

Freifunk Hochstift Infrastruktur

Freifunk Tag 2017 #fftag17

Wer bin ich?

- Maximilian Wilhelm
 - @BarbarossaTM
 - @ffho_noc
- Senior Infrastructure Architect, Uni Paderborn
- Vorstand Freifunk Hochstift e.V.
- Linuxer
- Netzwerker
- OpenSource Hacker

Agenda

- Hintergrund
- Problem Statement
- Automatisierung
 - Ausfallsichere Services
 - Elegantes und sicheres Routing (VRFs)
- Layer2-Overlay (VXLAN)
- Lessons Learned

The definitve guide

FFHO SOLUTIONS

BarbarossaTM

:P orly.coloncapitalp.com

Background: Freifunk Hochstift

- Gegründet als Freifunk Paderborn (12/2013)
- Schnell stark gewachsen dank viel Unterstützung
 - Bäcker
 - Werbegemeinschaft Paderborn
 - Land NRW
 - Seit 2016 auch Stadt + Kreis Paderborn
- Expandiert zum Freifunk Hochstift (09/2015)
- ~900 Knoten, ≥1.500 Clients

Backend-Infrastruktur

- Mittlerweile über 60 Systeme
 - Debian Linux auf Blech oder in VMs
 - An immer mehr POPs im Hochstift
 - Server + VMs verteilt in .de
 - Angebunden per RiFu-Backbone oder VPNs
- Monitoring per LibreNMS + Icinga2 (upcoming)

Wireless Backbone (alt)

Wireless Backbone (Planung)

BATMAN Layer2 skaliert nicht

- Ein BATMAN Mesh mit 1k Knoten dreht nicht
- Ergo kleinere "Sites" bauen
 - Legacy + 10 neue (City, PB N, O, S, W, ...)
- Aber:
 - Ein Vlan pro Site und RF-Strecke?
 - Plus Vlan für IP?

Erkenntnisse

- \$Linux-Appliance als BATMAN Hop (APU2)
- BCP38 hilft
- Point-To-Point Links (VPNs) bauen
- #routingrocks
- Teuer nicht unbedingt besser
- L2-Kopplung per Vlans anstrengend

- Infrastruktur-Manufaktur skaliert nicht
- Bitte kaufen Sie Automatisierung

Automatisierungsstufen

- Gateway #1 Handgeklöppelt
- Gateway #2 per setup.sh Basiskonfiguriert
- Gateway #3-6 per setup.sh initial Vollkonfiguriert
- Aber Changes?
 - Manuell überall anders
- Skaliert nicht

Salt Stack

- Continuous Management gewollt
 - Pakete installieren
 - Configs anpassen
 - Dienste/Units starten
 - Netzwerk konfigurieren
 - Zertifikate verteilen
 - **–** ...
- 1. Ansatz hat ~1 Jahr gehalten
- Mittlerweile fast einmal alles neu gebaut

Automatisierung

States

- Repräsentiert Status den \$etwas haben soll
- YAML-Format
- Sammlung von Definitionen für
 - (De)Installierte Pakete
 - (De)aktivierte Services
 - Dateiinhalte
 - User
 - ...
- Abhängigkeiten modellierbar

Pillar

- Strukturierter Key-Value-Store
- YAML-Format
- Erlaubt Filterung wer was lesen darf
- Daten in Templates auslesbar
- Prädestiniert für
 - Keys
 - Host-spezifische Konfigurationen

Pillar Example

```
bbr-vega.in.ffho.net:
   id: 198
                     Quelle für Loopback-IP
   sysLocation: Vega
                      Bird-Config generieren
   roles:
       router
       batman
                     Batman-Interfaces generieren
      bbr
   sites:
      - pad-cty
                         Batman-Instanzen
```


Pillar Example contd.

```
ifaces:
    bond0:
      bond-slaves: "eth0 eth1 eth2"
    vlan1002:
      desc: "<-> qw04"
      vlan-raw-device: bond0
      prefixes:
        - 10.132.253.58/31
        - 2a03:2260:2342:fe1c::1/126
      batman connect sites: pad-cty
```


The SDN part

Disclaimer: Schriftart auf besonderen Wunsch von AbraXXL

SDN für Linux (Debian)?

