



#### 모델 성능 평가 (Performance Evaluation)

Hyerim Bae

Department of Industrial Engineering, Pusan National University  ${\it hrbae} \\ {\it @pusan.ac.kr}$ 

#### 코로나 19 검사

#### **KBS NEWS**

#### 코로나19' 팬데믹

#### [이슈체크K] 정부가 코로나19 '신속진단키트' 도입 꺼리는 이유는?

권력 2020.09.19 (07:03) 수정 2020.09.19 (09:03) 間短期回K

□1 ♥4 <



Source: http://news.kbs.co.kr/news/view.do?ncd=5008172&ref=A





http://baela

이런 이유로 **항원·항체 검사는 유전자 검사에 비해 정확도가 떨어지는 걸로 보고**됐습니다. 식약처는 그런 점을 고려해 진단시약의 허가 기준을 항원·항체 검사의 경우 임상적 민감도 70% 이상, 특이도 90% 이상을 충족하도록 했습니다. 민감도란 질병이 있는 사람을 질병이 있다고 진단할 확률을 뜻하고 특이도는 그 반대의 경우를 말합니다. 민감도 90%, 특이도 95% 이상인 유전자 검사의 승인 기준보다 낮은 수치입니다.

보건 당국은 현재로선 이런 장점보다 진단의 정확성이 가장 중요하다는 입장입니다.

| 구분           | 유전자 검사                          | 항원 검사                                     | 항체 검사                                                      |
|--------------|---------------------------------|-------------------------------------------|------------------------------------------------------------|
| 검사 목적        | 코로나19 바이러스 유전<br>자 유무 확인        | 코로나19 바이러스 특정<br>단백질 유무 확인                | 코로나19 바이러스어<br>대한 항체 생성여부 확인                               |
| 검사 물질        | 바이러스 유전자                        | 바이러스 특정 단백질                               | 체내 생성 항체                                                   |
| 사용 검체        | 코 또는 목의 점액,<br>가래(객담)           | 코 또는 목의 점액                                |                                                            |
| 검사 시간        | 약 3 ~ 6시간                       | 약 15분                                     | 약 15분                                                      |
| 장점           | 정확도가 높아 확진용<br>으로 사용            | 유전자 검사 대비 검사<br>시간 짧고 비용 낮음               | 과거 감염이력 확인<br>가능, 검사시간 짧고<br>비용 낮음                         |
| 단점           | 과거 감염 이력 확인 불가<br>검사시간 길고 비용 높음 | 유전자 검사 대비 낮은<br>정확도, 확진용으로<br>사용 어려움      | 감염 초기 항체가 확인<br>되지않을 수있고 검사당시<br>검체 내 바이러스 유역<br>직접 확인 어려움 |
| 측정 원리        | 바이러스 유전자를 증폭<br>하여 감염여부 확인      | 바이러스와 결합한 특정<br>물질을 검출하여 바이<br>러스 감염여부 확인 | 체내에 생성된 항체의<br>결합한 물질을 분석하여<br>항체 존재여부 확인                  |
| 검사자<br>(사용자) | 의료인 또는 검사 전문가                   | 의료인 또는 검사 전문가                             | 의료인 또는 검사 전문기                                              |

식품의약품안전처 자료.

## **Contents**











# 모델 성능 평가

#### 성능 평가의 필요성

- 분류나 예측을 위해 사용할 수 있는 다양한 방법론이 존재
  - 인공신경망을 쓸까? 의사결정 나무를 쓸까?
- 각각의 방법론에 대해 다양한 설정을 선택할 수 있음
  - Activation function을 ReLu를 쓸까? Sigmoid를 쓸까?
- 최선의 모델을 선택하기 위해 각 모델(또는 각 모델의 설정)을 평가해야 함
  - 기계학습의 정의를 다시한번 생각해보자.

Finding 'f' such that



• We use X and Y to find 'f'





#### 모델의 출력 유형

- 수치형 데이터(연속형)ㄴ
  - 이번학기 산업데이터과학 중간고사 점수는?
- 클래스(Class)
  - 이번학기 산업데이터과학의 평점은?
- 경향성(Tendency): 특정 클래스에 속할 확률
  - 내가 이번학기에 산업데이터 과학에서 A+를 받을 확률은?

