Fig. 1A

ATGAAGCTCGCCGCCCTCCTGGGGCTCTGCGTGGCCCTGTCCTGCAGCTCCGC
TCGTGCTTTCTTAGTGGGCTCGGCCAAGCCTGTGGCCCAGCCTGTCGCTGCGC
TGGAGTCGGCGGCGGAGGCCGGGGCCGGGACCCTGGCCAACCCCCTCGGCA
CCCTCAACCCGCTGAAGCTCCTGCTGAGCAGCCTGGGCATCCCCGTGAACCA
CCTCATAGAGGGCTCCCAGAAGTGTGTGGCTGAGCTGGGTCCCCAGGCCGTG
GGGGCCGTGAAGGCCCTGAAGGCCCTGCTGGGGGCCCTGACAGTGTTTGGC

Fig. 1B

CGTGCTTTCTTAGTGGGCTCGGCCAAGCCTGTGGCCCAGCCTGTCGCTGCGCTGGAGTCGGCGGGAGGCCGGGGCCGGGACCCTGGCCAACCCCCTCGGCACCCTCAACCCGCTGAAGCTCCTGCTGAGCAGCCTGGGCATCCCCGTGAACCACCTCATAGAGGGCTCCCAGAAGTGTGTGGCTGAGCTGGGTCCCCAGGCCGTGGGGCCCTGAAGGCCCTGAAGGCCCTGCTGGGGGCCCTGACAGTGTTTGGC

Fig. 1C

TTCTTAGTGGGCTCGGCCAAGCCTGTGGCCCAGCCTGTCGCTGCGCTGAGTC GGCGGCGGAGGCCGGGGCCGGGACCCTGGCCAACCCCCTCGGCACCCTCAAC CCGCTGAAGCTCCTGCTGAGCAGCCTGGGCATCCCCGTGAACCACCTCATAG AGGGCTCCCAGAAGTGTGTGGCTGAGCTGGGTCCCCAGGCCGTGGGGGCCGT GAAGGCCCTGAAGGCCCTGCTGGGGGCCCTGACAGTGTTTGGC

 ${\tt MKLAALLGLCVALSCSSARAFLVGSAKPVAQPVAALESAAEAGAGTLANPLGTL} \\ {\tt NPLKLLLSSLGIPVNHLIEGSQKCVAELGPQAVGAVKALKALLGALTVFG} \\$

Fig. 2B

RAFLVGSAKPVAQPVAALESAAEAGAGTLANPLGTLNPLKLLLSSLGIPVNHLIE GSQKCVAELGPQAVGAVKALKALLGALTVFG

Fig. 2C

FLVGSAKPVAQPVAALESAAEAGAGTLANPLGTLNPLKLLLSSLGIPVNHLIEGS QKCVAELGPQAVGAVKALKALLGALTVFG

ATGAAGCTTACCACCACCTTTCTAGTGCTCTGTGTGGCTCTGCTCAGTGACTC
TGGTGTTGCTTCTTCATGGACTCATTGGCCAAGCCTGCGGTAGAACCCGTGG
CCGCCCTTGCTCCAGCTGCAGAGGCTGTGGCAGGGGCTGTGCCTAGCCTACC
ATTAAGCCACTTGGCCATCCTGAGGTTCATCCTGGCCAGCATGGGCATCCCAT
TGGATCCTCTCATAGAGGGATCCAGGAAGTGTGTCACCGAGCTGGGCCCTGA
GGCTGTAGGAGCTGTGAAGTCACTGCTGGGGGTCCTGACAATGTTCGGT

Fig. 3B

GTTGCTTTCTTCATGGACTCATTGGCCAAGCCTGCGGTAGAACCCGTGGCCGC CCTTGCTCCAGCTGCAGAGGCTGTGGCAGGGGCTGTGCCTAGCCTACCATTA AGCCACTTGGCCATCCTGAGGTTCATCCTGGCCAGCATGGGCATCCCATTGG ATCCTCTCATAGAGGGATCCAGGAAGTGTGTCACCGAGCTGGGCCCTGAGGC TGTAGGAGCTGTGAAGTCACTGCTGGGGGTCCTGACAATGTTCGGT

Fig. 3C

TTCTTCATGGACTCATTGGCCAAGCCTGCGGTAGAACCCGTGGCCGCCCTTGC
TCCAGCTGCAGAGGCTGTGGCAGGGGCTGTGCCTAGCCTACCATTAAGCCAC
TTGGCCATCCTGAGGTTCATCCTGGCCAGCATGGGCATCCCATTGGATCCTCT
CATAGAGGGATCCAGGAAGTGTGTCACCGAGCTGGGCCCTGAGGCTGTAGGA
GCTGTGAAGTCACTGCTGGGGGTCCTGACAATGTTCGGT

