Motorberechnung Audi S6

Keywords

√ Mathe

1 Motorberechnung - siehe Datenblatt Audi S6

Tabellenbuch (Bell, Elbl und Schüler [2] S. 32 - 33) FS (Bell, Elbl und Schüler [1] S. 32 - 37)

Aufgabe 1a Zylinderhubraum

geg: $V_H = 4172 \text{ cm}^3, z = 8$

ges: V_h

Formel: $V_H = V_h \cdot z \rightarrow V_h = \frac{V_H}{z}$

Lösung: $V_h = 521.5 \text{ cm}^3$

Aufgabe 1b Bohrung

geg: s = 9.3 cm, $V_h = 521.5$ cm³

ges: d

Formel: $V_h = \frac{\pi \cdot d^2}{4} \cdot s \rightarrow d = \sqrt{\frac{V_h \cdot 4}{\pi \cdot s}}$

Lösung: $d = 8,4497 \ cm = 84,4969 \ mm$

Aufgabe 1c Verdichtungsraum

geg: $\epsilon = 11 : 1, V_h = 521,5 \text{ cm}^3$

ges: V_c

Formel: $V_c = \frac{V_h}{\epsilon - 1}$

Lösung: $V_c = 52,15 \text{ cm}^3$

Aufgabe 1d Hubraumleistung in KW

geg: $P_{eff} = 250 \ KW, V_H = 4172 \ cm^3 = 4,172 \ l$

ges: P_H

Formel: $P_H = \frac{P_{eff}}{V_H}$

Lösung: $P_H = 59,9233KW/l$

spezifische Leistung (→ Literleistung, bessere Vergleichbarkeit)

Umrechnungsfaktor 1 PS = 0.735 KW 1 KW = 1.36 PS

$$\frac{81,4 \ PS/l}{1,36} = 59,85 \ KW$$

Aufgabe 1e

geg: $M = 420 \ Nm, n = 3400 \ U/min$

ges: P_{eff}

Formel: $P_{eff} = \frac{M \cdot n}{9550}$

Lösung: $P_{eff} = 149,5288 \ KW$

Aufgabe 1f Effektiven Kolbendruck bei maximaler Leistung

geg: $P_{eff} = 250 \text{ KW}, V_H = 4,172 l, n = 7000 \text{ U/min}$

ges: p_{eff}

Formel: $p_{eff} = \frac{1200 \cdot P_{eff}}{V_H} \cdot n$

Lösung: $p_{eff} = 10,2726 \ bar$

Aufgabe 1g mittlere Kolbengeschwindigkeit bei maximaler Leistung

geg: $s = 0.093 \, m, n = 7000 \, U/min$

ges: v_m

Formel: $v_m = \frac{s \cdot n}{30}$

Lösung: $v_m = 21.7 \ m/s$

(Standard v_m : Otto = 9 – 16 m/s, Diesel = 8 – 14 m/s, zwei Nullpunkte: OT, UT)

Aufgabe 2 Motortyp nach Art der Motorsteuerung

- »double overhead camshaft« (dohc)
- zwei Nockenwellen über Zylinderkopf

Aufgabe 3 Hub-Bohrung-Verhältnis

Hub > Bohrung, s > d, 93 mm > 84,5 mm Langhuber

oder

$$\alpha = \frac{s}{d} = \frac{93}{84.5} = 1,1$$

 $\alpha > 1$ Langhuber, $\alpha = 1$ Quadrathuber, $\alpha < 1$ Kurzhuber

Aufgabe 4 elastischer Bereich

Quelle: Jan Unger Datum: 29. Mai 2022

Drehzahlbereich vom Maximalen Drehmoment zur Maximalen Leistung: 3400 – 7000 U/min

Literaturverzeichnis

- [1] Marco Bell, Helmut Elbl und Wilhelm Schüler. Formelsammlung Fahrzeugtechnik. ger. 10., überarbeitete und erweiterte Auflage. Hamburg: Handwerk und Technik, 2020. ISBN: 9783582515902.
- [2] Marco Bell, Helmut Elbl und Wilhelm Schüler. *Tabellenbuch Fahrzeugtechnik*. ger. 29., völlig überarbeitete Auflage. Fahrzeugtechnik. Hamburg: Handwerk und Technik, 2021. ISBN: 9783582939579.

Thema: Motorberechnung Audi S6