MODULE - 1

&1. For the network shown in the fig. calculate the net i/p for the O/p.

$$\chi_3 = 0.6$$
 $\omega_3 = -0.3$

$$Y_{10} = \chi_{1} \omega_{1} + \chi_{2} \omega_{2} + \chi_{3} \omega_{3}$$

$$= 0.3 \times 0.2 + 0.5 \times 0.1 + 0.6 \times -0.3$$

$$= 0.06 + 0.05 - 0.18$$

$$= -0.07$$

as. Calculate the net i/p for the network shown in the fig with bias included in network.

$$Y_{in} = \chi_{i} w_{1} + \chi_{2} w_{2} + b_{j}$$

$$= 0.2 \times 0.3 + 0.6 \times 0.7 + 0.45$$

$$= 0.06 + 0.42 + 0.45$$

$$= 0.93$$

Shows in the signe using binary signoidal & bipolar signoidal activation for

$$Y_{in} = \chi \omega_{1} + \chi_{2} \omega_{2} + \chi_{3} \omega_{3} + b_{j}$$

$$= 0.8 \times 0.1 + 0.6 \times 0.3 + 0.4 \times -0.2 + 0.35$$

$$= 0.08 + 0.18 - 0.08 + 0.35$$

$$= 0.53$$

$$y_{out} = f(y_{in})$$

binary,
 $f(x) = \frac{1}{1 + e^{-\lambda x}}$

$$f(y_{in}) = \frac{1}{1 + e^{-\lambda y_{in}}} = \frac{1}{1 + e^{-\lambda \cdot 0.53}}$$

$$= \frac{1}{1 + e^{-0.53}} = \frac{0.629}{1 + e^{-0.53}}$$

bipolar,

$$f(x) = \frac{2}{1 + e^{-\lambda x}} - 1$$

$$Y_{out} = f(Y_{in}) = \frac{1}{\lambda Y_{in}} + 1$$

$$= \frac{\lambda Y_{in}}{\lambda Y_{in}} + \frac{\lambda Y_{in}}{\lambda Y_{in}}$$

$$= \frac{2}{-\lambda 0.53} - 1 = 0.259$$

Q4. Implement AND for using MP newson (take binary data)

Let
$$x_1 = 1 & x_2 = 0$$

 $y_{10} = 1 + 0 = 1$

$$[x_1 = 0, n_2 = 1]$$
 $Y_{in} = 0 + 1 = 1$
 $[x_1 = 0, x_2 = 0]$ $Y_{in} = 0 + 0 = 0$
Ass $f(y_{in}) = \begin{cases} 1, y_{in} \ge 0 \end{cases}$
 $0, y_{in} < 0$
 $0, y_{in} < 0$
So, weights $(x_1 = 1) = 1$

So, weights
$$w_1 = 1$$
 & $w_2 = 1$

$$\psi = f(y_1) = \int 1 \quad \text{yin } \geq 0$$

$$y = f(y_{in}) = \begin{cases} 1, & \text{yin } \geq a \\ 0, & \text{yin } < a \end{cases}$$

Q5. Implement AND-NOT function using MP neuron use binary data [x,元]

$$\mathcal{N}_{1} = 2$$

$$\mathcal{N}_{2} = 2$$

Assume w,=1 & wa=1, Yin=x, w, + x2 w2

$$n_1 = 0$$
, $n_2 = 0$, $y_{in} = 0 + 0 = 0$

$$x_1 = 0$$
, $x_2 = 1$, $y_{in} = 0 + 1 = 1$

$$x_1 = 1$$
, $x_2 = 0$, $y_{in} = 10 + 0 = 1$

$$\chi_1 = 1, \chi_2 = 1, \forall in = 1 + 1 = 2$$

ie.
$$8y = f(y_{in}) = \begin{cases} 1, & \text{if } y_{in} \ge 1 \\ 0, & \text{if } y_{in} < 1 \end{cases}$$

 $80, \text{ weights }, w_1 = 1 \quad 8 \quad w_2 = -1.$

QG. Implement XOR for using MP necessor. Take binary data.

- 4	and .		
1	~x ,5)	X ₂	Y
1	0	0	D
	0	t	1
	1	0	T
-	10	10	0
) Øl		0

Decompose it into 3:-

χ,	×2	Z
Ö	0	0
0	· Contract	0
1	0	1
	1	0

Assume W1 = W21 = 1,

Assume
$$w_{n=1} = 1 + 1 = a$$

Assume $w_{n=1} = 1$, $w_{a_1} = -1$,

 $\begin{bmatrix} 0,0 \end{bmatrix}$, $Z_{in} = 0$
 $\begin{bmatrix} 0,1 \end{bmatrix}$, $Z_{in} = 0 - 1 = -1$
 $\begin{bmatrix} 1,0 \end{bmatrix}$
 $Z_{in} = 1 - 0 = 1$
 $\begin{bmatrix} 1,0 \end{bmatrix}$
 $Z_{in} = 1 - 1 = 0$
 \vdots
 $W_{n=1} = 1$
 $W_{n=1} = 1$

iii)

A
$$y_{in} = z_1 v_1 + z_2 v_a$$

Assume $v_1 = v_a = 1$,
 $[0,0]$ $y_{in} = 0$
 $[0,1]$ $y_{in} = 0 + 1 = 1$
 $[1,0]$ $y_{in} = 1 + 0 = 1$
 $[0,0]$ $y_{in} = 0$
 $[0,0]$ $y_{in} = 0$

$$Y = f(y_{in}) = \begin{cases} 1, & y_{in} \ge 1 \\ 0, & y_{in} < 1 \end{cases}$$

22/8/19

Q7. Using the linear separability concept, obtain the response for OR for . Take bipolar i/p as target

Ans: $n_1 n_2 y$ -1 -1 -1 ... -1 1 1 ...

$$y = mx + c$$

$$\therefore Eq. of line, y = -x-1$$

$$x_a = -x_1 - 1$$
 — (1)

eq. of line: - y = mx + C

 $=\frac{-1-0}{0--1}$

= -1 = -1

 $m = \frac{y_2 - y_1}{x_2 - x_1}$ $(x_1, y_1) = (1, 0)$

(na, ya)= (0,-1)

General eq. of line:

$$x_{a} = -\frac{b}{\omega_{a}} - \frac{\omega_{1}}{\omega_{a}} \cdot x_{1} \qquad (a)$$

Compare (1) & Ca)

$$\frac{b}{w_a} = 1 \quad \& \quad \frac{\omega_1}{\omega_a} \cdot \mathbf{w}_b = 1 = \frac{1}{1}$$

$$y_{in} = b + x_i w_i + x_a w_a$$

1	- And	1000		À
х,	xa	9	yin	
-1	-1	-1	1 + -1-1	= -1
-1	1	1	1-1+1	= 1
1	-1	1	1+1-1	= 1
	T	ı	1+1+1	= 3
	 	7369		

$$Y = f(y_{in}) = \begin{cases} 1 & \text{if } y_{in} \ge 1 \\ -1 & \text{if } y_{in} < 1 \end{cases}$$

26/8/19 Q8. Design a hebb network to implement logical AND for (use bipolae i/ps & targets) x, x2 y -] Step 1:-Wa Step 2: Step 3:-Step 4: $\Delta \omega_i = x_i y$. $\Delta b = y$ Q 10, 61d7 = 0 + brew = bold + y

= Wiold + Dwi \mathcal{X}_{1} ΔW, 1 W2 ×24 Db 0+1 1 1 = 1 -1 2 0 0 - 1 - 1 1 -1 2 2

$$x_a = \frac{-b}{\omega_a} - \frac{\omega_1}{\omega_a} \cdot x_1$$

There are 4 paies.

i)
$$w_1 = 1$$
, $w_2 = 1$, $b = 1$

$$x_a = \frac{-1}{1} - \frac{1}{1} x_1$$

$$\chi_{\alpha} = -1 - \chi_{1}$$

when
$$x_1 = 0$$
, $x_2 = -1$

when
$$x_{\alpha} = 0$$
, $0 = -1 - x_1 \implies x_1 = -1$

It does not separate -ve & +ve sesponses. So, it is not the final weights.

ii)
$$\omega_1 = 0$$
, $\omega_2 = 2$, k

$$\chi_2 = -\frac{0}{2} - \frac{0}{2} \cdot \chi_1$$

$$\chi_2 = 0$$

iii)
$$w_1 = 1$$
, $w_2 = 1$, $b = -1$
 $\chi_a = -\frac{1}{1} - \frac{1}{1} \cdot \chi_1$ $\chi_a = -\frac{2}{a} - \frac{2}{a} \cdot \chi_1$
 $\chi_a = +1 - \chi_1$ $\chi_a = 1 - \chi_1$
when $\chi_1 = 0$, $\chi_a = 1$
 $\chi_b = 0$, $\chi_1 = 1$

iv)
$$\omega_1 = a$$
, $\omega_2 = a$, $ab = -a$.

$$\chi_2 = -\frac{2}{a} - \frac{a}{a} \chi_1$$

$$\chi_3 = 1 - \chi_1$$

$$w_1 = a, w_2 = a, b = -a.$$

Qq. Design a hebb net to implement or for.
[use bipolar i/ps & target]

 $w_1 = 0, w_2 = 0, b = 0$

$$\Delta \omega_i = x_i y_i; \Delta b = y$$

ж,	χ_{z}	Ŋ	Δω, 2,4	D Wz	∆ b	ω,	W _a	60
1	1	1	1		1	l -	l	
	-1	1	1	-1	I	2	0	ಎ
-1	-11	-1.5	- 1			ľ		3
-1		-1	Ι [1	-10	a	2	2

