SHARP

SERVICE MANUAL/SERVICE-ANLEITUNG/MANUEL DE SERVICE

- For the servicing of leadless type resistors and capacitors, refer to the Technical Report (ONK-007) already issued.
- Einzelheiten über den Austausch der stiftlosen Widerstände und Kondensatoren sind im bereits herausgegebenen "Technical Report" (ONK-007) enthalten.
- Pour réparer les résistances et les condensateurs de type sans pied, se reporter au Rapport Technique (ONK-007) déja publié.

ATSM283021RCS

QT-37H QT-37E

PHOTO: QT-37H

DOLBY SYSTEM ®

- Noise reduction system manufactured under license from Dolby Laboratories Licensing Corporation. 'Dolby' and the double-D symbol are trademarks of Dolby Laboratories Licensing Corporation.
- Geräuschunterdrückungssystem unter Lizenz von Dolby Laboratories Licensing Corporation hergestellt. Das Wort "Dolby" und das Symbol des doppelten D sind die Markenzeichen von Dolby Laboratories Licensing Corporation.
- Circuit de réduction des bruits fabriqué sous licence des Dolby-Laboratories Licensing Corporation. Le mot "Dolby" et le symbole D sont les marques de fabrique des Dolby Laboratories Licensing Corporation

- In the interests of user-safety the set should be restored to its original condition and only parts identical to those specified be used.
- Im Interesse der Benutzer-Sicherheit sollte dieses Gerät wieder auf seinen ursprünglichen Zustand eingestellt und nur die vorgeschriebenen Teile verwendet werden.
- Dans l'intérêt de la sécurité de l'utilisateur, l'appareil devra être reconstitué dans sa condition première et seules des pièces identiques à celles spécifiées, doivent être utilisées.

Note for users in UK:

Recording and playback of any material may require consent which SHARP are unable to give. Please refer particularly to the provisions of Copyright Act 1956, the Dramatic and Musical Performers Protection Act 1958, the Performers Protection Acts 1963 and 1972 and to any subsequent statutory enactments and orders.

GB INDEX TO SPECIFICATIONS, NAMES OF PARTS	WIRING SIDE OF P.W.BOARD
BLOCK DIAGRAM	MECHANISM EXPLODED VIEW
D INHALTSVE	RZEICHNIS
TECHNISCHE DATEN, TEILEBEZEICHNUNG	VERDRAHTUNGSSEITE DER LEITERPLATTE
F TABLE DES	MATIERES
CARACTERISTIQUES, NOMENCLATURE	DIAGRAMME SCHEMATIQUE
L'ALIGNEMENT	LISTE DES PIECES DE RECHANGE 28 à 33

FOR A COMPLETE DESCRIPTION OF THE OPERATION OF THIS UNIT, PLEASE REFER TO THE OPERATION MANUAL.

SPECIFICATIONS

GENERAL

Power source:

AC 110V ~ 120V and 220V ~

240V, 50/60Hz

DC 12V (UM/SUM-2, R14,

HP11 or C type x 8)

MPO; 12W (6W + 6W) (AC

Output power: MPO; 12W ((DIN 45 324) operation)

(DIN 45 324) operation) (QT-37H) RMS; 10W (5W + 5W) (DC

operation)

Output power:

MPO; 20W (10W + 10W) (AC

(QT-37E)

operation)

RMS; 10W (5W + 5W) (DC operation, 10% distortion)

Semiconductors:

8 ICs

19 transistors 33 diodes

8 LEDs

Dimensions: Width;

508 mm (20-1/16")

Height;

157 mm (6-3/16") 165 mm (6-1/2")

Depth;

4.3kg (9.5lbs.) without batteries

Weight:

TAPE RECORDER

1. Speaker (L-ch)

2. Headphones Jack

4. Dolby NR Switch

6. Level Indicator

8. Record Button

11. Rewind Button

16. Power Indicator

18. Tuning Control

17. FM Stereo Indicator

9. Playback Button

12. Fast-forward Button

15. Tape Counter Reset Button

7. Eject Button

10. Stop Button

13. Pause Button14. Digital Tape Counter

5. Dolby NR Indicator

3. External Microphone Jack

Tape: Compact cassette tape

Frequency response: 40Hz - 1

40 Hz - 14,000 Hz (normal tape) 40 Hz - 16,000 Hz (CrO₂ tape)

40Hz - 17,000Hz (metal tape)

Signal/noise ratio:

50dB (normal tape, Dolby NR

off)

56dB (metal tape, Dolby NR on)

Wow and flutter: 0.17% (DIN 45 511)

(OT-37H)

Wow and flutter:

0.17% (CCIR)

(QT-37E)

Input sensitivity and

impedance:

External mic: 600 ohms

DIN socket;

0.5mV/8 Kohms

Output level and loaded impedance:

Headphones:

8 ohms - 32 ohms

External speakers;

3 ohms - 8 ohms

DIN socket;

0.4V/50 Kohms

RADIO

Frequency range:

LW; 150 kHz - 285 kHz

MW; 520 kHz — 1,620 kHz SW; 5.95 MHz — 18.0 MHz

FM; 87.6 MHz - 108 MHz

SPEAKERS

Type:

Acoustic suspension type

Speakers: 10

10 cm (4") free-edge woofer x 2

Horn type tweeter x 2

Impedance:

3 ohms

Maximum power handling capacity:

13W (maximum)

Specifications are subject to change without prior notice.

NAMES OF PARTS

- 19. Speaker (R-ch)
- 20. FM Mode Selector
- 21. Band Selector
- 22. Built-in Microphone
- 23. Tape Selector Switches
- 24. Function Selector Switch
- 25. Volume Control
- 26. Cassette Holder
- 27. Balance Control
- 28. Tone Control
- 29. Speaker Lock/Release Knob
- 30. Battery Compartment Lid
- 31. FM/SW Telescopic Rod Antenna
- 32. AC Power Supply Socket
- 33. External Speaker Jack
- 34. Beat Cancel Switch
- 35. DIN Socket

Figure 2-2

DIE BEDIENUNGSWEISE DIESES GERÄTES IST IN DER BEDIENUNGSANLEITUNG AUSFÜHRLICH BESCHRIEBEN,

TECHNISCHE DATEN

ALLGEMEINES	NES
-------------	-----

Spannungsversorgung:

Wechselspannung 110V-120V und

220-240V, 50/60Hz

Gleichspannung 12V (UM/SUM-2,

R14, HP-11 oder C-Typ x 8

Ausgangsleistung: (DIN 45324)

12W Musikausgangsleistung (6W pro Kanal) (Netzspannungsbetrieb) 10W Sinusleistung (5W pro Kanal)

(Gleichspannungsbetrieb)

Halbleiter:

8 ICs

19 Transistoren 33 Dioden 8 LEDs

Abmessungen:

Breite: 508mm

Höhe: 157mm

Tiefe: 165mm

Gewicht:

4.3kg ohne Batterien

CASSETTENRECORDER-TEIL

Rand:

Kompaktcassette

40Hz - 14 kHz (Normalband) Frequenzgang:

40Hz - 16 kHz (CrO₂-Band) 40Hz - 17kHz (Reineisenband)

Signal/Rauschabstand: 50dB (Normalband, Dolby NR

Aus)

56dB (Reineisenband, Dolby NR

Ein)

Gleichlaufschwan-

0.17% (DIN 45 511)

8 bis 32 Ohms

kungen:

Eingangsempfindlichkeit und Impedanz: Ext. Mikrofon: 600 Ohm DIN-Buchse 0.5mV/8 kOhm

Ausgangsspannung

und Lastimpedanz:

Kopfhörer: Au enlautsprecher:

3 bis 8 Ohms DIN-Buchse: 0,4V/50 kOhm

RADIO-TEIL

Frequenzbereiche: LW: 150 kHz - 285 kHz

> MW: 520 kHz - 1620 kHz KW: 5.95 MHz - 18.0 MHz

UKW: 87,6 MHz - 108 MHz

LAUTSPRECHER:

Type: Lautsprecher: Akustischer Suspensionstyp 2 x 10cm Freikanten-Tieftöher

2 x Trichterhochtöner

Impedanz: 3 Ohm

Max. Belastbarkeit: 13W (Maximum)

Änderungen der technischen Daten iederzeit ohne Vorankündigung vorbehalten.

TEILEBEZEICHNUNG

- 1. Lautsprecher (linker Kanal) 2. Kopfhörerbuchse 3. Außenmikrofonbuchse
- 4. Dolby-NR-Schalter
- 5. Dolby-NR-Anzeige
- 6. Pegel-Anzeige
- 7. Auswurftaste 8. Aufnahmetaste
- 9. Wiedergabetaste
- 10. Stopptaste
- 11. Taste für schnellen Rücklauf
- 12. Taste für schnellen Vorlauf
- 13. Pausentaste
- 14. Digitales Bandzählwerk
- 15. Bandzählwerk-Rückstellknopf 16. Spannungsversorgungsanzeige
- 17. UKW-Stereoanzeige
- 18. Abstimmknopf

- 19. Lautsprecher (rechter kanal)
- 20. UKW-Betriebsartenwahlschalter
- 21. Wellenbereichswahlschalter
- 22. Eingebautes Mikrofon
- 23. Bandsortenwahlschalter 24. Funktionswahlschalter
- 25. Lautstärkeregler
- 26. Cassettenhalter
- 27. Balanceregler
- 28. Klangregler
- 29. Ver-/Entriegelungsknopf für Lautsprecher
- 30. Batteriefachdeckel
- 31. UKW/KW-Teleskopstabantenne
- 32. Netzanschluß
- 33. Außenlautsprecherbuchsen
- 34. Störunterdrückungsschalter
- 35. DIN-Buchse

F

POUR UNE DESCRIPTION COMPLETE DU FONCTIONNEMENT DE CET APPAREIL SE REPORTER AU MODE D'EMPLOI.

CARACTERISTIQUES

GENERALITES

Puissance de sortie:

Semi-conducteurs:

(DIN 45 324)

Dimensions:

Alimentation:

CA 110V à 120V et 220V à 240V.

50/60Hz

CC 12V (format UM/SUM-2, R14,

HP11 ou C x 8)

Musicale: 12W (6W + 6W) (opéra-

tion CA)

Efficace; 10W (5W + 5W)

(opération CC)

8 CI

19 transistors

33 diodes

8 LED (diode à lueurs) Largeur: 508 mm

Hauteur: 157 mm Profondeur: 165 mm

Poids: 4,3kg sans piles

MAGNETOPHONE

Bande:

Bande cassette compacte Réponse en fréquence:

40Hz à 14 000Hz (bande normale) 40Hz à 16 000Hz (bande CrO₂) 40Hz à 17 000Hz (bande méta-

llique)

Rapport signal/bruit: 50dB (bande normale, Dolby NR coupé)

56dB (bande métallique, Dolby NR

allumé)

Pleurage et

scintillement:

0.17% (DIN 45 511)

Sensibilité et impédance d'entrée:

Microphone externe: 600 ohms Douille DIN: 0.5mV/8 kohms

Niveau de sortie et impédance de charge:

Casque; 8 ohms à 32 ohms

Haut-parleurs externes; 3 ohms à 8

Douille DIN: 0.4V/50 kohms

RADIO

Gamme de fréquences:

GO; 150 kHz à 285 kHz PO; 520 kHz à 1 620 kHz OC; 5,95 MHz à 18,0 MHz FM; 87,6 MHz à 108 MHz

ENCEINTES

Haut-parleurs:

Impédance:

Type:

Type à suspension pneumatique Woofer à bord libre de 10 cm x 2

Tweeter de type pavillon x 2

3 ohms

Puissance admissible maximale:

13W (maximum)

Les caractéristiques sont sujettes à modification sans

préavis.

NOMENCLATURE

- 1. Haut-parleur (canal gauche)
- 2. Prise de casque d'écoute
- 3. Prise de microphone extérieur
- 4. Commutateur Dolby NR
- 5. Témoin Dolby NR
- 6. Témoin de niveau
- 7. Bouton d'éjection
- 8. Bouton d'enregistrement
- 9. Bouton de lecture
- 10. Bouton d'arrêt
- 11. Bouton de rebobinage 12. Bouton d'avance rapide
- 13. Bouton de pause
- 14. Compteur numérique de bande
- 15. Bouton de remise à zéro du compteur de bande
- 16. Témoin d'alimentation 17. Témoin FM stéréo
- 18. Commande, d'accord

- 19. Haut-parleur (canal droit)
- 20. Sélecteur de mode FM
- 21. Sélecteur de gamme d'ondes
- 22. Microphone incorporé
- 23. Commutateurs de sélection de bande
- 24. Commutateur de sélection de fonction
- 25. Commande de volume 26. Porte-cassette
- 27. Commande d'équilibrage 28. Commande de tonalité
- 29. Bouton de blocage/libération de haut-parleur
- 30. Abattant du compartiment à piles
- 31. Antenne-tige télescopique FM/OC 32. Douille d'alimentation CA
- 33. Prises de haut-parleur extérieur
- 34. Commutateur de suppression de battement 35. Douille DIN

DISASSEMBLY

Cautions on Disassembly

Follow the below-mentioned notes when disassembling the unit and reassembling it, to keep its safety and excellent performance:

- Be sure to remove the power supply plug from the wall outlet before starting to disassemble the unit.
- 2. Take cassette tape out of the cassette holder.
- Take off nylon bands or wire holders where they need be removed when disassembling the unit. After servicing the unit, be sure to rearrange the leads where they were before disassembling.
- Take sufficient care on static electricity of integrated circuits and other circuits when servicing.

A REMOVAL OF FRONT CABINET

- Remove the battery compartment lid at the back cabinet
- Remove five screws from the back cabinet and take it off.

B REMOVAL OF MECHANISM BLOCK

- 1. Remove three screws from the mechanism block and one screw from the record/playback switch lever.
- Remove the digital tape counter belt, disconnect three sockets from the main P.W.B. and take the mechanism block off.

C REMOVAL OF MAIN FRAME (MAIN P.W.B.) AND TUNER FRAME (TUNER P.W.B.)

- Remove three screws from the main frame and tuner frame.
- Remove one chip and one socket, and take out the main frame and tuner frame.
- Remove one screw and one socket from the tuner frame, and take the frame off.

D REMOVAL OF SPEAKER BOX

 Remove four screws from the speaker box and two chips from its woofer. Then the speaker box and its back cabinet can be separated from each other.

VOLTAGE SELECTION

Before operating the unit on mains, check the preset voltage. If the voltage is different from your local voltage, adjust the voltage as follows: Slide the AC power supply socket cover by a little loosing screw to the visible indication of the side of your local voltage. See Figure 5-5.

AC110~ 120V

AC220 ~ 240V

Figure 5-5

Figure 5-1

Figure 5-2

Figure 5-3

(D)

ZERLEGEN

Vorsichtsmaßnahmen beim Zerlegen

Beim Zerlegen und Zusammenbauen des Gerätes gemäß den folgenden Hinweisen vorgehen, um dessen Betriebssicherheit und ausgezeichnete Leistung aufrechtzuerhalten.

