Statistical Computing with R: Masters in Data Science 503 (S15) First Batch, SMS, TU, 2021

Shital Bhandary

Associate Professor

Statistics/Bio-statistics, Demography and Public Health Informatics
Patan Academy of Health Sciences, Lalitpur, Nepal

Faculty, Data Analysis and Decision Modeling, MBA, Pokhara University, Nepal Faculty, FAIMER Fellowship in Health Professions Education, India/USA.

Review Preview

- Social Networks:
 - Nodes/Vertices
 - Edges/Connection
 - Degree
 - Edge density
 - Closeness (centrality)
 - Betweenness (centrality)
 - Edge_betweenness etc.

- Social Network Analysis:
 - Hubs
 - Authorities
 - Community detection

Social Networks:

https://study.com/academy/lesson/what-are-social-networks-types-examples-quiz.html

- Social networks are simply networks of social interactions and personal relationships. Think about your group of friends and how you got to know them.
- Maybe you met them in elementary school, or maybe you met them through a hobby or through your community.
- Either way, you were exposed to social networks: meeting other individuals in a social situation, while developing strong personal bonds over time.

- If you're on Facebook, keep in mind that so are 1.15 billion? other people throughout the world.
- In fact, 72% of all Internet users are active on social media today, indulging in social interactions and developing personal relationships.
- But you don't always have to go online to be exposed to social networks, as they come in a multitude of formats.

Why Should I Care About Social Network Analysis?

https://towardsdatascience.com/how-to-get-started-with-social-network-analysis-6d527685d374

- Social network analysis (SNA), also known as network science, is a field of data analytics that uses networks and graph theory to understand social structures.
- SNA techniques can also be applied to networks outside of the societal realm.

- Networks are all around us such as road networks, internet networks, and online social networks like Facebook, Twitter ...
- Learning SNA and its techniques will give you valuable tools to provide insight on a variety of data sources.
- In order to build SNA graphs, two key components are required: actors and relationships.

SNA graph:

 A social network graph contains both points and lines connecting those dots — similar to a connect-the-dot puzzle.

 The points represent the actors and the lines represent the relationships.

The shaded area is "community"

SNA: Networks and Graph theory

https://en.wikipedia.org/wiki/Social_network_analysis

- Social network analysis (SNA) is the process of investigating social structures through the use of networks and graph theory.
- It characterizes networked structures in terms of nodes (individual actors, people, or things within the network) and the ties, edges, or links (relationships or interactions) that connect them.
- The advantages of SNA are twofold. Firstly, it can process a large amount of relational data and describe the overall relational network structure.
- It can also select term and parameter to confirm the influential nodes in the network, such as in-degree and out-degree centrality.
- Through analyzing nodes, clusters and relations, the communication structure and position of individuals can be clearly described

Discussion on "How to do SNA Guide?"

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/491572/socnet_howto.pdf

- The aim of social network analysis is to understand a community by mapping the relationships that connect them as a network, and then trying to draw out key individuals, groups within the network ('components'), and/or associations between the individuals.
- A network is simply a number of points (or 'nodes') that are connected by links.
- Generally in social network analysis, the <u>nodes are people</u> and the <u>links are any social connection</u> <u>between them</u> – for example, friendship, marital/family ties, or financial ties.
- SNA for detecting network of gangs (of criminals)

How SNA is used to analyze "gang" network?

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/491572/socnet_howto.pdf

 Social network analysis can
 The technique will generate provide information about the reach of gangs, the impact of gangs, and gang activity.

- The approach may also allow you to identify those who may be at risk of gang-association and/or being exploited by gangs.
- diagrams that will show the relationships between individuals that are contained in your data, this could include: criminal links, social links, potential feuds, etc.
- SNA diagrams can include names, pictures and further details of individuals as required.

SNA Basics:

https://www.youtube.com/watch?v=0xsM0MbRPGE

library(igraph)

g <- graph(c(1,2))
plot(g)</pre>

- First **node** contains 1
- Second node contains 2
- The arrow (edge) goes from 1 to 2 as we defined that way in g!

SNA Basics: Changing size and color of node (vertex) and edge

```
plot(g,

vertex.color = "green",

vertex.size = 40,

edge.color = "red",

edge.size = 20)
```

Note: Here information (email, twitter following, gang following) is flowing from 1 to 2!

SNA Basics: Adding more data points

```
g <- graph(c(1,2,2,3,3,4,4,1)
plot(g,
     vertex.color = "green",
     vertex.size = 40,
     edge.color = "red",
     edge.size = 20)</pre>
```

Note: This is a directed graph as we can see "arrow" here.

