Resolução do 2º Teste de

Lógica EI

Lic. Eng. Informática

Duração: 2 horas

- 1. (a) Construa derivações em DNP que provem que:
 - (i) $(p_0 \rightarrow \neg p_1) \rightarrow \neg (p_0 \land p_1)$ é um teorema;
 - (ii) $\neg (p_0 \land p_1) \vdash (p_0 \rightarrow \neg p_1).$
 - **R:** (i) Um teorema é uma fórmula que admite derivações em DNP sem hipóteses por cancelar. Uma tal derivação de $(p_0 \to \neg p_1) \to \neg (p_0 \land p_1)$ é:

$$\frac{p_0 \not \! / p_1^{(2)}}{p_1} E \land_2 \frac{p_0 \not \! / p_1^{(2)}}{p_0} E \land_1 p_0 \not \!\! / \neg p_1^{(1)}}{\neg p_1} E \rightarrow \frac{\bot}{\neg (p_0 \land p_1)} I \neg^{(2)}}{(p_0 \rightarrow \neg p_1) \rightarrow \neg (p_0 \land p_1)} I \rightarrow^{(1)}$$

(ii) É necessário construir uma derivação cuja conclusão seja $p_0 \to \neg p_1$ e cujo conjunto de hipóteses por cancelar seja um subconjunto de $\{\neg(p_0 \land p_1)\}$. Uma derivação nestas condições é:

$$\frac{p_0' \stackrel{(1)}{\longrightarrow} p_1' \stackrel{(2)}{\longrightarrow} I \land \neg (p_0 \land p_1)}{\frac{\bot}{p_0 \to \neg p_1} I \xrightarrow{(1)}} E \neg$$

- (b) Seja Γ um conjunto de fórmulas do Cálculo Proposicional. Prove que, se $\Gamma \vdash \neg (p_0 \land p_1)$, então $\Gamma \vdash p_0 \rightarrow \neg p_1$.
- **R:** Suponhamos $\Gamma \vdash \neg (p_0 \land p_1)$. Então, existe uma derivação \mathcal{D} cuja conclusão é $\neg (p_0 \land p_1)$ e cujo conjunto de hipóteses não canceladas é um subconjunto de Γ . Assim,

$$\frac{p_0' \stackrel{(1)}{=} p_1' \stackrel{(2)}{=} I \land \stackrel{\mathcal{D}}{\neg (p_0 \land p_1)}}{\frac{\bot}{\neg p_1} \stackrel{I \neg (2)}{I \rightarrow (1)}} E \neg$$

é uma derivação cuja conclusão é $p_0 \to \neg p_1$ e conjunto de hipóteses não canceladas é um subconjunto de Γ , o que prova $\Gamma \vdash p_0 \to \neg p_1$.

Uma resolução alternativa é a que se segue.

Suponhamos $\Gamma \vdash \neg(p_0 \land p_1)$. Então, pelo Teorema da Correcção, $\Gamma \models \neg(p_0 \land p_1)$. Para provar $\Gamma \vdash p_0 \to \neg p_1$, pelo Teorema da Completude, basta provar $\Gamma \models p_0 \to \neg p_1$. Seja v uma valoração arbitrária que satisfaça Γ . De $\Gamma \models \neg(p_0 \land p_1)$, segue que $v(\neg(p_0 \land p_1)) = 1$, o que implica que $v(p_0) = 0$ ou $v(p_1) = 0$ e, em ambos os casos, segue que $v(p_0 \to \neg p_1) = 1$. Provamos, assim, que toda a valoração que satisfaz Γ atribui valor 1 a $p_0 \to \neg p_1$, o que prova $\Gamma \models p_0 \to \neg p_1$, como pretendido.

- 2. Considere o tipo de linguagem $L=(\{0,\mathsf{s},-\},\{\mathsf{P},<\},\mathcal{N})$ em que $\mathcal{N}(0)=0,\,\mathcal{N}(\mathsf{s})=1,\,\mathcal{N}(-)=2,\,\mathcal{N}(\mathsf{P})=1$ e $\mathcal{N}(<)=2.$
 - (a) Das seguintes palavras sobre \mathcal{A}_L , apresente árvores de formação das que pertencem a \mathcal{T}_L ou \mathcal{F}_L , e indique (sem justificar) quais as que não pertencem a nenhum desses conjuntos.

