INFDEV026A - Algoritmiek Week 2

G. Costantini, F. Di Giacomo, G. Maggiore

costg@hr.nl, giacf@hr.nl, maggg@hr.nl - Office H4.204

Today

- ➤ Why is my code slow?
 - **▶** Empirical and complexity analysis
- ► How do I order my data?
 - **▶** Sorting algorithms
- ► How do I structure my data?
 - ► Linear, tabular, recursive data structures
- ► How do I represent relationship networks?
 - ▶ Graphs

Insertion sort, Merge sort

http://www.youtube.com/watch?v=INHF_5RIxTE

- Algorithms that put elements of a sequence in a certain order (numerical/lexicographical)
 - ▶ fundamental problem in computer science
 - as a standalone algorithm (i.e., producing human readable output)
 - ▶ as part of more complex algorithms which require sorted data (i.e., binary search!)
 - usually, data is considered to be stored in an array

seguir avante o ade ión en una acertar, topar: not to succ subtender; other, no llevarse bien (do succeeder | söcsídər |. s. sucesor, gio, efugio. secuente, sucediente, futu succeeding pretexto. succentor. [söksénter o tor]. s isa, tapujo, success [söcsés]. s. buen éxit curribanda, na, logro, bienandanza. subterráneo. dro, triunfo; persona o niös]. adj. alumno que aprueba elicado, etéto make a success of, enetrante to win a success, cons successful [söcsésful]. adj. acertado, boyante. di nado, favorecido, fr ful lograrse,

- ► Popular <u>sorting algorithms</u>
 - Simple sorts
 - ► <u>Insertion sort</u>, selection sort
 - ► Efficient sorts
 - ► Merge sort, Quick sort, Heap sort
 - ▶ Bubble sort and variants
 - ▶ Bubble sort, Shell sort, Comb sort
 - Distribution sort
 - ► Counting sort, Bucket sort, Radix sort
- In practice, a few algorithms predominate

- ▶ When studying algorithms, we are interested in many aspects
 - ► Correctness, first and foremost
 - ▶ **Performance**, especially in certain domains (i.e., games)
 - ► Time & Space
- Time complexity... remember from last lesson?
 - Asymptotic notation to express the relationship between computing time and input size
 - Example: suppose an algorithm runs in $0.1n^2 + 10.0n$ milliseconds for an input of size $n \rightarrow$ its complexity is $O(n^2)$
 - Valid asymptotically (i.e., not for small inputs)

- Input
 - \blacktriangleright a sequence of *n* numbers $a_1, ..., a_n$
- Output
 - \blacktriangleright a permutation (reordering) a_1 , ..., a_n , of the input sequence ...
 - ▶ ... in non-decreasing order (i.e., such that $a_{1i} \leq \cdots \leq a_{ni}$)
- ► The numbers that we wish to sort are also known as the **keys**

Sorting algorithms Properties

- Interesting properties for a sorting algorithm
 - ► STABILITY → maintain the relative order of elements with equal keys
 - ightharpoonup COMPUTATIONAL COMPLEXITY ightharpoonup how many elements comparisons in terms of the size of the sequence
 - ▶ Good behavior is $O(n \log n)$
 - ▶ MEMORY USAGE \rightarrow in-place algorithms need only $\mathcal{O}(1)$ memory beyond the items being sorted
 - ▶ RECURSION → recursive or not
 - ► ADAPTABILITY → the presortedness of the input affects the running time

Basic idea

- ▶ When people manually sort something (for example, a deck of playing cards), most use a method that is similar to insertion sort
- ▶ Put one element at a time in its right position in the sorted sub-array
- ▶ The final sorted array (or list) is built one item at a time

Basic idea

- ▶ When people manually sort something (for example, a deck of playing cards), most use a method that is similar to insertion sort
- ▶ Put one element at a time in its right position in the sorted sub-array
- ▶ The final sorted array (or list) is built one item at a time

Advantages

- very intuitive algorithm; simple implementation
- efficient for (quite) small data sets
 - ▶ very efficient for data sets that are already substantially sorted and more efficient in practice than most other simple quadratic (i.e., $O(n^2)$) algorithms; the best case (nearly sorted input) is O(n)
- stable
- in-place
- online (can sort a sequence as it receives it, one element at a time)

► Graphical example

6 5 3 1 8 7 2 4

- Iterative algorithm
 - ▶ At each iteration one input element is consumed, growing a sorted output sequence
- ▶ Iteration
 - i. remove one element from the input data
 - ii. find the location it belongs within the sorted sequence
 - iii. insert it there
- Repeat until no input elements remain

- Sorting is typically done in-place
- ► For each unsorted item
 - ▶ shift all the larger values up to make a space
 - ▶ then insert it into the correct position

Start with a partially sorted list of items:

Move items in sorted part of array to make room for Temp.

