Mitralieră Santinelă Automată (Sentry Gun)

Simion Ștefan 314CC

2024 - 12 - 07

Table of contents

1	Subiectul Temei	4
2	Implementare 2.1 Schema Bloc 2.2 Stări 2.3 Semnale Decizii 2.4 Semnale Ieșiri	5 6 6 7
3	Funcționalitate	8
4	Organigrama	10
5	Spațiul Stărilor	11
6	Tabelul tranzițiilor	12
7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 13 14 14 14 15 15
8	Diagrame Karnaugh și ecuațiile rezultate pentru intrările CBB-urilor	16
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 18 18 19 20 21
	$8.3.2 \Omega_2 = 1$	21

9	lmp	lement	area	c	irc	uit	tul	ui																	26
		8.4.2	K_3										•												24
		8.4.1	J_3								 														23
	8.4	Q_3 .																							22

1 Subiectul Temei

Tema proiectului constă în realizarea sintezei logice a unității de comandă al unui sentry gun (mitralieră santinelă automată). Automatul are următoarea funcționalitate:

- detectarea automată a obiectului/individului ce intră în perimetrul protejat
- poziționarea mitralierei pe obiectul/individului ce a intrat în perimetrul protejat
- împușcarea automată a obiectului/individului ce a intrat în perimetrul protejat
- primirea de instrucțiuni remote pentru controlul funcțiilor de țintire și împușcare

2 Implementare

Automatul a fost implementat pe 4 biți care codifică 4 variabile de stare: Q_3 (cel mai semnificativ), Q_2 , Q_1 , Q_0 . Variabilele de stare codifică 15 stări pe care automatul le poate avea. Cele 4 variabile de stare sunt implementate in felul următor:

- Q_0 folosind CBB tip D și un MUX 16:1.
- Q_1 folosind CBB tip JK, având implementat cu porți de tip NAND și K cu porți de tip NOR.
- \mathbf{Q}_2 folosind CBB tip JK și un MUX 2:1.
- Q_3 folosind CBB tip JK, având J implementat printr-un MUX 4:1 și K printr-un MUX 8:1.

Ieșirile circuitului sunt implementate utilizând un decodificator 4:16, având ieșirile active pe 0.

2.1 Schema Bloc

Figure 2.1: Schema Bloc Automat

2.2 Stări

- INACTIVE (0000) = Aparatul este oprit
- ACTIVE (0001) = Aparatul este activ în așteptare
- MANUAL (0101) = Aparatul funcționează manual (primește instrucțiuni manual)
- AUTO (0011) = Aparatul funcționează automat
- DETECT (0111) = Aparatul a detectat un individ/obiect în spațiul protejat
- REC INSTR (1101) = Aparatul primește instrucțiuni remote
- CONF INSTR (1001) = Aparatul a confirmat primirea instrucțiunilor remote
- TRANS_INFO (1111) = Aparatul a transmis datele primite de la senzor către modulul de țintire
- \bullet TRANS_INST (1010) = Aparatul a transmis instructiunile primite către modulul de tintire
- LOG_TARG (1110) = Aparatul a transmis informațiile de log către modulul de logging
- ON TARG (0110) = Aparatul a pus mitraliera pe individ/obiect
- POS FIRE (0010) = Aparatul a verificat că mitraliera poate să tragă (are muniție, etc)
- SIG FIRE (1100) = Aparatul a încercat să pornească mitraliera
- WAIT_FIRE (0100) = Aparatul așteaptă pornirea mitralierei
- STAT FIRE (1011) = Aparatul a impuscat individul/obiectul