(i)
$$s(x_1) - (x_2 - s(0))$$

(ii)
$$(x_1 - 0) \vee P(x_2)$$

(iii)
$$\exists_{x_2} (\mathsf{P}(x_1) \land \forall_{x_1} (x_2 < x_1))$$

(iv)
$$\forall_{x_0} (P(x_0, 0) \lor (s(x_0) < 0))$$

R: As palavras das alíneas (ii) e (iv) não pertencem nem a \mathcal{T}_L nem a \mathcal{F}_L . A palavra da alínea (i) pertence a \mathcal{T}_L e a da alínea (iii) pertence a \mathcal{F}_L . As árvores de formação que justificam esta afirmação são as seguintes:

$$\frac{\frac{\overline{x_1 \in \mathcal{T}_L}}{\mathsf{s}(x_1) \in \mathcal{T}_L} \mathsf{s}}{\mathsf{s}} \quad \frac{\overline{x_2 \in \mathcal{T}_L}}{\frac{x_2 \in \mathcal{T}_L}} x_2 \quad \frac{\overline{0 \in \mathcal{T}_L}}{\mathsf{s}(0) \in \mathcal{T}_L} \mathsf{s}}{x_2 - \mathsf{s}(0) \in \mathcal{T}_L} - \frac{\mathsf{s}}{\mathsf{s}(x_1) - (x_2 - \mathsf{s}(0)) \in \mathcal{T}_L} - \frac{\mathsf{s}}{$$

$$\frac{\mathsf{P}(x_1) \in \mathcal{F}_L}{\mathsf{P}(x_1) \land \forall_{x_1}(x_2 < x_1) \in \mathcal{F}_L} \land \begin{matrix} At_L \\ \forall_{x_1}(x_2 < x_1) \in \mathcal{F}_L \\ \land \end{matrix} \land \begin{matrix} (\mathsf{P}(x_1) \land \forall_{x_1}(x_2 < x_1)) \in \mathcal{F}_L \\ \exists_{x_2}(\mathsf{P}(x_1) \land \forall_{x_1}(x_2 < x_1)) \in \mathcal{F}_L \end{matrix} \exists_{x_2}$$

- (b) Indique (justificando) o conjunto das variáveis substituíveis pelo L-termo $x_2 \mathsf{s}(x_1)$ na L-fórmula $\forall_{x_1}(\mathsf{P}(x_4) \to \exists_{x_0} \neg (x_0 < x_2 \mathsf{s}(x_1 0)))$.
- R: Sejam t e φ respectivamente o termo e a fórmula dados. O conjunto pedido é $\mathcal{V}\setminus\{x_2,x_4\}$, onde \mathcal{V} é o conjunto de todas as variáveis. Por um lado, quer x_2 , quer x_4 , têm, em φ , uma ocorrência livre no alcance do quantificador \forall_{x_1} . Como $x_1 \in VAR(t)$, nem x_2 , nem x_4 são substituíveis por t em φ . Por outro lado, nenhuma outra variável tem ocorrências livres em φ . Portanto, qualquer outra variável é substituível por t em φ .
- (c) Defina por recursão estrutural a função $f: \mathcal{T}_L \longrightarrow \mathbb{N}_0$ que a cada L-termo t faz corresponder o número de ocorrências da variável x_{2011} em t.

