1. Introducción a los conjuntos numéricos

1.1. Construcciones

Nota 1. Las definiciones y construcciones de los conjuntos numéricos estándares aquí no se dan de una forma muy rigurosa. Su construcción es más propia de una asignatura de fundamentos matemáticos, y ahora mismo me da mucha pereza escribir todo. En este documento solo nos preocupará la construcción de los números reales, que haremos en la sección de sucesiones.

Sea $\mathbb N$ un conjunto con un elemento que denominamos 1. Ahora, para todo elemento n de $\mathbb N$ añadimos a $\mathbb N$ el sucesor, S(n) o n+1. Esto da un conjunto infinito, los **números naturales**. Generalmente, que 0 esté dentro de $\mathbb N$ es una cuestión de comodidad. Aquí nos será mucho más cómodo que los números naturales empiecen en 1.

En este conjunto tenemos el principio de inducción:

Axioma 1 (Principio de inducción en \mathbb{N}). Sea $S \subseteq \mathbb{N}$. Si S satisface las siguientes 2 condiciones, entonces $S = \mathbb{N}$:

- \bullet $1 \in S$
- $\forall n \in S \ n+1 \in S$

Este principio es muy útil para probar cosas sobre \mathbb{N} , por ejemplo la forma cerrada de una sucesión. En \mathbb{N} también podemos definir algo denominado **orden total**, que es una relación binaria \leq que sigue los siguientes axiomas:

Axioma 2 (Axiomas de orden total). $\forall a, b, c \in \mathbb{N}$

- 1. $a \le a \ (Reflexividad)$
- 2. $a \le b$ y $b \le c$ implica $a \le c$ (Transitivdad)
- 3. $a \le b \ y \ b \le a \ implica \ a = b \ (Antisimetría)$
- 4. $a \le b$ o $b \le a$ (Totalidad o principio de tricotomía)

Cuando tenemos un orden parcial o total definido sobre un conjunto, podemos hablar de cotas y máximos y mínimos:

Definición 1. Sea $S \subseteq X$ donde X es un conjunto con un orden parcial o total \leq . S es...

- Acotado superiormente si $\exists r \in X \text{ tal que } x \leq r \ \forall x \in S.$
- Acotado inferiormente si $\exists r \in X \text{ tal que } r \leq x \ \forall x \in S.$

Y decimos que un elemento $r \in S$ es...

- Un máximo si $\forall x \in S \ x \leq r$.
- Un mínimo si $\forall x \in S \ r < x$.

Con este orden total definido, podemos reformular el principio de inducción como:

Axioma 3 (Principio de buena ordenación en \mathbb{N}). $\forall S \subseteq \mathbb{N} \ S \neq \emptyset, \exists n \in S \mid \forall x \in S, n \leq x. \ Es \ decir, \ todo \ subconjunto \ de \ los números \ naturales \ tiene \ mínimo.$

Estas dos formulaciones son equivalentes. Los números naturales además cumplen los siguientes axiomas algebraicos:

Axioma 4 (Axiomas de semianillo unitario ordenado). $\forall a, b, c \in \mathbb{N}$:

- 1. (a+b)+c=a+(b+c) (Asociatividad de la suma)
- 2. a+b=b+a (Conmutatividad de la suma)
- 3. (a*b)*c = a*(b*c) (Asociatividad de la multiplicación)
- 4. a*b=b*a (Conmutatividad de la multiplicación)
- 5. a*(b+c) = a*b + a*c (Distributividad de la multiplicación sobre la suma)
- 6. $\exists 1 \in \mathbb{N} \mid \forall n \in \mathbb{N}, 1 * n = n$ (Elemento neutro del producto)
- 7. $a \le b \implies a + c \le b + c$ (Compatibilidad del orden con la suma)

8. Si $c \ge 0$ (que es trivial en \mathbb{N}), entonces $a \le b \Rightarrow ac \le bc$ (Compatibilidad del orden con el producto)

