Mise au Point de la Carbonitruration des Alliages 16NiCrMo13 et 23MnCrMo5

Walter Dal'Maz Silva 19 février 2015

Encadrement

Jacky DULCY
Thierry BELMONTE

Ingénieur de Recherche
Directeur de Recherche

Co-directeur de Thèse Directeur de Thèse

Sommaire

- Introduction
- Système Expérimental
- 3 Hydrodynamique
- 4 Chromatographie
- Métallurgie
- Prochaines Démarches

Défi

Développement de matériaux d'ingénierie combinant ténacité et résistance à l'usure.

Défi

Développement de matériaux d'ingénierie combinant ténacité et résistance à l'usure.

But

Contribuer à la compréhension des phénomènes régissant la carbonitruration à partir d'hydrocarbures et d'ammoniac des aciers faiblement alliés.

Défi

Développement de matériaux d'ingénierie combinant ténacité et résistance à l'usure.

But

Contribuer à la compréhension des phénomènes régissant la carbonitruration à partir d'hydrocarbures et d'ammoniac des aciers faiblement alliés.

Alliages

16NiCrMo13 : aéronautique. 23MnCrMo5 : automobile.

Méthode -

Méthode

Simulation

Simulation Méthode Expériences

Cinétique chimique - SimpleKin Simulation Méthode Expériences

Cinétique chimique - SimpleKin Hydrodynamique - Fluent Simulation Profils de diffusion – Dictra Méthode Expériences

Système Expérimental

Hydrodynamique

Comportement Hydrodynamique du Réacteur Concepts Fondamentaux

Comportement Hydrodynamique du Réacteur Concepts Fondamentaux

Temps de séjour

Variable régissant l'avancement de la décomposition thermique du gaz.

Comportement Hydrodynamique du Réacteur Concepts Fondamentaux

Temps de séjour

Variable régissant l'avancement de la décomposition thermique du gaz.

Distribution de temps de séjour

Densité de probabilité qu'un volume de gaz reste dans le réacteur dans un intervalle compris entre les temps de séjour t et $t+\mathrm{d}t$.

Condition	T (K)	Débit (cm ³ .mn ⁻¹)	t_m (s)	σ (s)	$ au_{rpa}$ (s)
Non-chargé	1173	250	466	187	330
Non-chargé	1023	500	250	112	165
Non-chargé	1173	500	217	98	165
Non-chargé	1173	1000	136	61	83
Chargé	1023	500	254	109	165
Chargé	1173	500	241	103	165
Chargé	1173	1000	127	62	83

Condition	T (K)	Débit (cm ³ .mn ⁻¹)	t_m (s)	σ (s)	$ au_{\textit{rpa}}\left(s\right)$
Non-chargé	1173	250	466	187	330
Non-chargé	1023	500	250	112	165
Non-chargé	1173	500	217	98	165
Non-chargé	1173	1000	136	61	83
Chargé	1023	500	254	109	165
Chargé	1173	500	241	103	165
Chargé	1173	1000	127	62	83

Condition	T (K)	Débit (cm ³ .mn ⁻¹)	t_m (s)	σ (s)	$ au_{rpa}$ (s)
Non-chargé	1173	250	466	187	330
Non-chargé	1023	500	250	112	165
Non-chargé	1173	500	217	98	165
Non-chargé	1173	1000	136	61	83
Chargé	1023	500	254	109	165
Chargé	1173	500	241	103	165
Chargé	1173	1000	127	62	83

Condition	T (K)	Débit (cm ³ .mn ⁻¹)	t_m (s)	σ (s)	$ au_{\textit{rpa}}$ (s)
Non-chargé	1173	250	466	187	330
Non-chargé	1023	500	250	112	165
Non-chargé	1173	500	217	98	165
Non-chargé	1173	1000	136	61	83
Chargé	1023	500	254	109	165
Chargé	1173	500	241	103	165
Chargé	1173	1000	127	62	83

Condition	T (K)	Débit (cm ³ .mn ⁻¹)	t_m (s)	σ (s)	$ au_{rpa}$ (s)
Non-chargé	1173	250	466	187	330
Non-chargé	1023	500	250	112	165
Non-chargé	1173	500	217	98	165
Non-chargé	1173	1000	136	61	83
Chargé	1023	500	254	109	165
Chargé	1173	500	241	103	165
Chargé	1173	1000	127	62	83

Condition	T (K)	Débit (cm ³ .mn ⁻¹)	t_m (s)	σ (s)	$ au_{\textit{rpa}}$ (s)
Non-chargé	1173	250	466	187	330
Non-chargé	1023	500	250	112	165
Non-chargé	1173	500	217	98	165
Non-chargé	1173	1000	136	61	83
Chargé	1023	500	254	109	165
Chargé	1173	500	241	103	165
Chargé	1173	1000	127	62	83

Chromatographie

Chromatographie en Phase Gazeuse Pyrolyse de l'Acétylène : Suivi des Produits

Chromatographie en Phase Gazeuse Pyrolyse de l'Acétylène : Suivi des Produits

Chromatographie en Phase Gazeuse Localisation du Carbone et de l'Hydrogène

Chromatographie en Phase Gazeuse Localisation du Carbone et de l'Hydrogène

Utilisation des Données de *DTS* Réacteur avec Profil de Température

Utilisation des Données de *DTS* Réacteur avec Profil de Température

Tableau: Comparaison entre mesures expérimentales et simulation cinétique intégrée à la *DTS* avec une distribution hypothétique de température pour un débit de 500 cm³· mn⁻¹.

