CSCE 463/612 Networks and Distributed Processing Fall 2020

Application Layer III

Dmitri Loguinov Texas A&M University

September 15, 2020

Chapter 2: Roadmap

- 2.1 Principles of network applications
- 2.2 Web and HTTP
- 2.3 FTP
- 2.4 Electronic Mail
 - SMTP, POP3, IMAP
- 2.5 **DNS**
- 2.6 P2P file sharing
- 2.7 Socket programming with TCP
- 2.8 Socket programming
- 2.9 Building a Web server

DNS: Domain Name System

- People: many identifiers
 - Name, SSN, passport #
- Internet hosts, routers:
 - IP address (32 bit) used for routing datagrams
 - Names (e.g., yahoo.com) used by humans
- Q: how to map between IP addresses and names?
 - Original technique: local /etc/hosts file

Domain Name System:

- Distributed database
 - Implemented in hierarchy of many name servers
- Application-layer protocol
 - Hosts communicate with name servers to resolve names/IPs
 - UDP port 53
 - Single-packet query
 - Single-packet response

<u>DNS</u>

Services

- Forward lookup
 - Hostname to IP translation
- Reverse lookup
 - IP to hostname
- Host aliasing
- Mail server lookup
- Load distribution
 - E.g., replicated web servers: set of IP addresses for one DNS name

Why not centralize DNS?

- Single point of failure
- Traffic volume (bandwidth, request rate)
- Lack of geographic proximity to user, hence high latency
- Inflexible (can't run code customized for domain)

Doesn't scale!

Distributed, Hierarchical Database

- Client wants IP for www.amazon.com:
 - Queries a root server to find the com DNS server
 - Queries the com server to get the amazon.com server
 - Queries the amazon.com DNS server to get IP address for www.amazon.com
- Who to ask about the location of root servers?
 - Nobody, their IPs are hardwired into OS

Types of DNS Servers

- There are 13 root servers (called A-M), each with a fixed IP address
 - Some servers (e.g., A, C, F, I) are geographically distributed across multiple sites (938 total in 2019)
 - More info: http://root-servers.org/

Types of DNS Servers

- Top-level domain (TLD) servers: responsible for generic TLDs (e.g., .com, .org, .net, .edu) and all country-code TLDs (e.g., .uk, .fr, .ca, .jp)
 - Around 1530 total gTLDs and cc-TLDs (2019)
 - Verisign runs .com , Educause .edu
- Authoritative servers: provide authoritative mappings for company servers (e.g., Web and mail)
 - Can be maintained by organization (e.g., amazon.com) or service provider (e.g., ISP or hosting company)
- Local name server: does not belong to the hierarchy
 - Any computer that accepts requests and then finds out the answer by traversing the DNS tree

Local Name Servers

- Each network (ISP, company, university) has a few
 - Preferred DNS server in network options (alternate used for backup)
 - If you run BIND, set this to 127.0.0.1
 - Auto-configure via DHCP or set to 8.8.8.8 (Google DNS)
- When a host makes a DNS query (application calls gethostbyname), query is sent to local DNS server
 - Local server acts as a proxy (cache) and forwards query into hierarchy if it cannot answer it from cache
- Command-line tool for DNS queries is nslookup
 - Homework #2 implements essentially this

1:11 PM

Example

cis.poly.edu wants
 the IP address for
 www.cs.umass.edu

- Next request for joe.cs.umass.edu
 - What happens?

Recursive queries

<u>(previous page):</u> loc

 Contacted server replies with name of server to contact

 "I don't know this name, but ask this other server"

Recursive query (this page):

 Puts burden of name resolution on contacted name server

DNS: Caching and Updating Records

- Once (any) name server learns a mapping, it caches the mapping
 - Cache entries time out (disappear) after some time (TTL)
 - Unexpired entries are served directly from cache, in which case they are called non-authoritative
 - If the original DNS server is contacted, the response is authoritative
- TLD servers are typically cached in local name servers
 - Thus root name servers not supposed to be visited often
- Study in 2007 showed load on individual root servers
 A-M was about 6-16K queries/sec
 - During DDoS attacks in 2001 it was 38K/sec

DNS Records

DNS: distributed database of resource records (RR)

(name, value, type, ttl)

- Type A
 - name = host
 - value = IPv4 address(4 byte DWORD)
- Type NS
 - name = domain
 - value = hostname of authoritative name server for this domain

- Type CNAME
 - name = host
 - value = host it's aliased to
 - Reduces manual effort to change IPs and other records
- Type MX
 - name = domain
 - value = name of SMTP server associated with domain

