CLAIMS

- 1. A process for the preparation of a compound of formula $R^1-Y^1-P(NR^2R^3)_2$ which comprises:
- a) reacting a compound of formula PX₃ with a compound of formula HNR²R³ to form a compound of formula X-P(NR²R³)₂; and
 - b) reacting the compound of formula X-P(NR²R³)₂ with a compound of formula R¹-Y¹-H in the presence of a solvent to form the compound of formula R¹-Y¹-P(NR²R³)₂; wherein
- R¹ represents a phosphorus protecting group;
 R² and R³ each independently represent an alkyl group, or R² and R³ are joined, together with the N to which they are attached, to form a 5-7 membered ring;
 Y¹ represents O or S; and
 - X represents a halogen;

20

25

- characterised in that the solvent employed in reaction b) is a hydrocarbon solvent.
 - 2. A process according to claim 1, wherein the reaction between the compound of formula PX_3 and the compound of formula HNR^2R^3 in step a) takes place in the presence of the same solvent employed for the reaction between the compound of formula X_1 - $V(NR^2R^3)_2$ and the compound of formula $V(NR^2R^3)_2$ and the compound of $V(NR^2R^3)_2$ and $V(NR^2R^3)_2$
 - 3. A process according to claim 1 or claim 2, wherein R^1 represents a methyl group, a group of formula $-CH_2CH_2-Si(CH_3)_2C_6H_5$, $-CH_2CH_2-S(O)_2-CH_2CH_3$ or $-CH_2CH_2-C_6H_4-NO_2$, a group of formula $-CH_2CH_2CN$, or a phenyl, 4-chlorophenyl, 2-chlorophenyl, 2-nitrophenyl or 4-nitrophenyl group.
 - 4. A process according to claim 3, wherein R^1 represents a group of formula $-CH_2CH_2CN$ and Y^1 represents O.
- 5. A process according to any preceding claim, wherein R² and R³ each independently represent a C₁₋₈ alkyl group.
 - 6. A process according to claim 5, wherein R² and R³ represent isopropyl groups.
- 35 7. A process according to any preceding claim, wherein Y¹ represents O.
 - 8. A process according to any preceding claim, wherein X represents Cl.

- 9. A process according to any preceding claim, wherein the hydrocarbon solvent is toluene.
- 10. A process according to any preceding claim, wherein the reaction between the compound of formula X-P(NR²R³)₂ and the compound of formula R¹-Y¹-H in step b) takes place in the presence of a base.
 - 11. A process according to claim 10, wherein the base is a tri(C₁₋₄alkyl)amine.
- 12. A process for the preparation of {[(CH₃)₂CH]₂N}₂-P-O-CH₂CH₂CN, which comprises a) reacting PCl₃ with [(CH₃)₂CH]₂N-H in toluene to form {[(CH₃)₂CH]₂N}₂-P-Cl; and b) reacting {[(CH₃)₂CH]₂N}₂-P-Cl with HO-CH₂CH₂CN in toluene to form {[(CH₃)₂CH]₂N}₂-P-O-CH₂CH₂CN.
- 13. A process according to any preceding claim, wherein substantially anhydrous reaction conditions are employed.
 - 14. A process for the preparation of a compound of formula $R^1-Y^1-P(NR^2R^3)_2$ which comprises reacting a compound of formula $X-P(NR^2R^3)_2$ with a compound of formula $R^1-Y^1-P(NR^2R^3)_2$ wherein

R¹ represents a phosphorus protecting group;

R² and R³ each independently represent an alkyl group, or R² and R³ are joined, together with the N to which they are attached, to form a 5-7 membered ring;

25 Y¹ represents O or S; and

20

X represents a halogen;

characterised in that the solvent is a hydrocarbon solvent.

15. A process according to claim 14, wherein R¹ represents NCCH₂CH₂-; Y¹ represents O; R² and R³ are each isopropyl, X is chloro, and the hydrocarbon solvent is toluene.