

Computational Biology Across Scales: From Pathway Modelling Tools to Cell-Level Simulations

Marco Ruscone, PhD (BSC)

Osaka University, Japan

Academical Background

Master degree in Physics of Complex System for Biology

Pr. Michele Caselle

PhD in Computational Biology

- Dr. Laurence Calzone
- Dr. Vincent Noël
- Pr. Emmanuell Barillot

Postdoctoral Researcher

Pr. Alfonso Valencia

Outline

- Introduction
- Part 1 Neko
 - Hands On From static network to Boolean model (almost...)
- Part 2 MaBoSS
 - Hands On simulating the Boolean model
- Part 3 PhysiCell/PhysiBoSS
 - Hands On Simulating cells and their Boolean model

Multiscale processes in biology

How to go multiscale

Simulating cells physical properties and molecules diffusion with an agent-based approach

Simulating pathways activity using an intracellular model: ODEs, SDEs, Boolean...

Where do we start?

The recipe for a good multiscale model:

A Cell Cycle model!

- A good biological question → what do you want/need to simulate?
- 2. A nice intracellular model \rightarrow to simulate pathways activity

Cyclins activity and Apoptotic switch!

3. An agent-based modeling framework → to simulate cell's physical properties and phenotypes

Modeling a cell population growing and try different mutants condition!

From a static network to multiscale

Before we start

- Make sure to have anaconda and git!
- 3. Once cloned, from the cloned folder, create the environment with conda using:

 conda create --name hands_on --file hands_on-env.txt

Conda mini-cheatsheet:

- Get Anaconda distribution here: https://www.anaconda.com/do wnload
- Activate environment: conda activate <env_name>
- 3. List packages in the env: conda list
- 4. You can install packages in your env by pip or conda: pip install <package_name> conda install <package_name>

Part 1 - Introducing NeKo

What is a Boolean model?

Courtesy of Dr. Saran Pankaew -Institut Curie

How do we build a Boolean model?

1. Data Carnival, Signaling profiler, Augusta...

2. No Data

Two approaches:

- Reading LOTS of publications
- Exploring many databases AND reading LOTS of publication

It can take up to 6 months (or even more...)

Introducing NeKo

An extensible and adaptable python package to create static networks and Boolean models from prior-knowledge

Paper in revision on Plos Computational Biology

NeKo, what do you need?

- 1) A research focus, ex: cell invasion, metabolism, cell cycle...
- 2) A set of genes of interest (SEEDS)
- 3) One or more databases to interrogate: Omnipath, Signor, Huri, Kegg, Wikipathway....

NeKo_network(SEEDS, Universe)

~10.000 / 100.000 interactions

Choose one or more **STRATEGIES**

We are going to discuss them during the hands on

NeKo Hands On

- Installation (if not done)
- Opening Jupyter Notebook and importing NeKo
- Create our first Network object
- Populate the Network
- Visualize the Network
- Changing database
- Exporting the Network

How to install

- 1. Make sure to have your environment activated
- 2. pip install nekomata (the name neko was already taken...)
- 3. install dependencies if necessary (it should not)
- 4. If issues check: https://github.com/sysbio-curie/Neko or ask me!

Hands on:

- Navigate in the folder NeKo with: cd NeKo (on Linux)
- Open a Jupyter Notebook: *jupyter notebook*
- Hands On!

Question: Can we create a working Boolean model using just NeKo?

Part 2 - Introducing MaBoSS

Refresh: Boolean model

Network

Dynamics

Cyclic

Attractor

Courtesy of Dr. Saran Pankaew -Institut Curie

Markovian Boolean Stochastic Simulator

a 0.6

0.5

0.4

0.3

0.2

0.1

0.0

- C++ software with Python binding
- Simulates continuous time Markov process on BN
- Stochastic transition betweer state nodes state through logical equation
- Leverages the Gillespie algorithm

Node

MaBoSS, what do you need?

- A .bnd file containing your network model
- A .cfg file containing your network configuration (can be modified using Python)
- Possible model repositories to try: https://www.cellcollective.org/,
 https://www.cellcollective.org/
- There is also an online version of MaBoSS → WebMaBoSS! https://webmaboss.vincent-noel.fr/

MaBoSS Hands On

- Installation (if not done)
- Opening Jupyter Notebook and importing MaBoSS
- Loading our first MaBoSS model
- Simulate the model
- Visualize the results
- Try some mutations

How to install

- 1. Make sure to have your environment activated
- 2. conda install -c colomoto maboss
- You can always use WebMaBoSS if it does not work on local: https://webmaboss.vincent-noel.fr/

Hands On:

- Navigate in the folder MaBoSS with: cd MaBoSS (on Linux)
- Open a Jupyter Notebook: *jupyter notebook*
- Hands On!

Don't miss the seminar by Dr. Laurence Calzone (Institut Curie, Paris) on March!