Now, the sorted part of the list has increased in size by one item.

▶ Pseudo-code of the algorithm (<u>supposing the origin of the array is 1</u>)

```
FOR j = 2 to length(A)
  key = A[j]
  % put A[j] into the sorted sequence A[1..j-1]
  i = j - 1
  WHILE i > 0 and A[i] > key
    A[i+1] = A[i]
  i = i - 1
  A[i+1] = key
INFDEV026A - G. Costantini, F. Di Giacomo, G. Maggiore
```

- ► First iteration trace
 - **▶** j = 2
 - \triangleright key = A[2] = 2
 - ▶ i = 1
 - ▶ i > 0 && A[i] > 2 ? YES
 - ► $A[2] = A[1] \rightarrow A[2] = 5$
 - i = i 1 = 0
 - ▶ i > 0 && A[i] > 2 ? NO because i = 0
 - ► $A[i+1] = 2 \rightarrow A[1] = 2$

- Second iteration trace
 - \rightarrow j = 3
 - key = A[3] = 4
 - \rightarrow i = 2
 - ▶ i > 0 && A[i] > 4 ? YES
 - ► $A[3] = A[2] \rightarrow A[3] = 5$
 - i = i 1 = 1
 - ▶ i > 0 && A[i] > 4 ? NO because 2 > 4 is false
 - ► $A[i+1] = 4 \rightarrow A[2] = 4$

- Third iteration trace
 - **▶** j = 4
 - \triangleright key = A[4] = 6
 - \rightarrow i = 3
 - ▶ i > 0 && A[i] > 6 ? NO because 5 > 6 is false
 - ► $A[i+1] = 6 \rightarrow A[4] = 6$

• ... and so on ...

▶ In each iteration the first remaining entry of the input is removed, and inserted into the result at the correct position, thus extending the result

Sorted partial result	Unsorted data	Sorted partial result	Unsorted data
≤ <i>x</i> > <i>x</i>	<i>x</i>	$\leq x$ $x > x$	•••

Correctness

▶ After *k* iterations, the following property holds:

The first k + 1 entries are sorted

("+1" because the first entry is skipped)

- \blacktriangleright this property (called **INVARIANT**) holds true for every k, i.e. for the whole run of the algorithm
 - can be proved formally by induction (for us, intuition only)
- How many iterations does the algorithm?
 - \blacktriangleright length -1
 - ▶ After the last iteration, then: "The first (length 1) + 1 entries are sorted" → "The first length entries are sorted" → All entries are sorted!!!

- Performance
- Even with the same input size, runtime may differ
 - ▶ Depends on the *shape* of the data!
 - \blacktriangleright what varies is how many times we execute the loop test (t_i)
 - ▶ we can distinguish best, worst, average case
 - ▶ for each one, we can use the Big O notation (upper bound)

Best case (when the array is already sorted)

- ► The condition of the **while** loop then is false (the body is not executed)
- ► We just verify that every element is in the correct position (through the "for" loop)
- ightharpoonup Complexity O(n)

► Worst case (when the array is in reverse sorted order)

- ► The while loop is executed the maximum possible # of times
- ► For each element we have to insert it into the right position by shifting all the elements to its left
- ightharpoonup Complexity $O(n^2)$

► Best case → sequence already sorted

O(n)

► Worst case → sequence in reverse sorted order

15 11 9 6 5 3

 $O(n^2)$

```
9 3 4 220 1 3 10 5 8 7 2
Divide the data set in half.

9 3 4 220 1 3 10 5 8 7 2

9 3 4 220 1 3 10 5 8 7 2

Sort each half.

1 3 4 9 220 2 3 5 7 8 10

Merge the halves to obtain the sorted set.

1 2 3 3 4 5 7 8 9 10 220
```

- "Divide-and-conquer" approach
 - 1. [DIVIDE] Break problem into smaller sub-problems
 - 2. [CONQUER] Solve the sub-problems recursively
 - ▶ If the sub-problems are small enough just solve them straightforwardly
 - 3. [COMBINE] Combine the solutions of the sub-problems

- "Divide-and-conquer" approach
 - 1. [DIVIDE] Break problem into smaller sub-problems
 - 2. [CONQUER] Solve the sub-problems recursively
 - ▶ If the sub-problems are small enough just solve them straightforwardly
 - 3. [COMBINE] Combine the solutions of the sub-problems
- Merge sort idea
 - 1. [DIVIDE] Split the sequence to sort (n elements) into two sub-sequences ($\frac{n}{2}$ elements each)
 - 2. [CONQUER] Sort the two sub-sequences recursively (using merge sort)
 - ▶ If the sub-sequence has length 1, it is already sorted (recursion stops here)
- 3. [COMBINE] Merge the two sorted sub-sequences to produce the complete sorted sequence

