Защита лабораторной работы №8. Шифрование (кодирование) различных исходных текстов одним ключом.

Смородова Дарья Владимировна 2022 Oct 29th

RUDN University, Moscow, Russian Federation

Цель выполнения лабораторной работы

Цель выполнения лабораторной работы

Освоить на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.

Задание лаборатоной работы

Задание лаборатоной работы

Два текста кодируются одним ключом (однократное гаммирование). Требуется не зная ключа и не стремясь его определить, прочитать оба текста. Необходимо разработать приложение, позволяющее шифровать и дешифровать тексты P_1 и P_2 в режиме однократного гаммирования. Приложение должно определить вид шифротекстов C_1 и C_2 обоих текстов P_1 и P_2 при известном ключе; Необходимо определить и выразить аналитически способ, при котором злоумышленник может прочитать оба текста, не зная ключа и не стремясь его определить.

Результаты выполнения лабораторной работы

```
Bacs [12]: import numpy as no
           def cript(s1, s2):
              print("Crpoka 1 s 10 cc: ", s1)
               array1 = []
               for i in sl:
                   array1.append(i.encode('cp1251').hex())
              print("Crpoks 1 s 16 cc: ", *array1)
               array2 - []
              print("Crpoka 2 s 10 cc: ", s2)
               for i in s2:
                   array2.append(i.encode('cp1251').hex())
              print("Crpoks 2 s 16 cc: ", *array2)
              key = np.random.randint(0,255,len(s1))
              key 16 = [hex(i)[2:] for i in key]
              print ("Kmoy 8 16 cc: ", *key 16)
              array3 = []
               for i in range(len(arrayl)):
                   array3.append("(:02x)".format(int(array1[i], 16) ^ int(key 16[i], 16)))
              print("Зашифрованный текст строки 1 в 16 сс:", *array3)
               arrav4 - []
               for i in range(len(array2));
                   array4.append("{:02x}".format(int(array2[i], 16) ^ int(key_16[i], 16)))
              print("Зашифрованный текст строки 2 в 16 сс:", *array4)
               text1 = bytearray.fromhex(''.join(array3)).decode('cpl251')
              print("Зашифрованный текст строки 1: ", text1)
               text2 = bytearray.fromhex('', join(array4)).decode('cp1251')
              print("Зашифрованный текст строки 2: ", text2)
               return key 16, text1, text2
```

Figure 1: Функция шифрования данных

Результат работы функции, шифрующей данные

Figure 2: Результат работы функции, шифрующей данные

Функция, дешифрующая данные

```
BROH [16]: def foundtext(text1, text2, new_text):
              print("Texor: ", new_text)
              print("Зашифрованный текст строки 1: ", text1)
              print("Зашифрованный текст строки 2: ", text2)
               text1_16 = []
               for i in text1:
                   text1_16.append(i.encode('cp1251').hex())
              print ("Texcr crpoxu 1 m 16 cc: ", "text1_16)
               text2_16 = []
               for i in text2:
                   text2 16.append(i.encode('cp1251').hex())
              print ("Текст строки 2 в 16 сс: ", *text2_16)
               array1 = []
               for i in new_text:
                   arrayl.append(i.encode('cpl251').hex())
              print("Texer s 16 cc: ", *array1)
              array2 - []
               array3 = []
               for i in range(len(arrayl)):
                   array2.append("(:02x)".format(int(text1_16[i], 16) ^ int(text2_16[i], 16)))
                   array3.append("(:02x)".format(int(array2[i], 16) ^ int(array1[i], 16)))
              print("Texer 2 s 16 cc: ", *array3)
               text_2 = bytearray.fromhex(''.join(array3)).decode('cp1251')
               print("Texer 2: ", text 2)
               return text 2
```

Figure 3: Функция, дешифрующая данные

Результат работы функции, дешифрующей данные

```
Bmog [25]: t2 = foundtext(text1, text2, s1)
           Текст: НаВашисходящийот1204
           Зашифрованный текст строки 1: НЕЁм ЧТь 7mИмы$~e1:T
           Зашифрованный текст строки 2: GфЦо=ПНфд 'zЪмтўн4iO
           Texct CTROKU 1 B 16 cc: 48 c5 a8 ec 20 d7 54 fa 60 37 6d c8 ec fb a7 7e e5 6c 8b d2
           Текст строки 2 в 16 cc: 47 f4 8f ee 3d cf 48 f4 67 27 7a da ec f2 a2 4d 34 b3 51 06
           Texcr s 16 cc: cd e0 c2 e0 f8 e8 f1 f5 ee e4 ff f9 e8 e9 ee f2 31 32 30 34
           Texer 2 s 16 cc: c2 d1 e5 e2 e5 f0 ed fb e9 f4 e8 eb e8 e0 eb c1 e0 ed ea e0
           Текст 2: ВСеверныйфилиалБанка
Beog [26]: t1 = foundtext(text1, text2, s2)
           Текст: ВСеверныйфилиалБанка
           Зашифрованный текст строки 1: НЕЁм ЧТь 7лимы§-е1:Т
           Зашифрованный текст строки 2: GфЏо=ПНфд 'zЪмтўн4іQ
           Текст строки 1 в 16 cc: 48 c5 a8 ec 20 d7 54 fa 60 37 6d c8 ec fb a7 7e e5 6c 8b d2
           Текст строки 2 в 16 cc: 47 f4 8f ee 3d cf 48 f4 67 27 7a da ec f2 a2 4d 34 b3 51 06
           Teker s 16 cc: c2 d1 e5 e2 e5 f0 ed fb e9 f4 e8 eb e8 e0 eb c1 e0 ed ea e0
           Texct 2 s 16 cc; cd e0 c2 e0 f8 e8 f1 f5 ee e4 ff f9 e8 e9 ee f2 31 32 30 34
           Текст 2: НаВашисхопящийот 1204
```

Figure 4: Результат работы функции, дешифрующей данные

Освоили на практике применение режима однократного гаммирования на примере кодирования различных исходных текстов одним ключом.