

Thèse de Doctorat Asynchronous domain decomposition methods FOR MASSIVELY PARALLEL COMPUTING

PRÉPARÉE ET SOUTENUE PAR GUILLAUME GBIKPI-BENISSAN

DEVANT LE JURY COMPOSÉ DE

RAPHAËL COUTURIER FABIENNE JEZEQUEL PIERRE SPITERI STÉPHANE VIALLE FRÉDÉRIC MAGQUILÈS (RAPPORTEUR)
(EXAMINATRICE)
(RAPPORTEUR)
(EXAMINATEUR)
(DIRECTEUR DE THÈSE)

Asynchronous iterative methods

"Possibly the kind of methods which will allow the next generation of parallel machines to attain the expected potential." [Frommer and Szyld, 2000]

Asynchronous iterative methods

Introduction

Asynchronous iterative methods

"Possibly the kind of methods which will allow the next generation of parallel machines to attain the expected potential." [Frommer and Szyld, 2000]

Parallel processing

Speedup limit [Amdahl, 1967]

t(p): processing time using p processors

 α : serial proportion of the processing (data management)

Asynchronous iterative methods

Introduction

Asynchronous iterative methods

"Possibly the kind of methods which will allow the next generation of parallel machines to attain the expected potential." [Frommer and Szyld, 2000]

Parallel processing

Speedup limit [Amdahl, 1967]

t(p): processing time using p processors

 α : serial proportion of the processing (data management)

⇒ Theoretical speedup:

$$s(p,\alpha) = \frac{t(1)}{t(p)} \le \frac{1}{\alpha + \frac{1-\alpha}{p}}$$

Asynchronous iterative methods

"Possibly the kind of methods which will allow the next generation of parallel machines to attain the expected potential." [Frommer and Szyld, 2000]

Parallel processing

Speedup limit [Amdahl, 1967]

t(p): processing time using p processors

 $\alpha \!\!:$ serial proportion of the processing (data management)

 \Rightarrow Theoretical speedup:

$$s(p,\alpha) = \frac{t(1)}{t(p)} \le \frac{1}{\alpha + \frac{1-\alpha}{p}}$$

Asynchronous iterative methods

"Possibly the kind of methods which will allow the next generation of parallel machines to attain the expected potential." [Frommer and Szyld, 2000]

Parallel processing

Speedup limit [Amdahl, 1967]

t(p): processing time using p processors

 $\alpha\!\!:$ serial proportion of the processing (data management)

 \Rightarrow Theoretical speedup:

$$s(p,\alpha) = \frac{t(1)}{t(p)} \le \frac{1}{\alpha + \frac{1-\alpha}{p}}$$

Minimize α : input/output, pre/post-processing, ..., and *inter-process communication*

Asynchronous iterative methods

"Possibly the kind of methods which will allow the next generation of parallel machines to attain the expected potential." [Frommer and Szyld, 2000]

Parallel processing

Speedup limit [Amdahl, 1967]

t(p): processing time using p processors

 α : serial proportion of the processing (data management)

 \Rightarrow Theoretical speedup:

$$s(p,\alpha) = \frac{t(1)}{t(p)} \le \frac{1}{\alpha + \frac{1-\alpha}{p}}$$

Minimize α : input/output, pre/post-processing, ..., and *inter-process communication*

But also: load balancing and fault-tolerance

Parallel processing

- Speedup limit [Amdahl, 1967]
- But also: load balancing and fault-tolerance
- Numerical simulation

Partial differential equations

$$\delta(u(s,t),s,t)=0, \quad t\in\mathbb{R}^+, \ s\in\Omega\subset\mathbb{R}^3$$

Parallel processing

- Speedup limit [Amdahl, 1967]
- But also: load balancing and fault-tolerance
- Numerical simulation

Partial differential equations

$$\delta(u(s,t),s,t)=0, \quad t\in\mathbb{R}^+, \ s\in\Omega\subset\mathbb{R}^3$$

Time discretization

$$\alpha(u(s,t_{n+1})) = \beta(u(s,t_n))$$

Parallel processing

- Speedup limit [Amdahl, 1967]
- But also: load balancing and fault-tolerance
- Numerical simulation

Partial differential equations

$$\delta(u(s,t),s,t)=0, \quad t\in\mathbb{R}^+, \ s\in\Omega\subset\mathbb{R}^3$$

Time discretization

$$\alpha(u(s,t_{n+1})) = \beta(u(s,t_n))$$

Space discretization

$$AU_{n+1}=B_n, \quad U_{n+1}\in\mathbb{C}^m$$

Parallel processing

- Speedup limit [Amdahl, 1967]
- But also: load balancing and fault-tolerance
- Numerical simulation

Partial differential equations

Sparse system of equations

$$\delta(u(s,t),s,t)=0, \quad t\in\mathbb{R}^+, \ s\in\Omega\subset\mathbb{R}^3$$

 $Ax = b, \quad x \in \mathbb{C}^m$

Time discretization

$$\alpha(u(s,t_{n+1})) = \beta(u(s,t_n))$$

Space discretization

$$AU_{n+1}=B_n, \quad U_{n+1}\in\mathbb{C}^m$$

 $Ax = b, \quad x \in \mathbb{C}^m$

 $x^{k+1} = f(x^k)$

Introduction

Parallel processing

Iterative methods

- Speedup limit [Amdahl, 1967]
- But also: load balancing and fault-tolerance
- Numerical simulation

Partial differential equations

$$\delta(u(s,t),s,t)=0, \quad t\in\mathbb{R}^+, \ s\in\Omega\subset\mathbb{R}^3$$

Time discretization

$$\alpha(u(s,t_{n+1})) = \beta(u(s,t_n))$$

Space discretization

$$AU_{n+1}=B_n, \quad U_{n+1}\in\mathbb{C}^m$$

Parallel processing

- Speedup limit [Amdahl, 1967]
- But also: load balancing and fault-tolerance
- Numerical simulation

Partial differential equations

$$\delta(u(s,t),s,t)=0, t\in \mathbb{R}^+, s\in \Omega\subset \mathbb{R}^3$$

Time discretization

$$\alpha(u(s,t_{n+1})) = \beta(u(s,t_n))$$

Space discretization

$$AU_{n+1}=B_n, \quad U_{n+1}\in\mathbb{C}^m$$

Parallel computing

Sparse system of equations

$$Ax = b$$
, $x \in \mathbb{C}^m$

Iterative methods

$$x^{k+1} = f(x^k)$$

$$x_i^{k+1} = f_i(x^k), \ \forall i \in \{1, \ldots, p\}$$

$$x := \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad p \le m$$

Parallel computing

- Speedup limit [Amdahl, 1967]
- But also: load balancing and fault-tolerance
- Numerical simulation

$$\delta(u(s,t),s,t)=0, \quad t\in[0,T], \ s\in\Omega$$

Domain decomposition methods

Parallel computing

- Speedup limit [Amdahl, 1967]
- But also: load balancing and fault-tolerance
- Numerical simulation

$$\delta(u(s,t),s,t)=0, \quad t\in[0,T], \ s\in\Omega$$

Domain decomposition methods

Different subdomains

$$\Omega^{(1)}, \ldots, \Omega^{(p)}$$

Parallel computing

- Speedup limit [Amdahl, 1967]
- But also: load balancing and fault-tolerance
- Numerical simulation

$$\delta(u(s,t),s,t)=0, \quad t\in[0,T], \ s\in\Omega$$

Domain decomposition methods

Different subdomains

$$\Omega^{(1)}, \ldots, \Omega^{(p)}$$

Parallel solutions

$$u^{(1)}(s,t_{n+1}),\ldots,u^{(p)}(s,t_{n+1})$$

Introduction

Parallel computing

- Speedup limit [Amdahl, 1967]
- But also: load balancing and fault-tolerance
- Numerical simulation

$$\delta(u(s,t),s,t)=0, t\in [0,T], s\in \Omega$$

Domain decomposition methods

Different subdomains

$$\Omega^{(1)}, \ldots, \Omega^{(p)}$$

Parallel solutions

$$u^{(1)}(s,t_{n+1}),\ldots,u^{(p)}(s,t_{n+1})$$

Consistency across interfaces Γ^i_j ,

$$i,j \in \{1,\ldots,p\}$$

$$u^{(i)}(s_{\Gamma_j^i},t_{n+1})=u^{(j)}(s_{\Gamma_j^i},t_{n+1})$$

INTRODUCTION

Parallel computing

- Speedup limit [Amdahl, 1967]
- But also: load balancing and fault-tolerance
- Numerical simulation

$$\delta(u(s,t),s,t)=0, \quad t\in[0,T], \ s\in\Omega$$

Domain decomposition methods

Different subdomains

$$\Omega^{(1)},\ldots,\Omega^{(p)}$$

Parallel solutions

$$u^{(1)}(s,t_{n+1}),\ldots,u^{(p)}(s,t_{n+1})$$

Consistency across interfaces Γ^i_j ,

$$i,j \in \{1,\ldots,p\}$$

$$u^{(i)}(s_{\Gamma_i^i},t_{n+1})=u^{(j)}(s_{\Gamma_i^i},t_{n+1})$$

- + parallel input/output
- + parallel pre/post-processing

Parallel computing

- Speedup limit [Amdahl, 1967]
- But also: load balancing and fault-tolerance
- Numerical simulation

$$\delta(u(s,t),s,t)=0, \quad t\in[0,T], \ s\in\Omega$$

Domain decomposition methods

Different subdomains

$$\Omega^{(1)}, \ldots, \Omega^{(p)}$$

Parallel solutions

$$u^{(1)}(s,t_{n+1}),\ldots,u^{(p)}(s,t_{n+1})$$

Consistency across interfaces Γ_i^i ,

$$i,j \in \{1,\ldots,p\}$$

$$u^{(i)}(s_{\Gamma_i^i},t_{n+1})=u^{(j)}(s_{\Gamma_i^i},t_{n+1})$$

- + parallel input/output
- + parallel pre/post-processing
- + static load balancing

Parallel computing

- Speedup limit [Amdahl, 1967]
- But also: load balancing and fault-tolerance
- Numerical simulation

$$\delta(u(s,t),s,t)=0, \quad t\in[0,T], \ s\in\Omega$$

Domain decomposition methods

Different subdomains

$$\Omega^{(1)},\ldots,\Omega^{(p)}$$

Parallel solutions

$$u^{(1)}(s,t_{n+1}),\ldots,u^{(p)}(s,t_{n+1})$$

Consistency across interfaces Γ_j^i , $i, j \in \{1, \dots, p\}$

$$u^{(i)}(s_{\Gamma_i^i},t_{n+1})=u^{(j)}(s_{\Gamma_i^i},t_{n+1})$$

- + parallel pre/post-processing
- + static load balancing
- serial parallel iterations
- ⇒ blocking inter-process synchronization

Parallel computing

- Speedup limit [Amdahl, 1967]
- But also: load balancing and fault-tolerance
- Numerical simulation

$$\delta(u(s,t),s,t)=0, \quad t\in[0,T], \ s\in\Omega$$

Domain decomposition methods

Different subdomains

$$\Omega^{(1)},\ldots,\Omega^{(p)}$$

Parallel solutions

$$u^{(1)}(s,t_{n+1}),\ldots,u^{(p)}(s,t_{n+1})$$

Consistency across interfaces Γ_i^i , $i,j \in \{1,\ldots,p\}$

$$u^{(i)}(s_{\Gamma_i^i},t_{n+1})=u^{(j)}(s_{\Gamma_i^i},t_{n+1})$$

- + parallel pre/post-processing
- + static load balancing
- serial parallel iterations
- ⇒ blocking inter-process synchronization
- ⇒ non fault-tolerant

- Speedup limit [Amdahl, 1967]
- But also: load balancing and fault-tolerance
- Numerical simulation
- Domain decomposition methods
- Asynchronous iterations [Chazan and Miranker, 1969]

- + static load balancing
- serial parallel iterations
- non fault-tolerant

Parallel computing

- Speedup limit [Amdahl, 1967]
- But also: load balancing and fault-tolerance
- Numerical simulation
- Domain decomposition methods
- Asynchronous iterations [Chazan and Miranker, 1969]

- + static load balancing
- serial parallel iterations
- non fault-tolerant

Introduction

- parallel serial iterations
- ⇒ no speedup limit

- Speedup limit [Amdahl, 1967]
- But also: load balancing and fault-tolerance
- Numerical simulation
- Domain decomposition methods
- Asynchronous iterations [Chazan and Miranker, 1969]

- + static load balancing
- serial parallel iterations
- non fault-tolerant

- + parallel serial iterations
- \Rightarrow no speedup limit
- + non-deterministic inter-process communication ⇒ fault-tolerance

- Speedup limit [Amdahl, 1967]
- But also: load balancing and fault-tolerance
- Numerical simulation
- Domain decomposition methods
- Asynchronous iterations [Chazan and Miranker, 1969]

- + static load balancing
- serial parallel iterations
- non fault-tolerant

- parallel serial iterations
- ⇒ no speedup limit
- + non-deterministic inter-process communication ⇒ fault-tolerance
- + dynamic adaptation to unbalanced load

- Speedup limit [Amdahl, 1967]
- But also: load balancing and fault-tolerance
- Numerical simulation
- Domain decomposition methods
- Asynchronous iterations [Chazan and Miranker, 1969]

- + static load balancing
- serial parallel iterations
- non fault-tolerant

- parallel serial iterations
- ⇒ no speedup limit
- + non-deterministic inter-process communication ⇒ fault-tolerance
- + dynamic adaptation to unbalanced load
- low convergence rate

serial parallel iterations

non fault-tolerant

Asynchronous iterative methods

- Speedup limit [Amdahl, 1967]
- But also: load balancing and fault-tolerance
- Numerical simulation
- Domain decomposition methods
- Asynchronous iterations [Chazan and Miranker, 1969]
- + parallel serial iterations
- ⇒ no speedup limit
- + non-deterministic inter-process communication ⇒ fault-tolerance
- + dynamic adaptation to unbalanced load
- low convergence rate

Parallel computing

- Speedup limit [Amdahl, 1967]
- But also: load balancing and fault-tolerance
- Numerical simulation
- Domain decomposition methods
- Asynchronous iterations [Chazan and Miranker, 1969]
- + parallel serial iterations
- \Rightarrow no speedup limit
- + non-deterministic inter-process communication ⇒ fault-tolerance
- + dynamic adaptation to unbalanced load
- low convergence rate

- + static load balancing
- serial parallel iterations
- non fault-tolerant

Eventual consistency across interfaces? (convergence conditions)

Consistency reached? (convergence detection)

OUTLINE OF THE PRESENTATION

- 1 Asynchronous iterative methods
- 2 Space domain decomposition
- 13 TIME DOMAIN DECOMPOSITION
- 4 Asynchronous convergence detection
- 05 Conclusion

1 Asynchronous Iterative methods

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Splitting

$$A = M - N$$

Mapping

$$f(x) := M^{-1}Nx + M^{-1}b$$

Fixed-point problem

$$Ax = b \iff x = f(x)$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Splitting

$$A = M - N$$

Mapping

$$f(x) := M^{-1}Nx + M^{-1}b$$

Fixed-point problem

$$Ax = b \iff x = f(x)$$

Iterative methods \Rightarrow sequence $\{x^k\}_{k\in\mathbb{N}}$:

$$x^{k+1} = f(x^k)$$

Convergence from any initial vector x^0

$$\lim_{k\to\infty} x^k = x^*, \quad f(x^*) = x^*$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Splitting

$$A = M - N$$

Mapping

$$f(x) := M^{-1}Nx + M^{-1}b$$

Fixed-point problem

$$Ax = b \iff x = f(x)$$

Iterative methods \Rightarrow sequence $\{x^k\}_{k \in \mathbb{N}}$:

$$x^{k+1} = f(x^k)$$

Convergence from any initial vector x^0

$$\lim_{k\to\infty} x^k = x^*, \quad f(x^*) = x^*$$

Convergence condition (sufficient and necessary)

$$\rho(M^{-1}N) < 1$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Splitting

$$A = M - N$$

Mapping

$$f(x) := M^{-1}Nx + M^{-1}b$$

Fixed-point problem

$$Ax = b \iff x = f(x)$$

Iterative methods \Rightarrow sequence $\{x^k\}_{k\in\mathbb{N}}$:

$$x^{k+1} = f(x^k)$$

Convergence from any initial vector x^0

$$\lim_{k\to\infty} x^k = x^*, \quad f(x^*) = x^*$$

Convergence condition (sufficient and necessary)

$$\rho(M^{-1}N) < 1$$

Parallel computing with p processors, p < n

$$f(x) = \begin{bmatrix} f_1(x) & \cdots & f_p(x) \end{bmatrix}^T$$
$$x = \begin{bmatrix} x_1 & \cdots & x_p \end{bmatrix}^T$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Splitting

$$A = M - N$$

Mapping

$$f(x) := M^{-1}Nx + M^{-1}b$$

Fixed-point problem

$$Ax = b \iff x = f(x)$$

Iterative methods \Rightarrow sequence $\{x^k\}_{k\in\mathbb{N}}$:

$$x^{k+1} = f(x^k)$$

Convergence from any initial vector x^0

$$\lim_{k\to\infty} x^k = x^*, \quad f(x^*) = x^*$$

Convergence condition (sufficient and necessary)

$$\rho(M^{-1}N) < 1$$

Parallel computing with p processors, p < n

$$f(x) = \begin{bmatrix} f_1(x) & \cdots & f_p(x) \end{bmatrix}^{\mathsf{T}}$$

$$x = \begin{bmatrix} x_1 & \cdots & x_p \end{bmatrix}^{\mathsf{T}}$$

$$x_i^{k+1} = f_i(x_1^k, \dots, x_p^k), \ \forall i \in \{1, \dots, p\}$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Splitting

$$A = M - N$$

Mapping

$$f(x) := M^{-1}Nx + M^{-1}b$$

Fixed-point problem

$$Ax = b \iff x = f(x)$$

Iterative methods \Rightarrow sequence $\{x^k\}_{k \in \mathbb{N}}$:

$$x^{k+1} = f(x^k)$$

Convergence from any initial vector x^0

$$\lim_{k\to\infty} x^k = x^*, \quad f(x^*) = x^*$$

Convergence condition (sufficient and necessary)

$$\rho(M^{-1}N) < 1$$

Parallel computing with p processors, p < n

$$f(x) = \begin{bmatrix} f_1(x) & \cdots & f_p(x) \end{bmatrix}^{\mathsf{T}}$$

$$x = \begin{bmatrix} x_1 & \cdots & x_p \end{bmatrix}^{\mathsf{T}}$$

$$x_i^{k+1} = f_i(x_1^k, \dots, x_p^k), \quad \forall i \in \{1, \dots, p\}$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Splitting

$$\Delta - M - N$$

Mapping

$$f(x) := M^{-1}Nx + M^{-1}b$$

Fixed-point problem

$$Ax = b \iff x = f(x)$$

Iterative methods \Rightarrow sequence $\{x^k\}_{k\in\mathbb{N}}$:

$$x^{k+1} = f(x^k)$$

Convergence from any initial vector x^0

$$\lim_{k\to\infty} x^k = x^*, \quad f(x^*) = x^*$$

Convergence condition (sufficient and necessary)

