Contents

PART 1 IN	ITRODUCTION	
CHAPTER 1	Statistical Machine Learning	3
1.1	Types of Learning	
1.2	Examples of Machine Learning Tasks	
	1.2.1 Supervised Learning	
	1.2.2 Unsupervised Learning	
	1.2.3 Further Topics	
1.3	Structure of This Textbook	8
PART 2 S	TATISTICS AND PROBABILITY	
CHAPTER 2	Random Variables and Probability Distributions	11
2.1	Mathematical Preliminaries	
2.2	Probability	
2.3	Random Variable and Probability Distribution	
2.4	Properties of Probability Distributions	16
	2.4.1 Expectation, Median, and Mode	
	2.4.2 Variance and Standard Deviation	
2.5	2.4.3 Skewness, Kurtosis, and Moments	
CHAPTER 3	Examples of Discrete Probability Distributions	
3.1	Discrete Uniform Distribution	
3.2	Binomial Distribution	
3.3	Hypergeometric Distribution	
3.4	Poisson Distribution	
3.5	Negative Binomial Distribution	
3.6	Geometric Distribution	
CHAPTER 4	Examples of Continuous Probability Distributions	
4.1	Continuous Uniform Distribution	
4.2	Normal Distribution	37
4.3	Gamma Distribution, Exponential Distribution, and Chi-	
4.4	Squared Distribution	
4.4 4.5	Beta Distribution	
4.5 4.6	t-Distribution and F-Distribution	
4.0	ı-Distribution and 1'-Distribution	49

5.1 5.2 5.3 5.4 5.5 5.6	Multidimensional Probability Distributions Joint Probability Distribution Conditional Probability Distribution Contingency Table. Bayes' Theorem Covariance and Correlation Independence	52 53 53 55
CHAPTER 6 6.1 6.2 6.3 6.4	Examples of Multidimensional Probability Distributions Multinomial Distribution Multivariate Normal Distribution Dirichlet Distribution Wishart Distribution	62 63
CHAPTER 7 7.1 7.2 7.3 7.4	Sum of Independent Random Variables Convolution Reproductive Property Law of Large Numbers Central Limit Theorem	74 74
CHAPTER 8 8.1 8.2	Probability Inequalities Union Bound	82 82 83
8.3	Inequalities for Expectation	84 85 86
8.4	Inequalities for the Sum of Independent Random Variables 8.4.1 Chebyshev's Inequality and Chernoff's Inequality 8.4.2 Hoeffding's Inequality and Bernstein's Inequality 8.4.3 Bennett's Inequality	87 88
CHAPTER 9 9.1 9.2	Statistical Estimation Fundamentals of Statistical Estimation	92 92

9.3	9.2.4 Model Selection	95 95 96
CHAPTER 10 10.1 10.2 10.3 10.4 10.5	Hypothesis Testing Fundamentals of Hypothesis Testing	100 101 102 104 104 105 107 107
PART 3 GE	Monte Carlo Test ENERATIVE APPROACH TO STATISTICAL ECOGNITION	108
CHAPTER 11 11.1 11.2 11.3	Pattern Recognition via Generative Model Estimation Formulation of Pattern Recognition Statistical Pattern Recognition Criteria for Classifier Training 11.3.1 MAP Rule 11.3.2 Minimum Misclassification Rate Rule 11.3.3 Bayes Decision Rule 11.3.4 Discussion Generative and Discriminative Approaches	115 117 117 118 119 121
CHAPTER 12 12.1 12.2 12.3 12.4 12.5	Maximum Likelihood Estimation Definition	125 127 130 133 134 135
CHAPTER 13	Properties of Maximum Likelihood Estimation	139

13.1 13.2 13.3 13.4 13.5	Consistency Asymptotic Unbiasedness Asymptotic Efficiency 13.3.1 One-Dimensional Case 13.3.2 Multidimensional Cases Asymptotic Normality Summary	140 141 141 141 143
CHAPTER 14 14.1 14.2 14.3 14.4 14.5	Model Selection for Maximum Likelihood Estimation Model Selection KL Divergence AIC Cross Validation Discussion	147 148 150 154
CHAPTER 15	Maximum Likelihood Estimation for Gaussian Mixture	
15.1 15.2 15.3 15.4	Model Gaussian Mixture Model MLE Gradient Ascent Algorithm EM Algorithm	158 161
CHAPTER 16 16.1 16.2 16.3	Nonparametric Estimation Histogram Method	170 174 174 175 176 178
17.2 17.3 17.4	Bayesian Inference Bayesian Predictive Distribution. 17.1.1 Definition. 17.1.2 Comparison with MLE. 17.1.3 Computational Issues. Conjugate Prior. MAP Estimation. Bayesian Model Selection.	185 186 188 188 189
CHAPTER 18 18.1	Analytic Approximation of Marginal Likelihood Laplace Approximation	197 197 197

18.2	18.1.2 Illustration	200 200 202 202
CHAPTER 19 19.1 19.2 19.3	Numerical Approximation of Predictive Distribution Monte Carlo Integration Importance Sampling Sampling Algorithms 19.3.1 Inverse Transform Sampling 19.3.2 Rejection Sampling 19.3.3 Markov Chain Monte Carlo (MCMC) Method	207 208 208 212
20.1	Bayesian Mixture Models Gaussian Mixture Models	221 223
20.2	Latent Dirichlet Allocation (LDA)	229230231
MACHINE L	SCRIMINATIVE APPROACH TO STATISTICAL EARNING	
CHAPTER 21 21.1 21.2	Learning Models Linear-in-Parameter Model Kernel Model	239
21.3	Hierarchical Model	
22.1 22.2 22.3 22.4 22.5	Least Squares Regression Method of LS	246250251
CHAPTER 23 23.1 23.2	Constrained LS Regression Subspace-Constrained LSℓ2-Constrained LS	

23.3	Model Selection	262
CHAPTER 24 24.1 24.2 24.3 24.4	$ \begin{array}{c} \textbf{Sparse Regression} \\ \ell_1\text{-Constrained LS} \\ \textbf{Solving } \ell_1\text{-Constrained LS} \\ \textbf{Feature Selection by Sparse Learning} \\ \textbf{Various Extensions} \\ 24.4.1 \ \textbf{Generalized } \ell_1\text{-Constrained LS} \\ 24.4.2 \ \ell_p\text{-Constrained LS} \\ 24.4.3 \ \ell_1 + \ell_2\text{-Constrained LS} \\ 24.4.4 \ \ell_{1,2}\text{-Constrained LS} \\ 24.4.5 \ \textbf{Trace Norm Constrained LS} \\ \end{array} $	268 272 272 273 273 274 276
CHAPTER 25 25.1 25.2 25.3	$ \begin{array}{c} \textbf{Robust Regression} \\ \textbf{Nonrobustness of ℓ_2-Loss Minimization} \\ \ell_1\text{-Loss Minimization} \\ \textbf{Huber Loss Minimization} \\ \textbf{25.3.1 Definition} \\ \textbf{25.3.2 Stochastic Gradient Algorithm} \\ \textbf{25.3.3 Iteratively Reweighted LS} \\ \textbf{25.3.4 ℓ_1-Constrained Huber Loss Minimization} \\ \textbf{Tukey Loss Minimization} \\ \end{array} $	280 282 282 283 283 286
CHAPTER 26 26.1 26.2 26.3	Least Squares Classification Classification by LS Regression. 0/1-Loss and Margin. Multiclass Classification.	297
27.2 27.3 27.4 27.5 27.6	Maximum Margin Classification	
CHAPTER 28 28.1	Probabilistic Classification Logistic Regression	

