### Il dimensionamento a catalogo di una trasmissione a cinghie trapezoidali

Il dimensionamento di una trasmissione a cinghie trapezoidali si conduce rapidamente seguendo le indicazione delle ditte produttrici che, a loro volta, fanno riferimento alle norme UNI 5789-5790.

## • Elementi geometrici e cinematici



V velocità periferica della cinghia

d<sub>p</sub> diametro primitivo della puleggia minore

D<sub>p</sub> diametro primitivo della puleggia maggiore

K rapporto di trasmissione  $K = D_p / d_p$ 

I Interasse

l<sub>p</sub> Lunghezza primitiva della cinghia

$$l_p = 2I + 1.57 \cdot (D_p + d_p) + \frac{(D_p - d_p)^2}{4I}$$

a Ampiezza dell'arco di contatto

$$a = 180 - 57 \cdot \frac{D_p - d_p}{I}$$

#### • Fattore di servizio

Il fattore di servizio  $F_s$  è un coefficiente che, tenuto conto delle condizioni di carico, aumenta opportunamente la potenza che teoricamente dovrebbe essere trasmessa.

I valori di  $F_s$  vengono stimati secondo le seguenti indicazioni

| Determinazione di $oldsymbol{F}_s$ | C   | Iotore<br>oppia<br>to nor | di  | Motore a<br>coppia di<br>spunto elevata |     |     |  |
|------------------------------------|-----|---------------------------|-----|-----------------------------------------|-----|-----|--|
| ore di servizio                    | 10  | 16                        | >16 | 10                                      | 16  | >16 |  |
| Carico uniforme                    | 1.0 | 1.1                       | 1.2 | 1.1                                     | 1.2 | 1.3 |  |
| medio                              | 1.1 | 1.2                       | 1.3 | 1.2                                     | 1.3 | 1.4 |  |
| pesante                            | 1.2 | 1.3                       | 1.4 | 1.4                                     | 1.5 | 1.6 |  |
| extra pesante                      | 1.3 | 1.4                       | 1.5 | 1.5                                     | 1.6 | 1.8 |  |

### • La potenza di calcolo Pc

La potenza di calcolo  $P_C$  si ottiene dalla potenza nominale  $P_N$  dalla seguente relazione:

$$P_C = P_N \cdot F_S$$

# • Scelta della sezione di cinghia

La sezione appropriata di cinghia si sceglie in base alla velocità della puleggia minore e della potenza di calcolo



## • Diametro primitivo equivalente

Si definisce come tale e si indica con  $d_e$  il diametro primitivo delle due pulegge di una trasmissione con rapporto di trasmissione K=1, equivalente, agli effetti della fatica per flessione della cinghia, alla trasmissione data di uguale interasse. Il valore di  $d_e$  si ottiene moltiplicando il diametro primitivo della puleggia minore  $d_p$  per un fattore di correzione  $F_b$ , variabile con il rapporto di trasmissione K



#### • Potenza nominale

Si definisce potenza nominale  $p_1$  trasmissibile da una cinghia la potenza che una cinghia di determinata sezione e lunghezza può trasmettere con durata convenzionale normale in una trasmissione con pulegge di diametro primitivo equivalente  $d_e$ . La potenza  $p_1$  è funzione della velocità periferica della cinghia V e del diametro primitivo equivalente  $d_e$ , secondo quanto di seguito per ogni singola sezione di cinghia

$$Z \Rightarrow p_1 = (0.25V^{-0.09} - \frac{7.35}{d_e} - 0.47 \cdot 10^{-4}V^2)V$$

$$A \Rightarrow p_1 = (0.45V^{-0.09} - \frac{19.61}{d_e} - 0.76 \cdot 10^{-4}V^2)V$$

$$B \Rightarrow p_1 = (0.79V^{-0.09} - \frac{51.3}{d_e} - 1.31 \cdot 10^{-4}V^2)V$$

$$C \Rightarrow p_1 = (1.48V^{-0.09} - \frac{143.2}{d_e} - 2.34 \cdot 10^{-4}V^2)V$$

$$D \Rightarrow p_1 = (3.15V^{-0.09} - \frac{507.2}{d_e} - 4.76 \cdot 10^{-4}V^2)V$$

$$E \Rightarrow p_1 = (4.57V^{-0.09} - \frac{951.1}{d_e} - 7.05 \cdot 10^{-4}V^2)V$$

V [m/s];  $d_e$  [mm];  $p_1$  [kW] I valori di  $p_1$  si possono già trovare calcolati in opportune tabelle.

