第14章 代数系统

计算机工程与科学学院 封卫兵

14.3 几个典型的代数系统

14.3.1 半群与独异点

14.3.2 群

半群与独异点的定义与实例

半群与独异点的幂运算

半群与独异点的子代数和积代数

半群与独异点的同态

半群与独异点的定义

定义14.12

- 1) 设 $V = \langle S, \bullet \rangle$ 是代数系统,。为二元运算,如果。运算是可结合的,则称 V 为半群.
- 2) 设 $V = \langle S, \circ \rangle$ 是半群,若 $e \in S$ 是关于。运算的单位元,则称 V 是 含幺半群,也叫做独异点.有时也将独异点 V 记作 $V = \langle S, \circ, e \rangle$.

例: 1) + 是普通加法, 则 <Z⁺, +>, <N, +>, <Z, +>, <Q, +>, <R, +>中:

2) 设n 是大于1 的正整数, +和·分别表示矩阵加法和矩阵乘法.

半群:
$$\langle M_n(\mathbf{R}), + \rangle$$
 ? \checkmark $\langle M_n(\mathbf{R}), \cdot \rangle$? \checkmark

独异点:
$$, $+>$? \checkmark $, $\cdot>$? $\checkmark$$$$

3) ⊕ 为集合的对称差运算.则

例: (续)

- 4) $Z_n = \{0, 1, ..., n-1\}$, \oplus 为模 n 加法.
 - <Z_n, ⊕>为半群 ? ✓ 也是独异点 ? ✓

- 5)。为函数的复合运算.则:
 - <A^A, ∘>为半群 ? 也是独异点 ? ✔

6) R*为非零实数集合,。运算定义如下:

 $\forall x, y \in \mathbb{R}^*, x \circ y = y.$ 则 $\langle \mathbb{R}^*, \circ \rangle$ 为半群 ? \checkmark

半群与独异点的幂运算

定义 1) 在半群 $\langle S, \circ \rangle$ 中, $\forall x \in S$, 规定:

$$x^{1} = x, \quad x^{n+1} = x^{n} \circ x, \quad n \in \mathbb{Z}^{+}$$

2) 在独异点 $\langle S, \circ, e \rangle$ 中, $\forall x \in S$,

$$x^0 = e$$
, $x^{n+1} = x^n \circ x$, $n \in \mathbb{N}$

用数学归纳法不难证明x的幂遵从以下运算规则:

$$\chi^n \circ \chi^m = \chi^{n+m}, \qquad (\chi^n)^m = \chi^{nm},$$

在半群中 $m, n \in \mathbb{Z}^+$,在独异点中 $m, n \in \mathbb{N}$.

半群与独异点的子代数

定义 半群与独异点的子代数分别称为子半群与子独异点.

判定方法:

设 $V = \langle S, \circ \rangle$ 是半群, $T \subseteq S$,T 非空,如果 T 对 V 中的运算。封闭,则 $\langle T, \circ \rangle$ 是 V 的子半群.

设 $V = \langle S, \circ, e \rangle$ 是独异点, $T \subseteq S$,T 非空,如果 T 对 V 中的运算。 封闭,而且 $e \in T$,那么 $\langle T, \circ, e \rangle$ 构成 V 的子独异点.

例: 设半群 $V_1 = \langle S, \cdot \rangle$, 独异点 $V_2 = \langle S, \cdot, e \rangle$, 其中·为矩阵乘法, e 为 2 阶单位矩阵, 且

$$S = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} | a, d \in \mathbf{R} \right\}, \qquad T = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} | a \in \mathbf{R} \right\}$$

则 $T \subseteq S$, 且 $T \neq V_1 = \langle S, \cdot \rangle$ 的子半群.

T是 V_2 的子独异点吗?

 $\begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$ 是T的单位元,T本身可以构成独异点,但不是 V_2 的子独异点,

因为 V_2 的单位元是 e.

半群与独异点的同态

定义14.13 1) 设
$$V_1 = \langle S_1, \circ \rangle$$
, $V_2 = \langle S_2, * \rangle$ 是半群, $f: S_1 \to S_2$.

若对任意的 $x, y \in S_1$ 有

$$f(x \circ y) = f(x) * f(y),$$

则称 f 为半群 V_1 到 V_2 的同态映射,简称同态.

2) 设 $V_1 = \langle S_1, \circ, e_1 \rangle$, $V_2 = \langle S_2, *, e_2 \rangle$ 是独异点, $f: S_1 \to S_2$. 若对任意的 $x, y \in S_1$ 有

$$f(x \circ y) = f(x) * f(y) \implies f(e_1) = e_2$$

则称 f 为独异点 V_1 到 V_2 的同态映射,简称同态.

例: 设半群 $V_1 = \langle S, \cdot \rangle$, 独异点 $V_2 = \langle S, \cdot, e \rangle$, 其中·为矩阵乘法, e 为 2 阶单位矩阵,且

$$S = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} | a, d \in \mathbf{R} \right\}$$

$$\Leftrightarrow f\left(\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}\right) = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$$

则 f 是半群 $V_1 = \langle S, \cdot \rangle$ 的自同态 ? \checkmark

f是独异点 $V_2 = \langle S, \cdot, e \rangle$ 的自同态 ? 🗶

因为 $f(e) \neq e$.

群的定义与实例 群中的术语 群的性质 子群的定义及判别 群的同态与同构 循环群 置换群

群的定义

定义14.14 设 < G, \circ > 是代数系统,。为二元运算.如果。运算是可结合的,存在单位元 e \in G,并且对 G 中的任何元素 x 都有 x^{-1} \in G,则称 G 为群.

- 注: 1) 若非单元代数系统有零元,则它一定不是群;
 - 2) 群、独异点、半群的关系?

例: 下列哪些代数系统是群?

1)
$$<$$
Z, $+>$ $<$ **Q**, $+>$ $<$ **R**, $+>$ $<$ $<$ **R***, $\times>$ $<$

2)
$$<\mathbf{Z}^+$$
, $+>$ \times $<\mathbf{N}$, $+>$ \times $<\mathbf{Z}$, $\times>$ \times

3)
$$< M_n(\mathbf{R}), +> \checkmark$$
 $< M_n(\mathbf{R}), \cdot> \times$

5)
$$<$$
Z_n, $\oplus >$, **Z**_n = { 0, 1, ..., $n-1$ }, \oplus 为模 n 加 .