28.2	LS Probabilistic Classification	325
CHAPTER 29 29.1 29.2 29.3	Structured Classification Sequence Classification Probabilistic Classification for Sequences 29.2.1 Conditional Random Field. 29.2.2 MLE 29.2.3 Recursive Computation. 29.2.4 Prediction for New Sample. Deterministic Classification for Sequences	330 330 333 333 336
PART 5 FU	RTHER TOPICS	
CHAPTER 30 30.1 30.2 30.3	Ensemble Learning Decision Stump Classifier	344 346 348 348
30.4	General Ensemble Learning	354
CHAPTER 31 31.1 31.2 31.3	Online Learning Stochastic Gradient Descent Passive-Aggressive Learning. 31.2.1 Classification. 31.2.2 Regression. Adaptive Regularization of Weight Vectors (AROW). 31.3.1 Uncertainty of Parameters. 31.3.2 Classification. 31.3.3 Regression.	356 357 358 360 360 361
CHAPTER 32 32.1 32.2 32.3	Confidence of PredictionPredictive Variance for ℓ_2 -Regularized LS.Bootstrap Confidence Estimation.Applications.32.3.1 Time-series Prediction.32.3.2 Tuning Parameter Optimization.	367 368 368
CHAPTER 33 33.1 33.2	Semisupervised Learning Manifold Regularization	375 377 378

33.3	33.2.2 Relative Importance Weighted Learning	382 383 385 385
CHAPTER 34	Multitask Learning	391
34.1	Task Similarity Regularization	391
	34.1.1 Formulation	
	34.1.2 Analytic Solution	
	34.1.3 Efficient Computation for Many Tasks	
34.2	Multidimensional Function Learning	
	34.2.1 Formulation	
24.2	34.2.2 Efficient Analytic Solution	
34.3	Matrix Regularization	
	34.3.2 Proximal Gradient for Trace Norm	397
	Regularization	400
CHAPTER 35	Linear Dimensionality Reduction	405
35.1	Curse of Dimensionality	
35.2	Unsupervised Dimensionality Reduction	
	35.2.1 PCA	
25.2	35.2.2 Locality Preserving Projection	
35.3	Linear Discriminant Analyses for Classification	
	35.3.1 Fisher Discriminant Analysis	
	35.3.3 Semisupervised Local Fisher Discriminant	414
	Analysis	417
35.4	Sufficient Dimensionality Reduction for Regression	
	35.4.1 Information Theoretic Formulation	
	35.4.2 Direct Derivative Estimation	422
35.5	Matrix Imputation	425
CHAPTER 36	Nonlinear Dimensionality Reduction	429
36.1	Dimensionality Reduction with Kernel Trick	
	36.1.1 Kernel PCA	
36.2	36.1.2 Laplacian Eigenmap	433
30.2	Networks	125
36.3	Unsupervised Dimensionality Reduction with	700
30.3	Autoencoder	436
	36.3.1. Autoencoder	436

36.4 36.5	36.3.2 Training by Gradient Descent 36.3.3 Sparse Autoencoder Unsupervised Dimensionality Reduction with Restricted Boltzmann Machine 36.4.1 Model 36.4.2 Training by Gradient Ascent Deep Learning	439 440 441 442
CHAPTER 37 37.1 37.2 37.3 37.4	Clustering k-Means Clustering Kernel k-Means Clustering Spectral Clustering Tuning Parameter Selection	448 449
CHAPTER 38 38.1 38.2 38.3	Outlier Detection Density Estimation and Local Outlier Factor Support Vector Data Description Inlier-Based Outlier Detection	458
CHAPTER 39 39.1	Change Detection Distributional Change Detection $39.1.1$ KL Divergence $39.1.2$ Pearson Divergence $39.1.3$ L_2 -Distance $39.1.4$ L_1 -Distance $39.1.5$ Maximum Mean Discrepancy (MMD) $39.1.6$ Energy Distance $39.1.7$ Application to Change Detection in Time Series	470 470 471 474 476 477 477
39.2	Structural Change Detection	478 478
References		485
Index		491

List of Figures

Fig. 1.1	Regression.	5
Fig. 1.2	Classification.	5
Fig. 1.3	Clustering.	6
Fig. 1.4	Outlier detection.	6
Fig. 1.5	Dimensionality reduction.	7
Fig. 2.1	Combination of events.	12
Fig. 2.2	Examples of probability mass function. Outcome of throwing a fair six-sided dice (discrete uniform distribution $U\{1,2,\ldots,6\}$).	14
Fig. 2.3	Example of probability density function and its cumulative distribution function.	15
Fig. 2.4	Expectation is the average of x weighted according to $f(x)$, and median is the 50% point both from the left-hand and right-hand sides. α -quantile for $0 \le \alpha \le 1$ is a generalization of the median that gives the $100\alpha\%$ point from	
	the left-hand side. Mode is the maximizer of $f(x)$.	16
Fig. 2.5	Income distribution. The expectation is 62.1 thousand dollars, while the median is 31.3 thousand dollars.	17
Fig. 2.6	Skewness.	20
Fig. 2.7	Kurtosis.	20
Fig. 2.8	Taylor series expansion at the origin.	21
Fig. 2.9	One-dimensional change of variables in integration. For multidimensional cases, see Fig. 4.2.	23
Fig. 3.1	Probability mass functions of binomial distribution $Bi(n, p)$.	26
Fig. 3.2	Sampling from a bag. The bag contains N balls which consist of $M < N$ balls labeled as "A" and $N - M$ balls labeled as "B." n balls are sampled from	27
Fig. 3.3	the bag, which consists of x balls labeled as "A" and $n-x$ balls labeled as "B." Sampling with and without replacement. The sampled ball is returned to the bag before the next ball is sampled in sampling with replacement, while the next ball is sampled without returning the previously sampled ball in	27
	sampling without replacement.	28
Fig. 3.4	Probability mass functions of hypergeometric distribution $HG(N, M, n)$.	29
Fig. 3.5	Probability mass functions of $Bi(n, M/N)$ and $HG(N, M, n)$ for $N = 100$, $M = 90$, and $n = 90$.	29
Fig. 3.6	Probability mass functions of Poisson distribution $Po(\lambda)$.	34
Fig. 3.7	Probability mass functions of negative binomial distribution $NB(k,p)$.	34
Fig. 3.8	Probability mass functions of geometric distribution $Ge(p)$.	35
Fig. 4.1	Gaussian integral.	39
Fig. 4.2	Two-dimensional change of variables in integration.	40
Fig. 4.3	Probability density functions of normal density $N(\mu, \sigma^2)$.	40
Fig. 4.4	Standard normal distribution $N(0,1)$. A random variable following $N(0,1)$ is included in $[-1,1]$ with probability 68.27%, in $[-2,2]$ with probability	
	95.45%, and in $[-3,3]$ with probability $99.73%$.	41

