Definição

Dizemos que um subconjunto limitado A de \mathbb{R}^n tem volume se a função constante igual a 1 for integrável em A. Neste caso escrevemos

$$\operatorname{vol}(A) = \int_A 1.$$

Consideremos o sólido $A \times [0,1]$ em \mathbb{R}^3 . Então $\operatorname{vol}(A)$ em \mathbb{R}^2 (ou área de A) é igual a $\operatorname{vol}(A \times [0,1])$ em \mathbb{R}^3 . No fundo estamos a dizer que $\operatorname{vol}(A \times [0,1])$ é igual à área de A vezes a altura do sólido.

De modo análogo, se $f:\mathbb{R}^n \to \mathbb{R}$ é uma função limitada, <u>positiva</u> e integrável num conjunto limitado A,

$$\int_A f = \operatorname{vol}\Bigl(\bigl\{(X,z) \in A \times \mathbb{R} : 0 \le z \le f(X)\bigr\}\Bigr),$$

onde X = (x, y).

Área da região E limitada pela elipse de equação $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$

$$\label{eq:Area} \text{\'Area}(E) \quad = \quad 2 \int_{-a}^a b \sqrt{1 - \frac{x^2}{a^2}} \, dx = \pi a b.$$

 $\iint_E f(x,y) dx dy$ - E região limitada pela elipse de equação $rac{x^2}{a^2} + rac{y^2}{b^2} = 1$

$$\int_{A} f(x,y) dx dy = \int_{-a}^{a} \left(\int_{-b\sqrt{1-\frac{x^{2}}{a^{2}}}}^{b\sqrt{1-\frac{x^{2}}{a^{2}}}} f(x,y) dy \right) dx$$

Se f(x,y) = 1 temos

$$\operatorname{Area}(E) = \int_A f(x,y) dx dy = \int_{-a}^a \left(\int_{-b\sqrt{1-\frac{x^2}{a^2}}}^{b\sqrt{1-\frac{x^2}{a^2}}} 1 \, dy \right) dx = \int_{-a}^a 2b\sqrt{1-\frac{x^2}{a^2}} \, dx$$

Outro exemplo

$$\iint_A f(x,y) \, dx \, dy \quad = \quad \int_1^3 \left(\int_{-(x-2)^2-1}^{(x-2)^2+1} f(x,y) \, dy \right) \, dx.$$

Em particular a área de A é igual a

$$\iint_A dx \, dy = \int_1^3 \left(\int_{-(x-2)^2 - 1}^{(x-2)^2 + 1} dy \right) \, dx = \int_1^3 \left(2(x-2)^2 + 2 \right) \, dx = \frac{16}{3}.$$

Mesmo exemplo – invertendo a ordem de integração

$$\iint_A f(x,y) \, dx \, dy \quad = \quad \int_{[-2,2]} \left(\int_{[1,3]} \chi_A f(x,y) \, dx \right) \, dy = \int_{-2}^2 \left(\int_1^3 \chi_A f(x,y) \, dx \right) \, dy.$$

A situação agora é um pouco mais complicada pois, fixado $y \in [-2,2]$, x varia entre

$$\left\{ \begin{array}{ll} [1,2-\sqrt{-1-y}] \cup [2+\sqrt{-1-y},3] & \text{se } y \in [-2,-1] \\ \\ [1,3] & \text{se } y \in [-1,1] \\ \\ [1,2-\sqrt{y-1}] \cup [2+\sqrt{y-1},3] & \text{se } y \in [1,2]. \end{array} \right.$$

Mesmo exemplo - continuação

$$\iint_{A} f(x,y) \, dx \, dy = \int_{-2}^{-1} \left(\int_{1}^{2-\sqrt{-1-y}} f(x,y) \, dx + \int_{2+\sqrt{-1-y}}^{3} f(x,y) \, dx \right) \, dy
+ \int_{-1}^{1} \left(\int_{1}^{3} f(x,y) \, dx \right) \, dy
+ \int_{1}^{2} \left(\int_{1}^{2-\sqrt{y-1}} f(x,y) \, dx + \int_{2+\sqrt{y-1}}^{3} f(x,y) \, dx \right) \, dy.$$

Cálculo da área de $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, \ (x-1)^2 + y^2 \le 1\}.$

x varia entre 0 e 1. Linha verde $x = \frac{1}{2}$.

