

Minería de datos y Patrones

Algoritmos de clasificación Árboles, KNN, Naive Bayes

Dr. José Ramón Iglesias
DSP-ASIC BUILDER GROUP
Director Semillero TRIAC
Ingenieria Electronica
Universidad Popular del Cesar

Árbol de Decisión

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Datos de Entrenamiento

Modelo: Árbol de Decisión

Árbol de Decisión

El árbol tiene tres tipos de nodos:

- 1. Un nodo raíz que no tiene arcos entrantes y tiene arcos salientes.
- 2. Nodos internos, cada uno de los cuales tiene exactamente un arco entrante y dos o más arcos salientes.
- 3. Nodos hoja o terminales, cada uno de los cuales tiene exactamente un arco entrante.
- A cada nodo de hoja se le asigna una **etiqueta** de clase.
- Los nodos no terminales, que incluyen la raíz y otros nodos internos, contienen tests (preguntas) sobre los atributos para separar los ejemplos que tienen valores diferentes para esos atributos.
- El árbol de decisión **fragmenta** el dataset de manera recursiva hasta asignar los ejemplos a una clase.

Otro Ejemplo

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

¡Puede existir más de un árbol que se ajuste a los datos!

Clasificando con un árbol de decisión

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Aplicamos el modelo

Comenzamos en la raíz

Dato de Evaluación

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Clasificando con un árbol de decisión

- Muchos algoritmos
 - 。 Hunt
 - 。ID3
 - 。C4.5
 - 。 C5
 - 。 CART

Construyendo un Árbol de Decisión

- Estrategia: Top down (greedy) Divide y vencerás recursiva
 - Primero: seleccionar un atributo para el nodo raíz y crear rama para cada valor posible del atributo.
 - Luego: dividir las instancias del dataset en subconjuntos, uno para cada rama que se extiende desde el nodo.
 - Por último: repetir de forma recursiva para cada rama, utilizando sólo las instancias que llegan a ésta.
- Detenerse cuando todas las instancias del nodo cumplan alguna condición (ser de la misma clase, tener un mínimo de valores, etc)

Un árbol de decisión hace cortes perpendiculares a los ejes

Figure 3.20. Example of a decision tree and its decision boundaries for a two-dimensional data set.

El dataset Weather

Condiciones para salir a jugar tenis:

Table 4.6	The weath	ation codes.			
ID code	Outlook	Temperature	Humidity	Windy	Play
а	sunny	hot	hìgh	false	no
b	sunny	hot	high	true	no
С	overcast	hot	high	false	yes
d	rainy	mild	high	false	yes
е	rainy	cool	normal	false	yes
f	rainy	cool	normal	true	no
g	overcast	cool	normal	true	yes
h	sunny	mild	high	false	no
i	sunny	cool	normal	false	yes
i	rainy	mild	normal	false	yes
k	sunny	mild	normal	true	yes
1	overcast	mild	high	true	yes
m	overcast	hot	normal	false	yes
n	rainy	mild	high	true	no

¿Cómo escoger atributos?

Criterio para escoger el mejor atributo

- ¿Qué atributo escojo?
 - La idea es crear el árbol más pequeño posible.
 - Heurística: escoge el atributo que produce nodos lo más "puros" posible.
- Criterio popular de pureza: information gain
 - Information gain crece cuando crece la pureza promedio de los subconjuntos.
- Estrategia: escoger el atributo que maximiza el valor de information gain.

Computando la Información

La información se puede medir en bits

- Entropía: cuantifica el nivel promedio de incertidumbre o información asociado a los posibles estados de una variable aleatoria
- Lo podemos entender como una medida de sorpresa
- La entropía nos entrega la información esperada en bits (puede ser una fracción).

Fórmula para calcular la entropía:

$$entropy(p_1,p_2,\ldots,p_n) = -p_1log_2p_1 - p_2log_2p_2\ldots - p_nlog_2p_n$$

$$\mathrm{H}(X) = -\sum_{i=1}^n \mathrm{P}(x_i) \log_b \mathrm{P}(x_i)$$

Entropía para dos Clases con distintas Proporciones

La entropía toma su máximo valor cuando p=0.5 (máxima incerteza).

