EMV PRODUKTE

AUS NANOKRISTALLINEM VITROPERM

DAS UNTERNEHMEN **VACUUMSCHMELZE**

ADVANCED MAGNETIC SOLUTIONS

VAC ist ein führender Hersteller von magnetischen Legierungen und daraus hergestellten Lösungen. Wir treiben die Technologien von heute und morgen mit Leidenschaft voran. Als zuverlässiger Partner entwickeln wir mit unseren Kunden Anwendungslösungen, die es ermöglichen, den ständig steigenden Anforderungen gerecht zu werden. Mit bahnbrechenden Lösungen gehen wir an technische Grenzen. Der Einsatz unserer Materialien und ihre besonderen magnetischen Eigenschaften sind der Schlüssel, um die Lösungen unserer Kunden kleiner, leichter, effizienter und nicht zuletzt sicherer zu machen. Damit tragen wir wesentlich zur Ressourcenschonung und zum Schutz unserer Umwelt bei.

Inhaltsverzeichnis

Einleitung	Seite 3
Verbessertes EMV-Filter- und Drosseldesign	Seite 5
VITROPERM vs. Ferrit	Seite 7
Werkstoffeigenschaften von VITROPERM	Seite 8
Designvorteile durch VITROPERM	Seite 12
VITROPERM – Typische Daten	Seite 13
Standardreihen VITROPERM-Kerne	Seite 14
Kernbaugruppen	Seite 18
stromkompensierte Funkentstördrosseln (UL1446 Standardreihen)	Seite 20
Weitergehende Designunterstützung	Seite 24
Checkliste stromkompensierte Funkenstördrosseln	Seite 26

2

EMV PRODUKTE

AUS NANOKRISTALLINEM VITROPERM

Die Leistungselektronik hat einen entscheidenden Einfluss auf die Technik der elektrischen Energieerzeugung, -verteilung und -umwandlung. Mittels moderner Leistungshalbleiter lässt sich Energie mit sehr niedrigen Schaltverlusten steuern und umwandeln. Aber die schnell taktenden Schalter erzeugen auch erhebliche Netzstörungen. Um diese Störungen zu minimieren und die gültigen internationalen Normen zu erfüllen, werden EMV-Filter verwendet. Die EMV-Produkte aus nanokristallinem VITROPERM® leisten einen wesentlichen Beitrag für innovative und kompakte Filterdesigns mit geringer Verlustleistung.

Unsere EMV-Produkte werden in einer Vielzahl von Anwendungen verwendet:

- Schaltnetzteile
- Solarwechselrichter
- Frequenzumrichter für elektrische Antriebe
- Schweißgeräte
- Windgeneratoren
- Induktionskochfelder
- Automobilanwendungen
- Unterbrechungsfreie Stromversorgungen (USV)
- sonstige EMV Filter

® = eingetragenes Warenzeichen der VACUUMSCHMELZE GmbH & Co. KG

VITROPERM – DAS BESTE, WAS AUS EISEN WERDEN KANN

Die nanokristallinen VITROPERM Legierungen sind Werkstoffe auf der Basis von Fe, Si und B mit Zusätzen von Nb und Cu. Sie werden mit Hilfe der Rascherstarrungstechnologie als dünne Bänder in einem Schritt in der Enddicke von circa 20 µm hergestellt. Auf speziellen Wickelmaschinen werden die Bänder zu Ringbandkernen im Abmessungsbereich von 2 mm bis 600 mm (Außendurchmesser) weiterverarbeitet. Zur Ausbildung der nanokristallinen Mikrostruktur werden die im Herstellzustand noch amorphen Bänder einer Wärmebehandlung bei 500 °C bis 600 °C unterzogen. Dabei entsteht eine Zweiphasenstruktur mit feinkristallinen Körnern (mittlerer Korndurchmesser 10-40 nm), welche in eine amorphe Restphase eingebettet sind.

Dieses strukturelle Merkmal ist die Voraussetzung für das Erreichen höchster Permeabilität und kleinster Koerzitivfeldstärke. Daneben sorgen die geringe Banddicke und der relativ hohe elektrische Widerstand von 1,1 - 1,2 $\mu\Omega m$ für niedrigste Wirbelstromverluste und einen ausgezeichneten Frequenzgang der Permeabilität. Die Kombination dieser Eigenschaften, verknüpft mit einer Sättigungsflussdichte von 1,2 T sowie günstige thermische Eigenschaften, machen das nanokristalline weichmagnetische High-Tech-Material VITROPERM zur universellen Lösung für EMV Probleme, welche konventionellen Ferriten und amorphen Werkstoffen in vielen Punkten überlegen ist.

Abb. 1: Rascherstarrungstechnologie zur Herstellung von Metallbändern mit einer amorphen (glasartigen) Struktur

Abb. 2: Kristalline Struktur, amorphe Struktur, nanokristalline Mikrostruktur

VERBESSERTES EMV-FILTER UND DROSSELDESIGN

Nanokristalline Kerne werden aufgrund der überragenden weichmagnetischen Eigenschaften bereits seit vielen Jahren in stromkompensierten Funkentstördrosseln (SKD) mit großem Erfolg eingesetzt. Durch die Verwendung von kostengünstigen Legierungsbestandteilen (Fe-Basis) und den Einsatz moderner Großserienproduktion hat sich VITROPERM bereits in vielfältigen Applikationen als wettbewerbsfähige Lösung gegen Ferritdrosseln etabliert.

Unsere SKDs zeichnen sich neben einer hohen Dämpfung im niederfreguenten Bereich auch durch ausgezeichnete Dämpfungseigenschaften bei hohen Frequenzen aus und weisen daher ein extrem breitbandiges Entstörverhalten auf. Dadurch ist es in bestimmten Konfigurationen möglich, die Anzahl der Filterstufen in mehrstufigen EMV-Filtern zu reduzieren. Durch geschickte Filterauslegung kommt man im Idealfall zu einstufigen Filtern, wodurch die Anzahl der Komponenten und dadurch die Filterkosten reduziert werden. Ganz nebenbei erzielt man dabei ein kompaktes Design und eine Steigerung des Wirkungsgrades, da weniger ohmsche Verluste entstehen.

Aufbauend auf den vorteilhaften Werkstoffeigenschaften nanokristalliner Kerne verfügt die VACUUMSCHMELZE über sehr viel praktische und theoretische Erfahrung im Design stromkompensierter Funkentstördrosseln und in der Auslegung von Filtern. Unsere optimierten kapazitätsarmen Drosseln erzielen bei gleichem Materialeinsatz deutlich bessere Hochfrequenzeigenschaften. Die nebenstehende Abbildung vergleicht die Einfügedämpfung zweier Drosseln, die sich nur durch die Art der Bewicklung unterscheiden (Kernmaterial, Anzahl der Windungen und Drahtstärke ist in beiden Fällen identisch). Unser Design Know How kann die Filterwirkung verbessern, die Zuverlässigkeit erhöhen und die Kosten und den Platzbedarf reduzieren.

Abb. 3: Filterstufenreduzierung durch nanokristalline Drosseln

Abb. 4: Durch optimiertes Drosseldesign in diesem Beispiel um bis zu 16 dB (oder mehr) verbesserte Dämpfung bei 4 MHz.

