A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 1EB

Bookmark

Show all steps: ON

Problem

Let $\mathscr{F}(\mathbb{R}) \to \mathbb{R}$ be defined by $\alpha(f) = f(1)$ and let $\beta : \mathscr{F}(\mathbb{R}) \to \mathbb{R}$ be defined by $\beta(f) = f(2)$.

Prove that α and β are homomorphisms from $\mathscr{F}(\mathbb{R})$ *onto* \mathbb{R} .

Step-by-step solution

Step 1 of 3

Consider the two functions

$$\alpha: F(R) \to R$$

$$\beta: F(R) \to R$$

defined by

$$\alpha(f) = f(1),$$

$$\beta(f) = f(2)$$
.

Here, F(R) represents the group of all functions from R to R with the following addition:

$$(f+g)(x)=f(x)+g(x)$$

for all real numbers x.

Objective is to prove that α , β both are homomorphism from F(R) onto R.

Comment

Step 2 of 3

If G and H are two groups, a homomorphism from G to H is a function $f: G \to H$ such that for any two elements a, b in G,

$$f(ab) = f(a)f(b)$$

Since F(R) is an additive group therefore α , β will be homomorphism if

$$\alpha(f+g) = \alpha(f) + \alpha(g)$$
$$\beta(f+g) = \beta(f) + \beta(g).$$

To check this, consider the left side and use the definition of above defined function as:

$$\alpha(f+g) = (f+g)(1)$$

$$= f(1)+g(1)$$

$$= \alpha(f)+\alpha(g).$$

The function α is onto because for all $x \in R$, one can define a function $f: R \to R$ such that f(1) = x.

Similarly,

$$\beta(f+g) = (f+g)(2)$$

$$= f(2)+g(2)$$

$$= \beta(f)+\beta(g).$$

The function β is onto because for all $x \in R$, one can define a function $f: R \to R$ such that f(2) = x.

Comment

Step 3 of 3

Hence, α , β both are homomorphism from F(R) onto R.

Comment