dataset WinterDay WinterNight SpringDay SpringNight SummerDay SummerNigh AutumnDay AutumnDay AutumnNigh Avg. Rank	t 10.85 11.46 11.62	(15.5) (17.5) (17.5) (17.0) (15.5) (14.0) (17.5)	10.64 9.04 10.62 11.35 11.20	(7.5) (9.0) (9.5) (8.0) (7.5)	11.21 (3 10.48 (3 8.87 (2 10.48 (3 11.25 (2 10.98 (2 11.39 (2	NOZS 3.5) 12.1 3.0) 12.3 3.5) 10.9 2.5) 9.2 3.5) 10.8 2.5) 11.8 2.5) 11.8 2.8)	4 (17.5) 3 (14.5) 2 (16.0) 9 (15.0) 3 (14.0) 5 (11.5)	10.96 11.38 11.41 12.10	(12.0) (13.0) (12.0) (12.0) (17.0) (10.0) (11.5)	ZSMT SRE, R 11.65 11.65 10.63 9.04 10.62 11.35 11.20 11.57	(7.5) (9.0) (7.0) (8.0) (7.5) (7.5) (6.5) (7.5) (7.6)	MTZSSRM,RC 11.79 11.61 10.63 9.02 10.70 11.29 11.29 11.82	(10.0) (6.0) (7.0) (5.0) (10.0) (5.0) (10.0) (11.0) (8.0)	ZSMT SRM, RC 11.31 11.21 10.47 8.87 10.47 11.25 10.98 11.39	(2.5) (3.0) (1.5) (2.5) (1.5) (2.5) (2.5) (2.5) (2.5) (2.3)	NOZSSTA 12.13 12.38 10.94 9.30 10.85 11.46 11.62 11.86	(15.5) (17.5) (17.5) (17.0) (15.5) (14.0) (17.5) (14.5) (16.1)	MTZS SRE, ST. 12.05 12.07 10.78 9.25 10.72 11.56 11.41 11.75 Table 1: M.	(13.0) (12.0) (13.0) (13.0) (11.0) (18.0) (11.5) (10.0) (12.7)	ZSMT SRE, ST. 11.66 11.65 10.64 9.04 10.62 11.35 11.20 11.57	(7.5) (9.0) (9.5) (8.0) (7.5) (7.5) (6.5) (7.5) (7.9)	MTZS_RM,STA 11.54 11.53 10.58 9.04 10.58 11.49 11.26 11.57	(5.0) (5.0) (5.0) (8.0) (8.0) (16.0) (9.0) (7.5) (7.6)	ZSMT SRM, STA 11.31 11.21 10.48 8.87 10.48 11.25 10.98 11.39	(2.5) (3.0) (3.5) (2.5) (3.5) (2.5) (2.5) (2.5) (2.5) (2.5)	NOZS DBR 12.14 12.33 10.91 9.30 10.81 11.45 11.58 11.83	(17.5) (14.5) (15.0) (17.0) (12.5) (11.5) (15.0) (12.5) (14.4)	1TZS _{SRE,DB} 12.07 12.34 10.81 9.28 11.07 11.52 11.47 12.11	R (14.0) (16.0) (14.0) (14.0) (18.0) (17.0) (14.0) (18.0) (15.6)	ZSMT SRE, DB 11.66 11.64 10.63 9.04 10.62 11.35 11.20 11.56	R (7.5) (7.0) (7.0) (8.0) (7.5) (7.5) (6.5) (5.0) (7.0)	MTZS SRM, DB. 11.93 12.05 10.75 9.16 10.81 11.46 11.43 11.96	R (11.0) (11.0) (11.0) (11.0) (11.0) (12.5) (14.0) (13.0) (16.0) (12.4)	ZSMT SRM, DBR 11.31 11.20 10.47 8.87 10.47 11.25 10.98 11.39	(2.5) (1.0) (1.5) (2.5) (1.5) (2.5) (2.5) (2.5) (2.5) (2.1)
																CD 1	Da	. AUIC 1. IVI. Lasets: 8, Systen — CD 5%: 9.3	ms: 18	%: 8.7															
