Formale Semantik 07. Einfach getypte höherstufige L-Sprachen

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

Folien in Überarbeitung. Englische Teile (ab Woche 7) sind noch von 2007!

Stets aktuelle Fassungen: https://github.com/rsling/VL-Semantik

Inhalt

- 1 Einfachere Semantik
- 2 Einfach getypte Sprachen

- 3λ -Sprachen
- 4 Ausblick auf Quantifikation bei Montague

Kernfragen in dieser Woche

Wie unterscheidet sich Montagues System von GB-Semantik?

Welche Rolle spielen Typen?

Was sind λ -Sprachen? Und woher kennen Sie den λ -Operator eigentlich schon?

Text für heute: Dowty u. a. (1981: Kapitel 4) | Chierchia & McConnell-Ginet 2000: Kapitel 7

Montague vs. Generativismus

Es geht wie immer auch ohne Bewegung.

- Chierchia | auf Grundlage von GB-Syntax
 - Syntax und Semantik in Phrasenstrukturen
 - Sprache wird zu Logik durch unsichtbare Bewegung.
 - Semantik als eigene Repräsentationsebene
- Montague | Sprache ist Logik!
 - Direkte Interpretation von Zeichen als logische Symbole
 - Logische Form (lf) als Sichtbarmachen logischer Eigenschaften
 - Keine Überseztung

Vorbemerkung | Charakteristische Funktionen

Mengen, über Funktionen definiert

- Große Bedeutung von Mengen in formaler Semantik
- Charakteristische Funktion von Mengen S(a) = 1 iff $a \in S$, else 0
- CF als Einsortierung in ihre Menge
- CF in Mengendefinitionen

$$S = \{x : x \bmod 2 = 0\}$$

$$S = f(x)[x \bmod 2 = 0]$$

Äquivalenz von Mengendenotation und CF-Dontation

Vorbemerkung | T-Sätze und Funktionsapplikation

Funktionsapplikation als allgemeiner Kompositionsmechanismus

• Etwas umständliche Interpretation mit T-Sätzen

$$[\![[S \ NP \ VP]]\!]^{\mathcal{M},g} = 1 \ \textit{iff} \ [\![NP]\!]^{\mathcal{M},g} \in [\![VP]\!]^{\mathcal{M},g}$$

- CF statt Mengen | Funktion appliziert direkt!
 - $[Mary]^{\mathcal{M},g} = Mary in \mathcal{M}$
 - $[sleeps]^{\mathcal{M},g}$ be the CF of the set of sleepers in \mathcal{M}

 - Kein Bedarf an T-Sätzen

Vorbemerkung | Funktionen von Mengen zu Mengen

Funktionen von Mengen von (Tupeln von) Individuen zu Ausdrücken usw.

- Funktionen Definitionsbereich $S_1 \to \text{Wertebereich } S_2 \mid S_2^{S_1} \mid \text{Die Menge aller Funktionen von } S_1 \text{ zu } S_2$
- Beispiel | Einstellige und Zweistellige Prädikate
 - $T = \{0,1\}$ | Wahrheitswerte
 - ▶ D | Diskursuniversum (Menge aller Individuen)
 - ▶ $D \times D$ | Menge aller 2-Tupel von Individuen
 - ► T^D | Menge aller Funktionen von Individuen zu Wahrheitswerten Menge der CFs aller einstelligen Prädikate
 - ► T^{D×D} | Menge aller Funktionen von 2-Tupeln von Individuen zu Wahrheitswerten Menge der CFs aller zweistelligen Prädikate

Kein Bedarf an Phrasenkategorien

Logik hat bereits Typensysteme, um Syntax zu strukturieren!

