NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ENERGI- og PROSESSTEKNIKK

Faglig kontakt under eksamen: Iver Brevik, tlf. 735 93555 Antall sider: 4, pluss 4 sider formelliste

KONTINUASJONSEKSAMEN I FAG TEP4105 FLUIDMEKANIKK FOR FAK. NT (FYSIKK OG MATEMATIKK) OG FAK. IME (TEKNISK KYBERNETIKK)

8. august 2012 Tid: 0900 - 1300 Studiepoeng: 7,5 Sensuren faller innen 29.08.

Hjelpemidler C: Typegodkjent kalkulator, i henhold til NTNU's regler. Trykte hjelpemidler: Formelsamling i matematikk. Formelliste, vedheftet oppgavesettet.

Oppgave 1

a)

Et glassvindu i en vertikal vegg er formet som en halvsylinder vendt innover (se figuren). Vinduets radius er R, og bredden inn i planet er b. Vinduet er plassert slik at sylinderens akse er horisontal og beliggende i avstand H under vannoverflaten. Vannets tetthet er ρ , og tyngdens akselerasjon er g. Se bort fra atmosfæretrykket.

- a) Finn størrelsen F_H av den horisontale kraft \mathbf{F}_H på vinduet.
- b) Betrakt et vilkårlig punkt A på overflaten, tilsvarende vinkelen θ på figuren. Skriv opp uttrykket for trykket p_A i A, som funksjon av $\gamma = \rho g$, H, R og θ . Finn herav, ved å integrere over θ , størrelsen F_V av den vertikale kraft F_V på vinduet. Er vektoren F_V rettet oppover eller nedover? Kunne du ha innsett svaret for F_V direkte, uten å integrere?
- c) Finn dybden h_{CP} av trykksenteret for \mathbf{F}_{H} .

Oppgitt:

For et rektangel med bredde b og lengde L er arealets treghetsmoment omkring horisontal x-akse (inn i planet) gjennom centroiden lik

$$I_{xx} = \frac{bL^3}{12}.$$

Gitt en todimensjonal potensialstrømning sammensatt av tre komponenter: en uniform strøm U i x-retning;

en linjekilde av styrke m i punktet (-a, 0);

et linjesluk av styrke -m i punktet (a, 0).

Betrakt i det følgende én lengdeenhet inn i planet, og se bort fra tyngden.

a) Strømfunksjonen ψ i et vilkårlig punkt P kan skrives slik (se figur 1):

$$\psi = Uy + m\theta_1 - m\theta_2 + C,$$

hvor C er en konstant. Bestem C slik at $\psi = 0$ på x- aksen mellom singularitetene (-a < x < +a).

Strømningen vil være adskilt i to områder, et ytre og et indre, som illustrert på figur 2. Den inntegnede ovalen som skiller de to områdene fra hverandre, kalles Rankines oval. Ovalens halvakser betegnes med L og h. Ovalen tenkes erstattet med en fast flate, med konstant strømfunksjon $\psi = \psi_A$.

F19.2

Forklar med ord hvilken betingelse hastigheten må oppfylle på ovalen. Finn ψ_A , uttrykt ved m. (Hint: Gjør bruk av at $2\pi m$ er den totale volumfluks ut fra linjekilden.)

b) Benytt

$$\theta_1 = \arctan \frac{y}{x+a}, \quad \theta_2 = \arctan \frac{y}{x-a}$$

til å skrive ψ som en funksjon av x og y, og finn herav horisontal hastighetskomponent u(x,y) i et vilkårlig punkt på utsiden av ovalen.

c) Benytt uttrykket for $\psi(x,y)$ i punktet x=0,y=h til å finne en ligning som bestemmer halvaksen h som funksjon av U,a og m. Ligningen er transcendent, og skal ikke løses.

