Chapter 5

Homework 21935004 谭焱

5.1 第九次作业

Exercise 5.1. 若

$$0 \to (S'_*, \partial') \stackrel{i_*}{\to} (S_*, \partial) \stackrel{p_*}{\to} (S'', \partial'') \to 0$$

是链复形短正合序列,则有

$$\cdots \to H_n(S'_*) \xrightarrow{i_*} H_n(S_*) \xrightarrow{p_*} H_n(S''_*) \xrightarrow{d_*} H_{n-1}(S'_*) \xrightarrow{i_*} H_{n-1}(S_*) \to \cdots$$

验证 im $d_n = \ker H_{n-1}(i)$.

Solution.

1. $\operatorname{im} d_n \subset \ker i_{n-1}$

对任意 $s_n'' \in S_n''$, 由短正合序列得 p_n 是满射知可取 $s_n \in S_n$ 使得 $s_n = p_n^{-1} s_n''$. 因此

$$i_{n-1} \circ d_n(s_n'' + B_n'') = i_{n-1}(i_{n-1}^{-1}\partial_n p_n^{-1}s_n'' + B_{n-1}') = \partial_n s_n + B_{n-1} = B_{n-1} = 0$$

-

2. im $d_n \supset \ker i_{n-1}$

对任意 $s'_{n-1} \in \ker i_{n-1}$, 那么有 $i_{n-1}(s'_{n-1}+B'_{n-1})=i_{n-1}(s'_{n-1})+B_{n-1}=B_{n-1}$ 等价于存在 $s_n \in S_n$ 使得 $\partial_n s_n=i_{n-1}(s'_{n-1})$, 那么有

$$d_n(p_n s_n + B_n'') = i_{n-1}^{-1} \partial_n p_n^{-1}(p_n s_n) + B_{n-1}' = s_{n-1}'$$

. . . .

综上 im $d_n = \ker H_{n-1}(i)$.

Exercise 5.2. 验证 5 引理中第二条.

Solution. 设 i_k : $A_k \to A_{k+1}$, j_k : $B_k \to B_{k+1}$ 分别为 5 引理中满足正合交换图表的映射. 因此不妨设 f_3 不是单射的并且有

$$a_3, a_3' \in A_3, a_3 \neq a_3', s.t. f_3(a_3) = f_3(a_3') = b_3.$$

 $a_4 = i_3(a_3), a_4' = i_3(a_3')$

那么有

$$f_4 \circ i_3(a_3 - a_3') = j_3 \circ f_3(a_3 - a_3') = j_3(b_3 - b_3) = 0,$$

又因为 f_4 是单射, 那么 $i_3(a_3-a_3')=0$, 结合正合性 $\exists a_2, s.t. i_2(a_2)=a_3-a_3'$. 又因为

$$j_2 \circ f_2(a_2) = f_3 \circ i_2(a_2) = f_3(a_3 - a_3) = 0.$$

和 j_1, j_2 的正合性可知 $\exists b_1, s.t. i(b_1) = f_2(a_2)$. 因为 f_1 是满射, 设 $a_1 \in A_1, s.t. f_1(a_1) = b_1$. 综上可得

$$f_2 \circ i_1(a_1) = j_1 \circ f_1(a_1) = f_2(a_2)$$

又因为 f_2 是单射得 $i_1(a_1) = a_2$. 所以从 i_1, i_2 的正合性知 $a_3 - a_3' = i_2(a_2) = i_2 \circ i_1(a_1) = 0$. 与假设 $a_3 \neq a_3'$ 矛盾. 因此 f_3 是一个单射.

Exercise 5.3. 设 (X,A) 是空间对。 $d_n: H_n(X,A) \to H_{n-1}(A)$ 是连接同态。则写出简洁形式 $(d_n(\operatorname{cls} \delta_n'') = \operatorname{cls} i_{n-1}^{-1} \partial_n p_n^{-1} \delta_n'')$.

Solution. 因为 d_n 是连接同态,所以 $i_*\colon S_*(A)\to S_*(X), p_*\colon S_*(X)\to S_*(X)/S_*(A)$ 分别是单射和满射并且 $\forall a\in A, i(a)=a, \forall x\in X, p(x)=x+A.$ 因此设 $\mathrm{cls}\,\delta_n''=\delta_n+S_n(A), \delta_n\in S_n(X),$

$$d_n(\operatorname{cls} \delta_n'') = d_n(\delta_n + S_n(A) + B_n(X, A)) = i_{n-1}^{-1} \partial_n p_n^{-1} (\delta_n + S_n(A) + B_n(X, A))$$

= $i_{n-1}^{-1} \partial_n (\delta_n + S_n(A) + B_n(X)) = i_{n-1}^{-1} (\partial_n \delta_n + B_{n-1}(X)) = \partial_n \delta_n + B_{n-1}(A).$

5.2 第十次作业

Exercise 5.4. 已知 $H_p(S^n) = \begin{cases} \mathbb{Z} & p = n \ \text{或}0 \\ 0 & \text{其他} \end{cases}$ 求 $H_p(D^{n+1}, S^n), D^{n+1} = \{(x_0, x_1, \dots, x_n) \mid x_0^2 + x_1^2 + \dots + x_n^2 \leq 1\}.$

Solution. 我们已知 $H_p(D^n) = \begin{cases} \mathbb{Z} & p=0 \\ 0 &$ 其他 , 又因为定理 5.8 得

$$\cdots \to H_k(S^n) \xrightarrow{i_*} H_k(D^{n+1}) \xrightarrow{p_*} H_k(D^{n+1}, S^n) \xrightarrow{d} H_{k-1}(S^n) \xrightarrow{i_*} \cdots$$

是正合序列. 因此对于 k>0 时, $H_k(D^{n+1})=0$,结合正合序列性质得 $H_k(D^{n+1},S^n)\cong H_{k-1}(S^n)$,若 k=0,有正合序列

$$\cdots \to H_0(S^n) \xrightarrow{i_*} H_0(D^{n+1}) \xrightarrow{p_*} H_0(D^{n+1}, S^n) \xrightarrow{d} 0.$$

所以 $H_0(D^{n+1}, S^n) \cong H_0(D^{n+1})$.

综上,
$$H_p(D^{n+1}, S^n) = \begin{cases} \mathbb{Z} & p = 0, 1 \ \vec{\mathbf{y}} n + 1 \\ 0 &$$
其他

Exercise 5.5.

$$0 \to A \xrightarrow{i} B \xrightarrow{j} C \to 0$$

是 Abel 群的短正合序列若 \exists 同态 π 是 $j \circ \pi = Id_C$, 则 $B \cong A \oplus C$. 举例说明 $0 \to A \overset{i}{\to} B \overset{j}{\to} C \to 0$ 短正合序列, 不一定有 $B \cong A \oplus C$.

Solution. 由短正合序列定义知,i 是单射,j 是满射. 可以定义映射 $f: A \oplus C \to B$ 为 $\forall a \in A, c \in C, f(a, c) = i(a) + \pi(c)$.

 $\forall b \in B, j(b) \in C$, 所以 $j(f(0, j(b)) - b) = j \circ i(0) + j \circ \pi(j(b)) - j(b) = 0 + j(b) - j(b) = 0$, 所以由短正合序 列定义 $(f(0, j(b)) - b) \in \ker j = \operatorname{im} i$. 即 $\exists a \in A, s.t. i(a) = f(0, j(b)) - b \Longrightarrow f(a, f(b)) = i(a) + \pi(j(b)) = b$. 所以 f 是满射.

已知 i 是单射, 且 $\pi \circ j = Id_C$ 得 π 也是单射, 所以 $f(a,c) = i(a) + \pi(c)$ 是单射.

综上,f 是双射, 即 $B \cong A \oplus C$

反例令 $A = \mathbb{Z}_z, B = \mathbb{Z}_4, C = \mathbb{Z}_2, i(0) = 0, i(1) = 2, j(0) = 0, j(1) = 1, j(2) = 0, j(3) = 1$, 容易验证满足短正合序列性质, 但是 $\mathbb{Z}_4 \not\cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

Exercise 5.6. 设 S^n 为 n 维球面. 证明: $S^1 \times S^3, S^2 \times S^2, S^4$ 互不同胚.

Solution. 已知 $n \neq 0$ 时, $H_p(S^n) = \begin{cases} \mathbb{Z} & p = n \ \text{或}0 \\ 0 & \text{其他} \end{cases}$, 因此 $H_1(S^1 \times S^3) = H_1(S^1) \oplus H_1(S^3) = \mathbb{Z}$, 然而 $H_1(S^2 \times S^2) = H_1(S^2) \oplus H_1(S^2) = 0$, 并且 $H_4(S^4) = \mathbb{Z} \neq H_4(S^2 \times S^2) = H_4(S^2) \oplus H_4(S^2) = 0$. 综上 $S^1 \times S^3$, $S^2 \times S^2$, S^4 互不同胚.