

Algoritmica grafurilor XII. Drum critic, măsuri în grafuri

Continut

- Drum critic
 - Arce ca si activitati
 - Varfuri ca si activitati
- Masuri in grafuri

Drum critic - graful activităților

Graful activităților

un graf G = (V, E, W) conex aciclic orientat cu următoarele proprietăți:

- arcele grafului reprezintă activități, ponderea arcelor reprezintă timpul necesar execuției unei activități;
- există un vârf de start, v_1 , pentru care $N^{in}(v_1) = \emptyset$;
- există un vârf ce reprezintă finalul activităților, v_n , pentru care $N^{out}(v_n) = \emptyset$.

Drum critic - Introducere

Conexiuni între activități:

- activitatea A trebuie încheiată înainte ca activitățile *B* și *C* să înceapă;
- posibil să existe activități cu timp de execuție 0, folosite doar la forțarea ordinii execuției activităților.
- activitatea E poate începe doar după execuția

activității F.

Drum critic

- Ne înteresează timpul maxim necesar pentru a termina proiectul;
- acest timp maxim este drumul de lungime maximă în graful activităților, drumul între vârfurile de start și finalizare;
- pentru a rezolva această problemă putem folosi algoritmi de drum minim înlocuind problema de minim cu una de maxim;
- mai există o optiune.

Drum critic - descompunere în nivele

- Un graf orientat ponderat aciclic în care arcele reprezinta activitățile (numit graf de activități);
- vârfurile grafului de activități pot fi distribuite pe nivele:
- vârful ce reprezintă activitatea de start este pe nivelul 1;
- dacă $(v_i, v_i) \in E$ atunci nivelul vârfului v_i este inferior nivelului lui v_i

Algoritmul pentru descompunere în nivele este (/ este un atribut ce indică nivelul vârfului):

DESCOMPUNERE_NIVELE(G)

Drum critic - descompunere în nivele (II

NEXT(i)for $1 \le j \le n$ do if $(a_{ij}) \neq 0 \land v_j.l \leq v_i.l$ then $v_i.I = v_i.I + 1$ if j < i then NEXT(j)

Drum critic, descompunere în nivele exemplu

Drum critic, descompunere în nivele exemplu (II)

Drum critic - graful activităților

activitate	activitate precedenta	timp executie
A	-	1
В	-	2
C	-	3
D	A	2
E	A	3
F	A	4
G	B, F	5
H	C, G	2
I	C, G	3
J	B, F, D	4
K	B, F	1
L	B, F	1
M	E, H, J, K, L	2
N	H, I, L	3
0	H, L	2

Drum critic - graful activităților (II)

Graful corespunzător activităților:

Drum critic - graful activităților (III)

- Fie vârfurile grafului de activități $v_1, ..., v_n$ distribuite pe nivele în această ordine;
- ullet algoritmul CPM (Critical Path Method) da timpii t_i și t_i^* atașați fiecărui vârf v_i din graful de activități;
- vârfurile pot fi considerate ca evenimente în proiect;
- dacă 0 este momentul începerii proiectului atunci ti reprezintă timpul cel mai devreme și ti* reprezintă timpul cel mai târziu când activitățile de la evenimentul v_i pot începe.

Drum critic - graful activităților (V)

Drum critic - graful activităților(IV)

CPM(i) $t_1 = 0$ for $2 \le j \le n$ do $t_j = \mathsf{max}_{v_i \in N^{in}(v_i)}(t_i + d_{ij})$ for $n-1 \ge i \ge 1$ do $t_i^* = \min_{v_j \in N^{out}(v_i)} (t_j^* - d_{ij})$

De exemplu putem avea timpii:

varf	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9
t_i	0	1	5	10	5	12	13	12	16
t*	0	1	5	10	10	13	13	14	16

Drum critic - graful activităților (VI)

Putem defini următoarele resurse de timp pe perioada proiectului:

- $R_t(v_i, v_j) = t_j^* t_i d_{ij} =$ timp disponibil, activitatea (v_i, v_j) poate să înceapă cel târziu după $R_t(v_i, v_i)$ timp fără a influența **durata totală** a proiectului;
- $R_f(v_i, v_j) = t_j t_i d_{ij} =$ timpul liber, activitatea (v_i, v_j) poate să înceapă cel târziu după $R_f(v_i, v_j)$ timp fără a influența următoarea activitate;
- $R_s(v_i, v_j) = \max\{t_i t_i^* d_{ij}, 0\} = \text{timp sigur},$ activitatea (v_i, v_j) poate fi terminată cel târziu după P timp fara a influenta durata totala a projectului:
- vârfurile pentru care acești timpi sunt egali cu 0 sunt pe drumul critic, activitățile de pe acest drum trebuie terminate fără întârzieri.

