Dissertation

Eduardo Oliveira

March 18, 2025

1 Analysis of the Hypothesis: Decentralized Technologies and Open Science

1.1 Introduction

The hypothesis that decentralized technologies such as Blockchain, smart contracts, and IPFS can foster Open Science initiatives and improve reproducibility in scientific research contrasts with the current state of Open Science implementations. This section explores the potential of decentralized technologies in transforming the Open Science landscape by addressing existing challenges related to transparency, reproducibility, and accessibility, and contrasting it with the limitations of current centralized systems in Open Science.

1.2 Current Open Science Implementations and Centralized Systems

Open Science initiatives have made significant strides in promoting transparency and accessibility, but they still rely heavily on centralized systems. These centralized platforms, including institutional repositories, open access journals, and collaborative research networks, are often controlled by publishers, research institutions, or governmental bodies. These centralized structures have a number of limitations:

- Data Access and Sharing: Although Open Science promotes the free sharing of research data, many repositories remain under the control of specific institutions or publishers, imposing access restrictions or ownership claims on the research data [2].
- Reproducibility Issues: Despite efforts to enhance reproducibility, many scientific studies remain difficult to replicate due to centralized data storage and insufficient methodological transparency [1].
- Funding and Incentives: Current Open Science models struggle to provide adequate incentives for researchers to share data or methodologies, with limited mechanisms for crediting those who contribute to reproducibility or open data sharing [4].

1.3 Decentralized Technologies and Their Potential Impact

In contrast, decentralized technologies such as Blockchain, smart contracts, and IPFS offer several advantages that could address the limitations of centralized Open Science implementations:

- Blockchain for Transparency and Trust: Blockchain can provide an immutable and transparent record of research activities, including data creation, peer review, and publication. This could solve issues related to data manipulation and ensure the integrity of research outputs [5].
- Smart Contracts for Automatic and Trustless Collaboration: Smart contracts can automate agreements within research collaborations, ensuring that contributions are recognized and rewarded transparently. These contracts could also help automate access permissions and licensing for research data [2].
- IPFS for Decentralized Data Storage: IPFS enables decentralized storage, ensuring that research data remains accessible and tamper-proof, even if central servers become unavailable. This addresses long-term data accessibility and supports the open sharing of research data [1].

1.4 Improvement in Reproducibility

While Open Science initiatives strive to improve reproducibility, several gaps remain:

- Data Accessibility: Many research datasets are not freely available, and those that are often have access barriers, such as proprietary formats or storage restrictions in centralized repositories. Blockchain and IPFS provide mechanisms to ensure that data is permanently accessible and easy to replicate [3].
- Methodological Transparency: A significant barrier to reproducibility is insufficient detail on research methodologies. Blockchain could ensure that detailed methodologies, datasets, and code are publicly available and linked, increasing the transparency of research processes [5].
- Incentives for Reproducibility: The current Open Science framework lacks sufficient mechanisms for crediting and incentivizing researchers who engage in replication studies. Smart contracts can offer financial or academic rewards for reproducibility efforts, addressing this gap and encouraging more researchers to engage in replication [4].

1.5 Contrasts with Current Open Science Implementations

Your hypothesis that decentralized technologies could improve Open Science and reproducibility contrasts with the current state in several important ways:

- Centralization vs. Decentralization: Current Open Science systems are largely centralized, creating reliance on specific institutions or publishers. Decentralized technologies offer a more robust and distributed infrastructure for data storage, collaboration, and verification, addressing the risks of central control [2].
- Transparency and Integrity: While transparency is a core principle of Open Science, centralized platforms can be susceptible to data manipulation and selective publishing. Blockchain can guarantee the integrity of research data and processes, providing a permanent, transparent, and auditable record of scientific activities [1].
- Reproducibility and Data Sharing: Decentralized systems such as IPFS allow for true open access and sharing of research data, ensuring that datasets remain accessible over time, even if central repositories are removed or discontinued. In comparison, centralized systems face limitations in long-term data storage and access [5].
- Automation and Incentives: Current Open Science platforms lack comprehensive mechanisms for automating research agreements or ensuring that researchers are properly incentivized for sharing data or conducting reproducibility studies. Smart contracts can automate the attribution of contributions, ensuring transparency and recognition in research collaborations [3].

1.6 Current Gaps and Future Potential

While decentralized technologies have the potential to address many of the challenges faced by Open Science, several barriers remain:

- Adoption and Integration: The integration of Blockchain, smart contracts, and IPFS into existing Open Science systems will require significant changes to infrastructure and researcher behavior. Many researchers may be hesitant to adopt new technologies due to unfamiliarity or concerns about the complexity of implementation [3].
- Regulatory and Legal Issues: Decentralized technologies raise important legal concerns, such as intellectual property protection, data privacy, and the enforcement of ethical standards. These challenges must be addressed before decentralized technologies can be widely adopted in scientific research [1].

• Scalability and Cost: The scalability of decentralized technologies, especially Blockchain, may pose challenges when handling large volumes of data or complex computations. Additionally, the energy consumption and transaction costs associated with Blockchain could become limiting factors for widespread adoption in scientific research [2].

1.7 Conclusion

The hypothesis that decentralized technologies can foster Open Science initiatives and improve reproducibility presents a promising contrast to the current limitations of centralized Open Science systems. Blockchain, smart contracts, and IPFS provide solutions to issues related to transparency, reproducibility, and data accessibility. However, the widespread adoption of these technologies will require overcoming significant technical, legal, and infrastructural barriers. Despite these challenges, the potential of decentralized technologies to reshape the Open Science landscape and improve research reproducibility is substantial.

References

- [1] C. L. Borgman. The conundrum of sharing data. *Journal of the American Society for Information Science and Technology*, 63(1):105–118, 2012.
- [2] G. Boulton, L. Allen, and M. H. Brooks. Open science: A new era for the future of research. *Science*, 348(6237):29–32, 2015.
- [3] S. Leonelli. The practices and politics of open science. In *Springer Handbook* of Science and Technology Studies, pages 1–19. Springer, 2016.
- [4] B. A. Nosek, M. E. Ebersole, K. M. DeHaven, and D. L. Mellor. The preregistration revolution. *Proceedings of the National Academy of Sciences*, 112(5):1–8, 2015.
- [5] H. A. Piwowar. Who shares? who doesn't? PLoS ONE, 6(7):e18657, 2011.