数据挖掘与机器学习

潘斌

panbin@nankai.edu.cn 范孙楼227

上节回顾

- 模型的评估与选择
- 损失函数
- 准确度的局限性
- PR曲线和ROC曲线
- 交叉验证

本节提要

- 偏差-方差分解
- 线性分类器
 - 垂直平分分类器
 - Fisher 投 影 准 则
 - 感知准则

实验1: 手写LBP特征

- 第9周 实验课
- 给定10张图片,用LBP特征把它们的特征描述出来, 并画成特征直方图
- 助教负责简单讲解python的使用、如何读图

■McNemar 检验

■考察二学习器

两学习器分类差别列联表

算法 B	算法 A		
	正确	错误	
正确	e_{00}	e_{01}	
错误	e_{10}	e_{11}	

■ 若 二 学 习 器 性 能 相 同 , 则 e₀₁ = e₁₀

$$\tau_{\chi^2} = \frac{(|e_{01} - e_{10}| - \mathring{1})^2}{e_{01} + e_{10}} \sim \chi^2(1)$$

■McNemar 检验

		宣说	合计	
		有必要	无必要	
宣讲前	有必要	28	6	34
旦卯即	无必要	49	17	66
合	计	77	23	100

• 计算统计量; 查表找临界值

- ■Friedman检验和Nemenyi检验
 - ■用于多算法的比较(H_o: 所有算法性能相同)
 - 基于算法排序
 - 使用交叉验证法得到每个算法在每个数据集上的测试结果
 - 在每个数据集上根据测试性能好坏排序,并赋序值1,2,.....。若 算法性能相同,则平分序值
 - 计算平均序值

算法比较序值表

数据集	算法 A	算法 B	算法 C
D_1	1	2	3
D_2	1	2.5	2.5
D_3	1	2	3
D_4	1	2	3
平均序值	1	2.125	2.875

若算法性能相同,则平均序值应相同。

• k: 算法个数

• N: 数据集个数

• r_i: 第i个算法的平均序数

$$\tau_{\chi^2} = \frac{k-1}{k} \cdot \frac{12N}{k^2 - 1} \sum_{i=1}^k \left(r_i - \frac{k+1}{2} \right)^2$$
$$= \frac{12N}{k(k+1)} \left(\sum_{i=1}^k r_i^2 - \frac{k(k+1)^2}{4} \right)$$

在 k 和 N 都较大时, 服从自由度为 k-1 的 χ^2 分布.

$$\tau_F = \frac{(N-1)\tau_{\chi^2}}{N(k-1) - \tau_{\chi^2}} \sim F(k-1, (k-1)(N-1))$$

■ 若HO被拒绝,则算法性能显著不同。需要进一步区分各算法。

Nemenyi 检验计算出平均序值差别的临界值域

$$CD = q_{\alpha} \sqrt{\frac{k(k+1)}{6N}} ,$$

若两个算法的平均序值之差超出了临界值域 CD、则以相应的置信度拒绝"两个算法性能相同"这一假设.

q_α 的值可以查看下表获得:

~				3	注个数	k			×
α	2	3	4 .	5	6	7	8	9	10
0.05	1.960	2.344	2.569	2.728	2.850	2.949	3.031	3.102	3.164
0.1	1.645	2.052	2.291	2.459	2.589	2.693	2.780	2.855	2.920

- 例 (续)

• K = 3, N = 4, $\alpha = 0.05$

$$\tau_F = \frac{(N-1)\tau_{\chi^2}}{N(k-1) - \tau_{\chi^2}} \sim F(k-1, (k-1)(N-1))$$

 $au_F = 24.429$

F检验的常用临界值

$\alpha = 0.05$		
数据集	算法个	数 k
个数 N	2	3
4	10.128	5.143
5	7.709	4.459
8	5.591	3.739
10	5.117	3.555
15	4.600	3.340
20	4.381	3.245

拒绝原假设!

