SDS 940 Simulator Usage 01-Dec-08

COPYRIGHT NOTICE

The following copyright notice applies to the SIMH source, binary, and documentation:

Original code published in 1993-2008, written by Robert M Supnik Copyright (c) 1993-2008, Robert M Supnik

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik.

1	Sim	ulator Filesulator Files	3
2	SDS	S 940 Features	3
	2.1	CPU	4
	2.2	Channels (CHAN)	5
	2.3	Console Input (TTI)	
	2.4	Console Output (TTO)	
	2.5	Paper Tape Reader (PTR)	
	2.6	Paper Tape Punch (PTP)	
	2.7	Line Printer (LPT)	
	2.8	Real-Time Clock (RTC)	8
	2.9	Terminal Multiplexer (MUX)	8
	2.10	Project Genie Drum (DRM)	9
	2.11	Rapid Access (Fixed Head) Disk (RAD)	
	2.12	Moving Head Disk (DSK)	
	2.13	Magnetic Tape (MT)	
3	Sym	nbolic Display and Input	
	•		

This memorandum documents the SDS 940 simulator.

1 Simulator Files

sim/ scp.h sim_console.h sim_defs.h sim_fio.h sim_rev.h sim_sock.h sim_tape.h sim_timer.h sim_tmxr.h scp.c sim_console.c sim_fio.c sim_sock.c sim_tape.c sim_timer.c sim_tmxr.c sim/sds/ sds_defs.h sds_cpu.c sds_drm.c sds_dsk.c sds_io.c sds_lp.c sds_mt.c sds_mux.c sds_rad.c sds_stddev.c sds_sys.c

2 SDS 940 Features

The SDS-940 simulator is configured as follows:

device name(s)	simulates
CPU	SDS-940 CPU with 16KW to 64KW of memory
CHAN	I/O channels
PTR	paper tape reader
PTP	paper tape punch
TTI	console input
TTO	console output
LPT	line printer
RTC	real-time clock
MUX	terminal multiplexor
DRM	Project Genie drum
RAD	fixed head disk
DSK	9164/9165 rapid access (moving head) disk
MT	magnetic tape

Most devices can be disabled or enabled with the SET <dev> DISABLED and SET <dev> ENABLED commands, respectively.

The LOAD command is used to load a line printer carriage-control tape. The DUMP command is not implemented.

2.1 CPU

The CPU options set the size of main memory and the configuration of peripherals.

```
SET CPU 16K set memory size = 16KW

SET CPU 32K set memory size = 32KW

SET CPU 48K set memory size = 48KW

SET CPU 64K set memory size = 64KW

SET CPU GENIE enable DRM, set terminal mux to GENIE mode

SET CPU SDS disable DRM, set terminal mux to SDS mode
```

If memory size is being reduced, and the memory being truncated contains non-zero data, the simulator asks for confirmation. Data in the truncated portion of memory is lost. Initial memory size is 64KW.

CPU registers include the visible state of the processor as well as the control registers for the interrupt system.

name	size	comments
P	14	program counter
A	24	accumulator A
В	24	accumulator B
X	24	index register
OV	1	overflow indicator
EM2	3	memory extension, quadrant 2
EM3	3	memory extension, quadrant 3
RL1	24	user relocation register 1
RL2	24	user relocation register 2
RL4	12	kernel relocation register
NML	1	normal mode flag
USR	1	user mode flag
MONUSR	1	monitor-to-user trap enable
ION	1	interrupt enable
INTDEF	1	interrupt defer
INTREQ	32	interrupt request flags
APIACT	5	highest active API level
APIREQ	5	highest requesting API level
XFRREQ	32	device transfer request flags
BPT	4	breakpoint switches
ALERT	6	outstanding alert number
STOP_INVINS	1	stop on invalid instruction
STOP_INVDEV	1	stop on invalid device number
STOP_INVIOP	1	stop on invalid I/O operation
INDLIM	8	maximum indirect nesting depth
EXULIM	8	maximum execute nesting depth
PCQ[0:63]	14	P prior to last branch or interrupt; most recent P change first
WRU	8	interrupt character

The CPU can maintain a history of the most recently executed instructions. This is controlled by the SET CPU HISTORY and SHOW CPU HISTORY commands:

```
SET CPU HISTORY clear history buffer

SET CPU HISTORY=0 disable history

SET CPU HISTORY=n enable history, length = n

SHOW CPU HISTORY print CPU history

SHOW CPU HISTORY=n print first n entries of CPU history
```

The maximum length for the history is 65536 entries.