2.3 Semnale Decizii

- ACT = Instrucțiunea de decizie prin care un dispozitiv auxiliar pornește sau oprește automatul
- MAN = Instrucțiunea de decizie prin care un utilizator alege dacă automatul functionează automat sau prin instructiuni primite remote
- INST = Instrucțiunea de decizie prin care se verifică dacă automatul primește instrucțiuni
- DET = Instrucțiune de decizie prin care se verifică detectarea unui individ/obiect în zona protejată
- ON_SIGHT = Instrucțiunea de decizie prin care se verifică poziționarea mitralierei pe individ/obiect
- CAN_FIRE = Instrucțiunea de decizie prin care se verifică dacă mitraliera este funcțională
- STATUS = Instrucțiunea de decizie prin care se verifică dacă mitraliera a început să tragă
- T_O = Instrucțiunea de decizie (timer) prin care se verifică dacă a trecut perioada de timp în care trebuia să se pornească mitraliera (time_out)

2.4 Semnale leşiri

- \bullet DAT = Automatul transmite informațiile primite de la senzor către modulul de țintire
- FIRE = Automatul trimite semnalul de foc/tragere către mitralieră
- $\bullet~\mathrm{LOG} = \mathrm{Automatul}$ trimite informații relevante catre unitatea de logging

3 Funcționalitate

Automatul pornește în starea INACTIVE în care este oprit. Acesta se activează când primeste semnalul de pornire (ACT) și ajunge în starea ACTIVE.

Dacă este selectat modul de funcționare manual prin semnalul MAN, atunci automatul intră în starea MANUAL. Dacă acesta nu primește instrucțiuni atunci acesta se reîntoarce în starea INACTIVE. Dacă primește instrucțiuni (INST) automatul trece în starea REC_INSTR, apoi trimite semnalul RCV, confirmând că a primit instrucțiunile. Automatul trece în starea CONF_INSTR, și trimite semnalul DAT, semnalând că trimite instrucțiunile primite către modulul de țintire. Apoi trece în starea TRANS_INST și trimite semnalul LOG indicând că trimite informații de log (instrucțiunile primite și pașii îndepliniți pentru a le urma) către modulul de logging și trece în starea ON_TARG, mitraliera fiind poziționată pe locația dorită.

Dacă nu a fost selectat modul de funcționare manual, sentry gun-ul intră în modul automat, trecând în starea AUTO. Dacă senzorul detectează un individ/obiect în spatiul protejat aparatul trece în starea DETECT, fiind conștientizată prezența unui individ/obiect, altfel în INACTIVE. Din DETECT, automatul trimite semnalul DAT semnalând că trimite datele primite de la senzor către modulul de țintire și trece în starea TRANS_INFO. Apoi acesta transmite semnalul LOG, indicând că transmite informatiile de log (informațiile primite de la senzor și pașii îndepliniți pentru a ținti mitraliera pe individ/obiect) către modulul de logging și trece în starea LOG_TARG. Dacă mitraliera este poziționată corect pe individ/obiect primește semnalul ON_SIGHTși trece în starea ON_TARG, aparatul știind că are mitraliera poziționată corect pe individ/obiect, altfel trece în starea AUTO.

Din starea ON_TARG automatul verifică dacă mitraliera este funcțională (are muniție, etc) prin semnalul CAN_FIRE. Dacă mitraliera nu poate trage, automatul trece în starea INACTIVE, iar dacă aceasta este funcțională trece în starea POS_FIRE, aparatul având posibilitatea de a trage în locul dorit sau în individul/obiectul care a intrat în spațiul protejat. Având posibilitatea de a trage, automatul trimite semnalul FIRE către mitraliera pentru a o porni și trece în starea SIG_FIRE. Apoi automatul verifică dacă mitraliera a început să tragâ prin semnalul STATUS.

Dacă mitraliera nu a început să tragă, atunci automatul trece în starea WAIT_FIRE, aparatul așteptând să pornească mitraliera. Automatul verifică dacă a trecut prea mult timp de când a trimis primul semnal de FIRE (= dacă a făcut timeout), prin semnalul T_0. Dacă da, atunci trece în starea INACTIVE, iar dacă nu trece în starea POS_FIRE.

