

Projektni zadatak

☐ Prema predlošku i zadanim pogonskim podacima proračunati i konstruirati 1-stupanjski reduktor s cilindričnim zupčanicima s ravnim zubima.

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

1-stupanjski reduktor – pogonski podaci
1-stupanjski reduktor – pogonski podaci
Ulazni podaci za proračun:
☐ Tip pogonskog stroja
☐ Tip radnog stroja
☐ Ulazna snaga [kW]
☐ Broj okretaja pogonskog stroja [min-1]
☐ Prijenosni omjer
Materijal zupčanika i vratila
Minimalna potrebna trajnost ležaja [h]
Konstrukcijske vježbe iz kolegija KONSTRUKCIJE 11

1-stupanjski reduktor – proračunski dio

Uvedeno pojednostavljenje:

- ☐ Zanemaruju se sljedeći dijelovi proračuna:
 - kontrolni proračun
 - izbor ulja za podmazivanje
 - toplinski proračun
 - određivanje stupnja korisnosti

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

- U prvom koraku primjenom projektnog proračuna određujemo osnovne dimenzije reduktora-zupčanika
- ☐ S obzirom da se koriste brojna pojednostavljenja i pretpostavke, proračun je orjentacijskog karaktera.
- ☐ Nakon usvajanja osnovnih dimenzija primjenom projektnog proračuna, nužan je kontrolni proračun kojim kontroliramo:
 - nosivost boka zuba
 - sigurnost na pitting (površinski zamor)
 - nosivost korijena zuba

OVAJ DIO PRORAČUNA ZANEMARUJEMO!

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

Proračun dimenzija zupčanika

☐ Na temelju poznatih pogonskih podataka primjenom sljedeće formule određujemo približni diobeni promjer pogonskog zupčanika.

$$d_{1}^{'} \geq 4045 \cdot \sqrt[3]{\frac{P_{1}}{\Psi_{b} \cdot n_{1}} \cdot \frac{i_{z} + 1}{i_{z}} \cdot K_{A} \cdot K_{V} \cdot K_{H\alpha} \cdot K_{H\beta} \cdot \left(\frac{S_{H \min}}{\sigma_{H \lim}}\right)^{2}}$$

 Ψ_{k} -omjer širine zupčanika i diobenog promjera

- -ovisi o načinu uležištenja vratila zupčanika
- -ovisi o materijalu zupčanika (toplinska obrada)
- -u rasponu 0.2 1.6
- -za projektni zadatak uzeti Ψ_b = 1

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

☐ Na temelju poznatih pogonskih podataka primjenom sljedeće formule određujemo približni diobeni promjer pogonskog zupčanika.

$$d_{_{1}}^{'} \geq 4045 \cdot \sqrt[3]{\frac{P_{_{1}}}{\Psi_{_{b}} \cdot n_{_{1}}} \cdot \frac{i_{_{z}} + 1}{i_{_{z}}} \cdot K_{_{A}} \cdot K_{_{V}} \cdot K_{_{H\alpha}} \cdot K_{_{H\beta}} \cdot \left(\frac{S_{_{H \min}}}{\sigma_{_{H \lim}}}\right)^{2}}$$

P1 – snaga pogonskog stroja [kW]

n1 – broj okretaja pogonskog stroja [s-1]

iz – prijenosni omjer

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

17

Proračun dimenzija zupčanika

□ Na temelju poznatih pogonskih podataka primjenom sljedeće formule određujemo približni diobeni promjer pogonskog zupčanika.

$$d_{1}^{'} \geq 4045 \cdot \sqrt[3]{\frac{P_{1}}{\Psi_{b} \cdot n_{1}} \cdot \frac{i_{z} + 1}{i_{z}} \cdot K_{A} \cdot K_{V} \cdot K_{H\alpha} \cdot K_{H\beta} \cdot \left(\frac{S_{H \min}}{\sigma_{H \lim}}\right)^{2}}$$