2.2 Channels (CHAN)

The SDS 940 has up to eight I/O channels, designated W, Y, C, D, E, F, G, and H. W, Y, C, and D are time-multiplexed communications channels (TMCC); E, F, G, and H are direct access communications channels (DACC). Unlike real SDS 940 channels, the simulated channels handle 6b, 12b, and 24b transfers simultaneously. The association between a device and a channel is displayed by the SHOW <dev> CHAN command:

```
SHOW LPT CHAN channel=W
```

The user can change the association with the SET <dev> CHAN=<chan> command, where <chan> is a channel letter:

```
SET LPT CHAN=E
SHOW LPT CHAN
channel=E
```

Each channel has nine registers. The registers are arrays, with entry [0] for channel W, entry [1] for channel Y, etc.

name	size	comments
UAR[0:7]	6	unit address register
WCR[0:7]	15	word count register
MAR[0:7]	16	memory address register
DCR[0:7]	6	data chaining register
WAR[0:7]	24	word assembly register
CPW[0:7]	2	characters per word
CNT[0:7]	3	character count
MODE [0:7]	12	channel mode (from EOM instruction)
FLAG[0:7]	9	channel flags

The user can display all the registers in a channel with the command:

```
SHOW CHAN channel-letter
```

2.3 Console Input (TTI)

The console input (TTI) polls the console keyboard for input. It implements these registers:

name	size	comments
BUF	6	data buffer

XFR	1	transfer ready flag
POS	32	number of characters input
TIME	24	polling interval

By default, the console input is assigned to channel W.

2.4 Console Output (TTO)

The console output (TTO) writes to the simulator console window. It implements these registers:

name	size	comments
BUF	6	data buffer
XFR	1	transfer ready flag
POS	32	number of characters output
TIME	24	time from I/O initiation to interrupt

By default, the console output is assigned to channel W.

2.5 Paper Tape Reader (PTR)

The paper tape reader (PTR) reads data from a disk file. The POS register specifies the number of the next data item to be read. Thus, by changing POS, the user can backspace or advance the reader.

The paper tape reader implements these registers:

name	size	comments
BUF	6	data buffer
XFR	1	transfer ready flag
SOR	1	start of record flag
CHAN	4	active channel
POS	32	position in the input file
TIME	24	time from I/O initiation to interrupt
STOP_IOE	1	stop on I/O error

The paper-tape reader supports the BOOT command. BOOT PTR simulates the standard console fill sequence.

Error handling is as follows:

error	STOP_IOE	processed as
not attached	1 0	report error and stop out of tape
end of file	1 0	report error and stop out of tape
OS I/O error	Х	report error and stop

By default, the paper tape reader is assigned to channel W.

2.6 Paper Tape Punch (PTP)

The paper tape punch (PTP) writes data to a disk file. The POS register specifies the number of the next data item to be written. Thus, by changing POS, the user can backspace or advance the punch.

The paper tape punch implements these registers:

name	size	comments
BUF	6	data buffer
XFR	1	transfer ready flag
LDR	1	punch leader flag
CHAN	4	active channel
POS	32	position in the output file
TIME	24	time from I/O initiation to interrupt
STOP TOE	1	stop on I/O error

Error handling is as follows:

error	STOP_IOE	processed as
not attached	1 0	report error and stop out of tape
OS I/O error	X	report error and stop

By default, the paper tape punch is assigned to channel W.

