G53FUZ Fuzzy Sets and Systems

Fuzzy Modelling and Tuning Real World Examples

Jon Garibaldi Intelligent Modelling and Analysis Research Group

Fuzzy Model Identification

- Finding a good fuzzy model can be formulated in terms of searching for a candidate solution from a (very) wide range of possibilities
 - model identification
 - model optimisation
 - model tuning
- There are very many design parameters in any fuzzy model
 - perhaps this is the 'secret' of success?

Structure or Parameters?

- Some people divide problem into two parts
 - structure identification
 - finding the number of linguistic variables, fuzzy terms (membership functions) in each, form of rules, etc.
 - parameter tuning
 - finding the exact values of the m.f. parameters, rule weights, defuzzification parameters, etc.
- All parts of the process can be parameterised and tuned
 - with the possibility of automatic methods

Selecting the 'Best'

- Usually, each candidate fuzzy model has associated with it some measure of how good it is
 - objective function
 - cost function
 - error measure, RMS error (RMSE), error
- The structure and parameters can be altered and the performance measure either maximised or minimised
 - maximise objective functions / performance
 - minimise cost functions / error

FIS Example

- We want to create a system to advise on buying or selling shares
 - inputs
 - FTSE index (UK stock market price)
 - pound / dollar exchange rate
 - actually the daily change in each of these
 - output
 - advice on whether to sell/hold/buy Microsoft shares
 - daily advice to sell/hold/buy

FIS Structure

- Two inputs
 - FTSE index
 - three terms (m.f.s): falling, stable, rising
 - exchange_rate
 - three terms (m.f.s): down, unchanged, up
- One output
 - advice
 - three terms: sell, hold, buy
- Three rules
 - 1. If exchange is falling and ftse is up then advice is buy
 - 2. If exchange is rising and ftse is down then advice is sell
 - 3. If exchange is stable or ftse is unchanged then advice is hold

FIS Parameters

• Each of the two inputs has three triangular m.f.s with one shared control parameter

half-way along universe

FIS Evaluation

- Produces advice on buying/selling shares
 - there is no obvious error to minimise
 - we have no pre-specified target output
 - the output itself is not an objective function
 - we have no objective measure of goodness of advice
- A suitable indirect objective function can be created by using the advice to buy/sell shares
 - trade shares (unseen data) over a certain period
 - how much money does one end up with?

Fuzzy Model Example

```
evalmodel <- function(ms, out) {
    cash= 1000
    shares= 0

n= length(out)

for ( i in 1:n ) {
    if ( out[i] >= 55 && cash >= ms[i] ) {
        # buy
            shares= shares + 1
            cash= cash - ms[i]
    } else if ( out[i] <= 45 && shares > 0 ) {
        # sell
            shares= shares - 1
            cash= cash + ms[i]
    }
}
value= cash + shares * ms[i]
}
```

Exhaustive Search

• Evaluate each combination in turn using some systematic method, e.g.

- sometimes called the 'brute-force' approach
- This cannot be done for most real problems
 - there are too many combinations
 - too computationally expensive

Fuzzy Model Example

Monte Carlo

- Suppose we just guess random set of parameters
- The Monte Carlo algorithm
 - generate a random starting position
 - evaluate the starting position and store it as best
 - repeat
 - generate a new random position
 - · evaluate the new position
 - if the new position is better than the best found so far $% \left(1\right) =\left(1\right) \left(1\right) =\left(1\right) \left(1\right)$
 - store the new position as the best
 - until we decide to stop (e.g. not improved for 20 goes)
- This may or may not find the global maximum

Fuzzy Model Example

```
tune_mc <- function(inp, msr) {
  vmax= 0

for ( L in 1:50 ) {
    constant con
```

Hill Climbing

- · The hill climbing algorithm
 - start at either a fixed or random position
 - · evaluate the current position
 - at each step
 - evaluate in each of the surrounding directions
 - up, down, left, right
 - move in direction of greatest improvement
 - stop if all moves are lower than current position
- This is guaranteed to find the peak (maximum)
 - but only if there is just one (global) maximum

Local Maxima

- Suppose the quality grid changes to this
- If the hill-climbing starts at e.g. (1,5) and heads right first
 - the global maximum at (5,5) is found
- However, if the hillclimbing starts at e.g. (1,5) and heads up first
 - a local maxima at (1,3) is found

Stochastic Local Search

- The performance of local hill climbing is very dependent on the shape of the landscape
 - if the landscape has very many local maxima, the chance of finding the global maximum is small
- · Why not combine Monte Carlo + Hill Climbing?
 - repeat
 - generate a random starting position
 - hill climb to the local maximum
 - store best local maximum
 - until stopping_criteria
- · Stochastic: 'random'
- Local search: moves in the local neighbourhood

