群论期末重点复习

严思伟

2025年1月4日

目录

1	前言		1
2	群的	基本概念	1
	2.1	群的定义	1
	2.2	有限群部分概念	1
	2.3	重排定理和乘法表	2
	2.4	子群、陪集和类	2
	2.5	群的同构同态	3
	2.6	点群	4
3	群的	线性表示理论	5
	3.1	线性表示基本概念	5
	3.2	等价表示和可约表示	6
	3.3	不等价不可约表示	6
	3.4	可约表示向不可约表示的约化	7
	3.5	新表示构成	8
	3.6	不可约表示的特征标表	8
4	置换	·····································	10

1 前言 1

1 前言

由于本笔记于 1 月 3 日中午 12 时 16 分创建,而考试时间为 1 月 7 日早 8 时 30 分,故实际内容不会太多,仅会记录部分本人认为较为重要或作业中常出现、考试中出现可能性较大的内容,尽量捡重点、定理不给出证明只管用。

本课程由五个主要部分组成: 绪论和数学基础、群的基本概念、群的线性表示理论、置换群、三维转动群。其中绪论和数学基础不会作为独立的考试部分出现,故本复习笔记中将不会包含此部分内容。下面将对每个部分章节的重点内容做一个回顾。

本笔记仅作为复习参考,不能保证我认为的重点内容能够完全匹配考试中的重点内容。本笔记旨在帮助减小复习强度,给出针对考试的复习内容,如果希望全面整体深入地学习群论这门课程,还是不要看这篇了。

2 群的基本概念

本章主要给出了群的基本概念和乘法表、群的子集、同态同构、点群空间群简介这些内容。

2.1 群的定义

G 是一些元素的集合, $\forall R$ 、S、T 为 G 中元素,定义二元运算 RS,满足以下四个条件的 G 称为群:

- 1. 封闭性: $RS \in G$
- 2. 结合律: R(ST) = (RS)T
- 3. 恒元: $\exists E \in G, ER = R$
- 4. 逆元: $\exists R^{-1} \in G, R^{-1}R = E$

2.2 有限群部分概念

- 1. 有限群的阶: 群的元素数目.
- 2. 群元素的阶: 对群元素 R, 使 $R^n = E$ 成立的最小正整数 n.

2 群的基本概念 2

- 3. 周期: 由群元 R 及其所有幂次构成的集合 $\{R, R^2, ..., R^n = E\}$.
- 4. 生成元: 能够通过乘积生成整个群 G 中所有元素的一组最少群元.
- 5. 有限群的秩: 生成元的数目.

2.3 重排定理和乘法表

- 1. 重排定理: 群中任意元素和群中所有元素做乘积, 得到的集合和原群相同.
- 2. 乘法表: 有限群的二元运算规则,群的全部性质都体现在群的乘法表中。对于有限群,群元素数目有限,我们可能把元素的乘积全部排列出来,构成一个表,称为群的乘法表,简称群表。

重排定理在乘法表中的应用:

- 1. 乘法表的每一行(列)都是所有群元的一个重新排列.
- 2. 任一群元素在乘法表中的每一行(列)中只出现一次.

借助重排定理, 我们只需要知道群 G 中少数几个乘积结果就能够直接给出乘法表.

2.4 子群、陪集和类

- 1. 子群: H 是群 G 的子集, 且定义有和 G 相同的运算规则, 若满足群的 四条定义, 就称 H 是 G 的子群, 记为 $H \subset G$
- 2. 陪集: 设 H 是 G 的子群, $\forall R \notin H$ 且 $R \in G$, 则 RH 和 HR 分别称为 H 的左陪集和右陪集.
- 3. 陪集性质: 陪集 RH 和 H 没有公共元素, 且自身没有重复元素.
- 4. 陪集定理: H 的左右陪集 RH 和 HR, 要么拥有完全相同的元素, 要么拥有完全不同的元素.
- 5. 拉格朗日定理: 群 G 的阶 g 一定是子群 H 的阶 h 的整数倍, g = dh, d 为正整数, 称为子群 H 的指数.
- 6. 不变子群: 拥有相同左右陪集的子群.

2 群的基本概念

7. 商群: 群 G 的不变子群 H 和其所有陪集, 作为复元素、按复元素定义 乘积规则且满足群的四条定义, 则称为群 G 关于不变子群 H 的商群, 记为 G/H.

