# Efficient Likelihood Approximation via Gaussian Processes

With an Application to a P. Vivax Malaria Model

**Jacob Cumming** 

University of Melbourne, Walter and Eliza Hall Institute

June 2024





#### Introduction and Motivation

- ▶ 600,000 deaths/year, 75% children under 5
- Two main species *P. vivax* and *P. falciparum*
- P. falciparum main cause of death, but P. vivax historically underestimated.
- ▶ Proportion of *P. vivax* cases increased over last 50 years.





## P. vivax has Dormant Stage



Figure: P. vivax lifecycle. Created with BioRender.com





## Vivax Model - Champagne et. al





Figure: Champagne et al. 2022 P. vivax model



## Champagne Model Parameters

- ightharpoonup lpha : proportion of those infected who clear blood stage infections through treatment
- $\beta$ : proportion of those cleared of blood stage infection who are also cleared of liver stage parasites (radical cure)
- $\triangleright$   $\lambda$  : rate of infection
- $ightharpoonup \gamma_{\it L}$  : rate of liver stage disease clearance
- f: rate of relapse
- r: rate of blood stage clearance
- $ightharpoonup \delta = 0$  importation rate (fixed)





#### The Problem

► How to calibrate model parameters?





#### The Problem

- ► How to calibrate model parameters?
- Simulations take long time (and models get a lot more complicated)





#### **Notation**

- ▶  $\theta$  vector of parameters e.g.  $[\alpha, \beta, \gamma_L, \lambda, f, r]^T$
- ► Y<sub>obs</sub>: a (summary) vector of observed data e.g. (weekly) incidence, prevalence, (monthly) hospitalisations





#### Notation

- $\theta$  vector of parameters e.g.  $[\alpha, \beta, \gamma_L, \lambda, f, r]^T$
- ► Y<sub>obs</sub>: a (summary) vector of observed data e.g. (weekly) incidence, prevalence, (monthly) hospitalisations
- **Y**<sub> $\theta$ </sub>: a random vector of model statistics for given  $\theta$ .





#### In an ideal world...

There would be an explicit form for the likelihood:

$$\mathcal{L}(oldsymbol{ heta}) := \mathsf{Pr}(\mathbf{Y}_{oldsymbol{ heta}} = \mathbf{Y}_{\mathsf{obs}} | oldsymbol{ heta})$$

- $\hat{\boldsymbol{\theta}} = \operatorname{arg\,max}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta})$
- lacksquare  $\mathsf{Pr}(m{ heta}|\mathbf{Y}_{\mathsf{obs}}) \propto \mathcal{L}(m{ heta})\,\mathsf{Pr}(m{ heta})$
- Off to the pub



#### Or not...

- Explicit likelihoods often don't exist/are intractible
  - Champagne model
  - Agent based models.





## A Standard Bayesian Solution

- Approximate Bayesian Computation (ABC)
  - 1. Sample  $\theta_i$  from prior
  - 2. Run model and observe  $\mathbf{Y}_{\theta_i}$
  - 3. Accept or reject  $\theta_i$  run based on how well  $\mathbf{Y}_{\theta_i}$  'matches'  $\mathbf{Y}_{\text{obs}}$ .





## What is 'matches'?

1. 
$$\mathbf{Y}_{\theta_i} = \mathbf{Y}_{\text{obs}}$$





## What is 'matches'?

Y<sub>θi</sub> = Y<sub>obs</sub>
 Good luck...





#### What is 'matches'?

- 1.  $\mathbf{Y}_{\theta_i} = \mathbf{Y}_{\text{obs}}$
- 2. Rescale **Y**s, and use discrepency function  $D: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$  e.g. *p*-norm

$$D(\mathbf{Y}_{oldsymbol{ heta}_i}, \mathbf{Y}_{\mathsf{obs}}) := \left( \sum_{j=1}^d \left| \{\mathbf{Y}_{oldsymbol{ heta}_i} \}_j - \{\mathbf{Y}_{\mathsf{obs}} \}_j 
ight|^p 
ight)^{1/p}$$





## **Discrepency Function**

 $\mathcal{D}(\theta) := D(\mathbf{Y}_{\theta}, \mathbf{Y}_{\text{obs}})$  how 'close' our model is to the observed data using parameters  $\theta$ 





#### **ABC**

- 1. Sample  $\theta_i$  from prior
- 2. Run model
- 3. Accept  $\theta_i$  if  $\mathcal{D}(\theta_i) < \varepsilon$ .





