Flame retarding polyamide molding compositions

Patent number:

DE2447727

Publication date:

1976-04-08

Inventor:

NOETZEL SIEGFRIED DIPL CHEM DR; HERWIG

WALTER DIPL CHEM DR

Applicant:

HOECHST AG

Classification:

- international:

C08L77/00; C08K5/49

- european:

C08K5/5313

Application number: DE19742447727 19741007 Priority number(s): DE19742447727 19741007

Also published as:

US4036811 (A1) NL7511603 (A) LU73523 (A) JP51063859 (A) GB1509739 (A)

more >>

Report a data error here

Abstract not available for DE2447727 Abstract of correspondent: **US4036811**

There are disclosed novel flame retarding polyamide molding compositions containing, as the flameproofing agents, an amount of from 6 to 40, preferably 8 to 30 weight % of an alkali metal or a group II or III metal salt of a phosphinic or diphosphinic acid. The flameproofing agents are thermostable and do not adversely affect the polyamides during preparation and processing.

Data supplied from the esp@cenet database - Worldwide

Offenlegungsschrift 24 47 727

Aktenzeichen:

P 24 47 727.8

Anmeldetag:

7. 10. 74

Offenlegungstag:

8. 4.76

Unionspriorität:

64)

39 39 39

Bezeichnung: Schwerentflammbare Polyamidformmassen

Moechst AG, 6000 Frankfurt

© Erfinder: Noetzel, Siegfried, Dipl.-Chem. Dr., 6233 Kelkheim;

Herwig, Walter, Dipl.-Chem. Dr., 6232 Neuenhain

HOECHST AKTIENGESELLSCHAFT

Aktenzeichen:

- HOE 74/F 290 -

Datum: 4. Oktober 1974

- Dr.EL/N -

Schwerentflammbare Polyamidformmassen

Es ist bekannt, daß roter Phosphor oder Kohlenstoffverbindungen des Phosphors das Brandverhalten von Polyamiden beeinflussen und unter Umständen einen guten Flammschutz bewirken.

esperate to the first of the contract of the c

CBAT AT BUTCHES OF CHICAGO AND CONTRACT

Die Schwierigkeit beim Einsatz phosphororganischer Verbindungen zur Flammfestausrüstung von Polyamiden besteht darin, daß dieselben unter den für die Polyamide notwendigen Herstell- bzw. Verarbeitungsbedingungen häufig eine zu geringe Stabilität zeigen, manchmal chemisch nicht inert sind oder einen zu hohen Dampfdruck besitzen und sich daher bei thermischer Belastung des Polyamids - vor allem unter vermindertem Druck - verflüchtigen.

Es wurde nun gefunden, daß Polyamid-Formmassen, die Salze der Phosphin- oder Diphosphinsäuren der allgemeinen Formeln

Ť

II

enthalten, worin Me für ein Alkalimetall oder ein Metall aus der zweiten oder dritten Haupt- oder Nebengruppe des Periodensystems steht,

- R gleiche oder verschiedene gesättigte, offenkettige, gegebenenfalls auch verzweigte, oder cyclische Alkylreste mit 1 bis
 16, vorzugsweise mit 1 bis 6, Kohlenstoffatomen, Arylreste
 oder Aralkylreste mit 6 bis 16 Kohlenstoffatomen, und
- R₁ einen gesättigten, offenkettigen, gegebenenfalls auch verzweigten, oder cyclischen Alkylen-, Arylalkylen-, Arylen-, Arylenalkylen- oder Aren-bisalkylen-rest mit 1 bis 6 Kohlenstoffatomen, vorzugsweise mit 2 bis 4 Kohlenstoffatomen, im Alkylenrest, bedeuten, eine hervorragende Flammfestigkeit aufweisen und ohne Schwierigkeiten hergestellt werden können.

