Total Dose Survivability of Hubble Electronic Components

M.A. Xapsos¹, C. Stauffer², T. Jordan³, C. Poivey⁴, D.N. Haskins¹, G. Lum⁵, A.M. Pergosky⁶, D.C. Smith⁵ and K.A. LaBel¹

¹NASA Goddard Space Flight Center, Greenbelt, MD, USA

²AS&D, Inc., Greenbelt, MD, USA

³EMP Consultants, Gaithersburg, MD, USA

⁴ESA-ESTEC, Noordwijk, The Netherlands

⁵Lockheed Martin, USA

⁶SAIC, USA

Acronyms

- AE-8 Aerospace Electron Model-8
- AP-9 Aerospace Proton Model-9
- **CEASE Compact Environmental Anomaly Sensor**
- **CMOS Complementary Metal-Oxide-Semiconductor**
- **HST Hubble SpaceTelescope**
- IR infrared
- JWST James Webb Space Telescope
- NOVICE Numerical Optimizations, Visualizations, and Integrations on CAD/CSG **Edifices**
- **CAD Computer Aided Design**
- **CSG Constructive Solid Geometry**
- **PET Proton Electron Telescope**
- **RAM Random Access Memory**
- **ROM Read Only Memory**
- **RPS Relativistic Proton Spectrometer**
- **SAMPEX Solar Anomalous and Magnetospheric Particle Explorer**
- **TID Total Ionizing Dose**
- TSX-5 Tri-Service Experiments Mission 5
- 3-D three-dimensional

Outline

- Introduction
- HST Lifetime Planning
- Total Dose Analysis and Results
- Summary

Credit: http://www.spacetelescope.org

Introduction

- Hubble Space Telescope (HST) deployed from Discovery April 25, 1990
 - Low Earth Orbit, 569 km altitude, 28.5° inclination
 - First telescope designed to be serviced in space
- Advantages in space:
 - No atmospheric distortions
 - Little background light
 - Portions of ultraviolet and infrared spectra seen, not observable with Earthbased telescopes

2.4 meter diameter primary mirror

Credit: http://hubblesite.org/

The Universe, Looking Back in Time

Credit: http://hubblesite.org/

Service Mission 1 Corrective Optics for Spherical Aberration

Galaxy M100, Before

Galaxy M100, After

Credit: http://hubblesite.org/

HST Lifetime Planning

- Fifth and final HST servicing mission occurred in May 2009
- James Webb Space Telescope (JWST), launches in October 2018
 - Will complement and extend HST discoveries with greater IR wavelength coverage and sensitivity
 - Desirable that HST and JWST operate simultaneously
- After more than 27 years in orbit, main radiation concern for HST is a hard failure due to total ionizing or non-ionizing dose.
 - Objective is to evaluate these possibilities out to the year 2020 for HST life extension initiatives and contingency planning

Total Dose Analysis Van Allen Belts

- Dose comes mainly from trapped p, with smaller contribution from trapped e
- Must account for solar cycle dependence of fluxes
- Boeing Trapped Proton Model-1 used
 - AP9 used to extend energy range to 2 GeV (RPS instrument on Van Allen Probes)
 - Calculations showed good agreement with SAMPEX PET and TSX-5 CEASE data
- AE8 used for trapped electrons
 - Results insensitive to electron model

Boeing Trapped Proton Model-1 HST Orbit

Total Dose Analysis Radiation Transport

- NOVICE code used for radiation transport
 - Interfaces with CAD models
 - Adjoint (reverse) Monte Carlo simulation greatly increases calculation efficiency
- Lockheed Martin spacecraft CAD model imported
- Extensive review of subsystem and instrument mechanical drawings
 - Implemented using correct dimensions, wall thicknesses, masses and placement
- TID exposure tracked accounting for servicing missions

HST NOVICE Radiation Model

Expected Mission Doses by 2020 66 Subsystems / Instruments

Parts Discussion

- HST Parts and Control Plan specifies TID hardness of 5 - 15 krad(Si)
 - Many selected parts substantially exceed this
- Initial HST development occurred in 1980s
 - Bipolar technologies generally more total dose hard than CMOS
 - Literature and parts list reviews showed total dose concerns were primarily CMOS parts
 - Biggest concern is Hughes Aircraft CMOS parts in transponders - microprocessors, RAM and ROM
 - Will be exposed to ~2X their total dose hardness by 2020
- Factors favoring part survivability:
 - Annealing of parts for many years in space not accurately accounted for with ground test protocol
 - Parts may operate satisfactorily outside specs

Summary

- HST has been through:
 - 27 years of mission operations
 - 5 servicing missions
 - 3 generations of scientific instruments
 - 14,000 electronic parts
 - Procured by 5 generations of parts engineers
 - Protected by 12,200 kg of spacecraft mass / shielding
- HST still operating satisfactorily

To Be Continued.....

Questions?

Credit: http://hubblesite.org/

Publication: IEEE Trans. Nucl. Sci., Vol. 61, No. 6, pg. 3356-3362 (Dec. 2014)