Convex Sets and Functions

Instructor: Jin Zhang

Department of Mathematics Southern University of Science and Technology

Fall 2023

Contents

- Convex Sets
- Extended Real-valued Functions
- Convex Functions
- 4 Support Functions

1. Convex Sets

1.1 Definitions and Basic Properties

Definitions

- (Convex Sets) A set Ω of \mathbb{R}^n is convex if for any $x,y\in\Omega$ and $0\leq\lambda\leq1$ it holds that $\lambda x+(1-\lambda)y\in\Omega$.
- (convex combination) Given $\omega_1, \dots, \omega_m \in \mathbb{R}^n$, the element $x = \sum_{i=1}^m \lambda_i \omega_i$, where $\lambda_1, \dots, \lambda_m \in \mathbb{R}$ satisfy $\sum_{i=1}^m \lambda_i = 1$, is a convex combination of $\omega_1, \dots, \omega_m$.
- (Affine Mappings) A mapping $\mathcal{B}: \mathbb{R}^p \to \mathbb{R}^q$ is affine if there exist a linear mapping $\mathcal{A}: \mathbb{R}^p \to \mathbb{R}^q$ and an element $b \in \mathbb{R}^q$ such that $\mathcal{B}(x) = \mathcal{A}(x) + b$ for all $x \in \mathbb{R}^p$.

Proposition

 $\Omega \subseteq \mathbb{R}^n$ is convex if and only if it contains all convex combinations of its elements.

Convexity-preserving

- 1. Let $\Omega_1 \subseteq \mathbb{R}^p$ and $\Omega_2 \subseteq \mathbb{R}^q$ be convex sets. Then the Cartesian product $\Omega_1 \times \Omega_2$ is a convex set of $\mathbb{R}^p \times \mathbb{R}^q$.
- 2. Let $\Omega_1, \Omega_2 \subseteq \mathbb{R}^n$ be convex, $\alpha, \beta \in \mathbb{R}$. Then $\alpha\Omega_1 + \beta\Omega_2$ is convex, where

$$\alpha\Omega_1+\beta\Omega_2:=\left\{w\in\mathbb{R}^n\big|\exists\ w_1\in\Omega_1,w_2\in\Omega_2\ \text{s.t.}\ w=\alpha w_1+\beta w_2\right\}.$$

3. Let $\{\Omega_{\alpha}\}_{{\alpha}\in\mathcal{I}}$ be collection of convex subsets of \mathbb{R}^n . Then the intersection $\cap_{{\alpha}\in\mathcal{I}}\Omega_{\alpha}$ is convex.

Definition (Convex Hull) Let $\Omega \subseteq \mathbb{R}^n$. The convex hull of Ω is defined by

$$\mathrm{co}\Omega = \bigcap \left\{ C \, \big| \, C \text{ is convex and } \Omega \subseteq C \right\}.$$

Properties

- The convex hull of Ω is the smallest convex set containing Ω .
- ullet For any $\Omega\subseteq\mathbb{R}^n$, its convex hull admits the representation

$$co\Omega = \left\{ \sum_{i=1}^{m} \lambda_i a_i \, \middle| \, \sum_{i=1}^{m} \lambda_i = 1, \, \lambda_i \ge 0, \, a_i \in \Omega, \, m \in \mathbb{N} \right\}.$$

1. Convex Sets

1.2 Relative Interiors of Convex Sets

Definitions

ullet (Lines) Given two elements a and b in \mathbb{R}^n , the line connecting them is

$$\mathcal{L}[a,b] := \{\lambda a + (1-\lambda)b \,|\, \lambda \in \mathbb{R}\}.$$

- (Affine Sets) $\Omega \subseteq \mathbb{R}^n$ is affine if $\mathcal{L}[a,b] \subset \Omega$ for any $a,b \in \Omega$.
- ullet (Affine Hulls) The affine hull of a set $\Omega\subseteq\mathbb{R}^n$ is

$$\mathsf{aff}\Omega := \bigcap \big\{ C \, \big| \, C \text{ is affine and } \Omega \subset C \big\} \, .$$

• (Relative Interiors of Convex Sets) Let $\Omega \subset \mathbb{R}^n$ be convex. Then $v \in \Omega$ belongs to the relative interior of Ω denoted by $\mathrm{ri}\Omega$ if there exists some neighborhood V of v such that $V \cap \mathrm{aff}\Omega \subset \Omega$.

