Graphs of functions and path connectedness

The graph of a function $f: I \to \mathbb{R}$ ($I \subset \mathbb{R}$ is an interval): $G(f) = \{(x, f(x)) : x \in I\}.$

Proposition (Example 4 from Section 22)

 $\mathbf{G}(f)$ is path connected iff f is continuous on interval I.

Remark. Exercise 22.4: a discontinuous f s.t. $\mathbf{G}(f)$ is connected.

Proposition 21.2. The function $f: S \to \mathbb{R}^n : x \mapsto (f_1(x), \dots, f_n(x))$ is continuous iff $f_i: S \to \mathbb{R}$ is continuous, for $1 \le i \le n$.

Proof: f is continuous on $I \Rightarrow \mathbf{G}(f)$ is path connected.

Suppose $\vec{x} = (a, f(a)), \vec{y} = (b, f(b)) \in \mathbf{G}(f)$. A path between \vec{x} and \vec{y} :

$$\gamma(t) = \left((1-t)a + tb, f\left((1-t)a + tb\right)\right) (t \in [0,1]).$$

f is continuous on $I \leftarrow \mathbf{G}(f)$ is path connected. See textbook.

A connected set which is not path connected

Consider
$$f:[0,\infty)\to\mathbb{R}:x\mapsto\left\{\begin{array}{ll}\sin 1/x & x\neq 0\\ 0 & x=0\end{array}\right.$$

f is discontinuous at 0, hence $\mathbf{G}(f)$ is not path connected.

We shall show that that $\mathbf{G}(f)$ is connected.

Suppose, for the sake of contradiction, that $\mathbf{G}(f)$ is disconnected. Then \exists open $U_1, U_2 \subset \mathbb{R}^2$ so that $\mathbf{G}(f) \subset U_1 \cup U_2$, $\mathbf{G}(f) \cap U_1 \cap U_2 = \emptyset$, while $\mathbf{G}(f) \cap U_1 \neq \emptyset$ and $\mathbf{G}(f) \cap U_2 \neq \emptyset$.

Write $\mathbf{G}(f) = E_1 \cup E_2$, where $E_1 = \{(0,0)\}$ and $E_2\{(x,\sin 1/x) : x > 0\}$. Both E_1 and E_2 are path connected, hence connected. Thus, by relabeling, we assume $E_1 \subset U_1, E_2 \subset U_2$.

Find r > 0 so hat $\mathbf{B}_r^o(0,0) \subset U_1$. But $\forall n \in \mathbb{N} \ (1/(n\pi),0) \in E_2$. Pick n so that $1/(n\pi) > r$, then $(1/(n\pi),0)$ belongs to both $E_2 \subset U_2$ and to $\mathbf{B}_r^o(0,0) \subset U_1$. Thus, $(1/(n\pi),0) \in E \cap U_1 \cap U_2$, a contradiction.

Section 23: power series

Consider series $\sum_{n=0}^{\infty} a_n x^n$, where x is a variable. Let $\beta = \limsup |a_n|^{1/n}$, $R = \frac{1}{\beta}$. Convention: $\frac{1}{0} = +\infty$, $\frac{1}{+\infty} = 0$.

Theorem (23.1)

The series $\sum_{n} a_n x^n$ converges for |x| < R, diverges for |x| > R.

R is the radius of convergence of the series.

Proof. Ratio Test (14.9): $\sum z_n$ converges absolutely when $\limsup |z_n|^{1/n} < 1$, diverges when $\limsup |z_n|^{1/n} > 1$.

For $z_n=a_nx^n$, $\limsup |z_n|^{1/n}=|x|\beta$. $\sum_n a_nx^n$ converges when $|x|\beta<1$ ($|x|<\frac{1}{\beta}=R$), diverges when $|x|\beta>1$ ($|x|>\frac{1}{\beta}=R$).

Remark. If $\lim \left| \frac{a_{n+1}}{a_n} \right|$ exists, it equals β .

The series may either converge or diverge at $\pm R$. The interval of convergence of a power series is the set of all $x \in \mathbb{R}$ for which the series converges. This is an interval: (-R,R), [-R,R), (-R,R], or [-R,R].