• se
$$x\in[0,\frac{1}{2}]$$
 então $y\in[-\sqrt{1-(x-1)^2},\sqrt{1-(x-1)^2}];$

$$\bullet$$
 se $x \in [\frac{1}{2},1]$ então $y \in [-\sqrt{1-x^2},\sqrt{1-x^2}].$

$$\begin{array}{ll} \text{\'Area}(A) & = & \int_0^{\frac{1}{2}} \int_{-\sqrt{1-(x-1)^2}}^{\sqrt{1-(x-1)^2}} dy \, dx + \int_{\frac{1}{2}}^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \, dx = \frac{2}{3} \, \pi - \frac{\sqrt{3}}{2} \\ \text{\'Area}(A) & = & \int_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} \int_{1-\sqrt{1-y^2}}^{\sqrt{1-y^2}} dx \, dy = \frac{2}{3} \, \pi - \frac{\sqrt{3}}{2} \end{array}$$

Cálculo de $\iint_A x \, dx \, dy$, sendo

$$A = \{(x,y) \in \mathbb{R}^2 : y \ge -x^2, \ y \le 2x - x^2, \ y \le 2 - 2x - x^2\}.$$

x varia entre 0 e 1. Linha verde $x = \frac{1}{2}$.

- \bullet se $x \in [0, \frac{1}{2}]$ então $y \in [-x^2, 2x x^2]$;
- \bullet se $x \in [\frac{1}{2},1]$ então $y \in [-x^2,2-2x-x^2].$

$$\iint_{A} x \, dx \, dy = \int_{0}^{\frac{1}{2}} \int_{-x^{2}}^{2x-x^{2}} x \, dy \, dx + \int_{\frac{1}{2}}^{1} \int_{-x^{2}}^{2-2x-x^{2}} x \, dy \, dx
= \int_{0}^{\frac{1}{2}} 2x^{2} \, dx + \int_{\frac{1}{2}}^{1} (2x - 2x^{2}) \, dx = \left[\frac{2}{3}x^{3}\right]_{0}^{\frac{1}{2}} + \left[x^{2} - \frac{2}{3}x^{3}\right]_{\frac{1}{2}}^{1} = \frac{1}{4}.$$

Cálculo de
$$\iint_A x \, dx dy$$
, sendo $A = \{(x,y) \in \mathbb{R}^2 : y \ge -x^2, \ y \le 2x-x^2, \ y \le 2-2x-x^2\}.$

y varia entre -1 e $\frac{3}{4}$

- $\bullet \text{ se } y \in [-1,0] \text{ então } x \in [\sqrt{-y},-1+\sqrt{3-y}];$
- se $y \in [0, \frac{3}{4}]$ então $x \in [1-\sqrt{1-y}, -1+\sqrt{3-y}]$.

$$\begin{split} \iint_A x \, dx \, dy &= \int_{-1}^0 \int_{\sqrt{-y}}^{-1+\sqrt{3-y}} x \, dx \, dy + \int_0^{\frac{1}{2}} \int_{1-\sqrt{1-y}}^{-1+\sqrt{3-y}} x \, dx \, dy \\ &= \int_{-1}^0 (2-\sqrt{3-y}) \, dy + \int_0^{\frac{1}{2}} (1-\sqrt{1-y}-\sqrt{3-y}) \, dy = \frac{1}{4}. \end{split}$$

x varia entre 0 e 2. Linha verde $x=\sqrt{\frac{3}{2}}$.

$$\iint_{D} x \, dx \, dy = \int_{0}^{\sqrt{3/2}} \int_{-\sqrt{1+x^{2}}}^{\sqrt{1+x^{2}}} x \, dy \, dx + \int_{\sqrt{3/2}}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} x \, dy \, dx$$
$$= \int_{0}^{\sqrt{3/2}} 2x \sqrt{1+x^{2}} \, dx + \int_{\sqrt{3/2}}^{2} 2x \sqrt{4-x^{2}} \, dx$$
$$= \frac{5}{6} \sqrt{10} - \frac{2}{3} + \frac{5}{6} \sqrt{10} = \frac{5}{3} \sqrt{10} - \frac{2}{3}.$$

Cálculo de
$$\iint_D x \, dx \, dy$$
, sendo $D = \{(x,y) \in \mathbb{R}^2 : x \geq 0, \ x^2 + y^2 \leq 4, \ y^2 - x^2 \leq 1\}.$

Linhas verdes $y=\pm\sqrt{\frac{5}{2}}$. Linhas vermelhas $y=\pm1$.

$$\iint_{D} x \, dx \, dy = \int_{-\sqrt{5/2}}^{-1} \int_{\sqrt{y^{2}-1}}^{\sqrt{4-y^{2}}} x \, dx \, dy + \int_{-1}^{1} \int_{0}^{\sqrt{4-y^{2}}} x \, dx \, dy + \int_{1}^{\sqrt{5/2}} \int_{\sqrt{y^{2}-1}}^{\sqrt{4-y^{2}}} x \, dx \, dy$$
$$= \int_{-\sqrt{5/2}}^{-1} (\frac{5}{2} - y^{2}) \, dy + \int_{-1}^{1} (2 - \frac{y^{2}}{2}) \, dy + \int_{1}^{\sqrt{5/2}} (\frac{5}{2} - y^{2}) \, dy = \frac{5}{3} \sqrt{10} - \frac{2}{3}.$$

Esfera

Seja $E=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2+z^2\leq R^2\}$ a esfera centrada em (0,0,0) e de raio R. Denotando X=(x,y,z), temos

$$\int_E f(X) dX = \int_{-r}^r \left(\iint_{S_z} f(x,y,z) dx dy \right) dz$$

em que S_z é a (superfície) intersecção da esfera com o plano Z=z.

Temos assim (os parêntesis não são necessários),

$$\int_E f(X) dX = \int_{-R}^R \left(\int_{-\sqrt{R^2 - z^2}}^{\sqrt{R^2 - z^2}} \left(\int_{-\sqrt{R^2 - z^2 - x^2}}^{\sqrt{R^2 - z^2 - x^2}} f(x, y, z) \, dy \right) dx \right) dz.$$

Volume da esfera

Para calcular o volume de $E=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2+z^2\leq R^2\}$ consideramos f(x,y,z)=1. Podemos usar os seguintes raciocínios:

ullet como $\iint_{S_z} dx dy$ é a área de S_z que sabemos ser $\pi(r^2-z^2)$ então

$$vol(E) = \int_{E} dX = \int_{-R}^{R} \left(\iint_{S_{z}} dx dy \right) dz = \int_{-R}^{R} \pi(r^{2} - z^{2}) dz = \dots = \frac{4}{3} \pi R^{3};$$

• aqui as primitivas podem dar algum trabalho.

$$\begin{split} \int_E dX &= \int_{-R}^R \left(\int_{-\sqrt{R^2 - z^2}}^{\sqrt{R^2 - z^2}} \left(\int_{-\sqrt{R^2 - z^2 - x^2}}^{\sqrt{R^2 - z^2 - x^2}} dy \right) dx \right) dz \\ &= \int_{-R}^R \int_{-\sqrt{R^2 - z^2}}^{\sqrt{R^2 - z^2}} 2\sqrt{R^2 - z^2 - x^2} dx \, dz. \end{split}$$

O cálculo da primitiva em ordem a x pode exigir fazer a mudança de variável $x=\sqrt{R^2-z^2} \sin t$,

$$\int_{E} dX = \int_{-R}^{R} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2(R^{2} - z^{2}) \cos^{2} t \, dt \, dz = \int_{-R}^{R} \pi (R^{2} - z^{2}) dz = \frac{4}{3} \pi R^{3}.$$

Limites de integração para o cone - "começando" pela variável z

Cone de altura h e raio da base R.

Temos assim, notando que no plano OXY, $C_z = \{(x,y): x^2 + y^2 \leq \frac{R^2}{h^2}z^2\}$

$$\begin{split} \int_C f(X) dX &= \int_0^h \left(\iint_{C_z} f(x,y,z) dx \, dy \right) dz = \int_0^h \int_{-\frac{R}{h}z}^{\frac{R}{h}z} \int_{-\sqrt{\frac{R^2}{h^2} z^2 - x^2}}^{\sqrt{\frac{R^2}{h^2} z^2 - x^2}} f(x,y,z) \, dy \, dx \, dz \\ \text{vol}(C) &= \int_0^h \left(\iint_{C_z} dx \, dy \right) dz = \int_0^h \pi \frac{R^2}{h^2} z^2 \, dz = \frac{1}{3} \pi R^2 h. \end{split}$$

Limites de integração para o cone - "começando" pela variável x

Temos assim, notando que no plano OXY, $C_x = \{(y,z): \frac{h}{R}\sqrt{x^2+y^2} \leq z \leq h\}$

$$\begin{split} \int_C f(X) dX &= \int_{-R}^R \left(\iint_{C_x} f(x,y,z) dy \, dz \right) dx \\ &= \int_{-R}^R \int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} \int_{\frac{h}{R}}^h \sqrt{x^2 + y^2}}^h f(x,y,z) \, dz \, dy \, dx. \end{split}$$

Parabolóide de altura h e raio R.

$$P = \{(x,y,z) : \frac{h}{R^2}(x^2 + y^2) \le z \le h\}.$$

Temos assim, notando que no plano OXY, $P_z = \{(x,y): x^2 + y^2 \leq \frac{R^2}{h}z\}$

$$\operatorname{vol}(P) = \int_P dX \quad = \quad \int_0^h \left(\iint_{P_z} dx \, dy \right) dz = \int_0^h \operatorname{Area}(P_z) dz = \int_0^h \pi \frac{R^2}{h} \, z \, dz = \tfrac{1}{2} \pi R^2 h.$$

Inversão da ordem de integração:

$$A=\{(x,y): 0\leq y\leq 1, y\leq x\leq \sqrt{y}\}.$$

$$\int_0^1 \int_{x^2}^x dy \, dx$$

$$\int_0^1 \int_{\sqrt{y}}^{3-2y} dx \, dy$$

Teorema (da mudança de variável)

Sejam A e B subconjuntos de \mathbb{R}^n com volume, $f:\mathbb{R}^n\longrightarrow\mathbb{R}$ uma função integrável em B e $\Phi:B\longrightarrow A$ tal que $\Phi_{|\overset{\circ}{B}}$ é uma função bijectiva de classe C^1 sobre $\overset{\circ}{A}$. Então,

$$\int_A f = \int_B (f \circ \Phi) \mid \det J \, \Phi |,$$

ou seja, se escrevermos $\Phi(u_1,\ldots,u_n)=(x_1,\ldots,x_n)$,

$$\overbrace{\int \cdots \int_A f(X) \, dX}^{n \text{ símbolos}} (f \circ \Phi)(U) \mid \det J \, \Phi(U) \mid dU$$

onde
$$X=(x_1,\ldots,x_n)$$
, $dX=dx_1\ldots\,dx_n$, $U=(u_1,\ldots,u_n)$ e $dU=du_1\ldots\,du_n$.

Exemplo 1

Cálculo de $\iint_{\mathbb{R}} (x^2 + y^2) \, dx \, dy$ sendo $S = \{(x,y) \in \mathbb{R}^2: \ x \leq y \leq 3x, \ 1 \leq xy \leq 2\}.$

usando a mudança de variável definida por $x=\sqrt{rac{u}{v}}$ e $y=\sqrt{uv}$.

$$B = \left\{ (u,v) : \sqrt{\frac{u}{v}} \leq \sqrt{uv} \leq 3\sqrt{\frac{u}{v}}, \ 1 \leq \sqrt{\frac{u}{v}} \cdot \sqrt{uv} \leq 2 \right\} = \left\{ (u,v) : 1 \leq v \leq 3, \ 1 \leq u \leq 2 \right\}$$

$$\iint_{S} (x^{2} + y^{2}) dx dy = \iint_{B} \left(\frac{u}{v} + uv\right) \cdot \frac{1}{2v} du dv = \frac{1}{2} \int_{1}^{3} \int_{1}^{2} \left(\frac{u}{v^{2}} + u\right) du dv$$

Exemplo 2

$$\Phi(x,y) = (y,x).$$

$$\iint_{RVerde} (y-x) dx \, dy \quad = \quad \iint_{RAzul} (x-y) |-1| dx \, dy.$$

$$\iint_{R} (y - x) dx \, dy = 0.$$

Coordenadas polares

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$

$$\Phi: \quad \mathbb{R}^+ \times [0, 2\pi[\quad \longrightarrow \quad \mathbb{R}^2 \setminus \{(0, 0)\}.$$

$$(r, \theta) \quad \mapsto \quad (r \cos \theta, r \sin \theta)$$

Note-se que:

- a restrição de Φ a $\mathbb{R}^+ \times]0, 2\pi[$ é de classe C^1 e é bijectiva sobre $\mathbb{R}^2 \setminus (\mathbb{R}_0^+ \times \{0\});$
- Φ pode então ser usada como uma mudança de variável (nas condições do Teorema) para todo o conjunto A contido em $\mathbb{R}^2 \setminus (\mathbb{R}_0^+ \times \{0\});$
- uma vez que $\mathbb{R}^+_0 imes \{0\}$ tem "volume zero", podemos usar esta função para qualquer $A \subseteq \mathbb{R}^2$. Formalmente, estamos a usar a igualdade,

$$\int_{A} f = \int_{A \setminus (\mathbb{R}_{0}^{+} \times \{0\})} f,$$

e só depois a mudança de variável.

•
$$\det \mathcal{J}_{(r,\theta)} \Phi = \det \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix} = r.$$

Interpretação "geométrica" de $\det \mathcal{J}_{(r,\theta)}\Phi$

• se fixarmos $\theta=\theta_0$, o conjunto dos pontos (x,y) "cujo" θ é igual a θ_0 (ou seja, o conjunto $\Phi(\{\theta_0\}\times\mathbb{R}^+))$ é a semi-recta representada na figura

• se fixarmos $r=r_0$, o conjunto dos pontos (x,y) "cujo" r é igual a r_0 (ou seja, o conjunto $\Phi([0,2\pi[imes\{r_0\}))$ é a circunferência representada na figura

 \bullet o rectângulo $[a,b]\times [c,d]$ é transformado por Φ no conjunto da direita

• um "rectângulo infinitesimal" cujos lados meçam dr e $d\theta$ é transformado por Φ numa figura cuja área é $r\,dr\,d\theta+\frac{1}{2}d\theta\,dr\,dr\approx r\,dr\,d\theta$.

Note-se que, para efeitos de cálculo da área, estamos a aproximar a segunda figura por um rectângulo (recorda-se que o raio de uma circunferência é perpendicular à circunferência) em que um dos lados mede dr e outro $r\,d\theta$ (que é a medida do arco de circunferência de amplitude $d\theta$ e de raio r).

Coordenadas polares: $S = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le R^2\}$

Em coordenadas polares S é definido pela desigualdade $r \leq R$. Deste modo:

- ullet heta não tem restrições para além do facto de pertencer ao conjunto $[0,2\pi[$;
- $0 \le r \le R$, independentemente de θ .

Assim

$$\iint_{S} f(x,y) dx dy = \int_{0}^{2\pi} \int_{0}^{R} f(r\cos\theta, r\sin\theta) r dr d\theta.$$

Tudo isto pode ser visto facilmente se fizermos o desenho

Coordenadas polares: $Q = [1,2] \times [0,1]$

- ullet θ varia entre 0 e $\frac{\pi}{4}$;
- se $\theta \in \left[0, \arctan\left(\frac{1}{2}\right)\right]$ então r varia da recta $r\cos\theta = 1$ até à recta $r\cos\theta = 2$;
- se $\theta \in \left[\operatorname{arctg}(\frac{1}{2}), \frac{\pi}{4} \right]$ então r varia da recta $r \cos \theta = 1$ até à recta $r \sin \theta = 1$.

$$\iint_{Q} f(x,y) \, dx \, dy = \int_{0}^{\arctan(\frac{1}{2})} \int_{\frac{1}{\cos \theta}}^{\frac{2}{\cos \theta}} f(r\cos \theta, r \sin \theta) \, r \, dr \, d\theta + \int_{\arctan(\frac{1}{2})}^{\frac{\pi}{4}} \int_{\frac{1}{\cos \theta}}^{\frac{1}{\sin \theta}} f(r\cos \theta, r \sin \theta) \, r \, dr \, d\theta$$

$$A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, (x-1)^2 + y^2 \le 1\}.$$

Em coordenadas polares A é definido pelas desigualdades $\left\{ \begin{array}{l} r \leq 1 \\ r \leq 2\cos\theta \end{array} \right.$, $0 \leq r$ e $-\pi < \theta \leq \pi$.

Olhando para o desenho, vemos que heta varia entre $-\frac{\pi}{2}$ e $\frac{\pi}{2}$.

Os ponto de intersecção das circunferências são $\left(\frac{1}{2},\pm\frac{\sqrt{3}}{2}\right)$. Assim

$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, (x - 1)^2 + y^2 \le 1\}.$$

Sem desenho

Em coordenadas polares A é definido pelas designaldades $\left\{\begin{array}{l} r\leq 1\\ r\leq 2\cos\theta \end{array}\right.,\ 0\leq r$ e $-\pi<\theta<\pi.$

Da segunda desigualdade tiramos logo que θ varia entre $-\frac{\pi}{2}$ e $\frac{\pi}{2}$.

As designaldades acima significam $r \leq \min\{1, 2\cos\theta\}$.

Temos assim:

- $r \le 1$ se $2\cos\theta \ge 1$, ou seja, se $\theta \in \left[-\frac{\pi}{3}, \frac{\pi}{3}\right]$;
- $r \le 2\cos\theta$ se $2\cos\theta \le 1$, ou seja, se $\theta \not\in \left[-\frac{\pi}{3}, \frac{\pi}{3}\right]$.

Assim

Cálculo de $\iint_D x \, dx \, dy$, sendo $D = \{(x,y) \in \mathbb{R}^2 : x,y \geq 0, \ x^2 + y^2 \leq 4, \ y^2 - x^2 \leq 1\}.$

heta varia entre 0 e $\frac{\pi}{2}$. O ponto relevante é $(\frac{\sqrt{6}}{2},\frac{\sqrt{10}}{2})$. Assim

$$\iint_D x\,dx\,dy = \int_0^{\arctan(\sqrt{\frac{5}{3}})} \int_0^2 r^2\cos\theta\,dr\,d\theta + \int_{\arctan(\sqrt{\frac{5}{3}})}^{\frac{\pi}{2}} \int_0^{\frac{1}{\sqrt{\sin^2\theta - \cos^2\theta}}} r^2\cos\theta\,dr\,d\theta.$$

Coordenadas cilíndricas

Um ponto $(x,y,z)\in\mathbb{R}^3\setminus(\{0\}\times\{0\}\times\mathbb{R})$, fica definido pela sua $3^{\underline{a}}$ componente e pelas "coordenadas polares" de (x,y,0). Temos as novas coordenadas, r, θ e z, definidas por

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \\ z = z \end{cases}$$

Temos assim a função

$$\Phi: \quad \mathbb{R}^+ \times [0, 2\pi[\times \mathbb{R} \quad \longrightarrow \quad \mathbb{R}^3 \setminus (\{0\} \times \{0\} \times \mathbb{R}) \\ (r, \theta, z) \quad \mapsto \quad (r \cos \theta, r \sin \theta, z).$$

Coordenadas cilíndricas: algumas observações

- ullet como nas coordenadas polares, podemos considerar que heta varia em qualquer intervalo de amplitude 2π ;
- a restrição de Φ a $\mathbb{R}^+ \times]0, 2\pi [\times \mathbb{R}$ é uma bijecção de classe C^1 sobre $\mathbb{R}^3 \setminus (\mathbb{R}^+_0 \times \{0\} \times \mathbb{R})$ (ou seja, \mathbb{R}^3 excepto o semi-plano de equação $y=0, \ x \geq 0$);
- para efeitos de cálculo de integrais podemos "pensar" em Φ como uma mudança de variável em \mathbb{R}^3 , uma vez que o conjunto $\mathbb{R}^+_0 \times \{0\} \times \mathbb{R}$ tem "volume zero".

$$\theta = \theta_0$$

Se fixarmos $\theta=\theta_0$, o conjunto dos pontos (x,y,z) "cujo" θ é igual a θ_0 ou seja, $\Phi(\mathbb{R}^+\times\{\theta_0\}\times\mathbb{R})$, é o semi-plano

$$z=z_0$$

Se fixarmos $z=z_0$, isto é, se calcularmos $\Phi(\mathbb{R}^+ \times [0,2\pi[imes\{z_0\}])$, obtemos o plano de equação $z=z_0$,

$r = r_0$

Se fixarmos $r=r_0$, o conjunto dos pontos (x,y,z) "cujo" r é igual a r_0 , ou seja, o conjunto $\Phi([0,2\pi[imes\{r_0\}\times\mathbb{R})$, é o cilindro vertical infinito nos dois sentidos, cuja intersecção com o plano z=0 é a circunferência centrada na origem e de raio r_0 ,

Unidade de volume (1)

O rectângulo $[a,b] \times [c,d] \times [e,f]$ é transformado por Φ no conjunto $\{(x,y,z): \exists (r,\theta) \in [a,b] \times [c,d]: x=r\cos\theta, \ y=r\sin\theta, \ z\in [e,f]\}$, ou seja,

Unidade de volume (2)

• um "rectângulo infinitesimal" cujos lados meçam $dr, d\theta$ e dz é transformado por Φ numa figura cujo volume é aproximadamente $r\,dr\,d\theta\,dz$;

Este conjunto tem volume $\left(r dr d\theta + \frac{1}{2} d\theta dr dr\right) dz \approx r dr d\theta dz$.

$$\bullet \ J\Phi(r,\theta,z) = \left(\begin{array}{ccc} \cos\theta & -r \, \sin\theta & 0 \\ \sin\theta & r \, \cos\theta & 0 \\ 0 & 0 & 1 \end{array} \right) \, \text{e, portanto, } |\det J\,\Phi| = r.$$

Coordenadas cilíndricas: exemplos

Note-se que em geral é mais fácil começar por ver a variação de z (neste caso ficamos reduzidos a um integral duplo em "coordenadas polares") ou a variação de θ e, neste caso, o "melhor" é fazer um desenho no semi-plano definido por θ igual a constante

Um cilindro $\{(x,y,z)\in\mathbb{R}^3: x^2+y^2\leq r^2,\ a\leq z\leq b\}$ é essencialmente um "paralelipípedo" em coordenadas cilíndricas ($[0,r]\times[0,2\pi]\times[a,b]$) da mesma maneira que um círculo centrado na origem é um rectângulo em \mathbb{R}^2 .

$$\iint_{Cil_{r,a,b}} f(x,y,z) \, dx \, dy \, dz = \int_a^b \int_0^{2\pi} \int_0^r f(r\cos\theta,r\sin\theta,z) r \, dr \, d\theta \, dz.$$

Coordenadas cilíndricas: esfera

Vamos "calcular" $\int_S f(X)\,dX$, em que $S=\{(x,y,z): x^2+y^2+z^2\leq a^2\}$, com a>0. Comecemos por ver a variação de θ .

A esfera é definida por $r^2+z^2\leq a^2$. Como não existe restrição a θ , isto significa que θ varia no intervalo $[0,2\pi[$. De seguida, desenhamos no semi-plano θ igual a constante a região S_{θ} , que é a intersecção de S com esse semi-plano

$$\text{Assim, } \iint_{S} f(x,y,z) \, dx \, dy \, dz = \int_{0}^{2\pi} \int_{0}^{a} \int_{-\sqrt{a^{2}-r^{2}}}^{\sqrt{a^{2}-r^{2}}} r \, f(r\cos\theta,r\sin\theta,z) \, dz \, dr \, d\theta.$$

Se quisermos calcular o volume de S então $f\equiv 1$ e as primitivas a calcular são todas simples.

Coordenadas cilíndricas: esfera (2)

Comecemos agora pela variação de z.

Da equação da esfera, em coordenadas cartesianas ou em cilíndricas, vemos que z varia em [-a,a]. Fixado z, ficamos com uma região S_z , de equação $x^2+y^2\leq a^2-z^2$. De seguida calculamos os limites de integração de S_z em "coordenadas polares".

Deste modo.

$$\iint_{S} f(x, y, z) \, dx \, dy \, dz = \int_{-r}^{r} \int_{0}^{2\pi} \int_{0}^{\sqrt{a^{2} - z^{2}}} r \, f(r \cos \theta, r \sin \theta, z) \, dr \, d\theta \, dz.$$

Coordenadas cilíndricas: cone

À direita está a intersecção do cone com um semi-plano θ igual a constante.

Deste modo
$$C_{h,r} = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 \le \frac{r^2}{h^2} z^2, \ 0 \le z \le h\}$$
 e

$$\mathrm{vol}(C_{h,R}) = \int_0^{2\pi} \int_0^R \int_{\frac{h}{R}}^h r \, dz \, dr \, d\theta = \int_0^{2\pi} \int_0^R \left(h - \tfrac{h}{R} \, r \right) r \, dr \, d\theta = \int_0^{2\pi} \tfrac{hR^2}{6} \, d\theta = \tfrac{1}{3} \pi \, R^2 h.$$

Coordenadas cilíndricas: cone (2)

z varia no intervalo [0,h]. O desenho no plano z igual a constante é

Neste caso,

$$vol(C) = \int_0^h \int_0^{2\pi} \int_0^{\frac{R}{h}z} r \, dr \, d\theta \, dz = \int_0^h \int_0^{2\pi} \frac{R^2}{2h^2} z^2 \, d\theta \, dz = \frac{1}{3}\pi \, R^2 h.$$

Sólidos de revolução - primeiro caso

Consideremos uma função positiva $f: [a,b] \longrightarrow \mathbb{R}, \quad \text{em que } a < b$ $y \mapsto f(y)$

"Imaginemos" o gráfico da função a rodar à volta do eixo OY. Obtemos assim um superfície. Note-se que um ponto (y,f(y)) do gráfico percorre, na sua rotação, uma circunferência de raio f(y).

O sólido de revolução V é definido por $\sqrt{x^2+y^2} \leq f(z)$ e $a \leq z \leq b$. A intersecção de V com um plano Z=z é um círculo de raio f(z).

$$\operatorname{vol}(V) = \int_{a}^{b} \int_{0}^{2\pi} \int_{0}^{f(z)} r \, dr \, d\theta \, dz$$
$$= \int_{a}^{b} \pi f(z)^{2} \, dz.$$

Sólidos de revolução - segundo caso

Consideremos funções $f,g:[a,b]\longrightarrow \mathbb{R}$, com $0\leq f\leq g$.

$$V = \{(x, y, z) \in \mathbb{R}^2 \times [a, b] : f(z) \le \sqrt{x^2 + y^2} \le g(z)\}.$$

Então

$$\operatorname{vol}(V) = \int_a^b \pi \left(g(z)^2 - f(z)^2 \right) dz.$$