

# Predicción de quiebra de empresas mediante técnicas de Machine Learning

Autor:

Ing. Gaspar Acevedo Zain

Director:

Título y Nombre del director (pertenencia)

# ${\rm \acute{I}ndice}$

| 1. Descripción técnica-conceptual del proyecto a realizar. | • | • | • | <br>• | • | • | • | • | • | • | •   | 5  |
|------------------------------------------------------------|---|---|---|-------|---|---|---|---|---|---|-----|----|
| 2. Identificación y análisis de los interesados            |   |   |   |       |   |   |   |   |   |   |     | 6  |
| 3. Propósito del proyecto                                  |   |   |   |       |   |   |   |   |   |   |     | 6  |
| 4. Alcance del proyecto                                    |   |   |   |       |   |   |   |   |   |   |     | 6  |
| 5. Supuestos del proyecto                                  |   |   |   |       |   |   |   |   |   |   |     | 7  |
| 6. Product Backlog                                         |   |   |   |       |   |   |   | • |   |   |     | 7  |
| 7. Criterios de aceptación de historias de usuario         |   |   |   |       |   |   |   |   |   |   |     | 11 |
| 8. Fases de CRISP-DM                                       |   |   |   |       |   |   |   |   |   |   |     | 12 |
| 9. Desglose del trabajo en tareas                          |   |   |   |       | • |   |   |   |   |   |     | 13 |
| 10. Planificación de Sprints                               |   |   |   |       |   |   |   |   |   |   |     | 20 |
| 11. Diagrama de Gantt (sprints)                            |   |   |   |       | • |   |   |   |   |   | . : | 33 |
| 12. Normativa y cumplimiento de datos (gobernanza)         |   |   |   |       |   |   |   |   |   |   | . : | 38 |
| 13. Gestión de riesgos                                     |   |   |   |       |   |   |   | • |   |   | . ; | 38 |
| 14. Sprint Review                                          |   |   |   |       |   |   |   |   |   |   | . ; | 39 |
| 15. Sprint Retrospective                                   |   |   |   | <br>_ |   | _ |   | _ |   | _ |     | 40 |



## Registros de cambios

| Revisión | Detalles de los cambios realizados      | Fecha               |
|----------|-----------------------------------------|---------------------|
| 0        | Creación del documento                  | 24 de junio de 2025 |
| 1        | Se completa hasta el punto 5 inclusive  | 6 de Julio de 2025  |
| 2        | Se completa hasta el punto 9 inclusive  | 15 de Julio de 2025 |
| 3        | Se completa hasta el punto 12 inclusive | 29 de Julio de 2025 |



## Acta de constitución del proyecto

Buenos Aires, 24 de junio de 2025

Por medio de la presente se acuerda con el Ing. Gaspar Acevedo Zain que su Trabajo Final de la Carrera de Especialización en Inteligencia Artificial se titulará "Predicción de quiebra de empresas mediante técnicas de Machine Learning" y consistirá en el desarrollo de una herramienta basada en Machine Learning que permitirá predecir si una empresa puede entrar en quiebra o no. El trabajo tendrá un presupuesto preliminar estimado de 604 horas y un costo estimado de \$XXX, con fecha de inicio el 24 de junio de 2025 y fecha de presentación pública el a definir.

Se adjunta a esta acta la planificación inicial.

Dr. Ing. Ariel Lutenberg Director posgrado FIUBA Nombre del cliente Empresa del cliente

Título y Nombre del director Director del Trabajo Final



## 1. Descripción técnica-conceptual del proyecto a realizar

Este proyecto consiste en un emprendimiento personal cuyo objetivo es utilizar técnicas de aprendizaje de máquina para detectar si una empresa puede entrar en quiebra o no. Este tipo de análisis puede resultar de gran interés y utilidad para distintos actores del mercado financiero, tales como bancos, compañías aseguradoras, fondos de inversión o consultoras especializadas en riesgo crediticio. Por ello, estos se considerarán como potenciales clientes.

Para llevarlo a cabo, se utilizará un dataset publicado por el Taiwan Economic Journal, que contiene información financiera de empresas del mercado de Taiwán entre los años 1999 y 2009. Al ser estos datos públicos, hoy en día existen soluciones que exploran esta temática. Algunas de ellas hacen uso de modelos de machine learning tales como SVM y XGBoost, junto con algunas técnicas de preprocesamiento de datos como Smote y de búsqueda de hiperparámetros como Random Search.

Con el fin de diferenciarse de estas soluciones, se propone implementar el marco de trabajo basado en *MLFlow* definido en la figura 1. Se detalla una serie de etapas cuyas salidas se refinarán durante distintas iteraciones. Esto permitirá a los usuarios finales trabajar en un entorno seguro, robusto, y reproducible.

El proyecto se encuentra en la etapa de planificación. El desarrollo e implementación se realizará en distintas etapas. Se comenzará con un análisis exploratorio de datos, que nos permitirá conocer mejor al dataset en cuestión. Luego, se realizarán iteraciones sobre las siguientes etapas:

- Preprocesamiento de datos: en la primer iteración se implementarán técnicas de tratamiento de nulos y desbalance de clases. En las siguientes iteraciones, se estudiarán técnicas de extracción e ingeniería de features.
- Entrenamiento de modelos: se implementará un modelo distinto en cada iteración. Los modelos a explorar son regresión logística, SVM y XGBoost. También, se explorará la optimización de hiperparámetros mediante búsqueda bayesiana.
- Evaluación y refinamiento: en esta etapa se evaluará al modelo entrenado en la etapa anterior. Se generarán métricas que permitirán compararlo con resultados obtenidos en otras iteraciones.

La innovación de este proyecto radica en el uso del marco de trabajo definido en la figura 1. Éste proporciona un ambiente productivo, reproducible y escalable, en donde se podrán analizar diversas técnicas de aprendizaje de máquina para detectar si una empresa puede entrar en quiebra o no.





Figura 1. Diagrama en bloques del sistema.

## 2. Identificación y análisis de los interesados

| Rol           | Nombre y Apellido      | Organización | Puesto                     |
|---------------|------------------------|--------------|----------------------------|
| Responsable   | Ing. Gaspar Acevedo    | FIUBA        | Alumno                     |
|               | Zain                   |              |                            |
| Orientador    | Título y Nombre del    | pertenencia  | Director del Trabajo Final |
|               | director               |              |                            |
| Cliente       | Actores del mercado    | -            | -                          |
|               | financiero             |              |                            |
| Usuario final | Trabajadores de clien- | -            | -                          |
|               | tes                    |              |                            |

- Orientador: podrán ayudar en la recomendación y evaluación de técnicas a explorar en las diferentes etapas del proyecto.
- Cliente: si bien es un proyecto personal, se considerarán como potenciales clientes a distintos actores del mercado financiero, tales como bancos, compañías aseguradoras, fondos de inversión o consultoras especializadas en riesgo crediticio.
- Usuario final: analistas de riesgos, ejecutivo de créditos, entre otros integrantes que trabajan para los potenciales clientes.

## 3. Propósito del proyecto

Predecir si una empresa puede entrar en quiebra o no, al explorar técnicas de *machine learning* en un marco de trabajo productivo, reproducible y escalable.

#### 4. Alcance del proyecto

El alcance del proyecto incluye:

■ Análisis exploratorio de datos: se analizarán las distintas variables presentes en el *dataset* de estudio, con el fin de conocer sus características y poder tomar decisiones con base en ellas.



- Preprocesamiento de datos: se realizarán técnicas de tratamiento de datos faltantes, selección y/o extracción de variables, como así también de ingeniería de features.
- Implementación de modelos de machine learning: se estudiarán diversos modelos de aprendizaje de máquina sobre los datos procesados, tales como logistic regression, SVM y XGBoost. Además, se optimizarán los hiperparámetros de estos modelos mediante búsqueda bayesiana.
- Evaluación y comparación de modelos: se obtendrán métricas relacionadas a los modelos explorados, con el fin de poder determinar cuál de ellos realiza una mejor predicción.
- Implementación de un entorno basado en *MLFlow*: este entornó facilitará la realización, la reproducibilidad y la escalabilidad de las distintas etapas de trabajo que se realizarán en este proyecto. Este será de caracter local, es decir, no se implementará en una plataforma de *cloud computing*.

#### No se incluye:

- El despliegue del entorno de trabajo en una plataforma de *cloud computing*, tales como *Azure*, *AWS*, entre otros.
- El análisis de otros datasets distintos al propuesto.

#### 5. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

- Supuesto 1: el *dataset* de estudio presenta datos fiables, y no tiene restricciones en cuanto a licencias de uso.
- Supuesto 2: una *laptop* como equipo de trabajo es más que suficiente para realizar el preprocesamiento y entrenamiento de los modelos de aprendizaje automático.
- Supuesto 3: el entorno de *MLFlow* podrá desarrollarse en etapas futuras del proyecto, posteriores a la exploración de los modelos de aprendizaje automático.
- Supuesto 4: el entorno de *MLFlow* podrá desplegarse de manera local, sin necesidad de recurrir a plataforma de *cloud computing*, tales como *Azure*, *AWS*, entre otros.
- Supuesto 5: se disponen de al menos 15 horas semanales para realizar el proyecto.

## 6. Product Backlog

#### Roles

- Ingeniero del proyecto: es quien se encarga del análisis, diseño, desarrollo y despliegue del proyecto.
- *Usuario final*: es quien consulta y analiza las predicciones de los modelos explorados en el proyecto.



#### Criterios de ponderación de historias de usuario

Esto son los criterios que se utilizan para ponderar a las historias de usuario mediante *Story Points*:

- Dificultad: representa la cantidad de trabajo estimado que requiere la historia de usuario para realizarse.
- Complejidad: representa la dificultad de realizar la historia de usuario a nivel técnico.
- Incertidumbre: representa el riesgo asociado a la historia de usuario.

Cada criterio tiene asociado las ponderaciones baja, media y alta, que se detallan en el cuadro 1. Los Story Points de una historia de usuario quedan definidos por la suma de los valores de estas ponderaciones redondeada hacia el número superior más próximo en la serie de Fibonacci.

| Criterio\Ponderación | Baja | Media | Alta |
|----------------------|------|-------|------|
| Dificultad           | 1    | 3     | 5    |
| Complejidad          | 1    | 3     | 5    |
| Incertidumbre        | 1    | 5     | 8    |

Cuadro 1. Tabla de ponderaciones de historia de usuario.

## Épicas

## • Épica 1 - Análisis y procesamiento de datos

- HU1 Análisis exploratorio
  - Como ingeniero del proyecto, quiero realizar un análisis exploratorio de datos para conocer las distribuciones, formas y otras particularidades de las variables del dataset con el que se trabajará.
  - Ponderación
    - ♦ Dificultad: media 3 Story Points
    - ♦ Complejidad: baja 1 Story Points
    - ♦ Incertidumbre: baja 1 Story Points
    - ♦ Suma: 5
    - ♦ Total: 5 Story Points
- HU2 Procesamiento de datos faltantes y datos atípicos
  - o Como ingeniero del proyecto, quiero realizar un procesamiento de datos faltantes y de datos atípicos con el fin de asegurar la calidad del dataset.
  - $\circ\,$  Ponderación
    - ♦ Dificultad: media 3 Story Points
    - ♦ Complejidad: media 3 Story Points
    - ♦ Incertidumbre: baja 1 Story Points
    - ♦ Suma: 7
    - ♦ Total: 8 Story Points



#### • HU3 - Feature Engineering

- o Como ingeniero del proyecto, quiero implementar *Feature Engineering* con el fin de crear nuevos atributos en el dataset.
- Ponderación
  - ♦ Dificultad: media 3 Story Points
  - ♦ Complejidad: media 3 Story Points
  - ♦ Incertidumbre: baja 1 Story Points
  - ♦ Suma: 7
  - ♦ Total: 8 Story Points

## • Épica 2 - Implementación y comparación de modelos

- HU4 Implementación de modelos de Machine Learning
  - o Como ingeniero del proyecto, quiero implementar los modelos de *Machine Learning* de *Logistic Regression*, *SVM* y *XGBoost* que permitan predecir si una empresa entra en quiebra o no.
  - Ponderación
    - $\diamond$  Dificultad: media 3 Story Points
    - ♦ Complejidad: media 3 Story Points
    - $\diamond$  Incertidumbre: media 5 Story Points
    - ♦ Suma: 11
    - ♦ Total: 13 Story Points
- HU5 Optimización de hiperparámetros
  - o Como ingeniero del proyecto, quiero implementar técnicas de optimización de hiperparámetros y aplicarlas a los modelos de *Machine Learning* implementados.
  - Ponderación
    - ♦ Dificultad: media 3 Story Points
    - ♦ Complejidad: media 3 Story Points
    - $\diamond$  Incertidumbre: media 5 Story Points
    - ♦ Suma: 11
    - ♦ Total: 13 Story Points
- HU6 Métricas de modelos
  - $\circ$  Como ingeniero del proyecto, quiero calcular las métricas de AUC-ROC y F1-score en cada modelo de Machine Learning implementado y comparar sus resultados.
  - Ponderación
    - $\diamond\,$  Dificultad: media 3  $Story\,Points$
    - ♦ Complejidad: media 3 Story Points
    - ♦ Incertidumbre: baja 1 Story Points
    - ♦ Suma: 7
    - ♦ Total: 8 Story Points