R: A função é definida por recursão estrutural do seguinte modo:

- 3. Sejam L o tipo de linguagem da pergunta anterior e $E = (\mathbb{Z}, \overline{})$ a L-estrutura tal que $\overline{0}$ é o número zero, \overline{s} e $\overline{}$ são as operações de sucessor e subtração em \mathbb{Z} , respectivamente, $\overline{P} = 2\mathbb{Z} = \{..., -4, -2, 0, 2, 4, ...\}$ (ou seja, \overline{P} é o predicado "é par"), e $\overline{<}$ é a relação "menor do que" em \mathbb{Z} .
 - (a) Seja a a atribuição em E tal que, para todo $i \in \mathbb{N}_0$, $a(x_i) = i$. Calcule:
 - (i) $(0 s(x_1 x_8))[a]$
 - (ii) $(P(x_2) \wedge \exists_{x_1} (s(x_1) < 0)) [a]$
 - **R:** (i) O valor do L-termo $0 s(x_1 x_8)$ para a atribuição a é o elemento de \mathbb{Z} , o domínio de E, obtido pelos seguintes cálculos recursivos:

$$(0 - s(x_1 - x_8)) [a] = 0[a] = s(x_1 - x_8)[a]$$

$$= \overline{0} = \overline{s} ((x_1 - x_8)[a])$$

$$= 0 = \overline{s} (x_1[a] = x_8[a])$$

$$= 0 = \overline{s} (a(x_1) = a(x_8))$$

$$= 0 = \overline{s} (1 = 8)$$

$$= 0 = \overline{s} (-7)$$

$$= 0 = (-6)$$

$$= 6.$$

(ii) A L-fórmula $P(x_2) \wedge \exists_{x_1} (s(x_1) < 0)$ é a conjunção das L-fórmulas $P(x_2)$ e $\exists_{x_1} (s(x_1) < 0)$. Tem-se portanto que

$$(\mathsf{P}(x_2) \land \exists_{x_1} (\mathsf{s}(x_1) < 0)) [a] = \min \{ \mathsf{P}(x_2)[a], (\exists_{x_1} (\mathsf{s}(x_1) < 0))[a] \}.$$

Ora, por um lado, $P(x_2)[a] = 1$ se e só se $(x_2)[a] \in \overline{P}$, se e só se $2 \in \overline{P}$. Como, de facto, 2 é um elemento do conjunto \overline{P} , deduz-se que $P(x_2)[a] = 1$.

$$(\exists_{x_1}(\mathsf{s}(x_1)<0))[a] = 1 \quad sse \quad existe \ n_1 \in \mathbb{Z} \ tal \ que \ (\mathsf{s}(x_1)<0)[a\binom{x_1}{n_1}] = 1$$

$$sse \quad existe \ n_1 \in \mathbb{Z} \ tal \ que \ \mathsf{s}(x_1)[a\binom{x_1}{n_1}] \ \overline{<} \ 0[a\binom{x_1}{n_1}]$$

$$sse \quad existe \ n_1 \in \mathbb{Z} \ tal \ que \ \overline{\mathsf{s}}(x_1[a\binom{x_1}{n_1}]) \ \overline{<} \ \overline{0}$$

$$sse \quad existe \ n_1 \in \mathbb{Z} \ tal \ que \ \overline{\mathsf{s}}(n_1) \ \overline{<} \ 0$$

$$sse \quad existe \ n_1 \in \mathbb{Z} \ tal \ que \ n_1 + 1 \ \overline{<} \ 0.$$

Dado que esta última afirmação é verdadeira (basta tomar, por exemplo, $n_1 = -2$), conclui-se que $(\exists_{x_1}(s(x_1) < 0))[a] = 1$.

Pode-se finalmente deduzir que

$$\left(\mathsf{P}(x_2) \land \exists_{x_1} (\mathsf{s}(x_1) < 0)\right)[a] = \min\{\mathsf{P}(x_2)[a], (\exists_{x_1} (\mathsf{s}(x_1) < 0))[a]\} = \min\{1, 1\} = 1.$$

