ESP1066

Prova 1. Peso: 3,50. Duração: 3h

Prof. Dr. Luiz Fernando Freitas-Gutierres

luiz.gutierres@ufsm.br

Licença internacional $\it Creative\ Commons\ 4.0-Atribuição-SemDerivações$

https://creativecommons.org/licenses/by-nd/4.0/deed.pt_BR

Nome & Matrícula:		
	Nota:	

Instruções:

- ☼ Preencha seu nome completo e matrícula na capa desta avaliação e rubrique as demais folhas.
- Use caneta azul ou preta para responder.
- 🗘 Nas folhas de rascunho, é permitido o uso de lápis ou lapiseira.
- ⇒ Se precisar de espaço adicional para responder questões, solicite uma folha adicional ao professor.
- Escreva respostas de forma clara e legível. Respostas ilegíveis não serão avaliadas.
- De Em questões de certo ou errado, ao identificar itens incorretos, corrija-os e forneça justificativas.
- De Em questões que envolvam cálculos, apresente-os de maneira completa.

Questões	01	02	Total
Pontos	55	45	100
Notas			

- (1) A Figura 1 apresenta o esboço de um dispositivo com as seguintes características:
 - O entreferro #E1 possui comprimento médio de $x_1 = 10$ cm.
 - O entreferro #E2 possui comprimento médio de $x_2 = 6$ cm.
 - O enrolamento #B1 contém $N_1 = 500$ espiras.
 - O enrolamento #B2 contém $N_2=200$ espiras e é percorrido por uma corrente $I_2=2$ A.
 - ullet O dispositivo inclui um bloco de material não linear com comprimento médio h=8 cm.
 - A curva B-H do material não linear também é apresentada na Figura 1.
 - Para todo o sistema, considere uma área da seção transversal $S=10~{\rm cm}^2$.
 - Requer-se que o fluxo magnético na coluna central seja nulo.
 - Devem ser desconsiderados o espraiamento magnético e os fluxos dispersos. O material linear é ideal.

Com base nessas especificações, responda os itens subsequentes.

Figura 1: Ilustração para a Questão 1.

- a) 20 pontos Determine a corrente elétrica I_1 na bobina #B1. $I_1 =$
- b) $\fbox{5}$ pontos $\fbox{Calcule a energia magnética } \mathcal{W}_g$ acumulada no entreferro #E1. $\mathcal{W}_g =$
- c) $\fbox{15 \text{ pontos}}$ Quantifique as indutâncias próprias (L_1 e L_2) dos enrolamentos. $L_1=$ $L_2=$

UFSM / CT / DESP / ESP1066

- d) 15 pontos Estabeleça a indutância mútua M entre as bobinas. M=
- (2) 45 pontos Analise os itens abaixo, indicando se são certos ou errados.
 - a) \square Para estimar a curva de magnetização de um transformador monofásico em laboratório, a corrente (I) e a tensão ($\mathcal V$) apresentam comportamento análogo aos dos campos magnéticos $\mathcal B$ e $\mathcal H$, respectivamente. Dessa forma, a permeabilidade magnética (μ) relaciona-se diretamente com a impedância ($\mathcal Z$).
 - b) C E Para estimar as perdas no ferro por meio da análise do ciclo de histerese em um transformador monofásico utilizando um osciloscópio em laboratório, além de calcular a área interna do ciclo, é essencial considerar o volume do núcleo ferromagnético e a frequência de operação.
 - c) C E Considerar o espraiamento tende a superestimar o fluxo magnético.
 - d) C E No ensaio de polaridade de um transformador monofásico, a observação de uma tensão equivalente à diferença entre as tensões no primário e no secundário indica que os terminais estão em fase
 - e) C E O ensaio de rigidez dielétrica permite avaliar a presença de falhas entre as espiras de um enrolamento de uma máquina elétrica.
 - f) C E Considerando apenas as autoinduções na Figura 2, $\Delta V = (L_1 L_2 + L_3) di/dt$.
 - g) C E Considerando apenas as induções mútuas na Figura 2, $\Delta \mathcal{V}' = 2Mdi/dt$.
 - h) \square \square A força eletromotriz (\mathcal{E}_{23}) induzida em #2 devido ao efeito de #3 desloca cargas de c para d na Figura 2.
 - i) \square \square A força eletromotriz (\mathcal{E}_{33}) autoinduzida em #3 orienta-se no sentido de f para e na Figura 2.
 - j) C E Em um transformador, as perdas no ferro são de 50 W a 40 Hz e 220 V. Quando a frequência é elevada para 60 Hz e a tensão para 380 V, as perdas aumentam para 90 W. De acordo com os procedimentos de cálculo abordados em ESP1066, pode-se inferir que as perdas por correntes parasitas são superiores a 35 W quando operando a 50 Hz e 220 V.

Figura 2: Três bobinas em série, com autoindutâncias L_1 , L_2 e L_3 , indutância mútua M entre cada par de enrolamentos, e percorridas por uma corrente i.