Gefunden wurden ein flammwidrig machendes Mittel enthaltende Polyamid-Formmassen, die dadurch gekennzeichnet sind, daß das flammwidrig machende Mittel ein Salz einer Phosphinsäure der allgemeinen Formel

and a significant common with a result of the common endi-

and the consultance of South the first will be well a first

entre de la fille de la reception de la companie d

oder einer Diphosphinsäure der allgemeinen Formel-

$$Me^{1/n} - 0 - P - R_1 - P - 0 - Me^{1/n}$$

$$R$$

$$R$$

$$R$$

ist,

worin Me für ein Alkalimetall oder ein Metall aus der zweiten oder dritten Haupt- oder Nebengruppe des Periodensystems steht, n die Wertigkeit des Metalls Me,

R gleiche oder verschiedene gesättigte, offenkettige, gegebenenfalls auch verzweigte, oder cyclische Alkylreste mit 1 bis 16, vorzugsweise 1 bis 6, Kohlenstoffatomen, Arylreste oder Aralkylreste mit 6 bis 16 Kohlenstoffatomen, und

R1 einen gesättigten, offenkettigen, gegebenenfalls auch verzweigten, oder cyclischen Alkylen-, Arylalkylen-, Arylen-, Arylenalkylen-oder Aren-bisalkylen-rest mit 1 bis 6 Kohlenstoffatomen, vorzugsweise mit 2 bis 4 Kohlenstoffatomen, im Alkylenrest,

bedeuten.

Als Beispiele der in den erfindungsgemäßen Polyamiden enthaltenen Phosphorverbindungen seien erwähnt: die Alkali-, Erdalkali-, Magnesium-, Zink- und Aluminiumsalze von Dimethylphosphinsäure, Methyläthylphosphinsäure, Methylpropylphosphinsäure, Methylhexylphosphinsäure, Äthylphenylphosphinsäure, Diäthylphosphinsäure, Äthan-1,2-di-(methylphosphinsäure), Äthan-1,2-di-(äthylphosphinsäure), Äthan-1,2-di(phenylphosphinsäure) und Butan-1,4-di-(methyl-phosphinsäure).

Besonders bevorzugt sind uter den erfindungsgemäßen Formmassen die Zinksalze der Phosphin- und Diphosphinsäuren der Formeln I und II enthalten. Die Menge an Phosphinsäuresak bzw. Diphosphinsäuresalz beträgt je nach Polyamid und Flammschutzerfordernis im allegemeinen 6 bis 40 Gewichtsprozent, vorzugsweise 8 bis 30 Gewichtsprozent, bezogen auf das Gewicht des Polymeren.

Als Polyamide, die zusammen mit den Metallsalzen der Phosphinsäuren der Formeln I und II die erfindungsgemäßen Formmassen ergeben, kommen vorzugsweise amorphe Polyamide in Betracht, die sich beispielsweise von 1,3- bzw. 1,4-Bis-(aminomethyl)-cyclohexan, 2,5- bzw. 2,6-Bis-(aminomethyl)-bicyclo-\(\biglie 2.2.17\)-heptan, Dimethyl-bis(4-aminocyclohexyl)-methan, 2,2,4- und 2,4,4-Trimethylhexamethylendiamin oder Xylylendiamin als Hauptdiamin-komponente ableiten.

77116:

100 CONTRACTOR

Die Polyamide leiten sich z.B. ab von:

- Mol%, vorzugsweise 10 bis 35 Mol%, 1,3-Bis-(aminomethyl)-cyclohexan und/oder 1,4-Bis-(aminomethyl)-cyclohexan und/oder 2,5-Bis-(aminomethyl)-bicyclo-2.2.1/-heptan und/oder 2,6-Bis(aminomethyl)-bicyclo-2.2.1/-heptan und/oder mindestens eines Bis-(4-aminocyclohexyl)-Derivats eines Alkans mit 1 bis 6 C-Atomen, vorzugsweise 1 bis 3 C-Atomen, und/oder m-Xylylendiamin, wobei bis zu 50 Mol%, vorzugsweise bis zu 30 Mol% des m-Xylylendiamins durch p-Xylylendiamin ersetzt sein kann,
- \$\mathcal{A}_2\$) 0 bis 45 Mol%, vorzugsweise 0 bis 35 Mol%, mindestens eines geradkettigen oder verzweigten aliphatischen, 4 bis 20 C-Atome, vorzugsweise 6 bis 12 C-Atome, enthaltenden Diamins, wobei die Aminogruppen durch mindestens 4 C-Atome, vorzugsweise durch mindestens 6 C-Atome, voneinander getrennt sind.
 - B₁) 5 bis 50 Mo1%, vorzugsweise 10 bis 35 Mo1%, mindestens einer aromatischen, 7 bis 20 C-Atome, vorzugsweise 8 bis 1½ C-Atome, enthaltenden, insbesondere einkernigen, in meta-oder para-Stellung Carboxylgruppen tragenden Dicarbonsäure,
 - B₂) 0 bis 45 Mo1%, vorzugsweise 0 bis 35 Mo1%, mindestens einer gesättigten, geradkettigen oder verzweigten, aliphatischen, 6 bis 20 C-Atome, vorzugsweise 6 bis 12 C-Atome, enthaltenden Dicarbonsäure, wobei die Carboxylgruppen durch mindestens 4 C-Atome voneinander getrennt sind, und
- 0 bis 80 Mo1%, vorzugsweise 0 bis 50 Mo1%, mindestens einer aliphatischen Aminocarbonsäure mit 2 bis 20 C-Atomen, vorzugsweise 6 bis 12 C-Atomen, insbesondere W-Aminocarbonsäure, oder deren Lactams,

