- 1. Mi a szállítási réteg feladata? Milyen szolgáltatásokat nyújt a hálózati réteg?
  - a. A hálózati réteg:
    - i. Két végpont közötti csomagtovábbítás
      - Datagram
      - Virtuális áramkör
    - ii. Nem megbízható
    - iii. Nagyrészt útválasztókon fut
      - Hiba esetén a felhasználó nem tud beavatkozni
  - b. Szállítási réteg:
    - i. Forrásgép egy folyamatától a célgép egy folyamatáig
    - ii. Megbízható szolgáltatás
    - iii. Használja a hálózati réteg szolgáltatásait
    - iv. A felhasználó gépén fut
      - Teljes felhasználói kontroll
      - Társentitások tudnak egyeztetni
        - a. Pl.: megérkezett? Ha nem, újraküldés.
      - Így megbízhatóbb tud lenni, mint az alatta lévő réteg
- 2. Rajzolja fel a hálózaton közlekedő adatok beágyazását (fejrészekkel). Nevezze meg az egyes elemeket.



3. Ismertesse a Berkeley csatlakozó primitíveket. Hogyan használjuk az egyes rendszerhívásokat? Milyen üzenetek közlekednek a hálózaton a rendszerhívások meghívásakor?



- 4. Mire való a SOCKET primitív? Melyik fél használja (szerver/kliens/mindkettő)?
  - a. Új kommunikációs végpontot hoz létre
  - b. Mindkettő fél használja
- 5. Mire való a BIND primitív? Melyik fél használja (szerver/kliens/mindkettő)?
  - a. Helyi címet rendel hozzá a csatlakozóhoz
  - b. Szerver használja
- 6. Mire való a LISTEN primitív? Melyik fél használja (szerver/kliens/mindkettő)?
  - a. Összeköttetés-elfogadási szándék bejelentése, várakozási sor hosszának megadása
  - b. Szerver használja
- 7. Mire való az ACCEPT primitív? Melyik fél használja (szerver/kliens/mindkettő)?
  - a. Bejövő összeköttetés létesítésére szolgál
  - b. Szerver használja
- 8. Mire való a CONNECT primitív? Melyik fél használja (szerver/kliens/mindkettő)?
  - a. Aktív próbálkozás összeköttetés létesítésére
  - b. Kliens használja

- 9. Mire való a SEND primitív? Melyik fél használja (szerver/kliens/mindkettő)?
  - a. Adatküldés az összeköttetésen keresztül
  - b. Mindkettő használja
- 10.Mire való a RECEIVE primitív? Melyik fél használja (szerver/kliens/mindkettő)?
  - a. Adatfogadás az összeköttetésen keresztül
  - b. Mindkettő használja
- 11. Mire való a CLOSE primitív? Melyik fél használja (szerver/kliens/mindkettő)?
  - ä. Összeköttetés bontása
  - b. Mindkettő használja
- 12.Mit jelent a TSAP és az NSAP? Hogy nevezzük ezeket a csatlakozókat az internet világában?
  - a. TSAP (Transport Service Access Point)
    - i. Jelentése: A szállítási (transport) réteg végpontjait azonosítja.
    - ii. Feladata: Egy adott alkalmazás számára biztosítja a kommunikációt a szállítási rétegben.
    - iii. Példa az internet világában: A portszám.
      - Az IPv4 és IPv6 protokolloknál a portok határozzák meg, hogy melyik alkalmazás vagy szolgáltatás kapja meg az adott szállítási réteg (pl. TCP vagy UDP) által továbbított adatokat.
      - Például:
        - a. HTTP szolgáltatás portja: 80
        - b. HTTPS szolgáltatás portja: 443
  - b. NSAP (Network Service Access Point)
    - i. Jelentése: A hálózati réteg végpontjait azonosítja.
    - ii. Feladata: Egy adott hálózati interfész számára azonosítja a hálózati rétegben használt címeket.
    - iii. Példa az internet világában: Az IP-cím.
      - Az IP-cím (IPv4 vagy IPv6) azonosítja az eszközt a hálózaton belül, és lehetővé teszi, hogy az adatokat a megfelelő helyre továbbítsák.

- 13. Honnan tudhatja egy kliens gép a szolgáltatás TSAP címét?
  - a. Állandó cím, amit egy adatbázis tárol
  - b. Sok szolgáltatás **fix portszámot** használ, amelyet az operációs rendszer vagy egy adatbázis tárol, így a kliens előre tudhatja, hogy melyik porton találja a szolgáltatást
    - i. Pl.: levelezés 25
    - ii. Pl.: Unix: /etc/services
  - c. Portszolgáltató (portmapper)
    - i. Speciális folyamat
    - ii. Címe ismert/állandó
      - a portmapper folyamat egy fix portszámon fut
    - iii. dinamikusan kezeli a szolgáltatások portszámait
    - iv. feladata, hogy a kliensek számára megmondja, melyik porton érhető el egy adott szolgáltatás

v.

- 14. Ismertesse a portszolgáltató működését.
  - a. ÖK (összeköttetés) létesítése portszolgáltatóval (PSZ)
  - b. Kérés küldése: hol van a szolgáltatás?
  - c. PSZ visszaküldi a szolgáltatás portszámát
  - d. ÖK bontása PSZ-val
  - e. ÖK létesítése a szolgáltatással...
- 15.Ismertesse a kezdeti összeköttetés protokoll működését. Hogyan működik a folyamatszerver (folyamatszolgáltató)?
  - a. kezdeti összeköttetés protokoll működése:
    - i. A szerver folyamatot indít egy **ismert portszámon.** A szerver a **passzív állapotban lévő socketjével (foglalatával)** figyel egy adott hálózati interfészen és porton
    - ii. A kliens létrehoz egy **aktív socketet**, amelyet egy ideiglenes helyi porthoz köt. Ez lesz a kliens oldali kapcsolati végpont. A kliens az ismert **szerver címet** (IP-cím és port) használva kezdeményez egy kapcsolatot
    - iii. A szerver elfogadja a kliens kezdeményezését, és létrehoz egy **új socketet**, amely a konkrét klienssel történő kapcsolatot kezeli. Ez az új socket már a kliens és a szerver közötti adatátvitelre szolgál, míg az eredeti socket a további kapcsolatkérések figyelését végzi.
    - iv. A kliens és a szerver a felépített kapcsolaton keresztül adatokat cserélhet
    - v. A kapcsolat lezárását bármelyik fél kezdeményezheti, amelyet a TCP-protokoll megfelelő mechanizmusai hajtanak végre.

- b. Folyamatszerver (folyamatszolgáltató)
  - i. Több portot is figyel
  - ii. Ha kérés érkezik, akkor
    - elindítja a megfelelő folyamatot
    - átadja neki az ÖK-t
  - iii. Folyamatszerver működése:
    - Az 1. hoszt folyamata levelet akar küldeni a 2. hoszt 25ös portján keresztül
    - A 2. hoszton nem fut a levelező szerver, csak a folyamatszerver (FSZ)
    - A kapcsolatot a FSZ építi ki a 25-ös porton
    - A FSZ elindítja a levelező szervert és átadja neki a kapcsolatot
    - FSZ tovább figyel a többi porton
- 16. Mit jelent a "jól ismert port"? Soroljon fel legalább 3 jól ismert portot.
  - a. Szerverek gyakran "ismert" portokon vannak
  - b. Előre definiálva vannak bizonyos szolgáltatások számára
  - c. 1024 alatti (0-1023) portok tartoznak ide általában
  - d. Pl.:
    - i. SSH (TCP, UDP): 22
    - ii. FTP (TCP): 20, 21
    - iii. SMTP (TCP): 25
    - iv. HTTP (TCP): 80
    - v. HTTPS (TCP): 443
- 17.Hogyan kezeljük a duplikált csomagok problémáját? Milyen szabályt kell betartanunk a sorszámok ismétlődésével kapcsolatban?
  - a. Sorszámozzuk a csomagokat
    - i. A sorszámok egy tartományban mozognak, utána átfordulnak
      - Pl. 32 bites egész számok
    - ii. Ha az adási sebesség korlátos, akkor egy T ideig biztosan nem ismétlődhetnek a sorszámok
      - Ha mégis, akkor az egy kóbor/késő csomag, amit már megismételtünk
- 18. Hogyan gondoskodunk a sokat késő csomagok eliminálásáról?
  - a. De mi van a nagyon sokat késő csomagokkal (>T)?
    - i. Ezeket ki kell irtani
    - ii. Módszerek:
      - Ugrásszámláló alkalmazása (ha túl sok ugráson át bolyong, akkor eldobjuk)

- Időcímke alkalmazása (ha túl hosszú ideig bolyong, akkor eldobjuk)
  - a. Bonyolult (szinkronizált órák kellenek)
  - b. Helyette az ugrásszámlálót használjuk

Legmélyebb tiszteletem.

Felkérhetem egy

Nagyon megtisztelő,

köszönöm. Kezdjük is!

sszeköttetésre?

CR (seq ≈ x)

Óh, persze.

Ezer örömmel.

- 19. Ismertesse a háromutas kézfogásos összeköttetés-létesítés működését.
  - a. CR (Connection Request)
    - i. Connection request
    - ii. Saját sorszám: x
  - b. ACK (Acknowledge)
    - i. Saját sorszám: y
    - ii. Nyugtázza x-et
  - c. DATA
    - i. Nyugtázza y-t
  - d. A gyakorlatban
    - i. a kezdeti sorszám (x, y) álvéletlen szám
    - ii. Biztonsági okból:
      - Ne legyen megjósolható, így támadható
- 20.Ismertesse a háromutas kézfogásos összeköttetés-létesítés működését, amennyiben egy régi kettőzött CR üzenet bukkan fel. Hogyan kezeli ezt a hibát a protokoll?



21. Ismertesse a háromutas kézfogásos összeköttetés-létesítés működését, amennyiben egy régi kettőzött CR üzenet és egy régi kettőzött ACK üzenet bukkan fel. Hogyan kezeli ezt a hibát a protokoll?



Kettőzött CR és kettőzött ACK esete

- 22. Ismertesse a szimmetrikus és aszimmetrikus bontás működését. Melyik megközelítés előnyösebb és miért?
  - a. Aszimmetrikus bontás
    - i. Mint telefonálás esetén
    - ii. Az egyik fél bont és az ÖK megszakad
    - iii. Ez adatvesztéssel járhat
  - b. Szimmetrikus bontás
    - i. Mindkét irányt külön kezeljük
    - ii. Mindkét irányt függetlenül bontjuk le
    - iii. Ha az egyik irányt lebontottuk, a másikban még küldhetünk adatot
  - c. Nem lehetünk benne biztosak, hogy a másik fél is bontani akarja-e az ÖK-t. Ezért nincs tökéletesen működő protokoll.
- 23. Ismertesse a kapcsolat bontására alkalmazott háromutas kézfogásos megoldást. Hol alkalmazunk időzítőket a protokollban és miért?
  - a. Háromutas kézfogás + időzítő
  - b. DR: DISCONNECT REQUEST
    - Egyirányú bontás jelzése
  - c. Normál működés
  - d. Elveszett ACK.
    - i. 2. hoszt időtúllépéssel bont
  - e. Elveszett válasz DR
    - i. 1. hoszt ismételt DR-t küld
  - f. Elveszett válasz és minden további üzenet
    - Mindkét hoszt időtúllépéssel bont
- 24. Ismertesse a kapcsolat bontására alkalmazott háromutas kézfogásos
  - megoldás működését, amennyiben az ACK üzenet elveszik.
    - a. 2. hoszt időtúllépéssel bont





- 25.Ismertesse a kapcsolat bontására alkalmazott háromutas kézfogásos megoldás működését, amennyiben a válasz DR üzenet elveszik.
  - a. 1. hoszt ismételt DR-t küld



- 26.Ismertesse a kapcsolat bontására alkalmazott háromutas kézfogásos megoldás működését, amennyiben a válasz DR üzenet és minden további üzenet elveszik.
  - a. Mindkét hoszt időtúllépéssel bont



- 27. Miért szükséges a hibakezelés a szállítási rétegben?
  - a. Hibakezelés:
    - i. Adatok megfelelő biztonsággal (hibátlanul) érkezzenek meg
  - b. Az adatkapcsolati rétegben ugrásonként ellenőrzünk. De mi történik, ha pl. egy router belsejében sérül az adat?
  - c. Mindenképpen szükséges a végponttól végpontig ellenőrzés
  - d. Nagy sávszélesség-késleltetés szorzat  $\Diamond$  nagy pufferméret. Ezt okosan kell kezelni
  - e. Mindig van újraküldés, kijavítja az összes, esetleg még előforduló hibát

- 28. Mi a forgalomszabályozás feladata?
  - a. Az adó és vevő sebességét szinkronizálja
  - b. Egy gyors adó ne töltsön túl egy lassú vevőt
  - c. Kezelés:
    - i. Vevő információt küld az állapotáról (ablakméret)
    - ii. Adó ennek megfelelően ad (elküldött csomagok száma)
    - iii. Csúszóablakos protokoll
- 29. Ismertesse a csúszóablakos protokoll működését.
  - a. változó méretű ablakokat (pufferméret) használ
  - b. külön választja a nyugtázást és a pufferkezelést
    - Egyszerű példa:
      - A ad
      - B vesz
      - Sorszám 4 bites (0-15)

# B minden üzenete tartalmaz:

- nyugta (sorszámmal)
- rendelkezésre álló pufferméret (vevő oldali ablakmérettel)

# Valóságban szimmetrikus!

- A is nyugtázza B üzeneteit
- A is küld ablakméretet B-nek
- 30. A csúszóablakos protokollban a következő üzeneteket látjuk:
  - A->B sorszám=7, adat=d7
  - A<-B nyugta=4, puffer=6

Hány üzenetet küldhet ezután az A állomás, ha nem kap B-től további üzenetet?

- a. nyugta=4 azt jelenti, hogy a B állomás az eddig sikeresen átvett üzenetek sorszámának a 4-es üzenetig terjedő részét visszaigazolta
- b. puffer mérete (6) azt jelenti, hogy az A állomás a sorszám 5-től kezdve a sorszám 10-ig terjedő üzeneteket küldhet (mivel a puffer ablak mérete 6)
- c. Az A állomás a sorszám 5-től kezdve folyamatosan küldhet üzeneteket, mivel a B az összes, 4-es sorszámú üzenetet visszaigazolta, és az ablak puffer mérete 6
- d. Ezért a következő üzenetek sorszáma, amelyeket az A állomás küldhet, a 5, 6, 7, 8, 9, 10 (összesen 6 üzenet) lesz, amíg új nyugtát nem kap a B-től

- 31.Kis idő múlva a következő két üzenet látjuk a hálózaton:
  - A<-B nyugta=12, puffer=3
  - A->B sorszám=13, adat=d13

Mely sorszámú üzeneteket küldheti még el az A állomás (amíg nem kap B-től újabb üzenetet)?

- a. Nyugta sorszáma (12) azt jelenti, hogy a B állomás visszaigazolta az összes üzenetet az 1-től 12-ig terjedő sorszámokig, tehát az A állomás biztosan tudja, hogy ezek az üzenetek megérkeztek
- b. A puffer mérete (3) azt jelenti, hogy az A állomás maximum 3 üzenetet küldhet el anélkül, hogy újabb nyugtát kapna
- c. Az A állomás a 13-as sorszámú üzenetet már elküldte, így az ablakban most 2 hely van a puffer méretének köszönhetően. Ezért az A állomás csak 2 üzenetet (14-es és 15-ös sorszámúakat) küldhet el a 13-as üzenet után, mielőtt újabb nyugtát kapna.
- 32. Mit jelent a nyalábolás a szállítási rétegben?
  - a. Több szállítási összeköttetés ugyanazt a hálózati címet használja
  - b. Több TSAP → egy NSAP
  - c. Ez a tipikus, hiszen általában 1 hálózati cím tartozik egy géphez
  - d. TCP ezt használja



- 33. Mit jelent a fordított nyalábolás a szállítási rétegben?
  - a. Egy szállítási összeköttetés több hálózati címet (interfészt) is használ
  - b. Egy TSAP  $\rightarrow$  több NSAP
  - c. Ok: sávszélesség megnő
  - d. k db. hálózatai összeköttetés: k-szoros sávszélesség
  - e. SCTP (Stream Control Transmission Protocol) is ilyen megoldást használ

#### 34. Mi a torlódáskezelés feladata?

- a. Hatékonyság biztosítása
  - i. Felajánlott forgalom (offered load)
  - ii. Hasznos átbocsátóképesség (goodput)
    - Egy darabig a felajánlott forgalommal együtt nő, majd:
    - Torlódás:
      - a. Goodput lassul, majd visszaesik
      - b. Késleltetés nő
  - iii. Legjobb teljesítőképesség:
    - A sávszélességet a késleltetés növekedéséig foglaljuk le
- b. Sávszélesség igazságos elosztása
  - i. Maximum-minimum igazságosság
    - Egy kiosztás maximum-minimum igazságos, ha egy folyamnak kiosztott sávszélesség nem növelhető anélkül, hogy egy másik, kisebb vagy azonos kiosztott sávszélességű folyam sávszélességét ne csökkentenénk
    - "Jómódú nem gazdagodhat tovább a szegényebbek rovására, de szegény gazdagodhat jómódú rovására."