2. Extended Real-valued Functions

2.1 Extended real-valued functions and Closedness

Notations

- $\mathbb{R} \cup \{-\infty, \infty\} = [-\infty, \infty], \ \mathbb{R} \cup \{\infty\} = (-\infty, \infty] = \overline{\mathbb{R}}.$
- We focus on $f:\mathbb{R}^n \to [-\infty,\infty]$ (an extended real-valued function). The (effective) domain of f is the set

$$dom f = \{x \in \mathbb{R}^n : f(x) < \infty\}$$

and the epigraph of f is the set

$$\mathsf{epi} f = \left\{ (x,y) : f(x) \leq y, x \in \mathbb{R}^n, y \in \mathbb{R} \right\}.$$

• We say $f: \mathbb{R}^n \to [-\infty, \infty]$ is proper if $\mathrm{dom} f \neq \varnothing$ and $f(x) > -\infty$ for any $x \in \mathbb{R}^n$.

Example: The indicator function associated with a set $C \subseteq \mathbb{R}^n$, given by $\delta_C(x) = 0$ if $x \in C$ and $\delta_C(x) = \infty$ otherwise, is extended real-valued.

Definitions

- $f: \mathbb{R}^n \to [-\infty, \infty]$ is closed if its epigraph is closed.
- $f: \mathbb{R}^n \to [-\infty, \infty]$ is lower semicontinuous at $x \in \mathbb{R}^n$ if for any sequence $\{x_n\}_{n\geq 1}$ for which $x_n \to x$ as $n \to \infty$, we have

$$f(x) \le \liminf_{n \to \infty} f(x_n).$$

Moreover, $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is lower semicontinuous if it is lower semicontinuous at each point in \mathbb{R}^n .

• For any $\alpha \in \mathbb{R}$, the α -level set of $f: \mathbb{R}^n \to [-\infty, \infty]$ is the set

$$\mathsf{Lev}(f,\alpha) = \{ x \in \mathbb{R}^n : f(x) \le \alpha \} .$$

Theorem: equivalence of closedness, lower semicontinuity, and closedness of level sets

Let $f: \mathbb{R}^n \to [-\infty, \infty]$. Then the following claims are equivalent:

- 1. f is lower semicontinuous.
- 2. f is closed.
- 3. For any $\alpha \in \mathbb{R}$, the α -level set Lev (f, α) is closed.

Theorem: Preserving Closedness

- 1. Let $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^p$ be a linear transformation from \mathbb{R}^n to \mathbb{R}^p and $b \in \mathbb{R}^p$ and let $f: \mathbb{R}^p \to [-\infty, \infty]$ be closed. Then $g: \mathbb{R}^n \to [-\infty, \infty]$ given by $g(x) = f(\mathcal{A}(x) + b)$ is closed.
- 2. Let $f_1, \dots, f_m : \mathbb{R}^n \to \overline{\mathbb{R}}$ be closed and let $\alpha_1, \dots, \alpha_m \in \mathbb{R}_+$. Then $f = \sum_{i=1}^m \alpha_i f_i$ is closed.
- 3. Let $f_i: \mathbb{R}^n \to \overline{\mathbb{R}}, i \in \mathcal{I}$ be closed, where \mathcal{I} is a given index set. Then the supremum function

$$f(x) = \sup_{i \in \mathcal{I}} f_i(x)$$

is closed.

Examples on Closedness:

- (closedness of indicators of closed sets). Let $C \subseteq \mathbb{R}^n$. Then the indicator function δ_C is closed if and only if C is a closed set.
- The function $f: \mathbb{R} \to \overline{\mathbb{R}}$, given by $f(x) = \frac{1}{x}$ for x > 0 and ∞ otherwise, is a closed function.
- (support functions). Let $\varnothing \neq C \subseteq \mathbb{R}^n$. Then the support function of C, given by

$$\sigma_C(y) = \sup_{x \in C} \langle y, x \rangle \text{ for any } y \in \mathbb{R}^n,$$

is a closed function.

2. Extended Real-valued Functions

2.2 Closedness versus Continuity

Theorem

Let $f:\mathbb{R}^n \to \overline{\mathbb{R}}$ be continuous over its domain and suppose $\mathrm{dom} f$ is closed. Then f is closed.

