

Statistical power in missing person cases

Lecture 2: Who should be exhumed?

Magnus Dehli Vigeland August 25th 2021

PROYECTO DE COOPERACIÓN TRIANGULAR. ARGENTINA - COLOMBIA - UNIÓN EUROPEA.

Overview - last lecture

1. Introduction to missing person cases

- Motivating case: Missing grandchildren of Argentina
- Terminology
- Genetics
- Likelihood ratio
- Software

Power

- Inclusion power
- Exclusion power
- Power plots
- Examples from BNDG

Overview - this lecture

- 1. Recap from last time
- 2. Methods for prioritizing in missing person cases
 - Two-step simulation procedure
 - Extended power plots

3. Examples

- A standard prioritization problem
- Expanding the marker set
- X-chromosomal markers
- Missing great-grandchildren

Missing person cases: Basics

Reference family

The likelihood ratio (LR)

$$LR = \frac{P(\text{data} \mid H_1)}{P(\text{data} \mid H_2)}$$

Positive match if LR > 10,000*

Power in missing person cases

- Two complementary measures of power
 - Inclusion: The probability of recognizing the true MP
 - Exclusion: The probability of excluding an unrelated POI
- Note: Computed <u>before</u> POI is genotyped!

Depend on

- Reference individuals
- Reference genotypes
- Number of markers
- Allele frequencies

Inclusion power (IP)

If POI = MP: Do we have enough data to detect it?

$$IP_{10000} = P(LR > 10,000 \mid POI = MP)$$

Computed by simulation: conditional on reference data

Exclusion power (EP)

POI excluded! (MP cannot be 12/12)

assumption: no mutations

• If POI ≠ MP: What is the probability of mismatch in at least 1 marker?

 $EP = P(\text{exclusion} \mid POI \text{ unrelated})$

Can be computed exactly!

The exclusion power formula

Claim: H_1

True: H_2

Single marker: $EP_i = P(\text{mismatch in } H_1 \text{ for marker } i \mid H_2)$ $= \sum_g I(g \mid H_1) \cdot P(g \mid H_2)$ of POI $= \begin{cases} 1, \text{ if } g \text{ incompat with } H_1 \\ 0, \text{ otherwise} \end{cases}$ Total power: $EP = 1 - \prod (1 - EP_i)$

The **ped suite**

A collection of packages for pedigree analysis in R

Home page: https://magnusdv.github.io/pedsuite/

Academic Press, 2021

Available in most online book stores, Amazon etc.

Chapter 6

- Kinship testing
- Missing person cases
- Power calculations
- Visualisations

Power plot

BNDG unsolved cases

- 34% of cases: poor power
- How to improve?
 - retype with more markers
 - recruit additional relatives
 - exhume deceased relatives

Ongoing actions:

- retyping 1000 individuals
- large-scale exhumations

The prioritization problem

Forensic Science International: Genetics 49 (2020) 102376

Contents lists available at ScienceDirect

Forensic Science International: Genetics

Research paper

Prioritising family members for genotyping in missing person cases: A general approach combining the statistical power of exclusion and inclusion

Magnus D. Vigeland ^{a, *}, Franco L. Marsico ^b, Mariana Herrera Piñero ^b, Thore Egeland ^c

Simulation procedure

- Input:
 - Reference data ${\cal R}$
 - List of possible additions $S_1, S_2, ...$
- For each S_i :
 - simulate p profiles for S_i conditional on $\boldsymbol{\mathcal{R}}$
 - for each sim:
 - estimate IP by simulation of MP (e.g. $q=1000 \ \mathrm{sims}$)
 - compute EP
- Display results in power plots

Example

Example (cont.)

Complementary power plot

- Expected number of exclusions

 (i.e., #markers with mismatch)
- Expected log(LR)

The importance of conditional sims

A larger example

Questions

- Who is most informative?
- Are GGF + GGM as informative as GF?
- Who is most informative of GA and GGF?
- What about U2?

Questions & answers

- Who is most informative?
 - \rightarrow GF
- Are GGF + GGM as informative as GF?
 - → Not quite
- Who is most informative of GA and GGF?
 - → GGF (gives exclusion!)
- What about U2?
 - → Slightly worse than GGF+GGM

- GF
- GGF, GGM
- O U2
- O GGF, GA
- GGF
- O GA
- O Baseline

Expanding the marker set

Originally typed with 15 markers.

$$IP \approx 0.05$$

 $EP \approx 0.50$

How much would it help to add more markers?

- Set1 (15 markers): CSF1PO, D2S1338, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539,
 D18S51, D19S433, D21S11, FGA, TH01, TPOX, VWA.
- Set2 (23 markers): Set1 + D1S1656, D2S441, D10S1248, D12S391, D22S1045, PENTA_D, PENTA_E, SE33.
- Set3 (33 markers): Set2 + D2S1360, D3S1744, D4S2366, D5S2500, D6S474, D6S1043, D7S1517, D8S1132, D10S2325, D21S2055.

X-chromosomal markers

Reference

- Are X-chromosomal markers useful here?
- Who are most informative?
- Who are least informative?

- Argus X-12 kit (Qiagen)
- 12 STR markers on X
- Linkage and LD: Yes, but will not affect main conclusions

Grandma

- ♦ GM
- U1, A1, A2
- U1, U2, A1
- U1, U2
- **■** GF, A1, A2
- O GF, U1, A1
- O A1, A2
- U1, A1
- GF, A1

Missing great-grandchildren

Reference family

Great-grandchildren: Lessons from cases

- Single great-grandchild: generally poor power
 - exception: If parent(s) of MP are typed
- The other parent boosts the power!
- Optimally, include
 - at least 2 great-grandchildren
 - AND their (other) parent

This is almost as good as POI herself

Thank you!