Università degli Studi di Salerno

Penetration Testing & Ethical Hacking

Enumerating Target e Port Scanning Parte 1

Arcangelo Castiglione arcastiglione@unisa.it

Outline

- Concetti Introduttivi
- ➤ Suite Protocollare TCP/IP
- Formato dei Messaggi TCP e UDP
- Active Enumeration
 - Network Scanner Nmap
 - Zenmap
 - Unicornscan
- > Passive Enumeration
 - > Shodan
 - ZoomEye
 - Censys
 - > FOFA

Outline

- Concetti Introduttivi
- ➤ Suite Protocollare TCP/IP
- Formato dei Messaggi TCP e UDP
- Active Enumeration
 - Network Scanner Nmap
 - Zenmap
 - Unicornscan
- Passive Enumeration
 - > Shodan
 - ZoomEye
 - Censys
 - > FOFA

Enumerating Target

Obiettivi e Motivazioni

Fase tipicamente eseguita dopo aver individuato le macchine target attive (e raggiungibili) appartenenti all'asset

- Permette di acquisire ulteriori informazioni sulle macchine target
 - > Stato delle porte
 - Protocolli e servizi di rete
 - Applicativi dei servizi
 - Sistemi Operativi
 - > Etc

Enumerating Target

Obiettivi e Motivazioni

- Acquisire (enumerare) quante più informazioni possibili sui servizi di rete erogati dalle macchine target attive (*Target Enumeration*)
 - Informazioni che potranno successivamente essere utilizzate per individuare le vulnerabilità relative a questi servizi

Ciascun servizio disponibile sulla macchina target è erogato tramite una determinata porta

Enumerating Target

Active vs. Passive Enumeration

Due forme di Target Enumeration

> Active Enumeration

- I metodi di enumerazione attiva richiedono un'interazione diretta con la macchina target
 - Mediante Port Scanning

Passive Enumeration

- ➤ I metodi di enumerazione passiva permettono di ottenere informazioni sulla macchina target senza interagire direttamente con essa
 - Utilizzando Servizi di Terze Parti

Port Scanning – Stato di una Porta

- ➤ Il *Port Scanning* è il metodo tramite cui è possibile determinare lo stato delle porte appartenenti ai seguenti protocolli di rete
 - > Transmission Control Protocol (TCP)
 - User Datagram Protocol (UDP)

Una porta associata ad un certo servizio di rete può essere

Port Scanning – Stato di una Porta

- ➤ Il *Port Scanning* è il metodo tramite cui è possibile determinare lo stato delle porte appartenenti ai seguenti protocolli di rete
 - > Transmission Control Protocol (TCP)
 - User Datagram Protocol (UDP)

Una porta associata ad un certo servizio di rete può essere

APERTA

Indica che il servizio è accessibile ed è in modalità di *Listening*

Port Scanning – Stato di una Porta

- ➤ Il *Port Scanning* è il metodo tramite cui è possibile determinare lo stato delle porte appartenenti ai seguenti protocolli di rete
 - > Transmission Control Protocol (TCP)
 - User Datagram Protocol (UDP)

Una porta associata ad un certo servizio di rete può essere

CHIUSA

Nessun servizio è in modalità di *Listening* su tale porta

Port Scanning – Stato di una Porta

- ➤ Il *Port Scanning* è il metodo tramite cui è possibile determinare lo stato delle porte appartenenti ai seguenti protocolli di rete
 - > Transmission Control Protocol (TCP)
 - User Datagram Protocol (UDP)

Una porta associata ad un certo servizio di rete può essere

CHIUSA

Nessun servizio è in modalità di *Listening* su tale porta

Tuttavia, una porta potrebbe anche essere «FILTRATA»

Port Scanning – Porte e Vulnerabilità

- Dopo aver individuato lo **stato** di una porta il pentester potrebbe anche **controllare la versione del software** utilizzato dal **servizio di rete** erogato da tale porta
 - > Al fine di individuare eventuali vulnerabilità per tale servizio

Port Scanning – Porte e Vulnerabilità

Esempio

- Una macchina target dispone di un Web Server il cui software è nella versione 1.0
 - Sono presenti vulnerabilità note in tale versione del software
 - Un utente malintenzionato potrebbe sfruttare tali vulnerabilità per attaccare il Web Server

Outline

- Concetti Introduttivi
- **➤ Suite Protocollare TCP/IP**
- Formato dei Messaggi TCP e UDP
- > Active Enumeration
 - ➤ Network Scanner Nmap
 - Zenmap
 - Unicornscan
- Passive Enumeration
 - > Shodan
 - ZoomEye
 - Censys
 - > FOFA

Caratteristiche

- Suite che include diversi protocolli (*suite protocollare*), i più importanti dei quali sono il protocollo *TCP* (Transmission Control Protocol) ed il protocollo *IP* (Internet Protocol)
 - > IP si occupa principalmente dell'indirizzamento e del routing dei datagram
 - > TCP è responsabile della gestione delle connessioni e dell'affidabilità del trasporto tra due endpoint

- > IP è localizzato nel Livello di Rete (Layer 3) del modello ISO/OSI
- > TCP è localizzato nel Livello di Trasporto (Layer 4) del modello ISO/OSI

Caratteristiche

- Suite che include diversi protocolli (*suite protocollare*), i più importanti dei quali sono il protocollo *TCP* (Transmission Control Protocol) ed il protocollo *IP* (Internet Protocol)
 - > IP si occupa principalmente dell'indirizzamento e del routing dei datagram
 - > TCP è responsabile della gestione delle connessioni e dell'affidabilità del trasporto tra due endpoint

- > IP è localizzato nel Livello di Rete (Layer 3) del modello ISO/OSI
- > TCP è localizzato nel Livello di Trasporto (Layer 4) del modello ISO/OSI

A livello di trasporto esiste anche il protocollo UDP, che analizzeremo successivamente

Caratteristiche TCP

- Le caratteristiche principali del protocollo *TCP* sono le seguenti
 - Orientato alla connessione 1/2
 - ➤ Prima che Client e Server possano comunicare devono **stabilire una connessione** utilizzando un protocollo chiamato **three-way handshake**
 - > Il Client inizializza la connessione inviando al Server
 - Un pacchetto contenente un SYN (SYNchronize) flag
 - ➤ Un numero iniziale di sequenza (*Initial Sequence Number ISN*) scelto a caso
 - > Il Server risponde al Client inviando
 - Un SYN contenente un nuovo ISN
 - Un ACK (ACKnowledgment) relativo al pacchetto SYN che ha ricevuto dal Client, il cui contenuto è dato da ISN (del client) + 1
 - Il Client risponde al Server con un ACK contenente ISN (del Server) + 1
 - A questo punto, la connessione è stabilita

