

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MAT A07 - Álgebra Linear A Aula 15

Espaços Vetoriais e Subespaços:

Bases, Coordenadas, Matriz Mudança de Base

Professora: Isamara C. Alves

Data: 03/11/2020

Base - Coordenadas de um vetor

Exemplo: Sejam
$$\mathcal{W}_1 = \{u = (x,y) \in \mathbb{R}^2 | y = x\}$$

Base - Coordenadas de um vetor

EXEMPLO: Sejam
$$\mathcal{W}_1 = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$$
 e $\mathcal{W}_2 = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$

Base - Coordenadas de um vetor

EXEMPLO: Sejam $W_1 = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ e $W_2 = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ subespaços vetoriais do $\mathcal{V} = \mathbb{R}^2$

Base - Coordenadas de um vetor

EXEMPLO: Sejam $W_1 = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ e $W_2 = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ subespaços vetoriais do $V = \mathbb{R}^2$ e sejam $\beta_V = \{u_1, u_2\}$ e

Base - Coordenadas de um vetor

EXEMPLO: Sejam $\mathcal{W}_1 = \{u = (x,y) \in \mathbb{R}^2 | y = x\}$ e $\mathcal{W}_2 = \{u = (x,y) \in \mathbb{R}^2 | y = -x\}$ subespaços vetoriais do $\mathcal{V} = \mathbb{R}^2$ e sejam $\beta_{\mathcal{V}} = \{u_1, u_2\}$ e $\beta_{\mathcal{V}}^{'} = \{u_2, u_3\}$.

Base - Coordenadas de um vetor

EXEMPLO: Sejam $\mathcal{W}_1 = \{u = (x,y) \in \mathbb{R}^2 | y = x\}$ e $\mathcal{W}_2 = \{u = (x,y) \in \mathbb{R}^2 | y = -x\}$ subespaços vetoriais do $\mathcal{V} = \mathbb{R}^2$ e sejam $\beta_{\mathcal{V}} = \{u_1, u_2\}$ e $\beta_{\mathcal{V}}' = \{u_2, u_3\}$.

Base - Coordenadas de um vetor

EXEMPLO: Sejam $W_1 = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ e $W_2 = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ subespaços vetoriais do $V = \mathbb{R}^2$ e sejam $\beta_{\mathcal{V}} = \{u_1, u_2\}$ e $\beta_{\mathcal{V}}^{'} = \{u_2, u_3\}$.

Figura: $v_1 \in \mathcal{W}_1$ e $v_2 \in \mathcal{W}_2$.

Base - Coordenadas de um vetor

Exemplo: Sejam
$$\mathcal{W}_1 = \{u = (x,y) \in \mathbb{R}^2 | y = x\}$$

Base - Coordenadas de um vetor

EXEMPLO: Sejam
$$\mathcal{W}_1 = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$$
 e $\mathcal{W}_2 = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$

Base - Coordenadas de um vetor

EXEMPLO: Sejam $W_1 = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ e $W_2 = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ subespaços vetoriais do $\mathcal{V} = \mathbb{R}^2$

Base - Coordenadas de um vetor

EXEMPLO: Sejam $W_1 = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ e $W_2 = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ subespaços vetoriais do $V = \mathbb{R}^2$ e sejam $\beta_{\mathcal{V}} = \{u_1, u_2\}$ e

Base - Coordenadas de um vetor

EXEMPLO: Sejam $\mathcal{W}_1 = \{u = (x,y) \in \mathbb{R}^2 | y = x\}$ e $\mathcal{W}_2 = \{u = (x,y) \in \mathbb{R}^2 | y = -x\}$ subespaços vetoriais do $\mathcal{V} = \mathbb{R}^2$ e sejam $\beta_{\mathcal{V}} = \{u_1, u_2\}$ e $\beta_{\mathcal{V}}^{'} = \{u_2, u_3\}$.

Base - Coordenadas de um vetor

EXEMPLO: Sejam $\mathcal{W}_1 = \{u = (x,y) \in \mathbb{R}^2 | y = x\}$ e $\mathcal{W}_2 = \{u = (x,y) \in \mathbb{R}^2 | y = -x\}$ subespaços vetoriais do $\mathcal{V} = \mathbb{R}^2$ e sejam $\beta_{\mathcal{V}} = \{u_1, u_2\}$ e $\beta_{\mathcal{V}}' = \{u_2, u_3\}$.

Base - Coordenadas de um vetor

EXEMPLO: Sejam $W_1 = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ e $W_2 = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ subespaços vetoriais do $V = \mathbb{R}^2$ e sejam $\beta_{\mathcal{V}} = \{u_1, u_2\}$ e $\beta_{\mathcal{V}}^{'} = \{u_2, u_3\}$.

Figura: Coordenadas de v_1 e v_2 em relação às bases $\beta_{\mathcal{V}}$ e $\beta_{\mathcal{V}}^{'}$.

Base - Coordenadas de um vetor

TEOREMA:

Base - Coordenadas de um vetor

TEOREMA:

Seja ${\mathcal V}$ um espaço vetorial de **dimensão finita**, sobre o corpo ${\mathbb K};$

Base - Coordenadas de um vetor

TEOREMA:

Seja $\mathcal V$ um espaço vetorial de **dimensão finita**, sobre o corpo $\mathbb K$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma BASE ORDENADA de $\mathcal V$.

Base - Coordenadas de um vetor

TEOREMA:

Seja $\mathcal V$ um espaço vetorial de **dimensão finita**, sobre o corpo $\mathbb K$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma BASE ORDENADA de $\mathcal V$.

Então, $\forall u \in \mathcal{V}$; u é escrito de forma única

Base - Coordenadas de um vetor

TEOREMA:

Seja $\mathcal V$ um espaço vetorial de **dimensão finita**, sobre o corpo $\mathbb K$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma BASE ORDENADA de $\mathcal V$.

Então, $\forall u \in \mathcal{V}$; u é escrito de forma única como combinação linear dos elementos de $\beta_{\mathcal{V}}$.

Base - Coordenadas de um vetor

TEOREMA:

Seja $\mathcal V$ um espaço vetorial de **dimensão finita**, sobre o corpo $\mathbb K$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma BASE ORDENADA de $\mathcal V$. Então, $\forall u\in\mathcal V$; u **é escrito de forma única como combinação linear dos elementos de** $\beta_{\mathcal V}$.

Isto é, $\forall u \in \mathcal{V}$,

Base - Coordenadas de um vetor

TEOREMA:

Seja $\mathcal V$ um espaço vetorial de **dimensão finita**, sobre o corpo $\mathbb K$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma BASE ORDENADA de $\mathcal V$. Então, $\forall u\in \mathcal V$; u **é escrito de forma única como combinação linear dos elementos de** $\beta_{\mathcal V}$.

Isto é, $\forall u \in \mathcal{V}$, existe uma única n-upla $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$; tais que,

Base - Coordenadas de um vetor

TEOREMA:

Seja $\mathcal V$ um espaço vetorial de **dimensão finita**, sobre o corpo $\mathbb K$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma BASE ORDENADA de $\mathcal V$.

Então, $\forall u \in \mathcal{V}$; u é escrito de forma única como combinação linear dos elementos de $\beta_{\mathcal{V}}$.

Isto é, $\forall u \in \mathcal{V}$, existe uma única n-upla $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$; tais que,

$$u = \sum_{i=1}^{n} \lambda_i v_i.$$

Base - Coordenadas de um vetor

TEOREMA:

Seja $\mathcal V$ um espaço vetorial de **dimensão finita**, sobre o corpo $\mathbb K$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma BASE ORDENADA de $\mathcal V$.

Então, $\forall u \in \mathcal{V}$; u é escrito de forma única como combinação linear dos elementos de $\beta_{\mathcal{V}}$.

Isto é, $\forall u \in \mathcal{V}$, existe uma única n-upla $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$; tais que,

$$u = \sum_{i=1}^{n} \lambda_i v_i.$$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Definição:

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Definição:

Seja ${\mathcal V}$ um espaço vetorial, de **dimensão finita**, sobre o corpo ${\mathbb K}$,

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Definição:

Seja $\mathcal V$ um espaço vetorial, de **dimensão finita**, sobre o corpo $\mathbb K$, e seja $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada qualquer de $\mathcal V$.

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Definição:

Seja $\mathcal V$ um espaço vetorial, de **dimensão finita**, sobre o corpo $\mathbb K$, e seja $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada qualquer de $\mathcal V$.

Dada a combinação linear, $\forall u \in \mathcal{V}$,

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Definição:

Seja \mathcal{V} um espaço vetorial, de **dimensão finita**, sobre o corpo \mathbb{K} , e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada qualquer de \mathcal{V} .

Dada a combinação linear, $\forall u \in \mathcal{V}$, $u = \sum_{i=1}^{n} \lambda_i v_i$; $\forall \lambda_i \in \mathbb{K}$;

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Definição:

Seja \mathcal{V} um espaço vetorial, de **dimensão finita**, sobre o corpo \mathbb{K} , e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada qualquer de \mathcal{V} .

Dada a combinação linear, $\forall u \in \mathcal{V}$, $u = \sum_{i=1}^{n} \lambda_i v_i$; $\forall \lambda_i \in \mathbb{K}$; dizemos que λ_i

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Definição:

Seja \mathcal{V} um espaço vetorial, de **dimensão finita**, sobre o corpo \mathbb{K} , e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada qualquer de \mathcal{V} .

Dada a combinação linear, $\forall u \in \mathcal{V}$, $u = \sum_{i=1}^{n} \lambda_i v_i$; $\forall \lambda_i \in \mathbb{K}$; dizemos que λ_i é a i-ÉSIMA COORDENADA DO VETOR u

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Definição:

Seja \mathcal{V} um espaço vetorial, de **dimensão finita**, sobre o corpo \mathbb{K} , e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada qualquer de \mathcal{V} .

Dada a combinação linear, $\forall u \in \mathcal{V}$, $u = \sum_{i=1}^{n} \lambda_i v_i$; $\forall \lambda_i \in \mathbb{K}$; dizemos que λ_i é a i-ÉSIMA COORDENADA DO VETOR u em relação à base $\beta_{\mathcal{V}}$.

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Definição:

Seja $\mathcal V$ um espaço vetorial, de **dimensão finita**, sobre o corpo $\mathbb K$, e seja $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada qualquer de $\mathcal V$.

Dada a combinação linear, $\forall u \in \mathcal{V}$, $u = \sum_{i=1}^{n} \lambda_i v_i$; $\forall \lambda_i \in \mathbb{K}$; dizemos que λ_i é a i-ÉSIMA COORDENADA DO VETOR u em relação à base $\beta_{\mathcal{V}}$.

E ainda, denotamos por $[u]_{\beta_{\mathcal{V}}}$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Definição:

Seja \mathcal{V} um espaço vetorial, de **dimensão finita**, sobre o corpo \mathbb{K} , e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada qualquer de \mathcal{V} .

Dada a combinação linear, $\forall u \in \mathcal{V}$, $u = \sum_{i=1}^{n} \lambda_i v_i$; $\forall \lambda_i \in \mathbb{K}$; dizemos que λ_i é a i-ÉSIMA COORDENADA DO VETOR u em relação à base $\beta_{\mathcal{V}}$.

E ainda, denotamos por $[u]_{\beta_{\mathcal{V}}}$ e denominamos MATRIZ DAS COORDENADAS DO VETOR u em relação à base ordenada $\beta_{\mathcal{V}}$;

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Definição:

Seja $\mathcal V$ um espaço vetorial, de **dimensão finita**, sobre o corpo $\mathbb K$, e seja $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada qualquer de $\mathcal V$.

Dada a combinação linear, $\forall u \in \mathcal{V}$, $u = \sum_{i=1}^{n} \lambda_i v_i$; $\forall \lambda_i \in \mathbb{K}$; dizemos que λ_i é a i-ÉSIMA COORDENADA DO VETOR u em relação à base $\beta_{\mathcal{V}}$.

E ainda, denotamos por $[u]_{\beta_{\mathcal{V}}}$ e denominamos MATRIZ DAS COORDENADAS DO VETOR u em relação à base ordenada $\beta_{\mathcal{V}}$; a matriz coluna $n \times 1$ cuja i-èsima linha é formada pela coordenada $\lambda_i, i = 1, \ldots, n$; ou seja,

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Definição:

Seja $\mathcal V$ um espaço vetorial, de **dimensão finita**, sobre o corpo $\mathbb K$, e seja $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ uma base ordenada qualquer de $\mathcal V$.

Dada a combinação linear, $\forall u \in \mathcal{V}$, $u = \sum_{i=1}^{n} \lambda_i v_i$; $\forall \lambda_i \in \mathbb{K}$; dizemos que λ_i é a i-ÉSIMA COORDENADA DO VETOR u em relação à base $\beta_{\mathcal{V}}$.

E ainda, denotamos por $[u]_{\beta_{\mathcal{V}}}$ e denominamos MATRIZ DAS COORDENADAS DO VETOR u em relação à base ordenada $\beta_{\mathcal{V}}$; a matriz coluna $n \times 1$ cuja i-èsima linha é formada pela coordenada $\lambda_i, i = 1, \ldots, n$; ou seja,

$$[u]_{eta_{\mathcal{V}}}$$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Definição:

Seja \mathcal{V} um espaço vetorial, de **dimensão finita**, sobre o corpo \mathbb{K} , e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada qualquer de \mathcal{V} .

Dada a combinação linear, $\forall u \in \mathcal{V}$, $u = \sum_{i=1}^{n} \lambda_i v_i$; $\forall \lambda_i \in \mathbb{K}$; dizemos que λ_i é a i-ÉSIMA COORDENADA DO VETOR u em relação à base $\beta_{\mathcal{V}}$.

E ainda, denotamos por $[u]_{\beta_{\mathcal{V}}}$ e denominamos MATRIZ DAS COORDENADAS DO VETOR u em relação à base ordenada $\beta_{\mathcal{V}}$; a matriz coluna $n \times 1$ cuja i-èsima linha é formada pela coordenada $\lambda_i, i = 1, \ldots, n$; ou seja,

$$[u]_{\beta_{\mathcal{V}}} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix}.$$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Definição:

Seja \mathcal{V} um espaço vetorial, de **dimensão finita**, sobre o corpo \mathbb{K} , e seja $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada qualquer de \mathcal{V} .

Dada a combinação linear, $\forall u \in \mathcal{V}$, $u = \sum_{i=1}^{n} \lambda_i v_i$; $\forall \lambda_i \in \mathbb{K}$; dizemos que λ_i é a i-ÉSIMA COORDENADA DO VETOR u em relação à base $\beta_{\mathcal{V}}$.

E ainda, denotamos por $[u]_{\beta_{\mathcal{V}}}$ e denominamos MATRIZ DAS COORDENADAS DO VETOR u em relação à base ordenada $\beta_{\mathcal{V}}$; a matriz coluna $n \times 1$ cuja i-èsima linha é formada pela coordenada $\lambda_i, i = 1, \ldots, n$; ou seja,

$$[u]_{\beta_{\mathcal{V}}} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix}.$$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Coordenadas de $u \in \mathcal{V}$ em relação à Base

EXEMPLO.1: Seja $V = \mathcal{P}_2(\mathbb{R})$;

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Seja
$$\mathcal{V}=\mathcal{P}_2(\mathbb{R})$$
; sejam $eta_{\mathcal{P}_2(\mathbb{R})}=\{t+t^2,3t,2-t\}$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Seja
$$\mathcal{V}=\mathcal{P}_{2}(\mathbb{R})$$
; sejam $eta_{\mathcal{P}_{2}(\mathbb{R})}=\{t+t^{2},3t,2-t\}$ e $eta_{\mathcal{P}_{2}(\mathbb{R})}^{'}=\{1,t,t^{2}\}$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Seja
$$\mathcal{V} = \mathcal{P}_2(\mathbb{R})$$
; sejam $\beta_{\mathcal{P}_2(\mathbb{R})} = \{t + t^2, 3t, 2 - t\}$ e $\beta'_{\mathcal{P}_2(\mathbb{R})} = \{1, t, t^2\}$ duas bases ordenadas de \mathcal{V} :

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Seja
$$\mathcal{V}=\mathcal{P}_{2}(\mathbb{R})$$
; sejam $\beta_{\mathcal{P}_{2}(\mathbb{R})}=\{t+t^{2},3t,2-t\}$ e $\beta_{\mathcal{P}_{2}(\mathbb{R})}^{'}=\{1,t,t^{2}\}$ duas bases ordenadas de \mathcal{V} ; e seja $\rho(t)=2+5t^{2}\in\mathcal{P}_{2}(\mathbb{R})$.

