CONCOURS ADMINISTRATEUR EXTERNE DE L'INSEE

Session 2022
ÉPREUVE DE MATHÉMATIQUES
DURÉE : 4 heures

L'énoncé comporte 8 pages, numérotées de 1 à 8

Tous documents et appareils électroniques interdits

Partie 1 : algèbre-analyse

Cette partie est constituée de deux exercices indépendants.

Exercice 1

Définitions et notations :

- $\bullet \ \ \text{On note} \ \binom{n}{k} \ \text{le coefficient du binôme défini, pour} \ (k,n) \in \mathbb{N}^2 \ \text{vérifiant} \ 0 \leqslant k \leqslant n \text{, par} \ \binom{n}{k} = \frac{n!}{k!(n-k)!}.$
- ullet On note E l'espace vectoriel des fonctions de classe C^1 de [0,1] dans $\mathbb R.$
- ullet À toute fonction f appartenant à E, on associe la fonction $B_n(f)$ définie sur [0,1] par :

$$orall n \in \mathbb{N}, \quad orall x \in [0,1], \quad B_n(f)(x) = \sum_{k=0}^n inom{n}{k} f\left(rac{k}{n}
ight) x^k (1-x)^{n-k}.$$

Remarque

On pourra, pour simplifier certains calculs, utiliser une variable aléatoire Z qui suit la loi binomiale $\mathcal{B}(n,x)$, où $x\in[0,1]$

- 1. On suppose dans cette question que f est définie sur [0,1] par $f(x)=x^2$.
 - (a) Calculer, pour tout entier naturel n, $B_n(f)$.
 - (b) Montrer que $B_n(f)$ converge uniformément vers la fonction f quand n tend vers $+\infty$.

Dans la suite, on revient au cas général où f est une fonction quelconque de classe C^1 de [0,1] dans $\mathbb R$.

- 2. Calculer $\sum_{k=0}^{n} {n \choose k} (k-nx)^2 x^k (1-x)^{n-k}$ en fonction de x et de n.
- 3. Soit $x \in [0,1]$ et a un réel strictement positif.

On pose : $I = \{k \in \llbracket 0, n
rbracket ; \; |k-nx| \geqslant na \}$ et $J = \{k \in \llbracket 0, n
rbracket ; \; |k-nx| < na \}.$

(a) Justifier l'existence d'un réel K positif tel que :

$$\forall (x,y) \in [0,1]^2, \quad |f(x) - f(y)| \le K|x - y|.$$

(b) Établir, pour tout entier naturel n non nul, l'inégalité suivante :

$$\sum_{k\in I} \binom{n}{k} x^k (1-x)^{n-k} \leqslant \frac{x(1-x)}{na^2}.$$

(c) En déduire le résultat suivant :

$$orall x \in [0,1], \quad orall n \in \mathbb{N}^*, \quad |f(x) - B_n(f)(x)| \leqslant K\left(a + rac{1}{4a^2n}
ight).$$

- (d) Montrer que $B_n(f)$ converge uniformément vers f quand n tend vers $+\infty$.
- 4. Soit f une fonction de classe C^1 sur [0,1] telle que, pour tout entier naturel n, $\int_0^1 t^n f(t) dt = 0$. Montrer que f=0.
- 5. Soit g une fonction de classe C^1 sur \mathbb{R}_+ telle que :
 - $\bullet \ \lim_{x\to +\infty} g(x)=0.$
 - ullet II existe $\ell \in \mathbb{R}$ tel que $\lim_{t o +\infty} e^t g'(t) = \ell.$
 - Pour tout réel x strictement positif, $\int_0^{+\infty} e^{-tx} g(t) dt = 0$.

Montrer que g = 0.

Exercice 2

Les trois premières parties sont indépendantes entre elles. La quatrième fait la synthèse de ces trois parties.

L'espace de référence est $E=M_n(\mathbb{C})$. On rappelle que tout élément de E est **trigonalisable**, c'est-à-dire semblable à une matrice triangulaire supérieure dont les éléments diagonaux sont les valeurs propres.