Dacă mitraliera pornește (automatul primește semnalul STATUS), atunci automatul trece în starea STAT_FIRE, aparatul împușcând locația dorită sau individul/obiectul care a intrat în

spațiul protejat și trimite semnalul LOG, indicând că transmite informații de log (cât a durat să se pornească mitraliera, muniția consumată, etc), către modulul de logging și trece în starea ACTIVE.

4 Organigrama

Figure 4.1: Organigrama Automatului

5 Spațiul Stărilor

$\overline{\mathrm{Q_3Q_2}\setminus\mathrm{Q_1Q_0}}$	00	01	11	10
00	INACTIVE	ACTIVE	AUTO	POS_FIRE
01	WAIT_FIRE	MANUAL	DETECT	ON_TARG
11	SIG_FIRE	REC_{INSTR}	TRANS_INFO	LOG_TARG
10	*	CONF_INSTR	$STAT_FIRE$	$TRANS_INST$

6 Tabelul tranzițiilor

$\overline{{ m Q_3}^{ m t}}$	Q_2^{t}	Q_1^{t}	Q_0^{t}	Q_3^{t+1}	Q_2^{t+1}	Q_1^{t+1}	Q_0^{t+1}	Exits
0	0	0	0	0	0	0	ACT	0
0	0	0	1	0	MAN	\overline{MAN}	1	0
0	0	1	0	1	1	0	0	FIRE
0	0	1	1	0	DET	DET	DET	0
0	1	0	0	0	0	$\overline{T_O}$	0	0
0	1	0	1	INST	INST	0	INST	0
0	1	1	0	0	0	CAN_FIRE	0	0
0	1	1	1	1	1	1	1	DAT
1	0	0	0	*	*	*	*	*
1	0	0	1	1	0	1	0	DAT
1	0	1	0	0	1	1	0	LOG
1	0	1	1	0	0	0	1	LOG
1	1	0	0	STATUS	\overline{STATUS}	STATUS	STATUS	0
1	1	0	1	1	0	0	1	RCV
1	1	1	0	0	ON_SIGHT	1	$\overline{ON_SIGHT}$	0
1	1	1	1	1	1	1	0	LOG

7 Diagrame de Stare & Ecuații Rezultate

$7.1 \ Q_3^{t+1}$

$\overline{Q_3Q_2 \setminus Q_1Q_0}$	00	01	11	10
00	0	0	0	(1)
01	0	INST	T	0
11	STATUS	T	1	0
10	*	1	0	0

$$Q_3^{t+1} = \overline{Q_3} \ \overline{Q_2} Q_1 \overline{Q_0} + Q_2 Q_1 Q_0 + Q_3 \overline{Q_1} Q_0 + \text{STATUS} Q_3 \overline{Q_1} + \text{INST} Q_2 Q_0$$

7.2 Q_2^{t+1}

$\overline{Q_3Q_2\setminus Q_1Q_0}$	00	01	11	10
00	0	MAN	DET	
01	0	INST		$\overline{0}$
11	STATUS) 0	\bigcup	ØN_SIGHT
10	*	0	0	

 $Q_2^{t+1} = \overline{Q_2}Q_1\overline{Q_0} + Q_2Q_1Q_0 + \underbrace{\text{ON_SIGHT}Q_3Q_1\overline{Q_0}}_{Q_0} + \underbrace{\text{MAN}\overline{Q_3}}_{Q_2} \ \overline{Q_2} \ \overline{Q_1}Q_0 + \underbrace{\text{DET}\overline{Q_3}Q_1Q_0}_{Q_0} + \underbrace{\text{INST}\overline{Q_3}Q_2Q_0}_{Q_0} + \underbrace{\text{STATUS}Q_3\overline{Q_1}}_{Q_0} \ \overline{Q_0}$

