

National University of the Altiplano

Faculty of Statistical and Computer Engineering

Engineer : Fred Torres Cruz

Course: Programming Languajes II

Student: Leydy Vanessa Ticona Canaza

Issue: Application with StreamLit

Code: 227643

Group: IV-B

Puno - Peru 2024

app.py in Visual Code

```
import streamlit as st
2 import pandas as pd
3 import seaborn as sns
  import matplotlib.pyplot as plt
  from scipy import stats
  st.set_page_config(
       page_title="An lisis de Datos Fluviales",
       page_icon="
9
       layout = "wide",
10
       initial_sidebar_state="expanded"
11
  )
12
13
  # Datos CSV
14
  data = pd.DataFrame({
15
       'pH': [3.51, 3.20, 3.26, 3.16, 3.51, 3.51, 3.30, 3.39, 3.36, 3.35, 3.28,
16
      3.35, 3.28, 3.35, 3.28, 3.35, 3.28],
       'Calor especifico': [4.70, 3.88, 3.76, 4.28, 4.70, 4.66, 4.60, 3.65, 4.58,
17
      4.50, 4.58, 3.50, 4.58, 4.50, 3.58, 4.50, 3.58],
       'Conductividad termica': [0.076, 0.098, 0.092, 0.075, 0.076, 0.075, 0.069,
18
      0.065, 0.073, 0.071, 0.097, 0.071, 0.097, 0.071, 0.097, 0.071, 0.097],
       'Viscosidad dinamica': [34, 67, 54, 60, 34, 40, 59, 21, 18, 102, 65, 102, 65,
19
       102, 65, 102, 65],
       'Densidad': [0.9978, 0.9968, 0.9970, 0.9980, 0.9978, 0.9978, 0.9964, 0.9946,
20
      0.9968, 0.9978, 0.9959, 0.9978, 0.9959, 0.9978, 0.9959, 0.9978, 0.9959],
       'Tension superficial': [0.56, 0.68, 0.65, 0.58, 0.56, 0.56, 0.46, 0.47, 0.57,
21
       0.80, 0.54, 0.80, 0.54, 0.80, 0.54, 0.80, 0.54],
       'Indice de refraccion': [9.4, 9.8, 9.8, 9.8, 9.4, 9.4, 10.1, 10.0, 9.5, 10.5,
22
       9.2, 10.5, 9.2, 10.5, 9.2, 10.5, 9.2],
       'Calidad': [5, 5, 5, 6, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5]
23
  })
24
25
  st.title('Aplicaci n de An lisis de Datos Fluviales')
26
27
  # Resumen de Datos
28
  st.subheader('Vista previa de los datos')
29
  st.write(data.head())
  st.subheader('Descripci n estad stica')
32
  st.write(data.describe())
33
34
  # Gr ficos
  st.subheader('Visualizaci n de Datos')
36
37
  plot_type = st.selectbox("Elige el tipo de gr fico", ["Box Plot", "Histograma",
      "Gr fico de dispersi n"])
39
40
  if plot_type == "Box Plot":
       column = st.selectbox("Selecciona la columna para el box plot", data.columns)
41
       fig, ax = plt.subplots()
42
       sns.boxplot(data=data[column], ax=ax)
43
44
       st.pyplot(fig)
45
  elif plot_type == "Histograma":
46
       column = st.selectbox("Selecciona la columna para el histograma", data.
47
      columns)
       fig, ax = plt.subplots()
48
       sns.histplot(data[column], kde=True, ax=ax)
49
```

```
x_col = st.selectbox("Selecciona la columna X", data.columns)
       y_col = st.selectbox("Selecciona la columna Y", data.columns)
       fig, ax = plt.subplots()
55
       sns.scatterplot(data=data, x=x_col, y=y_col, ax=ax)
56
       st.pyplot(fig)
57
58
  # Estad stica
59
  st.subheader('Prueba de Hip tesis')
60
  st.write("Vamos a realizar una prueba t de medias")
62
  col1 = st.selectbox("Selecciona la primera columna", data.columns)
  col2 = st.selectbox("Selecciona la segunda columna", data.columns)
66
  if st.button('Realizar prueba t'):
       t_stat, p_value = stats.ttest_ind(data[col1].dropna(), data[col2].dropna())
68
       st.write(f"Estad stica t: {t_stat}")
69
       st.write(f"P-valor: {p_value}")
70
71
       if p_value < 0.05:</pre>
72
           st.write("Rechazamos la hip tesis nula (diferencia significativa)")
73
       else:
74
           st.write("No rechazamos la hip tesis nula (no hay diferencia
75
      significativa)")
       main()
76
```

Interface Capture:

0.1.

Aplicación de Análisis de Datos Fluviales

Vista previa de los datos ⇔

	pН	Calor especifico	Conductividad termica	Viscosidad dinamica	Densidad	Tension superficial	Indice de refraccion	Calidad
0	3.51	4.7	0.076	34	0.9978	0.56	9.4	5
1	3.2	3.88	0.098	67	0.9968	0.68	9.8	5
2	3.26	3.76	0.092	54	0.997	0.65	9.8	5
3	3.16	4.28	0.075	60	0.998	0.58	9.8	6
4	3.51	4.7	0.076	34	0.9978	0.56	9.4	5

0.2.

Descripción estadística

	•							
	pН	Calor especifico	Conductividad termica	Viscosidad dinamica	Densidad	Tension superficial	Indice de refraccion	Calidad
count	17	17	17	17	17	17	17	17
mean	3.3365	4.2429	0.0806	62.0588	0.9969	0.6147	9.7647	5.1176
std	0.1013	0.4615	0.0123	27.6213	0.001	0.1179	0.5049	0.3321
min	3.16	3.5	0.065	18	0.9946	0.46	9.2	5
25%	3.28	3.76	0.071	40	0.9959	0.54	9.4	5
50%	3.35	4.5	0.075	65	0.997	0.56	9.8	5
75%	3.36	4.58	0.097	67	0.9978	0.68	10.1	5
max	3.51	4.7	0.098	102	0.998	0.8	10.5	6

Visualización de datos Elige el tipo de gráfico Gráfico de dispersión Selecciona la columna X pH Selecciona la columna Y densidad

0.4.

Prueba de Hipótesis

Vamos a realizar una prueba de medios

Selecciona la primera columna

pН

Selecciona la segunda columna

densidad

Realizar prueba t

Estadística t: 95.21873168034013

Valor p: 7.682347248847605e-41

Rechazamos la hipótesis nula (diferencia significativa)

0.6. Code QR