1ère partie

Soit f une **forme linéaire** définie sur $M_n(\mathbb{C})$. On considère les deux propriétés :

- f est commutative vis-à-vis du produit matriciel, c'est-à-dire : f(AB) = f(BA).
- f est invariante par similitude, c'est-à dire que si P est semblable à Q : f(P) = f(Q).
- 1. Montrer que : $i \Rightarrow ii$.
- 2. On veut montrer que : $ii \Rightarrow i$.
 - a) Montrer que, si A ou B sont inversibles, AB est semblable à BA et conclure.
 - b) Montrer que, dans le cas opposé, il existe $\lambda \in \mathbb{C}$ tel que $A \lambda I_n$ est inversible.
 - c) Conclure.
- 3. On suppose maintenant que f vérifie les propriétés i et ii. On note $E_{i,j}$ les matrices élémentaires n'ayant qu'un seul 1 à la ligne i et la colonne j et 0 ailleurs.
 - a) Calculer $E_{i,j}E_{j,i}$ et $E_{i,i}E_{i,j}$.
 - b) En déduire les valeurs de $f(E_{i,i})$ et $f(E_{i,j})$ pour $i \neq j$.
 - c) En déduire que : $\exists \alpha \in \mathbb{C}, \forall A \in E : f(A) = \alpha \operatorname{Tr}(A)$.
 - d) Que peut-on dire de la réciproque du résultat ainsi démontré ?

2ème partie

On suppose maintenant que f est une forme linéaire non nulle mais ne vérifiant pas nécessairement les propriétés i et ii précédentes.

On pose H=Kerf . Soit $A_{0}\in E$ telle que : $f\left(A_{0}\right) \neq 0$.

- $\text{4.} \quad \text{Montrer que}: \quad E = H \oplus \textit{Vect} \, \{ \, A_0 \}.$
- 5. On considère une application s de E dans \mathbb{R}^+ vérifiant les propriétés suivantes :

$$\begin{cases} \forall A, B \in E : s(A+B) \leq s(A) + s(B) \\ \forall \lambda \in \mathbb{C} : s(\lambda A) = |\lambda| s(A) \end{cases}.$$

s s'appelle **semi-norme** sur E. On notera qu'**on n'a pas** l'implication :

$$\forall A \in E : \dot{s}(A) = 0 \Rightarrow A = 0.$$

On suppose que : $\forall Q \in H : s(Q) = 0$.

- a) Montrer que : $\forall A \in E, \forall Q \in H : s(A + Q) = s(A)$.
- b) En déduire qu'il existe $\beta \geq 0$ tel que : $\forall A \in E : s(A) = \beta |f(A)|$.

3^{ème} partie

Soit N une matrice *nilpotente* c'est-à-dire telle qu'il existe $p \in \mathbb{N}$, $p \ge 2$ vérifiant $N^p = 0$.

- 6. Montrer que N est semblable à une matrice triangulaire supérieure dont la diagonale est nulle.
- 7. Réciproquement, montrer que toute matrice triangulaire supérieure de diagonale nulle est nilpotente.
- 8. Montrer que toute matrice de diagonale nulle *non nécessairement triangulaire* est la somme de deux matrices nilpotentes.
- 9. On admet que *toute matrice de trace nulle est semblable à une matrice de diagonale nulle*. Montrer que le sous-espace vectoriel de E engendré par les matrices nilpotentes est l'ensemble des matrices de trace nulle.

4^{ème} partie

Soit *s* une semi-norme définie sur E (cf. question 5) non identiquement nulle qu'on suppose *invariante par similitude* (définition analogue à celle de la première partie).

10.

a) Soit N une matrice nilpotente de E, semblable d'après la question 6 à une matrice triangulaire supérieure T de diagonale nulle.

En interprétant T comme la matrice représentative d'un endomorphisme g de \mathbb{C}^n relativement à une base $(e_1, ..., e_n)$ et en définissant une nouvelle base sous la forme : $e'_1 = e_1$, $e'_k = \mu_k e_k \ (k = 2, ..., n)$, montrer que, pour tout $q \in \mathbb{N}^*$, on peut trouver une matrice triangulaire supérieure T_q semblable à T dont les éléments $t_{i,j}$ vérifient :

$$|t_{i,j}| < \frac{1}{q}.$$

On cherchera les coefficients $\mu_{\it k}$ appropriés.

- b) Montrer que : $s(T_q) \to 0$ quand $q \to +\infty$.
- c) En déduire que : s(N) = 0.

