ECE-301-204

Lab11 Synchronous Finite State Machine Design and Implementation

Marcus Domingo

04/27/2016

Objective:

Understand the design and operation of a simple synchronous finite state machine (FSM) to dispense a product when 15 cents have been entered in nickels and dimes.

Preparation:

D-Type FF implementation

minterm	Coin	Present State		Next State		Excitation		Output	
iiiiiieei iii	input	11 cocint btate		Treat state		Variables		Variables	
		MSB	LSB	MSB	LSB			Return	Dispense
								coins	candy
	N/D-bar	Q_{1}	Q ₀ -	Q ₁ +	Q_0^+	D_1	D_0	Ret	Disp
0	0	0	0	١	0	l	0	1	ρ
1	0	0	1	1	1	1	(0	0
2	0	1	0	0	0	D	6	6	0
3	0	1	1	0	D	б	0	0	Ī
4	1	0	0	0	1	0	(1	0
5	1	0	1	1	O	1	0	D	0
6	1	1	0	l	ſ	1	1	0	D
7	1	1	1	D	0	д	7	0	(

Materials and Equipment:

- ET-1000 Trainer
- Wires
- Breadboard
- AND gates, OR gates, D flip-flops

Above are the Karnaugh Maps, equations, and circuit implementation of the lab.

Comments and Conclusions:

This last lab we made a "vending machine" out of a couple of logic gates and 2 D flip-flops. This gives us insight into the many things that we can do in the real world with just a circuit. Definitely gives me a different perception when I look at things now.