I collaborated with Damien Huet on this assignment

1. Let $u \in C_c^{\infty}(\mathbb{R}^n)$. Show that $|u(x_1,\ldots,x_n)| \leq \frac{1}{2} \int_{-\infty}^{\infty} |\partial_1 u(x_1,\ldots,x_n)| dx_1$.

Since $u \in C_c^{\infty}(\mathbb{R}^n)$, exists R > 0 s.t. $u(B_0(R)^C) = \frac{\partial u}{\partial x_1}(B_0(R)^C) = \{0\}$. Then by the fundamental theorem of calculus,

$$u(x_1, x_2, \dots, x_n) = \int_{y=-R}^{x_1} \frac{\partial u}{\partial x_1}(y, x_2, x_3, \dots, x_n) \, dy = -\int_{y=x_1}^R \frac{\partial u}{\partial x_1}(y, x_2, x_3, \dots, x_n) \, dy$$
$$|u(x_1, x_2, \dots, x_n)| \le \int_{y=-R}^{x_1} \left| \frac{\partial u}{\partial x_1}(y, x_2, x_3, \dots, x_n) \right| \, dy$$
$$|u(x_1, x_2, \dots, x_n)| \le \int_{y=x_1}^R \left| \frac{\partial u}{\partial x_1}(y, x_2, x_3, \dots, x_n) \right| \, dy$$

Since both of the previous are true, we must have

$$2|u(x_1, x_2, \dots, x_n)| \le 2 \min \left(\int_{y=-R}^{x_1} \left| \frac{\partial u}{\partial x_1}(y, x_2, x_3, \dots, x_n) \right| dy, \int_{y=x_1}^{R} \left| \frac{\partial u}{\partial x_1}(y, x_2, x_3, \dots, x_n) \right| dy \right)$$

$$\le \min \left(\int_{y=-R}^{x_1} \left| \frac{\partial u}{\partial x_1}(y, x_2, x_3, \dots, x_n) \right| dy, \int_{y=x_1}^{R} \left| \frac{\partial u}{\partial x_1}(y, x_2, x_3, \dots, x_n) \right| dy \right)$$

$$+ \max \left(\int_{y=-R}^{x_1} \left| \frac{\partial u}{\partial x_1}(y, x_2, x_3, \dots, x_n) \right| dy, \int_{y=x_1}^{R} \left| \frac{\partial u}{\partial x_1}(y, x_2, x_3, \dots, x_n) \right| dy \right)$$

$$= \int_{y=-\infty}^{\infty} \left| \frac{\partial u}{\partial x_1}(y, x_2, x_3, \dots, x_n) \right| dy$$

proving the claim.

2. (Gagliardo-Nirenberg interpolation inequality) Let $n \geq 2$, $1 , and <math>1 \leq q < r < \frac{np}{n-p}$. For some $\theta \in (0,1)$ and some constant C > 0 we have

$$||u||_{L^r(\mathbb{R}^n)} \le C||u||_{L^q(\mathbb{R}^n)}^{1-\theta}||Du||_{L^p(\mathbb{R}^n)}^{\theta}; \forall u \in C_c^{\infty}(\mathbb{R}^n)$$

- (a) Use scaling to find θ .
- (b) Prove the inequality

Hint: Do an interpretation of L^r in terms of L^q and $L^{\frac{np}{n-p}}$ and then apply Sobolev. (nb. interpretation should be interpolation)

First we define $u_{\lambda}(x) = u(\lambda x)$, and note that

$$\int_{\mathbb{R}^n} |u_{\lambda}|^s dx = \int_{\mathbb{R}^n} |u(\lambda x)|^s dx = \frac{1}{\lambda^n} \int_{\mathbb{R}^n} |u(y)|^s dy$$
$$\int_{\mathbb{R}^n} |Du_{\lambda}|^s dx = \int_{\mathbb{R}^n} |Du(\lambda x)|^s dx = \frac{\lambda^s}{\lambda^n} \int_{\mathbb{R}^n} |Du(y)|^s dy$$