## Overall Idea of my Research

- ▶ ABC fixes one problem but leaves another:
  - ▶ Don't need  $\mathcal{L}(\theta)$ .
  - ightharpoonup Evaluating  $\mathcal{D}( heta)$  takes as long as a model run.





## Overall Idea of my Research

- ► ABC fixes one problem but leaves another:
  - ▶ Don't need  $\mathcal{L}(\theta)$ .
  - lacktriangle Evaluating  $\mathcal{D}(m{ heta})$  takes as long as a model run.
- $\triangleright \mathcal{D}(\theta), \mathcal{D}(\theta')$  will be highly correlated when  $\theta$  is near  $\theta'$ .
  - Gaussian Processes





## Gaussian Process Setup

Formally we can assume that

$$Cov(\mathcal{D}(\theta_i), \mathcal{D}(\theta_j)) = k(\theta_i, \theta_j)$$

for some covariance kernel k that decays to 0 as  $\theta_i$  is further away than  $\theta_j$ .





#### Gaussian Processes on $\mathbb{R}^d$

#### Definition (Gaussian Process)

A collection of random variables  $\{f(\mathbf{x})\}_{\mathbf{x}\in\mathbb{R}^d}$  is a Gaussian process if all finite dimensional distributions are multivariate normal distributed.







## Gaussian Process Continuity

▶ Induce continuity by forcing  $k(\mathbf{x}, \mathbf{x}') \to \operatorname{Var}(f(\mathbf{x}))$  (hence  $\operatorname{Cor}(f(\mathbf{x}), f(\mathbf{x}')) \to 1$ ) as  $\mathbf{x} \to \mathbf{x}'$ .





#### Common Covariance Kernels

- Choice of kernel determines smoothness
- ▶ Matérn Kernel with hyperparameter  $\nu$  :  $\lfloor \nu \rfloor$  times mean square differentiable.
- $u \to \infty$ : infinitely mean square differentiable squared exponential covariance kernel (strong assumption)

$$k(x,x') = \sigma_k^2 \exp(-\frac{||x-x'||^2}{2\ell^2})$$





#### k Determines Class of Functions



Figure: Matérn 1/2, 3/2, 5/2, and squared exponential kernels.





## Kernel Hyperparameters

- Matérn and squared exponential kernel can both be written in the form  $k(\mathbf{x}, \mathbf{x}') = \sigma_k^2 \kappa(||\mathbf{x}, \mathbf{x}'||/\ell)$
- ▶  $1/\ell$  rate of covariance decay



## Discrepency Function Context

▶ Long term play: replace  $\mathcal{D}(\theta)$  with a Gaussian process surrogate model approximation.





## Discrepency Function Context

- ▶ Long term play: replace  $\mathcal{D}(\theta)$  with a Gaussian process surrogate model approximation.
- ▶ What if we have observations already?





## Gaussian Process Regression

$$\begin{bmatrix} f(\mathbf{x}) \\ f(\mathbf{x}_*) \end{bmatrix} \sim \mathsf{MVN} \left( \begin{bmatrix} m(\mathbf{x}) \\ m(\mathbf{x}_*) \end{bmatrix}, \begin{bmatrix} K & K_* \\ K_*^T & K_{**} \end{bmatrix} \right)$$

implies

$$f(\mathbf{x})|f(\mathbf{x}_*) \sim \mathsf{MVN}\left(\textit{m}(\mathbf{x}) + \textit{K}_*\textit{K}_{**}^{-1}(f(\mathbf{x}_*) - \textit{m}(\mathbf{x}_*)), \ \textit{K} - \textit{K}_*\textit{K}_{**}^{-1}\textit{K}_*^T\right).$$





# GP regression on x(x-1)(x+1)







#### Normal observation noise

If observations actually  $f(\mathbf{x}_i) + \varepsilon_i$ , with  $\varepsilon_i \sim N(0, \sigma_o^2)$  i.i.d., then

$$\begin{bmatrix} f(\mathbf{x}_1) + \varepsilon_1 \\ \vdots \\ f(\mathbf{x}_n) + \varepsilon_n \end{bmatrix} \sim \mathsf{MVN} \left( \begin{bmatrix} m(\mathbf{x}_1) \\ \vdots \\ m(\mathbf{x}_n) \end{bmatrix}, \, \mathbf{K} + \sigma_o^2 \mathbf{I}_n \right)$$





# GP regression on $x(x-1)(x+1) + \varepsilon$ , $\varepsilon \sim N(0, \sigma_o^2)$







## Key Idea

▶ If  $\mathbb{E}[\mathcal{D}(\theta)]$  can be well approximated by a Gaussian process and ...