- Vor dem Zerlegen des Gerätes unbedingt den Netzkabelstecker aus der Netzsteckdose ziehen.
- 2. Die Bandcassette aus dem Cassettenhalter entfernen.
- Die Nylonbänder und Leitungshalter an den beim Zerlegen des Gerätes erforderlichen Stellen entfernen. Nach dem Warten des Gerätes die Leitungen wieder so verlegen, wie sie vor dem Zerlegen angeordnet waren.
- Bei der Ausführung von Wartungsarbeiten auf statische Elektrizität der integrierten Schaltkreise und anderen Schaltungen achten.

DEMONTAGE

Précautions pour le démontage

Lors du démontage et de l'assemblage de l'appareil, suivre les notes ci-dessous, pour maintenir la sécurité et d'excellentes performances.

- S'assurer de déposer la prise de secteur de la sortie murale avant d'entreprendre le démontage de l'appareil.
- 2. Déposer la bande cassette du porte-cassette.
- Déposer les bandes de nylon ou les serres-câbles quand ils gênent le travail de démontage de l'appareil.
 Après la réparation de l'appareil, s'assurer de les replacer comme ils étaient avant le démontage.
- 4. Faire attention à l'électricité statique des circuits intégrés et des autres circuits, lors de la réparation.

A ENTFERNEN DES VORDERGEHÄUSES

- 1. Den Batteriefachdeckel am Rückgehäuse entfernen.
- 2. Fünf Schrauben vom Rückgehäuse entfernen.

B ENTFERNEN DES LAUFWERKBLOCKS

- Drei Schrauben vom Laufwerkblock und eine Schraube vom Aufnahme-/Wiedergabe-Schalterhebel entfernen.
- Den Riemen des digitalen Bandzählwerks entfernen, drei Buchsen von der Hauptleiterplatte abziehen und den Laufwerkblock abnehmen.
- © ENTFERNEN DES HAUPTRAHMENS (HAUPT-LEITERPLATTE) UND TUNERRAHMENS (TUNER-LEITERPLATTE)
- Drei Schrauben vom Hauptrahmen und Tunerrahmen entfernen.
- 2. Ein Bauelement und eine Buchse entfernen, und den Hauptrahmen und Tunerrahmen abnehmen.
- Eine Schraube und eine Buchse vom Tunerrahmen entfernen, und den Rahmen abnehmen.

D ENTFERNEN DER LAUTSPRECHERBOX

 Vier Schrauben von der Lautsprecherbox und zwei Bauelemente vom Tieftonlautsprecher entfernen. Die Lautsprecherbox und ihres Rückgehäuse können dann einander getrennt werden.

SPANNUNGSWAHL

Vor Betrieb dieses Gerätes über Netzspannung muß die Spannungsvoreinstellung des Spannungswählers überprüft werden. Sollte die Einstellung des Spannungswählers nicht mit der örtlichen Netspannung übereinstimmen, diesen auf folgende Weise einstellen. Durch Lösen der Schrauben der Netzzuleitungsbuchsenabdeckung wird die Abdeckung auf die Spannungszahl der örtlichen Netzspannung geschoben. Siehe Abbildung 5–5.

ENLEVEMENT DU COFFRET DE DEVANT Enlever le couvercle du compartiment des piles qui se

- trouve dans le coffret arrière.
- 2. Enlever les cinq vis du coffret arrière et l'enlever.

B ENLEVEMENT DU BLOC MECANIQUE

- Enlever les trois vis du bloc mécanique et la vis du levier du commutateur d'enregistrement/lecture.
- Enlever la courroie du compteur numérique de bande, débrancher les trois douilles de la P.M.I. principale et enlever le bloc mécanique.
- ENLEVEMENT DU CADRE PRINCIPAL (P.M.I. PRINCIPALE) ET DU CADRE DU TUNER (P.M.I. DU TUNER)
- 1. Enlever les trois vis du cadre principal et du cadre du
- 2. Enlever la paillette et la douille et puis sortir le cadre principal et le cadre du tuner.
- Enlever, du cadre du tuner, la vis et la douille et enlever le cadre

D ENLEVEMENT DE L'ENCEINTE

 Enlever les quatre vis de l'enceinte et les deux paillettes de son haut-parleur pour fréquences basses.
 Alors l'enceinte et son coffret arrière peuvent être séparés l'un de l'autre.

SELECTION DE LA TENSION

Avant de brancher l'appareil sur l'alimentation de secteur, vérifier la tension préréglée. Si la tension diffère de la tension locale, régler la tension de la façon suivante: faire glisser le couvercle de la douille d'alimentation de secteur, en desserrant un peu la vis, vers l'indication visible du côté de l'alimentation locale. Voir la Figure 5–5.

(GB)

DIAL CORD STRINGING

- 1) Turn the drum fully clockwise and stretch its cord cover the parts in the numerical order as shown in Figure 7–1.
- 2) Turn the tuning control shaft fully counterclockwise, and fix it with the pointer aligned with the zero (0) point on the frame. See Figure 7–2.

\bigcirc

SKALENSCHNURSPANNUNG

- 1. Die Skalenschnurtrommel voll im Uhrzeigersinn drehen, und die Skalenschnur in der Nummernreihenfolge aufsetzen wie in Abbildung 7-1 gezeigt.
- 2. Dann die Abstimmstellerachse bis zum Anschlag entgegen dem Uhrzeigersinn drehen, und den Skalenzeiger auf die (0)-Stellung auf dem Rahmen einstellen. Siehe Abbildung 7–2.

PASSAGE DU FIL DU CADRAN

- Tourner le tambour entièrement à droite et tirer son fil, recouvrir ses pièces dans l'ordre numérique comme le montre la Figure 7-1.
- 2. Tourner l'arbre de commande d'accord entièrement à gauche et le fixer en alignant l'index sur le point zéro (0) du cadre. Voir la Figure 7–2.

Figure 7-2

Figure 7-1

Figure 8 BLOCK DIAGRAM

AUDIO CIRCUIT ADJUSTMENT

RECORD/PLAYBACK HEAD AZIMUTH ADJUSTMENT

- 1. Connect instruments as shown in Fig. 9-1.
- Set the Dolby NR switch SW301 to the off position and tape selector switches SW202 and SW203 to the normal position.
- 3. Adjust the head azimuth adjusting screw so that the output signals from both channels will have maximum waveform with the same phase in right and left.

PLAYBACK SENSITIVITY ADJUSTMENT

- 1. Connect instruments as shown in Fig. 9-2.
- 2. Set the Dolby NR switch SW301 to the off position and tape selector switches SW202 and SW203 to the normal position.
- 3. Adjust the semi-variable resistor VR101 (or VR102) so that the electronic voltmeter reading becomes 580 mV.

DISPLAY ADJUSTMENT OF RECORD/PLAYBACK

- 1. Perform this adjustment after making sure that the electronic voltmeter reading is 580 mV as the result of the playback sensitivity adjustment.
- Adjust the sensitivity adjustment control VR401 (or VR402) so that the 4th LED of the level indicater will light up.

RECORD/PLAYBACK SENSITIVITY ADJUSTMENT

- 1. Connect instruments as shown in Fig. 9-3.
- 2. Insert a normal (non-recorded) tape into the unit.
- 3. Place the unit in record mode and check for the output voltage between pins (3) and (5) of DIN socket.
- 4. Reproduce the tape which has been recorded in the above step 3 and check for the output voltage between pins 3 and 5 of DIN socket.
- 5. Repeat the steps 3 and 4 several times and adjust the semivariable resistor VR203 (or VR204) so that the output voltage is the same in record mode and playback mode.

E. V.: (Electronic Voltmeter)

Figure 9-1

Figure 9-2

Figure 9-4

D

EINSTELLUNG DER TONSCHALTUNG

EINSTELLUNG DES AUFNAHME-/WIEDERGABEKOPF-AZIMUTS

- 1. Die Instrumente gemäß Abb. 9-1 anschließen.
- Den Dolby-NR-Schalter SW301 auf OFF (Aus) und die Bandsortenwahlschalter SW202 und SW203 auf NORMAL einstellen.
- Die Kopfazimut-Einstellschraube auf eine Weise einstellen, daß die Wellenform der Ausgangssignale von beiden Kanälen maximal und rechts und links phasengleich wird.

EINSTELLUNG DER WIEDERGABEEMPFINDLICHKEIT

- 1. Die Instrumente gemäß Abb. 9-2 anschließen.
- Den Dolby-NR-Schalter SW301 auf OFF (Aus) und die Bandsortenwahlschalter SW202 und SW203 auf NORMAL einstellen.
- Den Stellwiderstand VR101 (oder VR102) so einstellen, daß das elektronische Voltmeter 580 mV anzeigt.

ANZEIGENEINSTELLUNG DER AUFNAHME/WIEDER-GABE

- Vor dieser Einstellung darauf achten, daß das elektronische Voltmeter zur Folge der Einstellung der Wiedergabeempfindlichkeit 580 mV anzeigt. Danach diese Einstellung durchführen.
- Den Steller der Empfindlichkeiteinstellung VR401 (oder VR402) so einstellen, daß die 4. Leuchtdiode der Pegelanzeige aufleuchtet.

EINSTELLUNG DER AUFNAHME-/WIEDERGABEEMP-FINDLICHKEIT

- Die Instrumente gemäß Abb. 9–3 anschließen.
- 2. Ein Normalband (nichtaufgezeichnet) in das Gerät einlegen.
- 3. Das Gerät auf Anfnahmebetriebsart einstellen und die Ausgangsspannung zwischen Stifte 3 und 5 der DIN-Buchse überprüfen.
- 4. Das im obenerwähnten Schritt 3 aufgenommene Band wiedergeben und die Ausgangsspannung zwischen Stifte 3 und 5 der DIN-Buchse überprüfen.
- Die Schritte 3 und 4 einige Male wiederholen und den Stellwiderstand VR203 (oder VR204) so einstellen, daß die Ausgangsspannung in der Aufnahmebetriebsart und Wiedergabebetriebsart gleich ist.

F

REGLAGE DU CIRCUIT AUDIO

REGLAGE DE LA DIRECTION DE LA TETE D'ENREGIST-REMENT/LECTURE

- 1. Brancher les instruments comme cela est indiqué dans Fig. 9-1.
- 2. Mettre le commutateur SW301 de Dolby NR en position off et les commutateurs sélecteurs SW202 et SW203 de bande en position normale.
- Régler la vis de réglage de direction de la tête de sorte que les signaux de sortie venant des deux canaux aient une forme d'onde maximale, avec une même phase à droite et à gauche.

REGLAGE DE LA SENSIBILITE DE LECTURE

- 1. Brancher les instruments comme cela est indiqué dans Fig. 9-2.
- 2. Mettre le commutateur SW301 de Dolby NR en position off et les commutateurs sélecteurs SW202 et SW203 de bande en position normale.
- Régler la résistance semi-variable VR101 (ou VR102) de sorte que le voltmètre électronique en vienne à marquer 580 mV.

REGLAGE D'AFFICHAGE D'ENRÉGISTREMENT/ LECTURE

- 1. Effectuer ce réglage après s'être assuré que le voltmètre électronique en vienne à marquer 580 mV, comme conséquence du réglage de la sensibilité de lecture.
- 2. Régler la commande VR401 (ou VR402) de réglage de sensibilité de sorte que la 4ème diode à lueurs du témoin de niveau s'allume.

REGLAGE DE LA SENSIBILITE D'ENREGISTREMENT/ LECTURE

- 1. Brancher les instruments comme cela est indiqué dans Fig. 9-3.
- 2. Introduire une bande normale (non-enregistrée) dans l'appareil.
- 3. Mettre l'appareil dans le mode d'enregistrement et vérifier la tension de sortie entre broches ③ et ⑤ de la douille DIN.
- 4. Faire lire la bande qui a été enregistrée à l'étape 3 ci-dessus et vérifier la tension de sortie entre broches 3 et 5 de la douille DIN.
- Répéter plusieurs fois les étapes 3 et 4 et régler la résistance semi-variable VR203 (ou VR204) de sorte que la tension de sortie soit la même pour le mode d'enregistrement et pour le mode de lecture.

(GB)

RECORD AMPLIFIER BIAS CURRENT/BIAS OSCIL-LATOR FREQUENCY ADJUSTMENT

- 1. Connect instruments as shown in Fig. 11-1
- 2. Set the tape selector switches SW202 and SW203 to the normal position and beat cancel switch SW201 to the A position.
- Adjust the bias oscillator frequency adjusting variable coil L201 so that the bias oscillator frequency, on the oscilloscope's Lissajou's figure, is 85 kHz.
- 4. Adjust the semi-variable resistor VR201 (or VR202) so that the electronic voltmeter's reading is 15 V.

RECORD AMPLIFIER ERASE CURRENT CHECK

- 1. Connect instruments as shown in Fig. 11-2.
- Set the tape selector switches SW202 and SW203 to the normal position.
- 3. Check that the electronic voltmeter is reading 60 mV.

Figure 11-1

Figure 11-2

MECHANICAL ADJUSTMENT

TORQUE CHECK AT PLAY, FAST FORWARD AND REWIND MODES

Put a torque meter cassette in the cassette holder of the unit, and see that the measured torque in each mode is normal as follows.

Mode	Torque meter cassette	Measured torque
Playback	TW-2111	$35\sim60$ g-cm
Fast-forward	TW-2231	90 ~ 135 g-cm
Rewind	TW-2231	90 ~ 135 g-cm

PINCH ROLLER PRESSURE CHECK

- 1) Place the unit in playback mode.
- 2) Push the pinch roller, at the point shown in Figure 11—3, by using a tension gauge (500 g) so that it will come off the capstan. Then, slowly release the tension until the pinch roller hits the capstan again (i.e., the pinch roller is about to rotate again). Check, then, the tension gauge is reading 350 g to 420 g.
- 3) If the reading is outside the range of 350 g to 420 g, replace the pressure spring of the pinch roller.

TAPE SPEED ADJUSTMENT

Connect instruments as shown in Figure 11—4, put a screw-driver (for high-frequency use) into the hole of the motor, and adjust the variable resistor so that the output frequency is 2980 to 3020 Hz on frequency counter.

Figure 11-3

Figure 11-4

(D)

EINSTELLUNG DES VORMAGNETISIERUNGSSTROMS/ DER VORMAGNETISIERUNGSSCHWINGFREQUENZ

- 1. Die Instrumente gemäß Abb. 11-1 anschließen.
- Die Bandsortenwahlschalter SW202 und SW203 auf NORMAL und den Schwebungsunterdrückungsschalter SW201 auf A-Stellung einstellen.
- Die Verstellspule der Vormagnetisierungsfrequenzeinstellung L201 so einstellen, daß die Vormagnetisierungsfrequenz gamäß der Lissajousschen Figur auf dem Oszilloskop auf einen Wert von 85 kHz gelangt.
- Den Stellwiderstand VR201 (oder VR202) so einstellen, daß das elektronische Voltmeter einen Wert von 15V anzeigt.