Maximum-minimum sávszélesség-kiosztás négy folyamra A példában minden adatkapcsolat egységnyi sávszélességű

## c. Konvergencia

- i. Gyorsan konvergáljon egy igazságos és hatékony sávszélesség-kiosztás felé
- ii. Az igények gyakran változnak



- d. Visszacsatolás (érzékelés)
  - i. Hogyan észleljük a torlódást? Milyen visszajelzést alkalmazzunk?
  - ii. Explicit/implicit
    - Explicit: a torlódásról egyértelmű jelzést adunk (pl. ECN)
    - Implicit: a torlódást egyéb jelekből "sejtjük" (pl. körülfordulási idő növekedése)

# iii. Pontos/pontatlan

- Pontos: útválasztók a küldési sebességet pontosan meghatározzák a küldő számára (pl. XCP)
- Pontatlan: a küldési sebességet megpróbáljuk beszabályozni (de nem tudjuk az elvárt értéket)
  - a. Ha van torlódás: sebesség csökkentése
  - b. Ha nincs torlódás: sebesség növelése
- 35.Ismertesse a forgalomszabályozás és a torlódáskezelés feladatait. Mi a különbség a két fogalom között?
  - a. Fogalmak feljebb
  - b. A forgalomszabályozás a hálózati kommunikációban fogadó felet játszó eszközt védi a túlterheléstől, a kommunikáló felek közötti kapcsolatot felügyeli és szabályozza, ezeknél az eszközöknél dolgozik.
  - c. A torlódáskezelés a teljes hálózatot és annak infrastruktúráját védi a túlterhelés ellen, routereket, switchek, hálózati végpontoknál dolgozik.
- 36.Rajzolja fel a hasznos átbocsátást a felajánlott forgalom függvényében. Mutassa meg a torlódás hatását.



37.Rajzolja fel a hálózat késleltetését a felajánlott forgalom függvényében. Mutassa meg a torlódás hatását.



38.A 30. fólián látható hálózatban az A állomásból induló folyam sávszélességét 0.5-re állítjuk. Maximum-minimum igazságosság-e ez a felosztás? Miért?



Maximum-minimum sávszélesség-kiosztás négy folyamra A példában minden adatkapcsolat egységnyi sávszélességű

- a. Mindegyik vonal teljes kapacitása 1 egységet ér (R1 → R2 → R3 link teljes kapacitása 1 egység, R4 → R5 → R6 link teljes kapacitása szintén 1 egység)
- b. Ha A 0,5 egységet foglal az R1  $\rightarrow$  R2  $\rightarrow$  R3 linken, akkor a maradék kapacitás=1-0.5=0.5.
- c. Ezt a maradék 0.5 a B kapja, mert B folyam az R1  $\rightarrow$  R2  $\rightarrow$  R3 linken osztozik A-val
- d. R4 → R5 → R6 link kapacitása szintén 1. Ezen osztozik C és D. Ez testvérek között is 0.5-0.5 C-nek és D-nek.
- e. Így mindegyik folyam 0.5 egységgel rendelkezik, így ez maximum minimum igazságos.

- 39.Milyen alapvető szabályozási törvényt alkalmazunk a torlódáskezelés során?
  - a. Alaptörvény ("alkotmány"):
    - i. Ha van torlódás: sebesség csökkentése
    - ii. Ha nincs torlódás: sebesség növelése
  - b. De mi módon csökkentsük/növeljük a sebességet?
    - i. Additív: a sebességet egy állandó mennyiséggel változtatjuk
       (pl. +1)
      - Igazságossági egyenessel párhuzamosan mozog
    - ii. Multiplikatív: a sebességet egy állandó mennyiséggel szorozzuk (pl. × 0.5)
      - Origóból induló egyenes mentén mozog
  - c. Igazságossági egyenes
    - i. Ennek mentén igazságos az elosztás
  - d. Hatékonysági egyenes
    - i. Ennek mentén hatékony az eloszt
    - ii. itt használjuk ki a teljes sávszélességet
- 40.Ismertesse az AIMD szabályozási törvényt. Illusztrálja ennek működését két állomás esetén.
  - a. Additive Increase Multiplicative Decrease
  - b. A növelés legyen additív
  - c. A csökkentés legyen multiplikatív
  - d. Az optimális pontba konvergál
    - i. tehát optimális és hatékony is lesz
- 41. Miért nem okoz gondot a vezeték nélküli hálózatokban gyakori csomagvesztés a torlódás érzékelésében (akkor sem, ha az érzékelés csomagveszteségen alapul)?
  - a. A csomagvesztést a szállítási réteg arra használja, hogy a torlódást jelezze
  - b. De a vezeték nélküli hálózatokban mindenképpen nagyon sok csomag elveszik
    - i. Ez nem a torlódás miatt van
    - ii. A vezeték nélküli adatkapcsolati réteg érzékeli a keretvesztést
      - Azonnal javít: újraküld néhány μs-on belül
    - iii. Az átviteli hiba gyorsan javításra kerül, a szállítási réteg nem veszi észre
      - A szállítási rétegben az időzítők a ms ... s nagyságrendben vannak

- 1. Ismertesse az IPv4 fejrész egyes mezőinek feladatát (ábra alapján).
  - a. Verzió: Az IP protokoll verzióját határozza meg (IPv4 esetén ez 4).
  - b. IHL (Header Length): A fejrész hossza 32 bites szavakban.
  - c. Differenciált szolgáltatások:
    - i. 6 bit: szolgáltatási osztályok (pl. gyorsított, biztosított)
    - ii. 2 bit: explicit torlódásértesítés
  - d. Teljes hossz: A teljes IP csomag hossza (fejrész + adatrész).
  - e. Azonosítás:
    - i. A csomag darabolásához szükséges azonosító.
    - ii. Azonos datagramhoz tartozó darabok azonosítója ugyanaz.
  - f. DF/MF: Darabolás tiltása (DF) vagy a darabok folytatásának jelzése (MF).
  - g. Darabeltolás:
    - i. A csomagrész helye a datagramban.
  - h. Élettartam (TTL):
    - i. A csomag maximális ugrásszáma.
    - ii. minden ugrásnál értéke csökken eggyel
    - iii. Ha nulla, a csomagot el kel dobni
    - iv. Megelőzi, hogy hiba esetén a csomagok végtelen ideig kószáljanak
  - i. Protokoll: A szállítási protokoll (pl. TCP vagy UDP).
  - j. Fejrész ellenőrző összeg:
    - i. A fejrész hibáinak ellenőrzése.
    - ii. 16 bites ellenőrző összeg
    - iii. Minden ugrásnál számítani kell (hiszen az élettartam változik)
  - k. Forrás- és célcím: 32 bites IPv4 címek.
  - 1. Opciók:
    - i. Azonosító, hossz, adat
    - ii. Ritkán használt funkciók, például útvonalválasztás megadása.
  - m. Nem használt bit
- 2. Ismertesse az IPv4 címek felépítését. Mit jelent a prefix, a hoszt-rész, az alhálózati maszk és a prefix hossz?
  - a. Prefix: A hálózati rész azonosítására szolgáló bitsorozat.
  - b. Host-rész: Az állomások azonosítására használatos címrészek.
  - c. Alhálózati maszk: Az egyesek a hálózati részt, a nullák a hoszt részt jelölik.
  - d. Prefix hossz: Az alhálózati maszkban található egyes bitek száma.

- 3. A 193.44.73.12/26 IP-címhez határozza meg a cím bináris alakját, a bináris és decimális alhálózati maszkot, a hálózat címét, az első és utolsó hoszt címet és a broadcast-címet. Hány állomás lehet ezen a hálózaton?
  - a. **Bináris cím**: 11000001.00101100.01001001.00001100.

  - c. Decimális maszk: 255.255.255.192.
  - d. **Hálózat címe**: 193.44.73.0.
  - e. **Első hoszt**: 193.44.73.1.
  - f. Utolsó hoszt: 193.44.73.62.
  - g. **Broadcast cím**: 193.44.73.63.
  - h. **Hosztok száma**: 2<sup>(32–26)</sup>–2=62.
- 4. Mit jelent az IPv4-en az unicast, broadcast és multicast? Hogyan működnek?
  - a. Unicast: Egyetlen címzett.
  - b. Broadcast: Az adott hálózat minden eszközének küldött üzenet.
  - c. Multicast: Egy adott csoporthoz tartozó hosztok számára küldött üzenet.
- 5. Ismertesse a privát IP-címek szerepét és használatát az IPv4-ben.
  - a. Hálózaton belüli címzésre
  - b. Az IPv4 privát címek NAT segítségével érhetnek el külső hálózatokat, így a publikus IP-címek fogyasztását csökkentik.
- 6. Mit jelent a loopback-cím, mire használjuk?
  - a. Öncímző
  - b. Címzett: a küldő hoszt
  - c. Tesztelésre használjuk
- 7. Mire szolgálnak az autokonfigurációs címek?
  - a. Amikor egy eszköz nem kap IP-címet DHCP-szervertől, automatikusan választ egy címet a megadott tartományból.
  - b. Az eszköz ezen a címtartományon belül **ARP-protokollal** ellenőrzi, hogy a választott cím egyedi-e
  - c. Csak **helyi hálózaton belüli kommunikációra** használható, mivel ezek a címek nem routolhatók, tehát nem léphetnek ki az adott hálózatról
  - d. Pl. Windows DHCP kliens használja, ha nincs elérhető DHCP szerver

- 8. Ismertesse az alhálózatok létrehozásának módszerét egy közös címtartományon belül.
  - a. Egy rendelkezésre álló címblokk további részekre (alhálózatokra) bontható
  - b. A bitkölcsönzés módszerét használjuk az alhálózati címek kialakítására. Ehhez a hoszt rész biteiből kölcsönzünk biteket, hogy az alhálózati címeket azonosítsuk.
  - c. Az alhálózatok száma: 2n2^n2n, ahol nnn a kölcsönzött bitek száma.
  - d. Egy alhálózatra kiosztható hosztok száma: 2<sup>32-alhlázótai prefix</sup>–2 (a hálózati és broadcast cím miatt)
- 9. Egy vállalatnak a 128.129.130.0/24 IPv4 címtartomány áll rendelkezésére. Szeretnénk két egyforma méretű alhálózatot létrehozni (Fejlesztési osztály [FO] és Adminisztráció [AD]). Mi lesz a FO alhálózati címe és alhálózati maszkja? Mi lesz az AD alhálózati címe és alhálózati maszkja? Hány állomás lehet az egyes alhálózatokon?
  - a. /24-es tartomány két /25-ösre bontható, mert 2 alhálózat az 21: /24+1=/25
  - b. FO:
    - i. alhálózati címe: 128.129.130.0/25
    - ii. alhálózati maszkja: 255.255.255.128
    - iii. állomások száma: 32-25=7 => 27=128 => 128-2=126
    - iv. a .0 lesz a hálózati cím, a .127 pedig a broadcast cím, ezeket nem lehet kiosztani ezért 2-t le kell vonni, hogy megkapjuk a ténylegesen kiosztható címek számát
  - c. AD:
    - i. alhálózati címe: 128.129.130.128/25
    - ii. alhálózati maszkja: 255.255.255.128
    - iii. állomások száma: 32-25=7 => 27=128 => 128-2=126
    - iv. a .128 lesz a hálózati cím, a .255 pedig a broadcast cím, ezeket nem lehet kiosztani ezért 2-t le kell vonni, hogy megkapjuk a ténylegesen kiosztható címek számát

- 10.Egy vállalatnak a 128.129.131.0/24 IPv4 címtartomány áll rendelkezésére. Szeretnénk a címtartomány felét a Fejlesztési osztálynak [FO], negyedét az Adminisztrációnak [AD]), negyedét pedig a Kereskedelmi Osztálynak [KO] létrehozandó alhálózatokhoz rendelni. Mi lesz a FO alhálózati címe és alhálózati maszkja? Mi lesz az AD alhálózati címe és alhálózati maszkja? Mi lesz a KO alhálózati címe és alhálózati maszkja? Hány állomás lehet az egyes alhálózatokon?
  - a. **128.129.131.0/24** (256 cím, 2<sup>8</sup>)
  - b. FO (Fejlesztési osztály)
    - i. A tartomány fele (128 cím), azaz /25
    - ii. Hálózati cím: 128.129.131.0/25
    - iii. Maszk: 255.255.255.128
    - iv. Broadcast cím: 128.129.131.127
    - v. Hosztok száma: 126
  - c. AD (Adminisztráció)
    - i. A tartomány negyede (64 cím), azaz /26
    - ii. Hálózati cím: 128.129.131.128/26
    - iii. Maszk: 255.255.255.192
    - iv. Broadcast cím: 128.129.131.191
    - v. Hosztok száma: **62**
  - d. KO (Kereskedelmi osztály)
    - i. A tartomány negyede (64 cím), azaz /26
    - ii. Hálózati cím: 128.129.131.192/26
    - iii. Maszk: 255.255.255.192
    - iv. Broadcast cím: 128.129.131.255
    - v. Hosztok száma: **62**
- 11.A fenti vállalathoz érkezik a 128.129.131.173 címre egy csomag. Hogyan kell eldönteni, hogy melyik alhálózatra továbbítsuk?
  - a. A csomag cél IP-címét az alhálózati maszk segítségével "maszkoljuk" és ellenőrizzük, hogy melyik alhálózat hálózati címe egyezik az eredménnyel
  - b. Ez az útválasztás (routing) alapja
  - c. Példa maszkolásra:
    - i. Célcím binárisan: 10000000.10000001.10000011.10101101 (128.129.131.173).

    - iii. **Maszkolás eredménye**: 10000000.10000001.10000011.10000000 (128.129.131.128).