## Key Idea

- ▶ If  $\mathbb{E}[\mathcal{D}(\theta)]$  can be well approximated by a Gaussian process and ...
- $\triangleright \mathcal{D}(\theta)$  approximately distributed  $N(\mathbb{E}[\mathcal{D}(\theta)], \sigma_o^2)$  then...





## Key Idea

- ▶ If  $\mathbb{E}[\mathcal{D}(\theta)]$  can be well approximated by a Gaussian process and ...
- $ightharpoonup \mathcal{D}(\theta)$  approximately distributed  $\mathit{N}(\mathbb{E}[\mathcal{D}(\theta)], \sigma_o^2)$  then...
- Approximate  $\mathcal{D}(\theta)$  with  $\mathcal{D}_{\mathcal{GP}}(\theta)$ , a Gaussian process with observation noise.





#### **ABC**

- 1. Sample  $\theta_i$  from prior
- 2. Run model
- 3. Accept  $\theta_i$  if  $\mathcal{D}(\theta_i) < \varepsilon$ .





## Approximate ABC...??

- 1. Sample  $\theta_i$  from prior
- 2. Run model Simulate  $\mathcal{D}_{\mathcal{GP}}(\theta_i) \stackrel{d}{\approx} \mathcal{D}(\theta_i)$
- 3. Accept  $\theta_i$  if  $\mathcal{D}_{\mathcal{GP}}(\theta_i) < \varepsilon$ .





## Synthetic Likelihood

Pr drawing and accepting heta using 'approximate' ABC is

$$\Pr(\mathcal{D}_{\mathcal{GP}}(\boldsymbol{\theta}) < \varepsilon) \Pr(\boldsymbol{\theta})$$

and hence

$$\hat{L}(oldsymbol{ heta}) := \mathsf{Pr}(\mathcal{D}_{\mathcal{GP}}(oldsymbol{ heta}) < arepsilon) pprox c\mathcal{L}(oldsymbol{ heta})$$

for some *c*.





### Log Gaussian Process

▶ Alternatively we can model  $\ln \mathcal{D}(\theta)$  as a Gaussian process  $d_{\mathcal{GP}}(\theta)$ .





## Log Gaussian Process

- Alternatively we can model  $\ln \mathcal{D}(\theta)$  as a Gaussian process  $d_{\mathcal{GP}}(\theta)$ .
- Key assumptions becomes:
  - ▶  $\mathcal{D}(\theta)$  approximately distributed  $LN(\cdot, \sigma_o^2)$ .





### Log Gaussian Process

- Alternatively we can model  $\ln \mathcal{D}(\theta)$  as a Gaussian process  $d_{\mathcal{GP}}(\theta)$ .
- Key assumptions becomes:
  - ▶  $\mathcal{D}(\theta)$  approximately distributed  $LN(\cdot, \sigma_o^2)$ .

$$\hat{L}(\boldsymbol{\theta}) := \Pr(d_{\mathcal{GP}}(\boldsymbol{\theta}_i) < \ln \varepsilon) \approx \Pr(\mathcal{D}(\boldsymbol{\theta}_i) < \varepsilon)$$





# Where to sample $\mathcal{D}(\boldsymbol{\theta})$

- ▶ To generate a reliable  $\mathcal{D}_{\mathcal{GP}}$ , we need to sample widely
- ▶ Generating  $\mathcal{D}(\theta)$  still costly...
- Therefore sample where:





# Where to sample $\mathcal{D}(\boldsymbol{\theta})$

- ▶ To generate a reliable  $\mathcal{D}_{\mathcal{GP}}$ , we need to sample widely
- Generating  $\mathcal{D}(\theta)$  still costly...
- Therefore sample where:
  - $ightharpoonup \mathbb{E}[\mathcal{D}(oldsymbol{ heta})]$  small,





# Where to sample $\mathcal{D}(\boldsymbol{\theta})$

- ▶ To generate a reliable  $\mathcal{D}_{\mathcal{GP}}$ , we need to sample widely
- ▶ Generating  $\mathcal{D}(\theta)$  still costly...
- Therefore sample where:
  - $ightharpoonup \mathbb{E}[\mathcal{D}(oldsymbol{ heta})]$  small,
  - $\triangleright \mathcal{D}(\theta)$  highly unknown.





