L1: Introduction

Hui Chen, Ph.D.

Dept. of Engineering & Computer Science

Virginia State University

Petersburg, VA 23806

Acknowledgements

- □ Some pictures used in this presentation were obtained from the Internet
- □ The instructor used the following references
 - Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems Approach, 5th Edition, Elsevier, 2011
 - Andrew S. Tanenbaum, Computer Networks, 5th Edition, Prentice-Hall, 2010
 - James F. Kurose and Keith W. Ross, Computer Networking: A Top-Down Approach, 5th Ed., Addison Wesley, 2009
 - Larry L. Peterson's (http://www.cs.princeton.edu/~llp/) Computer Networks class web site

Lecture Outline

- □ About the class
- □ Network building blocks
- □ Laying and architecture

Course Overview by Topics

- **□** Foundation
 - Layering
 - Topology design
 - Internet architecture
 - Bandwidth and latency
- Links and simple networking
 - Classes of links and physical media
 - Encoding
 - Framing
 - Error detection and correction
 - Case studies
- □ Internetworking
 - Switching and bridging
 - Basic internetworking
 - Routing
 - Implementation and performance

- Advanced internetworking
 - Interdomain routing
 - IPv6
- End-to-End protocols
 - Simple demultiplexer
 - Reliable byte stream
- □ Congestion control and resource allocation
- Network security
- Network analysis
 - Probabilistic modeling
 - Computer simulation
- Software and applications

Textbook

- Required textbook: Computer Networks: A Systems Approach (5th edition), by Larry Peterson and Bruce Davie
- 1 Foundation
- 2 Getting Connected
- 3 Internetworking
- 4 Advanced networking
- 5 End-to-end protocols

- 6 Congestion control and resource allocation
- 7 End-to-end data
- 8 Network security
- 9 Applications

Requirement

- Class participation
 - Attendance
 - Discussion
 - In-class exercises
- Review after class
 - Lecture nodes/slides
 - Read relevant sections in the textbook

- **□** Assignments
 - Homework
 - Labs
 - Project
 - Presentations
- Exams and Quizzes
 - Midterm
 - Final

Open Discussion

□ What is the Class for?

What is the Class for?

- □ Focus on the *designers* of future products and protocols
 - To understand underlying principles of networking
- Exposure for the network administrators and application developers

Systems Approach

- What are the ways that a user can get connected to a larger network? (Connectivity)
- How do we grow networks in size? (Scalability)
- What are the ways to allow different network products and protocols to coexist on the same network? (Heterogeneity)
- How do we manager resources on the network and satisfy requirements of different users? (Resource management and congestion control)
- How do we keep data transmitted over networks secure? (Network security)
- □

System Approach

- Building and designing networks
 - Foundation: basic concepts
 - Direct link network
 - Nodes and links
 - Grow network
 - \square Direct link network \rightarrow switched network \rightarrow internetworks
 - The Internet is an internetwork
 - Network applications and security

Foundation

- Topics
 - Cover primarily section 1.3
 - Computer network concept
 - Network architecture
 - Layering and Protocols
 - Internet Architecture
- Reading assignment
 - Chapter 1 (section 1.1, 1.2, and 1.3)

What is a *Computer* Network?

- Built primarily from *general-purpose* programmable hardware
- Optimized for carrying many different types of data
- Support a wide, and ever-growing, range of applications.

A Network Consisting of Nodes and Links

Nodes can be indirectly connected!

8/17/2015

CSCI 445 - Fall 2015

Nodes and Links

- Nodes: personal computers, server computers, special-purpose hardware ...
- Links:
 - Physical media
 - □ Coax cable, optical fiber, twisted-pair network cable, wireless (EM radiation, acoustic waves, ...) ...
 - Connection type
 - □ Point-to-point
 - Multiple access

Direct Link Networks

- □ Point-to-point networks
- Multiple access networks

Direct Link Networks: Two Types of Links

Direct Link Networks: Advantage and Disadvantages

■ What are their *advantage* and *disadvantage* between point-to-point and multiple access networks?

Grow Network in Size

- □ Direct link networks are small
- □ How to grow networks in size?
 - Switched networks: a network of networks connected by network switches
 - A network switch (forwarding node) is a node with two or more links
 - Forward messages from one network to other networks

Switched Networks

- Circuit-switched networks
 - Carry bit-streams
 - Establishes a dedicated circuit across a sequence of links between source node and destination node
 - Allows the source node to send a stream of bits across this circuit to a destination node.
 - e.g.: original telephone network
- Packet-switched networks
 - Store-and-forward messages
 - Receive: each node in a store-and-forward network first receives a complete packet over some link
 - Store: stores the packet in its internal memory
 - Forward: forwards the complete packet to the next node.
 - e.g.: Internet

Identifying Nodes

- When networks grow, there is a need to identify and differentiate different nodes and to forward messages to a or a set of nodes
- □ Addressing and routing

Addressing and Routing

- Address: byte-string that identifies a node
 - Usually unique
- Routing: process of finding ways to forward messages to the destination nodes based on its address
- Type of addresses
 - Unicast: node-specific
 - Broadcast: all nodes on the network
 - Multicast: some subset of nodes on the network

