MAT02023 - Inferência A

LISTA 3 - ESTIMAÇÃO PONTUAL

Exercício 1 Faça seguintes exercícios do livro Statistical Inference:

- a) 7.1
- b) 7.6 (b) e (c)
- c) 7.7 (Dica: faça o esboço da função $f_{\theta}(x)$ dados os possíveis valores dos parâmetros).
- d) 7.11. Não é necessário calcular a variância da letra (a).
- e) 7.12 (a)
- f) 7.15 (a)

Exercício 2 Seja X_1, \ldots, X_n uma amostra aleatória de uma população Gamma (α, β) :

- a) Encontre o EMV de β , assumindo que α é conhecido.
- b) Se α e β são ambos parâmetros desconhecidos, não há forma explícita para seus estimadores de máxima verossimilhança, mas o máximo pode ser encontrado numericamente. O resultado encontrado na parte (a) pode ser utilizado para reduzir o problema à maximização de uma função univariada. Encontre os valores do EMV de α e β para os dados abaixo (Utilize um software para maximizar essa função).

0.002322113	0.002504307	0.002309076	0.002619164	0.002559783
0.002390483	0.002284690	0.002822852	0.002997879	0.002765982
0.002681698	0.002332016	0.002684526	0.002633958	0.002292774

c) Faça o gráfico da função de verossimilhança do item (b).

Exercício 3 Seja X_1, \ldots, X_n uma amostra aleatória da distribuição $f_{\theta}(x) = \theta^x (1 - \theta)^{1-x}$, onde $0 < \theta < 1$.

- a) Encontre o estimador do método dos momentos para θ .
- b) Encontre o estimador de máxima verossimilhança para θ .
- c) Se uma amostra de tamanho n = 10 observou os seguintes valores: $\{1, 0, 1, 0, 0, 1, 1, 1, 1, 1\}$, qual o comportamento da função de verossimilhança? (Utilize um software para fazer esse gráfico).

Exercício 4 Em estudos de genética, o modelo binomial é frequentemente usado. Entretanto, em algumas situações o valor x = 0 é impossível, nestes casos a amostragem será realizada a partir da seguinte distribuição truncada:

$$\binom{m}{x} \frac{p^x (1-p)^{(m-x)}}{1 - (1-p)^m} I_{\{1,2,\dots,m\}}(x)$$

Encontre o estimador de máxima verossimilhança de p para o caso em que m=2 e o tamanho amostral é n.

Exercício 5 Seja X_1, \ldots, X_n uma amostra aleatória de uma população com distribuição de Poisson (λ) :

- a) Encontre o estimador do método dos momentos de λ
- b) Qual a função de verossimilhança?
- c) Qual o EMV de $\frac{\lambda}{1-\lambda}$?

Exercício 6 Seja X_1, \ldots, X_n uma amostra aleatória de uma população com distribuição Exponencial (θ) :

- a) Encontre o estimador do método dos momentos de θ
- b) Qual a função de verossimilhança?
- c) Qual o EMV?
- d) Qual o EMV de $\log(\theta)$
- e) Encontre o estimador de máxima verossimilhança de $g(\theta) = P(X > 1)$.

Exercício 7

Qual o motivo de utilizarmos o logarítmo da função de verossimilhança?

Exercício 8

Explique qual foi a intuição de Fisher ao criar o EMV?

Exercício 9 Seja X_1, \ldots, X_n uma amostra aleatória de uma população com distribuição Normal (μ, σ^2) :

- a) Encontre os estimadores do método dos momentos de μ e σ^2
- b) Qual a função de verossimilhança?
- c) Qual o EMV de μ e σ^2 ?
- d) Qual o EMV de $\sqrt{(\sigma^2)}$

- e) Utilize um software para gerar uma amostra aleatória de tamanho n=50 da distribuição normal de média $\mu=100$ e variância $\sigma^2=25$. Considere que a média seja conhecida e faça o gráfico da função de verossimilhança considerando a amostra gerada.
- f) Repita o item anterior, mas com um tamanho de amostra maior, por exemplo n=200. Faça um novo gráfico da função de verossimilhança.
- g) Qual a diferença entre os gráficos da letra (e) e (f)?

Exercício 10 Utilizando o arquivo 'lista_complementar_nucleos.pdf', encontre a função densidade de probabilidade, ou massa de probabilidade, referente a cada núcleo de distribuição.