Information Visualization

W05: Rendering Pipeline

Graduation School of System Informatics
Department of Computational Science

Naohisa Sakamoto, Akira Kageyama

Apr. 25, 2017

Schedule

•	W01 4/11	Guidance
•	W02 4/12	Setup
•	W03 4/18	Introduction to Data Visualization
•	W04 4/19	CG Programming
•	W05 4/25	Rendering Pipeline
•	W06 4/26	Coordinate Systems and Transformations
•	W07 5/09	Shading
•	W08 5/10	Shader Programming
•	W09 5/16	Visualization Pipeline
•	W10 5/17	Data Model and Transfer Function
•	W11 5/23	Scalar Data Visualization 1 (Isosurface Extraction)
•	W12 5/24	Implementation of Isosurface Extraction
•	W13 5/30	Scalar Data Visualization 2 (Volume Rendering)
•	W14 5/31	Implementation of Volume Rendering
•	W15 6/06	Student Presentations

Table of Contents

- Rendering pipeline
- Geometric Transformations
- Coordinate System and Transformations

Table of Contents

- Rendering pipeline
- Geometric Transformations
- Coordinate System and Transformations

Rendering Pipeline

- Rendering pipeline (Graphics pipeline)
 - Sequence of steps when rendering objects

Rendering Pipeline

Processing steps on rendering pipeline

Table of Contents

- Rendering pipeline
- Geometric Transformations
- Coordinate System and Transformations

Geometric Transformations

 Geometric objects consist of a set of points and a point P is represented in Cartesian coordinates.

$$- P = (X, Y)$$

- Size, position, and orientation of objects can be changed by matrix operations.
 - Scaling
 - Translation
 - Rotation

Scaling

 Scaling an object from the point of origin by the factors sx and sy in x- and y-direction, respectively.

$$X' = sx \cdot X$$

$$Y' = sy \cdot Y$$

$$s_{y} \cdot Y$$

$$X$$

$$S_{x} \cdot X$$

Translation

• Translation of a point (X, Y) by the factors tx and ty in x- and y-direction.

$$X' = X + tx$$
$$Y' = Y + ty$$

• Rotating a point (X, Y) around the point of origin by an angle θ .

$$\begin{cases} X = r \cos \alpha \\ Y = r \sin \alpha \end{cases}$$

$$\begin{cases} X' = r \cos(\alpha + \theta) \\ Y' = r \sin(\alpha + \theta) \end{cases}$$

$$X' = \cos \theta \cdot X - \sin \theta \cdot Y$$

$$Y' = \sin \theta \cdot X + \cos \theta \cdot Y$$

Rotation of X and Y axis.

Rotation of X and Y axis.

- Rotation matrix
 - Column vectors represent unit direction vectors of the rotated axes.

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

- Rotation matrix
 - Column vectors represent unit direction vectors of the rotated axes.

Matrix Representations

Scaling

$$X' = sx \cdot X$$
$$Y' = sy \cdot Y$$

$$\begin{bmatrix} X' \\ Y' \end{bmatrix} = \begin{bmatrix} sx & 0 \\ 0 & sy \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$$

Translation

$$X' = X + tx$$
$$Y' = Y + ty$$

$$X' = \cos\theta \cdot X - \sin\theta \cdot Y$$

$$Y' = \sin\theta \cdot X + \cos\theta \cdot Y$$

$$\begin{bmatrix} X' \\ Y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$$

Matrix Representations

Scaling

$$X' = sx \cdot X$$
$$Y' = sy \cdot Y$$

$$\begin{bmatrix} X' \\ Y' \end{bmatrix} = \begin{bmatrix} sx & 0 \\ 0 & sy \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$$

Translation

$$X' = X + tx$$
$$Y' = Y + ty$$

$$\begin{bmatrix} X' \\ Y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

$$X' = \cos\theta \cdot X - \sin\theta \cdot Y$$

$$Y' = \sin\theta \cdot X + \cos\theta \cdot Y$$

$$\begin{bmatrix} X' \\ Y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$$

Matrix Multiplication

- Transformations can be described as a matrix multiplication.
 - Homogeneous representation
 - Combined matrix M with scaling, translation and rotation matrices

$$\begin{bmatrix} X' \\ Y' \\ 1 \end{bmatrix} = M \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

Homogeneous Representations

Scaling

$$\begin{bmatrix} X' \\ Y' \\ 1 \end{bmatrix} = \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

Translation

$$\begin{bmatrix} X' \\ Y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} X' \\ Y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

Ordering Transformations

• Where is P'=(X',Y') transformed with a scaling matrix S, a translation matrix T and a rotation matrix R from P=(X,Y)?

