

Sucesiones **Resumiendo...**

Unidad

Ambas divergentes

	$a(n) \to +\infty$ $b(n) \to +\infty$	$a(n) \to +\infty$ $b(n) \to -\infty$	$a(n) \rightarrow -\infty$ $b(n) \rightarrow +\infty$	$a(n) \to -\infty$ $b(n) \to -\infty$
SUMA	√ +∞	X	X	√ -∞
PRODUCTO	√ +∞	√ -∞	√-∞	√ +∞
COCIENTE	X	X	X	X

Algunas formas indeterminadas son:

¿Por qué es un problema?

Porque el resultado depende de quiénes son las funciones involucradas El límite puede resultar:

finito infinito o no existir

Algunas técnicas para resolver límites indeterminados

Dividir por la mayor potencia

Fundamentos:

$$\frac{24+12}{4} = \frac{24}{4} + \frac{12}{4}$$

Usos:

Límites que involucran cocientes de polinomios

Es decir, algunas indeterminaciones del tipo $\frac{\infty}{}$

Dividir por la mayor potencia

Procedimiento:

Buscar la mayor potencia que aparece entre numerador y denominador

Dividir numerador y denominador por n elevado a esa potencia

Distribuir y calcular

Análisis cualitativo de límites

Análisis cualitativo de algunos límites En general Si P(n) = $a_r n^r + ... a_2 n^2 + a_1 n + a_0$ Lím P(n) = ∞ Más aún, si $a_r > 0$ el límite será $+\infty$, si $a_r < 0$ será $-\infty$ Ejemplo Lím $-3n^4 - 2n^2 + n - 1 = -\infty$

Análisis cualitativo de algunos límites

Para algunas funciones, puede evaluarse el límite sin necesidad de hacer un cálculo, y basándose en el conocimiento que uno tiene de las funciones involucradas

Ejemplo:

$$\lim_{n\to\infty} n^3 - 4n^2 + 1$$

Por lo tanto:

$$\lim_{n \to \infty} n^3 - 4n^2 + 1 = \infty$$

Si bien formalmente es una indeterminación $\infty - \infty$, sabemos que los polinomios tienen ramas que se van a $+\infty$ o a $-\infty$ según el signo del coeficiente de la mayor potencia.

Análisis cualitativo de algunos límites

Si tenemos $P(n) = a_r n^r + ... a_2 n^2 + a_1 n + a_0$ y queremos calcular:

 $\underset{n\to\infty}{\text{Lim}} \ e^{P(n)}$

 $\underset{n\to\infty}{\text{Lim}} \ e^{4n-n^2}$

Por ejemplo:

Sabemos dos cosas:

- 1. Cómo se comporta P(n) de acuerdo al coeficiente de la potencia mayor
- 2. Cómo se comporta la función $f(x) = e^x$

Elegir un valor adecuado de $\alpha \in R$ en cada caso y completar la sucesión de modo que resulte

- i) convergente,
- ii) divergente,
- iii) oscilante.

 $\begin{cases} e^{\alpha n^3 + n} & \text{si n es par} \\ \dots & \text{si n es impar} \end{cases}$

 $\lim_{n\to\infty} e^{\alpha n^3 + n}$ • Si el exponente crece a $+\infty$, el límite es $+\infty$ • Si el exponente decrece a $-\infty$, el límite es 0Veamos qué pasa con el exponente: $\alpha > 0 \implies \lim_{n\to\infty} n^3 + n = +\infty$ Este límite depende de α $\alpha = 0 \implies \lim_{n\to\infty} \alpha n^3 + n = +\infty$ $\alpha < 0 \implies \lim_{n\to\infty} -2n^3 + n = -\infty$

Para que la sucesión sea convergente

Ambas subsucesiones tienen que tener el mismo límite finito

Entonces es necesario elegir α < 0, y la subsucesión para los n impares debe ser elegida de modo que converja a 0. Por ejemplo:

$$\begin{cases} e^{-2n^3+n} & \text{si n es par} \\ \frac{1}{n} & \text{si n es impar} \end{cases} \lim_{n \to \infty} e^{-2n^3+n} = 0$$

Para que la sucesión no sea ni convergente ni divergente

Para este caso, ambas subsucesiones tienen que tener el distinto límite:

- uno finito y el otro infinito
- ambos finitos y distintos

Caso 1 si $\alpha \ge 0$, la primera la subsucesión diverge.