- /etc/network/interfaces generieren einfach
- Aber wie neu laden?
 - »service networking restart« disruptive
 - Kein Tool für "neu laden" vorhanden
 - Untrivial zu bauen
- CumulusNetworks Ifupdown2
 - Rewrite von ifupdown in Python
 - https://github.com/CumulusNetworks/ifupdown2

ifupdown2

- Leider keine Featureparität mit ifupdown
- Kann von Hause aus
 - Dependency Resolution
 - ifreload
 - VLAN-Aware-Bridges
 - VRFs
 - VXLAN
- Kann (noch) nicht:
 - ppp

Ifupdown2 Patches

- Dank Python leicht erweiterbar
- Upstream kommunikativ
- Kann mittlerweile
 - B.A.T.M.A.N. Interfaces
 - Tunnel (GRE, SIT, IPIP)
- Offene Pull-Requests für
 - Filter für Bridge-Interfaces
 - Phys-dev für VXLAN
 - Pointopoint-Bugfix

Automatisierung mit SaltStack

- Node-Informationen in »pillar«
 - Strukturierter Key-Value-Store in YAML-Syntax
- Eigene Python Module für "SDN" und mehr
- Daraus generiert:
 - /etc/network/interfaces
 - Bird-Config (OSPF, iBGP, eBGP)
 - OpenVPN
 - DHCPd

https://github.com/FreifunkHochstift/ffho-salt-public

Netzwerk-Setup

- Alle Systeme per DualStack verbunden
 - Dynamisches Routing mit Bird
 - OSPF
 - Loopback-Reachability
 - Propagation von Mgmt-Netzen der POPs
 - iBGP mit 3 Core-Routern (RRs)
 - Default-Route (kommt per eBGP)
 - Announcement von Client-Netzen
 - Announcement von (Anycasted) Service-IPs
 - Traffic Engineering

https://github.com/FreifunkHochstift/ffho-salt-public/tree/master/bird

Recap

- Erledigt
 - Automatisierung
 - Geroutete Infrastruktur
- Next up
 - Ausfallsichere Services
 - Elegantes und sicheres Routing
 - B.A.T.M.A.N.-Overlays

Exkurs: Anycast

- Idee: Service-Prefix mehrfach announcen
- Client verbindet immer zu nahem Server
 - Nähe aus Sicht des Routings!
- Realisierung: anycast-healthchecker + bird
 - Service-Prefix nur announcen, wenn Dienst OK
 - Obacht: Flow-Based ECMP nutzen (ab Kernel 4.4)
- Fällt ein Server aus, "Umleitung" zum nächsten

```
https://github.com/unixsurfer/anycast_healthchecker
https://github.com/FreifunkHochstift/ffho-salt-
public/blob/master/bird/ff-policy.conf
```


Exkurs: Traffic Engineering

- Steuerung von Traffic-Flows
 - Ingress-Traffic steuern
 - Kürzeste Weg zu Batman-Gateway-Prefixen
 - → Ost-West-Traffic vermeiden
- Lösung:
 - More-Specific Routen von/zu gewünschtem Ziel
 - Mit spezieller BGP-Community gekennzeichnet

VRFs

- Virtual Routing and Forwarding
- Unabhängige Routinginstanzen
 - Layer3 Separation
 - Strikte Trennung von Netzen
 - Überlappende Prefixe möglich
- L3-VPNs
 - Üblicherweise im Kombination mit MPLS
- "VRF ohne MPLS" → VRF-lite
 - Hier: VRF-lite

VRFs vs. Policy Routing

- Alt bekannt: Policy-Routing (seit Kernel 2.2)
- Fussschusspotential
 - Rules für v4 und v6 vorhanden?
 - Rules für alle Interfaces vorhanden?
 - Rules für alle Source-Prefixe vorhanden?
 - Pipe-Protokoll in Bird
 - Management-Katastrophe

VRFs vs. Network Namespaces

- Seit Kernel 2.6.24++
- NetNS haben eigene
 - Routingtabellen
 - Routing Policies
 - Netfilter Regeln
- Device Layer separation
- Prozesse müssen in NetNS laufen
- Uncharmant im Freifunk Umfeld
 - "Zuviel des Guten"

