Espace-temps des trous noirs de Schwarzschild

Ecole polytechnique - 19/03/2019

Jaafar Chakrani, Clément Pellouin, Augustin Tommasini

Plan de la présentation

- 1. Introduction
- 2. Mouvement d'une particule matérielle dans l'espace-temps de Schwarzschild
- 3. Mouvement d'un photon dans l'espace-temps de Schwarzschild
- 4. Ciel apparent pour un observateur près du trou noir
- 5. Effet Einstein

Commentaires introductifs

Motivation du projet :

Crédits : A. Riazuelo, CNRS, IAP

Phénomène d'images multiples

Crédits : A. Riazuelo, CNRS, IAP

Phénomène d'images multiples

Calculs préliminaires

Géodésiques radiales d'une particule matérielle dans l'espace-temps de Schwarzschild

Calculs préliminaires

Temps de chute d'une particule massive dans un trou noir

Mouvement d'une particule matérielle dans l'espace-temps de Schwarzschild

Schéma d'intégration - tracé des géodésiques

$$\frac{1}{2} \left(\frac{dr}{d\tau} \right)^2 + V(r) = \frac{1}{2} \left(\frac{e^2}{c^2} - c^2 \right)$$
Où $V(r) = \frac{1}{2} \left[\left(1 - \frac{R_S}{r} \right) \left(c^2 + \frac{l^2}{r^2} \right) - c^2 \right] = -\frac{GM}{r} + \frac{l^2}{2r^2} - \frac{GMl^2}{r^3c^2}$

Et e et l sont définis par

$$\left(1 - \frac{R_S}{r}\right) \frac{dt}{d\tau} = \frac{e}{c^2}$$
; $r^2 \frac{d\varphi}{d\tau} = l$

- Mouvement plan
- Intégration par méthode de Runge-Kutta d'ordre 4
- Paramètres :
 - Position initiale (ro, φo)
 - Vitesse initiale (u_r , u_{ϕ})

- Position initiale (ro, φo)
- Énergie
- Moment

En pointillés : Rayon maximal atteint dans l'état lié

Mouvement d'un photon dans l'espace-temps de Schwarzschild

Schéma d'intégration - tracé des géodésiques

$$\left(\frac{dr}{d\tilde{\lambda}}\right)^2 + V_{photon}(r) = \left(\frac{R_S}{b}\right)^2 c^2$$

b est le paramètre d'impact du photon, et V est le potentiel suivant :

$$V_{photon}(r) = c^2 \left(\frac{r}{R_S}\right)^{-2} \left(1 - \frac{R_S}{r}\right)$$

- Même méthode que pour la particule matérielle (Runge Kutta d'ordre 4)
- Remarque : Pour $r \gg R_S$, $\tilde{\lambda} = \frac{b}{R_S} t$ où t est le temps d'un observateur à l'infini

Schéma d'intégration - tracé des géodésiques

Tracé de plusieurs géodésiques avec différents paramètres d'impact

Capture des photons

Tracé des géodésiques parvenant à un observateur fixe avec un pas d'angle régulier

... Mais la méthode est très sensible!

- Les géodésiques passant près du trou noir doivent être calculées avec précision
- On aimerait valider que les géodésiques que l'on trace sont précises
- Deux paramètres entrent en jeu :
 - la valeur du pas d'intégration ⇒ Comment adapter le pas en fonction du rapprochement au trou noir ?
 - le "quadrillage" du ciel

Un exemple:

pas d'intégration h = 0.001

Un exemple:

pas d'intégration h = 0.0001

Méthode des tirs

Rappel : les géodésiques sont planes

Objectif : déterminer l'angle apparent ξ d'une étoile repérée par un angle φ dans le plan O-BH-S

Méthode des tirs

On converge vers la bonne valeur en "interpolant" les points précédents.

MAIS

Il faut que les premiers angles testés soient déjà proches du résultat

Quadrillage du ciel 2D

On effectue donc les convergences successives en partant de l'étoile en ϕ =0 : on obtient toutes les images primaires "droites".

Quadrillage du ciel 2D

On peut poursuivre les tirs pour $\phi > 2\pi$: on obtient les images "fantômes" (ghost).

Validation de la précision

On se donne une précision e sur l'angle d' "impact" (coordonnée φ)

Pour une étoile quelconque du ciel, il y a un premier facteur d'erreur lié à l'interpolation de $\xi(\phi) \rightarrow$ écart à la courbe

Validation de la précision

Cette erreur décroît quadratiquement avec n (nombre d'étoiles sur le cercle)

Validation de la précision

2ème facteur d'erreur : le pas d'intégration.

L'erreur sur ϕ décroît linéairement avec le pas. L'écart à la linéarité devient très faible quand le pas tend vers 0.

Astuce symétrie

Ciel 3D apparent pour un observateur en chute libre

Ciel sans trou noir

Rayon du ciel : R = 100 Rs

Étoiles : monochromatiques

jaunâtres (f ~ 520 THz)

Observateur : Point bleu, initialement à r = 10 Rs

Ciel sans trou noir

Ciel en présence d'un trou noir

Observateur statique à r = 10 Rs

Bleuissement gravitationnel dû à la présence du trou noir

31

Statique 34

36

Statique 38

Effet Einstein

Effet Einstein...

Effet Einstein...

...anneaux d'Einstein