Fig. 4.5	Gamma function. $\Gamma(\alpha + 1) = \alpha!$ holds for non-negative integer α , and the gamma function smoothly interpolates the factorials.	42
Fig. 4.6	Probability density functions of gamma distribution $Ga(\alpha, \lambda)$.	43
Fig. 4.7	Probability density functions of beta distribution $Be(\alpha, \beta)$.	46
Fig. 4.8	Probability density functions of Cauchy distribution $Ca(a,b)$, Laplace distribution $La(a,b)$, and normal distribution $N(a,b^2)$.	48
Fig. 4.9	Probability density functions of t -distribution $t(d)$, Cauchy distribution $Ca(0,1)$, and normal distribution $N(0,1)$.	49
Fig. 4.10	Probability density functions of F -distribution $F(d, d')$.	50
Fig. 5.1	Correlation coefficient $\rho_{x,y}$. Linear relation between x and y can be captured.	57
Fig. 5.2	Correlation coefficient for nonlinear relations. Even when there is a nonlinear relation between <i>x</i> and <i>y</i> , the correlation coefficient can be close to zero if the probability distribution is symmetric.	58
Fig. 5.3	Example of x and y which are uncorrelated but dependent.	59
Fig. 6.1	Probability density functions of two-dimensional normal distribution $N(\mu, \Sigma)$ with $\mu = (0,0)^{T}$.	64
Fig. 6.2	Eigenvalue decomposition.	65
Fig. 6.3	Contour lines of the normal density. The principal axes of the ellipse are parallel to the eigenvectors of variance-covariance matrix Σ , and their length is proportional to the square root of the eigenvalues.	66
Fig. 6.4	Probability density functions of Dirichlet distribution $Dir(\alpha)$. The center of gravity of the triangle corresponds to $x^{(1)} = x^{(2)} = x^{(3)} = 1/3$, and each vertex represents the point that the corresponding variable takes one and the	
	others take zeros.	69
Fig. 6.5	Vectorization operator and Kronecker product.	71
Fig. 7.1	Arithmetic mean, geometric mean, and harmonic mean.	76
Fig. 7.2	Law of large numbers.	77
Fig. 7.3	Central limit theorem. The solid lines denote the normal densities.	78
Fig. 8.1	Markov's inequality.	83
Fig. 8.2	Chebyshev's inequality.	84
Fig. 8.3	Convex function and tangent line.	85
Fig. 8.4	$h(u) = (1+u)\log(1+u) - u$ and $g(u) = \frac{u^2}{2+2u/3}$.	90
Fig. 9.1	Confidence interval for normal samples.	96
Fig. 9.2	Bootstrap resampling by sampling with replacement.	97
Fig. 10.1	Critical region and critical value.	101
Fig. 11.1	Hand-written digit image and its vectorization.	114
Fig. 11.2	Constructing a classifier is equivalent to determine a discrimination function, decision regions, and decision boundaries.	115

Fig. 11.3	Dimensionality reduction onto a two-dimensional subspace by principal component analysis (see Section 35.2.1).				
Fig. 11.4	Illustration of hand-written digit samples in the pattern space.	117			
Fig. 11.5	MAP rule.	118			
Fig. 11.6	Minimum misclassification rate rule.	119			
11g. 11.0	William miscrassification rate rule.	119			
Fig. 12.1	Likelihood equation, setting the derivative of the likelihood to zero, is a necessary condition for the maximum likelihood solution but is not a	101			
Ti 100	sufficient condition in general.	124			
Fig. 12.2	Log function is monotone increasing.	125			
Fig. 12.3	Formulas for vector and matrix derivatives [80].	126			
Fig. 12.4	MATLAB code for MLE with one-dimensional Gaussian model.	128			
Fig. 12.5	Example of MLE with one-dimensional Gaussian model.	128			
Fig. 12.6	Orthogonal projection.	130			
Fig. 12.7	Mahalanobis distance having hyperellipsoidal contours.	130			
Fig. 12.8	Linear discriminant analysis.	132			
Fig. 12.9	When the classwise sample ratio n_1/n_2 is changed.	132			
Fig. 12.10	When the classwise sample distributions are rotated.	133			
Fig. 12.11	Matrix and third tensor.	134			
Fig. 12.12	Misclassified test patterns.	136			
Fig. 12.13	•	137			
Fig. 12.14	Confusion matrix for 10-class classification by FDA. The correct classification rate is $1798/2000 = 89.9\%$.	138			
Fig. 13.1	Bias-variance decomposition of expected squared error.	140			
Fig. 13.2	MATLAB code for illustrating asymptotic normality of MLE.	145			
Fig. 13.3	Example of asymptotic normality of MLE.	145			
Fig. 14.1	Model selection. Too simple model may not be expressive enough to represent the true probability distribution, while too complex model may cause unreliable parameter estimation.	148			
Fig. 14.2	For nested models, log-likelihood is monotone nondecreasing as the model complexity increases.	150			
Fig. 14.3	AIC is the sum of the negative log-likelihood and the number of parameters.	151			
Fig. 14.4	Big-o and small-o notations.	152			
Fig. 14.5	Cross validation.	154			
Fig. 14.6	Algorithm of likelihood cross validation.	155			
Fig. 15.1	MLE for Gaussian model.	158			
Fig. 15.2	Example of Gaussian mixture model: $q(x) = 0.4N(x; -2, 1.5^2) + 0.2N(x; 2, 2^2) + 0.4N(x; 3, 1^2)$.	159			
Fig. 15.3	Schematic of gradient ascent.	161			
Fig. 15.4	Algorithm of gradient ascent.	161			
Fig. 15.5	Step size ε in gradient ascent. The gradient flow can overshoot the peak if ε				
	is large, while gradient ascent is slow if ε is too small.	162			
Fig. 15.6	EM algorithm.	163			

Fig. 15.7	Maximizing the lower bound $b(\theta)$ of the log-likelihood log $L(\theta)$.	164
Fig. 15.8	Jensen's inequality for $m = 2$. log is a concave function.	164
Fig. 15.9	MATLAB code of EM algorithm for Gaussian mixture model.	166
Fig. 15.10	Example of EM algorithm for Gaussian mixture model. The size of ellipses	
	is proportional to the mixing weights $\{w_\ell\}_{\ell=1}^m$.	167
Fig. 16.1	Examples of Gaussian MLE.	170
Fig. 16.2	Example of histogram method.	170
Fig. 16.3	MATLAB code for inverse transform sampling (see Section 19.3.1) for probability density function shown in Fig. 16.1(b). The bottom function	
	should be saved as "myrand.m."	171
Fig. 16.4	Choice of bin width in histogram method.	171
Fig. 16.5	Notation of nonparametric methods.	172
Fig. 16.6	Probability <i>P</i> approximated by the size of rectangle.	172
Fig. 16.7	Normalized variance of binomial distribution.	173
Fig. 16.8	Parzen window method.	174
Fig. 16.9	Example of Parzen window method.	175
Fig. 16.10	Example of Gaussian KDE. Training samples are the same as those in Fig. 16.9.	176
Fig. 16.11	Choice of kernel bandwidth h in KDE.	177
Fig. 16.12	MATLAB code for Gaussian KDE with bandwidth selected by likelihood cross validation. A random number generator "myrand.m" shown in Fig. 16.3	
	is used.	177
Fig. 16.13	Example of Gaussian KDE with bandwidth selected by likelihood cross validation.	178
Fig. 16.14	MATLAB code for NNDE with the number of nearest neighbors selected by likelihood cross validation. A random number generator "myrand.m" shown	
	in Fig. 16.3 is used.	179
Fig. 16.15	Example of NNDE with the number of nearest neighbors selected by likelihood cross validation.	180
Fig. 16.16	Example of nearest neighbor classifier.	181
Fig. 16.17	Algorithm of cross validation for misclassification rate.	182
Fig. 16.18	MATLAB code for k -nearest neighbor classifier with k chosen by cross	102
115. 10.10	validation. The bottom function should be saved as "knn.m."	183
Fig. 16.19		100
	classification rate is 1932/2000 = 96.6%.	183
Fig. 17.1	Bayes vs. MLE. The maximum likelihood solution \widehat{p}_{ML} is always confined in the parametric model $q(x; \theta)$, while the Bayesian predictive distribution	
	$\widehat{p}_{\mathrm{Bayes}}(x)$ generally pops out from the model.	187
Fig. 17.2	MAP estimation.	190
Fig. 17.3	Example of MLE for Gaussian model. When the number of training samples, <i>n</i> , is small, MLE tends to overfit the samples.	190
Fig. 17.4	MATLAB code for penalized MLE with one-dimensional Gaussian model.	192
Fig. 17.5	Example of MAP estimation with one-dimensional Gaussian model.	192