Drum critic - graful activităților (VII)

activitate	timp executie	R_t	R_f	R_s
A	1	0	0	0
В	2	3	3	3
C	3	7	7	7
D	2	7	2	2
Е	3	10	8	8
F	4	0	0	0
G	5	0	0	0
Н	2	1	0	0
I	3	0	0	0
J	4	5	3	0
K	1	8	6	6
L	1	7	6	6
M	2	2	2	0
N	3	0	0	0
Ω	9	9	9	1

Drum critic - graful activităților (VIII)

Putem modifica algoritmul lui Floyd-Warshall pentru a determina drumul de lungime maximă între două vârfuri, pentru exemplul de mai sus aceste drumuri sunt:

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9
v_1	0	1	5	10	5	12	13	12	16
v_2	$-\infty$	0	4	9	4	11	12	11	15
v_3	$-\infty$	$-\infty$	0	5	0	7	8	7	11
v_4	$-\infty$	$-\infty$	$-\infty$	0	$-\infty$	2	3	2	6
v_5	$-\infty$	$-\infty$	$-\infty$	$-\infty$	0	$-\infty$	$-\infty$	4	6
v_6	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	0	0	0	3
v_7	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	0	$-\infty$	3
v_8	$-\infty$	0	2						
v_9	$-\infty$	0							

Drum critic - graful activităților (IX)

Momentele de timp t_i și t_i^* :

varf	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9
t_i	0	1	5	10	5	12	13	12	16
t_i^*	0	1	5	10	10	13	13	14	16

Drum critic - vârfuri ca și activități

Măsuri în grafuri

Acest model a fost discutat la seminar.

- O statistică a unui graf este o valoare numerică care caracterizează acel graf.
- Exemple de astfel de valori: ordinul, dimensiunea unui graf dar şi măsuri mai complexe cum ar fi diametrul şi coeficientul de grupare (clustering coefficient).
- Aceste statistici permit caracterizarea și analiza unui graf. Ele pot fi utilizate pentru a compara, clasifica grafuri, pentru a detecta anomalii în graf, etc.
- Statisticile pot fi utilizate pentru a mapa un graf într-un spațiu numeric simplu, în care pot fi aplicate
 mai multo metodo charicine standard

Masuri in grafuri

Măsuri în grafuri

Ca și măsuri în grafuri putem defini:

- ordinul, dimensiunea
- gradul minim, mediu, maxim
- reciprocitatea (reciprocity)
- o încărcarea (fill)
- negativitatea (negativity)
- LLC
- numărul de lanțuri de lungime 2 (wedge count), grafelor ghiară, K_3 , grafelor pătrat, 4-tour,
- o coeficientul power law, gini
- o distribuția relativă a gradului unui vârf
- a conficiental de grapare (clustering confficient)

- diametrul
- Preferential attachment

Nasuri in grafu

Diametrul unui graf

Putem defini excentricitatea unui vârf într-un graf ca și lungimea maximă a drumului minim

$$\epsilon(u) = \max_{v \in V} \delta(u, v)$$

unde δ este drumul minim între u și v. Diametrul unui graf se poate defini:

$$d = \max_{u \in V} \epsilon(u) = \max_{u,v \in V} \delta(u,v)$$

lgoritmica grafurilor

...

Masuri in grafu

Diametrul unui graf - exemplu

Care este diametrul acestui graf?

Masuri in gra

Diametrul unui graf - exemplu (II)

Coeficientul de centralitate - Freeman

Măsură a importanței pe baza gradurilor vârfurilor din graf.

Freeman

$$C_D = \frac{\sum_{i=1,N} [C_D(n^*) - C_D(i)]}{(N-1)(N-2)},$$

unde $C_D(n^*)$ este gradul cel mai mare din graf.

Betweenness centrality

Cât de central este un vârf.

Betweenness centrality

$$C_B(i) = \sum_{j < k} g_{jk}(i)/g_{jk},$$

unde g_{jk} este numărul drumurilor cele mai scurte care leagă vârfurile j și k, $g_{jk}(i)$ este numărul drumurilor cele mai scurte care leagă vârfurile j și k și conțin vârful i.

