Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Кафедра прикладной математики и искусственого интеллекта

Направление подготовки: 01.03.04 – Прикладная математика

ОТЧЁТ

По дисциплине «Численные методы» на тему:
«Система линейных алгебраических уравнений»

Выполнил: студент группы 09-222 Ахметзянов К.Ф. Проверил: ассистент Глазырина О.В.

Содержание

1	Постановка задачи	3
2	Ход работы 2.1 Метод прогонки 2.2 Метод Зейделя 2.3 Метод верхней релаксации 2.4 Метод наискорейшего спуска	- 1
3	Выводы	11
4	Список литературы	12
5	Листинг программы	13

1 Постановка задачи

Решить систему линейных алгебраических уравнений:

Здесь $a_i=p(ih),\ g_i=q(ih),\ f_i=f(ih),\ f(x)=-(p(x)u'(x))'+q(x)u(x),$ $h=1/n,\ p,\ q,\ u$ — заданные функции.

Данную систему решить методом прогоки и итерационными методами:

- 1. метод Зейделя.
- 2. метод верхней релаксации.
- 3. метод наискорейшего спуска.

Во всех итерационных методах вычисления продолжать до выполнения условия:

$$\max_{1 \le i \le n-1} \left| r_i^k \right| \le \varepsilon,$$

r — вектор невязки, ε — заданное число.

Исходные данные: $n=10,\ n=50,\ \varepsilon=h^3,\ u(x)=x^\alpha(1-x)^\beta,$ $p(x)=1+x^\gamma,\ g(x)=x+1,\ \alpha=1,\ \beta=1,\ \gamma=2.$

Для сравнения результатов вычисления составим таблицы и подведём выводы.

2 Ход работы

2.1 Метод прогонки

Метод прогонки состоит из двух этапов: прямой ход (определение прогоночных коэффициентов), обратных ход (вычисление неизвестных y_i).

Основным преимуществом является экономичность — максимально использование структуры исходной системы.

К недостаткам же можно отнести то, что с каждой итерацией накапливается ошибка округления.

Реализуем прямой ход метода и найдём прогоночные коэффициенты:

$$\begin{cases}
\alpha_1 = \frac{a_1}{a_0 + a_1 + h^2 g_1}, \\
\alpha_{i+1} = \frac{a_{i+1}}{a_i + a_{i+1} + h^2 g_i - \alpha_i a_i}, \quad i = \overline{2, n-1};
\end{cases}$$
(2)

$$\begin{cases} \beta_1 = \frac{f_0 h^2}{a_0 + a_1 + h^2 g_1}, \\ \beta_{i+1} = \frac{f_i h^2 + \beta_i a_i}{a_i + a_{i+1} + h^2 g_i - \alpha_i a_i}, & i = \overline{2, n-1}; \end{cases}$$
(3)

Обратных ход метода:

$$\begin{cases} y_n = \beta_{n+1}; \\ y_i = \alpha_{i+1}y_{i+1} + \beta_{i+1}, & i = \overline{n-1,0}; \end{cases}$$
 (4)

Формулы (2-4) являются методом Гаусса, записанным применительно трёхдиагональной системы уравнений. Метод может быть реализован только в случае, когда в формулах (2) и (3) все знаменатели отличны от нуля, то есть условие выполняется, когда матрица системы (1) имеет диагональное препобладание.

Проделаем вычисления и составим таблицу для n = 10, для n = 50:

ih	y_i	u(ih)	ϵ
0.10	0.106769	0.090000	0.016769
0.20	0.184376	0.160000	0.024376
0.30	0.235499	0.210000	0.025499
0.40	0.263158	0.240000	0.023158
0.50	0.270334	0.250000	0.020334
0.60	0.259690	0.240000	0.019690
0.70	0.233435	0.210000	0.023435
0.80	0.193281	0.160000	0.033281
0.90	0.140478	0.090000	0.050478
1.00	0.075876	0.000000	0.075876