- L_{Type} | Prädikatenlogik L₁ plus Typen
- Typen | Semantisch fundierte Klassen von Ausdrücken
- Einfache Typen
 - ► Terme | ⟨e⟩
 - ▶ Wffs/Formeln | ⟨t⟩ | Ersetzt Startsymbol S der PSG!
- Komplexe/funktionale Typen
 - ▶ Einstellige Prädikate | ⟨e, t⟩
 - ▶ Zweistellige Prädikate $|\langle e, \langle e, t \rangle\rangle$
- Allgemein | $\langle \sigma, \tau \rangle$ -Ausdrücke denotieren Funktionen von Denotaten von $\langle \sigma \rangle$ -Ausdrücken zu Denotaten von $\langle \tau \rangle$ -Ausdrücken.

Modell | Denotate getypter Ausdrücke

Homogenes Diskursuniversum D (auch U und bei Dowty u. a. 1981 A)

- ullet Allgemein ${\it D}_{lpha}$ | Menge von Denotaten von Ausdrücken des Typs lpha
- Einfache Typen
 - $D_{\langle e \rangle} = U$ $D_{\langle t \rangle} = \{0, 1\}$
- Komplexe Typen | Rekursiv definierte Denotate
 - •
 - ▶ Allgemein | $D_{\langle \alpha, \beta \rangle} = D_{\langle \beta \rangle}^{D_{\langle \alpha \rangle}}$
 - ightharpoonup Einstelliuge Prädikate | $D_{\langle e,t \rangle} = D_{\langle t \rangle}^{D_{\langle e \rangle}}$
 - lacksquare Zweistellige Prädikate | $D_{\langle e,\langle e,t
 angle
 angle}=\left(D_{\langle t
 angle}^{D_{\langle e
 angle}}
 ight)^{^{b_{\langle e
 angle}}}$
- Interpretation weiterhin durch V, g

Komplexe Typen für Funktionen und FA

```
\langle \sigma \rangle-Ausdrücke saturieren \langle \sigma, \tau \rangle-Ausdrücke zu \langle \tau \rangle-Ausdrücken.
```

- Beispiel für Saturierung durch Funktionsapplikation (FA)
 - ▶ Wenn P vom Typ $\langle e, \langle e, t \rangle \rangle$, Q vom Typ $\langle e, t \rangle$ und x, y vom Typ $\langle e \rangle$
 - ▶ dann ist Q(x) vom Typ $\langle t \rangle$
 - und P(x) vom Typ $\langle e, t \rangle$ sowie P(x)(y) vom Typ $\langle t \rangle$
- Funktionale Typen von Funktoren
 - ▶ Negation \neg | Typ $\langle t, t \rangle$
 - ▶ Andere Funktoren $\land, \lor, \rightarrow, \leftrightarrow$ | Typ $\langle t, \langle t, t \rangle \rangle$

Allgemeine Semantik für getypte Sprachen

Wirklich keine T-Sätze mehr!

Semantik für (e)-Typen (Terme)

$$[\![a_n]\!]^{\mathcal{M},g} = \begin{matrix} V(a_n) \\ [\![x_n]\!]^{\mathcal{M},g} = g(x_n) \end{matrix}$$

Ansonsten nur FA

$$\llbracket \delta(\alpha) \rrbracket^{\mathcal{M}, \mathbf{g}} = \llbracket \delta \rrbracket^{\mathcal{M}, \mathbf{g}} (\llbracket \alpha \rrbracket^{\mathcal{M}, \mathbf{g}})$$

Verallgemeinerung und Sprachen höherer Ordnung

Sprache höherer Ordnung = Sprache mit Variablen über höhere Typen $\langle \sigma, \tau \rangle$

