POSSESIO	ON OF MOBILES IN EXAM IS UFM PRACTICE.
Name	Enrollment No.
	Jaypee Institute of Information Technology, Nolda
1	T1 Examination, 2022
)	II. Tech. 5th Semester

After perusing above mentioned course, the student will be able to

CDI explain the concepts of approximation and errors in compagation

- CO2 construct numerical products for algebraic and transcendental equations and their convergence
- CO) outline the methods of interpolation using finite differences and divided difference formula:
- COA make use of mattern al differentiation and integration
- COS, solve the system of linear equations using direct and denotes methods
- CV96 solve antimary differential equations using direct numerical methods

Note: Non programmable calculators are allowed

Course Title: Basic Numerical Methods

Course Code: 17BINMASJI

A. Round off the following numbers to the THREE significant figures 3M [CO1] and also calculate the percentage error rounded off for THREE significant digits in each case-

864561

Jr. 943562

o. 0.093477

2. If $u = x^2 e^{2y} \cos z$, then find the maximum relative error at x = 3M [CO1] 2, y = z = 0; the error in x is 0.01 in y is 0.2 and in z is 0.1.

Perform FIVE iterations of fixed point iteration method to find a root 3M [CO2] of the equation $f(x) = x^2 - x - 1$, in the interval (1.5, 3.5). Round off the calculations at FOURTH decimal places in each iteration.

Maximum Time: 01 Hr.

Maximum Marks: 20

4. a) Perform two iterations of Newton-Raphson method to find the root of the equation,

 $f(x) = 3\sin x - 2x + 5$; take initial guess $x_0 = 2$.

3M [CO2]

Round off the calculations at FOURTH decimal places in each iteration.

b) Perform two iterations of Regula-Falsi method to find the square root of 3/4 taking initial interval as (0,1). Round off the calculations at FOURTH decimal places in each iteration.

Estimate the population increase during the period 1985-1991 using Newton's backward interpolation. The population for that town is given in the following table

Year	1951	1961	1971	1981	1991
Population (× 10 ⁶)	46	66	81	93	101

Use Gauss forward interpolation to find the value of y at 23, with the 4M [CO3] 7. help of following table

x	12	22	32	42	52	(1.5)
v	2.4914	5.5.52	10.4708	18.8144	25.2458	

Round off the calculations at FOURTH decimal places.