Memory Circuits

CS22

March 16, 2013

Combinatorial circuits consisting of AND, OR, and NOT gates are very useful in modeling conditions or boolean expressions. For example, the above circuit's output is 1 if and only if $x_2 = 1$ and $x_1 = 0$.

However, we can also make more complex circuits by allowing feedback. That is, outputs from a gate may be inputs to that same gate. What additional properties might such circuits have?

In this circuit with an AND and an OR gate, we see that:

If $x_2 = 1$, the output will be 1 because of the OR gate.

If $x_2 = 0$ and $x_1 = 0$, the output will be 0.

If $x_2 = 0$ and $x_1 = 1$, the output will hold whatever value it has.

Once we introduce the notion of time, this ability to either hold or switch allows us to represent *memory*. In other words, the output may be 0 or 1 at some time, but the circuit may then cause it to change or remain the same, depending on the inputs.

S-R Latch

This is a traditional basic memory component, which allows us to either store and hold Q or change its value by flipping an input, a very useful ability.

If S = 0, R = 0, then Q holds.

If S = 1, R = 0, then Q becomes 1.

If S = 0, R = 1, then Q becomes 0.

 $S=1, R=1 \rightarrow Q$ is BAD because Q and not Q have the same value (try it).

The Clock:

An input to use (represented by C), that oscillates between 1 and 0 at some fixed rate. Clocks are often used by a computer to provide input in the absence of or in addition to user input. For example, when playing a video on your laptop, the image may be updated every few ticks to produce what appears like continuous motion.

D-Latch

Using the clock, we can allow D to change output Q only when the clock C is on (when C=1). As long as the clock is on, changes to D will be immediately reflected in changes to Q. Notice that the D-latch is made up of 2 AND gates and an S-R latch.

Flip-Flop

Rather than allowing D to change Q as long as C=1, we often would like updates only at certain points in time. Flip-flops give us this ability to only update Q to D when the clock changes. In the following flip-flop containing 2 D-latches (as shown above), Q is updated when the clock changes from 0 to 1.

Note: Use Logisim to create and simulate these circuits and others!