

ÉTUDE DE CAS SONDAGE STRATIFIÉ

ALLO(ATION

SAS ZON EXPRISION OF VARIANCE STRATE (CONTRACT CONTRACT C

IUT DE CARCASSONNE

IUT STID 2

Groupe
DADI Abel
OUATTARA Seydou

VIGAN Jéros

SOMMAIRE

CHAPITRE I : ÉTUDE DE L'UNIVERS	3
I - 1 - ÉTUDE DES DIFFÉRENTES VARIABLES QUANTITATIVES PAR ZONE	6
I - 1 - a - Étude des différentes variables quantitatives par ZONE AA	
I - 1 - b - Étude des différentes variables quantitatives par ZONE BB	
I - 1 - c - Étude des différentes variables quantitatives par ZONE CC	
I - 1 - d - Étude des différentes variables quantitatives par ZONE DD	
CHAPITRE II : ÉTUDE D'UN SONDAGE STRATIFIÉ	11
II - 2 - ÉTUDE DE SONDAGE STRATIFIÉ PAR ZONE	12
II - 2 - e - ÉTUDE DE SONDAGE STRATIFIÉ PAR ZONE AA	12
II - 2 - f - ÉTUDE DE SONDAGE STRATIFIÉ PAR ZONE BB	13
II - 2 - g - ÉTUDE DE SONDAGE STRATIFIÉ PAR ZONE CC	
II - 2 - h - ÉTUDE DE SONDAGE STRATIFIÉ PAR ZONE DD	14
II - 3 - ESTIMATION DE LA PRÉCISION RELATIVE POUR L'ENSEMBLE DES	
ZONES	14
II - 3 - i - Allocation proportionnelle	15
II - 3 - j - Allocation optimale	15
II - 4 - ESTIMATION DE LA PRÉCISION RELATIVE PAR ZONES	16
CHAPITRE III : ÉTUDE COMPLÉMENTAIRE	17
III - 5 - Nombre d'unités pour précision relative globale égale 2%	17
III - 5 - k - Allocation proportionnelle	17
III - 5 - l - Allocation optimale	17
III - 5 - m - Résultat des estimations	17
III - 6 - Nombre d'unités par strate pour précision relative globale égale 2% .	18
III - 6 - n - Allocation proportionnelle par Strate	18
III - 6 - o - Allocation optimale par Strate	18
III - 6 - p - Résultats des Estimation de nombre d'unités par Strate si $k=2\%$	19
CHAPITRE IV : STRATIFICATION DE LA VARIABLE QUANTITATIVE VAR	1 21
IV - 7 - ESTIMATION DE LA PRÉCISION RELATIVE DE LA VARIABLE VAR1	21
IV - 7 - q - Allocation proportionnelle	22
IV - 7 - r - Allocation optimale	
IV - 7 - s - Estimation de nombre d'unités si $k = 2\%$	22
IV - 7 - t - Résultats des Estimation de nombre d'unités par Strate si $k=2\%$	23
CHAPITRE V : STRATIFICATION DE LA VARIABLE QUANTITATIVE VAR	225
V - 8 - Estimation de la précision relative de la variable VAR2	25
V - 8 - u - Allocation proportionnelle	26
V - 8 - v - Allocation optimale	
V - 8 - w - Estimation de nombre d'unités si $k = 2%$	26
V - 8 - x - Résultats des Estimation de nombre d'unités par Strate si $k = 2\%$	27