dataset WinterDay WinterNight SpringDay SpringNight SummerDay SummerNigh AutumnDay AutumnNigh Avg. Rank	274.17 190.53 260.72 285.47 274.27 nt 284.18	$(14.5) \\ (17.5) \\ (17.0) \\ (15.0) \\ (14.0) \\ (16.0) \\ (17.5)$	254.17 177.79 243.49 270.75 247.93 265.43	(8.5) 2 (9.5) 2 (6.5) 3 (9.5) 1 (6.5) 2 (6.0) 3 (6.5) 3	446.34 (243.18 (34.31 (34.31 (235.15 (35.365 (35.31	3.5) 190.8 2.5) 261.3 1.5) 285.8 1.5) 273.6	2 (16.0) 6 (15.0) 7 (16.0) 5 (17.0) 3 (16.0) 8 (18.0) 3 (16.0)	$267.20 \\ 181.11 \\ 255.50 \\ 281.72 \\ 261.99 \\ 300.06$	(13.0) (12.0) (13.0) (12.0) (12.0) (14.0) (12.0)	ZSMT SRE, I 280.30 269.39 254.21 177.73 243.57 270.78 248.06 265.08	(7.0) (7.0) (8.0) (7.5) (9.0) (8.0) (8.0) (7.0) (7.7)	MTZS _{SRM,RC} 296.96 266.56 256.53 175.02 244.38 276.24 255.35 284.86	(10.0) (6.0) (10.0) (5.0) (10.0) (11.0) (11.0) (15.0) (9.8)	ZSMTSRM,R6 259.28 246.31 243.21 170.07 234.38 263.45 235.27 253.16	(2.0) (1.0) (3.0) (1.5) (4.0) (3.0) (3.0)	NOZS <i>STA</i> 314.69 308.32 274.18 190.54 260.73 285.46 274.27 284.18	(14.5) (17.5) (18.0) (16.0) (15.0) (15.0) (17.5) (13.5) (15.9)	MTZS _{SRE,ST} 307.66 293.22 265.27 185.08 249.27 274.70 254.64 274.42 Table 2: M	(11.0) (13.0) (12.0) (14.0) (11.0) (10.0) (10.0) (10.0) (11.4)	ZSMT _{SRE,ST} 280.35 269.42 254.17 177.79 243.49 270.76 247.93 265.43	A (8.5) (9.5) (6.5) (9.5) (6.5) (7.0) (6.5) (8.5) (7.8)	MTZS SRM, STA 277.78 264.48 264.48 252.43 177.04 241.37 270.00 246.79 262.90	(5.0) (5.0) (5.0) (6.0) (6.0) (5.0) (5.0) (5.0) (5.0) (5.1)	259.33 246.34 243.18 247.11 243.11 263.41 263.41 263.41 253.65	(3.5) (2.5) (1.5) (3.5) (2.5) (1.5) (1.5)	NOZS _{DBR} 315.23 305.93 273.81 190.85 260.69 285.53 273.41 283.16	(17.0) (16.0) (15.0) (15.0) (13.0) (17.0) (17.0) (12.0) (15.4)	TZS _{SRE,DBH} 316.75 298.03 268.34 184.29 274.96 281.63 267.72 302.20	(18.0) (14.0) (14.0) (13.0) (18.0) (13.0) (14.0) (14.0) (18.0) (15.2)	ZSMT SRE, DB: 280.25 269.41 254.26 177.73 243.51 270.85 248.11 265.01	(6.0) (8.0) (9.0) (7.5) (8.0) (9.0) (9.0) (6.0) (7.8)	MTZSSRM, DBI 307.77 286.30 264.73 180.11 261.64 279.53 265.55 294.52	(12.0) (11.0) (11.0) (11.0) (11.0) (17.0) (12.0) (13.0) (16.0) (12.9)	259.15 246.36 243.25 170.07 234.30 263.51 235.33 253.15	(1.0) (4.0) (4.0) (1.5) (1.0) (4.0) (4.0) (1.0) (2.6)
																CD 1	Da	LaDIC Z: NI Lasets: 8, Systen — CD 5%: 9.3	ms: 18	%: 8.7															
