PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁶ : C12N 15/00, C07K 14/705, G01N 33/50 A2	 (11) Numéro de publication internationale: WO 99/4510 (43) Date de publication internationale: 10 septembre 1999 (10.09.99)
(21) Numéro de la demande internationale: PCT/FR99/004 (22) Date de dépôt international: 23 février 1999 (23.02.	CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, N
(30) Données relatives à la priorité: 98/02725 5 mars 1998 (05.03.98)	Publiée Sans rapport de recherche internationale, sera republiée de réception de ce rapport.
(71) Déposant (pour tous les Etats désignés sauf US): CENTRE N TIONAL DE LA RECHERCHE SCIENTIFIQUE (CNI [FR/FR]; 3, rue Michel Ange, F-75794 Paris Cedex 16 (F)
(72) Inventeurs; et (75) Inventeurs/Déposants (US seulement): HONORE, IFR/FR]; 43, boulevard Bijou Plage, Villa "Le N F-06160 Juan les Pins (FR). FINK, Michel [FR/FR Résidence "Le Capricorne", 74, boulevard Paste F-94260 Fresne (FR). LAZDUNSKI, Michel [FR/FR]; avenue Colombo, F-06000 Nice (FR). LESAGE, Flor [FR/FR]; Palais Flora, 12, avenue Auber, F-06000 N (FR). DUPRAT, Fabrice [FR/FR]; 1, les Tamaris, F-060 Vallauris (FR). (74) Mandataire: BREESE, Pierre; Breese-Majerowicz, 3, ave de l'Opéra, F-75001 Paris (FR).	

- (54) Title: NOVEL MECHANICALLY SENSITIVE MAMMAL POTASSIUM CHANNEL FAMILY ACTIVATED BY POLYUNSAT-URATED FATTY ACIDS AND THEIR USE PARTICULARLY FOR SCREENING MEDICINES
- (54) Titre: NOUVELLE FAMILLE DE CANAUX POTASSIUM DE MAMMIFERES MECANOSENSIBLES ET ACTIVES PAR LES ACIDES GRAS POLYINSATURES ET LEUR UTILISATION NOTAMMENT POUR LE CRIBLAGE DE DROGUES

(57) Abstract

The invention concerns a novel mechanically sensitive potassium channel family activated by polyunsaturated fatty acids in particular by arachidonic acid and by riluzole. The invention also concerns a method for screening a substance capable of modulating the ionic currents of said channels.

(57) Abrégé

La présente invention concerne une nouvelle famille de canaux potassium mécanosensibles activés par les acides gras polyinsaturés notamment l'acide arachidonique et par le riluzole. L'invention se rapporte aussi au procédé de criblage de substance susceptible de moduler les courants ioniques desdits canaux.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon	LV	Lettonie	\mathbf{SZ}	Swaziland
AZ	Azerbaidjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
ВJ	Bénin	IE	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	IL	Israël	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	zw	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		
CM	Cameroun	141	démocratique de Corée	PL	Pologne		
		KR	République de Corée	PT	Portugal		
CN	Chine	KZ	Kazakstan	RO	Roumanie		
CU	Cuba	LC	Sainte-Lucie	RU	Fédération de Russie		
CZ	République tchèque	LI	Liechtenstein	SD	Soudan		
DE	Allemagne	LK	Sri Lanka	SE	Suède		
DK	Danemark	LR LR		SG	Singapour		
EE	Estonie	LK	Libéria	30	omenpour		

NOUVELLE FAMILLE DE CANAUX POTASSIUM DE MAMMIFERES MECANOSENSIBLES ET ACTIVES PAR LES ACIDES GRAS POLYINSATURES ET LEUR UTILISATION NOTAMMENT POUR LE CRIBLAGE DE DROGUES.

5

10

15

La présente invention concerne une nouvelle classe de canaux potassium mécanosensibles activés par les acides gras polyinsaturés. L'invention est basée sur la découverte d'un nouveau canal potassium, dénommé TRAAK pour TWICK-Related AA-Actived K+channel, mécanosensibles activés par les acides gras polyinsaturés et également par le riluzole qui est un agent neuroprotecteur. Les propriétés des canaux de la famille TRAAK ainsi que leur distribution tissulaire confère à ces canaux un rôle primordial dans le transport de potassium chez un grand nombre de types cellulaires.

Les canaux potassium sont des protéines diversité leur exceptionnelle ubiquitaires 20 et fonctionnelle en font des candidats idéaux pour un grand nombre de processus biologiques. Ils interviennent notamment dans la régulation de l'excitabilité neuronale et musculaire, sur le rythme cardiaque et sur sécrétion d'hormone. Trois types structuraux de canaux 25 potassium ont été décrits chez les mammifères. premier est le type "Shaker" qui est composé de sousunités ayant 6 segments transmembranaires et un domaine P qui est impliqué dans la formation du pore ionique. Le second est le type IRK à deux segments transmembranaires 30 et un domaine P. Le troisième a été décrit plus récemment et correspond au type TWIK qui a quatre segments transmembranaires et deux domaines P. Trois canaux de ce type ont été identifiés : TWIK-1 (Fink, M. et al. EMBO J. 15, 6854-6862 (1996), Lesage, F. et al. 35

EMBO J. 15, 1004-1011 (1996) TREK-1 et TASK (Duprat, F. et al. EMBO J. 16, 5464-5471 (1997). En dépit d'une structure générale conservée, ils ont des séquences primaires peu similaires, puiqu'ils présentent entre 20 à 25 % d'identité en acide aminé.

5

10

15

20

25

30

35

La présente invention est fondée sur la découverte et le clonage d'un nouveau canal désigné TRAAK, membre de la famille des canaux TWIK. Le gène codant ce canal est plus particulièrement homologue au niveau de sa séquence d'acides aminés au canal TREK-1 avec lequel il présente 38% d'identité en acide aminé. Le présente invention est également fondée sur les propriétés électrophysiologiques uniques de ces deux canaux TREK-1 et TRAAK. En effet, ces canaux produisent tous les deux des courants sélectifs au potassium qui sont activés par une tension appliquée à la membrane cellulaire, canaux dits mécanosensibles, l'application d'acides gras polyinsaturés, notamment l'acide arachidonique qui est un messager essentiel de la communication inter et intra-cellulaire et un important modulateur de l'excitabilité neuronale (Ordway, R. W., Singer, J.J. et Walsh, j. V. 14, 96-100 (1991), Bliss, T. V. P. et Collingridge, G. L. Nature 31-39 (1993), Piomelli, D. Curr. Opin. Cell. Biol. 5, 274-280 (1993), Meves, H. Prog. Neurobiol. 43, 175-186 (1994), Piomelli, D. Crit. Rev. Neurobiol. 8, 65-83 (1994). Ces canaux sont également ouverts par le riluzole qui est un agent neuroprotecteur (Malgouris, C. et al. j. Neurosci. 9, 3720-3727 (1989), Pratt, j. et al. Neurosci. Lett. 140, 225-230 (1992) utilisé en clinique pour prolonger la survie de malades atteints de sclérose latérale amyotrophique.

La mise en évidence de cette nouvelle classe de canaux potassium et l'expression hétérologue de ces

canaux permet notamment de disposer de nouveaux moyens pour rechercher par criblage des drogues capables de moduler l'activité de ces canaux potassium et donc de prévenir ou de traiter des maladies impliquant ces canaux, comme l'épilepsie, les pathologies cardiaques (arythmies) et vasculaires, les neurodégénérescences, particulièrement celles qui sont associées aux ischémies et aux anoxies, les pathologies endocriniennes associées à des anomalies dans la sécrétion d'hormones, les pathologies musculaires.