- iv. Az eredmény egyezik az AD alhálózat hálózati címével, ezért ide tartozik
- 12. Mit jelent az előtagok csoportosítása? Milyen előnnyel jár?
  - a. olyan technika, amelyet az IP-címek kezelésére használnak
  - b. több IP-címet, amelyek logikailag közel állnak egymáshoz (azaz ugyanabban a hálózati tartományban vagy alhálózatban találhatók), egyetlen nagyobb IP-címblokká egyesítenek
  - c. célja a hálózati címek hatékonyabb és egyszerűbb kezelése, valamint az internetes routing táblák optimalizálása
  - d. CIDR (Classless Inter-Domain Routing) eljárás segítségével végzik
  - e. Előnyei:
    - i. Kevesebb routing bejegyzés
    - ii. Hatékonyabb hálózati forgalom
    - iii. Jobb IP-címgazdálkodás
    - iv. Jobb hálózati skálázhatóság
- 13. Hogyan működik a Leghosszabb egyező előtag útválasztás?
  - a. Csomag beérkezik, a címe A
  - b. Útválasztó megnézi, hogy az A cím melyik bejegyzésére illeszkedik
  - c. Ha több ilyen bejegyzés is van, akkor kiválasztja azt, amelyik a leghosszabb előtaggal bír
    - i. Pl. ha egy /22 és egy /19 bejegyzésre is illeszkedik, akkor a /22 bejegyzést használja
  - d. A bejegyzésnek megfelelő irányba küldi tovább a csomagot
- 14.Egy útválasztóban az alábbi bejegyzések találhatók: 194.24.0.0/19 à London, 194.24.0.0/25 à Gézaháza-alsó. Hová kell továbbítani a 194.24.0.78 címre érkező üzenetet? És a 194.24.0.176 címre érkező üzenetet?
  - a. leghosszabb előtag egyezés: a router mindig azt a bejegyzést választja, amelyiknek a leghosszabb előtagja (prefixe)
  - b. 194.24.0.0/19:
    - i. Hálózati cím: 194.24.0.0
    - ii. Első cím: 194.24.0.1
    - iii. Utolsó cím: 194.24.31.254
    - iv. Szórási (broadcast) cím: 194.24.31.255 => mert 2^13=8192/256=32 (.0.0-.31.255)
    - v. Az 194.24.0.78 benne van ebben a tartományban.
  - c. 194.24.0.0/25:
    - i. Hálózati cím: 194.24.0.0

- ii. Első cím: 194.24.0.1
- iii. Utolsó cím: 194.24.0.126
- iv. Szórási (broadcast) cím: 194.24.0.127
- v. Az 194.24.0.78 benne van ebben a tartományban.7

# d. Leghosszabb előtag egyezés:

- i. Mindkét tartomány lefedi az IP-címet, de a /25-ös előtag hosszabb, mint a /19-es, ezért az 194.24.0.78 címre érkező csomagot Gézaháza-alsóra kell továbbítani.
- ii. Az **194.24.0.176** cím csak a /19-es előtaggal egyezik, ezért ezt a csomagot **London** felé kell továbbítani

# 15.Mit jelent a CIDR?

- a. Classless Inter-Domain Routing (Osztály nélküli körzetek közötti útválasztás)
- b. Nincsenek előre meghatározott előtag-méretek
- c. hatékony címkiosztás

16. Miért van szükség NAT-ra? Ismertesse a NAT működését.

- a. **NAT** (Network Address Translation) alapvetően a hálózatok és az internet címzési problémáinak kezelésére szolgál
- b. Az IP-címek korlátozott száma miatt vált szükségessé
- c. Biztonság:
  - i. elrejti a belső hálózat eszközeit a külső hálózat (internet) felől
- d. Hálózatok összekapcsolása:
  - Lehetővé teszi különböző belső hálózatok számára, hogy ugyanazokat a privát IP-tartományokat használják, miközben egy közös nyilvános IP-címen keresztül kommunikálnak

#### e. Működése:

- i. A belső hálózati eszközök (például számítógépek, telefonok) privát IP-címekkel rendelkeznek, amelyek nem elérhetők az interneten
- ii. Amikor egy belső eszköz kérést küld az internetre (pl. egy weboldal megnyitásakor), az útválasztó:
  - Lecseréli a csomag forráscímét a nyilvános IP-címére.
  - Megjegyzi az eredeti forráscímet és a hozzá tartozó portot egy fordítási táblában.
- iii. A válaszcsomag megérkezésekor az útválasztó:
  - Megnézi a fordítási táblát.
  - Visszacseréli a célcímet az eredeti privát IP-címre, majd továbbítja a belső hálózatra.

17.Egy NAT-táblában a következő bejegyzések találhatók (fiktív port, IP-cím, port):

6783 192.168.54.12 8080

9845 192.168.54.12 1980

1231 192.168.54.54 8080

Egy bejövő üzenet címe a következő: 173.67.86.24:1231. Hová kell továbbítani az üzenetet? Mi a 173.67.86.24? Mi a 1231?

#### a. 173.67.86.24:

Ez a külső (nyilvános) IP-cím, amelyet a NAT-tábla kezel. Ez általában az útválasztó nyilvános IP-címe, amelyen keresztül az internethez csatlakozik.

## b. 1231:

Ez a célport, amely alapján a NAT-tábla meg tudja határozni, hogy az üzenetet melyik belső eszköznek (IP-cím és port) kell továbbítania. A portok a kommunikáció azonosítására szolgálnak a fordítási táblában.

- c. A bejövő üzenet címe: 173.67.86.24:1231.
  - i. A NAT-tábla alapján a **1231** külső port hozzárendelve van a következő belső címhez:
    - Belső IP-cím: 192.168.54.54
    - Belső port: 8080
    - Ez azt jelenti, hogy az üzenetet továbbítani kell a 192.168.54.54 belső IP-címre, az 8080-as porton.
- 18. Miért nem univerzális megoldás a NAT?
  - a. IP címek nem globálisan egyediek
    - i. pl. sok 10.0.0.1 cím a hálózaton
  - b. Nem tud bárki bárkinek küldeni
    - i. NAT mögül csak kezdeményezni lehet
    - ii. További trükkök kellenek ennek áthidalására
  - c. Az összeköttetés nélküli internetbe összeköttetés-alapú kapcsolatot kever
    - NAT tábla sérülése: összeomlás
  - d. Összemossa a 3. és 4. réteget
    - i. portszámok: 4. réteg
  - e. TCP-n és UDP-n kívül más szállítási protokollok is vannak
- 19.Mik az IPv4 és IPv6 közötti legfőbb különbségek?
  - a. Sokkal több IP cím van (32 bites helyett 128 bites cím)
  - b. Fejrész egyszerűbb lett (13 mezőből 7 lett)
  - c. Opciók jobb támogatása

- i. Szükségszerű a rövidebb fejrész miatt
- ii. Gyorsabb csomagfeldolgozást tesz lehetővé
- d. Biztonság javítása
- e. Szolgáltatásminőség nagyobb hangsúlyt kapott
  - i. Multimédia
- 20. Ismertesse az IPv6 fejrész egyes mezőinek feladatát (ábra alapján).
  - a. Verzió:
    - i. 6
    - ii. Ez a mező az IPv6 verzióját jelzi
  - b. Differenciált szolgáltatások:
    - i. Torlódásjelzés (ECN Explicit Congestion Notification):
      - Lehetővé teszi a hálózati eszközök számára, hogy jelezzenek a hálózat terheltségéről, így a forgalom irányításában figyelembe vehetjük a hálózati állapotot.
    - ii. A hálózati csomagok különböző szintű prioritással való kezelése, hogy a késleltetés és a sávszélesség alakulása alapján fontosabb forgalmakat előnyben részesíthessünk
  - c. Folyamcímke:
    - i. Virtuális-áramkör alapú megközelítést tesz lehetővé
    - ii. Folyamot előre fel lehet állítani, ez az azonosítója
    - iii. Minden útválasztó kikeresi táblázatából, hogy a címke milyen különleges elbánást igényel
  - d. Adatmező hossza:
    - i. Ez a mező az adatmező hosszát tartalmazza (az IPv6 fejléc után), és meghatározza, hogy hány bájt adat található a csomagban. Az adatmező (payload) minden olyan információt tartalmaz, amely nem része a fejlécnek, például a szállítási protokollok adatcsomagjai (TCP, UDP, ICMPv6 stb.).
  - e. Következő fejrész:
    - Jelzi, hogy van-e következő opcionális fejrész, és milyen típusú
    - ii. Ha ez az utolsó IP fejrész, akkor itt jelzi, hogy melyik szállítási protokollnak kell a csomagot adni (TCP, UDP)
  - f. Ugráskorlát:
    - i. Mint az IPv4 élettartam
  - g. Forráscím, célcím
    - i. 128 bit (16 bájt)
    - ii. Formátum:
      - 8 csoport

- Kettősponttal elválasztva
- Mindegyik csoportban 4-4- hexadecimális számjegy (hextet)
- Pl.: 8000:0000:0000:0000:0123:4567:89AB:CDEF
- iii. Egyszerűsítések a jelölésben:
  - Csoporton belül a bevezető 0-k elhagyhatók
    - a. Pl.:  $0123 \rightarrow 123$
  - Csupa nulla csoportok (egy vagy több) két kettősponttal helyettesíthető
    - a. csak egyszer egy címben
    - b. Pl.: 8000::123:4567:89AB:CDEF
  - IPv4 címek írásmódja:
    - a. ::192.31.20.46
- 21.Mit jelent az IPv6-ban az unicast, multicast és anycast? Hogyan működnek? Mit jelent a GUA és LLA?
  - a. Unicast
    - i. Egyetlen címzett
    - ii. Globális (Global Unicast Address GUA):
      - mint IPv4, globálisan egyedi. (Opcionális)
      - 2000::/3 (első 3 bit: 001)
    - iii. Lokális (Link-Local Address LLA):
      - csak helyi hálózatra alkalmazzuk. (Kötelező)
      - fe80::/10
    - iv. Localhost:
      - ::1/128
  - b. Multicast
    - i. Több címzett, prefix: ff00::/8
    - ii. P1.: ff02::1 minden hoszt, ff02::2 minden router (azonos adatkapcsolaton)
  - c. Anycast
    - i. Unicast üzenet (egy cím), de a címzett bármely lehet a lehetséges címzettek közül (általában a legközelebbi)
- 22.Hogyan lehet IPv6 alatt alhálózatokat létrehozni? Milyen részekre tagozódik az IPv6 cím?
  - a. Van elég bit (128)
    - i. Hoszt címbitek: 64 bit
    - ii. Prefix: összesen 64 bit alhálózatok meghatározásához kell
      - Ebből a 16 alsó bit az alhálózatokat különbözteti meg

- A 48 felső bit a globális útvonalválasztási előtag
- 23. Ismertesse az IPv6 címek felépítését, jelölését.
  - a. 128 bit: Az IPv6 címek teljes hossza 128 bit.
  - b. A cím nyolc darab 16 bites hextet-re van bontva, mindegyik 4 hexadecimális számjegyből áll.
  - c. pl.: 2001:0db8:0000:0042:0000:8a2e:0370:7334
  - d. **IPv6 prefix** tartalmazhat globális (pl. 2000::/3), link helyi (pl. fe80::/10) vagy privát (pl. fc00::/7) címeket
- 24.Írja fel teljes alakban (rövidítés nélkül) a következő IP-címeket. Azonosítsa a címekben az útválasztási előtagot, az alhálózat azonosítóját és a hoszt interfész azonosítóját.
  - a. Teljes alakra hozás:
    - i. rövidített alaknál a felesleges 0-ák el vannak hagyva
    - ii. több 0 csoportot ::-al kiváltunk (csak egyszer)
    - iii. Így vissza lehet fejteni a címet azzal hogy ahol nem 4 elem van a hextetben oda beírjuk a 0-kat.
  - b. Útválasztási előtag (prefix) meghatározása:
    - i. Az IPv6 címben az útválasztási előtagot (prefixet) a cím elején lévő hálózati rész határozza meg, amelyet általában egy perjellel (/) jelzett számmal adnak meg.
      - Példa: 2001:db8::/32. Ez azt jelenti, hogy az első 32 bit a hálózati címhez tartozik.
    - ii. A prefixet hexadecimális blokkonként kell értelmezni:
      - Minden hexadecimális számjegy 4 bitet jelent.
      - Példa: /32 → az első 8 hexadecimális számjegy (2001:0db8) a prefix.
    - iii. Alhálózat azonosítójának meghatározása:
      - Az IPv6 alhálózati azonosítóját a prefix hosszán túli bitmezők tartalmazzák, egészen az első 64 bitig.
        - a. Példa: ha a prefix /48, akkor az alhálózat azonosítója a következő 16 bit (a 49–64. bit).
        - b. Az alhálózat azonosítóját a cím teljes alakjában azonosítjuk
        - c. Ha nincs /szám akkor /64-et feltételezünk
    - iv. Hoszt interfész azonosítójának meghatározása
      - Az hoszt interfész azonosítója a cím 64 biten túli része, vagyis az utolsó 64 bit.
        - a. Ez az azonosító a hosztot egyértelműen megkülönbözteti az alhálózaton belül.
        - b. Példa: 0001:0000:0000:0012 az utolsó 64 bitben

- c. 8000:1::123:67:89AB:CDE
  - i. Teljes alak: 8000:0001:0000:0000:0123:0067:89AB:0CDE
  - ii. Útválasztási előtag (Prefix): 8000:0001:0000:0000
  - iii. Alhálózat azonosítója: 8000:0001:0000:0000
  - iv. Hoszt interfész azonosítója: 0123:0067:89AB:0CDE

## d. 2001::1

- i. Teljes alak: 2001:0000:0000:0000:0000:0000:0001
- ii. Útválasztási előtag (Prefix): 2001:0000:0000:0000
- iii. Alhálózat azonosítója: 2001:0000:0000:0000
- iv. Hoszt interfész azonosítója: 0000:0000:0000:0001
- e. 2001:db8:12:567:1::12
  - i. Teljes alak: 2001:0db8:0012:0567:0001:0000:0000:0012
  - ii. Útválasztási előtag (Prefix): 2001:0db8:0012:0567
  - iii. Alhálózat azonosítója: 2001:0db8:0012:0567
  - iv. Hoszt interfész azonosítója: 0001:0000:0000:0012

#### f. fe80::

- i. Teljes alak: fe80:0000:0000:0000:0000:0000:0000
- ii. Útválasztási előtag (Prefix): fe80:0000:0000:0000
- iii. Alhálózat azonosítója: fe80:0000:0000:0000
- iv. Hoszt interfész azonosítója: 0000:0000:0000:0000

## g. ::1

- i. Teljes alak: 0000:0000:0000:0000:0000:0000:0000
- ii. Útválasztási előtag (Prefix): 0000:0000:0000:0000
- iii. Alhálózat azonosítója: 0000:0000:0000:0000
- iv. Hoszt interfész azonosítója: 0000:0000:0000:0001

#### h. 2001:2:3:4:5:6:7:8

- i. Teljes alak: 2001:0002:0003:0004:0005:0006:0007:0008
- ii. Útválasztási előtag (Prefix): 2001:0002:0003:0004
- iii. Alhálózat azonosítója: 2001:0002:0003:0004
- iv. Hoszt interfész azonosítója: 0005:0006:0007:0008

- 25. Sorolja fel az IPv4 és IPv6 vezérlő protokolljait. Ismertesse a szerepüket.
  - a. IPv4
    - i. ICMP Internet Control Message Protocol
      - Internetes vezérlőüzenet protokoll
      - Váratlan események jelzésére, tesztelésre
      - Figyelmeztet a hibás útvonalválasztásra vagy elérhetetlen célállomásra
    - ii. ARP Address Resolution Protocol
      - Címfeloldási protokoll
      - Az IPv4 címekhez tartozó MAC-címek (fizikai címek) lekérdezésére szolgál a helyi hálózatban
    - iii. DHCP Dynamic Host Configuration Protocol
      - Dinamikus hosztkonfigurációs protokoll (IP-cím, Subnet-mask, DNS szerver, Alapértelmezett átjáró)
  - b. IPv6
    - i. ICMPv6
      - ICMP-hez hasonló funkciók
        - a. Hiba, visszhang, időtúllépés stb jelzése
- 26.Ismertesse az ICMP(v4) legfontosabb üzenettípusait. Hogyan működik és milyen üzeneteket használ a ping és tracert?
  - a. Üzenetek:
    - i. Cél elérhetetlen: Csomagot nem lehetett kézbesíteni
    - ii. Időtúllépés: Az Élettartam mező elérte a 0-t
    - iii. Paraméter probléma: Érvénytelen fejrész mező
    - iv. Forráslefojtás: Lefojtócsomag
    - v. Átirányítás: Egy útválasztót tanít meg a földrajzra
    - vi. Visszhang kérés/válasz: Ellenőrzi, hogy életben van-e a gép
    - vii. Időbélyeg kérés/válasz: Ugyanaz, mint a visszhang csak időbélyeggel
    - viii. Útválasztó kérelmezés/hirdetés: Egy közeli útválasztó megtalálása
  - b. ping: az elérhetőség ellenőrzése, Visszhang kérés/választ használ
  - c. tracert: az útvonal elemzése a csomag célba juttatása során, Időtullépést használja

- 27. Ismertesse az ARP üzeneteit és a protokoll működését.
  - a. Probléma:
    - i. Hálózati réteg logikai (IP) címeket használ
    - ii. Hálózati réteg az adatkapcsolati réteg szolgáltatásait használja
    - iii. De az adatkapcsolati réteg fizikai (MAC) címeket használ
    - iv. Honnan tudjuk, hogy melyik fizikai címhez melyik logikai cím tartozik?
  - b. Az ARP ezeket kezeli
    - i. ARP REQUEST:
      - Broadcast keret küldése az adatkapcsolati rétegben:
    - ii. ARP REPLY:
      - Válasz a feladónak (unicast)
  - c. Üzenet küldése:
    - i. Ethernet keret felépítés (forrás: AAA, cél: BBB)
    - ii. Üzenet elküldése
  - d. Üzenet vétele:
    - i. Ethernet keretet veszi a BBB című állomás
    - ii. Keretet leveszi, a csomagot átadja az hálózati rétegnek.
  - e. ARP használata:
    - i. Hálózaton belüli cím: másik hoszt fizikai címe
    - ii. Hálózaton kívüli cím: átjáró fizikai címe
- 28. Ismertesse az ARP táblázat szerepét és használatát.
  - a. Optimalizálás:
    - i. ARP táblázat
    - ii. Ismert címeket tartalmazza:
      - IP MAC
    - iii. Idővel "lejár"
    - iv. Működés:
      - Küldés előtt ellenőrzi a táblát
        - a. Ha van bejegyzés, használja
        - b. Ha nincs, ARP REQUEST
      - ARP REPLY eredményét beírja

