THE STRUCTURE OF ALGEBRAS

An algebra is characterized by specifying the following three components:

- 1. a set, called the carrier of the algebra
- 2. operations defined on the carrier, and
- 3. distinguished elements of the carrier, called the constants of the algebra.

Let A = <S, o, △, k > and A' = <S', o', △', k' > be algebras. Then A' is a sub algebra of A if

(i) S'⊂ S;

(ii) a o' b = a o b for all a, b ∈ S';

(iii) △'a = △a for all a ∈S';

(iv) k' = k.

If A' is a subalgebra of A, then A' has the same signature as A and obeys the same axioms.

SOME VARIETIES OF ALGEBRAS:

SEMIGROUPS:

A semigroup is an algebra with signature <S, o>, where o is a binary associative operation.

The preceding definition establishes that the variety of semigroups consists of all algebras with a single binary operation which satisfies the axiom of associativity

Double-o

MONOIDS:

A monoid is an algebra with signature <S, o, 1>, where o is a binary associative operation on S and 1 is a two – sided identity for the operation o, i.e., the following axioms hold for all elements a, b, c ∈S:

If <S, o, 1> is a monoid ant T ⊂S, 1 ∈T, and T o T ⊂T, then <T, o, 1> is a subalgebra of <S, o, 1>; a subalgebra of a monoid is called a submonoid.

GROUPS:

A group is an algebra with signature $< S, o, \neg, 1>$ such that o is an associative binary operation S, the constant 1 is a two – sided identity for the operation o, and \neg is a unary operation defined over the carrier such that for all $x \in S, \overline{x}$ is an inverse for x with respect to o.

If $A = \langle S, o, \uparrow, 1 \rangle$ is a group and $A' = \langle T, o, \uparrow, 1 \rangle$ is a subalgebra of A, then A' is called a subgroup of A. A subalgebra of a group is a group.

BOOLEAN ALGEBRA:

A Boolean algebra is an algebra with signature

(where + and . are binary operations and - is a unary operation called complementation) and the following axioms hold.

(i)
$$a + b = b + a$$

(ii) $ab = ba$

$$\begin{cases}
(iii) (a + b) + c = a + (b + c) \\
(iii) (a + b) + c = a + (b + c)
\end{cases}$$
Associative laws
(iv) $(ab)c = a(bc)$
(v) $a(b + c) = ab + ac$
(vi) $a + (bc) = (a + b) (a + c)
\end{cases}$
Distributive laws
(vii) $a + 0 = a$
0 is an identity for + 1 is an identity for .
(ix) $a + a = 1$
(x) $aa = 0$

$$\begin{cases}
(ix) a + a = 1 \\
(x) aa = 0
\end{cases}$$
Properties of the complement