$$\begin{bmatrix} X' \\ Y' \\ 1 \end{bmatrix} = STR \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

Ordering Transformations

- Matrix multiplication is not cumulative.
 - Translation (T) and then rotation (R)

$$P' = RTP$$

— Rotation (R) and then translation (T)

$$P' = TR P \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

Scaling

• Scaling a point (X, Y, Z) with (sx, sy, sz)

$$\begin{bmatrix} X' \\ Y' \\ Z' \\ 1 \end{bmatrix} = \begin{bmatrix} sx & 0 & 0 & 0 \\ 0 & sy & 0 & 0 \\ 0 & 0 & sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Translation

• Translation a point (X, Y, Z) with (tx, ty, tz)

$$\begin{bmatrix} X' \\ Y' \\ Z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & tx \\ 0 & 1 & 0 & ty \\ 0 & 0 & 1 & tz \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Rotation in 3D space

Rotation around z-axis

• Rotation around the z-axis by an angle θ_z

Rotation around y-axis

• Rotation around the y-axis by an angle θ_y

Rotation around x-axis

• Rotation around the x-axis by an angle θ_{x}

Table of Contents

- Rendering pipeline
- Geometric Transformations
- Coordinate System and Transformations

Coordinate Transformations

- 3D rendering
 - Converting 3D objects into 2D images

Coordinate Systems

- In 3D computer graphics, objects are projected onto a image plane through several coordinate systems.
- Coordinate Systems
 - Object Coordinate System
 - 2. World Coordinate System
 - 3. Camera Coordinate System
 - 4. Clip Coordinate System
 - 5. Normalized Device Coordinate System
 - 6. Window Coordinate System

Object Coordinate System

 3D objects are often defined in an original local coordinate system.

Object coordinate system

World Coordinate System

A basic reference coordinate system for all objects.

Camera Coordinate System

 A coordinate system on the basis of a camera for rendering the objects.

Clip Coordinate System

 A coordinate system to clip points in the camera coordinate system based on the view frustum.

Normalized Device Coordinate System

 A coordinate system yielded by dividing the clip coordinates by w.

- Range:
$$-1 \le x \le 1$$
, $-1 \le y \le 1$, $-1 \le z \le 1$

Window Coordinate System

 A 2D coordinate system defined on a projection plane.

Coordinate Transformations

- 3D Objects are rendered through the following coordinate transformations
 - 1. Modeling transformation
 - Object coordinates to world coordinates
 - 2. Viewing transformation
 - World coordinates to camera coordinates
 - 3. Projection transformation
 - Camera coordinates to clip coordinates (NDC)
 - 4. Viewport transformation
 - NDC to window coordinates

Coordinate Transformations

Transformation pipeline

Modeling Transformation

- Object coordinates to world coordinates

$$egin{bmatrix} x_{
m world} \ y_{
m world} \ z_{
m world} \ w_{
m world} \end{bmatrix} = M_{
m model} egin{bmatrix} x_{
m obj} \ y_{
m obj} \ z_{
m obj} \ w_{
m obj} \end{bmatrix}$$

Viewing Transformation

- World coordinates to camera coordinates
 - Camera position and orientation in world coords

$$egin{bmatrix} x_{ ext{cam}} \ y_{ ext{cam}} \ z_{ ext{cam}} \ w_{ ext{cam}} \ w_{ ext{cam}} \ w_{ ext{cam}} \ w_{ ext{ord}} \ w_{ ext{ord}} \ w_{ ext{world}} \ w_{ ext{wor$$

Viewing Transformation

- Camera position $c = (c_x, c_y, c_z)$
- Up vector $\mathbf{u} = (u_x, u_y, u_z)$
- Look-at point $g = (g_x, g_y, g_z)$

Viewing Transformation

- Viewing matrix $M_{\rm view} = C_{\rm dir} C_{\rm pos}$
 - $-C_{dir}$: Camera direction matrix

$$C_{\text{dir}} = \begin{bmatrix} r_x & r_y & r_z & 0 \\ f_x & f_y & f_z & 0 \\ -d_x & -d_y & -d_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$d = \frac{g - c}{|g - c|} \quad f = \frac{r \times d}{|r \times d|} \quad r = \frac{d \times u}{|d \times u|}$$

Projection Transformation

- Camera coordinates to clip coordinates (normalized device coordinates)
 - Orthogonal Projection
 - Perspective Projection

$$\begin{bmatrix} x_{\text{clip}} \\ y_{\text{clip}} \\ z_{\text{clip}} \\ w_{\text{clip}} \end{bmatrix} = M_{\text{proj}} \begin{bmatrix} x_{\text{cam}} \\ y_{\text{cam}} \\ z_{\text{cam}} \\ w_{\text{cam}} \end{bmatrix} \qquad \begin{bmatrix} x_{\text{NDC}} \\ y_{\text{NDC}} \\ z_{\text{NDC}} \end{bmatrix} = \begin{bmatrix} x_{\text{clip}} / w_{\text{clip}} \\ y_{\text{clip}} / w_{\text{clip}} \\ z_{\text{clip}} / w_{\text{clip}} \end{bmatrix}$$

Orthogonal Projection

All projection lines are orthogonal to the projection plane.