VORZÜGE UND NUTZEN VON NANOKRISTALLINEN DROSSELN

VORTEIL	URSACHE, RELEVANTE WERKSTOFFEIGENSCHAFT
Kleine Baugröße	Hohe Permeabilität μ , hohe Sättigungsinduktion $B_{\rm S}$
Gut für hohe Ströme und/oder hohe Spannungen	Hohes μ, hohes B _s , geeignete Kernabmessungen
Einstufige Filterkonzepte möglich	Extrem breitbandiges Dämpfungsverhalten, hohes μ,
	kapazitätsarme Designs, moderate $\mu ext{-}Abnahme$ mit steigender Frequenz,
	niedriger Q-Faktor im Frequenzbereich von 150 kHz
Hoher Wirkungsgrad, geringe Verlustleistung	Geringe Windungszahlen für hohes L erforderlich, Filterstufenreduzierung
"green", umweltfreundlich	Niedrige Verlustleistung, wenig Materialeinsatz
Geeignet für hohe und für tiefe Umgebungstemperaturen	Hohe Curie-Temperatur, Materialeigenschaften (μ , B_s , λ_s) nur gering
und hohe Arbeitstemperaturen	temperaturabhängig
"easy filter design"	Materialeigenschaften (μ , $B_{_{S}}$, $\lambda_{_{s}}$) nur gering temperaturabhängig, lineare
	Magnetisierungskurve ermöglicht stabile Impedanz über einen weiten
	Common Mode Strombereich. Design-Software für SKDs verfügbar.
UL konforme Designs	Verwendung geeigneter Kunststoffe nach UL1446-Isolationssystem
Optimale angepasste Lösungen für verschiedene Appli-	Unterschiedliche μ-Niveaus, unterschiedliche VITROPERM Legierungen
kationen verfügbar	
Keine Betriebsgeräusche	Nahezu magnetostriktionsfreies Material
Geringer Bewicklungseinfluss bei Verwendung von Stark-	Nahezu magnetostriktionsfreies Material,
draht	robust gegen mechanische Verspannung

VITROPERM VS. FERRIT

Durch die verbesserten Hochfrequenzeigenschaften unserer stromkompensierten Funkentstördrosseln ist die Einfügedämpfung im für diesen relevanten Frequenzbereich der einer typischen Ferritdrossel überlegen.

VITROPERM unterscheidet sich in seinen Eigenschaften ganz wesentlich von herkömmlichen Ferriten. Bei niedrigen Frequenzen weist VITROPERM eine signifikant höhere Einfügedämpfung auf. Nanokristalline Werkstoffe zeigen einen deutlich geringeren Abfall der Permeabilität bei hohen Frequenzen. Um zu einer optimalen Lösung zu kommen, muss dies bei der Filterauslegung berücksichtigt werden. Die wesentlichen physikalischen und magnetischen Kenngrößen sind in den folgenden Diagrammen dargestellt.

Die Permeabilität von VITROPERM 500 F liegt im niederfrequenten Bereich deutlich höher als die von Ferrit. Zu höheren Frequenzen zeigen beide nanokristallinen Materialien einen weniger starken µ-Abfall. Für eine hochdämpfende Drossel wird eine hohe Impedanz benötigt. Dies erreicht man besser durch Einsatz eines hochpermeablen Kernmaterials als durch eine Erhöhung der Windungszahl, da eine kleine Windungszahl zu einer niedrigen Wicklungskapazität und dadurch zu verbesserten Hochfrequenzeigenschaften führt. Mit den überlegenen Materialeigenschaften nanokristalliner Kerne wurde umfangreiche praktische und theoretische Erfahrung in der Konstruktion von stromkompensierten Drosseln und EMV-Filtern gewonnen.

EINFÜGEDÄMPFUNG

Abb. 5: Vergleich der Einfügedämpfung VITROPERM und Ferrit

PERMEABILITÄT

Abb. 6: Frequenzgang der Permeabilität von VITROPERM 500 F (μ =40.000) und VITROPERM 250 F (μ =5.000) im Vergleich zu einem typischen MnZn Ferrit (µ=5.000).

WERKSTOFFEIGENSCHAFTEN VON VITROPERM

VITROPERM 500 F und Ferrite zeigen grundsätzlich unterschiedliche Frequenzabhängigkeiten der Permeabilität µ(f), was bei der Filterauslegung berücksichtigt werden muss. Bei Ferriten mit $\mu = 5.000$ weist $\mu(f)$ einen flachen Verlauf bis in den Bereich von ca. 1 MHz auf (bei Ferriten mit $\mu = 10.000$ reicht der flache Bereich bis nur etwa 200 kHz). In diesem flachen Bereich bestimmt µ' die Dämpfungseigenschaften und die Induktivität L dominiert für die Impedanz IZI. Liegt die Eigenresonanz der Drossel in diesem Frequenzbereicht, so ist die Dämpfungskurve schmalbandig und die Dämpfung erfolgt vor allem durch Reflexion des Störsignals. Bei Ferriten ist die Dämpfung bei Frequenzen oberhalb des konstanten Verlaufs durch ohmsche Verluste bestimmt, da der Realteil der Impedanz Re(Z) den größten Beitrag zur Dämpfung leistet und der Imaginärteil der komplexen Permeabilität u" der dominierende Faktor wird. Liegt hier die Eigenresonanz der Drossel, wird die Dämpfungskurve zunehmend breitbandiger.

Bei VITROPERM ist dies grundsätzlich genauso. Der flache Bereich von $\mu(f)$ reicht aber bei VITROPERM 500 F je nach Permeabilitätsniveau nur bis zu Frequenzen von einigen 10 kHz (20 kHz in Abb. 7). Die Dämpfung (bzw. IZI) wird folglich bereits bei diesen Frequenzen von Re(Z) dominiert und erfolgt im EMV-relevanten Bereich oberhalb 150 kHz immer breitbandig. Die Induktivität spielt nur eine untergeordnete Rolle und beschreibt das Dämpfungsverhalten nur anteilig. Maßgeblich ist der komplette Betrag der Impedanz. Die für Ferritdrosseln mögliche Näherung $|Z| = \omega L$ ist für VITROPERM-Drosseln nicht möglich: hier gilt $|Z| >> \omega L$. Die Dämpfung erfolgt weniger durch Reflexion, sondern vor allem durch Absorption des Störsignals.

Nur wenn diese unterschiedlichen Anwendungseigenschaften beachtet werden, lassen sich optimal angepasste, kompakte und kostengünstige Drosseln finden.

Eine Ausnahme stellt in diesem Zusammenhang VITRO-PERM 250 F dar: hier reicht der flache Permeabilitätsverlauf ähnlich wie bei dem Ferrit mit μ =5.000 bis in den Bereich von 1 MHz und die Dämpfung erfolgt bis zu diesen Frequenzen hauptsächlich induktiv (Abb. 8a und 8b).

Abb. 7: Für den Dämpfungsmechanismus maßgebliche Unterschiede in der Balance zwischen µ' und µ'' für VITROPERM

MAGNETISIERUNGSKURVE

Abb. 8a: Hystereseschleifen von verschiedenen VITROPERM Varianten und eines typischen MnZn Ferrit.

Abb. 8b: Magnetisierungskurve von VITROPERM 500 F und VITROPERM 250 F verglichen mit einem typischen MnZn Ferrit. Zu erkennen sind die deutlichen Unterschiede in der Permeabilität (Steigung der Kurven) und der Sättigungsflussdichte (B_{\circ})

TEMPERATURVERHALTEN

Die Sättigungsflussdichte von VITROPERM ändert sich im Anwendungstemperaturbereich bis 150°C nur um wenige Prozent, während MnZn-Ferrite bis 100°C um bis zu 40% abfallen (Abb. 9). Durch die hohe Curie-Temperatur von mehr als 600°C darf die maximale Arbeitstemperatur von VITROPERM 500 F zeitlich befristet sogar 180....200°C¹⁾ erreichen.

Die Permeabilität von VITROPERM 500 F ändert sich im Temperaturbereich von -40 °C bis 120 °C um typischerweise weniger als 10 %, während die Permeabilität von MnZn-Ferriten dabei in einem Fenster von \pm 40 bis 60 % um den Raumtemperaturwert driften kann (Abb. 10).

