Estudio y análisis de efectividad a través de JIRA

Titulación:

Master U. en Big Data y Ciencia de Datos

Curso académico

2021 – 2022

Alumno/a:

Crhistian Orduz Cifuentes

D.N.I: 1072702709

Directora de TFM:

Cristina Caro González

Convocatoria:

Primera

Índice

Res	um	nen		6					
Abs	tra	ct		7					
Pala	abra	as Cla	ve	7					
Key	wo	rds		7					
1.	Introducción								
2.	Ok	ojetivo	s						
3.	Es	stado d	del Arte y Marco teórico	11					
4.	De	esarro	lo del proyecto y resultados	14					
4.	.1.	Met	odología	15					
4.	.2.	Plar	nteamiento del problema	19					
4.	.3. De		esarrollo del proyecto	20					
	4.3	3.1.	Selección y preparación de los datos	20					
	4.3	3.2.	Preprocesado de los datos	21					
	4.3	3.3.	Análisis descriptivo	30					
	4.3	3.4.	Estructuración modelo de indicadores	41					
	4.3	3.5.	Evaluación de desempeño	¡Error! Marcador no definido.					
4	.4.	Res	ultados	53					
	4.4	4.1.	Visualización de resultados	55					
	4.4	4.2.	Análisis de resultados	¡Error! Marcador no definido.					
5.	Co	onclus	ión y trabajos futuros	57					
6.	Referencias								
Ane	xos	s I		60					
Ane	XOS	s II		¡Error! Marcador no definido.					

Índice de ilustraciones

Ilustración 1. Estudio y análisis de indicadores. Fuente: https://cutt.ly/JH23fiY ¡Error!
Marcador no definido.
Ilustración 2. Cronograma de las tareas definidas. Elaboración: propia14
Ilustración 3. Etapas del proceso de minería de datos. Fuente: https://cutt.ly/SH91qit 15
Ilustración 4. Familias de preprocesado de datos. Fuente: https://cutt.ly/NH91dwS16
Ilustración 5. Estructura de los datos del repositorio. Elaboración propia¡Error!
Marcador no definido.
Ilustración 6. Distribución de los datos por tipo de documento. Elaboración propia 20
Ilustración 7. Reporte de gestión consolidado en Colab. Elaboración: propia ¡Error!
Marcador no definido.
Ilustración 8. Numero de filas y columnas del reporte. Elaboración: propia¡Error!
Marcador no definido.
Ilustración 9. Validación valores nulos. Elaboración: propia¡Error! Marcador no
definido.
Ilustración 10. Medidas de centralidad y dispersión I. Elaboración: propia¡Error!
Marcador no definido.
Ilustración 11. Medidas de centralidad y dispersión II. Elaboración: propia¡Error!
Marcador no definido.
Ilustración 12. Distribución de tareas por proyecto. Elaboración propia¡Error!
Marcador no definido.
Ilustración 13. Distribución de tareas por año. Elaboración: propia¡Error! Marcador no
definido.
Ilustración 14. Distribución de tareas por tipo. Elaboración: propia¡Error! Marcador no
definido.
Ilustración 15. Participación de tareas por tipo. Elaboración: propia¡Error! Marcador
no definido.
Ilustración 16. Distribución de tareas por estado. Elaboración: propia¡Error! Marcador
no definido.
Ilustración 17. Participación de tareas por estado. Elaboración: propia¡Error!
Marcador no definido.
Ilustración 18. Distribución de tareas por empelado. Elaboración: propia¡Error!
Marcador no definido.
Ilustración 19. Participación de tareas por empleado. Elaboración: propia¡Error!
Marcador no definido.
Ilustración 20. Distribución de horas ejecutadas por empleado. Elaboración: propia
¡Error! Marcador no definido.
Ilustración 21. Cantidad de horas ejecutadas por empleado. Elaboración: propia ¡Error!
Marcador no definido.
Ilustración 22. Tiempos presupuestados por tipo de tareas. Elaboración: propia. ¡Error!
Marcador no definido.

Illustración 23. Tiempos presupuestados de tarea por empleado. Elaboración: prop
Ilustración 24. Distribución de tiempos ejecutados por tarea. Elaboración propia ¡Erro Marcador no definido.
Ilustración 25. Distribución de tiempos presupuestados por tarea. Elaboración prop
Ilustración 26. Boxplot de tiempos ejecutados por proyecto. Elaboración: propia ¡Erro Marcador no definido.
Ilustración 27. Boxplot de tiempos presupuestados por proyecto. Elaboración: prop
Ilustración 28. Matriz de correlación de atributos. Elaboración propia¡Error! Marcad no definido.
Ilustración 29. Estructura modelo de indicadores. Elaboración: propia¡Error! Marcad no definido.
Ilustración 30. Distribución de los tiempos ejecutados. Elaboración propia ¡Erro Marcador no definido.
Ilustración 31. Histograma de outliers identificados. Elaboración: propia; Erro Marcador no definido.
Ilustración 32. Reporte de gestión consolidado. Elaboración propia¡Error! Marcad no definido.
Ilustración 33. Resultado total primer semestre. Elaboración propia¡Error! Marcad
no definido. Ilustración 34. Resultado de indicadores primer semestre. Elaboración propia¡Erro
Marcador no definido. Ilustración 35. Resultado total segundo semestre. Elaboración propia; Error! Marcad
no definido. Ilustración 36. Resultado indicadores segundo semestre. Elaboración propia ¡Erro
Marcador no definido. Ilustración 37. Resultado total tercer semestre. Elaboración propia¡Error! Marcador i
definido. Ilustración 38. Resultado indicadores tercer semestre. Elaboración propia¡Erro
Marcador no definido. Ilustración 39. Resultados indicadores consolidados. Elaboración propia; Erro
Marcador no definido.
Ilustración 40. Resultados indicadores consolidados. Elaboración propia ¡Erro Marcador no definido.
Ilustración 41. Resultado total de desempeño consolidado. Elaboración: propia . ¡Erro Marcador no definido.
Ilustración 42. Velocímetro de gestión consolidada por empleado. Elaboración: prop
Ilustración 43. Distribución de gestión por categoría Elaboración: propia ¡Erro Marcador no definido.
Ilustración 44. Serie de tiempo resultado por semestre. Elaboración: propia ¡Erro Marcador no definido.

Índice de tablas

rabia 2. Metadatos atributos dei reporte de gestion consolidado. Elaboración: propia
Tabla 3. Consolidación de horas por tareas. Elaboración: propia¡Error! Marcador no
definido.
Tabla 4. Costo por hora de cada empleado. Elaboración propia¡Error! Marcador no
definido.
Tabla 5. Atributos seleccionados. Elaboración propia ¡Error! Marcador no definido.
Tabla 6. Datos de salida de los atributos seleccionados. Elaboración: propia¡Error!
Marcador no definido.
Tabla 7. Indicadores de desempeño. Elaboración propia
Tabla 8. Avance según el estado de la tarea. Elaboración propia¡Error! Marcador no
definido.
Tabla 9. Cuartiles del atributo horas ejecutadas. Elaboración: propia¡Error! Marcador
no definido.
Tabla 10. Tiempos estándar de tareas por proyecto. Elaboración propiaiError!
Marcador no definido.
Tabla 11. Resultados de evaluación de desempeño. Elaboración: propia¡Error!
Marcador no definido.
Tabla 12. Peso asignado a indicadores. Elaboración: propia¡Error! Marcador no
definido.
Tabla 13. Escala cualitativa de resultados. Elaboración: propia53
Tabla 14. Resumen resultados primer semestre. Elaboración: propia¡Error! Marcador
no definido.
Tabla 15. Resumen resultados segundo semestre. Elaboración: propiaiError!
Marcador no definido.
Tabla 16. Resumen resultados tercer semestre. Elaboración: propia¡Error! Marcador
no definido.
Tabla 17. Resumen resultados consolidado. Elaboración: propia¡Error! Marcador no
definido.
Tabla 18. Resultados de desempeño del estudio. Elaboración: propia¡Error! Marcador
no definido.

Tabla 1. Atributos originales. Elaboración propia. ¡Error! Marcador no definido.

Resumen

En el presente Trabajo de Fin de Master (TFM) se realiza un estudio para evaluar el desempeño laboral de los empleados de una empresa del sector tecnológico, a través del análisis de los datos asociados a la gestión realizada durante el último año (2022) con el fin de valorar objetivamente el desempeño individual de cada empleado y mejorar la toma decisiones de la empresa con respecto al personal para optimizar los procesos y maximizar los resultados esperados.

Por lo cual el análisis fue abordado con un enfoque data driven, es decir aplicando juicios y valoraciones basados en datos (suministrados por la empresa), en el que a través de la metodología *KDD* (*Knowledge Discovery in Databases*) se generó un modelo que categoriza a los empleados según los resultados producidos durante el 2022, el cual puede ser iterado posteriormente de acuerdo a la necesidad de la empresa y a las especificaciones del proceso de evaluación de desempeño.

Por lo cual fue necesario implementar principalmente los conocimientos y técnicas vistos en las asignaturas del master como Minería de datos, Estadística avanzada, *Machine Learning*, Visualización de datos, Ciencia de datos para la toma de decisiones y Metodologías para la gestión de proyectos de *Big Data*.

Este proyecto se basa en un trabajo previo del tutor, quien se encargó de otorgar el acceso al repositorio donde se encontraban los datos. Adicionalmente el presente proyecto da cumplimiento al requisito de la asignatura 14MBID como Trabajo de Fin de Master (TFM) del master de Big Data y Ciencia de Datos.

Abstract

In this Final Master's Project (TFM) a study is carried out to evaluate the job performance of the employees of a company in the technology sector, through the analysis of the data associated with the management carried out during the last year (2022) with in order to objectively assess the individual performance of each employee and improve the company's decision-making with respect to personnel to optimize processes and maximize expected results.

Therefore, the analysis was approached with a data driven approach, that is, applying judgments and assessments based on data (supplied by the company), in which, through the KDD (Knowledge Discovery in Databases) methodology, a model was generated that categorizes to employees according to the results produced during 2022, which can be subsequently iterated according to the needs of the company and the specifications of the performance evaluation process.

Therefore, it was necessary to implement mainly the knowledge and techniques seen in the master's subjects such as Data Mining, Advanced Statistics, Machine Learning, Data Visualization, Data Science for decision making and Methodologies for the management of Big Data projects.

This project is based on previous work by the tutor, who was in charge of granting access to the repository where the data was located. Additionally, this project fulfills the requirement of the subject 14MBID as a Final Master's Project (TFM) of the Master of Big Data and Data Science.

Palabras Clave

 Desempeño, Indicador, Minería de datos, Análisis descriptivo, Evaluación, Modelado de datos, Visualización, KDD.

Keywords

 Performance, Indicator, Data mining, Descriptive analysis, Evaluation, Data Modeling, Visualization, KDD.

1. Introducción

En la actualidad es fundamental para las empresas monitorear sus operaciones y llevar registros de sus actividades con el objetivo de conocer el estado de sus procesos e identificar oportunidades de mejora, para la cual deben recolectar un gran volumen de datos. (Vergara, 2019).

Según Granados (2021), gran parte de los datos recolectados son extraídos, transformados y cargados por medio de procesos ETL en los diferentes repositorios de las empresas para el desarrollo de herramientas de inteligencia de negocio (BI) y herramientas analíticas (BA) que les permiten optimizar la toma de decisiones estratégicas y tácticas en los diferentes frentes de la empresa.

Parte de los datos recolectados son los reportes de gestión de los empleados, quienes a través de los resultados producidos afectan directamente el cumplimiento de las metas y objetivos organizacionales. Estos datos son transformados en indicadores de gestión (KPI's) que permiten analizar el comportamiento de un recurso, proceso o proyecto, con el fin de identificar de manera oportuna las desviaciones que se presentan e implementar las acciones correctivas correspondientes (Diez, 2012).

Por lo cual es necesario que se realice en las organizaciones un estudio que permita evaluar periódicamente el desempeño de los empleados de manera objetiva, asegurando que las actividades desarrolladas aporten valor, se enfoquen en las asignaciones establecidas y cumplan con el estándar definido internamente.

Inicialmente para realizar el análisis de desempeño se tomó como insumo principal el conjunto de datos del reporte de gestión de los empleados, el cual fue extraído directamente de la plataforma JIRA, la cual es una herramienta en línea para la administración de las tareas asignadas a un empleado y desde la cual se registran avances, tiempos de ejecución, estados y demás novedades relacionadas con la gestión.

