Calculus III Lecture 20

Todor Milev

https://github.com/tmilev/freecalc

2020

Outline

Divergence Theorem

License to use and redistribute

These lecture slides and their LaTEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein

Theorem (Divergence Theorem)

Let D be a compact set in space with boundary S a piecewise smooth parametrized surface, oriented by the outward normal, and let \mathbf{X} be a smooth vector field on D given by

$$X(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k$$
.

Then

$$\iint_{S} \mathbf{X} \cdot d\mathbf{S} = \iiint_{D} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dV$$

Corollary (May serve as alternative definition of div)

$$\begin{aligned} (\operatorname{div} \mathbf{X})(p) &= \lim_{D \to \{p\}} \frac{1}{\operatorname{vol}(D)} \iint_{S} \mathbf{X} \cdot \mathrm{d}\mathbf{S} \\ &= \lim_{D \to \{p\}} \frac{1}{\operatorname{vol}(D)} \iiint_{D} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \mathrm{d}V \\ &= \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}. \end{aligned}$$

Divergence Theorem

- Let $\mathbf{X} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$.
- Recall our notation

$$\operatorname{div} \mathbf{X} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = (\partial_x, \partial_y, \partial_z) \cdot (P, Q, R)$$
$$\operatorname{div} \mathbf{X} = \nabla \cdot \mathbf{X}.$$

Theorem (Divergence Theorem)

$$\iint_{S} \mathbf{X} \cdot d\mathbf{S} = \iiint_{D} \operatorname{div} \mathbf{X} \, dV$$

- If $(\text{div } \mathbf{X})(p) > 0$, then p acts as a source;
- If $(\text{div } \mathbf{X})(p) < 0$, then p acts as a sink;
- If div $X \equiv 0$ on some domain D, then X is incompressible on D.

Example

Let S be the part of the paraboloid $z=4-x^2-y^2$ above the xy-plane, oriented upward, and $\mathbf{X}=a\mathbf{i}+b\mathbf{j}+c\mathbf{k}$. Use the Divergence Theorem to compute $\iint_S \mathbf{X} \cdot d\mathbf{S}$.

The surface S does not enclose a region in space. However, we add the disk D of radius 2 centered at the origin in the plane z=0 to make it closed. R orients D with the downward normal, hence

The upward normal to D is \mathbf{k} , hence $\mathbf{X} \cdot d\mathbf{S} = \mathbf{X} \cdot \mathbf{k} dS = c dS$. Therefore

$$\iint_{S} \mathbf{X} \cdot d\mathbf{S} = \iint_{D} \mathbf{X} \cdot d\mathbf{S} = \iint_{D} c \, dS = c \cdot \operatorname{area}(D) = 4\pi c.$$

Balloon Pressure Equilibrium

 Let F be the total displacement force due pressure difference between interior and exterior of inflated balloon:

$$\mathbf{F} = \iint_{\mathcal{S}} \mathrm{d}\mathbf{F} = \iint_{\mathcal{S}} \rho \mathbf{N} \, \mathrm{d}\mathcal{S} = \iint_{\mathcal{S}} \rho \, \mathrm{d}\mathbf{S} \; .$$

• For every unit vector **u** we have

$$\mathbf{F} \cdot \mathbf{u} = \left(\iint_{\mathcal{S}} \rho \mathbf{N} \, \mathrm{d} \mathcal{S} \right) \cdot \mathbf{u} = \iint_{\mathcal{S}} \rho \, \mathbf{u} \cdot \mathbf{N} \, \mathrm{d} \mathcal{S} = \iiint_{D} \mathrm{div}(\rho \, \mathbf{u}) \mathrm{d} \mathcal{V} = 0$$

because $div(p\mathbf{u}) = 0$ since the vector field $\mathbf{X} = p\mathbf{u}$ is constant on D.

- Therefore $\mathbf{F} \cdot \mathbf{u} = 0$ for every unit vector \mathbf{u} ;
- Which implies $\mathbf{F} = \mathbf{0}$.

Archemedes' Law from the Divergence Theorem

A solid body is submerged into a tank containing a liquid of constant density ρ . What is the buoyant force?

