第二章 计算机的运算方法

- •计算机中数的表示
- •定点运算
 - 加减法运算
 - 一位乘法运算
 - booth算法
 - •除法运算 (不考,自己看MOOC)
- 浮点运算

算术移位规则(回顾)

无论正负,算术移位,符号位不变

码制	添补代码
原码、补码	0
原码	0
补 码	左移添0
	右移添1
_	原码、补码原

实际上,补码算术右移就是用符号位填充空出来的位

算术移位和逻辑移位的区别

算术移位是有符号数的移位,其特点是符号位不变 逻辑移位是无符号数的移位,其特点是左或右补0

逻辑左移 低位添 0, 高位移丢

逻辑右移

高位添 0,低位移丢

例如 01010011

10110010

逻辑左移

10100110

逻辑右移

01011001

算术左移

00100110

算术右移

11011001 (补码)

已知[y]^补,求[-y]^补(回顾)

解:
$$[y]_{\stackrel{}{\Rightarrow}} = y_0 \cdot y_1 y_2 \cdots y_n$$
 $(I)_{\stackrel{}{\Rightarrow}} = 0 \cdot y_1 y_2 \cdots y_n$ $y = 0 \cdot y_1 y_2 \cdots y_n$ $-y = -0 \cdot y_1 y_2 \cdots y_n$ $[-y]_{\stackrel{}{\Rightarrow}} = 1 \cdot \overline{y_1} \overline{y_2} \cdots \overline{y_n} + 2^{-n}$ $(I)_{\stackrel{}{\Rightarrow}} = 1 \cdot \overline{y_1} \overline{y_2} \cdots \overline{y_n} + 2^{-n}$ $y = -(0 \cdot \overline{y_1} \overline{y_2} \cdots \overline{y_n} + 2^{-n})$ $-y = 0 \cdot \overline{y_1} \overline{y_2} \cdots \overline{y_n} + 2^{-n}$ $[-y]_{\stackrel{}{\Rightarrow}} = 0 \cdot \overline{y_1} \overline{y_2} \cdots \overline{y_n} + 2^{-n}$ $[-y]_{\stackrel{}{\Rightarrow}} = 0 \cdot \overline{y_1} \overline{y_2} \cdots \overline{y_n} + 2^{-n}$

重要结论:

[y]_补连同符号位在内, 每位取反,末位加1, 即得[-y]_{补。}注意:特

例不适用。

第二章 计算机的运算方法

- 计算机中数的表示
- •定点运算
 - •加减法运算
 - 一位乘法运算
 - booth 算法
- 浮点运算

定点加减法运算(补码)

●加法

整数
$$[A]_{\stackrel{?}{\nmid h}} + [B]_{\stackrel{?}{\nmid h}} = [A+B]_{\stackrel{?}{\nmid h}}$$
 (mod 2^{n+1})
小数 $[A]_{\stackrel{?}{\nmid h}} + [B]_{\stackrel{?}{\nmid h}} = [A+B]_{\stackrel{?}{\nmid h}}$ (mod 2)

●减法

$$A - B = A + (-B)$$

整数
$$[A-B]_{\stackrel{*}{\nmid h}} = [A+(-B)]_{\stackrel{*}{\nmid h}} = [A]_{\stackrel{*}{\nmid h}} + [-B]_{\stackrel{*}{\nmid h}} \pmod{2^{n+1}}$$

小数
$$[A-B]_{\stackrel{?}{\nmid h}} = [A+(-B)]_{\stackrel{?}{\nmid h}} = [A]_{\stackrel{?}{\nmid h}} + [-B]_{\stackrel{?}{\nmid h}} \pmod{2}$$

补码运算连同符号位一起相加,符号位产生的进位自然丢掉

补码加减法口诀

•化减法为加法

即:
$$[A-B]_{h} = [A+(-B)]_{h} = A_{h} + [-B]_{h}$$

- •补码符号位参与运算
- •对于1位符号位的补码加法

符号位产生的进位丢掉

例:用补码运算求A+B

• 设
$$A = 0.1011$$
, $B = -0.0101$, 求 $A+B$

解: $[A]_{\uparrow \downarrow} = 0.1011$
 $[A]_{\uparrow \downarrow} + [B]_{\uparrow \downarrow} = 1.1011$
 $[A]_{\uparrow \downarrow} + [B]_{\uparrow \downarrow} = 10.0110$
 E