Then, if we assume that the $||u||_{L^r(\mathbb{R}^n)} \leq C||u||_{L^q(\mathbb{R}^n)}^{1-\theta}||Du||_{L^p(\mathbb{R}^n)}^{\theta}$ holds for any $u \in C_c^{\infty}(\mathbb{R}^n)$, we have

$$\frac{1}{\lambda^{n/r}}||u||_{L^{r}(\mathbb{R}^{n})} \leq C \frac{1}{\lambda^{(1-\theta)n/q}}||u||_{L^{q}(\mathbb{R}^{n})}^{1-\theta} \frac{\lambda^{\theta}}{\lambda^{\theta n/p}}||Du||_{L^{p}(\mathbb{R}^{n})}^{\theta}$$

$$= C\lambda^{\theta-(1-\theta)n/q-\theta n/p}||u||_{L^{q}(\mathbb{R}^{n})}^{1-\theta}||Du||_{L^{p}(\mathbb{R}^{n})}^{\theta}$$

Then if $n/r + \theta - (1-\theta)n/q - \theta n/p > 0$, since C is independent of u, any sequence with $\lambda \to 0$ will result in

$$C\lambda^{n/r+\theta-(1-\theta)n/q-\theta n/p}||u||_{L^q(\mathbb{R}^n)}^{1-\theta}||Du||_{L^p(\mathbb{R}^n)}^{\theta}\to 0$$

which contradicts the requirement that

$$||u||_{L^r(\mathbb{R}^n)} \le C\lambda^{n/r+\theta-(1-\theta)n/q-\theta n/p}||u||_{L^q(\mathbb{R}^n)}^{1-\theta}||Du||_{L^p(\mathbb{R}^n)}^{\theta}$$

for any non-zero $u \in L^r(\mathbb{R}^n)$. Considering $n/r + \theta - (1-\theta)n/q - \theta n/p \le 0$, any sequence with $\lambda \to \infty$ will result in

$$C\lambda^{n/r+\theta-(1-\theta)n/q-\theta n/p}||u||_{L^q(\mathbb{R}^n)}^{1-\theta}||Du||_{L^p(\mathbb{R}^n)}^{\theta}\to 0$$

causing the same contradiction.

Thus, we must have $n/r + \theta - (1 - \theta)n/q - \theta n/p = 0$; or

$$\theta = \frac{\frac{\frac{n}{q} - \frac{n}{r}}{1 + \frac{n}{q} - \frac{n}{p}}}{1 + \frac{n}{q} + \frac{r}{pq} - \frac{q}{nq}}$$

Next, we show that we can choose a C s.t. the original inequality holds when θ satisfies the previous. By the interpolation inequality, if $\frac{1}{r} = \frac{1-\theta}{q} + \frac{\theta}{np/(n-p)}$, there exists a constant C s.t.

$$||u||_{L^r(\mathbb{R}^n)} \le C||u||_{L^q(\mathbb{R}^n)}^{1-\theta}||u||_{L^{\frac{np}{n-p}}(\mathbb{R}^n)}^{\theta}$$

Happily, the relation $\frac{1}{r} = \frac{1-\theta}{q} + \frac{\theta}{np/(n-p)}$ holds with our choice of θ above.

Then, by the Gagliardo-Nirenberg-Sobolev inequality, since $1 \le p < n$ and $1 \le \frac{np}{n-p} < \infty$, for some other C we have

$$||u||_{L^{\frac{np}{n-p}}(\mathbb{R}^n)} \le C||Du||_{L^p(\mathbb{R}^n)}$$
$$||u||_{L^{\frac{np}{n-p}}(\mathbb{R}^n)}^{\theta} \le C||Du||_{L^p(\mathbb{R}^n)}^{\theta}$$

Thus,

$$||u||_{L^{r}(\mathbb{R}^{n})} \leq C||u||_{L^{q}(\mathbb{R}^{n})}^{1-\theta}||Du||_{L^{p}(\mathbb{R}^{n})}^{\theta}$$

completing our proof.

