Linear Algebra and Geometry 1

Systems of equations, matrices, vectors, and geometry

Vector addition and vector scaling

Hania Uscka-Wehlou, Ph.D. (2009, Uppsala University: Mathematics)
University teacher in mathematics (Associate Professor / Senior Lecturer) at Mälardalen University, Sweden

Vector addition

Vector addition and Vector scaling (scalar multiplication)

Vector addition

Vector addition and Vector scaling (scalar multiplication)

Example. If $\mathbf{u} = (3, 1)$ and $\mathbf{v} = (2, 4)$ are two vectors.

Triangle method

Vector addition

$$\mathbf{u} + \mathbf{v} = (5, 5).$$

Vector addition and Vector scaling (scalar multiplication)

$$2\mathbf{u} = (2 \cdot 3, 2 \cdot 1) = (6, 2)$$

Vector addition and Vector scaling (scalar multiplication)

$$2\mathbf{u} = (2 \cdot 3, 2 \cdot 1) = (6, 2)$$

Vector addition and Vector scaling (scalar multiplication)

$$2\mathbf{u} = (2 \cdot 3, 2 \cdot 1) = (6, 2)$$

Vector addition and Vector scaling (scalar multiplication)

$$2\mathbf{u} = (2 \cdot 3, 2 \cdot 1) = (6, 2)$$

$$\frac{\Delta y_{\mathbf{u}}}{\Delta x_{\mathbf{u}}} = \frac{\Delta y_{2\mathbf{u}}}{\Delta x_{2\mathbf{u}}}$$

Vector addition and Vector scaling (scalar multiplication)

Example. If $\mathbf{u} = (3,1)$ and $\mathbf{v} = (2,4)$ are two vectors then

$$-\frac{1}{2}\mathbf{u} = (-\frac{3}{2}, -\frac{1}{2}), \qquad -\frac{1}{2}\mathbf{v} = (-1, -2), \qquad \frac{3}{2}\mathbf{v} = (3, 6).$$

Vector scaling (scalar multiplication)

Vector subtraction

$$\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v}) = (1, -3).$$

$$\mathbb{R}^n$$

$$\overrightarrow{v} = (v_1, v_2, \dots, v_n)$$

$$\mathbf{v} = (v_1, v_2, \dots, v_n)$$

$$\mathbb{R}^n$$

$$\overrightarrow{v} = (v_1, v_2, \dots, v_n)$$

$$\lambda \overrightarrow{v} = (\lambda v_1, \lambda v_2, \dots, \lambda v_n)$$

$$\mathbf{v} = (v_1, v_2, \dots, v_n)$$

$$\mathbb{R}^n$$

$$\overrightarrow{v} = (v_1, v_2, \dots, v_n)$$

$$\lambda \overrightarrow{v} = (\lambda v_1, \lambda v_2, \dots, \lambda v_n)$$

$$\mathbf{v} = (v_1, v_2, \dots, v_n)$$

$$\overrightarrow{u} = (u_1, u_2, \dots, u_n)$$

$$\mathbb{R}^n$$

$$\overrightarrow{v} = (v_1, v_2, \dots, v_n)$$

$$\lambda \overrightarrow{v} = (\lambda v_1, \lambda v_2, \dots, \lambda v_n)$$

$$\mathbf{v} = (v_1, v_2, \dots, v_n)$$

$$\overrightarrow{u} = (u_1, u_2, \dots, u_n)$$

$$\overrightarrow{v} + \overrightarrow{u} = (v_1 + u_1, v_2 + u_2, \dots, v_n + u_n)$$