7.3 Q_1^{t+1}

$\overline{Q_3Q_2 \setminus Q_1Q_0}$	00	01	11	10
00	0	MAN/	DET	0
01	$\overline{\mathrm{T_O}}$	0	A	CAN_FIRE
11	STATUS	0	4	
10	*	1	0	1

 $\frac{Q_1^{t+1}}{\text{MAN}} = \frac{Q_3Q_1\overline{Q_0} + Q_2Q_1Q_0 + Q_3\overline{Q_2}}{Q_1Q_0 + \text{DET}\overline{Q_3}Q_1Q_0 + \text{CAN_FIRE}Q_2Q_1} \quad \overline{Q_0} + \text{STATUS}Q_3\overline{Q_1} \quad \overline{Q_0} + \text{STATUS}Q_3\overline{Q_0} \quad \overline{Q_0} + \text$

7.4 Q_0^{t+1}

$\overline{Q_3Q_2 \setminus Q_1Q_0}$	00	01	11	10
00	ACT	(1)	DET	0
01	0	MST	1	0
11	STATUS	(I)	0	(N_SIGHT)
10	*	0	1	0

 $\begin{array}{l} Q_0^{t+1} = Q_3\overline{Q_2}Q_1Q_0 + \overline{Q_3}\overline{Q_2}Q_1Q_0 + \overline{Q_3}\ \overline{Q_2}\ \overline{Q_1}Q_0 + Q_3Q_2\overline{Q_1}Q_0 + \overline{ON_SIGHT}Q_3Q_2Q_1\overline{Q_0} +$

7.5 **DAT**

$\overline{Q_3Q_2 \setminus Q_1Q_0}$	00	01	11	10
00	0	0	0	0
01	0	0	1	0
11	0	0	0	0
10	(*		0	0

$$\mathrm{DAT} = \overline{Q_3}Q_2Q_1Q_0 + Q_3\overline{Q_2}\ \overline{Q_1}$$

7.6 RCV

$\overline{\mathrm{Q_3Q_2}\setminus\mathrm{Q_1Q_0}}$	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	(1)	0	0
10	*	$\overset{\bullet}{0}$	0	0

$$\mathrm{RCV} = Q_3 Q_2 \overline{Q_1} Q_0$$

7.7 LOG

$Q_3Q_2 \setminus Q_1Q_0$	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	0	\bigcap	0
10	*	0	Ø.	\supset

$$\mathrm{LOG} = Q_3 Q_1 Q_0 + Q_3 \overline{Q_2} Q_1$$

7.8 FIRE

$\overline{Q_3Q_2 \setminus Q_1Q_0}$	00	01	11	10
00	0	0	0	1
01	0	0	0	0
11	0	0	0	0
10	*	0	0	0

$${\rm FIRE} = \overline{Q_3} \ \overline{Q_2} Q_1 \overline{Q_0}$$

8 Diagrame Karnaugh și ecuațiile rezultate pentru intrările CBB-urilor

Mențiune: În acest capitol am adăugat părți ale circuitului complet în cadrul fiecărui subcapitol, pentru a ușura vizualizarea lor, însă acestea diferă puțin de implementarea lor actuală. Circuitul complet utilizează magistrale pentru \overline{Q}_i , $i=\overline{0,3}$, dar secvențele din subcapitole utilizează porți logice pentru implementarea lor (porți NOR/NAND în capitolele în care se cere implementarea cu acestea și porți NOT în restul), pentru a demonstra înțelegerea acestora.

