Package 'MixFishSim'

August 17, 2017

Title Mixed Fishery fleet dynamics simulation tool

Index

Version 0.0.0.90	00										
Description A sin fisheries.	mulation frar	nework	for eva	ıluatir	ng flee	t dyn	amics	in mix	ed		
Depends R (>= 3	3.3.1),										
Imports Rcpp, RandomFie	elds										
License What lice	ense is it und	ler?									
Encoding UTF-8	3										
LazyData true											
RoxygenNote 5.	0.1										
Suggests testthat											
LinkingTo Repp											
Emiking to reepp											
R topics do	cumente	d:									
baranov	_f									 	. 2
create_f	ields									 	. 2
create_l	nab									 	. 3
create_s	pawn_hab .									 	. 4
define_s	spawn									 	
delay_d	iff									 	. (
distance	_calc									 	. ′
find_f										 	. ′
init_pop										 	. 8
init_sim										 	. 8
make_s	tep									 	. 9
move_p	opulation .									 	. 10
=	rob										

14

2 create_fields

baranov_f

Baranov F

Description

baranov_f provides the function to solve in find_f for estimating weekly fishing mortality from catch (C), biomass (B) and natural mortality (M). It's based on the standard Baranov catch equation.

Usage

```
baranov_f(F, C, B, M)
```

Arguments

F	is the fishing mortality rate to solve.
---	---

C is a Numeric vector detailing the catch at wk_t

B is a Numeric vector of the biomass at wk_t

M is a Numeric vector of the natural mortality rate at wk_t

Value

returns nothing, is objective to be solved by find_f

Examples

```
## No examples
```

create_fields

Create species distribution fields

Description

create_fields parametrises and returns the spatio-temporal fields used for the spatial distribution of fish populations and movement in space and time for the simulations.

The spatio-temporal fields are generated using spate.sim function from the *spate* package using an advective-diffusion Stochastic Partial Differential Equation (SPDE). See *Lindgren 2011 and Sigrist 2015* for further detail.

```
create_fields(npt = 1000, t = 1, seed = 123, n.spp = NULL,
    spp.ctrl = NULL, plot.dist = FALSE, plot.file = getwd())
```

create_hab 3

Arguments

npt	Numeric integer with the dimensions of the field in npt * npt
t	Numeric integer with the number of time-steps in the simulation
seed	(Optional) Numeric integer with the seed for the simulation
n.spp	Numeric integer with the number of species to be simulated. Each species must have an individual control list as detailed below.
spp.ctrl	List of controls to generate each species spatio-temporal distribution. Must be of the form spp.ctrl = $list(spp.1 = c(rho0 = 0.001,), spp.2 = c(rho0 = 0.001,),)$ and contain the following:
	• rho0 (>=0) Controls the range in a matern covariance structure.
	• sigma2 (>=0) Controls the marginal variance (i.e. process error) in the matern (>=0) covariance structure.
	• zeta (>=0) Damping parameter; regulates the temporal correlation.
	• rho1 (>=0) Range parameter for the diffusion process
	• gamma (>=0) Controls the level of anisotropy
	• alpha ([0, $\pi/2$]) Controls the direction of anisotropy
	• muX ([-0.5, 0.5]) x component of drift effect
	• muY ([-0.5, 0.5]) y component of drift effect
	• tau2 (>=0) Nugget effect (measurement error)
	• nu Smoothness parameter for the matern covariance function
plot.dist	Boolean, whether to plot the distributions to file
plot.file	path to save the plots of the species distributions

Value

Silently returns a list of spatial distributions with first level of the list being the population $(1 \rightarrow n.spp)$ and the second being time $(1 \rightarrow t)$. If plot.dist = TRUE it produces an image of the spatial distributions at each time step for each of the populations saved to the working directory (unless specified otherwise in plot.file)

Examples

create_hab

Create habitat distribution fields

Description

create_hab parametrises and returns the spatial fields used for the distribution of suitable habitat for the populations in the simulation.

The spatial fields are generated using RFsimulate function from the *RandomFields* package.