## Bayesian Acquisition Functions

- lacksquare  $\mu(m{ heta}) := \mathbb{E}(D_{\mathcal{GP}}(m{ heta}))$  and  $\mathrm{v}(m{ heta}) := \mathrm{Var}(D_{\mathcal{GP}}(m{ heta}))$
- ▶ Bayesian acquisition functions  $A(\theta)$ , quantify how 'desirable' it is to sample  $\mathcal{D}(\theta)$  at  $\theta$ .





## Bayesian Acquisition Functions

- $lackbox{} \mu(m{ heta}) := \mathbb{E}(D_{\mathcal{GP}}(m{ heta})) \text{ and } \mathrm{v}(m{ heta}) := \mathrm{Var}(D_{\mathcal{GP}}(m{ heta}))$
- ▶ Bayesian acquisition functions  $A(\theta)$ , quantify how 'desirable' it is to sample  $\mathcal{D}(\theta)$  at  $\theta$ .
- Gutmann and Cor 2016 minimise lower confidence bound

$$A_{\mathsf{LCB}}(\boldsymbol{\theta}) := \mu(\boldsymbol{\theta}) - \eta_t \sqrt{v(\boldsymbol{\theta})},$$

the lower value of a confidence interval (determined by  $\eta_t$ ).





1. **Initialisation**: Sample  $\mathcal{D}(\theta)$  at random  $\theta$ , and train  $\mathcal{D}_{\mathcal{GP}}$  on these points.





- 1. **Initialisation**: Sample  $\mathcal{D}(\theta)$  at random  $\theta$ , and train  $\mathcal{D}_{\mathcal{GP}}$  on these points.
- 2. Determine which  $\theta$  to sample  $\theta$  from next using a Bayesian Acquisition function and train  $\mathcal{D}_{\mathcal{GP}}$  on the new data.
- 3. Repeat 2.





- 1. **Initialisation**: Sample  $\mathcal{D}(\theta)$  at random  $\theta$ , and train  $\mathcal{D}_{\mathcal{GP}}$  on these points.
- 2. Determine which  $\theta$  to sample  $\theta$  from next using a Bayesian Acquisition function and train  $\mathcal{D}_{\mathcal{GP}}$  on the new data.
- 3. Repeat 2.
- 4. Use  $\mathcal{D}_{\mathcal{GP}}$  to find  $\hat{L}(\theta)$ .





- 1. **Initialisation**: Sample  $\mathcal{D}(\theta)$  at random  $\theta$ , and train  $\mathcal{D}_{\mathcal{GP}}$  on these points.
- 2. Determine which  $\theta$  to sample  $\theta$  from next using a Bayesian Acquisition function and train  $\mathcal{D}_{\mathcal{GP}}$  on the new data.
- 3. Repeat 2.
- 4. Use  $\mathcal{D}_{\mathcal{GP}}$  to find  $\hat{L}(\theta)$ .
- 5. Use  $\hat{L}(\theta)$  to calibrate parameters





## Vivax Model - Champagne et. al





Figure: Champagne et al. 2022 P. vivax model



## Champagne Model Parameters

- ightharpoonup lpha : proportion of those infected but cleared of blood stage infections (through treatment)
- $\beta$ : a further proportion that are also cleared of liver stage parasites, given that they were also cleared of blood stage infection (radical cure)
- $\triangleright \lambda$ : the rate of infection
- $ightharpoonup \gamma_{\it L}$  : rate of clearance of liver stage disease
- f: rate of relapse
- r: rate of blood stage clearance





#### Model Simulation



Figure: Exact stochastic simulation using parameters reported in Champagne et al. 2022. Population 10,000, initial infections 100.