Adicionalmente fueron utilizados otros conjuntos de datos que complementaron el análisis con datos socio-demográficos del personal y datos de los resultados y valoraciones de los proyectos en los que trabajaron los empleados durante el 2022.

Posteriormente se realizó la revisión completa de las bases de datos, entendiendo su estructura y contenido, se consolidaron todos los registros en una única base de datos. Una vez completa la integración, se procedió a realizar el proceso de selección de datos y minería de datos basándose en la metodología KDD (Knowledge Discovery in Databases), para identificar los atributos críticos requeridos para llevar a cabo el estudio de desempeño.

A continuación, se realizó el análisis descriptivo de los datos (EDA) para conocer el comportamiento de los datos y entender de mejor manera los atributos seleccionados para realizar el análisis de desempeño.

Se construyó un modelo de machine learning para realizar la clasificación de los empleados según los resultados producidos durante el 2022 de acuerdo al estándar definido por la empresa. El modelo de machine learning fue trabajado en lenguaje Python, inicialmente como un modelo de clusterizacion de aprendizaje no supervisado, una vez con el resultado de la agrupación de los empleados se llevó a cabo un modelo de clasificación de aprendizaje supervisado ya que esta es una manera útil de mejorar la precisión del algoritmo.

Los resultados del estudio permitieron conocer como fue el desempeño laboral de cada empleado durante el 2022 y realizar el respectivo análisis en relación a las variables que tuvieron un impacto directo en el rendimiento de estos

Finalmente, para la visualización de los resultados obtenidos del estudio de desempeño fue construido un tablero de control. Adicionalmente se incluyeron algunas recomendaciones e insghts identificados para aportar valor a la empresa.

Para realizar el análisis se han utilizado diferentes técnicas y herramientas estudiadas en el Máster de Big Data y Data Science de la VIU. Algunas de las herramientas utilizadas han sido: Google Colab, Anaconda y Power BI.

2. Objetivos

El objetivo principal de este proyecto es realizar un estudio sobre el desempeño laboral de los empleados de una empresa del sector tecnológico, a través del análisis de los datos asociados a la gestión realizada durante el año 2022 que permita optimizar la toma de decisiones y definir estrategias adecuadas con respecto al personal de la empresa.

Los objetivos específicos son:

- Identificar el conjunto de atributos que tienen un mayor impacto en la gestión realizada por los empleados y que son adecuados para el estudio de desempeño a través de la selección, preprocesado y análisis exploratorio de los datos.
- Generar conocimiento a la empresa acerca del rendimiento laboral del personal que sirva para valorar la continuidad, aporte y salarios pagados a los empleados, por medio de la generación de modelo de machine learning construido a partir de las librerías, funciones y algoritmos vistos en el master.
- Evaluar el desempeño de los empleados de acuerdo con el modelo definido y realizar el análisis de los resultados correspondiente para establecer tácticas y acciones que habiliten la mejora productividad en los procesos de la empresa.
- Generar las visualizaciones de los resultados obtenidos utilizando las técnicas y gráficos adecuados que faciliten el entendimiento del estudio realizado.

3. Estado del Arte y Marco teórico

De acuerdo con los objetivos establecidos en esta investigación, es pertinente profundizar el análisis en algunas publicaciones y documentos que dan soporte metodológico a esta investigación y permiten establecer el alcance de los estudios previos realizados sobre el descubrimiento de conocimiento a través de datos para medir el desempeño y analizar el rendimiento laboral en equipos de tecnología.

Sobre los indicadores Salgueiro (2001), afirma que la manera más eficaz de mejorar los resultados globales de la empresa y de los empleados es a través de la medición de indicadores, ya que permiten conocer el estado de los procesos, controlar la evaluación de la empresa y optimizar su desempeño.

Asimismo, los indicadores son la parte más importante de la empresa, por medio de estos se pueden tomar mejores decisiones en los momentos que se pueda requerir, optimizando y garantizando la calidad del servicio que presta la empresa (Perez & Mesanat, 2006).

La metodología seleccionada para este Trabajo de Fin de Master (TFM) es *KDD* (*Knowledge Discovery in Databases*), el cual es "un campo de la inteligencia artificial de rápido crecimiento, que combina técnicas del aprendizaje de máquina, reconocimiento de patrones, estadística, bases de datos, y visualización para automáticamente extraer conocimiento, de un nivel bajo de datos" (Fayyad, 1997, como se citó en Nigro. Xodo. Corti. Terren, 2022).

Para esta investigación evaluar objetivamente la gestión realizada por los empleados, con el fin de valorar los aportes generados e identificar brechas y desviaciones existentes en la operación de la empresa, por lo que según lo mencionado por Fayyad (1997), se extrajo conocimiento de las bases de datos de los reportes de gestión del personal y a partir de ahí se construyó un modelo que permite medir el desempeño de los empleados con un enfoque *data driven*.

La evaluación de desempeño "pretende medir el grado con el que un empleado se ajusta y cumple con el perfil deseado. Los resultados de esta medición permiten generar recomendaciones, buscando mejorar el desempeño de las funciones por parte del empleado" (Arbeláez, 2019, p.1).

Oliveira (2016) sostiene que, la productividad en empresas de tecnología se entiende como la efectividad del esfuerzo productivo, es decir, la tasa de producción por unidad de entrada y que la percepción de esta está sujeta a diferentes factores como la entrega de tareas a tiempo, artefactos producidos que no requieran reprocesos, productos que cumplan con las expectativas de los clientes y actitudes de enfoque y proactividad por parte del recurso humano.

3.1. Herramientas utilizadas

Para el desarrollo de este Trabajo de Fin de Master (TFM) fue necesario utilizar algunas herramientas especializadas en el análisis de datos, por lo que en este apartado menciono algunas de ellas.

3.1.1. Google Colab

Google Colab es una plataforma de programación en línea que se basa en el sistema de Jupyter Notebooks y utiliza la infraestructura de Google para ofrecer una experiencia de programación colaborativa. Al ser una herramienta en línea los usuarios pueden acceder a sus archivos desde cualquier lugar y dispositivo con conexión a internet.

La plataforma se lanzó en 2017 y se ha convertido en una herramienta popular para la investigación y el aprendizaje automático. Google Colab es una herramienta útil para la exploración y el análisis de datos, lo que incluye la realización de procesos de KDD (Knowledge Discovery in Databases).

Los cuadernos de Colab ofrecen una forma interactiva de trabajar con datos, lo que permite a los usuarios importar y manipular conjuntos de datos directamente en el cuaderno. Además, Colab tiene integraciones con varias bibliotecas populares de ciencia de datos, como Pandas, NumPy y Scikit-Learn, que pueden ayudar a los usuarios a realizar tareas comunes de KDD, como la limpieza y preprocesamiento de datos, la visualización y la modelización de datos.

Ilustración 1. Logo de Google Colab (Google Colab, 2023)

3.1.2. Power BI

Power BI es una herramienta de inteligencia empresarial (BI) creada por Microsoft que permite a los usuarios conectarse a una variedad de fuentes de datos, transformar y limpiar datos, y crear visualizaciones y paneles interactivos para ayudar a tomar decisiones basadas en datos. La plataforma fue lanzada en 2015 y se ha convertido en una herramienta popular para la visualización y análisis de datos empresariales

.

La funcionalidad de Power BI es muy versátil, ya que permite a los usuarios conectarse a una amplia gama de fuentes de datos, incluidas bases de datos, aplicaciones de software y servicios en la nube. Power BI también incluye una función de transformación y limpieza de datos, lo que permite preparar y manipular datos para su análisis.

La plataforma de Power BI también incluye herramientas avanzadas de análisis y modelado de datos, que permiten a los usuarios crear modelos de datos complejos y realizar análisis estadísticos y de aprendizaje automático. Además, Power BI se integra con otras herramientas de Microsoft, como Excel y Azure, lo que permite a los usuarios trabajar con una variedad de herramientas de datos en un solo entorno.

Ilustración 2. Logo de Power BI (Power BI, 2023)

3.1.3. Excel

Excel es un software de hojas de cálculo desarrollado por Microsoft en 1985 para facilitar la manipulación de datos numéricos y alfanuméricos en una interfaz gráfica. Desde entonces, Excel se ha convertido en una herramienta popular y ampliamente utilizada para el análisis de datos, la creación de informes y la gestión de proyectos.

La funcionalidad de Excel es muy versátil, ya que permite a los usuarios realizar una amplia gama de tareas, desde cálculos básicos hasta análisis de datos avanzados, como tablas dinámicas, gráficos y modelos de pronóstico. Excel también ofrece funciones de colaboración, lo que permite a los usuarios trabajar en el mismo documento de Excel en tiempo real y compartir y enviar archivos fácilmente.

Además, Excel se integra con otras herramientas de Microsoft lo que permite a los usuarios crear informes basados en datos. También ofrece complementos para la integración con herramientas de análisis de datos y visualización.

Ilustración 3. Logo de Excel (Excel, 2023)

4. Desarrollo del proyecto y resultados

Una vez definidos los objetivos del Trabajo de Fin de Master (TFM), se realizó la construcción de un roadmap donde se identificaron las actividades requeridas para el cumplimiento de los objetivos establecidos previamente, las cuales se visualiza que están organizadas en orden secuencial para desarrollar el análisis de desempeño.

ID	Actividad	Enero	Febrero	Marzo	Abril
1	Selección de datos				
2	Minería de datos				
3	Análisis exploratorio de datos (EDA)				
4	Modelado de datos				
5	Evaluación de desempeño				
6	Análisis de resultados				
7	Visualización de resultados				

Ilustración 4. Cronograma de las tareas definidas. Elaboración: propia

Adicionalmente se llevó a cabo la revisión de los recursos necesarios para ejecutar adecuadamente el estudio y se realizó la selección de la metodología para la gestión del proyecto, la cual es KDD (Knowledge Discovery in Databases) que permite la exploración de los datos para el descubrimiento de patrones y relaciones que son analizados posteriormente para generar conocimiento.

Para la evaluación de desempeño se utilizaron diferentes modelos de machine learning de tipo supervisado y no supervisado, con el fin de encontrar el que mejor se adecuara a la necesidad de la empresa y genera los mejores resultados con los datos disponibles.

Dentro del desarrollo del proyecto se priorizó la construcción de artefactos que aporten valor al estudio, mediante la implementación de los temas y conceptos vistos en las asignaturas del master. Por lo cual fueron construidos los siguientes artefactos:

- Base de datos consolidada
- Notebook de Google Colab con análisis descriptivo (EDA)
- Notebook de Google Colab con modelo de machine learning (ML)
- Tablero de control con visualización de resultados.

4.1. Metodología

4.1.1. KDD (Knowledge Discovery in Databases)

La metodología seleccionada para la ejecución del proyecto es KDD o descubrimiento de conocimiento en bases de datos, el cual es un proceso que consiste en identificar patrones en forma de reglas o funciones, a partir de los datos, con el fin de extraer conocimiento de grandes volúmenes de datos para que el usuario los analice posteriormente. (Fayyad et al., 1996).

La metodología KDD está basada en un bien definido proceso de múltiples pasos, para el descubrimiento de conocimiento en grandes colecciones de datos. El proceso KDD es iterativo por naturaleza, y depende de la interacción para la toma de decisiones, de manera dinámica". Es decir, es el usuario quien toma las decisiones durante todo el proceso, selecciona las herramientas y técnicas para llevar a cabo el proceso, por lo cual los resultados obtenidos son claramente afectados por este (Gupta. Bhatnagar. Wasan, 1997).

Es importante tener en cuenta que el KDD tiene la propiedad de ser altamente interactivo, es decir que es un proceso centrado en el usuario, al ser este quien debe inicialmente identificar la problemática a la que se va a enfrentar, establecer los objetivos que se desean alcanzar, entender el dominio de los datos y analizar el contexto, las propiedades, limitaciones y reglas del escenario en estudio para proponer soluciones viables y factibles (Nigro. Xodo. Corti. Terren, 2022).

