Econometrics

Regression Discontinuity Designs (RDD)

Paul P. Momtaz

The Anderson School UCLA

Econometrics

Paul P. Momtaz

Sharp F

Discontinuity Sample

Fuzzy RDD

Special Types of RDD

omments on

Econometrics

Paul P. Momtaz

Sharp RDD

Discontinuity Sample
Tests of RD Validity

uzzy RDD

Special Types o

omments on

Sharp RDD

Introduction
Discontinuity Sample
Tests of RD Validity

Fuzzy RDD

Special Types of RDD

Econometrics

Paul P. Momtaz

Sharp RDD

Introduction

Discontinuity Sample Tests of RD Validity

Fuzzy RDD

Special Types of RDD

omments on

Sharp RDD Introduction

Discontinuity Sample Tests of RD Validity

Fuzzy RDD

Special Types of RDD

Introduction

Assignment Probability and Local Continuity Assumption

Fig. 1. Assignment probabilities (SRD).

Fig. 2. Potential and observed outcome regression functions.

Econometrics

Paul P. Momtaz

Sharp RI

Introduction

Discontinuity Sample Tests of RD Validity

uzzy RDD

Special Types of RDD

Comments on

Introduction

Lee 2008

Econometrics

Paul P. Momtaz

Sharp R

Introduction

Discontinuity Sample Tests of RD Validity

uzzy RDD

Special Types o RDD

Comments or RDD

Introduction

Treatment is deterministic and discontinuous function of remaining variable

$$D_i = \begin{cases} 1 & \text{if } x_i \ge x_0 \\ 0 & \text{if } x_i < x_0 \end{cases}$$

$$y_i = f(x_i) + \rho D_i + \eta_i$$

Interaction Terms:

$$\mathbb{E}[y_{0i}|x_i] = f_0(x_i) = \alpha + \beta_{01}\tilde{x}_i + \dots + \beta_{0\rho}\tilde{x}_i^{\rho}$$

$$\mathbb{E}[y_{1i}|x_i] = f_1(x_i) = \alpha + \beta_{11}\tilde{x}_i + \dots + \beta_{1\rho}\tilde{x}_i^{\rho}$$
Where, $\tilde{x}_i = x_i - x_0$ (centring)

RDD

Comments on

$\mathbb{E}[y_i|x_i] = \mathbb{E}[y_{0i}|x_i] + \mathbb{E}[y_{i1} - y_{i0}|x_i]D_i$

Substituting in yields

$$y_i = \alpha + \beta_{01}\tilde{x}_i + \dots + \beta_{0\rho}\tilde{x}_i^{\rho} + \rho D_i + \beta_1^* D_i \tilde{x}_i + \dots + \beta_{\rho}^* D_i \tilde{x}_i^{\rho} + \eta_i$$
 where $\beta_1^* = \beta_{11} - \beta_{01}$

⇒ No restriction on conditional mean functions

Econometrics

Paul P. Momtaz

Sharp RE

Discontinuity Sample Tests of RD Validity

Fuzzy RDD

Special Types o

omments on

Sharp RDD

Introduction

Discontinuity Sample

Tests of RD Validity

Fuzzy RDE

Special Types of RDD

Test idea:

Is discontinuity an unaccounted-for-nonlinearity?

$$\lim_{\Delta \to 0} \mathbb{E}[y_i | x_0 < x_i < x_0 + \Delta] - \mathbb{E}[y_i | x_0 - \Delta < x_i < x_0]$$

$$= \mathbb{E}[y_{1i} - y_{0i} | x_i = x_0]$$

Doest not depend on

- correct specification of $\mathbb{E}[y_{0i}|x_i]$ model
- constant effects assumption, $y_{1i} y_{0i} = \rho_0^*$

But requires

- good estimate of mean of y_i
- enough data
- \Rightarrow Bins too narrow \rightarrow imprecise; too wide \rightarrow bias

Econometrics

Paul P. Momtaz

Sharp RDD Introduction

Discontinuity Sample Tests of RD Validity

Fuzzy RDD

Special Types of RDD

Comments on

Sharp RDD

Introduction
Discontinuity Sample
Tests of RD Validity

Fuzzv RDD

Special Types of RDD

Procedure:

 Partition running variable into equally sized bins and compute frequency.

Idea: Test whether aggregate distribution of running variable discontinuous

2. Frequency count as dependent variable in local linear regression

This test can fail if upward jumps set off by downward jumps !

Inspect baseline covariates: Replace dependent variable with each of the observed baseline covariates to check whether they are locally balanced or each side of the threshold

Fuzzy RDD Motivation

Keys Mukherjee Seru Vig 2010

Number of Loans (Low-Documentation)

The figure presents the data for number of low-documentation loans (in '00s). We plot the average number of loans at each FICO score between 500 and 800. As can be seen from the graphs, there is a large increase in the number of loans around the 620 credit threshold (i.e., more loans at 620^+ as compared to 620^-) from 2001 onward. Data are for loans originated between 2001 and 2006.

Econometrics

Paul P. Momtaz

Sharp RDD

Discontinuity Sample Tests of RD Validity

Fuzzy RDD

Special Types of RDD

Comments or RDD

Idea: Exploit discontinuities in probability of treatment conditional on covariate.

Discontinuity = IV

$$P[D_i = 1|x] = \begin{cases} g_0(x_i) & \text{if } x_i \ge x_0 \\ g_1(x_i) & \text{if } x_i < x_0 \end{cases}$$

$$\mathbb{E}[D_i|x_i] = P[D_i = 1|x_i] = g_0(x_i) + [g_1(x_i) - g_0(x_i)]T_i$$
 Where $T_i = 1(x_i \ge x_0)$

First Stage:

$$D_i = \gamma_0 + \gamma_1 x_i + \gamma_2 x_i^2 + \dots + \gamma_\rho x_i^\rho + \pi T_i + \xi_{1i}$$

Fuzzy RDD Reduced Form:

$$y_i = \mu + u_1 x_i + u_2 x_i^2 + \dots + u_\rho x_i^\rho + \rho \pi T_i + \xi_{2i}$$
 where $\mu = \alpha + \beta \gamma_0$ and $u_j = \beta_1 + \rho \gamma_j$

Interaction terms: Center polynomial term around x_0 First Stage:

$$D_i = \gamma_{00} + \gamma_{01}\tilde{x}_i + \dots + \gamma_{0\rho}\tilde{x}_i^{\rho} + \gamma_0^*T_i + \gamma_1^*\tilde{x}_iT_i + \dots + \gamma_\rho^*\tilde{x}_i^{\rho}T_i$$

Second Stage: Same as in sharp RDD

Special Types of RDD

Special types of RDD:

- Geographic
- Categorical Running Variable
- ▶ Donut RDD
- ► Kink RDD
- ▶ Dynamic RDD

Econometrics

Paul P. Momtaz

Sharp F

Discontinuity Sampl

zzy RDD

Special Types of RDD

Comments on

Comments on RDD

Econometrics

Paul P. Momtaz

Sharp RDD

Discontinuity Sample Tests of RD Validity

uzzy RDD

Special Types o RDD

Comments on RDD

Comments:

- ightharpup Sharp RDD ightarrow ATE, fuzzy RDD ightarrow ATT
- fuzzy RDD: variation in treatment near threshold randomized.
- ▶ Bandwidth choice for graphical representation