RNA

The data: paired-end RNA-seq

Matched sequences are obtained for each library molecule

The statistical modeling

- Po(λ), the larger λ , the larger the rate of the rare event
 - Defined as Po(X=k)=e^{-λ} λ^k/k!
 - k>0
 - In RNA-Seq, each transcript (compared to all others) will be rare, so each transcript abundance modeled as λ i
 - A "read" s_j is a sequence matching an RNA at position j
 - simplest model: s_j is generated as Po(λ_i)
- In statistics, we take observed data and use it to estimate parameters, in this case, λ_i
- This is formally accomplished by, for example the MLE
- In RNA seq, "RPKM" is conceptually like λ_i

Intuition for the statistical problem

Estimate the expression of each isoform?

Nontrivial: we only observe fragments of sequences

• Since the size distribution of library molecules is known, inferred insert lengths can be used to increase statistical power and inference

Intuition for the most powerful modeling

Compute genome-wide insert length distribution

Inferred insert length depends on generating isoform

- Statistical improvement over naïve models
- Optimal information reduction
- Quantifies information gain using PE Sequencing

- Mapped to Isoform 1
- → length 150
- Mapped to Isoform 2
- → length 90

Why do we care: just fun math?

- Not knowing the isoforms means we don't know the gene level expression
- Off the shelf tools are "mostly right" but many times wrong
- Most labs don't use their latest published software
- Current tools only provide approximate answers

General problem: alignment as a black box, read densities Use read densities to quantify gene expression

Lahens *et al. Genome Biology* 2014, **15**:R86 http://genomebiology.com/2014/15/6/R86

What are the needed statistical algorithms?

- 1. Quantifying exon expression, junction expression
- 2. Deconvolving isoform expression
- 3. Some are trying to discover new RNA

We want to know the copies of RNA per cell

From:

http://media.springernature.com/lw785/springer-stat mage/art%3A10.1186%2F1471-2164-7-166/MediaC ects/12864_2006_Article_549_Fig4_HTML.jpg

Intuition for statistically quantifying isoforms

- Exon-level and junctional reads are observed
- 2. There is a deconvolution problem
 - a. Quantifying exon expression, junction expression
 - b. Deconvolving isoform expression

Sufficient statistics, statistical problem, Poisson models

Formalizing the problem and model

Statistical Model

• The relative abundance for the I isoforms are the parameters of interest and denoted $\{\theta_i\}_{i=1}^I$.

Solving the problem with statistics

Data: observe $\{n_{.,j}\}_{j=1}^{J}$; n_{ij} are unobservable.

Likelihood function for statistics $\{n_i\}_{i=1}^J$: $n_j = n_{\cdot,j}$ follows a Poisson distribution with parameter $\sum_{i=1}^{I} \theta_i a_{i,j} = \theta \cdot a_j$, where

Each isoform expression is independent:

The importance of statistics

Exon	1	2	3
Count	1	0	8

Remember, counts ="expression" in RNA-Seq

Without taking isoforms into account, gene expression estimates (and differential gene expression will be wrong)!

Even more "problems": count data is noisy

Example, idea: clean it up w/ robust statistics

Bayesian analysis

Extreme biases in RNA-seq: no theoretical null

Lahens et al. Genome Biology 2014, **15**:R86 http://genomebiology.com/2014/15/6/R86

RESEARCH Open Access

IVT-seq reveals extreme bias in RNA sequencing

Nicholas F Lahens¹, Ibrahim Halil Kavakli^{2,3}, Ray Zhang¹, Katharina Hayer⁴, Michael B Black⁵, Hannah Dueck⁶, Angel Pizarro⁷, Junhyong Kim⁶, Rafael Irizarry⁸, Russell S Thomas⁵, Gregory R Grant^{4,9} and John B Hogenesch^{1*}

Simulations and intuition don't match real data

Lahens et al. Genome Biology 2014, **15**:R86 http://genomebiology.com/2014/15/6/R86

Selection and efficiency confound naive estimation

Lahens et al. Genome Biology 2014, **15**:R86 http://genomebiology.com/2014/15/6/R86

Another motivation: Disease genomics

Targeted therapy based on RNA-seq

Areas of Interest / Oncology / Cancer Genomics Research / Sequencing Methods: Cancer RNA Sequencing

Understanding the Cancer Transcriptome

Monitoring gene expression and transcriptome changes with cancer RNA sequencing (RNA-Seq) can aid in understanding tumor classification and progression. Cancers accumulate numerous genetic changes, but typically only a few drive tumor progression. Cancer RNA-Seq can help to determine which variants are expressed in cancer samples.

Considerations for choice of statistical approach

1. Theoretically best

- a. Under the given null and alternative, it is possible to prove which test is best
- Fisher's efficient estimator
- c. Uniformly Most Powerful test

2. Fast

- a. Inexpensive to store data
 - i. Reduction to sufficient or minimal sufficient statistics
- b. Computationally inexpensive
 - i. Computing test statistics is simple

3. Mechanistic

- a. Tests and scientific/medical interventions easy to perform
- b. Few predictors, LASSO and NMF move in this direction

Many problems in biomedical science are for mechanistic discovery rather than classification

The first modern, efficient, theoretically tractable tests: Rank tests

- 1. Theoretically best tractable
- 2. Fast
 - a. Computationally inexpensive
- 3. Inexpensive to store data

Downside? Lose power

4. Next lectures will move onto more powerful tests

Rank tests

General idea:

- 1. Replace data by ranks
- 2. Perform a test on the ranked data to test if deviation from expectation

Advantage: requires simply sorting the data and a single computation

1. Sort time: O(n log n) (worst case, O(n^2): data storage benefits

Disadvantage: power (brainstorm example)

On board: derivation of Mann-Whitney test and introduction to random permutations

How do we overcome these problems?

- Learn statistical theory and methods
- Designing our own custom test that captures intuition, then analyze its properties