```
64
64
63
63
60
58
57
57
        B
85 %
51
51
51
50
45
44
40
36
31
```

 $\mathbb{D} \quad P^{-7}(qnr)$ 

| P   | q       | <b>√</b>      | 211 | p -> (2 1r) |
|-----|---------|---------------|-----|-------------|
| T   | 7       | $\rightarrow$ | +   |             |
| T   | T       | F             | F   | F           |
| 一   | F       | T             | F   | F           |
| T   | F       |               | F   | F           |
| F   | <u></u> | T             | 1   | T           |
| F   | T       | F             | F   | T           |
| T I | T+ I    | T             | F   | T           |
|     | F       | F             | F   |             |

2) 1. All tigers have stripes.

2. Nothing with stripes is a bear.

3. All brown animals are bears.

No tigers are brown.



Therefore, the argument is valid.

3) p: All tigers have stripes
q: Nothing with stripes is a bear
r: All brown animals are bears
s: No tigers are brown

(P1211)->5

OR

p: you are a tiger q: you have stripes r: you are a bear s: you are a brown animal

1.  $p \rightarrow q$ 2.  $q \rightarrow \sim r$ 3.  $s \rightarrow 7$   $p \rightarrow \sim s$  (or  $s \rightarrow \sim p$ )

9) 1. You eat only if you are hungry
2. If you go to a restaurant,
then you eat

You are hungry if you go to a restaurant.

This is valid.

Let p be "you eat"

g be "you are hungry"

r be "you go to a restaurant".

Then  $P_1 \equiv P \rightarrow 2$   $P_2 \equiv r \rightarrow P$   $C \equiv r \rightarrow 2$ 

| P | q | <b>/</b> | Ρ, | Pz | C | P, 1 P2 | P, 1 P2 ->C |
|---|---|----------|----|----|---|---------|-------------|
| T | T | T        | +  | T  | T | T       | T           |
| T | T | F        | 1  | 1  |   |         | T           |
| T | F | T        | F  | 1  | F | F       |             |
| T | F | F        | F  |    | T | F       | T           |
| F | T | T        | 1  | F  | T | F       | T           |
| F | T | F        | T  |    | T | 1       | T           |
| F | F | T        | T  | F  | F | F       | T           |
| F | F | I        | T  | T  | T | T       | T           |

- (5) You are hungry if you go to the restaurant.
  - = If you go to the restaurant, then you are hungry.
  - Converse: If you are hungry, then
    you go to the restaurant.
  - Inverse: If you don't go to the restaurant, then you are not hungry.
  - Contrapositive: If you are not hungry,
    then you do not go
    to the restaurant.

For any statement, the contrapositive is equivalent to it.

(6) A: UD students who are currently taking 105.

B: UD students who have taken and passed 105.

AUB: UD students who have either taken 105 or are currently in 105.

ANB: UD students who are currently taking 105 but who have also taken and passed it before.

A: UD students who are not currently in 105.

B': VD students who have not passed 105.

(7) Which is/are true:

i. 
$$A \cup B = \emptyset$$

ii.  $A \cap B = \emptyset$ 

iii.  $A' = \emptyset$ 

iv.  $B' = \emptyset$ 

(8) C has 15 elements Dhas 10

CoD has 17

 $n(C \cap D)$ ?

 $n(C \cup D) = n(C) + n(D) - n(C \cap D)$  $17 = 15 + 10 - n(C \cap D)$ 

v((v)) = 8

Ex: P3 "7 pernute 3"

this is the number of ways to choose 3 objects from a group of 7 and then arrange them (permute)

 $P_{3} = C_{3}(3!) = \frac{7!}{3!(7-3)!}$  (3!)

 $= \frac{7!}{4!} = \frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 7}{4 \cdot 3 \cdot 2 \cdot 7}$ 

= 7.6.5

= 210.

 $7 \cdot \frac{7!}{3! \cdot (7-3)!} = \frac{7 \cdot 6 \cdot 5 \cdot \cancel{4} \cdot \cancel{3} \cdot \cancel{2} \cdot 1}{3 \cdot 2 \cdot 1 \cdot \cancel{4} \cdot \cancel{3} \cdot \cancel{2} \cdot 1}$ 

 $= \frac{7.8.5}{3.2} = 7.5 = 35$ 

## 2.5: Infinite Sets

we know that the number of elements in a set A is n(A).

Def: Two sets A and B are equivalent, written A~B, if we can pair every element of A with a unique element of B, and vice versa.

