

### Center of Functionally Integrative Neuroscience

Aarhus University / Aarhus University Hospital - DENMARK



## GLHMM toolbox: Out-of-sample prediction

Christine Ahrends, PhD
Analysis workshop CFIN – 26.05.2025



How can we predict an individual's traits or behaviour from the patterns in which their brain function changes over time?



# Challenge: HMMs for phenotype prediction



Model of brain dynamics (Hidden Markov Model)



## **Summary features**

- Feature engineering approach:
- Extract features of interest from HMM
  - Fractional occupancies
  - Switching rates
  - State lifetimes
  - ...
- Use features to predict individual traits/performance/...
- + Hypothesis-driven
- Losing information







# Challenge: HMMs for phenotype prediction





HMM parameters:

$$\theta = [\pi' A' \mu' \Sigma]$$

→ construct kernel



## **Kernel methods**



**Input Space** 



- Find nonlinear decision boundaries using linear model
  - Transform input space into another embedding space
  - Find linearly separating hyperplane in embedding space
- Kernel trick: use kernel function instead of each data point in embedding space
- Similarity functions (e.g. similarity between pair of subjects)
- Computationally efficient, no feature selection



# Kernels from HMM: General approach

#### 2. Estimate Hidden Markov model (group-level HMM)

#### 1. Group neuroimaging timeseries (e.g. fMRI, MEG, EEG)



# group HMM parameters $\theta_0$ State probabilities $\pi_0$ Transition probabilities $\pi_0$ State means $\pi_0$ State $\pi_0$ State $\pi_0$ State $\pi_0$ State $\pi_0$ State $\pi_0$ State $\pi_0$ $\pi_0$ $\pi_0$ $\pi_0$ State $\pi_0$ $\pi_0$

#### 3. Dual estimation (subject-level HMM)



#### 4. Map examples into feature space and construct kernel





#### 5. Kernel-based prediction

| Age | Item A | Item B | Item C | Item D |
|-----|--------|--------|--------|--------|
| 28  | 102    | 115    | 5      | 87     |
| 32  | 110    | 113    | 4      | 33     |
| 54  | 99     | 125    | 6      | 18     |

Ahrends, Woolrich & Vidaurre (elife, 2025)



# Kernels from HMM: General approach





Ahrends, Woolrich & Vidaurre (elife, 2025)



## The Fisher Kernel

• Fisher score: gradient of the log-likelihood w.r.t. each model parameter:

$$g(\theta^0, x^n) = \left(\frac{\partial \log \mathcal{L}_{\theta^0}(x^n)}{\partial \theta^0}\right)$$

$$g \in \mathbb{R}^{1x(K+K*K+K*M+K*M*M)}$$

- how we need to change the group-level model to better explain an individual's timeseries
- (Practical) linear Fisher kernel:

$$\kappa_F(n,m) = g(\theta^0, x^n)^{\mathrm{T}} g(\theta^0, x^m)$$

$$\kappa_F \in \mathbb{R}^{N \times N}$$

Gaussian Fisher kernel:

$$\kappa_{Fg}(n,m) = \exp\left(-\frac{\|g(\theta^0,x^n) - g(\theta^0,x^m)\|^2}{2\tau^2}\right)$$

$$\kappa_{Fg} \in \mathbb{R}^{NxN}$$

Jaakkola & Haussler (1998) NIPS Jaakkola et al. (1999) PICISMB



# Fisher kernel: Accuracy and reliability

Christine Ahrends, PhD







# Kernels vs. feature engineering



Fisher kernel
Summary features





## Try it yourself:

- Notebooks:
  - Gaussian HMM 2 1 Gaussian HMM.ipynb
  - Out-of-sample prediction 2 2 Predction.ipynb

#### Additional reading:

Ahrends, Woolrich & Vidaurre (*elife*, 2025) Predicting individual traits from models of brain dynamics accurately and reliably using the Fisher kernel.

#### Code:

https://github.com/ahrends/FisherKernel