dataset WinterDay WinterNight SpringDay SpringNight SummerDay SummerNight AutumnDay AutumnNight Avg. Rank	1534.07	(18.0) (17.0) (15.5) (14.0) (17.0) (17.5)	SREBR 1519.67 1532.21 1459.11 1241.79 1428.54 1523.93 1474.49 1548.64	(8.5) 1	473.74 432.29 217.37 403.59 1504.60 1441.69 517.94	(3.5) 1592 (4.0) 1611 (3.5) 1503 (3.5) 1276 (3.5) 1277 (1.0) 1557 (1.5) 1531 (3.5) 1591 (3.5) 1591	.73 (18.0 .95 (16.0 .27 (16.0 .38 (17.0 .53 (16.0 .89 (18.0 .40 (16.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	1532.10 1458.97 1241.57 1428.55 1523.95 1474.80 1547.79	(7.0) (7.0) (7.0) (8.0) (9.0) (7.0) (7.0)	1461.71 1235.48 1436.53 1531.58 1491.54 1597.35	(10.0) (10.0) (10.0) (5.0) (10.0) (10.0) (10.0) (15.0) (10.0)	ZSMT SRM,1 1470.30 1473.63 1432.13 1217.08 1403.57 1504.64 1442.01 1516.72	(2.0) (1.0) (2.0)	1626.21 1505.00 1279.35 1470.42 1557.67 1534.07 1593.93	(17.0) (17.0) (18.0) (15.5) (15.0) (16.0) (17.5) (13.5) (16.2)	MTZS _{SRE,S} 1576.40 1588.26 1484.10 1265.98 1444.55 1538.15 1497.03 1572.81 able 3: RM	(13.0) (12.0) (12.0) (14.0) (11.0) (11.0) (11.0) (10.0) (11.8)	ZSMT _{SRE,S} 1519.67 1532.21 1459.11 1241.79 1428.54 1523.94 1474.49 1548.63	(8.5) (8.5) (8.5) (9.5) (7.5) (6.0) (5.5) (8.0) (7.8)	MTZS SRM, ST 1510.80 1522.05 1454.26 1240.51 1422.95 1526.81 1477.34 1543.91	(5.0) (5.0) (5.0) (6.0) (6.0) (5.0) (9.0) (9.0) (5.0) (6.1)	ZSMT SRM, ST 1470. 35 1473. 73 1432. 29 1217. 37 1403. 59 1504. 61 1441. 69 1517. 94	(3.5) (3.0) (3.5) (3.5) (3.5) (2.0) (1.5)	NOZSDBR 1592.00 1619.51 1503.05 1280.35 1468.50 1557.49 1530.26 1590.95	(15.0) (15.0) (15.0) (18.0) (13.0) (15.0) (15.0) (11.0) (14.6)	MTZSSRE, DE 1585.75 1616.74 1488.42 1265.90 1508.95 1551.71 1519.94 1638.28	BR (14.0) (14.0) (14.0) (13.0) (18.0) (14.0) (14.0) (18.0) (14.0) (14.9)	ZSMT _{SRE,D} 1519.51 1532.02 1458.93 1241.54 1428.36 1524.13 1474.85 1547.56	(6.0) (6.0) (6.0) (7.0) (6.0) (8.0) (8.0) (6.0) (6.6)	MTZS _{SRM,D} B 1567.52 1584.82 1480.72 1252.39 1475.60 1545.48 1515.01 1619.71	(11.0) (11.0) (11.0) (11.0) (11.0) (11.0) (17.0) (13.0) (13.0) (16.0) (12.9)	ZSMT SRM, DB 1470.03 1473.64 1432.10 1217.03 1403.31 1504.82 1442.09 1516.65	(1.0) (2.0) (1.0) (1.0) (1.0) (1.0) (4.0) (4.0) (1.0) (1.9)
																CD 1	Da	asets: 8, Syster — CD 5%: 9.3	ms: 18	%: 8.7															
