Building a Bayes Linear Emulator

This document complements the code provided in the GitHub repository https://github.com/dario-domi/Bayes-Linear-Emulation. It illustrates the components which a Bayes Linear Emulator of a function f comprises of, and details the meaning of all optional arguments of the R function arguments of the R function <math>arguments of the R function of the R function <math>arguments of the R function of the R function <math>arguments of the R function of the R function of the R function <math>arguments of the R function of the R function of the R function of the R function <math>arguments of the R function of the R function

Setting

Let $f: U \to \mathbb{R}$ be a function, $U \subseteq \mathbb{R}^m$. Suppose f is slow to evaluate¹. We thus want to build a fast surrogate of f, which we call an **emulator** of f. The emulator will provide instantaneous predictions of the value f(x) for any $x \in U$, and determine the level of uncertainty associated with the prediction.

The process behind the construction of an emulator consists of two main steps:

- 1. Make prior specifications about f (e.g., mean behaviour, smoothness, etc).
- 2. Adjust these in light of the observed values of f at a small, fixed set of inputs $\mathcal{D} = \{x^{(1)}, \dots, x^{(n)}\} \subset U$.

The emulator built by the R function BL.Emul() relies upon the *Bayes Linear* statistical approach²: informally, this means that only second-order specifications (mean, variances and covariances) about f are required, which are then *adjusted* once the values $f(x^{(1)}), \ldots, f(x^{(n)})$ are observed.

¹Typically, f(x) is the output of a computer model, simulating the dynamics of a complex system when values of the system parameters have been set to x. Evaluating f(x) may be both slow and computationally intensive.

²See: M. Goldstein and D. Wooff. Bayes Linear Statistics: Theory and Methods. Wiley, 2006.

1 Model of the BL Emulator

In order to build an emulator \widetilde{f} of f, we assume the following form for f:

$$f(x) = \sum_{j=1}^{q} \beta_j g_j(x_{[A]}) + \eta(x_{[A]}) + \varepsilon(x), \quad x \in U.$$
 (1)

 $x_{[A]} \in \mathbb{R}^p$ are called **active inputs**: they are identified as a subset of $p \leq m$ coordinates of $x \in \mathbb{R}^m$, responsible for most of the variation of f across the domain U. The three terms in (1) are as follows:

- 1. The **regression term** $\boldsymbol{\beta}^T \boldsymbol{g}(x_{[A]})$ is a linear combination of q known basis functions $g_j(x_{[A]})$, e.g., polynomials in the components of $x_{[A]}$. $\boldsymbol{\beta} \in \mathbb{R}^q$ are unknown coefficients, for which second-order prior specification can be made.
- 2. The **term** $\eta(x_{[A]})$ is a zero-mean stochastic process, with prior covariance function modelled as:

$$Cov[\eta(x_{[A]}), \, \eta(x'_{[A]})] = \sigma_{\eta}^2 \, k(||x_{[A]} - x'_{[A]}||_{\mathbf{d}}). \tag{2}$$

The **kernel** $k(\cdot)$ is a function of a scalar quantity $r \geq 0$, in (2) this being a norm of the difference between the two active inputs $x_{[A]}$ and $x'_{[A]}$. The norm depends on a set of **correlation lengths** $d = (d_1, \ldots, d_p)$.

The role of the correlation lengths and classical choices for k available within BL.Emul() are discussed in subsection 1.1. The kernel k satisfies k(0) = 1, hence the quantity $\sigma_{\eta}^2 \geq 0$ represents the variance of $\eta(x_{[A]})$ at any $x_{[A]}$.

3. The **nugget term** $\varepsilon(x)$ accounts for the small portion of variability in f explained by the inactive inputs (residual variability). It is modelled as a zero-mean stochastic process, with $\operatorname{Var}[\varepsilon(x)] = \sigma_{\varepsilon}^2$ and $\operatorname{Cov}[\varepsilon(x), \varepsilon(x')] = 0$ if $x \neq x'$.

We denote the sum of the first two terms in (1) by $f^*(x_{[A]})$, so that equation (1) reads

$$f(x) = f^*(x_{[A]}) + \varepsilon(x). \tag{3}$$

Given the above specifications and the values of f at the set $\mathcal{D} = \{x^{(1)}, \dots, x^{(n)}\}$ of design points:

$$F = (f(x^{(1)}), \dots, f(x^{(n)}))^T,$$

the Bayes Linear framework allows to adjust the prior model for $f^*(x_{[A]})$ to the observed values in F, at any $x_{[A]}$.

This means that an emulator \widetilde{f}^* of f^* can be built, which provides, at any $x_{[{\rm A}]}$, the adjusted mean and variance of $f^*(x_{[{\rm A}]})$ in light of the observed F:

$$\mathbb{E}\left[\widetilde{f}^*(x_{[\mathbf{A}]})\right], \quad \mathbb{V}\mathrm{ar}\left[\widetilde{f}^*(x_{[\mathbf{A}]})\right]. \tag{4}$$

The interested reader can find the formulas and derivation of the expressions in (4) in Section***. Once these are obtained, expectation and variance of an emulator of f (in which we are ultimately interested), at an input x with active inputs $x_{[A]}$, follow from the relation (3) linking f and f*:

$$\mathbb{E}[\widetilde{f}(x)] = \mathbb{E}[\widetilde{f}^*(x_{[A]})] \tag{5}$$

$$\mathbb{V}\mathrm{ar}\big[\widetilde{f}(x)\big] = \mathbb{V}\mathrm{ar}\big[\widetilde{f}^*(x_{[A]})\big] + \sigma_{\varepsilon}^2 \ . \tag{6}$$

The function BL.Emul() returns the values in (5) and (6) at any sequence of N inputs $x_{[A]}$ passed to the function.

Computational Note: The function is optimised for speed, as well as memory: it will run smoothly even for very large N, as long as there is enough RAM space to handle the 2N floats returned as outputs.

1.1 Covariance Kernel and Correlation Lengths

This section provides a guide to the kernels $k(\cdot)$ available in BL.Emul() (see equation (2)), simple heuristics to help choose between them, and the role of correlation lengths in specifying the prior covariance of η .

Given a vector $\mathbf{d} = (d_1, \dots, d_p)$ with $d_i > 0$, the square of the norm in (2) is computed as follows:

$$\|x_{[A]} - x'_{[A]}\|_{\boldsymbol{d}}^2 = \sum_{i=1}^p \left(\frac{x_{[A],i} - x'_{[A],i}}{d_i}\right)^2, \qquad x_{[A]}, x'_{[A]} \in \mathbb{R}^p,$$
 (7)

where $x_{[A],i}$ denotes the *i*-th component of $x_{[A]} \in \mathbb{R}^p$. The effect of d_i is therefore to scale distances along coordinate *i*: the smaller d_i , the "more distant" the two vectors $x_{[A]}$ and $x'_{[A]}$ will appear along coordinate *i*.

Once $r = ||x_{[A]} - x'_{[A]}||_{\mathbf{d}}$ is evaluated, the prior correlation between $\eta(x_{[A]})$ and $\eta(x'_{[A]})$ is computed as k(r) where k is one of the kernels described below. In all cases, k is a decreasing function of $r \geq 0$ with k(0) = 1. Hence, higher values of the correlation lengths in \mathbf{d} yield higher prior correlations between the various $\eta(x_{[A]})$.

While the values of d affect the strength of correlations in the outputs of η , the specific choice of the kernel k will affect the regularity of η , and may therefore be made in light of knowledge/beliefs on the regularity of the function f to be emulated. The following choices for k are available in BL.Emul():

• Squared-Exponential

$$k(r) = \exp\left(-r^2\right), \quad r \ge 0. \tag{8}$$

A process η with the above covariance kernel is infinitely many times differentiable.

• Matérn 5/2

$$k(r) = \left(1 + \sqrt{5}r + \frac{5}{3}r^2\right) \exp\left(-\sqrt{5}r\right), \quad r \ge 0.$$
 (9)

A process η with the above covariance kernel is twice differentiable.

\bullet Matérn 3/2

$$k(r) = \left(1 + \sqrt{3}r\right) \exp\left(-\sqrt{3}r\right), \quad r \ge 0. \tag{10}$$

A process η with the above covariance kernel is differentiable.

• Absolute Exponential

$$k(r) = \exp\left(-r\right), \quad r \ge 0. \tag{11}$$

A process η with the above covariance kernel is continuous but not differentiable.

All four previous regularity results hold both pathwise and in mean-square.

2 Table of Inputs of BL.Emul()

Table 1 lists all arguments of the function <code>BL.Emul()</code>, their size/type, and the meaning of each argument in reference to the above setting. Default values of all optional arguments are also listed.

Table 1: Description of all inputs to the function BL.Emul(). Notation as in section 1. Design points: $x^{(i)}$, $i=1,\ldots,n$. Test points (where to evaluate the emulator): $\tilde{x}^{(i)}$, $i=1,\ldots,N$. The default value for correlation length d_j is computed as a third of the maximum difference between the j-th components of any two design points.

Variable (X)	Size	Description	Optional?	Default
ActInp. Design	$n \times p$	$\mathtt{X[i,j]} = x_{\scriptscriptstyle [\mathtt{A}],j}^{(i)}$	×	_
ActInp. Test	$N \times p$	$\mathtt{X[i,j]} = \widetilde{x}_{\scriptscriptstyle{[\mathrm{A}],j}}^{(i)}$	×	_
у	n	$\mathtt{y[i]} \! = f(x^{(i)})$	×	_
Regress. Design	$n \times q$	$\texttt{X[i,j]} = g_j(x_{\scriptscriptstyle [A]}^{(i)})$	✓	ActInp. Design
Regress. Test	$N \times q$	$\texttt{X[i,j]} = g_j(\widetilde{x}_{\scriptscriptstyle [A]}^{(i)})$	✓	ActInp. Test
beta	q	Prior expect of $\boldsymbol{\beta}$: beta[j] = $\mathbb{E}[\beta_j]$	✓	q-dim zero vector
Cov.beta	$q \times q$	Prior cov of $oldsymbol{eta}$: Cov.beta= $\mathbb{C} ext{ov}[oldsymbol{eta}]$	✓	$q \times q$ zero matrix
sigma2	scalar	$\sigma_{\eta}^2 \ (\mathrm{eq.}\ (2))$	✓	var(y)
kernel	string	One of: exp2, abs_exp, matern32, matern52	✓	exp2
d	p	Corr lengths: $d[j] = d_j$	✓	see caption
nu	scalar	σ_{ε}^2 (var of $\varepsilon(x)$ in (1))	✓	0