# **Tutorial 6: Refactoring R Code**

#### Introduction

In this tutorial, you will refactor the code into separate scripts corresponding to each section. The dataset we will use comes from the palmerpenguins package, which contains measurements of penguins from three species. The results are displayed in

#### **Load Libraries and Data**

```
-- Attaching packages ----- tidyverse 1.3.2 --
v ggplot2 3.5.2
               v purrr
                       1.0.4
v tibble 3.2.1
               v dplyr
                      1.1.4
v tidyr
       1.3.1
               v stringr 1.5.1
       2.1.3
v readr
               v forcats 0.5.2
-- Conflicts ----- tidyverse conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
```

Table 1: Intial penguins dataset.

| species | island    | bill_length_r | mmlil_depth_mflippe | r_length_mbo | dy_mass | Se X   | year |
|---------|-----------|---------------|---------------------|--------------|---------|--------|------|
| Adelie  | Torgersen | 39.1          | 18.7                | 181          | 3750    | male   | 2007 |
| Adelie  | Torgersen | 39.5          | 17.4                | 186          | 3800    | female | 2007 |
| Adelie  | Torgersen | 40.3          | 18.0                | 195          | 3250    | female | 2007 |
| Adelie  | Torgersen | 36.7          | 19.3                | 193          | 3450    | female | 2007 |
| Adelie  | Torgersen | 39.3          | 20.6                | 190          | 3650    | male   | 2007 |
| Adelie  | Torgersen | 38.9          | 17.8                | 181          | 3625    | female | 2007 |

### Methods

In this section, we perform exploratory data analysis (EDA) and prepare the data for modeling.

#### Glimpse at base dataset

```
Rows: 333
Columns: 8
                    <chr> "Adelie", "Adelie", "Adelie", "Adelie", "Adelie", "A-
$ species
$ island
                    <chr> "Torgersen", "Torgersen", "Torgersen", "Torgersen", ~
                    <dbl> 39.1, 39.5, 40.3, 36.7, 39.3, 38.9, 39.2, 41.1, 38.6~
$ bill_length_mm
$ bill_depth_mm
                    <dbl> 18.7, 17.4, 18.0, 19.3, 20.6, 17.8, 19.6, 17.6, 21.2~
$ flipper_length_mm <dbl> 181, 186, 195, 193, 190, 181, 195, 182, 191, 198, 18~
                    <dbl> 3750, 3800, 3250, 3450, 3650, 3625, 4675, 3200, 3800~
$ body_mass_g
                    <chr> "male", "female", "female", "female", "male", "femal~
$ sex
                    <dbl> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007
$ year
```

#### **Analysis**

Table 2: Summary statistics in base dataset.

| mean_bill_length | mean_bill_depth | mean_flipper_length | mean_body_mass |
|------------------|-----------------|---------------------|----------------|
| 43.99279         | 17.16486        | 200.967             | 4207.057       |



Figure 1: Boxplot of Bill Length against Species

#### **Cleaning**

Table 3: Cleaned penguins dataset.

| species | bill_length_mm | bill_depth_mm | flipper_length_mm | body_mass_g |
|---------|----------------|---------------|-------------------|-------------|
| Adelie  | 39.1           | 18.7          | 181               | 3750        |
| Adelie  | 39.5           | 17.4          | 186               | 3800        |
| Adelie  | 40.3           | 18.0          | 195               | 3250        |
| Adelie  | 36.7           | 19.3          | 193               | 3450        |
| Adelie  | 39.3           | 20.6          | 190               | 3650        |
| Adelie  | 38.9           | 17.8          | 181               | 3625        |

# Model

We will fit a classification model using tidymodels to predict the species of a penguin based on its physical characteristics.

Table 4: Classification model.

|         | Length | Class         | Mode    |
|---------|--------|---------------|---------|
| pre     | 3      | stage_pre     | list    |
| fit     | 2      | $stage\_fit$  | list    |
| post    | 1      | $stage\_post$ | list    |
| trained | 1      | -none-        | logical |

# **Results**

We evaluate the performance of the model using the test dataset.

Table 5: Model performance.

|           | Adelie | Chinstrap | Gentoo |
|-----------|--------|-----------|--------|
| Adelie    | 36     | 0         | 0      |
| Chinstrap | 1      | 17        | 0      |
| Gentoo    | 0      | 0         | 30     |

# **Package Installation**

We test out the output of the package regexcite20250416.

Table 6: Package usage.

| Function                                   | Output |
|--------------------------------------------|--------|
| regexcite20250416::is_leap(2000)           | 1      |
| $regexcite 20250416 :: is\_leap(1900)$     | 0      |
| regexcite20250416::temp_conv(41, 'F', 'C') | 5      |

# **Conclusion**

In this tutorial, we:

- Loaded and cleaned the palmerpenguins dataset.Performed exploratory data analysis.
- Built a k-Nearest Neighbors classification model using tidymodels.
- Evaluated the model's performance.