- Type ist die Menge aller Typen
 - $ightharpoonup \langle e \rangle, \langle t \rangle \in Type$
 - ▶ Wenn $\langle \sigma \rangle$, $\langle \tau \rangle \in \textit{Type}$, dann $\langle \sigma, \tau \rangle \in \textit{Type}$
 - ► Nichts sonst ist in *Type*.
- ME ist die Menge aller bedeutungsvollen Ausdrücke
 - ▶ ME_{σ} ist die Menge der Ausdrücke vom Typ $\sigma \mid ME = \bigcup ME_{\sigma}$ mit $\sigma \in Type$
 - lacktriangle Ty ist eine Funktion von Ausdrücken zu ihren Typen lacktriangle Ty $(a)=\sigma$ iff $a\in ME_{\sigma}$
- Höhere Ordnung | Variablen über Ausdrücke von funktionalen Typen
 - ▶ $P_{\langle e,t\rangle}$ und $Q_{\langle e,\langle e,t\rangle\rangle}$ | Bekannte Konstanten höherer (=funktionaler) Typen
 - ▶ Parallel $v_{n_{(e,t)}}$ | Die n-te Variable über einstellige Prädikate
 - ▶ Damit möglich $M = \{v_{1_{\langle e,t \rangle}} : \llbracket v_{1_{\langle e,t \rangle}}(m) \rrbracket = 1\}$ Wenn $\llbracket m \rrbracket = \textit{Maria}$, dann ist M die Menge von Marias Eigenschaften!

Systematische Interpretation zur systematischen Syntax

Zusammenfassung | Die Semantik reduziert sich auf FA und Variablenauswertung.

- Interpretation von Termen und Funktionsausdrücken
 - ▶ Nicht-logische Konstanten | α : $\llbracket \alpha \rrbracket^{\mathcal{M},g} = V(\alpha)$
 - ▶ Variablen | α : $\llbracket \alpha \rrbracket^{\mathcal{M},g} = V(\alpha)$
 - $\blacktriangleright \ \, \mathsf{Wenn} \,\, \alpha \in \langle \mathbf{a}, \mathbf{b} \rangle \,\, \mathsf{und} \,\, \beta \in \mathbf{a} \,\, \mathsf{dann} \,\, [\![\alpha(\beta)]\!]^{\mathcal{M}, \mathbf{g}} = [\![\alpha]\!]^{\mathcal{M}, \mathbf{g}} ([\![\beta]\!]^{\mathcal{M}, \mathbf{g}})$
- Logische Konstanten (Typen $\langle t, t \rangle$ und $\langle t, \langle t, t \rangle \rangle$) denotieren Funktionen in $\{0, 1\}$.
- Quantoren
 - Für Variable $\mathbf{v}_{1_{\langle \alpha \rangle}}$ und Wff $\phi \in ME_t$ ist $[\![(\forall \mathbf{v}_1)\phi]\!]^{\mathcal{M},g} = 1$ gdw für alle $a \in D_{\alpha} [\![\phi]\!]^{\mathcal{M},g[a/\mathbf{v}_1]} = 1$
 - Für Variable $\mathbf{v}_{1_{\langle \alpha \rangle}}$ und Wff $\phi \in ME_t$ ist $[\![(\exists \mathbf{v}_1)\phi]\!]^{\mathcal{M},g} = 1$ gdw für mindestens ein $a \in D_{\alpha}$ $[\![\phi]\!]^{\mathcal{M},g[a/\mathbf{v}_1]} = 1$

Beispiel | Quantifikation über Prädikate

$$\forall \mathbf{v}_{0_{\langle e,t\rangle}} \left[\mathbf{v}_{0_{\langle e,t\rangle}}(\mathbf{j}) \rightarrow \mathbf{v}_{0_{\langle e,t\rangle}}(\mathbf{d}) \right]$$

- Eine quantifizierbare Variable vom Typ $\langle e,t
 angle \mid \mathbf{v}_{0_{\langle e,t
 angle}}$
- Zwei Individuenkonstanten $| j, d \in ME_{\langle e \rangle}$ z.B. John und Dorothy
- Für alle einstelligen Prädikate gilt: Wenn j die vom Prädikat beschriebene Eigenschaft hat, hat d auch diese Eigenschaft.
- Wann ist diese Wff wahr?
 - ▶ Wenn j und d alle benennbaren Eigenschaften teilen?
 - Eine Eigenschaft jedes Objekts | CF der Menge {x : x is the sole member of this set} (union set)
 - ► Einzige Möglichkeit für Wahrheit der Wff also j=d

Beispiel | Wortbildung mit Präfix non

non in Sätzen wie This function is non-continuous.

