Занятие 3. Движение микрочастиц в стационарных полях.

Ауд. Л-5: задачи №№ 6.81, 6.87, 6.102, 6.104 или Л-6: задачи №№ 5.125, 5.133, 5.154, 5.157.

- **6.81.** Частица находится в основном состоянии в одномерной прямоугольной потенциальной яме ширины l с абсолютно непроницаемыми стенками (0 < x < l). Найти вероятность пребывания частицы в области l/3 < x < 2l/3.
- **6.87.** Частица массы m находится в трехмерной кубической потенциальной яме с абсолютно непроницаемыми стенками. Сторона куба равна a. Найти:
 - а) собственные значения энергии частицы;
 - б) разность энергий 3-го и 4-го уровней;
- в) энергию 6-го уровня и соответствующее ему число состояний (кратность вырождения).

- **6.102.** Частицы с массой m и энергией E движутся слева на потенциальный барьер (рис. 6.6). Найти:
- а) коэффициент отражения R этого барьера при $E > U_0$;
- б) эффективную глубину проникновения частиц в область x>0 при $E< U_0$, т. е. расстояние от границы барьера до точки, где плотность вероятности нахождения частицы уменьшается в е раз.
- 6.104. Найти с помощью формулы (6.2e) вероятность D прохождения частицы с массой m и энергией E сквозь потенциальный барьер (рис. 6.9), где $U(x) = U_0(1 x^2/l^2)$.

Дома: Л-5: задачи №№ 6.86, 6.103а, Л-7; Л-17; Л-18 или Л-6: задачи №№ 5.132, 5.155.

- **6.86.** Частица находится в двумерной прямоугольной потенциальной яме с абсолютно непроницаемыми стенками (0 < x < a, 0 < y < b). Определить вероятность нахождения частицы с наименьшей энергией в области 0 < x < a/3.
- **6.103.** Воспользовавшись формулой (6.2e), найти для электрона с энергией E вероятность D прохождения потенциального барьера, ширина которого l и высота U_0 , если барьер имеет форму, показанную:

а) на рис. 6.7;

Ответы

6.81.
$$P = 1/3 + \sqrt{3}/2\pi = 0.61$$
.

6.87. а) $E = (n_1^2 + n_2^2 + n_3^2) \pi^2 \hbar^2 / 2ma^2$, где n_1 , n_2 , n_3 — целые числа, не равные нулю; б) $\Delta E = \pi^2 \hbar^2 / ma^2$;

в) для 6-го уровня $n_1^2 + n_2^2 + n_3^2 = 14$ и $E = 7\pi^2 \hbar^2/ma^2$; число состояний равно шести (оно равно числу перестановок тройки чисел 1, 2 и 3).

6.102. a) Запишем решения уравнения Шрёдингера слева и справа от граннцы барьера в следующем виде:

$$x < 0$$
, $\psi_1(x) = a_1 e^{ik_1x} + b_1 e^{-ik_1x}$, где $k_1 = \sqrt{2mE/\hbar}$, $x > 0$, $\psi_2(x) = a_2 e^{ik_2x} + b_2 e^{-ik_2x}$, где $k_2 = \sqrt{2m(E - U_0)/\hbar}$.

Будем считать, что падающаи волна характеризуется амплитудой a_1 , а отраженная — амплитудой b_2 . Так как в области x > 0 имеется только проходищая волна, то $b_2 = 0$. Коэффициент отражения R представляет собой отношение отраженного потока к падающему потоку, нли, другими словами, отношение квадратов амплитуд соответствующих волн. Из условия непрерывностй ψ и ее производной в точке x=0 имеем $a_1+b_1=a_2$ и $a_1-b_1=(k_2/k_1)$ a_2 , откуда

$$R = (b_1/a_1)^2 = (k_1 - k_2)^2/(k_1 + k_2)^2$$
.

б) В случае $E < U_0$ решение уравнення Шрёдингера справа от барьера имеет вид $\psi_2(x) = a_2 \, \mathrm{e}^{\varkappa x} + b_2 \, \mathrm{e}^{-\varkappa x}$, где $\varkappa = \sqrt{\frac{2m}{U_0 - E}}/\hbar$. Из требования конечности $\psi(x)$ следует, что $a_2 = 0$. Плотность вероитности нахождения частицы под барьером $P_2(x) = \psi_2^2(x) \cos \mathrm{e}^{-2\varkappa x}$. Отсюда $x_{\partial \Phi} = 1/2\varkappa$.

6.104.
$$D \approx \exp \left[-(\pi l/\hbar) \sqrt{2m/U_0} (U_0 - E) \right]$$
.

6.86.
$$P = 1/3 - \sqrt{3}/4\pi = 19.5 \%$$
.

6.103 a)
$$D \approx \exp \left[-(2l/\hbar) \sqrt{2m(U_0 - E)}\right];$$

6) $D \approx \exp \left[-(8l \sqrt{2m/3\hbar U_0}) (U_0 - E)^{3/2}\right].$