

ELEMENTI DI INFORMATICA

DOCENTE: FRANCESCO MARRA

INGEGNERIA CHIMICA
INGEGNERIA ELETTRICA
SCIENZE ED INGEGNERIA DEI MATERIALI
INGEGNERIA GESTIONALE DELLA LOGISTICA E DELLA PRODUZIIONE
INGEGNERIA NAVALE

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II SCUOLA POLITECNICA E DELLE SCIENZE DI BASE

RAPPRESENTAZIONE DEI NUMERI REALI

- Notazione scientifica = virgola mobile o floating point
- Numeri reali rappresentati in binario attraverso la seguente notazione scientifica:
 - **m** numero frazionario detto mantissa
 - Il suo numero di cifre determina la precisione del numero
 - **b** numero naturale prefissato detto base
 - e numero intero chiamato esponente o caratteristica
 - determina l'ampiezza dell'intervallo di valori

RAPPRESENTAZIONE DEI NUMERI REALI

- La rappresentazione in virgola mobile consente di esprimere lo stesso valore, fissata la base, con infinite coppie (mantissa, esponente)
 - 48000 è uguale a 48×10^3 , ma anche a 4.8×10^4
 - 0.1011 è uguale a 1011 x 2^{-4} , ma anche a 1.011 x 2^{-1}
- Mantissa normalizzata: $1 \le |m| < b$
 - Prima cifra diversa da zero
 - Mantissa in valore assoluto minore dalla base
 - 4.8×10^4
 - 1.011 x 2⁻¹

RAPPRESENTAZIONE DEI NUMERI REALI

- In un intervallo reale, comunque piccolo, esistono infiniti valori
 - i numeri reali formano un continuo
- Discretizzazione
 - Si sostituisce l'insieme infinito di valori reali (continuo) con un insieme finito di valori predefiniti (discreto)

ERRORE DI APPROSSIMAZIONE

- È importante comprendere l'entità degli errori che si possono commettere:
 - Calcolo numerico: ricerca di algoritmi per la soluzione di problemi matematici che usano numeri reali
- L'errore che si commette sostituendo x con X:

$$\varepsilon = |x - X|$$

 ullet dipende dalla rappresentazione finita (numero finito di cifre) utilizzata per i numeri reali

ERRORE DI APPROSSIMAZIONE

• Calcolatrice con quattro cifre decimali che applica le regole di arrotondamento sull'ultima cifra

Numero	Arrotondamento	Errore
0,00347	0,0035	$3 * 10^{-5} = 0.3 * 10^{-4}$
0,000348	0,0003	$48 * 10^{-6} = 0.48 * 10^{-4}$
0,00987	0,0099	$3 * 10^{-5} = 0.3 * 10^{-4}$
0,000987	0,0010	13 * 10-6 = 0.13 * 10-4

- Errore massimo di 0.5 sull'ultima cifra (in tal caso: $0.5 * 10^{-4}$)
- In generale, errore massimo $\epsilon = 0.5 * b^{-m}$
 - dove b^{-m} è il valore di una unità in posizione meno significativa

RAPPRESENTAZIONE DEI REALI IN UN CALCOLATORE

Virgola mobile con segno e mantissa normalizzata

• $r = \pm m \times b^e$

Rappresentazione discreta

• $m \in [\min(m), \max(m)]$ $(1 \le m < b)$

• **b** prefissato (e.g. 10 oppure 2)

• e∈[min(e), max(e)]

RAPPRESENTAZIONE DEI REALI: CALCOLATRICE

Calcolatrice con le seguenti caratteristiche:

• Mantissa:

- Cinque cifre
- Rappresentazione normalizzata (1 $\leq m < b$)
- $m \in [1,9.9999]$
- b = 10
- Esponente:
 - Due cifre (più il segno)
 - e∈[-99,99]

Numero	Valore
0.384	3.8400×10^{-1}
13456700000	1.3457×10^{10}
64350	6.4350×10^4
333	3.3300×10^2
0.0048	4.8000 x 10 ⁻³
0.0000001	1.0000 x 10 ⁻⁸

