Representative GB Network

September 14, 2019

Abstract

This brief report accompanies the data provided for performing power-flow and dynamic studies on the Representative GB Network. This is a reduced model, representative of the GB system. The topology and power-flow data in this report are imported from [1] and the dynamic data adapted from [2].

1 Power-flow model

1.1 Transmission nodes

For the transmission nodes, the nominal voltage and the shunt components are adapted from [2]. The shunt elements on the buses have been aggregated with the line shunt elements in the reduced parts of the GB system ('Bint') and attached to each node. Further to this, at buses 26 and 27, the interconnection shunts have been included. The updated data is listed in Table 1. The one-line diagram of the system illustrating the generation units and loads at each bus node is illustrated in Figure 1.

Table 1: Transmission nodes

Node	Location	Vnom	Shunt
		(kV)	(MVAr)
1	Beauly	275	159
2	Peterhead	275	237.6
3	Errochty	132	84
4	Denny/Bonnybridge	275	305
5	Neilston	400	216
6	Strathaven	400	573
7	Torness	400	456.7
8	Eccles	400	14.57
9	Harker	400	397.08
10	Stella West	400	765
11	Penwortham	400	1306
12	Deeside	400	676
13	Daines	400	860.9999
14	Th. Marsh/Stockbridge	400	243
15	Thornton/Drax/Egg	400	876.5301
16	Keadby	400	346.4
17	Rattcliffe	400	561.56
18	Feckenham	400	4640.6
19	Walpole	400	564.2
20	Bramford	400	370.7
21	Pelham	400	489.29
22	Sundon/East Claydon	400	2082.4
23	Melksham	400	1737.3
24	Bramley	400	510.67
25	London	400	3513
26	Kemsley	400	1314
27	Sellindge	400	1062
28	Lovedean	400	1168.6
29	SWP	400	1806.1

Figure 1: Representative GB Network oneline diagram

1.2 Transformer data

1.2.1 Generator and load transformers

The main alteration made to the data compared to [1] was to include step-up and step-down transformers at the generator and load buses respectively to make the system more realistic for dynamic analysis. The original data had the generators and loads directly connected to the HV nodes. Generator transformers' were included in the model in [2] but were slightly adjusted. The updated data is shown below in Table 2.

Table 2: Generator and load transformer data

Name	From Bus	To Bus	Resistance	Reactance	Susceptance	Ratio,	Snom
			R (%)	X (%)	B (%)	n (%)	(MVA)
G1	G1	1	0	10	0	100	1184
G2	G2	2	0	10	0	100	1800
G3	G3	3	0	10	0	100	1150
G4	G4	4	0	10	0	100	3400
G5	G5	5	0	10	0	100	1280
G6	G6	6	0	10	0	100	1300
G7	G7	7	0	10	0	100	2900
G10	G10	10	0	10	0	100	4000
G11	G11	11	0	10	0	100	6700
G12	G12	12	0	10	0	100	4800
G15	G15	15	0	10	0	100	8960
G16	G16	16	0	10	0	100	14140
G17	G17	17	0	10	0	100	2360
G18	G18	18	0	10	0	100	2550
G19	G19	19	0	10	0	100	3864
G20	G20	20	0	10	0	100	1900
G21	G21	21	0	10	0	100	875
G22	G22	22	0	10	0	100	483
G23	G23	23	0	10	0	100	9250
G25	G25	25	0	10	0	100	2750
G26	G26	26	0	10	0	100	6550
G27	G27	27	0	10	0	100	1550
G28	G28	28	0	10	0	100	1750
G29	G29	29	0	10	0	100	2400
L1-1	L1	1	0	10	0	96.5625	750
L2-2	L2	2	0	10	0	94.6875	950
L3-3	L3	3	0	10	0	95.625	900
L4-4	L4	4	0	10	0	94.6875	2250
L5-5	L5	5	0	10	0	96.5625	800
L6-6	L6	6	0	10	0	94.6875	2150
L7-7	L7	7	0	10	0	95.625	1250
L8-8	L8	8	0	10	0	96.5625	175
L9-9	L9	9	0	10	0	92.8125	325
L10-10	L10	10	0	10	0	96.5625	4000
L11-11	L11	11	0	10	0	94.6875	5500
L12-12	L12	12	0	10	0	94.6875	2300
L13-13	L13	13	0	10	0	93.75	4000
L14-14	L14	14	0	10	0	93.75	2900
L15-15	L15	15	0	10	0	94.6875	4500
L16-16	L16	16	0	10	0	91.875	5100
L17-17	L17	17	0	10	0	93.75	2000
L18-18	L18	18	0	10	0	94.6875	9000

L19-19	L19	19	0	10	0	92.8125	3750
L20-20	L20	20	0	10	0	93.75	1800
L21-21	L21	21	0	10	0	91.875	1500
L22-22	L22	22	0	10	0	92.8125	3300
L23-23	L23	23	0	10	0	94.6875	8000
L24-24	L24	24	0	10	0	93.75	2300
L25-25	L25	25	0	10	0	92.8125	15500
L26-26	L26	26	0	10	0	93.75	2800
L26IC-26	L26IC	26	0	10	0	97.5	1400
L27-27	L27	27	0	10	0	93.75	800
L27IC-27	L27IC	26	0	10	0	93.75	2800
L28-28	L28	28	0	10	0	95.625	4200
L29-29	L29	29	0	10	0	98.4375	3800

Transmission transformers

The transformer data in the transmission level were given in [2] and translated from PowerFactory. This data is shown below in Table 3.

Name From Bus To Bus Resistance Reactance Susceptance Ratio, Phase Shift Snom R (%) X (%) B (%) n (%) (Deg) (MVA) 1-3a 3 0.924 19.8 3.939 100 2 132 1 2 $1\overline{3}\overline{2}$ 1-3b 3 19.8 3.939 0.924100 1.944 3-4b 3 4 26.568 0.068 100 0 648 3-4a 4 26.568 0.679 100 0 3 1.944 648 3-2a3 2 19.586 50.204 0.19100 0 652 4-7a4 7 2.299914.7151.077 100 0 1090 4-6b 4 6 1.95 34.50.997100 0 1500 25.764-6a 4 6 1.456 1.57 100 0 1120 4-5b 5 24 1000 4 1 1.25 100 0 4-5a 5 1 24 1.25 100 0 1000 4 4-7b 7 2.289 14.715 100 0 1090 4 1.411 1.776 21.62 2400 12-18b 12 1.213 100 18 12 - 18a12 18 2.976 33.418 1.242 100 $\overline{2}$ 2400

Table 3: HV transformer data

1.3 Load data

The loads active and reactive powers have been kept the same as the initial data ([1]). However, due to the addition of step-up and step-down transformers, there is a change in the reactive power drawn from the transmission. This has been offset by the use of local shunt compensation to keep the transmission-level power flow in the system as close to the original ([1]) as possible.

Furthermore, the losses within the reduced parts of the GB network have been added to the active and reactive loads on the nodes. The power transferred over the interconnections has been included as loads in the data of Table 4 (see L26IC and L27IC) which are connected to their corresponding main bus nodes (26 and 27, respectively).

Active Power Load Reactive Power Load (MW) (MVAr)

Table 4: Load data

L4 20 1327.3 923.5 82.1 L5 20 505.8 260.2 32.7 L6 20 1303.4 827.7 75.9 L7 20 753 496.9 45.3 L8 20 118.5 44.1 6.2 L9 20 134.9 192.4 11.1 L10 20 2569 1225 140.3 L11 20 3413.4 2182.7 197.7 L12 20 1209 1112 80.8 L13 20 2545 1498.5 147 L14 20 1843.5 1065.7 104 L15 20 2669 1902.4 160.3 L16 20 1691.5 3389.6 181.3 L17 20 1095.5 942.1 70.3 L18 20 5437.5 3667 322 L19 20 2066.1 1741 131.9	
L6 20 1303.4 827.7 75.9 L7 20 753 496.9 45.3 L8 20 118.5 44.1 6.2 L9 20 134.9 192.4 11.1 L10 20 2569 1225 140.3 L11 20 3413.4 2182.7 197.7 L12 20 1209 1112 80.8 L13 20 2545 1498.5 147 L14 20 1843.5 1065.7 104 L15 20 2669 1902.4 160.3 L16 20 1691.5 3389.6 181.3 L17 20 1095.5 942.1 70.3 L18 20 5437.5 3667 322 L19 20 2066.1 1741 131.9	
L7 20 753 496.9 45.3 L8 20 118.5 44.1 6.2 L9 20 134.9 192.4 11.1 L10 20 2569 1225 140.3 L11 20 3413.4 2182.7 197.7 L12 20 1209 1112 80.8 L13 20 2545 1498.5 147 L14 20 1843.5 1065.7 104 L15 20 2669 1902.4 160.3 L16 20 1691.5 3389.6 181.3 L17 20 1095.5 942.1 70.3 L18 20 5437.5 3667 322 L19 20 2066.1 1741 131.9	
L8 20 118.5 44.1 6.2 L9 20 134.9 192.4 11.1 L10 20 2569 1225 140.3 L11 20 3413.4 2182.7 197.7 L12 20 1209 1112 80.8 L13 20 2545 1498.5 147 L14 20 1843.5 1065.7 104 L15 20 2669 1902.4 160.3 L16 20 1691.5 3389.6 181.3 L17 20 1095.5 942.1 70.3 L18 20 5437.5 3667 322 L19 20 2066.1 1741 131.9	
L9 20 134.9 192.4 11.1 L10 20 2569 1225 140.3 L11 20 3413.4 2182.7 197.7 L12 20 1209 1112 80.8 L13 20 2545 1498.5 147 L14 20 1843.5 1065.7 104 L15 20 2669 1902.4 160.3 L16 20 1691.5 3389.6 181.3 L17 20 1095.5 942.1 70.3 L18 20 5437.5 3667 322 L19 20 2066.1 1741 131.9	
L10 20 2569 1225 140.3 L11 20 3413.4 2182.7 197.7 L12 20 1209 1112 80.8 L13 20 2545 1498.5 147 L14 20 1843.5 1065.7 104 L15 20 2669 1902.4 160.3 L16 20 1691.5 3389.6 181.3 L17 20 1095.5 942.1 70.3 L18 20 5437.5 3667 322 L19 20 2066.1 1741 131.9	
L11 20 3413.4 2182.7 197.7 L12 20 1209 1112 80.8 L13 20 2545 1498.5 147 L14 20 1843.5 1065.7 104 L15 20 2669 1902.4 160.3 L16 20 1691.5 3389.6 181.3 L17 20 1095.5 942.1 70.3 L18 20 5437.5 3667 322 L19 20 2066.1 1741 131.9	
L12 20 1209 1112 80.8 L13 20 2545 1498.5 147 L14 20 1843.5 1065.7 104 L15 20 2669 1902.4 160.3 L16 20 1691.5 3389.6 181.3 L17 20 1095.5 942.1 70.3 L18 20 5437.5 3667 322 L19 20 2066.1 1741 131.9	
L13 20 2545 1498.5 147 L14 20 1843.5 1065.7 104 L15 20 2669 1902.4 160.3 L16 20 1691.5 3389.6 181.3 L17 20 1095.5 942.1 70.3 L18 20 5437.5 3667 322 L19 20 2066.1 1741 131.9	
L14 20 1843.5 1065.7 104 L15 20 2669 1902.4 160.3 L16 20 1691.5 3389.6 181.3 L17 20 1095.5 942.1 70.3 L18 20 5437.5 3667 322 L19 20 2066.1 1741 131.9	
L15 20 2669 1902.4 160.3 L16 20 1691.5 3389.6 181.3 L17 20 1095.5 942.1 70.3 L18 20 5437.5 3667 322 L19 20 2066.1 1741 131.9	
L16 20 1691.5 3389.6 181.3 L17 20 1095.5 942.1 70.3 L18 20 5437.5 3667 322 L19 20 2066.1 1741 131.9	
L17 20 1095.5 942.1 70.3 L18 20 5437.5 3667 322 L19 20 2066.1 1741 131.9	
L18 20 5437.5 3667 322 L19 20 2066.1 1741 131.9	
L19 20 2066.1 1741 131.9	
L20 20 1041 4 788 8 65 8	
1041.4	
L21 20 719 848.2 56.9	
L22 20 1861.8 1498.1 115.7	
L23 20 4781.4 3185.8 281.7	
L24 20 1423.9 894.7 83.5	
L25 20 9804.7 5569.7 552.8	
L26 20 1450 1426 94.7	
L26IC 20 1022.3 33.4 52.7	
L27 20 462.8 359.7 10.2	
L27IC 20 1598 1200 91.3	
L28 20 2762 1242.7 149.1	
L29 20 2602 923.7 138.1	

1.4 Generation data

Similarly, to the load data, the generators have also been slightly adjusted to include the transformers by the addition of shunts so that the generation matches that in the initial data. This is shown below in Table 5.

Table 5: Generation data

(KV) (MW) (MVAr) (MVA) (MVA) G1 14.4 854 -49.2024 1184 182.3 G2 20 1264 266.9913 1800 39.1	18
G2 20 1264 266.9913 1800 39.1	
	6
G3 12.5 780 252.6735 1150 28.4	7
G4 22 2337 597.0957 3400 60.6	6
G5 18 882 -28.91589 1280 226.	4
G6 15 871 244.8738 1300 40.0	6
G7 18 2047 -111.0223 2900 413.3	37
G10 18 2817 233.7053 4000 449.	13
G11 18 4576 1189.248 6700 420.	73
G12 20 3353 375.6324 4800 601.5	28
G15 22 6271.8 1243.344 8960 878.9	93
G16 22 9838 3118.91 14140 831.	8
G17 22 1608 356.1637 2360 244.	12
G18 22 1759 -45.34896 2550 647.5	23
G19 22 2614 1201.088 3864 200.0	67

G20	18	1254	304.4137	1900	265.18
G21	20	535	325.9548	875	0
G22	13.8	323	130.0287	483	40.97
G23	22	6180	1254.386	9250	1270.8
G25	13.8	1708	941.0302	2750	411.8
G26	20	4430	434.8855	6550	1352.77
G27	18	1032.739	416.2108	1550	42.28
G28	20	1229	248.3196	1750	155.79
G29	18	1742	-639.8749	2400	720.3

1.5 Branch data

The line data of [2] was given in p.u. format and therefore needed to be recalculated for Ω . This was translated using the equations below with a base power of 100MVA.

$$Z_{base} = \frac{V_{base}^2}{S_{base}}$$

From the base impedance's, the following can be calculated.

$$R, X(\Omega) = (Z_{base}(R, X(p.u.)))$$

$$\frac{\omega C}{2}(S) = \frac{B(p.u.)}{2.Z_{base}}$$

The resulting data is presented below in Table 6.

Table 6: Branch data

Branch	From Bus	To Bus	Resistance	Reactance	Susceptance	Snom
			$R(\omega)$	$X(\omega)$	$wC/2 (\mu S)$	(MVA)
1-2b	1	2	9.226	15.125	56.595	525
1-2a	1	2	9.226	15.125	188.033	525
2-4a	2	4	0.303	49.156	294.479	760
2-4b	2	4	0.303	49.156	366.612	760
5-6a	5	6	1.36	16.816	119.544	1390
5-6b	5	6	2.416	25.808	185.3	1390
6-9b	6	9	1.248	13.632	23.031	2100
6-9a	6	9	1.248	13.632	144.844	2100
7-8b	7	8	0.64	0.16	227.5	2180
7-8a	7	8	0.64	0.16	402.25	2500
7-6b	7	6	4.8	320	91.8438	950
7-6a	7	6	4.8	320	91.8438	950
8-10a	8	10	1.328	28	207	3070
8-10b	8	10	1.328	28	207	3070
9-11a	9	11	2.624	26.08	152.125	1390
9-11b	9	11	2.624	26.08	152.125	1390
9-10b	9	10	5.632	39.248	59.3125	855
9-10a	9	10	7.872	54.88	78.1875	775
10-15b	10	15	0.848	13.36	1679.06	4840
10-15a	10	15	0.832	10.08	332.375	4020
11-15b	11	15	1.12	67.2	122.094	2520
11-15a	11	15	1.584	67.2	179.313	2520
11-13b	11	13	0.64	8.32	78.0625	2170
11-13a	11	13	0.64	8.32	83.25	2210

11 101	11	10	0.10	10.0	04.0075	9990
11-12b	11	12	0.16	13.6	24.9375	3320
11-12a	11	12	0.16	13.6	24.9375	3320
12-13a	12	13	1.536	17.248	120.313	3100
12-13b	12	13	1.552	14.4	119.844	2400
13-18b	13	18	0.784	11.2	60.7188	2400
13-18a	13	18	1.344	11.2	242.469	2400
13-15b	13	15	2.192	36.8	207.594	1240
13-15a	13	15	2.624	36.8	34.5	955
13-14a	13	14	1.712	18.608	367.031	1040
13-14b	13	14	1.312	19.216	378.906	1040
14-16b	14	16	0.8	25.6	87.3437	2580
14-16a	14	16	8	28.8	45.8125	625
15-16b	15	16	0.528	8.32	110.437	2770
15-16a	15	16	0.256	2.752	124.75	5540
15-14b	15	14	0.304	3.552	237.25	5000
15-14a	15	14	0.288	3.552	174.156	5000
16-19b	16	19	0.896	22.56	140.5	2780
16-19a	16	19	0.896	22.56	140.5	3820
17-16b	17	16	1.6	17.152	82.8438	2150
17-16a	17	16	1.6	17.152	142.906	1890
17-22b	17	22	1.088	15.52	142.688	2100
17-22a	17	22	1.104	15.52	142.938	2100
18-17b	18	17	0.672	2.88	73.4063	3100
18-17a	18	17	0.672	2.88	73.4063	3460
18-23b	18	23	2.208	15.36	150.906	1970
18-23a	18	23	1.872	15.36	128.813	1970
20-26b	20	26	0.56	3.68	70.2813	2780
20-26a	20	26	0.56	3.68	70.2813	2780
20-19b	20	19	2.848	34.08	208.813	1590
20-19a	20	19	2.112	22.88	114.25	1590
21-16b	21	16	2.32	29.184	286.531	2780
21-16a	21	16	2.32	29.184	286.531	2780
21-25b	21	25	0.4	16	49.5625	2780
21-25a	21	25	0.4	6	49.5625	2780
21-20b	21	20	1.92	7.68	138.938	2780
21-20a	21	20	1.92	7.68	218.75	2780
21-19b	21	19	0.592	9.44	91.875	3030
21-19a	21	19	0.592	9.44	92.3438	2780
22-16b	22	16	2.848	27.52	262.594	2010
22-16a	22	16	2.848	27.52	195.938	2010
22-25b	22	25	0.592	6.56	128.063	3275
22-25a	22	25	0.544	6.56	134.063	3275
22-21b	22	21	0.304	1.776	38.5	2780
22-21a	22	21	0.768	9.76	95.0313	2780
23-29a	23	29	2.416	29.12	165.625	2010
23-24b	23	24	1.376	1.28	300.688	2780
23-24a	23	24	0.368	1.12	888.969	4400
23-22b	23	22	0.88	4.8	108.375	2780
23-22a	23	22	0.624	4.8	77.0625	2770
23-29b	23	29	2.416	29.12	165.625	2010
24-28a	24	28	1.088	11.2	74.625	2210
24-25b	24	25	1.664	14.56	91.1875	1390
24-25a	24	25	1.664	14.56	91.1875	1390

24-28b	24	28	1.088	11.2	74.625	2210
25-26b	25	26	0.32	9.12	166.25	6960
25-26a	25	26	0.32	9.12	166.25	5540
27-26b	27	26	0.32	8.048	56.1563	3100
27-26a	27	26	0.32	8.048	56.1563	3100
28-27b	28	27	0.608	11.376	93.6875	3070
28-27a	28	27	0.608	11.376	93.6875	3070
29-28b	29	28	0.816	12.736	106.25	2780
29-28a	29	28	0.816	12.736	106.25	2780

1.6 SVC data

The SVC data has been imported directly from [2] and shown in Table 7.

Table 7: SVC data

Name	Controlled	Monitored	Voltage	Reactive Power	Snom	Max Q	Min Q
	Bus	Bus	Setpoint	Setpoint	(MVA)	Nominal	Nominal
SVC2	2	2	1	3.169282	225	225	-75
SVC9	9	9	0	-142.76	334.06	334.06	-142.76
SVC18	18	18	1	21.6757	1068.69	1068.69	-358.27
SVC21	21	21	1	11.2066	341.02	341.02	-141.28
SVC22	22	22	1	12.0999	391.15	391.15	-60
SVC23	23	23	1	5.70519	240	240	0
SVC25	25	25	1	29.7217	694.06	694.06	-337.12
SVC27	27	27	1	8.24184	319.28	319.28	-283.6
SVC28	28	28	1	6.72941	341.02	341.02	-203.18
SVC29	29	29	1	0.61233	862.04	862.04	-312.56

2 Dynamic models

For the power flow solution, one generator has been connected to each node to represent the combined power from different sources. For the dynamic studies, six types of dynamic models are used:

- Combined Cycle Gas Turbine power plant (CCGT)
- Coal power plant (THERM)
- Hydro power plant (HYDR)
- Nuclear power plant (NUCL)
- DFIG Wind Turbine (WT3)
- Fully converter-based generators (CONV), e.g., WT4 or PV

For this system to be a true representative of the GB network, the dynamic models have been derived with sensible parameters for each of the above mentioned energy sources. CCGT, COAL, NUCL and HYDR models are build using synchronous machines with varied parameters. In RAMSES, all synchronous machines use the well-known 6th order model and therefore the CCGT, THERM and NUCL models are based on standard large generators and the HYDR generators parameters have been altered based on some existing generic hydro models.

Η D IBRATIO XT/RL X'd X"d Name Xl XdΧq X'q X"q Ra T'do T"do T'qo T"qo \mathbf{m} CCGT XT 0.350 5.500 0.0001.850 0.1502.000 0.2501.800 0.5000.3000.0001.000 0.0005.1430.0422.1600.083THERM 5.500 0.000 1.850 XT0.1502.000 0.350 0.2501.800 0.000 1.000 0.0000.083 0.5000.3005.143 0.0422.1601.800 NUCL XT 2.000 0.350 0.250 5.500 0.000 1.850 0.150 0.5000.3000.0001.000 0.0005.143 0.0422.160 0.083HYDR 3.000 0.950 XT 0.150 0.250 0.200 0.700 0.0001.100 0.200 0.100 6.026 0.000 5.000 0.050 0.100

Table 8: Synchronous machine parameters

For the remaining wind and converter based energy sources, injector models have been used where the models and data have been based on generic standardised WECC type 3 and type 4 models, respectively which are used for stability studies [3].

X_{eq}	H_g	H_t	D_{tg}	K_{tg}	R	ratio	p	ρ	β_0
0.8	0.962	3.395	2.344	1.387	35.25	90	4	1.225	0
β_{min}	β_{max}	\dot{eta}_{min}	$\dot{\beta}_{max}$	T_p	K_{pc}	K_{ic}	K_{pp}	K_{ip}	T_{pc}
0	27	-10	10	0.3	0.5	5	150	25	0.05
K_{ptrq}	K_{itrq}	T_w	K_{Vi}	K_{Qp}	K_{Qi}	XI_{Qmin}	XI_{Qmax}	V_{min}	V_{max}
3	0.6	5	40	0.05	0.1	0.5	1.4	0.9	1.1
Q_{min}	Q_{max}	T_c	T_v	T_r	K_{pv}	K_{iv}	K_{pll}	$\dot{ heta}_{min}$	$\dot{ heta}_{max}$
-0.436	0.296	0.15	0.05	0.05	18	5	30	-0.1	0.1
T_{con}	R_{comp}	X_{comp}	ω_{min}	ω_{max}	P_{min}	P_{max}	\dot{P}_{min}	\dot{P}_{max}	mode
0.02	0	0	0.7	1.2	0.1	1.12	-0.45	0.45	2

Table 9: Wind turbine parameters (WT3)

Table 10: Converter parameters (based on WECC WT4 model)

H_t	R	ratio	poles	ρ	β_0	β_{min}	β_{max}	\dot{eta}_{min}	\dot{eta}_{max}
4.18	35.25	90	4	1.225	0	0	27	-10	10
T_p	K_{pc}	K_{ic}	K_{pp}	K_{ip}	T_{pc}	K_{ptrq}	K_{itrq}	T_w	K_{Vi}
0.3	3	30	150	25	0.05	0.3	0.1	5	40
K_{Qp}	K_{Qi}	V_{min}	V_{max}	I_{qhl}	I_{phl}	I_{maxtd}	pqflag	Q_{min}	Q_{max}
0.05	0.1	0.9	1.1	1.25	1.11	1.0	0	-0.436	0.296
T_c	T_v	T_r	K_{pv}	K_{iv}	K_{dbr}	E_{bst}	K_{pll}	$\dot{ heta}_{min}$	$\dot{ heta}_{max}$
0.15	0.05	0.05	18	5	10	0.2	30	-0.1	0.1
T_{con}	R_{comp}	X_{comp}	ω_{min}	ω_{max}	P_{min}	P_{max}	P_{min}^{\cdot}	P_{max}	mode
0.02	0	0	0.7	1.2	0.1	1.12	-0.45	0.45	1

Further to this, all standard control such as excitation systems and governors at each node have been modelled where the IEEE ST1A excitation system has been used as this is a common standard IEEE model [4].

Table 11: ST1A Exciter Parameters

					ST1A						
K_v	R_c	X_c	T_R	UEL	VI_{MIN}	VI_{MAX}	V_{UEL}	T_C	T_B	T_{C1}	T_{B1}
1.00	0.00	0.00	0.00	1.00	0.00	3.00	0.00	0.00	0.00	0.00	0.00
K_A	T_A	VA_{MIN}	VA_{MAX}	VR_{MIN}	VR_{MAX}	K_C	K_F	T_F	K_{LR}	I_{LR}	
25.00	0.59	-9999.	9999.	0.00	3.00	0.00	0.00	1.00	0.00	0.00	

Varied governors have been implemented with adjusted parameters according to these sources. For the CCGT and coal synchronous machine models, the TGOV1 model has been used and is shown in Figure 2 [5], generic governor models are used for HYDR and the governor is set to constant speed for NUCL.

Figure 2: TGOV1 Block Diagram [5]

Table 12: TGOV1 Governor Parameters

	TGOV1												
R torT1 VMIN VMAX torT2 torT3													
0.34	0.34 0.5 0 1 6 14												

Table 13: Generic HYDR Governor Parameters

	HYDR Generic												
SIGMA	SIGMA TP QV KP KI TSM LIMZDOT TW												
0.04													

To represent a future-low inertia scenario, a mixture of energy sources have been added to each node using future predictions for the integration of renewables to the GB system as discussed in [6, 7]. This has been done by using the expected penetration percentages of different energy sources in 2020 in relation to the total power capacity at each node.

Table 14: 2020 Predicted Energy at Each System Node

Source					No	ode				
Source	1	2	3	4	5	6	7	8	9	10
CCGT	0.00%	82.23%	0.00%	0.00%	0.00%	0.00%	0.00%	*	*	4.62%
COAL	0.00%	0.00%	0.00%	76.11%	0.00%	0.00%	0.00%	*	*	9.91%
HYDR	15.20%	1.25%	50.05%	13.62%	0.00%	0.00%	0.00%	*	*	0.00%
NUCL	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	40.73%	*	*	28.07%
WIND	49.48%	16.52%	49.95%	2.17%	0.00%	89.36%	29.82%	*	*	0.00%
CONV	35.32%	0.00%	0.00%	8.11%	0.00%	10.64%	29.45%	*	*	57.41%
	11	12	13	14	15	16	17	18	19	20
CCGT	19.89%	43.59%	*	*	0.00%	61.67%	0.00%	39.42%	64.79%	0.00%
COAL	25.99%	0.00%	*	*	99.53%	31.61%	100%	60.58%	0.00%	0.00%
HYDR	0.00%	45.40%	*	*	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
NUCL	26.19%	9.33%	*	*	0.00%	0.00%	0.00%	0.00%	0.00%	100%
WIND	0.00%	1.68%	*	*	0.47%	0.00%	0.00%	0.00%	0.00%	0.00%
CONV	27.93%	0.00%	*	*	0.00%	6.72%	0.00%	0.00%	35.21%	0.00%
	21	22	23	24	25	26	27	28	29	-
CCGT	100%	100%	70.89%	*	100 %	71.22%	0.00%	88.38%	32.18%	-
COAL	0.00%	0.00%	19.90%	*	0.00%	28.78%	0.00%	11.62%	0.00%	-
HYDR	0.00%	0.00%	0.00%	*	0.00%	0.00%	0.00%	0.00%	0.00%	-
NUCL	0.00%	0.00%	0.00%	*	0.00%	0.00%	0.00%	0.00%	26.54%	-
WIND	0.00%	0.00%	9.22%	*	0.00%	0.00%	0.00%	0.00%	0.00%	-
CONV	0.00%	0.00%	0.00%	*	0.00%	0.00%	100.00%	0.00%	41.28%	-

To build a complete system, the existing HVDC projects in Great Britain are to be included with realistic power transfers. These are listed in the following paragraph and the transfer destinations have been modeled using Thevenin infinite buses. There are currently four HVDC links in operation in Great Britain as mentioned in [8] in which three are using LCC converter technology and one using VSC. The LCC projects include the HVDC Moyle, BritNed and HVDC Cross-Channel Currently and there is one VSC-HVDC link in operation named East West Interconnector however there are more projects being planned.

- HVDC Moyle is a 500MW link between Auchencrosh (Scotland) and Ballycronan more (Northern Ireland) consisting of two 250kV monopolar DC lines with 250MW capacity. These cables are both 63.5km in length with 55km submarine.
- BritNed is a 1000MW link between Grain (England) and Maasulakte (Netherlands) consisting of a 450kV bipole circuit with bundled DC cables. These cables span over 260km with 250 km submarine.
- The last LCC project, HVDC Cross-Channel, is a 2000MW link between Sellindge (England) and Mandarins (France) which is built from two 270kV bipole circuits each with 1000MW capacity. This is over a distance of 73km in which 46km are submarine.
- The East West Interconnector is a 100MW link between Shotton (North Wales) to Rush North

Beach (Ireland) and consists of one circuit beneath the Irish sea and spans across 261km with a DC voltage of 200kV. The updated model is shown in Figure 1.

3 System Modifications

The following points should be considered in relation to the changes from Strathclyde for the current GB model:

Note that the modified model built is based on 2015/2016 operating points and not a future energy scenario.

3.0.1 Steady-State

- Scotland changes summary:
 - Original Data: Beauly, Peterhead, Errochty, Denny, Neilston, Strathaven, Torness, Eccles
 - Updated Data: Beauly, Blackhillock, Peterhead, Kintore, Tealing, Errochty, Rothienorman, Elvanfoot, Windyhill, Denny, Longannet, Inverkip, Hunterston, Neilston, Strathaven, Torness, Eccles
 - Therefore there is an additional 8 nodes in the Scottish region of the network therefore include in model.

• Load Flow issues:

 Constant SVC's to get correct MVAr values in Artere - might sort out power flow difference between models.

• HVDC:

- Additional HVDC included.

3.0.2 Dynamic

• Synchronous machine model parameters. Check these with current models.

Table 15: Updated Model Synchronous Machine Parameters

Gen	T'do	T"do	T'qo	T"qo	Н	D	Xd
Type	(s)	(s)	(s)	(s)			(pu)
CCGT	6.5	0.035	1.25	0.035	5.5	0	1.65
CHP	6.5	0.035	1.25	0.035	7	0	1.65
Coal	6.5	0.035	1.25	0.035	5	0	1.65
Nuclear	6.5	0.035	1.25	0.035	4	0	1.65
Hydro	7.7	0.1	*	0.2	3	0	0.8535
Pumped Storage	7.7	0.1	*	0.2	3.5	0	0.8535
Unspecified	6.5	0.035	1.25	0.035	7	0	1.65
	Xq	X'd	X'q	X"d=X"q	Xl	S(1.0)	S(1.2)
	(pu)	(pu)	(pu)	(pu)	(pu)	(pu)	(pu)
CCGT	1.65	0.275	0.65	0.185	0.15	0.193333	0.6674333
CHP	1.65	0.275	0.65	0.185	0.15	0.193333	0.6674333
Coal	1.65	0.275	0.65	0.185	0.15	0.193333	0.6674333
Nuclear	1.65	0.275	0.65	0.185	0.15	0.193333	0.6674333
Hydro	0.55	0.25	*	0.15	0.1	0.1	0.3
Pumped Storage	0.55	0.25	*	0.15	0.1	0.1	0.3
Unspecified	1.65	0.275	0.65	0.185	0.15	0.193333	0.6674333

• AVR:

- ST1A with IEEEST PSS to compare with current ST1A model being used (26 nodes use this AVR) herefore compare models/parameters
- ESAC1A (11 nodes use this AVR) therefore investigate ESAC1A excitation.
- Note that both of these model parameters are from IEEE standards.

Table 16: Updated Model ST1A Parameters

	ST1A												
UEL	VOS	TR	VIMAX	VIMIN	TC	ТВ	TC1	TB1	KA				
		(s)	(pu)	(pu)	(s)	(s)	(s)	(s)					
1	1	0.02	999	-999	1	1	0	0	210				
TA	VAMAX	VAMIN	VRMAX	VRMIN	KC	KF	TF	KLR	ILR				
(s)	(pu)	(pu)	(pu)	(pu)			(s)						
0	999	-999	6.43	-6	0.038	0	0.01	4.54	4.4				

Figure 3: AC1A

Table 17: Updated Model AC1A Parameters

					AC1A				
TR	ТВ	TC	KA	TA	VAMAX	VAMIN	TE	KF	TF
(s)	(s)	(s)		(s)	(pu)	(pu)	(s)		(s)
0	0	0	400	0.02	14.5	-14.5	0.8	0.03	1
KC	KD	KE	E1	SE(E1)	E2	SE(E2)	VRMAX	VRMIN	-
								(pu)	(pu)
0.2	0.38	1	3.14	0.03	4.18	0.1	6.03	-5.43	-

• Governor:

- TGOV1 is already in model so compare models/parameters.
- Models for GAST and HYGOV (or similar) to compare to IEEE models and include in

Table 18: Updated Model TGOV1 $\,$

TGOV1												
Gen Type	R	T1	VMAX	VMIN	T2	T3	Dt					
		(s)			(s)	(s)						
Coal	0.04	0.5	0.85	0.4	1.5	5	0					

Figure 4: GAST

Table 19: Updated Model GAST Parameters

	GAST													
Gen Type	R	T1	T2	Т3	AT	KT	VMAX	VMIN	Dturb					
CCGT	0.04	0.4	0.1	3	1	2	0.85	-0.05	0					

Figure 5: HYGOV

Table 20: Updated Model HYGOV Parameters

	HYGOV												
Gen Type	R	r	Tr	Tf	Tg	VELM	GMAX	GMIN	TW	At	Dturb	qNL	
Hydro	0.04	0.2	4	0.05	0.5	0.167	1	0	1.5	1.2	0	0.08	

• SVC/Shunt:

- SVC PSSE dynamic models Should be fine using RAMSES.
- Switch shunts used on 18 nodes capacitor switching models?

• HVDC Links

- HVDC Moyle, Britned and Anglo-French Interconnectors have been modelled as lines connected to -ve loads.
- HVDC Models are generic.
- VSC East-West interconnector model used.
- New models includes the LCC West Coast connector and the VSC East Coast HVDC

4 Communication system (BT 21CN)

4.0.1 GB communication map

Figure 6: GB Communication Map

4.0.2 Table of communication delays between representative cities

Table 21, 22 is calculated from MATLAB script: Delay_BT_UK.m $^{1}.\,$

Table 21: GB Cities Communication Delay in ms (1)

	1. M	2. LS	3. MK	4. E	5. SE	6. EC	7. NW	8. B	9. G	10. ML
1. Manchester	0	60	61	62	62	62	62	61	62	62
2. Leeds	60	0	61	61	61	61	61	61	62	62
3. Milton Keynes	61	61	0	61	61	61	60	61	123	123

¹The script can be downloaded at: https://zenodo.org/record/3408186#.XXO_ki2B0lJ

4. Docklands	62	61	61	0	60	60	60	61	123	123
5. South Bank	62	61	61	60	0	60	60	61	123	123
6. City of London	62	61	61	60	60	0	60	61	123	123
7. London N.W.	62	61	60	60	60	60	0	61	123	123
8. Birmingham	61	61	61	61	61	61	61	0	122	122
9. Glasgow	62	62	123	123	123	123	123	122	0	60
10. Clyde Valley	62	62	123	123	123	123	123	122	60	0
11. Newcastle	61	61	62	123	123	123	123	122	123	123
12. Preston	60	61	61	122	122	122	122	61	122	122
13. Sheffield	60	60	122	122	122	122	122	61	122	122
14. Derby	61	121	61	122	122	122	122	60	122	122
15. Peterborough	122	122	60	121	61	121	61	121	183	183
16. Guildford	122	122	121	60	60	121	121	121	184	184
17. Slough	122	122	121	60	60	60	60	121	183	183
18. Bristol	122	122	121	121	61	61	121	61	184	184
19. Cardiff	123	123	122	121	121	61	61	61	184	184
20. Wolverhampton	61	121	61	122	122	122	61	60	122	122

Table 22: GB Cities Communication Delay in ms (2)

	11. NE	12. PR	13. S	14. D	15. P	16. GU	17. SL	18. B	19. C	20. W
1. Manchester	61	60	60	61	122	122	122	122	122	61
2. Leeds	61	61	60	121	122	122	122	122	123	121
3. Milton Keynes	62	61	122	61	60	121	121	121	122	61
4. Docklands	123	122	122	122	121	60	60	122	121	122
5. South Bank	123	122	122	122	61	60	60	61	121	122
6. City of London	123	122	122	122	121	121	60	61	61	122
7. London N.W.	123	122	122	122	61	121	60	121	61	61
8. Birmingham	122	61	61	60	122	121	121	61	61	60
9. Glasgow	123	122	122	122	184	184	183	183	183	122
10. Clyde Valley	123	122	122	122	184	184	183	183	183	122
11. Newcastle	0	121	121	122	122	183	183	183	183	122
12. Preston	121	0	121	121	122	182	182	122	122	121
13. Sheffield	121	121	0	121	183	182	182	121	122	121
14. Derby	122	121	121	0	121	182	182	121	121	121
15. Peterborough	122	122	182	121	0	121	121	122	122	121
16. Guildford	183	182	182	182	121	0	60	121	182	182
17. Slough	183	182	182	183	121	60	0	121	121	121
18. Bristol	183	122	121	121	122	121	121	0	60	121
19. Cardiff	183	122	122	121	122	182	121	60	0	122
20. Wolverhampton	122	121	121	121	121	182	121	121	121	0

References

- [1] M. Belivanis and K.R.W.Bell, "Representative GB Network Model." Internal Report in the Dep. Electronic and Electrical Engineering, University of Strathclyde, Glasgow, 2011.
- [2] L. Shen, "Model Integration and Control Interaction Analysis of AC/VSC HVDC System," [Thesis]. Manchester, UK: The University of Manchester; 2015., 2015.
- [3] P. Pourbeik, A. Ellis, Y. Kazachkov, E. Muljadi, J. Senthil, and D. Davies, "Generic Stability Models for Type 3 & 4 Wind Turbine Generators for WECC," 2013.

- [4] PES, "IEEE Recommended Practice for Excitation System Models for Power System Stability Studies," IEEE Std 421.5-2005 (Revision of IEEE Std 421.5-1992), vol. 2005, no. April, pp. 1–85, 2006.
- [5] IEEE PSDP, "Dynamic Models for Turbine-Governors in Power System Studies," p. 117, 2013.
- [6] L. P. Kunjumuhammed, B. C. Pal, and N. F. Thornhill, "A test system model for stability studies of UK power grid," in 2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013, pp. 1–6, 2013.
- [7] "UK Future Energy Scenarios," National Grid, September 2012.
- [8] "Summer outlook report 2018," National Grid, April 2018.