Deduktive Datenbanken

Grundkonzepte einer deduktiven Datenbank

Terminologie

- Die extensionale Datenbasis (EDB), die manchmal auch Faktenbasis genannt wird. Die EDB besteht aus einer Menge von Relationen(Ausprägungen) und entspricht einer "ganz normalen" relationalen Datenbasis.
- Die Deduktionskomponente, die aus einer Menge von (Herleitungs-)Regeln besteht. Die Regelsprache heißt Datalog – abgeleitet von dem Wort Data und dem Namen der Logikprogrammiersprache Prolog.
- Die intensionale Datenbasis (IDB), die aus einer Menge von hergeleiteten Relationen(Ausprägungen) besteht. Die IDB wird durch Auswertung des Datalog-Programms aus der EDB generiert.

Datalog

Regel:

sokLV(T,S):-vorlesungen(V,T,S,P), professoren(P, , Sokrates'', R, Z), >(S,2).

Äquivalenter Domänenkalkül-Ausdruck:

$$\{[t,s] \mid \exists v,p ([v,t,s,p] \in Vorlesungen \land \exists n,r,z ([p,n,r,z] \in Professoren \land n = "Sokrates" $\land s > 2))\}$$$

Grundbausteine der Regeln sind atomare Formeln oder Literale:

$$q(A_1, ..., A_m).$$

q ist dabei der Name einer Basisrelation, einer abgeleiteten Relation oder eines eingebauten Prädikats: <,=,>,...

Beispiel: professoren(S, "Sokrates",R,Z).

Eine Datalog-Regel

$$p(X_1,...,X_m):-q_1(A_{11},...,A_{1m_1}),...,q_n(A_{n1},...,A_{nm_n}).$$

- Jedes $q_j(...)$ ist eine atomare Formel. Die q_j werden oft als Subgoals bezeichnet.
- X_1 , ..., X_m sind Variablen, die mindestens einmal auch auf der rechten Seite des Zeichens :- vorkommen müssen.
- Logisch äquivalente Form obiger Regel:

$$p(...) \vee \neg q_1(...) \vee ... \vee \neg q_n(...)$$

- Wir halten uns an folgende Notation:
 - Prädikate beginnen mit einem Kleinbuchstaben.
 - Die zugehörigen Relationen seien es EDB- oder IDB-Relationen – werden mit gleichem Namen, aber mit einem Großbuchstaben beginnend, bezeichnet.

Beispiel Datalog-Programm

Zur Bestimmung von (thematisch) verwandten Vorlesungspaaren

```
geschwisterVorl(N1, N2) :- voraussetzen(V, N1),
                                    voraussetzen(V, N2)), N1 < N2.
      geschwisterThemen(T1, T2):- geschwisterVorl(N1, N2),
                                    vorlesungen(N1, T1, S1, R1),
                                    Vorlesungen(N2, T2, S2, R2).
aufbauen(V,N) :- voraussetzen(V,N)
aufbauen(V,N):- aufbauen(V,M), voraussetzen(M,N).
verwandt(N,M) :- aufbauen(N,M).
```

- verwandt(N,M): aufbauen(N,N). verwandt(N,M): aufbauen(N,N). verwandt(N,M): aufbauen(N,N), aufbauen(N,M).
- Voraussetzen: {[Vorgänger, Nachfolger]}
- Vorlesungen: {VorlNr, Titel, SWS, gelesenVon]}

Analogie zur EDB/IDB in rel. DBMS

- Basis-Relationen entsprechen den EDB.
- Sichten entsprechen den IDB:
 - "Aufbauen" als Regeln in einem deduktiven DBMS:

```
aufbauen(V,N):- voraussetzen(V,N)
aufbauen(V,N):- aufbauen(V,M), voraussetzen(M,N).
```