Ver: StatQuest - Entropy

Ejemplo: atributo outlook

• Outlook = Sunny:

```
\inf([2,3]) = \exp(2/5,3/5) = -2/5 \log (2/5) - 3/5 \log (3/5) = 0.971 \text{ bits}
```

• Outlook = Overcast :

```
info([4,0]) = entropy(1,0) = -1 log (1) - 0 log (0) = 0 bits
```

Nota: esto normalmente queda indefinido

• Outlook = Rainy :

```
\inf([2,3]) = \exp(3/5,2/5) = -3/5 \log (3/5) - 2/5 \log (2/5) = 0.971 \text{ bits}
```

Información esperada para el atributo

```
\inf([3,2],[4,0],[3,2]) = (5/14) \times 0.971 + (4/14) \times 0 + (5/14) \times 0.971 = 0.693 \text{ bits}
```

Calculando information gain

 Information gain: Información antes del split – información después del split

$$Gain(S, D) = H(S) - \sum_{V \in D} \frac{|V|}{|S|} H(V)$$

gain(Outlook) = info([9,5]) - info([2,3],[4,0],[3,2])
= 0.940 - 0.693
= 0.247 bits

 Information gain para los atributos de los datos de weather:

```
gain(Outlook) = 0.247 bits

gain(Temperature) = 0.029 bits

gain(Humidity) = 0.152 bits

gain(Windy) = 0.048 bits
```

Seguimos particionando


```
gain(Temperature) = 0.571 bits

gain(Humidity) = 0.971 bits

gain(Windy) = 0.020 bits
```

Árbol de Decisión Resultante

- Nota: no todas las hojas tienen que ser puras; a veces instancias idénticas tienen clases diferentes.
 - → El splitting termina cuando los datos no se pueden segui particionando.
- Se puede exigir un mínimo número de instancias en la hoja para evitar sobreajuste.
- Puede predecir probabilidades usando las frecuencias relativas de las clases en la hoja.

Otras cosas sobre árboles

- Information gain tiende a favorecer atributos de muchas categorías por su capacidad de fragmentar el dataset en muchas bifurcaciones.
- Una solución es usar una métrica llamada Gain ratio.
- Gain ratio toma en cuenta el número y el tamaño de las ramas (respecto a la cantidad de ejemplos que alcanzan) al elegir un atributo.
- Los atributos numéricos son discretizados, escogiendo la partición que maximice information gain (o gain ratio).
- Existen otras métricas para medir pureza distintas a entropía como el índice de **Gini**: $H(Q_m) = \sum_k p_{mk} (1 p_{mk})$
- Para evitar sobre-ajuste los árboles pueden ser podados (se eliminan ramas que alcanzan muy pocos ejemplos).
- La gran ventaja de los árboles es la interpretabilidad.

Random Forest

- Es posible combinar varios árboles de decisión para tener modelos con mayor capacidad predictiva.
- Random Forest:
 - un ensamble de árboles de decisión (a veces de un sólo nivel).
 - Cada árbol se entrena con distintas muestras aleatorias (con reemplazo) del dataset de entrenamiento (bagging)
 - Además, cada árbol se entrena con sólo un subconjunto aleatorio de las features
 - Luego los distintos árboles votan para hacer predicciones finales

Gradient Boosting

- Boosting es otro enfoque para combinar varios clasificadores
- Idea: se entrenan modelos de manera secuencial donde cada modelo siguiente trata de corregir los errores del modelo anterior
- En Gradient Boosting los modelos son árboles de decisión.
- Cada árbol se entrena para predecir los errores del anterior.
- La predicción final es una suma ponderada de todos los árboles.
- Existen implementaciones eficientes de la idea como XGBoost y CatBoost para atributos categóricos.

Clasificador KNN

- Nearest Neighbor Classifier (o k-nn)
- Es un clasificador basado en instancias
- Conocido como lazy
 - Usa los k puntos más cercanos (nearest neighbors) para realizar la clasificación

Clasificadores KNN

• Idea:

 If it walks like a duck, quacks like a duck, then it's probably a duck

Clasificadores KNN

- □ Necesita 3 cosas
 - -Set de records almacenados.
 - Métrica de distancia para calcular la distancia entre records.
 - –Valor de *k*, el número de vecinos cercanos a obtener.
- Para clasificar un récord nuevo
 - -Calcular la distancia los los récords almacenados.
 - -Identificar *k* nearest neighbors.
 - Utilizar la clase de los knn para asignar la clase al record nuevo (e.j. voto de la mayoría).

Métricas de distancia

Para atributos númericos usamos la distancia euclidiana:

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2},$$

Una versión más general es la distancia de Minkowsky
 (r=1 => distancia Manhattan, r=2 => distancia euclidiana)

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{1/r}$$

• Es muy importante que los atributos estén normalizados.

Escalando atributos

- Problemas de escalas
 - Atributos deben ser escalados para prevenir que algún atributo domine la métrica de distancia
 - Ejemplos:
 - La altura de una persona puede variar entre 1.4m a 2.1m
 - El peso puede variar entre 40 kg a 150 kg
 - El ingreso de una persona puede variar entre \$150K a \$10M

Técnicas para escalar atributos

Normalización a media cero y varianza unitaria:

$$rac{x-\mu_x}{\sigma_x}$$

Normalización a rango entre 0 y 1:

$$\frac{x{-}min_x}{max_x{-}min_x}$$

OJO: Apliquen la misma transformación a los datos de training y testing -> los valores de normalización se calculan sobre los datos de training.