TEMPERATURVERHALTEN

Abb. 9: Sättigungsflussdichte B_s(T) in Abhängigkeit von der Temperatur

Die Einfügedämpfung (und auch die Impedanz) einer Drossel aus VITROPERM 500 F bleibt im Temperaturbereich von -40 °C bis über 150 °C nahezu temperaturunabhängig. Bei

Abb. 11a: Temperaturabhängigkeit der Einfügedämpfung einer VITRO-PERM SKD und einer Drossel mit Standard MnZn-Ferritkern

Abb. 10: auf Raumtemperatur normierte relative Änderung von $\mu(T)$ bei f = 100 kHz

Ferritdrosseln ist mit steigender Temperatur eine deutliche Abnahme der Einfügedämpfung zu verzeichnen (Abb. 11a und 11b).

Abb. 11b: Temperaturabhängigkeit der Einfügedämpfung bis 160 °C einer VITROPERM SKD und einer Drossel mit MnZn-Ferritkern mit hoher Curietemperatur

9

¹⁾ maximale Dauertemperatur hängt von den verwendeten Gehäuse- bzw. Beschichtungsmaterialien ab. Für weitergehende Informationen sprechen Sie uns bitte an.

SÄTTIGUNGSVERHALTEN

Mit hochpermeablen nanokristallinen Ringkernen lässt sich eine sehr hohe Induktivität in extrem kompakten Drosselbzw. Kernabmessungen realisieren. Dadurch erhöht sich aber die Empfindlichkeit gegen unsymmetrische Magnetisierungsbedingungen, welche durch Common Mode, Unsymmetrie- oder Ableitströme verursacht werden. Diese können als niederfrequenter Ableitstrom (50 Hz), mittel- oder hochfrequenter Störstrom vorliegen. Hervorgerufen werden diese Ströme z.B. durch (Motor-)Kabel mit unterschiedlicher Kapazität der einzelnen Adern gegen Erde (Unsymmetrieströme) oder durch sich in solchen Kabeln ausbildende Resonanzerscheinungen, die zu kurzen, extrem hohen und schnell ausklingenden Stromspitzen mit Amplituden bis zu einigen $10\,\mathrm{A}_{\mathrm{neak}}$ und Pulsbreiten im Nanosekundenbereich (1 ns bis 1 μs) führen. Letzteres kennt man z.B. von Lagerströmen, die in unisolierten Lagern zu Problemen führen können. Im ungünstigsten Falle überschreiten diese Common Mode Ströme die Sättigungsfestigkeit der Drossel bzw. des Kernes und die Drossel wird wirkungslos.

Aufgrund der niedrigen Permeabilität verhalten sich Ferritkerne in Bezug auf Sättigungseffekte in vielen Fällen weniger empfindlich. Bei VITROPERM wirkt sich die gegenüber Ferriten ca. dreimal höhere Sättigungsflussdichte von 1,2 T vorteilhaft aus, es muss jedoch das für den Anwendungsfall passende µ-Niveau gewählt werden, um eine optimale und sättigungsfeste Lösung zu finden. In Abbildung 12a werden die Sättigungsströme verschiedener VITROPERM Varianten mit einem typischen abmessungsähnlichen Ferritkern verglichen. Hier wird deutlich, dass das Sättigungsverhalten des MnZn-Ferrits ($\mu = 6.000$) mit VITROPERM 500 F $(\mu = 17.000)$ bis ca. 50 kHz vergleichbar ist. Bei höheren Frequenzen verhält sich der VITROPERM Kern günstiger. Außerdem erreicht der VITROPERM Kern bei 100 kHz einen ca. 50 % höheren AL-Wert und eine verglichen damit nochmals deutlich höhere Impedanz, da diese bei VITROPERM in diesem Frequenzbereich nur zum kleineren Teil induktiv bestimmt ist. Hochpermeable VITROPERM 500 F Kerne zeichnen sich bei niedrigen Frequenzen durch eine extrem hohe Dämpfung bzw. Impedanz aus und sind auch bei höheren Frequenzen Ferriten deutlich überlegen. Das Sättigungsverhalten wird zu hohen Frequenzen hin zwar unkritischer, man muss diesen Punkt aber bei der Drosselauslegung berücksichtigen. Es ist zu beachten, dass in Abb. 12a die Sättigungsströme der Kerne ohne Bewicklung dargestellt sind. Je nach Windungszahl liegen die I_{cm} Werte von Drosseln bei "nur" wenigen 10 mA bis einigen 100 mA (siehe auch Produkt-Tabellen Drosseln).

In Abb. 12b ist für einen VITROPERM 500 F-Kern (μ =20.000) und zwei typische MnZn-Ferrite (μ =5.000 bzw. 8.000) der Verlauf der Permeabilität über der Gleichfeldvorbelastung dargestellt. Man erkennt den deutlich rechteckigeren Verlauf für das nanokristalline Material im

Abb. 12a: Vergleich des Sättigungsverhaltens von VITROPERM 500 F, VITROPERM 250 F und MnZn-Ferrit.

Vergleich zu der runden Charakteristik für die beiden Ferritkerne, und dies bei gleichzeitig deutlich höheren Permeabilitätswerten. In der Anwendung führt dieses Verhalten zu einem über der Gleichfeldvorbelastung sehr breiten Bereich mit nahezu konstanter Induktivität. Dieses Verhalten steht im Einklang mit der linearen Magnetisierungskurve für VITROPERM (Abb. 8a / 8b).

Die Legierungsvariante VITROPERM 250 F kommt immer dann zum Einsatz, wenn besonders sättigungsfeste Lösungen für Anwendungen mit besonders hohen Common Mode oder Unsymmetrieströmen benötigt werden. Man erreicht damit aber aufgrund der niedrigeren Permeabilität nicht die hohen Dämpfungswerte von VITROPERM 500 F.

Abb. 12b: Vergleich des Permeabilitätsverlaufs in Abhängigkeit von der Gleichfeldvorbelastung für VITROPERM 500 F und zwei typische MnZn-Ferrite.

DESIGNVORTEILE DURCH VITROPERM

Die überlegenen Materialeigenschaften von nanokristallinem VITROPERM ermöglichen stromkompensierte Drosseln mit hoher Induktivität und hoher Impedanz bei auffallend niedrigen Windungszahlen. Das führt zu niedrigen Kupferverlusten, kleinen Wicklungskapazitäten und exzellenten Hochfrequenzeigenschaften.

Wegen der hohen Anfangspermeabilität, der kleinen Wicklungskapazität und des niedrigen Q-Faktors oberhalb 100 kHz zeigen stromkompensierte Drosseln mit Kernen aus VITRO-PERM im Frequenzbereich von 10 kHz bis zu einigen MHz typischerweise ein ausgeprägtes Breitbandverhalten in der Impedanz. Bei ähnlichen Kernabmessungen und gleicher Bewicklung erreicht die Drossel mit nanokristallinem Kern ein überlegenes Dämpfungsverhalten - sowohl im niederfrequenten als auch im hochfrequenten Bereich (Abb. 13).

Die besseren Dämpfungseigenschaften und der erweiterte Arbeitstemperaturbereich erlauben eine Reduktion des Drosselvolumens bis zu einem Faktor 3 und mehr bei vergleichbaren Bedingungen. Die Einfügungsdämpfung der kleinen VITROPERM Drossel im Beispiel in Abb. 14 ist nur bei Frequenzen von ca. 600 kHz bis 1 MHz auf den niedrigen Niveau der Ferritdrossel. Unterhalb von 500 kHz ist die nanokristalline Drossel deutlich überlegen, ebenso oberhalb ca. 1 MHz.

Die hohe Dämpfung von Drosseln mit VITROPERM 500 F-Kern kann die gesamte Auslegung von Filtern für einen breiten Frequenzbereich vereinfachen.

Für schnelle Laborversuche bietet VAC verschiedene Musterkits mit ausgesuchten Kernen und Drosseln aus den Standardreihen.

