readme. txt

This folder contains noise-estimation algorithms (Chapter 9)

specsub_ns.m	Basic spectral subtraction algorithm implemented with different noise estimation algorithms:	
martin_estimation.m	Martin's minimum tracking	[7]
mcra_estimation.m	MCRA algorithm	[22]
mcra2_estimation.m	MCRA-2 algorithm	[8]
imcra_estimation.m	IMCRA algorithm	[23]
doblinger_estimation.m	Continuous minimal tracking	[24]
hirsch_estimation.m	Weighted spectral average	[25]
connfreq_estimation.m	Connected time-frequency regions	[26]

USAGE

>> specsub_ns(infile.wav, method, outfile.wav) where 'method' is:

'martin' = Martin's minimum tracking algorithm

'mcra' = Minimum controlled recursive average algorithm (Cohen) 'mcra2' = variant of Minimum controlled recursive average algorithm

'imcra' = improved Minimum controlled recursive average algorithm (Cohen)

'doblinger' = continuous spectral minimum tracking (Doblinger)
'hirsch' = weighted spectral average (Hirsch & Ehrilcher)
'conn_freq' = connected frequency regions (Sorensen & Andersen)

REFERENCES:

- Martin, R. (2001). Noise power spectral density estimation based on optimal [7] smoothing and minimum statistics. IEEE Transactions on Speech and Audio
- [8]
- Processing, 9(5), 504-512.
 Rangachari, S. and Loizou, P. (2006). A noise estimation algorithm for highly nonstationary environments. Speech Communication, 28, 220-231.
 Cohen, I. (2002). Noise estimation by minima controlled recursive averaging for robust speech enhancement. IEEE Signal Processing Letters, 9(1), 12-15. [22]
- Cohen, I. (2003). Noise spectrum estimation in adverse environments: [23] Improved minima controlled recursive averaging. IEEE Transactions on Speech
- [24]
- and Audio Processing, 11(5), 466-475.

 Doblinger, G. (1995). Computationally efficient speech enhancement by spectral minima tracking in subbands. Proc. Eurospeech, 2, 1513-1516. Hirsch, H. and Ehrlicher, C. (1995). Noise estimation techniques for robust speech recognition. Proc. IEEE Int. Conf. Acoust., Speech, Signal [25]
- Processing, 153-156.
 Sorensen, K. and Andersen, S. (2005). Speech enhancement with natural sounding residual noise based on connected time-frequency speech presence [26] regions. EURASIP J. Appl. Signal Process., 18, 2954-2964.

Copyright (c) 2006 by Philipos C. Loizou \$Revision: 0.0 \$ \$Date: 07/30/2006 \$