Distancia y similitud

- Es importante distinguir entre métricas de similitud y métricas de distancia.
- Similitud: entre más cerca dos objetos mayor el valor de la métrica.
- Distancia: entre más lejos dos objetos mayor el valor de la métrica.

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$	$s = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$
Ordinal	d = x - y /(n - 1) (values mapped to integers 0 to $n-1$, where n is the number of values)	s = 1 - d
Interval or Ratio	d = x - y	$s = -d, s = \frac{1}{1+d}, s = e^{-d},$ $s = 1 - \frac{d - min_{-}d}{max_{-}d - min_{-}d}$

Similitud Coseno

- Cuando nuestros objetos son vectores sparse (muchas columnas con cero) es conveniente usar la similitud coseno.
- Corresponde al coseno del ángulo entre los dos vectores.

$$\cos(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} \qquad \|\mathbf{x}\| = \sqrt{\sum_{k=1}^{n} x_k^2} = \sqrt{\mathbf{x} \cdot \mathbf{x}}.$$

 Un ejemplo común es cuando tratamos documentos como bolsas de palabras (cada columna es una palabra del vocabulario).

Ejemplo:

```
\mathbf{x} = (3, 2, 0, 5, 0, 0, 0, 2, 0, 0)
\mathbf{y} = (1, 0, 0, 0, 0, 0, 0, 1, 0, 2)
\mathbf{x} \cdot \mathbf{y} = 3 * 1 + 2 * 0 + 0 * 0 + 5 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 2 * 1 + 0 * 0 + 0 * 2 = 5
\|\mathbf{x}\| = \sqrt{3 * 3 + 2 * 2 + 0 * 0 + 5 * 5 + 0 * 0 + 0 * 0 + 0 * 0 + 2 * 2 + 0 * 0 + 0 * 0} = 6.48
\|\mathbf{y}\| = \sqrt{1 * 1 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 1 * 1 + 0 * 0 + 2 * 2} = 2.24
\mathbf{cos}(\mathbf{x}, \mathbf{y}) = \mathbf{0.31}
```

Definición de NN

K-NN de un dato x son los puntos que tienen las k menores distancias a x

Eligiendo el valor de K

- k muy pequeño es susceptible a ruido
- k muy grande puede incluir puntos de otra clase

Clasificación kNN

- Los clasificadores k-NN son lazy learners.
 - No construyen modelos explícitos, es más flexible ya que no necesita comprometerse con un modelo global a priori.
 - Al contrario de otros eager learners como los árboles de decisión o clasificadores basados en reglas.
 - Es independiente del nro. de clases.
 - La clasificación es más costosa (memoria y tiempo).

La Maldición de la Dimensionalidad

- Cuando los datos tienen una alta dimensionalidad KNN está sujeta a la Maldición de la Dimensionalidad.
- Fenómeno en que muchos tipos de análisis de datos se vuelven significativamente más difíciles a medida que aumenta la dimensionalidad de los datos.
- Para la clasificación, esto puede significar que no haya suficientes ejemplos para crear un modelo que asigne de forma confiable una clase a todos los ejemplos posibles.
- Para técnicas basadas en distancias (KNN, K-means) las distancias entre objetos se vuelven menos claras cuando hay muchas dimensiones.

Clasificación basada en Naïve Bayes

- Familia de modelos basados en Bayes.
- Veremos Clasificador de Naive Bayes.
- También existen las Redes Bayesianas.

Clasificación Basada en Naïve Bayes

- Modelo que busca modelar la relación probabilística entre atributos y clase.
- Modelo generativo, asume una distribución conjunta entre X e Y.
- Supuesto: atributos independientes dado la clase (naive assumption).

Clasificador Bayesiano

- Esquema probabilístico para resolver problemas de clasificación.
- Probabilidad condicional:

$$P(C \mid A) = \frac{P(A,C)}{P(A)}$$

$$P(A \mid C) = \frac{P(A,C)}{P(C)}$$

Teorema de Bayes:

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

Ejemplo Teorema de Bayes

Dado:

- Un doctor sabe que la meningitis produce rigidez de cuello el 50% de las veces.
- La probabilidad previa de que cualquier paciente tenga meningitis es 1/50,000.
- La probabilidad previa de que cualquier paciente tenga rigidez en el cuello es de 1/20.
- ¿Si un paciente tiene el cuello rígido, cuál es la probabilidad de que tenga meningitis?