VRFs unter Linux

- Separierung für Layer3 Kommunikation
- VRF-Interface als Master für "echte" Interfaces
 - Legt Routing-Table f
 ür VRF fest
- Ab Kernel 4.[345] (nehmt >= 4.9)

https://git.kernel.org/cgit/linux/kernel/git/to
rvalds/linux.git/tree/Documentation/networking/
vrf.txt

https://cumulusnetworks.com/blog/vrf-for-linux/

https://de.slideshare.net/CumulusNetworks/operationalizing-vrf-in-the-data-center

VRFs unter Linux

VRFs mit ifupdown2

```
auto eth0
iface eth0
    address 185.46.137.163/25
    address 2a00:13c8:1000:2::163/64
    gateway 185.46.137.129
    gateway 2a00:13c8:1000:2::1
    vrf vrf_external
```

```
auto vrf_external
iface vrf_external
    vrf-table 1023
```


VRF-Konzept

- Haupt-VRF mit internem Freifunk-Netz
 - OSPF + iBGP
 - Routen zu allen internen Hosts und Diensten
 - Debugging mit Standardtools
- Ggf. "external" VRF für Interfaces mit public IPs
 - GRE-Tunnel zu AS201701
 - OpenVPN-Verbindungen
 - Fastd-Einwahl
 - Eigene public facing services

Inter-VRF-Kommunikation

- Nur in Ausnahmefällen erforderlich
- Erfordert vEth-Paar
 - Quasi virtuelles Netzwerkkabel
- Ein Ende in Haupt-VRF, eins in VRF "external"
- Bird spricht BGP mit sich selbst
 - Exportiert aggregierte Prefix(e)
 - Importiert Public IP(s)
- Public IP(s)s intern redistributiert

Veth unter Linux

```
ip link add VETH_END1 type veth
    peer name VETH_END2
```

```
# ip 1
[...]
24: VETH_END2@VETH_END1: [...]
25: VETH_END1@VETH_END2: [...]
```


OpenVPN vs. VRFs

- Viele OpenVPN Tunnel im Einsatz
- OpenVPN muss über VRF "external" reden
- Dafür brauchts einen kleinen Patch setsockopt (sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev) +1);

https://github.com/OpenVPN/openvpn/pull/65

Upcoming: VRF support für pppd

- An einem Standort DSL-Uplink vorhanden
- ppp0 sollte in VRF "external"
- Mit post-up scripts geht's leider nicht direkt
 - Mit 3 Skripten und at geht's
 - Ist aber nicht schön
- pppd braucht wohl auch einen Patch :-)

Recap

- Erledigt
 - Geroutete Infrastruktur
 - Automatisierung
 - Ausfallsichere Services
 - Elegantes und sicheres Routing
- Next up
 - B.A.T.M.A.N.-Overlays

Recap Freifunk / B.A.T.M.A.N.

- Freifunk basiert auf Batman-Meshes
 - Eine oder mehr Layer2-Domains
 - Ermöglicht netterweise Roaming
 - Das ist in der City total cool
- B.A.T.M.A.N Adv.
 - Layer2-in-Layer2 Mesh-Protokoll
 - Keine Interface-Kosten, nur Hop-Penalty
 - Gateway-Knoten == DHCP-Server
 - Jede Instanz braucht eigene Layer2-Verbindung zu Peers

Wireless Backbone (Planung)

Wege aus der VLAN-Hölle

- B.A.T.M.A.N. braucht Layer2-Verbindung
- IP-Backbone vorhanden
- Layer2-Overlay wäre praktisch!
 - MPLS unter Linux bisher nur tw. Vorhanden
 - → VXLAN

VXLAN

- "Ethernet over UDP"
 - Oder: "Poor mans approach to MPLS"
- Designed als Layer2-Overlay in Datacentern
 - Multi-tenant Overlay über IP-Fabric
 - 24Bit VNI => 16M Instanzen möglich
 - Unicast/Multicast Kommunikation
 - Endpunkt = VTEP (VXLAN Tunnel End Point)
- RFC7348

VXLAN unter Linux

```
ip link add DEVICE type vxlan id ID
[ dev PHYS_DEV ]
[ { group | remote } IPADDR ]
[ local { IPADDR | any } ]
[ ... ]
```


VXLAN mit ifupdown2

IPoBATMANoVXLANoVLANoRF

Wait, what?