El KDD es un proceso conformado por un conjunto de 5 etapas que son ejecutadas de manera secuencial, las cuales son:

- Selección.
- Preprocesamiento/ limpieza.
- Transformación.
- Minería de datos.
- Interpretación/ evaluación

Ilustración 5. Etapas del proceso de minería de datos. Fuente: https://cutt.ly/SH91qit

Selección y preparación

Corresponde a la creación del conjunto de datos objetivo, sobre el cual se realizará el proceso de descubrimiento. La selección de los datos varía de acuerdo con los objetivos establecidos. Una vez preparados los datos, se debe especificar dónde se encuentran los datos de entrada, cuales atributos de los datos de entrada son apropiados para el proyecto, qué atributos se deben utilizar para la función de salida y dónde desea almacenar el modelo final una vez sea construido (Landa, 2018).

Preprocesado

El preprocesamiento de datos es una etapa esencial del proceso de descubrimiento de información o KDD (Knowledge Discovery in Databases, en inglés) (Han. Kamber. Pei. J. Zaki. Wagner, 2012, 2014). Esta etapa se encarga de la limpieza de datos, su integración y reducción para la siguiente fase de minería de datos (Luengo. Herrera. García, 2014). Se analiza la calidad de los datos seleccionados, por lo cual se realizan operaciones para el manejo de datos faltantes, datos vacíos, datos nulos, datos duplicados y datos ruidosos por medio de técnicas estadísticas estándar.

Los datos vacíos son aquellos a los cuales no les corresponde un valor en el mundo real y los datos faltantes son aquellos que tienen un valor que no fue capturado. Los datos ruidosos son valores que están significativamente fuera del rango de valores esperados; se deben principalmente a errores humanos, a cambios en el sistema, a información no disponible a tiempo y a fuentes.

Los datos nulos son datos desconocidos que son permitidos por los sistemas gestores de bases de datos relacionales. En el proceso de preprocesado estos valores se ignoran, se reemplazan por un valor por omisión, o por el valor más cercano, es decir, se usan métricas de tipo estadístico como media, moda, mínimo y máximo para reemplazarlos.

Ilustración 6. Familias de preprocesado de datos. Fuente: https://cutt.ly/NH91dwS

Transformación

Consiste en la búsqueda de características útiles para representar los datos dependiendo de la meta del proceso. Se utilizan métodos de reducción de dimensiones o de transformación para disminuir el número efectivo de variables bajo consideración o para encontrar representaciones invariantes de los datos (Fayyad et al., 1996).

Los métodos de reducción de dimensiones pueden simplificar una tabla de una base de datos horizontal o verticalmente. La reducción horizontal implica la eliminación de tuplas idénticas como producto de la sustitución del valor de un atributo por otro de alto nivel, en una jerarquía definida de valores categóricos o por la discretización de valores continuos. La reducción vertical implica la eliminación de atributos que son insignificantes o redundantes con respecto al problema, como la eliminación de llaves, la eliminación de columnas que dependen funcionalmente.

Minería de datos

El objetivo de esta etapa es la búsqueda y extracción de conocimiento útil, por medio del descubrimiento de patrones insospechados, ocultos, implícitos y de interés, a través de la utilización de modelos de minería de datos que pueden ser predictivos o descriptivos (Moine. Haedo. Gordillo, 2011).

Los modelos predictivos pretenden estimar valores futuros o desconocidos. Entre las tareas predictivas están la clasificación y la regresión. Mientras que los modelos descriptivos identifican patrones que explican o resumen los datos; sirven para explorar las propiedades de los datos examinados.

Entre las tareas descriptivas se encuentran reglas de asociación, patrones secuenciales, clustering y correlaciones. Por lo cual, para la selección de un modelo de minería de datos se debe tener en cuenta la respuesta que se espera generar con los datos, los parámetros que mejor se ajusten al modelo y los tipos de datos a utilizar.

Interpretación / Evaluación

En esta etapa se interpretan los patrones descubiertos y se evalúan los resultados obtenidos. En caso que los resultados no sean satisfactorios, posiblemente se retorna a las anteriores etapas para posteriores iteraciones.

En caso que los resultados sean satisfactorios, se procede a construir la visualización de los resultados, la eliminación de los patrones redundantes o irrelevantes, la traducción de los patrones útiles en términos que sean entendibles y la generación de juicios y valoraciones sobre los patrones resultantes para conocer el rendimiento obtenido y ver si dan cumplimiento a los objetivos establecidos al inicio del proceso. Por último, se aplica el conocimiento encontrado al contexto y se comienza a resolver las problemáticas (Landa, 2018).

4.1.2. Machine Learning

El machine learning o aprendizaje automático, es una rama de la inteligencia artificial que permite a las computadoras aprender y mejorar automáticamente a partir de datos y experiencia previa sin ser programadas explícitamente. Tal como lo definen Alpaydin (2010) y Mitchell (1997), el machine learning es el "diseño y desarrollo de algoritmos que permiten a las máquinas mejorar automáticamente a través de la experiencia" y la "construcción de sistemas informáticos que mejoran automáticamente con la experiencia".

El machine learning se utiliza en una amplia gama de aplicaciones, desde el análisis de datos y la detección de fraude hasta la visión artificial y el procesamiento del lenguaje natural.

El machine learning tiene una historia que se remonta a la década de 1940, cuando los científicos comenzaron a desarrollar algoritmos que permitían a las máquinas aprender de manera autónoma. Uno de los primeros ejemplos de aprendizaje automático se produjo en 1952, cuando Arthur Samuel desarrolló un programa que podía aprender a jugar a las damas mejorando con la experiencia. Desde entonces, el machine learning ha evolucionado rápidamente, impulsado por avances en la computación y la disponibilidad de grandes cantidades de datos.

Las funcionalidades del machine learning son diversas y permiten a los usuarios realizar una amplia gama de tareas, desde el análisis de datos hasta la toma de decisiones automatizada. El machine learning se utiliza ampliamente en la industria para el análisis de datos y la predicción de resultados, como la detección de fraude y la optimización de precios. También se utiliza en aplicaciones de visión artificial, como el reconocimiento facial y la clasificación de imágenes.

El procesamiento del lenguaje natural es otra área de aplicación importante del machine learning, que se utiliza en aplicaciones como la traducción automática y el análisis de sentimientos.

El machine learning también se utiliza en la investigación médica y científica, permitiendo a los científicos analizar grandes cantidades de datos y descubrir patrones que de otra manera podrían pasar desapercibidos. Según Domínguez (2019), "la aplicación del machine learning en el campo de la medicina es prometedora y puede ayudar en la prevención, el diagnóstico y el tratamiento de enfermedades".

4.2. Planteamiento del problema

Una empresa del sector tecnológico que tiene más de 2000 empleados y cuenta con varias sedes distribuidas por Europa, tiene la necesidad de evaluar el desempeño de los empleados durante el último año (2022).

Actualmente en la empresa no existe un modelo basado en datos que soporte la evaluación de desempeño realizada a los empleados, por lo que dicha actividad suele aplicarse de manera subjetiva de acuerdo a lo que el evaluador considere preponderante y enfocada mayormente en la precepción de la gestión. Es por esta razón que se requiere realizar un análisis que evalué de manera objetiva la gestión desarrollada por los empleados a través de los datos reportados en la plataforma JIRA, donde se encuentra el registro de las tareas ejecutadas, las cuales se conocen como "issues" dentro de las metodologías agiles, estas tareas cuentan con una serie de atributos como el estado, tipo, tiempo planeado, tiempo ejecutado, usuario, año, etc.

Para propósitos de este estudio se debe estandarizar la evaluación de desempeño de los empleados teniendo en cuenta las diferentes variables relacionadas a la gestión como el cumplimiento, calidad, satisfacción, efectividad y trabajo en equipo; Así como atributos que pueden impactar directamente en el desempeño laboral.

Para llevar a cabo el estudio de desempeño fueron seleccionados aleatoriamente 1843 empleados, los cuales trabajaron en alguna de las sucursales de la empresa y presentaban diferentes modalidades de trabajo, salario, edad, cargo, ubicación, etc.

4.3. Desarrollo del proyecto

4.3.1. Selección de los datos

Inicialmente se realizó la revisión completa de todas las bases de datos suministradas, las cuales estaban almacenadas en un repositorio en GitHub y se encontraban en idioma alemán, ya que los datos fueron obtenidos en el idioma original de la empresa, por lo que fue necesaria la traducción y entendimiento semántico de los mismos para trabajarlos de forma adecuada. Posteriormente se realizó la validación de los datos con un experto en el dominio para confirmar su consistencia y validez. Las bases de datos suministradas fueron las siguientes:

Reportes de gestión individual: Registros de todas las tareas ejecutadas por los empleados de la empresa durante el año 2022, los cuales se exportaron directamente desde la plataforma JIRA. Esta base de datos contenía 72 ficheros, debido a que los reportes de gestión individual se encontraban organizados por cada sucursal y llevaba los registros de forma mensual.

Resultados de proyectos: Registro de los resultados obtenidos por cada empleado en el proyecto en el que trabajo durante el año 2022. Está conformado por valoraciones de diferentes atributos en relación a su participación y aporte al proyecto en general. Estos datos fueron suministrados por el área de Recursos Humanos de la empresa, ya que se encontraban asociados a los perfiles de los empleados en la plataforma de JIRA

Informe del perfil laboral: Registros de los datos sociodemográficos de los empleados de la empresa con contrato vigente durante el año 2022. Estos datos fueron entregados por el área de proyectos (PMO) de la empresa.

Una vez completada la revisión de los datos, todos ficheros de reportes de gestión individual fueron integrados en una única base de datos denominada reporte de gestión consolidado, la cual contaba con más de 12.000 registros. La integración de todos los ficheros fue posible gracias a que estos se encontraban en un mismo formato (csv) correspondiente a bases de datos de tipo relacional.

Ilustración 7. Distribución de los datos por tipo de documento. Elaboración propia

4.3.2. Minería de los datos

Dimensionamiento de datos

Fue necesario integrar el total de las tareas ejecutadas por cada empleado, haciendo la agrupación correspondiente con el objetivo consolidar los registros de cada empleado y generar el resultado individual de la gestión realizada, por lo cual la base de datos quedo con 1843 registros y 8 atributos. (62% cuantitativos y 37% cualitativos)

Carga de datos

Inicialmente fue cargada la base de datos del reporte de gestión consolidado dentro del notebook de Google Colab para poder trabajarla como dataframe. También se valido el tipo de atributos disponibles en el dataset.

```
Data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1843 entries, 0 to 1842
Data columns (total 9 columns):
# Column
                  Non-Null Count Dtype
                           _____
 0 Nombre_Empleado 1843 non-null
                                             object
 1 Apellido_Empleado 1843 non-null
                                             object
    Nombre_Completo 1843 non-null object
Sucursal 1843 non-null int64
                                             object
 3 Sucursal 1843 non-null int64
4 Cumplimiento 1843 non-null float64
5 Efectividad 1843 non-null float64
6 Tareas Alto 1843 non-null float64
 7 Tareas Medio 1843 non-null float64
     Tareas Bajo
                           1843 non-null
                                             float64
dtypes: float64(5), int64(1), object(3)
memory usage: 129.7+ KB
```

Se validó que los datos se encontrarán balanceados, por lo cual se generó un gráfico de barras para ver la distribución de empleados por sucursal.

Adicionalmente se concatenaron los atributos Nombre y Apellido del empleado para generar un nuevo atributo denominado "Nombre Completo" con el fin de facilitar el manejo de los datos.

```
Data['Nombre_Empleado'] = Data['Nombre_Empleado'].astype(str)
Data['Apellido_Empleado'] = Data['Apellido_Empleado'].astype(str)
Data['Nombre_Completo'] = Data.apply(lambda row: row['Nombre_Empleado'] + " " + row['Apellido_Empleado'], axis=1)
```

Carga de datos adicionales

De igual forma las bases de datos de los resultados de proyectos y del informe del perfil laboral de los empleados fueron cargados en Google Colab e integrados al reporte de gestión consolidado con el fin de caracterizar a los empleados y reunir la mayor cantidad de datos posibles para realizar el estudio del desempeño laboral.

