MI-FME Cvičení 7

Tomáš Chvosta

Březen 2020

Cvičení 7a

Úloha byla vypracována na cvičení.

Cvičení 7b

Zadání:

V teorii listů dokažte následující formuli:

$$(\forall l, x, y)(l = cons(x, cons(y, empty())) \Rightarrow first(rest(l)) = y)$$

Důkaz:

Dokazujeme formuli, která má tvar $(\forall l,x,y)(F)$, což znamená, že zavedeme nové konstanty a,b a c. Nechť tyto konstanty a,b,c jsou libovolné ale pevné a dokažme $F[l \leftarrow a,x \leftarrow b,y \leftarrow c]$. Jedná se o implikaci, takže předpokládáme a = cons(b,cons(c,empty())) a dokážeme first(rest(a)) = c. Využijeme jedno z ekvivalentních pravidel, že $(\neg\neg(first(rest(a)) = c)) \Leftrightarrow first(rest(a)) = c$. Nyní můžeme postupovat tak, že předpokládáme $\neg(first(rest(a)) = c)$ a najedeme spor. Do posledního předpokladu můžeme dosadit a = cons(b,cons(c,empty())). V tuto chvíli můžeme využít jeden z axiomů, konkrétně $(\forall l,x)(rest(cons(x,l)) = l)$ a upravit poslední předpoklad na tvar $\neg(first(cons(c,empty()))) = c)$. Nyní můžeme využít dalšího axiomu, konkrétně $(\forall l,x)(first(cons(x,l)) = x)$ a upravit poslední předpoklad na tvar $\neg(c = c)$.

Tabulka 1: Důkazová tabulka

Krok	Předpokládáme	Dokazujeme
		(a = cons(b, cons(c, empty())))
1.		\Rightarrow
		first(rest(a)) = c)
2.	a = cons(b, cons(c, empty()))	first(rest(a)) = c
3.		$\neg\neg(first(rest(a)) = c)$
4.	$\neg(first(rest(a)) = c)$	hledáme spor
5.	$\neg(first(rest(cons(b,cons(c,empty())))) = c)$	hledáme spor
6.	axiom č. 1 $[x \leftarrow b, l \leftarrow cons(c, empty())]$	hledáme spor
7.	$\neg(first(cons(c, empty()))) = c)$	hledáme spor
8.	axiom č. 2 $[x \leftarrow c, l \leftarrow empty()]$	hledáme spor
9.	$\neg(c=c)\dots \bot$	hledáme spor

Tabulka 2: Tabulka využitých axiomů $(l \in \mathcal{L}[\mathcal{T}], x \in \mathcal{T})$:

Číslo axiomu	Axiom
1.	$(\forall l, x)(rest(cons(x, l)) = l)$
2.	$(\forall l, x)(first(cons(x, l)) = x)$

Cvičení 7c

Zadání:

V teorii polí dokažte následující formuli:

$$(\exists a, i, j, x)(write(a, i, x)[j] \neq x)$$

Důkaz:

V tomto důkazu se snažíme dokázat formuli, která má tvar $(\exists a,i,j,x)(F)$, což znamená, že zvolíme nějaké termy, které dosadíme za a,i,j,x a tuto formuli poté dokážeme. Pro tento důkaz můžeme zvolit termy k,l,w,write(a,l,v) a následně dokážeme $F[a \leftarrow write(a,l,v),i \leftarrow k,x \leftarrow w,j \leftarrow l]$. Je nutné podotknout, že $k \neq l$ a také $w \neq v$. Proměnná v značí libovolnou hodnotu. Nyní nastává čas využít axiom $(\forall a,v,i,j)(\neg[i=j]\Rightarrow write(a,i,v)[j]=a[j])$. Víme, že $k \neq l$, pak tedy podle tohoto axiomu platí, že write(write(a,l,v),k,w)[l]=write(a,l,v)[l]. Nyní využijeme axiom $(\forall a,v,i,j)(i=j\Rightarrow write(a,i,v)[j]=v)$. Podle tohoto axiomu můžeme usoudit, že write(a,l,v)[l]=v. Dostáváme $v\neq w$, což už ale máme triviálně dokázáno.

Tabulka 3: Důkazová tabulka		
Krok	Předpokládáme	Dokazujeme
		$F[a \leftarrow write(a, l, v),$
		$i \leftarrow k$,
1.		$x \leftarrow w$,
		$j \leftarrow l$],
		$kde \ w \neq v \ a \ k \neq l$
	axiom č. 1	
	$a \leftarrow write(a, l, v),$	
2.	$i \leftarrow k$,	$write(write(a, l, v), k, w)[l] \neq w$
	$v \leftarrow w$,	
	$j \leftarrow l$	
	axiom č. 2	
	$[a \leftarrow a,$	
3.	$i \leftarrow l$,	$write(a, l, v)[l] \neq w$
	$v \leftarrow v$	
	$j \leftarrow l$	

Tabulka 4: Tabulka využitých axiomů (a $\in \mathcal{A}[\mathcal{T}], v \in \mathcal{T}, i, j \in \mathcal{N}$):

 $v \neq w$

Číslo axiomu	Axiom
1.	$(\forall a, v, i, j)(i = j \Rightarrow write(a, i, v)[j] = v)$
2.	$(\forall a, v, i, j)(\neg[i = j] \Rightarrow write(a, i, v)[j] = a[j])$

Cvičení 7d

4.

