Recap: Markov Chain

- Let X_n , $n = 0, 1, \cdots$ be a sequence of discrete random variables taking values in S.
- ▶ We say it is a Markov chain if

$$Pr[X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1} \cdots X_0 = x_0] = Pr[X_{n+1} = x_{n+1} | X_n = x_n]$$

We can write it as

$$f_{X_{n+1}|X_n,\cdots X_0}(x_{n+1}|x_n,\cdots,x_0) = f_{X_{n+1}|X_n}(x_{n+1}|x_n), \ \forall x_i$$

► For a Markov chain, given the current state, the future evolution is independent of the history of how you reached the current state

Recap: Transition Probabilities

▶ Transition probability function is $P: S \times S \rightarrow [0, 1]$

$$P(x,y) = Pr[X_{n+1} = y | X_n = x]$$

The chain is said to be homogeneous when this is not a function of time.

▶ For a homogeneous chain

$$Pr[X_{n+1} = y | X_n = x] = Pr[X_1 = y | X_0 = x], \ \forall n$$

- ightharpoonup P satisfies
 - $P(x,y) \ge 0, \ \forall x,y \in S$
- ▶ If S is finite then P can be represented as a matrix

Recap: Initial State Probabilities

▶ Initial state probabilities $\pi_0: S \to [0, 1]$

$$\pi_0(x) = \Pr[X_0 = x]$$

It satisfies

- $\pi_0(x) \ge 0, \ \forall x \in S$
- $\sum_{x \in S} \pi_0(x) = 1$
- ▶ The P and π_0 together determine all joint distributions

Recap

► The Markov property implies

$$Pr[X_{m+n} = y | X_m = x, X_0 = z] = Pr[X_{m+n} = y | X_m = x]$$

= $Pr[X_n = y | X_0 = x]$

Or, in general,

$$f_{X_{m+n}|X_m,\cdots,X_0}(y|x,\cdots) = f_{X_{m+n}|X_m}(y|x)$$

▶ Further, we can show

$$\Pr[X_{m+n} = y | X_m = x, X_{m-k} \in A_k, k = 1, \dots, m] = Pr[X_{m+n} = y | X_m = x]$$

$$Pr[X_{m+n+r} \in B_r, \ r = 0, \cdots, s \mid X_m = x, \ X_{m-k} \in A_k, \ k = 1, \cdots, m]$$

= $Pr[X_{m+n+r} \in B_r, \ r = 0, \cdots, s \mid X_m = x]$

Recap: Chapman-Kolmogorov Equations

▶ The *n*-step transition probabilities are defined by

$$P^n(x,y) = Pr[X_n = y | X_0 = x]$$

▶ These *n*-step transition probabilities satisfy

$$P^{m+n}(x,y) = \sum_{z} P^m(x,z)P^n(z,y)$$

- ▶ These are known as Chapman-Kolmogorov equations
- ► For a finite chain, the *n*-step transition probability matrix is *n*-fold product of the transition probability matrix
- We also have

$$\pi_n(x) \triangleq Pr[X_n = x] = \sum \pi_0(x)P^n(x, y)$$

Recap: Hitting times

▶ We define hitting time for *y* as the random variable

$$T_y = \min\{n > 0 : X_n = y\}$$

Using this defintion, we can derive

$$P_x(T_y = m) = \sum_{z \neq y} P(x, z) P_z(T_y = m - 1)$$

(Notation:
$$P_z(A) = Pr[A|X_0 = z]$$
)

$$P^{n}(x,y) = \sum_{x=-1}^{n} P_{x}(T_{y} = m)P^{n-m}(y,y)$$

Recap: transient and recurrent states

- ▶ Define $\rho_{xy} = P_x(T_y < \infty)$.
- \blacktriangleright It is the probability that starting in x you will visit y
- Note that

$$\rho_{xy} = \lim_{n \to \infty} P_x(T_y < n) = \sum_{n=1}^{\infty} P_x(T_y = n)$$

Definition: A state y is called transient if $\rho_{yy} < 1$; it is called recurrent if $\rho_{yy} = 1$.

