Conventions:

- "Rings" refer to commutative rings with unity.
- \mathbb{N} denotes the naturals, including zero.

1 *p*-adic Fields

In the following section, let $p \in \mathbb{Z}$, 0 < p be a prime.

1.1 \mathbb{Z}_p and \mathbb{Q}_p

Definition – Projective System

Let $\mathbb N$ be the naturals viewed as a category with the usual ordering. Let $\mathcal C$ be a category. Then a *projective system in* $\mathcal C$ is a contravariant functor from $\mathbb N$ to $\mathcal C$. For a projective system F, we will denote the image of the morphism $k \leq l$ with \downarrow_k^l .

Equivalently, a projective system in $\mathcal C$ is a collection of objects $(F_n)_{n\in\mathbb N}$ in $\mathcal C$ together with a collection of maps $(\downarrow_n^{n+1}:F_{n+1}\to F_n)_{n\in\mathbb N}$ such that for all $n\in\mathbb N$, $\downarrow_n^{n+1}\downarrow_{n+1}^{n+2}=\downarrow_n^{n+2}$.

If C is a subcategory of the category of sets, then F is called *surjective* when for all $n \in \mathbb{N}$, \downarrow_n^{n+1} is surjective.

Definition - Inverse Limit of a Projective System

Let \mathcal{C} be a category and $F: \mathbb{N}^{op} \to \mathcal{C}$ be a projective system. Then an *inverse limit of* F is just a limit of F as an \mathbb{N}^{op} -diagram.

Proposition - Left Surjective implies Right Exactness of Inverse Limit

Let R be a ring and

$$0 \to A \to B \to C \to 0$$

be a short exact sequence of projective systems of R-modules, i.e. for all $n \in \mathbb{N}$,

$$0 \to A_n \to B_n \to C_n \to 0$$

is a short exact sequence. Then

$$0 \to \varprojlim A \to \varprojlim B \to \varprojlim C \to 0$$

is exact at $\varprojlim A$ and $\varprojlim B$. Furthermore, if A is surjective, then we also have exactness at $\varprojlim C$.

Proof. See appendix.

Definition – *p*-adic Integers

Define the following projective system of rings, $\mathbb{Z}/p^*\mathbb{Z}$ by :

- 1. $n \in \text{Obj}(\mathbb{N}^{op}) \mapsto \mathbb{Z}/p^n\mathbb{Z}$
- 2. For $n \in \mathbb{N}^{op}$, $\downarrow_n^{n+1} : \mathbb{Z}/p^{n+1}\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$ is the natural projection.

Then the *p-adic integers* \mathbb{Z}_p is defined as the inverse limit of $\mathbb{Z}/p^*\mathbb{Z}$. For $n \in \mathbb{N}$, $\varepsilon_n : \mathbb{Z}_p \to \mathbb{Z}/p^n\mathbb{Z}$ will denote the projection that comes with the definition of \mathbb{Z}_p as a limit.

We have an explicit construction of \mathbb{Z}_p as the subset of $x \in \prod_{n \in \mathbb{N}} \mathbb{Z}/p^n\mathbb{Z}$ such that for all $n \in \mathbb{N}$, $\downarrow_n^{n+1} \varepsilon_{n+1}(x) = \varepsilon_n(x)$, where $\varepsilon_n : \prod_{n \in \mathbb{N}} \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$ is the projection into the n-th component.

Remark – Meaning of p-adic integers. One should think of *p*-adic integers along the following analogy with complex analysis:

- 1. \mathbb{Z} is the ring of holomorphic functions on a space, the space being the set of primes of \mathbb{Z} .
- 2. A prime p is a point.
- 3. Taking an integer f to $\mathbb{Z}/p\mathbb{Z}$ is evaluation of the function f at the point p.
- 4. Sending an integer f to $\mathbb{Z}/p^n\mathbb{Z}$ is the taylor expansion of f at p up to terms of order n. You can write f in $\mathbb{Z}/p^n\mathbb{Z}$ as a polynomial in $1, p, \ldots, p^{n-1}$ with coefficients in $\{0, \ldots, p-1\}$.
- 5. Elements of \mathbb{Z}_p are precisely coherent collections of taylor expansions of higher and higher order, i.e. power series in p. This is formalized later.

Proposition – \mathbb{Z} injects into \mathbb{Z}_p

The canonical ring morphism $\mathbb{Z} \to \mathbb{Z}_p$ has kernel $\bigcap_{n \in \mathbb{N}} p^n \mathbb{Z} = 0$.

Proof. See appendix for cool proof. If you're not cool, you can also do this elementarily using the explicit construction of \mathbb{Z}_p .

Proposition – Truncation

Let $n \in \mathbb{N}$. Then we have the following short exact sequence of \mathbb{Z} -modules :

$$0 \longrightarrow \mathbb{Z}_p \xrightarrow{p^n} \mathbb{Z}_p \xrightarrow{\varepsilon_n} \mathbb{Z}/p^n \mathbb{Z} \longrightarrow 0$$

Proof. (Generalized from nLab)

Consider the following short exact sequence of projective systems of \mathbb{Z} -modules :

$$0 \longleftarrow 0 \longleftarrow \cdots \longleftarrow 0 \longleftarrow \mathbb{Z}/p\mathbb{Z} \longleftarrow \mathbb{Z}/p^{2}\mathbb{Z} \longleftarrow \cdots$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow p^{n} \qquad \downarrow p^{n}$$

$$0 \longleftarrow \mathbb{Z}/p\mathbb{Z} \longleftarrow \cdots \longleftarrow \mathbb{Z}/p^{n}\mathbb{Z} \longleftarrow \mathbb{Z}/p^{n+1}\mathbb{Z} \longleftarrow \mathbb{Z}/p^{n+2}\mathbb{Z} \longleftarrow \cdots$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \longleftarrow \mathbb{Z}/p\mathbb{Z} \longleftarrow \cdots \longleftarrow \mathbb{Z}/p^{n}\mathbb{Z} \longleftarrow \mathbb{Z}/p^{n}\mathbb{Z} \longleftarrow \mathbb{Z}/p^{n}\mathbb{Z} \longleftarrow \cdots$$

Since the left system is surjective, by taking inverse limits we obtain the desired short exact sequence of \mathbb{Z} -modules :

$$0 \longrightarrow \mathbb{Z}_p \stackrel{p^n}{\longrightarrow} \mathbb{Z}_p \stackrel{\varepsilon_n}{\longrightarrow} \mathbb{Z}/p^n\mathbb{Z} \longrightarrow 0$$

Remark – Meaning of Truncation. ε_n is precisely truncating a power series at terms of order n and higher. Then the theorem says the power series that are zero up to terms order n are precisely the ones consisting of terms of order n and higher.

 \Box

Proposition – \mathbb{Z}_p Local Ring \mathbb{Z}_p is a local ring with maximal ideal $p\mathbb{Z}_p$.

