assn04-bowen

May 17, 2020

1 Assignment 4: Pandas

• Section: Sec01

• Name: Bryce Owen

• Due date: 29 February 2020

 Purpose: Pandas data filtering and analysis with groupby, crosstab, pivot_table and matplot lib

```
[1]: import pandas as pd
    import matplotlib.pyplot as plt
   import numpy as np
   import seaborn as sns
[2]: wage = pd.read_csv('http://barney.gonzaga.edu/~chuang/data/wage.csv')
[3]: wage.head()
[3]:
     FirstName
                  LastName MiddleName
                                           Sex
                                                                       Title \
   0
                    Gilbert
                                  R
                                          Male Production Technician - WC60
           Guy
   1
        JoLynn
                    Dobney
                                   M Female Production Supervisor - WC60
   2
          Ruth Ellerbrock
                                          Male Production Technician - WC10
                                  Ann
   3
         Barry
                    Johnson
                                     K
                                          Male Production Technician - WC10
        Sidney
                                          Male Production Technician - WC10
                      Higa
      Department
                  BaseRate
                            Hours
   0 Production
                     12.45
                                32
   1 Production
                     25.00
                                33
   2 Production
                     13.45
                                35
   3 Production
                     13.45
                                40
   4 Production
                     13.45
                                45
```

1.1 No groupby(), crosstab(), or pivot_table()

```
[23]: #How many employees are in the Finance department?

wage[wage['Department'] == 'Finance'].count()[0]
```

```
[23]: 10
[7]: # What is the mean of working hours of employees in the Production department?
     round(wage[wage['Department'] == 'Production']['Hours'].mean(),2)
[7]: 37.79
[22]: # How many male employees are in the Sales department?
     wage[(wage['Department'] == 'Sales') & (wage['Sex'] == 'Male')].count()[0]
[22]: 16
[19]: # What is the mean of weekly wages of female employees in the Marketing
      \rightarrow department?
     wage = wage.assign(WeeklyWages = wage['BaseRate'] * wage['Hours'])
     round(wage[(wage['Department'] == 'Marketing') & (wage['Sex'] ==__
      →'Female')]['WeeklyWages'].mean(),2)
[19]: 496.8
    1.2 Groupby(), crosstab(), or pivot_table() allowed
[25]: # What are the totals of weekly wages of female and male employees?
     wage.groupby('Sex')[['WeeklyWages']].sum()
[25]:
             WeeklyWages
     Sex
     Female
               36652.192
              168600.804
     Male
[29]: # What are the numbers of male and female employees in the Marketing, __
      → Production, and Human Resources Departments?
     wage_MPHR = wage[(wage['Department'] == 'Marketing') | (wage['Department'] == __
     →'Production') | (wage['Department'] == 'Human Resources')]
     pd.crosstab(index = wage_MPHR['Department'], columns = wage_MPHR['Sex'], values_
      →= wage_MPHR['LastName'], aggfunc = 'count')
[29]: Sex
                      Female Male
     Department
     Human Resources
                           3
                                  3
                                  7
                           3
     Marketing
     Production
                                148
                          31
[34]: # What are the means of weekly wages of the Marketing, Production and
      → Engineering departments?
```

Engineering 1542.064500
Marketing 643.081000
Production 534.797486

[37]: # What are the totals of weekly wages of male and female employees across

departments using Pivot_table()?

wage.pivot_table(index = 'Department', columns = 'Sex', values = 'WeeklyWages',

daggfunc = 'sum')

[37]:	Sex	Female	Male
	Department		
	Document Control	NaN	2962.030
	Engineering	2475.018	6777.369
	Executive	NaN	9025.200
	Facilities and Maintenance	693.750	2901.113
	Finance	2629.029	6837.132
	Human Resources	1909.796	1940.836
	Information Services	1850.488	9536.135
	Marketing	1490.398	4940.412
	Production	16622.200	79106.550
	Production Control	NaN	4940.252
	Purchasing	4406.991	5840.741
	Quality Assurance	465.388	3177.900
	Research and Development	1593.735	5172.675
	Sales	1823.083	18439.207
	Shipping and Receiving	692.316	1698.500
	Tool Design	NaN	5304.752

2 Matplotlib

```
[59]: # How are mean wages different between females and males?

mean_wages = wage['WeeklyWages'].groupby(wage['Sex']).mean()
x1 = mean_wages.index
y1 = mean_wages.values
plt.bar(x1, y1, align = 'center', color = 'red')
```

[59]: <BarContainer object of 2 artists>


```
[57]: # How are mean wages different between departments?

mean_wages = wage['WeeklyWages'].groupby(wage['Department']).mean()
x1 = mean_wages.index
y1 = mean_wages.values
plt.barh(x1,y1, align = 'center', color = 'red')
```

[57]: <BarContainer object of 16 artists>

[]:[