RAPPRESENTAZIONE DEI REALI: APPROSSIMAZIONE

- Intervalli $[X_i, X_{i+1}]$ con ampiezza differente:
 - Sempre più ampi al crescere dell'esponente
 - Esempio calcolatrice: $[9.9998 \times 10^{99}, 9.9999 \times 10^{99}]$
 - Sempre più piccoli al diminuire dell'esponente
 - Esempio calcolatrice: $[1.0000 \times 10^{-99}, 1.0001 \times 10^{-99}]$

RAPPRESENTAZIONE DEI REALI: OPERAZIONI

• Le operazioni si complicano e possono generare errori di approssimazione

- Somma e sottrazione richiedono l'allineamento degli esponenti
 - Possono **scomparire** alcune cifre significative del numero con esponente più piccolo
 - $1.2345 \times 10^{1} + 9.8765 \times 10^{4} = 0.0012 \times 10^{4} + 9.8765 \times 10^{4}$
 - Il risultato della sottrazione di numeri quasi uguali può presentare meno cifre significative
 - $1.2345 \times 10^{1} 1.2344 \times 10^{1} = 1.0000 \times 10^{-3}$

RAPPRESENTAZIONE DEI REALI: OPERAZIONI

• Operazioni si complicano e possono generare errori di approssimazione

• Prodotto e divisione richiedono operazioni separate su mantisse ed esponenti

• $123 \times 10^{0} * 678 \times 10^{-2} = (123 * 678) \times 10^{(0-2)}$

- Divisione per valori molto piccoli
 - Si può avere condizione di **overflow**

CONDIZIONI DI OVERFLOW

• Overflow: Numeri reali grandi in valore assoluto non sono rappresentabili, se non compresi in un insieme limitato con estremi predefiniti [minreal, maxreal]:

$$r = m \times b^e$$

 $r\notin[-\max(m)\times b^{\max(e)}, \max(m)\times b^{\max(e)}] \rightarrow \text{Overflow}$

Es.
$$b=10: [-9.99 \times 10^{99}, 9.99 \times 10^{99}]$$

Es.
$$b=2:[-1.11 \times 2^{11}, 1.11 \times 2^{11}]$$

Overflow

Overflow

CONDIZIONI DI UNDERFLOW

• **Underflow:** Numeri reali piccoli in valore assoluto non sono rappresentabili, se compresi in un insieme limitato con estremi predefiniti (valore confuso con lo zero, per effetto delle approssimazioni)

$$r = m \times b^{e}$$

 $r \in (-\min(m) \times b^{\min(e)}, \min(m) \times b^{\min(e)}) \rightarrow r \approx 0$
Es. $b = 10$: $(-1.00 \times 10^{-99}, 1.00 \times 10^{-99})$
Es. $b = 2$: $(-1.00 \times 2^{-11}, 1.00 \times 2^{-11})$

CONDIZIONI DI UNDERFLOW E OVERFLOW: ESEMPIO

- Calcolatrice con le seguenti caratteristiche:
 - b = 10
 - Cinque cifre per la mantissa < 10
 - Due cifre per l'esponente
 - Rappresentazione normalizzata con la prima cifra diversa da zero

Overflow

- $x > 9.9999 \times 10^{99}$
- $x < -9.9999 \times 10^{99}$

Underflow

• $-1.0000 \times 10^{-99} < x < 1.0000 \times 10^{-99}$

RAPPRESENTAZIONE VIRGOLA MOBILE IN UN CALCOLATORE

- Un numero reale in virgola mobile può essere facilmente rappresentabile nella memoria di un calcolatore
- Rappresentazione in virgola mobile normalizzata nel caso binario

$$s 1.xxxxxx * 2^{yyyy}$$

- s (segno): $+ \rightarrow 0$ $\rightarrow 1$
- "1." non si rappresenta nel calcolatore
- 0.xxxxxx (parte significativa della mantissa) → rappresentazione in base 2
- "* 2" non si rappresenta nel calcolatore
- yyyy (esponente) → rappresentazione per eccesso

- 1980: ogni calcolatore con i propri numeri float
 - Formati numerici e convenzioni di calcolo proprietarie