Oppgitt:

$$\frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

Oppgave 3

En plan horisontal skive med stor radius R er helt neddykket i en inkompressibel væske med tetthet ρ og kinematisk viskositet ν . Skiven oscillerer omkring z-aksen med vinkelutslag

$$\theta(t) = \theta_0 \cos \omega t$$

hvor amplituden θ_0 og vinkelfrekvensen ω er gitte konstanter. Se bort fra tyngden.

a) Ved stasjonære forhold er det bare asimutalkomponenten V_{θ} av væskehastigheten som blir forskjellig fra null. En kan sette $V_{\theta}(r,z,t) = r\Omega(z,t)$, hvor $\Omega(z,t)$ er væskens vinkelhastighet som funksjon av z og t. Det oppgis at Navier-Stokes' ligning reduserer seg i dette tilfelle til

$$\frac{\partial\Omega}{\partial t} = \nu \frac{\partial^2\Omega}{\partial z^2},\tag{1}$$

og at løsningen kan skrives på formen

$$\Omega = \Omega_0 e^{-\beta z} \sin(\omega t - \beta z), \tag{2}$$

hvor z=0 er skivens plan (her forutsatt $z\geq 0$).

Benytt heftbetingelsen ved z=0, samt (1) og (2), til å finne konstantene Ω_0 og β uttrykt ved de kjente størrelsene θ_0, ω og ν .

b) Skjærspenningen i væsken er

$$\tau = \mu \frac{\partial V_{\theta}}{\partial z},$$

hvor $\mu = \rho \nu$. Benytt dette til å finne hvordan skjærspenningen på skiven, τ_w , varierer som funksjon av r og t. For en fiksert verdi av r, skissér hvordan τ_w varierer med tiden for én periode, $0 \le \omega t < 2\pi$.

c) Du finner i pkt. b) at τ_w har formen

$$\tau_w = Cr\sin(\omega t + \frac{\pi}{4}),$$

hvor C er en konstant. Finn kraftmomentet M fra friksjonskreftene på skiven. Oppgitt: $\sin x + \cos x = \sqrt{2}\sin(x + \pi/4)$.

TEP4105 FLUDREKANIKK KONTNUASJONSEKS. 8 AUGUST 2012

Losning Oppgane 1

a) FH = Yhan Ax, how Ax = 2Rb er det horisontalt projeserte areal. Da $l_{cq} = H$, en $F_{H} = 2y HRb$ b) $P_{A} = y(H - Rcos \theta)$ fra figuren.

På flateelementet &A = b. RdD verher det en trykkraft - PA Cos D. dA nedover. Alsa blir Fr = -& Spacoso. Rdo = -byR S (H-Roso) cos 0 db $= -l_{\gamma}RH \int \sin\theta + l_{\gamma}R^{2} \int \cos^{2}\theta d\theta = \frac{1}{2}\pi l_{\gamma}R^{2}$

Fy er rettet grøver, fordi tryblet er stærst på nedre balopart.

Direkte behaktning: Fy må kompensen for det manglette vann i halvsirkelen. Tynglen av vannet en y.V., hvor V= = 1 TRZb en volumet. Alsa Fy = 1 Tby R, som for

c) Fin formelare har = har + Ixx har har Hx Da ha = H, Ixx = 126. (2R)3, Ax = 2R& folger VCB = H + 1 1/2

TEP4105 FLUIDHEKANIKK, KONTINUASZONSEKS, 8 AUGUST 2012

Journalet
$$-a < x < a$$
 en $\theta_1 = 0$, $\theta_2 = \overline{1}$, $y = 0 \Rightarrow 0 = -m \cdot \overline{1} + C$, $C = m \cdot \overline{1}$

h Overflatzbehingelse: Hastighebskomponenten

Un vinkebrett på overflatur er null.

⇒ 4 = konstant på overlen.