3

- 8. 商群性质: 恒元为不变子群 H; 商群的阶数是子群 H 的指数 d = g/h.
- 9. 共轭元素: 对群元 R、T, 若 $\exists S \in G$, 使得 $T = SRS^{-1}$, 则 R、T 相互 共轭.
- 10. 共轭类: 所有相互共轭的元素集合, 简称类. $C_{\alpha} = \{R_k | R_k = SR_jS^{-1}, S \in G\}$, 定义 $n(\alpha)$ 为类 C_{α} 中元素数目. 群可以按照类做划分, 所有元素 会且仅会在一个类中出现.

在实际题目中,我们通常需要将群对类做划分,下面给出几种快速找出共轭元素的方法;

- 1. 若已知乘法表, 共轭元素在乘法表中处于转置位置, 即两个关于对角线 对称的元素一定是共轭元素.
- 2. 对于 C_n 群, 所有元素都自成一类.
- 3. 对于 D_{2n} 群, 所有平面上的转动可分为两类; 对于 D_{2n+1} 群, 所有平面上的转动均属于同一类.

类的特殊意义在于,由于其中元素特殊的共轭性质,使得所有的不变子群一定是由若干个完整的类组成.

2.5 群的同构同态

- 1. 同态: 若群 G 中元素按某种规则和群 G' 中元素多一对应,且群元素乘积也满足对应关系,则称群 G' 与群 G 同态,记为 $G' \sim G$. 同态关系中,先后顺序很重要,在这类描述中,后者与前者多一对应.
- 2. 同态: 同态中的多一对应改为一一对应, 记为 $G' \approx G$. 和同态不同, 由于一一对应, 同构不再具有方向性.

(重要) 同态核定理: 群 G' 与群 G 同态, 与 G' 中恒元对应的 G 中元素的集合 H 称为同态核, H 具有以下性质:

1. H 是 G 的不变子群.

2 群的基本概念 4

- 2. 与 G' 中每个其他元素对应的 G 中元素的集合构成 H 的陪集.
- 3. 群 G' 和群 G 关于群 H 的商群 G/H 同构, 即 $G' \approx G/H$. 除循环群外, 八阶即以下阶群仅有以下几种非同构群:
- 1. 四阶直积群: $V_4 = C_2 \otimes C_2$
- 2. 六阶 D₃ 群
- 3. 八阶 D₄ 群
- 4. 八阶直积群: $C_2 \otimes C_4$
- 5. 八阶直积群: $C_2 \otimes C_2 \otimes C_2$
- 6. 八阶四元数群 Q_4

2.6 点群

在这里不会详细说明课程中所提及的所有点群, 只会说明一些点群的独特性质.

 D_n 群:

- 1. 所有类均为自逆类.
- 2. D_{2n} 群有 n+3 个自逆类: 恒元,N 次轴对应转动角度相同、方向相反的转动操作对应元素,2n 个 2 次轴对应的转动元素间隔抽取组成 2 类.
- 3. D_{2n+1} 群有 n+2 个自逆类: 恒元,N 次轴对应转动角度相同、方向相反的转动操作对应元素,2n 个 2 次轴对应的转动元素全部属于一类.

T 群、O 群、I 群的群元不会作为知识点考察,故在这里不做说明. 非固有点群: 包含固有转动元素和非固有转动元素的点群, 按以下方式分为两类: 设群 G 为非固有点群, 群 H 为固有点群

- 1. I 型非固有点群: 包含空间反演变换 σ , 构造方式为 $G=H\cup \sigma H=H\otimes \{E,\sigma\}$
- 2. P型非固有点群: 不包含空间反演变换, 构造方式为取出 *H* 中的指数 为 2 的不变子群, 保持子群元素不变, 将陪集元素全部乘上空间反演.

注意:

- 1. 对循环群, 只有形如 C_{2n} 的群才具有 P 型非固有点群.
- 2. 对 D_n 群, 当 n 为奇数时, 仅有一种 P 型群; 当 n 为偶数时, 有两种 P 型群, 选取的不变子群分别为 C_{2n} 群和 D_n 群.

