Reasoning Based on Visual + Semantic

October 25, 2018 401所信息中心 羅敏中

One-to-one correspondence between semantic information and visual information

Learning the high-level logic graph over the Visual and Semantic

The logic reasoning based on observation

- The challenge of integrating visual and semantic information
- Language is a set of symbols with advanced coding.
- Visual images is a set of low-order noisy pixels.

The XWorld

A 3D simulation tool for RL

Inputs:

Raw pixel inputs + unstructured commands + sparse rewards

XWorld2D

"Navigate to the object in front of the monster."

XWorld3D

"Can you please go to the dog?"

The XWorld

Learning to navigate under a language command

The Fuzzy World: A little tool

Make worlds with first-order logic tasks

The Fuzzy World: A little tool

Make worlds with first-order logic tasks

The Semantic Graph

The Semantic Graph

The Visualization of Graphs from Worlds

The Agent Network with Semantic Graph

Learn Cognition, Reasoning, Decision, Evaluation.

Objective Function

$$\mathbb{E}_{V^{[t]},S^{[t]}\sim Env}[\underbrace{\log \pi_{ heta}(a^{[t]}|V^{(t)},S^{(t)},G_S^{(t)},G_I)}_{Policy} + \underbrace{\lambda v_{ heta}(G_S^{(t)},G_I,S^{(t)})}_{Value\ Evaluation} + \underbrace{\gamma(R_{ heta}(V^{(t)},S^{(t)}) + I_{ heta}(G_S^{(t-1)},G_S^{(t)}))}_{Cognition\ and\ Reasoning} + \underbrace{\kappa|| heta||)}_{norm}$$

The Agent Network with Semantic Graph

Baidu

Demo Agent

Discussion

