COMP 360 - Fall 2015 - Assignment 4

Due: 6:00 pm Nov 24th.

General rules: In solving these questions you may collaborate with other students but each student has to write his/her own solution. There are in total 110 points, but your grade will be considered out of 100. You should drop your solutions in the assignment drop-off box located in the Trottier Building.

- 1. (10 Points) Show that the following problem is in PSPACE:
 - Input: A CNF ϕ .
 - Output: The number of the truth assignments that satisfy ϕ .
- 2. (10 Points) Given a set P of n points on the plane, consider the problem of finding the smallest circle containing all the points in P. Show that the following is a 2-factor approximation algorithm for this problem. Pick a point x in P, and set r to be the distance of the farthest point in P from x. Output the circle centered at x with radius r.
- 3. (10 Points) Consider the following optimization version of the Subset-Sum problem: Given positive integers $\{w_1, \ldots, w_n\}$ and a positive integer m. We want to find a set $S \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in S} w_i \leq m$ and is maximized. Show that the following is a $\frac{1}{2}$ -factor approximation algorithm:
 - Set $S := \emptyset$.
 - Sort the numbers such that $w_1 \geq w_2 \geq \ldots \geq w_n$.
 - For i = 1, ..., n:
 - if it is possible add i to S without violating $\sum_{i \in S} w_i \leq m$, then add i to S.
- 4. Consider the MAX-SAT problem: Given a CNF formula ϕ on variables x_1, \ldots, x_n , find a truth assignment to the variables that maximizes the total number of satisfied clauses.
 - (a) (10 Points) Show that the following is a $\frac{1}{2}$ -factor approximation algorithm for MAX-SAT (meaning that: the output of the algorithm is always at least half of the optimum): Let σ_{true} be the truth assignment that assigns True to every variable, and σ_{false} be the truth assignment that assigns False to every variable. Compute the number of clauses satisfied by σ_{true} and σ_{false} , and output the better assignment.
 - (b) (5 Points) Give a tight example: An input instance where this algorithm performs as bad as the $\frac{1}{2}$ factor.
- 5. (10 Points) Problem 10 of Chapter 11: Suppose you are given an $n \times n$ grid graph G. Associated with each node v is an integer weight $w(v) \geq 0$. You may assume that all the weights are distinct. Your goal is to choose an independent set S of nodes of the grid, so that the sum of the weights of the nodes in S is as large as possible. (The sum of the weights of the nodes in S will be called its total weight.) Consider the following greedy algorithm for this problem.

- Start with $S := \emptyset$.
- While some node remains in G:
 - Pick a node v of maximum weight.
 - Add v to S.
 - Delete v and its neighbors from G
- Endwhile.

Show that this algorithm returns an independent set of total weight at least $\frac{1}{4}$ times the maximum total weight of any independent set in the grid graph G.

- 6. Consider a directed bipartite graph G = (V, E). We want to eliminate all the directed cycles of length 4 by removing a smallest possible set of vertices.
 - (a) (5 points) Let C_4 denote the set of all cycles of length 4 in the graph. Show that the following integer program models the problem:

$$\min \sum_{v \in V} x_v
\text{s.t.} \quad \sum_{u \in C} x_u \ge 1 \qquad \forall C \in C_4
x_u \in \{0, 1\} \qquad u \in V$$

(b) (5 points) Why does the optimal solution to the following relaxation provides a lower bound for the optimal answer to the above integer linear program? In other words why it is not necessary to have the constraints $x_u \leq 1$ in the relaxation?

- (c) (10 points) Give a simple 4-factor approximation algorithm for the problem based on rounding the solution to the above linear program.
- (d) (15 points) Let L and R denote the set of the vertices in the two parts of the bipartite graph. (Every edge has one endpoint in L and one endpoint in R). Let x^* denote an optimal solution to the linear program in Part (b). We round x^* in the following way: For every $u \in V$,
 - if $u \in R$ and $x_u^* \ge 1/2$, set $\widehat{x}_u = 1$.
 - if $u \in L$ and $x_u^* > 0$, set $\hat{x}_u = 1$.
 - Otherwise set $\hat{x}_u = 0$.

Show that \hat{x} is a feasible solution to the integer linear program.

(e) (10 points) Consider the dual of the relaxation:

$$\begin{array}{ll} \max & \sum_{C \in \mathcal{C}_4} \ y_C \\ \text{s.t.} & \sum_{C \in \mathcal{C}_4, u \in C} \ y_C \leq 1 \\ & y_C \geq 0 \end{array} \qquad \forall u \in V$$

and let y^* be an optimal solution to the dual. Use the complementary slackness to prove the following statement: For every $C \in \mathcal{C}_4$ either we have $|\{u : \widehat{x}_u = 1\}| \leq 3$ or $y_C^* = 0$.

(f) (10 points) Use the complementary slackness and the previous parts to show that our rounding algorithm is a 3-factor approximation algorithm.

2