```
# read the data
In [88]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          bank_data=pd.read_csv(r"F:\FSDS\Data Files\bank.csv", sep=';')
In [89]:
          head
In [59]:
          bank_data.head()
                                marital education default balance housing
                                                                                     contact
                                                                                             day month
Out[59]:
              age
                           job
                                                                             loan
           0
               30
                   unemployed
                                married
                                           primary
                                                        no
                                                               1787
                                                                         no
                                                                               no
                                                                                     cellular
                                                                                              19
                                                                                                      oct
               33
                        services
                                married
                                         secondary
                                                              4789
                                                                                     cellular
                                                                                              11
                                                        no
                                                                               yes
                                                                                                     may
                                                                         yes
          2
               35
                   management
                                 single
                                           tertiary
                                                               1350
                                                                                     cellular
                                                                                              16
                                                        no
                                                                         yes
                                                                               no
                                                                                                      apr
                                                                                               3
           3
               30
                   management
                                married
                                           tertiary
                                                        no
                                                               1476
                                                                         yes
                                                                               yes
                                                                                    unknown
                                                                                                      jun
                                                                                               5
           4
               59
                     blue-collar married
                                                                 0
                                         secondary
                                                        no
                                                                         yes
                                                                                    unknown
                                                                               no
                                                                                                     may
          tail
In [60]:
          bank_data.tail()
Out[60]:
                                   marital
                                           education default balance housing
                                                                                        contact day month
                 age
                              job
                                                                                loan
           4516
                  33
                           services
                                   married
                                            secondary
                                                                  -333
                                                                                        cellular
                                                                                                  30
                                                                                                         jul
                                                           no
                                                                            yes
                                                                                  no
                             self-
           4517
                  57
                                                                                                  9
                                   married
                                               tertiary
                                                          yes
                                                                 -3313
                                                                                  yes
                                                                                       unknown
                                                                                                        may
                                                                            yes
                         employed
           4518
                  57
                        technician
                                   married
                                            secondary
                                                                   295
                                                                                         cellular
                                                                                                  19
                                                           no
                                                                                  no
                                                                                                        aug
                                                                             no
                  28
           4519
                        blue-collar
                                   married
                                            secondary
                                                           no
                                                                  1137
                                                                             no
                                                                                   no
                                                                                         cellular
                                                                                                  6
                                                                                                         feb
           4520
                  44 entrepreneur
                                    single
                                              tertiary
                                                                  1136
                                                                                         cellular
                                                                                                   3
                                                           no
                                                                            yes
                                                                                  yes
                                                                                                         apr
          cat=bank_data.select_dtypes(include='object').columns
In [61]:
          num=bank_data.select_dtypes(exclude='object').columns
In [62]:
          num
          Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype
Out[62]:
          ='object')
In [63]: cat
Out[63]: Index(['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact',
                   'month', 'poutcome', 'y'],
                 dtype='object')
```

```
In [64]:
         bank_data.shape
Out[64]: (4521, 17)
           • on nuerical column we need to apply
           min
           max
           count
           len
           mean

    median

           • 25%
          • 50%
           • 75%
In [65]: len(bank_data['balance'])
Out[65]: 4521
In [66]: bal_data=bank_data['balance']
         len(bal_data)
Out[66]: 4521
         mean
In [67]: bank_data['balance'].mean()
Out[67]: 1422.6578190665782
In [68]:
         round(bank_data['balance'].mean(),2)
Out[68]: 1422.66
         median
         bank_data['balance'].median()
In [69]:
Out[69]: 444.0
         round(bank_data['balance'].median(), 2)
In [70]:
Out[70]: 444.0
         using numpy
In [71]: np.mean(bank_data['balance'])
Out[71]: 1422.6578190665782
```

```
round(np.mean(bank_data['balance']))
In [72]:
Out[72]: 1423
         round(np.median(bank_data['balance']),2)
In [73]:
Out[73]: 444.0
In [74]:
         bank_data['balance'].mode()
Out[74]: 0
              0
         Name: balance, dtype: int64
In [75]: import warnings
         warnings.filterwarnings('ignore')
         bal_data=bank_data['balance']
         bal_count=len(bal_data)
         bal_min=round(bal_data.min(),2)
         bal_max=round(bal_data.max(),2)
         bal_std=round(bal_data.std(),2)
         bal_mean=round(bal_data.mean(),2)
         bal_median=round(bal_data.median(),2)
In [76]: print(f'the count of bal is: {bal_count}')
         print(f'the min of bal is : {bal_min}')
         print(f'the max of bal is : {bal_max}')
         print(f'the std of bal is : {bal_std}')
         print(f'the mean of bal is: {bal_mean}')
         print(f'the median of bal is: {bal_median}')
         the count of bal is: 4521
         the min of bal is : -3313
         the max of bal is : 71188
         the std of bal is: 3009.64
         the mean of bal is: 1422.66
         the median of bal is: 444.0
In [77]: bal_data=bank_data['balance']
         bal_count=len(bal_data)
         bal_min=round(bal_data.min(),2)
         bal_max=round(bal_data.max(),2)
         bal_std=round(bal_data.std(),2)
         bal_mean=round(bal_data.mean(),2)
         bal_median=round(bal_data.median(),2)
         idx=['Count', 'Min', 'Max', 'Std', 'Mean', 'Median']
         data=[bal_count, bal_min, bal_max, bal_std, bal_mean, bal_median]
         pd.DataFrame(data, index=idx, columns=['balance'])
```

```
4521.00
           Count
            Min
                  -3313.00
            Max
                71188.00
             Std
                  3009.64
           Mean
                  1422.66
          Median
                   444.00
         percentile
In [78]:
         bal_data=bank_data['balance']
         np.percentile(bal_data,25)
Out[78]: 69.0
         bal_data=bank_data['balance']
In [79]:
         np.quantile(bal_data,0.75)
Out[79]: 1480.0
In [80]:
         25*4521/100, 50*4521/100, 75*4521/100
Out[80]: (1130.25, 2260.5, 3390.75)
In [81]: bal_data=bank_data['balance']
         bal_50p=np.percentile(bal_data,50)
         con=bal_data<bal_50p</pre>
         len(bal_data[con])
Out[81]: 2259
In [82]: bal_data=bank_data['balance']
         bal_75p=np.percentile(bal_data,75)
         con=bal_data<bal_75p</pre>
         len(bal_data[con])
Out[82]: 3390
In [83]:
         bal_data=bank_data['balance']
         bal_count=len(bal_data)
         bal_min=round(bal_data.min(),2)
         bal_max=round(bal_data.max(),2)
         bal_std=round(bal_data.std(),2)
         bal_mean=round(bal_data.mean(),2)
         bal_median=round(bal_data.median(),2)
         bal_25p=np.percentile(bal_data,25)
         bal_50p=np.percentile(bal_data,50)
         bal_75p=np.percentile(bal_data, 75)
         idx=['Count', 'Min','Max', 'Std', 'Mean', 'Median', '25%', '50%', '75%']
```