• 设 $A = 0.1011$
 $A + B = 0.0110$
• 设 $A = -9$, $B = -5$, (设 A 和 B 位 数 为 A),求 $A + B$

解: $[A]_{\uparrow \downarrow} = 1,0111$
 $[A]_{\uparrow \downarrow} + [B]_{\uparrow \downarrow} = 1,1011$
 $[A]_{\uparrow \downarrow} + [B]_{\uparrow \downarrow} = 11,0010 = [A+B]_{\uparrow \downarrow}$
 E
 $A + B = -1110 = -14$

例:用补码运算求A-B

- •设机器数字长为 8 位(含 1 位符号位)且 A = 15,B =
- 24,用补码求A-B。

解:
$$A = 15 = 0001111$$
 $B = 24 = 0011000$
 $[A]_{\dag = 0,0001111}$ $[B]_{\dag = 0,0011000}$
 $+[-B]_{\dag = 1,1101000}$
 $[A]_{\dag = 1,110111=[A-B]_{\dag = 1,1110111=[A-B]_{\dag = 1,1110111=[A-B]$

A - B = -1001 = -9

例:用补码运算求A-B

•设机器数字长为 8 位(含 1 位符号位)且 A = -97, B = 41,用补码求 A - B。

解:
$$A = -97 = -11000001$$
 $B = 41 = 0101001$
 $[A]_{\uparrow h} = 1,0011111$
 $+[-B]_{\uparrow h} = 1,1010111$
 $[A]_{\uparrow h} + [-B]_{\uparrow h} = 10,1110110 = [A - B]_{\uparrow h}$
 $\therefore A - B = +118$ (溢出)

一位符号位判溢出

- •参加加法运算的两个数(减法时+减数相反数的补码)
 - 如果符号不同,不会溢出。
 - 如果符号相同(同正或同负),**其结果的符号与原操作数的符号不同,即为溢出**
- 硬件实现(异或门)
 - •最高有效位的进位⊕符号位的进位 = 1, 溢出

补码加减法中双符号位判溢出

• 变形补码
$$[x]_{\dot{\mathbb{A}}'} = \begin{cases} x & 1 > x \ge 0 \\ 4 + x & 0 > x \ge -1 \pmod{4} \end{cases}$$

$$[x]_{\lambda h'} + [y]_{\lambda h'} = [x + y]_{\lambda h'} \pmod{4}$$

$$[x-y]_{\lambda | \cdot} = [x]_{\lambda | \cdot} + [-y]_{\lambda | \cdot} \pmod{4}$$

结果的双符号位 相同 未溢出

双符号位补码,最高符号位代表其真正的符号

例:用补码运算求A-B

•设机器数字长为 8 位(含 1 位符号位)且 A = -97, B = 41,用补码求 A - B。

解:
$$A = -97 = -1100001$$
 $B = 41 = 0101001$
 $[A]_{\stackrel{}{\uparrow}} = 1,0011111$
 $+[-B]_{\stackrel{}{\uparrow}} = 1,1010111$
 $[A]_{\stackrel{}{\uparrow}} + [-B]_{\stackrel{}{\uparrow}} = 10,1110110 = [A-B]_{\stackrel{}{\uparrow}}$
丢掉

$$\therefore A - B = +118$$
 (溢出)

双符号位判断补码运算溢出

•设机器数字长为 9 位(含 2 位符号位)且 A = -97, B = 41,用补码求 A - B。

解:
$$A = -97 = -1100001$$
 $B = 41 = 0101001$
 $[A]_{\stackrel{}{\uparrow}} = 11,0011111$
 $+[-B]_{\stackrel{}{\uparrow}} = 11,1010111$
 $[A]_{\stackrel{}{\uparrow}} + [-B]_{\stackrel{}{\uparrow}} = 110,1110110 = [A - B]_{\stackrel{}{\uparrow}}$
丢掉

 $\therefore A - B = +118$ (溢出)

第三章 计算机的运算方法

- 计算机中数的表示
- •定点运算
 - •加减法运算
 - •一位乘法运算
 - booth算法
 - •除法运算 (不考,自己看MOOC)
- 浮点运算

乘法运算——笔算乘法

$$A = -0.1101$$
 $B = 0.1011$ $A \times B = -0.10001111$ 乘
 0.1101 $\times 0.1011$ $\times 0.1011$ $\times 0.101$ $\times 0.101$

