

SEQUENCE LISTING

IAP11 Rec'd PCT/PTO 04 AUG 2006

<110> Benvenisty, Nissim
Eiges, Rachel

<120> GENE PROFILING OF HUMAN EMBRYONIC STEM CELLS

<130> CIBT-PWO-175

<160> 30

<170> PatentIn version 3.2

<210> 1

<211> 1818

<212> DNA

<213> Homo sapiens

<400> 1

gtagtccctt gttacatgca tgagtcagtg aacaggaaat gggtaatga catttgtgg 60

taggttattt ctagaagtta ggtggcagc tcggaaggca gatgcacttc tacagactat 120

tccttgggc cacacgttagg ttcttgaatc ccgaatggaa aggggagatt gataactgg 180

gtgttatgt tcttacaagt ttctgcctt taaaatcca gtcccaggac atcaaagctc 240

tgcagaaaga actcgagcaa ttgccaagc tcctgaagca gaagaggatc accctggat 300

atacacaggc cgatgtgggg ctcaccctgg gggttctatt tgggaaggta ttcagccaaa 360

cgaccatctg ccgcgtttag gctctgcagc tttagctcaa gaacatgtgt aagctgcggc 420

ccttgctgca gaagtgggtg gaggaagctg acaacaatga aaatcttcag gagatatgca 480

aagcagaaac ctcgtgcag gcccggaaaga gaaagcgaac cagtatcgag aaccgagtga 540

gaggcaacct ggagaatttg ttctgcagt gcccggaaacc cacactgcag cagatcagcc 600

acatgcccc gcagcttggg ctgcgagaagg atgtggccg agtgtggc ttaaccggc 660

gtagtccctt gttacatgca tgagtcagtg aacaggaaat gggtaatga catttgtgg 720

taggttattt ctagaagtta ggtggcagc tcggaaggca gatgcacttc tacagactat 780

tccttgggc cacacgttagg ttcttgaatc ccgaatggaa aggggagatt gataactgg 840

gtgttatgt tcttacaagt ttctgcctt taaaatcca gtcccaggac atcaaagctc 900

tgcagaaaga actcgagcaa ttgccaagc tcctgaagca gaagaggatc accctggat 960

atacacaggc cgatgtgggg ctcaccctgg gggttctatt tgggaaggta ttcagccaaa 1020

cgaccatctg ccgcgtttag gctctgcagc tttagctcaa gaacatgtgt aagctgcggc 1080

ccttgctgca gaagtgggtg gaggaagctg acaacaatga aaatcttcag gagatatgca 1140

aagcagaaac ctcgtgcag gcccggaaaga gaaagcgaac cagtatcgag aaccgagtga 1200

gaggcaacct ggagaatttg ttctgcagt gcccggaaacc cacactgcag cagatcagcc 1260

acatcgccca gcagcttggg ctcgagaagg atgtggtccg agtgtgggtc tgtaaccggc 1320
 gccagaaggg caagcgatca agcagcgact atgcacaacg agaggattt gaggctgctg 1380
 ggtctccccc ctcagggggga ccagtgtcct ttccctctggc cccaggcccc cattttgggt 1440
 ccccaggcta tgggagccct cacttcactg cactgtactc ctgggtccct ttccctgagg 1500
 gggaaagcctt tccccctgtc tctgtcacca ctctgggctc tcccttgcatt ccaaactgag 1560
 gtgcctgcct gcccctctag gaatggggga cagggggagg ggaggagcta gggaaagaaa 1620
 acctggagtt tgtgccaggg ttttggatt aagttcttca ttcaactaagg aaggaattgg 1680
 gaacacaaaag ggtggggggca ggggagtttgg gggcaactgg ttggagggaa ggtgaagttc 1740
 aatgtgctc ttgattttaa tcccacatca tgtatcactt ttttcttaaa taaagaagct 1800
 tgggacacag tagataga 1818