Liste des figures

FIGURE N°1: HISTOGRAMME DES VARIABLES QUANTITATIVES	4
FIGURE N°2 : BOXPLOT DES VARIABLES QUANTITATIVES	
FIGURE N°3 : BOXPLOT DE LA VARIABLE VAR 1 / ZONE	
FIGURE N°4 : BOXPLOT DE LA VARIABLE VAR 2 / ZONE	
FIGURE N°5 : BOXPLOT DE LA VARIABLE VAR 3 / ZONE	
FIGURE N°6 : DIAGRAMME EN BARRE DE LA ZONE	
FIGURE N°7: BOXPLOT DES VARIABLES QUANTITATIVES / ZONE AA	
FIGURE N°8 : BOXPLOT DES VARIABLES QUANTITATIVES / ZONE BB	
FIGURE N°9 : BOXPLOT DES VARIABLES QUANTITATIVES / ZONE CC	
FIGURE N°10: BOXPLOT DES VARIABLES QUANTITATIVES / ZONE DD	

CHAPITRE I : Étude de l'univers

Cette étude de cas porte sur un tableau relatif à la France qui est découpée en 4 zones (AA, BB, CC et DD). Le fichier concerne 24 000 unités de production et comporte 5 variables :

- 2 variables qualitatives (la variable PAYS qui prend la modalité FR, la variable ZONE qui prend les modalités AA, BB, CC ou DD)
- 3 variables quantitatives (VAR1, VAR2 et VAR3)

Pour étude de la distribution des variables. Nous allons utiliser deux programmes : **R et SAS** en d'une sureté dans les résultats.

L'étude de l'univers qu'est la population porte sur les indicateurs concernant la distribution de chaque variable : somme, moyenne, écart-type corrigé, coefficient de variation.

Le tableau ci-dessous résume les résultats par variable.

	Effectifs	Sommes des valeurs	Moyenne des valeurs	Écart type	Coefficient de variation
Var1	24000	6926406	288.6003	1040.740	3.606166
Var2	24000	13490715	562.1131	1053.103	1.873471
Var3	24000	20417121	850.7134	1519.404	1.786035

Commentaire

Le coefficient de variation permet de comparer les distributions entre elles donc on admet que la variable Var1 de 3,6% est plus disperse que les deux autres variables, et la variable Var2 de 1,8% a plus de variabilité que la Var3 de 1,78%.

En termes de prévention en sondage par rapport à une taille d'échantillon à déterminer, toute chose étant égale par ailleurs, la variable **Var3** sera **plus précise** donc **meilleure**, la variable **Var2** sera **moins précise** et la variable **Var1** sera **très moins précise donc mauvaise**.

Figure $n^{\circ}1$: Histogramme des variables quantitatives

Figure n°2: Boxplot des variables quantitatives

Figure $n^{\circ}3$: Boxplot de la variable VAR 1 / ZONE

Figure n°4 : Boxplot de la variable VAR 2 / ZONE

Figure n°5 : Boxplot de la variable VAR 3 / ZONE

I - 1 - ÉTUDE DES DIFFÉRENTES VARIABLES QUANTITATIVES PAR ZONE

Figure n°6: Diagramme en barre de la zone

Commentaire

Graphiquement la zone CC est plus représentative par rapport aux autres zones.

I - 1 - a - Étude des différentes variables quantitatives par ZONE AA

L'étude de l'univers pour la zone AA porte sur les indicateurs concernant la distribution de chaque variable : somme, moyenne, écart-type corrigé, coefficient de variation.

Le tableau ci-dessous résume les résultats par variable.

	Nh	Somme	Moyenne	Écart type	Coefficient de Variation
Var1	4247	2888103	680.0337	1542.372	2.268081
Var2	4247	2319580	546.1691	1111.961	2.035928
Var3	4247	5207683	1226.2027	1992.834	1.625208

Commentaire

De l'analyse du tableau, on admet que dans la zone AA, la variable **Var1 de 2,27%** est plus dispersée que les deux autres variables, et la variable **Var2 de 2,03%** a plus de variabilité que la **Var3 de 1,62%**.

Dans la zone AA, en termes de prévention en sondage par rapport à une taille d'échantillon à déterminer, toute chose étant égale par ailleurs, la variable **Var3** sera **plus précise** donc

meilleure, la variable Var2 sera moins précise et la variable Var1 sera très moins précise donc mauvaise.

