Using MaBoSS with pyMaBoSS via CoLoMoTo jupyter notebook

Vincent Noël1

¹Computational Systems Biology of Cancer, Institut Curie, INSERM U900, Mines ParisTech, PSL Research University, Paris

PerMedCoE summer school from pathway modelling tools to cell-level simulations

June 27th, 2023

- Initially developed by Nicolas Levy
- Maintained by Aurelien Naldi, Loic Pauleve, me https://github.com/colomoto/pvMaBoSS
- Available on Pypi:
 - \$ pip install maboss
- Available on Conda:
 - \$ conda install -c colomoto pymaboss

Nicolas Levv

Loading a model

```
In [1]: import maboss
model = maboss.load("metastasis.bnd", "metastasis.cfg")

In []: sbml_model = maboss.loadSBML("Cohen.sbml", "metastasis.cfg")

In []: bnet_model = maboss.loadBNet("Cohen.bnet", "metastasis.cfg")
```

MaBoSS is directly compatible with SBML, BNet, and MaBoSS proprietary format for network representation

> Running a simulation

```
import maboss
model = maboss.load("metastasis.bnd", "metastasis.cfg")
res = model.run()
res.plot_piechart()
```


A few lines of code to simulate the model and plot the final states distribution

> Changing output nodes

```
model.network.set_output(["Apoptosis", "Invasion"])
res = model.run()
res.plot_piechart()
```


> Controlling which node is included in the results (Ex: remove CellCycleArrest)

> Changing initial states

```
model.network.set_istate("ECMicroenv", [0, 1])
model.network.set_istate("DNAdamage", [0, 1])
res = model.run()
res.plot_piechart()
```


Simulating with specific initial values

> Simulating mutations

```
model_mutant = model.copy()
model_mutant.mutate('NICD','ON')
model_mutant.mutate('p53','OFF')
res_mutant = model_mutant.run()
res_mutant.plot_piechart()
```


Performing mutant simulations

> Results : State probability distribution trajectories

Visualizing state probability trajectories

> Results : Nodes probability trajectories

Visualizing state probability trajectories

> Results : State probability distribution trajectories values

res.get_states_probtraj()

	<nil></nil>	Apoptosis	Apoptosis CellCycleArrest	CellCycleArrest	Invasion	Invasion Apoptosis	Invasion Apoptosis CellCycleArrest	c
0.0	0.927211	0.036734	0.002495	0.008816	0.023224	0.001194	0.000086	
0.5	0.682001	0.124939	0.035559	0.056035	0.081564	0.012353	0.002428	
1.0	0.485872	0.146506	0.109373	0.103834	0.104372	0.022607	0.010071	
38.0	0.202716	0.000000	0.434370	0.061990	0.000004	0.000000	0.000000	
38.5	0.202714	0.000000	0.434370	0.061996	0.000000	0.000000	0.000000	
39.0	0.202719	0.000000	0.434370	0.061991	0.000000	0.000000	0.000000	

Getting the states probability trajectories as Panda dataframes

> Results : Nodes probability trajectories values

res.get_nodes_probtraj()

	Apoptosis	CellCycleArrest	Invasion
0.0	0.040509	0.011637	0.024744
0.5	0.175279	0.099143	0.101466
1.0	0.288557	0.240643	0.154415
38.0	0.434370	0.797280	0.300924
38.5	0.434370	0.797286	0.300920
39.0	0.434370	0.797281	0.300920

Getting the node probability trajectories as Panda dataframes

Results : Last state probability distributions

> Getting the last state probability distribution as Panda dataframes

> Sensitivity analysis : Double mutants

```
from maboss.pipelines import simulate double mutants
candidates nodes = ["AKT", "ERK", "ROS"]
simulations = simulate double mutants(maboss model, candidates nodes, "OFF")
print(simulations)
{(('AKT', 'OFF'), ('ERK', 'OFF')); <maboss.result.Result object at 0x7f704b0fbd90>, (('AKT', 'OFF'), ('ROS', 'OFF')); <maboss.r
esult.Result object at 0x7f7049587dc0>, (('ERK', 'OFF'), ('ROS', 'OFF')): <maboss.result.Result object at 0x7f70497748b0>}
simulations[(('AKT', 'OFF'), ('ERK', 'OFF'))].plot trajectory()
 1.0
 0.8
 0.6
                                                                                   <nil>
 0.4
                                                                                   Apoptosis
                                                                                   Apoptosis -- Metastasis
                                                                               — Apoptosis -- Metastasis -- Proliferation
0.2
                                                                                   Apoptosis -- Proliferation
                                                                                   Metastasis

    Metastasis -- Proliferation

 0.0

    Proliferation

       ò
                   10
                                20
                                            30
                                                         40
                                                                     50
```

> Sensitivity analysis : Filtering results

Filtering sensitivity analysis results by phenotype

> Hands on

- Load Montagud's model
- Simulate and plot default model
- Simulate and plot model with all initial values at zero
- Simulate proliferative conditions
- Simulate proliferative conditions with MYC_MAX inhibition

- > Hands on
 - Simulate a batch in inhibitions
 - > Filter inhibition with zero proliferation and report which ones
 - Simulate default conditions for all personalized models, and build a dataframe which all the final states. Report min/max apoptosis
 - Simulate proliferative conditions with MYC_MAX inhibition for all personalized models, build dataframe with all the final states
 - Filter patients with less than 10% of Proliferation and report them