## • Épica 3 - Despliegue en entorno *MLFlow*

- $\bullet$  HU7 Despliegue en MLFlow
  - Como ingeniero del proyecto, quiero desplegar un entorno local de MLFLow en donde se repliquen los pasos de procesamiento de datos e implementación y comparación de modelos.
  - o Ponderación
    - ♦ Dificultad: alta 5 Story Points
    - $\diamond$  Complejidad: media 3 Story Points
    - ♦ Incertidumbre: media 5 Story Points
    - ♦ Suma: 13
    - ♦ Total: 13 Story Points
- $\bullet$  HU8 API para entorno MLFlow
  - $\circ$  Como ingeniero del proyecto, quiero exponer el entorno de MLFlow mediante una API para facilitar el acceso y su utilización.
  - Ponderación
    - $\diamond$  Dificultad: baja 1 Story Points
    - ♦ Complejidad: media 3 Story Points
    - ♦ Incertidumbre: baja 1 Story Points
    - ♦ Suma: 5
    - $\diamond$  Total: 5 Story Points

## • Épica 4 - Gestión de calidad del código fuente

- HU9 Implementación de buenas prácticas
  - Como ingeniero del proyecto, quiero asegurar que el código siga las buenas prácticas y estándares de la industria.
  - Ponderación
    - $\diamond$  Dificultad: media 3 Story Points
    - ♦ Complejidad: baja 1 Story Points
    - ♦ Incertidumbre: baja 1 Story Points
    - ♦ Suma: 5
    - ♦ Total: 5 Story Points
- HU10 Documentación
  - o Como ingeniero del proyecto, quiero documentar todos los pasos realizados durante el proyecto.
  - o Ponderación
    - ♦ Dificultad: baja 1 Story Points
    - ♦ Complejidad: baja 1 Story Points
    - ♦ Incertidumbre: baja 1 Story Points
    - ♦ Suma: 3
    - ♦ Total: 3 Story Points



#### • HU11 - Validación de API de MLFlow

- Como usuario final, quiero consultar los resultados y comparaciones de los modelos mediante la API del entorno de MLFlow, para poder analizarlos.
- Ponderación
  - ♦ Dificultad: media 3 Story Points
  - ♦ Complejidad: baja 1 Story Points
  - ♦ Incertidumbre: baja 1 Story Points
  - ♦ Suma: 5
  - ♦ Total: 5 Story Points

#### 7. Criterios de aceptación de historias de usuario

#### Épica 1 - Análisis y procesamiento de datos

- Criterios de aceptación HU1 Análisis exploratorio
  - o Se estudia la presencia de datos atípicos y de datos faltantes para cada variable.
  - o Se grafican las distribuciones de las variables del dataset.
  - o Se realiza un estudio de correlaciones entre variables numéricas.
  - o Se documentan los hallazgos del análisis de cada variable.
- Criterios de aceptación HU2 Procesamiento de datos faltantes y datos atípicos
  - o Se realiza una imputación de datos faltantes a las variables del dataset.
  - o Se justifican los métodos de imputación utilizados.
  - o Se ajustan los datos atípicos de las variables del dataset.
  - $\circ\,$  Se justifican los métodos de ajuste utilizados.
  - Se justifican los casos en donde se decide no imputar ni ajustar.
- Criterios de aceptación HU3 Feature Engineering
  - o Se crean nuevas variables en el dataset a partir de las existentes.
  - Se estudia el impacto por separado de estas variables en los modelos generados, a partir de sus métricas.
  - o Se justifica la inclusión o no en el modelo de cada variable generada.

## Épica 2 - Implementación y comparación de modelos

- Criterios de aceptación HU4 Implementación de modelos de Machine Learning
  - Se implementan distintos modelos de Machine Learning.
  - o Se justifica el uso de cada uno de los modelos implementados.
  - Se persisten los modelos generados en GitHub, para futuros análisis y comparaciones.
- Criterios de aceptación HU5 Optimización de hiperparámetros
  - o Se seleccionan los hiperparámetros de cada modelo a optimizar.
  - o Se define el rango sobre el que se optimizará cada hiperparámetro.
  - Se realiza una búsqueda del valor óptimo de los hiperparámetros en los rangos definidos.
  - o Se justifican las decisiones tomadas en cada paso.



- Criterios de aceptación HU6 Métricas de modelos
  - o Se definen las métricas de análisis para cada modelo.
  - o Se justifica la selección de cada métrica para cada modelo.
  - o Se obtienen las métricas de análisis de cada modelo.
  - Se comparan los distintos modelos mediante las métricas definidas.

## • Épica 3 - Despliegue en entorno MLFlow

- Criterios de aceptación HU7 Despliegue en MLFlow
  - $\circ$  Se crea un entorno MLFlow local desde cero
  - o Se configura el paso correspondiente al análisis de datos en el entorno.
  - o Se replican las técnicas exploradas de análisis de datos en el paso correspondiente.
  - o Se configura el paso de entrenamiento de modelos en el entorno.
  - Se replican las técnicas exploradas de entrenamiento de modelos en el paso correspondiente.
  - o Se configura el paso de evaluación de modelos en el entorno.
  - o Se replican las técnicas exploradas de evaluación de modelos en el paso correspondiente.
- Criterios de aceptación HU8 API para entorno MLFlow
  - Se exponen los resultados de los modelos explorados en el entorno de MLFlow mediante una API.
  - $\circ$  Se exponen las comparaciones de los modelos explorados en el entorno de MLFlow mediante una API.

## • Épica 4 - Gestión de calidad del código fuente

- Criterios de aceptación HU9 Implementación de buenas prácticas
  - o Se implementan buenas prácticas de código Python en el proyecto.
- Criterios de aceptación HU10 Documentación
  - o Se documentan todos los pasos realizados durante el desarrollo del proyecto.
  - o Se valida que cada paso realizado esté correctamente justificado.
- Criterios de aceptación HU11 Validación de API de MLFlow
  - $\circ\,$  Se valida el acceso a los resultados de los modelos mediante la API del entorno MLFlow.
  - $\circ\,$  Se valida el acceso a la comparación de los modelos mediante la API del entorno MLFlow.

#### 8. Fases de CRISP-DM

#### 1. Comprensión del negocio:

- Objetivo: predecir si una empresa va a entrar en quiebra o no.
- Impacto: ayudar en la toma de decisiones a empresas especializadas en finanzas, en inversiones, en prestación de seguros, entre otras, permitiéndoles saber si una empresa sobre la que se quiere invertir o a la que se le quiere otorgar un préstamo puede entrar en quiebra o no.
- *Métricas:* se predice correctamente si la empresa quiebra o no.



#### 2. Comprensión de los datos

- Tipos de datos: datos tabulares.
- Fuente de datos: datos publicados por el Taiwan Economic Journal.
- Cantidad de datos: 6819 registros con 96 columnas.

## 3. Preparación de los datos

- Transformaciones
  - Análisis y ajuste de datos atípicos.
  - Análisis y ajuste de datos faltantes.
  - Creación de nuevas variables al combinar las variables existentes.
  - Normalización de datos.
- Características clave
  - Indicador de si la empresa entró en quiebra o variable target.
  - Distintas métricas del desempeño de la empresa a nivel económico y contable.

#### 4. Modelado

- Tipo de problema: clasificación.
- Arquitecturas posibles: modelos de clasificación como Logistic Regression, Support Vector Machines y XGBoost.

#### 5. Evaluación del modelo

■ F1-score y AUC-ROC.

#### 6. Despliegue del modelo

• Despliegue local usando *MLFlow*.

#### 9. Desglose del trabajo en tareas

| Historia de usuario          | Tarea técnica                     | Estimación | Prioridad |
|------------------------------|-----------------------------------|------------|-----------|
| HU1 - Análisis exploratorio  | Identificar variables categóricas | 4 h        | Media     |
| HU1 - Análisis exploratorio  | Identificar variables numéricas   | 4 h        | Media     |
| HU1 - Análisis exploratorio  | Graficar la distribución de las   | 6 h        | Media     |
|                              | variables numéricas               |            |           |
| HU1 - Análisis exploratorio  | Realizar análisis de correlacio-  | 4 h        | Media     |
|                              | nes entre variables numéricas     |            |           |
| HU1 - Análisis exploratorio  | Documentar pasos y decisiones     | 3 h        | Media     |
|                              | tomadas                           |            |           |
| HU2 - Procesamiento de datos | Investigar técnicas de balanceo   | 6 h        | Media     |
| faltantes y datos atípicos   | de clases para algoritmos de      |            |           |
|                              | clasificación                     |            |           |
| HU2 - Procesamiento de datos | Implementar técnicas de balan-    | 5 h        | Media     |
| faltantes y datos atípicos   | ceo de clases para algoritmos de  |            |           |
|                              | clasificación                     |            |           |
| HU2 - Procesamiento de datos | Separar dataset en train y test   | 3 h        | Media     |
| faltantes y datos atípicos   |                                   |            |           |



| Historia de usuario          | Tarea técnica                    | Estimación | Prioridad |
|------------------------------|----------------------------------|------------|-----------|
| HU2 - Procesamiento de datos | Identificar variables con datos  | 4 h        | Alta      |
| faltantes y datos atípicos   | faltantes                        |            |           |
| HU2 - Procesamiento de datos | Analizar causas de datos faltan- | 6 h        | Alta      |
| faltantes y datos atípicos   | tes                              |            |           |
| HU2 - Procesamiento de datos | Corregir datos faltantes         | 8 h        | Alta      |
| faltantes y datos atípicos   |                                  |            |           |
| HU2 - Procesamiento de datos | Identificar datos con valores    | 6 h        | Alta      |
| faltantes y datos atípicos   | atípicos                         |            |           |
| HU2 - Procesamiento de datos | Analizar causas de datos atípi-  | 8 h        | Alta      |
| faltantes y datos atípicos   | cos                              |            |           |
| HU2 - Procesamiento de datos | Graficar variables que presentan | 5 h        | Media     |
| faltantes y datos atípicos   | de datos atípicos                |            |           |
| HU2 - Procesamiento de datos | Corregir datos atípicos          | 8 h        | Alta      |
| faltantes y datos atípicos   |                                  |            |           |
| HU2 - Procesamiento de datos | Documentar pasos y decisiones    | 5 h        | Media     |
| faltantes y datos atípicos   | tomadas                          |            |           |
| HU3 - Feature Engineering    | Identificar variables menos im-  | 5 h        | Alta      |
|                              | portantes para eliminarlas       |            |           |
| HU3 - Feature Engineering    | Implementar técnicas de elimi-   | 5 h        | Media     |
|                              | nación de features               |            |           |
| HU3 - Feature Engineering    | Crear nuevas variables mediante  | 7 h        | Alta      |
|                              | combinaciones lineales de varia- |            |           |
|                              | bles existentes                  |            |           |
| HU3 - Feature Engineering    | Investigar otras técnicas de     | 5 h        | Media     |
|                              | creación de variables            |            |           |
| HU3 - Feature Engineering    | Aplicar otras técnicas de crea-  | 8 h        | Alta      |
|                              | ción de variables                |            |           |
| HU3 - Feature Engineering    | Evaluar nuevas variables en      | 5 h        | Alta      |
|                              | modelos                          |            |           |
| HU3 - Feature Engineering    | Documentar pasos y decisiones    | 3 h        | Baja      |
|                              | tomadas                          |            |           |



| Historia de usuario                                 | Tarea técnica                                               | Estimación | Prioridad |
|-----------------------------------------------------|-------------------------------------------------------------|------------|-----------|
| HU4 - Implementación de mo-                         | Implementar código de vali-                                 | 4 h        | Media     |
| delos de Machine Learning                           | dación cruzada para <i>Logistic</i>                         |            |           |
|                                                     | Regression                                                  |            |           |
| HU4 - Implementación de mo-                         | Implementar modelo Logistic                                 | 6 h        | Alta      |
| delos de Machine Learning                           | Regression, sin considerar featu-                           |            |           |
|                                                     | re engineering                                              | 4.1        | 2.5.11    |
| HU4 - Implementación de mo-                         | Evaluar modelo Logistic Re-                                 | 4 h        | Media     |
| delos de Machine Learning                           | gression, sin considerar feature                            |            |           |
| IIII4 Implementación de ma                          | engineering                                                 | 6 h        | Alta      |
| HU4 - Implementación de modelos de Machine Learning | Implementar modelo Logistic Regression, considerando featu- | 0 11       | Ana       |
| delos de <i>Machine Learning</i>                    | re engineering                                              |            |           |
| HU4 - Implementación de mo-                         | Evaluar modelo Logistic Re-                                 | 4 h        | Media     |
| delos de Machine Learning                           | gression, considerando feature                              | 4 11       | Wiedia    |
| delos de Machine Bearning                           | engineering                                                 |            |           |
| HU4 - Implementación de mo-                         | Implementar código de valida-                               | 4 h        | Media     |
| delos de Machine Learning                           | ción cruzada para SVM                                       |            |           |
| HU4 - Implementación de mo-                         | Implementar modelo SVM, sin                                 | 6 h        | Alta      |
| delos de Machine Learning                           | considerar feature engineering                              |            |           |
| HU4 - Implementación de mo-                         | Evaluar modelo SVM, sin consi-                              | 4 h        | Media     |
| delos de Machine Learning                           | derar feature engineering                                   |            |           |
| HU4 - Implementación de mo-                         | Implementar modelo SVM, con-                                | 6 h        | Alta      |
| delos de Machine Learning                           | siderando feature engineering                               |            |           |
| HU4 - Implementación de mo-                         | Evaluar modelo SVM, conside-                                | 4 h        | Media     |
| delos de Machine Learning                           | rando feature engineering                                   |            |           |
| HU4 - Implementación de mo-                         | Implementar código de valida-                               | 4 h        | Media     |
| delos de Machine Learning                           | ción cruzada para XGBoost                                   |            |           |
| HU4 - Implementación de mo-                         | Implementar modelo XGBoost,                                 | 8 h        | Alta      |
| delos de Machine Learning                           | sin considerar feature enginee-                             |            |           |
|                                                     | ring                                                        |            |           |
| HU4 - Implementación de mo-                         | Evaluar modelo XGBoost, sin                                 | 6 h        | Media     |
| delos de Machine Learning                           | considerar feature engineering                              |            |           |
| HU4 - Implementación de mo-                         | Implementar modelo XGBoost,                                 | 8 h        | Alta      |
| delos de Machine Learning                           | considerando feature enginee-                               |            |           |
| IIII4 Il                                            | ring                                                        | C l        | N/ - J: - |
| HU4 - Implementación de mo-                         | Evaluar modelo XGBoost, con-                                | 6 h        | Media     |
| delos de Machine Learning                           | siderando feature engineering Persistir modelos en GitHub   | 4 h        | Madia     |
| HU4 - Implementación de modelos de Machine Learning | r ersistir modelos en Gumu                                  | 4 h        | Media     |
| HU4 - Implementación de mo-                         | Documentar pasos y decisiones                               | 5 h        | Media     |
| delos de Machine Learning                           | tomadas                                                     | 0 11       | ivicula   |
| HU5 - Optimización de hiper-                        | Identificar hiperparámetros y                               | 5 h        | Media     |
| parámetros                                          | rangos de Logistic Regression                               |            | Titodia   |
| HU5 - Optimización de hiper-                        | Optimizar hiperparámetros de                                | 6 h        | Media     |
| parámetros                                          | Logistic Regression, sin conside-                           |            | 1.10414   |
|                                                     | rar feature engineering                                     |            |           |
|                                                     | ل.٠٠٠٠٠ ل                                                   | I.         |           |