Figure n°7: Boxplot des variables quantitatives / Zone AA

I - 1 - b - Étude des différentes variables quantitatives par ZONE BB

L'étude de l'univers pour la zone BB porte sur les indicateurs concernant la distribution de chaque variable : somme, moyenne, écart-type corrigé, coefficient de variation.

Le tableau ci-dessous résume les résultats par variable.

	Nh Somme		Moyenne	Écart type	Coefficient de Variation
Var1	7092	1323074	186.5587	808.4664	4.333577
Var2	7092	3854650	543.5209	969.8111	1.784313
Var3	7092	5177724	730.0795	1287.5100	1.763520

Commentaire

De l'analyse du tableau, on admet que dans la zone BB, la variable Var1 de 4,33% est plus dispersée que les deux autres variables, et la variable Var2 de 1,78% a presque la même représentation de variance que la Var3 de 1,76%.

Dans la zone BB, en termes de prévention en sondage par rapport à une taille d'échantillon à déterminer, toute chose étant égale par ailleurs, les variables **Var3 et Var2** seront **plus précise** donc **meilleures** par rapport à la variable **Var1** qui sera **très moins précise donc mauvaise**.

Figure n°8: Boxplot des variables quantitatives / Zone BB

I - 1 - c - Étude des différentes variables quantitatives par ZONE CC

L'étude de l'univers pour la zone BB porte sur les indicateurs concernant la distribution de chaque variable : somme, moyenne, écart-type corrigé, coefficient de variation.

Le tableau ci-dessous résume les résultats par variable.

	Nh	Nh Somme Moyenne Écard		Écart type	Coefficient de Variation
Var1	<i>ur1</i> 7921 943754		119.1458 550.2208		4.618046
Var2	7921	4738865	598.2660	1100.1207	1.838849
Var3	7921	5682619	717.4118	1323.7112	1.845120

Commentaire

De l'analyse du tableau, on admet que dans la zone CC, la variable Var1 de 4,61% est surreprésentée que les deux autres variables. Les variables Var2 et Var3 ont une proportion de représentation égale de 1,8%.

Dans la zone CC, en termes de prévention en sondage par rapport à une taille d'échantillon à déterminer, toute chose étant égale par ailleurs, les variables **Var3 et Var2** seront **plus précises** donc **meilleures** par rapport à la variable **Var1** qui sera **très moins précise donc mauvaise**.

Figure n°9: Boxplot des variables quantitatives / Zone CC

I - 1 - d - Étude des différentes variables quantitatives par ZONE DD

L'étude de l'univers pour la zone DD porte sur les indicateurs concernant la distribution de chaque variable : somme, moyenne, écart-type corrigé, coefficient de variation.

Le tableau ci-dessous résume les résultats par variable.

	Nh	Somme	Moyenne	Écart type	Coefficient de Variation
Var1	4740	1771475	373.7289	1289.048	3.449153
Var2	4740	2577620	543.8017	1036.921	1.906800
Var3	4740	4349095	917.5306	1594.280	1.737577

Commentaire

De l'analyse du tableau, on admet que dans la zone DD, la variable **Var1 de 3,44%** est surreprésentée que les deux autres variables, et la variable **Var2 de 1,9%** est légèrement plus dispersé que la **Var3 de 1,76%**.

Dans la zone DD, même constat en termes de prévention en sondage par rapport à une taille d'échantillon à déterminer, toute chose étant égale par ailleurs, la variable Var3 sera plus précise donc meilleure, la variable Var2 sera moins précise et la variable Var1 sera très moins précise donc mauvaise.

Figure n°10: Boxplot des variables quantitatives / Zone DD

CHAPITRE II: ÉTUDE D'UN SONDAGE STRATIFIÉ

La mise en œuvre d'un plan de sondage sur la variable **Var3** consiste à un découpage par strates suivantes par zone.

