

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata

Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

DIGITAL ELECTRONICS

EC + EE

Date of Test: 03/08/2023

ANSWER KEY ➤

1.	(b)	7.	(b)	13.	(c)	19.	(b)	25.	(a)
2.	(a)	8.	(d)	14.	(b)	20.	(a)	26.	(d)
3.	(c)	9.	(b)	15.	(d)	21.	(b)	27.	(c)
4.	(b)	10.	(d)	16.	(a)	22.	(b)	28.	(d)
5.	(c)	11.	(a)	17.	(d)	23.	(d)	29.	(b)
6.	(d)	12.	(d)	18.	(a)	24.	(b)	30.	(b)

DETAILED EXPLANATIONS

1. (b)

 $(1110011.0011)_2 \rightarrow$ Convert this binary no. to octal

001110011.001100

 $(163.14)_8$

 $(163.14)_8 \rightarrow$ Convert this octal no. to decimal

$$1 \times 8^{2} + 6 \times 8 + 3 + \frac{1}{8} + \frac{4}{64}$$

$$= 64 + 48 + 3 + \frac{8 + 4}{64}$$

$$= 115 + \frac{3}{16}$$

$$= (115.1875)_{10}$$

2. (a)

3. (c)

Clk	J_1	K ₁	Q_1	J_2	K ₂	Q_2
0	1	1	0	0	1	1
1	0	1	1	1	1	0
2	1	0	0	0	1	1
3	0	1	1	1	1	0

$$X = \overline{A}\overline{B} + A\overline{B} = \overline{B}$$

$$Y = \overline{X}A + XA$$

$$Y = A$$

5.

Conversion time for an n-bit successive approximation type ADC

Given,
$$n = 8$$
Therefore,
$$T_{\text{conversion}} = 8 T_{\text{clk}}$$

$$= \frac{8}{f_{\text{clk}}} = \frac{8}{5 \times 10^6}$$

$$= 1.6 \times 10^{-6} \text{ sec}$$

$$= 1.6 \mu \text{sec}$$

$$\overline{Z} = (P+A)(Q+\overline{A})$$

$$\overline{Z} = PQ + AQ + \overline{A}P$$

$$Z = \overline{A} + B$$

$$\overline{Z} = \overline{\overline{A} + B} = A\overline{B}$$

$$Q = \overline{B}, P = 0$$

In ripple counter, In synchronous counter,

$$R = 4 \times 10 = 40 \text{ ns}$$

 $S = T_c = 10 \text{ ns}$

From figure,
$$Z = \overline{A}\overline{B}C + \overline{A}B + A\overline{B} + AB = \overline{A}(\overline{B}C + B) + A(\overline{B} + B)$$

$$= \overline{A}(\overline{B}C + B) + A = (\overline{A} + A)(A + B + \overline{B}C)$$

$$= (A + [(B + \overline{B})(B + C)]$$

$$= A + (B + C)$$

Hence option (d) is correct

$$F = y_0 + y_2 + y_3 + y_4 + y_5 + y_7 = \Sigma m(0, 2, 3, 4, 5, 7)$$

$$t_{pd \text{ (max)}} = n \times t_{pdff}$$

= 3 × 8 = 24 ns

$$Q(n) = Q(n-1) \oplus X$$
Output $Y = X \cdot Q$

$$Y = \overline{ABC} \cdot (\overline{A}BC + \overline{A}BD + B\overline{C})$$

$$= (\overline{A} + B + \overline{C})(\overline{A}BC + \overline{A}BD + B\overline{C})$$

$$Y = \overline{A}BC + \overline{A}BD + \overline{A}B\overline{C} + B\overline{C} + \overline{A}B\overline{C}D$$

$$Y = \overline{A}BC + \overline{A}BD + B\overline{C} + \overline{A}B\overline{C}D$$

$$\overline{CD} \quad \overline{CD} \quad CD \quad C\overline{D}$$

$$\overline{AB}$$

$\overline{A}\overline{B}$				
$\overline{A}B$	1	1	1	1
AB	1	1		
$A\overline{B}$				

$$Y = B\overline{C} + \overline{A}B$$

13. (c)

Timing Diagram

Sequence followed by counter

It is an up-counter.

Flip-flops are cleared when $Q_2 \overline{Q_1} Q_0 = 111$

$$Q_2Q_1Q_0 = 101$$

Therefore it follows \rightarrow 000 - 001 - 010 - 011 - 100

It is a MOD-5 Up-counter.

14. (b)

Output of series NMOS = $A\overline{B}$

Output of CMOS inverter = $\overline{\overline{A}\overline{B}} \cdot 1 = \overline{\overline{A}\overline{B}} = A\overline{B}$

15. (d)

	J_0	K_0	Q_0	J_1	K ₁	Q_1	J_2	K ₂	Q_2
	1	1	0	0	1	0	1	1	0
1	1	1	1	1	1	0	1	1	1
2	1	1	0	0	1	1	0	1	0
3	1	1	1	1	1	0	1	1	0
4	1	1	0	0	1	1	0	1	1
(5)	1	1	1	1	1	0	1	1	0

4-clock pulse are required for the state Q_2 Q_1 Q_0 to become 110.