Out[77]:

balance

```
data=[bal_count, bal_min, bal_max, bal_std, bal_mean, bal_median, bal_25p, bal_50p, bal_50p, bal_bataFrame(data, index=idx, columns=['balance'])
```

```
Out[83]:
                  balance
                  4521.00
           Count
                 -3313.00
            Min
            Max
                71188.00
             Std
                  3009.64
           Mean
                  1422.66
          Median
                   444.00
            25%
                    69.00
            50%
                   444.00
            75%
                  1480.00
In [84]:
Out[84]: Index(['age', 'balance', 'day', 'duration', 'campaign', 'pdays', 'previous'], dtype
         ='object')
In [85]: for i in num:
             bal_data=bank_data[i]
             bal_data=bank_data['balance']
             bal_count=len(bal_data)
             bal_min=round(bal_data.min(),2)
             bal_max=round(bal_data.max(),2)
             bal_std=round(bal_data.std(),2)
             bal_mean=round(bal_data.mean(),2)
             bal_median=round(bal_data.median(),2)
             bal_25p=np.percentile(bal_data,25)
             bal_50p=np.percentile(bal_data,50)
             bal_75p=np.percentile(bal_data, 75)
             idx=['Count', 'Min','Max', 'Std', 'Mean', 'Median', '25%', '50%','75%']
             data append([bal_count, bal_min, bal_max, bal_std, bal_mean, bal_median, bal_25p,
         print(data)
         [4521, -3313, 71188, 3009.64, 1422.66, 444.0, 69.0, 444.0, 1480.0, [4521, -3313, 7118
         8, 3009.64, 1422.66, 444.0, 69.0, 444.0, 1480.0], [4521, -3313, 71188, 3009.64, 1422.
         66, 444.0, 69.0, 444.0, 1480.0], [4521, -3313, 71188, 3009.64, 1422.66, 444.0, 69.0,
         444.0, 1480.0], [4521, -3313, 71188, 3009.64, 1422.66, 444.0, 69.0, 444.0, 1480.0],
         [4521, -3313, 71188, 3009.64, 1422.66, 444.0, 69.0, 444.0, 1480.0], [4521, -3313, 711
         88, 3009.64, 1422.66, 444.0, 69.0, 444.0, 1480.0], [4521, -3313, 71188, 3009.64, 142
         2.66, 444.0, 69.0, 444.0, 1480.0]]
In [92]: for i in num:
             data=[]
             bal_data=bank_data[i]
             bal_data=bank_data['balance']
             bal_count=len(bal_data)
             bal_min=round(bal_data.min(),2)
```

```
bal_max=round(bal_data.max(),2)
bal_std=round(bal_data.std(),2)
bal_mean=round(bal_data.mean(),2)
bal_median=round(bal_data.median(),2)
bal_25p=np.percentile(bal_data,25)
bal_50p=np.percentile(bal_data,50)
bal_75p=np.percentile(bal_data, 75)

idx=['Count', 'Min','Max', 'Std', 'Mean', 'Median', '25%', '50%','75%']
data.append([bal_count, bal_min, bal_max, bal_std, bal_mean, bal_median, bal_25p,
pd.DataFrame(data, index=num, columns=idx)
```