Abb. 13: Vergleich der Einfügedämpfung einer VITROPERM 500 F SKD (rote Kurve) und Ferrit SKD (blaue Kurve) bei vergleichbarer Kerngröße und gleicher Windungszahl

Abb. 14: Vergleich der Baugröße einer VITROPERM 500 F SKD (rote Kurve) und Ferrit SKD (blaue Kurve) bei vergleichbaren Dämpfungseigenschaften im Bereich von 1 MHz.

VITROPERM – TYPISCHE DATEN

VITROPERM – TYPISCHE DATEN	
Sättigungsflussdichte	B _s = 1,2 T
Koerzitivfeldstärke (statisch)	$H_{\rm c} < 3 \text{ A/m}$
Sättigungsmagnetostriktion (λ_s)	
VITROPERM 500 F	$\lambda_{_{\rm S}} = 10^{-8}10^{-6}$
VITROPERM 250 F	$\lambda_{_{\rm S}}=\approx 8~{\rm x}~10^{-6}$
Spezieller elektrischer Widerstand	$\rho\approx 115~\mu\Omega\text{cm}$
Curie-Temperatur	$T_c > 600 ^{\circ}C$
Maximale Arbeitstemperatur (T _{max})	
Ероху	$T_{max} = 120 ^{\circ}C^{2)}$
Kunststofftrog	$T_{max} = 130/155 ^{\circ}C^{2)}$
kurzzeitig	$T_{max} = 180 {}^{\circ}C^{1)}$
Permeabilität (μ)	
VITROPERM 500 F	$\mu_i = 15.000150.000$
VITROPERM 250 F	$\mu_i = 4.0006.000$
Kernverluste (100 kHz, 0,3 T)	P _{Fe} = 80 W/kg (typ.)

¹⁾ Für detailierte Informationen zur Temperaturbeständigkeit von Gehäuse- und Beschichtungsmaterialien wenden Sie sich bitte an VAC.

13

²⁾ für Dauerbetrieb

STANDARDREIHEN VITROPERM-KERNE

Viele Abmessungen der VITROPERM-Kerne sind mit verschiedenen A_L -Werten verfügbar. Dadurch sind sowohl hochpermeable als auch sättigungsfeste Varianten für verschiedene Anwendungsfelder vorhanden. Common Mode Ströme können als Störströme oder Biasströme, vor allem aber als Unsymmetrieströme auftreten. Überschreiten die Common Mode Ströme die Sättigungsströme (I_{cm}) der jeweiligen Kerne oder Drosseln, sind sättigungsfestere Kerne zu verwenden. Kerne mit hohen A_L -Werten (hohes μ) sind eher für typische Einphasenanwendungen mit niedrigen Unsymmetrieströmen geeignet, (z.B. in Schaltnetzteilen), während Kerne mit niedrigeren A_L -Werten meist für 3-phasige Leistungsanwendungen mit hohen Unsymmetrieströmen zum Einsatz kommen (z.B. Frequenzumrichter mit langen Motorkabeln).

 A_{Fe} = Eisenquerschnitt

OD = maximaler Außendurchmesser des fixierten Kernes

ID = minimaler Innendurchmesser des fixierten Kernes

H = maximale Höhe des fixierten Kernes

d_a = Kernaußendurchmesser (nominal)

d_i = Kerninnendurchmesser (nominal)

h = Kernhöhe (nominal)

Weiterführende technische Informationen und Datenblätter sind auf der Webseite www.vacuumschmelze.com verfügbar. Durch Einscannen des zugehörigen QR-Codes gelangt man automatisch zur gewünschten Produktseite.

NANOKRISTALLINE VITROPERM KERNE MIT EPOXIDHARZBESCHICHTUNG

untenstehende Tabelle

Die Epoxidharzbeschichtung ist grundsätzlich zur direkten Bewicklung geeignet. Dennoch empfehlen wir eine zusätzliche Isolierung zwischen Kern und Wicklung für verstärkte Isolationsanforderungen. Das verwendete Epoxidharz verträgt Dauertemperaturen von bis zu 120°C (UL-konform 105°C) und erfüllt die Anforderungen nach UL94-V0 (UL-File Nummer: E214934), Klasse A (105 °C).

Sachnummer	Kern-	Grenzmaße		Eisenquer-	Eisenweg-	Gewicht	\mathbf{A}_{L}^{\star}		Sättigungsstrom		
T60004-	abmessungen	(inkl. F	ixierun	g)	schnitt	länge		10 kHz	100 kHz	I _{cm} **, typ	isch
	d _a x d _i x h	OD	ID	Н	A _{Fe}	l _{Fe}	m _{Fe}	nom	ninal	10 kHz	100 kHz
	mmxmmxmm	mm	mm	mm	cm ²	cm	g	μ	Н	Α	Α
L2016-W620 L2016-W619	16 x 12,5 x 6	17,8	10,7	8,0	0,08	4,5	2,6	15,0 6,0	4,8 3,9	0,32 1,1	0,63 1,7
L2022-W867	22 x 17 x 6	24,0	15,2	8,0	0,12	6,1	5,4	16,4	3,2	0,43	0,86
L2022-W868	22 x 17 x 10	24,0	15,2	12,0	0,20	6,1	9,0	27,4	5,3	0,43	0,86
L2025-W622 L2025-W621	25 x 20 x 10	27,3	17,5	12,3	0,19	7,1	9,9	22,5 9,0	7,2 5,9	0,5 1,8	0,99 2,8
L2030-W676	30 x 25 x 15	32,3	22,7	17,5	0,27	8,6	17,4	26,5	8,5	0,61	1,2
L2030-W911	30 x 20 x 10	32,5	17,8	12,5	0,40	7,9	23,1	56,0	13,4	0,42	0,87
L2040-W624 L2040-W623	40 x 32 x 15	42,3	29,1	17,8	0,44	11,3	36,0	32,5 13,0	10,4 8,4	0,8 2,8	1,6 4,4
L2045-W886	45 x 32 x 15	47,3	29,8	17,8	0,71	12,1	63,3	19,7	12,8	3,1	4,7
L2050-W626 L2050-W625 L2050-W583	50 x 40 x 20	52,3	37,1	22,8	0,73	14,1	76,0	43,0 17,0 11,2	13,8 11,0 10,0	1,0 3,6 5,5	2,0 5,6 7,1
L2063-W627 L2063-W721	63 x 50 x 20	65,5	46,6	22,8	0,95	17,8	124,0	18,0 13,5	11,7 12,1	4,5 6,9	6,9 8,9
L2080-W628 L2080-W722	80 x 63 x 20	83,0	59,5	22,8	1,24	22,5	205,0	18,5 12,0	12,0 10,8	5,7 8,7	8,7 11,0
L2100-W629 L2100-W723	100 x 80 x 20	104,0	75,0	23,0	1,46	28,3	303,0	17,3 11,2	11,2 10,0	7,1 11,0	11,0 14,0
L2130-W567 L2130-W630 L2130-W587	130 x 100 x 25	134,5	95,0	28,5	2,85 2,74 2,74	36,1 36,1 36,1	757,0 727,0 727,0	50,0 25,4 16,4	19,4 16,5 14,8	3,4 9,1 14,0	6,2 14,0 18,0
L2160-W631 L2160-W720	160 x 130 x 25	165,0	125,0	28,5	2,74	45,6	917,0	20,2 13,0	13,1 11,7	11,0 18,0	18,0 23,0
L2194-V105 L2194-W908	194 x 155 x 25	200,0	149,0	28,5	3,71	54,8	1,490,0	45,0 15,0	14,7 13,2	4,9 21,0	9,1 27,0

^{*} A_1 = Induktivität für N = 1 (Toleranz +45 % / -25 %)

^{**} I.m.: die angegebenen Sättigungsströme dienen nur zur Orientierung. Hierbei handelt es sich um Rechenwerte für die Nennkernabmessungen bei Raumtemperatur und für ca. 70 % der Sättigungsflussdichte. Das frequenzabhängige Sättigungsverhalten wird beispielhaft in Abb. 12 beschrieben.