| HU5 - Optimización de hiperparámetros se en Logistic Regression, sin considerar feature engineering en | Historia de usuario           | Tarea técnica                  | Estimación | Prioridad |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|------------|-----------|
| Regression, sin considerar feature engineering   Feature enginee   | _                             |                                | 4 h        | Media     |
| Feature engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | parámetros                    | _                              |            |           |
| HU5 - Optimización de hiperparámetros optimos, sin considerar feature engineering HU5 - Optimización de hiperparámetros  HU5 - Optimiza |                               | ,                              |            |           |
| parámetros gression con hiperparámetros óptimos, sin considerar feature engineering considerando feature engineering limplementar hiperparámetros de Logistic Regression, considerando feature engineering limplementar hiperparámetros más óptimos en Logistic Regression, considerando feature engineering limplementar hiperparámetros más óptimos en Logistic Regression, considerando feature engineering limplementar hiperparámetros optimios, considerando feature engineering limplementar hiperparámetros optimios, considerando feature engineering limplementar hiperparámetros optimios, considerando feature engineering limplementar hiperparámetros de SVM, sin considerar feature engineering limplementar hiperparámetros más óptimos en SVM, sin considerar feature engineering limplementar hiperparámetros de SVM con hiperparámetros optimización de hiperparámetros en SVM, sin considerar feature engineering limplementar hiperparámetros de SVM, considerando feature engineering limplementar hiperparámetros de A hiperparámetros optimos, considerando feature engineering limplementar hiperparámetros de SVM, considerando feature engineering li | HILE O .:                     |                                | 4.1        | N         |
| foptimos, sin considerar feature engineering  HU5 - Optimización de hiperparámetros  HU5 - Optimización de hiperparámetros de SVM conhiperparámetros  HU5 - Optimización de hiperparámetros de SVM conhiperparámetros de SVM conhi |                               |                                | 4 n        | Media     |
| HU5 - Optimización de hiperparámetros de Logistic Regression, considerando feature engineering HU5 - Optimización de hiperparámetros de SVM con hiperparámetros HU5 - Optimización de hiperparámetros de SVM con hiperparámetros HU5 - Optimización de hiperparámetros de SVM, considerar feature engineering HU5 - Optimización de hiperparámetros de SVM, considerando feature engineering HU5 - Optimización de hiperparámetros de SVM, considerando feature engineering HU5 - Optimización de hiperparámetros de SVM, considerando feature engineering HU5 - Optimización de hiperparámetros de SVM, considerando feature engineering HU5 - Optimización de hiperparámetros de SVM, considerando feature engineering HU5 - Optimización de hiperparámetros de SVM con hiperp | parametros                    | _ = =                          |            |           |
| HU5 - Optimización de hiperparámetros de Logistic Regression, considerando feature engineering HU5 - Optimización de hiperparámetros de feature engineering HU5 - Optimización de hiperparámetros optimos, considerando feature engineering HU5 - Optimización de hiperparámetros optimos, considerando feature engineering HU5 - Optimización de hiperparámetros optimos, considerando feature engineering HU5 - Optimización de hiperparámetros optimos, considerando feature engineering HU5 - Optimización de hiperparámetros optimos, considerando feature engineering HU5 - Optimización de hiperparámetros optimos, considerando feature engineering HU5 - Optimización de hiperparámetros optimos, considerando feature engineering HU5 - Optimización de hiperparámetros optimos, co |                               |                                |            |           |
| Deparametros   Logistic Regression, considerando feature engineering   HU5 - Optimización de hiperparámetros   Evaluar modelo de Logistic Regression con hiperparámetros optimos, considerando feature engineering   HU5 - Optimización de hiperparámetros   HU5 - Optimización de hiperparámetros   HU5 - Optimización de hiperparámetros   SVM, sin considerar feature engineering   HU5 - Optimización de hiperparámetros   HU5 - Optimización de hiperparámetros   HU5 - Optimización de hiperparámetros   Evaluar modelo de SVM   SVM, sin considerar feature engineering   HU5 - Optimización de hiperparámetros   HU5 - Optimización de hiperparámetros   Evaluar modelo de SVM con hiperparámetros   HU5 - Optimización de hiperparámetros   Optimizar hiperparámetros   HU5 - Optimización de hiperparámetros   Optimizar hiperparámetros   HU5 - Optimización de hiperparámetros   Implementar hiperparámetros   Optimización de hiperparámetros   Optimizar hiperparámetros   Optimización de hiperparámetros   Optimizar hiperparámetros   Optimización de hiperparámetros   Optimizar hiperparámetros   Optimizar hiperparámetros   Optimización   Optimizar hiperparámetros   Optimización   Optimizar hiperparámetros   Optimización   Optimizar hiperparámetros   Optimizar hiperparámetros   Optimización   Optimizar hiperparámetros   Optimización   Optimizar hiperparámetros   Optimización   Optimizació   | HII5 - Ontimización de hiper- |                                | 6 h        | Media     |
| do feature engineering  HU5 - Optimización de hiperparámetros más óptimos en Logistic Regression, considerando feature engineering  HU5 - Optimización de hiperparámetros más óptimos, considerando feature engineering  HU5 - Optimización de hiperparámetros HU5 - | _                             |                                | 0 11       | Media     |
| HU5 - Optimización de hiperparámetros más óptimos en Logistic Regression, considerando feature engineering  HU5 - Optimización de hiperparámetros óptimos, considerando feature engineering  HU5 - Optimización de hiperparámetros óptimos, considerando feature engineering  HU5 - Optimización de hiperparámetros optimización de hiperparámetros  HU5 - Optimización de hiperparámetros optimos, sin considerar feature engineering  HU5 - Optimización de hiperparámetros optimos, sin considerar feature engineering  HU5 - Optimización de hiperparámetros optimos, sin considerar feature engineering  HU5 - Optimización de hiperparámetros optimos, sin considerando feature engineering  HU5 - Optimización de hiperparámetros optimos, en SVM, considerando feature engineering  HU5 - Optimización de hiperparámetros optimos, considerando feature engineering  HU5 - Optimización de hiperparámetros optimos, considerando feature engineering  HU5 - Optimización de hiperparámetros optimos, considerando feature engineering  HU5 - Optimización de hiperparámetros optimos, considerando feature engineering  HU5 - Optimización de hiperparámetros optimos, considerando feature engineering  HU5 - Optimización de hiperparámetros optimos, considerando feature engineering  HU5 - Optimización de hiperparámetros optimos, considerando feature engineering  HU5 - Optimización de hiperparámetros optimos, considerando feature engineering  HU5 - Optimización de hiperparámetros de XGBoost, sin considerar feature engineering  HU5 - Optimización de hiperparámetros de XGBoost, sin considerar feature engineering  HU5 - Optimización de hiperparámetros de XGBoost, sin considerar feature engineering                                                                                                                                                 | parametros                    | ,                              |            |           |
| más óptimos en Logistic Regression, considerando feature engineering  HU5 - Optimización de hiper-parámetros optimos, considerando feature engineering  HU5 - Optimización de hiper-parámetros optimos, considerando feature engineering  HU5 - Optimización de hiper-parámetros de SVM, sin considerar feature engineering  HU5 - Optimización de hiper-parámetros de SVM, sin considerar feature engineering  HU5 - Optimización de hiper-parámetros de SVM, sin considerar feature engineering  HU5 - Optimización de hiper-parámetros de SVM con hiperparámetros  HU5 - Optimización de hiper-parámetros optimos, sin considerar feature engineering  HU5 - Optimización de hiper-parámetros optimos, sin considerar feature engineering  HU5 - Optimización de hiper-parámetros optimos, sin considerando feature engineering  HU5 - Optimización de hiper-parámetros optimos en SVM, considerando feature engineering  HU5 - Optimización de hiper-parámetros optimos en SVM, considerando feature engineering  HU5 - Optimización de hiper-parámetros optimos, considerando feature engineering  HU5 - Optimización de hiper-parámetros optimos, considerando feature engineering  HU5 - Optimización de hiper-parámetros optimos, considerando feature engineering  HU5 - Optimización de hiper-parámetros optimos, considerando feature engineering  HU5 - Optimización de hiper-parámetros optimos, considerando feature engineering  HU5 - Optimización de hiper-parámetros optimos, considerando feature engineering  HU5 - Optimización de hiper-parámetros de XGBoost  HU5 - Optimización de hiper-parámetros de XGBoost  HU5 - Optimización de hiper-parámetros de XGBoost  HU5 - Optimización de hiper-parámetros de XGBoost, sin considerar feature engineering  HU5 - Optimización de hiper-parámetros de XGBoost, sin considerar feature engineering  HU5 - Optimización de hiper-parámetros de XGBoost, sin considerar feature engineering                                                                                                                                                                 | HU5 - Ontimización de hiper-  |                                | 4 h        | Media     |
| Regression, considerando feature engineering  HU5 - Optimización de hiperparámetros  Brushar modelo de Logistic Respression con hiperparámetros  Optimización de hiperparámetros y rangos de SVM  HU5 - Optimización de hiperparámetros  HU5 - Optimización de hiperparámetros  HU5 - Optimización de hiperparámetros  Brushar modelo de SVM  HU5 - Optimización de hiperparámetros  HU5 - Optimización de hiperparámetros  Brushametros  Brushametro |                               |                                | 1 11       | Wiedia    |
| HU5 - Optimización de hiperparámetros optimos, considerando feature engineering HU5 - Optimización de hiperparámetros optimos, considerando feature engineering HU5 - Optimización de hiperparámetros engineering                                                                                                                                                                                            | parametros                    | 1 5                            |            |           |
| HU5 - Optimización de hiperparámetros soptimos, considerar feature engineering  HU5 - Optimización de hiperparámetros y rangos de SVM  HU5 - Optimización de hiperparámetros y rangos de SVM  HU5 - Optimización de hiperparámetros y rangos de SVM, sin considerar feature engineering  HU5 - Optimización de hiperparámetros y rangos de SVM, sin considerar feature engineering  HU5 - Optimización de hiperparámetros y rangos de SVM, sin considerar feature engineering  HU5 - Optimización de hiperparámetros y rangos de SVM, sin considerar feature engineering  HU5 - Optimización de hiperparámetros optimos, sin considerar feature engineering  HU5 - Optimización de hiperparámetros de SVM, considerando feature engineering  HU5 - Optimización de hiperparámetros de SVM, considerando feature engineering  HU5 - Optimización de hiperparámetros de SVM, considerando feature engineering  HU5 - Optimización de hiperparámetros de SVM con hiperparámetros de rengineering  HU5 - Optimización de hiperparámetros de SVM con hiperparámetros de rengineering  HU5 - Optimización de hiperparámetros de SVM con hiperparámetros optimos, considerando feature engineering  HU5 - Optimización de hiperparámetros de rangos de XGBoost  HU5 - Optimización de hiperparámetros de Nedia rangos de XGBoost  HU5 - Optimización de hiperparámetros de Nedia rangos de XGBoost, sin considerar feature engineering  HU5 - Optimización de hiperparámetros de Nedia rangos de XGBoost, sin considerar feature engineering  HU5 - Optimización de hiperparámetros de Nedia parámetros  HU5 - Optimización de hiperparámetros de Nedia parámetros de Nedia pará |                               |                                |            |           |
| parámetros    gression con hiperparámetros óptimos, considerando feature engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HU5 - Optimización de hiper-  |                                | 4 h        | Media     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                             | _                              |            |           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                                |            |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | engineering                    |            |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HU5 - Optimización de hiper-  | Identificar hiperparámetros y  | 5 h        | Media     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | parámetros                    | rangos de $SVM$                |            |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HU5 - Optimización de hiper-  | Optimizar hiperparámetros de   | 6 h        | Media     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | parámetros                    | SVM, sin considerar feature    |            |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                |            |           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HU5 - Optimización de hiper-  |                                | 4 h        | Media     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | parámetros                    |                                |            |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                |            |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                | 4 h        | Media     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | parámetros                    |                                |            |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                |            | 1.5       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                             |                                | 6 h        | Media     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | parametros                    |                                |            |           |
| parámetros más óptimos en SVM, considerando feature engineering  HU5 - Optimización de hiper-parámetros óptimos, considerando feature engineering  HU5 - Optimización de hiper-parámetros óptimos, considerando feature engineering  HU5 - Optimización de hiper-parámetros y rangos de XGBoost  HU5 - Optimización de hiper-parámetros de XGBoost, sin considerar feature engineering  HU5 - Optimización de hiper-parámetros de XGBoost, sin considerar feature engineering  HU5 - Optimización de hiper-parámetros de xGBoost, sin considerar feature engineering  HU5 - Optimización de hiper-parámetros de xGBoost, sin más óptimos en XGBoost, sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | 0                              | 4.1        | N. 6 11   |
| considerando feature engineering  HU5 - Optimización de hiper- parámetros                                                                                        |                               |                                | 4 h        | Media     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | parametros                    | ,                              |            |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | · ·                            |            |           |
| parámetros hiperparámetros óptimos, considerando feature engineering  HU5 - Optimización de hiperparámetros y rangos de $XGBoost$ HU5 - Optimización de hiperparámetros de $XGBoost$ HU5 - Optimización de hiperparámetros de $XGBoost$ , sin considerar feature engineering  HU5 - Optimización de hiperparámetros de $XGBoost$ , sin considerar feature engineering  HU5 - Optimización de hiperparámetros $XGBoost$ , sin $XGBOOST$                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HII5 - Ontimización de hiper- |                                | 4 h        | Media     |
| derando feature engineering  HU5 - Optimización de hiperparámetros y rangos de XGBoost  HU5 - Optimización de hiperparámetros de Alta parámetros  HU5 - Optimización de hiperparámetros de Alta y Alta |                               |                                | 4 11       | Media     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | parametros                    |                                |            |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HU5 - Optimización de hiper-  |                                | 7 h        | Media     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                             |                                |            | 2.20010   |
| parámetros $XGBoost$ , sin considerar $feature$ $engineering$ HU5 - Optimización de hiper- Implementar hiperparámetros $5 \text{ h}$ Media parámetros más óptimos en $XGBoost$ , sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                             | _                              | 8 h        | Alta      |
| engineeringHU5 - Optimización de hiper-<br>parámetrosImplementar hiperparámetros<br>más óptimos en XGBoost, sin5 hMedia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                             |                                |            |           |
| HU5 - Optimización de hiper- Implementar hiperparámetros 5 h Media parámetros más óptimos en XGBoost, sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                             | ,                              |            |           |
| parámetros más óptimos en XGBoost, sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HU5 - Optimización de hiper-  | <u> </u>                       | 5 h        | Media     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                             |                                |            |           |
| considerar feature engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | considerar feature engineering |            |           |