$8.1 \, Q_0$

Implementat printr-un CBB tip D și un Mux 16:1

$8.1.1 D_0$

$Q_3Q_2\setminusQ_1Q_0$	00	01	11	10
00	ACT	(1)	DET	0
01	0	MST		0
11	STATUS		0	ON_SIGHT
10	*	0	1	0

$$\begin{array}{l} D_0 = Q_3\overline{Q_2}Q_1Q_0 + \overline{Q_3}Q_2Q_1Q_0 + \overline{Q_3} \ \overline{Q_2} \ \overline{Q_1}Q_0 + Q_3Q_2\overline{Q_1}Q_0 + \overline{\mathrm{ON_SIGHT}}Q_3Q_2Q_1\overline{Q_0} + \overline{\mathrm{DET}}\overline{Q_3}Q_1Q_0 + \mathrm{ACT}\overline{Q_3} \ \overline{Q_2} \ \overline{Q_1} + \mathrm{INST}Q_2\overline{Q_1}Q_0 + \mathrm{STATUS}Q_3\overline{Q_1} \ \overline{Q_0} \end{array}$$

Figure 8.1: Implementare Q0

8.2 Q₁

Implementat printr-un CBB de tip JK; J implementat cu porți NAND și K implementat cu porți NOR

$\overline{{Q_1}^t}$	Q_1^{t+1}	J_1	K_1
0	0	0	*
0	$\overline{\mathrm{MAN}}$	$\overline{ ext{MAN}}$	*
1	0	*	1
1	DET	*	$\overline{\mathrm{DET}}$
0	$\overline{\mathrm{T_O}}$	$\overline{\mathrm{T_O}}$	*
0	0	0	*
1	CAN_FIRE	*	$\overline{\mathrm{CAN}}_{\mathrm{FIRE}}$
1	1	*	0
0	*	*	*
0	1	1	*
1	1	*	0
1	0	*	1
0	STATUS	STATUS	*
0	0	0	*
1	1	*	0
1	1	*	0

8.2.1 J1

$\overline{\mathrm{Q}_3\mathrm{Q}_2\setminus\mathrm{Q}_1\mathrm{Q}_0}$	00	01	11	10
00	<u> </u>	MAN	*/	*
01	T O	0	*	<u>(*</u> _
11	STATUS	0	*	*
10	*	1	*	*

$$J_1 = Q_3\overline{Q_2} + \overline{\text{MAN}} \ \overline{Q_2}Q_0 + \text{STATUS}Q_3\overline{Q_0} + \overline{\text{T_O}} \ \overline{Q_3}Q_2\overline{Q_0}$$

Pentru a implementa cu porți NAND am negat de 2 ori ${\bf J}_1.$

$$J_1 = \overline{\overline{Q_3}\overline{Q_2}} \; \overline{\overline{\text{MAN}} \; \overline{Q_2}Q_0} \; \overline{\overline{\text{STATUS}Q_3}\overline{Q_0}} \; \overline{\overline{\text{T_O}} \; \overline{Q_3}Q_2\overline{Q_0}}$$

8.2.2 K1

$\overline{\mathrm{Q}_3\mathrm{Q}_2 \setminus \mathrm{Q}_1\mathrm{Q}_0}$	00	01	11	10
00	*	*	$\overline{\mathrm{DET}}$	(1)
01	*	*	0	CAN_FIRE
11	*	*	0	0
10	*	\leftarrow	\bigcirc	0

$$K_1 = \overline{Q_3} \ \overline{Q_2} \ \overline{Q_0} + Q_3 \overline{Q_2} Q_0 + \overline{\mathrm{DET}} \ \overline{Q_3} \ \overline{Q_2} + \overline{\mathrm{CAN_FIRE}} \ \overline{Q_3} \ \overline{Q_0}$$

Pentru a implementa cu porți NOR am negat de 2 ori fiecare minterm

$$K_1 = \overline{Q_3 + Q_2 + Q_0} + \overline{\overline{Q_3} + Q_2 + \overline{Q_0}} + \overline{\mathrm{DET} + Q_3 + Q_2} + \overline{\mathrm{CAN_FIRE} + Q_3 + Q_0}$$

Figure 8.2: Implementare Q1 $\,$

8.3 Q₂

Implementat printr-un CBB de tip D și un Mux 2:1.