Estos axiomas son particularmente débiles. Por ejemplo, para la ecuación x+2=4 obviamente x=2, pero no existe ninguna forma de probarlo fácilmente, cuando la existencia de inversos para cada número ayudaría inmensamente. Además, ecuaciones como x+4=2 no tienen solución en $\mathbb N$. Por eso definimos un nuevo conjunto denominado $\mathbb Z$, los **números** enteros:

Definición 2 (Números enteros). $\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n \ \forall n \in \mathbb{N}\}\ donde\ 0\ denota\ la\ identidad\ para\ la\ suma\ y\ -n\ el\ inverso\ para\ la\ suma\ de\ n.$

Estos números, ademas de los Axiomas 4, cumplen los siguientes axiomas:

Axioma 5 (Axiomas adicionales para \mathbb{Z}).

- 1. $\exists 0 \in \mathbb{Z} \mid \forall n \in \mathbb{N}, 0 + n = n$ (Elemento neutro de la suma)
- 2. $\forall n \in \mathbb{Z}, \exists -n \in \mathbb{Z} \mid n+(-n)=0$ (Existencia del elemento inverso para la suma)

Con estos axiomas, se dice que $(\mathbb{Z}, +)$ es un grupo conmutativo y que $(\mathbb{Z}, +, *)$ es un anillo conmutativo. A cambio de estos axiomas algebraicos, perdemos el principio de inducción en los números enteros y la existencia de un elemento mínimo, pero mantenemos una versión del principio de buena ordenación:

Axioma 6 (Principio de buena ordenación de subconjuntos minorados de \mathbb{Z}). $\forall S \subseteq \mathbb{Z} \ S \neq \emptyset \ si \ \exists n \in \mathbb{Z} \ | \ \forall x \in S, n \leq x$ entonces $\exists m \in S \ | \ \forall x \in S, m \leq x$. Es decir, todo subconjunto no vacío con cota inferior tiene un elemento mínimo.

Este axioma para \mathbb{Z} implica el Axioma~3 para los naturales. El conjunto de los números enteros aún tiene unos cuantos problemas. Por ejemplo, es imposible resolver la ecuación 2x=1 para $x\in\mathbb{Z}$. Por eso, podemos definir otro conjunto de números construidos sobre los números enteros, los **números racionales**, denotados por \mathbb{Q} :

Definición 3 (Números racionales). $\mathbb{Q} = \{p/q, p \in \mathbb{Z}, q \in \mathbb{N}\}$

Aparte de cumplir los Axiomas 4 y 5, $\mathbb Q$ cumple:

Axioma 7 (Axioma algebraico adicional para \mathbb{Q}).

```
1. \forall q \in \mathbb{Q} \ q \neq 0, \exists \ 1/q \in \mathbb{Q} \ | \ q * (1/q) = 1 (Existencia del inverso de elementos no nulos para el producto)
```

Esto hace de \mathbb{Q} un cuerpo conmutativo. \mathbb{Q} no tiene ni principio de buena ordenación, ni de buena ordenación de subconjuntos minorados (por ejemplo, el conjunto $S = \{1/n \ \forall n \in \mathbb{N}\} \subseteq \mathbb{Q}$ esta acotado inferiormente pero no tiene mínimo). Esto nos quita una vía de demostrar, pero "quitamos" más agujeros que existían en los números enteros:

Teorema 1 (Densidad de \mathbb{Q}). $\forall a, b \in \mathbb{Q} \ a \neq b, \ \exists r \in \mathbb{Q} \ | \ a < r < b.$ Es decir, entre dos números racionales distintos siempre vamos a poder encontrar otro número racional. De hecho, vamos a poder encontrar infinitos aplicando el teorema cuantas veces como queramos.

Demostración. Dados
$$a < b \in \mathbb{Q}$$
: $a = (a+a)/2 < (a+b)/2 < (b+b)/2 = b$. $(a+b)/2$ es el número que buscamos.

De este teorema podemos deducir que no existe una función sucesora en \mathbb{Q} , y por tanto no tenemos alternativa a inducción. Pero este teorema no es suficiente para que \mathbb{Q} sea el conjunto numérico perfecto para hacer análisis. Aún existen agujeros, como demuestra el siguiente ejemplo:

Proposición 1. No existe ningún $a \in \mathbb{Q}$ tal que $a^2 = 2$.