"Aufbauen" als Sichtdefinition in DB2:

```
create view aufbauen(V,N) as
  (select Vorgaenger, Nachfolger
    from voraussetzen
       union all
    select a.V, v.Nachfolger
    from aufbauen a, voraussetzen v
    where a.N = v.Vorgaenger)
```

select * from aufbauen

Eigenschaften von Datalog-Programmen

- Ein Datalog-Programm ist rekursiv, wenn der Abhängigkeitsgraph einen (oder mehrere) Zyklen hat
- Unser Beispielprogramm ist rekursiv wegen aufbauen → aufbauen

Sicherheit von Datalog-Regeln

Es gibt unsichere Regeln, wie z.B.

ungleich(X, Y) :-
$$X \neq Y$$
.

Diese definieren unendliche Relationen.

- Eine Datalog-Regel ist sicher, wenn alle Variablen im Kopf beschränkt (range restricted) sind. Dies ist für eine Variable X dann der Fall, wenn:
 - die Variable im Rumpf der Regel in mindestens einem normalen Prädikat – also nicht nur in eingebauten Vergleichsprädikaten – vorkommt oder
 - ein Prädikat der Form X = c mit einer Konstante c im Rumpf der Regel existiert oder
 - ein Prädikat der Form X = Y im Rumpf vorkommt, und man schon nachgewiesen hat, dass Y eingeschränkt ist.

Ein zyklenfreier Abhängigkeitsgraph

- gV(N1, N2): vs(V, N1), vs(V, N2), N1 < N2.</p>
- gT(T1, T2):-gV(N1, N2), vL(N1, T1, S1, R1), vL(N2, T2, S2, R2)

Eine mögliche topologische Sortierung ist: vs, gV, vL, gT

Auswertung nicht-rekursiver Datalog-Programme

1. Für jede Regel mit dem Kopf p(...), also

$$p(...) := q_1(...), ..., q_n(...).$$

bilde eine Relation, in der alle im Körper der Regel vorkommenden Variablen als Attribute vorkommen. Diese Relation wird im wesentlichen durch einen natürlichen Verbund der Relationen $Q_1, ..., Q_n$ die den Relationen der Prädikate $q_1, ..., q_n$ entsprechen, gebildet. Man beachte, dass diese Relationen $Q_1, ..., Q_n$ wegen der Einhaltung der topologischen Sortierung bereits ausgewertet (materialisiert) sind.

2. Da das Prädikat *p* durch mehrere Regeln definiert sein kann, werden die Relationen aus Schritt 1. vereinigt. Hierzu muss man vorher auf die im Kopf der Regeln vorkommenden Attribute projizieren. Wir nehmen an, dass alle Köpfe der Regeln für *p* dieselben Attributnamen an derselben Stelle verwenden – durch Umformung der Regeln kann man dies immer erreichen.

Auswertung von Geschwister Vorlesungen und Geschwister Themen

Die Relation zu Prädikat gV ergibt sich nach Schritt 1 aus folg.
 Relationenalgebraausdruck:

$$\sigma_{N1

$$Vs1(V, N1) := \rho_{V\leftarrow\$1}(\rho_{N1}\leftarrow\$2(\rho_{Vs1}(Voraussetzen)))$$$$

- Die dadurch definierte Relation enthält Tupel [v, n1, n2] mit:
 - Das Tupel [v, n1] ist in der Relation Voraussetzen enthalten,
 - das Tupel [v, n2] ist in der Relation Voraussetzen enthalten und
 - n1 < n2,
- Gemäß Schritt 2. ergibt sich:

$$GV(N1, N2) := \Pi_{N1, N2}(\sigma_{N1 < N2}(Vs1(V, N1) \bowtie Vs2(V, N2)))$$

Analog ergibt sich für die Herleitung von GT:

$$GT(T1,T2) := \Pi_{T1,T2}(GV(N1,N2) \bowtie VL1(N1,T1,S1,R1) \bowtie VL2(N2,T2,S2,R2))$$

