2007-PH

EE24BTECH11027 - satwikagv

- 1) An electromagnetic wave with $\mathbf{E}(z,t) = E_0 \cos(\omega t kz)\hat{i}$ is traveling in free space and crosses a disc of radius 2 m placed perpendicular to the z-axis. If $E_0 = 60Vm^{-1}$, the average power, in Watt, crossing the disc along the z-direction is
 - a) 30

b) 60

- c) 120
- d) 270
- 2) Can the following scalar and vector potentials describe an electromagnetic field? $\phi(\bar{x},t) = 3xyz - 4t$

$$\mathbf{A}(\bar{x},t) = (2x - \omega t)\hat{i} + (y - 2z)\hat{j} + (z - 2xe^{i\omega t})\hat{k}$$
where ω is a constant.

- a) Yes, in the Coulomb gauge.
- c) Yes, provided $\omega = 0$.
- b) Yes, in the Lorentz gauge.
- d) No.
- 3) For a particle of mass m in a one-dimensional harmonic oscillator potential of the form $V(x) = \frac{1}{2}m\omega^2x^2$, the first excited energy eigenstate is $\psi(x) = xe^{-ax^2}$. The value of a is
- b) $\frac{m\omega}{3\hbar}$
- c) $\frac{m\omega}{2\hbar}$

- 4) If $[x, p] = i\hbar$, the value of $[x^3, p]$ is

- a) $2i\hbar x^2$ b) $-2i\hbar x^2$ c) $3i\hbar x^2$ d) $-3i\hbar x^2$
- 5) There are only three bound states for a particle mass m in a one-dimensional potential well of the form shown in the figure. The depth V_0 of the potential satisfies

- a) $\frac{2\pi^2h^2}{ma^2} < V_0 < \frac{9\pi^2h^2}{ma^2}$ b) $\frac{\pi^2h^2}{2} < V_0 < \frac{2\pi^2h^2}{2}$

- c) $\frac{2\pi^2h^2}{ma^2} < V_0 < \frac{8\pi^2h^2}{ma^2}$ d) $\frac{2\pi^2h^2}{2} < V_0 < \frac{50\pi^2h^2}{2}$
- 6) An atomic state of hydrogen is represented by the following wavefunction:

$$\psi(r,\theta,\phi) = \frac{1}{\sqrt{2}} \left(\frac{1}{a_0}\right)^{\frac{3}{2}} \left(1 - \frac{r}{2a_0}\right) e^{\frac{-r}{2a_0}} \cos \theta.$$

where a_0 is a constant. The quantum numbers of the state are

11) A system has energy levels $E_0, 2E_0, 3E_0, \ldots$, where the excited states are triply degenerate. Four non interacting bosons is $5E_0$, the number of microstates is

12) In accordance with the selection rules for electric dipole transitions, the $4^{3}P_{1}$ state of helium can decay by photo emission to the states

a)
$$2^{1}S_{0}$$
, $2^{1}P_{1}$ and $3^{1}D_{2}$
b) $3^{1}S_{0}$, $3^{1}P_{1}$ and $3^{1}D_{2}$
c) $3^{3}P_{2}$, $3^{3}P_{0}$ and $3^{3}D_{3}$
d) $2^{3}S_{1}$, $3^{3}D_{2}$ and $3^{3}D_{1}$

13) If an atom is in the 3D_3 state, the angle between the its orbital and spin angular momentum vectors (**L** and **S**) is

				3
a) co	$0s^{-1} \frac{1}{\sqrt{3}}$	b) $\cos^{-1} \frac{2}{\sqrt{3}}$	c) $\cos^{-1} \frac{1}{2}$	
14) The hyperfine structure of $Na(3^2P_{\frac{3}{2}})$ with nuclear spin $I = \frac{3}{2}$ has				
a) 1	state	b) 2 states	c) 3 states	d) 4 states
15) The allowed rational energy levels of a rigid hetero-nuclear diatomic molecule are expressed as $\epsilon_j = BJ(J+1)$, where B is the rotational constant and J is a rotational quantum number. In a system of such diatomic molecules of reduced mass μ , some of the atoms of one element are replaced by a heavier isotope, such that the reduced mass is changed to 1.05μ . In the rotational spectrum of the system, the shift in the spectral line, corresponding to a transition $J=4 \rightarrow J=5$, is				
a) 0.	475 B	b) 0.50 <i>B</i>	c) 0.95 B	d) 1.0 B
16) The number of fundamental vibrational modes of CO_2 molecule is				
a) four: 2 are Raman active and 2 are infrared active.				
b) four: 1 are Raman active and 3 are infrared active.				
c) three: 1 are Raman active and 2 are infrared active.				

17) A piece of paraffin is placed in a uniform magnetic field H_0 . The sample contains hydrogen nuclei of mass m_p , which interact only with external magnetic field. An additional oscillating magnetic field is applied to observe resonance absorption. If g_l is the g-factor of the hydrogen nucleus, the frequency, at which resonance absorption

c) $\frac{g_l e H_0}{2\pi m_p}$

d) three: 2 are Raman active and 1 are infrared active.

b) $\frac{3g_l e H_0}{4\pi m_p}$

takes place, is given by