

COMBO: Compositional World Models for Embodied Multi-Agent Cooperation

COMBO: Compositional World Models for Embodied Multi-Agent Cooperation

Hongxin Zhang^{1*}, Zeyuan Wang^{2*}, Qiushi Lyu^{3*}, Zheyuan Zhang⁴ Sunli Chen², Tianmin Shu⁵, Yilun Du⁶, Chuang Gan^{1,7}

University of Massachusetts Amherst
IIIS, Tsinghua University
Peking University
University of Michigan
Johns Hopkins University
Massachusetts Institute of Technology
MIT-IBM Watson AI Lab

Abstract. In this paper, we investigate the problem of embodied multiagent cooperation, where decentralized agents must cooperate given only partial egocentric views of the world. To effectively plan in this setting, in contrast to learning world dynamics in a single-agent scenario, we must simulate world dynamics conditioned on an arbitrary number of agents' actions given only partial egocentric visual observations of the world. To address this issue of partial observability, we first train generative models to estimate the overall world state given partial egocentric observations. To enable accurate simulation of multiple sets of actions on this world state, we then propose to learn a compositional world model for multi-agent cooperation by factorizing the naturally composable joint actions of multiple agents and compositionally generating the video. By

Introduction

Compositional World Model

agent

components

COMBO

Experiment

		TDW- $Game$		$TDW ext{-}Cook$	
	Cooperating with	Agent 1	Agent 2	2 Agent	1 Agent 2
Recurrent World Models [23]	Success Rate	0	0	0	0
	Average Steps	/	/	/	/
MAPPO [78]	Success Rate	0	0	0	0
	Average Steps	/	/	/	/
CoELA (Oracle Vision) [80]	Success Rate	1.0	0.8	0.5	0.2
	Average Steps	17.8	26.1	38.2	29.5
LLaVA [42]	Success Rate	0.9	1.0	1.0	0.9
	Average Steps	26.0	31.1	31.5	36.7
COMBO (w/o IT)	Success Rate	0.8	0.7	0.9	0.9
	Average Steps	15.6	17.4	24.8	21.0
COMBO (Ours)	Success Rate	1.0	1.0	1.0	1.0
	Average Steps	16.8	18.1	21.3	21.7
Oracle Cooperator	Success Rate	1.0	1.0	1.0	1.0
(Oracle Vision)	Average Steps	14.9	16.8	23.4	19.3

Thank You!

Avenida da Universidade, Taipa, Macau, China

Tel: (853) 8822 8833 Fax: (853) 8822 8822

Email: xiongyilee@outlook.com Website: www.um.edu.mo

