A Book of Abstract Algebra (2nd Edition)

Chapter 28, Problem 2EA

Bookmark

Show all steps: (

ON

Problem

Prove that F(R) as defined on page 284, is a vector space over R.

Step-by-step solution

Step 1 of 2

There are 10 conditions which any vector space must satisfy. These are

- 1. For $u \in V$, $v \in V \Rightarrow u + v \in V$
- 2. For $u \in V$, $v \in V \Rightarrow u + v = v + u$
- 3. For $u \in V$, $v \in V$, $w \in V \Rightarrow (u+v)+w=u+(v+w)$
- 4. There exists $0 \in V$, such that 0 + v = v for all $v \in V$
- 5. For all $u \in V$, there exists $x \in V$ such that u + x = 0
- 6. For $c \in R, v \in V \Rightarrow cv \in V$
- 7. For $c \in R, u \in V, v \in V \Rightarrow c(u+v) = cu+cv$
- 8. For $c, d \in R, u \in V, v \in V \Rightarrow (c+d)u = cu + du$
- 9. For $c \in R, d \in R, v \in V \Rightarrow c(dv) = (cd)v$
- 10. There exists $1 \in R, v \in V \implies 1 \cdot v = v$

Comment

Step 2 of 2

 $f(\mathbb{R})$ is any function which gives a real value for any real value as input. By definition of

function $f(\mathbb{R})$ is onto as well as into. In other words there exists an output for each input in \mathbb{R} . Also no two different outputs can be given by same input.

Let,

 ν be a random function defined across \mathbb{R} .

u be another function defined across \mathbb{R} .

Then,

-u represents negative function of u in \mathbb{R} .

0 function represents such a function for which output is 0 for all inputs.

Then check aforementioned 8 properties or condition for this space.

1. u+v represents another function as sum of 2 function is also a function. Thus, $u+v \in f(\mathbb{R})$

2. Since addition is commutative, outcome of addition of 2 functions does not depend on order of addition. Thus, u + v = v + u.

- 3. Again adding 3 functions is like adding 3 numbers for which order of addition is immaterial. Thus, (u+v)+w=u+(v+w).
- 4. By definition of 0 function, u + 0 = u.
- 5. By definition of negative of a function, u + (-u) = 0
- 6. $cv = c \cdot (function value) = new function$
- 7. As value of functions is just a real number and real numbers follow distributive law. It can be said that c(u+v) = cu+cv
- 8. Again u represents a function which is just a real number. Thus, (c+d)u = cu + du
- 9. Ordinary multiplication is associative as well as commutative. Thus, c(dv) = (cd)v
- 10. There exists a constant c = 1 such that $1 \cdot u = u$

Hence $f(\mathbb{R})$ satisfies all conditions for vector space and is a vector space

Comment