- This assignment requires the analysis of two different problems:
  - Shear loading (for shear centre)
  - Pure torsion (for stiffness)
- There are at least three different ways to solve them:
  - Method 1
    - Shear: apply  $S_{\mathcal{Y}}$  off the shear centre  $\stackrel{4\times4}{\longrightarrow}$  find  $q_{0_j}$  and  $\mathrm{d}\theta/\mathrm{d}z$
    - Torsion: apply same  $d\theta/dz \stackrel{4\times 4}{\longrightarrow}$  find  $q_i$  and  $e_x$
  - Method 2
    - Shear: apply  $S_{\mathcal{Y}}$  at the shear centre  $\stackrel{3\times 3}{\longrightarrow}$  find  $q_{0_j}$  and  $q_i^{\operatorname{closed}} \stackrel{\sum M=0}{\longrightarrow}$  find  $e_{x}$
    - Torsion: apply arbitrary  $d\theta/dz \stackrel{4\times 4}{\longrightarrow}$  find  $q_i$  and T
  - Method 3
    - Shear: apply  $S_y$  at the shear centre,  $d\theta/dz=0$ ,  $e_x\neq 0 \stackrel{4\times 4}{\longrightarrow} \text{ find } q_{0_j}$  and  $e_x$
    - Torsion: apply arbitrary  $d\theta/dz \stackrel{4\times4}{\longrightarrow}$  find  $q_i$  and T



Always assume counter clockwise as positive (for moments and twist)



## **Shear**

- Assume a vertical unit load being applied halfway between joints
   3 and 4
- Web 34 is to the left of the shear centre, so expect negative twist and torque





• Following Example 3.5, solve the 4×4 system of equations to find the unknowns  $q_{0_i}$  and  $d\theta/dz$  (which should be negative)



## **Torsion**

• Write the 3 torsion equations entering your **known** value of  $d\theta/dz$ :

$$\left(\frac{\mathrm{d}\theta}{\mathrm{d}z}\right)_{j} = \frac{1}{2 A_{j} G} \sum_{i \in j} \left(q_{i} \frac{b_{i}}{t_{i}}\right)$$
unknowns, written in terms of  $q_{i}$ 

Last equation → balance of moments about the applied load:

$$S_y e_x - S_x^0 e_y^0 = \sum_{\text{all } i} (q_i r_i b_i)$$
unknown
$$\text{unknowns, written in terms of } q_i$$



• Solution of the 4×4 system gives  $q_i$  and  $e_x$ 



- Note: If you find a negative  $e_x$  it means that the shear flow is generating **negative torque**, so the radii  $r_i$  should be made **negative**
- If in doubt: the shear centre **must** be to the **right** of web **34** (*i.e.* within cell *II*) and close to the centroid of the section
- Finally, the torsional stiffness is

$$\frac{T}{\theta} = \frac{S_y e_x}{(d\theta/dz) L}$$

Tip: you should get results in the order of ~ 10<sup>9</sup> (N mm)/rad



#### **Shear**

• In this method we assume loading through the shear centre, so that  $d\theta/dz=0$  and we have 3 equations and 3 unknowns



- Solve the 3×3 system to find the three values  $q_{0j}$
- Calculate individual values of 'closed' (i.e. real) shear flow  $q_i^{\rm closed} = q_i^{\rm open} + q_{0_i}$
- Then balance moments about any reference point:

$$S_y e_x - S_x^0 e_y^0 = \sum_{\text{all } i} (q_i^{\text{closed}} r_i b_i)$$



#### **Torsion**

• Follow **Example 3.4**, *i.e.* apply a unit torque T and find  $\mathrm{d}\theta/\mathrm{d}z$  (or

vice-versa)

shear centre

• Solve the 4×4 system to find the three values  $q_j$  and the unknown  $\mathrm{d}\theta/\mathrm{d}z$ 

Finally, the torsional stiffness is

$$\frac{T}{\theta} = \frac{T}{(\mathrm{d}\theta/\mathrm{d}z) L}$$



### **Shear**

• Method 3 is virtually identical Method 2, but consists in writing the 'balance of moments' as a **fourth equation** and solving the 4×4 system to find  $q_{0i}$  and  $e_x$  directly

# **Torsion**

For the torsional stiffness we follow the same procedure as before,
 i.e. solve a pure torsion problem with unit torque



shear centre