Tidy Survival Analysis: Applying R's Tidyverse to Survival Data

Module 3. Nonparametric Survival Analysis

Lu Mao

lmao@biostat.wisc.edu

Department of Biostatistics & Medical Informatics

University of Wisconsin-Madison

Aug 3, 2025

Table of contents

- Tabulating Survival Estimates
- Visualizing Kaplan-Meier Curves
- Tidy Analysis of Competing Risks
- Summary

Tabulating Survival Estimates

GBC: Relapse-Free Survival

• Use dplyr to get time-to-first event

52

47

40

64

49

30

19

56

1 24

2

2 46.6

3 41.9

4 4.85

5 61.1

6 63.4

```
library(tidyverse) # Load tidyverse packages
 2 # Load mortality + relapse data
    gbc <- read.table("data/gbc.txt", header = TRUE)</pre>
    df <- gbc |> # calculate time to first event (relapse or death)
      group by(id) |> # group by id
      arrange(time) |> # sort rows by time
      slice(1) |>
                 # get the first row within each id
      ungroup() # remove grouping
    # Display the first few rows of the data
    head(df)
# A tibble: 6 \times 11
    id time status hormone
                            age meno size grade nodes prog estrg
 <int> <dbl> <int>
                     1 43.8
                             38
                                        18
                                                        141
                                                             105
1
```

1

78

422

19

356

3 25

14

89

64

11

Raw Output from survfit()

KM estimates by hormone therapy

```
1 library(survival) # Load survival package
  2 # Fit KM estimates by hormone group
    km fit <- survfit(Surv(time, status > 0) ~ hormone, data = df)
  4 # summarize the KM fit object
  5 summary(km fit, times = c(6, 12, 24, 36))
Call: survfit(formula = Surv(time, status > 0) ~ hormone, data = df)
                hormone=1
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
        419
                                            0.966
                                                         0.993
    6
                       0.979 0.00691
  12
        379
                     0.897 0.01476
                                            0.868
                                                         0.926
        280
                     0.720 0.02203
                                                         0.764
   24
                 73
                                            0.678
```

0.559

0.656

hormone=2

41

195

36

time	n.risk	n.event	survival	std.err	lower	95% CI	upper	95% CI
6	236	4	0.983	0.00826		0.967		1.000
12	223	8	0.950	0.01418		0.922		0.978
24	177	38	0.785	0.02701		0.733		0.839
36	136	16	0.708	0.03047		0.650		0.770

0.606 0.02475

Extracting Survival Estimates

- Elements in survfit object
 - time: time points of the survival estimates
 - surv: survival probabilities at the time points
 - lower, upper: confidence intervals for the survival estimates
 - strata: stratification information (if applicable)

Exercise

Create a table of survival estimates with 95% confidence intervals at 6, 12, 24, and 36 months for each hormone therapy group using dplyr and tibble.

Tidying survfit() Output

- Use broom package to tidy survfit objects
 - broom::tidy() converts the survfit object into a tidy data frame
 - Useful for further analysis or visualization

```
library(broom) # Load broom package
  2 tidy(km fit) # Tidy the KM fit object
# A tibble: 613 × 9
    time n.risk n.event n.censor estimate std.error conf.high conf.low strata
   <dbl> <dbl>
                  <dbl>
                           <dbl>
                                    <dbl>
                                               <dbl>
                                                         <dbl>
                                                                  <dbl> <chr>
1 0.262
            440
                                             0
                                                                        hormone=1
 2 0.525
            439
                               1
                                    1
                                                                  1
                                                                        hormone=1
 3 0.557
           438
                                                                        hormone=1
4 0.590
            436
                               1
                                    1
                                                                        hormone=1
 5 0.951
           435
                               1
                                    1
                                                                        hormone=1
                               1
 6 1.87
            434
                                    1
                                                                        hormone=1
                                                                  1
7 2.13
            433
                                                                        hormone=1
8 2.20
           432
                                    1
                                                                        hormone=1
                                             0
9 2.33
            431
                                                                        hormone=1
                                    0.998
                                                                  0.993 hormone=1
10 2.36
            430
                                             0.00233
# i 603 more rows
```

Tabulation with gtsummary

- Main function: tbl_survfit()
 - Takes on survfit object
 - Creates a table of survival estimates with confidence intervals
 - Automatically handles stratification and time points

Characteristic	Month 6	Month 12	Month 24	Month 36
Hormone				
1	98% (97%, 99%)	90% (87%, 93%)	72% (68%, 76%)	61% (56%, 66%)
2	98% (97%, 100%)	95% (92%, 98%)	78% (73%, 84%)	71% (65%, 77%)

