Stat 136 (Bayesian Statistics)

Course Outline

Course Information

Course Code: Stat 136

Course Title: Bayesian Statistics

Pre-requisite: Stat 131 (Mathematical Statistics 3)

Credit: 3.0 units

Semester Offered: Second Semester

Number of Contact Hours per Week: 2 hours lecture (8-10 M) and 3 hours laboratory (8-11

W) per week

Course Description: Elements of Bayesian inference; assessment of prior, likelihood, and posterior distributions; Bayesian estimation and hypothesis testing; predictive distribution and asymptotics; Bayesian hierarchical models; introduction to Empirical Bayes

Course Outcomes

- 1. Differentiate Bayesian and classical/frequentist inference;
- 2. Perform Bayesian inference for the parameter(s) of discrete distributions;
- 3. Perform Bayesian inference for the parameter(s) of continuous distributions; and
- 4. Bayesian regression, and Markov Chain Monte Carlo, hierarchical Bayes, and empirical Bayes models

Topical Outline

Module 1. The basics of bayesian statistics

- 1. Main approaches to statistics
- 2. The Bayes Theorem
- 3. Odds and Bayes factor
- 4. Elements of a Bayesian model

Module 2. Bayesian inference for the parameter(s) of discrete distributions

- 1. Bayesian inference for a binomial proportion using a discrete prior
- 2. Bayesian inference for a binomial proportion using a continuous prior
- 3. Bayesian inference for the Poisson mean using a discrete prior
- 4. Bayesian inference for the Poisson mean using a continuous prior

Module 3. Bayesian inference for the parameter(s) of continuous distributions

- 1. Bayesian inference for the mean of a normal distribution using a discrete prior
- 2. Bayesian inference for the mean of a normal distribution using a continuous prior
- 3. Bayesian inference on difference between two means
- 4. Bayesian inference on difference between two proportions
- 5. Bayesian inference for standard deviation

Module 4. Bayesian inference for simple linear regression; Markov Chain Monte Carlo; and hierarchical and empirical Bayes

- 1. Bayesian approach to simple linear regression
- 2. Markov Chain Monte Carlo
- 3. Introduction to hierarchical models and empirical Bayes

Course Requirements and Grading System

- 1. Quizzes (15%)
- 2. Problem Sets (25%)
- 3. Long Examinations (60%)

Rating (%)	Grade Equivalent
98-100	1.00
95-97	1.25
90-94	1.50
85-89	1.75
80-84	2.00
75-79	2.25
70-74	2.50
65-69	2.75
60-64	3.00
53-59	3.25
46-52	3.50
39-45	3.75
32-38	4.00
25-31	4.25
18-24	4.50
11-17	4.75
0-10	5.00

Suggested References

- 1. Johnson, A. A., M. Q. Ott, and M. Dogucu (2022). Bayes Rules! An Introduction to Applied Bayesian Modeling. CRC Press Taylor & Francis Group, LLC
- 2. Albert, J. and Hu, J. (2020). Probability and Bayesian Modeling. CRC Press Taylor & Francis Group, LLC
- 3. Bolstad, W. M. and Curran, J. M. (2017). Introduction to Bayesian Statistics, 3rd edition. John Wiley & Sons, Inc.
- 4. Gelman, A., et al (2013). Bayesian Data Analysis, 3rd edition. Chapman and Hall/CRC.
- 5. Puza, B. (2015). Bayesian Methods for Data Analysis. ANU eView. Australian National University. Available at http://eview.anu.edu.au.
- 6. https://statswithr.github.io/book/
- 7. https://www.stat.columbia.edu/~gelman/book/