Reverse Queries

- Reverse DNS lookups are performed using a special construction of a fake DNS name
 - Reason: DNS resolves names from right to left with the semantics of going from the most general to the most specific
 - In IPs, the MSB is most general, LSB is most specific
- The IP address is reversed and is followed by "in-addr.arpa" (or "ip6.arpa" for IPv6)
 - Example: 128.194.135.65 is requested as 65.135.194.128.in-addr.arpa
 - The query type must be set to PTR
- RFC 1035 (1987) describes DNS headers/commands
 - Also see http://www.networksorcery.com/enp/protocol/dns.htm

DNS Protocol, Messages

- Query and reply messages use same format
 - Packet starts with a fixed DNS header (12 bytes)
 - Followed by a variable-length section
- Transaction ID (TXID)
 - 16-bit number assigned by client to each query
 - Echoed by server in response packet
- Flags specify the type of request being made and response status
- The other 4 fields provide a count of records in each variable-size section

TXID flags nAnswers nQuestions nAuthority nAdditional

4 bytes

questions (variable size)

answers (variable size)

authority (variable size)

additional (variable size)

12 bytes

14

DNS Protocol, Messages

- Queries contain only the question section
 - Most servers expect one question per packet
- Response packets always repeat the question

TX ID	flags
nQuestions	nAnswers
nAuthority	nAdditional

questions (variable size)

answers (variable size)

authority (variable size)

additional (variable size)

- Safety mechanism if TXID runs into collision at the client
- Authority section carries NS record(s)
 - Used during iterative lookups to specify the next DNS server to query (similar to HTTP redirects)
- All numbers are in network byte order
 - Use proper conversion (i.e., htons() in this case)

DNS Flags

- For binary fields, 1 = true and 0 = false
- For query packets:
 - Set RD = 1; all other fields are zero
 - Specify nQuestions = 1
 - Correctly create the actual question and append it to the header in the packet buffer

Nslookup Usage (Windows)

nslookup -querytype=mx cs.tamu.edu

cached answers and additional records

```
Server: gw.irl.cs.tamu.edu
Address: 128.194.135.72

Non-authoritative answer:
cs.tamu.edu MX preference = 100, mail exchanger = smtp-relay.tamu.edu
cs.tamu.edu MX preference = 10, mail exchanger = pine.cs.tamu.edu

smtp-relay.tamu.edu internet address = 165.91.143.199
pine.cs.tamu.edu internet address = 128.194.138.12
```

nslookup -querytype=hinfo cs.tamu.edu

```
Server: gw.irl.cs.tamu.edu
Address: 128.194.135.72

cs.tamu.edu
    primary name server = dnsl.cs.tamu.edu
    responsible mail addr = root.cs.tamu.edu
    serial = 2006090513
    refresh = 1800 (30 mins)
    retry = 900 (15 mins)
    expire = 1209600 (14 days)
    default TTL = 3600 (1 hour)
```

smaller preference value means higher priority

Nslookup Usage (Windows)

nslookup -querytype=ptr 12.138.194.128.in-addr.arpa

```
Server:
         qw.irl.cs.tamu.edu
Address: 128.194.135.72
Non-authoritative answer:
12.138.194.128.in-addr.arpa
                                name = mail.cs.tamu.edu
12.138.194.128.in-addr.arpa
                                name = pine.cs.tamu.edu
12.138.194.128.in-addr.arpa
                                name = pophost.cs.tamu.edu
12.138.194.128.in-addr.arpa
                                name = mailhost.cs.tamu.edu
12.138.194.128.in-addr.arpa
                                name = pop.cs.tamu.edu
12.138.194.128.in-addr.arpa
                                name = imap.cs.tamu.edu
```

nslookup performs string reversal transparently, but hw2 will need to do this explicitly

nslookup -querytype=ptr 12.1.55.186

```
Server: s18.irl.cs.tamu.edu
Address: 128.194.135.58

Non-authoritative answer:
186.55.1.12.in-addr.arpa canonical name = 186.184/29.55.1.12.in-addr.arpa

186.184/29.55.1.12.in-addr.arpa name = outlook.milestonescientific.com
```

<u>Using UDP</u>

- DNS runs over UDP that has no connection phase
 - Each request and response is exactly 1 packet
 - Calls to recvfrom() and sendto() correspond to receiving/ sending 1 packet from/to a socket
 - No need to loop on receive
- General idea:

```
sock = socket (AF_INET, SOCK_DGRAM, 0);
// bind sock to port 0 - see the handout
while (work to be done) {
    len = CreateRequest(buf, name);
    sendto (sock, buf, len, 0, &addressTo, ...);
    ...
    if (select (...) > 0) {
        recvfrom (sock, recvBuf, len, 0, &addressFrom...);
        parseResponse (recvBuf);
    }
}
closesocket (sock);
```