Danier no opinsuke Лекция 10 баллов = 56. + 56. (посещение + активность) Лабы 25 баллов = 20 б. + 5 б. (выполнение 5 работ) СРС 15 баллов (3 теста) Др. в. д. 15 баллов = 10 б. + 5 б. (эссе + выступление) Экзамен 35 баллов Допуск -- 20 баллов Отл от 90 баллов Хор от 70 до 90 баллов Удв от 51 до 70 баллов 3 mecma, za regerso go rpegypremydrym Corrrescue go 1 rogona 4 ladu nomno Conchum go 1 gerados Электромагнитное поле как физическая система Octobble manse paybumus npegenabletuse o seameperabroom musa: Kudocwelchan menatenka Klarmoban menaruka Theopina hourmobuse muli Квантовая теория поля Квантовая теория поля --- раздел физики, изучающий поведение кватнтовых систеем с бесконечно большим числом степеней свободы --квантовых полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений с каждой материальной поле как на частицей оказалось связано непрерывно новое поле --- поле распределённый амплитуд вероятности в пространстве объект единые физические объекты --- квантовые поля в 4-мерном пространстве- временени

Mu nubén B3-repranc np-be, no y noe eeme rekorompanygenen 4-2 behvens l muse bpeneral. tiem boznontomen npobo a B mountain a ogg Стандартная модель Стандартная модель (СМ) --- теоретическая конструкция в физике элементарных частиц, описывающая электромагнитное, гравитационное, слабое и сильное взаимодействие всех элементарных частиц. Понятие элементарной частицы устарело 5 бозонов CM

offeraume laccom Chur - brymperthan nepumenum racmuyor, kopropan ombercaem za opueremaisuro. On women eiguerantes, su qua somoro nymico cobepuum beganno sentembre e torbunun kanvelenten zuepum He uneem omronetana k gruzurarany gbumeruro. Korga uli unden colonymione kanguranothem unuetletuu -caemus, orpymatouse np-80 mone uzuetusema. · Moccod - Imo Inepremulechan nogrammeguemura · Dee men Hepremarleckue rapakmepucmum nozbarstom han Hortolgero OSTERMA -- Charko ok pomubem · Hansblettun kan raparmepuomum 6 kbaranobay yroompariembe tie cyliseembyem. Умоон и фотон отмистомая убетом Уроме того, глючи стособни нести менцие комичество энерми, сем уротоны. Garmey or C rysebban Zapagan Mark men com gua nun manmuceau nem mengal Onu mountarom us nem periemo. Thu may tacmingo theym ha cese zapag, done konopon bhodlegenbun zagepnubalnen 6 ODEKANE, Chbozo Komopulu 0 - Edeanisa mound Imo uzuy cercus repeparamolaemen u od tekm ria wuden Sysbalbko colMumbag. Easu Wellock colemuna, Imo nepser noughan my reson Soleziu.

may apmag nojelo	
Бозоны это частицы, которые переносят взаимодействие между частицами.	
возоны это частицы, которые переносят взаимодействие между частицами.	
Фотон явялется переносчиком электромагнитного взаимодействия.	
Глюон сильного взаимодействия. Посмые относимся и небесним	
Merlan	
W- и Z-бозоны слабого взаимодействия.	
Eucmerica oniciona OTHOCUTE/6HAGI	
B THOUSE THE	
Cuemella oncrema O 110 Ca 21011 A91!	
ФС физическая система Элементы, свойства, источники, параметры общения	
олементы, своиства, источники, параметры оощения	
Физическая модель (ФМ):	+
Ограничения, упрощения, границы применимости и т. д.	
Выбор способа описания ФМ:	
Системы отсчёта, внутренние и нешние параметры состояния.	
Математическая модель:	
Мат. описание: законы, уравнения, состояния и связей параметров.	
Решение уравнений состояния ФМ: Граничные и начальные условия.	
Граничные и начальные условия.	
Анализ результатов	
457	
Attains mucatans I Therapolici Klumto a mone	y
Y	
1. Opicami Clouemba porti	
а) это особое состояние материи, целиком заполняющее пространство,	
способное проникать в другие поля и вещества.	
б) в рамках общей динамической модели считается, что объективно	
существует единое электромагнитное поле, которое материально, то есть	
обладает энергией, импульсом и массой.	
Delffeld of Joseph Man Mill of Change in the District	_
Joseph Raparonepucmura buerasure - Chopolina zgent buerno tie langue	-
ggas ourism' till mangrift	
B ochobe been umochukob, bhilocan repelletino	K
now, remem zapag!	

- в) в соответствии со всеобщим законом сохранения материи, электромагнитное поле не возникает из ничего и не исчезает бесследно. Источниками поля могут являться заряды, токи, изменяющиеся электрические и магнитные поля, а также магнитные вещества (магнетики).
- г) электромагнитное поле действует с некоторой силой (моментом силы) на заряды и токи.

Закон сохранения заряда --- фундаментальный закон, экспериментально подтверждённый Фарадеем в 1845 г. Работает только для малых объектов и не работает на планетарных объектов. На этом фоне была разработана теория о тёмной материи.

Полный электрический заряд изолированной системы --- постоянная величина.

Равномерные заряды рождаются и исчезают попарно: сколько родилось (исчезло) положительных зарядов, столько родилось (исчезло) отрицательных зарядов.

Пример: электрон и позитрон, встречаясь друг с другом, аннигилируют, рождая два или более гамма-фотонов.

статическое магнитное поле токов

1

B

Ħ

статическое электрическое поле зарядов

Электрическое поле и его свойства

База данных для электростатического поля даёт следующие основные свойства:

A A

H

Ħ

H)

1) Электростатическое поле порождается электрическими зарядами, действует с некоторой силой на другие заряды, помещённые в это поле.

2) Силы электрического поля способны совершать работу по перемещению зарядов. Величина работы не зависит от формы пути (траектории), а зависит от выбора начальной и конечной точек перемещения. Такие поля называются потенциальными.

В модели электростатического поля заряд является элементом системы и характеризуется следующими свойствами: + заряды существуют в двух формах: положительные и отрицательные, это деление условно; + существуют элементарные (наименьшие) заряды обоих знаков, точно равные по величине + заряды не возникают из ничего и не исчезают бесследно: в замкнутой системе алгебраическая сумма зарядов остаётся постоянной; + заряд инвариантен ко всем преобразованиям координат (включая преобразование Лоренца); + движущийся заряд порождает электрическое и магнитное поля