Intuition:	
Duse hashmap to save key-vi	alue pairs
Hash Key 1 2 31 45	l
mp vai	
vtrs to nodes	
	most reent used
2) Use doule-linked list to keep trace	ck of LRU and MRU
[D] > [D] - [MD]	
Node = 2 - 1 - Node	
3	
if need to remove node (due to	capacity restraints), then link next printer of
the LRU Node to the node-next	
Similarly, always add node from the n	ght by changing pointers
J. J.	
(3) with (++ 40 con 100 5)	ict (live to ancilla achique this
e with cit, we can vise sit i	ist functions to easily achieve this
· key functions:	
1) 1	
std::list <t,allocator>::pop_back</t,allocator>	
void pop back();	std::list <t,allocator>::emplace_front template< class Args > (since C++11)</t,allocator>
Removes the last element of the container.	<pre>void emplace_front(Args&& args);</pre>
Calling pop_back on an empty container results in undefined behavior. References and iterators to the erased element are invalidated.	Inserts a new element to the beginning of the container. The element is constructed through
Parameters	std::allocator_traits::construct, which typically uses placement-new to construct the element in-place at the location provided by the container. The arguments args are forwarded to the constructor as std::forward-Args>(args))
(none)	No iterators or references are invalidated.
Return value	Parameters
	args - arguments to forward to the constructor of the element Type requirements
Complexity Constant.	- T (the container's element type) must meet the requirements of ${\it EmplaceConstructible}.$
Exceptions	Return value (none) (until C++17)
Throws nothing	(none) (until C++17)

pop back and emplace front ensures we always remove from the back and add from beginning then, we just need to ensure, every fine we update or get value of a node. It gets moved to the beginning

std::list<T,Allocator>::Splice

void splice(const_iterator p	os, list& other);	(1)	
<pre>void splice(</pre>	const_iterator p	os, list&& other);	(1)	(since C++11)
<pre>void splice(</pre>	const_iterator p	os, list& other, const_iterator it);	(2)	
<pre>void splice(</pre>	const_iterator p	os, list&& other, const_iterator it);	(2)	(since C++11)
<pre>void splice(</pre>	const_iterator p	os, list& other, .rst, const_iterator last);	(3)	
<pre>void splice(</pre>	const_iterator p	os, list&& other, .rst, const_iterator last);	(3)	(since C++11)

Transfers elements from one list to another.

No elements are copied or moved, only the internal pointers of the list nodes are re-pointed. The behavior is undefined if: get_allocator() != other.get_allocator() . No iterators or references become invalidated, the iterators to moved elements remain valid, but now refer into *this, not into other.

- 1) Transfers all elements from other into *this. The elements are inserted before the element pointed to by pos. The container other becomes empty after the operation. The behavior is undefined if other refers to the same
- 2) Transfers the element pointed to by it from other into *this . The element is inserted before the element pointed to by pos. 3) Transfers the elements in the range [first, last) from other into *this. The elements are inserted before the element pointed to by pos. The behavior is undefined if pos is an iterator in the range [first,last).

Parameters

pos - element before which the content will be inserted other - another container to transfer the content from

it - the element to transfer from other to *this

first, last - the range of elements to transfer from other to *this

Return value

(none)

Exceptions

Throws nothing.

Complexity

1-2) Constant.

3) Constant if other refers to the same object as *this, otherwise linear in std::distance(first, last).