Orthogonal Projection

Orthogonal projection matrix P_{orth}

$$M_{\text{proj}} = P_{\text{orth}} = \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & -\frac{2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Orthogonal Projection Matrix

Mapping from xcam to xNDC

$$-[l, r]$$
 to $[-1, 1]$

$$x_{\text{NDC}} = \frac{1 - (-1)}{r - l} x_{\text{cam}} + \frac{r \cdot (-1) - 1 \cdot l}{r - l}$$

$$= \frac{2}{r - l} x_{\text{cam}} - \frac{r + l}{r - l}$$

$$x_{\text{NDC}}$$

$$x_{\text{NDC}}$$

$$x_{\text{NDC}}$$

Orthogonal Projection Matrix

Mapping from ycam to yNDC

$$-[b, t]$$
 to $[-1, 1]$

$$y_{\text{NDC}} = \frac{1 - (-1)}{t - b} y_{\text{cam}} + \frac{t \cdot (-1) - 1 \cdot b}{t - b}$$

$$= \frac{2}{t - b} y_{\text{cam}} - \frac{t + b}{t - b}$$

$$b$$

$$y_{\text{NDC}}$$

$$y_{\text{NDC}}$$

$$y_{\text{NDC}}$$

Orthogonal Projection Matrix

Mapping from zcam to zNDC

$$-[-n, -f]$$
 to $[-1, 1]$

$$z_{\text{NDC}} = \frac{1 - (-1)}{-f - (-n)} z_{\text{cam}} + \frac{(-f) \cdot (-1) - 1 \cdot (-n)}{-f - (-n)}$$

$$= -\frac{2}{f - n} z_{\text{cam}} - \frac{f + n}{f - n}$$

 $z_{\rm cam}$

Perspective Projection

 Perspective projection has a center of projection (viewpoint)

• Projected point $(x_{\text{near}}, y_{\text{near}})$ onto the near clipping plane

Perspective Projection

• Perspective projection matrix $m{P}_{
m pers}$

$$M_{\text{proj}} = P_{\text{pers}} = \begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0\\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0\\ 0 & 0 & -\frac{f+n}{f-n} & -\frac{2fn}{f-n}\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Mapping from xnear to xNDC

$$-[l, r]$$
 to $[-1,1]$

$$x_{\text{NDC}} = \frac{2}{r-l} x_{\text{near}} - \frac{r+l}{r-l}$$

$$= \frac{2}{r-l} \cdot \frac{n \cdot x_{\text{cam}}}{-z_{\text{cam}}} - \frac{r+l}{r-l}$$

$$= \left(\frac{2n}{r-l} x_{\text{cam}} + \frac{r+l}{r-l} z_{\text{cam}}\right) / -z_{\text{cam}}$$

Mapping from ynear to yNDC

$$-[b, t]$$
 to $[-1, 1]$

$$y_{\text{NDC}} = \frac{2}{t - b} y_{\text{near}} - \frac{t + b}{t - b}$$

$$= \frac{2}{t - b} \cdot \frac{n \cdot y_{\text{cam}}}{-z_{\text{cam}}} - \frac{t + b}{t - b}$$

$$= \left(\frac{2n}{t - b} x_{\text{cam}} + \frac{t + b}{t - b} z_{\text{cam}}\right) / -z_{\text{cam}}$$

 y_{NDC}

- Mapping from zcam to zNDC
 - -[-n, -f] to [-1, 1]
 - The projection does not depend on xcam and ycam.
 - Solve for A and B in the following matrix.

$$\begin{bmatrix} x_{clip} \\ y_{clip} \\ z_{clip} \\ w_{clip} \end{bmatrix} = \begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & A & B \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_{cam} \\ y_{cam} \\ z_{cam} \\ w_{cam} \end{bmatrix} \implies \begin{aligned} z_{clip} &= Az_{cam} + Bw_{cam} \\ w_{clip} &= -z_{cam} \\ \vdots &z_{NDC} = \frac{z_{clip}}{w_{clip}} = \frac{Az_{cam} + Bw_{cam}}{-z_{cam}} \end{aligned}$$

