-学学生期末试卷 A 卷

	杭州电子		(字子上	2018. 1. 22	成	5 绩	
考试课程	大学物理 2		女计门积	壬课教师姓名			1
课程号	A0715012	教师号	1:	年级	-	专业	
考生姓名		学号 (8位)		年级			

【请将答案直接写在试卷上,最后两页是草稿纸,不要将答案写在草稿纸上。】

	第一题	第二大题			5	第三大思			1
日石 口				18	19	20	21	22	2
题号	1-9	10-16	17	18	-				
得分						The same	1.8889		

- 1. 一沿x轴作简谐振动的弹簧振子,振幅为A,周期为T,振动方程用余弦函数表示,如果该

振子的初相为
$$\frac{3}{4}\pi$$
,则 $t=0$,质点的位置在:

- (A) 过 $x = \frac{\sqrt{2}A}{2}$ 处,向负方向运动; (B) 过 $x = \frac{\sqrt{2}A}{2}$ 处,向正方向运动;
- (C) 过 $x = \frac{-\sqrt{2}A}{2}$ 处,向负方向运动; (D) 过 $x = \frac{-\sqrt{2}A}{2}$ 处,向正方向运动。
- 2. 一弹簧振子作简谐振动, 当其偏离平衡位置的位移的大小为振幅的 1/4 时, 其动能为振动 总能量的
 - (A) 7/16. (B) 15/16.
- - (C) 13/16.
- (D) 9/16.

3. 如图所示,两列波长为 λ 的相干波在 P 点相遇. 波在 S_1 点振动的初 相是 ϕ_1 , S_1 到 P点的距离是 r_1 ; 波在 S_2 点的初相是 ϕ_2 , S_2 到 P点的距 离是 r_2 ,以k代表零或正、负整数,则P点是干涉极大的条件为:

- (B) $\phi_2 \phi_1 + 2\pi (r_2 r_1)/\lambda = 2k\pi$.
- (C) $\phi_2 \phi_1 = 2k\pi$.
- (D) $r_2 r_1 = k\lambda$.

4. 在迈克耳孙干涉仪的一条光路中, 放入一折射率为 n, 厚度为 d 的透明薄片,	放入后	10	
宋九町117亿在以文]	140,000	1	
(A)2 $(n-1) d+\lambda/2$. (B) 2nd.			
(C) $2(n-1)d$. (D) nd .]	
5. 一束光强为 I_0 的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成 4 过两个偏振片后的光强 I 为	5°角,	则穿	
(A) $I_0/4\sqrt{2}$. (B) $I_0/4$.			
$(B)I_0/4$.			
(C) $I_0/2$. (D) $\sqrt{2} I_0/2$.	Γ]	
6. 自然光以 60°的入射角照射到某两介质交界面时,反射光为完全线偏振光, (A) 完全线偏振光且折射角是 30°.	则知折	射光为	
	o°.		
(B) 部分偏振光且只是在该光由真空入射到折射率为√3的介质时,折射角是3	0 .		
(C) 部分偏振光,但须知两种介质的折射率才能确定折射角.	Г	7	
(D) 部分偏振光且折射角是 30°.		-	
根刚性尺静止在 K' 系中,与 $O'x'$ 轴成 30° 角.今在 K 系中观测得该尺与 Ox 则 K' 系相对于 K 系的速度是: (A) (2/3)c. (B) (1/3)c.	細成 4	5°角,	
		Γ	7
(C) $(2/3)^{1/2}c$. (D) $(1/3)^{1/2}c$.			
8. 设某微观粒子的总能量是它的静止能量的 <i>K</i> 倍,则其运动速度的大小为(以 光速)	c表示	真空中	的
(A) $\frac{c}{K}\sqrt{K^2-1}$. (B) $\frac{c}{K}\sqrt{1-K^2}$.			
(C) $\frac{c}{K-1}$. (D) $\frac{c}{K+1}\sqrt{K(K+2)}$.]
9. 用频率为 $_{1}$,的单色光照射某种金属时,测得饱和电流为 $_{1}$,以频率为 $_{2}$ 的属时,测得饱和电流为 $_{2}$,若 $_{1}$ > $_{2}$,则	单色为	七照射	该金
$(R) u \leq u$		Γ	1
(C) 以=以. (D) 以与以的关系还不能确定.		_	