Zadání:

V teorii polí dokažte následující formuli:

$$(\forall a,i,j,x)((write(a,i,x)[j]=x) \Rightarrow (i=j \vee a[j]=x))$$

Důkaz:

Dokazujeme formuli, která má tvar $(\forall a,i,j,x)(F)$, což znamená, že zavedeme nové konstanty p,k,l a v. Nechť tyto konstanty p,k,l,v jsou libovolné ale pevné a dokažme $F[a \leftarrow p,i \leftarrow k,j \leftarrow l,x \leftarrow v]$. Dokazujeme implikaci, takže předpokládáme write(p,k,v)[l] = v a dokažeme $k = l \lor p[l] = v$. Pro důkaz disjunkce předpokládejme, že platí $\neg(k=l)$ a dokažme p[l] = v. Nyní využijme následující axiom: $(\forall a,v,i,j)(\neg[i=j] \Rightarrow write(a,i,v)[j] = a[j])$. Jelikož ho můžeme použít jako platný předpoklad, můžeme také vhodně zvolit termy a usoudit write(p,k,v)[l] = p[l]. Spolu s předpokladem write(p,k,v)[l] = v můžeme usoudit, že p[l] = v, čímž úspěšně dokončíme důkaz.

Tabulka 5: Důkazová tabulka
Předpokládáme Doka Krok Dokazujeme write(a, i, x)[j] = x1. $i = j \vee a[j] = x$ 2. write(p, k, v)[l] = v $k = l \vee p[l] = v$ p[l] = v3. $\neg (k = l)$ axiom č. 1 $[a \leftarrow p,$ 4. $v \leftarrow v$, p[l] = v $i \leftarrow k$, $j \leftarrow l$ write(p, k, v)[l] = p[l]p[l] = v5.

Tabulka 6: Tabulka využitých axiomů (a $\in \mathcal{A}[\mathcal{T}], v \in \mathcal{T}, i, j \in \mathcal{N}$)):

p[l] = v

×1.1			/ /3 //
Cislo axiomu		Axiom	
1.	$(\forall a, v, i, j)(\neg [$	$i = j] \Rightarrow write(a,$	i,v)[j] = a[j])

Cvičení 7e

5.

Zadání:

Dokažte pomocí Peano axiomů s vyjímkou indukčního axiomu následující formuli:

$$(\forall k)(0+k=k)$$

Využijte principu slabé matematické indukce.

Důkaz:

Dle principu slabé matematické indukce nejprve provedeme důkaz pro k=0. Dokazujeme tedy $(\forall k)(0+k=k)$ a zavedeme novou konstantu 0 a dosadíme $(0+k=k)[k\leftarrow 0]$ a tedy dokážeme 0+0=0. Pro dokázání této formule budeme potřebovat jeden z axiomů, konkrétně $(\forall x)(x+0=x)$, kdy můžeme zvolit term 0 a usoudit $(x+0=x)[x\leftarrow 0]$ tedy 0+0=0, což úspěšně dokončí tuto část důkazu.

Tabulka 7: Důkazová tabulka k=0

Krok	Předpokládáme	Dokazujeme
1.		$(\forall k)(0+k=k)$ $[k \leftarrow 0]$
2.	$(\forall x)(x+0=x)$ $[x\leftarrow 0]$	0 + 0 = 0
3.	0 + 0 = 0	0 + 0 = 0

V druhé části důkazu (matematické indukce) předpokládáme (0 + k = k)a dokážeme formuli pro $k \leftarrow k+1$. Pokusíme se tedy dokázat 0+(k+1)=k+1, k čemuž se nám bude hodit axiom $(\forall x,y)(x+(y+1)=(x+y)+1).$ V této části zvolíme dva termy 0 a k a usoudíme $(x+(y+1)=(x+y)+1)[x\leftarrow 0, y\leftarrow k].$ Vzniknul nám tedy nový předpoklad 0 + (k+1) = (0+k) + 1, do kterého můžeme z prvního předpokladu dosadit 0+k=k. Tím získáme nový předpoklad 0 + (k+1) = k+1, čímž úspěšně dokončíme důkaz.

Tabulka 8: Důkazová tabulka $k=k+1\,$

Krok	Předpokládáme	Dokazujeme
1.	0 + k = k	$(\forall k)(0+k=k)$ $[k \leftarrow k+1]$
2.		0 + (k+1) = k+1
3.	$(\forall x, y)(x + (y + 1) = (x + y) + 1) [x \leftarrow 0, y \leftarrow k]$	0 + (k+1) = k+1
4.	0 + (k+1) = (0+k) + 1	0 + (k+1) = k+1
5.	0 + (k+1) = k+1	0 + (k+1) = k+1

Cvičení 7f

Úloha bude vypracována na cvičení.