APEX CALCULUS III V4 EXPANDED

Version for MSU Denver MTH 2420 Edited by Robert G. Niemeyer, Ph. D.

Gregory Hartman, Ph.D.

Department of Applied Mathematics

Virginia Military Institute

Contributing Authors

Troy Siemers, Ph.D.

Department of Applied Mathematics

Virginia Military Institute

Brian Heinold, Ph.D.

Department of Mathematics and Computer Science

Mount Saint Mary's University

Dimplekumar Chalishajar, Ph.D.

Department of Applied Mathematics

Virginia Military Institute

Editor

Jennifer Bowen, Ph.D.

Department of Mathematics and Computer Science

The College of Wooster

Copyright © 2018 Gregory Hartman, except Sections 12.9, 12.10, 13.8, and 14.8, by Sean Fitzpatrick, and Section 10.7 and Subsection 10.2.1, by Robert G. Niemeyer.

Licensed to the public under Creative Commons Attribution-Noncommercial 4.0 International Public License

This version of the text was assembled and edited by Robert G. Niemeyer, Metropolitan State University of Denver, December, 2019.

This work is licensed under the Creative Commons Attribution-Noncommercial-ShareAlike 4.0 International Public License

Contents

Tak	Table of Contents iii						
Pre	face	v					
9		497 498					
10	Vectors	513					
	10.1 Introduction to Cartesian Coordinates in Space	513					
	10.2 An Introduction to Vectors	528					
	10.2.1 Abstract vector spaces	540					
	10.3 The Dot Product	545					
	10.4 The Cross Product	558					
	10.5 Lines	569					
	10.6 Planes	580					
	10.7 Matrix Algebra	588					
11	Vector Valued Functions	595					
	11.1 Vector–Valued Functions	595					
	11.2 Calculus and Vector–Valued Functions	601					
	11.3 The Calculus of Motion	615					
	11.4 Unit Tangent and Normal Vectors	628					
	11.5 The Arc Length Parameter and Curvature	637					
12	Functions of Several Variables	647					
	12.1 Introduction to Multivariable Functions	647					
	12.2 Limits and Continuity of Multivariable Functions	654					
	12.3 Partial Derivatives	664					
	12.4 Differentiability and the Total Differential	676					
	12.5 The Multivariable Chain Rule	685					
	12.6 Directional Derivatives	693					
	12.7 Tangent Lines, Normal Lines, and Tangent Planes	703					
	12.8 Extreme Values	713					
	12.9 The Derivative as a Linear Transformation	723					
	12.10Critical Points and Extrema: Further Topics	737					

13	Mult	iple Integration	753
	13.1	Iterated Integrals and Area	753
	13.2	Double Integration and Volume	763
	13.3	Double Integration with Polar Coordinates	774
	13.4	Center of Mass	781
	13.5	Surface Area	793
	13.6	Volume Between Surfaces and Triple Integration	800
	13.7	Triple Integration with Cylindrical and Spherical Coordinates	822
	13.8	Change of Variables in Multiple Integrals	833
14	Vecto	or Analysis	863
	14.1	Introduction to Line Integrals	864
	14.2	Vector Fields	874
	14.3	Line Integrals over Vector Fields	883
	14.4	Flow, Flux, Green's Theorem and the Divergence Theorem	894
	14.5	Parametrized Surfaces and Surface Area	904
	14.6	Surface Integrals	915
	14.7	The Divergence Theorem and Stokes' Theorem	924
	14.8	A proof of Stokes' Theorem	938
Α	Solut	ions To Selected Problems	A.1
Ind	lex	,	A.17

PREFACE

A note about this version for MSU Denver MTH 2420 Calculus III

This is a custom version of APX Calculus III V4 compiled for MSU Denver's Math 2420 Calculus III. Such a text is freely available to the students as it is an OER text. As such, it is free to distribute under the specific CC licenses described on the second page of this PDF. Each contributor, editor and author has made a considerable effort to maintain a high degree of quality in either how they have presented the material or how they have organized the existing material. If any errors, typos, etc., are found (or if any concept or topic could be better presented), please do not hesitate to contact me at niemeye1@msudenver.edu.

The preface to Sean Fitzpatrick's version of this text is succinct and builds well on the preface to the original version. The following is excerpted from the preface of Sean Fitpatrick's version (for Math 2580 at the University of Lethbridge) of this text:

Most of this textbook is adapted from the *APEX Calculus* textbook project, which originated in the Department of Applied Mathematics at the Virginia Military Institute. (See apexcalculus.com.) On the following page you'll find the original preface from their text, which explains their project in more detail. They have produced calculus textbook that is **free** in two regards: it's free to download from their website, and the authors have made all the files needed to produce the textbook freely available, allowing others (such as myself) to edit the text to suit the needs of various courses (such as Math 2580).

What's even better is that the textbook is of remarkably high production quality: unlike many free texts, it is polished and professionally produced, with graphics on almost every page, and a large collection of exercises (with selected answers!).

I hope that you find this textbook useful. If you find any errors, or if you have any suggestions as to how the material could be better arranged or presented, please let me know. (The great thing about an open source textbook is that it can be edited at any time!) In particular, if you find a particular topic that you think needs further explanation, or more examples, or more exercises, please let us know. My hope is that this text will be improved every time it is used for this course.

Sean Fitzpatrick
Department of Mathematics and Computer Science
University of Lethbridge
May, 2018

This version for MSU Denver students in MTH 2420 Calculus III combines sections from the original source and from Sean Fitzpatrick's version, which builds on the original source. In addition, I have included exercises for the sections from Sean Fitzpatrick's version. This is indeed a comprehensive treatment of the material typically found in a Calculus III course, a course which—at MSU Denver—assumes a sufficient foundation in single-variable integration and integration techniques (i.e., Calculus II). No knowledge of linear algebra is assumed, but students will be asked to quickly grasp basic concepts of matrix algebra, as we will be developing analogs from Calculus I and Calculus II in a multivariable

setting. Students are encouraged to review topics from Calculus II using the full version of APX Calculus and to ask the instructor for additional resources if they are struggling.

Indeed, Calculus III is where much of Calculus begins to have significant physical relevance. Much of what will be taught will be from a theoretical point of view, and how such material may be applied will be left to the exercises, or mentioned in passing throughout the lecture.

What follows is the preface to the original version of this text. It contains valuable insight into the motivation behind the original text and the variety of derivative (pun intended) versions. In addition, it gives the reader an excellent idea on how to use this text, how to best read mathematics (spoiler: with your hands, not your eyes) and generally sets the tone for what will surely be an excellent read and exciting course.

Thanks

I wish to thank my wife, Jennifer A. Kwan Niemeyer, for continually motivating me to innovate in my teaching and for believing in me.

Robert G. Niemeyer
Department of Mathematical and Computer Sciences
Metropolitan State University of Denver
December, 2019

PREFACE

A Note from the original version on Using this Text

Thank you for reading this short preface. Allow us to share a few key points about the text so that you may better understand what you will find beyond this page.

This text is Part III of a three–text series on Calculus. The first part covers material taught in many "Calc 1" courses: limits, derivatives, and the basics of integration, found in Chapters 1 through 6.1. The second text covers material often taught in "Calc 2:" integration and its applications, along with an introduction to sequences, series and Taylor Polynomials, found in Chapters 5 through 8. The third text covers topics common in "Calc 3" or "multivariable calc:" parametric equations, polar coordinates, vector–valued functions, and functions of more than one variable, found in Chapters 9 through 14. All three are available separately for free at

www.apexcalculus.com.

These three texts are intended to work together and make one cohesive text, *APEX Calculus*, which can also be downloaded from the website.