Proof. (via geometric series)

We show \mathbb{Z}_p is local directly. Since $p\mathbb{Z}_p = \ker \varepsilon_1$ which is a maximal ideal in \mathbb{Z}_p , it suffices that $p\mathbb{Z}_p$ is a subset of the Jacobson radical of \mathbb{Z}_p , equivalently $1 - p\mathbb{Z}_p \subseteq \mathbb{Z}_p^{\times}$.

Let $x \in p\mathbb{Z}_p$. All we need to do is justify $1/(1-x) = \sum_{k=0}^{\infty} x^k$ is an element in \mathbb{Z}_p . For $k \in \mathbb{N}$, define $y_k := \sum_{0 \le l < k} \varepsilon_k(x^l) \in \mathbb{Z}/p^k\mathbb{Z}$ and let y be the unique element in $\prod_{n \in \mathbb{N}} \mathbb{Z}/p^n\mathbb{Z}$ such that for all $k \in \mathbb{N}$, $\varepsilon_k(y) = y_k$. Then $x \in p\mathbb{Z}_p$ implies $x^k \in p^k\mathbb{Z}_p = \ker \varepsilon_k$, which shows that $y \in \mathbb{Z}_p$ and is the desired inverse of 1-x.

Remark – *Why* \mathbb{Z}_p *is a Local Ring*. This is the analogue of the fact that a power series is invertible if and only if its constant coefficient is invertible.

We will now give \mathbb{Z}_p a norm that makes precise the intuition that higher order terms tend to zero.

Definition - p-adic Valuation, Norm

The $\emph{p-adic valuation}$ is defined as the following :

$$v_n: \mathbb{Z}_n \to \mathbb{N}^{\infty}, x \mapsto \sup \{n \in \mathbb{N}^{\infty} \mid \varepsilon_n(x) = 0\}$$

 $v_p:\mathbb{Z}_p\to\mathbb{N}^\infty, x\mapsto \sup\left\{n\in\mathbb{N}^\infty\,|\,\varepsilon_n(x)=0\right\}$ where \mathbb{N}^∞ is $\mathbb{N}\sqcup\{\infty\}$ with $\leq,+$ appropriately defined.

From this, we define the *p-adic norm*,

$$| \ |_p : \mathbb{Z}_p \to [0, \infty) \subseteq \mathbb{R}, x \mapsto \begin{cases} p^{-v_p(x)} &, x \neq 0 \\ 0 &, x = 0 \end{cases}$$

Remark – Meaning of p-adic Norm. Under the interpretation of p-adic integers as power series, $v_p(x)$ is the lowest power of p with non-zero coefficient.

ı – Unique Decomposition in \mathbb{Z}_p

- Let $x \in \mathbb{Z}_p$, $x \neq 0$. Then $1. \ v_p(x) \neq \infty.$ $2. \ u_x := xp^{-v_p(x)} \in \mathbb{Z}_p^{\times} \text{ and for all } n \in \mathbb{N}, u \in \mathbb{Z}_p^{\times}, x = p^n u \text{ implies } n = v_p(x) \text{ and } u = u_x.$

Proof.

- (1) For $n \in \mathbb{N}$, $\varepsilon_n(x) = 0$ implies for all $k \leq n$, $\varepsilon_k(x) = 0$. Since $x \neq 0$, this implies the set of n such that $\varepsilon_n(x) = 0$ is bounded above by a natural $N \in \mathbb{N}$. Hence $v_p(x) \leq N < \infty$.
- (2) u_x is well-defined since multiplying by $p^{v_p(x)}$ is injective. Since \mathbb{Z}_p is a local ring with maximal ideal $p\mathbb{Z}_p$, it suffices to show that $u_x \notin p\mathbb{Z}_p = \ker \varepsilon_1$. Well, if $u_x \in p\mathbb{Z}_p$, then $x \in p^{v_p(x)+1}\mathbb{Z}_p$, which implies $\varepsilon_{v_p(x)+1}(x) = 0$, contradicting the maximality of $v_p(x)$.

Let $n \in \mathbb{N}$, $u \in \mathbb{Z}_p^{\times}$ such that $x = p^n u \in \ker \varepsilon_n$. Then $n \leq v_p(x)$ by definition of $v_p(x)$. So $u \in p^{v_p(x)-n}\mathbb{Z}_p$ and $u \in \mathbb{Z}_p^{\times}$ implies $v_p(x) = n$. Then $u = u_x$ since multiplying by $p^{v_p(x)}$ is injective.

- The following are true :

 1. (Positive Definite) For all $x \in \mathbb{Z}_p$, $|x|_p = 0$ if and only if x = 0.

 2. (Multiplcative) For $x, y \in \mathbb{Z}_p$, $|xy|_p = |x|_p |y|_p$. Hence \mathbb{Z}_p is an integral domain.

 3. (Ultrametric Property) For all $x, y \in \mathbb{Z}_p$, $|x + y|_p \le \max(|x|_p, |y|_p)$. Furthermore, $|x|_p \ne |y|_p$ implies equality.

 4. (Normalized) $|1|_p = 1$ Hence \mathbb{Z}_p is a topological ring with the topology from $|\cdot|_p$.

Proof. Follows from unique decomposition. See appendix for more details.

Proposition – Ultrametric Property

Let (X,d) be a metric space with d satisfying the *ultrametric property* : for all $x,y,z\in X$, $d(x,z)\leq \max(d(x,y),d(y,z))$. Then for all sequences $a:\mathbb{N}\to X$, a_n is cauchy if and only if $\lim_{n\to\infty}d(a_n,a_{n+1})=0$.

Proof. Elementary.

Proposition – Topological Properties of \mathbb{Z}_p

The following are true:

- 1. (Topology) Give \mathbb{Z}_p the subspace topology in $\prod_{n\in\mathbb{N}}\mathbb{Z}/p^n\mathbb{Z}$ with the product topology from each $\mathbb{Z}/p^n\mathbb{Z}$ being discrete. Then for all $x \in \mathbb{Z}_p$, the set of balls $\{B_{p^{-n}}(x)\}_{n \in \mathbb{N}}$ is a prefilter that generates the neighbourhood filter of x (AKA a neighbourhood base). That is to say, the topology from the norm is equal to the topology from the construction
- 2. (Completeness) \mathbb{Z}_p is compact and hence a complete metric space under $|\cdot|_p$.

 3. (Density of \mathbb{Z} in \mathbb{Z}_p) For each $x \in \mathbb{Z}_p$, there exists unique $a : \mathbb{N} \to \{0, \dots, p-1\}$ such that $x = \sum_{k=0}^{\infty} a_k p^k$. Furthermore, for all $a : \mathbb{N} \to \{0, \dots, p-1\}$, $\sum_{k=0}^{\infty} a_k p^k$ is convergent in

Proof.

