Homework 8

Due on October 28(Prof. Zhang and Wu)/October 29(Prof. Weintraub, Coll and Recio-Mitter), before class

Problem 1

Determine whether the following matrices are diagonalizable or not.

$$1. \ A = \left[\begin{array}{cc} 1 & 5 \\ 0 & 2 \end{array} \right].$$

$$2. \ B = \left[\begin{array}{cc} 2 & 2 \\ 0 & 2 \end{array} \right].$$

$$3. \ C = \left[\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right].$$

$$4. \ D = \left[\begin{array}{cc} 2 & 2 \\ 2 & 2 \end{array} \right].$$

Problem 2

Determine whether the following matrices are diagonalizable or not.

1.
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 3 \\ 0 & 4 & 0 \end{bmatrix}$$
.

$$2. \ B = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right].$$

Problem 3

Determine whether $A=\begin{bmatrix} -1 & 2 & 2 \\ -4 & 5 & 2 \\ -4 & 2 & 5 \end{bmatrix}$ is diagonalizable or not. The characteristic polynomial is $p(\lambda)=(3-\lambda)^3$.

Problem 4

Diagonalize the following matrices:

$$1. \ A = \left[\begin{array}{cc} 1 & 0 \\ 3 & 2 \end{array} \right].$$

$$2. \ B = \left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right].$$

$$3. \ C = \left[\begin{array}{cc} 0 & 2 \\ 2 & 0 \end{array} \right].$$

$$4. \ D = \left[\begin{array}{rrr} 2 & 0 & 0 \\ 1 & 2 & -1 \\ 1 & 0 & 1 \end{array} \right].$$

Problem 5

Assume A is an invertible matrix.

- 1. Prove that 0 is not an eigenvalue of A.
- 2. Assume λ is an eigenvalue of A. Show that λ^{-1} is an eigenvalue of A^{-1} .

Problem 6

Prove that $e^x \sin(x)$ and $e^x \cos(x)$ are linearly independent.

Problem 7

Find the general solution y(x) to the equation y'' - 6y' + 9y = 0.

Problem 8

Find the general solution y(x) to the equation y'' - 2y' + 2y = 0.

Problem 9

Find the general solution y(x) to the equation 2y'' + 3y' - 2y = 0.

Problem 10

- 1. Find the general solution y(x) to the equation y'' + 6y' + 9y = 0.
- 2. Find a particular solution $y_p(x)$ that has the form $y_p(x) = Dx^2 e^{-3x}$ for some constant D to the equation $y'' + 6y' + 9y = 2e^{-3x}$.
- 3. Find the general solution y(x) to the equation $y'' + 6y' + 9y = 2e^{-3x}$.