$$\rho(M^{-1}N) < 1$$

Parallel computing with p processors, p < n

$$f(x) = \begin{bmatrix} f_1(x) & \cdots & f_p(x) \end{bmatrix}^{\mathsf{T}}$$

$$x = \begin{bmatrix} x_1 & \cdots & x_p \end{bmatrix}^{\mathsf{T}}$$

$$x_i^{k+1} = f_i(x_1^k, \dots, x_n^k), \quad \forall i \in \{1, \dots, p\}$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Splitting

$$A = M - N$$

Mapping

$$f(x) := M^{-1}Nx + M^{-1}b$$

Fixed-point problem

$$Ax = b \iff x = f(x)$$

Iterative methods \Rightarrow sequence $\{x^k\}_{k\in\mathbb{N}}$:

$$x^{k+1} = f(x^k)$$

Convergence from any initial vector x^0

$$\lim_{k\to\infty} x^k = x^*, \quad f(x^*) = x^*$$

Convergence condition (sufficient and necessary)

$$\rho(M^{-1}N) < 1$$

Parallel computing with p processors, p < n

$$f(x) = \begin{bmatrix} f_1(x) & \cdots & f_p(x) \end{bmatrix}^{\mathsf{T}}$$

$$x = \begin{bmatrix} x_1 & \cdots & x_p \end{bmatrix}^{\mathsf{T}}$$

$$x_i^{k+1} = f_i(x_1^k, \dots, x_p^k), \ \forall i \in \{1, \dots, p\}$$

Proc 1
$$x_1^1$$
 x_1^2 x_1^2 x_2^1 x_2^1 x_2^1 x_2^1 x_2^1 x_2^1 x_2^1 x_2^1 x_2^1 x_2^2 x_2^2

$$x_1^1 := f_1(x_1^0, x_2^0)$$
 $x_2^1 := f_2(x_1^0, x_2^0)$
wait wait

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Splitting

$$A = M - N$$

Mapping

$$f(x) := M^{-1}Nx + M^{-1}b$$

Fixed-point problem

$$Ax = b \iff x = f(x)$$

Iterative methods \Rightarrow sequence $\{x^k\}_{k\in\mathbb{N}}$:

$$x^{k+1} = f(x^k)$$

Convergence from any initial vector x^0

$$\lim_{k\to\infty} x^k = x^*, \quad f(x^*) = x^*$$

Convergence condition (sufficient and necessary)

$$\rho(M^{-1}N)<1$$

Parallel computing with p processors, p < n

$$f(x) = \begin{bmatrix} f_1(x) & \cdots & f_p(x) \end{bmatrix}^{\mathsf{T}}$$

$$x = \begin{bmatrix} x_1 & \cdots & x_p \end{bmatrix}^{\mathsf{T}}$$

$$x_i^{k+1} = f_1(x_1^k, \dots, x_p^k), \ \forall i \in \{1, \dots, p\}$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Splitting

$$A = M - N$$

Mapping

$$f(x) := M^{-1}Nx + M^{-1}b$$

Fixed-point problem

$$Ax = b \iff x = f(x)$$

Iterative methods \Rightarrow sequence $\{x^k\}_{k\in\mathbb{N}}$:

$$x^{k+1} = f(x^k)$$

Convergence from any initial vector x^0

$$\lim_{k\to\infty} x^k = x^*, \quad f(x^*) = x^*$$

Convergence condition (sufficient and necessary)

$$\rho(M^{-1}N)<1$$

Parallel computing with p processors, p < n

$$f(x) = \begin{bmatrix} f_1(x) & \cdots & f_p(x) \end{bmatrix}^{\mathsf{T}}$$

$$x = \begin{bmatrix} x_1 & \cdots & x_p \end{bmatrix}^{\mathsf{T}}$$

$$x_i^{k+1} = f_i(x_1^k, \dots, x_p^k), \ \forall i \in \{1, \dots, p\}$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Splitting

$$A = M - N$$

Mapping

$$f(x) := M^{-1}Nx + M^{-1}b$$

Fixed-point problem

$$Ax = b \iff x = f(x)$$

Iterative methods \Rightarrow sequence $\{x^k\}_{k\in\mathbb{N}}$:

$$x^{k+1} = f(x^k)$$

Convergence from any initial vector x^0

$$\lim_{k\to\infty} x^k = x^*, \quad f(x^*) = x^*$$

Convergence condition (sufficient and necessary)

$$\rho(M^{-1}N)<1$$

Parallel computing with p processors, p < n

$$f(x) = \begin{bmatrix} f_1(x) & \cdots & f_p(x) \end{bmatrix}^{\mathsf{T}}$$

$$x = \begin{bmatrix} x_1 & \cdots & x_p \end{bmatrix}^{\mathsf{T}}$$

$$x_i^{k+1} = f_1(x_1^k, \dots, x_p^k), \ \forall i \in \{1, \dots, p\}$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Splitting

$$A = M - N$$

Mapping

$$f(x) := M^{-1}Nx + M^{-1}b$$

Fixed-point problem

$$Ax = b \iff x = f(x)$$

Iterative methods \Rightarrow sequence $\{x^k\}_{k\in\mathbb{N}}$:

$$x^{k+1} = f(x^k)$$

Convergence from any initial vector x^0

$$\lim_{k\to\infty} x^k = x^*, \quad f(x^*) = x^*$$

Convergence condition (sufficient and necessary)

$$\rho(M^{-1}N)<1$$

Parallel computing with p processors, p < n

$$f(x) = \begin{bmatrix} f_1(x) & \cdots & f_p(x) \end{bmatrix}^{\mathsf{T}}$$

$$x = \begin{bmatrix} x_1 & \cdots & x_p \end{bmatrix}^{\mathsf{T}}$$

$$x_i^{k+1} = f_1(x_1^k, \dots, x_p^k), \ \forall i \in \{1, \dots, p\}$$

speedup limit

wait

 $x_2^4 := f_2(x_1^3, x_2^3)$

Asynchronous iterations

Synchronous iterations

$$x_i^{k+1} = f_i(x_1^k, \dots, x_p^k), \ \forall i \in \{1, \dots, p\}$$

delay ⇒ speedup limit

$$\begin{array}{lll} x_1^1 := f_1(x_1^0, x_2^0) & x_2^1 := f_2(x_1^0, x_2^0) \\ & \text{wait} & \text{wait} \\ x_1^2 := f_1(x_1^1, x_2^1) & x_2^2 := f_2(x_1^1, x_2^1) \\ x_1^3 := f_1(x_1^2, x_2^2) & \text{wait} \\ & \text{wait} & x_2^3 := f_2(x_1^2, x_2^2) \\ & \text{wait} & x_2^4 := f_2(x_1^3, x_2^3) \end{array}$$

wait

Asynchronous iterations

$x_1^1 := f_1(x_1^0, x_2^0)$ $x_2^1 := f_2(x_1^0, x_2^0)$

Synchronous iterations

$$x_i^{k+1} = f_i(x_1^k, \dots, x_p^k), \ \forall i \in \{1, \dots, p\}$$

delay ⇒ speedup limit

wait

 $x_2^4 := f_2(x_1^3, x_2^3)$

Asynchronous iterations

delay ⇒ low convergence rate

Synchronous iterations

$$x_i^{k+1} = f_i(x_1^k, \ldots, x_p^k), \forall i \in \{1, \ldots, p\}$$

Asynchronous iterations

delay ⇒ low convergence rate

Synchronous iterations

$$x_i^{k+1} = f_i(x_1^k, \dots, x_p^k), \ \forall i \in \{1, \dots, p\}$$

Asynchronous iterations

delay ⇒ low convergence rate

Synchronous iterations

$$x_i^{k+1} = f_i(x_1^k, \dots, x_p^k), \ \forall i \in \{1, \dots, p\}$$

Asynchronous iterations

delay ⇒ low convergence rate

Synchronous iterations

$$x_i^{k+1} = f_i(x_1^k, \dots, x_p^k), \ \forall i \in \{1, \dots, p\}$$

Asynchronous iterations

$$x_i^{k+1} = f_i(x_1^{\tau_i^{i}(k)}, \dots, x_p^{\tau_p^{i}(k)}), \ \forall i \in P^k$$

 $x_i^{k+1} = x_i^k, \ \forall i \notin P^k$

delay ⇒ low convergence rate

Synchronous iterations

$$x_i^{k+1} = f_i(x_1^k, \dots, x_p^k), \ \forall i \in \{1, \dots, p\}$$

Linear problems

$$Ax = b \iff M^{-1}Nx + M^{-1}b = x$$

Asynchronous iterations

$$\begin{aligned} x_i^{k+1} &= f_i(x_1^{\tau_i^j(k)}, \dots, x_p^{\tau_p^j(k)}), & \forall i \in P^k \\ x_i^{k+1} &= x_i^k, & \forall i \notin P^k \end{aligned}$$

Synchronous iterations

$$x_i^{k+1} = f_i(x_1^k, \ldots, x_p^k), \quad \forall i \in \{1, \ldots, p\}$$

Convergence condition (necessary and sufficient)

$$\rho(M^{-1}N)<1$$

Linear problems

$$Ax = \dot{b} \iff M^{-1}Nx + M^{-1}b = x$$

Asynchronous iterations

$$x_i^{k+1} = f_i(x_1^{\tau_i^j(k)}, \dots, x_p^{\tau_p^j(k)}), \quad \forall i \in P^k$$

$$x_i^{k+1} = x_i^k, \quad \forall i \notin P^k$$

Convergence condition (necessary and sufficient) [Chazan and Miranker, 1969]

$$\rho(|M^{-1}N|)<1$$

Synchronous iterations

$$x_i^{k+1} = f_i(x_1^k, \ldots, x_p^k), \quad \forall i \in \{1, \ldots, p\}$$

Convergence condition (necessary and sufficient)

$$\rho(M^{-1}N)<1$$

Linear problems

$$Ax = \dot{b} \iff M^{-1}Nx + M^{-1}b = x$$

Asynchronous iterations

$$x_i^{k+1} = f_i(x_1^{\tau_i^j(k)}, \dots, x_p^{\tau_p^j(k)}), \quad \forall i \in P^k$$

$$x_i^{k+1} = x_i^k, \quad \forall i \notin P^k$$

Convergence condition (necessary and sufficient) [Chazan and Miranker, 1969]

$$\rho(M^{-1}N) \le \rho(|M^{-1}N|) < 1$$

Synchronous iterations

$$x_i^{k+1} = f_i(x_1^k, \ldots, x_p^k), \quad \forall i \in \{1, \ldots, p\}$$

Convergence condition (necessary and sufficient)

$$\rho(M^{-1}N)<1$$

Linear problems

$$Ax = \dot{b} \iff M^{-1}Nx + M^{-1}b = x$$

Asynchronous iterations

$$\begin{array}{lll} x_i^{k+1} &= f_i(x_1^{\tau_i^l(k)}, \dots, x_p^{\tau_p^l(k)}), & \forall i \in P^k \\ x_i^{k+1} &= x_i^k, & \forall i \notin P^k \end{array}$$

Convergence condition (necessary and sufficient) [Chazan and Miranker, 1969]

$$\rho(M^{-1}N) \leq \rho(|M^{-1}N|) < 1$$

Synchronous iterations

$$x_i^{k+1} = f_i(x_1^k, \ldots, x_p^k), \quad \forall i \in \{1, \ldots, p\}$$

Convergence condition (necessary and sufficient)

$$\rho(M^{-1}N)<1$$

General fixed-point problems

$$f^{(k)}(x,x,\ldots,x)=x, \ \forall k\in\mathbb{N}, \ f^{(k)}: E^m\mapsto E, \ m\in\mathbb{N}^*$$

Linear problems

$$Ax = b \iff M^{-1}Nx + M^{-1}b = x$$

[Chazan and Miranker, 1969] (necessary and sufficient): $ho(|M^{-1}N|) < 1$

General fixed-point problems

$$f^{(k)}(x,x,\ldots,x) = x, \ \forall k \in \mathbb{N}, \ f^{(k)}: E^m \mapsto E, \ m \in \mathbb{N}^*$$

$$m = 1, \ f^{(k)} \equiv f, \ \forall k$$

1 - Asynchronous iterative methods

Linear problems

$$Ax = b \iff M^{-1}Nx + M^{-1}b = x$$

[Chazan and Miranker, 1969] (necessary and sufficient): $\rho(|M^{-1}N|) < 1$

• General fixed-point problems

$$f^{(k)}(x,x,\ldots,x)=x,\ \forall k\in\mathbb{N},\ f^{(k)}:\ E^m\mapsto E,\ m\in\mathbb{N}^*$$

$$m=1, \quad f^{(k)}\equiv f, \quad \forall k$$

[Miellou, 1975] (sufficient)

$$|f(x) - f(y)| \le T|x - y|$$

$$T \ge O, \ \rho(T) < 1, \ |x| = (|x_1|, \dots, |x_p|)$$

Linear problems

$$Ax = b \iff M^{-1}Nx + M^{-1}b = x$$

[Chazan and Miranker, 1969] (necessary and sufficient): $\rho(|M^{-1}N|) < 1$

General fixed-point problems

$$f^{(k)}(x,x,\ldots,x)=x,\ \forall k\in\mathbb{N},\ f^{(k)}:\ E^m\mapsto E,\ m\in\mathbb{N}^*$$

$$m=1, \quad f^{(k)}\equiv f, \ \forall k$$

[Miellou, 1975] (sufficient)

$$|f(x) - f(y)| \le T|x - y|$$

$$T \ge O, \ \rho(T) < 1, \ |x| = (|x_1|, \dots, |x_p|)$$

[El Tarazi, 1982] (sufficient)

$$||f(x) - f(y)||_{\infty}^{w} \le \alpha ||x - y||_{\infty}^{w}$$

$$w > 0, \ \alpha < 1, \ \|x\|_{\infty}^{w} = \max_{i} |x_{i}|/w_{i}$$

Linear problems

$$Ax = b \iff M^{-1}Nx + M^{-1}b = x$$

[Chazan and Miranker, 1969] (necessary and sufficient): $\rho(|M^{-1}N|) < 1$

General fixed-point problems

$$f^{(k)}(x,x,\ldots,x) = x, \ \forall k \in \mathbb{N}, \ f^{(k)} : E^m \mapsto E, \ m \in \mathbb{N}^*$$

$$m = 1, \ f^{(k)} \equiv f, \ \forall k$$

[Miellou, 1975] (sufficient)

$$|f(x) - f(y)| \le T|x - y|$$

 $T > O, \ \rho(T) < 1, \ |x| = (|x_1|, \dots, |x_n|)$

[El Tarazi, 1982] (sufficient)

$$||f(x) - f(y)||_{\infty}^{w} \le \alpha ||x - y||_{\infty}^{w}$$

 $w > 0, \quad \alpha < 1, \quad ||x||_{\infty}^{w} = \max_{i} |x_{i}|/w_{i}$

[Bertsekas, 1983] (sufficient)

$$f(S^{(t)}) \subset S^{(t+1)} \subset S^{(t)}$$

$$S^{(t)} = S_1^{(t)} \times \dots \times S_p^{(t)}, \lim_{t \to \infty} S^{(t)} = \{x^*\}$$

Linear problems

$$Ax = b \iff M^{-1}Nx + M^{-1}b = x$$

[Chazan and Miranker, 1969] (necessary and sufficient): $\rho(|M^{-1}N|) < 1$

General fixed-point problems

$$f^{(k)}(x, x, \dots, x) = x, \quad \forall k \in \mathbb{N}, \quad f^{(k)} : E^m \mapsto E, \quad m \in \mathbb{N}^*$$

$$m = 1, \quad f^{(k)} \equiv f, \quad \forall k \qquad m = 1$$

[Miellou, 1975] (sufficient)

$$|f(x) - f(y)| \le T|x - y|$$

 $T > O, \ \rho(T) < 1, \ |x| = (|x_1|, \dots, |x_n|)$

[El Tarazi, 1982] (sufficient)

$$||f(x) - f(y)||_{\infty}^{w} \le \alpha ||x - y||_{\infty}^{w}$$

 $w > 0, \ \alpha < 1, \ ||x||_{\infty}^{w} = \max_{i} |x_{i}|/w_{i}$

[Bertsekas, 1983] (sufficient)

$$f(S^{(t)}) \subset S^{(t+1)} \subset S^{(t)}$$

$$S^{(t)} = S_1^{(t)} \times \dots \times S_p^{(t)}, \lim_{t \to \infty} S^{(t)} = \{x^*\}$$

[Frommer and Szyld, 1994] (sufficient)

$$||f^{(k)}(x) - f^{(k)}(y)||_{\infty}^{w} \le \alpha ||x - y||_{\infty}^{w}, \quad \forall k$$

 $w > 0, \quad \alpha < 1, \quad ||x||_{\infty}^{w} = \max_{i} |x_{i}|/w_{i}$

Linear problems

$$Ax = b \iff M^{-1}Nx + M^{-1}b = x$$

[Chazan and Miranker, 1969] (necessary and sufficient): $\rho(|M^{-1}N|) < 1$

General fixed-point problems

$$f^{(k)}(x,x,\ldots,x) = x, \ \forall k \in \mathbb{N}, \ f^{(k)}: E^m \mapsto E, \ m \in \mathbb{N}^*$$

$$m = 1, \ f^{(k)} = f, \ \forall k$$

[Miellou, 1975] (sufficient)

$$|f(x) - f(y)| \le T|x - y|$$

 $T > O, \ \rho(T) < 1, \ |x| = (|x_1|, \dots, |x_n|)$

[El Tarazi, 1982] (sufficient)

$$||f(x) - f(y)||_{\infty}^{w} \le \alpha ||x - y||_{\infty}^{w}$$

$$w > 0, \ \alpha < 1, \ ||x||_{\infty}^{w} = \max |x_{i}|/w_{i}$$

[Bertsekas, 1983] (sufficient)

$$f(S^{(t)}) \subset S^{(t+1)} \subset S^{(t)}$$

$$S^{(t)} = S_1^{(t)} \times \cdots \times S_p^{(t)}, \lim_{t \to \infty} S^{(t)} = \{x^*\}$$

[Frommer and Szyld, 1994] (sufficient)

$$||f^{(k)}(x) - f^{(k)}(y)||_{\infty}^{w} \le \alpha ||x - y||_{\infty}^{w}, \quad \forall k$$

$$w > 0, \quad \alpha < 1, \quad ||x||_{\infty}^{w} = \max_{i} |x_{i}|/w_{i}$$

m = 1

[Frommer and Szyld, 2000] (sufficient)

$$f^{(k)}(S^{(t)}) \subset S^{(t+1)} \subset S^{(t)}, \quad \forall k$$

$$S^{(t)} = S_1^{(t)} \times \cdots \times S_p^{(t)}, \quad \lim_{t \to \infty} S^{(t)} = \{x^*\}$$

Linear problems

$$Ax = b \iff M^{-1}Nx + M^{-1}b = x$$

[Chazan and Miranker, 1969] (necessary and sufficient): $\rho(|M^{-1}N|) < 1$

General fixed-point problems

$$f^{(k)}(x,x,\ldots,x)=x,\ \forall k\in\mathbb{N},\ f^{(k)}:\ E^m\mapsto E,\ m\in\mathbb{N}^*$$

$$m=1, \quad f^{(k)}\equiv f, \ \forall k$$

$$m \geq 1, \quad f^{(k)} \equiv f, \ \forall k$$

[Miellou, 1975] (sufficient): |.|-contraction

[El Tarazi, 1982] (sufficient): $\|.\|_{\infty}^{w}$ -contraction

[Bertsekas, 1983] (sufficient): $\{S^{(t)}\}$ -contraction

$$m=1$$

[Frommer & Szyld, 1994] (sufficient): $\|.\|_{\infty}^{w}$ -contraction, $\forall k$