▶ Intuitively, all transient states would be visited only finitely many times while recurrent states are visited infinitely often.

Recap

► For any state y define

$$I_y(X_n) = \begin{cases} 1 & \text{if } X_n = y \\ 0 & \text{otherwise} \end{cases}$$

▶ The total number of visits to *y* is given by

$$N(y) = \sum_{n=1}^{\infty} I_y(X_n)$$

• We can get distribution of N(y) as

$$P_x(N(y)=m)=\rho_{xy}\;\rho_{yy}^{m-1}(1-\rho_{yy}),\;m\geq 1$$
 and
$$P_x(N(y)=0)=1-\rho_{xy}$$

Recap

- Notation: $E_x[Z] = E[Z|X_0 = x]$
- Define

$$G(x,y) \triangleq E_x[N(y)]$$

$$= \sum_{n=1}^{\infty} E_x[I_y(X_n)]$$

$$= \sum_{n=1}^{\infty} P^n(x,y)$$

▶ G(x,y) is the expected number of visits to y for a chain that is started in x.

Theorem:

(i). Let y be transient. Then

$$P_x(N(y) < \infty) = 1, \ \forall x \ \text{ and } \ G(x,y) = \frac{\rho_{xy}}{1 - \rho_{yy}} < \infty, \ \forall x$$

(ii) Let y be recurrent. Then

$$P_{y}[N(y) = \infty] = 1$$
, and $G(y, y) = E_{y}[N(y)] = \infty$

$$P_x[N(y) = \infty] = \rho_{xy}$$
, and $G(x,y) = \begin{cases} 0 & \text{if } \rho_{xy} = 0 \\ \infty & \text{if } \rho_{xy} > 0 \end{cases}$

Proof of (i): y is transient; $\rho_{yy} < 1$

$$\begin{split} G(x,y) &=& E_x[N(y)] = \sum_m m P_x[N(y) = m] \\ &=& \sum_m m \; \rho_{xy} \; \rho_{yy}^{m-1} (1 - \rho_{yy}) \\ &=& \rho_{xy} \; \sum_{m=1}^\infty m \; \rho_{yy}^{m-1} (1 - \rho_{yy}) \\ &=& \rho_{xy} \; \frac{1}{1 - \rho_{yy}} < \infty, \quad \text{because} \quad \rho_{yy} < 1 \\ &\Rightarrow P_x[N(y) < \infty] = 1 \end{split}$$

Proof of (ii):

 $y \text{ recurrent } \Rightarrow \rho_{yy} = 1. \text{ Hence}$

$$P_y[N(y) \ge m] = \rho_{yy}^m = 1, \forall m$$

$$\Rightarrow P_y[N(y) = \infty] = \lim_{m \to \infty} P_y[N(y) \ge m] = 1$$

$$\Rightarrow G(y, y) = E_y[N(y)] = \infty$$

$$P_x[N(y) \ge m] = \rho_{xy} \ \rho_{yy}^{m-1} = \rho_{xy}, \ \forall m$$

Hence $P_x[N(y) = \infty] = \rho_{xy}$

$$\rho_{xy} = 0 \implies P_x[N(y) \ge m] = 0, \forall m > 0 \implies G(x,y) = 0$$

$$\rho_{xy} > 0 \implies P_x[N(y) = \infty] > 0 \implies G(x,y) = \infty$$

- ► Transient states are visited only finitely many times while recurrent states are visited infinitely often
- ▶ If S is finite, it should have at least one recurrent state
- ightharpoonup If y is transient, then, for all x

$$G(x,y) = \sum_{n=1}^{\infty} P^n(x,y) < \infty \quad \Rightarrow \quad \lim_{n \to \infty} P^n(x,y) = 0$$

- ▶ However, $\sum_{y} P^{n}(x, y) = 1, \ \forall n, \ \forall x$
- ▶ If all $y \in S$ are transient, then we get a contradiction

$$1 = \lim_{n \to \infty} \sum_{y \in S} P^n(x, y) = \sum_{y \in S} \lim_{n \to \infty} P^n(x, y) = 0$$

- ▶ A finite chain has to have at least one recurrent state
- ► An infinite chain can have only transient states

▶ We say, x leads to y if $\rho_{xy} > 0$

Theorem: If x is recurrent and x leads to y then y is recurrent and $\rho_{xy} = \rho_{yx} = 1$.

