

Sessão 1: Fundamentos de segurança

1) Da divisão de grupos

Neste curso, os alunos serão divididos em dois grupos: A e B. Ao longo da semana, iremos realizar algumas atividades que vão envolver a intercomunicação entre máquinas virtuais dos alunos de cada grupo; para que as configurações de rede de dois alunos envolvidos em uma mesma atividade não conflitem, iremos adotar uma nomenclatura de endereços para cada grupo, como se segue:

Tabela 1. Nomenclatura entre grupos

Grupo	Sufixo de endereço
A	1
В	2

O que isso significa, na prática? Em vários momentos, ao ler este material, você irá se deparar com endereços como 172.16.G.20 ou 10.1.G.10—que evidentemente são inválidos. Nesse momento, substitua o número do seu grupo pela letra 6 no endereço. Se você for membro do grupo B, portanto, os endereços acima seriam 172.16.2.20 e 10.1.2.10.

2) Topologia geral de rede

A figura abaixo mostra a topologia de rede que será utilizada durante este curso. Nos tópicos que se seguem, iremos verificar que a importação de máquinas virtuais, configurações de rede e conectividade estão funcionais antes de prosseguir. As configurações específicas de cada máquina/interface serão detalhadas na seção a seguir.

Figura 1. Topologia de rede do curso

3) Configuração do Virtualbox

1. Primeiramente, verifique se todas as máquinas virtuais foram importadas.

Se ainda não foram, importe-as manualmente através do menu *File > Import Appliance*. Navegue até a pasta onde se encontra o arquivo .ova com as imagens das máquinas virtuais e clique em *Next*. Na tela subsequente, marque a caixa *Reinitialize the MAC address of all network cards* e só depois clique em *Import*.

Ao final do processo, você deve ter cinco VMs com as configurações que se seguem. Renomeie as máquinas virtuais com os nomes indicados na tabela abaixo, substituindo o 6 pela letra do seu grupo. Para renomear máquinas virtuais no Virtualbox, acesse *Settings > General > Name* e altere o nome da VM (a mesma deve estar previamente desligada).

Tabela 2. VMs disponíveis no Virtualbox

Nome VM	Memória
FWGW1-G	2048 MB
LinServer-G	2048 MB
WinServer-G	2048 MB
KaliLinux-G	2048 MB
WinClient-G	2048 MB

Se a quantidade de RAM de alguma das máquinas for inferior aos valores estipulados, ajuste-a.

2. Agora, configure as redes do Virtualbox. Acesso o menu *File > Host Network Manager* e crie as seguintes redes:

Tabela 3. Redes host-only no Virtualbox

Rede	Endereço IPv4	Máscara de rede	Servidor DHCP
Virtualbox Host-Only Ethernet Adapter	172.16.G.254	255.255.255.0	Desabilitado
Virtualbox Host-Only Ethernet Adapter #2	10.1.G.254	255.255.255.0	Desabilitado

3. Finalmente, configure as interfaces de rede de cada máquinas virtual. Para cada VM, acesse *Settings > Network* e faça as configurações que se seguem:

Tabela 4. Interfaces de rede das máquinas virtuais

VM Nome	Interface	Conectado a	Nome da rede
	Adapter 1	Bridged Adapter	Placa de rede física do <i>host</i>
FWGW1-G	Adapter 2	Host-only Adapter	Virtualbox Host-Only Ethernet Adapter
	Adapter 3	Host-only Adapter	Virtualbox Host-Only Ethernet Adapter #2
LinServer-G	Adapter 1	Host-only Adapter	Virtualbox Host-Only Ethernet Adapter
WinServer-G	Adapter 1	Host-only Adapter	Virtualbox Host-Only Ethernet Adapter
KaliLinux-G	Adapter 1	Host-only Adapter	Virtualbox Host-Only Ethernet Adapter
WinClient-G	Adapter 1	Host-only Adapter	Virtualbox Host-Only Ethernet Adapter #2