4 create_spawn_hab

Usage

```
create_hab(npt = 100, seed = 123, n.spp = NULL, spp.ctrl = NULL,
    plot.dist = FALSE, plot.file = getwd())
```

Arguments

npt	Numeric integer with the dimensions of the field in <i>npt</i> * <i>npt</i>
n.spp	Numeric integer with the number of species to be simulated. Each species must have an individual control list as detailed below.
spp.ctrl	List of controls to generate suitable habitat for each species. Must be of the form $spp.ctrl = list(spp.1 = c(var = 20,), spp.2 = c(var = 10,),)$ and contain the following:
	• nu (>=0)
	• var (>=0) Controls the range in a matern covariance
	• scale (>=0)
	• Aniso $(matrix, dim = c(2,2))$
plot.dist	Boolean, whether to plot the distributions to file
plot.file	path to save the plots of the species distributions

Value

Silently returns a list of spatial distributions of suitable habitat with first level of the list being the population (1 -> n.spp). If plot.dist = TRUE it produces an image of the spatial distributions at each time step for each of the populations saved to the working directory (unless specified otherwise in plot.file)

Examples

create_spawn_hab

create spawning habitat

Description

create_spawn_hab modifies the habitat preference maps created by create_hab to account for spawning habitat preference - can be used as a substitute during spawning periods.

```
create_spawn_hab(npt = 100, hab = hab, spwnareas = NULL, mult = 10)
```

define_spawn 5

Arguments

npt is a Numeric with the dimension of the cells, i.e. matrix = npt * npt

hab is the habitat preference for the population

spwnareas is a list of Numeric vectors with the West, East, South and North dimensions of

the spawning areas, in the form list(spwn1 = c(x1, x2, y1, y2))

mult is a Numeric with the attractiveness of the spawning area (a multiplier)

Value

is the new habitat preference, taking account of the spawning area

Examples

```
create_spawn_hab(npt = 100, hab = matrix(nc = 100, runif(100 \star 100)), spwnareas = list(spwn1 = c(20, 30, 50, 60)), mult = 10)
```

define_spawn define spawning areas

Description

define_spawn is an auxiliary function called by create_spawn_hab to create the spawning habitat preferences.

Usage

```
define_spawn(coord = NULL, spwn = NULL, mult = 10)
```

Arguments

coord is a List of Numeric vectors of the boundaries of the spawning areas, i.e. list(spwn1

= c(x1, x2, y1, y2), spwn2 = ...)

spwn is a Numeric matrix of 1s fed in by create_spawn_hab mult is a Numeric of the attractiveness of the spawning areas

Value

a matrix of spawning preference

```
define\_spawn(coord = list(spwn1 = c(2,4,2,4)), spwn = matrix(nc = 3, runif(9)), mult = 10)
```

6 delay_diff

	delay_diff	Delay-difference (weekly)	
--	------------	---------------------------	--

Description

delay_difference implements a two-stage delay-difference model with a weekly time-step after *Dichmont 2003*. Given the starting biomass, overall mortality and recruitment it returns the biomass in wk+1.

Usage

```
delay\_diff(K = 0.3, F = NULL, M = 0.2, wt = 1, wtm1 = 0.1, R = NULL, B = NULL, Bm1 = NULL, al = NULL, alm1 = NULL)
```

Arguments

K	is a Numeric vector describing growth @param F is the weekly. Note: K is transformed to rho with $\rho = exp-K$ for the model. estimate of instantaneous fishing mortality (obtained elsewhere, via find_f and baranov_f functions.
М	is a Numeric vector of the instantaneous rate of natural mortality for the population
wt	is a Numeric vector of the weight of a fish when fully recruited
wtm1	is a Numeric vector of the weight of a fish before its recruited
R	is a Numeric vector of the annual recruitment for the population in numbers
В	is the biomass of the population during wk_t
Bm1	is a Numeric vector of the biomass of the population in the previous week $\boldsymbol{w} \boldsymbol{k}_{t-1}$
al	is a Numeric vector of the proportion of recruits to the fishery in $\boldsymbol{w}\boldsymbol{k}_t$
alm1	is a Numeric vector of the proportion of recruits to the fishery in $\boldsymbol{w} \boldsymbol{k}_{t-1}$

Value

Returns the biomass at the beginning of the following week, wk_{t+1}

```
delay\_diff(K = 0.3, F = 0.2, M = 0.2, wt = 1, wtm1 = 0.1, R = 1e6, B = 1e5, Bm1 = 1e4, al = 0.5, alm1 = 0.1)
```

distance_calc 7

distance_calc	distance calculation
---------------	----------------------

Description

distance_calc calculates the euclidean distance between two cell references.