- 29.Mi célt szolgál a DHCP? Ismertesse a DHCP üzeneteit és a protokoll működését. Lehet-e DHCP nélkül működtetni egy hálózatot. Ha nem, akkor miért, ha igen, akkor hogyan?
  - a. IP címeket "lízingel": meghatározott időre
  - b. Lehetővé teszi, hogy az eszközök manuális konfiguráció nélkül csatlakozzanak a hálózathoz
  - c. IP cím kérés:
    - i. DHCP DISCOVER: Broadcast kérés
      - Felméri van-e DHCP szerver és IP címet kér tőle
    - ii. DHCP OFFER: Unicast válasz
      - Felajánl egy IP címet
    - iii. DHCP REQUEST: Broadcast kérés
      - Elfogadja az IP címet
    - iv. DHCP ACK: Unicast válasz
      - Meghatározza mennyi ideig használhatja a kapott IP címet (lízing)
  - d. IP cím frissítése (lízing lejárta előtt):
    - i. DHCP REQUEST: Broadcast kérés
      - Ismét kérné a korábban kért címet
    - ii. DHCP ACK: Unicast válasz
      - Ismét megkapja meghatározott ideig
  - e. Lehet DHCP nélkül is üzemeltetni hálózatot, viszont akkor manuálisan kell kiosztani a címeket, subnet maszkot, alapértelmezett átjárót, DNS kiszolgálót az eszközöknek (Statikus IP)
- 30.Mire szolgál az ICMPv6? Mire szolgál a Neighbor Discovery Protocol (ND)?
  - a. Hiba, visszhang, időtúllépés stb. jelzésére szolgál
  - b. Az ND az IPv6 hálózatokban használt alapvető protokoll, amely a helyi hálózaton található szomszédos eszközök felfedezésére és kommunikációjának kezelésére szolgál

- 31. Ismertesse a NS és NA üzenetek szerepét, a szomszédságfelderítés menetét.
  - a. Neighbor Discovery protocol (ND)
    - i. Neighbor Solicitation (NS, szomszéd megszólítása)
    - ii. Neighbor Advertisement (NA, szomszéd hirdetés)
    - iii. Router Solicitation (útválasztó megszólítása)
    - iv. Router Advertisement (útválasztó hirdetés)
  - b. Szomszédság felderítés (ND=NS+NA)
    - i. Szeretnék egy IPv6 címre üzenetet küldeni.
    - ii. Tudom-e a MAC címét?
      - Neighbor Cache: mint ARP tábla
      - Ha van benne info, akkor használjuk (GOTO 5), ha nincs, akkor GOTO 3
    - iii. NEIGHBOR SOLICITATION (NS): Multicast keret az adatkapcsolati rétegben:
      - Körbe küld egy IP címet, és megkérdezi, hogy kié
    - iv. 4. NEIGHBOR ADVERTISEMENT (NA):
      - Jelzi, hogy övé az IP cím
    - v. Üzenet küldése
    - vi. Üzenet vétele
      - Neighbor cache frissítése
- 32.Ismertesse az RS és RA üzenetek használatát. Milyen információt hordoz az RA üzenet? Milyen módokon juthat egy hoszt IPv6 címhez?
  - a. Neighbor Discovery protocol (ND)
    - i. Neighbor Solicitation (NS, szomszéd megszólítása)
    - ii. Neighbor Advertisement (NA, szomszéd hirdetés)
    - iii. Router Solicitation (útválasztó megszólítása)
    - iv. Router Advertisement (útválasztó hirdetés)
  - b. IPv6 DHCP-szerű funkciója a globális IP-cím (GUA) előállítására
  - c. ROUTER SOLOCITATION (RS): Multicast üzenet minden útválasztónak
    - i. Az üzenetben egy bizonyos címről kér le információkat
  - d. ROUTER ADVERTISEMENT (RA): Multicast üzenet minden állomásnak
    - i. Válaszban küldi a címről a tudnivalókat
      - Hálózati prefix és a prefix hossza
      - Alapértelmezett átjáró címe
      - DNS címe
      - [DHCP szerver címe]
    - ii. De mi legyen a hoszt cím (a prefix már megvan)?

- Csinálj magadnak egyet (SLAAC)
- Küldök egy DHCP szerver címet, konzultálj vele
- 33. Mit jelent a SLAAC? Ismertesse a működését.
  - a. SLAAC (Stateless Address Autoconfiguration)
  - b. IPv6 hálózati címek automatikus konfigurációs módszere
  - c. lehetővé teszi az eszközök számára, hogy önállóan konfigurálják az IPv6-címüket
  - d. a hálózaton belüli routerek segítségével történik, és a címeket dinamikusan generálja, a hálózati prefixekből és az eszköz MAC-címéből
  - e. Működése:
    - i. Router Discovery
      - Csatlakozik egy IPv6 hálózathoz az eszköz
      - Küld egy RS (Router Solicitation) jelet, hogy felfedezze a routereket
      - A routerek RA (Router Advertisement) választ küldenek, ami tartalmazza a hálózati prefixet és a konfigurációs információkat.
    - ii. RA megküldte a prefixet (64 bit)
      - Hiányzik még a hoszt cím (64 bit)
        - a. Véletlenszám (Windows 10)
        - b. EUI-64 (Cisco routerek)
        - c. Az eszközök ezt a prefixet és a saját **64 bites** hosszú **interfész azonosítót** kombinálják az IPv6-cím létrehozásához
        - d. Az interfész azonosítót gyakran az eszköz MACcíméből (a hálózati kártya fizikai címéből) generálják
        - e. Ezután ellenőrzik, hogy nem duplikált-e a cím
          - i. Ehhez NS üzenetet küld a többi eszköznek, amelyben a cím felől kérdez
            - 1. ha nem duplikált akkor használja
            - 2. ha duplikált akkor újat generál

- 1. Milyen szolgáltatásokat használnak az alkalmazási réteg protokolljai?
  - a. A szállítási réteg szolgáltatásait használja
    - i. Különféle igények, különféle szolgáltatások



- 2. Soroljon fel alkalmazási rétegben megvalósított protokollokat. Ismertesse ezek feladatát is.
  - a. DNS Domain Name System
    - i. körzetnevek IP-címekké alakítása
  - b. E-levelezés
    - i. SMTP Simple Mail Transfer Protocol
      - e-mail küldés
    - ii. POP3 Post Office Protocol
      - e-mail letöltése a szerverről
    - iii. IMAP Internet Message Access Protocol
      - e-mail elérése a szerveren (a szerveren marad)
  - c. FTP File Transfer Protocol
    - i. Megbízható fájlátvitel két gép között
  - d. HTTP, HTTPS
    - i. World Wide Web használata
  - e. BitTorrent
    - i. P2P fájlmegosztás
- 3. Mi a DNS, mi a célja?
  - a. Az IP hálózati címeket használ (172.217.16.110)
  - b. Az emberek a magas szintű neveket kedvelik (google.com)
  - c. Névfeloldás:
    - i. Magas szintű nevek átalakítása hálózati címekké (google.com  $\rightarrow$  172.217.16.110)
  - d. Általánosabban
    - i. Erőforrás-nyilvántartás
      - Magas szintű nevekhez erőforrás-bejegyzések rendelése
      - Pl.: név-szerver, levelező szerver, IPv4 cím, IPv6 cím

- 4. Mi volt a hosts.txt fájl feladata a korai hálózatokban? Mi a hosts fájl feladata egy mai rendszerben?
  - a. ARPANET
    - i. A hosts.txt tartalmazta az összes számítógép nevét és IP-címét
    - ii. Minden gép éjszakánként frissítette a hosts.txt fájlt
    - iii. Egy ideig egész jól működött
  - b. Az internet növekedett...
    - i. A hosts.txt fájl egyre nagyobb lett
    - ii. Központi menedzsment kellett a névütközések elkerülésére
  - c. Domain Name System (DNS): 1983
    - i. Hierarchikus névkiosztás
    - ii. Elosztott adatbázisrendszer
    - iii. Összekapcsolja a host-neveket és IP-címeket (és egyéb adatokat): névfeloldás
  - d. a hosts fájl továbbra is létezik, szerepe jelentősen csökkent a **DNS** rendszerek bevezetése óta
    - i. Helyi névfeloldás biztosítása, amikor egy számítógép gazdanevét kell egy IP-címhez rendelni
- 5. Ismertesse a DNS működését. Mi a resolver csonk feladata? Mi a helyei DNS szerver feladata?
  - a. Címfeloldó eljárás (resolver csonk) meghívása a felhasználói programból (pl. gethostbyname, GetHostEntry, InetAddress.getByName)
  - b. A resolver csonk kérést küld a helyi DNS szervernek
  - c. A helyi DNS szerver iteratív keresést hajt végre más DNS szerverek hívásával
  - d. Helyi DNS szerver visszaküldi az IP címet a resolver csonknak
  - e. A resolver csonk visszaadja az eredményt (IP címet) a felhasználói program hívó függvényének
  - f. Az IP-cím segítségével a felhasználói program kommunikálhat a keresett szerverrel



- 6. Mi az ICANN, mi a feladata?
  - a. Internet Corporation for Assigned Names and Numbers
  - b. Feladata, hogy **koordinálja az internet cím- és névterének működését**, ezzel biztosítva az internet globális és zökkenőmentes működését.
    - i. Domain Name System (DNS) kezelése
    - ii. IP-címek kezelése
    - iii. Protokoll-azonosítók kezelése
    - iv. DNS gyökérzóna kezelése
  - c. kulcsszerepe, hogy biztosítsa az internet globális elérhetőségét és egységes működését

- 7. Ismertesse a DNS névtér hierarchikus felépítését.
  - a. Elsődleges körzetek
    - i. ICANN kezeli
    - ii. Eredetileg 6 volt
    - iii. Jelenleg több, mint 1000 van
      - Általános: pl.: .com, .edu, .net, .org, ...
      - Országok: pl.: .hu, .de, .tv, stb
  - b. Másodlagos körzetek
    - i. Adminisztrátorok (registrar) kezelik
    - ii. Pl.: cisco.com, uni-obuda.hu
  - c. Minden körzet maga ellenőrzi az alatta lévő körzetek kiosztását
    - i. Pl.: magyarorszag.hu, magyarorszag.org, amk.uni-obuda.hu
  - d. Körzeteket pontokkal választjuk el
    - i. Balról jobbra a gyökér felé haladunk (a gyökeret nem jelöljük)
    - ii. Pl.: fluit.cs.vu.nl, amk.uni-obuda.hu
- 8. Mit tartalmaz egy DNS bejegyzés (5)?
  - a. Körzet-név
  - b. Élettartam
    - i. érvényességi idő másodpercben
  - c. Osztály
    - i. általában IN (internet)
  - d. Típus
    - i. az adat típusa
  - e. Érték
    - i. a típusnak megfelelő érték
- 9. Magyarázza el, mit jelent az alábbi DNS bejegyzések:

| uni-<br>obuda.hu. | 86400 | IN | NS   | ns1.uni-obuda.hu.                                                 |
|-------------------|-------|----|------|-------------------------------------------------------------------|
| uni-<br>obuda.hu. | 86400 | IN | A    | 193.224.41.159                                                    |
| index.hu.         | 60    | IN | AAAA | 2a02:730::1860                                                    |
| uni-obuda.hu.     | 86400 | IN | MX   | 10 sendmail.uni-obuda.hu.                                         |
| index.hu.         | 2     | IN | SOA  | ns.index.hu. support.mail.index.hu. 2018100045 600 300 604800 300 |

- a. Első sor
  - i. Ez egy **NS** (**Name Server**) rekord, amely meghatározza, hogy az adott domainnév (**uni-obuda.hu**) névszervere a **ns1.uni-obuda.hu**.
  - ii. 86400: Az élettartam (Time-to-Live, TTL) másodpercekben, ami azt jelenti, hogy ezt az információt 1 napig (86400 másodpercig) cacheelhetik más DNS-szerverek.
- b. Mésodik sor
  - i. Ez egy A rekord, amely azt mondja meg, hogy az uni-obuda.hu domainhez tartozó IPv4 cím a 193.224.41.159.
- c. Harmadik sor
  - i. Ez egy AAAA rekord, amely az index.hu domain IPv6 címét mutatja: 2a02:730::1860.

ii. 60: A TTL nagyon alacsony érték, mindössze 60 másodperc, vagyis ezt az adatot gyakran frissítik.

## d. Negyedik sor

- i. Ez egy MX (Mail Exchange) rekord, amely megmutatja, hogy az uniobuda.hu domainhez tartozó e-mail kiszolgáló a sendmail.uni-obuda.hu.
- ii. Az érték 10 a prioritást jelöli, kisebb szám magasabb prioritást jelent.

#### e. Ötödik sor

- i. Ez egy SOA (Start of Authority) rekord, amely egy DNS-zóna adminisztratív adatait tartalmazza.
- ii. ns.index.hu.: A zóna elsődleges névszervere.
- iii. support.mail.index.hu.: Az adminisztratív kapcsolattartó e-mail címe (pont helyett @-ot használunk: support@mail.index.hu).
- iv. 2018100045: A zóna sorszáma (Serial Number), amely a változások követésére szolgál.
- v. 600: Frissítési időköz (Refresh), vagyis az alárendelt névszerverek 600 másodpercenként (10 perc) ellenőrzik, hogy történt-e változás.
- vi. 300: Újrapróbálkozási idő (Retry), ami azt jelenti, hogy ha az első frissítési próbálkozás sikertelen, 300 másodperc után újrapróbálkozik.
- vii. 604800: Lejárati idő (Expire), vagyis 604800 másodperc (7 nap) után az alárendelt szerverek már nem bíznak a zóna adataiban, ha nem tudják frissíteni.
- viii. 300: Minimum TTL, az alapértelmezett élettartam a zóna rekordjaira 10. Mit jelent a hiteles és tárban lévő bejegyzés?
  - a. Hiteles bejegyzés (authorative record):
    - i. Az információ a bejegyzést kezelő szervtől származik (biztosan helyes)

```
C:\>nslookup uni-obuda.hu nsl.uni-obuda.hu
Server: nsl.uni-obuda.hu
Address: 193.224.40.5

Name: uni-obuda.hu
Address: 193.224.41.159
```

- b. Tárban lévő bejegyzés (cached record):
  - i. A bejegyzés a gyorstárból való (esetleg idejétmúlt lehet)

```
C:\>nslookup uni-obuda.hu
Server: UnKnown
Address: 2001:730:3eb2::10

Non-authoritative answer:
Name: uni-obuda.hu
Address: 193.224.41.159
```

- 11. Automatikus DNS cím beállítása esetén hogyan kapja meg a számítógép a DNS szerver címét?
  - a. **DHCP (Dynamic Host Configuration Protocol)** segítségével kapja meg a DNS-szerver címét
  - b. A számítógép **DHCP Discover** üzenetet küld a hálózatnak, hogy IP-címet és egyéb konfigurációs adatokat kérjen
  - c. A DHCP-szerver a következő adatokat küldheti a számítógépnek
    - i. IP-cím: A számítógép egyedi címe a hálózaton.
    - ii. Alhálózati maszk: Az alhálózat azonosítására.
    - iii. Alapértelmezett átjáró (default gateway): Az interneteléréshez szükséges útvonal.
    - iv. DNS-szerver címe(i): Az a kiszolgáló vagy kiszolgálók IP-címe, amelyeket a számítógép használhat a domainnevek IP-címekre való feloldására
  - d. A számítógép automatikusan elfogadja a kapott DNS-szerver címét, és azt beállítja a hálózati adapteren keresztül
- 12. Mit jelent az iteratív címfeloldás?
  - a. Az iteratív címfeloldás a DNS (Domain Name System) működésében azt jelenti, hogy a DNS-kliens (általában a számítógép vagy más eszköz) a DNS-kérést sorozatosan küldi el különböző DNS-szervereknek, hogy megtalálja a keresett domain névhez tartozó IP-címet
- 13. Magyarázza el az iteratív címfeloldás működését az index.hu cím esetén.
- 14. Milyen protokollokat alkalmazunk az elektronikus levelezés során? Mi az egyes protokollok feladata?
  - a. SMTP
    - i. Simple Mail Transfer Protocol
    - ii. Feladata
      - Levélfeladás (a szolgáltató levelező szerverére)
      - Levéltovábbítás (a címzett levelező szerverére)
    - iii. ASCII protokoll
    - iv. Manapság már biztonságos változatait használjuk (TLS felett)
      - Parancsok:
        - HELO
        - AUTH (példában nincs): user/passwd
        - MAIL FROM: feladó
        - RCPT TO: címzett
        - DATA: levél törzse (szövege)
        - .: üzenet vége
        - QUIT: kapcsolat bezárása