| Historia de usuario          | Tarea técnica                                              | Estimación | Prioridad |
|------------------------------|------------------------------------------------------------|------------|-----------|
| HU5 - Optimización de hiper- | Evaluar modelo de XGBoost                                  | 7 h        | Media     |
| parámetros                   | con hiperparámetros óptimos,                               |            |           |
|                              | sin considerar feature enginee-                            |            |           |
|                              | ring                                                       | 0.1        | A 1.      |
| HU5 - Optimización de hiper- | Optimizar hiperparámetros de                               | 8 h        | Alta      |
| parámetros                   | XGBoost, considerando feature engineering                  |            |           |
| HU5 - Optimización de hiper- | Implementar hiperparámetros                                | 5 h        | Media     |
| parámetros                   | más óptimos en XGBoost,                                    | 0 11       | Media     |
| parametros                   | considerando feature                                       |            |           |
|                              | engineering                                                |            |           |
| HU5 - Optimización de hiper- | Evaluar modelo de XGBoost                                  | 7 h        | Media     |
| parámetros                   | con hiperparámetros óptimos,                               |            |           |
|                              | considerando feature enginee-                              |            |           |
|                              | $\mid ring \mid$                                           |            |           |
| HU5 - Optimización de hiper- | Documentar pasos y decisiones                              | 5 h        | Media     |
| parámetros                   | tomadas                                                    |            |           |
| HU6 - Métricas de modelos    | Obtener métricas de F1-score                               | 3 h        | Media     |
|                              | para Logistic Regression, sin                              |            |           |
|                              | considerar feature engineering                             |            |           |
| HU6 - Métricas de modelos    | Obtener métricas de AUC-ROC                                | 5 h        | Media     |
|                              | para Logistic Regression, sin                              |            |           |
|                              | considerar feature engineering, y                          |            |           |
| HU6 - Métricas de modelos    | graficar Obtener métricas de F1-score                      | 3 h        | Media     |
| HU6 - Metricas de modelos    |                                                            | o n        | Media     |
|                              | para Logistic Regression, considerando feature engineering |            |           |
| HU6 - Métricas de modelos    | Obtener métricas de AUC-ROC                                | 5 h        | Media     |
| 1100 Worldoo de modelos      | para Logistic Regression, consi-                           | 0 11       | Wicaia    |
|                              | derando feature engineering, y                             |            |           |
|                              | graficar                                                   |            |           |
| HU6 - Métricas de modelos    | Obtener métricas de F1-score                               | 3 h        | Media     |
|                              | para SVM, sin considerar featu-                            |            |           |
|                              | re engineering                                             |            |           |
| HU6 - Métricas de modelos    | Obtener métricas de AUC-ROC                                | 5 h        | Media     |
|                              | para SVM, sin considerar featu-                            |            |           |
|                              | re engineering, y graficar                                 |            |           |
| HU6 - Métricas de modelos    | Obtener métricas de F1-score                               | 3 h        | Media     |
|                              | para $SVM$ , considerando $feature$                        |            |           |
| HU6 - Métricas de modelos    | engineering                                                | F 1.       | М- 1:-    |
| noo - Metricas de modelos    | Obtener métricas de AUC-ROC para SVM, considerando feature | 5 h        | Media     |
|                              | engineering, y graficar                                    |            |           |
| HU6 - Métricas de modelos    | Obtener métricas de F1-score                               | 3 h        | Media     |
| 1100 Montons de moderos      | para XGBoost, sin considerar                               | 0 11       | wicula    |
|                              | feature engineering                                        |            |           |
| HU6 - Métricas de modelos    | Obtener métricas de AUC-ROC                                | 5 h        | Media     |
|                              | para $XGBoost$ , sin considerar                            | _          |           |
|                              | feature engineering, y graficar                            |            |           |
|                              | 0 0,00                                                     | 1          |           |



| Historia de usuario                              | Tarea técnica                                     | Estimación | Prioridad |
|--------------------------------------------------|---------------------------------------------------|------------|-----------|
| HU6 - Métricas de modelos                        | Obtener métricas de F1-score                      | 3 h        | Media     |
|                                                  | para XGBoost, considerando                        |            |           |
|                                                  | feature engineering                               |            |           |
| HU6 - Métricas de modelos                        | Obtener métricas de AUC-ROC                       | 5 h        | Media     |
|                                                  | para XGBoost, considerando                        |            |           |
| IIII Maria                                       | feature engineering, y graficar                   | 0.1        | N. f. 1.  |
| HU6 - Métricas de modelos                        | Comparar métricas de distintos modelos            | 3 h        | Media     |
| HU6 - Métricas de modelos                        | Documentar pasos y decisiones                     | 5 h        | Media     |
| 1100 - Metricas de modelos                       | tomadas                                           | 9 11       | Media     |
| HU7 - Despliegue en MLFlow                       | Investigar buenas prácticas para                  | 5 h        | Alta      |
| Tro Pesphegue en M21 vou                         | despliegues de <i>MLFlow</i>                      | 0 11       | 71100     |
| HU7 - Despliegue en MLFlow                       | Crear entorno local para des-                     | 7 h        | Alta      |
| 1 10 11                                          | pliegue MLFlow                                    |            |           |
| HU7 - Despliegue en MLFlow                       | Replicar técnicas de análisis de                  | 8 h        | Alta      |
|                                                  | datos en entorno MLFlow                           |            |           |
| $\mathrm{HU7}$ - Despliegue en $\mathit{MLFlow}$ | Replicar técnicas de entrena-                     | 8 h        | Alta      |
|                                                  | miento de modelos de <i>Logistic</i>              |            |           |
|                                                  | Regression en entorno $MLFlow$                    |            |           |
| $\mathrm{HU7}$ - Despliegue en $\mathit{MLFlow}$ | Replicar técnicas de entrena-                     | 8 h        | Alta      |
|                                                  | miento de modelos de SVM en                       |            |           |
|                                                  | entorno MLFlow                                    |            |           |
| $\mathrm{HU7}$ - Despliegue en $\mathit{MLFlow}$ | Replicar técnicas de entrena-                     | 8 h        | Alta      |
|                                                  | miento de modelos de XGBoost                      |            |           |
|                                                  | en entorno MLFlow                                 |            |           |
| HU7 - Despliegue en <i>MLFlow</i>                | Replicar técnicas de evaluación                   | 8 h        | Alta      |
| 11112 D 1: 141 D1                                | de modelos en entorno MLFlow                      | 4.1        | 3.5.11    |
| $\mathrm{HU7}$ - Despliegue en $\mathit{MLFlow}$ | Ejecutar localmente el entorno                    | 4 h        | Media     |
| IIII7 Dl: MI El                                  | MLFlow                                            | 4 h        | Media     |
| $\mathrm{HU7}$ - Despliegue en $\mathit{MLFlow}$ | Validar ejecución local del entorno <i>MLFlow</i> | 4 n        | Media     |
| HU7 - Despliegue en <i>MLFlow</i>                | Documentar pasos y decisiones                     | 6 h        | Media     |
| 1107 - Desphegue en MBP tow                      | tomadas MLFlow                                    | 0 11       | Wiedia    |
| HU8 - API para entorno ML-                       | Investigar como exponer un                        | 5 h        | Media     |
| Flow                                             | entorno MLFlow mediante API                       | 0 11       | Wicala    |
| HU8 - API para entorno ML-                       | Exponer resultados de modelos                     | 8 h        | Alta      |
| Flow                                             | explorados en entorno <i>MLFlow</i>               |            |           |
|                                                  | mediante API                                      |            |           |
| HU8 - API para entorno ML-                       | Exponer comparación de mode-                      | 8 h        | Alta      |
| Flow                                             | los en entorno <i>MLFlow</i> median-              |            |           |
|                                                  | te API                                            |            |           |
| HU8 - $API$ para entorno $ML$ -                  | Documentar pasos y decisiones                     | 3 h        | Baja      |
| Flow                                             | tomadas                                           |            |           |
| HU9 - Implementación de bue-                     | Investigar buenas prácticas en                    | 4 h        | Baja      |
| nas prácticas                                    | código Python                                     |            |           |
| HU9 - Implementación de bue-                     | Aplicar buenas prácticas en                       | 8 h        | Media     |
| nas prácticas                                    | código Python                                     |            |           |



| Historia de usuario                   | Tarea técnica                                           | Estimación | Prioridad |
|---------------------------------------|---------------------------------------------------------|------------|-----------|
| HU10 - Documentación                  | Asegurar que cada decisión to-                          | 6 h        | Media     |
|                                       | mada haya sido justificada y                            |            |           |
|                                       | documentada                                             |            |           |
| HU10 - Documentación                  | Asegurar ortografía y formato                           | 8 h        | Media     |
|                                       | en documentación                                        |            |           |
| HU11 - Validación de API de           | Validar acceso a modelos explo-                         | 8 h        | Media     |
| MLFlow                                | rados mediante $API$ de entorno                         |            |           |
|                                       | MLFlow                                                  |            |           |
| HU11 - Validación de API de           | Validar acceso a comparación                            | 8 h        | Media     |
| MLFlow                                | de modelos mediante $API$ de                            |            |           |
|                                       | entorno MLFlow                                          |            |           |
| $oxed{HU11}$ - Validación de $API$ de | Crear documentación sobre el                            | 5 h        | Media     |
| MLFlow                                | uso de $API$ de entorno $MLFlow$                        |            |           |
| Planificación del proyecto y con-     | Planificación del proyecto                              | 8 h        | Alta      |
| fección de informes de avance         |                                                         |            |           |
| (opcional)                            |                                                         |            |           |
| Planificación del proyecto y con-     | Informe de avance - Secciones 1                         | 6 h        | Media     |
| fección de informes de avance         | a 5 inclusive                                           |            |           |
| (opcional)                            |                                                         |            |           |
| Planificación del proyecto y con-     | Informe de avance - Secciones 6                         | 5 h        | Media     |
| fección de informes de avance         | a 9 inclusive                                           |            |           |
| (opcional)                            |                                                         |            | 7.5.11    |
| Planificación del proyecto y con-     | Informe de avance - Secciones 10                        | 4 h        | Media     |
| fección de informes de avance         | a 12 inclusive                                          |            |           |
| (opcional)                            |                                                         | 4.1        | 3.6.11    |
| Planificación del proyecto y con-     | Informe de avance - Secciones 13                        | 4 h        | Media     |
| fección de informes de avance         | a 15 inclusive                                          |            |           |
| (opcional)                            |                                                         | F 1        | 3.6.11    |
| Planificación del proyecto y con-     | Informe de avance - Correciones                         | 5 h        | Media     |
| fección de informes de avance         | generales                                               |            |           |
| (opcional)                            | D 1 '' 1 '' 1                                           | C 1        | N. 1.     |
| Redacción de memoria (opcio-          | Redacción de sección sobre pro-                         | 6 h        | Media     |
| nal)                                  | cesamiento de datos                                     | 2 1-       | M - 1: -  |
| Redacción de memoria (opcio-          | Redacción de sección sobre Fea-                         | 3 h        | Media     |
| nal)  Redacción de memoria (opcio-    | ture Engineering  Redacción de sección sobre im-        | 7 h        | Media     |
|                                       |                                                         | / 11       | Media     |
| nal)  Redacción de memoria (opcio-    | plementación de modelos  Redacción de sección sobre op- | 6 h        | Media     |
| nal)                                  | timización de hiperparámetros                           | 0 11       | Media     |
| Redacción de memoria (opcio-          | Redacción de sección sobre <i>ML</i> -                  | 5 h        | Media     |
| nal)                                  | Flow                                                    | 0 11       | ivicula   |
| Redacción de memoria (opcio-          | Correcciones generales                                  | 8 h        | Media     |
| nal)                                  | Correctiones generales                                  | 0 11       | ivicula   |
| Preparación de presentación fi-       | Confección de presentación Po-                          | 6 h        | Alta      |
| nal (opcional)                        | werPoint                                                | 0 11       | And       |
| Preparación de presentación fi-       | Confección de video demostra-                           | 8 h        | Alta      |
| nal (opcional)                        | ción                                                    | 0 11       | And       |
| nor (operonar)                        | 01011                                                   | <u> </u>   |           |