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Seja
$$\mathcal{V}=\mathcal{P}_{2}(\mathbb{R})$$
; sejam $\beta_{\mathcal{P}_{2}(\mathbb{R})}=\{t+t^{2},3t,2-t\}$ e $\beta_{\mathcal{P}_{2}(\mathbb{R})}^{'}=\{1,t,t^{2}\}$ duas bases ordenadas de \mathcal{V} ; e seja $\rho(t)=2+5t^{2}\in\mathcal{P}_{2}(\mathbb{R})$.

Então,
$$p(t) = 2 + 5t^2 =$$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Seja
$$\mathcal{V}=\mathcal{P}_2(\mathbb{R})$$
; sejam $\beta_{\mathcal{P}_2(\mathbb{R})}=\{t+t^2,3t,2-t\}$ e $\beta_{\mathcal{P}_2(\mathbb{R})}^{'}=\{1,t,t^2\}$ duas bases ordenadas de \mathcal{V} ; e seja $p(t)=2+5t^2\in\mathcal{P}_2(\mathbb{R})$.

$$p(t) = 2 + 5t^2 = \alpha_1(t + t^2) +$$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Seja
$$\mathcal{V}=\mathcal{P}_{2}(\mathbb{R})$$
; sejam $\beta_{\mathcal{P}_{2}(\mathbb{R})}=\{t+t^{2},3t,2-t\}$ e $\beta_{\mathcal{P}_{2}(\mathbb{R})}^{'}=\{1,t,t^{2}\}$ duas bases ordenadas de \mathcal{V} ; e seja $p(t)=2+5t^{2}\in\mathcal{P}_{2}(\mathbb{R})$.

$$p(t) = 2 + 5t^2 = \alpha_1(t + t^2) + \alpha_2(3t)$$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

Seja
$$\mathcal{V}=\mathcal{P}_{2}(\mathbb{R})$$
; sejam $\beta_{\mathcal{P}_{2}(\mathbb{R})}=\{t+t^{2},3t,2-t\}$ e $\beta_{\mathcal{P}_{2}(\mathbb{R})}^{'}=\{1,t,t^{2}\}$ duas bases ordenadas de \mathcal{V} ; e seja $p(t)=2+5t^{2}\in\mathcal{P}_{2}(\mathbb{R})$.

$$p(t) = 2 + 5t^2 = \alpha_1(t + t^2) + \alpha_2(3t) + \alpha_3(2 - t)$$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathcal{P}_2(\mathbb{R})$$
; sejam $\beta_{\mathcal{P}_2(\mathbb{R})}=\{t+t^2,3t,2-t\}$ e $\beta_{\mathcal{P}_2(\mathbb{R})}^{'}=\{1,t,t^2\}$ duas bases ordenadas de \mathcal{V} ; e seja $p(t)=2+5t^2\in\mathcal{P}_2(\mathbb{R})$.

$$p(t) = 2 + 5t^2 = \alpha_1(t + t^2) + \alpha_2(3t) + \alpha_3(2 - t) \Rightarrow 2\alpha_3 = 2;$$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathcal{P}_{2}(\mathbb{R})$$
; sejam $\beta_{\mathcal{P}_{2}(\mathbb{R})}=\{t+t^{2},3t,2-t\}$ e $\beta_{\mathcal{P}_{2}(\mathbb{R})}^{'}=\{1,t,t^{2}\}$ duas bases ordenadas de \mathcal{V} ; e seja $\rho(t)=2+5t^{2}\in\mathcal{P}_{2}(\mathbb{R})$.

$$p(t) = 2 + 5t^2 = \alpha_1(t + t^2) + \alpha_2(3t) + \alpha_3(2 - t) \Rightarrow 2\alpha_3 = 2; (\alpha_1 + 3\alpha_2 - \alpha_3) = 0;$$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathcal{P}_2(\mathbb{R})$$
; sejam $\beta_{\mathcal{P}_2(\mathbb{R})}=\{t+t^2,3t,2-t\}$ e $\beta_{\mathcal{P}_2(\mathbb{R})}^{'}=\{1,t,t^2\}$ duas bases ordenadas de \mathcal{V} ; e seja $\rho(t)=2+5t^2\in\mathcal{P}_2(\mathbb{R})$.

$$p(t) = 2 + 5t^2 = \alpha_1(t + t^2) + \alpha_2(3t) + \alpha_3(2 - t) \Rightarrow 2\alpha_3 = 2; (\alpha_1 + 3\alpha_2 - \alpha_3) = 0; \alpha_1 = 5;$$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathcal{P}_2(\mathbb{R})$$
; sejam $\beta_{\mathcal{P}_2(\mathbb{R})}=\{t+t^2,3t,2-t\}$ e $\beta_{\mathcal{P}_2(\mathbb{R})}^{'}=\{1,t,t^2\}$ duas bases ordenadas de \mathcal{V} ; e seja $p(t)=2+5t^2\in\mathcal{P}_2(\mathbb{R})$.

$$p(t) = 2 + 5t^2 = \alpha_1(t + t^2) + \alpha_2(3t) + \alpha_3(2 - t) \Rightarrow 2\alpha_3 = 2; (\alpha_1 + 3\alpha_2 - \alpha_3) = 0; \alpha_1 = 5;$$

$$\Rightarrow \alpha_1 = 5; \alpha_3 = 1; \alpha_2 = -\frac{4}{3}$$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

EXEMPLO 1.

Seja
$$\mathcal{V}=\mathcal{P}_2(\mathbb{R})$$
; sejam $\beta_{\mathcal{P}_2(\mathbb{R})}=\{t+t^2,3t,2-t\}$ e $\beta_{\mathcal{P}_2(\mathbb{R})}'=\{1,t,t^2\}$ duas bases ordenadas de \mathcal{V} ; e seja $\rho(t)=2+5t^2\in\mathcal{P}_2(\mathbb{R})$.

Então.

$$p(t) = 2 + 5t^{2} = \alpha_{1}(t + t^{2}) + \alpha_{2}(3t) + \alpha_{3}(2 - t) \Rightarrow 2\alpha_{3} = 2; (\alpha_{1} + 3\alpha_{2} - \alpha_{3}) = 0; \alpha_{1} = 5;$$
$$\Rightarrow \alpha_{1} = 5; \alpha_{3} = 1; \alpha_{2} = -\frac{4}{3} \Rightarrow [p(t)]_{\beta_{\mathcal{P}_{2}(\mathbb{R})}} = \begin{bmatrix} 5\\ -\frac{4}{3}\\ 1 \end{bmatrix}$$

$$\Rightarrow \alpha_1 = 5; \alpha_3 = 1; \alpha_2 = -\frac{4}{3} \Rightarrow [p(t)]_{\beta_{\mathcal{P}_2(\mathbb{R})}} = \begin{bmatrix} 5 \\ -\frac{4}{3} \\ 1 \end{bmatrix}$$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathcal{P}_2(\mathbb{R})$$
; sejam $\beta_{\mathcal{P}_2(\mathbb{R})}=\{t+t^2,3t,2-t\}$ e $\beta_{\mathcal{P}_2(\mathbb{R})}'=\{1,t,t^2\}$ duas bases ordenadas de \mathcal{V} ; e seja $\rho(t)=2+5t^2\in\mathcal{P}_2(\mathbb{R})$.

$$p(t) = 2 + 5t^{2} = \alpha_{1}(t + t^{2}) + \alpha_{2}(3t) + \alpha_{3}(2 - t) \Rightarrow 2\alpha_{3} = 2; (\alpha_{1} + 3\alpha_{2} - \alpha_{3}) = 0; \alpha_{1} = 5;$$

$$\Rightarrow \alpha_{1} = 5; \alpha_{3} = 1; \alpha_{2} = -\frac{4}{3} \Rightarrow [p(t)]_{\beta_{\mathcal{P}_{2}(\mathbb{R})}} = \begin{bmatrix} 5\\ -\frac{4}{3}\\ 1 \end{bmatrix}$$

$$p(t) = 2 + 5t^2 =$$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathcal{P}_2(\mathbb{R})$$
; sejam $\beta_{\mathcal{P}_2(\mathbb{R})}=\{t+t^2,3t,2-t\}$ e $\beta_{\mathcal{P}_2(\mathbb{R})}'=\{1,t,t^2\}$ duas bases ordenadas de \mathcal{V} ; e seja $\rho(t)=2+5t^2\in\mathcal{P}_2(\mathbb{R})$.

$$p(t) = 2 + 5t^{2} = \alpha_{1}(t + t^{2}) + \alpha_{2}(3t) + \alpha_{3}(2 - t) \Rightarrow 2\alpha_{3} = 2; (\alpha_{1} + 3\alpha_{2} - \alpha_{3}) = 0; \alpha_{1} = 5;$$

$$\Rightarrow \alpha_{1} = 5; \alpha_{3} = 1; \alpha_{2} = -\frac{4}{3} \Rightarrow [p(t)]_{\beta_{\mathcal{P}_{2}(\mathbb{R})}} = \begin{bmatrix} 5\\ -\frac{4}{3}\\ 1 \end{bmatrix}$$

$$p(t) = 2 + 5t^2 = \lambda_1 1 +$$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathcal{P}_2(\mathbb{R})$$
; sejam $\beta_{\mathcal{P}_2(\mathbb{R})}=\{t+t^2,3t,2-t\}$ e $\beta_{\mathcal{P}_2(\mathbb{R})}^{'}=\{1,t,t^2\}$ duas bases ordenadas de \mathcal{V} ; e seja $\rho(t)=2+5t^2\in\mathcal{P}_2(\mathbb{R})$.

$$p(t) = 2 + 5t^{2} = \alpha_{1}(t + t^{2}) + \alpha_{2}(3t) + \alpha_{3}(2 - t) \Rightarrow 2\alpha_{3} = 2; (\alpha_{1} + 3\alpha_{2} - \alpha_{3}) = 0; \alpha_{1} = 5;$$

$$\Rightarrow \alpha_{1} = 5; \alpha_{3} = 1; \alpha_{2} = -\frac{4}{3} \Rightarrow [p(t)]_{\beta_{\mathcal{P}_{2}(\mathbb{R})}} = \begin{bmatrix} 5\\ -\frac{4}{3}\\ 1 \end{bmatrix}$$

$$p(t) = 2 + 5t^2 = \lambda_1 1 + \lambda_2 t$$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathcal{P}_2(\mathbb{R})$$
; sejam $\beta_{\mathcal{P}_2(\mathbb{R})}=\{t+t^2,3t,2-t\}$ e $\beta_{\mathcal{P}_2(\mathbb{R})}^{'}=\{1,t,t^2\}$ duas bases ordenadas de \mathcal{V} ; e seja $\rho(t)=2+5t^2\in\mathcal{P}_2(\mathbb{R})$.

$$p(t) = 2 + 5t^{2} = \alpha_{1}(t + t^{2}) + \alpha_{2}(3t) + \alpha_{3}(2 - t) \Rightarrow 2\alpha_{3} = 2; (\alpha_{1} + 3\alpha_{2} - \alpha_{3}) = 0; \alpha_{1} = 5;$$

$$\Rightarrow \alpha_{1} = 5; \alpha_{3} = 1; \alpha_{2} = -\frac{4}{3} \Rightarrow [p(t)]_{\beta_{\mathcal{P}_{2}(\mathbb{R})}} = \begin{bmatrix} 5\\ -\frac{4}{3}\\ 1 \end{bmatrix}$$

$$p(t) = 2 + 5t^2 = \lambda_1 1 + \lambda_2 t + \lambda_3 t^2$$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathcal{P}_2(\mathbb{R})$$
; sejam $\beta_{\mathcal{P}_2(\mathbb{R})}=\{t+t^2,3t,2-t\}$ e $\beta_{\mathcal{P}_2(\mathbb{R})}^{'}=\{1,t,t^2\}$ duas bases ordenadas de \mathcal{V} ; e seja $\rho(t)=2+5t^2\in\mathcal{P}_2(\mathbb{R})$.

$$p(t) = 2 + 5t^{2} = \alpha_{1}(t + t^{2}) + \alpha_{2}(3t) + \alpha_{3}(2 - t) \Rightarrow 2\alpha_{3} = 2; (\alpha_{1} + 3\alpha_{2} - \alpha_{3}) = 0; \alpha_{1} = 5;$$
$$\Rightarrow \alpha_{1} = 5; \alpha_{3} = 1; \alpha_{2} = -\frac{4}{3} \Rightarrow [p(t)]_{\beta_{\mathcal{P}_{2}(\mathbb{R})}} = \begin{bmatrix} 5\\ -\frac{4}{3}\\ 1 \end{bmatrix}$$

$$p(t) = 2 + 5t^2 = \lambda_1 1 + \lambda_2 t + \lambda_3 t^2 \Rightarrow \lambda_1 = 2;$$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathcal{P}_2(\mathbb{R})$$
; sejam $\beta_{\mathcal{P}_2(\mathbb{R})}=\{t+t^2,3t,2-t\}$ e $\beta_{\mathcal{P}_2(\mathbb{R})}^{'}=\{1,t,t^2\}$ duas bases ordenadas de \mathcal{V} ; e seja $\rho(t)=2+5t^2\in\mathcal{P}_2(\mathbb{R})$.

$$p(t) = 2 + 5t^{2} = \alpha_{1}(t + t^{2}) + \alpha_{2}(3t) + \alpha_{3}(2 - t) \Rightarrow 2\alpha_{3} = 2; (\alpha_{1} + 3\alpha_{2} - \alpha_{3}) = 0; \alpha_{1} = 5;$$
$$\Rightarrow \alpha_{1} = 5; \alpha_{3} = 1; \alpha_{2} = -\frac{4}{3} \Rightarrow [p(t)]_{\beta_{\mathcal{P}_{2}(\mathbb{R})}} = \begin{bmatrix} 5\\ -\frac{4}{3}\\ 1 \end{bmatrix}$$

$$p(t) = 2 + 5t^2 = \lambda_1 1 + \lambda_2 t + \lambda_3 t^2 \Rightarrow \lambda_1 = 2; \lambda_2 = 0;$$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathcal{P}_2(\mathbb{R})$$
; sejam $\beta_{\mathcal{P}_2(\mathbb{R})}=\{t+t^2,3t,2-t\}$ e $\beta_{\mathcal{P}_2(\mathbb{R})}^{'}=\{1,t,t^2\}$ duas bases ordenadas de \mathcal{V} ; e seja $\rho(t)=2+5t^2\in\mathcal{P}_2(\mathbb{R})$.

$$p(t) = 2 + 5t^{2} = \alpha_{1}(t + t^{2}) + \alpha_{2}(3t) + \alpha_{3}(2 - t) \Rightarrow 2\alpha_{3} = 2; (\alpha_{1} + 3\alpha_{2} - \alpha_{3}) = 0; \alpha_{1} = 5;$$
$$\Rightarrow \alpha_{1} = 5; \alpha_{3} = 1; \alpha_{2} = -\frac{4}{3} \Rightarrow [p(t)]_{\beta_{\mathcal{P}_{2}(\mathbb{R})}} = \begin{bmatrix} 5\\ -\frac{4}{3}\\ 1 \end{bmatrix}$$

$$p(t) = 2 + 5t^2 = \lambda_1 1 + \lambda_2 t + \lambda_3 t^2 \Rightarrow \lambda_1 = 2; \lambda_2 = 0; \lambda_3 = 5$$

Coordenadas de $u \in \mathcal{V}$ em relação à Base

EXEMPLO 1.

Seja
$$\mathcal{V}=\mathcal{P}_2(\mathbb{R})$$
; sejam $\beta_{\mathcal{P}_2(\mathbb{R})}=\{t+t^2,3t,2-t\}$ e $\beta_{\mathcal{P}_2(\mathbb{R})}^{'}=\{1,t,t^2\}$ duas bases ordenadas de \mathcal{V} ; e seja $p(t)=2+5t^2\in\mathcal{P}_2(\mathbb{R})$.

Então.

$$p(t) = 2 + 5t^{2} = \alpha_{1}(t + t^{2}) + \alpha_{2}(3t) + \alpha_{3}(2 - t) \Rightarrow 2\alpha_{3} = 2; (\alpha_{1} + 3\alpha_{2} - \alpha_{3}) = 0; \alpha_{1} = 5;$$

$$\Rightarrow \alpha_{1} = 5; \alpha_{3} = 1; \alpha_{2} = -\frac{4}{3} \Rightarrow [p(t)]_{\beta_{\mathcal{P}_{2}(\mathbb{R})}} = \begin{bmatrix} 5\\ -\frac{4}{3}\\ 1 \end{bmatrix}$$

$$\Rightarrow \alpha_1 = 5; \alpha_3 = 1; \alpha_2 = -\frac{4}{3} \Rightarrow [p(t)]_{\beta_{\mathcal{P}_2(\mathbb{R})}} = \begin{bmatrix} 5 \\ -\frac{4}{3} \\ 1 \end{bmatrix}$$

$$p(t) = 2 + 5t^2 = \lambda_1 1 + \lambda_2 t + \lambda_3 t^2 \Rightarrow \lambda_1 = 2; \lambda_2 = 0; \lambda_3 = 5 \Rightarrow [p(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} = \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}.$$

MAT A07 - Álgebra Linear A - Semestre Letivo Suplementar - 2020

Coordenadas de $u \in \mathcal{V}$ em relação à Base

EXEMPLO 1.