- (1) Let $x \in \mathbb{Z}_p$. By the definition of product topology, the neighbourhood filter of x is generated by the set of preimages of open neighbourhoods of $\varepsilon_n(x)$, where n ranges over \mathbb{N} . Since the $\mathbb{Z}/p^n\mathbb{Z}$ are all discrete, the neighbourhood filter of x is generated by the smaller set of $\left\{\varepsilon_n^{-1}(\varepsilon_n(x))\right\}_{n\in\mathbb{N}}=\left\{x+p^n\mathbb{Z}_p\right\}$ $\{B_{p^{-n+1}}(x)\}_{n\in\mathbb{N}}$, hence the result.
- (2) Define $C: \mathbb{N} \to 2^{\prod_{n \in \mathbb{N}} \mathbb{Z}/p^n \mathbb{Z}}$ by mapping $n \in \mathbb{N}$ to the set of elements x such that $\downarrow_n^{n+1} \varepsilon_{n+1}(x) = \varepsilon_n(x)$. Then $\mathbb{Z}_p = \bigcap_{n \in \mathbb{N}} C_n$. Since $\prod_{n \in \mathbb{N}} \mathbb{Z}/p^n \hat{\mathbb{Z}}$ is compact by Tychonoff's theorem and closed in compact implies compact, it suffices to show that each C_n is closed. We can describe C_n explicitly as

$$C_n = \bigcup_{y \in \mathbb{Z}/p^n \mathbb{Z}} \bigcup_{z \in (\downarrow_n^{n+1})^{-1} y} \varepsilon_n^{-1} y \cap \varepsilon_{n+1}^{-1} z$$

Since every $\mathbb{Z}/p^n\mathbb{Z}$ is discrete, this is a finite union of closed sets and hence is closed.

(3) For $x \in \mathbb{Z}_p$, the sequence of truncations $\varepsilon_n(x)$ converges to x. A general power series in p converges because $|a_k p^k|_p \leq |p|_p^k = p^{-k} \to 0$, the ultrametric property of the norm and completeness of \mathbb{Z}_p .

Definition – p-adic Rationals \mathbb{Q}_p is defined as the field of fractions of \mathbb{Z}_p .

Proposition – \mathbb{Q}_p as Localizing \mathbb{Z}_p at p As \mathbb{Z}_p algebras, \mathbb{Q}_p is canonically isomorphic to $(\mathbb{Z}_p)_p = \mathbb{Z}_p[X]/(pX-1)\mathbb{Z}_p[X]$, the localization of \mathbb{Z}_p with respect to the element p.

Proof. \mathbb{Z}_p is local with maximal ideal generated by p, so it suffices to invert p to get the field of fractions. See appendix for more details.

Remark – *Meaning of* \mathbb{Q}_p . Continuing with the analogy, \mathbb{Q}_p is the field of Laurent series at p with p as a nonessential singularity.

Definition – p**-adic** Valuation on \mathbb{Q}_p

We extend the *p*-adic valuation to \mathbb{Q}_p by :

$$v_p: \mathbb{Q}_p \to \mathbb{N}^\infty, x/p^n \in (\mathbb{Z}_p)_p \mapsto v_p(x) - n$$

From this, we extend the p-adic norm as well :

$$| \ |_p : \mathbb{Q}_p \to [0, \infty) \subseteq \mathbb{R}, x \mapsto \begin{cases} p^{-v_p(x)} &, x \neq 0 \\ 0 &, x = 0 \end{cases}$$

Proposition – Topological Properties of \mathbb{Q}_p

The following are true:

- 1. $(\mathbb{Q}_p, | \cdot|_p)$ is a normed ring and hence a topological ring (field).
- Z_p is homeomorphic to its canonical image in Q_p, where it is an open subring of Q_p. Hence, Q_p is locally compact.
 Q_p is complete.
 Since Z injects canonically into Q_p, Q injects canonically into Q_p as well. Then Q is dense

Proof. Not really relevant for four squares so see appendix.

1.2 *p*-adic Equations

The goal of this section give conditions to lift approximate solutions mod p^n to solutions in \mathbb{Z}_p . This will be done via the *p*-adic analogue of Newton's method.

Proposition – Mean Value Theorem for Polynomials

Let A be a commutative ring, $f \in A[X]$, $a \in A$. Then f - f(a) = f'(a)(X - a) in A[X]/(X - a)

Proof. If the result is true for $q, h \in A[X]$, then it's true for $\lambda q + h$ where $\lambda \in A$. Therefore it suffices to show the result for monomial X^n . This follows from induction.

Proposition - p-adic Newton's Method

$$|f(x)|_p < |f'(x)|_p^2$$

1.
$$|f(\overline{x})|_p \le p^{-1} |f(x)|_p$$

Let
$$f \in \mathbb{Z}_p[X]$$
, $x \in \mathbb{Z}_p$ such that

Then there exists $\overline{x} \in \mathbb{Z}_p$ such that

1. $|f(\overline{x})|_p \leq p^{-1} |f(x)|_p$

2. $|\overline{x} - x|_p \leq |f(x)|_p / |f'(x)|_p$

3.
$$|f'(\overline{x})|_p = |f'(x)|_p$$

Proof. Let $\overline{x} \in \mathbb{Z}_p$ to be determined. Applying mean value theorem yields

$$f(\overline{x}) = f(x) + f'(x)(\overline{x} - x) + a(\overline{x} - x)^2$$

for some $a \in \mathbb{Z}_p$. Since $|f'(x)|_p \neq 0$, we can choose $\overline{x} := x - f(x)/f'(x)$ as in the real case. Then by the ultrametric property, we have

$$\begin{split} |f(\overline{x})|_p &\leq \max\left(\left|f(x) + f'(x)(\overline{x} - x)\right|_p, \left|a(\overline{x} - x)^2\right|_p\right) \leq \max\left(\left|f(x) + f'(x)(\overline{x} - x)\right|_p, |\overline{x} - x|_p^2\right) \\ &= |f(x)|_p^2 \left|f'(x)\right|_p^{-2} < |f(x)|_p \Rightarrow |f(\overline{x})|_p \leq p^{-1} \left|f(x)\right|_p \end{split}$$

where we have used $|\mathbb{Z}_p|_p = \{1, p^{-1}, p^{-2}, \dots, 0\}$. It remains to show $|f'(\overline{x})|_p = |f'(x)|_p$. To this end, we apply mean value theorem to f' as obtain

$$f'(\overline{x}) = f'(x) + f''(x)f(x)f'(x)^{-1} + bf(x)^{2}f'(x)^{-2}$$

for some $b \in \mathbb{Z}_p$. It suffices to show that the norms of the latter two terms are strictly smaller than $|f'(x)|_p$. This follows from the hypothesis:

$$\left| b \left(f(x) / f'(x) \right)^2 \right|_p \leq \left| f(x) \right|_p^2 / \left| f'(x) \right|_p^2 < \left| f(x) \right|_p < \left| f'(x) \right|_p \\ = \left| f''(x) f(x) / f'(x) \right|_p \leq \left| f(x) \right|_p / \left| f'(x) \right|_p < \left| f'(x) \right|_p \\ = \left| f''(x) f(x) / f'(x) \right|_p < \left| f'(x) f(x) / f'(x) \right|_p < \left| f'(x) f(x) / f'(x) \right|_p \\ = \left| f''(x) f(x) / f'(x) / f'(x) \right|_p < \left| f''(x) f(x) / f'(x) / f'(x) \right|_p < \left| f''(x) f(x) / f'(x) / f$$

position – Lifting Solutions / Generalized Hensel's Lemma

$$|f(x)|_p < \left| \frac{\partial f}{\partial X_j} \right|_x \Big|_p^2$$

Let $1 \leq m, f \in \mathbb{Z}_p[X_1,\dots,X_m], x \in \mathbb{Z}_p^m$ such that there exists $1 \leq j \leq m$ satisfying $|f(x)|_p < \left|\frac{\partial f}{\partial X_j}\right|_x\Big|_p^2$ Then there exists $y \in \mathbb{Z}_p^m$ such that f(y) = 0 and $\max(|\pi_i(y-x)|_p)_{1 \leq i \leq m} \leq |f(x)|_p / \left|\frac{\partial f}{\partial X_j}\right|_x\Big|_p$ where $\pi_i : \mathbb{Z}_p^m \to \mathbb{Z}_p$ takes the i-th component.

Proof. We induct on m.

Suppose m=1. Define $x_0:=x$. Then $|f(x_0)|_p<|f'(x_0)|_p^2$, so by p-adic Newton's method and induction, we have a sequence $x:\mathbb{N}\to\mathbb{Z}_p$ such that for all $k\in\mathbb{N}$,

$$|f(x_{k+1})|_p \le p^{-1} |f(x_k)|_p$$
 $|x_{k+1} - x_k|_p \le |f(x_k)|_p / |f'(x_k)|_p$ $|f'(x_{k+1})|_p = |f'(x_k)|_p$

We see that $|f(x_k)|_p \leq p^{-k} |f(x_0)|_p$ and hence $\lim_{k \to \infty} f(x_k) = 0$. Furthermore, we have $|x_{k+1} - x_k|_p \to 0$ as $k \to \infty$ so by the ultrametric property of $|\cdot|_p$, there exists $y \in \mathbb{Z}_p$ such that $\lim_{k \to \infty} x_k = y$. Since \mathbb{Z}_p is a topological ring with topology from $|\cdot|_p$, the fact that $\mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto f(x)$ is defined by finitely many

additions and multiplications implies it is continuous and hence $f(y) = f(\lim_{k \to \infty} x_k) = \lim_{k \to \infty} f(x_k) = 0$. For $k \in \mathbb{N}$, again by the ultrametric property and induction on k, we have

$$|x_{k+1} - x|_p \le \max\left(|x_{k+1} - x_k|_p, |x_k - x|_p\right) \le \max\left(\frac{|f(x_0)|_p}{p^k |f'(x_0)|_p}, \frac{|f(x_0)|_p}{|f'(x_0)|_p}\right) \le \frac{|f(x_0)|_p}{|f'(x_0)|_p}$$

Taking limits, we obtain $|y-x|_p \leq |f(x_0)|_p/|f'(x_0)|_p$ as desired.

For 1 < m, we reduce to the single variable case. Define $\overline{f}(X_j) := f(\pi_1(x), \dots, X_j, \dots, \pi_m(x)) \in \mathbb{Z}_p[X_j]$. By the single variable case, there exists $y_j \in \mathbb{Z}_p$ such that $\overline{f}(y_j) = 0$ and

$$|y_j - \pi_j(x)|_p \le \left| \overline{f}(\pi_j(x)) \right|_p / \left| \overline{f}'(\pi_j(x)) \right|_p = |f(x)|_p / \left| \frac{\partial f}{\partial X_j} \right|_x \Big|_p$$

Let $y = (\pi_1(x), \dots, y_j, \dots, \pi_m(x)) \in \mathbb{Z}_p^m$. Then $f(y) = \overline{f}(y_j) = 0$ and for all $1 \le i \le m$,

$$|\pi_i(y-x)|_p \begin{cases} = 0 & i \neq j \\ \leq |f(x)|_p / \left| \frac{\partial f}{\partial X_j} \right|_x \Big|_p & i = j \end{cases}$$

Proposition – Hensel's Lemma Let $1 \leq m, f \in \mathbb{Z}_p[X_1, \dots, X_m], x \in \mathbb{Z}_p^m, \varepsilon_1(f(x)) = 0, 1 \leq i \leq m, \varepsilon_1(\frac{\partial f}{\partial X_i}\Big|_x) \neq 0$. Then there exists $y \in \mathbb{Z}_p^m$ such that f(y) = 0 and $\varepsilon_1^m(y - x) = 0$.

Proof. $\varepsilon_1(f(x)) = 0$ is equivalent to $|f(x)|_p \le p^{-1}$ and $\varepsilon_1(\frac{\partial f}{\partial X_i}\Big|_x) \ne 0$ is equivalent to $\left|\frac{\partial f}{\partial X_i}\Big|_x\right|_p = 1$. The conditions of lifting solutions are satisfied, hence we have $y \in \mathbb{Z}_p^m$ such that for all $1 \le i \le m$

$$\max(|\pi_i(y-x)|_p)_{1 \le i \le m} \le |f(x)|_p / \left| \frac{\partial f}{\partial X_j} \right|_x \Big|_p$$

The inequality is equivalent to $\varepsilon_1^m(y-x)=0$.

Remark. Since we are interested in the four square theorem, which essentially concerns a quadratic form, it will be useful to give specific conditions for lifting solutions to quadratic forms.

Proposition – Lifting Solutions of Quadratic Forms for $p \neq 2$ Let $p \neq 2, 1 \leq m, f = \sum_{i,j=1}^m a_{ij} X_i X_j \in \mathbb{Z}_p[X_1,\ldots,X_m]$ where $[a_{ij}]^\top = [a_{ij}]$ and $\det[a_{ij}] \in \mathbb{Z}_p^\times$ i.e. f is a non-degenerate quadratic form. Let $a \in \mathbb{Z}_p, x \in \mathbb{Z}_p^m$ such that x is primitive and $\varepsilon_1(f(x)) = \varepsilon_1(a)$. Then there exists $y \in \mathbb{Z}_p^m$ such that f(y) = a and $\varepsilon_1^m(y - x) = 0$.