## 오분류 에러(Misclassification error)

- 에러(Error) = 데이터가 속한 클래스를 잘못 분류한 경우
- 에러율(Error rate) = 전체 데이터 중 오분류된 데이터의 비율



### 벤치마크(Benchmark)

- Benchmark: 분류에 대한 Benchmark (Naïve rule): 모든 데이터를 가장 일 반적인 클래스에 속한다고 분류
  - 일반적으로 모델의 성능이 벤치마크를 활용하는 것보다는 좋기를 기대함
  - 예외: 주어진 목표가 소수 클래스를 식별하는 것인 경우, Naïve rule보다 좋지 않은 규칙을 도입함으로써 더 좋은 성능을 낼 수도 있음
- Prediction Benchmark: Mean "학습데이터들의 평균값을 예측값으로 사용"

## 에러를 평가하기 위한 지표

- Error란: 예측값과 실제값의 차이
  - $e_i = \hat{y}_i y_i$
- 평균 절대 오차(Mean Absolute Error: MAE (or MAD))
  - $-1/n\sum_{i=1}^{n}|e_i|$
- 평균 오차(Average Error: AE)
  - $-1/n\sum_{i=1}^n e_i$
- 평균 절대 백분율 오차(Mean Absolute Percentage Error: MAPE)
  - $100 \times 1/n \sum_{i=1}^{n} |e_i/y_i|$
- 평균 제곱근 오차(Rooted Mean Squared Error: RMSE)
  - $-\sqrt{1/n\sum_{i=1}^n e_i^2}$
- 오차 제곱 합(Sum of Squared Error: SSE)
  - $-\sum_{i=1}^n e_i^2$



## 훈련(Training) vs. 검증(Validation)

- 지도학습의 경우, 두 가지 오차의 평가를 통해 학습을 진행
  - 훈련 오차(Training error)
  - 검증 오차(Validation error)





#### 분류 문제 해결을 위한 데이터 분리

"높은 정확도의 데이터 분리(High separation of records)"는 예측 변수를 사용하여 분류 시, 높은 정확도를 달성하는 것

"낮은 정확도의 데이터 분리(Low separation of records)"는 예측 변수를 사용하는 것이 Naïve rule 대비 크게 향상되지 않음을 의미









## 선형 분리 가능성(Linearly Separable)

• And / XOR Gate 를 통해 선형 분리가 가능한가?



| inp   | ut             | Out | Output (by |     |
|-------|----------------|-----|------------|-----|
| $X_0$ | X <sub>1</sub> | AND | OR         | XOR |
| 0     | 0              | 0   | 0          | 0   |
| 0     | 1              | 0   | 1          | 1   |
| 1     | 0              | 0   | 1          | 1   |
| 1     | 1              | 1   | 1          | 0   |

• AND

$$\begin{array}{ll} 0 \times W_0 + 0 \times W_1 = 0 & < 0.5 \\ 0 \times W_0 + 1 \times W_1 = W_1 & < 0.5 \\ 1 \times W_0 + 0 \times W_1 = W_0 & < 0.5 \\ 1 \times W_0 + 1 \times W_1 = W_0 + W_1 & > 0.5 \end{array}$$

 $\rightarrow$  W<sub>0</sub>, W<sub>1</sub>: 0.3 or 0.4



\* XOR 
$$0 \times W_0 + 0 \times W_1 = 0$$
 < 0.5  
 $0 \times W_0 + 1 \times W_1 = W_1$  > 0.5  
 $1 \times W_0 + 0 \times W_1 = W_0$  > 0.5  
 $1 \times W_0 + 1 \times W_1 = W_0 + W_1$  < 0.5

- $\rightarrow$  W<sub>0</sub>, W<sub>1</sub> do not exist that satisfy above
- → cannot solve XOR

#### XOR function







### 혼동행렬(Confusion Matrix)

201 "1"을 "1"로 올바르게 분류(n<sub>11</sub>) "1"을 "0"으로 오분류 (n<sub>1.0</sub>) 85 "0"을 "1"로 오분류 (n<sub>0.1</sub>) 25 "0"을 "0"으로 올바르게 분류 (n<sub>0.0</sub>)

| Classification Confusion Matrix |     |      |  |  |
|---------------------------------|-----|------|--|--|
| Predicted Class                 |     |      |  |  |
| Actual Class                    | 1   | 0    |  |  |
| 1                               | 201 | 85   |  |  |
| 0                               | 25  | 2689 |  |  |



