

- Presentation of the test case
- Part I: Using the OLTC
- Part II:
  - Using reconfiguration
  - Using VVC



#### Presentation of the test case

• <u>Test case</u>: scenario 1 (G₄ at node 13) at the step time 13h.



Screenshot of the

SCADA system
(PCVue)

- Load 1 and 2 (industrial loads) → asynchronous machines.
  - ✓ The power factor is not equal to 0,4.
  - ✓ It is not constant and varies for small size asynchronous machines regarding the value of the active power and the quality of the voltage waveform.
- L<sub>6</sub>, L<sub>7</sub>, L<sub>9</sub> at 0,6 kW and L<sub>10</sub> at 0,8 kW
  - ✓ The values of these loads are not remotely accessible to the SCADA system,
  - ✓ The steps of variation of these loads are discrete: for  $L_6$ ,  $L_7$ ,  $L_9$ , the step size is 0,2 kW and for  $L_{10}$  it is 0,4 kW. That is why we cannot put 0,6 kW for  $L_{10}$ .



- Presentation of the test case
- Part I: Using the OLTC
- Part II:
  - Using reconfiguration
  - Using VVC



#### Using the OLTC





## Using the OLTC

# Compute the error between measurement and simulation using the following formula

$$Error\left(\%\right) = \frac{U_S(N_i) - mean(U_{Ekl}(Ni))}{V_S(N_i)} \times 100, k \neq l$$

#### With:

- U<sub>S</sub>(N<sub>i</sub>) = Voltage gotten with the simulation at node i
- $U_{Ekl}(N_i)$  = Voltage gotten with the experimentation at node i between phase k and I



- Presentation of the test case
- Part I: Using the OLTC
- Part II:
  - Using reconfiguration
  - Using VVC



#### Using the reconfiguration

Using the reconfiguration pushbutton, find the optimal configuration for the following inputs



 $L_6$ ,  $L_7$ ,  $L_9$  at 0,6 kW  $L_{10}$  at 0,8 kW Measure of  $G_3$  at node 10

- Optimal configuration found: 4, 6, 7, 8, 15
- It can be noticed that power losses decreases and the voltage profile is better even if there is a small overvoltage. This problem can be adjust using the OLTC.



#### Using the reconfiguration





- Presentation of the test case
- Part I: Using the OLTC
- Part II:
  - Using reconfiguration
  - Using VVC



# Using the VVC

#### Using the VVC pushbutton, find the reactive power of G<sub>4</sub> for the following inputs



 $L_6$ ,  $L_7$ ,  $L_9$  at 0,6 kW  $L_{10}$  at 0,8 kW Measure of  $G_3$  at node 10

- Settings of transformers : 416 V, 400 V, 380 V
- $Q_{G4} = -0.3734 \text{ kVAr}$



### Using the VVC





 $L_6$ ,  $L_7$ ,  $L_9$  at 0,6 kW  $L_{10}$  at 0,8 kW Measure of  $G_3$  at node 10

Autotransformer 1 local Voltage 418.9 V To node 2 Autotransformer 2 local Voltage 398.4 V To node 3 Autotransformer 3 local Voltage 380 V To node 11