dataset WinterDay WinterNight SpringDay SpringNight SummerDay SummerNight AutumnDay AutumnNight Avg. Rank	NOZS _{BR} 112.83 115.84 112.97 110.29 115.72 116.21 115.23 111.06	(17.5) (16.5) (17.5)	109.65 109.21 107.99 114.42 116.38 112.19 108.55	(7.5) 10 (8.0) 10 (9.5) 10 (6.5) 10 (8.5) 11 (14.5) 11 (5.5) 11	6.08 (3. 7.64 (3. 6.19 (3. 2.28 (3. 5.10 (5. 0.08 (1. 6.74 (3.	5) 111.94 0) 110.40 5) 115.78 5) 116.21 5) 114.92	(16.0) (15.0) (16.0) (16.0) (13.0) (10.5) (16.0)	MTZS _{SRE,F} 111.29 114.77 109.83 109.53 121.19 114.90 113.98 113.63	(12.0) (13.0) (11.0) (12.0) (18.0) (2.0) (11.0) (18.0) (18.1)	ZSMT_SRE_,RC 108.75 109.65 109.13 108.00 114.36 116.32 112.20 108.52	(7.5) (8.0) (8.0) (9.0) (7.0) (12.0) (7.5) (7.0) (8.2)	MTZS _{SRM,RC} 109.61 110.59 108.81 107.99 117.58 114.08 113.01 111.25	(10.0) (10.0) (6.0) (6.5) (15.0) (1.0) (9.0) (15.0) (9.1)	ZSMT SRM, RC 105.85 106.07 107.57 106.19 112.21 115.05 110.10 106.68	(4.0) (2.0) (2.0) (3.0) (2.0) (3.0) (4.0) (2.0) (2.8)	NOZS _{STA} 112.83 115.84 112.97 110.29 115.72 116.20 115.23 111.06	(17.5) (16.5) (17.5) (14.5) (11.5) (9.0) (17.5) (13.5) (14.7)	MTZS _{SRE,ST} / 111.64 112.96 110.42 110.15 116.23 119.88 114.59 110.14	(14.0) (11.0) (14.0) (13.0) (14.0) (18.0) (14.0) (10.0) (13.5)	ZSMT SRE, ST / 108.75 109.65 109.21 107.99 114.42 116.38 112.19 108.55	(7.5) (8.0) (9.5) (6.5) (8.5) (14.5) (5.5) (8.5) (8.6)	MTZSSRM,ST. 107.89 109.07 108.73 108.18 114.07 119.07 113.25 108.47	(5.0) (5.0) (5.0) (10.0) (5.0) (17.0) (10.0) (5.0) (7.8)	ZSMT _{SRM,ST} 105.84 106.08 107.64 106.19 112.28 115.10 110.08 106.74	A (2.5) (3.5) (3.5) (3.5) (3.5) (5.5) (1.5) (3.5) (3.5) (3.5) (3.5) (3.5) (3.5) (3.5)	NOZSDBR 112.58 115.31 111.83 110.49 115.36 116.09 114.80 110.84	(15.0) (14.0) (15.0) (18.0) (10.0) (7.0) (15.0) (11.0) (13.1)	MTZSSRE, DE 111.36 116.46 110.41 110.48 120.67 116.86 114.54 113.47	(13.0) (18.0) (18.0) (17.0) (17.0) (16.0) (13.0) (17.0) (15.5)	ZSMT _{SRE,D1} 108.75 109.63 109.11 107.99 114.30 116.35 112.20 108.50	(7.5) (6.0) (7.0) (6.5) (6.0) (13.0) (7.5) (6.0) (7.4)	MTZSSRM,D 110.43 114.01 109.98 109.30 117.96 116.12 114.22 112.34	BR (11.0) (12.0) (12.0) (11.0) (16.0) (8.0) (12.0) (16.0) (12.2)	ZSMT _{SRM,DE} 105.83 106.06 107.55 106.18 112.15 115.08 110.09 106.67	(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (4.0) (3.0) (1.0) (1.6)