3. Fix $\alpha > 0$, $1 , and let <math>U = B_1(0)$. Show that there exists a constant C, depending on n, p, α s.t.

$$\int_{U} u^{p} \, \mathrm{d}x \le C \int_{U} |Du|^{p} \, \mathrm{d}x$$

provided

$$u \in W^{1,p}(U), |\{x \in U | u(x) = 0\}| \ge \alpha$$

First we consider the case where p < n. Then $p \in \left[1, \frac{np}{n-p}\right]$, so by Theorem 5.6.3 in Evans, there exists a constant C s.t. $||u||_{L^p(U)} \le C||Du||_{L^p(U)}$. This leaves us with the cases with $p \ge n$.

Assume that the claim is false; ie for any $k \in \mathbb{N}$, we can find a u_k with $||u_k||_{L^p(U)} > k ||Du_k||_{L^p(U)}$. Define $v_k = \frac{u_k}{||u_k||_{L^p(U)}}$; then $||v_k||_{L^p(U)} = 1 > k ||Dv_k||_{L^p(U)}$. Then $||v_k||_{W^{p,1}(U)} \le 2$, so by the compactness of $W^{k,p}(U)$ in $L^p(U)$, there must be a subsequence $\{v_{k_j}\}$ and $v \in L^p(U)$ with $||v_{k_j} - v||_{L^{\to}(U)} = 0$. Then by the dominated convergence theorem

$$\int_{U} v\phi_{x_{i}} dx = \int_{U} \lim_{j \to \infty} v_{k_{j}} \phi_{x_{i}} dx$$

$$= \lim_{j \to \infty} \int_{U} v_{k_{j}} \phi_{x_{i}} dx = \lim_{j \to \infty} -\int_{U} v_{k_{j}, x_{i}} \phi dx = 0$$

Thus, Dv = 0 almost everywhere, implying v is constant. Since $|\{x|v_k(x) = 0\}| \ge \alpha$, we must also have $|\{x|v(x) = 0\}| \ge \alpha > 0$ Then v = 0, contradicting $||v||_{L^p(U)} = 1$, and thus, that the sequence $\{v_k| ||v_k||_{L^p(U)} > k ||Dv_k||_{L^p(U)}\}$ exists.

4. (a) Show that $W^{1,2}(\mathbb{R}^N) \subset L^2(\mathbb{R}^N)$ is not compact.

First define $U = \mathbb{R}^n$.

Then given a nonzero $u \in W^{2,2}(U)$, define $u_k(x_1, x_2, \ldots, x_n) = u(x_1 - k, x_2, \ldots, x_n)$. $\{u_k\}$ does not have a subsequence $\{u_{k_j}\}$ with $\lim_{j \to \infty} \left|\left|u_{k_j} - v\right|\right|_{L^2(U)} = 0$ for any v, while $\left|\left|u_k\right|\right|_{L^2(U)} = \left|\left|u\right|\right|_{L^2(U)} < \infty$.

Given an $0 < 2\epsilon < ||u||_{W^{2,2}(U)}$, consider any v s.t. a given u_k , $||u_k - v||_{L^2(U)} < \epsilon$. Since $u_k \in W^{1,2}(U)$, it has compact support, so there is an R > 0 with $u_k(B_0(R)^C) = \{0\}$. Then

$$\epsilon > ||u_k - v||_{L^2(U)}^2 = \int_{B_0(R)} |u_k - v|^2 dx + \int_{B_0(R)^C} |v|^2 dx \ge \int_{B_0(R)^C} |v|^2 dx$$

