

# Índice

Introducción - Motivación, necesidad, idea

Estado del arte . IoT y Smart Cities - Tecnologias destacadas - Lora, gsm, sigfox

Estructura del proyecto

Pruebas de rendimiento



### Motivación

- El loT es un concepto relativamente nuevo.
- Es de gran interés entre los diferentes sectores como: fabricas, transporte, agricultura, smart cities, sanidad, y otros
- El monitoreo ambiental es de gran importancia en la actualidad. Nos ayuda a predecir el tiempo, prevenir desastres, disminuir la contaminación ambiental



### Necesidad

- En la actualidad existen sistemas de monitoreo ambiental
- Es importante disponer de un sistema de monitoreo robusto



## Idea

• Construir redes de sensores inalámbricas



## Estado del arte











### Internet de las Cosas

- ¿Qué es el loT?
- IoT tiene múltiples aplicaciones en el mundo real



### **Smart Cities**

- ¿Qué son las Smart Cities?
- Caracteristicas:
  - 0 1
  - 0 2
  - 0



## Tecnologías Destacadas









## Análisis Comparativo

| Tecnologia | Cobertura<br>Mundial | Conectividad por países | Tamaño de<br>paquete | Alcance(km)                           | Limite<br>mensajes  |
|------------|----------------------|-------------------------|----------------------|---------------------------------------|---------------------|
| LORA       | No                   | 167                     | 255 bytes            | 10 - 20                               | 30sec<br>uplink/day |
| Sigfox     | No                   | 70                      | 12 bytes             | 30 - 50                               | 4/día               |
| GSM        | Sí                   | mundial                 | ilimitado            | <10km.Según<br>la operadora<br>móvil. | ilimitado           |

## **Analisis Comparativo**

- ¿Qué tecnologías usar?
- ¿Cual es la solución óptima?
- Usar una sola tecnología no es rentable
- ¿Por qué no usar únicamente GSM?
  - La concentración de múltiples dispositivos puede colapsar la red



## Desarrollo del proyecto



## Estructura del prototipo

- Topología de red: tipo estrella
- Redes independientes entre si
- No hay comunicación entre nodos finales
- Comunicación tipo cliente servidor
- Uso de multiples protocolos



## Estructura del prototipo



#### Protocolo

- Encapsular los datos
- Mejor gestión de paquetes
- Permite escalabilidad de las redes
- Mejor agilidad en la transmisión de paquetes
- Payload: {"payload":[0,0,0,0,0,2,10,20]}



|        |          | D     | ATA FRA | AME |         |    |  |    |
|--------|----------|-------|---------|-----|---------|----|--|----|
| HEADER |          |       |         |     | PAYLOAD |    |  |    |
| DEV_ID | DEV_STAT | GR_ID | LEN     | VO  | V1      | V2 |  | Vn |
| 0      | 1        | 2     | 3       | 4   | 5       | 6  |  | N  |

Fase 2 Trama del Gateway



Fase 3
Estructura JSON

**JSON DATA** 

## Prototipo



## Plataforma IoT - thingsboard

#### Ventajas

- Almacenar los datos enviados por cada gateway
- Accesible a nivel mundial
- No requiere mantenimiento o instalación
- Comunicación a través de una API
- Almacenar, procesar y visualizar los datos

#### Limitaciones

- Personalización limitada según el plan
- No tenemos acceso completo: BBDD, ficheros config, etc.

#### Plataforma IoT - Dashboard

- Permite visualizar los datos almacenados
- Utiliza widgets de diferentes tipos
- Permite filtrar los datos según diferentes criterios
- Permite exportar los datos a un fichero excel





#### Plataforma IoT - limitaciones



## Problemas de integración

#### • GSM

- Conectividad ¿Qué protocolo usar? Http/Https
- Tarjeta SIM: Falta de credito o cobertura
- Consumo: Muy elevado, hasta 2A

#### • LoRa

- Parámetros de comunicación: elegir los parámetros óptimos
- Consumo elevado de la batería
- Problema de comunicación: Entre diferentes modelos de placas LoRa. A veces la comunicación es muy difícil o imposible.



## Consumo de energía - Módulo GSM

- Consumo elevado durante:
  - Búsqueda de señal/operadora
  - Envío de datos por GPRS
- El consumo puede llegar hasta 2A
- Posibles apagones debido a la falta de potencia
- Recomendable usar una capaz de alimentar el módulo(>2A)



## Consumo de energía - Emisor LoRa

- Emisor LoRa
- Al aumentar el Spreading Factor(SF),aumenta el alcance de la señal, pero también el consumo de batería
- La potencia de transmisión afecta al consumo.
- Cada país define un límite máximo de potencia.

| Prueba Nº | SF | BW<br>(kHz) | Potencia de<br>Transmisión<br>(dBm) | CR | Frecuencia<br>de envío de<br>paquetes(s) | Consumo<br>(mA) |
|-----------|----|-------------|-------------------------------------|----|------------------------------------------|-----------------|
| 1         | 7  | 125         | 10                                  | 5  | 10                                       | 73              |
| 2         | 9  | 125         | 10                                  | 5  | 10                                       | 128             |
| 3         | 12 | 125         | 10                                  | 5  | 10                                       | 128             |
| 4         | 7  | 125         | 20                                  | 5  | 10                                       | 98              |
| 5         | 9  | 125         | 20                                  | 5  | 10                                       | 176             |
| 6         | 12 | 125         | 20                                  | 5  | 10                                       | 1014            |

## Consumo de energía - Emisor LoRa

- SF7, SF9, SF12
- TX Power: 10 dBm y 20 dBm
- Capacidad de batería: 1200 mAh



## Consumo de energía - Emisor LoRa

- Picos de consumo por cada envío
- No siempre es simétrico
- Ocurren aumentos bruscos



## Consumo de energía - Duración de batería

- La duracón depende de:
  - Capacidad
  - Frecuencia de envío de paquetes
  - Parámetros de transmisión:
    - SF
    - TX Power



## Tiempo de envío - Emisor LoRa

- Tiempo de envío varía según el SF, Coding Rate, Tamaño Payload
- Mayor SF = Mayor alcance, pero mayor tiempo en el aire(ToA)

| Prueba № | SF | Payload(bytes) | Time on Air(ms) | TX Power(dBm) |
|----------|----|----------------|-----------------|---------------|
| 1        | 7  | 100            | 388             | 7             |
| 2        | 9  | 100            | 867             | 7             |
| 3        | 12 | 100            | 9251            | 7             |
| 4        | 7  | 100            | 388             | 14            |
| 5        | 9  | 100            | 867             | 14            |
| 6        | 12 | 100            | 9251            | 14            |
| 7        | 7  | 50             | 231             | 7             |
| 8        | 12 | 50             | 7560            | 7             |

#### Sistema de notificaciones

- Gestionado por la plataforma IOT
- Permite enviar notificaciones por:
   SMS, Telegram, e-mail
- Permite notificar al usuario si ocurre alguna anomalía:
  - Paquetes dañados o incompletos
  - Contenido invalido o datos fuera de un rango definido



## Conclusiones



## Conclusiones

Conclusiones



## Futuras mejoras

```
Mejoras.....
```