- Body occupies a region D, exterior boundary S;
- Unit outward normal field N;
- Magnitude of pressure at depth a below the surface is p₀ + ρag, where
 - *g* is the magnitude of the gravitational acceleration.
 - p₀ is the pressure at surface of liquid
- Infinitesimal force acting on S is $d\mathbf{F} = -(p_0 + \rho ag) \mathbf{N} dS$,
- The total force is

$$extbf{\emph{F}} = \iint_{\mathcal{S}} \mathsf{dF} = \iint_{\mathcal{S}} -(p_0 +
ho ag) \, extbf{\emph{N}} \, \mathsf{dS} = \iint_{\mathcal{S}} -
ho ag \, extbf{\emph{N}} \, \mathsf{dS} = \iint_{\mathcal{S}}
ho gz \, extbf{\emph{N}}$$

• EC: Use the Divergence Theorem to show that $\mathbf{F} = \rho V g \mathbf{k}$ (V: volume of the region enclosed by S.)

Curl

Let $\mathbf{X} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ be a smooth vector field.

Definition (Curl, coordinate definition)

The *curl* of a vector field **X**, denoted by **curl X**, is defined by **curl X** = $(\partial_y R - \partial_z Q)$ **i** + $(\partial_z P - \partial_x R)$ **j** + $(\partial_x Q - \partial_y P)$ **k**.

$$\mathbf{curl} \, \mathbf{X} = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_x & \partial_y & \partial_z \\ P & Q & R \end{array} \right| = \nabla \times \mathbf{X} \; .$$

• Just like div, **curl** can be equipped with a coordinate-free definition (in this case the above definition becomes a theorem).

Todor Milev 2020

Induced Orientation on a Boundary Curve

- Let S be smooth surface, oriented by unit normal vector n.
- Let *D* be region in *S*, bounded by a curve $C = \partial D$.
- Let N denote the unit vector field on C which is
 - tangent to S;
 - normal to C;
 - pointing outward of D.
- Let **T** be unit tangent vector to *C* (and hence tangent to *S*).
- Then **N** orients the tangents of *C* and thus *C* itself.

Definition

We say that **T** is *positively oriented* if the triple $\{n, N, T\}$ is positively oriented in space.

- Since T, n, N are pairwise orthogonal unit vectors, positive orientation is equivalent to $T = n \times N$.
- If we view the plane tangent to *S* from the tip of **n**, then {**N**, **T**} is positively oriented in that plane.

Example (Orientation of the equator of a sphere)

Let S be the unit sphere $x^2 + y^2 + z^2 = 1$ oriented by the outward normal \mathbf{n} , $D = S \cap \{z \ge 0\}$ be the upper hemisphere. Introduce an orientation on the boundary $C = \partial D$.

- At the point (1,0,0) the normal to the surface **n** equals **i**.
- Let **T** be a unit tangent to C at (1,0,0); then T = j or -j.
- Let N be unit vector perpendicular to n and T, pointing outwards from D ⇒ N equals -k.
- \Rightarrow positively oriented tangent to C is $\mathbf{T} = \mathbf{n} \times \mathbf{N} = \mathbf{i} \times (-\mathbf{k}) = \mathbf{j}$.
- A viewer, standing along n with feet on surface, and facing in the direction of the tangent, has the surface to the left.
- Change *D* to be lower hemisphere: we get N = k, $T = n \times N = -j$.
- A viewer, standing along n with feet on surface, facing in the direction of the tangent, has the surface again to the left.

- Let S be a smooth surface, oriented by the unit normal field n.
- Let D be a region on S, bounded by the piecewise smooth curve $C = \partial D$.
- Let C have unit tangent T positively oriented by n.
- Let X = Pi + Qj + Rk be a smooth vector field defined in a open set around S.
- Recall that $\operatorname{curl} X = (R_y Q_z) \mathbf{i} + (P_z R_x) \mathbf{j} + (Q_x P_y) \mathbf{k}$.
- Recall that $\mathbf{X} \cdot d\mathbf{r} = \mathbf{T} ds$ and $d\mathbf{S} = \mathbf{n} dS$.

Theorem (Stokes)

$$\oint_C \mathbf{X} \cdot d\mathbf{r} = \iint_D \mathbf{curl} \, \mathbf{X} \cdot d\mathbf{S}$$

Theorem (Stokes)

$$\oint_C \mathbf{X} \cdot d\mathbf{r} = \iint_D \mathbf{curl} \, \mathbf{X} \cdot d\mathbf{S} \quad .$$

Idea of proof:

- Use a parametrization of *S* to get integrals in the parameter plane.
- Apply Green's Theorem in the parameter plane.

