Sales Analysis using Python

About Dataset

The Dataset is called 'Superstore Dataset'. This Dataset contains the sales of superstore in United States of America. This Dataset contains the summary of almost 10000 orders in the superstore. This dataset contains Order dates, ID's, region, city, etc.

Kaggle link for the Dataset - https://www.kaggle.com/datasets/vivek468/superstore-dataset-final)

Importing the libraries

In [99]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

Checking the data

In [3]:

```
#Reading the CSV and checking the data
ss = pd.read_csv("Superstore.csv", encoding='windows-1252')
ss.head()
```

Out[3]:

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country	
0	1	CA- 2016- 152156	11/8/2016	11/11/2016	Second Class	CG-12520	Claire Gute	Consumer	United States	H
1	2	CA- 2016- 152156	11/8/2016	11/11/2016	Second Class	CG-12520	Claire Gute	Consumer	United States	H
2	3	CA- 2016- 138688	6/12/2016	6/16/2016	Second Class	DV-13045	Darrin Van Huff	Corporate	United States	
3	4	US- 2015- 108966	10/11/2015	10/18/2015	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	La
4	5	US- 2015- 108966	10/11/2015	10/18/2015	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	La

5 rows × 21 columns

→

In [4]:

ss.shape

Out[4]:

(9994, 21)

```
In [5]:
```

e',

'Postal Code', 'Region', 'Product ID', 'Category', 'Sub-Category',

'Product Name', 'Sales', 'Quantity', 'Discount', 'Profit'],

Checking the null values

dtype='object')

```
In [7]:
```

```
ss.isnull().sum()
```

Out[7]:

```
Row ID
                 0
Order ID
Order Date
                 0
Ship Date
                 0
Ship Mode
                 0
Customer ID
                 0
Customer Name
                 0
Segment
                 0
Country
                 0
City
                 0
State
                 0
Postal Code
                 0
Region
Product ID
                 0
                 0
Category
Sub-Category
Product Name
                 0
Sales
                  0
Quantity
                  0
Discount
                  0
Profit
dtype: int64
```

There is no null values in the dataset, so we begin to analyize the data

Analyzing and Visualizing the dataset

In [8]:

ss.describe()

Out[8]:

	Row ID	Postal Code	Sales	Quantity	Discount	Profit
count	9994.000000	9994.000000	9994.000000	9994.000000	9994.000000	9994.000000
mean	4997.500000	55190.379428	229.858001	3.789574	0.156203	28.656896
std	2885.163629	32063.693350	623.245101	2.225110	0.206452	234.260108
min	1.000000	1040.000000	0.444000	1.000000	0.000000	-6599.978000
25%	2499.250000	23223.000000	17.280000	2.000000	0.000000	1.728750
50%	4997.500000	56430.500000	54.490000	3.000000	0.200000	8.666500
75%	7495.750000	90008.000000	209.940000	5.000000	0.200000	29.364000
max	9994.000000	99301.000000	22638.480000	14.000000	0.800000	8399.976000

In [6]:

ss.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9994 entries, 0 to 9993
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	Row ID	9994 non-null	int64
1	Order ID	9994 non-null	object
2	Order Date	9994 non-null	object
3	Ship Date	9994 non-null	object
4	Ship Mode	9994 non-null	object
5	Customer ID	9994 non-null	object
6	Customer Name	9994 non-null	object
7	Segment	9994 non-null	object
8	Country	9994 non-null	object
9	City	9994 non-null	object
10	State	9994 non-null	object
11	Postal Code	9994 non-null	int64
12	Region	9994 non-null	object
13	Product ID	9994 non-null	object
14	Category	9994 non-null	object
15	Sub-Category	9994 non-null	object
16	Product Name	9994 non-null	object
17	Sales	9994 non-null	float64
18	Quantity	9994 non-null	int64
19	Discount	9994 non-null	float64
20	Profit	9994 non-null	float64
dtvn	es: float64(3).	int64(3), objec	t(15)

dtypes: float64(3), int64(3), object(15)