KA - faktor primjene

- ovisi o kombinaciji pogonskog i radnog stroja
- očitati iz priložene tablice

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

☐ Na temelju poznatih pogonskih podataka primjenom sljedeće formule određujemo približni diobeni promjer pogonskog zupčanika.

$$\boxed{d_{1}^{'} \geq 4045 \cdot \sqrt[3]{\frac{P_{1}}{\Psi_{b} \cdot n_{1}} \cdot \frac{i_{z} + 1}{i_{z}} \cdot K_{A} \cdot K_{V} \cdot K_{H\alpha} \cdot K_{H\beta} \cdot \left(\frac{S_{H \min}}{\sigma_{H \lim}}\right)^{2}}$$

Kv - faktor dodatnih dinamičkih opterećenja

- ovisi o kvaliteti ozubljenja
- ovisi o obodnoj brzini i vibracijama
- u fazi dimenzioniranja može se uzeti Kv=1

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

19

Proračun dimenzija zupčanika

☐ Na temelju poznatih pogonskih podataka primjenom sljedeće formule određujemo približni diobeni promjer pogonskog zupčanika.

$$d_{1}^{'} \geq 4045 \cdot \sqrt[3]{\frac{P_{1}}{\Psi_{b} \cdot n_{1}} \cdot \frac{i_{z} + 1}{i_{z}} \cdot K_{A} \cdot K_{V} \cdot K_{H\alpha} \cdot K_{H\beta} \cdot \left(\frac{S_{H \min}}{\sigma_{H \lim}}\right)^{2}}$$

 $K_{H\alpha}$ - faktor raspodjele opterećenja na zube koji su istovremeno u zahvatu

- za projektni proračun uzeti $K_{H\alpha}$ =1

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

☐ Na temelju poznatih pogonskih podataka primjenom sljedeće formule određujemo približni diobeni promjer pogonskog zupčanika.

$$\boxed{d_{1}^{'} \geq 4045 \cdot \sqrt[3]{\frac{P_{1}}{\Psi_{b} \cdot n_{1}} \cdot \frac{i_{z} + 1}{i_{z}} \cdot K_{A} \cdot K_{V} \cdot K_{H\alpha} \cdot K_{H\beta} \cdot \left(\frac{S_{H \min}}{\sigma_{H \lim}}\right)^{2}}$$

 $K_{\rm H\beta}$ - faktor raspodijele opterećenja uzduž boka zuba

- zbog netočnosti izrade i deformacije zubi nisu potpuno paralelni i nisu jednako opterećeni po dužini
- ovisi o vrsti uležištenja i materijalu zupčanika
- $-K_{H\beta} = 1 \text{približno}! (u \, \text{rasponu od } 1.01-1.48)$

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

21

Proračun dimenzija zupčanika

☐ Na temelju poznatih pogonskih podataka primjenom sljedeće formule određujemo približni diobeni promjer pogonskog zupčanika.

$$d_{_{1}}^{'} \geq 4045 \cdot \sqrt[3]{\frac{P_{_{1}}}{\Psi_{_{b}} \cdot n_{_{1}}} \cdot \frac{i_{_{z}} + 1}{i_{_{z}}} \cdot K_{_{A}} \cdot K_{_{V}} \cdot K_{_{H\alpha}} \cdot K_{_{H\beta}} \cdot \left(\frac{S_{_{H \min}}}{\sigma_{_{H \lim}}}\right)^{2}}$$

S_{H min} - stupanj sigurnosti na površinski zamor (pitting)

- u rasponu od 1 1.5
- za projektni proračun uzeti S_{H min} = 1.3

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

☐ Na temelju poznatih pogonskih podataka primjenom sljedeće formule određujemo približni diobeni promjer pogonskog zupčanika.