## Potenza effettiva p trasmissibile da una cinghia

La potenza effettiva p, che una cinghia può trasmettere, si ottiene moltiplicando  $p_1$  per:

 un coefficiente Fá di correzione che tiene conto dell'ampiezza á dell'arco di contatto fra cinghia e puleggia minore e che si ottiene dal grafico sotto riportato



2. un coefficiente di correzione *Fe*, che tiene conto, a parità di altre condizioni, della frequenza di flessione della cinghia e che si ricava dal diagramma seguente



La potenza effettiva p sarà pari a:

$$p = p_1 \cdot F\mathbf{a} \cdot Fe$$

## • Determinazione del numero di cinghie z

Il numero di cinghie z è l'intero più vicino, per difetto o per eccesso, al rapporto  $P_c/p$ 

### • Sviluppo primitivo delle cinghie

Sviluppo primitivo Ip

|      |        |         |       |         |             | .4   |        |         |       |         |      |                                            | _      | _     |
|------|--------|---------|-------|---------|-------------|------|--------|---------|-------|---------|------|--------------------------------------------|--------|-------|
| z    | 1245   | 1075    | 1850  | 2910    | 935         | 1745 | 2635   | +060    | 6865  | 1840    | 3520 | 7570                                       |        | 13735 |
|      |        |         |       |         |             |      |        | 4130    |       | 1970    | 3620 | 7695                                       | 5080   | 15260 |
| 35   |        |         |       |         |             |      |        | 4160    |       | 2095    | 3670 | 7720                                       | 5260   | 1678  |
| 65   | 2.75   |         | 1990  | 100.000 | 250, 400, 7 |      |        |         | 7250  | 2120    | 3720 | 8000                                       | 5285   | 18310 |
|      | 272.22 |         | 2015  | 27.00   |             | 1850 | 2735   | 4235    | 7630  | 2170    | 3795 | 8050                                       | 5335   | E     |
| 520  | A      |         |       |         |             | 1875 | 2760   | 4285    | 8010  | 2220    | 3820 | 8405                                       | 5385   | Svil. |
|      |        |         |       |         |             |      |        | 4310    |       | 2350    | 3950 | 8560                                       | 5410   | 466   |
| 565  |        |         | 2115  |         |             |      |        |         | 8390  | 2425    | 4075 | 8785                                       | 5685   | 506   |
| 590  |        |         |       |         |             | 1950 | 2830   | 4490    | 8770  | 2475    | 4180 | 9170                                       | 5735   | 544   |
| 810  |        |         |       |         |             |      |        |         | 3144  | 2500    | 4255 | 10030                                      | 6015   | 576   |
| 630  |        |         |       |         |             |      |        | 4615    |       | 2525    | 4280 | 10690                                      | 6090   | 612   |
| 635  |        |         |       |         |             |      |        |         | 9250  | 2540    | 4330 | 10795                                      | 6115   | 632   |
| 660  |        |         |       |         |             |      |        |         |       | 2550    | 4460 | D                                          | 6320   | 650   |
| 885  | 670    |         |       |         |             |      |        |         | 10015 |         | 4560 | swl.                                       | 6370   | 688   |
| 710  |        |         |       |         |             |      |        |         | 11000 |         | 4635 | 2565                                       | 6500   | 726   |
| 740  |        |         |       |         |             |      |        |         | 11950 |         | 5015 | 2720                                       | 6780   | 764   |
| 750  |        |         |       |         |             |      |        | 5225    |       | 2655    | 5065 | 2870                                       | 6880   | 805   |
| 775  |        |         |       |         |             |      |        |         | Svil. | 2705    | 5245 | 3075                                       | 7185   | 841   |
| 790  |        |         |       |         |             |      |        | 5380    |       | 2730    | 5345 | 3125                                       | 7260   | 875   |
| 795  |        |         |       |         |             |      |        | 5620    |       | 2755    | 5400 | 3225                                       | 7590   | 917   |
| 810  |        |         |       |         |             |      |        | 5675    |       | 2805    | 5660 | 3330                                       | 7740   | 1003  |
| 840  |        |         |       |         |             |      |        | 5700    |       | 2855    | 5740 | 3530                                       | 8000   | 1069  |
| 865  |        |         |       |         |             |      |        |         | 1285  | 2910    | 5815 | 3555                                       | 8050   | 112   |
| 595  |        |         | 2575  |         |             |      |        | 5800    |       | 2320    | 6065 | 3630                                       | 8075   | 1222  |
| 915  | 900    |         |       |         | 8-1-        |      | 200 87 | 1       | 1360  | 1550000 | 6120 | 3735                                       | 8365   | 1374  |
| 940  | 925    |         |       |         |             |      |        | 6025    |       | 3010    | 6325 | 3990                                       | 8405   | 1526  |
|      | 1      | #17.71C | 2700  |         | 100         |      |        |         | 1460  | 3060    | 6370 | 4090                                       | 8785   | 1675  |
| 960  | 950    | 1       | 2750  | 100     |             |      |        | A COLOR | 1550  | 3110    | 6500 | 100000                                     | 9165   | 1831  |
| 2.22 | 7000   |         | 2780  | 1       | 1000        | 100  |        | 4       | 1585  | 3215    | 6750 | - Y 27 27 27 27 27 27 27 27 27 27 27 27 27 | 9925   | 198   |
| 1090 |        |         |       |         | 1           | 100  |        | 10000   | 1645  | 1000    | 6880 | 1.000                                      | 10030  |       |
| 1055 |        |         | 288   |         |             |      |        |         | 1670  | F 10.70 | 7035 | 4570                                       | 10700  | 1     |
| 1095 |        |         |       |         | 0.00        |      |        | 6583    | 200   | 3415    | 7135 | 4650                                       | 11225  | 1     |
| 1145 |        |         |       |         |             |      |        |         |       | - 100   | 7265 | +825                                       | 12215  | 1     |
| 1193 | 1030   | 1490    | E 801 | 310     | 11/33       | 1230 | 3 4030 | 10135   | 1790  | 2405    | 1200 | 1.000                                      | 1.23.0 | _     |