Таблица 1 - значения метода прогонки для n=10

ih	y_i	u(ih)	ϵ
0.10	0.101429	0.090000	0.011429
0.20	0.174182	0.160000	0.014182
0.30	0.220545	0.210000	0.010545
0.40	0.243242	0.240000	0.003242
0.50	0.245064	0.250000	0.004936
0.60	0.228573	0.240000	0.011427
0.70	0.195932	0.210000	0.014068
0.80	0.148846	0.160000	0.011154
0.90	0.088567	0.090000	0.001433
1.00	0.015952	0.000000	0.015952

Таблица 2 - значения метода прогонки для n=50

2.2 Метод Зейделя

Для больших систем вида Ax = b предпочтительнее оказываются итерационные методы. Основная идея данных методов состоит в построении последовательности векторов x^k , $k = 1, 2, \ldots$, сходящейся к решению исходной системы. За приближенное решение принимается вектор x^k при достаточно большом k.

Будем считать, что все диагональные элементы матрицы из полной системы Ax=b отличны от нуля. Представим эту систему, разрешая каждое уранвение относительно переменной, стоящей на главной диагонали:

$$x_{i} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_{j} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} x_{j} + \frac{b_{i}}{a_{ii}}, \quad i = \overline{1, n}.$$

$$(5)$$

Выберем некоторое начальное приближение $x^0 = (x_1^0, x_2^0, \dots, x_n^0)^T$. Построим последовательность векторов x^1, x^2, \dots , определяя вектор x^{k+1} по уже найденному вектору x^k при помощи соотношения:

$$x_i^{k+1} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^k - \sum_{j=i+1}^n \frac{a_{ij}}{a_{ii}} x_j^k + \frac{b_i}{a_{ii}}, \quad i = \overline{1, n}.$$
 (6)

Формула (6) определяют итерационный метод решения системы (5), называемый методом Якоби или методом простой итерации.

Метод Якоби допускает естественную модификацию: при вычислении x_i^{k+1} будем использовать уже найденные компоненты вектора x^{k+1} , то есть x_1^{k+1} , x_2^{k+1} , ..., x_{i-1}^{k+1} . В результате приходим к итерационному методу Зейделя:

$$x_i^{k+1} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^{k+1} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} x_j^k + \frac{b_i}{a_{ii}}, \quad i = \overline{1, n}.$$
 (7)

Запишем формулу (7) для нашей системы (1):

$$y_i^{k+1} = -\sum_{j=1}^{i-1} \frac{a_j}{a_i + a_{i+1} + h^2 g_i} y_j^{k+1} - \sum_{j=i+1}^{n} \frac{a_j}{a_i + a_{i+1} + h^2 g_i} y_j^k + \frac{f_i h^2}{a_i + a_{i+1} + h^2 g_i},$$

$$i = \overline{1, n-1};$$
(8)

Вычисления продолжаем, пока не выполнится условие:

$$\max |r_i^k| \le \varepsilon,$$

где r^k — вектор невязки для k-той итерации $r^k = Ay^k - f$, $\varepsilon = h^3$.

Составим таблицы вычесленных результатов для n=10, для n=50, в которых будем сравнивать значения метода прогонки и метода Зейделя для точки $i,\ i=\overline{0,n-1}$, найдём модуль их разности и значение k, при котором была достигнута необходимая точность.

i	y_i	y_i^k	ϵ	k
0	0.106769	0.103847	0.002922	37
1	0.184376	0.179133	0.005243	37
2	0.235499	0.228694	0.006805	37
3	0.263158	0.255599	0.007559	37
4	0.270334	0.262779	0.007555	37
5	0.259690	0.252777	0.006913	37
6	0.233435	0.227639	0.005795	37
7	0.193281	0.188898	0.004383	37
8	0.140478	0.137629	0.002849	37
9	0.075876	0.074529	0.001347	37