## $10.\ Planificación de Sprints$

| Sprint   | HU o fase               | Tarea               | Horas/SP    | Responsable | % Completado |
|----------|-------------------------|---------------------|-------------|-------------|--------------|
| Sprint 0 | Planificación           | Planificación       | 8 h / 5 SP  | Alumno      | 80 %         |
|          | del proyecto            | del proyecto        |             |             |              |
|          | y confección            |                     |             |             |              |
|          | de informes de          |                     |             |             |              |
| Sprint 0 | avance<br>Planificación | Informe de          | 6 h / 3 SP  | Alumno      | 100 %        |
| Sprine 0 | del proyecto            | avance -            |             | Alumno      | 100 70       |
|          | y confección            | Secciones 1         |             |             |              |
|          | de informes de          | a 5 inclusive       |             |             |              |
|          | avance                  |                     |             |             |              |
| Sprint 0 | Planificación           | Informe de          | 5 h / 3 SP  | Alumno      | 100 %        |
| _        | del proyecto            | avance -            | ,           |             |              |
|          | y confección            | Secciones 6         |             |             |              |
|          | de informes de          | a 9 inclusive       |             |             |              |
|          | avance                  |                     |             |             |              |
| Sprint 0 | Planificación           | Informe de          | 4 h / 2 SP  | Alumno      | 100 %        |
|          | del proyecto            | avance -            |             |             |              |
|          | y confección            | Secciones 10 a      |             |             |              |
|          | de informes de          | 12 inclusive        |             |             |              |
| Comint 0 | avance<br>Planificación | Informa             | 4 b / 9 CD  | A 1         | 0.07         |
| Sprint 0 | del proyecto            | Informe de avance - | 4 h / 2 SP  | Alumno      | 0 %          |
|          | y confección            | Secciones 13 a      |             |             |              |
|          | de informes de          | 15 inclusive        |             |             |              |
|          | avance                  | 10 1110101011       |             |             |              |
| Sprint 0 | Planificación           | Informe de          | 5 h / 3 SP  | Alumno      | 0 %          |
|          | del proyecto            | avance -            | ,           |             |              |
|          | y confección            | Correciones         |             |             |              |
|          | de informes de          | generales           |             |             |              |
|          | avance                  |                     |             |             |              |
| Sprint 1 | HU1 - Análisis          | Identificar         | 4 h / 2 SP  | Alumno      | 0 %          |
|          | exploratorio            | variables           |             |             |              |
| 0        | TTTT1 A /11 ·           | categóricas         | 4.1. / 0.CD | A 1         | 0.04         |
| Sprint 1 | HU1 - Análisis          | Identificar         | 4 h / 2 SP  | Alumno      | 0 %          |
|          | exploratorio            | variables numéricas |             |             |              |
| Sprint 1 | HU1 - Análisis          | Graficar la         | 6 h / 3 SP  | Alumno      | 0 %          |
| Sprint 1 | exploratorio            | distribución de     |             | Alumno      | 0 70         |
|          | CAPIOTATOTIO            | las variables       |             |             |              |
|          |                         | $num\'ericas$       |             |             |              |
| Sprint 1 | HU1 - Análisis          | Realizar análi-     | 4 h / 2 SP  | Alumno      | 0 %          |
|          | exploratorio            | sis de correla-     |             |             |              |
|          | _                       | ciones entre va-    |             |             |              |
|          |                         | riables numéri-     |             |             |              |
|          |                         | cas                 |             |             |              |



| Sprint   | HU o fase                                                            | Tarea                                                                       | Horas/SP   | Responsable | % Completado |
|----------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|------------|-------------|--------------|
| Sprint 1 | HU1 - Análisis<br>exploratorio                                       | Documentar pasos y decisiones tomadas                                       | 3 h / 2 SP | Alumno      | 0 %          |
| Sprint 1 | HU2 - Procesa-<br>miento de datos<br>faltantes y da-<br>tos atípicos | Investigar técnicas de balanceo de clases para algoritmos de clasificación  | 6 h / 3 SP | Alumno      | 0 %          |
| Sprint 1 | HU2 - Procesa-<br>miento de datos<br>faltantes y da-<br>tos atípicos | Implementar técnicas de balanceo de clases para algoritmos de clasificación | 5 h / 3 SP | Alumno      | 0 %          |
| Sprint 1 | HU2 - Procesa-<br>miento de datos<br>faltantes y da-<br>tos atípicos | Separar dataset<br>en train y test                                          | 3 h / 2 SP | Alumno      | 0 %          |
| Sprint 1 | HU2 - Procesa-<br>miento de datos<br>faltantes y da-<br>tos atípicos | Identificar<br>variables con<br>datos faltantes                             | 4 h / 2 SP | Alumno      | 0 %          |
| Sprint 1 | HU2 - Procesa-<br>miento de datos<br>faltantes y da-<br>tos atípicos | Analizar causas<br>de datos faltan-<br>tes                                  | 6 h / 3 SP | Alumno      | 0 %          |
| Sprint 1 | HU2 - Procesa-<br>miento de datos<br>faltantes y da-<br>tos atípicos | Corregir datos faltantes                                                    | 8 h / 5 SP | Alumno      | 0 %          |
| Sprint 1 | HU2 - Procesa-<br>miento de datos<br>faltantes y da-<br>tos atípicos | Identificar<br>datos con<br>valores atípicos                                | 6 h / 3 SP | Alumno      | 0 %          |
| Sprint 2 | HU2 - Procesa-<br>miento de datos<br>faltantes y da-<br>tos atípicos | Analizar causas<br>de datos atípi-<br>cos                                   | 8 h / 5 SP | Alumno      | 0 %          |
| Sprint 2 | HU2 - Procesa-<br>miento de datos<br>faltantes y da-<br>tos atípicos | Graficar variables que presentan de datos atípicos                          | 5 h / 3 SP | Alumno      | 0 %          |
| Sprint 2 | HU2 - Procesa-<br>miento de datos<br>faltantes y da-<br>tos atípicos | Corregir datos<br>atípicos                                                  | 8 h / 5 SP | Alumno      | 0 %          |



| Sprint   | HU o fase                    | Tarea                      | Horas/SP    | Responsable | % Completado |
|----------|------------------------------|----------------------------|-------------|-------------|--------------|
| Sprint 2 | HU2 - Procesa-               | Documentar                 | 5 h / 3 SP  | Alumno      | 0 %          |
|          | miento de datos              | pasos y                    |             |             |              |
|          | faltantes y da-              | decisiones                 |             |             |              |
| Q        | tos atípicos                 | tomadas                    |             |             | . ~          |
| Sprint 2 | HU3 - Feature                | Identificar                | 5 h / 3 SP  | Alumno      | 0%           |
|          | Engineering                  | variables menos            |             |             |              |
|          |                              | importantes                |             |             |              |
| C 0      | IIII9 Et                     | para eliminarlas           | F 1 / 2 CD  | A 1         | 0.07         |
| Sprint 2 | HU3 - Feature<br>Engineering | Implementar<br>técnicas de | 5 h / 3 SP  | Alumno      | 0 %          |
|          | Ендінеетіну<br>              | eliminación de             |             |             |              |
|          |                              | features                   |             |             |              |
| Sprint 2 | HU3 - Feature                | Crear nuevas               | 7 h / 5 SP  | Alumno      | 0 %          |
| Sprine 2 | Engineering                  | variables                  | 111/051     | Midillio    | 0 70         |
|          |                              | mediante                   |             |             |              |
|          |                              | combinaciones              |             |             |              |
|          |                              | lineales de                |             |             |              |
|          |                              | variables                  |             |             |              |
|          |                              | existentes                 |             |             |              |
| Sprint 2 | HU3 - Feature                | Investigar otras           | 5 h / 3 SP  | Alumno      | 0 %          |
|          | Engineering                  | técnicas de                | ·           |             |              |
|          |                              | creación de                |             |             |              |
|          |                              | variables                  |             |             |              |
| Sprint 2 | HU3 - Feature                | Aplicar otras              | 8 h / 5 SP  | Alumno      | 0 %          |
|          | Engineering                  | técnicas de                |             |             |              |
|          |                              | creación de                |             |             |              |
| G 1 1 2  | TITIO E                      | variables                  | 7 1 / 2 CD  | 4.1         | 0.04         |
| Sprint 2 | HU3 - Feature                | Evaluar nuevas             | 5 h / 3 SP  | Alumno      | 0%           |
|          | Engineering                  | variables en mo-           |             |             |              |
| Sprint 2 | HU3 - Feature                | delos<br>Documentar        | 3 h / 2 SP  | Alumno      | 0 %          |
| Spriit 2 | Engineering                  |                            |             | Aluillio    | 0 70         |
|          | Dilgineering                 | pasos y<br>decisiones      |             |             |              |
|          |                              | tomadas                    |             |             |              |
| Sprint 3 | HU4 - Im-                    | Implementar                | 4 h / 2 SP  | Alumno      | 0 %          |
| Spring   | plementación                 | código de                  | 1.11 / 2.51 |             | 0 70         |
|          | de modelos                   | validación                 |             |             |              |
|          | de Machine                   | cruzada                    |             |             |              |
|          | Learning                     | para Logistic              |             |             |              |
|          |                              | Regression                 |             |             |              |
| Sprint 3 | HU4 - Im-                    | Implementar                | 6 h / 3 SP  | Alumno      | 0 %          |
|          | plementación                 | modelo Logistic            |             |             |              |
|          | de modelos                   | Regression, sin            |             |             |              |
|          | de <i>Machine</i>            | considerar                 |             |             |              |
|          | Learning                     | feature                    |             |             |              |
|          |                              | engineering                |             |             |              |



| Sprint   | HU o fase                                                                                                                 | Tarea                      | Horas/SP    | Responsable | % Completado |
|----------|---------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------|-------------|--------------|
| Sprint 3 | HU4 - Im-                                                                                                                 | Evaluar                    | 4 h / 2 SP  | Alumno      | 0 %          |
|          | plementación                                                                                                              | modelo <i>Logistic</i>     |             |             |              |
|          | de modelos                                                                                                                | $Regression, \sin$         |             |             |              |
|          | de Machine                                                                                                                | considerar                 |             |             |              |
|          | Learning                                                                                                                  | feature                    |             |             |              |
| G        | TTT 1                                                                                                                     | engineering                | 0.1 / 0.CD  | 4.1         | 0.04         |
| Sprint 3 | HU4 - Im-                                                                                                                 | Implementar                | 6 h / 3 SP  | Alumno      | 0 %          |
|          | plementación                                                                                                              | modelo <i>Logistic</i>     |             |             |              |
|          | de modelos<br>de <i>Machine</i>                                                                                           | Regression, considerando   |             |             |              |
|          | $egin{array}{cccc} de & Machine \\ Learning \end{array}$                                                                  | feature                    |             |             |              |
|          | Learning                                                                                                                  | engineering                |             |             |              |
| Sprint 3 | HU4 - Im-                                                                                                                 | Evaluar mode-              | 4 h / 2 SP  | Alumno      | 0 %          |
| Sprine 5 | plementación                                                                                                              | lo Logistic Re-            | 411/201     | Mullino     | 0 70         |
|          | de modelos                                                                                                                | gression, consi-           |             |             |              |
|          | $\begin{array}{ccc} \operatorname{de} & \operatorname{Modeles} \\ \operatorname{de} & \operatorname{Machine} \end{array}$ | derando feature            |             |             |              |
|          | Learning                                                                                                                  | engineering                |             |             |              |
| Sprint 3 | HU4 - Im-                                                                                                                 | Implementar                | 4 h / 2 SP  | Alumno      | 0 %          |
|          | plementación                                                                                                              | código de                  | ,           |             |              |
|          | de modelos                                                                                                                | validación                 |             |             |              |
|          | de Machine                                                                                                                | cruzada para               |             |             |              |
|          | Learning                                                                                                                  | SVM                        |             |             |              |
| Sprint 3 | HU4 - Im-                                                                                                                 | Implementar                | 6 h / 3 SP  | Alumno      | 0 %          |
|          | plementación                                                                                                              | modelo SVM,                |             |             |              |
|          | de modelos                                                                                                                | sin considerar             |             |             |              |
|          | de Machine                                                                                                                | feature                    |             |             |              |
| G : + 9  | Learning                                                                                                                  | engineering                | 4.1 / 9.CD  | A 1         | 0.07         |
| Sprint 3 | HU4 - Im-                                                                                                                 | Evaluar modelo $SVM$ , sin | 4 h / 3 SP  | Alumno      | 0 %          |
|          | plementación<br>de modelos                                                                                                | $SVM$ , $\sin$ considerar  |             |             |              |
|          | de = Machine                                                                                                              | feature                    |             |             |              |
|          | $oxed{Learning}$                                                                                                          | engineering                |             |             |              |
| Sprint 3 | HU4 - Im-                                                                                                                 | Implementar                | 6 h / 3 SP  | Alumno      | 0 %          |
| r.       | plementación                                                                                                              | modelo $SVM$ ,             | , , , , , , |             | ,,,          |
|          | de modelos                                                                                                                | considerando               |             |             |              |
|          | de <i>Machine</i>                                                                                                         | feature                    |             |             |              |
|          | Learning                                                                                                                  | engineering                |             |             |              |
| Sprint 3 | HU4 - Im-                                                                                                                 | Evaluar mode-              | 4 h / 2 SP  | Alumno      | 0 %          |
|          | plementación                                                                                                              | lo SVM, consi-             |             |             |              |
|          | de modelos                                                                                                                | derando feature            |             |             |              |
|          | de Machine                                                                                                                | engineering                |             |             |              |
|          | Learning                                                                                                                  |                            |             |             |              |
| Sprint 3 | HU4 - Im-                                                                                                                 | Implementar                | 4 h / 2 SP  | Alumno      | 0 %          |
|          | plementación                                                                                                              | código de                  |             |             |              |
|          | de modelos                                                                                                                | validación                 |             |             |              |
|          | de Machine                                                                                                                | cruzada para               |             |             |              |
|          | Learning                                                                                                                  | XGBoost                    |             |             |              |



