Lab - 3 - Data Exploration

1) First, you need to read the titanic dataset from local disk and display first five records

In [3]:

import pandas as pd

In [4]:

data=pd.read_csv("titanic.csv")

In [5]:

data.head(5)

Out[5]:

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cal
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	N
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	N
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C1
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	N

2) Identify Nominal, Ordinal, Binary and Numeric attributes from data sets and display all values.

```
In [6]:
print("Nominal")
data["Name"]
Nominal
Out[6]:
                                   Braund, Mr. Owen Harris
1
       Cumings, Mrs. John Bradley (Florence Briggs Th...
2
                                    Heikkinen, Miss. Laina
3
            Futrelle, Mrs. Jacques Heath (Lily May Peel)
4
                                 Allen, Mr. William Henry
                                     Montvila, Rev. Juozas
886
                             Graham, Miss. Margaret Edith
887
888
                 Johnston, Miss. Catherine Helen "Carrie"
                                     Behr, Mr. Karl Howell
889
890
                                       Dooley, Mr. Patrick
Name: Name, Length: 891, dtype: object
In [7]:
print("Odinal")
data["Pclass"]
Odinal
Out[7]:
0
       3
1
       1
2
       3
3
       1
4
       3
886
       2
887
       1
888
       3
889
       1
890
Name: Pclass, Length: 891, dtype: int64
```

```
In [8]:
print("Binary")
data["Sex"]
Binary
Out[8]:
0
         male
1
       female
       female
2
3
       female
4
         male
        . . .
         male
886
       female
887
       female
888
         male
889
         male
890
Name: Sex, Length: 891, dtype: object
In [9]:
print("Numeric")
data["PassengerId"]
```

Numeric

```
Out[9]:
```

```
1
           2
1
2
           3
           4
3
4
           5
886
        887
887
        888
888
        889
889
        890
890
        891
```

Name: PassengerId, Length: 891, dtype: int64

3) Identify symmetric and asymmetric binary attributes from data sets and display all values.

```
In [13]:
print("symmetric")
data["Sex"]
symmetric
Out[13]:
         male
1
       female
2
       female
3
       female
         male
         . . .
886
         male
887
       female
888
       female
         male
889
         male
890
Name: Sex, Length: 891, dtype: object
In [14]:
print("asymmetric")
data["Survived"]
asymmetric
Out[14]:
0
       0
1
       1
2
       1
3
       1
4
       0
886
       0
887
       1
       0
888
889
       1
890
Name: Survived, Length: 891, dtype: int64
```

4) For each quantitative attribute, calculate its average, standard deviation, minimum, mode, range and maximum values.

In [25]:

```
PassengerId
         Mean = 446.00
         Standerd deviation = 257.35
         Minimum = 1.00
         Maximum = 891.00
         Range = 890.00
Survived
         Mean = 0.38
         Standerd deviation = 0.49
         Minimum = 0.00
         Maximum = 1.00
         Range = 1.00
         Mode: 0
Pclass
         Mean = 2.31
         Standerd deviation = 0.84
         Minimum = 1.00
         Maximum = 3.00
         Range = 2.00
         Mode: 3
Age
         Mean = 29.70
         Standerd deviation = 14.53
         Minimum = 0.42
         Maximum = 80.00
         Range = 79.58
         Mode: 24.0
SibSp
         Mean = 0.52
         Standerd deviation = 1.10
         Minimum = 0.00
         Maximum = 8.00
         Range = 8.00
         Mode: 0
Parch
         Mean = 0.38
         Standerd deviation = 0.81
         Minimum = 0.00
         Maximum = 6.00
         Range = 6.00
         Mode: 0
Fare
         Mean = 32.20
         Standerd deviation = 49.69
         Minimum = 0.00
```

Maximum = 512.33 Range = 512.33 Mode: 8.05

6) For the qualitative attribute (class), count the frequency for each of its distinct values.

```
In [30]:
data['PassengerId'].value_counts()
Out[30]:
1
       1
599
588
       1
589
       1
590
       1
301
      1
302
       1
303
       1
304
       1
891
       1
Name: PassengerId, Length: 891, dtype: int64
In [31]:
data['Pclass'].value_counts()
Out[31]:
     491
     216
1
2
     184
Name: Pclass, dtype: int64
```

7) It is also possible to display the summary for all the attributes simultaneously in a table using the describe() function. If an attribute is quantitative, it will display its mean, standard deviation and various quantiles (including minimum, median, and maximum) values. If an attribute is qualitative, it will display its number of unique values and the top (most frequent) values.

In [35]:

data.describe(include='all')

Out[35]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch
count	891.000000	891.000000	891.000000	891	891	714.000000	891.000000	891.000000
unique	NaN	NaN	NaN	891	2	NaN	NaN	NaN
top	NaN	NaN	NaN	Braund, Mr. Owen Harris	male	NaN	NaN	NaN
freq	NaN	NaN	NaN	1	577	NaN	NaN	NaN
mean	446.000000	0.383838	2.308642	NaN	NaN	29.699118	0.523008	0.381594
std	257.353842	0.486592	0.836071	NaN	NaN	14.526497	1.102743	0.806057
min	1.000000	0.000000	1.000000	NaN	NaN	0.420000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	NaN	NaN	20.125000	0.000000	0.000000
50%	446.000000	0.000000	3.000000	NaN	NaN	28.000000	0.000000	0.000000
75%	668.500000	1.000000	3.000000	NaN	NaN	38.000000	1.000000	0.000000
max	891.000000	1.000000	3.000000	NaN	NaN	80.000000	8.000000	6.000000

8) For multivariate statistics, you can compute the covariance and correlation between pairs of attributes.

In [37]:

data.cov()

Out[37]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
PassengerId	66231.000000	-0.626966	-7.561798	138.696504	-16.325843	-0.342697	161.883369
Survived	-0.626966	0.236772	-0.137703	-0.551296	-0.018954	0.032017	6.221787
Pclass	-7.561798	-0.137703	0.699015	-4.496004	0.076599	0.012429	-22.830196
Age	138.696504	-0.551296	-4.496004	211.019125	-4.163334	-2.344191	73.849030
SibSp	-16.325843	-0.018954	0.076599	-4.163334	1.216043	0.368739	8.748734
Parch	-0.342697	0.032017	0.012429	-2.344191	0.368739	0.649728	8.661052
Fare	161.883369	6.221787	-22.830196	73.849030	8.748734	8.661052	2469.436846

In [40]:

data.corr()

Out[40]:

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
PassengerId	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067
SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000

9) Display the histogram for Age attribute by discretizing it into 8 separate bins and counting the frequency for each bin.

In [41]:

import matplotlib.pyplot as plt

In [44]:

data['Age'].hist(bins=8)

Out[44]:

<AxesSubplot:>

10) A boxplot can also be used to show the distribution of values for each attribute.

In [50]:

data[['Age','Fare']].boxplot()

Out[50]:

<AxesSubplot:>

11) Display scatter plot for any 5 pair of attributes , we can use a scatter plot to visualize their joint distribution.

In [55]:

plt.scatter(data['Age'],data['Fare'])

Out[55]:

<matplotlib.collections.PathCollection at 0x7fc87805f220>