Examples of power series (p. 189)

- (1) $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. $a_n = \frac{1}{n!}$, $\lim \frac{a_{n+1}}{a_n} = \lim \frac{1}{n+1} = 0$, so $\beta = 0$, $R = \infty$. Interval of convergence: $(-\infty, \infty)$. In fact, $\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$.
- (2) $\sum_{n=0}^{\infty} x^n$. $a_n = 1$, $\beta = 1$, R = 1. The series diverges for $x = \pm 1$, converges for $x \in (-1,1)$. $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$.
- (3) $\sum_{n=0}^{\infty} \frac{x^n}{n+1}$. $a_n = \frac{1}{n+1}$, $\beta = \lim \left| \frac{a_{n+1}}{a_n} \right| = 1$, R = 1. The series diverges for x = 1 (harmonic series), converges for $x \in [-1,1)$ (x = -1: alternating series). $\sum_{n=0}^{\infty} \frac{x^n}{n+1} = \ln(1-x)$.
- (4) $\sum_{n=0}^{\infty} \frac{x^n}{(n+1)^2}$. $a_n = \frac{1}{(n+1)^2}$, $\beta = 1$, R = 1. The series converges for $x \in [-1,1]$ (comparison test at ± 1).
- (5) $\sum_{n=0}^{\infty} n! x^n$. $a_n = n!$, $\beta = \lim \frac{a_{n+1}}{a_n} = \lim (n+1) = +\infty$, R = 0. The series diverges $\forall x \neq 0$.

Uniform convergence

Definition (similar to 22.6)

 $d(f,h) \leq d(f,g) + d(g,h)$.

Suppose $S \subset \mathbb{R}$. B(S) is the space of bounded functions $f: S \to \mathbb{R}$, with the metric $d(f,g) = \sup_{x \in S} |f(x) - g(x)|$.

d is indeed a metric. It is easy to see that d(f,g)=d(g,f), $d(f,g)\in[0,\infty),$ with d(f,g)=0 iff f=g. Verify the triangle inequality. For f,g,h, show that $d(f,h)\leqslant d(f,g)+d(g,h).$ Fix $\varepsilon>0.$ Find $x\in S$ s.t. $|f(x)-h(x)|>d(f,h)-\varepsilon.$ Then $|f(x)-h(x)|\leqslant|f(x)-g(x)|+|g(x)-h(x)|, \text{ hence } d(f,h)-\varepsilon<|f(x)-h(x)|\leqslant|f(x)-g(x)|+|g(x)-h(x)|\leqslant d(f,g)+d(g,h).$

Conclude: $\forall \varepsilon > 0$, $d(f, h) - \varepsilon < d(f, g) + d(g, h)$. Thus,

Uniform convergence (Section 24)

Definition (24.1-2)

Suppose f, f_1, f_2, \ldots are functions from $S \subset \mathbb{R}$ to \mathbb{R} . $f_n \to f$ pointwise on S if $f_n(x) \to f(x)$, $\forall x \in S$: $\forall \varepsilon > 0, x \in S$ $\exists N = N(\varepsilon, x) \in \mathbb{N}$ s.t. $|f_n(x) - f(x)| < \varepsilon$ for $n \ge N$. $f_n \to f$ uniformly on S if $\forall \varepsilon > 0$ $\exists N = N(\varepsilon) \in \mathbb{N}$ s.t. $|f_n(x) - f(x)| < \varepsilon$ for $n \ge N$, $\forall x \in S$. Equivalently, $\lim_n \sup_{x \in S} |f_n(x) - f(x)| = 0$.

Uniform convergence \Rightarrow pointwise convergence.

The converse is false.

Denote by B(S) the set of bounded functions on S, with the metric $d(f,g) = \sup_{x \in S} |f(x) - g(x)|$.

If $f, f_1, f_2, ...$ are bounded, then $f_n \to f$ uniformly iff $\lim_n d(f_n, f) = 0$.

Examples of convergence

A sequence converging pointwise, but not uniformly.

(Example 2 from p. 194)

Let
$$f_n(x) = x^n$$
 on $[0,1]$. Then $\lim_n f_n(x) = f(x) = \begin{cases} 0 & x \in [0,1) \\ 1 & x = 1 \end{cases}$. $f_n \to f$ pointwise.

Is the convergence uniform? **No!** $\forall n$, $\sup_{x \in [0,1]} |f_n(x) - f(x)| = 1$. However, for any $a \in (0,1)$, $f_n \to f$ uniformly on [0,a]:

$$\sup_{x \in [0,a]} |f_n(x) - f(x)| = a^n$$
, hence $\lim_n \sup_{x \in [0,a]} |f_n(x) - f(x)| = 0$.

 f_1, f_2, \ldots are continuous on [0, 1], but f is not. We can lose continuity when convergence is pointwise, but not when it is uniform!

