12963 76651

ENERGY REPORT.docx

Assignment

Class

University

Document Details

Submission ID

trn:oid:::1:2927237515

Submission Date

May 21, 2024, 7:17 PM UTC

Download Date

May 21, 2024, 7:19 PM UTC

File Name

AgADmBIAAjdiaFI

File Size

506.6 KB

70 Pages

8,077 Words

58,378 Characters

How much of this submission has been generated by AI?

0%

of qualifying text in this submission has been determined to be $\label{eq:generated} \mbox{ generated by AI.}$

Caution: Percentage may not indicate academic misconduct. Review required.

It is essential to understand the limitations of AI detection before making decisions about a student's work. We encourage you to learn more about Turnitin's AI detection capabilities before using the tool.

Frequently Asked Questions

What does the percentage mean?

The percentage shown in the AI writing detection indicator and in the AI writing report is the amount of qualifying text within the submission that Turnitin's AI writing detection model determines was generated by AI.

Our testing has found that there is a higher incidence of false positives when the percentage is less than 20. In order to reduce the likelihood of misinterpretation, the AI indicator will display an asterisk for percentages less than 20 to call attention to the fact that the score is less reliable.

However, the final decision on whether any misconduct has occurred rests with the reviewer/instructor. They should use the percentage as a means to start a formative conversation with their student and/or use it to examine the submitted assignment in greater detail according to their school's policies.

How does Turnitin's indicator address false positives?

Our model only processes qualifying text in the form of long-form writing. Long-form writing means individual sentences contained in paragraphs that make up a longer piece of written work, such as an essay, a dissertation, or an article, etc. Qualifying text that has been determined to be AI-generated will be highlighted blue on the submission text.

Non-qualifying text, such as bullet points, annotated bibliographies, etc., will not be processed and can create disparity between the submission highlights and the percentage shown.

What does 'qualifying text' mean?

Sometimes false positives (incorrectly flagging human-written text as AI-generated), can include lists without a lot of structural variation, text that literally repeats itself, or text that has been paraphrased without developing new ideas. If our indicator shows a higher amount of AI writing in such text, we advise you to take that into consideration when looking at the percentage indicated.

In a longer document with a mix of authentic writing and AI generated text, it can be difficult to exactly determine where the AI writing begins and original writing ends, but our model should give you a reliable guide to start conversations with the submitting student.

Disclaimer

Our AI writing assessment is designed to help educators identify text that might be prepared by a generative AI tool. Our AI writing assessment may not always be accurate (it may misidentify both human and AI-generated text) so it should not be used as the sole basis for adverse actions against a student. It takes further scrutiny and human judgment in conjunction with an organization's application of its specific academic policies to determine whether any academic misconduct has occurred.

Table of Contents

Executive Summary	3
1.0 Introduction	4
1.1 Background	4
1.2 Purpose and Rationale	4
1.3 Hypothesis	5
1.4 Objectives	5
2.0 Literature	6
3.0 Methods	7
3.1 Data Source	7
3.2 Data Collection	7
3.4 Plotting the Data	9
3.5 Data Preprocessing	10
3.6 Analytical Methods Used	11
3.6.1 Principal Components Analysis (PCA) and its Visualization	11
3.6.2 Eigenvalues	11
3.6.3 Factor Analysis & MDS	11
3.6.4 Correspondence Analysis	12
3.6.5 Canonical Correlation Analysis with PROC CANCORR	12
3.6.6 Canonical Discriminant Analysis	12

3.6.7 Clustering	
3.6.8 PLS Regression	
4.0 Results	
4.1 Principal Components Analysis (PCA) and its Visualizat	ion
4.1.1 Scree plot	
4.1.2 Scatter Plot of Principal Components	
4.2 Eigenvalues	
4.3 Factor Analysis & MDS	
4.4 Correspondence Analysis	22
4.5 Canonical Correlation Analysis with PROC CANCORR	24
4.6 Canonical Discriminant Analysis	30
4.7 Clustering	31
4.8 PLS Regression	32
5.0 Discussion	36
6.0 References	38
7.0 Appendices	Error! Bookmark not defined.

Executive Summary

Energy use by appliances and lights fittings have been investigated in this study. Further, this study intended to develop models that predict energy usage based on environmental parameters and variables such as temperature, wind speed and visibility. A multivariate time series data set from Appliances Energy Predictions (an online repository) with 28 variables has been utilized. The data consisted of aggregating environmental measurements and conditions and recorded data on energy usage for a 4.5-month period.

A number of analytical methods, including Principal Components Analysis, Canonical Correlation Analysis, and Partial Least Squares (PLS) Regression, were performed. Findings revealed significant associations between environmental factors, weather conditions, and energy usage, validating hypotheses on the impact of these factors on energy consumption. The PLS regression model captured 91.11% of the variance in predictor variables and 73.03% of the variance in energy usage, demonstrating robust predictive capabilities. Cross-validation analysis confirmed the model's reliability, with a Root Mean PRESS of 0.6702.

1.0 Introduction

1.1 Background

Energy usage in buildings constitutes a significant portion of total energy usage globally. Optimizing energy consumption is paramount as the world increasingly focuses on sustainability (Cao et al., 2016). Low-energy buildings are designed to minimize energy use while maintaining comfort. Therefore, effective energy management in such buildings relies on understanding energy consumption patterns and identifying their influencing factors. In US, residential and commercial buildings explains for approximately 40% of total energy consumption (U.S. Energy Information Administration, 2018).

Developments in technologies, coupled with an ever-growing number of energy-efficiency regulatory initiatives, have furthered the promotion of low-energy building practices around the world. According to (Du et al., 2022), these buildings implement all types of design strategies and technologies that lower the demand for energy and increase comfort among their occupants. From passive solar design principles to integrating energy-efficient appliances and HVAC systems today, low-energy buildings clearly show the potential for high-impact sustainable living without compromising the quality of life. But achieving energy performance should go beyond technologies; it requires good knowledge of how different factors interact and affect energy consumption patterns

1.2 Purpose and Rationale

This paper analyses the energy use in appliances and light fittings in a relatively low-energy building and how the indoor and outdoor environmental variables affect energy consumption. A low-energy building is designed to use very little energy to sustain comfort for its users. This

study is intended to develop models that predict energy consumption from environmental parameters and weather conditions.

The study sheds more light on the complex dynamic in energy management. Additionally, the idea of energy management in low-energy buildings finds space for discussion based on its total setting. Indoor temperatures, humidity, and whether it is hot or cold from the outside bear together on energy use. Such approaches often depend on simple heuristics that are employed without the ability to capture the full complexity of the dynamics in energy consumption.

1.3 Hypothesis

H1: Outdoor weather conditions (temperature, wind speed and visibility) significantly influences energy usage for the appliances and lights.

H2: A relationship exists between indoor temperatures and humidity levels with energy usage.

H3: Past energy usage and environmental conditions possess predictive power for forecasting future energy use.

1.4 Objectives

This study's purpose is to:

- 1. Analyze the energy usage patterns in a low-energy building.
- 2. Investigate the relationship between indoor temperatures, humidity levels, outdoor weather conditions, and energy consumption.
- 3. Develop a predictive models for future based on past energy usage and environmental conditions.

2.0 Literature

Previous literature has explored the study of energy consumption in buildings and the factors responsible for driving it. Some studies have examined energy consumption patterns in buildings, focusing on predicting energy used by appliances in a low-energy houses. Studies by Candanedo et al. (2017) and Guo et al. (2015) used the data from wireless sensors installed to assess the environment inside buildings and outside spaces and data from smart electric meters for demand load studies to describe the outline of energy demand loads.

Concurrently, research efforts have examined occupant behaviours in homes and offices to rate appliance efficiency. Works by Hong et al. (2016) and Kavousian et al. (2015) analyzed occupant behaviours during their stay, employing regression model and probabilistic models to analyse and identify patterns. Additionally, studies have attempted to precisely predict occupancy numbers by investigating appliance use behaviours (Candanedo, 2016).

Taken together, these studies emphasized the nature of appliance energy use in homes or office spaces, which is basically driven by the number of occupants, internal and external environmental conditions, building architecture, and geographical location. The knowledge and incorporation of these become vital for the derivation of appliance energy consumption in Inhabited Environment Buildings.

This study utilizes weather data (temperature, humidity, wind speed, visibility and dew points) to understand the complex dynamic relationship between internal and external environment factors in the building as well as energy usage. Research in this domain has the potential to reveal new insights and strategies toward higher energy efficiency. Additionally, the data in this research on

energy use by appliances are very comprehensive and set the stage for understanding the dynamics likely to emerge in great detail.

3.0 Methods

3.1 Data Source

The study uses multivariate time series data sourced from the Appliances Energy dataset (oline repository). The source has been considered reputable because of its reliability, wide use, and thorough documentation.

3.2 Data Collection

The dataset contained comprehensive data on the energy usage of appliances and light fixtures in a low-energy building. It also included various environmental readings inside the house and weather conditions from the nearest airport weather station. Data was collected at regular 10-minute intervals over 4.5 months. Data collection was facilitated using a ZigBee module and m-bus energy meters. Temperature and humidity conditions were monitored using a ZigBee module. Each module recorded and transmitted the data every 3.3 minutes. The data was then averaged over 10-minute periods. Energy usage data for appliances and light fixtures was recorded in every 10 minutes using m-bus energy meters.

Variables such as wind speed, dew points and visibility accounts for the weather data. This data was obtained from a public dataset and merged with the experimental data using the date and time columns. 19, 735 samples constituted the data. Each sample constituted the data, representing a unique 10-minute data collection interval. There were 28 variables, including appliance energy use in *Wh*, light energy use in *Wh*, indoor temperatures and humidity

percentages for various rooms, outdoor temperature and humidity percentages, and weatherrelated variables such as wind speed and visibility.

Table 1

Variable Information

Variable Name	Unit
Date time year-month-day	hour: minute: second
Appliances, energy use	Wh
lights, energy use of lights fixtures in the house	Wh
T1, Temperature in kitchen	оС
T2, Temperature in living room	оС
T3, Temperature in laundry room	оС
T4, Temperature in office room	оС
T5, Temperature in bathroom	оС
T6, Temperature outside the building	оС
T7, Temperature in ironing room	оС
T8, Temperature in teenager room	оС
T9, Temperature in parents room	оС
To Temperature outside (from Chievres weather station)	оС
RH_1, Humidity in kitchen	%
RH_2, Humidity in living room	%
RH_3, Humidity in laundry room	%
RH_4, Humidity in office room	%
RH_5, Humidity in bathroom	%
RH_6, Humidity outside the building	%
RH_7, Humidity in ironing room	%
RH_8, Humidity in teenager room	%
RH_9, Humidity in parents room	%
RH_out, Humidity outside (from Chievres weather station)	%
Pressure (from Chievres weather station)	mm Hg
Wind speed (from weather station)	m/s
Visibility (From Chievres weather station)	km
Tdewpoint (from Chievres weather station)	A°C
rv1, Random variable 1	non-dimensional
rv2, Random variable 2	non-dimensional

3.4 Plotting the Data

Energy usage, shown by figure 1 and 2 indicates fluctuatuation over time. The energy used by lights is relatively lower than that of appliances because lights are often turned off during the day. In contrast, appliances require more energy because electronic household items are used frequently throughout the day.

Figure 1

Daily average energy use by appliance

Figure 2: Daily average energy use by lights

3.5 Data Preprocessing

Data preprocessing was conducted before analysis to prepare the data for statistical modelling. Since there was no explicit group structure within the dataset, it was divided into indoor and outdoor data based on the captured environmental readings and weather conditions. Random variables (rv1 and rv2) were used to test regression models by filtering out non-predictive attributes, thus, ensuring the robustness of the predictive models. The classification into indoor and outdoor variables was primarily based on the measurement location and the nature of the data.

In addition, since the dataset contained energy usage time series data for each 10-minute interval, several attributes were generated, including daily average, daily minimum, daily maximum, morning, afternoon, evening, and night. All these attributes were prepared to identify different energy use patterns at other times of the day. These analyses helped identify relationships among the predictor and target variables (Appliances).

3.6 Analytical Methods Used

The SAS Statistics Analysis System was used broadly in the research through key analytical methods. It is a robust statistical software package designed to run under large datasets and complex analyses, with an enormous set of procedures and tools for data manipulation, visualization, advanced statistical modelling, and more. SAS comprises a wide-ranging set of procedures and tools useful for manipulating data, visualizing data, and performing highly advanced statistical modeling.

The following methods were employed to analyze the dataset and address the research aims:

3.6.1 Principal Components Analysis (PCA) and its Visualization

PCA is used to reduce dimensionality in the data set and to detect patterns in the data. Visualization techniques such as scatter and scree plots were generated to explore energy usage patterns and relationships between variables.

3.6.2 Eigenvalues

As part of PCA, the eigenvalues were obtained to determine the variance accounted for by each principal component. It assists in measuring how much important information regarding the scatter of the data is captured by each principal component (Allee et al., 2022).

3.6.3 Factor Analysis & MDS

MDS helps visualize dissimilarities or similarities between samples or variables in a low-dimensional space and explore relationships between indoor conditions, outdoor weather, and energy consumption patterns. Together with factor analysis, identification of the latent factors underlying observed variables was carried out, revealing the structures under the data (Tucker-Drob & Salthouse, 2009)

3.6.4 Correspondence Analysis

Correspondence analysis explores associations between categorical variables (Riani et al., 2022). It helped understand the relationships between indoor environmental conditions and energy consumption behaviour, shedding light on factors influencing energy use within the building. The results will be visualized using biplots to display the associations between categories.

3.6.5 Canonical Correlation Analysis with PROC CANCORR

The relationship in the data variables was explored using the canonical correlation analysis. It is hypothesized that there exists connection between indoor conditions, energy usage and outdoor weather conditions. It identifies the most potent linear combinations of variables from different sets, providing insights into the associations between indoor and outdoor factors influencing energy consumption.

3.6.6 Canonical Discriminant Analysis

Observation in the data were clasified into unique groups based on predictor variables. The discriminant functions will be visualized to understand how well the groups are separated. It identifies the most discriminant variables that differentiate between groups (Ariza et al., 2021). It helped understand the factors contributing to variations in energy consumption patterns, facilitating the identification of key predictors for energy efficiency.

3.6.7 Clustering

Obsevations in the data with similar claracteristics were group together to form data clusters. K-Means Cluster analysis is a commonly applied method of data clustering and therefore it was employed (Oti et al., 2021). It helped identify subgroups in the data having similar energy consumption profiles, providing insights into factors influencing energy use variations.

3.6.8 PLS Regression

PLS regression was employed to model the relationships between predictor variables (e.g., indoor conditions, outdoor weather) and a response variable (Appliances). It helped develop predictive models for future energy use based on past energy usage and environmental conditions, contributing to understanding and forecasting energy consumption.

4.0 Results

4.1 Principal Components Analysis (PCA) and its Visualization

Principal Components Analysis (PCA) applied to the dataset reduced its dimensionality, uncovering underlying patterns. This technique transformed the original variables into a new set of uncorrelated variables, known as principal components, which capture the maximum variance in the data. The dataset was simplified by focusing on the first few principal components while retaining most of its original information.

4.1.1 Scree plot

The scree plot in Figure 1 visualizes the eigenvalues and determines the number of significant principal components. The plot identifies the elbow point, where the explained variance starts to level off, indicating the optimal number of components to retain.

Figure 3

Scree plot

4.1.2 Scatter Plot of Principal Components

A scatter plot of the first two principal components visualizes the data in reduced dimension space. This plot identifies clusters and patterns in the data (see Figure 2).

Figure 4

Scatter Plot of Principal Components

4.2 Eigenvalues

Eigenvalues of the correlation matrix in Table 2 reveal the variance explained by each principal component, shedding light on their significance in understanding energy usage patterns. The scree plot in Figure 1 illustrates the diminishing magnitude of eigenvalues, with the first few eigenvalues contributing substantially to the variance. The first principal component accounts for 29.87% of the total variance, followed by the second component at 24.10%. The first two components explain over half (53.97%) of the variance. As the number of principal components increases, their contribution to the cumulative variance decreases gradually, with subsequent components capturing diminishing proportions of variability.

Table 2

Eigenvalues

Eigenvalues of the Correlation Matrix						
	Eigenvalue	Difference	Proportion	Cumulative		
1	8.36391608	1.61713651	0.2987	0.2987		
2	6.74677957	4.73952193	0.2410	0.5397		
3	2.00725764	0.22203118	0.0717	0.6114		
4	1.78522646	0.43955484	0.0638	0.6751		
5	1.34567163	0.18793895	0.0481	0.7232		
6	1.15773268	0.14088556	0.0413	0.7645		
7	1.01684712	0.04049376	0.0363	0.8008		
8	0.97635336	0.10142099	0.0349	0.8357		
9	0.87493237	0.13986452	0.0312	0.8670		
10	0.73506785	0.12889218	0.0263	0.8932		
11	0.60617567	0.08771918	0.0216	0.9149		
12	0.51845649	0.06067677	0.0185	0.9334		
13	0.45777972	0.20873528	0.0163	0.9497		
14	0.24904443	0.06416787	0.0089	0.9586		
15	0.18487656	0.03057107	0.0066	0.9652		
16	0.15430549	0.01333131	0.0055	0.9707		
17	0.14097418	0.00653152	0.0050	0.9758		
18	0.13444267	0.01930781	0.0048	0.9806		
19	0.11513485	0.02148678	0.0041	0.9847		
20	0.09364807	0.01055418	0.0033	0.9880		

4.3 Factor Analysis & MDS

The factor analysis aimed to identify the underlying structure in the data by reducing the number of observed variables into a smaller set of latent factors. The initial step involved extracting eigenvalues from the correlation matrix. The eigenvalues for the first two factors were significantly higher, with Factor 1 at 8.364 and Factor 2 at 6.747(see factor Analysis in Appendix A). Together, these two factors explain 53.97% of the total variance. The scree plot in Figure below supported the retention of two factors, showing a steep decline after the second factor.

The initial factor loadings showed that Factor 1 had strong positive correlations with variables related to temperature (e.g., T1_num at 0.906, T2_num at 0.802, T3_num at 0.898). In contrast, Factor 2 strongly correlated with relative humidity variables (e.g., RH_1_num at 0.913, RH_2_num at 0.792, RH_3_num at 0.890) (see factor Analysis in Appendix A). This indicated that temperature and humidity were the data structure's primary dimensions.

Varimax rotation improved the interpretability of the factors; the rotated factor loadings reinforced the initial findings. Factor 1 continued to have high loadings on temperature-related

variables (e.g., T1_num at 0.930, T2_num at 0.838, T3_num at 0.931), while Factor 2 maintained high loadings on humidity-related variables (e.g., RH_1_num at 0.897, RH_2_num at 0.807, RH_3_num at 0.922) (see factor Analysis in Appendix A). This rotation clarified the distinction between the two factors.

The commonalities, representing the proportion of each variable's variance explained by the retained factors, were high for most temperature and humidity variables, indicating they were well-represented by the two factors. T1_num and RH_1_num had commonalities of 0.868 and 0.834, respectively. Conversely, variables like Appliances_num and Visibility_num had low communalities, suggesting they could have been more effectively captured.

The orthogonal transformation matrix revealed linear solid relationships between the original and rotated factors, reinforcing the reliability of the factor structure. The standardized scoring coefficients used to compute factor scores showed that temperature variables heavily influenced Factor 1, while humidity variables predominantly affected Factor 2.

MDS

The MDS analysis's iterative process involved several iterations to minimize the badness-of-fit criterion, which indicates the degree of dissimilarity between observed and predicted distances. The convergence criteria were ultimately satisfied, indicating the solution's stability. The final badness-of-fit criterion of 0.1408 highlighted this convergence (see table 3)

Table 3

Multidimensonal Scaling

Multidimensional Scaling: Data=WORK.DISTANCE_LONG.DATA Shape=TRIANGLE Condition=MATRIX Level=ORDINAL Coef=IDENTITY Dimension=2 Formula=1 Fit=1

Mconverge=0.01 Gconverge=0.01 Maxiter=100 Over=2 Ridge=0.0001

		Badness- of-Fit	Change	Conver Meas	
Iteration	Туре	Criterion	Criterion	Monotone	Gradient
0	Initial	0.2156			
1	Monotone	0.1793	0.0363	0.1108	0.4981
2	Gau-New	0.1552	0.0241		
3	Monotone	0.1495	0.005656	0.0383	0.2254
4	Gau-New	0.1484	0.001172		
5	Monotone	0.1421	0.006230	0.0415	0.1024
6	Gau-New	0.1418	0.000297		
7	Monotone	0.1414	0.000404	0.0105	0.0811
8	Gau-New	0.1414	0.0000888		
9	Monotone	0.1412	0.000127	0.005844	0.0774
10	Gau-New	0.1408	0.000417		0.0182
11	Gau-New	0.1408	0.0000351		0.0116
12	Gau-New	0.1408	0.0000168		0.008932

Convergence criteria are satisfied.

The MDS plot revealed how observations are spatially arranged based on their dissimilarities. In this plot, each point represents an observation, and the proximity of points signifies their

similarity. Observations that are close together are more similar, while far-apart ones are more dissimilar.

Figure 5: MDS Plot

The MDS fit plot (see Figure 6) for the 2-dimensional solution demonstrates a high degree of fit, as evidenced by the alignment of transformed data points with the distance metric. This indicates that the two-dimensional representation effectively captures the structure of the original high-dimensional data.

Figure 5 Continued

4.4 Correspondence Analysis

Table 4

Inertia and Chi-Square Decomposition

Inertia and Chi-Square Decomposition									
Singular Value	Principal Inertia	Chi- Square	Percent	Cumulative Percent	0	20	40	60	80
0.04833	0.00234	46.0991	82.12	82.12					
0.02255	0.00051	10.0375	17.88	100.00					
0.00284 56.1366 100.00 Degrees of Freedom = 26									

Correspondence analysis explored the relationships between categorical variables (Lights_cat) and (RH_2_cat). It identified the most significant associations between these sets of variables, unveiling how these factors influence energy consumption patterns. The row and column coordinates provide a visual representation (see Figure 6) of these relationships in a reduced-dimensional space, where each category's position reflects its association strength.

The analysis provides insights into how these variables interact to affect energy usage by exploring relationships between indoor conditions (represented by Lights_cat) and outdoor weather conditions (indicated by RH_2_cat). Specifically, it elaborates how weather conditions, such as temperature and humidity (RH_2_cat), relate to factors like lighting usage (Lights_cat). The correspondence analysis facilitated the identification of key associations between past energy usage and environmental conditions,

Correspondence Analysis of Lights_cat by RH_2_cat 0.0024 0.5 0.00101.00020007 High 0.0067 0.0055 0.0015 Low O Medium Low Medium 0.0 Dimension 2 (17.88%) 0.0032 -0.5 0.0073 -1.0 0.0048 -1.5 -0.5 0.0 0.5 1.0 1.5 Dimension 1 (82.12%)

Figure 6: Correspondence Analysis of Lights and Humidity in living room (RH_2_cat)

4.5 Canonical Correlation Analysis with PROC CANCORR

Canonical correlation analysis revealed significant relationships between environmental factors (such as temperature and humidity in various rooms) and energy usage (appliances and lights).

The analysis extracted two canonical functions, each highlighting different aspects of the relationship between these variables.

Table 5

Canonical Correlation Analysis

The CANCORR Procedure

Canonical Correlation Analysis

Note:The correlation matrix for the Environmental Factors is less than full rank. wTherefore, some canonical coefficients will be zero.

	Can onic	Adju sted Can onic	Appr oxim	Squ ared Can onic	Eigenvalues of Inv(E)*H = CanRsq/(1-CanRsq)				l0: The can rent row ar ze				
	al Corr elati on	al Corr elati on	ate Stan dard Error	al Corr elati on	Eige nval ue	Diff ere nce	Pro port ion	Cum ulati ve	Likelih ood Ratio	Approxi mate F Value	Num DF	Den DF	Pr >
1	0.48 2280	0.48 1219	0.005 463	0.23 2594	0.30 31	0.17 16	0.69 74	0.69 74	0.67821 195	168.92	50	3941 6	<.00 01
2	0.34 0923	0.33 9520	0.006 291	0.11 6228	0.13 15		0.30 26	1.00	0.88377 182	108.00	24	1970 9	<.00 01

The first canonical correlation is 0.482, with an adjusted canonical correlation of 0.481 and a squared canonical correlation of 0.233. The second canonical correlation is 0.341, with an adjusted canonical correlation of 0.340 and a squared canonical correlation of 0.116(see table 5). These values indicate moderate relationships between the sets of variables, with the first function being stronger than the second.

Table 6

T1_num

Canonical Structure

The CANCORR Procedure				
Canonical Structure				
Correlations Between the Environmental Factors and Their Canonical Variables				
	Env1	Env2		

-0.0079

0.1923

Correlations Between the Environmental Factors and Their Canonical Variables				
	Env1	Env2		
RH_1_num	0.2530	0.0898		
T2_num	0.0667	0.3505		
RH_2_num	0.0554	-0.2465		
T3_num	-0.1254	0.3840		
RH_3_num	0.2658	-0.0871		
T4_num	0.0095	0.1277		
RH_4_num	0.2234	-0.1187		
T5_num	-0.1329	0.1708		
RH_5_num	0.2656	-0.1854		
T6_num	-0.0705	0.4502		
RH_6_num	0.2308	-0.4606		
T7_num	-0.2337	0.2702		
RH_7_num	0.0291	-0.2096		
T8_num	-0.1067	0.2166		
RH_8_num	-0.0365	-0.2868		
T9_num	-0.2849	0.2575		
RH_9_num	-0.0493	-0.1340		
T_out_num	0.0200	0.0048		
Press_mm_hg_num	-0.0420	-0.0841		
RH_out_num	0.0289	-0.5337		

Correlations Between the Environmental Factors and Their Canonical Variables				
	Env1	Env2		
Windspeed_num	0.1674	0.1608		
Visibility_num	0.0372	-0.0285		
Tdewpoint_num	0.0060	0.0048		
rv1_num	-0.0062	-0.0325		
rv2_num	-0.0062	-0.0325		

Table 7

Multivariate Statistics

Multivariate Statistics and F Approximations							
	S=2 M=11	N=9853					
Statistic	Value	F Value	Num DF	Den DF	Pr > F		
NOTE: F Statistic	for Roy's Gre	atest Roc	ot is an up	per bound	d.		
NOTE: F Statistic for Wilks' Lambda is exact.							
Wilks' Lambda	0.67821195	168.92	50	39416	<.0001		
Pillai's Trace	0.34882200	166.55	50	39418	<.0001		
Hotelling-Lawley Trace	0.43460468	171.30	50	36596	<.0001		
Roy's Greatest Root	0.30309089	238.94	25	19709	<.0001		

The multivariate tests in table 7 yielded significant results (p < 0.0001), indicating statistical significance of the canonical correlations. Table 6 shows correlations between the original variables and their respective canonical variables, highlighting the strength of the relationship. The correlation between humidity in the kitchen (RH_1) and the first canonical variable (Env1) is 0.253, indicating a moderate association.

The first canonical function demonstrated a moderate relationship, primarily driven by variables such as humidity in the kitchen (RH_1) and temperature in the living room (T2). The second function, while weaker, showed significant relationships, particularly with variables like temperature in the laundry room (T3) and appliance usage. These findings suggest that specific environmental conditions, especially humidity and temperature measures, are crucial in predicting energy usage patterns.

Table 8

Canonical Correlation Analysis

The CANCORR Procedure

Canonical Correlation Analysis

Raw Canonical Coefficients for the Environmental Factors					
	Env1	Env2			
T1_num	0.0956054206	-0.137900759			
RH_1_num	0.2066215687	0.3652293397			
T2_num	-0.416956337	-0.277915658			
RH_2_num	-0.199260468	-0.308716092			
T3_num	0.1580900442	0.7109108285			
RH_3_num	0.0461940068	0.1259574776			

Raw Canonical Coefficients for the Environmental Factors				
	Env1	Env2		
T4_num	0.7747072019	-0.51254824		
RH_4_num	0.2616524122	-0.14176947		
T5_num	-0.016679897	-0.028503461		
RH_5_num	0.0135520859	-0.001251812		
T6_num	0.0568879567	0.0681374454		
RH_6_num	0.0073788409	0.0004019398		
T7_num	-0.097062237	0.0719442753		
RH_7_num	-0.047005702	-0.026650221		
T8_num	0.2972142214	0.093286855		
RH_8_num	-0.193642635	-0.063661759		
T9_num	-0.857933297	-0.034875889		
RH_9_num	-0.07758793	0.0145926643		
T_out_num	-0.014172122	-0.000510982		
Press_mm_hg_num	-0.001827977	0.0039567672		
RH_out_num	0.0272994622	-0.000579518		
Windspeed_num	0.0691798321	0.0269105451		
Visibility_num	0.0031396084	0.002316258		
Tdewpoint_num	-0.013215857	-0.015785915		
rv1_num	-0.000222195	-0.001246338		
rv2_num	0	0		

Raw Canonical Coefficients for the Energy Usage				
	Energy1	Energy2		
Appliances_num	0.0030215841	0.0094793304		
lights_num	0.1123557349	-0.062427914		

4.6 Canonical Discriminant Analysis

Figure 7

Discriminant Analysis Visualization

The scatter plot from the Canonical Discriminant Analysis (CDA) depicts the distribution of Can1 and Can2. Each point represents an observation, and the numbers indicate the group to which each observation belongs.

There is a noticeable overlap between the groups, especially in the central region of the plot, indicating that while the canonical variables provide some separation, there is still a significant degree of similarity between the groups. Despite some overlap, the analysis highlights significant differences between the groups, with particular effectiveness in distinguishing Group 2.

4.7 Clustering

The K-means clustering analysis revealed distinct groupings in energy consumption patterns for daily average appliances and daily average lights. Clusters represent varying usage levels, from high to low, suggesting diverse energy usage. This segmentation aids in understanding factors influencing energy usage variability.

Figure 8

K - means Clustering for Daily average Appliance vs daily average light.

4.8 PLS Regression

The PLS regression analysis effectively elaborated the energy usage patterns in a low-energy building, highlighting the significant relationships between indoor temperatures, humidity levels, outdoor weather conditions, and energy usage. The model, employing five optimal factors, captured 91.11% of the variance in predictor variables and 73.03% in energy usage, indicating a robust fit and comprehensive explanatory power. The Correlation Loading Plot (see Figure 10) emphasises the importance of indoor temperature and humidity, which show strong correlations with energy usage.

Table 9

PLS Procedure

The PLS Procedure

Percent Variation Accounted for by Partial Least Squares Factors						
	Model Effects		Dependent Variables			
Number of Extracted Factors	Current	Total	Current	Total		
1	54.7978	54.7978	5.7739	5.7739		
2	27.8571	82.6548	12.1742	17.9481		
3	5.2053	87.8601	38.6263	56.5745		
4	2.3017	90.1618	12.7405	69.3150		
5	0.9517	91.1135	3.7184	73.0334		

The cross-validation analysis confirms the model's reliability, with a minimum Root Mean PRESS of 0.6702 achieved using five factors. Additionally, including two random variables demonstrates the model's ability to filter out non-predictive attributes, further validating its predictive accuracy.

Minimum root mean PRESS	0.6702
Minimizing number of factors	5

Figure 9

Cross Validation

Figure 10

Correlation loading plot

5.0 Discussion

Findings from the study provide helpful knowledge of the relationships between environmental factors, weather conditions, and energy usage patterns in low-energy buildings. Using a multidimensional analysis method, the study presented vital relationships and trends concerning energy use. It supported the hypotheses that outdoor weather conditions, indoor temperature, humidity levels, and past energy use are critical in predicting energy consumption within low-energy buildings. PLS regression accounted for variances up to 91.11% of the predictor variables' variance and up to 73.03% of energy usage variance, indicating good predictive properties of the model.

Limitations

However, the study's limitations are the possible confounding variables—occupants' behaviour and building design features- that have not been considered when performing the analyses. The general identification of critical factors that determine energy consumption, mainly based on this study, permits its use for a decision-making process related to energy management strategies in low-energy buildings with the objective of an optimal energy supply that makes the operation of buildings economically and ecologically sustainable. In addition, considering indoor environmental conditions, outdoor weather factors, and past energy usage allows stakeholders to develop more effective strategies to reduce energy consumption and carbon footprints.

Future Directions

Future studies should also consider additional research variables, such as occupant behaviour and building design features, to delineate predictive models of energy use further. Other longitudinal studies, which observe energy consumption over time, will enable taking notice of seasonal

variations and tendencies from the longer view, thus working out more robust strategies. Possible strategies to optimize energy performance in low-energy buildings could be defined from research on implementing real-time monitoring with advanced control strategies. Overall, this study emphasized holistic approaches to energy management and reveal potential data-driven techniques for driving sustainable practices towards operations in buildings.

6.0 References

- Allee, K. D., Do, C., & Raymundo, F. G. (2022). Principal component analysis and factor analysis in accounting research. *Journal of Financial Reporting / Journal of Financial Reporting*, 7(2), 1–39. https://doi.org/10.2308/jfr-2021-005
- Allouhi, A., Fouih, Y. E., Kousksou, T., Jamil, A., Zeraouli, Y., & Mourad, Y. (2015). Energy consumption and efficiency in buildings: current status and future trends. *Journal of Cleaner Production*, 109, 118–130. https://doi.org/10.1016/j.jclepro.2015.05.139
- Arghira, N., Hawarah, L., Ploix, S., & Jacomino, M. (2012). Prediction of appliances energy use in smart homes. *Energy*, 48(1), 128–134. https://doi.org/10.1016/j.energy.2012.04.010
- Ariza, A. G., Arbulu, A. A., González, F. J. N., Bermejo, J. V. D., & Vallejo, M. E. C. (2021).

 Discriminant Canonical Analysis as a validation tool for multi-variety native breed egg commercial quality classification. *Foods*, *10*(3), 632.

 https://doi.org/10.3390/foods10030632
- Candanedo, L. M., Feldheim, V., & Deramaix, D. (2017). Data-driven prediction models of energy use of appliances in a low-energy house. *Energy and Buildings*, *140*, 81–97. https://doi.org/10.1016/j.enbuild.2017.01.083
- Cao, X., Dai, X., & Liu, J. (2016). Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. *Energy and Buildings*, 128, 198–213. https://doi.org/10.1016/j.enbuild.2016.06.089
- Cetin, K. S. (2016). Characterizing large residential appliance peak load reduction potential utilizing a probabilistic approach. *Science and Technology for the Built Environment*, 22(6), 720-732.

- Cetin, K., Tabares-Velasco, P., & Novoselac, A. (2014). Appliance daily energy use in new residential buildings: Use profiles and variation in time-of-use. *Energy and Buildings*, 84, 716–726. https://doi.org/10.1016/j.enbuild.2014.07.045
- Du, Y., Li, F., Kurte, K., Munk, J., & Zandi, H. (2022). Demonstration of intelligent HVAC load management with deep reinforcement learning: Real-World experience of Machine Learning in demand control. *IEEE Power & Energy Magazine*, 20(3), 42–53. https://doi.org/10.1109/mpe.2022.3150825
- Guo, Z., Wang, Z. J., & Kashani, A. (2014). Home appliance load modelling from aggregated smart meter data. *IEEE Transactions on power systems*, 30(1), 254-262.
- Hong, T., Taylor-Lange, S. C., D'Oca, S., Yan, D., & Corgnati, S. P. (2016). Advances in research and applications of energy-related occupant behavior in buildings. *Energy and Buildings*, 116, 694–702. https://doi.org/10.1016/j.enbuild.2015.11.052
- Kavousian, A., Rajagopal, R., & Fischer, M. (2013). Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior. *Energy*, *55*, 184–194. https://doi.org/10.1016/j.energy.2013.03.086
- Kavousian, A., Rajagopal, R., & Fischer, M. (2015). Ranking appliance energy efficiency in households: Utilizing smart meter data and energy efficiency frontiers to estimate and identify the determinants of appliance energy efficiency in residential buildings. *Energy and Buildings*, 99, 220–230. https://doi.org/10.1016/j.enbuild.2015.03.052
- Kodinariya, T. M., & Makwana, P. (2013). Review on Determining of Cluster in K-Means Clustering. *ResearchGate*.

- Oti, E. U., Olusola, M. O., Eze, F. C., & Enogwe, S. U. (2021). Comprehensive review of K-Means Clustering Algorithms. *International Journal of Advances in Scientific Research and Engineering*, 07(08), 64–69. https://doi.org/10.31695/ijasre.2021.34050
- Ramli, N. A., & Shapi, M. K. M. (2022). Building Energy Management. In *Studies in Infrastructure and Control* (pp. 37–73). https://doi.org/10.1007/978-981-19-0375-5_3
- Reeves, J. B., & Delwiche, S. R. (2008). SAS® Partial Least Squares for Discriminant analysis.

 *Journal of Near Infrared Spectroscopy, 16(1), 31–38. https://doi.org/10.1255/jnirs.757
- Riani, M., Atkinson, A. C., Torti, F., & Corbellini, A. (2022). Robust correspondence analysis.

 *Applied Statistics/Journal of the Royal Statistical Society. Series C, Applied Statistics,

 71(5), 1381–1401. https://doi.org/10.1111/rssc.12580
- Tucker-Drob, E. M., & Salthouse, T. A. (2009). METHODS AND MEASURES: Confirmatory factor analysis and multidimensional scaling for construct validation of cognitive abilities. *International Journal of Behavioral Development*, *33*(3), 277–285. https://doi.org/10.1177/0165025409104489
- UCI Machine Learning Repository. (2017).

 https://archive.ics.uci.edu/dataset/374/appliances+energy+prediction
- Use of energy in commercial buildings U.S. Energy Information Administration (EIA). (2018). https://www.eia.gov/energyexplained/use-of-energy/commercial-buildings.php

7.0: Appendix

Appendix A

Factor analysis

The FACTOR Procedure

Input Data Type	Raw Data
Number of Records Read	19735
Number of Records Used	19735
N for Significance Tests	19735

The FACTOR Procedure Initial Factor Method: Principal Components

Prior Communality Estimates: ONE

Eige	Eigenvalues of the Correlation Matrix: Total = 28 Average = 1										
	Eigenvalue	Difference	Proportion	Cumulative							
1	8.36391608	1.61713651	0.2987	0.2987							
2	6.74677957	4.73952193	0.2410	0.5397							
3	2.00725764	0.22203118	0.0717	0.6114							
4	1.78522646	0.43955484	0.0638	0.6751							
5	1.34567163	0.18793895	0.0481	0.7232							
6	1.15773268	0.14088556	0.0413	0.7645							
7	1.01684712	0.04049376	0.0363	0.8008							
8	0.97635336	0.10142099	0.0349	0.8357							
9	0.87493237	0.13986452	0.0312	0.8670							

Eige	Eigenvalues of the Correlation Matrix: Total = 28 Average = 1										
	Eigenvalue	Difference	Proportion	Cumulative							
10	0.73506785	0.12889218	0.0263	0.8932							
11	0.60617567	0.08771918	0.0216	0.9149							
12	0.51845649	0.06067677	0.0185	0.9334							
13	0.45777972	0.20873528	0.0163	0.9497							
14	0.24904443	0.06416787	0.0089	0.9586							
15	0.18487656	0.03057107	0.0066	0.9652							
16	0.15430549	0.01333131	0.0055	0.9707							
17	0.14097418	0.00653152	0.0050	0.9758							
18	0.13444267	0.01930781	0.0048	0.9806							
19	0.11513485	0.02148678	0.0041	0.9847							
20	0.09364807	0.01055418	0.0033	0.9880							
21	0.08309389	0.01447625	0.0030	0.9910							
22	0.06861764	0.00954427	0.0025	0.9934							
23	0.05907338	0.01516863	0.0021	0.9956							
24	0.04390475	0.00319515	0.0016	0.9971							
25	0.04070960	0.01542731	0.0015	0.9986							
26	0.02528228	0.01058673	0.0009	0.9995							
27	0.01469555	0.01469555	0.0005	1.0000							
28	0.00000000		0.0000	1.0000							

Factor Pattern										
	Factor1	Factor2								
Appliances_num	0.07987	-0.00323								
lights_num	-0.11302	0.07922								
T1_num	0.90577	0.21910								
RH_1_num	0.01355	0.91292								
T2_num	0.80219	0.27945								
RH_2_num	-0.15916	0.79189								
T3_num	0.89780	0.27475								
RH_3_num	-0.26483	0.88953								
T4_num	0.92269	0.10597								
RH_4_num	-0.12455	0.94937								
T5_num	0.89783	0.23736								
RH_5_num	-0.15430	0.38240								
T6_num	0.75448	0.30092								
RH_6_num	-0.84837	0.32723								
T7_num	0.93801	0.01488								
RH_7_num	-0.06984	0.93415								
T8_num	0.87268	-0.02439								
RH_8_num	-0.23089	0.88686								
T9_num	0.94061	0.11331								
RH_9_num	-0.12661	0.89242								

Factor Pattern										
	Factor1	Factor2								
T_out_num	-0.06216	0.07162								
Press_mm_hg_num	-0.10585	-0.34410								
RH_out_num	-0.54182	0.37741								
Windspeed_num	-0.13330	0.25754								
Visibility_num	-0.11692	-0.01086								
Tdewpoint_num	0.22949	0.41562								
rv1_num	-0.01050	-0.00154								
rv2_num	-0.01050	-0.00154								

Variance Explained by Each Factor

Factor1	Factor2
8.3639161	6.7467796

р																							in		T		
pl																						R	d		d		
ia	16																			т	Pr	Н	S	V	e		
Ia																				•			3		-		
n	g		R		R		R		R		R		R		R		R		R	_	es	_	р	is	W		
С	h		н		н		н		н		н		н		Н		н		н	0	S_	0	e	ib	р	r	r
	177	-		-		т.	٠	-		_		-		-		-	٠	-		_					7.0		
е	t		_	- 1	_		_		_		_		_		_	- 1	_		_	u	m	u	е	ili	OI	V	V
S	S	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	t	m	t	d	ty	nt	1	2
	-	· •		_		Ŭ	Ŭ	-	· •	_		_	_	-	· •	_	Ŭ	_	_	_		•	-	٠,		•	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_h	_	_	_	_	_	_
n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	g_	n	n	n	n	n	n
u	u	u	u	u	u	u	u	u	u	u	u	u	u	u	u	u	u	u	u	u	nu	u	u	u	u	u	u
m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m
				••••								••••				••••				••••			••••	••••	••••		
0.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.	0	0.	0.	0.	0	0
m	m	m 0	m 0		_	m 0	m 0	m 0		m 0		m 0		m 0		m 0			m 0	m	m 0.	m 0	m	m	m	m 0	m

7

Final Communality Estimates: Total = 15.110696

5

2 2 5

8 0

8 8

5

	Final Communality Estimates: Total = 15.110696																										
A p pl ia n c e s - n u m	li gh ts -n u m	T 1 - n u m	R H	T 2 - n u m	R H - 2 - n u m	T 3 - n u m	R H - 3 - n u m	T 4 - n u m	R H - 4 - n u m	T 5 - n u m	R H _ 5 _ n u m	T 6 - n u m	R H -6 - n u m	T 7 - n u m	R H - 7 - n u m	T 8 - n u m	R H - 8 - n u m	T 9 -n u m	R H - 9 - n u m	T - o u t - n u m	Pr es s_ m m_h g_ nu	R H - o u t - n u m	W in d s p e e d - n u m	V is ib ili ty _ n u m	T d e w p oi nt — n u m	r v 1 -n u	r v 2 -n u m
0 5	8 4 0	7 4 0	2 5 2	0 0 7	1 1 2	5 4 7	3 5 7	4 1 0	3 4 7	4 2 1	7 3 3	0 3 8	6 7 2	9 1 9	2 7 5	4 9 0	3 1 9	2 5 5	1 8 4	3 5 1		1 9 5	2 8	4	0	2 5 2	2 5 2

The FACTOR Procedure Rotation Method: Varimax

Orthogonal Transformation Matrix									
	1	2							
1	0.98550	-0.16965							
2	0.16965	0.98550							

Rotated Factor Pattern										
	Factor1									
Appliances_num	0.07817	-0.01674								
lights_num	-0.09794	0.09724								
T1_num	0.92981	0.06226								
RH_1_num	0.16823	0.89739								
T2_num	0.83797	0.13931								
RH_2_num	-0.02251	0.80741								

Rotated Factor Pattern									
	Factor1	Factor2							
T3_num	0.93140	0.11846							
RH_3_num	-0.11009	0.92157							
T4_num	0.92730	-0.05210							
RH_4_num	0.03831	0.95674							
T5_num	0.92508	0.08161							
RH_5_num	-0.08719	0.40303							
T6_num	0.79460	0.16856							
RH_6_num	-0.78056	0.46641							
T7_num	0.92694	-0.14447							
RH_7_num	0.08965	0.93246							
T8_num	0.85589	-0.17208							
RH_8_num	-0.07710	0.91318							
T9_num	0.94620	-0.04791							
RH_9_num	0.02662	0.90097							
T_out_num	-0.04911	0.08113							
Press_mm_hg_num	-0.16269	-0.32115							
RH_out_num	-0.46994	0.46385							
Windspeed_num	-0.08767	0.27642							
Visibility_num	-0.11706	0.00913							
Tdewpoint_num	0.29667	0.37066							

Rotated Factor Pattern											
Factor1 Factor											
rv1_num	-0.01060	0.00027									
rv2_num	-0.01060	0.00027									

Variance Explained by Each Factor

Factor2	Factor1
6.7933207	8.3173750

Final Communality Estimates: Total = 15.110696																											
A p pl ia n c e s - n u m	li ghts -num	T 1 - n u m	R H - 1 - n u m	T 2 - n u m	R H -2 -n u m	T 3 - n u m	R H - 3 - n u m	T 4 - n u m	R H -4 -n u m	T 5 - n u m	R H	T 6 - n u m	R H	T 7 - n u m	R H -7 -n u m	T 8 - n u m	R H - 8 - n u m	T 9 - n u m	R H - 9 - n u m	T - o u t - n u m	Pr es s_ m _h g_ nu m	RH - out t - n u m	Windspeed num	V is ib ili ty _ n u m	T d e w p oi nt - n u m	r v 1 - n u m	r v 2 2 — n u m
0. 0 0 6 3 9 0 5	0 1 9 0 4 8 4	0 8 6 8 4 2 7 4 0	0 8 3 6 0 2 5 2	0 7 2 1 6 1 0 0 7	0 6 5 2 4 2 1 1	0 8 8 1 5 3 5 4 7	0 8 6 1 4 0 3 5 7	0 8 6 2 5 9 4 1 0	0 9 1 6 8 1 3 4 7	0 8 6 2 4 3 4 2 1	0 1 7 0 0 3 7 3 3	0 6 5 9 8 0 0 3 8	0 8 2 6 8 1 6 7 2	0 8 8 0 0 8 9 1 9	0 8 7 7 5 2 2 7 5	0 .7 6 2 1 6 4 9 0	0 8 3 9 8 3 1 9	0 8 9 7 5 8 2 5 5	0 8 1 2 4 5 1 8 4	0 0 0 8 9 9 3 5	0. 12 96 06 22	0 4 3 6 0 0 1 9 5	0. 0 8 4 0 9 7 2 8	0. 0 1 3 7 8 7 4 1	0. 2 2 5 4 0 5 0	0 0 0 0 1 1 2 5 2	0 0 0 0 1 1 2 5 2

The FACTOR Procedure Rotation Method: Varimax

Scoring Coefficients Estimated by Regression

Squared Multiple Correlations of the Variables with Each Factor								
Factor2	Factor1							
1.0000000	1.0000000							

Standardized Scoring Coefficients							
	Factor1	Factor2					
Appliances_num	0.00933	-0.00209					
lights_num	-0.01132	0.01386					
T1_num	0.11223	0.01363					
RH_1_num	0.02455	0.13308					
T2_num	0.10155	0.02455					
RH_2_num	0.00116	0.11890					
T3_num	0.11269	0.02192					
RH_3_num	-0.00884	0.13531					
T4_num	0.11138	-0.00324					
RH_4_num	0.00920	0.14120					
T5_num	0.11176	0.01646					
RH_5_num	-0.00856	0.05899					
T6_num	0.09647	0.02865					
RH_6_num	-0.09173	0.06501					
T7_num	0.11090	-0.01685					
RH_7_num	0.01526	0.13787					
T8_num	0.10221	-0.02126					

Standardized Scoring Coefficients							
	Factor1	Factor2					
RH_8_num	-0.00491	0.13423					
T9_num	0.11368	-0.00253					
RH_9_num	0.00752	0.13292					
T_out_num	-0.00552	0.01172					
Press_mm_hg_num	-0.02112	-0.04812					
RH_out_num	-0.05435	0.06612					
Windspeed_num	-0.00923	0.04032					
Visibility_num	-0.01405	0.00078					
Tdewpoint_num	0.03749	0.05605					
rv1_num	-0.00255	-0.00002					
rv2_num	0.00000	0.00000					

Appendix B

Sas Code

```
/* IMPORT THE energy_complete.csv data*/
/* Convert character variables to numeric type */
data WORK.IMPORT NUMERIC;
      set WORK.IMPORT;
      /* Convert the date string to SAS datetime and date values */
    datetime = input(date, anydtdtm19.);
    format datetime datetime20.;
    date_num = datepart(datetime); /* Extract the date part */
    days = DAY(date num);
    /* Convert character variables to numeric */
    Appliances_num = input(Appliances, best12.);
    lights num = input(lights, best12.);
    T1 num = input(T1, best12.);
    RH 1 num = input(RH 1, best12.);
    T2 num = input(T2, best12.);
    RH 2 num = input(RH 2, best12.);
    T3_num = input(T3, best12.);
    RH_3_num = input(RH_3, best12.);
    T4 num = input(T4, best12.);
    RH 4 num = input(RH 4, best12.);
```



```
T5_num = input(T5, best12.);
    RH 5 num = input(RH 5, best12.);
    T6 num = input(T6, best12.);
    RH 6 num = input(RH 6, best12.);
    T7 num = input(T7, best12.);
    RH 7 num = input(RH 7, best12.);
    T8 num = input(T8, best12.);
    RH 8 num = input(RH 8, best12.);
    T9_num = input(T9, best12.);
    RH 9 num = input(RH 9, best12.);
    T out num = input(T out, best12.);
    Press mm hg num = input(Press mm hg, best12.);
    RH out num = input(RH out, best12.);
   Windspeed num = input(Windspeed, best12.);
   Visibility num = input(Visibility, best12.);
    Tdewpoint_num = input(Tdewpoint, best12.);
    rv1 num = input(rv1, best12.);
    rv2 num = input(rv2, best12.);
    /* Extract the hour from the datetime */
   hour = hour(datetime);
    /* Create a numeric time segment variable */
    if hour < 6 then time segment = 1; /* Night */
    else if hour < 12 then time_segment = 2; /* Morning */
    else if hour < 18 then time segment = 3; /* Afternoon */
    else time_segment = 4; /* Evening */
    /* Apply appropriate formats */
   format datetime datetime20.;
    /* Create weekday and weekend variables */
    day of week = weekday(date num); /* 1=Sunday, 2=Monday, ...,
7=Saturday */
    weekday = (day_of_week in (2, 3, 4, 5, 6)); /* 1=True if Monday-
Friday, 0=False */
    weekend = (day_of_week in (1, 7)); /* 1=True if Sunday or
Saturday, 0=False */
   day of month = day(date num);
    /* Apply appropriate formats */
    format datetime datetime20.;
    format date_num date9.;
    /* Drop original character variables */
    drop T1 RH_1 T2 RH_2 T3 RH_3 T4 RH_4 T5 RH_5 T6 RH_6 T7 RH_7 T8
```



```
RH 8 T9 RH 9 T out Press mm hg RH out Windspeed Visibility Tdewpoint
rv1 rv2;
run;
/* Calculate the daily averages*/
proc sql;
    create table daily averages as
    select date num,
           mean(Appliances_num) as daily_avg_Appliance,
           mean(lights num) as daily avg light,
           mean(T1 num) as daily avg T1,
           mean(T2 num) as daily avg T2,
           mean(T3 num) as daily avg T3,
           mean(T4 num) as daily avg T4,
           mean(T5 num) as daily avg T5,
           mean(T6_num) as daily_avg_T6,
           mean(T7 num) as daily avg T7,
           mean(T8 num) as daily avg T8,
           mean(T9_num) as daily_avg_T9,
           mean(RH 1 num) as daily avg RH 1,
           mean(RH 2 num) as daily avg RH 2,
           mean(RH 3 num) as daily avg RH 3,
           mean(RH_4_num) as daily_avg_RH_4,
           mean(RH 5 num) as daily avg RH 5,
           mean(RH_6_num) as daily_avg_RH_6,
           mean(RH 7 num) as daily avg RH 7,
           mean(RH_8_num) as daily_avg_RH_8,
           mean(RH_9_num) as daily_avg_RH_9,
           mean(T out num) as daily avg T out,
           mean(Press mm hg num) as daily avg Press mm hg,
           mean(RH_out_num) as daily_avg_RH_out,
           mean(Windspeed num) as daily avg Windspeed,
           mean(Visibility num) as daily avg Visibility,
           mean(Tdewpoint_num) as daily_avg_Tdewpoint,
           mean(rv1 num) as daily avg rv1,
           mean(rv2 num) as daily avg rv2,
           min(Appliances num) as daily min usage Appliances,
           max(Appliances num) as daily max usage Appliances,
           min(T1 num) as daily min usage T1,
           max(T1 num) as daily max usage T1,
           min(T2 num) as daily min usage T2,
           max(T2 num) as daily max usage T2,
           min(T3_num) as daily_min_usage_T3,
           max(T3 num) as daily max usage T3,
           min(T4 num) as daily min usage T4,
           max(T4_num) as daily_max_usage_T4,
```



```
min(T5 num) as daily min usage T5,
           max(T5 num) as daily max usage T5,
           min(T6 num) as daily min usage T6,
           max(T6 num) as daily max usage T6,
           min(T7_num) as daily_min_usage_T7,
           max(T7 num) as daily max usage T7,
           min(T8 num) as daily min usage T8,
           max(T8 num) as daily max usage T8,
           min(T9 num) as daily min usage T9,
           min(T9 num) as daily max usage T9
    from WORK.IMPORT NUMERIC
    group by date num;
quit;
PROC CONTENTS DATA=daily averages; RUN;
/* Merge the daily average energy use back with the original data */
data WORK.IMPORT NUMERIC;
   merge WORK.IMPORT NUMERIC(in=a) daily averages(in=b);
   by date num;
    if a;
run;
/* check if the conversion has taken place*/
proc contents data=WORK.IMPORT NUMERIC;
run;
PROC UNIVARIATE DATA = WORK.IMPORT NUMERIC;
VAR days datetime weekday day_of_week day_of_month T3_num;
RUN;
PROC UNIVARIATE DATA = WORK.IMPORT NUMERIC;
VAR T2_num T3_num T4_num T5_num ;
RUN;
PROC UNIVARIATE DATA = WORK.IMPORT NUMERIC;
VAR time segment;
RUN;
/* Create a dataset containing only indoor variables */
data indoor data;
    set WORK.IMPORT NUMERIC;
    keep date Appliances_num lights_num T1_num RH_1_num T2_num
```



```
RH 2 num T3 num RH 3 num T4 num RH 4 num T5 num RH 5 num T7 num
RH 7 num T8 num RH 8 num T9 num RH 9 num;
run;
/* Create a dataset containing only outdoor variables */
data outdoor data;
    set WORK.IMPORT NUMERIC;
    keep date T6 num Press mm hg num RH 6 num T out num RH out num
RH out num Windspeed num Visibility num Tdewpoint num rv1 num
rv2 num time segment;
run;
/* check if the conversion has taken place*/
proc contents data=WORK.indoor data;
run;
/* check if the conversion has taken place*/
proc contents data=WORK.outdoor data;
run;
/* Merge indoor and outdoor datasets by date */
data merged data;
   merge indoor_data (in=a) outdoor_data (in=b);
    by date:
    /* Check for missing values */
    if a and b;
run;
PROC CONTENTS DATA=merged data; RUN;
/*Principal Components Analysis (PCA) and its visualization*/
/* Standardize the dataset */
proc standard data=WORK.IMPORT NUMERIC mean=0 std=1
out=energy standardized;
    var Appliances num lights num T1 num RH 1 num T2 num RH 2 num
T3 num RH 3 num
    T4 num RH 4 num T5 num RH 5 num T6 num RH 6 num T7 num RH 7 num
T8 num RH 8 num
    T9 num RH 9 num T out num Press mm hg num RH out num
Windspeed num Visibility num
    Tdewpoint_num rv1_num rv2_num;
run;
/*Eigenvalues*/
```



```
/* Perform PCA */
proc princomp data=energy_standardized out=pca_output
outstat=pca stats plots=all;
    var Appliances num lights num T1 num RH 1 num T2 num RH 2 num
    T3 num RH 3 num T4 num RH 4 num T5 num RH 5 num T6 num RH 6 num
   T7 num RH 7 num T8 num RH 8 num T9 num RH 9 num T out num
    Press mm hg num RH out num Windspeed num Visibility num
Tdewpoint num rv1 num rv2 num;
run;
/* Perform Factor Analysis with nfactor=2 */
proc factor data=energy standardized method=principal rotate=varimax
scree nfactor=2 out=factor scores;
    var Appliances num lights num T1 num RH 1 num T2 num RH 2 num
        T3_num RH_3_num T4_num RH_4_num T5_num RH_5_num T6_num
RH 6 num
        T7 num RH 7 num T8 num RH 8 num T9 num RH 9 num T out num
        Press_mm_hg_num RH_out_num Windspeed_num Visibility num
Tdewpoint num rv1 num rv2 num;
run;
/* Print the factor loadings for interpretation */
proc print data=factor scores(obs=10);
run;
/* Computing MDS*/
/* Step 1: Compute the Distance Matrix */
proc distance data=energy standardized method=euclid
out=distance matrix;
    var Appliances num lights num T1 num RH 1 num T2 num RH 2 num
        T3 num RH 3 num T4 num RH 4 num T5 num RH 5 num T6 num
RH 6 num
        T7 num RH 7 num T8 num RH 8 num T9 num RH 9 num T out num
        Press mm hg num RH out num Windspeed num Visibility num
Tdewpoint num rv1 num rv2 num;
run;
/* Step 2: Transpose the Distance Matrix to a long format */
proc transpose data=distance matrix out=distance long(drop= NAME );
   var Dist1-Dist28;
run;
/* Step 3: Create unique identifiers for each observation */
data distance_long;
```



```
set distance long;
    length Subject $50;
/* Define an array of variable names */
array var_names[28] $50 _temporary_ ('Appliances_num' 'lights_num'
'T1 num' 'RH 1 num' 'T2 num' 'RH 2 num'
                                           'T3 num' 'RH 3 num'
'T4 num' 'RH 4 num' 'T5 num' 'RH 5 num'
                                         'T6 num' 'RH 6 num'
                                           'T7 num' 'RH 7 num'
                                         'T out num'
'T8 num' 'RH 8 num' 'T9 num' 'RH 9 num'
                                           'Press mm hg num'
'RH out num' 'Windspeed num' 'Visibility num' 'Tdewpoint num'
'rv1 num' 'rv2 num');
/* Assign Subject based on observation number */
if N <= dim(var names) then Subject = var names[ N ];</pre>
run;
/* Step 4: Perform MDS using the reshaped distance matrix */
proc mds data=distance long out=mds out level=ordinal;
    id Subject;
   var COL1-COL28;
run;
/* Step 5: Scatter Plot of MDS results */
proc sgplot data=mds out;
    scatter x=Dim1 y=Dim2 / datalabel=Subject;
   xaxis label='Dimension 1';
   yaxis label='Dimension 2';
   title 'MDS Plot';
run;
/* Scatter Plot of First Two Principal Components */
proc sgplot data=pca_output;
    scatter x=Prin1 y=Prin2;
   xaxis label='Principal Component 1';
   yaxis label='Principal Component 2';
run;
/* Prepare data for biplot */
/* Extract the principal component loadings */
data loadings;
    set pca_stats(where=(_TYPE_='SCORE'));
   keep NAME Prin1 Prin2;
run;
```



```
/* Create the combined dataset for biplot */
data biplot data;
    set pca output(in=a) loadings(in=b);
    if a then type='score';
    if b then type='loading';
run;
/* Biplot */
proc sgplot data=biplot_data;
    vector x=Prin1 y=Prin2 / group=type name='Variable
Contributions';
    scatter x=Prin1 y=Prin2 / group=type;
   xaxis label='Principal Component 1';
   yaxis label='Principal Component 2';
   title 'Biplot of Principal Components';
run;
/* Print the first 20 observations to verify the merge */
proc print data=WORK.IMPORT_NUMERIC(obs=20);
    var date weekend weekday Appliances daily avg Appliance
daily avg light;
run;
title "Daily average energy use data by appliances";
proc sgplot data=WORK.IMPORT NUMERIC;
   series x=date num y=daily_avg_appliance / markers;
   xaxis label="Date";
  yaxis label="Energy Use (Applinces)";
run;
title "Daily average energy use data by lights";
proc sgplot data=WORK.IMPORT NUMERIC;
   series x=date num y=daily avg light / markers;
    xaxis label="Date";
  yaxis label="Energy Use (Lights)";
run;
   Correspondence Analysis Method */
/* Check summary statistics */
proc means data=energy standardized;
    var Appliances_num lights_num T1_num T2_num RH_1_num RH_2_num;
run;
/* Define formats for categorizing continuous variables */
```



```
proc format;
    value energy_fmt
        low - 0 = 'Low'
        0.01 - 3 = 'Medium'
        3.01 - high = 'High';
    value temp fmt
        low - 0 = 'Low'
        0.01 - 3 = 'Medium'
        3.01 - high = 'High';
   value humidity fmt
        low - 0 = 'Low'
        0.01 - 3 = 'Medium'
        3.01 - high = 'High';
run;
/* Apply the formats to categorize the continuous variables */
data categorized data;
    set energy standardized;
   Appliances_cat = put(Appliances_num, energy_fmt.);
    Lights cat = put(lights num, energy fmt.);
   T1 cat = put(T1 num, temp fmt.);
   T2 cat = put(T2 num, temp fmt.);
    RH_1_cat = put(RH_1_num, humidity_fmt.);
    RH 2 cat = put(RH 2 num, humidity fmt.);
run;
/* Create a contingency table for Correspondence Analysis */
proc freq data=categorized data;
   tables (Appliances cat Lights cat) * (T1 cat T2 cat RH 1 cat
RH 2 cat) / out=contingency table;
run;
/* Print the contingency table to verify */
proc print data=contingency_table (obs=20);
run;
/* Perform Correspondence Analysis */
proc corresp data=contingency table outc=coord;
   tables Lights_cat, RH_2_cat;
   weight COUNT;
run;
/* Plot the results */
proc sgplot data=coord;
    scatter x=dim1 y=dim2 / group= type
markerattrs=(symbol=circlefilled);
```



```
text x=dim1 y=dim2 text=_name_ / position=right;
    xaxis label="Dimension 1";
    yaxis label="Dimension 2";
   title "Correspondence Analysis Plot";
run;
/*Canonical Correlation Analysis with PROC CANCORR*/
/* Step 1: Define the variable sets */
%let environmental vars = T1 num RH 1 num T2 num RH 2 num T3 num
RH 3 num T4 num RH 4 num
                          T5 num RH_5_num T6_num RH_6_num T7_num
RH 7 num T8 num RH 8 num
                          T9 num RH 9 num T out num Press mm hg num
RH out num Windspeed num
                          Visibility_num Tdewpoint_num rv1_num
rv2 num;
%let energy_vars = Appliances_num lights_num;
run;
/* Step 2: Perform Canonical Correlation Analysis */
proc cancorr data=WORK.IMPORT NUMERIC
             vprefix=Env vname="Environmental Factors"
             wprefix=Energy wname="Energy Usage";
   var &environmental vars;
   with &energy_vars;
run;
/*Canonical Discriminant Analysis*/
/* Check the structure of the merged data */
proc contents data=WORK.merged_data;
run;
/* Ensure merged data has the time segment variable and is ready for
discriminant analysis */
data discriminant data;
    set WORK.merged data;
    /* Ensure necessary variables are included */
    keep date Appliances num lights num T1 num RH 1 num T2 num
RH_2_num T3_num RH_3_num T4_num RH_4_num
         T5 num RH 5 num T6 num RH 6 num T7 num RH 7 num T8 num
RH 8 num T9 num RH 9 num T out num
         Press mm hg num RH out num Windspeed num Visibility num
```



```
Tdewpoint_num rv1_num rv2_num time_segment;
run;
/* Check the structure and contents of the prepared data */
proc print data=discriminant data(obs=10);
run:
/* Perform discriminant analysis */
proc discrim data=discriminant data out=discrim out canonical;
    class time segment;
    var Appliances num lights_num T1_num RH_1_num T2_num RH_2_num
T3 num RH 3 num T4 num RH 4 num
        T5 num RH 5 num T6 num RH 6 num T7 num RH 7 num T8 num
RH 8 num T9 num RH 9 num T out num
        Press mm hg num RH out num Windspeed num Visibility num
Tdewpoint num rv1 num rv2 num;
run;
/* Step 3: Prepare data for visualization */
/* Sort the discrim out dataset by time segment */
proc sort data=discrim out;
   by time segment;
run;
/* Merge the sorted dataset for visualization */
data plotclass;
    set discrim out;
run;
/* Step 4: Define a template for plotting the discriminant analysis
results */
proc template;
    define statgraph classify;
        begingraph;
            layout overlay;
                contourplotparm x=Can1 y=Can2 z= into /
contourtype=fill nhint=30 gridded=false;
                scatterplot x=Can1 y=Can2 / group=time_segment
includemissinggroup=false markercharactergroup=time segment;
            endlayout;
        endgraph;
   end;
run;
/* Step 5: Render the plot */
proc sgrender data=plotclass template=classify;
run;
```



```
/*Clustering for using daily averages */
/* Step 1: Standardize the dataset for clustering */
proc standard data=daily averages mean=0 std=1
out=clustering standardized;
    var daily avg Appliance daily avg light
    daily_avg_T1 daily_avg_RH_1 daily_avg_T2 daily_avg_RH_2
daily avg T3
    daily avg RH 3 daily avg T4 daily avg RH 4 daily avg T5
daily avg RH 5
    daily avg T6 daily avg RH 6 daily avg T7 daily avg RH 7
daily avg T8
    daily avg RH 8 daily avg T9 daily avg RH 9 daily avg T out
daily avg Press mm hg
    daily_avg_RH_out daily_avg_Windspeed daily_avg_Visibility
daily avg Tdewpoint
    daily avg rv1 daily avg rv2;
run;
/* Step 2: Perform Clustering using K-means (PROC FASTCLUS) */
proc fastclus data=clustering standardized maxclusters=3
out=clus output;
    var daily avg Appliance daily avg light
    daily_avg_T1 daily_avg_RH_1 daily_avg_T2 daily_avg_RH_2
daily avg T3
    daily_avg_RH_3 daily_avg_T4 daily_avg_RH_4 daily_avg_T5
daily_avg_RH_5
    daily avg T6 daily avg RH 6 daily avg T7 daily avg RH 7
daily avg T8
    daily_avg_RH_8 daily_avg_T9 daily_avg_RH_9 daily_avg_T_out
daily avg Press mm hg
    daily avg RH out daily avg Windspeed daily avg Visibility
daily_avg_Tdewpoint
    daily_avg_rv1 daily_avg_rv2;
run;
/* Step 3: Evaluate Clustering Results */
proc print data=clus output(obs=10);
    var cluster daily_avg_Appliance daily avg light
    daily_avg_T1 daily_avg_RH_1 daily_avg_T2 daily_avg_RH_2
daily avg T3
    daily_avg_RH_3 daily_avg_T4 daily_avg_RH_4 daily_avg_T5
daily avg RH 5
    daily avg T6 daily avg RH 6 daily avg T7 daily avg RH 7
daily_avg_T8
```



```
daily_avg_RH_8 daily_avg_T9 daily_avg_RH_9 daily_avg_T_out
daily avg Press mm hg
    daily avg RH out daily avg Windspeed daily avg Visibility
daily avg Tdewpoint
    daily_avg_rv1 daily_avg_rv2;
run;
/* Step 3: Summarize Cluster Characteristics */
proc means data=clus output n mean std min max;
    class cluster;
    var daily avg Appliance daily avg light
    daily_avg_T1 daily_avg_RH_1 daily_avg_T2 daily_avg_RH_2
daily_avg_T3
    daily avg RH 3 daily avg T4 daily avg RH 4 daily avg T5
daily avg RH 5
    daily_avg_T6 daily_avg_RH_6 daily_avg_T7 daily_avg_RH_7
daily avg T8
    daily avg RH 8 daily avg T9 daily avg RH 9 daily avg T out
daily_avg_Press_mm_hg
    daily avg RH out daily avg Windspeed daily avg Visibility
daily avg Tdewpoint
    daily avg rv1 daily avg rv2;
run;
/* Step 4: Visualize the Clusters */
proc sgplot data=clus output;
    scatter x=daily_avg_Appliance y=daily_avg_light / group=cluster
markerattrs=(symbol=circlefilled) transparency=0.5;
    title 'Clustering Results: daily avg Appliance VS daily avg light
run;
/* Step 5: Hierarchical Clustering (PROC CLUSTER) */
proc cluster data=clustering standardized method=ward
outtree=clus tree;
    var daily avg Appliance daily avg light
    daily_avg_T1 daily_avg_RH_1 daily_avg_T2 daily_avg_RH_2
daily avg T3
    daily_avg_RH_3 daily_avg_T4 daily_avg_RH_4 daily_avg_T5
daily avg RH 5
    daily_avg_T6 daily_avg_RH_6 daily_avg_T7 daily_avg_RH_7
daily avg T8
    daily avg RH 8 daily avg T9 daily avg RH 9 daily avg T out
daily_avg_Press_mm_hg
```



```
daily_avg_RH_out daily_avg_Windspeed daily_avg_Visibility
daily avg Tdewpoint
    daily avg rv1 daily avg rv2;
run;
/* Step 6: Create Clusters from the Hierarchical Tree using PROC TREE
proc tree data=clus tree out=tree clusters nclusters=3;
    id _NAME_; /* Use _NAME_ to identify observations */
run;
/* Step 7: Print the Clusters Created by PROC TREE */
proc print data=tree clusters;
run;
/*Clustering*/
/* Step 1: Standardize the dataset for clustering */
proc standard data=WORK.IMPORT NUMERIC mean=0 std=1
out=clustering standardized;
    var Appliances num lights num T1 num RH 1 num T2 num RH 2 num
T3 num RH 3 num
        T4 num RH 4 num T5 num RH 5 num T6 num RH 6 num T7 num
RH 7 num T8 num RH 8 num
        T9 num RH 9 num T out num Press mm hg num RH out num
Windspeed num Visibility num
        Tdewpoint num rv1 num rv2 num;
run;
/* Step 2: Perform Clustering using K-means (PROC FASTCLUS) */
proc fastclus data=clustering standardized maxclusters=3
out=clus output;
    var Appliances_num lights_num T1_num RH_1_num T2_num RH_2_num
T3 num RH 3 num
        T4 num RH 4 num T5 num RH 5 num T6 num RH 6 num T7 num
RH 7 num T8 num RH 8 num
        T9 num RH 9 num T out num Press mm hg num RH out num
Windspeed num Visibility num
        Tdewpoint num rv1 num rv2 num;
run;
/* Step 3: Evaluate Clustering Results */
proc print data=clus output(obs=10);
    var cluster Appliances num lights num T1 num RH 1 num T2 num
RH_2_num T3_num RH 3 num
```



```
T4 num RH 4 num T5 num RH 5 num T6 num RH 6 num T7 num
RH 7 num T8 num RH 8 num
        T9 num RH 9 num T out num Press mm hg num RH out num
Windspeed num Visibility num
        Tdewpoint num rv1 num rv2 num;
run;
/* Step 3: Summarize Cluster Characteristics */
proc means data=clus output n mean std min max;
    class cluster;
    var Appliances num lights num T1 num RH 1 num T2 num RH 2 num
T3 num RH 3 num
        T4 num RH 4 num T5 num RH 5 num T6 num RH 6 num T7 num
RH_7_num T8 num RH 8 num
        T9_num RH_9_num T_out_num Press_mm_hg_num RH_out_num
Windspeed num Visibility num
        Tdewpoint num rv1 num rv2 num;
run;
/* Step 4: Visualize the Clusters */
proc sgplot data=clus_output;
    scatter x=T1 num y=T2 num / group=cluster
markerattrs=(symbol=circlefilled) transparency=0.5;
    title 'Clustering Results: T1 num vs T2 num';
run;
/* Additional scatter plots for other variable pairs */
proc sgplot data=clus output;
    scatter x=Appliances num y=lights num / group=cluster
markerattrs=(symbol=circlefilled) transparency=0.5;
    title 'Clustering Results: Appliances num vs lights num';
run;
/* Step 5: Hierarchical Clustering (PROC CLUSTER) */
proc cluster data=clustering standardized method=ward
outtree=clus tree;
    var Appliances num lights_num T1_num RH_1_num T2_num RH_2_num
T3 num RH 3 num
        T4 num RH 4 num T5 num RH 5 num T6 num RH 6 num T7 num
RH_7_num T8_num RH 8 num
        T9 num RH 9 num T out num Press mm hg num RH out num
Windspeed num Visibility num
        Tdewpoint_num rv1_num rv2_num;
```



```
run;
/* Step 6: Create Clusters from the Hierarchical Tree using PROC TREE
proc tree data=clus tree out=tree clusters nclusters=3;
    id NAME; /* Use NAME to identify observations */
run;
/* Step 7: Print the Clusters Created by PROC TREE */
proc print data=tree clusters;
run;
/*PLS TRY*/
/* Step 1: Standardize the dataset */
proc standard data= daily_averages mean=0 std=1
out=daily averages standardized;
    var daily avg Appliance daily avg light
    daily_avg_T1 daily_avg_RH_1 daily_avg_T2 daily_avg_RH_2
daily avg T3
    daily avg RH 3 daily avg T4 daily avg RH 4 daily avg T5
daily avg RH 5
    daily_avg_T6 daily_avg_RH_6 daily_avg_T7 daily_avg_RH_7
daily avg T8
    daily_avg_RH_8 daily_avg_T9 daily_avg_RH_9 daily_avg_T_out
daily avg Press mm hg
    daily_avg_RH_out daily_avg_Windspeed daily_avg_Visibility
daily_avg_Tdewpoint
    daily min usage T1 daily max usage T1 daily min usage T2
daily max usage T2
    daily_min_usage_T3 daily_max_usage_T3 daily_min_usage_T4
daily max usage T4
    daily min usage T5 daily max usage T5 daily min usage T6
daily_max_usage_T6
    daily_min_usage_T7 daily_max_usage_T7 daily_min_usage_T8
daily max usage T8
    daily min usage T9 daily max usage T9;
run;
proc pls data=daily averages standardized;
       model daily avg Appliance = daily avg light
    daily avg T1 daily avg RH 1 daily avg T2 daily avg RH 2
daily_avg_T3
    daily avg RH 3 daily avg T4 daily avg RH 4 daily avg T5
daily avg RH 5
    daily_avg_T6 daily_avg_RH_6 daily_avg_T7 daily_avg_RH_7
```



```
daily avg T8
    daily avg RH 8 daily avg T9 daily avg RH 9 daily avg T out
    daily avg Press mm hg daily avg RH out daily avg Windspeed
    daily avg Visibility daily avg Tdewpoint daily min usage T1
daily max usage T1
    daily min usage T2 daily max usage T2 daily min usage T3
daily max usage T3 daily min usage T4 daily max usage T4
    daily min usage T5 daily max usage T5 daily min usage T6
daily max usage T6
    daily min usage T7 daily max usage T7 daily min usage T8
daily max usage T8
   daily_min_usage_T9 daily_max_usage_T9;
run;
/* Step 2: Perform PLS Regression */
proc pls data=daily averages standardized nfac=10 cv=split(5)
method=pls;
    model daily_avg_Appliance = /*daily_avg_light*/ daily_avg_T1
daily avg RH 1 daily avg T2 daily avg RH 2
                                 daily avg T3 daily avg RH 3
/*daily avg T4*/ daily avg RH 4 daily avg T5
                                 daily_avg_RH_5 daily_avg_T6
daily avg RH 6 daily avg T7 /*daily avg RH 7*/
                                 daily_avg_T8 daily_avg_RH_8
daily avg T9 daily avg RH 9 /*daily avg T out*/
                                 /*daily avg Tdewpoint*/
daily_min_usage_T1 daily_max_usage_T1
    daily_min_usage_T2 daily_max_usage_T2 daily min usage T3
daily max usage T3 daily min usage T4 daily max usage T4
    daily_min_usage_T5 daily_max_usage_T5 daily_min_usage_T6
daily max usage T6
    daily min usage T7 daily max usage T7 daily min usage T8
daily_max_usage T8
    daily_min_usage_T9 daily_max_usage_T9;
   output out=pls pred p=y pred;
run;
/* Step 3: Generate PLS Scores */
proc score data=daily averages standardized score=pls pred
out=pls_scores(rename=(y_pred=_SCORE_));
run;
/* Step 3: Generate PLS Scores */
proc score data=daily averages standardized score=pls pred type=parms
out=pls_scores(rename=(y_pred=_SCORE_));
```



```
run;
/* Step 3: Generate PLS Scores */
proc score data=daily averages standardized score=pls pred type=parms
out=pls scores;
    var daily avg light daily avg T1 daily avg RH 1 daily avg T2
daily_avg_RH_2
        daily avg T3 daily avg RH 3 daily avg T4 daily avg RH 4
daily avg T5
        daily_avg_RH_5 daily_avg_T6 daily_avg_RH_6 daily_avg_T7
daily avg RH 7
        daily avg T8 daily avg RH 8 daily avg T9 daily avg RH 9
daily avg T out
        daily_avg_Press_mm_hg daily_avg_RH_out daily_avg_Windspeed
daily avg Visibility
        daily avg Tdewpoint daily avg rv1 daily avg rv2;
run;
/* Step 3: Generate PLS Scores */
proc score data=daily averages standardized score=pls pred
out=pls pred;
run;
/* Step 3: Assess Variable Importance */
proc sgplot data=pls scores;
    vbar NAME / response= VIP datalabel;
    xaxis label="Predictor Variables";
    yaxis label="Variable Importance in Projection (VIP)";
    title "PLS Regression: VIP Scores";
run;
/* Step 4: Identify and Filter Non-Predictive Variables */
/* Example: Print VIP Scores to Identify Non-Predictive Variables */
proc print data=pls scores(where=( VIP < 0.8));</pre>
    var NAME VIP;
    title "Variables with VIP Scores Less Than 0.8";
run;
/* Step 5: Assess the Model */
proc print data=pls_out(obs=10);
run;
proc sgplot data=pls_pred;
```



```
scatter x=Appliances_num y=y_pred;
    lineparm x=0 y=0 slope=1 / lineattrs=(color=red);
    xaxis label="Actual Appliance Energy Use";
    yaxis label="Predicted Appliance Energy Use";
    title "PLS Regression: Actual vs Predicted Appliance Energy Use";
run:
proc sgplot data=pls out;
    series x=_CV_ y=_PRESS_ / markers;
    xaxis label="Number of Components";
    yaxis label="Predictive Residual Sum of Squares (PRESS)";
    title "PLS Regression: Model Selection using PRESS";
run;
/*PLS Regression*/
/* Step 1: Standardize the dataset */
proc standard data= daily averages mean=0 std=1
out=daily_averages_standardized;
    var daily avg Appliance daily avg light
    daily avg T1 daily avg RH 1 daily avg T2 daily avg RH 2
daily_avg_T3
    daily_avg_RH_3 daily_avg_T4 daily_avg_RH_4 daily_avg_T5
daily avg RH 5
    daily_avg_T6 daily_avg_RH_6 daily_avg_T7 daily_avg_RH_7
daily avg T8
    daily_avg_RH_8 daily_avg_T9 daily_avg_RH_9 daily_avg_T_out
daily_avg_Press_mm_hg
    daily_avg_RH_out daily_avg_Windspeed daily_avg_Visibility
daily avg Tdewpoint
    daily_min_usage_T1 daily_max_usage_T1 daily_min_usage_T2
daily max usage T2
    daily min usage T3 daily max usage T3 daily min usage T4
daily_max_usage_T4
    daily_min_usage_T5 daily_max_usage_T5 daily_min_usage_T6
daily max usage T6
    daily_min_usage_T7 daily_max_usage_T7 daily_min_usage_T8
daily max usage T8
    daily_min_usage_T9 daily_max_usage_T9;
run;
/* Partial Least Squares (PLS) Regression */
proc pls data=daily_averages_standardized method=pls nfac=5;
    model daily avg Appliance = daily avg light
        daily avg T1 daily avg RH 1 daily avg T2 daily avg RH 2
daily_avg_T3
```



```
daily_avg_RH_3 daily_avg_T4 daily_avg_RH_4 daily_avg_T5
daily_avg RH 5
        daily_avg_T6 daily_avg_RH_6 daily_avg_T7 daily_avg_RH_7
daily avg T8
        daily_avg_RH_8 daily_avg_T9 daily_avg_RH_9 daily_avg_T_out
daily avg Press mm hg
        daily_avg_RH_out daily_avg_Windspeed daily_avg_Visibility
daily avg Tdewpoint
        daily_min_usage_T1 daily_max_usage_T1 daily_min_usage_T2
daily max usage T2
        daily min usage T3 daily max usage T3 daily min usage T4
daily max usage T4
        daily min usage T5 daily max usage T5 daily min usage T6
daily max usage T6
        daily_min_usage_T7 daily_max_usage_T7 daily_min_usage_T8
daily_max_usage_T8
        daily min usage T9 daily max usage T9 daily avg rv1
daily avg rv2;
    output out=pls output predicted=Predicted Appliances num;
run;
/* Step 2: Use PROC REG to obtain coefficients */
proc reg data=pls_output;
    model daily_avg_Appliance = daily_avg_light
        daily_avg_T1 daily_avg_RH_1 daily_avg_T2 daily_avg_RH_2
daily avg T3
        daily_avg_RH_3 daily_avg_T4 daily_avg_RH_4 daily_avg_T5
daily avg RH 5
        daily avg T6 daily avg RH 6 daily avg T7 daily avg RH 7
daily avg T8
        daily_avg_RH_8 daily_avg_T9 daily_avg_RH_9 daily_avg_T_out
daily avg Press mm hg
        daily avg RH out daily avg Windspeed daily avg Visibility
daily_avg_Tdewpoint
        daily_min_usage_T1 daily_max_usage_T1 daily_min_usage_T2
daily max usage T2
        daily_min_usage_T3 daily_max_usage_T3 daily_min_usage_T4
daily max usage T4
        daily_min_usage_T5 daily_max_usage_T5 daily_min_usage_T6
daily max usage T6
        daily min usage T7 daily max usage T7 daily min usage T8
daily max usage T8
        daily_min_usage_T9 daily_max_usage_T9 daily_avg_rv1
daily avg rv2;
    output out=reg output p=predicted;
run;
```



```
/* Print the first 20 observations to verify the PLS output */
proc print data=pls output(obs=20);
   var daily_avg_Appliance Predicted_Appliances num;
run;
/* Scatter plot of Actual vs. Predicted Values */
proc sgplot data=pls output;
    scatter x=daily avg Appliance y=Predicted Appliances num;
    lineparm x=0 y=0 slope=1 / lineattrs=(color=red);
    xaxis label="Actual Appliances Energy Consumption";
    yaxis label="Predicted Appliances Energy Consumption";
   title "Actual vs. Predicted Energy Consumption (PLS)";
run;
/* Print the actual and predicted values for all observations */
proc print data=pls output noobs label;
    var daily avg Appliance Predicted Appliances num;
    label daily_avg_Appliance = "Actual Appliances Energy
Consumption"
          Predicted Appliances num = "Predicted Appliances Energy
Consumption";
   title "Table of Actual vs. Predicted Values";
run;
```