- (b) Seja $\varphi = \neg P(x_0 x_1) \to ((x_0 < x_1) \lor (x_1 < x_0))$. Prove que:
 - (i) φ é válida em E;
 - (ii) φ não é universalmente válida.
- **R:** (i) A L-fórmula φ é válida em E, ou seja $E \models \varphi$, se $\varphi[a]_E = 1$ para toda a atribuição a em E. Seja a uma atribuição qualquer em E. Tem-se

$$\varphi[a]_{E} = 1 \quad sse \quad (\neg P(x_{0} - x_{1}))[a] = 0 \quad ou \ ((x_{0} < x_{1}) \lor (x_{1} < x_{0}))[a] = 1$$

$$sse \quad P(x_{0} - x_{1})[a] = 1 \quad ou \ (x_{0} < x_{1})[a] = 1 \quad ou \ (x_{1} < x_{0})[a] = 1$$

$$sse \quad (x_{0} - x_{1})[a] \in \overline{P} \quad ou \ x_{0}[a] \ \overline{<} \ x_{1}[a] \quad ou \ x_{1}[a] \ \overline{<} \ x_{0}[a]$$

$$sse \quad a(x_{0}) \ \overline{-} \ a(x_{1}) \in \overline{P} \quad ou \ a(x_{0}) \ \overline{<} \ a(x_{1}) \quad ou \ a(x_{1}) \ \overline{<} \ a(x_{0}).$$

Suponhamos que $a(x_0) = a(x_1) \notin \overline{P}$. Então $a(x_0) = a(x_1) \neq 0$, donde $a(x_0) \neq a(x_1)$. Daqui resulta que $a(x_0) \in a(x_1)$ ou $a(x_1) \in a(x_0)$ e, portanto, $\varphi[a]_E = 1$. Como a é uma atribuição arbitrária em E conclui-se assim que φ é válida em E.

(ii) Seja $E' = (\mathbb{Z}, \overline{})$ a L-estrutura em tudo idêntica a E salvo em $\overline{<}$ que é definida como sendo a relação de igualdade em \mathbb{Z} . Seja a a atribuição da alínea (a).

Tem-se $(\neg P(x_0 - x_1))[a] = 1$. De facto $(x_0 - x_1)[a] = -1 \notin \overline{P}$, donde $P(x_0 - x_1)[a] = 0$. Verifiquemos, por outro lado, que $((x_0 < x_1) \lor (x_1 < x_0))[a] = 0$. De facto, tem-se

$$((x_0 < x_1) \lor (x_1 < x_0))[a] = 0 \quad sse \quad (x_0 < x_1)[a] = 0 \quad e \ (x_1 < x_0)[a] = 0$$
$$sse \quad (x_0[a], x_1[a]) \not \in \overline{<} \quad e \ (x_1[a], x_0[a]) \not \in \overline{<}$$
$$sse \quad (0, 1) \not \in \overline{<} \quad e \ (1, 0) \not \in \overline{<}$$
$$sse \quad 0 \neq 1 \quad e \quad 1 \neq 0$$

afirmação esta que é, evidentemente, válida. Logo $\varphi[a]_{E'}=0$ e, portanto, a L-fórmula φ não é válida na L-estrutura E', donde não é universalmente válida.

- (c) Indique (justificando) uma L-fórmula universalmente válida.
- **R:** A fórmula $\psi = P(x_1) \vee \neg P(x_1)$ é uma L-fórmula universalmente válida. Para justificar esta afirmação basta notar que ψ é uma instância da fórmula $\varphi = p_0 \vee \neg p_0$ do cálculo proposicional (pois $\psi = \varphi[P(x_1)/p_0]$) e φ é uma tautologia (como é já sabido).
- (d) Para cada uma das seguintes afirmações, indique (sem justificar) uma L-fórmula que a represente:
 - (i) Todo o número é menor do que algum número par.
 - (ii) A diferença de quaisquer dois números pares é par.
- **R:** (i) $\forall_{x_0} \exists_{x_1} (\mathsf{P}(x_1) \land (x_0 < x_1)).$
 - $(ii) \ \forall_{x_0} \forall_{x_1} ((P(x_0) \land P(x_1)) \rightarrow P(x_0 x_1)).$
- 4. (a) Sejam $L, \varphi, \psi \in \mathcal{F}_L$ e x arbitrários. Mostre que $\exists_x (\varphi \wedge \psi) \vDash (\exists_x \varphi \wedge \exists_x \psi)$.
 - R: Sejam $E = (D, \overline{\ })$ uma L-estrutura e a uma atribuição em E tais que

$$E \vDash \exists_x (\varphi \land \psi)[a] \qquad (*)$$

Queremos $E \vDash \exists_x \varphi \land \exists_x \psi[a]$.