Fig. 17.6 Fig. 17.7	MATLAB code for empirical Bayes. Example of empirical Bayes.	195 195
Fig. 18.1	Laplace approximation.	199
Fig. 19.1	Numerical computation of π by Monte Carlo integration.	206
Fig. 19.2	MATLAB code for numerically computing π by Monte Carlo integration.	207
Fig. 19.3	MATLAB code for importance sampling.	208
Fig. 19.4	Examples of probability density function $p(\theta)$ and its cumulative distribution function $P(\theta)$. Cumulative distribution function is monotone nondecreasing	
	and satisfies $\lim_{\theta\to\infty} P(\theta) = 0$ and $\lim_{\theta\to\infty} P(\theta) = 1$.	209
Fig. 19.5	Inverse transform sampling.	209
Fig. 19.6	$\theta \le \theta'$ implies $P(\theta) \le P(\theta')$.	210
Fig. 19.7	Laplace distribution.	211
Fig. 19.8	MATLAB code for inverse transform sampling.	211
Fig. 19.9	Example of inverse transform sampling for Laplace distribution.	212
Fig. 19.10	Algorithm of rejection sampling.	212
Fig. 19.11	Illustration of rejection sampling when the proposal distribution is uniform.	213
Fig. 19.12	MATLAB code for rejection sampling.	214
Fig. 19.13	Example of rejection sampling.	214
Fig. 19.14	Computational efficiency of rejection sampling. (a) When the upper bound	
	of the probability density, κ , is small, proposal points are almost always accepted and thus rejection sampling is computationally efficient. (b) When	
	κ is large, most of the proposal points will be rejected and thus rejection	
	sampling is computationally expensive.	215
Fig. 19.15	Random walk.	216
Fig. 19.16	MATLAB code for Metropolis-Hastings sampling. The bottom function	
	should be saved as "pdf.m."	217
Fig. 19.17	Example of Metropolis-Hastings sampling.	218
Fig. 19.18	MATLAB code for Gibbs sampling.	219
Fig. 19.19	Example of Gibbs sampling.	220
Fig. 20.1	Variational Bayesian formulation of Gaussian mixture model.	223
Fig. 20.2	VBEM algorithm for Gaussian mixture model. $(\alpha_0, \beta_0, W_0, \nu_0)$ are hyperparameters.	225
Fig. 20.3	MATLAB code of VBEM algorithm for Gaussian mixture model.	226
Fig. 20.4	Example of VBEM algorithm for Gaussian mixture model. The size of ellipses is proportional to the mixing weights $\{w_\ell\}_{\ell=1}^m$. A mixture model of	
	five Gaussian components is used here, but three components have mixing coefficient close to zero and thus they are almost eliminated.	227
Fig. 20.5	MATLAB code of collapsed Gibbs sampling for Gaussian mixture model.	229
Fig. 20.6	Example of collapsed Gibbs sampling for Gaussian mixture model. A mix-	
	ture model of five Gaussian components is used here, but only two compo-	
	nents remain and no samples belong to the remaining three components.	230
Fig. 21.1	Linear-in-input model cannot approximate nonlinear functions.	238

Fig. 21.2	Multidimensional basis functions. The multiplicative model is expressive, but the number of parameters grows exponentially in input dimensionality. On the other hand, in the additive model, the number of parameters grows only linearly in input dimensionality, but its expression power is limited.	239
Fig. 21.3	Gaussian kernel with bandwidth h and center c .	240
Fig. 21.4	One-dimensional Gaussian kernel model. Gaussian functions are located at	
	training input samples $\{x_i\}_{i=1}^n$ and their height $\{\theta_i\}_{i=1}^n$ is learned.	241
Fig. 21.5	Two-dimensional Gaussian kernel model. The curse of dimensionality is	
	mitigated by only approximating the learning target function in the vicinity	
	of training input samples.	241
Fig. 21.6	Sigmoidal function.	242
Fig. 21.7	Hierarchical model as a three-layered network.	243
Fig. 22.1	Generalized inverse.	247
Fig. 22.2	Singular value decomposition.	248
Fig. 22.3	MATLAB code for LS regression.	249
Fig. 22.4	Example of LS regression with sinusoidal basis functions $\phi(x) =$	
	$(1, \sin \frac{x}{2}, \cos \frac{x}{2}, \sin \frac{2x}{2}, \cos \frac{2x}{2}, \dots, \sin \frac{15x}{2}, \cos \frac{15x}{2})^{T}.$	249
Fig. 22.5	Geometric interpretation of LS method for linear-in-parameter model. Train-	
	ing output vector y is projected onto the range of Φ , denoted by $\mathcal{R}(\Phi)$, for	
	denoising purposes.	251
Fig. 22.6	Algorithm of stochastic gradient descent for LS regression with a linear-in-	
	parameter model.	252
Fig. 22.7	MATLAB code of stochastic gradient descent for LS regression with the	
	Gaussian kernel model.	253
Fig. 22.8	Example of stochastic gradient descent for LS regression with the Gaussian	
	kernel model. For $n = 50$ training samples, the Gaussian bandwidth is set at	
	h = 0.3.	254
Fig. 22.9	Gradient descent for nonlinear models. The training squared error J_{LS} is	251
E: 22.10	nonconvex and there exist multiple local optimal solutions in general.	254
Fig. 22.10	MATLAB code for error back-propagation algorithm.	255
Fig. 22.11	Example of regression by error back-propagation algorithm.	255
Fig. 23.1	Examples of LS regression for linear-in-parameter model when the	
	noise level in training output is high. Sinusoidal basis functions	
	$\{1, \sin\frac{x}{2}, \cos\frac{x}{2}, \sin\frac{2x}{2}, \cos\frac{2x}{2}, \dots, \sin\frac{15x}{2}, \cos\frac{15x}{2}\}$ are used in ordinary LS,	
	while its subset $\{1, \sin \frac{x}{2}, \cos \frac{x}{2}, \sin \frac{2x}{2}, \cos \frac{2x}{2}, \dots, \sin \frac{5x}{2}, \cos \frac{5x}{2}\}$ is used in	
	the subspace-constrained LS method.	258
Fig. 23.2	Constraint in parameter space.	258
Fig. 23.3	MATLAB code for subspace-constrained LS regression.	259
Fig. 23.4	Parameter space in ℓ_2 -constrained LS.	259
Fig. 23.5	Lagrange dual problem.	260
Fig. 23.6	MATLAB code of ℓ_2 -constrained LS regression for Gaussian kernel model.	262
Fig. 23.7	Example of ℓ_2 -constrained LS regression for Gaussian kernel model. The	
	Gaussian bandwidth is set at $h = 0.3$, and the regularization parameter is set	252
	at $\lambda = 0.1$.	262