Fuzzy Model Example

Simulated Annealing

- · Search algorithm inspired by physical annealing
 - adaptation of hill climbing which allows some downhill steps
 - accept all uphill steps
 - start by allowing all downhill steps and then gradually reduce the likelihood (depending on the size of the downhill step)
- In the simulated annealing algorithm
 - a temperature parameter controls the algorithm
 - $\boldsymbol{-}$ initially, at high temperatures
 - all downhill steps are allowed
 - the temperature is gradually reduced
 - (step size / temperature) governs the chances of acceptance

SA Outline

- SA algorithm is usually implemented as a refinement of the basic hill climbing algorithm
 - initialise temperature, T
 - generate random solution, i
 - repeat
 - generate a new (nearby) solution, j
 - if fitness(j) is higher than fitness(i) then accept the move
 - if fitness(j) is lower than fitness(i) then
 - accept the move according to a probability which decreases with the size of the difference in fitness and increases with temperature, T
 - reduce the temperature. T
 - until stopping criteria

Downhill Steps

- The equation for accepting downhill steps comes from the physical annealing process
 - $e^{-(\Delta E/T)}$
 - where ΔE is the energy change
- If the energy change is small (i.e. a small downhill move) or the temperature is high

$$e^{-(\Delta E/T)} \rightarrow e^{-0} \approx 1$$
, move probably accepted

 If the energy change is large (i.e. a large downhill move) or the temperature is low

$$e^{-(\Delta E/T)} \rightarrow e^{-\infty} \approx 0$$
, move probably rejected

SA Parameters

- Need to choose an initial temperature T such that
 - almost all moves are accepted (uphill & probably downhill)
 - the search is a 'random walk
- The decrease the temperature T gradually, until
 - only uphill moves are accepted
 - the search is now a hill climb to the (local) optimum
- Can let the algorithm repeat a number of times at each T, rather than decreasing T after every step
 - the length parameter, L, specifies the number of steps to be repeated at each temperature, T

Fuzzy Model Example

Real-Valued Parameters

- · So far we have only considered integer values
 - only a fixed number of combinations of parameters
 - combinatorial optimisation
- Suppose one or more parameters are reals
 - what step length should be used in e.g. hill climbing?
- · Too big?
 - might step right over a sharp peak
- Too small?
 - might spend too long searching uninteresting areas

The Solution

- · Dynamic step length dependent on terrain
- Ideally using the shape of the terrain
- But gradients are not (usually) available
- · Need a gradient-free dynamic algorithm
- Solution: Nelder-Mead simplex

"A simplex method for function minimization"

J.A. Nelder and R. Mead

The Computer Journal

Vol. 7: pp. 308-313, 1965

The Simplex Method

- A shape of with *N*+1 vertices is used where *N* is the dimensionality of the problem
 - e.g. a triangle in 2D
 - the shape starts at a random position
- Certain transformations of the shape are allowed
 - reflection of the lowest vertex through the opposite face
 - a reflection of the lowest with expansion
 - a contraction of the lowest towards the opposite face
 - a contraction along all faces towards the highest vertex
- If new point is higher, the new shape is accepted

The Outcome of Labour

- · A huge mix of outcome measures in childbirth
 - maternal
 - mortality (death)
 - morbidity (illness, injury)
 - blood loss, pain, postnatal depression
 - other
 - delivery mode, length of labour, type of anaesthetic
 - neonatal
 - mortality (death)
 - morbidity (illness, injury)
 - resuscitation, SCBU / NICU
 - other
 - birth weight, head circumference, adult IQ

Umbilical Cord Acid-Base Analysis

Umbilical Acid-Base Analysis

- Need evidence of oxygen lack during labour
- · Clamp the umbilical cord immediately
 - sample arterial and venous blood
- Use blood gas analysis machine to measure
 - pH, pCO₂, pO₂
 - derive base deficit (extracellular fluid)
- Analysis of all these parameters in combination provides information on the severity and duration of lack of oxygen during labour
 - umbilical acid-base (UAB) analysis

Problems with UAB Analysis

- Need to distinguish *metabolic* from *respiratory* acidemia
- Need pH and pCO₂ from both artery and vein
 - input and output blood
- 25% error rate typical
 - errors go unnoticed
- Difficult to interpret
 - too many figures
 - considerable experience required
- · Must be done on every delivery
 - staff availability