- 1985: nascita dello Standard 754 IEEE per tre formati numerici in virgola mobile
 - singola precisione o precisione semplice (32 bit)
 - doppia precisione (64 bit)
 - precisione estesa (80 bit)

• Singola precisione (32 bit)

S		E	sponent (8 bit)	e		Mantissa (23 bit)	
3:	1	30		23	22		0

$$(-1)^{b_{31}} * 2^{b_{30}b_{29}...b_{24}b_{23}} * 1.b_{22}b_{21}...b_{1}b_{0}$$

- Numero di bit per il segno: 1
- Numero di bit per l'esponente: 8
- Rappresentazione esponente: Base 2 per eccesso 127
- Valori esponente: [-126, 127]
 - le parole codice o_{10} (-127₁₀) e 255₁₀ (128₁₀) sono riservate per funzionispeciali
- Numero di bit per la mantissa: 23
- Rappresentazione (mantissa-1): Binaria
- Cifre decimali mantissa: ≅7 (23 / 3.3)

• Singola precisione (32 bit)

S	E	sponent (8 bit)	e		Mantissa (23 bit)	
31	30		23	22		0

- I valori assunti dall'esponente e e dalla mantissa *m* determinano l'appartenenza del numero ad una di queste categorie:
 - zeri
 - numeri in forma normale
 - numeri in forma denormalizzata
 - infiniti
 - NaN (not a number)
- l'esponente distingue i numeri in modo primario

la mantissa in modo secondario

Categoria	Esp.	Mantissa
Zeri	0	0
Numeri denormalizzati	0	non zero
Numeri normalizzati	1-254	qualunque
Infiniti	255	0
Nan (not a number)	255	non zero

Doppia precisione (64 bit)

S		Esponente (11 bit)		Mantissa (52 bit)	
63	62	52	1		0

$$(-1)^{b_{63}}$$
* $2^{b_{62}b_{61}...b_{53}b_{52}}$ * $1.b_{51}b_{50}...b_{1}b_{0}$

- Numero di bit per il segno: 1
- Numero di bit per l'esponente: 11
- Rappresentazione esponente: Base 2 per eccesso 1023
- Valori esponente: [-1022, 1023]
 - le parole codice o_{10} (-1023₁₀) e 255₁₀ (1024₁₀) sono riservate per funzionispeciali
- Numero di bit per la mantissa: 52
- Rappresentazione (mantissa-1): Binaria
- Cifre decimali mantissa: $\cong 15 (52 / 3.3)$

Determinare la rappresentazione decimale del seguente numero in virgola mobile a singola precisione

1 10000001 010000000000000000000000

$$(-1)^{5} * M * 2^{E} = ?$$

Determinare la rappresentazione decimale del seguente numero in virgola mobile a singola precisione

1 10000001 01000000000000000000000

$$(-1)^{5} * M * 2^{E} = ?$$

$$s = 1 \rightarrow segnonegativo$$

$$M = (1.01)_2 = (1*2^0 + 0*2^{-1} + 1*2^{-2}) = 1,25$$

$$E = (10000001)_{2 \text{ eccesso } 127} = (1*27+1*2^{\circ}) - 127 = 2$$

Determinare la rappresentazione decimale del seguente numero in virgola mobile a singola precisione

1 10000001 010000000000000000000000

$$(-1)^{5} * M * 2^{E} = -1,25 * 2^{2} = -5$$

 $5 = 1 \rightarrow \text{segnonegativo}$
 $M = (1.01)_{2} = (1*2^{0}+0*2^{-1}+1*2^{-2}) = 1,25$
 $E = (10000001)_{2 \text{ eccesso}} = (1*2^{7}+1*2^{0}) - 127 = 2$

Determinare la rappresentazione decimale del seguente numero in virgola mobile a singola precisione

0 10000011 100110000000000000000000

$$(-1)^{5} * M * 2^{E} = ?$$

Determinare la rappresentazione decimale del seguente numero in virgola mobile a singola precisione