Demostración. Supongamos que $\exists a \in \mathbb{Q}$ tal que $a^2 = 2$. Al ser un número racional, lo podemos escribir de la forma $\frac{p}{q}$ con $p \in \mathbb{Z}, q \in \mathbb{N}$ y $\gcd(p,q) = 1$ (donde gcd denota el máximo común divisor). Por tanto, tenemos la expresión $\frac{p^2}{q^2} = 2$, de donde deducimos que $p^2 = 2q^2$ y debido a que 2 es un número primo, que 2|p o más concretamente p = 2k para algún $k \in \mathbb{Z}$. Substituyendo otra vez obtenemos $4k^2 = 2q^2$ y deducimos $2k^2 = q^2$, que de forma similar nos deja ver que q es también múltiplo de 2. Pero inicialmente hemos asumido que el máximo común divisor de p y q es 1 < 2 y no mayor o igual a 2, por lo cual hemos encontrado una contradicción y la proposición es cierta.

Esto es problemático, ya que intuitivamente deberíamos de poder encontrar un valor que cumpla $a^2 = 2$. Para poder arreglar este problema necesitamos una definición primero:

Definición 4 (Supremo e ínfimo). Sea A un subconjunto numérico acotado superiormente. Si existe la mínima cota superior (es decir, un número ω que sea cota superior del conjunto y tal que cualquier otra cota superior α sea $\omega \leq \alpha$) esta será única y la llamaremos **supremo**. Dualmente, a la máxima cota inferior en un subconjunto acotado inferiormente la llamaremos **infimo**. Se denotan sup A y inf A.

La definición parece ajena al ejemplo de "agujero" que hemos dado en la $Proposición\ 1$, pero es la más general que engloba todos los casos que necesitamos. El subconjunto $A\subseteq\mathbb{Q}$ definido como $A=\{a\in\mathbb{Q}\mid a^2\leq 2\}$ esta acotado superiormente por 2 y es posible demostrar que si existiera un supremo, este número sería tal que su cuadrado fuera igual a 2, pero en \mathbb{Q} no existe. Por tanto, podemos pensar que "añadiendo todos los supremos" completaríamos \mathbb{Q} . Este es el procedimiento que seguimos:

Axioma 8 (Axioma del supremo). Todo subconjunto acotado superiormente tiene supremo.

Definición 5 (Números reales). Al conjunto \mathbb{R} con $\mathbb{Q} \subseteq \mathbb{R}$ y que cumpla el Axioma 8 lo llamamos los **números reales**.

Este conjunto no es único, pero si es único bajo isomorfismos, que viene a decir que cualesquiera dos conjuntos con estas propiedades tienen la misma estructura y por tanto no hace falta distinguirlos. En una sección posterior, nos centraremos en la construcción de los números reales: lo que hemos dado aquí es solo una definición axiomática.

1.2. Los números reales

Empezamos el estudio de los números reales introduciendo algunos conceptos.

Definición 6. El conjunto de los irracionales es $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$. Es decir, los números reales que no se pueden expresar como cociente de dos números enteros.

De esta definición podemos ver que un número real tiene que ser racional o irracional, pero no puede ser los dos a la vez. Esto implica que los racionales e irracionales forman una partición de los números reales.

Definición 7 (Valor absoluto). Dado $x \in \mathbb{R}$ definimos el valor absoluto como:

$$|x| = \begin{cases} x \text{ si } x \ge 0\\ -x \text{ si } x < 0 \end{cases}$$
 (1)

El valor absoluto es de los conceptos mas fundamentales del análisis real. Geométricamente, si dibujamos el valor $x \in \mathbb{R}$ en la recta real, el valor absoluto da la longitud del segmento que va desde x hasta 0 y la distancia entre dos números reales en la recta real viene dada por d(x, y) = |x - y|.

