

Engineering Data Analysis with Matlab

Anke Scherb

Engineering Risk Analysis Group Technische Universität München

Phone: 089 289 23013

E-mail: anke.scherb@tum.de

Engineering Data Analysis with Matlab

For your project work ...

- Please form groups of 2-3 students for your project work
- Send an email to anke.scherb@tum.de or tell the tutors during the tutorial until May 9
- This is requested for receiving the ECTS!

Engineering Data Analysis with Matlab

Today's lecture

- Matlab operators
- Basic programming
- Plotting data

Relational operators

- Compare operands quantitatively
- Element-by-element comparisons between two arrays or matrices
- Return logial array of the same size as operands, with elements set to logical 1 (true) where the relation is true, and elements set to logical 0 (false) where it is not

Relational operators

<	Less than		
<=	Less than or equal		
==	Equal		
>=	Greater than or equal		
>	Greater than		
~=	Not equal		

Relational operators - example

```
>> A = [4 5; 6 7]
A =
>> B = B = [7, 9; 2, 3]
B =
>> C = A > B
C =
     0
          0
          1
```


Find elements that meet a condition

>> A=randi(25,5)								
A =								
7	14	7	5	21				
13	4	21	7	15				
18	4	7	16	14				
23	7	24	12	23				
24	22	9	9	8				
>> B= A > 12								
В =								
0	1	0	0	1				
1	0	1	0	1				
1	0	0	1	1				
1	0	1	0	1				
1	1	0	0	0				

Find elements that meet a condition

```
>> c=A(B)
                        % c contains all elements of A that
c =
    13
                            are larger than 12
    18
    23
    24
    14
    22
    21
    24
    16
    21
    15
    14
    23
```


Find elements that meet a condition

```
>> D=find (A > 12)
        % D contains all positions of elements of A
                           larger than 12
    2
    10
    12
    14
    15
    16
    17
    18
    19
```


Select elements with special criteria

Logical operators

a & b	And
and(a,b)	And
a b	Or
or(a,b)	Or
~a	Not
not(a)	Not

Note: Logical operations can be applied element-wise

any (A)	Returns true if at least one element is true and			
	false else			

Matlab - Programming tools

For loop – Execute statements a specified number of times

```
for index = values
    statements
end
```

```
for i = 1:k
  for j = 1:k
     A(i,j) = i+j;
  end
end
```


Matlab – Programming tools

While loop – Repeatedly execute statements while condition is true

```
while expression

statements

end
```

```
i = 1;
while i < 10
    v(i) = i^2;
    i = i+1;
end</pre>
```

Example: loops.m

Matlab - Programming tools

If, elseif, else statement – Execute statements if condition is true

```
if expression
   statements
end
if expression
   statements
elseif expression
   statements
else
   statements
end
```


Matlab – Programming tools

Break statement – Exit a loop

```
n = 0;
for i = 1:k
  n = n+i;
  if n >= 10
     break;
  end
end
```


Matlab - Programming tools

Example – Bisection method for finding the root of a function

Matlab - Plotting

Example data plot types:

- Data plot
- Surface plot
- Scatter plot
- Cone plot
- Bar graph
- Errorbars
- Pie chart
- •

Matlab - Plotting

Plotting commands

figure	Create figure object		
hold	Retain current graph when adding new graphs		
plot	2D line plot		
xlim, ylim	Set axes limits		
legend	Create graph legend		
xlabel, ylabel	Set axes labels		

Matlab – Plotting

Simple plot – Example Plot (x, y)

```
>> x=[0:pi/50:2*pi]; % Set domain values
>> y=sin(x);
% Set range values
>> plot (x,y); % Plot data
           % Turns grid on
>> grid;
>> title 'Sine Wave'; % Sets title
>> xlabel 'x'; % Sets label of x axis
>> ylabel 'sin(x)'; % Sets label of y axis
>> xlim([x(1) x(end)]); % Sets x plot limits
```


