习题纸17

习题 1. 求下列函数的全微分:

1.
$$f(x,y) = \arctan\left(\frac{x+y}{1-xy}\right)$$

2.
$$f(x,y) = x^y$$

3.
$$f(x, y, z) = \sqrt[z]{\frac{x}{y}}$$

4.
$$f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$

习题 2. 证明: 函数 $f(x,y) = \begin{cases} 0, & (x,y) = (0,0) \\ \frac{xy}{\sqrt{x^2+y^2}}, & (x,y) \neq (0,0) \end{cases}$ 连续且在原点附近存在有界的偏导数,但在原点处不可微。

习题 3. 设E为 \mathbb{R}^2 中的开集,f为E上的函数。 证明:若f满足

- 1. 对任意 y_0 , 函数 $x \mapsto f(x, y_0)$ 连续
- 2. f存在有界偏导数 f'_y

则函数f(x,y)连续。

习题 4. 设E为 \mathbb{R}^2 中的凸开集,f为E上的函数,且存在有界的偏导数 f_x' 和 f_y' 。证明f在E上一致连续。

习题 5. 若函数f(x,y,z)满足对任意t>0都有 $f(tx,ty,tz)=t^kf(x,y,z)$,则称f为k次 齐次函数。

- 1. 证明函数 $\frac{xy^2}{\sqrt{x^2+y^2}} xy$ 和 $(\frac{x}{y})^{\frac{y}{z}}$ 为齐次函数并求其次数。
- 2. 证明若f(x,y,z)为可微的k次齐次函数,则其偏导数 $f'_x(x,y,z), f'_y(x,y,z), f'_z(x,y,z)$ 均为k-1次齐次函数。
- 3. 证明若f(x,y,z)可微,则f(x,y,z)为k次齐次函数当且仅当对任意x,y,z如下等式成立:

$$xf'_x(x,y,z) + yf'_y(x,y,z) + zf'_z(x,y,z) = kf(x,y,z).$$