Proposición 2 (Propiedades del valor absoluto). $\forall a, b \in \mathbb{R}$ tenemos:

- 1. ||a|| = |a|
- |2.|-a|=|a|
- 3. |ab| = |a||b|
- 4. La desigualdad triangular: $|a+b| \leq |a| + |b|$
- 5. La designaldad triangular inversa: $||a| |b|| \le |a b|$
- 6. Si $a \neq 0$ entonces $\left| \frac{1}{a} \right| = \frac{1}{|a|}$

La desigualdad triangular se usa mucho. Vamos a ver una caracterización del supremo e ínfimo:

Proposición 3 (Caracterización del supremo). Sea $A \subseteq \mathbb{R}$.

- 1. El supremo de A existe si y solo sí existe un número $\omega \in \mathbb{R}$ que sea cota superior de A tal que $\forall \varepsilon > 0$ exista $x \in A$ tal que $x > \omega \varepsilon$. En este caso sup $A = \omega$.
- 2. El ínfimo de A existe si y solo sí existe un número $\alpha \in \mathbb{R}$ que sea cota inferior de A tal que $\forall \varepsilon > 0$ exista $x \in A$ tal que $x < \alpha \varepsilon$. En este caso inf $A = \alpha$.

Cuando estudiemos sucesiones, nos será muy útil tener herramientas para relacionar los números naturales con los números reales.

Teorema 2 (Propiedad arquimediana). $\forall x, y \in \mathbb{R}$ tales que $x > 0 \exists n \in \mathbb{N}$ con nx > y.

Podemos entender el teorema así: si tenemos una longitud muy pequeña siempre vamos a juntar muchas de ellas para poder formar una longitud grande. Este teorema nos va a servir para demostrar dos corolarios que son intuitivamente verdad:

Corolario 1. El conjunto de los números naturales no está acotado superiormente.

Corolario 2. Todo subconjunto no vacío de los números naturales que esté acotado superiormente tiene máximo y mínimo.

Corolario 3. Todo subconjunto finito de los números reales esta acotado y tiene máximo y mínimo.

Teorema 3 (Existencia de la parte entera). $\forall x \in \mathbb{R}$ existe un único $k \in \mathbb{Z}$ tal que k < x < k + 1.

Definición 8 (Parte entera). Dado $x \in \mathbb{R}$ definimos la parte entera como:

$$[x] = \sup\{k \in \mathbb{Z} \mid k \le x\} \tag{2}$$

Por el teorema anterior, este supremo siempre existe. También definimos la parte fraccionaria:

$$\{x\} = x - [x] \tag{3}$$

Estos dos no son tan útiles como el valor absoluto.

Definición 9 (Potencias enteras). Sea $x \in \mathbb{R}$ y $n \in \mathbb{Z}$. Definimos la **potencia n-ésima** de x de forma inductiva, y la denotamos por x^n , como:

$$x^{n} = \begin{cases} x * x^{n-1} & si \ n > 1 \\ x & si \ n = 1 \\ 1 & si \ n = 0 \ y \ x \neq 0 \\ \frac{1}{x^{n}} & si \ n < 0 \ y \ x \neq 0 \end{cases}$$

$$(4)$$

Si x = 0 y $n \le 0$ entonces la potencia queda indefinida. Al número n se le llama **exponente**.

Es posible extender esta definición a los números racionales e irracionales, pero se necesitan herramienta más fuertes para fundamentarlos. Por ahora damos los teoremas:

Teorema 4 (Existencia de la raíz cuadrada). Sea $a \in \mathbb{R}$ mayor o igual que 0. Entonces existe un único $x \in \mathbb{R}$ mayor o igual que 0 tal que $x^2 = a$.

Teorema 5 (Existencia de raíces). Sea $a \in \mathbb{R}$ cualquiera.

- 1. Para todo $n \in \mathbb{N}$ impar existe un único $x \in \mathbb{R}$ tal que $x^n = a$.
- 2. Si $a \ge 0$ entonces para todo $n \in \mathbb{N}$ par (recordamos que \mathbb{N} no tiene el 0 en nuestra definición) existe un único $x \in \mathbb{R}$ con $x \ge 0$ tal que $x^n = a$.