2689



### 에러율(Error Rate)

전체 에러율 = (25+85)/3000 = 3.67% 정확도 = 1 - err = (201+2689) = 96.33% 분류해야 할 클래스가 여러 개인 경우, 에러율은 아래와 같이 계산 (오분류 된 데이터 수)/(전체 데이터 수)

| Classification Confusion Matrix |     |      |  |  |  |
|---------------------------------|-----|------|--|--|--|
| Predicted Class                 |     |      |  |  |  |
| Actual Class                    | 1 0 |      |  |  |  |
| 1                               | 201 | 85   |  |  |  |
| 0                               | 25  | 2689 |  |  |  |

Error rate, err = 
$$\frac{(n_{0,1}+n_{1,0})}{n}$$
, accuracy = 1-err

#### 분류 컷-오프(Cutoff for classification)

대부분의 데이터마이닝 알고리즘은 2 단계 프로세스를 통해 분류를 수행함

- 1. 각각의 데이터에 대해 클래스 "1"에 속할 확률 계산
- 2. 컷 오프 값을 기준삼아 클래스 분류
- 기본 컷오프 값은 0.5

클래스에 속할 확률이 0.5 이상이라면 "1" 로 분류 클래스에 속할 확률이 0.5 미만이라면 "0"으로 분류

- 컷 오프 값은 사용자가 정의할 수 있음
  - 일반적으로 에러율은 컷오프 = 0.5 일 때 가장 낮음





## 컷 오프 테이블(Cutoff Table)

- Cutoff = 0.5 인 경우, 13개의 데이터를 "1"로 분류 (에러율 = ?)
- Cutoff = 0.8 인 경우, 7개의 데이터를 "1"로 분류

| Actual Class | Prob. of "1" | Actual Class | Prob. of "1" |
|--------------|--------------|--------------|--------------|
| 1            | 0.996        | 1            | 0.506        |
| 1            | 0.988        | 0            | 0.471        |
| 1            | 0.984        | 0            | 0.337        |
| 1            | 0.980        | 1            | 0.218        |
| 1            | 0.948        | 0            | 0.199        |
| 1            | 0.889        | 0            | 0.149        |
| 1            | 0.848        | 0            | 0.048        |
| 0            | 0.762        | 0            | 0.038        |
| 1            | 0.707        | 0            | 0.025        |
| 1            | 0.681        | 0            | 0.022        |
| 1            | 0.656        | 0            | 0.016        |
| 0            | 0.622        | 0            | 0.004        |















# 리프트(Lift)

#### 분류 문제에서 특정 클래스의 중요도가 높을 때

#### "회사가 파산할지를 예측하는 것이 지불능력을 유지할 지를 예측하는 것보다 더 중요하다."

- 세금사기
- 신용불이행
- 지연된 항공편 예측

위와 같은 예시에서, 더욱 주의가 필요한 클래스를 잘 식별하기 위해 더 큰 전체 에러율을 감수할 수 있음



#### 상황에 따른 정확도 측정 지표

"C<sub>1</sub>" 을 올바르게 분류하는 것이 중요하다면

Sensitivity(민감도) = 클래스 
$$C_1$$
 이 올바르게 분류된 비율(%)  $\frac{n_{1,1}}{(n_{1,0}+n_{1,1})}$ 

Specificity (특이도) = 클래스 
$$C_0$$
 가 올바르게 분류된 비율(%)  $\frac{n_{0,0}}{(n_{0,0}+n_{0,1})}$ 

False positive rate = 실제  $C_1$  이 아니지만,  $C_1$  으로 분류된 비율(%)

$$\frac{n_{0,1}}{(n_{0,0}+n_{0,1})}$$

False negative rate = 실제  $C_0$  가 아니지만,  $C_0$  으로 분류된 비율(%)  $\frac{n_{1,0}}{(n_{1,0}+n_{1,1})}$ 