<210> 2
 <211> 265
 <212> PRT
 <213> Homo sapiens

<400> 2

Met His Phe Tyr Arg Leu Phe Leu Gly Ala Thr Arg Arg Phe Leu Asn
 1 5 10 15

Pro Glu Trp Lys Gly Glu Ile Asp Asn Trp Cys Val Tyr Val Leu Thr
 20 25 30

Ser Leu Leu Pro Phe Lys Ile Gln Ser Gln Asp Ile Lys Ala Leu Gln
 35 40 45

Lys Glu Leu Glu Gln Phe Ala Lys Leu Leu Lys Gln Lys Arg Ile Thr
 50 55 60

Leu Gly Tyr Thr Gln Ala Asp Val Gly Leu Thr Leu Gly Val Leu Phe
 65 70 75 80

Gly Lys Val Phe Ser Gln Thr Thr Ile Cys Arg Phe Glu Ala Leu Gln
 85 90 95

Leu Ser Phe Lys Asn Met Cys Lys Leu Arg Pro Leu Leu Gln Lys Trp
 100 105 110

Val Glu Glu Ala Asp Asn Asn Glu Asn Leu Gln Glu Ile Cys Lys Ala
 115 120 125

Glu Thr Leu Val Gln Ala Arg Lys Arg Lys Arg Thr Ser Ile Glu Asn

130

135

140

Arg Val Arg Gly Asn Leu Glu Asn Leu Phe Leu Gln Cys Pro Lys Pro
 145 150 155 160

Thr Leu Gln Gln Ile Ser His Ile Ala Gln Gln Leu Gly Leu Glu Lys
 165 170 175

Asp Val Val Arg Val Trp Phe Cys Asn Arg Arg Gln Lys Gly Lys Arg
 180 185 190

Ser Ser Ser Asp Tyr Ala Gln Arg Glu Asp Phe Glu Ala Ala Gly Ser
 195 200 205

Pro Phe Ser Gly Gly Pro Val Ser Phe Pro Leu Ala Pro Gly Pro His
 210 215 220

Phe Gly Ala Pro Gly Tyr Gly Ser Pro His Phe Thr Ala Leu Tyr Ser
 225 230 235 240

Ser Val Pro Phe Pro Glu Gly Glu Ala Phe Pro Pro Val Ser Val Thr
 245 250 255

Thr Leu Gly Ser Pro Leu His Ser Asn
 260 265

<210> 3
 <211> 2386
 <212> DNA
 <213> Homo sapiens

<400> 3
 ctggctaaaa aagcacccccc actgagcacc ttgcgacccc ccgctcctac ccggccagaga 60
 acaaaccccc tttgactgta atttccctt acctaaccaa atcctataaa acggcccccac 120
 ccttatctcc ctgcgtgac tctctttcg gactcagccc gcctgcaccc aggtgaaata 180
 aacagcctcg ttgctcacac aaagcctgtt tgggtgtctc ttcacacgga cgccgtatgaa 240
 atttggtgcc gtgactcgga tcgggggacc tcccttggga gatcaatccc ctgtcctcct 300
 gctctttgtc ccgtgagaaa gatccaccta cgacctcagg tcctcagacc aaccagccca 360
 agaaaacatct caccaattc aaatccggtt agcggcctct ttttactctg ttctccaacc 420
 tccctcaacta tccctcaacc tctttctctt tcaatcttg gcccacact tcaatctctc 480
 cttctcttta attcaattc ctttcattct ctggtagaga caaaagagac atgttttatac 540
 cgtgaaccca aaactccggc gcccgtcactg gactggaaag gcagtcttcc cttgggtttt 600

aatcattgca	gggacgcctc	tctgattca	cgtttcagac	cacgcaggga	tgcctgcctt	660
ggtccttcac	ccttagcggc	aagtcccgct	ttcctggggc	aggggcaagt	acccctcaac	720
cccttctcct	tcacccttag	cggaagtcc	cgctttctg	gggcaggggc	aagtaccct	780
caaccccttc	tccttcaccc	ttagcagcaa	gtcccgctt	cctaggggc	aagaacccc	840
caatcgctta	tttcacgcc	ccaacagaaa	cccccacccc	tttcccggt	ctctactctt	900
ttctctgggc	ttgcctcctt	cactatgggc	aagctccac	cttccattcc	tttcttctcc	960
cttagcatgt	attcttaaga	actaaaatc	tcttcaattc	tcacctgacc	taaaatctaa	1020
gcgtcttatt	ttcttctgca	atgccacttg	accccaatac	aaactcaaca	gtagttccaa	1080
atagccagaa	aatggcactt	tcaattttc	caccctacaa	gatctaaata	attcttggcg	1140
taaaatgggc	aaatggtgtg	agggtcctga	cgtccaggca	ttctttaca	catcagtccc	1200
ttcctagtct	ctgtgcccag	tgcaactcgt	cccaaatctt	ccttcttcc	ctcccgctg	1260
tcccctcagt	accaacccca	agcgtcaactg	agtctttcta	atcttccttt	tctacagacc	1320
catctgacct	ctcccttcct	ccccaggctg	ctccttgcca	ggccgagcta	ggtcccaatt	1380
cttcctcagc	ctcacacaag	aacttccaaa	cgcctgaact	gtagcagcca	gacgtttctc	1440
cagaacctcc	tccccagga	acttgctaca	catgccggaa	atctggccac	tgggccaagg	1500
aacgccccca	gccccggatt	cctcctaagc	cgcgtcccat	ctgtgtggga	ccccactgaa	1560
aatcgactg	ttcaactcac	ctggcagcca	ctcccagagc	tcctggact	ctggcccaag	1620
gttctctgac	tgactccctc	ttggcttact	ggctgaagac	tgacgctgcc	tgatcgctc	1680
agaagccccg	cagaccatca	tggacgcccga	gttttagccc	gcctgcaccc	aggtgaaata	1740
aacagccttg	ttgctcacac	aaagcctgtt	tgggtgtctc	ttcacacaga	cgcgcacgaa	1800
aggaagaca	tacaaaaaca	aggtatctga	ggtaggtact	actgagacag	ccaggtggga	1860
aggactcctt	ggccaaaactc	caaccagcct	gtacactggg	aggaatgtgc	actgggatgg	1920
agccatagaa	gtttgtgtcg	tttgcagtgg	ggaggaggct	ggtccctcct	tttcctgtga	1980
ggaacctgga	attcaatctg	tgaggttgtt	ctggagatgt	tctggggaga	ctgcattaaa	2040
cacagcttcg	caccattgaa	taaactcagc	aacaagccaa	tgcataaaag	taatctatgc	2100
ttcaggtcac	agaagcttca	agggaaaaaa	aacagaatac	tctagggcca	ttgttcacaa	2160
actcatctga	aaacatcctg	gaaaaatttt	cccaaacaca	tggaaagaaa	gagagggaaa	2220
aagaagat	ctgaataatg	tggactagaa	taaagagctg	ccaggagctg	tttattttaaa	2280
aacagtactt	tcttctctgg	ctgagtcct	ggtattctct	gctgcaatct	gtagctgtag	2340
aattttgaag	aatgcaat	aattcaaatg	gtttgatgag	taat		2386

