Festkörperphysik, SoSe 2023 Übungsblatt 7

Prof. Dr. Thomas Michely

Dr. Wouter Jolie (wjolie@ph2.uni-koeln.de)

II. Physikalisches Institut, Universität zu Köln

Ausgabe: Mittwoch, 24.05.2023

Abgabe: Mittwoch, 07.06.2023, bis 8 Uhr über ILIAS

Aufgabe Nr.:	1	2	3	4	Summe
Points:	5	2	5	8	20
Punkte:					

Bitte Aufgaben zusammen mit Aufgabenblatt als PDF hochladen. Namen, Matrikelnummer und Gruppennummer deutlich lesbar eintragen (sonst Punktabzug). Abgabe in Gruppen zu 2, max. 3 Personen erwünscht. Die Teammitglieder müssen in der gleichen Übungsgruppe sein.

1. [5 Punkte] Kurzfragen

Markieren Sie im folgenden die richtigen Satzenden (Mehrfachauswahl möglich).

•	Die einatomige Kette gekoppelter Oszillatoren
	$-$ hat als Lösungen laufende Auslenkungswellen, die nur auf den Gitterpunkten definiert sind. \Box
	— besitzt physikalisch sinnvolle Wellenzahlen k nur in der 1. Brillouinzone des eindimensionalen reziproken Gitters. \square
	$-$ zeigt im Grenzfall $k o 0$ eine stehende Welle. \square
	 besitzt in der 1. Brillouinzone eine konstante Gruppengeschwindigkeit, die mit der Schallgeschwindigkeit identifiziert werden kann. □
	$-$ besitzt an der Zonengrenze die maximale Phasengeschwindigkeit. \square
•	Die zweiatomige Kette gekoppelter Oszillatoren
	$-$ besitzt neben einem akustischen auch einen optischen Zweig in der Dispersionsrelation. \Box
	$-$ zeigt in der Zonenmitte, für $k \to 0$ gegeneinander schwingende Basisatome, die als
	Teil gegenphasiger Wellen großer Wellenlänge betrachtet werden können. \Box
	 zeigt in der Zonenmitte für ionische Basisatome ein Dipolwechselfeld an das Infrarotwellen ankoppeln können.

	 besitzt am Zonenrand im optischen Zweig in einer Elementarzelle Atome, die in Gegen- phase schwingen und Teile von stehenden Wellen sind. □
	– besitzt im optischen Zweig immer größere Frequenzen als im akustischen Zweig. \Box
•	Im 3D Fall führt die Betrachtung der Atome als harmonische Oszillatoren
	$-$ zu $3j$ Zweigen in der Dispersionsrelation, wo j die Anzahl der Basisatome pro Elementarzelle ist. \Box
	$-$ zu 3 optischen und $3j-3$ akustischen Zweigen in der Dispersionsrelation. \square
	- zu Dispersionsrelationen für die verschiedenen Zweige, bei denen in eine gegebene Richtung für einen gegebenen Wellenvektor \vec{k} die transversal-akustischen Zweige höhere Frequenzen als die longitudinal-akustischen Zweige haben.
	- häufig zu weniger als $3j$ -Zweigen entlang von Hochsymmetrierichtungen, weil Entartung vorliegt. \square
	$-$ zu einer maximalen Gruppengeschwindigkeit am Zonenrand auf einer Hochsymmetrierichtung. \Box
•	Randbedingungen für die gekoppelten Oszillatoren in 1D oder 3D
	 können aufgrund der kleinen Anzahl von Oberflächeneinheitszellen im Vergleich zur Anzahl von Einheitszellen im Inneren des Festkörpers unterschiedlich gewählt werden, ohne dass sich die physikalische Situation nennenswert verändert. □
	$-$ werden üblicherweise als Born-Haber Kreisbedingungen festgelegt. \Box
	$-$ erzwingen diskrete Wellenzahl- oder Wellenvektorwerte, und zwar einen pro Schwingungsfreiheitsgrad. \Box
	$-$ führen zu einer konstanten Zustandsdichte im $k\text{-Raum}$. \square
	$-$ führen zu $3N$ Wellenvektoren, wobei N die Anzahl der Elementarzellen eines dreidimensionalen Kristalls ist. \Box
•	Die Quantisierung der Gitterschwingungen
	$-$ wird durch die Quantenmechanik erzwungen. \square
	– führt zu einer charakteristischen Besetzungszahl $n,$ wo n sich als Summe über alle Phononen der unterschiedlichen Frequenzen ω ergibt.
	$-$ führt zu einer Gesamtenergie $n(\hbar\omega+{1\over 2})~$ der Gitterschwingungen. \square
	– führt zu Phononen, den Quanten der Gitterschwingungen, die erzeugt und vernichtet werden können. \square
	$-$ ordnet diesen Phononen einen Kristallimpuls $\hbar n$ zu, wo n die Gesamtbesetzungszahl ist. \square