[Frommer & Szyld, 2000] (sufficient): $\{S^{(t)}\}\$ -contraction, $\forall k$

Linear problems

$$Ax = b \iff M^{-1}Nx + M^{-1}b = x$$

[Chazan and Miranker, 1969] (necessary and sufficient): $\rho(|M^{-1}N|) < 1$

General fixed-point problems

$$f^{(k)}(x,x,\ldots,x)=x, \ \forall k\in\mathbb{N}, \ f^{(k)}:E^m\mapsto E, \ m\in\mathbb{N}^*$$

$$m = 1, \quad f^{(k)} \equiv f, \quad \forall k$$

$$m \geq 1, \quad f^{(k)} \equiv f, \ \forall k$$

[Miellou, 1975] (sufficient): |. |-contraction

$$X := (x^{(1)}, \ldots, x^{(m)}), Y := (y^{(1)}, \ldots, y^{(m)})$$

[El Tarazi, 1982] (sufficient): ||.||w-contraction

[Baudet, 1978] (sufficient)

[Bertsekas, 1983] (sufficient): $\{S^{(t)}\}\$ -contraction

$$|f(X) - f(Y)| \le T \max\{|x^{(1)} - y^{(1)}|, \dots, |x^{(m)} - y^{(m)}|\}$$

$$T > O, \ \rho(T) < 1, \ (\max\{|x|, |y|\})_i = \max\{|x_i|, |y_i|\}$$

[Frommer & Szyld, 1994] (sufficient): $\|.\|_{\infty}^{w}$ -contraction, $\forall k$

[Frommer & Szyld, 2000] (sufficient): $\{S^{(t)}\}\$ -contraction, $\forall k$

m = 1

Linear problems

$$Ax = b \iff M^{-1}Nx + M^{-1}b = x$$

[Chazan and Miranker, 1969] (necessary and sufficient): $\rho(|M^{-1}N|) < 1$

General fixed-point problems

$$f^{(k)}(x,x,\ldots,x)=x, \ \forall k\in\mathbb{N}, \ f^{(k)}:E^m\mapsto E, \ m\in\mathbb{N}^*$$

$$m=1, \quad f^{(k)}\equiv f, \ \forall k$$

[El Tarazi, 1982] (sufficient):
$$\|.\|_{\infty}^{w}$$
-contraction

[Bertsekas, 1983] (sufficient):
$$\{S^{(t)}\}$$
-contraction

$$m = 1$$

[Frommer & Szyld, 1994] (sufficient): $\|.\|_{\infty}^{w}$ -contraction, $\forall k$

[Frommer & Szyld, 2000] (sufficient): $\{S^{(t)}\}\$ -contraction, $\forall k$

$$m \geq 1, \quad f^{(k)} \equiv f, \ \forall k$$

$$X := (x^{(1)}, \ldots, x^{(m)}), Y := (y^{(1)}, \ldots, y^{(m)})$$

[Baudet, 1978] (sufficient)

$$|f(X) - f(Y)| \le T \max\{|x^{(1)} - y^{(1)}|, \dots, |x^{(m)} - y^{(m)}|\}\$$

$$T \ge O, \ \rho(T) < 1, \ (\max\{|x|, |y|\})_i = \max\{|x_i|, |y_i|\}\$$

[El Tarazi, 1982] (sufficient)

$$||f(X) - x^*||_{\infty}^{w} \le \alpha \max\{||x^{(l)} - x^*||_{\infty}^{w}\}_{1 \le l \le m}$$

$$w > 0, \ \alpha < 1, \ ||x||_{\infty}^{w} = \max|x_i|/w_i$$

Linear problems

$$Ax = b \iff M^{-1}Nx + M^{-1}b = x$$

[Chazan and Miranker, 1969] (necessary and sufficient): $\rho(|M^{-1}N|) < 1$

General fixed-point problems

$$f^{(k)}(x,x,\ldots,x)=x, \ \forall k\in\mathbb{N}, \ f^{(k)}:E^m\mapsto E, \ m\in\mathbb{N}^*$$

$$m=1, \quad f^{(k)}\equiv f, \ \forall k$$

[Miellou, 1975] (sufficient): |. |-contraction

[El Tarazi, 1982] (sufficient): ||.||w-contraction

[Bertsekas, 1983] (sufficient): $\{S^{(t)}\}\$ -contraction

$$m = 1$$

[Frommer & Szyld, 1994] (sufficient): $\|.\|_{\infty}^{w}$ -contraction, $\forall k$

[Frommer & Szyld, 2000] (sufficient): $\{S^{(t)}\}\$ -contraction, $\forall k$

$$m \ge 1, \quad t^{(k)} \equiv f, \ \forall k$$

$$X := (x^{(1)}, \ldots, x^{(m)}), \ Y := (y^{(1)}, \ldots, y^{(m)})$$

[Baudet, 1978] (sufficient): |.|-contraction [El Tarazi, 1982] (sufficient)

$$||f(X) - x^*||_{\infty}^{w} \le \alpha \max\{||x^{(l)} - x^*||_{\infty}^{w}\}_{1 \le l \le m}$$

$$w > 0, \ \alpha < 1, \ ||x||_{\infty}^{w} = \max|x_l|/w_l$$

[Frommer & Szyld, 1998] (sufficient)

$$||f(x,y) - x^*||_{\infty}^{w} \le \alpha \max\{||x - x^*||_{\infty}^{w}, ||y - x^*||_{\infty}^{w}\}$$

$$w > 0, \ \alpha < 1, \ ||x||_{\infty}^{w} = \max_{i} |x_i|/w_i$$

Linear problems

$$Ax = b \iff M^{-1}Nx + M^{-1}b = x$$

[Chazan and Miranker, 1969] (necessary and sufficient): $\rho(|M^{-1}N|) < 1$

General fixed-point problems

$$f^{(k)}(x,x,\ldots,x)=x, \ \forall k\in\mathbb{N}, \ f^{(k)}:E^m\mapsto E, \ m\in\mathbb{N}^*$$

$$m=1, \quad f^{(k)}\equiv f, \ \forall k$$

[Miellou, 1975] (sufficient): |. |-contraction

[El Tarazi, 1982] (sufficient): ||.||w-contraction

[Bertsekas, 1983] (sufficient): $\{S^{(t)}\}\$ -contraction

$$m = 1$$

[Frommer & Szyld, 1994] (sufficient): $\|.\|_{\infty}^{w}$ -contraction, $\forall k$

[Frommer & Szyld, 2000] (sufficient): $\{S^{(t)}\}\$ -contraction, $\forall k$

$$m \ge 1$$
, $f^{(k)} \equiv f$, $\forall k$

$$X := (x^{(1)}, \ldots, x^{(m)}), Y := (y^{(1)}, \ldots, y^{(m)})$$

[Baudet, 1978] (sufficient): |.|-contraction [El Tarazi, 1982] (sufficient)

$$||f(X) - x^*||_{\infty}^{w} \le \alpha \max\{||x^{(l)} - x^*||_{\infty}^{w}\}_{1 \le l \le m}$$

$$w > 0, \ \alpha < 1, \ ||x||_{\infty}^{w} = \max|x_l|/w_l$$

[Frommer & Szyld, 1998] (sufficient) m=2 $||f(x,y)-x^*||_{\infty}^w < \alpha \max\{||x-x^*||_{\infty}^w, ||y-x^*||_{\infty}^w\}$ $w > 0, \ \alpha < 1, \ \|x\|_{\infty}^{w} = \max_{i} |x_{i}|/w_{i}$

Linear problems

$$Ax = b \iff M^{-1}Nx + M^{-1}b = x$$

[Chazan and Miranker, 1969] (necessary and sufficient): $\rho(|M^{-1}N|) < 1$

General fixed-point problems

$$f^{(k)}(x,x,\ldots,x)=x, \ \forall k\in\mathbb{N}, \ f^{(k)}: E^m\mapsto E, \ m\in\mathbb{N}^*$$

$$m=1, \quad f^{(k)}\equiv f, \ \forall k$$

[Miellou, 1975] (sufficient): |. |-contraction

[El Tarazi, 1982] (sufficient): $\|.\|_{\infty}^{w}$ -contraction

[Bertsekas, 1983] (sufficient): $\{S^{(t)}\}$ -contraction

$$m = 1$$

[Frommer & Szyld, 1994] (sufficient): $\|.\|_{\infty}^{w}$ -contraction, $\forall k$ [Frommer & Szyld, 2000] (sufficient): $\{S^{(t)}\}\$ -contraction, $\forall k$

$$m \geq 1, \quad f^{(k)} \equiv f, \ \forall k$$

[Baudet, 1978] (sufficient): |.|-contraction

$$|f(X) - f(Y)| \le T \max\{|x^{(1)} - y^{(1)}|, \dots, |x^{(m)} - y^{(m)}|\}$$

 $T > O, \ \rho(T) < 1, \ (\max\{|x|, |y|\})_i = \max\{|x_i|, |y_i|\}$

[El Tarazi, 1982] (sufficient): ||.||w -contraction

$$||f(X) - x^*||_{\infty}^{w} \le \alpha \max\{||x^{(l)} - x^*||_{\infty}^{w}\}_{1 \le l \le m}$$

$$w > 0, \ \alpha < 1, \ ||x||_{\infty}^{w} = \max|x_l|/w_l$$

[Frommer & Szvld. 1998] m=2

OUTLINE

2 - SPACE DOMAIN DECOMPOSITION

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

2 - SPACE DOMAIN DECOMPOSITION

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

$$\begin{bmatrix} A_{1,1} & O & A_{1,\Gamma} \\ O & A_{2,2} & A_{2,\Gamma} \\ A_{\Gamma,1} & A_{\Gamma,2} & A_{\Gamma,\Gamma}^{(1)} + A_{\Gamma,\Gamma}^{(2)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_{\Gamma} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_{\Gamma}^{(1)} + b_{\Gamma}^{(2)} \end{bmatrix}$$

Time domain decomposition

2 - SPACE DOMAIN DECOMPOSITION

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

$$\begin{bmatrix} A_{1,1} & O & A_{1,\Gamma} \\ O & A_{2,2} & A_{2,\Gamma} \\ A_{\Gamma,1} & A_{\Gamma,2} & A_{\Gamma,\Gamma}^{(1)} + A_{\Gamma,\Gamma}^{(2)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_{\Gamma} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_{\Gamma}^{(1)} + b_{\Gamma}^{(2)} \end{bmatrix}$$

$$\begin{split} A_{1,1}x_1 + A_{1,\Gamma}x_{\Gamma} &= b_1 \\ A_{2,2}x_2 + A_{2,\Gamma}x_{\Gamma} &= b_2 \\ A_{\Gamma,1}x_1 + A_{\Gamma,2}x_2 + \left(A_{\Gamma,\Gamma}^{(1)} + A_{\Gamma,\Gamma}^{(2)}\right)x_{\Gamma} &= b_{\Gamma}^{(1)} + b_{\Gamma}^{(2)} \end{split}$$

2 - Space domain decomposition

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

$$\begin{bmatrix} A_{1,1} & O & A_{1,\Gamma} \\ O & A_{2,2} & A_{2,\Gamma} \\ A_{\Gamma,1} & A_{\Gamma,2} & A_{\Gamma,\Gamma}^{(1)} + A_{\Gamma,\Gamma}^{(2)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_{\Gamma} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_{\Gamma}^{(1)} + b_{\Gamma}^{(2)} \end{bmatrix}$$

$$\begin{aligned} A_{1,1}x_1 + A_{1,\Gamma}x_{\Gamma} &= b_1 \\ A_{2,2}x_2 + A_{2,\Gamma}x_{\Gamma} &= b_2 \\ A_{\Gamma,1}x_1 + A_{\Gamma,2}x_2 + \left(A_{\Gamma,\Gamma}^{(1)} + A_{\Gamma,\Gamma}^{(2)}\right)x_{\Gamma} &= b_{\Gamma}^{(1)} + b_{\Gamma}^{(2)} \end{aligned}$$

$$\begin{aligned} x_2 &= A_{2,2}^{-1} \left(b_2 - A_{2,\Gamma} x_\Gamma \right) \\ A_{\Gamma,1} x_1 &+ \left(A_{\Gamma,\Gamma}^{(1)} + A_{\Gamma,\Gamma}^{(2)} \right) x_\Gamma &= b_\Gamma^{(1)} + b_\Gamma^{(2)} - A_{\Gamma,2} x_2 \end{aligned}$$

2 - SPACE DOMAIN DECOMPOSITION

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

$$\begin{bmatrix} A_{1,1} & O & A_{1,\Gamma} \\ O & A_{2,2} & A_{2,\Gamma} \\ A_{\Gamma,1} & A_{\Gamma,2} & A_{\Gamma,\Gamma}^{(1)} + A_{\Gamma,\Gamma}^{(2)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_{\Gamma} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_{\Gamma}^{(1)} + b_{\Gamma}^{(2)} \end{bmatrix}$$

$$\begin{aligned} A_{1,1}x_1 + A_{1,\Gamma}x_{\Gamma} &= b_1 \\ A_{2,2}x_2 + A_{2,\Gamma}x_{\Gamma} &= b_2 \\ A_{\Gamma,1}x_1 + A_{\Gamma,2}x_2 + \left(A_{\Gamma,\Gamma}^{(1)} + A_{\Gamma,\Gamma}^{(2)}\right)x_{\Gamma} &= b_{\Gamma}^{(1)} + b_{\Gamma}^{(2)} \end{aligned}$$

$$x_2 = A_{2,2}^{-1} (b_2 - A_{2,\Gamma} x_{\Gamma})$$

$$A_{\Gamma,1} x_1 + \left(A_{\Gamma,\Gamma}^{(1)} + A_{\Gamma,\Gamma}^{(2)} \right) x_{\Gamma} = b_{\Gamma}^{(1)} + b_{\Gamma}^{(2)} - A_{\Gamma,2} x_2$$

$$\begin{bmatrix} A_{1,1} & A_{1,\Gamma} \\ A_{\Gamma,1} & A_{\Gamma,\Gamma}^{(1)} + A_{\Gamma,\Gamma}^{(2)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_{\Gamma} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_{\Gamma}^{(1)} + b_{\Gamma}^{(2)} - A_{\Gamma,2}x_2 \end{bmatrix}$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Two subdomains

$$\begin{bmatrix} A_{1,1} & A_{1,\Gamma} \\ A_{\Gamma,1} & A_{\Gamma,\Gamma}^{(1)} + A_{\Gamma,\Gamma}^{(2)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_{\Gamma} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_{\Gamma}^{(1)} + b_{\Gamma}^{(2)} - A_{\Gamma,2} x_2 \end{bmatrix}$$
$$\begin{bmatrix} A_{2,2} & A_{2,\Gamma} \\ A_{\Gamma,2} & A_{\Gamma,\Gamma}^{(1)} + A_{\Gamma,\Gamma}^{(2)} \end{bmatrix} \begin{bmatrix} x_2 \\ x_{\Gamma} \end{bmatrix} = \begin{bmatrix} b_2 \\ b_{\Gamma}^{(1)} + b_{\Gamma}^{(2)} - A_{\Gamma,1} x_1 \end{bmatrix}$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Two subdomains

$$\begin{bmatrix} A_{1,1} & A_{1,\Gamma} \\ A_{\Gamma,1} & A_{\Gamma,\Gamma}^{(1)} + A_{\Gamma,\Gamma}^{(2)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_{\Gamma} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_{\Gamma}^{(1)} + b_{\Gamma}^{(2)} - A_{\Gamma,2}x_2 \end{bmatrix}$$

$$\begin{bmatrix} A_{2,2} & A_{2,\Gamma} \\ A_{\Gamma,2} & A_{\Gamma,\Gamma}^{(1)} + A_{\Gamma,\Gamma}^{(2)} \end{bmatrix} \begin{bmatrix} x_2 \\ x_{\Gamma} \end{bmatrix} = \begin{bmatrix} b_2 \\ b_{\Gamma}^{(1)} + b_{\Gamma}^{(2)} - A_{\Gamma,1}x_1 \end{bmatrix}$$

2 - Space domain decomposition

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Two subdomains

$$\begin{bmatrix} A_{1,1} & A_{1,\Gamma} \\ A_{\Gamma,1} & A_{\Gamma,\Gamma}^{(1)} + A_{\Gamma,\Gamma}^{(2)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_{\Gamma} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_{\Gamma}^{(1)} + b_{\Gamma}^{(2)} - A_{\Gamma,2}x_2 \end{bmatrix}$$

$$\begin{bmatrix} A_{2,2} & A_{2,\Gamma} \\ A_{\Gamma,2} & A_{\Gamma,\Gamma}^{(1)} + A_{\Gamma,\Gamma}^{(2)} \end{bmatrix} \begin{bmatrix} x_2 \\ x_{\Gamma} \end{bmatrix} = \begin{bmatrix} b_2 \\ b_{\Gamma}^{(1)} + b_{\Gamma}^{(2)} - A_{\Gamma,1}x_1 \end{bmatrix}$$

Parallel solutions

$$\begin{bmatrix} A_{1,1} & A_{1,\Gamma} \\ A_{\Gamma,1} & A_{\Gamma,\Gamma}^{(1)} + \Lambda_{\Gamma,\Gamma}^{(1)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_{\Gamma}^{(1)} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_{\Gamma}^{(1)} + \lambda_{\Gamma}^{(1)} \end{bmatrix}$$
$$\begin{bmatrix} A_{2,2} & A_{2,\Gamma} \\ A_{\Gamma,2} & A_{\Gamma,\Gamma}^{(2)} + \Lambda_{\Gamma,\Gamma}^{(2)} \end{bmatrix} \begin{bmatrix} x_2 \\ x_{\Gamma}^{(2)} \end{bmatrix} = \begin{bmatrix} b_2 \\ b_{\Gamma}^{(2)} + \lambda_{\Gamma}^{(2)} \end{bmatrix}$$