ÜBERPRÜFUNG DES AUFNAHMEVERSTÄRKER-LÖSCHSTROMS

- 1. Die Instrumente gemäß Abb. 11-2 anschließen.
- Die Bandsortenwahlschalter SW202 und SW203 auf NORMAL einstellen.
- 3. Überprüfen, daß das elektronische Voltmeter einen Wert von 60 mV anzeigt.

F

REGLAGE DU COURANT DE POLARISATION DE L'AMPLIFICATEUR D'ENREGISTREMENT ET DE LA FREQUENCE DE L'OSCILLATEUR DE POLARISATION

- 1. Brancher les instruments comme cela est indiqué dans Fig. 11-1.
- Mettre les commutateurs sélecteurs SW202 et SW203 de bande en position normale et le commutateur SW201 d'annulation de battement en position A.
- 3. Régler la bobine L201 variable de réglage de fréquence de l'oscillateur de polarisation de sorte que la fréquence d'oscillateur de polarisation soit, sur la figure de Lissajou de l'oscilloscope, de 85 kHz.
- Régler la résistance semi-variable VR201 (ou VR202) de sorte que le voltmètre électronique en vienne à marquer 15 V.

VERIFICATION DU COURANT D'EFFACEMENT DE L'AMPLIFICATEUR D'ENREGISTREMENT

- 1. Brancher les instruments comme cela est indiqué dans Fig. 11-2.
- Mettre les commutateurs sélecteurs SW202 et SW203 de bande en position normale.
- Vérifier que le voltmètre électronique en vient à marquer 60 mV.

ÜBERPRÜFUNG DES DREHMOMENTS IN DEN WIEDERGABE-, SCHNELLVORLAUF UND RÜCKSPULBETRIEBSARTEN

MECHANISCHE EINSTELLUNGEN

Eine Drehmonentmeßcassette in das Cassetenfach dieses Gerätes einsetzen und nachprüfen, ob die Drehmomentmeßwerte in den einzelnen Betriebsarten wie folgt normal sind:

Betriebsart	Drehmomentmeß- cassette	Drehmomentmeßwert
Wiedergabe	TW-2111	35 ~60 g⋅cm
Schnellvorlauf	TW-2231	90 ∼135 g.cm
Rückspulung	TW-2231	90 ~135 g.cm

ÜBERPRÜFUNG DES ANDRUCKROLLENDRUCKES

- 1) Das Gerät auf die Wiedergabe-Betriebsart einstellen.
- 2) Die Andruckrolle an der in Abb. 11–1 gezeigten Stelle mit einer Federwaage (500 g) so drücken, daß sie sich von der Tonwelle löst. Dann die Spannung langsam verringern, bis die Andruckrolle wieder die Tonwelle berührt (d.h. bis sich die Andruckrolle wieder zu drehen beginnt).
- Dann nachprüfen, ob die Federwaage 350 bis 420 g anzeigt.

 3) Wird ein anderer Wert als 350 bis 420 g angezeigt, die Andruckrollendruckfeder auswechseln.

EINSTELLUNG DER BANDGESCHWINDIGKEIT

Gemäß Abbildung 11–2 den Anschluß des Gerätes vorgehen. Einen Schraubenzieher (verwendbar für Hochfrequenz) in die Einstellöffnung im Boden des Motors einführen, und den Stellwiderstand so einstellen, daß die Ausgangsfrequenz in einen Bereich von 2980 bis 3020 Hz auf dem Frequenzzähler gelangt.

REGLAGE MECANIQUE

VERIFICATION DES COUPLES EN MODES DE LECTURE, AVANCE RAPIDE ET REBOBINAGE

Mettre une cassette de mesure de couple dans le porte-cassette de l'appareil et vérifier que le couple mesuré dans chaque mode est normal tel qu'il est indiqué ci-dessous.

Mode	Cassette de mesure de couple	Couple mesuré
Lecture	TW-2111	$35\sim60$ g.cm
Avance rapide	TW-2231	90 ~ 135 g.cm
Rebobinage	TW-2231	90 ~ 135 g.cm

VERIFICATION DE LA PRESSION DU GALET PINCEUR

- 1) Régler l'appareil sur le mode de lecture.
- 2) Pousser le galet pinceur au point montré sur la figure 11-1 à l'aide d'une jauge de tension (500 g) de manière à ce qu'il se sépare du cabestan. Puis, relâcher lentement la tension jusqu'à ce que le galet pinceur touche de nouveau le cabestan (c.-à-d., le galet pinceur recommence à tourner). Puis Vérifier si la lecture de la jauge de tension est entre 350 q à 420 q.
- 3) Si la lecture est hors de la gamme de 350 g à 420 g, remplacer le ressort de pression du galet pinceur.

REGLAGE DE LA VITESSE DE DEFILEMENT DE LA BANDE

Raccorder les instruments comme le montre la figure 11–2, placer un tournevis (pour usage à haute fréquence) dans le trou du moteur et régler la résistance variable de façon à ce que la fréquence de sortie soit de 2980 à 3020 Hz sur le compteur de fréquence.

GENERAL ALIGNMENT INSTRUCTION

Should it become necessary at any time to check the alignment of this receiver, proceed as follows;

- 1. Set the volume control (VR501) to maximum.
- 2. Attenuate the signals from the generator enough to swing the most sensitive range of the output meter.
- 3. Use a non-metallic alignment tool.
- 4. Repeat adjustments to insure good results.
- Set the Function Selector Switch (SW102) to "radio" position.

AM IF/RF ALIGNMENT

- Set the signal generator to produce a signal of 400Hz, 30% AM modulated.
- For adjustments in steps 4 and 9, see Note A

	T	TEST	FRE-	DIAL	ADJUST-			
STEP	BAND		QUEN-	SETT-	MENT	REMARKS		
IF (Co	onnect ir	strumen			ure 13–1)	L		
1	MW	IF	(H/HB): 455kHz (E): 468 kHz	High end of dial	Т3	Adjust for best "IF" curve		
RF (C	RF (Connect instruments as shown in Figure 13-2)							
2	LW	Band	145kHz	Low end of dial	L10			
3	LW	cover- age	295kHz	High end of dial	тс8	Adjust for maximum		
4	LW	Track-	170kHz	170 kHz	L7	output		
5	LW	ing	270kHz	170 kHz	TC5			
6 Repeat steps 2,3,4 and 5 until no further improvement can be made.								
7	MW	Band cover-	510kHz	Low end of dial	L9			
8	MW.	age	1650 kHz	High end of dial	TC7	Adjust for maximum		
9	MW	Track-	600 kHz	600 kHz	L7	output		
10	MW	ing	1400 kHz	1400 kHz	TC4			
11	Repeat can be		3,9 and 1	0 until n	o further in	mprovement		
RF (C	onnect ir	strumen	ts as show	vn in Fig	gure 13-3)			
12	sw	Band	5.85 MHz	Low end of dial	L8			
13	sw	cover- age	18.5 MHz	High end of dial	TC6	Adjust for maximum		
14	sw	Track-	6.5 MHz	6.5 MHz	L6	output		
15	sw	ing	16 MHz	16 MHz	тсз			
Repeat steps 12, 13, 14 and 15 until no further improvement can be made.								

Note A Check the alignment of the receiver antenna coil by bringing a piece of ferrite (such as a coil slug) near the antenna loop stick, then a piece of brass. If ferrite increases output, loop requires more inductance. If brass increases output, loop requires less inductance. Change loop inductance by sliding the bobbin toward the center of ferrite core to increase inductance, or away to decrease inductance.

Figure 13-1

Figure 13-2

Figure 13-3

Figure 13-4

D

ALLGEMEINE ABGLEICHANLEITUNG

Falls es zu irgendeiner, Zeit nötig wird, den Abgleich dieses Empfängers zu überprüfen, wie folgt vorgehen;

- 1. Den Lautstärkeregler (VR501) ganz aufdrehen.
- 2. Die Signale vom Meßsender so weit dämpfen, daß die Nadel der Ausgangsanzeige im empfindlichsten Bereich ausschlägt.
- 3. Ein nichtmetallisches Abgleichwerkzeug verwenden.
- Die Einstellungen wiederholen, um gute Ergebnisse zu gewährleisten.
- Den Funktionswahlschalter (SW102) auf die Stellung "radio" einstellen.

AM-ZF/HF-ABGLEICH

- Den Meßsender auf Erzeugung eines Signals von 400Hz, 30%, AM-Modulation einstellen.
- Bei Einstellung der Schritte 4, 9 siehe Anmerkung A

1 MW ZF (H/HB): 455kHz (E): 468kHz (E): 46	SCH- RITT	WEL LENBE REICH		FRE- QUENZ	SKALEN- EINSTEL- LUNG	EINSTEL LUNG	BEMER- KUNGEN
1 MW ZF 455kHz (E): 468kHz ende T3 ZF-K einste HF (Wie in Abbildung 13—2 angezeigt das Gerät anschließer 2 LW Frequenzbereich	ZF (Wie in Abbildung 13–1 angezeigt das Gerät anschließen.)						
2 LW Frequenz- bereich 295kHz Skalen- ende TC8 Aumaxim Ausgeinste 4 LW Gleich- 1auf 270kHz 170kHz TC5 6 Die Schritte 2, 3, 4, und 5 wiederholen, bis keine weit Verbesserung möglich ist. 7 MW Frequenz- bereich 250kHz Skalen- ende Prequenz- bereich 1650kHz Skalen- ende Prequenz- 17 MW Sleich- 1850kHz Skalen- ende Prequenz- 1850kHz Skalen- ende Prequenz- bereich Skalen- ende Prequenz- Brown Prequenz- Ausgeinste	1	MW	ZF	455kHz (E):	Skalen-	Т3	Auf beste ZF-Kurve einstellen
2 LW Frequenz- bereich 295kHz Skalen- ende TC8 Ausgeinste 4 LW Gleich- lauf 270kHz 170kHz TC5 6 Die Schritte 2, 3, 4, und 5 wiederholen, bis keine weit Verbesserung möglich ist. 7 MW Frequenz- bereich 250kHz Skalen- ende Die Schritte 360kHz Skalen- ende Dereich 1650kHz Skalen- ende Pende Dereich 1650kHz Skalen- ende Pende Pen	HF	(Wie in A	Abbildung	13—2 ang	ezeigt das C	erät ansc	hließen.)
3 LW 295kHz Skalen-ende TC8 Ausgeinster 4 LW Gleich-lauf 270kHz 170kHz L7 5 LW lauf 270kHz 270kHz TC5 6 Die Schritte 2, 3, 4, und 5 wiederholen, bis keine weit Verbesserung möglich ist. 7 MW Frequenzberich Skalen-ende Dereich 1650kHz Skalen-ende 1650kHz Skalen-ende 1650kHz L7 10 MW Gleich-lauf 1400kHz 1400kHz TC4 11 Die Schritte 7, 8, 9 und 10 wiederholen, bis keine weit Verbesserung möglich ist. HF (Wie in Abbildung 13—3 angezeigt das Gerät anschließen 18,5MHz Skalen-ende 1	2	LW	Frequenz-		Skalen-	L10	. ,
4 LW Gleich- 1auf 270kHz 170kHz L7 5 LW lauf 270kHz 270kHz TC5 6 Die Schritte 2, 3, 4, und 5 wiederholen, bis keine weit Verbesserung möglich ist. 7 MW Frequenzbereich 510kHz Skalenende	3	LW	bereich	295k Hz	Skalen-	TC8	Auf maximaler Ausgang einstellen
Die Schritte 2, 3, 4, und 5 wiederholen, bis keine weit Verbesserung möglich ist. 7 MW	4	LW	Gleich-	170kHz	170kHz	L7	
Verbesserung möglich ist. NW	5	LW	lauf	270kHz	270kHz	TC5	
Frequenz- Bereich Stalen- ende MW Frequenz- bereich 1650kHz Oberes Skalen- ende MW Gleich- 10 MW Gleich- 11 Die Schritte 7, 8, 9 und 10 wiederholen, bis keine weit Verbesserung möglich ist. HF (Wie in Abbildung 13—3 angezeigt das Gerät anschließen MW Frequenz- bereich MW Frequenz- bereich MR Skalen- ende Gberes Skalen- ende MR MR Ausgeinste Ausgeinste MALI Ausgeinste Ausgeinste MALI Gleich- 18,5MHz Gleich- 16 G,5MHz G,7MHz	6 Die Schritte 2, 3, 4, und 5 wiederholen, bis keine weitere Verbesserung möglich ist.						
8 MW bereich 1650kHz Oberes Skalen-ende TC7 maxim Ausgeinste 10 MW Gleich-lauf 1400kHz 1400kHz TC4 11 Die Schritte 7, 8, 9 und 10 wiederholen, bis keine weit Verbesserung möglich ist. HF (Wie in Abbildung 13—3 angezeigt das Gerät anschließen 12 KW Frequenzbereich 18,5MHz Skalen-ende 18,5MHz Skalen-ende 18,5MHz Skalen-ende 14 KW Gleich-lauf 16MHz 16MHz TC3 16 Die Schritte 12, 13, 14 und 15 wiederholen, bis keine	7	MW	Frequenz-	510kHz	Skalen-	L9	
9 MW Gleich-lauf 600kHz 600kHz L7 10 MW 1400kHz 1400kHz TC4 11 Die Schritte 7, 8, 9 und 10 wiederholen, bis keine weit Verbesserung möglich ist. HF (Wie in Abbildung 13—3 angezeigt das Gerät anschließen 12 KW Frequenzberich bereich 18,5MHz Unteres Skalenende ende 18,5MHz L8 maxim Ausgeinste 14 MW Gleichlauf 16,5MHz 6,5MHz L6 maxim Ausgeinste 15 14 KW Gleichlauf 16MHz 16MHz 16MHz 15 KW Iauf 16MHz 16MHz TC3	8	MW		1650kHz	Skalen-	TC7	Auf maximaler Ausgang einstellen
Die Schritte 7, 8, 9 und 10 wiederholen, bis keine weit Verbesserung möglich ist. HF (Wie in Abbildung 13—3 angezeigt das Gerät anschließen Skalenende Skalenende Skalenende Skalenende Skalenende einste Skalenende Skalenende Skalenende einste Skalenende Skalenende Skalenende seinste Skalenende Skalenende Skalenende Skalenende einste Skalenende Skalenende seinste Skalenende Skalenende seinste Skalenende Skalenende seinste Skalenende Skalenende Skalenende seinste Skalenende Skalenende Skalenende seinste Skalenende Skalenende seinste Skalenende Skalenende seinste Skalenende Skalenende Skalenende seinste Skalenende Skalenende seinste Skalenende Skalenende seinste Skalenende Skalenende seinste	9	MW	Gleich-	600kHz	600kHz	L7	chistenen
Verbesserung möglich ist. HF (Wie in Abbildung 13—3 angezeigt das Gerät anschließen 12 KW Frequenzbereich 5,85MHz Skalenende L8 ende L8 ende L8 13 KW Oberes Skalenende L8 14 KW Gleichende Skalenende L8 15 KW Iauf 16MHz 16MHz TC3	10	MW	lauf	1400kHz	1400k Hz	TC4	
12 KW Frequenz-bereich 5,85MHz Unteres Skalenende L8 AL 13 KW bereich 18,5MHz Oberes Skalenende TC6 maxim Ausgeinste 14 KW Gleichlauf 6,5MHz 6,5MHz L6 15 KW lauf 16MHz 16MHz TC3 16 Die Schritte 12, 13, 14 und 15 wiederholen, bis keine	Verbesserung möglich ist.						
12 KW Frequenz-bereich 5,85MHz Skalen-ende L8 maxim Ausgeinste 13 KW Gleich-lauf 6,5MHz 6,5MHz L6 maxim Ausgeinste 14 KW Gleich-lauf 16MHz 16MHz TC3 16 Die Schritte 12, 13, 14 und 15 wiederholen, bis keine	HF (Wie in A	bbildung	13—3 ange	zeigt das G	erät ansch	nließen.)
13 KW bereich 18,5MHz Oberes Skalengende TC6 ende maxim Ausgeinste 14 KW Gleich lauf 6,5MHz 6,5MHz L6 15 KW Iauf 16MHz 16MHz TC3 16 Die Schritte 12, 13, 14 und 15 wiederholen, bis keine	12		Frequenz-	5,85MHz	Skalen-	L8	Auf
15 KW lauf 16MHz 16MHz TC3 16 Die Schritte 12, 13, 14 und 15 wiederholen, bis keine	13	KW	bereich	18,5MHz	Skalen-	TC6	maximalen Ausgang einstellen
Die Schritte 12, 13, 14 und 15 wiederholen, bis keine	14	KW	Gleich-	6,5MHz	6,5MHz	L6	
Die Schritte 12, 13, 14 und 15 wiederholen, bis keine	15	KW	lauf	16MHz	16MHz	TC3	
weitere Verbesserung möglich ist.	16	Die Sch weitere	nritte 12, 1 Verbesser	13, 14 und ung mögli	15 wiederl ch ist.	nolen, bis	keine

