Projected sales of main produ

LLM 기반 한국어 문법 오류 교정 서비스

LLM-based Korean Grammar Error Correction Service

이용빈식 캡스톤 디자인 팀

이용빈, 육정훈 2024.09.11

01 팀원 소개02 프로젝트 배경03 프로젝트 진행04 시스템 아키텍처

Contents

이1. 팀원소개

팀원 소개

이용빈 팀장, 서비스 개발, MLOps 구축

육정훈

팀원, 모델 연구 및 개발, 논문 작성

02. 프로젝트배경

프로젝트 필요성

글쓰기 - 현대인의 필수 역량

- •의사소통
- •정보 전달
- •퍼스널 브랜딩

등 글쓰기의 중요성 증가

글쓰기 보조 AI 기반 서비스 일반화

• Grammarly, Trinka, HyperWrite 등

프로젝트 필요성

- 한국어 특화 서비스의 부재
 - Grammarly 포함 대부분의 서비스는 영문 대상
 - 일부 한국어 대상 서비스 또한 대부분이 rule-base
 - Ex) 부산대 맞춤법 검사기

INPUT

안녕의 계세요. 저는 배가 고파서 단식을 해요. 배불러요!

교정 내용

입력 내용 고파서 단식을 해요

대치어 고파서 단식해요

직접 수정 원하는 대치어를 직접 입력하세요.

적용

도움말 굳이 조사 '을/를/이/가'를 쓰지 않아도 된다면 쓰지 않습니다.

프로젝트 최종 목표

- 한국어 특화 LLM 기반 글쓰기 보조 서비스 개발
 - 모델이 한국어 문법을 이해하여 이에 따른 교정 제공
 - 문맥을 반영한 교정 및 평가 제공

INPUT

안녕의 계세요. 저는 배가 고파서 단식을 해요. 배불러요!

OUTPUT

안녕하세요. 저는 배가 고파서 밥을 먹었어요. 배불러요!

Level: 2급

Score: 50점

프로젝트 최종 목표

- 서비스 주요 기능
- 1. 실시간 맞춤법 교정
- 문서 작성 중 실시간으로 맞춤법 오류를 감지하고 수정 제안 제공
- 2. 자동 글쓰기 평가
- 작성된 글에 대한 종합적인 평가 제공, 글의 질 향상 지원
- 3. 사용자 친화적 인터페이스
- 간편한 인터페이스로 누구나 쉽게 사용 가능
- 4. 다중 문서 관리
- 여러 문서의 작성, 저장, 불러오기 기능 제공

3. 프로젝트 진행

캡스톤 1 진행 상황

- GEC 단일 수행 모델 개발
 - L1, L2 오류 유형에서 SFT된 문장 단위 GEC 모델
 - Bllossom-13b 기반 모델

Madal	GLEU	\mathbf{M}^2		
Model		Pre.	Rec.	$F_{0.5}$
KoBART	33.7	44.75	14.64	31.7
BLLOSSOM	64.34	70.12	50.03	64.91

또 나쁜 꿈<mark>은</mark> 있으지도 <mark>므르다</mark>.

또 나쁜 꿈도 있을지도 모른다.

캡스톤 2 진행 상황

- AWE 단일 수행 모델 추가
 - L2 학습자의 문단 단위 글의 수준(Level) 및 점수(Score) 예측

하지만 빌리씨<mark>허</mark>고 나오코씨는 모두 사진기가 없었어요. 그래서 …

Level: 3급 Score: 90

ACC(Level)	QWK(Score)
0.9774	0.5709

사용 데이터셋

AWE(+GEC) Dataset

- 사용 데이터셋: L2 글쓰기 평가
 - 외국인이 작성한 한국어 글의 Level, Score
 - 4,011 essay, 48,937 sentences
- Input: 외국인이 작성한 한국어 글
- Output: 종합적인 수준, 점수(+교정 문단)
 - Level: 1~6급
 - Score: 0~100점

"<s>[INST] <<SYS>>

You are a helpful assistant.

<</SYS>>

"아래의 {주제}에 대한 글의 <mark>종합적인 수준과 점수</mark>를 매겨줘.

