Wersja:	N	umer indel	ksu:		(Grupa ¹ :			
A						s. 4	s. 5	s. 103	s. 104
A						s. 105	s. 139	s. 140	nie chodzę na ćwiczenia
Logika dla informatyków Sprawdzian nr 1, 8 listopada 2019									
Czas pisania: 30+60 minut Zadanie 1 (2 punkty). Wpisz słowo "TAK" w te spośród kratek poniższej tabelki, które odpowiadają zupełnym zbiorom spójników logicznych. W pozostałe prostokąty wpisz słowo "NIE".									
	\wedge, \vee	\land, \lor, \lnot	\land, \Rightarrow	7	∨,¬	∨,⇔	Λ,¬,	$,\Rightarrow,\Leftrightarrow$	

Zadanie 2 (2 punkty). Podaj formułę równoważną formule $(\neg p) \Leftrightarrow (q \lor \neg r)$ i mającą:

(a)	koniunkcyjną postać normalną (CNF)
(b)	dysjunkcyjną postać normalną (DNF)

¹Proszę zakreślić właściwą grupę ćwiczeniową.

·	ąty obok tych zbiorów klauzul, które są sprzeczne, wpisz go zbioru. W pozostałe prostokąty wpisz wartościowanie
(a) $\{\neg q, \neg r \lor \neg s, q \lor s, r \lor q\}$	
(b) $\{q, \neg r \lor \neg s, q \lor s, r \lor q\}$	
aby otrzymana formuła była tautolog MOŻLIWE".	żliwe, wpisz w prostokąty poniżej takie spójniki logiczne, gią. W przeciwnym przypadku napisz obok słowo "NIE-
	vo "TAK" w te prostokąty, które odpowiadają logicznym . W pozostałe prostokąty wpisz słowo "NIE".
$p \wedge q$	$p \wedge \neg q$
$q \Rightarrow \neg p$	$ eg(p \wedge q)$

Wersja:

Grupa ¹ :

s. 4	s. 5	s. 103	s. 104
s. 105	s. 139	s. 140	nie chodzę na ćwiczenia

Zadanie 6 (5 punktów). Czy dla dowolnych formuł zdaniowych φ oraz ψ spełnione są następujące zdania? Uzasadnij odpowiedź.

- (a) Jeśli formuła $\varphi \lor \psi$ jest tautologią oraz φ jest sprzeczna, to ψ jest tautologią.
- (b) Jeśli formuła $\varphi \Rightarrow \psi$ jest tautologią oraz $\neg \varphi$ jest spełnialna, to ψ jest spełnialna.

Zadanie 7 (5 punktów). Rozważmy spójnik logiczny \oplus zdefiniowany tabelką

φ	ψ	$\varphi \oplus \psi$
F	F	F
F	Т	Т
Т	F	Т
Τ	Т	F
	1	

Spójnik ten jest czasem nazywany alternatywą wykluczającą lub xor. Udowodnij za pomocą indukcji, że każda formuła zbudowana wyłącznie ze zmiennej zdaniowej p i spójników \oplus i \vee (oczywiście wolno używać nawiasów) jest równoważna jednej z dwóch formuł: p lub \bot . Sformułuj zasadę indukcji, z której korzystasz w dowodzie.

Zadanie 8 (5 punktów). Udowodnij za pomocą indukcji, że dla wszystkich liczb naturalnych n > 0 liczba $2^{(2^n)} - 1$ jest podzielna przez 3. Sformułuj zasadę indukcji, z której korzystasz w dowodzie.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Wersja:	Numer indeksu:	$Grupa^1$:			
		s. 4	s. 5	s. 103	s. 104
		s. 105	s. 139	s. 140	nie chodzę na ćwiczenia

Logika dla informatyków

Sprawdzian nr 1, 8 listopada 2019 Czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Podaj formulę równoważną formule $\neg((p \Rightarrow \neg q) \land (q \Rightarrow r))$ i mającą:

(a)	koniunkcyjną postać normalną (CNF)
(b)	dysjunkcyjną postać normalną (DNF)

Zadanie 2 (2 punkty). Jeśli to możliwe, wpisz w prostokąty poniżej takie spójniki logiczne, aby otrzymana formuła była tautologią. W przeciwnym przypadku napisz obok słowo "NIE-MOŻLIWE".

(p		q)		(p		$\neg q$
----	--	----	--	----	--	----------

 $^{^{1}\}mathrm{Prosz}$ ę zakreślić właściwą grupę ćwiczeniową.

Zadanie 3 (2 punkty). Wpisz słowo "TAK" w te spośród kratek poniższej tabelki, które odpowiadają zupełnym zbiorom spójników logicznych. W pozostałe prostokąty wpisz słowo "NIE".

\land, \lor, \lnot	\lor, \Rightarrow	\land, \lor	\wedge, \neg	V	$\vee,\neg,\Rightarrow,\Leftrightarrow$	\land, \Leftrightarrow

Zadanie 4 (2 punkty). Wpisz słowo "TAK" w te prostokąty, które odpowiadają logicznym konsekwencjom zbioru formuł $\{\neg p, q\}$. W pozostałe prostokąty wpisz słowo "NIE".

$p\vee q$	$p \wedge \neg q$	
$q \Rightarrow \neg p$	$\neg (p \land q)$	

Zadanie 5 (2 punkty). W prostokąty obok tych zbiorów klauzul, które są sprzeczne, wpisz rezolucyjny dowód sprzeczności danego zbioru. W pozostałe prostokąty wpisz wartościowanie spełniające dany zbiór.

Wersja

Numer indeksu:				

Grupa ¹	-
--------------------	---

s. 4	s. 5	s. 103	s. 104
s. 105	s. 139	s. 140	nie chodzę na ćwiczenia

Zadanie 6 (5 punktów). Rozważmy spójnik logiczny \oplus zdefiniowany tabelką

φ	ψ	$\varphi \oplus \psi$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	F

Spójnik ten jest czasem nazywany alternatywą wykluczającą lub xor. Udowodnij za pomocą indukcji, że każda formuła zbudowana wyłącznie ze zmiennej zdaniowej p i spójników \oplus i \land (oczywiście wolno używać nawiasów) jest równoważna jednej z dwóch formuł: p lub \bot . Sformułuj zasadę indukcji, z której korzystasz w dowodzie.

Zadanie 7 (5 punktów). Czy dla dowolnych formuł zdaniowych φ oraz ψ spełnione są następujące zdania? Uzasadnij odpowiedź.

- (a) Jeśli formuła $\varphi \lor \psi$ jest spełnialna oraz φ jest sprzeczna, to ψ jest spełnialna.
- (b) Jeśli formuła $\varphi \Rightarrow \psi$ jest tautologią oraz $\neg \varphi$ jest spełnialna, to $\neg \psi$ jest spełnialna.

Zadanie 8 (5 punktów). Udowodnij za pomocą indukcji, że dla wszystkich liczb naturalnych n liczba $(2n+1)^2-1$ jest podzielna przez 8. Sformułuj zasadę indukcji, z której korzystasz w dowodzie.

 $^{^{1}\}mathrm{Proszę}$ zakreślić właściwą grupę ćwiczeniową.