rec07

October 15, 2020

1 CS 1656 – Introduction to Data Science

1.1 Instructor: Alexandros Labrinidis / Teaching Assistant: Evangelos Karageorgos

1.1.1 Additional credits: Xiaoting Li, Tahereh Arabghalizi, Zuha Agha, Anatoli Shein, Phuong Pham

1.2 ## Recitation 7: Data Analysis with Pandas

So far we have encountered basic data manipulation with pandas Dataframes including row and column selection, boolean indexing, working with missing values, groupby and aggregate functions such as mean(). But there are many other powerful data manipulation and analysis techniques available in pandas. In this recitation, we will learn some more advanced ways for data anylsis in Python using Dataframes.

Begin by importing pandas package.

```
In [1]: import pandas as pd
```

Next load the dataset that we will be playing arround with.

Out[2]:	Area Code	Market I	Market Siz	ze .	Pr	roduct Pro	duct Line	\	
0	985	South Si	nall Marke	et	Colo	ombian	Beans		
1	985	South Si	nall Marke	et	Cham	nomile	Leaves		
2	985	South Sr	nall Marke	et	Cham	nomile	Leaves		
3	985	South Si	nall Marke	et Decaf	Irish	Cream	Beans		
4	985	South S	mall Marke	et		Lemon	Leaves		
	Product Ty	pe Sta	ate Ty	pe Inve	ntory	Budget CO	GS Budget	Margin	\
0	Coff	ee Louisia	ana Regul	ar	845		50	90	
1	Herbal T	ea Louisia	ana Dec	af	540		80	110	
2	Herbal T	ea Louisia	ana Dec	af	552		90	120	
3	Coff	ee Louisia	ana Dec	af	851		70	90	
4	Herbal T	ea Louisia	ana Dec	af	599		60	80	
	Budget Pr	ofit Budg	et Sales	COGS Ma	rgin M	farketing	Profit S	ales \	
0	-	70	140	49	71	13	68	128	

1	70	190	94	120	31	114	228
2	80	210	101	130	33	126	246
3	80	160	48	70	13	67	126
4	30	140	67	83	25	37	160

Total Expenses
0 25
1 43
2 45
3 25
4 58

Let's get the subset of the dataframe we need.

Herbal Tea Louisiana

37

58

Out[3]:	Area Code	Market	Market Size		Product P	roduct Line	\
0	985	South S	mall Market	Co	olombian	Beans	
1	985	South S	mall Market	Ch	namomile	Leaves	
2	985	South S	mall Market	Ch	namomile	Leaves	
3	985	South S	mall Market	Decaf Iris	sh Cream	Beans	
4	985	South S	mall Market		Lemon	Leaves	
	Product Ty	pe St	ate Typ	e Profit T	Total Expe	nses	
0	Coff	ee Louisi	ana Regula	r 68		25	
1	Herbal To	ea Louisi	ana Deca	f 114		43	
2	Herbal To	ea Louisi	ana Deca	f 126		45	
3	Coff	ee Louisi	ana Deca	f 67		25	

1.3 Slicing & Indexing

What we saw above was slicing. Slicing uses the [] operator selects a set of rows and/or columns from a DataFrame.

Decaf

Slicing rows

To slice out a set of rows, you use the following syntax: data[start:stop]. When slicing in pandas the start bound is included in the output.

```
In [4]: df_small[0:3]
```

2 Louisiana

Decaf

Out[4]:	Area Code	Market	Market Siz	ze Product	Product Line	Product Type	\
0	985	South	Small Marke	et Colombian	Beans	Coffee	
1	985	South	Small Marke	et Chamomile	Leaves	Herbal Tea	
2	985	South	Small Marke	et Chamomile	Leaves	Herbal Tea	
	State	Туре	Profit 7	Total Expenses	}		
0	Louisiana	Regular	68	25	; ;		
1	Louisiana	Decaf	114	43	}		

45

126

Slicing vs Copying

We might have thought that we were creating a fresh copy of df_small when we did slicing. However the statement y = x doesn't create a copy of our DataFrame. It creates a new variable y that refers to the same object x refers to. This means that there is only one object (the DataFrame), and both x and y refer to it. To create a fresh copy of the DataFrame you can use the syntax y=x.copy(). We will see the effect of slicing but not copying in later steps.

** Indexing **

We can select specific ranges of our data in both the row and column directions using either label or integer-based indexing.

- loc: indexing via labels or integers or mixed. References rows uning the index.
- iloc: indexing via integers only. References rows using 0-based numbering.

