

GUARDA AVANTI

Big Data, nuove competenze per nuove professioni

(Progetto rivolto a laureati in tutte le aree disciplinari, co-finanziato dal Fondo Sociale Europeo Plus 2021-2027 Regione Emilia-Romagna)

Programma della lezione

- Tecniche di pre-processing del dataset
- Come sostituire i missing
- Come codificare le variabili categoriche
- Metodi per normalizzare le variabile numeriche
- Come gestire un dataset sbilanciato

Steps in progetto di Data Science

Cos'è la Data Pre-Processing?

- Consiste in un insieme di tecniche per trasformare i dati grezzi in un formato comprensibile per i modelli
- Ogni modello di machine ha diverse necessità:
 - o Esempio: KNN, SVM, K-means hanno bisogno di standardizzare i dati
 - Esempio: Random Forest e Gradient non hanno di standardizzare i dati

Gestire i valori mancanti:

- 1. Media/Mediana/Moda
- 2. bfill, ffill
- 3. interpolate
- 4. Eliminare

1. Media/Moda/Mediana

Se la colonna è:

- Numerica: si sostituisce il valore mancante con la sua media/mediana
- Categorica: si sostituisce il valore mancante con la sua moda

Ma come facciamo con dati temporali?

Day	Temp
Day 1	33
Day 2	33
Day 3	35
Day 4	NaN
Day 5	38
Day 6	37
Day 7	39

2. bfill

Backward fill (Riempimento all'indietro) - propaga all'indietro il primo valore non nullo osservato

	Day	Temp		Day	Temp
	Day 1	33.0	0	Day 1	33.0
	Day 2	33.0	1	Day 2	33.0
	Day 3	35.0	2	Day 3	35.0
	Day 4	NaN	3	Day 4	38.0
D	ay 5	38.0	4	Day 5	38.0
D	ау б	37.0	5	Day 6	37.0
[Day 7	39.0	6	Day 7	39.0
ir	ng nul	l values		bfill	

2. ffill

Forward fill (Riempimento in avanti) - propaga in avanti l'ultimo valore non nullo osservato

	Day	Temp
0	Day 1	33.0
1	Day 2	33.0
2	Day 3	35.0
3	Day 4	NaN
	Day 5	38.0
	Day 6	37.0
5	Day 7	39.0
av	ing nul	l values

3. Interpolate

Tecnica statistica che stima i valori sconosciuti basandosi sui valori esistenti

Filling missing values by bfill method [Same value is filled for Day 5, Day 6, Day 7]

3. Interpolate

Ci sono due tipi principali:

- Lineare: Interpola i punti tracciando una linea retta tra i punti di dati circostanti.
- Polinomiale: Si costruisce un polinomio che passa tra i punti
 - Esempio di Polinomio di secondo grado: P(x) = a0 + a1*x+a2*x^2

4. Eliminare i valori mancanti

- Se la colonna contiene più del 50% valori missing → diventa più rumorosa che informativa
- Bisogna eliminarla

Come gestire le variabili categoriche

- 1. One-hot-encoding
- 2. Ordinal encoding

Tipi di variabile categorica

One-hot-encoding

id	color
1	red
2	blue
3	green
4	blue

id	color_red	color_blue	color_green
1	1	0	0
2	0	1	Θ
3	0	Θ	1
4	0	1	Θ

Si usa con le variabili non-ordinali

Ordinal encoding

Original Encoding	Ordinal Encoding
Poor	1
Good	2
Very Good	3
Excellent	4

Si usa con le variabili ordinali

Metodi per normalizzare

- Molti modelli di machine learning richiedono di avere le variabili numeriche normalizzate
 - Esempi: Regressione Lineare, SVM, KNN, K-means, DBscan
- Aiuta ad avere la variabili nello stesso range senza cambiare la distribuzione

Normalizzazione

Standardizzazione

Robust Scaling

Si chiama "robusto" perché permette di evitare il problema della varianza alta dovuta agli outlier

Come gestire un dataset sbilanciato

Feature Selection

- Filtrare features in base alla feature importance (Decision Tree, Random Forest, Gradient Boosting)
- Recursive Feature Selection
- Selezionare le top n variabili usando SelectKBest

Filtrare features in base alla feature importance

Recursive Feature Selection

- Elimina le variabili in modo ricorsivo
- Inizia allenando il modello con tutte le features
- Ogni volta tralasciamo la variabile meno importante
 - Es: usando la feature importance
- Continuiamo finché non otteniamo le n features fissate

Selezionare le top k variabili usando SelectKBest

- È indipendente dal modello di Machine Learning
- Si selezionano le migliori k variabili basandosi un punteggio:
 - Anova F-value per la classificazione (f_classif)
 - F-value per la regression (f_regression)
- Confronta i modelli con diverse features e determinare quali variabili contribuiscono in modo significativo alla varianza spiegata nella variabile target

ANOVA F-value

- Valuta se la varianza tra i gruppi è maggiore di quella all'interno dei gruppi
- Maggiore è il rapporto F, maggiore è la probabilità che i gruppi abbiano medie diverse

$$F = \frac{\text{Variation between groups}}{\text{Variation within groups}}$$

Next Steps

- Sporcatevi le mani con dati reali
- Provare a fare progetti personali di Data Science
- Creare un Portfolio con i vostri progetti