Caratteristiche TCP

Caratteristiche TCP

- Le caratteristiche principali del protocollo *TCP* sono le seguenti
 - Orientato alla connessione 2/2
 - Per **terminare la connessione**, *TCP* utilizza il seguente meccanismo
 - Il Client invia al Server un pacchetto con un FIN (FINish) flag
 - ➤ Il Server invia un pacchetto di **ACK** al Client così da informarlo della ricezione del pacchetto **FIN**
 - Quando il Server è pronto a chiudere la connessione invia al Client un pacchetto FIN
 - Il Client invia un ACK al Server per indicargli che ha ricevuto il suo pacchetto FIN

N.B. Generalmente, sia Client che Server possono terminare la connessione, mediante l'invio del pacchetto **FIN**

Caratteristiche TCP

- Le caratteristiche principali del protocollo *TCP* sono le seguenti
 - > Protocollo Affidabile
 - > TCP utilizza numeri di sequenza ed ACK per identificare i pacchetti
 - > Il ricevente invia un ACK per indicare che ha ricevuto il pacchetto
 - Quando un pacchetto va perso, TCP lo re-invierà automaticamente se non avrà ricevuto un ACK dal ricevente
 - ➤ Se i pacchetti non dovessero arrivare in ordine, *TCP* provvederà a riordinarli prima di inoltrarli al livello applicativo
 - ➤ I protocolli che trasmettono file o dati importanti tipicamente usano TCP

Caratteristiche UDP

- Le caratteristiche principali del protocollo *UDP* sono le seguenti
 - Protocollo senza connessione
 - > Per scambiarsi dati, Client e Server non devono prima stabilire una connessione
 - > UDP «farà del suo meglio» per inviare i dati a destinazione, ma nel caso di perdite di pacchetti non provvederà a ritrasmetterli

Utilizzato

- Nello streaming video ed in applicazioni multimediali, dove è tollerata una certa perdita di dati
- ➤ Ma anche da protocolli quali *Domain Name System (DNS), Dynamic Host*Configuration Protocol (DHCP) e Simple Network Management Protocol (SNMP)

Le Porte – Caratteristiche

Affinché le applicazioni siano in grado di comunicare, il livello di trasporto utilizza un **indirizzamento basato su porte**

- Un processo software (tipicamente) lato Server si mette in «ascolto» (listening) su uno specifico numero di porta ed eroga i suoi servizi tramite tale porta
 - ➤ Il Client invia dati al Server su tale porta in modo che vengano processati dall'applicazione attiva sul Server
- > Sono utilizzati 16 bit per l'indirizzamento delle porte
 - \triangleright Esistono quindi $2^{16} = 65536$ porte
 - ➢ Il numero di porte varia da 0 a 65535

Le Porte – Caratteristiche

➤ Gli intervalli di utilizzo dei numeri di porta sono regolamentati da convenzioni o accordi internazionali

- > Le porte sono generalmente classificate in base a tre categorie
 - > Well-known Port
 - User o Registered Port
 - Private/Dynamic/Ephemeral Port

Le Porte – Caratteristiche

- > Well-known Port: Vanno da 0 a 1023 e sono porte riservate
 - Usate da processi Server che devono essere eseguiti da amministratori o da utenti con privilegi specifici
- ➤ User o Registered Port: Vanno da 1024 a 49151 e sono porte per le quali un utente può chiedere la registrazione all'Internet Assigned Number Authority (IANA)
 - Così da riservare una di queste porte ad una specifica applicazione Client-Server
- ➤ Private/Dynamic/Ephemeral Port: Vanno da 49152 a 65535 ed ognuno può utilizzarle senza necessità di registrazione presso lo IANA

Le Porte – Caratteristiche

- > Well-known Port: Vanno da 0 a 1023 e sono porte riservate
 - Usate da processi Server che devono essere eseguiti da amministratori o da utenti con privilegi specifici
- ➤ User o Registered Port: Vanno da 1024 a 49151 e sono porte per le quali un utente può chiedere la registrazione all'Internet Assigned Number Authority (IANA)
 - Così da riservare una di queste porte ad una specifica applicazione Client-Server
- > Private/Dynamic/Ephemeral Port: Vanno da 49152 a 65535 ed

N.B. La classificazione delle porte in tali categorie è una «convenzione» e nulla vieta di utilizzare arbitrariamente qualsiasi numero di porta ammesso

Outline

- Concetti Introduttivi
- ➤ Suite Protocollare TCP/IP
- Formato dei Messaggi TCP e UDP
- Active Enumeration
 - Network Scanner Nmap
 - Zenmap
 - Unicornscan
- Passive Enumeration
 - > Shodan
 - ZoomEye
 - Censys
 - > FOFA

- ➤ Un messaggio *TCP* è chiamato **segmento** ed è costituito da un **header** e da una **sezione dati**
 - L'header è di 20 byte (senza opzioni *TCP*)

Source Port (Porta Sorgente) e **Destination Port** (Porta di Destinazione)

- ➤ La Porta Sorgente è la porta attraverso cui una macchina invia i pacchetti ad una macchina target
- La Porta di Destinazione è la porta attraverso cui una macchina target riceve i pacchetti

Control Bits

Contiene 8 flag, ciascuno dei quali è composto da un singolo bit. *TCP* utilizza di solito solo 6 flag tra gli 8 disponibili

H. Len.	Rsvd.	Control Bits	Window Size
(4 bits)	(4 bits)	(8 bits)	(16 bits)
Checksum			Urgent Pointer
(16 bits)			(16 bits)

RFC 793

I sei bit flag di solito utilizzati da TCP

- SYN: Sincronizza i numeri di sequenza (utilizzato di solito per stabilire la connessione)
- ➤ ACK: Indica che il campo Acknowledgement è significativo; se un pacchetto ha questo flag attivo, esso è un ACK in risposta ad un pacchetto precedentemente ricevuto
- RST: Resetta la connessione
- FIN: Indica che non ci sono altri dati da inviare (utilizzato di solito per chiudere una connessione)
- **PSH:** Indica che i dati devono essere trasmessi immediatamente, invece di aspettare altri dati
- > URG: Indica che il campo Urgent Pointer del messaggio è significativo

RFC 3168

Ulteriori bit flag utilizzati da TCP

- > CWR (Congestion Window Reduced): Indica che il buffer di trasmissione del mittente si sta riempendo a causa di una congestione. Sarà quindi necessario abbassare la velocità di trasmissione
- > ECN-Echo (Explicit Connection Notification-Echo): indica che la connessione di rete sta riscontrando una congestione

Utilizzato per la verifica degli errori nell'header e nei dati del pacchetto TCP

H. Len.	Rsvd.	Control Bits	Window Size
(4 bits)	(4 bits)	(8 bits)	(16 bits)
Checksum			Urgent Pointer
(16 bits)			(16 bits)

- ➤ Un messaggio UDP è costituito da un header e da una sezione dati
 - L'header è di 8 byte (senza opzioni UDP)

0	15 31
Source Port	Destination Port
(16 bits)	(16 bits)
UDP Length	UDP Checksum
(16 bits)	(16 bits)

Source Port (Porta Sorgente) e Destination Port (Porta di Destinazione)