Grouping by Multiple Variables

Pass raw data to tbl_survfit()

Characteristic	Month 6	Month 12	Month 24	Month 36
Menopause				
1	98% (96%, 99%)	90% (86%, 93%)	73% (68%, 78%)	65% (59%, 71%)
2	98% (97%, 100%)	93% (90%, 96%)	75% (71%, 80%)	64% (59%, 69%)
Tumor grade				
1	100% (100%, 100%)	100% (100%, 100%)	93% (87%, 99%)	84% (75%, 93%)
2	98% (97%, 100%)	92% (90%, 95%)	75% (71%, 80%)	64% (60%, 69%)
3	96% (93%, 99%)	85% (80%, 91%)	63% (55%, 71%)	55% (48%, 64%)

Tabulating Quantile Estimates

- Quantile estimates: Median survival time, quartiles, etc.
 - Specify probs argument in tbl_survfit()

Characteristic	25% quantile	50% quantile	75% quantile
Hormone			
1	21 (18, 25)	50 (42, 59)	81 (81, —)
2	28 (23, 39)	66 (63, —)	— (—, —)

Exercise: Tabulating Quantiles

Create the following table

Characteristic	25% quantile	50% quantile	75% quantile
Menopause			
1	21 (18, 27)	66 (52, —)	— (—, —)
2	24 (21, 28)	56 (49, 65)	— (81, —)
Tumor grade			
1	48 (38, —)	— (65, —)	— (—, —)
2	24 (21, 28)	57 (49, 67)	— (81, —)
3	16 (13, 19)	44 (31, —)	— (67, —)

► Solution

Customizing the Table

- Customize table appearance
 - label_header: change column names
 - label: change row labels
 - statistic: customize statistics displayed

```
o statistic = "{estimate} ({conf.low}, {conf.high})" for confidence intervals
```

- More about gtsummary
 - gtsummary website
 - tbl_survfit documentation

Visualizing Kaplan-Meier Curves

Base Plot

► Plot KM curves by hormone group

Enhanced Graphics with ggsurvfit

- ggsurvfit: Provides a ggplot2 interface for survival curves
 - Takes on survfit object or raw data
 - add_risktable() adds a risk table below graph
 - Allows for more customization and aesthetics

```
1 library(ggsurvfit) # Load ggsurvfit package)
2 km_fit |> ggsurvfit() # Pass `survfit` object
```


Customization (I)

- Customize the plot with ggsurvfit
 - add_risktable(): Adds a risk table below the survival curve
 - add_confidence_interval(): Adds confidence intervals to the survival curve
 - add_pvalue(): Adds p-value for log-rank test
 - Other ggplot2 functions to further customize the plot

```
o scale_x_continuous(), scale_y_continuous(), theme(), etc.
```

Customization (II)

Code

```
1 # survfit2() fits better with `ggsurvfit`
   km fit2 <- survfit2(Surv(time, status > 0) ~ hormone,
                       data = df |> # Relabel hormone variable
 3
                         mutate(hormone = if else(hormone == 1, "No hormone", "Hormone"))
 4
   km fig <- km fit2 |>  # Plot KM curves with customization
     ggsurvfit() +  # Pass `survfit2` object
     add risktable() +  # Add risk table below the graph
     add confidence interval() + # Add confidence intervals
     add pvalue(caption = "Log-rank {p.value}") + # Add p-value for log-rank test
10
     scale x continuous("Time (months)", breaks = seq(0, 84, 12)) + # x-axis format
11
     scale y continuous ("Relapse-free survival probability", limits = c(0, 1)) + # y-axis format
12
     theme classic() + # Use classic theme for this ggplot
13
14
     theme(legend.position = "top") # Position legend at the top
15
16 ggsave("images/km fig.png", km fig, width = 7.5, height = 5) # Save the plot
```

Customization (III)

• Result

Risk Table Exercise

- Task: Display only numbers at risk in the risk table
 - Hint: Add risktable_stats = "n.risk" argument in add_risktable()
- ► Solution

Add Quantiles (I)

- Add quantile estimates to the plot
 - Use add_quantile() to add median survival time and other quantiles
 - Specify y_value or x_value arguments for desired quantiles or time points

```
1 km_fig + add_quantile(
2  y_value = 0.5, # Add median survival time
3 )
```

Add Quantiles (II)

Result

Exercise: Add Time Points

- Task: Add reference lines at 72 months
 - Use add_quantile() with x_value argument
- ► Solution

