

Database e gestione dei dati

Giulio Angiani - UniPr

Big Data e Business Intelligence

Sistema informativo

Sistema informativo

- Sistema informativo
 - Informazioni di interesse nei processi aziendali
 - Modalità in cui esse sono gestite
 - Risorse coinvolte, sia umane sia tecnologiche
- · ICT: insieme di programmi concorrenti
 - Ogni programma opera su un certo insieme di dati
 - Certi dati possono essere condivisi tra i programmi
- · Casi semplici: ogni programma gestisce i suoi dati
- · Altrimenti: sistema di gestione tra programmi e dati

Gestione distinta dei dati

- · Ridondanza: più copie dello stesso dato
- · Inconsistenza: copie modificate diversamente
- Riservatezza: dati riservati accessibili a persone non autorizzate
- · Integrità: operazioni sbagliate o incomplete sui dati
- Concorrenza: accesso e aggiornamento dati non sincronizzato tra programmi differenti

Gestione condivisa dei dati

- Tutte le azioni sui dati vengono mediate dal DBMS (
- · Dati in formato standard, con backup/ripristino
- · Controlli su:
 - Ridondanza, consistenza, distribuzione
 - Riservatezza, integrità
 - Accesso concorrente
- Ma risorse hw/sw (stesso DBMS)

Basi di dati con DBMS

- · Da preferire quando:
 - Dati organizzati secondo modelli predefiniti
 - Grandi: fino e oltre TByte, memoria secondaria
 - Condivisi: accesso da app. ed utenti diversi
 - **Persistenti**: tempo di vita > esecuzione app.
- · Da evitare quando:
 - Insieme dati piccolo e semplice
 - Poche modifiche nel tempo
 - Non condiviso
 - Prestazioni in tempo reale

Accessi concorrenti

- · Problemi di consistenza dei dati condivisi
- Es. prelievo da un conto corrente come sequenza operazioni
 - Verifica disponibilità
 - Sottrazione importo

Transazione

- · Insieme di operazioni non decomponibili
 - Eseguite completamente, prima che stessi dati siano nuovamente disponibili ACID (
- Es. precedente:
 - Verifica disponibilità
 - Sottrazione importo
 - Unica transazione!

Architettura a tre livelli

Linguaggi DDL e DML

```
    DDL ( ), intensionale
    Usato dal DBA (amministratore)
    Definire lo schema dati, secondo il modello concettuale: gerarchico, relazionale ecc.
    Definire tabelle, campi, chiavi ecc.
    DML ( ), estensionale
    Usato all'interno delle applicazioni
    Operazioni CRUD ( )
    SQL (INSERT, SELECT, UPDATE, DELETE)
    ~ 4 verbi HTTP (POST, GET, PUT, DELETE)
```

Modelli dei dati

- Caratterizza livello concettuale e esterno DBMS
- · Definito da regole precise, per esprimere sia le proprietà statiche che quelle dinamiche dei dati
- · Evoluzione dei modelli:
 - **Gerarchico** (anni 1960)
 - Reticolare (anni 1970)
 - Relazionale (anni 1970)
 - Object-relational, object-oriented (anni 1980)

Modello relazionale

Modello relazionale

- · Codd 1970; DBMS reali 1981
- · Si basa sul concetto matematico di relazione
 - Relazioni rappresentate da familiari
 - Successo anche per di utilizzo
- · A ciascun dominio è associato un nome (), unico nella relazione
 - Il nome "descrive" il ruolo del dominio
 - Attributi usati come intestazioni delle
- · Informazioni inserite nelle della tabella

Definizione di relazione

- Relazione R: insieme di n-uple ordinate $(d_1 \dots d_n)$ tali che $d_1 \in D_1 \dots d_n \in D_n$
- · Cioè R è sottoinsieme del prodotto cartesiano D1 × D2 × ... × Dn
- · Insiemi D₁ ... D_n (anche non distinti) detti domini
- · Valore n detto grado di R
- · Il numero di n-uple in R è detto cardinalità di R

Database universitario

Studente					
Matricola	Cognome	Nome	Corso	Nascita	
27655	Rossi	Mario	Ing.Inf.	1978-12-05	
78763	Rossi	Mario	Ing.Inf.	1976-11-03	
65432	Neri	Piero	Ing. Mecc.	1979-07-10	
87654	Neri	Mario	Ing. Inf.	1976-11-03	
67653	Rossi	Piero	Ing. Mecc.	1978-12-05	

Esame				
Studente	Insegnamento	Voto		
78763	04	30		
65432	02	24		
65432	01	28		
27655	01	26		

Insegname	ento	
Codice	Titolo	Docente
01	Analisi	Chiari
02	Chimica	Bruni
04	Chimica	Verdi

Terminologia

Colonna / Attributo / Campo

Dominio di un attributo

- Tuple di una relazione definite dall'insieme dei valori corrispondenti agli attributi
- Dominio di un attributo: insieme di tutti e soli i valori che quell'attributo può assumere
- Es. Dominio dei codici fiscali
- · Formato dalle stringhe di 16 caratteri che rispettano con precisione le regole di generazione dei codici fiscali

Modello E-R

Modello E-R

- · Si creano associazioni tra entità distinte, tramite condivisione di attributi
 - Le righe di diverse tabelle hanno domini in comune
- Es. Database universitario
 - Studenti ed esami sono associati tramite gli attributi matricola e studente
 - Insegnamenti ed esami sono associati tramite gli attributi insegnamento e codice
- · Semplicità: forza del modello relazionale!

Chiave primaria

- · Una tabella (relazione) non dovrebbe contenere due righe identiche
 - Sempre possibile scegliere un sottoinsieme di campi t.c. ...
 - Ciascuna riga della tabella identificata univocamente
- · Chiave primaria () di una tabella:
 - Minimo sottoinsieme di campi che permette di...
 - Identificare univocamente le righe della tabella

Chiave esterna

- · Le informazioni presenti in tabelle diverse possono essere associate tra loro perché tali tabelle hanno dei domini in comune
- · Quando il dominio di un campo K che è chiave primaria in una tabella A è presente anche in un'altra tabella B...
- · Allora questo campo K è detto chiave esterna () verso la tabella

Concetto e tipo di chiave

Chiave candidata

- Le **chiavi candidate** sono gli attributi in una relazione con la proprietà di poter essere la chiave primaria:
 - Tra le chiavi candidate deve essere scelta la chiave primaria
 - Le chiavi escluse si dicono chiavi alternative
- · Le righe di una tabella rappresentano "entità" del mondo reale
- · La chiave primaria rappresenta il modo con cui è possibile distinguere queste entità

Normalizzazione

- Processo di organizzazione dei dati per evitare ridondanza, anomalie, inefficienza
- Stessa informazione in più copie → svantaggi
 - Maggior uso di
 - della stessa informazione
 - dei dati, se aggiornati in modo indipendente; la stessa informazione potrebbe assumere valori diversi

Prima forma normale

- · La relazione rispetta il modello relazionale
- · Le tuple hanno un numero fisso di attributi definiti su domini elementari
 - Non ci sono righe uguali
 - Atomicità: solo attributi elementari
 - Non ci sono attributi ripetitivi

Seconda forma normale

 Non ci sono attributi non-chiave che dipendono parzialmente dalla chiave

Terza forma normale

- Non ci sono attributi non-chiave che dipendono transitivamente dalla chiave
 - Ossia dipendenti da campi non-chiave

Operatori relazionali

Operatori relazionali

- · Base teorica per i linguaggi di interrogazione delle basi di dati relazionali
 - Operano su intere tabelle considerate come insiemi, piuttosto che record per record
 - Prendono in input tabelle
 - Generano in output nuove tabelle
- Operatori
 - Unione, intersezione, differenza (, applicabili a relazioni definite sugli stessi attributi)
 - Selezione, proiezione (
 - Prodotto cartesiano, join ()

Operatori insiemistici

Laureati				
Matricola	Nome	Età		
7274	Rossi	42		
7432	Neri	54		
9824	Verdi	45		

Quadri				
Matricola	Nome	Età		
9297	Neri	33		
7432	Neri	54		
9824	Verdi	45		

Unione

Intersezione

Differenza

Selezione e proiezione

Selezione

Proiezione

Prodotto cartesiano

Join senza uso di attributi in comune Risultato con numero di n-uple pari al prodotto delle cardinalità degli operandi (le n-uple sono tutte combinabili)

Join

Due relazioni con attributo comune

Proiezione + selezione

Raffinare la ricerca di informazioni da una singola relazione

PROJ matricola, Nome (SEL Stipendio > 50 (Impiegati))	
Matricola	Nome
7309	Rossi
5998	Neri
5698	Neri

Join + selezione

Join + proiezione

Raffinare la ricerca di informazioni da più relazioni

Structured Query Language

Structured Query Language

- · SQL: riferimento per manipolazione e interrogazione di basi di dati relazionali
- Deriva da una prima proposta di linguaggio di Ibm chiamato (1974)
- · Prime implementazioni di Ibm e Oracle (1981)
- Da 1983 "standard di fatto"
- Evoluzione corrispondente ad aggiornamenti delle specifiche (1986, 1989, 1992, 1999...)

Es. Tabelle parentele

```
create table Person (
    Name character(20) primary key,
    Age numeric(3),
    Income numeric(9)
);
create table Paternity (
    Father character(20),
    Child character(20) unique
);
create table Maternity (
    Mother character(20),
    Child character(20) unique
);
```

Es. Ricerche semplici

- · Tell me name and income of people less than 30 yo
- · Tell me everything of people less than 30 yo
- Fathers of people earning more than 50

```
select Name, Income from Person where Age < 30

select * from Person where Age < 30

select Paternity.Father
    from Person
    join Paternity
    on Paternity.Child = Person.Name
    where Person.Income > 50
```

Es. Manipolazione dati

```
insert into Person
    values ('Mario', 25, 52);
insert into Person (Name, Age)
    values ('Pino', 25);
delete from Person
    where Age < 18;
update Person
    set Income = 45
    where Name = 'Piero';
update Person
    set Income = Income * 1.1
    where Age < 30;</pre>
```

Es. Ricerche complesse

- Tell me name, income and fathers' age of people earning more than their father
- · Tell me the name of each person's mother and father

```
select C.Name, C.Income, F.Age
    from Person C
    join Paternity P on C.Name = P.Child
    join Person F on F.Name = P.Father
    where C.Income > F.Income;

select Paternity.Child, Father, Mother
    from Paternity
    join Maternity on Paternity.Child = Maternity.Child
```

Es. Tabella impiegati

```
create table Employee (
    Id character(6) primary key,
    Name character(20) not null,
    Surname character(20) not null,
    Location character(15),
    Salary numeric(9) default 0,
    City character(15),
    foreign key(Location)
        references Department(DepName),
    unique (Surname, Name)
)
```

Create, select

```
create table Table (
   Attribute Domain [Constraints],
   Attribute Domain [Constraints]
   ...
   [OtherConstraints]
)
select Attribute, Attribute ...
   from Table, Table ...
[where Conditions]
```

Insert, update, delete

Giulio Angiani Universita' degli Studi di Parma