

Veterinary Bioscience: Cells to Systems

Faculty of Veterinary and Agricultural Sciences

Lecture 13 Receptors and signalling pathways 2: G protein coupled receptors, enzyme receptors and intracellular receptors

Prof. Simon Bailey bais@unimelb.edu.au

VETS30015 / VETS90121

Intended learning objectives

- Describe the main signal transduction pathways involved in cell signalling
 - Ligand-gated ion channels
 - 2. G-protein coupled receptors,
 - 3. Receptor enzymes (i.e., tyrosine kinase),
 - 4. Nuclear receptors (class I and class II)
 - Discuss the mechanism of nuclear receptor activation
 - Be able to give an example of each.
- Describe how different types of G proteins (Gs, Gi, Gq, Gt signalling) can be linked to different intracellular signalling pathways
- Describe how endothelial cells can be stimulated to produce nitric oxide, causing dilation of smooth muscle.
- Describe how enzyme-linked receptors, such as growth factor receptors and the insulin receptor, activate downstream effector proteins.
- Understand how some hormones act through intra-cellular receptors,
 leading to changes in gene transcription via hormone response elements.

G protein families

G protein	Receptor	Signalling pathway	
Gs	eta-adrenergic receptors, glucagon, histamine, serotonin	Stimulatory, increase cAMP	
Gi	$lpha_2$ -adrenergic receptors	Inhibitory, decrease cAMP	
Gq	α_1 -adrenergic receptors, some muscarinic receptors; histamine	IP ₃ , DAG Increase cytoplasmic Ca++	
Gt	Light receptors in eye	Transducin, Increase cGMP phosphodiesterase (catalytic) Decrease cGMP	

Important regulatory control points

- Example of two hormones acting additively -Use same second messenger, cAMP
- Glucagon & Adrenalin, acting on the liver
 - Both acts via GS proteins
 - Increase adenylate cyclase

Important regulatory control points Gs & Gi proteins

Gq proteins & phospholipase C activation

Slide 6

α₁ adrenoceptor-mediated constriction of smooth muscle

Calcium influx in mouse tail arteriole

MELBOURNE

Ca²⁺ activated fluorescent dye

 α_{1} adrenoceptors stimulated with NA mimetic

Nitric oxide signalling

Nitric oxide (NO):

- Labile (short-lived) gas molecule
- Produced by cardiovascular endothelial cells
- Causes vasodilation
- NO donor compounds used in the treatment of congestive heart failure

Nitric oxide signalling in blood vessels

- Small, toxic gas
- Acts locally
- Short ½ life of 5-10 sec
- Endogenous NO release stimulated by bradykinin, acetylcholine, adenine nucleotides

Example

- 1. Ach binds Muscarinic M3 receptor linked to Gq protein on endothelial cell
- Causes cascade that activates NO synthase (eNOS)
- 3. Arginine converted to citrulline + NO
- 4. NO diffuses into adjacent smooth muscle cells
- 5. NO activates cytosolic guanylyl cyclase
- cGTP is converted to cGMP
- cGMP activates protein kinase G which phosphorylates muscle proteins to induce muscle relaxation – more blood flow

$G\alpha_t$ proteins & phosphodiesterase Phototransduction in the retina

Closes cation channels

Na⁺ & Ca²⁺

Boron & Boulpaep 2012

G-protein families + $\beta\gamma$ signalling

Diversity of

G Protein-Coupled receptor signal transduction pathways

Examples – ion channel vs G protein transduction βγ signalling

Ionotropic receptor

- ➤ Nicotinic Ach receptor
- ➤ Opens Na+ ion channel
- Ø Membrane depolarization
- Ø Action potential produced
- Ø Muscle contraction

Skeletal muscle

Metabotropic receptor

- ➤ Muscarinic receptor
- ➤ G protein activated
- βγ subunit activates K+ channel
- ➤ Opens K+ion channel
- Membrane hyperpolarization
- Decreased heart rate
- Cardiac muscle

