

Restricciones de la causalidad

La respuesta en frecuencia de un sistema LTI real y causal debe satisfacer:

- ullet $H(\omega)$ no puede tener un salto discontinuo entre las bandas de paso y de rechazo
- \bullet $H(\omega)$ no puede ser constante en un intervalo finito
- ullet $H(\omega)$ no puede ser cero, salvo para un número finito de frecuencias

Luego, el filtro ideal no es implementable por sistemas reales.

Primera pregunta: FIR o IIR?

- IIR tiene mayor atenuación en banda de rechazo para la misma cantidad de coeficientes del filtro
- Un IIR requiere menos polos que el FIR para performance equivalente
- La implementación de un IIR es más sensible a errores de precisión finita
- FIR puede tener fase lineal, evitando distorsión de fase

	o racar no es impre	The state of the s	•	r iii pueue	terier rase illiear, ev	ritaliuo distorsion	ue rase	
Tipo FLG	Parámetros	Simetría respuesta impulsiva	Simetría función amplitud			Ceros en z = 1 o z = -1		
1	N par (largo impar) $\phi_0 = 0$	Simétrica: $h(n) = h(N-n)$	77650000	nétrica: ν) = A(-ω)	periodo 2v	Si no contiene, implica tipo I	0 0	
II	N impar (largo par) $\phi_0 = 0$	Simétrica: $h(n) = h(N-n)$	Simétrica: $A(\omega) = A(-\omega)$ Antisimétrica: $A(\omega) = -A(-\omega)$		periodo 4.τ	Si es tipo II Cero en z=-1	• • • • • • • • • • • • • • • • • • • •	
Ш	N par (largo impar) $\phi_0 = \pi/2$	Antisimétrica: $h(n) = -h(N-n)$			periodo 2τ	Si es tipo III Cero en z=1 y z=-1	*	
IV	N impar (largo par) $\phi_0 = \pi/2$	Antisimétrica: $h(n) = -h(N-n)$	0.0000	Antisimétrica: $A(\omega) = -A(-\omega)$ período 4π		Si es tipo IV Cero en z=1	*	
Tipo FLG Ubicación de los ceros en general		de los ceros en general		Función ar	mplitud			
I	Si, z=z,e entonces z=z,*	s un cero de H(z), también son ceros:	,	A (ω) =	$= h(\frac{M-1}{2}) + 2 \sum_{n=0}^{M-1}$	$h(n)\cos\omega\left(\frac{M}{n}\right)$	$\frac{-1}{2}-n$	
II	$z=1/z_{i}$ $z=1/z_{i}^{*}$				$A(\omega) = 2 \sum_{n=0}^{\frac{M}{2}-1} h(n) \cos \omega \left(\frac{M-1}{2} - n \right)$			
Ш		22	$\frac{1}{z_2}$	$A(\omega)$	$=2\sum_{n=0}^{\frac{M-3}{2}}h(n)\sin a$	$\omega\left(\frac{M-1}{2}-n\right)$		
IV		1/23			M -1			

Resumen Filtros FIR

$$A(\omega) = 2\sum_{n=0}^{\frac{M}{2}-1} h(n) \sin \omega \left(\frac{M-1}{2}-n\right)$$
 $A(\omega) = A(\omega)e^{-\jmath\left(\omega \frac{M-1}{2}+\phi\right)}$

- Son filtros con fase lineal generalizada. Sin embargo, esta fase puede representar un retardo muy grande si el orden es alto (por qué?)
- Método de ventaneo: el más sencillo e intuitivo, pero no hay control sobre riple ni banda de transición
- Filtro LS: el diseño sigue un criterio de optimización, pero requiere varias iteraciones para alcanzar las especificaciones
- Filtro equiriple: otro diseño basado en un criterio óptimo. Permite controlar M, ω_p , ω_s , y δ_p/δ_s . Respuesta impulsiva ideal (**no causal**)

