Sprawozdanie

Algorytm genetyczny dla problemu komiwojażera

1. Informacje teoretyczne o algorytmie genetycznym

Algorytm genetyczny – rodzaj heurystyki przeszukującej przestrzeń alternatywnych rozwiązań problemu w celu wyszukania rozwiązań najlepszych. Sposób działania algorytmów genetycznych nieprzypadkowo przypomina zjawisko ewolucji biologicznej, ponieważ ich twórca John Henry Holland właśnie z biologii czerpał inspiracje do swoich prac.

Każde środowisko ma ograniczone zasoby - określa to maksymalną liczbę osobników (populacja) mogących utrzymać się w nim przy życiu. Liczba osobników zmienia się w czasie - najczęściej rośnie, ponieważ osobniki rozmnażają się -> populacja się powiększa.

Liczba osobników musi być regulowana - środowisko określa warunki przeżycia, osobniki chcąc przeżyć muszą się do tych warunków przystosować. Z tego wynika, że najlepiej przystosowane osobniki mają największą szansę na przeżycie i rozmnażanie.

W procesie rozmnażania osobniki najczęściej przekazują swoje "przystosowanie" potomstwu - nie jest to regułą i możliwe jest wydanie potomstwa gorzej niż rodzice przystosowanego do warunków określonych przez środowisko.

Oprócz cech poprawiających przystosowanie, u potomstwa mogą występować losowe zmiany (mutacje), które mogą prowadzić do zmian ich przystosowania (lepsze lub gorsze przystosowanie), więc jeśli środowisko nie zmieni diametralnie warunków przystosowania to taki sposób postępowania prowadzi (w czasie) do coraz lepszego przystosowania populacji.

2. Informacje wstępne

W mojej implementacji algorytmu rozpoczynam od wygenerowania populacji początkowej na zasadzie zbliżonej do metody zachłannej, losuje dwa lub trzy wierzchołki a następnie resztę ścieżki wybieram na zasadzie metody zachłannej, następnie zostaje oceniana populacja.

Kolejnym etapem jest selekcja, którą wymieszałem przez początkową część działania programu selekcja jest wybierana na zasadzie wyboru np. 100 najlepszych osobników, wraz z czasem działania programu i kolejnymi iteracjami metodą selekcji jest selekcja turniejowa, podczas selekcji jest zawsze wybierana stała ilość osobników.

Dalej osobniki są krzyżowane metodą PMX, a rodzicami są osobniki iterowane po kolei tzn. Pierwszy z drugim, drugi z trzecim, trzeci... itd. Zostaje jeszcze mutacja, to czy mutacja zajdzie na pojedynczym genie decyduje określone wcześniej prawdopodobieństwo, jeśli dojdzie do mutacji to mutacja przebiega na zasadzie tzw. losowego swapa.

Warunkiem zatrzymania algorytmu jest określona ilość populacji bez poprawy wyniku.

3. Lista kroków algorytmu

- wybór populacji początkowej chromosomów (losowy)
- 2. ocena przystosowania chromosomów
- 3. sprawdzanie warunku zatrzymania
 - a. selekcja chromosomów wybór populacji macierzystej (ang. mating pool)
 - b. krzyżowanie chromosomów z populacji rodzicielskiej
 - c. mutacja
 - d. ocena przystosowania chromosomów
 - e. utworzenie nowej populacji
- 4. wyprowadzenie "najlepszego", rozwiązania

Powyższa lista została zaczerpnięta z prezentacji Dr. Kapłona

4. Wyniki

Dla każdej konfiguracji zostało przeprowadzone 10 prób oraz następne uśrednienie wyników.

a. Wyniki dla macierzy asymetrycznych oraz ich wykresy

Rodzaj instancji	Rozmiar populacji	Prawdopodobieństwo	Czas [s]	Wynik
br17.atsp	500	0,01	3,211973316	39
br17.atsp	500	0,04	3,260722748	39
br17.atsp	500	0,08	3,218631105	39
br17.atsp	500	0,1	3,231885673	39
br17.atsp	1000	0,01	11,55566039	39
br17.atsp	1000	0,04	11,50841928	39
br17.atsp	1000	0,08	11,54377105	39
br17.atsp	1000	0,1	11,66180183	39
br17.atsp	1500	0,01	25,24254281	39
br17.atsp	1500	0,04	25,59180866	39
br17.atsp	1500	0,08	24,91856657	39
br17.atsp	1500	0,1	25,53177949	39
			MIN	39
ftv33.atsp	500	0,01	5,24830133	1459,2
ftv33.atsp	500	0,04	4,038356214	1420,2
ftv33.atsp	500	0,08	4,501955411	1446,4
ftv33.atsp	500	0,1	4,789745436	1473,2
ftv33.atsp	1000	0,01	13,4542274	1434,2
ftv33.atsp	1000	0,04	13,30859363	1421,2
ftv33.atsp	1000	0,08	13,42832249	1439
ftv33.atsp	1000	0,1	13,31141111	1439,6
ftv33.atsp	1500	0,01	27,83212203	1400,6
ftv33.atsp	1500	0,04	28,54450737	1408
ftv33.atsp	1500	0,08	27,40761204	1398,8