Anmerkung A Den Abgleich der Empfängerantennenspule überprüfen und dabei ein Ferritstück (z.B. einen Spulenkern), dann ein Messingstück in die Nähe der Prüfrahmenantenne bringen. Erhöht das Ferritstück den Ausgang, ist für den Prüfrahmen mehr Induktivität erforderlich. Nimmt der Messingausgang zu, ist für den Prüfrahmen weniger Induktivität erforderlich. Die Prüfrahmeninduktivität durch Verschieben des Spulenkörpers gegen die Ferritkernmitte verändern, wobei die Induktivität erhöht wird; diese nimmt ab, wenn der Spulenkörper von der Ferritkernmitte weggeschoben wird.

INSTRUCTIONS GENERALES POUR L'ALIGNEMENT

S'il est nécessaire de vérifier l'alignement de ce récepteur, procéder de la façon suivante;

- 1. Placer la commande de volume (VR501) sur le maximum.
- 2. Atténuer suffisamment les signaux du générateur pour balayer la gamme la plus sensible du compteur de sortie.
- 3. Utiliser un outil non-métallique d'alignement.
- 4. Refaire les réglages pour obtenir de bons résultats.
- Placer le commutateur du sélecteur de fonction (SW102) sur la position "radio".

ALIGNEMENT DE FI/RF AM

- Régler le générateur de signaux pour produire un signal de 400Hz, 30%, modulé en AM.
- Pour les réglages dans les étapes 4 et 9, voir Note A.

ETA- PE	GAM- ME		FRE- QUENCE	RE- GLAGE DU CADRAN	RE- GLAGE	RE- MARQUE		
FI (Réaliser le raccordement de l'instrument comme l'indique la Figure 13–1.)								
1	РО	FI	(H/HB): 455kHz (E): 468kHz	Extrémité supérieu- re du cadran	Т3	Régler sur la meilleu- re courbe "FI".		
RF (Figu	Réalise re 13–	er le raccor 2.)	dement de	e l'instrume	nt comme	l'indique		
2	GO	Etendue de	145kHz	Extrémité inférieure du cadran	L10			
3	GO	gamme d'ondes	295kHz	Extrémité supérieure du cadran	TC8	Régler su la sortie maximale		
4	GO	Repérage	170kHz	170kHz	L7			
5	GO	Reperage	270kHz	270kHz	TC5			
6	Refai amél	ire les étap ioration ne	es 2, 3, 4 e puisse plu	et 5 jusqu'à us être obte	ce qu'aud nue.	cune		
7	РО	Etendue de	51.0kHz	Extrémité inférieure du cadran	L9			
8	РО	gamme d'ondes	1650kHz	Extrémité supérieure du cadran	тс7	Régler sur la sortie maximale		
9	РО	Panáras	600kHz	600kHz	L7			
10	PO	Repérage	1400kHz	1400kHz	TC4			
11 RF (I Figur	améli	oration ne	puisse plu	et 10 jusqu us être obte l'instrumer	nue.			
12	ос		5,85MHz	Extrémité inférieure du cadran	L8			
13	ос	gamme d'ondes	18,5MHz	Extrémité supérieure du cadran	TC6	Régler sur la sortie maximale		
	ОС	Repérage	6,5MHz	6,5MHz	L6	axiiildie		
14	OC.							
14 15	ОС	ricperage	16MHz	16MHz	TC3			

Note A

Vérifier l'alignement de la bobine de l'antenne du récepteur en portant une pièce d'essai de ferrite (comme le lingot d'une bobine) à proximité du barreau de la boucle d'antenne, puis une pièce de laiton. Si la ferrite augmente la sortie, la boucle nécessite une plus grande inductance. Si le laiton augmente la sortie, la boucle nécessite une inductance plus faible. Changer l'inductance de la boucle en glissant le bobinage vers le centre du noyau de ferrite pour augmenter l'inductance ou vers l'extérieur pour diminuer l'inductance.

(GB)

THE INSTRUCTION OF FREQUENCY ADJUSTMENT

In order to comply with FTZ rule: Nr. 478/1981, please fix the low end of dial frequency (87.5MHz) and the high end of dial frequency (108 MHz) on FM band, by adjusting oscillation coils (L3) and oscillation trimmer (TC2), respectively, as illustrated in Figure 13–4.

FM IF/RF ALIGNEMNT

 Set the signal generator to produce a signal of 400Hz, 30%, FM modulated.

STEP	BAND	TEST STA- GE	FRE- QUEN- CY	DIAL SET- TING	AD- JUST- MENT	REMARKS
IF (0	Connect i	nstrume	nts as sho	own in F	igure 15-	–1)
1	FM	IF	10.7 MHz	High end of dial	T1 T2	Adjust for best "S" curve
RF (Connect instruments as shown in Figure 15–2)						
2	FM	Band	87.3 MHz	Low end of dial	L3	
3	FM	cover- age	108.3 MHz	High end of dial	TC2	Adjust for maximum output
4	FM	Track-	88 MHz	88 MHz	L2	σατρατ
5	FM	ing	108 MHz	108 MHz	TC1	
Repeat steps 2,3,4 and 5 until no further improvement can be made.						

FM STEREO ALIGNEMNT

- Set the Band Selector Switch (SW1) to FM position and FM Mode Selector Switch (SW802) to stereo position.
- Before this adjustment, connect the anode side of Stereo Indicator (D801) to GND.
- As shown in Figures 15—3 and 15—4, make connection of instrument.

FREQUENCY	DIAL POINTER	ADJUST- MENT	REMARKS
98MHz (54dB) un modulated	98MHz	VR1	Adjust for 38 ± 0.1 kHz

Figure 15-1

Figure 15-2

Figure 15-3

Figure 15-4 FM DUMMY

AC POWER SUPPLY CORD

ANLEITUNG FÜR DIE FREQUENZ-EINSTELLUNG Um der Postverfügung Nr. 478/1981 zu entsprechen, wird der UKW-Frequenzbereich mit Hilfe der Oszillatorspullen (L3-untere Eckfrequenz: 87,5MHz) und des Oszillatortrimmers (TC2-obere Eckfrequenz: 108 MHz) gemäß Abbildung 13–4 eingestellt.

UKW-ZF/HF-ABGLEICH

 Den Meßsender auf Erzeugung eines Signals von 400 Hz, 30%, UKW-Modulation einstellen.

SCH- RITT	WEL- LENBE- REICH	PRÜF- STUFE	FRE- QUENZ	SKALEN- EINSTEL- LUNG	EINSTEL LUNG	BEMER- KUNGEN	
ZF	(Wie in A	bbildung	15—1 ang	gezeigt das	Gerät ansc	hließen.)	
1	UKW	ZF	10,7MHz	Oberes Skalen- ende	T1 T2	Auf beste "S"-Kurve einstellen	
HF	HF(Wie in Abbildung 15–2 angezeigt das Gerät anschließen.)						
2	UKW	Fre-	87,3MHz	Unteres Skalen- ende	L3		
3	UKW	quenz- bereich	108,3 MHz	Oberes Skalen- ende	TC2	Auf maximalen Ausgang einstellen	
4	UKW	Gleich-	88MHz	88MHz	L2	emsterien	
5	UKW	lauf	108MHz	108MHz	TC1		
6 Die Schritte 2,3,4 und 5 wiederholen, bis keine weitere Verbesserung möglich ist.							

UKW-STEREO-ABGLEICH

- Den Wellenbereichswahlschalter (SW1) auf die Stellung "FM" und den UKW-Betriebsartenwahlschalter (SW802) auf die Stellung "stereo" einstellen.
- Vor der Einstellung die Anodenseite der Stereo-Anzeige (D 801) an Masse anschließen.
- Wie in Abbildungen 15–3 und 15–4 angezeigt das Gerät anschließen.

FREQUENZ	SKALEN- EINSTEL- LUNG	EINSTEL- LUNG	BEMER- KUNGEN
98MHz(54dB) unmoduliert	98MHz	VR1	Auf 38 ± 0,1 kHz einstellen

ALIGNEMENT DE FI/RF FM

 Régler le générateur de signaux pour produire un signal de 400 Hz, 30%, modulé en FM.

ETA- PE	GAM- ME	ETAGE D'ESSAI	FRE- QUENCE	REGLAGE DU CADRAN	RE- GLAGE	RE- MAR- QUES					
	FI(Réaliser le raccordement de l'instrument comme l'indique la Figure 15–1.)										
1	FM	FI	10,7MHz	Extrémité supérieure du cadran	T1 T2	Régler sur la meilleure courbe ''S''					
RF(Figu	RF(Réliser le raccordement de l'instrument comme l'indique la Figure 15–2.)										
2	FM	Etendue de gamme	87,3MHz	Extrémité inférieure du cadran	L3						
3	FM	d'ondes	108,3 MHz	Extrémité supérieure du cadran	TC2	Régler sur la sortie maximale					
4	FM	Repérage	88MHz	88MHz	L2						
5	FM	neperage	108MHz	108MHz	TC1						
6	Refaire les étapes 2,3,4 et 5 jusqu'à ce qu'aucune améliora- tion ne puisse plus être obtenue.										

ALIGNEMENT DE FM STEREO

- Placer le commuateur du sélecteur de gamme d'ondes (SW1) sur la position "FM" et le commutateur du sélecteur de mode FM (SW802) sur la position "stereo".
- Avant de réaliser ce réglage, raccorder le côté anode du Témoin Stéréo (D 801) à GND.
- Réaliser le raccordement de l'instrument comme l'indique la Figures 15-3 et 15-4.

FREQUENCE	REGLAGE DU CADRAN	REGLAGE	REMARQUES
98MHz (54dB) non modulés	98MHz	VR1	Régier sur 38 ± 0,1 kHz

NOTES ON SCHEMATIC DIAGRAM

1. Resistor:

Unless otherwise specified, resistors are shown in ohm, K (1000 ohm) of M (meg. ohm), and 1/4W type.

(C) refers to 1/6W.

2. Capacitor:

- Unless otherwise specified all capacitance in microfarads, P = Picofarads
- (CH), (RH): Temperature compensation
- (P.P.): Polypropylene type
- 3. Voltage reading are measured with Digital Multimeter under no signal condition in tape position.

): AM mode

Making, except for (): FM mode

- (P) refers to Playback mode
- (R) refers to Record mode

Parts marked " \(\triangle \)" (\(\sqrt{s} \) are important for maintaining the safety of the set. Be sure to replace these parts with specified ones for maintaining the safety and performance of the set.

Specifications or schematic diagrams of this model are subject to change for improvement without prior notice.

ANMERKUNGEN ZUM SCHEMATISCHEN SCHALTPLAN

1. Widerstand:

Falls nicht anders angegeben, werden die Widerstände in Ohm, K (1 000 Ohm) oder M (Megaohm), und 1/4W-Type ausgedrückt.

(C) bedeutet 1/6W.

- 2. Kondensatoren:
 - Falls nicht anders angegeben, sind alle Kondensatoren in Mikrofarad angegeben.

P = Picofarad

- (CH), (RH): TK-Kondensator
- (P.P.): Polypropylentyp
- 3. Die Spannungen werden bei Einstellung des Gerätes auf die Tape-Stellung ohne Signaleingang mit Digitalvielfachmeßgerät gemessen.

): AM-Betriebsart

Anzeichnen, außer (): UKW-Betriebsart

P bedeutet die Wiedergabebetriebsart.

R bedeutet die Aufnahmebetriebsart.

sind besonders wichtig für die Aufrechterhaltung der Sicherheit. Beim Wechseln dieser Teile sollten immer die vorgeschriebenen Teile verwendet werden, um sowohl die Sicherheit als auch die Leistung des Gerätes aufrechtzuerhalten.

Technische Daten oder Schaltpläne dieses Modells können jederzeit im Sinne der Verbesserung ohne Vorankündigung geändert werden.

REMARQUES CONCERNANT LE DIAGRAMME SCHEMATIQUE

1. Résistance:

A moins d'indication contraire, les résistances sont exprimées en ohm, K (1000 ohms) ou M (még. ohm), et du type 1/4W.

(C) se rapporte à 1/6W.

- 2. Condensateur:
 - A moins de notification contraire, toute capacité est exprimée en microfarads.

P = Picofarads

- (CH), (RH): Compensation de température
- (P.P.) : Type polypropylène
- 3. La tension est mesurée à l'aide d'un multimètre numérique dans les conditions de non signal sur la position "tape".

): Mode AM

Marge, à l'exception de (): Mode FM

P: Mode de lecture

(R): Mode d'enregistrement

Les pièces avec une marque \triangle (sont importantes pour maintenir la sécurité de l'appareil. S'assurer de remplacer ces pièces par celles spécifiées pour maintenir la sécurité et la performance de l'appareil.

Les caractéristiques ou les diagrammes de câblage de ce modèle sont sujets à modification sans préavis pour l'amélioration du produit.