Next, we can choose given any subsequence $\{u_{k_j}\}$, we can choose a J s.t. $\forall j \geq J$, $k_j > 2R$. These u_{k_j} have compact support in a region excluding $B_0(R)$. We compute

$$\left| \int_{B_0(R)} |v|^2 \, \mathrm{d}x - \int_{B_0(R)} |u_k|^2 \, \mathrm{d}x \right| \le \int_{B_0(R)} |u_k - v|^2 \, \mathrm{d}x < \epsilon$$

$$-\epsilon + \int_{B_0(R)} |u_k|^2 \, \mathrm{d}x < \int_{B_0(R)} |v|^2 \, \mathrm{d}x$$

$$\epsilon < \int_{B_0(R)} |v|^2 \, \mathrm{d}x$$

$$\left| \left| u_{k_j} - v \right| \right|_{L^2(U)}^2 = \int_{B_0(R)} |v|^2 \, \mathrm{d}x + \int_{B_0(R)^C} |u_{k_j} - v|^2 \, \mathrm{d}x$$

$$> \epsilon + \int_{B_0(R)^C} |u_{k_j} - v|^2 \, \mathrm{d}x > \epsilon$$

showing that we can never choose a J with $\left|\left|u_{k_j}-v\right|\right|_{L^2(U)}^2<\epsilon$ for all $j\geq J$. Thus, $W^{1,2}(U)$ is not compactly contained in $L^2(U)$.

(b) Let n > 4 Show that the embedding $W^{2,2}(U) \to L^{\frac{2n}{n-4}}(U)$ is not compact. Given a non-negative $u \in W^{2,2}(U)$ with finite $||u||_{W^{2,2}(U)}$ and $||u||_{L^2(U)}$, define $u_{\lambda} = \lambda^{\theta} u(\frac{x}{\lambda})$. Then

$$||u_{\lambda}||_{W^{2,2}(U)}^2 = \lambda^{2\theta-n} \int_{U} u^2 dx + \lambda^{2\theta-n-2} \int_{U} |Du|^2 dx + \lambda^{2\theta-n-4} \int_{U} |D^2u|^2 dx$$

Then if we choose θ such that $2\theta - n \leq 0$, this remains bounded as $\lambda \to \infty$. However, the $L^{\frac{2n}{n-4}}(U)$ norm does not necessarily remain bounded:

$$||u_{\lambda}||_{L^{\frac{2n}{n-4}}(U)}^{2} = \lambda^{\frac{2n}{n-4}\theta - n} \int_{U} u^{2} dx$$

$$0 \ge \frac{2n}{n-4}\theta - n = \frac{(2\theta - n + 4)n}{n-4}$$

$$0 > 2\theta - n + 4$$

Choosing $n-4 < 2\theta < n$ gives a sequence which is unbounded in the $L^{\frac{2n}{n-4}}(U)$ space, but bounded and convergent to 0 in the $W^{2,2}(U)$ space. This violates $||u_{\lambda}||_{L^{\frac{2n}{n-4}}(U)} \leq C ||u_{\lambda}||_{W^{2,2}(U)}$, since for any C, we can increase λ s.t. the previous no longer holds, proving that there is not a compact embedding. Also, for any $v \in L^{\frac{2n}{n-4}}(U)$, we have

$$\infty = \lim_{\lambda \to \infty} \left| ||u_{\lambda}||_{L^{\frac{2n}{n-4}}(U)} - ||v||_{L^{\frac{2n}{n-4}}(U)} \right| \le \lim_{\lambda \to \infty} |||u_{\lambda}| - |v|||_{L^{\frac{2n}{n-4}}(U)}$$

$$\le \lim_{\lambda \to \infty} ||u_{\lambda} - v||_{L^{\frac{2n}{n-4}}(U)}$$

Since this is true for any sequence with $\lambda \to \infty$, $W^{2,2}(U)$ cannot be compactly contained in $L^{\frac{2n}{n-4}}(U)$.

(c) Describe the embedding of $W^{3,p}(U)$ in different dimensions. State if the embedding is continuous or compact.

By the Rellich-Kondrachov Compactness theorem, whenever $1 \le p < n$, $W^{3,p}(U)$ is compactly contained in $L^q(U)$ for $1 \le q < \frac{np}{n-p}$. Then by the General Sobolev inequality, if $3 < \frac{n}{p}$ and $\frac{1}{q} = \frac{1}{p} - \frac{3}{n}$, the embedding is continuous.

7 cases, 2 borderline cases, n = 3, compact embedding, rest are cases from the Sobolev inequality and Morrey's inequality.

