Национальный Исследовательский Университет «МЭИ»

Институт Радиотехники и Электроники Кафедра Радиотехнических Систем

Курсовой проект

по дисциплине

«Аппаратура потребителей спутниковых радионавигационных систем»

Студент: Дворецкий И.А.

Группа: ЭР-15-16

Вариант: №1

Преподаватель: Корогодин И.В.

введение.

Спутниковые радионавигационные системы время являются неотъемлемой часть нашей жизни. Они используются в различных сфера начиная от телефона до ракет. Наиболее распространенными являются системы ГЛОНАСС (Россия), GPS (США), Galileo (Евросоюз), Beidou (Китай).

Цель проекта - добавление в программное обеспечение приемника функции расчета положения спутника Beidou на заданное время по данным его эфемерид.

Требования к разрабатываемому программному модулю:

- требования назначения;
- отсутствие утечек памяти;
- малое время выполнения;
- низкий расход памяти;
- корректное выполнение при аномальных входных данных.

Для достижения цели выполняется ряд задач, соответствующих этапам проекта и контрольным мероприятиям:

- обработка данных от приемника, работа со сторонними сервисами для подготовки входных и проверочных данных для разрабатываемого модуля;
- моделирование модуля в Matlab/Python;
- реализация программного модуля на C/C++, включая юниттестирование в Check.

Конечная цель всего курсового проекта - получить библиотеку функций на «С++», позволяющую рассчитывать положение спутника Beidou по его эфемеридам.

ЭТАП 1. ИСПОЛЬЗОВАНИЕ СТОРОННИХ СРЕДСТВ.

1.1. Описание задания.

Дан номер спутника BEIDOU, вариант – C06, значения эфемерид для спутников указаны в бинарном и текстовом файлах. Значения получены от антенны Harxon HX-CSX601A, установленной на крыше корпуса Е МЭИ. Она через 50-метровый кабель, сплиттер, bias-tee и усилитель подключена к трем навигационным приемникам:

- Javad Lexon LGDD,
- SwiftNavigation Piksi Multi,
- Clonicus разработки ЛНС МЭИ.

Эти приемники осуществляют первичную обработку сигналов Beidou B1I, выдавая по интерфейсам соответствующие потоки данных - наблюдения псевдодальностей и эфемериды спутников. Данные от приемника Clonicus, записанные вечером 16 февраля 2021 года.

C06	36828	IGSO-1	BDS-2	01.08.10	3867	Используется по ЦН

Рисунок 1 — Состояние 6-го спутника BEIDOU с «Информационноаналитического центра координатно-временного и навигационного обеспечения»

5	Компас IGSO-1	C06	31.07.2010, 20:50	CZ-3A	2010-036Ar	36828륜	Геосинхронная, накл. 55°; 118° в. д.	действующий	
---	---------------	-----	-------------------	-------	------------	--------	---	-------------	--

Рисунок 2 – Состояние 6-го спутника BEIDOU с сайта Википедия.

По рисункам 1 и 2 видно номер спутника — 36828, название спутника — «Компас IGSO-1».

1.2. Определение орбиты и положения спутника на ней с помощью сервиса CelesTrak.

Для выполнения данного пункта нужно перейти на сайт CelesTrak (https://celestrak.com), настроить параметры и выбрать нужный спутник, после чего будет определена орбита и его положение.

Рисунок 3 – Моделирование с помощью CelesTrak.

Значения совпадают, значит это действительно нужный нам спутник, проведем моделирование на момент времени 15:00, 16 февраля 2021, так как на данном сервисе отсчет времени происходит по UTC(0).

1.3. Расчёт графика угла места собственного спутника от времени по данным Trimble GNSS Planning Online.

Введём параметры для моделирования GNSS Planning Online, координаты установим в соответствии с расположением антенны соответственно значению корпуса Е МЭИ, также начальное время будет соответствовать 18:00, временной пояс +3 (UTC +3) на всем этапе моделирования в сервисе GNSS Planning Online, высота выбирается из суммы высоты над уровнем моря (146 м) и примерной высотой здания (25 м) и округляется до сотен.

Рисунок 4 – Моделирование с помощью сервиса Trimble GNSS Planning.

Рисунок 5 — График угла места собственного спутника от времени.

Из графика видно, что спутник на указанном временном интервале с 18:00 до 06:00 был в области видимости с 22:20 до 06:00.

1.4. Расчет диаграммы угла места и азимута спутника (SkyView, он же SkyPlot) по данным Trimble GNSS Planning Online.

Проведем моделирование Sky Plot во временном интервале 18:00-06:00 и зафиксируем положение спутника в критических точках, то есть когда он находился в области видимости - в 22:20, 00:50, 03:30 и 06:00.

4 графика положения спутника:

• 16 февраля 2021 в 22:20:

Рисунок 7 - Моделирование с помощью сервиса Trimble GNSS Planning.

• 17 февраля в 00:50:

Рисунок 8 - Моделирование с помощью сервиса Trimble GNSS Planning.

• 17 февраля в 03:30:

Рисунок 9 - Моделирование с помощью сервиса Trimble GNSS Planning.

• 17 февраля в 06:00:

Рисунок 10 - Моделирование с помощью сервиса Trimble GNSS Planning.

1.5. Формирование списка и описание параметров, входящих в состав эфемерид.

Таблица 1 – Значения эфемерид спутника С06

Параметр	Значение	Размерность
SatNum	6	-
toe, t_{oe}	241200000.000	МС
Crs, C_{rs}	-9.2875000000000000e+01	M
Dn, Δn	8.71107710704449589e-13	рад/мс
$M0, M_0$	2.32726368913121773e+00	рад
Cuc, C_{uc}	-2.62074172496795654e-06	рад
e	1.05765871703624725e-02	-

Cus, C_{us}	2.34702602028846741e-05	рад
sqrtA, \sqrt{A}	6.49287138557434082e+03	M ^{1/2}
Cic, C_{ic}	-1.12690031528472900e-07	рад
Omega $0, \Omega_0$	6.36759199965142852e-01	рад
Cis, C_{is}	3.25962901115417480e-09	рад
$i0, i_0$	9.46015118241178121e-01	рад
Cre, C_{rc}	-4.82140625000000000e+02	M
Omega, ω	-2.20504767262928070e+00	рад
OmegaDot, Ω	-1.77328815028356074e-12	рад/мс
iDot, IDOT	-2.00008331149807446e-14	рад/мс
Tgd, T_{GD}	8.7000000000000000e+04	МС
toc, t_{oc}	2.41200000000000000e+08	МС
af2, a_{f2}	0.00000000000000000e+00	MC/MC ²
af1, a_{fl}	3.37445626996668580e-11	мс/мс
af0, a_{f0}	9.76731553673744202e-02	МС
URA	0	-
IODE	257	-
IODC	0	-
codeL2	0	-
L2P	0	-
WN	789	-