Proof. By Hensel's Lemma, it suffices to give $1 \le i \le m$ such that $\varepsilon_1(\frac{\partial f}{\partial X_i}\Big|_{x}) \ne 0$. Taking the derivative of f, evaluating at x and reducing mod p yields the following linear system :

$$\left[\varepsilon_1 \left(\frac{\partial f}{\partial X_i}\Big|_x\right)\right]_{i=1}^m = 2\left[\varepsilon_1(a_{ij})\right]_{i,j=1}^m \varepsilon_1(x)$$

Since $\det[a_{ij}] \in \mathbb{Z}_p^{\times}$, $\det[\varepsilon_1(a_{ij})]_{i,j=1}^m \neq 0$. The matrix is hence invertible and since $\varepsilon_1(x) \neq 0$ by definition of primitivity, there exists a desired $1 \le i \le m$.

position – Lifting Solutions of Quadratic Forms for $p=2\,$

- Proposition Lifting Solutions of Quadratic Forms for p-2Let p=2, $1 \leq m$, $f=\sum_{i,j=1}^m a_{ij}X_iX_j \in \mathbb{Z}_p[X_1,\ldots,X_m]$ where $[a_{ij}]^\top=[a_{ij}]$, i.e. f is a quadratic form. Let $a\in\mathbb{Z}_2$, $x\in\mathbb{Z}_2^m$ such that x is primitive and $\varepsilon_3(f(x))=\varepsilon_3(a)$. Then

 1. Let $1\leq i\leq m$ where $\varepsilon_2\left(\frac{\partial f}{\partial X_i}\Big|_x\right)\neq 0$. Then there exists $y\in\mathbb{Z}_2^m$ such that f(y)=a and $\varepsilon_3(y-x)=0$.

 2. The condition of (1) is satisfied when $\det [a_{ij}]_{i,j=1}^m\in\mathbb{Z}_2^\times$.

 $(1) \ \varepsilon_3(f(x)) = \varepsilon_3(a) \ \text{and} \ \varepsilon_2\left(\frac{\partial f}{\partial X_i}\Big|_x\right) \neq 0 \ \text{are respectively equivalent to} \ |f(x) - a|_p \leq p^{-3} \ \text{and} \ p^{-1} \leq \left|\frac{\partial f}{\partial X_i}\Big|_x\right|_p.$ Hence

$$|f(x) - a|_p < \left| \frac{\partial f}{\partial X_i} \right|_x \Big|_p^2$$

So by lifting solutions, there exists $y \in \mathbb{Z}_p^m$ such that f(y) = a and

$$\max(|\pi_i(y-x)|_p)_{1 \le i \le m} \le |f(x) - a|_p / \left| \frac{\partial f}{\partial X_j} \right|_x \Big|_p$$

By taking the derivative of f, evaluating at x and reducing mod 2, we have $\varepsilon_1\left(\frac{\partial f}{\partial X_i}\Big|_x\right)=0$ and hence its valuation is 1. We thus obtain

$$\max(|\pi_i(y-x)|_p)_{1 \le i \le m} \le p^{-2}$$

This is equivalent to $\varepsilon_2(y-x)=0$.

(2) This follows from taking the derivative of f, evaluating at x and reducing mod 4, we have

$$\left[\varepsilon_2 \left(\frac{\partial f}{\partial X_i}\Big|_x\right)\right]_{i=1}^m = 2\left[\varepsilon_2(a_{ij})\right]_{i,j=1}^m \varepsilon_2(x)$$

Since $\det[a_{ij}]_{i,j=1}^m \in \mathbb{Z}_2^{\times}$, $\det[\varepsilon_2(a_{ij})]_{i,j=1}^m \in \mathbb{Z}/2^2\mathbb{Z}^{\times}$, the fact that $\varepsilon_2(x)$ is not a multiple of 2 implies the tuple $[\varepsilon_2(a_{ij})]_{i,j=1}^m \varepsilon_2(x)$ is not a multiple of 2. The existence of i such that $\varepsilon_2\left(\frac{\partial f}{\partial X_i}\Big|_{\infty}\right) \neq 0$ follows.

Remark. When solving f(x) = 0, we would often like to ignore the trivial solution x = 0 if it exists. So we give a characterisation for non-trivial solutions to exist.

Lemma – Inverse Limit of Finite, Non-Empty System is Non-EmptyLet $D: \mathbb{N}^{op} \to \mathbf{Set}$ be a projective system of sets such that for all $n \in \mathbb{N}$, D_n is finite and non-empty. Then $\varprojlim D$ is nonempty.

Proof. If D is a surjective system, then $\lim D$ is non-empty. We will reduce to this case.

For $n \in \mathbb{N}$, consider the descending sequence of subsets $\{ \downarrow_n^k D_k \mid n \leq k \}$ in D_n . Since D_n is finite, there exists an N such that for all $k \geq N$, $\downarrow_n^k D_k = \downarrow_n^N D_N$. For $n \in \mathbb{N}$, let N(n) be the minimal natural with respect to this property. Let $E_n := \downarrow_n^{N(n)} D_{N(n)}$. Since $D_{N(n)} \neq \varnothing$, $E_n \neq \varnothing$. For $n \in \mathbb{N}$, let $M = \max(N(n), N(n+1))$. Then $E_n = \downarrow_n^M D_M = \downarrow_n^{n+1} \downarrow_{n+1}^M D_M = \downarrow_n^{n+1} E_{n+1}$. Thus $E : \mathbb{N}^{op} \to \mathbf{Set}$ is a non-empty, surjective system that injects into D. Therefore $\varnothing \neq \varprojlim E \to \varprojlim D$.

Notation. Let $n \in \mathbb{N}, 0 < m$. Then there is a canonical morphism of \mathbb{Z}_p algebras from $\mathbb{Z}_p[X_1, \ldots, X_m]$ to $\mathbb{Z}/p^n\mathbb{Z}[X_1,\ldots,X_m]$. For $I\subseteq\mathbb{Z}_p[X_1,\ldots,X_m]$, let I_n denote the image of I. For a single polynomial $f\in$ $\mathbb{Z}_p[X_1,\ldots,X_m]$, let f_n denote its image. More explicitly, for $f=\sum_{t\in\mathbb{N}^m}a_t\underline{X}^t$,

$$f_n := \sum_{t \in \mathbb{N}^m} \varepsilon_n(a_t) \underline{X}^t$$

Definition – Vanishing

Let A be a ring, $m \in \mathbb{N}$, $I \subseteq A[X_1, \dots, X_m]$. Then $\mathbb{V}_A(I) \subseteq A^m$ is defined as the tuples x such that for all $f \in I$, f(x) = 0. When the ring in question is clear, we abbreviate to $\mathbb{V}(I)$.

Proposition – p-adic Affine Variety is Inverse Limit

Let 0 < m, $I \subseteq \mathbb{Z}_p[X_1, \dots, X_m]$, I_n the image of I in $\mathbb{Z}/p^n\mathbb{Z}[X_1, \dots, X_m]$ for $n \in \mathbb{N}$. Then $\mathbb{V}(I) \cong \varprojlim \mathbb{V}(I_\star)$ as sets. In particular, the variety defined by I is non-empty if and only if for all $n \in \mathbb{N}$, its projection mod p^n is non-empty.