5

10

15

20

25

30

35

La présente invention a donc pour objet une protéine purifiée constituant un canal potassium mécanosensible activé par les acides gras polyinsaturés notamment l'acide arachidonique et par le riluzole. Plus particulièrement, l'invention concerne la protéine constituant le canal TRAAK dont la séquence en acides aminés est représentée dans la liste de séquences en annexe sous le numéro SEQ ID No : 1 ou un dérivé fonctionnellement équivalent de cette protéine.

De tels dérivés sont ceux dont la séquence comprend une modification et/ou une suppression et/ou une addition d'un ou plusieurs résidus d'acides aminés, dès lors que cette modification et/ou supression et/ou addition ne modifie pas les propriétés du canal TRAAK. De tels dérivés peuvent être analysés par l'homme du métier selon les techniques décrites dans les exemples donnés ci-après qui ont permis de mettre en évidence les propriétés biophysiques et pharmacologiques du canal TRAAK. Un tel dérivé est plus particulièrement le canal TREK-1 dont la séquence en acides aminés est représentée dans la liste de séquences en annexe sous le numéro SEQ ID No : 2.

Des anticorps poly ou monoclonaux dirigés contre au moins une protéine constituant un canal

ionique de l'invention peuvent être préparés par les méthodes classiques décrites dans la littérature. Ces anticorps sont utiles pour rechercher la présence des canaux ioniques de l'invention dans différents tissus humains ou animaux, mais ils peuvent aussi trouver des applications dans le domaine thérapeutique pour inhiber ou activer in vivo, grâce à leur spécificité, un canal TRAAK et/ou ses dérivés.

5

10

15

20

25

30

35

La présente invention a aussi pour objet une molécule d'acide nucléique purifiée comprenant ou constituée par une séquence nucléique codant pour une protéine constituant un canal potassium mécanosensible activé par les acides gras polyinsaturés notamment l'acide arachidonique et par le riluzole. particulièrement l'invention concerne une molécule d'acide nucléique comprenant au moins une séquence codant pour la protéine constituant le canal TRAAK dont la séquence en acides aminés est représentée dans la liste de séquences en annexe sous le numéro SEQ ID No:1 ou pour un dérivé fonctionnellement équivalent de cette protéine. Une molécule d'ADN comprenant la séquence codant pour la protéine TRAAK est représentée dans la liste de séquences en annexe sous le numéro SEQ ID NO:1 ou sa séquence complémentaire. Plus particulièrement, une telle séquence d'acide nucléique comprend la séquence comprise entre les nucléotides 284 et 1477 de SEQ ID No:1 ou sa séquence complémentaire.

Une autre séquence d'acide nucléique selon l'invention comprenant au moins une séquence codant pour la protéine constituant le canal TREK-1 dont la séquence en acides aminés est représentée dans la liste de séquences en annexe sous le numéro SEQ ID No:2 ou pour un dérivé fonctionnellement équivalent de cette protéine. Une molécule d'ADN comprenant la séquence

5

10

15

20

25

30

codant pour la protéine TREK-1 est représentée dans la liste de séquences en annexe sous le numéro SEQ ID NO:2 ou sa séquence complémentaire. Plus particulièrement, une telle séquence d'acide nucléique comprend la séquence comprise entre les nucléotides 484 et 1596 de SEQ ID No:2.

L'invention concerne également un vecteur comprenant au moins une molécule d'acide nucléique précédente, avantageusement associée à des séquences de contrôle adaptés, ainsi qu'un procédé de production ou d'expression dans un hôte cellulaire d'une protéine constituant un canal ionique selon l'invention. La préparation de ces vecteurs ainsi que la production ou l'expression dans un hôte des canaux de l'invention peuvent être réalisées par les techniques de biologie moléculaire et de génie génétique bien connues de l'homme du métier.

A titre d'exemple, un procédé de production d'une protéine constituant un canal cationique selon l'invention consiste :

- à transférer une molécule d'acide nucléique de l'invention ou un vecteur contenant ladite molécule dans un hôte cellulaire,
- à cultiver ledit hôte cellulaire dans des conditions permettant la production de la protéine constituant le canal potassium,
- à isoler, par tous moyens appropriés les protéines constituant les canaux potassium de l'invention.
- A titre d'exemple, un procédé d'expression d'un canal ionique selon l'invention consiste :
- à transférer une molécule d'acide nucléique de l'invention ou un vecteur contenant ladite molécule dans un hôte cellulaire,

 à cultiver ledit hôte cellulaire dans des conditions permettant l'expression des canaux potassium de l'invention.

L'hôte cellulaire mis en oeuvre dans les procédés précédents peut être choisi parmi les procaryotes ou les eucaryotes et notamment parmi les bactéries, les levures, les cellules de mammifères, de plantes ou d'insectes.

5

10

15

20

25

30

Le vecteur utilisé est choisi en fonction de l'hôte dans lequel il sera transféré; il peut s'agir de tout vecteur comme un plasmide.

L'invention concerne donc aussi les hôtes cellulaires et plus particulièrement les cellules transformés exprimant des canaux potassium présentant des propriétés et une structure du type de celles du TRAAK obtenues conformément aux procédés précédents. Ces cellules sont utiles pour le criblage de substances capables de moduler les courants des canaux TRAAK. Ce criblage est effectué en mettant en contact des quantités variables d'une substance à tester avec des cellules exprimant les canaux de l'invention, puis en mesurant, par tous moyens appropriés, les effets éventuels de ladite substance sur les courants potassium desdits canaux. Des techniques électrophysiologiques permettent également ces études et font aussi l'objet de la présente invention dès lors qu'elles mettent en oeuvre les canaux TRAAK ou leurs dérivés. Ce procédé de criblage permet d'identifier des drogues capables de moduler l'activité des canaux potassium de l'invention et donc susceptibles de prévenir ou de traiter des maladies impliquant ces canaux. Ces substances et leur utilisation comme médicament, isolés et détectés grâce aux procédés ci-dessus, font également partie de l'invention.

Plus particulièrement, l'invention concerne donc une substance chimique ou biologique capable de modifier les courants d'un canal potassium selon l'invention pour la préparation d'un médicament utile pour prévenir ou traiter des maladies du coeur ou du système nerveux chez un sujet humain ou animal, comme les pathologies cardiaques (arythmies) et vasculaires, les neurodégénérescences, particulièrement celles qui sont associées aux ischémies et aux anoxies, les pathologies endocriniennes associées à des anomalies dans la sécrétion d'hormones, les pathologies musculaires

Une molécule d'acide nucléique codant pour une protéine constituant un canal TRAAK ou un dérivé de celui-ci, ou un vecteur comprenant cette molécule d'acide nucléique ou encore une cellule exprimant des canaux TRAAK, sont aussi utiles pour la préparation d'animaux transgéniques. Il peut s'agir d'animaux sur-exprimant lesdits canaux, mais surtout d'animaux dit "knock out", c'est à dire présentant une déficience en ces canaux; ces animaux transgéniques sont préparés par des méthodes connues de l'homme du métier, et permettent de disposer de modèles vivants pour l'étude de pathologies animales associées aux canaux TRAAK.

Ces animaux transgéniques de même que les hôtes cellulaires décrits précédemment sont utiles en tant que modèles pour l'étude de pathologies associées à ces canaux potassium mécanosensibles activés par les acides gras polyinsaturés soient parce qu'ils surexpriment les canaux potassium du type canal TRAAK, soit parce qu'ils présentent une déficience en ces canaux potassium.

5

10

15

20

25

30

35

En outre, une protéine constituant un canal ionique neuronal TRAAK peut être aussi utile pour la fabrication de médicaments destinés à traiter ou prévenir des pathologies impliquant ces canaux. L'invention concerne donc aussi les compositions pharmaceutiques comprenant comme principe actif au moins une de ces protéines éventuellement associée à un véhicule physiologiquement acceptable.

