Richard Bäck 9. Mai 2015

Zusammenschrift zu Potenzreihen

9. Mai 2015

1 Taylorreihe

1.1 Definition

Die Taylorreihe wird aufgestellt um eine beliebige Funktion mit einer unendlichen Potenzreihe anzunähern. Es ist praktisch nicht möglich eine unendliche Reihe anzulegen. Deshalb gilt: je größer n ist, desto genauer ist die Annäherung.

1.2 Verwendungszweck

Eine Taylorreihe wird aufgestellt, um das Integral von einer nicht integrierbaren Funktion zu bilden. Z.B. sind alle Funktionen, die auf der Eulerschen Zahl aufbauen, nicht integrierbar.

1.3 Ablauf

1. Es wird eine beliebige Funktion definiert:

$$f(x) := (frac12^x) \tag{1}$$

2. Es wird eine Funktion definiert, die n-te Ableitung der gegebenen Funktion ermittelt:

$$fi(x,i) := \frac{d^i}{dx^i} \cdot f(x) \tag{2}$$

3. Es können nun mit fi() beliebig viele Ableitungen an beliebigen Stellen (z.B. für $x_0=0$)) erstellt werden.

$$fi(x,0) = -\frac{\ln(2)}{2^x} \Rightarrow fi(0,1) = -\ln(2)$$

$$fi(x,1) = \frac{\ln(2)^2}{2^x} \Rightarrow fi(0,2) = \ln(2)^2$$

$$fi(x,2) = -\frac{\ln(2)^3}{2^x} \Rightarrow fi(0,3) = -\ln(2)^3$$

$$fi(x,3) = \frac{\ln(2)^4}{2^x} \Rightarrow fi(0,4) = \ln(2)^4$$

$$fi(x,4) = -\frac{\ln(2)^5}{2^x} \Rightarrow fi(0,5) = \ln(2)^5$$
(3)

4. Es ist nun möglich eine Regelmäßigkeit zu erkennen. Diese soll durch eine Funktion modeliert werden:

$$regel(i) := (-1)^i \cdot ln(2)^i \tag{4}$$

Für die weitere Verwendung muss diese Regel durch i! dividert werden:

$$faktor(i) := \frac{regel(i)}{i!} \tag{5}$$

5. Es kann nun eine Funktion g() erstellt werden, welche die gegebene Funktion f() annäherd:

$$g(x,n) := \sum_{i=0}^{n} faktor(i) \cdot x^{i}$$
(6)

6. Als letzteres ist die Berechnung des Konvergenzradius möglich.

$$\lim_{i \to \infty} \left| \frac{faktor(i)}{factor(i+1)} \right| \to \infty \tag{7}$$

Richard Bäck 9. Mai 2015

1.4 Der Konvergenzradius

Der Konvergenzradius beschreibt, für welche Werte die Taylorreihe gültig ist.

1.5 Ablauf mit Mathcad

Mathcad kann die Taylorreihe nur für $x_0 = 0$ berechnen!

1. Es wird eine beliebige Funktion definiert:

$$f(x) := \cos(x) \tag{8}$$

2. Mathcad hat eine eigene Funktion integriert, die eine Taylorreihe mit einer Annäherung von n Summanden an der Stelle f(0) berechnet:

$$g(x,n) := f(x)Reihen, n$$
 (9)

3. Es kann nun g() anstatt f() benutzt werden. Wichtig hierbei ist wieder, dass n groß sein muss um eine genaue Annäherung zu gewährleisten!

2 Fourierreihe

2.1 Definition

Mit der Fourierreihe wird eine beliebige Funktion über eine bestimmte Periode mit unendlich vielen Sinus- und Cosinusschwinungen angenähert. Für die Annäherung gilt das selbe wie bei Kapitel subsection 1.1 - Definition.

2.2 Verwendungszweck

Die Fourierreihe ist vor allem in der Nachrichtentechnik wichtig, um bestimmte Schwingungen annähern zu können. Außerdem können mit ihr die Grundschwingung und die Oberschwingungen ermittelt werden.

2.3 Ablauf

Gegeben soll folgende Funktion sein:

Richard Bäck 9. Mai 2015

1. Nachmodellieren der gegebenen Funktion mit Hilfe von Entscheidungen:

$$f(t) := |2if0 \le t \le 2$$

$$|(-2 \cdot t + 6)if2 < t \le 3$$

$$|0otherwise|$$
(10)

2. Festlegung der Periodenlänge:

$$T := 3$$

$$\omega_0 = \frac{2 \cdot \pi}{T} \tag{11}$$

3. Berechnung der Koeffizienten:

$$a(n) := \frac{2}{T} \cdot \int_0^T f(t) \cdot \cos(n \cdot \omega_0 \cdot t) dt \\ b(n) := \frac{2}{T} \cdot \int_0^T f(t) \cdot \sin(n \cdot \omega_0 \cdot t) dt$$
 (12)

4. Modellierung der Annäherungsreihenfunktion:

$$fn(t,n) := \frac{a(0)}{2} + \sum_{i=1}^{n} (a(i) \cdot \cos(i \cdot \omega_0 \cdot t) + b(i) \cdot \sin(i \cdot \omega_0 \cdot t))$$

$$\tag{13}$$

5. Aufstellen der Funktion zur Berechnung des Fourierspektrums:

$$A(i) := \sqrt{a(i)^2 + b(i)^2} \tag{14}$$

- 6. Es kann nun für die Funktion fn(t,n) ein Graph gezeichnet werden. Dieser stellt die Annäherung dar. Dabei muss n ein fixer Wert sein (außer es soll ein 3D Graph sein!)
- 7. Für den Graphen des Fourierspektrums muss unbedingt in den Grapheneigenschaften auf "Stamm" umgestellt werden!