Московский институт электроники и математики

Козьмин Андрей Викторович, группа БИВ247 Корсаев Артемий Батаевич, группа БИВ247

БУДИЛЬНИК С ТЕХНОЛОГИЕЙ РАСПОЗНАВАНИЯ ПОЗЫ ЧЕЛОВЕКА

Междисциплинарная курсовая работа по направлению 09.03.01 Информатика и вычислительная техника студентов образовательной программы бакалавриата «Информатика и вычислительная техника»

Студент _		
	подпись	И.О. Фамилия
Студент _		
	подпись	И.О. Фамилия
		Руководитель
	Бакалавр, Стари	пий преподаватель
Москва 2024 г		И.О. Фамилия

МОСКОВСКИЙ ИНСТИТУТ ЭЛЕКТРОНИКИ И МАТЕМАТИКИ

ЗАДАНИЕ

на междисциплинарную курсовую работу бакалавра

студенту группы БИВ247 Козьмину Андрею Викторовичу

1. Тема работы

Будильник с технологией распознавания позы человека.

- 2. Требования к работе.
 - 2.1 Устройство может воспроизводить звуковые сигналы.
 - 2.2 Устройство может отправлять/получать данные по Wi-Fi.
 - 2.3 Устройство может снимать видео.
- 3. Содержание работы
 - 3.1 Написание программы для отправки данных микроконтроллером по http.
 - 3.2 Написание программы для получения данных с камеры.
 - 3.3 Написание программы для воспроизведения звуковых сигналов.
 - 3.4 Проектирование и разработка устройства (электрическая схема и корпус).
- 4. Сроки выполнения этапов работы

Первый вариант МКР предоставляется студентом в срок до «»			2024Γ.		
Итоговый вариант МКР	пре	доставляется с	гудентом і	в срок до «»	2024г.
Задание выдано	«	<u></u> »	2024г.		А.М. Елисеенко
				подпись руководителя	
Задание было принято					
к исполнению	«	>>	2024г.		А.В. Козьмин
				подпись студента	

МОСКОВСКИЙ ИНСТИТУТ ЭЛЕКТРОНИКИ И МАТЕМАТИКИ

ЗАДАНИЕ

на междисциплинарную курсовую работу бакалавра студенту группы БИВ247 Корсаеву Артемию Батаевичу

1. Тема работы Будильник с технологией распознавания позы человека.

- 2. Требования к работе.
 - 2.1 Программа может обрабатывать фотографии.
 - 2.2 Программа может отправлять/получать данные по Wi-Fi.
 - 2.3 Программа может сравнивать фотографии.
- 3. Содержание работы
 - 3.1 Написание программы загрузки данных о позе.
 - 3.2 Написание программы для передачи данных на устройство.
 - 3.3 Написание программы для сравнения с загруженной позой.
- 4. Сроки выполнения этапов работы

Первый вариант МКР п	редо	ставляется студо	ентом в с	рок до «»	_2024г.
Итоговый вариант МКІ	пре	доставляется сту	удентом в	в срок до «»	2024г.
Задание выдано	«	>>	_2024Γ.		А.М. Елисеенко
				подпись руководителя	
Задание было принято					
к исполнению	«		_2024г.		А.Б. Корсаев
				полпись студента	

МОСКОВСКИЙ ИНСТИТУТ ЭЛЕКТРОНИКИ И МАТЕМАТИКИ

График выполнения междисциплинарной курсовой работы бакалавра

студента группы Козьмина Андрея Викторовича

Тема работы

Будильник с технол	огие	ей рас	спознавания позн	и человека.	
Дата согласования первого варианта МКР	«	»	_2024г.		А.М. Елисеенко
				подпись руководителя	
Дата согласования итогового варианта МКР	«		2024г.		А.В. Козьмин
				подпись студента	

МОСКОВСКИЙ ИНСТИТУТ ЭЛЕКТРОНИКИ И МАТЕМАТИКИ

График выполнения междисциплинарной курсовой работы бакалавра

студента группы Корсаева Артемия Батаевича

Тема работы

Будильник с технол	поги	ей распо	знавания позн	ы человека.	
Дата согласования первого	,				
варианта МКР	«		2024г.		А.М. Елисеенко
				подпись руководителя	
Дата согласования					
итогового варианта МКР	‹ ‹	>>	2024Γ.		А.Б. Корсаен

подпись студента

Содержание

Введ	цение	7
Αı	ктуальность	7
	ель работы	
	дачи	
	нализ существующих решений	

Введение

Актуальность

Сон является неотъемлемой частью жизни каждого человека. Многие пользуются будильниками и изо дня в день просыпаются под однообразную музыку, что может раздражать или надоедать (рис. 1). В связи с этим возникает необходимость создания устройства, позволяющего разнообразить ежедневную рутину пробуждения. В нашей работе мы разработали будильник, который отключается в момент, когда человек принимает необходимую позу. Это способствует более осознанному и активному пробуждению, а также уменьшает вероятность повторного засыпания.

Рисунок 1 – Надоедливые ежедневные будильники.

Цель работы

Создать будильник и необходимое ПО для его функционирования, которые предоставляют следующий функционал: отключение музыки после принятия человеком необходимой позы.

Задачи

- 1. Разработать приложение для удобного и интуитивного взаимодействия с будильником.
- 2. Разработать ПО для обработки пользовательских поз.
- 3. Разработать устройство и написать ПО для его функционирования.