- $w_{\text{cam}}=1$
- $(z_{cam}, z_{NDC}) = (-n, -1), (-f, 1)$

$$\begin{cases} \frac{-An+B}{n} &= -1 \\ \frac{-Af+B}{f} &= 1 \end{cases} \Rightarrow \begin{cases} A &= -\frac{f+n}{f-n} \\ B &= -\frac{2fn}{f-n} \end{cases}$$

$$\therefore z_{NDC} = \frac{Az_{cam} + Bw_{cam}}{-z_{cam}} = \frac{-\frac{f+n}{f-n}z_{cam} - \frac{2fn}{f-n}}{-z_{cam}}$$

$z_{ m NDC}$ and $z_{ m cam}$

• Nonlinear mapping of $z_{\rm cam}$ to $z_{\rm NDC}$

$$z_{\text{NDC}} = \frac{Az_{\text{cam}} + Bw_{\text{cam}}}{-z_{\text{cam}}}$$

$$= \frac{-\frac{f+n}{f-n}z_{\text{cam}} - \frac{2fn}{f-n}}{-z_{\text{cam}}}$$

$$= \frac{2fn}{f-n}\frac{1}{z_{\text{cam}}} + \frac{f+n}{f-n}$$

Perspective Projection with Field-of-View

• The parameters in the perspective projection matrix can be reduced by representing it with an angle θ called as field-of-view (fov).

Perspective Projection with Filed-of-View

• Perspective projection matrix $m{P}_{
m pers}$

$$M_{\text{proj}} = P_{\text{pers}} = \begin{bmatrix} \frac{1}{a \tan(\theta/2)} & 0 & 0 & 0\\ 0 & \frac{1}{\tan(\theta/2)} & 0 & 0\\ 0 & 0 & -\frac{f+n}{f-n} & -\frac{2fn}{f-n}\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Perspective Projection Matrix with Field-of-View

• The near clipping plane represented with (r, l, t, b) is calculated as follows:

Viewport Transformation

 Normalized device coordinates (NDC) to window coordinates

$$\begin{bmatrix} x_{\text{win}} \\ y_{\text{win}} \\ z_{\text{win}} \\ 1 \end{bmatrix} = M_{\text{viewport}} \begin{bmatrix} x_{\text{NDC}} \\ y_{\text{NDC}} \\ z_{\text{NDC}} \\ 1 \end{bmatrix}$$

Viewport Transformation

ullet Viewport matrix $M_{
m viewport}$

$$M_{\text{viewport}} = \begin{bmatrix} \frac{v_w}{2} & 0 & 0 & v_x + \frac{v_w}{2} \\ 0 & \frac{v_h}{2} & 0 & v_y + \frac{v_h}{2} \\ 0 & 0 & \frac{d_f - d_n}{2} & \frac{d_f + d_n}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Viewport Transformation

- Viewport (v_x, v_y, v_w, v_h)
- Range of depth value $[d_n, d_f]$

Viewport Matrix

Mapping from xNDC to xwin

$$-[-1, 1]$$
 to $[v_x, v_x + v_w]$

$$x_{\text{win}} = \frac{(v_x + v_w) - v_x}{1 - (-1)} x_{\text{NDC}} + \frac{1 \cdot v_x - (-1) \cdot (v_x + v_w)}{1 - (-1)}$$

$$= \frac{v_w}{2} x_{\text{NDC}} + \left(v_x + \frac{v_w}{2}\right)$$

$$v_x + v_w$$

Viewport Matrix

Mapping from yNDC to ywin

$$-[-1, 1]$$
 to $[v_y, v_y + v_h]$

$$y_{\text{win}} = \frac{(v_y + v_h) - v_y}{1 - (-1)} y_{\text{NDC}} + \frac{1 \cdot v_y - (-1) \cdot (v_y + v_h)}{1 - (-1)}$$

$$= \frac{v_h}{2} y_{\text{NDC}} + \left(v_y + \frac{v_h}{2}\right)$$

$$v_{y+v_h} + \frac{v_{y+v_h}}{2} + \frac{v_{y+v_h}}$$

Viewport Matrix

Mapping from zNDC to zwin

$$-[-1, 1]$$
 to $[d_n, d_f]$

$$z_{\text{win}} = \frac{d_f - d_n}{1 - (-1)} z_{\text{NDC}} + \frac{1 \cdot d_n - (-1) \cdot d_f}{1 - (-1)}$$
$$= \frac{d_f - d_n}{2} z_{\text{NDC}} + \frac{d_f + d_n}{2}$$

Polling

- Take the poll
 - Student ID Number
 - Name