Printing the entire text as one volume makes for a large, heavy, cumbersome book. One can certainly only print the pages they currently need, but some prefer to have a nice, bound copy of the text. Therefore this text has been split into these three manageable parts, each of which can be purchased for about \$15 at Amazon.com.

A result of this splitting is that sometimes a concept is said to be explored in an "earlier section," though that section does not actually appear in this particular text. Also, the index makes reference to topics, and page numbers, that do not appear in this text. This is done intentionally to show the reader what topics are available for study. Downloading the .pdf of *APEX Calculus* will ensure that you have all the content.

For Students: How to Read this Text

Mathematics textbooks have a reputation for being hard to read. High–level mathematical writing often seeks to say much with few words, and this style often seeps into texts of lower–level topics. This book was written with the goal of being easier to read than many other calculus textbooks, without becoming too verbose.

Each chapter and section starts with an introduction of the coming material, hopefully setting the stage for "why you should care," and ends with a look ahead to see how the just–learned material helps address future problems.

Please read the text; it is written to explain the concepts of Calculus. There are numerous examples to demonstrate the meaning of definitions, the truth of theorems, and the application of mathematical techniques. When you encounter a sentence you don't understand, read it again. If it still doesn't make sense, read on anyway, as sometimes confusing sentences are explained by later sentences.

You don't have to read every equation. The examples generally show "all" the steps needed to solve a problem. Sometimes reading through each step is helpful; sometimes it is confusing. When the steps are illustrating a new technique, one probably should follow each step closely to learn the new technique. When the steps are showing the mathematics needed to find a number to be

used later, one can usually skip ahead and see how that number is being used, instead of getting bogged down in reading how the number was found.

Most proofs have been omitted. In mathematics, proving something is always true is extremely important, and entails much more than testing to see if it works twice. However, students often are confused by the details of a proof, or become concerned that they should have been able to construct this proof on their own. To alleviate this potential problem, we do not include the proofs to most theorems in the text. The interested reader is highly encouraged to find proofs online or from their instructor. In most cases, one is very capable of understanding what a theorem means and how to apply it without knowing fully why it is true.

Interactive, 3D Graphics

New to Version 3.0 was the addition of interactive, 3D graphics in the .pdf version. Nearly all graphs of objects in space can be rotated, shifted, and zoomed in/out so the reader can better understand the object illustrated.

As of this writing, the only pdf viewers that support these 3D graphics are Adobe Reader & Acrobat (and only the versions for PC/Mac/Unix/Linux computers, not tablets or smartphones). To activate the interactive mode, click on the image. Once activated, one can click/drag to rotate the object and use the scroll wheel on a mouse to zoom in/out. (A great way to investigate an image is to first zoom in on the page of the pdf viewer so the graphic itself takes up much of the screen, then zoom inside the graphic itself.) A CTRL-click/drag pans the object left/right or up/down. By right-clicking on the graph one can access a menu of other options, such as changing the lighting scheme or perspective. One can also revert the graph back to its default view. If you wish to deactivate the interactivity, one can right-click and choose the "Disable Content" option.

Thanks

There are many people who deserve recognition for the important role they have played in the development of this text. First, I thank Michelle for her support and encouragement, even as this "project from work" occupied my time and attention at home. Many thanks to Troy Siemers, whose most important contributions extend far beyond the sections he wrote or the 227 figures he coded in Asymptote for 3D interaction. He provided incredible support, advice and encouragement for which I am very grateful. My thanks to Brian Heinold and Dimplekumar Chalishajar for their contributions and to Jennifer Bowen for reading through so much material and providing great feedback early on. Thanks to Troy, Lee Dewald, Dan Joseph, Meagan Herald, Bill Lowe, John David, Vonda Walsh, Geoff Cox, Jessica Libertini and other faculty of VMI who have given me numerous suggestions and corrections based on their experience with teaching from the text. (Special thanks to Troy, Lee & Dan for their patience in teaching Calc III while I was still writing the Calc III material.) Thanks to Randy Cone for encouraging his tutors of VMI's Open Math Lab to read through the text and check the solutions, and thanks to the tutors for spending their time doing so. A very special thanks to Kristi Brown and Paul Janiczek who took this opportunity far above & beyond what I expected, meticulously checking every solution and carefully reading every example. Their comments have been extraordinarily helpful. I am also thankful for the support provided by Wane Schneiter, who as my Dean provided me with extra time to work on this project. Finally, a huge heap of thanks is to be bestowed on the numerous people I do not know who took the time to email me corrections and suggestions. I am blessed to have so many people give of their time to make this book better.

APX - Affordable Print and Electronic teXts

APEX is a consortium of authors who collaborate to produce high—quality, low—cost textbooks. The current textbook—writing paradigm is facing a potential revolution as desktop publishing and electronic formats increase in popularity. However, writing a good textbook is no easy task, as the time requirements alone are substantial. It takes countless hours of work to produce text, write examples and exercises, edit and publish. Through collaboration, however, the cost to any individual can be lessened, allowing us to create texts that we freely distribute electronically and sell in printed form for an incredibly low cost. Having said that, nothing is entirely free; someone always bears some cost. This text "cost" the authors of this book their time, and that was not enough. APEX Calculus would not exist had not the Virginia Military Institute, through a generous Jackson—Hope grant, given the lead author significant time away from teaching so he could focus on this text.

Each text is available as a free .pdf, protected by a Creative Commons Attribution - Noncommercial 4.0 copyright. That means you can give the .pdf to anyone you like, print it in any form you like, and even edit the original content and redistribute it. If you do the latter, you must clearly reference this work and you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might add sections that are "missing" or remove sections that your students won't need. The source files can be found at

github.com/APEXCalculus.

You can learn more at www.vmi.edu/APEX.

Version 4.0

Key changes from Version 3.0 to 4.0:

- Numerous typographical and "small" mathematical corrections (again, thanks to all my close readers!).
- "Large" mathematical corrections and adjustments. There were a number of places in Version 3.0 where a definition/theorem was not correct as stated. See www.apexcalculus.com for more information.
- More useful numbering of Examples, Theorems, etc. "Definition 11.4.2" refers to the second definition of Chapter 11, Section 4.
- The addition of Section 13.7: Triple Integration with Cylindrical and Spherical Coordinates
- The addition of Chapter 14: Vector Analysis.

9: CURVES IN THE PLANE

We have explored functions of the form y = f(x) closely throughout this text. We have explored their limits, their derivatives and their antiderivatives; we have learned to identify key features of their graphs, such as relative maxima and minima, inflection points and asymptotes; we have found equations of their tangent lines, the areas between portions of their graphs and the x-axis, and the volumes of solids generated by revolving portions of their graphs about a horizontal or vertical axis.

Despite all this, the graphs created by functions of the form y=f(x) are limited. Since each x-value can correspond to only 1 y-value, common shapes like circles cannot be fully described by a function in this form. Fittingly, the "vertical line test" excludes vertical lines from being functions of x, even though these lines are important in mathematics.

In this chapter we'll explore new ways of drawing curves in the plane. We'll still work within the framework of functions, as an input will still only correspond to one output. However, our new techniques of drawing curves will render the vertical line test pointless, and allow us to create important – and beautiful – new curves. Once these curves are defined, we'll apply the concepts of calculus to them, continuing to find equations of tangent lines and the areas of enclosed regions.

9.1 Conic Sections

The ancient Greeks recognized that interesting shapes can be formed by intersecting a plane with a *double napped* cone (i.e., two identical cones placed tip—to—tip as shown in the following figures). As these shapes are formed as sections of conics, they have earned the official name "conic sections."

The three "most interesting" conic sections are given in the top row of Figure 9.1.1. They are the parabola, the ellipse (which includes circles) and the hyperbola. In each of these cases, the plane does not intersect the tips of the cones (usually taken to be the origin).