Klein四元群

设 $G = \{e, a, b, c\}$, G上的运算由下表给出, 称为 Klein四元群.

运算表特征:

- e 为单位元;
- 主对角线元素都是单位元, 每个元素是自己的逆元;
- *a*, *b*, *c* 中任两个元素运算 都等于第三个元素;
- 对称性---运算可交换.

	e	a	b	Ć
e	e	a	b	C
a	a	e	C	b
b	b	C	e	a
c	C	b	a	e

群中的术语

定义14.15 1) 若群 G 是有穷集,则称 G 是有限群,否则为无限群。群 G 中的元素个数称为群 G 的阶,有限群 G 的阶,记作 |G| .

2) 若群 G 中的二元运算是可交换的,则称G为交换群或阿贝尔群.

例: <**Z**, +> 和 <**R**, +> 是 <u>无限</u> 群和 <u>交换</u> 群;

<**Z**_n, ⊕> 是 <u>n 阶</u> 群和 <u>交换</u> 群;

Klein 四元群是 4 阶 群和 交换 群;

n 阶 $(n\geq 2)$ 实可逆矩阵集合关于矩阵乘法构成的群是交换群?

群中的术语(续)

定义14.15 3) 若群 G 中只含单位元,则称为平凡群.

是只有一个元素的群, 例如

此时,单位元=零元=逆元=a.

注: 平凡群是唯一有零元的群.

群的幂运算

定义14.16 设 G 是群, $x \in G$, $n \in \mathbb{Z}$, 则 x 的 n 次幂 x^n 定义为

$$x^{n} = \begin{cases} e & n = 0 \\ x^{n-1}x & n > 0 \\ (x^{-1})^{m} & m = -n, n < 0 \end{cases} \qquad n \in \mathbb{Z}$$

例:

在
$$<$$
Z₃, \oplus > 中有 $2^{-3} = (2^{-1})^3 = 1^3 = 1 \oplus 1 \oplus 1 = 0$;

在
$$\langle \mathbb{Z}, + \rangle$$
 中有 $(-2)^{-3} = ((-2)^{-1})^3 = 2^3 = 2 + 2 + 2 = 6$.

群中的术语(续)

定义14.17 设 G 是群, $x \in G$,使得等式 $x^k = e$ 成立的最小正整数 k 称为 x 的阶(或周期),记作 |x| = k,称 x 为 k 阶元.若不存在这样的正整数 k,则称 x 为无限阶元.

例: Klein 四元群中,元素 a 的阶 |a|=2

在 $\langle Z_6, \oplus \rangle$ 中,0 是 <u>1</u> 阶元,1 是 <u>6</u> 阶元,2 是 <u>3</u> 阶元,3 是 <u>2</u> 阶元,4 是 <u>3</u> 阶元,5 是 <u>6</u> 阶元

在 <Z, +> 中, 0 是 1 阶元, 其它整数是 <u>无限阶元</u>.

群的性质——幂运算规则

定理14.3 设G为群,则G中的幂运算满足:

- 1) $\forall x \in G, (x^{-1})^{-1} = x;$
- 2) $\forall x, y \in G$, $(xy)^{-1} = y^{-1}x^{-1}$;
- 3) $\forall x \in G, x^n x^m = x^{n+m}, n, m \in \mathbb{Z};$
- 4) $\forall x \in G, (x^n)^m = x^{nm}, n, m \in \mathbb{Z};$
- 5) 若 G 为交换群,则 $(xy)^n = x^n y^n$.

群的性质——幂运算规则(续)

证明:

1) $(x^{-1})^{-1}$ 是 x^{-1} 的逆元, x 也是 x^{-1} 的逆元. 根据<mark>逆元的唯一性</mark>, 等式得证.

或: $(x^{-1})x = e$, 因此, $x = (x^{-1})^{-1}$.

2) $(y^{-1}x^{-1})(xy) = y^{-1}(x^{-1}x)y = y^{-1}y = e$, 同理, $(xy)(y^{-1}x^{-1}) = e$, 故 $y^{-1}x^{-1}$ 是 xy 的逆元. 根据逆元的唯一性得证.

群的性质——幂运算规则(续)

证明: 3) 用数学归纳法证明对于自然数 n 等式为真,然后讨论 n 为负数的情况.

- ① n = 0: $x^0 x^m = e^{-x^m} = x^{m} = x^{m} = x^{m} = x^{m}$, \overrightarrow{D}
- ② n > 0: 设 n = k ($k \ge 0$) 时成立,即 $x^k x^m = x^{k+m}$, 当 n = k + 1: $x^{k+1} x^m = x^k x x^m = x^k x^{1+m} = x^{k+1+m}$,成立;
- ③ n < 0: 设 n = -k 时成立,即 $x^{-k}x^m = x^{-k+m}$, 当 n = -k - 1: $x^{-k-1}x^m = (x^{-1})^{k+1}x^m = (x^{-1})^k x^{-1}x^m$ $= x^{-k}x^{-1+m} = x^{-k-1+m}$

群的性质——幂运算规则(续)

注:

1) 定理中的(2) 中的结果可以推广到有限多个元素的情况,即

$$(x_1 x_2 ... x_n)^{-1} = x_n^{-1} x_{n-1}^{-1} ... x_2^{-1} x_1^{-1}$$

2) 定理中的(5) 只对交换群成立. 如果 G 是非交换群, 那么

$$(xy)^n = \underbrace{(xy)(xy)...(xy)}_{n\uparrow}$$

群的性质——群方程存在唯一解

定理14.4 G 为群, $\forall a, b \in G$,方程 ax = b 和 ya = b 在 G 中有解且仅有唯一解.

证明: $a^{-1}b$ 代入方程左边的 x , 得

$$a(a^{-1}b) = (a a^{-1}) b = eb = b$$
,

所以 a-1 b 是该方程的解. 下面证明唯一性.

假设 $c \neq a^{-1}b$ 也是方程 ax = b 的解,必有 ac = b,从而有

$$c = ec = (a^{-1}a)c = a^{-1}(ac) = a^{-1}b$$
,

同理可证, ba^{-1} 是方程 ya = b 的唯一解.

群的性质——群方程存在唯一解(续)

例: 设群 $G = \langle P(\{a, b\}), \oplus \rangle$, 其中 \oplus 为对称差.求解下列群方程:

$$\{a\} \oplus X = \emptyset$$
, $Y \oplus \{a, b\} = \{b\}$.