(A) (C)

二、填空題(本大题共25分)
二、 東至經(47人2) 10. (本题 4 分) 一驻波表达式为 $y = 2A\cos(2\pi x/\lambda)\cos\omega l$,则 $x = \frac{\lambda}{3}$ 处质点的振动方程是
$10.$ (本题 4分) 一驻波表达式为 $y = 2A\cos(2\pi x/\lambda)\cos\omega$,
: 该质点的振动速度表达式是
11. (本题 3 分) 在双缝干涉实验中,双缝间距为 d ,双缝到屏的距离为 D ($D>>d$),测得中央
零级明纹与第三级明纹之间的距离为x,则入射光的波长为。
12. (本题 3 分) 波长为λ的单色光垂直照射如图所示的透明
薄膜. 膜厚度为 e ,两束反射光的光程差 $\sqrt{n_1} = 1.00$ $\sqrt{v_1} = 1.00$
$\delta = $
$n_3 = 1.50$
13. (本题 5 分) 平行单色光垂直入射于单缝上,观察夫琅禾费衍射. 若屏上 P 点处为第 5
级暗纹,则单缝处波面相应地可划分为个半波带.若将单缝宽度缩小一半,P
<u>5</u> 处将是
4. (本题 3 分)用波长为λ的单色平行红光垂直照射在光栅常数 d=2μm (1μm=10 m)的光栅
,用焦距 f=0.500 m 的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离
0.1667m .则可知该入射的红光波长 <i>λ</i> = nm .
(本题 4 分) 在某地发生两件事,静止位于该 地的甲测得时间间隔为3s,若相对于 甲作匀
线运动的乙测得时间间隔为5 s,则乙相对于甲 的运动速度是。
(本题 3 分)频率为200MHZ的一个光子的能量是 E=,动量的大小是
。(普朗克常量 h =6.63×10 ⁻³⁴ J·s。)

15.

16. p_c=

三、计算题(本大题共 48 分) 17. (本题 5 分) 二小球悬于同样长度 1 的线上. 将第一球沿竖直方向上举到悬点, 而将第二球从平衡位置移开, 使悬线和竖直线成一微小角度α, 如图. 现将二球同时放开, 则何者先到达最低位置?

18. (本题 5 分) 一简谐振动的振动曲线如图所示. 求振动方程.

19. (本题 5 分) 在弹性媒质中有一沿 x 轴正向传播的平面波,其表达式为 $y=0.01\cos(4t-\pi x-\frac{1}{2}\pi)$ (SI). 若在 x=5.00 m 处有一媒质分界面,且在分界面处反射波相位突变元,设反射波的强度不变,试写出反射波的表达式.

20. (本题 10 分) 一列平面简谐波在媒质中以波速 u = 5 m/s 沿 x 轴正向传播,原点 O 处质元的振动曲线如图所示.

- (1) 求解并画出 x = 25 m 处质元的振动曲线.
- (2) 求解并画出 t=3 s 时的波形曲线.

 $_{21}$. (本题 10 分)在牛顿环装置的平凸透镜和平板玻璃之间充满折射率 n=1.33 的透明液体(设乎凸透镜的折射率 1.25, 平板玻璃的折射率为 1.48),凸透镜的曲率半径 R=300~cm,波长 $\lambda=650~nm$ 的平行单色光垂直照射到牛顿环装置上,凸透镜的顶部刚好与平玻璃板接触。求: 1) 从中心向外数第 6 个暗环所在处液体厚度 e_{10} : 2) 第 6 个暗环的半径 r_{10} 。

22. (本题 8 分) 粒子在一维矩形无限深势阱中运动,波函数为: $\psi_n(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$ (0 < x < a) 若粒子处于 n = 1 的状态,试求在区间 $0 < x < \frac{1}{2}a$ 发现粒子的几率。(积分 $\int \sin^2 x dx = \frac{1}{2}x - \frac{1}{4}\sin 2x + C$)

23. (本题 5 分)已知电子的静能为 $0.511\,MeV$,若电子动能为 $0.25\,MeV$,则它所增加的质量 Δm 与静止质量 m_0 的比值近似等于多少。