Proof. First note that since limits commute with limits, $\mathbb{Z}_p^m \cong \lim_{n \to \infty} (\mathbb{Z}/p^*\mathbb{Z})^m$.

For $x \in \mathbb{Z}_p^m$ and $f \in \mathbb{Z}_p[X_1,\ldots,X_m]$, f(x)=0 if and only if for all $n \in \mathbb{N}$, $\varepsilon_n \circ f(x)=0$. For $n \in \mathbb{N}$, let $\varepsilon_n^m : \mathbb{Z}_p^m \to \mathbb{Z}/p^n\mathbb{Z}^m$ denote the natural projection. Then

$$\varepsilon_n \circ f(x) = \varepsilon_n \left(\sum_{t \in \mathbb{N}^m} a_t x^t \right) = \sum_{t \in \mathbb{N}^m} \varepsilon_n(a) \varepsilon_n^m(x)^t = f_n \circ \varepsilon_n^m(x)$$

Therefore f(x)=0 if and only if for all $n\in\mathbb{N}$, $f_n\circ\varepsilon_n^m(x)=0$. This shows that $\mathbb{V}(I)\cong\underline{\lim}\ \mathbb{V}(I_\star)$ under the isomorphism $\mathbb{Z}_p^m \cong \underline{\lim}(\mathbb{Z}/p^*\mathbb{Z})^m$.

The 'in particular' follows from inverse limit of finite, nonempty is nonempty.

Definition – Primitive Solutions Let $m,n\in\mathbb{N}^+$. Let $\varepsilon_1^m:\mathbb{Z}_p^m\to\mathbb{Z}/p\mathbb{Z}^m$ and $(\downarrow_1^n)^m:\mathbb{Z}/p^n\mathbb{Z}^m\to\mathbb{Z}/p\mathbb{Z}^m$ be the natural projections. For $x\in\mathbb{Z}_p^m$, x is called *primitive* when $\varepsilon_1^m(x)\neq 0$, i.e. when it is not divisible by p. Similarly, for $x\in(\mathbb{Z}/p^n\mathbb{Z})^m$, x is called primitive when $(\downarrow_1^n)^mx\neq 0$.

Proposition – \mathbb{Q}_p , \mathbb{Z}_p **Points of Projective Varieties**

Let $1 \leq m$, $I \subseteq \mathbb{Z}_p[X_1, \dots, X_m]$, for all $f \in I$, f homogeneous. Then the following are equiva-

- There exists x ∈ V_{Qp}(I) such that x ≠ 0.
 There exists x ∈ V_{Zp}(I) such that x is primitive.
 For all n ≥ 1, there exists x_n ∈ V_{Z/pⁿZ}(I_n) such that x_n primitive. ^a

Proof.

 $(1\Leftrightarrow 2)$ The reverse implication is clear. For forwards, let $x=(x_i)_{i=1}^m\in \mathbb{V}_{\mathbb{Q}_p}(I), x\neq 0$. Let $h:=\inf\{v_p(x_i)\,|\,i=1,\ldots,m\}$. Since $x\neq 0,\,h<\infty$. Let $y:=p^{-h}x$. Then by definition of $h,\,y\in\mathbb{Z}_p^m$ and there exists one component that is not-divisible by p, i.e. y is primitive. Then $f(y) = p^{-h \deg f} f(x) = 0$ by homogeneity of f. Thus y is as desired.

 $(2 \Leftrightarrow 3)$ It suffices to show that the sets of primitive elements in $\mathbb{V}_{\mathbb{Z}/p^n\mathbb{Z}}(I_n)$ forms a projective subsystem of $\mathbb{V}_{\mathbb{Z}/p^{\star}\mathbb{Z}}\left(I_{\star}\right)$ and that the inverse limit is isomorphic to the primitive elements in $\mathbb{V}_{\mathbb{Z}_{p}}\left(I\right)$.

Let $P: \mathbb{N}^{op} \to \mathbf{Set}$, $n \mapsto \mathbb{V}_{\mathbb{Z}/p^n\mathbb{Z}}(I_n) \cap \{x \mid x \text{ primitive}\}$. By the definition of $\mathbb{V}_{\mathbb{Z}/p^*\mathbb{Z}}(I_*)$ being projective, \downarrow_n^{n+1} takes primitive zeros to primitive zeros. This induces the structure of a projective system for P, making it a subsystem of $\mathbb{V}_{\mathbb{Z}/p^*\mathbb{Z}}(I_*)$. Hence, $\varprojlim P$ injects into $\mathbb{V}_{\mathbb{Z}_p}(I)$ canonically. We identify it with its image. Clearly, for any $x \in \varprojlim P$, $\varepsilon_1(x) \neq 0$. So $\varprojlim P$ is a subset of primitive elements of $\mathbb{V}_{\mathbb{Z}_p}(I)$. Conversely, any primitive element x of $\mathbb{V}_{\mathbb{Z}_p}(I)$ defines a natural transformation from the singleton set * as a constant functor to the projective system P, i.e. an element of $\lim P$ that maps to x. Hence $\lim P$ is equal to the set of primitives in $\mathbb{V}_{\mathbb{Z}_p}(I)$.

1.3 Appendix: Omitted Proofs

Proof. (Left Surjective implies Right Exactness of Inverse Limit - from Atiyah)

It is elementary to check that we have the short exact sequence of R-modules

$$0 \to \prod A \to \prod B \to \prod C \to 0$$

where \prod takes the product of R-modules. For $n \in \mathbb{N}$, let $\pi_n : \prod A \to A_n$ be the natural projection. Note that we have a canonical map

$$\varprojlim A \xrightarrow{\prod \varepsilon} \prod A$$

induced from the natural maps $\varepsilon_n: \varprojlim A \to A_n$ for $n \in \mathbb{N}$. Define $d^A: \prod A \to \prod A$ via $d^A_n: \prod A \to A_n:=\downarrow_n^{n+1}\pi_{n+1}-\pi_n$ and the universal property of $\prod A$. Define d^B, d^C similarly for B, C and we have the following commutative diagram of *R*-modules with exact rows :

^aSerre only requires n>1. This is indeed equivalent since have a primitive zero for any n>1 automatically gives you a primitive zero for n=1 via \downarrow_1^n . We cannot let n=0 though, since there are no primitive elements in $\mathbb{Z}/\mathbb{Z}^m=0^m$.

$$0 \to \prod_{A} A \to \prod_{B} B \to \prod_{C} C \to 0$$

$$\downarrow_{d^{A}} \qquad \downarrow_{d^{B}} \qquad \downarrow_{d^{C}}$$

$$0 \to \prod_{A} A \to \prod_{B} B \to \prod_{C} C \to 0$$

Applying the snake lemma, we obtain exact sequence of *R*-modules :

$$0 \longrightarrow \ker d^A \longrightarrow \ker d^B \longrightarrow \ker d^C \longrightarrow \operatorname{coker} d^A \longrightarrow \operatorname{coker} d^B \longrightarrow \operatorname{coker} d^C \longrightarrow 0$$

It is straight forward to check that $\varprojlim A, \varprojlim B, \varprojlim C$ are respectively the kernels of d^A, d^B, d^C and that A surjective implies the zero module 0 is the cokernel of d^A . The result follows.