Refer No.	Name of Switch	Switch Position
SW1 (A~F)	BAND SELECTOR	FM - LW - MW - SW
SW101 (A~J)	RECORD/PLAYBACK	RECORD - PLAYBACK
SW102 (A~F)	FUNCTION SELECTOR	TAPE RADIO
SW202 (A, B)	TAPE SELECTOR	CrO ₂ - NORMAL
SW203 (A, B)	TAPE SELECTOR	ON-OFF
SW201 (A~C)	BEAT CANCEL	A – B – <u>C</u>
SW301 (A, B)	DOLBY NR	ON – OFF
SW601	AC/DC SELECTOR	AC – DC
SW701	MUTING	ON – <u>OFF</u>
SW702	MAIN	ON – OFF
SW703	APSS	ON - OFF
SW704	PAUSE	ON – OFF
SW802	FM MODE SELECTOR	STEREO – MONO

PACKING METHOD (QT-37E Only)

PACKING PROCEDURE

Setting positions of every switch and knob.

The beat cancel switch is set at A position.

The volume control knob is set at min position.

The balance control knob is set at center position.

The tape selector switch is set at NORMAL and OFF position.

The function selector knob is set at tape position.

The FM Mode selector knob is set at stereo position.

The band selector knob is set at MW position.

The digital tape counter is set at 000 position.

The tuning control knob is set at start point 0 position.

The mechanical button are set at disengeged position.

Figure 25 MECHANISM EXPLODED VIEW -25-

Figure 26 CABINET EXPLODED VIEW

Figure 27 SPEAKER EXPLODED VIEW

REPLACEMENT PARTS LIST

ERSATZTEILLISTE

LISTE DES PIECES DE RECHANGE

"HOW TO ORDER REPLACEMENT PARTS"

To have your order filled promptly and correctly, please furnish the following information.

- 1. MODEL NUMBER
- 2. REF. NO.
- 3. PART NO.
- 4. DESCRIPTION

NOTE:

Parts marked with "A" are important for maintaining the safety of the set. Be sure to replace these parts with specified ones for maintaining the safety and performance of the set.

"BESTELLEN VON ERSATZTELEN"

Um Ihren Auftrag schnell und richtig ausführen zu können, bitten wir um die folgenden Angaben.

- 1. MODELLNUMMER
- 2. REF. NR.
- 3. TEIL NR.
- 4. BESCHREIBUNG

ANMERKUNG:

Die mit \triangle bezeichneten Teile sind besonders wichtig für die Aufrechterhaltung der Sicherheit. Beim Wechseln dieser Teile sollten die vorgeschriebenen Teile immer verwendet werden, um sowohl die Sicherheit als auch die Leistung des Gerätes aufrechtzuerhalten.

"COMMENT COMMANDER DES PIECES DE RECHANGE"

Pour voir votre commande exécutée de manière rapide et correcte, veuillez les renseignements suivants.

- 1. NUMERO DU MODELE
- 2. N° DE REFERENCE
- 3. N° DE LA PIECE
- 4. DESCRIPTION

NOTE:

Les pièces portant une marque \triangle sont particulièrement importantes par sécurité. S'assurer de les remplacer par des pièces du numéro de pièce spècifié pour maintenir la sécurité et la performance de l'appareil.

REF.NC	PART NO	DESCRIPTION	CODE	REF.NO	. PART NO	DESCRIPTION	CODE
	INTEGRAT	ED CIRCUITS		D201,202	VHD1SS133//-1	Reverse Current Protector (1SS133)	AA
IC1 IC2	VHIBA4402//-1	FM Front End (BA4402)		D301	VHD1S2076//-U	Reverse Current Protector (1S2076)	AB
	VHIAN7224//-1	FM IF/AM Circuit (AN7224)	АН	D302	VHD1SS133//-1	Reverse Current Protector	AA
IC3	VHITA7343P/-1	FM Multiplex (TA7343P)	AG			(1SS133)	
IC101	VHIM51542L/-1	Pre. Amp. (M51542L)	AP	D303,401,)		LED Assembly	
IC202	VHITD62504/-1	Record Equalizer Switch	AG	D402,403,	RH-PX1053AFSA	D303: Dolby NR Indicator	АН
IC301	VHILM1131CN-1	(TD62504) Dolby NR Circuit	40	D404,405	TITT T X TOO DAT DA	D401~D405: Level	All
10301	VIIILIVII I STCIV-1	(LM1131CN)	AQ			Indicator	
IC401	VHILB1416//-1	Level Indicator Drive	AK	D406,407	VHD1S2076//-U	Reverse Current Protector	AB
		(LB1416)	7313			(1S2076)	
IC501	VHIHA1392//-1	Power Amp. (HA1392)	AR	D408,409	VHD1SS133//-1	Reverse Current Protector	AA
				D410 411	\/UD166122// 1	(155133)	
	TRAN	SISTORS		D410,411	VHD1SS133//-1	Reverse Current Protector (1SS133)	AA
Q101,102	VS2SC2603-F-1	Equalizer Amp.	AB	D412,413	VHD1SS133//-1	Reverse Current Protector	AA
		(2SC2603 F)		D444	\/\ \D\40004///4	(1SS133)	
0201,202	VS2SD467-C/-1	Bias Oscillator (2SD467 C)		D414	VHDMC931///-1	ALC Control (MC931)	AC
0203,204	VS2SC2603-F-1	Record Amp. (2SC2603 F)		D415	VHD1SS133//-1	Reverse Current Protector	AA
Q205,206	VS2SC2603-F-1	Switching, Radio/Tape (2SC2603 F)	AB	D501,502	VHD1SS133//-1	(1SS133) Reverse Current Protector	AA
Q402	VS2SC2603-F-1	Switching (2SC2603 F)	AB	D004 000		(1SS133)	
Q403	VS2SC2603-F-1	APSS Amp. (2SC2603 F)	AB	△ D601,602, D603,604	VHD10E-4NFD-1	Power Rectifier (10E4)	AB
Q404,405,	VS2SC2603-F-1	APSS Circuit	AB	D603,604	VHERD120JB2-U	Zamar 12\/ (BD12 IB2)	4.0
Q406		(2SC2603 F)		D606.801	RH-PX1054AFSA	Zener, 12V (RD12JB2) LED Assembly	AB AE
Q407 Q601,602	VS2SB562-C/-1	APSS Circuit (2SB562 C)	AD	10000,001	IIII-I XI 054AF5A	D606: Power Indicator	AE
Q701	VS2SD468-C/-1 VS2SB739-C/-1	Ripple Filter (2SD468 C) Motor Drive (2SB739 C)	AD			D801: Stereo Indicator	
Q901	VS2SC2603-F-1	EXT. Microphone Amp.	AD AB	D607	VHERD5R1JB2-1	Zener, 5.1V (RD5.1JB2)	AB
G	V02002003-1-1	(2SC2603 F)	Ab	D608	VHERD6R8JB3-U	Zener, 6.8V (RD6.8JB3)	AB
Ω902	VS2SC2603-F-1	Switching, Microphone/DIN	AB	D701	RH-DX1006AFZZ	Surge Absorber (10E1)	AB
		input selector (Record mode)(2SC2603 F)	AB	D802,803	VHD1SS133//-1	Reverse Current Protector (1SS133)	AA
		111000)(2002000 1)		D901	VHD1SS133//-1	Reverse Current Protector	AA
	DI	ODES				(1SS133)	
D1	VHD1S2076//-U	Static Protector (1S2076)	AB		C	OILS	
D3	VHD1S2076//-U	FM Overload (1S2076)	AB				
D4,5	VHD1S2076//-U	Reverse Current Protector	AB	L1	RCILA0620AFZZ	FM Band Pass Filter	AC
		(1 S2076)		L2	RCILB0672AFZZ	FM RF	AC
D101	VHD1SS133//-1	Reverse Current Protector	AA	L3	RCILBO672AFZZ	FM Oscillator	AC
		(1SS133)		L6	RCILA0562AFZZ	SW Antenna	AC
				L7	RCILA0635AFZZ	Bar Antenna, MW/LW	AK

REF.NO	. PART NO	DESCRIPTION	CODE	REF.NO	D. PART NO	DESCRIPTION	CODE
L8	RCILB0629AFZZ	SW Oscillator	AC	C105,106	RC-EZA476AF1A	47MFD, 10V	AB
L9	RCILB0623AFZZ	MW Oscillator	AC	C111,112	RC-EZA335AF1H	3.3MFD, 50V	AB
L10	RCILB0627AFZZ	LW Oscillator	AC	C115,116	RC-EZA476AF1A	47MFD, 10V	AB
L201	RCILBO661AFZZ	Bias Oscillator	AF	C117,118	RC-EZA105AF1H	1MFD, 50V	AB
L202	VP-CH471K0000	Noise Filter, 470µH		C119	RC-EZA107AF1C	100MFD, 16V	
L203,204	RCILF0085AFZZ	Bias Step Up, 47mH	AB	C121	RC-EZV227AF1C	220MFD, 16V	AB
L205,204	RCILZ0104AFZZ		AC	C123	RC-EZA106AF1C	· ·	AB
L701	RCILFO014AGZZ	Peaking, 6.8mH	AC	C205		10MFD, 16V	AB
L/01	NCIEFUU I 4AGZZ	Choke, 47μH	AC	C215,216	RC-EZA227AF1C	220MFD, 16V	AB
	TDANO	FORMERO			RC-EZA105AF1H	1MFD, 50V	AB
	IHANS	FORMERS		C217	RC-EZY335AF1H	3.3MFD, 50V	AB
				C218	RC-EZY335AF1H	3.3MFD, 50V	AB
T1	RCILI0324AFZZ	FM IF	AC	C225,226	RC-EZY335AF1H	3.3MFD, 50V	AB
T2	RCILI0312AFZZ	FM Detector	AC	C233	RC-EZA476AF1C	47MFD, 16V	AB
T3	RCILI0310AFZZ	AM IF	AC	C234	RC-EZA106AF1C	10MFD, 16V	AB
△ T601	RTRNP0955AFZZ	Power	AV	C301,302	RC-EZA106AF1C	10MFD, 16V	AB
				C305,306	RC-EZA334AF1H	0.33MFD, 50V	AB
	FIL	TERS		C311,312	RC-EZA106AF1C	10MFD, 16V	AB
				C315,316	RC-EZA474AF1H	0.47MFD, 50V	AB
CF1	RFILF0080AFZZ	Ceramic, 10.7MHz, FM IF	AD	C317,318, \	RC-EZA105AF1H	1MED FOV	4.0
CF3	RFILA0085AFZZ	Ceramic, 455kHz, AM IF	AE	C319,320 J	NC-EZATOSAFTH	1MFD, 50V	AB
		(QT-37H)		C321	RC-EZV227AF1A	220MFD, 10V	AB
	RFILA0086AFZZ	Ceramic, 468kHz, AM IF	AE	C401	RC-EZY107AF1C	100MFD, 16V	AB
		(QT-37E)		C402	RC-EZY225AF1H	2.2MFD, 50V	AB
FIL301,302	RCILL0076AFZZ	Multiplex, 85kHz	AG	C403	RC-EZY106AF1C	10MFD, 16V	AB
				C404	RC-EZA105AF1H	1MFD, 50V	AB
	CON	ITROLS		C405,406	RC-EZY474AF1H	0.47MFD, 50V	AB
				C410	VCEALA1HW475M		AB
		Variable Capacitors, Tuning		C411,412	RC-EZA476AF1C	47MFD, 16V	AB
		with Trimmers:		C414	RC-EZA335AF1H	3.3MFD, 50V	AB
		TC1:FM RF		C417	RC-EZV475AF1E	4.7MFD, 25V	AB
VC1,2,		Trimmer		C418	RC-EZT226AF1C	22MFD, 16V	AB
VC3,4,		TC2:FM Oscillation		C509,510, }		221411 D, 104	, AD
TC1,2,	RVC-R0083AFZZ	Trimmer	AN	C511,512	RC-EZA107AF1A	100MFD, 10V	AB
TC4,7		TC4:MW Antenna Trimmer		C517,512	RC-EZV108AF1C	1000MED 16V	AD
104,7				C517,518	RC-EZA107AF1C	1000MFD, 16V 100MFD, 16V	AD
		TC7:MW Oscillation		C520			AB
TC3	DTO 114070AE77	Trimmer		C520	RC-EZA476AF1C	47MFD, 16V	AB
TC5	RTO-H1072AFZZ	Trimmer, SW Antenna	AC		RC-EZ1179AFZZ	2200MFD, 25V	AG
TC6	RTO-H1072AFZZ	Trimmer, LW Antenna	AC	C522	RC-EZA335AF1H	3.3MFD, 50V	AB
	RTO-H1072AFZZ	Trimmer, SW Oscillator	AC	C605	RC-EZV477AF1C	470MFD, 16V	AB
TC8	RTO-H1072AFZZ	Trimmer, LW Oscillator	AC	C608	RC-EZA227AF1C	220MFD, 16V	AB
VR1	RVR-M0390AFZZ	5K ohm (B), V.C.O. Adjust		C701	RC-EZ1236AFZZ	330MFD, 25V	AC
VR101,102	RVR-M0166AFZZ	2K ohm (B), Playback	AC	C901	RC-EZA105AF1H	1MFD, 50V	AB
V/D004 000	D) /D 14000-1	Sensitivity Adjust		C904		1MFD, 50V	AB
VH201,202	RVR-M0395AFZZ	100K ohm (B), Bias	AB	C905	RC-EZY107AF1C	100MFD, 16V	AB
		Current Adjust		C906	RC-EZA334AF1H	0.33MFD, 50V	AB
VR203,204	RVR-M0172AFZZ	50K ohm(B), Record	AB	C910	RC-EZV105AF1H	1MFD, 50V	AB
		Current Adjust					
VR401,402	RVR-M0394AFZZ	50K ohm (B), Level	AB			CITORS	
= = -		Indicator Adjust				r is identified by the sýmbol	
VR501	RVR-Q0131AFZZ	20K ohm (B), Volume	AG	the part No.	VCMF; this MF	does not mean the lead wire.)	
VR502	RVR-Q0130AFZZ	50K ohm (B), Balance	AF				
VR503	RVR-P0102AFZZ	100K ohm (B), Tone	AG	C1		10PF, 50V, ±5%, Ceramic	AA
				C2,3	VCTYMF1HV472K	0.0047MFD, 50V, ±10%,	AA
	ELECTROLYTI	C CAPACITORS				Semiconductor	
(All electrolyti	c capacitors are ±20	0% type.)		C4	VCCCMF1HH240J	24PF(CH), 50V, ±5%,	AA
						Ceramic	
C12	RC-EZA336AF1C	33MFD, 16V	AB	C5	VCCCMF1HH3R3C	$3.3PF(CH)$, $50V$, $\pm 0.25PF$,	AA
C15	RC-EZA106AF1C	10MFD, 16V	AB			Ceramic	
C20	RC-EZA476AF1A	47MFD, 10V	AB	C6	VCCCMF1HH150J	15PF(CH), 50V, ±5%,	AA
C25	RC-EZA107AF1A	100MFD, 10V	AB			Ceramic	
C26	RC-EZA475AF1E	4.7MFD, 25V	AB	C7	VCCCMF1HH100J	10PF(CH), 50V, ±5%,	AA
C40	RC-EZA106AF1C	10MFD, 16V	AB			Ceramic	
C41	RC-EZA335AF1H	3.3MFD, 50V	AB	C8	VCTYMF1HV152K	0.0015MFD, 50V, ±10%,	AA
C42	RC-EZA105AF1H	1MFD, 50V	AB			Semiconductor	
C44	RC-EZA475AF1E	4.7MFD, 25V	AB	C9	VCCRMF1HH100J	10PF(RH), 50V, ±5%,	AA
C47,48	RC-EZA105AF1H	1MFD, 50V	AB			Ceramic	
C49	RC-EZA227AF1A	220MFD, 10V	AB	C10	VCCCMF1HH3R9C	3.9PF(CH), 50V, ±0.25PF,	AA
C74	RC-EZA106AF1C	10MFD, 16V	AB	-		Ceramic	, 47
C75	RC-EZA476AF1A	47MFD, 10V	AB	C11	VCCCMF1HH1R0C	1PF(CH), 50V, ±0.25PF,	AA
C103,104	RC-EZA105AF1H	1MFD, 50V			. Journal I III I III I	Ceramic	~~
	CEATOURFIE	D, UUV	AB			Coraline	

