PIZZO - Zadanie domowe nr 1

Adrian Urbański

Podpunkt a) $3COL \leq_p Tutorzy$

Pokażę, że $3COL \leq_p 4COL$: Zdefiniujmy funkcję $\Phi: G(V,E) \to G'(V',E')$ jako: Jeśli $V = \{v_1, v_2, v_3, \cdots, v_n\}$, to $V' = \{v_1^1, v_1^2, v_2^1, v_2^1, v_2^2, v_3^1, v_3^2, \cdots, v_n^1, v_n^2\}$. Wtedy: $\forall i \in \{1, 2, 3, \cdots, n\} : (v_i^1, v_i^2) \in E' \land \forall (v_i, v_j) \in E : [(v_i^1, v_j^1) \in E' \land (v_i^1, v_j^2) \in E' \land (v_i^2, v_j^1) \in E']$. Wtedy "Φ" jest redukcją wielomianowa:

- 1. Φ jest obliczalna w czasie wielomianowym łatwo napisać program który tak przekształca graf
- 2. G jest 3-kolorowalny wtw. gdy $\Phi(G)$ jest 4-kolorowalny
- " \Rightarrow " Weźmy 3-kolorowanie $C:V \rightarrow \{r,g,b\}.$ Zdefiniujmy 4-kolorowanie $C': V' \to \{r, g, b, y\}$ takie, że: $C'(v_i^1) = r \Leftrightarrow C(V_i) = r$ i analogicznie dla g i b, oraz $\forall i : C'(v_i^2) = y$. Skoro C jest poprawnym kolorowaniem, to $\forall (v_i^1, v_j^1) \in E' : C'(V_i^1) \neq C'(V_j^1)$. W dodatku, $\forall i,j:(v_i^2,v_j^2)\notin E'$, co wynika z konstrukcji Φ , oraz $\forall i,j:C'(v_i^2)=y\neq C'(v_j^1)$ z definicji C'. Zatem $C'(\Phi(G))$ jest poprawnym kolorowaniem.
- " \Leftarrow " Weźmy 4-kolorowanie $C': V' \to \{r, g, b, y\}$. Wtedy:
 Niech $C(v_i) = \begin{cases} r, \text{ gdy } v_i^1 = r \lor v_i^2 = r \\ g, \text{ gdy } v_i^1 = g \lor v_i^2 = g \land v_i^1 \neq r \land v_i^2 \neq r \end{cases}$ Wtedy:
 b, wpp

Pokażę, że $4COL \leq_p Tutorzy$:

Zdefiniujmy funkcję $\Psi: G(V, E) \to T(S, K)$, gdzie S jest zbiorem studentów, a K - konflików $((s_i, s_i) \in K)$ oznacza, że s_i zrzędzi na s_i), jako:

$$\forall i: v_i \in V \Leftrightarrow s_i \in S \land \forall i, j: (v_i, v_j) \in E \Leftrightarrow (s_i, s_j) \in K.$$

Wtedy Ψ jest redukcją wielomianową:

- 1. Ψ jest obliczalna w czasie wielomianowym łatwo napisać taki program
- 2. G jest 4-kolorowalny wtw. gdy $\Psi(G)$ jest poprawnym przydzieleniem tutorów.
- " \Rightarrow " Weźmy 4-kolorowanie $C: V \to \{r, g, b, y\}$. Zdefiniujmy przydział tutorów $P: S \to \{t_1, t_2, t_3, t_4\}$ takie, że: $P(s_i) = t_1 \Leftrightarrow C(V_i) = r$ i analogicznie dla t_2 i g, t_3 i b oraz t_4 i y. Skoro C jest poprawnym kolorowaniem, to $\forall (s_i, s_i) \in K : P(s_i) \neq P(V_i)$. Wtedy: Zatem $P(\Psi(G))$ jest poprawnym przydzieleniem tutorów.
- " ← " Weźmy przydział tutorów P. Wtedy:

Niech
$$C(v_i) = \begin{cases} r, \text{ gdy } P(s_i) = t_1 \\ g, \text{ gdy } P(s_i) = t_2 \\ b, \text{ gdy } P(s_i) = t_3 \\ y, \text{ wpp} \end{cases}$$
Wtody C jest A keleroweniem, so wy

Wtedy C jest 4-kolorowaniem, co wynika z konstrukcji Ψ.

Skoro $3COL \leq_p 4COL \wedge 4COL \leq_p Tutorzy$, to z (przechodniości relacji \leq_p) $3COL \leq_p Tutorzy$

Podpunkt b) Jeśli jest co najwyżej 15 zrzęd, to problem Tutorzy jest wielomianowy

Numerujemy tutorów od 1 do 4. Generujemy wszystkie możliwości (jest ich 4^{15}) przydzielenia tutorów zrzędom i dla każdej takiej możliwości dla każdego studenta (jest ich co najwyżej n) sprawdzamy którego tutora możemy mu przydzielić (musimy sprawdzić wszystkie osoby na które zrzędzono, jest ich co najwyżej 15*n). Złożoność takiego podejścia wynosi $O(4^{15}*n*15*n) = O(n^2)$.