De même, les molécules d'acide nucléique de l'invention ou les cellules transformées par ladite molécule sont donc susceptibles d'être utilisées dans des stratégies de thérapie génique afin de compenser une déficience des canaux TRAAK au niveau de un ou plusieurs tissus d'un patient. L'invention concerne donc aussi un médicament comprenant des molécules d'acide nucléique de l'invention ou de cellules transformées par lesdites molécules pour le traitement de pathologie impliquant les canaux TRAAK et leurs dérivés.

D'autres avantages et caractéristiques de l'invention apparaitront à la lecture des exemples qui suivent rapportant le travail de recherche ayant mené à l'identification et à la caractérisation de ces canaux potassium mécanosensibles activés par les acides gras et où il sera fait référence aux séquences et dessins en annexe dans lesquels :

- la figure 1 et SEQ ID NO:1 représentent la séquence nucléotidique de l'ADNc de TRAAK et la séquence en acide aminé de la séquence codante.

- la figure 2 représente l'alignement des séquences de TWIK-1, TREK-1, TASK et TRAAK qui sont les quatre canaux du type TWIK actuellement clonés chez les mammifères ainsi que le dendrogramme déduit de cet alignement. Les résidus identiques sont représentés sur fond noir et les résidus conservés sur fond gris.

- la figure 3 représente l'analyse par RT-PCR de la distribution de TREK-1 et TRAAK dans les souris adulte. fragments Des de la tissus transcripts codant TREK-1 et TRAAK ont été amplifiés par PCR à l'aide d'oligonucléotides spécifiques, transferés nylon puis sondés avec membrane de oligonucléotides internes marqués au phosphore 32.

5

10

15

20

25

30

35

figure 4 montre les propriétés la électrophysiologiques des courants TRAAK enregistrés par la technique de voltage imposé sur des ovocytes de Xénope ayant reçu une injection d'ARNc de TRAAK (a, b, c) et sur des cellules COS transfectés avec un vecteur exprimant TRAAK (d, e, f). En (a) : les ovocytes ont été maintenus à un potentiel de -80 mV puis les courants ont été enregistrés à la suite de sauts de potentiel de -150 à +50 mV par incrément de 20 mV. Les enregistrements ont été réalisés dans un milieu externe contenant une concentration en K+ de 2 mM ou de 74 mM. En (b) : relation courant-potentiel selon la même expérience qu'en (a). En (c) : renversement de potentiel (E_{rev}) des courants TRAAK en fonction de la concentration externe en K+. En (d) : courants enregistrés sur des cellules COS transfectées par TRAAK suivant le même protocole qu'en (a). En (e) : relation courant-potentiel selon la même expérience qu'en (d).

- la figure 5 montre l'effet de l'osmolarité du milieu externe sur des ovocytes ayant reçu une injection d'ARNc TREK-1 ou TASK. En (A) : comparaison des effets de l'application d'une solution hypertonique (417 mOsm, par addition de mannitol) sur des ovocytes témoins (CD8) et sur des ovocytes exprimant TASK ou TREK-1. Les courants sont mesurés après un saut de potentiel de -80 à +80 mV. En inset est montré le courant TREK-1 avant et après (indiqué par une flêche) l'application de la solution hypertonique. En (B) :

effet réversible d'une solution hypertonique (434 mOsm, par addition de sucrose) sur les relations courant-potentiel déduites de rampes de potentiel qui durent 600 msec. En inset est montré la cinétique de l'effet produit par la solution hypertonique. Les courants sont mesurés à 80mV.

5

10

15

20

25

30

- la figure 6 montre que TREK-1 est un canal les cellules potassium mécanosensible dans transfectées. En (B) : activités canal (N*Po) dans des "patches" de membrane maintenus à 0 mV et obtenus dans la configuration cellule attachée à partir de cellules témoins (CD8), ou de cellules transfectées par TREK-1 et TASK. En (C) l'étirement de la membrane n'a pas d'effet sur l'activité du canal TASK (configuration cellule attachée). Le "patch" est maintenu à 50mV. En (D) : les canaux TREK-1 sont silencieux au repos et ouvert lors d'une tension de la membrane. Le "patch" est maintenu à +50mV. En (E) histogramme donnant l'amplitude de l'activité canal engendrée par la tension de la membrane et illustrée en (G). En (F) : relation courant-potentiel en canal unique de TREK-1 (n=6). La conductance de 81 pS a été calculée entre 0 et 80 mV. En (G) : activation de TREK-1 par étirement de la membrane (30 mm Hg) dans la configuration "inside-out". Le potentiel de maintien est 100 mV. En (H) : effet produits par des tensions de plus en plus importantes (5 sec de durée) sur la relation courant-potentiel d'un "patch" exprimant TREK-1. En (I) : courbe dose-effet de l'activation de TREK-1 par la tension (n=6). La courbe est tracée en suivant les points expérimentaux suivant la relation de Boltzmann.

- la figure 7 montre l'activation de TRAAK par l'étirement de la membrane cellulaire dans les cellules COS transfectées. Le courant est enregistré à 0 mV dans la configuration "inside-out". Les dépressions

appliquées via la pipette d'enregistrement sont indiquées sur la droite des traces.

5

10

15

20

25

30

35

- la figure 8 montre l'activation de TREK-1 l'acide arachidonique dans les cellules COS (A) : l'activité de TREK-1 transfectées. En enregistrée dans la configuration cellule attachée. Le "patch" est stimulé par une rampe de potentiel durant 800 msec toutes les 5 sec. Les courants sont mesurés à 80 mV. Les applications d'acide arachidonique (AA, 10µM) sont indiquées par les barres horizontales. Au cours de l'expérience, le "patch" a été stimulé par des tensions de 50 mm Hg (indiquées par des flèches). A 9 min, le "patch" a été excisé dans la configuration "inside-out". En (B): relations courant-potentiel qui correspondent à l'expérience illustrée en (A). En (C) : activité de TREK-1 dans la configuration cellule attachée avec 10 µM AA dans la pipette. La rampe de potentiel dure 800 msec et les courants sont mesurés à 80mV. En (D) : relations courant-potentiel en canal unique au moment où la pipette est posée sur la membrane ou après 20 min et 1 min après avoir excisé le "patch" dans la configuration 'inside-out". En (E) effet de l'AA (10µM) sur le courant TREK-1 enregistré en cellule entière. Le courant est En (F) : l'AA est sans effet sur le mesuré à 80mV. courant TREK-1 mesuré en cellule entière lorsqu'il est dans la pipette. Le courant est mesuré 30 min après avoir rompu le "patch" (trace contrôle) par une rampe de potentiel de 800 msec. Le courant est ensuite mesuré après une application d'AA de 1 min dans le milieu externe (trace AA).

- la figure 9 montre l'effet de l'acide arachidonique et d'autres acides gras sur le canal TRAAK exprimé dans des cellules COS transfectées. En (a) : relations courant-potentiel obtenues à partir de rampes de potentiel de 500 msec allant de -150 à +50 mV, après

application d'AA (10 µM) et après lavage. En inset sont représentés les courants déclenchés par des sauts de potentiel de -130 à +50 mV par incrément de 20 mV. Le potentiel de maintien est -80mV. En (b) : relation doseeffet de l'activation de TRAAK par l'AA. En (c) : relations courant-potentiel obtenus comme en (a) dans la configuration "outside-out". En inset est montré l'effet de l'AA à 20 mV. En (e) : histogramme représentant le coefficient d'augmentation des courants obtenus après application de différents acides gras (10µM). En (f) : histogramme montant la valeur des courants enregistrés dans la configuration de la cellule entière avant et après application d'AA sur des cellules transfectées transitoirement par TWIK-1, TASK, TREK-1 et TRAAK et sur des cellules transfectées de façon stable par TRAAK. Le coefficient d'augmentation est indiqué dans chaque cas.