乘积的符号心算求得

- ✓ 符号位单独处理
- ✓ 乘数的某一位决定是否加被乘数
- ? 4位的积一起相加
- ✓ 乘积的位数扩大一倍

• 笔算乘法改进

$$A \cdot B = A \cdot 0.1011$$

$$= 0.1A + 0.00A + 0.001A + 0.0001A$$

$$= 0.1A + 0.00A + 0.001(A + 0.1A)$$

$$= 0.1A + 0.01[0 \cdot A + 0.1(A + 0.1A)]$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 2^{-1}\{A + 2^{-1}[0 \cdot A + 2^{-1}(A + 2^{-1}(A + 0))]\}$$
第一步 被乘数 $A + 0$
第二步 右移一位,得新的部分积
第三步 部分积 + 0倍或1倍的被乘数
:
第八步 右移一位,得结果

乘法运算——机器思维

$$A = -0.1101$$

 $B = 0.1011$
 $A \times B = -0.10001111$
符号位单独处理,所以先对A和B的绝对值进行运算:

•改进后的笔算乘法过程(竖式,参考唐书P244)

部分积	乘数	说 明		
0.0000	1011	初态,部分积=0		
+0.1101	Ш	乘数为1,加被乘数		
0.1101				
0.0110	1101	→1,形成新的部分积		
+0.1101	=	乘数为1,加被乘数		
1.0011	1			
0.1001	$1 \ 1 \ 1 \ 0$	→ 1, 形成新的部分积		
+ 0.0000		乘数为0,加0		
0.1001	11			
0.0100	1111	→ 1, 形成新的部分积		
+0.1101	Ш	乘数为1,加被乘数		
1.0001	111			
0.1000	1111	→1,得结果		

改进的笔算乘法小结

- •两个n位数乘法运算可用 加n次和移位n次 实现
- 由乘数的末位决定 被乘数是否与原部分积相加
- 乘数右移1位(末位舍弃),空出高位存放部分积的低位,同时部分积右移1位形成新的部分积。
- •被乘数只与部分积的高n位相加
- 硬件需求: 3个寄存器(具有移位功能),1个全加器

•改进后的笔算乘法过程(竖式,参考唐书P244)

部分积	乘数	说 明		
0.0000	1011	初态,部分积=0		
+0.1101		乘数为1,加被乘数		
0.1101				
0.0110	1101	→1,形成新的部分积		
+0.1101	=	乘数为1,加被乘数		
1.0011	1			
0.1001	1110	→ 1, 形成新的部分积		
+ 0.0000		乘数为0,加0		
0.1001	11			
0.0100	1111	→ 1, 形成新的部分积		
+0.1101		乘数为1,加被乘数		
$\boxed{1.0001}$	111			
0.1000	1111	→1,得结果		

原码一位乘的硬件配置

原码乘法

• 原码一位乘运算规则

以小数为例 设
$$[x]_{\mathbb{R}} = x_0 \cdot x_1 x_2 \cdots x_n$$
 $[y]_{\mathbb{R}} = y_0 \cdot y_1 y_2 \cdots y_n$ $[x \cdot y]_{\mathbb{R}} = (x_0 \oplus y_0) \cdot (0 \cdot x_1 x_2 \cdots x_n) (0 \cdot y_1 y_2 \cdots y_n)$ $= (x_0 \oplus y_0) \cdot x^* y^*$ 式中 $x^* = 0 \cdot x_1 x_2 \cdots x_n$ 为 x 的绝对值 $y^* = 0 \cdot y_1 y_2 \cdots y_n$ 为 y 的绝对值