Seja
$$\mathcal{V}=\mathcal{P}_2(\mathbb{R})$$
; sejam $\beta_{\mathcal{P}_2(\mathbb{R})}=\{t+t^2,3t,2-t\}$ e $\beta_{\mathcal{P}_2(\mathbb{R})}^{'}=\{1,t,t^2\}$ duas bases ordenadas de \mathcal{V} ; e seja $p(t)=2+5t^2\in\mathcal{P}_2(\mathbb{R})$.

Então.

$$p(t) = 2 + 5t^{2} = \alpha_{1}(t + t^{2}) + \alpha_{2}(3t) + \alpha_{3}(2 - t) \Rightarrow 2\alpha_{3} = 2; (\alpha_{1} + 3\alpha_{2} - \alpha_{3}) = 0; \alpha_{1} = 5;$$

$$\Rightarrow \alpha_{1} = 5; \alpha_{3} = 1; \alpha_{2} = -\frac{4}{3} \Rightarrow [p(t)]_{\beta_{\mathcal{P}_{2}(\mathbb{R})}} = \begin{bmatrix} 5\\ -\frac{4}{3}\\ 1 \end{bmatrix}$$

$$\Rightarrow \alpha_1 = 5; \alpha_3 = 1; \alpha_2 = -\frac{4}{3} \Rightarrow [p(t)]_{\beta_{\mathcal{P}_2(\mathbb{R})}} = \begin{bmatrix} 5 \\ -\frac{4}{3} \\ 1 \end{bmatrix}$$

$$p(t) = 2 + 5t^2 = \lambda_1 1 + \lambda_2 t + \lambda_3 t^2 \Rightarrow \lambda_1 = 2; \lambda_2 = 0; \lambda_3 = 5 \Rightarrow [p(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} = \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}.$$

MAT A07 - Álgebra Linear A - Semestre Letivo Suplementar - 2020

Coordenadas do vetor em relação à Base

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} =$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $eta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)},$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $eta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)},$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)}\}$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

combinação linear

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

combinação linear dos vetores da base $eta_{\mathcal{P}_2(\mathbb{R})}^{'}$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

combinação linear dos vetores da base $eta_{\mathcal{P}_{2}(\mathbb{R})}^{'}=\{1,t,t^{2}\}$:

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

combinação linear dos vetores da base $\beta_{\mathcal{P}_2(\mathbb{R})}^{'}=\{1,t,t^2\}$:

$$q(t) = t + t^2 =$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

combinação linear dos vetores da base $eta_{\mathcal{P}_2(\mathbb{R})}^{'}=\{1,t,t^2\}$:

$$q(t) = t + t^2 = a_{11}(1)$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

$$q(t) = t + t^2 = a_{11}(1) + a_{21}(t)$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

$$q(t) = t + t^2 = a_{11}(1) + a_{21}(t) + a_{31}(t^2)$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

$$q(t) = t + t^2 = a_{11}(1) + a_{21}(t) + a_{31}(t^2)$$

 $r(t) = 3t =$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

$$q(t) = t + t^2 = a_{11}(1) + a_{21}(t) + a_{31}(t^2)$$

 $r(t) = 3t = a_{12}(1)$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

$$q(t) = t + t^2 = a_{11}(1) + a_{21}(t) + a_{31}(t^2)$$

 $r(t) = 3t = a_{12}(1) + a_{22}(t)$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

$$q(t) = t + t^2 = a_{11}(1) + a_{21}(t) + a_{31}(t^2)$$

$$r(t) = 3t = a_{12}(1) + a_{22}(t) + a_{32}(t^2)$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

$$q(t) = t + t^2 = a_{11}(1) + a_{21}(t) + a_{31}(t^2)$$

 $r(t) = 3t = a_{12}(1) + a_{22}(t) + a_{32}(t^2)$

$$s(t) = 3t = a_{12}(1) + a_{22}(t) + a_{32}(t^{-1})$$

 $s(t) = 2 - t =$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

$$q(t) = t + t^2 = a_{11}(1) + a_{21}(t) + a_{31}(t^2)$$

 $r(t) = 3t = a_{12}(1) + a_{22}(t) + a_{32}(t^2)$
 $s(t) = 2 - t = a_{13}(1)$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

$$q(t) = t + t^2 = a_{11}(1) + a_{21}(t) + a_{31}(t^2)$$

$$r(t) = 3t = a_{12}(1) + a_{22}(t) + a_{32}(t^2)$$

$$s(t) = 3t - a_{12}(1) + a_{22}(1) + a_{32}(1)$$

 $s(t) = 2 - t = a_{13}(1) + a_{23}(1)$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

$$q(t) = t + t^2 = a_{11}(1) + a_{21}(t) + a_{31}(t^2)$$

$$r(t) = 3t = a_{12}(1) + a_{22}(t) + a_{32}(t^2)$$

$$s(t) = 2 - t = a_{13}(1) + a_{23}(t) + a_{33}(t^2)$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})}=\{\underbrace{t+t^2},\underbrace{3t},\underbrace{2-t}\}$ também pode ser escrito como

$$q(t) = t + t^{2} = a_{11}(1) + a_{21}(t) + a_{31}(t^{2})$$

$$r(t) = 3t = a_{12}(1) + a_{22}(t) + a_{32}(t^{2})$$

$$s(t) = 2 - t = a_{13}(1) + a_{23}(t) + a_{33}(t^{2})$$

$$[q(t)]_{\beta'} = \begin{bmatrix} 0 \\ 1 \end{bmatrix};$$

$$\left[q(t)
ight]_{eta_{\mathcal{P}_2(\mathbb{R})}'} = egin{bmatrix} 0 \ 1 \ 1 \end{bmatrix};$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

 $\textit{combinação linear} \text{ dos vetores da base } \beta_{\mathcal{P}_2(\mathbb{R})}^{'} = \{1,t,t^2\} \colon$

$$q(t) = t + t^2 = a_{11}(1) + a_{21}(t) + a_{31}(t^2)$$

$$r(t) = 3t = a_{12}(1) + a_{22}(t) + a_{32}(t^2)$$

$$s(t) = 2 - t = a_{13}(1) + a_{23}(t) + a_{33}(t^2)$$

$$[q(t)]_{eta_{\mathcal{P}_2(\mathbb{R})}'} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}; [r(t)]_{eta_{\mathcal{P}_2(\mathbb{R})}'} = \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix}; e$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

 $\textit{combinação linear} \text{ dos vetores da base } \beta_{\mathcal{P}_2(\mathbb{R})}^{'} = \{1,t,t^2\} \colon$

$$q(t) = t + t^2 = a_{11}(1) + a_{21}(t) + a_{31}(t^2)$$

 $r(t) = 3t = a_{12}(1) + a_{22}(t) + a_{32}(t^2)$

$$f(t) = 3t = a_{12}(1) + a_{22}(1) + a_{32}(1)$$

$$s(t) = 2 - t = a_{13}(1) + a_{23}(t) + a_{33}(t^2)$$

$$[q(t)]_{eta_{\mathcal{P}_2(\mathbb{R})}'} = egin{bmatrix} 0 \ 1 \ 1 \end{bmatrix}; \ [r(t)]_{eta_{\mathcal{P}_2(\mathbb{R})}'} = egin{bmatrix} 0 \ 3 \ 0 \end{bmatrix}; \ \mathbf{e} \ [s(t)]_{eta_{\mathcal{P}_2(\mathbb{R})}'} = egin{bmatrix} 2 \ -1 \ 0 \end{bmatrix}.$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

combinação linear dos vetores da base $\beta_{\mathcal{P}_2(\mathbb{R})}^{'}=\{1,t,t^2\}$:

$$q(t) = t + t^2 = a_{11}(1) + a_{21}(t) + a_{31}(t^2)$$

 $r(t) = 3t = a_{12}(1) + a_{22}(t) + a_{32}(t^2)$

$$f(t) = 3t = a_{12}(1) + a_{22}(t) + a_{32}(t)$$

$$s(t) = 2 - t = a_{13}(1) + a_{23}(t) + a_{33}(t^2)$$

$$[q(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}; [r(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} = \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix}; \mathbf{e} [s(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}.$$

Podemos obter uma matriz A_3

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

combinação linear dos vetores da base $\beta_{\mathcal{P}_2(\mathbb{R})}^{'}=\{1,t,t^2\}$:

$$q(t) = t + t^2 = a_{11}(1) + a_{21}(t) + a_{31}(t^2)$$

 $r(t) = 3t = a_{12}(1) + a_{22}(t) + a_{32}(t^2)$

$$r(t) = 3t = a_{12}(1) + a_{22}(t) + a_{32}(t^2)$$

$$s(t) = 2 - t = a_{13}(1) + a_{23}(t) + a_{33}(t^2)$$

$$[q(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}; [r(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} = \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix}; \mathbf{e} [s(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}.$$

Podemos obter uma matriz A_3 com estas MATRIZES DAS COORDENADAS representando as **colunas** de A_3 :

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

combinação linear dos vetores da base $\beta_{\mathcal{P}_2(\mathbb{R})}^{'}=\{1,t,t^2\}$:

$$q(t) = t + t^2 = a_{11}(1) + a_{21}(t) + a_{31}(t^2)$$

 $r(t) = 3t = a_{12}(1) + a_{22}(t) + a_{32}(t^2)$

$$s(t) = 3t - a_{12}(1) + a_{22}(t) + a_{32}(t)$$

 $s(t) = 2 - t = a_{13}(1) + a_{23}(t) + a_{23}(t^2)$

$$s(t) = 2 - t = a_{13}(1) + a_{23}(t) + a_{33}(t^2)$$

$$[q(t)]_{eta_{\mathcal{P}_2(\mathbb{R})}'} = egin{bmatrix} 0 \ 1 \ 1 \end{bmatrix}; [r(t)]_{eta_{\mathcal{P}_2(\mathbb{R})}'} = egin{bmatrix} 0 \ 3 \ 0 \end{bmatrix}; \mathbf{e} \ [s(t)]_{eta_{\mathcal{P}_2(\mathbb{R})}'} = egin{bmatrix} 2 \ -1 \ 0 \end{bmatrix}.$$

Podemos obter uma matriz A₃ com estas MATRIZES DAS COORDENADAS representando as **colunas** de A_3 :

$$A_3 = [[q(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}}$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})}=\{\underbrace{t+t^2},\underbrace{3t},\underbrace{2-t}\}$ também pode ser escrito como

combinação linear dos vetores da base $\beta_{\mathcal{D}_2(\mathbb{R})}^{'}=\{1,t,t^2\}$:

$$q(t) = t + t^2 = a_{11}(1) + a_{21}(t) + a_{31}(t^2)$$

 $r(t) = 3t = a_{12}(1) + a_{22}(t) + a_{32}(t^2)$

$$s(t) = 2 - t = a_{13}(1) + a_{23}(t) + a_{33}(t^2)$$

$$s(t) = 2 - t = a_{13}(1) + a_{23}(t) + a_{33}(t^2)$$

$$[q(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}; [r(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} = \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix}; \mathbf{e} [s(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}.$$

Podemos obter uma matriz A₃ com estas MATRIZES DAS COORDENADAS representando as **colunas** de A_3 :

$$A_3 = [[q(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} [r(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}}$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

combinação linear dos vetores da base $\beta_{\mathcal{P}_2(\mathbb{R})}^{'}=\{1,t,t^2\}$:

$$q(t) = t + t^2 = a_{11}(1) + a_{21}(t) + a_{31}(t^2)$$

$$r(t) = 3t = a_{12}(1) + a_{22}(t) + a_{32}(t^2)$$

$$s(t) = 2 - t = a_{13}(1) + a_{23}(t) + a_{33}(t^2)$$

$$[q(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}; [r(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} = \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix}; \mathbf{e} [s(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}.$$

Podemos obter uma matriz A_3 com estas MATRIZES DAS COORDENADAS representando as **colunas** de A_3 :

$$A_3 = [[q(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} [r(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} [s(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}}]$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Observe que cada vetor da base $\beta_{\mathcal{P}_2(\mathbb{R})} = \{\underbrace{t+t^2}_{q(t)}, \underbrace{3t}_{r(t)}, \underbrace{2-t}_{s(t)} \}$ também pode ser escrito como

combinação linear dos vetores da base $\beta_{\mathcal{P}_2(\mathbb{R})}^{'}=\{1,t,t^2\}$:

$$q(t) = t + t^2 = a_{11}(1) + a_{21}(t) + a_{31}(t^2)$$

$$r(t) = 3t = a_{12}(1) + a_{22}(t) + a_{32}(t^2)$$

$$s(t) = 2 - t = a_{13}(1) + a_{23}(t) + a_{33}(t^2)$$

$$[q(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}; [r(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} = \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix}; \mathbf{e} [s(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}.$$

Podemos obter uma matriz A_3 com estas MATRIZES DAS COORDENADAS representando as **colunas** de A_3 :

$$A_3 = [[q(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} [r(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}} [s(t)]_{\beta'_{\mathcal{P}_2(\mathbb{R})}}]$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Agora, podemos utilizar a matriz A_3

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Agora, podemos utilizar a matriz A_3 para obter a MATRIZ DAS COORDENADAS

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Coordenadas do vetor em relação à Base

EXEMPLO.1:

$$[p(t)]_{\beta_{\mathcal{V}}'} = A_3[p(t)]_{\beta_{\mathcal{V}}}$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

$$[p(t)]_{\beta_{\mathcal{V}}'} = A_3[p(t)]_{\beta_{\mathcal{V}}}$$

$$[p(t)]_{eta_{\mathcal{V}}^{'}} =$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

$$[p(t)]_{\beta_{\mathcal{V}}'} = A_3[p(t)]_{\beta_{\mathcal{V}}}$$

$$[p(t)]_{\beta'_{\mathcal{V}}} = [(2+5t^2)]_{\beta'_{\mathcal{V}}} =$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

$$[p(t)]_{\beta_{\mathcal{V}}'} = A_3[p(t)]_{\beta_{\mathcal{V}}}$$

$$[p(t)]_{\beta_{\mathcal{V}}'} = [(2+5t^2)]_{\beta_{\mathcal{V}}'} = \begin{bmatrix} 0 & 0 & 2\\ 1 & 3 & -1\\ 1 & 0 & 0 \end{bmatrix}$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

$$[p(t)]_{\beta_{\mathcal{V}}'} = A_3[p(t)]_{\beta_{\mathcal{V}}}$$

$$[p(t)]_{\beta_{\mathcal{V}}'} = [(2+5t^2)]_{\beta_{\mathcal{V}}'} = \begin{bmatrix} 0 & 0 & 2\\ 1 & 3 & -1\\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5\\ -\frac{4}{3}\\ 1 \end{bmatrix}$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

$$[p(t)]_{\beta_{\mathcal{V}}'} = A_3[p(t)]_{\beta_{\mathcal{V}}}$$

$$[\rho(t)]_{\beta_{\mathcal{V}}'} = [(2+5t^2)]_{\beta_{\mathcal{V}}'} = \begin{bmatrix} 0 & 0 & 2\\ 1 & 3 & -1\\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5\\ -\frac{4}{3}\\ 1 \end{bmatrix} = \begin{bmatrix} 2\\ 0\\ 5 \end{bmatrix}$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Agora, podemos utilizar a matriz A_3 para obter a MATRIZ DAS COORDENADAS de **qualquer** vetor de V em relação à base β_V :

$$[p(t)]_{\beta_{\mathcal{V}}'} = A_3[p(t)]_{\beta_{\mathcal{V}}}$$

$$[p(t)]_{\beta_{\mathcal{V}}'} = [(2+5t^2)]_{\beta_{\mathcal{V}}'} = \begin{bmatrix} 0 & 0 & 2\\ 1 & 3 & -1\\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5\\ -\frac{4}{3}\\ 1 \end{bmatrix} = \begin{bmatrix} 2\\ 0\\ 5 \end{bmatrix}$$

Observe que $det(A_3) \neq 0 \Rightarrow A_3$ é invertível!