Time domain decomposition

2 - Space domain decomposition

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Two subdomains

$$\begin{bmatrix} A_{1,1} & A_{1,\Gamma} \\ A_{\Gamma,1} & A_{\Gamma,\Gamma}^{(1)} + A_{\Gamma,\Gamma}^{(2)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_{\Gamma} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_{\Gamma}^{(1)} + b_{\Gamma}^{(2)} - A_{\Gamma,2} x_2 \end{bmatrix}$$
$$\begin{bmatrix} A_{2,2} & A_{2,\Gamma} \\ A_{\Gamma,2} & A_{\Gamma,\Gamma}^{(1)} + A_{\Gamma,\Gamma}^{(2)} \end{bmatrix} \begin{bmatrix} x_2 \\ x_{\Gamma} \end{bmatrix} = \begin{bmatrix} b_2 \\ b_{\Gamma}^{(1)} + b_{\Gamma}^{(2)} - A_{\Gamma,1} x_1 \end{bmatrix}$$

$$\begin{bmatrix} A_{1,1} & A_{1,\Gamma} \\ A_{\Gamma,1} & A_{\Gamma,\Gamma}^{(1)} + \Lambda_{\Gamma,\Gamma}^{(1)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_{\Gamma}^{(1)} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_{\Gamma}^{(1)} + \lambda_{\Gamma}^{(1)} \end{bmatrix}$$
$$\begin{bmatrix} A_{2,2} & A_{2,\Gamma} \\ A_{\Gamma,2} & A_{\Gamma,\Gamma}^{(2)} + \Lambda_{\Gamma,\Gamma}^{(2)} \end{bmatrix} \begin{bmatrix} x_2 \\ x_{\Gamma}^{(2)} \end{bmatrix} = \begin{bmatrix} b_2 \\ b_{\Gamma}^{(2)} + \lambda_{\Gamma}^{(2)} \end{bmatrix}$$

$$\begin{aligned} x_{\Gamma}^{(1)} &= x_{\Gamma}^{(2)} \\ \lambda_{\Gamma}^{(1)} &- \Lambda_{\Gamma, \Gamma}^{(1)} x_{\Gamma}^{(1)} &= - \left(\lambda_{\Gamma}^{(2)} - \Lambda_{\Gamma, \Gamma}^{(2)} x_{\Gamma}^{(2)} \right) \end{aligned}$$

2 - Space domain decomposition

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Two subdomains Parallel solutions

$$\begin{bmatrix} A_{1,1} & A_{1,\Gamma} \\ A_{\Gamma,1} & A_{\Gamma,\Gamma}^{(1)} + \Lambda_{\Gamma,\Gamma}^{(1)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_{\Gamma}^{(1)} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_{\Gamma}^{(1)} + \lambda_{\Gamma}^{(1)} \end{bmatrix}$$
$$\begin{bmatrix} A_{2,2} & A_{2,\Gamma} \\ A_{\Gamma,2} & A_{\Gamma,\Gamma}^{(2)} + \Lambda_{\Gamma,\Gamma}^{(2)} \end{bmatrix} \begin{bmatrix} x_2 \\ x_{\Gamma}^{(2)} \end{bmatrix} = \begin{bmatrix} b_2 \\ b_{\Gamma}^{(2)} + \lambda_{\Gamma}^{(2)} \end{bmatrix}$$

$$\begin{split} x_{\Gamma}^{(1)} &= x_{\Gamma}^{(2)} \\ \lambda_{\Gamma}^{(1)} &- \Lambda_{\Gamma, \Gamma}^{(1)} x_{\Gamma}^{(1)} &= - \left(\lambda_{\Gamma}^{(2)} - \Lambda_{\Gamma, \Gamma}^{(2)} x_{\Gamma}^{(2)} \right) \end{split}$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Two subdomains Parallel solutions

$$\begin{bmatrix} A_{1,1} & A_{1,\Gamma} \\ A_{\Gamma,1} & A_{\Gamma,\Gamma}^{(1)} + \Lambda_{\Gamma,\Gamma}^{(1)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_{\Gamma}^{(1)} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_{\Gamma}^{(1)} + \lambda_{\Gamma}^{(1)} \end{bmatrix}$$
$$\begin{bmatrix} A_{2,2} & A_{2,\Gamma} \\ A_{\Gamma,2} & A_{\Gamma,\Gamma}^{(2)} + \Lambda_{\Gamma,\Gamma}^{(2)} \end{bmatrix} \begin{bmatrix} x_2 \\ x_{\Gamma}^{(2)} \end{bmatrix} = \begin{bmatrix} b_2 \\ b_{\Gamma}^{(2)} + \lambda_{\Gamma}^{(2)} \end{bmatrix}$$

$$\begin{split} x_{\Gamma}^{(1)} &= x_{\Gamma}^{(2)} \\ \lambda_{\Gamma}^{(1)} &- \Lambda_{\Gamma,\Gamma}^{(1)} x_{\Gamma}^{(1)} &= - \left(\lambda_{\Gamma}^{(2)} - \Lambda_{\Gamma,\Gamma}^{(2)} x_{\Gamma}^{(2)} \right) \end{split}$$

$$\begin{split} x_1 &= A_{1,1}^{-1} \left(b_1 - A_{1,\Gamma} x_{\Gamma}^{(1)} \right) \\ A_{\Gamma,1} x_1 &+ \left(A_{\Gamma,\Gamma}^{(1)} + \Lambda_{\Gamma,\Gamma}^{(1)} \right) x_{\Gamma}^{(1)} &= b_{\Gamma}^{(1)} + \lambda_{\Gamma}^{(1)} \end{split}$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Two subdomains Parallel solutions

$$\begin{bmatrix} A_{1,1} & A_{1,\Gamma} \\ A_{\Gamma,1} & A_{\Gamma,\Gamma}^{(1)} + A_{\Gamma,\Gamma}^{(1)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_{\Gamma}^{(1)} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_{\Gamma}^{(1)} + \lambda_{\Gamma}^{(1)} \end{bmatrix}$$
$$\begin{bmatrix} A_{2,2} & A_{2,\Gamma} \\ A_{\Gamma,2} & A_{\Gamma,\Gamma}^{(2)} + A_{\Gamma,\Gamma}^{(2)} \end{bmatrix} \begin{bmatrix} x_2 \\ x_{\Gamma}^{(2)} \end{bmatrix} = \begin{bmatrix} b_2 \\ b_{\Gamma}^{(2)} + \lambda_{\Gamma}^{(2)} \end{bmatrix}$$

$$\begin{split} x_{\Gamma}^{(1)} &= x_{\Gamma}^{(2)} \\ \lambda_{\Gamma}^{(1)} &- \Lambda_{\Gamma,\Gamma}^{(1)} x_{\Gamma}^{(1)} &= - \left(\lambda_{\Gamma}^{(2)} - \Lambda_{\Gamma,\Gamma}^{(2)} x_{\Gamma}^{(2)} \right) \end{split}$$

$$\begin{split} x_1 &= A_{1,1}^{-1} \left(b_1 - A_{1,\Gamma} x_{\Gamma}^{(1)} \right) \\ A_{\Gamma,1} x_1 &+ \left(A_{\Gamma,\Gamma}^{(1)} + \Lambda_{\Gamma,\Gamma}^{(1)} \right) x_{\Gamma}^{(1)} = b_{\Gamma}^{(1)} + \lambda_{\Gamma}^{(1)} \\ \left(A_{\Gamma,\Gamma}^{(1)} - A_{\Gamma,1} A_{1,1}^{-1} A_{1,\Gamma} + \Lambda_{\Gamma,\Gamma}^{(1)} \right) x_{\Gamma}^{(1)} = b_{\Gamma}^{(1)} + \lambda_{\Gamma}^{(1)} - A_{\Gamma,1} A_{1,1}^{-1} b_{1} \end{split}$$

2 - Space domain decomposition

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Two subdomains

$$\left(A_{\Gamma,\Gamma}^{(1)} - A_{\Gamma,1} A_{1,1}^{-1} A_{1,\Gamma} + \Lambda_{\Gamma,\Gamma}^{(1)} \right) x_{\Gamma}^{(1)} = b_{\Gamma}^{(1)} + \lambda_{\Gamma}^{(1)} - A_{\Gamma,1} A_{1,1}^{-1} b_{1}$$

$$\left(A_{\Gamma,\Gamma}^{(2)} - A_{\Gamma,2} A_{2,\Gamma}^{-1} A_{2,\Gamma} + \Lambda_{\Gamma,\Gamma}^{(2)} \right) x_{\Gamma}^{(2)} = b_{\Gamma}^{(2)} + \lambda_{\Gamma}^{(2)} - A_{\Gamma,2} A_{2,2}^{-1} b_{2}$$

$$x_{\Gamma}^{(1)} = x_{\Gamma}^{(2)}$$

$$\lambda_{\Gamma}^{(1)} - \Lambda_{\Gamma, \Gamma}^{(1)} x_{\Gamma}^{(1)} = -\left(\lambda_{\Gamma}^{(2)} - \Lambda_{\Gamma, \Gamma}^{(2)} x_{\Gamma}^{(2)}\right)$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Two subdomains Parallel solutions

$$\left(A_{\Gamma,\Gamma}^{(1)} - A_{\Gamma,1} A_{1,1}^{-1} A_{1,\Gamma} + \Lambda_{\Gamma,\Gamma}^{(1)} \right) x_{\Gamma}^{(1)} = b_{\Gamma}^{(1)} + \lambda_{\Gamma}^{(1)} - A_{\Gamma,1} A_{1,1}^{-1} b_{1}$$

$$\left(A_{\Gamma,\Gamma}^{(2)} - A_{\Gamma,2} A_{2,2}^{-1} A_{2,\Gamma} + \Lambda_{\Gamma,\Gamma}^{(2)} \right) x_{\Gamma}^{(2)} = b_{\Gamma}^{(2)} + \lambda_{\Gamma}^{(2)} - A_{\Gamma,2} A_{2,2}^{-1} b_{2}$$

$$\left(S_{\Gamma,\Gamma}^{(1)} + \Lambda_{\Gamma,\Gamma}^{(1)} \right) x_{\Gamma}^{(1)} = a_{\Gamma}^{(1)} + \lambda_{\Gamma}^{(1)}$$

$$\left(S_{\Gamma,\Gamma}^{(2)} + \Lambda_{\Gamma,\Gamma}^{(2)} \right) x_{\Gamma}^{(2)} = a_{\Gamma}^{(2)} + \lambda_{\Gamma}^{(2)}$$

$$\begin{split} x_{\Gamma}^{(1)} &= x_{\Gamma}^{(2)} \\ \lambda_{\Gamma}^{(1)} &- \Lambda_{\Gamma,\Gamma}^{(1)} x_{\Gamma}^{(1)} &= - \left(\lambda_{\Gamma}^{(2)} - \Lambda_{\Gamma,\Gamma}^{(2)} x_{\Gamma}^{(2)} \right) \end{split}$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Two subdomains Parallel solutions

$$\left(A_{\Gamma,\Gamma}^{(1)} - A_{\Gamma,1} A_{1,1}^{-1} A_{1,\Gamma} + \Lambda_{\Gamma,\Gamma}^{(1)} \right) x_{\Gamma}^{(1)} = b_{\Gamma}^{(1)} + \lambda_{\Gamma}^{(1)} - A_{\Gamma,1} A_{1,1}^{-1} b_{1}$$

$$\left(A_{\Gamma,\Gamma}^{(2)} - A_{\Gamma,2} A_{2,2}^{-1} A_{2,\Gamma} + \Lambda_{\Gamma,\Gamma}^{(2)} \right) x_{\Gamma}^{(2)} = b_{\Gamma}^{(2)} + \lambda_{\Gamma}^{(2)} - A_{\Gamma,2} A_{2,2}^{-1} b_{2}$$

$$\left(S_{\Gamma,\Gamma}^{(1)} + \Lambda_{\Gamma,\Gamma}^{(1)} \right) x_{\Gamma}^{(1)} = a_{\Gamma}^{(1)} + \lambda_{\Gamma}^{(1)}$$

$$\left(S_{\Gamma,\Gamma}^{(2)} + \Lambda_{\Gamma,\Gamma}^{(2)} \right) x_{\Gamma}^{(2)} = a_{\Gamma}^{(2)} + \lambda_{\Gamma}^{(2)}$$

$$\begin{split} x_{\Gamma}^{(1)} &= x_{\Gamma}^{(2)} \\ \lambda_{\Gamma}^{(1)} &- \Lambda_{\Gamma,\Gamma}^{(1)} x_{\Gamma}^{(1)} &= - \left(\lambda_{\Gamma}^{(2)} - \Lambda_{\Gamma,\Gamma}^{(2)} x_{\Gamma}^{(2)} \right) \end{split}$$

Dual approach:
$$x_{\Gamma}^{(i)} = \left(S_{\Gamma,\Gamma}^{(i)} + \Lambda_{\Gamma,\Gamma}^{(i)}\right)^{-1} \left(d_{\Gamma}^{(i)} + \lambda_{\Gamma}^{(i)}\right)$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Two subdomains Parallel solutions

$$\left(A_{\Gamma,\Gamma}^{(1)} - A_{\Gamma,1} A_{1,1}^{-1} A_{1,\Gamma} + \Lambda_{\Gamma,\Gamma}^{(1)} \right) x_{\Gamma}^{(1)} = b_{\Gamma}^{(1)} + \lambda_{\Gamma}^{(1)} - A_{\Gamma,1} A_{1,1}^{-1} b_{1}$$

$$\left(A_{\Gamma,\Gamma}^{(2)} - A_{\Gamma,2} A_{2,\Gamma}^{-1} A_{2,\Gamma} + \Lambda_{\Gamma,\Gamma}^{(2)} \right) x_{\Gamma}^{(2)} = b_{\Gamma}^{(2)} + \lambda_{\Gamma}^{(2)} - A_{\Gamma,2} A_{2,\Gamma}^{-1} b_{2}$$

$$\left(S_{\Gamma,\Gamma}^{(1)} + \Lambda_{\Gamma,\Gamma}^{(1)} \right) x_{\Gamma}^{(1)} = a_{\Gamma}^{(1)} + \lambda_{\Gamma}^{(1)}$$

$$\left(S_{\Gamma,\Gamma}^{(2)} + \Lambda_{\Gamma,\Gamma}^{(2)} \right) x_{\Gamma}^{(2)} = a_{\Gamma}^{(2)} + \lambda_{\Gamma}^{(2)}$$

Consistency across interface Γ

$$\begin{aligned} x_{\Gamma}^{(1)} &= x_{\Gamma}^{(2)} \\ \lambda_{\Gamma}^{(1)} &- \Lambda_{\Gamma,\Gamma}^{(1)} x_{\Gamma}^{(1)} &= - \left(\lambda_{\Gamma}^{(2)} - \Lambda_{\Gamma,\Gamma}^{(2)} x_{\Gamma}^{(2)} \right) \end{aligned}$$

Primal approach: $\lambda_{\Gamma}^{(i)} = \left(S_{\Gamma\Gamma}^{(i)} + \Lambda_{\Gamma\Gamma}^{(i)}\right) x_{\Gamma}^{(i)} - d_{\Gamma}^{(i)}$

Dual approach:
$$x_{\Gamma}^{(i)} = \left(S_{\Gamma,\Gamma}^{(i)} + \Lambda_{\Gamma,\Gamma}^{(i)}\right)^{-1} \left(d_{\Gamma}^{(i)} + \lambda_{\Gamma}^{(i)}\right)$$

Problem

$$Ax = b, x \in \mathbb{C}^n$$

Two subdomains Parallel solutions

$$\left(S_{\Gamma,\Gamma}^{(1)} + \Lambda_{\Gamma,\Gamma}^{(1)} \right) x_{\Gamma}^{(1)} = d_{\Gamma}^{(1)} + \lambda_{\Gamma}^{(1)}$$

$$\left(S_{\Gamma,\Gamma}^{(2)} + \Lambda_{\Gamma,\Gamma}^{(2)} \right) x_{\Gamma}^{(2)} = d_{\Gamma}^{(2)} + \lambda_{\Gamma}^{(2)}$$

Consistency across interface Γ

$$x_{\Gamma}^{(1)} = x_{\Gamma}^{(2)}$$
$$\lambda_{\Gamma}^{(1)} - \Lambda_{\Gamma,\Gamma}^{(1)} x_{\Gamma}^{(1)} = -\left(\lambda_{\Gamma}^{(2)} - \Lambda_{\Gamma,\Gamma}^{(2)} x_{\Gamma}^{(2)}\right)$$

Primal approach

$$\lambda_{\Gamma}^{(i)} = \left(S_{\Gamma,\Gamma}^{(i)} + \Lambda_{\Gamma,\Gamma}^{(i)}\right) x_{\Gamma}^{(i)} - d_{\Gamma}^{(i)}$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Two subdomains Parallel solutions

$$\left(S_{\Gamma,\Gamma}^{(1)} + \Lambda_{\Gamma,\Gamma}^{(1)} \right) x_{\Gamma}^{(1)} = d_{\Gamma}^{(1)} + \lambda_{\Gamma}^{(1)}$$

$$\left(S_{\Gamma,\Gamma}^{(2)} + \Lambda_{\Gamma,\Gamma}^{(2)} \right) x_{\Gamma}^{(2)} = d_{\Gamma}^{(2)} + \lambda_{\Gamma}^{(2)}$$

Consistency across interface Γ

$$x_{\Gamma}^{(1)} = x_{\Gamma}^{(2)}$$
$$\lambda_{\Gamma}^{(1)} - \Lambda_{\Gamma,\Gamma}^{(1)} x_{\Gamma}^{(1)} = -\left(\lambda_{\Gamma}^{(2)} - \Lambda_{\Gamma,\Gamma}^{(2)} x_{\Gamma}^{(2)}\right)$$

Primal approach

$$\lambda_{\Gamma}^{(i)} = \left(\mathcal{S}_{\Gamma,\Gamma}^{(i)} + \Lambda_{\Gamma,\Gamma}^{(i)}\right) x_{\Gamma}^{(i)} - d_{\Gamma}^{(i)}$$

Interface problem: Schur complement inversion

$$\left(S_{\Gamma,\Gamma}^{(1)} + S_{\Gamma,\Gamma}^{(2)} \right) x_{\Gamma}^{(1)} = d_{\Gamma}^{(1)} + d_{\Gamma}^{(2)}$$

$$\left(S_{\Gamma,\Gamma}^{(1)} + S_{\Gamma,\Gamma}^{(2)} \right) x_{\Gamma}^{(2)} = d_{\Gamma}^{(1)} + d_{\Gamma}^{(2)}$$

$$\left(S_{\Gamma,\Gamma}^{(1)} + S_{\Gamma,\Gamma}^{(2)}\right) x_{\Gamma} = d_{\Gamma}^{(1)} + d_{\Gamma}^{(2)}$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Interface problem: Schur complement inversion

$$\sum_{i} S_{\Gamma,\Gamma}^{(i)} x_{\Gamma} = \sum_{i} d_{\Gamma}^{(i)}$$

Problem

$$Ax = b, x \in \mathbb{C}^n$$

Interface problem: Schur complement inversion

$$\sum_{i} S_{\Gamma,\Gamma}^{(i)} x_{\Gamma} = \sum_{i} d_{\Gamma}^{(i)}$$

Asynchronous iterative solution

$$\sum_{i} S_{\Gamma,\Gamma}^{(i)} = M - N$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Interface problem: Schur complement inversion

$$\sum_{i} S_{\Gamma,\Gamma}^{(i)} x_{\Gamma} = \sum_{i} d_{\Gamma}^{(i)}$$

Asynchronous iterative solution

$$\sum_{i} S_{\Gamma,\Gamma}^{(i)} = M - N$$

Classical splittings (M, N): (block-)Jacobi, Gauss-Seidel, SOR, ...