| Sprint   | HU o fase                       | Tarea                    | Horas/SP   | Responsable | % Completado |
|----------|---------------------------------|--------------------------|------------|-------------|--------------|
| Sprint 3 | HU4 - Im-                       | Implementar              | 8 h / 5 SP | Alumno      | 0 %          |
|          | plementación                    | modelo                   |            |             |              |
|          | de modelos                      | XGBoost, sin             |            |             |              |
|          | de Machine                      | considerar               |            |             |              |
|          | Learning                        | feature                  |            |             |              |
| G : 4 4  | TITTA                           | engineering              | 6.1 / 9.CD | A 1         | 0.07         |
| Sprint 4 | HU4 - Im-                       | Evaluar modelo           | 6 h / 3 SP | Alumno      | 0 %          |
|          | plementación<br>de modelos      | $XGBoost, \sin$          |            |             |              |
|          | de modelos<br>de <i>Machine</i> | considerar $feature$     |            |             |              |
|          | $oxed{Learning}$                | jeature<br>  engineering |            |             |              |
| Sprint 4 | HU4 - Im-                       | Implementar              | 8 h / 5 SP | Alumno      | 0 %          |
| Sprine 4 | plementación                    | modelo                   |            | Alumno      | 0 70         |
|          | de modelos                      | XGBoost,                 |            |             |              |
|          | de $Machine$                    | considerando             |            |             |              |
|          | Learning                        | feature                  |            |             |              |
|          |                                 | engineering              |            |             |              |
| Sprint 4 | HU4 - Im-                       | Evaluar modelo           | 6 h / 3 SP | Alumno      | 0 %          |
|          | plementación                    | XGBoost, consi-          | ,          |             |              |
|          | de modelos                      | derando feature          |            |             |              |
|          | de <i>Machine</i>               | engineering              |            |             |              |
|          | Learning                        |                          |            |             |              |
| Sprint 4 | HU4 - Im-                       | Persistir mode-          | 4 h / 2 SP | Alumno      | 0 %          |
|          | plementación                    | los en $GitHub$          |            |             |              |
|          | de modelos                      |                          |            |             |              |
|          | de Machine                      |                          |            |             |              |
|          | Learning                        | D .                      | * 1 / 2 CD | A 1         | 0.04         |
| Sprint 4 | HU4 - Im-                       | Documentar               | 5 h / 3 SP | Alumno      | 0 %          |
|          | plementación                    | pasos y                  |            |             |              |
|          | de modelos                      | decisiones               |            |             |              |
|          | de Machine                      | tomadas                  |            |             |              |
| Sprint 4 | Learning HU5 - Optimi-          | Identificar              | 5 h / 3 SP | Alumno      | 0 %          |
| Spring 4 | zación de hiper-                | hiperparáme-             | 011/001    | Tiuiiiio    | 0 70         |
|          | parámetros                      | tros y rangos            |            |             |              |
|          | r saturation                    | $de \qquad Logistic$     |            |             |              |
|          |                                 | Regression               |            |             |              |
| Sprint 4 | HU5 - Optimi-                   | Optimizar hi-            | 6 h / 3 SP | Alumno      | 0 %          |
|          | zación de hiper-                | perparámetros            | ,          |             |              |
|          | parámetros                      | de Logistic              |            |             |              |
|          |                                 | $Regression$ , $\sin$    |            |             |              |
|          |                                 | considerar               |            |             |              |
|          |                                 | feature                  |            |             |              |
|          |                                 | engineering              |            |             |              |



| Sprint   | HU o fase        | Tarea                       | Horas/SP   | Responsable | % Completado |
|----------|------------------|-----------------------------|------------|-------------|--------------|
| Sprint 4 | HU5 - Optimi-    | Implementar                 | 4 h / 2 SP | Alumno      | 0 %          |
|          | zación de hiper- | hiperparáme-                |            |             |              |
|          | parámetros       | tros más                    |            |             |              |
|          |                  | óptimos                     |            |             |              |
|          |                  | en Logistic                 |            |             |              |
|          |                  | Regression, sin considerar  |            |             |              |
|          |                  | feature                     |            |             |              |
|          |                  | feature<br>  engineering    |            |             |              |
| Sprint 4 | HU5 - Optimi-    | Evaluar modelo              | 4 h / 2 SP | Alumno      | 0 %          |
| Spriit 4 | zación de hiper- | de Logistic                 | 111/251    | THUIIIIO    | 0 70         |
|          | parámetros       | Regression con              |            |             |              |
|          | r                | hiperparáme-                |            |             |              |
|          |                  | tros óptimos,               |            |             |              |
|          |                  | sin considerar              |            |             |              |
|          |                  | feature                     |            |             |              |
|          |                  | engineering                 |            |             |              |
| Sprint 4 | HU5 - Optimi-    | Optimizar hi-               | 6 h / 3 SP | Alumno      | 0 %          |
|          | zación de hiper- | perparámetros               |            |             |              |
|          | parámetros       | de <i>Logistic</i>          |            |             |              |
|          |                  | Regression,                 |            |             |              |
|          |                  | considerando                |            |             |              |
|          |                  | $ig \ feature\ engineering$ |            |             |              |
| Sprint 4 | HU5 - Optimi-    | Implementar                 | 4 h / 2 SP | Alumno      | 0 %          |
| Spriit 4 | zación de hiper- | hiperparáme-                | 411/251    | Midillio    | 0 70         |
|          | parámetros       | tros más                    |            |             |              |
|          | r                | óptimos                     |            |             |              |
|          |                  | en Logistic                 |            |             |              |
|          |                  | Regression,                 |            |             |              |
|          |                  | considerando                |            |             |              |
|          |                  | feature                     |            |             |              |
|          |                  | engineering                 |            |             |              |
| Sprint 4 | HU5 - Optimi-    | Evaluar modelo              | 4 h / 2 SP | Alumno      | 0 %          |
|          | zación de hiper- | de Logistic                 |            |             |              |
|          | parámetros       | Regression con              |            |             |              |
|          |                  | hiperparáme-                |            |             |              |
|          |                  | tros óptimos, considerando  |            |             |              |
|          |                  | feature                     |            |             |              |
|          |                  | feature<br>  engineering    |            |             |              |
| Sprint 5 | HU5 - Optimi-    | Identificar hi-             | 5 h / 3 SP | Alumno      | 0 %          |
| Spriii   | zación de hiper- | perparámetros               |            | 1114111110  |              |
|          | parámetros       | y rangos de                 |            |             |              |
|          | _                | SVM                         |            |             |              |



| Sprint   | HU o fase                             | Tarea                                                                                 | Horas/SP   | Responsable | % Completado |
|----------|---------------------------------------|---------------------------------------------------------------------------------------|------------|-------------|--------------|
| Sprint 5 | HU5 - Optimización de hiperparámetros | Optimizar hiperparámetros de SVM, sin considerar feature engineering                  | 6 h / 3 SP | Alumno      | 0 %          |
| Sprint 5 | HU5 - Optimización de hiperparámetros | Implementar hiperparámetros más óptimos en SVM, sin considerar feature engineering    | 4 h / 2 SP | Alumno      | 0%           |
| Sprint 5 | HU5 - Optimización de hiperparámetros | Evaluar modelo de SVM con hiperparámetros óptimos, sin considerar feature engineering | 4 h / 2 SP | Alumno      | 0 %          |
| Sprint 5 | HU5 - Optimización de hiperparámetros | Optimizar hiperparáme- tros de SVM, considerando feature engineering                  | 6 h / 3 SP | Alumno      | 0 %          |
| Sprint 5 | HU5 - Optimización de hiperparámetros | Implementar hiperparámetros más óptimos en SVM, considerando feature engineering      | 4 h / 2 SP | Alumno      | 0 %          |
| Sprint 5 | HU5 - Optimización de hiperparámetros | Evaluar modelo de SVM con hiperparámetros óptimos, considerando feature engineering   | 4 h / 2 SP | Alumno      | 0 %          |
| Sprint 5 | HU5 - Optimización de hiperparámetros | Identificar hiperparámetros y rangos de XGBoost                                       | 7 h / 5 SP | Alumno      | 0 %          |



| Sprint   | HU o fase        | Tarea                                                                | Horas/SP    | Responsable | % Completado |
|----------|------------------|----------------------------------------------------------------------|-------------|-------------|--------------|
| Sprint 5 | HU5 - Optimi-    | Optimizar hi-                                                        | 8 h / 5 SP  | Alumno      | 0 %          |
|          | zación de hiper- | perparámetros                                                        |             |             |              |
|          | parámetros       | de XGBoost,                                                          |             |             |              |
|          |                  | sin considerar                                                       |             |             |              |
|          |                  | feature                                                              |             |             |              |
|          |                  | engineering                                                          | ~ 1 / 2 GD  |             | 0.04         |
| Sprint 5 | HU5 - Optimi-    | Implementar                                                          | 5 h / 3 SP  | Alumno      | 0 %          |
|          | zación de hiper- | hiperparáme-                                                         |             |             |              |
|          | parámetros       | tros más                                                             |             |             |              |
|          |                  | óptimos en                                                           |             |             |              |
|          |                  | XGBoost, sin considerar                                              |             |             |              |
|          |                  | feature                                                              |             |             |              |
|          |                  | engineering                                                          |             |             |              |
| Sprint 5 | HU5 - Optimi-    | Evaluar modelo                                                       | 7 h / 5 SP  | Alumno      | 0 %          |
| Spriii 0 | zación de hiper- | de XGBoost                                                           | 1 11 / 0 01 | THUIIIII    | 070          |
|          | parámetros       | con hiper-                                                           |             |             |              |
|          | P                | parámetros                                                           |             |             |              |
|          |                  | óptimos, sin                                                         |             |             |              |
|          |                  | considerar                                                           |             |             |              |
|          |                  | feature                                                              |             |             |              |
|          |                  | engineering                                                          |             |             |              |
| Sprint 6 | HU5 - Optimi-    | Optimizar hi-                                                        | 8 h / 5 SP  | Alumno      | 0 %          |
|          | zación de hiper- | perparámetros                                                        |             |             |              |
|          | parámetros       | de XGBoost,                                                          |             |             |              |
|          |                  | considerando                                                         |             |             |              |
|          |                  | feature                                                              |             |             |              |
|          |                  | engineering                                                          |             |             |              |
| Sprint 6 | HU5 - Optimi-    | Implementar                                                          | 5 h / 3 SP  | Alumno      | 0 %          |
|          | zación de hiper- | hiperparáme-                                                         |             |             |              |
|          | parámetros       | tros más                                                             |             |             |              |
|          |                  | óptimos en                                                           |             |             |              |
|          |                  | XGBoost,<br>considerando                                             |             |             |              |
|          |                  | feature                                                              |             |             |              |
|          |                  | $\left  \begin{array}{c} feature \\ engineering \end{array} \right $ |             |             |              |
| Sprint 6 | HU5 - Optimi-    | Evaluar modelo                                                       | 7 h / 5 SP  | Alumno      | 0 %          |
| Spriii   | zación de hiper- | de XGBoost                                                           | 111/001     | 1110111110  |              |
|          | parámetros       | con hiper-                                                           |             |             |              |
|          | •                | parámetros                                                           |             |             |              |
|          |                  | óptimos,                                                             |             |             |              |
|          |                  | considerando                                                         |             |             |              |
|          |                  | feature                                                              |             |             |              |
|          |                  | engineering                                                          |             |             |              |
| Sprint 6 | HU5 - Optimi-    | Documentar                                                           | 5 h / 3 SP  | Alumno      | 0 %          |
|          | zación de hiper- | pasos y                                                              |             |             |              |
|          | parámetros       | decisiones                                                           |             |             |              |
|          |                  | tomadas                                                              |             |             |              |



