# Computer Vision

Fall 2019 16385

Instructor: S. Narasimhan

## Physics Based Vision

Thanks to Shree Nayar, Ravi Ramamoorthi, Henrik Jensen, Todd Zickler, Pat Hanrahan

## What is Appearance?

Or...

How did the pixel get its value?

## Computer Vision: Building Machines that See



We need to understand the relation between the lighting, materials, geometry, medium and the image of the scene.





























Haze De-hazed





















## Vision Methods Relying on Surface Appearance



**Shape from Shading** 



**Texture Modeling** 



**Photometric Stereo** 



**Reflection Separation** 

## Image Intensities



Image intensities = f(normal, surface reflectance, illumination)

Note: Image intensity understanding is an <u>under-constrained</u> problem!

### Radiometric concepts – important!





(1) Solid Angle: 
$$d\omega = \frac{dA'}{R^2} = \frac{dA \cos \theta_i}{R^2}$$
 (steradian)

What is the solid angle subtended by a hemisphere?

(2) Radiant Intensity of Source: 
$$J = \frac{d\Phi}{d\omega}$$
 (watts/steradian)

Light Flux (power) emitted per unit solid angle

(3) Surface Irradiance: 
$$E = \frac{d\Phi}{dA}$$
 (watts/m)

Light Flux (power) incident per unit surface area.

Does not depend on where the light is coming from!

#### (4) Surface Radiance (tricky):

$$L = \frac{d^2 \Phi}{(dA \cos \theta_r) d\omega} \quad \text{(watts/m}^2 \text{ steradian)}$$

- Flux emitted per unit foreshortened area per unit solid angle.
- *L* depends on direction  $\theta_r$
- Surface can radiate into whole hemisphere.
- *L* depends on reflectance properties of surface.

## The Fundamental Assumption in Vision



## Radiance properties

- Radiance is constant as it propagates along ray
  - Derived from conservation of flux
  - Fundamental in Light Transport.



$$d\Phi_1 = L_1 d\omega_1 dA_1 = L_2 d\omega_2 dA_2 = d\Phi_2$$

$$d\omega_1 = dA_2/r^2 \qquad d\omega_2 = dA_1/r^2$$

$$L_1(\omega)$$

$$d\omega_1$$

$$d\omega_1$$

$$d\omega_2$$

$$L_2(\omega)$$

$$d\omega_1 dA_1 = \frac{dA_1 dA_2}{r^2} = d\omega_2 dA_2$$

$$\therefore L_1 = L_2$$

## Relationship between Scene and Image Brightness

• Before light hits the image plane:



Linear Mapping!

• After light hits the image plane:



Non-linear Mapping!

Can we go from measured pixel value, I, to scene radiance, L?

### Relation between Pixel Values I and Image Irradiance E



• The camera response function relates image irradiance at the image plane to the measured pixel intensity values.

$$g: E \to I$$



#### Radiometric Calibration

•Important preprocessing step for many vision and graphics algorithms such as photometric stereo, invariants, de-weathering, inverse rendering, image based rendering, etc.

$$g^{-1}: I \to E$$

•Use a color chart with precisely known reflectances.





- Use more camera exposures to fill up the curve.
- Method assumes constant lighting on all patches and works best when source is far away (example sunlight).
- ullet Unique inverse exists because  ${\cal S}$  is monotonic and smooth for all cameras.

## Surface Appearance



Image intensities = f(normal, surface reflectance, illumination)

Surface Reflection depends on both the viewing and illumination direction.

### BRDF: Bidirectional Reflectance Distribution Function



 $E^{surface}(\theta_i, \phi_i)$  Irradiance at Surface in direction  $(\theta_i, \phi_i)$ 

 $L^{surface}(\theta_r, \phi_r)$  Radiance of Surface in direction  $(\theta_r, \phi_r)$ 

BRDF: 
$$f(\theta_i, \phi_i; \theta_r, \phi_r) = \frac{L^{surface}(\theta_r, \phi_r)}{E^{surface}(\theta_i, \phi_i)}$$

## Important Properties of BRDFs



Rotational Symmetry (Isotropy):

BRDF does not change when surface is rotated about the normal.

BRDF is only a function of 3 variables:  $f(\theta_i, \theta_r, \phi_i - \phi_r)$ 

• Helmholtz Reciprocity: (follows from 2<sup>nd</sup> Law of Thermodynamics)

BRDF does not change when source and viewing directions are swapped.

$$f(\theta_i, \phi_i; \theta_r, \phi_r) = f(\theta_r, \phi_r; \theta_i, \phi_i)$$

## Isotropic BRDF and Anisotropic BRDF



## Anisotropic BRDF – more examples





#### Mechanisms of Reflection



### **Body Reflection:**

Diffuse Reflection Matte Appearance Non-Homogeneous Medium Clay, paper, etc

#### Surface Reflection:

Specular Reflection Glossy Appearance Highlights Dominant for Metals

Image Intensity = Body Reflection + Surface Reflection

#### Mechanisms of Surface Reflection

#### Body Reflection:

Diffuse Reflection Matte Appearance Non-Homogeneous Medium Clay, paper, etc



Many materials exhibit both Reflections:

#### Surface Reflection:

Specular Reflection Glossy Appearance Highlights Dominant for Metals









#### Diffuse Reflection and Lambertian BRDF



- ullet Surface appears equally bright from ALL directions! (independent of  ${oldsymbol {\cal V}}$  )
- Lambertian BRDF is simply a constant :  $f(\theta_i, \phi_i; \theta_r, \phi_r) = \frac{\rho_d}{\pi}$  albedo
- Surface Radiance :  $L = \frac{\rho_d}{\pi} I \cos \theta_i = \frac{\rho_d}{\pi} I \dot{n} \dot{s}$  source intensity
- Commonly used in Vision and Graphics!

## Image Intensity and 3D Geometry





Shading as a cue for shape reconstruction

## Photometric Stereo











Lambertian case:

$$I = \frac{r}{\rho} kc \cos q_i = r \mathbf{n} \times \mathbf{s} \quad \mathring{\mathbf{c}} \frac{kc}{\rho} = 1 \mathring{\mathbf{c}}$$

Image irradiance:

$$I_1 = /\mathbf{n} \times \mathbf{s}_1$$

$$I_2 = /\mathbf{n} \times \mathbf{s}_2$$

$$I_3 = /\mathbf{n} \times \mathbf{s}_3$$

We can write this in matrix form:

$$\begin{array}{ll} & & & & & & & \\ & \hat{\mathbf{e}} I_1 \mathring{\mathbf{u}} & & & & & \\ & \hat{\mathbf{e}} I_2 \mathring{\mathbf{u}} & & & & \\ & \hat{\mathbf{e}} I_2 \mathring{\mathbf{u}} & & & & \\ & \hat{\mathbf{e}} I_2 \mathring{\mathbf{u}} & & & & \\ & \hat{\mathbf{e}} I_3 \mathring{\mathbf{u}} & & & \\ & & & & & \\ & & & & & \\ \end{array}$$

## Solving the Equations

$$\begin{array}{cccc}
\stackrel{\circ}{\mathbf{E}} I_1 & \stackrel{\circ}{\mathbf{U}} & \stackrel{\circ}{\mathbf{E}} \mathbf{S}_2^T & \stackrel{\circ}{\mathbf{U}} \\
\stackrel{\circ}{\mathbf{E}} I_2 & \stackrel{\circ}{\mathbf{U}} & \stackrel{\circ}{\mathbf{E}} \mathbf{S}_2^T & \stackrel{\circ}{\mathbf{U}} \\
\stackrel{\circ}{\mathbf{E}} I_2 & \stackrel{\circ}{\mathbf{U}} & \stackrel{\circ}{\mathbf{E}} \mathbf{S}_3^T & \stackrel{\circ}{\mathbf{U}} \\
\stackrel{\circ}{\mathbf{S}}_3 & \stackrel{\circ}{\mathbf{N}}_1 \\
\stackrel{\circ}{\mathbf{N}} & = \mathbf{S}^{-1} \mathbf{I} & \text{inverse} \\
I & & & & & & & & & & \\
I & & & & & & & & & & \\
I & & & & & & & & & & \\
I & & & & & & & & & & \\
I & & & & & & & & & & \\
I & & & & & & & & & & \\
I & & & & & & & & & & \\
I & & & & & & & & & & \\
I & & & & & & & & & & \\
I & & & & & & & & & & \\
I & & & & & & & & & & \\
I & & & & & & & & & & \\
I & & & & & & & & & \\
I & & & & & & & & & \\
I & & & & & & & & & \\
I & & & & & & & & \\
I & & & & & & & & \\
I & & & & & & & & \\
I & & & & & & & & \\
I & & & & & & & & \\
I & & & & & & & & \\
I & & & & & & & & \\
I & & & & & & & & \\
I & & & & & & & & \\
I & & & & & & & & \\
I & & & & & & & & \\
I & & & & & & & \\
I & & & & & & & \\
I & & & & & & & \\
I & & & & & & & \\
I & & & & & & & \\
I & & & & & & & \\
I & & & & & & & \\
I & & & & & & & \\
I & & & & & & & \\
I & & & & & & & \\
I & & & & & & & \\
I & & & & & & & \\
I & & & & & & & \\
I & & & & & & & \\
I & & & & & & & \\
I & & & & & & & \\
I & & & & & & \\
I & & & & & & & \\
I & & & & & & & \\
I & & & & & \\
I & & & & & & \\
I$$

## More than Three Light Sources

Get better results by using more lights

$$\begin{array}{ccc}
\dot{\mathbf{e}} & I_1 & \dot{\mathbf{u}} & \dot{\mathbf{e}} \mathbf{s}^T & \dot{\mathbf{u}} \\
\dot{\hat{\mathbf{e}}} & \vdots & \dot{\mathbf{u}} & = \dot{\hat{\mathbf{e}}} & \vdots & \dot{\mathbf{u}} \\
\dot{\hat{\mathbf{e}}} & \vdots & \dot{\mathbf{u}} & & \dot{\hat{\mathbf{e}}} \mathbf{s}^T & \dot{\mathbf{u}} \\
\dot{\hat{\mathbf{e}}} & I_N & \dot{\mathbf{u}} & & \dot{\hat{\mathbf{e}}} \mathbf{s}^T & \dot{\mathbf{u}} \\
\dot{\hat{\mathbf{e}}} & \mathbf{s}^T & \dot{\mathbf{u}} & & \dot{\mathbf{u}}
\end{array}$$

Least squares solution:

$$\mathbf{I} = \mathbf{S}\tilde{\mathbf{n}} \qquad N = (N \leq 3)(3 \leq 1)$$

$$\mathbf{S}^{T}\mathbf{I} = \mathbf{S}^{T}\mathbf{S}\tilde{\mathbf{n}}$$

$$\tilde{\mathbf{n}} = (\mathbf{S}^{T}\mathbf{S})^{-1}\mathbf{S}^{T}\mathbf{I}$$

Solve for \( \sum, \n \) as before

Moore-Penrose pseudo inverse

## Lambertian Mask



## Results - Albedo and Surface Normal





# Results – Shape of Mask





## Results: Lambertian Toy













### Results











- 1. Estimate light source directions
- 2. Compute surface normals
- 3. Compute albedo values
- 4. Estimate depth from surface normals
- 5. Relight the object (with original texture and uniform albedo)

#### White-out Conditions from an Overcast Sky





CAN'T perceive the shape of the snow covered terrain!



CAN perceive shape in regions lit by the street lamp!!

WHY?

#### Rendered Sphere with Lambertian BRDF



- Edges are dark (N.S = 0) when lit head-on
- See shading effects clearly.

#### Why does the Full Moon have a flat appearance?





- The moon appears matte (or diffuse)
- But still, edges of the moon look bright (not close to zero) when illuminated by earth's radiance.





### Why does the Full Moon have a flat appearance?



Lambertian Spheres and Moon Photos illuminated similarly

#### Surface Roughness Causes Flat Appearance



#### Surface Roughness Causes Flat Appearance – More Examples



#### Surface Roughness Causes Flat Appearance



Increasing surface roughness

Lambertian model

Valid for only SMOOTH MATTE surfaces.

Bad for ROUGH MATTE surfaces.

#### Specular Reflection and Mirror BRDF



- Very smooth surface.
- ullet All incident light energy reflected in a SINGLE direction. (only when  $\, {\it V} \, = \, {\it \Gamma} \,$  )
- Mirror BRDF is simply a double-delta function :

specular albedo 
$$f(\theta_i, \phi_i; \theta_v, \phi_v) = \rho_s \delta(\theta_i - \theta_v) \delta(\phi_i + \pi - \phi_v)$$

• Surface Radiance:  $L = I \rho_s \delta(\theta_i - \theta_v) \delta(\phi_i + \pi - \phi_v)$ 

#### Specular Reflections in Nature









It's surprising how long the reflections are when viewed sitting on the river bank.

Compare sizes of objects and their reflections!

The reflections when seen from a lower view point are always longer than when viewed from a higher view point.



#### Specular Reflections in Nature





The reflections of bright objects have better perceived contrast.

Intensity of reflected light is a fraction of the direct light – [Fresnel term (derivation in a later class)]

#### Glossy Surfaces

- Delta Function too harsh a BRDF model (valid only for highly polished mirrors and metals).
- Many glossy surfaces show broader highlights in addition to mirror reflection.





- Surfaces are not perfectly smooth they show micro-surface geometry (roughness).
- Example Models : Phong model

Torrance Sparrow model

### Blurred Highlights and Surface Roughness



Roughness

## **Conventional 3D Reconstruction: Restrictive Assumptions**





#### The Digital Emily Project: Achieving a Photoreal Digital Actor

SIGGRAPH 2008 Expo / SIGGRAPH 2009 Computer Animation Festival / SIGGRAPH 2009 Courses / CVMP 2009 / IEEE CG&A 2010

Oleg Alexander\* Mike Rogers\* William Lambeth\* Jen-Yuan Chiang Wan-Chun Ma Chuan-Chang Wang Paul Debevec

USC Institute for Creative Technologies Image Metrics\*

Like Share 223

a collaboration between Image Metrics and the USC Institute for Creative Technologies Graphics Lab



#### Papers and Video:

IEEE CG&A July/August 2010 Article: DigitalEmily-IEEECGA-2010.pdf, 9 MB. (Adobe Acrobat)

CVMP 2009 Paper: DigitalEmily\_CVMP2009.pdf, 10.6 MB. (Adobe Acrobat)

SIGGRAPH 2009 CAF Video: EmilyCAF09\_1280x720\_H264.mov, 132 MB. (QuickTime)

TEDxUSC Talk, March 2009 (also on TED.com):

### Papers to Read

Shape and Materials by Example: A Photometric Stereo Approach

http://grail.cs.washington.edu/projects/sam/

Helmholtz Stereopsis

http://www.eecs.harvard.edu/~zickler/helmholtz.html

Specularity Removal and Dichromatic Editing

http://www.eecs.harvard.edu/~zickler/dichromaticediting.html

Color Subspaces as Photometric Invariants

http://www.eecs.harvard.edu/~zickler/projects/colorsubspaces.html