5

10

15

20

25

30

35

- la figure 10 montre l'effet du riluzole sur les courants TREK-1 et TRAAK désigné TREK-2. Les relations courant-potentiel sont obtenus comme dans la figure 9a avant et après l'application de riluzole (100µM) sur des cellules COS transfectées. En inset sont montrés les effets du riluzole sur les courants enregistrés dans la configuration "outside-out".

I - <u>Clonage</u>, <u>structure</u> <u>primaire</u> <u>et</u> <u>distribution tissulaire de TRAAK</u>.

La séquence du canal TWIK-1 a été utilisée pour rechercher des séquences homologues dans les banques publiques de données d'ADN (Genbank et EMBL) en mettant en oeuvre le programme d'alignement BLAST. Il a ainsi été identifié une séquence exprimée TAG humaine qui a servi à cribler une banque d'ADNc de cerveau de souris. Plusieurs clones ont été isolés et caractérisés. Le plus long a été séquencé. Les caractéristiques suivantes ont été mises en évidence :

- les ADNc isolés contiennent une phase ouverte de lecture de 1197 nucléotides codant pour un polypeptide de 398 résidus. Les séquences nucléotidiques et protéiques sont montrées dans la figure 1.

cette protéine contient 4 segments transmembranaires potentiels et deux domaines P. Elle possède donc la même structure générale que les canaux TWIK-1, TREK-1 et TASK. De plus, elle présente des homologies de séquence avec ces canaux : environ 20-25% d'identité avec TWIK-1 et TASK et 38% avec TREK-1. En dehors des domaines P qui sont présents dans tous les canaux potassium clonés, elle n'a pas d'homologie de séquence significative avec les canaux de type Shaker et IRK. Elle appartient donc à la famille TWIK-1 et son homologue le plus proche est TREK-1. Ces relations apparaissent dans la figure 2 au niveau de l'alignement des séquences protéiques ainsi que dans le dendrogramme qui est déduit de cet alignement. TRAAK et TREK-1 forment donc une sous-classe structurale au sein de la famille TWIK-1.

- les séquences de différents oligonucléotides ont été déduits à partir de la séquence de TRAAK. Ces oligonucléotides ont permis par RT-PCR d'étudier la distribution du transcrit codant TRAAK dans les tissus de souris adulte. Comme le montre la figure 3, TRAAK est exclusivement exprimé dans des tissus neuronaux : cerveau, cervelet, moelle épinière et rétine. Cette distribution est très différente de celle de son plus proche homologue qui est le canal TREK-1. Celui a une distribution quasi ubiquitaire et est présent aussi bien dans les tissus excitables que dans les tissus non-excitables.

5

10

15

20

25

5

10

15

20

25

30

35

II - Expression fonctionnelle de TRAAK.

Pour l'étude fonctionnelle, la séquence codante de TRAAK a été insérée dans le vecteur pEXO et un ARN complémentaire (ARNc) a été synthétisé à partir de cette construction et injecté dans des ovocytes de Xénope. Pour l'expression dans les cellules COS, la séquence de TRAAK a été sous-clonée dans un vecteur d'expression sous le contrôle d'un promoteur eucaryote et transfectée dans les cellules. Un courant noninactivant absent des ovocytes et des cellules témoins a été mesuré par la technique de potentiel imposé comme représenté à la figure 4. L'activation est instantané et ne peut être résolue car elle est masquée par décharge capacitive du courant enregistré au début du saut de potentiel. La relation courant-potentiel rectifie dans le sens sortant lorsque la concentration externe en K+ est égale à 2 mM. Des courants entrants sont observés lorsque la concentration externe en K+ est augmentée. Quelque soit cette concentration, les courbes courant-potentiel suivent parfaitement la relation de Goldman-Hodgkin-Katz. Cela démontre que les courants TRAAK n'ont pas de rectification autre que celle qui est due aux concentrations dissymétriques de K+ de chaque côté de la membrane et que TRAAK est un canal qui n'est pas dépendant du potentiel. Le canal TRAAK est sélectif au potassium. Le renversement du potentiel des courants suit le potentiel d'équilibre du K+ et le changement par 10 de la concentration en K+ conduit à un changement de la valeur d'inversion du potentiel conforme à celle prédite par l'équation de Nernst (48.7+-0.7 mV par 10, n=4).

Les propriétés de TRAAK, absence de cinétiques d'activation et d'inactivation aussi bien que son ouverture à tous les potentiels de membrane, sont

des caractéristiques des canaux potassium dits de fuite. Comme prévu pour des canaux de ce type, son expression dans les oocytes est associée à une forte polarisation. Le potentiel de repos de la membrane passe de -43±2,4 mV, (n=7), dans les oocytes de contrôle à -88±1,4mV, (n=23)dans les oocytes transfectés, une valeur proche du potentiel d'équilibre du potassium. TRAAK a été aussi exprimé dans les cellules COS-M6 transfectées. Dans ce système aussi, les courants TRAAK sont instantanés et ne s'inactivent pas. L'enregistrement des "patch" en configuration "outside-out" indique une conductance unitaire de TRAAK égale à 45,5 ± 3,7 pS (n = 10).

5

10

15

20

25

30

35

III - <u>TREK-1 et TRAAK sont des canaux</u> mécanosensibles.

Il a été établi que la sous-classe structurale formée par les canaux K⁺ TREK-1 et TRAAK est associée à des propriétés électrophysiologiques uniques parmi les canaux K⁺ de type TWIK. Les canaux TREK-1 et TRAAK sont en effet activés par une tension appliquée à la membrane plasmique. Cette tension est obtenue soit indirectement en changeant l'osmolárité du milieu externe et donc le volume de la cellule soit plus directement en appliquant une dépression dans la pipette d'enregistrement. Les caractéristiques suivantes ont été mises en évidence :

- la figure 5 démontre que l'expression du canal TREK-1 dans des ovocytes de Xénope qui sont maintenus dans un milieu hypotonique induit des courants instantanés et non-inactivants. Quand l'osmolarité du milieu externe est augmentée en y ajoutant du mannitol, une importante diminution de l'amplitude du courant TREK-1 est observée ce qui démontre une sensibilité du canal au volume cellulaire. Le canal TASK lui n'est pas affecté par l'osmolarité du milieu externe.

- la figure 6 démontre que le canal TREK-1 est mécanosensible. Dans des cellules COS transfectées et sous des conditions de repos, l'activité de TREK-1 est indétectable dans la configuration cellule attachée alors que l'activité de TASK est facilement mesurable dans les mêmes conditions. Cependant, une dépression appliquée à la membrane par l'intermédiaire de la pipette d'enregistrement déclenche une ouverture du canal TREK-1. Un tel effet n'est pas vu avec TASK. L'activation de TREK-1 induit par la tension est également obtenu dans la configuration "inside-out" c'est à dire lorsque le "patch" est excisé et que la face interne de la membrane se retrouve en contact avec le milieu externe. Dans cette configuration, l'activité du canal est également absente ou très faible si on n'applique pas de tension à la membrane. L'effet de la tension est graduée et une activation qui est égale à la moitié de la valeur maximale est détectée pour une dépression équivalente à 23 mm de mercure. D'autre part, la figure 6h montre que l'activation induite par l'étirement est indépendante du potentiel de membrane.

- la figure 7 montre également que TRAAK est un canal activé par l'étirement. En absence de dépression ou pour de faibles valeurs, le canal TRAAK est inactif. Pour des valeurs plus élevées, le canal est activé et un courant est enregistré. Durant l'application de la dépression, une diminution de l'activité du canal est observable comme dans le cas de TREK-1.

30

35

5

10

15

20

25

IV - TREK-1 et TRAAK sont activés par l'acide arachidonique et d'autres acides gras polyinsaturés.

