

Lesson 03 The Graphical Method

E210 – Operations Planning

SCHOOL OF ENGINEERING

E210 Operations Planning Topic Tree

Scenario

- Company XYZ is specialized in manufacturing of two models of products, Model A and Model B.
- Table below summarizes the amount of machine hours and labour hours needed to produce one unit of the products, with expected profit earned from each of the products sold.

Product	Machine (Hours)	Labor (Hours)	Profit (\$)
Model A	0.4	0.9	20
Model B	0.8	0.6	25

- In the coming week, Company XYZ has a maximum of 80 machine hours and
 72 labour hours available, respectively.
- Help Company XYZ determine the optimum quantity to make for each model of the products in order to maximize the profit.
- Determine what is limiting the company from making more profit and how the profit will be affected if more resources are available.

Suggested Solution – LP Model Formulation

LP Formulation

Decision Variables

Let X₁ be the number of Model A to produce weekly

Let X₂ be the number of Model B to produce weekly

Objective Function

 $Maximize Z = 20X_1 + 25X_2$

<u>Constraints</u>

$$0.4 X_1 + 0.8 X_2 \le 80$$
 (Machine hours constraint)
 $0.9 X_1 + 0.6 X_2 \le 72$ (Labour hours constraint)
 $X_1 \ge 0$ (Non-negative X_1)
 $X_2 \ge 0$ (Non-negative X_2)

Graphical Solution: Machine Hours Constraint $(0.4X_1 + 0.8X_2 \le 80)$

Graphical Solution: Labour Hours Constraint $(0.9X_1 + 0.6X_2 \le 72)$

Graphical Solution: Possible Solutions for the Objective Function ($Z=20X_1+25X_2$)

Graphical Solution: Optimized Objective Function

Note: If a <u>unique</u> optimal solution exists, it occurs at one of the extreme points of the feasible region. The objective function value of this optimal solution: \$2,650

Graphical Solution: Outside Feasible Region

Solutions

- The optimal solution at which profit is maximized is X₁= 20, X₂= 90.
- In other words, we recommend to make 20 units of Model A and 90 units of Model B per week which will yield a maximum profit of \$2,650.

$$Profit = 20x20 + 25x90 = $2,650$$

 The assumptions are that the coefficient and right-hand side values in the constraints are constant, and that the linearity assumption holds for all values of the decision variables.

Sensitivity Analysis: Binding/Nonbinding Constraints

Sensitivity Analysis of Right-hand Side Value of Constraints

Sensitivity Analysis of Right-hand Side Value of Constraints

Sensitivity Analysis of Right-hand Side Value of Constraints

Range of Feasibility – Labour Hours

Sensitivity Analysis of Objective Function Coefficients

- Range of Optimality

Sensitivity Analysis of Objective Function Coefficients

What happens if the unit profit further reduces/increases?

Learning Objectives

At the end of the lesson, students should be able to:

- Identify problems that linear programming can handle.
- Identify the assumptions and elements of a linear programming problem. (Objective function, Decision variables and Constraints).
- Formulate and solve Linear Programming (LP)
 problems with two decision variables using graphical
 method.
- Perform sensitivity analysis on the objective function coefficients and right-hand side values of the constraints using graphical method.

Overview of E210 Operation Planning Module 2