En cualquier caso, al número x lo llamaremos la **raíz n-ésima** de a y lo denotaremos por $\sqrt[n]{a}$ o $a^{\frac{1}{n}}$.

Proposición 4 (Potencias racionales). Sean $x \in \mathbb{R}$, $q \in \mathbb{Q}$ y $n, m \in \mathbb{Z}$ tales que $q = \frac{n}{m}$. Cuando las siguientes expresiones son válidas, tenemos:

$$(x^n)^{\frac{1}{m}} = (x^{\frac{1}{m}})^n \tag{5}$$

y este número lo denotaremos por $x^{\frac{n}{m}}$ o x^{q} . (TODO: Falta ver que está bien definido)

Proposición 5 (Propiedades de las potencias). TODO

Proposición 6 (Binomio de Newton). Sean $x, y \in \mathbb{R}$ $y \in \mathbb{R}$ entonces:

$$(x+y)^{n} = \sum_{m=0}^{n} \binom{n}{m} x^{m} y^{n-m}$$
 (6)

Las potencias de exponente real tienen una definición más complicada.

2. Sucesiones de números reales

Definición 10. Una sucesión es una aplicación $a : \mathbb{N} \to \mathbb{R}$. Por comodidad, la imagen de $n \in \mathbb{N}$ se denota por a_n y para la sucesión en sí usaremos $\{a_n\}_n$. El conjunto $\{a_n : n \in \mathbb{N}\} \subseteq \mathbb{R}$ es el conjunto **imagen**. Decimos que la sucesión $\{a_n\}_n \subseteq \mathbb{R}$ es:

- **Eventual creciente** $si \exists N \in \mathbb{N} \ tal \ que \ a_m \geq a_n, \ \forall m > n \geq N \ con \ n \ y \ m \ naturales.$
- Eventual estrictamente creciente si $\exists N \in \mathbb{N}$ tal que $a_m > a_n$, $\forall m > n \geq N$ con n y m naturales.
- **Eventual decreciente** $si \exists N \in \mathbb{N} \text{ tal que } a_m \leq a_n, \forall m > n \geq N \text{ con } n \text{ y } m \text{ naturales.}$
- Eventual estrictamente decreciente si $\exists N \in \mathbb{N}$ tal que $a_m < a_n, \forall m > n \geq N$ con n y m naturales.

En cualquier caso decimos que la sucesión es **eventual monótona**. Si N=1 en cualquiera de estos casos, entonces quitamos "eventual".

Nos interesa estudiar el comportamiento de la sucesión cuando n se hace grande, es decir eventualmente. Veremos que el comportamiento de a_n cercano a n=1 no importa en lo que a límite se refiere, solo el comportamiento eventual. En los teoremas de sucesiones monótonas que hagamos generalmente no usaremos la monotonía eventual, sino la monotonía desde n=1 pero también serán válidos para la eventual con pocas modificaciones.

Definición 11. Sea $\{a_n\}_n \subseteq \mathbb{R}$ una sucesión de números reales. Decimos que a_n está **acotada inferiormente** si existe un $A \in \mathbb{R}$ tal que para todo $n \in \mathbb{N}$ se tiene $a_n \geq A$. Análogamente, se dice que está **acotada superiormente** si existe un $B \in \mathbb{R}$ tal que para todo $n \in \mathbb{N}$ se tiene $a_n \leq B$. Se dice que está **acotada** si lo está superiormente e inferiormente.

2.1. Convergencia y cálculo de límites

Definición 12. Sea $\{a_n\}_n \subseteq \mathbb{R}$ una sucesión de números reales. Decimos que a_n converge a L y lo denotamos como $a_n \to_n L$ si y solo si $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ tal que $|a_n - L| < \varepsilon$ para todo n tal que $n \ge N$.

Esta definición se le conoce como definición $\delta - \varepsilon$.

Proposición 7 (Unicidad del límite). Sean $\{a_n\}_n \subseteq \mathbb{R}$ convergente a L_1 y L_2 . Entonces $L_1 = L_2$.

