1

GATE -BM 16

EE23BTECH11057 - Shakunaveti Sai Sri Ram Varun

Question: For the circuit given below, choose the angular frequency ω_0 at which voltage across capacitor has maximum amplitude?

Fig. 1. circuit

(A) 1000

(C) 1

(D) 0

(GATE BM 2023)

Solution:

Writing in s-domain (Laplace transform)

Splitting $V_c(s)$ into partial fractions,

Fig. 2. circuit in s-domain

$$V_{c}(s) = \frac{V_{o}s + V_{o}RC\omega_{o}^{2}}{\left(1 + (\omega_{o}RC)^{2}\right)(s^{2} + \omega_{o}^{2})} - \frac{V_{o}}{\left(1 + (\omega_{o}RC)^{2}\right)\left(s + \frac{1}{RC}\right)}$$
(4)

On applying inverse Laplace transform,

$$v_c(t) = \frac{V_o \cos(\omega_o t)}{1 + (\omega_o RC)^2} + \frac{V_o RC \omega_o^2 \sin(\omega_o t)}{1 + (\omega_o RC)^2} + \frac{V_o e^{\frac{-t}{RC}}}{1 + (\omega_o RC)^2}$$
(5)

Parameter Description The last term is natural response, we can ignore it.

1 ai aiiictei	Description	value
$v_i(t)$	Input voltage in circuit	$100\cos(\omega_o t)$ Volts
$v_{c}\left(t\right)$	Potential difference across Capacitor in time domain	?
$V_i(s)$	Input voltage	$\frac{100s}{s^2 + \omega_o^2}$
$V_{c}\left(s\right)$	Potential difference across Capacitor	$V_{c}\left(s\right)$
V_o	Amplitude of input voltage	100 Volts
R	Resistance in circuit	1 kΩ
C	Capacitace in circuit	100 μF
ω_o	angular frequency of input voltage	ψ_o 1.

TABLE I INPUT VALUES Now, the amplitude can be computed by,

$$|v_c(t)| = \frac{V_o}{\sqrt{1 + (\omega_o RC)^2}} V$$
 (6)

$$V_i(s) = sRCV_c(s) + V_c(s)$$
 (1)

From values in Table I

$$\implies V_c(s) = \frac{V_i(s)\frac{1}{RC}}{\frac{1}{RC} + s} \tag{2}$$

$$|v_c(t)| = \frac{10^3}{\sqrt{10^2 + \omega_c^2}} \text{ V}$$
 (7)

$$\therefore V_c(s) = \frac{V_o s \frac{1}{RC}}{\left(s^2 + \omega_o^2\right)} \frac{1}{\left(s + \frac{1}{RC}\right)}$$

(3) We can see the highest amplitude is obtained when $\omega_o = 0$.