4) Detalhamento das configurações de rede

As configurações de rede realizadas internamente em cada máquina virtual foram apresentados de forma sucinta na figura 1. Iremos detalhar as configurações logo abaixo:

Tabela 5. Configurações de rede de cada VM

VM Nome	Interface	Modo	Endereço	Gateway	Servidores DNS
	eth0	Estático	DHCP	Automático	Automático
FWGW1-G	eth1	Estático	172.16.G.1/24	n/a	n/a
	eth2	Estático	10.1.G.1/24	n/a	n/a
LinServer-G	eth0	Estático	172.16.G.10/24	172.16.G.1	8.8.8.8 ; 8.8.4.4
WinServer-G	eth0	Estático	172.16.G.20/24	172.16.G.1	8.8.8.8 ; 8.8.4.4
KaliLinux-G	eth0	Estático	172.16.G.30/24	172.16.G.1	8.8.8.8 ; 8.8.4.4
WinClient-G	eth0	Estático	10.1.G.10/24	10.1.G.1	8.8.8.8 ; 8.8.4.4

A partir do Debian 9, a nomenclatura padrão de interfaces de rede foi alterada. Ao invés de denotarmos as interfaces como eth0, eth1 ou eth2, o systemd/udev utiliza, a partir da versão v197, um método de nomenclatura de interfaces usando *biosdevnames*, como documentado oficialmente em https://www.freedesktop.org/wiki/Software/systemd/PredictableNetworkInterfaceNames/ . Com efeito, esse novo sistema suporta cinco meios de nomeação de interfaces de rede:

1. Nomes incorporando números de índice providos pelo firmware/BIOS de dispositivos *on-board* (p.ex.: eno1)

- 2. Nomes incorporando números de índice providos pelo firmware/BIOS de encaixes *hotplug* PCI Express (p.ex.: ens1)
- 3. Nomes incorporando localização física/geográfica do conector do hardware (p.ex.: enp2s0)
- 4. Nomes incorporando o endereço MAC da interface (p.ex.: enx78e7d1ea46da)
- 5. Nomes clássicos, usando nomenclatura não-previsível nativa do kernel (p.ex.: eth0)

Como as máquinas *FWGW1-G* e *LinServer-G* são instalações do Debian 9, isso significa dizer que as entradas de interface na tabela anterior ficam da seguinte forma:

Tabela 6. Nomenclatura de interfaces de máquinas Debian 9

VM Nome	Interface antiga	Interface nova
	eth0	enp0s3
FWGW1-G	eth1	enp0s8
	eth2	enp0s9
LinServer-G	eth0	enp0s3

Observe, por exemplo, como é feita a detecção de interfaces durante o boot da máquina FWGW1-G:

```
# hostname
FWGW1-A

# dmesg | grep 'renamed from'
[    1.667147] e1000 0000:00:09.0 enp0s9: renamed from eth2
[    1.667995] e1000 0000:00:08.0 enp0s8: renamed from eth1
[    1.668885] e1000 0000:00:03.0 enp0s3: renamed from eth0
```


5) Configuração da máquinas virtuais

Agora, vamos configurar a rede de cada máquina virtual de acordo com as especificações da topologia de rede apresentada no começo deste capítulo.

Observe que as máquinas virtuais da **DMZ** e **Intranet** poderão ainda não ter acesso à Internet neste passo, pois ainda não configuramos o firewall. A próxima seção irá tratar deste tópico.

Para tangibilizar os exemplos nas configurações-modelo deste gabarito, iremos assumir que o aluno é membro do grupo A, ou seja, tem suas máquinas virtuais nas redes 172.16.1.0/24 e 10.1.1.0/24. Se você for membro do grupo B, tenha o cuidado de sempre adaptar os endereços IP dos exemplos para as suas faixas de rede.

