

Flexible User Radio for Lunar Missions

Roger Dendy HX5, LLC

Dale Mortensen NASA Glenn Research Center

Stephanie Booth NASA Glenn Research Center

> Daniel Zeleznikar Intel

IEEE Aerospace Conference Big Sky, Montana March 8, 2023

Introduction

- Unprecedented Lunar Activity
 - Landers
 - Orbiters
 - Rovers
 - Habitats
- All require Communications
 - Various Locations
 - Near Side
 - South Pole
 - Far Side
 - Low Lunar Orbit
 - Options
 - Direct to Earth
 - · Ground stations being upgraded
 - Relays: Low Lunar Orbit (LLO), Near Rectilinear Halo Orbit (NRHO), Elliptical Frozen Orbit (ELFO)
 - Relays do not currently exist

Design Challenge

- Communication Subsystem Design presents a Planning Challenge
 - A) Choose a Communication partner with a system in development and design for compatibility
 - Dependency on partner development schedule
 - Capabilities
 - Availability
 - B) Choose existing network
 - Accept existing capabilities
 - Or accept dependency on upgrade schedule
 - Availability
 - C) Develop independent network
 - Cost
 - Dependency on Schedule
 - Capabilities
 - D) Design to Standard then seek a partner
 - Dependency on partner development
 - Risk of compatibility
- Future Adaptability
 - Beyond initial operation, dependency on a single communication network creates issues of reliability and limited growth path

Proposal – Flexible Lunar Radio

- To support interoperability with a broad range of networks, the Flexible Lunar Radio must be adaptable/reconfigurable in the following parameters:
 - Power Levels
 - Maximum and Minimum
 - Transmit and Receive
 - Frequencies
 - Including Doppler
 - Antenna Polarization
 - Bandwidth

- Modulation
- Ranging
- Error Correction
- Data Rate
- Framing format
- Packetization
- Network Protocols

Notional Design – Flexible Lunar Radio

- Communication Scenarios
 - Direct to Earth using Lunar Exploration Ground System (LEGS) 18 m ground station
 - NRHO relay using Gateway 1.5 m antenna
 - ESA Elliptical Frozen Orbit using 0.5 m antenna
- Lunar System Reference Spacecraft
 - Large Lunar Lander with steerable antenna
 - Small Lunar Lander with phased array
 - Orbiter with phased array
- Given those scenarios, the EIRP and G/T values are calculated
 - Values found to be realistic and achievable
- Required Modulation and Coding schemes can be implemented in Software Defined Modem
- A Flexible Lunar Radio as shown can be designed into a small, lightweight, low power package

Ref Mission	Transmit EIRP (dBW)	Receive G/T (dB/K)
Large Lander	58.1	19.6
Small Lander/Orbiter	28.1	-10.4

Notional Requirements

Flexible User Radio for Lunar Missions

Frequencies:

Ka-band allocations in the ICSIS*:

Earth to Orbit FL: 22.55 - 23.15 GHzOrbit to Lunar Surface FL: 23.15 - 23.55 GHzOrbit to Earth RL: 25.5 - 27.0 GHzLunar Surface to Orbit RL: 27.0 - 27.5 GHz

Total bandwidth: 1 GHz Receive, 2 GHz Transmit

Coding:

LDPC 1/2, 2/3, 4/5, 7/8

Turbo codes

Concat. Viterbi/Reed-Solomon

Modulation:

OQPSK, BPSK, GMSK PCM/PM/Bi-phase-L

PCM/PSK/PM+NRZ-L

DVB-S2

Ranging:

PN turnaround

^{*}International Communication System Interoperability Standards (ICSIS), Rev. A, September 2020.

Flexible Lunar Radio Implementation

- Many Key Technologies required for creating a Flexible User Radio are already being developed
 - Wideband Terminal (WBT)
 - Software Defined Radio (SDR)
 - Adaptive/Cognitive Communications
 - Delay Tolerant Networking (DTN)

Wideband Terminal

- The Wideband Terminal (WBT) is a demonstration project to enable spacecraft in near Earth orbit to communicate using commercial satellite relays in addition to TDRSS
 - Supports 17.7 23.55 GHz receive, 25.25 31 GHz transmit
 - Variable Coding and Modulation
 - Interoperability demonstrations performed in 2021
 - Additional modifications would be required to adapt to the Lunar environment
 - Power Levels
 - Power Amplifier backoff
 - Doppler Tolerance

Software Defined Radio

- Software-Defined Radios and Software-Defined Modems are now common in spacecraft
 - Flexible radio requires broad range of modulation, coding, and ranging support
- Full Flexibility requires the ability to re-program post-launch
 - Less frequently demonstrated

Adaptive/Cognitive Communications

- Adaptive/Cognitive Communications
 - NASA's Cognitive Communications project is pursuing development of decentralized space networks with artificial intelligence agents optimizing communication link throughput, data routing, and system-wide asset management.
 - The Flexible Lunar Radio will be able to select, reconfigure, and interoperate among available communication links options, in near-real time.
 - If Flexible Radios are widely deployed among many lunar users, the combined flexibility creates network-wide optimization opportunities

Delay Tolerant Networking

Flexible User Radio for Lunar Missions

- Delay Tolerant Networking
 - Developed to adapt to space environment
 - Long delays
 - Intermittent outages
 - Variable data rates
 - Introduces Bundle Protocol above convergence layer
 - Supports Store and Forward
- Implemented in Firmware
 - Software Defined Networking (SDN)

LEO Example: message from Brazil stored on-board LEO satellite until South Africa comes into view

Modified OSI model, including Bundle Layer

Conclusion

- The diverse and dynamically changing environment of lunar systems and communications capabilities creates a complex set of dependencies and uncertainties.
- Flexible Lunar Radio frees system engineers from communications dependencies in the early stages of development
 - Provides upgrade path into the future
- Many of the technologies required exist or are in development
 - Wideband Terminal
 - Software Defined Radio
 - Cognitive Communications
 - Delay Tolerant Networking

