有限加法族

集合 X の部分集合族 F が**有限加法族**であるとは次を満たすときをいう。

- 1. $\emptyset \in \mathcal{F}$
- 2. $A \in \mathcal{F} \Rightarrow X \setminus A \in \mathcal{F}$
- 3. $A, B \in \mathcal{F} \Rightarrow A \cup B \in \mathcal{F}$

有限加法的測度

集合 X 上の有限加法族 \mathcal{F} について、 $m:\mathcal{F}\to [0,\infty]$ が (X,\mathcal{F}) 上の**有限加法的測度**であるとは、次の 2 つの条件を満たすときをいう。

- 1. $m(\emptyset) = 0$
- 2. $A, B \in \mathcal{F}$ が互いに素である時、 $m(A \cup B) = m(A) + m(B)$

外測度

X を集合とする。 $\Gamma: 2^X \to [0,\infty]$ が X 上の**外測度**であるとは、次の 3 つの条件を満たすときをいう。

- 1. $\Gamma(\emptyset) = 0$
- 2. $A, B \subset X$ が $A \subset B$ を満たす時、 $\Gamma(A) \leq \Gamma(B)$
- 3. X の任意の部分集合列 $\{A_n\}_{n=1}^{\infty}$ に対し、 $\Gamma(\bigcup_{n=1}^{\infty}A_n)\leq\sum_{n=1}^{\infty}\Gamma(A_n)$

Γ -可測

X を集合とする。 $\Gamma: 2^X \to [0,\infty]$ を X 上の外測度とする。

集合 $E \subset X$ が Γ -**可測** (または $\overset{\stackrel{\circ}{C}arath\'{e}odory}$ の意味で可測) とは、任意の $A \subset X$ に対し次を満たすときをいう。

$$\Gamma(A \cap E) + \Gamma(A \cap (X \setminus E)) = \Gamma(A) \tag{1}$$

また、 Γ -可測集合全体を M_{Γ} と表す。

命題 (X 上の外測度)

X を集合、 \mathcal{F} を X 上の有限加法族、 μ を (X,\mathcal{F}) 上の有限加法的測度とする。 $\mu^*: 2^X \to [0,\infty]$ を次で定義する。

$$\mu^*(A) = \inf \left\{ \sum_{j=1}^{\infty} \mu(E_j) \mid A \subset \bigcup_{j=1}^{\infty} E_j$$
であり、 $E_j \in \mathcal{F}$ 、 $j \in \mathbb{N} \right\}$ (2)

このとき、 μ^* は X 上の外側度である。

- 1. X を集合とし、 \mathcal{M} を X 上の有限加法族とする。また、m を (X,\mathcal{M}) 上の有限加法的測度とする。
 - (a) $A,B\subset \mathcal{M}$ が $A\subset B$ を満たすならば $m(A)\leq m(B)$ 、更に $m(A)<\infty$ ならば $m(B\backslash A)=m(B)-m(A)$ が成り立つことを示せ。

.....

 $A \subset B$ より次の式が成り立つ。

$$A \cup (B \backslash A) = B \tag{3}$$

$$m(A) + m(B \setminus A) = m(B) \tag{4}$$

これより、 $m(A) \leq m(B)$ である。また、 $m(A) < \infty$ であれば m(A) を移項し $m(B \backslash A) = m(B) - m(A)$ となる。

(b) $N \in \mathbb{N}$ とし、 $\{A_n\}_{n=1}^N \subset \mathcal{M}$ とする。このとき、 $m\left(\bigcup_{n=1}^N A_n\right) \leq \sum_{n=1}^N m(A_n)$ が成り立つことを示せ。

.....

 $A_1, A_2 \subset \mathcal{M}$ について次の式が成り立つ。

$$A_1 = (A_1 \cap A_2) \cup (A_1 \setminus A_2), \ A_2 = (A_2 \cap A_1) \cup (A_2 \setminus A_1)$$
 (5)

これにより次が得られる。

$$m(A_1) = m(A_1 \cap A_2) + m(A_1 \setminus A_2), \ m(A_2) = m(A_2 \cap A_1) + m(A_2 \setminus A_1)$$
 (6)

また、 $A_1 \cup A_2$ は次のように分けられる。

$$A_1 \cup A_2 = (A_1 \cap A_2) \cup (A_1 \setminus A_2) \cup (A_2 \setminus A_1) \tag{7}$$

 $m(A_1 \cup A_2)$ と $m(A_1)$, $m(A_2)$ の関係が次のようになる。

$$m(A_1 \cup A_2) = m(A_1 \cap A_2) + m(A_1 \setminus A_2) + m(A_2 \setminus A_1)$$
(8)

$$\leq 2m(A_1 \cap A_2) + m(A_1 \backslash A_2) + m(A_2 \backslash A_1) \tag{9}$$

$$= m(A_1) + m(A_2) (10)$$

 $A_1 \cup A_2$ と A_3 について同様に行うと次が得られる。

$$m(A_1 \cup A_2 \cup A_3) \le m(A_1) + m(A_2) + m(A_3)$$
 (11)

これを繰り返すと次の式が得られる。

$$m\left(\bigcup_{n=1}^{N} A_n\right) \le \sum_{n=1}^{N} m(A_n) \tag{12}$$

2. 関数 $m: 2^{\mathbb{N}} \to [0, \infty]$ を次で定義する。

$$m(A) = \begin{cases} \infty & A \subset \mathbb{N}$$
が無限集合
$$0 & A \subset \mathbb{N}$$
が有限集合 (13)

(m は $(\mathbb{N}, 2^{\mathbb{N}})$ 上の有限加法的測度である。)

m に**命題** $(X \perp n)$ 上の外測度 m^* を得る。 m^* -可測な集合の全体 \mathcal{M}_{m^*} はどのようなものか。理由をつけて答えよ。

 m^* -可測な集合 $E \subset \mathbb{N}$ は次の式を満たす。

$$m^*(A \cap E) + m^*(A \cap (\mathbb{N}\backslash E)) = m^*(A), \quad \forall A \subset \mathbb{N}$$
 (14)

 $m^*(S)$ は S を被覆する集合列 $\{A_k\}_{k=1}^\infty$ を用いて $\sum m(A_k)$ の下限で定義している。 $m(A_k)$ は 0 か ∞ のどちらかの値のみをとる。つまり、S が有限集合のみで被覆できれば $m^*(S)=0$ 、そうでなければ $m^*(S)=\infty$ である。

 $k\in\mathbb{N}$ に対して、要素一つだけの集合 $A_k=\{k\}$ とする。これにより $\mathbb{N}=\bigcup_k A_k$ である。この為、 $m^*(\mathbb{N})=0$ となる。任意の部分集合 S は A_k で被覆できる為、 $m^*(S)=0$ である。

よって、全て部分集合は m^* -可測であり、 $\mathcal{M}_{m^*}=2^{\mathbb{N}}$ である。