$$\begin{array}{l} x = \{t, r, \theta, \varphi\} \\ g = DiagonalMatrix[\{-\left(1-\left(2\,M\right)\,/\,r\right), \left(1-2\,M\,/\,r\right)\,^{\circ}\left(-1\right), r^{2}, r^{2}*\left(Sin[\theta]\right)\,^{\circ}2\}]; \\ Print["The Schwarzschild metric is"]; \\ g // MatrixForm \\ \\ \textit{Out[*]=} \\ \\ \{t, r, \theta, \varphi\} \end{array}$$

The Schwarzschild metric is

Out[•]//MatrixForm=

$$\begin{pmatrix} -1 + \frac{2M}{r} & 0 & 0 & 0 \\ 0 & \frac{1}{1 - \frac{2M}{r}} & 0 & 0 \\ 0 & 0 & r^2 & 0 \\ 0 & 0 & 0 & r^2 \sin[\theta]^2 \end{pmatrix}$$

Print["The inverse metric is"];
ig // Simplify // MatrixForm

The inverse metric is

Out[•]//MatrixForm=

$$\begin{pmatrix} \frac{r}{2\,M-r} & 0 & 0 & 0 \\ 0 & 1 - \frac{2\,M}{r} & 0 & 0 \\ 0 & 0 & \frac{1}{r^2} & 0 \\ 0 & 0 & 0 & \frac{Csc\,[\theta]^2}{r^2} \end{pmatrix}$$

```
ChristoffelSymbol[g_, xx_] := Block[{ig, gd}, ig = Inverse[g];
    gd = D[g, {xx}];
    ig.(gd + Transpose[gd, {3, 1, 2}] - Transpose[gd, {2, 3, 1}]) / 2];
Print["The ChristoffelSymbol is"];
ChristoffelSymbol[g, x] // Simplify // MatrixForm
The ChristoffelSymbol is
```

Out[•]//MatrixForm=

$$\begin{pmatrix} \begin{pmatrix} 0 \\ -\frac{M}{2\,M\,r-r^2} \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} -\frac{M}{2\,M\,r-r^2} \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\ \begin{pmatrix} \frac{M}{6} \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\ \begin{pmatrix} \frac{M}{6} \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} &$$

```
RiemannTensor[g_, xx_] := Block[{ig, chr, chrd, chrdif}, chr = ChristoffelSymbol[g, xx];
    chrd = D[chr, {xx}];
    chrdif = chrd - chr.chr;
    Transpose[chrdif, {4, 1, 3, 2}] - Transpose[chrdif, {4, 2, 3, 1}]];
Print["The Riemann tensor is"];
RiemannTensor[g, x] // Simplify // MatrixForm
```

The Riemann tensor is

Out[•]//MatrixForm=

The Riemann tensor is

```
RicciTensor[g_, xx_] := Block[{rie}, rie = RiemannTensor[g, xx];
                                                      Tr[Transpose[rie, {3, 2, 4, 1}], Plus, 2]];
                                    RicciScalar[g_, xx_] := Block[{ric}, ric = RicciTensor[g, xx];
                                               ric.Inverse[g] // Tr]
                                    Print["The Ricci tensor is"];
                                    RicciTensor[g, x] // Simplify // MatrixForm
                                    Print["The Ricci scalar is"];
                                    RicciScalar[g, x] // Simplify
                                    The Ricci tensor is
Out[ • ]//MatrixForm=
                                       0000
                                            0 0 0 0
                                            0 0 0 0
                                       0000
                                    The Ricci scalar is
Out[ • ]=
                                    0
      In[ • ]:= M := 1;
                                    Print["The graph of equal t-plane"];
                                    RevolutionPlot3D[Sqrt[8 M (r-2 M)], \{r, 0, 40\}, MeshStyle \rightarrow \{\{Cyan, Opacity[1]\}\}, MeshStyle \rightarrow \{\{Cyan, Opacity[1]\}, MeshStyle \rightarrow \{\{C
                                         PlotStyle → Directive[Black, Specularity[White, 40]]]
                                    The graph of equal t-plane
Out[ • ]=
```

