Probability and Random Process (SWE3026)

Central Limit Theorems

JinYeong Bak
jy.bak@skku.edu
College of Computing, SKKU

H. Pishro-Nik, "Introduction to probability, statistics, and random processes", available at https://www.probabilitycourse.com, Kappa Research LLC, 2014.

Summary of Probability Bounds

Markov's Inequality

If X is any nonnegative random variable, then

$$P(X \ge a) \le \frac{EX}{a}$$
, for any $a > 0$.

Summary of Probability Bounds

Chebyshev's Inequality

For any random variable X , with $EX=\mu$ and $\operatorname{Var}(X)=\sigma^2$, we have

$$P(|X - \mu| \ge \epsilon) \le \frac{Var(X)}{\epsilon^2}.$$
 $P(\underbrace{\mu - \epsilon}_{a} < X < \underbrace{\mu + \epsilon}_{b})$

Definition. For i.i.d. random variables $X_1,X_2,...,X_n$ with $EX_i=\mu_i$ and $\mathrm{Var}(X_i)=\sigma_i^2$, the sample mean, denoted by \overline{X} , is defined as

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

The sample mean, \overline{X} , is also a random variable, then we have

$$E[\overline{X}] = rac{EX_1 + EX_2 + ... + EX_n}{n}$$
 (by linearity of expectation)
$$= rac{nEX}{n}$$
 (since $EX_i = EX$)
$$= EX.$$

The variance of \overline{X} is given by

$$\operatorname{Var}(\overline{X}) = \frac{\operatorname{Var}(X_1 + X_2 + \dots + X_n)}{n^2} \qquad (\operatorname{Var}(aX) = a^2 \operatorname{Var}(X))$$

$$= \frac{\operatorname{Var}(X_1) + \operatorname{Var}(X_2) + \dots + \operatorname{Var}(X_n)}{n^2} \qquad (X_i\text{'s are independent})$$

$$= \frac{n\operatorname{Var}(X)}{n^2} \qquad (\operatorname{Var}(X_i) = \operatorname{Var}(X))$$

$$= \frac{\operatorname{Var}(X)}{n} = \frac{\sigma^2}{n}.$$

The weak law of large numbers (WLLN)

Let $X_1, X_2, ..., X_n$ be i.i.d. random variables with a finite expected value

$$EX_i = \mu < \infty$$
. Then, for any $\epsilon > 0$,

$$\lim_{n o\infty}P(|\overline{X}-\mu|\geq\epsilon)=0.$$

Proof:

We assume $\mathrm{Var}(X) = \sigma^2$ is finite. In this case we can use Chebyshev's inequality to write

$$P(|\overline{X} - \mu| \ge \epsilon) \le rac{\mathrm{Var}(X)}{\epsilon^2}$$
 $= rac{\mathrm{Var}(X)}{n\epsilon^2},$

which goes to zero as $n \to \infty$.

Note:

If $EX = \mu$, $Var(X) = \sigma^2$ and the normalized random variable is defined:

$$Z=rac{X-\mu}{\sigma},$$

then,

$$EZ = 0$$
, $Var(Z) = 1$.

Proof:

$$EZ=rac{EX-\mu}{\sigma}=rac{\mu-\mu}{\sigma}=0,$$

$$\operatorname{Var}(Z) = rac{\operatorname{Var}(X)}{\sigma^2} = rac{\sigma^2}{\sigma^2} = 1.$$

The Central Limit Theorem (CLT)

Let $X_1, X_2, ..., X_n$ be i.i.d. random variables with expected value $EX_i = \mu < \infty$ and variance $0 < \mathrm{Var}(X_i) = \sigma^2 < \infty$. Then,

$$Z_n = rac{\overline{X} - E\overline{X}}{\sqrt{ ext{Var}(\overline{X})}} = rac{\sum_{i=1}^n X_i/n - \mu}{\sigma/\sqrt{n}} = rac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n}\sigma},$$

Converges in distribution to the standard normal random variable as \boldsymbol{n} goes to infinity, that is

$$\lim_{n o \infty} P(Z_n \le x) = \Phi(x), \qquad ext{ for all } x \in \mathbb{R},$$

Where $\Phi(x)$ is the standard normal CDF.

Note: This true regardless of the distribution of X.

Assumptions:

• $X_1, X_2 \dots$ are iid Bernoulli(p).

•
$$Z_n = \frac{X_1 + X_2 + \ldots + X_n - np}{\sqrt{np(1-p)}}$$

We choose $p = \frac{1}{3}$.

$$Z_3 = \frac{X_1 + X_2 + X_3 - 3p}{\sqrt{3p(1-p)}}$$
 PMF of Z_3

$$Z_{30} = \frac{\sum_{i=1}^{30} X_i - 30p}{\sqrt{30p(1-p)}}$$
PMF of Z_{30}

Assumptions:

•
$$X_1, X_2 \dots$$
 are iid Uniform(0,1).
• $Z_n = \frac{X_1 + X_2 + \dots + X_n - \frac{n}{2}}{\sqrt{\frac{n}{12}}}$.
$$Z_2 = \frac{X_1 + X_2 - 1}{\sqrt{\frac{2}{12}}}$$
PDF of Z_2

$$Z_3 = \frac{X_1 + X_2 + X_3 - \frac{3}{2}}{\sqrt{\frac{3}{12}}} \quad \text{PDF of } Z_3$$

$$Z_{30} = \frac{\sum_{i=1}^{30} X_i - \frac{30}{2}}{\sqrt{\frac{30}{12}}}$$
 PDF of Z_{30}

In practice n finite, but we still can approximate $Y=X_1+X_2+\cdots+X_n$ by a Normal random variable.

Two steps to solve problems using CLT:

$$Y = X_1, X_2, \cdots, X_n, X_i$$
 i.i.d.

a) Find
$$EY = \mu_Y = \sum_{i=1}^n EX_i, ext{ and } \mathrm{Var}(Y) = \sum_{i=1}^n \mathrm{Var}(X_i).$$

b) Use $Y_n \sim N\left(\mu_{Y_n}, \operatorname{Var}(Y_n)\right)$, so we can use Φ function.

$$egin{aligned} Y &= X_1 + X_2 + \dots + X_n \ EX_i &= \mu, \ \mathrm{Var}(X_i) = \sigma^2 \ EY &= n\mu, \ \ \mathrm{Var}(Y) = n\sigma^2 \ \xrightarrow{CLT} \ Y \sim N(n\mu, n\sigma^2) \end{aligned}$$

Example.

In a digital communication system $n=1000\,$ bits are transmitted over a wireless channel. Each bit will be received in error with probability $P_e=0.1\,$ (error probability) independently from other bits. Let W be the number of error.

Find P(W > 120)