1. Primeiramente, ligue a máquina *FWGW1-G* e faça login como usuário root e senha rnpesr. Verifique se o mapa de teclado está correto (teste com os caracteres / ou ç). Se não estiver, execute o comando:

dpkg-reconfigure keyboard-configuration

Nas perguntas que se seguem, responda:

Tabela 7. Configurações de teclado

Pergunta	Parâmetro
Modelo do teclado	PC (Intl) Genérico de 105 teclas
Layout do teclado	Outro > Português (Brasil) > Português (Brasil)
Tecla para funcionar como AltGr	Alt Direito (AltGr)
Tecla Compose	Tecla Logo Direita

Finalmente, execute o comando que se segue. Volte a testar o teclado e verifique seu funcionamento.

systemctl restart keyboard-setup.service

Se ainda não estiver funcional, reinicie a VM e teste novamente.

2. Ao longo do curso, iremos editar vários arquivos de texto em ambiente Linux. Há vários editores de texto disponíveis para a tarefa, como o vi, emacs ou nano. Caso você não esteja familiarizado com um editor de texto, recomendamos o uso do nano, que possui uma interface bastante amigável para usuários iniciantes. Para editar um arquivo com o nano, basta digitar nano seguido do nome do arquivo a editar—não é necessário que o arquivo tenha sido criado previamente:

nano teste

Digite livremente a seguir. Use as setas do teclado para navegar no texto, e DELETE ou BACKSPACE para apagar texto. O nano possui alguns atalhos interessantes, como:

- CTRL + G: Exibir a ajuda do editor
- CTRL + X: Fechar o buffer de arquivo atual (que pode ser um texto sendo editado, ou o painel de ajuda), e sair do nano. Para salvar o arquivo, digite Y (yes) ou S (sim) para confirmar as mudanças ao arquivo, opcionalmente altere o nome do arquivo a ser escrito no disco, e digite ENTER.
- CTRL + 0: Salvar o arquivo no disco sem sair do editor.
- CTRL + W: Buscar padrão no texto.
- CTRL + K: Cortar uma linha inteira e salvar no buffer do editor.
- CTRL + U: Colar o buffer do editor na posição atual do cursor. Pode ser usado repetidamente.

Para salvar e sair do texto sendo editado, como mencionado acima, utilize CTRL + X.

3. Ainda na máquina *FWGW1-G*, edite o arquivo /etc/network/interfaces como se segue, reinicie a rede e verifique o funcionamento:

```
# hostname
FWGW1-A

# whoami
root

# nano /etc/network/interfaces
(...)
```



```
# cat /etc/network/interfaces
source /etc/network/interfaces.d/*
auto lo enp0s3 enp0s8 enp0s9
iface lo inet loopback
iface enp0s3 inet dhcp
iface enp0s8 inet static
address 172.16.1.1/24
iface enp0s9 inet static
address 10.1.1.1/24
```

systemctl restart networking

```
# ip a s | grep '^ *inet '
inet 127.0.0.1/8 scope host lo
inet 192.168.29.107/24 brd 192.168.29.255 scope global enp0s3
inet 172.16.1.1/24 brd 172.16.1.255 scope global enp0s8
inet 10.1.1.1/24 brd 10.1.1.255 scope global enp0s9
```


4. Se você for membro do grupo B, altere o nome de *host* da máquina *FWGW1-G* para refletir corretamente seu grupo. Primeiro, altere o arquivo /etc/hostname:

```
# nano /etc/hostname
(...)
```

```
# cat /etc/hostname
FWGW1-B
```

Faça o mesmo com o arquivo /etc/hosts:

```
# nano /etc/hosts
(...)
```

```
# cat /etc/hosts
127.0.0.1 localhost
127.0.1.1 FWGW1-B.intnet FWGW1-B

# The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
```

Agora, reinicie a máquina. Após o login como usuário root, você deverá ver que o *prompt* do terminal mudou, como se segue:

```
root@FWGW1-B:~# hostname
FWGW1-B
```

```
# whoami
root
```