 $MKLTTTFLVLCVALLSDSGVAFFMDSLAKPAVEPVAALAPAAEAVAGAVPSLPL\\ SHLAILRFILASMGIPLDPLIEGSRKCVTELGPEAVGAVKSLLGVLTMFG$

Fig. 4B

 $VAFFMDSLAKPAVEPVAALAPAAEAVAGAVPSLPLSHLAILRFILASMGIPLDPLI\\ EGSRKCVTELGPEAVGAVKSLLGVLTMFG$

Fig. 4C

FFMDSLAKPAVEPVAALAPAAEAVAGAVPSLPLSHLAILRFILASMGIPLDPLIEG SRKCVTELGPEAVGAVKSLLGVLTMFG

Fig. 5A

Matter No.: 00530-094001 Applicant(s): Kornelia Polyak et al. HIN-1, A TUMOR SUPPRESSOR GENE

KIDNEY

MUSCLE

LIVER

LUNG

PLACENTA

BRAIN

HEART

PBL

COLON

SM. INTESTINE

OVARY

TESTIS

Fig. 5B

PROSTATE
THYMUS
SPLEEN

The state of the s

Fig 5C

Fig.5D

Fig.5E

Fig. SF

,**t** ,;

Fig. 5G.

P 10 of 21

Fig. 64		راداده والله المستر والسر والسر والسر والسر والمستر والمستر والمستر والمستر والمستر والمستر والمستر والمستر وا المسترة والمستر	udd gent gent gent gent gent gent gent gent		
ZR-75-1	-528	-303	+ + + + + + + + + + + + + + + + + + +	+ + +31	HIN-1
ZR-75-1-AC		000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000000	+
BT-549		000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000000	ı
SK-BR-3			@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	0000000000	1
SUM159	000000000000000000000000000000000000000	000000000000000000000000000000000000000	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000000000	1 ,
SUM225		900000000000		0000000000	‡
T44			000000000000000000000000000000000000000	0000000000	+
Noma		00000000000000	000000000000000000000000000000000000000	0000000000	‡
SUM149	000000000000000000000000000000000000000	00000000			* •
Normal (18yo)	000000000000000000000000000000000000000	00000000			1
Normal (34yo)	000000000000000000000000000000000000000	90999000			+
T47D	000000000000000000000000000000000000000	***************************************			,
87474	***************************************	000000000			þ
ASCP	94809988888989	88000000880000000000000000000000000000	000000000000000000000000000000000000000		•
PC3	000000000000000000000000000000000000000	000000000000000000000000000000000000000		0000000000	2
LNCP			***************************************	***************************************	Ę
Lung CA (4 samples)	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000000	2

of 21

The state of the s

ZR75-1 N MU MU

293 cells Cells Medium

CELLS MEDIUM MCF10A SUM159

C H C H G H G H

G H G H

Fig. 7

ACCEANA CHEEN

Fig. 9A

Fig. 9B

VLCFVLVGVAFLVDSLAKPVVEPVAAIATAAEAVAGAVPSLPLSHLAILRFIVTSL GIPLDPLIDGSRKCVTELGPEAVGAVKSLLGALTTFG

Fig. 9C

1.1

1:15

TTCTTGGTGGATTCACTGGCCAAGCCTGTGGTAGAACCCGTGGCTGCCATTGC TACAGCTGCAGAGGCTGTGGCAGGGGCTGTGCCTAGCCTACCATTAAGCCAC TTGGCCATCCTGAGGTTCATCGTGACCAGCCTGGGCATCCCATTGGATCCTC CATAGATGGTTCCAGGAAGTGCGTCACCGAGCTGGGCCCTGAGGCTGTAGGA GCTGTGAAGTCACTGCTGGGGGCCCTGACAACGTTCGGT

Fig. 9D

FLVDSLAKPVVEPVAAIATAAEAVAGAVPSLPLSHLAILRFIVTSLGIPLDPLIDGS RKCVTELGPEAVGAVKSLLGALTTFG

وتونفيذ ورواين

Fig. 10

Matter No.: 00530-094001 Applicant(s): Kornelia Polyak et al. HIN-1, A TUMOR SUPPRESSOR GENE

Page 16 of 21

.

The time the time that the

Fig. 12

16.5×

Ü 110 14 Ł. 1 -

ŧ.

ATGAAATTCCTCGCCGTCTGCTTCTTCGCTGTTGTGGCTGCTGCCAA ACCCGGTATTGTGGCTCCTCTGGCCTACACCGCTCCGGCTGTGGTGGCCAGTG CCGCCTACGTGGCTCCCTACGCCTCCAGCTACACCGCCAACTCGGTGGCCCAC AGCGCCGCCTTCCCAGCTGCCTACACCGCCGCCTACACTGCTCCCGTTGCTGC TGCCTATACCGCTCCAGTGGCTGCTTATACCGCTCCAGTGGCCGCTGCGT ACGCCGCCCCAGCTGCCTATACCGCTGCCTACACCGCCCCCATTGCCCGTTAT GCCGCCACCCCTTCGCAGCACCCATCGCCGCTCCCGTGGCTGCCGCCTACAC CGCCCCCATCGCCGCCGCTGCCCCAGTTCTGCAAGAAG