Uniform convergence preserves continuity

Theorem (24.3)

Suppose $f_n \to f$ uniformly on S, and $\forall n$, f_n is continuous at $x_0 \in S$. Then f is continuous at x_0 .

Proof by " $\frac{\varepsilon}{3}$ **argument".** Fix $\varepsilon > 0$. Need to find $\delta > 0$ s.t. $|f(x_0) - f(x)| < \varepsilon$ whenever $x \in S$, $|x - x_0| < \delta$. Find n s.t. $|f_n(x) - f(x)| < \frac{\varepsilon}{3}$, $\forall x \in S$. f_n is continuous at x_0 , hence $\exists \delta > 0$ s.t. $|f_n(x) - f_n(x_0)| < \frac{\varepsilon}{3}$ whenever $x \in S$, $|x - x_0| < \delta$. This δ works for us: if $|x - x_0| < \delta$, then $|f(x_0) - f(x)| \le |f(x_0) - f_n(x_0)| + |f_n(x_0) - f_n(x)| + |f_n(x) - f(x)| < 3\frac{\varepsilon}{3} = \varepsilon$.

More examples of convergence

 $f_n(x) = \frac{x}{1+nx^2}$. Does the sequence (f_n) converge pointwise on \mathbb{R} ? If yes, find the limit, and determine whether the convergence is uniform. (Example 7 from p. 198)

$$f_n(0) = 0$$
 for any n . If $x \neq 0$, then $f_n(x) = \frac{x/n}{1/n + x^2}$, so $\lim_n f_n(x) = 0$. $f_n \to f$ pointwise, where $f(x) = 0$.

$$f_n \to f$$
 uniformly iff $\lim_n \sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = 0$.

$$\sup_{x \in \mathbb{R}} \left| f_n(x) - f(x) \right| = \sup_{x \in \mathbb{R}} \frac{|x|}{1 + nx^2}.$$

AGM Inequality: for
$$a, b \geqslant 0, \sqrt{ab} \leqslant \frac{a+b}{2}$$
.

Take
$$a = 1$$
, $b = nx^2$: $\sqrt{n}|x| \leqslant \frac{1 + nx^2}{2}$, hence $\frac{|x|}{1 + nx^2} \leqslant \frac{1}{2\sqrt{n}}$.

$$\lim_n \frac{1}{2\sqrt{n}} = 0$$
, hence $\lim_n \sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = 0$.

Conclusion: $f_n \to f$ uniformly (f(x) = 0).

More examples of convergence

 $f_n(x) = n^2 x^n (1-x)$. Does the sequence (f_n) converge pointwise on [0,1]? If yes, find the limit, and determine whether the convergence is uniform. (Example 8 from p. 198)

$$f_n(0) = f_n(1) = 0$$
. Recall Exercise 9.12: if $\lim_n \left| \frac{s_{n+1}}{s_n} \right| < 1$, then $\lim s_n = 0$. Take $s_n = f_n(x) = n^2 x^n (1-x)$ $(0 < x < 1)$, then $\lim_n \left| \frac{s_{n+1}}{s_n} \right| = x$, hence $\lim f_n(x) = 0$.

 $f_n \to f$ pointwise, where f(x) = 0. $f_n \to f$ uniformly iff $\lim_n \sup_{x \in [0,1]} |f_n(x) - f(x)| = 0$.

To find $\sup_{x \in [0,1]} |f_n(x) - f(x)| = \max_{0 \le x \le 1} f_n(x)$, differentiate: $f'_n(x) = n^2 (nx^{n-1} - (n+1)x^n) = n^2 (n+1)x^{n-1} (x - \frac{n}{n+1})$. $f_n(\frac{n}{n+1}) = n^2 (\frac{n}{n+1}) \frac{1}{n+1} = \frac{n^{n+1}}{(n+1)^n} = \frac{n^2}{n+1} \cdot (\frac{n}{n+1})^n$. $\lim_n (\frac{n}{n+1})^n = \frac{1}{e}$, hence $\lim_n \sup_{x \in [0,1]} |f_n(x) - f(x)| = +\infty$.

Conclusion: $f_n \to f$ pointwise, but not uniformly (f(x) = 0).