Daniel Wulff | wulff@rob.uni-luebeck.de Institute for Robotics and Cognitive Systems | Universität zu Lübeck

Preparing US Data

- Tracking in 4D Ultrasound is challenging
- Location and shape of targets change
- Approach: Representation Learning in US patches

- Long-term 4D Liver
 Ultrasound dataset
- Consider Deformations and Translations
- Deformation is simulated using data augmentation
- Generated test data:
 - 10 x 50 Deformations
 - 10 x 50 Translations

09/07/2021

Mapping US Patches into Representation Space

- Mapping patches into representation space
 - Conventional autoencoder (cAE)
 - Variational autoencoder (VAE)
 - Sliced-Wasserstein autoencoder (SWAE)
- AEs are trained using long-term US dataset

Two principal Components of r-space of Deformations (left) and Translations (right) generated by conventional autoencoder.

- Consider Translations and Deformations separately
- Clustering in r-space using k-means algorithm

Clustering in Representation Space

Data Type	Auto- encoder	Precision	CH score
Deformation	cAE	1.0	1197
	VAE	0.8	60
	SWAE	1.0	2385
Translation	cAE	0.6	28
	VAE	0.5	8
	SWAE	0.7	33

Metrics

- Precision: Rate of correct clustered samples
- Calinski-Harabasz (CH) score: Rate between intra- and inter cluster dispersion
- Clustering performance depends on
 - Type of autoencoder
 - Kind of motion
- Clustering of deformed patches is more effective than transformed patches – promising for target tracking
- Results indicate that SWAE is promising for Tracking

In Future study Tracking in r-space of SWAE will be performed

09/07/2021