- La Porta Sorgente è la porta attraverso cui una macchina invia i pacchetti ad una macchina target
- La Porta di Destinazione è la porta attraverso cui una macchina target riceve i pacchetti

UDP Length

Dimensione dell'header UDP

UDP Checksum

Utilizzato per la verifica degli errori nell'header e nei dati

Outline

- Concetti Introduttivi
- ➤ Suite Protocollare TCP/IP
- Formato dei Messaggi TCP e UDP
- > Active Enumeration
 - Network Scanner Nmap
 - Zenmap
 - Unicornscan
- > Passive Enumeration
 - > Shodan
 - ZoomEye
 - Censys
 - > FOFA

Active Enumeration

Network Scanning – Service Enumeration

➤ <u>Service Enumeration:</u> consente di scoprire la versione del servizio erogato da una porta aperta sulla macchina target

- N.B. Le informazioni sulla versione di un determinato servizio sono di fondamentale importanza
 - ➤ Il pentester potrebbe cercare le vulnerabilità di sicurezza esistenti per tale versione del servizio

Active Enumeration

Network Scanning – Service Enumeration

- Osservazione 1: Talvolta gli amministratori di rete/sistema cambiano le porte predefinite per alcuni servizi
 - Ad esempio, un servizio *SSH* potrebbe non essere associato alla porta **22** (come da convenzione)
 - > Un amministratore potrebbe associarlo alla porta 22222
 - ➤ Se un pentester eseguisse solo una scansione sulla porta convenzionale del servizio *SSH* potrebbe non trovare tale servizio attivo
- Osservazione 2: Il pentester potrebbe avere difficoltà quando si tratta di analizzare servizi proprietari
 - ➤ In esecuzione su porte non standard

Active Enumeration

Network Scanning – Service Enumeration

- Utilizzando strumenti per l'enumerazione automatica dei servizi, i problemi caratterizzati in precedenza dalle
 Osservazioni 1 e 2 possono essere mitigati
 - Un servizio potrebbe essere individuato indipendentemente dalla porta che utilizza

Outline

- Concetti Introduttivi
- ➤ Suite Protocollare TCP/IP
- Formato dei Messaggi TCP e UDP
- Active Enumeration
 - Network Scanner Nmap
 - Zenmap
 - Unicornscan
- Passive Enumeration
 - > Shodan
 - ZoomEye
 - Censys
 - > FOFA

Caratteristiche

- Nmap («Network Mapper»)
 - Strumento open source per esplorazioni della rete e controlli di sicurezza
 - Consente di scansionare rapidamente sia reti di grandi dimensioni che singoli host
 - Comunemente utilizzato da amministratori di sistema e di rete per
 - Controlli di Sicurezza
 - > Attività di routine riguardanti la rete
 - > Inventario di rete
 - Gestione dei programmi di aggiornamento dei servizi
 - Monitoraggio del tempo di attività degli host e dei servizi
 - > Etc

Principali Funzionalità

> Port Scanner estremamente potente e flessibile

- > Oltre ad essere un port scanner Nmap fornisce ulteriori funzionalità
 - ► Host Discovery: Rileva gli host attivi all'interno dell'asset analizzato
 - Di default, per effettuare l'Host Discovery, Nmap invia
 - > una ICMP Echo Request
 - un pacchetto TCP SYN alla porta 443
 - un pacchetto TCP ACK alla porta 80
 - una ICMP Timestamp Request

Principali Funzionalità

> Port Scanner estremamente potente e flessibile

- > Oltre ad essere un port scanner Nmap fornisce ulteriori funzionalità
 - Service/Version Detection: Oltre ad individuare le porte «aperte» sulla macchina target, Nmap permette di ricavare ulteriori informazioni su tali porte
 - Protocolli e servizi utilizzati
 - Nomi delle applicazioni
 - Versioni delle applicazioni utilizzate
 - > Etc

Principali Funzionalità

- > Port Scanner estremamente potente e flessibile
- Oltre ad essere un port scanner Nmap fornisce ulteriori funzionalità
 - Operating System (OS) Detection
 - Nmap invia una serie di pacchetti alla macchina target ed esamina le risposte
 - Confronta queste risposte con un proprio database e mostra i dettagli se viene trovata una corrispondenza
 - <u>Network Traceroute:</u> Un traceroute Nmap inizia con un certo valore del Time to Live (TTL)
 - ➤ Il valore del TTL viene decrementato fino a quando non si raggiunge il valore 0
 - Nmap Scripting Engine (NSE): Permette di aggiungere nuove funzionalità ad Nmap
 - Maggiori dettagli successivamente...

Aggiornamento ed Utilizzo

- > Prima di utilizzare Nmap è importante aggiornarlo
 - Ci potrebbero essere informazioni (fingerprint) relative a nuovi Sistemi Operativi, a nuovi servizi, etc
 - apt-get update
 - apt-get upgrade
- Nmap può essere avviato in due modi
 - ➤ Dal menu «01 Information Gathering» di Kali
 - Digitando il comando nmap da terminale

Tecniche di Scansione

- Nmap
 - Fornisce varie tipologie di scansione, ciascuna con le proprie caratteristiche
 - Permette anche di creare scansioni ad hoc
 - Maggiori dettagli successivamente

Flag	Role	Command
-sS	TCP syn scan	nmap -sS <target></target>
-sT	TCP connect() scan	nmap -sT <target></target>
-sU	UDP scan	nmap -sU <target></target>
-sA	TCP ack scan	nmap -sA <target></target>
-sY	SCTP INIT scan	nmap -sY <target></target>
-sF	FIN Scan	nmap -sF <target></target>
-sP	Ping Scan	nmap -sP <target></target>
-sV	Version Detection	nmap -sV <target></target>
-sl	Idle Scan	nmap -sl <target></target>
-sW	TCP Window scan	nmap -sW <target></target>
-sM	TCP maimon scan	nmap -sM <target></target>

Primo Esempio di Utilizzo

➤ Utilizziamo Nmap per scansionare Metasploitable 2 (Indirizzo IP:

10.0.2.6)

> nmap 10.0.2.6

```
Starting Nmap 7.70 ( https://nmap.org ) at 2019-03-24 16:05 CET
Nmap scan report for 10.0.2.6
Host is up (0.00051s latency).
Not shown: 977 closed ports
PORT
        STATE SERVICE
21/tcp
        open ftp
22/tcp
        open ssh
23/tcp
        open telnet
25/tcp
        open smtp
53/tcp
        open domain
80/tcp
        open http
111/tcp open rpcbind
139/tcp open netbios-ssn
445/tcp open microsoft-ds
512/tcp open exec
513/tcp open login
514/tcp open shell
1099/tcp open rmiregistry
1524/tcp open ingreslock
2049/tcp open nfs
2121/tcp open ccproxy-ftp
3306/tcp open mysql
5432/tcp open postgresql
5900/tcp open vnc
6000/tcp open X11
6667/tcp open irc
8009/tcp open ajp13
8180/tcp open unknown
```


Primo Esempio di Utilizzo

➤ Utilizziamo Nmap per scansionare Metasploitable 2 (Indirizzo IP:

10.0.2.6)

> nmap 10.0.2.6

Numero di Porta / Protocollo

```
Starting Nmap 7.70 ( https://nmap.org ) at 2019-03-24 16:05 CET
Nmap scan report for 10.0.2.6
Host is up (0.00051s latency).
Not shown: 977 closed ports
PORT
        STATE SERVICE
21/tcp
         open ftp
         open ssh
22/tcp
23/tcp
         open telnet
25/tcp
         open smtp
53/tcp
         open domain
80/tcp
         open http
111/tcp
        open rpcbind
139/tcp
        open netbios-ssn
        open microsoft-ds
445/tcp
512/tcp
        open exec
513/tcp
        open login
514/tcp
        open shell
1099/tcp open rmiregistry
1524/tcp open ingreslock
2049/tcp open nfs
2121/tcp open ccproxy-ftp
3306/tcp open mysql
5432/tcp open postgresql
5900/tcp open vnc
6000/tcp open X11
6667/tcp open irc
8009/tcp open ajp13
8180/tcp open unknown
```


Enumemac address: 08:00:27:AE:29:E1 (Oracle VirtualBox virtual NIC)

Primo Esempio di Utilizzo

➤ Utilizziamo Nmap per scansionare Metasploitable 2 (Indirizzo IP:

```
10.0.2.6)
```

> nmap 10.0.2.6

```
Starting Nmap 7.70 ( https://nmap.org ) at 2019-03-24 16:05 CET
Nmap scan report for 10.0.2.6
Host is up (0.00051s latency).
Not shown: 977 closed ports
        STATE SERVICE
PORT
        open
21/tcp
              ftp
22/tcp
        open
              ssh
23/tcp
              telnet
        open
25/tcp
        open
              smtp
53/tcp
        open
              domain
80/tcp
        open
               http
                                 Stato della
111/tcp
        open
               rpcbind
139/tcp
        open
              netbios-ssn
445/tcp
              microsoft-ds
                                    Porta
        open
512/tcp
        open
              exec
513/tcp
               logir
        open
              rhell.
514/tcp
        open
1099/tcp open
              rmiregistry
1524/tcp open
              ingreslock
2049/tcp open
              nfs
2121/tcp open
              ccproxy-ftp
3306/tcp open
              mysql
5432/tcp open
              postgresql
5900/tcp open
              vnc
6000/tcp open
              X11
6667/tcp open
              irc
8009/tcp open
              ajp13
8180/tcp open unknown
```


EnumeMAC Address: 88:00:27:AE:29:E1 (Oracle VirtualBox virtual NIC)

Primo Esempio di Utilizzo

Utilizziamo Nmap per scansionare Metasploitable 2 (Indirizzo IP:

10.0.2.6)

> nmap 10.0.2.6

EnumeMAC Address: 08:00:27:AE:29:E1 (Oracle VirtualBox virtual NIC)

Stato delle Porte

- Nmap definisce sei stati per le porte
 - ▶ <u>Open:</u> esiste un'applicazione che accetta connessioni TCP o datagrammi UDP
 - <u>Closed:</u> sebbene la porta sia accessibile, non ci sono applicazioni in ascolto su tale porta
 - Filtered: Nmap non è in grado di determinare se la porta è «aperta» o meno
 - Probabilmente esiste un dispositivo di filtraggio dei pacchetti (ad esempio un *firewall*) che non permette di raggiungere la porta sulla macchina target

N.B. A seconda della tecnica di scansione utilizzata, verrà restituito un determinato insieme di stati per le porte

Stato delle Porte

- Nmap definisce sei stati per le porte
 - <u>Unfiltered:</u> la porta è accessibile ma Nmap non può determinare se è «aperta» o «chiusa»
 - Open | Filtered: Nmap non è in grado di determinare se una porta è «aperta» o «filtrata»
 - Closed | Filtered: Nmap non è in grado di determinare se una porta è «chiusa» o «filtrata»

N.B. A seconda della tecnica di scansione utilizzata, verrà restituito un determinato insieme di stati per le porte

Specificare il Target

- Nmap permette di specificare le macchine target in quattro modi
 - Singolo indirizzo IP (o singolo hostname)
 - Ad esempio, nmap 10.0.2.6
 - Un'intera rete di indirizzi IP adiacenti, utilizzando la notazione CIDR
 - Ad esempio, nmap 10.0.2.0/24
 - 256 indirizzi IP: da 10.0.2.0 a 10.0.2.255
 - > Intervallo degli ottetti relativi agli indirizzi IP
 - Ad esempio, nmap 10.0.2-4,6.1 (Indirizzi IP: 10.0.2.1, 10.0.3.1, 10.0.4.1, 10.0.6.1)
 - Indirizzi IP multipli
 - Ad esempio, nmap 10.0.2.5 172.16.16-18,21.5 (Indirizzi IP: 10.0.2.5, 172.16.16.5, 172.16.17.5, 172.16.18.5, 172.16.21.5)

Specificare il Target

- ➤ Oltre a specificare il/i target da terminale, Nmap permette anche di farlo mediante un file testuale
 - Utilizzando l'opzione -iL <inputfilename>
- Questa opzione è utile se già si dispone degli indirizzi IP da analizzare
 - Ad esempio, ottenuti tramite la fase di Information Gathering
- Ciascuna entry del file deve essere separata da spazi, tabulazioni o newline

10.0.1.1-254

10.0.2.1-254

File di esempio: lista.txt

- ➤ Di default Nmap analizza (scansiona) 1002 porte TCP
 - Attraverso Wireshark vediamo quali sono tali porte

- ➤ Di default Nmap analizza (scansiona) 1002 porte TCP
 - Attraverso Wireshark vediamo quali sono tali porte

- ➤ Di default Nmap analizza (scansiona) 1002 porte TCP
 - Attraverso Wireshark vediamo quali sono tali porte

```
nmap 10.0.2.4
               Starting Nmap /.94SVN ( https://nmap.org ) at 2024-04-17 09:17 EDT
               Nmap scan report for 1 2.4 (10.0.2.4)
                Host is up (0.014s latent,
                Not shown: 977 closed tcp por
                                                  ~-refused)
                PORT
                        STATE SERVICE
               21/tcp open ftp
               22/tcp open ssh
               23/tcp
                       open telnet
               25/tcp
                       open smtp
Output Parziale 53/tcp
                       open domain
               80/tcp open http
               111/tcp open rpcbind
               139/tcp open netbios-ssn
                445/tcp open microsoft-ds
               512/tcp open exec
               513/tcp open login
               514/tcp open shell
               1099/tcp open rmiregistry
               1524/tcp open ingreslock
               2049/tcp open nfs
                2121/tcp open ccproxy-ftp
```


- > Di default Nmap analizza (scansiona) 1002 porte TCP
 - Attraverso Wireshark vediamo quali sono tali porte

- > Di default Nmap analizza (scansiona) 1002 porte TCP
 - Attraverso Wireshark vediamo quali sono tali porte