乘积的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相乘 $x^* \cdot y^*$

原码一位乘递推公式

$$x^* \cdot y^* = x^* (0.y_1 y_2 \dots y_n)$$

$$= x^* (y_1 2^{-1} + y_2 2^{-2} + \dots + y_n 2^{-n})$$

$$= 2^{-1} (y_1 x^* + 2^{-1} (y_2 x^* + \dots 2^{-1} (y_n x^* + 0) \dots))$$

$$z_0 = 0$$

$$z_1 = 2^{-1} (y_n x^* + z_0)$$

$$z_2 = 2^{-1} (y_{n-1} x^* + z_1)$$

$$\vdots$$

$$z_n = 2^{-1} (y_1 x^* + z_{n-1})$$

• 例. 已知 x = -0.1110, y = 0.1101, 求 $[x \times y]_{\mathbb{R}}$

解: 第1步: 写出原码、绝对值和符号位

$$[x]_{\mathbb{R}} = 1.1110$$
, $x^* = 0.1110$ (为绝对值), $x_0 = 1$

$$[y]_{\mathbb{R}} = 0.1101$$
, $y^* = 0.1101$ (为绝对值), $y_0 = 0$

第2步: x*• y*计算过程,见下页PPT

第2步: x*· y*计算过程

部分积	乘数	说 明
0.0000	1101	部分积 初态 $z_0 = 0$
+0.1110		+ x*
逻辑右移 0.1110	0 4 4 0	
	$0\;1\;1\;\underline{0}$	→1 ,得 z ₁
+0.0000	_	+ 0
逻辑右移 0.0111	0	
② 1 2 0 . 0 0 1 1	1011	→1, 得 z ₂ + x*
+ 0.1110	II	+ x*
1.0001	10	
逻辑右移 0.1000	$1\ 1\ 0\ \underline{1}$	→1, 得 z ₃ + x*
+0.1110		+ x*
2.0110	110	
逻辑右移 0.1011	0110	→1,得 z ₄

•第3步: 计算结果

- ① 乘积的符号位 $x_0 \oplus y_0 = 1 \oplus 0 = 1$
- ② 数值部分按绝对值相乘

$$x^* \cdot y^* = 0.10110110$$

则
$$[x \cdot y]_{\mathbb{R}} = 1.10110110$$

•特点

绝对值运算

用移位的次数判断乘法是否结束

逻辑移位

算法	加法次数	移位次数	移位		符号是否参与运算	
原码一位乘	n	n	部分积 逻辑右移		否	
部分	积	乘数	说 明			
0.00	00	1101	部分积 初态 $z_0 = 0$		$_{0}=0$	
+ 0.11	10	=	+ x*	:		
逻辑右移 0.11				≯ ₩		
U.V1		0.110		,得 <i>z</i> ₁		
+ 0.00		<u> </u>	+ 0			
逻辑右移 0.01 0.00 + 0.11	11 1	0 1 1	$-$ 1 + x^*	,得 Z ₂		
1.00	01	10				
逻辑右移 + 0.10 + 0.11		1 1 0 1	$-\rightarrow 1$	l,得 z ₃		
逻辑右移 1.01 0.10	10	1 1 0 0 1 1 0		l,得 <i>z</i> ₄	31	

原码一位乘的硬件配置

补码一位乘法

• 补码一位乘运算规则

以小数为例 设被乘数 $[x]_{i} = x_0 \cdot x_1 x_2 \cdot \dots \cdot x_n$ 乘数 $[y]_{i} = y_0 \cdot y_1 y_2 \cdot \dots \cdot y_n$

- ① 被乘数任意,乘数为正 同原码乘 但加和移位按补码规则运算 乘积的符号自然形成
- ② 被乘数任意,乘数为负 乘数[y]_补,去掉符号位,操作同① 最后加[-x]_补,校正

补码的正确推导(回顾)

1) 小数补码:

补码表示法:二进制(纯)小数

$$[x]_{\mbox{$\stackrel{}{\uparrow}$}} = \begin{cases} x & 1 > x \ge 0 \\ 2 + x & 0 > x \ge -1 \pmod{2} \\ \mbox{$\stackrel{}{\downarrow}$} + x & \mbox{$\stackrel{}{\downarrow}$} + x & \mbox{$\stackrel{}{\downarrow}$} + \mbox$$

由定义可得: $[-y]_{i}+[y]_{i}=2$

推导可得: $[-y]_{i}=2-[y]_{i}$

2) 整数补码:

由定义可得: $[-x]_{i}^{i}+[x]_{i}^{i}=2^{n+1}$

补码表示法: 二进制整数

$$[x]_{\begin{subarray}{l} [x]_{\begin{subarray}{l} [x]_{\begin{subarr$$

推导可得: $[-x]_{\stackrel{}{h}} = 2^{n+1} - [x]_{\stackrel{}{h}}$

补码一位乘法推导

① 被乘数任意,乘数y为正

$$[x]_{\nmid h} = x_0 \cdot x_1 x_2 \cdot \dots \cdot x_n$$
$$[y]_{\nmid h} = y_0 \cdot y_1 y_2 \cdot \dots \cdot y_n$$

$$[x]_{\nmid k} = x_0 \cdot x_1 x_2 \cdot ... \cdot x_n = 2 + x = 2^{n+1} + x \pmod{2}$$