REF.NO	D. PART NO	DESCRIPTION	CODE	REF.NO	D. PART NO	DESCRIPTION	CODE
C13,14	VCTYMF1CY223N	0.022MFD, 16V, ±30%, Semiconductor	AA	C221,222	VCTYPV1EX103J	0.01 MFD, 25V, ±5%, Semiconductor	
C19	VCTYMF1EX103N	0.01 MFD, 25V, ±30%, Semiconductor	AA	C223,224 C229	VCCSPA1HL680J VCTYPV1EX682K	68PF, 50V, ±5%, Ceramic 0.0068MFD, 25V, ±10%,	AA AA
C21,22	VCTYMF1CY223N	0.022MFD, 16V, ±30%, Semiconductor	AA	C230	VCTYPA1EX682K	Semiconductor 0.0068MFD, 25V, ±10%	AA
C23	VCKYMF1HB221K	220PF, 50V, ±10%, Ceramic	AA	C231	VCTYPV1EX472K	Semiconductor	AA
C24	VCTYMF1CY223N	0.022MFD, 16V, ±30%, Semiconductor	AA	C232	VCTYPA1EX472J	Semiconductor 0.0047MFD, 25V, ±5%,	AA
C28 C29,30		47PF, 50V, ±5%, Ceramic 0.022MFD, 16V, ±30%,	AA AA	C303,304	VCTYPA1EX104K	Semiconductor 0.1MFD, 25V, ±10%,	AA
C43	VCQSMA1HL102J	Semiconductor 0.001 MFD, 50V, ±5%,	AB	C307,308	VCTYPA1EX473J	Semiconductor 0.047MFD, 25V, ±5%	AB
C45,46	VCTYMF1CY223N	Styrol 0.022MFD, 16V, ±30%,	AA	C309,310	VCTYPA1EX333J	Semiconductor 0.033MFD, 25V, ±5%,	AB
C61	VCCSMF1HL8R2J	Semiconductor 8.2PF, 50V, ±5%,	AA	C313,314	VCTYPA1EX472J	Semiconductor 0.0047MFD, 25V, ±5%,	AA
000		Ceramic		2222 222		Semiconductor	
C62 C64		68PF, 50V, ±5%, Ceramic 330PF, 50V, ±5%,	AA AA	C322,323	VCCSPA1HL221J	220PF, 50V, ±5%, Ceramic	AA
C65	VCCSME1 HI 330 I	Ceramic 33PF, 50V, ±5%, Ceramic		C407	VCTYPA1EX682K	0.0068MFD, 25V, ±10%, Semiconductor	AA
C66		20PF(CH), 50V, ±5%,	AA	C408	VCCSPA1HL680J		. AA
		Ceramic		C409	VCTYPV1EX153K		AA
C68		270PF, 50V, ±5%, Ceramic	AA	C413,416	VCTYPA1EX223K	Semiconductor 0.022MFD, 25V, ±10%,	AA
C69		180PF(CH), 50V, ±5%, Ceramic	AA	C501,502	VCTYPA1EX273K	Semiconductor 0.027MFD, 25V, ±10%,	AA
C70 C71		39PF(CH), 50V, ±5%, Ceramic	AA	C503,504	VCTYPA1EX683K		AB
C72,73		0.0033MFD, 50V, ±10%, Semiconductor	AA	C505,506	VCTYMF1HV392K	Semiconductor 0.0039MFD, 50V, ±10%,	AA
C/2,/3	VC11WIF1C1223N	0.022MFD, 16V, ±30%, Semiconductor	AA	C513,514, \		Semiconductor 0.1MFD, 25V, ±10%,	
C76	VCCCMF1HH6R8D	6.8PF(CH), 50V, ±0.5PF, Ceramic	AA	C515,516 AC601,602, \	VCTYPA1EX104K	Semiconductor 0.1MFD, 50V, +80-20%,	AB
C101,102	VCTYPA1EX273K	0.027MFD, 25V, ±10%, Semiconductor	AA	C603,604 C606,607	VCKZPV1HF104Z VCTYPA1EX223K	Ceramic	AC AA
C107,108	VCTYPA1EX223K	0.022MFD, 25V, ±10%, Semiconductor	AA	C609		Semiconductor 0.01MFD, 25V, ±10%,	AA
C109,110	VCKYPA1HB471K	470PF, 50V, ±10%, Ceramic	AA	C610,611		Semiconductor 0.022MFD, 25V, ±10%,	AA
C113	VCKYPA1HB471K	470PF, 50V, ±10%, Ceramic	AA	C902	VCKYMF1HB221K	Semiconductor 220PF, 50V, ±10%,	AA
C114	VCKYPV1HB471K	470PF, 50V, ±10%, Ceramic	AA	C903	VCKYMF1HB271K	Ceramic 270PF, 50V, ±10%,	AA
C120		680PF, 50V, ±10%, Ceramic	AA	C908,909	VCKYMF1HB471K	Ceramic 470PF, 50V, ±10%,	AA
C201		0.0047MFD, 50V, ±5%, Semiconductor	AA			Ceramic	
C202,203	VCTYMF1HV392K	0.0039MFD, 50V, ±10%,	AA	The symbol 9		STORS	
C206	VCTYPA1EX183J	Semiconductor 0.018MFD, 25V, ±5%, Semiconductor	AA	type carbon	film resistor (1/4W,	er like VRD-MFshows a tub ±5%) but not a lead wire: of	do not
C207	VCTYPA1EX273K	0.027MFD, 25V, ±10%, Semiconductor	AA		or each other. e all of carbon type	The other resistors, unless oth $(1/6W, \pm 5\%)$.	erwise
C208	VCQPKV2AA302J	0.003MFD, 100V, ±5%, Polypropylene		R1 R4	VRD-MF2EE391J VRD-MF2EE824J	390 ohm 820K ohm	AA AA
C209	VCQPKV2AA681J		АВ	R5 R6	VRD-MF2EE182J VRD-MF2EE822J	1.8K ohm 8.2K ohm	AA AA
C210	VCCSPA1HL221J	220PF, 50V, ±5%, Ceramic	AA	R7 R8	VRD-MF2EE332J VRD-MF2EE330J	3.3K ohm 33 ohm	AA AA
C211,212	VCKYMF1HB221K	220PF, 50V, ±10%, Ceramic	AA	R9 R10	VRD-MF2EE471J VRD-MF2EE152J	470 ohm 1.5K ohm	AA AA
C213,214	VCKYPF1HB561K	560PF, 50V, ±10%,	AA	R11	VRD-MF2EE471J	470 ohm	AA
C210 220	V(CT)/D\/4.5\/0.00\	Ceramic		R12	VRD-MF2EE331J	330 ohm	AA
C219,220	VCTYPV1EX222K	0.0022MFD, 25V, ±10%, Semiconductor	AA	R41 R42	VRD-MF2EE102J VRD-MF2EE103J	1K ohm 1OK ohm	AA AA
		Connection		R43	VRD-MF2EE224J	220K ohm	AA

REF.N	O. PART NO	DESCRIPTION	CODE	REF.NO	PART NO	DESCRIPTION	CODE
R44	VRD-MF2EE471J	470 ohm	AA	R409	VRD-ST2CD103J	10K ohm	AA
R45,46	VRD-MF2EE332J	3.3K ohm	AA	R410	VRD-ST2CD473J	47K ohm	AA
R47,48	VRD-MF2EE822J	8.2K ohm	AA	R411	VRD-ST2CD101J	100 ohm	AA
R61	VRD-MF2EE101J	100 ohm	AA	R412	VRD-ST2CD824J	820K ohm	AA
R62,63	VRD-MF2EE330J	33 ohm	AA	R413	VRD-ST2CD472J	4.7K ohm	AA
R65	VRD-MF2EE221J	220 ohm	AA	R414	VRD-MF2EE103J	10K ohm	AA
R101,102	VRD-ST2CD473J	47K ohm	AA	R415,416,)			
R103,104	VRD-ST2CD272J	2.7K ohm	AA	R417,418,	VRD-MF2EE221J	220 ohm	AA
R105,106	VRD-ST2CD473J	47K ohm	AA	R419			
R107,108	VRD-MF2EE332J	3.3K ohm	AA	R420	VRD-MF2EE332J	3.3K ohm	AA
R109,110	VRD-MF2EE103J	10K ohm	AA	R421	VRD-MF2EE563J	56K ohm	AA
R111,112	VRD-MF2EE683J	68K ohm	AA	R422	VRD-MF2EE562J	5.6K ohm	AA
R113,114	VRD-MF2EE154J	150K ohm	AA	R423	VRD-MF2EE392J	3.9K ohm	AA
R115,116	VRD-MF2EE562J	5.6K ohm	AA	R424	VRD-MF2EE331J	330 ohm	AA
R117,118	VRD-ST2CD822J	8.2K ohm	AA	R425	VRD-MF2EE472J	4.7K ohm	AA
R119,120	VRD-ST2CD0223	1K ohm		R426	VRD-ST2CD223J	22K ohm	AA
			AA	R427	VRD-MF2EE183J	18K ohm	AA
R121,122	VRD-MF2EE473J	47K ohm	AA	R428	VRD-ST2CD100J	10 ohm	AA
R123,124	VRD-MF2EE122J	1.2K ohm	AA	R431	VRD-MF2EE824J	820K ohm	
R125,126	VRD-MF2EE822J	8.2K ohm	AA	R432			AA
R127,128	VRD-ST2CD103J	10K ohm	AA	R433	VRD-ST2CD822J VRD-ST2CD822J	8.2K ohm	AA
R129,130	VRD-MF2EE103J	10K ohm	AA		-	8.2K ohm	AA
R131	VRD-ST2CD271J	270 ohm	AA	R434	VRD-ST2CD103J	10K ohm	AA
R201,202	VRD-ST2EE4R7J	4.7 ohm, 1/4W, ±5%,	AA	R435	VRD-ST2CD393J	39K ohm	AA
		Carbon		R436	VRD-ST2CD471J	470 ohm	AA
R203,204	VRD-MF2EE183J	18K ohm	AA	R437	VRD-ST2CD101J	100 ohm	AA
R205,206	VRD-MF2EE820J	82 ohm	AA	R501,502,	VRD-MF2EE272J	2.7K ohm	AA
R208	VRD-MF2EE102J	1K ohm	AA	R503,504			, , ,
R209	VRD-ST2CD1R0J	1 ohm	AA	R505,506	VRD-MF2EE332J	3.3K ohm	AA
R212	VRD-RU2EE221J	220 ohm, 1/4W, ±5%,	AA	R507,508	VRD-ST2CD333J	33K ohm	AA
		Carbon		R509,510	VRD-ST2CD151J	150 ohm	AA
R213,214	VRD-RZ2EE153J	15K ohm, 1/4W, ±5%,	AA	R511	VRD-ST2CD390J	39 ohm	AA
		Carbon		R515,516	VRD-ST2EE151J	150 ohm	AA
R215,216	VRD-ST2CD105J	1 Meg ohm	AA	R519	VRD-ST2CD122J	1.2K ohm	AA
R219,220	VRD-ST2CD562J	5.6K ohm	AA	R601	VRD-ST2CD102J	1K ohm	AA
R221,222	VRD-ST2CD222J	2.2K ohm	AA	R602	VRG-ST2EF100J	10 ohm, 1/4W, ±5%,	AB
R223,224	VRD-RU2EE470J	47 ohm, 1/4W, ±5%,	AA			Fusible	
		Carbon	, , ,	R603	VRD-ST2CD681J	680 ohm	AA
R225	VRD-RZ2EE152J	1.5K ohm, 1/4W, ±5%,	AA	R604	VRD-ST2CD471J	470 ohm	AA
	***************************************	Carbon	70.	R701	VRD-RU2EE152J	1.5K ohm, 1/4W, ±5%,	AA
R226	VRD-ST2CD152J	1.5K ohm	AA			Carbon	,
R227	VRD-RZ2EE472J	4.7K ohm, 1/4W, ±5%,	AA	R702	VRG-ST2EG2R2J	2.2 ohm, 1/4W, ±5%,	AB
	VIID IILLECT/20	Carbon	~~			Fusible	, ,,
R228	VRD-ST2CD472J		AA	R817,818	VRD-ST2CD681J	680 ohm	AA
R229,230	VRD-RZ2EE272J	2.7K ohm, 1/4W, ±5%,	AA	R821		12 ohm, 1/4W, ±5%,	AB
11225,250	VIID-1122CL2/23	Carbon	~~		***************************************	Fusible	70
R231,232	VRD-RZ2EE472J	4.7K ohm, 1/4W, ±5%,		R822	VRD-MF2EE122J	1.2K ohm	AA
N231,232	VND-NZZEE4/ZJ		AA	R901	VRD-MF2EE222J	2.2K ohm	
P222 224	V0D CT2CD102 I	Carbon		R902	VRD-MF2EE474J	470K ohm	AA
R233,234	VRD-ST2CD103J	10K ohm	AA	R903	VRD-MF2EE330J		AA
R235,236	VRD-ST2CD473J	47K ohm	AA	R904		33 ohm 4.7K ohm	AA
R237	VRD-ST2CD103J	10K ohm	AA	R905	VRD-MF2EE472J		AA
R238	VRD-ST2CD473J	47K ohm	AA		VRD-ST2CD333J	33K ohm	AA
R301,302	VRD-MF2EE471J	470 ohm	AA	R906	VRD-ST2CD102J	1K ohm	AA
R303,304	VRD-ST2CD683J	68K ohm	AA	R907	VRD-ST2CD333J	33K ohm	AA
R305,306	VRD-ST2CD274J	270K ohm	AA	R908	VRD-ST2CD102J	1K ohm	AA
R307,308	VRD-ST2CD473J	47K ohm	AA	R909	VRD-ST2CD103J	10K ohm	AA
R309,310	VRD-ST2CD332J	3.3K ohm	AA	R910	VRD-ST2CD473J	47K ohm	AA
R311,312	VRD-ST2CD562J	5.6K ohm	AA	R911	VRD-MF2EE103J	10K ohm	AA
R313,314	VRD-ST2CD332J	3.3K ohm	AA	R912	VRD-MF2EE104J	100K ohm	AA
R315,316	VRD-MF2EE332J	3.3K ohm	AA	R914	VRD-MF2EE222J	2.2K ohm	AA
R317,318	VRD-MF2EE681J	680 ohm	AA	R915,916	VRD-ST2CD561J	560 ohm	AA
R319	VRD-ST2CD472J	4.7K ohm	AA	R919	VRD-MF2EE103J	10K ohm	AA
R320	VRD-MF2EE471J	470 ohm	AA		VRD-MF2EE000C	0 ohm, 1/4W,	AA
R401	VRG-ST2EF120J	12 ohm, 1/4W, ±5%,	AB			+0.25 ohm, Jumper	
		Fusible				·	
R402,403	VRD-MF2EE103J	10K ohm	AA		OTHER CIR	CUIT PARTS	
R404	VRD-MF2EE103J	10K ohm	AA			_	
R405	VRD-MF2EE104J	100K ohm	AA	CNP1	QCNCM0705SGZZ	Plug, 8Pin	AC
R406	VRD-MF2EE392J	3.9K ohm	AA	CNP101	QCNCM095BAFZZ		AB
R407	VRD-MF2EE472J	4.7K ohm	AA	CNP102	QCNCM190JAFZZ		AD
R408	VRD-ST2CD273J	27K ohm	AA	CNP103	QCNCM584CAFZZ		AA
	0.2002100					J,	