																CD 1	Da	tasets: 8, Syster — CD 5%: 9.3	ms: 18	%: 8.7															
dataset WinterDay WinterNight SpringDay SpringNight SummerDay SummerNigh AutumnDay AutumnNigh Avg. Rank	491.11 414.62 463.85 at 493.29 496.34 at 510.88	(16.5) (18.0) (17.5) (15.5) (14.5) (17.0) (17.5)	489.93 476.20 402.56 450.67 482.76 476.87 496.20	(8.5) 4 (8.5) 4 (8.5) 4 (9.5) 3 (7.5) 4 (6.0) 4 (5.5) 4	71.25 (NOZS 3.5) 512.9 3.5) 517.5 3.5) 490.3 3.5) 414.4 3.5) 463.9 1.6) 493.3 3.5) 495.3 3.5) 509.9 2.9)	7 (18.0) 9 (16.0) 4 (16.0) 3 (17.0) 1 (16.0) 5 (18.0) 8 (16.0)	484.45 406.79 462.95 488.82 487.62 524.01	(12.0) (13.0) (13.0) (12.0) (12.0) (12.0) (12.0)	ZSMT SRE, I 489.45 489.89 476.15 402.49 450.68 482.76 476.97 495.93	(7.0) (7.0) (7.0) (8.0) (9.0) (6.0) (7.0) (7.2)	MTZSSRM,RC 497.75 490.39 477.06 400.54 453.36 484.97 482.39 511.74	(10.0) (10.0) (10.0) (10.0) (5.0) (10.0) (10.0) (10.0) (15.0) (10.0)	ZSMTSRM,RC 473.58 471.22 467.45 394.63 442.82 476.75 466.19 485.85	C (2.0) (1.5) (2.0) (2.0) (2.0) (2.5) (3.0) (2.0) (2.1)	NOZS <i>STA</i> 512.85 519.98 491.11 414.62 463.85 493.28 496.34 510.88	(16.5) (17.0) (17.5) (15.5) (14.5) (16.0) (17.5) (13.5) (16.0)	MTZS <i>SRE,ST</i> 507.70 507.81 484.31 410.34 455.65 487.30 484.21 503.99 Table 5: E	(13.0) (12.0) (12.0) (14.0) (11.0) (11.0) (11.0) (10.0) (11.8)	ZSMT _{SRE,ST} 489.47 489.93 476.20 402.56 450.67 482.76 476.87 496.20	(8.5) (8.5) (8.5) (9.5) (7.5) (6.0) (5.5) (8.5) (7.8)	MTZSSRM,STA 486.59 486.68 474.63 402.17 448.91 483.77 477.72 494.63	(5.0) (5.0) (5.0) (6.0) (6.0) (5.0) (9.0) (9.0) (5.0) (6.1)	SMT SRM, STA 473.60 471.25 467.50 394.73 442.83 476.75 466.09 486.24	(3.5)	NOZS <i>DBR</i> 512.73 517.84 490.47 414.94 463.26 493.21 495.10 509.92	M (15.0) (15.0) (15.0) (15.0) (18.0) (18.0) (15.0) (15.0) (15.0) (15.0) (11.0) (14.6)	TZSSRE,DBH 510.64 517.09 485.70 410.31 476.04 491.48 491.67 524.89	(14.0) (14.0) (14.0) (13.0) (18.0) (14.0) (14.0) (14.0) (14.9)	ZSMT SRE, DB. 489.42 489.87 476.14 402.48 450.61 482.82 476.99 495.86	(6.0) (6.0) (6.0) (7.0) (6.0) (8.0) (8.0) (8.0) (6.0) (6.6)	MTZS_ <i>SRM</i> , <i>DB1</i> 504.78 506.84 483.21 405.97 465.50 489.55 490.04 518.94	(11.0) (11.0) (11.0) (11.0) (11.0) (11.0) (13.0) (13.0) (13.0) (16.0) (12.9)	SMT SRM, DBR 473.49 471.22 467.44 394.62 442.74 476.81 466.22 485.83	(1.0) (1.5) (1.0) (1.0) (1.0) (1.0) (4.0) (4.0) (4.0) (1.0)
