Assignment problems: Chapter 1 and 2

Chapter 1:

1.3 (**b & c**): Find the charge q(t) flowing through a device if the current is:

(b)
$$i(t) = (2t + 5) \text{mA}, q(0) = 0$$

(c)
$$i(t) = 20\cos(10t + \pi/6)\mu\text{A}, q(0) = 2 \mu\text{ C}$$

1.7: The charge flowing in a wire is plotted in Fig below. Sketch the corresponding current.

1.9: The current through an element is shown in the Figure below. Determine the total charge that passed through the element at:

(a)
$$t = 1 \text{ s}$$

(b)
$$t = 3 \text{ s}$$

(c)
$$t = 5 \text{ s}$$

1.17: Figure below shows a circuit with five elements. If

$$p_1 = -205 \text{ W}, p_2 = 60 \text{ W}, p_4 = 45 \text{ W}, \text{ and } p_5 = 30 \text{ W},$$

calculate the power p_3 absorbed by element 3.

1.19: Find i in the network of Figure below:

1.23: A 1.8-kW electric heater takes 15 min to boil a quantity of water. If this is done once a day and power costs 10 cents per kWh, what is the cost of its operation for 30 days?

Chapter 2:

2.9: Find i_1 , i_2 , and i_3 in the following figure

2.11: In the following circuit, calculate V_1 and V_2 .

2.13: For the circuit in the following Figure, use KCL to find the branch currents I_1 to I_4 .

2.15: Calculate v and i_x in the following circuit.

2.17: Obtain v_1 through v_3 in the following circuit.

2.19: For the following circuit, find *I*, the power dissipated by the resistor, and the power supplied by each source.

2.21: Find V_x in the following circuit.

2.23: In the circuit shown below, determine v_x and the power absorbed by the 12- Ω resistor.

2.25: For the network shown below, find the current, voltage, and power associated with the 20- $k\Omega$ resistor.

2.29: All resistors in the following circuit are 5 Ω each. Find R_{eq}.

2.32: Find i_1 through i_4 in the following circuit.

2.35: Calculate V_o and I_o in the following circuit.

2.36: Find i and V_0 in the following circuit.

2.41: If $R_{eq} = 50 \Omega$ in the following circuit, find R.

2.46: Find I in the following circuit.

2.47: Find the equivalent resistance R_{ab} in the following circuit.