- Merge sort idea
 - 1. [DIVIDE] Split the sequence to sort into two sub-sequences $(\frac{n}{2}$ elements each)
 - 2. [CONQUER] Sort the two sub-sequences recursively (using merge sort)
 - 3. [COMBINE] Merge the two sorted sub-sequences to produce the complete sorted sequence
- Pseudocode

```
MERGE-SORT(A,p,r)
if p < r
    q = (p + r) / 2
    MERGE-SORT(A,p,q)
    MERGE-SORT(A,q+1,r)
    MERGE(A,p,q,r)</pre>
```

- Merge sort idea
 - 1. [DIVIDE] Split the sequence to sort into two sub-sequences $(\frac{n}{2}$ elements each)
 - 2. [CONQUER] Sort the two sub-sequences recursively (using merge sort)
 - 3. [COMBINE] Merge the two sorted sub-sequences to produce the complete sorted sequence
- Pseudocode

```
MERGE-SORT(A,p,r)
   if p < r
        q = (p + r) / 2
        MERGE-SORT(A,p,q)
        MERGE-SORT(A,q+1,r)
        MERGE(A,p,q,r)</pre>
```

- Merge sort idea
 - 1. [DIVIDE] Split the sequence to sort into two sub-sequences $(\frac{n}{2}$ elements each)
 - 2. [CONQUER] Sort the two sub-sequences recursively (using merge sort)
 - [COMBINE] Merge the two sorted sub-sequences to produce the complete sorted sequence
- Pseudocode

```
MERGE-SORT(A,p,r)
   if p < r
        q = (p + r) / 2
        MERGE-SORT(A,p,q)
        MERGE-SORT(A,q+1,r)
        MERGE(A,p,q,r)</pre>
```

- ► How to combine two sorted sub-sequences into one?
- Example
 - ▶ two sorted piles of cards (face-up; smallest card on top)
 - ▶ we want to merge them into a single sorted pile

- How to combine two sorted sub-sequences into one?
- Example
 - two sorted piles of cards (face-up; smallest card on top)
 - we want to merge them into a single sorted pile
- Procedure
 - ▶ Choose the smallest of the two cards on top and remove it from its pile
 - ▶ Place this card into the output pile (face down)
 - Repeat the previous step until one of the two piles is empty
 - ▶ Take the remaining input pile and move it into the output one

- ► Example: merging the two sequences 2 3 8 9 and 1 4 5 7
 - ightharpoonup Compare 2 and 1 \rightarrow Put 1 into the output sequence
 - ► S1: <u>2</u> 3 8 9; S2: <u>4</u> 5 7; OUTPUT: 1
 - \blacktriangleright Compare 2 and 4 \rightarrow Put 2 into the output sequence
 - ► S1: <u>3</u> 8 9; S2: <u>4</u> 5 7; OUTPUT: 1 2
 - \blacktriangleright Compare 3 and 4 \rightarrow Put 3 into the output sequence
 - ► S1: 8 9; S2: 4 5 7; OUTPUT: 1 2 3
 - ► Compare 8 and 4 → Put 4 into the output sequence
 - ► S1: 8 9; S2: 5 7; OUTPUT: 1 2 3 4
 - ...

► Example: merging the two sequences 2 3 8 9 and 1 4 5 7

- **...**
 - ► S1: <u>8</u> 9; S2: <u>5</u> 7; OUTPUT: 1 2 3 4
- ► Compare 8 and 5 → Put 5 into the output sequence
 - ► S1: 8 9; S2: 7; OUTPUT: 1 2 3 4 5
- ightharpoonup Compare 8 and 7 \rightarrow Put 7 into the output sequence
 - ► S1: 8 9; S2: Ø; OUTPUT: 1 2 3 4 5 7
- ▶ One pile is empty
 - ▶ Put all the elements of the other pile (8 9) in the output sequence
 - ► S1: Ø; S2: Ø; OUTPUT: 1 2 3 4 5 7 8 9