- ➤ Di default Nmap analizza (scansiona) 1002 porte TCP
 - > Attraverso Wireshark vediamo quali sono tali porte

- > Di default Nmap analizza (scansiona) 1002 porte TCP
 - > Attraverso Wireshark vediamo quali sono tali porte

- ➤ Di default Nmap analizza (scansiona) 1002 porte TCP
 - Attraverso Wireshark vediamo quali sono tali porte

- ➤ Di default Nmap analizza (scansiona) 1002 porte TCP
 - > Attraverso Wireshark vediamo quali sono tali porte

Specifica delle Porte

- Di default Nmap scansiona, secondo un ordine casuale, le 1002 porte «più comuni»
 - ➤ Tali porte sono selezionate in base al contenuto del file nmapservices

- > Ciascuna entry del file nmap-services contiene
 - Nome del servizio e numero della porta, insieme al corrispondente protocollo
 - Valore che rappresenta la probabilità di trovare aperta tale porta
 - Probabilità ottenuta tramite euristiche ricavate da scansioni precedenti

Specifica delle Porte (nmap-services)

- > Ciascuna entry del file nmap-services contiene
 - Nome del servizio e numero della porta, insieme al corrispondente protocollo
 - Valore che rappresenta la probabilità di trovare aperta tale porta
 - Probabilità ottenuta tramite euristiche ricavate da scansioni precedenti

```
ssh
       22/tcp
              0.182286
                              # Secure Shell Login
ssh
       22/udp
                              # Secure Shell Login
              0.003905
telnet 23/tcp
              0.221265
telnet 23/udp 0.006211
priv-mail
               24/tcp 0.001154
                                  # any private mail system
priv-mail
               24/udp 0.000329
                                     # any private mail system
                              # Simple Mail Transfer
smtp
       25/tcp 0.131314
                              # Simple Mail Transfer
       25/udp
              0.001285
smtp
rsftp
       26/tcp 0.007991
                              # RSFTP
nsw-fe 27/tcp 0.000138
                              # NSW User System FE
                              # NSW User System FE
nsw-fe 27/udp 0.000395
unknown 28/tcp 0.000050
msg-icp 29/tcp 0.000025
                              # MSG ICP
msq-icp 29/udp
              0.000560
                              # MSG ICP
unknown 30/tcp
              0.000527
               31/tcp 0.000025
                                     # MSG Authentication
msg-auth
```


Specifica delle Porte (nmap-services)

- > Ciascuna entry del file nmap-services contiene
 - Nome del servizio e numero della porta, insieme al corrispondente protocollo
 - Valore che rappresenta la probabilità di trovare aperta tale porta
 - Probabilità ottenuta tramite euristiche ricavate da scansioni precedenti

```
ssh
       22/tcp
               0.182286
                               # Secure Shell Login
ssh
       22/udp
               0.003905
                               # Secure Shell Login
telnet 23/tcp
               0.221265
telnet 23/udp
               0.006211
priv-mail
               24/tcp 0.001154
                                   # any private mail system
priv-mail
               24/udp 0.000329
                                      # any private mail system
                               # Simple Mail Transfer
               0.131314
smtp
       25/tcp
       25/udp
                               # Simple Mail Transfer
               0.001285
smtp
rsftp
       26/tcp
               0.007991
                               # RSFTP
      27/tcp
               0.000138
                              # NSW User System FE
nsw-fe
nsw-fe 27/udp
                               # NSW User System FE
               0.000395
unknown 28/tcp
               0.000050
msg-icp 29/tcp
               0.000025
                               # MSG ICP
msg-icp 29/udp
               0.000560
                               # MSG ICP
unknown 30/tcp
               0.000527
               31/tcp 0.000025
                                      # MSG Authentication
msg-auth
```


Specifica delle Porte (nmap-services)

- > Ciascuna entry del file nmap-services contiene
 - Nome del servizio e numero della porta, insieme al corrispondente protocollo
 - Valore che rappresenta la probabilità di trovare aperta tale porta
 - Probabilità ottenuta tramite euristiche ricavate da scansioni precedenti

```
ssh
        22/tcp
               0.182286
                                  Secure Shell Login
ssh
        22/udp
               0.003905
                                  Secure Shell Login
telnet 23/tcp
               0.221265
telnet 23/udp
               0.006211
priv-mail
                24/tcp 0.001154
                                        # any private mail system
priv-mail
                24/udp 0.000329
                                        # any private mail system
                                  Simple Mail Transfer
               0.131314
smtp
       25/tcp
                                  Simple Mail Transfer
       25/udp
               0.001285
smtp
rsftp
       26/tcp
               0.007991
                                  RSFTP
nsw-fe
      27/tcp
               0.000138
                                # NSW User System FE
                                # NSW User System FE
nsw-fe 27/udp
               0.000395
unknown 28/tcp
               0.000050
msg-icp 29/tcp
               0.000025
                                # MSG ICP
msq-icp 29/udp
               0.000560
                                # MSG ICP
unknown 30/tcp
               0.000527
                31/tcp 0.000025
                                        # MSG Authentication
msg-auth
```


Specifica delle Porte (nmap-services)

- > Ciascuna entry del file nmap-services contiene
 - Nome del servizio e numero della porta, insieme al corrispondente protocollo
 - Valore che rappresenta la probabilità di trovare aperta tale porta
 - Probabilità ottenuta tramite euristiche ricavate da scansioni precedenti

```
182286
                                          Secure Shell Login
                                         # Secure Shell Login
                            93905
 Commento relativo al
                           21265
servizio in esecuzione su
                           96211
                                0.001154
                                                 # any private mail system
una determinata porta
                                  000329
                                                 # any private mail system
                           uap
                                          Simple Mail Transfer
                25/tcp
                        0.131314
        smtp
                                          Simple Mail Transfer
                25/udp
                        0.001285
        smtp
        rsftp
                26/tcp
                        0.007991
                27/tcp
                                         # NSW User System FE
        nsw-fe
                        0.000138
                                         # NSW User System FE
               27/udp
                        0.000395
        nsw-fe
        unknown 28/tcp
                        0.000050
        msg-icp 29/tcp
                        0.000025
                                         # MSG ICP
        msq-icp 29/udp
                        0.000560
                                         # MSG ICP
        unknown 30/tcp
                        0.000527
                                                 # MSG Authentication
        msg-auth
                        31/tcp 0.000025
```


Specifica delle Porte

- Nmap consente di scegliere arbitrariamente le porte da scansionare
 - > -p port_range: scansiona le porte definite tramite tale parametro
 - Esempio 1: per scansionare le porte da 1 a 1024 l'opzione è -p 1-1024
 - Esempio 2: per scansionare tutte le porte (da 1 a 65535) l'opzione è -p-
 - Esempio 3: per scansionare le porte 21 e 23 l'opzione è −p 21,23
 - -F (fast): scansiona solo le 100 porte più comuni
 - ➤ In base al contenuto del file nmap-services
 - > -r (don't randomize port): scansionale porte sequenzialmente
 - > Da quella con numero più piccolo a quella con numero più grande