#### b. IMAP

- i. Internet Message Access Protocol
- ii. POP3 továbbfejlesztett változata
- iii. Feladata:
  - Postaláda kezelése
  - Levelek letöltése
  - Fontosabb parancsok
    - LOGIN név jelszó
    - LIST "" "\*"
    - SELECT foci
    - STATUS foci (MESSAGES)
    - FETCH sorszám (BODY[HEADER])
    - FETCH sorszám (BODY[szám])
    - LOGOUT

#### c. MIME

- i. A kezdeti levéltovábbító protokollok
  - ...ASCII karaktereket vártak
  - Egy sor nem lehetett 1000 karakternél hosszabb
- ii. De szeretnénk mást is továbbítani (képek, kód, video, ...)
- iii. Megoldás: MIME (Multipurpose Internet Mail Extensions)
- iv. Gyakori kódolás: base64
  - Kód 6 bites csoportokra bontása
    - a. 3 bájt→4 db 6-bites csoport
  - 64 karakterrel kódoljuk:
    - a. A-Z, a-z, 0-9, +, /
  - == és =
    - a. jelzi, ha "nincs tele" az utolsó csoport
- 15. Ismertesse az elektronikus levelező rendszerek felépítését, működését.
  - a. Felhasználói ügynök
    - i. Üzenetek olvasása, küldése (feladása)
    - ii. SMTP-t használ
  - b. Üzenettovábbító ügynök
    - i. (levelező szerver)
    - ii. Levelek eljuttatása a feladótól a címzett postaládájába
    - iii. POP3, IMAP használ



- 16. Mi az URL? Ismertesse az URL felépítését.
  - a. Universal Resource Locator
  - b. Pl.: <a href="http://uni-obuda.hu/oktatas">http://uni-obuda.hu/oktatas</a>
    - i. Protokoll (vagy séma): http
    - ii. Hoszt DNS neve: uni-obuda.hu
    - iii. Út: oktatas
- 17. Ismertesse a legfontosabb URL-sémákat (protokollokat), ezek célját.

| Név    | Rendeltetés                       | Példa                               |
|--------|-----------------------------------|-------------------------------------|
| http   | Hipertext (HTML)                  | http://www.ee.uwa.edu/~rob/         |
| https  | Hipertext biztonságos átvitele    | https://www.bank.com/accounts/      |
| ftp    | FTP                               | ftp://ftp.cs.vu.nl/pub/minix/README |
| file   | Helyi állomány                    | file:///usr/suzanne/prog.c          |
| mailto | E-levél küldése                   | mailto:JohnUser@acm.org             |
| rtsp   | Valós idejű média letőltése       | rtsp://youtube.com/montypython.mpg  |
| sip    | Multimédiás hívások               | sip:eve@adversary.com               |
| about  | Böngésző információ megjelenítése | aboutplugins                        |

- 18. Ismertesse egy web-oldal elérése során a kliens oldal működését.
  - a. A böngésző meghatározza az URL-t (megnézi, hogy mit választottak ki)
  - b. A böngésző megkérdezi a DNS-től a szerver IP-címét.
  - c. A DNS válasza: 128.208.3.88.
  - d. A böngésző létrehoz egy TCP-összeköttetést a 128.208.3.88 című hoszt 80-as portjával, a HTTP-protokoll jól ismert portjával.
  - e. Átküld egy kérést, melyben elkéri az /index.html oldalt
  - f. A kiszolgáló elküldi az oldalt egy HTTP-válasz formájában: átküldi az /index.html állományt.
  - g. A böngésző ugyanezzel a módszerrel lekéri az oldal többi URL-jét is.
    - i. css fájl, beágyazott kép, beágyazott videó, parancsfájl, stb.
  - h. A böngésző megjeleníti az /index.html oldalt.
  - i. A TCP-összeköttetést lebontják.
- 19. Ismertesse egy web-oldal elérése során a szerver oldal működését.
  - a. A szerver elfogad egy TCP-összeköttetést az ügyféltől (a böngészőtől).
  - b. Megkapja az oldalhoz vezető utat, ami a kért állomány neve (/index.html ).
  - c. Megkeresi az állományt (a háttértáron)
  - d. Elküldi az állomány tartalmát az ügyfélnek.
  - e. Bontja a TCP-összeköttetést.

20. Ismertesse a modern web-szerverek vázlatos felépítését. Mi a front-end és back-end feladata?



- a. Előtét-modul (front-end)
  - i. Fogadja a kéréseket
  - ii. Átadja a kérést az egyik feldolgozó szálnak
- b. Feldolgozó modulok (külön szálakon)
  - i. Ellenőrzi a gyorstárat (ha van találat, akkor azt használja)
  - ii. Ha nincs találat, előveszi az oldalt a háttértárról
  - iii. Gyorstárba beírja
  - iv. Eredményt visszaküldi az ügyfélnek
- 21. Mit jelent, hogy egy web-oldal statikus vagy dinamikus?
  - a. Statikus:
    - i. A weboldal tárolt formáját vesszük elő (pl. előző oldali szerver)
    - ii. Minden híváskor ugyanúgy néz ki.
    - iii. Pl.: logók, stíluslapok
  - b. Dinamikus:
    - i. A kérés feldolgozása után állítjuk elő az oldalt
    - ii. Az oldal dinamikusan változhat is
- 22. Ismertesse egy dinamikus web-oldal letöltésének menetét. Térjen ki a kliens-oldalon futó programok (pl. java-script) szerepére is.
  - i. Kérés
  - ii. Szerver-oldali program előállítja a választ
  - iii. Válasz visszaküldése
  - iv. Kliens-oldali program aktiválása
  - v. Újabb kérés
  - vi. Szerver-oldali program futása...
  - vii. Válasz, oldal frissül
- 23. Mi a HTTP és a HTTPS?
  - a. HTTP: HyperText Transfer Protocol
    - i. Kérés-válasz protokoll TCP felett
      - Egy TCP kapcsolat sok http kérés is mehet rajta
        - a. Tartós kapcsolat persistent connections (HTTP1.1 óta)
    - ii. Metódusokat használ
      - Kérések és válaszok fejlécei: ASCII
      - Tartalom: MIME formátumokban
  - b. HTTPS: A HTTP biztonságos változata
    - i. Működése hasonló, de titkosított csatornán történik a kommunikáció

- 24. Ismertesse a http kérések és válaszok működését a HTTP 1.0 alatt.
  - a. Minden kérés külön TCP összeköttetésen



1. ábra: Zölddel a TCP kapcsolat ideje

- 25. Ismertesse a http kérések és válaszok működését a HTTP 1.1 alatt. Mivel magyarázható a gyorsulás a HTTP 1.0-hoz képest (2 ok).
  - a. A HTTP 1.1 lehetővé teszi, hogy egy TCP-kapcsolatot többször felhasználjanak, tehát egyetlen kapcsolatot több kérés és válasz kezelésére tartanak fenn.
  - b. A kérés (request) tartalmazza:
    - i. HTTP metódusokat, pl. GET, POST.
      - A kért erőforrás URL-jét.
      - Fejlécadatokat (például milyen típusú válaszokat vár a kliens).
  - c. A szerver válasza (response)
    - i. Egy állapotkóddal (pl. 200 OK, 404 Not Found).
    - ii. A válasz tartalmával (pl. egy weboldal HTML kódja).
    - iii. Fejlécadatokkal (például a válasz típusát és hosszát).
  - d. Gyorsulás okai
    - i. Az összes kérés egy TCP összeköttetésen
    - ii. HTTP 1.1 lehetővé teszi, hogy az ügyfél több kérést küldjön egyetlen TCP-kapcsolaton belül, anélkül, hogy megvárná az előző kérés válaszát
- 26. Ismertesse a http kérések és válaszok csővezetékes működését a HTTP 2 alatt. Mivel magyarázható a gyorsulás a HTTP 1.1-hoz képest?
  - a. Csővezeték használata
  - b. A HTTP/2 nagy újítása a bináris protokoll használata, ami gyorsabb és hatékonyabb, mint a HTTP/1.1 szöveges protokollja
  - c. Egyetlen TCP-kapcsolaton belül több kérés és válasz egyszerre, párhuzamosan haladhat, anélkül, hogy várakozniuk kellene egymásra
  - d. A kérések és válaszok kisebb bináris keretekre osztódnak, amelyek függetlenül érkezhetnek és állhatnak össze az ügyfél vagy a szerver oldalán





27. Sorolja fel a fő HTTP metódusokat és azok célját.

| Metó dus | Leírása                         |  |
|----------|---------------------------------|--|
| GET      | Weboldal olvasása               |  |
| HEAD     | Weboldal fejlécének olvasása    |  |
| POST     | Weboldalhoz történő hozzáfűzés  |  |
| PUT      | Weboldal tárolása               |  |
| DELETE   | Weboldal eltávolítása           |  |
| TRACE    | Bejövő kérés visszaküldése      |  |
| CONNECT  | Kapcsolódás proxy-n keresztül   |  |
| OPTIONS  | Egy oldal opcióinak lekérdezése |  |

28. Soroljon fel néhány ismert állapotkódot.

| Kód | Jelentése            | Példák                                                                       |  |
|-----|----------------------|------------------------------------------------------------------------------|--|
| 1xx | Információ           | 100 = a kiszolgáló jóváhagyja az ügyfél kérését                              |  |
| 2xx | Siker                | 200 = sikeres kérés; 204 = nincs tartalom                                    |  |
| Зхх | Átirányítás          | 301 = az oldal elköltözött; 304 = a gyorstárban tárolt<br>oldal még érvényes |  |
| 4xx | Ügyfél hibája        | 403 = tiltott oldal; 404 = az oldal nem található                            |  |
| 5xx | Kiszolgáló<br>hibája | 500 = belső híba a kiszolgálóban; 503 = próbálkozzon<br>újra később          |  |

- 29. Hogyan működik a böngészőbe épített gyorstár?
  - a. Letöltött oldalakat a gyorsító tárban tároljuk
  - b. Ha újra hivatkozunk rá, akkor a gyorstárból töltjük be
- 30. Hogyan lehet oldal érvényességét ellenőrizni a gyorstárban?
  - a. meddig érvényes egy tárolt oldal?
  - b. "Lejár" fejléc: ha van, akkor ez mutatja az érvényességi időt
  - c. Feltételes GET
    - i. Ha az oldal nem változott, akkor rövid válasz, különben a teljes oldal
      - ha nem változott nem rendelődik hozzá erőforrás (nem terhelődik a hálózat)
      - ha változott akkor a teljes oldal tartalma a gyorstárba kerül

- 31. Ismertesse a proxy szerverek működését, fő feladatait. Mik ezen megoldás korlátai?
  - a. Szervezetek használhatnak saját proxy szervert
    - i. ISP, cég, egyetem
    - ii. Tárolja a szervezet bármely felhasználója által letöltött oldalakat a proxy cache-ben
    - iii. Ha bárki újra hivatkozik rá, akkor a gyorstárból töltjük be
  - b. Egyéb feladatokat is ellát
    - i. Biztonság (tűzfal)
    - ii. Tartalomszűrés
  - c. Korlátok:
    - i. Népszerűtlen oldalak
      - Ha az oldal nem népszerű, akkor valószínűleg nem lesz a proxy cache-ben tárolva, ezért nem érhető el gyorsabban, mint közvetlen lekérdezés esetén
    - ii. https!!!
      - a proxy nem férhet hozzá a titkosított adatfolyamhoz, hacsak nem használják a "man-in-the-middle" (MITM) proxy technikát



32. Hasonlítsa össze a HTTP1.1, HTTP2 és a HTTP3 főbb tulajdonságait. Ismertesse a hatékonyság növelése érdekében bevezetett új megoldásokat.

| Protokoll | Bevezetés éve         | Hálózati réteg | Fő jellemzők                                                                                                                    |
|-----------|-----------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------|
| HTTP/1.1  | 1997                  | TCP felett     | - TCP felett működik                                                                                                            |
| НТТР/2    | 2015                  | TCP felett     | <ul> <li>- Kérések csővezetéken</li> <li>- Tömörített fejrész</li> <li>- Szerver push (nem kért információt is küld)</li> </ul> |
| НТТР/З    | 2020 (Internet Draft) | QUIC felett    | - QUIC felett működik<br>- A legtöbb böngésző már támogatja                                                                     |

- 33. Miért előnyösebb a HTTPS protokoll használata a HTTP-vel szemben?
  - a. Problémák a HTTP-vel:
    - i. Lehallgatás
    - ii. Üzenetek módosítása
    - iii. Megszemélyesítés

34. Ismertesse a HTTPS vázlatos működését. Mire szolgál a kétkulcsos titkosítás? Mire szolgálnak a tanúsítványok?



- a. Kétkulcsos titkosítás (üzenetváltás biztonságos)
  - i. Nyilvános kulcsot a szerver elküldi
- b. A nyilvános kulcs valódiságát a böngésző ellenőrzi
  - i. Tanúsítvány (Certificate)
- 35. Miért van szükség speciális tartalomszállító hálózatokra?
  - a. CDN a rövidítése
  - b. Ötlet:
    - i. A népszerű tartalmakat a fogyasztó közelébe kell vinni
    - ii. Azonos tartalom több helyen (több példányban)
    - iii. Az optimális kiszolgáló példánytól(pl. a legközelebbitől) kapjuk az adatot
  - c. A tartalom szétosztása CDN csomópontokba
  - d. A kérések kiszolgálása a megfelelő csomópontban



- e. Kérések kezelése tartalomszállító hálózatokban
  - i. A tartalomszolgáltató saját, módosított DNS szervereket üzemeltet
  - ii. A DNS szerver a kérésből tudja, honnan érkezett
  - iii. Ennek megfelelő választ küld vissza
- 36. Ismertesse a szerverfarmok működését.
  - a. Egyetlen logikai webhely
  - b. Sok kiszolgáló gép
  - c. Melyik gép szolgálja ki az aktuális kérést?
    - i. Előtétberendezés (front-end)
    - ii. Szétszórja a kéréseket a szerverfarm kiszolgálói között
    - iii. Egy web-kérés minden csomagját ugyanazon kiszolgálóhoz kell irányítani!
    - iv. Módszerek:
    - v. Front-end mindenkihez továbbít, a szerver maga szűr
    - vi. pl. IP-cím alapján
    - vii. Front-end szűr és optimalizál
    - viii. Terheléskiegyenlítés (load balancing)

# Mire használjuk az RTP protokollt?

Szerver több forrást is használhat (pl. video, audio különféle nyelveken) Adatokat RTP blokkokba kódolják / RTP blokkokat UDP-n keresztül továbbítják

# Mire használjuk az RTCP protokollt?

Visszacsatolást kezeli: Hálózat tulajdonságairól a szervernek (késleltetés, jitter, sávszélesség,

torlódás) Ez alapján képes folyamatosan állítani a minőséget (pl. kódolás, felbontás)

Szinkronizációt biztosít:. A különféle folyamok óráit egymáshoz szinkronizálja

Forrás-információkat szállít Pl. a beszélő neve

# Milyen hatása van a késleltetésnek és a jitternek a valós idejű protokollok működése során?

**Késleltetés:** Sok alkalmazásban nincs lényegi hatása (pl. zenehallgatás) / Egyes alkalmazásokban kis értéken kell tartani (pl. telefon)

Késleltetés ingadozása (jitter): Nagyon zavaró! Kompenzálni kell a vevőben!