Matlab – Plotting

Simple plot – Example Plot (x, y)

```
>> x=[0:pi/50:2*pi]; % Set domain values
>> y=sin(x);
             % Set ranc
>> plot (x,y);
            % Plot dat
>> grid;
                  % Turns gr
>> title 'Sine Wave'; % Sets tit
>> xlabel 'x'; % Sets lak
>> ylabel 'sin(x)'; % Sets lak
>> xlim([x(1) x(end)]); % Sets x r
```


Matlab – Edit Graphics Style

>> plot(x, y, '<color> <point style> <line style>')

	Color		Point style	Line style		
b	blue		point	_	solid	
g	green	0	circle	:	dotted	
r	red	X	x-mark		dashdot	
С	cyan	+	plus		dashed	
m	magenta	*	star			
У	yellow	S	square			
k	black	d	diamond			
		V	triangle (down)			
		^	triangle (up)			
		<	triangle (left)			
		>	triangle (right)			
		р	pentagram			
		h	hexagram			

Matlab – Plotting

Multiple plot – Example Plot (x, y)

```
>> x=[0:pi/50:2*pi];
                               % Set domain values
>> y1=sin(x);
                                % Set range values
>> y2=sin(2*x);
\gg y3=sin(4*x);
>> plot (x, [y1; y2; y3]);
                          % Plot data
>> grid;
                                % Turns grid on
>> xlabel 'x';
                               % Sets label of x axis
>> xlim([x(1) x(end)]); % Sets x plot limits
```


Matlab – Plotting

Multiple plot – Example Plot (x, y)

```
>> y1=sin(x);
                   % Set range values
>> y2=sin(2*x);
>> y3=sin(4*x);
                                 0.6
>> plot (x, [y1; y2; y3]);
                                 0.4
>> grid;
                                0.2
>> xlabel 'x'; % Sets labe
>> xlim([x(1) x(end)]); % Sets x pl
                                -0.2
                                -0.4
                                -0.6
                                -0.8
                                          2
                                                      5
```


Bar chart – Representation of discrete quantities or categorical data

bar(data)

Number of occurences

Discrete states

Series diagram – Representation of continuous data

Series diagram of maximum monthly discharge in a river

Histogram – Representation of large continuous data sets

Histogram

- Use intervals of equal width for better interpretation
- Careful selection of number of intervals use available empirical formulas

Normalized frequency diagram – Obtained by normalization of histogram

$$h_i = \frac{n_i}{n \cdot r_i}$$

- n_i are the number of samples in interval i
- r_i is the width of interval I
- h_i is the heigth of each bar

Normalized frequency diagram of strength data

Cumulative frequency diagram – Frequency Q(x) of samples whose values are less than the value x

- Sort samples in ascending order
- For x, Q(x) is the number of samples less than or equal to x divided by the total number of samples

cdfplot(data)

Cumulative frequency diagram – Frequency Q(x) of samples whose values are less than the value x

Cumulative frequency diagram of strength data

Quantile plot – Plots the values below which a certain fraction of the samples fall

- Sort samples in ascending order $x_1, x_2, ..., x_n$
- Plot the pairs x_i and the *i*-th quantile (i 0.5)/n

Box plot – Multiple information

- Quartiles (25%, 50% and 75% percentiles)
- Range (minimum and maximum, excluding outliers)
- Outliers

boxplot(data)

Box plot – Multiple information

- Quartiles (25%, 50% and 75% percentiles)
- Range (minimum and maximum, excluding outliers)
- Outliers

Outliers – <u>Possible</u> procedure for determination

- Determine the interquartile range iqr (difference between first and third quartile)
- Determine samples greater than 1.5*iqr above the third quartile
- Determine samples smaller than 1.5*iqr bellow the first quartile

Scatter diagram – Demonstrates dependence between measured quantities

- Observed quantities in each axis
- Sample represented by a dot

scatter(data1,data2)

Scatter diagram – Demonstrates dependence between measured quantities

- Observed quantities in each axis
- Sample represented by a dot

Sample covariance – Average of product of deviations from sample mean

$$c_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})$$

cov (data1, data2)

Sample correlation coefficient – Normalized covariance

$$r_{XY} = \frac{c_{XY}}{s_X \cdot s_Y}$$

corrcoef(data1,data2)

Sample correlation coefficient for different pairs of data sets

