

Quantum Search: Grover's algorithm

Quantum Capita Selecta

Bernardo Villalba Frías, PhD

b.r.villalba.frias@hva.nl

Searching

- We search a lot:
 - 82166 Google searches every second
 - 3.5 billion searches per day
- Structured search:
 - Based on the PageRank algorithm
 - Search data structures to improve performance

Searching

- Unstructured search:
 - Table with N entries
 - Special item: x*
 - Find x^* (assuming 1 solution)
- Consider the n-to-1 bit function:

$$f(x) = \begin{cases} 1 & \text{if } x = x^* \\ 0 & \text{if } x \neq x^* \end{cases}$$

- In case n=2:
 - $N = 2^n = 4$
 - Expected function calls: 2.25

0	
1	
1 2 3	
3	
	:
x*	
^	_
	:
l-1	

Oracle

- Model for the interaction with the database
- Implements a function f(x)
 - f(x) encodes information about the item x^*
- Query the oracle to fetch results from the function
- First possible implementation:
 - Add an extra (ancillary) qubit

Oracle

- Second possible implementation:
 - Flip the input phase if and only if f(x) = 1

$$(-1)^{f(x)} |x\rangle = \begin{cases} |x\rangle & \text{if } f(x) = 0\\ -|x\rangle & \text{if } f(x) = 1 \end{cases}$$

$$|x\rangle$$
 — $U_{f(x)}$ — $(-1)^{f(x)}|x\rangle$

- Each implementation has its own particularities
- Solution is marked with a phase of -1

Oracle (n=2)

Using ancillary qubits

Oracle (n=2)

Using ancillary qubits

$$x^* = 01$$

 $x^* = 10$

Oracle (n=2)

Flipping phase

$$|X_0\rangle$$
 X X X X

$$x^* = 01$$

$$x^* = 10$$

$$x^* = 11$$

Oracle (n > 2)

- What about n > 2?
- Is there a n-qubit Toffoli gate?
 - Of course, because everything holds up on paper...
 - ... but, in Qiskit?
- Chaining some Toffoli gates
 - Using ancilla qubits to store intermediate results

- 1. Prepare input state (equal superposition state)
- 2. Apply oracle (phase–kickback)
- 3. Post-process (inversion around mean)
- 4. Measure

$$\begin{split} &\rightarrow \frac{1}{2\sqrt{2}}\left(|100\rangle - |000\rangle + |010\rangle - |110\rangle + |001\rangle - |101\rangle + |011\rangle - |111\rangle\right) \\ &\rightarrow \frac{1}{2\sqrt{2}}\left(-|000\rangle + |001\rangle + |010\rangle + |011\rangle + |100\rangle - |101\rangle - |110\rangle - |111\rangle\right) \\ &\rightarrow \frac{1}{2\sqrt{2}}\left((|0\rangle \otimes (-|00\rangle + |01\rangle + |10\rangle + |11\rangle)) + (|1\rangle \otimes (|00\rangle - |01\rangle - |10\rangle - |11\rangle)))) \\ &\rightarrow \frac{1}{2\sqrt{2}}\left((|0\rangle \otimes (-|00\rangle + |01\rangle + |10\rangle + |11\rangle)) - (|1\rangle \otimes (-|00\rangle + |01\rangle + |10\rangle + |11\rangle))) \\ &\rightarrow \frac{1}{\sqrt{2}}\left((|0\rangle - |1\rangle) \otimes \frac{1}{2}\left(-|00\rangle + |01\rangle + |10\rangle + |11\rangle\right) \end{split}$$

• Solution is marked with a phase of -1

- Post–process
 - Map solutions to computational basis states
 - Extract solutions marked with a phase of −1 by inversion around mean

- Can be decomposed in:
 - H gates
 - A phase operation
 - H gates

- For our two qubits example
 - The matrix is:

The circuit is:

What about a 4—qubits circuit?

- For a generic n—qubits circuit:
 - Same approach: identify the pattern and continue it!

Complete circuit

- As usual, put the pieces together
 - Prepare input state
 - Apply oracle
 - Post–process
 - Measure
- Complete circuit for item $x^* = 00$:

Does Grover's algorithm scale?

Grover iteration

- ullet Search space of N elements, exactly M solutions
- Repeat Grover iteration:

$$R \le \left\lceil \frac{\pi}{4} \sqrt{\frac{N}{M}} \right\rceil$$

Complexity of Grover's algorithm

Number of oracle calls required:

$$\mathcal{O}_{\mathsf{c}}\left(\frac{N}{M}\right)$$

$$\mathcal{O}_{\mathsf{g}}\left(\sqrt{\frac{N}{M}}\right)$$

- "Only" quadratic speedup
 - Still a huge improvement!

