Operating Characteristics of the Specified Trial Design

Table 1: Probabilities ($\times 100$) of reaching each possible trial monitoring outcome and unconditional power ($\times 100$) to reject the specified null hypothesis for a study design with 1 vaccine arm with 1900 placebo recipients and 1700 vaccine recipients

	Weed Out at Interim Analysis										
Average	Average	Potential Harm	Non-Efficacy	High Efficacy	Unconditional Power						
$VE(0-18)^*$	HR(0-18)	VE(0-18) < 0%	VE(0-18) < 40%	VE(0-18) > 60%	VE(0-18)>0%						
	3.0	99.3	0.7	0.0	0.0						
_	2.5	94.7	5.3	0.0	0.0						
_	2.0	76.3	23.7	0.0	0.0						
_	1.5	34.8	65.2	0.0	0.0						
0%	1.0	7.2	90.7	0.0	2.1						
10%	0.9	4.1	87.8	0.0	8.1						
20%	0.8	2.6	69.5	0.1	27.9						
30%	0.7	0.9	38.8	0.0	60.3						
40%	0.6	0.6	13.6	0.6	85.8						
50%	0.5	0.3	2.3	0.7	97.4						
60%	0.4	0.2	0.3	4.7	99.5						
70%	0.3	0.0	0.1	32.5	99.9						
80%	0.2	0.0	0.0	76.5	100.0						

^{*}VE halved in the first 6 months

Cumulative incidence-based non-efficacy monitoring incl. post-6 months monitoring

Cumulative incidence-based high efficacy monitoring

Cumulative incidence-based unconditional power

N=1900:1700 placebo:vaccine group

^{4%} annual incidence in the place bo group

^{5%} annual dropout

Figure 1: Probabilities of reaching each possible trial monitoring outcome, and unconditional power to reject the specified null hypothesis for a study design with 1 vaccine arm with 1900 placebo recipients and 1700 vaccine recipients

Figure 2: Unconditional power to reject the null hypothesis H_0 : $VE(6.5-18) \le 0\%$ in per-protocol cohorts with a varying probability of a missing vaccination

Figure 3: Duration of a vaccine regimen's evaluation (n = 1900 in the placebo arm and n = 1700 in the vaccine arm)

Figure 4: Total trial duration for the evaluation of 2 vaccine regimens (N=1700 per arm) versus one placebo arm (N=1900)

Table 2: Distribution of the number of month 6.5–18 infections per vaccine group for use in the immune correlates analysis, for vaccine regimens with average VE of 40%, halved in the initial 6 months (N = 1900 in the placebo group, N = 1700 in each vaccine group, and 5% conditional probability of having missed a vaccination given HIV-negative and ongoing at the Month 6 [Week 26] visit).

Percentiles of distribution of number									
of month 6.5–18 infections per vaccine arm									
Mean	1%	5%	25%	50%	75%	95%	99%		
Month 6.5–18 infections in MITT cohort									
32	6	21	29	32	36	42	46		
Month 6.5–18 infections in per-protocol cohort									
30	6	20	27	31	35	40	44		

N=1900:1700~MITT~placebo:vaccine

Average VE=40%, halved VE in the first 6 months

Table 3: Distribution of the number of month 6.5–24 infections per vaccine group for use in the immune correlates analysis, for vaccine regimens with average VE of 40%, halved in the initial 6 months (N=1900 in the placebo group, N=1700 in each vaccine group, and 5% conditional probability of having missed a vaccination given HIV-negative and ongoing at the Month 6 [Week 26] visit).

Percentiles of distribution of number										
	of month 6.5–24 infections per vaccine arm									
Mean	1%	5%	25%	50%	75%	95%	99%			
N	Month 6.5–24 infections in MITT cohort									
49	6	34	45	50	55	62	68			
Month 6.5–24 infections in per-protocol cohort										
47	6	33	43	48	52	59	64			

N=1900:1700 MITT placebo:vaccine

Average VE=40%, halved VE in the first 6 months

^{5%} probability of a missing vaccination

^{4%}annual placebo group incidence

^{5%} annual dropout

^{5%} probability of a missing vaccination

^{4%}annual placebo group incidence

^{5%} annual dropout

Table 4: Distribution of the number of month 6.5–36 infections per vaccine group for use in the immune correlates analysis, for vaccine regimens with average VE of 40%, halved in the initial 6 months (N = 1900 in the placebo group, N = 1700 in each vaccine group, and 5% conditional probability of having missed a vaccination given HIV-negative and ongoing at the Month 6 [Week 26] visit).

