Set A - Problems on Alternating Series and Power Series Concepts

1. Test the convergence (absolute/conditional) of the following series:

(i)
$$\sum_{n=2}^{\infty} \frac{\cos(n\pi)}{\sqrt{n}}$$

(ii)
$$\sum_{1}^{\infty} \frac{(-1)^{n+2}(1-n)}{3n-n^2}$$

(iii)
$$x + \frac{(a-b)}{2!}x^2 + \frac{(a-b)(a-2b)}{3!}x^3 + \dots$$
 (x any real number)

(iv)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\log(n+1)}$$

2. Find the radius and interval of convergence of the following power series.

(i)
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{n^3 3^n}$$

(ii)
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^{n+1}}{\sqrt{n}+3}$$

(iii)
$$\frac{1}{2}x + \frac{1.3}{2.5}x^2 + \frac{1.3.5}{2.5.8}x^3 + \dots$$
 (iv) $\sum_{n=0}^{\infty} \frac{(x+2)^n}{\log(n)}$

(iv)
$$\sum_{n=2}^{\infty} \frac{(x+2)^n}{\log(n)}$$

- 3. Find the power series expansion of the function $f(x) = \frac{x}{1 + 2x + x^2}$ about the origin and find its radius of convergence.
- 4. Find the Taylor series of the following functions.

(i)
$$f(x) = x^2 \cos(x^2)$$
 about $x = 0$

(i)
$$f(x) = x^2 \cos(x^2)$$
 about $x = 0$ (ii) $f(x) = \cos\left(2x + \frac{\pi}{2}\right)$ about $x = \frac{\pi}{4}$

Set B - Problems on Limits Concepts

- 1. If $\lim_{x\to x_0} f(x) = L$, then show that $\lim_{x\to x_0} |f(x)| = |L|$. Is the converse true?
- 2. Evaluate:

(i)
$$\lim_{x\to 0} \frac{\sin x}{\sqrt{x}}$$
 (ii) $\lim_{x\to 0} \frac{e^{1/x}-1}{e^{1/x}+1}$ (iii) $\lim_{x\to 0} \frac{3x+|x|}{7x-5|x|}$ (iv) $\lim_{x\to 0} \frac{1-2\cos x+\cos 2x}{x^2}$

3. Prove the following using the $\epsilon - \delta$ definition.

(i)
$$\lim_{x \to 0^+} \frac{1}{e^{-1/x} + 1} = 1$$
 (ii) $\lim_{x \to 2} \frac{x^3 - 4}{x^2 + 1} = \frac{4}{5}$ (iii) $\lim_{x \to c} \sqrt{x} = \sqrt{c}$ (iv) $\lim_{x \to -3} \sqrt{1 - 5x} = 4$

4. Determine a condition on |x-4| that will ensure that:

(i)
$$|\sqrt{x} - 2| < \frac{1}{2}$$
 (ii) $|\sqrt{x} - 2| < 0.01$

Set C - Problems on Continuity Concepts

- 1. (a) Show that the function $f(x) = \begin{cases} 1 & \text{if } x \text{ is irrational} \\ -1 & \text{if } x \text{ is rational} \end{cases}$ is discontinuous everywhere on the number line.
 - (b) For what values of a and b the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} ax + 2b, & x \le 0 \\ x^2 + 3a - b, & 0 < x \le 2 \\ 3x - 5, & x > 2 \end{cases}$$

is continuous at every x?

2. Test the continuity of the following functions at the given point(s).

(i)
$$f(x) = \begin{cases} [x+1]\sin\frac{1}{x} & \text{if } x \in (-1,0) \cup (0,1) \\ 0 & \text{otherwise} \end{cases}$$
 at $x = 0$ and $x = 1$

(ii)
$$f(x) = x - |x|$$
 at $x = 0$.
(iii) $f(x) =\begin{cases} \frac{1-x}{1-\sqrt[3]{x}} & \text{when } x \neq 1\\ 3 & \text{when } x = 1 \end{cases}$ at $x = 1$

- 3. (a) A continuous function y = f(x) is known to be negative at x = 0 and positive at x = 1. Why does the equation f(x) = 0 have at least one solution between x = 0 and x = 1?
 - (b) Show that $f(x) = 2\ln(x) + \sqrt{x} 2$ has a root in the interval [1, 2].
- 4. Prove that $h(t) = \frac{t^2 + 3t 10}{t 2}$ has a continuous extension to the point t = 2. Also find it.
- 5. Let $g: \mathbb{R} \to \mathbb{R}$ be such that g(x) = 2x for x rational and g(x) = x + 3 for x irrational. Discuss the continuity of g on \mathbb{R} .
- 6. Prove that if a function f is continuous at a, then prove that |f| is also continuous at a but not conversely.
- 7. Prove that a function $f: \mathbb{R} \to \mathbb{R}$ is continuous at a point $x_0 \in \mathbb{R}$ if and only if for every $\epsilon > 0$ there corresponds a $\delta > 0$ such that

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon.$$