wobei die Mo1%-Summe der Komponenten α_1) und α_2) gleich derjenigen der Komponenten α_1) und α_2), die Mol%-Summe aller Komponenten (α_1) , (α_2) , (β_1) , (β_2) und (β_1) gleich 100 Mol%, die Mol%-Summe der Komponenten (α_1) und (β_1) gleich 20 bis 95 Mol%, vorzugsweise 50 bis 90 Mol%, die Mol%-Summe der Komponenten (α_2) , (β_2) und (β_2) gleich 5 bis 80 Mol%, vorzugsweise 10 bis 50 Mol%, ist und wobei sich alle Angaben in Mol% auf die Summe aller Komponenten (α_1) , (α_2) , (β_1) , (β_2) und (β_1) beziehen.

Die Herstellung der für die erfindungsgemäßen Polyamidformmassen einzusetzenden Polyamide erfolgt nach bekannten Verfahren. Diamin(e), Dicarbonsäure(n) und gegebenenfalls Aminocarbonsäure(n) bzw. deren Lactam(e) werden, gegebenenfalls mit Zusatz von Wasser, in einen Autoklaven aus rostfreiem Stahl gegeben. Es ist oft zweckmäßig, aus den Ausgangskomponenten erst ein Salz herzustellen, das dann, gegebenenfalls mit Zusatz von Wasser, in den Stahlautoklaven gefüllt wird. Der Autoklaveninhalt wird unter Rühren auf etwa 200 bis 260°C erhitzt. Dann wird Wasserdampf abgelassen und die Temperatur auf 265 bis 300°C erhöht. Bei dieser Temperatur wird im Stickstoffstrom, gegebenenfalls im Vakuum, so lange weiterkondensiert, bis das Polyamid das gewünschte Molekulargewicht erreicht hat.

Polyamide mit besonders hohem Molekulargewicht und guten mechanischen Eigenschaften erhält man, wenn man die in einem Rührautoklaven hergestellten Folyamide in einem weiteren Verfahrensschritt, vorzugsweise in einem Doppelschneckenextruder unter Vakuum, nachkondensiert.

Die Polyamide sollen eine reduzierte, spezifische Viskosität (RSV) - gemessen an einer Lösung von 1 g des Polyamids in 100 ml Phenol/Tetrachloräthan (im Gewichtsverhältnis 60: 40) bei 25°C - von 0,7 bis 3,0 dl/g, vorzugsweise von 0,9 bis 2,8 dl/g, haben.

State of the state

Die Zugabe der Salze der Phosphinsäuren der allgemeinen Formeln I und II kann sowohl zum Schmelzkondensations-Ansatz als auch zum fertigen Polyamid erfolgen. Sie kann auch zu jedem beliebigen Zeitpunkt der Kondensation erfolgen. Die Zumischung der Salze der Phosphinsäuren zu einem fertigen Polyamid erfolgt zweckmäßig in der Weise, daß sie dem Polyamidgranulat beigemischt werden und diese Mischungen direkt, beispielsweise auf einer Spritzgießmaschine verarbeitet oder vorher in einem Extruder aufgeschmolzen, granuliert und nach der Trocknung verarbeitet werden.

