Homework 1

Samuel Lindskog

August 22, 2024

Problem 1

- (a) $\exists x \in A, \forall y \in B (y \neq x^2)$
- (b) $x \in A \land x \notin B$
- (c) $\forall x \in A (x \notin B)$

Problem 2

(a) $\forall x, y \in \mathbb{R}(x^2 = -y^2)$.

Proof: False. Counterexample is if
$$x, y = 2$$
 then $2^2 = 4$ and $-2^2 = -4$.

(b) $\forall x \in \mathbb{N}, \exists y \in \mathbb{Z}(y^2 = x).$

Proof: False.
$$2 \in \mathbb{N}$$
, and because $y = \sqrt{x}$, $y = \sqrt{2}$, and $y \notin \mathbb{Z}$.

(c) $\forall y \in \mathbb{R} (3y = 0 \lor y \neq 0)$.

Proof: True. If
$$y = 0$$
, then $3y = 3 \cdot 0 = 0$. Or $y \neq 0$.

(d) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} (xy = \pi).$

Proof: True. Let
$$x$$
 be arbitrary. If $x,y\in\mathbb{R}$ and $xy=\pi$, then $y=\frac{\pi}{x}$ and $y\in\mathbb{R}$.

(e) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} (xy = 0).$

Proof: True. Let
$$x$$
 be arbitrary. If $x, y \in \mathbb{R}$, then if $y = 0$, $xy = x \cdot 0 = 0$.

Problem 3

Proof: Suppose $x \in \mathbb{Q}$ and |x-3| < 1. Then -1 < x-3 < 1, so 2 < x < 4. Because x is always positive $8 < x^3 < 64$ and -4 < -x < -2, so $4 < x^3 - x < 62$ and $4 \le x^3 - x \le 62$. □

Problem 4

Proof: Suppose $n,a\in\mathbb{Z}.$ Case n is even, then n=2a for some $a\in\mathbb{Z}.$ Then

$$\frac{1}{2}(n^2 - n^3) = \frac{1}{2}((2a)^2 - (2a)^3)$$
$$= \frac{1}{2}(4a^2 - 8a^3)$$
$$= 2a^2 - 4a^3$$

and because a is an integer, $\frac{1}{2}(n^2-n^3)$ is an integer. Case n is odd, then n=2a+1 for some $a\in\mathbb{Z}$. Then

$$\frac{1}{2}(n^2 - n^3) = \frac{1}{2}((2a+1)^2 - (2a+1)^3)$$

$$= \frac{1}{2}(4a^2 + 4a + 1 + (2a+1)(4a^2 + 4a + 1))$$

$$= \frac{1}{2}(2a+2)(4a^2 + 4a + 1)$$

$$= (a+1)(4a^2 + 4a + 1)$$

and because a is an integer, $\frac{1}{2}(n^2 - n^3)$ is an integer.