Specifica delle Porte – Esempio

- ➤ Macchina target: Metasploitable 3
 - Disabilitiamo il firewall sulla macchina target

Specifica delle Porte – Esempio

- ➤ Macchina target: Metasploitable 3
 - Disabilitiamo il firewall sulla macchina target

Adjust your computer's settings

Network and Internet

View network status and tasks

Hardware

View devices and printers Add a device

Programs

Uninstall a program

Turn Windows features on or off

User Accounts

Add or remove user accounts

Appearance

Change desktop background Adjust screen resolution

Clock, Language, and Region

Change keyboards or other input methods Change display language Set the time and date

Ease of Access

Let Windows suggest settings Optimize visual display

View by: Category ▼

Specifica delle Porte – Esempio

- Macchina target: Metasploitable 3 (Indirizzo IP: 10.0.2.7)
 - Disabilitiamo il firewall sulla macchina target

Specifica delle Porte – Esempio

nmap 10.0.2.7

PORT	STATE	SERVICE
22/tcp	open	ssh
135/tcp	open	msrpc
139/tcp	open	netbios-ssn
445/tcp	open	microsoft-ds
3000/tcp	open	ррр
3306/tcp	open	mysql
3389/tcp	open	ms-wbt-server
4848/tcp	open	appserv-http
7676/tcp	open	imqbrokerd
8009/tcp	open	ajp13
8022/tcp	open	oa-system
8031/tcp	open	unknown
8080/tcp	open	http-proxy
8181/tcp	open	intermapper
8383/tcp	open	m2mservices
8443/tcp	open	https-alt
9200/tcp	open	wap-wsp
49152/tcp	open	unknown
49153/tcp	open	unknown
49154/tcp	open	unknown
49157/tcp	open	unknown
49160/tcp	open	unknown

nmap -F 10.0.2.7

PORT	STATE	SERVICE
22/tcp	open	ssh
135/tcp	open	msrpc
139/tcp	open	netbios-ssn
445/tcp	open	microsoft-ds
3000/tcp	open	ppp
3306/tcp	open	mysql
3389/tcp	open	ms-wbt-server
8009/tcp	open	ajp13
8080/tcp	open	http-proxy
8443/tcp	open	https-alt
49152/tcp	open	unknown
49153/tcp	open	unknown
49154/tcp	open	unknown
49157/tcp	open	unknown

Vs.

Scansione di Default (utente root) – SYN Scan

- ➤ Opzione -sS
 - Opzione di scansione predefinita se Nmap è eseguito da un utente privilegiato (root o amministratore)
 - Equivale ad invocare **nmap** senza alcuna opzione di scansione
 - N.B. Richiede i privilegi di root per poter funzionare
- Nmap invia un pacchetto **SYN** ed attende una risposta da parte della macchina target
 - > Se la risposta contiene SYN/ACK, allora la porta è «aperta»
 - > Se la risposta contiene RST/ACK, allora la porta è «chiusa»
 - Se la risposta contiene un messaggio di errore «ICMP Port Unreachable» o se non c'è alcuna risposta, la porta è «filtrata»

Scansione di Default (utente root) – SYN Scan

- ➤ Opzione -sS
 - ➤ La scansione è eseguita rapidamente
 - Scansione nota anche come half-open o SYN stealth
 - Essa non completa il three-way handshake
 - ➤ Poiché il *three-way handshake* non viene completato, tipicamente tale scansione non viene memorizzata dagli IDS (Intrusion Detection System)

- ➤ Per analizzare il traffico di rete generato da una scansione **nmap** utilizziamo **tcpdump**, un semplice ma potente *sniffer* di rete
- > Per maggiori informazioni su tcpdump
 - > man tcpdump

```
TCPDUMP(8)
                                                 System Manager's Manual
                                                                                         TCPDUMP (8)
                    NAME
                           tcpdump - dump traffic on a network
                    SYNOPSIS
                           tcpdump [ -AbdDefhHIJKlLnNOpqStuUvxX# ] [ -B buffer size ]
                                     -C file size ] [ -G rotate seconds ] [ -F file ]
                                     -i interface ] [ -j tstamp type ] [ -m module ] [ -M secret
                                     --number ] [ -Q in out | inout ]
Output Parziale
                                     -r file | [ -V file | [ -s snaplen | [ -T type | [ -w file |
                                     -W filecount 1
                                     -E spi@ipaddr algo:secret,...]
                                     -y datalinktype ] [ -z postrotate-command ] [ -Z user ]
                                     --time-stamp-precision=tstamp precision
                                      --immediate-mode ] [ --version ]
                                     expression ]
                    DESCRIPTION
                           Tcpdump prints out a description of the contents of packets on a net
                                 interface that match the boolean expression: the description
```


Traffico Generato da una Scansione di Default (root)

- ➤ Utilizzando tcpdump è possibile analizzare i seguenti flag impostati da nmap durante i vari tipi di scansione
 - > [S] SYN (SYN packet, richiesta per stabilire una nuova sessione)
 - ▶ [.] ACK (ACK packet, conferma di ricezione dei dati del mittente)
 - ▶ [P] PSH (PuSH, push immediato dei dati da parte del sender)
 - [F] FIN (FINish, sollecito di terminazione)
 - [℧] URG (URGent, ha precedenza sugli altri dati)
 - ▶ [R] RST (ReSeT, indicazione di interruzione immediata della connessione)
 - ► [S.] SYN-ACK packet
 - \triangleright [R.] RST-ACK packet

N.B. tcpdump richiede i privilegi di root per poter funzionare

- **Esempio:** Supponiamo di avere il seguente scenario di rete
 - > IP macchina Kali: 10.0.2.15
 - ➤ IP macchina target (Metasploitable 2): 10.0.2.6

Traffico Generato da una Scansione di Default (root)

Caso 1: Porta Aperta

- <u>Caso 1:</u> Traffico generato tra la macchina Kali e la macchina target sulla porta 21 (*Porta Aperta*)
- > Avviamo tcpdump con gli opportuni parametri
 - tcpdump -nnX tcp and host 10.0.2.15 | grep 10.0.2.6.21

- <u>Caso 1:</u> Traffico generato tra la macchina Kali e la macchina target sulla porta 21 (*Porta Aperta*)
- > Avviamo tcpdump con gli opportuni parametri
 - tcpdump -nnX tcp and host 10.0.2.15 | grep 10.0.2.6.21
- -nn: utilizza un formato numerico di rappresentazione, sia per i nomi di dominio che per le porte
- -X: stampa l'header e i dati di ogni pacchetto, sia in formato ASCII che in formato esadecimale

Traffico Generato da una Scansione di Default (root)

- <u>Caso 1:</u> Traffico generato tra la macchina Kali e la macchina target sulla porta 21 (*Porta Aperta*)
- > Avviamo tcpdump con gli opportuni parametri
 - tcpdump -nnX tcp and host 10.0.2.15 | grep 10.0.2.6.21