Total volumflishs $Q = 2\pi m$ ut fra kilden i (-a,0) betyr at $\frac{1}{2}Q$ går ut på oversiden (y>0) og $\frac{1}{2}Q$ på undersiden (y<0). Generalt en at lik volumflishs mellom to strombiger. Allså; Gjennom den stiplede linje på figuren går volumflishen $\frac{1}{2}Q = \pi \cdot m$. Da $\psi = 0$ på \times - absen mellom singularisetme vil $\frac{1}{2}Q = \pi \cdot m$.

b)
$$\psi = U_{y} + m$$
 are $\frac{y}{x+a} - m$ are $\frac{y}{x-a} + \pi$. m

$$u = U + \frac{m}{1 + \frac{y^2}{(x+a)^2}} \frac{1}{x+a} - \frac{m}{1 + \frac{y^2}{(x-a)^2}} \frac{1}{x-a}$$

$$u = m \frac{x+a}{(x+a)^2+y^2} - m \cdot \frac{x-a}{(x-a)^2+y^2} + U$$

A.

TEPHIOS FLUIDREKANIKK. KONTINUASZONSEKS. 8. AUGUST 2012. 3

Oppgove 20

Seken inn $\psi = \psi_A = \pi_* m$ i ultrywhet for $\psi(x,y)$, og velgn punktel x=0, y=h:

11-m = U.h + m. aretan h - m. aretan (h) + 11-lu.

Da arctan $\left(\frac{h}{-a}\right) = -\arctan\frac{h}{a}$ füs 0 = 0.h + 2m arctan $\frac{h}{a}$

7'- aretur $\frac{h}{a} = -\frac{Uh}{2m}$, eller $\frac{h}{a} = -\tan \frac{Uh}{2m}$.

[Légningen kan f.els. skrives som $\tan \frac{Vh}{2m} = -\frac{h}{a}$ og

loses quafishe:

forming Oppgonse 3

Proposed as a series of the series of

a) $\theta = \theta_0 \cos \omega t$. Plateus hashighet en $r\dot{\theta} = -n\theta_0 \omega \sin \omega t$.

Vankous harrighet i z = 0 er. r_D(O,t) = r_Dosinut.

Heffbelingelse: - ROWSINGT = RDUSINGT, dos. Do = - W.Do

Bestemmelse av konstantene Do og B:

For vilkoilig z (for z z o) en $\Omega = -\omega\theta_0 e^{-\beta z} \sin(\omega t - \beta z)$, $\partial \Omega/\partial t = -\omega^2\theta_0 e^{-\beta z} \cos(\omega t - \beta z)$,

32/2= woope - [Sin(wt-Bz) + cos (wt-Bz)]
32/2= -2wob Bze-Bz cos (wt-Bz)

Junselling i (1) gir

-ω200e cos (mt-βz) = -2>ωθοβε -βz cos (mt-kz)

 $\Rightarrow P = \sqrt{\frac{\omega}{2\nu}}$

L) Skjærspenning i væsten $L = \mu \frac{\partial V_0}{\partial z} = \mu r \frac{\partial \Omega}{\partial z}$

T = MR. WOOBE [Sin (wt-BZ) + cos (wt-BZ)]

Setter z = 0 og far Alganspenning på Akivan:

 $\frac{T_{\omega} = \mu \kappa \omega \Theta_0 \beta \left(\frac{\sin \omega t + \cos \omega t}{\sqrt{2} \cdot \sin (\omega t + \frac{\pi}{4})} \right)}{\sqrt{2} \cdot \sin (\omega t + \frac{\pi}{4})}$

Plateus haslighet Vo = r D (Oit) = - r woo sinwt

Tw = C. R sh (w++ 1),

C = VzmwOoB.

TEP 4105 FLUIDNEKANIKK. KONTINUASTONSEKS.

8. AUGUST 2012

Locuing Oppose 3 b, forts.

Tur ligger 31 foran

C) På flateclement dA virker det en kraft TwodA.
Tilsvarende kraftmoment rTwodA.

Da platur har 2 sider, og dA = 24rdr, fas

$$H = 2 \int_{0}^{R} N T_{w} \cdot 2 \pi N dN = 4 \pi \int_{0}^{R} T_{w} dN$$

Seken inn Tro = Vzprw00 B. sin (w+ 4):

M = 12 11 µw 00 B R4. Sin (wt + #)