Let $V \circ W$ be vector spaces and suppose $S: V \to W$ and $T: V \to W$ are linear transformations. We define $S+T: V \to W$ to be $(S+T)_{\circ} := S_{\circ} + T_{\circ} + V \circ V$.

Proposition: With S&T as above, S+T is a linear transformation.

$$\frac{P_{noop:}}{(S+T)} = Fon \quad v_1, v_2 \in V_1$$

$$(S+T) (v_1 + v_2) = S(v_1 + v_2) + T(v_1 + v_2)$$

$$= Sv_1 + Sv_2 + Tv_1 + Tv_2$$

$$= Sv_1 + Tv_1 + Sv_2 + Tv_2$$

$$= (S+T) v_1 + (S+T) v_2.$$

Check that
$$(S+T)(av) = a(S+T)v$$
.

Let $T: V \rightarrow W$ be a linear tromsformation between vector spaces. Let $a \in \mathbb{R}$. The we define $(aT): V \rightarrow W$ to be (aT)(v) := a(Tv)

Exercise: Check that (aT) is a linear transformation.

Example: $S: V \rightarrow V$ be $Sv = a_1v$

and T: V-) V be To = ago

then $(S+T)v = (a_1+a_2)v$

Let the space of all linear transformations between $V \circ W$ be denoted by L(V,W). Then L(V,W) is a subset of F(V,W).

Proposition: The set L(V, W) is a subspace of Fr(V, W).

Proof: We just checked that L(V, W) is closed under addition & Scalar multiplication.

Let $S: V \rightarrow W$ and $T: U \rightarrow V$ be linear transformations

between vector spaces. Then we define the product (or composition)

transformations

of linear $ST: U \rightarrow W$ to be

Proof: Let
$$[S]_{\beta}^{\gamma} = \begin{pmatrix} a_{11} & \dots & a_{1m} \\ a_{2n} & \vdots \\ \vdots & \vdots & \vdots \\ a_{nm} & a_{nm} \end{pmatrix}$$
. Then
$$Sv_{j} = a_{ij}w_{1} + a_{2j}w_{2}$$

$$+ \dots + a_{nj}w_{n}$$

$$\mathcal{L} \quad \begin{bmatrix} T \end{bmatrix}^{r} = \begin{pmatrix} b_{11} & \cdots & b_{1m} \\ \vdots & \vdots & \vdots \\ b_{n1} & \cdots & b_{nm} \end{pmatrix}$$

We know that $Tv_j = b_{ij} w_1 + \cdots + b_{nj} w_n$.

$$(S+T)v_j = (a_{ij}w_1 + \cdots + a_{nj}w_n) + (b_{ij}w_1 + \cdots + b_{nj}w_n)$$

$$= (a_{ij} + b_{ij})w_1 + \cdots + (a_{nj} + b_{nj})w_n$$

Exercise: Let T: V-s W be a linear transformation as in the proposition above & suppose aER.

Then
$$[aT]_{\beta}^{r} = a[T]_{\beta}^{r}$$
.

Proposition: Let $U, V \in W$ be finite dimensional vector spaces and suppose $\alpha = (u_1, ..., u_n)$, $\beta = (v_1, ..., v_m) \in Y = (w_1, ..., w_n)$ be ordered bases of $V, V \in W$ respectively. Then, if $S: V \to W$ and $T: U \to V$ are linear transformations, we have $[ST]_{\alpha}^{\gamma} = [S]_{\beta}^{\gamma} [T]_{\alpha}^{\beta}$

Example: Let L:
$$\mathbb{R}^{\infty} \rightarrow \mathbb{R}^{\infty}$$
 be define $L(x_1,x_2,\ldots) := (x_2,x_3,\ldots)$
& $R(x_1,x_2,\ldots) := (0,x_1,x_2,\ldots)$
Then $LR(x_1,x_2,\ldots) = (x_1,x_2,\ldots)$
& $RL(x_1,x_2,\ldots) = (0,x_2,x_3,\ldots)$

Proof of proposition: $\alpha = (u_1, ..., u_e)$, $\beta = (v_1, ..., v_m)$ and $\gamma = (w_1, ..., w_n)$ be the ordered bases of $V, v \in W$ resp.

Let
$$\begin{bmatrix} T \end{bmatrix}_{x}^{\beta} = \begin{bmatrix} a_{11} & \cdots & a_{1k} \\ a_{m1} & \cdots & a_{mk} \end{bmatrix}$$

Then $\begin{bmatrix} Tu_{i} & \cdots & \sum_{j=1}^{m} a_{ji} v_{j} \\ b_{n1} & \cdots & b_{nm} \end{bmatrix}$

Then $\begin{bmatrix} Sv_{j} & \cdots & b_{nm} \\ b_{n1} & \cdots & b_{nm} \end{bmatrix}$

$$(ST) u_{i} = S(Tu_{i}) = S(\sum_{j=1}^{m} a_{j} i^{0})$$

$$= \sum_{j=1}^{m} a_{j} i (Sv_{j}) = \sum_{j=1}^{m} a_{j} i (\sum_{k=1}^{m} b_{kj} \omega_{k})$$

$$= \sum_{k=1}^{m} \sum_{j=1}^{m} b_{kj} a_{j} i$$

$$= \sum_{j=1}^{m} b_{kj} a_{j} i$$

$$= \sum_{j=1}^{m} b_{kj} a_{j} i$$

$$(ST)u_{i} = \sum_{k=1}^{n} C_{ki} w_{k}$$
Hence
$$[ST]_{\alpha} = (C_{i}) \cdots C_{ik}$$

$$C_{ni} \cdots C_{ne}$$
Check that
$$(C_{ni}) \cdots C_{ne}$$

Cimp