Protocollo da analizzare

- <u>Caso 1:</u> Traffico generato tra la macchina Kali e la macchina target sulla porta 21 (*Porta Aperta*)
- > Avviamo tcpdump con gli opportuni parametri
 - tcpdump -nnX tcp and host 10.0.2.15 | grep 10.0.2.6.21

 Host sorgente (Kali)

Traffico Generato da una Scansione di Default (root)

- <u>Caso 1:</u> Traffico generato tra la macchina Kali e la macchina target sulla porta 21 (*Porta Aperta*)
- > Avviamo tcpdump con gli opportuni parametri
 - tcpdump -nnX tcp and host 10.0.2.15 | grep 10.0.2.6.21

Host target.Porta

- <u>Caso 1:</u> Traffico generato tra la macchina Kali e la macchina target sulla porta 21 (*Porta Aperta*)
- > Avviamo tcpdump con gli opportuni parametri
 - tcpdump -nnX tcp and host 10.0.2.15 | grep 10.0.2.6.21

```
root@kali:~# tcpdump -nn tcp and host 10.0.2.15 | grep 10.0.2.6.21
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes
```


- <u>Caso 1:</u> Traffico generato tra la macchina Kali e la macchina target sulla porta 21 (*Porta Aperta*)
- Avviamo **nmap** usando una nuova finestra (o un nuovo Tab) del Terminale ed attendiamo la fine della scansione
 - nmap 10.0.2.6

```
kali:~# nmap 10.0.2.6
                 Starting Nmap 7.70 ( https://nmap.org ) at 2019-03-24 21:09 CET
                  Nmap scan report for 10.0.2.6
                  Host is up (0.00012s latency).
                  Not shown: 977 closed ports
                          STATE SERVICE
                 21/tcp
                          open ftp
                 22/tcp
                          open ssh
Output Parziale
                 23/tcp
                          open telnet
                          open
                                smtp
                                domain
                          open
                          open
                                http
                  80/tcp
                          open rpcbind
                          open netbios-ssn
                                microsoft-ds
                          open
```


- <u>Caso 1:</u> Traffico generato tra la macchina Kali e la macchina target sulla porta 21 (*Porta Aperta*)
- > Analizzando l'output di tcpdump possiamo osservare quanto segue

```
21:09:31.694937 IP 10.0.2.15.45004 > 10.0.2.6.21: Flags [S], seq 1264759154, win 1024, options [mss 1460], length 0 21:09:31.695047 IP 10.0.2.6.21 > 10.0.2.15.45004: Flags [S.], seq 76123768, a ck 1264759155, win 5840, options [mss 1460], length 0 21:09:31.695052 IP 10.0.2.15.45004 > 10.0.2.6.21: Flags [R], seq 1264759155, win 0, length 0
```


- <u>Caso 1:</u> Traffico generato tra la macchina Kali e la macchina target sulla porta 21 (*Porta Aperta*)
- > Analizzando l'output di tcpdump possiamo osservare quanto segue

```
21:09:31.694937 IP 10.0.2.15.45004 > 10.0.2.6.21: Flags [S], seq 1264759154, win 1024, options [mss 1460], length 0
21:09:31.695047 IP 10.0.2.6.21 > 10.0.2.15.45004: Flags [S.], seq 76123768, a ck 1264759155, win 5840, options [mss 1460], length 0
21:09:31.695052 IP 10.0.2.15.45004 > 10.0.2.6.21: Flags [R], seq 1264759155, win 0, length 0
```

- La macchina Kali invia
 - Un pacchetto contenente il flag SYN = [S] (Start Connection)
 - Il numero di sequenza (ISN) 1264759154

- <u>Caso 1:</u> Traffico generato tra la macchina Kali e la macchina target sulla porta 21 (*Porta Aperta*)
- > Analizzando l'output di tcpdump possiamo osservare quanto segue

```
21:09:31.694937 IP 10.0.2.15.45004 > 10.0.2.6.21: Flags [S], seq 1264759154, win 1024, options [mss 1460], length 0
21:09:31.695047 IP 10.0.2.6.21 > 10.0.2.15.45004: Flags [S.], seq 76123768, a ck 1264759155, win 5840, options [mss 1460], length 0
21:09:31.695052 IP 10.0.2.15.45004 > 10.0.2.6.21: Flags [R], seq 1264759155, win 0, length 0
```

- La macchina target risponde con
 - Un pacchetto contenente il flag SYN-ACK = [S.] (SynAcK Packet)
 - ➢ Il numero di sequenza (ISN) 76123768
 - Un ACK al numero di sequenza ricevuto dalla macchina Kali
 - 1264759154 + 1 = 1264759155

- <u>Caso 1:</u> Traffico generato tra la macchina Kali e la macchina target sulla porta 21 (*Porta Aperta*)
- > Analizzando l'output di tcpdump possiamo osservare quanto segue

```
21:09:31.694937 IP 10.0.2.15.45004 > 10.0.2.6.21: Flags [S], seq 1264759154, win 1024, options [mss 1460], length 0 21:09:31.695047 IP 10.0.2.6.21 > 10.0.2.15.45004: Flags [S.], seq 76123768, a ck 1264759155, win 5840, options [mss 1460], length 0 21:09:31.695052 IP 10.0.2.15.45004 > 10.0.2.6.21: Flags [R], seq 1264759155, win 0, length 0
```

- La macchina Kali invia
 - Un pacchetto contenente il flag RST = [R] (Reset Connection)
 - Il numero di sequenza 1264759155 ricevuto dalla macchina target

Traffico Generato da una Scansione di Default (root)

Caso 2: Porta Chiusa

- <u>Caso 2:</u> Traffico generato tra la macchina Kali e la macchina target sulla porta 3128 (*Porta Chiusa*)
- > Avviamo tcpdump con gli opportuni parametri
 - tcpdump -nnX tcp and host 10.0.2.15 | grep 10.0.2.6.3128

- <u>Caso 2:</u> Traffico generato tra la macchina Kali e la macchina target sulla porta 3128 (*Porta Chiusa*)
- Avviamo **nmap** usando una nuova finestra (o un nuovo Tab) del Terminale ed attendiamo la fine della scansione
 - nmap 10.0.2.6

```
kali:~# nmap 10.0.2.6
                 Starting Nmap 7.70 ( https://nmap.org ) at 2019-03-24 21:09 CET
                 Nmap scan report for 10.0.2.6
                  Host is up (0.00012s latency).
                  Not shown: 977 closed ports
                          STATE SERVICE
                                ftp
                  21/tcp
                           open
                  22/tcp
                           open
                                ssh
Output Parziale
                 23/tcp
                               telnet
                          open
                 25/tcp
                          open
                                smtp
                  53/tcp
                                domain
                          open
                          open
                                http
                  80/tcp
                          open rpcbind
                          open netbios-ssn
                  445/tcp
                                microsoft-ds
                          open
```