算法比较序值表

数据集	算法 A	算法 B	算法 C
D_1	1	2	3
D_2	1	2.5	2.5
D_3	1	2	3
D_4	1	2	3
平均序值	1	2.125	2.875

Nemen	yi 检验 ˈ	中常用的	<i>q</i> α值
α	算法 ²	个数 <i>k</i> 3	4 -
0.05 0.1	$1.960 \\ 1.645$	2.344 2.052	2.569 2.291

$$CD = 1.657$$

$$CD = q_{\alpha} \sqrt{\frac{k(k+1)}{6N}}$$

A、C性能显著 不同,AB\BC否

■Friedman检验图

- 横轴: 平均序值; 纵轴: 各算法
- 点: 每个算法的平均序值; 横线段: 临界值域
- 若两个算法的横线段有交叠,则算法无显著差别;否则说明有显著差别。

加 主 方 差 分 解

• 过 拟 合 与 欠 拟 合

Underfitting: when model is too simple, both training and test errors are large

模型M1: 锯齿∩绿色→树叶

模型M2:绿色→树叶

假设给定一个训练数据集:

$$T = \{(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)\}\$$

在 M 次多项式函数中选择一个对已知数据以及 未知数据都有很好预测能力的函数.

设M次多项式为

$$f_M(x, w) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^M w_j x^j$$

求以下经验风险最小化:

求以下经验风险最小化:
$$L(w) = \frac{1}{2} \sum_{i=1}^{N} (f(x_i, w) - y_i)^2 = \frac{1}{2} \sum_{i=1}^{N} \left(\sum_{j=0}^{M} w_j x_i^{j} - y_i \right)^2$$
平 方 损失

对w,求偏导数并令其为0,可得

$$w_{j} = \frac{\sum_{i=1}^{N} x_{i} y_{i}}{\sum_{i=1}^{N} x_{i}^{j+1}}, \quad j = 0, 1, 2, \dots, M$$

$$\bigotimes w_{i}^{*}, w_{i}^{*}, \dots, w_{i}^{*}, \dots$$

于是求得拟合多项式系数 $w_0^*, w_1^*, \dots, w_M^*$.

$$f_M(x, w) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^M w_j x^j$$

噪声(标注错误)期望为O

噪声与模型无关

• 偏差-方差分解

符号	涵义
x	测试样本
D	数据集 (多个)
y_D	x 在数据集中的标记
y	${f x}$ 的真实标记
f	训练集 D 学得的模型
$f(\mathbf{x}; D)$	由训练集 D 学得的模型 f 对 ${f x}$ 的预测输出
$ar{f}\left(\mathbf{x} ight)$	模型 f 对 ${f x}$ 的 期望预测 输出

假定 $\mathbb{E}_D[y_D-y]=0.$ $ar{f}(oldsymbol{x})=\mathbb{E}_D[f(oldsymbol{x};D)]$
$E(f; D) = \mathbb{E}_D\left[\left(f\left(\boldsymbol{x}; D\right) - y_D\right)^2\right]$
$=\mathbb{E}_{D}\left[\left(f\left(oldsymbol{x};D ight)-ar{f}\left(oldsymbol{x} ight)+ar{f}\left(oldsymbol{x} ight)-y_{D} ight)^{2} ight]$
$=\mathbb{E}_{D}\left[\left(f\left(\boldsymbol{x};D\right)-\bar{f}\left(\boldsymbol{x}\right)\right)^{2}\right]+\mathbb{E}_{D}\left[\left(\bar{f}\left(\boldsymbol{x}\right)-y_{D}\right)^{2}\right]$
$+\mathbb{E}_{D}\left[2\left(f\left(oldsymbol{x};D ight)-ar{f}\left(oldsymbol{x} ight) ight)\left(ar{f}\left(oldsymbol{x} ight)-y_{D} ight) ight]$
$= \mathbb{E}_{D}\left[\left(f\left(\boldsymbol{x};D\right) - \bar{f}\left(\boldsymbol{x}\right)\right)^{2}\right] + \mathbb{E}_{D}\left[\left(\bar{f}\left(\boldsymbol{x}\right) - y_{D}\right)^{2}\right]$
$= \mathbb{E}_{D}\left[\left(f\left(\boldsymbol{x};D\right) - \bar{f}\left(\boldsymbol{x}\right)\right)^{2}\right] + \mathbb{E}_{D}\left[\left(\bar{f}\left(\boldsymbol{x}\right) - y + y - y_{D}\right)^{2}\right]$
$\mathbf{E}_{D}\left[\left(f\left(oldsymbol{x};D ight)-ar{f}\left(oldsymbol{x} ight) ight)^{2} ight]+\mathbb{E}_{D}\left[\left(ar{f}\left(oldsymbol{x} ight)-y ight)^{2} ight]+\mathbb{E}_{D}\left[\left(y-y_{D} ight)^{2} ight]$
$+ 2\mathbb{E}_{D}\left[\left(ar{f}\left(oldsymbol{x} ight) - y ight)\left(y - y_{D} ight) ight]$
$\mathbf{E}_{D}\left[\left(f\left(oldsymbol{x};D ight)-ar{f}\left(oldsymbol{x} ight) ight)^{2} ight]+\mathbb{E}_{D}\left[\left(ar{f}\left(oldsymbol{x} ight)-y ight)^{2} ight]+\mathbb{E}_{D}\left[\left(y-y_{D} ight)^{2} ight]$
= Variance + Bias + Noise