# Hogyan kompenzáljuk a jitter hatását a vevőben? Mit jelent a lejátszási pont?

- -Pufferelés a vevőben és Lejátszási pont (playback point):
- Mennyit kell várnia vevőnek a lejátszás indításáig
- Pl. a csomagok 99%-a megérkezzen Lejátszási pont változtatása: Pl. beszédszünetben

# 12. Hogyan azonosítunk egy csatlakozót (címzés)?

Küldő és fogadó létrehoz egy csatlakozót (socket)

b.) A socket címe három elemből áll:

IP cím (pl. IPv4 vagy IPv6) <- NSAP // Port száma (16 bites egész) <- TSAP / Protokoll (pl. TCP, UDP)

# 13. Mit jelent a "jól ismert port"? + Magyarázza el az inted szerepét és működését.

a.) A szerverek "Ismert" portokat használnak ("Well Known Ports")

1024 alatti portok // Csak privilegizált felhasználóknak // Minden porthoz egy démon tartozik Gyakran egyetlen felügyelő démont használunk (pl. inetd – Internet Daemon ) inetd figyel több portot is // szükség esetén elindítja a megfelelő démont

# 14. Milyen portszámokat kapnak a kliens folyamatok? Kitől kapják a portszámokat?

- a.) Általában ideiglenes portokra csatlakoznak
- b.) Az operációs rendszer választja ami Véletlenszerű

# Mit jelent, hogy a TCP full-duplex és kétpontos kommunikációt biztosít?

**A TCP full-duplex:** az adatküldés és fogadás egy időben, kétirányúan történik mindkét kommunikáló fél között.

**A kétpontos kommunikáció** TCP egy adott kapcsolat mindig két konkrét végpont (pl. kliens és szerver) között zajlik, nincs adatszórás (broadcast) vagy többesküldés (multicast).

Ezek biztosítják a megbízható, kétirányú adatátvitelt egyetlen kapcsolat keretein belül.

# Mit jelent, hogy a TCP egy bájtfolyamat biztosít?

az adatokat folyamatos bájtok sorozataként kezeli, nem pedig különálló üzenetekként. Az alkalmazás által küldött adatok sorrendje megmarad, de nincs üzenethatár. A TCP feladata a szegmensek összeállítása és sorrendhelyes kézbesítése.

#### Mikor küldi el a TCP a rábízott adatokat? Hogyan lehet gyors továbbítást kikényszeríteni?

#### Az elküldendő adatot szabad belátása szerinti időben küldi

Lehet pufferelni, hogy nagyobb szegmens összegyűljön

PUSH bit: kérheti a TCP-t, hogy ne késleltessen (pl. online játék)

# A TCP milyen adategységet sorszámoz?

Minden bájt rendelkezik egy 32 bites sorszámmal Ezeket a kapcsolat kezdetén meghatározott kezdeti sorszámhoz viszonyítva kezeli

Biztosítja a bájtfolyam sorrendiségét, a hiányzó csomagok felismerését és az újraküldési mechanizmus működését

#### Mi korlátozza TCP szegmens méretét?

IP adatmező -> MTU (legnagyobb átvihető adategység) -> Pl. Ethernet: 1500B

# Magyarázza el a TCP fejrészben a sorszám és a nyugtaszám szerepét.

Sorszám (SEQ): A korábban elküldött bájtok száma

**Nyugtaszám (ACK)**: Halmozott nyugta – Jelzi, hogy a nyugtázott bájtig az összes adat hiánytalanul megérkezett – A nyugta valójában a várt bájt indexét tartalmazza (rendben vett bájt sorszáma + 1)

#### 21. Magyarázza el a TCP fejrészben az ablakméret mező szerepét.

A vevőben rendelkezésre álló puffer mérete

# 22. Magyarázza el a TCP fejrészben a CWR és ECE bitek szerepét.

Vevő ECE: bittel jelez: torlódás van a hálózaton

Adó CWR: bittel jelez vissza, hogy a forgalmat (a torlódási ablaka méretét) lecsökkentette

# Magyarázza el a TCP fejrészben az ACK, PSH, RST, SYN és FIN bitek szerepét.

- a.) ACK: Jelzi a nyugtaszám érvényességét
- b.) PSH (PUSH): késedelem nélküli továbbítás kérése i. Ne legyen pufferelés
- c.) RST (RESET): Összeköttetés helyreállítás (valami baj történt)
- d.) SYN: kapcsolat kiépítés ->Jelzi a CONNECTION REQUEST és CONNECTION ACCEPTED üzeneteket
- e.) FIN: kapcsolat bontása i. Jelzi, hogy a küldőnek nincs több adata

# Ismertesse, hogyan alkalmazza a TCP az összeköttetés létrehozásához a háromutas kézfogást

- →SYN=1, ACK=0
- ←SYN=1, ACK=1
- →SYN=0, ACK=1



# Ismertesse a TCP összeköttetés lebontásának módját.

Időzítők használata -> Ha FIN-re nem jön válasz, bontja az ÖK-t

FIN jelzi, hogy nem kíván több adatot küldeni

→FIN: részemről nincs több adat

←ACK: OK, vettem

←FIN: Részemről sincs több adat

→ACK: OK, vettem



# Magyarázza el a TCP csúszóablakos forgalomszabályozásának működését

Különválik az ACK és a vevő pufferméretének kezelése

**ACK:** halmozott nyugta // A nyugtázott bájtig az összes adat hiánytalanul megérkezett (ACK a következő – várt – sorszámot tartalmazza)

**WIN:** vevőben rendelkezésre álló ablakméret i. = maximális küldhető adatmennyiség **SEQ:** sorszám -> Az eddig elküldött bájtok száma (ez a csomag nem számít bele)



mérete, amiből ez az 512B lejön szal 2048-512=1536.

#### Hány bájtot küldhet a kliens a szerver felé, ha a szerver utolsó üzenete a következő volt:

ACK=67123, WIN=512 // ACK=512, WIN=0 Mivel a WIN=512,

szerver rendelkezésre **álló ablakmérete 512**, tehát ennyi adatot küldhet még max a kliens. A kliens küdlött egy ACK-t válaszul tehát még 511 hely van vissza.

29. Egy szervernek 2kB üres pufferterület áll rendelkezésre egy TCP összeköttetés kezelésére. Most a következő (512 adatbájtot tartalmazó) üzenet érkezik a szerverhez: ADAT: 512B, SEQ=3000 ACK=3512 WIN=1536, mert jelzi, hogy fogadta az 512B adatot, mivel a 3000-ik sorszámként küldte így a következő, ami jön az a 3000+512=3512-ik sorszám lesz. Jelzi azt is, hogy 2kB (2048B) a puffere

# Hogyan lehet a szegmens elvesztését időzítő segítségével detektálni? Hogyan célszerű beállítani az időzítő értékét, ha ismerjük az átlagos késleltetési időt (SRTT) és a késleltetési idő szórását

Ha a szegmensre nem jön az időzítő lejárta előtt válasz, akkor újraküldjük

Az időzítő, ha 500ms akkor túl kicsi, ha 900ms akkor túl nagy

Változtassuk az időzítő értékét az aktuális helyzetnek megfelelően - adaptív időzítő • átlag és • szórás kell hozzá

# Hogyan becsüljük a késleltetési idő átlagos értékét? Ism.. az exponenciális átlagoló működését.

**Exponenciális átlagolással:** az aktuálisan mért értékeket és a korábbi simított értékeket kombinálja egy adott súlyozási tényezővel **RTT:** mért körülfordulási idő (Round Trip Time)

SRTT: simított körülfordulási idő (Smoothed Round Trip Time) sVAR: az RTT simított "varianciája"

$$SRTT_{\acute{u}j} = \alpha \cdot SRTT_{r\acute{e}gi} + (1 - \alpha)RTT$$

$$sVAR_{\acute{u}j} = \beta \cdot sVAR_{r\acute{e}gi} + (1 - \beta)|SRTT_{\acute{u}j} - RTT|$$

$$\alpha = 7/8$$

$$\beta = 3/4$$

Alfa és béta súlyozások, a kisebb értékek kisebb, a nagyobb értékek súllyal vannak figyelembevéve

# Ism a "3 ismételt nyugta" szabályt. Hogyan lehet ennek segítségével a szegmens elveszését detektálni?

A szegmens valószínűleg elveszett, ha nem jött rá nyugta RTO időn belül • Ehhez ki kell várni az RTO időt • Lehetne gyorsabban is detektálni az elveszett csomagot? Igen... 3 nyugtamásolat szabály legalább 3 ismételt nyugta (nyugtamásolat) jön egymás után

# Mitől jöhet létre torlódás? Mit jelent a torlódási ablak? Hogyan használja a TCP a forgalomszabályozási és a torlódási ablakot?

Ha a hálózati terhelés túl nagy Csomagok feltorlódnak az útválasztókban Csomagok késnek, elvesznek TCP: torlódási ablakot használ -> Mennyi adat lehet a hálózaton egyszerre? Hasonló a forgalomszabályozási ablakhoz • A TCP együtt használja a két ablakot • Amelyik kisebb, annak megfelelő mennyiségű adatot küld ki

# Ismertesse a nyugtaórajel működését

Egy hálózat sebességét a leglassabb szakasza határozza meg

Egy gyors löketre válaszul visszaérkező nyugták sebessége azt mutatja meg, hogy milyen gyorsan lehet a csomagokat a hálózat leglassabb részén átvinni

adó ennek megfelelő sebességgel ad -> Elkerüli a felesleges sorbanállást az útvonalválasztókon "sima" kimenőforgalmat biztosít

# Ismertesse a Lassú kezdés algoritmus működését. Mi célt szolgál ez az algoritmus a TCP-ben?

torlódási ablakot beállítsa: Ha nincs torlódás, növeljük (AI) Ha torlódás van, csökkentsük (MD) A kezdeti munkapont elérése AI-val lassú indításkor exponenciálisan növekvő ablakméretet Ez lesz a "lassú kezdés" algoritmus (Slow Start) • Minden nyugta vételénél ablakméret eggyel nő // új csomagot küld a régi helyett // új csomagot küld az új üres helyre

• Úton lévő csomagok száma RTT alatt duplázódik

# Mit értünk "gyors újraküldésen" a TCP Tahoe protokollban?

Torlódás/csomagvesztés érzékelése Időtúllépés vagy 3 nyugtamásolat

• ekkor a hiányzó csomagokat azonnal újraküldjük • Ez a gyors újraküldés (fast retransmission)

# Ismertesse a TCP Tahoe torlódáskezelését a lassú kezdés segítségével. Használja a 36. oldal ábráját.



# Soroljon fel alkalmazási rétegben megvalósított protokollokat. Ismertesse ezek feladatát is

DNS - körzetnevek IP-címekké alakítása SMTP:e-mail küldés

POP3:Post Office Protocol e-mail letöltése a szerverről IMAP:e-mail elérése a szerveren

FTP: Megbízható fájlátvitel két gép között http/S, WWW használata BitTorrent P2P fájlmegosztás

#### Milyen szolgáltatásokat használnak az alkalmazási réteg protokolljai?

A szállítási réteg szolgáltatásait használja pl HTTP, FTP, DNS -> TCP UDP használ

**Mi a DNS, mi a célja?** névfeloldó rendszer, amely ember által olvasható domainneveket (pl. example.com) fordít le gépek által értelmezhető IP-címekre (pl. 192.0.2.1).

# Mi volt a hosts.txt fájl feladata a korai hálózatokban? Mi hosts fájl feladata mai rendszerben

ARPANET hosts.txt fájl -> összes számítógép nevét IP-címét, és minden gép éjszakánként frissítette ezt a fájlt. internet növekedett kezelhetetlenné ->1983 bevezették DNS hierarchikus/elosztott névkiosztást biztosított. A mai helyi névfeloldásra, például egy gép gazdanevének és IP-címének manuális összerendelésére.

#### Ismertesse a DNS működését. Mi a resolver csonk feladata? Mi a helyei DNS szerver feladata?

**DNS** domainnevek IP-címekké való fordítását végzi. **resolver csonk** felhasználói programból indít kérést, amelyet a helyi DNS szervernek továbbít. A helyi DNS szerver iteratív kereséssel oldja fel a nevet más DNS szerverek segítségével. Az IP-címet visszaküldi a resolver csonknak, amely továbbítja az eredményt a programnak, így az kommunikálhat a keresett szerverrel.

#### Mi az ICANN, mi a feladata?

internet cím és névterének működését koordinálja. Feladata DNS, IP-címek, a protokoll-azonosítók és a DNS gyökérzóna kezelése, biztosítva az internet globális és zökkenőmentes működését.

#### Ismertesse a DNS névtér hierarchikus felépítését.

DNS névtér hierarchikus felépítésű, pontokkal elválasztott körzetekkel. Az elsődleges körzeteket (.com, .hu) ICANN kezeli, és több mint 1000 létezik, általános és országkódos tartományokkal.

A másodlagos körzeteket (pl. cisco.com, uni-obuda.hu) regisztrátorok adminisztrálják.

Minden körzet maga felügyeli az alatta lévő körzetek kiosztását, pl. amk.uni-obuda.hu. A névfeloldás balról jobbra történik, haladva a gyökér felé.

Mit tartalmaz egy DNS bejegyzés (5)? Körzet-név / Élettartam érvényességi idő másodpercben Osztály általában IN (internet) Típus az adat típusa Érték típusnak megfelelő érték

# Mit jelent a hiteles és tárban lévő bejegyzés?

Hiteles bejegyzés: Az információ a bejegyzést kezelő szervtől származik (biztosan helyes)

**Tárban lévő bejegyzés**: A bejegyzés a gyorstárból való (esetleg idejétmúlt lehet)

# Automatikus DNS cím beállítása esetén hogyan kapja meg a számítógép a DNS szerver címét?

DNS-szerver címét a DHCP segítségével kapja meg. A számítógép **DHCP Discover** üzenetet küld, a DHCP-szerver pedig válaszként elküldi az IP-címet, alhálózati maszkot, alapértelmezett átjárót és a DNS-szerver címét, amelyet a gép automatikusan beállít.

Mit jelent az iteratív címfeloldás? -> DNS-kliens több DNS-szerverhez küld kéréseket egymás után, amíg meg nem találja a keresett domainnévhez tartozó IP-címet.

# Milyen protokollokat alkalmazunk az elektronikus levelezés során? Mi az egyes protokollok feladata?

SMTP: Feladata a levél feladása és továbbítása a címzett levelező szerverére.

ASCII protokoll alapú, manapság biztonságos változatait használjuk (TLS felett)

IMAP: POP3 továbbfejlesztett változata Feladata: Postaláda kezelése Levelek letöltése

**MIME**: kezdeti levéltovábbító protokollok ASCII karaktereket vártak 1sor nem lehetett 1000 karakternél hosszabb

# Ismertesse az elektronikus levelező rendszerek felépítését, működését.

**Felhasználói ügynök**: Az üzenetek olvasására és küldésére szolgál. SMTP protokollt használja.

**Üzenettovábbító ügynök**: Felelős a levelek eljuttatásáért a feladótól a címzett postaládájába. Ehhez az SMTP-t használja a feladáskor, míg a levelek letöltésére és olvasására POP3 vagy IMAP

# Mi az URL? Ismertesse az URL felépítését.

URL: internetes erőforrások elérési útját jelöli. Felépítése a következő elemekből áll:

Protokoll (séma): http:// Hoszt DNS neve: uni-obuda.hu // Út: /oktatas

#### Ismertesse a legfontosabb URL-sémákat (protokollokat)

http: Hypertext Weboldalak elérésére használt protokoll. pl hhtp://miutdomén.com

https: Hypertext Secure - Biztonságos HTTPS kapcsolat, titkosítással. pl hhtpS://miutdomén.com

ftp: File Transfer Protocol - Fájlok átvitelére szolgáló protokoll.

file: Helyi fájlrendszeren található fájlok elérése.

mailto: E-mail küldésére szolgáló protokoll.

rtsp: Real-Time Streaming Protocol - Valós idejű médiafolyamok lejátszására.

sip: Session Initiation Protocol - Hívások kezdeményezésére használják, például VoIP hívásokhoz.

about: Böngésző specifikus információk megjelenítése.

# Ismertesse egy web-oldal elérése során a kliens oldal működését.

A böngésző meghatározza az URL-t.

A böngésző a **DNS-től lekéri a szerver IP-címét** (pl. 128.208.3.88).

A böngésző TCP-összeköttetést hoz létre a 80-as porton a szerverrel.

A böngésző HTTP kérést küld az /index.html oldal lekérésére.

