# Elektronischer Verpolungsschutz für iSpindel

Beschreibung für einen **elektronischen Verpolungsschutz** für iSpindeln mit Batteriehalter für ungeschützte 18650 Li-Ion Akkus:

Da die Batteriehalter für ungeschützte 18650 Li-Ion Akkus über keinen mechanischen Verpolungsschutz verfügen, wurde eine elektronische Lösung gesucht. Getestete Lösung ist ein zwischen Akku und Lademodul geschalteter N-CH MOSFET Transistor. Der Transistor ist preislich attraktiv und kann obwohl SMD, aufgrund seiner Größe, gut händisch verlötet werden.

Der verwendete Transistor ist ein N-LogL MOSFET IRLR8726PbF im TO-252AA Gehäuse mit einem Innenwiderstand R<sub>DS</sub> von nur 0,0058 Ohm. Die V<sub>GSth</sub> (Gate-Source Threshold Voltage) liegt zwischen 1,35 und 2,35V und kann aufgrund der niedrigen Akku Spannung direkt angesteuert werden. Im Sleep-Modus liegt der Spannungsverlust bei 0 mV und im Config Modus bei 2,3mV, also vernachlässigbar.

Wenn jemand auf die Idee kommt, bei verkehrt eingelegtem Akku und ausgeschalteter iSpindel das Lademodul zu aktivieren, würde der Akku über den Transistor mit ca. 100 mA komplett entladen werden (Tiefentladung). Ohne Verpolungsschutz wäre die iSpindel zu diesem Zeitpunkt bereits defekt. Aus Platzproblemen und um für die Selbstbauer die Assemblierung nicht zu verkomplizieren (zusätzliche Bauteile), wurde dieses Manko belassen.

## iSpindel Messungen Verpolungsschutz:

| iSpindel:                    | Ohne Schutz | IRLR8726PbF<br>Stromfluss<br>- <> D | IRLR8726PbF<br>Spannung<br>DS | IRLR8726PbF<br>Spannung<br>GS (B- <> B+) | IRLR8726PbF<br>Spannung<br>BT1 |
|------------------------------|-------------|-------------------------------------|-------------------------------|------------------------------------------|--------------------------------|
| Ausgeschaltet                | 2,5 γΑ      | 2,5 γΑ                              | 0,0 mV                        | 3,53 V                                   | 3,53 V                         |
| On - Sleep                   | 0,17 mA     | 0,17 mA                             | 0,0 mV                        | 3,53 V                                   | 3,53 V                         |
| Config ohne Zugriff          | 77,7 mA     | 77,7 mA                             | 1,9 mV                        | 3,53 V                                   | 3,53 V                         |
| Ladung (On-Sleep)            | -187 mA     | -187 mA                             | -3,7 mV                       | 3,70 V                                   | 3,62 V                         |
| Verpolung (On/Off)           |             | 0,x γΑ                              | -3,24 V                       | -0,6 mV                                  | -3,53 V                        |
| Verpolung + USB>TP4056 (Off) |             | -105 mA                             | -5,49 V                       | 2,18 V                                   | -3,53 V                        |
| Verpolung + USB>TP4056 (On)  |             | - 0,5 γΑ                            | -4,9 V                        | 1,37 V                                   | -3,53 V                        |

### Schaltplanauszug:



Der N-Kanal-MOSFET leitet, wenn das Gate um VGSth positiver als die Source wird. Beim Anlegen einer korrekt gepolten Spannung am Eingang leitet erst mal die Bulk-Diode, so dass an der Source die Eingangsspannung ankommt. Weil die Spannung an der Source nun negativer ist als VGSth, leitet der MOSFET, und dem Strom steht nur noch der kleine Kanalwiderstand im Weg.

Beim Anlegen einer "verpolten" positiven Spannung sperrt die Bulk-Diode und der MOSFET kommt nicht in den leitenden Zustand.

### **Alternative N-LogL MOSFET Transistoren:**

IRLR8743PbF  $R_{DS}$  0,0031 Ohm im SOT-252AA Gehäuse IRLR3103PbF  $R_{DS}$  0,019 Ohm im SOT-252AA Gehäuse IRLL024NTRPbF  $R_{DS}$  0,065 Ohm im SOT-223 Gehäuse

Das Ergebnis des Tests wird die neue "hobipivo iSpindel PCB v2.0" Platine sein.

#### Christian