K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS Single Stage BJT Amplifier

Numerical 1:

For the common base configuration in figure 1,

- a. Determine r_{π}
- b. Find $Z_i \& Z_o$
- c. Calculate A_v

Given : $\alpha = 0.998, r_o = 1 \text{M}\Omega$

Figure 1: Circuit 1

Solution: The given circuit 1 is a common base BJT amplifier employing a pnp BJT

DC Analysis:

We remove the capacitors,

Figure 2: DC Equivalent Circuit

Applying KVL to Base-Emitter loop,

$$V_{EE} - I_{EQ}R_E - V_{EB} = 0$$

$$6 - (I_{EQ})(6.8k\Omega) - 0.7 = 0$$

$$I_{EQ} = rac{6 - 0.7}{6.8 k \Omega} = \mathbf{0.7793mA}$$

For a Common Base configuration,

$$I_C = \alpha I_E$$

$$\therefore I_{CQ} = \alpha I_{EQ}$$

$$= (0.998)(0.7794 \text{mA})$$

= 0.77784mA

Small signal Anaysis:

.model PNP PNP (is=1E-15 bf=499 vaf=777.85V cjc=20pf cje=20pf)

Figure 3: Small Signal Equivalent Circuit

$$g_{m} = \frac{I_{CQ}}{V_{T}} = \frac{0.7784mA}{0.026V} = 29.9169\text{mA/V}$$
 $r_{o} = \frac{V_{A}}{I_{CQ}}$
 $\therefore V_{A} = r_{o} \times I_{CQ}$
 $= (1M\Omega) (0.77784mA)$
 $= 777.84V$
 $r_{\pi} = \frac{\beta \times V_{T}}{I_{CQ}}$
Since, $\alpha = 0.998$
 $\beta = \frac{\alpha}{1 - \alpha} = \frac{0.998}{1 - 0.998} = 499$
 $\therefore r_{\pi} = \frac{499 \times 0.026}{0.77784mA} = 16.679k\Omega$
Voltage Gain $(A_{V}) = \frac{V_{OUT}}{V_{IN}}$
 $A_{V} = g_{m}(R_{C} \parallel r_{o})$
 $= 29.9169mA/V \times (4.7k\Omega \parallel 1M\Omega)$
 $= 29.9169 \times \frac{(4.7k\Omega)(1M\Omega)}{4.7k\Omega + 1M\Omega}$

= 139.951

Input and Ouput Impedance:

Input Impedance
$$(Z_i) = \left(\frac{1}{g_m}\right) \parallel R_E \parallel r_\pi \parallel r_o$$

$$Z_i = \left(\frac{1}{29.9169mA/V}\right) \parallel 6.8k\Omega \parallel 16.679k\Omega \parallel 1M\Omega$$

$$= \mathbf{33.195\Omega}$$
 [Low input impedance for common base configuration]

Output Impedance
$$(Z_o) = R_C \parallel r_o$$

 $Z_o = 4.7k\Omega \parallel 1M\Omega = \mathbf{4.678k\Omega}$

SIMULATED RESULTS

The above circuit is simulated in LTspice and results are presented below:

.model PNP PNP (is=1E-15 bf=499 vaf=777.85V cjc=20pf cje=20pf) .tran 5ms .op

Figure 4: Circuit Schematic

The input and output waveform are shown in figure 5

Figure 5: $V_{IN}(t) \& V_{OUT}(t)$

${\bf Comparison\ of\ Theoretical\ and\ Simulated\ results:}$

Parameters	Theoretical	Simulated
I_{CQ}	0.77784mA	0.776735mA
I_{EQ}	0.7794mA	0.77827mA
A_V	139.951	122.065

Table 1: Numerical 1

Numerical 2:

For the circuit shown in figure 6, determine

a.
$$r_{\pi}$$
 b. Z_i c. Z_o d. A_V

Given: $\beta = 140, r_o = 30k\Omega$

Figure 6: Circuit 2

Solution: The above circuit 2 is a Common Emitter BJT amplifier employing a npn BJT in Collector to Base bias configuration

DC Analysis:

We remove all the capacitors,

Figure 7: DC Equivalent Circuit

Applying KVL to the Base Emitter loop,

$$V_{CC} - I_{CQ}R_C - I_{BQ}(R_{B_1} + R_{B_2}) - V_{BE} = 0$$

$$V_{CC} - \beta I_{BQ}R_C - I_{BQ}(R_{B_1} + R_{B_2}) - V_{BE} = 0$$
[Since, $I_C = \beta I_B$]

$$I_{BQ} = \frac{V_{CC} - V_{BE}}{\beta R_C + (R_{B_1} + R_{B_2})}$$

$$= \frac{12 - 0.7}{(140)(3k\Omega) + (120k\Omega + 68k\Omega)}$$

$$= \frac{11.3V}{608k\Omega}$$

$$= 18.585\mu \mathbf{A}$$

$$I_{CQ} = \beta I_{BQ} = 140 \ (18.585 \mu A) = \mathbf{2.6019mA}$$

Small Signal Analysis:

Figure 8: Small Signal Equivalent Circuit

$$g_m = rac{I_{CQ}}{V_T} = rac{2.6019mA}{0.026V} = 100.073 \text{mA/V}$$
 $r_\pi = rac{\beta V_T}{I_{CQ}} = rac{140 \times 0.026V}{2.6019mA} = 1.398 \text{k}\Omega$

Now, given that
$$r_o = 30k\Omega$$

But,
$$r_o = \frac{V_A}{I_{CQ}}$$

$$\therefore V_A = r_o \times I_{CQ}$$

$$= (30k\Omega) (2.6019mA)$$

$$= 78.057V$$

Input and Ouput Impedance:

Input Impedance
$$(Z_i) = R_{B_1} \parallel r_{\pi}$$

 $(Z_i) = 120k\Omega \parallel 1.398k\Omega$
 $= \frac{120k\Omega \times 1.398k\Omega}{120k\Omega + 1.398k\Omega}$
 $= \mathbf{1.381k\Omega}$

Ouput Impedance
$$(Z_o) = r_o \parallel R_{B_2} \parallel R_C$$

$$(Z_o) = 30k\Omega \parallel 68k\Omega \parallel 3k\Omega$$

 $= 2.622 k\Omega$

Voltage Gain
$$(A_V) = \frac{V_{OUT}}{V_{IN}}$$

From figure 8,
 $A_V = -g_m(r_o \parallel R_C \parallel R_{B_2})$
 $= -(100.1538mA/V) \ (30k\Omega \parallel 3k\Omega \parallel 68k\Omega)$
 $= -(100.1538mA/V) \ (2.622k\Omega)$
 $= -262.6$ [Voltage Gain of given CE Amplifier]

The negative sign indicates that the Input and Ouput signals are 180° out of phase

SIMULATED RESULTS

The above circuit is simulated in LTspice and results are presented below:

Figure 9: Circuit Schematic

The input and output waveform are shown in figure 10

Figure 10: $V_{IN}(t) \& V_{OUT}(t)$

${\bf Comparison\ of\ Theoretical\ and\ Simulated\ results:}$

Parameters	Theoretical	Simulated
I_{CQ}	2.6019mA	2.61418mA
I_{BQ}	$18.585 \mu A$	$17.9\mu A$
A_V	-262.6	-267.4

Table 2: Numerical 2

Numerical 3:

Determine the following for the circuit shown in figure 11,

- a. Small signal voltage gain
- b. Input Impedance
- c. Output Impedance

Given: $\beta = 100, V_A = 80V$

Figure 11: Circuit 3

Solution: The above circuit 3 is a Common Collector amplifier using npn BJT

DC Analysis:

We remove all the capacitors,

Figure 12: DC Equivalent Circuit

Applying Thevenin's equivalent circuit to input side i.e at base,

Figure 13: Thevenin's Equivalent Circuit

$$V_{TH} = \frac{R_2 V_{CC}}{R_1 + R_2} = \frac{50k\Omega \times 5}{50k\Omega + 50k\Omega} = \mathbf{2.5V}$$

