# Problem Sheet 4

# MS121 Semester 2 IT Mathematics

### Exercise 1.

Evaluate the following limits: (a) 
$$\lim_{y\to 2} y^3 - \frac{21}{y}$$
,

(d) 
$$\lim_{x \to \pi} \cos(2x - \pi)$$
,

(b) 
$$\lim_{x\to 2} \frac{x^3 + x^2 + 2x + 1}{x - 1}$$
,

(e) 
$$\lim_{x \to 2} \sqrt{x^2 + 3x - 7}$$
,

(c) 
$$\lim_{x \to 3\pi} \sin(x)$$
,

(f) 
$$\lim_{x \to \frac{1}{2}\pi} \sqrt{\sin(x)}$$
.

You may use the fact that the functions cos, sin and  $\sqrt{\ }$  are continuous.

 $\bigcirc$ 

### Solution 1.

- (a)  $\lim_{y\to 2} y^3 \frac{21}{y} = 2^3 \frac{21}{2} = \frac{-5}{2}$  from the continuity of rational functions on their domain and
- (b)  $\lim_{x\to 2} \frac{x^3 + x^2 + 2x + 1}{x 1} = 17$ , from the continuity of rational functions on their domain
- (c)  $\lim_{x\to 2} \sin(x) = \sin(3\pi) = 0$ , using the continuity of sin,
- (d)  $\lim_{x\to\pi}\cos(2x-\pi)=\cos(2\pi-\pi)=-1$ , using the continuity of the composition of the continuity ous functions cos and  $2x - \pi$ ,
- (e)  $\lim_{x\to 2} \sqrt{x^2 + 3x 7} = \sqrt{2^2 + 3 \cdot 2 7} = \sqrt{3}$ , using the continuity of the composition of the continuous functions  $\sqrt{\phantom{a}}$  and  $x^2 + 3x 7$ ,
- (f)  $\lim_{x \to \frac{1}{2}\pi} \sqrt{\sin(x)} = \sqrt{\sin(\frac{1}{2}\pi)} = \sqrt{1} = 1$ , using the continuity of the composition of the continuity uous functions  $\sqrt{\phantom{a}}$  and sin.

 $\Diamond$ 

#### Exercise 2.

The following functions have domain  $(0, \infty)$ . Find their inverses and the domains of these inverses.

(a) 
$$f(x) = \frac{1}{x}$$
,

(d) 
$$f(x) = \begin{cases} x & \text{if } 0 < x \le 1\\ (x+1)^2 & \text{if } x > 1 \end{cases}$$

(b) 
$$f(x) = x^2$$
,

(c) 
$$g(y) = \frac{1}{1+y^2}$$
, (e)  $h(t) = \begin{cases} t+1 & \text{if } 0 < t \le 1\\ \frac{1}{t} & \text{if } t > 1 \end{cases}$ .

 $\bigcirc$ 

### Solution 2.

- (a)  $f(x) = \frac{1}{x}$  is its own inverse,
- (b)  $f(x) = x^2$  has inverse  $f^{-1}(y) = \sqrt{y}$  with domain  $(0, \infty)$ ,
- (c)  $g(y) = \frac{1}{1+y^2}$  has inverse  $g^{-1}(x) = \sqrt{\frac{1}{x} 1}$  with domain (0, 1),
- (d)  $f(x) = \begin{cases} x & \text{if } 0 < x \le 1 \\ (x+1)^2 & \text{if } x > 1 \end{cases}$

$$f^{-1}(y) = \begin{cases} y & \text{if} \quad 0 < y \le 1\\ \sqrt{y} - 1 & \text{if} \quad y > 4 \end{cases}$$

with domain  $(0,1] \cup (4,\infty)$ .

(e) 
$$h(t) = \begin{cases} t+1 & \text{if} \quad 0 < t \le 1 \\ \frac{1}{t} & \text{if} \quad t > 1 \end{cases}$$

is not increasing or decreasing on its entire domain, but it does have an inverse

$$h^{-1}(s) = \begin{cases} s - 1 & \text{if } 1 < s \le 2\\ \frac{1}{s} & \text{if } 0 < s < 1 \end{cases}$$

with domain  $(0,1) \cup (1,2]$ .

# $\Diamond$

## Exercise 3.

For the following functions, indicate how we can restrict their natural domain to make them invertible, and find the inverse. (Sketch the graph first, if this is helpful.)

- (a)  $f(x) = (x-3)^2 + 5$ ,
- (b)  $g(y) = \frac{1}{(y-5)^2}$ ,
- (c)  $f(x) = |x \pi|$ ,
- (d)  $h(t) = \sin(t)$ .

## 0

### Solution 3.

- (a)  $f(x) = (x-3)^2 + 5$  can be restricted e.g. to  $x \ge 3$  with inverse  $f^{-1}(y) = \sqrt{y-5} + 3$  on  $y \ge 5$ ,
- (b)  $g(y) = \frac{1}{(y-5)^2}$  can be restricted e.g. to y>5 with inverse  $g^{-1}(x) = \frac{1}{\sqrt{x}} + 5$  on x>0,
- (c)  $f(x) = |x \pi|$  can be restricted e.g. to  $x \ge \pi$  with inverse  $f^{-1}(y) = y + \pi$  on  $y \ge 0$ .
- (d)  $h(t) = \sin(t)$  can be restricted e.g. to  $-\frac{1}{2}\pi \le x \le \frac{1}{2}\pi$ . Its inverse is then called  $\arcsin(y)$  and has domain [-1,1].

# $\Diamond$

### Exercise 4.

Use left and right hand limits to determine which of the following functions are continuous.

(a) 
$$f(x) = \begin{cases} 3 - 5x & \text{if } x \le 0 \\ \frac{6}{4x + 2} & \text{if } x > 0 \end{cases}$$

(b) 
$$g(x) = \begin{cases} -2x & \text{if } x < -2\\ x^2 & \text{if } -2 \le x \le 1\\ 2x & \text{if } x > 1 \end{cases}$$

 $\bigcirc$ 

## Solution 4.

(a)

$$f(x) = \begin{cases} 3 - 5x & \text{if } x \le 0\\ \frac{6}{4x + 2} & \text{if } x > 0 \end{cases}$$

is continuous, because the one-sided limits

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} 3 - 5x = 3 - 0 = 3$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} 3 - 5x = 3 - 0 = 3$$
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{6}{4x + 2} = \frac{6}{0 + 2} = 3$$

are equal to the function value f(0) = 3 - 0 = 3.

(b)

$$g(x) = \begin{cases} -2x & \text{if } x < -2\\ x^2 & \text{if } -2 \le x \le 1\\ 2x & \text{if } x > 1 \end{cases}$$

is not continuous, because the one-sided limits

$$\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{-}} x^{2} = 1^{2} = 1$$
$$\lim_{x \to 1^{+}} g(x) = \lim_{x \to 1^{+}} 2x = 2$$

differ. (g is continuous at x = -2.)