A kiszolgáló HTTP-választ küld, és átadja az /index.html fájlt.

A böngésző további URL-eket is lekér (pl. CSS, képek, videók).

A böngésző megjeleníti az /index.html oldalt.

A TCP-összeköttetést lebontják.

# Ismertesse egy web-oldal elérése során a szerver oldal működését.

A szerver elfogadja a TCP-összeköttetést az ügyféltől (böngészőtől).

Megkapja a kért állomány elérési útját (pl. /index.html).

Megkeresi az állományt a háttértáron. Elküldi az állomány tartalmát az ügyfélnek. Lebontja a TCP-összeköttetést.

# Ismertesse a modern web-szerverek vázlatos felépítését. Mi a front-end és back-end feladata?

Előtét-modul (front-end): Fogadja a kéréseket. / Átadja a kérést a feldolgozó szálaknak.

Feldolgozó modulok (back-end): Ellenőrzik a gyorstárat, és ha találat van, azt használják.

Ha nincs találat, a háttértárról előveszik az oldalt. A gyorstárba írják az eredményt. Visszaküldik az eredményt az ügyfélnek.

# Mit jelent, hogy egy web-oldal statikus vagy dinamikus?

**Statikus:** Az oldal tárolt formáját jeleníti meg minden híváskor ugyanúgy, például logók vagy stíluslapok esetén. **Dinamikus:** Az oldal a kérés feldolgozása után jön létre, és a tartalma változhat a felhasználó vagy más környezeti tényezők alapján.

# Ismertesse egy dinamikus web-oldal letöltésének menetét. Térjen ki a kliens-oldalon futó programok (pl. java-script) szerepére is.

A kliens kérés küld a szervernek. -> A szerver-oldali program előállítja a választ.

A válasz visszaküldése a kliensnek. -> A kliens-oldali program (pl. JavaScript) aktiválódik.

A kliens újabb kérést küldhet, ha szükséges. -> A szerver-oldali program fut, és feldolgozza a kérdést. Válasz érkezik, és az oldal frissül a kliens oldalon.

#### Mi a HTTP és a HTTPS?

http: kérés-válasz alapú protokoll, amely a TCP kapcsolat felett működik, és lehetővé teszi a weboldalak elérését. A HTTP 1.1 óta támogatja a tartós kapcsolatokat, így egy TCP kapcsolaton több kérés is lebonyolítható. A kommunikáció ASCII formátumban történik, és MIME formátumokat használ a tartalomhoz. HTTPS: HTTP biztonságos változata, amely titkosított csatornán keresztül biztosítja a kommunikációt, így megvédi az adatokat az illetéktelen hozzáféréstől. 1/1 -> HTTP, de SSL/TLS titkosítást alkalmaz.

# HTTP 1.0 Kérések és Válaszok Működése

a kommunikáció egy kérés-válasz párban zajlik. Minden egyes kéréshez új TCP kapcsolatot kell létrehozni, amelyet a szerver válasza után bezárnak. Ez azt jelenti, hogy minden egyes új kérés új kapcsolatot igényel, ami lassítja a weboldalak betöltését.

# 2. HTTP 1.1 Kérések és Válaszok Működése és előnye

**Tartós kapcsolat:** A TCP kapcsolatot több kérés és válasz kezelésére tartják fenn, így nem szükséges minden új kéréshez új kapcsolatot létrehozni, ami gyorsítja a kommunikációt.

**Pipelining:** A HTTP 1.1 lehetővé teszi, hogy az ügyfél több kérést küldjön egyetlen TCP-kapcsolaton belül, anélkül, hogy megvárná az előző kérés válaszát. Ez jelentősen csökkenti a késleltetést.

#### 3. HTTP 2 Csővezetékes Működés és Gyorsulás + újfunciók

**Bináris protokoll:** A HTTP 2 szöveges helyett bináris protokollt használ, amely gyorsabb és hatékonyabb, mivel könnyebben feldolgozható.

**Multiplexálás:** Több kérés és válasz párhuzamosan haladhat egyetlen TCP-kapcsolaton belül, anélkül, hogy várakozniuk kellene egymásra. Ez csökkenti a késleltetést és növeli az átviteli sebességet.

**Keretes struktúra:** A HTTP 2 kéréseket és válaszokat kisebb bináris keretekre osztja, amelyek függetlenül érkezhetnek és újra összeállhatnak az ügyfél vagy szerver oldalán, így még gyorsabb adatfeldolgozást biztosít.

# Sorolja fel a fő HTTP metódusokat és azok célját.

GET: Weboldal olvasása. HEAD: Weboldal fejléceinek olvasása.

POST: Weboldalhoz történő hozzáfűzés. PUT: Weboldal tárolása. DELETE: Weboldal eltávolítása.

TRACE: Bejövő kérés visszaküldése. CONNECT: Kapcsolódás proxy-n keresztül.

**OPTIONS:** Egy oldal opcióinak lekérdezése.

# Soroljon fel néhány ismert állapotkódot.

1xx (Információ): A kiszolgáló jóváhagyja az ügyfél kérését, pl. 100 = kérés jóváhagyása.

2xx (Siker): A kérés sikeresen végrehajtódott, pl. 200 = sikeres kérés, 204 = nincs tartalom.

3xx(Átirányítás)oldal átirányítást igényel 301=oldal áthelyezve,304=gyorsítótárban tárolt oldal érvény 4xx (Ügyfél hibája): Az ügyfél kérésében van hiba, pl. 403 = tiltott oldal, 404 = oldal nem található.

**5xx (Kiszolgáló hibája)**: A kiszolgálónál hiba történt, pl. **500** = belső szerverhiba, **503** = próbálkozzon újra később.

## Hogyan működik a böngészőbe épített gyorstár?

Letöltött oldalakat a gyorsító tárban tároljuk Ha újra hivatkozunk rá, akkor gyorstárból töltjük be

# Hogyan lehet oldal érvényességét ellenőrizni a gyorstárban?

Lejárati fejléc: Ha van, akkor az érvényességi időt mutatja, és a tárolt oldal addig érvényes.

Feltételes GET: A kliens egy kérés során ellenőrzi, hogy az oldal változott-e.

- ----Ha nem változott, akkor rövid választ kap, és az oldal nem terheli a hálózatot.
- ----Ha változott, a teljes oldal újra letöltődik, és a gyorstárba kerül.

# Ismertesse a proxy szerverek működését, fő feladatait. Mik ezen megoldás korlátai?

**Feladatok: Cache:** A proxy szerver tárolja a szervezet felhasználói által letöltött oldalakat a gyorstárban. Ha újra hivatkoznak rá, a tárolt oldal gyorsabban töltődik be.

Biztonság: Segít a tűzfalak kezelésében és védelmet nyújt.

**Tartalomszűrés:** Lehetővé teszi bizonyos weboldalak blokkolását vagy hozzáférésük szabályozását. **Korlátok:Népszerűtlen oldalak:** Azokat az oldalakat, amelyek nem népszerűek, nem tárolja a proxy, így ezek nem érhetők el gyorsabban.

**HTTPS:** A proxy nem férhet hozzá a titkosított HTTPS forgalomhoz, hacsak nem alkalmaznak "man-in-the-middle" (MITM) technikát, ami biztonsági problémákat okozhat.

# Hasonlítsa össze a HTTP1.1, HTTP2 és a HTTP3 főbb tulajdonságait. Ismertesse a hatékonyság növelése érdekében bevezetett új megoldásokat.

| Protokoll | Bevezetés éve         | Hálózati réteg | Fő jellemzők                                                                                                                    |
|-----------|-----------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------|
| HTTP/1.1  | 1997                  | TCP felett     | - TCP felett működik                                                                                                            |
| НТТР/2    | 2015                  | TCP felett     | <ul> <li>- Kérések csővezetéken</li> <li>- Tömörített fejrész</li> <li>- Szerver push (nem kért információt is küld)</li> </ul> |
| НТТР/З    | 2020 (Internet Draft) | QUIC felett    | <ul> <li>QUIC felett működik</li> <li>A legtöbb böngésző már támogatja</li> </ul>                                               |

# Miért előnyösebb a HTTPS protokoll használata a HTTP-vel szemben?

Problémák a HTTP-vel: Lehallgatás // Üzenetek módosítása // Megszemélyesíté

# Ismertesse a HTTPS vázlatos működését. Mire szolgál a kétkulcsos titkosítás? Mire szolgálnak a tanúsítványok?

**Kétkulcsos titkosítás** (üzenetváltás biztonságos): Nyilvános kulcsot a szerver elküldi A nyilvános kulcs valódiságát a böngésző ellenőrzi -> Tanúsítvány

# Miért van szükség speciális tartalomszállító hálózatokra?

**Gyorsabb hozzáférés:** A népszerű tartalmakat a felhasználókhoz közel tárolják, így csökkentve a késleltetést.

**Több helyszín:** Azonos tartalom több példányban elérhető, legközelebbi szerver szolgálja ki **Hatékony terheléselosztás:** A kérések optimális elosztása a CDN csomópontok között, elkerülve a túlterheltséget.

**DNS alapú irányítás:** A CDN a tartalomszolgáltató speciális DNS-szerverei alapján irányítja a felhasználókat a megfelelő szerverhez.

# Ismertesse a szerverfarmok működését

Felépítés: Egyetlen logikai webhelyet több kiszolgáló gép szolgál ki.

Kérések kezelése: Az előtétberendezés (front-end) fogadja a kéréseket.

A kéréseket elosztja a szerverfarm gépei között (**terheléskiegyenlítés**).

**Fontos szempontok**: Egy webkérés összes csomagját ugyanarra a kiszolgálóra kell irányítani. Szűrési és irányítási módszerek: például IP-cím alapján vagy front-end optimalizációval.

- 1. Foglalja össze röviden a TCP által nyújtott szolgáltatásokat.
  - a.) Bájtfolyam
  - Megbízható b.)
- 2. Foglalja össze röviden az UDP által nyújtott szolgáltatásokat.
  - a.) Üzenet
  - b.) Nem megbízható
- 3. Hasonlítsa össze az UDP és TCP tulajdonságait.

| TCP (bájtfolyam)                                                | UDP (datagramm)                                           |
|-----------------------------------------------------------------|-----------------------------------------------------------|
| Összeköttetés alapú                                             | Összeköttetés nélküli (datagramm)                         |
| A bájtok megbízható módon,<br>sorrendben, 1x kerülnek átvitelre | Üzenet elveszhet, duplikálódhat,<br>sorrendjük keveredhet |
| Tetszőleges hosszúságú lehet                                    | Korlátos hosszúságú üzenet                                |
| Forgalomszabályozás hangolja az<br>adót a vevőhöz               | Adó adhat a vevő állapotától<br>függetlenül               |
| Torlódáskezelés hangolja az adót a<br>hálózathoz                | Adó adhat a hálózat állapotától<br>függetlenül            |
|                                                                 | Kh appuit tud mint any IR acomag                          |

Nagyon sok új szolgáltatás

Kb. annyit tud, mint egy IP csomag

- 4. Magyarázza el, hogy mire szolgálnak az UDP fejrészben a forrásport és célport mezők.
  - a.) Portok azonosítóit tárolják



- 5. Mit jelent az IP fejrész és mire szolgál? Mi a kapcsolata az UDP ellenőrző összeggel?
  - a.) IP fejrész
    - i. az IP protokoll által használt adatstruktúra, amely metaadatokat tartalmaz az adatcsomagok továbbításához
    - ii. Végpontok azonosítására szolgál (Forráscím és célcím)
  - b.) Kapcsolat
    - i. Az UDP ellenőrző összeg kiszámításához szükséges az IP fejrész
    - ii. Így biztosítva van, hogy az adatok nemcsak az UDP szinten, hanem az IP címzés szempontjából is helyesek maradjanak
- 6. Mi a socket rendszerhívás célja? Mire szolgál a bind rendszerhívás? Mire szolgál a sendto és recvfrom rendszerhívás? Mit jelent, hogy a recvfrom blokkoló hívás?
  - Socket rendszerhívás a.)
    - i. célja, hogy létrehozza az alkalmazás és a hálózat közötti kommunikációs végpontot
    - ii. socket (hálózati foglalat) objektumot hoz létre, amely lehetővé teszi az adatkommunikációt a hálózaton keresztül
    - iii. Támogatja a TCP és UDP protokollt is:
      - TCP: Megbízható kapcsolat alapú kommunikáció
      - UDP: Kapcsolat nélküli, gyors üzenetküldés

- b.) Bind rendszerhívás
  - i. egy socket-hez köt egy helyi hálózati címet (IP-cím és port kombinációt)
  - ii. biztosítja, hogy a foglalat tudja, melyik hálózati interfészen és porton kell várnia az érkező adatokat
  - iii. biztosítja, hogy egy adott IP-címhez és porthoz rendelődve az alkalmazás képes legyen a beérkező kérések fogadására
- c.) Sendto
  - i. Az üzenetküldéshez használatos, kapcsolat nélküli (UDP) kommunikációban
  - ii. Lehetővé teszi, hogy az üzenetet egy adott célcímre és porthoz továbbítsuk anélkül, hogy előzetesen kapcsolatot kellene létrehozni
- d.) Recvfrom
  - i. adatfogadásra szolgál, kapcsolat nélküli (UDP) kommunikációban
  - ii. Lehetővé teszi az érkező üzenetek fogadását, miközben a küldő címét és portját is visszaadja
- e.) recvfrom blokkoló hívás
  - i. amikor a recvfrom rendszerhívást meghívják, a program végrehajtása megáll (blokkolódik), amíg nem érkezik adat a foglalatra
    - Az adott szál addig vár, amíg a foglalat valamilyen adatot nem kap
    - Ez az alapértelmezett, de átkonfigurálható nem blokkoló módra
- 7. Mi a távoli eljáráshívás? Mit a jelent a csonk (stub)? Magyarázza el a cliens-oldali és a szerver-oldali csonkok szerepét és működését.
  - a.) Távoli eljárás hívás
    - i. Célja, hogy úgy viselkedjen, mintha hagyományos (helyi) függvényhívás lenne
  - b.) Csonk (stub)
    - i. az RPC rendszer fontos komponense, amely a távoli eljáráshívás végrehajtásához szükséges köztes feladatokat végzi el
  - c.) Kliens csonk (stub)
    - i. Úgy viselkedik, mint egy helyi függvényhívás
    - ii. Elvégzi a hálózati feladatokat
      - Paramétereket üzenetbe pakolja (marshaling)
      - Elküldi az üzenetet
      - Veszi a választ
      - Visszatér az eredménnyel a hívóhoz
  - d.) Szerver csonk
    - i. A távoli függvény tényleges végrehajtását készíti elő, majd az eredményt visszajuttatja a klienshez
    - ii. Veszi az üzenetet
    - iii. A paramétereket kicsomagolja (demarshaling)
    - iv. Meghívja a függvényt
    - v. Az eredményeket visszaküldi
- 8. Mire használjuk az RTP protokollt?
  - a.) Szerver több forrást is használhat (pl. video, audio különféle nyelveken)
  - b.) Adatokat RTP blokkokba kódolják
  - c.) RTP blokkokat UDP-n keresztül továbbítják

- 9. Mire használjuk az RTCP protokollt?
  - a.) Visszacsatolást kezeli:
    - i. Hálózat tulajdonságairól a szervernek (késleltetés, jitter, sávszélesség, torlódás)
    - ii. Ez alapján képes folyamatosan állítani a minőséget (pl. kódolás, felbontás)
  - b.) Szinkronizációt biztosít
    - i. A különféle folyamok óráit egymáshoz szinkronizálja
  - c.) Forrás-információkat szállít
    - i. Pl. a beszélő neve
- 10. Milyen hatása van a késleltetésnek és a jitternek a valós idejű protokollok működése során?
  - a.) Késleltetés
    - i. Sok alkalmazásban nincs lényegi hatása (pl. zenehallgatás)
    - ii. Egyes alkalmazásokban kis értéken kell tartani (pl. telefon)
  - b.) Késleltetés ingadozása (jitter)
    - i. Nagyon zavaró! Kompenzálni kell a vevőben!