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Agora, podemos utilizar a matriz A_3 para obter a MATRIZ DAS COORDENADAS de **qualquer** vetor de $\mathcal V$ em relação à base $\beta_{\mathcal V}$:

$$[p(t)]_{\beta_{\mathcal{V}}'} = A_3[p(t)]_{\beta_{\mathcal{V}}}$$

$$[\rho(t)]_{\beta_{\mathcal{V}}'} = [(2+5t^2)]_{\beta_{\mathcal{V}}'} = \begin{bmatrix} 0 & 0 & 2\\ 1 & 3 & -1\\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5\\ -\frac{4}{3}\\ 1 \end{bmatrix} = \begin{bmatrix} 2\\ 0\\ 5 \end{bmatrix}$$

Observe que $det(A_3) \neq 0 \Rightarrow A_3$ é invertível! Portanto,

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Agora, podemos utilizar a matriz A_3 para obter a MATRIZ DAS COORDENADAS de qualquer vetor de V em relação à base β_V :

$$[p(t)]_{\beta_{\mathcal{V}}'} = A_3[p(t)]_{\beta_{\mathcal{V}}}$$

$$[p(t)]_{\beta_{\mathcal{V}}'} = [(2+5t^2)]_{\beta_{\mathcal{V}}'} = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 3 & -1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ -\frac{4}{3} \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}$$

Observe que $det(A_3) \neq 0 \Rightarrow A_3$ é invertível! Portanto.

$$\Rightarrow A_3^{-1}[p(t)]_{\beta_{\mathcal{V}}'} = A_3^{-1}A_3[p(t)]_{\beta_{\mathcal{V}}}$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Agora, podemos utilizar a matriz A_3 para obter a MATRIZ DAS COORDENADAS de **qualquer** vetor de $\mathcal V$ em relação à base $\beta_{\mathcal V}$:

$$[p(t)]_{\beta_{\mathcal{V}}'} = A_3[p(t)]_{\beta_{\mathcal{V}}}$$

$$[p(t)]_{\beta_{\mathcal{V}}'} = [(2+5t^2)]_{\beta_{\mathcal{V}}'} = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 3 & -1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ -\frac{4}{3} \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}$$

Observe que $det(A_3) \neq 0 \Rightarrow A_3$ é invertível!

$$\Rightarrow A_3^{-1}[p(t)]_{\beta_{\mathcal{V}}'} = A_3^{-1}A_3[p(t)]_{\beta_{\mathcal{V}}} \Rightarrow [p(t)]_{\beta_{\mathcal{V}}} = A_3^{-1}[p(t)]_{\beta_{\mathcal{V}}'}.$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Agora, podemos utilizar a matriz A_3 para obter a MATRIZ DAS COORDENADAS de **qualquer** vetor de $\mathcal V$ em relação à base $\beta_{\mathcal V}$:

$$[p(t)]_{\beta_{\mathcal{V}}'} = A_3[p(t)]_{\beta_{\mathcal{V}}}$$

$$[p(t)]_{\beta_{\mathcal{V}}'} = [(2+5t^2)]_{\beta_{\mathcal{V}}'} = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 3 & -1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ -\frac{4}{3} \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}$$

Observe que $det(A_3) \neq 0 \Rightarrow A_3$ é invertível!

$$\Rightarrow A_3^{-1}[p(t)]_{\beta_{\mathcal{V}}'} = A_3^{-1}A_3[p(t)]_{\beta_{\mathcal{V}}} \Rightarrow [p(t)]_{\beta_{\mathcal{V}}} = A_3^{-1}[p(t)]_{\beta_{\mathcal{V}}'}.$$

Desse modo,

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Agora, podemos utilizar a matriz A_3 para obter a MATRIZ DAS COORDENADAS de **qualquer** vetor de $\mathcal V$ em relação à base $\beta_{\mathcal V}$:

$$[p(t)]_{\beta_{\mathcal{V}}'} = A_3[p(t)]_{\beta_{\mathcal{V}}}$$

$$[p(t)]_{\beta_{\mathcal{V}}'} = [(2+5t^2)]_{\beta_{\mathcal{V}}'} = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 3 & -1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ -\frac{4}{3} \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}$$

Observe que $det(A_3) \neq 0 \Rightarrow A_3$ é invertível!

Portanto,

$$\Rightarrow A_3^{-1}[p(t)]_{\beta_{\mathcal{V}}'} = A_3^{-1}A_3[p(t)]_{\beta_{\mathcal{V}}} \Rightarrow [p(t)]_{\beta_{\mathcal{V}}} = A_3^{-1}[p(t)]_{\beta_{\mathcal{V}}'}.$$

Desse modo,

$$\begin{bmatrix} 5 \\ -\frac{4}{3} \\ 1 \end{bmatrix}$$

MAT A07 - Álgebra Linear A - Semestre Letivo Suplementar - 2020

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Agora, podemos utilizar a matriz A_3 para obter a MATRIZ DAS COORDENADAS de **qualquer** vetor de $\mathcal V$ em relação à base $\beta_{\mathcal V}$:

$$[p(t)]_{\beta_{\mathcal{V}}'} = A_3[p(t)]_{\beta_{\mathcal{V}}}$$

$$[p(t)]_{eta_{\mathcal{V}}'} = [(2+5t^2)]_{eta_{\mathcal{V}}'} = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 3 & -1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ -rac{4}{3} \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}$$

Observe que $det(A_3) \neq 0 \Rightarrow A_3$ é invertível!

Portanto,

$$\Rightarrow A_3^{-1}[p(t)]_{\beta_{\mathcal{V}}'} = A_3^{-1}A_3[p(t)]_{\beta_{\mathcal{V}}} \Rightarrow [p(t)]_{\beta_{\mathcal{V}}} = A_3^{-1}[p(t)]_{\beta_{\mathcal{V}}'}.$$

Desse modo,

$$\begin{bmatrix} 5 \\ -\frac{4}{3} \\ 1 \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 0 & 0 & 2 \\ 1 & 3 & -1 \\ 1 & 0 & 0 \end{bmatrix} \end{pmatrix}^{-1}$$

MAT A07 - Álgebra Linear A - Semestre Letivo Suplementar - 2020

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Agora, podemos utilizar a matriz A_3 para obter a MATRIZ DAS COORDENADAS de **qualquer** vetor de $\mathcal V$ em relação à base $\beta_{\mathcal V}$:

$$[p(t)]_{\beta_{\mathcal{V}}'} = A_3[p(t)]_{\beta_{\mathcal{V}}}$$

$$[p(t)]_{eta_{\mathcal{V}}'} = [(2+5t^2)]_{eta_{\mathcal{V}}'} = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 3 & -1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ -rac{4}{3} \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}$$

Observe que $det(A_3) \neq 0 \Rightarrow A_3$ é invertível!

Portanto,

$$\Rightarrow A_3^{-1}[p(t)]_{\beta'_{\mathcal{V}}} = A_3^{-1}A_3[p(t)]_{\beta_{\mathcal{V}}} \Rightarrow [p(t)]_{\beta_{\mathcal{V}}} = A_3^{-1}[p(t)]_{\beta'_{\mathcal{V}}}.$$
Descended

Desse modo,

$$\begin{bmatrix} 5 \\ -\frac{4}{3} \\ 1 \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 0 & 0 & 2 \\ 1 & 3 & -1 \\ 1 & 0 & 0 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Agora, podemos utilizar a matriz A_3 para obter a MATRIZ DAS COORDENADAS de **qualquer** vetor de $\mathcal V$ em relação à base $\beta_{\mathcal V}$:

$$[p(t)]_{\beta_{\mathcal{V}}'} = A_3[p(t)]_{\beta_{\mathcal{V}}}$$

$$[p(t)]_{\beta_{\mathcal{V}}'} = [(2+5t^2)]_{\beta_{\mathcal{V}}'} = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 3 & -1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ -\frac{4}{3} \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}$$

Observe que $det(A_3) \neq 0 \Rightarrow A_3$ é invertível!

$$\Rightarrow A_3^{-1}[p(t)]_{\beta_{\mathcal{V}}'} = A_3^{-1}A_3[p(t)]_{\beta_{\mathcal{V}}} \Rightarrow [p(t)]_{\beta_{\mathcal{V}}} = A_3^{-1}[p(t)]_{\beta_{\mathcal{V}}'}.$$

Desse modo,

$$\begin{bmatrix} 5 \\ -\frac{4}{3} \\ 1 \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 0 & 0 & 2 \\ 1 & 3 & -1 \\ 1 & 0 & 0 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ \frac{1}{6} & \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{2} & 0 & 0 \end{bmatrix}$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Agora, podemos utilizar a matriz A_3 para obter a MATRIZ DAS COORDENADAS de **qualquer** vetor de $\mathcal V$ em relação à base $\beta_{\mathcal V}$:

$$[p(t)]_{\beta_{\mathcal{V}}'} = A_3[p(t)]_{\beta_{\mathcal{V}}}$$

$$[p(t)]_{\beta_{\mathcal{V}}'} = [(2+5t^2)]_{\beta_{\mathcal{V}}'} = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 3 & -1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ -\frac{4}{3} \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}$$

Observe que $det(A_3) \neq 0 \Rightarrow A_3$ é invertível! Portanto.

$$\Rightarrow A_3^{-1}[p(t)]_{\beta_{\mathcal{V}}'} = A_3^{-1}A_3[p(t)]_{\beta_{\mathcal{V}}} \Rightarrow [p(t)]_{\beta_{\mathcal{V}}} = A_3^{-1}[p(t)]_{\beta_{\mathcal{V}}'}.$$

Desse modo,

$$\begin{bmatrix} 5 \\ -\frac{4}{3} \\ 1 \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 0 & 0 & 2 \\ 1 & 3 & -1 \\ 1 & 0 & 0 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ \frac{1}{6} & \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{2} & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}$$

Coordenadas do vetor em relação à Base

EXEMPLO.1:

Agora, podemos utilizar a matriz A_3 para obter a MATRIZ DAS COORDENADAS de **qualquer** vetor de $\mathcal V$ em relação à base $\beta_{\mathcal V}$:

$$[p(t)]_{\beta_{\mathcal{V}}'} = A_3[p(t)]_{\beta_{\mathcal{V}}}$$

$$[p(t)]_{\beta_{\mathcal{V}}'} = [(2+5t^2)]_{\beta_{\mathcal{V}}'} = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 3 & -1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ -\frac{4}{3} \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}$$

Observe que $det(A_3) \neq 0 \Rightarrow A_3$ é invertível! Portanto.

$$\Rightarrow A_3^{-1}[p(t)]_{\beta_{\mathcal{V}}'} = A_3^{-1}A_3[p(t)]_{\beta_{\mathcal{V}}} \Rightarrow [p(t)]_{\beta_{\mathcal{V}}} = A_3^{-1}[p(t)]_{\beta_{\mathcal{V}}'}.$$

Desse modo,

$$\begin{bmatrix} 5 \\ -\frac{4}{3} \\ 1 \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 0 & 0 & 2 \\ 1 & 3 & -1 \\ 1 & 0 & 0 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ \frac{1}{6} & \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{2} & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}$$

Mudança de Base

TEOREMA:

Mudança de Base

TEOREMA:

Seja ${\mathcal V}$ um espaço vetorial, **de dimensão finita**, sobre o corpo ${\mathbb K};$

Mudança de Base

TEOREMA:

Seja ${\mathcal V}$ um espaço vetorial, $\mbox{\bf de dimens\~ao finita},$ sobre o corpo ${\mathbb K};$ e sejam

$$\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$$
 e

Mudança de Base

TEOREMA:

Seja ${\mathcal V}$ um espaço vetorial, **de dimensão finita**, sobre o corpo ${\mathbb K}$; e sejam

$$\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\} \ \mathbf{e} \ \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\}$$

Mudança de Base

TEOREMA:

Seja $\mathcal V$ um espaço vetorial, **de dimensão finita**, sobre o corpo $\mathbb K$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ e $\beta_{\mathcal V}'=\{u_1,u_2,\ldots,u_n\}$ duas bases ordenadas de $\mathcal V$.

Mudança de Base

TEOREMA:

Seja $\mathcal V$ um espaço vetorial, **de dimensão finita**, sobre o corpo $\mathbb K$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ e $\beta_{\mathcal V}^{'}=\{u_1,u_2,\ldots,u_n\}$ duas bases ordenadas de $\mathcal V$. Então, existe **uma única matriz** $A_n\in\mathcal M_n(\mathbb K)$ **invertível** tal que

Mudança de Base

TEOREMA:

Seja $\mathcal V$ um espaço vetorial, **de dimensão finita**, sobre o corpo $\mathbb K$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ e $\beta_{\mathcal V}^\prime=\{u_1,u_2,\ldots,u_n\}$ duas bases ordenadas de $\mathcal V$. Então, existe **uma única matriz** $A_n\in\mathcal M_n(\mathbb K)$ **invertível** tal que $\forall u\in\mathcal V$ tem-se que;

Mudança de Base

TEOREMA:

Seja $\mathcal V$ um espaço vetorial, **de dimensão finita**, sobre o corpo $\mathbb K$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ e $\beta_{\mathcal V}^\prime=\{u_1,u_2,\ldots,u_n\}$ duas bases ordenadas de $\mathcal V$. Então, existe **uma única matriz** $A_n\in\mathcal M_n(\mathbb K)$ **invertível** tal que $\forall u\in\mathcal V$ tem-se que;

(a)
$$[u]_{\beta'_{\mathcal{V}}} = A_n[u]_{\beta_{\mathcal{V}}};$$

Mudança de Base

TEOREMA:

Seja $\mathcal V$ um espaço vetorial, **de dimensão finita**, sobre o corpo $\mathbb K$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ e $\beta_{\mathcal V}'=\{u_1,u_2,\ldots,u_n\}$ duas bases ordenadas de $\mathcal V$. Então, existe **uma única matriz** $A_n\in\mathcal M_n(\mathbb K)$ **invertível** tal que $\forall u\in\mathcal V$ tem-se que;

(a)
$$[u]_{\beta'_{\mathcal{V}}} = A_n[u]_{\beta_{\mathcal{V}}}$$
; e

(b)
$$[u]_{\beta_{\mathcal{V}}} = A_n^{-1}[u]_{\beta_{\mathcal{V}}'}$$
.

Mudança de Base

TEOREMA:

Seja $\mathcal V$ um espaço vetorial, **de dimensão finita**, sobre o corpo $\mathbb K$; e sejam $\beta_{\mathcal V}=\{v_1,v_2,\ldots,v_n\}$ e $\beta_{\mathcal V}'=\{u_1,u_2,\ldots,u_n\}$ duas bases ordenadas de $\mathcal V$. Então, existe **uma única matriz** $A_n\in\mathcal M_n(\mathbb K)$ **invertível** tal que $\forall u\in\mathcal V$ tem-se que;

(a)
$$[u]_{\beta'_{\mathcal{V}}} = A_n[u]_{\beta_{\mathcal{V}}}$$
; e

(b)
$$[u]_{\beta_{\mathcal{V}}} = A_n^{-1}[u]_{\beta_{\mathcal{V}}'}.$$

Mudança de Base

TEOREMA: (continuação)

Mudança de Base

TEOREMA: (continuação) Isto é; $\forall u \in \mathcal{V}$

```
TEOREMA: (continuação)
Isto é; \forall u \in \mathcal{V} e \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\},
```

```
TEOREMA: (continuação)
Isto é; \forall u \in \mathcal{V} e \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \ \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\}
```

Mudança de Base

TEOREMA: (continuação) Isto é; $\forall u \in \mathcal{V}$ e $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}$, $\beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\}$ duas bases ordenadas de \mathcal{V} temos que;

```
TEOREMA: (continuação)
Isto é; \forall u \in \mathcal{V} e \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\} duas bases ordenadas de \mathcal{V} temos
que;
u = \sum_{j=1}^{n} \lambda_j v_j; \forall \lambda_j \in \mathbb{K}; \forall j
```

Mudança de Base

```
TEOREMA: (continuação)
```

Isto é; $\forall u \in \mathcal{V}$ e $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\}$ duas bases ordenadas de \mathcal{V} temos que;

$$u = \sum_{j=1}^{n} \lambda_j v_j; \forall \lambda_j \in \mathbb{K}; \forall j$$
 (1);

Mudança de Base

TEOREMA: (continuação)

Isto é; $\forall u \in \mathcal{V}$ e $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\}$ duas bases ordenadas de \mathcal{V} temos que;

$$u = \sum_{j=1}^{n} \lambda_j v_j; \forall \lambda_j \in \mathbb{K}; \forall j$$
 (1); e $u = \sum_{i=1}^{n} \alpha_i u_i; \forall \alpha_i \in \mathbb{K}; \forall i$

Mudança de Base

TEOREMA: (continuação)

Isto é: $\forall u \in \mathcal{V}$ e $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\}$ duas bases ordenadas de \mathcal{V} temos que;

$$u = \sum_{j=1}^{n} \lambda_j v_j; \forall \lambda_j \in \mathbb{K}; \forall j$$
 (1); e $u = \sum_{i=1}^{n} \alpha_i u_i; \forall \alpha_i \in \mathbb{K}; \forall i$ (2).

Mudança de Base

```
TEOREMA: (continuação)
```

Isto é: $\forall u \in \mathcal{V}$ e $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\}$ duas bases ordenadas de \mathcal{V} temos que;

$$\underline{u} = \sum_{j=1}^{n} \lambda_j v_j; \forall \lambda_j \in \mathbb{K}; \forall j$$
 (1); $\mathbf{e} \ u = \sum_{i=1}^{n} \alpha_i u_i; \forall \alpha_i \in \mathbb{K}; \forall i$ (2).