G protein-coupled receptors 2nd messengers

Ligand or signal	Effector enzyme	2 nd messenger
Adrenaline (epinephrine) Thyroid stimulating hormone (TSH) Angiotensin II (epithelial cells) Catecholamine (β receptors) Acetylcholine (ACh, via a muscarinic receptor) Adrenocorticotropic hormone (ACTH) Corticotrophin-releasing hormone (CRH) Follicle stimulating hormone (FSH) Glucagon Vasopressin (V₂ receptor - epithelial cells)	Adenylyl cyclase	cAMP
Angiotensin II (vascular smooth muscle) Catecholamine (α receptors) Gonadotropin-releasing hormone (GnRH) Growth hormone-releasing hormone (GHRH) Oxytocin Thyrotropin releasing hormone (TRH) Vasopressin (V ₁ receptor - vascular smooth muscle)	Phospholipase C	Inositol (1,4,5) trisphosphate (IP ₃) & Diacylglycerol (DAG)
Nitric oxide Atrial natriuretic hormone	Guanylyl cyclase (+)	cGMP
Light	Phosphodiesterase (-)	

Activation of receptor kinase

Mechanism of action of insulin

Activates insulin receptor substrates (IRS) via tyrosine kinase receptor

2012 Pregracon Education, Inc.

Growth factor receptors

Functional classes of hormones

Water soluble

- Amines (other than thyroid hormones)
- Peptides & proteins, Eicosanoids
- 1. First messenger (hormone) binds to membrane receptor
- 2. Activated receptor sets off cascade that activates an enzyme
- 3. Enzyme reaction produces a second messenger (eg cAMP)
- 4. Second messenger produces response in cell

Lipid soluble

- Steroids
- · Thyroid hormones (amines), Nitric oxide
- 1. Diffuse through plasma membrane (except thyroid hormones transported)
- 2. Bind to specific receptors in cytoplasm **or** nucleus
- Hormone & receptor bind to DNA
- Gene is transcribed or deactivated.

Receptors (>80 identified) include those for:

- Corticosteroids (glucocorticoid, mineralocorticoid) cytoplasm
- Sex hormone receptors (estrogen, testosterone)
- Thyroid hormone receptors (nuclear)

Transduction differences

(b) Nonsteroid hormone action

Source: Marieb, 2012

(a) Steroid hormone action

Slide 15

Class I Nuclear Receptors - Steroids

- Ligand binding to type I nuclear receptors (NR) in the cytosol
- 2. Dissociation of inhibitory heat shock proteins (HSP).
- 3. Receptors homodimerization
- 4. Translocation to nucleus (active transport)
- 5. Binding to specific DNA (HRE)
- 6. Activate RNA polymerase or inhibit certain genes.

For example, cortisone and aldosterone

Glucocorticoid receptor signaling

- Cortisol passes through cell membrane
- Binds glucocorticoid receptor (GR)
- Forms non-DNA-binding oligomer
- Oligomer dissociates to form active GR monomer
- GR monomers form DNAbinding homodimers
- These pass through nuclear pores
 - Bind to glucocorticoid response elements (GRE) to activate transcription

Class II Nuclear Receptors Thyroid & Retinoic acid

- NR located in nucleus
- Thyroid hormone receptor (TR) heterodimerized to the retinoic acid receptor RXR.
- 3. TR is bound to <u>corepressor</u> protein. OFF
- Ligand binding to TR causes a dissociation of corepressor and recruitment of coactivator protein ON
- 5. Activate RNA polymerase that are responsible for transcription

For example, Thyroid hormones

Key aspects of hormone signalling

1. Specificity:

- A high receptor ligand specificity
- Non-covalent interactions

2. Amplification

- First messengers are often short-lived and in low concentrations
- Induce key intracellular signalling proteins to behave as a molecular switch.
- Amplification proceeds usually via enzyme cascades

3. Integration

- Cells frequently receive multiple signals
- Must be coordinated with integrated cellular response

4. Rapid decay

 Hormones give short-term, reversible messages so system must decay relatively rapidly.

5. Desensitization

- Often achieved by a feedback loop
- The target may be the receptor affinity, activity or expression

Summary: receptor-linked transduction pathways

[R = receptor, G = G protein, E = enzyme]