5. (a) Let $u \in W_r^{1,2}(\mathbb{R}^n) \subset H_r^1(\mathbb{R}^n) = \{u \in W^{1,2}(\mathbb{R}^n) | u = u(r)\}$. Show that $|u(r)| \leq C ||u||_{W^{1,2}(\mathbb{R}^n)} r^{\frac{1-n}{2}}$. First define u(x) = f(|x|). Note that $\frac{\partial}{\partial x_i} u(x) = f'(|x|) \frac{x_i}{|x|}$. Next, we consider $\frac{\mathrm{d}}{\mathrm{d}r} [r^{2m} f^2(r)]$ and compare it to $[\frac{\mathrm{d}}{\mathrm{d}r} (r^m f(r))]^2 + (r^m f(r))^2$:

$$\frac{\mathrm{d}}{\mathrm{d}r}[r^{2m}f^{2}(r)] = r^{2m-1}f^{2}(r) + r^{2m}f(r)f'(r)$$

$$[(r^{m}f(r))']^{2} + (r^{m}f(r))^{2} = r^{2m}[(f'(r))^{2} + f^{2}(r)] + m\frac{\mathrm{d}}{\mathrm{d}r}(r^{2m-1}f^{2}(r)) - m(m-1)r^{2m-2}f^{2}(r)$$

$$0 \le \left[\frac{\mathrm{d}}{\mathrm{d}r}(r^{m}f(r))\right]^{2} + (r^{m}f(r))^{2} - \frac{\mathrm{d}}{\mathrm{d}r}[r^{2m}f^{2}(r)]$$

$$= r^{2m}[f(r) - f'(r)]^{2} + mr^{2m-2}((m-2r)f^{2}(r) + 2rf(r)f'(r))$$

$$= r^{2m-2}[-mf(r) + rf(r) - rf'(r)]^{2}$$

The last equation shows the inequality is true, since r > 0 and $[-mf(r) + rf(r) - rf'(r)]^2 > 0$. Thus, $\frac{d}{dr}(r^{2m}f^2(r)) \le [\frac{d}{dr}(r^mf(r))]^2 + (r^mf(r))^2$.

Next, we apply compact support of our function with the fundamental theorem of calculus and triangle inequality to put an upper bound on the pointwise value of the function. When $m = \frac{n-1}{2}$, $n \ge 3$, we have

$$r^{2m}f(r)^{2} = \left| \int_{r}^{\infty} \frac{\mathrm{d}}{\mathrm{d}s} [s^{2m}f(s)] \, \mathrm{d}s \right|$$

$$\leq \int_{r}^{\infty} \left[\frac{\mathrm{d}}{\mathrm{d}s} (s^{m}f(s)) \right]^{2} \, \mathrm{d}s + \int_{r}^{\infty} (s^{m}f(s))^{2} \, \mathrm{d}s$$

$$\leq \frac{1}{n\alpha_{n}} ||f(s)||_{W^{1,2}(\mathbb{R}^{n})}^{2}$$

Then $|u(x)| = |f(r)| \leq \frac{C}{r^{\frac{n-1}{2}}} ||u(x)||_{W^{1,2}(\mathbb{R}^n)}$, completing our proof.

- (b) Show that for $n \geq 2$, the embedding $W_r^{1,2} \subset L^p$ is compact when 2 . $First, recall that <math>W^{1,2}(\mathbb{R}^n) = W_C^{1,2}(\mathbb{R}^n)$. Then consider any sequence $\{u_k\} \subset W_r^{1,2}(\mathbb{R}^n)$ with $||u_k||_{W^{1,2}(\mathbb{R}^n)} < C$.
- (c) Let $u = D_r^{1,2} = \{ \int |\nabla u|^2 dx < \infty | u = u(r) \}$. Show that $D_r^{1,2} \subset L^{\frac{2n}{n-2}}$ and $|u(r)| \leq C ||Du||_{L^2()} r^{\frac{2-n}{2}}$. However show that $D_r^{1,2} \subset L^{\frac{2n}{n-2}}$ is not compact.
- 6. Let U = (-1,1). Show that the dual space of $H^1(U)$ is isomorphic to $H^{-1}(U) + E^*$ where E^* is the two dimensional subspace of $H^1(U)$ spanned by the orthogonal vectors $\{e^x, e^{-x}\}$.