																CD 1		.asets: 8, Syste — CD 5%: 9.3		%: 8.7															
dataset WinterDay WinterNight SpringDay SpringNight SummerDay SummerNight AutumnDay	NOZSBR -0.29 -0.37 -0.3 -0.23 -0.41 -0.39 -0.36	(17.0) (16.5) (17.5) (15.0) (12.0)	-0.2 -0.18 -0.37 -0.42 ((7.5) -0 (7.5) -0 (8.5) -0 (7.5) -0 (8.0) -0 (14.5) -0	$egin{array}{lll} M_{BR} & & & & \\ \hline 0.13 & (3. \\ 0.14 & (2. \\ 0.17 & (2. \\ 0.14 & (2. \\ 0.31 & (3. \\ 0.38 & (4. \\ 0.23 & (2. \\ 0.16 $	5) -0.36 5) -0.27 5) -0.23 0) -0.41 5) -0.39	(17.0) (14.0) (15.5) (15.0) (12.0) (9.0)	MTZS _{SRE, F} -0.25 -0.36 -0.22 -0.22 -0.64 -0.35 -0.32	(12.0) (14.0) (11.5) (12.0) (18.0) (2.0) (11.0)	ZSMT _{SRE,RO} -0.19 -0.22 -0.2 -0.18 -0.37 -0.42 -0.28	(7.5) (7.5) (8.5) (7.5) (8.0) (14.5) (6.5)	MTZS _{SRM,RC} -0.21 -0.25 -0.19 -0.18 -0.5 -0.33 -0.3	(10.0) (10.0) (5.5) (7.5) (16.0) (1.0) (9.0)	ZSMT _{SRM,RC} -0.13 -0.14 -0.17 -0.14 -0.31 -0.38 -0.23	(3.0) (2.5) (2.5) (2.5) (3.0) (4.5) (2.5)	NOZS _{STA} -0.29 -0.37 -0.3 -0.23 -0.41 -0.39 -0.36	(17.0) (16.5) (17.5) (15.0) (12.0) (9.0) (17.5)	$\begin{array}{c} \text{MTZS}_{SRE,STA} \\ -0.26 \\ -0.3 \\ -0.23 \\ -0.23 \\ -0.42 \\ -0.57 \\ -0.35 \end{array}$	A (13.5) (11.0) (13.5) (15.0) (14.0) (18.0) (15.5)	ZSMT _{SRE,ST} -0.19 -0.22 -0.2 -0.18 -0.37 -0.42 -0.28	(7.5) (7.5) (8.5) (7.5) (8.0) (14.5) (6.5)	MTZS _{SRM} ,ST ₂ -0.17 -0.2 -0.19 -0.18 -0.35 -0.53 -0.53	(5.0) (5.0) (5.5) (7.5) (5.0) (17.0) (10.0)	ZSMT _{SRM,ST} -0.13 -0.14 -0.17 -0.14 -0.31 -0.38 -0.23	(3.0) (2.5) (2.5) (2.5) (3.0) (4.5) (2.5)	NOZS _{DBR} -0.28 -0.36 -0.27 -0.23 -0.39 -0.39 -0.34	(15.0) (14.0) (15.5) (15.0) (10.0) (9.0) (13.5)	$\begin{array}{c} \text{MTZS}_{SRE,DE} \\ -0.26 \\ -0.4 \\ -0.23 \\ -0.24 \\ -0.54 \\ -0.41 \\ -0.34 \\ -0.21 \end{array}$	(13.5) (18.0) (13.5) (18.0) (17.0) (12.0) (13.5)	ZSMT _{SRE,Di} -0.19 -0.22 -0.2 -0.18 -0.36 -0.42 -0.28	(7.5) (7.5) (8.5) (7.5) (6.0) (14.5) (6.5)	MTZS _{SRM,D} -0.23 -0.33 -0.22 -0.21 -0.46 -0.39 -0.33	BR (11.0) (12.0) (11.5) (11.5) (11.0) (15.0) (9.0) (12.0)	ZSMT <i>SRM</i> , <i>DE</i> -0.12 -0.14 -0.17 -0.14 -0.3 -0.38 -0.23	(1.0) (2.5) (2.5) (2.5) (2.5) (1.0) (4.5) (2.5)