E ainda.

$$\forall v_j \in \beta_{\mathcal{V}} \Rightarrow v_j = \sum_{i=1}^n a_{ij} u_i; \forall a_{ij} \in \mathbb{K}$$

Mudança de Base

```
TEOREMA: (continuação)
```

Isto é: $\forall u \in \mathcal{V}$ e $\beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\}$ duas bases ordenadas de \mathcal{V} temos aue:

$$u = \sum_{j=1}^{n} \lambda_j v_j; \forall \lambda_j \in \mathbb{K}; \forall j$$
 (1); e $u = \sum_{i=1}^{n} \alpha_i u_i; \forall \alpha_i \in \mathbb{K}; \forall i$ (2).

E ainda.

$$\forall v_j \in \beta_{\mathcal{V}} \Rightarrow v_j = \sum_{i=1}^n a_{ij} u_i; \forall a_{ij} \in \mathbb{K}$$
 (3);

```
TEOREMA: (continuação)
Isto é: \forall u \in \mathcal{V} e \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\} duas bases ordenadas de \mathcal{V} temos
aue:
u = \sum_{i=1}^{n} \lambda_{j} v_{j}; \forall \lambda_{j} \in \mathbb{K}; \forall j (1); e u = \sum_{i=1}^{n} \alpha_{i} u_{i}; \forall \alpha_{i} \in \mathbb{K}; \forall i (2).
E ainda.
\forall v_i \in \beta_{\mathcal{V}} \Rightarrow v_i = \sum_{i=1}^n a_{ii} u_i; \forall a_{ii} \in \mathbb{K} (3);
então, substituindo (3) em (1):
```

```
TEOREMA: (continuação)
Isto é: \forall u \in \mathcal{V} e \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\} duas bases ordenadas de \mathcal{V} temos
aue:
u = \sum_{i=1}^{n} \lambda_i v_i; \forall \lambda_i \in \mathbb{K}; \forall j (1); \mathbf{e} \ u = \sum_{i=1}^{n} \alpha_i u_i; \forall \alpha_i \in \mathbb{K}; \forall i (2).
E ainda.
\forall v_i \in \beta_{\mathcal{V}} \Rightarrow v_i = \sum_{i=1}^n a_{ii} u_i; \forall a_{ii} \in \mathbb{K} (3);
então, substituindo (3) em (1):
u = \sum_{i=1}^{n} \lambda_{i} \left( \sum_{i=1}^{n} a_{ij} u_{i} \right)
```

```
TEOREMA: (continuação)
Isto é: \forall u \in \mathcal{V} e \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\} duas bases ordenadas de \mathcal{V} temos
aue:
u = \sum_{i=1}^{n} \lambda_i v_i; \forall \lambda_i \in \mathbb{K}; \forall j (1); \mathbf{e} \ u = \sum_{i=1}^{n} \alpha_i u_i; \forall \alpha_i \in \mathbb{K}; \forall i (2).
E ainda.
\forall v_i \in \beta_{\mathcal{V}} \Rightarrow v_i = \sum_{i=1}^n a_{ii} u_i; \forall a_{ii} \in \mathbb{K} (3);
então, substituindo (3) em (1):
u = \sum_{i=1}^{n} \lambda_{i} (\sum_{i=1}^{n} a_{ij} u_{i}) = \sum_{i=1}^{n} \sum_{i=1}^{n} (a_{ij} \lambda_{i}) u_{i}
```

```
TEOREMA: (continuação)
Isto é: \forall u \in \mathcal{V} e \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\} duas bases ordenadas de \mathcal{V} temos
aue:
u = \sum_{i=1}^{n} \lambda_i v_i; \forall \lambda_i \in \mathbb{K}; \forall j (1); \mathbf{e} \ u = \sum_{i=1}^{n} \alpha_i u_i; \forall \alpha_i \in \mathbb{K}; \forall i (2).
E ainda.
\forall v_i \in \beta_{\mathcal{V}} \Rightarrow v_i = \sum_{i=1}^n a_{ii} u_i; \forall a_{ii} \in \mathbb{K} (3);
então, substituindo (3) em (1):
u = \sum_{i=1}^n \lambda_i \left( \sum_{i=1}^n a_{ij} u_i \right) = \sum_{i=1}^n \sum_{i=1}^n \left( a_{ij} \lambda_i \right) u_i = \sum_{i=1}^n \left( \sum_{i=1}^n a_{ij} \lambda_i \right) u_i; \forall a_{ij}, \lambda_i \in \mathbb{K}
```

```
TEOREMA: (continuação)
Isto é: \forall u \in \mathcal{V} e \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\} duas bases ordenadas de \mathcal{V} temos
aue:
u = \sum_{i=1}^{n} \lambda_i v_i; \forall \lambda_i \in \mathbb{K}; \forall j (1); \mathbf{e} \ u = \sum_{i=1}^{n} \alpha_i u_i; \forall \alpha_i \in \mathbb{K}; \forall i (2).
E ainda.
\forall v_i \in \beta_{\mathcal{V}} \Rightarrow v_i = \sum_{i=1}^n a_{ii} u_i; \forall a_{ii} \in \mathbb{K} (3);
então, substituindo (3) em (1):
u = \sum_{i=1}^{n} \lambda_{i} \left( \sum_{i=1}^{n} a_{ij} u_{i} \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \left( a_{ij} \lambda_{j} \right) u_{i} = \sum_{i=1}^{n} \left( \sum_{j=1}^{n} a_{ij} \lambda_{j} \right) u_{i}; \forall a_{ij}, \lambda_{j} \in \mathbb{K}  (4).
```

```
TEOREMA: (continuação)
Isto é: \forall u \in \mathcal{V} e \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\} duas bases ordenadas de \mathcal{V} temos
aue:
u = \sum_{i=1}^{n} \lambda_i v_i; \forall \lambda_i \in \mathbb{K}; \forall j (1); \mathbf{e} \ u = \sum_{i=1}^{n} \alpha_i u_i; \forall \alpha_i \in \mathbb{K}; \forall i (2).
E ainda.
\forall v_i \in \beta_{\mathcal{V}} \Rightarrow v_i = \sum_{i=1}^n a_{ii} u_i; \forall a_{ii} \in \mathbb{K} (3);
então, substituindo (3) em (1):
u = \sum_{i=1}^{n} \lambda_{i} \left( \sum_{i=1}^{n} a_{ij} u_{i} \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \left( a_{ij} \lambda_{j} \right) u_{i} = \sum_{i=1}^{n} \left( \sum_{j=1}^{n} a_{ij} \lambda_{j} \right) u_{i}; \forall a_{ij}, \lambda_{j} \in \mathbb{K}  (4).
Fazendo (2) = (4):
```

```
TEOREMA: (continuação)
Isto é: \forall u \in \mathcal{V} e \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\} duas bases ordenadas de \mathcal{V} temos
aue:
u = \sum_{i=1}^{n} \lambda_i v_i; \forall \lambda_i \in \mathbb{K}; \forall j (1); \mathbf{e} \ u = \sum_{i=1}^{n} \alpha_i u_i; \forall \alpha_i \in \mathbb{K}; \forall i (2).
E ainda.
\forall v_i \in \beta_{\mathcal{V}} \Rightarrow v_i = \sum_{i=1}^n a_{ii} u_i; \forall a_{ii} \in \mathbb{K} (3);
então, substituindo (3) em (1):
u = \sum_{i=1}^{n} \lambda_j \left( \sum_{i=1}^{n} a_{ij} u_i \right) = \sum_{i=1}^{n} \sum_{i=1}^{n} \left( a_{ij} \lambda_j \right) u_i = \sum_{i=1}^{n} \left( \sum_{i=1}^{n} a_{ij} \lambda_j \right) u_i; \forall a_{ij}, \lambda_j \in \mathbb{K}  (4).
Fazendo (2) = (4):
u = \sum_{i=1}^{n} (\sum_{i=1}^{n} a_{ij} \lambda_i) u_i =
```

```
TEOREMA: (continuação)
Isto é: \forall u \in \mathcal{V} e \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\} duas bases ordenadas de \mathcal{V} temos
aue:
u = \sum_{i=1}^{n} \lambda_i v_i; \forall \lambda_i \in \mathbb{K}; \forall j (1); \mathbf{e} \ u = \sum_{i=1}^{n} \alpha_i u_i; \forall \alpha_i \in \mathbb{K}; \forall i (2).
E ainda.
\forall v_i \in \beta_{\mathcal{V}} \Rightarrow v_i = \sum_{i=1}^n a_{ii} u_i; \forall a_{ii} \in \mathbb{K} (3);
então, substituindo (3) em (1):
u = \sum_{i=1}^{n} \lambda_i \left(\sum_{i=1}^{n} a_{ii} u_i\right) = \sum_{i=1}^{n} \sum_{i=1}^{n} \left(a_{ij} \lambda_j\right) u_i = \sum_{i=1}^{n} \left(\sum_{i=1}^{n} a_{ij} \lambda_j\right) u_i; \forall a_{ij}, \lambda_j \in \mathbb{K}  (4).
Fazendo (2) = (4):
u = \sum_{i=1}^{n} (\sum_{i=1}^{n} a_{ii} \lambda_i) u_i = \sum_{i=1}^{n} (\alpha_i) u_i
```

```
TEOREMA: (continuação)
Isto é: \forall u \in \mathcal{V} e \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\} duas bases ordenadas de \mathcal{V} temos
aue:
u = \sum_{i=1}^{n} \lambda_i v_i; \forall \lambda_i \in \mathbb{K}; \forall i (1); e u = \sum_{i=1}^{n} \alpha_i u_i; \forall \alpha_i \in \mathbb{K}; \forall i (2).
E ainda.
\forall v_i \in \beta_{\mathcal{V}} \Rightarrow v_i = \sum_{i=1}^n a_{ii} u_i : \forall a_{ii} \in \mathbb{K} (3):
então, substituindo (3) em (1):
u = \sum_{i=1}^{n} \lambda_{i} \left( \sum_{i=1}^{n} a_{ij} u_{i} \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \left( a_{ij} \lambda_{j} \right) u_{i} = \sum_{i=1}^{n} \left( \sum_{j=1}^{n} a_{ij} \lambda_{j} \right) u_{i}; \forall a_{ij}, \lambda_{j} \in \mathbb{K}  (4).
Fazendo (2) = (4):
u = \sum_{i=1}^{n} (\sum_{i=1}^{n} a_{ij} \lambda_i) u_i = \sum_{i=1}^{n} (\alpha_i) u_i \Rightarrow \alpha_i = \sum_{i=1}^{n} a_{ij} \lambda_j; \forall i
```

```
TEOREMA: (continuação)
Isto é: \forall u \in \mathcal{V} e \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\} duas bases ordenadas de \mathcal{V} temos
aue:
u = \sum_{i=1}^{n} \lambda_i v_i; \forall \lambda_i \in \mathbb{K}; \forall i (1); e u = \sum_{i=1}^{n} \alpha_i u_i; \forall \alpha_i \in \mathbb{K}; \forall i (2).
E ainda.
\forall v_i \in \beta_{\mathcal{V}} \Rightarrow v_i = \sum_{i=1}^n a_{ii} u_i : \forall a_{ii} \in \mathbb{K} (3):
então, substituindo (3) em (1):
u = \sum_{i=1}^{n} \lambda_{i} \left( \sum_{i=1}^{n} a_{ij} u_{i} \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \left( a_{ij} \lambda_{j} \right) u_{i} = \sum_{i=1}^{n} \left( \sum_{j=1}^{n} a_{ij} \lambda_{j} \right) u_{i}; \forall a_{ij}, \lambda_{j} \in \mathbb{K}  (4).
Fazendo (2) = (4):
u = \sum_{i=1}^{n} \left(\sum_{i=1}^{n} a_{ii} \lambda_{i}\right) u_{i} = \sum_{i=1}^{n} \left(\alpha_{i}\right) u_{i} \Rightarrow \alpha_{i} = \sum_{i=1}^{n} a_{ii} \lambda_{i}; \forall i
Na FORMA MATRICIAL:
```

```
TEOREMA: (continuação)
Isto é: \forall u \in \mathcal{V} e \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\} duas bases ordenadas de \mathcal{V} temos
aue:
u = \sum_{j=1}^{n} \lambda_j v_j; \forall \lambda_j \in \mathbb{K}; \forall j (1); e u = \sum_{j=1}^{n} \alpha_j u_j; \forall \alpha_j \in \mathbb{K}; \forall j (2).
E ainda.
\forall v_i \in \beta_{\mathcal{V}} \Rightarrow v_i = \sum_{i=1}^n a_{ii} u_i; \forall a_{ii} \in \mathbb{K} (3);
então, substituindo (3) em (1):
u = \sum_{i=1}^{n} \lambda_i \left( \sum_{i=1}^{n} a_{ij} u_i \right) = \sum_{i=1}^{n} \sum_{i=1}^{n} \left( a_{ij} \lambda_i \right) u_i = \sum_{i=1}^{n} \left( \sum_{i=1}^{n} a_{ij} \lambda_i \right) u_i; \forall a_{ij}, \lambda_i \in \mathbb{K}  (4).
Fazendo (2) = (4):
u = \sum_{i=1}^{n} (\sum_{i=1}^{n} a_{ij} \lambda_i) u_i = \sum_{i=1}^{n} (\alpha_i) u_i \Rightarrow \alpha_i = \sum_{i=1}^{n} a_{ij} \lambda_j; \forall i
Na FORMA MATRICIAL:
  \alpha_1
   \alpha_2
```

```
TEOREMA: (continuação)
Isto é: \forall u \in \mathcal{V} e \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\} duas bases ordenadas de \mathcal{V} temos
aue:
u = \sum_{j=1}^{n} \lambda_j v_j; \forall \lambda_j \in \mathbb{K}; \forall j (1); e u = \sum_{i=1}^{n} \alpha_i u_i; \forall \alpha_i \in \mathbb{K}; \forall i (2).
E ainda.
\forall v_i \in \beta_{\mathcal{V}} \Rightarrow v_i = \sum_{i=1}^n a_{ii} u_i; \forall a_{ii} \in \mathbb{K} (3);
então, substituindo (3) em (1):
u = \sum_{i=1}^{n} \lambda_i \left( \sum_{i=1}^{n} a_{ij} u_i \right) = \sum_{i=1}^{n} \sum_{i=1}^{n} \left( a_{ij} \lambda_i \right) u_i = \sum_{i=1}^{n} \left( \sum_{i=1}^{n} a_{ij} \lambda_i \right) u_i; \forall a_{ij}, \lambda_i \in \mathbb{K}  (4).
Fazendo (2) = (4):
u = \sum_{i=1}^{n} (\sum_{i=1}^{n} a_{ij} \lambda_i) u_i = \sum_{i=1}^{n} (\alpha_i) u_i \Rightarrow \alpha_i = \sum_{i=1}^{n} a_{ij} \lambda_j; \forall i
 Na FORMA MATRICIAL:
   \alpha_2 a_{21} \dots a_{2n}
\begin{vmatrix} \alpha_2 \\ \vdots \\ \alpha_n \end{vmatrix} = \begin{vmatrix} \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix}
```

```
TEOREMA: (continuação)
Isto é: \forall u \in \mathcal{V} e \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\} duas bases ordenadas de \mathcal{V} temos
aue:
u = \sum_{j=1}^{n} \lambda_j v_j; \forall \lambda_j \in \mathbb{K}; \forall j (1); e u = \sum_{i=1}^{n} \alpha_i u_i; \forall \alpha_i \in \mathbb{K}; \forall i (2).
E ainda.
\forall v_i \in \beta_{\mathcal{V}} \Rightarrow v_i = \sum_{i=1}^n a_{ii} u_i; \forall a_{ii} \in \mathbb{K} (3);
então, substituindo (3) em (1):
u = \sum_{i=1}^{n} \lambda_i \left( \sum_{i=1}^{n} a_{ij} u_i \right) = \sum_{i=1}^{n} \sum_{i=1}^{n} \left( a_{ij} \lambda_i \right) u_i = \sum_{i=1}^{n} \left( \sum_{i=1}^{n} a_{ij} \lambda_i \right) u_i; \forall a_{ij}, \lambda_i \in \mathbb{K}  (4).
Fazendo (2) = (4):
u = \sum_{i=1}^{n} (\sum_{i=1}^{n} a_{ij} \lambda_i) u_i = \sum_{i=1}^{n} (\alpha_i) u_i \Rightarrow \alpha_i = \sum_{i=1}^{n} a_{ij} \lambda_j; \forall i
Na FORMA MATRICIAL:
  \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} \quad \begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \end{bmatrix} \quad \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}
 \begin{vmatrix} \vdots \\ \alpha_n \end{vmatrix} = \begin{vmatrix} \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} \begin{vmatrix} \vdots \\ \lambda_n \end{vmatrix}
```

```
TEOREMA: (continuação)
Isto é: \forall u \in \mathcal{V} e \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\} duas bases ordenadas de \mathcal{V} temos
aue:
u = \sum_{j=1}^{n} \lambda_j v_j; \forall \lambda_j \in \mathbb{K}; \forall j (1); e u = \sum_{i=1}^{n} \alpha_i u_i; \forall \alpha_i \in \mathbb{K}; \forall i (2).
E ainda.
\forall v_i \in \beta_{\mathcal{V}} \Rightarrow v_i = \sum_{i=1}^n a_{ii} u_i; \forall a_{ii} \in \mathbb{K} (3);
então, substituindo (3) em (1):
u = \sum_{i=1}^{n} \lambda_j \left( \sum_{i=1}^{n} a_{ij} u_i \right) = \sum_{i=1}^{n} \sum_{i=1}^{n} \left( a_{ij} \lambda_j \right) u_i = \sum_{i=1}^{n} \left( \sum_{j=1}^{n} a_{ij} \lambda_j \right) u_i; \forall a_{ij}, \lambda_j \in \mathbb{K}  (4).
Fazendo (2) = (4):
u = \sum_{i=1}^{n} (\sum_{i=1}^{n} a_{ii} \lambda_i) u_i = \sum_{i=1}^{n} (\alpha_i) u_i \Rightarrow \alpha_i = \sum_{i=1}^{n} a_{ii} \lambda_i; \forall i
 Na FORMA MATRICIAL:
\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} \Rightarrow [u]_{\beta_{\mathcal{V}}'}
```

```
TEOREMA: (continuação)
Isto é: \forall u \in \mathcal{V} e \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\} duas bases ordenadas de \mathcal{V} temos
aue:
u = \sum_{j=1}^{n} \lambda_j v_j; \forall \lambda_j \in \mathbb{K}; \forall j (1); e u = \sum_{i=1}^{n} \alpha_i u_i; \forall \alpha_i \in \mathbb{K}; \forall i (2).
E ainda.
\forall v_i \in \beta_{\mathcal{V}} \Rightarrow v_i = \sum_{i=1}^n a_{ii} u_i; \forall a_{ii} \in \mathbb{K} (3);
então, substituindo (3) em (1):
u = \sum_{i=1}^{n} \lambda_j \left( \sum_{i=1}^{n} a_{ij} u_i \right) = \sum_{i=1}^{n} \sum_{i=1}^{n} \left( a_{ij} \lambda_j \right) u_i = \sum_{i=1}^{n} \left( \sum_{j=1}^{n} a_{ij} \lambda_j \right) u_i; \forall a_{ij}, \lambda_j \in \mathbb{K}  (4).
Fazendo (2) = (4):
u = \sum_{i=1}^{n} (\sum_{i=1}^{n} a_{ij} \lambda_i) u_i = \sum_{i=1}^{n} (\alpha_i) u_i \Rightarrow \alpha_i = \sum_{i=1}^{n} a_{ij} \lambda_j; \forall i
 Na FORMA MATRICIAL:
\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} \Rightarrow [u]_{\beta_{\mathcal{V}}'} = A_n
```

```
TEOREMA: (continuação)
Isto é: \forall u \in \mathcal{V} e \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\} duas bases ordenadas de \mathcal{V} temos
aue:
u = \sum_{j=1}^{n} \lambda_j v_j; \forall \lambda_j \in \mathbb{K}; \forall j (1); e u = \sum_{i=1}^{n} \alpha_i u_i; \forall \alpha_i \in \mathbb{K}; \forall i (2).
E ainda.
\forall v_i \in \beta_{\mathcal{V}} \Rightarrow v_i = \sum_{i=1}^n a_{ii} u_i; \forall a_{ii} \in \mathbb{K} (3);
então, substituindo (3) em (1):
u = \sum_{i=1}^{n} \lambda_j \left( \sum_{i=1}^{n} a_{ij} u_i \right) = \sum_{i=1}^{n} \sum_{i=1}^{n} \left( a_{ij} \lambda_j \right) u_i = \sum_{i=1}^{n} \left( \sum_{j=1}^{n} a_{ij} \lambda_j \right) u_i; \forall a_{ij}, \lambda_j \in \mathbb{K}  (4).
Fazendo (2) = (4):
u = \sum_{i=1}^{n} (\sum_{i=1}^{n} a_{ii} \lambda_i) u_i = \sum_{i=1}^{n} (\alpha_i) u_i \Rightarrow \alpha_i = \sum_{i=1}^{n} a_{ii} \lambda_i; \forall i
Na FORMA MATRICIAL:
\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{nn} \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} \Rightarrow [u]_{\beta_{\mathcal{V}}'} = A_n[u]_{\beta_{\mathcal{V}}}
```

```
TEOREMA: (continuação)
Isto é: \forall u \in \mathcal{V} e \beta_{\mathcal{V}} = \{v_1, v_2, \dots, v_n\}, \beta_{\mathcal{V}}' = \{u_1, u_2, \dots, u_n\} duas bases ordenadas de \mathcal{V} temos
aue:
u = \sum_{j=1}^{n} \lambda_j v_j; \forall \lambda_j \in \mathbb{K}; \forall j (1); e u = \sum_{i=1}^{n} \alpha_i u_i; \forall \alpha_i \in \mathbb{K}; \forall i (2).
E ainda.
\forall v_i \in \beta_{\mathcal{V}} \Rightarrow v_i = \sum_{i=1}^n a_{ii} u_i; \forall a_{ii} \in \mathbb{K} (3);
então, substituindo (3) em (1):
u = \sum_{i=1}^{n} \lambda_j \left( \sum_{i=1}^{n} a_{ij} u_i \right) = \sum_{i=1}^{n} \sum_{i=1}^{n} \left( a_{ij} \lambda_j \right) u_i = \sum_{i=1}^{n} \left( \sum_{j=1}^{n} a_{ij} \lambda_j \right) u_i; \forall a_{ij}, \lambda_j \in \mathbb{K}  (4).
Fazendo (2) = (4):
u = \sum_{i=1}^{n} (\sum_{i=1}^{n} a_{ii} \lambda_i) u_i = \sum_{i=1}^{n} (\alpha_i) u_i \Rightarrow \alpha_i = \sum_{i=1}^{n} a_{ii} \lambda_i; \forall i
Na FORMA MATRICIAL:
\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{nn} \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} \Rightarrow [u]_{\beta_{\mathcal{V}}'} = A_n[u]_{\beta_{\mathcal{V}}}
```

