

Data Visualization for Twitter Sentiment Analysis by Denali

OUTLINE:

- Background
- Data source
- Denali Introduction
- Experiments Setup and Results
- Conclusion

- Twitter sentiment analysis on candidate in GOP debates
- 3 sentiment polarities
 - Positive
 - Negative
 - Neutral
- Feature extraction and sentiment score computation
- Represent tweet as a sparse feature vector
- 3-parallel DNN architecture
- Visualize high dimensional data
 - Feature vectors
 - Parameter space

Raw Twitter Data

- ➤ A labeled data set with 1,288 tweets from Kaggle
- Focus on the most controversial "Donald Trump"

Tweets	Sentiment	Sentiment Confidence
@JGreenDC @realDonaldTrump In all fairness #BillClinton owns that phrase.#GOPDebate	Negative	0.6332
@MsPackyetti: Donald Trump's campaign reveals 1 important thing: Twitter Trolls are real people.	Positive	0.6957

Table 1 Example for Labeled Data

Representing Feature Vector in Feature Space

- > Features collection induce a feature space
- Take the #occurrences into account
- Embed text sample as feature vector
- Sparse feature vector with dimension of 3198

Tweets	"RT	"RT@TrumpIssues #GOPDebate #2016Debate elect Trump, elect Trump! Only he and @SarahPalinUSA can save America!"									
Feature	•••	america		elect		gopdebate		save		trump	
#Occurrence		1	0	2	0	1	0	1	0	2	0

Table 2 Example for Feature Vectors

Parameter Space induced from a 3-Parallel-DNN Architecture

Different # epochs give different configurations of the architecture

Figure 1-1 3-Parallel-DNN Architecture

- 2 hidden layer DNN: (3198,100), (100, 50)
- $3 \times (3199 * 100 + 101 * 50 + 51) = 3 \times 325001 = 975003$

- A tool for visualizing trees as landscape metaphors
- Two requisites for the data
 - Tree structure extractable, usually hierarchical
 - Scalar function defined on it.
- Two common approaches to extract tree structure
 - Hierarchical Clustering Tree
 - Contour Tree

Visualizing Contour Tree Extracted from Feature Vectors

- \blacktriangleright A topological space *X* and function $f: X \to R$
- X is1,288 feature vectors of dimension 3198
- f is the variance for the score of 3 sentiment polarities
- > Sentiment score range is [0,1]
- \triangleright Scalar function range is [0.0042, 0.2222]

Figure 2 Contour Tree Extracted from Feature Vectors

Visualizing Hierarchical Clustering Tree Extracted from Feature Vectors

- Applying average linkage clustering algorithm
- A hierarchical clustering tree is extracted base on the dissimilarity between feature vectors
- Born with scalar function defined (the distance where merges)

Figure 3 HCT (Euclidean)

Figure 4 HCT (Manhattan)

Figure 5 HCT (Hamming)

Figure 6 HCT (Cosine)

Visualizing the parameter space induced by 3-parallel-DNN Architecture

- The cost function is defined on the parameter space
- > Fig 7 uses testing error as scalar value
- Fig 8 uses training error as color map (MAX scalar value is red & MIN scalar value is blue
- Blue region are suffering from over-fitting & Red region are suffering from under-fitting

Fig 7 Contour Tree for Testing Error

Fig 8 Configured with Color Map for Training Error

- Apply PCA to the feature vector
- Red means being correctly classified while green means being wrongly classified

Upper plots shows the performance on training data while lower plots shows the performance on testing data

Over-fitting

Under-fitting

Optimal

CONCLUSION:

- Denali can be used to visualize high dimensional data
- Visualize by extracting tree structure
 - hierarchical structure tree
 - Contour tree

Q & A