解:

$$X = \{a\}^{-1} \oplus \emptyset = \{a\} \oplus \emptyset = \{a\},\,$$

$$Y = \{b\} \oplus \{a, b\}^{-1} = \{b\} \oplus \{a, b\} = \{a\}$$
.

群的性质——群方程存在唯一解(续)

例(续): 群 $G = \langle P(\{a,b\}), \oplus \rangle$, 其中 \oplus 为对称差.

运算表:

<u>/</u>	\oplus	XØ	\{a\}	<i>{b}</i>	$\{a, b\}$	
	Ø	Ø	{a}	$\{b\}$	$\{a, b\}$	
	<i>{a}</i>	<i>{a}</i>	Ø	$\{a, b\}$	<i>{b}</i>	
	<i>{b}</i>	<i>{b}</i>	$\{a, b\}$	Ø	<i>{a}</i>	
	$\{a, b\}$	$\{a, b\}$	$\{b\}$	<i>{a}</i>	Ø	

这是一个什么群?

Klein 四元群

群的性质——消去律

定理14.5 G 为群,则 G 中适合消去律,即对任意 $a, b, c \in G$,有

- 1) 若 ab = ac,则 b = c;
- 2) 若 ba = ca, 则 b = c.

证明: 1) G 为群, $a \in G$,所以存在 $a^{-1} \in G$,

$$ab = ac \Rightarrow a^{-1}(ab) = a^{-1}(ac) \Rightarrow (a^{-1}a)b = (a^{-1}a)c \Rightarrow b = c$$
.

或:将 b 作为未知数求解: $b = a^{-1}(ac) = a^{-1}ac = ec = c$.

2) 同理可证.

群的性质——消去律(续)

例: 设 $G = \{a_1, a_2, ..., a_n\}$ 是 n 阶群, $a_i \in G$, 令

$$a_iG = \{ a_i a_j | j=1,2,...,n \}$$

证明: $a_iG = G$.

证明:由群中运算的封闭性有 $a_iG \subseteq G$.

假设 $a_iG \subset G$, 即 $|a_iG| < n$. 必有 a_j , $a_k \in G$, 使得

$$a_i a_j = a_i a_k \quad (j \neq k) \quad (鸽巢原理)$$

由消去律得 $a_j = a_k$, 与 |G| = n **矛盾**.

故, $a_iG \subset G$ 不成立, 得证 $a_iG = G$.

注:对无限群不成立,

例如,<Z,+>.

群中元素阶的性质

定理14.6 G 为群, $a \in G$ 且 |a| = r. 设 k 是整数,则

- 1) $a^k = e$ 当且仅当 $r \mid k$;
- (2) $|a^{-1}| = |a|$.

证明: 1) 必要性: 对整数 k, 根据除法, 存在整数 m 和 i 使得

$$k = mr + i$$
, $0 \le i \le r - 1$,

从而有 $e = a^k = a^{mr+i} = (a^r)^m a^i = e a^i = a^i$.

因为 |a|=r, 且 $0 \le i \le r-1$, 必有 i=0. 这就证明了 $r \mid k$.

群中元素阶的性质 (续)

1) 充分性: 由 $r \mid k$, 必存在整数 m 使得 k = mr, 所以有

$$a^k = a^{mr} = (a^r)^m = e^m = e.$$

2) 由 $(a^{-1})^r = (a^r)^{-1} = e^{-1} = e$, 可知 a^{-1} 的阶存在.

令 $|a^{-1}| = t$,根据上面的证明有 $t \mid r$.

a 又是 a^{-1} 的逆元,则 $a^{t} = ((a^{-1})^{t})^{-1} = e$,所以 $r \mid t$.

从而证明了 r = t, 即 $|a^{-1}| = |a|$.

例: 验证 <**Z**₆, \oplus >, $|a^{-1}| = |a|$.

$$2^{-1} = ?$$
 4

$$|4| = ?$$
 3

$$|2| = |4|$$

$$\nabla : 1^{-1} = ? 5$$

$$|1| = ? 6$$

$$|5| = ?$$
 6

$$|1| = |5|$$

群性质的应用

例:证明单位元为群中唯一幂等元.

证明: 设 G 为群 .a 为 G 中幂等元 . 则 aa = a,

从而得到 aa = ae. 根据消去律得 a = e.

例: 设 G 为群, 如果 $\forall a \in G$ 都有 $a^2 = e$, 证明 G 为 Abel 群.

证明: 因为 $aa^{-1} = e$, 所以 $a^2 = e \Leftrightarrow a = a^{-1}$

任取 $x, y \in G$, 则由群的封闭性有 $xy \in G$, 于是

$$xy = (xy)^{-1} = y^{-1}x^{-1} = yx$$
.

因此, G为 Abel 群.

子群的定义

定义14.18 设 G 是群,H 是 G 的非空子集,如果 H 关于 G 中的运算构成群,则称 H 是 G 的子群,记作 $H \le G$. 若 H 是 G 的子群,且 $H \subset G$,则称 H 是 G 的真子群,记作 H < G .

注: 子群 H 需满足:

- 1) H 是 G 的非空子集;
- 2) *H* 关于 *G* 中运算封闭;
- 3) $e \in H$;
- 4) $\forall x \in H, x^{-1} \in H$.

子群的定义 (续)

例:

n**Z** (n 是自然数) 是整数加群 <**Z**, +> 的子群. 当 $n \neq 1$ 时, n**Z** 是 **Z** 的真子群.

注: 1) 对任何群 G 都存在子群;

2) G 和 $\{e\}$ 都是 G 的子群, 称为 G 的平凡子群.

子群判定定理一

定理14.7 设 G 为群,H 是 G 的非空子集. H 是 G 的子群当且仅当 $\forall a,b \in H$ 有 $ab \in H$; $\forall a \in H$ 有 $a^{-1} \in H$.

证明: 必要性: 显然;

充分性: 即只需证明 $e \in H$.

由于H 非空,存在 $a \in H$,因此有 $a^{-1} \in H$.

根据已知必有 $aa^{-1} \in H$, 即 $e \in H$. H 满足子群定义.

子群判定定理一(续)

例:证明 nZ 是整数加群 < Z, +> 的子群.

证明: 显然 nZ 是 Z 的非空子集, 因为 $n \in nZ$.

