	Topic:
	BY ADAY MITTAL: 9891067390
	Chapter PMI
	- Class No: 2 +
	Typi2 Divisibility.
•	
Qn+ 1	By PMI show that
	By PMI show that 1029-1 +1 is divsible munhple by 11
Si	lu p(n): 102n-1 +1 is div by 11
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	P(1): 10+1 = 11 which a div by 11
	: P(1) og true
	lu p(k) between .
	$P(k) = (0^{2k-1}) + 1 = 11m (m \in Z)$
	Topm P(1+1) Is hue
	P(K+1)-102(K+1)-1
	= 10 ^{2KT} +1
	7/0/10 +1
	= (11m-) 100 + 1 h from p(k) 4
	$=$ $\frac{1}{2}$
	= 11(100 m - 99) $= 11(100 m - 9)$
	:- P(x+1) ZI Tuo
	:- By pMI. p(n) & bu for all nEN
	Any
	(cu accrive)
	CLASSTIME"

	Topic:
On 2	+ By PMI, Show that 32n when divided by 8, Mu lemainder is always 1.
	by 8, the lemainder is always 1.
5712	11 D'nie 2n when divided by 8 the elementer
	let PM: 32 when divided by 8, the limainde
	P(1): 3 = 9 = 8 + 1 et chay p(1)
	let P(k) be fine
	$p(k): (3^{2k}) = 8m + 1 (m + z)$
	(C) = 0 m + 1
	$P(k+1)=\frac{3^{2k+2}}{3^{2k+2}}$
	$(3^{2k})_3^2$
	- (om 11) a
•	= (8m+1)9
	=72m+9
	= 72m + 8 + 1.
	cleary when divide by 8, it leaves the
	: p(k+1) es huy
	Am
	3 M 3 M
OM. 3	* By pms, Show that x2n-y2n is divisible by x1+y
501)	ly p(n)= x2n-y2n a div by (x+y)
	$p(1): y^2 - y^2$
	= (x+y)(x-y) Which is div by (x+y)
	clear e(1) a hu
	lut P(b) by frue
MARKET CONTRACTOR	(CLASSTILLE')

Topic:	
P(k)- (x2k) = (x+y)m (m+z)	
$P(k+1)= \chi^{2k+2} - \chi^{2k+2}$	
$(2k)_{2k}$ $2k$ $2k$ 2	
$= \left((\pi + y) m + y^{2k} \right) \pi^2 - y^{2k} \cdot y^2$	
$= (x+y)mx^2 + y^2k \cdot x^2 - y^2k \cdot y^2$	_
$= (\chi + \chi) m \chi^{2} + \chi^{2} k (\chi^{2} - \chi^{2})$	_
= (xty)mx2 +y2k (x+y)(x-y)	
$= (\chi + \chi) \left[m\chi^2 + \chi^2 k \cdot (\chi - \chi) \right]$	
Clear it endir by (444)	
:- P(1+1) is hue	
: P(n) · ·	_

	By pmil PMI show hat
WA 9 -	by point frit mai
	10" + 3.4"+5 is divisible by 9
CA	let P(n): 10n + 3.4n+2+5 a div by 9
-	$P(1)=10+3.4^3+5$
	=10+192+5
	= 207 = 9x23 which es div by 9
	- P(1) et fue
	lu p(1) he here
	$P(k_k (10^k) + 3.4^{k+2} + 5 = 9m (me_2)$
	P(k+1)=/ 10k+1 + 3.4k+3+5
	= (10)/0 + 3.47.4 + 5
	$= (9m - 3.4^{1+2} - 5)10 + 12.4^{1+2} + 5$
	= 90m - 30.4 K+2 -50 + 12.4 K+2 +5
	= 90m -45 + 4k+2/12-3c)
	= 90m - 45 - 18.4 kf 2
	=9/lom-5-9.4kf2) cehier sodwbyg
	: p(k+1) or hue
	CLASSTIME'

	Topic:
OH. 6	& Show m(n+1)(n+5) a myntpu y 3 for all nEN
29	P(n): n(n+1) (n+5) a muntpy y 3
	P(1): 1(1+1)(1+5)
	- 12 which a multion of 3
	- 12 which og mytopy of 3 i. P(1) es true
	$\frac{P(k)}{ x ^{2}} : \frac{k(k+1)(k+r)}{ x ^{2}+5k=3m} =(m+2)$
	((+1); (K+1)(K+2)(K+6)
	$(k+1)(k^2+8k+12)$
	== (k3)+8k2+12k+k2+8k+12
	= $(2m)$ (12) (4) (4) (4) (4) (4) (4) (4)
	= (3m-6k²-5k) +8k² +12k +k²+8k+12
•	= 3m +3k2 +15k +12
-	$=3\left(m+k^2+5k+4\right)$
	Cehira & div by 3
	P(K+1) og hug
0.1	G 3
On. 7	Show non a div by of for each natural
502	P(n)= n3-n ut div by \$, n= 2.
	P(2): 8-2 = 6 when or der by 6
	P(2): 8-2 = 6 where er der by 6 : P(1) of here
	P(k)- (13)-1
CALL THE	

	Topic:
	$P(k+1): (k+1)^3 - (k+1)$
	$= (k^3) + 1 + 3k^2 + 3k - k - 1$
	1173K 75K T K T
	= 6m+k+1+3k2+gk-1
	= 6m + 3k2+3k
	= 6m + 3(k2+k) { k2+k-is alweys div by 24
	= 6m + 3(2p) for all k= 24
	= 6(m+b)
	= Which or dirty 6
	: P(ki) of his
On8	7 P(n): 2.42n+) +33n+1 Is divisby by 1
	Then And value of 1
<u> </u>	<u>/</u>
>017	$P(1): 2.4^{3} + 3^{4}$
	= 128 + 81 = 209
2	$2 \cdot 1(2) = 2 \cdot 4 \cdot 4 \cdot 3^{+}$
	=2x $202y + 2187$
	= 2048 + 2187
	= 4285
	(h-cF)4 209 & 4285 19 11
	mair P(n) et div my 11
	pant (1=11) An
	CLASSTIME'

	Topic:	-
O M	7 7 P(n): 49 +16 + K a divisse by 64	
	for all ne N, then And the least	
	-ve integral value y k	
Soli	P(n): 49" + 16" + K	
	P(1): 49 + 16 +K	
	P(1) = 65+K	
	: 6x7-6512	
	: least -u Interne value y k=-1	

	Topic :
	TOPIC= PMI
ON)	Jusing pMI snow that 3 -8n-9 a divisible
O42-	show that 41"-14" as murtpu of 27 27
	Maria San Caracteristics and the Caracteristi
Ом 3.	n(n2+5) so divisible by 6 for all nEN
QMY	- Show xn-yn as divisible by x1-y for all nEN
OM 5	- Show that 7 - 2 a div by 5 for all new
	Show n3-7n+3 a div by 3 for all new
QNS 7	* Show 3.52n+1 + 23n+1 a div. by 17 for owner
On. 8-	Show that n3+3n2+5n+3 a dru by 3 for all
01.9-	Show that the sum of the Cubes of three Consecutive natural numbers is division by 9 Hint take P(n): n3+ (n+1)3 + (n+2)3 as div by 9
	Consecutive natural numbers is diviste by q
	Tinh take P(n): n2+ (n+1)2 + (n+2)2 is div by 9
O4 10-	Show $5^{2n+2} - 24n - 25$ or divisby by 576
	for all new
A	+ Show 11n+2 +122n+) a div by 133 for
() M []	show II + 12 a div by 133 for all non