QT-37H/E

REF.NO	D. PART NO	DESCRIPTION	CODE		REF.NO.	PART NO	DESCRIPTION	СО
CNP104 BI1/CNS1	QCNCM583BAFZZ CCNCW489FAF12	Plug, 2Pin 6Pin Board in Plug/8Pin	AA	9	L	.PLTM0117AF02	Chassis, Motor and Plunger Solenoid	r A
		Socket Assembly		10	L	RTNP0050AFZZ	Stop Washer, Lever	
BI101	CCNCW485BAF10	2Pin/2Pin Board in Plug		11	L	STWC4004AFZZ	Stop Washer	Α
		Assembly		13	L	X-BZ0219AFFD	Screw, Motor	A
BI102	CCNCW486CAF10	3Pin/2Pin Board in Plug		15	L	X-HZ0077AFZZ	Screw	Α
		Assembly		16	L	X-NZ0146AFZZ	Nut, Capstan Bearing	Α
CNS101	QCNW-2032AFZZ		AD	17		X-WZ9053AFZZ	Washer, Flywheel	Α
CNS102	QCNW-2012AFZZ	10Pin Socket Assembly		19		HLDW9003CEZZ	Wire Holder	Α
CNS103	QCNW-2028AFZZ	3Pin Socket Assembly		20	N	ARMPOO15AFZZ	Arm, P.A.D. Cam Operation	
CNS104	QCNW-1962AFZZ	2Pin Socket Assembly	AB	21			Arm, Pause Cam Operation	
F601	QFS-C162FAFNI	Fuse, T1.6A	AD	22		/ARMP0017AF00		A
J501,502	QJAKE0115AFZZ	Jack, EXT. Speaker	AC	23		ACAMPO056AF00		A
J503	QJAKJ0129AFZZ	Jack, Headphones	AF	24		CAMPOO57AFOO		A
J901	QJAKJ0130AFZZ	Jack, EXT. Microphone	AF	25		ILEVP0344AF00	Lever, Lock Release	` ^
		Socket, AC Power		26		ILEVP0345AF00	Lever, Fast-forward	ĺ
50601,}		Supply		27		ILEVP0346AF00	Lever, Rewind	
SW601	QSOCA0370AFZZ	Switch, AC/DC	AG	28		ILEVP0348AF00	Lever, P.A.D. Cam Lock	A
		Selector		29		ILEVP0349AF00	Lever, Pause Cam Lock	^
SO901	QSOCD4512AFZZ		AF	30		ILEVP0350AF00	Lever. Pause	
SW1(A~F)	QSW-B0181AFZZ	Switch, Band Selector	AM	31		1LEVP0351AF00	Lever, Fause Prevention	١
	J) QSW-S0398AFZZ	Switch, Record/Playback	AG	32		ILEVP0352AF00	,	,
	•	Switch, SW102: Function	70	33			Lever, Button	A
SW102(A~		Selector		34		ILEVP0353AF00	Plate, Safty Lock	Α
SW202,203	QSW-P0486AFZZ	Switch, SW202,203:	AL	35		ALEVPO354AFOO	Lever, Record Operation	Α
4,B))					ILEVPO355AFOO	Lever, Main Switch	A
		Tape Selector		36	IV	ILEVP0356AF00	Lever, Main Switch	Α
	C)QSW-S0267AFZZ	Switch, Beat Cancel	AD	27		11 F) /DOOF 7 4 FOO	Retaining	
	QSW-P0487AFZZ	Switch, Dolby NR	AE	37		ILEVP0357AF00	Lever, Playback	Α
W701	QSW-F0137AFZZ	Switch, Muting	AE	38		ILEVP0358AFZZ	Lever, Record Joint	Α
W702	QSW-F0148AFZZ	Switch, Main	AE	39		ILEVP0360AF00	Lever, Brake	Α
W703	QSW-F0187AFZZ	Switch, APSS	AD	40	N	ILEVP0361AF00	Lever, APSS Switch	Α
W704	QSW-P0187AFZZ	Switch, Pause					Operation	
W802	QSW-P0438AFZZ	Switch, FM Mode Selector	AF	41	N	ILEVP0362AF00	Lever, Fast-forward/Rewind	Α
				42	N	ILEVP0409AF00	Lever, Eject	Α
	MECHANI	CAL PARTS	İ	43	N	ILEVP0364AF00	Lever, Record	Α
	I PEUEOOO1 A COO	Bubban Coaking Man		44	N	ILEVP0365AF00	Lever, Plunger Solenoid Joint	Α
	LBSHS0001AG00 LCHSM0397AFZZ	Rubber Cushion, Motor	AA	45	N	ILEVP0387AF00	Lever, Button Lock (Sub)	
	LCHSS0171AFFW	Main Chassis		46		ILEVP0388AF00	Lever, Button Lock (Main)	A
		Plate, Head Base		47		SLVM0135AFFW		A
-1	LCHSZ0125AFZZ	Turntable Block Assembly	AU	48			Pin, Pause Cam Lock Lever	
-2	LCHSZ0113AFZZ LRTNP0051AFZZ	Base, Turntable Washer, Auto Stop Sensor	AG	49		ISPRC0356AFFJ ISPRD0398AFFJ	Spring, Stop Button Lever Spring, Fast-forward/Rewind	A
-3	LX-WZ5018AGZZ	Lever Washer, 2.1 mm Dia.		50	M	SPRC0230AFFJ	Spring, Head Azimuth	ΑE
-4	LX-WZ5018AGZZ			51		SPRC0268AFFJ	Spring, Head Azimuth Spring, Button Lever (Eject,	
-5		Washer, 1.7mm Dia.	AA	91	(V)	O. NOUZUGAFFJ)
·5 ·6	LX-WZ9064AFZZ	Washer, 1.5mm Dia.					Playback, Rewind,	1
_	LX-WZ9073AFZZ	Washer, 1.2mm Dia.		50		CDDCCCCC	Fast-forward)	
7	LX-WZ9074AFZZ	Washer, Back Tension		52		SPRC0269AFFJ	Spring, Safty Lock	
0	MARKETON	(Supply)	,	53		SPRC0270AFFJ	Spring, Pause Lever Lock	
В	MARMPOO18AFOO	Lever, Fast-forward Lever Joint	AC	54	М	SPRC0271AFFJ	Spring, Brake Lever Pressure	
9	MLEVP0366AFZZ	Lever, Auto Stop Sensor	АВ	55	M	SPRC0276AFFJ	Spring, Plunger Solenoid	
10	MLEVP0375AFZZ	Lever, Rewind Lever Joint	AF	56		SPRC0289AFFJ	Spring, Pause Button Lever	۸ا
11	MSPRC0279AFFJ	Spring, Back Tension (Supply)	AA	57		SPRD0464AFFJ	Spring, Pinch Roller Pressure	
12	MSPRD0404AFFJ	Spring, Playback Idler Pressure	AA	58	М	SPRD0388AFFJ	Spring, Pause Cam Lock Lever	
13	MSPRD0405AFFJ	Spring, Stop Lever	AA	59	M	SPRD0389AFFJ	Spring, Pause Cam	
14	MSPRT0850AFFJ	Spring, Playback Idler	AA	60		SPRD0390AFFJ	Spring, Pause Lever	ı
15	NDAIR0157AFZZ	Turntable, Take-up	AF	61		SPRD0391AFFJ	Spring, Rewind Lever	A
16	NDAIR0161AFZZ	Turntable, Supply	AP	62		SPRD0393AFFJ	Spring, Auto Stop/Sensor	, - 1
17	NGERHOO81AFZZ	Gear, Rewind	1			JJJJJJJ	Control	
18	NIDR-0079AFZZ	•	AC	63	8.4	SPRD0394AFFJ	Spring, Record Sensor Arm	
19		Playback Idler	AD	64		SPRD0395AFFJ		
	MSPRC0311AFFJ	Spring, Auto Stop Sensor Lever	AA	65		SPRD0395AFFJ	Spring, Playback Lever Spring, Pause Cam	A
	LDAIH0056AF00	Head Base	AB		,		Operation Arm	1
	LDAIH0057AFZZ	Base, Head Base Guide	AD	66	M	SPRD0397AFFJ	Spring, Head Plate	
						SPRD0420AFFJ	Spring, Read Flate Spring, Button Lock Lever	
	LPINZ0055AF77	Pin Pause Lever Lock	ΔΛ Ι	67	IVI.			
	LPINZO055AFZZ LPLTM0116AFFW	Pin, Pause Lever Lock Plate, Button Lever	AA AC	67	ί ν ί.	31 11D0420AFF3	(Main)	

QT-37H/E

QT-37H/E

	REF.NO.	PART NO	DESCRIPTION	CODE	REF.NO.	PART NO	DESCRIPTION	CODE
68		MSPRP0320AFFJ	Spring, Cassette Holder Pressure)	108	HINDPO695AFSA	Label, Specification (QT-37H for HELIP)	AC
69		MSPRP0300AFFW	Spring, Head Plate Pressure			HINDPO696AFSA	Label, Specification (QT-37E)	AC
70		MSPRT0835AFFJ	Spring, Lock Release Lever	1	109	HSSND0327AFSA	Dial Pointer	AD
71		MSPRT0836AFFJ	Spring, Fast-Forward,		110	JHNDG1091AFSC	Handle	AP
			Record Lever	1	111	JKNBK0301AFSA	Knob, Tuning Control	
72 73		MSPRT0837AFFJ MSPRT0838AFFJ	Spring, Head Plate Spring, Eject Lever	AA	112	JKNBM0500AFSC	Button, Function Selector/ Tape Selector	AB
74		MSPRT0839AFFJ	Spring, P.A.D. Cam		113	JKNBM0500AFSD	Button, Dolby NR	AB
			Operation Arm		114	JKNBM0501AFSA	•	AB
75		MSPRT0911AFFJ	Spring, Earth		115	JKNBK0303AFSA	Knob, Band Selector	
76		MSPRT1028AFFJ	Spring, Record/Playback Switch Operation Lever		116	JKNBP0224AFSC	Knob, Tone/Balance/Volume Control	AC
77		NBALS0006AGFJ	Ball, Ø2mm	J	117	KCOUB0152AFZZ		AK
78		NBLTH0082AF00	Belt, Flywheel	AC	118	LANGQ0897AFZZ	Bracket, Telescopic Rod	AB
79		NBLTK0208AFZZ	Belt, Playback	AB		2	Antenna	, ,,
80		NBLTK0200AF22	Belt, Fast-Forward/Rewind	AB	119	LHLDA1059AFZZ	Holder, Bar Antenna	AC
				AE	120	LHLDF1295AFSA	Frame, Main P.W.B.	AK
81		NBRGC0079AFZZ	Bearing, Capstan		121	LHLDF1296AFSA	Frame, Tuner P.W.B.	AG
82		NBRGP0062AF00	Bearing, Flywheel	AA	122	LHLDL1053AFZZ	Holder, Handle	AC
83		NFLYC0098AFZZ	Flywheel	AK				
84		NGERHO080AF00	Gear, P.A.D. Drive	AD	123	LHLDW1075AFZZ		AA
85		NROLY0059AFZZ	Pinch Roller	AE	124	LX-BZ0308AFFD	Screw, AC Power Supply	AA
86		PGIDM0101AF00	Guide, Head Base	AC			Socket	
88		QCNW-1568AFZZ		AC	125	LX-BZ0322AFFF	Screw, AC Power Supply	AA
89		QLUGP9052AFZZ	Lug, P.W.B.	AA			Socket Cover	
90		RHEDA0103AFZZ	Head, Erase	AH	126	LX-CZ0011AFZZ	Screw, Cabinet	AA
91		RHEDH0118AFZZ	Head, Record/Playback	AM	127	MLEVP0399AFSA	Lever, Cassette Holder	AC
92		JBOTN0114AFZZ	Mechanism Button	AN			Lock	
			Assembly		128	MLIFP0018AFZZ	Damper, Cassette Holder	AD
92-	1	JKNBM0462AFSA	Button, Eject/Pause	AE	129	MSPRC0272AFFJ	Spring, Cassette Holder	AA
92-	2	JKNBM0463AFSA		AE			Lock Lever	
92-	3	JKNBM0464AFSA	Button, Rewind	AE	131	MSPRC0404AFFJ	Spring, Battery (-)	AB
92-4		JKNBM0465AFSA	Button, Fast-forward	AE	132	MSPRD0407AFFJ	Spring, Cassette Guide	AA
92-	5	JKNBM0467AFSA	Button, Playback	AE			(Left)	
93		JKNBM0468AFSB		AC	133	MSPRD0408AFFJ	Spring, Cassette Guide	AA
94		LANGJ0105AFFW	•				(Right)	
95		MLEVF1529AFFW		AC	134	MSPRD0441AFFJ	Spring, Cassette Holder Opening (Left)	AB
96		MLEVF1530AFFW			135	MSPRD0442AFFJ	Spring, Cassette Holder Opening (Right)	AB
97		MSPRT1021AFFJ	Spring, Record/Playback		136	NBLTK0267AFZZ	Belt, Digital Tape Counter	AB
3,		MOTHITOZIATIS	Switch Operation Lever		137	NDRM-0190AFZZ	Dram, Dial Cord	AC
98		MSPRT1028AFFJ	Spring, Record/Playback	AA	138	NPLYB0052AFZZ	Pulley, Dial Cord	AA
30		WIST NTTOZOATTS	Switch Joint Lever	~~	139	NSFTD0236AFFW	Shaft, Tuning Control	AF
MO	701	DMOTMO1 42 4501		ΑТ	140	PCUSS0212AFZZ	Cushion, Battery	AC
		RMOTV0142AF01	Motor with Pulley	AT	140	1 C0330212A122	Compartment Lid	AC
501	₋ 701	RPLU-0156AFZZ	Plunger Solenoid	AL	141	PGIDM0106AFSA	Guide, Cassette (Left)	AC
		OARINE	T 040T0			PGIDMO100AFSA		
		CABINE	T PARTS		142		Guide, Cassette (Right)	AC
				-	143	PRDARO319AFFW		AC
101		CCABB1787AF01	Back Cabinet Assembly	BE	144	QANTRO132AFZZ	Telescopic Rod Antenna	AL
△ 101		GCABB1787AFSA	Back Cabinet	AP	145	QFSHD2051AFZZ	Holder, Fuse	AA
101	_	LPLTK0055AFZZ	Plate, Battery	AB	146	QTANB0163AFFW		AB
101	-3	MSPRC0403AFFJ	Spring, Battery (+,-)	AC	147	RMICC0086AFZZ	Built-in Microphone	AF
101	-4	PCOVZ1066AFZZ	Cover, Power (Right)	AA	148	PCUSU0262AFZZ	Cushion, Built-in	
J101	-5	PCOVP1205AFZZ	Cover, Power (Left)				Microphone	
102)	CSPRT0750AF09	Dial Cord Spring Assembly					
102	!-1	MSPRT0750AFZZ	Spring, Dial Cord	AA		SPEAKE	R PARTS	
103	}	GCAB-1199AFSA	Front Cabinet Assembly	AY				
△ 103	1-1	GCABA1787AFSA	Front Cabinet	AW	201	GCAB-1192AFSC	Speaker Box Assembly	AX
103		HDALP0515AFSA	Plate, Dial Scale	AH			(Left)	
•103	3-3	HDECA0540AFSA	Decoration Plate, Cabinet	AF	201-1	GCABA1780AFSC	Speaker Box (Left)	AW
△ 105		GCOVH1179AFSG	Cover, AC Power Supply		201-2	HDECQ0201AFSA	Decoration Plate, Tweeter	AE
			Socket		201-3	HPNC-0183AFSC	Punching Metal, Woofer	AG
106	3	GFTA-0005AFSA	Cassette Holder Assembly	AR	202	GCABB1780AFSC	Speaker Back Cabinet (Left)	AL
106		GFTAC1301AFSA	Cassette Holder	AG	203	LHLDZ1224AFSC	Holder, Speaker Cord	AC
106		GFTAC1312AFSA	Cover, Cassette Holder	AH	204	LX-CZ0011AFZZ	Screw, Speaker Box	AA
106		GFTAC1313AFSA	Window, Cassette Holder	AH	205	MLEVP0459AFSC	Lever, Speaker Lock/	AD
107		GFTAB1146AFSC	Lid, Battery Compartment	AE			Release	
108		HINDPO694AFSA	Label, Specificatin (QT-37H)		206	PKYU-0075AFZZ	Acoustic Material	
, 00			Luboi, opositionini (Q1-3/11)	,,,0				