Integración de datos adicionales

La integración de los datos se realizó por medio de un left join utilizando como llave el atributo generado "Nombre_Completo".

```
Data=Data.merge(Empleados, on='Nombre_Completo', how='left')

Data=Data.merge(Desempeño, on='Nombre_Completo', how='left')
```


Al validar el dataset definitivo se identificó que contaba con 1843 filas y 25 columnas

Consulta tipo de variables

Consulto el nombre de las columnas presentes en el dataset, valido la tipología de los atributos (cuantitativos y cualitativos) respectivamente y reviso la existencia de valores duplicados en el dataset.

```
Data.columns
Index(['Nombre_Completo', 'Sucursal', 'Cumplimiento ', 'Efectividad',
    'Tareas Alto', 'Tareas Medio', 'Tareas Bajo', 'Genero', 'Cargo',
    'Nivel cargo', 'Edad ', 'Modalidad', 'Salario ', 'Estado Civil ',
    'Telefono ', 'Contrato Indefinido ', 'ID_Empleado', 'Año', 'Proye
    'Calidad', 'Satisfacción', 'Productividad', 'Trabajo en equipo',
    'Reclamaciones', 'Ciudad', 'Pais'],
    dtype='chiect')
                                                                                                          'Proyecto',
         dtype='object')
df_numeric = Data.select_dtypes(include=[np.number])
numeric_cols = df_numeric.columns.values
print(numeric_cols)
['Sucursal' 'Cumplimiento ' 'Efectividad' 'Tareas Alto' 'Tareas Medio'
   Tareas Bajo' 'Edad ' ' Salario ' ' Telefono ' 'ID_Empleado' 'Año'
  'Calidad' 'Satisfacción' 'Productividad' 'Trabajo en equipo'
  'Reclamaciones']
df_non_numeric = Data.select_dtypes(exclude=[np.number])
non_numeric_cols = df_non_numeric.columns.values
print(non_numeric_cols)
['Nombre_Completo' 'Genero' 'Cargo' 'Nivel cargo' 'Modalidad' 'Estado Civil'' Contrato Indefinido' 'Proyecto' 'Ciudad' 'Pais']
Data.duplicated().value counts()
False
            1843
dtype: int64
```


Limpieza de datos

Una vez integrados todos los datos en el reporte de gestión consolidado, se realizó la limpieza de los datos con el fin de mejorar la calidad e integridad de los mismos.

Al aplicar este proceso se puede mejorar la precisión de los resultados del análisis a realizar, así como facilitar la toma de decisiones y ahorrar tiempo al eliminar previamente inconsistencias que puedan presentarse en los datos.

Imputación de datos faltantes

Por medio de diferentes métodos fue validada la existencia de datos faltantes en el dataset, ya que era necesario asegurar que los atributos a trabajar contarán con la calidad suficiente (es decir valores faltantes menores al 10% de los registros) para aportar valor al análisis, de no ser así el atributo debía ser eliminado.

```
Data.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1843 entries, 0 to 1842
Data columns (total 26 columns):
                            Non-Null Count Dtype
 # Column
     Nombre_Completo
                            1843 non-null
     Sucursal
                            1843 non-null
                                            int64
     Cumplimiento
                            1843 non-null
                                            float64
     Efectividad
                            1843 non-null
                                            float64
     Tareas Alto
                            1843 non-null
     Tareas Medio
                            1843 non-null
                                            float64
     Tareas Bajo
                            1843 non-null
                                            float64
     Genero
                            1808 non-null
                                            object
     Cargo
                            1808 non-null
                                            object
     Nivel cargo
                            1808 non-null
10
                                            float64
     Edad
                            1808 non-null
     Modalidad
                            1808 non-null
     Salario
                            1808 non-null
                                            float64
     Estado Civil
                            1808 non-null
                                            object
 14
      Telefono
                            1808 non-null
                                            float64
      Contrato Indefinido 1808 non-null
                                            object
 16
    ID_Empleado
Año
                            1808 non-null
                                            float64
                            1808 non-null
 17
                                            float64
     Proyecto
                            1808 non-null
                                             object
 19
     Calidad
                            1808 non-null
                                             float64
     Satisfacción
                            1808 non-null
                                            float64
 21
     Productividad
                            1808 non-null
                                            float64
     Trabajo en equipo
                            1808 non-null
23
     Reclamaciones
                            1808 non-null
                                            float64
     Ciudad
                            1808 non-null
                                            object
 25
    Pais
                            1808 non-null
                                            object
dtypes: float64(15), int64(1), object(10)
memory usage: 388.8+ KB
```

Data.isnull().sum()	
Nombre_Completo	0
Sucursa1	0
Cumplimiento	0
Efectividad	0
Tareas Alto	0
Tareas Medio	0
Tareas Bajo	0
Genero	35
Cargo	35
Nivel cargo	35
Edad	35
Modalidad	35
Salario	35
Estado Civil	35
Telefono	35
Contrato Indefinido	35
ID_Empleado	35
Año	35
Proyecto	35
Calidad	35
Satisfacción	35
Productividad	35
Trabajo en equipo	35
Reclamaciones	35
Ciudad	35
Pais	35
dtype: int64	

Se identificaron valores faltantes por medio de un gráfico de heatmap y un gráfico de barras, en los que se observa que los valores faltantes no superaban el 2% de los registros de algunos atributos.

Adicionalmente se hizo uso de un recurso online trabajado por medio de una librería externa llamado Feature Selector que permite explorar de mejor manera el dataset, analizando los valores faltantes, validando la correlación de los atributos y definiendo la importancia de los atributos para el análisis a desarrollar.

Este recurso fue realizado en lenguaje Python por Will Koehresen y puede ser consultado en la siguiente página web: https://github.com/WillKoehrsen/feature-selector

Se utilizó feature selector para validar si existían atributos que contaran con más del 80% de valores faltantes, de ser así dichos atributos serian eliminados del dataset. Ninguno de los atributos cumple esta condición.

```
fs = FeatureSelector(data = Data, labels = Data.columns)
fs.identify_missing(missing_threshold=0.8)
0 features with greater than 0.80 missing values.
```


Utilizo feature_selector para generar un histograma con la distribución de los valores faltantes. El cual indica que aproximadamente 1805 registros presentan 0 valores faltantes mientras que 19 registros presentan 35 valores faltantes.

Gestiono los valores faltantes. Podría eliminarlos a través de la función dropna pero estos empleados quedarían por fuera de análisis de desempeño por los cual procedo a imputar los valores nulos con una medida estadística como la moda para cada atributo.

```
Data['Genero'].fillna(Data['Genero'].mode()[0], inplace=True)
Data['Modalidad'].fillna(Data['Modalidad'].mode()[0], inplace=True)
Data['Cargo'].fillna(Data['Cargo'].mode()[0], inplace=True)
Data['Nivel cargo'].fillna(Data['Nivel cargo'].mode()[0], inplace=True)
Data['Edad '].fillna(Data['Edad '].mode()[0], inplace=True)
Data['Salario '].fillna(Data['Salario '].mode()[0], inplace=True)
Data['Salario '].fillna(Data['Salario '].mode()[0], inplace=True)
Data['Satisfacción'].fillna(Data['Satisfacción'].mode()[0], inplace=True)
Data['Productividad'].fillna(Data['Froductividad'].mode()[0], inplace=True)
Data['Trabajo en equipo'].fillna(Data['Trabajo en equipo'].mode()[0], inplace=True)
Data['Reclamaciones'].fillna(Data['Reclamaciones'].mode()[0], inplace=True)
Data['Proyecto'].fillna(Data['Proyecto'].mode()[0], inplace=True)
Data['Ciudad'].fillna(Data['Ciudad'].mode()[0], inplace=True)
Data['Pais'].fillna(Data['Pais'].mode()[0], inplace=True)
Data['D_Empleado'].fillna(Data['ID_Empleado'].mode()[0], inplace=True)
```

Validación de datos inconsistentes

Debido a que los datos fueron extraídos de la plataforma JIRA y previamente habían sido procesados por la empresa, se evidenció que no existían datos inconsistentes con errores por palabras mal tipeadas, con mayúsculas y minúsculas, espacios, caracteres especiales o inconsistencias similares.

Transformación de variables

Se realizo la transformación de los atributos del dataset para mejorar la interpretación de estos y entender la correlación existente, así como para poder trabajarlos de forma adecuada en el análisis de datos.

Adicionalmente se crearon nuevos atributos que pueden aportar información y tener mayor relevancia dentro del estudio.

Ajuste de formato de los datos

Eliminó el símbolo de dólar del atributo "Salario", adicionalmente reemplazo la coma por punto para que el atributo se entienda como de tipo decimal y se pueda trabajar.

```
Data[' Salario '] = Data[' Salario '].str.replace('$', '').str.replace(',', '.').astype(float)
```

Elimino el texto que acompaña a los datos del atributo "Reclamaciones" para dejar únicamente el valor numérico y adicionalmente convierto el atributo en numérico para poder trabajarlo.

```
Data['Reclamaciones'] = Data['Reclamaciones'].str.replace(' Reclamaciones', '')
Data['Reclamaciones'] = pd.to_numeric(Data['Reclamaciones'])
```

Separo los datos del atributo "Ubicación", ya que deseo trabajarlos de forma independiente por lo que generó dos nuevos atributos llamados "Ciudad" y "País".

```
Data[['Ciudad', 'Pais']] = Data['Ubicacion'].str.split(',', expand=True)
Data.drop('Ubicacion', axis=1, inplace=True)
print(Data.head())
```

Por medio de feature_selector analizo la importancia de los atributos que pueden ser utilizados para realizar el análisis de desempeño.

Análisis de datos fuera de rango

A través de un gráfico de boxplot reviso la existencia de outliers dentro del dataset con el fin de identificar de errores en los datos de entrada y patrones inusuales, así como proveer información valiosa para la toma de decisiones.

Únicamente se identifica una alta variabilidad en los datos del número de teléfono de los empleados, lo cual no es significativo para el análisis, por lo cual este atributo será eliminado posteriormente.

Eliminación datos innecesarios

Se identificaron 5 atributos con información irrelevante que no aportaba valor para el análisis debido al ser de tipo cualitativo, por lo cual fueron eliminados, lo cual no implico una perdida significativa de información.

Data=Data.drop(columns=["Nombre_Completo", ' Estado Civil ', " Telefono ", ' Contrato Indefinido ', 'Año'], axis=1)

Correlación de las variables

Los atributos que presentan una alta correlación, es decir con un coeficiente de correlación superior al 80% (como se indica en la tabla) deben ser eliminados ya que sería redundante mantenerlos en el dataset.

Exportación de dataset limpio

Realizo la exportación del dataset limpio, para tener una copia de seguridad, en caso de que se necesite añadir información extra o realizar algún proceso adicional al dataset en el futuro, ya que esto permite trabajar con la información anterior limpia y depurada.

Selección de atributos para análisis exploratorio

Los atributos considerados para realizar el análisis exploratorio fueron los siguientes:

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1843 entries, 0 to 1842
Data columns (total 20 columns)
                        Non-Null Count Dtype
    Column
                        1843 non-null
    Sucursal
    Cumplimiento
                        1843 non-null
                                        float64
                        1843 non-null
    Efectividad
                                        float64
     Tareas Alto
                        1843 non-null
                                        float64
                        1843 non-null
    Tareas Medio
                                        float64
    Genero
                        1843 non-null
                                        object
    Cargo
                        1843 non-null
                                        object
    Nivel cargo
                        1843 non-null
                                        object
    Edad
                        1843 non-null
                                        float64
    Modalidad
                        1843 non-null
                                        object
     Salario
                        1843 non-null
                                        float64
                                        float64
11
    ID_Empleado
                        1843 non-null
    Provecto
                        1843 non-null
                                        object
                                        float64
13 Calidad
                        1843 non-null
14 Satisfacción
                        1843 non-null
                                        float64
15 Productividad
                        1843 non-null
                                        float64
    Trabajo en equipo 1843 non-null
    Reclamaciones
                        1843 non-null
                                        float64
18 Ciudad
                        1843 non-null
                                        object
19 Pais
                        1843 non-null
                                        object
dtypes: float64(12), int64(1), object(7)
memory usage: 366.9+ KB
```

A partir de los atributos seleccionados se puede concluir que se generó una reducción del 24% de los atributos que componían el dataset definitivo sin tener una perdida significativa de información. Adicionalmente se evidencia que el 68% de los atributos seleccionados corresponden a atributos de tipo numérico, lo cual se encuentra alineado con el objetivo del proyecto, que es evaluar el desempeño de los empleados.

4.3.3. Análisis exploratorio de datos (EDA)

El análisis descriptivo de los datos (EDA) consistió en analizar el comportamiento de los datos del dataset consolidado, explorar la relación entre las diferentes variables, así como obtener las medidas de centralidad y dispersión de los datos, generar la matriz de correlación y los gráficos correspondientes a las principales variables con el fin de identificar patrones o tendencias que ayuden a entender mejor el problema

El análisis fue realizado en un notebook de Google Colab haciendo la importación y visualización los datos por medio de librerías como Matplotlib, y Seaborn.

Inicialmente se realizó un análisis descriptivo de los atributos que conforman el dataset por medio de una función que se generó las principales medidas de centralidad y dispersión para los atributos numéricos; Mientras que para los atributos categóricos generó el listado de los valores presentes en el dataset y la cantidad de valores nulos.

Medidas de centralidad y dispersión

Se calcularon las medidas de centralidad y dispersión para cada uno de los atributos numéricos del reporte de gestión consolidada:

- ✓ Mínimo
- ✓ Máximo
- ✓ Media
- ✓ Desviación estándar
- ✓ Mediana