S	Es	sponen (8 bit)	te		Mantissa (23 bit)			
31	30		23	22		o		

0 10000011 100110000000000000000000

$$(-1)^{5} * M * 2^{E} = ?$$

 $5 = 0 \rightarrow \text{segnopositivo}$
 $M = (1.10011)_{2} = (2^{0} + 2^{-1} + 2^{-4} + 2^{-5}) = 1,59375$
 $\text{oppure } (1.10011)_{2} = (110011)_{2} * 2^{-5} = 51 * 2^{-5} = 1,59375$
 $(10000011)_{2 \text{ eccesso } 127} = (2^{7} + 2^{1} + 2^{0}) - 127 = 4$

Determinare la rappresentazione decimale del seguente numero in virgola mobile a singola precisione

S	Es	Esponente (8 bit)			Mantissa (23 bit)		
31	30		23	22		o	

0 10000011 100110000000000000000000

$$(-1)^{5} * M * 2^{E} = 51*2^{-5} * 2^{4} = 51*2^{-1} = 25,5$$

 $s = o \rightarrow \text{segno positivo}$
 $M = (1.10011)_{2} = (2^{0} + 2^{-1} + 2^{-4} + 2^{-5}) = 1,59375$
 $\text{oppure } (1.10011)_{2} = (110011)_{2} * 2^{-5} = 51*2^{-5} E = (10000011)_{2 \text{ eccesso } 127} = (2^{7} + 2^{1} + 2^{0}) - 127 = 4$

Determinare la rappresentazione in virgola mobile a singola precisione del numero reale 8.5

Determinare la rappresentazione in virgola mobile a singola precisione del numero reale 8.5

$$(8,5)_{10} = (1000.1)_2 = 1.0001 * 2^3 = (-1)^5 * M * 2^E$$

S	Esponente (8 bit)					
31	30		23	22	0	

Determinare la rappresentazione in virgola mobile a singola precisione del numero reale 8.5

$$(8,5)_{10} = (1000.1)_2 = 1.0001 * 2^3 = (-1)^5 * M * 2^E$$

segno positivo $\rightarrow s = 0$ $\rightarrow b_{31} = 0$
 $M = (1.0001)_2$ $\rightarrow b_{22}b_{21}...b_1b_0 = 0001000...000$
 $E = (10000010)_{2 \text{ eccesso 127}}$ $\rightarrow b_{30}b_{29}...b_{24}b_{23} = 10000010$

S	Es	ponen (8 bit)	te		Mantissa (23 bit)	
31	30		23	22		o

• Rappresentare secondo lo standard 754 IEEE a singola precisione, il numero decimale reale (40.125)₁₀

• Rappresentare secondo lo standard 754 IEEE a singola precisione, il numero decimale reale (-67.25)₁₀

• Rappresentare secondo lo standard 754 IEEE a singola precisione, il numero decimale reale (40.125)₁₀

[0 10000100 010000010000000000000000]

• Rappresentare secondo lo standard 754 IEEE a singola precisione, il numero decimale reale (-67.25)₁₀

[1100001010000011010000000000000000]

• Determinare la rappresentazione decimale numero in virgola mobile a singola precisione:

1 10000010 101101000000000000000000

• Determinare la rappresentazione decimale numero in virgola mobile a singola precisione:

• Determinare la rappresentazione decimale numero in virgola mobile a singola precisione:

1 10000010 101101000000000000000000

[-13.625]

• Determinare la rappresentazione decimale numero in virgola mobile a singola precisione:

0 10000010 110000000000000000000000

[14]

• Rappresentare secondo lo standard 754 IEEE a singola precisione, il numero decimale reale (61.5)₁₀

[0 10000100 111011000000000000000000]

• Rappresentare secondo lo standard 754 IEEE a singola precisione, il numero decimale reale (29.3125)₁₀

[0 10000011 1101010100000000000000000]

• Rappresentare secondo lo standard 754 IEEE a singola precisione, il numero decimale reale (61.5)₁₀

• Rappresentare secondo lo standard 754 IEEE a singola precisione, il numero decimale reale (29.3125)₁₀

• Rappresentare secondo lo standard 754 IEEE a singola precisione, il numero decimale reale (61.5)₁₀

[0 10000100 111011000000000000000000]

• Rappresentare secondo lo standard 754 IEEE a singola precisione, il numero decimale reale (29.3125)₁₀

[0 10000011 1101010100000000000000000]