Таблица 3 - значения метода Зейделя для n=10

i	y_i	y_i^k	ϵ	k
0	0.022665	0.022564	0.000101	1155
10	0.185482	0.184502	0.000981	1155
20	0.245190	0.243795	0.001395	1155
30	0.223275	0.222033	0.001242	1155
40	0.137813	0.137131	0.000682	1155
49	0.015952	0.015886	0.000065	1155

Таблица 4 - значения метода Зейделя для n=50

2.3 Метод верхней релаксации

Во многих ситуациях существенного ускорения сходимости можно добиться за счет введения так называемого итерационного параметра. Рассмотрим итерационный процесс:

$$x_i^{k+1} = (1 - \omega)x_i^k + \omega \left(-\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^{k+1} - \sum_{j=i+1}^n \frac{a_{ij}}{a_{ii}} x_j^k + \frac{b_i}{a_{ii}} \right),$$

$$i = 1, 2, \dots, n, \quad k = 0, 1, \dots$$

$$(9)$$

Этот метод называется методом релаксации – одним из наиболее эффективных и широко используемых итерационных методов для решения систем линейных алгебраических уравнений. Значение ω – называется релаксационным параметром. При $\omega=1$ метод переходит в метод Зейделя. При $\omega\in(1,2)$ – это метод верхней релаксации, при $\omega\in(0,1)$ – метод нижней релаксации. Ясно, что по затратам памяти и объему вычислений на каждом шаге итераций метод релаксации не отличается от метода Зейделя.

Преобразуем формулу (9) относительно нашей системы:

$$y_i^{k+1} = (1-\omega)y_i^k + \omega \left(-\sum_{j=1}^{i-1} \frac{a_j}{a_i + a_{i+1} + h^2 g_i} y_j^{k+1} - \sum_{j=i+1}^n \frac{a_j}{a_i + a_{i+1} + h^2 g_i} y_j^k + \frac{f_i h^2}{a_i + a_{i+1} + h^2 g_i} \right),$$

$$i = \overline{1, n-1}; \tag{10}$$

Параметр ω следует выбирать так, чтобы метод релаксации сходился наиболее быстро. Нужно отметить, что оптимальный параметр для метода верхней релаксации лежит вблизи 1,8. Заполним таблицы, в которых приведём значения параметра ω и количство итераций k:

ω	k
1.1	31
1.2	25
1.3	20
1.4	17
1.5	13
1.6	11
1.7	16
1.8	22
1.9	53

Таблица 5 - значения ω и соответствующие значения k для n=10

ω	k
1.10	944
1.20	769
1.30	620
1.40	493
1.50	383
1.60	286
1.70	201
1.80	125
1.90	93

Таблица 6 - значения ω и соответствующие значения k для n=50

Для вычислений выберем $\omega=1.6$ для n=10 и $\omega=1.90$ для n=50. Составим таблицы результатов. в которых будем сравнивать значения метода прогонки и метода верхней релаксации для точки $i,\ i=\overline{0,n-1},$ найдём модуль их разности и значение k:

i	y_i	y_i^k	ϵ	k
0	0.106769	0.107336	0.000567	11
1	0.184376	0.185502	0.001126	11
2	0.235499	0.237047	0.001549	11
3	0.263158	0.264915	0.001756	11
4	0.270334	0.272060	0.001726	11
5	0.259690	0.261174	0.001484	11
6	0.233435	0.234526	0.001091	11
7	0.193281	0.193918	0.000637	11
8	0.140478	0.140705	0.000227	11
9	0.075876	0.075852	0.000024	11

Таблица 7 - значения метода верхней релаксации для n=10

i	y_i	y_i^k	ϵ	k
0	0.022665	0.022656	0.000008	93
10	0.185482	0.185453	0.000029	93
20	0.245190	0.245161	0.000029	93
30	0.223275	0.223260	0.000016	93
40	0.137813	0.137810	0.000003	93
49	0.015952	0.015952	0.000000	93

Таблица 8 - значения метода верхней релаксации для n=50

2.4 Метод наискорейшего спуска

Существуют итерационные методы, позволяющие за счет некоторой дополнительной работы на каждом шаге итераций автоматически настраиваться на оптимальную скорость сходимости. К их числу относятся методы, основанные на замене системы (6) эквивалентной задачей минимизации некоторого функционала.