We can use Stokes' theorem to:

- Evaluate line integrals by computing a surface integral, or
- Evaluate a surface integral by computing a line integral.

Example

Vector Potential

Given a smooth vector field X, one can ask:

- Is X the curl of a vector field?
- Any field G such that X = curl G is called a vector potential for X.
- If $\mathbf{X} = \nabla \times \mathbf{G}$ is a curl field, then div $\mathbf{X} = 0$.
- Two vector potentials differ by a gradient field.

Surface *D* the part of the paraboloid $z = 4 - x^2 - y^2$ above the xy-plane, oriented upward, $\mathbf{X} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$

$$\iint_D \mathbf{X} \cdot d\mathbf{S}$$

div $\mathbf{X} = \mathbf{0}$, hence \mathbf{X} may be the curl of a vector field $\mathbf{G} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$.

$$Q_x-P_y=c, \qquad P_z-R_x=b, \qquad R_y-Q_z=a\,.$$

One solution is Q = cx, P = bz, R = ay, hence $\mathbf{G} = bz\mathbf{i} + cx\mathbf{j} + ay\mathbf{k}$ is a vector potential for \mathbf{X} . Then $\mathbf{X} = \mathbf{curl}\,\mathbf{G}$ and therefore

$$\iint_{D} \mathbf{X} \cdot \mathrm{d}\mathbf{S} = \iint_{D} \mathbf{curl} \, \mathbf{G} \cdot \mathrm{d}\mathbf{S} = \oint_{C} \mathbf{G} \cdot \mathbf{dr} = \oint_{C} bz \, dx + cx \, dy + ay \, dz \; ,$$

where $C = \partial D$, the circle of radius 2 centered at the origin, oriented counterclockwise; $x = 2 \cos t$, $y = 2 \sin t$, z = 0, with $0 \le t \le 2\pi$ is an orientation-compatible parametrization of C

$$\oint_C \mathbf{G} \cdot \mathbf{dr} = \int_0^{2\pi} 2c \cos t \, (2 \cos t) \, dt = 4c \int_0^{2\pi} \cos^2 t \, dt = 4\pi \, c \, .$$

Div, Curl, Grad

$$\mathsf{div}(\boldsymbol{\mathsf{curl}}\,\boldsymbol{X}) = \nabla \cdot (\nabla \times \boldsymbol{X}) = 0$$
 .

B: ball centered at p, with boundary a sphere S centered at p.

$$\begin{split} &\iiint_{B} \operatorname{div}(\operatorname{\mathbf{curl}} \mathbf{X}) \, dV = \iint_{S = \partial B} \operatorname{\mathbf{curl}} \mathbf{X} \cdot \mathrm{d}\mathbf{S} = \oint_{\partial S} \mathbf{X} \cdot \mathrm{\mathbf{dr}} = 0 \;, \\ &\operatorname{div}(\operatorname{\mathbf{curl}} \mathbf{X})(p) = \lim_{B \to \{p\}} \frac{1}{\operatorname{vol}(B)} \iiint_{B} \operatorname{div}(\operatorname{\mathbf{curl}} \mathbf{X}) \, dV = 0 \;. \end{split}$$

$$\operatorname{curl}(\operatorname{grad} f) = \nabla \times (\nabla f) = \mathbf{0}$$
.

D: disk centered at p, in the plane normal to \mathbf{n} at p, and $C = \partial D$

$$\iint_{D} \mathbf{curl} \left(\mathbf{grad} f \right) \cdot \mathbf{n} \, dS = \iint_{D} \mathbf{curl} \left(\mathbf{grad} f \right) \cdot d\mathbf{S} = \oint_{C} \mathbf{grad} f \cdot d\mathbf{r} = 0 ,$$

$$\operatorname{curl} (\operatorname{grad} f)(p) \cdot \mathbf{n} = \lim_{D \to \{p\}} \frac{1}{\operatorname{area}(D)} \iint_D \operatorname{curl} (\operatorname{grad} f) \cdot \mathbf{n} \, \mathrm{d} S = 0$$
;

since this is valid for all unit vectors n we conclude that