$$Err(\boldsymbol{x}) = \mathbb{E}_D \left[\left(f(\boldsymbol{x}; D) - \bar{f}(\boldsymbol{x}) \right)^2 \right] + \left(\bar{f}(\boldsymbol{x}) - y \right)^2 + \mathbb{E}_D \left[(y_D - y)^2 \right]$$

- variance
- ► bias²
- noise

- 欠 拟 合

- 拟合能力不足
- ■偏差占主导
- 训练数据的扰动 不足以使学习器 发生变化
- 増加模型参数

• 过 拟 合

- 拟合能力过强
- 方差占主导
- 训练数据的轻微扰动会导致模型变化
- 减少参数,正则化
- 集成学习

线性分类器

- 1 线性分类器基础
- 2 垂直平分分类器
- 3 Fisher投影准则
- 4 感知准则
- 5 最小错分样本数准则
- 6 最小平方误差准则

1 线性分类器基础

- 1.1 数学基础知识
- 1.2 线性分类器概念
- 1.3 线性判别函数
- 1.4 增广变换
- 1.5 相关概念归纳
- 1.6 线性分类器设计概述

1.1 数学基础知识

- 相关的数学基础包括
 - 矩阵
 - 向量
 - 矩阵和向量的转置
 - 向量运算
 - 矩阵运算

1.2 线性分类器概念

1.2 线性分类器概念

- [线性分类器] 对于两类的分类问题,采用线性判别函数划分特征空间(即采用直线或平面等将两类样本在特征空间中的区域划分开),这样的分类器是线性分类器。
- 线性分类器特点:特征空间一分为二,适合于解决两类的分类问题

1.3 线性判别函数

- 两类二维问题
 - C——类别数, D——维数, N——样本数
 - -C = 2, D = 2
 - 直线方程
 - 代数形式 $W_1X_1 + W_2X_2 + W_0 = 0$
 - 向量形式w^Tx + w₀ = 0
 - 定义线性判别函数
 - $g(x) = w^T x + w_0$

1.3 线性判别函数

- 两类多维问题
 - C = 2, D任意
 - 定义线性判别函数
 - $g(x) = w^T x + w_0$
 - w ——权向量
 - w₀——阈值权

1.3 线性判别函数

- 线性判别函数的几何性质
 - 法向量方向
 - 原点距离

1.4 增广变换

- 线性判别函数的增广变换
 - 定义增广变换

$$g(\mathbf{x}) = w_0 + \sum_{i=1}^d w_i x_i = \sum_{i=1}^d a_i y_i = \mathbf{a}^T \mathbf{y}$$

$$\mathbf{y} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} = \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix}, \mathbf{a} = \begin{bmatrix} \mathbf{w}_0 \\ \mathbf{w}_1 \\ \vdots \\ \mathbf{w}_d \end{bmatrix} = \begin{bmatrix} \mathbf{w}_0 \\ \mathbf{w} \end{bmatrix},$$

1.4 增广变换

- 线性判别函数的增广变换
 - 则线性判别函数为
 - $g(x) = a^{T}y$
 - y ——增广样本向量
 - a——增广(或广义)权向量

1.4 增广变换

- 线性判别函数的增广变换
 - 增广变换的特点
 - 维数增加了一维: D_G = D + 1
 - 样本向量实际还是位于原D维子空间中
 - 样本间欧式距离保持不变
 - $a^Ty = 0$ 是过原点的超平面 H_G

