

Capturing temporal evolution and distribution in LCA

Arthur Jakobs, Timo Diepers, Amelie Müller

Temporal representation of time in LCA trending...

→ bw_timex in press:

The International Journal of Life Cycle Assessment https://doi.org/10.1007/s11367-025-02539-3

LCI METHODOLOGY AND DATABASES

- ² Time-explicit life cycle assessment: a flexible framework for coherent
- 3 consideration of temporal dynamics
- 4 Amelie Müller^{1,2} · Timo Diepers³ · Arthur Jakobs⁴ · Giuseppe Cardellini² · Niklas von der Assen³ · Jeroen Guinée¹ ·
- Bernhard Steubing¹
- 6 Received: 14 February 2025 / Accepted: 24 August 2025
- O The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025
- Abstract
- Purpose A well-known limitation of conventional Life Cycle Assessment (LCA) is the lack of temporal considerations, particularly the temporal distribution and evolution of processes, emissions, and environmental responses. While these
 - 11 aspects have been explored to some extent in dynamic and prospective LCA, a comprehensive approach for considering
 - both temporal distribution and evolution is currently missing. We introduce a novel framework for time-explicit LCA that
 - integrates the temporal distribution and evolution of product systems in the Life Cycle Inventory (LCI) phase and supports
 - dynamic characterization of emissions in the Life Cycle Impact Assessment (LCIA) phase.

 Mathods. The proposed approach expands the conventional LCA matrices to incorporate timing and time based.
 - Methods The proposed approach expands the conventional LCA matrices to incorporate timing and time-based changes.

Life cycle of an electric vehicle

'Conventional' LCA: "system today"

5

5

Temporal Evolution: "prospective state of the system"

Temporal distribution: "the system over time"

Time-explicit LCA: "Temporal distribution + evolution"

bw_timex enables you to account for

- Timing of processes
- Timing of emissions
- Evolving supply chains

While:

- Doing the hard work for you
- Providing extensive documentation

Time to get started...

Open the jupyter notebook on SPRING.brightcon.link

> teaching_example_ev_premise.ipynb

11

How does it work: A-B-C example

1) Flowchart of A-B-C example

2) Original matrices

3) Timeline of intermediate flows

Time of producing process	Producing process	Time of consuming process	Consum- ing process	Intermediate product	Amount	Temporal market shares
2021-01-01	С	2023-01-01	В	С	0.9	2020: 0.9, 2030: 0.1
2023-01-01	В	2024-01-01	Α	b	2.0	_
2024-01-01	Α	2024-01-01	-1 (FU)	а	1.0	-
2028-01-01	С	2023-01-01	В	С	2.1	2020: 0.2, 2030: 0.8

4) Time-explicit matrices

CO₂ @ 2028

A^*	<i>b</i> roc	bloce	oza oza oza	6eee C @	cess C @	2030 c@2021	ૢ <u>૾</u>
product a @ 2024	1	0	0	0	0	0	
product b @ 2023	-2	1	0	0	0	0	
product c @ 2020	0	0	1	0	-0.9	-0.2	
product c @ 2030	0	0	0	1	-0.1	-0.8	
product c @ 2021	0	-0.9	0	0	1	0	
product c @ 2028	0	-2.1	0	0	0	1	
B^*							
CO ₂ @ 2021	0	0	0	0	10.6	0	
CO ₂ @ 2023	0	1	0	0	0	0	
CO ₂ @ 2024	3	0	0	0	0	0	
CO ₂ @ 2025	2	0	0	0	0	0	

How does it work: A-B-C example

13

Time to do it yourself

Open the jupyter notebook ::

> teaching_project_electric_vs_petrol_vehicle_premise.ipynb

14