Matriz Mudança de Base

 $[u]_{\beta_{\mathcal{V}}'}$

Matriz Mudança de Base

$$[u]_{\beta_{\mathcal{V}}'} = A_n$$

Espaços Vetoriais Matriz Mudança de Base

$$[u]_{\beta_{\mathcal{V}}'} = A_n[u]_{\beta_{\mathcal{V}}}$$

Matriz Mudança de Base

$$[u]_{\beta_{\mathcal{V}}'} = A_n[u]_{\beta_{\mathcal{V}}}$$

A matriz invertível A_n é denominada

Matriz Mudança de Base

$$[u]_{\beta_{\mathcal{V}}'} = A_n[u]_{\beta_{\mathcal{V}}}$$

A matriz invertível A_n é denominada MATRIZ MUDANCA DA BASE ORDENADA $\beta_{\mathcal{V}}$

Matriz Mudança de Base

$$[u]_{\beta_{\mathcal{V}}'} = A_n[u]_{\beta_{\mathcal{V}}}$$

A matriz invertível A_n é denominada MATRIZ MUDANCA DA BASE ORDENADA $\beta_{\mathcal{V}}$ PARA A BASE ORDENADA β'_{1} ;

Matriz Mudança de Base

$$[u]_{\beta_{\mathcal{V}}'} = A_n[u]_{\beta_{\mathcal{V}}}$$

A matriz invertível A_n é denominada MATRIZ MUDANCA DA BASE ORDENADA $\beta_{\mathcal{V}}$ PARA A BASE ORDENADA β'_{1} ;

cuja j-ésima coluna representa as coordenadas do vetor v_i em relação à base

Matriz Mudança de Base

$$[u]_{\beta_{\mathcal{V}}'} = A_n[u]_{\beta_{\mathcal{V}}}$$

A matriz invertível A_n é denominada MATRIZ MUDANCA DA BASE ORDENADA $\beta_{\mathcal{V}}$ PARA A BASE ORDENADA β'_{1} ;

cuja j-ésima coluna representa as coordenadas do vetor v_i em relação à base

NOTAÇÃO:

$$[u]_{\beta_{\mathcal{V}}'} = A_n[u]_{\beta_{\mathcal{V}}}$$

A matriz invertível A_n é denominada MATRIZ MUDANCA DA BASE ORDENADA $\beta_{\mathcal{V}}$ PARA A BASE ORDENADA β'_{1} ;

cuja j-ésima coluna representa as coordenadas do vetor v_i em relação à base

NOTAÇÃO:

$$A_n = [\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}}.$$

$$[u]_{\beta_{\mathcal{V}}'} = A_n[u]_{\beta_{\mathcal{V}}}$$

A matriz invertível A_n é denominada MATRIZ MUDANCA DA BASE ORDENADA $\beta_{\mathcal{V}}$ PARA A BASE ORDENADA β'_{1} ;

cuja j-ésima coluna representa as coordenadas do vetor v_i em relação à base

NOTAÇÃO:

$$A_n = [\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}}.$$

Matriz Mudança de Base

$$A_n^{-1} = ([\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}})^{-1}$$

Matriz Mudança de Base

$$A_n^{-1} = ([\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}})^{-1} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'}$$

Matriz Mudança de Base

$$A_n^{-1} = ([\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}})^{-1} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} \Rightarrow [\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}} [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} =$$

Matriz Mudança de Base

$$A_n^{-1} = ([\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}})^{-1} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} \Rightarrow [\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}} [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} [\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}} = I_n.$$

Matriz Mudança de Base

$$A_{n}^{-1} = ([\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}})^{-1} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} \Rightarrow [\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}} [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} [\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}} = I_{n}.$$

$$[u]_{\beta_{\mathcal{V}}}$$

Matriz Mudança de Base

$$A_n^{-1} = ([\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}})^{-1} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} \Rightarrow [\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}} [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} [\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}} = I_n.$$
$$[u]_{\beta_{\mathcal{V}}} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'}$$

Matriz Mudança de Base

$$A_n^{-1} = ([\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}})^{-1} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} \Rightarrow [\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}} [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} [\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}} = I_n.$$
$$[u]_{\beta_{\mathcal{V}}} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} [u]_{\beta_{\mathcal{V}}'}$$

Matriz Mudança de Base

OBSERVAÇÃO.1:

$$A_{n}^{-1} = ([\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}})^{-1} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}^{\prime}} \Rightarrow [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} = [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}} = I_{n}.$$

$$[u]_{\beta_{\mathcal{V}}} = [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [u]_{\beta_{\mathcal{V}}^{\prime}}$$

OBSERVAÇÃO.2: Para $\beta_{\mathcal{V}}$ uma base ordenada qualquer de \mathcal{V} ;

Matriz Mudança de Base

OBSERVAÇÃO.1:

$$A_{n}^{-1} = ([\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}})^{-1} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}^{\prime}} \Rightarrow [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} = [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}} = I_{n}.$$

$$[u]_{\beta_{\mathcal{V}}} = [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [u]_{\beta_{\mathcal{V}}^{\prime}}$$

OBSERVAÇÃO.2: Para $\beta_{\mathcal{V}}$ uma base ordenada qualquer de \mathcal{V} ; a matriz

$$[\mathcal{I}]_{eta_{\mathcal{V}}}^{eta_{\mathcal{V}}}$$

Matriz Mudança de Base

OBSERVAÇÃO.1:

$$A_{n}^{-1} = ([\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}})^{-1} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}^{\prime}} \Rightarrow [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} = [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}} = I_{n}.$$

$$[u]_{\beta_{\mathcal{V}}} = [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [u]_{\beta_{\mathcal{V}}^{\prime}}$$

OBSERVAÇÃO.2: Para $\beta_{\mathcal{V}}$ uma base ordenada qualquer de \mathcal{V} ; a matriz

$$[\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = I_n.$$

Matriz Mudança de Base

OBSERVAÇÃO.1:

$$A_n^{-1} = ([\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}})^{-1} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}^{\prime}} \Rightarrow [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} = [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} = I_n.$$

$$[u]_{\beta_{\mathcal{V}}} = [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [u]_{\beta_{\mathcal{V}}^{\prime}}$$

OBSERVAÇÃO.2: Para $\beta_{\mathcal{V}}$ uma base ordenada qualquer de \mathcal{V} ; a matriz

$$[\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}=I_{n}.$$

Matriz Mudança de Base

OBSERVAÇÃO.1:

$$A_{n}^{-1} = ([\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}})^{-1} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}^{\prime}} \Rightarrow [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} = [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} = I_{n}.$$

$$[u]_{\beta_{\mathcal{V}}} = [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [u]_{\beta_{\mathcal{V}}^{\prime}}$$

OBSERVAÇÃO.2: Para $\beta_{\mathcal{V}}$ uma base ordenada qualquer de \mathcal{V} ; a matriz

$$[\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}=I_{n}.$$

$$[\mathcal{I}]_{\beta_{\mathcal{V}}^{'}}^{\beta_{\mathcal{V}}} =$$

Matriz Mudança de Base

OBSERVAÇÃO.1:

$$A_{n}^{-1} = ([\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}})^{-1} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}^{\prime}} \Rightarrow [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} = [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} = I_{n}.$$

$$[u]_{\beta_{\mathcal{V}}} = [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [u]_{\beta_{\mathcal{V}}^{\prime}}$$

OBSERVAÇÃO.2: Para $\beta_{\mathcal{V}}$ uma base ordenada qualquer de \mathcal{V} ; a matriz

$$[\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}=I_{n}.$$

$$[\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}} = [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime\prime}}^{\beta_{\mathcal{V}}}$$

Matriz Mudança de Base

OBSERVAÇÃO.1:

$$A_{n}^{-1} = ([\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}})^{-1} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}^{\prime}} \Rightarrow [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} = [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} = I_{n}.$$

$$[u]_{\beta_{\mathcal{V}}} = [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [u]_{\beta_{\mathcal{V}}^{\prime}}$$

OBSERVAÇÃO.2: Para $\beta_{\mathcal{V}}$ uma base ordenada qualquer de \mathcal{V} ; a matriz

$$[\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}=I_{n}.$$

$$[\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}} = [\mathcal{I}]_{\beta_{\mathcal{V}}''}^{\beta_{\mathcal{V}}'} [\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}''}.$$

Matriz Mudança de Base

OBSERVAÇÃO.1:

$$A_{n}^{-1} = ([\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}})^{-1} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}^{\prime}} \Rightarrow [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} = [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} = I_{n}.$$

$$[u]_{\beta_{\mathcal{V}}} = [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} [u]_{\beta_{\mathcal{V}}^{\prime}}$$

OBSERVAÇÃO.2: Para $\beta_{\mathcal{V}}$ uma base ordenada qualquer de \mathcal{V} ; a matriz

$$[\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}}=I_{n}.$$

$$[\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}} = [\mathcal{I}]_{\beta_{\mathcal{V}}''}^{\beta_{\mathcal{V}}'} [\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}''}.$$

Matriz Mudança de Base

Exercícios:

Seja $\mathcal{V} = \mathbb{R}^3$, sejam as bases ordenadas

Matriz Mudança de Base

Exercícios:

Seja $V = \mathbb{R}^3$, sejam as bases ordenadas $\beta_{\mathbb{R}^3} = \{(1,1,0); (0,0,2); (0,1,3)\}$

Matriz Mudança de Base

Exercícios:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
, sejam as bases ordenadas $\beta_{\mathbb{R}^3}=\{(1,1,0);(0,0,2);(0,1,3)\}$ e $\beta_{\mathbb{R}^3}'=\{(1,0,0);(0,1,0);(0,0,1)\}$,

Matriz Mudança de Base

Exercícios:

Seja $\mathcal{V}=\mathbb{R}^3$, sejam as bases ordenadas $\beta_{\mathbb{R}^3}=\{(1,1,0);(0,0,2);(0,1,3)\}$ e $\beta_{\mathbb{P}^3}' = \{(1,0,0); (0,1,0); (0,0,1)\}, \text{ e seja } u = (-1,3,5) \in \mathbb{R}^3.$

Matriz Mudança de Base

Exercícios:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
, sejam as bases ordenadas $\beta_{\mathbb{R}^3}=\{(1,1,0);(0,0,2);(0,1,3)\}$ e $\beta_{\mathbb{R}^3}'=\{(1,0,0);(0,1,0);(0,0,1)\}$, e seja $u=(-1,3,5)\in\mathbb{R}^3$.