STRATE	Conditions
1	< 100
2	De 100 à moins de 500
3	De 500 à moins de 1 000
4	De 1 000 à moins de 2 000
5	De 2 000 à moins de 10 000
6	10 000 et plus

Le découpage de l'univers en 4 régions et 6 strates, dont au total 4x6=24 strates. L'étude porte sur les indicateurs suivants :

- ✓ L'effectif par strate (Nh)
- ✓ La somme des valeurs par strate (Total)
- ✓ La moyenne par strate
- ✓ L'écart type corrigé par strate (Sh)
 shh=function(x){ nn=length(x)-1;yhn=mean(x);eca=((x-yhn)^2);return (sqrt((1/n n)*sum(eca)))}
- ✓ Le produit NhSh
- ✓ L'effectif échantillonné par l'allocation proportionnelle (nhAp)

$$nhAp = \frac{Nh}{N} * 600$$

✓ L'effectif échantillonné par l'allocation optimale (nhNey)

$$nhNey = \frac{NhSh^2}{\sum_{h=1}^{H} NhSh^2} * 600$$

Avec la condition, si l'estimation de nhAp = 0, nous posons nhAp = 2

Le tableau ci-dessous présente les résultats :

Strate	Nh	Total	Moyenne	Sh	nhAp	nhAp	NhSh ²	nhNey
AA1	1139	42687	37.47761	29.33289	28.475	28	33410.16	3
AA2	1056	261081	247.23580	113.79350	26.400	26	120165.94	10
AA3	574	414591	722.28397	146.97068	14.350	14	84361.17	7
AA4	643	937863	1458.57387	289.99918	16.075	16	186469.47	15
AA5	806	3135493	3890.18983	1778.18925	20.150	20	1433220.54	116
AA6	29	415968	14343.72414	5085.22784	0.725	1	147471.61	12
BB1	2083	98688	47.37782	27.46534	52.075	52	57210.30	5

Strate	Nh	Total	Moyenne	Sh	nhAp	nhAp	NhSh ²	nhNey
BB2	2339	558996	238.98931	111.39838	58.475	58	260560.82	21
BB3	1047	763267	729.00382	147.57801	26.175	26	154514.18	13
BB4	1008	1418325	1407.06845	278.04061	25.200	25	280264.93	23
BB5	588	1994704	3392.35374	1493.57071	14.700	15	878219.58	71
<i>BB6</i>	27	343744	12731.25926	3166.51804	0.675	1	85495.99	7
CC1	2448	109545	44.74877	28.19051	61.200	61	69010.36	6
CC2	2630	623705	237.15019	109.70829	65.750	66	288532.80	23
CC3	1150	831723	723.23739	144.24295	28.750	29	165879.39	13
CC4	1019	1421147	1394.64868	277.86066	25.475	25	283140.01	23
CC5	655	2427435	3706.00763	1739.07564	16.375	16	1139094.54	92
CC6	19	269064	14161.26316	4065.63705	0.475	2	77247.10	6
DD1	1323	62001	46.86395	27.59864	33.075	33	36513.00	3
DD2	1452	341527	235.21143	108.92908	36.300	36	158165.03	13
DD3	676	487829	721.64053	143.85679	16.900	17	97247.19	8
DD4	655	934106	1426.11603	278.28128	16.375	16	182274.24	15
DD5	617	2287957	3708.19611	1733.28269	15.425	15	1069435.42	87
DD6	17	235675	13863.23529	6038.32752	0.425	2	102651.57	8
Total	24000	20417121				600		600

Contrairement à la méthode de l'allocation proportionnelle, la méthode de l'allocation de Neyman donne une répartition qui n'est pas proportionnelle à la population de la strate considérée.

II - 2 - ÉTUDE DE SONDAGE STRATIFIÉ PAR ZONE

II - 2 - e - ÉTUDE DE SONDAGE STRATIFIÉ PAR ZONE AA

Strate	Nh	Total	Moyenne	Sh	nhAp	nhAp	NhSh ²	nhNey
AA1	1139	42687	37.47761	29.33289	28.475	28	33410.16	3
AA2	1056	261081	247.23580	113.79350	26.400	26	120165.94	10
AA3	574	414591	722.28397	146.97068	14.350	14	84361.17	7
AA4	643	937863	1458.57387	289.99918	16.075	16	186469.47	15
AA5	806	3135493	3890.18983	1778.18925	20.150	20	1433220.54	116

AA6	29	415968	14343.72414	5085.22784	0.725	1	147471.61	12
Total	4247	5207683			106.175	105	2005099	163

II - 2 - f - ÉTUDE DE SONDAGE STRATIFIÉ PAR ZONE BB

Strate	Nh	Total	Moyenne	Sh	nhAp	nhAp	NhSh ²	nhNey
BB1	2083	98688	47.37782	27.46534	52.075	52	57210.30	5
BB2	2339	558996	238.98931	111.39838	58.475	58	260560.82	21
BB3	1047	763267	729.00382	147.57801	26.175	26	154514.18	13
BB4	1008	1418325	1407.06845	278.04061	25.200	25	280264.93	23
BB5	588	1994704	3392.35374	1493.57071	14.700	15	878219.58	71
BB6	27	343744	12731.25926	3166.51804	0.675	1	85495.99	7
Total	7092	5177724			177.3	177	1716266	140

II - 2 - g - ÉTUDE DE SONDAGE STRATIFIÉ PAR ZONE CC

Strate	Nh	Total	Moyenne	Sh	nhAp	nhAp	NhSh ²	nhNey
CC1	2448	109545	44.74877	28.19051	61.200	61	69010.36	6
CC2	2630	623705	237.15019	109.70829	65.750	66	288532.80	23
ССЗ	1150	831723	723.23739	144.24295	28.750	29	165879.39	13
CC4	1019	1421147	1394.64868	277.86066	25.475	25	283140.01	23
CC5	655	2427435	3706.00763	1739.07564	16.375	16	1139094.54	92
CC6	19	269064	14161.26316	4065.63705	0.475	2	77247.10	6
Total	7921	5682619			198.025	199	2022904	140

II - 2 - h - ÉTUDE DE SONDAGE STRATIFIÉ PAR ZONE DD

Strate	Nh	Total	Moyenne	Sh	nhAp	nhAp	NhSh ²	nhNey
DD1	1323	62001	46.86395	27.59864	33.075	33	36513.00	3
DD2	1452	341527	235.21143	108.92908	36.300	36	158165.03	13
DD3	676	487829	721.64053	143.85679	16.900	17	97247.19	8
DD4	655	934106	1426.11603	278.28128	16.375	16	182274.24	15
DD5	617	2287957	3708.19611	1733.28269	15.425	15	1069435.42	87
DD6	17	235675	13863.23529	6038.32752	0.425	2	102651.57	8
Total	4740	4349095			118.5	119	1646286	134

II - 3 - ESTIMATION DE LA PRÉCISION RELATIVE POUR L'ENSEMBLE DES ZONES

Formules de calcul

```
#precision relative
precisionRelative=(sqrt(varianceStr)/MoySt)*100;precisionRelative
precisionRelative=(sqrt(varianceTot)/T)*100;precisionRelative
```

```
#Estimateur de variance de la moyenne

varianceStratifie=function(nhpetit,grandNh,Sh,N){
   cmp1=(grandNh*grandNh)/(N*N)
   cmp2=1-(nhpetit/grandNh)
   cmp3=(Sh * Sh)/nhpetit
   cmp=cmp1*cmp2*cmp3
   return(sum(cmp))
}

varianceT=function(nhpetit,grandNh,Sh){
   cmp1=(grandNh*grandNh * Sh *Sh)/(nhpetit)
   cmp2=(Sh * Sh * grandNh)
   cmp=cmp1- cmp2
   return(sum(cmp))
}
```