ftv33.atsp	1500	0,1	27,80482609	1411,8
			MIN	1398,8
ftv47.atsp	500	0,01	8,135766628	2094,6
ftv47.atsp	500	0,04	7,583633576	2053,2
ftv47.atsp	500	0,08	6,586493776	2085,8
ftv47.atsp	500	0,1	6,560823257	2093,8
ftv47.atsp	1000	0,01	16,68440357	2091,8
ftv47.atsp	1000	0,04	18,49750203	2080
ftv47.atsp	1000	0,08	16,41088833	2069,4
ftv47.atsp	1000	0,1	17,51350525	2074
ftv47.atsp	1500	0,01	30,95538522	2084,8
ftv47.atsp	1500	0,04	31,33840031	2088,2
ftv47.atsp	1500	0,08	32,14235625	2080,6
ftv47.atsp	1500	0,1	30,92286586	2066
			MIN	2053,2
ftv70.atsp	500	0,01	6,237221025	2339,4
ftv70.atsp	500	0,04	8,500165046	2314,8
ftv70.atsp	500	0,08	11,14474283	2291,4
ftv70.atsp	500	0,1	11,25912599	2307,4
ftv70.atsp	1000	0,01	20,11305529	2305,2
ftv70.atsp	1000	0,04	24,31564462	2290,4
ftv70.atsp	1000	0,08	19,78961401	2330
ftv70.atsp	1000	0,1	21,83760778	2300,6
ftv70.atsp	1500	0,01	34,73630009	2304,6
ftv70.atsp	1500	0,04	43,50632264	2281,4
ftv70.atsp	1500	0,08	38,28437035	2296,4
ftv70.atsp	1500	0,1	38,6688449	2294,8
			MIN	2281,4
ftv170.atsp	500	0,01	20,37199012	3607,2
ftv170.atsp	500	0,04	26,2213409	3585,8
ftv170.atsp	500	0,08	37,31953617	3564,6
ftv170.atsp	500	0,1	31,352796	3608,6
ftv170.atsp	1000	0,01	56,94163613	3572,8
ftv170.atsp	1000	0,04	53,20009581	3557
ftv170.atsp	1000	0,08	89,05271679	3559,2
ftv170.atsp	1000	0,1	114,9658001	3506,6
ftv170.atsp	1500	0,01	76,64094636	3561,4
ftv170.atsp	1500	0,04	125,9137177	3512,4
ftv170.atsp	1500	0,08	183,9891512	3531
ftv170.atsp	1500	0,1	160,0308579	3506,6
			MIN	3506,6

b. Wyniki dla macierzy symetrycznych oraz ich wykresy

Rodzaj instancji	Rozmiar populacji	Prawdopodobieństwo	Czas	Wynik
gr17.tsp	500	0,01	3,349909097	2085
gr17.tsp	500	0,04	3,335020345	2085
gr17.tsp	500	0,08	3,285508456	2085
gr17.tsp	500	0,1	3,25531591	2085
gr17.tsp	1000	0,01	11,70195283	2085
gr17.tsp	1000	0,04	11,77780464	2085
gr17.tsp	1000	0,08	11,54186043	2085
gr17.tsp	1000	0,1	11,9875306	2085
gr17.tsp	1500	0,01	27,59135218	2085
gr17.tsp	1500	0,04	27,77251697	2085