$$\boxed{d_{_{1}}^{'} \geq 4045 \cdot \sqrt[3]{\frac{P_{_{1}}}{\Psi_{_{b}} \cdot n_{_{1}}} \cdot \frac{i_{_{z}}+1}{i_{_{z}}} \cdot K_{_{A}} \cdot K_{_{V}} \cdot K_{_{H\alpha}} \cdot K_{_{H\beta}} \cdot \left(\frac{S_{_{H \min}}}{\sigma_{_{H \lim}}}\right)^{2}}$$

 $\sigma_{
m H~lim}$ - trajna dinamička čvrstoča boka zuba na kontaktna naprezanja

- očitati iz tablice za definirani materijal

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

☐ Kutna brzina pogonskog zupčanika :

$$\omega_1 = \frac{2 \cdot \pi \cdot n_1}{60} \qquad n_1 \text{ (min}^{-1}), \ \omega \text{ (s}^{-1}\text{)}$$

☐ Obodna brzina pogonskog zupčanika :

$$v_1 = \frac{d_1}{2} \cdot \omega_1$$
 d'_1 (m), v'_1 (ms⁻¹)

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

25

Proračun dimenzija zupčanika

- ☐ Izbor broja zubi pogonskog zupčanika :
 - ovisi o prijenosnom omjeru, materijalu zupčanika, vrsti toplinske obrade, te o brzini vrtnje.
 - odabrati prema vrijednosti obodne brzine :

(m/s)	<i>Z</i> ₁
< 1	1720
15	1822
> 5	2025

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

☐ Broj zubi gonjenog zupčanika :

$$z_2 = z_1 \cdot i_z$$

☐ Prijenosni omjer:

$$i_{stv} = \frac{z_2}{z_1}$$

- ☐ Normalni modul:
 - modul je osnovna mjera veličine zuba
 - standardiziran je zbog proračuna i izrade zupčanika (manji broj alata)

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

27

Proračun dimenzija zupčanika

☐ Normalni modul :

$$m'_{n} = \frac{d'_{1}}{z_{1}}$$
 m'_{n} (mm), d'_{1} (mm)

- zaokružiti na standardnu vrijednost modula (Podaci u tablici)
- **□** Nagib zuba β:
 - za ravne zube β=0°
- ☐ Razmak osi zupčanika :

$$a = \frac{m_n}{2 \cdot \cos \beta} (z_1 + z_2) \qquad m_n \text{ (mm), } a \text{ (mm)}$$

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

☐ Stvarni diobeni promjer pogonskog zupčanika :

$$d_1 = m_n \cdot z_1$$

☐ Širina gonjenog zupčanika :

$$b_2 = \Psi_b \cdot d_1$$
 b2 (mm), d1 (mm)

$$\psi_{\rm b} \cong 0,8...1,2$$

- dobivenu vrijednost zaokružiti na cijeli broj
- ☐ Širina pogonskog zupčanika :

$$b_1 = b_2 + 5 \text{ mm}$$

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

20

Proračun dimenzija zupčanika

☐ Stvarni diobeni promjer gonjenog zupčanika :

$$d_2 = m_{\rm n} \cdot z_2$$

- \square Zahvatni kut α_n :
 - standardizirano. Odabrati $\alpha n = 20^{\circ}$
- ☐ Radijalna zračnost :

$$c=c^*\cdot m_n$$

- c*=0.25 – koeficijent radijalne zračnosti. Standardizirano.

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

☐ Visina korijena zuba :

$$h_f = m + c \ [mm]$$

☐ Promjeri preko korijena zuba zupčanika :

$$d_{\rm f1} = d_1 - 2 \cdot h_{\rm f}$$
 $d_{\rm f2} = d_2 - 2 \cdot h_{\rm f}$

☐ Promjeri preko glave zuba zupčanika :

$$d_{a1} = 2 \cdot a - d_{f2} - 2 \cdot c$$
 $d_{a2} = 2 \cdot a - d_{f1} - 2 \cdot c$

