MAT 150C - Homework 4 Markus Tran

1. (a) Let \mathbb{F} be a field with characteristic p, and $a, b \in \mathbb{F}$. Then

$$(a+b)^p=\sum_{k=0}^pinom{p}{k}a^{p-k}b^k=a^p+\left(\sum_{k=0}^pinom{p}{k}a^kb^{p-k}
ight)+b^p.$$

Since the characteristic p must be prime, we have $p | \binom{p}{k}$ for 0 < k < p which means $\binom{p}{k} = np = 0$. Thus $(a+b)^p = a^p + b^p$

(b) $\Phi_{p^r}(x)$ is irreducible if $\Phi_{p^r}(x+1)$ is irreducible. Note that

$$(x+1)^{p^n}=\sum_{k=0}^{p^n}inom{p^n}{k}x^k.$$

Since p is prime, we have $p | \binom{p^n}{k}$ for $0 < k < p^n$. This means that in $\mathbb{F}_p[x]$ with characteristic p,

$$(x+1)^{p^{r-1}} = x^{p^{r-1}} + 1,$$

$$\Phi_{p^r}(x+1) = rac{\left(x^{p^{r-1}}+1
ight)^p-1}{x^{p^{r-1}}+1-1} \ = rac{\left(x^{p^{r-1}}
ight)^p}{x^{p^{r-1}}} \ = x^{p^{r-1}(p-1)}.$$

Back in $\mathbb{Z}[x]$, this implies that all the terms of Φ_{p^r} are divisible by the prime p except for the term of the highest degree of $p^{r-1}(p-1)$. By looking at the terms of smallest degree in the numerator and denominator, we see

$$\Phi_{p^r}(x+1) = rac{(x+1)^{p^r}-1}{(x+1)^{p^{r-1}}-1} = rac{\cdots + p^r x}{\cdots + p^{r-1} x}.$$

Thus the constant term is $p^r x/p^{r-1}x = p$ and is not divisible by p^2 . By Eisenstein's criterion, $\Phi_{p^r}(x+1)$ is irreducible, and thus so is $\Phi_{p^r}(x)$

2. (a) Let
$$a = \alpha_1 + \alpha_2 \sqrt{-n}$$
 and $b = \beta_1 + \beta_2 \sqrt{-n}$ so that
$$ab = (\alpha_1 \beta_1 - \alpha_2 \beta_2 n) + (\alpha_1 \beta_2 + \alpha_2 \beta_1) \sqrt{-n}.$$

Then

$$egin{aligned} N(ab) &= (lpha_1eta_1 - lpha_2eta_2n)^2 + n(lpha_1eta_2 + lpha_2eta_1)^2 \ &= (lpha_1^2 + nlpha_2^2)(eta_1^2 + neta_2^2) \ &= N(a)N(b). \end{aligned}$$

(b) Suppose a is a unit, and let ab = 1. Then N(a)N(b) = N(1) = 1. Since N is nonnegative, it must be that N(a) = N(b) = 1.

Suppose N(a) = 1, and let $a = \alpha + \beta \sqrt{-n}$. Since n > 2, we must have $\beta^2 = 0$ and also $\alpha^2 = 1$. Thus $a = \pm 1$ and a is a unit.

Altogether, this means that the only units $\mathbb{Z}[\sqrt{-n}]$ are 1,-1.

- (c) Suppose 2 is reducible and 2 = ab where a, b are not units. Then N(2) = N(a)N(b). Since N is nonnegative, either N(a) = 1 or N(b) = 1, and by (b), either a or b is a unit which is a contradiction. Thus 2 is irreducible.
- (d) Let n be odd. Then $N(1+\sqrt{-n})=1+n$ is even. Let $a=1+\sqrt{-n}$ and $b=1-\sqrt{-n}$. Then ab=1+n>2 is divisible by 2, but 2 does not divide a nor b. Thus 2 is irreducible but not prime, which means $\mathbb{Z}[\sqrt{-n}]$ cannot be a UFD.