- <u>Caso 2:</u> Traffico generato tra la macchina Kali e la macchina target sulla porta 3128 (*Porta Chiusa*)
- > Analizzando l'output di tcpdump possiamo osservare quanto segue

```
21:32:37.038396 IP 10.0.2.15.47788 > 10.0.2.6.3128: Flags [S], seq 3202025346
, win 1024, options [mss 1460], length 0
21:32:37.038591 IP 10.0.2.6.3128 > 10.0.2.15.47788: Flags [R.], seq 0, ack 32
02025347, win 0, length 0
```

- La macchina Kali invia
 - Un pacchetto contenente il flag SYN = [S] (Start Connection)
 - Il numero di sequenza (ISN) 3202025346

- <u>Caso 2:</u> Traffico generato tra la macchina Kali e la macchina target sulla porta 3128 (*Porta Chiusa*)
- > Analizzando l'output di tcpdump possiamo osservare quanto segue

```
21:32:37.038396 IP 10.0.2.15.47788 > 10.0.2.6.3128: Flags [S], seq 3202025346
, win 1024, options [mss 1460], length 0
21:32:37.038591 IP 10.0.2.6.3128 > 10.0.2.15.47788: Flags [R.], seq 0, ack 32
02025347, win 0, length 0
```

- La macchina target risponde con
 - Un pacchetto contenente il flag RST-ACK = [R.] (RstAcK Packet)
 - Un ACK al numero di sequenza ricevuto dalla macchina Kali
 - 3202025346 + 1 = 3202025347

Traffico Generato da una Scansione di Default (root)

Caso 3: Porta Filtrata

Traffico Generato da una Scansione di Default (root)

Caso 3: Porta Filtrata

Traffico Generato da una Scansione di Default (root)

Caso 3: Porta Filtrata

Traffico Generato da una Scansione di Default (root)

<u>Caso 3:</u> Traffico generato tra la macchina Kali e la macchina target sulla porta 21 (*Porta Filtrata*)

- ➤ Tramite il firewall **iptables** filtriamo tutte le porte, consentendo solo traffico *TCP* in ingresso verso la porta **22** della macchina target
 - Tutto il resto del traffico sarà bloccato dal firewall

- ➤ Macchina target: Metasploitable 2 (Indirizzo IP: 10.0.2.10)
- Configuriamo il **firewall** (comando **iptables**) sulla **macchina target** affinché esso
 - > Cancelli eventuali politiche di filtro definite precedentemente

```
▶iptables -F
```

- ▶iptables -t nat -F
- ▶iptables -X
- ➤ Accetti tutti i pacchetti relativi a connessioni sulla porta *TCP* 22 e scarti tutti gli altri

```
▶iptables -P FORWARD DROP
```

- ▶iptables -P INPUT DROP
- ▶iptables -P OUTPUT ACCEPT
- > iptables -A INPUT -p tcp --dport 22 -j ACCEPT

Traffico Generato da una Scansione di Default (root)

- I comandi iptables possono essere inseriti in uno script
 - Ad esempio chiamato iptables.sh

```
iptables -F
iptables -t nat -F
iptables -X
iptables -P FORWARD DROP
iptables -P INPUT DROP
iptables -P OUTPUT ACCEPT
iptables -A INPUT -p tcp --dport 22 -j ACCEPT
```

Contenuto dello script iptables.sh

Impostiamo i permessi di esecuzione sullo script (chmod 755 iptables.sh) e poi lo eseguiamo (./iptables.sh)

- <u>Caso 3:</u> Traffico generato tra la macchina Kali e la macchina target sulla porta 21 (*Porta Filtrata*)
- > Avviamo tcpdump con gli opportuni parametri

```
tcpdump -nnX tcp and host 10.0.2.11 | grep 10.0.2.10.21

Host sorgente (Kali)
```


- <u>Caso 3:</u> Traffico generato tra la macchina Kali e la macchina target sulla porta 21 (*Porta Filtrata*)
- Avviamo **nmap** usando una nuova finestra (o un nuovo Tab) del Terminale ed attendiamo la fine della scansione
 - > nmap 10.0.2.10

```
root@kali:~# nmap 10.0.2.10
Starting Nmap 7.80 ( https://nmap.org ) at 2019-10-26 17:00 EDT
Nmap scan report for 10.0.2.10
Host is up (0.0025s latency).
Not shown: 999 filtered ports
PORT STATE SERVICE
22/tcp open ssh
MAC Address: 08:00:27:80:B2:70 (Oracle VirtualBox virtual NIC)
Nmap done: 1 IP address (1 host up) scanned in 4.41 seconds
```


- <u>Caso 3:</u> Traffico generato tra la macchina Kali e la macchina target sulla porta 21 (*Porta Filtrata*)
- > Analizzando l'output di tcpdump possiamo osservare quanto segue

```
root@kali: # tcpdump -nnX tcp and host 10.0.2.11 | grep 10.0.2.10.21
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes
17:15:51.550573 IP 10.0.2.11.64372 > 10.0.2.10.21: Flags [S], seq 4024612871, wi
n 1024, options [mss 1460], length 0
17:15:52.652945 IP 10.0.2.11.64373 > 10.0.2.10.21: Flags [S], seq 4024678406, wi
n 1024, options [mss 1460], length 0
```

- La macchina Kali invia
 - Un pacchetto contenente il flag SYN = [S] (Start Connection)
 - Il numero di sequenza (ISN) 4024612871

- <u>Caso 3:</u> Traffico generato tra la macchina Kali e la macchina target sulla porta 21 (*Porta Filtrata*)
- > Analizzando l'output di tcpdump possiamo osservare quanto segue

```
root@kali: # tcpdump -nnX tcp and host 10.0.2.11 | grep 10.0.2.10.21
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes
17:15:51.550573 IP 10.0.2.11.64372 > 10.0.2.10.21: Flags [S], seq 4024612871, wi
n 1024, options [mss 1460], length 0
17:15:52.652945 IP 10.0.2.11.64373 > 10.0.2.10.21: Flags [S], seq 4024678406, wi
n 1024, options [mss 1460], length 0
```

- La macchina Kali invia
 - Un nuovo pacchetto contenente il flag SYN = [S] (Start Connection)
 - Un nuovo numero di sequenza (ISN) 4024678406

Traffico Generato da una Scansione di Default (root)

- <u>Caso 3:</u> Traffico generato tra la macchina Kali e la macchina target sulla porta 21 (*Porta Filtrata*)
- > Analizzando l'output di tcpdump possiamo osservare quanto segue

```
root@kali: # tcpdump -nnX tcp and host 10.0.2.11 | grep 10.0.2.10.21
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes
17:15:51.550573 IP 10.0.2.11.64372 > 10.0.2.10.21: Flags [S], seq 4024612871, wi
n 1024, options [mss 1460], length 0
17:15:52.652945 IP 10.0.2.11.64373 > 10.0.2.10.21: Flags [S], seq 4024678406, wi
n 1024, options [mss 1460], length 0
```

Non avendo ricevuto alcuna risposta entro una certa soglia di timeout, nmap passa alla scansione della porta successiva