Опишем итерационный метод наискорейшего спуска. Будем двигаться из точки начального приближения x^0 в направлении наибыстрейшего убывания функционала F, то есть следующее приближение будем разыскивать так: $x^1 = x^0 - \tau \operatorname{grad} F(x^0)$. Формула:

$$F'_{x_i}(x) = 2\sum_{j=1}^{n} a_{ij}x_j - 2b_i;$$
(11)

, которая является производной функции F(x) по переменной x_i , показывает, что $\operatorname{grad} F(x^0) = 2(Ax^0 - b)$. Вектор $r_0 = Ax^0 - b$ принято называть невязкой. Для сокращения записей удобно обозначить 2τ вновь через τ . Таким образом, $x^1 = x^0 - \tau r^0$.

Параметр τ выберем так, чтобы значение $F(x^1)$ было минимальным. Получим $F(x^1) = F(x^0 - \tau r^0) = F(x^0) - 2\tau(r^0, r^0) + \tau^2(Ar^0, r^0)$, следовательно, минимум $F(x^1)$ достигается при $\tau = \tau_* = \frac{(r^0, r^0)}{(Ar^0, r^0)}$.

Таким образом, мы пришли к следующему итерационнму методу:

$$x^{k+1} = x^k - \tau_* r^k, \quad r^k = Ax^k - b, \quad \tau_* = \frac{(r^k, r^k)}{(Ar^k, r^k)}, \ k = 0, 1, \dots$$
 (12)

Метод (12) называют методом наискорейшего спуска. По сравнению с методом простой итерации этот метод требует на каждом шаге итераций проведения дополнительной работы по вычислению параметра τ_* . Вследствие этого происходит адаптация к оптимальной скорости сходимости.

Составим таблицы результатов для $n=10,\ n=50,$ в которых будем сравнивать значения метода прогонки и метода верхней релаксации для точки $i,\ i=\overline{0,n-1},$ найдём модуль их разности и значение k:

i	y_i	y_i^k	ϵ	k
0	0.106769	0.105365	0.001404	78
1	0.184376	0.181841	0.002535	78
2	0.235499	0.232225	0.003274	78
3	0.263158	0.259567	0.003591	78
4	0.270334	0.266804	0.003530	78
5	0.259690	0.256517	0.003173	78
6	0.233435	0.230798	0.002637	78
7	0.193281	0.191326	0.001955	78
8	0.140478	0.139067	0.001412	78
9	0.075876	0.075415	0.000461	78

Таблица 9 - значения метода наискорейшего спуска для n=10

i	y_i	y_i^k	ϵ	k
0	0.022665	0.022583	0.000081	816
1	0.044129	0.043967	0.000161	816
2	0.064402	0.064163	0.000240	816
3	0.083498	0.083182	0.000316	816
4	0.101429	0.101039	0.000389	816
5	0.118210	0.117750	0.000460	816
6	0.133858	0.133331	0.000527	816
7	0.148390	0.147800	0.000590	816
8	0.161825	0.161176	0.000649	816
9	0.174182	0.173479	0.000703	816
10	0.185482	0.184730	0.000753	816
20	0.245190	0.244231	0.000959	816
30	0.223275	0.222550	0.000725	816
40	0.137813	0.137481	0.000332	816
49	0.015952	0.015923	0.000029	816

Таблица 10 - значения метода наискорейшего спуска для n=50

3 Выводы

В процессе выполнения работы были изучены методы решения заданной системы линейных алгебраических уравнений вида:

$$\begin{cases}
(a_1 + a_2 + h^2 g_1)y_1 - a_2 y_2 = f_1 h^2, \\
\dots \dots \dots \\
-a_i y_{i-1} + (a_i + a_{i+1} + h^2 g_i)y_i - a_{i+1} y_{i+1} = f_i h^2, \\
\dots \dots \dots \dots \\
(a_{n-1} + a_n + h^2 g_{n-1})y_{n-1} - a_{n-1} y_{n-2} = f_{n-1} h^2.
\end{cases}$$

при помощи:

- 1. метод прогонки.
- 2. метод Зейделя.
- 3. метод верхней релаксации.
- 4. метод наискорейшего спуска.