The Fuzzy Expert System

- Fuzzy rule base elicited from experts (25 rules)
 - four fuzzy input variables
 - pHa, pHv: 4 fuzzy terms (low, intermediate, normal, high)
 - BDa, BDv: 3 fuzzy terms (low, intermediate, high)
 - three fuzzy output variables
 - acidemia: 5 terms (severe, significant, moderate, mild, none)
 - component: 3 terms (metabolic, mixed, respiratory)
 - duration: 3 terms (chronic, intermediate, acute)
- The FES implicitly interprets imprecise or missing input parameters
 - crisp system required separate rules (54 rules total)

Fuzzy Inference

- Use rules of fuzzy logic to perform approximate reasoning with linguistic variables in a fuzzy ES
- The rules can be directly in the form elicited from the human expert, for example
 - IF pHa IS low AND BDa IS high AND pHv IS low AND BDv IS high

THEN acidemia IS severe AND component IS metabolic

• Multiple rules fire to form complex fuzzy output

The Validation Task

- 50 difficult umbilical acid-base cases selected
- · Ranked in order from 'worst' to 'best'
 - consider four dimensional data in parallel
 - as pH decreases, condition is worse
 - as BD increases, condition is worse
 - so, which is worse?

рНа	BDa	рHv	BDv
6.94	11.6	6.97	11.8
6.87	8.5	7.11	9.4

Comparisons of Performance

- Used Spearman Rank Correlation to compare
 - relationship to performance of clinicians
 - · clinicians to each other
 - crisp system to clinicians
 - fuzzy system to clinicians
 - relationship to other immediate outcome by Apgar score at 1 and 5 minutes
 - clinicians to outcome
 - crisp system to outcome
 - fuzzy system to outcome

Initial Results

- · Agreement with clinicians
 - clinicians ⇔ clinicians ≈ 0.91
 - crisp \Leftrightarrow clinicians ≈ 0.80
 - fuzzy ⇔ clinicians ≈ 0.67
- · Agreement with outcome
 - clinicians ⇔ outcome ≈ 0.64
 - $\text{crisp} \Leftrightarrow outcome$ ≈ 0.52
 - fuzzy ⇔ outcome ≈ 0.25

Fuzzy System Detail

- · Mamdani model
 - max-min inference
 - sigmoid membership functions
 - terms matched to crossovers in crisp rules
- Rules from expert elicitation
 - all rules feature all four input variables
- Centroid defuzzification
 - acidemia
 - component
 - duration
 - PIAD = acidemia / X+ component / Y + duration / Z

Fuzzy Choices

- · And/Or operators
 - -A and B = min(A, B) A or B = max(A, B)
 - -A and B = A * B A or B = A + B A * B
- · Membership functions
 - shape
 - sigmoid, triangular, arbitrary
 - characteristics
 - number of terms, locations, crossovers
- Number / form of rules

Fuzzy Model Tuning

- The simplex method with modifications to include simultaneous simulated annealing based optimisation of
 - integers (combinatorial optimisation)
 - reals (continuous optimisation)

was applied to the initial fuzzy expert system

- Application of Simulated Annealing Fuzzy Model Tuning to Umbilical Acid-Base Interpretation
 - J.M. Garibaldi and E.C. Ifeachor
 - IEEE Trans Fuzzy Systems, 7(1), 72-84, 1999

Fuzzy System Refined

- As a result of tuning, the fuzzy expert system was modified to improve performance
 - the best number of pHa and pHv terms was found to be four (rather than three)
 - all membership functions were shifted
 - 'optimal' linear combination of outputs was found
 - PIAD = acidemia + component / 20 + duration / 10

Tuned Fuzzy System Results

- · Agreement with clinicians
 - clinicians ⇔ clinicians ≈ 0.91
 - crisp \Leftrightarrow clinicians ≈ 0.80
 - fuzzy¹ \Leftrightarrow clinicians ≈ 0.67
 - fuzzy² ⇔ clinicians ≈ 0.93
- Agreement with outcome
 - clinicians \Leftrightarrow outcome ≈ 0.64
 - $\text{crisp} \Leftrightarrow outcome$ ≈ 0.52
 - fuzzy¹ \Leftrightarrow outcome ≈ 0.25
 - fuzzy² ⇔ outcome ≈ 0.65

Summary

- · Lecture summary
 - fuzzy model identification comprises finding the structure and parameters of a fuzzy system
 - there are various (semi-) automatic algorithmic approaches that can be used to tune systems
 - a real world example in umbilical acid-base analysis demonstrates the real benefits in fuzzy tuning
- · Next lecture
 - ANFIS: adaptive neuro-fuzzy inference system