Part 2 - Introducing the PhysiCell ecosystem

Multi Agent-based Systems

Agent-oriented Programming

 Autonomous: makes independent decisions without any human intervention

 Reactive: perceives the environment and can modify its surrounding

Capture non-intuitive collective behaviors from simple agent-agent interactions

Introducing PhysiCell

Diffusion equations

$$\begin{split} \frac{\partial \pmb{\rho}}{\partial t} &= \overbrace{\mathbf{D} \nabla^2 \pmb{\rho}}^{\text{diffusion}} - \overbrace{\mathbf{\lambda} \pmb{\rho}}^{\text{decay}} + \overbrace{\mathbf{S}(\pmb{\rho}^* - \pmb{\rho})}^{\text{bulk source}} - \overbrace{\mathbf{U} \pmb{\rho}}^{\text{bulk uptake}} \\ &+ \underbrace{\sum_{\text{cells } k}} \delta(\mathbf{x} - \mathbf{x}_k) W_k [\mathbf{S}_k (\pmb{\rho}_k^* - \pmb{\rho}) - \mathbf{U}_k \pmb{\rho}] \ \text{in } \Omega \end{split}$$

System of PDEs for each molecule:

- Diffusion term
- Decay
- Uptake/Production

PDEs are solved using BioFVM

An Keiro

Introducing PhysiBoSS

Markovian Boolean Stochastic Simulator

$$\rho_{(\mathbf{S} \to \mathbf{S}')} = R_i^{\text{up}}(\mathbf{S}) \text{ if } S_i = 0$$

$$\rho_{(\mathbf{S} \to \mathbf{S}')} = R_i^{\text{down}}(\mathbf{S}) \text{ if } S_i = 1$$

PhysiBoSS, what do you need?

- A .bnd file containing your network model
- A .cfg file containing your network configuration (can be modified using Python)
- The official GUI of PhysiCell → PhysiCell Studio installed (next slide)
- Nothing else! PhysiCell provides us with a list of possible signals and behaviors!

PhysiBoSS Hands On

- Installation (if not done)
- Opening the PhysiCell GUI
- Creating a simple model of cell growth controlled by a Boolean model
- Simulate the model
- Visualize the results
- Try some mutations

How to install

- 1. Clone PhysiCell on your machine: git clone https://github.com/MathCancer/PhysiCell.git
- Clone the PhysiCell-Studio on your machine in a separate folder: git clone <u>https://github.com/PhysiCell-Tools/PhysiCell-Studio.git</u>
- Navigate in your PhysiCell folder and compile the template project: cd ~/your/path/to/PhysiCell make template_BM make -j
- 4. Now open the studio from the PhysiCell folder: python ~/path/to/PhysiCell-Studio/bin/studio.py -e project -c config/PhysiCell_settings.xml

Hands On:

- Interesting Boolean models can be found in the MaBoSS folder of the Hands On material → Sizek Cell Cycle model and Corral Differentiation model
- Ready-to-use config file for PhysiCell are available in the PhysiCell folder of the Hands On material → Cell Cycle model mutations, Corral Differentiation model mutations
- Hands On!

References

- Ruscone, Marco, Eirini Tsirvouli, Andrea Checcoli, Denes Turei, Emmanuel Barillot, Julio Saez-Rodriguez,
 Loredana Martignetti, Åsmund Flobak, and Laurence Calzone. "NeKo: A Tool for Automatic Network
 Construction from Prior Knowledge." bioRxiv, October 15, 2024. https://doi.org/10.1101/2024.10.14.618311.
- Stoll, Gautier, Barthélémy Caron, Eric Viara, Aurélien Dugourd, Andrei Zinovyev, Aurélien Naldi, Guido Kroemer, Emmanuel Barillot, and Laurence Calzone. "MaBoSS2.0: An Environment for Stochastic Boolean Modeling." Bioinformatics 33, no. 14 (July2017): 2226–28. https://doi.org/10.1093/bioinformatics/btx123.
- Ghaffarizadeh, A., Heiland, R., Friedman, S. H., Mumenthaler, S. M., & Macklin, P. (2018). "PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems." In PLoS Computational Biology (Vol. 14, Issue 2).
- Letort, Gaelle, Arnau Montagud, Gautier Stoll, Randy Heiland, Emmanuel Barillot, Paul Macklin, Andrei Zinovyev, and Laurence Calzone. "PhysiBoSS: A Multi-Scale Agent-Based Modelling Framework Integrating Physical Dimension and Cell Signalling." Bioinformatics, https://doi.org/10.1093/bioinformatics/bty766.
- Marco Ruscone, Andrea Checcoli, Randy Heiland, Emmanuel Barillot, Paul Macklin, Laurence Calzone, Vincent Noël, "Building multiscale models with PhysiBoSS, an agent-based modeling tool", Briefings in Bioinformatics, Volume 25, Issue 6, November 2024, bbae509, https://doi.org/10.1093/bib/bbae509
- Heiland R, Bergman D, Lyons B, Waldow G, Cass J, Lima da Rocha H, Ruscone M, Noël V, Macklin P. "PhysiCell Studio: a graphical tool to make agent-based modeling more accessible." GigaByte. 2024 Jun 19;2024:gigabyte128. doi: 10.46471/gigabyte.128. PMID: 38948511; PMCID: PMC11211762.

Acknowledgements

Arnau Montagud

Miguel Ponce de Leon

Jose Carbonell Caballero

Vincent Noël

Gaëlle Letort

Paul Macklin

Randy Heiland

Thank you for your participation!

Questions?

Marco Ruscone, PhD