MapReduce

Wolfgang Richter wolf@cs.cmu.edu

whoami

MapReduce for Big Data Processing

- September 2007, Google
 - 2.2+ million MR jobs
 - 403 TiB input data (almost 0.5 PiB)
 - 34 TiB intermediate data
 - 14 TiB output data
 - Averaged 394 machines assigned to each job

 \circ 3,800 LoC C++ \rightarrow 700 LoC C++

MapReduce Wins Terasort

- 2008, won TeraSort Benchmark
 - 910 nodes
 - Sorted 10 billion records, 1 terabyte of data
 - 209 seconds (3.48 minutes)
- 2013, 100 terabytes, 72 minutes
- MapReduce is important across the industry

<u>https://hadoop.apache.</u>
<u>org/docs/current/api/org/apache/hadoop/examples/terasort/package-summary.</u>
<u>html</u>

Outline

- 1. Building Distributed Systems
- 2. Let's Simplify: map and reduce a. My Sister's Engagement
- 3. MapReduce: Optimizations
- 4. MapReduce: Not for Everyone

Building Distributed Systems

Is REALLY hard

But, many workloads share common patterns

Why is it hard?

Why are they so hard?

- Network Communication
 - Serialization and marshaling of data
 - RPC mechanisms
 - Fault-tolerance
 - Bandwidth limitations
 - Latency limitations

Why are they so hard?

- Problem Diagnosis
 - Log collection via network
 - Streaming log analytics
- Security
 - Audits
 - Updates
 - Intrusion detection
 - Virus scanning
 - Firewalls

"Simple" Cloud Example

Why are they so hard?

- Storage Scalability
 - Cross-node data sharing
 - Storage fault tolerance (RAID, etc.)
 - Unifying file namespace across many file systems
 - Extreme high read/write bandwidth requirements
 - Backup solutions and replication

Why are they so hard?

- Environment Issues
 - Cross-OS cooperation (at least kernel versions)
 - Heterogeneous hardware
 - Library versions
 - Bugs in various parts of the stack (firmware, OS, ...)

Number of machines	Platform	CPUs	Memory	
6732	В	0.50	0.50	
3863	В	0.50	0.25	
1001	В	0.50	0.75	
795	C	1.00	1.00	
126	A	0.25	0.25	
52	В	0.50	0.12	
5	В	0.50	0.03	
Source: 5	В	0.50	0.97	
Google Cluster Traces http://www.pdl.cmu 3	C	1.00	0.50	
edu/PDL- FTP/CloudComputing/ISTC 1 -CC-TR-12-101.pdf	В	0.50	0.06	15

How did we handle the Internet?

- Size: 4.47 billion indexed web pages
 - http://www.worldwidewebsize.com/
- 15 billion devices by 2015
 - http://www.forbes.com/sites/quora/2013/01/07/howmany-things-are-currently-connected-to-the-internetof-things-iot/
- North Korea: 8 hosts (2012)
 - Still, a distributed system (source: CIA)

The Narrow Waist

MapReduce: The a DS Narrow Waist

Many big data workloads have similarity

Pattern

- Extract/transform input data (10s TiB, PiB, EiB scale)
- Sort/stage intermediate data (same scale)
- Last computation, output final result

Extract, Transform, Load (DB community)

Where Did MapReduce Come From?

- Google, OSDI 2004
 - Cited by 12,950
 - Even my future cousin-in-law (heart surgeon, UVa)

- As of September 2007:
 - 4,000+ node clusters
 - 2.2 million MR jobs, 73,000 per day
 - 403 TiB of data

Goals of MapReduce

- Minimize network traffic
- Load balance
- Easily parallelize/schedule tasks
- Fault-tolerant

What are map and reduce?

Let's simplify... with a map and a reduce

```
>>> map(lambda x: x, [1,2,3,4,5])
[1, 2, 3, 4, 5]
>>> reduce(lambda a,b: a + b, [1,2,3,4,5], 0)
15
```

Google's Version

map(k1, v1)
$$\rightarrow$$
 reduce(k2, [v2...]) \rightarrow

- MapReduce is a distributed run-time
 - Takes care of every distributed headache
 - Must fit problem to map + reduce paradigm

Why are map and reduce good abstractions for a DS?

Embarrassingly Parallel Applications

- A problem in which there is
 - little, to no effort to separate into many parallel tasks

- Many languages implement parallel versions
 - Python (multiprocessing module)
 - Haskell (parallel package)
 - Julia (pmap built-in)

Google's Word Count: mapper

```
map(String key, String value):
    // key: document name
    // value: document contents
    for each word w in value:
        EmitIntermediate(w, "1");
```

Google's Word Count: reducer

```
reduce(String key, Iterator values):
  // key: a word
  // values: a list of counts
  int result = 0;
  for each v in values:
    result += ParseInt(v);
  Emit(AsString(result));
```

MapReduce Assumptions

- Data in some sort of <k,v> record format
 - Or is easily transformed into such a format
- Data comes from a DFS
- Intermediate data stored locally
- Final data stored back in the DFS
- Jobs managed by a centralized scheduler

MapReduce Data Flow

How is data assigned to reducers?

- User-defined partition+sort function, or...
 - hash(k2) mod R
 - R → number of reducers
 - Increasing key order presented to reducer

- Tough to fix data skew problem
 - Zipfian distributed data set
 - "Lady Gaga" problem

What kind of API do we need from the DFS?

Any special assumptions?

Problems?

- 1. Movement of data to reducers
- 2. Crashing master or worker nodes
- 3. Stragglers: slow mappers or reducers
- 4. Bad records causing map/reduce failure
 - a. Everyone has bugs right?

Pre-Reduce with Combiners

- Minimizes data movement
 - By an immediate "reduce" on intermediate data
 - Schedules compute at the data

- Requires reduce functions which
 - Are commutative and associative
 - Are deterministic

Crashes

- Master node
 - Restart MapReduce job
- Workers
 - Re-schedule unfinished maps or reduces
 - Re-schedule finished maps (local storage only)
 - Do nothing for finished reduces (DFS already)

Stragglers

Arise from resource contention, failing HW...

- Solved with "backup jobs"
 - When close to completion, duplicate remaining tasks
 - Saves up to 44% wall time on certain jobs

Skipping Bad Records

- MapReduce runtime installs signal handlers
 - When map/reduce crashes, send report to Master

- Given enough reports, the Master skips
 - Records never presented to map or reduce function

What is MapReduce bad at?

What is MapReduce Bad at?

- Graph problems + Some Machine Learning
 - GraphLab (CMU now commercial product)

- Iterative problems (more than 5-10 MR jobs)
 - Apache Spark (thanks UC Berkeley)

- Streaming problems
 - Apache Storm (thanks Twitter)

What is MapReduce Bad at?

- Exploratory Computation
 - Early termination of job
 - Examination of intermediate data/partial results
 - Low-latency computation
 - Arbitrary search primitives (more than map/reduce)

http://diamond.cs.cmu.edu/

Play around with MapReduce at home:

http://hadoop.apache.org/

or

http://aws.amazon.com/elasticmapreduce/

"...millions of EMR clusters per year"

wolf@cs.cmu.edu