Poisson Distribution Math 122

Random Variables

- A variable x whose value is determined by the outcome of an experiment.
- P(x) = probability of a particular value of x
- Mean/Expected Value: $\mu = \sum x P(x)$
 - If the experiment is repeated many times and the values of x are averaged, the average should be near μ .
- Standard Deviation: σ

Identifying Unusual Values

• Range Rule of Thumb: The usual values are between $\mu - 2\sigma$ and $\mu + 2\sigma$

- Five Percent Rule
 - If $P(x \le a) \le 5\%$, then a is unusually low
 - If $P(x \ge a) \le 5\%$, then a is unusually high

Special Distributions

- We want a few specific, common distributions so that we know what to do when we encounter them.
- Discrete
 - Binomial (counting successes in trials)
 - Poisson (counting events in an interval)
- Continuous
 - Uniform (simple)
 - Normal (pervasive bell curve)
 - t, F, χ^2

Binomial Distribution

- n independent trials.
- Each trial ends in success or failure.
- The probability of success is p
- The probability of failure is q=1-p
- The value of x is the number of successes.
 - P(x = a) = binompdf(n, p, a)
 - $P(x \le a) = binom cdf(n, p, a)$
- $\mu = np$
- $\sigma = \sqrt{npq}$

Poisson Distribution

Poisson Distribution

- The Poisson distribution is a discrete probability distribution that applies to occurrences of some event over a specified interval.
- The interval can be time, distance, area, volume, or some similar unit.
- The random variable x is the number of occurrences of the event in an interval.

Example Poisson Distributions

- The number of major earthquakes during a year.
- The number of births at a hospital in a day.
- The number of emails received in an hour.
- The number of automobile accidents on a given mile of road.
- The number of bug pieces in a tablespoon of peanut butter.
- The number of dandelions on a square foot of dirt.

Poisson Formulas

For a Poisson Distribution with mean μ

$$\delta = \sqrt{\mu}$$

$$P(x) = \frac{\mu^{x} \cdot e^{-\mu}}{x!}$$

Where $e \approx 2.718281828459045$

Calculator Functions

• $P(x = a) = poisson pdf(\mu, a)$

• $P(x \le a) = poissoncdf(\mu, a)$

"c" is for "cumulative"

Earthquakes

- According to the USGS, there were 16,500 earthquakes at or above magnitude 6 in a recent span of 100 years.
- What is the probability that there are 125 or fewer earthquakes at or above magnitude 6 in a given year?

$$X = \# g u Kes in a year 6.9 \times 10^{-4}$$

 $X is Poisson$
 $P(X \le 125) = poisson cdf(16500/100, 125) = .00069$

Earthquakes

 What would be the usual range for the number of earthquakes at or above magnitude 6 during one year (according to the Range Rule of Thumb)?

$$M = 16,500/100 = 165$$
 $D = 12.8$
 $M = 16,500/100 = 165$
 $M = 16,500/100 = 165$
 $M = 190.69$

Births

- 120 children are born each year at Seward Memorial Hospital.
- SMH has 2 "birthing rooms."
- What is the probability on any given day that this is adequate?

$$X = \# birThs in I day$$

 $X is Poisson$
 $M = 120/36S$
 $P(X \le 2) = Poisson cut (120/365, 2) = 0.99$

Births

- 200 children are born each year in a certain hospital.
- How many birthing rooms should the hospital have so that the probability that they have enough rooms on any given day is at least

99.5%?
$$P(x \le 1) = p_0, s_0 \land c_0 \leftarrow (200/365, 1) = 895$$

$$X = \# GirTL_S \text{ in } | year \qquad P(x \le 2) = .98$$

$$X \text{ is } Poisson \qquad P(x \le 2) = .997$$

$$P(x \le 1) = .995 \qquad P(x \le 4)$$

Bugs in Peanut Butter

- The USDA allows a maximum of 30 "insect parts" in 100g or 3.53oz of peanut butter (twice that for chocolate).
- Suppose that a jar of peanut butter has the maximum allowable number of bug parts.
- If a sandwich is made with one ounce of this peanut butter, then what is the probability that the peanut butter in the sandwich does not contain any bug parts?

$$X = \# parts in 102 of p-nut Sutten P(X=0) =$$

 $X is poisson$

$$Poisson pdf (30/3.53,0) = 0.0002$$

Bugs in Peanut Butter

- The USDA allows a maximum of 30 "insect parts" in 100g or 3.53oz of peanut butter (twice that for chocolate).
- Suppose that a jar of peanut butter has the maximum allowable number of bug parts.
- If a sandwich is made with one ounce of this peanut butter, then what is the probability it contains at least 5 bug parts?

$$\mu = 30/3.53$$

$$P(X \ge 5) = 1 - P(X < 5) = 1 - P(X \le 4) = 0.93$$

Tornadoes

- There were 7236 tornadoes in Texas in a recent span of 54 years (the most of any state in the USA).
- What is the probability that there are 110 or fewer tornadoes in one year in Texas?
- What is the probability that there are more than 150 tornadoes in one year in Texas?