Laborator 2 Aproximarea prin proiectie ortogonala in spatii Hilbert

Cerinta 1 Aveti in vedere primul exemplu din cursul 3. Pe multimea polinoamelor de grad < 4 consideram produsul scalar

$$\langle P, Q \rangle = P(-2)Q(-2) + P(-1)Q(-1) + P(0)Q(0) + P(1)Q(1) + P(2)Q(2)$$

Aproximati polinomul $x^3 + 2x^2$ cu un polinom din spatiul span $\{1, x, x^2\}$ prin proiectie in sensul produsului scalar de mai sus. Ce polinom se va obtine?

Metoda celor mai mici patrate (metoda cmmp)

Vom considera un tabel de date

Dintre toate combinatiile liniare de functii $g_1(x) = 1, g_2(x) = x, ..., g_{m+1}(x) = x^m$ vom incerca sa determinam acel $P(x) = a_1 + a_2x + ... + a_{m+1}x^m$ asa ca

$$\sum_{i=1}^{n} (P(X_i) - Y_i)^2 = minim$$

Se presupune ca $m+1 \le n$. Am aratat la curs ca acei coeficienti $a_1, ..., a_{m+1}$ vor satisface sistemul

$$\tilde{A}a = b$$

unde $\tilde{A} = A * A^t$ si $b = A * Y^t$ unde matricea A este data de formula

$$A = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ X_1 & X_2 & X_3 & \dots & X_n \\ X_1^2 & X_2^2 & X_3^2 & \dots & X_n^2 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ X_1^m & X_2^m & X_3^m & \dots & X_n^m \end{pmatrix}$$
(1)

Cerinta 2 Scrieti o functie Matlab numita matriceA care sa construiasca matricea A dat fiind vectorul $X = [X_1, X_2, ... X_n]$ si parametrul m care controleaza gradul polinomului aproximant. Codul va avea structura urmatoare

function A=matriceA(X,m)
%x vector linie

%m -- folosim functii de modelare 1,x,...,x^(m)

```
for(j=0:m)
A(j+1,:)=?????
end
```

Cerinta 3 Pentru $X = [1 \ 2 \ 3 \ 4]$ si m = 2 executati matriceA(X, m). Verificati ca A este calculat corect.

Cerinta 4 Scrieti o functie matlab care sa primeasca input vectorii linie X, Y de mai sus si numarul m iar apoi sa returneze coeficientii polinomului P calculat cu formulele de mai sus. Inlocuiti ?????? cu codul corespunzapor.

Codul ar trebui sa aiba structura urmatoare

```
function a=cmmp(X, Y,m)
    %X, Y -- tabelul de date
    %m -- folosim functii de modelare 1,x,...,x^(m)
A=matriceA(X,m);

Atilde=???????
```

a=Atilde\b; %aflam coeficientii polinomului aproximant de la puterea cea mai mica in sus.

Cerinta 5 Rulati codul dumneavoastra pe tabelul

```
X=[1 2 3 4 5]
Y=[2 3 4 5 6]
```

Comanda cmmp(x,y,1) ar trebui sa produca rezultatul

 $[1 \ 1]$

pentru ca datele din tabel satisfac y = x + 1 si deci regresia liniara este data exact de aceasta formula (ea va produce un minim egal cu 0).

Cerinta 6 Rulati codul dumneavoastra pe tabelul

```
X=[1 2 3 4 5]
Y=[1 1.3 1.2 3 2]
```

In Matlab metoda celor mai mici patrate se aplica cu comanda polyfit. Atentie, polyfit returneaza coeficientii polinomului aproximant de la puterea cea mai mare in jos. Comanda $\operatorname{cmmp}(X, Y, 1)$ ar trebui sa produca acelasi output ca si comanda matlab $\operatorname{polyfit}(X, Y, 1)$ dar in ordine inversa iar $\operatorname{cmmp}(X, Y, 3)$ la fel ca $\operatorname{polyfit}(X, Y, 3)$ dar ordonate invers.

Cerinta 7 Calculati coeficientii polinomului Lagrange de interpolare pentru tabelul

folosind cmmp. Va reamintesc ca in general atunci cand folosim functii de modelare $1, x, ..., x^{n-1}$ metoda de aproximare in sensul celor mai mici patrate va produce exact polinomul Lagrange de interpolare a datelor din tabelul X, Y atunci cand X, Y au lungime n.

Cerinta 8 Fie tabelul

Faceti graficul punctelor (X(i), Y(i)) corespunzatoare acestui tabel de date precum si al celei mai bune aproximari P obtinute cu cmmp pentru m=1 (adica regresia liniara).

Cerinta 9 Fie tabelul

Aplicati metoda de aproximare in sensul celor mai mici patrate folosind functii de modelare $g_1(x) = sin(x)$, $g_2(x) = cos(x)$. Faceti graficul datelor din tabel si al functiei aproximante obtinute pe intervalul [0.5, 5.5] precum si al regresiei liniare obtinute la cerinta 8.