```
descripcionDatosDataset(Data)
Cantidad de filas: 1843
Cantidad de columnas: 19
Columna: Sucursal
Tipo de datos: numérico
Descripción de valores:
       1.000000
max
        6.000000
mean
        3.504069
       1.704997
std
median
       4.000000
Name: Sucursal, dtype: float64
Columna: Cumplimiento
Tipo de datos: numérico
Descripción de valores:
         0.000000
        42.080000
max
mean
       25.741085
std
         8.455234
median 27.370000
Name: Cumplimiento , dtype: float64
Columna: Efectividad
Tipo de datos: numérico
Descripción de valores:
min
       0.000000
max
        1.000000
        0.503863
mean
       0.266240
std
median
        0.510000
Name: Efectividad, dtype: float64
______
Columna: Tareas Medio
Tipo de datos: numérico
Descripción de valores:
min
        0.000000
max
        0.230000
mean
        0.132100
       0.057955
std
median
       0.170000
Name: Tareas Medio, dtype: float64
Columna: Genero
Tipo de datos: nominal
Descripción de valores:
-- Valores presentes (10 primeros): ['M' 'F']
-- Cantidad de nulos: 0 = 0.00%
Columna: Cargo
Tipo de datos: nominal
Descripción de valores:
-- Valores presentes (10 primeros): ['Arquitecto de Software' 'Ingeniero de software II'
 'Especialista de Software' 'Desarrollador de software II'
 'Ingeniero de software I' 'Desarrollador de software I'
 'Analista de Software']
-- Cantidad de nulos: 0 = 0.00%
```


Representación de datos

En este apartado fueron construidos una serie diversa de gráficos en herramientas como Google Colab y Power BI, y haciendo uso de librerías y técnicas vistas durante el master.

Los empleados de la empresa fueron categorizados en 3 niveles según el perfil laboral, experiencia y conocimiento técnico. En el gráfico de barras se observa que los empleados de nivel Semi y Junior son quienes concentran casi el 80% del personal.

Los gráficos de anillo y barras representan la distribución del personal por modalidad de trabajo donde aproximadamente el 68% de los empleados aun trabaja desde alguna de las sedes de la empresa (ya sea bajo modalidad presencial o modalidad hibrida). Únicamente el 35% del personal cuenta con teletrabajo como modalidad de trabajo.

En este gráfico de torta se visualiza que el 52% de los colaboradores que fueron seleccionados para el análisis de desempeño son hombres, lo cual se refleja la equitativa participación que tienen las mujeres en esta empresa. En este estudio se evaluará si el género es un factor que determinante en el desempeño laboral.

Por medio de un gráfico de georreferenciación ubicaron las ciudades de Europa en las que la empresa tienen sedes. El grafico de árbol representa la distribución del personal en estas ciudades, la cual se encuentra balanceada (aproximadamente 16% por ciudad)

Por medio de un histograma se identifica que la mayoría de empleados cuenta con menores salarios mientras que un grupo reducido de empleados acapara los salarios más altos de la empresa, esto probablemente se deba a que son empleados que cuentan un nivel del cargo superior por sus conocimientos técnicos y experiencia.

Este gráfico de barras corresponde al salario promedio devengado por cada nivel de cargo, se observa una brecha considerable entre empleados de nivel Senior y Semi.

Este histograma muestra que la mayoría del personal se encuentra entre 18 a 35 años.

Este gráfico representa la edad promedio de los empleados por nivel de cargo, lo cual confirma que el personal más joven se desempeña como empleado de nivel Semi y Junior, mientras que los empleados mayores a 35 años son de nivel Senior.

El cumplimiento de las tareas ejecutadas por parte de los empleados es medido a través de metodología propia de la empresa, la cual va desde 0 a 45 puntos. Se identifica que el resultado se encuentra segmentado en dos grupos, en la que la mayoría de los empleados alcanzaron un resultado entre 15 a 45 puntos.

La calidad de las tareas ejecutadas por parte de los empleados es medida a través de metodología propia de la empresa, la cual va desde 0 a 30 puntos. Se identifica que el resultado se encuentra segmentado en dos grupos, en la que la mayoría de los empleados alcanzaron un resultado entre 20 a 30 puntos.

A través de gráficos de boxplot se validó la variación que existe en el cumplimiento y calidad de las tareas realizadas por los empleados de los niveles de cargo existentes. Se observo que las tareas ejecutadas por los empleados Senior presentan menor variación (principalmente en cuanto a al cumplimiento). Los resultados obtenidos para los empleados de nivel Semi y Junior son bastantes similares.

Este gráfico de dispersión representa la relación entre los atributos de Cumplimiento y Calidad, Se observan 5 segmentos generados en el gráfico, por lo cual se entiende que existe una correlación entre estos atributos.

Se genero una matriz de gráficos para conocer el nivel de satisfacción de las tareas que fueron ejecutadas por los empleados de diferentes géneros y niveles de cargo.

Se seleccionaron algunos atributos numéricos con los se generó una matriz de gráficos de dispersión para ver el comportamiento de estos.

Matriz de correlación

En este punto fue generada la matriz de correlación para conocer la relación estadística entre los atributos del dataset, donde se identificó que existe una correlación importante entre algunos atributos, a pesar que en la mayoría de los casos los coeficientes obtenidos no son valores muy altos, es decir que no se aproximaron a (1) o (-1).

Ningún atributo presento un coeficiente de correlación superior al 90% por lo cual se entiende que los datos se comportan de forma independiente y no existe dependencia entre estos.

Limpieza de datos (2)

Eliminación de variables con alta correlación

Según lo visto en el aparatado es necesario eliminar algunos de los atributos debido a que cuentan con una alta correlación

Data=Data.drop(['ID_Empleado'], axis=1)

Eliminación de variables sin importancia

Adicionalmente bajo criterio experto se descartaron algunos atributos que no eran relevantes para el análisis

```
Data=Data.drop(columns=['Cargo', 'Modalidad', 'Proyecto', 'Ciudad', 'Pais'], axis=1)
```

Creación de variables dummies

Generó los atributos dummies para los atributos categóricos que aún quedan en el dataset, es decir "Genero" y "Nivel de Cargo".

```
Data = pd.get_dummies(Data)
```

Selección de atributos para modelado

Los atributos seleccionados para construir el modelo de machine learning fueron:

4.3.4. Modelado de datos

De acuerdo con la necesidad de la empresa por evaluar el desempeño de los empleados, fue construido un modelo de machine learning a partir de los atributos seleccionados en el proceso de minería de datos, con el fin de analizar de forma integral la gestión realizada por los empleados y clasificarlos de acuerdo al lineamiento establecido por la compañía.

Con esta herramienta se pretende generar valor a la organización, mediante la transformación de datos en conocimiento que permita optimizar la toma de decisiones de la empresa con respecto al personal.

Como sostiene Salgueiro (2001), deben tenerse en cuenta algunos elementos relevantes para establecer un modelo adecuado, entre los que plantea:

- **Disponibilidad:** Los datos deben estar disponibles todo el tiempo para la evaluación y análisis correspondiente.
- **Simplicidad:** Los resultados deben ser claros y fáciles de interpretar.
- Validez: El modelo debe estar enfocado en medir lo que realmente se debe medir de acuerdo al objetivo planteado.
- **Especificidad:** Deben medirse datos significativos que aporten valor para la toma de decisiones.
- Confiabilidad: Las fuentes de información utilizadas deben garantizar la fidelidad de los datos.
- Alcance: Debe definirse el límite específico del modelo.

4.3.4.1. Aplicación de modelo de Clusterizacion

Según Cubillos y Núñez (2012) la evaluación de desempeño debe ser medible de forma cualitativa y cuantitativa, lo que permite describir una serie de características, cambios frecuentes o probables a través de las variables y que al ser comparadas permiten determinar su desempeño mostrar cambios y progresos de un resultado específico.

Teniendo en cuenta el objetivo de este Trabajo de Fin de Master (TFM), se planteó utilizar un algoritmo de aprendizaje no supervisado ya que no se contaba con las etiquetas correspondientes al desempeño de los empleados por lo que a través de un modelo de clusterizacion se pretende agrupar a los empleados de acuerdo a los atributos seleccionados, los cuales se relacionan a la ejecución de tareas, resultados de proyectos trabajados en 2022 y características sociodemográficas del personal.

Se utilizo un modelo de clusterización ya que esta técnica de aprendizaje automático no supervisado es útil para identificar patrones y estructuras subyacentes en los datos, el cual divide un conjunto de datos en grupos de objetos similares, de manera que los objetos dentro de un cluster sean similares entre sí y diferentes de los objetos de otros clusters.

Método del codo

En primer lugar, fue necesario definir el número óptimo de clústers a trabajar para generar la agrupación de los datos, por lo cual se utilizó el método del codo por medio de las librerías skleran y scipy.

Se identifico que se podrían utilizar entre 2 a 4 clusters como la mejor opción para realizar el análisis (preferiblemente 3 como lo indica el gráfico). De acuerdo a la definición del negocio se estableció trabajar con 3 clusters, es decir 3 categorías de desempeño, que serán alto, medio y bajo.

Análisis de componentes principales

Se realizo el análisis de componentes principales (PCA) con el fin de reducir la dimensionalidad del conjunto de datos, entender la estructura de los datos e identificar las variables más importantes para el modelado.

Se genero un gráfico para definir el número de componentes a utilizar. Los componentes principales se ordenan en función de su importancia en la explicación de la varianza de los datos.

El primer componente principal explica la mayor cantidad de varianza, el segundo explica la segunda mayor cantidad, y así sucesivamente.

Como resultado de la prueba, se definió utilizar 3 componentes que representen el dataset consolidado. Posteriormente se estandarizaron los datos con la función "StandarScaler" de la biblioteca sklearn.

Se aplicó el Análisis de Componentes Principales (PCA) con los 3 componentes a utilizar "PC1", "PC2" y "PC3", por lo que se generó un dataframe denominado "df_pca".

```
pca = PCA(n_components=3)
pca.fit(data_scaled)
data_pca = pca.transform(data_scaled)
df_pca = pd.DataFrame(data=data_pca, columns=['PC1', 'PC2', 'PC3'])
```

df_pca	1				
	PC1	PC2	PC3		
0	4.768016	-2.263502	1.486591		
1	3.562471	-0.647311	-1.278772		
2	3.947472	-1.338151	-2.414168		
3	4.173614	-1.446884	0.834894		
4	4.047696	-2.092122	2.680291		
1838	-3.897083	-0.664320	1.244209		
1839	-3.365576	-0.809679	-0.485793		
1840	-3.388124	-1.128123	2.854320		
1841	-3.776245	-1.157594	-0.636037		
1842	-3.362662	-1.111715	-0.260003		
1843 rows × 3 columns					

Se genero la visualización de los 3 componentes en un gráfico scatter 3D.

Generación de Clusters

Para realizar la clusterizacion del dataframe con los 3 componentes definidos en la PCA se utilizaron 3 algoritmos diferentes:

- Alglomerativo jerárquico: Es un método que agrupa objetos en un conjunto de clusters jerárquicos de forma iterativa y progresiva en función de la distancia entre ellos. No requiere de un número previo de clusters, permite la identificación de clusters a diferentes niveles de granularidad y es fácil de interpretar
 - El resultado del algoritmo es un dendrograma donde los objetos se agrupan en clusters grandes y estos se van subdividiendo en clusters más pequeños.
- K-means: Es un método que agrupa objetos en k clusters, donde k es un número predefinido de clusters. El objetivo del algoritmo k-means es minimizar la suma de las distancias cuadráticas entre cada objeto y su centroide asignado, lo que se conoce como la función de costo del algoritmo. Permite la identificación de outliers y es escalable.
- DBSCAN: Es un método basado en la densidad que puede manejar clusters de diferentes formas y tamaños, es resistente a los outliers y no requiere un número previo de clusters. Esto lo hace adecuado para una amplia variedad de aplicaciones de clustering, especialmente en conjuntos de datos donde la densidad varía en diferentes regiones del espacio de características.

Modelo Alglomerativo jerárquico

Se importaron la librerías y módulos requeridos, A continuación, se realizó el clustering de los datos utilizando la métrica de distancia "euclidea" con el método "average" que evalúa la disimilitud media.

La función "linkage" utiliza el método y métrica para calcular las distancias entre los clusters y en cada iteración mezclará los dos clusters con la distancia más pequeña de acuerdo al método y distancia elegidos. Este es el dendrograma que se generó:

Valido en que punto la distancia existente entre los 3 clusters es menor y finalmente utilizo la métrica de silueta para evaluar ala calidad de la agrupación generada.

. Utilizo la métrica de Silueta para evaluar la calidad de la agrupación de los datos.