IP B.A.T.M.A.N. Adv. **VXLAN** IP Vlan

Ethernet (RF / Kabel)

44

MTU

- »Increasing MTUs for fun and profit«
 - Mesh-Netz (BATMAN): 1500
 - BATMAN-Underlay (VXLAN): 1560
 - VXLAN-Underlay (VLAN): 1610
 - On-Wire: 1628

https://github.com/FreifunkHochstift/ffho-salt-public/blob/master/_modules/ffho_net.py#L77

Recap

- Erledigt
 - Geroutete Infrastruktur
 - Automatisierung
 - Ausfallsichere Services
 - Elegantes und sicheres Routing
 - ✓ B.A.T.M.A.N.-Overlays

Hardware

- Zoo aus z.T. gesponsorter Hardware
 - Server, Switche, Richtfunk, ...
- Versuch der Homogenisierung
 - PCengines APU2
 - Netonix WISP Switches
 - Ubiquiti Networks
 - PowerBeam
 - LiteBeam
 - AC Mesh Pro

Abdinghof

Aufbau PaderHalle (gestern)

Reismann Gymnsaium (gestern)

Freifunkromantik

Lessons Learned

Lessons Learned

- Offload ist ein Thema voller Missverständnisse
 - Abschalten! (GS, GRO, GSO, TSO)
 - 4KB/s vs. 40MB/s
- BCP38 ausrollen
- Kernel >= 4.9 nehmen
 - Mit 4.6 / 4.7 IPv6-Routing in VRF subtil kaputt
 - Mit 4.8
 - Problem mit Bridges und B.A.T.M.A.N.
 - IPv6 und Fragmentation

Systemd + OpenVPN vs. ifup

- Einige OpenVPN Instanzen konfiguriert
- "up /etc/openvpn/ifup"
 - ifup "\$1"
- Dank systemd starten Instanzen parallel
 - Einige ifup-Aufrufe parallel
 - Nahezu keine IPs mehr konfiguriert
- → flock —exclusive —wait 30

Fragen?

Maximilian Wilhelm @BarbarossaTM Freifunk Hochstift @ffhochstift + @ffho_noc

B.A.T.M.A.N. auf EdgeRoutern

- Wir haben kein Geld
- EdgeRouter sind billig
- Wäre cool, wenn die auch BATMAN sprächen...
- https://git.c3pb.de/freifunk-pb/edgerouter
- Nice try, aber
 - Nicht update-safe
 - Explodiert auf andere Modellen und Versionen
 - Performance eher so mittel, da kein offloading

Heimnetz-Freifunk-Bridge / BCP38

- Fritz!Box Prefix im Freifunk-Netz?
- Firmennetz im Freifunk-Netz?
- → Prefixfilter für Freifunk-Prefix auf Knoten entfernt 30% Grundrauschen

https://github.com/FreifunkHochstift/ffhopackages/tree/master/ffho/ffho-ebtables-net-rules

Tinc

- "Viele Point-to-point Tunnel sind kompliziert."
- "Ein großes Layer2-Netz ist easy. Da drüber kann man auch OSPF fahren."
- "Mit zwei VPN-Servern haben wir auch gleich Redundanz."
- Don't.

I can haz PoE switch for AF-5X?

Nicht von UBNT. Netonix to the rescue!

AirFiber 5X

- Wetterradar (Beware of 5600MHz Band)
- Störungen in anderen Bändern (5,5 vs. 5,8GHz)
- Störungen auf parallel laufenden Kabeln?
- Weniger Durchsatz als PBE-5AC-500
- Montagsmodelle?

Bird 1.6.1 doom

- Bird 1.6.1 + Pipe-Protokoll = Segfault
- Unattended-upgrades ist 'ne tolle Sache
- Salt state pkg.latest auch
- Freifunk Hochstift war zweimal "aus".
- · Oops.

Offloading

• Der Unterschied zwischen 4KB/s und 40MB/s...

```
for iface in eth0 eth1; do
    for feature in sg gro gso tso
rxvlan txvlan; do
        ethtool --offload ${iface}
                  ${feature} off
        done
done
```