<210> 4
<211> 235
<212> PRT
<213> Homo sapiens

<400> 4

Pro Asn Pro Ile Lys Arg Pro His Pro Tyr Leu Pro Ser Leu Thr Leu
1 5 10 15

Phe Ser Asp Ser Ala Arg Leu His Pro Gly Glu Ile Asn Ser Leu Val
20 25 30

Ala His Thr Lys Pro Val Trp Trp Ser Leu His Thr Asp Ala His Glu
35 40 45

Ile Trp Cys Arg Asp Ser Asp Arg Gly Thr Ser Leu Gly Arg Ser Ile
50 55 60

Pro Cys Pro Pro Ala Leu Cys Ser Val Arg Lys Ile His Leu Arg Pro
65 70 75 80

Gln Val Leu Arg Pro Thr Ser Pro Arg Asn Ile Ser Pro Ile Ser Asn
85 90 95

Pro Val Ser Gly Leu Phe Leu Leu Cys Ser Pro Thr Ser Leu Thr Ile
100 105 110

Pro Gln Pro Leu Ser Pro Phe Asn Leu Gly Ala Thr Leu Gln Ser Leu
115 120 125

Pro Ser Leu Asn Phe Asn Ser Phe His Ser Leu Val Glu Thr Lys Glu
130 135 140

Thr Cys Phe Ile Arg Glu Pro Lys Thr Pro Ala Pro Val Thr Asp Trp
145 150 155 160

Glu Gly Ser Leu Pro Leu Val Phe Asn His Cys Arg Asp Ala Ser Leu
165 170 175

Ile Ser Arg Phe Arg Pro Arg Arg Asp Ala Cys Leu Gly Pro Ser Pro
180 185 190

Leu Ala Ala Ser Pro Ala Phe Leu Gly Gln Gly Gln Val Pro Leu Asn
195 200 205

Pro Phe Ser Phe Thr Leu Ser Gly Lys Ser Arg Phe Ser Gly Ala Gly
210 215 220

Ala Ser Thr Pro Gln Pro Leu Leu Leu His Pro
 225 230 235

<210> 5
 <211> 1019
 <212> DNA
 <213> Homo sapiens

<400> 5
 ttggctgact ctctttcgg actcagcccg cctgcaccca ggtgaaataa acagccttgt 60
 tgctcacaca aagcctgttt ggtggctct tcacacaaac ggcacatgaaa tttggtgcca 120
 tgactcgat cggggtagct cccttggag atcaatcccc agtcctcctg ctcttgctc 180
 cgtgagaaag atctacctag gacctcaggat cctcagactg accagccaa ggaacatctc 240
 accaatttca aatctggacc ccactgaaaa tcggactgtt caactcatct ggcagccact 300
 cccagagccc ctggaactct ggcccaagcc tctctgactg actccttccc agatcttctc 360
 ggcttagcag ctgaagactg acactgccc atcgccttgg aagcccccta gaccatcactg 420
 gatgccgagc ttcgagtaac ttcacagtg gagggAACgc gcatgaaaaa accaaacaaa 480
 caaaaaaaaaatt tcttttgta gcagaataaa aaaacaaaaa aaaggacttt ttcttctgga 540
 ctgaactata tttaaatctc aaaggatgga catctcacaa ctttcctaca gcaagactg 600
 tgaggtaata attgatataat taattattaa aattattgaa gctggaactc agattccat 660
 ttatattta catatataat tattctatta atggattcta gcttaataa agagaagcaa 720
 catgagtcat tggggcaagg ggtgagatcg atgacctctg gagattgatc ccagtgttct 780
 gacagagtttta gcttctgtta tcaggtgcta tagttttca tagtgatgct gatagagcct 840
 actcaaggat tggactcatt cttttggcc atgaatgcca attctgcaga agccactgtg 900
 gtagaaattc aaatgtaatg aaaaacaaac attcactcat ttattatcac tatttgccctg 960
 ccacaaagac agatttttag gaagataaac aaataaaaac gtgtttgcca tttgaaggg 1019

