Epreuve écrite

Examen de fin d'études secondaires 2006 Nom et prénom du candidat : Section: B Branche: MATHÉMATIQUES 1 (points 7+8) Question 1 1. Soit $P(z) = z^3 - (\lambda + 2 + i)z^2 + 2(\lambda + 1 + i)z - 2(\lambda + i)$ avec $\lambda \in \mathbb{R}$ 1) Montrez que $\lambda + i$ est une racine de P. 2) Résolvez dans \mathbb{C} l'équation P(z) = 0. 2. Dans le plan de Gauss on donne les points A d'affixe $z_A = 2$, B d'affixe $z_B = 2i$, C d'affixe $z_C = 2 + 2i\sqrt{3}$ et D d'affixe $z_D = -2\sqrt{3} + 2i$. 1) Calculez $\frac{z_C}{z_A}$ et $\frac{z_D}{z_B}$ donnez les résultats sous forme trigonométrique. 2) Déduisez-en que le segment [C, D] est l'image du segment [A, B] par la composée $r \circ h$ d'une rotation r et d'une homothétie h desquelles on précisera les caractéristiques (centres, angle et rapport). 3) Représentez A, B et [A, B] dans le plan de Gauss et construire C, D et [C, D] à l'aide de h et r. Question 2 (points 3 + 7 + 5) 1. Calculez le terme en x^{17} dans $\left(4x^2 - \frac{1}{8x}\right)^{16}$ colons les mêmes conditions. 2. Un tireur à l'arc atteint une cible avec une probabilité de 0,25 et il tire 5 flèches 1) Calculez la probabilité pour qu'il atteigne la cible au moins une fois. 2) Combien de fois doit-il tirer pour que la probabilité de toucher la cible au moins une fois dépasse 90%. 3. Un joueur jette deux dés non truqués. Il gagne 5€ si les points des deux dés sont égaux sinon il perd $1 \in \mathbb{R}$. Il répète le lancer des deux dés deux fois. Soit X la variable aléatoire "gain du joueur". 1) Déterminez la loi de probabilité de X. 2) Calculez l'espérance mathématique pour conclure si ce jeu est équilibré, favorable ou défavorable au joueur.

Epreuve écrite

Examen de fin d'études secondaires 2006

Section: B

Branche: MATHÉMATIQUES 1

Nom et prénom du candidat :	
•••••	• •
•••••	٠.

Question 3

(points 6 + 9)

- 1. Soit la conique \mathcal{E} de foyer F(1,1), de directrice associée $d\equiv y-13=0$ et d'excentricité $\epsilon=\frac{1}{\sqrt{5}}$ dans un repère orthonormé $(O,\vec{\imath},\vec{\jmath})$.
 - 1) Déterminez une équation focale et une équation réduite de \mathcal{E} .
 - 2) Après avoir précisé la nature de \mathcal{E} , déterminez la coordonnée de son second foyer F' et une équation de sa seconde directrice d' dans $(O, \vec{\imath}, \vec{\jmath})$.
- 2. Soit la conique $\mathcal{P} \equiv y^2 = 4x$ dans un repère orthonormé (O, \vec{i}, \vec{j}) .
 - 1) Déterminez l'équation cartésienne explicite de la tangente t_M à \mathcal{P} au point $M(\alpha, \beta) \in \mathcal{P}$ sachant que M n'est pas l'origine du repère.
 - 2) Déterminez la coordonnée du point A, point d'intersection de t_M avec l'axe des x.
 - 3) Déterminez la coordonnée du point B, point d'intersection de t_M avec l'axe des y et exprimez celle-ci uniquement en fonction de β (Rappel : $M(\alpha, \beta) \in \mathcal{P}$).
 - 4) Déduisez-en la représentation graphique des tangentes aux points d'abscisses 1, 4 et 9 de la conique \mathcal{P} et complétez la figure par la courbe \mathcal{P} .

Question 4

(points 1 + 2 + 5 + 2 + 5)

On donne l'ensemble de points Γ par un système d'équations paramétriques :

$$\Gamma \equiv \left\{ \begin{array}{ll} x & = & \frac{1}{\cos t} \\ y & = & \tan t \end{array} \right. \quad t \in \mathbb{R} \backslash \left\{ \frac{\pi}{2} + k\pi \mid \in \mathbb{Z} \right\}$$

- 1. Déterminez la plus petite période commune aux fonctions x et y.
- 2. Déterminez un élément de symétrie de Γ .
- 3. On considère:

$$\Gamma_1 \equiv \left\{ \begin{array}{ll} x & = & \frac{1}{\cos t} \\ y & = & \tan t \end{array} \right. \quad t \in \left[0, \frac{\pi}{2}\right[\quad \text{et} \quad \Gamma_2 \equiv \left\{ \begin{array}{ll} x & = & \frac{1}{\cos t} \\ y & = & \tan t \end{array} \right. \quad t \in \left]\frac{\pi}{2}, \pi\right]$$

Calculer les coordonnées des points M(t) pour $t \in \{0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}\}$ et représentez Γ_1 dans un repère orthonormé $(O, \vec{\imath}, \vec{\jmath})$ (unité 3cm) en marquant le sens de parcours.

- 4. Complétez la figure précédente par Γ_2 avec indication du sens de parcours.
- 5. Éliminez le paramètre t pour obtenir une équation cartésienne de Γ et précisez la nature de Γ (La représentation de Γ n'est pas demandée).