Let $u \in H_0^1(U)$, $v \in H^1(U) \cap (H_0^1(U))^{\perp}$, with $(f,g) = \int_U uv + u'v' dx$ for $f,g \in H^1(U)$. Then $(u,v) = 0 = \int_U uv + u'v' dx$. If $v \in C^2(U)$, integrating by parts gives

$$0 = \int_{U} uv - uv'' \, dx + u(1)v'(1) - u(-1)v'(-1)$$
$$= \int_{U} u(v - v'') \, dx$$

Then v is a weak solution to the ODE -v'' + v = 0.

Recall that given boundary conditions, the strong form has a unique solution, namely $v = c_1 e^x + c_2 e^{-x}$. Since the solution to the strong form is a solution to the weak form, and solutions to this weak form are unique, this solution is the only solution to our weak form. Thus, if $v \in H^1(U)$, we must have $v = u + c_1 e^x + c_2 e^{-x}$ for some $u \in H^1_0(U)$, $c_1, c_2 \in \mathbb{R}$, or equivalently, $H^1 = H^1_0 + E$.

7. (a) Assume that U is connected. A function $u \in W^{1,2}(U)$ is a weak solution of the Neumann problem

$$\begin{cases} -\Delta u(x) = f(x) & x \in U \\ \frac{\partial u}{\partial \nu} = 0 & x \in \partial U \end{cases}$$

if

$$\int_{U} Du \cdot Dv \, dx = \int_{U} fv \, dx, \forall v \in W^{1,2}(U)$$

Suppose that $f \in L^2(U)$. Show that this only has a solution iff $\int_U f(x) dx = 0$

If U is bounded, then we can just take $v=1\in W^{1,2}(U)$, as $Dv=0\to 0=\int_U Du\cdot Dv=< f, v>$. If U is unbounded, then we note that since $u\in W^{1,2}(U)$, there must be some R>0 with $u(B_R^C\cap U)=\{0\}$. Then $Du(B_R^C\cap U)=\{0\}$. If we then choose $v=1\in B_R$ and $v=0\in B_{R+1}$ with some smooth transition, we must have $0=\int_U Du\cdot Dv\,\mathrm{d}x=\int_{U\cap B_R} f\,\mathrm{d}x+\int_{U\cap B_R^C\cap B_{R+1}} fv\,\mathrm{d}x$

(b) Discuss how to define a weak solution of the Poisson equation with Robin boundary conditions

$$\begin{cases}
-\Delta u(x) = f(x) & x \in U \\
u + \frac{\partial u}{\partial \nu} = 0 & x \in \partial U
\end{cases}$$

Starting with the form of the PDE, we require that $\langle f, v \rangle = -\int_U \Delta u(x)v(x) dx$. Integrating by parts gives

$$< f, v > = \int_{U} Du \cdot Dv \, dx - \int_{\partial U} \frac{\partial u}{\partial \nu} v \, dS$$

= $\int_{U} Du \cdot Dv \, dx + \int_{\partial U} uv \, dS$

with $q \in \mathbb{R}$. Thus, any solution to the strong problem will be a weak solution as well. Next we need to show that this problem is well defined.

By the infinite differentiability up to the boundary theorem, if $f \in C^{\infty}(\overline{U})$ and $\partial U \in C^{\infty}$, then $u \in W^{1,2}(U) \cap C(\overline{U})$. Then by the trace theorem, if $\partial U \in C^1$ and $u \in W^{1,2}(U) \cap C(\overline{U})$, then $Tu = u|_{\partial U}$ and $||Tu||_{L^2(\partial U)} \leq C ||u||_{W^{1,2}(U)}$. So if we define a bilinear operator $B[u,v] = \int_U Du \cdot Dv \, dx + \int_{\partial U} uv \, dS$, then $B[u,u] = ||Du||_{L^2(U)}^2 + ||u||_{L^2(\partial U)}^2 \leq C ||u||_{W^{1,2}(U)}$ whenever these assumptions hold. We can also show that B is coercive in most cases, and then Lax Millgram applies, proving that this has a unique solution.