- Produktives Suffix im Englischen, wie nicht- im Deutschen
- Bedeutungsbeitrag | Invertiert die CF eines Adjektivs
- Komplementbildung der Ursprungsmenge in $D_{\langle e,t \rangle}$
- Syntax und Semantik von non
 - Adjektiv continuous | Typ (e,t)
 - ▶ Typ von non | In: Adjektiv / Out: Adjektiv | $\langle \langle e, t \rangle, \langle e, t \rangle \rangle$
 - ▶ $[non]^{\mathcal{M},g} = h \text{ s.t. } h \in D_{\langle\langle e,t \rangle, \langle e,t \rangle\rangle}$ and for every $k \in D_{\langle e,t \rangle}$ and every $d \in D_{\langle e \rangle}$ (h(k))(d) = 1 iff k(d) = 0 and (h(k))(d) = 0 iff k(d) = 1

Beispiel | Argumentunterdrückung

Optionale Argumente wie in *I eat.* oder *Vanity kills*.

- Zweistellige Verben wie eat in $ME_{\langle e, \langle e, t \rangle \rangle}$
- Aus einem zweistelligen Verb ein einstelliges machen
 - ▶ Phonologisch leere lexikalische Konstante | $R_O \in ME_{\langle\langle e, \langle e, t \rangle\rangle, \langle e, t \rangle\rangle}$ Ähnlich wie lexikalische Regeln in HPSG
 - ▶ Semantik | $[R_0]^{\mathcal{M},g} = h$ s.t. $h \in \mathcal{D}_{\langle\langle e,\langle e,t \rangle\rangle,\langle e,t \rangle\rangle}$ and for all $k \in \mathcal{D}_{\langle e,\langle e,t \rangle\rangle}$ and all $d \in \mathcal{D}_{\langle e \rangle}$ (h(k))(d) = 1 iff there is some $d' \in \mathcal{D}_{\langle e \rangle}$ s.t. k(d')(d) = 1

λ -Sprachen

Sie kennen bereits λ -Abstraktionen!

Was bedeutet
$$f(x) = 3x^2 + 5x + 8$$
?

- $3x^2 + 5x + 8$ ist eine Wff mit einer ungebundenen Variable.
- Die Variable wird gebunden und die Wff wird damit zur Funktion
 x wird zur Eingabevariable und muss bei Anwendung durch Eingabewert ersetzt werden.
- Außerdem wird die Funktion f genannt.

In
$$\lambda$$
-Notation: $f \stackrel{def}{=} \lambda x \left[3x^2 + 5x + 8 \right]$

Nur ein neuer Variablenbinder

Mit λ bildet man ad hoc anonyme Funktionen.

- Abstraktion über Wffs beliebiger Komplexität
- ullet λ -Bindung der Variable | Gebundene Variable als Eingabevariable der Funktion
- Sehr ähnlich wie Listendefinition
 - ▶ Menge | $\{x : x \mod 2 = 0\}$ | allgemein $\{x : \phi\}$
 - ▶ CF dieser Menge | $\lambda x [x \mod 2 = 0]$ | allgemein $\lambda x [\phi]$

Formale Erweiterung von L_{Type}

Nur wenige Erweiterungen in L_{Type}

- Für jede Wff ϕ mit $Ty(\phi) = \langle t \rangle$ und jede $x \in Var$ und jede $a \in Con$
 - ▶ Abstraktion | $\phi \implies \lambda x \left[\phi^{[a/x]}\right]$ Definition $\phi^{[a/x]}$ | Wff ϕ in der alle a durch x getauscht wurden
 - ► Anwendung der Funktion (λ -Konversion) | $\lambda x \left[\phi^{[a/x]}\right](a) = \phi$
- Es gilt $\lambda x \lceil \phi^{a/x} \rceil$ (a) $\equiv \phi$ für jede Wff ϕ , jede $a \in Con$ und jede $x \in Var$
- x kann von einem beliebigen Typ σ sein.
- Es gilt für $\lambda x [\phi]$ mit $x \in ME_{\langle \sigma \rangle}$ stets $\phi \in ME_{\langle t \rangle}$ sowie $\lambda x [\phi] \in ME_{\langle \sigma, t \rangle}$