Die flammhemmende Wirkung der zugesetzten Salze der Phosphinsäuren wird nach ASTM D 635-68 an 127 x 12,7 x 1,6 mm-Stäbchen geprüft. Die erfindungsgemäßen Polyamid-Formmassen sind je nach der Konzentration des Flammschutzmittels selbstverlöschend oder micht brennbar. Beispielsweise wird durch einen Gehalt von 20 Gewichtsprozent des Zinksalzes der Dimethylphosphinsäure in einem aus 0,9 Mol Terephthalsäure, 0,1 Mol Isophthalsäure und 1,02 Mol 1,3-Eisaminomethyl-cyclohexan, sowie 30 Gew.% Adipinsäure-Hexamethylendiaminsalz erhaltenen Polyamid ein ausereichender Flammschutz erreicht.

Die Phosphorverbindungen, die in den erfindungsgemäßen flammfesten Polyamid-Formmassen enthalten sind, sind thermisch stabil
und beeinträchtigen die Polyamide weder bei der Herstellung
noch bei der Verarbeitung. Sie sind aufgrund des salzartigen
Charakters unter den Herstellungs- und Verarbeitungsbedingungen
nicht flüchtig.

Neben den Phosphinsäuresalzen können den erfindungsgemäßen Formmassen auch anorganische Fasermaterialien in üblichen Mengen
zugesetzt werden, wie Glasfasern, aber auch Fasern aus Quarz,
Asbest und Kohlenstoff.

Die Dicke speziell der Glasfasern beträgt zweckmäßig 0,1 bis 50 Mikron, vorzugsweise 3 bis 15 Mikron, ihre Länge 0,01 bis 5 mm, vorzugsweise 0,05 bis 1 mm. Die Menge der Fasern beträgt zweckmäßig bis zu 50 Gewichtsprozent, vorzugsweise 10 bis 30 Gewichtsprozent, bezogen auf die flammfesten Polyamidformmassen.

Außerdem können die erfindungsgemäßen Polyamidformmassen zusätzlich auch bekannte andere Hilfsmittel, wie Stabilisatoren, Gleitmittel, Farbstoffe, Füllstoffe und antistatisch wirksame Verbindungen enthalten.

Die erfindungsgemäß flammfest ausgerüsteten Polyamidformmassen eignen sich zur Herstellung von technischen Teilen, besonders zur Herstellung von Konstruktionsteilen elektrischer Apparate, mechanischen Übertragungsteilen in Automaten und Bauteilen in Großrechenanlagen.

Beispiele

Beispiel 1 a

Ein Gemisch aus 66,4 g Terephthalsäure, 32,4 g Bisaminomethylnorbornan-Gemisch, 49,8 g &-Caprolactam und 37,2 g Dinatriumsalz der Äthan-1,2-dimethylphosphinsäure wurden allmählich
unter Rühren in einer Stickstoffatmosphäre auf 275°C erhitzt.
Das bei der Kondensation gebildete Wasser wurde über einen
absteigenden Kühler abdestilliert. Man erhitzte den Reaktionsansatz noch eine Stunde bei 275°C und erhielt dann 178 g festes
Polyamid.

Das durch Eintauchen in flüssigen Stickstoff abgekühlte Produkt wurde in einer Kreuzschlagmühle gemahlen, während fünf Stunden bei 180°C im Vakuum (< 1 mm Hg) getrocknet und bei 235°C zu 1,6 mm dicken Platten verpreßt (RSV 1,34 dl/g). Die durch Aussägen erhaltenen Prüfkörper (127 x 12,7 x 1,6 mm) wurden dem Brenntest nach ASTM D 635-68 unterworfen. Das Ergebnis des Testes ist in Tabelle 1 angegeben.

Beispiel 1 b (Vergleichsbeispiel)

Ein Polyamid aus Terephthalsäure, Bisaminomethylnorbornan-Gemisch und ξ -Caprolactam wurde wie in Beispiel 1 a beschrieben, jedoch ohne Zusatz des Phosphinsäuresalzes, hergestellt und nach ASTM D 635-68 geprüft (Tabelle 1).

Zur Herstellung des Bis-(aminomethy1)-norbornan-Gemisches wurde 2-Cyano-bicyclo/2,2,1/hepten-5 hydroformyliert. Das Reaktions-produkt wurde mit Ammoniak und Wasserstoff zum Bis-(aminomethy1)-norbornan-Gemisch umgesetzt.