| Sprint   | HU o fase      | Tarea                     | Horas/SP   | Responsable | % Completado |
|----------|----------------|---------------------------|------------|-------------|--------------|
| Sprint 6 | HU6 - Métricas | Obtener                   | 3 h / 2 SP | Alumno      | 0 %          |
|          | de modelos     | métricas                  | ·          |             |              |
|          |                | $de 	extit{F1-score}$     |            |             |              |
|          |                | para <i>Logistic</i>      |            |             |              |
|          |                | Regression, sin           |            |             |              |
|          |                | considerar                |            |             |              |
|          |                | feature                   |            |             |              |
|          |                | engineering               |            |             |              |
| Sprint 6 | HU6 - Métricas | Obtener                   | 5 h / 3 SP | Alumno      | 0%           |
|          | de modelos     | métricas de               |            |             |              |
|          |                | AUC- $ROC$                |            |             |              |
|          |                | para <i>Logistic</i>      |            |             |              |
|          |                | $Regression, \sin$        |            |             |              |
|          |                | considerar                |            |             |              |
|          |                | feature                   |            |             |              |
|          |                | engineering,              |            |             |              |
|          |                | y graficar                |            |             |              |
| Sprint 6 | HU6 - Métricas | Obtener                   | 3 h / 2 SP | Alumno      | 0%           |
|          | de modelos     | métricas                  |            |             |              |
|          |                | $de 	extit{F1-score}$     |            |             |              |
|          |                | para Logistic             |            |             |              |
|          |                | Regression,               |            |             |              |
|          |                | considerando              |            |             |              |
|          |                | feature                   |            |             |              |
|          |                | engineering               |            |             | . ~          |
| Sprint 6 | HU6 - Métricas | Obtener                   | 5 h / 3 SP | Alumno      | 0%           |
|          | de modelos     | métricas de               |            |             |              |
|          |                | AUC-ROC                   |            |             |              |
|          |                | para Logistic             |            |             |              |
|          |                | Regression,               |            |             |              |
|          |                | considerando              |            |             |              |
|          |                | feature                   |            |             |              |
|          |                | engineering,              |            |             |              |
| Conint C | HU6 - Métricas | y graficar<br>Obtener     | 2 h / 9 CD | A 1         | 0 %          |
| Sprint 6 |                |                           | 3 h / 2 SP | Alumno      | U %          |
|          | de modelos     | l <u> </u>                |            |             |              |
|          |                |                           |            |             |              |
|          |                | $SVM$ , $\sin$ considerar |            |             |              |
|          |                | feature                   |            |             |              |
|          |                | engineering               |            |             |              |
| Sprint 6 | HU6 - Métricas | Obtener                   | 5 h / 3 SP | Alumno      | 0 %          |
| Shim 0   | de modelos     | métricas de               |            | Munno       | 0 70         |
|          |                | AUC-ROC                   |            |             |              |
|          |                | para $SVM$ , sin          |            |             |              |
|          |                | considerar                |            |             |              |
|          |                | feature                   |            |             |              |
|          |                | engineering,              |            |             |              |
|          |                | y graficar                |            |             |              |
|          | l .            | V 0                       | l          |             |              |



| Sprint   | HU o fase      | Tarea                                                              | Horas/SP   | Responsable | % Completado |
|----------|----------------|--------------------------------------------------------------------|------------|-------------|--------------|
| Sprint 6 | HU6 - Métricas | Obtener métri-                                                     | 3 h / 2 SP | Alumno      | 0 %          |
|          | de modelos     | cas de F1-score                                                    |            |             |              |
|          |                | para SVM, con-                                                     |            |             |              |
|          |                | siderando featu-                                                   |            |             |              |
|          |                | re engineering                                                     |            |             |              |
| Sprint 6 | HU6 - Métricas | Obtener                                                            | 5 h / 3 SP | Alumno      | 0 %          |
|          | de modelos     | métricas de                                                        |            |             |              |
|          |                | AUC-ROC                                                            |            |             |              |
|          |                | para SVM,                                                          |            |             |              |
|          |                | considerando                                                       |            |             |              |
|          |                | $\mid feature \mid$                                                |            |             |              |
|          |                | engineering,                                                       |            |             |              |
| Conint 6 | HU6 - Métricas | y graficar<br>Obtener                                              | 3 h / 2 SP | A 1         | 0 %          |
| Sprint 6 | de modelos     |                                                                    | 311/231    | Alumno      | 0 70         |
|          | de modelos     |                                                                    |            |             |              |
|          |                | F1-score  para $   XGBoost, $ sin                                  |            |             |              |
|          |                | considerar                                                         |            |             |              |
|          |                | feature                                                            |            |             |              |
|          |                | $\left \begin{array}{c} feature \\ engineering \end{array}\right $ |            |             |              |
| Sprint 7 | HU6 - Métricas | Obtener                                                            | 5 h / 3 SP | Alumno      | 0 %          |
| Sprine ( | de modelos     | métricas de                                                        |            |             | 0 70         |
|          |                | AUC-ROC                                                            |            |             |              |
|          |                | para XGBoost,                                                      |            |             |              |
|          |                | sin considerar                                                     |            |             |              |
|          |                | feature                                                            |            |             |              |
|          |                | engineering,                                                       |            |             |              |
|          |                | y graficar                                                         |            |             |              |
| Sprint 7 | HU6 - Métricas | Obtener                                                            | 3 h / 2 SP | Alumno      | 0 %          |
|          | de modelos     | métricas de                                                        |            |             |              |
|          |                | F1-score para                                                      |            |             |              |
|          |                | XGBoost,                                                           |            |             |              |
|          |                | considerando                                                       |            |             |              |
|          |                | feature                                                            |            |             |              |
| G =      | TITIO DEC.     | engineering                                                        | K 1 / 2 CD | A 1         | 0.64         |
| Sprint 7 | HU6 - Métricas | Obtener                                                            | 5 h / 3 SP | Alumno      | 0 %          |
|          | de modelos     | métricas de                                                        |            |             |              |
|          |                | AUC-ROC                                                            |            |             |              |
|          |                | para XGBoost, considerando                                         |            |             |              |
|          |                | feature                                                            |            |             |              |
|          |                | $\begin{array}{c c} feature \\ engineering, \end{array}$           |            |             |              |
|          |                | y graficar                                                         |            |             |              |
| Sprint 7 | HU6 - Métricas | Comparar                                                           | 3 h / 2 SP | Alumno      | 0 %          |
| - r      | de modelos     | métricas                                                           |            |             |              |
|          |                | de distintos                                                       |            |             |              |
|          |                | modelos                                                            |            |             |              |
|          | <u> </u>       | l                                                                  | I          |             |              |



| Sprint   | HU o fase                              | Tarea                                                | Horas/SP   | Responsable | % Completado |
|----------|----------------------------------------|------------------------------------------------------|------------|-------------|--------------|
| Sprint 7 | HU6 - Métricas                         | Documentar                                           | 5 h / 3 SP | Alumno      | 0 %          |
|          | de modelos                             | pasos y decisiones                                   |            |             |              |
|          |                                        | tomadas                                              |            |             |              |
| Sprint 7 | HU7 - Desplie-                         | Investigar                                           | 5 h / 3 SP | Alumno      | 0 %          |
| opini .  | gue en <i>MLFlow</i>                   | buenas                                               |            |             | 0,0          |
|          |                                        | prácticas para                                       |            |             |              |
|          |                                        | despliegues de                                       |            |             |              |
| Q        |                                        | MLFlow                                               | -1 / - CD  |             | 2.04         |
| Sprint 7 | HU7 - Desplie-                         | Crear entorno local para                             | 7 h / 5 SP | Alumno      | 0 %          |
|          | gue en <i>MLFlow</i>                   | local para<br>despliegue                             |            |             |              |
|          |                                        | MLFlow                                               |            |             |              |
| Sprint 7 | HU7 - Desplie-                         | Replicar técni-                                      | 8 h / 5 SP | Alumno      | 0 %          |
|          | gue en <i>MLFlow</i>                   | cas de análisis                                      | ,          |             |              |
|          |                                        | de datos en en-                                      |            |             |              |
|          | 11115 D                                | torno MLFlow                                         | 0.1 / 5 00 |             | 2.04         |
| Sprint 7 | HU7 - Desplie-                         | Replicar                                             | 8 h / 5 SP | Alumno      | 0 %          |
|          | gue en <i>MLFlow</i>                   | técnicas de entrenamiento                            |            |             |              |
|          |                                        | de modelos                                           |            |             |              |
|          |                                        | $de \qquad Logistic$                                 |            |             |              |
|          |                                        | Regression                                           |            |             |              |
|          |                                        | en entorno                                           |            |             |              |
| ~        |                                        | MLFlow                                               |            |             | . ~          |
| Sprint 7 | HU7 - Desplie-                         | Replicar técni-                                      | 8 h / 5 SP | Alumno      | 0 %          |
|          | gue en <i>MLFlow</i>                   | cas de entrena-<br>miento de mo-                     |            |             |              |
|          |                                        | delos de SVM                                         |            |             |              |
|          |                                        | en entorno $ML$ -                                    |            |             |              |
|          |                                        | Flow                                                 |            |             |              |
| Sprint 8 | HU7 - Desplie-                         | Replicar técni-                                      | 8 h / 5 SP | Alumno      | 0 %          |
|          | gue en <i>MLFlow</i>                   | cas de entrena-                                      |            |             |              |
|          |                                        | miento de mo-                                        |            |             |              |
|          |                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |            |             |              |
|          |                                        | torno MLFlow                                         |            |             |              |
| Sprint 8 | HU7 - Desplie-                         | Replicar técni-                                      | 8 h / 5 SP | Alumno      | 0 %          |
|          | gue en <i>MLFlow</i>                   | cas de evalua-                                       | ,          |             |              |
|          |                                        | ción de modelos                                      |            |             |              |
|          |                                        | en entorno <i>ML</i> -                               |            |             |              |
| Cm-i1 O  |                                        | Flow                                                 | 4 h / 0 CD | Λ1          | 0.07         |
| Sprint 8 | HU7 - Desplie-<br>gue en <i>MLFlow</i> | Ejecutar<br>localmente                               | 4 h / 2 SP | Alumno      | 0 %          |
|          | Suc on MDI tow                         | el entorno                                           |            |             |              |
|          |                                        | MLFlow                                               |            |             |              |
| Sprint 8 | HU7 - Desplie-                         | Validar                                              | 4 h / 2 SP | Alumno      | 0 %          |
|          | gue en <i>MLFlow</i>                   | ejecución local                                      |            |             |              |
|          |                                        | del entorno                                          |            |             |              |
|          |                                        | MLFlow                                               |            |             |              |



| Sprint   | HU o fase                                        | Tarea                                                                                                                                                                                   | Horas/SP   | Responsable | % Completado |
|----------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|--------------|
| Sprint 8 | HU7 - Despliegue en <i>MLFlow</i>                | Documentar pasos y decisiones tomadas MLFlow                                                                                                                                            | 6 h / 3 SP | Alumno      | 0 %          |
| Sprint 8 | HU8 - API para entorno ML-Flow                   | Investigar como exponer un entorno <i>MLFlow</i> mediante <i>API</i>                                                                                                                    | 5 h / 3 SP | Alumno      | 0 %          |
| Sprint 8 | HU8 - API para entorno ML-Flow                   | Exponer resultados de modelos explorados en entorno MLFlow mediante API                                                                                                                 | 8 h / 5 SP | Alumno      | 0 %          |
| Sprint 8 | HU8 - API para entorno ML-Flow                   | $\begin{array}{ll} \text{Exponer} \\ \text{comparación} \\ \text{de} & \text{modelos} \\ \text{en} & \text{entorno} \\ \\ \textit{MLFlow} \\ \text{mediante } \textit{API} \end{array}$ | 8 h / 5 SP | Alumno      | 0 %          |
| Sprint 8 | HU8 - API para entorno ML-Flow                   | Documentar pasos y decisiones tomadas                                                                                                                                                   | 3 h / 2 SP | Alumno      | 0 %          |
| Sprint 8 | HU9 - Implementación de buenas prácticas         | Investigar bue-<br>nas prácticas en<br>código <i>Python</i>                                                                                                                             | 4 h / 2 SP | Alumno      | 0 %          |
| Sprint 9 | HU9 - Implementación de buenas prácticas         | Aplicar buenas<br>prácticas en<br>código <i>Python</i>                                                                                                                                  | 8 h / 5 SP | Alumno      | 0 %          |
| Sprint 9 | HU10 - Documentación                             | Asegurar que cada decisión tomada haya sido justificada y documentada                                                                                                                   | 6 h / 3 SP | Alumno      | 0 %          |
| Sprint 9 | HU10 - Documentación                             | Asegurar orto-<br>grafía y formato<br>en documenta-<br>ción                                                                                                                             | 8 h / 5 SP | Alumno      | 0 %          |
| Sprint 9 | HU11 - Validación de <i>API</i> de <i>MLFlow</i> | Validar acceso a modelos explorados mediante API de entorno MLFlow                                                                                                                      | 8 h / 5 SP | Alumno      | 0%           |