8. (a) Discuss the definition of weak solutions $u \in H_0^2(U)$ to

$$\begin{cases} \Delta^2 u(x) = f(x) & x \in U \\ u(x) = \frac{\partial u}{\partial \nu}(x) = 0 & x \in \partial U \end{cases}$$

Consider $v \in C^2(U)$. Then $\int_U fv \, dx = \int_U (\Delta^2 u)v \, dx$. Integrating by parts and noting that $u \in H_0^2(U) \to D^\alpha u = 0$ gives

$$\int_{U} f v \, dx = -\int_{U} D(\Delta u) \cdot Dv \, dx + \int_{\partial U} \left(\frac{\partial}{\partial \nu} \Delta u \right) v \, dS$$

$$= -\int_{U} D(\Delta u) \cdot Dv \, dx = \int_{U} (\Delta u)(\Delta v) \, dx - \int_{\partial U} \Delta u \frac{\partial}{\partial \nu} v \, dS$$

$$= \int_{U} (\Delta u)(\Delta v) \, dx$$

Then any solution to the strong problem will be a solution to the above weak problem. We can then define the bilinear form $B[u,v]=\int_U(\Delta u)(\Delta v)~\mathrm{d}x$, with $B:H^2(U)\times H^2(U)\to\mathbb{R}$. We can use the Sobolev Inequality and a modification of the argument for Poincare's Inequality to prove that this is a bounded coercive form. Thus, Lax-Millgram applies, so we know that there is a unique $u\in H^2_0(U)$ with B[u,v]=< f,v>.

(b) Given $f \in L^2(U)$ prove that there exists a unique weak solution to $\Delta^2 u(x) = f(x)$. First

$$|B[u, v]| = \left| \int_{U} (\Delta u)(\Delta v) \, dx \right|$$

$$\leq \int_{U} |\Delta u| |\Delta v| \, dx \leq C ||\Delta u||_{L^{2}(U)} ||\Delta v||_{L^{2}(U)}$$

$$\leq C ||u||_{H^{2}(U)} ||v||_{H^{2}(U)}$$

Thus, B is a bounded bilinear form.

Next, we need to show that B is coercive, i.e. that there is a constant C s.t. $||u||_{H^2(U)} \leq CB[u, u]$. If $n \geq 3$, we can apply Evans 5.6.3, so

$$||u||_{H^{2}(U)}^{2} = \int_{U} u^{2} dx + \int_{U} |Du|^{2} dx + \int_{U} |\Delta u|^{2} dx$$

$$\leq C \int_{U} |Du|^{2} dx + \int_{U} |\Delta u|^{2} dx$$

$$\leq C \int_{U} |\Delta u|^{2} dx = CB[u, u]$$

Otherwise, assume that there is a sequence $\{u_k\}$ with $||u_k||^2_{H^2(U)} > kB[u_ku_k]$. Note that $u_k \neq 0$, as otherwise the above inequality does not hold. Then since B is linear, we can assume that $||u_k||_{H^2(U)} = 1$. Then

$$0 = \lim_{k \to \infty} \frac{1}{k} > \lim_{k \to \infty} ||\Delta u_k||_{L^2(U)}^2$$
$$0 = \lim_{k \to \infty} \Delta u_k = \Delta u$$

Then (as shown in a previous homework) Du is constant in U. But Du = 0 on ∂U , so Du = 0 everywhere. Then by the same argument, u = 0 everywhere, contradicting our assumption.

Thus, B is coercive and bounded, so Lax-Millgram applies, proving that there is a unique $u \in H_0^2(U)$ s.t. $B[u,v] = \langle f,v \rangle$ whenever $v \in C^{\infty}(U)$.