной погрешности на шаге интегрирования на 2 порядка происходит существенное уточнение решения, метод в данном случае работает как метод более высокого порядка. Это в первую очередь связано с коэффициентами в расчётных формулах метода и особенностями системы дифференциальных уравнений гармонического осциллятора.

На основе выше сказанного можно сделать вывод, что полученная программа работает корректно.

Рис. 1. Решение задачи о математическом осцилляторе. График зависимости y(x)

Рис. 2. Решение задачи о математическом осцилляторе. График зависимости y(t)

Рис. 3. Решение задачи о математическом осцилляторе. График зависимости x(t)

11 Результаты решения задачи и их анализ

Для задача была решена с различными значениями максимально допустимой относительной погрешности на шаге решения задачи Коши для $\Delta = 10^{-7}, 10^{-9}, 10^{-11}$. При каждом проходе были посчитаны погрешности

на шаге (по правилу Рунге см. выше), а так же глобальные погрешности, а именно ${\rm Err}=6.82\cdot 10^{-07}.$

Для сравнения численного решения и аналитического можно взглянуть на полученные графики, по которым явно видно, что они абсолютно идентичны.

Рис. 4. График зависимости x(t), полученный численным методом.

Рис. 5. График зависимости y(t), полученный численным методом.

Рис. 6. График зависимости y(x), полученный численным методом.

Рис. 7. График зависимости x(t), полученный аналитичсеки.

Рис. 8. График зависимости y(t), полученный аналитичсеки.

Рис. 9. График зависимости y(x), полученный аналитичсеки.

Список литературы

- [1] *И. С. Григоръев*. Методическое пособие по численным методам решения краевых задач принципа максимума в задачах оптимального управления Издательство Центра прикладных исследований при механико-математическом факультете МГУ, 2005.
- [2] В.В.Александров, Н.С.Бахвалов, К.Г.Григорьев, Г.Ю.Данков, М.И.Зеликин, С.Я.Ищенко, С.В.Конягин, Е.А.Лапшин, Д.А.Силаев, В.М.Тихомиров, А.В.Фурсиков. Практикум по численным методам в задачах оптимального управления Издательство Московского университета, 1988.
- [3] И. С. Григорьев, И. С. Заплетин. Практикум по численным методам в задачах оптимального управления. Дополнение I Издательство Центра прикладных исследований при механико-математическом факультете МГУ, 2007.

12 Приложе

12.1 Решение задачи о математическом осцилляторе в Wolfram Mathematica 9.

```
In[44]:= solve = NDSolve[
             \{x'[t] == y[t], y'[t] = -x[t], x[0] == 0, y[0] == 8\}, \{x, y\}, \{t, 0, 30\}]
         ParametricPlot[Evaluate[{x[t], y[t]} /. solve], {t, 0, 30}]
        ParametricPlot[Evaluate[{t,x[t]
                                                                       } /. solve], {t, 0, 30}]
         ParametricPlot[Evaluate[{t,y[t]}
                                                                       } /. solve], {t, 0, 30}]
\label{eq:out_44} \text{Out}_{[44]=} \; \left\{ \left. \left\{ x \to \text{InterpolatingFunction} \left[ \, \left\{ \, 0 \, . \, , \, \, 30 \, . \, \right\} \, \right\} \, , \, \, <> \, \right] \, , \right. \right.
            y \rightarrow \texttt{InterpolatingFunction[} \left\{ \left. \left\{ \texttt{0., 30.} \right\} \right\} \text{, } <> \right] \right\} \right\}
Out[45]=
                        -5
Out[46]=
                                    10
                                                  15
                                                               20
                                                                                          30
Out[47]=
                                                                            25
                                     10
                                                  15
                                                               20
```