Review Test 3 Math 142

Name Section

 Id

Use exactly one page for each of the five numbered questions (use the back of the page if necessary).

Put your name and the question number on each page.

Put a box around the final answer to a question.

You must *show* your work in order to get possible credits.

1. Find the limit of the sequence

a)
$$\lim_{n\to\infty} n \tan\frac{1}{n}$$

Hint: Substitution x = 1/n. Then as $n \to \infty$, $x \to 0$. Apply L'hopital rule to $\frac{\tan x}{x}$ as $x \to 0$.

b)
$$\lim_{n\to\infty} \frac{\ln(3n+5)}{n}$$

b) $\lim_{n\to\infty}\frac{\ln(3n+5)}{n}$ Hint: $a_n\sim\frac{\ln(3n)}{n},\ n\to\infty$, so a first guess is the limit should be zero. To show this, you can apply L'hopital to

$$\lim_{x \to \infty} \frac{\ln(3x+5)}{x}$$

c)
$$\lim_{n\to\infty} \frac{2n^2}{(n+1)^2}$$

Hint:

$$\frac{2n^2}{(n+1)^2} = \frac{2n^2 \frac{1}{n^2}}{(n+1)^2 \frac{1}{n^2}}$$

$$=\frac{2}{(1+\frac{1}{n})^2}$$

d)
$$\lim_{n\to\infty} \frac{e^n}{e^{2n}-1}$$

e)
$$\lim_{n\to-\infty} \frac{e^n}{e^{2n}-1}$$

- 2. Determine whether the limit of the following sequence exists as $n \to +\infty$, if so, find the limit:
 - a) $\frac{(-1)^n}{n!}$

Hint: Notice

$$-\frac{1}{n!} \le \frac{(-1)^n}{n!} \le \frac{1}{n!}$$

Obviously $\frac{1}{n!} \leq \frac{1}{n} \to 0$. By squeezing theorem, the original sequence goes to zero.

b) $\frac{\sin(3n)}{\sqrt{n\pi}}$

Hint: Notice

$$0 \le |\frac{\sin(3n)}{\sqrt{n\pi}}| \le \frac{1}{\sqrt{n\pi}}$$

Apply squeezing theorem.

c)
$$(-1)^n + 100$$

Hint: The sequence is (starting with n = 1): 99, 101, 99, 101, 99, 101,

So limit D.N.E.

 d^*) $\tan(n-\pi)$

Hint: $tan(n-\pi) = tan n$, which does not have a limit

3. Evaluate the limit a.
$$\lim_{n\to\infty} \frac{n^{5/2} + 7n^2 + 9}{-n^{5/2} + 3n^2 - 3n - 11} = 1$$

$$n\to\infty$$
 $-n^{3/2}+3n^2-3n-11$
Hint: multiplying $1/n^{5/2}$ both top and bottom
b. $\lim_{n\to\infty} \frac{5n^5-7n^3+10}{5n^4+6n^2+9} =$
Hint: multiplying $1/n^4$ both top and bottom

Fill in the blanks or parenthesis in Problems 4 to 8.

- 4. n^{th} -term test: Let $\{a_n\}$ be an arbitrary sequence.
- (a) If $\lim_{n\to\infty} a_n \neq 0$ or $\lim_{n\to\infty} a_n$ does not exist, then $\sum a_n$
- (b) If $\sum_{n} a_n$ converges, then $\lim a_n = \underline{\hspace{1cm}}$
- 5. Integral Test: $a_n > 0$. Let $f: [1, \infty) \to \mathbf{R}$ be so that
 - $a_n = f()$ for each $n \in \mathbb{N}$
 - f is a _____ function
 - \bullet f is a function

• f is a	function .
Then $\sum a_n$ converges if and only if converges.	
6. (a) Comparison Test: $a_n > 0$	
• If $0 \le a_n \le b_n$ for all $n \in \mathbb{N}$ at then $\sum a_n$	and $\sum b_n$,
then $\sum a_n$ • If $0 \le b_n \le a_n$ for all $n \in \mathbb{N}$ at then $\sum a_n$	and $\sum b_n$,
(b). Limit Comparison Test: $a_n > 1$	0
Let $b_n > 0$ and $\lim_{n \to \infty} \frac{a_n}{b_n} = L$. If < L <, then $\sum a_n$	a_n converges if and only if $\sum b_n$
7. (a) Ratio Test: $a_n > 0$ Let $\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$.	
• If $\rho < \underline{\hspace{1cm}}$ then $\sum a_n$ conv • If $\rho > \underline{\hspace{1cm}}$ then $\sum a_n$ diver • If $\rho = \underline{\hspace{1cm}}$ then the test is	erges. rges. inconclusive.
(b) Root Test: $a_n > 0$	
Let $\rho = \lim_{n \to \infty} (a_n)^{\frac{1}{n}}$.	
• If $\rho < \underline{\hspace{1cm}}$ then $\sum a_n$ conv • If $\rho > \underline{\hspace{1cm}}$ then $\sum a_n$ diver • If $\rho = \underline{\hspace{1cm}}$ then the test is	rges.
8*. (Optional) Alternating Series 7	
• $a_n = a_{n+1}$ for n large (
$\bullet \lim_{n \to \infty} a_n = \underline{\qquad} 0$	chivehituany decreasing)
then $\sum (-1)^n a_n$ converges.	
9. Determine whether the series converge the sum.	es. If it does, find the value of
(a) $\sum_{n=0}^{\infty} \left(\frac{-2}{3}\right)^{n}$	$\left(\frac{n}{2}\right)^n$