Example:

ullet Consider the function $f_{lpha}:\mathbb{R} o\overline{\mathbb{R}}$ associated with $lpha\in\mathbb{R}$ given by

$$f_{\alpha}(x) = \begin{cases} \alpha, & \text{if } x = 0, \\ x, & \text{if } 0 < x \le 1, \\ \infty, & \text{else.} \end{cases}$$

Then f_{α} is closed if and only if $\alpha \leq 0$, and it is continuous over its domain if and only if $\alpha = 0$.

• (l_0 -norm). The l_0 -norm function $f: \mathbb{R}^n \to \mathbb{R}$, given by

$$f(x) = ||x||_0 = \# \{i : x_i \neq 0\},\$$

Weierstrass theorem for closed functions

Let $f:\mathbb{R}^n \to \overline{\mathbb{R}}$ be proper closed and assume that $C\subseteq \mathbb{R}^n$ is compact satisfying $C\cap \mathrm{dom} f \neq \varnothing$. Then

- \bullet f is bounded below over C.
- ullet f attains its minimal value over C.

Definition: Coerciveness

A proper function $f:\mathbb{R}^n \to \overline{\mathbb{R}}$ is called coercive if

$$\lim_{\|x\| \to \infty} f(x) = \infty.$$

Theorem: attainment under coerciveness

Let $f:\mathbb{R}^n \to \overline{\mathbb{R}}$ be proper closed and coercive and let $\Omega \subseteq \mathbb{R}^n$ be a closed set satisfying $\Omega \cap \mathrm{dom} f \neq \varnothing$. Then f attains its minimal value over Ω .

3. Convex Functions

3.1 Definition and Basic Properties

Definition: convex functions

 $f:\mathbb{R}^n \to [-\infty,\infty]$ is convex if $\operatorname{epi} f$ is a convex set.

Recall that $\alpha + \infty = \infty (\forall \alpha \in \mathbb{R}), \ \infty + \infty = \infty, \ \alpha \cdot \infty = \infty (\alpha > 0).$

Properties

- ullet If $f:\mathbb{R}^n o \overline{\mathbb{R}}$ is convex, then $\mathrm{dom} f$ is a convex set.
- $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is convex if and only if for any for any $x,y \in \mathbb{R}^n$ and $0 \le \lambda \le 1$ it holds that $f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$.
- Jensen's Inequality: Let $f:\mathbb{R}^n \to \overline{\mathbb{R}}$ be convex. Then for any $x^1,\cdots,x^k\in\mathbb{R}^n$ and $\lambda_1,\cdots,\lambda_k\in\mathbb{R}_+$ satisfying $\sum_{i=1}^k\lambda_i=1$ it holds that

$$f\left(\sum_{i=1}^{k} \lambda_i x^i\right) \le \sum_{i=1}^{k} \lambda_i f(x^i).$$

operations preserving convexity:

- 1. Let \mathcal{A} be a linear transformation from \mathbb{R}^n to \mathbb{R}^p and $b \in \mathbb{R}^p$, and let $f: \mathbb{R}^p \to \overline{\mathbb{R}}$ be a convex function. Then $g: \mathbb{R}^n \to \overline{\mathbb{R}}$ given by $g(x) = f(\mathcal{A}(x) + b)$ is convex.
- 2. Let $f_1, \dots, f_m : \mathbb{R}^n \to \overline{\mathbb{R}}$ be convex and let $\alpha_1, \dots, \alpha_m \in \mathbb{R}_+$. Then $f = \sum_{i=1}^m \alpha_i f_i$ is convex.
- 3. Let $f_i: \mathbb{R}^n \to \overline{\mathbb{R}}, i \in \mathcal{I}$ be convex. Then the supremum function

$$f(x) = \sup_{i \in \mathcal{I}} f_i(x)$$

is convex.

4. **partial minimization:** Let $f: \mathbb{R}^p \times \mathbb{R}^q \to \overline{\mathbb{R}}$ be convex satisfying the following property:

for any $x \in \mathbb{R}^p$ there exists $y \in \mathbb{R}^q$ for which $f(x,y) < \infty$.

Then $g:\mathbb{R}^p \to [-\infty,\infty)$ given by $g(x)=\inf_{y\in\mathbb{R}^q}f(x,y)$ is convex.