memory usage: 1.6+ MB

```
In [55]:
ss['Order Date'] = pd.to_datetime(ss['Order Date'])
ss['Ship Date'] = pd.to_datetime(ss['Ship Date'])
In [56]:
ss.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9994 entries, 0 to 9993
Data columns (total 22 columns):
#
     Column
                    Non-Null Count
                                    Dtype
     _____
                    -----
     Row ID
                    9994 non-null
                                     int64
 0
 1
     Order ID
                    9994 non-null
                                     object
 2
     Order Date
                    9994 non-null
                                    datetime64[ns]
 3
     Ship Date
                    9994 non-null
                                    datetime64[ns]
 4
     Ship Mode
                    9994 non-null
                                    object
 5
     Customer ID
                    9994 non-null
                                    object
 6
     Customer Name 9994 non-null
                                    object
 7
     Segment
                    9994 non-null
                                    object
 8
                    9994 non-null
                                    object
     Country
 9
     City
                    9994 non-null
                                    object
 10
    State
                    9994 non-null
                                    object
 11 Postal Code
                    9994 non-null
                                     int64
 12 Region
                    9994 non-null
                                     object
 13 Product ID
                    9994 non-null
                                    object
    Category
                    9994 non-null
                                    object
                    9994 non-null
                                    object
     Sub-Category
    Product Name
                    9994 non-null
                                    object
 17
    Sales
                    9994 non-null
                                     float64
                    9994 non-null
                                     int64
 18
     Quantity
                                     float64
 19
    Discount
                    9994 non-null
                                     float64
 20
    Profit
                    9994 non-null
 21 Month Year
                    9994 non-null
                                    object
dtypes: datetime64[ns](2), float64(3), int64(3), object(14)
memory usage: 1.7+ MB
In [35]:
ss['Order Date'].min()
Out[35]:
Timestamp('2014-01-03 00:00:00')
In [36]:
ss['Order Date'].max()
Out[36]:
Timestamp('2017-12-30 00:00:00')
In [57]:
ss.sort_values(['Order Date'], inplace = True)
```

```
In [58]:
```

```
ss['Month Year'] = ss['Order Date'].apply(lambda x: x.strftime('%y-%m'))
```

```
In [59]:
```

```
ss['Month Year']
Out[59]:
```

7980 14-01 739 14-01 740 14-01 741 14-01 1759 14-01 ... 5091 17-12

5091 17-12 908 17-12 907 17-12 1296 17-12

906 17-12

Name: Month Year, Length: 9994, dtype: object

In [62]:

```
Monthly_trend = ss.groupby('Month Year').sum()['Sales'].reset_index()
```

In [66]:

```
plt.figure(figsize = (15,6))
plt.plot(Monthly_trend['Month Year'], Monthly_trend['Sales'], color = '#D0362F')
plt.xticks(rotation = 'vertical')
plt.show()
```


We can see that the sales in first two months of the year 2014 were very low but in 3rd month the sales went upto 60,000. Further the sales went to 80,000 in 8th month of 2014. The sales saw a downfall in the 2nd month of 2015, 1st month of 2016 and 2nd month of 2017. We can also observe that sales saw a downfall in first quater of every four year. The sales topped the chart in 11th Month of 2017 with total sales around 120,000

In [86]:

```
df = pd.DataFrame(ss.groupby('Sub-Category').sum()['Sales'])
Sub_Sales = df.sort_values('Sales', ascending = False)
```

In [88]:

```
Sub_Sales[:10]
```

Out[88]:

Sales

Sub-Category

Phones330007.0540Chairs328449.1030Storage223843.6080Tables206965.5320Binders203412.7330Machines189238.6310Accessories167380.3180Copiers149528.0300Bookcases114879.9963Appliances107532.1610

In [89]:

```
df = pd.DataFrame(ss.groupby('Sub-Category').sum()['Quantity'])
Sub_quan = df.sort_values('Quantity', ascending = False)
```

```
In [95]:
```

```
Sub_quan[:10]
```

Out[95]:

Quantity

Sub-Category			
Binders	5974		
Paper	5178		
Furnishings	3563		
Phones	3289		
Storage	3158		
Art	3000		
Accessories	2976		
Chairs	2356		
Appliances	1729		
Labels	1400		

In [91]:

```
df = pd.DataFrame(ss.groupby('Sub-Category').sum()['Profit'])
Sub_pro = df.sort_values('Profit', ascending = False)
```

In [93]:

```
Sub_pro.head(10)
```

Out[93]:

Profit

Sub-Category				
Copiers	55617.8249			
Phones	44515.7306			
Accessories	41936.6357			
Paper	34053.5693			
Binders	30221.7633			
Chairs	26590.1663			
Storage	21278.8264			
Appliances	18138.0054			
Furnishings	13059.1436			

Envelopes

We can see the Phone topped the chart in Sales Category and is in top 5 Sales in Quantity and 2nd in making Profit. Though chair sales is on 2nd rank in Sales but the profit on chair is comparatively low as compared to its sales. Copiers are 8th in Sales and not even in top 10 in Sales as per quantity but is still on the top in Profit.