11.

- a) En déduire que s'annule sur l'ensemble des matrices de trace nulle.
- b) Conclure de ce problème que toute semi-norme s invariante par similitude est de la forme : $\forall A \in E : s(A) = v|Tr(A)|$.
- où γ est un réel positif ou nul fixé.

Partie 2 : probabilités-statistiques

Cette partie est constituée de deux exercices indépendants.

Exercice 1

Toutes les variables aléatoires de cet exercice sont supposées être définies sur le même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. Soit a et b deux réels, b>2 et X une variable aléatoire de densité :

$$f(t) = egin{cases} rac{b}{(x-a)^{b+1}} ext{ si } x \geqslant a+1 \ 0 ext{ sinon} \end{cases}$$

On dit que X suit la loi de Pareto $\mathcal{P}(a,b)$.

On suppose que a et b sont deux paramètres inconnus que l'on désire estimer.

On considère donc un n-échantillon X_1, \ldots, X_n de n variables aléatoires indépendantes suivant toutes la même loi que X.

Préliminaire

- 1. Déterminer la fonction de répartition de X.
- 2. Étudier l'existence de l'espérance de X et en cas d'existence, la calculer.

Partie 1

On suppose dans cette partie que le paramètre b est connu et on désire construire un estimateur de a. On pose $M_n = \min(X_1, \dots, X_n)$ et $A_n = M_n - 1$.

- 3. Montrer que M_n suit une loi de Pareto dont on précisera les paramètres.
- 4. Calculer $\mathbb{E}(|A_n a|)$.
- 5. En déduire que A_n est un estimateur convergent de a.
- 6. Soit $\alpha \in]0,1[$. Déterminer en fonction de n, de b et de A_n un intervalle de confiance pour a au risque α .

Partie 2

On suppose dans cette partie que le paramètre a est connu et on désire construire un estimateur de b. On pose :

$$B_n = \frac{n}{\sum\limits_{i=1}^n \ln(X_i - a)}$$

- 7. Donner la loi de ln(X a).
- 8. En déduire que B_n converge en probabilité vers b.

Partie 3

On suppose dans cette partie que a et b sont inconnus et on désire estimer b.

$$\hat{B}_n = \frac{n}{\sum\limits_{k=1}^{n} \ln(X_i - A_n)} \text{ et } R_n = \frac{1}{n} \sum\limits_{i=1}^{n} \ln(X_i - a) - \frac{1}{n} \sum\limits_{i=1}^{n} \ln(X_i - A_n)$$

On admettra le résultat suivant :

si (Z_n) est une suite de variables aléatoires qui converge en loi vers la loi de Z et (T_n) une suite de variable aléatoire qui converge en probabilité vers une variable certaine T, alors les suites de variables (Z_nT_n) et (Z_n+T_n) convergent en loi respectivement vers les lois des variables alétoires ZT et Z+T.

- 9. (a) Montrer que, pour tout x>0, $\ln(x)\leqslant x-1$
 - (b) En déduire l'inégalité suivante :

$$R_n \leqslant rac{1}{n} \sum_{i=1}^n rac{A_n - a}{X_i - A_n}$$

- (c) En déduire que $\sqrt{n}R_n$ converge en probabilité vers 0.
- 10. (a) Montrer que $\sqrt{n}\left(\frac{1}{b}-\frac{1}{n}\sum_{i=1}^n\ln(X_i-a)\right)$ converge en loi vers $\mathcal{N}(0,\frac{1}{b^2})$.
 - (b) En déduire que $\sqrt{n}\left(\frac{1}{b}-\frac{1}{n}\sum_{i=1}^n\ln(X_i-a)\right)+\sqrt{n}R_n$ converge en loi et donner la loi limite.
 - (c) Simplifier $b\hat{B}_n\left(\sqrt{n}\left(\frac{1}{b}-\frac{1}{n}\sum_{i=1}^n\ln(X_i-a)\right)+\sqrt{n}R_n\right)$.
 - (d) Montrer que \hat{B}_n converge en probabilité vers b.
 - (e) En déduire que $\sqrt{n}(\hat{B}_n-b)$ converge en loi et donner la loi limite. Donner un intervalle de confiance pour b au risque 0,05.