L'activation des canaux TREK-1 et TRAAK par étirement mécanique de la membrane est mimée par

l'application d'acide arachidonique et par l'application d'autres acides gras polyinsaturés, mais pas par l'application d'acides gras saturés. Les caractéristiques suivantes ont été mises en évidence :

5

10

15

20

25

30

35

- la figure 8 démontre que TREK-1 est activé par l'acide arachidonique (AA). L'application d'AA sur des cellules témoins (CD8) n'a pas d'effet. Les activations obtenues par étirement de la membrane et par application d'AA sont similaires en amplitude mais ne sont pas additives. Les deux types d'activation sont réprimées dans la configuration cellule attachée. Quand la pipette d'enregistrement contient de l'AA, l'excision du "patch" dans la configuration "inside-out" induit de façon reproductible une augmentation importante de l'activité de TREK-1. De la même manière, l'amplitude de l'activation induite par une dépression appliquée dans la pipette d'enregistrement est plus importante lorsque le "patch" est excisé. Finalement, il a été observé qu'en cellule entière, l'AA interne n'active pas TREK-1. Quand la cellule est dialysée pour des périodes aussi longues que 30 minutes, aucune activation du canal par l'AA interne n'a lieu bien que l'activation soit observée quelques secondes après l'application d'AA dans le milieu externe. Ces résultats indiquent que l'AA active TREK-1 seulement lorsqu'il est appliqué sur la face externe de la membrane.

- la figure 9 démontre que le canal TRAAK est activé par l'AA de la même manière que TREK-1. L'activation est réversible et dépendante de la concentration appliquée. Cette activation est aussi observée dans la configuration "outside -out". L'activation de TRAAK par l'AA n'est pas prévenue quand la perfusion d'AA contient un mélange d'inhibiteurs du métabolisme de l'AA (acide nordihydroguaiaretique pour la lipoxygénase, l'indomethacine pour la cyclooxygénase,

clotrimazole pour époxygénase et l'ETYA qui inhibe l'ensemble des voies de métabolisation de l'AA, tous à 10mM). Dans ces conditions, l'augmentation du courant induit par AA est de 6.6+-0,5 fois (n=3) (à +50mV). Une augmentation de 1.7±0.4 fois (n=3) du courant de potassium de fond peut être observé après l'administration d'un coktail d'inhibiteurs en l'absence d'AA Ce résultat démontre que l'activation par l'AA ne requière pas la transformation de l'AA en eicosanoïdes.

5

10

15

20

25

30

- la figure 9 démontre également que des acides gras autres que l'AA activent le canal. Cette activation est spécifique des acides gras cis polyinsaturés et est observée avec les acides oléique $(C18\Delta9, 12),$ linolénique linoléique eicosapentaenoique $(C18\Delta9, 12, 15),$ (EPA, docosohexaenoiques $C20\Delta5, 8, 11, 14, 17)$ еt $C20\Delta4,7,10,13,16,19)$ à une concentration de 10 mM. Les acides saturés tels que les acides palmitique (C16), stéarique (C18) et arachidique (C20) sont quant à eux sans effet. Les dérivés de l'AA et de docosohexaenoique où la fonction carboxylique est substituée par une fonction alcool (AA-OH) ou methyl ester (AA-ME, DOHA-ME) sont également inactifs sur TRAAK. L'effet de l'AA sur TRAAK est observable aussi bien sur des cellules transfectées de façon transitoire que de façon stable (3 lignées de cellules stables indépendantes ont été testées).

- finalement, la figure 9 démontre que l'effet d'activation par l'AA est spécifique de TREK-1 et TRAAK. Aucun effet du même type n'est observé sur les canaux TWIK-1 et TASK.

Dans les oocytes, TRAAK est insensible aux agents bloquant des canaux potassium classiques tels que le tétraéthylammonium (TEA, 1mM), la 4-aminopyridine (4-

AP, 1mM) et la quinine (100 mM). Inversement, Ba^{2+} (1mM) bloque 56,7 ± 4,6 %, n=5 du courant TRAAK à +40 mV.

V - <u>Les canaux TREK-1 et TRAAK sont activés</u> par un agent neuroprotecteur : <u>le riluzole</u>.

5

10

Le riluzole est un agent neuroprotecteur qui est utilisé pour prolonger la survie des malades atteint de sclérose latérale amyotrophique. Le figure 10 démontre que cet agent pharmacologique est un ouvreur des canaux TREK-1 et TRAAK. TREK-1 et TRAAK sont les premiers canaux ioniques dont l'activité est stimulée par le riluzole.

LISTE DE SÉQUENCES

(1)	INFORM	ATION C	SÉNÉ	ÉRALES:	
. ,	(iii)	NOMBRE	DE	SEOUENCES:	2

- (2) INFORMATION POUR LA SEQ ID NO:1:

 (i) CARACTRERISTIQUES DE LA SEQUENCE:

 (A) LONGUEUR: 1794 paires de bases

 (B) TYPE: nucléotide

 (C) NOMBRE DE BRIN: double

 (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN
 - (ix) CARACTERISTIQUES
 (A) NOM/CLE: TRAAK
 - (B) EMPLACEMENT: de 284 à 1477

(xi) DESCRIPTION DE LA SEQUENCES: SEQ ID NO:1 :

CCAC	GCGT	CC G	CGGA	.CGCG	T GG	GTCG	CCCA	CGC	CGTCC	CGGT	GGCG	GCTG	TC C	TGAG	CCCCG	60
GGCC	AGCT	GA I	GTCC	'AGG'I	T AG	GGCA	.GCG1	TGG	GGCC	CCA	ATCC	CAGO	CT G	GAAC	GTTGG	120
ACTT	CACG	TC G	ACCC	TTCT	C TG	AGTO	TTCT	GCC	CACTO	CACT	GGCC	TGGA	CA A	GAC	AGCATT	180
GGGG	AGCC	CA G	AGGC	TGC	G GI	GCAG	TGAC	CAC	CTGCT	CCC	CAGG	SAGCT	cc c	TGCI	CCTTC	240
TTCC	CAGG	CA G	GAAG	TGG#	AG CI	'GGAC	CTG	CTC	CTGGA	AAGG	ACC			AGC Ser		295
ACA Thr 5	CTC Leu	CTG Leu	GCT Ala	CTG Leu	CTG Leu 10	GCA Ala	CTG Leu	GTG Val	CTG Leu	CTT Leu 15	TAC Tyr	TTG Leu	GTA Val	TCT Ser	GGG Gly 20	343
GCT Ala	CTA Leu	GTG Val	TTC Phe	CAG Gln 25	GCT Ala	CTG Leu	GAG Glu	CAG Gln	CCT Pro 30	CAC His	GAG Glu	CAG Gln	CAG Gln	GCT Ala 35	CAG Gln	391
AAG Lys	AAA Lys	ATG Met	GAT Asp 40	CAT His	GGC Gly	CGA Arg	GAC Asp	CAG Gln 45	TTT Phe	CTG Leu	AGG Arg	GAC Asp	CAT His 50	CCC Pro	TGT Cys	439
GTG Val	AGC Ser	CAG Gln 55	AAG Lys	AGC Ser	CTG Leu	GAG Glu	GAT Asp 60	TTC Phe	ATC Ile	AAG Lys	CTC Leu	CTG Leu 65	GTT Val	GAA Glu	GCC Ala	487
CTG Leu	GGA Gly 70	GGG Gly	GGC Gly	GCA Ala	AAC Asn	CCA Pro 75	GAA Glu	ACC Thr	AGC Ser	TGG Trp	ACC Thr 80	AAT Asn	AGC Ser	AGC Ser	AAC Asn	535
CAC His 85	TCA Ser	TCA Ser	GCT Ala	TGG Trp	AAC Asn 90	CTG Leu	GGC Gly	AGC Ser	GCC Ala	TTC Phe 95	TTT Phe	TTC Phe	TCG Ser	GGG Gly	ACC Thr 100	583
ATC Ile	ATC Ile	ACT Thr	ACC Thr	ATC Ile 105	GGC Gly	TAT Tyr	GGC Gly	AAT Asn	ATA Ile 110	GTC Val	TTA Leu	CAC His	ACA Thr	GAT Asp 115	GCC Ala	631