После вычисления результатов решения системы линейных алгебраических уравнений можно сделать вывод, что наилучшим методом для решения является метод верхней релаксации при итерационном параметре $\omega=1.6$ для системы из 10 уравнений и $\omega=1.90$ для системы из 50 уравнений. Данный метод показывается наилучшие результаты вычисления корней системы за наименьшее количество итераций.

4 Список литературы

- 1. Глазырина Л.Л., Карчевский М.М. Численные методы: учебное пособие. Казань: Казан. ун-т, 2012. 122
- 2. Глазырина Л.Л.. Практикум по курсу «Численные методы». Решение систем линейных уравнений: учеб. пособие. Казань: Изд-во Казан. ун-та, 2017. 52 с.

5 Листинг программы

```
1 #pragma once
3 #include <algorithm>
# #include < cmath >
5 #include <iostream>
6 #include <vector>
  using namespace std;
double f_x(double x) {
    return 3 * pow(x, 2) - 2 * x + 3;
11
12
13
  double u_x(double x) { return x * (1 - x); }
15
  double p_x(double x) { return 1 + pow(x, 2); }
17
  double q_x(double x) { return 1 + x; }
19
  vector < double > func_vec(int n) {
20
    double h = 1. / n;
21
    vector < double > b(n + 1, 0);
22
    for (int i = 1; i <= n; ++i) {</pre>
      b[i - 1] = f_x(i * h) * pow(h, 2);
24
    }
25
    return b;
26
  }
27
  vector < double > calculate_mtx_vec_mult(vector < vector < double >> &A,
                                            vector < double > &x) {
30
    int n = A.size();
31
    int m = x.size();
32
    vector < double > result(n, 0.0);
33
34
    for (int i = 0; i < n; ++i) {</pre>
35
      for (int j = 0; j < m; ++j) {
36
        result[i] += A[i][j] * x[j];
37
38
    }
39
40
    return result;
41
```

```
42 }
43
  vector < double > calculate_r(vector < vector < double >> &A, vector < double > &b,
                                 vector < double > &x) {
45
    vector < double > Ax = calculate_mtx_vec_mult(A, x);
^{46}
    vector < double > r(Ax.size());
47
48
    for (size_t i = 0; i < r.size(); ++i) {</pre>
49
      r[i] = Ax[i] - b[i];
50
    }
51
52
    return r;
53
  }
54
55
  double calculate_error_dec(vector < double > &x, vector < vector < double >> &A,
                                 vector < double > &b) {
57
    vector < double > r = calculate_r(A, b, x);
58
    double max_err = 0.0;
59
    for (int i = 0; i < r.size(); ++i) {</pre>
60
     if (abs(r[i]) > max_err) max_err = abs(r[i]);
61
    }
62
63
    return max_err;
64
  }
65
  double calculate_error(vector<double> &new_x, vector<double> &old_x) {
66
    double max_err = 0.0;
67
    for (int i = 0; i < old_x.size(); ++i) {</pre>
68
      double err = abs(abs(new_x[i]) - abs(old_x[i]));
69
      if (err > max_err) max_err = err;
70
    }
71
72
    return max_err;
73
  }
74
75
  vector < vector < double >> create_matrix(int n) {
76
    double h = 1. / n;
77
78
    vector < vector < double >> matrix_res(n + 1, vector < double > (n + 1, 0.0));
79
80
    for (int i = 0; i < n; ++i) {</pre>
81
      if (i == 0) {
82
         double b = (p_x((i + 1) * h) + p_x((i + 2) * h) +
83
                       (pow(h, 2) * q_x((i + 1) * h));
84
```

```
double c = -p_x((i + 2) * h);
85
         matrix_res[i][i] = b;
86
         matrix_res[i][i + 1] = c;
87