Usage

```
distance_calc(x1, y1, x2, y2)
```

Arguments

x1	is an integar for the starting x position
y1	is an integar for the starting y position
x2	is an integar for the end x position
y2	is an integar for the end y position

Value

is a distance between the two cells

Examples

```
distance_calc(2, 3, 5, 7)
```

find_f find F (fishing mortality)

Description

find_f uses uniroot to find the fishing mortality rate given the catch, biomass and natural mortality using the baranov_f objective function.

Usage

```
find_f(C = C, B = B, M = M, FUN = baronov_f)
```

Arguments

C	is a Numeric vector detailing the catch at wk_t
В	is a Numeric vector of the biomass at wk_t
М	is a Numeic vector of the natural mortality rate at \boldsymbol{w}

FUN is the objective function, here the Baranov equation baranov_f

Value

Gives the fishing mortality estimate F

8 init_sim

Examples

```
find_f(C = 3000, B = 12000, M = 0.2, FUN = baranov_f)
```

init_pop

Initialise populations

Description

init_pop sets up the populations spatial distribution based on the habitat preference, starting cell and 'n' numbers of movements for all populations in the simulation.

Usage

```
init_pop(Bio = NULL, hab = NULL, start_cell = NULL,
  init_move_steps = 10)
```

Arguments

Bio is a Numeric vector of the starting (total) biomass for each of the populations. hab is the list of Matrices with the habitat preferences created by create_hab start_cell is a list of Numeric vectors with the starting cells for the populations init_move_steps

is a Numeric indicating the number of movements to initialise for the population distributions

Value

The function returns the matrices for the starting spatial population densities

Examples

```
init_pop(Bio = c(1e6, 2e5), hab = list(spp1 = matrix(nc = 10,
runif(10*10)), spp2 = matrix(nc = 10, runif(10*10)), init_move_steps = 10))
Note, example will not have the right biomass
```

init_sim

Initialise simulation

Description

init_sim sets up the general simulation parameters such as number of tows in a day, number of days fished in a week, how often species movement occurs and number of years for the simulation. It also creates some vector and matrix structures which are used in the init_pop and init_fleet functions.

```
init_sim(n_years = 1, n_tows_day = 4, n_days_wk_fished = 5,
    n_fleets = 1, n_vessels = 1, n_species = 1, move_length = 2)
```

make_step 9

Arguments

is an integar defining the number of years for the simulation n_years n_days_wk_fished is an integar defining the number of days in a calendar week that are fished (e.g. 5 (out of 7)) n_fleets is an integar defining the number of fleets in the simulation is an integar defining the number of vessels in each fleet n_vessels n_species is an integar defining the number of species in the simulation move_length is an integar defining the duration (in weeks) between spatial movements for the populations is an integar defining the number of tows in a days fishing n_tow_day

Value

is a list of lists, detailing the indexs and data formats necessary for the simulation.

Examples

```
init_sim(n_years = 1, n_tows_day = 4, n_days_wk_fished = 5,
n_fleets = 1, n_vessels = 1, n_species = 1, move_length = 2)
```

make_step make step function

Description

make_step determines the new position of the vessel following a move, using the step distance and bearing inputs.

Usage

```
make_step(stepD, Bear, start.x, start.y)
```

Arguments

stepD	is a Numeric vector of the distance to move
Bear	is a Numeric vector of the bearing to move (in degrees)
start.x	is the starting point on the x-axis
start.y	is the starting point on the y-axis

Value

returns a new coordinate position through a vector (x, y)

```
make\_step(stepD = 20, Bear = 90, start.x = 20, start.y = 5)
```

10 move_prob

|--|

Description

move_population redistributes the population based on the movement probabilities

Usage

```
move_population(moveProp, StartPop)
```

Arguments

moveProp is a list of the proportion of the population from each cell to reallocated to each

of the other cells

StartPop is a Numeric Matrix of the current populations distribution

Value

is a list of the new position for the population from each of the cells.

NOTE: This is not aggregated and requires calling the R function *Reduce('+', Lst)* to reaggregate. Would be better if done in function but Reduce is currently faster...but much more memory intensive to get out the lists...using the standard c++ accumulate function may work for this but untested

Examples

None at the moment

	move_prob	movement probability function	
--	-----------	-------------------------------	--

Description

move_prob calculates the movement probability between a cell and all other cells based on the distance and *lambda*.