Fig. 23.8 Fig. 23.9	Parameter space in generalized ℓ_2 -constrained LS. Examples of ℓ_2 -constrained LS with the Gaussian kernel model for different	263
	Gaussian bandwidth h and different regularization parameter λ .	263
Fig. 23.10	MATLAB code of cross validation for ℓ_2 -constrained LS regression.	264
Fig. 23.11	Example of cross validation for ℓ_2 -constrained LS regression. The cross	
	validation error for all Gaussian bandwidth h and regularization parameter λ	
	is plotted, which is minimized at $(h, \lambda) = (0.3, 0.1)$. See Fig. 23.9 for learned	265
E' 02.10	functions.	265
Fig. 23.12	Matrix inversion lemma.	265
Fig. 24.1	Parameter space in ℓ_1 -constrained LS.	268
Fig. 24.2	The solution of ℓ_1 -constrained LS tends to be on one of the coordinate axes,	
	which is a sparse solution.	269
Fig. 24.3	Alternating direction method of multipliers.	270
Fig. 24.4	MATLAB code of ℓ_1 -constrained LS by ADMM for Gaussian kernel model.	271
Fig. 24.5	Example of ℓ_1 -constrained LS for Gaussian kernel model. 38 out of 50	
	parameters are zero.	271
Fig. 24.6	Unit ℓ_p -balls.	274
Fig. 24.7	Properties of ℓ_p -constraint.	275
Fig. 24.8	Unit $(\ell_1 + \ell_2)$ -norm ball for balance parameter $\tau = 1/2$, which is similar to	
	the unit $\ell_{1.4}$ -ball. However, while the $\ell_{1.4}$ -ball has no corner, the $(\ell_1 + \ell_2)$ -ball	
	has corners.	276
Fig. 24.9	Constraints in three-dimensional parameter space.	277
Fig. 24.10	Trace norm of a matrix.	278
Fig. 25.1	LS solution for straight-line model $f_{\theta}(x) = \theta_1 + \theta_2 x$, which is strongly	
	affected by an outlier.	280
Fig. 25.2	ℓ_2 -loss and ℓ_1 -loss. The ℓ_2 -loss magnifies large residuals.	281
Fig. 25.3	Solution of least absolute deviations for straight-line model $f_{\theta}(x) = \theta_1 + \theta_2 x$	
	for the same training samples as Fig. 25.1. Least absolute deviations give a	
	much more robust solution than LS.	281
Fig. 25.4	Huber loss, with threshold $\eta = 1$.	282
Fig. 25.5	Quadratic upper bound $\frac{\eta r^2}{2c} + \frac{\eta c}{2} - \frac{\eta^2}{2}$ of Huber loss $\rho_{\text{Huber}}(r)$ for $c > 0$,	
	which touches each other at $r = \pm c$.	284
Fig. 25.6	Weight functions for Huber loss minimization and Tukey loss minimization.	285
Fig. 25.7	Updated solution $\hat{\theta}$ is no worse than current solution $\tilde{\theta}$.	285
Fig. 25.8	Iteratively reweighted LS for Huber loss minimization.	286
Fig. 25.9	MATLAB code of iteratively reweighted LS for Huber loss minimization.	
	Straight-line model $f_{\theta}(x) = \theta_1 + \theta_2 x$ is used, with threshold $\eta = 1$.	287
Fig. 25.10	Examples of iteratively reweighted LS for Huber loss minimization. Straight-	
	line model $f_{\theta}(x) = \theta_1 + \theta_2 x$ is used, with threshold $\eta = 1$.	288
Fig. 25.11	Quadratic upper bound $\frac{\theta^2}{2c} + \frac{c}{2}$ of absolute value $ \theta $ for $c > 0$, which touches	
	each other at $\theta = \pm c$.	289
Fig. 25.12	Iteratively reweighted LS for ℓ_1 -regularized Huber loss minimization.	289
Fig. 25.13	MATLAB code of iteratively reweighted LS for ℓ_1 -regularized Huber loss	
	minimization with Gaussian kernel model	290

Fig. 25.14	Example of ℓ_1 -regularized Huber loss minimization with Gaussian kernel model.	291
Fig. 25.15	Tukey loss, with threshold $\eta = 3$.	291
Fig. 25.16	Example of Tukey loss minimization. Tukey loss minimization gives more robust solutions than Huber loss minimization, but only a local optimal solution can be obtained.	292
Fig. 26.1	Binary classification as function approximation.	296
Fig. 26.2	MATLAB code of classification by ℓ_2 -regularized LS for Gaussian kernel model.	296
Fig. 26.3	Example of classification by ℓ_2 -regularized LS for Gaussian kernel model.	297
Fig. 26.4	$0/1$ -loss and ℓ_2 -loss as functions of margin $m = f_{\theta}(x)y$.	298
Fig. 26.5	Example of ℓ_2 -loss minimization for linear-in-input model. Since the ℓ_2 -loss has a positive slope when $m > 1$, the obtained solution contains some classification error even though all samples can be correctly classified in principle.	299
Fig. 26.6	Popular surrogate loss functions.	300
Fig. 26.7	One-versus-rest reduction of multiclass classification problem.	301
Fig. 26.8	One-versus-one reduction of multiclass classification problem.	301
Fig. 27.1	Linear-in-input binary classifier $f_{w,\gamma}(x) = w^{\top}x + \gamma$. w and γ are the normal vector and the intercept of the decision boundary, respectively.	304
Fig. 27.2	Decision boundaries that separate all training samples correctly.	304
Fig. 27.3	Decision boundary of hard margin support vector machine. It goes through the center of positive and negative training samples, $\mathbf{w}^{\top} \mathbf{x}_{+} + \gamma = +1$ for some positive sample \mathbf{x}_{+} and $\mathbf{w}^{\top} \mathbf{x}_{-} + \gamma = -1$ for some negative sample \mathbf{x}_{-} .	305
Fig. 27.4	Soft margin support vector machine allows small margin errors.	306
Fig. 27.5	Quadratic programming.	307
Fig. 27.6	Example of linear support vector classification. Among 200 dual parameters $\{\alpha_i\}_{i=1}^n$, 197 parameters take zero and only 3 parameters specified by the square in the plot take nonzero values.	309
Fig. 27.7	KKT optimality conditions.	310
Fig. 27.8	When $\alpha_i = 0$, x_i is inside the margin and correctly classified. When $0 < \alpha_i < C$, x_i is on the margin border (the dotted lines) and correctly classified. When $\alpha_i = C$, x_i is outside the margin, and if $\xi_i > 1$, $m_i < 0$ and thus x_i is misclassified.	310
Fig. 27.9	Nonlinearization of support vector machine by kernel trick.	311
Fig. 27.10	MATLAB code of support vector classification for Gaussian kernel. quadprog.m included in Optimization Toolbox is required. Free alternatives to quadprog.m are available, e.g. from http://www.mathworks.com/	
	matlabcentral/fileexchange/.	313
Fig. 27.11	Example of support vector classification for Gaussian kernel.	314
Fig. 27.12	Hinge loss and squared hinge loss.	315
Fig. 27.13	Hinge loss as maximizer of $1 - m$ and 0.	316
Fig. 27.14	Iterative retargeted LS for ℓ_2 -regularized squared hinge loss minimization.	317

