You need to implement Linear regression given the randomly generated data in python notebook.

1) **def hyp(theta, X):** Implement hypothesis for equation of line.

$$h(X, \theta) = X. \theta$$

2) **def cost_function(theta,X,Y):** Implement cost function (Mean Squared Error) for linear regression training

$$cost = rac{1}{2m} \sum_{i=0}^m \left(h(X^i, heta) - Y^i
ight)^2$$

3) **def derivative_cost_function(theta,X,Y):** Implement Derivative of cost function (error function) to find rate of change of error in regression

$$rac{\delta}{\delta heta_j} = rac{1}{m} \sum_{i=0}^m \left(h(X^i, heta) - Y^i
ight) * X_j$$

4) def GradientDescent(X,Y,cost_function,derivative_cost_function,maxniter): Implement gradient descent algorithm to train linear regression Model given the following algorithm

for i in range(0, numiter):

hyp=hypothesis=(theta,X)

loss= hyp.T-Y

Cost = sum(loss**2)/2.0*nexamples

print cost

gradiants= loss.T . X.T / nexamples

theta = theta - alpha * gradient return theta