

Markov Decision Processes

Dan Weld

University of Washington

Many slides by Dan Klein & Pieter Abbeel / UC Berkeley. (http://ai.berkeley.edu) and by Mausam & Andrey Kolobov

Outline

Stochastic Environments

- Expectimax
- Markov Decision Processes
 - Value iteration
 - Policy iteration
- Reinforcement Learning

Agent vs. Environment

- An agent is an entity that perceives and acts.
- A rational agent selects actions that maximize its utility function.

Deterministic vs. stochastic

Fully observable vs. partially observable

Markov Decision Processes

Cost of breathing

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions a ∈ A
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')

$$R(s_{32}, N, s_{33}) = -0.01$$

$$R(s_{32}, N, s_{42}) = -1.01$$

$$R(s_{33}, E, s_{43}) = 0.99$$

R & T are big tables! For now, we give them to the agent

- We want to output the optimal policy, $\pi^*: S \to A$
 - One that maximizes expected value of the discounted sequence of rewards.

The Bellman Equations

The Bellman Equations

Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^*(s) = \max_a Q^*(s, a)$$

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Value Iteration

Called a

"Bellman Backup"

} do ∀s, a

V_{k+1}(s)

s,a,s',r 🕻

- Forall s, Initialize $V_0(s) = 0$ no time steps left means an expected reward of zero
- Repeat

$$K += 1$$

$$Q_{k+1}(s, a) = \Sigma_{s'} T(s, a, s') [R(s, a, s') + \gamma V_k(s')]$$

$$V_{k+1}(s) = Max_a Q_{k+1}(s, a)$$

■ Repeat until |V_{k+1}(s) - V_k(s) | < ε, forall s "convergence to V*"

Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$Q_{k+1}(s,\,a) = \Sigma_{s^{\cdot}} \; T(s,\,a,\,s^{\cdot}) \; [\; R(s,\,a,\,s^{\cdot}) + \gamma \; V_k(s^{\cdot})] \label{eq:Qk+1}$$

$$V_{k+1}(s) = Max_a Q_{k+1}(s, a)$$

■ Problem 1: It's slow – O(S²A) per iteration

- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

VI → Asynchronous VI

- Is it essential to back up all states in each iteration?
 - No!
- States may be backed up
 - many times or not at all
 - in any order
 - As long as no state gets starved... convergence properties still hold!!
- Random Order ...works! Easy to parallelize [Dyna, Sutton 91]
- On-Policy Order Simulate the states that the system actually visits.
- Efficient Order e.g. Prioritized Sweeping [Moore 93]
 Q-Dyna [Peng & Williams 93]

12

Solving MDPs

- Value Iteration
- Policy Iteration
- Heuristic Search Methods
- Real-Time Dynamic programming
- Reinforcement Learning

Policy Iteration

- 1. Policy Evaluation
- 2. Policy Improvement

Part 1 - Policy Evaluation

Fixed Policies

Do the optimal action

Do what π says to do

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only **one action per state**
 - ... though the tree's value would depend on which policy we fixed

Computing Utilities for a Fixed Policy

- A new basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π : $V^{\pi}(s)$ = expected total discounted rewards starting in s and following π
- $\pi(s)$ $\pi(s)$ $\pi(s)$ $\pi(s)$
- Recursive relation (variation of Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Iterative Policy Evaluation Algorithm

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

tes
$$\pi(s)$$

$$s, \pi(s)$$

$$+ \gamma V_k^{\pi}(s')]$$

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- Efficiency: O(S²) per iteration
 - Often converges in much smaller number of iterations compared to VI

Linear Policy Evaluation Algorithm

- Another way to calculate the V's for a fixed policy π ?
- Idea 2: Without the maxes, the Bellman equations are just a linear system of equations

- Solve with Matlab (or your favorite linear system solver)
 - S equations, S unknowns = O(S³) and EXACT!
 - In large spaces, probably too expensive

Policy Iteration

- 1. Policy Evaluation
- 2. Policy Improvement

Policy Iteration

- Initialize $\pi(s)$ to random actions
- Repeat
 - Step 1: Policy evaluation: calculate V^π(s) for each s % like we just discussed
 - Step 2: Policy improvement: update policy using *one-step look-ahead*For each s, what's the *best action* to execute, *assuming agent then follows* π ?
 Let $\pi'(s)$ = this best action.

 $\pi = \pi'$

Until policy doesn't change

Policy Iteration Details

- Initialize $\pi(s)$ to random actions
- Repeat
 - Step 1: Policy evaluation:
 - Initialize k=0; Forall s, $V_0^{\pi}(s) = 0$
 - Repeat until V^π converges
 - For each state s, $V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$
 - Increment k
 - Step 2: Policy improvement:
 - For each state, s, $\pi'(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi}(s') \right]$
 - If $\pi == \pi'$ then it's optimal; return it.
 - Else set $\pi := \pi'$ and loop.

Example

Initialize π_0 to "always go right"

Perform policy evaluation

Perform policy improvement Iterate through states

Has policy changed?

Yes! i += 1

Example

π₁ says "always go up"

Perform policy evaluation

Perform policy improvement Iterate through states

Has policy changed?

No! We have the optimal policy

Policy Iteration Properties

- Can we view PI as search?
 - Space of ...?
 - Search algorithm?
- Policy iteration finds the optimal policy, guaranteed (assuming exact evaluation)!
 - Why does hill-climbing yield optimum?!?
- Often converges (much) faster than VI

VI & PI Comparison

- Changing the search space.
- Policy Iteration
 - Search over the space of possible policies
 - Compute the resulting value
- Value Iteration
 - Search over the space of possible Real-valued value functions
 - Compute the resulting policy

4

How Big?

VI & PI Comparison Part II

- Both compute the same thing (V* and π^*) using Bellman Equations
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do fewer iterations
 - Each one is slower (must update all V^{π} and then choose new best π)
 - Modified policy iteration is faster per iteration, since approximate V^{π}
- Which is better?
 - Lots of actions? Choose Policy Iteration
 - Already got a good policy? Policy Iteration
 - Few actions, acyclic? Value Iteration
 - Best of both worlds Modified Policy Iteration

Modified Policy Iteration [van Nunen 76]

- initialize π_0 as a random policy
- Repeat

Approximate Policy Evaluation: Compute $V^{\pi_{n-1}}$

by running only few iterations of iterative policy eval.

Policy Improvement: Construct π_n greedy wrt $V^{\pi_{n-1}}$

- Until convergence
- return π_n

43

Modified Policy Iteration as Search

- Can we view MPI as search?
 - Space of ... policies
 - Search algorithm... hill climbing.
 - Heuristic?
- In practice, usually faster than VI or PI.

What's Next Part II? Reinforcement Learning!

- So far we've assumed agent knows T(s,a,s') and R(s,a,s')
- Often one doesn't know them, must interact to learn them!
 - PS4 (after midterm) will cover this