         continue;
88
       }
89
90
       if (i == (n - 1)) {
91
         double b = (p_x((i + 1) * h) + p_x((i + 2) * h) +
92
                       (pow(h, 2) * q_x((i + 1) * h));
93
         double a = -p_x((i + 1) * h);
94
         matrix_res[i][i] = b;
95
         matrix_res[i][i - 1] = a;
96
         continue;
97
       }
98
99
       double a = -p_x((i + 1) * h);
100
       double b =
101
            (p_x((i + 1) * h) + p_x((i + 2) * h) + (pow(h, 2) * q_x((i + 1) * h))
102
                h)));
       double c = -p_x((i + 2) * h);
103
104
       matrix_res[i][i] = b;
105
       matrix_res[i][i + 1] = c;
106
       matrix_res[i][i - 1] = a;
107
    }
108
109
    return matrix_res;
110
111 }
112
  //Алгорит Томаса
113
  void progonka_method(vector<vector<double>> &A, vector<double> &x, int n,
114
                          vector <double > &b) {
115
    vector < double > alpha(n + 1), betta(n + 1);
116
117
    double h = 1.0 / n;
118
119
    // прямойход
120
     alpha[0] = A[0][1] / A[0][0];
121
     betta[0] = (b[0]) / A[0][0];
122
123
    for (int i = 1; i < n; ++i) {</pre>
124
       double del = 1.0 / (A[i][i] - alpha[i - 1] * A[i][i - 1]);
125
       alpha[i] = A[i][i + 1] * del;
126
```

```
betta[i] = (-A[i][i - 1] * betta[i - 1] + b[i]) * del;
127
     }
128
129
     // обратныйход
130
     x[n - 1] = betta[n - 1];
131
     for (int i = n - 2; i >= 0; --i) {
132
      x[i] = -alpha[i] * x[i + 1] + betta[i];
133
     }
134
135
     for (int i = 1; i <= n; ++i) {</pre>
136
       printf(
137
            "ih = %4.21f | y_i = %9.61f | u(ih) = %8.61f | |y_i - u(ih) | = "
138
            "%8.61f\n",
139
            i * h, x[i - 1], u_x(i * h), abs(x[i - 1] - u_x(i * h)));
140
     }
141
142 }
143
  double calculate_new_x(int i, vector < double > &x, int n,
144
                             vector < vector < double >> &A, vector < double >> &b) {
145
     double h = 1.0 / n;
146
     double sum = 0.0;
147
148
     if (i > 0) {
149
       for (int j = 0; j \le i - 1; ++j) {
150
         sum += A[i][j] * x[j];
151
       }
152
     }
153
154
     if (i < n - 1) {
155
       for (int j = i + 1; j < n + 1; ++j) {
156
         sum += A[i][j] * x[j];
157
       }
158
     }
159
160
     return (b[i] - sum) * (1.0 / A[i][i]);
161
162 }
163
  int Seidel_method(int n, vector<double> &x, vector<vector<double>> &A,
164
                       vector < double > &b) {
165
     double h = 1.0 / n;
166
     int k = 0;
167
     vector < double > new_x(n, 0.);
168
     double error = 1.0;
169
```

```
170
     while (error > 1.0 / pow(n, 3)) {
171
       for (int i = 0; i < n; ++i) {</pre>
172
         new_x[i] = calculate_new_x(i, new_x, n, A, b);
173
       }
174
175
       error = calculate_error_dec(new_x, A, b);
176
177
       x = new_x;
178
179
      k++;
180
     }
181
182
     return k;
183
184 }
  double calculate_new_x_relax(int i, vector<double> &x, int n,
                                    vector < vector < double >> &A, double omega,
186
                                    vector < double > &b) {
187
     double sum = 0.0;
188
189
     if (i > 0) {
190
       for (int j = 0; j \le i - 1; ++j) {
191
         sum += A[i][j] * x[j];
192
       }
193
