TEORIJA BROJEVA U KRIPTOGRAFIJI

4. zadaća

7. 4. 2004.

- 1. Za prirodan broj m, sa s(m) označimo broj kvadrata u prstenu \mathbb{Z}_m , tj. broj elemenata a skupa $\{0,1,\ldots m-1\}$ za koje postoji cijeli broj x takav da je $x^2\equiv a\pmod m$. Odredite sve prirodne brojeve $m\leq 100$ sa svojstvom da je $\frac{s(m)}{m}<\frac{1}{3}$.
- 2. Neka su $x_1, \, x_2, \, x_3$ nultočke polinoma $f(x) = x^3 + ax + b$. Dokažite da vrijedi

$$(x_1 - x_2)^2 (x_1 - x_3)^2 (x_2 - x_3)^2 = -4a^3 - 27b^2.$$

- 3. Nađite sve točke konačnog reda, te odredite strukturu torzijske grupe za sljedeće eliptičke krivulje nad \mathbb{Q} :
 - a) $y^2 = x^3 x$, b) $y^2 = x^3 + 4$, c) $y^2 = x^3 + x + 2$, d) $y^2 = x^3 43x + 166$.
- 4. Za polinom

$$p(x) = (x-18)(x-16)(x-15)(x-13)(x-12)(x-11)(x-10)(x-9)(x+15)(x+16)(x+17)(x+18),$$
 odredite polinome $q(x), r(x) \in \mathbb{Q}[x]$ takve da vrijedi $p(x) = q^2(x) - r(x)$ i deg $r \leq 4$.

- 5. Za svaki od brojeva n=2,3,4,5,6,7,8,9,10, pronađite jednu eliptičku krivulju E_n nad \mathbb{F}_5 sa svojstvom da je red grupe $E_n(\mathbb{F}_5)$ jednak n.
- 6. Zadana je eliptička krivulja

$$E: \quad y^2 = x^3 + x + 4$$

nad poljem \mathbb{F}_{151} . Odredite red grupe $E(\mathbb{F}_{151})$ Shanks-Mestreovom metodom, koristeći točku P=(0,2).

Rok za predaju zadaće je 12.5.2004.

Andrej Dujella