## 정밀도(Precision) 와 재현율(Recall)

- 정밀도(Precision)
  - 모델이 클래스 "1" 이라고 분류한 데이터 중 실제 클래스가 "1"인 데이터의 비율

- 재현율(Recall)
  - 실제 클래스가 "1"인 데이터 중에서 모델이 "1"이라고 분류한 데이터의 비율

- F1 score
  - 정밀도와 재현율의 조화 평균

$$F_1 = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

|           |       | True condition |                |  |  |  |
|-----------|-------|----------------|----------------|--|--|--|
|           |       | True           | False          |  |  |  |
| Predicted | True  | True Positive  | False Positive |  |  |  |
| condition | False | False Negative | True Negative  |  |  |  |





#### ROC 커브(ROC Curve)

• Random하게 뽑으면?

# ० थम (र स्था ते संस्था क्षेत्र) रहा !

실제로 1인 데 1로 판 정할 확률









| 홀수 블록 임계<br>값   | 0%   | 10%   | 20%  | 30%   | 40%   | 50%   | 60%   | 70%  | 80%  | 90%  | 100% |
|-----------------|------|-------|------|-------|-------|-------|-------|------|------|------|------|
| 맞춘 홀수(전체4<br>개) | 4    | 4     | 4    | 4     | 3     | 2     | 2     | 2    | 2    | 2    | 0    |
| 맞춘 짝수(전체6<br>개) | 0    | 1     | 3    | 4     | 4     | 4     | 5     | 6    | 6    | 6    | 6    |
| 정확도             | 40%  | 50%   | 70%  | 80%   | 70%   | 60%   | 70%   | 80%  | 80%  | 80%  | 60%  |
| 민감도             | 100% | 100%  | 100% | 100%  | 75%   | 50%   | 50%   | 50%  | 50%  | 50%  | 0%   |
| 특이도             | 0%   | 16.6% | 50%  | 66.6% | 66.6% | 66.6% | 83.3% | 100% | 100% | 100% | 100% |

| 홀수 블록 임계값       | 0%   | 10%   | 20%   | 30% | 40% | 50%   | 60%   | 70%   | 80%   | 90%  | 100% |
|-----------------|------|-------|-------|-----|-----|-------|-------|-------|-------|------|------|
| 맞춘 홀수(전체4<br>개) | 4    | 4     | 3     | 3   | 2   | 2     | 2     | 2     | 1     | 1    | 0    |
| 맞춘 짝수(전체6<br>개) | 0    | 2     | 2     | 3   | 3   | 4     | 4     | 5     | 5     | 6    | 6    |
| 정확도             | 40%  | 60%   | 50%   | 60% | 50% | 60%   | 60%   | 70%   | 60%   | 70%  | 60%  |
| 민감도             | 100% | 100%  | 75%   | 75% | 50% | 50%   | 50%   | 50%   | 25%   | 25%  | 0%   |
| 특이도             | 0%   | 33.3% | 33.3% | 50% | 50% | 66.6% | 66.6% | 83.3% | 83.3% | 100% | 100% |







#### Lift and Decile(십분위수) Charts

Lift와 Decile Chart는 특정 클래스(중요도가 높은 클래스)를 잘 분류해야 하는 상황에서 성 능을 평가하는 데 유용함

- 조사해야할 세금 기록 수
- 대출을 승인해 줄 고객
- 메일을 보내야할 고객 수



#### **Lift Chart – cumulative performance**

#### 좋은 분류기(분류 모델)는 적은수의 데이터만으로도 높은 성능 향상을 보임



| Actual Class | Prob. of "1" | Actual Class | Prob. of "1" |
|--------------|--------------|--------------|--------------|
| 1            | 0.996        | 1            | 0.506        |
| 1            | 0.988        | 0            | 0.471        |
| 1            | 0.984        | 0            | 0.337        |
| 1            | 0.980        | 1            | 0.218        |
| 1            | 0.948        | 0            | 0.199        |
| 1            | 0.889        | 0            | 0.149        |
| 1            | 0.848        | 0            | 0.048        |
| 0            | 0.762        | 0            | 0.038        |
| 1            | 0.707        | 0            | 0.025        |
| 1            | 0.681        | 0            | 0.022        |
| 1            | 0.656        | 0            | 0.016        |
| 0            | 0.622        | 0            | 0.004        |