Exercice 2

Chacune des parties de ce problème utilise les résultats du prologue et des parties précédentes.

Prologue

Soit $Z \sim N(0, 1)$. Calculer $E(e^{sZ})$ pour $s \in \mathbb{R}$.

- - -

On considère le modèle linéaire $Y_i = bx_i + U_i$, pour $i \in \mathbb{N}$, où les x_i sont des observations **non** aléatoires, les U_i sont des variables aléatoires indépendantes et de même loi $N(0, \sigma^2)$ $(\sigma \neq 0)$ et b un paramètre inconnu.

On estime ce modèle sur les données relatives à la période i = 1, ..., n.

1ère partie

- 1. Calculer l'estimateur des moindres carrés ordinaires de b, soit \hat{b}_n , et donner sa loi.
- 2. On suppose dans cette question seulement que : $\frac{1}{n}\sum_{k=1}^{n}x_{i}^{2}\rightarrow\mu_{2,x}$ quand $n\rightarrow+\infty$. Étudier la convergence en loi de $\sqrt{n}(\hat{b}_{n}-b)$ quand $n\rightarrow+\infty$.
- 3. **Pour cette question seulement**, étude du cas particulier $x_i = i$. Déterminer α pour que $n^{\alpha}(\hat{b}_n b)$ converge en loi vers une loi non dégénérée (différente d'une constante) quand $n \to +\infty$.

On revient au cas général.

- 4. Pour $i \in \{1, 2, ..., n\}$, on pose: $\hat{U}_i = Y_i \hat{b}_n x_i$.
 - a) Expliciter la loi de \hat{U}_i .
 - b) Calculer $E\left(\sum_{i=1}^{n} \hat{U}_{i}^{2}\right)$.
 - c) En déduire un estimateur sans biais de σ^2 , noté $\hat{\sigma}_n^2$

5.

- a) Calculer $Cov(\hat{b}_n, \hat{U}_k)$ pour $k \in \{1, ..., n\}$.
- b) Montrer que \hat{b}_n et \hat{U}_k sont indépendants.

2ème partie

- 6. On considère un instant j > n.
 - a) Quel est le prédicteur naturel de Y_j fondé sur ce modèle ? On le notera \hat{Y}_j .
 - b) Calculer $E(\hat{Y}_j Y_j)$ et $E(\hat{Y}_j Y_j)^2$.

En réalité, la variable d'intérêt (expliquée par le modèle) est une variable $R_i > 0$ (par exemple le revenu du ménage i), définie par : $Y_i = \operatorname{Ln} R_i$. Le prédicteur intuitif de R_i (pour j > n) est alors :

$$\hat{R}_j = e^{Y_j}.$$

- 7. Calculer $E(\hat{R}_i R_i)$. Qu'en conclut-on ?
- 8. On pose : $\hat{R}_j = e^{\lambda_j} \hat{R}_j$. Déterminer, en fonction de σ^2 , x_i (i=1,...,N) et x_j , la valeur de λ_j qui assure que $E(\hat{R}_j R_j) = 0$.

3ème partie

- 9. On réalise un tirage à probabilités égales d'un indice parmi $\{1, 2, ..., n\}$. On appelle I la variable aléatoire représentant l'indice tiré. On suppose que I est **indépendant** des U_i . On admet que \hat{U}_I (avec l'indice aléatoire I) est une variable aléatoire.
 - a) Exprimer sous forme sommatoire la densité $\,g\,$ de la loi de $\,\hat{U}_{\scriptscriptstyle I}.$
 - b) En déduire la valeur de $E\,\hat{U}_{I}$.
 - c) En déduire la valeur de $\ V \hat{U}_I$.
- 10. Montrer que \hat{b}_n et \hat{U}_I sont indépendants. On pourra utiliser les fonctions de répartition.
- 11. On revient au cadre de la 2 eme partie. On pose : $Y_j^* = \hat{b}_n x_j + \hat{U}_I$ et : $R_j^* = e^{Y_j^*}$.
 - a) Calculer $E e^{\hat{U}_{I}}$.
 - b) En déduire ER_i^* .
 - c) Donner une expression approchée de ER_j^* quand les x_i^2 et x_j^2 sont petits par rapport à $\sum_{k=1}^n x_k^2$ et conclure.