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

1-stupanjski reduktor – proračun Projektni zadatak Proračunski Grafički dio dio Proračun Proračun Montažni Radionički steznog valjnih zupčanika vratila nacrt nacrti ležajeva spoja Dimenzije zupčanika Sile i momenti Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

Proračun sila i momenata na zupčanicima

☐ Okretni moment na ulaznom vratilu :

$$T_1 = \frac{P_1}{\omega_1}$$
 T_1 (Nm), P_1 (W), ω_1 (s⁻¹)

☐ Izlazna snaga:

$$P_2 = P_1 \cdot \eta$$
 P_1 (W), P_2 (W)

$$\eta = \eta_Z \cdot \eta_L \cdot \eta_B$$
 gdje je:

 η – ukupni stupanj iskoristivosti

 η_z – stupanj iskoristivosti ozubljenja (\approx 0,99)

 $\eta_{\rm L}$ – stupanj iskoristivosti ležajeva (\approx 0,98)

 $\eta_{\rm B}$ – stupanj iskoristivosti na brtvama i rasprskivanja ulja (\approx 0,98)

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

22

Proračun sila i momenata na zupčanicima

☐ Izlazna brzina vrtnje :

$$n_2 = \frac{n_1}{i_{stv}}$$
 n_1 , n_2 (min⁻¹)

☐ Izlazna kutna brzina :

$$\omega_2 = \frac{\omega_1}{i_{stv}} \qquad \omega_1, \ \omega_2 \ (s^{-1})$$

☐ Okretni moment na izlaznom vratilu :

$$T_2 = \frac{P_2}{\omega_2}$$
 T_2 (Nm), P_2 (W), ω_1 (s⁻¹)

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

Proračun sila i momenata na zupčanicima

☐ Obodna sila na zupčanicima :

$$F_t = \frac{2 \cdot T_1}{d_1}$$
 F_t (N), T_1 (Nm), d_1 (m)

☐ Radijalna sila na zupčanicima :

$$F_r = F_t \cdot \tan \alpha$$
 F_t , F_r (N)

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

Proračun vratila

- ☐ Ulazni podaci :
 - okretni moment na ulaznom vratilu T1 [Nm]
 - okretni moment na izlaznom vratilu T2 [Nm]
 - obodna sila na zupčanicima Ft [N]
 - radijalna sila na zupčanicima Fr [N]
- ☐ Predhodni ulazni podaci se dobivaju na temelju proračuna dimenzija zupčanika.
- ☐ 1. Korak Približni (preliminarni) proračun vratila
 - 2. Korak Oblikovanje vratila
 - 3. Korak Kontrolni proračun

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

3

Proračun vratila – preliminarni proračun

- ☐ S obzirom da vratila prenose okretni (torzijski) moment proizašao iz prenošenja snage, dovoljno je u preliminarnom proračunu odrediti minimalni promjer vratila u odnosu na naprezanje na torziju.
- ☐ Kako se u prvom koraku zanemaruju naprezanja uzrokovana momentom savijanja, mora se računati sa velikim faktorom sigurnosti. Osim toga, nije poznat konačan oblik vratila (pov. obrada, koncentracija naprezanja, itd.).
- ☐ Vratila su dinamički opterećeni elementi. Dopušteno naprezanje se određuje u odnosu na dinamičku čvrstoću materijala.

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

Proračun vratila – preliminarni proračun

☐ Ekvivalentni okretni (torzijski) moment :

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

39

Proračun vratila – preliminarni proračun

☐ Najmanji promjer vratila :

$$d_{\rm pr} \ge \sqrt[3]{\frac{16 \cdot T_{\rm eq}}{\pi \cdot \tau_{\rm tdop}}}$$
 (mm)

☐ Dopušteno naprezanje na torziju :

$$\tau_{\rm tdop} = \frac{R_{\rm dt0}}{S}$$

- $R_{\rm dt0}$ - trajna dinamička čvrstoća na torziju za ishodišno opterećenje (iz tablice)

- S - faktor sigurnosti (10-15)

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

Proračun vratila – preliminarni proračun

- \square Prema normi DIN 748 izabrati prvi veći standardni promjer rukavca (vratila) d_V [mm].
- ☐ U odnosu na promjer rukavca izvršiti dimenzioniranje vratila.

