MATH 220A: Homework #1

Due on Oct 4, 2024 at 23:59pm $Professor\ Ebenfelt$

Ray Tsai

A16848188

Problem 1

Let Λ be a circle lying in S. Then there is a unique plane P in \mathbb{R}^3 such that $P \cap S = \Lambda$. Recall from analytic geometry that

$$P = \{(x_1, x_2, x_3) : x_1\beta_1 + x_2\beta_2 + x_3\beta_3 = l\}$$

where $(\beta_1, \beta_2, \beta_3)$ is a vector orthogonal to P and l is some real number. It can be assumed that $\beta_1^2 + \beta_2^2 + \beta_3^2 = 1$. Use this information to show that if Λ contains the point N, then its projection on \mathbb{C} is a straight line. Otherwise, Λ projects onto a circle in \mathbb{C} .

Proof. Suppose $N \in \Lambda$. Then the stereographic projection line for every $x \in \Lambda$ is in P, and thus the projection of all $x \in \Lambda$ is in $P \cap \mathbb{C}$. On the other hand, for all $z \in P \cap \mathbb{C}$, stereographic projection line for z contains some point in $\Lambda \setminus \{N\}$. Therefore, the projection of Λ on \mathbb{C} is $P \cap \mathbb{C}$, which is a straight line.

Suppose $N \notin \Lambda$, namely $\beta \neq l$. Let $x \in \Lambda$. By representing $x = (x_1, x_2, x_3)$ in terms of its complex plane projection z, we get

$$x_1\beta_1 + x_2\beta_2 + x_3\beta_3 = \frac{(z+\bar{z})\beta_1}{|z|^2+1} + \frac{-i(z-\bar{z})\beta_2}{|z|^2+1} + \frac{(|z|^2-1)\beta_3}{|z|^2+1} = l.$$

Rearranged,

$$\frac{l+\beta_3}{\beta_3-l} = |z|^2 - \frac{\beta_1 - i\beta_2}{l-\beta_3} z - \frac{\beta_1 + i\beta_2}{l-\beta_3} \bar{z}.$$

But then circles in \mathbb{C} are of the form

$$r^{2} = (z - a)\overline{(z - a)} = |z|^{2} - \bar{a}z - a\bar{z} + |a|^{2},$$

for $r \in \mathbb{R}$ and $z, a \in \mathbb{C}$. Hence we are done.

Prove that a set $G \subseteq X$ is open if and only if X-G is closed.

Proof. If G is open, then its complement X-G is closed, by definition. If X-G is closed, it's complement X-(X-G)=G is open, by definition.

Let (X,d) be a metric space and $Y \subseteq X$. Suppose $G \subseteq X$ is open; show that $G \cap Y$ is open in (Y,d). Conversely, show that if $G_1 \subseteq Y$ is open in (Y,d), there is an open set $G \subseteq X$ such that $G_1 = G \cap Y$.

Proof. Let $B_X(x;\epsilon)$ denote the open ball in metric space (X,d) centered at x with radius ϵ .

Let $x \in G \cap Y$. If G is open, then there exists $\epsilon > 0$ such that $B_X(x;\epsilon) \subseteq G$. But then $B_Y(x;\epsilon) = B_X(x;\epsilon) \cap Y \subseteq G \cap Y$, so $G \cap Y$ is open in (Y,d).

Suppose $G_1 \subseteq Y$ is open in (Y,d). For all $x \in G_1$, there exists $\epsilon_x > 0$ such that $B_Y(x;\epsilon) \subseteq G_1$. Put $G = \bigcup_{x \in G_1} B_X(x;\epsilon)$. G is open in X, as it is an union of open sets. Since $x \in B_X(x;\epsilon)$ for all $x \in G_1$, $G_1 \subseteq G \cap Y$. Since $B_X(x;\epsilon) \cap Y = B_Y(x;\epsilon) \subseteq G_1$ for all $x \in G_1$, $G \cap Y = \bigcup_{x \in G_1} Y \cap B_X(x;\epsilon) \subseteq G_1$, and hence the equality.

The purpose of this exercise is to show that a connected subset of \mathbb{R} is an interval.

(a) Show that a set $A \subseteq \mathbb{R}$ is an interval if and only if for any two points a and b in A with a < b, the interval $[a, b] \subseteq A$.

Proof. Suppose $A \subset \mathbb{R}$ is an interval. Let $a, b \in A$, with b > a. By definition of an interval, $x \in A$ for all a < x < b, and thus $[a, b] \subseteq A$.

Suppose that $[a,b] \subseteq A$ for all $a,b \in A$ with b>a. We may assume that $A \neq \mathbb{R}$, otherwise we are done. If A is bounded both above and below, then $m=\inf A$ and $M=\sup A$ exist. Pick $\epsilon>0$. Since $M-\epsilon, m+\epsilon\in A$, $[m+\epsilon, M-\epsilon]$ is contained in A. Hence, for all $\epsilon>0$, $x\in A$ for all $m+\epsilon\leq x\leq M-\epsilon$, that is, $(m,M)\subseteq A$. But then $x\notin A$ for all x>M or x< m, so A is either [m,M],[m,M),(m,M], or (m,M). Suppose WLOG that A is not bounded below. Then $M=\sup A$ exists as $A\neq \mathbb{R}$. Let x< M. Since the interval $[x,(x+M)/2]\subseteq A$, we know $x\in A$, and thus $(-\infty,M)\subseteq A$. But then $x\notin A$ for all x>M, so A is either $(-\infty,M]$ or $(-\infty,M)$.

(b) Use part (a) to show that if a set $A \subseteq \mathbb{R}$ is connected then it is an interval.

Proof. Let $a, b \in A$, with b > a. Suppose for the sake of contradiction that [a, b] is not a subset of A. There exists $x \notin A$ such that a < x < b. But then by the last exercise, $(-\infty, x) \cap A$ and $(x, \infty) \cap A$ are disjoint open sets in (A, d), and their union is A. Hence, A is disconnected, contradiction. The result now follows from (a).

Prove the following generalization of Lemma 2.6. If $\{D_j : j \in J\}$ is a collection of connected subsets of X and if for each j and k in J we have $D_j \cap D_k \neq \emptyset$ then $\mathcal{D} = \bigcup \{D_j : j \in J\}$ is connected.

Proof. Let A be a nonempty subset of the metric space (\mathcal{D},d) which is both open and closed. Then $A \cap D_j$ is both open and closed in (D_j,d) for all j. Since $A \neq \emptyset$ and D_j is connected for all j, $A \cap D_j = D_j$ for some j. But then $D_j \cap D_k = A \cap D_k \neq \emptyset$ for all k, so $A \cap D_k = D_k$, as D_k is connected. Therefore, $\mathcal{D} = A$. \square