4-1 Convolution

Zhonglei Wang WISE and SOE, XMU, 2025

Contents

- 1. 1d Convolution
- 2. Padding
- 3. Stride
- 4. 2d Convolution
- 5. Examples
- 6. Multi-Channel Convolution

Intuition for convolution neural network

- 1. Given an image, why not use a fully connected neural network?
 - Number of parameters is overwhelmingly large, easily leading to overfitting
 - ▶ To overcome this problem, we may require more training data, more memory and faster computation algorithms
 - ▶ Almost impossible in practice
 - Overlooks the spatial structure
 - Not location (translation) invariant
- 2. Consider a new network, convolution neural network, for image processing

Convolution neural network

- 1. Advantages of convolution:
 - Convolution is implemented for local regions independently, so computation can be parallelized
 - Convolution shares kernels over different local regions, so it involves fewer parameters
 - Convolution takes local spatial information into consideration, so the model is more spatially in
- 2. Neural network using convolution is called convolution neural network (CNN)

Convolution

- 1. Convolution is not new to us
 - In probability, convolution is related to the density function of Z = X + Y

$$f_Z(z) = \int f_X(x) f_Y(z - x) \mu(\mathrm{d}x),$$

- $\triangleright \mu$: dominating measure
- $f_{\star}(\cdot)$: density function for random variable \star
- $\triangleright X, Y : \text{two independent random variables}$
- 2. For simplicity, denote the convolution of functions f and g to be

$$h(z) = (f * g)(z)$$

• Mathematically, f and g can be any functions as long as the definition is valid

1d convolution

Calculation

Result

2	2	-2	3	5	-7	-2	8	3	1
---	---	----	---	---	----	----	---	---	---

- 1. Usually, we flip g(x) to obtain a kernel so that we can conveniently use a command like np.sum
- 2. Values for x are no longer useful

1. Intuition

- The size of the input sequence decreases after convolution
- Some (important) information on the boundary is overlooked

1. Intuition

- The size of the input sequence decreases after convolution
- Some (important) information on the boundary is overlooked

Input 0 3 6 5 4 8 9 1 7 9 10 10 0

Kernel

-1 0 1

Calculation

Result

- 1. Two types of convolutions:
 - Valid convolution: no padding
 - Same convolution: apply padding so that the output size is the same as the input
- 2. We can pad more than one 0 around the boarders.
- 3. We can move more than one steps to do convolution to
 - Decrease the output size
 - Balance accuracy and computation cost

Stride

Calculation

Result 2 3 -7 8 1

- 1. In the above example, stride is 2
- 2. Stride can be other positive numbers
- 3. Padding and stride can be used at the same time

Dilated/Atrous convolution

Result

10	7	4	12	2	8	18
----	---	---	----	---	---	----

- 1. In the above example, dilation rate is 2
- 2. Dilation increases the receptive field without (essentially) increasing kernel size
- 3. Padding, stride and dilation can be used at the same time

2d convolution

Original sequence

(Padding = 1)

0	0	0	0	0	0	0
0	3	6	5	4	8	0
0	9	1	7	9	6	0
0	8	0	5	0	9	0
0	6	2	0	5	2	0
0	6	3	7	0	9	0
0	0	0	0	0	0	0

Kernel

-1 1 -1 1

Result

(Stride=2)

3	-1	4
17	11	6
12	2	6

Average kernel

Gaussian kernel

Sharpen kernel

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Sobel kernel for vertical boundary

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Sobel kernel for horizontal boundary

$$\begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Anotherexample

Original image

Kernel

-1	-1	-1
-1	9	-1
-1	-1	-1

Sharpen

-1	0	1
-2	0	2
-1	0	1

Sobel (vertical)

000	-1	-2	-1
	0	0	0
	1	2	1

Sobel (horizontal)

Multi-Channel convolution

- 1. In general, the third dimension of kernels is the same as the input
- 2. Output size calculation
 - Input size: $d_H \times d_W \times d_C$
 - Kernel size: $f \times f \times d_C$
 - \bullet Padding: p
 - Stride: s
 - Output size: $d'_H \times d'_W$

$$d'_{H} = \left[\frac{d_{H} + 2p - f}{s} + 1 \right], \quad d'_{W} = \left[\frac{d_{W} + 2p - f}{s} + 1 \right]$$