 $[y]_{\nmid k} = 0 \cdot y_1 y_2 \cdot ... \cdot y_n$

$$[x]_{\nmid h} \cdot [y]_{\nmid h} = [x]_{\nmid h} \cdot y = (2^{n+1} + x) \cdot y = 2^{n+1} \cdot y + x \cdot y$$

$$2^{n+1} \cdot y = 2 \sum_{i=1}^{n} y_i 2^{n-i}$$
 且 $\sum_{i=1}^{n} y_i 2^{n-i}$ 是一个大于等于 1的正数。

则
$$2^{n+1} \cdot y = 2 \pmod{2}$$

$$[x]_{\nmid h} \cdot [y]_{\nmid h} = 2^{n+1} \cdot y + x \cdot y = 2 + xy = [x \cdot y]_{\nmid h}$$

即
$$[x \cdot y]_{\stackrel{\text{left}}{=}} = [x]_{\stackrel{\text{left}}{=}} \cdot y$$

同原码乘 但加和移位按补码规则运算乘积的符号自然形成

补码一位乘法推导

② 被乘数任意,乘数y为负

$$[x]_{\not= h} = x_0 \cdot x_1 x_2 \cdot \cdot \cdot \cdot x_n$$

$$[y]_{\nmid h} = 1. y_1 y_2 \dots y_n = 2 + y \pmod{2}$$

$$[y]_{\not \uparrow h} = y_0 \cdot y_1 y_2 \cdot \cdot \cdot \cdot y_n$$

$$y = [y]_{\nmid h} - 2 = 1. y_1 y_2 ... y_n - 2 = 0. y_1 y_2 ... y_n - 1$$

$$x \cdot y = x(0, y_1y_2, \dots, y_n - 1) = x(0, y_1y_2, \dots, y_n) - x$$

$$[x \cdot y]_{\nmid h} = [x(0, y_1y_2, \dots, y_n)]_{\nmid h} + [-x]_{\nmid h}$$

$$[x(0, y_1y_2 ... y_n)]_{\stackrel{1}{\nmid k}} = [x]_{\stackrel{1}{\nmid k}} (0, y_1y_2 ... y_n) (-1)$$

$$[x \cdot y]_{\nmid h} = [x]_{\nmid h} (0, y_1 y_2 \dots y_n) + [-x]_{\nmid h}$$

乘数[y]*, 去掉符号位, 操作同①

最后 $m[-x]_{\lambda}$,校正

补码一位乘法

- 补码一位乘运算规则
 - ① 被乘数任意,乘数为正 $[x \cdot y]_{\lambda} = [x]_{\lambda} \cdot y$
 - ② 被乘数任意,乘数为负

$$[x \cdot y]_{\nmid h} = [x]_{\nmid h} (0. y_1 y_2 \dots y_n) + [-x]_{\nmid h}$$

统一算法

$$[x \cdot y]_{\nmid h} = [x]_{\nmid h} (0. y_1 y_2 \dots y_n) + [-x]_{\nmid h} \cdot y_0$$

$$= [x]_{\nmid h} (0. y_1 y_2 \dots y_n) + (2-[x]_{\nmid h}) y_0 - (2$$

$$[x]_{\nmid h} = x_0 \cdot x_1 x_2 \cdot \cdot \cdot \cdot x_n$$
$$[y]_{\nmid h} = y_0 \cdot y_1 y_2 \cdot \cdot \cdot \cdot y_n$$

$$[-x]_{\nmid h} + [x]_{\nmid h} = 2$$

补码的正确推导

1) 小数补码:

补码表示法:二进制(纯)小数

由定义可得: $[-y]_{i}+[y]_{i}=2$

推导可得: $[-y]_{i}=2-[y]_{i}$

2) 整数补码:

由定义可得: $[-x]_{i}^{i}+[x]_{i}=2^{n+1}$

补码表示法: 二进制整数

$$[x]_{\nmid h} = \begin{cases} 0, x & 2^n > x \ge 0 \\ 2^{n+1} + x & 0 > x \ge -2^n \pmod{2^{n+1}} \end{cases}$$

其中: x 为真值, n 为二进制整数的位数

推导可得:
$$[-x]_{\stackrel{}{h}} = 2^{n+1} - [x]_{\stackrel{}{h}}$$

关于 $[X]_{i}$ 和 $[-X]_{i}$,哪个表述正确?