Beispiel 2

Ein Gemisch aus 66,4 g Terephthalsäure, 58 g 1,3-Bisaminomethyl-cyclohexan (hauptsächlich in der trans-Form vorliegend), 36,3 g È-Caprolactam und 32,9 g Dinatriumsalz der Äthan-1,2-dimethyl-

phosphinsäure wurden allmählich unter Rühren in einer Stickstoffatmosphäre auf 275°C erhitzt. Das bei der Kondensation gebildete Wasser wurde über einen absteigenden Kühler abdestilliert. Man erhitzte den Reaktionsansatz noch eine Stunde bei 275°C und erhielt dann 152 g festes Polyamid.

Aus dem Produkt wurden wie in Beispiel 1 a beschrieben Prüfstäbe (RSV 1,02 dl/g) hergestellt und dem Brenntest nach ASTM D 635-68 unterworfen. Das Ergebnis des Testes gibt Tabelle 1 wieder.

Beispiel 3 a

Ein Gemisch aus 149,5 g Terephthalsäure, 16,6 g Isophthalsäure, 145,1 g 1,3-Bisaminomethylcyclohexan, 116,7 g Adipinsäure-Hexamethylendiamin-Salz (AH-Salz) und 93 g Zinksalz der Dimethylphosphinsäure wurden allmählich unter Rühren in einer Stickstoffatmosphäre auf 275°C erhitzt. Dabei trat Kondensation ein unter Abspaltung von Wasser, das über einen absteigenden Kühler abdestilliert wurde. Der Reaktionsansatz wurde eine Stunde bei 275°C gehalten. Man erhielt 391,5 g festes milchigweißes Polyamid.

Nach den Angaben von Beispiel 1 a wurden Normstäbe (RSV 0,98 dl/g) hergestellt und dem Brenntest nach ASTN D 635-68 unterworfen. Das Material erwies sich in diesem Test als nicht brennbar, wie aus Tabelle 1 ersichtlich ist.

Beispiel 3 b (Vergleichsbeispiel)

Ein Polyamid aus Terephthalsäure, Isophthalsäure, 1,3-Bisaminomethylcyclohexan und AH-Salz wurde wie in Beispiel 3 a beschrieben, jedoch ohne Zusatz des Phosphinsäuresalzes hergestellt und nach ASTM D 635-68 geprüft (Tabelle 1).

Beispiel 4

Es wurde wie in Beispiel 3 a beschrieben, ein Polyamid, bei dem an Stelle von 93 g Zinksalz der Dimethylphosphinsäure 96 g Dinatriumsalz der Äthan-1,2-dimethylphosphinsäure Verwendung fanden, hergestellt. Das Produkt, das in einer Ausbeute von 420 g anfiel, erreichte im Brenntest nach ASTM D 635-68 das Prädikat nicht brennbar, wie aus Tabelle 1 zu entnehmen ist. RSV der Prüfstäbchen 0,88 d1/g.

Beispiel 5

Es wurde wie in Beispiel 3 a beschrieben, ein Polyamid hergestellt, das an Stelle des Zinksalzes der Dimethylphosphinsäure das Zinksalz der Äthan-1,2-dimethylphosphinsäure in gleicher Menge enthielt. Es fielen 420 g Produkt an. RSV-Wert der Preßplatte 0,92 dl/g. Die Prüfung gemäß ASTM D 635-68 ergab das Prädikat nicht brennbar (Tabelle 1).

<u>Beispiel 6</u>

Es wurde wie in Beispiel 3 a beschrieben, ein Polyamid hergestellt, das an Stelle des Zinksalzes der Dimethylphosphinsäure 90 g Dinatriumsalz der p-Xylylen-dimethylphosphinsäure

in einer Ausbeute von 416 g anfiel, erreichte im Brenntest nach ASTM D 635-68 das Prädikat nicht brennbar, wie aus Tabelle 1 zu entnehmen ist. RSV der Preßplatte 0,82 dl/g.