1.5 相关概念归纳

• 概念回顾

- 线性判别函数,记为g(x)
- 线性决策面,记为H
- 线性决策面方程,令g(x) = 0

1.5 相关概念归纳

- 线性决策面法向量方向
 - 线性决策面将特征空间分为两个区域。
 - 其中法向量方向区域称为正侧区域(简称正侧)
 - 法向量反方向的区域称为负侧区域(简称负侧)。
 - 设计时,通常使
 - 正侧对应ω₁类(甲类或A类)
 - 负侧对应ω₂类(乙类或B类)。

1.5 相关概念归纳

• 决策规则

- 已知判别函数
 - $g(x) = w^T x + w_0$, $\mathbb{R} g(x) = a^T y$
- 则决策规则为
 - 对于未知样本x,若g(x) > 0,则x决策为 ω_1 类
 - 若g(x) < 0,则x决策为 $ω_2$ 类

1.6 线性分类器设计概述

- 线性分类器的理论设计
 - 设计线性分类器

 - 设计决策规则
 - _
 - 设计线性判别函数 $g(x) = w^Tx + w_0$,或 $g(x) = a^Ty$
 - **-** ↓
 - 求解权向量w和阈值权 w_0 ,或增广权向量a

1.6 线性分类器设计概述

- 线性分类器设计常规步骤
 - 给定类别已知的样本——训练样本集
 - **-** ↓
 - 选择一个准则函数J, 其值反映分类器性能(分类结果优劣)
 - **-** ↓
 - 采用求最优解的数学方法求准则函数J的极值解,从而求得权向量w和阈值权 w_0 ,或增广权向量a

2 垂直平分分类器

- 2.1 问题与思路
- 2.2 垂直平分形式
- 2.3 最小距离形式
- 2.4 实例
- 2.5 特点

2.1 问题与思路

• 垂直平分分类器又称为最小距离分类器。

- 设计思路
 - 基于两类样本均值点作垂直平分线

2.1 问题与思路

- 已知
 - 给定类别已知的训练样本集Z有N个样本,
 - 其中ω₁类样本有N₁个,样本集用Z₁表示;
 - ω_2 类样本有 N_2 个,样本集用 Z_2 表示;
 - 显然
 - $N_1 + N_2 = N$
 - $Z_1 + Z_2 = Z$
- 试求垂直平分分类器

- 判别函数与决策面方程
 - 对于两类二维问题
 - -C = 2, D = 2
 - 垂直平分线性判别函数
 - $g(x) = w^T x + w_0$
 - 垂直平分直线方程
 - $g(x) = 0 \ \mathbb{H} \ w^T x + w_0 = 0$

- 求解权向量与阈值权
 - 先求均值向量
 - m₁和 m₂
 - 利用垂直几何关系,设权向量
 - $w = (m_1 m_2)$
 - 则直线方程为
 - $(m_1 m_2)^T x + w_0 = 0$

(注意正侧在m₁这边)

- 求解权向量与阈值权
 - 再利用平分几何关系,中点 x_0 在直线上
 - $x_0 = (m_1 + m_2) / 2$
 - 代入方程求得
 - $w_0 = -(m_1 m_2)^T (m_1 + m_2) / 2$

- 最终结果
 - 线性判别函数

•
$$g(x) = (m_1 - m_2)^T x - (m_1 - m_2)^T (m_1 + m_2) / 2$$

- $\bullet = (m_1 m_2)^{\top} (x (m_1 + m_2) / 2)$
- 决策面方程
 - $(m_1 m_2)^T (x (m_1 + m_2) / 2) = 0$

• 决策规则

- 已知垂直平分判别函数
 - $g(x) = (m_1 m_2)^{T} (x (m_1 + m_2) / 2)$
- 垂直平分决策规则为
 - 对于未知样本x,若g(x) > 0,则x决策为 ω_1 类
 - 若g(x) < 0,则x决策为 $ω_2$ 类

- 判别函数与决策面方程
 - 很容易推广到两类多维问题
 - C = 2, D任意
 - 垂直平分线性判别函数
 - $g(x) = w^T x + w_0$
 - 垂直平分决策面方程
 - $g(x) = 0 \bowtie w^T x + w_0 = 0$