$$(a) \quad \sum_{n=1}^{\infty} \left(\frac{-2}{3}\right)^r$$

Hint:

$$\sum a_n = \frac{\frac{-2}{3}}{1 - (-2/3)}$$

(b)
$$\sum_{k=1}^{\infty} \frac{1}{k^2 + 2k - 3}$$

Hint:

$$\frac{1}{k^2+2k-3}=\frac{1}{4}(\frac{1}{k-1}-\frac{1}{k+3})$$

10. Determine the convergence/divergence of the series below. A correctly checked box without appropriate explanation will receive 0 or 1 point.

	absolutely convergent
$\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n}$	conditionally convergent
	divergent

(Hint: Conditional convergent means $\sum a_n$ is convergent but $\sum |a_n|$ divergent. Since

$$|a_n| = \frac{\ln n}{n} \ge \frac{1}{n}$$
 $n \ge 3$

and $\sum \frac{1}{n} = \infty$, it follows by direct comparison test $\sum |a_n| = \infty$. Since $a_n = \frac{\ln n}{n}$ is eventually positive, decreasing to zero, by the alternating series test, $\sum a_n$ converges, hence converges conditionally.

11. Let $a_n = \frac{n^3 \ (n!)}{(2n)!}$ Find a_{n+1}/a_n . Simplify your answer so that no factorial sign (i.e., !) appears.

answer:	$r: \frac{a_{n+1}}{a_n} =$					
---------	----------------------------	--	--	--	--	--

absolutely convergent
$$\sum_{n=2}^{\infty} (-1)^n \frac{n^3 (n!)}{(2n)!}$$
 conditionally convergent divergent

Answer: since $|a_{n+1}/a_n| \to 0 < 1$, by ratio test converge absolutely

12. Consider the formal power series

$$\sum_{n=1}^{\infty} \frac{(x+7)^n}{n^2} .$$

In the box below draw a diagram indicating for which x's this series is: absolutely convergent, conditionally convergent, and divergent. Of course, indicate your reasoning.

(Hint: use ratio/root test to determine the radius of convergence, interval of convergence.

We find radius of convergence R = 1.

At the endpoints x = -8 and x = -6, the series converges absolutely because $\sum \frac{1}{n^2}$ does.

Hence, interval of convergence is [-7-R, -7+R] = [-8, -6].

13. Find the Taylor or Maclaurin series of y = f(x)

(a)

$$f(x) = e^{2x}$$

about x = 1

Hint: Know

$$e^y = \sum_{n=0}^{\infty} \frac{y^n}{n!}$$

Sub y = 2(x-1) gives

$$e^{2(x-1)} = \sum_{n=0}^{\infty} \frac{2^n (x-1)^n}{n!}$$

So

$$e^{2x} = e^{2}e^{2(x-1)} = e^{2} \sum_{n=0}^{\infty} \frac{2^{n}(x-1)^{n}}{n!}$$
$$= \sum_{n=0}^{\infty} e^{2} \frac{2^{n}(x-1)^{n}}{n!}$$

(b)

$$f(x) = \frac{1}{1+x}$$

about x = 0.

Hint: Method I. Compute the n-th derivatives of $f(x)=(1+x)^{-1}$ at x=0 and use Taylor expansion:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} x^n$$

Method II. From summation formula for geometric series we know

$$\frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^k x^k$$

with radius of convergence 1. Interval of convergence (-1,1).

14. Geometric Series

a. If |r| < 1, then

$$\sum_{n=0}^{\infty} r^n =$$

Answer for (a): $\frac{1}{1-r}$

(Hint for part (b), if |r| < 1, then $\sum_{n=0}^{\infty} r^n = 1 + r + r^2 + r^3 + r^4 + \dots$.)

b. Find the sum of the below series. (Note that the sum begins at n = 10 instead of n = 0.)

$$\sum_{n=10}^{\infty} 2\left(\frac{1}{5}\right)^{n-2} =$$

absolutely convergent

divergent

c. $\sum_{n=1}^{\infty} (-1)^n \left(\frac{\pi}{e}\right)^n$

conditionally convergent

Hint: $\frac{\pi}{e} \approx \frac{3.14159}{2.71828} \approx 1.16$. Ans:

$$|a_n| = \left(\frac{\pi}{e}\right)^n \to \infty, \ n \to \infty$$

So a_n does not tend to 0. Divergent by n - th term test.