Cryptographie RSA

Introduction Opérations Attaques

Introduction

Historique:

- Rivest Shamir Adleman ou RSA est un algorithme asymétrique de cryptographie à clé publique, très utilisé dans le commerce électronique, et plus généralement pour échanger des données confidentielles sur Internet.
- Cet algorithme est fondé sur l'utilisation d'une paire de clés composée d'une clé publique pour chiffrer et d'une clé privée pour déchiffrer des données confidentielles

Introduction

- Fonctionnement général
 - Alice crée la paire de clés (public et privé), envoie sa clé public à Bob.
 - Bob chiffre message M avec ce clé, renvoyer message chiffré C à Alice.
 - Alice déchiffre C avec sa clé privée

Génération des clés

- Choisir p et q, deux nombres premiers distincts
- n=pq
- Calculer l'indicatrice d'Euler de n: $\varphi(n) = (p-1)(q-1)$
- Choisir un entier e, tel que $1 < e < \varphi(n)$ et premier avec , $\varphi(n)$ appelé « exposant de chiffrement ».
- Calculer d: $de \equiv 1 \mod \varphi(n)$

```
de \equiv 1 \mod \varphi(n) \iff de - k\varphi(n) = 1
```

Extended Euclidean Algorithm : ax + by = gcd(a,b)

- (n,e) clé public
- (n,d) clé privé

Encryptions

$$c \equiv m^e \mod n$$

Décryptions

$$m\equiv c^d \bmod n$$

Car $c^d\equiv (m^e)^d\equiv m^{ed} \bmod n$
 $ed=1+k\varphi(n).$
 $m^{ed}\equiv m^{1+k\varphi(n)}\equiv m(m^k)^{\varphi(n)}\equiv m \mod n$

$$m(m^k)^{\varphi(n)} \stackrel{?}{=} m \mod n$$

Si m premier avec n, d'après le théorème d'Euler

$$a^{\varphi(n)} \equiv 1 \mod n$$

$$(m^k)^{\varphi(n)} \equiv 1 \mod n \Rightarrow m \times 1 \equiv m \mod n$$

 Si m n'est pas premier avec n, d'après le théorème Chinese remainder,

$$x \equiv a_1 \mod n_1$$

$$x \equiv a_2 \mod n_2$$

$$\dots$$

$$x \equiv a_k \mod n_K$$

Du coup, toutes les solutions x pour ce systeme sont congruentes modulo le produit N = n1n2...nk

D'après ce théorème on peut séparer à deux:

$$m(m^k)^{(p-1)(q-1)} \equiv m \mod p$$
$$m(m^k)^{(p-1)(q-1)} \equiv m \mod q$$

Supposons m n'est pas premier avec p, donc m est un multiple de p

$$m(m^k)^{(p-1)(q-1)} \equiv 0 \equiv m \mod p$$

Donc m est premier avec q, d'après le théorème d'Euler

$$m(m^{k(p-1)})^{(q-1)} \equiv m \mod q$$

Grâce au théorème Chinese remainder

$$m(m^k)^{(p-1)(q-1)} \equiv m \mod p \times q$$

Exemple

- 1. Choisir deux entier premier p = 7 et q = 19
- 2. n = pq; n = 7*19 = 133
- 3. $\varphi(n) = (p-1)(q-1); \quad \varphi(n) = (7-1)(19-1) = 108$
- 4. Choisir e > 1 premier avec 108; e = 5
- 5. Calculer d par $de \equiv 1 \mod \varphi(n)$

$$d = 65 \text{ car } 5 \cdot 65 = 325 = 1 + 3 \cdot 108$$

Donc la clé public est (n=133, e=5); la clé privé est (n=133, d=65)

Ensuite on prend un message m=6.

