Analysis Of The Code

1. Data Preparation (What steps would you take to prepare your data? Discuss your approach)

Ans - I performed the following steps to prepare my data

- I added CustomerChurn.csv path so as to read data from that file
- **Encoding**: I did encoding to convert Categorical data to numeric data. I encoded two columns, 'Gender' and 'Attrition Flag', to numeric values using the map() function.
- Scaling: I performed scaling using StandardScaler to standardize the features
- Balancing: Using the SMOTE() function the class was balanced.

Model Hyperparameter Tuning (Which hyperparameters would you tune and why? How would you tune them?)

Ans - I have used GridSearchCV with the Random Forest classifier. I have used the n_estimator hyperparameter because It focuses on tuning the number of trees (n_estimators) in the forest. Also, It prints the best parameters and precision score, which helps us select the optimal model.

3. Choice of Evaluation Metric (Which metric would be suitable for model evaluation and why?)

Ans - I have used precision metrics. The precision metric would be suitable for model evaluation because it focuses on measuring the accuracy of positive predictions.

4. Overfitting avoidance mechanism (Which mechanism (feature Selection/ regularization) would you use and why?)

Ans - I have used the regularization mechanism to avoid overfitting.

Regularization through the C parameter helps us balance the data by fitting the training data properly to avoid Overfitting.

5. Results analysis

a. Which of the two models (random forest or support vector classifier) would you recommend for deployment in the real-world?

Ans – I would suggest both Random Forest and Support Vector Machine classifiers are suitable for deployment in the real world.

 Random Forest combines the result of multiple trees and accordingly calculates precision.

- Support Vector Machine can be used when a large number of features are involved
- **b.** Is any model underfitting? If yes, what could be the possible reasons?

 Ans No, No model is underfitted as I have used hyperparameter tuning.

.