任取 nk, $nl \in n\mathbf{Z}$,

$$nk + nl = n(k + l), \qquad n(k + l) \in n\mathbf{Z},$$

又因为,

$$(nk)^{-1} = -nk = n(-k) \in n\mathbf{Z}_{l}$$

根据判定定理一, nZ 是整数加群的子群.

例: 判断下列命题的真假:

- 1) A={x | x∈N, 且gcd(x, 5) = 1}, 则 <A, +> 构成代数系统,
 + 为普通加法;
- 2) $\forall x, y \in \mathbb{R}, x * y = |x y|, 则 0 为 < \mathbb{R}, *> 的单位元; 🗶$
- 3) $\forall x, y \in \mathbb{R}, x * y = x + y + xy, \mathbb{J} \forall x \in \mathbb{R}, x^{-1} = -x/(1+x); \times$
- 5) 任何代数系统都存在子代数.

例: 设 $A = \{1, 2\}$, $B \neq A$ 上的等价关系的集合.

1) 列出 B 的元素: $B = \{I_A, E_A\}$

2) 给出代数系统 *V* = <*B*, ∩> 的运算表:

\bigcap	I_A	E_A
I_A	I_A	I_A
E_A	I_A	$ E_A $

- 3) V 的单位元是 $\underline{E_A}$ 零元是 $\underline{I_A}$ 可逆元素是 $\underline{E_A}$ 逆元是 $\underline{E_A}$.
- 4) / 是半群? ✔ 独异点? ✔ 群? 🗶

例:设G为群, $H \leq G$,证明如果

 $x \in G$, $\exists xH = \{xh \mid h \in H\}$

是G的子群,则 $x \in H$.

证明: xH是 G 的子群, 所以 $e \in xH$,

即存在 $h \in H$, 使得 xh = e

因此, $x = h^{-1}$.

又因为, H是 G 的子群, $h \in H$

由判定定理一,有 $h^{-1} \in H$,即 $x \in H$.

作业

14.12

14.13

研讨题

- 1) <P({a, b}), ∪> 为哪种代数系统?
- 2) 设 $V = \langle S, \circ \rangle$ 是一个半群,则对任意的 $a \in S$, 令

$$\langle a \rangle = \{x \mid x = a^n, n > 0\},\$$

证明: <a>是一个子半群. 若 V 是一个独异点, 怎样类似地定义一个子独异点.

3) 设 $V = \langle S, \circ \rangle$ 是一个半群,若二元运算。满足交换律,则对任意的幂等元 a,映射 $f_a(x) = a \circ x$ 是一个V上的自同态.

子群判定定理二

定理14.8 设 G 为群,H 是 G 的非空子集. H 是 G 的子群当且仅当 $\forall a,b \in H$ 有 $ab^{-1} \in H$.

证明: 只证充分性.

由于H非空,必有 $x \in H$.由已知有 $xx^{-1} \in H$,从而得到 $e \in H$.

任取 H 中元素 a, 由 e, $a \in H$, 得 $ea^{-1} \in H$, 即 $a^{-1} \in H$.

任取 $a, b \in H$, 必有 $b^{-1} \in H$, 从而可得 $a(b^{-1})^{-1} \in H$, 即 $ab \in H$.

根据判定定理一(或子群定义)得证.

子群判定定理二 (续)

例:证明 nZ 是整数加群 < Z, +> 的子群.

证明: 1) 显然 nZ 是 Z 的非空子集.

2) $\forall a, b \in n\mathbb{Z}$, 假设 $a = nk_1, b = nk_2, k_1, k_2 \in \mathbb{Z}$ 则

$$a + b^{-1} = nk_1 + (-nk_2) = n(k_1 - k_2) \in n\mathbb{Z}$$
,

由判定定理二,得证.

重要的子群 (群的中心)

例: 设G为群,证明下面的集合是G的子群

$$C = \{ a \mid a \in G, \forall x \in G (ax = xa) \}.$$

证明: 方法一, 根据判定定理一:

- 1) 设 $e \in G$ 是单位元, $\forall x \in G$, $ex = x = xe \Rightarrow e \in C$, $C \neq G$ 的非空子集;
- 2) $\forall a, b \in C$, 则 $a, b \in G$, 且 $ab \in G$. 对于 $\forall x \in G$, 有 $(ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab) \Rightarrow ab \in C$, 封闭
- 3) $\forall a \in C$, 要证 $a^{-1} \in C$.

$$\forall x \in G, a^{-1}x = a^{-1}(x^{-1})^{-1} = (x^{-1}a)^{-1} = (ax^{-1})^{-1} = xa^{-1} \Rightarrow a^{-1} \in C$$

重要的子群 (群的中心)

例:设 G 为群,证明下面的集合是G的子群

$$C = \{ a \mid a \in G, \ \forall x \in G (ax = xa) \}.$$

证明: 方法二, 根据判定定理二:

- 1) 设 $e \in G$ 是单位元, $\forall x \in G$, $ex = x = xe \Rightarrow e \in C$, $C \neq G$ 的非空子集;
- 2) $\forall a, b \in C$, 则 $a, b \in G$, 且 $ab \in G$, $b^{-1} \in G$. 对于 $\forall x \in G$, 有

$$(ab^{-1})x = a(b^{-1}x) = a(bb^{+1}x)^{-1} = a(x^{-1}b)^{-1} = a(bx^{-1})^{-1}$$

$$= a(xb^{-1}) = (ax)b^{-1} = (xa)b^{-1} = x(ab^{-1})$$

$$\Rightarrow ab^{-1} \in C$$

重要的子群 (生成子群)

定义 设 G 为群, $a \in G$, 令

$$H = \{ a^k | k \in \mathbb{Z} \},$$

则 H 是 G 的子群, 称为由 a 生成的子群, 记作 $\langle a \rangle$.

证明: 首先由 $a \in \langle a \rangle$, 知道 $\langle a \rangle \neq \emptyset$, 则 $\langle a \rangle$ 是 G 的非空子集.

任取
$$x, y \in \langle a \rangle$$
, $x = a^m$, $y = a^l$, 则

$$xy^{-1} = a^m (a^l)^{-1} = a^m a^{-l} = a^{m-l} \in \langle a \rangle$$

根据子群判定定理二可知, $\langle a \rangle \leq G$.

