Not Clique-Bait: the Bron-Kerbosch Algorithm as a Solution to the Maximum Clique Problem

Sophie Quinn, Brendan Banfield, Aaron Banse, Kellen Knop | Advisor: Layla Oesper Carleton College Department of Computer Science

Terminology

Graph: a set of nodes and the edges between them

Clique: a subset of nodes in a graph in which every node connects to every other node

Maximum Clique: the largest clique in a given graph

Maximal Clique: a clique that cannot be expanded by adding any

other node

Methodology

- Our group **implemented** 4 algorithms that solve the maximum clique problem
- I **focused** on the Bron-Kerbosch algorithm [1] [2]
- **GOAL**: Explore the runtime of Bron-Kerbosch (pivot and non-pivot versions) on different graphs, accounting for # of nodes and edge density
- **Tested** on randomly-generated graphs

The Algorithm

- Recursive and exact
- Built to find all **maximal** cliques
 - Modified to only return **maximum** clique
- 2 versions: non-pivot and pivot
 - Focused on pivot: more efficient optimization
- How it works:
 - Tries different combinations of nodes to find all maximal cliques
 - Maintains 3 sets of nodes: R (current combination), P (candidates to add to R), X (already tried in R)
 - Our Goal: Maximize # nodes in R

An Example

- 1. {}{A, B, C, D, E}{}
- $2. \quad \mathbf{pivot} = \mathbf{A}$
- 3. \rightarrow {A}{B, C, D}{}
- \rightarrow pivot = B
- $\rightarrow \{A, B\}\{C\}\{\}$
- 6. \rightarrow pivot = C
- $\{A, B, C\}\{\}$ return maximal
- $\{A\}\{D\}\{B\}$
- 9. \rightarrow {A, D}{}{}
- 10. \rightarrow {A, D}{}{ return maximal}
- 11. $\{\}\{B, C, D, E\}\{A\}$
- $12. \rightarrow \{E\}\{D\}\{\}$
- $\perp 3. \rightarrow pivot = D$
- 14. $\{E, D\}\{\}$ return maximal

Legend

 $\{...\}\{...\}=\{R\}\{P\}\{X\}=\{current\}\{candidates\}\{tried\}$

- → = 1 iteration of the for-loop
- → = 1 recursive step

Results

Figure 1. Median runtimes of pivot vs non-pivot solvers on 10 graphs each of sizes [20, 30, ..., 490]. Average edge density 0.387 (ranging from ~0.3 to ~0.4).

Figure 2. Runtime of pivot solver on 100 graphs of size 100 with increasing edge density $\left(\frac{N(N-1)}{2}\right)$. Time cutoff of 2400 seconds (40 min).

Conclusions

- Is indeed exponential. Pivot is indeed faster than non-pivot
- Worst-case edge density is approximately range [0.9, 0.95]
- Future work:
- Compare pivot and non-pivot versions at different edge densities
- Compare more in-depth with branch-and-bound (our other exact algorithm) at varying edge densities

References

[1] Bron, Coen, and Joep Kerbosch. "Algorithm 457: Finding All Cliques of an Undirected Graph." 1973

[2] Cazals, F., and C. Karande. "A Note on the Problem of Reporting Maximal Cliques." 2008.

Acknowledgements

Thank you to Layla for her support and feedback throughout the term. Thank you to Mike Tie for technical support.