Veranschaulichung der EDB-Relation Voraussetzen

Ausprägung der Relationen GeschwisterVorl und GeschwisterThemen

GeschwisterVorl		
N1	N2	
5041	5043	
5043	5049	
5041	5049	
5052	5216	

GeschwisterThemen		
<i>T1</i>	<i>T2</i>	
Ethik	Erkenntnistheorie	
Erkenntnistheorie	Mäeutik	
Ethik	Mäeutik	
Wissenschaftstheorie	Bioethik	

Wir betrachten folgende abstrakte Regel:

$$p(X_1,...,X_m):-q_1(A_{11},...,A_{1m_1}),...,q_n(A_{n1},...,A_{nm_n}).$$

Die Relationen Q_i für die Prädikate q_i seien bereits hergeleitet :

$$Q_i: \{[\$1,...,\$m_i]\}$$

Für jedes Subgoal $q_i(A_{i1},...,A_{im_i})$ bilde folgenden Ausdruck E_i :

$$E_i := \Pi_{V_i}(\sigma_{F_i}(Q_i))$$

Dabei sind die V_i die in $q_i(...)$ vorkommenden Variablen.

Das Selektionsprädikat F_i setzt sich aus einer Menge konjunktiv verknüpfter Bedingungen zusammen.

 Falls in q_i(...,c,...) eine Konstante c an der j-ten Stelle vorkommt, füge die Bedingung

$$j = c$$

hinzu.

Falls eine Variable X mehrfach an Positionen k und l in q_i(...,X,...,X,...) vorkommt, füge für jedes solches Paar die Bedingung

$$$k = $/$$

hinzu.

Für eine Variable Y, die nicht in den normalen Prädikaten vorkommt, gibt es zwei Möglichkeiten:

Sie kommt nur als Prädikat

$$Y = C$$

für eine Konstante c vor. Dann wird eine einstellige Relation mit einem Tupel

$$Q_Y := \{ [c] \}$$

gebildet.

Sie kommt als Prädikat

$$X = Y$$

vor, und X kommt in einem normalen Prädikat $q_{\lambda}(...,X,...)$ an k—ter Stelle vor. In diesem Fall setze

$$Q_{Y} := \rho_{Y \leftarrow \$k}(\Pi_{\$k}(Q_{i})).$$

Nun bilde man den Algebra-Ausdruck

$$E := E_1 \bowtie ... \bowtie E_n$$

und wende anschließend

$$\sigma_{F}(E)$$

an, wobei Faus der konjunktiven Verknüpfung der Vergleichsprädikate

$$X \phi Y$$

besteht, die in der Regel vorkommen. Schließlich projizieren wir noch auf die im Kopf der Regel vorkommenden Variablen:

$$\Pi_{X_1,\ldots,X_m}(\sigma_F(E))$$

Beispiel: nahe verwandte Vorlesungen

Wir wollen diese Vorgehensweise nochmals am Beispiel demonstrieren:

$$(r_1) nvV(N1,N2) :- gV(N1,N2).$$

$$(r_2) nvV(N1,N2) :- gV(M1,M2), vs(M1,N1), vs(M2,N2).$$

Dieses Beispielprogramm baut auf dem Prädikat gV auf und ermittelt nahe verwandte Vorlesungen, die einen gemeinsamen Vorgänger erster oder zweiter Stufe haben. Für die erste Regel erhält man folgenden Algebra-Ausdruck:

$$E_{r_1} := \prod_{N1,N1} (\sigma_{true}(GV(N1,N2)))$$

Für die zweite Regel ergibt sich gemäß dem oben skizzierten Algorithmus:

$$E_{r_2} := \prod_{N_1,N_2} (GV(M_1,M_2) \bowtie Vs1(M_1,N_1) \bowtie Vs2(M_2,N_2)).$$

Daraus ergibt sich dann durch die Vereinigung

$$NvV := E_r \cup E_r$$

die Relation *NvV*, die durch das Prädikat *nvV* definiert ist. Die Leser mögen bitte die Auswertung dieses Relationenalgebra-Ausdrucks an unserer Beispiel-Datenbasis durchführen.