SNA Basics: Undirected data points

```
g \leftarrow graph(c(1,2,2,3,3,4,4,1),
directed = F
plot(g,
      vertex.color = "green",
      vertex.size = 40,
      edge.color = "red",
      edge.size = 20)
Note: This is not a directed graph
as we cannot see "arrow" here.
```


SNA Basics: Adding related & unrelated nodes

```
g \leftarrow graph(c(1,2,2,3,3,4,4,1),
directed = F, n=7)
plot(g,
      vertex.color = "green",
      vertex.size = 40,
      edge.color = "red",
      edge.size = 20)
Note: This is not a directed graph
as we cannot see "arrow" here.
```


SNA Basics: Adding related & unrelated nodes

g[]

This will give us the matrix used to produce the earlier graph

The dimension of this matrix is 7x7

The dot(.) means no relation (connection) and 1 mean the connection with the nodes e.g. 1 has connection with 2 and 4

```
7 x 7 sparse Matrix of class
"dgCMatrix"
[1,].1.1...
[2,] 1 . 1 . . . .
[3,].1.1...
[4,] 1 . 1 . . . .
[5,] . . . . . . .
[6,] . . . . . .
```

SNA Basics: Defining nodes with text data

```
g1 <-
graph(c("Sita","Ram","Ram","Rita"
","Rita","Sita","Rita", "Anju",
"Ram"))
plot(g1,
  vertex.color = "green",
   vertex.size = 40,
   edge.color = "red",
   edge.size = 5)
```


SNA Basics: Getting info of "g1"

g1

D=Directed, N=Names

4 = Four vertices (nodes)

5 = Five edges (lines)

Pairs: Sita->Ram

Ram->Rita

Rita->Sita

Sita->Rita

Anju->Ram

Output in R:

IGRAPH 0adac86 DN-- 4 5 --

+ attr: name (v/c)

+ edges from 0adac86 (vertex names):

[1] Sita->Ram Ram ->Rita Rita->Sita Sita->Rita Anju->Ram

SNA Basics: Getting degrees of "g1"

```
degree(g1) or degree(g1, mode="all")
Sita Ram Rita Anju
degree(g1, mode="in")
Sita Ram Rita Anju
degree(g1, mode="out")
"degree" means = Number of
connections for each node
```


SNA Basics: Getting diameter of "g1"

#Diameter
diameter(g1, directed = F, weights = NA)
[1] 2
"diameter" means = number of edged inside and outside of SND i.e. Anju -> Ram and Ram -> Rita

Or Anju -> Ram and Ram -> Sita

SNA Basics: Getting edge density of "g1"

```
#Edge density
edge_density(g1, loops = F)
[1] 0.4166667
#Edge density
ecount(g1)/(vcount(g1)*(vcount(g1)
-1))
5/4*(4-1)
[1] 0.4166667
```


SNA Basics: Getting reciprocity of "g1"

#Reciprocity of directed graph

#Percentage reciprocated ties
reciprocity(g1)

[1] 0.4

Total edges = 5

Tied edges = 2

Reciprocity = 2/5 = 0.4

SNA Basics: Getting closeness of "g1"

#Closeness

closeness(g1, mode = "all", weights = NA)

Sita Ram Rita Anju
0.2500000 0.3333333 0.2500000 0.2000000

Ram is closest to other three persons Anju is farthest to other three persons

SNA Basics: Getting betweenness of "g1"

#Betweenness

betweenness(g1, directed = T, weights = NA)

Sita Ram Rita Anju 1 2 2 0

Ram and Rita have two "inner" edges, Sita has 1 and Anju has 0!

edge_betweenness(g1, directed = T,
weights = NA)

2 4 4 1 3 #Learn on your own!

Question/queries so far?

More are here: https://igraph.org/r/html/latest/

SNA with a data file: networkdata.csv

https://www.youtube.com/watch?v=0xsM0MbRPGE

#Read the data in R

data <- read.csv(file.choose(),
header=T)</pre>

#Save the first two columns as y

y <- data.frame(data\$first,
data\$second)</pre>

#Save it as network graph data

net <- graph.data.frame(y,
directed=T)</pre>

first	second	grade	spec
AA	DD	6	Y
АВ	DD	6	R
AF	ВА	6	Q
DD	DA	6	Q
CD	EC	6	X
DD	CE	6	Υ
CD	FA	6	X
CD	CC	6	W
ВА	AF	6	R
СВ	CA	6	Т
CC	CA	6	U
CD	CA	6	Q
ВС	CA	6	U
DD	DA	6	Y
ED	AD	6	R
AE	AC	6	Z
AB	ВА	6	Υ
CD	EC	6	X
CA	CC	6	U