					ATC Ile											679
					GGA Gly											727
					ATC Ile											775
					AGT Ser 170											823
					CTC Leu											871
AGC Ser	TGG Trp	AGC Ser	AAG Lys 200	TTA Leu	GAA Glu	GCC Ala	ATC Ile	TAC Tyr 205	TTT Phe	GTT Val	ATA Ile	GTG Val	ACT Thr 210	CTC Leu	ACC Thr	919
					GAT Asp											967
					CCG Pro											1015
GCC Ala 245	TAC Tyr	TTC Phe	GCC Ala	TCA Ser	GTG Val 250	CTC Leu	ACC Thr	ACC Thr	ATC Ile	GGC Gly 255	AAC Asn	TGG Trp	TTG Leu	CGA Arg	GCA Ala 260	1063
GTG Val	TCC Ser	CGC Arg	CGA Arg	ACT Thr 265	CGG Arg	GCA Ala	GAG Glu	ATG Met	GGT Gly 270	GGC Gly	CTA Leu	ACG Thr	GCA Ala	CAG Gln 275	GCT Ala	1111
GCT Ala	AGC Ser	TGG Trp	ACC Thr 280	GGC Gly	ACA Thr	GTG Val	ACA Thr	GCG Ala 285	CGA Arg	GTG Val	ACC Thr	CAG Gln	CGA Arg 290	ACT Thr	GGG Gly	1159
					CCA Pro											1207
TTG Leu	CCG Pro 310	GCA Ala	CCG Pro	CCT Pro	GCT Ala	GTT Val 315	GTT Val	GAG Glu	CCA Pro	GCC Ala	GGC Gly 320	AGG Arg	CCC Pro	GGC Gly	TCC Ser	1255
CCT Pro 325	GCA Ala	CCC Pro	GCA Ala	GAG Glu	AAG Lys 330	GTT Val	GAG Glu	ACT Thr	CCG Pro	TCC Ser 335	Pro	CCC Pro	ACG Thr	GCC Ala	TCA Ser 340	1303
GCT Ala	CTG Leu	GAT Asp	TAC Tyr	CCC Pro 345	AGT Ser	GAG Glu	AAT Asn	CTG Leu	GCC Ala 350	Phe	ATC Ile	GAC Asp	GAG Glu	TCC Ser 355	TCA Ser	1351

GAC ACG CAG AGT GAG CGT GGC TGT GCC CTG CCT CGG GCT CCT CGG GGT Asp Thr Gln Ser Glu Arg Gly Cys Ala Leu Pro Arg Ala Pro Arg Gly 360	1399
CGC CGC CGA CCC AAC CCA TCC AAA AAG CCT TCC AGA CCC CGG GGT CCT Arg Arg Pro Asn Pro Ser Lys Lys Pro Ser Arg Pro Arg Gly Pro 375	1447
GGG CGA CTC CGA GAC AAG GCC GTG CCG GTG TAG GGGCAGGATC Gly Arg Leu Arg Asp Lys Ala Val Pro Val * 390 395 398	1490
TCTGGACCCG GATCCCACGC CAGGGCTTTC GCTCTTGCTG ATGCTCAGGC ATGCTTGGCT	1550
TATTTGACCA AAGAGCCGTC CCTCTTTTGT TCCACGTGGT TGCAACCCTG ACAGGAGTCC	1610
AGTGGTTGCC AAATGCCACC GCTCTTCCCT GGCTGGTTCT TCACATCCAA TCATTTCCAA	1670
AGCCCACCAT CCAAGGCTTT CTGCCTCGCT CCCCTGCCGG TTTTGACCCT CACACCTCAC	1730
AACTGTGCCT CAAAACCTGC ACCAATAAAA CAAAAACTCT GAAAAAAAAA AAAAAAAAAA	1790
AAAA	1794

- (2) INFORMATION POUR LA SEQ ID NO:2:
 - CARACTRERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: ... paires de bases
 - (B) TYPE: nucléotide

 - (C) NOMBRE DE BRIN: double (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN
 - CARACTERISTIQUES (ix)
 - (A) NOM/CLE: TREK-1
 - (B) EMPLACEMENT: de 484 à 1596
 - (xi) DESCRIPTION DE LA SEQUENCES: SEQ ID NO:2:

AGAGCGGCGA C	GCGAGGGGA GA	GTGGTGCT ACC	GGCCAGG	CGGGCCACCC (CGGGCCACAC	60
CCCCACCTTG C	CGGCCCCG GC	GGGGCTCG AGC	CCAGGCGG	GGCGCCTCAC A	AAGACATGC	120
GAAGAGGGC T	GCAGTGATC AC	CCCCTCGC TGA	AGCCCCGG	GGCAGAGCCC A	GCCGCCGGC	180
CGAGCGCACG C	GAGCCACGGG CC	GAGCGCAC CCA	AGGGCCCG	CGCGGGACCC (CAGGCGGCCA	240
CGCAATCGGG C	GTGACCCATC GC	GCGCGGGG GCG	STCGTCGT	CCGATCCCAA (CTTGGCCTCG	300
GCCTCGCCCT (CTGCCCAGCC TG	CCACCGCT GGT	GTCCTCT	CCTTCCGGCG A	ATTTCGTTTC	360
TTCTCACGCT (CCCCCTCTA TA	CCCCTCCC GCC	CTCCAGCC	CCGCTCTCCC (CACCTTGTAA	420
AACAAAGCCG C	GGAAAATGC CT	ACCCGTGC AGO	CTCGGAGC	GCGCAGCCCG	CTTGGAATA	480
	GCC CCT GAC Ala Pro Asp 5					528
	AGG CTC TCA Arg Leu Ser 20					576
	AGT GAC TCG Ser Asp Ser 35					624
	TTC CTG GTG Phe Leu Val					672
	GCA TTG GAG Ala Leu Glu					720
	CAG AAG CAG Gln Lys Gln 85					768
	CTG GAC GAA Leu Asp Glu 100					816
	ATC CCC TTA Ile Pro Leu 115					864

GAC Asp	CTC Leu	GGA Gly 130	AGC Ser	TCT Ser	TTC Phe	TTC Phe	TTT Phe 135	GCT Ala	GGT Gly	ACT Thr	GTT Val	ATC Ile 140	ACA Thr	ACC Thr	ATA Ile	912
GGA Gly	TTT Phe 145	GGA	AAC Asn	ATC Ile	TCC Ser	CCA Pro 150	CGA Arg	ACT Thr	GAA Glu	GGT Gly	GGA Gly 155	AAA Lys	ATA Ile	TTC Phe	TGC Cys	960
ATC Ile 160	ATC Ile	TAT Tyr	GCC Ala	TTG Leu	CTG Leu 165	GGA Gly	ATT Ile	CCC Pro	CTC Leu	TTT Phe 170	GGC Gly	TTT Phe	CTA Leu	CTG Leu	GCT Ala 175	1008
GGG Gly	GTT Val	GGT Gly	GAT Asp	CAG Gln 180	CTA Leu	GGA Gly	ACT Thr	ATA Ile	TTT Phe 185	GGA Gly	AAA Lys	GGA Gly	ATT Ile	GCC Ala 190	AAA Lys	1056
GTG Val	GAA Glu	GAC Asp	ACA Thr 195	TTT Phe	ATT Ile	AAG Lys	TGG Trp	AAT Asn 200	GTT Val	AGT Ser	CAG Gln	ACG Thr	AAG Lys 205	ATT Ile	CGT Arg	1104
ATC Ile	ATC Ile	TCC Ser 210	ACC Thr	ATC Ile	ATC Ile	TTC Phe	ATC Ile 215	CTG Leu	TTT Phe	GGC Gly	TGT Cys	GTC Val 220	CTC Leu	TTT Phe	GTG Val	1152
GCT Ala	CTC Leu 225	CCT Pro	GCG Ala	GTC Val	ATA Ile	TTC Phe 230	AAG Lys	CAC His	ATA Ile	GAA Glu	GGC Gly 235	TGG Trp	AGC Ser	GCC Ala	CTG Leu	1200
GAC Asp 240	GCT Ala	ATC Ile	TAT Tyr	TTT Phe	GTG Val 245	GTT Val	ATC Ile	ACT Thr	CTG Leu	ACG Thr 250	ACC Thr	ATT Ile	GGA Gly	TTT Phe	GGA Gly 255	1248
GAC Asp	TAC Tyr	GTG Val	GCA Ala	GGT Gly 260	GGA Gly	TCA Ser	GAC Asp	ATT Ile	GAA Glu 265	TAT Tyr	CTG Leu	GAC Asp	TTC Phe	TAC Tyr 270	AAG Lys	1296
CCT Pro	GTG Val	GTG Val	TGG Trp 275	TTC Phe	TGG Trp	ATC Ile	CTC Leu	GTT Val 280	GGG Gly	CTG Leu	GCC Ala	TAC Tyr	TTT Phe 285	GCA Ala	GCT Ala	1344
GTT Val	CTG Leu	AGC Ser 290	ATG Met	ATT Ile	GGG Gly	GAC Asp	TGG Trp 295	CTA Leu	CGG Arg	GTG Val	ATC Ile	TCT Ser 300	AAG Lys	AAG Lys	ACG Thr	1392
AAG Lys	GAA Glu 305	GAG Glu	GTG Val	GGA Gly	Glu	TTC Phe 310	Arg	GCG Ala	His	Ala	GCT Ala 315	Glu	TGG Trp	ACA Thr	GCC Ala	1440
AAT Asn 320	GTC Val	ACG Thr	GCC Ala	GAG Glu	TTC Phe 325	AAG Lys	GAA Glu	ACG Thr	AGG Arg	AGG Arg 330	CGG Arg	CTG Leu	AGC Ser	GTG Val	GAG Glu 335	1488
ATC Ile	TAC Tyr	GAC Asp	AAG Lys	TTC Phe 340	CAG Gln	CGT Arg	GCC Ala	ACA Thr	TCC Ser 345	GTG Val	AAG Lys	CGG Arg	AAG Lys	CTC Leu 350	TCC Ser	1536
GCA Ala	GAG Glu	CTG Leu	GCG Ala 355	GGC Gly	AAC Asn	CAC His	AAC Asn	CAG Gln 360	Glu	CTG Leu	ACT Thr	CCG Pro	TGT Cys 365	ATG Met	AGG Arg	1584
		CTG Leu 370		ACC	ACCT	GAC	CAGC	GAGA	GG G	AAGT	CCTG	C CT	CCCT	TGCT		1636

GAAGGCTGAG AGCATCTATC	TGAACGGTCT	GACACCACAC	TGTGCTGGTG	AGGACATAGC	1696
TGTCATTGAG AACATGAAGT	AGCCCTCTCT	TGGAAGAGTC	TGAGGTGGAG	CCATAGGGAA	1756
GGGCTTCTCT AGGCTCTTTG	TGACTGTTGC	CGGTAGCATT	TAAACATTGT	GCATGGTGAC	1816
CTCAAAGGGA AAGCAAATAG	AAAACACCCA	TCTGGTCACC	TTACATCCAG	GGAGGGTGTT	1876
GTCCCGAGGC GGCACTCTGA	GGATGCCGTG	TGCTGTCCGC	TGAGTGCTGA	GTGATGGACA	1936
GGCAGTGTCT GATGCCTTTT	GTGCCCAGAC	TGTTTCCCCT	CCCCCTCTCT	CCTAACG	1993

REVENDICATIONS

1) Protéine purifiée constituant un canal potassium mécanosensible activé par les acides gras polyinsaturés notamment l'acide arachidonique et par le riluzole.

5

10

15

20

25

30

- 2) Protéine selon la revendication 1 dont la séquence en acides aminés est représentée dans la liste de séquences en annexe sous le numéro SEQ ID No:1 ou un dérivé fonctionnellement équivalent de cette protéine.
- 3) Protéine selon l'une des revendications 1 ou 2, dont la séquence en acides aminés est représentée dans la liste de séquences en annexe sous le numéro SEQ ID No:2.
- 4) Anticorps poly ou monoclonaux dirigés contre au moins une protéine constituant un canal ionique selon l'une quelconque des revendications 1 à 3.
- 5) Molécule d'acide nucléique purifiée comprenant ou constituée par une séquence nucléique codant pour une protéine selon l'une quelconque des revendications 1 à 3.
- 6) Molécule d'acide nucléique selon la revendication 5 comprenant la séquence comprise entre les nucléotides 284 et 1477 de la séquence représentée dans la liste de séquences en annexe sous le numéro SEQ ID NO:1 ou sa séquence complémentaire.
- 7) Molécule d'acide nucléique selon la revendication 5 comprenant la séquence comprise entre les nucléotides 484 et 1596 de la séquence représentée

dans la liste de séquences en annexe sous le numéro SEQ ID NO:2 ou sa séquence complémentaire.

8) Vecteur comprenant au moins une molécule d'acide nucléique selon l'une quelconque des revendications 5 à 7 avantageusement associé à des séguences de contrôle.

5

10

15

- 9) Procédé de production d'une protéine constituant un canal potassium selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il consiste:
 - à transférer une molécule d'acide nucléique selon l'une des revendications 5 à 7 ou un vecteur selon la revendication 8 dans un hôte cellulaire,
 - à cultiver ledit hôte cellulaire dans des conditions permettant la production de la protéine constituant ledit canal potassium,
- 20 à isoler, par tous moyens appropriés les protéines constituant lesdits canaux.
 - 10) Procédé d'expression d'un canal potassium selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il consiste :
 - à transférer une molécule d'acide nucléique selon l'une des revendications 5 à 7 ou un vecteur selon la revendication 8 dans un hôte cellulaire,
- à cultiver ledit hôte cellulaire dans des conditions permettant la production desdits canaux potassium.
- 11) Hôte cellulaire obtenu par un procédé35 selon la revendication 10.

12) Procédé de criblage de substances capables de moduler l'activité de canaux potassium mécanosensibles activés par les acides gras polyinsaturés notamment l'acide arachidonique et par le riluzole selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'on met en contact des quantités variables d'une substance à tester avec des cellules selon la revendication 11, puis l'on mesure, par tous moyens appropriés, les effets éventuels de ladite substance sur les courants desdits canaux.

5

10

15

- 13) Procédé selon la revendication 12 appliqué au criblage de substances capables de prévenir ou traiter des maladies du coeur ou du système nerveux chez un sujet humain ou animal.
 - 14) Utilisation d'une substance chimique ou biologique capable de modifier les courants d'un canal potassium selon l'une quelconque des revendications 1 à 3 pour la préparation d'un médicament utile pour prévenir ou traiter des maladies du coeur ou du système nerveux chez un sujet humain ou animal.
- pour la préparation d'un médicament utile pour prévenir ou traiter les pathologies cardiaques et vasculaires, les neurodégénérescences, particulièrement celles qui sont associées aux ischémies et aux anoxies, les pathologies endocriniennes associées à des anomalies dans la sécrétion d'hormones, les pathologies musculaires

16) Composition pharmaceutique comprenant comme principe actif au moins une protéine constituant un canal potassium selon l'une quelconque des revendications 1 à 3, ou un anticorps selon la revendication 4, ou une molécule d'acide nucléique selon l'une des revendications 5 à 7 ou un vecteur selon la revendication 8, éventuellement associé à un véhicule physiologiquement acceptable.

Fig.1

```
EALGGGANP
511 AACCAGCTGGACCAATAGCAGCAACCACTCATCAGCTTGGAACCTGGGCAG
77 T S W T N S S N H S S A W N L G S
613 AGTCTTACACACAGATGCCGGGCGTCTCTTTTGTATCTTCTATGCACTGGT
         DAGRLF
664 GGGGAŢCCCACŢGTŢCGGGAŢGCŢGCTGGCGGGAGŢCGGGGACCGGCTGGG
           G M L L A G
715 CTCCTCTCTGCGCCGGGGCATCGGCCACATCGAAGCAATCTTCTTGAAGTG 145 S S L R R G I G H I E A I F L K W
919 CACTGTAGGCTTTGGCGATTATGTACCCGGCGATGGCACCGGGCAGAACTC
213 T V G F G D Y V P G D G T G Q N S
1174 GCCAGAGAAGGAGCAACCACTCCTGCCCTCTTTTGCCGGCACCGCCTGC
298 P E K E Q P L L P S S L P A P P A
1480 Ggggcaggatetetggaceeggateceaegeeagggetttegetettgetg
1531 atgctcaggcatgcttggcttatttgaccaaagagccgtccctctttgtt
1582 ccacgtggttgcaaccttgacaggagtccagtggttgccaaatgccaccgc
1633 tcttccctggctggttcttcacatccaatcatttccaaagcccaccatcat
1684 aggctttctgcctcgctcccctgccggttttgaccctcacacctcacact
1735 gtgcctcaaaacctgcaccaata
```

	Fig.2			
TWIK TREK TASK TRAAK	1 MAAPD	LLDPKSAAQNS		QSLAGSSCVRL) TVLASRVESDSA
TWIK TREK TASK TRAAK	15 ERH S 39 INVMK 1 - MK Q 1 MR	AWC FGFLVLGY WKLVST I FLYN NVRT AL I V CT STILLALLA EV	LLYLVEGAVV VLYLTEGAAV TTYLLVGAAV LYLVSGAUV	SSVELRYEDLL KALEOPQEISO DALESEPELIE QALEOPHEOGA
TWIK TREK TASK TRAAK	53 ROELRI 77 RITIV 38 RORLE 36 QKKMDI	CLKRRFLEEHE QKOTFLAQHA R-QELRARY GRDOFLRDH	LSEQQLEOF WNSTELDEWI LSOGGYEELE WSOKSLEDFI	GRVLEASNYGV QQIVAAINAGI RVVLRLKP KLLVEALGGGA
TWIK TREK TASK TRAAK	91 SVLS 115 IPLG 72 HKAG 74 NPETSW	- NASG - NWNWD - NSSNQVSHWD VQWR /TNSSNHSSAW	FTSALFFAST LGSSFFFAGT FAGSFMFATT LGSAFFFSGT	VLSTTGYGHTV VITTIGFGNIS VITTIGYGHAA
TWIK TREK TASK TRAAK	125 PLSDGG 150 PRTEGG 101 PSTDGG 112 LHTDAG	M2 KAFCIIYSVIG KIFCIIYALIG KVFCMFYALIG RLECIIFYALVG	PETLETTA PLEGELLAG PLILVMEOS IPLEGMITAG	VVOR ITVHVTR VGDOLGTIFGK LGERINTLVRY /GDRLGSSLRR
TWIK TREK TASK TRAAK	163 RPVL 188 GTAKVE 139 LLH 150 GIGHIE	Y FHIRWGESKO DTFIKWNVSQT RAKKGLGMRRA A #FLKWHVPPG	VVATVHAVLI KARLISTIIF VSMANMVLII VRSISAVLFII	M3 FYTYSCFFF LFGCVLFVAL FFSCIST&C
TWIK TREK TASK TRAAK	199 PAAVFS 226 PAVIFKI 174 GAAAFS 188 PIFVFS	V LEDD WNELES LIEG - WSALDA LYEH - WTFF A	YEGF ISLST	GLGDYVPG - E GFGDYVAG - G GFGDYVALQK
TWIK TREK TASK TRAAK	236 GYNOKFF 262 SDIEYE 211 DOALQTO 224 GTGQNS	RELYKIGIT CY	LEGLIAMLVV LVGLAYFAAV LTGLTVEGAF LEGLAYFASV	LETECELHEL LSMIGDWIRV LNLVVLREMT LTTIGNWIRA
TREK TASK	274 KKFRKMF 299 ISKKTKE 249 MNAEDEK 261 VSBRTBA	YVKKDKDEDO- EVGEFRAHAAE RD&EHRALL®R EMGGLTA©AAS	NGQAGGGG WTGT	VHIIEHD- VTAEFKETR- GSAHTTØTAS VTABVTORTG
TREK TASK	298	GGFRNVYA E VL		A IR
TREK 3 TASK 3	01 FSS TDO 333 SVELYDK 25 IPM IPR 24 SPAPAEK	AAGMK FQRATSIV DLSISDI VETPSPPIASA	E-BOKONEPF\ KRKLSAELAGN CV≋OS∺SSPGC LDYPSENLAF	ATOS - SACY IHNOELT BOM GGGRYSDIPS DESSIDTOS F
TREK 3 TASK 3	31 DADANU	APRSAISSVSTO PRGRRGPNPS		
				TREK
				—— TWIK
	·			TASK

FEUILLE DE REMPLACEMENT (REGLE 26)

FEUILLE DE REMPLACEMENT (REGLE 26)

FEUILLE DE REMPLACEMENT (REGLE 26)

200 pA

Fig.7

FEUILLE DE REMPLACEMENT (REGLE 26)

V(mV)

9/10

Fig. 9a $\begin{array}{c|c} & control \\ \hline + AA & 10\mu M \\ \hline 200 & ms \\ \hline \end{array}$ $\begin{array}{c|c} + AA & 10\mu M \\ \hline \end{array}$ $\begin{array}{c|c} & + AA & 10\mu M \\ \hline \end{array}$ $\begin{array}{c|c} & v & wash \\ \hline \end{array}$ $\begin{array}{c|c} & V & wash \\ \hline \end{array}$

Outside out

10/10

Fig. 10b

PUB-NO: W0009945108A2

DOCUMENT- WO 9945108 A2

IDENTIFIER:

TITLE: NOVEL MECHANICALLY

SENSITIVE MAMMAL

POTASSIUM CHANNEL

FAMILY ACTIVATED BY

POLYUNSATURATED

FATTY ACIDS AND

THEIR USE

PARTICULARLY FOR

SCREENING MEDICINES

PUBN-DATE: September 10, 1999

INVENTOR-INFORMATION:

NAME	COUNTRY
HONORE, ERIC	FR
FINK, MICHEL	FR
LAZDUNSKI, MICHEL	FR
LESAGE, FLORIAN	FR
DUPRAT, FABRICE	FR

ASSIGNEE-INFORMATION:

NAME		COUNTRY
CENTRE NAT RECH S	SCIENT	FR
HONORE ERIC		FR
FINK MICHEL		FR
LAZDUNSKI MICHEL		FR
LESAGE FLORIAN		FR
DUPRAT FABRICE		FR

APPL-NO: FR09900404

APPL-DATE: February 23, 1999

PRIORITY-DATA: FR09802725A (March 5,

1998)

INT-CL C12N015/00, (IPC): C07K014/705, G01N033/50

EUR-CL (EPC): C07K014/705

ABSTRACT:

CHG DATE=19991002 STATUS=0>The invention concerns a novel mechanically sensitive potassium

channel family activated by polyunsaturated fatty acids in particular by arachidonic acid and by riluzole. The invention also concerns a method for screening a substance capable of modulating the ionic currents of said channels.