- 11. Hogyan kompenzáljuk a jitter hatását a vevőben? Mit jelent a lejátszási pont?
  - a.) Pufferelés a vevőben



- 12. Hogyan azonosítunk egy csatlakozót (címzés)?
  - a.) Küldő és fogadó létrehoz egy csatlakozót (socket)
  - b.) A socket címe három elemből áll:
    - i. IP cím (pl. IPv4 vagy IPv6) ←NSAP
    - ii. Port száma (16 bites egész) ←TSAP
    - iii. Protokoll (pl. TCP, UDP)
- 13. Mit jelent a "jól ismert port"? + Magyarázza el az inted szerepét és működését.
  - a.) A szerverek "Ismert" portokat használnak ("Well Known Ports")
    - i. 1024 alatti portok
    - ii. Csak privilegizált felhasználóknak
    - iii. Minden porthoz egy démon tartozik (pl. ftp démon vagy http démon)
    - iv. Gyakran egyetlen felügyelő démont használunk (pl. inetd Internet Daemon
      - a Linux alatt)
        - inetd figyel több portot is
        - szükség esetén elindítja a megfelelő démont

- nem kell egyszerre sok démonnak feleslegesen futnia
- 14. Milyen portszámokat kapnak a kliens folyamatok? Kitől kapják a portszámokat?
  - a.) Általában ideiglenes portokra csatlakoznak
  - b.) Az operációs rendszer választja
  - c.) Véletlenszerű
- 15. Mit jelent, hogy a TCP full-duplex és kétpontos kommunikációt biztosít?
  - a.) full-duplex
    - i. a TCP-kapcsolatban mindkét fél egyszerre küldhet és fogadhat adatot
    - ii. Ez olyan, mintha kétirányú kommunikáció lenne egy időben (például telefonhívásnál mindkét fél beszélhet és hallgathat egyszerre)
  - b.) kétpontos kommunikáció
    - i. A TCP egy kétpontos (point-to-point) kapcsolatot hoz létre
    - ii. egy adott kapcsolat két végpont között valósul meg, amelyeket az IP-címek és portszámok azonosítanak
  - c.) Nincs adatszórás (broadcast) vagy többesküldés (multicast)!
- 16. Mit jelent, hogy a TCP egy bájtfolyamat biztosít?
  - a.) nem csomagokra vagy üzenetekre koncentrál, hanem egy folytonos adatfolyamként tekint a küldött adatokra
  - b.) küldő alkalmazás bármennyi adatot küldhet egyszerre (akár egyetlen bájtot, akár nagyobb mennyiséget), és a TCP ezt a folyamatot kezeli úgy, hogy a fogadó fél pontosan ugyanazt a sorrendet kapja vissza
  - c.) Az adatokat a TCP kisebb darabokra (csomagokra) bontja az átvitelhez, majd a fogadó oldalon újra összerakja őket egy folytonos bájtfolyammá
  - d.) Nincs üzenet, nincs üzenethatár
  - e.) A szegmensek kontroll infót is szállítanak (pl. ACK) →piggyback
- 17. Mikor küldi el a TCP a rábízott adatokat? Hogyan lehet gyors továbbítást kikényszeríteni?
  - a.) Az elküldendő adatot szabad belátása szerinti időben küldi
    - i. Lehet pufferelni, hogy nagyobb szegmens összegyűljön
    - ii. PUSH bit: kérheti a TCP-t, hogy ne késleltessen (pl. online játék)
- 18. A TCP milyen adategységet sorszámoz?
  - a.) Minden bájt rendelkezik egy 32 bites sorszámmal
  - b.) Ezeket a kapcsolat kezdetén meghatározott kezdeti sorszámhoz viszonyítva kezeli
  - c.) Biztosítja a bájtfolyam sorrendiségét, a hiányzó csomagok felismerését és az újraküldési mechanizmus működését
- 19. Mi korlátozza TCP szegmens méretét?
  - a.) IP adatmező
    - i. MTU (legnagyobb átvihető adategység) Pl. Ethernet: 1500B
- 20. Magyarázza el a TCP fejrészben a sorszám és a nyugtaszám szerepét.
  - a.) Sorszám
    - azt a bájt sorszámát jelöli az adatfolyamban, amely a TCP szegmens első bájtjához tartozik
    - ii. a sorszám segít a fogadó félnek abban, hogy a bájtokat megfelelő sorrendben összerakja, még akkor is, ha a csomagok nem sorrendben érkeznek
  - b.) Nyugtaszám
    - i. jelzi, hogy a fogadó fél melyik bájtot várja következőként az adatfolyamban
    - ii. Jelzi, hogy a nyugtázott bájtig az összes adat hiánytalanul megérkezett

- iii. a nyugtaszám értéke mindig az utoljára átvett bájt sorszámának egy egységgel növelt értéke (tehát a várt bájt indexe)
- 21. Magyarázza el a TCP fejrészben az ablakméret mező szerepét.
  - a.) A vevőben rendelkezésre álló puffer mérete
- 22. Magyarázza el a TCP fejrészben a CWR és ECE bitek szerepét.
  - a.) Vevő ECE bittel jelez: torlódás van a hálózaton
  - b.) Adó CWR bittel jelez vissza, hogy a forgalmat (a torlódási ablaka méretét) lecsökkentette
- 23. Magyarázza el a TCP fejrészben az ACK, PSH, RST, SYN és FIN bitek szerepét.
  - a.) ACK: Jelzi a nyugtaszám érvényességét
  - b.) PSH (PUSH): késedelem nélküli továbbítás kérése
    - i. Ne legyen pufferelés
  - c.) RST (RESET): Összeköttetés helyreállítás (valami baj történt)
  - d.) SYN: kapcsolat kiépítés
    - i. Jelzi a CONNECTION REQUEST és CONNECTION ACCEPTED üzeneteket
  - e.) FIN: kapcsolat bontása
    - i. Jelzi, hogy a küldőnek nincs több adata
- 24. Ismertesse, hogyan alkalmazza a TCP az összeköttetés létrehozásához a háromutas kézfogást.



- 25. Ismertesse a TCP összeköttetés lebontásának módját.
  - a.) Mindkét fél bontja a belőle induló kapcsolatot (irányt)
    - i. FIN jelzi, hogy nem kíván több adatot küldeni

→FIN: részemről nincs több adat

←ACK: OK, vettem

←FIN: Részemről sincs több adat

→ACK: OK, vettem

Active party

Passive party

- b.) Időzítők használata
  - i. Ha FIN-re nem jön válasz, bontja az ÖK-t

26. A 27. oldalon található állapotgép segítségével magyarázza el a TCP összeköttetés felépítésének és bontásának menetét.



- 27. Magyarázza el a TCP csúszóablakos forgalomszabályozásának működését.
  - a.) Különválik az ACK és a vevő pufferméretének kezelése
  - b.) ACK: halmozott nyugta
    - i. A nyugtázott bájtig az összes adat hiánytalanul megérkezett
    - ii. (ACK a következő várt sorszámot tartalmazza)
  - c.) WIN: vevőben rendelkezésre álló ablakméret
    - i. = maximális küldhető adatmennyiség
  - d.) SEQ: sorszám
    - i. Az eddig elküldött bájtok száma
    - ii. (ez a csomag nem számít bele)



- 28. Hány bájtot küldhet a kliens a szerver felé, ha a szerver utolsó üzenete a következő volt:
  - a.) ACK=67123, WIN=512
  - b.) ACK=512, WIN=0
  - a.) Mivel a WIN=512, ez azt jelenti, hogy a szerver rendelkezésre álló ablakmérete 512, tehát ennyi adatot küldhet még max a kliens. A kliens küdlött egy ACK-t válaszul tehát még 511 hely van vissza.
- 29. Egy szervernek 2kB üres pufferterület áll rendelkezésre egy TCP összeköttetés kezelésére. Most a következő (512 adatbájtot tartalmazó) üzenet érkezik a szerverhez:

ADAT: 512B, SEQ=3000

- a.) Mi lesz a szerver által küldött következő üzenetben az ACK és a WIN értéke? Miért?
- a.) ACK=3512 WIN=1536, mert jelzi, hogy fogadta az 512B adatot, de minden bájthoz egy sorszámot rendel és mivel a 3000-ik sorszámként küldte így a következő, ami jön az a 3000+512=3512-ik sorszám lesz. Jelzi azt is, hogy 2kB (2048B) a puffere mérete, amiből ez az 512B lejön szal 2048-512=1536.
- 30. Hogyan lehet a szegmens elvesztését időzítő segítségével detektálni? Hogyan célszerű beállítani az időzítő értékét, ha ismerjük az átlagos késleltetési időt (SRTT) és a késleltetési idő szórását (SVAR)?
  - a.) Ha a szegmensre nem jön az időzítő lejárta előtt válasz, akkor újraküldjük
  - b.) Az időzítő, ha 500ms akkor túl kicsi, ha 900ms akkor túl nagy
  - c.) Jobb ötlet: Változtassuk az időzítő értékét az aktuális helyzetnek megfelelően
    - i. adaptív időzítő
      - átlag és
      - szórás kell hozzá
- 31. Hogyan becsüljük a késleltetési idő átlagos értékét? Ismertesse az exponenciális átlagoló működését.
  - a.) Exponenciális átlagolással: az aktuálisan mért értékeket és a korábbi simított értékeket kombinálja egy adott súlyozási tényezővel
    - i. RTT: mért körülfordulási idő (Round Trip Time)
    - ii. SRTT: simított körülfordulási idő (Smoothed Round Trip Time)
    - iii. sVAR: az RTT simított "varianciája"

$$SRTT_{\acute{\text{u}}\acute{\text{j}}} = \alpha \cdot SRTT_{\text{r\'{e}gi}} + (1 - \alpha)RTT$$

$$SVAR_{\acute{\text{u}}\acute{\text{j}}} = \beta \cdot SVAR_{\text{r\'{e}gi}} + (1 - \beta)|SRTT_{\acute{\text{u}}\acute{\text{j}}} - RTT|$$

$$\alpha = 7/8$$

$$\beta = 3/4$$

b.) Alfa és béta súlyozások, a kisebb értékek kisebb, a nagyobb értékek súllyal vannak figyelembevéve

- 32. Ismertesse a "3 ismételt nyugta" szabályt. Hogyan lehet ennek segítségével a szegmens elveszését detektálni?
  - a.) A szegmens valószínűleg elveszett, ha
    - i. nem jött rá nyugta RTO időn belül
      - Ehhez ki kell várni az RTO időt
      - Lehetne gyorsabban is detektálni az elveszett csomagot? Igen... 3 nyugtamásolat szabály
    - ii. legalább 3 ismételt nyugta (nyugtamásolat) jön egymás után



- 33. Mitől jöhet létre torlódás? Mit jelent a torlódási ablak? Hogyan használja a TCP a forgalomszabályozási és a torlódási ablakot?
  - a.) Ha a hálózati terhelés túl nagy
    - i. Csomagok feltorlódnak az útválasztókban
    - ii. Csomagok késnek, elvesznek
  - b.) TCP: torlódási ablakot használ
    - i. Mennyi adat lehet a hálózaton egyszerre?
    - ii. Hasonló a forgalomszabályozási ablakhoz
      - A TCP együtt használja a két ablakot
      - Amelyik kisebb, annak megfelelő mennyiségű adatot küld ki
- 34. Ismertesse a nyugtaórajel működését.
  - a.) Egy hálózat sebességét a leglassabb szakasza határozza meg
  - b.) Egy gyors löketre válaszul visszaérkező nyugták sebessége azt mutatja meg, hogy milyen gyorsan lehet a csomagokat a hálózat leglassabb részén átvinni
  - c.) Az adó ennek megfelelő sebességgel ad
    - i. Elkerüli a felesleges sorbanállást az útvonalválasztókon
  - d.) "sima" kimenőforgalmat biztosít
- 35. Ismertesse a Lassú kezdés algoritmus működését. Mi célt szolgál ez az algoritmus a TCP-ben?
  - a.) Hogy állítsuk be a torlódási ablakot?
    - i. Ha nincs torlódás, növeljük (AI)
    - ii. Ha torlódás van, csökkentsük (MD)
  - b.) A kezdeti munkapont elérése AI-val lassú
    - i. Ezért indításkor exponenciálisan növekvő ablakméretet használunk
    - ii. Ez lesz a "lassú kezdés" algoritmus (Slow Start)
      - Minden nyugta vételénél
        - a. ablakméret eggyel nő
        - b. új csomagot küld a régi helyett
        - c. új csomagot küld az új üres helyre
      - Úton lévő csomagok száma
        - a. RTT alatt duplázódik

- 36. Ismertesse a TCP Tahoe torlódáskezelését a lassú kezdés segítségével. Használja a 36. oldal ábráját.
  - a.) A TCP Tahoe lassú kezdéssel indítja az adatátvitelt
  - b.) A lassú kezdésnek van egy küszöbértéke, ennél magasabbra a lassú kezdés nem megy
    - i. A küszöbérték kezdetben magas, pl. a forgalomszabályozási ablak mérete lehet
  - c.) Ha a lassú kezdésnél torlódást tapasztalunk (csomagvesztés), akkor
    - i. visszavesszük a küszöbértéket a jelenlegi torlódási ablak felére és
    - ii. újraindítjuk a lassú kezdést
  - d.) Ha a lassú kezdés eléri a küszöbértéket, akkor
    - i. átkapcsolunk additív növekedésre (AI)
  - e.) Ha az additív növekedésnél torlódást tapasztalunk (csomagvesztés), akkor
    - i. visszavesszük a küszöbértéket a jelenlegi torlódási ablak felére és
    - ii. újraindítjuk a lassú kezdést



- 37. Mit értünk "gyors újraküldésen" a TCP Tahoe protokollban?
  - a.) Torlódás/csomagvesztés érzékelése
    - i. Időtúllépés vagy
    - ii. 3 nyugtamásolat
      - ekkor a hiányzó csomagokat azonnal újraküldjük
      - Ez a gyors újraküldés (fast retransmission)
- 38. Magyarázza el a "gyors helyreállítás" működését a TCP Reno protokollban. Használja a 39. oldal ábráját. Hogyan valósítjuk meg TCP-ben az "additív növelés multiplikatív csökkentés" (AIMD) szabályt?
  - a.) A TCP Tahoe továbbfejlesztése a TCP Reno
    - i. Ha nyugtamásolatokkal csomagvesztést érzékelünk, az ablakméret felére lépünk vissza (nem pedig 1-re). Ez lesz az MD az AIMD-ben!
    - ii. Ezt oldja meg a gyors helyreállítással (fast recovery)
      - 3 csomagmásolat érkezik. Jelenlegi torlódási ablak mérete: T
      - Számoljuk a beérkező nyugtamásolatokat, de küldés felfüggesztve (minden nyugtamásolat azt jelzi, hogy egy csomag időközben sikeresen megérkezett)
      - Addig várunk, amíg T/2 nyugtamásolat érkezik (ekkor éppen T/2 üzenet marad a csővezetékben)
      - ezután minden nyugtamásolatra 1 új üzenetet küldünk
      - Ha megjön a nyugta:
        - a. gyors helyreállítás vége
        - b. (nyugtamásolatok nem jönnek)

- Additív növeléssel folytatjuk
  - a. T/2 lesz az új ablakméret
  - b. Küldés indul AI szabállyal



- 39. Magyarázza el a szelektív nyugtázás működését.
  - a.) A szelektív nyugtázás egy **TCP-továbbfejlesztés**, amely hatékonyabbá teszi az adatvesztés kezelését és az adatátvitelt. A szelektív nyugtázás kulcspontjai
    - i. Kummulatív (halmozott) ACK mindig van
      - a fogadó (receiver) kummulatív ACK-t küld
        - a. azt jelzi, hogy a vevő melyik adatcsomagig (byte-ig) kapta meg a teljes adatfolyamot megszakítás nélkül
    - ii. Szelektív ACK (SACK) opcionális (széles körben támogatott)
      - SACK kiegészíti a halmozott nyugtázást, és lehetővé teszi a vevő számára, hogy pontosan jelezze, mely adatcsomagokat kapta meg, még akkor is, ha a sorozatban hiányzó csomagok vannak
- 40. Magyarázza el az explicit torlódásjelzés működését az ECE és CWR bitek segítségével.
  - a.) TCP torlódáskezelés egy további megoldása
  - b.) IP útválasztó a csomagban beállítja a torlódás bitet (lásd Differenciált szolgáltatások)
  - c.) A vevő a válasz TCP fejrészben beállítja az ECE bitet (ECN Echo)
  - d.) A küldő az ECE hatására úgy reagál, mintha csomagyesztés lenne
  - e.) A küldő CWR bitet beállítja a következő csomagban (Congestion Window Reduced)