SNA with a data file: networkdata.csv

```
#Vertices – 52 unique vertices
V(net)
#Edges – 290 edges
E(net)
#Names as labels
V(net)$label #Result = NULL
#Define the labels
V(net)$label <- V(net)$name
V(net)$label # 52 vertices as labels
```

- + 52/52 vertices, named, from 58abab2:
- [1] AA AB AF DD CD BA CB CC BC ED AE CA EB BF BB AC DC BD DB CF DF BE EA CE EE EF
- [27] FF FD GB GC GD AD KA KF LC DA EC FA FB DE FC FE GA GE KB KC KD KE LB LA LD LE

SNA with a data file: networkdata.csv

#Define degree
V(net)\$degree #Result = NULL
V(net)\$degree <- degree(net)
V(net)\$degree</pre>

What does it means here?

Number of connections for each nodes (vertices)

- [1] 18 9 23 <u>36 40</u> 26 24 <u>50</u> 21 27 15 <u>62</u> 7 12 23 27 2 4 8 12 23 20 8 10 6
- [27] 1 8 1 1 1 9 3 3 1 7 3 1 1 2
 1 2 5 1 1 1 1 1 1 1 1 1
- [1] "AA" "AB" "AF" "<u>DD</u>" "<u>CD</u>" "BA" "CB" "<u>CC</u>" "BC" "ED" "AE" "<u>CA</u>" "EB" "BF" "BB" "AC" "DC" "BD" "DB" "CF" "DF" "BE" "EA" "CE" "EE" "EF"
- [27] "FF" "FD" "GB" "GC" "GD" "AD" "KA" "KF" "LC" "DA" "EC" "FA" "FB" "DE" "FC" "FE" "GA" "GE" "KB" "KC" "KD" "KE" "LB" "LA" "LD" "LE"

Histogram of node degree i.e. connections

- #Histogram of node degree
- hist(V(net)\$degree,

```
col = "green",
```

main = "Histogram of node degree",

ylab = "Frequency",

xlab = "Degree of Vertices")

Network diagram:

- set.seed(222)
- plot(net)

Network diagram: A bit of tweaking!

- plot(net,
- vertex.color = "green",
- vertex.size = 2,
- vertex.label.dist = 1.5,
- edge.arrow.size = 0.1,
- vertex.label.cex = 0.8)

Network diagram: A little bit of tweaking!

- plot(net,
- vertex.color = "green",
- vertex.size = 2,
- edge.arrow.size = 0.1,
- vertex.label.cex = 0.8)

Network diagram: layout 1!

plot(net,
vertex.color = rainbow(52),
vertex.size = V(net)\$degree*0.4,
edge.arrow.size = 0.1,
layout=layout.fruchterman.reingold)

#Next layout i.e. layout 2 plot(net, vertex.color = rainbow(52), vertex.size = V(net)\$degree*0.4, edge.arrow.size = 0.1, layout=layout.kamada.kawai)

Which nodes are "hubs"?

- Nodes with most outer edges
- We need "hub score"

Which nodes are "authorities"?

- Nodes with most inner edges
- We need "authority score"

Hubs and authorities: With hub score & authority scores of the network data

Community (cluster) detection:


```
#Community detection
net <- graph.data.frame(y, directed = F)
cnet <- cluster_edge_betweenness(net)
plot(cnet,
    net,
    vetex.size = 10,
    vertex.label.cex = 0.8)</pre>
```

Question/Queries?

Read and learn about "sna" package on your own!

Assignment (MS Teams):

 Follow this link and replicate the SNA done with Twitter Data provided there and prepare a report with all the explanations

https://www.rdatamining.com/examples/social-network-analysis

Next class:

Grammar of graphics

• ggplot2 packages and its use in R

 Read Chapter 1: Data Visualization with ggplot2 of your course text book carefully before coming to the next class

Next class is on Friday 19 November 2021 in the SMSTU classroom

ggplot2 Book and Tutorial

• Book:

https://ggplot2-book.org/index.html

• Tutorial:

https://www.tutorialspoint.com/ggplot2/ggplot2_tutorial.pdf

More resources for ggplot2:

- https://ggplot2.tidyverse.org/
- https://cfss.uchicago.edu/notes/grammar-of-graphics/

• https://andrewirwin.github.io/data-visualization/index.html

https://www.researchgate.net/publication/5142951 The Grammar of Graphics

Thank you!

@shitalbhandary