Percentiles of distribution of number									
of month 6.5–36 infections per vaccine arm									
Mean	1%	5%	25%	50%	75%	95%	99%		
Month 6.5–36 infections in MITT cohort									
80	6	47	75	84	90	99	106		
Month 6.5–36 infections in per-protocol cohort									
76	6	43	71	80	86	95	101		

N=1900:1700~MITT~placebo:vaccine

Average VE=40%, halved VE in the first 6 months

^{5%} probability of a missing vaccination

^{4%}annual placebo group incidence

^{5%} annual dropout

Table 5: Power ($\times 100$) to detect that relative VE(0–18) > 0% comparing head-to-head vaccine regimens 1 vs. 2 and VE(0–18) > 0% for vaccine regimen 1, and probability ($\times 100$) of correct ranking and selection of the winning most efficacious vaccine regimen

	Power ($\times 100$)	
True average VE $(\%)^1$	Vx1 vs. $Vx2$ &	Probability $(\times 100)$
(Vx1, Vx2)	$Vx1 vs. Placebo^2$	select best vaccine ³
(40, 0)	77.0	84.7
(40, 20)	35.3	83.9
(40, 30)	12.2	73.1
(50, 30)	41.5	95.4
(50, 40)	14.1	85.7
(60, 30)	80.2	98.9
(60, 40)	48.0	98.4

¹ VE halved in the first 6 months

N=1900:1700:1700 pla:vac:vac group

18-month accrual; average 309 per month

4% annual incidence in the placebo group

5% annual dropout

Cumulative incidence-based monitoring

 $^{^2}$ Cumulative incidence-based Wald tests of both Vx1/Vx2 and Vx1/Placebo VE(0–18) with 1-sided $\alpha=0.025$

 $^{^3}$ Correct selection = Vx1 has highest estimated VE (0–36) and VE(0–18) significantly >0%

Table 6: Distribution of the number of Stage 1 infections pooled over the placebo group and the vaccine group with the maximum number of infections, ignoring sequential monitoring for potential harm, non-efficacy, and high efficacy (n=1900 in the placebo group and n=1700 in each vaccine group)

Ave VE		Percentiles of distribution of number of Stage 1 infections													
$(0-18)^*$	1%	2.5%	5%	10%	20%	30%	40%	50%	60%	70%	80%	90%	95%	97.5%	99%
0%	178	182	186	189	195	200	204	207	210	214	218	224	229	233	237
40%	141	146	149	152	157	161	164	167	170	173	177	182	186	190	196

 $^{{}^{*}\}mathrm{VE}$ halved in the first 6 months

N=1900:1700:1700 pla:vac:vac group

18-month accrual; average 309 per month

4% annual incidence in the place bo group

5% annual dropout

Table 7: Distribution of the number of Stage 1 infections pooled over the placebo group and the vaccine group with the maximum number of infections, accounting for sequential monitoring for potential harm, non-efficacy, and high efficacy (n=1900 in the placebo group and n=1700 in each vaccine group)

Ave VE		Percentiles of distribution of number of Stage 1 infections													
$(0-18)^*$	1%	2.5%	5%	10%	20%	30%	40%	50%	60%	70%	80%	90%	95%	97.5%	99%
0%	48	64	76	90	111	128	143	157	172	186	199	213	221	226	232
40%	138	145	149	152	157	161	164	167	170	173	176	182	186	190	196

^{*}VE halved in the first 6 months

N=1900:1700:1700 pla:vac:vac group

18-month accrual; average 309 per month

4% annual incidence in the place bo group

5% annual dropout

Cumulative incidence-based monitoring

Non-Efficacy Stopping*									
Total	Infections	$\widehat{ ext{VE}}$							
Infections	Split V:P	(%)							
77	38:39	-8							
97	46:51	0							
117	54:63	6							
137	61:76	10							
157	69:88	12							
177	77:100	15							
197	84:113	16							
217	92:125	18							
237	99:138	19							

^{*}Ave VE=20%, halved in first 6 mo.

High Efficacy Stopping*							
Total	Infections	$\widehat{ ext{VE}}$					
Infections	Split V:P	(%)					
157	32:125	71					
250	54:196	69					

^{*}Ave VE=20%, halved in first 6 mo.