Auswertung rekursiver Regeln

a(V,N) := vs(V,N).

a(V,N) := a(V,M), vs(M,N).

Aufbauen	
V	N
5001	5041
5001	5043
5001	5049
5041	5216
5041	5052
5043	5052
5052	5259
5001	5216
5001	5052
5001	5259
5041	5259
5043	5259

Auswertung rekursiver Regeln

Betrachten wir das Tupel [5001, 5052] aus der Relation *Aufbauen*. Dieses Tupel kann wie folgt hergeleitet werden:

- 1. *a* (5001, 5043) folgt aus der ersten Regel, da *vs* (5001, 5043) gilt.
- 2. a (5001, 5052) folgt aus der zweiten Regel, da
 - a) a (5001, 5043) nach Schritt 1. gilt und
 - b) vs (5043, 5052) gemäß der EDB-Relation Voraussetzen gilt.

Naive Auswertung durch Iteration

```
A(V,N) = Vs(V,N) \cup \Pi_{V,N}(A(V,M) \bowtie Vs(M,N))
```

```
A := {}: /*Initialisierung auf die leere Menge */
repeat

A' := A;
A := Vs(V, N); /* erste Regel */
A := A \cup \Pi_{V,N}(A'(V, M) \bowtie Vs(M, N)); /* zweite Regel */
until A' = A
output A;
```

Naive Auswertung durch Iteration

- 1. Im ersten Durchlauf werden nur die 7 Tupel aus *Voraussetzen* nach *A* "übertragen", da der Join leer ist (das linke Argument *A*' des Joins wurde zur leeren Relation {} initialisiert).
- 2. Im zweiten Schritt kommen zusätzlich die Tupel [5001,5216], [5001,5052], [5041,5259] und [5043,5259] hinzu.
- 3. Jetzt wird nur noch das Tupel [5001,5259] neu generiert.
- 4. In diesem Schritt kommt kein neues Tupel mehr hinzu, so dass die Abbruchbedingung A' = A erfüllt ist.

(Naive) Auswertung der rekursiven Regel *aufbauen*

Schritt	Α
1	[5001,5041], [5001,5043], [5001,5049], [5041,5216], [5041,5052], [5043,5052], [5052,5259]
2	[5001,5041], [5001,5043], [5001,5049], [5041,5216], [5041,5052], [5043,5052], [5052,5259] [5001,5216], [5001,5052], [5041,5259], [5043,5259],
3	[5001,5041], [5001,5043], [5001,5049], [5041,5216], [5041,5052], [5043,5052], [5052,5259] [5001,5216], [5001,5052], [5041,5259], [5043,5259], [5001,5259]
4	wie in Schritt 3 (keine Veränderung, also Terminierung des Algorithmus

Inkrementelle (semi-naive)

Auswertung rekursiver Regeln

Die Schlüsselidee der *semi-naiven Auswertung* liegt in der Beobachtung, dass für die Generierung eines neuen Tupels *t* der rekursiv definierten IDB-Relation *P* eine bestimmte Regel

$$p(...) := q_1(...), ..., q_n(...).$$

für Prädikat *p* "verantwortlich" ist. Dann wird also im iterativen Auswertungsprogramm ein Algebra-Ausdruck der Art

$$E(Q_1 \bowtie ... \bowtie Q_n)$$

iterativ ausgewertet. Es reicht aber aus

$$E(\Delta Q_1 \bowtie Q_2 \bowtie ... \bowtie Q_n) \cup E(Q_1 \bowtie \Delta Q_2 \bowtie ... \bowtie Q_n) \cup ... \cup$$

$$E(Q_1 \bowtie Q_2 \bowtie ... \bowtie \Delta Q_n)$$

auszuwerten.

