Meccanica - (prof. Spurio/Margiotta) 22/01/2024

Esercizio A

Una molla di massa trascurabile ha costante elastica k=60.0 N/m, lunghezza a riposo L=1.20m e si trova appesa verticalmente al soffitto. Ad un certo istante, ad essa viene attaccata una massa (puntiforme) m=2.00 kg. Dopo aver disegnato il sistema, calcolare:

- 1) la nuova lunghezza della molla a cui corrisponde equilibrio statico dopo l'inserimento della massa.
- 2) L'energia meccanica totale del sistema massa+molla rispetto al soffitto nella nuova posizione di equilibrio;

La massa m viene quindi abbassata rispetto alla nuova posizione di equilibrio di una distanza d=60.0 cm e poi lasciata libera. Calcolare, trascurando ogni forma di attrito:

- 3) il periodo di oscillazione del sistema;
- 4) l'energia cinetica massima della massa m durante l'oscillazione;
- 5) la velocità della massa quando la molla ha lunghezza L (corrispondente alla lunghezza a riposo della molla imperturbata).

Una ruota, dotata di motore sull'asse di rotazione, si trova su un pendio scabro, inclinato di un angolo α =15° rispetto all'orizzontale.

La ruota ha massa m=5.0 kg che si può considerare tutta distribuita sulla circonferenza di raggio R=35.0 cm.

Il motore è da considerare puntiforme con tutta la sua massa, M=350 g, concentrata sull'asse di rotazione passante per C.

- 1) Si determini l'intensità del momento delle forze τ che permette al sistema ruota+motore di rimanere fermo sul piano inclinato.
- 2) Se il motore applica un momento delle forze con stessa direzione e verso di τ e di modulo maggiore, pari a τ_1 =5.94 Nm, la presenza dell'attrito statico permette alla ruota di rotolare senza strisciare. Si determini in questo caso l'accelerazione **a** che subirebbe il centro C della ruota.
- 3) Supponendo che nelle condizioni descritte al punto 2) il centro della ruota si sposti di una distanza pari a d=10.0 m, si calcoli l'energia cinetica finale del sistema ruota+motore.
- 4) Nelle condizioni descritte ai punti 2 e 3 indicare il lavoro compiuto dalla reazione vincolare (piano inclinato su ruota), dalla forza peso e dalla coppia motrice mentre il centro della ruota si sposta della distanza d.

A.1 1.53 <i>m</i>	B.1 4.75 <i>N</i>
A.2 - 26.75 J	B.2 0 .33 <i>m</i> / <i>s</i> ^2
A.3 1.15 <i>s</i>	B.3 34 . 0 <i>J</i>
A.4 10 .8 <i>J</i>	B.4 $L_{vincolo} = 0$; $L_{peso} = -136 J$; $L_{coppia} = 170 J$
A.5 2.76 m/s	