

Ang 1) (a) => E, => myz + nyz + nyz + nyz + nyz

2147			
W 200	oi	11	10
0	1		1701
1		-	1(5)-1
		12	

(6) E1=> ryz + ryz

110 010 001

1.1.7-			01
Ny2 00	01	-11	. 10,
0 0			
1		4	
1	×-		

POS= 0(152

NIBI

84 the Wateriff N+10-19 Y= ABC + AZ + BZdNO+ (DI) -

6) y= ABC + ABC + ABC

And 3:-
$$F = n(y+\bar{y})(z+\bar{z}) + (n+\bar{u})\bar{y}z$$

= $(ny+n\bar{y})(z+\bar{z}) + n\bar{y}z + n\bar{y}z$
= $nyz + ny\bar{z} + n\bar{y}z + n\bar{y}z + n\bar{y}z + n\bar{y}z$
= $nyz + n\bar{y}z + n\bar{y}z + n\bar{y}z + n\bar{y}z + n\bar{y}z + n\bar{y}z$
= $nyz + n\bar{y}z + n\bar{y}z + n\bar{y}z + n\bar{y}z + n\bar{y}z + n\bar{y}z + n\bar{y}z$

POS =
$$\chi + \bar{y}z$$

By the property $n + (a \cdot 6)$
= $(na) + (nb)^{11} + 3b + 39a + 4$
= $(n+\bar{y}) + (n+\bar{y} + z\bar{z}) (n\bar{x} + \bar{y} + z\bar{z})$
= $(n+\bar{y}) + (n+z)$

2

 $R = \{(1,1), (1,3), (1,4), (1,6), (1,9), (2,4), (2,6), (2,3), (3,6), (3,4), (3,3), (4,4), (6,6), (9,9)\}$

Join Join

Meet

gt does not satisfy lattice identity.

Ans: - The order of an element in a group is smallest positive power of element which gives you the identity doment.

AM 6 ! -

+6	10		a	2	4	50	
0	0	1	d	3	4	5	
1	J	2	3	4	5	0	(F
9	9	3	4	5	0		
3	3	4	5	0	1 0	?	
4	4	S	0	1	2 3	?	
51	5	0	1	2	36 4		
						1	Y

is divisor of every subgroup of a finite group.

m = order of group

n= order of dubgroup

K = finite number.

dibrati, suttable plating storage

And = 6): - A subgroup 11 of aroup a is said to be a normal subgroup of a inj иа = ач for au a & Cu, i.e, lest coset = sight coset. My -9):-Hun team (2 8 8 8 1) (2 8 8 1) - 130 A menterm of n vociable is a product of n literals in which each voicable appears exactly once up either type of complimented form but not both. Hazintermostar soc framo-non o od 1 A maxterin of n variable som a sum of his Variables literals in which each variable appeared executly once in either touce or compliments form but not both. PAd = DAG . aub = bva AND -10):-+ Auson activis land E(4,y,Z) = 4(yZ)

T

P

D

D

P

D

AD

D

L

E

.L

A

P

2

· (ant)nc = antbnc) = nly+2) (JVO) VD = JV (JVD). = my + nz

> * susperior days DECEVADAD.

aviores = Or

$$F' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 5 & 2 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 5 & 2 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 5 & 2 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 5 & 2 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 5 & 2 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 5 & 2 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 5 & 2 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 5 & 2 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 5 & 2 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 5 & 2 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 5 & 2 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 5 & 2 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 5 & 2 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 5 & 2 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 5 & 2 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 5 & 2 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 5 & 4 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 5 & 4 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 5 & 4 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 5 & 4 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 5 & 4 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 5 & 4 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 5 & 4 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 5 & 4 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 5 & 4 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 5 & 4 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 5 & 4 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 5 & 4 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 5 & 4 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 5 & 4 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 5 & 4 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 5 & 4 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 5 & 4 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 5 & 4 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 5 & 4 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 5 & 4 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 5 & 4 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 4 & 5 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 4 & 5 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 4 & 5 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 3 & 4 & 5 \end{pmatrix}$$

$$S' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 &$$

(b) (i)
$$2xe = 1$$

 $e = 4$

(C).
$$2x^{2} = 9$$

 $2x^{2} = 4$
 $2x^{2} = 6$
 $2x^{2} = 1$
 $2x^{2} = 3$
 $2x^{2} = 5$

Subgroup generate by
$$3 = \{2, 4, 6, 1, 3, 5\}$$

Subgroup generate by $3 = \{3, 6, 2, 5, 1, 4\}$

Quest the Express
$$E(x,y,z) = x(\overline{y}\overline{z})$$
 find $Csop.$ and pos

$$= x(\overline{y}\overline{z})$$

- ~ x (y+ \(\frac{7}{2}\)
- = $xy + x\overline{z}$
- = $xy(z+\overline{z}) + x(y+\overline{y})\overline{z}$
- = $xyz + xy\overline{z} + xy\overline{z} + xy\overline{z} + xy\overline{z}$ (Csop)

$$(x+y+z)$$
. $(x+y+\overline{z})$. $(x+y+\overline{z})$. $(x+\overline{y}+\overline{z})$ (pos) .

Prove that

an(buc) = (anb)u(anc)

NA HARMAN

and $\leq a - 0$ and $\leq b \wedge (b \vee c) - 3$ and $\leq a - 4$ and $\leq c \leq b \vee c - 6$ and $\leq a \wedge (b \vee c) - 6$ (and) $\vee (anc) \leq a \wedge (b \vee c)$ and $\wedge (b \vee c) \leq a$ henced proved.