$$E(\underbrace{Q_1}_{t_1}\bowtie...\bowtie \underbrace{Q_{i-1}}_{t_{i-1}}\bowtie \underbrace{\Delta Q_i}_{t_i}\bowtie \underbrace{Q_{i+1}}_{t_{i+1}}\bowtie...\bowtie \underbrace{Q_n}_{t_n})$$

$$t = [5001, 5259]$$

Dieses Tupel wurde aus dem folgenden Join gebildet:

$$\underbrace{[5001,5052]}_{t_1 \in A} \bowtie \underbrace{[5052,5259]}_{t_2 \in V_S}$$

Programm zur semi-naiven Auswertung von *aufbauen*

```
A := \{ \}; \Delta V_S := \{ \};
      \Delta A := Vs(V, N); / * \text{ erste Regel } * /
        \Delta A := \Delta A \cup \prod_{V \mid N} (A(V; M) \bowtie Vs(M, N)); / * zweite Regel * /
3.
4.
        A := \Delta A;
5.
       repeat
6.
             \Delta A' := \Delta A;
7.
             \Delta A := \Delta V s(V, N); /* \text{ erste Regel, liefert} \varnothing */
8.
     \Delta A := \Delta A \cup /* zweite Regel*/
9.
                    \Pi_{V|N}(\Delta A'(V,M)\bowtie Vs(M,N)) \cup
10.
                    \Pi_{V,N}(A(V,M)\bowtie \Delta Vs(M,N));
            \Delta A := \Delta A - A; /* entferne "neue" Tupel, die schon vorhanden waren */
11.
12. A := A \cup \Delta A;
13. until \Delta A = \emptyset;
```

Illustration der semi-naiven Auswertung von Aufbauen

Schritt	ΔΑ
Initialisierung (Zeile 2. und 3.)	(sieben Tupel aus VS) [5001,5042], [5001,5043] [5043,5052], [5041,5052] [5001,5049], [5001,5216] [5052,5259]
1. Iteration	(Pfade der Länge 2) [5001,5216], [5001,5052] [5041,5259], [5043,5259]
2. Iteration	(Pfade der Länge 3) [5001,5259]
3. Iteration	$ \emptyset $ (Terminierung)

Bottom-Up oder Top-Down Auswertung

$$(r_1) \ a(V,N) := vs(V,N).$$

 $(r_2) \ a(V,N) := a(V,M), vs(M,N).$

query (V) := A(V,5052).

Rule/Goal-Baum zur Top-Down Auswertung

$$a(V,5052)$$
 $r_1:a(V,5052):-vs(V,5052)$
 $r_2:a(V,5052):-a(V,M1),vs(M1,5052)$
 $vs(V,5052)$
 $r_1:a(V,M1):-vs(V,M1)$
 $r_2:a(V,M1):-a(V,M2),v2(M2,M1)$
 $vs(V,M1)$
 $vs(V,M1)$
 $vs(V,M1)$

Rule/Goal-Baum mit Auswertung

a(V,5052) r_1 : a(V,5052):- vs(V,5052) r_2 : a(V,5052):- a(V,M1),vs(M1,5052)*vs*(*V*,5052) a(V,M1) *vs*(*M1*,5052) $V \in \{5041,5043\}$ $M1 \in \{5041,5043\}$ r_2 : a(V,M1):- a(V,M2),v2(M2,M1) r_1 : a(V,M1):- vs(V,M1)a(V,M2) vs(M2,M1) vs(V,M1) $M2 \in \{5001\}$ $V \in \{5001\}$

Negation im Regelrumpf

indirektAufbauen(V,N) :- aufbauen(V,N), ¬voraussetzen(V,N)

Stratifizierte Datalog-Programme

Eine Regel mit einem negierten Prädikat im Rumpf, wie z.B.

$$r \equiv p(...) := q_1(...), ..., \neg q_i(...), ..., q_n(...).$$

kann nur dann sinnvoll ausgewertet werden, wenn Q_i schon vollständig materialisiert ist. Also müssen zuerst alle Regeln mit Kopf $q_i(...)$:- ... ausgewertet sein. Das geht nur, wenn q_i nicht abhängig von p ist.