2.7 Line Printer (LPT)

The line printer (LPT) writes data to a disk file. The POS register specifies the number of the next data item to be written. Thus, by changing POS, the user can backspace or advance the printer.

The line printer implements these registers:

name	size	comments
BUF[0:131]	8	data buffer
BPTR	8	buffer pointer
XFR	1	transfer ready flag
ERR	1	error flag
CHAN	4	active channel
CCT[0:131]	8	carriage control tape
CCTP	8	pointer into carriage control tape
CCTL	8	length of carriage control tape
SPCINST	24	spacing instruction
POS	32	position in the output file
CTIME	24	inter-character time
PTIME	24	print time
STIME	24	space time
STOP_IOE	1	stop on I/O error

Error handling is as follows:

error	STOP IOE	processed a	as

not attached	1 0	report error and stop out of paper
OS I/O error	Х	report error and stop

By default, the line printer is assigned to channel W.

2.8 Real-Time Clock (RTC)

The real-time clock (RTC) frequency can be adjusted as follows:

```
SET RTC 60HZ set frequency to 60Hz SET RTC 50HZ set frequency to 50Hz
```

The default is 60Hz.

The clock implements these registers:

name	size	comments
PIE	1	interrupt enable
TIME	24	tick interval

The real-time clock autocalibrates; the clock interval is adjusted up or down so that the clock tracks actual elapsed time.

2.9 Terminal Multiplexer (MUX)

The terminal multiplexer provides 32 asynchronous interfaces. In Genie mode, the interfaces are hardwired; in SDS mode, they implement modem control. The multiplexer has two controllers: MUX for the scanner, and MUXL for the individual lines. The terminal multiplexer performs input and output through Telnet sessions connected to a user-specified port. The ATTACH command specifies the port to be used:

```
ATTACH MUX <port> set up listening port
```

where port is a decimal number between 1 and 65535 that is not being used for other TCP/IP activities.

Each line (each unit of MUXL) supports one option: UC, when set, causes lower case input characters to be automatically converted to upper case. In addition, each line supports output logging. The SET MUXLn LOG command enables logging on a line:

```
SET MUXLn filename log output of line n to filename
```

The SET MUXLn NOLOG command disables logging and closes the open log file, if any.

Once MUX is attached and the simulator is running, the multiplexor listens for connections on the specified port. It assumes that the incoming connections are Telnet connections. The connections remain open until disconnected either by the Telnet client, a SET MUX DISCONNECT command, or a DETACH MUX command.

Other special multiplexer commands:

```
SHOW MUX CONNECTIONS show current connections
SHOW MUX STATISTICS show statistics for active connections
```

The controller (MUX) implements these registers:

name	size	comments
STA[0:31] RBUF[0:31]	6	status, lines 0 to 31 receive buffer, lines 0 to 31
XBUF[0:31] FLAGS[0:127]	8 1	transmit buffer, lines 0 to 31 line flags, 0 to 3 for line 0,
		4 to 7 for line 1, etc
SCAN	7	scanner current flag number
SLCK	1	scanner locked flag
TPS	8	character polls per second

The lines (MUXL) implements these registers:

name	size	comments			
TIME[0:31]	24	transmit time,	lines	0 to	31

The terminal multiplexor does not support save and restore. All open connections are lost when the simulator shuts down or MUX is detached.

2.10 Project Genie Drum (DRM)

The Project Genie drum (DRM) implements these registers:

name	size	comments
DA	19	drum address
CA	16	core address
WC	14	word count
PAR	12	cumulative sector parity
RW	1	read/write flag
ERR	1	error flag
STA	2	drum state
FTIME	24	channel program fetch time
XTIME	24	interword transfer time
STOP_IOE	1	stop on I/O error

Error handling is as follows:

error	STOP_IOE	processed as
not attached	1	report error and stop
	0	drum not ready

Drum data files are buffered in memory; therefore, end of file and OS I/O errors cannot occur. Unlike conventional SDS 940 devices, the Project Genie drum does not use a channel.

