

Защо сме тук?

За да разкажем докъде сме стигнали.

За да потърсим ентусиасти.

За да си сверим часовника.

За да намерим обратна връзка.

За да начертаем бъдещите стъпки.

Началото или откъде започнахме?

- Проучихме медицински статии и специализирана литература
- Разговаряхме с медици и ІТ и хардуерни специалисти
- Проучихме технологични възможности
- Закупихме сензори и хардуерни решения

От какво умираме найчесто?

Какво промени COVID-19?

Технологично

→ Електрокардиографията

Неинвазивно изследване на електрическата активност на сърцето. (Стрес/Холтер)

→ Сензори (оксиметрия)

Кислородно насищане. Или други приставки

→ TinyML

Tflite Micro (Tensorflow модели)

→ Html5 интерфейс

Лесен за създаване и поддръжка

Видове отвеждания

Прекордиални отвеждания - V1, V2,V3 (цветове на светофара)

Периферни отвеждания - aVR, aVL, aVF - дясна ръка, лява ръка, ляв крак

QRS комплекс

- Р възбуждане на ляво и дясно предсърдие (деполяризация) (+) 0.07-0.11s
- Q възбуждане на интервентрикуларна преграда (-) 0.03s
- R камерна деполяризация (+)
- S отрицателна вълна (-) 0.06-0.10s
- T реполяризация (отпускане) на двете вентрикули (+) 0.12-0.28s

Тривиални видове

Норма 60-90 удара в минута

Тахикардия > 90

Барикардия < 60

Аритмия

Списъкът болести:

- Исхемична болест
- Предсърдно мъждене
- Синусова тахикардия

- е твърде дълъг!

Синоатриален възел

Цепковидните контакти се образуват, когато набор от шест мембранни белтъка – конексини, образува издължена структура - конексон.

Електрическите сигнали за съкращаване на мускулатурата се разпространяват бързо сред мускулните клетки на сърцето, чрез преминаване на йони през цепковидни контакти.

Силно надеждна динамична система в равновесие (когато сте здрави).

Оксиметрия

By Adrian Curtin (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

Избрахме esp32

Shielded and certified

Голяма общност от ентусиасти

Ползва библиотеките на екосистемата на ардуино

2x cores, 80 - 240 MHz

Tensorflow Lite

Свързва се с iPhone

Защо tinyML?

Тензорите (CPD) помагат:

- при класификация на нерегулярно сърцебиене
- намирането на алтерниращи Т вълни
- установяването на промените в ЕКГ, предхождащи сърдечния арест

Какво пропуснах до тук?

Благодарности:

Факултет по Електронна техника и технологии (ТУ)

Олимекс

Микроелектроника

Къде са данните?

Уреди за оксиметрия.

Благодарим на:

Олимекс

SHIELD-EKG-EMG

ECG-CLIP

SHIELD-EKG-EMG-PRO

Прототип v1

- Неергономичен
- Проблеми с ЕКГ
- Оксиметрията е неизползваема
- Липсва акселерометър
- Батерията е неподходяща
- Бяхме забравили RTS и DTR

Прототип v2

- Жак за ЕКГ кабел
- Microusb за захранване и програмиране
- RJ21 букса за приставки
- Приставка за оксиметрия
- Акселерометър
- Батерия

MAX86150

Интегрирано ЕКГ (ADC)

Оксиметрия

Синхронизирана по пулсова вълна

Вградени филтри

I2C протокол

lib:86150 (protocentral)

MPU6050

3D жироскоп 3D акселерометър I2C

lib:Adafruit_MPU6050

Top View

QFN Package 24-pin, 4mm x 4mm x 0.9mm Orientation of Axes of Sensitivity and Polarity of Rotation Принципна счема

Видове усилватели:

- Операционен
 A1=1+2R2/R1
- Инструментален (Диференциален)

Първото стъпало на инструменталния усилвател предстравлява реално огледално разположени неинвертиращи операционни усилватели, чиято верига на обратната връзка се формира от резисторите R2 и R1. Виртуалният нулев потенциал се явява "в средата" на R1.

Схемата на ЕКГ усилвателя

- 1) Неинвертиращи усилватели тер6002
 2) Диференциален
- 2) Диференциален усилвател Ina826

Сигнал / шум

- Основни източници
- Анализ
- Филтри
- Фрактали

Филтър 50hz

Fig.1.Principle of averaging of FilterDxN.

The filter is named FilterDxN, with difference equation given by (1):

$$Y(nT) = X(nT) - \frac{1}{N} \left[X(nT - D\frac{N-1}{2}) + X(nT - D\frac{N-3}{2}) + \dots + X(nT) + \dots + X(nT + D\frac{N-3}{2}) + X(nT + D\frac{N-1}{2}) \right], (1)$$

D = Fs (sampling)/Ft (signal)

Филтър 50hz

Синусова вълна на 50hz семплирана 250 пъти в секунда

Пет последователни дискрета, описват пълен период на сигнала.

Когато съберем със знак стойностите на пет последователни дискрета, ще получим нула.

Филтър 50hz

Fig.2.Frequency response of FilterDxN calculated for fs=250 Hz, D=10, and three different N-values - N=13, N=19, N=37, corresponding to low cut-off frequency of 0.5 Hz, 1 Hz and 1.5 Hz, respectively.

Алгоритъм за намиране на QRS комплекс

- 1) Sign (ECGi-ECGi-n) · Sign (ECGi-ECGi+n)>0
- 2) (ECGSlopei > SLT или сумата |ECGi ECG(i-n)| i=1..5) ИЛИ

(ECGSlopei > SLT/2 И ECGi > 2ATP) ИЛИ

(ECGSlopei > SLT/2 И ECGi < 2ATN)

2C ШИНа 7бит адресируема, 100 Kbit/s - 3.4 Mbit/s

От max86150 получаваме ... NAK

Честотата се задава от master-а на шината.

Можем да намерим ниска честота на шината, съобразена с дължината на кабела и устройствата

А може би сме забравили 4.7к пулъп резисторите?

Source https://en.wikipedia.org/wiki/I²C

Кутията

3D принтирана Отделен отсек за батерия

Защо отворен дизайн и отворен код?

Надяваме се на:

- помощта на ентусиасти в различни области
- желанието на ползвателите да предоставят данните през отворен лиценз

Други отворени проекти

ЕЕГ,ЕКГ, ЕМГ

https://openbci.com/

Ехография

https://www.echopen.org/

Магнитен резонанс

https://www.hackster.io/news/ a-homebrew-magneto-resonan ce-imager-mri-pushes-the-limit s-of-open-source-hardware-7e ecg30679f6

Исторически - Augustus Desiré Waller 1887!

github.com/ tregatti-tech

Благодаря!

Петко Маринов

www.tregatti.tech

info@tregatti.tech

ecard

www.ladore.eu

ladore

www.e-card.bg