나오코씨와 빌리씨는 밥을 먹었다. 그래서 …."
[/INST]

Level: 3급

Score: 20 </s>"

캡스톤 2 진행 상황

• AWE 단일 모델 추가에 따른 추론 파이프라인 변경

<모델 서버 추론 파이프라인>

Multi Task로의 확장

- AWE + GEC Multi Task 모델 개발
 - 두 종류의 Input
 - 1. 문장 단위의 GEC
 - 2. 문단 단위의 AWE
 - 입력되는 두 종류의 Instruction에 따라 동작

Multi Task로의 확장

- AWE + GEC Multi Task 모델 개발
 - 단일 Task Model: AWE, GEC를 각각 수행하는 두 모델의 성능
 - Multi Task Model: AWE + GEC를 수행하는 단일 모델의 성능

모델 종류	Score (QWK)	GEC (GLEU)
단일 Task Model	0.4618	0.5076
Multi Task Model	0.4686	0.4992

^{*} 약간의 GEC 성능 감소

^{*} AWE 성능은 오히려 증가

서비스 측면 변화점

- 모델의 추론 속도 향상을 위한 양자화
 - 서비스를 위해, 추론 속도 증가를 위한 모델 최적화 시도
 - GPTQ 방식 사용(훈련 이후 양자화)
 - 추후 다양한 양자화 시도 예정

서비스 측면 계획

- 원활한 서비스를 위한 추론 속도 향상
 - LLM 과 같은 인공지능 기반 서비스의 큰 문제 = 추론 속도
 - 현재 두개의 모델 추론 + 네트워크 전송 시간이 겹치면 서비스 성능 및 만족도가 낮을 것으로 예상됨
 - LLM의 추론 결과를 스트리밍 방식으로 제공하여 체감 성능 향상 예정

변경점 정리 및 계획

모델 실험

- LLaMA2-13b -> LLaMA3-8b
 - 최신의 open source LLM
 - 한국어 이해 성능 향상 목적
- GEC 학습 방법 실험
 - 문장 -> 문단 확장
 - Vocab 확장 유무에 따른 성능 비교
 - 다양한 학습 기법 실험
 - 근거 있는 모델의 추론(RAG 등)
- Multi-Task 모델 성능 비교
 - GEC, AWE 동시 학습 방법 비교

04. 시스템 아키텍처

모델 서버 개요도

Level: 3급

Score: 40점

배가 고픈데 밥은 먹고 싶지 않아요. 그래서 ...

Output

시스템 개요도

<컨테이너 기반 웹 서비스>

감사합니다.

기존 실험 결과

L1

Madal	GLEU	\mathbf{M}^2		
Model		Pre.	Rec.	$F_{0.5}$
KoBART	67.24	75.34	55.95	70.45
BLLOSSOM	82.96	90.27	77.76	87.46

• L2

Madal	GLEU	\mathbf{M}^2		
Model		Pre.	Rec.	$F_{0.5}$
KoBART	45.06	43.35	24.54	37.58
BLLOSSOM	54.47	55.21	37.11	50.3

기존 실험 결과

- L1+L2
 - 두 오류 유형을 혼합한 모델의 성능이 단일 오류에 대해 학습한 모델에 비해 뛰어남

Madal	GLEU	\mathbf{M}^2		
Model		Pre.	Rec.	$F_{0.5}$
KoBART	33.7	44.75	14.64	31.7
BLLOSSOM	64.34	70.12	50.03	64.91

사용 데이터셋

GEC Dataset

- 사용 데이터셋: L1, L2
 - L1: 한국인이 작성한 맞춤법 오류 유형
 - L2: 한국어를 배우는 외국인이 작성한 오류 유형
 - 17,487(L1) + 28,424(L2)
- Input: 맞춤법 오류가 존재하는 문장
- Output: 맞춤법 오류가 해결된 문장

"<s>[INST] <<SYS>>

You are a helpful assistant.

<</SYS>>

"아래의 한국어 글에 대해 <mark>문법을 교정</mark>한 문장만 출 력해줘.

