

Preliminary Amendment
U.S. Appln. No. 09/897,495

REMARKS

Entry and consideration of this Amendment is respectfully requested.

Respectfully submitted,

Mainak Mehta

Mainak H. Mehta
Registration No. 46,924

SUGHRUE MION, PLLC
2100 Pennsylvania Avenue, N.W.
Washington, D.C. 20037-3213
Telephone: (202) 293-7060
Facsimile: (202) 293-7860

Date: January 28, 2002

APPENDIX
VERSION WITH MARKINGS TO SHOW CHANGES MADE

IN THE SPECIFICATION:

The specification is changed as follows:

Page 4, first full paragraph:

Each ingress router I_1 of the second domain B uses the SLA information to compute the estimated volume of class-specific traffic between the ingress router I_1 and all egress routers $[E_2, E_3]E_1, E_2$ in the same domain, to create an $N \times N$ matrix M , where N represents the number of edge routers in the domain. The (i,j) -th element of the traffic matrix for a given class represents the total bandwidth used by that given class from ingress router i to egress router j . For example, as illustrated in Figure 1, for the second domain B , element $(1,1)$ of the matrix M equals λ_1 , and element $(1,2)$ of the matrix equals λ_2 . Once constructed, the traffic matrices are used to compute the provisioning routes (e.g., paths), for each non-zero element of those matrices, and the computed paths are pinned down using multi-protocol label switching (MPLS) for Diffserv networks or multi-protocol lambda switching (MP λ S) for optical networks.

Page 6, after equation (4), please insert the following paragraph:

--V represents the total amount of bandwidth of accepted flows, and W represents the total amount of bandwidth of all flows.--

Page 16, second full paragraph:

Accordingly, in the next step S21, M is defined as the subset of those already accepted (i.e., during the previous $i-1$ steps) quadruplets $T(1), \dots, T(i-1)$ for which the following two

Preliminary Amendment
U.S. Appln. No. 09/897,495

conditions hold true. First, the bit $[r_j]b_i$ of quadruplet is TRUE and the path SPA(j) thus can be altered. Second, all links e in Q belong to the path SPA(j): $Q \subset \text{SPA}(j)$. Therefore, if the bandwidth reservation for r_j of the quadruplet T(j) for its path SPA(j) is removed, the available bandwidth at each link e in Q increases by r_j . Since the i^{th} flow requires bandwidth reservation of $r_i \leq r_j$, this increase is sufficient for accommodating the i^{th} flow using its path SPI(i).

PRIOR ART

Figure 2

Figure 6