Finalmente, vamos regerar as chaves de *host* do ssh com o novo *hostname*. Execute:

```
# rm /etc/ssh/ssh_host_*
```



```
# dpkg-reconfigure openssh-server
Creating SSH2 RSA key; this may take some time ...
2048 SHA256:NyWM8WE7wv2rWpPMN/w115eq4UeflKOm+jFSsHQ/Zwk root@FWGW1-B (RSA)
Creating SSH2 ECDSA key; this may take some time ...
256 SHA256:ZPxXhAgsnAdTuEbppgsxERp5WQNbQuNROAtatszyrlA root@FWGW1-B (ECDSA)
Creating SSH2 ED25519 key; this may take some time ...
256 SHA256:YBEQfhMSNz6sKvyDu/mRjNB/njj6PAim7xaLmGrcDEM root@FWGW1-B (ED25519)
```

```
# systemctl restart ssh
```

5. Ligue a máquina *LinServer-G* e faça login como usuário root e senha rnpesr. Se encontrar problemas com o teclado, aplique a mesma solução utilizada na etapa (1) desta atividade. Para alterar o *hostname* da máquina, siga os passos da etapa (4).

A seguir, edite as configurações de rede no arquivo /etc/network/interfaces, de DNS no arquivo /etc/resolv.conf, reinicie a rede e verifique se tudo está funcionando:

```
# hostname
LinServer-A

# whoami
root
```

```
# nano /etc/network/interfaces
(...)
```

```
# cat /etc/network/interfaces
source /etc/network/interfaces.d/*
auto lo enp0s3
iface lo inet loopback
iface enp0s3 inet static
address 172.16.1.10/24
gateway 172.16.1.1
```

```
# nano /etc/resolv.conf
(...)
```


cat /etc/resolv.conf nameserver 8.8.8.8 nameserver 8.8.4.4

systemctl restart networking

ip a s | grep '^ *inet '
 inet 127.0.0.1/8 scope host lo
 inet 172.16.1.10/24 brd 172.16.1.255 scope global enp0s3

6. Vamos para a máquina *WinServer-G*. Assim que a máquina terminar de ligar, clique em 0K para entrar com uma nova senha, e informe a senha rnpesr. Na próxima tela, escolha "*Activate Later*".

Pelo *Control Panel* ou usando o comando ncpa.cpl, configure o endereço IP e servidores DNS de forma estática, como na foto abaixo, e verifique que suas configurações estão funcionais. Quando perguntado sobre o perfil da rede, escolha *Work*.

Figura 2. Configuração de rede da máquina WinServer-G

7. Prossiga para a máquina *KaliLinux-G*, e faça login como usuário root e senha rnpesr. Se encontrar problemas com o teclado, aplique a mesma solução utilizada na etapa (1) desta atividade, e reinicie a VM. Para alterar o *hostname* da máquina, siga os passos da etapa (4).

Em seguida, edite as configurações de rede no arquivo /etc/network/interfaces e de DNS no arquivo /etc/resolv.conf. Reinicie a rede e verifique se tudo está correto:

```
# hostname
KaliLinux-A
# whoami
root
# nano /etc/network/interfaces
(\ldots)
# cat /etc/network/interfaces
source /etc/network/interfaces.d/*
auto lo eth0
iface lo inet loopback
iface eth0 inet static
address 172.16.1.30/24
gateway 172.16.1.1
# nano /etc/resolv.conf
(\ldots)
# cat /etc/resolv.conf
nameserver 8.8.8.8
nameserver 8.8.4.4
# systemctl restart networking
# ip a s | grep '^ *inet '
    inet 127.0.0.1/8 scope host lo
```

inet 172.16.1.30/24 brd 172.16.1.255 scope global eth0

8. Finalmente, vamos configurar a máquina *WinClient-G*: faça login como usuário aluno e senha rnpesr. Acesse o *Control Panel* ou use o comando ncpa.cpl, configure o endereço IP e servidores DNS de forma estática, como na foto abaixo, e verifique que suas configurações estão funcionais.