Promjer na poziciji ležaja : $d_L = d_V + 5$ [mm]

Prema potrebi, promjer na poziciji ležaja d_L se prilagođava na način da odgovara standardnim dimenzijama valjnih ležajeva (unutarnji promjer ležaja d). Promjer na poziciji između ležaja i zupčanika d_a definiran je veličinom odabranog valjnog ležaja. (prema podacima iz kataloga proizvođača ležajeva, npr. www.skf.com).

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

Proračun vratila – preliminarni proračun

- lacktriangle Prema normi DIN 748 za odabrani promjer rukavca d_V definirati duljinu rukavca l_r .
- \square Prema normi DIN 6885 odabrati uložno pero (oblik A). Duljina uložnog pera je određena duljinom rukavca l_r .

Npr.
$$l_P = l_r - 10$$
 [mm]

- ☐ Sve ostale dimenzije koje nisu dobivene proračunom su određene prema predlošku dobivenom uz projektni zadatak.
- ☐ Prethodno prikazanim postupkom napraviti preliminarni proračun za pogonsko i gonjeno vratilo.

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

43

Proračun vratila – preliminarni proračun

God gonjenog vratila, u odnosu na promjer na poziciji ležaja d_L i promjera d_a odrediti promjer cilindrične stezne površine D_F .

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

Proračun vratila – kontrolni proračun

- ☐ Na već izvedenom i potpuno oblikovanom elementu (osovini/vratilu) izrađenom iz usvojenog materijala izvode se dvije vrste kontrola :
 - Kontrola na plastičnu deformaciju
 - Kontrola na mogući lom (zamor materijala)
- ☐ U okviru projektnog zadatka radi se samo kontrola na plastičnu deformaciju prema normi DIN 743.

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

45

Proračun vratila - kontrolni proračun

- \square Kontrolom na plastičnu deformaciju računa se koliko je puta granica tečenja R_e ili $R_{P0.2}$ veća od najvećeg naprezanja.
- \Box Najveća naprezanja se javljaju kao posljedica najvećih opterećenja $M_{\it S\,max}$, $F_{\it a\,max}$, $T_{\it max}$.
- ☐ Faktor sigurnosti protiv plastične deformacije :

$$S_{P} = \frac{1}{\sqrt{\left(\frac{\sigma_{\text{s max}}}{R_{\text{es}}} + \frac{\sigma_{\text{v,tl max}}}{R_{\text{e}}}\right)^{2} + \left(\frac{\tau_{\text{t max}}}{R_{\text{et}}}\right)^{2}}}$$

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

Proračun vratila – kontrolni proračun

 $\hfill \square$ Faktor sigurnosti protiv plastične deformacije:

 $S_P \ge 1.2$

☐ Stvarna granica tečenja :

 $R_{e} = K_{t} \cdot \boxed{R_{eN}} [N/mm^{2}]$ $R_{es} = K_{t} \cdot \boxed{R_{esN}} [N/mm^{2}]$ $R_{et} = K_{t} \cdot \boxed{R_{etN}} [N/mm^{2}]$

Nazivne vrijednosti granice tečenja (očitati iz priložene tablice).

 \square Tehnološki faktor K_i uzima u obzir da se s porastom promjera vratila smanjuje granica tečenja zbog nehomogenosti materijala. Za odabrani materijal vratila vrijednost K_i očitati iz priloženog dijagrama.