NANOKRISTALLINE VITROPERM KERNE IM KUNSTSTOFFGEHÄUSE

Die Kunststofftröge sind zur direkten Bewicklung geeignet und bieten einen guten mechanischen Schutz für das nanokristalline Kernmaterial. Hierdurch lassen sich die besten magnetischen Eigenschaften, insbesondere die höchsten Permeabilitätswerte erzielen. Bei der Bewicklung mit Starkdraht kann optional ein zusätzlicher Bewicklungsschutz verwendet werden, da es in Einzelfällen zu Beschädigungen des Kernes kommen kann. Die verwendeten Kunststoffmaterialien erfüllen die Anforderungen nach UL94V-0 / HB (UL-File Nummer: E41871), Klasse B (130 °C) bzw. UL94-V0 (UL-File Nummer E41938), Klasse F (155 °C).

Weiterführende technische Informationen und Datenblätter sind auf der Webseite www.vacuumschmelze.com verfügbar. Durch Einscannen des QR-Codes zu diesem Kapitel gelangt man automatisch zur richtigen Produktseite.

Sachnummer	Kernab-	Grenzr	naße		Eisenquer-	Eisenweg-	Ge-	А	*	Sättigung	gsstrom
T60006-	messungen	(inkl. F	ixierun	g)	schnitt	länge	wicht	10 kHz	100 kHz	I _{cm} **, typ	isch
	d _a x d _i x h	OD	ID	Н	A _{Fe}	I _{Fe}	m _{Fe}	nom	ninal	10 kHz	100 kHz
	mmxmmxmm	mm	mm	mm	cm ²	cm	g	μ	Н	Α	Α
L2009-W914	9,8 x 6,5 x 4,5	11,2	5,1	5,8	0,06	2,6	1,1	25,5	6,4	0,14	0,3
L2012-W902	12 x 8 x 4,5	14,1	6,6	6,3	0,07	3,1	1,7	28,0	6,8	0,15	0,31
L2012-W498	12,5 x 10 x 5	14,3	8,5	7,0	0,05	3,5	1,3	10,0	3,6	0,3	0,56
L2014-V098	14,4 x 11,4 x 3,2	16,5	9,6	5,0	0,04	4,1	1,1	10,5	2,6	0,21	0,44
L2015-W865	15 x 10 x 4,5	17,1	7,9	6,5	0,09	3,9	2,6	27,0	6,7	0,2	0,41
L2016-W403 L2016-W308 L2016-V165	16 x 10 x 6	17,9	8,1	8,1	0,14	4,1	4,0	43,0 10,5 2,1	9,8 6,5 2,0	0,2 1,2 5,4	0,41 1,7 5,7
L2017-W515	17,5 x 12,6 x 6	19,0	11,0	8,0	0,12	4,7	4,1	30,0	6,9	0,23	0,48
L2019-V184	19 x 15 x 5	21,2	13,0	7,3	0,08	5,3	3,1	18,0	4,1	0,26	0,54
L2019-W838	19 x 15 x 10	21,2	13,0	12,3	0,16	5,3	6,3	36,1 8,3		0,26	0,54
L2020-W409 L2020-W450	20 x 12,5 x 8	22,6	10,3	10,2	0,24	5,1	9,0	57,0 14,0	13,0 9,1	0,25 1,5	0,51 2,2
L2025-W523	25 x 20 x 10	27,6	17,4	12,8	0,20	7,1	10,0	28,4	6,5	0,41	0,84
L2025-W380 L2025-W451 L2025-W980	25 x 16 x 10	27,9	13,6	12,5	0,36	6,4	17,0	67,0 17,1 3,2	15,5 11,5 3,1	0,32 1,8 9,3	0,65 2,7 9,6
L2030-W423 L2030-W358 L2030-W981	30 x 20 x 10	33,0	17,6	12,5	0,40	7,9	23,0	66,0 15,5 2,9	15,8 10,5 2,8	0,36 2,1 12,0	0,73 3,2 12,0
L2030-W514 L2030-V188 L2030-V129	30 x 20 x 15	32,8	17,5	17,8	0,57	7,9	33,0	88,0 26,9 15,7	20,4 16,2 14,1	0,38 1,8 3,1	0,79 2,8 3,9
L2040-W422 L2040-V113 L2040-W452 L2040-W964	40 x 32 x 15	43,1	28,7	18,5	0,46	11,3	38,0	48,0 13,0 10,2 2,3	11,2 8,4 7,9 2,2	0,55 3,0 3,8 17,0	1,1 4,6 5,2 17,0
L2040-W424 L2040-W453	40 x 25 x 15	43,1	22,5	18,5	0,86	10,2	64,0	99,0 25,0	23,1 17,2	0,5 2,9	1,0 4,4

untenstehende Tabelle

Sachnummer	Kernab-	Grenzr			Eisenguer-	Eisenweg-	Ge-	А	*	Sättigung	
T60006-	messungen		ixierun	u)	schnitt	länge	wicht		100 kHz	I _{cm} **, typ	
100000	d _a x d _i x h	OD	ID	9 <i>)</i> H				nom		10 kHz	100 kHz
	mmxmmxmm	mm	mm	mm	A _{Fe} cm ²	I _{Fe} cm	m _{Fe}	μ		A	A
L2045-V102 L2045-V118 L2045-V101	45 x 30 x 15	48,3	26,4	18,2	0,86	11,8	g 74,0	87,6 24,3 15,7	20,0 15,8 14,1	0,59 3,0 4,6	1,2 4,6 5,9
L2050-W516 L2050-W565 L2050-V146 L2050-V166	50 x 40 x 20	53,5	36,3 36,3 36,6 36,6	23,4	0,76	14,1	79,0	45,0 18,0 11,7 3,1	13,5 10,0 10,0 3,0	1,0 3,6 5,5 20,0	2,0 5,5 7,1 21,0
L2054-V172 L2054-V178	54 x 40 x 20	57,5	37,7	24,1	1,06	14,8	115,0	87,0 24,0	19,9 15,7	0,72 3,7	1,5 5,8
L2063-W517 L2063-V110 L2063-V144 L2063-W985	63 x 50 x 25	67,3	46,5	28,6	1,24	17,8	161,0 161,0 161,0 163,0	59,0 23,3 15,1 3,3	17,5 13,8 13,5 3,3	1,2 4,5 6,9 30,0	2,5 6,9 8,9 31,0
L2080-V140 L2080-W531 L2080-V091	80 x 50 x 20	85,8 86,0 86,0	44,6 44,7 44,7	25,5 25,7 25,7	2,28	20,4	342,0 342,0 347,0	94,0 35,0 9,6	28,0 24,0 6,9	1,4 5,5 26,0	2,8 8,4 28,0
L2090-W518 L2090-V173 L2090-W984	90 x 60 x 20	95,4	54,7	24,7	2,28	23,6	395,0 400,0 400,0	81,0 32,5 4,6	25,1 21,1 4,5	1,7 5,9 41,0	3,3 9,1 42,0
L2100-V082 L2100-V081	100 x 80 x 25	105,5	75,0	29,6	1,90	28,3	379,0 379,0	56,3 14,6	16,9 13,1	2,0 11,0	3,9 14,0
L2102-W468 L2102-V080 L2102-W947	102 x 76 x 25	108,1	70,0	30,3	2,47	28,0	508,0 508,0 515,0	55,0 19,1 4,3	21,6 17,2 4,2	2,7 11,0 48,0	4,9 14,0 49,0
L2160-V074 L2160-V088 L2160-V066 L2160-W982	160 x 130 x 25	166,9	123,9	30,5	2,74 2,74 2,74 2,85	45,6	917 917 917 967	28,0 20,0 13,0 3,0	14,0 13,1 11,7 2,9	8,5 11,0 18,0 80,0	14,0 18,0 23,0 82,0

^{*} $A_L = Induktivität für N = 1 (Toleranz + 45 \% / -25 \%)$

^{**} I_{cm}: die angegebenen Sättigungsströme dienen nur zur Orientierung. Hierbei handelt es sich um Rechenwerte für die Nennkernabmessungen bei Raumtemperatur und für ca. 70 % der Sättigungsflussdichte. Das frequenzabhängige Sättigungsverhalten wird beispielhaft in Abb. 12 beschrieben.