6964.1767

Envelopes has made their place in top 10 profitable items too.

In [108]:

```
plt.figure(figsize=[10,10])
#Making Stack Bar Chart
ss_stack = ss[['Profit', 'Sales', 'Ship Mode']]
ss_stackbar = ss_stack.groupby(['Ship Mode']).sum().reset_index()
plt.subplot(2,1,1)
sns.countplot(ss_stack['Ship Mode'])
#Making Pie Diagran
ss_data = ss[['Category','Sales','Profit']]
ss_dia = ss_data.groupby(['Category']).sum().reset_index()
plt.subplot(2,2,3)
plt.pie(ss_dia['Sales'], labels=ss_dia['Category'], colors=['#D0362F','#D0862F','#222831'])
plt.title("Sales as per Category")
plt.subplot(2,2,4)
plt.pie(ss_dia['Profit'], labels=ss_dia['Category'], colors=['#D0362F','#D0862F','#222831']
plt.title("Profit as per Category")
plt.show()
```


From the first figure, we can assume that consumers mostly prefer Standard Class delivery mode. Also from next two figure we can identify that the sales is almost same for every category i.e for Office supplies, Furniture

and Technology but thry vary in their profits. Technology is the most profitable category followed by office supplies.

In [115]:

```
plt.figure(figsize=(6,6))
plt.bar(x = ss_stackbar['Ship Mode'], height = ss_stackbar['Sales'], color = '#D0362F')
plt.bar(x = ss_stackbar['Ship Mode'], height = ss_stackbar['Profit'], bottom = ss_stackbar[
plt.title("Profit and Sales in different Ship Modes")
plt.legend(['Sales','Profit'])
plt.show()
```


As we know the most preffered shipmode was Standard Class and now we can see that this is the most profitable mode. The least preffered mode is the Same day Shipment and also this shipment is the least profitable mode.

In [10]:

```
plt.figure(figsize=[15,6])
sns.scatterplot(x=ss['Sales'], y=ss['Profit'], hue=ss['Segment'], palette='pastel', size=ss
plt.title("Sales vs Profit in Different Customer Segments", size=15)
plt.show()
```


This diagram shows the scatterplot of Sales vs Profit in Different Customer Segments. We can clearly see that the Consumer segment is clearly dominating the Sales as well as the Profit section followed by Corporate and Home Offices respectively.

In [131]:

```
drop_ss = ss.drop(['Row ID', 'Postal Code'], axis = 1)
sns.pairplot(drop_ss)
plt.show()
```


In [11]:

```
sns.pairplot(ss[['Sales', 'Profit', 'Quantity']], hue ="Quantity", diag_kind="kde")
plt.show()
```


This pairplot explains us the relation between Sales and Profi with respect to Quantity.

In [68]:

```
ax = ss[ss.Region == 'South'].plot.scatter(x = 'Sales', y = 'Category', color = 'red', labe
ss[ss.Region == 'Central'].plot.scatter(x = 'Sales', y = 'Category', color = 'green', label
ss[ss.Region == 'West'].plot.scatter(x = 'Sales', y = 'Category', color = 'blue', label = '
ss[ss.Region == 'East'].plot.scatter(x = 'Sales', y = 'Category', color = 'Yellow', label =
ax.set_title('Sales as per Category in Region')
```

Out[68]:

Text(0.5, 1.0, 'Sales as per Category in Region')

In [129]:

```
plt.figure(figsize=[12,5])
ss_line = ss[['Order Date','Sales','Profit']].sort_values('Order Date')
ss_line = ss_line.groupby('Order Date').mean()

plt.plot(ss_line.index, 'Sales', data=ss_line, color='#D0862F')
plt.plot(ss_line.index, 'Profit', data=ss_line, color='#222831')
plt.title("Average Sales and Profit from 2014 to 2018")

plt.show()
```


In []: