

PHYSICAL
FITNESS
FACTORS THAT
IMPACT
BIOMARKERS
OF LONGEVITY

SUPERVISED LEARNING CAPSTONE

OVERALL FINDINGS

- Age is the most important predictor of telomere length
- Fitness level does not predict longevity, but sedentary behavior might!

MEASURING LONGEVITY THROUGH DNA

- Protective DNA at the ends of chromosomes
- Short telomere length in particular cells has been shown to predict shortened longevity
- Telomere length as a biomarker for aging

Musumeci et al., Histology and histopathology (2014)

CAN WE INFLUENCE LONGEVITY?

- Physical activity is associated with delayed aging
 - Longer telomeres in immune cells of people who engage in regular, moderate exercise
 - Exercise increases activity of telomerase in mouse heart

PREDICTING BEST METHODS TO INCREASE TELOMERE LENGTH

 Predict length of telomeres by measuring health factors, including physical activity measures, exercise tests indicative of health

CDC NATIONAL HEALTH AND NUTRITION EXAMINATION SURVEY **DATASET**

Data, Documentation, Codebooks, SAS Code

Demographics Data

M Dietary Data

Examination Data

Laboratory Data

Ouestionnaire Data

Limited Access Data

- Two-year period of 1999 and 2000
- Ten tables of most interest to the hypothesis
- 3570 records

DATA CLEANUP AND PREPARATION FOR MODELING

- Demographics, Balance, Cardiovascular Fitness, Muscle Strength,
 Physical Activity, Physical Functioning
- Feature selection versus full dataset
- Null values systematically dropped, resulting in 1837 records and 154 features
- Telomere length target variable outliers capped

TELOMEAN

count	1837.000000				
mean	1.087386				
std	0.329323				
min	0.000000				
25%	0.897950				
50%	1.052693				
75 %	1.235469				
max	9.420415				

MODELING THE EFFECTS OF THE FEATURES ON TELOMERE LENGTH

Model	Training R-squared Score	MAE	MSE	RMSE	MAPE
OLS Regression	0.200420	0.195099	0.060282	0.245524	19.135288
Ridge Regression	0.167293	0.187128	0.054569	0.233599	18.363417
Lasso Regression	0.000000	0.197083	0.057665	0.240135	19.554895
ElasticNet Regression	0.000000	0.197083	0.057665	0.240135	19.554895
K Nearest Neighbors	1.000000	0.195011	0.057481	0.239752	19.215721
Decision Tree	1.000000	0.279368	0.125149	0.353764	26.888574
Random Forest	0.865980	0.186159	0.053077	0.230383	18.318748
Support Vector	0.078897	0.193155	0.057887	0.240597	18.608731
Gradient Boosting	0.393732	0.189445	0.055405	0.235383	18.588954

FEATURES MOST IMPORTANT TO RANDOM FOREST PREDICTIONS

Warm up heart rate

How long were moderate activities conducted during each bout

FUTURE WORK

- Diet, other health behaviors, chronic illness
- Rerun models with strength features only
- Effects of overtraining and extreme exercise
- Population effects

QUESTIONS

Thank you for your attention!