Proof:

- ▶ Take $x \neq y$, wlog. Since $\rho_{xy} > 0$, $\exists n$ s.t. $P^n(x,y) > 0$
- ▶ Take least such n. Then we have states y_1, \dots, y_{n-1} , none of which is x (or y) such that

$$P(x, y_1) P(y_1, y_2) \cdots P(y_{n-1}, y) > 0$$

Now suppose, $\rho_{ux} < 1$. Then

$$P(x, y_1) P(y_1, y_2) \cdots P(y_{n-1}, y) (1 - \rho_{ux}) > 0$$

- is the probability of starting in x but not returning to x.
- ▶ But this cannot be because x is recurrent and hence $\rho_{xx}=1$
- Hence, if x is recurrent and x leads to y then $\rho_{yx}=1$

Now, $\exists n_0, n_1 \text{ s.t. } P^{n_0}(x,y) > 0, P^{n_1}(y,x) > 0.$

$$P^{n_1+n+n_0}(y,y) = P_y[X_{n_1+n+n_0} = y]$$

$$\geq P_y[X_{n_1} = x, X_{n_1+n} = x, X_{n_1+n+n_0} = y]$$

$$= P^{n_1}(y,x)P^n(x,x)P^{n_0}(x,y), \forall n$$

• We know $G(x,x) = \sum_{m=1}^{\infty} P^m(x,x) = \infty$

$$\begin{split} \sum_{m=1}^{\infty} P^m(y,y) & \geq & \sum_{m=n_0+n_1+1}^{\infty} P^m(y,y) = \sum_{n=1}^{\infty} P^{n_1+n+n_0}(y,y) \\ & \geq & \sum_{n=1}^{\infty} P^{n_1}(y,x) P^n(x,x) P^{n_0}(x,y) \\ & = & \infty, \quad \text{because } x \text{ is recurrent} \end{split}$$

 \Rightarrow y is recurrent

- ▶ What we showed so far is: if x leads to y and x is recurrent, then $\rho_{ux} = 1$ and y is recurrent.
- ▶ Now, y is recurrent and y leads to x and hence $\rho_{xy} = 1$.
- ▶ This completes proof of the theorem

equivalence relation

- ▶ let R be a relation on set A. Note $R \subset A \times A$
- ightharpoonup R is called an equivalence relation if it is
 - 1. reflexive, i.e., $(x, x) \in R$, $\forall x \in A$
 - 2. symmetric, i.e., $(x,y) \in R \implies (y,x) \in R$
 - 3. transitive, i.e., $(x,y),(y,z)\in R \Rightarrow (x,z)\in R$

example

- Let $A = \{ \frac{m}{n} \mid m, n \text{ are integers} \}$
- ▶ Define relation R by

$$\left(\frac{m}{n}, \frac{p}{q}\right) \in R \text{ if } mq = np$$

- ▶ This is the usual equality of fractions
- ▶ Easy to check it is an equivalence relation.

Equivalence classes

- ▶ Let R be an equivalence relation on A.
- ightharpoonup Then, A can be partitioned as

$$A = C_1 + C_2 + \cdots$$

Where C_i satisfy

- $x, y \in C_i \Rightarrow (x, y) \in R, \forall i$
- $x \in C_i, y \in C_j, i \neq j \Rightarrow (x,y) \notin R$
- In our example, each equivalence class corresponds to a rational number.
- \blacktriangleright Here, C_i contains all fractions that are equal to that rational number

▶ The state space of any Markov chain can be partitioned into the transient and recurrent states: $S = S_T + S_R$:

$$S_T = \{ y \in S : \rho_{yy} < 1 \} \quad S_R = \{ y \in S : \rho_{yy} = 1 \}$$

- ▶ On S_R , consider the relation: 'x leads to y' (i.e., x is related to y if $\rho_{xy} > 0$)
- ► This is an equivalence relation
 - $\rho_{rr} > 0, \ \forall x \in S_R$
 - $\rho_{xy} > 0 \implies \rho_{yx} > 0, \ \forall x, y \in S_R$
 - $\rho_{xy} > 0, \ \rho_{yz} > 0 \ \Rightarrow \ \rho_{xz} > 0$
- ▶ Hence we get a partition: $S_R = C_1 + C_2 + \cdots$ where C_i are equivalence classes.

- ▶ On S_R , "x leads to y" is an equivalence relation.
- ▶ This gives rise to the partition $S_R = C_1 + C_2 + \cdots$
- ▶ Since C_i are equivalence classes, they satisfy:
 - $x, y \in C_i \Rightarrow x \text{ leads to } y$
 - $x \in C_i, y \in C_j, i \neq j \Rightarrow \rho_{xy} = 0$
- lacktriangle All states in any C_i lead to each other or communicate with each other
- ▶ If $i \neq j$ and $x \in C_i$ and $y \in C_j$, then, $\rho_{xy} = \rho_{yx} = 0$. x and y do not communicate with each other.

- ▶ A set of states, $C \subset S$ is said to be irreducible if x leads to y for all $x, y \in C$
- ▶ An irreducible set is also called a communicating class
- ▶ A set of states, $C \subset S$, is said to be closed if $x \in C$, $y \notin C$ implies $\rho_{xy} = 0$.
- Once the chain visits a state in a closed set, it cannot leave that set.
- We get a partition of recurrent states

$$S_R = C_1 + C_2 + \cdots$$

where each C_i is a closed and irreducible set of states.

▶ If S is irreducible then the chain is said to be irreducible. (Note that S is trivially closed)

- ▶ In an irreducible set of states, if one state is recurrent, then, all states are recurrent.
- ► We saw that a finite chain has to have at least one recurrent state.
- ▶ Thus, a finite irreducible chain is recurrent.
- ► For example, in the umbrellas problem, the chain is irreducible and hence all states are recurrent.
- An infinite irreducible chain may be wholly transient
- ▶ Here is a trivial example of non-irreducible transient chain:

- ► The state space of any Markov chain can be partitioned into transient and recurrent states.
- We need not calculate ρ_{xx} to do this partition.
- ► By looking at the structure of transition probability matrix we can get this partition

Example

- ▶ State 0 is called an absorbing state. $\{0\}$ is a closed irreducible set.
- ▶ 1,2 are transient states.
- We get: $S_T = \{1, 2\}$ and $S_R = \{0\} + \{3, 4, 5\}$

- ▶ If you start the chain in a recurrent state it will stay in the corresponding closed irreducible set
- If you start in one of the transient states, it would eventually get 'absorbed' in one of the closed irreducible sets of recurrent states.
- ► We want to know the probabilities of ending up in different sets.
- ▶ We want to know how long you stay in transient states
- ▶ We want to know what is the 'steady state'?

- ightharpoonup let C be a closed irreducible set of recurrent states
- ▶ T_C hitting time for C.

$$T_C = \min\{n > 0 : X_n \in C\}$$

It is the first time instant when the chain is in C

▶ Define $\rho_C(x) = P_x[T_C < \infty]$

If
$$x$$
 is recurrent, $\rho_C(x) = \begin{cases} 1 & \text{if } x \in C \\ 0 & \text{if } x \notin C \end{cases}$

