```
Start coding or generate with AI.

from google.colab import drive drive.mount('/content/drive')

Mounted at /content/drive
```

Image Classification with ANN Using Fashion MNIST Dataset

Project Type: EDA and ANN

Objective

To build an Artificial Neural Network that classifies images of clothing items (like t-shirts, trousers, and shoes) into predefined categories.

Double-click (or enter) to edit

Dataset Info:

The Fashion MNIST dataset is a set of 28x28 grayscale images of 10 fashion categories:

- T-shirt/top
- Trouser
- Pullover
- Dress
- Coat
- Sandal
- Shirt
- Sneaker
- Bag
- Ankle boot

Imorting libraries

```
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from sklearn.metrics import classification_report, confusion_matrix
```

Start coding or <u>generate</u> with AI.

Load and Preprocess the Data

```
(X_train, y_train), (X_test, y_test) = fashion_mnist_dataset.load_data()

→ Downloading data from <a href="https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz">https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz</a>

29515/29515 — 0s @us/step

Downloading data from <a href="https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz">https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz</a>

26421880/26421880 — 0s @us/step

Downloading data from <a href="https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx1-ubyte.gz">https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx1-ubyte.gz</a>

5148/5148 — 0s 1us/step

Downloading data from <a href="https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx1-ubyte.gz">https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx1-ubyte.gz</a>

4422102/4422102 — 0s @us/step
```

Normalize the pixel values to be between 0 and 1

fashion mnist dataset = tf.keras.datasets.fashion mnist

```
X_train = X_train / 255.0
X_test = X_test / 255.0
```

Exploratory Data Analysis (EDA)

```
# Plot the first 10 images in the training dataset
plt.figure(figsize=(10,10))
for i in range(10):
    plt.subplot(2, 5, i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(X_train[i], cmap=plt.cm.binary)
    plt.xlabel(f'Label: {y_train[i]}')
plt.show()
```


Label: 2

Each image corresponds to a clothing category with a label (0-9), which we will map as follows:

- 0 = T-shirt/top
- 1 = Trouser
- 2 = Pullover
- 3 = Dress
- 4 = Coat
- 5 = Sandal
- 6 = Shirt7 = Sneaker
- 8 = Bag
- 9 = Ankle boot

Distribution of Classes

```
# Distribution of the labels in the training dataset
unique, counts = np.unique(y_train, return_counts=True)
class_distribution = dict(zip(unique, counts))
```

print("Class Distribution: ", class_distribution)

Elass Distribution: {0: 6000, 1: 6000, 2: 6000, 3: 6000, 4: 6000, 5: 6000, 6: 6000, 7: 6000, 8: 6000, 9: 6000}

Build the Artificial Neural Network (ANN)

//wsr/local/lib/python3.10/dist-packages/keras/src/layers/reshaping/flatten.py:37: UserWarning: Do not pass an `input_shape`/`input_dim`
super().__init__(**kwargs)
Model: "sequential"

 Layer (type)
 Output Shape
 Param #

 flatten (Flatten)
 (None, 784)
 0

 dense (Dense)
 (None, 128)
 100,480

 dense_1 (Dense)
 (None, 64)
 8,256

 dense_2 (Dense)
 (None, 10)
 650

Total params: 109,386 (427.29 KB)
Trainable params: 109,386 (427.29 KB)
Non-trainable params: 0 (0.00 B)

Train the Model

```
Epoch 1/10
1500/1500
                              – 10s 5ms/step - accuracy: 0.7638 - loss: 0.6819 - val_accuracy: 0.8601 - val_loss: 0.3887
Epoch 2/10
1500/1500
                              — 10s 5ms/step - accuracy: 0.8583 - loss: 0.3886 - val_accuracy: 0.8586 - val_loss: 0.3883
Epoch 3/10
1500/1500
                              - 8s 4ms/step - accuracy: 0.8731 - loss: 0.3452 - val_accuracy: 0.8634 - val_loss: 0.3802
Epoch 4/10
                              — 10s 4ms/step - accuracy: 0.8805 - loss: 0.3209 - val accuracy: 0.8674 - val loss: 0.3590
1500/1500
Epoch 5/10
1500/1500
                              — 8s 6ms/step - accuracy: 0.8893 - loss: 0.2979 - val_accuracy: 0.8802 - val_loss: 0.3313
Epoch 6/10
1500/1500
                              - 6s 4ms/step - accuracy: 0.8964 - loss: 0.2809 - val_accuracy: 0.8731 - val_loss: 0.3544
Epoch 7/10
1500/1500
                              - 6s 4ms/step - accuracy: 0.9036 - loss: 0.2597 - val_accuracy: 0.8863 - val_loss: 0.3227
Enoch 8/10
1500/1500
                              - 7s 5ms/step - accuracy: 0.9021 - loss: 0.2565 - val_accuracy: 0.8880 - val_loss: 0.3116
Epoch 9/10
1500/1500 -
                              — 10s 5ms/step - accuracy: 0.9090 - loss: 0.2447 - val_accuracy: 0.8751 - val_loss: 0.3753
Epoch 10/10
1500/1500
                              - 6s 4ms/step - accuracy: 0.9106 - loss: 0.2374 - val_accuracy: 0.8870 - val_loss: 0.3192
```

Evaluate the Model

```
# Plot accuracy and loss over epochs
plt.figure(figsize=(12, 4))
# Accuracy plot
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'], label='train accuracy')
plt.plot(history.history['val_accuracy'], label='val accuracy')
plt.title('Model Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
# Loss plot
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'], label='train loss')
plt.plot(history.history['val_loss'], label='val loss')
plt.title('Model Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
```


Performance on Test Data

Confusion Matrix and Classification Report

Test Accuracy: 87.88%

```
# Predict the labels for the test set
y_pred = np.argmax(model.predict(X_test), axis=1)
# Confusion matrix
conf_matrix = confusion_matrix(y_test, y_pred)
print(conf_matrix)
# Classification report
print(classification_report(y_test, y_pred, target_names=[
    'T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
    'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']))

$\rightarrow \frac{313}{6} \frac{3}{0} \frac{15}{22} \frac{2}{4} \frac{1}{85} \frac{6}{0} \frac{6}{0}]$
```

[6	969	1	20	2	0	1	0	1	0]	
[22	1	786	22	106	0	62	0	1	0]	
[29	3	8	914	23	0	20	0	3	0]	
[1	1	96	44	815	0	42	0	1	0]	
[0	0	0	0	0	967	0	11	1	21]	
[157	0	88	34	70	0	645	0	6	0]	
[0	0	0	0	0	36	0	874	0	90]	
[7	0	2	3	5	4	10	3	966	0]	
[0	0	0	0	0	4	1	10	0	985]]	
				precision			red	call	f1	score	support
T-shirt/top				0.80			(3.87		0.83	1000
Trouser					0.99			9.97		0.98	1000
	Pullover				0.79			3.79		0.79	1000
Dress				0.86			0.91		0.89	1000	
Coat					0.80			3.81		0.80	1000
Sandal					0.96			0.97		0.96	1000
Shirt					0.74			0.65		0.69	1000
Sneaker					0.97			0.87		0.92	1000
Bag					0.98			0.97		0.97	1000
	Ankle boot				0.90			0.98		0.94	1000
accuracy										0.88	10000
macro avg				0.88			(88.6		0.88	10000
weighted avg					0.88			0.88		0.88	10000
	_										

Start coding or $\underline{\text{generate}}$ with AI.