- Minimum requirement: diag $\sum_{i} S_{\Gamma,\Gamma}^{(i)}$
- ⇒ explicit computation of ∑_i S⁽ⁱ⁾_{Γ,Γ}
- ♦ ⇒ vector decomposition

$$x_{\Gamma} := \begin{bmatrix} (x_{\Gamma})_1 & \cdots & (x_{\Gamma})_p \end{bmatrix}^{\mathsf{T}}$$

instead of primal domain decomposition approach

$$x_{\Gamma} := x_{\Gamma}^{(1)} = \cdots = x_{\Gamma}^{(p)}$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Interface problem: Schur complement inversion Asynchronous iterative solution

$$S_{\Gamma,\Gamma} := \sum_{i} S_{\Gamma,\Gamma}^{(i)} = M - N$$

Classical splittings (M, N) \Rightarrow vector decomposition

Problem

$$Ax = b, x \in \mathbb{C}^n$$

Interface problem: Schur complement inversion Asynchronous iterative solution

$$S_{\Gamma,\Gamma} := \sum_{i} S_{\Gamma,\Gamma}^{(i)} = M - N$$

Classical splittings (M, N) \Rightarrow vector decomposition

Proposition 1

$$M := \gamma I$$

$$\mathcal{S}_{\Gamma,\Gamma} \text{ is an } \mathcal{M}\text{-matrix}, \qquad \gamma \geq \max \, \operatorname{diag} \mathcal{S}_{\Gamma,\Gamma}$$

Problem

$$Ax = b, x \in \mathbb{C}^n$$

Interface problem: Schur complement inversion Asynchronous iterative solution

$$S_{\Gamma,\Gamma} := \sum_{i} S_{\Gamma,\Gamma}^{(i)} = M - N$$

Classical splittings (M, N) \Rightarrow vector decomposition

Proposition 1

$$M := \gamma I$$

$$\mathcal{S}_{\Gamma,\Gamma} \text{ is an } \mathcal{M}\text{-matrix}, \qquad \gamma \geq \max \text{ } \operatorname{diag} \mathcal{S}_{\Gamma,\Gamma}$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Interface problem: Schur complement inversion Asynchronous iterative solution

$$S_{\Gamma,\Gamma} := \sum_{i} S_{\Gamma,\Gamma}^{(i)} = M - N$$

Classical splittings (M, N) \Rightarrow vector decomposition

Proposition 1

$$M := \gamma I$$

Sufficient conditions for vector decomposition

$$\mathcal{S}_{\Gamma,\Gamma} \text{ is an } \mathcal{M}\text{-matrix}, \qquad \gamma \geq \max \text{ } \operatorname{diag} \mathcal{S}_{\Gamma,\Gamma}$$

 \mathcal{M} -matrix

$$(S_{\Gamma,\Gamma})_{i,j\neq i} \leq 0, \quad S_{\Gamma,\Gamma}^{-1} \geq O$$

 $(S_{\Gamma,\Gamma})_{i,j\neq i} \leq 0, \quad S_{\Gamma,\Gamma}$ symmetric and positive definite

[Crabtree and Haynsworth, 1969]

A is an \mathcal{M} -matrix $\implies S_{\Gamma,\Gamma}$ is an \mathcal{M} -matrix

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Interface problem: Schur complement inversion Asynchronous iterative solution

$$S_{\Gamma,\Gamma} := \sum_{i} S_{\Gamma,\Gamma}^{(i)} = M - N$$

Classical splittings (M, N) \Rightarrow vector decomposition

Proposition 1

$$M := \gamma I$$

Sufficient conditions for vector decomposition

$$S_{\Gamma,\Gamma}$$
 is an \mathcal{M} -matrix, $\gamma \geq \max \operatorname{diag} S_{\Gamma,\Gamma}$

 \mathcal{M} -matrix

$$(S_{\Gamma,\Gamma})_{i,j\neq i} \leq 0, \quad S_{\Gamma,\Gamma}^{-1} \geq O$$

 $(S_{\Gamma,\Gamma})_{i,j\neq i} \leq 0, \quad S_{\Gamma,\Gamma}$ symmetric and positive definite

[Crabtree and Haynsworth, 1969]

A is an
$$\mathcal{M}$$
-matrix $\implies S_{\Gamma,\Gamma}$ is an \mathcal{M} -matrix

Remark

$$\textit{A} \text{ is an } \mathcal{M}\text{-matrix } \implies \textit{A}_{\Gamma,\Gamma} := \sum_{\textit{i}} \textit{A}_{\Gamma,\Gamma}^{\textit{(i)}} \geq \textit{S}_{\Gamma,\Gamma}$$

⇒ Sufficient

$$S_{\Gamma,\Gamma}$$
 is an \mathcal{M} -matrix, $\gamma \geq \max \operatorname{diag} A_{\Gamma,\Gamma}$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Interface problem: Schur complement inversion Asynchronous iterative solution

$$\mathcal{S}_{\Gamma,\Gamma} := \sum_{i} \mathcal{S}_{\Gamma,\Gamma}^{(i)} = M - N$$

Classical splittings (M, N) \Rightarrow vector decomposition

Proposition 1

$$M := \gamma I$$

Sufficient conditions for vector decomposition

$$\begin{split} & S_{\Gamma,\Gamma} \text{ is an } \mathcal{M}\text{-matrix}, & \gamma \geq \max \text{ diag } S_{\Gamma,\Gamma} \\ & S_{\Gamma,\Gamma} \text{ is an } \mathcal{M}\text{-matrix}, & \gamma \geq \max \text{ diag } A_{\Gamma,\Gamma} \end{split}$$

[Crabtree and Haynsworth, 1969]

A is an \mathcal{M} -matrix $\implies S_{\Gamma,\Gamma}$ is an \mathcal{M} -matrix

Proposition 2

$$M := M_{\Gamma,\Gamma}, \qquad A_{\Gamma,\Gamma} = M_{\Gamma,\Gamma} - N_{\Gamma,\Gamma}$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Interface problem: Schur complement inversion Asynchronous iterative solution

$$\mathcal{S}_{\Gamma,\Gamma} := \sum_{i} \mathcal{S}_{\Gamma,\Gamma}^{(i)} = M - N$$

Classical splittings (M, N) \Rightarrow vector decomposition

Proposition 1

$$M := \gamma I$$

Sufficient conditions for vector decomposition

$$S_{\Gamma,\Gamma}$$
 is an \mathcal{M} -matrix, $\gamma \geq \max \operatorname{diag} S_{\Gamma,\Gamma}$
 $S_{\Gamma,\Gamma}$ is an \mathcal{M} -matrix, $\gamma \geq \max \operatorname{diag} A_{\Gamma,\Gamma}$

[Crabtree and Haynsworth, 1969]

A is an \mathcal{M} -matrix $\implies S_{\Gamma,\Gamma}$ is an \mathcal{M} -matrix

Proposition 2

$$M := M_{\Gamma,\Gamma}, \qquad A_{\Gamma,\Gamma} = M_{\Gamma,\Gamma} - N_{\Gamma,\Gamma}$$

A is an
$$\mathcal{M}$$
-matrix, $(M_{\Gamma,\Gamma}, N_{\Gamma,\Gamma})$ is an \mathcal{M} -splitting

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Interface problem: Schur complement inversion Asynchronous iterative solution

$$S_{\Gamma,\Gamma} := \sum_{i} S_{\Gamma,\Gamma}^{(i)} = M - N$$

Classical splittings $(M, N) \Rightarrow$ vector decomposition

Proposition 1

$$M := \gamma I$$

Sufficient conditions for vector decomposition

$$S_{\Gamma,\Gamma}$$
 is an \mathcal{M} -matrix, $\gamma \geq \max \operatorname{diag} S_{\Gamma,\Gamma}$
 $S_{\Gamma,\Gamma}$ is an \mathcal{M} -matrix, $\gamma \geq \max \operatorname{diag} A_{\Gamma,\Gamma}$

[Crabtree and Haynsworth, 1969]

A is an \mathcal{M} -matrix $\implies S_{\Gamma,\Gamma}$ is an \mathcal{M} -matrix

Remark

 $A_{\Gamma,\Gamma}$ is an \mathcal{M} -matrix \implies block-Jacobi is an \mathcal{M} -splitting

Proposition 2

$$M := M_{\Gamma,\Gamma}, \qquad A_{\Gamma,\Gamma} = M_{\Gamma,\Gamma} - N_{\Gamma,\Gamma}$$

A is an
$$\mathcal{M}$$
-matrix, $(M_{\Gamma,\Gamma}, N_{\Gamma,\Gamma})$ is an \mathcal{M} -splitting

$$\mathcal{M}$$
-splitting $M_{\Gamma,\Gamma}$ is an \mathcal{M} -matrix, $N_{\Gamma,\Gamma} \geq O$

Time domain decomposition

2 - Space domain decomposition

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Interface problem: Schur complement inversion Asynchronous iterative solution

$$S_{\Gamma,\Gamma} := \sum_{i} S_{\Gamma,\Gamma}^{(i)} = M - N$$

Classical splittings $(M, N) \Rightarrow$ vector decomposition

Proposition 1

$$M := \gamma I$$

Sufficient conditions for vector decomposition

$$\begin{split} & \mathcal{S}_{\Gamma,\Gamma} \text{ is an } \mathcal{M}\text{-matrix}, & \gamma \geq \max \text{ diag } \mathcal{S}_{\Gamma,\Gamma} \\ & \mathcal{S}_{\Gamma,\Gamma} \text{ is an } \mathcal{M}\text{-matrix}, & \gamma \geq \max \text{ diag } \mathcal{A}_{\Gamma,\Gamma} \end{split}$$

[Crabtree and Haynsworth, 1969]

A is an \mathcal{M} -matrix $\implies S_{\Gamma}$ is an \mathcal{M} -matrix

Remark

 $A_{\Gamma,\Gamma}$ is an \mathcal{M} -matrix \implies block-Jacobi is an \mathcal{M} -splitting

Proposition 2

$$M := M_{\Gamma,\Gamma}, \qquad A_{\Gamma,\Gamma} = M_{\Gamma,\Gamma} - N_{\Gamma,\Gamma}$$

A is an
$$\mathcal{M}$$
-matrix, $(M_{\Gamma,\Gamma}, N_{\Gamma,\Gamma})$ is an \mathcal{M} -splitting

$$\mathcal{M}$$
-splitting $M_{\Gamma,\Gamma}$ is an \mathcal{M} -matrix, $N_{\Gamma,\Gamma} \geq O$

A is an
$$\mathcal{M}$$
-matrix, $(M_{\Gamma,\Gamma}, N_{\Gamma,\Gamma})$ is a block-Jacobi

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Interface problem: Schur complement inversion Asynchronous iterative solution

$$S_{\Gamma,\Gamma} := \sum_{i} S_{\Gamma,\Gamma}^{(i)} = M - N$$

Classical splittings $(M, N) \Rightarrow$ vector decomposition

Proposition 1

$$M := \gamma I$$

Sufficient conditions for vector decomposition

$$S_{\Gamma,\Gamma}$$
 is an \mathcal{M} -matrix, $\gamma \geq \max \operatorname{diag} S_{\Gamma,\Gamma}$ $S_{\Gamma,\Gamma}$ is an \mathcal{M} -matrix, $\gamma \geq \max \operatorname{diag} A_{\Gamma,\Gamma}$

[Crabtree and Haynsworth, 1969]

A is an
$$\mathcal{M}$$
-matrix $\implies S_{\Gamma,\Gamma}$ is an \mathcal{M} -matrix

Proposition 2

$$M:=M_{\Gamma,\Gamma}, \qquad A_{\Gamma,\Gamma}=M_{\Gamma,\Gamma}-N_{\Gamma,\Gamma}$$

Sufficient conditions for vector decomposition

A is an \mathcal{M} -matrix, $(M_{\Gamma,\Gamma},N_{\Gamma,\Gamma})$ is an \mathcal{M} -splitting

A is an \mathcal{M} -matrix, $(M_{\Gamma,\Gamma},N_{\Gamma,\Gamma})$ is a block-Jacobi

- Equivalent sufficient conditions for synchronous convergence of primal Schur decomposition
- What about asynchronous primal Schur decomposition?

Time domain decomposition

2 - SPACE DOMAIN DECOMPOSITION

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Interface problem: Schur complement inversion Asynchronous iterative solution

$$S_{\Gamma,\Gamma} := \sum_{i} S_{\Gamma,\Gamma}^{(i)} = M - N$$

Classical splittings (M, N) \Rightarrow vector decomposition

Propositions

$$M := \gamma I$$

Asynchronous vector / Synchronous primal Schur

$$S_{\Gamma,\Gamma}$$
 is an \mathcal{M} -matrix, $\gamma \geq \max \operatorname{diag} S_{\Gamma,\Gamma}$
 $S_{\Gamma,\Gamma}$ is an \mathcal{M} -matrix, $\gamma \geq \max \operatorname{diag} A_{\Gamma,\Gamma}$

$$M := M_{\Gamma,\Gamma}, \qquad A_{\Gamma,\Gamma} = M_{\Gamma,\Gamma} - N_{\Gamma,\Gamma}$$

Asynchronous vector / Synchronous primal Schur

 $\begin{array}{ll} \textit{A} \text{ is an } \mathcal{M}\text{-matrix}, & \left(\textit{M}_{\Gamma,\Gamma},\textit{N}_{\Gamma,\Gamma}\right) \text{ is an } \mathcal{M}\text{-splitting} \\ \textit{A} \text{ is an } \mathcal{M}\text{-matrix}, & \left(\textit{M}_{\Gamma,\Gamma},\textit{N}_{\Gamma,\Gamma}\right) \text{ is a block-Jacobi} \end{array}$

Asynchronous primal Schur decomposition

$$M := M_{\Gamma,\Gamma}, \qquad A_{\Gamma,\Gamma} = M_{\Gamma,\Gamma} - N_{\Gamma,\Gamma}$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Interface problem: Schur complement inversion Asynchronous iterative solution

$$S_{\Gamma,\Gamma} := \sum_{i} S_{\Gamma,\Gamma}^{(i)} = M - N$$

Classical splittings $(M, N) \Rightarrow$ vector decomposition

Propositions

$$M := \gamma I$$

Asynchronous vector / Synchronous primal Schur

$$S_{\Gamma,\Gamma}$$
 is an \mathcal{M} -matrix, $\gamma \geq \max \operatorname{diag} S_{\Gamma,\Gamma}$
 $S_{\Gamma,\Gamma}$ is an \mathcal{M} -matrix, $\gamma \geq \max \operatorname{diag} A_{\Gamma,\Gamma}$

$$M := M_{\Gamma,\Gamma}, \qquad A_{\Gamma,\Gamma} = M_{\Gamma,\Gamma} - N_{\Gamma,\Gamma}$$

Asynchronous vector / Synchronous primal Schur

A is an \mathcal{M} -matrix. $(M_{\Gamma,\Gamma}, N_{\Gamma,\Gamma})$ is an \mathcal{M} -splitting A is an \mathcal{M} -matrix, $(M_{\Gamma,\Gamma}, N_{\Gamma,\Gamma})$ is a block-Jacobi

Asynchronous primal Schur decomposition

$$M := M_{\Gamma,\Gamma}, \qquad A_{\Gamma,\Gamma} = M_{\Gamma,\Gamma} - N_{\Gamma,\Gamma}$$

$$A = \widetilde{M} - \widetilde{N}, \qquad \widetilde{M} = \begin{bmatrix} A_{1,1} & O & O \\ O & A_{2,2} & O \\ O & O & M_{\Gamma,\Gamma} \end{bmatrix}$$

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Interface problem: Schur complement inversion Asynchronous iterative solution

$$S_{\Gamma,\Gamma} := \sum_{i} S_{\Gamma,\Gamma}^{(i)} = M - N$$

Classical splittings $(M, N) \Rightarrow$ vector decomposition

Propositions

$$M := \gamma I$$

Asynchronous vector / Synchronous primal Schur

$$S_{\Gamma,\Gamma}$$
 is an \mathcal{M} -matrix, $\gamma \geq \max \operatorname{diag} S_{\Gamma,\Gamma}$
 $S_{\Gamma,\Gamma}$ is an \mathcal{M} -matrix, $\gamma \geq \max \operatorname{diag} A_{\Gamma,\Gamma}$

$$M := M_{\Gamma \Gamma}, \qquad A_{\Gamma \Gamma} = M_{\Gamma \Gamma} - N_{\Gamma \Gamma}$$

Asynchronous vector / Synchronous primal Schur

A is an \mathcal{M} -matrix. $(M_{\Gamma,\Gamma}, N_{\Gamma,\Gamma})$ is an \mathcal{M} -splitting (M_{Γ}, N_{Γ}) is a block-Jacobi A is an \mathcal{M} -matrix,

Asynchronous primal Schur decomposition

$$M := M_{\Gamma,\Gamma}, \qquad A_{\Gamma,\Gamma} = M_{\Gamma,\Gamma} - N_{\Gamma,\Gamma}$$

$$A = \widetilde{M} - \widetilde{N}, \qquad \widetilde{M} = \begin{bmatrix} A_{1,1} & O & O \\ O & A_{2,2} & O \\ O & O & M_{\Gamma,\Gamma} \end{bmatrix}$$

Theorem

$$\rho(|\widetilde{M}^{-1}\widetilde{N}|) < 1, \quad |\sum_{i} M_{\Gamma,\Gamma}^{-1} N_{\Gamma,\Gamma}^{(i)}| = \sum_{i} |M_{\Gamma,\Gamma}^{-1} N_{\Gamma,\Gamma}^{(i)}|$$

Time domain decomposition

2 - SPACE DOMAIN DECOMPOSITION

Problem

$$Ax = b, \quad x \in \mathbb{C}^n$$

Interface problem: Schur complement inversion Asynchronous iterative solution

$$\mathcal{S}_{\Gamma,\Gamma} := \sum_{i} \mathcal{S}_{\Gamma,\Gamma}^{(i)} = M - N$$

Classical splittings (M, N)⇒ vector decomposition

Propositions

$$M := \gamma I$$

Asynchronous vector / Synchronous primal Schur

$$S_{\Gamma,\Gamma}$$
 is an \mathcal{M} -matrix, $\gamma \geq \max \operatorname{diag} S_{\Gamma,\Gamma}$
 $S_{\Gamma,\Gamma}$ is an \mathcal{M} -matrix, $\gamma \geq \max \operatorname{diag} A_{\Gamma,\Gamma}$

$$M := M_{\Gamma,\Gamma}, \qquad A_{\Gamma,\Gamma} = M_{\Gamma,\Gamma} - N_{\Gamma,\Gamma}$$

Asynchronous vector / Synchronous primal Schur

A is an \mathcal{M} -matrix. $(M_{\Gamma, \Gamma}, N_{\Gamma, \Gamma})$ is an \mathcal{M} -splitting A is an \mathcal{M} -matrix, (M_{Γ}, N_{Γ}) is a block-Jacobi

Asynchronous primal Schur decomposition

$$M := M_{\Gamma,\Gamma}, \qquad A_{\Gamma,\Gamma} = M_{\Gamma,\Gamma} - N_{\Gamma,\Gamma}$$

$$A = \widetilde{M} - \widetilde{N}, \qquad \widetilde{M} = \begin{bmatrix} A_{1,1} & O & O \\ O & A_{2,2} & O \\ O & O & M_{\Gamma,\Gamma} \end{bmatrix}$$