Because each x is in a closed irreducible set

ightharpoonup Suppose x is transient. Then

$$\rho_C(x) = \sum_{y \in C} P(x, y) + \sum_{y \in S_T} P(x, y) \ \rho_C(y)$$

▶ By solving this set of linear equations we can get $\rho_c(x)$, $x \in S_T$

Example: Absorption probabilities

$$ightharpoonup S_T = \{1, 2\} \text{ and } C_1 = \{0\}, C_2 = \{3, 4, 5\}$$

$$\rho_C(x) = \sum_{y \in C} P(x, y) + \sum_{y \in S_T} P(x, y) \ \rho_C(y)$$

$$\rho_{C_1}(1) = P(1,0) + P(1,1)\rho_{C_1}(1) + P(1,2)\rho_{C_1}(2)
= 0.25 + 0.5\rho_{C_1}(1) + 0.25\rho_{C_1}(2)
\rho_{C_1}(2) = 0 + 0.2\rho_{C_1}(1) + 0.4\rho_{C_1}(2)$$

- Solving these, we get $\rho_{C_1}(1) = 0.6$, $\rho_{C_1}(2) = 0.2$
- What would be $\rho_{C_2}(1)$?

Expected time in transient states

- ► We consider a simple method to get the time spent in transient states for finite chains
- Let states $1, 2, \dots, t$ be the transient states
- ▶ b_{ij} the expected number of time instants spent in state j when started in i.
- ▶ Then we get

$$b_{ij} = \delta_{ij} + \sum_{k=1}^{t} P(i,k)b_{kj}$$

where $\delta_{ij} = 1$ if i = j and is zero otherwise

- ▶ let B be the $t \times t$ matrix of b_{ij} , I be the $t \times t$ identity matrix and P_T be the submatrix (corresponding to the transient states) of P.
- ► Then the above in Matrix notation is

$$B = I + P_T B$$
 or $B = (I - P_T)^{-1}$

stationary distributions

- ▶ $\pi: S \to [0, 1]$ is a probability distribution (mass function) over S if $\pi(x) \ge 0$, $\forall x$ and $\sum_{x \in S} \pi(x) = 1$
- A probability distribution over S, π , is said to be a stationary distribution for the Markov chain with transition probabilities P if

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

- ▶ Suppose S is finite. Then π can be represented by a vector.
- ▶ The π is stationary if

$$\pi^T = \pi^T P$$
 or $P^T \pi = \pi$

 $\blacktriangleright \pi$ is a stationary distribution if

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

▶ Recall $\pi_n(x) \triangleq Pr[X_n = x]$ satisfies

$$\pi_{n+1}(y) = \sum Pr[X_{n+1} = y | X_n = x] Pr[X_n = x] = \sum \pi_n(x) P(x, y)$$

- ► Hence, if $\pi_0 = \pi$ then $\pi_1 = \pi$ and hence $\pi_n = \pi$, $\forall n$
- ▶ Hence the name, stationary distribution.
- It is also called the invariant distribution or the invariant measure

- ▶ If the chain is started in stationary distribution then the distribution of X_n is not a function of time, as we saw.
- ▶ Suppose for a chain, distribution of X_n is not dependent on n. Then the chain must be in a stationary distribution.
- Suppose $\pi = \pi_0 = \pi_1 = \cdots = \pi_n = \cdots$. Then

$$\pi(y) = \pi_1(y) = \sum_{x \in S} \pi_0(x) P(x, y) = \sum_{x \in S} \pi(x) P(x, y)$$

which shows π is a stationary distribution

- ► Suppose *S* is finite.
- ▶ Then π is a stationary distribution if

$$P^T\pi = \pi$$
 or $(P^T - I)$ $\pi = 0$

- Note that each column of P^T sums to 1.
- ▶ Hence, $(P^T I)$ would be singular (1 is always an eigen value for a column stochastic matrix)
- A stationary distribution always exists for a finite chain.
- But it may or may not be unique.
- What about infinite chains?