Fig. 27.15	MATLAB code of iterative retargeted LS for ℓ_2 -regularized squared hinge loss minimization.	318
Fig. 27.16	Example of ℓ_2 -regularized squared hinge loss minimization.	319
Fig. 27.17	Examples of support vector classification with outliers.	319
Fig. 27.18	Ramp loss and squared ramp loss.	320
8		
Fig. 28.1	Stochastic gradient algorithm for logistic regression.	322
Fig. 28.2	MATLAB code of stochastic gradient ascent for logistic regression.	323
Fig. 28.3	Example of stochastic gradient ascent for logistic regression.	324
Fig. 28.4	Logistic loss.	325
Fig. 28.5	MATLAB code for LS probabilistic classification.	327
Fig. 28.6	Example of LS probabilistic classification for the same data set as Fig. 28.3.	328
Fig. 29.1	Classification of sequence of hand-written digits.	330
Fig. 29.1	Sequence classification.	331
Fig. 29.3	Stochastic gradient algorithm for conditional random field.	333
Fig. 29.4	Dynamic programming, which solves a complex optimization problem by	333
116.27.1	breaking it down into simpler subproblems recursively. When the number of	
	steps to the goal is counted, dynamic programming trace back the steps from	
	the goal. In this case, many subproblems of counting the number of steps	
	from other positions are actually shared and thus dynamic programming can	
	efficiently reuse the solutions to reduce the computation costs.	334
Fig. 30.1	Ensemble learning. Bagging trains weak learners in parallel, while boosting	
Fig. 30.1	Ensemble learning. Bagging trains weak learners in parallel, while boosting sequentially trains weak learners.	344
Fig. 30.1 Fig. 30.2		344
	sequentially trains weak learners.	344 344
	sequentially trains weak learners. Decision stump and decision tree classifiers. A decision stump is a depth-one	
Fig. 30.2	sequentially trains weak learners. Decision stump and decision tree classifiers. A decision stump is a depth-one version of a decision tree.	344
Fig. 30.2 Fig. 30.3	sequentially trains weak learners. Decision stump and decision tree classifiers. A decision stump is a depth-one version of a decision tree. MATLAB code for decision stump classification. Example of decision stump classification. Algorithm of bagging.	344 345
Fig. 30.2 Fig. 30.3 Fig. 30.4	sequentially trains weak learners. Decision stump and decision tree classifiers. A decision stump is a depth-one version of a decision tree. MATLAB code for decision stump classification. Example of decision stump classification.	344 345 345
Fig. 30.2 Fig. 30.3 Fig. 30.4 Fig. 30.5	sequentially trains weak learners. Decision stump and decision tree classifiers. A decision stump is a depth-one version of a decision tree. MATLAB code for decision stump classification. Example of decision stump classification. Algorithm of bagging. MATLAB code of bagging for decision stumps. Example of bagging for decision stumps.	344 345 345 346
Fig. 30.2 Fig. 30.3 Fig. 30.4 Fig. 30.5 Fig. 30.6	sequentially trains weak learners. Decision stump and decision tree classifiers. A decision stump is a depth-one version of a decision tree. MATLAB code for decision stump classification. Example of decision stump classification. Algorithm of bagging. MATLAB code of bagging for decision stumps. Example of bagging for decision stumps. Algorithm of adaboost.	344 345 345 346 346
Fig. 30.2 Fig. 30.3 Fig. 30.4 Fig. 30.5 Fig. 30.6 Fig. 30.7	sequentially trains weak learners. Decision stump and decision tree classifiers. A decision stump is a depth-one version of a decision tree. MATLAB code for decision stump classification. Example of decision stump classification. Algorithm of bagging. MATLAB code of bagging for decision stumps. Example of bagging for decision stumps. Algorithm of adaboost. Confidence of classifier in adaboost. The confidence of classifier φ , denoted	344 345 345 346 346 347 349
Fig. 30.2 Fig. 30.3 Fig. 30.4 Fig. 30.5 Fig. 30.6 Fig. 30.7 Fig. 30.8 Fig. 30.9	sequentially trains weak learners. Decision stump and decision tree classifiers. A decision stump is a depth-one version of a decision tree. MATLAB code for decision stump classification. Example of decision stump classification. Algorithm of bagging. MATLAB code of bagging for decision stumps. Example of bagging for decision stumps. Cample of bagging for decision stumps. Confidence of classifier in adaboost. The confidence of classifier φ , denoted by θ , is determined based on the weighted misclassification rate R .	344 345 345 346 346 347 349
Fig. 30.2 Fig. 30.3 Fig. 30.4 Fig. 30.5 Fig. 30.6 Fig. 30.7 Fig. 30.8 Fig. 30.9	sequentially trains weak learners. Decision stump and decision tree classifiers. A decision stump is a depth-one version of a decision tree. MATLAB code for decision stump classification. Example of decision stump classification. Algorithm of bagging. MATLAB code of bagging for decision stumps. Example of bagging for decision stumps. Algorithm of adaboost. Confidence of classifier in adaboost. The confidence of classifier φ , denoted by θ , is determined based on the weighted misclassification rate R . MATLAB code of adaboost for decision stumps.	344 345 345 346 347 349 350 351
Fig. 30.2 Fig. 30.3 Fig. 30.4 Fig. 30.5 Fig. 30.6 Fig. 30.7 Fig. 30.8 Fig. 30.9 Fig. 30.10 Fig. 30.11	sequentially trains weak learners. Decision stump and decision tree classifiers. A decision stump is a depth-one version of a decision tree. MATLAB code for decision stump classification. Example of decision stump classification. Algorithm of bagging. MATLAB code of bagging for decision stumps. Example of bagging for decision stumps. Algorithm of adaboost. Confidence of classifier in adaboost. The confidence of classifier φ , denoted by θ , is determined based on the weighted misclassification rate R . MATLAB code of adaboost for decision stumps. Example of adaboost for decision stumps.	344 345 345 346 346 347 349 350 351 352
Fig. 30.2 Fig. 30.3 Fig. 30.4 Fig. 30.5 Fig. 30.6 Fig. 30.7 Fig. 30.8 Fig. 30.9 Fig. 30.10 Fig. 30.11 Fig. 30.12	sequentially trains weak learners. Decision stump and decision tree classifiers. A decision stump is a depth-one version of a decision tree. MATLAB code for decision stump classification. Example of decision stump classification. Algorithm of bagging. MATLAB code of bagging for decision stumps. Example of bagging for decision stumps. Algorithm of adaboost. Confidence of classifier in adaboost. The confidence of classifier φ , denoted by θ , is determined based on the weighted misclassification rate R . MATLAB code of adaboost for decision stumps. Example of adaboost for decision stumps. Example of adaboost for decision stumps.	344 345 345 346 346 347 349 350 351 352 353
Fig. 30.2 Fig. 30.3 Fig. 30.4 Fig. 30.5 Fig. 30.6 Fig. 30.7 Fig. 30.8 Fig. 30.9 Fig. 30.10 Fig. 30.11	sequentially trains weak learners. Decision stump and decision tree classifiers. A decision stump is a depth-one version of a decision tree. MATLAB code for decision stump classification. Example of decision stump classification. Algorithm of bagging. MATLAB code of bagging for decision stumps. Example of bagging for decision stumps. Algorithm of adaboost. Confidence of classifier in adaboost. The confidence of classifier φ , denoted by θ , is determined based on the weighted misclassification rate R . MATLAB code of adaboost for decision stumps. Example of adaboost for decision stumps.	344 345 345 346 346 347 349 350 351 352
Fig. 30.2 Fig. 30.3 Fig. 30.4 Fig. 30.5 Fig. 30.6 Fig. 30.7 Fig. 30.8 Fig. 30.9 Fig. 30.10 Fig. 30.11 Fig. 30.12	sequentially trains weak learners. Decision stump and decision tree classifiers. A decision stump is a depth-one version of a decision tree. MATLAB code for decision stump classification. Example of decision stump classification. Algorithm of bagging. MATLAB code of bagging for decision stumps. Example of bagging for decision stumps. Algorithm of adaboost. Confidence of classifier in adaboost. The confidence of classifier φ , denoted by θ , is determined based on the weighted misclassification rate R . MATLAB code of adaboost for decision stumps. Example of adaboost for decision stumps. Example of adaboost for decision stumps.	344 345 345 346 346 347 349 350 351 352 353
Fig. 30.2 Fig. 30.3 Fig. 30.4 Fig. 30.5 Fig. 30.6 Fig. 30.7 Fig. 30.8 Fig. 30.9 Fig. 30.10 Fig. 30.11 Fig. 30.12 Fig. 30.13	sequentially trains weak learners. Decision stump and decision tree classifiers. A decision stump is a depth-one version of a decision tree. MATLAB code for decision stump classification. Example of decision stump classification. Algorithm of bagging. MATLAB code of bagging for decision stumps. Example of bagging for decision stumps. Algorithm of adaboost. Confidence of classifier in adaboost. The confidence of classifier φ , denoted by θ , is determined based on the weighted misclassification rate R . MATLAB code of adaboost for decision stumps. Example of adaboost for decision stumps. Example of adaboost for decision stumps. Exponential loss. Loss functions for boosting.	344 345 345 346 346 347 349 350 351 352 353
Fig. 30.2 Fig. 30.3 Fig. 30.4 Fig. 30.5 Fig. 30.6 Fig. 30.7 Fig. 30.8 Fig. 30.9 Fig. 30.10 Fig. 30.11 Fig. 30.12 Fig. 30.13	sequentially trains weak learners. Decision stump and decision tree classifiers. A decision stump is a depth-one version of a decision tree. MATLAB code for decision stump classification. Example of decision stump classification. Algorithm of bagging. MATLAB code of bagging for decision stumps. Example of bagging for decision stumps. Algorithm of adaboost. Confidence of classifier in adaboost. The confidence of classifier φ , denoted by θ , is determined based on the weighted misclassification rate R . MATLAB code of adaboost for decision stumps. Example of adaboost for decision stumps. Exponential loss. Loss functions for boosting.	344 345 345 346 347 349 350 351 352 353 353
Fig. 30.2 Fig. 30.3 Fig. 30.4 Fig. 30.5 Fig. 30.6 Fig. 30.7 Fig. 30.8 Fig. 30.9 Fig. 30.10 Fig. 30.11 Fig. 30.12 Fig. 30.13 Fig. 31.1	sequentially trains weak learners. Decision stump and decision tree classifiers. A decision stump is a depth-one version of a decision tree. MATLAB code for decision stump classification. Example of decision stump classification. Algorithm of bagging. MATLAB code of bagging for decision stumps. Example of bagging for decision stumps. Algorithm of adaboost. Confidence of classifier in adaboost. The confidence of classifier φ , denoted by θ , is determined based on the weighted misclassification rate R . MATLAB code of adaboost for decision stumps. Example of adaboost for decision stumps. Example of adaboost for decision stumps. Considerable of adaboost for decision stumps. Exponential loss. Loss functions for boosting.	344 345 345 346 347 349 350 351 352 353 353
Fig. 30.2 Fig. 30.3 Fig. 30.4 Fig. 30.5 Fig. 30.6 Fig. 30.7 Fig. 30.8 Fig. 30.9 Fig. 30.10 Fig. 30.11 Fig. 30.12 Fig. 30.13 Fig. 31.1 Fig. 31.2	sequentially trains weak learners. Decision stump and decision tree classifiers. A decision stump is a depth-one version of a decision tree. MATLAB code for decision stump classification. Example of decision stump classification. Algorithm of bagging. MATLAB code of bagging for decision stumps. Example of bagging for decision stumps. Algorithm of adaboost. Confidence of classifier in adaboost. The confidence of classifier φ , denoted by θ , is determined based on the weighted misclassification rate R . MATLAB code of adaboost for decision stumps. Example of adaboost for decision stumps. Example of adaboost for decision stumps. Exponential loss. Loss functions for boosting. Choice of step size. Too large step size overshoots the optimal solution, while too small step size yields slow convergence. Algorithm of passive-aggressive classification.	344 345 345 346 346 347 349 350 351 352 353 353 356 358