```
Z = linkage(df_pca, method='average')
cluster_labels = fcluster(Z, 3, criterion='maxclust')
silhouette_avg = silhouette_score(df_pca, cluster_labels)
print("El coeficiente de silueta es silhouette_avg:", silhouette_avg)
El coeficiente de silueta es silhouette_avg: 0.5725551130440214
```

K-means

Antes de utilizar el algoritmo, es necesario importar las librerías y módulos requeridos para trabajar. Después se instancio el modelo y se clusterizarón los datos usando el algoritmo K-means. Visualizo el resultado obtenido con los parámetros asignados.

El resultado considero que es bastante aceptable teniendo en cuenta que el algoritmo K-means está diseñado para trabajar con la distancia Euclidea, no lidia bien con datos con una covarianza alta.

Utilizo la métrica de Silueta para evaluar la calidad de la agrupación de los datos.

```
silhouette_avg = silhouette_score(df_pca, cluster_labels)
print("El coeficiente de silueta promedio es :", silhouette_avg)

El coeficiente de silueta promedio es : 0.5736273566937549
```


DBSCAN

Importo las librerías y módulos requeridos, después se instancio el modelo y se clusterizarón los datos utilizando el algoritmo DBSCAN con los siguientes parámetros:

```
dbscan = DBSCAN (eps= 1.02, min_samples= 8)
dbscan.fit(df_pca[['PC1', 'PC2', 'PC3']])
df_pca['Cluster'] = dbscan.labels_
```

Visualizo el resultado obtenido de la clusterizacion con los parámetros asignados.

Utilizo la métrica de Silueta para evaluar la calidad de la agrupación de los datos.

```
silhouette_avg = silhouette_score(df_pca, cluster_labels)
print("El coeficiente de silueta promedio es :", silhouette_avg)

El coeficiente de silueta promedio es : 0.45599316100171017
```

Evaluación de clusterizacion

Con el fin de identificar el algoritmo que genero la mejor clusterizacion se utilizo la métrica de silueta, la cual es una medida de calidad de clustering que evalúa qué tan bien están agrupados los datos. El valor de la métrica de silueta varía entre -1 y 1, donde un valor más cercano a 1 indica que los datos están bien agrupados y un valor cercano a -1 indica que los datos podrían estar mejor asignados a otro grupo. En general, un valor de silueta mayor a 0.5 se considera un buen resultado

Esta tabla detalla el resultado obtenido al evaluar la métrica de silueta en cada modelo:

Modelo	Resultado de Silueta
Alglomerativo Jerárquico	0,5725
K-means	0,5736
DBSCAN	0,4559

Tabla 1. Indicadores de desempeño. Elaboración propia

De acuerdo a los resultados obtenidos con el coeficiente de silueta, se definió utilizar la clusterizacion realizada con el método K-Means. Por lo cual se procedió a integrar el resultado de la clusterizacion de los datos como un nuevo atributo en el dataset.

Este proceso se realiza con la finalidad de continuar con la evaluación de desempeño por medio de un algoritmo de aprendizaje supervisado utilizando un modelo de clasificación en el que los empleados serán categorizados en las 3 etiquetas definidas previamente correspondientes a los 3 niveles de desempeño: Alto, Medio y Bajo

	c	111	FF	4 11-42-	64.4	Salario		_
_				d Tareas Medio			\	
0	2	18.20			45.0	60.0		
1	5	31.75			25.0	36.0		
2	5	39.71	0.1		45.0	36.0		
3	3	23.23			38.0	36.0		
4	4	5.41	0.1	9 0.11	46.0	36.0		
	ID_Empleado	Calidad Sa	atisfacción	Productividad	Trabajo	en equipo	٨	
0	1001.0	10.81	0.85	0.81		0.48		
1	1002.0	25.45	0.74	0.83		0.69		
2	1003.0	28.69	0.76	0.74		0.52		
3	1004.0	13.20	0.75	0.82		0.54		
4	1005.0	9.44	0.89	0.86		0.50		
	Reclamacione	es Genero_F	Genero_M	Nivel cargo_Jun:	ior Nive	el cargo_Se	mi	١
0	99.	.0 0	1		0		0	
1	63.	.0 0	1		0		0	
2	66.	.0 0	1		0		0	
3	19.	.0 0	1		0		0	
4	16	.0 0	1		0		0	
	Nivel cargo	Senior clus	ster_labels					
0		1	1					
1		1	1					
2		1	1					
3		1	1					
4		1	1					

Adicionalmente fue necesario asegurar que el atributo 'cluster_labels' se encontrara como un atributo de tipo numérico con el fin de evitar inconvenientes posteriores al momento de la clasificación.

4.3.4.2. Aplicación de modelo de Clasificación

En este punto se generó la clasificación de los empleados, la cual es una técnica de aprendizaje automático supervisado que sirve para predecir la etiqueta o clase de un objeto en función del conjunto de variables predictoras, en este caso de utilizo para predecir la categoría de desempeño correspondiente a los empleados con base en los atributos seleccionados, utilizados como. Esta técnica permite predecir y clasificar datos de manera automática y eficiente.

Para realizar la clasificación de los empleados fueron utilizados diferentes algoritmos, con el fin de encontrar el que generara los mejores resultados con los datos disponibles. A continuación, se describen los algoritmos utilizados:

- Árbol de Decisión: Es una técnica de aprendizaje automático que se utiliza para clasificar datos en diferentes categorías o clases. En el modelo de Árbol de Decisión de clasificación, cada nodo del árbol representa una pregunta que se hace sobre las características de los datos. A medida que se sigue avanzando por el árbol, se van haciendo más preguntas hasta llegar a una hoja del árbol, que representa la clase o categoría a la que pertenece el dato.
- Random Forest: Es un modelo de aprendizaje automático que utiliza un conjunto de árboles de decisión para realizar una tarea de clasificación o regresión. En este modelo, cada árbol es construido de manera independiente utilizando un subconjunto aleatorio de las características del conjunto de datos original.

El proceso de construcción del modelo Random Forest se basa en dos etapas. En la primera etapa, se genera una muestra aleatoria de los datos de entrenamiento y se utiliza para construir un conjunto de árboles de decisión. En la segunda etapa, se utiliza el conjunto de árboles para realizar la tarea de clasificación o regresión.

 Regresión Logística: Es un modelo de aprendizaje automático utilizado para predecir una variable categórica binaria o múltiple. El modelo utiliza una función logística para transformar la variable de entrada y predecir la probabilidad de que la variable de salida pertenezca a una de las categorías.

Este modelo es ajustado a los datos mediante la estimación de los coeficientes de la función logística y se utiliza para predecir la variable de salida para nuevos datos.

K-vecinos más próximos (KNN): Es un modelo de aprendizaje automático
utilizado para tareas de clasificación y regresión. El modelo funciona
encontrando los k ejemplos más cercanos en el conjunto de datos de
entrenamiento al nuevo ejemplo utilizando una medida de distancia, y
determinando la clase o valor numérico basándose en las clases o valores de
los vecinos más cercanos.

K es un hiperparámetro importante en KNN que determina el número de vecinos más cercanos utilizados para la predicción.

 Máquinas de vectores de soporte (SVM): Son un modelo de aprendizaje automático utilizado para tareas de clasificación y regresión. El modelo funciona encontrando un hiperplano que maximiza la separación entre las clases en el espacio de características. Si los datos no son linealmente separables, se utiliza una técnica de kernel para transformar los datos.

SVM es un modelo paramétrico y de margen máximo, y es popular debido a su capacidad para manejar conjuntos de datos complejos y no lineales.

Partición de conjunto de training y test

Para entrenar el modelo y realizar la predicción de categoría de desempeño de los empleados, procedemos a separar el conjunto de datos en dos partes, una parte para el entrenamiento de la modelo denominada training y otra parte para evaluar la modelo denominada test.

En esta separación de los datos es necesario eliminar el atributo "cluster_labels" ya que ese es el atributo que se busca predecir con el modelo.

```
from sklearn.model_selection import train_test_split
X = Data_clustered.drop('cluster_labels', axis=1)
y = Data_clustered['cluster_labels']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Parrilla de Parámetros

Para poder generar los mejores resultados posibles, se construyó una parrilla de parámetros de tal manera que se irá probando de forma automática cada uno de los parámetros y obtendremos los resultados de cuáles han sido mejores.

K-Folds

Para lograr buenas predicciones, es crucial evitar que nuestro modelo se ajuste demasiado a los datos de entrenamiento y pierda la capacidad de generalizar para nuevos datos con características ligeramente diferentes. Para prevenir esto, se utilizó el algoritmo de validación cruzada k-folds, que divide el conjunto de datos en k partes y entrena el modelo en una parte mientras se prueba en las otras k-1 partes.

Clasificación de empleados

Se realizo la clasificación de los datos con los algoritmos previamente mencionados. Adicionalmente se aplicó la evaluación de las métricas F1 Score y Accuracy para validar la calidad del resultado obtenido.

Árbol de Decisión

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy
dt = DecisionTreeClassifier()
dt.fit(X_train, y_train)
y_pred = dt.predict(X_test)
accuracy = dt.score(y_test. y_pred)
print("Precisión del modelo Decision Tree Classifier:", accuracy)
f1 = f1_score(y_test, y_pred, average='weighted')
print("F1 Score del modelo Decision Tree Classifier:", f1)

Precisión del modelo Decision Tree Classifier: 1.0
F1 Score del modelo Decision Tree Classifier: 0.9972878424218042
```

Random Forest

```
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, f1_score rf = RandomForestClassifier() rf.fit(X_train, y_train) y_pred = rf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Precisión del modelo Random Forest:", accuracy) f1 = f1_score(y_test, y_pred, average='weighted') print("F1 Score del modelo Random Forest:", f1)

Precisión del modelo Random Forest: 0.997289972899729 F1 Score del modelo Random Forest: 0.9972878424218042
```

Regresión Logística

```
from sklearn.linear_model import LogisticRegression
LR = LogisticRegression()
LR.fit(X_train, y_train)
Y_pred = LR.predict(X_test)
accuracy = accuracy_score(y_test, Y_pred)
print("Precisión del modelo Regresión Logística::", accuracy)
f1 = f1_score(y_test, Y_pred, average='weighted')
print("F1 Score del modelo Regresión Logística::", f1)

Precisión del modelo Regresión Logística:: 0.994579945799458
F1 Score del modelo Regresión Logística:: 0.9945711731832979
```


K -vecinos más próximos (KNN)

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Precisión del modelo KNN:", accuracy)
f1 = f1_score(y_test, y_pred, average='weighted')
print("F1 Score del modelo KNN:", f1)

Precisión del modelo KNN: 1.0
F1 Score del modelo KNN: 0.9489103817686989
```

Máquinas de vectores de soporte (SVM)

```
from sklearn.svm import SVC
SVM = SVC()
SVM.fit(X_train, y_train)
Y_pred = SVM.predict(X_test)
accuracy = accuracy_score(y_test, Y_pred)
print("Precisión del modelo SVM:", accuracy)
f1 = f1_score(y_test, Y_pred, average='weighted')
print("F1 Score del modelo SVM:", f1)

Precisión del modelo SVM: 0.964769647696477
F1 Score del modelo SVM: 0.9649956440987086
```

Evaluación de clasificación

Para evaluar el resultado de clasificación de cada modelo se utilizó la métrica F1 Score, la cual es una medida que combina tanto la precisión como la exhaustividad (recall) del modelo. La exhaustividad (recall) mide la proporción de instancias positivas que fueron identificadas correctamente. El F1-score es la media armónica de la precisión y la exhaustividad, y combina ambas medidas en una sola medida, ya que toma en cuenta tanto los verdaderos positivos como los falsos positivos y falsos negativos

Esta tabla contiene el resultado al evaluar la métrica de F1 Score en cada modelo:

Modelo	Resultado de F1 Score
Árbol de Decisión	0,99
Random Forest	0,95
Regresión Logística	0,98
K -vecinos más próximos (KNN)	0,97
Máquinas de vectores de soporte (SVM)	0,94

Tabla 2. Indicadores de desempeño. Elaboración propia

4.4. Resultados

Una vez realizada la predicción de la categoría de desempeño para cada empleado se procedió a realizar la exploración y análisis de los resultados obtenidos.