<210> 6
 <211> 111
 <212> PRT
 <213> Homo sapiens

<400> 6

Trp Leu Thr Leu Phe Ser Asp Ser Ala Arg Leu His Pro Gly Glu Ile
 1 5 10 15

Asn Ser Leu Val Ala His Thr Lys Pro Val Trp Trp Ser Leu His Thr
 20 25 30

Asn Ala His Glu Ile Trp Cys His Asp Ser Asp Arg Gly Thr Ser Leu
 35 40 45

Gly Arg Ser Ile Pro Ser Pro Pro Ala Leu Cys Ser Val Arg Lys Ile
 50 55 60

Tyr Leu Gly Pro Gln Val Leu Arg Leu Thr Ser Pro Arg Asn Ile Ser
 65 70 75 80

Pro Ile Ser Asn Leu Asp Pro Thr Glu Asn Arg Thr Val Gln Leu Ile
 85 90 95

Trp Gln Pro Leu Pro Glu Pro Leu Glu Leu Trp Pro Lys Pro Leu
 100 105 110

<210> 7
 <211> 3459
 <212> DNA
 <213> Homo sapiens

<400> 7												
cctttgcctt	cgga	ttctc	cggggcc	cag	ccgc	ccgc	ccaggg	gggg	ccac	gg	60	
gctc	aggcc	cgaccat	atggg	ctcc	cgatgt	cc	aacc	aggc	ttgc	agggt	gg	120
gccc	caga	cgatgg	gggg	gggg	gggg	gggg	gggg	gggg	ctgc	gcgc	aa	180
cgcc	cgaa	acgg	tcggg	catct	gtca	ac	ttgt	caac	tg	gcat	gg	240
ccgc	ccat	gtgc	ccgc	ccgc	ttgt	cc	ccgc	ccgc	ttcg	ggct	tt	300
ccgc	ccat	ccgc	ccgc	ccgc	ccgc	cc	ccgc	ccgc	ccgc	ccgc	cc	360
ccgc	ccat	ccgc	ccgc	ccgc	ccgc	cc	ccgc	ccgc	ccgc	ccgc	cc	420
ccgc	ccat	ccgc	ccgc	ccgc	ccgc	cc	ccgc	ccgc	ccgc	ccgc	cc	480
ccgc	ccat	ccgc	ccgc	ccgc	ccgc	cc	ccgc	ccgc	ccgc	ccgc	cc	540
ccgc	ccat	ccgc	ccgc	ccgc	ccgc	cc	ccgc	ccgc	ccgc	ccgc	cc	600
ccgc	ccat	ccgc	ccgc	ccgc	ccgc	cc	ccgc	ccgc	ccgc	ccgc	cc	660
ccgc	ccat	ccgc	ccgc	ccgc	ccgc	cc	ccgc	ccgc	ccgc	ccgc	cc	720
ccgc	ccat	ccgc	ccgc	ccgc	ccgc	cc	ccgc	ccgc	ccgc	ccgc	cc	780
ccgc	ccat	ccgc	ccgc	ccgc	ccgc	cc	ccgc	ccgc	ccgc	ccgc	cc	840
ccgc	ccat	ccgc	ccgc	ccgc	ccgc	cc	ccgc	ccgc	ccgc	ccgc	cc	900
ccgc	ccat	ccgc	ccgc	ccgc	ccgc	cc	ccgc	ccgc	ccgc	ccgc	cc	960
ccgc	ccat	ccgc	ccgc	ccgc	ccgc	cc	ccgc	ccgc	ccgc	ccgc	cc	1020

ttttcccttt aaagaaggat atataataat tcccatgcc aagtgaaatg attaagtata 1080
agaccagatt catggagcca agccactaca ttctgtggaa ggagatctct caggagtaag 1140
cattgtttt tttcacatc ttgtatcctc atacccactt ttgggatagg gtgctggcag 1200
ctgtcccaag caatgggtaa tcatgtatggc aaaaagggtg tttggggaa cagctgcaga 1260
cctgctgctc tatgctcacc cccgccccat tctggccaa tgcatttttta ttatgtct 1320
ccctggata ctgcacccctg ggtcccactt tctccaggat gccaactgca ctagctgtgt 1380
gcgaatgacg tatcttgcatttttaactt ttttcctta atataaataat tctggttttg 1440
tattttgtatatttaatc taaggccctc atttcctgca ctgtgttctc aggtacatga 1500
gcaatctcag ggatagccag cagcagctcc aggtctgcgc agcaggaatt actttttgtt 1560
gttttgccca ccgtggagag caactatggag tgcacag cctattgaac tacctcattt 1620
ttgccaataa gagctggctt ttctgccata gtgtcctt gaaacccctt ctgccttgaa 1680
aatgtttat gggagactag gtttaactg ggtggccca tgacttgatt gccttctact 1740
ggaagattgg gaatttagtct aaacaggaaa tggtggtaca cagaggctag gagaggctgg 1800
gccccggtaa aaggccagag agcaagccaa gattaggtga gggttgtcta atcctatggc 1860
acaggacgtg ctttacatct ccagatctgt tcttaccagg attaggttag gcctaccatg 1920
tgccacaggg tgggtgtgtg ttgtaaaac tagagttgt aaggataagt ttaaagacca 1980
atacccctgt acttaatcct gtgtgtcga gggatggata tatgaagtaa ggtgagatcc 2040
ttaaccccttc aaaattttcg ggttccaggg agacacacaa gcgggggtt tgggtgcct 2100
ggagcctgtg tcctgccctg ctacagtagt gattaatagt gtcatggtag ctaaaggaga 2160
aaaaggggggt ttcgtttaca cgctgtgaga tcaccgcaaa cctacccctac tgggttggaa 2220
cgggacaaat gcaatagaac gcattgggtg gtgtgtgtct gatcctgggt tcttgcctcc 2280
cctaaatgtc gcccccaag ttactgtatt tgcgtggct ttgttaggact tcactacgtt 2340
gattgttagg tggccctagtt tgcgtaaata taatgtatttgcgttttcc ttgttttttgc 2400
ggggttttgt ttacaaaactt cttttgtat tgagagaaaa atagccaaag catctttgac 2460
agaagggtct gcaccaggca aaaagatctg aaacattagt ttggggggcc ctcttcttaa 2520
aggggggatc ttgaaccatc ctttcttttgcatttttccctt cccctattac ctattagacc 2580
agatcttctg tcctaaaaac ttgtttctta ccctgccctc tttctgttc acccccaaaaa 2640
gaaaacttac acacccacac acatacacat ttcatgttgc gagtgtctcc acaactctta 2700
aatgtgtat gcaaaaatac tgaagctagg aaaaccctcc gtccctgtttt cccaaacctcc 2760
taagtcaaga ccattaccat ttctttctttt cttttttttaa agtggagtct 2820
cgctgtgtca cccaggcaga gggtgcagtg agctgagatc gcaccactgca actccagcct 2880

ggttacagag cgagactctg tctcaaacaa aacaaaacaa aacaaaaaca cactactgt 2940
 tttggatgg atcaaaccctc cttaattttta atttctaattc ctaaagtaaa gagatgcaat 3000
 tggggccctt ccatgttagaa agtgggtca ggaggccaag aaaggaaata tgaatgtata 3060
 tccaagtcac tcaggaactt ttatgcaggt gctagaaaact ttatgtcaaa gtggccacaa 3120
 gattgtttaa taggagacga acgaatgtaa ctccatgttt actgctaaaa accaaagctt 3180
 tggtaaaat cttgaatttta tggggcgaaa gggtaggaaa gcctgtacct gtctgtttt 3240
 ttctgtatcc tttccctca ttccctgaact gcaggagact gagccccttt gggctttgg 3300
 gacccatca ctgggtgtg ttatgtatgg ggttggatgg gctgtactgg gtactccctt 3360
 tccattttc taatcatttt ttaacacaag ctgactcttc cttcccttc tcctttccct 3420
 gggaaaatac aatgaataaa taaagactta ttggtaacgc 3459

<210> 8
 <211> 209
 <212> PRT
 <213> Homo sapiens

<400> 8

Met Gly Ser Val Ser Asn Gln Gln Phe Ala Gly Gly Cys Ala Lys Ala
 1 5 10 15

Ala Glu Glu Ala Pro Glu Glu Ala Pro Glu Asp Ala Ala Arg Ala Ala
 20 25 30

Asp Glu Pro Gln Leu Leu His Gly Ala Gly Ile Cys Lys Trp Phe Asn
 35 40 45

Val Arg Met Gly Phe Gly Phe Leu Ser Met Thr Ala Arg Ala Gly Val
 50 55 60

Ala Leu Asp Pro Pro Val Asp Val Phe Val His Gln Ser Lys Leu His
 65 70 75 80

Met Glu Gly Phe Arg Ser Leu Lys Glu Gly Glu Ala Val Glu Phe Thr
 85 90 95

Phe Lys Lys Ser Ala Lys Gly Leu Glu Ser Ile Arg Val Thr Gly Pro
 100 105 110

Gly Gly Val Phe Cys Ile Gly Ser Glu Arg Arg Pro Lys Gly Lys Ser
 115 120 125

Met Gln Lys Arg Arg Ser Lys Gly Asp Arg Cys Tyr Asn Cys Gly Gly
 130 135 140

Leu Asp His His Ala Lys Glu Cys Lys Leu Pro Pro Gln Pro Lys Lys
 145 150 155 160

Cys His Phe Cys Gln Ser Ile Ser His Met Val Ala Ser Cys Pro Leu
 165 170 175

Lys Ala Gln Gln Gly Pro Ser Ala Gln Gly Lys Pro Thr Tyr Phe Arg
 180 185 190

Glu Glu Glu Glu Glu Ile His Ser Pro Thr Leu Leu Pro Glu Ala Gln
 195 200 205

Asn

<210> 9
 <211> 3453
 <212> DNA
 <213> Homo sapiens

<400> 9
 aactccagga atttgtggcg gagagggcaa ataactgcgg ctctccggc gccccatgc 60
 tcgcaccatg tcgaggcgca agcaggcgaa accccagcac atcaactcgg aggaggacca 120
 gggcgagcag cagccgcagc agcagacccc ggagttgca gatgcggccc cagcggcgcc 180
 cgccggcgaaa gagctgggtg ctccagtgaa ccacccaggg aatgacgagg tggcgagtga 240
 ggtatgaagcc acagtaaagc ggcttcgtcg ggaggagacg cacgtctgtg agaaaatgctg 300
 tgcggagttc ttcagcatct ctgagttcct ggaacataag aaaaattgca ctaaaaatcc 360
 acctgtcctc atcatgaatg acagcgaggg gcctgtgcct tcagaagact tctccggagc 420
 tgtactgagc caccagccca ccagttccgg cagtaaggac tgtcacaggg agaatggcg 480
 cagctcagag gacatgaagg agaagccgga tgcggagtct gtgggtgtacc taaagacaga 540
 gacagccctg ccacccaccc cccaggacat aagctattta gccaaaggca aagtggccaa 600
 cactaatgtg accttgcagg cactacgggg caccaaggtg gcgggtgaatc agcggagcgc 660
 ggtatgcactc cctgcccccg tgcctgggtgc caacagcatc ccgtgggtcc tgcagcagat 720
 ctttgtctg cagcagcagc agctacagca gatccagctc accgagcaga tccgcattcca 780
 ggtgaacatg tgggcctccc acgcctcca ctcaagcggg gcagggggccg acactctgaa 840
 gaccttgggc agccacatgt ctcagcaggt ttctgcagct gtggcttgc tcagccagaa 900
 agcttggaaagc caaggtctgt ctctggatgc ctgtaaaacaa gccaagctac ctcacgccaa 960

catcccttct gccaccagct ccctgtcccc agggctggca cccttcactc tgaagccgga 1020
 tgggaccgg gtgctccga acgtcatgtc ccgcctcccg agcgcttgc ttccctcaggc 1080
 cccgggctcg gtgctcttcc agagccctt ctccactgtg ggcgttagaca catccaagaa 1140
 agggaaaggaa aagccaccga acatctccgc ggtggatgtc aaacccaaag acgaggcggc 1200
 cctctacaag cacaagtgt agtactgtag caaggtttt gggactgata gtccttgca 1260
 gatccaccc tcgtccccaca ctggagagag acccttcgtg tgctctgtct gtggtcatcg 1320
 cttcaccacc aaggcaacc tcaagggtca ctttcaccga catccccagg tgaaggcaaa 1380
 ccccccagctg tttgccgagt tccaggacaa agtggcggcc ggcaatggca tcccttatgc 1440
 actctctgt a cctgaccacc tagatgaacc gagttttct ttagacagca aacctgtcct 1500
 tgtaaccacc tctgttagggc tacctcagaa tctttcttcg gggactaatc ccaaggaccc 1560
 cacgggtggc tccttgcccg gtgacctgca gcctgggcct tctccagaaa gtgagggtgg 1620
 acccacactc cctgggggtgg gaccaaacta taattccca agggctggtg gtcctccaagg 1680
 gagtgggacc cctgagccag ggtcagagac cctgaaattt cagcagttgg tggagaacat 1740
 tgacaaggcc accactgatc ccaacgaatg tctcatttgc caccgagtct taagctgtca 1800
 gagctccctc aagatgcatt atgcacccca caccggggag agaccgttcc agtgtaaat 1860
 ctgtggccga gcctttctt ccaaaggtaa cctgaagaca caccttgggg ttcaccgaac 1920
 caacacatcc attaagacgc agcattcgtg ccccatctgc cagaagaagt tcactaatgc 1980
 cgtatgctg cagcaacata ttccggatgca catggggcgt cagattccca acacgcccct 2040
 gcccagagaat ccctgtgact ttacgggttc tgagccatg accgtgggtg agaacggcag 2100
 caccggcgct atctgccatg atgatgtcat cggaaagcattc gatgttagagg aagttagtc 2160
 ccaggaggct cccagcagct cctccaaagggt ccccacgcct cttccctagca tccactcgcc 2220
 atcacccacg cttagggttt ccatgatggc ttcccttagat gccccagggaa aagtgggtcc 2280
 tgcccccttt aacctgcagc gcccaggcag cagagaaaac ggttccgtgg agagcgatgg 2340
 cttgaccaac gactcatctt cgtatgatggg agaccaggag tatcagagcc gaagcccaga 2400
 tatcctggaa accacatcct tccaggact ctccccggcc aatagtcaag ccgaaagcat 2460
 caagtcaaag tctcccgtatg ctgggagcaa agcagagagc tccgagaaca gcccactga 2520
 gatggaaagggt cggagcagtc tcccttccac gttatccga gccccggcga cctatgtcaa 2580
 ggttgaagtt cctggcacaat ttgtggacc ctcgcatttgc tcccccagggaa tgacccttt 2640
 gtttagcagcc cagccacgcc gacaggccaa gcaacatggc tgcacacgggt gtggaaagaa 2700
 ctctctgtct gctagcgctc ttccatgttca cggcggact cacactggag agaaggcttt 2760

tgtgtcaac	atttgtggc	gagctttac	caccaaaggc	aacttaaagg	ttcaactacat	2820
gacacacggg	gcgaacaata	actcagcccg	ccgtggaagg	aagttggcca	tcgagaacac	2880
catggctctg	ttaggtacgg	acggaaaaag	agtctcagaa	atcttccca	aggaaatcct	2940
ggcccctca	gtgaatgtgg	accctgtgt	gtggaaccag	tacaccagca	tgctcaatgg	3000
cggctggcc	gtgaagacca	atgagatctc	tgtgatccag	agtggggggg	ttcttaccct	3060
cccggtttcc	ttgggggcca	cctccgtgt	gaataacgcc	actgtctcca	agatggatgg	3120
ctcccagtgc	ggtatcagtgc	cagatgtgga	aaaaccaagt	gctactgacg	gcgttccaa	3180
acaccagttt	cctcaacttcc	tggaagaaaa	caagattgcg	gtcagactaa	ggagaacttg	3240
cgtggagga	gcaatgcaga	cacagtggaa	tctctagaat	ctgctttgtt	ttgttaagaac	3300
tcatctcctc	ctgtttctt	tttcttactg	atatgcaaat	gatgtttact	acgttggttg	3360
tgaccacaac	ctcaggcaag	tgctacaatc	acgattgttg	ctatgtgct	ttgcaaaaag	3420
ttgaaaaat	aaaaaaaaaa	tgcataccaa	aac			3453

<210> 10
 <211> 1053
 <212> PRT
 <213> Homo sapiens

<400> 10

Met	Ser	Arg	Arg	Lys	Gln	Ala	Lys	Pro	Gln	His	Ile	Asn	Ser	Glu	Glu
1					5			10					15		

Asp	Gln	Gly	Glu	Gln	Gln	Pro	Gln	Gln	Gln	Thr	Pro	Glu	Phe	Ala	Asp
						20			25			30			

Ala	Ala	Pro	Ala	Ala	Pro	Ala	Ala	Gly	Glu	Leu	Gly	Ala	Pro	Val	Asn
						35		40			45				

His	Pro	Gly	Asn	Asp	Glu	Val	Ala	Ser	Glu	Asp	Glu	Ala	Thr	Val	Lys
					50			55			60				

Arg	Leu	Arg	Arg	Glu	Glu	Thr	His	Val	Cys	Glu	Lys	Cys	Cys	Ala	Glu
						65		70		75			80		

Phe	Phe	Ser	Ile	Ser	Glu	Phe	Leu	Glu	His	Lys	Lys	Asn	Cys	Thr	Lys
						85			90			95			

Asn	Pro	Pro	Val	Leu	Ile	Met	Asn	Asp	Ser	Glu	Gly	Pro	Val	Pro	Ser
					100			105			110				

Glu Asp Phe Ser Gly Ala Val Leu Ser His Gln Pro Thr Ser Pro Gly

115 120 125

Ser Lys Asp Cys His Arg Glu Asn Gly Gly Ser Ser Glu Asp Met Lys
130 135 140

Glu Lys Pro Asp Ala Glu Ser Val Val Tyr Leu Lys Thr Glu Thr Ala
145 150 155 160

Leu Pro Pro Thr Pro Gln Asp Ile Ser Tyr Leu Ala Lys Gly Lys Val
165 170 175

Ala Asn Thr Asn Val Thr Leu Gln Ala Leu Arg Gly Thr Lys Val Ala
180 185 190

Val Asn Gln Arg Ser Ala Asp Ala Leu Pro Ala Pro Val Pro Gly Ala
195 200 205

Asn Ser Ile Pro Trp Val Leu Glu Gln Ile Leu Cys Leu Gln Gln Gln
210 215 220

Gln Leu Gln Gln Ile Gln Leu Thr Glu Gln Ile Arg Ile Gln Val Asn
225 230 235 240

Met Trp Ala Ser His Ala Leu His Ser Ser Gly Ala Gly Ala Asp Thr
245 250 255

Leu Lys Thr Leu Gly Ser His Met Ser Gln Gln Val Ser Ala Ala Val
260 265 270

Ala Leu Leu Ser Gln Lys Ala Gly Ser Gln Gly Leu Ser Leu Asp Ala
275 280 285

Leu Lys Gln Ala Lys Leu Pro His Ala Asn Ile Pro Ser Ala Thr Ser
290 295 300

Ser Leu Ser Pro Gly Leu Ala Pro Phe Thr Leu Lys Pro Asp Gly Thr
305 310 315 320

Arg Val Leu Pro Asn Val Met Ser Arg Leu Pro Ser Ala Leu Leu Pro
325 330 335

Gln Ala Pro Gly Ser Val Leu Phe Gln Ser Pro Phe Ser Thr Val Ala
340 345 350

Leu Asp Thr Ser Lys Lys Gly Lys Lys Pro Pro Asn Ile Ser Ala
355 360 365

Val Asp Val Lys Pro Lys Asp Glu Ala Ala Leu Tyr Lys His Lys Cys
370 375 380

Lys Tyr Cys Ser Lys Val Phe Gly Thr Asp Ser Ser Leu Gln Ile His
385 390 395 400

Leu Arg Ser His Thr Gly Glu Arg Pro Phe Val Cys Ser Val Cys Gly
405 410 415

His Arg Phe Thr Thr Lys Gly Asn Leu Lys Val His Phe His Arg His
420 425 430

Pro Gln Val Lys Ala Asn Pro Gln Leu Phe Ala Glu Phe Gln Asp Lys
435 440 445

Val Ala Ala Gly Asn Gly Ile Pro Tyr Ala Leu Ser Val Pro Asp Pro
450 455 460

Ile Asp Glu Pro Ser Leu Ser Leu Asp Ser Lys Pro Val Leu Val Thr
465 470 475 480

Thr Ser Val Gly Leu Pro Gln Asn Leu Ser Ser Gly Thr Asn Pro Lys
485 490 495

Asp Leu Thr Gly Gly Ser Leu Pro Gly Asp Leu Gln Pro Gly Pro Ser
500 505 510

Pro Glu Ser Glu Gly Gly Pro Thr Leu Pro Gly Val Gly Pro Asn Tyr
515 520 525

Asn Ser Pro Arg Ala Gly Gly Phe Gln Gly Ser Gly Thr Pro Glu Pro
530 535 540

Gly Ser Glu Thr Leu Lys Leu Gln Gln Leu Val Glu Asn Ile Asp Lys
545 550 555 560

Ala Thr Thr Asp Pro Asn Glu Cys Leu Ile Cys His Arg Val Leu Ser
565 570 575

Cys Gln Ser Ser Leu Lys Met His Tyr Arg Thr His Thr Gly Glu Arg
580 585 590

Pro Phe Gln Cys Lys Ile Cys Gly Arg Ala Phe Ser Thr Lys Gly Asn
595 600 605

Leu Lys Thr His Leu Gly Val His Arg Thr Asn Thr Ser Ile Lys Thr
610 615 620

Gln His Ser Cys Pro Ile Cys Gln Lys Lys Phe Thr Asn Ala Val Met
625 630 635 640

Leu Gln Gln His Ile Arg Met His Met Gly Gly Gln Ile Pro Asn Thr
645 650 655

Pro Leu Pro Glu Asn Pro Cys Asp Phe Thr Gly Ser Glu Pro Met Thr
660 665 670

Val Gly Glu Asn Gly Ser Thr Gly Ala Ile Cys His Asp Asp Val Ile
675 680 685

Glu Ser Ile Asp Val Glu Glu Val Ser Ser Gln Glu Ala Pro Ser Ser
690 695 700

Ser Ser Lys Val Pro Thr Pro Leu Pro Ser Ile His Ser Ala Ser Pro
705 710 715 720

Thr Leu Gly Phe Ala Met Met Ala Ser Leu Asp Ala Pro Gly Lys Val
725 730 735

Gly Pro Ala Pro Phe Asn Leu Gln Arg Gln Gly Ser Arg Glu Asn Gly
740 745 750

Ser Val Glu Ser Asp Gly Leu Thr Asn Asp Ser Ser Ser Leu Met Gly
755 760 765

Asp Gln Glu Tyr Gln Ser Arg Ser Pro Asp Ile Leu Glu Thr Thr Ser
770 775 780

Phe Gln Ala Leu Ser Pro Ala Asn Ser Gln Ala Glu Ser Ile Lys Ser
785 790 795 800

Lys Ser Pro Asp Ala Gly Ser Lys Ala Glu Ser Ser Glu Asn Ser Arg
805 810 815

Thr Glu Met Glu Gly Arg Ser Ser Leu Pro Ser Thr Phe Ile Arg Ala
820 825 830

Pro Pro Thr Tyr Val Lys Val Glu Val Pro Gly Thr Phe Val Gly Pro
835 840 845

Ser Thr Leu Ser Pro Gly Met Thr Pro Leu Leu Ala Ala Gln Pro Arg
850 855 860

Arg Gln Ala Lys Gln His Gly Cys Thr Arg Cys Gly Lys Asn Phe Ser
865 870 875 880

Ser Ala Ser Ala Leu Gln Ile His Glu Arg Thr His Thr Gly Glu Lys
885 890 895

Pro Phe Val Cys Asn Ile Cys Gly Arg Ala Phe Thr Thr Lys Gly Asn
900 905 910

Leu Lys Val His Tyr Met Thr His Gly Ala Asn Asn Asn Ser Ala Arg
915 920 925

Arg Gly Arg Lys Leu Ala Ile Glu Asn Thr Met Ala Leu Leu Gly Thr
930 935 940

Asp Gly Lys Arg Val Ser Glu Ile Phe Pro Lys Glu Ile Leu Ala Pro
945 950 955 960

Ser Val Asn Val Asp Pro Val Val Trp Asn Gln Tyr Thr Ser Met Leu
965 970 975

Asn Gly Gly Leu Ala Val Lys Thr Asn Glu Ile Ser Val Ile Gln Ser
980 985 990

Gly Gly Val Pro Thr Leu Pro Val Ser Leu Gly Ala Thr Ser Val Val
995 1000 1005

Asn Asn Ala Thr Val Ser Lys Met Asp Gly Ser Gln Ser Gly Ile
1010 1015 1020

Ser Ala Asp Val Glu Lys Pro Ser Ala Thr Asp Gly Val Pro Lys
1025 1030 1035

His Gln Phe Pro His Phe Leu Glu Glu Asn Lys Ile Ala Val Ser
1040 1045 1050

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 11

gatcctcgga cctggcttaag

20

<210> 12
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 12
ctctcaactcg gttctcgata c

21

<210> 13
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 13
ggttctctga ctgactccctt c

21

<210> 14
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 14
gctcctggca gctctttatt c

21

<210> 15
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 15
ggtgccatga ctcggatcg

19

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 16
ctcacagtagc ttgctgttagg

20

<210> 17
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 17
caccagaata agctgcacat g

21

<210> 18
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 18
cctgagatac atggcagtgc

20

<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 19
caggaatttg tggcggagag

20

<210> 20
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 20
cctgtacacg tccttactgc

20

<210> 21
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 21
agccacatcg ctcagacacc

20

<210> 22
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 22
gtactcagcg gccagcatcg 20

<210> 23
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 23
ggcagaagat gtggcagtgg 20

<210> 24
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 24
caagtatgt cgacgggtgc 19

<210> 25
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 25
ctggaccta gggactatg 19

<210> 26
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 26
gaccacctct tatgcacacg 20

<210> 27
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 27
cacaagctgg tccgctttg

19

<210> 28
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 28
caggtaccct cgaacacttc

20

<210> 29
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 29
gtggaccaac cttacggaag

20

<210> 30
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 30
catgctcatg gacgagatag

20