Normalizare

$$C'_B(i) = C_B(i)/[(N-1)(N-2)/2].$$

Algoritmica grafurilor 26/41 drumurilor posibile dacă se scoate vârful i

Betweenness centrality - exemplu

Betweenness centrality - exemplu (II)

B: (A, C), (A, D), (A, E)

C: (A, D), (A, E), (B, D), (B, E)

Betweenness centrality - exemplu (III)

Betweenness centrality - exemplu (IV)

Closeness centrality

Closeness centrality - exemplu

"Distanța" unui vârf față de celelalte vârfuri.

Closeness centrality

$$C_c(i) = [\sum_{j=1,N} d(i,j)]^{-1}$$

unde d(i,j) este distanța între vârfurile i si j.

Normalizare

$$C'_c(i) = \left[\frac{\sum_{i=1,N} d(i,j)}{N-1}\right]^{-1}$$

$$C_c'(A) = \left[\frac{\sum_{j=1}^{N} d(A, j)}{N - 1}\right]^{-1} = \left[\frac{1 + 2 + 3 + 4}{4}\right]^{-1} = \left[\frac{10}{4}\right]^{-1} = 0.4$$

Closeness centrality - exemplu (II)

Eigencentrality (Eigenvector centrality)

O măsură a influenței unui vârf în graf.

O generalizare a măsurii de centralitate în care se ține seama și de vecini.

Eigencentrality - exemplu

Eigencentrality - exemplu (II)

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\lambda \mathbf{C}_{e} = A\mathbf{C}_{e}$$

$$(A - \lambda I)\mathbf{C}_{e} = 0$$

$$\mathbf{C}_{e} = \begin{bmatrix} u_{1} \ u_{2} \ u_{3} \end{bmatrix}^{T},$$

$$\begin{bmatrix} 0 - \lambda & 1 & 0 \\ 1 & 0 - \lambda & 1 \\ 0 & 1 & 0 - \lambda \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

$$\mathbf{C}_{e} \neq \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}^{T},$$

$$\det(A - \lambda I) = \begin{bmatrix} 0 - \lambda & 1 & 0 \\ 1 & 0 - \lambda & 1 \\ 0 & 1 & 0 - \lambda \end{bmatrix} = 0,$$

Eigencentrality - exemplu (III)

Eigencentrality - exemplu (IV)

$$(-\lambda)(\lambda^2 - 1) - 1(-\lambda) = 2\lambda - \lambda^3 = \lambda(2 - \lambda^2) = 0.$$

$$(-\sqrt{2}, 0, +\sqrt{2}).$$

$$\left[\begin{array}{ccc} 0-\sqrt{2} & 1 & 0 \\ 1 & 0-\sqrt{2} & 1 \\ 0 & 1 & 0-\sqrt{2} \end{array}\right] \left[\begin{array}{c} u_1 \\ u_2 \\ u_3 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right].$$

vârful *C* este cel mai central (important).

Algoritmica

 $\mathbf{C}_e = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 1/2 \\ \sqrt{2}/2 \\ 1/2 \end{bmatrix}$

Algoritmica grafurilo

37 / 41

Masuri in grafur

Page rank

$$PR(v_i) = \frac{1-d}{N} + d \sum_{v_j \in M(v_i)} \frac{PR(v_j)}{L(v_j)},$$

unde $M(v_i)$ este vecinătatea vârfului v_i (arcele spre interior), $L(v_j)$ este gradul spre exterior pentru vârful v_j , d este un parametru.

Masari III Brai

Page rank - exemplu

 $\begin{array}{l} PR(A) = (1-d) \times (\ 1 \ / \ N\) + d \times (\ PR(C) \ / \ 1\) \\ PR(B) = (1-d) \times (\ 1 \ / \ N\) + d \times (\ PR(A) \ / \ 1\) \\ PR(C) = (1-d) \times (\ 1 \ / \ N\) + d \times (\ PR(B) \ / \ 1\) \end{array}$

Algoritmica grafurilor

39 / 4

oritmica graturilor 39

lgoritmica grafurilor

40 / 41

asuri in grafuri

Page rank - exemplu (II)

 $\begin{array}{l} PR(A) = (1-d) \times (1/N) + d \times (PR(C)/2) \\ PR(B) = (1-d) \times (1/N) + d \times (PR(A)/1 + PR(C)/2) \\ PR(C) = (1-d) \times (1/N) + d \times (PR(B)/1) \end{array}$

Algoritmica grafuril

41 / 41