Reachability for Stateless Multi-Stack Automata

Wojciech Czerwinski, Piotr Hofman and Sławomir Lasota Institute of Informatics, University of Warsaw

Plan

- Motivation and Model
- 2 Results
- A proof

SLMSA

Idea

Why do we investigate automata with many stacks?

Stateless automaton with many stacks

- Multiple stacks.
- 2 Stacks alphabets are disjoint.
- 3 Transitions like rules in CFG in GNF. $X \longrightarrow aYZ$
- Acceptance condition: all stacks empty.

Additional assumption

For each stack symbol there is a sequence of transitions which annihilates it.

Digression (another reason why it is fun)

- Let's extend a CFG in GNF by adding new rules of the form $XY \longrightarrow YX$.
- 2 Let's take *D* a complement of an independence relation. Assume that *D* is an **equivalence relation**.
- 3 Then the model of automaton is exactly **SLMSA**.

Example (grammar)

- Nonterminals: A, B, C, X Terminals: a, b, c
- Initial symbol X
- Rules

Swap rules

• Generated language is $\sharp a = \sharp b = \sharp c$

Example (automaton)

- Stack symbols: A, B, C, X alphabet: a, b, c
- 3 stacks (A, X)(B)(C)
- Initial configuration (X)()()
- Rules

• Generated language is $\sharp a = \sharp b = \sharp c$

We want to investigate the configuration graph of SLMSA.

Reachability

For a given two sets of configurations S and F we ask if there exists a path from an element of S to an element of F.

Problems

- Which sets of configurations are regular?
- What is Pre*(regular set)?

Regular set of configurations

Equivalent definitions

- Oncatenation of stacks is a regular language.
- 2 Shuffle of stacks is a regular language.
- 3 There are some others characterizations...

Example

 $(A^*)(B)(C^*)$ is a regular set but $(A^n)(B^n)$ is not.

$Pre^*(L)$

Set of configurations from which L is reachable.

Results

	PDA	SLMSA
Conf to Conf	Р	NP
Conf to Reg	Р	NP

theorem

 $Pre^*(Reg)$ is a regular set.

theorem

 $Post^*(Reg)$ is not a regular set.

- $R = h^{-1}(\{m1, m2 \cdots m_k\})$ is regular.
- $Pre^*(R) = Pre^*(h^{-1}(m1)) \cup \cdots \cup Pre^*(h^{-1}(m_k)).$
- So we only need to prove that $Pre^*(h^{-1}(m_i))$ is regular.
- Bottom and top parts.

• $(Pre^*(x), x)$ define Pre^* relation. From every such pair we cancel bottom part and obtain Pre^* relation.

- $R = h^{-1}(\{m1, m2 \cdots m_k\})$ is regular.
- $Pre^*(R) = Pre^*(h^{-1}(m1)) \cup \cdots \cup Pre^*(h^{-1}(m_k)).$
- So we only need to prove that $Pre^*(h^{-1}(m_i))$ is regular.

- Bottom and top parts.
- Let m_i = b_ia_i
 Using monoids properties we can prove that Pre* is regular if
 Pre*(h⁻¹(b_i)) is regular.

WQO

Well Quasi Order

For every infinite sequence a_i there exist k < j such that $a_k \le a_i$.

A subword order abadaba.

Higman's lemma (more or less)

A subword order over words is WQO.

Product of WQO

A product of two WQOs orders is WQO.

A configuration is a tuple of words.

WQO

Upward-closed sets

If S is upward-closed then it has finite many minimal elements.

Observation

Upward closure of a word **aba** is $\Sigma^* a \Sigma^* b \Sigma^* a \Sigma^*$. So upward-closed sets are regular.

It suffice to show that $Pre^*(h^{-1}(b_i))$ is upward closed!

$$\overline{Pre}^*(h^{-1}(b_i))$$

Future work

- LTL in SLMSA
- Sets which are not regular, or some specific class of sets like upward-closed.
- Case when there are stack symbols which can not be annihilated.
- Many states but with some order on them.
- Computing Pre*.
- Many others questions...

