

1. A half-wave controlled rectifier is shown in Figure 1. The thyristor, Q is fired at $\alpha = 45^\circ$ during each cycle. The rms value of the source voltage is 120 V. Consider $V_C = 24$ V, $L = 12$ mH and $R = 6 \Omega$.

Figure 1: A Half-wave rectifier.

- a) Sketch to scale the output voltage and the inductor current over one cycle.
 - b) Obtain a time dependent expression for the inductor current.
 - c) Find the average and rms values of the inductor current.
 - d) Find the maximum reverse voltage across the thyristor.
 - e) Find the peak value of the current through the thyristor.
 - f) Find the average and rms values of the output voltage.
 - g) Determine the power output of the converter.
2. A single-phase, full-wave, phase-controlled rectifier supplies an inductive load as shown in Figure 2. For $V = 240$ V, $L = 11$ mH, $R = 3 \Omega$, $V_C = 100$ V and $\alpha = 35^\circ$;
- (a) sketch to scale the time variations of the output voltage, the transformer secondary current, the inductor current and the diode current.
 - (b) Determine whether the load current is continuous or discontinuous.
 - (c) Calculate the average and rms

values of the in
 maximum rever
 which each thy

Figure 2: A full-wave controlled rectifier.

THE END