Demostración. Supongamos que L_1 y L_2 son dos límites de la sucesión $\{a_n\}_n \subseteq \mathbb{R}$. Por tanto, dado un $\varepsilon > 0$, existe un $N \in \mathbb{N}$ tal que $|a_n - L_1| < \varepsilon/2$ y $|a_n - L_2| < \varepsilon/2$ $\forall n > N$ con $N = max\{n_1, n_2\}$, donde n_1 y n_2 son N dado de la definición del límite para L_1 y L_2 . Sumando ambas desigualdades y usando la desigualdad triangular, tenemos:

$$\varepsilon = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} > |a_n - L_1| + |a_n - L_2| = |a_n - L_1| + |-a_n + L_2|$$
$$> |a_n - L_1 - a_n + L_2| = |L_2 - L_1|$$

Como ε es un número arbitrario mayor que 0, si asumimos que $|L_2 - L_1| \neq 0$, siempre vamos a poder encontrar un valor de ε (por ejemplo, $\varepsilon = \frac{|L_2 - L_1|}{2} > 0$) mayor a 0 que contradiga $\varepsilon > |L_2 - L_1|$. Por tanto, $|L_2 - L_1| = 0$ y $L_2 = L_1$.

Definición 13. Sabiendo que una sucesión convergente $\{a_n\}_n \subseteq \mathbb{R}$ converge a un único valor L, llamamos a este valor **límite** de la sucesión a_n , y lo denotamos como $\lim_{n\to+\infty} a_n = L$ o de manera resumida $\lim_n a_n = L$.

Proposición 8. Sea $\{a_n\}_n \subseteq \mathbb{R}$ una sucesión de números reales. Si $\{a_n\}_n$ converge, entonces es acotada.

Demostración. Supongamos que $\{a_n\}_n \subseteq \mathbb{R}$ es una sucesión que converge a $L \in \mathbb{R}$. Por la definición de convergencia existirá un $N \in \mathbb{N}$ tal que si $n \geq N$ entonces $|a_n - L| < 1$ (haciendo $\varepsilon = 1$). Podemos asegurar que N > 1 (si tuviéramos que N = 1 simplemente dejaríamos N = 2). Desarrollando el valor absoluto tenemos:

$$L - 1 < a_n < L + 1 \tag{7}$$

para todo $n \ge N$. Consideramos entonces los conjuntos $A = \{a_1, a_2, \ldots, a_{N-1}, L+1\}$ y $B = \{a_1, a_2, \ldots, a_{N-1}, L-1\}$. Como ambos conjuntos son finitos, podemos asegurar que existe el máximo de A y el mínimo de B. Sean $\alpha = \min B$ y $\omega = \max A$. Entonces:

- 1. Si $n \in \mathbb{N}$ es tal que $1 \le n < N$ entonces $a_n \in A$ y $a_n \in B$ y por tanto $\alpha \le a_n \le \omega$.
- 2. Si $n \in \mathbb{N}$ es tal que $n \ge N$ entonces por (7) tenemos $\alpha \le L 1 \le a_n \le L + 1 \le \omega$ y así $\alpha \le a_n \le \omega$ por la transitividad del orden.

Como todo número natural es menor, igual o mayor que N (principio de la tricotomía) tenemos que $\alpha \leq a_n \leq \omega$ para todo $n \in \mathbb{N}$ y por tanto la sucesión $\{a_n\}_n$ está acotada.

Definición 14. Si $\{a_n\}_n \subseteq \mathbb{R}$ no converge a ningún valor $L \in \mathbb{R}$, podemos decir que a_n es:

- **Divergente** $a + \infty$ si $\forall M \in \mathbb{R}$, $\exists N \in \mathbb{N}$ tal que $a_n > M$ $\forall n > N$.
- **Divergente** $a \infty$ si $\forall M \in \mathbb{R}$, $\exists N \in \mathbb{N}$ tal que $a_n < M \ \forall n > N$.
- Oscilante si no converge ni diverge.