- ► A possible way to put it into code
 - Start by creating two arrays L,R
 - ► L contains the left part of A (one pile)
 - ► R contains the right part of A (other pile)
 - ▶ Both parts are sorted!
 - ▶ Last element of both L/R is ∞
 - ► Then, choose & copy the smallest element from the two arrays
 - No need to check if one part is empty, thanks to the use of ∞

```
MERGE(A, p, q, r)
n_1 = q - p + 1
n_2 = r - q
let L[1...n_1 + 1] and L[1...n_2 + 1] be new arrays
FOR i = 1 TO n_1
 L[i] = A[p + i - 1]
FOR j = 1 TO n_2
  R[j] = A[q + j]
L[n_1 + 1] = \infty
R[n_2 + 1] = \infty
i = 1
j = 1
FOR k = p TO r
  IF L[i] \leq R[j]
    A[k] = L[i]
   i = i + 1
  ELSE
    A[k] = R[j]
    j = j + 1
```


Performance

- ▶ T(n) → running time of Merge Sort on an input of size n
- ► The total running time is the sum of...
 - ▶ [DIVIDE] compute the middle of the subarray $\rightarrow 0(1)$
 - ► [CONQUER] recursively solve the two sub-problems, each of size $\frac{n}{2} \to 2 \times T\left(\frac{n}{2}\right)$
 - ▶ [COMBINE] n iterations of the loop, each of which takes constant time $\rightarrow O(n)$

$$T(n) = 2 \times T\left(\frac{n}{2}\right) + n$$

- ▶ To solve this recurrence, we would need the "master theorem"...
- ▶ ... here only intuition! (pfiuuuuu ☺)

Performance

$$T(n) = 2 \times T\left(\frac{n}{2}\right) + n$$

- \blacktriangleright for convenience, assume that n is a power of 2
- Tree representing the recurrence
 - ► Root = top level of recursion
 - Each node = cost of merging plus cost of sub-problems (subtrees)
 - Leaves = problems of size 1 (recursion stops)

The state of the s cn/2cn/2 cn/4cn/4

(a)

 $\lg n$

Performance

$$T(n) = 2 \times T\left(\frac{n}{2}\right) + n$$

- \blacktriangleright for convenience, assume that n is a power of 2
- Total cost of the tree?
 - Cost of each level multiplied by number of levels
 - ▶ What is the cost of each level?
 - \triangleright O(n)
 - ▶ What is the height of the tree?
 - ▶ $\log_2 n$ because, by definition, $x = \log_2 n \Rightarrow 2^x = n \Rightarrow \frac{n}{2^x} = 1$

T(n)T(n/2)T(n/2)cn/2T(n/4)T(n/4)T(n/4)(a) (b) (c) The state of the s cn/2cn/2 $\lg n$ cn/4cn/4

cn/2

Total: $cn \lg n + cn$

T(n/4)

Performance

$$T(n) = 2 \times T\left(\frac{n}{2}\right) + n$$

- \blacktriangleright for convenience, assume that n is a power of 2
- Total cost of the tree?
 - ▶ Cost of each level $\rightarrow O(n)$
 - ▶ How many levels? $\rightarrow \log_2 n + 1$
 - ▶ Ignoring the constant 1 we get

$$T(n) = O(n \log n)$$

T(n/2)T(n/2)cn/2cn/2 T(n/4)T(n/4)T(n/4)(a) (b) (c) cn/2cn/2 $\lg n$ cn/4 cn/4cn/4 Total: $cn \lg n + cn$

T(n/4)

T(n)

INFDEV026A - G. Costantini, F. Di Giacomo, G. Maggiore

Recursion tree, example

- \blacktriangleright Let n=8
- ▶ Levels of the recursion tree?
 - ► First level: 1 node with 8 elements
 - ▶ Second level: 2 nodes with 4 elements each
 - ▶ Third level: 4 nodes with 2 elements each
 - ► Fourth (and last) level: 8 nodes with 1 element each
- ▶ $\log_2 8 = 3$ because $2^3 = 2 \times 2 \times 2 = 8$
- ▶ $(\log_2 8) + 1 = 4 \rightarrow 4$ levels

- Recursion tree, example
 - \blacktriangleright ... what if n is not a power of 2?
 - \blacktriangleright Let n=5
 - ▶ Levels of the recursion tree?
 - ► First level: 1 node with 5 elements
 - ▶ Second level: 2 nodes with max 3 elements each
 - ▶ Third level: 4 nodes with max 2 elements each
 - ► Fourth (and last) level: some nodes with max 1 element each
 - ▶ $\log_2 5 = 2.321 \dots$ → we round it to the next integer (3)!
 - ▶ $[\log_2 5] + 1 = 4 \rightarrow 4$ levels

Homework

- ► Implement the two sorting algorithms
 - ► Facultative: try to make it generic with respect to the type of the elements being sorted (using a comparator)
- ► START WITH THE FIRST EXERCISE OF THE PRACTICAL ASSIGNMENT!