Theorem

$$\rho(|\widetilde{M}^{-1}\widetilde{N}|)<1,\quad |\sum_{i}M_{\Gamma,\Gamma}^{-1}N_{\Gamma,\Gamma}^{(i)}|=\sum_{i}|M_{\Gamma,\Gamma}^{-1}N_{\Gamma,\Gamma}^{(i)}|$$

$$N_{\Gamma,\Gamma}^{(i)} = \alpha_i N_{\Gamma,\Gamma}, \quad \sum_i \alpha_i = 1, \quad \alpha_i > 0$$

- 2D Laplacian model problem, 16 subdomains
- P^k and τ_i^i pre-generated (same for all methods)
- $S_{\Gamma,\Gamma} = M_{\Gamma,\Gamma} N$, with $x_{\Gamma} = \sum_{i} x_{\Gamma}^{(i)}$: slight improvement of [Magoulès & Venet, 2018]

13 TIME DOMAIN DECOMPOSITION

Time domain decomposition

3 - TIME DOMAIN DECOMPOSITION

Partial differential equation

$$\begin{split} &\delta(u(s,t),s,t)=0, \quad t\in[0,T], \ \ s\in\Omega \\ &u(\Omega,0) \ \text{given} \end{split}$$

3 - TIME DOMAIN DECOMPOSITION

Partial differential equation

$$\begin{split} &\delta(u(s,t),s,t)=0, \quad t\in[0,T], \ \ s\in\Omega \\ &u(\Omega,0) \ \text{given} \end{split}$$

Two time intervals

$$\begin{array}{lll} \delta(u_0(s,t),s,t) = 0, & t \in [0,T_1] & \delta(u_1(s,t),s,t) = 0, & t \in [T_1,T] \\ u_0(\Omega,0) = u(\Omega,0) & u_1(\Omega,T_1) = u_0(\Omega,T_1) \end{array}$$

3 - TIME DOMAIN DECOMPOSITION

Partial differential equation

$$\begin{split} &\delta(u(s,t),s,t)=0, \quad t\in [0,T], \ s\in \Omega \\ &u(\Omega,0) \ \text{given} \end{split}$$

$$\begin{array}{lll} \delta(u_0(s,t),s,t) = 0, & t \in [0,T_1] & \delta(u_1(s,t),s,t) = 0, & t \in [T_1,T] \\ u_0(\Omega,0) = u(\Omega,0) & u_1(\Omega,T_1) = u_0(\Omega,T_1) \end{array}$$

Parallel solutions

$$\begin{split} \widetilde{u}_0 &\equiv u_0 \\ \lambda_0(\Omega) &= u_0(\Omega,0) \end{split} \qquad \begin{aligned} \delta(\widetilde{u}_1(s,t),s,t) &= 0, \quad t \in [T_1,T] \\ \widetilde{u}_1(\Omega,T_1) &= \lambda_1(\Omega) \end{aligned}$$

3 - TIME DOMAIN DECOMPOSITION

Partial differential equation

$$\begin{split} &\delta(u(s,t),s,t)=0, \quad t\in[0,T], \ s\in\Omega\\ &u(\Omega,0) \ \text{given} \end{split}$$

Two time intervals

$$\delta(u_0(s,t),s,t) = 0, \quad t \in [0,T_1] \qquad \delta(u_1(s,t),s,t) = 0, \quad t \in [T_1,T]$$

$$u_0(\Omega,0) = u(\Omega,0) \qquad u_1(\Omega,T_1) = u_0(\Omega,T_1)$$

Parallel solutions

$$\widetilde{u}_0 \equiv u_0$$
 $\delta(\widetilde{u}_1(s,t),s,t) = 0, \quad t \in [T_1,T]$
 $\lambda_0(\Omega) = u_0(\Omega,0)$ $\widetilde{u}_1(\Omega,T_1) = \lambda_1(\Omega)$

Consistency across interface T₁

$$\lambda_1(\Omega) = \widetilde{u}_0(\Omega, T_1)$$

Partial differential equation

$$\delta(u(s,t),s,t)=0,\quad t\in[0,T],\ s\in\Omega$$

$$u(\Omega,0)\ {\rm given}$$

Two time intervals

$$\delta(u_0(s,t),s,t) = 0, \quad t \in [0,T_1] \qquad \delta(u_1(s,t),s,t) = 0, \quad t \in [T_1,T]$$

$$u_0(\Omega,0) = u(\Omega,0) \qquad u_1(\Omega,T_1) = u_0(\Omega,T_1)$$

Parallel solutions

$$\widetilde{u}_0 \equiv u_0 \qquad \delta(\widetilde{u}_1(s,t),s,t) = 0, \quad t \in [T_1, T]$$

$$\lambda_0(\Omega) = u_0(\Omega, 0) \qquad \widetilde{u}_1(\Omega, T_1) = \lambda_1(\Omega)$$

Consistency across interface T₁

$$\lambda_1(\Omega) = \widetilde{u}_0(\Omega, T_1)$$

Parareal approach: Two-level time discretization [Lions et al, 2001]

Partial differential equation

Two time intervals

$$\delta(u_0(s,t),s,t) = 0, \quad t \in [0,T_1]$$
 $\delta(u_1(s,t),s,t) = 0, \quad t \in [T_1,T]$
 $u_0(\Omega,0) = u(\Omega,0)$ $u_1(\Omega,T_1) = u_0(\Omega,T_1)$

Parallel solutions

$$\widetilde{u}_0 \equiv u_0$$
 $\delta(\widetilde{u}_1(s,t),s,t) = 0, \quad t \in [T_1,T]$
 $\lambda_0(\Omega) = u_0(\Omega,0)$ $\widetilde{u}_1(\Omega,T_1) = \lambda_1(\Omega)$

Consistency across interface T₁

$$\lambda_1(\Omega) = \widetilde{u}_0(\Omega, T_1)$$

Fine time discretization

$$\alpha(\widetilde{u}_0(s,t_{n+1})) = \beta(\widetilde{u}_0(s,t_n)) \qquad \alpha(\widetilde{u}_1(s,t_{n+1})) = \beta(\widetilde{u}_1(s,t_n))$$

⇒ parallel fine propagator

$$F(\lambda_0) := \widetilde{u}_0(\Omega, T_1)$$
 $F(\lambda_1) := \widetilde{u}_1(\Omega, T)$

Parareal approach: Two-level time discretization [Lions et al, 2001]

Time domain decomposition

3 - TIME DOMAIN DECOMPOSITION

Partial differential equation

Two time intervals

$$\delta(u_0(s,t),s,t) = 0, \quad t \in [0,T_1]$$
 $\delta(u_1(s,t),s,t) = 0, \quad t \in [T_1,T]$
 $u_0(\Omega,0) = u(\Omega,0)$ $u_1(\Omega,T_1) = u_0(\Omega,T_1)$

Parallel solutions

$$\begin{split} \widetilde{u}_0 &\equiv u_0 & \delta(\widetilde{u}_1(s,t),s,t) = 0, \quad t \in [T_1,T] \\ \lambda_0(\Omega) &= u_0(\Omega,0) & \widetilde{u}_1(\Omega,T_1) = \lambda_1(\Omega) \end{split}$$

Consistency across interface T₁

$$\lambda_1(\Omega) = \widetilde{u}_0(\Omega, T_1)$$

Parareal approach: Two-level time discretization [Lions et al. 2001]

Fine time discretization

$$\alpha(\widetilde{u}_0(s,t_{n+1})) = \beta(\widetilde{u}_0(s,t_n)) \qquad \alpha(\widetilde{u}_1(s,t_{n+1})) = \beta(\widetilde{u}_1(s,t_n))$$

⇒ parallel fine propagator

$$F(\lambda_0) := \widetilde{u}_0(\Omega, T_1)$$
 $F(\lambda_1) := \widetilde{u}_1(\Omega, T)$

Coarse time discretization

$$\alpha(u(s, T_1)) = \beta(u(s, 0))$$

$$\alpha(u(s, T)) = \beta(u(s, T_1))$$

⇒ serial coarse propagator

$$G(u(\Omega,0)) := \widetilde{u}(\Omega,T_1), \quad G(\widetilde{u}(\Omega,T_1)) = \widetilde{u}(\Omega,T)$$

Partial differential equation

Two time intervals

Parallel solutions

$$\delta(\widetilde{u}_0(s,t),s,t)=0,\quad t\in [0,T_1] \ \lambda_0(\Omega)$$
 given

$$\delta(\widetilde{u}_0(s,t),s,t)=0,\quad t\in[0,T_1] \qquad \delta(\widetilde{u}_1(s,t),s,t)=0,\quad t\in[T_1,T]$$

$$\widetilde{u}_1(\Omega, T_1) = \lambda_1(\Omega)$$

Consistency across interface T₁

$$\lambda_1(\Omega) = \widetilde{u}_0(\Omega, T_1)$$

Parareal iterations

Parareal approach: Two-level time discretization [Lions et al, 2001]

$$F(\lambda_0) := \widetilde{u}_0(\Omega, T_1)$$

 $F(\lambda_1) = \widetilde{u}_1(\Omega, T)$

$$G(u(\Omega, 0)) := \widetilde{u}(\Omega, T_1)$$

$$G(\widetilde{u}(\Omega, T_1)) = \widetilde{u}(\Omega, T)$$

Partial differential equation

Two time intervals

Parallel solutions

$$\delta(\widetilde{u}_0(s,t),s,t)=0,\quad t\in[0,T_1]$$

 $\lambda_0(\Omega)$ given

$$\begin{split} \delta(\widetilde{u}_0(s,t),s,t) &= 0, \quad t \in [0,T_1] \\ \lambda_0(\Omega) \text{ given} \end{split} \qquad \delta(\widetilde{u}_1(s,t),s,t) &= 0, \quad t \in [T_1,T] \\ \widetilde{u}_1(\Omega,T_1) &= \lambda_1(\Omega) \end{split}$$

Consistency across interface T₁

$$\lambda_1(\Omega) = \widetilde{u}_0(\Omega, T_1)$$

Parareal iterations

$$\lambda_0^0:=u_0(\Omega,0)$$

$$\lambda_1^0 := G(\lambda_0^0)$$
 wait $[0, T_1]$

Parareal approach: Two-level time discretization [Lions et al, 2001]

$$F(\lambda_0) := \widetilde{u}_0(\Omega, T_1)$$

 $F(\lambda_1) = \widetilde{u}_1(\Omega, T)$

$$G(u(\Omega, 0)) := \widetilde{u}(\Omega, T_1)$$

$$G(\widetilde{u}(\Omega, T_1)) = \widetilde{u}(\Omega, T)$$

Prediction

Partial differential equation

Two time intervals

Parallel solutions

$$\delta(\widetilde{u}_0(s,t),s,t)=0,\quad t\in[0,T_1] \ \lambda_0(\Omega)$$
 given

$$\begin{split} \delta(\widetilde{u}_0(s,t),s,t) &= 0, \quad t \in [0,T_1] \\ \lambda_0(\Omega) \text{ given} \end{split} \qquad \delta(\widetilde{u}_1(s,t),s,t) &= 0, \quad t \in [T_1,T] \\ \widetilde{u}_1(\Omega,T_1) &= \lambda_1(\Omega) \end{split}$$

Consistency across interface T₁

$$\lambda_1(\Omega) = \widetilde{u}_0(\Omega, T_1)$$

wait

Parareal iterations

$$\lambda_0^0 := u_0(\Omega, 0)$$
$$\lambda_1^0 := G(\lambda_0^0)$$

$$\lambda_2^0 := G(\lambda_1^0)$$
 $[T_1, T]$

Parareal approach: Two-level time discretization [Lions et al, 2001]

$$F(\lambda_0) := \widetilde{u}_0(\Omega, T_1)$$

$$F(\lambda_1) = \widetilde{u}_1(\Omega, T)$$

$$G(u(\Omega, 0)) := \widetilde{u}(\Omega, T_1)$$

$$G(\widetilde{u}(\Omega, T_1)) = \widetilde{u}(\Omega, T)$$

Prediction

Partial differential equation

Two time intervals

Parallel solutions

$$\delta(\widetilde{u}_0(s,t),s,t)=0, \quad t\in[0,T_1]$$

$$\delta(\widetilde{u}_0(s,t),s,t)=0,\quad t\in[0,T_1] \qquad \delta(\widetilde{u}_1(s,t),s,t)=0,\quad t\in[T_1,T]$$

Time domain decomposition

 $\widetilde{u}_1(\Omega, T_1) = \lambda_1(\Omega)$ $\lambda_0(\Omega)$ given

Consistency across interface T₁

$$\lambda_1(\Omega) = \widetilde{u}_0(\Omega, T_1)$$

Parareal iterations

$$\lambda_0^0 := u_0(\Omega, 0)$$

$$\lambda_1^0 := G(\lambda_0^0)$$

$$[0, T_1]$$

$$\lambda_2^0 :=$$

$$\lambda_2^0 := G(\lambda_1^0) \qquad [T_1, T]$$

$$F(\lambda_0^0)$$

$$F(\lambda_1^0)$$

$$F(\lambda_1^0)$$
 [0, T_1] [T_1 , T]

Parareal approach: Two-level time discretization

[Lions et al, 2001]

$$F(\lambda_0) := \widetilde{u}_0(\Omega, T_1)$$

$$F(\lambda_1) = \widetilde{u}_1(\Omega, T)$$

$$G(u(\Omega,0)) := \widetilde{u}(\Omega,T_1)$$

$$G(\widetilde{u}(\Omega, T_1)) = \widetilde{u}(\Omega, T)$$

Prediction

Partial differential equation

Two time intervals

Parallel solutions

$$\delta(\widetilde{u}_0(s,t),s,t)=0, \quad t\in[0,T_1]$$

 $\lambda_0(\Omega)$ given

$$\delta(\widetilde{u}_1(s,t),s,t) = 0, \quad t \in [T_1,T]$$
$$\widetilde{u}_1(\Omega,T_1) = \lambda_1(\Omega)$$

Consistency across interface T₁

$$\lambda_1(\Omega) = \widetilde{u}_0(\Omega, T_1)$$

Parareal iterations

$$\lambda_0^0 := u_0(\Omega, 0)$$
$$\lambda_1^0 := G(\lambda_0^0)$$

$$\lambda_2^0 := G(\lambda_1^0) \qquad [T_1, T]$$

$$F(\lambda_0^0)$$
 $F(\lambda_1^0)$ $[0, T_1][T_1, T]$

$$\lambda_0^1 := \lambda_0^0$$

$$\lambda_1^1 := \textit{G}(\lambda_0^1) + \textit{F}(\lambda_0^0) - \textit{G}(\lambda_0^0)$$

wait

$$[0, T_1]$$

Parareal approach: Two-level time discretization [Lions et al, 2001]

$$F(\lambda_0) := \widetilde{u}_0(\Omega, T_1)$$

$$F(\lambda_1) = \widetilde{u}_1(\Omega, T)$$

$$G(u(\Omega, 0)) := \widetilde{u}(\Omega, T_1)$$

$$G(\widetilde{u}(\Omega, T_1)) = \widetilde{u}(\Omega, T)$$

Prediction Gap

Partial differential equation

Two time intervals

Parallel solutions

$$\delta(\widetilde{u}_0(s,t),s,t)=0, \quad t\in[0,T_1]$$

 $\lambda_0(\Omega)$ given

$$\delta(\widetilde{u}_1(s,t),s,t)=0, \quad t\in[T_1,T]$$

 $\widetilde{u}_1(\Omega,T_1)=\lambda_1(\Omega)$

Consistency across interface T₁

$$\lambda_1(\Omega) = \widetilde{u}_0(\Omega, T_1)$$

Parareal iterations

Parareal approach: Two-level time discretization [Lions et al, 2001]

$$F(\lambda_0) := \widetilde{u}_0(\Omega, T_1)$$

$$F(\lambda_1) = \widetilde{u}_1(\Omega, T)$$

$$G(u(\Omega, 0)) := \widetilde{u}(\Omega, T_1)$$

$$G(\widetilde{u}(\Omega, T_1)) = \widetilde{u}(\Omega, T)$$

Prediction Gap Corrected prediction

Partial differential equation

Two time intervals

Parallel solutions

$$\delta(\widetilde{u}_0(s,t),s,t)=0,\quad t\in[0,T_1]$$

$$\delta(\widetilde{u}_1(s,t),s,t)=0, \quad t\in [T_1,T]$$

 $\widetilde{u}_1(\Omega,T_1)=\lambda_1(\Omega)$

$$\lambda_0(\Omega)$$
 given $\widetilde{u}_1(\Omega, T)$

Consistency across interface T₁

$$\lambda_1(\Omega) = \widetilde{u}_0(\Omega, T_1)$$

Parareal iterations

$$\lambda_0^0 := u_0(\Omega, 0)$$

$$\lambda_1^0 := G(\lambda_0^0)$$

$$\begin{bmatrix} 0, T_1 \end{bmatrix}$$
$$\begin{bmatrix} T_1, T \end{bmatrix}$$

$$F(\lambda_0^0)$$

$$\lambda_2^0 := G(\lambda_1^0)$$
 $F(\lambda_1^0)$

$$[0, T_1][T_1, T]$$

$$F(\lambda_0) := \widetilde{u}_0(\Omega, T_1)$$

$$F(\lambda_1) = \widetilde{u}_1(\Omega, T)$$

Parareal approach:

Two-level time discretization [Lions et al, 2001]

$$\lambda_0^1 := \lambda_0^0$$

$$\lambda_0^1 := G(\lambda_0^1) + F(\lambda_0^0) - G(\lambda_0^0)$$

wait

$$[0, T_1]$$

 $[T_1, T]$

$$G(u(\Omega,0)) := \widetilde{u}(\Omega,T_1)$$

$$\lambda_2^1 := G(\lambda_1^1) + F(\lambda_1^0) - G(\lambda_1^0)$$

$$G(\widetilde{u}(\Omega, T_1)) = \widetilde{u}(\Omega, T)$$

Prediction Gap Corrected prediction

Partial differential equation

Two time intervals

Parallel solutions

$$\delta(\widetilde{u}_0(s,t),s,t)=0,\quad t\in[0,T_1]$$

$$\delta(\widetilde{u}_1(s,t),s,t)=0, \quad t\in [T_1,T]$$

 $\widetilde{u}_1(\Omega,T_1)=\lambda_1(\Omega)$

$$\lambda_0(\Omega)$$
 given Consistency across interface T_1

$$\lambda_1(\Omega) = \widetilde{u}_0(\Omega, T_1)$$

Parareal iterations

$$\lambda_0^0:=u_0(\Omega,0)$$

$$\textcolor{red}{\color{blue}\lambda_1^0} := \textit{G}(\lambda_0^0)$$

wait
$$\lambda_2^0 := G(\lambda_1^0)$$

$$\begin{bmatrix} 0, T_1 \end{bmatrix}$$
$$\begin{bmatrix} T_1, T \end{bmatrix}$$

$$F(\lambda_0^0)$$

$$F(\lambda_1^0)$$

$$[0, T_1][T_1, T]$$

$$\lambda_0^1 := \lambda_0^0$$

$$\lambda_1^1 := G(\lambda_0^1) + F(\lambda_0^0) - G(\lambda_0^0)$$

wait

$$[0, T_1]$$

$$\lambda_2^1 := G(\lambda_1^1) + F(\lambda_1^0) - G(\lambda_1^0)$$
 [T₁, T]

$$\lambda_0^2 := \lambda_0^1$$
 $F(\lambda_1^1)$

 $[T_1, T]$

Parareal approach: Two-level time discretization

[Lions et al. 2001]

$$F(\lambda_0) := \widetilde{u}_0(\Omega, T_1)$$
$$F(\lambda_1) = \widetilde{u}_1(\Omega, T)$$

$$G(u(\Omega, 0)) := \widetilde{u}(\Omega, T_1)$$

$$G(\widetilde{u}(\Omega, T_1)) = \widetilde{u}(\Omega, T)$$

Prediction

Gap Corrected prediction

 $[0, T_1]$

 $[T_1, T]$

 $[0, T_1][T_1, T]$

 $[0, T_1]$

 $[T_1, T]$

 $[T_1, T]$

 $[T_1, T]$

3 - TIME DOMAIN DECOMPOSITION

Partial differential equation

Two time intervals

Parallel solutions

$$\delta(\widetilde{u}_0(s,t),s,t)=0,\quad t\in[0,T_1]$$

 $\lambda_0(\Omega)$ given

$$\delta(\widetilde{u}_1(s,t),s,t)=0, \quad t\in[T_1,T]$$

 $\widetilde{u}_1(\Omega,T_1)=\lambda_1(\Omega)$

Consistency across interface T₁

$$\lambda_1(\Omega) = \widetilde{u}_0(\Omega, T_1)$$

Parareal iterations

$$\lambda_0^0 := u_0(\Omega, 0)$$

$$\lambda_1^0 := G(\lambda_0^0)$$

 $F(\lambda_0^0)$

$$\lambda_2^0 := G(\lambda_1^0)$$

$$F(\lambda^0)$$

$$F(\lambda_1^0)$$

$$\lambda_1^1 := G(\lambda_0^1) + F(\lambda_0^0) - G(\lambda_0^0)$$

$$\lambda_0^1 := \lambda_0^0 \ \lambda_1^1 := G(\lambda_0^1) + F(\lambda_0^0) - G(\lambda_0^0)$$

$$\lambda_0^2 := \lambda_0^1$$

$$\lambda_1^2 := \lambda_1^1$$

$$\lambda_2^1 := G(\lambda_1^1) + F(\lambda_1^0) - G(\lambda_1^0)$$

$$F(\lambda_1^1)$$

$$(\lambda_1)^2 = (\lambda_1)^2 + (\lambda_1)^2$$

$$\lambda_2^2 := \textit{G}(\lambda_1^2) + \textit{F}(\lambda_1^1) - \textit{G}(\lambda_1^1)$$

Parareal approach: Two-level time discretization

[Lions et al. 2001]

$$F(\lambda_0) := \widetilde{u}_0(\Omega, T_1)$$

$$F(\lambda_1) = \widetilde{u}_1(\Omega, T)$$

$$G(u(\Omega,0)) := \widetilde{u}(\Omega,T_1)$$

$$G(\widetilde{u}(\Omega, T_1)) = \widetilde{u}(\Omega, T_1)$$

Gap

Corrected prediction

Partial differential equation

Two time intervals

Parallel solutions

$$\delta(\widetilde{u}_0(s,t),s,t)=0,\quad t\in[0,T_1]$$

 $\lambda_0(\Omega)$ given

$$\delta(\widetilde{u}_1(s,t),s,t)=0, \quad t\in[T_1,T]$$

 $\widetilde{u}_1(\Omega,T_1)=\lambda_1(\Omega)$

Consistency across interface T₁

$$\lambda_1(\Omega) = \widetilde{u}_0(\Omega, T_1)$$

Parareal approach: Two-level time discretization [Lions et al. 2001]

Parareal iterations

$$\lambda_0^0 := u_0(\Omega, 0)$$
$$\lambda_1^0 := G(\lambda_0^0)$$

$$[0, T_1]$$
$$[T_1, T]$$

$$\lambda_2^0 := G(\lambda_1^0)$$

$$F(\lambda_2^0)$$

$$F(\lambda_2^0)$$

$$[0, T_1][T_1, T]$$

$$F(\lambda_0) := \widetilde{u}_0(\Omega, T_1)$$
$$F(\lambda_1) = \widetilde{u}_1(\Omega, T)$$

$$\lambda_0^1 := \lambda_0^0$$

$$\lambda_1^1 := G(\lambda_0^1) + F(\lambda_0^0) - G(\lambda_0^0)$$
 wait

$$[0, T_1]$$

$$G(u(\Omega,0)) := \widetilde{u}(\Omega,T_1)$$

$$\lambda_2^1 := G(\lambda_1^1) + F(\lambda_1^0) - G(\lambda_1^0)$$
 [7, T]

$$G(\widetilde{u}(\Omega, T_1)) = \widetilde{u}(\Omega, T)$$

$$\lambda_0^2 := \lambda_0^1$$

$$F(\lambda_1^1)$$

$$[T_1,T]$$

$$\lambda_1^2 := \lambda_1^1$$

$$\lambda_2^2 := G(\lambda_1^2) + F(\lambda_1^1) - G(\lambda_1^1)$$

$$[T_1, T]$$

$$\lambda_i^{k+1} =$$

$$\lambda_i^{k+1} = G(\lambda_{i-1}^{k+1}) + F(\lambda_{i-1}^k) - G(\lambda_{i-1}^k), \quad [T_{i-1}, T_i]$$

Partial differential equation

N time intervals

Parallel solutions and consistency across interfaces T_i

Parareal iterations

$$\lambda_i^{k+1} = G(\lambda_{i-1}^{k+1}) + F(\lambda_{i-1}^k) - G(\lambda_{i-1}^k), \quad [T_{i-1}, T_i]$$

$$\delta(\widetilde{u}_i(s,t),s,t)=0$$

$$\widetilde{u}_i(\Omega,T_i)=\lambda_i(\Omega)$$

Parareal approach: Two-level time discretization [Lions et al, 2001]

$$F(\lambda_i) = \widetilde{u}_i(\Omega, T_{i+1})$$

$$G(\widetilde{u}(\Omega, T_i)) = \widetilde{u}(\Omega, T_{i+1})$$

Partial differential equation

N time intervals

Parallel solutions and consistency across interfaces T_i

Parareal iterations

$$\lambda_i^{k+1} = G(\lambda_{i-1}^{k+1}) + F(\lambda_{i-1}^k) - G(\lambda_{i-1}^k), \quad [T_{i-1}, T_i]$$

Theorem 1

PDE extension of ODE result [Gander & Vandewalle, 2007]

Iterative error

$$\begin{split} &\|\lambda^k - \lambda^*\|_{\infty} \leq \alpha^k \|\lambda^0 - \lambda^*\|_{\infty} \\ &\alpha = \frac{1 - \theta^N}{1 - \theta} \|F - G\|, \ \theta \neq 1, \ \theta \geq \|G\| \end{split}$$

$$\delta(\widetilde{u}_i(s,t),s,t)=0$$
 $\widetilde{u}_i(\Omega,T_i)=\lambda_i(\Omega)$

Parareal approach: Two-level time discretization [Lions et al, 2001]

$$F(\lambda_i) = \widetilde{u}_i(\Omega, T_{i+1})$$

$$G(\widetilde{u}(\Omega, T_i)) = \widetilde{u}(\Omega, T_{i+1})$$

Time domain decomposition

3 - TIME DOMAIN DECOMPOSITION

Partial differential equation

N time intervals

Parallel solutions and consistency across interfaces Ti

Parareal iterations

$$\lambda_i^{k+1} = G(\lambda_{i-1}^{k+1}) + F(\lambda_{i-1}^k) - G(\lambda_{i-1}^k), \quad [T_{i-1}, T_i]$$

Theorem 1

PDE extension of ODE result [Gander & Vandewalle, 2007]

Iterative error

$$\begin{split} &\|\lambda^k - \lambda^*\|_{\infty} \leq \alpha^k \|\lambda^0 - \lambda^*\|_{\infty} \\ &\alpha = \frac{1 - \theta^N}{1 - \theta} \|F - G\|, \ \theta \neq 1, \ \theta \geq \|G\| \end{split}$$

Sufficient convergence condition for

$$||G|| < 1$$
 (stability region)

$$||G|| + ||F - G|| < 1 + ||G||^N ||F - G||$$

$$\delta(\widetilde{u}_i(s,t),s,t)=0$$

$$\widetilde{u}_i(\Omega, T_i) = \lambda_i(\Omega)$$

Parareal approach: Two-level time discretization [Lions et al, 2001]

$$F(\lambda_i) = \widetilde{u}_i(\Omega, T_{i+1})$$

$$G(\widetilde{u}(\Omega, T_i)) = \widetilde{u}(\Omega, T_{i+1})$$

Prediction
$$G$$
Gap $F - G$
Corrected prediction $G+$

Partial differential equation

N time intervals

Parallel solutions and consistency across interfaces T_i

Parareal iterations

$$\begin{split} \lambda_i^{k+1} &= G(\lambda_{i-1}^{k+1}) + F(\lambda_{i-1}^k) - G(\lambda_{i-1}^k), \qquad [T_{i-1}, T_i] \\ \lambda_i^{k+1} &= G\left(\lambda_{i-1}^{\tau_{i-1}^{j,1}(k+1)}\right) + F\left(\lambda_{i-1}^{\tau_{i-1}^{j,2}(k)}\right) - G\left(\lambda_{i-1}^{\tau_{i-1}^{j,2}(k)}\right) \end{split}$$

Theorem 1

Proposition PDE extension of ODE result

[Gander & Vandewalle, 2007] Iterative error

$$\begin{split} &\|\lambda^k - \lambda^*\|_{\infty} \leq \alpha^k \|\lambda^0 - \lambda^*\|_{\infty} \\ &\alpha = \frac{1 - \theta^N}{1 - \theta} \|F - G\|, \ \theta \neq 1, \ \theta \geq \|G\| \end{split}$$

Sufficient convergence condition for ||G|| < 1 (stability region)

$$||G|| + ||F - G|| < 1 + ||G||^N ||F - G||$$

$$\delta(\widetilde{u}_i(s,t),s,t)=0$$

$$\widetilde{u}_i(\Omega, T_i) = \lambda_i(\Omega)$$

Parareal approach: Two-level time discretization [Lions et al. 2001]

$$F(\lambda_i) = \widetilde{u}_i(\Omega, T_{i+1})$$

$$G(\widetilde{u}(\Omega, T_i)) = \widetilde{u}(\Omega, T_{i+1})$$

Partial differential equation

N time intervals

Parallel solutions and consistency across interfaces T_i

Parareal iterations

$$\begin{split} \lambda_i^{k+1} &= G(\lambda_{i-1}^{k+1}) + F(\lambda_{i-1}^k) - G(\lambda_{i-1}^k), \qquad [T_{i-1}, T_i] \\ \lambda_i^{k+1} &= G\left(\lambda_{i-1}^{\tau_{i-1}^{i,1}(k+1)}\right) + F\left(\lambda_{i-1}^{\tau_{i-2}^{i,2}(k)}\right) - G\left(\lambda_{i-1}^{\tau_{i-1}^{i,2}(k)}\right) \end{split}$$

Theorem 1

PDE extension of ODE result [Gander & Vandewalle, 2007]

Iterative error

$$\begin{split} &\|\lambda^k - \lambda^*\|_{\infty} \leq \alpha^k \|\lambda^0 - \lambda^*\|_{\infty} \\ &\alpha = \frac{1 - \theta^N}{1 - \theta} \|F - G\|, \ \theta \neq 1, \ \theta \geq \|G\| \end{split}$$

Sufficient convergence condition for ||G|| < 1 (stability region)

$$||G|| + ||F - G|| < 1 + ||G||^N ||F - G||$$

Proposition

Asynchronous convergence (sufficient)

$$||G|| + ||F - G|| < 1$$

$$\delta(\widetilde{u}_i(s,t),s,t)=0$$

$$\widetilde{u}_i(\Omega,T_i)=\lambda_i(\Omega)$$

Parareal approach: Two-level time discretization [Lions et al. 2001]

$$F(\lambda_i) = \widetilde{u}_i(\Omega, T_{i+1})$$

$$G(\widetilde{u}(\Omega, T_i)) = \widetilde{u}(\Omega, T_{i+1})$$

Partial differential equation

N time intervals

Parallel solutions and consistency across interfaces T_i

Parareal iterations

$$\begin{split} \lambda_i^{k+1} &= G(\lambda_{i-1}^{k+1}) + F(\lambda_{i-1}^k) - G(\lambda_{i-1}^k), \qquad [T_{i-1}, T_i] \\ \lambda_i^{k+1} &= G\left(\lambda_{i-1}^{\tau_{i-1}^{l,1}(k+1)}\right) + F\left(\lambda_{i-1}^{\tau_{i-1}^{l,2}(k)}\right) - G\left(\lambda_{i-1}^{\tau_{i-1}^{l,2}(k)}\right) \end{split}$$

Theorem 1

PDE extension of ODE result [Gander & Vandewalle, 2007]

Iterative error

$$\begin{split} &\|\lambda^k - \lambda^*\|_{\infty} \leq \alpha^k \|\lambda^0 - \lambda^*\|_{\infty} \\ &\alpha = \frac{1 - \theta^N}{1 - \theta} \|F - G\|, \ \theta \neq 1, \ \theta \geq \|G\| \end{split}$$

Sufficient convergence condition for ||G|| < 1 (stability region)

$$||G|| + ||F - G|| < 1 + ||G||^{N} ||F - G||$$

Proposition

Asynchronous convergence (sufficient)

$$||G|| + ||F - G|| < 1$$

Theorem 2

$$\|\lambda^{k} - \lambda^{*}\|_{\infty} \le \widetilde{\alpha}^{\tau(k)} \|\lambda^{0} - \lambda^{*}\|_{\infty}$$
$$\widetilde{\alpha} = \|G\| + \|F - G\|, \lim_{k \to \infty} \tau(k) = \infty$$

$$\delta(\widetilde{u}_i(s,t),s,t)=0$$

$$\widetilde{u}_i(\Omega,T_i)=\lambda_i(\Omega)$$

Two-level time discretization [Lions et al. 2001]

$$F(\lambda_i) = \widetilde{u}_i(\Omega, T_{i+1})$$

$$G(\widetilde{u}(\Omega, T_i)) = \widetilde{u}(\Omega, T_{i+1})$$

Partial differential equation

N time intervals

Parallel solutions and consistency across interfaces T_i

Parareal iterations

$$\begin{split} \lambda_i^{k+1} &= G(\lambda_{i-1}^{k+1}) + F(\lambda_{i-1}^k) - G(\lambda_{i-1}^k), \qquad [T_{i-1}, T_i] \\ \lambda_i^{k+1} &= G\left(\lambda_{i-1}^{\tau_{i-1}^{l,2}(k+1)}\right) + F\left(\lambda_{i-1}^{\tau_{i-1}^{l,2}(k)}\right) - G\left(\lambda_{i-1}^{\tau_{i-1}^{l,2}(k)}\right) \end{split}$$

Theorem 1

PDE extension of ODE result [Gander & Vandewalle, 2007]

Iterative error

$$\begin{split} &\|\lambda^k - \lambda^*\|_{\infty} \le \alpha^k \|\lambda^0 - \lambda^*\|_{\infty} \\ &\alpha = \frac{1 - \theta^N}{1 - \theta} \|F - G\|, \ \theta \ne 1, \ \theta \ge \|G\| \end{split}$$

Sufficient convergence condition for ||G|| < 1 (stability region)

$$||G|| + ||F - G|| < 1 + ||G||^N ||F - G||$$

Proposition

Asynchronous convergence (sufficient)

$$||G|| + ||F - G|| < 1$$

Theorem 2

$$\begin{split} & \|\lambda^k - \lambda^*\|_{\infty} \leq \widetilde{\alpha}^{\tau(k)} \|\lambda^0 - \lambda^*\|_{\infty} \\ & \widetilde{\alpha} = \|G\| + \|F - G\|, \ \lim_{k \to \infty} \tau(k) = \infty \end{split}$$

Synchronous convergence for $N \to \infty$

$$||G|| + ||F - G|| < 1$$

$$\delta(\widetilde{u}_i(s,t),s,t)=0$$

$$\widetilde{u}_i(\Omega, T_i) = \lambda_i(\Omega)$$

Parareal approach: Two-level time discretization [Lions et al. 2001]

$$F(\lambda_i) = \widetilde{u}_i(\Omega, T_{i+1})$$

$$G(\widetilde{u}(\Omega, T_i)) = \widetilde{u}(\Omega, T_{i+1})$$

Prediction
$$G$$
Gap $F - G$
Corrected prediction $G+$

$$t_{n+1} - t_n = 0.002,$$
 $T_{i+1} - T_i = 0.2$
 $N = \text{\#Proc},$ $T = N \times (T_{i+1} - T_i)$

OUTLINE

14 Asynchronous convergence detection

Problem

$$f(x) = x, \quad x \in E$$

Asynchronous iterations

$$x_i^{k+1} = f_i(x_1^{\tau_1^i(k)}, \dots, x_p^{\tau_p^i(k)}), \quad i \in P^k$$

Convergence detection

$$\bar{x}:=\left(x_1^{k_1},\ldots,x_p^{k_p}\right)\simeq x^*$$

Problem

$$f(x) = x, \quad x \in E$$

Asynchronous iterations

$$x_i^{k+1} = f_i(x_1^{\tau_1^i(k)}, \dots, x_p^{\tau_p^i(k)}), \quad i \in P^k$$

Convergence detection

$$\bar{x}:=\left(x_1^{k_1},\ldots,x_p^{k_p}\right)\simeq x^*$$

Approach

- ♦ Finite time termination [Bertsekas & Tsitsiklis, 1989], [El Baz, 1996], [Savari & Bertsekas, 1996], ...
- Snapshot-based supervised termination [Savari & Bertsekas, 1996]
- ◆ Predicted termination (finite number of iterations) [Evans & Chikohora, 1998]
- ◆ Local convergence monitoring [Bahi et al, 2005, 2008]
- ◆ Nested-sets-based supervised termination [Miellou et al, 2008]

Problem

$$f(x) = x, \quad x \in E$$

Asynchronous convergence detection Approach

- Finite time termination [Bertsekas & Tsitsiklis, 1989], [El Baz, 1996], [Savari & Bertsekas, 1996], ...
- Snapshot-based supervised termination [Savari & Bertsekas, 1996]
- Predicted termination (finite number of iterations) [Evans & Chikohora, 1998]
- ◆ Local convergence monitoring [Bahi et al, 2005, 2008]
- Nested-sets-based supervised termination [Miellou et al, 2008]

	Intrusiveness	Centralization	Effectiveness	Messages size
Bertsekas & Tsitsiklis, 1989	altered iterations	-	formal	_
El Baz, 1996	altered iterations	_	formal	_
Savari & Bertsekas, 1996	altered iterations	_	formal	_
Savari & Bertsekas, 1996	non-intrusive	two reductions	exact	$\mathcal{O}(n)$
Evans & Chikohora, 1998	non-intrusive	no reduction	heuristic	0
Bahi et al, 2005	non-intrusive	one reduction	heuristic	$\mathcal{O}(1)$
Bahi et al, 2008	piggybacking	two reductions	heuristic	$\mathcal{O}(1)$
Miellou et al, 2008	_	-	formal	_

Problem

$$f(x) = x, \quad x \in E$$

Asynchronous convergence detection Snapshot-based supervised termination

Distributed snapshot [Chandy & Lamport, 1985]