Definición 15 (Subsucesion). Sea $\{n_k\}_k \subseteq \mathbb{N}$ una sucesión estrictamente creciente de números naturales $y \{a_n\}_n \subseteq \mathbb{R}$ una sucesión cualquiera de números reales. Una subsucesión de a_n es una sucesión de la forma $\{a_{n_k}\}_k \subseteq \mathbb{R}$.

Teorema 6 (Aritmética de límites). Sean $\{a_n\}_n \subseteq \mathbb{R}$ y $\{b_n\}_n \subseteq \mathbb{R}$ dos sucesiones cualesquiera convergentes a L_a y L_b respectivamente. Entonces:

- $Si \ r \in \mathbb{R}$, entonces $\lim_{n \to +\infty} ra_n = rL_a$
- $\bullet \lim_{n \to +\infty} a_n + b_n = L_a + L_b$
- Si $b_n \neq 0 \ \forall n \in \mathbb{N}$, entonces $\lim_{n \to +\infty} \frac{a_n}{b_n} = \frac{L_a}{L_b}$

Ejemplo 1. 1. La sucesión $a_n = \frac{1}{n}$ converge a 0 y es monótona decreciente. Además, toda subsucesión converge a 0.

- 2. La sucesión $a_n = n^3$ diverge $a + \infty$ y es monótona creciente.
- 3. La sucesión

$$a_n = \begin{cases} 1 \text{ si } n \text{ es par} \\ -1 \text{ si } n \text{ es impar} \end{cases}$$
 (8)

es oscilante. Además, la subsucesión $\{a_{2n}\}_n$ converge a 1 y $\{a_{2n+1}\}_n$ converge a -1.

4. Las sucesiones $a_n = n$ y $b_n = -n$ divergen pero la sucesión $c_n = a_n + b_n$ converge a 0.

El comportamiento de las subsucesiones de una sucesión dada en relación a su convergencia es muy importante. Vemos unos resultados.

Proposición 9. Sea $\{a_n\}_n \subseteq \mathbb{R}$ una sucesión de números reales. Entonces converge si y solo si cada una de sus subsucesiones converge al mismo número.

Corolario 4. Sea $\{a_n\}_n \subseteq \mathbb{R}$ una sucesión de números reales.

- 1. Si existe una subsucesión de $\{a_n\}_n$ que no converge, entonces $\{a_n\}_n$ no converge.
- 2. Si existen dos subsucesiones que converjan a dos valores distintos entonces $\{a_n\}_n$ no converge.

Este corolario es muy útil para demostrar que algunas sucesiones no convergen. Ahora vamos a ver más resultados para poder saber cuando converge una sucesión y a qué converge.

Teorema 7 (Convergencia de las sucesiones monótonas). Sea $\{a_n\}_n \subseteq \mathbb{R}$ una sucesión de números reales, entonces:

- 1. Si $\{a_n\}_n$ es creciente, entonces converge si y solo si es acotada superiormente.
- 2. Si $\{a_n\}_n$ es decreciente, entonces converge si y solo si es acotada inferiormente.

Este es un ejemplo de teorema donde podríamos cambiar las suposiciones de creciente y decreciente por sus respectivas suposiciones eventuales. Esto cambiaría la demostración y el método de obtener el límite un poco.

Teorema 8 (Orden de los límites y teorema del sandwich). Sean $\{a_n\}_n \subseteq \mathbb{R}$, $\{b_n\}_n \subseteq \mathbb{R}$ y $\{c_n\}_n \subseteq \mathbb{R}$ tres sucesiones de números reales tales que $a_n \leq b_n \leq c_n$ para todo $n \in \mathbb{N}$.

- 1. Si $a_n \to_n A$, $b_n \to_n B$ y $c_n \to_n C$ entonces $A \leq B \leq C$.
- 2. Si $a_n \to_n A$ y $c_n \to_n C$ y además A = C entonces $\{b_n\}_n$ converge a A.

Teorema 9 (Criterio de Cauchy o de la raíz).

Teorema 10 (Criterio de Stolz).