Figura 3. Configuração de rede da máquina WinClient-G

6) Configuração de firewall e NAT

O próximo passo é garantir que as VMs consigam acessar a internet através da máquina *FWGW1-G*, que é o firewall/roteador na topologia de rede do curso.

1. Antes de mais nada, observe que na máquina *FWGW1-G* já existe uma configuração de *masquerading* (um tipo de SNAT que veremos em maior detalhe na sessão 3) no arquivo /etc/rc.local:

```
# hostname
FWGW1-A
```

```
# cat /etc/rc.local
#!/bin/sh -e

iptables -t nat -A POSTROUTING -o enp0s3 -j MASQUERADE
exit 0
```

2. Isto significa dizer que a tradução de endereços das redes privadas já está configurado. Verifique se o repasse de pacotes entre interfaces está habilitado—cheque se a linha net.ipv4.ip_forward=1 no arquivo /etc/sysctl.conf está descomentada e, posteriormente, execute # sysctl -p:

```
# nano/etc/sysctl.conf
(...)
```

```
# grep 'net.ipv4.ip_forward' /etc/sysctl.conf
net.ipv4.ip_forward=1
```

```
# sysctl -p
net.ipv4.ip_forward = 1
```

3. Verifique que o *masquerading* está de fato habilitado no firewall:

```
# iptables -L POSTROUTING -vn -t nat
Chain POSTROUTING (policy ACCEPT 0 packets, 0 bytes)
pkts bytes target prot opt in out source destination
23 1640 MASQUERADE all -- * enp0s3 0.0.0.0/0 0.0.0.0/0
```


7) Teste de conectividade das VMs

1. Vamos agora testar a conectividade de cada uma das VMs. Primeiro, acesse a máquina *FWGW1-G* e verifique o acesso à internet e resolução de nomes:

```
aluno@FWGW1-A:~$ hostname
FWGW1-A
```

```
aluno@FWGW1-A:~$ ping -c3 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=121 time=28.7 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=121 time=16.9 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=121 time=16.7 ms

--- 8.8.8.8 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2005ms
rtt min/avg/max/mdev = 16.776/20.832/28.757/5.606 ms
```

```
aluno@FWGW1-A:~$ ping -c3 esr.rnp.br
PING esr.rnp.br (200.130.99.56) 56(84) bytes of data.
64 bytes from 200.130.99.56: icmp_seq=1 ttl=54 time=37.9 ms
64 bytes from 200.130.99.56: icmp_seq=2 ttl=54 time=36.4 ms
64 bytes from 200.130.99.56: icmp_seq=3 ttl=54 time=37.1 ms

--- esr.rnp.br ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2004ms
rtt min/avg/max/mdev = 36.474/37.168/37.931/0.636 ms
```

- 2. Em seguida, acesse cada uma das demais VMs, em ordem (*LinServer-G, WinServer-G, KaliLinux-G e WinClient-G*) e teste se é possível:
 - Alcançar o roteador da rede: ping 172.16.1.1 (para máquinas da DMZ) ou ping 10.1.1.1 (para máquinas da Intranet)
 - Alcançar um servidor na Internet: ping 8.8.8.8
 - Resolver nomes: comandos nslookup, host ou ping para o nome de domínio esr.rnp.br

8) Instalação do *Virtualbox Guest Additions* nas VMs Windows

Vamos agora instalar os adicionais de convidado para máquinas virtuais do Virtualbox, conhecido como *Virtualbox Guest Additions*. Esse adicionais consistem em *drivers* de dispositivo e aplicações de sistema que otimizam o sistema para rodar no ambiente virtual, proporcionando maior performance e estabilidade. Nesta atividade, iremos instalar os adicionais apenas nas máquinas *WinServer-G* e *WinClient-G*.

1. Na console da máquina *WinServer-G*, acesse o menu *Devices > Insert Guest Additions CD image*. Após algum tempo, a janela de *autorun* irá aparecer, como mostrado abaixo. Clique duas vezes na opção *Run VBoxWindowsAdditions.exe*.

