MODELLI E ALGORITMI PER IL SUPPORTO ALLE DECISIONI

ESERCIZIO 1. (10 punti)

Si applichi l'algoritmo ungherese a un problema con questa tabella dei costi

		b_1	b_2	b_3	b_4	b_5
$T_0 =$	a_1	2	3	4	5	6
	a_2	8	4	7	9	10
	a_3	6	5	8	10	11
	a_4	10	6	10 14	14	15
	a_5	14	9	14	18	15

individuando un assegnamento ottimo e il relativo costo. Si risponda alle seguenti domande motivando la risposta:

- cosa succede se aumento di 1 il costo di (a_4, b_5) ?;
- cosa succede se aumento di 1 il costo di tutte le coppie in cui è coinvolto a_4 ?

ESERCIZIO 2. (6 punti) Si dimostri che l'algoritmo Double Spanning Tree è un algoritmo di 1-approssimazione per il problema TSP metrico.

ESERCIZIO 3. (9 punti) Si consideri un problema di albero di supporto a peso minimo su un grafo G = (V, E) di cui si è calcolato un albero di supporto ottimo $T = (V, E_T)$. Per ciascuna delle seguenti affermazioni dire se è vera o falsa **motivando la risposta**:

- \bullet se si aumenta di un'unità il costo di tutti gli archi, allora il costo minimo aumenta di |V|-1;
- \bullet se si aumenta di M unità il costo degli archi incidenti su un nodo, allora il costo minimo aumenta di M moltiplicato per il numero di archi in T che incidono su quel nodo;
- se un arco non fa parte dell'albero di supporto a peso minimo, allora ha costo più elevato di quello degli archi nell'albero di supporto ottimo T.

ESERCIZIO 4. (6 punti) Si illustri l'algoritmo di Dijkstra per il cammino a costo minimo, si spieghi il significato degli insiemi e delle funzioni che appaiono in esso. Si dica sotto quali ipotesi è corretto e se ne dia la complessità.