Further Customizations

- Customize the plot further
- More about ggsurvfit
 - ggsurvfit website
 - Webinar by Daniel D. Sjoberg

Tidy Analysis of Competing Risks

Competing Risks Overview

Competing risks

- Subject may experience at most one of multiple distinct types of event
- E.g., death from different causes; relapse vs. death in remission (before relapse)
- Notation: (T, Δ)
 - T: time to event
 - Δ : event type indicator (e.g., 1 for relapse, 2 for death)

Quantity of interest

cumulative incidence function (CIF), or sub-distribution

$$F_k(t) = P(T \le t, \Delta = k)$$

 \circ Cumulative probability of event type k by time t

tidycmprsk Package

9 1.11 T2

31 0.277 T1

NA 2.07 T3

51 2.77 T4

39 0.613 T4

2 Drug B

3 Drug A

4 Drug A

5 Drug A

6 Drug B

- Analysis of CIF implemented in cmprsk package
 - A "tidy" version is available intidycmprskpackage

II

III

III

- Simple interface, plays nicely with gtsummary and ggsurvfit
- Input data: status: must be a factor, with the first level indicating censoring and subsequent levels the competing risks

```
1 library(tidycmprsk) # Load tidycmprsk package
  2 data("trial", package = "tidycmprsk") # Load trial data from tidycmprsk package
    head(trial) # Display the first few rows of the data
# A tibble: 6 \times 9
           age marker stage grade response death death cr
  trt
                                                                     ttdeath
  <chr> <dbl> <dbl> <fct> <fct><</pre>
                                      <int> <int> <fct>
                                                                        <dbl>
1 Drug A
            23 0.16 T1
                            II
                                                                         24
```

0 censor

0 censor

0 censor

1 1 death other causes

1 1 death other causes

1 death from cancer

24

24

17.6

16.4

15.6

Nonpametric Inference

• Gray's estimator and test

```
1 # Fit cumulative incidence function (CIF) for competing risks
 2 cif fit <- cuminc(Surv(ttdeath, death cr) ~ trt, trial)</pre>
 3 cif fit # print results
   #> • Failure type "death from cancer"
   #> strata time
                   n.risk
                             estimate
                                                    95% CI
                                        std.error
                              0.000
   #> Drug A
              5.00
                    97
                                        0.000
                                                    NA, NA
   #> Drug A
              10.0
                    94
                              0.020 0.014
                                                    0.004, 0.065
   #> Drug A
              15.0
                    83
                             0.071 0.026
                                                    0.031, 0.134
   #> Drug A
              20.0
                    61
                             0.173 0.039
                                                    0.106, 0.255
   #> Drug B
              5.00
                    102
                              0.000
                                      0.000
                                                    NA, NA
   #> Drug B
              10.0
                    95
                              0.039
                                        0.019
                                                    0.013, 0.090
12 #> Drug B
                                        0.037
                                                    0.102, 0.246
              15.0
                     75
                              0.167
13 #> Drug B
                              0.255
                                                    0.175, 0.343
              20.0
                                        0.043
```

Raw Output

Raw output from cuminc() continued

```
1 #> • Failure type "death other causes"
 2 #> strata
               time
                     n.risk
                              estimate
                                        std.error
                                                    95% CI
   #> Drug A
               5.00
                    97
                              0.010
                                        0.010
                                                    0.001, 0.050
   #> Drug A
               10.0
                     94
                              0.020
                                        0.014
                                                    0.004, 0.065
   #> Drug A
               15.0
                              0.082
                                                    0.038, 0.147
                     83
                                      0.028
 6 #> Drug A
               20.0
                    61
                              0.204
                                     0.041
                                                    0.131, 0.289
   #> Drug B
               5.00
                              0.000
                                    0.000
                    102
                                                    NA, NA
 8 #> Drug B
               10.0
                    95
                              0.029
                                     0.017
                                                    0.008, 0.077
 9 #> Drug B
              15.0
                              0.098
                                      0.030
                                                    0.050, 0.165
                                                    0.133, 0.289
   #> Drug B
               20.0
                    55
                              0.206
                                        0.040
11
   #>
   #> • Tests
13 #> outcome
                                      df
                                            p.value
                          statistic
14 #> death from cancer
                                            0.16
                          1.99
                                      1.00
15 #> death other causes
                          0.089
                                      1.00
                                            0.77
```