Fig. 31.6	Algorithm of AROW classification.	362
Fig. 31.7	MATLAB code for AROW classification.	363
Fig. 31.8	Examples of passive-aggressive and AROW classifications.	363
Fig. 31.9	MATLAB code for AROW regression.	364
Fig. 32.1	MATLAB code for analytic computation of predictive variance.	367
Fig. 32.2	Examples of analytic computation of predictive variance. The shaded area indicates the confidence interval.	368
Fig. 32.3	MATLAB code for bootstrap-based confidence estimation.	369
Fig. 32.4	Examples of bootstrap-based confidence estimation. The shaded area indi-	
8	cates the confidence interval.	370
Fig. 32.5	Problem of time-series prediction.	370
Fig. 32.6	Time-series prediction from previous samples.	370
Fig. 32.7	MATLAB code for time-series prediction by ℓ_2 -regularized LS.	371
Fig. 32.8	Examples of time-series prediction by ℓ_2 -regularized LS. The shaded areas	
	indicate the confidence intervals.	372
Fig. 32.9	Bayesian optimization. The shaded areas indicate the confidence intervals.	373
Fig. 33.1	Semisupervised classification. Samples in the same cluster are assumed to	
	belong to the same class.	376
Fig. 33.2	MATLAB code for Laplacian-regularized LS.	379
Fig. 33.3	Examples of Laplacian-regularized LS compared with ordinary LS. Dots denote unlabeled training samples.	380
Fig. 33.4	Covariate shift in regression. Input distributions change, but the input-output	200
E:- 22.5	relation is unchanged.	380
Fig. 33.5	MATLAB code for importance weighted LS.	381
Fig. 33.6	Example of LS learning under covariate shift. The dashed lines denote learned functions.	381
Fig. 33.7	Relative importance when $p'(x)$ is the Gaussian density with expectation 0 and variance 1 and $p(x)$ is the Gaussian density with expectation 0.5 and	
	variance 1 and $p(x)$ is the Gaussian density with expectation 0.5 and variance 1.	383
Fig. 33.8	Algorithm of importance weighted cross validation.	384
Fig. 33.9	MATLAB code for LS relative density ratio estimation for Gaussian kernel	501
118.0019	model.	386
Fig. 33.10	Example of LS relative density ratio estimation. ×'s in the right plot show	200
8	estimated relative importance values at $\{x_i\}_{i=1}^n$.	387
Fig. 33.11	Class-balance change, which affects the decision boundary.	387
Fig. 33.12	Class-prior estimation by distribution matching.	388
Fig. 33.13	MATLAB code for class-balance weighted LS.	389
_	Example of class-balance weighted LS. The test class priors are estimated	
8	as $\hat{p}'(y=1) = 0.18$ and $\hat{p}'(y=2) = 0.82$, which are used as weights in	
	class-balance weighted LS.	390
Fig. 34.1	MATLAB code for multitask LS.	394
Fig. 34.2	Examples of multitask LS. The dashed lines denote true decision boundaries	
	and the contour lines denote learned results.	395