To select a subset of rows AND columns from our DataFrame, we can use the iloc method. For example,

```
In [5]: df_small.loc[0:3, 'Market': 'Product']
Out[5]:
         Market Market Size
                                       Product
       O South Small Market
                                     Colombian
       1 South Small Market
                                     Chamomile
       2 South Small Market
                                     Chamomile
       3 South Small Market Decaf Irish Cream
In [6]: df_small.iloc[0:4, 1:4]
Out[6]: Market Market Size
                                       Product
       O South Small Market
                                     Colombian
       1 South Small Market
                                     Chamomile
       2 South Small Market
                                     Chamomile
       3 South Small Market Decaf Irish Cream
```

Notice that indexing in loc is inclusive whereas indexing in iloc is exlusive of the end index

1.4 Statistical Techniques

1.4.1 Cross-tabulation

Cross tabultaion computes a frequency table of two or more factors. Let's start by making a cross-tab with two variables first.

```
In [7]: df_crosstab = pd.crosstab(df_small["Market"],df_small["Market Size"],margins=False)
        df crosstab
Out[7]: Market Size Major Market Small Market
        Market
        Central
                              696
                                             648
        East
                              552
                                             336
        South
                              168
                                             504
                              288
                                            1056
        West
```

Let'c check the type of the cross-tab

```
In [8]: type(df_crosstab)
Out[8]: pandas.core.frame.DataFrame
```

Now let's check the value counts of one of our cross-tab's dimensions and see if the totals match?

Now let's make a cross-tab with three variables.

In [10]:	pd.crosstab(df["Product Ty	ype"], [df["Market"],df["Ma	arket S	Size"]]	margiı,	ns=True)	
Out[10]:	Market	Central			East				South	\
	Market Size	Major Market	Small Mark	et Major	Market	Small	Market	Major	Market	
	Product Type									
	Coffee	192	1	92	96		72		48	
	Espresso	144	1	44	144		96		72	
	Herbal Tea	192	1	44	144		72		48	
	Tea	168	1	68	168		96		0	
	All	696	6	48	552		336		168	
	Market		We	st		All				
	Market Size	Small Market	Major Mark	et Small	Market					
	Product Type									
	Coffee	144		72	240	1056				
	Espresso	216		72	288	1176				
	Herbal Tea	144		72	240	1056				
	Tea	0		72	288	960				
	All	504	2	38	1056	4248				

1.4.2 Binning Data

We can bin our data into categories by specifying bin widths. Let's define equal width bins as shown below. The bins array specifies 4 bins from -800 to -400, -400 to 0, 0 to 400, 400 to 800. We will also specify a group names to assign as labels to each of our bins later.

Now lets bin the data into the categories and add it as a column to the dataframe

Out[12]:	Area Code Ma	rket Mark	et Size	Product	Product Line \
0	985 S	South Small	Market	Colombian	Beans
1	985 S	outh Small	Market	Chamomile	Leaves
2	985 S	South Small	Market	Chamomile	Leaves
3	985 S	South Small	Market	Decaf Irish Cream	Beans
4	985 S	South Small	Market	Lemon	Leaves
5	985 S	South Small	Market	Decaf Irish Cream	Beans
6	985 S	South Small	Market	Lemon	. Leaves
7	985 S	South Small	Market	Chamomile	Leaves
8	985 S	South Small	Market	Caffe Mocha	Beans
9	985 S	South Small	Market	Caffe Latte	Beans
10	985 S	South Small	Market	Caffe Latte	Beans
11		South Small	Market	Decaf Irish Cream	Beans
12			Market	Decaf Espresso	Beans
13			Market	Lemon	
14			Market	Decaf Espresso	
15			Market	Lemon	
16			Market	Caffe Mocha	
17			Market	Caffe Latte	
18			Market	Caffe Mocha	
19	985 S	South Small	Market	Decaf Espresso	Beans
P	roduct Type	State	Туре	Profit Total Ex	penses Categories
0	Coffee	Louisiana	Regular	68	25 Good
1	Herbal Tea	Louisiana	Decaf	114	43 Good
2	Herbal Tea	Louisiana	Decaf	126	45 Good
3		Louisiana	Decaf	67	25 Good
4	Herbal Tea	Louisiana	Decaf	37	58 Good
5		Louisiana	Decaf	87	26 Good
6	Herbal Tea		Decaf	43	58 Good
7	Herbal Tea		Decaf	48	26 Good
8	Espresso -	Louisiana	Regular	61	35 Good
9	-	Louisiana	_		81 Good
10	•	Louisiana	Regular	1	86 Good
11	Coffee	Louisiana	Decaf	70	25 Good
12	Espresso	Louisiana	Decaf	56	39 Good
13	Herbal Tea	Louisiana	Decaf	62	65 Good
14	Espresso	Louisiana	Decaf	61	40 Good
15	Herbal Tea	Louisiana	Decaf	26	59 Good
16 17	Espresso	Louisiana	Regular	31	35 Good
18	Espresso	Louisiana	Regular	-3 50	79 Okay
	Espresso	Louisiana	Regular Decaf	58 31	41 Good
19	Espresso	Louisiana	Decai	31	36 Good

