Programming Languages: Functional Programming Practicals 6. Folds, and Fold-Fusion

Shin-Cheng Mu

Spring 2022

- 1. Express the following functions by *foldr*:
 - 1. $all \ p :: \mathsf{List} \ a \to \mathsf{Bool}$, where $p :: a \to \mathsf{Bool}$.
 - 2. $elem\ z :: List\ a \to Bool, where\ z :: a$.
 - 3. $concat :: List (List a) \rightarrow List a$.
 - 4. $filter \ p :: List \ a \to List \ a$, where $p :: a \to Bool$.
 - 5. $takeWhile p :: List a \rightarrow List a$, where $p :: a \rightarrow Bool$.
 - 6. $id :: List \ a \to List \ a$.

In case you haven't seen them, $all\ p\ xs$ is True iff. all elements in xs satisfy p, and $elem\ z\ xs$ is True iff. x is a member of xs.

- 2. Given $p:: a \to \mathsf{Bool}$, can $drop While p:: \mathsf{List}\ a \to \mathsf{List}\ a$ be written as a fold r?
- 3. Express the following functions by foldr:
 - 1. $inits :: List \ a \rightarrow List \ (List \ a)$.
 - 2. $tails :: List a \rightarrow List (List a)$.
 - 3. $perms :: List a \rightarrow List (List a)$.
 - 4. $sublists :: List a \rightarrow List (List a)$.
 - 5. $splits :: List \ a \to List \ (List \ a, List \ a)$.
- 4. Prove the foldr-fusion theorem. To recite the theorem: given $f::a\to b\to b,\,e::b,\,h::b\to c$ and $g::a\to c\to c$, we have

$$h \cdot foldr \ f \ e = foldr \ g \ (h \ e)$$
,

if
$$h(f x y) = g x (h y)$$
 for all x and y .

5. Prove the *map*-fusion rule $map \ f \cdot map \ g = map \ (f \cdot g)$ by foldr-fusion.

- 6. Prove that $sum \cdot concat = sum \cdot map \ sum$ by foldr-fusion, twice. Compare the proof with you previous proof in earlier parts of this course.
- 7. The map fusion theorem is an instance of the foldr-map fusion theorem: $foldr \ f \ e \cdot map \ g = foldr \ (f \cdot g) \ e$.
 - (a) Prove the theorem.
 - (b) Express $sum \cdot map \ (2 \times)$ as a foldr.
 - (c) Show that $(2\times) \cdot sum$ reduces to the same foldr as the one above.
- 8. Prove that $map\ f\ (xs\ + \ ys) = map\ f\ xs\ + \ map\ f\ ys$ by foldr-fusion. **Hint**: this is equivalent to $map\ f\cdot (+\ ys) = (+\ map\ f\ ys)\cdot map\ f$. You may need to do (any kinds of) fusion twice.
- 9. Prove that $length \cdot concat = sum \cdot map \ length$ by fusion.
- 10. Let $scanr\ f\ e = map\ (foldr\ f\ e) \cdot tails$. Construct, by foldr-fusion, an implementation of scanr whose number of calls to f is proportional to the length of the input list.
- 11. Recall the function $binary :: \mathsf{Nat} \to [\mathsf{Nat}]$ that returns the *reversed* binary representation of a natural number, for example $binary \ 4 = [0,0,1]$. Also, we talked about a function $decimal :: [\mathsf{Nat}] \to \mathsf{Nat}$ that converts the representation back to a natural number.
 - (a) This time, express decimal using a foldr.
 - (b) Recall the function $exp \ m \ n = m^n$. Use foldr-fusion to construct step and base such that

```
exp \ m \cdot decimal = foldr \ step \ base.
```

If the fusion succeeds, we have derived a hylomorphism computing m^n :

```
fastexp \ m = foldr \ step \ base \cdot binary.
```

- 12. Express reverse :: List $a \to \text{List } a$ by a foldr. Let $reveat = (\#) \cdot reverse$. Express reveat as a foldr.
- 13. Fold on natural numbers.
 - (a) The predicate $even :: Nat \rightarrow Bool$ yields True iff. the input is an even number. Define even in terms of foldN.
 - (b) Express the identity function on natural numbers $id \ n = n$ in terms of foldN.
- 14. Fuse even into (+n). This way we get a function that checks whether a natural number is even after adding n.

15. The famous Fibonacci number is defined by:

$$\begin{array}{ll} fib \ 0 & = 0 \\ fib \ 1 & = 1 \\ fib \ (2+n) = fib \ (1+n) + fib \ n \end{array} .$$

The definition above, when taken directly as an algorithm, is rather slow. Define fib2 $n=(fib\ (1+n),fib\ n)$. Derive an O(n) implementation of fib2 by fusing it with id:: Nat. \to Nat.

16. What are the fold fusion theorems for ETree and ITree?