De (*) segue que existe $d \in D$ tal que $E \models \varphi[a\binom{x}{d}]$ e $E \models \psi[a\binom{x}{d}]$. Mas então podemos trivialmente afirmar

- (i) existe $d_1 \in D$ (a saber: $d_1 = d$) tal que $E \models \varphi[a\binom{x}{d_1}a]$;
- (ii) existe $d_2 \in D$ (a saber: $d_2 = d$) tal que $E \models \psi[a\begin{pmatrix} x \\ d_2 \end{pmatrix}]$.
- De (i) segue $E \vDash \exists_x \varphi[a]$ e de (ii) segue $E \vDash \exists_x \psi[a]$. Logo $E \vDash \exists_x \varphi \land \exists_x \psi[a]$.
- (b) Indique (justificando) L tipo de linguagem, φ e ψ L-fórmulas e x variável tais que $\not\vdash (\exists_x \varphi \land \exists_x \psi) \rightarrow \exists_x (\varphi \land \psi)$.
- **R:** Sejam L o tipo de linguagem da questão 2, $x = x_0$, $\varphi = P(x_0)$ e $\psi = \neg P(x_0)$. Vamos exibir uma L-estrutura E e uma atribuição a em E tais que $E \nvDash (\exists_x \varphi \land \exists_x \psi) \rightarrow \exists_x (\varphi \land \psi)[a]$. Tome-se E a estrutura da questão 3 e a atribuição arbitrária. Falta ver que:
 - (i) $E \vDash \exists_{x_0} \varphi[a];$
 - (ii) $E \vDash \exists_{x_0} \psi[a];$
 - (iii) $E \nvDash \exists_{x_0} (\varphi \wedge \psi)[a].$
 - (i) Sejam d'=2 e $a'=a\binom{x_0}{d'}$. Então $E \vDash \varphi[a']$ pois $x_0[a']=d'$ e $d' \in \overline{\mathsf{P}}$.
 - (ii) Sejam d'' = 1 e $a'' = a {x_0 \choose d''}$. Então $E \vDash \psi[a'']$ pois $x_0[a''] = d''$ e $d'' \notin \overline{P}$.
 - (iii) $E \models \exists_{x_0} (\varphi \land \psi)[a]$ sse existe $d \in \mathbb{Z}$ tal que $x_0[a\binom{x_0}{d}] \in \overline{P}$ e $x_0[a\binom{x_0}{d}] \notin \overline{P}$. Mas $x_0[a\binom{x_0}{d}] = d$ e não se pode ter simultaneamente $d \in \overline{P}$ e $d \notin \overline{P}$.
- (c) Sejam $\varphi, \psi \in \mathcal{F}_L$ e x tais que $x \notin LIV(\psi)$. Prove que $(\forall_x \varphi) \to \psi \Leftrightarrow \exists_x (\varphi \to \psi)$. (Sugestão: exiba uma série de equivalências lógicas.)

R:

$$(\forall_{x}\varphi) \to \psi \quad \Leftrightarrow \quad \neg \forall_{x}\varphi \lor \psi$$

$$\Leftrightarrow \quad \exists_{x}\neg \varphi \lor \psi$$

$$\Leftrightarrow \quad \exists_{x}\neg \varphi \lor \exists x\psi \quad (x \notin LIV(\psi))$$

$$\Leftrightarrow \quad \exists_{x}(\neg \varphi \lor \psi)$$

$$\Leftrightarrow \quad \exists_{x}(\varphi \to \psi)$$

Cotações	1.	2.	3.	4.
	3+1	1,5+1+1,5	2,5+2+1,5+1,5	1,5+1,5+1,5