2.11 Rapid Access (Fixed Head) Disk (RAD)

The rapid access disk (RAD) implements these registers:

name	size	comments
DA	15	disk address
SA	6	sector word address
BP	1	sector byte pointer
XFR	1	data transfer flag
NOBD	1	inhibit increment across track
ERR	1	error flag
CHAN	4	active channel
PROT	8	write protect switches
TIME	24	interval between halfword transfers
STOP_IOE	1	stop on I/O error

Error handling is as follows:

error	STOP_IOE	processed as
not attached	1	report error and stop
	Ü	disk not ready

The rapid access disk is buffered in memory; end of file and OS I/O errors cannot occur. By default, the rapid access disk is assigned to channel E.

2.12 Moving Head Disk (DSK)

DSK options include the ability to make the drive write enabled or write locked:

SET	RAD	LOCKED	set	write	locked
SET	RAD	WRITEENABLED	set	write	enabled

The moving head disk implements these registers:

name	size	comments
D777 [0		
BUF[0:63]	8	transfer buffer
BPTR	9	buffer pointer
BLNT	9	buffer length
DA	21	disk address
INST	24	disk instruction
XFR	1	data transfer flag
ERR	1	error flag
CHAN	4	active channel
WTIME	24	interval between character transfers
STIME	24	seek interval
STOP_IOE	1	stop on I/O error

Error handling is as follows:

error	STOP_IOE	processed as
not attached	1 0	report error and stop disk not ready
end of file	х	assume rest of disk is zero
OS I/O error	х	report error and stop

By default, the moving head disk is assigned to channel F.

2.13 Magnetic Tape (MT)

MT options include the ability to make units write enabled or write locked.

```
SET MTn LOCKED set unit n write locked SET MTn WRITEENABLED set unit n write enabled
```

Magnetic tape units can be set to a specific reel capacity in MB, or to unlimited capacity:

```
SET MTn CAPAC=m set unit n capacity to m MB (0 = unlimited) SHOW MTn CAPAC show unit n capacity in MB
```

Units can also be set ENABLED or DISABLED. The magnetic tape controller supports the BOOT command. BOOT MTn simulates the standard console fill sequence for unit n.

The magnetic tape implements these registers:

name	size	comments
BUF[0:131071] BPTR	8	transfer buffer buffer pointer
BLNT XFR	18 1	buffer length data transfer flag
CHAN	4	active channel
INST	24	magtape instruction
EOF	1	end-of-file flag
GAP	1	inter-record gap flag
SKIP	1	skip data flag
CTIME	24	interval between character transfers
GTIME	24	gap interval
POS[0:7]	32	position, drives 0 to 7
STOP_IOE	1	stop on I/O error

Error handling is as follows:

```
error processed as

not attached tape not ready; if STOP_IOE, stop

end of file end of tape

OS I/O error end of tape; if STOP_IOE, stop
```

By default, the magnetic tape is assigned to channel W.

3 Symbolic Display and Input

The SDS 940 simulator implements symbolic display and input. Display is controlled by command line switches:

```
display as ASCII characterdisplay as four packed SDS 6b charactersdisplay instruction mnemonics
```

Input parsing is controlled by the first character typed in or by command line switches:

```
' or -a ASCII character
" or -c four packed SDS 6b characters
alphabetic instruction mnemonic
numeric octal number
```

Instruction input uses (more or less) standard SDS 940 assembler syntax. There are eight instruction classes:

class	operands	examples	comments
no operand POP (prog op) I/O	<pre>none op,addr{,tag} addr{,tag}</pre>	EIR POP 66,100 EOM 1266	
mem reference	addr{,tag}	LDA 400,2 STA* 300	indirect addr
reg change shift chan command	<pre>op op op cnt{,tag} chan</pre>	CLA CLB LSH 10 ALC W	opcodes OR
chan test	chan	CAT Y	

All numbers are octal. Channel designators can be alphabetic (W, Y, C, D, E, F, G, H) or numeric (0-7). Tags must be 0-7, with 2 indicating indexing.