#### 'Observed' Data

- $ightharpoonup \mathbf{Y}_{\mathsf{obs}} := \{\iota_{\mathsf{obs}}, \pi_{\mathsf{obs}}, i_{\mathsf{obs}}, p_{\mathsf{obs}}\}$ 
  - $ightharpoonup \iota_{\mathrm{obs}}$ : weekly incidence around steady state equilibrium
  - $\pi_{\rm obs}$ : prevalence around steady state equilibrium
  - $ightharpoonup i_{obs}$ : incidence in the first month of the epidemic
  - $\triangleright$   $p_{obs}$ : prevalence after one month of simulation





### 'Observed' Data

- $ightharpoonup Y_{obs} := \{\iota_{obs}, \pi_{obs}, i_{obs}, p_{obs}\}$ 
  - $ightharpoonup \iota_{
    m obs}$  : weekly incidence around steady state equilibrium
  - $\blacktriangleright$   $\pi_{\text{obs}}$ : prevalence around steady state equilibrium
  - $ightharpoonup i_{obs}$ : incidence in the first month of the epidemic
  - $\triangleright$   $p_{obs}$ : prevalence after one month of simulation
- $\triangleright$   $\mathcal{D}(\alpha, \beta, \gamma_L, \lambda, f, r)$  is the  $L_2$  norm of the relative differences

$$\sqrt{\left(\frac{\iota - \iota_{\text{obs}}}{\iota_{\text{obs}}}\right)^2 + \left(\frac{\pi - \pi_{\text{obs}}}{\pi_{\text{obs}}}\right)^2 + \left(\frac{i - i_{\text{obs}}}{i_{\text{obs}}}\right)^2 + \left(\frac{p - p_{\text{obs}}}{p_{\text{obs}}}\right)^2}$$





#### **GP** choices

- $\triangleright$   $\mathcal{GP}$  choices
  - ightharpoonup Modelled In  $\mathcal D$  as a Gaussian process
  - Matern kernel with  $\nu = 5/2$
  - $\ell, \sigma_k^2, \sigma_o^2$  selected by leave one out cross validation.





























## Estimating rate of blood stage clearance r = 0.017







# Estimating rate of blood stage clearance r = 0.017







# Estimating rate of blood stage clearance r = 0.017







- ▶ Bifurcation points effect:
  - 1. observation variance,
  - 2. distribution of observations,
  - 3. behaviour of the discrepency mean.
- Possible extensions:





- ▶ Bifurcation points effect:
  - 1. observation variance,
  - 2. distribution of observations,
  - 3. behaviour of the discrepency mean.
- ► Possible extensions:
  - 1. model  $s^2(\theta)$ ,



- ▶ Bifurcation points effect:
  - 1. observation variance,
  - 2. distribution of observations,
  - 3. behaviour of the discrepency mean.
- ► Possible extensions:
  - 1. model  $s^2(\theta)$ ,
  - 2. choose a different distribution and moment match,





- ▶ Bifurcation points effect:
  - 1. observation variance,
  - 2. distribution of observations,
  - 3. behaviour of the discrepency mean.
- Possible extensions:
  - 1. model  $s^2(\theta)$ ,
  - 2. choose a different distribution and moment match,
  - 3. use a Student's t-process.





### Conclusion

- Calibrating model parameters is important for scenario testing etc
- Successfully calibrated model parameters
- Could be used with more complicated models, even your model...





#### Thanks to

- ► Eamon Conway
- ▶ Jennifer Flegg
- ► Ivo Mueller
- ► Mueller lab and unimelb MMB group





# **Bibliography**

Champagne, Clara et al. (Jan. 2022). "Using observed incidence to calibrate the transmission level of a mathematical model for Plasmodium vivax dynamics including case management and importation". In: Mathematical Biosciences 343, p. 108750.

ISSN: 00255564. DOI: 10.1016/j.mbs.2021.108750. URL: https://linkinghub.elsevier.com/retrieve/pii/S0025556421001541 (visited on 08/22/2023).

Gutmann, Michael U. and Jukka Cor (2016). "Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models". In: Journal of Machine Learning Research 17.125, pp. 1–47. ISSN: 1533-7928. URL: http://jmlr.org/papers/v17/15-017.html (visited on 04/28/2024).