- $-[X]_{\dot{\uparrow}\dot{\uparrow}}=[-X]_{\dot{\uparrow}\dot{\uparrow}}$
- $[X]_{i}$ 和 $[-X]_{i}$ 没有任何关系

A选项(唐书P253) 这个结论不严谨

正确使用是在运算过程中化减为加替换: $\mathbf{\hat{p}}$ 式- $[X]_{\dot{\mathbf{i}}}$ = $\mathbf{\hat{p}}$ 式+ $[-X]_{\dot{\mathbf{i}}}$

而且只能单向替换 (即+[-X]_补能替换-[X]_补,反之不行)

提交

第二章 计算机的运算方法

- 计算机中数的表示
- •定点运算
 - •加减法运算
 - 一位乘法运算
 - booth算法
 - •除法运算 (不考,自己看MOOC)
- 浮点运算

Booth 算法(被乘数、乘数符号任意)

設[
$$x$$
] $_{\sharp h} = x_0 x_1 x_2 \cdots x_n$ [y] $_{\sharp h} = y_0 y_1 y_2 \cdots y_n$ [$x \cdot y$] $_{\sharp h} = [x]_{\sharp h} (0.y_1 \cdots y_n) + (2 - [x]_{\sharp h}) \cdot y_0$ $2^{-1} = 2^0 - 2^{-1}$ $2^{-1} = [x]_{\sharp h} (y_1 2^{-1} + y_2 2^{-2} + \cdots + y_n 2^{-n}) - [x]_{\sharp h} \cdot y_0 + 2y_0$ $2^{-1} = 2^0 - 2^{-1}$ $2^{-1} = [x]_{\sharp h} (-y_0 + y_1 2^{-1} + y_2 2^{-2} + \cdots + y_n 2^{-n}) + 2y_0$ $2^{-2} = 2^{-1} - 2^{-2}$ $2^{-2} = [x]_{\sharp h} [-y_0 + (y_1 - y_1 2^{-1}) + (y_2 2^{-1} - y_2 2^{-2}) + \cdots + (y_n 2^{-(n-1)} - y_n 2^{-n})] + 2y_0$ $2^{-1} = [x]_{\sharp h} [(y_1 - y_0) + (y_2 - y_1) 2^{-1} + \cdots + (y_n - y_{n-1}) 2^{-(n-1)} + (0 - y_n) 2^{-n})] + 2y_0$ [於知位 $y_{n+1} = 0$] $y_{1} = [x]_{\sharp h} [(y_1 - y_0) + (y_2 - y_1) 2^{-1} + \cdots + (y_{n+1} - y_n) 2^{-n}] + 2y_0$ [於知位 $y_{n+1} = 0$]

Booth 算法递推公式

$$\begin{split} &[z_0]_{\nmid h} = 0 \\ &[z_1]_{\nmid h} = 2^{-1} \{ (y_{n+1} - y_n)[x]_{\nmid h} + [z_0]_{\nmid h} \} \qquad y_{n+1} = 0 \\ &\vdots \\ &[z_n]_{\nmid h} = 2^{-1} \{ (y_2 - y_1)[x]_{\nmid h} + [z_{n-1}]_{\nmid h} \} \end{split}$$

$$[x \cdot y]_{h} = [z_n]_{h} + (y_1 - y_0)[x]_{h} + 2y_0$$
 最后一步不移位

如何实现 y_{i+1} - y_i ?

$y_i y_{i+1}$	y_{i+1} - y_i	操作
0 0	0	→1
0 1	1	$+[x]_{\nmid h} \rightarrow 1$
1 0	-1	$+[-x]_{\uparrow \downarrow} \rightarrow 1$
1 1	0	→ 1

Booth算法的三个计算要诀(**重要**)

- 1) 双符号位运算
- 2) 乘数<mark>前有符号位,后有附加0</mark>, 两两比较决定怎么加
- 3) 最后一步不移位

注意: Booth算法是补码运算, 所以移位是算术右移 •例. 已知 x = +0.0011, y = -0.1011, 求 $[x \times y]$ 补

解: 00.0000 +11.1101	1.0101	0	+[- <i>x</i>] _*	$[x]_{\nmid h} = 0.0011$
补码 11.1101 右移 11.1101 + 00.0011	1 1010	1	$ \begin{array}{c} $	$[y]_{? } = 1.0101$ $[-x]_{? } = 1.1101$
补码 00.0011 右移 00.0001 +11.1101	1 11 10 <u>1</u>	0	$ \begin{array}{c} $	
計码 11.1101 右移 11.1110 + 00.0011	11 111 1 <u>0</u>	1	$\rightarrow 1$ $+[x]_{\nmid h}$	$∴ [x \cdot y]_{\nmid h}$ =1.11011111
补码 00.0001 右移 00.0000 +11.1101	111 1111 <u>1</u>	0	$\rightarrow 1$ + $[-x]_{\uparrow \uparrow}$	
11.1101	1111		最后一步	上不移位