3 群的线性表示理论

本章主要围绕有限群的线性表示展开讨论.由于作业和考试内容不涉及诱导分导表示、物理应用、投影算符、不可约基,故在这里不做复习。复习内容主要有:线性表示基本概念、正则表示、不等价不可约表示、正交和完备性定理、特征标表。

由于考试题目中不会出现任何证明题,在这里所做的对基本概念的所有 回顾均是为了更好地理解计算过程和加快计算速度,而具体对考试的提升需 要结合对作业的回顾,我会在某一部分需要结合哪些题目复习时具体指出。

3.1 线性表示基本概念

- 1. 线性表示: 行列式不为零的 $m \times m$ 阶矩阵集合构成的群 D(G) 和群 G 同构,D(G) 称为群 G 的一个 m 维线性表示, 简称表示. 每一个群元 R 都对应表示矩阵 D(R). 恒元表示矩阵为单位矩阵, 逆元表示矩阵为逆矩阵.
- 2. 特征标: 表示矩阵 D(R) 的迹, $\chi(R) = \text{Tr}D(R)$ 称为 R 在表示 D(G) 中的特征标. 同类元素特征标相同.

普遍来说, 要给出群 G 的线性表示, 要满足两个条件:

- 1. 给出基矢 ψ_{μ} .
- 2. 给出群元在基矢下对应的对称变换算符 P_G .

则给出对称变换群元 P_R 在基 ψ 中的矩阵形式:

$$P_R \psi_\mu = \sum_{\nu=1}^m \psi_\nu D_{\nu\mu}(R) \tag{1}$$

当 P_R 和 R 存在一一对应关系时,D(R) 即是群 G 的线性表示.(其实一多对应也算, 但是这里为了方便理解, 毕竟都是复习了, 主打一个直接简洁)

如果取群元 R 作为基矢, 也取群元 S 作为算符, 那么会给出以下形式的表示:

$$SR = \sum_{P \in G} PD_{PR} \tag{2}$$

此时的 D 即为群 G 的正则表示, 由定义可以知道:

$$D_{PR} = \begin{cases} 1, & P = SR \\ 0, & P \neq SR \end{cases}$$

右正则表示在此不予列出.

3.2 等价表示和可约表示

- 1. 等价表示: 可以由相似变换联系起来的表示. 两表示等价的充要条件是对所有元素特征标相等.
- 2. 对有限群,只需要研究幺正表示和幺正的相似变换.
- 3. 一个表示的表示矩阵如果能化成上三角阶梯矩阵, 那么就是可约表示, 否则为不可约表示.
- 4. 有限群的表示要么是完全可约表示, 要么是不可约表示.

3.3 不等价不可约表示

正交定理: 不等价不可约幺正表示 D^i 和 D^j 的矩阵元素, 作为群空间的矢量满足正交关系:

$$\sum_{R \in G} D^i_{\mu\rho}(R)^* D^j_{\nu\lambda}(R) = \frac{g}{m_j} \delta_{ij} \delta_{\mu\nu} \delta_{\rho\lambda}$$

其中 m_i 为 D^j 的维数,g 为群 G 的阶.

取 $\rho = \mu, \lambda = \nu$, 对 $\rho\lambda$ 求和, 则有特征标第一正交定理:

$$\sum_{R\in G} \sum_{\rho\lambda} D^i_{\rho\rho}(R)^* D^j_{\lambda\lambda}(R) = \frac{g}{m_j} \delta_{ij} \sum_{\rho\lambda} \delta_{\rho\lambda} \delta_{\rho\lambda}$$

即

$$\sum_{R \in G} \chi^i(R)^* \chi^j(R) = g \delta_{ij}$$

完备性定理: 有限群不等价不可约表示维数的平方和等于群的阶数:

$$g = \sum_{j} m_j^2$$

由此给出有限群不等价不可约幺正表示的矩阵元素 $D^{i}(G)$, 作为群空间的矢量, 构成群空间的正交完备基, 任何群函数 f(G) 均可按它们展开:

$$f(R) = \sum_{j\mu\nu} C^{j}_{\mu\nu} D^{j}_{\mu\nu}(R), \quad C^{j}_{\mu\nu} = \frac{m_{j}}{g} \sum_{R \in G} D^{j}_{\mu\nu}(R)^{*} f(R)$$

类似傅里叶展开的关系式.

将矩阵元替换为特征标, 群空间替换为类空间, 依然成立, 说明有限群不等价不可约表示的特征标 $\chi^{j}(G)$ 构成类空间的正交完备基, 任何类函数可以按照下面的关系对特征标做展开:

$$f(R) = f(SRS^{-1}) = \sum_{j} C_j \chi^j(R), \quad C_j = \frac{1}{g} \sum_{R \in G} \chi^j(R)^* f(R)$$

很容易得到有限群不等价不可约表示的个数等于群的类数.