Tabelle					
Ber. spiel	Ausgangskomponenten des Polyamids	Flammschutzmittel (FSM) Gew.% Zusat: FSM	Gew.% Zusatz FSM	Presplatte RSV (d1/g)	Beurteilung nach ASTM D 635-68
 ø	TS, BN, &-Caprolactam	Dinatriumsalz der Äthan- 1,2-dimethylphosphin- säure	18,5	1,34	nicht brennbar
1 0	TS, BN, &-Caprolactam		1	1,47	brennbar
æ	TS, 1,3-BAC, E-Caprolactam	Dinatriumsalz der Äthan- 18,5 1,2-dimethylphosphinsäure	18,5	1,02	nicht brennbar
d	TS/IS, 1,3-BAC, AH-Salz	Zinksalz der Dimethyl- phosphinsäure	20,0	0,98	nicht brennbar
3 6	TS/IS, 1,3-BAC, AH-Salz	ī	ı	1,10	brennbar
4	TS/IS, 1,3-BAC, AH-Salz	Dinatriumsalz der Äthan-1,2-dimethyl- phosphinsäure	20,4	0,88	nicht brennbar
īŲ	TS/IS,1,3-BAC, AH-Salz	Zinksalz der Äthan-1,2- dimethylphosphinsäure	20,0	0,92	nicht brennbar
9	TS/IS,1,3-BAC, AH-Salz	Dinatriumsalz der p-Xyly- len-dimethylphosphinsäure	20,0	0,82	nicht brennbar

TS = Terephthalsaure; IS = Isophthalsaure; BN = Bisaminomethylnorbornan-Gemisch

^{1,3-}BAC = 1,3-Bisaminomethylcyclohexan

AH-Salz = Adipinsäure-Hexamethylendiamin-Saíz

RSV = reduzierte spezifische Viskosität, gemessen an Lösungen von 1 g Polyamid in 100 ml Phenol/ Tetrachloräthan (60/40 Gew.%) bei 25°C

Patentansprüche:

 Ein flammwidrig machendes Mittel enthaltende Polyamidformmasse, dadurch gekennzeichnet, daß das flammwidrig machende Mittel ein Salz einer Phosphinsäure der allgemeinen Formel

oder einer Diphosphinsäure der allgemeinen Formel

$$Me^{1/n}-0-P-R_1-P-0-Me^{1/n}$$
II

ist, worin Me für ein Alkalimetall oder ein Metall aus der zweiten oder dritten Haupt- oder Nebengruppe des Periodensystems steht,

- n die Wertigkeit des Metalls Me,
- R gleiche oder verschiedene gesättigte, offenkettige, gegebenenfalls verzweigte, oder cyclische Alkylreste mit 1 bis 16, vorzugsweise mit 1 bis 6, Kohlenstoffatomen, Arylreste oder Arylalkylreste mit 6 bis 16 Kohlenstoffatomen, und
- R₁ einen gesättigten, offenkettigen, gegebenenfalls verzweigten oder cyclischen Alkylen-, Arylalkylen-, Arylen-, Arylenalkylen- oder Aren-bisalkylen-rest mit 1 bis 6, vorzugsweise 2 bis 4, Kohlenstoffatomen im Alkylenrest, bedeuten.
- 2. Polyamidformmasse nach Anspruch 1, dadurch gekennzeichnet, daß sie ein Phosphinsäuresalz der allgemeinen Formel I oder II in einer Menge von 6 bis 40, vorzugsweise 8 bis 30, Gewichtsprozent enthält, bezogen auf das Gewicht des Polymeren.

- 3. Polyamid-Formmasse nach Anspruch 1 und 2, dadurch gekennzeichnet, daß sie als Polyamid ein amorphes Polyamid enthält, das sich ableitet von 1,3- oder 1,4-Bis-(aminomethyl)-cyclohexan, 2,5- oder 2,6-Bis-(aminomethyl)-bicyclo/2,2,1/heptan, Dimethyl-bis-(4-aminocyclohexyl)-methan, 2,2,4- oder 2,4,4- Trimethylhexamethylendiamin oder Xylylendiamin als Hauptdiaminkomponente.
- 4. Polyamid-Formmasse nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß sie einen Füllstoff enthält.

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

×	BLACK BORDERS
×	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
Ø	FADED TEXT OR DRAWING
	BLURED OR ILLEGIBLE TEXT OR DRAWING
	SKEWED/SLANTED IMAGES
×	COLORED OR BLACK AND WHITE PHOTOGRAPHS
Ġ	GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox