Visualización de Datos de Varias Tablas Utilizando Uniones

Objetivos

Al finalizar esta lección, debería estar capacitado para lo siguiente:

- Escribir sentencias SELECT para acceder a datos de más de una tabla mediante uniones igualitarias y no igualitarias
- Unir una tabla consigo misma mediante autounión
- Ver datos que normalmente no cumplen una condición de unión mediante uniones OUTER
- Generar un producto cartesiano de todas las filas de una o más tablas

Agenda

- Tipos de JOINS y sintaxis
- Unión natural:
 - Cláusula using
 - Cláusula ON
- Autounión
- Uniones no igualitarias
- Unión OUTER:
 - Unión LEFT OUTER
 - Unión RIGHT OUTER
 - Unión FULL OUTER
- Producto cartesiano
 - Unión cruzada

Obtención de Datos de Varias Tablas

EMPLOYEES DEPARTMENTS EMPLOYEE_ID LAST_NAME DEPARTMENT_ID DEPARTMENT_ID DEPARTMENT_NAME LOCATION_ID 200 Whalen 10 Administration 10 1700 1 201 Hartstein 20 20 Marketing 1800 202 Fay 20 50 Shipping 1500 3 60 IT 1400 4 5 80 Sales 2500 174 Abel 18 80 6 90 Executive 1700 19 176 Taylor 80 110 Accounting 7 1700 20 178 Grant (null) 190 Contracting 8 1700 DEPARTMENT_ID EMPLOYEE_ID DEPARTMENT_NAME 200 10 Administration 1 201 20 Marketing 20 Marketing 3 202 124 4 50 Shipping 205 110 Accounting 18 19 206 110 Accounting

Tipos de Uniones

Las uniones compatibles con el estándar SQL:1999 incluyen los siguientes elementos:

- Uniones naturales:
 - Cláusula natural join
 - Cláusula USING
 - Cláusula ON
- UnionesOUTER:
 - LEFT OUTER JOIN
 - RIGHT OUTER JOIN
 - FULL OUTER JOIN
- Uniones cruzadas

Unión de Tablas mediante la Sintaxis SQL:1999

Utilizar una unión para consultar datos de más de una tabla:

```
SELECT table1.column, table2.column
FROM table1
[NATURAL JOIN table2] |
[JOIN table2 USING (column_name)] |
[JOIN table2
ON (table1.column_name = table2.column_name)] |
[LEFT|RIGHT|FULL OUTER JOIN table2
ON (table1.column_name = table2.column_name)] |
[CROSS JOIN table2];
```

Cualificación de Nombres de Columna Ambiguos

- Utilizar prefijos de tabla para cualificar los nombres de columna que están en varias tablas.
- Utilizar prefijos de tabla para mejorar el rendimiento.
- En lugar de prefijos de nombre de tabla completos, utilizar alias de tabla.
- Los alias de tablas proporciona un nombre más corto de una tabla:
 - Mantiene el código SQL más pequeño, utiliza menos memoria
- Utilizar alias de columna para distinguir columnas que tienen nombres idénticos, pero que residen en diferentes tablas.

Agenda

- Tipos de JOINS y sintaxis
- Unión natural:
 - Cláusula using
 - Cláusula ON
- Autounión
- Uniones no igualitarias
- Unión OUTER:
 - Unión LEFT OUTER
 - Unión RIGHT OUTER
 - Unión FULL OUTER
- Producto cartesiano
 - Unión cruzada

Creación de Uniones Naturales

- La cláusula NATURAL JOIN está basada en todas las columnas de las dos tablas que tienen el mismo nombre.
- Selecciona filas de las dos tablas que tienen valores iguales en todas las columnas coincidentes.
- Si las columnas que tienen el mismo nombre tienen tipos de dato diferentes, se devolverá un error.

Recuperación de Registros con Uniones Naturales

A	DEPARTMENT_ID	DEPARTMENT_NAME	LOCATION_ID	2 CITY
1	60	IT	1400	Southlake
2	50	Shipping	1500	South San Francisco
3	10	Administration	1700	Seattle
4	90	Executive	1700	Seattle
5	110	Accounting	1700	Seattle
6	190	Contracting	1700	Seattle
7	20	Marketing	1800	Toronto
8	80	Sales	2500	Oxford

Creación de Uniones con la Cláusula USING

- Si varias columnas tienen el mismo nombre pero los tipos de dato no coinciden, utilizar la cláusula USING para especificar las columnas para la unión igualitaria.
- Utilizar USING para que sólo coincida una columna en caso de que coincida más de una.
- Las cláusulas NATURAL JOIN y USING se excluyen mutuamente.

Unión de Nombres de Columna

Recuperación de Registros con la Cláusula USING

	EMPLOYEE_ID	LAST_NAME	2 LOCATION_ID	DEPARTMENT_ID
1	200	Whalen	1700	10
2	201	Hartstein	1800	20
3	202	Fay	1800	20
4	144	Vargas	1500	50
5	143	Matos	1500	50
6	142	Davies	1500	50
7	141	Rajs	1500	50
8	124	Mourgos	1500	50
18	206	Gietz	1700	110
10	205	Higgins	1700	110

Uso de Alias de Tabla con la Cláusula USING

- No cualificar una columna que se utilice en la cláusula USING.
- Si la misma columna se utiliza en otro lugar de la sentencia SQL, no se le puede agregar un alias.

```
SELECT 1.city, d.department_name
FROM locations 1 JOIN departments d
USING (location_id)
WHERE d.location_id = 1400;
```


Creación de Uniones con la Cláusula ON

- La condición de unión de la unión natural es básicamente una unión igualitaria de todas las columnas con el mismo nombre.
- Utilizar la cláusula ON para especificar condiciones arbitrarias o columnas que se van a unir.
- La condición de unión está separada de otras condiciones de búsqueda.
- La clausula ON facilita la comprensión del código.

Recuperación de Registros con la Cláusula ON

	EMPLOYEE_ID	LAST_NAME	DEPARTMENT_ID	DEPARTMENT_ID_1	LOCATION_ID
1	200	Whalen	10	10	1700
2	201	Hartstein	20	20	1800
3	202	Fay	20	20	1800
4	144	Vargas	50	50	1500
5	143	Matos	50	50	1500
6	142	Davies	50	50	1500
7	141	Rajs	50	50	1500
8	124	Mourgos	50	50	1500
9	103	Hunold	60	60	1400
10	104	Ernst	60	60	1400
11	107	Lorentz	60	60	1400

- - -

Creación de Uniones en 3 Direcciones con la Cláusula ON

```
SELECT employee_id, city, department_name
FROM employees e

JOIN departments d
ON d.department_id = e.department_id
JOIN locations l
ON d.location_id = l.location_id;
```

	A	EMPLOYEE_ID	A	CITY	A	DEPARTMENT_NAME
1		100	Sea	ttle	Exe	cutive
2		101	Sea	ttle	Exe	cutive
3		102	Sea	ttle	Exe	cutive
4		103	Sou	ıthlake	ΙΤ	
5		104	Sou	ıthlake	ΙΤ	
6		107	Sou	ıthlake	ΙΤ	
7		124	Sou	ıth San Francisco	Shij	pping
8		141	Sou	ıth San Francisco	Shi	pping
9		142	Sou	ıth San Francisco	Shi	pping

- - -

Aplicación de Condiciones Adicionales a una Unión

Uso de la cláusula AND o la cláusula WHERE para aplicar condiciones adicionales:

O bien

Agenda

- Tipos de JOINS y sintaxis
- Unión natural:
 - Cláusula USING
 - Cláusula ON
- Autounión
- Uniones no igualitarias
- Unión OUTER:
 - Cláusula Left outer
 - Unión RIGHT OUTER
 - Unión FULL OUTER
- Producto cartesiano
 - Unión cruzada

Unión de una Tabla consigo Misma

EMPLOYEES (WORKER)

EMPLOYEES (MANAGER)

2 EMPLOYEE_ID 2 LAST_NAME	MANAGER_ID	② EMPLOYEE_ID ② LAST_NAME
200 Whalen	101	200 Whalen
201 Hartstein	100	201 Hartstein
202 Fay	201	202 Fay
205 Higgins	101	205 Higgins
206 Gietz	205	206 Gietz
100 King	(null)	100 King
101 Kochhar	100	101 Kochhar
102 De Haan	100	102 De Haan
103 Hunold	102	103 Hunold
104 Ernst	103	104 Ernst
		•••

MANAGER_ID en la tabla WORKER es igual a EMPLOYEE_ID en la tabla MANAGER.

Autouniones que Utilizan la Cláusula ON

```
SELECT worker.last_name emp, manager.last_name mgr
FROM employees worker JOIN employees manager
ON (worker.manager_id = manager.employee_id);
```

	B EMP	∄ MGR
1	Hunold	De Haan
2	Fay	Hartstein
3	Gietz	Higgins
4	Lorentz	Hunold
5	Ernst	Hunold
6	Zlotkey	King
7	Mourgos	King

. . .

Agenda

- Tipos de JOINS y sintaxis
- Unión natural:
 - Cláusula using
 - Cláusula ON
- Autounión
- Uniones no igualitarias
- Unión outer:
 - Cláusula Left outer
 - Unión RIGHT OUTER
 - Unión FULL OUTER
- Producto cartesiano
 - Unión cruzada

Uniones no igualitarias

EMPLOYEES

JOB GRADES

2999

5999

9999

14999

24999

40000

Recuperación de Registros con Uniones no Igualitarias

```
SELECT e.last_name, e.salary, j.grade_level
FROM employees e JOIN job_grades j
ON e.salary
BETWEEN j.lowest_sal AND j.highest_sal;
```

	LAST_NAME	2 SALARY	grade_level
1	Vargas	2500	A
2	Matos	2600	A
3	Davies	3100	В
4	Rajs	3500	В
5	Lorentz	4200	В
6	Whalen	4400	В
7	Mourgos	5800	В
8	Ernst	6000	С
9	Fay	6000	С
10	Grant	7000	С

. . .

Agenda

- Tipos de JOINS y sintaxis
- Unión natural:
 - Cláusula using
 - Cláusula ON
- Autounión
- Uniones no igualitarias
- Unión OUTER:
 - Cláusula Left outer
 - Unión right outer
 - Unión FULL OUTER
- Producto cartesiano
 - Unión cruzada

Devolución de Registros sin Coincidencia Directa con las uniones OUTER

DEPARTMENTS

Uniones Igualitarias con EMPLOYEES

No hay ningún empleado en el departamento 190.

Al empleado "Grant" no se le ha asignado un ID departamento.

Uniones INNER frente a Uniones OUTER

- En SQL:1999, la unión de dos tablas que devuelven sólo filas coincidentes se denomina unión INNER.
- Una unión entre dos tablas que devuelve los resultados de la unión INNER y las filas no coincidentes de las tablas izquierda (o derecha) se denomina una unión OUTER.
- Una unión entre dos tablas que devuelve los resultados de una unión INNER y los resultados de una unión izquierda y derecha da como resultado una unión OUTER completa.

LEFT OUTER JOIN

```
SELECT e.last_name, e.department id, d.department_name
FROM employees e LEFT OUTER JOIN departments d
ON (e.department_id = d.department_id);
```

	LAST_NAME	DEPARTMENT_ID	DEPARTMENT_NAME
1	Whalen	10	Administration
2	Fay	20	Marketing
3	Hartstein	20	Marketing
4	Vargas	50	Shipping
5	Matos	50	Shipping

16 Kochhar	90 Executive
17 King	90 Executive
18 Gietz	110 Accounting
19 Higgins	110 Accounting
20 Grant	(null) (null)

RIGHT OUTER JOIN

```
SELECT e.last_name, d.department id, d.department_name
FROM employees e RIGHT OUTER JOIN departments d
ON (e.department_id = d.department_id);
```

	LAST_NAME	DEPARTMENT_ID	DEPARTMENT_NAME
1	Whalen	10	Administration
2	Hartstein	20	Marketing
3	Fay	20	Marketing
4	Davies	50	Shipping
5	Vargas	50	Shipping
6	Rajs	50	Shipping
7	Mourgos	50	Shipping
8	Matos	50	Shipping

. . .

18 Higgins	110 Accounting
19 Gietz	110 Accounting
20 (null)	190 Contracting

FULL OUTER JOIN

```
SELECT e.last_name, d.department_id, d.department_name
FROM employees e FULL OUTER JOIN departments d
ON (e.department_id = d.department_id);
```

	LAST_NAME	DEPARTMENT_ID	DEPARTMENT_NAME
1	Whalen	10	Administration
2	Hartstein	20	Marketing
3	Fay	20	Marketing
4	Higgins	110	Accounting

-	

17 Zlotkey	80 Sales
18 Abel	80 Sales
19 Taylor	80 Sales
20 Grant	(null) (null)
21 (null)	190 Contracting

Agenda

- Tipos de JOINS y sintaxis
- Unión natural:
 - Cláusula using
 - Cláusula ON
- Autounión
- Unión no igualitaria
- Unión outer:
 - Cláusula Left outer
 - Unión RIGHT OUTER
 - Unión FULL OUTER
- Producto cartesiano
 - Unión cruzada

Productos Cartesianos

- Un producto cartesiano se forma cuando:
 - Se omite una condición de unión
 - Una condición de unión no es válida
 - Todas las filas de la primera tabla se unen a todas las filas de la segunda tabla
- Se incluye siempre una condición de unión válida si desea evitar un producto cartesiano.

Generación de un Producto Cartesiano

EMPLOYEES (20 filas)

A	EMPLOYEE_ID	LAST_NAME	DEPARTMENT_ID
1	200	Whalen	10
2	201	Hartstein	20
3	202	Fay	20
4	205	Higgins	110
19	176	Taylor	80
20	178	Grant	(null)

22

DEPARTMENTS (8 filas)

	DEPARTMENT_ID	DEPARTMENT_NAME	2 LOCATION_ID
1	10	Administration	1700
2	20	Marketing	1800
3	50	Shipping	1500
4	60	IT	1400
5	80	Sales	2500
6	90	Executive	1700
7	110	Accounting	1700
8	190	Contracting	1700

1800

201

159	176	80	1700
160	178	(null)	1700

Creación de Uniones Cruzadas

- La cláusula CROSS JOIN produce el producto combinado de dos tablas.
- Esto también se denomina un producto cartesiano entre dos tablas.

SELECT last_name, department_name
FROM employees
CROSS JOIN departments;

158	Vargas	Contracting
159	Whalen	Contracting
160	Zlotkey	Contracting

Prueba

La sintaxis de unión estándar SQL:1999 soporta los siguientes tipos de uniones. ¿Qué tipos de unión no soporta la sintaxis de unión de Oracle?

- 1. Uniones igualitarias
- 2. Uniones no igualitarias
- 3. Unión OUTER izquierda
- 4. Unión OUTER derecha
- 5. Unión OUTER completa
- Autouniones
- 7. Uniones naturales
- Productos cartesianos

Resumen

En esta lección debe haber aprendido a utilizar uniones para mostrar los datos de varias tablas utilizando:

- Uniones igualitarias
- Uniones no igualitarias
- Uniones OUTER
- Autouniones
- Uniones cruzadas
- Uniones naturales
- Unión OUTER completa (o de dos lados)

Práctica 6: Visión General

En esta práctica se abordan los siguientes temas:

- Unión de tablas con una unión igualitaria
- Realización de uniones externas y autouniones
- Adición de condiciones