Ex:  $\{1, 2, 3\} \sim \{a, b, x\}$  because we have the pairing  $1 \quad 2 \quad 3$   $1 \quad 1$ 

Theoren: If A~B, Hen n(A) = n(B).

Ex: Let  $N = \{0, 1, 2, 3, 4, \dots\}$  Let  $E = \{0, 2, 4, 6, 8, \dots\}$  be the set of

positive even numbers. We would think

that n(IN) > n(E), but this isn't

true!

we're forced to conclude that r(N) = r(E).

Remember that D is the set of rational numbers. We can list all of them like this:

|          |   | 1                |             |             |                 |          |       |            |              |
|----------|---|------------------|-------------|-------------|-----------------|----------|-------|------------|--------------|
|          |   | 0                | l           | -1          | 2               | —        | 2     | 3          | -3           |
|          |   | 0/1              | 3/1/        | <u>-1//</u> | 2/15            | )-2/     | 3/    | <u></u>    | -3/1         |
|          | 2 | 0/2/             | 12/         | /1/2/       | 1/2             | /- 2/2   | 2 3/2 | 2          | 3/2          |
|          | 3 | 5/3/             | //8<br>//3/ | /f1/3/      | $\frac{1}{2}/3$ | -2/3     | 3/3   | - <i>-</i> | 3            |
|          | Ч | 7<br>2/4/        | 1/4/        | - 1/y       | 2/4             | -2/4     | 3/4   |            | •            |
|          | 5 | 2/5/             | 1/5         | -1/5        | 2/5             | -2/5     | 3/5   | - 3/       | 5            |
|          |   | 2/6              |             |             |                 |          |       |            |              |
| <i>O</i> |   |                  |             |             |                 |          |       |            |              |
| )<br>)   |   | 2<br> <br> /2, - | ·<br>· (    | 3, -        | 1/2             | 1 (2,1/4 | - 1/3 | , -2       | ا<br>ر - · - |

Therefore, 
$$n(IN) = n(Q)$$

Def: The first infinite cardinal is written to ("aleph-naught").

$$v(W) = 50$$

$$n(D) = N_0$$

Theorem: n(R)> No.

Proof: Suppose n(R) = n(N). Then

we would have a pairing

Now every real number or has a decimal expansion that we can write  $r_0 = a_0 a_1 a_2 a_3 a_4 \cdots$ 

For example, 32.1567912 has Lecimal .1567912.

So we have

Let  $R = .a_0 b_1 c_2 d_3 e_4 - ...$ Let S be the same, but with every digit shifted up by one. So if R = .321718, S = .432829.

Now S can not appear in the list. So we didn't list all the real numbers!

Question: is there a set A for which n(IN) < n(A) < n(R)?

It's impossible to say.

## 3.2: Basic Probability

Def: An experiment is a process by which an outcome is obtained. The sample space is the set of all possible outcomes, and an event is a subset of the sample space.

Ex: rolling a die. The experiment is rolling the die. The sample space is  $\{1, 2, 3, 4, 5, 6\}$ .

Some examples of events:

{13 (you roll a 1)

{1,2,3} (you roll a 1, 2, or 3)

{1,2,3,4,5,6} (you roll anything)

Def: An event is certain or guaranteed if it always occurs, and in possible if it never does.

Ex: {1,2,3,4,5,6} is certain {7} is inpossible.

Def: The probability of an event E with a sample space S is  $p(E) = \frac{n(E)}{n(S)}$ 

if all outcomes in the sample space are equally likely. It's also written P(E),  $P_r(E)$ , and P(E).

Def: The odds of an event E occurring is o(E) = n(E) : n(E').

Ex: We flip a coin. The sample space is {H, T}. If E= {H}, Hen  $P(E) = \frac{n(E)}{n(S)} = \frac{1}{2} = .5.$  Note that we could only do this because Hand Tare equally likely. The odds are  $n(E): n(F') = n(\{H\}): n(\{T\})$ = |:|

Similarly, if  $F = \{H, T\}$ , then  $P(F) = \frac{2}{2} = 1$ , and O(F) = 2:0.

 $A^{1}so$ ,  $P(\emptyset) = 0$  and  $o(\emptyset) = 0:2$ .

Ex: in real life, if you flip a coin 10 times, you might get 3 heads.

Def: The relative frequency of an event is the number of times in an experiment that an event occurs divided by the number of attempts.

Ex: if you flip a coin 10 times and get 3 heads, then the relative frequency of heads is 3/10 = .3.

## Theorem (The Law of Large Numbers): If an experiment is repeated a large number of times, the relative frequency of an event is approximately equal to the probability of the event.