Functional Programming - Lab Class Exercises 1

Frank C Langbein frank@langbein.org

Version 1.4.0

1. Getting Started

- Open a terminal and start the interactive version of the Glasgow Haskell Compiler, ghci.
 - Try some commands:
 - reverse "test"
 - 10 * 11 `div` 2
 - foldr (+) 0 [1..10]
 - And more examples from the lecture...
 - Note:
 - Extension for Haskell module files is .hs
 - You can load a Haskell module by providing it as argument to ghci or use the command :load FILE.
 - To reload edited files run: reload, which reloads all loaded modules.
 - Type :h for help.
- With your preferred editor, create the sum of odd squares example from the lecture:

• Compile it with the ghc compiler and run the executable from the command line

2. Pythagorean Triples

A Pythagorean triple is a set of three integers (a,b,c) which satisfy the equation $a^2 + b^2 = c^2$. Write a Haskell function that verifies whether three integer inputs are a Pythagorean triple.

3. Half-Evens

Write a Haskell function that takes as input a list of integers and outputs a list of half of each of the even integers in the list.

4. Dot Product

Write a Haskell function that takes as input two lists of numbers, representing two vectors of equal length, and outputs the value of the dotproduct of the two values ($x \ 1 * y \ 1 + \ldots + x \ n * y \ n$ for a list $x = x \ 1 : x \ 2 : \ldots : x \ n$ and $y = x \ n$ equivalently).

5. Binary Sequence

Write a Haskell function that generates a sequence of binary number vectors with up to a given number of digits. E.g., $bin_seq 3 should produce [[0,0,0],[1,0,0],[0,1,0],[1,1,0],[0,0,1],[1,0,1],[0,1,1],[1,1,1]].$

Hints:

- How can you get from bin seg n to bin seg (n+1)?
- What happens when you use list comprehension with more than one generator?
- Haskell's iterate may be useful.
- As always, there are multiple valid solutions.