Figure 9.1.1: Conic Sections

When the plane does contain the origin, three **degenerate** cones can be formed as shown the bottom row of Figure 9.1.1: a point, a line, and crossed lines. We focus here on the nondegenerate cases.

While the above geometric constructs define the conics in an intuitive, visual way, these constructs are not very helpful when trying to analyze the shapes algebraically or consider them as the graph of a function. It can be shown that all conics can be defined by the general second—degree equation

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0.$$

While this algebraic definition has its uses, most find another geometric perspective of the conics more beneficial.

Each nondegenerate conic can be defined as the **locus**, or set, of points that satisfy a certain distance property. These distance properties can be used to generate an algebraic formula, allowing us to study each conic as the graph of a function.

Parabolas

Definition 9.1.1 Parabola

A **parabola** is the locus of all points equidistant from a point (called a **focus**) and a line (called the **directrix**) that does not contain the focus.

Figure 9.1.2 illustrates this definition. The point halfway between the focus and the directrix is the **vertex**. The line through the focus, perpendicular to the directrix, is the **axis of symmetry**, as the portion of the parabola on one side of this line is the mirror–image of the portion on the opposite side.

The definition leads us to an algebraic formula for the parabola. Let P=(x,y) be a point on a parabola whose focus is at F=(0,p) and whose directrix is at y=-p. (We'll assume for now that the focus lies on the y-axis; by placing the focus p units above the x-axis and the directrix p units below this axis, the vertex will be at (0,0).)

We use the Distance Formula to find the distance d_1 between F and P:

$$d_1 = \sqrt{(x-0)^2 + (y-p)^2}.$$

The distance d_2 from P to the directrix is more straightforward:

$$d_2 = y - (-p) = y + p.$$

Figure 9.1.2: Illustrating the definition of the parabola and establishing an algebraic formula.

These two distances are equal. Setting $d_1 = d_2$, we can solve for y in terms of x:

$$d_1 = d_2 \sqrt{x^2 + (y - p)^2} = y + p$$

Now square both sides.

$$x^{2} + (y - p)^{2} = (y + p)^{2}$$

$$x^{2} + y^{2} - 2yp + p^{2} = y^{2} + 2yp + p^{2}$$

$$x^{2} = 4yp$$

$$y = \frac{1}{4p}x^{2}.$$

The geometric definition of the parabola has led us to the familiar quadratic function whose graph is a parabola with vertex at the origin. When we allow the vertex to not be at (0,0), we get the following standard form of the parabola.

Key Idea 9.1.1 General Equation of a Parabola

1. **Vertical Axis of Symmetry:** The equation of the parabola with vertex at (h, k) and directrix y = k - p in standard form is

$$y=\frac{1}{4p}(x-h)^2+k.$$

The focus is at (h, k + p).

2. **Horizontal Axis of Symmetry:** The equation of the parabola with vertex at (h, k) and directrix x = h - p in standard form is

$$x=\frac{1}{4p}(y-k)^2+h.$$

The focus is at (h + p, k).

Note: *p* is not necessarily a positive number.

Example 9.1.1 Finding the equation of a parabola

Give the equation of the parabola with focus at (1, 2) and directrix at y = 3.

SOLUTION The vertex is located halfway between the focus and directrix, so (h, k) = (1, 2.5). This gives p = -0.5. Using Key Idea 9.1.1 we have the

equation of the parabola as

$$y = \frac{1}{4(-0.5)}(x-1)^2 + 2.5 = -\frac{1}{2}(x-1)^2 + 2.5.$$

The parabola is sketched in Figure 9.1.3.

Example 9.1.2 Finding the focus and directrix of a parabola

Find the focus and directrix of the parabola $x = \frac{1}{8}y^2 - y + 1$. The point (7, 12) lies on the graph of this parabola; verify that it is equidistant from the focus and directrix.

SOLUTION We need to put the equation of the parabola in its general form. This requires us to complete the square:

$$x = \frac{1}{8}y^2 - y + 1$$

$$= \frac{1}{8}(y^2 - 8y + 8)$$

$$= \frac{1}{8}(y^2 - 8y + 16 - 16 + 8)$$

$$= \frac{1}{8}((y - 4)^2 - 8)$$

$$= \frac{1}{8}(y - 4)^2 - 1.$$

Hence the vertex is located at (-1,4). We have $\frac{1}{8} = \frac{1}{4p}$, so p=2. We conclude that the focus is located at (1,4) and the directrix is x=-3. The parabola is graphed in Figure 9.1.4, along with its focus and directrix.

The point (7,12) lies on the graph and is 7-(-3)=10 units from the directrix. The distance from (7,12) to the focus is:

$$\sqrt{(7-1)^2 + (12-4)^2} = \sqrt{100} = 10.$$

Indeed, the point on the parabola is equidistant from the focus and directrix.

Reflective Property

One of the fascinating things about the nondegenerate conic sections is their reflective properties. Parabolas have the following reflective property:

Any ray emanating from the focus that intersects the parabola reflects off along a line perpendicular to the directrix.

This is illustrated in Figure 9.1.5. The following theorem states this more rigorously.

Figure 9.1.3: The parabola described in Example 9.1.1.

Figure 9.1.4: The parabola described in Example 9.1.2. The distances from a point on the parabola to the focus and directrix is given.

Figure 9.1.5: Illustrating the parabola's reflective property.

Theorem 9.1.1 Reflective Property of the Parabola

Let *P* be a point on a parabola. The tangent line to the parabola at *P* makes equal angles with the following two lines:

- 1. The line containing P and the focus F, and
- 2. The line perpendicular to the directrix through *P*.

Because of this reflective property, paraboloids (the 3D analogue of parabolas) make for useful flashlight reflectors as the light from the bulb, ideally located at the focus, is reflected along parallel rays. Satellite dishes also have paraboloid shapes. Signals coming from satellites effectively approach the dish along parallel rays. The dish then *focuses* these rays at the focus, where the sensor is located.

Ellipses

Definition 9.1.2 Ellipse

An **ellipse** is the locus of all points whose sum of distances from two fixed points, each a **focus** of the ellipse, is constant.

An easy way to visualize this construction of an ellipse is to pin both ends of a string to a board. The pins become the foci. Holding a pencil tight against the string places the pencil on the ellipse; the sum of distances from the pencil to the pins is constant: the length of the string. See Figure 9.1.6.

We can again find an algebraic equation for an ellipse using this geometric definition. Let the foci be located along the x-axis, c units from the origin. Let these foci be labeled as $F_1=(-c,0)$ and $F_2=(c,0)$. Let P=(x,y) be a point on the ellipse. The sum of distances from F_1 to $P(d_1)$ and from F_2 to $P(d_2)$ is a constant d. That is, $d_1+d_2=d$. Using the Distance Formula, we have

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = d.$$

Using a fair amount of algebra can produce the following equation of an ellipse (note that the equation is an implicitly defined function; it has to be, as an ellipse fails the Vertical Line Test):

$$\frac{x^2}{\left(\frac{d}{2}\right)^2} + \frac{y^2}{\left(\frac{d}{2}\right)^2 - c^2} = 1.$$

 d_1 , d_1 , d_1 , $d_1 + d_2 = {\sf constant}$

Figure 9.1.6: Illustrating the construction of an ellipse with pins, pencil and string.

Foci

This is not particularly illuminating, but by making the substitution a=d/2 and $b=\sqrt{a^2-c^2}$, we can rewrite the above equation as

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

This choice of a and b is not without reason; as shown in Figure 9.1.7, the values of a and b have geometric meaning in the graph of the ellipse.

In general, the two foci of an ellipse lie on the **major axis** of the ellipse, and the midpoint of the segment joining the two foci is the **center**. The major axis intersects the ellipse at two points, each of which is a **vertex**. The line segment through the center and perpendicular to the major axis is the **minor axis**. The "constant sum of distances" that defines the ellipse is the length of the major axis, i.e., 2a.