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

47

<u>Proračun vratila – kontrolni proračun</u>

☐ Nazivne vrijednosti granice tečenja:

Namjena	OZNAKA ČELIKA				Karakteristike materijala pri statičkom opterećenju N/mm² (min.)				Dinamička čvrstoća				N/mm²	
					Vlačna čvrstoća	Granica plastičnosti (tečenja)			10.1 .1.1		Clll-		Torzija	
				Vlak-tlak		Savijanje	Torzija	Vlak - tlak		Savijanje		Torzija		
	ISO	DIN	HRN	W. Nr.	RmN	Res Regard	ResN	RetN	Rain	Roon	Resin	Reson	ReteIN	Runn
Konstr. čelik, topto valjan, DIN EN 10025	S235JR	St 37-2	Č0370	1.0037	360	235	280	160	140	225	180	270	105	160
	S275JR	St 44-2	Č0451	1.0044	430	275	330	190	170	270	215	320	125	190
	S355JR	St 52-2	Č0561	1.0045	510	355	425	245	205	325	255	380	150	245
	E295	St 50-2	Č0545	1.0050	490	295	355	205	195	295	245	355	145	205
	E335	St 60-2	Č0645	1,0060	590	335	400	230	235	335	290	400	180	230
	E360	St 70-2	C0745	1.0070	690	360	430	250	275	360	345	430	205	250
	S275N	StE 285	~ČRO280	1.0490	370	275	330	190	150	240	185	275	110	185
	S355N A &	StE 355	~ČRO355	1.0545	470	355	425	245	190	305	235	350	140	24
	\$355N E ALE \$420N	StE 420	~ČRO420	1.8902	520	420	505	290	210	335	260	390	155	265
	S460N 0 N	StE 460	~ČRO460	1.8901	550	460	550	320	220	350	275	410	165	280
Čelik za poboljšanje, u pob stanju (+QT), DIN EN 10083-1	C22E	Ck 22	Č1331	1.1151	500	340	410	235	200	320	250	375	150	235
	C35E	Ck 35	Č1431	1.1181	630	430	515	300	250	400	315	470	190	300
	C45E	Ck 45	Č1531	1.1191	700	490	590	340	280	450	350	525	210	340
	C60E	Ck 60	Č1731	1.1221	850	580	695	400	340	545	425	635	250	400
	34Cr4	34Cr4	Č4130	1.7033	900	700	840	485	360	575	450	675	270	46
	41Cr4	41Cr4	Č4131	1.7035	1000	800	960	550	400	640	500	750	300	510
	25CrMo4	25CrMo4	Č4730	1.7218	900	700	840	485	360	575	450	675	270	46
	34CrMo4	34CrMo4	Č4731	1.7220	1000	800	960	555	400	640	500	750	300	510
	42CrMo4	42CrMo4	Č4732	1.7225	1100	900	1080	625	440	705	550	825	330	56
	30CrNiMo8	30CrNiMo8	C5432	1.6580	1250	1050	1260	720	500	800	625	935	375	633
	51CrV4	51CrV4	-60	1.8159	1100	900	1080	625	440	705	550	825	330	56
Čelik za cem. DIN EN 10084	C10	C10	Č1120	1.0301	650	380	455	265	260	380	325	455	195	26
	C15	C15	Č1220	1.0401	750	430	515	300	300	430	375	515	225	30
	17Cr3	17Cr3	Č4120	1.7016	1050	750	900	520	420	670	525	785	315	520
	16MnCr5	16MnCr5	C4320	1.7131	900	630	755	435	360	575	450	675	270	43:
	15CrNi6	15CrNi6	C5420	1,5919	1000	680	815	470	400	640	500	750	300	47

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

<u>Proračun vratila – kontrolni proračun</u>

☐ Tehnološki faktor Kt:

Slika 1 K, - tehnološki faktor za čelik

* Kod čelika za nitriranje, poboljšanje i cementaciju je faktor K_t za čvrstoću i granicu plastičnosti jednak!

Za čelik za cementaciju koji sadrži Cr-Ni-Mo uzeti vrijednost faktora K_t za čelik za poboljšanje (kriv. 3).