2. [2 Punkte] Optische und akustische Schwingungsmodi

Skizzieren Sie jeweils einen transversalen akustischen, transversalen optischen, longitudinalen akustischen und longitudinalen optischen Schwingungsmodus. Nehmen Sie, wenn Sie wollen, das Gitterschwingungs-Applet auf der Homepage des II. Physikalischen Instituts zur Hilfe.

3. [5 Punkte] Lineare Kette mit Wechselwirkung zwischen übernächsten Nachbarn

Betrachten Sie die in der Vorlesung behandelte lineare Kette mit Atomen der Masse M bei den Bravaisgitterpunkten $x_n = na$ (a ist die Gitterkonstante). Berücksichtigen Sie zusätzlich zu den Kräften durch die nächsten Nachbarn (Kraftkonstante f_1) auch Kräfte durch die übernächsten Nachbarn (Kraftkonstante $f_2 \neq f_1$).

(a) Stellen Sie die zugehörige Differenzialgleichung auf und bestimmen Sie die Dispersionsrelation. Verwenden Sie für die Auslenkung des *n*-ten Atomes den Ansatz:

$$u_n = Ae^{i(nka - \omega t)}. (1)$$

- (b) Diskutieren Sie die Dispersionsrelation und die Gruppengeschwindigkeit in den Grenzfällen $k_a \ll 1$ sowie $k_a = \pm \pi$.
- (c) Diskutieren Sie die den (hypothetischen) Fall mit $f_2 \gg f_1$.

4. [8 Punkte] Zustandsdichte der Wellenvektoren im k-Raum in 3D

In der Vorlesung wurde gezeigt, dass die Zustandsdichte der Gitterschwingungen in einer Dimension gegeben ist durch:

$$Z(k) = \frac{L}{2\pi}.$$

Hier ist L = Na die Länge des Festkörpers.

Zeigen Sie, dass in die Zustandsdichte in drei Dimensionen lautet:

$$Z(\vec{k}) = \frac{V}{(2\pi)^3}.$$

Jetzt ist V das Volumen des Festkörpers.

Betrachten Sie zur Lösung der Aufgabe einen Kristall mit den Kantenlängen $N_1|\vec{a}_1|$, $N_2|\vec{a}_2|$ und $N_3|\vec{a}_3|$ (die \vec{a}_i sind die primitiven Translationen, die N_i sind ganze Zahlen) und führen Sie folgende Schritte aus:

- (a) Stellen Sie analog zum Fall in einer Dimension die periodischen Randbedingungen (Bornvon Karman Randbedingungen) im dreidimensionalen Fall auf.
- (b) Setzen Sie in diese Randbedingungen den dreidimensionalen Lösungsansatz

$$\vec{u}(\vec{R}) = \vec{A} \cdot e^{i(\vec{k}\vec{R} - \omega t)}$$

ein und leiten Sie mit diesem Ansatz eine Bedingung für die erlaubten Wellenvektoren \vec{k} her.

(c) Schreiben Sie \vec{k} als Linearkombination reziproker Gittervektoren und beschränken Sie \vec{k} auf die erste Brillouinzone. Damit erhalten Sie die Zahl der erlaubten \vec{k} -Vektoren.

(d) Zeigen Sie, dass zwischen dem Volumen der ersten Brillouinzone (Ω_{1BZ}) und dem der Wigner-Seitz-Zelle (V_{WS}) folgender Zusammenhang besteht:

$$\Omega_{\rm 1BZ} = \frac{(2\pi)^3}{V_{\rm WS}}.$$

(e) Benutzen Sie das Ergebnis aus d) um die 3D-Zustandsdichte in der oben angegebenen Form zu erhalten.

Erreichbare Gesamtpunktzahl: 20