Allowing for the shifting of the ellipse gives the following standard equations.

Major axis Minor axis

Vertices

Figure 9.1.7: Labeling the significant features of an ellipse.

Key Idea 9.1.2 Standard Equation of the Ellipse

The equation of an ellipse centered at (h, k) with major axis of length 2a and minor axis of length 2b in standard form is:

1. Horizontal major axis:
$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1.$$

2. Vertical major axis:
$$\frac{(x-h)^2}{h^2} + \frac{(y-k)^2}{a^2} = 1$$
.

The foci lie along the major axis, c units from the center, where $c^2 = a^2 - b^2$.

Example 9.1.3 Finding the equation of an ellipse

Find the general equation of the ellipse graphed in Figure 9.1.8.

SOLUTION The center is located at (-3,1). The distance from the center to a vertex is 5 units, hence a=5. The minor axis seems to have length 4, so b=2. Thus the equation of the ellipse is

$$\frac{(x+3)^2}{4} + \frac{(y-1)^2}{25} = 1.$$

Figure 9.1.8: The ellipse used in Example 9.1.3.

Example 9.1.4 Graphing an ellipse

Graph the ellipse defined by $4x^2 + 9y^2 - 8x - 36y = -4$.

Chapter 9 Curves in the Plane

Figure 9.1.9: Graphing the ellipse in Example 9.1.4.

Figure 9.1.10: Understanding the eccentricity of an ellipse.

SOLUTION It is simple to graph an ellipse once it is in standard form. In order to put the given equation in standard form, we must complete the square with both the *x* and *y* terms. We first rewrite the equation by regrouping:

$$4x^2 + 9y^2 - 8x - 36y = -4$$
 \Rightarrow $(4x^2 - 8x) + (9y^2 - 36y) = -4$.

Now we complete the squares.

$$(4x^{2} - 8x) + (9y^{2} - 36y) = -4$$

$$4(x^{2} - 2x) + 9(y^{2} - 4y) = -4$$

$$4(x^{2} - 2x + 1 - 1) + 9(y^{2} - 4y + 4 - 4) = -4$$

$$4((x - 1)^{2} - 1) + 9((y - 2)^{2} - 4) = -4$$

$$4(x - 1)^{2} - 4 + 9(y - 2)^{2} - 36 = -4$$

$$4(x - 1)^{2} + 9(y - 2)^{2} = 36$$

$$\frac{(x - 1)^{2}}{9} + \frac{(y - 2)^{2}}{4} = 1.$$

We see the center of the ellipse is at (1,2). We have a=3 and b=2; the major axis is horizontal, so the vertices are located at (-2,2) and (4,2). We find $c=\sqrt{9-4}=\sqrt{5}\approx 2.24$. The foci are located along the major axis, approximately 2.24 units from the center, at $(1\pm 2.24,2)$. This is all graphed in Figure 9.1.9 .

Eccentricity

When a = b, we have a circle. The general equation becomes

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{a^2} = 1 \quad \Rightarrow (x-h)^2 + (y-k)^2 = a^2,$$

the familiar equation of the circle centered at (h,k) with radius a. Since a=b, $c=\sqrt{a^2-b^2}=0$. The circle has "two" foci, but they lie on the same point, the center of the circle.

Consider Figure 9.1.10, where several ellipses are graphed with a=1. In (a), we have c=0 and the ellipse is a circle. As c grows, the resulting ellipses look less and less circular. A measure of this "noncircularness" is *eccentricity*.

Definition 9.1.3 Eccentricity of an Ellipse

The eccentricity e of an ellipse is $e = \frac{c}{a}$.

The eccentricity of a circle is 0; that is, a circle has no "noncircularness." As c approaches a, e approaches 1, giving rise to a very noncircular ellipse, as seen in Figure 9.1.10 (d).

It was long assumed that planets had circular orbits. This is known to be incorrect; the orbits are elliptical. Earth has an eccentricity of 0.0167 – it has a nearly circular orbit. Mercury's orbit is the most eccentric, with e=0.2056. (Pluto's eccentricity is greater, at e=0.248, the greatest of all the currently known dwarf planets.) The planet with the most circular orbit is Venus, with e=0.0068. The Earth's moon has an eccentricity of e=0.0549, also very circular.

Reflective Property

The ellipse also possesses an interesting reflective property. Any ray emanating from one focus of an ellipse reflects off the ellipse along a line through the other focus, as illustrated in Figure 9.1.11. This property is given formally in the following theorem.

Theorem 9.1.2 Reflective Property of an Ellipse

Let P be a point on a ellipse with foci F_1 and F_2 . The tangent line to the ellipse at P makes equal angles with the following two lines:

- 1. The line through F_1 and P, and
- 2. The line through F_2 and P.

This reflective property is useful in optics and is the basis of the phenomena experienced in whispering halls.

Hyperbolas

The definition of a hyperbola is very similar to the definition of an ellipse; we essentially just change the word "sum" to "difference."

Definition 9.1.4 Hyperbola

A **hyperbola** is the locus of all points where the absolute value of difference of distances from two fixed points, each a focus of the hyperbola, is constant.

Figure 9.1.11: Illustrating the reflective property of an ellipse.

Figure 9.1.12: Labeling the significant features of a hyperbola.

Figure 9.1.13: Graphing the hyperbola $\frac{x^2}{9} - \frac{y^2}{1} = 1$ along with its asymptotes, $y = \pm x/3$.

Figure 9.1.14: Using the asymptotes of a hyperbola as a graphing aid.

We do not have a convenient way of visualizing the construction of a hyperbola as we did for the ellipse. The geometric definition does allow us to find an algebraic expression that describes it. It will be useful to define some terms first.

The two foci lie on the **transverse axis** of the hyperbola; the midpoint of the line segment joining the foci is the **center** of the hyperbola. The transverse axis intersects the hyperbola at two points, each a **vertex** of the hyperbola. The line through the center and perpendicular to the transverse axis is the **conjugate axis.** This is illustrated in Figure 9.1.12. It is easy to show that the constant difference of distances used in the definition of the hyperbola is the distance between the vertices, i.e., 2a.

Key Idea 9.1.3 Standard Equation of a Hyperbola

The equation of a hyperbola centered at (h, k) in standard form is:

1. Horizontal Transverse Axis: $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1.$

2. Vertical Transverse Axis: $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1.$

The vertices are located a units from the center and the foci are located c units from the center, where $c^2 = a^2 + b^2$.

Graphing Hyperbolas

Consider the hyperbola $\frac{x^2}{9} - \frac{y^2}{1} = 1$. Solving for y, we find $y = \pm \sqrt{x^2/9 - 1}$. As x grows large, the "-1" part of the equation for y becomes less significant and $y \approx \pm \sqrt{x^2/9} = \pm x/3$. That is, as x gets large, the graph of the hyperbola looks very much like the lines $y = \pm x/3$. These lines are asymptotes of the hyperbola, as shown in Figure 9.1.13.

This is a valuable tool in sketching. Given the equation of a hyperbola in general form, draw a rectangle centered at (h,k) with sides of length 2a parallel to the transverse axis and sides of length 2b parallel to the conjugate axis. (See Figure 9.1.14 for an example with a horizontal transverse axis.) The diagonals of the rectangle lie on the asymptotes.

These lines pass through (h,k). When the transverse axis is horizontal, the slopes are $\pm b/a$; when the transverse axis is vertical, their slopes are $\pm a/b$. This gives equations:

Horizontal Vertical Transverse Axis Transverse Axis
$$y = \pm \frac{b}{a}(x-h) + k$$
 $y = \pm \frac{a}{b}(x-h) + k$.