Figura 4. Janela de autorun do CD Virtualbox Guest Additions

2. No assistente de instalação, clique em Next, Next, e finalmente em Install. No meio da instalação o sistema irá avisar que a assinatura de quem publicou o software não é conhecida. Clique em Install this driver software anyway, como mostrado abaixo. A mesma janela irá aparecer logo depois, então escolha a mesma opção.

Figura 5. Aviso de publisher não verificado do Virtualbox Guest Additions

- 3. Ao final da instalação, o assistente irá solicitar que o computador seja reiniciado. Deixe a caixa *Reboot now* marcada e clique em *Finish*.
- 4. Após o reinício do sistema, maximize a janela do Virtualbox e faça login no sistema como o usuário Administrator. Observe que, agora, o *desktop* do Windows Server 2008 ocupa toda extensão do monitor, e não apenas uma pequena janela—indício de que a instalação do *Virtualbox Guest Additions* foi realizada com sucesso.
- 5. Repita o procedimento de instalação dos passos 1 4 na máquina WinClient-G.

9) Instalação do *Virtualbox Guest Additions* nas VMs Linux

A instalação do *Virtualbox Guest Additions* nas VMs Linux é um pouco diferente, mais manual. Siga os passos a seguir:

1. Vamos começar pela máquina *FWGW1-G*. Primeiro, faça login como root apague o conteúdo do arquivo /etc/apt/sources.list:

```
# echo "" > /etc/apt/sources.list
```

Em seguida, edite-o com o seguinte conteúdo:

```
# cat /etc/apt/sources.list
deb http://ftp.br.debian.org/debian/ stretch main contrib non-
free
deb http://ftp.br.debian.org/debian/ stretch-updates main contrib non-
free
deb http://security.debian.org/debian-security stretch/updates main contrib non-
free
```

2. Em seguida, atualize os repositórios com o comando apt-get update e depois instale os pacotes build-essential e module-assistant, sem incluir recomendações:

```
# apt-get update
# apt-get install --no-install-recommends build-essential module-assistant
```

3. Agora, faça o download dos headers do kernel em execução no sistema:

```
# m-a prepare
```

4. Na console do Virtualbox da máquina *FWGW1-G*, acesse o menu *Devices > Insert Guest Additions CD image*. Em seguida, monte o dispositivo:

```
# mount /dev/cdrom /mnt/
```

5. Agora, execute o instalador do *Virtualbox Guest Additions*, com o comando:


```
# sh /mnt/VBoxLinuxAdditions.run
Verifying archive integrity... All good.
Uncompressing VirtualBox 5.2.18 Guest Additions for Linux......
VirtualBox Guest Additions installer
Copying additional installer modules ...
Installing additional modules ...
VirtualBox Guest Additions: Building the VirtualBox Guest Additions kernel modules.
This may take a while.
VirtualBox Guest Additions: Starting.
```

6. Finalmente, reinicie a máquina. Após o *reboot*, verifique que os módulos do *Virtualbox Guest Additions* estão operacionais:

7. Instale os módulos do *Virtualbox Guest Additions* na máquina *LinServer-G*. O procedimento é idêntico ao que fizemos nos passos 1 - 6.

10) Configuração da VM WinServer-G

A máquina *WinServer-G* demanda uma pequena configuração adicional antes que estejamos prontos para começar os trabalhos. Vamos a ela:

1. Usando o 1) *Control Panel*, 2) clique direito em *Computer > Properties* no Windows Explorer ou 3) digitando system no menu iniciar, abra a tela de configuração do sistema como mostrado a seguir:

Figura 6. Tela de configuração do sistema do WinServer

2. Clique em *Change Settings*, e na aba *Computer Name*, no botão *Change...*. Altere o nome do computador para WinServer-G e o *Workgroup* para GRUPO, como se segue. Depois, clique em *OK*.