3. Convex Functions

3.2 Examples on Convex Functions

Definitions

• Distance functions. Given $\varnothing \neq C \subseteq \mathbb{R}^n$, the distance function associated with C is defined by

$$d_C(x) = d(x; C) = \inf \{ ||x - \omega|| \mid \omega \in C \}.$$

• Infimal Convolution. Let $h_1, h_2 : \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper. The infimal convolution of h_1, h_2 is defined by

$$(h_1 \square h_2)(x) = \inf_{u \in \mathbb{R}^n} \{ h_1(u) + h_2(x - u) \}.$$

Example 1: Let $C \subset \mathbb{R}^n$ be nonempty. If the norm on \mathbb{R}^n is given by $\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}$. Then the function

$$\varphi_C(x) = \frac{1}{2} \left(\|x\|^2 - d_C^2(x) \right)$$

is convex.

Theorem: (Convexity of the infimal convolution).

Let $h_1: \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper convex and let $h_2: \mathbb{R}^n \to \mathbb{R}$ be real-valued convex. Then $h_1 \square h_2$ is convex.

Example 2: (Distance Function)

Let $\varnothing \neq C \subset \mathbb{R}^n$ be convex. The distance function associated with C is convex.

3. Convex Functions

3.3 Continuity of Convex Functions

Theorem: Local Lipschitz Continuity of Convex Functions

Let $f:\mathbb{R}^n \to \overline{\mathbb{R}}$ be convex. Let $x_0 \in \operatorname{int} (\operatorname{dom} f)$. Then there exists $\varepsilon > 0$ and L > 0 such that $\mathbb{B} \left(x_0, \varepsilon \right) \subseteq C$ and

$$|f(x) - f(x_0)| \le L ||x - x_0||$$

for all $x \in \mathbb{B}(x_0, \varepsilon)$

Theorem: continuity of closed convex univariate functions

Let $f:\mathbb{R}\to\overline{\mathbb{R}}$ be proper closed and convex. Then f is continuous over $\mathrm{dom}\,f.$

4. Support Functions

Recall that the support function of $\varnothing \neq C \subset \mathbb{R}^n$ is defined as

$$\sigma_C(y) = \sup_{x \in C} \langle y, x \rangle \text{ for any } y \in \mathbb{R}^n.$$

Lemma: (convexity of support functions) Let $\emptyset \neq C \subset \mathbb{R}^n$. Then σ_C is a convex function.

Lemmas

• positive homogeneity: For any $\varnothing \neq C \subseteq \mathbb{R}^n$ and $\alpha > 0$,

$$\sigma_C(\alpha y) = \alpha \sigma_C(y).$$

• subadditivity: For any $\varnothing \neq C \subseteq \mathbb{R}^n$,

$$\sigma_C(y_1 + y_2) \le \sigma_C(y_1) + \sigma_C(y_2).$$

• For any $\varnothing \neq C \subseteq \mathbb{R}^n$ and $\alpha > 0$,

$$\sigma_{\alpha C}(y) = \alpha \sigma_C(y).$$

• For any For any $\varnothing \neq A, B \subseteq \mathbb{R}^n$,

$$\sigma_{A+B}(y) = \sigma_A(y) + \sigma_B(y).$$

Example 1 (support functions of finite sets)

Suppose that

$$C = \{b_1, \cdots, b_m\},\,$$

where $b_1, \dots, b_m \in \mathbb{R}^n$. Then

$$\sigma_C = \max \{\langle b_1, y \rangle, \cdots, \langle b_m, y \rangle \}.$$

Example 2 (support functions of cones)

Let $K \subset \mathbb{R}^n$ be a cone, i.e., for any $x \in K$, we have $\alpha x \in K$ for all $\alpha \geq 0$. Define the polar cone of K as

$$K^{\circ} = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \leq 0 \text{ for all } x \in K \}.$$

Then we have $\sigma_K = \delta_{K^{\circ}}$.

4 D > 4 B > 4 B > 4 B > 9 Q C

Example 3: (support function of the nonnegative orthant)

Notice that $(\mathbb{R}^n_+)^{\circ} = \mathbb{R}^n_-$, it follows that

$$\sigma_{\mathbb{R}^n_+} = \delta_{\mathbb{R}^n_-}.$$

Example 4: (support functions of unit balls)

Consider \mathbb{R}^n endowed with a norm $\|\cdot\|$ and the unit ball given by

$$\mathbb{B}_{\|\cdot\|}(0,1) = \{x \in \mathbb{R}^n \mid \|x\| \le 1\}.$$

We have for any $y \in \mathbb{R}^n$

$$\sigma_{\mathbb{B}_{\|\cdot\|}(0,1)}(y) = \max_{\|x\| \le 1} \langle y, x \rangle = \|y\|_*.$$

Some theorems of the alternative

(Farkas's lemma-first formulation) Let $c \in \mathbb{R}^n$ and $A \in \mathbb{R}^{m \times n}$. Then exactly one of the following is true:

- A. There exists $x \in \mathbb{R}^n$ such that $Ax \leq 0$ and $c^T x > 0$.
- B. There exists $y \in \mathbb{R}^m_+$ such that $A^Ty = c$.

