ICU EEG: Prognosis in Adults

Susan T. Herman, MD
Assistant Professor of Neurology
Beth Israel Deaconess Medical Center
Harvard Medical School
Boston, MA

Disclosures

- None relevant to this presentation
- Scientific Advisory Board
 - Eisai Inc.
 - Biotie, Inc.
- Research
 - UCB Pharma
 - Acorda Therapeutics
 - Epilepsy Therapy Development Project
 - Sage Pharmaceuticals
 - NeuroPace, Inc.
 - Pfizer

Utility of EEG in Critically III

- Objectively measure severity of alteration in consciousness
- Assess neurologic function in patients who are pharmacologically paralyzed
- Narrow the differential diagnostic possibilities when combined with appropriate clinical information
- Determine if nonconvulsive seizures are cause of altered consciousness and assess response to treatment
- Follow progression / improvement with serial studies
- Provide prognostic information
- Confirm the diagnosis of brain death

Diffuse Etiologies

- Metabolic, toxic, infectious encephalopathies
- Grade or degree of abnormalities correlates fairly well with clinical status
 - EEG changes may precede or lag clinical changes
 - Serial studies may be useful
- Etiology often plays larger role than EEG pattern

Diffuse Etiologies

- Slowing of posterior dominant rhythm
- Diffuse theta
- Diffuse polymorphic theta and delta
 - Loss of faster frequencies and sleep transients
 - Abnormal arousals
 - Intermittent rhythmic delta activity
- Continuous diffuse high amplitude polymorphic delta
- Continuous diffuse low voltage monomorphic delta
- Burst suppression
- Low voltage (<20 µV) unreactive delta</p>
- Electrocerebral inactivity

Classification System

Gr	Synek	Scollo-Lavizzari	Young
I	Regular alpha, some theta	Normal alpha	Delta-theta > 50% of record
Ш	Predominant theta	Alpha, theta/delta	Triphasic waves
Ш	Widespread delta, spindle coma	Theta/delta, no alpha	Burst suppression
IV	Burst-suppression, alpha coma, theta coma, delta coma ≤ 20 µV	Delta, low voltage; burst-suppression, PEDs, alpha coma	Alpha / theta / spindle coma, unreactive
V	ECI ≤ 2 µV	Very low to ECI	Epileptiform activity
VI			Suppression ≤ 10µV

Synek VM. J Clin Neurophysiol. 1988; 5: 161-74 Scollo-Lavizzari G, et al. Eur Neurol. 1987; 26: 161-70 Young GB, et al. Can J Neurol Sci 1997;24:320-325

Synek: Prediction of Outcome after Cardiac Arrest

Good Outcome

Grade 1	48/61	79%
<u> </u>		

- Grade 3 11/43 26%
- Grade 4 0/138 0%
- Grade 5 0/70 0%

Severe Diffuse Slowing & Attenuation

Burst Suppression: Barbiturate-Induced

Electrocerebral Inactivity, ECI Montage

Focal Structural Etiologies

- Cause coma from herniation and compression/distortion of brainstem and diencephalon
- Focal asymmetries
 - Polymorphic delta activity: Subcortical white matter
 - Attenuation of faster frequencies: Cortex
 - Intermittent rhythmic delta activity: Deep gray matter structures
- May not be clear which hemisphere is more severely affected
 - Slower frequencies and lower voltages

Other Etiologies

- Brainstem lesions
 - Exception to relationship between EEG and clinical exam
 - Patient may be deeply comatose
 - Cortex (and therefore EEG) may be relatively unaffected
 - Locked-in syndrome
- Psychogenic coma, catatonia
 - EEG is normal

Reactivity

- EEG change in response to sensory stimulation
 - Auditory
 - Visual
 - Somatosensory
- Light coma
 - Generalized high voltage delta bursts
- Deeper coma
 - Diffuse attenuation
- Deep coma
 - No reactivity; poorer prognosis

Specific Coma Patterns

Alpha Coma

- Diffuse alpha frequency activity, 8-13Hz
 - Often frontally dominant
 - Invariant
 - Unreactive
- Transient pattern, evolves to other patterns
- Etiology
 - Anoxia
 - Brainstem strokes
 - Traumatic brain injury
 - Drug intoxication (benzodiazepines, tricyclic antidepressants)

Alpha Coma and Prognosis

- Meta-analysis, 335 cases
- Etiology predicts outcome

Etiology	Mortality
Anoxia	88%
Brainstem infarct	90%
Drug intoxication	8%

Beta Coma

- High amplitude (>30 μV) diffuse 12-16 Hz activity
 - Often frontally maximal
 - Unreactive
- Etiologies
 - Drug intoxication
 - Anesthesia
- Prognosis usually determined by etiology rather than EEG pattern

Diffuse Beta, Barbiturate-Induced

Spindle Coma

- Diffuse exaggerated 12-14 Hz sleep spindles
 - Resembles stage 2 or 3 (N2 or N3) sleep
 - May show some stage changes (vertex waves, K complexes)
 - No REM
 - Little or no reactivity to external stimuli
- Etiologies
 - Traumatic brain injury
 - Anoxia
 - Brainstem lesions
 - Drug intoxication

Spindle Coma and Prognosis

- Etiology plays a role
- Overall better prognosis than alpha coma, mortality 23%
- Presence of normal sleep tranisents suggests that cortex and diencephalon are more intact

Etiology	Mortality
Structural / brainstem	73%
Hypoxia	33%
Trauma	15%
Drug intoxication	0%

Subarachnoid Hemorrhage

- 116 / 756 SAH patients with CEEG and 3 mo mRS
 - 88% poor grade SAH (Hunt & Hess ≥ 3)
 - Overall 3 month outcome
 - 69% moderate-severely disabled or dead
 - 34% dead
 - Multivariate analysis
 - Poor admission Hunt & Hess grade (OR 7.0)
 - Older age (OR 1.0 per year > 65)
 - Intraventricular hemorrhage (OR 2.6)
 - No effect of delayed cerebral ischemia

CEEG Risk Factors in SAH

EEG Finding	Poor outcome With RF (%)	Poor outcome Without RF (%)	OR	95% CI
Lateralized periodic discharges	91	66	18.8	1.6 - 214.6
Any periodic discharges	90	63	9.0	1.7 - 49.0
Absent sleep, 1st 24 hrs	74	29	10.4	1.4 - 78.1
Absent sleep, entire EEG	89	47	4.3	1.1 - 17.2
Absent reactivity, n = 9 *	100	0	-	-
NCSE within 24 hrs, n = 4 *	100	0	-	-
NCSE, entire EEG, n = 12	92	8	-	-
GPEDs or BiPLEDs, n = 17 *	100	0	-	-

^{* =} Specificity and PPV for poor outcome = 100

Intracerebral Hemorrhage

- Predictors of poor outcome
 - Generalized periodic discharges
 - Lateralized periodic discharges
 - Stimulus-induced rhythmic, periodic, or ictal discharges (SIRPIDs)

Cardiac Arrest

- Therapeutic hypothermia
 - 4 randomized clinical trials
 - Comatose patients within 6 hrs of arrest
 - Ventricular fibrillation or pulseless ventricular tachycardia
 - Mild TH (32-34° C) for 24 hrs
 - Decreased mortality by 20%
 - Decreased poor neurologic outcome by 27%

Cardiac Arrest

 AAN Practice Parameter: Prediction of outcome in comatose survivors after cardiopulmonary resuscitation

Clinical factor	Timing	Level
Absent pupillary response	3 days	Α
Absent corneal reflexes	3 days	Α
Absent motor responses	3 days	Α
Myoclonic status epilepticus	24 hrs	В
Serum NSE > 33µg/L	1-3 days	В
Bilateral absent cortical SSEP	3 days	В

Cardiac Arrest

 AAN Practice Parameter: Prediction of outcome in comatose survivors after cardiopulmonary resuscitation

EEG finding	Timing	Level
Generalized suppression ≤ 20µV	Any	С
Burst-suppression	Any	С
GPEDs on flat background	Any	С

Predictors of Poor Outcome: No TH

- Myoclonic status epilepticus
 - EEG usually shows burst suppression and/or GPDs
 - Rare (<5%) with good cognitive outcome</p>
 - Usually treated with high-dose cIV-AEDs
 - Preserved brainstem reflexes
 - Intact cortical SSEP responses
 - Reactive EEG background

Predictors of Poor Outcome: No TH

- Background EEG
 - Burst-suppression
 - Discontinuity
 - Generalized voltage attenuation (< 20µV)
 - Alpha / theta / spindle coma without reactivity
- Lack of reactivity
- Periodic discharges
 - Generalized periodic discharges on attenuated background

EEG after Cardiac Arrest: No TH

- Sensitivity 94%
- Specificity 63%
 - 4 patients with malignant recovered awareness

Benign	Malignant
Delta / theta > 50% of recording, with or without reactivity	Triphasic waves
	Burst-suppression, with or without epileptiform activity
	Alpha / theta / spindle coma, without reactivity
	Generalized suppressioin

Predictors of Outcome after Cardiac Arrest: No TH

- Meta-analysis of 50 studies
- 2828 adult patients, comatose after cardiac arrest
- Outcomes assessed by Cerebral Performance Category (CPC)
 - CPC 4-5 vs. 1-3
 - CPC 3-5 vs. 1-2
 - Variable timing: hospital discharge to 12 mos

Sandroni C, Cavallaro F, Callaway CW, et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: A systematic review and meta-analysis. Part 1: Patients not treated with therapeutic hypothermia. Resuscitation 2013.

Predictors of Outcome after Cardiac Arrest: No TH

Finding	Timing	Sensitivity	FPR	95% CI	Quality
Myoclonus, n=471	24-48 hrs	9	0	0-3	Low
Bilateral absent SSEP, n = 293	24-72 hrs	45-46%	0	0-9	Low
Absent pupillary response, n = 382	72 hrs	18	0	0-8	Low
NSE, S-100B	Variable				Very low

Sandroni C, Cavallaro F, Callaway CW, et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: A systematic review and meta-analysis. Part 1: Patients not treated with therapeutic hypothermia. Resuscitation 2013.

Predictors of Outcome after Cardiac Arrest: No TH

EEG Finding	Timing	Sensitivity	FPR	95% CI	Quality
Grade III-V (Edgren), n=46	24 hrs	36	0	0-22	Very low
Grade IV-V (Synek), n=40	≤ 48 hrs	42	0	0-19	Very low
Grade IV-V (Bassetti), n=59	≤ 72 hrs	42	0	0-24	Very low
Low voltage EEG, ≤ 20 µV, n=355	24-72 hrs	28	0	0-6	Low
Alpha coma					

Sandroni C, Cavallaro F, Callaway CW, et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: A systematic review and meta-analysis. Part 1: Patients not treated with therapeutic hypothermia. Resuscitation 2013.

Predictors of Poor Outcome: TH

- Background EEG
 - Burst-suppression
 - Discontinuity
 - Generalized voltage attenuation (< 10µV)
 - Lack of reactivity
- Periodic discharges
 - Generalized periodic discharges on attenuated background

Predictors of Poor Outcome: TH

- Prospective, 111 adult survivors of cardiac arrest
- Unreactive EEG background strong predictor of mortality and poor long-term neurologic recovery (FP = 7%)
- Motor response to pain (FP = 24%)
- 2+ risk factors = specificity 1.0; PPV 1.0
 - Bilaterally absent cortical SSEP
 - Unreactive EEG
 - Early myoclonus
 - Incomplete recovery of brainstem reflexes

Predictors of Outcome after Cardiac Arrest: TH

- Meta-analysis of 37 studies
- 2403 adult patients, comatose after cardiac arrest
- Outcomes assessed by Cerebral Performance Category (CPC)
 - CPC 4-5 vs. 1-3
 - CPC 3-5 vs. 1-2
 - Variable timing: hospital discharge to 12 mos

Sandroni C, Cavallaro F, Callaway CW, et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: A systematic review and meta-analysis. Part 2: Patients treated with therapeutic hypothermia. Resuscitation 2013.

Predictors of Outcome after Cardiac Arrest: TH

Finding	Timing	Sensitivity	FPR	95% CI	Quality
Bilateral absent SSEP	During TH	28	0	0-2	Moderate
Bilateral absent SSEP	After TH	42	0	0-4	Low
Absent pupillary + absent corneal + motor response ≤ extension, n = 103	72 hrs	15	0	0-8	Very low
NSE, S-100B	Variable				Very low

Sandroni C, Cavallaro F, Callaway CW, et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: A systematic review and meta-analysis. Part 2: Patients treated with therapeutic hypothermia. Resuscitation 2013.

Predictors of Outcome after Cardiac Arrest: TH

EEG Finding	Timing	Sensitivity	FPR	95% CI	Quality
Burst-suppression	During TH	37	0	0-5	Low
Burst-suppression	After TH	18	0	0-5	Low
Status epilepticus from burst-suppression	Any time	42	0	0-5	Low
Nonreactive background	After TH	62	0	0-3	Low

Sandroni C, Cavallaro F, Callaway CW, et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: A systematic review and meta-analysis. Part 2: Patients treated with therapeutic hypothermia. Resuscitation 2013.

Confounders

- Sedating medications
 - Propofol, midazolam, pentobarbital
- Presence of multiple etiologies (e.g. post-arrest + hepatic or renal failure)
- Artifact
 - Shivering / EMG
 - Electrode artifact

Conclusion

- Use EEG for patients with altered mental status
 - Objective measure for encephalopathy
 - Narrow differential diagnosis when etiology unknown
- Serial or continuous studies may be helpful
- EEG can help with prognostication when etiology is known
 - Better at predicting poor outcome
- Early inaccurate prognostication may result in self-fulfilling prophecy: early withdrawal of care
- Large prospective studies needed to determine prognostic value of CEEG across multiple etiologies and severity of illness