Also darf der Abhängigkeitsgraph keine Pfade von q_i nach p enthalten. Wenn das für alle Regeln der Fall ist, nennt man das Datalog-Programm *stratifiziert*.

Auswertung von Regeln mit Negation

$$iA(V,N):-a(V,N),\neg vs(V,N).$$

$$iA(V,N) = \prod_{V,N} (A(V,N) \bowtie \overline{Vs}(V,N))$$
$$= A(V,N) - Vs(V,N)$$
$$\overline{Q}_i := (DOM \times ... \times DOM) - Q_i$$
$$k-mal$$

Ein etwas komplexeres Beispiel

grundlagen(V): -voraussetzen(V, N). spezialVorl(V): -vorlesungen(V, T, S, R), $\neg grundlagen(V)$.

 $Grundlagen(V) := \Pi_{V}(Voraussetzen(V, N))$ $SpezialVorl(V) := \Pi_{V}(Vorlesungen(V, T, S, R) \bowtie \overline{Grundlagen}(V))$

Hierbei ist $\overline{Grundlagen}(V)$ als DOM - Grundlagen(V) definiert.

 $SpezialVorl(V) := \Pi_V(Vorlesungen(V, T, S, R)) - Grundlagen(V)$

Ausdruckskraft von Datalog

- Die Sprache Datalog, eingeschränkt auf nicht-rekursive Programme aber erweitert um Negation, wird in der Literatur manchmal als *Datalog* ¬_{non-rec} bezeichnet
- Diese Sprache Datalog non-rec hat genau die gleiche Ausdruckskraft wie die relationale Algebra – und damit ist sie hinsichtlich Ausdruckskraft auch äquivalent zum relativen Tupel- und Domänenkalkül
- Datalog mit Negation und Rekursion geht natürlich über die Ausdruckskraft der relationalen Algebra hinaus – man konnte in Datalog ja z.B. die transitive Hülle der Relation *Voraussetzen* definieren.

Datalog-Formulierung der relationalen Algebra-Operatoren

Selektion

$$\sigma_{SWS > 3}^{(Vorlesungen)},$$

 $query(V,T,S,R):-vorlesungen(V,T,S,R),S > 3.$
 $query(V,S,R):-vorlesungen(V,"M"aeutik",S,R).$

Projektion

query(Name, Rang): -professoren(PersNr, Name, Rang, Raum).

Join

$$\Pi_{Titel,Name}$$
 (Vorlesungen $\bowtie_{gelesenVon=PersNr}$ Professoren)

$$query(T, N)$$
: $-vorlesungen(V, T, S, R)$, $professoren(R, N, Rg, Ra)$

Datalog-Formulierung der relationalen Algebra-Operatoren

Kreuzprodukt

```
query(V1, V2, V3, V4, P1, P2, P3, P4): -vorlesungen(V1, V2, V3, V4), professoren(P1, P2, P3, P4).
```

Professoren × Vorlesungen

Vereinigung

```
\Pi_{PersNr,Name} (Assistenten) \cup \Pi_{PersNr,Name} (Professoren)
```

```
query(PersNr, Name): \neg assistenten(PersNr, Name, F, B).
query(PersNr, Name): \neg professoren(PersNr, Name, Rg, Ra).
```

Datalog-Formulierung der relationalen Algebra-Operatoren

Mengendifferenz

```
\Pi_{VorlNr}(Vorlesungen) - \Pi_{Vorgänger}(Voraussetzen)
```

```
vorlNr(V): -vorlesungen(V, T, S, R).

grundlagen(V): -vorlnr(V), \neg grundlagen(V).

query(V): -vorlNr(V), \neg grundlagen(V).
```