Udacity AIND Project III – Heuristic Analysis Rongyu Lin

Part 1. Non-heuristic Planning Methods Metrics

Problem	Algorithm	Expansions	Goal Tests	New Nodes	Time	Plan Length	Optimal
1	breadth_first_search	43	56	180	0.0245s	6	Yes
1	breadth_first_tree_search	1458	1459	5960	0.7553s	6	Yes
1	depth_first_graph_search	21	22	84	0.0116s	20	No
1	depth_limited_search	101	271	414	0.0739s	50	No
1	uniform_cost_search	55	57	224	0.0335s	6	Yes
2	breadth_first_search	3343	4609	30509	11.659s	9	Yes
2	breadth_first_tree_search	N/A	N/A	N/A	>20min	N/A	N/A
2	depth_first_graph_search	624	625	5602	3.086s	619	No
2	depth_limited_search	222719	2053741	2054119	984.85s	50	No
2	uniform_cost_search	4853	4855	44041	15.502s	9	Yes
3	breadth_first_search	14663	18098	129631	150.98s	12	Yes
3	breadth_first_tree_search	N/A	N/A	N/A	>20min	N/A	N/A
3	depth_first_graph_search	408	409	3364	2.3543s	392	No
3	depth_limited_search	N/A	N/A	N/A	>20min	N/A	N/A
3	uniform_cost_search	17797	17799	156081	47.227s	12	Yes

Part 2. Heuristic Planning Methods Metrics

Problem	Algorithm	Expansions	Goal Tests	New Nodes	Time	Plan Length	Optimal
1	astar_search h_1	55	57	224	0.036s	6	Yes
1	astar_search h_ignore_preconditions	41	43	170	0.0344s	6	Yes
1	astar_search h_pg_levelsum	11	13	50	0.8269s	6	Yes
2	astar_search h_1	4853	4855	44041	10.459s	9	Yes
2	astar_search h_ignore_preconditions	1450	1452	13303	3.792s	9	Yes
2	astar_search h_pg_levelsum	86	88	841	180.16s	9	Yes
3	astar_search h_1	17797	17799	156081	51.433s	12	Yes
3	astar_search h_ignore_preconditions	5034	5036	44886	18.648s	12	Yes
3	astar_search h_pg_levelsum	313	315	2885	775.172s	12	Yes

Part 3. Written Analysis

Optimal Plans:

Problem 1.	load(C1, P1, SFO) load(C2, P2, JFK) Fly(P2, JFK, SFO) load(C2, P2, SFO) Fly(P1, SFO, JFK) load(C1, P1, JFK)	Problem 2.	load(C1, P1, SFO) load(C2, P2, JFK) load(C3, P3, ATL) Fly(P2, JFK, SFO) load(C2, P2, SFO) Fly(P1, SFO, JFK) load(C1, P1, JFK) Fly(P3, ATL, SFO) load(C3, P3, SFO)	Problem 3.	load(C1, P1, SFO) Fly(P1, SFO, ATL) load(C3, P1, ATL) Fly(P1, ATL, JFK) load(C1, P1, JFK) load(C2, P2, JFK) Fly(P2, JFK, ORD) load(C4, P2, ORD) Fly(P2, ORD, SFO)
					` ' ' '

Comparing and Contrasting non-heuristic search result metrics

Depth-first search has less number of node expansions and time spent than breadth-first search. The number and time difference is much bigger when it comes to more complexing problem. However, optimality of depth-first search is really poor. Even for the easiest problem (Problem 1), depth-first search is not able to give optimal plan. Depth-limit search expanses much more nodes and costs much more time than depth-first search (even more than 20 minutes to solve Problem 2), yet its plan does not improve much, which is still far from the optimal one. Breadth-first search performs pretty good in solving the problems. We can tell from the above table that it is able to give optimal plan for each problem in a rather small amount of time with less number of node expansions. Uniform cost search also gives optimal plan for each problem, with a bit larger number of node expansions than breadth-first search. For easier problems (Problem 1 and 2), Uniform cost search costs a bit more time than breadth-first search, yet it has much less time complexity for complexing problems (Problem 3).

Therefore, for easier problems, breadth-first search should be recommended, while uniform cost search for more complexing problems.

Comparing and Contrasting heuristic search result metrics

From the table in Part 2 we can tell that heuristic searches all give optimal plans, so the only things that matter are time spent and number of node expansions.

"level-sum" heuristic performs the best in number of node expansions but worst in time spent. "ignore preconditions" heuristic has the fastest computation and a decent number of node expansions. "h_1" heuristic expanses the most number of nodes and also spends more time than "ignore preconditions". To conclude, "level-sum" has the highest time complexity but lowest space complexity, "ignore preconditions" is opposite to "level-sum", and "h_1" is in the middle of both complexities.

Therefore, if a problem is to be solved with limited space and unlimited time, "level-sum" should be recommended. When time is limited but space is not, "ignore preconditions" is recommended.

Comparing and Contrasting non-heuristic with heuristic

Heuristic search planning methods are not always better than non-heuristic ones. When solving simpler problems, non-heuristic (simpler) method, especially breadth-first search, performs better in both time and space complexity. Heuristic methods are better in solving more complexing problems, and depending on which complexity (time/space) is more important, "level-sum" or "ignore preconditions" heuristic is recommended.