## Calcolo della CINGHIA passo passo

*Dati*: Potenza, Velocità, rapporto di trasmissione (D<sub>p</sub>/d<sub>p</sub>)

- 1. Fissato il fattore di servizio, si determina la potenza di calcolo
- 2. Noti il numero di giri della puleggia minore e la potenza di calcolo si sceglie la sezione appropriata di cinghia (A, B, C....)
- 3. Si stabilisce il diametro primitivo della puleggia minore (consultare la tabella riportante i diametri minimi)
- 4. Se l'interasse  $I_a$  non è assegnato lo si determini, in prima approssimazione con una delle seguenti relazioni

$$I_a = \frac{D_p - d_p}{2} + d_p$$
 se  $D_p < 3d_p$   
 $I_a = D_p$  se  $D_p > 3d_p$ 

- 5. Si determina la lunghezza della cinghia  $l_p$
- 6. Si sceglie la lunghezza disponibile  $\tilde{l}_d$  più vicina a quella determinata al punto precedente
- 7. Si calcola l'interasse corretto  $I_C$  con una delle seguenti relazioni :

$$I_C = I_a - \frac{l_p - l_d}{2}$$
 se  $l_p > l_d$ 

$$I_C = I_a + \frac{l_d - l_p}{2}$$
 se  $l_p < l_d$ 

- 8. Noto il rapporto di trasmissione si determina il fattore  $F_b$  e il diametro primitivo equivalente  $d_e$
- 9. Note la sezione di cinghia (A, B, C....) e la sua lunghezza si determina il fattore  $F_e$
- 10. Si calcola la velocità della cinghia
- 11. Con la velocità della cinghia, la sua sezione e il diametro primitivo equivalente si determina la potenza nominale  $p_1$  trasmissibile da una cinghia
- 12. In base all'angolo di avvolgimento sulla puleggia minore si determina il fattore **Fá**
- 13. La potenza effettiva p trasmissibile da una cinghia sarà:

$$p = p_1 \cdot F_e \cdot F_a$$

14. Si determina infine il numero di cinghie rapportando la potenza di calcolo alla potenza **p** determinata al punto precedente. Il numero di cinghie deve essere approssimato all'intero più vicino in difetto o in eccesso

### Determinazione del tiro di cinghia

Sia  $M_t$  il momento torcente trasmesso da una puleggia con raggio pari a R. Il tiro totale F agente sulla puleggia per effetto del pretensionamento della cinghia può essere posto pari a :

$$F = (4-5)\frac{M_t}{R}$$
 per cinghie piatte

$$F = (1.2 - 1.5) \frac{M_t}{R}$$
 per cinghie trapezoidali