Matrix chain multiplication: A and B can be multiplied when number of

row in A= number of column in B

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \underbrace{a_{21}}_{2} \underbrace{a_{21}}_{2} \underbrace{a_{22}}_{2} \underbrace{a_{23}}_{2} \underbrace{a_{21}}_{2} \underbrace{a_{22}}_{2} \underbrace{a_{23}}_{2} \underbrace{a_{21}}_{2} \underbrace{a_{22}}_{2} \underbrace{a_{23}}_{2} \underbrace{a_{21}}_{2} \underbrace{a_{22}}_{2} \underbrace{a_{23}}_{2} \underbrace{a_{21}}_{2} \underbrace{a_{21}}_{2} \underbrace{a_{22}}_{2} \underbrace{a_{23}}_{2} \underbrace{a_{21}}_{2} \underbrace{a_{22}}_{2} \underbrace{a_{23}}_{2} \underbrace{a_{22}}_{2} \underbrace{a_{23}}_{2} \underbrace{a_{22}}_{2} \underbrace{a_{23}}_{2} \underbrace{a_{22}}_{2} \underbrace{a_{23}}_{2} \underbrace{a_{23}}_{2} \underbrace{a_{22}}_{2} \underbrace{a_{23}}_{2} \underbrace{a_{$$

$$A_1 = 2 \times 3$$
 $A_2 = 3 \times 4$ $A_3 = 4 \times 2$.
Ninimum multiplication to find A1A2A3.

$$A_1 = 2 \times 3$$
 $A_2 = 3 \times 4$ $A_3 = 4 \times 2$.
Minimum multiplication to find AIA2A3.

Dimensions
$$(A_1, A_2) \cdot A_3$$

Dimensions $(A_1, A_2) \cdot A_3$

Dimensions $(A_1, A_2) \cdot A_3$

Dimensions $(A_1, A_2) \cdot A_3$
 $(A_1, A_2) \cdot A_3$

Dimensions $(A_2, A_3) \cdot A_3$
 $(A_1, A_2) \cdot A_3$

Dimensions $(A_2, A_3) \cdot A_3$
 $(A_1, A_2) \cdot A_3$

Dimensions $(A_2, A_3) \cdot A_3$
 $(A_1, A_2) \cdot A_3$

Dimensions $(A_2, A_3) \cdot A_3$
 $(A_1, A_2) \cdot A_3$

Dimensions $(A_2, A_3) \cdot A_3$
 $(A_1, A_2) \cdot A_3$

Dimensions $(A_2, A_3) \cdot A_3$
 $(A_1, A_2) \cdot A_3$

Dimensions $(A_2, A_3) \cdot A_3$
 $(A_1, A_2) \cdot A_3$

Dimensions $(A_2, A_3) \cdot A_3$
 $(A_1, A_2) \cdot A_3$

Dimensions $(A_2, A_3) \cdot A_3$
 $(A_1, A_2) \cdot A_3$
 $(A_1, A_2) \cdot A_3$

Dimensions $(A_2, A_3) \cdot A_4$
 $(A_2, A_3) \cdot A_3$
 $(A_1, A_2) \cdot A_4$
 $(A_1, A_2) \cdot A_4$
 (A_1, A_2)

$$A_1 = 2 \times 3$$
 $A_2 = 3 \times 4$ $A_3 = 4 \times 2$.
Minimum multiplication to find A1A2A3.

Dimensions
$$(A_1 A_2) \cdot A_3$$
 $2 \times 3 \cdot 3 \times 4 \cdot 4 \times 2$

Cost = $2 \times 4 \times 2 = 16$

Told cost operations = 40

A1 (A2 · A3).

A1 · (A2 · A3)

Dimensions
$$4 \times 3$$
 $3 \times 4 \cdot 4 \times 2$,

 $3 \times 4 \times 2 = 24$

Dimensions

 3×2
 $0 \times 4 = 2 \times 3 \times 2 = 12$

· Tobal and $= 24 + 12 = 36$.

A2 A3

C[2,3] = $c[2,2] + c[3,3]$
 $+ 3 \times 4 \times 2$
 $= 0 + 0 + 24$
 $= 24$

A3 = 4×2 .

(A, A2), (A2)

	1	2_	3	
	0	24	36	
2		0	24	
3			0	

$$A_1)(A_2\cdot A_3)$$

$$A_3$$

$$A_4$$

$$A_4$$

$$A_{1}A_{2}A_{3}A_{4}$$
 $(A_{1}A_{2})(A_{3}A_{4})$
 $A_{1}(A_{2}A_{3}A_{4})$
 $A_{2}(A_{3}A_{4})(A_{2}A_{3})A_{4}$

A, Az A3

[2,1] W2A,