• 例. 已知 $[x]_{\climath{h}} = 1.0101$, $[y]_{\climath{h}} = 1.0011$, 求 $[x \times y]_{\climath{h}}$ 解: 00.0000 | 1.0011 | 0 $+[-x]_{\lambda}$ +00.1011 $[-x]_{k} = 0.1011$ 00.1011 补码右移 -0.0.0101补码右移 ~ 0.0010 $+[x]_{\lambda h}$ +11.0101 11.0111|11补码右移 1.1011 $\therefore [x \cdot y]_{\lambda h}$ 补码右移 -11.1101=0.10001111 $+[-x]_{i}$ +00.101100.1000 | 11111最后一步不移位

算法	加法次数	移位次数	移位	符号是否参与运算
Booth算法	n+1	n	部分积 算数右移	是

• 例. 已知 $[x]_{\stackrel{}{\mathbb{A}}} = 1.0101$, $[y]_{\stackrel{}{\mathbb{A}}} = 1.0011$, 求 $[x \times y]_{\stackrel{}{\mathbb{A}}}$

解:
$$00.0000$$
 1.001 1 0 $+[-x]_{\uparrow}$ $[-x]_{\uparrow}$ 00.1011 00.1011 00.1011 00.1011 00.00101 11001 00.0010 11100 11100 11100 11100 11100 11111 1111 1111 1111

乘法小结

- 整数乘法与小数乘法完全相同
 - 可用 逗号 代替小数点

• 原码乘: 符号位 单独处理

补码乘:符号位 自然形成

• 原码乘去掉符号位运算, 即为无符号数乘法

• 不同的乘法运算需有不同的硬件支持

第二章 计算机的运算方法

- 计算机中数的表示
- •定点运算
 - •加减法运算
 - 一位乘法运算
 - booth 算法
 - •除法运算 (不考,自己看MOOC)
- 浮点运算

浮点四则运算

•一、浮点加减运算

$$x = S_x \cdot 2^{j_x} \qquad y = S_y \cdot 2^{j_y}$$

- 1. 对阶
 - (1) 求阶差

(1) 求阶差
$$\Delta j = j_x - j_y = \begin{cases} = 0 & j_x = j_y & \text{已对齐} \\ > 0 & j_x > j_y \end{cases} \begin{cases} x \text{ 向 } y \text{ 看齐} & S_x \leftarrow 1, j_x - 1 \\ y \text{ 向 } x \text{ 看齐} & \sqrt{S_y \rightarrow 1}, j_y + 1 \\ x \text{ 向 } y \text{ 看齐} & \sqrt{S_x \rightarrow 1}, j_x + 1 \end{cases}$$

$$< 0 & j_x < j_y \end{cases} \begin{cases} x \text{ 向 } y \text{ 看齐} & S_y \leftarrow 1, j_y - 1 \\ y \text{ 向 } x \text{ 看齐} & S_y \leftarrow 1, j_y - 1 \end{cases}$$

(2) 对阶原则

小阶向大阶看齐 (有可能带来精度损失)

• 例: $x = 0.1101 \times 2^{01}$, $y = (-0.1010) \times 2^{11}$, $\Re x + y$

解: $[x]_{*} = 00,01;00.1101$ $[y]_{*} = 00,11;11.0110$

1. 对阶

① 求阶差
$$[\Delta j]_{\stackrel{}{h}} = [j_x]_{\stackrel{}{h}} - [j_y]_{\stackrel{}{h}} = 00,01$$

$$+ 11,01$$

$$11,10$$
阶差为负 (-2) $: S_x \longrightarrow 2 \quad j_x + 2$

② 对阶 $[x]_{k}'=00, 11; 00.0011$

2. 尾数求和

3. 规格化

• (1) 规格化数的定义

$$r=2 \qquad \frac{1}{2} \leq |S| < 1$$

• (2) 规格化数的判断

S>0	规格化形式	S < 0	规格化形式
真值	$0.1 \times \times \cdots \times$	真值	$-0.1 \times \times \cdots \times$
原码	$0.1 \times \times \cdots \times$	原码	$1.1 \times \times \cdots \times$
补码	$0.1 \times \times \cdots \times$	补码	$1.0 \times \times \cdots \times$
反码	$0.1 \times \times \cdots imes$	反码	$1.0 \times \times \cdots \times$