KERNBAUGRUPPEN MIT NANOKRISTALLINEN KERNEN

Einleiterdrosseln aus vormontierten, gestapelten nanokristallinen Ringkernen sind eine einfach zu installierende und effektive Lösung für Lagerstromprobleme oder aufgrund anderer Ursachen auftretender extrem hoher Common Mode Störströme in Großumrichtern, in Windgeneratoren und anderen Anwendungsfeldern.

Hier treten oft durch Resonanzerscheinungen hervorgerufene Störströme mit hoher Amplitude auf (Peakwerte einige 10 A bis über 100 A), meist in Form kurzer d.h. hochfrequenter Stromspitzen.

Die Kernbaugruppen sind in zwei Baugrößen mit zwei unterschiedlichen Abmessungen der Leitungsdurchführungen verfügbar. Die Kernstapel werden projektspezifisch konfektioniert, wobei die Anzahl der gestapelten Kerne (bis 7 St.) und die jeweiligen Kerntypen der benötigten Induktivität und der jeweiligen Ableit- oder Common Mode Ströme als sättigungsfeste Auslegung angepasst werden.

Weiterführende technische Informationen und Datenblätter sind auf der Webseite www.vacuumschmelze.com verfügbar. Durch Einscannen des QR-Codes zu diesem Kapitel gelangt man automatisch zur richtigen Produktseite.

<= n • (H + y) + 60 →	_г а —
4	
	c () b
	
10 <= n • (H + y) + 40	Ød

Abmessungen der Kernbaugruppen

	a	b	C	d	S
	(mm)	(mm)	(mm)	(mm)	(mm)
Größe 1	120	130	70	~ 70	7
Größe 2	180	190	130	>118	10

n = Anzahl der gestapelten Ringkerne

H = maximale Höhe des Kernes

y = 9,5 für epoxidharzbeschichtete Kerne, T60004...

y = 10,2 für Kerne im Kunststofftrog, T60006...

Die Induktivität L der Kernbaugruppe ergibt sich aus der Multiplikation der Kernanzahl mit dem A_i -Wert des Einzelkernes.

A_L: Induktivität des Einzelkernes

I_{cm}: maximal zulässiger Ableit- oder Common Mode Strom.
Orientierungswert für die Nennabmessungen der Kerne bei Raumtemperatur und für ca. 70 % der Sättigungsflussdichte.

untenstehende Tabelle

Daten des Einzelkern	Daten der Kernbaugruppe Beispielhaft für 5 Kerne										
Kernsachnummer	Kernab- messungen d _a x d _i x h		bmessu ixierun ID	•	10 kHz nom	100 kHz ninal	Größe	10 kHz	100 kHz	10 kHz nom	100 kHz ninal
	mmxmmxmm	mm	mm	mm	μ	Н			4	μН	
T60004-L2100-W629	100 x 80 x 20	104,0	75,0	23,0	17,3	11,2	1	7,1	11,0	86,5	56,0
T60004-L2100-W723	100 x 80 x 20	104,0	75,0	23,0	11,2	10,0	1	11,0	14,0	56,0	50,0
T60006-L2100-V082	100 x 80 x 25	105,5	75,0	29,6	56,3	16,9	1	2,0	3,9	281,5	84,5
T60006-L2100-V081	100 x 80 x 25	105,5	75,0	29,6	14,6	13,1	1	11,0	14,0	73,0	65,5
T60006-L2102-W468	102 x 76 x 25	108,1	70,0	30,3	69,4	21,5	1	2,1	4,1	347,0	108,0
T60006-L2102-V080	102 x 76 x 25	108,1	70,0	30,3	19,1	17,2	1	11,0	14,0	95,5	86,0
T60006-L2102-W947	102 x 76 x 25	108,1	70,0	30,3	4,3	4,2	1	48,0	49,0	21,5	21,0
T60006-L2160-V074	160 x 130 x 25	166,9	123,9	30,5	28,0	14,0	2	8,5	14,0	140,0	70,0
T60006-L2160-V088	160 x 130 x 25	166,9	123,9	30,5	20,0	13,1	2	11,0	18,0	100,0	65,5
T60006-L2160-V066	160 x 130 x 25	166,9	123,9	30,5	13,0	11,7	2	18,0	23,0	65,0	58,5
T60006-L2160-W982	160 x 130 x 25	166,9	123,9	30,5	3,0	2,9	2	80,0	82,0	15,0	14,5

Für eine individuelle Auslegung von 2-7 Kernen je Baugruppe sprechen Sie uns bitte an.

Bestehende Kernbau	Bestehende Kernbaugruppen											
Sachnummer der Kernbaugruppe	Kernabmessungen (Sachnum- mer) x Anzahl der Kerne	Abmessung Kernbaugru Grund-	10 kHz	100 kHz	Größe	I _{cm} 10 kHz 100 kHz						
	d _a x d _i x h	fläche (L x a)	Höhe (b)	nom	ninal		typ	isch				
	mmxmmxmm	mm	mm	μ	Н			Α				
T60016-L2102-W075	102x76x25 (W947) x2	140 x 120	130	9,1	8,4	1	48	49				
T60016-L2102-W078	102x76x25 (W468) x6	300 x 120	130	416	130	1	2,1	4,1				
T60016-L2160-W076	160 x 130 x 25 (W982) x 5	261 x 180	190	16	14,5	2	80	82				
T60016-L2160-W079	160 x 130 x 25 (V066) x 4	210 x 180	190	52	46,8	2	18	23				
T60016-L2160-W080	160 x 130 x 25 (V066) x 7	310 x 180	190	91	81,9	2	18	23				
T60016-L2160-W081	160 x 130 x 25 (V066) x 5	240 x 180	190	65	58,5	2	18	23				
T60016-L2160-W082	160 x 130 x 25 (V066) x 6	280 x 180	190	78	70,2	2	18	23				

STROMKOMPENSIERTE FUNKENTSTÖRDROSSELN UL1446 STANDARDREIHEN

Stromkompensierte Funkenstördrosseln mit Ringbandkernen aus VITROPERM sind die universelle Lösung für verschiedene EMV-Probleme. Hohe Induktivität wird bereits mit geringen Windungszahlen in sehr kompakten Bauformen erreicht. Das ermöglicht exzellente Hochfrequenzeigenschaften und stabiles Verhalten über einen weiten Temperaturbereich.

Alle Standarddrosseln in liegender oder stehender Ausführung sind für den Betrieb in Netzfiltern und auch für höhere Spannungsanforderungen geeignet. Konstruktion, Fertigung und Prüfung der Drosseln erfolgt nach **EN50178, resp. IEC 62109**. Die verwendeten Kunststoffe entsprechen **UL94-V0 (E41871) bzw. UL94-HB und UL1446 (OBJY2.E329745) für Temperaturklasse B (130°C).**

Beispiel: liegende Ausführung

stehender Aufbau

ALLGEMEINE INFORMATIONEN

I_N = Nennstrom in jeder Wicklung

U_{N OVCat III/II} = Betriebsspannung für Überspannungskategorie III/II

 L_N = Nenninduktivität, Toleranz +50 % / -30 %

Umgebungstemperatur T_a = -40 °C ... +70 °C (kurzzeitig +90 °C)

Betriebstemperatur $T_{op} = -40 \,^{\circ}\text{C} \dots +130 \,^{\circ}\text{C}$ (kurzzeitig +150 $^{\circ}\text{C}$)

R_{cu}: Wicklungswiderstand einer Wicklung

IZI: Impedanz der Drossel

f_R: Resonanzfrequenz der Drossel

Die Standarddrosseln sind dimensioniert für eine Temperaturerhöhung $\Delta T = 45....60$ K bei $T_a = 70$ °C und $I = I_N$ in jeder Wicklung. Bei davon abweichenden Umgebungstemperaturen oder bei abweichenden Nennströmen ist ein Derating der Daten notwendig. Für detaillierte Informationen wenden Sie sich bitte an VAC.

Weiterführende technische Informationen und Datenblätter sind auf der Webseite www.vacuumschmelze.com verfügbar. Durch Einscannen des QR-Codes zu diesem Kapitel gelangt man automatisch zur gewünschten Produktseite.

2-FACH DROSSELN FÜR EINPHASIGE ANWENDUNGEN

Zur komfortablen Auswahl geeigneter Drosseln steht auf unserer Webseite das Software-Tool VAC CMC Quick-Selector zum Download bereit (benötigt Microsoft Excel). Sollte aus der Standardreihe keine geeignete Drossel verfügbar sein, schicken Sie uns bitte eine komplett ausgefüllte Design-Checkliste (siehe Seite 26/27, QR-Code Seite 24). Für experimentelle Untersuchungen bieten wir einen Musterkoffer mit ausgewählten Standarddrosseln (QR-Code Seite 24).

Weitere Typen

untenstehende Tabelle

Standardreih Sachnummer	I _N	Design	U _N	L		R _{cu}	IZI	f _R	I _{cm}	Δhi	messung	nen
	N.	Design	i .		100 kHz	Cu		¹R			1	ī
T60405-			OVCat III/II	10 kHz			100 kHz		10 kHz	L	В	Н
	Α		V	mH	mH	mΩ	Ω	MHz	mA	mm	mm	mm
R6131-X402	2	stehend	300/600	2 x 12,1	2 x 2,8	101,7	3000	3,6	12	22	12	25
R6131-X204	4,5	stehend	300/600	2 x 10,8	2 x 2,5	27,5	2320	1	12	22	12	25
R6161-X504	5	stehend	300/600	2 x 28,3	2 x 6,6	35,6	6500	0,4	10	27	17	29
R6166-X206	6	stehend	300/600	2 x 29,1	2 x 6,7	37,6	8500	0,25	14	35	21	37
R6166-X208	8,5	stehend	300/600	2 x 16,4	2 x 3,7	19,1	4200	0,5	17	35	21	36,5
R6123-X210	10	liegend	300/600	2 x 11,4	2 x 2,6	12	3200	0,7	16	35	35	23
R6166-X210	10	stehend	300/600	2 x 11,4	2 x 2,6	12,7	3150	0,7	16	35	21	37
R6126-X212	12	stehend	300/600	2 x 11,4	2 x 2,6	9	2950	0,7	22	38	22	35
R6123-X213	12,4	liegend	300/600	2 x 11,4	2 x 2,6	8,8	2950	0,7	22	35	35	25
R6122-X095	13,5	stehend	600/1000	2 x 16,9	2 x 3,6	7,6	4000	0,7	22	41	21	37
R6102-X016	13	liegend	300/600	2 x 8,6	2 x 2,2	6,3	2250	1,1	28	35	35	22,5
R6123-X616	16	liegend	300/600	2 x 12,9	2 x 3,1	5,7	3000	3	26	40	40	24
R6126-X216	16	stehend	600/1000	2 x 5,3	2 x 1,3	2,8	1300	3,5	40	41,5	23,5	40
R6166-X033	18	stehend	300/600	2 x 6	2 x 1,5	4,6	1600	1	35	38	21	38
R6166-X039	18	stehend	300/600	2 x 2,9	2 x 0,7	3,9	830	3,3	50	36	21	38
R6123-X220	20,5	liegend	300/600	2 x 1,8	2 x 0,4	3,2	500	11,5	40	35	35	23,5
R6123-X221	20	liegend	300/600	2 x 6,6	2 x 1,6	2,9	1470	4,5	35	43	43	24
R6128-X220	20	stehend	600/1000	2 x 5,6	2 x 1,3	2,8	1300	3,6	40	42	27	38
R6123-X226	25	liegend	300/600	2 x 4,2	2 x 1	1,9	970	7,1	45	43	39,5	25
R6123-X227	25	liegend	600 / 1000	2 x 12	2 x 2,8	3,5	2900	2,2	45	52	52	32
R6128-X225	25	stehend	300/600	2 x 4,2	2 x 1	1,9	970	4,9	45	42	27	40
R6128-X226	25	stehend	600/1000	2 x 12	2 x 2,8	3,3	3000	1,5	40	52	28,5	48,5
R6123-X232	30	liegend	600 / 1000	2 x 3,9	2 x 0,9	2,4	920	7	50	52	52	29
R6128-X031	30	stehend	600 / 1000	2 x 3,9	2 x 0,9	2,3	900	4	65	51	27	50
R6128-X230	30	stehend	600 / 1000	2 x 6,3	2 x 1,5	2,3	1620	2,7	55	52	27	47
R6123-X241	40	liegend	600 / 1000	2 x 3,6	2 x 0,8	1,4	870	6	90	52	52	32
R6123-X248	46	liegend	600 / 1000	2 x 2,5	2 x 0,6	1	660	5,7	100	57	51	33
R6123-X263	63	liegend	600 / 1000	2 x 1,6	2 x 0,4	0,5	390	9,3	120	56	56	32
R6123-X285	85	liegend	600 / 1000	2 x 1,6	2 x 0,5	0,6	510	1,6	200	73	73	40

3-FACH STROMKOMPENSIERTE DROSSELN

STANDARDRE	STANDARDREIHE 3-FACH DROSSELN FÜR DREIPHASENANWENDUNGEN												
Sachnummer	I _N	Design	U _N	L	·N	R _{cu}	IZI	f _R	I _{cm}	Abı	messunç	gen	
T60405-			OVCat III/II	10 kHz	100 kHz	typ.	100 kHz	typ.	10 kHz	L	В	Н	
	Α		V	mH	mH	mΩ	Ω	MHz	mA	mm	mm	mm	
S6123-X306	7	liegend	600/1000	3 x 31,8	3 x 7,4	24,6	8650	0,23	22	40,5	40,5	32,5	
S6123-X310	10	liegend	600/1000	3 x 13,9	3 x 3,2	14	3500	1,6	30	51	51	32	
S6123-X308	11	liegend	600/1000	3 x 10,6	3 x 2,5	8,5	2600	0,8	35	42	42	32	
S6123-X312	12	liegend	600/1000	3 x 5,7	3 x 3,7	11,8	2650	0,48	150	51	51	32	
S6123-X315	16	liegend	600/1000	3 x 4,3	3 x 1	2,9	1050	2,5	50	42	42	32	
S6123-X316	16	liegend	600/1000	3 x 4,8	3 x 3,1	6,5	2500	0,65	200	59	59	32	
S6123-X317	16	liegend	600/1000	3 x 9,4	3 x 2,2	5,9	2400	1,5	35	51,5	51,5	34	
S6123-X320	20	liegend	600/1000	3 x 10,6	3 x 2,4	4,1	2650	0,9	60	59	59	33	
S6123-X321	20	liegend	600/1000	3 x 4,8	3 x 1,1	2,8	1200	2,4	55	52	52	34	
S6123-X325	25	liegend	600/1000	3 x 2	3 x 1,3	2,27	1000	2,8	380	60	60	33	
S6123-X326	25	liegend	600/1000	3 x 4,9	3 x 1,1	2,1	1150	2	60	51,5	51,5	32	
S6122-X326	26	stehend	600/1000	3 x 10,6	3 x 2,4	3,5	2500	0,9	55	64	35	65	
S6122-X329	29	stehend	300/600	3 x 3,6	3 x 0,8	1,7	850	3,3	80	64	32	58	
S6123-X332	32	liegend	600/1000	3 x 1,2	3 x 0,8	1,4	600	4,9	480	59	59	33	
S6122-X333	32	stehend	600/1000	3 x 1,2	3 x 0,8	1,6	660	3,5	420	64	32	60	
S6123-X140	40*	liegend	600/1000	3 x 2,5	3 x 0,6	1,2	600	4,7	100	52	52	33	
S6123-X240	40*	liegend	600/1000	3 x 1,5	3 x 0,8	1,72	680	4	380	70	70	37	
S6123-X363	63	liegend	600/1000	3 x 1,6	3 x 0,5	0,72	500	1	170	70	70	42	
S6123-X370	70	liegend	600/1000	3 x 0,8	3 x 0,5	0,86	415	1,7	900	82	82	50	
S6123-X311	110	liegend	600/1000	3 x 0,7	3 x 0,6	0,63	430	1,3	1750	135	135	57	