Am ales \mathbf{Q}_3 ca bit de selectie.

$8.3.1 Q_3 = 0$

$\overline{Q_2 \setminus Q_1Q_0}$	00	01	11	10
0	0	MAN (NST	DET	1
1	*	INST	(1)	0

 $\text{Intrarea 0: } Q_2Q_1Q_0+\overline{Q_2}Q_1\overline{Q_0}+\text{DET}\overline{Q_2}Q_1+MAN\overline{Q_2}\ \overline{Q_1}Q_0+\text{INST}Q_2Q_0$

$8.3.2 Q_3 = 1$

$\overline{Q_2 \setminus Q_1Q_0}$	00	01	11	10
0 1	STATUS *	0	0	ON_SIGHT

 $\text{Intrarea 1: } \overline{Q_2}Q_1Q_0 + Q_2\overline{Q_0} + \overline{\text{STATUS}} \ \overline{Q_1} \ \overline{Q_0} + \text{ON_SIGHT} Q_1\overline{Q_0}$

Figure 8.3: Implementare Q2

8.4 Q₃

Implementat printr-un CBB de tip JK; J este implementat printr-un Mux 4:1 și K este implementat printr-un MUX 8:1

8.4.1 J₃

$\overline{Q_3Q_2 \setminus Q_1Q_0}$	00	01	11	10
00	0	0	0	1
01	0	INST	1	0
11	*	*	*	*
10	*	*	*	*

Am ales ca variabile de selecție \mathbf{Q}_3 și $\mathbf{Q}_2.$

$8.4.1.1 \ \, Q_3Q_2=00$

$\overline{Q_1 \setminus Q_2}$	0	1
0	0_	0
1	1	0

Intrarea 00: $Q_1\overline{Q_0}$

$8.4.1.2 \ Q_3Q_2 = 01$

$\overline{\mathrm{Q}_1 \setminus \mathrm{Q}_2}$	0	1
$\frac{\mathbf{Q}_1 \setminus \mathbf{Q}_2}{0}$	0	INST
1	0	(1)

Intrarea 01: $Q_1Q_0 + \mathrm{INST}Q_0$

$8.4.1.3 \ Q_3Q_2=10$

$$\begin{array}{c|cccc}
Q_1 \setminus Q_2 & 0 & 1 \\
\hline
0 & * & * \\
1 & * & *
\end{array}$$

Intrarea 10: 0

 $8.4.1.4\ Q_3Q_2=11$

$Q_1 \setminus Q_2$	0	1
0	*	*
1	*	*

Intrarea: 11: 0

8.4.2 K₃

$\overline{Q_3Q_2 \setminus Q_1Q_0}$	00	01	11	10
00	*	*	*	*
01	*	*	*	*
11	$\overline{\text{STATUS}}$	0	0	1
10	*	0	1	1

Am ales ca variabile de selecție $\mathbf{Q}_3,\,\mathbf{Q}_2$ și $\mathbf{Q}_0.$

 $8.4.2.1 \ Q_3Q_2Q_1=000$

Intrarea 000: 0

 $8.4.2.2\ Q_3Q_2Q_1=001$

Intrarea 001: 0

 $8.4.2.3 \ Q_3Q_2Q_1=010$

Intrarea 010: 0

 $8.4.2.4 \ Q_3Q_2Q_1=011$

Intrarea 011: 0

$8.4.2.5 \ Q_3Q_2Q_1=100$

Intrarea 100: 0

$8.4.2.6 \ Q_3Q_2Q_1=101$

Intrarea 101: 1

$8.4.2.7 \ Q_3Q_2Q_1=110$

Intrarea 110: $\overline{\text{STATUS}}~\overline{Q_0}$

$8.4.2.8 \ Q_3Q_2Q_1=111$

Intrarea 111: $\overline{Q_0}$

Figure 8.4: Implementare Q3

9 Implementarea circuitului

Figure 9.1: Circuit