Анализ существующих решений

Проведя анализ открытых источников аналогичных решений найдено, не было. Но были выявлены решения, со схожими идеями:

- 1. Alarmy android приложение, которое при срабатывании требует от пользователя совершение какой либо активности: решить математическую задачу, сделать фотографию заданного объекта или же небольшая физическая активность потрясти телефон / дойти до определённого места.
- 2. Barcode Alarm Clock и QRAlarm IOS и Android приложения соответственно, идея которых заключается в том, что для выключения звукового сигнала требуется просканировать определённый QR код, который пользователь заранее распечатал и поместил в помещении в определённое место.
- 3. Так де существует множество будильников, основанных на инфракрасном датчике. Используя различные устройства зачастую это пистолет необходимо попасть инфракрасным лазером в приёмник, после чего будильник выключится.

Исходя из полученных данных, можно сделать вывод, что функционал нашего будильника не имеет прямых аналогов, но в то же время уже предпринимались попытки создания нестандартных решений в данной области.

Используемые компоненты

Было принято решение разрабатывать проект, используя следующие компоненты:

Название и	Причины	Изображение
описание		
Микроконтроллер	1. Большое количество обучающего	
ESP32S3 –	материала.	
необходим для	2. Достаточное количество GPIO.	
создания самого	3. Переходник на камеру.	
устройства	4. Достаточная производительность	
будильника.	для многозадачной работы.	
Android studio –	1. Большое количество встроенных	
официальная среда	инструментов для разработки.	ماسماسماما الم
разработки	2. Наличие опыта работы в данной	android studio
приложений на	среде.	
Android.		
ESP IDF -	1. Обширная документация.	
официальный	2. Большое количество примеров.	
фреймворк для	3. Наличие всех необходимых	
разработки ПО для	инструментов для разработки.	
микроконтроллеров		ESP-IDF
ESP32.		
FastAPI –	1. Высокая производительность.	
фреймворк для	2. Понятная документация.	
разработки RESP	3. Большое количество примеров и	FastAPI
АРІ сервисов на	статей.	
python.	4. Асинхронная обработка запросов.	

Название и	Поминиц	Изображение
	Причины	изооражение
описание		
Docker –	1. Наличие опыта использования	mm
инструмент для	данного инструмента.	
контейнеризации	2. Обширная документация.	
приложений.	3. Множество обучающих материалов	·
	и примеров.	
	4. Простота развёртывания	docker
	приложения.	
OpenCV -	1. Наличие опыта использования	
мощная	этого инструмента.	
библиотека для	2. Популярное решение для	
обработки	множества задач.	
изображений.	3. Хорошая производительность.	OpenCV
TensorFlow -	1. Имеется опыт использования	
фреймворк для	данного фреймворка.	
обучения и	2. Предоставляет большой	
использования	функционал для построения	U
моделей	моделей, обрабатывающих	TensorFlow
искусственного	изображения.	
интеллекта.		
Git – самая	1. Большая распространённость.	
популярная	2. Имеется опыт использования этой	
система контроля	системы контроля версий	git
версий.		V 8

Таблица 1 – Используемые компоненты.

1 Введение

1.1 Актуальность

Система "умный дом" постепенно охватывает нашу жизнь, чтобы упростить её. И в данной работе мы решили реализовать одну из его компонент — "умный" будильник.

1.2 Цель работы

Цель работы – разработка комплекса ПО для взаимодействия с устройством. Пакет ПО включает себя:

- 1. Мобильное приложение для мобильных устройств на базе Android.
- 2. ПО для сервера
- 3. ПО для ESP32

1.3 Задачи

В ходе выполнения работы и для достижения поставленных целей необходимо выполнить следующие задачи:

- 1. Реализация мобильного приложения для мобильных устройств на базе Android.
- 2. Реализация ПО для сервера.
- 3. Реализация ПО для ESP32.

1.4 Личный вклад участников

К задачам Корсаева Артемия относятся:

- 1. Изучение документации tensorflow
- 2. Разработка сервера для обработки фотографий
- 3. Разработка метода сравнения фотографий
- 4. Поиск метода и хранения данных и его реализация, по которым происходит сравнение фотографий
- 5. Разработка метода построения ключевых точек позы по фотографии

2 Программная реализация

2.1 Использование Movenet для поиска ключевых точек позы по фотографии

Выбор пал на данную модель, как зарекомендовавшую себя своей точностью.

Полученные от Movenet точки преобразуются в вектора, выражающие собой силуэт человека.

2.2 Создание сервера

В качестве фреймворка был использован FastAPI. Выбор пал именно на него, так как он является наиболее лучшей опцией для построения API, с помощью которого работает передача данных между мобильным устройством на базе Android и устройством будильника.

2.3 Построение алгоритма сравнения поз с фотографий

Приведем пример. Алгоритм получает вектора, полученные с изображения с камеры устройства и с эталонного изображения. Далее для каждого вектора с изображения с камеры устройства берем мы ищем соответствующую пару, например, голень левой ноги с изображения с камеры устройства с голенью левой ноги с эталонного изображения. В случае, если пара не находится, текущее то позы на этих изображениях разные. Далее вычисляется угол, образующиеся между векторами. Если угол превышает пороговое значение, то позы на

```
этих

изображени

изображени

ях разные.

import numpy as np
from math import sqrt
import os
LINII = 30
def estimate(pattern,
mean = 0
for i in detect:
detect_points
try:
pattern_po
```

Рис. 1. Программная реализация