重要的子群 (生成子群)

- 例: 1) 整数加群< \mathbb{Z} , +>, 由 2 生成的子群是 <2> = { $2k \mid k \in \mathbb{Z}$ } = $2\mathbb{Z}$;
 - 2) 群 <**Z**₆, ⊕> 中, 由 2 生成的子群 <2> = { 0, 2, 4 };
 - 3) Klein 四元群 $G = \{e, a, b, c\}$ 的所有生成子群是:

$$\langle e \rangle = \{ e \}, \qquad \langle a \rangle = \{ e, a \},$$

$$\langle b \rangle = \{ e, b \}, \quad \langle c \rangle = \{ e, c \}.$$

子群格

定义 设 G 为群,令 $S = \{H | H \le G\}$ 是 G 的所有子群的集合,定义 S 上的偏序 \leqslant , $\forall x, y \in S, x \leqslant y \Leftrightarrow x \subseteq y$, 那么 $\leqslant S$, $\leqslant >$ 构成格(哈斯图),称为 G 的子群格.

例: Klein 四元群 G 和 < Z_{12} , \oplus > 的子群格:

群同态的定义与分类

定义14.19 设 G_1 , G_2 是群, $f:G_1 \to G_2$, 若 $\forall a, b \in G_1$ 都有

$$f(a b) = f(a)f(b)$$

则称 f 是群 G_1 到 G_2 的同态映射,简称同态.

如果同态 ƒ 为单射函数,则称为单同态;

如果是满射函数,则称为满同态,记作 $G_1 \sim G_2$;

如果是双射函数,则称为同构,记作 $G_1 \cong G_2$;

如果 $G_1 = G_2$, 则称为自同态.

群同态的定义与分类 (续)

例:设 G 是群,

$$f(x) = axa^{-1}, \quad a \in G,$$

f 是不是 G 的自同态?

证明:

$$\forall x, y \in G, \ f(xy) = axya^{-1} = axa^{-1}aya^{-1} = f(x)f(y),$$

所以f是群G的自同态

群同态的实例

- **例:** 1) $G_1 = \langle \mathbf{Z}, + \rangle$ 是整数加群, $G_2 = \langle \mathbf{Z}_n, \oplus \rangle$ 是模 n 的整数加群. 令 $f : \mathbf{Z} \to \mathbf{Z}_n$, $f(x) = x \mod n$, $f \in G_1$ 到 G_2 的同态? **✓**
 - $\forall x, y \in \mathbb{Z}$,

 $f(x+y) = (x+y) \bmod n = x \bmod n \oplus y \bmod n = f(x) \oplus f(y)$

f是 G_1 到 G_2 的 满 同态.

- 2) 设 $G = \langle Z_n, \oplus \rangle$ 是模 n 整数加群,可以证明恰有 $n \cap G$ 的自同态,
 - $\mathbb{P} f_p: \mathbb{Z}_n \to \mathbb{Z}_n, \ f_p(x) = (px) \bmod n, \ p = 0, 1, ..., n-1.$

群同态的实例

例: (续)

3) 设 G_1 , G_2 是群, e_2 是 G_2 的单位元.

$$f: G_1 \to G_2$$
, $f(a) = e_2$, $\forall a \in G_1$.

则 $f \in G_1$ 到 G_2 的同态, 称为零同态.

$$\forall a, b \in G_1$$
, $f(ab) = e_2 = e_2 e_2 = f(a) f(b)$.

4) G 为群, $a \in G$. 令 $f: G \to G$, $f(x) = axa^{-1}$, $\forall x \in G$ 则 $f \in G$ 的自同构,称为 G 的内自同构.

群同态的性质

设 f 是群 G_1 到 G_2 的同态映射,则

1) $f(e_1) = e_2$, e_1 和 e_2 分别是 G_1 和 G_2 的单位元;

证明: $f(e_1)f(e_1) = f(e_1e_1) = f(e_1) = f(e_1)e_2 \implies f(e_1) = e_2$

2) $\forall x \in G_1$, $f(x^{-1}) = f(x)^{-1}$;

证明:

$$f(x)f(x^{-1}) = f(xx^{-1}) = f(e_1) = e_2$$

$$f(x^{-1}) f(x) = f(x^{-1}x) = f(e_1) = e_2$$

群同态的性质

设 f 是群 G_1 到 G_2 的同态映射,则

3) 设 $H \le G_1$, 则 $f(H) \le G_2$.

证明: 因为 $H \leq G_1$, 所以 $e_1 \in H$, 则 $f(e_1) = e_2 \in f(H)$, $f(H) \neq \emptyset$;

 $\forall a, b \in f(H), \exists x, y \in H, \notin f(x) = a, f(y) = b,$

$$ab^{-1} = f(x)f(y)^{-1} = f(x)f(y^{-1}) = f(xy^{-1}),$$

$$xy^{-1} \in H \Rightarrow f(xy^{-1}) \in f(H) \Rightarrow ab^{-1} \in f(H)$$
.

例:给出 Klein 四元群上所有的自同构.

解: $G = \{e, a, b, c\}$,

- 1) 因为同态 f 满足 f(e) = e;
- 2) $\forall x \in G, x \neq e, f(xx) = f(e) = e, \Rightarrow f(x) \neq e$
- 3) $\forall x, y, z \in G, x \neq y \neq z \neq e, f(xy) = f(x)f(y) = f(z),$

因此只有以下6个双射函数是同构映射:

$$f_1(a) = b$$
, $f_1(b) = a$, $f_1(c) = c$; $f_2(a) = c$, $f_2(b) = b$, $f_2(c) = a$; $f_3(a) = a$, $f_3(b) = c$, $f_3(c) = b$; $f_4(a) = b$, $f_4(b) = c$, $f_4(c) = a$; $f_5(a) = c$, $f_5(b) = a$, $f_5(c) = b$; $f_6 = I_G$,

例: 设 $G_1 = \langle Q^*, \cdot \rangle$, $G_2 = \langle Q, + \rangle$, 证明不存在 G_1 到 G_2 的同构.

证明: 假设存在 G_1 到 G_2 的同构 f, 那么 f(1) = 0. 因此

$$f(-1) + f(-1) = f((-1)(-1)) = f(1) = 0$$

 $\Rightarrow f(-1) = 0$

与 f 的双射性矛盾.

循环群

定义14.20 设 G 是群,若存在 $a \in G$ 使得

$$G = \{ a^k \mid k \in \mathbf{Z} \},$$

则称 G 是循环群,记作 $G = \langle a \rangle$,称 a 为 G 的生成元.