Fig. 34.3	Alternate learning of task similarity $\gamma_{t,t'}$ and solution θ .	396
Fig. 34.4	Multidimensional function learning.	396
Fig. 34.5	Continuous Sylvester equation.	398
Fig. 34.6	MATLAB code for multidimensional regression.	399
Fig. 34.7	Examples of multidimensional regression.	399
Fig. 34.8	Proximal gradient method.	401
Fig. 34.9	MATLAB code for multitask learning with trace norm regularization.	402
Fig. 34.10	Examples of multitask LS with trace norm regularization. The data set is the same as Fig. 34.2. The dashed lines denote true decision boundaries and the contour lines denote learned results.	403
Fig. 35.1	Curse of dimensionality.	406
Fig. 35.2	Linear dimensionality reduction. Transformation by a fat matrix T corresponds to projection onto a subspace.	407
Fig. 35.3	Data centering.	407
Fig. 35.4	PCA, which tries to keep the position of original samples when the dimensionality is reduced.	408
Fig. 35.5	MATLAB code for PCA.	409
Fig. 35.6	Example of PCA. The solid line denotes the one-dimensional embedding subspace found by PCA.	409
Fig. 35.7	Locality preserving projection, which tries to keep the cluster structure of original samples when the dimensionality is reduced.	410
Fig. 35.8	Popular choices of similarity measure.	411
Fig. 35.9	MATLAB code for locality preserving projection.	412
Fig. 35.10	Example of locality preserving projection. The solid line denotes the one-	
	dimensional embedding subspace found by locality preserving projection.	413
Fig. 35.11	MATLAB code for Fisher discriminant analysis.	414
Fig. 35.12	Examples of Fisher discriminant analysis. The solid lines denote the found subspaces to which training samples are projected.	415
Fig. 35.13	MATLAB code for local Fisher discriminant analysis.	417
Fig. 35.14	Examples of local Fisher discriminant analysis for the same data sets as Fig. 35.12. The solid lines denote the found subspaces to which training	
	samples are projected.	418
Fig. 35.15	MATLAB code for semisupervised local Fisher discriminant analysis.	420
Fig. 35.16	Examples of semisupervised local Fisher discriminant analysis. Lines denote the found subspaces to which training samples are projected. "LFDA" stands for local Fisher discriminant analysis, "SELF" stands for semisupervised	
	LFDA, and "PCA" stands for principal component analysis.	421
Fig. 35.17	MATLAB code for supervised dimensionality reduction based on QMI.	423
Fig. 35.18	Example of supervised dimensionality reduction based on QMI. The solid line denotes the found subspace to which training samples are projected.	424
Fig. 35.19	MATLAB code for unsupervised dimensionality reduction based on QMI.	425
Fig. 35.20	Example of unsupervised dimensionality reduction based on QMI. The solid line denotes the found subspace to which training samples are projected.	426
Fig. 35.21	MATLAB code for unsupervised matrix imputation.	426
0		

Fig. 35.22	Example of unsupervised matrix imputation. The gray level indicates the value of each entry in $[-5, 5]$.	427
Fig. 36.1	Nonlinear PCA in a feature space. "x" denotes a sample, the solid line denotes the one-dimensional embedding subspace found by PCA, and "o" denotes a projected sample.	430
Fig. 36.2	Eigenvalue problems for PCA. Appropriately choosing the expression of eigenvalue problem depending on whether matrix Ψ is fat or skinny allows us to reduce the computational costs.	431
Fig. 36.3	MATLAB code for kernel PCA with Gaussian kernels.	433
Fig. 36.4	Examples of kernel PCA with Gaussian kernels. Original two-dimensional samples are transformed to infinite-dimensional feature space by Gaussian kernels with width h , and then PCA is applied to reduce the dimensionality to two.	434
Fig. 36.5	MATLAB code of Laplacian eigenmap for 10-nearest neighbor similarity.	435
Fig. 36.6 Fig. 36.7	Example of Laplacian eigenmap for 10-nearest neighbor similarity. Dimensionality reduction by neural network. The number of hidden nodes is	435
Fig. 36.8	smaller than the number of input (and output) nodes. Autoencoder. Input and output are the same and the number of hidden nodes	436
	is smaller than the number of input nodes.	437
Fig. 36.9	Chain rule for autoencoder.	438
Fig. 36.10	MATLAB code for denoising autoencoder. See Section 12.5 for details of hand-written digit data set "digit.mat."	439
Fig. 36.11	Example of denoising autoencoder.	440
Fig. 36.12	Restricted Boltzmann machine.	441
Fig. 36.13	Contrastive divergence algorithm for restricted Boltzmann machine. Note that $q(z x = \hat{x}_i)$ and $q(x z = \hat{z}_i)$ can be factorized as Eq. (36.6), which	443
Fig. 36.14	allows efficient computation. MATLAB code for denoising restricted Boltzmann machine. See Section 12.5 for details of hand-written digit data set "digit.mat."	443
Fig. 36.15	Example of denoising restricted Boltzmann machine.	444
Fig. 36.16	Construction of deep neural network by stacking.	445
Fig. 37.1	k-means clustering algorithm.	448
Fig. 37.2	MATLAB code for k -means clustering.	449
Fig. 37.3	Example of <i>k</i> -means clustering. A filled square denotes a cluster center.	450
Fig. 37.4	Algorithm of spectral clustering.	451
Fig. 37.5	MATLAB code for spectral clustering.	451
Fig. 37.6	Example of spectral clustering.	452
Fig. 37.7	Clustering can be regarded as compressing d -dimensional vector x into c -valued scalar y .	453
Fig. 37.8	MATLAB code for LS QMI estimation.	455
Fig. 37.9	Example of LS QMI estimation.	456
Fig 38 1	MATLAB code for local outlier factor	459

Fig. 38.2	Example of outlier detection by local outlier factor. The diameter of circles around samples is proportional to the value of local outlier factor.	460
Fig. 38.3	Support vector data description. A hypersphere that contains <i>most</i> of the training samples is found. Samples outside the hypersphere are regarded as	
	outliers.	460
Fig. 38.4	MATLAB code of support vector data description for Gaussian kernel. quadprog.m included in Optimization Toolbox is required. Free alternatives to quadprog.m are available, e.g. from http://www.mathworks.com/matlabcentral/fileexchange/.	463
Fig. 38.5	Examples of support vector data description for Gaussian kernel. Circled samples are regarded as outliers.	464
Fig. 38.6	Inlier-based outlier detection by density ratio estimation. For inlier density $p'(x)$ and test sample density $p(x)$, the density ratio $w(x) = p'(x)/p(x)$ is close to one when x is an inlier and it is close to zero when x is an outlier.	465
Fig. 38.7	MATLAB code of KL density ratio estimation for Gaussian kernel model with Gaussian bandwidth chosen by cross validation. The bottom function	
	should be saved as "KLIEP.m."	466
Fig. 38.8	Example of KL density ratio estimation for Gaussian kernel model.	467
Fig. 39.1	MATLAB code for LS density difference estimation.	473
Fig. 39.2	Example of LS density difference estimation. x's in the right plot show	
	estimated density difference values at $\{x_i\}_{i=1}^n$ and $\{x'_{i'}\}_{i'=1}^{n'}$.	474
Fig. 39.3	Lower bound of sign (t) by $-2 \max(0, 1-t) + 1$.	475
Fig. 39.4	Change detection in time series.	478
Fig. 39.5	MATLAB code for change detection in time series based on the energy	
	distance.	479
Fig. 39.6	Examples of change detection in time series based on the energy distance.	480
Fig. 39.7	Structural change in Gaussian Markov networks.	480
Fig. 39.8	MATLAB code of a gradient-projection algorithm of ℓ_1 -constraint MLE for Gaussian Markov networks. The bottom function should be saved as "L1BallProjection.m."	481
Fig. 39.9	MATLAB code of a gradient-projection algorithm of ℓ_1 -constraint KL density ratio estimation for Gaussian Markov networks. "L1BallProjection.m"	40.1
	is given in Fig. 39.8.	484

List of Tables

Table 5.1	Example of Contingency Table	53
Table 7.1	Convolution	75
	Type-I Error α (False Positive) and Type-II Error β (False Negative) Contingency Table for $x \in \{1, \dots, \ell\}$ and $y \in \{1, \dots, m\}$. $c_{x,y}$ Denotes the Frequency of (x, y) , $d_x = \sum_{y=1}^m c_{x,y}$, $e_y = \sum_{x=1}^\ell c_{x,y}$, and $n = \sum_{x=1}^\ell \sum_{y=1}^m c_{x,y}$	102
Table 10.3	Wilcoxon Rank-Sum Test. In this Example, $r_1 = 3$, $r_2 = 5.5$, $r_3 = 1$, and the Rank-Sum is $r = 9.5$	107
Гаble 11.1	Example Of Asymmetric Loss	120