Honors Discrete Mathematics: Lecture 7 Notes

 $Professor\ Gerandy\ Brito\ Spring\ 2022$

Sarthak Mohanty

Cardinality

There is an easy way to test if two numbers have the same cardinality, which will become useful when we deal with infinite sets.

Theorem. Two sets A and B are said to have the same cardinality if there exists a bijection (surjection?) from A to B. The proof of this theorem is outside the scope of this course.

Now consider the collection of all sets (i.e.: the power set of the universe!) and define the relation

ARB iff A and B have the same cardinality.

Using the above theorem, we will now show that this relation is an equivalence relation.

- 1. Reflexivity: There exists a bijection from A to $B \ f : A \to B$.
- 2. Symmetry: Since $a\mathcal{R}b$, we have defined a bijection from A to B. As discussed before, bijections have inverses, so we can define an inverse $f^{-1}B \to B$, so $b\mathcal{R}a$.
- 3. Transitivity: By definition, there exists a bijection from A to B. Furthermore, there exists a bijection from B to C. The composition $h: A \to C = g \circ f$ is a bijection as well (proof shown below), so $a\mathcal{R}c$.

Proposition. Let $f: A \to B$ and $g: B \to C$ be bijections. Then $h: A \to C$ is a bijection as well. **Proof.** Let's start by proving that $g \circ f$ is one-to-one. Suppose $g \circ f(a) = g \circ f(b)$. Then g(f(a)) = g(f(b)). Since g is one-to-one, this implies f(a) = f(b). Since f is one-to-one, g = b. Therefore $g \circ f$ is one-to-one.

Let's now prove that $g \circ f$ is onto. Suppose $c \in C$. Since $c \in C$ and g is onto, there exists $b \in B$ such that g(b) = c. Since $b \in B$ and f is onto, there exists an $a \in A$ such that f(a) = b. Therefore g(f(a)) = c, i.e., $g \circ f(a) = c$. Since $g \circ f$ is one-to-one and onto, it is a bijection.

Definition: A set is said to be *countable* if it is finite or has the same cardinality as the natural numbers. Examples: Show the following are countable sets by defining bijections for each of the following sets.

- From \mathbb{N} to the set of positive even numbers.
- From N to the set of negative integers.
- \bullet From $\mathbb N$ to the set of odd positive numbers.

•

Solution:

- f(n) = 2n
- f(n) = -n
- Let A denote the set of odd natural numbers. Let f(x) = 2x 1 for all $x \in \mathbb{N}$. Then $f : \mathbb{N} \to A$ is a bijection.

•

Lemma. Let A, B be countable sets. Then $A \cup B$ is also countable.

Proof. Suppose both |A| and |B| is finite. Then the proof is trivial.

Now suppose at least one of |A|, |B| is infinite. WLOG, suppose |A| is infinite and the size of b is k. Define a series of elements with the element at index i equal to the i-th element of |A|. Then shift every element k spaces to the right, and fill the first k spaces in the series with the elements in B. Since series are functions, we have shown there exists a bijection from |A| to |B|

Now suppose both |A| and |B| are infinite. Let f(n) = 2n and g(n) = 2n - 1 Define a function h(n) as

$$h(n) = \Big\{ f(n) \text{ if } n \text{ is even} g(N) \text{ if } n \text{ is odd} \Big\}$$

We now have another tool to show set are countable: The finite union of countable sets is also countable.

Lemma. Let A, B be countable sets. If $A \subseteq B$ and B is countable, then so is A. Proof is left as an exercise for the reader.

Lemma. Let A, B be countable sets. Then $A \times B$ is countable.

Proof. (TBC) We know $A \times B = \{a_i, b_i : a_i \in A, b_i = B\}.$

Define a function f as follows:

$$f(a_1, b_1) = 1,$$

 $f(a_2, b_a) = 2,$ $f(a_1, b_2) = 3,$
 $f(a_3, b_1) = 4,$ $f(a_3, b_2) = 5,$ $f(a_3, b_3) = 6,$
 $f(1, 4) = 7,$ $f(2, 3) = 8,$ $f(3, 2) = 9,$ $f(4, 1) = 10,$

and so on. Then $f: \mathbb{A} \times \mathbb{B} \to \mathbb{N}$ is a bijection.

