Assignment 6

PM522b Introduction to the Theory of Statistics Part 2

Due: March 6, 2018

- 1. (From lecture) Let $X_1,...,X_n$ be iid Geometric $(1/\theta),\,p(x|\theta)=\frac{1}{\theta}(1-\frac{1}{\theta})^x$, $\theta>1$
 - a. Find a minimal sufficient statistic for θ
 - b. Find the MLE for θ
 - c. Find the Fisher Information for one observation and for a sample
 - d. Is the MLE unbiased?
 - e. What does the CRLB imply about the variance of the MLE?
- 2. Let $X_1, ..., X_n$ be iid with $f(x|\sigma) = \frac{1}{2\sigma^2} exp(-\frac{|x|}{\sigma})$. Find the MLE, determine if it is unbiased and find its MSE.
- 3. If $X \sim Bin(n, \theta)$, then X/n is an unbiased estimator of θ . The estimate of the variance of X is often n(X/n)(1-X/n).
 - a) Show that n(X/n)(1-X/n) is a biased estimator of Var(X)
 - b) Suggest an unbiased estimator of Var(X) by modifying n(X/n)(1-X/n)
- 4. For a random sample $X_1, X_2, ..., X_n$ from an exponential distribution, $f(x) = \frac{1}{\theta}e^{-x/\theta}$ $(0 < x < \infty)$ where $X_{(1)} = \min(X_1, X_2, ..., X_n)$:
 - a) Show $\hat{\theta} = nX_{(1)}$ is an unbiased estimator for θ
 - b) Find $MSE(\hat{\theta})$
- 5. CB 7.16 d)
- 6. CB 7.19
- 7. CB 7.20