例:整数加群 $G = \langle \mathbf{Z}, + \rangle$ 是循环群?

$$G = < 1 > = < -1 >$$

模 6 加群 $G = \langle \mathbb{Z}_6, \oplus \rangle$ 是循环群? \checkmark

$$G = < 1> = < 5>$$

循环群的分类

设循环群 $G = \langle a \rangle$, 根据生成元 a 的阶可以分成两类:

设 $G = \langle a \rangle$ 是循环群, 若 $a \in n$ 阶元,则

$$G = \{ a^0 = e, a^1, a^2, \dots, a^{n-1} \},$$

那么 |G| = n, 称 G 为 n 阶循环群.

若 a 是无限阶元,则

$$G = \{ a^0 = e, a^{\pm 1}, a^{\pm 2}, \dots \}$$

这时称 G 为无限循环群.

循环群的分类 (续)

注:循环群一定是 Abel 群.

证明: 设 $G = \langle a \rangle$ 为循环群,则 $\forall x, y \in G, \exists m, n \in \mathbb{Z}$, 使得 $x = a^n, y = a^m$,

则

$$xy = a^n a^m = a^{n+m} = a^{m+n} = a^m a^n = yx$$

所以 G 是 Abel 群.

循环群的生成元

定理14.9 设 $G = \langle a \rangle$ 是循环群.

- 1) 若 G 是无限循环群,则 G 只有两个生成元,即 a 和 a^{-1} ;
- 2) 若 G 是 n 阶循环群,则 G 含有 ϕ (n) 个生成元.对于任何小于 n 且与 n 互质的自然数 r , a^r 是 G 的生成元.

注: $\phi(n)$ 为欧拉函数,表示 $\{0, 1, ..., n-1\}$ 中与 n 互素的整数个数.

循环群的生成元

例: $\phi(18) = 6$, 与 18 互素的正整数为 1, 5, 7, 11, 13, 17.

对 $G = \langle \mathbf{Z}_{18}, \oplus \rangle$:

生成元 1: 1, 2, 3,, 18 (= 0);

生成元 5:

5, 10, 15, 2, 7, 12, 17, 4, 9, 14, 1, 6, 11, 16, 3, 8, 13, 18 (= 0);

例:

- 1) 设 $G = \{e, a, ..., a^{11}\}$ 是12阶循环群,小于或等于12且与12互素的数是 __1, 5, 7, 11__,则 $\phi(12) = \underline{4}$ _ . 由定理可知 G 的生成元是 __ a, a^5, a^7 和 a^{11} _ .
- 2) 设 $G = \langle \mathbf{Z}_9, \oplus \rangle$ 是模 9 的整数加群,小于或等于 9 且与 9 互素的数是 <u>1, 2, 4, 5, 7, 8</u>,则 ϕ (9) = <u>6</u>. 根据定理,G 的生成元是 <u>1, 2, 4, 5, 7 和 8</u>.
- 3) 设 $G = 3\mathbf{Z} = \{3z \mid z \in \mathbf{Z}\}$, G 上的运算是普通加法. 那么 G 的生成元是: $3 \, \mathbf{1} 3$.

循环群的子群

定理14.10 设 $G = \langle a \rangle$ 是循环群,则

- 1) G 的子群仍是循环群;
- 2) 若 $G = \langle a \rangle$ 是无限循环群,则 G 的子群除 $\{e\}$ 以外都是无限循环群;
- 3) 若 $G = \langle a \rangle$ 是 n 阶循环群,则对 n 的每个正因子 d, G 恰好含有一个 d 阶子群,就是 $\langle a^{n/d} \rangle$.

例: 1) $G = \langle \mathbf{Z}, + \rangle$ 是无限循环群,子群有:

$$<0>=\{0\}=0$$
Z

对于自然数 $m \in \mathbb{N}$, 1 的 m 次幂是 m, m 生成的子群是 $m\mathbb{Z}$, 即, $m \in \mathbb{N}$,

$$< m> = < -m> = { mz | z \in Z } = mZ.$$

例: 2) $G = \mathbb{Z}_{18} = <1>$ 是 18 阶循环群. 18 的正因子是1, 2, 3, 6, 9 和18, 因此 G 的子群有 <u>6</u> 个,分别是:

- 2 阶子群 <9>= { 0, 9 }
- 3 阶子群 <6>= { 0, 6, 12 }
- 6 阶子群 <3>= { 0, 3, 6, 9, 12, 15 }
- 9 阶子群 <2>= { 0, 2, 4, 6, 8, 10, 12, 14, 16 }

循环群的子群格

例: <**Z**₃₀, ⊕>的子群格.

解: $30 = 1 \times 2 \times 3 \times 5$

0个因子: <1>;

1个因子: <2>, <3>, <5>;

2个因子: <6>,<10>,<15>;

3 个因子: <0>

$$<0> = \{0\}$$

 $<1> = \{0, 1, 2, 3, 4, ..., 29\}$
 $<2> = \{0, 2, 4, 6, 8, 10, ..., 28\}$
 $<3> = \{0, 3, 6, 9, 12, 15, 18, 21, 24, 27\}$
 $<5> = \{0, 5, 10, 15, 20, 25\}$
 $<6> = \{0, 6, 12, 18, 24\}$
 $<10> = \{0, 10, 20\}$
 $<1> = \{0, 15\}$

循环群的子群格

例: <**Z**₃₆, ⊕> 的子群格.

解: $36 = 1 \times 2 \times 2 \times 3 \times 3$

0个因子: <1>;

1个因子: <2>, <3>;

2个因子: <4>, <6>, <9>;

3 个因子: <12>, <18>

4 个因子: <0>

 $<0> = \{0\}$ $<1> = \{0, 1, 2, ..., 35\} = \mathbb{Z}_{36}$ $\langle 2 \rangle = \{0, 2, 4, 6, 8, ..., 34\}$ $<3> = \{0, 3, 6, 9, ..., 33\}$ <4> = $\{0, 4, 8, ..., 32\}$ $<6>= \{0, 6, 12, 18, 24, 30\}$ <9> = $\{0, 9, 18, 27\}$ $<12> = \{0, 12, 24\}$ $<18> = \{0, 18\}$ <3> <6> <9> <12> <18>

n 元置换

定义14.21 设 $S = \{1, 2, ..., n\}, S$ 上的双射函数 $\sigma: S \to S$,

称为 S 上的 n 元置换. 一般将 n 元置换 σ 记为

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

$$\overline{\wedge} = \boxed{2}$$

例: S = { 1, 2, 3, 4, 5 }, 则

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}, \qquad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 3 & 2 \end{pmatrix}$$

都是5元置换.

n 元置换 (续)

定义14.22 设 σ , τ 是 n元置换, σ 和 τ 的复合 σ $\circ \tau$ 也是 n 元置换, 称为 σ 和 τ 的乘积, 记为 $\sigma\tau$.

例:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}, \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix}$$

则

$$\sigma\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 3 & 4 & 2 \end{pmatrix}, \qquad \tau\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 5 & 3 & 4 \end{pmatrix}$$

k阶轮换与对换

定义14.23 设 σ 是 $S = \{1, 2, ..., n\}$ 上的 n 元置换. 若

$$\sigma(i_1) = i_2$$
, $\sigma(i_2) = i_3$, ..., $\sigma(i_{k-1}) = i_k$, $\sigma(i_k) = i_1$,

且保持S中的其他元素不变,则称 σ 为S上的k阶轮换,

记作 $(i_1 i_2 ... i_k)$. 若 k=2, 称 σ 为 S 上的对换.

k 阶轮换与对换(续)

例: 5元置换:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 1 & 5 \end{pmatrix}, \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 5 \end{pmatrix}, \lambda = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 4 & 3 \end{pmatrix}$$

 σ 是 4 阶轮换 , $\sigma = (1234)$,

 τ 是 2 阶轮换, $\tau = (13)$, 也叫做对换,

 λ 是 4 阶轮换 , $\lambda = (3215)$.

n 元置换分解为轮换

例: 设 *S* = {1, 2, ..., 8},

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 3 & 6 & 4 & 2 & 1 & 8 & 7 \end{pmatrix}, \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 1 & 4 & 2 & 6 & 7 & 5 & 3 \end{pmatrix}$$

从 σ 中分解出来的轮换式有: (15236), (4), (78);

 σ 的轮换表示式为: $\sigma = (15236)(4)(78) = (15236)(78)$

 τ 的分解式为: $\tau = (18342)(567)$.

注: 1) 在轮换分解式中, 1 阶轮换(恒等置换)可以省略.

2) 任何 n 元置换都可以写为若干个轮换的乘积.

分解成对换

任何n元置换可以分解成对换的乘积,因为任何轮换都可以表示成对换乘积。一种可行的表示方法是:

$$(i_1 i_2 \dots i_k) = (i_1 i_2) (i_1 i_3) \dots (i_1 i_k)$$

例:

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 3 & 6 & 4 & 2 & 1 & 8 & 7
\end{pmatrix}$$

$$= (1 5 2 3 6)(7 8)$$

$$= (1 5)(1 2)(1 3)(1 6)(7 8)$$

奇置换与偶置换

注: 1) 轮换分解中的轮换是可以交换的, 且分解式是唯一的;

例: $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 3 & 6 & 4 & 2 & 1 & 8 & 7 \end{pmatrix}$ = (15236)(78) = (78)(15236) = (78)(23615)

2) 对换分解中的对换不能交换,分解式也不是唯一的;

例如: 上式 = $(15)(12)(13)(16)(78) \neq (12)(15)(13)(16)(78)$

又如: (123) = (12)(13) = (23)(21)

3) 但是分解式含有对换个数的奇偶性不变.

奇置换与偶置换

如果一个n元置换在它的对换表示式含有偶数个对换,则称为偶置换, 否则称为奇置换.

使用——对应的思想可以知道奇置换和偶置换的个数都是 n!/2.

n 元置换的乘法与求逆

两个 n 元置换的乘法就是函数的复合运算;

n 元置换的求逆就是求反函数.

例:设

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}, \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix}$$

$$\sigma \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 3 & 4 & 2 \end{pmatrix}, \quad \tau \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 5 & 3 & 4 \end{pmatrix}$$

$$\sigma^{-1} = \begin{pmatrix} 5 & 3 & 2 & 1 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 5 & 1 \end{pmatrix}$$

使用轮换表示是:

$$\sigma\tau = \underbrace{(154)(23)(1423)}_{(154)(23)} = \underbrace{(152)}_{(152)}.$$

$$\tau\sigma = \underbrace{(1423)(154)(23)}_{(23)} = \underbrace{(354)}_{(23)}.$$

$$\sigma^{-1} = \underbrace{(154)^{-1}(23)^{-1}}_{(23)^{-1}} = \underbrace{(451)(32)}_{(23)} = \underbrace{(145)(23)}_{(23)}.$$

n 元置换群

考虑所有的 n 元置换构成的集合 S_n , S_n 关于置换的乘法是封闭的. 置换的乘法满足结合律. 恒等置换 (1) 是 S_n 中的单位元. 对于任何 n 元置换 $\sigma \in S_n$, 逆置换 σ^{-1} 是 σ 的逆元. 这就证明了 S_n 关于置换的乘法构成一个群, 称为 n 元对称群. n 元对称群的子群称为 n 元置换群.

例: 设 *S* = {1, 2, 3}, 3元对称群

S_3 的运算表

	(1)	(1 2)	(1 3)	(2 3)	(1 2 3)	(1 3 2)
(1)	(1)	(12)	(13)	(2 3)	(1 2 3)	(1 3 2)
(12)	(12)	(1)	(1 2 3)	$(1\ 3\ 2)$	(13)	(23)
(13)	(13)	$(1\ 3\ 2)$	(1)	(1 2 3)	(23)	(12)
(23)	(23)	$(1\ 2\ 3)$	$(1\ 3\ 2)$	(1)	(12)	$(13)^{\times}$
(1 2 3)	(123)	(23)	(12)	(13)	$(1\ 3\ 2)$	(1)
(1 3 2)	$(1\ 3\ 2)$	(13)	(23)	(12)	(1)	(123)

例: 设 $A = \{a, b, c\}$,。为A上的二元运算,且 $\forall x, y \in A, x \circ y = c$.

- 1) 找出 A上所有的双射函数.
- 2) 说明这些函数是否为 <A, > 的自同构,为什么?