Time required = 4T

$$= 4 \times \frac{1}{f} = 4 \times \frac{1}{10 \times 10^6} = 0.4 \,\mu\text{sec}$$

16. (a)

Reducing the ladder

Using nodal analysis to find voltage *V*.

$$\frac{V}{2R} + \frac{V-5}{2R} + \frac{V}{R} = 0$$

Given,

$$R = 5 \text{ k}\Omega$$

$$\frac{V}{10K} + \frac{V-5}{10K} + \frac{V}{5K} = 0$$

$$\frac{V}{5K} + \frac{V}{5K} = \frac{5}{10K}$$

$$\frac{2V}{5K} = \frac{5}{10K}$$

$$V = \frac{5}{4} \text{Volt}$$

Applying KCL at inverting terminal of op-amp.

$$\frac{V-0}{R} = \frac{0-V_0}{R_f}$$

$$V_0 = \frac{-R_f}{R} V$$

$$V_0 = \frac{-10}{5} \times \frac{5}{4}$$

$$V_0 = -2.5 \text{ Volts}$$

For input AB = 00

Transistor Q_1 and Q_2 are off

$$Q_3$$
 is ON,

$$V_0 = 1$$

For AB = 10

$$Q_1$$
 ON, Q_2 OFF, Q_3 OFF

Output is not connected to ground and V_{CC} .

 \therefore Output is in high impedance (*Z*) state.

18. (a)

Clk	D_0	D_1	Q_0^+	Q_1^+
1	1	1	1	1
2	1	1	1	1
3	1	1	1	1

19. (b)

$$Y = (R + \overline{Q})(\overline{P}\overline{Q} + PQ) + P(\overline{P}Q + P\overline{Q})$$

$$Y = \overline{P}R\overline{Q} + PRQ + \overline{P}\overline{Q} + P\overline{Q}$$

$$Y = PRQ + \overline{Q}(P + \overline{P} + \overline{P}R)$$

$$Y = PRQ + \overline{Q}(1 + \overline{P}R)$$

$$Y = PRQ + \overline{Q}$$

$$Y = (\overline{Q} + Q)(\overline{Q} + PR)$$

$$Y = PR + \overline{Q}$$

$$PRQ = \overline{P}R$$

$$Q = \overline{P}RQ = \overline{Q}$$

2- NAND are required to realise $PR + \overline{Q}$.

20.

For A = 1, B = 0, the circuit is simplified as

Select line of 2nd MUX is ready after 2ns because input at I_1 is available after 2ns.

Delay of
$$MUX = 8$$
 nsec

Total delay of the circuit = 8 + 2 = 10 ns

Output will be stable after 10 ns.

21.

© Copyright: MADE EASY

Given Boolean function is,

$$Y(A, B, C, D) = \Sigma m(1, 3, 7, 11, 15) + d(0, 2, 5)$$

The function is defined in form of minterm don't care conditions K-map representation of the given function is shown. The simplified Boolean expression is,

$$Y(A, B, C, D) = CD + \overline{A}\overline{B}$$

CD AB	00	01	11	10	
00	×	1	1	×	$\overline{A}\overline{B}$
01		×	1		
11			1		
10			1		- CD

22. (b)

The function f of the network is given by

$$f = 1 \cdot \overline{S}_0 + \overline{A} \cdot S_0$$

Output at MUX-1, f_1 is given to S_0 of the MUX-2, i.e.

$$f_1 = 0 \cdot \overline{C} + B \cdot C = BC$$

Hence, we get the output of the network as,

$$f = 1 \cdot \overline{f_1} + \overline{A} \cdot f_1 = \overline{BC} + \overline{ABC}$$

$$= (\overline{BC} + \overline{A}) \cdot (\overline{BC} + BC)$$

$$= \overline{BC} + \overline{A}$$

$$= \overline{A} + \overline{B} + \overline{C}$$

$$= \overline{ABC}$$

23. (d)

$$\begin{aligned} Q_{n+1} &= J \overline{Q}_n + \overline{K} Q_n \\ &= \overline{Q}_n \cdot \overline{Q}_n + \overline{1} Q_n \\ Q_{n+1} &= \overline{Q}_n \end{aligned}$$

24. (b)

Sum =
$$A \oplus B \oplus C$$

 $C_{\text{out}} = AB + BC_{\text{in}} + C_{\text{in}} A$

Maximum rate of addition = $\frac{1}{100 \text{ ns}} = 10^7 / \text{sec} = 10 \times 10^6 / \text{sec}$

26. (d)

J_2	K ₂	J_1	K_1	J_0	K_0	Q_2^+	Q_1^+	Q_0^+
						1	0	1
0	1	1	0	1	1	0	1	0
1	0	0	1	0	0	1	0	1
0	1	1	0	1	1	0	1	0
1	0	0	1	0	0	1	0	1

101 repeated after every two cycles, hence frequency of the output will be $\frac{15}{2}$ = 7.5 MHz.

27. (c)

$$(7.FD6)_{16} = (0111.11111111010110)_2$$

The binary number is converted into octal number as:

 $\underbrace{000}_{0}\underbrace{111}_{7}\cdot\underbrace{111}_{7}\underbrace{111}_{7}\underbrace{010}_{2}\underbrace{110}_{6}: \text{ Binary }$ $(7.FD6)_{16} = (7.7726)_8$ x = 8Thus, Thus, $(7864)_{10} \rightarrow (1EB8)_{y}$

for y = 16, on converting decimal number (7864)₁₀ into hexadecimal number, we obtain (1EB8)₁₆ as follows:

 $(7864)_{10} = (1EB8)_{16}$ Thus, y = 16Hence,

28. (d)

The above k-map has 3 quads. Which are $\bar{A}\bar{D}$, $\bar{B}\bar{D}$, $\bar{B}C$

Therefore the minimized expression is $\overline{A}\overline{D} + \overline{B}\overline{D} + \overline{B}C$.

29. (b)

When
$$z = 0$$

$$\frac{x}{0} \quad \frac{y}{0} \quad \frac{f}{0}$$
0 1 0
1 0 0
1 1 1
$$f = xy$$

When
$$z = 1$$

$$\begin{array}{ccc} x & y & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \end{array}$$

1 0 1 1 1 1

$$f = \overline{x}y + x\overline{y} + xy$$
$$f = y + x$$

30. (b)