原码 不论正数、负数,第一数位为1

补码 符号位和第一数位不同

补码规格化要求: 符号位和数值位不同

$$S = -\frac{1}{2} = -0.100 \cdots 0$$

$$[S]_{\mathbb{R}} = 1.100 \cdots 0$$

$$[S]_{\nmid \mid} = \boxed{1.1} \ 0 \ 0 \cdots \ 0$$

 $: [-\frac{1}{2}]_{\uparrow}$ 不是规格化的数

$$S = -1$$

$$[S]_{\nmid h} = 1.000 \cdots 0$$

∴ [-1] → 是规格化的数

• (3)左规

尾数左移一位,阶码减1,直到数符和第一数位不同为止

上例
$$[x+y]_{\stackrel{?}{\uparrow}} = 00, 11; 11.1001$$

左规后 $[x+y]_{\stackrel{?}{\uparrow}} = 00, 10; 11.0010$
 $\therefore x + y = (-0.1110) \times 2^{10}$

• (4)右规

当 尾数双符号位不同时,需 右规

即尾数出现 01.×× ···×或 10.×× ···×时

尾数右移一位,阶码加1

•例. $x = 0.1101 \times 2^{10}$, $y = 0.1011 \times 2^{01}$, 求 x + y (除阶符、数符外,阶码取 3 位,尾数取 6 位)

解: $[x]_{\uparrow \downarrow} = 00,010;00.110100$ $[y]_{\uparrow \downarrow} = 00,001;00.101100$

① 对阶

$$[\Delta j]_{\stackrel{?}{\Rightarrow}} = [j_x]_{\stackrel{?}{\Rightarrow}} - [j_y]_{\stackrel{?}{\Rightarrow}} = 00,010 \\ + 11,111 \\ \hline 100,001$$
阶差为 +1 $\therefore S_y \rightarrow 1, j_y + 1$

$$\therefore [y]_{\stackrel{?}{\Rightarrow}} = 00,010;00.010110$$

② 尾数求和

$$[S_x]_{\stackrel{}{ ext{λ}}} = 00. \ 110100$$
 $+ [S_y]_{\stackrel{}{ ext{λ}}} = 00. \ 010110$ 对阶后的 $[S_y]_{\stackrel{}{ ext{$\lambda$}}}$ 尾数溢出需右规

③ 右规

$$[x+y]_{3} = 00, 010; 01.001010$$

右规后

$$[x+y]_{36} = 00, 011; 00. 100101$$

$$\therefore x+y=0.100101\times 2^{11}$$

• 4. 舍入

- 在 对阶 和 右规 过程中,可能出现尾数末位丢失引起误差,需考虑舍入
 - (1)0 舍 1 入法
 - (2)恒置"1"法

•例.
$$x = (-\frac{5}{8}) \times 2^{-5}$$
, $y = (\frac{7}{8}) \times 2^{-4}$, $求 x - y$ (除阶符、数符外, 阶码取 3 位, 尾数取 6 位)

解:
$$x = (-0.101000) \times 2^{-101}$$
 $y = (0.111000) \times 2^{-100}$ $[x]_{3/2} = 11,011;11.011000$ $[y]_{3/2} = 11,100;00.111000$

① 对阶

$$[\Delta j]_{\uparrow h} = [j_x]_{\uparrow h} - [j_y]_{\uparrow h} = 11,011 + 00,100 11,111$$

阶差为
$$-1$$
 : $S_x \longrightarrow 1$, j_x+1

$$\therefore$$
 [x]_{*|}' = 11, 100; 11. 101100

② 尾数求和

③右规

$$[x-y]_{3} = 11, 100; 10. 110100$$

右规后

$$[x-y]_{\nmid k} = 11, 101; 11.011010$$

$$\therefore x - y = (-0.100110) \times 2^{-11}$$
$$= (-\frac{19}{32}) \times 2^{-3}$$

溢出判断

• 设机器数为补码,尾数为 规格化形式,并假设阶符取 2 位,阶码的数值部分取 7 位,数符取 2 位,尾数取 n 位,则该 补码在数轴上的表示为