Proof. (\mathbb{Z} injects into \mathbb{Z}_p)

We have a short exact sequence of projective systems of \mathbb{Z} -modules,

$$0 \longrightarrow p^* \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}/p^* \mathbb{Z} \longrightarrow 0$$

where the middle projective system is a constant at \mathbb{Z} . Since taking inverse limits is left exact, we obtain the following exact sequence of \mathbb{Z} modules :

$$0 \longrightarrow \underline{\lim} p^* \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \underline{\lim} \mathbb{Z}/p^* \mathbb{Z}$$

Since the forgetful functor from the category of rings to \mathbb{Z} -modules is a right adjoint functor, it preserves limits. In particular, the inverse limit of $\mathbb{Z}/p^*\mathbb{Z}$ in the category of \mathbb{Z} -modules is still \mathbb{Z}_p . It is easy to check that the inverse limit of $p^*\mathbb{Z}$ is the intersection.

Proof. (Truncation - from Serre)

(Exactness at left) It suffices to show that multiplying by p is an injection, i.e. you can cancel by p. Let $x \in \mathbb{Z}_p$ such that px = 0. Then for $k \in \mathbb{N}$, $0 = \varepsilon_{k+1}(px) = p\varepsilon_{k+1}(x)$ implies the existence of a $x_{k+1} \in \mathbb{Z}$ such that $x_{k+1} = \varepsilon_{k+1}(x)$ in $\mathbb{Z}/p^{k+1}\mathbb{Z}$ and $p^{k+1} \mid px_{k+1}$. Then $p^k \mid x_{k+1}$, so $\varepsilon_k(x) = \downarrow_k^{k+1} \varepsilon_{k+1}(x) = \downarrow_k^{k+1} x_{k+1} = 0$. Therefore $\varepsilon_k(x) = 0$ for all $k \in \mathbb{N}$, i.e. x = 0.

(Exactness at right) ε_n is surjective.

(Exactness in middle) Clearly, $p^n \mathbb{Z}_p \subseteq \ker \varepsilon_n$. Let $x \in \ker \varepsilon_n$. In the following, for $k \in \mathbb{N}$, let $\pi_k : \mathbb{Z} \to \mathbb{Z}/p^k \mathbb{Z}$ be the natural projection. For $k \in \mathbb{N}$, let x_k be the unique integer in $\{0, \dots, p^k - 1\}$ such that $\pi_k(x_k) = \varepsilon_k(x)$ in $\mathbb{Z}/p^k \mathbb{Z}$. Then $\varepsilon_n(x) = 0$ implies for all $k \in \mathbb{N}$,

$$\pi_n(x_{n+k}) = \downarrow_n^{n+k} \pi_{n+k}(x_{n+k}) = \downarrow_n^{n+k} \varepsilon_{n+k}(x) = \varepsilon_n(x) = 0$$

that is to say $p^n \mid x_{n+k}$. Since $0 \le x_{n+k} < p^{n+k}$, there exists a unique $0 \le y_k < p^k$ such that $x_{n+k} = p^n y_k$ in \mathbb{Z} . Let $y \in \prod_{n \in \mathbb{N}} \mathbb{Z}/p^n \mathbb{Z}$ such that for all $k \in \mathbb{N}$, $\varepsilon_k(y) = \pi_k(y_k)$. Then for $k \in \mathbb{N}$, $\pi_{n+k}(x_{n+k+1}) = \bigcup_{n+k}^{n+k+1} (x_n + k) = \bigcup_{n=k}^{n+k+1} (x_n + k) = \bigcup_{n=k}^$

 $\varepsilon_{n+k+1}(x) = \varepsilon_{n+k}(x) = \pi_{n+k}(x_{n+k})$ implies $p^{n+k} \mid x_{n+k+1} - x_{n+k} = p^n(y^{k+1} - y^k)$, and therefore $p^k \mid y^{k+1} - y^k$. Hence $y \in \mathbb{Z}_p$. Then for $k \in \mathbb{N}$,

$$\varepsilon_k(p^n y) = \pi_k(p^n y_k) = \downarrow_k^{n+k} \pi_{n+k}(p^n y_k) = \downarrow_k^{n+k} \pi_{n+k}(x_{n+k}) = \downarrow_k^{n+k} \varepsilon_{n+k}(x) = \varepsilon_k(x)$$

Therefore, $x = p^n y \in p^n \mathbb{Z}_p$.

Proof. (\mathbb{Z}_p Local Ring - from Serre)

We first prove that for $n \geq 1$, $\mathbb{Z}/p^n\mathbb{Z}$ is a local ring with maximal ideal $p\mathbb{Z}/p^n\mathbb{Z}$. Let $n \geq 1$. It suffices to show that $\mathbb{Z}/p^n\mathbb{Z} \setminus p\mathbb{Z}/p^n\mathbb{Z} \subseteq \mathbb{Z}/p^n\mathbb{Z}$. Let $x \in \mathbb{Z}/p^n\mathbb{Z}$ be not divisible by p. Then there exists $y \in \mathbb{Z}/p^n\mathbb{Z}$ such that $\downarrow_1^n(xy) = 1$. Let $0 \leq x_n, y_n < p^n$ be representatives of x, y in \mathbb{Z} . Then there exists $z_n \in \mathbb{Z}$ such that $x_ny_n = 1 - pz_n$. Let $\pi_n : \mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$ be the natural projection and $z := \pi_n(z_n)$. Then we have

$$xy(1+pz+\cdots+(pz)^{n-1})=\pi_n((1-pz_n)(1+pz+\cdots+(pz)^{n-1}))=\pi_n(1-(pz_n)^n)=1$$

Thus x is a unit.

To show \mathbb{Z}_p is a local ring with maximal ideal $p\mathbb{Z}_p$, it again suffices that $\mathbb{Z}_p \setminus p\mathbb{Z}_p \subseteq \mathbb{Z}_p^{\times}$. Let $x \in \mathbb{Z}_p \setminus p\mathbb{Z}_p$. Then for all $n \geq 1$, $0 \neq \varepsilon_1(x) = \downarrow_1^n \varepsilon_n(x)$. Since $\downarrow_1^n : (\mathbb{Z}/p^n\mathbb{Z})/(p\mathbb{Z}/p^n\mathbb{Z}) \cong \mathbb{Z}/p\mathbb{Z}$ as rings, $\varepsilon_n(x) \in \mathbb{Z}/p^n\mathbb{Z}^{\times}$ by the above. Let $y_n = \varepsilon_n(x)^{-1}$. Then uniqueness of inverses implies $\downarrow_n^{n+1} y_{n+1} = y_n$, i.e. there exists a unique $y \in \mathbb{Z}_p$ such that for all $n, \varepsilon_n(y) = y_n$. Then xy = 1, i.e. $x \in \mathbb{Z}_p^{\times}$.