### 십분위수 차트(Decile Chart)

In "most probable" (top) decile, model is twice as likely to identify the important class (compared to avg. prevalence)





#### Lift vs. Decile Charts

Both embody concept of "moving down" through the records, starting with the most probable

Decile chart does this in decile chunks of data

Y axis shows ratio of decile mean to overall mean

Lift chart shows continuous cumulative results

Y axis shows number of important class records identified







## **Asymmetric Costs**

### 오분류에 대한 비용(평가)는 달라질 수 있음

오분류에 대한 비용은 특정 클래스가 다른 클래스들의 비해 높을 수 있음 (중요도가 다를 수 있음)

다른 관점에서, 올바른 분류를 하는 것에 대한 중요도가 클래스 별로 다를 수 있음



#### 예제 – 프로모션 제안에 대한 응답 상황

평균 응답률이 1%인 1000명에게 프로모션 제안 메일을 보낸다고 가정 ("1" = 응답함, "0" = 응답하지 않음)

- "Naïve rule"에 따르면 (모든 사람을 "0"으로 분류) 전체 에러율은 1%
- 데이터마이닝 기법을 사용하여 8개의 "1" 클래스를 "1"로 올바르게 분류할 수 있음 20개의 "0"을 "1"로, 2개의 "0"을 "1"로 오분류하는 비용이 발생

## 혼동행렬(Confusion Matrix)

에러율(Error rate) = (2+20) = 2.2% (naïve rule 보다 좋은 성능)

|          | Predict as 1 | Predict as 0 |
|----------|--------------|--------------|
| Actual 1 | 8            | 2            |
| Actual 0 | 20           | 970          |

#### 오분류에 대한 비용 및 이득 개념 도입

#### 가정:

- 클래스 "1"을 잘 분류했을 때의 이득: \$10
- 제안 메일을 발송하는데 드는 비용: \$1

#### Then:

- naïve rule에 따르면, 모두 "0"으로 분류하므로 비용이 발생하지 않음
  - 이득도 발생하지 않음
- 데이터마이닝 기법 활용시, 28개의 제안 메일 발송

8명의 응답으로 인해 8\*\$10 = \$80 이득 발생

20명이 응답하지 않았으므로 \$20 비용 발생

972명에 대해서는 아무런 행동을 하지 않음(이득, 비용 모두 발생하지 않음)

최종 이득 = \$60



#### **Profit Matrix**

|          | Predict as 1 | Predict as 0  |
|----------|--------------|---------------|
| Actual 1 | \$80 👂       | 0 7           |
| Actual 0 | (\$20) 🥦     | 0 <b>77</b> ~ |

#### Lift (again)

Adding costs to the mix, as above, does not change the actual classifications

Better: Use the lift curve and change the cutoff value for "1" to maximize profit





#### 참고: 기회비용

• 비용과 이익을 각각 고려하는 것보다 모든 것을 비용으로 계산하는 것이 가장 좋음

• 판매 이익 대신 판매 손실의 기회 비용으로 생각



#### 비용 및 이득(편익) 고려한 Lift Curve

- Sort records in descending probability of success
- For each case, record cost/benefit of actual outcome
- Also record cumulative cost/benefit
- Plot all records

X-axis is index number (1 for 1st case, n for nth case)

Y-axis is cumulative cost/benefit

Reference line from origin to  $y_n$  ( $y_n$  = total net benefit)





#### **Lift Curve May Go Negative**

If total net benefit from all cases is negative, reference line will have **negative slope** 

Nonetheless, goal is still to use cutoff to select the point where net benefit is at a maximum



#### Negative slope to reference curve

Cost for sending one mail 0.65\$, befit from the respondent 25\$, response rate 2%, \* If we send to 10,000 people? (0.02\*\$25\*10,000) - (0.65\*10,000) = -1500





#### **Summary**

#### Model evaluation

- Evaluation metrics are important for comparing across DM models, for choosing the right configuration of a specific DM model, and for comparing to the baseline
- Major metrics: confusion matrix, error rate, predictive error
- Other metrics when one class is more important asymmetric costs