	H ₂	CH ₄	C ₂ H ₂	C ₂ H ₄
Mesuré	$1,1\times10^{-2}$	$8,1\times10^{-4}$	$4,9\times10^{-3}$	$7,2\times10^{-4}$
S.D.	$1,2\times10^{-2}$	$1,0\times10^{-3}$	$3,3\times10^{-3}$	$7,9\times10^{-4}$

Métallurgie

Objectif

Investigation du rôle de l'azote dans le matériau et de l'additivité des étapes de cémentation et nitruration pendant la carbonitruration.

Objectif

Investigation du rôle de l'azote dans le matériau et de l'additivité des étapes de cémentation et nitruration pendant la carbonitruration.

Atmosphères:

Objectif

Investigation du rôle de l'azote dans le matériau et de l'additivité des étapes de cémentation et nitruration pendant la carbonitruration.

Atmosphères:

cémentation : CO + H₂ + N₂

Objectif

Investigation du rôle de l'azote dans le matériau et de l'additivité des étapes de cémentation et nitruration pendant la carbonitruration.

Atmosphères:

- cémentation : CO + H₂ + N₂
- ▶ nitruration : NH₃ + H₂ + N₂

Objectif

Investigation du rôle de l'azote dans le matériau et de l'additivité des étapes de cémentation et nitruration pendant la carbonitruration.

Atmosphères:

cémentation : CO + H₂ + N₂

► nitruration : $NH_3 + H_2 + N_2$

Enrichissement:

Objectif

Investigation du rôle de l'azote dans le matériau et de l'additivité des étapes de cémentation et nitruration pendant la carbonitruration.

Atmosphères:

cémentation : CO + H₂ + N₂

▶ nitruration : NH₃ + H₂ + N₂

Enrichissement:

en carbone pendant 2 heures

Objectif

Investigation du rôle de l'azote dans le matériau et de l'additivité des étapes de cémentation et nitruration pendant la carbonitruration.

Atmosphères:

- cémentation : CO + H₂ + N₂
- ▶ nitruration : NH₃ + H₂ + N₂

Enrichissement:

- en carbone pendant 2 heures
- ▶ en azote pendant 3 heures

Traitements Thermochimiques — 16NiCrMo13 Profils de Diffusion Obtenus

Traitements Thermochimiques — 16NiCrMo13 Profils de Diffusion Obtenus

Décarburation Pendant la Nitruration Intégration de la Masse

Décarburation Pendant la Nitruration Intégration de la Masse

Traitements Thermochimiques — 16NiCrMo13 Comparaison Cémentation/Carbonitruration

Traitements Thermochimiques — 16NiCrMo13 Comparaison Cémentation/Carbonitruration

22/26

Traitements Thermochimiques — 16NiCrMo13 Filiations de Dureté – Nitruration

Traitements Thermochimiques — 16NiCrMo13 Filiations de Dureté – Nitruration

 Solution du modèle cinétique détaillé de pyrolyse de l'acétylène et de l'ammoniac,

- Solution du modèle cinétique détaillé de pyrolyse de l'acétylène et de l'ammoniac,
- étude expérimentale des mécanismes de surface de décomposition/formation des hydrocarbures à pression atmosphérique,

- Solution du modèle cinétique détaillé de pyrolyse de l'acétylène et de l'ammoniac,
- étude expérimentale des mécanismes de surface de décomposition/formation des hydrocarbures à pression atmosphérique,
- étude des atmosphères à base d'hydrocarbures et d'ammoniac à basse pression,

- Solution du modèle cinétique détaillé de pyrolyse de l'acétylène et de l'ammoniac,
- étude expérimentale des mécanismes de surface de décomposition/formation des hydrocarbures à pression atmosphérique,
- étude des atmosphères à base d'hydrocarbures et d'ammoniac à basse pression,
- suivi de prise de masse des échantillons métalliques avec différentes atmosphères à base d'hydrocarbures et d'ammoniac à basse pression,

- Solution du modèle cinétique détaillé de pyrolyse de l'acétylène et de l'ammoniac,
- étude expérimentale des mécanismes de surface de décomposition/formation des hydrocarbures à pression atmosphérique,
- étude des atmosphères à base d'hydrocarbures et d'ammoniac à basse pression,
- suivi de prise de masse des échantillons métalliques avec différentes atmosphères à base d'hydrocarbures et d'ammoniac à basse pression,
- étude de la réponse métallurgique des alliages choisis,

- Solution du modèle cinétique détaillé de pyrolyse de l'acétylène et de l'ammoniac,
- étude expérimentale des mécanismes de surface de décomposition/formation des hydrocarbures à pression atmosphérique,
- étude des atmosphères à base d'hydrocarbures et d'ammoniac à basse pression,
- suivi de prise de masse des échantillons métalliques avec différentes atmosphères à base d'hydrocarbures et d'ammoniac à basse pression,
- étude de la réponse métallurgique des alliages choisis,
- mise au point du modèle cinétique-hydrodynamique avec Fluent.

Merci de votre attention

Pour plus d'informations : walter.dalmazsilva@irt-m2p.fr +33 6 81 65 05 51

Passarelle de l'innovation

www.irt-m2p.fr

