Question

Consider a quantum system made of one qubit. The system is in the initial state $|\psi\rangle = |0\rangle$. The quantum gate Pauli Z is applied on $|\psi\rangle$. Can you describe the action of this gate on the system? Can you give a graphical representation of the circuit? What is the final state of the system?

Answer 1

The Pauli Z gate is a one-qubit gate that corresponds to a rotation of the qubit state around the z-axis of the Bloch sphere by π radians. Mathematically, the Pauli Z gate is represented by the following matrix:

$$Z = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 & -1 \end{bmatrix}$$

Geometrically, the Pauli Z gate maps the qubit state $|0\rangle$ to the state $|0\rangle$ and the qubit state $|1\rangle$ to the state $-|1\rangle$ (where the minus sign indicates a global phase factor that does not affect any measurements).

The circuit diagram for applying the Pauli Z gate to a qubit in the state $|0\rangle$ is shown below:

$$|0\rangle$$
 --Z---> $|0\rangle$

The final state of the system after applying the Pauli Z gate is $|1\rangle$, since the Pauli Z gate maps $|0\rangle$ to $|0\rangle$ and $|1\rangle$ to $-|1\rangle$. Therefore, applying the Pauli Z gate to the qubit in the initial state $|0\rangle$ results in the final state $|1\rangle$.

Answer 2

The Pauli Z gate is a quantum gate that acts on a single qubit. Its matrix representation is:

$$Z = [[1, 0], [0, -1]]$$

When applied to the initial state $|0\rangle$, the Pauli Z gate will transform the state as follows:

$$Z|0\rangle = [[1, 0], [0, -1]]|0\rangle$$

=
$$[[1*0 + 0*0],$$

 $[0*0 + (-1)*1]]$
= $[[0],$
 $[-1]]$
= $-|1\rangle$

So the final state of the system will be the state $|1\rangle$, up to a global phase factor of -1.

In terms of a circuit diagram, the Pauli Z gate can be represented as a box with a "Z" inside, applied to a single qubit. Here is the circuit diagram for the gate applied to the initial state |0>:

$$|0\rangle$$
 ----Z---- (-1) $|1\rangle$

Note that the final state has a phase factor of -1, which does not affect the measurement probabilities of any observable. Therefore, the measurement probabilities for measuring the qubit in the state $|0\rangle$ or $|1\rangle$ will be the same before and after the application of the Pauli Z gate.

Answer 3

The Pauli Z gate, also known as the Z gate, is a quantum gate that acts on a single qubit. It is defined by the following matrix:

$$Z = [1 \ 0]$$
 [0 -1]

When the Pauli Z gate is applied to a qubit, it performs a phase flip, changing the sign of the $|1\rangle$ state and leaving the $|0\rangle$ state unchanged. Mathematically, the action of the Pauli Z gate on a qubit state $|\psi\rangle$ is given by:

$$Z|\psi\rangle = [1 \ 0] [a]$$

 $[0 \ -1] [b]$
 $= [a]$
 $[-b]$

So, if we apply the Pauli Z gate to the initial state $|\psi\rangle = |0\rangle$, we have:

$$Z|0\rangle = [1 \ 0] [1]$$

 $[0 \ -1] [0]$
 $= [1]$
 $[0]$

Graphically, we can represent the circuit as follows:

$$Z|0\rangle = [1 \ 0] [1]$$

 $[0 \ -1] [0]$
 $= [1]$
 $[0]$

The final state of the system, after applying the Pauli Z gate, is $|\psi\rangle=[1\ 0]$, which corresponds to the state $|0\rangle$. Thus, the Pauli Z gate does not change the initial state when applied to the qubit in the state $|0\rangle$.