Usage

```
move_prob(start, lambda, hab)
```

Arguments

start	is a Numeric vector of dim 2 for the starting position $c(x,y)$

lambda is an integar for the value for the exponential decay in probability of movement,

i.e. $Pr(B|A) = \exp{-\lambda * dist_{a,b}}/Sum(c = 1 : c = n) \exp{-\lambda * dist}$

hab is a matrix of the habitat suitability

move_prob_Lst

Value

is a matrix of the movement probabilities from a cell

Examples

```
move_prob(c(2, 5), 0.3, matrix(nc = 3, runif(9)))
```

 ${\tt move_prob_Lst}$

movement probability function as a list

Description

move_prob_list applies move_prob from all cells to all other cells and returns as a list.

Usage

```
move_prob_Lst(lambda, hab)
```

Arguments

lambda is the decay value as in move_prob

hab is a matrix of the habitat suitability for the population

Value

is a list of the movement probabilities form each cell to all other cells

Examples

None at the moment

Recr

Recruitment function

Description

Recr returns a biomass of recruited fish to the population based on a stock-recruit relationship and some measure of variation.

```
Recr(model, params, B, cv, ..)
```

12 step_length

Arguments

is a character detailing the recruitment function to use (currently 'BH' for Bevmodel erton and Holt or 'Ricker' for a Ricker stock-recruit relationship. is a Numeric vector of length 2, containing labelled a and b parameters for the params stock-recruit function. For Beverton and Holt a refers to the maximum recruitment rate in biomass, b refers to the Spawning Stock Biomass (SSB) required to produce half the maximum. For Ricker a refers to the maximum productivity per spawner and b the density dependent reduction in productivity as the stock В is a Numeric vector containing the SSB of the adult population from which the recruitment derives.

is a Numeric vector containing the coefficient of variation in the recruitment

function.

Value

CV

returns the recruitment to the population in biomass.

Examples

```
Recr(model = 'BH', params = c("a" = 2000, "b" = 200), B = 1000, cv = 0.1)
```

step_length Step length function

Description

step_length is a function to calculate the step length a vessel takes based on the step parameters provided for a gamma function and the revenue from the most recent fishing activity.

Usage

```
step_length(step_params = params[["step_params"]], revenue = revenue)
```

Arguments

step_params

is a list of parameters which determine the relationship between revenue gained from the recent fishing activity and the next move step length, based on a gamma function. The list contains the following:

- rate Determines the rate
- **B1** Determines...
- **B2** Determines ...
- B3 Determines ..

is the last observed fishing revenue for the vessel revenue

Value

step - the size of the next step

test_step 13

Examples

```
step_length(step_params = list(B1 = 1, B2 = 50, B3 = 2000, rate = 1), revenue = 300)
```

test_step

test step length function

Description

test_step is a function to test and review parameters for the step_length function. This is primarily to help with identifying the right parameters for the desired relationship between revenue and step length.

Usage

```
test_step(step_params = step_params, rev.max = 2000)
```

Arguments

step_params

is a list of parameters which determine the relationship between revenue gained from the recent fishing activity and the next move step length, based on a gamma function. The list contains the following:

- rate Determines the rate
- B1 Determines...
- **B2** Determines ...
- **B3** Determines ..

rev.max

is the maximum revenue at which to test the step length function.

Value

is a plot of the relationship between revenue and step length

```
test\_step(step\_params = list(B1 = 1, B2 = 50, B3 = 2000, rate = 1), rev.max = 2000)
```

Index

```
baranov_f, 2, 6, 7
create_fields, 2
create_hab, 3
\verb|create_spawn_hab|, 4
define_spawn, 5
delay_diff, 6
distance_calc, 7
find_f, 2, 6, 7
init\_pop, 8
init_sim, 8
{\sf make\_step}, {\color{red} 9}
move\_population, 10
\mathsf{move\_prob},\, 10,\, 11
{\tt move\_prob\_Lst}, {\color{red}11}
Recr, 11
RFsimulate, 3
spate.sim, 2
{\tt step\_length,\, 12}
test_step, 13
uniroot,7
```