2.3 垂直平分分类器的最小距离形式

- 最小距离等价形式的由来
 - 定义欧式距离(非线性)为判别函数

•
$$G_1(x) = d_1(x) = ||x - m_1||$$

•
$$G_1(x) = d_2(x) = ||x - m_2||$$

2.3 最小距离形式

• 决策规则

- 等价的最小距离决策规则为
 - 对于未知样本x,若 $d_1(x) < d_2(x)$,则x决策为 ω_1 类
 - 若 $d_1(x) > d_2(x)$,则x决策为 ω_2 类

2.4 实例

• 已知

- 甲类: [0 3]^T、[2 4]^T、[1 3]^T、[2 3]^T、[0 2]^T
- 乙类: [4 1]T、[3 2]T、[2 1]T、[3 0]T、[3 1]T

试问

- 待分类样本为 $x = [5 0]^T$,问x应决策为哪一类?

2.5 特点

- 最小距离分类器的主要特点
 - 解决两类分类问题的线性分类器
 - 原则上对样本集无特殊要求
 - 未采用准则函数求极值解(非最佳决策)
 - 算法最简单,分类器设计最容易

3 Fisher投影准则

- 3.1 问题与思路
- 3.2 Fisher准则函数
- 3.3 准则函数化简
- 3.4 求极值解
- 3.5 特点
- 3.6 后续研究

3.1 问题和思路

- 原因
 - 高维问题——特征个数太多
 - (经典理论)分类器设计困难
 - 分类困难

3.1 问题和思路

• 设计思路

- 通过投影对高维分类问题降维
- Fisher将高维特征空间的样本投影到一维直线上

3.1 问题和思路

问题

- 己知C=2, D维分类问题的样本集
- 设投影向量为p
- $-则一维投影方程为y = p^Tx$
- 求最佳投影向量p(的方向)

3.2 Fisher准则函数

- Fisher定义的准则函数
 - 定义各类均值 m_1 和 m_2
 - 定义各类离散度S₁和S₂
 - 定义总离散度 $S_W = S_1 + S_2$
 - 定义类间离散度S_B
- 1. 在d维 X 空间
- (1) 各类样本均值向量 m,

$$m_i = \frac{1}{N_i} \sum_{x \in \mathcal{A}_i} x$$

(2) 样本类内离散度矩阵 S, 和总类内离散度矩阵 S.。

$$S_i = \sum_{\mathbf{x} \in \mathcal{X}_i} (\mathbf{x} - \mathbf{m}_i) (\mathbf{x} - \mathbf{m}_i)^T$$
$$S_w = S_t + S_2$$

(3) 样本类间离散度矩阵 Si®

$$S_b = (\boldsymbol{m}_1 - \boldsymbol{m}_2)(\boldsymbol{m}_1 - \boldsymbol{m}_2)^T$$

- 2. 在一维 Y 空间
- (1) 各类样本均值 m,

$$\widetilde{m}_i = \frac{1}{N_i} \sum_{\gamma \in \mathscr{Y}_i} \gamma$$

(2) 样本类内离散度 S? 和总类内离散度 S.

$$\widetilde{S}_{i}^{z} = \sum_{\gamma \in \mathscr{Z}_{i}} (y - \widetilde{m}_{i})^{z}$$

$$\widetilde{S}_{\omega} = \widetilde{S}_{1}^{z} + \widetilde{S}_{2}^{z}$$

(3) 样本的类间离散度:

$$(\widetilde{m}_1 - \widetilde{m}_2)^2$$

3.2 Fisher准则函数

- Fisher定义的准则函数
 - 定义Fisher投影准则

$$J_F(p) = \frac{(\widetilde{m}_1 - \widetilde{m}_2)^2}{\widetilde{S}_1^2 + \widetilde{S}_2^2}$$

- Fisher投影准则的物理含义
 - 投影后异类样本尽量远离
 - 投影后同类样本尽量靠近

3.3 准则函数化简

- 化简Fisher准则函数
 - 分子的化简

$$\widetilde{\boldsymbol{m}}_{i} = \frac{1}{N_{i}} \sum_{y \in \mathcal{X}_{i}} y = \frac{1}{N_{i}} \sum_{x \in \mathcal{X}_{i}} \boldsymbol{w}^{T} \boldsymbol{x}$$

$$= \boldsymbol{w}^{T} \left(\frac{1}{N_{i}} \sum_{x \in \mathcal{X}_{i}} \boldsymbol{x} \right) = \boldsymbol{w}^{T} \boldsymbol{m}_{i}$$