Por lo tanto, para los n impares debe ser elegida de modo que converja a cualquier límite finito. Por ejemplo:

$$\begin{cases} e^{n^3+n} & \text{si n es par} \\ \frac{2n^2-n}{n^2+1} & \text{si n es impar} \end{cases} \lim_{n\to\infty} e^{n^3+n} = +\infty$$

Para que la sucesión sea divergente

Ambas subsucesiones tienen que tener límite infinito

Es necesario elegir $\alpha \ge 0$, y la subsucesión para los n impares debe ser elegida de modo que diverja . Por ejemplo:

$$\begin{cases} e^{n^3+n} & \text{si n es par} \\ n^2 & \text{si n es impar} \end{cases} \frac{\lim_{n \to \infty} e^{n^3+n} = +\infty}{\lim_{n \to \infty} n^2 = +\infty}$$

Para que la sucesión no sea ni convergente ni divergente

Caso 2

si α < 0, la primera subsucesión converge a 0

Para los n impares debe ser elegida de modo que diverja o converja a otro valor $L \neq 0$. Por ejemplo:

$$\begin{cases} e^{-2n^3+n} & \text{si n es par} \\ 4+\frac{1}{n}\sin \text{ es impar} \end{cases} \qquad \qquad \lim_{n\to\infty} e^{-2n^3+n} = 0$$

$$\begin{cases} \lim_{n\to\infty} 4+\frac{1}{n}=4 \\ \lim_{n\to\infty} e^{-2n^3+n} & \text{si n es par} \\ 4n^2+2 & \text{si n es impar} \end{cases} \qquad \qquad \lim_{n\to\infty} 4n^2+2=+\infty$$

Límite de una función de variable real

EL LÍMITE EN EL INFINITO

Si consideramos ahora una f(x) una función de variable real, nos interesa discutir el significado de:

$$\lim_{x\to+\infty}f(x)$$

Este límite se trata de analizar (si tiene sentido) qué "comportamiento" tienen las imágenes de la función cuando la variable independiente crece infinitamente.

EL LÍMITE EN EL INFINITO

Lo mismo para

$$\lim_{x\to-\infty}f(x)$$

El límite cuando la variable real $x \to -\infty$ se trata de analizar qué "comportamiento" tienen las imágenes de la función cuando la variable independiente decrece infinitamente.

¿Qué cosas pueden pasar cuando $x \rightarrow -\infty$?

Las mismas cosas

LIMITE FINITO EN EL INFINITO

Por analogía con las definiciones de límite de una sucesión podemos definir el límite de una función de variable real f(x) cuando $x \to +\infty$ o cuando $x \to -\infty$

"Una sucesión **a(n)** converge a L si para todo ε > 0 es posible encontrar un valor $N_{\varepsilon} \in \mathbb{N}$ de manera que para todo n > N, la distancia entre el valor de la sucesión evaluada en n y L es menor que ε , σ sea: $|a(n) - L| < \varepsilon$ "

$$\underset{n\to\infty}{\mathsf{Lim}}\,\mathsf{a}(\mathsf{n})\!=\mathsf{L}$$

"Una función f(x) tiene límite finito cuando $x \to +\infty$ si para todo $\varepsilon > 0$ es posible encontrar un valor $\mathbf{x}_{\varepsilon} \in R$ de manera que para todo $x > \mathbf{x}_{\varepsilon}$ la distancia entre f(x) y L es menor que ε . O sea: $|f(x) - L| < \varepsilon|''$

$$\lim_{x\to\infty} f(x) = L$$

LIMITE INFINITO EN EL INFINITO

"Una sucesión a(n) **diverge** si para todo K > 0 es posible encontrar un valor $N_K \in \mathbb{N}$ de manera que para todo $n > N_K$, las imágenes de la sucesión superan en valor absoluto a K

$$\underset{n\to\infty}{\mathsf{Lim}}\,\mathsf{a}(\mathsf{n})=\,\infty$$

"Una función f(x) **tiene límite infinito** cuando $x \to +\infty$ si para todo K > 0 es posible encontrar un valor $x_K \in R$ de manera que para todo $x > x_K$, **las imágenes de la función superan en valor absoluto a K**

O sea: |f(x)| > K

$$\lim_{x\to +\infty} f(x) = \infty$$

La función f(x) tiene **límite finito L** cuando $x \to \infty$ si para todo $\varepsilon > 0$ es posible encontrar un valor $x_{\varepsilon} \in \mathbb{R}$ de manera que si $x > x_{\varepsilon}$, la distancia entre el valor de la función y el número L es menor que arepsilonPara todo $\varepsilon > 0$ - L+ε $| f(x) - L | < \varepsilon$ ε > 0 determina un intervalo alrededor de L. L-ε $f(x) \in (L - \varepsilon, L + \varepsilon)$ un rango para las imágenes la distancia entre la existe x_e imagen de f(x) y L es menor que ε x. determina un número a partir del cual los valores de la $si x > x_c$ variable verifican la condición