1. Determine a matriz das coordenadas do vetor $[u]_{\beta'}$.

Seja
$$\mathcal{V}=\mathbb{R}^3$$
, sejam as bases ordenadas $\beta_{\mathbb{R}^3}=\{(1,1,0);(0,0,2);(0,1,3)\}$ e $\beta'_{\mathbb{R}^3}=\{(1,0,0);(0,1,0);(0,0,1)\}$, e seja $u=(-1,3,5)\in\mathbb{R}^3$.

- 1. Determine a matriz das coordenadas do vetor $[u]_{\beta'}$.
- 2. Determine a matriz mudança de base $[\mathcal{I}]_{\beta_{s}'}^{\beta_{v}}$.

Seja
$$\mathcal{V}=\mathbb{R}^3$$
, sejam as bases ordenadas $\beta_{\mathbb{R}^3}=\{(1,1,0);(0,0,2);(0,1,3)\}$ e $\beta'_{\mathbb{R}^3}=\{(1,0,0);(0,1,0);(0,0,1)\}$, e seja $u=(-1,3,5)\in\mathbb{R}^3$.

- 1. Determine a matriz das coordenadas do vetor $[u]_{\beta'}$.
- 2. Determine a matriz mudança de base $[\mathcal{I}]_{\beta'}^{\beta_{\mathcal{V}}}$.
- 3. Determine a matriz das coordenadas do vetor $[u]_{\beta_{-1}}$

Seja
$$\mathcal{V}=\mathbb{R}^3$$
, sejam as bases ordenadas $\beta_{\mathbb{R}^3}=\{(1,1,0);(0,0,2);(0,1,3)\}$ e $\beta'_{\mathbb{R}^3}=\{(1,0,0);(0,1,0);(0,0,1)\}$, e seja $u=(-1,3,5)\in\mathbb{R}^3$.

- 1. Determine a matriz das coordenadas do vetor $[u]_{\beta'}$.
- 2. Determine a matriz mudança de base $[\mathcal{I}]_{\beta'}^{\beta_{\mathcal{V}}}$.
- 3. Determine a matriz das coordenadas do vetor $[u]_{\beta_{m3}}$ utilizando a matriz $[\mathcal{I}]_{\beta'}^{\beta\nu}$.

Seja $\mathcal{V} = \mathbb{R}^3$, sejam as bases ordenadas $\beta_{\mathbb{R}^3} = \{(1,1,0); (0,0,2); (0,1,3)\}$ e $\beta_{\mathbb{D}^3}' = \{(1,0,0); (0,1,0); (0,0,1)\}, \text{ e seja } u = (-1,3,5) \in \mathbb{R}^3.$

- 1. Determine a matriz das coordenadas do vetor $[u]_{\beta'}$.
- 2. Determine a matriz mudança de base $[\mathcal{I}]_{\beta'}^{\beta_{\mathcal{V}}}$.
- 3. Determine a matriz das coordenadas do vetor $[u]_{\beta_{m3}}$ utilizando a matriz $[\mathcal{I}]_{\beta'}^{\beta\nu}$.

Matriz Mudança de Base

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)

 $\mathcal{V}=\mathbb{R}^3$, e as bases ordenadas

Matriz Mudança de Base

EXERCICIOS: (Respostas)
$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};$

Matriz Mudança de Base

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\underbrace{(0,0,2)}_{2e_3};$

Matriz Mudança de Base

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\underbrace{(0,0,2)}_{2e_3};\underbrace{(0,1,3)}_{e_2+3e_3}\}$

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\underbrace{(0,0,2)}_{2e_3};\underbrace{(0,1,3)}_{e_2+3e_3}\}$ e

$$eta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1};$$

Matriz Mudança de Base

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\underbrace{(0,0,2)}_{2e_3};\underbrace{(0,1,3)}_{e_2+3e_3}\}$ e

$$\beta'_{\mathbb{R}^3} = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2};$$

Matriz Mudança de Base

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\, \underbrace{(0,0,2)}_{2e_3};\, \underbrace{(0,1,3)}_{e_2+3e_3}\}$ e

$$eta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3}\}$$

$$\mathcal{V}=\mathbb{R}^3\text{, e as bases ordenadas }\beta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\underbrace{(0,0,2)}_{2e_3};\underbrace{(0,1,3)}_{e_2+3e_3}\}\text{ e}$$

$$\beta_{\mathbb{R}^3}'=\{\underbrace{(1,0,0)}_{e_1};\underbrace{(0,1,0)}_{e_2};\underbrace{(0,0,1)}_{e_3}\}\text{ note que }\beta_{\mathbb{R}^3}'\text{ \'e a base canônica}!$$

EXERCÍCIOS: (Respostas)
$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1+e_2}; \underbrace{(0,0,2)}_{e_2+3e_3}; \underbrace{(0,1,3)}_{e_2+3e_3} \} \text{ note que } \beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3}\} \text{ note que } \beta_{\mathbb{R}^3}' \text{ é a base canônica!}$$

$$[u]_{\beta_{\mathbb{R}^3}'} = ?$$

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)
$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1+e_2}; \underbrace{(0,0,2)}_{e_2+3e_3}; \underbrace{(0,1,3)}_{e_2}\} \text{ e}$$

$$\beta'_{\mathbb{R}^3} = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3}\} \text{ note que } \beta'_{\mathbb{R}^3} \text{ \'e a base canônica!}$$

Considerando um vetor qualquer $v = (x, y, z) \in \mathbb{R}^3$;

```
EXERCÍCIOS: (Respostas)
\mathcal{V}=\mathbb{R}^3, e as bases ordenadas eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)};\, \underbrace{(0,0,2)};\, \underbrace{(0,1,3)}\} e
\beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}; \underbrace{(0,1,0)}; \underbrace{(0,0,1)}\} note que \beta_{\mathbb{R}^3}' é a base canônica!
Considerando um vetor qualquer v = (x, y, z) \in \mathbb{R}^3;
v = (x, y, z) =
```

EXERCÍCIOS: (Respostas)
$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1+e_2}; \underbrace{(0,0,2)}_{e_2+3e_3}; \underbrace{(0,1,3)}_{e_2+3e_3} \} = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3}\} \text{ note que } \beta_{\mathbb{R}^3}' \text{ é a base canônica!}$$

$$[u]_{\beta_{\mathbb{R}^3}'} = ?$$
 Considerando um vetor qualquer $v = (x,y,z) \in \mathbb{R}^3;$
$$v = (x,y,z) = x(1,0,0)$$

EXERCÍCIOS: (Respostas)
$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1+e_2}; \underbrace{(0,0,2)}_{e_2}; \underbrace{(0,1,3)}_{e_2+3e_3}\} \text{ e}$$

$$\beta'_{\mathbb{R}^3} = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3}\} \text{ note que } \beta'_{\mathbb{R}^3} \text{ \'e a base canônica!}$$

$$[u]_{\beta'_{\mathbb{R}^3}} = ?$$
 Considerando um vetor qualquer $v = (x,y,z) \in \mathbb{R}^3;$
$$v = (x,y,z) = x(1,0,0) + y(0,1,0)$$

EXERCÍCIOS: (Respostas)
$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1+e_2}; \underbrace{(0,0,2)}_{e_2}; \underbrace{(0,1,3)}_{e_2+3e_3}\} \text{ e}$$

$$\beta'_{\mathbb{R}^3} = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3}\} \text{ note que } \beta'_{\mathbb{R}^3} \text{ \'e a base canônica!}$$

$$[u]_{\beta'_{\mathbb{R}^3}} = ?$$
 Considerando um vetor qualquer $v = (x,y,z) \in \mathbb{R}^3;$
$$v = (x,y,z) = x(1,0,0) + y(0,1,0) + z(0,0,1)$$

```
EXERCÍCIOS: (Respostas)
\mathcal{V}=\mathbb{R}^3, e as bases ordenadas eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)};\, \underbrace{(0,0,2)};\, \underbrace{(0,1,3)}\} e
\beta_{\mathbb{R}^3}^{'} = \{\underbrace{(1,0,0)}_{\text{; }}; \underbrace{(0,1,0)}_{\text{; }}; \underbrace{(0,0,1)}_{\text{note que }} \underline{\beta_{\mathbb{R}^3}^{'}} \text{ \'e a base canônica}!
Considerando um vetor qualquer v = (x, y, z) \in \mathbb{R}^3;
v = (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)
Note que as coordenadas do vetor
```

Matriz Mudança de Base

$$\mathcal{V}=\mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\underbrace{(0,0,2)}_{2e_3};\underbrace{(0,1,3)}_{e_2+3e_3}\} \text{ e}$$

$$\beta_{\mathbb{R}^3}'=\{\underbrace{(1,0,0)}_{e_1};\underbrace{(0,1,0)}_{e_2};\underbrace{(0,0,1)}_{e_3}\} \text{ note que } \beta_{\mathbb{R}^3}' \text{ \'e a base canônica}!$$

$$[u]_{\beta'}=?$$

Considerando um vetor qualquer $v = (x, y, z) \in \mathbb{R}^3$;

$$v = (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)$$

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)

$$\mathcal{V}=\mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\underbrace{(0,0,2)}_{2e_3};\underbrace{(0,1,3)}_{e_2+3e_3}\} \text{ e}$$

$$\beta_{\mathbb{R}^3}'=\{\underbrace{(1,0,0)}_{e_1};\underbrace{(0,1,0)}_{e_2};\underbrace{(0,0,1)}_{e_3}\} \text{ note que } \beta_{\mathbb{R}^3}' \text{ \'e a base canônica}!$$

$$[u]_{e'}=?$$

Considerando um vetor qualquer $v = (x, y, z) \in \mathbb{R}^3$;

$$v = (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)$$

$$\begin{bmatrix} v \end{bmatrix}_{eta_{\mathbb{R}^3}'} = egin{bmatrix} x \ y \ z \end{bmatrix}$$

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)

$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1+e_2}; \underbrace{(0,0,2)}_{2e_3}; \underbrace{(0,1,3)}_{e_2+3e_3} \}$$
 e
$$\beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3} \} \text{ note que } \beta_{\mathbb{R}^3}' \text{ é a base canônica!}$$

$$[u]_{e'} = ?$$

Considerando um vetor qualquer $v = (x, v, z) \in \mathbb{R}^3$:

$$v = (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)$$

$$[v]_{\beta'_{\mathbb{R}^3}} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Rightarrow [u]_{\beta'_{\mathbb{R}^3}}$$

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)

$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1+e_2}; \underbrace{(0,0,2)}_{2e_3}; \underbrace{(0,1,3)}_{e_2+3e_3} \} \text{ e}$$

$$\beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3} \} \text{ note que } \beta_{\mathbb{R}^3}' \text{ é a base canônica!}$$

$$[u]_{\beta'} = ?$$

Considerando um vetor qualquer $v = (x, y, z) \in \mathbb{R}^3$;

$$v = (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)$$

$$[v]_{\beta'_{\mathbb{R}^3}} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Rightarrow [u]_{\beta'_{\mathbb{R}^3}} = [(-1, 3, 5)]_{\beta'_{\mathbb{R}^3}} = [(-1, 3, 5)]_{\beta'$$

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)

$$\mathcal{V}=\mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\underbrace{(0,0,2)}_{2e_3};\underbrace{(0,1,3)}_{e_2+3e_3}\} \text{ e}$$

$$\beta_{\mathbb{R}^3}'=\{\underbrace{(1,0,0)}_{e_1};\underbrace{(0,1,0)}_{e_2};\underbrace{(0,0,1)}_{e_3}\} \text{ note que } \beta_{\mathbb{R}^3}' \text{ \'e a base canônica}!$$

$$[u]_{\beta_{-}'}=?$$

Considerando um vetor qualquer $v = (x, y, z) \in \mathbb{R}^3$;

$$v = (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)$$

$$\begin{bmatrix} v \end{bmatrix}_{\beta'_{\mathbb{R}^3}} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Rightarrow \begin{bmatrix} u \end{bmatrix}_{\beta'_{\mathbb{R}^3}} = \begin{bmatrix} (-1, 3, 5) \end{bmatrix}_{\beta'_{\mathbb{R}^3}} = \begin{bmatrix} -1 \\ 3 \\ 5 \end{bmatrix}.$$

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)

$$\mathcal{V}=\mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\underbrace{(0,0,2)}_{2e_3};\underbrace{(0,1,3)}_{e_2+3e_3}\} \text{ e}$$

$$\beta_{\mathbb{R}^3}'=\{\underbrace{(1,0,0)}_{e_1};\underbrace{(0,1,0)}_{e_2};\underbrace{(0,0,1)}_{e_3}\} \text{ note que } \beta_{\mathbb{R}^3}' \text{ \'e a base canônica}!$$

$$[u]_{\beta_{-}'}=?$$

Considerando um vetor qualquer $v = (x, y, z) \in \mathbb{R}^3$;

$$v = (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)$$

$$\begin{bmatrix} v \end{bmatrix}_{\beta'_{\mathbb{R}^3}} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Rightarrow \begin{bmatrix} u \end{bmatrix}_{\beta'_{\mathbb{R}^3}} = \begin{bmatrix} (-1, 3, 5) \end{bmatrix}_{\beta'_{\mathbb{R}^3}} = \begin{bmatrix} -1 \\ 3 \\ 5 \end{bmatrix}.$$

Matriz Mudança de Base

Matriz Mudança de Base

EXERCÍCIOS: (Respostas) $\mathcal{V} = \mathbb{R}^3$, e as bases ordenadas

Matriz Mudança de Base

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};$

Matriz Mudança de Base

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\underbrace{(0,0,2)}_{2e_3};$

Matriz Mudança de Base

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\underbrace{(0,0,2)}_{2e_3};\underbrace{(0,1,3)}_{e_2+3e_3}\}$

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\underbrace{(0,0,2)}_{2e_3};\underbrace{(0,1,3)}_{e_2+3e_3}\}$ e

$$eta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1};$$

Matriz Mudança de Base

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\,\underbrace{(0,0,2)}_{2e_3};\,\underbrace{(0,1,3)}_{e_2+3e_3}\}$ e

$$\beta'_{\mathbb{R}^3} = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2};$$

Matriz Mudança de Base

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\,\underbrace{(0,0,2)}_{2e_3};\,\underbrace{(0,1,3)}_{e_2+3e_3}\}$ e

$$eta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3}\}$$

 $[(1,1,0)]_{eta_{{\scriptscriptstyle{\mathbb{D}}}3}'}=$

EXERCÍCIOS: (Respostas)
$$\mathcal{V}=\mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2}; \underbrace{(0,0,2)}_{2e_3}; \underbrace{(0,1,3)}_{e_2+3e_3}\} \text{ e}$$

$$\beta_{\mathbb{R}^3}'=\{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3}\}$$
 Como também,

$$\begin{split} & \text{EXERCÍCIOS: (Respostas)} \\ & \mathcal{V} = \mathbb{R}^3 \text{, e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1}; \, \underbrace{(0,0,2)}_{e_2}; \, \underbrace{(0,1,3)}_{e_2+3e_3} \} \text{ e} \\ & \beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \, \underbrace{(0,1,0)}_{e_2}; \, \underbrace{(0,0,1)}_{e_3} \} \end{split}$$
 Como também,
$$& [(1,1,0)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}; \end{split}$$

```
EXERCÍCIOS: (Respostas)
\mathcal{V}=\mathbb{R}^3, e as bases ordenadas eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)};\, \underbrace{(0,0,2)};\, \underbrace{(0,1,3)}\} e
\boldsymbol{\beta}_{\mathbb{R}^3}^{'} = \{ \underbrace{(1,0,0)}_{}; \, \underbrace{(0,1,0)}_{}; \, \underbrace{(0,0,1)}_{} \}
Como também.
[(1,1,0)]_{eta_{\mathbb{R}^3}'} = egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}; [(0,0,2)]_{eta_{\mathbb{R}^3}'} =
```

```
EXERCÍCIOS: (Respostas)
\mathcal{V}=\mathbb{R}^3, e as bases ordenadas eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)};\, \underbrace{(0,0,2)};\, \underbrace{(0,1,3)}\} e
\beta'_{\mathbb{R}^3} = \{ \underbrace{(1,0,0)}_{}; \underbrace{(0,1,0)}_{}; \underbrace{(0,0,1)}_{} \}
 Como também.
[(1,1,0)]_{eta_{\mathbb{R}^3}'} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}; [(0,0,2)]_{eta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}; e,
```

```
EXERCÍCIOS: (Respostas)
   \mathcal{V}=\mathbb{R}^3, e as bases ordenadas eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)};\, \underbrace{(0,0,2)};\, \underbrace{(0,1,3)}\} e
\boldsymbol{\beta}_{\mathbb{R}^3}^{'} = \{ \underbrace{(1,0,0)}_{}; \, \underbrace{(0,1,0)}_{}; \, \underbrace{(0,0,1)}_{} \}
      Como também.
[(1,1,0)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}; [(0,0,2)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'}
```

