B. Tech Project

Final Presentation

Vansh Rathore Ripudaman Singh

Word Representable Graphs

Introduction

The problem of determining if a graph is a word representable is NP-complete. But we wanted to develop a tool that can do so for smaller graphs.

Word Representable Graphs

Word-representable graphs can be represented by a word (or sequence) whose entries alternate in a prescribed way. In essence, each pair of vertices connected by an edge in the graph corresponds to an alternating pair of letters in the word.

Word Representable Graphs

 $\bullet W = abcadcbd$

Word Representable Graphs

Importance of WRG

Contains these important classes of graph

- circle graphs
- 3-colorable graphs
- comparability graph

Graph Isomorphism

Graph isomorphism refers to determining whether two graphs are structurally identical, meaning they have the same arrangement of vertices and edges, even with different labels.

Graph Isomorphism

Problem Statement

Designing an algorithm to determine whether a given graph is word-representable or not.

Methodology

Semi Transitive Orientation

Semi-transitive orientation refers to a directed arrangement of edges in a graph where certain directed paths exhibit a partial transitivity property, forming transitive cliques. It's a way of directing the edges such that paths either maintain transitivity or follow a specific pattern, aiding in graph analysis and characterization.

Semi Transitive Orientation

 Example of semi-transitive orientation

Results

Time Complexity - $O(2^{n^2})$

Number of non-isomorphic non-word representable graphs

- 6 W_5 out of 112 1 s
- 7 25 out of 853 10 s
- 8 929 out of 11117 1000 s

IIT G) BTP April 2024 11 / 11