Por lo cual inicialmente fue requerido generar un nuevo atributo denominado "Desempeño" el cual comparaba el atributo "cluster_labels" con el valor existente (0,1,2). Si el valor coincidía con uno de estos, el valor devuelto era (Bajo, Medio o Alto).

El atributo "Desempeño" corresponde a una escala cualitativa tipo semáforo definida por el negocio previamente, la cual es transversal dentro del estudio, es decir aplica para todos los empleados sin importar cargo, edad, salario, nivel, etc.

A continuación, se menciona el significado de cada una de las categorías de la escala:

Nivel	Descripción	
Alto	Se refiere a un empleado que supera consistentemente las expectativas de su trabajo y realiza sus tareas de manera eficiente y efectiva. Este nivel está reservado para empleados que sobresalen en su trabajo y que son un valor agregado para la empresa.	
Medio	Se refiere a un empleado que cumple con las expectativas y requisitos de su trabajo, pero no necesariamente sobresale en su desempeño. Este nivel se aplica a empleados que hacen un buen trabajo, pero no destacan en su trabajo.	
Bajo	Se refiere a un empleado que no cumple con las expectativas y requisitos de su trabajo, y cuyo desempeño es insuficiente. Este nivel se aplica a empleados que no realizan sus tareas de manera efectiva y que necesitan mejorar su desempeño para cumplir con los requisitos de su trabajo.	

Tabla 3. Escala cualitativa de resultados. Elaboración: propia

El modelo con el cual se obtuvo el mejor resultado fue el *Random Forest*, con un valor en la métrica F1 score de 0,99 (Tabla 5).

Se opto por esta métrica para seleccionar el modelo, debido a que la exactitud mide la proporción de predicciones correctas sobre el total de predicciones, mientras que el F1-score combina la precisión y el recall y se utiliza para encontrar un equilibrio entre ambos en la evaluación de un modelo de clasificación.

Además, hemos procedido a realizar la matriz de confusión correspondiente al modelo (Ilustración 32), en la que se pueden observar de forma más clara los resultados obtenidos, ya que esta muestra cuántas observaciones del conjunto de datos se clasificaron correctamente y cuántas se clasificaron incorrectamente.

La matriz de confusión se organiza en una tabla que tiene cuatro entradas:

- Verdaderos positivos (TP): observaciones que se clasificaron correctamente como positivas.
- Falsos positivos (FP): observaciones que se clasificaron incorrectamente como positivas.
- Verdaderos negativos (TN): observaciones que se clasificaron correctamente como negativas.
- Falsos negativos (FN): observaciones que se clasificaron incorrectamente como negativas.

Se observa que solo hay un caso en el que el valor real era 2 y se ha predicho como1.

En cambio, podemos ver que en la mayoría de los casos (se puede ver en la diagonal de la Ilustración 47), el modelo acierta y predice el valor correcto.

4.4.1. Visualización de resultados

A continuación, se presentan los resultados obtenidos por medio de una serie de gráficos de un tablero de control o *dashboard* construido en *Power BI*, con la finalidad de visualizar de manera más clara los datos e identificar patrones, tendencias y oportunidades que permitan tomar decisiones informadas y basadas en datos.

Adicionalmente se pretende identificar cuáles son los atributos que tuvieron un mayor impacto dentro del desempeño de los empleados, establecer comparaciones de rendimiento y determinar su impacto para el estudio.

A través de los gráficos se puede visualizar la representación de la relación entre el desempeño de los empleados y otras variables como salario, nivel de cargo, modalidad de trabajo, sede, genero, etc. para ello se utilizaron gráficas de barras, anillo, histogramas ya que como lo menciona Casanova (2019) estas gráficas son de fácil comprensión y son adecuadas para la comparación de magnitudes entre varios elementos.

Se observa la categorización de los empleados de acuerdo a la escala cualitativa tipo semáforo definida previamente (Tabla 3) en la que se asigna color rojo a los empleados con desempeño bajo, color amarillo a los empleados con desempeño medio y color verde a los empleados que se presentaron desempeño alto de acuerdo con el análisis realizado sobre la gestión desarrollada por el personal en el año 2022.

4.4.2. Análisis de Resultados

Se ha podido concluir que el salario y el nivel de cargo no son variables determinantes que aseguren que los empleados tengan un alto desempeño, ya que a pesar de que los empleados de nivel Senior son el gasto más representativo para la empresa en cuanto a nómina no presentan el desempeño esperado, siendo en su gran mayoría categorizados con un desempeño de nivel medio. Al principio del estudio se pensaba que a mayor salario mejor sería el desempeño de los empleados y proporcionalmente mayor sería el aporte realizado a la empresa, lo cual quedo completamente desmentido.

Por otro lado, se identificó que la efectividad en las tareas realizadas y la satisfacción correspondiente a las tareas entregadas en los proyectos fueron variables que si afectaron directamente en el desempeño de los empleados.

Se debe aumentar la participación de las mujeres en cargos Senior ya que son ellas quienes aportan en mayor medida a la empresa. Por lo cual se propone implementar una política de equidad que le permitan al personal femenino ganar participación en los cargos de mayor jerarquía y a contar con una mayor visibilidad del trabajo que realizan.

Se debe validar la posibilidad de que la empresa tenga una reestructuración en su modelo organizacional ya que al analizar el rendimiento del personal se identificó:

La mayoría de empleados de nivel Junior (90%) no están aportando el valor esperado a la empresa, al ser estos quienes presentan el peor desempeño de todo el personal, por lo cual se propone se revise la continuidad de todos los empleados categorizados con desempeño bajo.

Respecto a los empleados categorizados con desempeño medio (23%) se propone que se intensifique el seguimiento siendo este de forma trimestral y ya no de forma anual para evitar afectaciones mayores a la operación. Para estos empleados deben ejecutarse planes de fortalecimiento de capacidades y habilidades que les permitan alcanzar un mejor rendimiento, quedando demostrado en la siguiente medición de desempeño.

Una estrategia para mejorar el rendimiento laboral del personal es capacitar al personal de nivel Semi para que mantenga su aporte de alto valor y con el tiempo completen la curva de aprendizaje que les permita alcanzar los cargos de mayor jerarquía dentro de la empresa como reconocimiento por su excelente gestión.

Adicionalmente se propone aumentar la contratación de personal de nivel semi y reducir la contratación de empelados de nivel Junior, de forma que se redistribuya los porcentajes por nivel de cargo, siendo la mayoría del recurso empelados de nivel Semi, ya que estos presentaron el mejor desempeño.

5. Conclusión y trabajos futuros

El estudio de desempeño evaluó el rendimiento laboral de los empleados de acuerdo a las tareas reportadas por el personal en la plataforma JIRA en el año 2022. Para complementar el dataset y profundizar el análisis fue necesario aumentar la cantidad de datos disponibles, por lo cual se incluyeron ficheros adicionales compartidos por otras áreas de la empresa, los cuales también fueron extraídos de JIRA.

Por medio por medio la metodología KDD (Knowledge Discovery in Databases) se logró identificar los atributos principales que representaban al conjunto de datos para construir un modelo de machine learning que clasificara a los empleados según el desempeño realizado. Inicialmente este Trabajo de Fin de Master (TFM) se abordó como un problema de regresión, pero debido a los resultados insatisfactorios obtenidos se optó por trabajarlo como un problema de clasificación.

Para complementar la categorización de los empleados, es necesario implementar un sistema de alertas que permita identificar brechas y desviaciones existentes en la gestión desarrollada por los empleados para que puedan ser corregidas oportuna y adecuadamente, de manera que se genere el menor impacto en la operación y en el cumplimiento de los objetivos. Ya que se debe tener realizar el seguimiento correspondiente con el fin de identificar acciones que permitan la mejora.

Sería interesante contar con resultados de evaluaciones de desempeño previas realizadas a los empleados, es decir el resultado histórico de rendimiento, con el fin de analizar el comportamiento previo y valorar la evolución de la gestión de los empleados en un contexto más amplio para utilizar modelos de series temporales.

En un ámbito aplicado, el modelo de machine learning generado podría ser implementado en empresas que cuenten con registros de la ejecución de tareas operativas de sus empleados, ya que el análisis realizado constituye una fuente de valor para ser consultada, aplicada y adaptada a diferentes contextos. Además, puede servir como referente para otros estudiantes que estén interesados en profundizar en estrategias de medición, evaluación de desempeño y visualización de resultados.

De cara a próximos trabajos, utilizaría una mayor cantidad de registros y atributos extraídos de otras fuentes de información diferentes a JIRA para tener un marco de referencia mayor que permita generar nuevo conocimiento e integre nuevos tipos de datos al modelo construido con el fin de enriquecerlo y que este mejore su precisión.

También se podrían profundizar en la creación de un cuadro de mando para visualizar múltiples métricas en un solo lugar. Puede contener varios gráficos y tablas que muestran diferentes métricas y tendencias.

Adicionalmente si la empresa utiliza JIRA, se podría considerar la visualización de los datos en tiempo real. Esto podría ser particularmente útil para los gerentes que necesitan tomar decisiones rápidas en función de los datos.

6. Referencias

- Ajila, S. (2008). The impact of knowledge delivery factors on New Product Development teams: a quantitative analysis of software development efficiency. International Journal of product development. Vol 6. N° 2. Tomado de https://www.inderscienceonline.com/doi/abs/10.1504/IJPD.2008.019235
- Black, R. (2020, 7 septiembre). 23 métricas de desarrollo de software que monitorear hoy. ComputerWeekly.es. https://www.computerweekly.com/es/consejo/23-metricas-de-desarrollo-de-software-que-monitorear-hoy
- Britos. Martinez, P. R. (2008). *Procesos De Explotacion De Informacion Basados En Sistemas Inteligentes*. https://core.ac.uk/download/pdf/301025592.pdf
- Britos, P. (2008). "Procesos de explotación de información basados en sistemas inteligentes". Universidad Nacional de La Plata, Argentina. Tomado de http://se-dici.unlp.edu.ar/handle/10915/4142
- Camacho, M., (2022). Factorialblog Indicadores de RRHH: *Equivalente a Tiempo Com- pleto (FTE).* Tomado de https://factorialhr.es/blog/fte-equivalente-tiempo-com-pleto/
- Casanova, H. (2017). Graficación Estadística y Visualización de Datos. Escuela Venezolana de Planificación. Tomado de https://www.redalyc.org/jour-nal/467/46754522005/
- Cubillos, M y Núñez, S. (2012). "Guía para la construcción de indicadores de Gestión" Departamento administrativo de la Función Pública (DAFP), Bogotá. Tomado de https://www.funcionpublica.gov.co/docu-ments/418537/506911/1595.pdf/6c897f03-9b26-4e10-85a7-789c9e54f5a3
- Cuenca, A. (2010). Sistema automatizado para el control de los indicadores de gestión de un Cuadro de Mando Integral. Empresa EMCOMED. Tomado de http://ninive.ismm.edu.cu/handle/123456789/3187
- Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. *Communications of the ACM*, *39*(11), 27–34. https://doi.org/10.1145/240455.240464
- Fayyad, U. (1996). "The KDD process for extracting useful knowledge from volumes of data". ACM vol. 39 (11). Tomado de https://dl.acm.org/doi/10.1145/240455.240464