Example 9.1.5 Graphing a hyperbola

Sketch the hyperbola given by
$$\frac{(y-2)^2}{25} - \frac{(x-1)^2}{4} = 1$$
.

SOLUTION The hyperbola is centered at (1,2); a=5 and b=2. In Figure 9.1.15 we draw the prescribed rectangle centered at (1,2) along with the asymptotes defined by its diagonals. The hyperbola has a vertical transverse axis, so the vertices are located at (1,7) and (1,-3). This is enough to make a good sketch.

We also find the location of the foci: as $c^2=a^2+b^2$, we have $c=\sqrt{29}\approx$ 5.4. Thus the foci are located at $(1,2\pm5.4)$ as shown in the figure.

Example 9.1.6 Graphing a hyperbola

Sketch the hyperbola given by $9x^2 - y^2 + 2y = 10$.

SOLUTION We must complete the square to put the equation in general form. (We recognize this as a hyperbola since it is a general quadratic equation and the x^2 and y^2 terms have opposite signs.)

$$9x^{2} - y^{2} + 2y = 10$$

$$9x^{2} - (y^{2} - 2y) = 10$$

$$9x^{2} - (y^{2} - 2y + 1 - 1) = 10$$

$$9x^{2} - ((y - 1)^{2} - 1) = 10$$

$$9x^{2} - (y - 1)^{2} = 9$$

$$x^{2} - \frac{(y - 1)^{2}}{9} = 1$$

We see the hyperbola is centered at (0,1), with a horizontal transverse axis, where a=1 and b=3. The appropriate rectangle is sketched in Figure 9.1.16 along with the asymptotes of the hyperbola. The vertices are located at $(\pm 1,1)$. We have $c=\sqrt{10}\approx 3.2$, so the foci are located at $(\pm 3.2,1)$ as shown in the figure.

Figure 9.1.15: Graphing the hyperbola in Example 9.1.5.

Figure 9.1.16: Graphing the hyperbola in Example 9.1.6.

(b)

Figure 9.1.17: Understanding the eccentricity of a hyperbola.

Eccentricity

Definition 9.1.5 Eccentricity of a Hyperbola

The eccentricity of a hyperbola is $e = \frac{c}{a}$.

Note that this is the definition of eccentricity as used for the ellipse. When c is close in value to a (i.e., $e \approx 1$), the hyperbola is very narrow (looking almost like crossed lines). Figure 9.1.17 shows hyperbolas centered at the origin with a=1. The graph in (a) has c=1.05, giving an eccentricity of e=1.05, which is close to 1. As e=1.05 grows larger, the hyperbola widens and begins to look like parallel lines, as shown in part (d) of the figure.

Reflective Property

Hyperbolas share a similar reflective property with ellipses. However, in the case of a hyperbola, a ray emanating from a focus that intersects the hyperbola reflects along a line containing the other focus, but moving *away* from that focus. This is illustrated in Figure 9.1.19 (on the next page). Hyperbolic mirrors are commonly used in telescopes because of this reflective property. It is stated formally in the following theorem.

Theorem 9.1.3 Reflective Property of Hyperbolas

Let P be a point on a hyperbola with foci F_1 and F_2 . The tangent line to the hyperbola at P makes equal angles with the following two lines:

- 1. The line through F_1 and P, and
- 2. The line through F_2 and P.

Location Determination

Determining the location of a known event has many practical uses (locating the epicenter of an earthquake, an airplane crash site, the position of the person speaking in a large room, etc.).

To determine the location of an earthquake's epicenter, seismologists use *trilateration* (not to be confused with *triangulation*). A seismograph allows one

to determine how far away the epicenter was; using three separate readings, the location of the epicenter can be approximated.

A key to this method is knowing distances. What if this information is not available? Consider three microphones at positions *A*, *B* and *C* which all record a noise (a person's voice, an explosion, etc.) created at unknown location *D*. The microphone does not "know" when the sound was *created*, only when the sound was *detected*. How can the location be determined in such a situation?

If each location has a clock set to the same time, hyperbolas can be used to determine the location. Suppose the microphone at position A records the sound at exactly 12:00, location B records the time exactly 1 second later, and location C records the noise exactly 2 seconds after that. We are interested in the *difference* of times. Since the speed of sound is approximately 340 m/s, we can conclude quickly that the sound was created 340 meters closer to position A than position B. If A and B are a known distance apart (as shown in Figure 9.1.18 (a)), then we can determine a hyperbola on which D must lie.

The "difference of distances" is 340; this is also the distance between vertices of the hyperbola. So we know 2a=340. Positions A and B lie on the foci, so 2c=1000. From this we can find $b\approx470$ and can sketch the hyperbola, given in part (b) of the figure. We only care about the side closest to A. (Why?)

We can also find the hyperbola defined by positions B and C. In this case, 2a=680 as the sound traveled an extra 2 seconds to get to C. We still have 2c=1000, centering this hyperbola at (-500,500). We find $b\approx 367$. This hyperbola is sketched in part (c) of the figure. The intersection point of the two graphs is the location of the sound, at approximately (188,-222.5).

Figure 9.1.18: Using hyperbolas in location detection.

This chapter explores curves in the plane, in particular curves that cannot be described by functions of the form y=f(x). In this section, we learned of ellipses and hyperbolas that are defined implicitly, not explicitly. In the following sections, we will learn completely new ways of describing curves in the plane, using *parametric equations* and *polar coordinates*, then study these curves using calculus techniques.

Figure 9.1.19: Illustrating the reflective property of a hyperbola.

Exercises 9.1

Terms and Concepts

- 1. What is the difference between degenerate and nondegenerate conics?
- 2. Use your own words to explain what the eccentricity of an ellipse measures.
- 3. What has the largest eccentricity: an ellipse or a hyperbola?
- 4. Explain why the following is true: "If the coefficient of the x^2 term in the equation of an ellipse in standard form is smaller than the coefficient of the y^2 term, then the ellipse has a horizontal major axis."
- 5. Explain how one can quickly look at the equation of a hyperbola in standard form and determine whether the transverse axis is horizontal or vertical.
- Fill in the blank: It can be said that ellipses and hyperbolas share the *same* reflective property: "A ray emanating from one focus will reflect off the conic along a ______ that contains the other focus."

Problems

In Exercises 7 – 14, find the equation of the parabola defined by the given information. Sketch the parabola.

- 7. Focus: (3, 2); directrix: y = 1
- 8. Focus: (-1, -4); directrix: y = 2
- 9. Focus: (1, 5); directrix: x = 3
- 10. Focus: (1/4, 0); directrix: x = -1/4
- 11. Focus: (1, 1); vertex: (1, 2)
- 12. Focus: (-3,0); vertex: (0,0)
- 13. Vertex: (0,0); directrix: y = -1/16
- 14. Vertex: (2,3); directrix: x = 4

In Exercises 15 - 16, the equation of a parabola and a point on its graph are given. Find the focus and directrix of the parabola, and verify that the given point is equidistant from the focus and directrix.

15.
$$y = \frac{1}{4}x^2$$
, $P = (2, 1)$

16.
$$x = \frac{1}{8}(y-2)^2 + 3$$
, $P = (11, 10)$

In Exercises 17 – 18, sketch the ellipse defined by the given equation. Label the center, foci and vertices.

17.
$$\frac{(x-1)^2}{3} + \frac{(y-2)^2}{5} = 1$$

18.
$$\frac{1}{25}x^2 + \frac{1}{9}(y+3)^2 = 1$$

In Exercises 19-20, find the equation of the ellipse shown in the graph. Give the location of the foci and the eccentricity of the ellipse.

19.

20.

In Exercises 21 – 24, find the equation of the ellipse defined by the given information. Sketch the ellipse.