Respuesta impulsiva ideal (**no causal**)
$$ha_M(n) = 0.54 - 0.46\cos\left(\frac{2\pi n}{M-1}\right)$$
 Respuesta de la ventana en frecuencia
$$W(\omega) = \frac{\sin\left(\omega\left(\frac{N+1}{2}\right)\right)}{\sin\left(\frac{\omega}{2}\right)}e^{-j\omega\frac{N}{2}} \ H(\omega) = \frac{1}{2\pi}H_d(\omega)*W(\omega)$$

$$h_0[n] = \frac{\sin(\omega_c\,n)}{\pi n} = \frac{\omega_c}{\pi}\operatorname{sinc}\left(\frac{\omega_c}{\pi}\,n\right)$$

Filtro Pasabajo Tipo:

PB a PB
$$z^{-1} \longrightarrow \frac{z^{-1}-a}{1-az^{-1}}$$

$$a = \frac{\sin(\frac{\omega_p - \omega_p'}{2})}{\sin(\frac{\omega_p + \omega_p'}{2})}$$

$$z^{-1} \longrightarrow -\frac{z^{-1}+a}{1+az^{-1}}$$

$$a = \frac{\sin(\frac{\omega_p + \omega_p}{2})}{\sin(\frac{\omega_p + \omega_p'}{2})}$$

$$z^{-1} \longrightarrow -\frac{z^{-1}+a}{1+az^{-1}}$$

$$a = -\frac{\cos(\frac{\omega_p + \omega_p'}{2})}{\cos(\frac{\omega_p - \omega_p'}{2})}$$

$$z^{-1} \longrightarrow -\frac{z^{-2}-a_1z^{-1}+a_2}{a_2z^{-2}-a_1z^{-1}+1}$$

$$a_1 = 2\alpha \frac{\kappa}{\kappa + 1} a_2 = \frac{\kappa - 1}{\kappa + 1}$$

$$\alpha = \frac{\cos(\frac{\omega_u + \omega_l}{2})}{\cos(\frac{\omega_u - \omega_l}{2})}$$

$$\kappa = \cot \frac{\omega_u - \omega_l}{2} \tan \frac{\omega_p}{2}$$

Submuestreo

Sobremuestreo

$$Y(z) = X(z^M)$$

$$W_M = e^{-2\jmath\pi/M}$$

En términos de energía: estoy tomando una muestra ca energía solo sea 1/M del total de muestras.

$$P_k(z^M) = \sum_{n=0}^{+\infty} h(nM + k)z^{-nM}$$

el sobremuestreo no agrego ni quito energía, pues la energía n en las muestras con amplitud distinto de cero, sobremuestr agrega muestras nulas, no cambia la energía total

$$H(z) = \sum_{k=0}^{M-1} P_k(z^M) z^{-k}$$

$$\begin{split} \hat{X}(z) &= \frac{1}{M} \sum_{\ell=0}^{M-1} \sum_{k=0}^{M-1} F_k(z) H_k(z W_M^\ell) X(z W_M^\ell) \\ &= \underbrace{\frac{1}{M} \sum_{k=0}^{M-1} F_k(z) H_k(z)}_{T(z)} X(z) + \sum_{\ell=1}^{M-1} \underbrace{\frac{1}{M} \sum_{k=0}^{M-1} F_k(z) H_k(z W_M^\ell)}_{A_\ell(z)} X(z W_M^\ell) \end{split}$$
 df

$$T(z) = 2P_0(z^2)P_1(z^2)z^{-1} \qquad \xrightarrow{\text{Condición PR}} \qquad T(z) = 2P_0(z^2)P_1(z^2)z^{-1} = c z^{-k}$$
Para que se cumpla la condición PR (FIR):
$$P_0(z) = c_0 z^{-n_0} \qquad P_1(z) = c_1 z^{-n_1}$$

$$H_0(z) = P_0(z^2) + P_1(z^2)z^{-1} = c_0 z^{-2n_0} + c_1 z^{-2n_1}z^{-1}$$

$$H_0(z) = c_0 z^{-2n_0} + c_1 z^{-2n_1-1}$$

Para que sea FLG: c₀ = c y c₄ = c

$$H_0(z) = c z^{-2n_0} + c z^{-2n_1-1} \quad \longrightarrow \quad h_0(n) = c \, \delta(n-2n_0) + c \, \delta(n-2n_1-1)$$