省选模拟试题

ExfJoe

March 15, 2017

竞赛时长: 240min

试题名称	斐波那契	远行	珠宝
可执行文件名	fib	hike	jewelry
输入文件名	fib.in	hike.in	jewelry.in
输出文件名	fib.out	hike.out	jewelry.out
时间限制	1s	2s	2s
空间限制	256M	256M	256M
测试点数目	10	10	20
测试点分数	10	10	5
是否有 SPJ	否	否	否
是否有部分分	否	否	否
题目类型	传统	传统	传统

- 认真独立完成试题,不与他人交流讨论
- 最终评测在 Win10 下使用 Lemon, 默认栈空间限制为 8M, 开启 O2 优化
- 试题按英文名称字典序排序

斐波那契

题目描述

设 F(i) 为斐波那契数列的第 i 项,其中:F(1)=1, F(2)=1, F(i)=F(i-1)+F(i-2). 给定 n,k,请你求出一个由若干斐波那契数列中元素组成的 k 维超立方体 A 内所有元素的和。 A 为一个 $n\times n\times \cdots \times n(k$ 个n连乘) 的 k 维超立方体。

 $A(i_1, i_2, \dots, i_k) = F(i_1 + i_2 + \dots + i_k - k + 1)$ 。每一维均从 $1 \sim n$ 编号,即 $1 \leq i_1, i_2, \dots, i_k \leq n$. 由于元素之和可能很大,所以最终答案模 $10^9 + 7$.

输入格式

输入数据包含多组测试点,第一行一个正整数 T 表示数据组数。接下来 T 行每行两个正整数 n,k,意义见题目描述。

输出格式

对于每组数据输出一行一个整数表示答案。

样例 1

	Input	
3	1	
2 2 4 1		
4 1		
1 3		
	Output	
5	•	
7		
1		

约定

20% 的数据: $n, k \leq 5$

另有 20% 的数据: k=1

60% 的数据: $k \le 100$

100% 的数据: $1 \le T \le 100$, $1 \le n, k \le 10^9$

远行

题目描述

Miranda 生活的城市中有 N 个小镇,一开始小镇之间没有任何道路连接。随着经济发展,小镇之间陆续建起了一些双向的道路,但是由于经济不太发达,在建设过程中,会保证对于任意两个小镇,最多有一条路径能互相到达。

有的时候 Miranda 会从某个小镇开始进行徒步旅行,每次出发前,她都想选择一个她能到达的最远的小镇作为终点,并且她在行走过程中是不会走回头路的,为了估算这次旅行的时间,她会需要你告诉她这次旅行需要的时间会是多少呢?

可以假设通过每条道路都需要单位时间,并且 Miranda 不会在小镇停留。

输入格式

第一行输入一个整数 type, 表示数据类型。

第二行两个整数 N,Q。

接下来 Q 行,每行先读入一个整数 ty,若 ty=1,则接下来读入两个整数 u,v,表示小镇 u 与小镇 v 建立了一条新道路。若 ty=2,读入一个整数 u,表示 Miranda 要开始一次从小镇 u 出发的旅行。

注意:

若 type=1,表示数据进行了加密。记 lstans 表示最近一次 Miranda 旅行的时间,那么对于每次操作的 u 或 u,v,都要异或上 lstans,即 $u=u\oplus lstans,v=v\oplus lstans$

若 type = 0,则不需要对数据进行处理。

输出格式

对于每次询问,输出 Miranda 能到达的最远的小镇的距离是多少。注意 Miranda 可能只能留在 开始的小镇。

样例

见 sample 文件夹下的 hike0~2.in 与 hike0~2.out

约定

20% 的数据: $N \le 5000$, $Q \le 10000$

50% 的数据: $N \le 100000$, $Q \le 200000$

另有 20% 的数据: type = 0

100% 的数据: $N \leq 300000$, $Q \leq 500000$, $type \in \{0,1\}$

解密后的 u,v 满足 $1 \le u,v \le N$,且道路的修建会满足:每一时刻,都不存在 u,v,使得 u,v 之间能通过多种方式到达

珠宝

题目描述

Miranda 准备去市里最有名的珠宝展览会,展览会中可以购买珠宝,但可惜的是只能现金支付,Miranda 十分纠结究竟要带多少的现金,假如现金带多了,就会比较危险,假如带少了,看到想买的又买不到。

展览中总共有 N 种珠宝,每种珠宝都只有 1 个,对于第 i 种珠宝,它的售价为 C_i 万元,对 Miranda 的吸引力为 V_i 。 Miranda 总共可以从银行中取出 K 万元,现在她想知道,假如她最终带了 i 万元去展览会,她能买到的珠宝对她的吸引力最大可以是多少?

输入格式

第一行输入两个整数 N, K。 接下来 N 行,每行两个整数 C_i, V_i 。

输出格式

输出一行 K 个整数,对于第 i 个数,表示假如 Miranda 带了 i 万元现金,她能买到的珠宝对她的吸引力最大可以是多少。

样例

见 sample 文件夹下的 jewelry0~1.in 与 jewelry0~1.out

约定

20% 的数据: $N, K \le 10000$

另有 20% 的数据: $C_i = V_i$

100% 的数据: $1 \le N \le 1000000$, $1 \le K \le 50000$, $1 \le C_i \le 300$, $0 \le V_i \le 10^9$