Nombre y Apellido:

1	2	3	4	Total

PARCIAL 1-19/04/2022

El código python utilizado en la resolución de los ejercicios marcados con "▶" se deberá subir a moodle para su evaluación. El envío deberá contar con las siguientes características

- Enviar un solo archivo, que deberá llamarse apellido_nombre.py o apellido_nombre.ipynb.
- El mismo deberá contener las funciones ejercicio2(), ejercicio4() con las resoluciones correspondientes a los ejercicios considerados, y la ejecución del programa deberá mostrar en pantalla las respuestas.
- Está permitido usar los códigos desarrollados en los prácticos.

Ejercicio 1. Se sabe que el tiempo (en días) durante el cuál el motor de una máquina funciona correctamente sin fallas distribuye según el modelo exponencial. El motor de marca A tiene un tiempo medio de falla igual a 1000 días y el motor de marca B tiene un tiempo medio de falla igual a 1500 días. Si los dos motores se ponen en funcionamiento al mismo tiempo, ¿cuál es la probabilidad de que el motor A falle antes que el motor B?.

Ejercicio 2. Considerar un juego entre dos personas donde A sortea un valor de una uniforme $U \sim \mathcal{U}(0,1)$ y B sortea un valor de una uniforme $V \sim \mathcal{U}(0,1)$. U y V son independientes. Si el máximo entre U y V es mayor que 0.6, entonces gana A. De lo contrario gana B.

- a) Calcular la función de distribución acumulada de la variable $M = \max\{U, V\}$, esto es, $P(M \le x)$.
- b) Calcular la probabilidad de que A gane el juego.
- c) ► Implementar un código que estime la probabilidad de que A gane el juego realizando 10000 simulaciones.

Ejercicio 3. Un proceso de Poisson no homogéneo tiene intensidad $\lambda(t)$ dada por:

$$\lambda(t) = \begin{cases} t & 0 \le t \le 4\\ 4 & t > 4 \end{cases}$$

con t medido en horas.

- a) Dar la distribución de la variable aleatoria "número de arribos en el intervalo [2, 5]".
- b) Calcular la probabilidad de que en las primeras 5 horas hayan ocurrido 10 arribos dado que en las dos primeras horas ocurrieron 8 arribos.

Ejercicio 4. Dadas las siguientes integrales

a)
$$\int_0^1 \int_0^1 [1 - e^{-(x+y)}] dxdy$$

b)
$$\int_{1}^{\infty} x^{2}e^{-x^{2}} dx$$

- a) Describir como se implementa el método de Monte Carlo para estimar cada una de ellas.
- b) ► Implementar el código en Python en computadora y completar la siguiente tabla con los valores obtenidos usando 4 cifras decimales:

Nº de sim.	Integral (a)	Integral (b)
1 000		
10 000		
100 000		
1 000 000		