

Using Sensor and Process Noise Fingerprint to Detect Cyber Attacks in CPS

Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Corso di Laurea in Informatica

Candidato

Andrei Laurentiu Lepadat

Matricola 1677093

Relatore

Prof. Enrico Tronci

Tesi non ancora discussa
Using Sensor and Process Noise Fingerprint to Detect Cyber Attacks in CPS Tesi di Laurea. Sapienza – Università di Roma
© 2021 Andrei Laurentiu Lepadat. Tutti i diritti riservati
Questa tesi è stata composta con LATEX e la classe Sapthesis.

Versione: 22 novembre 2021

 $Email\ dell'autore:\ lepadat.1677093@studenti.uniroma1.it$

Indice

Sc	mm	ario	vii
1	Intr 1.1 1.2 1.3 1.4 1.5	Contesto	1 1 1
2	Bac	kground	3
3	Me	todi	5
4	Imp	olementazione	7
5	Ris : 5.1 5.2 5.3 5.4 5.5 5.6	ultati sperimentali Obiettivi Configurazione (Setting) (?) Casi di studio Correttezza Valutazione computazionale Valutazione tecnica	9 9 9
6	Cor	nclusioni	11

Sommario

Introduzione

- 1.1 Contesto
- 1.2 Motivazioni
- 1.3 Contributi
- 1.4 Lavori correlati
- 1.5 Struttura

Background

Ogni sistema cyber-fisico che si rispetti è dotato di almeno un sensore che ha il compito di misurare una determinata "qualità" fisica di interesse per il sistema stesso. I dati che vengono rilevati dai sensori spesso vengono memorizzati localmente e/o in modo remoto e possono essere impiegati, come nel lavoro qui presentato, per fini paralleli o trasversali a quelli per cui sono stati installati. Una sequenza di dati estratti da sensori ordinata temporalmente viene chiamata serie temporale (time-series in inglese).

Comunemente i sensori sono imperfetti per costruzione e trasportano intrinsecamente un'incertezza (rumore) che influenza le misurazioni da essi compiute. Sia

$$\bar{y}_k = y_k + \delta_k \tag{2.1}$$

il valore misurato da un determinato sensore nell'istante di tempo k, composto da y_k , il valore effettivo in quell'istante della grandezza misurata, più δ_k , il rumore aggiunto.

In un determinato istante di tempo, il valore di ogni sensore del sistema costituisce lo stato del sistema. La sfida di estrarre il fingerprint dai sensori è data dal fatto che questi stati sono dinamici. Prendendo in considerazione, per esempio, un termometro, se la temperatura dell'ambiente che misura rimane costante nel tempo è facile estrarre il fingerprint del rumore e costruirne il profilo, ma in processi reali non è così semplice, gli stati cambiano continuamente, per esempio l'aumento di velocità di una macchina per via della pressione sul pedale dell'acceleratore. È importante catturare queste variazioni affinché le misurazioni dinamiche dei sensori possano essere stimate. In [1] questo problema viene affrontato definendo un modello analitico del sistema interessato, rappresentato tramite il modello State-Space. Vengono implementate le tecniche definite in [2], definendo così il modello lineare tempo inviariante (LTI) del sistema, rappresentato dal sistema di equazioni

$$\begin{cases} x_{k+1} = Ax_k + Bu_k + \vartheta_k, \\ y_k = Cx_k + \eta_k : \end{cases}$$
 (2.2)

in cui $x_k \in \mathbb{R}^n$ rappresenta lo stato del sistema, $u_k \in \mathbb{R}^p$ l'input di controllo e ϑ_k il rumore al tempo k. $y_k \in \mathbb{R}_m$ e $\eta_k \in \mathbb{R}_m$ rappresentano, rispettivamente, la

4 2. Background

misurazione e il rumore del sensore al tempo k. A, B, C sono le matrici dello spazio di stato di dimensioni adeguate che rappresentato la dinamica del sistema.

Definito il precedente sistema, ci sono molti punti che un attaccante mal intenzionato potrebbe bersagliare. Nel lavoro presentato, così come in [1], vengono presi in considerazione spoofing attack ai sensori che potrebbero essere portati a termine tramite uno schema Man-in-The-Middle. L'equazione lineare che rappresenta questa tipologia di attacchi è data da

$$\bar{y}_k = y_k + \delta_k = Cx_k + \eta_k + \delta_k,^{1} \tag{2.3}$$

in cui $\delta_k \in \mathbb{R}_m$ rappresenta un attacco ai sensori.

In [1], dato l'output \bar{y}_k , viene adoperato il filtro di Kalman per stimare lo stato del sistema e il vettore dei residui, definito, in questo contesto, come la differenza tra la reale misurazine effettuata dal sensore e la stima della misurazione calcolata dal filtro nell'istante k:

$$r_k := \bar{y}_k - \hat{y}_k, \tag{2.4}$$

dove \hat{y}_k è l'output del filtro di Kalman.

Detto ciò, per quantificare la bontà del modello del sistema, viene utilizzato l' $Errore\ Quadratico\ Medio\ (RMSE)$, definito come

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)}{n}}.$$
 (2.5)

Questa metrica rappresenta la distanza tra il valore stimato e quello misurato, ovvero quanto il primo è lontano dal secondo. Nella letteratura della teoria del controllo, modelli con un'accuratezza superiore al 70% sono considerati accettabili approssimazioni della dinamica di sistemi reali.

Il vettore dei residui è quindi parte centrale per la definizione dei fingerprint dei sensori. A tale scopo viene definito un problema di *Machine Learning* che ha come *feature* dei valori statistici estratti dai vettori residui. Queste feature sono mostrate nella

Feature	Descrizione
Media	$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$
Varianza	
Deviazione Standard	
Asimmetria	
Curtosi	

¹Notare l'ugualianza con l'equazione 2.1: un attacco è considerato come un'introduzione di rumore nella misurazione fatta da un sensore.

Metodi

Implementazione

Risultati sperimentali

- 5.1 Obiettivi
- 5.2 Configurazione (Setting) (?)
- 5.3 Casi di studio
- 5.4 Correttezza
- 5.5 Valutazione computazionale
- 5.6 Valutazione tecnica

Conclusioni