I) PRE-LAB -

For Obj. 1 - Design a 2 bit Comparatore circuit.

a) Truth table >

Input				Output		
A.	Ao	В,	8.	A>B	AKB	A=B
000000000	0000	0000	0 - 0 - 0 -	A>0 000 - 0	000	10000
00111111	0000	000	0-0-0-0-0-	000000)000-0000	-0000-0000-

56) Minimised Boolean expression >

Si)	Forc	A	>B.	→
21° 81	00	01	11	10
500	0	0	0	0
501		0	0	0
51		1	0	1
510			0	0

11) For A <b th="" →<="">									
AIA	00	01	111	10					
00	0	ti		1					
01	0	0							
ч	0	0	0	0					
10	0	0	1	0					
			11.						

AIA. BIBO								
00	1	0	0	10				
01	0	1	0	0				
U	0	0	1	0				
10	0	0	0					

5A>B = A, B, '+ A, B, 'B, '+A, A, B, '

A < B = A, B, +A, B, Bo + A, A, Bo

(A=0= (A0 +0 B0) CA109)

For A=B ->

= (A. OB.) (A. OB.)

c) Circuit Diagram -> d> HDL code > librarcy ieee; use icee std_ logie. 1164 · all; entity test 1 is poret CAI, AD, BI; BD: in stellogical; FI, Fa, F3: out std_logic); end test 1; architecture boolean_eg of text 1 is signal A, B, C, D: std_logie. signal a, b, c, d, e, f, g, h : stal logic. ACINOT AI; BK = NOT & AB; CK= NOT BI; DK = NOT BB; a =AI AND AD AND D; bx = ADANDC AND O; CK = AI AND C; FI= a BR b ORC; de A AND BI AND BD; Fa = dore or f; ger= A AND B AND Bo; F3 = g AND K fr= A AND BAS 9 <= AD EX-NOR 90; end boolean_eq. hx = AI EX-NOR BOS

Forc Obj. 2 - Combinational circuit that converts 4 bit binary number to equivalent Group code.

a) Truth Table -

Inputs			Output					
A.	В	C	D	Ga	Ga	G,	Go	
00000000	0000 0000	000000	0-0-0-0-0-0-0-0-	000000000	00000000	00000000	000000	

d) HDL code >

library icee;

use icee std logic. 1164 all;

entity test 2 is

port (A, B, C, D: in std logic;

G3, G2, G1, GD: out std logic);

end test 2;

architector boolean eq of test 2 is

begin

G3 <= A;

G2 <= A XOR B;

G1 <= B XOR C;

Go <= C XOR D;

end boolean eq;

For Obj. 3 -> Design a combinational circuit with four input lines that represents a decimal digit in BCD and four output lines that generates the 9's complement of the input aligit.

a) Truth table -

I	Inputs				Outputs			
A	B	C	D	w	x	у	ス	
0	0	0	000	1	0	0	0. 4	
000	0	.0	.1	1	0	0	0	
	0	01	0	0	1		1	
0	0	.1	,1	0	10	1	0	
0	1	0	0	00	1	0	1	
0	11	0	1			00	Ö	
	1	1	0	0	0	1	1	
0	1	.1	1 0	0	0	118	0	
	0	0	0	0	0	0	1	
i	0	0	9 1	0	0	0	0	

ABYS	Fon	こスツ		
18	00	01	11	10
00	(1)	0	0	1
01	1	0	0	1
11	*	*	×	×
10		0	*	~
	7	= 0	,	

```
Circuit Diagram -
library icee;
         use iece. std_logic.1164.all; entity test3 is
              port CA, B, C, D: in std-lagic;
                  W, x, Y, Z : out std-logic;)
          end test 3;
           architecture boolean_eg of test3 is
              Signal a, b, c: std_logie;
               ax = NOT A;
               bx = NOT B;
              CK= NOTC;
              wa = a AND b AND c;
              X @ < = B XOR C;
             YZ=C;
             Z <= NOT D;
         end boolean-eq;
```

Design a 3 bit majority circuit.

Thous Output

A B C F N> POST LAB → Ane > Inputs -F= AB+ BC+AC A 0000-50 BODE 1001 2 0 2 E-2) What is the advantage of Gray code? 6 Ans - The advantage of Gray code is that just one bit changes for each step. This will come in handy in circuits that are sensitive to glitches and other errors. 3) Dream the logic circuit that converts 4 bit Gray code to binary code. -Ans-> III>LAB-> Conclusion -> Obj 1 > It can be shooncluded that for a 2 bit Comparator circuit we need \$7 and gates, 2 or getes and 2 ex-now gates to get AKB, A>B & A=B. 5 C Obj2 > It can be concluded that fore to convert a 4-bit binary to equivalent 5 gray code we need 3 ex-oregates. 2 Obj 3 -> It can be concluded that for a 9's complement of a BCD number G. we need 4 not gates, I exore gate and I and gate.