Zwei Beispiele

Abstraktion über Individuenvariable und Prädikatsvariable

- Individuenvariable $x_{\langle e \rangle}$ alternativ $v_{1_{\langle e \rangle}}$
 - ▶ $\lambda x_{\langle e \rangle} [L(x)]$
 - Mit L z. B. für laughs
 - ▶ Die CF der Menge von Individuen $d \in D_{\langle e \rangle}$ mit die Eigenschaft L (alle Lachenden)
 - Mengendefinition dazu {x : L(x)}
- Prädikatsvariable $P_{\langle e,t \rangle}$ alternativ $v_{1_{\langle e,t \rangle}}$
 - $ightharpoonup \lambda P_{\langle e,t \rangle} [P(l)]$
 - Mit l z. B. für Horst Lichter
 - ▶ Die CF aller Eigenschaften $k \in D_{\langle e,t \rangle}$ von l (alle Eigenschaften Horst Lichters)
 - Mengendefinition dazu {P : P(l)}

Als wäre das jetzt nicht schon klar ...

Die vollen Regeln aus Dowty u. a. (1981: 102) (Syn C.10 and Sem 10)

- If $\alpha \in ME_{\alpha}$ and $u \in Var_b$, then $\lambda u [\alpha] \in ME_{\langle b,a \rangle}$.
- If $\alpha \in ME_a$ and $u \in Var_b$ then $[\![\lambda u \ [\alpha]\!]\!]^{\mathcal{M},g}$ is that function h from D_b into D_a $(h \in D_a^{D_b})$ s.t. for all objects k in D_b , h(k) is equal to $[\![\alpha]\!]^{\mathcal{M},g[k/u]}$.

Konversionen

Konversionen/Reduktionen | Arten, λ -Ausdrücke umzuschreiben

- α -Konversion | Umbenennung von Variablen
 - $\lambda x[\phi] \stackrel{\alpha}{=} \lambda y[\phi^{[x/y]}]$ gdw y in ϕ nicht vorkommt
- β -Reduktion | Funktionsapplikation
 - $\lambda x [\phi] (a) \stackrel{\beta}{=} \phi^{[x/a]}$
 - Ausdrucke mit nicht realisierten, aber möglichen β -Reduktionen: β -Redex
- η -Reduktion | Entfernen von leeren Abstraktionen
 - $\rightarrow \lambda x [F(x)] \stackrel{\eta}{\equiv} F \text{ gdw } Ty(F) = Ty(\lambda x [F(x)]) \text{ (und } x \text{ nicht frei in F ist)}$
 - Ausdruck mit nicht realisierten, aber möglichen η -Reduktionen: η -Redex
 - ▶ Mäßige Semantiker | η -Redex-Fetisch mit $\lambda x \lambda y \lambda z [gibt'(x, y, z)]$ usw.

The non example revised (Dowty et al., 104)

- $\bullet \ \forall \textbf{x} \forall \textbf{v}_{0^{\langle \textbf{e}, \textbf{t} \rangle}} \left[(\mathbf{non}(\textbf{v}_{0_{\langle \textbf{e}, \textbf{t} \rangle}}))(\textbf{x}) \leftrightarrow \neg(\textbf{v}_{0_{\langle \textbf{e}, \textbf{t} \rangle}}(\textbf{x})) \right]$
- $\bullet \ \forall \mathbf{V_{0}}_{\langle \mathbf{e}, \mathbf{t} \rangle} \left[\lambda \mathbf{x} \left[(\mathbf{non}(\mathbf{v_{0}}_{\langle \mathbf{e}, \mathbf{t} \rangle}))(\mathbf{x}) \right] = \lambda \mathbf{x} \left[\neg (\mathbf{v_{0}}_{\langle \mathbf{e}, \mathbf{t} \rangle}(\mathbf{x})) \right] \right]$
- $\forall \mathsf{v}_{0_{\langle e,t\rangle}} \left[\mathbf{non}(\mathsf{v}_{0_{\langle e,t\rangle}}) = \lambda \mathsf{x} \left[\neg (\mathsf{v}_{0_{\langle e,t\rangle}}(\mathsf{x})) \right] \right]$

(since $\lambda x [\mathbf{non}(v)(x)]$ is unnecessarily abstract/ η reduction)

- $\bullet \ \lambda \mathbf{v}_{0_{\langle e,t\rangle}} \left[\mathbf{non}(\mathbf{v}_{0_{\langle e,t\rangle}}) = \lambda \mathbf{v}_{0_{\langle e,t\rangle}} \left[\lambda \mathbf{x} \left[\neg (\mathbf{v}_{0_{\langle e,t\rangle}}(\mathbf{x})) \right] \right] \right]$
- and since that is about all assignments for $\lambda v_{0_{\langle e,t\rangle}}$:

$$\mathbf{non} = \lambda \mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}} \left[\lambda \mathbf{x} \left[\neg \mathbf{v}_{0_{\langle \mathbf{e}, \mathbf{t} \rangle}} (\mathbf{x}) \right] \right]$$

Mary is non-adjacent.

(translate 'adjacent' as $c_{0_{\langle e,t\rangle}}$, 'Mary' as $c_{0_{\langle e \rangle}}$, ignore the copula)

The behavior of quantified NPs

- syntactically like referential NPs
- semantically like PC quantifiers
- $\bullet \ \ \textit{Every student walks.:} \ \forall \mathsf{v}_{0_{\langle \mathsf{e} \rangle}} \left[\mathsf{c}_{0_{\langle \mathsf{e},\mathsf{t} \rangle}}(\mathsf{v}_{0_{\langle \mathsf{e} \rangle}}) \rightarrow \mathsf{c}_{1_{\langle \mathsf{e},\mathsf{t} \rangle}}(\mathsf{v}_{0_{\langle \mathsf{e} \rangle}}) \right]$
- $\bullet \ \ \text{Some student walks.:} \ \forall \mathsf{v}_{0_{\langle e \rangle}} \left[\mathsf{c}_{0_{\langle e,t \rangle}}(\mathsf{v}_{0_{\langle e \rangle}}) \wedge \mathsf{c}_{1_{\langle e,t \rangle}}(\mathsf{v}_{0_{\langle e \rangle}}) \right]$
- making referential NPs and QNPs the same type?

A higher type

- $\bullet \ \lambda \mathbf{v}_{0_{\langle e,t\rangle}} \forall \mathbf{v}_{0_{\langle e\rangle}} \left[\mathbf{c}_{0_{\langle e,t\rangle}} (\mathbf{v}_{0_{\langle e\rangle}}) \rightarrow \mathbf{v}_{0_{\langle e,t\rangle}} (\mathbf{v}_{0_{\langle e\rangle}}) \right]$
- a second order function
- characterizes the set of all predicates true of every student
- $\bullet \ \ \mathsf{equally:} \ \lambda \mathsf{v}_{0_{\langle e,t\rangle}} \exists \mathsf{v}_{0_{\langle e\rangle}} \left[\mathsf{c}_{0_{\langle e,t\rangle}}(\mathsf{v}_{0_{\langle e\rangle}}) \wedge \mathsf{v}_{0_{\langle e,t\rangle}}(\mathsf{v}_{0_{\langle e\rangle}}) \right] \\$

Combining with some predicate

Aufgaben I

• Wie kann man Passiv in L_{Type} modellieren?

Literatur I

Chierchia, Gennaro & Sally McConnell-Ginet. 2000. *Meaning and grammar: An introduction to semantics*. 2. Aufl. Cambridge, MA: MIT Press.

Dowty, David R., Robert E. Wall & Stanley Peters. 1981. *Introduction to Montague semantics*. Dordrecht: Kluwer.

Autor

Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.netroland.schaefer@uni-jena.de

Lizenz

Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.