외야하면 그때 첫사랑을 만났기 때문이다." [/INST] 왜냐하면 그때 첫사랑을 만났기 때문이다.</s>"

Vocab 확장

LLaMA2-13b vs. Bllossom-13b

- Bllossom-13b
 - 고품질의 Korean-LIMA Dataset에서 학습
 - 고품질의 데이터를 이용한 효과적인 한국어 특성 학습
 - 기반 모델의 한국어 이해 능력 향상
 - Korean Vocab Extension
 - 한국어 토큰화 능력 향상
 - 다양한 맞춤법 오류에 대응 가능

<s>, '_베', '이', '징', ···, '_베', '한', '기로', ···

성능 지표

GEC

- Precision
 - 존재하는 문법 오류에 대해 모델이 올바르게 고친 비율
- Recall
 - 모델이 고친 문법 오류들 중 올바르게 고친 비율
- GLEU
 - BLEU 평가 지표에서 보다 사람의 평가에 가깝게 개선한 지표
 - BLEU의 가중치 조절

$$P = \frac{\sum_{i=1}^{n} |\mathbf{e}_{i} \cap \mathbf{g}_{i}|}{\sum_{i=1}^{n} |\mathbf{e}_{i} \cap \mathbf{g}_{i}|}$$

$$R = \frac{\sum_{i=1}^{n} |\mathbf{e}_{i} \cap \mathbf{g}_{i}|}{\sum_{i=1}^{n} |\mathbf{g}_{i}|}$$

$$F_{1} = 2 \times \frac{P \times R}{P + R},$$

$$p_n = rac{\sum_{n ext{-}gram \in Candidate} \ Count_{clip}(n ext{-}gram)}{\sum_{n ext{-}gram \in Candidate} \ Count(n ext{-}gram)}$$

$$BLEU = exp(\sum_{n=1}^{N} w_n \log p_n)$$

성능 지표

AWS Model

- QWK(Score)
 - Quadratic Weighted Kappa
 - 예측과 정답 사이의 차이를 가중하여 반영하는 평가 지표 [-1, 1]
 - 0: Random한 예측의 점수
- ACC(Level)
 - Accuracy
 - 정확도

$$egin{aligned} ext{QWK} &= 1 - rac{\sum_{i,j} W_{ij} O_{ij}}{\sum_{i,j} W_{ij} E_{ij}} \ W_{ij} &= rac{(i-j)^2}{(N-1)^2} \end{aligned}$$

- * 차이가 클 수록 가중치도 커짐
- * 랜덤하게 생성된 분포와의 편차 비율

학습 방법

SFT

- Instruction 형태로 모델에게 입력을 주는 Instruction Tuning
 - 문법 오류가 존재하는 문장, 해결된 문장의 쌍으로 구성
- Instruction[©] Masking
 - Instruction의 loss 계산 제외
 - 모델의 잘못된 문법에 대한 학습 방지

Input: <s>[INST] … "아래의 한국어 글에 대해 문법을 교정한 문장만 출력해줘. <mark>외야하면 그때 첫사랑을 만났기 때문이다.[/INST]</mark> 왜냐하면 … </s>

Label: <s>[INST] … "아래의 한국어 글에 대해 문법을 교정한**GNOREINDEX**해줘. 외야하면 그때 첫사랑을 만났기 때문이다.[/INST] 왜냐하면 … </s>

Stage1 – GEC Dataset 39,076 Samples(Sentence)

Instruction

해당 글의 맞춤법을 교정한 문장을 출력해줘.

Input

외<mark>야하면</mark> 그때 첫사랑을 <mark>만난기</mark> 때문이다.

Output

왜냐하면 그때 첫사랑을 **만났기** 때문이다.

Stage2 – GEC + AWE Dataset 4,002 Samples(Essay)

Instruction

아래의 글의 **맞춤법을 교정**하고, 전반적인 내용의 질에 따른 **수준과 점수**를 평가해줘.

Input

하지만 빌리씨<mark>허</mark>고 나오코씨는 모두 사진기가 없<mark>엇</mark>어요. 그래서 …

Output

하지만 빌리씨<mark>하</mark>고 나오코씨는 모두 사진기가 없<mark>었</mark>어요. 그래서 …

Score: 30 Level: 4급