Tidy Output in tibble

- Use broom to tidy cuminc object
 - Useful for further analysis or visualization

```
tidy cif <- tidy(cif fit) # Tidy the CIF fit object
  2 head(tidy cif) # Display the first few rows of the tidy data
# A tibble: 6 \times 12
  time outcome strata estimate std.error conf.low conf.high n.risk n.event
  <dbl> <chr>>
                <fct>
                              <dbl>
                                        <dbl>
                                                 <dbl>
                                                           <dbl> <int>
                                                                          <int>
       death from ... Drug A
                                              NA
                                                         NA
                                                                     98
2 3.53 death from ... Drug A
                                                                     98
                                              NΑ
                                                         NA
  5.33 death from ... Drug A
                                              NΑ
                                                         NA
                                                                     97
4 6.32 death from ... Drug A
                                                                     97
                                              NΑ
                                                         NA
 7.27 death from ... Drug A 0.0102 0.0102 8.84e-4
                                                        0.0503
                                                                     97
 7.38 death from ... Drug A 0.0204
                                       0.0144 3.90e-3
                                                          0.0652
                                                                     96
# i 3 more variables: n.censor <int>, cum.event <int>, cum.censor <int>
```

Exercise

Tabulate CIF estimates with 95% confidence intervals at 5, 10, 15, and 20 months for each risk.

Tabulating CIF Estimates (I)

- Use tbl_cuminc() to create a table of CIF estimates
 - Similar syntax to tbl_survfit()
 - times: time points for estimates
 - outcomes: specify outcomes to include in the table (Default is the first outcome)

```
# Tabulate CIF estimates with 95% confidence intervals
cif_fit |> # Pass `tidycuminc` object

tbl_cuminc(
    outcomes = c("death from cancer", "death other causes"), # Specify outcomes

times = c(10, 15, 20), # Time points for estimates
    label_header = "Month {time}" # Column label: "Month xx"
)|>
add_p() # Add p-values from Gray's test
```

Tabulating CIF Estimates (II)

• Result

Characteristic	Month 10	Month 15	Month 20	p-value ¹
death from cancer				
Chemotherapy Treatment				0.2
Drug A	2.0% (0.39%, 6.5%)	7.1% (3.1%, 13%)	17% (11%, 26%)	
Drug B	3.9% (1.3%, 9.0%)	17% (10%, 25%)	25% (17%, 34%)	
death other causes				
Chemotherapy Treatment				0.8
Drug A	2.0% (0.39%, 6.5%)	8.2% (3.8%, 15%)	20% (13%, 29%)	
Drug B	2.9% (0.79%, 7.7%)	9.8% (5.0%, 17%)	21% (13%, 29%)	
¹ Gray's Test				

CIF Graphics (I)

- Plot CIF estimates with ggsurvfit::ggcuminc()
 - Similar syntax to ggsurvfit()
 - outcome: specify outcome to plot

```
cif_fit |> # Pass `tidycuminc` object
ggcuminc(outcome = "death from cancer") + # Plot CIF for "death from cancer"
add_confidence_interval() + # Add confidence intervals
add_risktable() + # Add risk table below the graph
add_pvalue(caption = "Gray's test {p.value}") + # Add p-value for Gray's test
scale_x_continuous("Time (months)", breaks = seq(0, 24, 6)) + # x-axis format
scale_y_continuous("Cumulative incidence function", limits = c(0, 0.5)) + # y-axis format
ggtitle("Death from cancer") + # Title
theme_classic() + # Use classic theme for this ggplot
theme(legend.position = "top") # Position legend at the top
```

CIF Graphics (II)

Result

CIF Graphics Exercise (I)

- Task: create the figure below
 - **Hint**: plot separate figures for each outcome and use patchwork to combine them

CIF Graphics Exercise (II)

- ► Solution
- More about tidycmprsk
 - tidycmprsk website

Summary

Key Takeaways

Nonparametric survival analysis

- Use survival::survfit() for Kaplan-Meier estimates
- Use tidycmprsk::cuminc() for CIF of competing risks

• Tidy outputs

■ Use broom::tidy() to convert survfit and tidycuminc objects into tidy data frames

Tabulation and visualization

- Use gtsummary::tbl_survfit() and tidycumprsk::tbl_cuminc() for tabulating survival estimates
- Use ggsurvfit::ggsurvfit() and ggsurvfit::ggcuminc() for visualizing survival curves and CIF

Next Steps

- Cox regression analysis
 - Tidy and format results from survival::coxph()
 - Visualize prediction results
- Competing risks
 - Proportional sub-distribution hazards (Fine-Gray) regression
 - Tabulation and graphics