Proof. $((\mathbb{Z}_p, | \mid_p) \text{ Normed Ring})$

- (1) Clear.
- (2) It suffices to show $v_p(xy) = v_p(x) + v_p(y)$. This follows from the result on unique decomposition.
- (3) It suffices to show $\min(v_p(x),v_p(y)) \leq v_p(x+y)$ and that $v_p(x) \neq v_p(y)$ implies equality. In the following, let $n = \min(v_p(x),v_p(y))$. Then from unique decomposition, $x+y = p^n(p^{v_p(x)-n}u_x + p^{v_p(y)-n}u_y)$. This shows $\varepsilon_n(x+y) = 0$, and by maximality of $v_p(x+y)$, $n \leq v_p(x+y)$. Now suppose $v_p(x) \neq v_p(y)$, WLOG $v_p(x) < v_p(y)$. Then $p^{v_p(x)-n}u_x + p^{v_p(y)-n}u_y = u_x + pz$ where $z \in \mathbb{Z}_p$ implies it is a unit by \mathbb{Z}_p is a local ring. Since units have valuation 1, $v_p(x+y) = v_p(p^n) \cdot 1 = n$.

(4)
$$v_n(1) = 0$$
 since 1 is a unit.

Proof. (p-adic Integers are Power Series in p)

In the following, let $\pi_k:\mathbb{Z}\to\mathbb{Z}/p^k\mathbb{Z}$ be the natural map. Let $x\in\mathbb{Z}_p$. For $k\in\mathbb{N}$, let $x_k\in\mathbb{Z}$ be unique such that $\pi_k(x_k)=\varepsilon_k(x)$ and $0\le x_k< p^k$. There exists a unique $a^{(k)}:\mathbb{N}\to\{0,\ldots,p-1\}$ such that $x_k=\sum_{l\in\mathbb{N}}a_l^{(k)}p^l$. Since $\pi_k(x_{k+1}-a^{(k+1)}(k)p^k)=\pi_k(x_{k+1})=\downarrow_k^{k+1}\varepsilon_{k+1}(x)=\varepsilon_k(x)=x_k$ and $0\le x_{k+1}-a^{(k+1)}(k)p^k< p^k$, we have $x_{k+1}=x_k+a^{(k+1)}(k)p^k$. Therefore $a:\mathbb{N}\to\{0,\ldots,p-1\}$, $k\mapsto a^{(k)}(k)$. The claim that $x=\sum_{k=0}^\infty a_kp^k$ is equivalent to $x=\lim_{k\to\infty}x_k$. Since the neighbourhood filter of x is generated by $B_{p^{-n}}(x)$, it suffices x_k converges into each of these balls. Let $n\in\mathbb{N}$. Then for $k\ge n+1$, $\varepsilon_{n+1}(x_k-x)=\downarrow_{n+1}^k\varepsilon_k(x_k-x)=0$. Therefore $n< v_p(x_k-x)$, i.e. $x_k\in B_{p^{-n}}(x)$. Hence, $x_k\to x$.

Let $b: \mathbb{N} \to \{0,\dots,p-1\}$ such that $x = \sum_{k=0}^{\infty} b_k p^k$. Then $\pi_1(a_0) = \varepsilon_1(x) = \pi_1(b_0)$. Since $0 \le a_0, b_0 < p$, $a_0 = b_0$. For $k \in \mathbb{N}$, $\pi_{k+1}(a_k p^k) = \varepsilon_{k+1}(x - \sum_{0 \le l < k} a_l p^l) = \varepsilon_{k+1}(x - \sum_{0 \le l < k} b_l p^l) = \pi_{k+1}(b_k p^k)$ by induction. Since $0 \le a_k, b_k < p$, $a_k p^k = b_k p^k$ and hence $a_k = b_k$. Therefore a = b.

Proof. (\mathbb{Q}_p as Localizing \mathbb{Z}_p at p)

Since p is invertible in \mathbb{Q}_p , there is a canonical \mathbb{Z}_p -algebra morphism from $(\mathbb{Z}_p)_p$ to \mathbb{Q}_p . Since \mathbb{Z}_p be an integral domain, \mathbb{Z}_p injects into \mathbb{Q}_p and thus $(\mathbb{Z}_p)_p$ injects into \mathbb{Q}_p as well. By unique decomposition, every element of \mathbb{Q}_p is of the form $(p^nu)/(p^mv)$ where $n,m\in\mathbb{N}$ and $u,v\in\mathbb{Z}_p^\times$. Therefore every element of \mathbb{Q}_p is of the form p^kw where $k\in\mathbb{Z}$ and $w\in\mathbb{Z}_p^\times$. This shows $(\mathbb{Z}_p)_p$ surjects onto \mathbb{Q}_p , i.e. the canonical morphism from $(\mathbb{Z}_p)_p$ to \mathbb{Q}_p is an isomorphism.

Proof. (Topological Properties of \mathbb{Q}_p)

- (1) Same proof as for \mathbb{Z}_p .
- (2) Since the norm of \mathbb{Q}_p extends that of \mathbb{Z}_p , \mathbb{Z}_p is homeomorphic to its canonical image in \mathbb{Q}_p . $\mathbb{Z}_p = B_p(0)$, since the image of $|\cdot|_p$ is discrete. For all points $x \in \mathbb{Q}_p$, the clopen ball of size 1 around x is homeomorphic to \mathbb{Z}_p (by translation). Hence every x has a compact neighbourhood.
- (3) Let $a : \mathbb{N} \to \mathbb{Q}_p$ be a cauchy sequence. Then there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $a_n \in B_1(a_N) = a_N + \mathbb{Z}_p$. Since \mathbb{Z}_p is complete and $B_1(a_N)$ is isometric to \mathbb{Z}_p , a_n converges in $B_1(a_N)$ and hence in \mathbb{Q}_p .
- (4) follows from elements in \mathbb{Q}_p being of the form $p^{-n}x$ where $x \in \mathbb{Z}_p$ and \mathbb{Z} being dense in \mathbb{Z}_p .

1.4 Appendix: Category Theoretic Results Used

- Category of diagrams $C^{\mathcal{I}}$.
- C abelian category implies $C^{\mathcal{I}}$ abelian category.
- Limits commute with limits.
- Right adjoint commutes with limits.
- Snake Lemma.

_

References