Example. Show that \mathbb{N} to $A = \{x \in \mathbb{Q} : x > 0\}$ is a bijection.

We have many options, we can use the previous lemma and define the Cartesian product as $A \times B$, where A is the set of all numerators and B is the set of all denominators.

Let A denote the set of positive rational numbers. Define a function f as follows:

$$f(1) = \frac{1}{1},$$

$$f(2) = \frac{1}{2}, \quad f(3) = \frac{2}{1},$$

$$f(4) = \frac{1}{3}, \quad f(5) = \frac{3}{1},$$

$$f(6) = \frac{1}{4}, \quad f(7) = \frac{2}{3}, \quad f(8) = \frac{3}{2}, \quad f(9) = \frac{4}{1},$$

Cantor's Diagonal Lemma

Let f be a function from \mathbb{N} to (0,1). Prove that there exists $y \in (0,1)$ such that y does not belong to the range of f. (in other words, prove the set of real numbers is not countable.)

Solution

We are given a function $f: \mathbb{N} \to (0,1)$. We wish to find a number $y \in (0,1)$ such that

$$y \notin \{f(1), f(2), f(3), f(4), \dots\}.$$

For each $n \in \mathbb{N}$ and each $k \in \mathbb{N}$, let x_{nk} be the k-th digit in the standard decimal expansion of f(n). Then

$$f(1) = 0.x_{11}x_{12}x_{13}x_{14}...,$$

$$f(2) = 0.x_{21}x_{22}x_{23}x_{24}...,$$

$$f(3) = 0.x_{31}x_{32}x_{33}x_{34}...,$$

$$f(4) = 0.x_{41}x_{42}x_{43}x_{44}...,$$

and so on.

We shall define the number y by defining the digits in its decimal expansion so that they are different from the "diagonal" entries $x_{11}, x_{22}, x_{33}, x_{44}, \ldots$ that are highlighted in the equations above. For each $n \in \mathbb{N}$, let

$$y_n = \begin{cases} 5 & \text{if } x_{nn} \neq 5, \\ 4 & \text{if } x_{nn} = 5. \end{cases}$$

Then for each $n \in \mathbb{N}$, $y_n \neq x_{nn}$. Now let y be the number whose standard decimal expansion is

$$y = 0.y_1y_2y_3y_4...$$

Then $y \in (0,1)$. In fact, $0.444... \le y \le 0.555...$ To see that y is not in the range of f, note that for each $n \in \mathbb{N}$, $y \ne f(x)$ (because the numbers y and f(n) differ in their n-th decimal place; in other words, $y_n \ne x_{nn}$).

Post Lecture

Question 3

Describe bijections (without justifications): Whenever the bijection is defined by a single formula, also provide its inverse.

- (a) from \mathbb{Z} to \mathbb{N} .
- (b) from $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ to \mathbb{R} . [A suitable trigonometric function will do.]
- (c) from (0,1) to \mathbb{R} . [Compose a linear map with the map in part (b).]

Solution

(a) Let $n \in \mathbb{Z}$. Define f(n) by

$$f(n) = \begin{cases} 2n+1 & \text{if } n \ge 0, \\ -2n & \text{if } n < 0. \end{cases}$$

Then $f: \mathbb{Z} \to \mathbb{N}$ is a bijection.

- (b) Let $f(x) = \tan(x)$ for all $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$. Let $g(y) = \tan^{-1}(y)$ for all $y \in \mathbb{R}$. Then $f^{-1} = g$ and $f: (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$ is a bijection.
- (c) Let $f(x) = \tan(x)$ and $g(x) = \sin^{-1}(2x 1)$. Now f is a bijection from $(-\frac{\pi}{2}, \frac{\pi}{2})$ to \mathbb{R} and g is a bijection from (0,1) to $(-\frac{\pi}{2}, \frac{\pi}{2})$. Then $(f \circ g)(x) = \tan(\sin^{-1}(2x 1))$ is a bijection from (0,1) to \mathbb{R} . The inverse of $f \circ g$ is $(g^{-1} \circ f^{-1})(y) = \frac{\sin(\tan^{-1}(y)) + 1}{2}$ for all $y \in \mathbb{R}$.