Teorema 11 (Criterio de la media aritmética). Sea $\{a_n\}_n \subseteq \mathbb{R}$ una sucesión de números reales que converja a $L \in \mathbb{R}$. Entonces la sucesión $\{A_n = \frac{\sum_{m=1}^n a_m}{n}\}_n$ converge a L. (TODO: Poner este tipo de fórmulas en una nueva linea)

Teorema 12 (Criterio de la media geométrica).

Finalmente, podemos constatar una relación del ínfimo y supremo con las sucesiones:

Teorema 13 (Teorema de alcance). Sea $A \subseteq \mathbb{R}$.

- 1. Si $\exists \sup A$ entonces existe una sucesión de elementos de A que converge a $\sup A$.
- 2. Análogamente, si ∃ínf A entonces existe una sucesión de elementos de A que converge a ínf A.

2.2. Sucesiones de Cauchy y completitud

2.3. Puntos de acumulación

Definición 16 (Punto de acumulación). Sea $\{a_n\}_n \subseteq \mathbb{R}$ una sucesión de números reales. Si existe una subsucesión que converge a un número $L \in \mathbb{R}$ entonces L se dice que es un punto de acumulación.

Teorema 14 (De Bolzano-Weierstrass). Toda sucesión acotada tiene una subsucesión convergente.

Definición 17 (Límites superior e inferior). Sea $\{a_n\}_n \subseteq \mathbb{R}$ una sucesión de números reales.

- 1. Si $\{a_n\}_n$ está acotada superiormente definimos el **límite superior** como lím $\sup_{n\to+\infty} a_n = \lim_{n\to+\infty} \sup\{a_m : m > n\}$. Si $\{a_n\}_n$ no está acotada superiormente lo definimos como lím $\sup_{n\to+\infty} a_n = +\infty$
- 2. Análogamente, si $\{a_n\}_n$ está acotada inferiormente definimos el **límite inferior** como lím inf $_{n\to+\infty}$ $a_n=\lim_{n\to+\infty}\inf\{a_m:m>n\}$. Si $\{a_n\}_n$ no está acotada inferiormente lo definimos como lím inf $_{n\to+\infty}$ $a_n=-\infty$

Intuitivamente, el límite inferior y límite superior nos dicen el intervalo al que converge la sucesión:

Proposición 10. Sea $\{a_n\}_n \subseteq \mathbb{R}$ una sucesión acotada. Entonces para todo $\varepsilon > 0$ existe un $N \in \mathbb{N}$ tal que si $m \ge N$ entonces $a_m \in [\liminf_{n \to +\infty} a_n - \varepsilon, \limsup_{n \to +\infty} a_n + \varepsilon].$

Los límites inferior y superior nos permiten hacer una pequeña extensión del teorema (14):

Proposición 11. 1. El límite inferior y superior de una sucesión son puntos de acumulación de la misma.

2. Toda sucesión acotada tiene un punto de acumulación. Además es no convergente si y solo sí tiene dos o más puntos de acumulación.

Ejemplo 2 (Una sucesión con infinitos puntos de acumulación). Vamos a construir una sucesión que tenga como conjunto de puntos de acumulación todos los números racionales. Esta misma sucesión tiene como conjunto de puntos de acumulación todo \mathbb{R} , pero la demostración es más complicada, y usa la completitud de \mathbb{R} . Como los números racionales son numerables, existe una biyección $q_n : \mathbb{N} \to \mathbb{Q}$. Construimos la siguiente sucesión: (TODO: terminar)

- 2.4. El número e
- 3. Introducción a la topología de los números reales
- 3.1. Conjuntos abiertos y cerrados
- 3.2. Compacidad
- 4. Funciones, límites y continuidad
- 5. Derivabilidad de funciones reales
- 6. Integrabilidad de funciones reales
- 6.1. Cálculo de primitivas
- 6.2. La integral de Riemann y Darboux
- 6.3. Teoremas fundamentales
- 6.4. Integrabilidad impropia
- 7. Series numéricas
- 7.1. Series de términos no negativos
- 7.2. Series de términos arbitrarios
- 8. Series funcionales y de potencias
- 8.1. Sucesiones y series de funciones
- 8.2. Convergencia uniforme
- 8.3. Series de potencias y Taylor