- 21. Foci: $(\pm 2, 0)$; vertices: $(\pm 3, 0)$
- 22. Foci: (-1,3) and (5,3); vertices: (-3,3) and (7,3)
- 23. Foci: $(2, \pm 2)$; vertices: $(2, \pm 7)$
- 24. Focus: (-1, 5); vertex: (-1, -4); center: (-1, 1)

In Exercises 25 - 28, write the equation of the given ellipse in standard form.

- 25. $x^2 2x + 2y^2 8y = -7$
- 26. $5x^2 + 3y^2 = 15$
- 27. $3x^2 + 2y^2 12y + 6 = 0$
- 28. $x^2 + v^2 4x 4v + 4 = 0$

In Exercises 29 - 32, find the equation of the hyperbola shown in the graph.

35. Foci: $(\pm 3, 0)$; vertices: $(\pm 2, 0)$

36. Foci: $(0, \pm 3)$; vertices: $(0, \pm 2)$

37. Foci: (-2,3) and (8,3); vertices: (-1,3) and (7,3)

fined by the given information. Sketch the hyperbola.

38. Foci: (3, -2) and (3, 8); vertices: (3, 0) and (3, 6)

In Exercises 39 – 42, write the equation of the hyperbola in standard form.

In Exercises 35 - 38, find the equation of the hyperbola de-

39. $3x^2 - 4v^2 = 12$

40. $3x^2 - y^2 + 2y = 10$

41. $x^2 - 10y^2 + 40y = 30$

42. (4y - x)(4y + x) = 4

43. Consider the ellipse given by $\frac{(x-1)^2}{4} + \frac{(y-3)^2}{12} = 1.$

(a) Verify that the foci are located at $(1, 3 \pm 2\sqrt{2})$.

(b) The points $P_1 = (2,6)$ and $P_2 = (1+\sqrt{2},3+\sqrt{6}) \approx$ (2.414, 5.449) lie on the ellipse. Verify that the sum of distances from each point to the foci is the same.

44. Johannes Kepler discovered that the planets of our solar system have elliptical orbits with the Sun at one focus. The Earth's elliptical orbit is used as a standard unit of distance; the distance from the center of Earth's elliptical orbit to one vertex is 1 Astronomical Unit, or A.U.

The following table gives information about the orbits of three planets.

	Distance from	eccentricity	
	center to vertex	coccininately	
Mercury	0.387 A.U.	0.2056	
Earth	1 A.U.	0.0167	
Mars	1.524 A.U.	0.0934	

(a) In an ellipse, knowing $c^2 = a^2 - b^2$ and e = c/aallows us to find b in terms of a and e. Show b = $a\sqrt{1-e^2}$

(b) For each planet, find equations of their elliptical orbit of the form $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$. (This places the center at (0,0), but the Sun is in a different location for each planet.)

(c) Shift the equations so that the Sun lies at the origin. Plot the three elliptical orbits.

45. A loud sound is recorded at three stations that lie on a line as shown in the figure below. Station A recorded the sound 1 second after Station B, and Station C recorded the sound 3 seconds after B. Using the speed of sound as 340m/s, determine the location of the sound's origination.

29.

30.

31.

32.

In Exercises 33 - 34, sketch the hyperbola defined by the given equation. Label the center and foci.

33.
$$\frac{(x-1)^2}{16} - \frac{(y+2)^2}{9} = 1$$

34.
$$(y-4)^2 - \frac{(x+1)^2}{25} = 1$$

11: VECTOR VALUED FUNCTIONS

12: FUNCTIONS OF SEVERAL VARIABLES

13: MULTIPLE INTEGRATION

14: VECTOR ANALYSIS

A: SOLUTIONS TO SELECTED PROBLEMS

Chapter 9

Section 9.1

- 1. When defining the conics as the intersections of a plane and a double napped cone, degenerate conics are created when the plane intersects the tips of the cones (usually taken as the origin). Nondegenerate conics are formed when this plane does not contain the origin.
- 3. Hyperbola
- 5. With a horizontal transverse axis, the x^2 term has a positive coefficient; with a vertical transverse axis, the y^2 term has a positive coefficient.

7.
$$y = \frac{1}{2}(x-3)^2 + \frac{3}{2}$$

9.
$$x = -\frac{1}{4}(y-5)^2 + 2$$

11.
$$y = -\frac{1}{4}(x-1)^2 + 2$$

- 13. $y = 4x^2$
- 15. focus: (0,1); directrix: y = -1. The point P is 2 units from each.

- 19. $\frac{(x+1)^2}{q} + \frac{(y-2)^2}{4} = 1$; foci at $(-1 \pm \sqrt{5}, 2)$; $e = \sqrt{5}/3$

- 23. $\frac{(x-2)^2}{45} + \frac{y^2}{49} = 1$
- 25. $\frac{(x-1)^2}{2} + (y-2)^2 = 1$
- 27. $\frac{x^2}{4} + \frac{(y-3)^2}{6} = 1$
- 29. $x^2 \frac{y^2}{3} = 1$
- 31. $\frac{(y-3)^2}{4} \frac{(x-1)^2}{9} = 1$

- 37. $\frac{(x-3)^2}{16} \frac{(y-3)^2}{9} = 1$
- 39. $\frac{x^2}{4} \frac{y^2}{3} = 1$
- 41. $(y-2)^2 \frac{x^2}{10} = 1$
- 43. (a) $c = \sqrt{12 4} = 2\sqrt{2}$.
 - (b) The sum of distances for each point is $2\sqrt{12} \approx 6.9282$.
- 45. The sound originated from a point approximately 31m to the left of B and 1340m above it.

Differentiation Rules

1.
$$\frac{d}{dx}(cx) = c$$

10.
$$\frac{d}{dx}(a^x) = \ln a \cdot a^x$$

19.
$$\frac{d}{dx} \left(\sin^{-1} x \right) = \frac{1}{\sqrt{1 - x^2}}$$

10.
$$\frac{d}{dx}(a^x) = \ln a \cdot a^x$$
 19. $\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$ 28. $\frac{d}{dx}(\operatorname{sech} x) = -\operatorname{sech} x \tanh x$

2.
$$\frac{d}{dx}(u \pm v) = u' \pm v'$$
 11.
$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

11.
$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

20.
$$\frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$$

29.
$$\frac{d}{dx}(\operatorname{csch} x) = -\operatorname{csch} x \operatorname{coth} x$$

$$3. \ \frac{d}{dx}(u \cdot v) = uv' + u'v$$

3.
$$\frac{d}{dx}(u \cdot v) = uv' + u'v$$
 12. $\frac{d}{dx}(\log_a x) = \frac{1}{\ln a} \cdot \frac{1}{x}$

21.
$$\frac{d}{dx}(\csc^{-1}x) = \frac{-1}{|x|\sqrt{x^2 - 1}}$$
 30. $\frac{d}{dx}(\coth x) = -\operatorname{csch}^2 x$

$$\frac{d}{d} \left(\operatorname{coth} v \right) = \operatorname{csch}^2 v$$

$$4. \ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{vu' - uv'}{v^2}$$

$$13. \ \frac{d}{dx} \left(\sin x \right) = \cos x$$

22.
$$\frac{d}{dx} (\sec^{-1} x) = \frac{1}{|x| \sqrt{x^2 - 1}}$$

31.
$$\frac{d}{dx} \left(\cosh^{-1} x \right) = \frac{1}{\sqrt{x^2 - 1}}$$

5.
$$\frac{d}{dx}(u(v)) = u'(v)v'$$
 14. $\frac{d}{dx}(\cos x) = -\sin x$

$$14. \ \frac{d}{dx}(\cos x) = -\sin x$$

23.
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

$$\frac{d}{dx} \left(\sinh^{-1} x \right) = \frac{1}{\sqrt{x^2 + 1}}$$
32. $\frac{d}{dx} \left(\sinh^{-1} x \right) = \frac{1}{\sqrt{x^2 + 1}}$

