АНАЛОГИИ СООТНОШЕНИЙ ФИЗИЧЕСКИХ ВЕЛИЧИН ПРИ ПОСТУПАТЕЛЬНОМ И ВРАЩАТЕЛЬНОМ ДВИЖЕНИЯХ (A.C. Чуев, www.bmstu.ru/ps/~chuev)

Перемещение	
$ec{l}$ - линейное перемещение	$ec{\phi}$ - угловое перемещение
Скорость	
$ec{ ext{v}} = ext{d}ec{l} \ / ext{d}t \ $ - линейная скорость	$\vec{\omega} = \mathbf{d}\vec{\boldsymbol{\varphi}}/\mathbf{d}t$ - угловая скорость
Соотношение скоростей	
$\mathbf{v} = \boldsymbol{\omega} \mathbf{R} \; ; \; \vec{\mathbf{v}} = [\vec{\boldsymbol{\omega}} \times \vec{\mathbf{R}}]$	$\omega = v/R$
Ускорение	
$\vec{a} = d\vec{v}/dt = d^2\vec{l}/dt^2$ - линейное	$\vec{\varepsilon} = d\vec{\omega}/dt = d^2\vec{\varphi}/dt^2$ - угловое
Перемещение при ускоренном движении	
$s = v_0 t + \frac{at^2}{2}$	$\varphi = \omega_0 t + \frac{\varepsilon t^2}{2}$
Выражение для центростремительного (центробежного) ускорения	
$a_n = v^2 / R$	$a_n = \omega^2 R$
Суммарное ускорение	
$a = \sqrt{a_{\tau}^2 + a_n^2} \; ;$	
Переносное ускорение (Кориолиса)	
$\vec{a}_{\scriptscriptstyle K} = 2[\vec{\omega} \times \vec{\mathrm{v}}]$	
Инертная	
<i>m</i> - масса	$I = \sum m_i \cdot r_i^2$ — момент инерции
Движущая $\ddot{F}=m\vec{a}$ - сила	$\vec{M} = [\vec{r} \times \vec{F}]$ - момент силы
Сохраняющаяся величина	
$\vec{P} = m\vec{\mathrm{v}}$ - импульс (количество движения)	$ec{L} = [ec{r} imes ec{P}] = ec{I} ec{\omega}$ - момент импульса
Соотношение сохраняющейся и движущей величин	
$\vec{F} = d\vec{P}/dt$; $\vec{P} = \int \vec{F}dt$	$\vec{M}=\mathrm{d}\vec{L}/\mathrm{d}t\;;\qquad \vec{L}=\int \vec{M}dt$
Основное уравнение динамики соответствующего движения	
$\vec{F} = m \cdot \vec{a} = d\vec{P}/dt$	$\vec{M} = I \cdot \vec{\epsilon} = \mathrm{d}\vec{L}/\mathrm{d}t$
Кинетическая энергия движения	
$E = \frac{m\mathbf{v}^2}{2} = \frac{P^2}{2m}$	$E = \frac{I\omega^2}{2} = \frac{L^2}{2I}$
Работа	
$A = \vec{F}\vec{l}$	$A = \vec{M}\vec{\varphi}$
Мощность	
$N = \vec{F} \vec{\mathbf{v}}$	$N = M\vec{\omega}$