分子便成为

$$(\widetilde{m}_1 - \widetilde{m}_2)^2 = (\mathbf{w}^T \mathbf{m}_1 - \mathbf{w}^T \mathbf{m}_2)^2$$

= $\mathbf{w}^I (\mathbf{m}_1 - \mathbf{m}_2) (\mathbf{m}_1 - \mathbf{m}_2)^T \mathbf{w} = \mathbf{w}^T S_b \mathbf{w}$

3.3 准则函数化简

- 化简Fisher准则函数
 - 分母的化简

$$\widetilde{S}_{i}^{y} = \sum_{y \in \mathscr{Y}_{i}} (y - \widetilde{m}_{i})^{2} = \sum_{x \in \mathscr{X}_{i}} (\mathbf{w}^{T} \mathbf{x} - \mathbf{w}^{T} \mathbf{m}_{i})^{2}$$
$$= \mathbf{w}^{T} \Big[\sum_{x \in \mathscr{Y}_{i}} (\mathbf{x} - \mathbf{m}_{i}) (\mathbf{x} - \mathbf{m}_{i})^{T} \Big] \mathbf{w} = \mathbf{w}^{T} S_{i} \mathbf{w}$$

$$\tilde{S}_1^2 + \tilde{S}_2^2 = \mathbf{w}^T (S_1 + S_2) \mathbf{w} = \mathbf{w}^T S_n \mathbf{w}$$

3.3 准则函数化简

- Fisher准则函数
 - 化简的结果

$$J_F(p) = \frac{p^T S_b p}{p^T S_W p}$$

曲线L 为约束条件 $arphi\left(x,y ight)=0$, $f\left(x,y ight)=C$ 为目标函数的等值线

求Fisher函数的极值解

- 采用Lagrange乘子法求极值
 - 等式约束条件: 令分母为常数
 - 目标函数: 分子

$$\mathbf{w}^T S_{\mathbf{w}} \mathbf{w} = c + 0$$

定义 Lagrange 函数为

$$L(\mathbf{w}, \lambda) = \mathbf{w}^T S_B \mathbf{w} - \lambda (\mathbf{w}^T S_{\mathbf{w}} \mathbf{w} - c)$$

式中λ为 Lagrange 乘子。将式(4-28)对 w 求偏导数,得

$$\frac{\partial L(\mathbf{w}, \lambda)}{\partial \mathbf{w}} = S_b \mathbf{w} + \lambda S_m \mathbf{w}$$

今偏导数为零,得

$$S_b \mathbf{w}^* - \lambda S_b \mathbf{w}^* = 0$$

即

$$S_b w^+ = \lambda S_u w^+$$

[拉格朗日函数

$$F\left(x,y,\lambda
ight) =f(x,y)+\lambda arphi (x,y)$$

• 求Fisher函数的极值解

其中 w* 就是 $J_F(w)$ 的极值解。因为 S_w 非奇异,式(4-29)两边左乘 S_w^{-1} ,可得

$$S_n^{-1}S_n \mathbf{w}^* = \lambda \mathbf{w}^* \tag{4-30}$$

解式(4-30)为求一般矩阵 S_w 的本征值问题、但在我们这个特殊情况下,利用式(4-19) S_w 的定义,式(4-30)左边的 S_w 可以写成

$$S_6 w^* = (m_1 - m_2)(m_1 - m_2)^T w^* = (m_1 - m_2)R$$
$$R = (m_1 - m_2)^T w^*$$

山口中

为一标量,所以 S_{sw} *总是在向量($m_1 - m_2$)的方向上。由于我们的目的是寻找最好的投影方向,w*的比例因子对此并无影响,因此,从式(4-30)可得

$$\lambda w^* = S_w^{-1}(S_b w^*) = S_w^{-1}(m_1 - m_2)R$$

从而可得

$$\boldsymbol{w}^* = \frac{R}{\lambda} S_u^{-1}(\boldsymbol{m}_1 - \boldsymbol{m}_2) \tag{4-31}$$

忽略比例因子 R/A,得

$$w' = S_u^{-1}(m_1 - m_2)$$
 (4-32)