gr17.tsp	1500	0,08	27,14626194	2085
gr17.tsp	1500	0,1	27,43576768	2085
8. =		-,-	MIN	2085
gr24.tsp	500	0,01	3,569382371	1340,3
gr24.tsp	500	0,04	3,756667549	1342,7
gr24.tsp	500	0,08	3,583940878	1340,9
gr24.tsp	500	0,1	3,693527696	1340,4
gr24.tsp	1000	0,01	13,41993543	1326,6
gr24.tsp	1000	0,04	12,41204225	1330,2
gr24.tsp	1000	0,08	12,32866886	1325,7
gr24.tsp	1000	0,1	12,56873317	1335,2
gr24.tsp	1500	0,01	28,87329605	1312,8
gr24.tsp	1500	0,04	26,34644638	1329,3
gr24.tsp	1500	0,08	25,92571462	1329,3
gr24.tsp	1500	0,1	25,9961599	1331,4
			MIN	1312,8
gr48.tsp	500	0,01	10,54175031	5647,1
gr48.tsp	500	0,04	9,515240867	5710,4
gr48.tsp	500	0,08	9,547081625	5646,9
gr48.tsp	500	0,1	8,354438816	5595,4
gr48.tsp	1000	0,01	25,0213679	5630,5
gr48.tsp	1000	0,04	26,25432747	5602,5
gr48.tsp	1000	0,08	21,92286045	5591,7
gr48.tsp	1000	0,1	21,34553543	5641,7
gr48.tsp	1500	0,01	39,51726475	5591,2
gr48.tsp	1500	0,04	44,34045889	5619
gr48.tsp	1500	0,08	37,17922511	5596,3
gr48.tsp	1500	0,1	36,04224542	5582,3
			MIN	5582,3
gr120.tsp	500	0,01	19,6115199	8363,6
gr120.tsp	500	0,04	56,82292631	8216,2
gr120.tsp	500	0,08	56,26556135	8031,6
gr120.tsp	500	0,1	63,88745641	8080,6
gr120.tsp	1000	0,01	80,46851021	8191,6
gr120.tsp	1000	0,04	110,6754702	8024,2
gr120.tsp	1000	0,08	104,1079041	8039,4
gr120.tsp	1000	0,1	96,81932667	7961,4
gr120.tsp	1500	0,01	148,7991107	8053,8
gr120.tsp	1500	0,04	147,9927905	8001,6
gr120.tsp	1500	0,08	132,6678614	8018,6
gr120.tsp	1500	0,1	107,7154778	7968

c. Porównanie algorytmów

Z racji że w pierwszym projekcie nie udało mi się uruchomić pomiarów dla macierzy symetrycznych, a bruteforce dla tak dużych instancji wykonuje się bardzo długo lub też instancja problemu jest na tyle duża, że jest to nie możliwe dlatego zamieszczam wykres tylko z zakresu obecnego i poprzedniego projektu.

d. Tabela jakości otrzymanych wyników

Rodzaj instancji	Otrzymany wynik	Najlepszy znany wynik	Błąd
gr17	2085	2085	0%
br17	39	39	0%
gr24	1312	1272	3%
ftv33	1398	1286	9%
ftv47	2053	1776	16%
gr48	5582	5046	11%
ftv70	2281	1950	17%
gr120	7961	6942	15%
ftv170	3506	2755	27%

5. Wnioski

- a. Czym większa populacja tym większa szansa na znalezienie lepszego wyniku, lecz czas wykonywania się algorytmu wydłuża się.
- b. Dla małych instancji o wielkościach 17 czy też 33 algorytm jest w stanie znaleźć rozwiązanie w dużo lepszym czasie niż metody B&B czy BruteForce natomiast porównywalnie lub czasem i szybciej niż TabuSearch
- C. Dla dużych instancji tak jak tabu search znajduje szybciej rozwiązanie, z prawdopodobieństwem błędu, więc jeżeli nasz problem pozwala na założenie, że nasze wyniki nie są dokładne, ale są oszacowane i mieszczą się w zakresie dla nas dopuszczalnego błędu, to tabu search i algorytm genetyczny są dobrymi metodami na znalezienie rozwiązań w rozsądnym czasie.
- d. Porównując projekt 2 z obecnym to mój algorytm genetyczny znajduje lepsze wartości wyników niż mój TabuSearch
- e. Z wykresu można wywnioskować, że złożoność algorytmu genetycznego wynosi O(n²)
- f. Wpływ prawdopodobieństwa zajścia mutacji, ma nie wielki wpływ na wynik czasem może polepszyć rozwiązanie czasem pogorszyć i nie można znaleźć reguły, która by jednoznacznie powiedziała, czy mutacja to zjawisko sprzyjające w polepszaniu wyniku, natomiast można stwierdzić, że czym większe prawdopodobieństwo zajścia mutacji tym czas znalezienia rozwiązania może się zwiększyć.