Figura 7. Alteração de nome de máquina do WinServer

3. Não reinicie o computador ainda. Na aba *Remote*, marque a caixa *Allow Connections from computers running any version of Remote Desktop (less secure)*, como na imagem abaixo. Depois, clique em *Apply* e em seguida em *Restart Later*.

Figura 8. Configurações de Remote Desktop do WinServer

4. Agora, desabilite o firewall do Windows. Digite firewall no menu *Start* (alternativamente, clique em *Windows Firewall* no *Control Panel*), em seguida em *Turn Windows Firewall on or off*, e finalmente marque a caixa *Off*, como se segue:

Figura 9. Desabilitar o firewall do WinServer

5. Clique em *OK* e reinicie a máquina *WinServer-G*.

6. Após o *reboot*, abra o *Server Manager* (é o primeiro ícone à direta do botão *Start*), e em seguida clique com o botão direito em *Roles*, selecionando *Add Roles*. Na janela subsequente, clique em *Next*. Depois, marque a caixa da *role Web Server (IIS)*, como se segue. Quando surgir a pergunta *Add features required for Web Server (IIS)?*, clique em *Add Required Features*, e depois em *Next*.

Figura 10. Instalando a role IIS no WinServer

7. Na janela *Introduction to Web Server (IIS)*, clique em *Next*. A seguir, na janela *Role services*, desça a barra de rolagem até o final e marque a caixa *FTP Publishing Service*, como se segue. Da mesma forma que antes, quando surgir a pergunta *Add features required for FTP Publishing Service?*, clique em *Add Required Features*, e depois em *Next*.

Figura 11. Instalando a feature FTP Server no WinServer

8. Finalmente, clique em *Install* e aguarde. Ao final do processo, clique em *Close*.

11) Exercitando os fundamentos de segurança

- 1. Como vimos, o conceito de segurança mais básico apresentado consiste no CID (Confidencialidade, Integridade e Disponibilidade). Apresente três exemplos de quebra de segurança em cada um desses componentes, como por exemplo:
 - Planilha Excel corrompida.
 - · Acesso não autorizado aos e-mails de uma conta de correio eletrônico.
 - · Queda de um servidor web por conta de uma falha de energia elétrica.
- 2. Associe cada um dos eventos abaixo a uma estratégia de segurança definida na parte teórica.
 - Utilizar um servidor web Linux e outro Windows 2016 Server para servir um mesmo conteúdo, utilizando alguma técnica para redirecionar o tráfego para os dois servidores.
 - Utilizar uma interface gráfica simplificada para configurar uma solução de segurança.
 - · Configurar todos os acessos externos de modo que passem por um ponto único.
 - Um sistema de segurança em que caso falte energia elétrica, todos os acessos que passam por ele são bloqueados.

- Configurar um sistema para só ser acessível através de redes confiáveis, para solicitar uma senha de acesso e em seguida verificar se o sistema de origem possui antivírus instalado.
- Configurar as permissões de um servidor web para apenas ler arquivos da pasta onde estão as páginas HTML, sem nenhuma permissão de execução ou gravação em qualquer arquivo do sistema.

12) Normas e políticas de segurança

- 1. Acesse o site do DSIC em http://dsic.planalto.gov.br/assuntos/editoria-c/instrucoes-normativas e leia a Instrução Normativa GSI/PR nº 1, de 13 de junho de 2008 e as normas complementares indicadas. Elas são um bom ponto de partida para a criação de uma Política de Segurança, de uma Equipe de Tratamento de Incidentes de Segurança, de um Plano de Continuidade de Negócios e para a implementação da Gestão de Riscos de Segurança da Informação.
- 2. Leia o texto da Política de Segurança da Informação da Secretaria de Direitos Humanos da Presidência da República, de 2012 (disponível na seção *Links Úteis e Leituras Recomendadas* do AVA, pasta *PoSIC*), e procure identificar os principais pontos na estruturação de uma PoSIC. Faça uma crítica construtiva do documento com vistas a identificar as principais dificuldades encontradas na elaboração de uma PoSIC.