Out[92]:

	Count	Min	Max	Std	Mean	Median	25%	50%	75%
age	4521	-3313	71188	3009.64	1422.66	444.0	69.0	444.0	1480.0
balance	4521	-3313	71188	3009.64	1422.66	444.0	69.0	444.0	1480.0
day	4521	-3313	71188	3009.64	1422.66	444.0	69.0	444.0	1480.0
duration	4521	-3313	71188	3009.64	1422.66	444.0	69.0	444.0	1480.0
campaign	4521	-3313	71188	3009.64	1422.66	444.0	69.0	444.0	1480.0
pdays	4521	-3313	71188	3009.64	1422.66	444.0	69.0	444.0	1480.0
previous	4521	-3313	71188	3009.64	1422.66	444.0	69.0	444.0	1480.0

```
In [94]: for i in num:
             data=[]
             bal_data=bank_data[i]
             bal_data=bank_data['balance']
             bal_count=len(bal_data)
             bal_min=round(bal_data.min(),2)
             bal_max=round(bal_data.max(),2)
             bal_std=round(bal_data.std(),2)
             bal_mean=round(bal_data.mean(),2)
             bal_median=round(bal_data.median(),2)
             bal_25p=np.percentile(bal_data,25)
             bal_50p=np.percentile(bal_data,50)
             bal_75p=np.percentile(bal_data, 75)
             idx=['Count', 'Min', 'Max', 'Std', 'Mean', 'Median', '25%', '50%', '75%']
             data append([bal_count, bal_min, bal_max, bal_std, bal_mean, bal_median, bal_25p,
         pd.DataFrame(data, index=num, columns=idx).T
```

		age	balance	day	duration	campaign	pdays	previous
Co	unt	4521.00	4521.00	4521.00	4521.00	4521.00	4521.00	4521.00
ľ	Vlin	-3313.00	-3313.00	-3313.00	-3313.00	-3313.00	-3313.00	-3313.00
N	/lax	71188.00	71188.00	71188.00	71188.00	71188.00	71188.00	71188.00
	Std	3009.64	3009.64	3009.64	3009.64	3009.64	3009.64	3009.64
Me	ean	1422.66	1422.66	1422.66	1422.66	1422.66	1422.66	1422.66
Med	lian	444.00	444.00	444.00	444.00	444.00	444.00	444.00
2	5%	69.00	69.00	69.00	69.00	69.00	69.00	69.00
5	0%	444.00	444.00	444.00	444.00	444.00	444.00	444.00
7	5%	1480.00	1480.00	1480.00	1480.00	1480.00	1480.00	1480.00

In [93]: bank_data.describe()

Out[93]:		age	balance	day	duration
	count	4E21 000000	4521 000000	4E21 000000	4521.000000

	age	balance	day	duration	campaign	pdays	previous
count	4521.000000	4521.000000	4521.000000	4521.000000	4521.000000	4521.000000	4521.000000
mean	41.170095	1422.657819	15.915284	263.961292	2.793630	39.766645	0.542579
std	10.576211	3009.638142	8.247667	259.856633	3.109807	100.121124	1.693562
min	19.000000	-3313.000000	1.000000	4.000000	1.000000	-1.000000	0.000000
25%	33.000000	69.000000	9.000000	104.000000	1.000000	-1.000000	0.000000
50%	39.000000	444.000000	16.000000	185.000000	2.000000	-1.000000	0.000000
75%	49.000000	1480.000000	21.000000	329.000000	3.000000	-1.000000	0.000000
max	87.000000	71188.000000	31.000000	3025.000000	50.000000	871.000000	25.000000

In []:

Out[94]: