COMP 546

Lecture 14

Maximum likelihood models

Tues. Feb. 27, 2018

Overview of today

Informal notion of likelihood

Formal definition of likelihood as conditional probability

Maximum likelihood problems (sketch)

Estimated Scene

image formation

vision

S = s

I = i

 $S = \hat{S}$

luminance orientation disparity motion surface slant, tilt

image intensity filter responses luminance orientation disparity motion surface slant, tilt

. . .

. .

Task: detecting an intensity increment

ΔÎ

If ΔI is small and noise is big, then the task becomes more difficult.

likelihood of intensity in center (solid) and background (dashed)

Task: estimate orientation

Task: estimate velocity of black dots

Motion coherence

Motion coherence

Motion coherence

Task: estimate disparity of patch

left eye

right eye

We could add noise by independently randomizing B&W value of bits in left and right images.

likelihood of disparities of background (dashed) and central (solid) square

Task: estimate surface slant

Is this an ellipse on a frontoparallel plane, or a disk on a slanted plane?

Task: estimate the slant from texture

Random distribution of disk shapes and sizes (rather than pixel noise).

What is the formal definition of "likelihood"?

Review of Probability (Sketch)

$$p(I|S) = \frac{p(I|S)}{p(S)}$$
Conditional
$$p(S|I) = \frac{p(I|S)}{p(I|S)}$$

$$pobabilities$$

$$p(S|I) = \frac{p(I,S)}{p(I)}$$

Scene variables (not directly measured)

$$P(I=i)$$

scene variable

$$S = s_{3}$$

$$T = i$$

$$P(T, S)$$

p(S) is a marginal"
probability
function

$$p(S=s_j) = \sum_{i \in I} p(I=i, S=s_j)$$

p(I) is a "marginal" probability function

$$P(I=i) = \sum_{s_j \in S} p(I=i, S=s_j)$$

$$S = S_{j}$$

$$T = i$$

$$p(S=s_{j}|I=i) = \frac{p(I=i, S=s_{j})}{\sum_{s_{j} \in S} p(I=i, S=s_{j})}$$

$$S = s_{3}$$

$$T = i$$

$$P(T, S)$$

$$p(T=i|S=s_j) = \frac{p(T=i,S=s_j)}{\sum_{i \in T} p(T=i,S=s_j)}$$

$$P(I|S) = P(I,S)$$

$$P(S)$$

conditional probability function.

Likelihood

The conditional probability

$$p(I = i \mid S = s)$$

is known as the "likelihood" of S = s, for a given image I = i.

Maximum likelihood estimation:

Given an image I = i, choose the scene S = s that maximizes $p(I = i \mid S = s)$.

Maximum likelihood estimation in vision

Image
$$I = i$$
 Estimated $S = \hat{s}$

image intensity filter responses luminance orientation disparity motion surface slant, tilt

. . .

Task: estimate $I_{0, I_0} + \Delta I$ in presence of noise

Task: estimate I_0 , $I_0 + \Delta I$ in presence of noise

Additive Gaussian noise n: mean 0 and variance σ_n^2 .

$$I_{center}(x, y) = I_0 + \Delta I + n(x, y)$$

$$I_{surround}(x,y) = I_0 + n(x,y)$$

$$I_{surround}(x,y) = I_0 + n(x,y)$$

Let's define a likelihood function for I_0 :

$$p(I_{surround}(x,y) \mid I_0) = p(n(x,y))$$

$$I_{surround}(x,y) = I_0 + n(x,y)$$

$$I_{surround}(x,y) - I_0$$

$$p(I_{surround}(x,y) \mid I_0) = p(n(x,y))$$

$$I_{surround}(x,y) = I_0 + n(x,y)$$

$$I_{surround}(x,y) - I_0$$

$$p(I_{surround}(x,y) \mid I_0) = p(n(x,y))$$

$$\frac{1}{\sqrt{2\pi}\sigma_n}e^{-\frac{n(x,y)^2}{2\sigma_n^2}}$$

Independent Random Variables

Two random variables X_1 and X_1 are independent if, for all values x_1 and x_2 ,

$$p(X_1 = x_1, X_2 = x_2) = p(X_1 = x_1) p(X_2 = x_2)$$

The same definition holds for many random variables.

The example here is pixel noise.

$$I_{surround}(x,y) = I_0 + n(x,y)$$

Likelihood for I_0 for all pixels (x, y) in the surround:

$$p(I_{surround} \mid I_0) = \prod_{(x,y)} \frac{1}{\sqrt{2\pi}\sigma_n} e^{-\frac{(I_{surround}(x,y) - I_0)^2}{2\sigma_n^2}}$$

Task: estimate disparity of patch

$$p(responses(x, y, d_{tuned}) = \vec{r} \mid disparity = d)$$

It not obvious how to write down such a function.

Task: estimate slant of surface

$$p(I = i \mid S = s)$$

Given a set of image ellipses, I = i, and assuming some probability distribution of disk shapes on the surface, define the likelihood of different surface slants S = s. (For details, see papers by David Knill in 1990's.)

[Knill, 1998]

The above examples take an "ideal observer" approach.

Can we model a human observer's uncertainty, using a likelihood function?

Psychometric function (fit with cumulative Gaussian i.e. blurred step edge)

Q: How can a such a likelihood model *explain or predict* how a vision system estimates a scene parameter?

A: It can tell us how people combine different cues. (Next lecture)