| Sprint    | HU o fase                       | Tarea                                                                            | Horas/SP   | Responsable | % Completado |
|-----------|---------------------------------|----------------------------------------------------------------------------------|------------|-------------|--------------|
| Sprint 9  | HU11 - Valida-                  | Validar acceso                                                                   | 8 h / 5 SP | Alumno      | 0 %          |
|           | ción de <i>API</i> de           | a comparación                                                                    |            |             |              |
|           | MLFlow                          | $     \text{de}  \text{modelos} \\     \text{mediante}  API $                    |            |             |              |
|           |                                 | de entorno                                                                       |            |             |              |
|           |                                 | MLFlow                                                                           |            |             |              |
| Sprint 9  | HU11 - Valida-                  | Crear                                                                            | 5 h / 3 SP | Alumno      | 0 %          |
|           | ción de $API$ de                | documentación                                                                    |            |             |              |
|           | MLFlow                          | sobre el uso de                                                                  |            |             |              |
|           |                                 | API de entorno $MLFlow$                                                          |            |             |              |
| Sprint 9  | Redacción de                    | Redacción de                                                                     | 6 h / 3 SP | Alumno      | 0 %          |
| Sprine 5  | memoria                         | sección sobre                                                                    |            | Trumino     | 0 70         |
|           |                                 | procesamiento                                                                    |            |             |              |
|           |                                 | $de \ datos$                                                                     |            |             |              |
| Sprint 9  | Redacción de                    | Redacción                                                                        | 3 h / 2 SP | Alumno      | 0 %          |
|           | memoria                         | de sección                                                                       |            |             |              |
|           |                                 | $\begin{array}{ccc} { m sobre} & {\it Feature} \\ {\it Engineering} \end{array}$ |            |             |              |
| Sprint 9  | Redacción de                    | Redacción de                                                                     | 7 h / 5 SP | Alumno      | 0 %          |
| Spriit 5  | memoria                         | sección sobre                                                                    |            | THUIIIIO    | 0 70         |
|           |                                 | $implementaci\'{o}n$                                                             |            |             |              |
|           |                                 | $de\ modelos$                                                                    |            |             |              |
| Sprint 10 | Redacción de                    | Redacción de                                                                     | 6 h / 3 SP | Alumno      | 0 %          |
|           | memoria                         | sección sobre                                                                    |            |             |              |
|           |                                 | optimización de<br>hiperparáme-                                                  |            |             |              |
|           |                                 | tros                                                                             |            |             |              |
| Sprint 10 | Redacción de                    | Redacción de                                                                     | 5 h / 3 SP | Alumno      | 0 %          |
|           | memoria                         | sección sobre                                                                    | ,          |             |              |
|           |                                 | MLFlow                                                                           |            |             |              |
| Sprint 10 | Redacción de                    | Correcciones                                                                     | 8 h / 5 SP | Alumno      | 0 %          |
| Conint 10 | memoria  Propagaión do          | generales Confocción do                                                          | 6 h / 9 CD | Alumas      | 0 %          |
| Sprint 10 | Preparación de presentación fi- | Confección de presentación                                                       | 6 h / 3 SP | Alumno      | U %          |
|           | nal                             | PowerPoint                                                                       |            |             |              |
| Sprint 10 | Preparación de                  | Confección                                                                       | 8 h / 5 SP | Alumno      | 0 %          |
|           | presentación fi-                | de video                                                                         | ,          |             |              |
|           | nal                             | demostración                                                                     |            |             |              |
| Sprint 10 | Ajustes finales                 | Realizar correc-                                                                 | 6 h / 3 SP | Alumno      | 0 %          |
|           |                                 | ciones a código                                                                  |            |             |              |
|           |                                 | de análisis de<br>datos                                                          |            |             |              |
| Sprint 10 | Ajustes finales                 | Realizar correc-                                                                 | 6 h / 3 SP | Alumno      | 0 %          |
| - F       | J 11110100                      | ciones a código                                                                  |            |             |              |
|           |                                 | de entrenamien-                                                                  |            |             |              |
|           |                                 | to de modelos                                                                    |            |             |              |



| Sprint    | HU o fase       | Tarea            | Horas/SP   | Responsable | % Completado |
|-----------|-----------------|------------------|------------|-------------|--------------|
| Sprint 10 | Ajustes finales | Realizar correc- | 6 h / 3 SP | Alumno      | 0 %          |
|           |                 | ciones a códi-   |            |             |              |
|           |                 | go de evalua-    |            |             |              |
|           |                 | ción de modelos  |            |             |              |
| Sprint 10 | Ajustes finales | Realizar         | 6 h / 3 SP | Alumno      | 0 %          |
|           |                 | pruebas finales  |            |             |              |
| Sprint 10 | Ajustes finales | Realizar ajustes | 6 h / 3 SP | Alumno      | 0 %          |
|           |                 | en memoria fi-   |            |             |              |
|           |                 | nal              |            |             |              |

## 11. Diagrama de Gantt (sprints)

En el cuadro 4 se muestra el resumen de los sprints del diagrama Gantt.

En el cuadro 5 se especifíca qué referencia cada color utilizado en el diagrama Gantt.

El diagrama Gantt se puede observar en las figuras 2, 3, 4 y 5.

| Sprint | Cantidad de Horas | Fecha Inicio             | Fecha Fin                |
|--------|-------------------|--------------------------|--------------------------|
| 0      | 32 h              | 24 de junio de 2025      | 4 de julio de 2025       |
| 1      | 58 h              | 7 de julio de 2025       | 25 de julio de 2025      |
| 2      | 60 h              | 28 de julio de 2025      | 15 de agosto de 2025     |
| 3      | 64 h              | 18 de agosto de 2025     | 5 de septiembre de 2025  |
| 4      | 62 h              | 8 de septiembre de 2025  | 26 de septiembre de 2025 |
| 5      | 60 h              | 29 de septiembre de 2025 | 17 de octubre de 2025    |
| 6      | 57 h              | 20 de octubre de 2025    | 7 de noviembre de 2025   |
| 7      | 60 h              | 10 de noviembre de 2025  | 28 de noviembre de 2025  |
| 8      | 58 h              | 1 de diciembre de 2025   | 19 de diciembre de 2025  |
| 9      | 60 h              | 2 de marzo de 2026       | 20 de marzo de 2026      |
| 10     | 59 h              | 23 de marzo de 2026      | 10 de abril de 2026      |

Cuadro 4. Resumen de sprints del diagrama Gantt.

| Color    | Descripción      |  |  |
|----------|------------------|--|--|
| Azul     | Sprint           |  |  |
| Violeta  | Tarea técnica    |  |  |
| Verde    | Tarea no técnica |  |  |
| Amarillo | Hito             |  |  |

Cuadro 5. Referencias de colores utilizados en el diagrama Gantt.



Figura 2. Diagrama de Gantt - Sprints 0, 1 y 2



Figura 3. Diagrama de Gantt - Sprints 3, 4 y 5



Figura 4. Diagrama de Gantt - Sprints 6, 7 y 8



Figura 5. Diagrama de Gantt - Sprints 9 y 10



## 12. Normativa y cumplimiento de datos (gobernanza)

El proyecto utilizará el dataset de Taiwanese Bankruptcy Prediction.

El dataset está publicado bajo la licencia Creative Commons Attribution 4.0 International, la cual permite la copia, distribución, exhibición y ejecución de los datos siempre y cuando se dé crédito al autor y/o publicador, siendo en este caso el repositorio de Machine Learning de UC Irvine.

La información que presenta el dataset fue recolectada y publicada por el Taiwan Economic Journal. Tal como se menciona en la sección de financial data de su sitio web, todos los datos financieros que ellos presentan se obtienen de:

- Informes auditados por contadores públicos certificados.
- Datos mensuales sobre ingresos proporcionados por empresas que cotizan en la bolsa de Taiwán

Como dato adicional, en el *dataset* no se mencionan los nombres de las empresas ni datos similares, solo presenta información financiera.

Por todo lo mencionado anteriormente podemos garantizar que no hay inconvenientes al utilizar el dataset de Taiwanese Bankruptcy Prediction durante el desarrollo y publicación del proyecto. Solamente hay que dar crédito a su publicador (repositorio de Machine Learning de UC Irvine).

#### 13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).

Justificar el motivo por el cual se asigna determinado número de (O).

#### Riesgo 2:

- Severidad (S): X.
   Justificación...
- Ocurrencia (O): Y. Justificación...

## Riesgo 3:



- Severidad (S): X. Justificación...
- Ocurrencia (O): Y. Justificación...
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

| Riesgo | S | О | RPN | S* | O* | RPN* |
|--------|---|---|-----|----|----|------|
|        |   |   |     |    |    |      |
|        |   |   |     |    |    |      |
|        |   |   |     |    |    |      |
|        |   |   |     |    |    |      |
|        |   |   |     |    |    |      |

#### Criterio adoptado:

Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (\*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación:

- Severidad (S\*): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O\*): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

#### 14. Sprint Review

La revisión de sprint (*Sprint Review*) es una práctica fundamental en metodologías ágiles. Consiste en revisar y evaluar lo que se ha completado al finalizar un sprint. En esta instancia, se presentan los avances y se verifica si las funcionalidades cumplen con los criterios de aceptación establecidos. También se identifican entregables parciales y se consideran ajustes si es necesario.

Aunque el proyecto aún se encuentre en etapa de planificación, esta sección permite proyectar cómo se evaluarán las funcionalidades más importantes del backlog. Esta mirada anticipada favorece la planificación enfocada en valor y permite reflexionar sobre posibles obstáculos.

**Objetivo:** anticipar cómo se evaluará el avance del proyecto a medida que se desarrollen las funcionalidades, utilizando como base al menos cuatro historias de usuario del *Product Backlog*.



Seleccionar al menos 4 HU del Product Backlog. Para cada una, completar la siguiente tabla de revisión proyectada:

#### Formato sugerido:

| HU<br>seleccionada | Tareas<br>asociadas | Entregable esperado | ¿Cómo sabrás<br>que está<br>cumplida? | Observaciones<br>o riesgos |  |
|--------------------|---------------------|---------------------|---------------------------------------|----------------------------|--|
| HU1                | Tarea 1             | - Módulo funcional  | Cumple criterios<br>de aceptación     | Falta validar con          |  |
|                    | Tarea 2             |                     | definidos                             | er tutor                   |  |
| HU3                | Tarea 1             | Reporte generado    | Exportación                           | Requiere datos             |  |
|                    | Tarea 2             | Teperre generado    | disponible y clara                    | reales                     |  |
| HU5                | Tarea 1             | Panel de gestión    | Roles diferenciados                   | Riesgo en                  |  |
| 1100               | Tarea 2             | Taner de gestion    | operativos                            | integración                |  |
| HU7                | Tarea 1             | Informe             | PDF con gráficos                      | Puede faltar               |  |
|                    | Tarea 2             | trimestral          | y evolución                           | tiempo para<br>ajustes     |  |

## 15. Sprint Retrospective

La retrospectiva de sprint es una práctica orientada a la mejora continua. Al finalizar un sprint, el equipo (o el alumno, si trabaja de forma individual) reflexiona sobre lo que funcionó bien, lo que puede mejorarse y qué acciones concretas pueden implementarse para trabajar mejor en el futuro.

Durante la cursada se propuso el uso de la **Estrella de la Retrospectiva**, que organiza la reflexión en torno a cinco ejes:

- ¿Qué hacer más?
- ¿Qué hacer menos?
- ¿Qué mantener?
- ¿Qué empezar a hacer?
- ¿Qué dejar de hacer?

Aun en una etapa temprana, esta herramienta permite que el alumno planifique su forma de trabajar, identifique anticipadamente posibles dificultades y diseñe estrategias de organización personal.

Objetivo: reflexionar sobre las condiciones iniciales del proyecto, identificando fortalezas, posibles dificultades y estrategias de mejora, incluso antes del inicio del desarrollo.

Completar la siguiente tabla tomando como referencia los cinco ejes de la Estrella de la Retrospectiva (Starfish o estrella de mar). Esta instancia te ayudará a definir buenas prácticas



desde el inicio y prepararte para enfrentar el trabajo de forma organizada y flexible. Se deberá completar la tabla al menos para 3 sprints técnicos y 1 no técnico.

## Formato sugerido:

| Sprint<br>tipo y N°                                       | ¿Qué hacer<br>más?                                      | ¿Qué hacer<br>menos?                                | ¿Qué<br>mantener?                  | ¿Qué<br>empezar a<br>hacer?               | ¿Qué dejar<br>de hacer?                         |
|-----------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|------------------------------------|-------------------------------------------|-------------------------------------------------|
| Sprint<br>técnico - 1                                     | Validaciones<br>continuas con<br>el alumno              | Cambios sin<br>versión<br>registrada                | Pruebas con<br>datos<br>simulados  | Documentar<br>cambios<br>propuestos       | Ajustes sin<br>análisis de<br>impacto           |
| Sprint<br>técnico - 2                                     | Verificar configuraciones<br>en múltiples<br>escenarios | Modificar<br>parámetros<br>sin guardar<br>historial | Perfiles<br>reutilizables          | Usar logs<br>para<br>configuración        | Repetir<br>pruebas<br>manuales<br>innecesarias  |
| Sprint<br>técnico - 8                                     | Comparar<br>correlaciones<br>con casos<br>previos       | Cambiar<br>parámetros<br>sin justificar             | Revisión<br>cruzada de<br>métricas | Anotar configuraciones usadas             | Trabajar sin<br>respaldo de<br>datos            |
| Sprint no<br>técnico -<br>12 (por<br>ej.: "De-<br>fensa") | Ensayos<br>orales con<br>feedback                       | Cambiar<br>contenidos en<br>la memoria              | Material<br>visual claro           | Dividir la<br>presentación<br>por bloques | Agregar<br>gráficos<br>difíciles de<br>explicar |