6.
$$\frac{d}{dx}(c) = 0$$

15.
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

24.
$$\frac{d}{dx} (\cot^{-1} x) = \frac{-1}{1 + x^2}$$

33.
$$\frac{d}{dx} (\operatorname{sech}^{-1} x) = \frac{-1}{x\sqrt{1-x^2}}$$

7.
$$\frac{d}{d}(x) = 1$$

7.
$$\frac{d}{dx}(x) = 1$$
 16. $\frac{d}{dx}(\sec x) = \sec x \tan x$

25.
$$\frac{d}{dx}(\cosh x) = \sinh x$$

$$\frac{d}{dx} \left(\operatorname{csch}^{-1} x \right) = \frac{1}{|x|\sqrt{1+x^2}}$$
34. $\frac{d}{dx} \left(\operatorname{csch}^{-1} x \right) = \frac{-1}{|x|\sqrt{1+x^2}}$

$$8. \ \frac{d}{dx}(x^n) = nx^{n-1}$$

8.
$$\frac{d}{dx}(x^n) = nx^{n-1}$$
 17. $\frac{d}{dx}(\tan x) = \sec^2 x$

26.
$$\frac{d}{dx} (\sinh x) = \cosh x$$

35.
$$\frac{d}{dx} \left(\tanh^{-1} x \right) = \frac{1}{1 - x^2}$$

9.
$$\frac{d}{dx}(e^x) = e^x$$

9.
$$\frac{d}{dx}(e^x) = e^x$$
 18.
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

27.
$$\frac{d}{dx}(\tanh x) = \operatorname{sech}^2 x$$

36.
$$\frac{d}{dx} \left(\coth^{-1} x \right) = \frac{1}{1 - x^2}$$

Integration Rules

1.
$$\int c \cdot f(x) \ dx = c \int f(x) \ dx$$

$$12. \int \tan x \, dx = -\ln|\cos x| + C$$

23.
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a} \right) + C$$

$$2. \int f(x) \pm g(x) dx =$$

13.
$$\int \sec x \, dx = \ln|\sec x + \tan x| + C$$

24.
$$\int \frac{1}{x\sqrt{x^2-a^2}} dx = \frac{1}{a} \sec^{-1} \left(\frac{|x|}{a}\right) + C$$

$$\int f(x) \ dx \pm \int g(x) \ dx$$

$$14. \int \csc x \, dx = -\ln|\csc x + \cot x| + C$$

$$25. \int \cosh x \, dx = \sinh x + C$$

$$3. \int 0 dx = C$$

15.
$$\int \cot x \, dx = \ln|\sin x| + C$$

$$26. \int \sinh x \, dx = \cosh x + C$$

$$4. \int 1 dx = x + C$$

$$16. \int \sec^2 x \, dx = \tan x + C$$

$$27. \int \tanh x \, dx = \ln(\cosh x) + C$$

5.
$$\int x^n dx = \frac{1}{n+1}x^{n+1} + C, \ n \neq -1$$

$$17. \int \csc^2 x \, dx = -\cot x + C$$

$$28. \int \coth x \, dx = \ln|\sinh x| + C$$

$$6. \quad \int e^x \, dx = e^x + C$$

$$18. \quad \int \sec x \tan x \, dx = \sec x + C$$

29.
$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln |x + \sqrt{x^2 - a^2}| + C$$

$$7. \int \ln x \, dx = x \ln x - x + C$$

$$19. \int \csc x \cot x \, dx = -\csc x + C$$

30.
$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln |x + \sqrt{x^2 + a^2}| + C$$

8.
$$\int a^x dx = \frac{1}{\ln a} \cdot a^x + C$$

20.
$$\int \cos^2 x \, dx = \frac{1}{2}x + \frac{1}{4}\sin(2x) + C$$

31.
$$\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C$$

$$9. \int \frac{1}{x} dx = \ln|x| + C$$

21.
$$\int \sin^2 x \, dx = \frac{1}{2}x - \frac{1}{4}\sin(2x) + C$$

32.
$$\int \frac{1}{x\sqrt{a^2 - x^2}} dx = \frac{1}{a} \ln \left(\frac{x}{a + \sqrt{a^2 - x^2}} \right) + C$$

$$10. \int \cos x \, dx = \sin x + C$$

11. $\int \sin x \, dx = -\cos x + C$

22.
$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$$

33.
$$\int \frac{1}{x\sqrt{x^2 + a^2}} dx = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{x^2 + a^2}} \right| + C$$

The Unit Circle

Definitions of the Trigonometric Functions

Unit Circle Definition

$$\sin \theta = v \qquad \cos \theta = x$$

$$\csc \theta = \frac{1}{y} \quad \sec \theta = \frac{1}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

Right Triangle Definition

$$\sin \theta = \frac{O}{H}$$
 $\csc \theta = \frac{H}{O}$

$$\cos \theta = \frac{A}{H}$$
 $\sec \theta = \frac{H}{A}$

$$\tan \theta = \frac{O}{A} \quad \cot \theta = \frac{A}{O}$$

Common Trigonometric Identities

Pythagorean Identities

$$\sin^2 x + \cos^2 x = 1$$
$$\tan^2 x + 1 = \sec^2 x$$
$$1 + \cot^2 x = \csc^2 x$$

Cofunction Identities

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x \qquad c$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x \qquad s$$

$$\tan\left(\frac{\pi}{2} - x\right) = \cot x \qquad \cot\left(\frac{\pi}{2} - x\right) = \tan x$$

$\csc\left(\frac{\pi}{2} - x\right) = \sec x$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$
 $\sec\left(\frac{\pi}{2} - x\right) = \csc x$

$$\cot\left(\frac{\pi}{2}-x\right)=\tan$$

Double Angle Formulas

$$\sin 2x = 2 \sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$= 2 \cos^2 x - 1$$

$$= 1 - 2 \sin^2 x$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

Sum to Product Formulas

$$\sin x + \sin y = 2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$$

$$\sin x - \sin y = 2 \sin \left(\frac{x-y}{2}\right) \cos \left(\frac{x+y}{2}\right)$$

$$\cos x + \cos y = 2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$$

$$\cos x - \cos y = -2 \sin \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)$$

Power-Reducing Formulas

$$\sin^2 x = \frac{1 - \cos 2x}{2}$$
$$\cos^2 x = \frac{1 + \cos 2x}{2}$$
$$\tan^2 x = \frac{1 - \cos 2x}{1 + \cos 2x}$$

Even/Odd Identities

$$\sin(-x) = -\sin x$$

$$\cos(-x) = \cos x$$

$$\tan(-x) = -\tan x$$

$$\csc(-x) = -\csc x$$

$$\sec(-x) = \sec x$$

$$\cot(-x) = -\cot x$$

Product to Sum Formulas

$$\sin x \sin y = \frac{1}{2} \left(\cos(x - y) - \cos(x + y) \right)$$

$$\cos x \cos y = \frac{1}{2} \left(\cos(x - y) + \cos(x + y) \right)$$

$$\sin x \cos y = \frac{1}{2} \left(\sin(x + y) + \sin(x - y) \right)$$

Angle Sum/Difference Formulas

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$
$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

Areas and Volumes

Triangles

$$h = a \sin \theta$$

Area =
$$\frac{1}{2}bh$$

Law of Cosines:
$$c^2 = a^2 + b^2 - 2ab \cos \theta$$

Right Circular Cone

Volume =
$$\frac{1}{3}\pi r^2 h$$

$$\pi r \sqrt{r^2 + h^2} + \pi r^2$$

Parallelograms

Right Circular Cylinder

Volume =
$$\pi r^2 h$$

$$2\pi rh + 2\pi r^2$$

Trapezoids

Area =
$$\frac{1}{2}(a+b)h$$

Sphere

Volume =
$$\frac{4}{3}\pi r^3$$

Surface Area =
$$4\pi r^2$$

Circles

Area =
$$\pi r^2$$

Circumference = $2\pi r$

General Cone

Area of Base =
$$A$$

Volume =
$$\frac{1}{3}Ah$$

Sectors of Circles

$\boldsymbol{\theta}$ in radians

Area =
$$\frac{1}{2}\theta r^2$$

$$s = r\theta$$

General Right Cylinder

Area of Base =
$$A$$

Algebra

Factors and Zeros of Polynomials

Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a solution of the equation p(x) = 0. Furthermore, (x - a) is a factor of the polynomial.

