1 Useful background for torques at the ISCO

From e.g. Zimmerman et al. (2005), we can write the maximum accretion disk temperature as

$$T_{\text{max}} = f \left(\frac{3GM\dot{M}}{8\pi R_{in}^3 \sigma} \right)^{1/4} \tag{1}$$

where M is the central mass, M is the accretion rate, R_{in} is the innermost radius of the disk and f is a parameter (O(1)) that approximates a spectral hardening modification from pure black body (f = 1). We can parameterize the innermost (maximum) disk temperature for a generic thin disk as

$$T_{\rm max} \approx 5.6 \times 10^5 {\rm K} \left(\frac{{\rm M}_{\rm BH}}{10^8 {\rm M}_{\odot}}\right)^{-1/4} \left(\frac{\dot{\rm M}}{\dot{\rm M}_{\rm Edd}}\right)^{1/4} \left(\frac{\eta}{0.1}\right)^{-1/4} \left(\frac{{\rm R}_{\rm in}}{6{\rm r}_{\rm g}}\right)^{-3/4} \left(\frac{\rm f}{2}\right) (2)$$

where $M_{\rm BH}$ is the black hole mass, \dot{M} is the accretion rate (in units of $\dot{M}_{\rm Edd}$), the Eddington accretion rate, $\eta \sim 0.1$ is the standard accretion efficiency, and $R_{in} = 6r_g$, the ISCO for a Schwarzschild BH. For comparison, keeping all the parameters the same but changing $M_{BH} = 10 M_{\odot}$ yields $T_{\rm max} \sim 3.1 \times 10^7 {\rm K}$.

If the disk is thin, we expect there to be zero-torques at R_{in} , as the material plunges in free-fall at $r < R_{in}$. The resulting zero-torque temperature (T_{ZT}) profile is given by (Zimmermann et al. 2005)

$$T_{ZT} = T_{\text{max}} \left(\frac{r}{R_{in}}\right)^{-3/4} \left[1 - \left(\frac{r}{R_{in}}\right)^{-1/2}\right]^{1/4}$$
 (3)

and is given by the red curve in Fig. 1. However, magnetic torques (Gammie 1999; Krolik & Agol 2000) or a puffed-up disk (Narayan et al. 1997; Ashfordi & Paczynski 2003) can have a finite or quite large torque at the inner edge. In this case, the disk temperature profile looks like

$$T_{NZT} = T_{\text{max}} \left(\frac{r}{R_{in}}\right)^{-3/4} \tag{4}$$

or the black curve in Fig. 1.

Integrating over the temperature profiles above (Zimmermann et al. 2005) find

$$L_{\text{disk}}[ZT, NZT] = [1, 3] \frac{GM\dot{M}}{2R_{\text{in}}} ??$$
 (5)

Figure 1: Comparison of the disk temperature profile using eqns.2-4, due to a change in the boundary condition at the inner edge (R_{in}) . Red=standard zero torque at ISCO assumption. Black= non-zero torque at ISCO.

Figure 2: Comparison of the disk temperature profile using eqns.2-4, by changing the accretion rate. Black= $1.0 \times$ Eddington. Red= $0.1 \times$ Eddington. Blue= $0.01 \times$ Eddington.

or the disk is $\times 3$ more luminous due to this extra torquing at R_{in} .

Fig. 2 shows the effect of changing dotM in eqn.(2). Black curve in Fig. 2 is the same as the black curve in Fig. 1, and the red and blue curves correspond to $\dot{M} = 0.1, 0.01 \dot{M}_{\rm Edd}$ respectively.

Fig. 3 shows the effect of changing dotM in eqn.(2). Black curve in Fig. 3 is the same as the black curve in Fig. 1, and the red and blue curves correspond to $R_{in} = 1.2, 9.0r_g$ respectively.

Since from eqn. (5), $L_{\text{disk}} = 3GMM/2R_{in}$, going from $R_{in} = 6r_g \rightarrow 1.2r_g$ increases disk luminosity by a factor of $\times 5$ and keeping R_{in} fixed, but changing \dot{M} by an order of magnitude changes L_{disk} by an order of magnitude.

Figure 3: Comparison of the disk temperature profile using eqns.2-4, by changing the location of the disk inner edge (R_{in}) . Black=1.2 r_g (max. spin Kerr BH, prograde compared to gas). Red=6 r_g (Schwarzschild BH, zero spin). Blue=9 r_g (max. spin Kerr BH, retrograde compared to gas).

2 The heartbeat in GRS1915+105

Now if we look at the 'hearbeat' state in GRS 1915 + 105, we have $M_{bh} = 12.4^{+2}_{-1.8} M_{\odot}$ and $d = 8.6^{+2.0}_{-1.6} \text{kpc}$. The period of the oscillation is 50s. Translating this to a $M_{bh} = 10^8 M_{\odot}$, we get an equivalent light-crossing period of $50 \times 10^7 \text{s}$ or $\sim 16 \text{years}$. (Interesting: I wonder if e.g. PG 1302-105 is in a heartbeat state!?)

From Nielsen et al. 2011, their model (section 6 in their paper, Fig. 14, Table 3) for the heartbeat goes as:

- 1. a wave of excess material (from \dot{M}) originating between $20-30r_g$ and propagates radially inward and outward.
- 2. Disk responds by increasing R_{in} at constant temperature.
- 3. Disk luminosity increases quickly. At max. R_{in} drops sharply, temp. spikes, disk becomes unstable
- 4. Disk ejects material. Collides with corona. Hard X-ray pulse.
- 5. Disk relaxes, density wave subsides.
- 6. Intense X-ray wind from outer disk due to X-rays
- 7. Short lived jet

Relevant disk timescales around a $M_{bh}=10^8 M_{\odot}$ at $R\sim 25 r_g$ as:

$$t_{\rm orb} \sim 2 \operatorname{days} \left(\frac{R}{25r_g}\right)^{3/2} \frac{r_g}{c}$$
 (6)

$$t_{\rm th} \sim 2.5 \text{months} \left(\frac{\alpha}{0.03}\right)^{-1} \left(\frac{R}{25r_g}\right)^{3/2} \frac{r_g}{c}$$
 (7)

$$t_{\text{front}} \sim 4 \text{yr} \left(\frac{h/R}{0.05}\right)^{-1} \left(\frac{\alpha}{0.03}\right)^{-1} \left(\frac{R}{25r_g}\right)^{3/2} \frac{r_g}{c}$$
 (8)

$$t_{\nu} \sim 82 \text{yr} \left(\frac{h/R}{0.05}\right)^{-2} \left(\frac{\alpha}{0.03}\right)^{-1} \left(\frac{R}{25r_q}\right)^{3/2} \frac{r_g}{c}.$$
 (9)

3 So is the heartbeat relevant?

From t_{ν} above, it seems like we'd need a slow rise (80-100years) for the first (long) part of the cycle. But that's not consistent with a \sim 16yr period for the oscillation that you might expect from a simple scaling of light-crossing time $(10M_{\odot} \rightarrow 10^8 M_{\odot})$. At $10r_g$, t_{ν} above is 20yrs, so maybe. But why is the disk behaving like this at $10r_g$ (or $25r_g$ for that matter). Could predict observables based on the sequence above from Nielsen et al. (2011). Nielsen et al. talk about a R_{in} getting closer to the BH accounting for the

Nielsen et al. talk about a R_{in} getting closer to the BH accounting for the increase in L_{disk} but they don't explore a state-change as in Fig. 1. That should give us a different prediction and (shorter) timescales in general.