SECOND SEMESTER 2018-2019 <u>Course Handout (Part II)</u>

Jan 07, 2019

In addition to part-I (General handout for all courses appended to the timetable) this portion gives further specific details regarding the course:

Course Number & Title : IS F462 Network Programming

Instructor In-Charge : HARI BABU K

Course Website :https://sites.google.com/a/pilani.bits-pilani.ac.in/network-programming/

1. Scope and Objective of the Course

This course is intended for software engineers involved in developing, maintaining and supporting distributed and network applications in UNIX environment. The course teaches about system programming necessary for server and client programming. It teaches programming aspects of low-level protocol TCP, UDP, raw sockets, data link level access, multicast, broadcast etc. It covers the recent developments in web programming and web server technologies. It will also teach about distributed programming aspects like RPC, web services and Protocol Buffers. Course structure involves interesting assignments and labs to strengthen the concepts.

2. Text Book

- T1. W. R. Stevens, UNIX Network Programming, Vol I, Networking APIs: Sockets and XTI, Pearson Education, 3rd Edition.
- T2. W.R. Stevens, UNIX Network Programming, Interprocess Communication, Vol II Pearson Education, 2nd Edition.

3. Reference Books

R1. The Linux Programming Interface: Linux and UNIX System Programming Handbook by Michael Kerrisk, No Starch Press © 2010

(http://library.books24x7.com/toc.aspx?bookid=41558)

R2. W.R. Stevens, Advanced Programming in the UNIX Environment, Pearson Education, 2008.

4. Course Plan:

a. Modules

Module	Theme	Learning Objectives
I System Programming		To understand and practice I/O, process and signal management in Linux systems
		 To understand and practice Inter-process communication (IPC) mechanisms

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus AUGS/ AGSR Division

II	Client & Server Design	 To understand various I/O models and their applications. To understand various client and server designs and their performance. To understand how to create a daemon. 			
III	Web Servers & Web Applications	 To understand architectures of contemporary Web Servers and their scalability To understand client-side scripting. To understand web application frameworks on server-side 			
IV	Socket Programming - TCP,UDP	 To understand and practice Socket API for building TCP/UDP based client-server. To understand API required to access DNS. To understand the configuration level options available for Socket API To understand protocol design and implementation. 			
V	Socket Programming - Low level	 To understand and practice the application of raw sockets and link level access API. To understand how to do multicast and broadcast. To understand Unix domain sockets 			
VI	Distributed Programming	 To understand the concept of distributed programming and how it is different from socket programming To understand RPC, XML-RPC, JSON-RPC, SOAP To understand how to create Web services To understand data exchange formats such as XDR and protocol buffers 			
VII	Security	 To understand security issues in programming multi-user UNIX server systems. To understand security attacks in network-facing servers. 			

Lectures	Module	Торіс	Reference
1	I	Unix History; Fundamental Concepts; System Programming Concepts;	R1: Chapter 1,2,3
2-4		Unix File I/O; Standard I/O Library; fcntl; ioctl; Unix Processes; Program Execution; Error Handling; Unix Signals	R1: Chapter 4, 5, 6, 13, 20, 24-26
5-7	I	Unix IPC: Pipes, FIFOs, System V Message queues , System V Semaphores, System V Shared Memory, Memory mapping;	R1: Chapter 43-49, 51- 55

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus AUGS/ AGSR Division

			T2: Chapter 3,4,6	
8		Overview of Transport Layer Protocols: TCP, UDP; Client-	T1: Chapter 2 + class	
0		server architectures;	notes	
9-11		Sockets, Sockaddr structure; TCP and UDP Socket API; TCP	T1: Chapter 3-5,7,8	
	IV	client-server examples; UDP examples; Socket Options;	R1: Chapter 59	
12-13		Domain name conversion API; IPv6 differences; IPv4-IPv6-	T1 : Chapter 11, 12, 22	
12 13		compatibility; Adding reliability to UDP applications;	11. Chapter 11, 12, 22	
14		Protocol Implementation Issues: encoding, framing;	T1: Chapter 5	
17		Trotocol implementation issues: encounig, manning,	R1: Chapter 59	
		Non-Blocking I/O; I/O multiplexing; Signal driven I/O;	T1: Chapter 6, 14, 25+	
15-17	II	Asynchronous I/O (POSIX API); Client and server design with	class notes	
		select() call; shutdown(); Advanced I/O API;	R1: Chapter 63	
18-19	V	Unix domain sockets: Addressing, Socket pair, Descriptor	T1 : Chapter 15	
10-19	V	passing , Credential passing;	R1: Chapter 34, 37	
20	II	Daemon processes; inetd super server, sylogd;	T1:13	
		Overview of Pthreads; Pthreads Synchronization;	R1: Chapter 29	
21-22		Non-blocking I/O; Non-blocking connect; Client alternative	T1: Chapter 16	
21-22		designs; Performance analysis;		
	II	Preforking models; Prethreading models; Performance	T1 : Chapter 22, R1:	
23-25		analysis; Case study: Apache; The C10K problem; Event-	Chapter 60,61	
23-25		driven architectures; Concurrency models for UDP servers;	T1: Chapter 22	
	III	Web Servers: Case studies of Apache, Nginx, Node.js	Class notes	
26-27		API: CGI, FastCGI, SAPI, ISAPI		
		Scalability with server scale-out. Memcache.		
	III	Application development for web-based client and servers:	Class notes	
		Client-side programming: URL, HTTP, HTML Forms, DOM,		
28-29		Javascript		
		Server-side programming: N-tier vs Model view controller		
		(MVC). Case study of a select MVC framework.		
		Broadcasting: concepts & implementation;	T1 : Chapter 20,21	
30-31	V	Multicasting: addresses; concepts, implementation;		
		Broadcasting & multicasting in IPv6;		
	V	Raw Sockets: Socket creation; input, output; ping: design &	T1 : Chapter 28,29	
32-34		implementation; trace route: design & implementation; UDP		
		asynchronous errors;		
	VI	Socket programming vs RPC; SUN RPC: high level API; port	T2 : Chapter 16	
35		mapper; rpcgen; XDR; low-level API: authentication;	Class notes	
		multithreading;		
36-37	VI	Web services, REST API. Case study. Google protocol buffers.	Class Notes	
38	VI	Web sockets, WebRTC with examples.	Class Notes	
39-40	VII	Security issues in programming. Buffer overflow attacks. DoS	R1: Chapter 38	
	, , , , , , , , , , , , , , , , , , , ,			

attacks.		

5. Evaluation Scheme:

Component	Duration	Weightage (%)	Date, Time & Venue	Remarks
Midterm Test	90 Mins	25%	15/3 2:00 -3:30 PM	Closed Book
Lab Participation (Individual)	-	10%		Take Home
Assignments (Maximum of two members per group)	-	30%		Take Home Assignments based on modules I, II, IV, V will be in C language. Others can be in any language.
Comprehensive Examination	3 hours	35%	11/5 FN	Partly open

6. Notices:

All notices shall be displayed only on course webpage.

7. Malpractices:

While coding assignments/lab exercises you are not allowed to share source code but discussions are allowed with others. Any copying detected among groups/individuals will be reported to appropriate authority.

8. Make-up Policy:

No makeup will be given for Labs and Assignment components. For tests, however, make-up will be granted strictly on prior permission and on justifiable grounds only.

9. Chamber Consultation Hours:

Tue 4-5PM in 6121-M

Instructor-in-charge

IS F462