Matriz Mudança de Base

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $\beta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\underbrace{(0,0,2)}_{2e_3};\underbrace{(0,1,3)}_{e_2+3e_3}\}$ e

$$\beta'_{\mathbb{R}^3} = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3}\}$$

Como também.

$$[(1,1,0)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}; [(0,0,2)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}; \text{ e, } [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix};$$

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\,\underbrace{(0,0,2)}_{2e_3};\,\underbrace{(0,1,3)}_{e_2+3e_3}\}$ e

$$\beta'_{\mathbb{R}^3} = \{ \underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3} \}$$

Como também.

$$[(1,1,0)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}; [(0,0,2)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}; e, [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix};$$

$$[\mathcal{I}]^{eta_{\mathcal{V}}}_{eta_{\mathcal{V}}'} =$$

Matriz Mudança de Base

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\, \underbrace{(0,0,2)}_{2e_3};\, \underbrace{(0,1,3)}_{e_2+3e_3}\}$ e

$$\beta'_{\mathbb{R}^3} = \{ \underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3} \}$$

Como também.

$$[(1,1,0)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}; \ [(0,0,2)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}; \ \mathbf{e}, \ [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix};$$

Portanto,
$$[\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}} = \begin{bmatrix} 1 & 0 & 0 \\ & & & \end{bmatrix}$$

Matriz Mudança de Base

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\,\underbrace{(0,0,2)}_{2e_3};\,\underbrace{(0,1,3)}_{e_2+3e_3}\}$ e

$$\beta'_{\mathbb{R}^3} = \{ \underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3} \}$$

Como também.

$$[(1,1,0)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}; \ [(0,0,2)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}; \ \mathsf{e,} \ [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix};$$

Portanto,

$$\left[\mathcal{I}\right]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\,\underbrace{(0,0,2)}_{2e_3};\,\underbrace{(0,1,3)}_{e_2+3e_3}\}$ e

$$\beta'_{\mathbb{R}^3} = \{ \underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3} \}$$

Como também,

$$[(1,1,0)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}; \ [(0,0,2)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}; \ \mathbf{e}, \ [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix};$$

Portanto,

$$[\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 3 \end{bmatrix}$$

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\, \underbrace{(0,0,2)}_{2e_3};\, \underbrace{(0,1,3)}_{e_2+3e_3}\}$ e

$$\beta'_{\mathbb{R}^3} = \{ \underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_2} \}$$

Como também.

$$[(1,1,0)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}; \ [(0,0,2)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}; \ \mathsf{e,} \ [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix};$$

$$[\mathcal{I}]_{\beta'_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 3 \end{bmatrix} \Rightarrow [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta'_{\mathcal{V}}} =$$

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\, \underbrace{(0,0,2)}_{2e_3};\, \underbrace{(0,1,3)}_{e_2+3e_3}\}$ e

$$\beta'_{\mathbb{R}^3} = \{ \underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3} \}$$

Como também.

$$[(1,1,0)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}; \ [(0,0,2)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}; \ \mathsf{e,} \ [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix};$$

$$[\mathcal{I}]_{\beta'_{\mathcal{V}}}^{\beta_{\mathcal{V}}} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 3 \end{bmatrix} \Rightarrow [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta'_{\mathcal{V}}} = ([\mathcal{I}]_{\beta'_{\mathcal{V}}}^{\beta_{\mathcal{V}}})^{-1} =$$

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\, \underbrace{(0,0,2)}_{2e_3};\, \underbrace{(0,1,3)}_{e_2+3e_3}\}$ e

$$\beta'_{\mathbb{R}^3} = \{ \underbrace{(1,0,0)}_{0,1}; \underbrace{(0,1,0)}_{0,1}; \underbrace{(0,0,1)}_{0,1} \}$$

Como também.

$$[(1,1,0)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}; \ [(0,0,2)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}; \ \mathbf{e}, \ [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix};$$

$$[\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 3 \end{bmatrix} \Rightarrow [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} = ([\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}})^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\,\underbrace{(0,0,2)}_{2e_3};\,\underbrace{(0,1,3)}_{e_2+3e_3}\}$ e

$$\beta'_{\mathbb{R}^3} = \{ \underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_2} \}$$

Como também.

$$[(1,1,0)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}; \ [(0,0,2)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}; \ \mathsf{e,} \ [(0,1,3)]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix};$$

$$[\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 3 \end{bmatrix} \Rightarrow [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} = ([\mathcal{I}]_{\beta_{\mathcal{V}}'}^{\beta_{\mathcal{V}}})^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix}$$

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\,\underbrace{(0,0,2)}_{2e_3};\,\underbrace{(0,1,3)}_{e_2+3e_3}\}$ e

$$\beta'_{\mathbb{R}^3} = \{ \underbrace{(1,0,0)}_{2}; \underbrace{(0,1,0)}_{2}; \underbrace{(0,0,1)}_{2} \}$$

Como também,

$$[(1,1,0)]_{\beta_{\mathbb{R}^3}^{'}} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}; \ [(0,0,2)]_{\beta_{\mathbb{R}^3}^{'}} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}; \ \mathbf{e,} \ [(0,1,3)]_{\beta_{\mathbb{R}^3}^{'}} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix};$$

Portanto,

$$[\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 3 \end{bmatrix} \Rightarrow [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} = ([\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}})^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 \end{bmatrix}$$

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\,\underbrace{(0,0,2)}_{2e_3};\,\underbrace{(0,1,3)}_{e_2+3e_3}\}$ e

$$\beta'_{\mathbb{R}^3} = \{ \underbrace{(1,0,0)}_{2}; \underbrace{(0,1,0)}_{2}; \underbrace{(0,0,1)}_{2} \}$$

Como também,

$$[(1,1,0)]_{\beta_{\mathbb{R}^3}^{'}} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}; \ [(0,0,2)]_{\beta_{\mathbb{R}^3}^{'}} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}; \ \mathbf{e,} \ [(0,1,3)]_{\beta_{\mathbb{R}^3}^{'}} = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix};$$

Portanto,

$$[\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 2 & 3 \end{bmatrix} \Rightarrow [\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}^{\prime}} = ([\mathcal{I}]_{\beta_{\mathcal{V}}^{\prime}}^{\beta_{\mathcal{V}}})^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 \end{bmatrix}$$

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)

 $\mathcal{V} = \mathbb{R}^3$, e as bases ordenadas

EXERCÍCIOS: (Respostas)
$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $\beta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)};$

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\underbrace{(0,0,2)}_{2e_3};$

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\underbrace{(0,0,2)}_{2e_3};\underbrace{(0,1,3)}_{e_2+3e_3}\}$

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\underbrace{(0,0,2)}_{2e_2};\underbrace{(0,1,3)}_{e_2+3e_2}\}$ e

$$\beta'_{\mathbb{R}^3} = \{\underbrace{(1,0,0)}_{e_1};$$

EXERCÍCIOS: (Respostas)
$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1+e_2}; \underbrace{(0,0,2)}_{2e_3}; \underbrace{(0,1,3)}_{e_2+3e_3}\} \text{ e}$$

$$\beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{2}; \underbrace{(0,1,0)}_{2}; \underbrace{(0,1,0)}_{2}; \underbrace{(0,1,0)}_{2}; \underbrace{(0,0,2)}_{2e_3}; \underbrace{(0,0,2)$$

EXERCÍCIOS: (Respostas)
$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1+e_2}; \underbrace{(0,0,2)}_{2e_3}; \underbrace{(0,1,3)}_{e_2+3e_3}\} \text{ e}$$

$$\beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3}\}$$

EXERCÍCIOS: (Respostas)
$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1}; \underbrace{(0,0,2)}_{e_2}; \underbrace{(0,1,3)}_{e_2+3e_3}\} \text{ e}$$

$$\beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3}\}$$

$$\underbrace{[\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'}} =$$

EXERCÍCIOS: (Respostas)
$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1}; \underbrace{(0,0,2)}_{e_2+3e_3}; \underbrace{(0,1,3)}_{e_2+3e_3}\} \text{ e}$$

$$\beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3}\}$$

$$\underbrace{[\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'}}_{\beta_{\mathcal{V}}} = \begin{bmatrix} 1 & 0 & 0 \\ & & & & & \\ \end{bmatrix}$$

EXERCÍCIOS: (Respostas)
$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1}; \underbrace{(0,0,2)}_{e_2+3e_3}; \underbrace{(0,1,3)}_{e_2+3e_3}\} \text{ e}$$

$$\beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3}\}$$

$$[\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix}$$

EXERCÍCIOS: (Respostas)
$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1}; \underbrace{(0,0,2)}_{e_2+3e_3}; \underbrace{(0,1,3)}_{e_2+3e_3}\} \text{ e}$$

$$\beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3}\}$$

$$[\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 \end{bmatrix}$$

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)
$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1}; \underbrace{(0,0,2)}_{e_2+3e_3}; \underbrace{(0,1,3)}_{e_2+3e_3} \} \text{ e}$$

$$\beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3} \}$$

$$[\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 \end{bmatrix}$$

Assim, $[u]_{\beta_{m,3}}$

$$\begin{split} & \text{Exercícios: (Respostas)} \\ & \mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1 + e_2}; \underbrace{(0,0,2)}_{2e_3}; \underbrace{(0,1,3)}_{e_2 + 3e_3} \} \text{ e} \\ & \beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3} \} \\ & [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 \end{bmatrix} \end{split}$$

Assim,
$$[u]_{\beta_{103}} = [(-1,3,5)]_{\beta_{103}} =$$

$$\begin{split} & \text{Exercícios: (Respostas)} \\ & \mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1+e_2}; \underbrace{(0,0,2)}_{e_2+3e_3}; \underbrace{(0,1,3)}_{e_2+3e_3} \} \text{ e} \\ & \beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3} \} \\ & [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 \end{bmatrix} \end{split}$$

Assim,
$$[u]_{\beta_{\mathbb{R}^3}} = [(-1,3,5)]_{\beta_{\mathbb{R}^3}} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'}[u]_{\beta_{\mathbb{R}^3}'} =$$

EXERCÍCIOS: (Respostas)
$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1}; \underbrace{(0,0,2)}_{e_2+3e_3}; \underbrace{(0,1,3)}_{e_2+3e_3}\} \text{ e}$$

$$\beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3}\}$$

$$[\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 \end{bmatrix}$$
 Assim, $[u]_{\beta_{\mathbb{R}^3}} = [(-1,3,5)]_{\beta_{\mathbb{R}^3}} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'}[u]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

EXERCÍCIOS: (Respostas)
$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1+e_2}; \underbrace{(0,0,2)}_{2e_3}; \underbrace{(0,1,3)}_{e_2+3e_3}\} \text{ e}$$

$$\beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3}\}$$

$$[\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 \end{bmatrix}$$

$$\text{Assim, } [u]_{\beta_{\mathbb{R}^3}} = [(-1,3,5)]_{\beta_{\mathbb{R}^3}} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} [u]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -\frac{3}{2} & \frac{1}{2} \end{bmatrix}$$

EXERCÍCIOS: (Respostas)
$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1+e_2}; \underbrace{(0,0,2)}_{2e_3}; \underbrace{(0,1,3)}_{e_2+3e_3}\} \text{ e}$$

$$\beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3}\}$$

$$[\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 \end{bmatrix}$$

$$\text{Assim, } [u]_{\beta_{\mathbb{R}^3}} = [(-1,3,5)]_{\beta_{\mathbb{R}^3}} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} [u]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 \end{bmatrix}$$

EXERCÍCIOS: (Respostas)
$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1+e_2}; \underbrace{(0,0,2)}_{2e_3}; \underbrace{(0,1,3)}_{e_2+3e_3} \} \text{ e}$$

$$\beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3} \}$$

$$[\mathcal{I}]_{\beta\mathcal{V}}^{\beta'_{\mathcal{V}}} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 \end{bmatrix}$$

$$\text{Assim, } [u]_{\beta_{\mathbb{R}^3}} = [(-1,3,5)]_{\beta_{\mathbb{R}^3}} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'}[u]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ 5 \end{bmatrix}$$

$$\mathcal{V}=\mathbb{R}^3$$
, e as bases ordenadas $eta_{\mathbb{R}^3}=\{\underbrace{(1,1,0)}_{e_1+e_2};\,\underbrace{(0,0,2)}_{2e_3};\,\underbrace{(0,1,3)}_{e_2+3e_3}\}$ e

$$\beta_{\mathbb{R}^{3}}' = \{\underbrace{(1,0,0)}_{e_{1}}; \underbrace{(0,1,0)}_{e_{2}}; \underbrace{(0,0,1)}_{e_{3}}\}$$
$$[\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} = \begin{bmatrix} 1 & 0 & 0\\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2}\\ -1 & 1 & 0 \end{bmatrix}$$

$$\text{Assim, } [u]_{\beta_{\mathbb{R}^3}} = [(-1,3,5)]_{\beta_{\mathbb{R}^3}} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'}[u]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} -1 \\ -\frac{7}{2} \\ 4 \end{bmatrix}.$$

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)
$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1+e_2}; \underbrace{(0,0,2)}_{2e_3}; \underbrace{(0,1,3)}_{e_2+3e_3} \} \text{ e}$$

$$\beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3} \}$$

$$[\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 \end{bmatrix}$$

$$\text{Assim, } [u]_{\beta_{\mathbb{R}^3}} = [(-1,3,5)]_{\beta_{\mathbb{R}^3}} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'}[u]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} -1 \\ -\frac{7}{2} \\ 4 \end{bmatrix}.$$

Ou seja, u = (-1, 3, 5) =

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)
$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1}; \underbrace{(0,0,2)}_{e_2+3e_3}; \underbrace{(0,1,3)}_{e_2+3e_3} \} \text{ e}$$

$$\beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3} \}$$

$$[\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 & 0 \end{bmatrix}$$

$$\text{Assim, } [u]_{\beta_{\mathbb{R}^3}} = [(-1,3,5)]_{\beta_{\mathbb{R}^3}} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'}[u]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} -1 \\ -\frac{7}{2} \\ 4 \end{bmatrix}.$$

Ou seja, u = (-1, 3, 5) = -1(1, 1, 0)

EXERCÍCIOS: (Respostas)
$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1+e_2}; \underbrace{(0,0,2)}_{2e_3}; \underbrace{(0,1,3)}_{e_2+3e_3}\} \text{ e}$$

$$\beta'_{\mathbb{R}^3} = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3}\}$$

$$[\mathcal{I}]^{\beta'_{\mathcal{V}}}_{\beta_{\mathcal{V}}} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 \end{bmatrix}$$

$$\text{Assim, } [u]_{\beta_{\mathbb{R}^3}} = [(-1,3,5)]_{\beta_{\mathbb{R}^3}} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'}[u]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} -1 \\ -\frac{7}{2} \\ 4 \end{bmatrix}.$$
 Ou seja, $u = (-1,3,5) = -1(1,1,0) - \frac{7}{2}(0,0,2)$

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)
$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1}; \underbrace{(0,0,2)}_{e_2}; \underbrace{(0,1,3)}_{e_2+3e_3} \} \text{ e}$$

$$\beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3} \}$$

$$[\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 & 0 \end{bmatrix}$$

Assim,
$$[u]_{\beta_{\mathbb{R}^3}} = [(-1,3,5)]_{\beta_{\mathbb{R}^3}} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'}[u]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} -1 \\ -\frac{7}{2} \\ 4 \end{bmatrix}.$$
 Ou seja, $u = (-1,3,5) = -1(1,1,0) - \frac{7}{2}(0,0,2) + 4(0,1,3).$

MAT A07 - Álgebra Linear A - Semestre Letivo Suplementar - 2020

Matriz Mudança de Base

EXERCÍCIOS: (Respostas)
$$\mathcal{V} = \mathbb{R}^3, \text{ e as bases ordenadas } \beta_{\mathbb{R}^3} = \{\underbrace{(1,1,0)}_{e_1}; \underbrace{(0,0,2)}_{e_2}; \underbrace{(0,1,3)}_{e_2+3e_3} \} \text{ e}$$

$$\beta_{\mathbb{R}^3}' = \{\underbrace{(1,0,0)}_{e_1}; \underbrace{(0,1,0)}_{e_2}; \underbrace{(0,0,1)}_{e_3} \}$$

$$[\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 & 0 \end{bmatrix}$$

Assim,
$$[u]_{\beta_{\mathbb{R}^3}} = [(-1,3,5)]_{\beta_{\mathbb{R}^3}} = [\mathcal{I}]_{\beta_{\mathcal{V}}}^{\beta_{\mathcal{V}}'}[u]_{\beta_{\mathbb{R}^3}'} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{2} & -\frac{3}{2} & \frac{1}{2} \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} -1 \\ -\frac{7}{2} \\ 4 \end{bmatrix}.$$
 Ou seja, $u = (-1,3,5) = -1(1,1,0) - \frac{7}{2}(0,0,2) + 4(0,1,3).$

MAT A07 - Álgebra Linear A - Semestre Letivo Suplementar - 2020