(Farkas's lemma-second formulation) Let $c \in \mathbb{R}^n$ and $A \in \mathbb{R}^{m \times n}$. Then the following two claims are equivalent:

- A. The implication $Ax \leq 0 \Rightarrow c^T x \leq 0$ holds true.
- B. There exists $y \in \mathbb{R}^m_+$ such that $A^T y = c$.

(Gordan Theorem) Let $B \in \mathbb{R}^{m \times n}$. Then exactly one of the following is true:

- A. There exists $x \in \mathbb{R}^n$ such that Bx < 0.
- B. There exists $0 \neq y \geq 0$ such that $B^T y = 0$.

Proof of Farkas's lemma-first formulation

Consider the following linear programming (LP) problem and its dual problem

$$\min_{y} \{0 \mid A^{T} y = c, y \ge 0\} (P).$$

$$\max_{x} \{c^{T} x \mid Ax \le 0\} (D).$$

If Claim B holds, then by weak duality theorem, we have $0 \ge c^T x$ if x satisfies $Ax \le 0$, which is contradict with Claim A.

If Claim A holds, then the optimal value of (D) is ∞ . For any feasible point in (P), it is contradict with weak duality theorem $c^T x \leq 0$.

Example 5 (support functions of convex polyhedral cones)

Let $A \in \mathbb{R}^{m \times n}$. Define the set

$$S = \{ x \in \mathbb{R}^n \, | \, Ax \le 0 \} \, .$$

Then we have $\sigma_S(y) = \delta_{S^{\circ}}(y)$, where $S^{\circ} = \{A^T \lambda \mid \lambda \in \mathbb{R}_+^m\}$.

Example 6 (support functions of affine sets).

Let $B \in \mathbb{B}^{m \times n}$, $b \in \mathbb{R}^m$. Define the affine set

$$C = \{ x \in \mathbb{R}^n \, | \, Bx = b \} \, .$$

We assume that C is nonempty. The support function is given by

$$\sigma_C(y) = \langle y, x_0 \rangle + \sigma_{\mathsf{Range}(B^T)}(y).$$

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q @

Example 7 (a closed, convex and noncontinuous function). Consider the following set in \mathbb{R}^2 :

$$C = \left\{ (x_1, x_2)^T \mid x_1 + \frac{x_2^2}{2} \le 0 \right\}.$$

Then the support function is given by

$$\sigma_C(y) = egin{cases} rac{y_2^2}{2y_1}, & y_1 > 0, \ 0, & y_1 = y_2 = 0, \ \infty & ext{else}. \end{cases}$$

 σ_C is not continuous at $(y_1,y_2)=(0,0).$ The contour lines of σ_C are plotted in the following figure.

Theorem (strict separation theorem).

Let $C \subseteq \mathbb{R}^n$ be nonempty closed and convex and let $y \notin C$. Then there exist $p \in \mathbb{R}^n \setminus \{0\}$ and $\alpha \in \mathbb{R}^n$ such that

$$\langle p, y \rangle > \alpha$$

and

$$\langle p, x \rangle \leq \alpha$$
 for all $x \in C$.

Lemma

Let $A, B \subseteq \mathbb{R}^n$ be nonempty closed and convex. Then A = B if and only if $\sigma_A = \sigma_B$.

Lemma

Let $A \subseteq \mathbb{R}^n$ be nonempty. Then

- (a). $\sigma_A = \sigma_{clA}$;
- (b). $\sigma_A = \sigma_{coA}$.

Example 8 (support of the unit simplex)

Consider the unit simplex set $\Delta_n = \{x \in \mathbb{R}^n \mid e^T x = 1, x \geq 0\}$, where e is the column vector of all ones. Then

$$\sigma_{\Delta_n}(y) = \max \{y_1, y_2, \cdots, y_n\}.$$