REF.NO	. PART NO	DESCRIPTION	CODE	REF.NO. PART NO	DESCRIPTION	CODE
207	GCAB-1193AFSC	Speaker Box Assembly (Right)	AX	SSAKA0104AFZZ	Polyethylene Bag, Operation Manual	АН
207-1	GCABA1781AFSC	Speaker Box (Right)	AW		(QT-37E)	
207-2	HDECQ0201AFSA	Decoration Plate, Tweeter	AE	SSAKH0171AFZZ	Polyethylene Bag, Unit	AD
207-3	HPNC-0183AFSC	Punching Metal, Woofer	AG	SSAKH0172AFZZ	Polyethylene Bag, Speaker	AD
208	GCABB1781AFSC	Speaker Back Cabinet (Right)	AL	TCAUA0178AFZZ	Caution Label, AC Power Supply (QT-37H)	AA
PG1,2	QCNW-2004AFZZ	Cord, Speaker	AH	TCAUH0056AGZZ	Caution Label, AC Power	AA
SP1,2	VSP0010PB77SA	Speaker, Woofer	AR		Supply Cord (QT-37E)	
SP3,4	RALMB0057AFZZ	Speaker, Tweeter	AC	TCAUZ0039AFZZ	Caution Label, Wrapping Sheet (QT-37E)	AA
	ACCESSORY/I	PACKING PARTS		TINSE0892AFZZ	Operation Manual (QT-37E)	AE
	,			TINSP0182AFZZ	Operation Manual (QT-37H)) AH
	QACCB0057AF09	Cord, AC Power Supply (Refer to Page 15.)	AC	TINSP0183AFZZ	Operation Manual (QT-37H for EX)	АН
	QACCK0050AFZZ	Cord, AC Power Supply (Refer to Page 15.)	AL	TMAPC1007AFZZ	Schematic Diagram (QT-37H Only)	
	QPLGZ0152AFZZ	Plug, Erasing	AB	TTAGH0284AFZZ	Tag (QT-37H Only)	
	RTPEKO101AFZZ	Cassette Tape	AL	UBATU0010AGZZ	Battery (QT-37H Only)	AC
	SPAKA1056AFZZ	Packing Add. (Bottom)	AE			
	SPAKA1058AFZZ	Packing Add. (Top)	AE	P.W.B. Assembly (f	Not replacement item)	
	SPAKC2461AFZZ	Packing Case (QT-37H)	AH			
	SPAKC2462AFZZ	Packing Case (QT-37H for HELIP)	AH	DKEND0357AF01 (Combined	Main Circuit	
	SPAKC2463AFZZ	Packing Case (QT-37E)	AM	Assembly)		
	SSAKA0035AFZZ	Polyethylene Bag,	AA	DUNTRO209AF03	Tuner Circuit (QT-37H)	_
		Operation Manual (QT-37H)		DUNTR0209AF06	Tuner Circuit (QT-37E)	_

DESCRIPTION

CODE

PART NO

IC2: VHIAN7224//-1 (AN7224) (i4) Vcc FMIF AM/FM IN Y IF Amp. Quad, Det. Amp. Level Meter -(3) OUT Amp. AM RF AM ΑM AM Det. AGC MIXER Amp. OSC.) GND AM Vcc TOP VIEW IC401: VHILB1416//-1 (LB1416)

IC3: VHITA7343P/-1 (TA7343P)

2SD467 C

E : EMITTER C: COLLECTOR B: BASE

RH-PX1053AFSA

RH-PX1054AFSA

1: ANODE 1 2: CATHODE 1 + ANODE 2 3: CATHODE 2

> A8302-7501NS Printed in Japan

In Japan gedruckt

Imprimé au Japon

SHARP

SERVICE MANUAL/SERVICE-ANLEITUNG/MANUEL DE SERVICE

S6347QT-37HG/

- In the interests of user-safety the set should be restored to its original condition and only parts identical to those specified be used.
- Im Interesse der Benutzer-Sicherheit sollte dieses Gerät wieder auf seinen ursprünglichen Zustand eingestellt und nur die vorgeschriebenen Teile verwendet werden.
- Dans l'intérêt de la sécurité de l'utilisateur, l'appareil devra être reconstitué dans sa condition première et seules des pièces identiques à celles spécifiées, doivent être utilisées.

QT-37HG QT-37HR

(E)

These new models QT-37HG and QT-37HR are the same as the former model QT-37H, only with a difference on the surface color. For other details please refer to the already issued Service Manual for the QT-37H(ATSM283021RCS).

(D)

Diese neuen Modelle QT-37HG und QT-37HR sind fast gleich wie das vorige Modell QT-37H, mit Ausnahme vom Unterschied in der Oberflächenfarbe. Für andere Einzelheiten sehen Sie die bereits herausgegebene Service-Anleitung für QT-37H(ATSM283021RCS).

 (\mathbf{F})

Ces nouveaux modèles QT-37HG et QT-37HR sont identiques au modèle antérieur QT-37H sauf une seule légère différence sur la couleur de la surface. Pour les autres détails, veuillez vous reporter au Manuel de Service déjà publié pour le QT-37H (ATSM283021 RCS).

DIFFERENCE BETWEEN QT-37H AND QT-37HG, QT-37HR

Parts marked with "\(\tilde{\

UNTERSCHIEDE ZWISCHEN QT-37H UND QT-37HG, QT-37HR

Die mit \triangle bezeichneten Teile sind besonders wichtig für die Aufrechterhaltung der Sicherheit. Beim Wechseln dieser Teile sollten die vorgeschriebenen Teile immer verwendet werden, um sowohl die Sicherheit als auch die Leistung des Gerätes aufrechtzuerhalten.

DIFFERENCE ENTRE QT-37H ET QT-37HG, QT-37HR

Les pièces portant une marque \(\triangle \) sont particulièrement importantes par sécurité. S'assurer de les remplacer par des pièces du numéro de pièce spècifié pour maintenir la sécurité et la performance de l'appareil.

REF.NO.	QT-37H		QT-37H0	3	QT-37HR		
TILIT.NO.	PART NO.	CODE	PART NO.	CODE	PART NO.	CODE	DESCRIPTION
101	CCABB1787AF01	BE	CCABB1787AF05	АТ	Same as QT-37HG		Back Cabinet Assembly
△ 101-1	GCABB1787AFSA	AP	GCABB1787AFSC	AP	Same as QT-37HG		Back Cabinet
101-2	LPLTK0055AFZZ	АВ	Same as QT-37H		Same as QT-37H		Plate, Battery
101-3	MSPRC0403AFFJ	AC	Same as QT-37H		Same as QT-37H		Spring, Battery (+,-)
101-4	PCOVZ1066AFZZ	AA	Same as QT-37H		Same as QT-37H		Cover, Power (Right)
101-5	PCOVP1205AFZZ	AB	Same as QT-37H		Same as QT-37H		Cover, Power (Left)
103	GCAB-1199AFSA	AY	GCAB-1199AFSC	AY	GCAB-1199AFSD	AY	Front Cabinet Assembly
103-1	GCABA1787AFSA	AW	GCABA1787AFSC	AW	GCABA1787AFSD	AW	Front Cabinet
103-2	HDALP0515AFSA	АН	HDALP0515AFSC	AK	HDALP0515AFSB	АН	Plate, Dial Scale
103-3	HDECA0540AFSA	AF	HDECA0542AFSB	AF	HDECA0542AFSC	AF	Decoration Plate, Cabinet

SHARP CORPORATION OSAKA, JAPAN

QT-37HG/HR

DEE 110	QT-37H		QT-37HG		QT-37HR		
REF.NO.	PART NO.	CODE	PART NO.	CODE	PART NO.	CODE	DESCRIPTION
△ 105.	GCOVH1179AFSG		GCOVH1179AFSH	AB	Same as QT-37HG		Cover, AC Power Supply Socket
106	GFTA-0005AFSA	AR	GFTA-0005AFSC	AR	GFTA-0005AFSD	AR	Cassette Holder Assembly
106-1	GFTAC1301AFSA	AG	GFTAC1304AFSA	AF	Same as QT-37HG		Cassette Holder
106-2	GFTAC1312AFSA	АН	GFTAC1312AFSC	АН	GFTAC1312AFSD	АН	Cover, Cassette Holder
106-3	GFTAC1313AFSA	АН	GFTAC1313AFSB	АН	Same as QT-37HG		Window, Cassette Holder
107	GFTAB1146AFSC	AE	GFTAB1146AFSB	AE	Same as QT-37HG		Lid, Battery Compartment
108	HINDP0694AFSA	AC	HINDPO790AFSA	AC	HINDP0792AFSA	AC	Label, Specification
109	HINDP0695AFSA	AC	HINDPO791AFSA	AC	HINDP0793AFSA	AC	Label, Specification (for HELIP)
110	JHNDG1091AFSC	AP	JHNDG1091AFSD	AN	JHNDG1091AFSB	AP	Handle
111	JKNBK0301AFSA	AD	JKNBK0301AFSB	AC	Same as QT-37H		Knob, Tuning Control
112	JKNBM0500AFSC	AB	JKNBM0500AFSB	AB	Same as QT-37HG		Button, Function Selector/ Tape Selector
113	JKNBM0500AFSD	АВ	JKNBM0500AFSB	AB	Same as QT-37H		Button, Dolby NR
116	JKNBP0224AFSC	AC	JKNBP0224AFSB	AC	Same as QT-37HG		Knob, Tone/Balance/Volume Control
201	GCAB-1192AFSC	AX	GCAB-1234AFSA	AX	GCAB-1213AFSB	AX	Speaker Box Assembly (Left)
201-1	GCABA1780AFSC	AW	GCABA1828AFSA	AW	GCABA1810AFSB	AW	Speaker Box (Left)
201-2	HDECQ0201AFSA	AE	Same as QT-37H		Same as QT-37H		Decoration Plate, Tweeter
201-3	HPNC-0183AFSC	AG	HPNC-0183AFSA	АН	HPNC-0183AFSB	AG	Punching Metal, Woofer
202	GCABB1780AFSC	AL	GCABB1780AFSB	AL	Same as QT-37HG		Speaker Back Cabinet (Left)
203	LHLDZ1224AFSC	AC	LHLDZ1224AFSB	AC	Same as QT-37HG		Holder, Speaker Cord
205	MLEVP0459AFSC	AD	MLEVP0459AFSB	AD	Same as QT-37HG		Lever, Speaker Lock/Release
207	GCAB-1193AFSC	AX	GCAB-1235AFSA	AX	GCAB-1214AFSB	AX	Speaker Box Assembly (Right)
207-1	GCABA1781AFSC	AW	GCABA1829AFSA	AW	GCABA1811AFSB	AW	Speaker Box (Right)
207-2	HDECQ0201AFSA	AE	Same as QT-37H		Same as QT-37H		Decoration Plate, Tweeter
207-3	HPNC-0183AFSC	AG	HPNC-0183AFSA	АН	Same as QT-37H		Punching Metal, Woofer
208	GCABB1781AFSC	AL	GCABB1781AFSB	AL	Same as QT-37HG		Speaker Back Cabinet (Right)
	SPAKC2461 AFZZ	АН	SPAKC2614AFZZ	AK	SPAKC2616AFZZ	АН	Packing Case
	SPAKC2462AFZZ	АН	SPAKC2615AFZZ	AK	SPAKC2617AFZZ	АН	Packing Case (for HELIP)

