Sanchayan Sarkar

sanchayansarkar@yahoo.com • (412)5265258• Website • github.com/sanchveda • LinkedIn • 759 South Reed Ct, Denver, CO 80226

<u>Summary</u>: 5 years experienced in Machine Learning with expertise in Graph AI and multimodal deep learning in analyzing emotion and turn-taking behavior in multimodal dialogue. Passionate and adept in developing and applying statistical and ML algorithms in solving industry standard problems.

Experience

Data Scientist II (Machine Learning Research), Katana Graph, Denver, CO, USA.

Oct 2021- Present

Building novel and scalable deep learning algorithms for graph-structured data.

- Developing novel self supervised embedding generation methods in a distributed environment.
- Designed a novel distributed Graph AI library and end-to-end AI platform in production.
- Developing distributed graph augmented MLP algorithms for large scale graphs using novel graph engine.
- Achieved 10x performance in both homogenous and heterogenous graphs without loss of accuracy.
- Binding native C++ implementations of state-of-the-art algorithms to generate python library on Graph AI.

Graduate Research & Teaching Assistant, University of Pittsburgh, Pittsburgh, PA, USA. *May 2018-Aug 2021* Research assistant in building multimodal machine learning models for turn-taking and emotion analysis in dyadic conversations.

Project: Multimodal Turn Taking in Dyadic Conversations

- Building end-to-end multimodal machine learning systems (in Python, PyTorch) for learning turn-taking strategies (end-of-turns, speaker pause) from multimodal (audio + video + text) sequences in dyadic interactions.
- Achieved statistically significant multimodal cues and proposed multimodal transformers to obtain higher performance.

Project: Automatic Emotion Recognition in Dyadic Conversations

Built context aware multimodal sequential and non-sequential neural models (LSTM, Conv-LSTM, Transformers) for
predicting composite emotion constructs from audio-video-text sequences in dyads (using Python, PyTorch).

Project: Automatic Depression Detection in Mother-Child Dyads

- Built a jointly learned Siamese CNN+LSTM model (in Python, PyTorch) to predict depression severity of mothers from mother-child face to face conversations using facial and head movement dynamics of dyads.
- Increased the performance of the prediction system by 3% (F1-Score) over non-dyadic models.

Teaching Assistant.

• Led classes, evaluated courses and prepared rubrics: Algorithm Implementation (CS1501), Artificial Intelligence (CS 2710, CS 1571), Machine Learning (CS 1675), Human Computer Interaction (CS 1637).

Project Researcher, Indian Statistical Institute, Kolkata, West Bengal, India.

Nov 2015- Dec 2016

Research Intern working on developing mathematical and statistical models for human face recognition.

Project: Illumination Variation Problem on Human Face Recognition. [Paper]

- Created a novel local illumination-invariant descriptor (in MATLAB) for face recognition under varying lighting conditions.
- Increased accuracy over state-of-the-art methods by 6.7% on CMU-PIE, 5% on Yale B and 2% on AR and CUHK datasets.

Project: Dimension Reduction and Noise Reduction for Face Recognition [Details]

- Applied linear regression to stabilize lower entropy space for dimension reduction in face recognition (using MATLAB).
- Increased accuracy by 3% on FRAV-2D, FERET datasets over state-of-the art methods and established proof of correctness.

Skille

Programming Languages: Python, C/C++, MATLAB, Java, SQL

Tools : PyTorch, TensorFlow, Numba, scikit-learn, open CV, open MPI, git, AWS, Android SDK, Unity 3D

Research Skills : Deep Learning, Natural Language Processing, Graph Neural Networks, Computer Vision.

Education

Master of Science (MS), University of Pittsburgh, PA, USA

Aug 2017- Aug 2021

- Computer Science with 3+ years research experience in Machine Learning, Computer Vision and NLP. | CGPA: 3.55/4.0
- Arts & Science Fellowship, 2017-2018
- Courses: Machine Learning, Deep Learning, Natural Language Processing, Computer Vision, Artificial Intelligence.

Master of Science, (MSc) University of Calcutta, India

Jul 2013- Jun 2015

• Computer and Information Science. | First Class, 75 % (in top 10)

• *Thesis*: Image Enhancement using Cuckoo-Search Optimization.

Jul 2010- Jun 2013

Bachelor of Science, (BSc), St. Xavier's College, Kolkata, India

• Computer Science. | First Class, 76% (in top 10)

Selected Projects

Self supervised embedding learning

Oct 2022- Present

• Designing distributed scalable algorithms for self supervised graph embedding learning.

Graph AI Platform• Leading a group to evaluate the AI platform for end-to-end training and inference tasks.

Jun 2022 - Sep 2022

Designing the native inference API for large scale graphs for distributed transductive inference.

Graph AI Library Feb 2022 - Jun 2022

• Designed & built the entire Graph AI functionality from scratch for large-scale graphs in a distributed setting.

Native implementation of distributed feature generation, scaling, decompositions, label encoding functionality.

• 10-100x time improvement in feature engineering functions while maintaining mathematical correctness.

Node Classification using Distributed Scalable Inception Neural Networks

Nov 2021- Feb 2022

Designed a Distributed version of Scalable Inference Graph Neural Networks for large graphs.

Achieved 10x performance improvement in time without any loss in accuracy on node classification tasks.

Image Captioning Using attention-based image context (3730 Advanced NLP)

Oct 2020- Nov 2020

• Designed a caption generator (in PyTorch) from images using a Resnet-101 encoder with an attention-based LSTM decoder.

Mortality Prediction Using Heterogenous Data Sources (3750 Advanced ML) [Details]

Mar 2020- Apr 2020

• Investigated contribution of multiple data sources (medications, vital signs) and built a Transformer architecture to predict mortality from continuous time-series data (using PyTorch).

• Identified Microbiology events as indicative of mortality and achieved a 3% improvement with Transformers over LSTM.

Detecting Deep Fakes (11785 Deep Learning) [Details]

Nov 2019- Dec 2019

• Built a Siamese Statistical Recurrent Neural Network to detect deep-fake video sequence (using Python, PyTorch).

• Achieved 10% increase in AUC-ROC over Statistical Recurrent Networks in FaceForensics++ dataset.

Detecting Pneumonia in Chest X-Ray Images: ML approaches (2750 ML) [Details]

Mar 2019 – Apr 2019

• Implemented Resnet-50, InceptionNet, CNN, Resnet-50 on Chest X-ray images (using Keras, Tensorflow).

• Increased recall by 3% using Resnet-50 over InceptionNet.

Tiny Google - A Parallel Word Search Engine (2510 OS) [Details]

Nov 2018- Dec 2018

• Developed a distributed search engine, using multithreading, that searches and retrieves documents based on search words from multiple worker nodes (using Python and Threading).

Direct Manipulation in Virtual Reality (2610 HCI) [Details]

Nov 2017- Dec 2017

• Extracted tracked movements from smartwatch to move objects in Virtual Reality (using Android SDK, Unity 3D).

Designed a novel user study gauging the difficulty of moving a box to a sphere of varying length in the virtual environment.

Publications

"Local Centre of Mass Face for Face Recognition under varying Illumination", 2017, [Link]

• "Challenges and Effects of Plastic Surgery on Face Recognition Performance: A review", 2016. [Link]