Ejemplo Teorema de Bayes

• Dado:

- Un doctor sabe que la meningitis produce rigidez de cuello el 50% de las veces.
- La probabilidad previa de que cualquier paciente tenga meningitis es 1/50,000.
- La probabilidad previa de que cualquier paciente tenga rigidez en el cuello es de 1/20.
- ¿Si un paciente tiene el cuello rígido, cuál es la probabilidad de que tenga meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Clasificador Naïve Bayes

- Considerar cada atributo como variable condicionalmente independiente dada la clase (eso es "naive").
- Dado un record con atributos (A₁, A₂,...,A_n).
 - La meta es predecir la clase C.
 - Específicamente queremos encontrar el C que maximice P(C| A₁, A₂,...,A_n).
- ¿Podemos estimar P(C| A₁, A₂,...,A_n) directamente de los datos?

Clasificador Naïve Bayes

- Aproximación
 - Computar la probabilidad posterior P(C | A₁, A₂, ..., A_n) para todos los valores de C usando el Teorema de Bayes.

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Elegir un valor de C que maximice P(C | A₁, A₂, ..., A_n).
- Equivalente a elegir un valor de C que maximice P(A₁, A₂, ..., A_n|C) P(C).
- Esto es porque el numerador P(A₁A₂...A_n) es constante para todas las clases.

Clasificador Naïve Bayes

- Asume independencia entre los atributos A_i cuando la clase está dada (independencia condicional):
 - $P(A_1, A_2, ..., A_n | C) = P(A_1 | C_j) P(A_2 | C_j)... P(A_n | C_j).$
 - Se puede estimar $P(A_i | C_j)$ para todos los A_i y C_j .
 - Un punto nuevo A, se clasifica como C_j si
 P(C_j) Π P(A_i| C_j) es máxima (en comparación con otros valores de C).

¿Cómo estimar probabilidades a partir de los datos?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Clase:
$$P(C_k) = \frac{count(C_k)}{N}$$

- e.g., P(No) = 7/10, P(Yes) = 3/10
- Para atributos categóricos:

$$P(A_i = b|C_k) = \frac{count(A_{ik} = b)}{count(C_k)}$$

- donde count(A_{ik}=b) es el número de instancias que tiene el valor b para el atributo A_i y que pertenecen a la clase C_k
- Ejemplos:
- P(Status = Married | No) = 4/7
 P(Refund = Yes | Yes) = 0/3 = 0

Laplace Smoothing

- P(C | A₁, A₂, ..., A_n) se puede ir a cero cuando $|A_{ik}=b|=0$, osea cuando para alguna clase C_k no hay ningún ejemplo con A_i=b.
- En ese caso Naive Bayes le asignaría probabilidad cero a la clase C_k a cualquier ejemplo con $|A_{ik}=b|=0$, ignorando el valor de los otros atributos (acuérdense que las probabilidades se multiplican).
- Eso no es bueno para la generalización del modelo.
- Laplace Smoothing: soluciona el problema sumándole 1 a todos los conteos para que ninguna probabilidad quede en cero:

$$P(A_i = b|C_k) = \frac{count(A_{ik} = b) + 1}{count(C_K) + values(A_i)}$$

- Donde values(A_i) es la cantidad de categorías del atributo A_i.
- Con Laplace smoothing P(Status = Married|No) = (4+1)/(7+3)

Atributos Numéricos

- ¿Cómo calculamos P(A_{ik}=b|C_k) cuando el atributo A_i es numérico (ej: Taxable income) ?
- Una opción es discretizar el atributo y proceder de la forma anterior.
- Otra solución es asumir que el atributo sigue una distribución Gaussiana y estimar los parámetros de la función de densidad:

$$P(A_i = b|C_k) = \frac{1}{\sqrt{2\pi}\sigma_{ik}} \exp^{-\frac{(b-\mu_{ik})^2}{2\sigma_{ik}^2}}$$

- Aquí μ_{ik} y σ_{ik} se estiman como la media muestral y la desviación estándar de los ejemplos del atributo A_i cuando la clase es C_k
- Sea A_i = Taxable income y C_k =No, μ_{ik} = mean(125,100,70,120,60,220,75) =110 y σ_{ik} =sd(125,100,70,120,60,220,75)=54.5

P(Taxable Income= 130 |No)= scipy.stats.norm(loc=110, scale=54.5).pdf(130) = 0.006843379

Naïve Bayes (Resumen)

- Es robusto ante puntos de ruido aislados.
- Maneja valores faltantes ignorando la instancia durante los cálculos de estimación de probabilidades.
- Robusto a atributos irrelevantes (afectan de igual manera a todas las clases).
- El supuesto de independencia entre atributos puede no ser cierto en todos los casos.