To find out the value counts for each bin of category, we can use value_counts like we did earlier.

```
In [13]: pd.value_counts(df_small['Categories'])
```

The result is a Series with 4 values, one for every category. Notice that when printing it, we get both the category name and the value for each category. This is because the series isn't just a list of values. Every value is matched to a category, so its more like an ordered dictionary than a list. The category is the index to the values. If you just selected a column from the original dataframe you would get a Series with the row id as the index, so you would get value 0, value 1 and so on. Using operations like value_counts or group_by, you get series and dataframes that use the groups as the index.

1.4.3 Quantiles

Pandas allows an easy way of computing percentiles or quartiles. Let's first specify the quantiles we want to calculate,

```
In [14]: quants = [0.0, 0.05, 0.25, 0.5, 0.75, 0.95, 1.0]
   To compute the quantiles of Profit and Total Expenses,
In [15]: q = df_small[['Profit','Total Expenses']].quantile(quants)
Out[15]:
               Profit Total Expenses
         0.00 - 638.0
                                  10.0
         0.05
                -13.0
                                  17.0
         0.25
                 17.0
                                  33.0
         0.50
                 40.0
                                  46.0
         0.75
                92.0
                                  65.0
         0.95
                                 125.0
                232.0
         1.00
                                 190.0
                778.0
```

The result here is a dataframe that uses the quantiles as the index of the rows.

1.4.4 Groupby & Apply

Groupby allows grouping or clustering the dataframe by a particular categorical attribute. Apply can be used to apply a function to a group or the entire dataframe. Let's first define the function that we want to apply,

This can be applied to a Dataframe or a grouping of the dataframe as shown below

```
Out[17]: Categories
                                    16.000000
         Low
                      count
                                  -404.000000
                      max
                                  -510.562500
                      mean
                      min
                                  -638.000000
                      sum
                                 -8169.000000
         Okay
                                   544.000000
                      count
                      max
                                     0.000000
                                   -45.630515
                      mean
                      min
                                  -392.000000
                                -24823.000000
                      sum
         Good
                      count
                                  3648.000000
                      max
                                   397.000000
                      mean
                                    74.514529
                      min
                                     1.000000
                                271829.000000
                      sum
         Great
                                    40.000000
                      count
                      max
                                   778.000000
                                   517.650000
                      mean
                                   402.000000
                      min
                      sum
                                 20706.000000
         Name: Profit, dtype: float64
```

The result is a compound Series that has the category as the index, and each value is a dictionary. We can unwind those dictionaries and create a dataframe by using the unstack() function as shown below.

```
In [18]: df_group.unstack()
```

Out[18]:		count	max	mean	min	sum
	Categories					
	Low	16.0	-404.0	-510.562500	-638.0	-8169.0
	Okay	544.0	0.0	-45.630515	-392.0	-24823.0
	Good	3648.0	397.0	74.514529	1.0	271829.0
	Great	40.0	778.0	517.650000	402.0	20706.0

1.4.5 Sorting

Pandas allows nested sorting over mutliple columns of the Dataframe easily as shown below.

```
Out[19]:
                Total Expenses
                                  Profit
          959
                                       49
                             190
          2334
                             189
                                       50
          2352
                             189
                                     -284
          3432
                             181
                                     -266
                             180
                                       45
          966
```

2224	180	45
632	178	370
1429	178	370
631	178	368
1605	178	368
753	177	357
1622	177	357
1454	177	68
285	176	69
4086	176	-392
3420	168	-367
1461	167	62
3278	167	62
1269	166	511
1596	166	511

1.5 Tasks

For your tasks, use the data file bank-data.csv.

Task 1 Compute the mean income of males versus females. Return a Series of mean income as the values for all sexes.

Task 2 Create a cross-tab of save_acct and mortgage. Include the margins.

Task 3 Convert the frequencies in task 2's cross-tab to percentages. Include the margins. (Hint: You can use apply)