$$R_{TH} = R_1 \parallel R_2 = 50k\Omega \parallel 50k\Omega = 25k\Omega$$

Applying KVL to Base Emitter loop,

$$V_{TH} - I_{BQ}R_{TH} - V_{BE} - I_{EQ}R_E = 0$$

$$V_{TH} - I_{BQ}R_{TH} - V_{BE} - (1+\beta)I_{BQ}R_E = 0$$

$$I_{BQ} = rac{V_{TH} - V_{BE}}{R_{TH} + (1 + eta)R_E}$$

$$= rac{2.5 - 0.7}{25k\Omega + (101 \times 2k\Omega)}$$

$$= 7.93\mu A$$

$$I_{CQ} = \beta I_{BQ} = (100)(7.93\mu A) = \mathbf{0.793mA}$$

Applying KVL to Common Emitter loop,

$$V_{CC} - V_{CEQ} - I_{EQ}R_E = 0$$

 $V_{CEQ} = V_{CC} - (1 + \beta)I_{BQ}R_E$
 $= 5V - (101)(7.93\mu A)(2k\Omega)$
 $= 3.4V$

[Since, $I_E = (1 + \beta)I_B$]

Small Signal Analysis:

$$r_{\pi} = rac{eta V_T}{I_{CQ}} = rac{100 imes 0.026 V}{0.793 mA} = \mathbf{3.278 k \Omega}$$

$$g_m = \frac{I_{CQ}}{V_T} = \frac{0.793mA}{26mV} = 30.5 \text{mA/V}$$

$$r_o = rac{V_A}{I_{CQ}} = rac{80V}{0.793mA} = \mathbf{100.88k\Omega}$$

Figure 14: Small Signal Equivalent Circuit

Input and Ouput Impedance:

Input Impedance
$$(Z_i) = R_{TH} \parallel [r_{\pi} + (1 + \beta)(R_E \parallel r_o)]$$

$$r_{o} \parallel R_{E} = 100.88k\Omega \parallel 2k\Omega$$

 $r_{o} \parallel R_{E} = 1.96k\Omega$
 $r_{\pi} + (1+\beta)(r_{o} \parallel R_{E}) = 3.278k\Omega + (101)(1.96k\Omega)$
 $r_{\pi} + (1+\beta)(r_{o} \parallel R_{E}) = 201.24k\Omega$
 $\therefore Z_{i} = 25k\Omega \parallel 201.24k\Omega = \mathbf{22.24k\Omega}$

Ouput Impedance
$$(Z_o) = R_E \parallel \left(\frac{1}{g_m}\right) \parallel r_o$$

$$Z_o = 2k\Omega \parallel \left(\frac{1}{30.5mA/V}\right) \parallel 100.88k\Omega$$

= $2k\Omega \parallel 32.78 \parallel 100.88k\Omega$
= $32.25 \parallel 100.88k\Omega$
= $\mathbf{32.24}\Omega$

Small Signal Voltage Gain (A_V):

$$A_{VS} = \frac{V_O}{V_S} = \frac{V_O}{V_{IN}} \times \frac{V_{IN}}{V_S} = A_V \times \frac{V_{IN}}{V_S}$$
$$A_V = \frac{R_E \parallel r_o}{\left(\frac{1}{g_m}\right) + (R_E \parallel r_o)}$$

$$R_E \parallel r_o = 2k\Omega \parallel 100.88k\Omega = 1.96k\Omega$$

$$\frac{1}{g_m} = \frac{1}{30.5mA/V} = 32.78\Omega$$

$$\therefore A_V = \frac{1.96k\Omega}{32.78\Omega + 1.96k\Omega} \approx 0.9835$$

$$A_{VS} = A_V \times \frac{V_{IN}}{V_S}$$

$$\frac{V_{IN}}{V_S} = \frac{Z_i}{Z_i + R_{SIG}} = \frac{22.24k\Omega}{22.24k\Omega + 500\Omega}$$

$$\frac{V_{IN}}{V_S} = 0.978$$

$$\therefore A_{VS} = \frac{V_O}{V_S} = 0.9835 \times 0.978$$

 $A_{VS} = \mathbf{0.962}$

[Small signal voltage gain of CC amplifier]

SIMULATED RESULTS

The above circuit is simulated in LTspice and results are presented below:

Figure 15: Circuit Schematic

The input and output waveform are shown in figure 16

Figure 16: $V_{IN}(t) \& V_{OUT}(t)$

Comparison of Theoretical and Simulated results:

Parameters	Theoretical	Simulated
I_{CQ}	0.793mA	0.7926mA
I_{BQ}	$7.93\mu A$	$7.668\mu A$
V_{CEQ}	3.4V	3.399V
A_{VS}	0.962	0.96005

Table 3: Numerical 3
