Thus the constraint $C^{\top}x = 0$ has been simplified to y = 0, and if we write

$$QAQ^{\top} = \begin{pmatrix} G_{11} & G_{12} \\ G_{12}^{\top} & G_{22} \end{pmatrix},$$

our problem becomes

minimize
$$z^{\top}G_{22}z$$

subject to $z^{\top}z = 1, z \in \mathbb{R}^{n-r}$,

a standard eigenvalue problem.

Remark: There is a way of finding the eigenvalues of G_{22} which does not require the QR-factorization of C. Observe that if we let

$$J = \begin{pmatrix} 0 & 0 \\ 0 & I_{n-r} \end{pmatrix},$$

then

$$JQAQ^{\top}J = \begin{pmatrix} 0 & 0 \\ 0 & G_{22} \end{pmatrix},$$

and if we set

$$P = Q^{\top} J Q,$$

then

$$PAP = Q^{\top} J Q A Q^{\top} J Q.$$

Now, $Q^{\top}JQAQ^{\top}JQ$ and $JQAQ^{\top}J$ have the same eigenvalues, so PAP and $JQAQ^{\top}J$ also have the same eigenvalues. It follows that the solutions of our optimization problem are among the eigenvalues of K = PAP, and at least r of those are 0. Using the fact that CC^+ is the projection onto the range of C, where C^+ is the pseudo-inverse of C, it can also be shown that

$$P = I - CC^+,$$

the projection onto the kernel of C^{\top} . So P can be computed directly in terms of C. In particular, when $n \geq p$ and C has full rank (the columns of C are linearly independent), then we know that $C^+ = (C^{\top}C)^{-1}C^{\top}$ and

$$P = I - C(C^{\top}C)^{-1}C^{\top}.$$

This fact is used by Cour and Shi [42] and implicitly by Yu and Shi [192].

The problem of adding affine constraints of the form $N^{\top}x = t$, where $t \neq 0$, also comes up in practice. At first glance, this problem may not seem harder than the linear problem in which t = 0, but it is. This problem was extensively studied in a paper by Gander, Golub, and von Matt [75] (1989).