Low Rank Approximations, PCA, and CCA

Abhinav Gopal, Shrey Vasavada, William McEachen, Grace Kull, Jai Bansal

LOW RANK APPROXIMATIONS | EECS 189

- What is a low rank approximation?
 - Large amounts of data is expensive
 - Furthermore, some *unimportant* aspects of data reflect noise
 - How do we create an approximation of the data with just the important features?
- Option: Reduce features
 - How? Choose the most "important" features of the matrix
 - Decompose to svd and only use the top "k" values
 - $\circ \quad \boldsymbol{\Sigma}_{i \in (1...k)} \boldsymbol{u}_i \boldsymbol{\sigma}_i \boldsymbol{v}^T_{\ i}$

LOW RANK APPROXIMATIONS | EECS 189

- Notice from the previous slide that our low rank approximation's column space was the k vectors v_i
- These vectors represent the directions of most variance in our data
- Idea: Use these vectors in Xw = y prediction tasks
 - Project X onto these important directions, and use this projection to predict y.

PCA | **EECS** 189

- This brings us to PCA!
- Procedure
 - Compute SVD for matrix X
 - Get the top k eigenvectors V^T_i and choose these eigenvectors
 - Get the principal components by finding Z_k = XV_k
 - Get the approximation for X by doing ZV^T_k
 - Use this approximation and do least squares

PCA | **EECS** 189

- Great, but flawed, way to approximate a matrix and eliminate noise.
 - Why? Relies on the assumption that the largest variance directions are the most important ones.
- Very easy to modify data in order to render PCA useless
- What is the workaround?
 - We try to find the actual correlation between X and y.

- This brings us to CCA
 - Canonical Correlation Analysis
- CCA uses the pearson correlation coefficient in order to determine the relationship between X and y.

$$\hat{\rho}(x,y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \cdot \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

$$= \frac{\tilde{x}^T \tilde{y}}{\sqrt{\tilde{x}^T \tilde{x} \cdot \tilde{y}^T \tilde{y}}} \quad \text{where } \tilde{x} = x - \bar{x}, \tilde{y} = y - \bar{y}$$

Goal: To Solve

$$\max_{\mathbf{u},\mathbf{v}} \rho(\mathbf{X}_{rv}^{\top}\mathbf{u}, \mathbf{Y}_{rv}^{\top}\mathbf{v}) = \max_{\mathbf{u},\mathbf{v}} \frac{\text{Cov}(\mathbf{X}_{rv}^{\top}\mathbf{u}, \mathbf{Y}_{rv}^{\top}\mathbf{v})}{\sqrt{\text{Var}(\mathbf{X}_{rv}^{\top}\mathbf{u}) \text{Var}(\mathbf{Y}_{rv}^{\top}\mathbf{v})}}$$

- X_{rv} and Y_{rv} are both real vectors that correspond to the size of X and Y.
- With some algebra, we find that the problem becomes

$$= \max_{\mathbf{u}, \mathbf{v}} \frac{\mathbf{u}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{Y} \mathbf{v}}{\sqrt{\mathbf{u}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{u} \cdot \mathbf{v}^{\mathsf{T}} \mathbf{Y}^{\mathsf{T}} \mathbf{Y} \mathbf{v}}}$$

$$\hat{\rho}(\mathbf{X} \mathbf{u}, \mathbf{Y} \mathbf{v})$$

Whiten the X and Y matrices (make their covariance 0) by

$$\circ$$
 Use W_x = U_xS^{1/2}_xU_x^T

- $O Use W_y = U_y S^{1/2}_y U_y$
- \circ SVD of X^TX = $U_x S_x V_x^T$
- \circ SVD of Y^TY = $U_y S_y V_y^T$
- \circ Use $X_w = XW_x, Y_w = YW_Y$

 With the change of variables u_w = W_x⁻¹u and v_w = W_y⁻¹v, the max expression becomes:

- Now, let's decorrelate X_w and Y_w , making $(X_wD_x)^T(Y_wD_v)$
- We decorrelate them with the choice of
 - \circ U for D_x and V for D_y , where $USV^T = X_w^T Y_w$

- Changing variables with
 - \circ $u_d = D_x^T u_w$ and $v_d = D_y^T v_w$, the maximization becomes the following:

$$\max_{\substack{\|\mathbf{u}_d\|=1\\\|\mathbf{v}_d\|=1}}\mathbf{u}_d^\mathsf{T}\mathbf{S}\mathbf{v}_d$$

Finally, we get the associated eigenvectors of interest! \circ U = W_xD_xU_d, V = W_yD_yV_d, with

$$\mathbf{U}_d = \begin{bmatrix} \mathbf{I}_k \\ \mathbf{0}_{p-k,k} \end{bmatrix} \in \mathbb{R}^{p \times k}$$

$$\mathbf{U}_d = \begin{bmatrix} \mathbf{I}_k \\ \mathbf{0}_{p-k,k} \end{bmatrix} \in \mathbb{R}^{p \times k} \qquad \qquad \mathbf{V}_d = \begin{bmatrix} \mathbf{I}_k \\ \mathbf{0}_{q-k,k} \end{bmatrix} \in \mathbb{R}^{q \times k}$$