- Gwanhoo, L. Weidong, X. (2010). Toward Agile: An Integrated Analysis of Quantitative and Qualitative Field Data on Software Development Agility. Management Information Systems Research Center, University of Minnesota. Vol. 34, No. 1. Tomado de https://www.jstor.org/stable/20721416?seq=1
- Gupta. Bhatnagar. Wasan, S. K. V. S. K. (1997). A Proposal for Data Mining Management System. Researchgate.net. Recuperado mayo de 2022, de https://www.researchgate.net/profile/Vasudha-Bhatnagar/publication/2403357 A Proposal for Data Mining Management System/links/570a826f08aea660813722e3/A-Proposal-for-Data-Mining-Management-System.pdf
- Han. Kamber. Pei, J. M. J. (2011). *Data Mining: Concepts and Techniques*. Morgan Kaufmann Publishers is an imprint of Elsevier. http://myweb.sabanci-univ.edu/rdehkharghani/files/2016/02/The-Morgan-Kaufmann-Series-in-Data-Management-Systems-Jiawei-Han-Micheline-Kamber-Jian-Pei-Data-Mining.-Concepts-and-Techniques-3rd-Edition-Morgan-Kaufmann-2011.pdf
- Hernández, G., Martínez, L., Jiménez, R., & Jiménez, F. (2019). Métricas de productividad para equipo de trabajo de desarrollo ágil de software: una revisión sistemática. *TecnoLógicas*, 22, 63–81. https://doi.org/10.22430/22565337.1510
- Hurtado. Zuñiga. Durazno, G. M. S. (2020). Implementación de indicadores de gestión por procesos para empresas de desarrollo de software. *Revista Publicando*. https://revistapublicando.org/revista/index.php/crv/article/view/2101/2122
- J. Zaki. Wagner, M. M. (2014). *Data Mining And Analysis*. https://doc.lagout.org/Others/Data%20Mining%20and%20Analysis_%20Fundamental%20Concepts%20and%20Algorithms%20%5BZaki%20%26%20Meira%202014-05-12%5D.pdf
- Lönnqvist Y Pirttimäki, T. (2006). *Medición de Business Intelligence*. ResearchGate. Recuperado mayo de 2022, de https://www.researchgate.net/figure/Characterising-the-measurement-of-Bl-Loennqvist-and-Pirttimaeki-2006_tbl1_220826011
- Luengo. Herrera. Garcia, S. J. F. (2014). *Data Preprocessing in Data Mining* (Vol. 72). Springer. http://pzs.dstu.dp.ua/DataMining/preprocessing/bibl/Data%20Preprocessing%20in%20Data%20Mining.pdf
- Nigro. Xodo. Corti. Terren, H. O. D. G. D. (2022). *KDD (Knowledge Discovery in Databases): Un proceso centrado en el usuario.* INCA/INTIA Departamento de Computación y Sistemas. Facultad de Ciencias Exactas UNICEN Tandil. http://sedici.unlp.edu.ar/bitstream/handle/10915/21220/Documento_completo.pdf?sequence=1

- Oliveira. Conte. Cristo. Mendes, E. T. M. E. (2016). Percepciones de los gerentes de proyectos de software sobre los factores de productividad: resultados de un estudio cualitativo. *ACM Digital Library*. Recuperado mayo de 2022, de https://dl.acm.org/doi/10.1145/2961111.2962626
- ¿Qué es la inteligencia de negocios? Tu guía para la BI y por qué es importante. (2022). Tableau. https://www.tableau.com/es-mx/learn/articles/business-intelligence
- ¿Qué es KDD y Minería de Datos? Javier Landa. (2018, 8 septiembre). Fcojlanda. https://fcojlanda.me/es/ciencia-de-los-datos/kdd-y-mineria-de-datos-espanol/
- Revista Ibérica de sistemas e tecnología de información., (2020). Revista científica, Plataforma de análisis de datos para la evaluación de desempeño de software Tomado de https://www.proquest.com/docview/2407571364?OpenUrlRefId=info:xri/sid:summon&accountid=198016
- Rocha Granados, S. C. (2021, mayo). Mejoramiento De Procesos Analiticos Teniendo Como Principal Activo La Informacion Utilizando Tecnicas De Carga, Extraccion Y Transformacion De Los Datos Para Entidades Financieras. *Universidad Católica*. Recuperado mayo de 2022, de https://repository.ucato-lica.edu.co/bitstream/10983/27091/1/Documento Base%20Tra-bajo%20de%20Grado.pdf
- Rojas Caro, J., & Matallana Quiroga, L. (2016). Los indicadores de gestión como herramienta de competitividad empresarial; Universidad de la Salle, Bogotá. Tomado https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=2350&context=administracion_de_empresas
- Salgueiro, A. (2001). Indicadores de gestión y cuadro de mando. Ediciones Díaz. <a href="https://books.goo-gle.com.co/books?hl=es&lr=&id=NW9HeT0Vm_IC&oi=fnd&pg=PA1&dq=Sal-gueiro,+A.+(2001).+Indicadores+de+gesti%C3%B3n+y+cua-dro+de+mando.+Ediciones+D%C3%ADaz+de+Santos.&ots=-pssEdl7cb&sig=qVLVZ7P1eMufBD_tz0zfVgCwLFM&re-dir_esc=y#v=onepage&q=Salgueiro%2C%20A.%20(2001).%20Indicado-res%20de%20gesti%C3%B3n%20y%20cuadro%20de%20mando.%20Ediciones%20D%C3%ADaz%20de%20Santos.&f=false
- Zapata, Arbeláez, J. J., Gasca-Hurtado, G. P., Manrique-Losada, B., & Machuca-Villegas, L. (2021). Caracterización de métodos de evaluación de desempeño para equipos de desarrollo de software. *Ingeniare. Revista chilena de ingeniería*, 29(1), 129–140. https://doi.org/10.4067/s0718-33052021000100129

- Sarkar, D., Bali, R., & Sharma, T. (2018). Practical Machine Learning With Python. Bangalore: Springer Science.
- Kotsiantis, S. B. (2007). Supervised Machine Learning: A Review of Classification Techniques. Greece: University of Peloponnese.
- Will Koehrsen, 2019. Github. Recuperado el 10 de noviembre de 2021, https://github.com/WillKoehrsen/feature-selector
- Alpaydin, Ethem. 2016. Machine Learning. The MIT Press Essential Knowledge Series. London, England: MIT Press.
- Hothorn, T. (2018). CRAN Task View: Machine Learning & Statistical Learning. Recuperado el 12 de noviembre de 2021, a partir de https://CRAN.R-project.org/view=MachineLearning
- Raona. (2017). Machine Learning Whitepaper. Technology. Recuperado el 17 de noviembre de 2021, a partir de https://www.slideshare.net/raona/machine-learning-whitepaper
- J. Orellana, "Arboles de decisión Parte I", Arboles de decision y Random Forest, Noviembre 2018, [En línea]. Recuperado el 17 de noviembre de 2021, a partir de: https://bookdown.org/content/2031/arboles-dedecision-parte-i.html
- D. Calvo. "Aprendizaje Supervisado", Marzo 2019. [En línea]. Recuperado el 24 de noviembre de 2021, a partir de: https://www.diegocalvo.es/aprendizaje-supervisado
- F. Sciarrone, "Machine Learning and Learning Analytics: Integrating Data with Learning," [En línea]. Recuperado el 25 de noviembre de 2021, a partir de : 2018 17th International Conference on Information Technology Based Higher Education and Training (ITHET), Olhao, 2018, pp. 1-5, DOI: 10.1109/ITHET.2018.8424780
- Scikit, «API Reference scikit-learn 0.24.2 documentation» [En línea]. Recuperado el 27 de diciembre de 2021, a partir de: https://scikit-learn.org/stable/modu-les/classes.html
- Alpaydin, E. (2010). Introduction to machine learning. MIT Press.

7. Anexos

7.1. Repositorio con los ficheros utilizados

En el siguiente repositorio de *Github* se encuentran cargados los diferentes ficheros utilizados para llevar a cabo el presente TFM, incluido el código Python (en notebook), las diferentes fuentes externas y el *dashboard* elaborado en *Power Bl* (.pbix).

https://github.com/crisRkr/TFM_MBID

7.2. Glosario de términos

A continuación, se ha elaborado el siguiente glosario de términos utilizando como fuente los manuales de las asignaturas del Máster de Big Data y Data Science de la VIU (curso 2021/22) y las sesiones grabadas correspondientes.

Algoritmo: una secuencia lógica de instrucciones que describen detalladamente cómo resolver un problema paso a paso.

Aprendizaje Automático (Machine Learning): una rama de la Inteligencia Artificial que se enfoca en el diseño de mecanismos para que los sistemas informáticos puedan aprender por sí mismos. Esto implica la capacidad de descubrir patrones y regularidades en datos o situaciones previas y aplicarlos a nuevas situaciones o problemas similares.

Correlación: una medida numérica que evalúa la relación entre dos o más variables.

Coeficiente de correlación de Pearson: una medida que indica el grado de dependencia lineal que existe entre dos variables aleatorias cuantitativas.

Curva ROC: una representación gráfica de la sensibilidad en relación con la especificidad de un sistema clasificador binario, según se varía el umbral de discriminación. El análisis de la curva ROC proporciona herramientas para seleccionar modelos óptimos y descartar modelos subóptimos independientemente del costo de la distribución de las dos clases objetivo.

Accuracy: se define como la proporción de predicciones correctas en relación con el número total de observaciones. Esta medida indica cuán precisa es un modelo de Machine Learning en cuanto a sus predicciones.

Función diferenciable: una función matemática que se puede derivar en cualquier dirección y puede aproximarse, al menos, hasta el primer orden por una aplicación afín.

Grid Search: una búsqueda exhaustiva sobre valores específicos de parámetros para un estimador.

Inteligencia de Negocio (Business Intelligence): la capacidad de transformar datos en información que ayuda a gestionar una empresa. Esto involucra procesos, aplicaciones y prácticas que respaldan la toma de decisiones ejecutivas.

Iterativo: un proceso que se repite muchas veces.

KDD: Knowledge Discovery in Databases o en su traducción es el descubrimiento de conocimiento en bases de datos.

K-folds: Es una técnica de cross validation utilizada para evaluar los resultados de un análisis estadístico y garantizar que sean independientes de la partición entre datos de entrenamiento y prueba. Consiste en repetir y calcular la media aritmética de las medidas de evaluación sobre diferentes particiones. Se utiliza en entornos donde el objetivo principal es la predicción y se desea estimar la precisión de un modelo que se llevará a la práctica.

Matriz de confusión: una tabla que se utiliza para describir el rendimiento de un modelo de clasificación en un conjunto de datos de prueba para los que se conocen los valores verdaderos.

Media estadística: una medida de tendencia central que representa el valor promedio de un conjunto de datos numéricos.

Mediana: La mediana es un número que divide un conjunto de datos en dos partes iguales, separando la mitad superior de la inferior.

Método: Un método es una forma ordenada y sistemática de abordar una tarea o un problema, con el objetivo de lograr un resultado o un fin determinado.

Modelo matemático: Un modelo matemático es una descripción de un fenómeno o hecho en términos matemáticos, que permite analizarlo y comprenderlo de manera más precisa y rigurosa.

Outlier: Es un punto en un conjunto de datos que difiere significativamente del resto, y que puede haber sido generado por mecanismos distintos a los que generaron los demás datos. La detección de outliers implica analizar los valores de todas las tuplas y columnas de una base de datos relacional, o de todos los documentos de una base de datos NoSQL.

Overfitting: El sobreajuste es una situación en la que un modelo de aprendizaje automático se ajusta demasiado bien a los datos de entrenamiento, y por lo tanto, es incapaz de generalizar y producir resultados precisos en nuevos datos. Esto sucede cuando el modelo aprende patrones que son específicos del conjunto de entrenamiento, pero que no se aplican al conjunto de datos completo.

Rango: El rango de un conjunto de datos es el intervalo entre el valor máximo y el valor mínimo de los datos.

Regresión: La regresión es un proceso estadístico que se utiliza para estimar las relaciones entre diferentes variables, y para predecir los valores de una variable en función de los valores de otras variables.