这说明了特征标在群表示理论中的重要地位, 也是为什么群表示的特征标表如此重要且被列为考试重点.

3.4 可约表示向不可约表示的约化

对于可约表示, 总可以通过相似变换 X 将其变为已约表示, 即不可约表示的直和:

$$X^{-1}D(R)X = \bigoplus a_j D^j(R), \quad \chi(R) = \sum_j a_j \chi^j(R)$$

 a_j 为不可约表示 $D^j(R)$ 在 D(R) 中的重数. 将上面的群函数对特征标做展开中的群函数替换为特征标, 可以得到 a_j 的表达式:

$$a_j = \frac{1}{g} \sum_{R \in G} \chi^j(R)^* \chi(R)$$

表示为不可约表示的判据是: $\sum_{R \in G} |\chi(R)|^2 = g$, 若大于, 则此表示可约.

如何将可约表示化为不可约表示:

- 1. 选取一组生成元, 写出其在此表示下的表示矩阵.
- 2. 计算 $\sum_{R \in G} |\chi(R)|^2$, 判断表示是否可约.
- 3. 若可约, 给出此群对应的不可约表示个数及维数. 判据有二: 不等价不可约表示个数的和为类数; 不等价不可约表示维数的平方和为群的阶.
- 4. 计算此表示约化后各不等价不可约表示的重数 $a_j = \frac{1}{g} \sum_{R \in G} \chi^j(R)^* \chi(R)$,并给出在选择约化的次序下给出之前选取生成元的表示矩阵.
- 5. 将各生成元的两个表示矩阵代入 $X^{-1}D(R)X=\oplus a_jD^j(R)$, 即可以给出变换矩阵 X.
- 6. 给出基矢变换 $\phi_{\mu} = \sum_{\nu} \psi_{\nu} X_{\nu\mu}$ 结合第 3 章作业第 17 题边做边看食用更佳.

3.5 新表示构成

这里仅简单提及,因为不是考试内容但是和特征标表的填写有关.

- 1. 商群的不可约表示也是原群的不可约表示.
- 2. 直乘群的不可约表示可以表示为两子群不可约表示的直乘.

3.6 不可约表示的特征标表

要顺利写出一个群的特征标表,以下几点性质是必须牢记的:

- 1. 不等价不可约表示的数目为类的个数 $\sum_{i} 1 = g_c$.
- 2. 不等价不可约表示维数的平方和为群的阶 $\sum_{i} m_{i} = g$.
- 3. 恒元的特征标为不可约表示的维数 $\chi^{j}(E) = m_{i}$.
- 4. 恒等表示的特征标均为 1.
- 5. 除了恒等表示,每一行特征标乘类中元素数目求和等于 0.

- 6. 每一列特征标平方和乘类中元素数目等于群的阶.
- 7. 阿贝尔群的表示都是一维的.
- 8. 商群和直乘群表示的性质.
- 9. D_{2n} 群有 n+3 个自逆类,4n 个元素, 有 4 个一维和 n-1 个二维不等价不可约表示.
- 10. D_{2n+1} 群有 n+1 个自逆类,4n+2 个元素, 有 2 个一维和 n 个二维不等价不可约表示.

结合第 3 章作业第 14 题边做边看食用更佳. 给出几个常见的特征标表:

 C_3 群:

C_3	E	R	R^2
A	1	1	1
E	1	ω	ω^*
E^*	1	ω^*	ω

 D_4 群:

D_4	E	$2C_4$	C_4^2	$2C_2'$	$2C_2''$
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
B_1	1	-1	1	1	-1
B_2	1	-1	1	-1	1
E	2	0	-2	0	0

T 群:

T	$\mid E \mid$	$3C_2$	$4C_3'$	$4C_3'^2$
a_{51}	1	1	1	1
a_{51}	. 1	1	ω	ω^*
a_{51}	1	1	ω^*	ω
a_{51}	3	-1	0	0

4 置换群 10

○ 群:

О	E	$3C_4^2$	$8C_3'$	$6C_4$	$6C_2''$
A	1	1	1	1	1
B	1	1	1	-1	-1
E	2	2	-1	0	0
T_1	3	-1	0	1	-1
T_2	3	-1	0	-1	1

建议读者推导试试, 有助于理解上文所给出的方法.

4 置换群