STAT-S631

Assignment 9

John Koo

Problem 1

[From ALR 5.14]

Problem 2

We are given:

$$\begin{split} X &= [X_1|X_2] \\ H &= X(X^TX)^{-1}X^T \\ H_R &= X_1(X_1^TX_1)^{-1}X_1^T \end{split}$$

Part a

Show $H_R X_1 = X_1$

$$H_R X_1 = X_1 (X_1^T X_1)^{-1} X_1^T X_1 = X_1 (X_1^T X_1)^{-1} (X_1^T X_1) = X_1$$

Show $HX_1 = X_1$

Consider HX. We know that HX = X, so we can say:

$$HX = H[x_0, x_1, x_2, ..., x_p]$$

= $[Hx_0, Hx_1, ..., Hx_p]$

Where x_i is the i^{th} column vector of X.

But then $HX = X = [x_0, ..., x_p]$. Therefore:

$$[Hx_0, ..., Hx_p] = [x_0, ..., x_p]$$
$$\implies Hx_i = x_i$$

Then if we consider HX_1 :

$$HX_1 = H[x_0, ..., x_q]$$

$$= [Hx_0, ..., Hx_q]$$

$$= [x_0, ..., x_q]$$

$$= H_1$$

Show $HH_R = H_R$

$$HH_R = H\left(X_1(X_1^TX_1)^{-1}X_1^T\right) = (HX_1)(X_1^TX_1)^{-1}X_1^T = X_1(X_1^TX_1)^{-1}X_1^T = H_R$$

Part b

Show $H - H_R$ is symmetric

 $H - H_R$ is symmetric iff $H - H_R = (H - H_R)^T$.

We also know that H and H_R are symmetric.

Therefore, $(H - H_R)^T = H^T - H_R^T = H - H_R$.

Show $H - H_R$ is idempotent

 $H - H_R$ is idempotent iff $(H - H_R)^2 = H - H_R$

We know that H and H_R are idempotent.

Therefore:

$$(H - H_R)(H - H_R) = HH - HH_R - H_RHH_RH_R$$
$$= H - H_R - H_RH + H_R$$
$$= H - H_RH$$

Consider that H and H_R are symmetric and $HH_R = H_R$. Therefore, $H_R = H_R^T = (HH_R)^T = H_R^T H^T = H_R H$ $\implies H_R = H_R H$.

Therefore:

$$H - H_R H = H - H_R$$

$$\Longrightarrow (H - H_R)^2 = H - H_R$$

Part c

$$\frac{SSreg}{\sigma^2} = \frac{RSS_R - RSS_F}{\sigma^2}$$

$$= \frac{Y^T(I - H_R)Y - Y^T(I - H)Y}{\sigma^2}$$

$$= \frac{Y^T(H - H_R)Y}{\sigma^2}$$

$$= \frac{(Y - X_1\hat{\beta}_1)^T(H - H_R)(Y - X_1\hat{\beta}_1)}{\sigma^2}$$

We know that $Y - X_1 \hat{\beta}_1 \sim \mathcal{N}(0, \sigma^2(I - H_R))$. Furthermore, we know that $rank(H - H_R) = rank(H) - rank(H_R) = p + 1 - (p + 1 - q) = q$ (assuming H and H_R are full rank).

Then $\frac{SSreg}{\sigma^2} \sim \chi_q^2$ if $(\frac{H-H_R}{\sigma^2})(\sigma^2(I-H_R)) = (H-H_R)(I-H_R)$ is idempotent. But $(H-H_R)(I-H_R) = H-HH_R-H_R+H_RH_R = H-H_R-H_R+H_R = H-H_R$ which we already know to be idempotent. Therefore,

$$\frac{SSreg}{\sigma^2} \sim \chi_q^2$$

Part d

$$\hat{\sigma}^2 = \frac{RSS}{n-p-1}$$
$$= Y^T \frac{I-H}{n-p-1} Y$$

So we have to show:

$$\left(\frac{H - H_R}{\sigma^2}\right) \left(\sigma^2 (I - H)\right) \left(\frac{I - H}{n - p - 1}\right) = 0$$

We know that the product of the first two components is $H-H_R$. Therefore,

$$\left(\frac{H-H_R}{\sigma^2}\right)\left(\sigma^2(I-H)\right)\left(\frac{I-H}{n-p-1}\right) = (H-H_R)(I-H)\frac{1}{n-p-1}$$
$$= (H-H-H_R+H_R)\frac{1}{n-p-1}$$
$$= 0$$

Part e

We know that $\frac{SSreg}{\sigma^2} \sim \chi_q^2$ and $\frac{RSS}{\sigma^2} \sim \chi_{n-p-1}^2$. Then we know that $\frac{\frac{SSreg}{\sigma^2}/q}{\frac{RSS}{\sigma^2}/(n-p-1)} = \frac{SSreg/q}{RSS/(n-p-1)} \sim F_{q,n-p-1}$

Problem 3

[From ALR 6.4]