第4回 Integral

問題 4.1. 区間 $[0,2\pi]$ 上の関数

$$f(x) = \begin{cases} \sin x & (x \in \mathbb{Q}) \\ (\sin x)^4 & (x \notin \mathbb{Q}) \end{cases}$$

の積分 $\int_0^{2\pi} f(x)dx$ の値を求めよ.

問題 **4.2.** $f,g:X\to \mathbb{R}$ は可積分とする.

(1)
$$f=g$$
 a.e. ならば $\int_X f d\mu = \int_X g d\mu$ を示せ.

$$(2) \ f < g \ \mathrm{a.e.} \ , \ \mu(A) > 0$$
 ならば $\int_A f d\mu < \int_A g d\mu$ を示せ.

問題 4.3. $f:X \to [0,\infty]$ を可測関数とする.

(1)
$$\int_{Y} f d\mu = 0 \iff f = 0 \mu$$
-a.e. を示せ.

$$(2)$$
 $\int_X^\infty f d\mu < \infty \implies f < \infty$ μ -a.e. を示せ. またこの逆が成立しない例を挙げよ.

問題 4.4.
$$f:\mathbb{R} \to [0,\infty]$$
 を可測関数とし、 $\int_{\mathbb{R}} f dx = 0$ とする.

(1) f が恒等的に 0 とは限らないことを示せ

(2) f が連続ならば, f は恒等的に 0 であることを示せ.

問題 4.5. $f:X\to\mathbb{R}$ は可測で、任意の可測集合 A に対し $\int_A f d\mu\geqslant 0 \implies f\geqslant 0$ μ —a.e. を示せ.

問題 4.6. Fatou の補題の一般形を示せ、つまり、 $\{f_n\}$ を \mathbb{R} 値可測関数列、g を非負値可積分関数、 $|f_n| \leq g \ \mu$ —a.e. ならば、

$$\int \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to \infty} \int f_n d\mu \le \limsup_{n \to \infty} \int f_n d\mu \le \int \limsup_{n \to \infty} f_n d\mu$$

問題 4.7. 単調収束定理の非負の仮定を落としたときの反例を1つ挙げよ

問題 4.8. $\{f_n\}, f: X$ 上の $\overline{\mathbb{R}}$ 値可測関数, $0 \le f_n \le f$ $(\forall n \in \mathbb{N})$ とする. このとき,

$$\lim_{n\to\infty} f_n = f$$
 μ -a.e. ならば, $\lim_{n\to\infty} \int_X f_n d\mu = \int_X f d\mu$ であることを示せ.

問題 **4.9.** $\frac{1}{x}$ が (0,1) で可積分でないことを示せ.

問題 **4.10.**
$$\int_0^1 |f(x)| dx < \infty$$
 のとき, $\lim_{n \to \infty} \int_0^1 x^n f(x) dx = 0$ を示せ.

問題 **4.11.**
$$\lim_{n\to\infty}\int_0^n\left(1+\frac{x}{n}\right)^ne^{-2x}dx$$
 を求めよ.

問題 **4.12.** (1)
$$\int_0^\infty \left(e^{-(2m-1)x} - e^{-2mx}\right) dx \quad (m \in \mathbb{N})$$
 を求めよ.

(2)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$
 を求めよ.

問題 **4.13.** (1) x > 0 のとき $\lim_{n \to \infty} ne^{-nx} = 0$ を示せ.

$$(2)$$
 $\int_0^\infty ne^{-nx}dx = 1$ を示せ.

- (3)(2)では優収束定理が使えない理由を示せ.
- (4) f(x) が x=0 で連続かつ $x\geq 0$ で有界または可積分であるとき, $\lim_{n\to\infty}\int_0^\infty ne^{-nx}f(x)dx$ を求めよ.

問題 4.14.
$$f$$
 を X 上の可測関数で $0<\int_X f(x)^2 d\mu(x)<\infty$ とする. $\alpha>0$ のとき
$$\lim_{n\to\infty}\int_Y n^\alpha \left(1-\cos\left(\frac{f(x)}{n}\right)\right) d\mu(x)$$
 を求めよう.

- (1) $\lim_{n\to\infty} n^{\alpha}(1-\cos(f/n))$ を求めよ.
- (2) $\alpha > 2$ のときは Fatou の補題を用いよ.
- (3) $0 < \alpha \le 2$ のときは優収束定理を用いよ.

問題 **4.15.** (1) $n \ge 0$ に対して, $\int_0^\infty x^{2n} e^{-x^2} dx$ をガンマ関数を用いて表せ.

(2)
$$\alpha \in \mathbb{R}$$
 のとき, $\int_0^\infty e^{-x^2} \cos(\alpha x) dx$ を求めよ.

問題 **4.16.**
$$F(x) = \int_{-\infty}^{\infty} e^{-y^2} \cos(2xy) dy$$
 とおく. このとき,

- (1) F'(x) + 2xF(x) = 0 を示せ.
- (2) F(x) を求めよ.

問題 **4.17.** 実数
$$\alpha$$
 に対して, $J(\alpha) = \int_0^\infty e^{-x^2} \cos(\alpha x) dx$ とおく.

- (1) $J(\alpha)$ は α について微分可能であることを示し、 導関数を求めよ.
- (2) $J(\alpha)$ を求めよ.

問題 **4.18.**
$$F(x) = \int_0^\infty e^{-t^2 - x^2/t^2} dt$$
 とおく.

- (1) F の満たす微分方程式を作れ.
- (2) F を求めよ.

問題 **4.19.**
$$\int_{-\infty}^{\infty} |f(x)| dx < \infty$$
 のとき, $F(\xi) = \int_{-\infty}^{\infty} e^{-2\pi i x \xi} f(x) dx$ とおく.

- (1) $F(\xi)$ は有界連続であることを示せ.
- (2) $\int_{-\infty}^{\infty} |xf(x)| dx < \infty$ ならば, $F(\xi)$ は微分可能であることを示せ.

問題 4.20.