     }
194
195
     if (i < n - 1) {
196
       for (int j = i + 1; j < n + 1; ++j) {
197
         sum += A[i][j] * x[j];
198
       }
199
     }
200
201
     double new_x = (b[i] - sum) * (1.0 / A[i][i]);
202
     return x[i] + omega * (new_x - x[i]);
203
204 }
205
  int relax_top(int n, vector<double> &x, vector<vector<double>> &A,
206
                      vector < double > &b) {
207
     double h = 1.0 / n;
208
     double omega = 1.9;
209
       double error = 1.0;
210
       int k = 0;
211
       vector < double > new_x(n, 0.);
212
```

```
213
       while (error > 1.0 / pow(n, 3)) {
214
         for (int i = 0; i < n; ++i) {</pre>
215
            new_x[i] = calculate_new_x_relax(i, new_x, n, A, omega, b);
216
         }
217
218
         error = calculate_error_dec(new_x, A, b);
219
220
         x = new_x;
221
222
         k++;
223
       }
224
225
       return k;
226
227 }
  double calculate_tau(vector<double> &r, vector<double> &Ar) {
     double a = 0.;
229
     double b = 0.;
230
     for (size_t i = 0; i < r.size(); ++i) {</pre>
231
       a += r[i] * r[i];
232
       b += Ar[i] * r[i];
233
     }
234
     if (abs(b) < 1e-10) {
235
       return 0.0;
236
     }
237
     return a * (1.0 / b);
238
239
240
  double calculate_new_x_spusk(int i, vector<double> &x, int n,
241
                                    vector < vector < double >> &A, vector < double >> &b
242
     vector < double > r = calculate_r(A, b, x);
243
     vector < double > Ar = calculate_mtx_vec_mult(A, r);
244
245
     return x[i] - calculate_tau(r, Ar) * r[i];
246
247
248
  int spusk(int n, vector < double > &x, vector < vector < double >> &A,
249
              vector <double > &b) {
250
     double h = 1.0 / n;
251
    int k = 1;
252
     vector < double > new_x(n, 0.);
253
     double error = 1.0;
254
```

```
255
     while (error >= 1.0 / pow(n, 3)) {
256
       for (int i = 0; i < n; ++i) {</pre>
257
         new_x[i] = calculate_new_x_spusk(i, new_x, n, A, b);
258
       }
259
260
       x = new_x;
261
262
       error = calculate_error_dec(new_x, A, b);
263
264
       k++;
265
     }
266
267
     return k;
268
  }
269
270
  void m_print(int k, vector<double> &y_i, vector<double> &y_ik) {
271
     for (int i = 0; i < y_i.size() - 1; ++i) {</pre>
272
       printf(
273
            "ih = %3d | y_i = %9.61f | y_ik = %9.61f | |y_i - y_ik| = %9.61f
274
               | k = "
            "%d\n",
275
            i, y_i[i], y_ik[i], abs(y_i[i] - y_ik[i]), k);
276
     }
277
278 }
  #include "header.hpp"
 3 using namespace std;
```

```
int main() {
    int n = 50.0;
6
7
    std::vector < double > y_i_p(n + 1), y_i_s(n + 1), y_i_r(n + 1), y_i_sp(n + 1)
8
       + 1),
        b(n);
9
10
    vector < vector < double >> A = create_matrix(n);
    b = func_vec(n);
11
12
    printf("Progonka\n");
    progonka_method(A, y_i_p, n, b);
13
    int k_s = Seidel_method(n, y_i_s, A, b);
14
    int k_r = relax_top(n, y_i_r, A, b);
15
    int k_dec = spusk(n, y_i_sp, A, b);
16
```

```
printf("Zeidel\n");
    m_print(k_s, y_i_p, y_i_s);
    printf("High Relaxation\n");
    m_print(k_r, y_i_p, y_i_r);
    printf("Spusk\n");
    m_print(k_dec, y_i_p, y_i_sp);
    system("pause");
}
```