Example

The stationary distribution has to satisfy

$$\pi(y) = \sum_{x \in S} \pi(x) P(x, y), \ \forall y \in S$$

Thus we get the following linear equations

$$0.75\pi(0) + 0.5\pi(1) = \pi(0)$$

$$0.25\pi(0) + 0.75\pi(2) = \pi(1)$$

$$0.5\pi(1) + 0.25\pi(2) = \pi(2)$$

in addition,
$$\pi(0) + \pi(1) + \pi(2) = 1$$

 \blacktriangleright We can also write the equations for π as

$$\left[\begin{array}{ccc} \pi(0) & \pi(1) & \pi(2) \end{array} \right] \left[\begin{array}{cccc} 0.75 & 0.25 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 0.75 & 0.25 \end{array} \right] = \left[\begin{array}{cccc} \pi(0) & \pi(1) & \pi(2) \end{array} \right]$$

$$0.75\pi(0) + 0.5\pi(1) = \pi(0)$$

$$0.25\pi(0) + 0.75\pi(2) = \pi(1)$$

$$0.5\pi(1) + 0.25\pi(2) = \pi(2)$$

▶ We have to solve these along with $\pi(0) + \pi(1) + \pi(2) = 1$

$$0.75$$
 0.5
 0.25
 0.75
 0.25

$$0.75\pi(0) + 0.5\pi(1) = \pi(0) \Rightarrow \pi(1) = \frac{1}{2}\pi(0)$$

$$0.25\pi(0) + 0.75\pi(2) = \pi(1) \Rightarrow \pi(2) = \frac{1}{3}\pi(0)$$

$$0.5\pi(1) + 0.25\pi(2) = \pi(2)$$

$$\pi(0) + \pi(1) + \pi(2) = 1 \Rightarrow \pi(0)\left(1 + \frac{1}{2} + \frac{1}{3}\right) = 1$$

- Now, $\pi(0)\left(1+\frac{1}{2}+\frac{1}{3}\right)=1$ gives $\pi(0)=\frac{6}{11}$
- ▶ We get a unique solution: $\begin{bmatrix} \frac{6}{11} & \frac{3}{11} & \frac{2}{11} \end{bmatrix}$

Example2

The stationary distribution has to satisfy

$$\left[\begin{array}{ccc} \pi(0) & \pi(1) & \pi(2) \end{array} \right] \left[\begin{array}{cccc} 1.0 & 0 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 0 & 1.0 \end{array} \right] = \left[\begin{array}{cccc} \pi(0) & \pi(1) & \pi(2) \end{array} \right]$$

- ▶ We also have to add the equation $\pi(0) + \pi(1) + \pi(2) = 1$
- ▶ We now do not have a unique stationary distribution

Example2

We get the following linear equations

$$\pi(0) + 0.5\pi(1) = \pi(0) \Rightarrow \pi(1) = 0$$

$$0.5\pi(1) + \pi(2) = \pi(2) \Rightarrow \pi(1) = 0$$

$$\pi(0) + \pi(1) + \pi(2) = 1 \Rightarrow \pi(0) = 1 - \pi(2)$$

- ▶ Now there are infinitely many solutions.
- Any distribution $[a \ 0 \ 1-a]$ with $0 \le a \le 1$ is a stationary distribution
- ► This chain is not irreducible; the previous one is irreducible

- We now explore conditions for existence and uniqueness of stationary distributions
- ▶ For finite chains stationary distribution always exists.
- For finite irreducible chains it is unique.
- But for infinite chains, it is possible that stationary distribution does not exist.
- When the stationary distribution is unique, we also want to know if the chain converges to that distribution
- ► The stationary distribution, when it exists, is related to expected fraction of time spent in different states.

- ▶ Let $I_n(X_n)$ be indicator of $[X_n = y]$
- Number of visits to y till n: $N_n(y) = \sum_{m=1}^n I_y(X_n)$

$$G_n(x,y) \triangleq E_x[N_n(y)] = \sum_{m=1}^n E_x[I_y(X_n)] = \sum_{m=1}^n P^m(x,y)$$

ightharpoonup Expected fraction of time spent in y till n is

$$\frac{G_n(x,y)}{n} = \frac{1}{n} \sum_{n=1}^{n} P^m(x,y)$$

 \blacktriangleright We will first establish a limit for the above as $n \to \infty$