Probar que el kernel de un homomorfismo es un grupo

Diego Felipe Cabrejo Suárez

Dados (G_1,\circ) y $(G_2,*)$ dos grupos, $f:G_1\longrightarrow G_2$ es un homomorfismo sii

$$f(u \circ v) = f(u) * f(v)$$

probar

$$ker(f) = \{u \in G_1 | f(u) = e_{G_2}\}$$

es un grupo.

Demostración

Dado que un homomorfismo de grupos conserva los elementos de identidad, el elemento identidad e de G_1 debe estar contenido en ker(f).

Dado que el homomorfismo f no es inyectivo, entonces existen $a, b \in G_1$ distintos tal que f(a) = f(b). Entonces $f(a)f(b)^{-1} = e_{G_2}$. Y dado $f(a)f(b)^{-1} = f(ab^{-1}) = e_{G_2}$, entonces $ab^{-1} \in ker(f)$.

Por tanto, ker(f) constituye un grupo.