NEURAL NETWORKS +

MOHAMMAD GHODDOSI

NEURAL NETWORKS VARIATIONS

- MLP
- Autoencoders
- RBF
- SOM
- LVQ
- ART
- Hopfield
- Boltzmann Machine

RBF MOHAMMAD GHODDOSI

RADIAL BASIS FUNCTION (RBF)

- Like SVM kernels
- Use a kernel layer as hidden layer (without learning)
- Use a single layer for classification (with supervised learning)

COVER'S THEOREM (1965)

• A complex pattern classification problem cast in a high dimensional space nonlinearly, is more likely to be linearly separable than in a low dimensional space.

RBF ARCHITECTURE

RBF EQUATIONS

$$Z = W^T \cdot \varphi(X)$$

$$H = \begin{cases} 0 & if Z < 0 \\ 1 & if Z > 0 \end{cases}$$

RADIAL BASIS FUNCTIONS

- Center: x_i
- Distance measure: $r = ||x x_i||$
- Shape: *φ*

$$\phi(\mathbf{r}) = e^{-\frac{r^2}{2\sigma^2}}$$

EXAMPLE (CIRCLE)

RBF KERNELS

RBF TRAINING

Non-iterative

$$Y = W^T \cdot \varphi(X)$$

$$Z. \ \phi(X)^{-1} = W^T$$

SOM MOHAMMAD GHODDOSI

COMPETITIVE NETS

- Competition in biological neurons
 - Problem solving
 - Decision making
- Winner-take-all competition

COMPETITIVE NETS

- Fixed weights
 - MAXNET
 - Hamming
- Kohonen Self Organizing Map (SOM)

MAXNET

$$w_{ij} = \begin{cases} 1 & if \ i = j \\ -\epsilon & if \ i \neq j \end{cases}$$

EXAMPLE

$$a_1(0) = 0.6, \ a_2(0) = 0.2$$

 $a_3(0) = 0.8, \ a_4(0) = 0.4$
 $\epsilon = 0.2$ $1/M = 0.25$

step k	$a_1(k)$	$a_2(k)$	$a_3(k)$	$a_4(k)$
0	0.6	0.2	0.8	0.4
1	0.32	0	0.56	0.08
2	0.192	0	0.48	0
3	0.096	0	0.442	0
4	0.32 0.192 0.096 0.008	0	0.422	0
5	0	0	0.421	0
	1			

KOHONEN SOM

- Topological-preserving map or self-organizing feature maps
- Winner-takes-all learning
- Winner only take place for winner
- Data mining and data exploration

SOM ARCHITECTURE

- One input layer
- One output layer (representing classes)
- Fully connected

SOM TRAINING

- all weights are random at first
- Two phase unsupervised learning
 - Competing phase
 - Winner-take-all
 - Cooperation
 - Winner and neurons close to the winner
 - Rewarding phase
 - Update winners weights

SOM OUTPUT LAYER

COMPETITION

- Input X
- Weight vector W_j for neuron j
- Select neuron with largest $W_j^T.X$
- Select neuron with min $||X \overline{W_j}||$

COOPERATION

- Using topological neighborhood centered on winner
- The neighborhood gets smaller and smaller over time

WEIGHT UPDATE

 Lerning rate * neighborhood degree * difference between weight and input

$$w_j(n+1) = w_j(n) + \eta(n)h_{j,i(x)}(n)[X - w_j(n)]$$

$$h_{j,i(x)}(n) = \exp(-\frac{d_{ij}^2}{2\sigma(n)^2})$$

$$\sigma(n) = \sigma_0 \exp(-\frac{n}{\tau_1})$$
 $\eta(n) = \eta_0 \exp(-\frac{n}{\tau_2})$

SOM LEARNING PHASES

- Ordering phase
- Convergence phase

SOM PROPERTIES

- Approximation of the Input Space
- Topological ordering
- Density matching
- Feature selection

LVQ MOHAMMAD GHODDOSI

LEARNING VECTOR QUANTIZATION

- Competitive network
- Supervised classification
- Fixed output weights
- Input space is divided into regions

LVQ ARCHITECTURE

- One hidden layer
- Each hidden unit is assigned to a class

LVQ - FIRST LAYER

- Competitive layer
- Euclidean distance
- Closest neuron to input vector is the winner
- Just winner drives learning rule

LVQ TRAINING

• If vector x is classified correctly, then the weight vector of the winner is moved towards x

$$\Delta \mathbf{w}_{\mathbf{j}^*} = \alpha (\mathbf{x} - \mathbf{w}_{\mathbf{j}^*})$$

 If vector x is classified incorrectly, then the weight vector of the winner is moved away from x

$$\Delta \mathbf{w}_{\mathbf{j}^*} = -\alpha (\mathbf{x} - \mathbf{w}_{\mathbf{j}^*})$$

HOPFIELD MOHAMMAD GHODDOSI

HOPFIELD

- Associative memory
- Robustness
- Input pattern A reminds the network to pattern B

ASSOCIATIVE MEMORY NETWORK

- Input: noisy or corrupted pattern
- Output: corresponding pattern

HOPFIELD MODEL

- Binary neurons
- Attractor model

EXAMPLE

HOPFIELD NETWORK

- Single layer recurrent network
- Fixed weights
- Fully connected
- All neurons act as input and output neurons
- Output of each neuron is 1 or −1

HOPFIELD WEIGHTS

• We use input-output pairs $(x_1, y_1), (x_2, y_2), (x_3, y_3), ... (x_P, y_P)$

$$W_{ij} = \frac{1}{P} \sum_{k=1}^{P} y_k^{(i)} x_k^{(j)}$$

X and y could be same

• We have 2 patterns

$$w_{12} = w_{21} = \frac{-1 - 1}{2} = -1$$

$$w_{13} = w_{31} = \frac{1 + 1}{2} = 1$$

$$w_{14} = w_{41} = \frac{-1 + 1}{2} = 0$$

$$w_{23} = w_{32} = \frac{-1 - 1}{2} = -1$$

$$w_{24} = w_{42} = \frac{1 - 1}{2} = 0$$

 $w_{34} = w_{43} = \frac{-1+1}{2} = 0$

• We have an noisy input pattern

1	0
0	-1

EXAMPLE

• One Hopfield model train with 1 face and 19 random patterns

EXAMPLE