解: 1) 所有的双射函数:

$$f_1(a) = a_1 f_1(b) = b_1 f_1(c) = c_1$$
; $f_2(a) = a_1 f_2(b) = c_1 f_2(c) = b_1$; $f_3(a) = b_1 f_3(b) = a_1 f_3(c) = c_1$; $f_4(a) = b_1 f_4(b) = c_1 f_4(c) = a_1$; $f_5(a) = c_1 f_5(b) = b_1 f_5(c) = a_1$; $f_6(a) = c_1 f_6(b) = a_1 f_6(c) = b$.

采用置换的表示为:

$$f_1 = \underline{(a)}, f_2 = \underline{(bc)}, f_3 = \underline{(ab)}, f_4 = \underline{(abc)}, f_5 = \underline{(ac)}, f_6 = \underline{(acb)}.$$

例: 设 $A = \{a, b, c\}$, 。为A上的二元运算,且 $\forall x, y \in A, x \circ y = c$.

- 1) 找出 A 上所有的双射函数.
- 2) 说明这些函数是否为<A,>的自同构,为什么?

解: 2) 因为 $\forall x, y \in A, x \circ y = c$, 如果 f 是同态,则

$$f(a \circ b) = f(c) = f(a) \circ f(b) = x \circ y = c$$

所以,只有 f_1 和 f_3 为自同构,他们能满足同态映射条件,

将零元 c 映到零元 c, 即 f(c) = c.

例: 设群 $G = \langle M_2(\mathbf{R}), + \rangle$,

$$H = \{ A \mid A \in M_2(\mathbf{R}), \exists A = A' \},$$

其中A'表示A的转置,证明H是G的子群.

证明: 显然 H 非空.

$$\forall \begin{pmatrix} a & b \\ b & c \end{pmatrix}, \begin{pmatrix} d & e \\ e & f \end{pmatrix} \in H$$
$$\begin{pmatrix} a & b \\ b & c \end{pmatrix} - \begin{pmatrix} d & e \\ e & f \end{pmatrix} = \begin{pmatrix} a - d & b - e \\ b - e & c - f \end{pmatrix} \in H$$

根据子群判定定理, H是子群.

例: 设 f 是群 G_1 到 G_2 的同态映射, H是 G_1 的子群, 证明 f(H) 是 G_2 的子群.

证明:因为H非空,因此f(H)非空.

任取 $x, y \in f(H)$, 则存在 $a, b \in H$ 使得 f(a) = x, f(b) = y. 于是

$$xy^{-1} = f(a)f(b)^{-1}$$

因为f是群 G_1 到 G_2 的同态映射,所以

$$f(b)^{-1} = f(b^{-1}), \quad \coprod f(a)f(b^{-1}) = f(ab^{-1}),$$

综上, $xy^{-1} = f(ab^{-1})$,由于H是子群, $ab^{-1} \in H$,

所以 $f(ab^{-1}) \in f(H)$, 即 $xy^{-1} \in f(H)$,

根据子群判定定理, f(H)是 G2的子群.

例: 如果 G 为非 Abel 群,证明 G 的所有自同构构成的群 AutG 至少含有2个元素.

证明: G为非Abel群, 必存在 $a, b \in G$, 满足 $ab \neq ba$.

令
$$f: G \rightarrow G$$
, $f(x) = a^{-1}xa$, 则 $\forall x, y \in G$ 有

$$f(xy) = a^{-1}xya = (a^{-1}xa)(a^{-1}ya) = f(x)f(y)$$
,

所以 f 为同态映射. 再由

$$f(x) = f(y) \Rightarrow a^{-1}xa = a^{-1}ya \Rightarrow x = y$$

则 f 为单射.且对任意 $c \in G$,有

$$f(aca^{-1}) = a^{-1}aca^{-1}a = c$$

于是 f 为满射. 所以 f 为同构.

如果 AutG 只含有 1 个元素, 即恒等映射. 那么对于所有的 $x \in G$, $x \in G$, $x \in G$, $y \in G$, y

例: 求循环群 <**Z**₁₆, ⊕> 的所有生成元和子群.

解: $\langle \mathbf{Z}_{16}, \oplus \rangle$ 是 16 阶循环群,含有 ϕ (16) 个生成元. 对于任何小于16

且与16互质的自然数 r, 1^r 是 <**Z**₁₆, \oplus > 的生成元. 所以

循环群 <**Z**₁₆, ⊕> 的所有生成元为 <u>1, 3, 5, 7, 9, 11, 13, 15</u>.

若 $G = \langle a \rangle$ 是 n 阶循环群,则对 n 的每个正因子 d, G 恰好含有一个 d 阶子群,就是 $\langle a^{n/d} \rangle$.

因为: 16=1×2×2×2×2, 正因子有: 1, 2, 4, 8, 16

所以, 子群有 <0>, <8>, <4>, <2>, <1>.

例: 设 m 整除 n, 证明 n 阶循环群 $G = \langle a \rangle$ 中的方程 $x^m = e$ 恰好有 m 个解.

证明: 设 $x = a^t$ 是解, $0 \le t < n$, 则

$$x^m = e \Rightarrow a^{tm} = e \Leftrightarrow n \mid tm$$

已知m整除n,即存在正整数k,使得n=km.于是k整除t.

假设 t = sk, 其中 s 为整数, 又由于 t < n,则 t < km,因此

$$t = 0, k, ..., (m-1)k$$
.

从而得到 $x = a^0$, a^k , ..., $a^{(m-1)k}$.

容易验证以上 a 的幂都是方程的解,且两两不等.

例: 设多项式 $p = (x_1 + x_2)(x_3 + x_4)$,找出使得 p 保持不变的所有下标的置换,这些置换是否构成 S_4 的子群.

解: 所有的置换 是:

 $(1), \qquad (12), \qquad (34), \qquad (12)(34),$

 $(1\ 3)(2\ 4), \quad (1\ 4)(2\ 3), \quad (1\ 4\ 2\ 3), \quad (1\ 3\ 2\ 4)$

根据乘法的封闭性可知这些置换构成 S_4 的子群.

作业

14.1814.19

研讨题

1) 设 $\langle G, \circ \rangle$ 是群, f 和 g 是两个 G 上的自同态, 令

$$H = \{ x \mid f(x) = g(x), x \in G \},\$$

证明: $H \neq G$ 的子群.

2) 设 $\langle G, \circ \rangle$ 是交换群, n 是任意给定的整数, 令

$$G_n = \{ x \mid x = a^n, \forall a \in G \},$$

证明: G_n 是 G 的子群。

3) 写出群 <Z42, ⊕>的所有生成元和子群,并画出子群格.