Exemple

Chiffrer

$$c = 6^5 \mod 133 = 62$$

Déchiffrer

$$m = 62^{65} \mod 133 = 6$$

On utilise la méthode 'modulo exponentiation'

```
• m = C^d \% n

= 62^{65} \% 133

= 62 * 62^{64} \% 133

= 62 * (62^2)^{32} \% 133

= 62 * 3844^{32} \% 133

= 62 * (3844 \% 133)^{32} \% 133

= 62 * 120^{32} \% 133
```

Exemple

```
• = 62 * 36<sup>16</sup> % 133

= 62 * 99<sup>8</sup> % 133

= 62 * 92<sup>4</sup> % 133

= 62 * 85<sup>2</sup> % 133

= 62 * 43 % 133

= 2666 % 133

= 6
```

Attaques

- Mathématique Attaques: Factorisation un Grand nombre
 - Idée: retrouver p et q en factoriser le modulo N
 - Méthode Fermat
 - Méthode Euler
 - Méthode Pollard's Rho
- Implémentation Attaque: Obtention de physique implémentation d'un système cryptographie
 - Timing Attack

Mathématiques Attaques

Méthode Fermat

$$n = \left(\frac{p+q}{2}\right)^2 - \left(\frac{p-q}{2}\right)^2$$

Choisir k, le plus petit entier tell que

$$k^2 > n$$

Augmenter k un par un jusqu'à ce qu'il existe un entier h

$$(k+g)^2-n=h^2$$

- Et n = (k+g+h)(k+g-h)

Mathématiques Attaques

- Méthode Pollard's Rho
 - Choisir r, s plus petit que N
 - Si pgcd(r-s,N) # 1, pgcd(r-s,N) est un diviseur de N
 - Sinon, choisir une autre couple (r,s)
 - En effet, a la prochaine itération r = f(r), s = (f(s))
 - En général $f(x) = x^2 + a$

Mathématiques Attaques

Résultats d'implémentions en Java

Dell Inspiron D6000 processor 1.6 Ghz chips Intel Pentium M

Number of bit (N)	Method Rho	Fermat	
10	0	31	
20	94	219	
25	200	13375	
25	198	3375	
25	188	765	
32	282	899515	
40	8000		
40	8456		

Timing Attack :

- But: retrouver la clé privé d
- Algorithme de 'Square and Multiply' $C^d \mod n$. d= $\sum_{i=1}^{t-1} d_i \cdot 2^{t-1-i}$

$$d = d_o d_1 .. d_{t-1}$$

- z = C
- for j = 1 to t-1 do

$$-z \equiv z^2 \bmod n \tag{1}$$

$$- \text{ if } d_i == 1 \text{ then}$$

- $z \equiv z.C \mod n$ (2)
 - endif
- endfor
- return z

Attaques

- Choisir 2 messages E F, tel que $E^3 < n$ $F^2 < n < F^3$
- Si $d_i = 1$ nous devons faire $E^2.E \mod n$ et $F^2.F \mod n$.

Et, encore
$$F^3 - n$$

- Si d_j =0 nous devons faire E^2 mod n et F^2 mod n
- Conclusion, si temp(E) < temp(F) le bit est 1,
 0 dans le cas contraire.

- The messages E et F
 - Problème: difficile de décider le temps différent
 - En effet, on doit baser sur les probabilités
 - Choisir 2 séries E1..Ek, F1..Fk, calculer le temps moyen, et si temp(Emoy) < temp(Fmoy)+e c'est le bit 1
 - e peut être déterminée par expériences. En réalité le nombre k de messages est de taille 20000

• Résultats en Java (Dell Inspiron D6000 processor 1.6 Ghz chips Intel Pentium M)

Length of private key	Number of bits error
62	2
62	4
62	5
62	6
125	44
125	30
125	36
125	30
254	50
256	60
256	49
255	52
266	48

Réalité

	Result				
Key size	without error correction		with error correction		
	sample size	speed	sample size	speed	
64	1 500-6 500	> 20 bits/s	1500-4500	> 20 bits/s	
128	12 000-20 000	2 bits/s		4 bits/s	
256	70 000-80 000	1 bit/4s	40 000-50 000	1 bit/2s	
512	$\pm 350000 - 400000$	1 bit/65s	200000 - 300000	1 bit/37s	

'Document Pratical Timing Attack'

Conclusion

• Fort algorithme peut être détruit par une attaque 'simple'