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

4

Proračun vratila - kontrolni proračun

☐ Maksimalna opterećenja :

$$T_{\text{max}} = 3 \cdot T_N$$

$$M_{s \max} = 3 \cdot M_{sN}$$

☐ Maksimalna naprezanja

$$\sigma_{s\,\text{max}} = \frac{M_{s\,\text{max}}}{W} \, [N/mm^2]$$

$$\tau_{t \max} = \frac{T_{\max}}{W_t} [N/mm^2]$$

☐ Kontrola na plastičnu deformaciju se radi u procjenjenim kritičnim presjecima.

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

Proračun cilindričnog steznog spoja

☐ Dodirna površina:

$$A_{\rm F} = D_{\rm F} \cdot \pi \cdot l_{\rm F}$$
 $D_{\rm F}$ [mm], $l_{\rm F}$ [mm]

☐ Potrebna sila trenja:

$$F_{\rm F} = \mathbf{v} \cdot F_{\rm t}$$
 gdje je:

v- minimalni faktor sigurnosti za dinamičko ishodišno opterećenje (v= 1,8)

 $F_{\rm t}$ – obodna sila na polumjeru $D_{\rm F}$ [m] zbog djelovanja okretnog momenta $T_{\rm 2}$ [Nm]

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

Proračun cilindričnog steznog spoja

☐ Potrebna normalna sila:

 μ – faktor trenja za poprečni cilindrični stezni spoj (vrijednost se očitava iz tablice 9.11 – Križan, B.: Osnove proračuna i oblikovanja konstrukcijskih elemenata, Školska knjiga, Zagreb, 2008.)

☐ Minimalni potrebni pritisak:

 $p_{min} = \frac{F_N}{A_f}$ F_N [N], Af [mm²], p_{min} [N/mm²]

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

Proračun cilindričnog steznog spoja

☐ Minimalni potrebni prijeklop:

$$P_{\text{st}} = p_{\min} \cdot D_F \cdot (K_V + K_U)$$

$$K_{V} = \frac{(m_{V} + 1) + (m_{V} - 1) \cdot Q_{V}^{2}}{m_{V} \cdot E_{V} \cdot (1 - Q_{V}^{2})} \qquad K_{U} = \frac{m_{U} - 1}{m_{U} \cdot E_{U}} \qquad m = \frac{1}{V} \qquad Q_{V} = \frac{D_{F}}{D_{V}}$$

$$K_U = \frac{m_U - 1}{m_U \cdot E_U}$$

$$m=\frac{1}{\nu}$$

$$Q_V = \frac{D_F}{D_V}$$

gdje je: $\, \nu$ – Poisson-ov broj $(\nu = 0.3 \text{ čelik})$

E – modul elastičnosti

 $(\nu = 0.25 \text{ SL})$

 $(E = 2.1 \cdot 10^5 \text{ N/mm}^2 \text{ za čelik})$ $(E = 1 \cdot 10^5 \text{ N/mm}^2 \text{ za SL})$

 $P_{\rm st}$ [mm], $p_{\rm min}$ [N/mm²], $D_{\rm F}$, $D_{\rm V}$ [mm], $K_{\rm U}$, $K_{\rm V}$ [mm²/N], E [N/mm²], $Q_{\rm V}$, m (-)

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

Proračun cilindričnog steznog spoja

☐ Stvarni minimalni potrebni prijeklop (zbog zaglađivanja površine):

$$P_{\min} = P_{st} + 3.2 \cdot (R_{a \text{ os}} + R_{a \text{ gl}})$$

gdje je:

- $R_{\rm a}$ [mm] srednje aritmetičko odstupanje profila hrapavosti (iz tablice 3.44 za $R_{\rm a}$ odrediti prema kvaliteti obrade površine N7) knjiga B. Križan
- ☐ Maksimalni dopušteni pritisak na steznoj površini:

$$p_{\text{max}} \le \frac{\sigma_{dop} \cdot (1 - Q_V^2)}{\sqrt{3 + Q_V^4}}$$

$$\sigma_{dop} = \frac{R_e}{1,1...1,3}$$

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

57

Proračun cilindričnog steznog spoja

☐ Stvarni maksimalni dopušteni prijeklop:

$$P_{\max} = p_{\max} \cdot D_{F} \cdot (K_{V} + K_{U})$$

☐ Odabir čvrstog dosjeda:

Dosjed treba odabrati tako da najveći i najmanji prijeklop za promatrani slučaj budu između P_{\min} i P_{\max} .

Najčešće primjenjivani čvrsti dosjedi: H7/s6, H7/t6, H7/u6, H7/x6, H7/z6 H8/u8, H8/x8

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

Proračun valjnih ležajeva

- □ Proračunom trajnosti valjnih ležajeva se provjerava da li odabrani ležajevi (u fazi proračuna-dimenzioniranja vratila) zadovoljavaju minimalnu potrebnu trajnost koja je definiran u projektnom zadatku. Pri tome bi bilo dobro u fazi proračuna-dimenzioniranja vratila uvijek u prvom koraku za definirani promjer d_L odabrati ležaj niže serije (manji), a tek kasnije ako se pokaže da odabrani ležaj ne zadovoljava potrebnu trajnost odabrati ležaj neke više serije (veći). Ponekad će biti potrebno izabrati i ležaj većeg unutarnjeg promjera d.
- ☐ Tip ležajeva za pogonsko i gonjeno vratilo je definiran u projektnom zadatku (predložak).

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

6

Proračun valjnih ležajeva

☐ Ukupna radijalna sila koja djeluje na pogonsko i na gonjeno vratilo:

$$F = \sqrt{F_t^2 + F_r^2} \qquad F_t [N], F_r [N]$$

☐ Reakcije u osloncima (sile na ležajeve) za pogonsko vratilo:

$$F_{A1}=F_{B1}=\frac{F}{2}$$

☐ Reakcije u osloncima (sile na ležajeve) za gonjeno vratilo:

$$F_{A2} = F_{B2} = \frac{F}{2}$$

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

Proračun valjnih ležajeva

- ☐ Na sve ležajeve djeluje jednaka radijalna sila s obzirom da ukupna radijalna sila djeluje točno na sredini pogonskog i gonjenog vratila.
- lacksquare Dinamička nosivost ležajeva \mathcal{C}_1 i \mathcal{C}_2 se očitava iz kataloga proizvođača ležajeva za prethodno izabrane ležajeve u fazi proračuna-dimenzioniranja vratila.
- ☐ Trajnost ležaja:

$$L_{10h} = \left(\frac{C}{P}\right)^p \cdot \frac{10^6}{60 \cdot n} \geq L_{hmin} \qquad \begin{array}{c} P - \text{optere\'cenje le\'zaja (kN)} \\ n - \text{brzina vrtnje vratila odn. le\'zaja (min-¹)} \end{array}$$

C – dinamička nosivost (kN)

p = 3 – za kuglične ležajeve

p = 10/3 – za ostale (valjne) ležajeve

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

Izrada nacrta

- U nastavku su dani primjeri nacrta aktivnog dijela reduktora. Nacrti nisu u potpunosti točni, te služe isključivo studentima kao orijentir u radu na projektom zadatku.
- ☐ Svi nacrti se izrađuju prema podacima dobivenim prethodno prikazanim proračunom. Sve dimenzije koje nisu definirane proračunom određene su prema predlošku dobivenom uz projektni zadatak.
- □ Nacrti se mogu raditi ručno ili uz pomoć računala primjenom određenog programskog sustava (npr. Autodesk AutoCAD, SolidWorks, Autodesk Inventor, itd.).

Konstrukcijske vježbe iz kolegija KONSTRUKCIJE