Fundamental Theorem of Algebra

An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zeros may be imaginary, a real polynomial of odd degree must have at least one real zero.

Quadratic Formula

If $p(x) = ax^2 + bx + c$, and $0 \le b^2 - 4ac$, then the real zeros of p are $x = (-b \pm \sqrt{b^2 - 4ac})/2a$

Special Factors

$$x^{2} - a^{2} = (x - a)(x + a) x^{3} - a^{3} = (x - a)(x^{2} + ax + a^{2})$$

$$x^{3} + a^{3} = (x + a)(x^{2} - ax + a^{2}) x^{4} - a^{4} = (x^{2} - a^{2})(x^{2} + a^{2})$$

$$(x + y)^{n} = x^{n} + nx^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^{2} + \dots + nxy^{n-1} + y^{n}$$

$$(x - y)^{n} = x^{n} - nx^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^{2} - \dots \pm nxy^{n-1} \mp y^{n}$$

Binomial Theorem

$$(x+y)^2 = x^2 + 2xy + y^2 (x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3 (x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$$

$$(x-y)^2 = x^2 - 2xy + y^2 (x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3 (x-y)^4 = x^4 - 4x^3y + 6x^2y^2 - 4xy^3 + y^4$$

Rational Zero Theorem

If $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ has integer coefficients, then every *rational zero* of p is of the form x = r/s, where r is a factor of a_0 and s is a factor of a_n .

Factoring by Grouping

$$acx^3 + adx^2 + bcx + bd = ax^2(cs + d) + b(cx + d) = (ax^2 + b)(cx + d)$$

Arithmetic Operations

$$ab + ac = a(b + c)$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

$$\frac{a + b}{c} = \frac{a}{c} + \frac{b}{c}$$

$$\frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)} = \left(\frac{a}{b}\right)\left(\frac{d}{c}\right) = \frac{ad}{bc}$$

$$\frac{\left(\frac{a}{b}\right)}{c} = \frac{a}{bc}$$

$$\frac{a + b}{c} = \frac{a}{c} + \frac{b}{c}$$

$$\frac{a}{\left(\frac{b}{c}\right)} = \frac{ac}{b}$$

$$a\left(\frac{b}{c}\right) = \frac{ab}{c}$$

$$\frac{a - b}{c - d} = \frac{b - a}{d - c}$$

$$\frac{ab + ac}{a} = b + c$$

Exponents and Radicals

$$a^0=1, \ a \neq 0 \qquad (ab)^x=a^xb^x \qquad a^xa^y=a^{x+y} \qquad \sqrt{a}=a^{1/2} \qquad \frac{a^x}{a^y}=a^{x-y} \qquad \sqrt[n]{a}=a^{1/n}$$

$$\left(\frac{a}{b}\right)^x=\frac{a^x}{b^x} \qquad \sqrt[n]{a^m}=a^{m/n} \qquad a^{-x}=\frac{1}{a^x} \qquad \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \qquad (a^x)^y=a^{xy} \qquad \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

Additional Formulas

Summation Formulas:

$$\sum_{i=1}^{n} c = cn$$

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

Trapezoidal Rule:

$$\int_{a}^{b} f(x) \ dx \approx \frac{\Delta x}{2} \big[f(x_1) + 2f(x_2) + 2f(x_3) + ... + 2f(x_n) + f(x_{n+1}) \big]$$
 with Error $\leq \frac{(b-a)^3}{12n^2} \big[\max \big| f''(x) \big| \big]$

Simpson's Rule:

$$\int_{a}^{b} f(x) \ dx \approx \frac{\Delta x}{3} \big[f(x_1) + 4f(x_2) + 2f(x_3) + 4f(x_4) + ... + 2f(x_{n-1}) + 4f(x_n) + f(x_{n+1}) \big]$$
 with Error $\leq \frac{(b-a)^5}{180n^4} \big[\max \big| f^{(4)}(x) \big| \big]$

Arc Length:

$$L = \int_a^b \sqrt{1 + f'(x)^2} \ dx$$

$$S = 2\pi \int_a^b f(x) \sqrt{1 + f'(x)^2} \ dx$$

$$(\text{where } f(x) \ge 0)$$

$$S = 2\pi \int_a^b x \sqrt{1 + f'(x)^2} \ dx$$

Surface of Revolution:

Force Exerted by a Fluid:

Work Done by a Variable Force:

$$W = \int_a^b F(x) dx$$
 $F = \int_a^b w d(y) \ell(y) dy$

Taylor Series Expansion for f(x):

$$p_n(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n$$

Maclaurin Series Expansion for f(x), where c = 0:

$$p_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n$$

Summary of Tests for Series:

Test	Series	Condition(s) of Convergence	Condition(s) of Divergence	Comment
nth-Term	$\sum_{n=1}^{\infty} a_n$		$\lim_{n\to\infty}a_n\neq 0$	This test cannot be used to show convergence.
Geometric Series	$\sum_{n=0}^{\infty} r^n$	r < 1	$ r \geq 1$	$Sum = \frac{1}{1-r}$
Telescoping Series	$\sum_{n=1}^{\infty} (b_n - b_{n+a})$	$\lim_{n\to\infty}b_n=L$		$Sum = \left(\sum_{n=1}^{a} b_n\right) - L$
<i>p</i> -Series	$\sum_{n=1}^{\infty} \frac{1}{(an+b)^p}$	ho > 1	$ ho \leq 1$	
Integral Test	$\sum_{n=0}^{\infty} a_n$	$\int_{1}^{\infty} a(n) \ dn$ is convergent	$\int_1^\infty a(n) dn$ is divergent	$a_n = a(n)$ must be continuous
Direct Comparison	$\sum_{n=0}^{\infty} a_n$	$\sum_{n=0}^{\infty}b_n$ converges and $0\leq a_n\leq b_n$	$\sum_{n=0}^{\infty}b_n$ diverges and $0\leq b_n\leq a_n$	
Limit Comparison	$\sum_{n=0}^{\infty} a_n$	$\sum_{n=0}^{\infty}b_n$ converges and $\lim_{n o\infty}a_n/b_n\geq 0$	$\sum_{n=0}^{\infty}b_n$ diverges and $\lim_{n o\infty}a_n/b_n>0$	Also diverges if $\lim_{n \to \infty} a_n/b_n = \infty$
Ratio Test	$\sum_{n=0}^{\infty} a_n$	$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}<1$	$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}>1$	$\{a_n\}$ must be positive Also diverges if $\lim_{n \to \infty} a_{n+1}/a_n = \infty$
Root Test	$\sum_{n=0}^{\infty} a_n$	$\lim_{n\to\infty} \left(a_n\right)^{1/n} < 1$	$\lim_{n o \infty} \left(a_n ight)^{1/n} > 1$	$\{a_n\}$ must be positive Also diverges if $\lim_{n o \infty} \left(a_n\right)^{1/n} = \infty$