

Ficha de Trabalho 7: Lógica Difusa

Objetivo: Pretende-se promover a aquisição de conhecimentos e desenvolvimento de competências relativas a fundamentos sobre Lógica Difusa (Fuzzy Logic).

- 1) Considerando um vetor, *x* com início em 0, incremento de 0.1 e término em 10, obtenha o vetor y corresponde às seguintes funções de pertença, apresentando o gráfico correspondente:
 - Função triangular com vértices em *a*=3, *b*=7 e *c*=9: [3 7 9

$$f(x; a, b, c) = \begin{cases} 0, & x \le a \\ \frac{x - a}{b - a}, & a \le x \le b \\ \frac{c - x}{c - b}, & b \le x \le c \\ 0, & x \ge c \end{cases}$$

• Função trapezoidal com vértices em a=1, b=6, c=8, d=9: [1 6 8 9]

$$f(x; a, b, c, d) = \begin{cases} 0, & x \le a \\ \frac{x - a}{b - a}, & a \le x \le b \\ 1 & b \le x \le c \\ \frac{d - x}{d - c}, & c \le x \le d \\ 0, & x \ge d \end{cases}$$

• Função Gaussiana com variância=2 e centro=5: [2 5]

$$f(x,\sigma,c) = e^{-\frac{(x-c)^2}{2\sigma^2}}$$

- Função Gaussiana combinada: 1ª: variância=1, centro=4 e 2ª: variância=4, centro=2; [1 4 4 2]
- Tente outras funções de pertença.
- 2) Considere as seguintes funções de pertença representadas pelas expressões matemáticas seguintes:
 - Degrau

$$f_A(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases}$$

Onda quadrada

$$f_B(x) = \begin{cases} 0 & -3 \le x < 0, 3 \le x < 5 \\ 1 & -5 \le x < -3, 0 \le x < 3 \end{cases}$$

- Função triangular, $f_{FA}(x)$, com vértices em a=-5, b=-2 e $c=1:[-5-2\ 1]$
- Função triangular, $f_{FB}(x)$, com vértices em a=-2, b=2 e c=4: [-2 +1 4]

Assumindo a variação no domínio $-5 \le x \le +5$:

- i) Obtenha os gráficos que representam f_A e f_B (ver Figura 1).
- ii) Obtenha o gráfico que representa f_A . f_B (f_A and f_B) assumindo uma lógica binária.
- iii) Obtenha o gráfico que representa $f_A + f_B$ (f_A or f_B) assumindo uma lógica binária.
- iv) Obtenha os gráficos que representam f_{FA} e f_{FB} (ver Figura 2).

© Paulo Moura Oliveira 1/3

- v) Obtenha o gráfico que representa $min(f_A, f_B)$, $(f_A \text{ and } f_B)$, assumindo uma lógica difusa.
- vi) Obtenha o gráfico que representa $max(f_A, f_B)$, $(f_A \ or \ f_B)$, assumindo uma lógica difusa.

Figura 1: Gráficos das funções A e B.

Figura 2: Gráficos das funções FA e FB.

- 3) Considere que se pretende implementar um controlador automático da ventilação de ar exterior num automóvel em função da temperatura do habitáculo utilizando lógica difusa.
 - i) Assuma os seguintes níveis de temperatura (entrada) utilizando funções de pertença triangulares:
 - i) Baixa (B) se $-5 \le T \le 5$,
 - ii) Médio Baixa (MB) se $0 \le T \le 10$,
 - iii) Média (M) se $8 \le T \le 20$,
 - iv) Média Alta (MA) se $16 \le T \le 26$,
 - v) Alta (A) se $24 \le T \le 32$,
 - vi) Muito Alta (MA) se $30 \le T \le 40$,
 - vii) Altíssima (AL) se $38 \le T \le 46$.

Obtenha o gráfico destas funções de pertença (ver Figura 3 a)).

© Paulo Moura Oliveira 2/3

- ii) Assuma os seguintes níveis de rotações por minuto do ventilador (R) (saída) utilizando funções de pertença triangulares:
 - viii) Desligado (0) se -400 rpm $\leq R \leq 400$ rpm,
 - ix) Baixo (1) se 300 rpm \leq R \leq 800 rpm,
 - x) Médio (2) se $600 \text{ rpm} \le R \le 1200 \text{ rpm}$,
 - xi) Médio Alto (3) se $1000 \text{ rpm} \le R \le 1800 \text{ rpm}$,
 - xii) Alto (4) se $1500 \text{ rpm} \le R \le 2500 \text{ rpm}$,
 - xiii) Muito Alto (5) se 2300 rpm $\leq R \leq 3300$ rpm,
 - xiv) Altíssimo (6) se 3000 rpm \leq R \leq 4000 rpm.

Represente o gráfico destas funções de pertença (ver Figura 3 b).

iii) Defina um conjunto de regras que permitam ativar o ventilador, para que a cada intervalo da temperatura de entrada corresponda um nível de atuação do ventilador.

Figura 3: Funções de pertença da entrada e saída.

- 4) Considere o valor de temperatura, T=3°C:
 - i) Quais os conjuntos de pertença da entrada que são ativados e respetivos graus de pertença?
 - ii) Determine o centro de gravidade delimitada pela área delimitada pela função agregada da saída.
- 5) Repita o exercício anterior para T=31°C.

Referências:

Fuzzy Logic Toolbox: for use with Matlab, User Guide, Mathworks.

© Paulo Moura Oliveira 3/3