- 求Fisher函数的极值解
 - 极值解(极大值)

$$p^* = S_W^{-1}(m_1 - m_2)$$

3.5 特点

• Fisher投影的特点

- 解决两类问题的线性投影
- 原则上对样本集无特殊要求(S_w 矩阵可逆)
- 采用Fisher投影准则函数求极值解(最佳决策)
- 分类器设计较容易

3.6 后续研究

- 1936 年,Fisher发表经典论文,提出投影准则。 Wilks和Duda分别提出判别向量集概念,由判别向 量集构成子空间,对原始样本在子空间中的投影向 量进行分类判别。
- 1970年,Sammon提出基于Fisher准则的最佳判别平面。Foley和Sammon提出采用正交条件下的最佳判别向量集进行特征提取的方法。
- 1988年,Duchene等给出多类情况最佳判别向量集的计算公式。
-
- Linear Discriminent Analysis (LDA)

实验2: 垂直平分分类器

- 给定训练数据,学习得到一个垂直平分分类器
- 对测试样本进行分类
- Python编程实现

4 感知准则

- 4.1 样本集线性可分
- 4.2 解向量和解区
- 4.3 感知准则函数
- 4.4 求极值解
- 4.5 特点
- 4.6 后续研究

4.1 样本集线性可分

- 样本集的线性可分性
 - [线性可分] 若训练样本集可以被某个线性分 类器完全正确分类,则该样本集是线性可分的。
 - 样本集是线性可分的——至少存在一个权向量, 能将该样本集中的每个样本都正确分类;
 - 否则就是线性不可分的(异或问题)。

4.1 样本集线性可分

问题

- 已知C = 2, D维分类问题的样本集(其它略)
- 设该样本集是线性可分的
- 提出感知准则(因此称为感知器)
- 求能够对样本集正确分类的解(某个线性分类 器)
- 感知器用来解决线性可分样本集分类问题

4.1 样本集线性可分

- 线性可分性样本集的规范化
 - 感知准则采用增广向量形式 判别函数 $g(x) = a^{T}y$ 对于未知样本x,若g(x) > 0,则x决策为 ω_1 类 若g(x) < 0,则x决策为 ω_2 类
 - 规范化
 - 对ω2类样本的增广向量全部乘以-1
 - 规范化之后的分类结果
 - a^Ty_i > 0——正确分类
 - a^Ty_i < 0──错误分类

4.2 解向量和解区

• 概念

- 解向量——能将线性可分样本集中的每个样本 都正确分类的权向量。
- 解区——解向量往往不是一个,而是由无穷多个解向量组成的(角度)区域,称为解区。

4.3 感知准则函数

- Rosenblatt定义感知准则函数
 - 对于规范化的增广样本集
 - a^Ty_i < 0──错误分类
 - 定义感知准则函数,作为优化准则函数

$$\min J_p(a) = \sum_{y \in Z_E} (-a^T y)$$

- 求解向量(或解区)

4.3 感知准则函数

- 图示法求解区
- 解区可以直接画图求出(二维条件时)

• 求解感知器

- 采用梯度下降法求优化准则函数极值(极小值)
 - 先求梯度方向
 - 计算参数改变量
 - 得到迭代公式

$$\nabla J_P(\boldsymbol{a}) = \frac{\partial J_P(\boldsymbol{a})}{\partial \boldsymbol{a}} = \sum_{\mathbf{y} \in \boldsymbol{\varphi}^L} (-\mathbf{y})$$

$$a(k+1) = a(k) - \rho_k \nabla J$$

$$a(k+1) = a(k) + \rho_k \sum_{y \in \mathcal{X}^k} y$$

Parameters $\theta =$ 优化算法: 梯度下降 $\{w_1, w_2, \dots, b_1, b_2, \dots\}$

梯度下降

parameters
$$\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$$

梯度下降

parameters
$$\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$$

梯度下降

parameters
$$\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$$

- 求解感知器
 - 梯度下降法求极值的问题
 - 收敛性
 - 步长的选择

4.5 特点

- 感知准则(分类器)的特点
 - 解决两类问题的线性分类器
 - 样本集必须是线性可分的
 - 采用感知准则函数求极值解(最优决策)
 - 分类器设计过程复杂

#