- Initiator / First marker reception
 - Record local state
 - 2. Send marker to neighbors
 - 3. Start recording neighbors' messages
- On marker reception
 - 1. Stop recording corresponding neighbor's messages
- On computation message reception
 - 1. Record message

Problem

$$f(x) = x, \quad x \in E$$

Asynchronous convergence detection Snapshot-based supervised termination

Distributed snapshot [Chandy & Lamport, 1985]

$$x_1^1 := f_1(x_1^0, x_2^0)$$
 $x_2^1 := f_2(x_1^0, x_2^0)$

- Initiator / First marker reception
 - Record local state
 - 2. Send marker to neighbors

3. Start recording neighbors' messages

- On marker reception
 - 1. Stop recording corresponding neighbor's messages
- On computation message reception
 - 1. Record message

Problem

$$f(x) = x, \quad x \in E$$

Asynchronous convergence detection Snapshot-based supervised termination

Distributed snapshot [Chandy & Lamport, 1985]

$$x_1^1 := f_1(x_1^0, x_2^0) \qquad x_2^1 \qquad x_2^1 := f_2(x_1^0, x_2^0) x_1^2 := f_1(x_1^1, x_2^0) \qquad x_2^2 := f_2(x_1^0, x_2^1)$$

- Initiator / First marker reception
 - Record local state
 - 2. Send marker to neighbors
 - 3. Start recording neighbors' messages
 - On marker reception
 - 1. Stop recording corresponding neighbor's messages
- On computation message reception
 - Record message

Problem

$$f(x) = x, \quad x \in E$$

Asynchronous convergence detection Snapshot-based supervised termination

Distributed snapshot [Chandy & Lamport, 1985]

- Initiator / First marker reception
 - 1. Record local state
 - 2. Send marker to neighbors 3. Start recording neighbors' messages
 - On marker reception
 - 1. Stop recording corresponding neighbor's messages
- On computation message reception
 - 1. Record message

Problem

$$f(x) = x, \quad x \in E$$

Asynchronous convergence detection Snapshot-based supervised termination

Distributed snapshot [Chandy & Lamport, 1985]

$$\begin{aligned} x_1^1 &:= f_1(x_1^0, x_2^0) & x_2^1 & x_2^1 &:= f_2(x_1^0, x_2^0) \\ x_1^2 &:= f_1(x_1^1, x_2^0) & x_2^2 &:= f_2(x_1^0, x_2^1) \\ x_1^2 & x_1^3 &:= x_1^2 & x_2^3 &:= f_2(x_1^1, x_2^2) & x_1^1 \\ x_1^4 &:= f_1(x_1^3, x_2^2) & x_2^4 &:= f_2(x_1^2, x_2^3) & x_1^2 \end{aligned}$$

- Initiator / First marker reception
 - Record local state
 - 2. Send marker to neighbors
- On marker reception
 - 1. Stop recording corresponding neighbor's messages

Start recording neighbors' messages

- On computation message reception
 - 1. Record message

Problem

$$f(x) = x, \quad x \in E$$

Asynchronous convergence detection Snapshot-based supervised termination

Distributed snapshot [Chandy & Lamport, 1985]

$$\begin{aligned} x_1^1 &:= f_1(x_1^0, x_2^0) & x_2^1 & x_2^1 &:= f_2(x_1^0, x_2^0) \\ x_1^2 &:= f_1(x_1^1, x_2^0) & x_2^2 &:= f_2(x_1^0, x_2^1) \\ x_1^2 & x_1^3 &:= x_1^2 & x_2^3 &:= f_2(x_1^1, x_2^2) & x_1^1 \\ x_1^4 &:= f_1(x_1^3, x_2^2) & x_2^4 &:= f_2(x_1^2, x_2^3) & x_1^2 \\ x_2^5 &:= f_1(x_1^4, x_2^3) & x_2^5 &:= f_2(x_1^2, x_2^4) \end{aligned}$$

- Initiator / First marker reception
 - Record local state
 - 2. Send marker to neighbors
 - 3. Start recording neighbors' messages
- On marker reception
 - Stop recording corresponding neighbor's messages
- On computation message reception
 - Record message

Problem

$$f(x)=x, x\in E$$

Asynchronous convergence detection Snapshot-based supervised termination

Distributed snapshot [Chandy & Lamport, 1985]

$$\begin{array}{ccccc} x_1^1 := f_1(x_1^0, x_2^0) & x_2^1 & x_2^1 := f_2(x_1^0, x_2^0) \\ x_1^2 := f_1(x_1^1, x_2^0) & x_2^2 := f_2(x_1^0, x_2^1) \\ x_1^2 & x_1^3 := x_1^2 & x_2^3 := f_2(x_1^1, x_2^0) & x_1^1 \\ x_1^4 := f_1(x_1^3, x_2^0) & x_2^4 := f_2(x_1^2, x_2^3) & x_1^2 \\ x_1^5 := f_1(x_1^4, x_2^3) & x_2^5 := f_2(x_1^2, x_2^4) \\ (x_1^2, ?) & (x_1^2, x_2^1) \end{array}$$

- Initiator / First marker reception
 - Record local state
 - 2. Send *marker* to neighbors
- Start recording neighbors' messages
- On marker reception
 - Stop recording corresponding neighbor's messages
- On computation message reception
 - Record message

Problem

$$f(x) = x, \quad x \in E$$

Asynchronous convergence detection Snapshot-based supervised termination

Distributed snapshot [Chandy & Lamport, 1985]

Proposition 1

- Initiator / First marker reception
 - 1. Record local state
 - 2. Send marker to neighbors
 - Start recording neighbors' messages
- On marker reception
 - Stop recording corresponding neighbor's messages
- On computation message reception
 - Record message

Problem

$$f(x) = x, \quad x \in E$$

Asynchronous convergence detection Snapshot-based supervised termination

Distributed snapshot [Chandy & Lamport, 1985]

Proposition 1

- ◆ Local convergence / First marker reception
 - Record local state
 - 2. Send marker to neighbors
- On marker reception
 - Stop recording corresponding neighbor's messages
 - On computation message reception
 - Record message

Problem

$$f(x) = x, \quad x \in E$$

Asynchronous convergence detection Snapshot-based supervised termination

Distributed snapshot [Chandy & Lamport, 1985]

Proposition 1

- ◆ Local convergence / First marker reception
 - 1. Record local state
 - 2. Send marker to neighbors
- On marker reception
 - Record last corresponding neighbor's message
- On computation message reception
 - Record message

Problem

$$f(x) = x, \quad x \in E$$

Asynchronous convergence detection Snapshot-based supervised termination

Distributed snapshot [Chandy & Lamport, 1985]

Proposition 1

- Local convergence / First marker reception
 - Record local state
 - 2. Send marker to neighbors
- On marker reception
 - 1. Record last corresponding neighbor's message

Problem

$$f(x) = x, \quad x \in E$$

Asynchronous convergence detection Snapshot-based supervised termination

Distributed snapshot [Chandy & Lamport, 1985]

Proposition 1

Asynchronous iterations snapshot (AIS)

- Local convergence / First marker reception
 - Record local state
 - 2. Send marker to neighbors
- On marker reception
 - 1. Record last corresponding neighbor's message

Non First-In-First-Out delivering ⇒ marker crossing computation message

Problem

$$f(x) = x, \quad x \in E$$

Asynchronous convergence detection Snapshot-based supervised termination

Distributed snapshot [Chandy & Lamport, 1985]

Proposition 1

Asynchronous iterations snapshot (AIS)

Non FIFO case

 ◆ [Savari & Bertsekas, 1996]

 Embed computation message into marker ⇒ marker size: O(n)

Problem

$$f(x) = x, \quad x \in E$$

Asynchronous convergence detection Snapshot-based supervised termination

Distributed snapshot [Chandy & Lamport, 1985]

Proposition 1

Asynchronous iterations snapshot (AIS)

Non FIFO case

[Savari & Bertsekas, 1996]
 Embed computation message into marker
 ⇒ marker size: O(n)

Proposition 2

Non FIFO Asynchronous iterations snapshot (NFAIS)

Non FIFO characterization

A marker can cross at most m computation messages

Problem

$$f(x) = x, \quad x \in E$$

Asynchronous convergence detection Snapshot-based supervised termination

Distributed snapshot [Chandy & Lamport, 1985]

Proposition 1

Asynchronous iterations snapshot (AIS)

Non FIFO case

♦ [Savari & Bertsekas, 1996] Embed computation message into marker \Rightarrow marker size: $\mathcal{O}(n)$

Proposition 2

Non FIFO Asynchronous iterations snapshot (NFAIS)

Non FIFO characterization

A marker can cross at most m computation messages

- Send marker after m iterations under local. convergence
 - 2. Send flag-marker after m subsequent iterations → flag armed if continuous local convergence

Problem

$$f(x) = x, \quad x \in E$$

Asynchronous convergence detection Snapshot-based supervised termination

Distributed snapshot [Chandy & Lamport, 1985]

Proposition 1

Asynchronous iterations snapshot (AIS)

Non FIFO case

♦ [Savari & Bertsekas, 1996] Embed computation message into marker \Rightarrow marker size: $\mathcal{O}(n)$

Proposition 2

Non FIFO Asynchronous iterations snapshot (NFAIS)

Non FIFO characterization

A marker can cross at most m computation messages

- Send marker after m iterations under local. convergence
- 2. Send flag-marker after m subsequent iterations → flag armed if continuous local convergence

Practical case

Marker transmits faster than computation message ⇒ no need for flag-marker

Problem

$$f(x) = x, \quad x \in E$$

Asynchronous convergence detection Snapshot-based supervised termination

Theorem

$$\bar{x} := \begin{bmatrix} \bar{x}_1^{(1)} & \cdots & \bar{x}_p^{(p)} \end{bmatrix}^\mathsf{T}$$

Global residual bound

$$r(\bar{x}) < \sigma(r(\bar{x}^{(1)}), \dots, r(\bar{x}^{(p)})) + Cm\varepsilon$$

constant C depending on r, σ and p ε used for local convergence

Proposition 1

Asynchronous iterations snapshot (AIS)

Non FIFO case

♦ [Savari & Bertsekas, 1996] Embed computation message into marker \Rightarrow marker size: $\mathcal{O}(n)$

Proposition 2

Non FIFO Asynchronous iterations snapshot (NFAIS)

Non FIFO characterization

A marker can cross at most *m* computation messages

- Send marker after m iterations under local. convergence
- 2. Send flag-marker after m subsequent iterations → flag armed if continuous local convergence

Practical case

Marker transmits faster than computation message ⇒ no need for flag-marker

Problem

$$f(x) = x, \quad x \in E$$

Asynchronous convergence detection Snapshot-based supervised termination

Theorem

$$\bar{x} := \begin{bmatrix} \bar{x}_1^{(1)} & \cdots & \bar{x}_p^{(p)} \end{bmatrix}^\mathsf{T}$$

Global residual bound

$$r(\bar{x}) < \sigma(r(\bar{x}^{(1)}), \dots, r(\bar{x}^{(p)})) + Cm\varepsilon$$

constant C depending on r, σ and p ε used for local convergence

Corollary

|||||^w_-based residual

$$\sigma(r(\bar{x}^{(1)}), \dots, r(\bar{x}^{(p)})) < \varepsilon \implies r(\bar{x}) < \tilde{\varepsilon}$$
$$\varepsilon = \tilde{C}(m, w)\tilde{\varepsilon}$$

Proposition 1

Asynchronous iterations snapshot (AIS)

Non FIFO case

[Savari & Bertsekas, 1996]
 Embed computation message into marker
 ⇒ marker size: O(n)

Proposition 2

Non FIFO Asynchronous iterations snapshot (NFAIS)

Non FIFO characterization

A marker can cross at most m computation messages

- Send marker after m iterations under local convergence
- Send flag-marker after m subsequent iterations
 → flag armed if continuous local convergence

Practical case

Marker transmits faster than computation message \Rightarrow no need for flag-marker

Asynchronous iterative methods

4 - Asynchronous convergence detection

Problem

$$f(x) = x, \quad x \in E$$

Asynchronous convergence detection Approach

- Finite time termination [Bertsekas & Tsitsiklis, 1989], [El Baz, 1996], [Savari & Bertsekas, 1996], ...
- Snapshot-based supervised termination [Savari & Bertsekas, 1996], NFAIS
- Predicted termination (finite number of iterations) [Evans & Chikohora, 1998]
- Local convergence monitoring [Bahi et al, 2005, 2008]
- Nested-sets-based supervised termination [Miellou et al, 2008]

	Intrusiveness Centralization Effectiveness		Messages size	
Bertsekas & Tsitsiklis, 1989	altered iterations	-	formal	_
El Baz, 1996	altered iterations	-	formal	_
Savari & Bertsekas, 1996	altered iterations	-	formal	_
Savari & Bertsekas, 1996	non-intrusive	two reductions	exact	$\mathcal{O}(n)$
Evans & Chikohora, 1998	non-intrusive	no reduction	heuristic	0
Bahi <i>et al</i> , 2005	non-intrusive	one reduction	heuristic	$\mathcal{O}(1)$
Bahi <i>et al</i> , 2008	piggybacking	two reductions	heuristic	$\mathcal{O}(1)$
Miellou et al, 2008	_	_	formal	_
NFAIS	non-intrusive	one reduction	exact	$\mathcal{O}(1)$

NIEVIO

4 - ASYNCHRONOUS CONVERGENCE DETECTION

NFAIS: m=1 NBS: Non-blocking synchronization (snapshot without local convergence condition)

	Synchronous			NBS		
р	$r \times 10^7$	wt	k	$r \times 10^7$	wt	k
168	8.33	701	281916	5.03	536	346226
240	8.31	516	284118	6.18	378	366231
360	8.33	382	287557	5.72	250	355394
480	8.32	302	289933	5.40	202	406611
600	8.32	278	292163	5.23	168	432390

	Savari & Bertsekas, 1996		NFAIS			
р	$r \times 10^7$	wt	k	$r \times 10^7$	wt	k
168	6.55	641	319703	6.54	640	319349
240	6.52	462	342476	6.42	463	343295
360	6.71	310	335008	5.19	314	339204
480	6.43	249	380524	6.63	250	383745
600	6.55	207	404544	6.06	209	410621

Convection-diffusion

$$\nu \Delta u + a. \nabla u = s$$

Problem size $n = 185^3 = 6,331,625$

Block-Jacobi splitting

+ Gauss-Seidel on blocks

Residual threshold

$$\varepsilon=10^{-6}$$

p = number of processorsr = global residual aftertermination

OUTLINE

- Asynchronous iterations theory
 - $\rightarrow \text{Contracting mappings}$
 - \rightarrow Matrix splittings, maximum norm and spectral radius

- Asynchronous iterations theory
 - $\rightarrow \text{Contracting mappings}$
 - \rightarrow Matrix splittings, maximum norm and spectral radius
- Space domain decomposition
 - $\rightarrow \text{Primal approach}$
 - \rightarrow Two diagonal-free splittings of the interface Schur complement
 - \rightarrow Asynchronous convergence for vector and substructures-based decomposition
 - → Journal article in progress

- Asynchronous iterations theory
 - $\rightarrow \text{Contracting mappings}$
 - \rightarrow Matrix splittings, maximum norm and spectral radius
- Space domain decomposition
 - $\rightarrow \text{Primal approach}$
 - \rightarrow Two diagonal-free splittings of the interface Schur complement
 - \rightarrow Asynchronous convergence for vector and substructures-based decomposition
 - ightarrow Journal article in progress
- Time domain decomposition
 - ightarrow Parareal approach
 - \rightarrow PDE extension of ODE convergence condition
 - \rightarrow Asynchronous convergence for asymptotically equivalent condition
 - \rightarrow Journal article under review

- Asynchronous iterations theory
 - → Contracting mappings
 - → Matrix splittings, maximum norm and spectral radius
- Space domain decomposition
 - → Primal approach
 - → Two diagonal-free splittings of the interface Schur complement
 - -> Asynchronous convergence for vector and substructures-based decomposition
 - → Journal article in progress
- Time domain decomposition
 - → Parareal approach
 - → PDE extension of ODE convergence condition
 - → Asynchronous convergence for asymptotically equivalent condition
 - → Journal article under review

- Asynchronous convergence detection
 - → Snapshot approach
 - → Exact global residual evaluation
 - → One reduction operation, data-free marker
 - → Non-blocking synchronization
 - → Peer-reviewed journal article
- ♦ ⇒ JACK2: MPI-based communication library
 - → Peer-reviewed journal article, Proceedings
- And various other works and publications

- Asynchronous iterations theory
 - $\rightarrow \text{Contracting mappings}$
 - \rightarrow Matrix splittings, maximum norm and spectral radius
- Space domain decomposition
 - → Primal approach
 - \rightarrow Two diagonal-free splittings of the interface Schur complement
 - \rightarrow Asynchronous convergence for vector and substructures-based decomposition
 - → Journal article in progress
- Time domain decomposition
 - → Parareal approach
 - \rightarrow PDE extension of ODE convergence condition
 - → Asynchronous convergence for asymptotically equivalent condition
 - → Journal article under review

- Asynchronous convergence detection
 - → Snapshot approach
 - \rightarrow Exact global residual evaluation
 - → One reduction operation, data-free marker
 - $\rightarrow \text{Non-blocking synchronization}$
 - → Peer-reviewed journal article
- ♦ ⇒ JACK2: MPI-based communication library
 - ightarrow Peer-reviewed journal article, Proceedings
- And various other works and publications

Future work

- Complete interface tearing
- Dual approach
- Coarse space correction

- Asynchronous iterations theory
 - $\rightarrow \text{Contracting mappings}$
 - \rightarrow Matrix splittings, maximum norm and spectral radius
- Space domain decomposition
 - → Primal approach
 - \rightarrow Two diagonal-free splittings of the interface Schur complement
 - \rightarrow Asynchronous convergence for vector and substructures-based decomposition
 - → Journal article in progress
- Time domain decomposition
 - ightarrow Parareal approach
 - \rightarrow PDE extension of ODE convergence condition
 - → Asynchronous convergence for asymptotically equivalent condition
 - → Journal article under review

- Asynchronous convergence detection
 - → Snapshot approach
 - → Exact global residual evaluation
 - ightarrow One reduction operation, data-free marker
 - $\rightarrow \text{Non-blocking synchronization}$
 - ightarrow Peer-reviewed journal article
- → ⇒ JACK2: MPI-based communication library
 - ightarrow Peer-reviewed journal article, Proceedings
- And various other works and publications

Future work

- Complete interface tearing
- Dual approach
- Coarse space correction

Next goal Habilitation à Diriger des Recherches

Thèse de Doctorat Asynchronous domain decomposition methods FOR MASSIVELY PARALLEL COMPUTING

PRÉPARÉE ET SOUTENUE PAR GUILLAUME GBIKPI-BENISSAN

DEVANT LE JURY COMPOSÉ DE

RAPHAËL COUTURIER FABIENNE JEZEQUEL PIERRE SPITERI STÉPHANE VIALLE FRÉDÉRIC MAGQUILÈS (RAPPORTEUR)
(EXAMINATRICE)
(RAPPORTEUR)
(EXAMINATEUR)
(DIRECTEUR DE THÈSE)

