MULTIMEDIA		UNIVERSITY
------------	--	------------

STUD	ENT	ID N	10			
		SE	AT	NO		
VEN	UE:					

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2017/2018

PMT0201 - MATHEMATICS II

(All sections/ Groups)

11 OCTOBER 2017 9.00 a.m. – 11.00 a.m. (2 Hours)

Question	Marks
1	/10
2	/10
3	/10
4	/10
5	/10
Total	/50

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of **TWELVE** printed pages excluding cover page.
- 2. Answer **ALL** FIVE questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the **QUESTION BOOKLET**. All necessary working steps **MUST** be shown.

a) Show that the point $\left(-\frac{5}{7}, -\frac{2\sqrt{6}}{7}\right)$ is on the unit circle.

(2 marks)

b) Find the exact value of $5 \cot^2 \left(\cos^{-1} \left(-\frac{3}{8} \right) \right)$. (2 marks)

Continued...

NSL

c) Diagram below shows a quadrilateral *ABCD*, with BC = 9cm, CD = 6cm, $\angle ABD = 65^{\circ}$ and $\angle BAD = 40^{\circ}$. The area of triangle *BCD* is 15 cm². Calculate

- i) the acute angle, ∠BCD. Correct your answer to 2 decimal places. (2 marks)
- ii) the length BD. Correct your answer to 2 decimal places. (2 marks)
- iii) the length AD. Correct your answer to 2 decimal places. (2 marks)

a) Given that $g(x) = -3\tan\left(x - \frac{\pi}{2}\right) + 1$.

i) Determine the amplitude, period, phase shift and vertical shift of f(x). (2 marks)

ii) Sketch the function $g(x) = -3\tan\left(x - \frac{\pi}{2}\right) + 1$ for $0^{\circ} \le x \le 360^{\circ}$. Indicate clearly the vertical asymptotes and inflection points of the graph for g(x). (3 marks)

Continued...

NSL

b)	Givi)	ven $w = 5(\cos 25^\circ + i \sin 25^\circ)$ and $z = -1 - i$. Find the polar form of z.	(3 marks)
		<u> </u>	
	ii)	Hence, find the polar form of $\frac{w}{z}$. Leave the answer in the polar form.	(2 marks)

a) Solve the equation $2\sin(2\theta) + \sqrt{2} = 0$ for $0^{\circ} \le \theta \le 360^{\circ}$.

(2.5 marks)

b) Compute the following limits. Show at least one intermediate step.

i) $\lim_{x \to \infty} \frac{5x - 8x^2 - 2x^3}{x^3 + 5}$

(2 marks)

ii) $\lim_{x \to 0} \frac{\tan(5x)}{\sin(2x)}$	(2.5 marks)

c) Given the function $f(x) = \begin{cases} -\frac{k}{3x} & \text{if } x = 4 \\ \frac{\sqrt{x-2}}{x-4} & \text{if } x \neq 4 \end{cases}$ is continuous at x = 4, find the value

of k. (3 marks)

a) Find the derivatives of the following functions. Show proper steps and simplify your answer.

 $i) \quad y = e^{-2x} \cos(2x)$ (3 marks)

ii) $y = \sin(6 - 2x^3 \ln x)$ (4 marks)

b)	The displacement of a ball is defined as $d(t) = \frac{1}{3}t^3 - 2t^2 + 3t$, where $d(t)$ is in meters				
	and t is in seconds. Determine the displacement of the ball if the acceleration is equals to zero. (3 marks)				
	(o mano)				

a)	Find the definite	integral	$\int_{\frac{\pi}{2}}^{\frac{\pi}{3}} \frac{\sin x}{\cos x} dx$	using integration by substitution.	Simplify your
			4		

answer and express in exact value. (3 marks)

b)	Find the indefinite integral	$\int \frac{x^2+1}{x(x+1)(x-1)} dx$	using partial fractions.	(4.5 marks)

Continued...

NSL

c) Let R in the diagram below be the region bounded by $y = x^4$, x = 2 and y = 0.

Find the area of the region R.

(2.5 marks)

End of Page

NSL 12/12