CS 4510: Automata and Complexity

Fall 2019

Lecture 6: Undecidability and The Pumping Lemma September 9, 2019

Lecturer: Santosh Vempala Scribe: Xiaofu Niu, Aditi Laddha

6.1 Undecidability

6.1.1 The Acceptance Problem

Definition 6.1 Acceptance Language

 $L_A = \{\langle M, x \rangle, M \text{ is valid } TM \text{ description and } M \text{ accepts } x\}$

Theorem 6.2 L_A is undecidable.

Proof:

We prove this theorem by contradiction. Suppose there exists a TM D that decides L_A . On given input $\langle M, x \rangle$, D decides whether M accepts x. Consider a new TM \hat{D} that takes the description of some TM $\langle M \rangle$ as input.

- 1 Run D on input $\langle M, \langle M \rangle \rangle$
- 2 if D accepts then
- \hat{D} rejects
- 4 else
- D accepts

The contradiction occurs when we run \hat{D} on input \hat{D} . According to the definition of D, \hat{D} accepts $\langle \hat{D} \rangle$ if and only if \hat{D} rejects $\langle \hat{D} \rangle$.

6.1.2 The Halting Problem

Definition 6.3 Halting Language

 $L_{HALT} = \{ \langle M, x \rangle, M \text{ is valid TM description and M halts on } x \}$

Theorem 6.4 L_{HALT} is undecidable.

Proof:

We prove this theorem by reduction. Suppose there exists a TM H that decides L_{HALT} . On given input $\langle M, x \rangle$, H decides whether M halts on (either accept or reject) x. Consider a new TM A that takes the

description of some TM $\langle M \rangle$ and a string x as input.

Based on the definition, we have constructed a TM A that decides the acceptance problem L_A . However, we have proved that L_A is undecidable. Therefore, the assumption is wrong.

6.2 A Pumping Lemma for Deterministic Finite Automata

In previous lectures, we have seen Turing machines that decide $L_1 = \{0^i 1^i : i \in \mathbb{N}\}$ and $L_2 = \{0^i : i \text{ is a power of } 2\}$.

Question: Given a language L, can you prove that there is no DFA that accepts L?

• L₁: Assume that there exists a DFA $D = (Q, \Sigma, \delta, q_0, F)$ that accepts L_1 and |Q| = p. Then consider the string $x = 0^n 1^n$ where n > p. Let $q_0 q_1 q_2 \dots q_i \dots q_j \dots q_{2n}$ be the sequence of states that D goes through when computing with input x. In other words, $\delta(q_i, x_{i+1}) = q_{i+1}, \forall i \in \{0, \dots, 2n-1\}$ and $q_{2n} \in F$. This sequence consists of n+1 states corresponding to state transitions on seeing the first n 0's. But the DFA has p < n+1 states and hence there must be a repeated state. Let q_j be the first repeated state such that there exists i < j with $q_i = q_j$. Let l be the substring of x that takes D from q_i to q_j .

$$x = 0^i \underbrace{0 \dots 0}_{l} 0^{n-j} 1^n$$

Let y be defined as

$$y = 0^i \underbrace{0 \dots 0}_{l} \underbrace{0 \dots 0}_{l} 0^{n-j} 1^n$$

On input y, 0^i takes D from state q_0 to q_i , and l takes D from q_i to q_i . If we add one more l after the first one, D will still be in state q_i and $0^{n-j}1^n$ takes D from state q_i to $q_{2n} \in F$. So, y is accepted by D but number of 0's in y = n + |l| > n = number of 1's in y. A contradiction.

• L₂: Assume that there exists a DFA $D = (Q, \Sigma, \delta, q_0, F)$ that accepts L_2 and |Q| = p. Then consider the string $s = 0^n$ where n is a power of 2 and $n \ge p$. with $q_0q_1q_2 \dots q_i \dots q_j \dots q_n$ as the sequence of states that D goes through when computing with input s. This sequence consists of n + 1 states but the D has p < n + 1 states and hence there must be a repeated state. Let q_j be the first repeated state such that there exists i < j with $q_i = q_j$. Let y be the substring of s that takes p from p to p. Then,

$$s = 0^i \underbrace{0 \dots 0}_{y} 0^{n-j}$$

$$s_1 = 0^i \underbrace{0 \dots 0}_{y} \underbrace{0 \dots 0}_{y} 0^{n-j}$$

$$s_2 = 0^i \underbrace{0 \dots 0}_{y} \underbrace{0 \dots 0}_{y} \underbrace{0 \dots 0}_{y} 0^{n-j}$$

Then s_1 and s_2 are also accepted by D and hence their lengths must be powers of 2. Let $|s_1| = 2^m$ and $|s_2| = 2^l$. Also, k < m < l as |y| > 0. In other words,

$$|x| + |y| + |z| = 2^k$$

 $|x| + 2|y| + |z| = 2^m$
 $|x| + 3|y| + |z| = 2^l$

This implies $|y|=2^l-2^m=2^m-2^k\Rightarrow 2^m=2^{l-1}+2^{k-1}$ which can only be true if l=k. A contradiction.

6.2.1 Pumping Lemma for DFA

Lemma 6.5 If L is a regular language, then there exists an integer p > 0 such that for any string $s \in L$ with $|s| \ge p$, s can be written as s = xyz satisfying the following conditions:

- 1. $\forall i \geq 0, xy^i z \in L$
- 2. |y| > 0
- $3. |xy| \leq p$

Proof:

Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA that accepts L. Let p = |Q|. Consider any string $s \in L$ with $|s| = n \ge p$. Let $q_0 q_1 q_2 \dots q_i \dots q_j \dots q_n$ be the sequence of states that D goes through when computing with input s. In other words, $\forall i \in \{0, \dots, n-1\}, \delta(q_i, s_{i+1}) = q_{i+1}$ and $s \in L \Rightarrow q_n \in F$. This sequence consists of n+1 states but the DFA D has only p < n+1 states. So, there must be a repeated state. Let q_j be the first repeated state such that $q_i = q_j$ for some i < j. Then $j \le p$ because j is the first repeated state. Then let $x = s_1 s_2 \dots s_i$, $y = s_{i+1} \dots s_j$ and $z = s_{j+1} \dots s_n$.

$$s = \underbrace{s_1 s_2 \dots s_i}_{x} \underbrace{s_{i+1} \dots s_j}_{y} \underbrace{s_{j+1} \dots s_n}_{z}$$

Also, |y| > 0 as the DFA must read at least 1 symbol to transition from q_i back to q_i .

On input xy^iz for any $i \geq 0$, x takes D from state q_0 to q_i , the first y takes D from state q_i to q_i and so do the subsequent y's. Reading xy^i will leave D in the state q_i for all $i \geq 0$ and z takes D from state q_j to q_n where $q_n \in F$. Hence, $xy^iz \in L$.

6.3 Reference

- Ch 1.2 Nondeterminism, "Introduction to the Theory of Computation"
- Ch 4.2 Undecidability, "Introduction to the Theory of Computation"
- Ch 1.4 Pumping Lemma, "Introduction to the Theory of Computation"