1

12.10.16

EE23BTECH11210-Dhyana Teja Machineni*

QUESTION: Find the sum to indicated number of terms in each of the geometric progressions in 0.15, 0.015, 0.0015, ... 20 terms.

SOLUTION

 $\begin{array}{c} TABLE \ 0 \\ Variables \ and \ their \ descriptions \end{array}$

Parameter	Description	Value
n	Number of terms in the G.P (positive even integer)	20
<i>x</i> (0)	first term in the G.P	0.15
r	common ratio in the G.P	0.1
x(n)	nth term in the G.P	none
X(z)	Z transform of X(n)	none

Let x(0) denote the first term and r the common ratio. The sum of a geometric progression with n terms:

$$x(n) = x(0)r^n \tag{1}$$

$$X(z) = \frac{x(0)}{1 - rz^{-1}} \tag{2}$$

$$S(z) = X(z)U(z) \tag{3}$$

$$=\frac{x(0)}{(1-rz^{-1})(1-z^{-1})} \quad |z| > |r| \tag{4}$$

$$=\frac{x(0)(\frac{r}{1-rz^{-1}}-\frac{1}{1-z^{-1}})}{(r-1)}$$
 (5)

The inverse of S(z) is s(n)

$$s(n) = x(0)(\frac{r^{n+1} - 1}{r - 1}) \tag{6}$$

Substitute the values in the above equation

$$s(n) = 0.15 * \frac{0.1^{20} - 1}{0.1 - 1}$$
 (7)

$$\therefore s(n) = \frac{1}{6} [1 - 0.1^{20}] \tag{8}$$