4-FACH STROMKOMPENSIERTE DROSSELN

untenstehende Tabelle

Weiterführende technische Informationen und Datenblätter sind auf der Webseite www.vacuumschmelze.com verfügbar. Durch Einscannen des QR-Codes zu diesem Kapitel gelangt man automatisch zur gewünschten Produktseite.

STANDARDREIHE 4-FACH DROSSELN

Sachnummer	I _N	Design	U _N	L _N		R _{cu}	IZI	f_R	I _{cm}	Abmessungen		gen
T60405-			OVCat III/II	10 kHz	100 kHz	typ.	100 kHz	typ.	10 kHz	L	В	Н
	Α		V	mH	mH	mΩ	Ω	MHz	mA	mm	mm	mm
S6123-X400	10** 12*	liegend	600/1000	4x6,9	4x1,6	7,66	1500	1,4	40	51	51	33
S6123-X401	16** 20*	liegend	600/1000	4x3,6	4x0,8	2,75	860	3,4	90	51,5	51,5	33
S6123-X402	24** 30*	liegend	600/1000	4x3,2	4x0,7	1,5	750	3,5	100	60	60	33,5
S6123-X403	32** 40*	liegend	600/1000	4x1,4	4x0,3	0,82	360	7	160	60	60	33

^{*} für $T_a \le 60$ °C

STROMKOMPENSIERTE DROSSELN FÜR ZENTRALWECHSELRICHTER IM MW-LEISTUNGSBEREICH

¹ Designbeispiel: $I_{rms} = 2 \times 400 \text{ A}$, $L = 2 \times 1.5 \text{ mH}$, $U_{is} = 1000 \text{ V}_{rms}$, Abmessung (ohne Kabel und Kabelschuhe): 245 mm x 276 mm x 287 mm

^{**} für $T_a \le 85\,^{\circ}\text{C}$

WIR UNTERSTÜTZEN IHRE ENTWICKLUNGSTÄTIGKEIT

Zur komfortablen Auswahl geeigneter Drosseln steht auf unserer Webseite das Software-Tool VAC CMC Quick-Selector zum Download bereit (benötigt Microsoft Excel).

Sollte aus der Standardreihe keine geeignete Drossel verfügbar sein, schicken Sie uns bitte eine komplett ausgefüllte Design-Checkliste (siehe Seite 26/27, QR-Code Seite 24).

VAC Design Checkliste

VAC bietet für experimentelle Untersuchungen zwei Musterkoffer an:

- das Core Sample Kit enthält diverse Ringbandkerne aus VITROPERM im Kernabmessungsbereich von 10 mm bis 45 mm
- das Choke Sample Kit beinhaltet eine Auswahl unserer Standardreihen Drosseln (2-fach, 3-fach und 4-fach)

Core Sample Kit (Inhalt)

CMC Sample Kit (Inhalt)

SKD DESIGN-CHECKLISTE (EN50178) - 1/2

Für Drosseldesigns nach IEC 62109 oder IEC 61800 verwenden Sie bitte die Checkliste auf unserer Webseite www.vacuumschmelze.com.

Company name:							Co	ntact p	oers	on:					
Address:							Tel.:								
							E-Mail:								
	or:														
Application								Da							
(please specify in more detail):					Pov	wer:	Project name(s),								
,	hotovol [:]	taic:		kW		description:									
	Weldin Other:	9.						• •							
Expected annual		Y	ear 2 Year 3			١	Year 4		Target pri				ce [€]:		
usage [pcs.]:							Product life cycle [y					ears]:			
Sample quantity:	pcs		Sample date:					SOP:							
Operational C	haracte	ristic	<u>s</u>												
Nun	nber of wir	ndings:		Rate						ltage	I) <u>.</u>				
Nom	A (RMS or DC)					1		OVCa	at 3:	V	□R	MS	□ DC		
	A for s							OVCa	at 2:	V	□RN	/IS	□ DC		
Nor	Ω @ kHz					Pollution degree (typ. 2):									
Nor						Max. ambient temperat.:					°C				
	n	mH @ 100 kHz Max. operational ten							-						
Swit								oling n	nech						
Max. Comm			LF				ed co	ooling		Fan:	_				
(leak. curr. / unbalan		nA @		k⊦	lz	_				eat sink:	 				
Lea	μ	ıH					opper resistance R _{cu} : Casing construction:					Ω			
Results from own						Dos		n: upright				ofilo			
(Number	×		mm			Des	ıgıı.	PTH I		SMD 🗆	low profile □ Cable Lugs □				
(Number of strands) × Ø _{Cu} : Max. dimensions: W × D × H:			×	×	1111111										no □
									Pinning already fixed: ☐ yes ☐ no nains, Overvoltage Category 2 = not connected to main						
Additional Sp			o voi voitag	o outogo	,, ,	00111	.00100	101110		voi voita	go oc	210901 / 2	1101 0011		a to main
					For IEC62109 an					IEC	61800				
Electrical standards:			☐ UL ☐ other:					please use separate ch							
Environmental demands: Vibration			on: Humidity:						Dust:						
QM-Requirement: 🗆 ISO			9001					☐ Others:							
Filter Design:															
	e ☐														
	Schematic:	draft or	n page 2		sepa	arate	atta	chme	nt 🗆						

SKD DESIGN-CHECKLISTE (EN50178) - 2/2

Further comments:
Oraft of filter schematic:

VACUUMSCHMELZE GMBH & CO. KG

Grüner Weg 37 D 63450 Hanau / Germany Phone +49 6181 38 0 Fax +49 6181 38 2645 info@vacuumschmelze.com www.vacuumschmelze.com

VACUUMSCHMELZE CHINA MAGNETICS

Shanghai Sales Office
Room 06, 19F
Zhongrong Hengrui International Plaza
620 Zhangyang Road, Pudong District
Shanghai, PRC 200122
Phone +86 21 58 31 98 37
Fax +86 21 58 31 99 37
vac_china@vacuumschmelze.com

VAC MAGNETICS LLC

2935 Dolphin Drive
Suite 103
Elizabethtown, KY 42701
Phone +1 270 769 1333
Fax +1 270 769 3118
info-usa@vacmagnetics.com

Published by VACUUMSCHMELZE GmbH & Co. KG, Hanau © VACUUMSCHMELZE GmbH & Co. KG 2021. All rights reserved.

® is a Registered Trademark of VACUUMSCHMELZE GmbH & Co. KG