Multiplexing

- A system resource is shared among multiple users
- Examples:
 - Time-division multiplexing (TDM)
 - Frequency-division multiplexing (FDM)

8/17/2015 CSCI 445 – Fall 2015 22

FDM and TDM

Static and Statistical Multiplexing

- Static Multiplexing
 - Examples: TDM and FDM
 - Limitations
 - If one flow does not have any data to send, its share of physical link (time quantum or frequency) remains idle
 - The maximum number of flows is fixed and known ahead of time
- Statistical Multiplexing
 - On-demand time-division
 - Schedule link on a per-packet basis
 - Packages from different sources interleaved on link
 - Buffer packets that are contending for the link
 - Congestion: Buffer (queue) overflow

An Example of Multiplexing

A switch multiplexing packets from multiple sources onto one shared link.

Statistical Multiplexing: Challenges

- Fairly allocating link capacity to different flows
- Dealing with congestion
- Ensuring quality of service

Inter-Process Communication (1)

- Turn host-to-host connectivity into process-to-process communication
- Fill gap between what applications expect and what the underlying technology provides.

8/17/2015

Inter-Process Communication (2)

Examples of IPC Abstractions

Request/reply-based
Distributed file systems
Web access

Stream-based

Video: sequence of frames

Video application

On-demand video

Video conference

Things can go wrong!

■ Network failures:

- Bit-level errors (electrical interference, e.g., lightning)
- Packet-level errors (congestion)
- Link and node failures (cable is cut, computers crashes)

Other related issues

- Messages/packets are delayed
- Messages/packets are delivered out of order
- Third parties eavesdrop

Protocols

- Well-defined procedure that runs on multiple parties
- A set of rules and conventions
- Two interface
 - Service interface: operations on this protocol
 - Peer-to-peer interface: message exchanged with peer
- Building blocks for a network architecture
- Term "protocol" is overloaded
 - Specification of peer-to-peer interface
 - Module that implements this interface

Layered Architecture

- Network Architecture
 - A structured set of protocols that implement the exchange of information between computers/parties
- Use <u>abstractions</u> to hide complexity
- Abstraction naturally leads to layering
- Alternative abstractions at each laver

Application programs	
Request/reply channel	Message stream channel
Host-to-host connectivity	
Hardware	

Service and Peer Interfaces

Service and peer interfaces

Example of Protocol Machinery

- Most peer-to-peer communication is indirect
- Peer-to-peer is directly only at hardware level

Service are grouped in a hierarchy of layers, which provide service interface

Layer N protocols only use <u>services</u> provided by layer N-1

Layer N protocols only provide <u>services</u> to layer N+1

Q: does layer N needs to know the inner-working of layer N-1 or layer N+1?

Encapsulation and Multiplexing/Demultiplexing

□ Header can have demultiplexing key

OSI (Open System Interconnection) Architecture

Defined by ISO. Used as a reference model

8/17/2015

OSI: Physical Layer (Layer 1)

- □ Converts bits into physical signals such as electrical, optical, acoustic signals ...
- □ Transmits these signals over the hardware communication medium such as twisted pair cable, coaxial cable, fiber optics, open/free space, water ...

36

8/17/2015

OSI: Data Link Layer (Layer 2)

- □ Reliably transfers data frames over a link
- □ Performs synchronization, error control, and flow control
- Example: Point-to-Point Protocol (PPP)

37

OSI: Network Layer (Layer 3)

- Moves packets inside the network
- □ Performs routing, addressing, switching, congestion control
- Example: Internet Protocol (IP)

8/17/2015 CSCI 445 – Fall 2015 38

OSI: Transportation Layer (Layer 4)

- □ Controls delivery of data between hosts
- □ Connection management, error control, flow control, multiplexing
- Example: Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)

8/17/2015

OSI: Session Layer (Layer 5)

- Support dialog between application programs
- Session management, synchronization
- Example: Remote-Procedure-Call (RPC)

OSI: Presentation Layer (Layer 6)

- Data conversion into application format
- Encryption and decryption
- Example: Secure Sockets Layer (SSL)

OSI: Application Layer (Layer 7)

- Provides network access to application programs
- Application specific
- Example: File Transfer, Electronic Mail

Internet (TCP/IP) Architecture

Defined Internet Engineering Task Force (IETF)

Internet protocol graph.

Internet architecture.

OSI and Internet Architectures

Key Characteristics of Internet Architecture

- Layering is not strict
- Hourglass design with IP as focal point
- Protocol specification + 1 (preferable 2) representative implementation

The Layered Reference Model

Often we need to implement a function across multiple layers.

8/17/2015 CSCI 445 - Fall 2015 46

Summary

- What is a computer network?
- Basic requirements
 - General purpose
 - Cost-effective network sharing
 - Fair network link allocation
 - Robust connectivity
- Layered architecture
- **□** Question:
 - How is the performance (see next lecture)?

Additional Reading Assignment

□ Leonard Kleinrock, An Early History of Internet, IEEE Communications Magazine, Vol. 48, No. 8, pp. 26-36, Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5534584