II - 3 - i - Allocation proportionnelle

			Précision	n absolue
Moyenne des Strates	Variance des Strates	Précision. Relative	(95%)	
wioyeime des strates	variance des Strates	(%)	Borne	Borne
			inférieure	supérieure
850.7134	682.5666	3.071067	799.506	901.920

II - 3 - j - Allocation optimale

			Précision absolue		
Moyenne des strates	Variance des Strates	Précision. Relative	(95%)		
Woyeline des strates	variance des strates	(%)	Borne	Borne	
			inférieure	supérieure	
850.7134	140.5886	1.393772	827.474	873.953	

Commentaire

Pour la variable VAR3, on constate dans le cas de l'allocation proportionnelle, la précision relative est inférieure à 5%, l'échantillon est significativement représentatif au niveau 5% donc moindre de marge d'erreur.

En plus, on remarque que la précision obtenue avec l'allocation de Neyman est bien meilleure que celle obtenue avec l'allocation proportionnelle, et est inférieure à 2%, l'échantillon est significativement représentatif au niveau 2%, très significativement représentatif au niveau 5% donc très moindre de marge d'erreur.

En somme, la variable VAR3 est bien précise, donc meilleure dans les deux cas d'allocation, ce qui confirme nos premières analyses sur le coefficient de variation de ladite variable

II - 4 - Estimation de la précision relative par zones

	Moyenne	Variance	Précision. Relative. AP (%)	Précision relative OP (%)
Zone AA	1226.2027	1180.4330	2.477844	2.801937
Zone BB	730.0795	384.3740	1.179329	2.685387
Zone CC	717.4118	361.5186	1.150869	2.650311
Zone DD	917.5306	786.5727	1.998318	3.056672

On constate en général que toutes les précisions relatives sont inférieures à 5%, donc l'échantillonnage par stratification par zone dans les deux cas d'allocation (proportionnelle ou Neyman) sont significativement représentatif au niveau 5%.

Par contre au niveau 2%, l'allocation proportionnelle est beaucoup meilleure que celle de l'allocation de Neyman (dans le cas d'une petite taille de la population (Univers)).

CHAPITRE III: ÉTUDE COMPLÉMENTAIRE

III - 5 - Nombre d'unités pour précision relative globale égale 2%

III - 5 - k - Allocation proportionnelle

La formule de calcul du nombre d'unités

```
#allocation proportionnelle nAP
calnAP=function(k,grandNh,Sh,N,MoyenneX){
  cmp1= N * sum((grandNh*Sh*Sh))
  cmp2=(k*N*MoyenneX)*(k*N*MoyenneX)
  cmp3=sum(Sh * Sh * grandNh)
  cmp=cmp1/(cmp2 + cmp3)
  return(cmp)
}
```

III - 5 - l - Allocation optimale

La formule de calcul du nombre d'unités

```
#allocation de Neymar

calnNey=function(k,grandNh,Sh,N,MoyenneX){
  cmp1= sum(grandNh*Sh) * sum(grandNh*Sh)
  cmp2=(k*N*MoyenneX)*(k*N*MoyenneX)
  cmp3=sum(Sh * Sh * grandNh)
  cmp=cmp1/(cmp2 + cmp3)
  return(cmp)
}
```

III - 5 - m - Résultat des estimations

Nombre de Strate	K	nAP	nAP.arrondi	nNey	nNey.arrondi
24	0.02	1368.27	1368	308.8956	309

On remarque pour une précision relative de 2%, la taille d'échantillon d'enquête dans le cas de l'allocation proportionnelle est très supérieure à celle de l'allocation de Neyman qui est beaucoup moins couteux à réaliser dans le cas d'une enquête.

III - 6 - Nombre d'unités par strate pour précision relative globale égale 2%

III - 6 - n - Allocation proportionnelle par Strate

```
#par strate

## allocation proportionnelle

calNhStAP=function(k,grandNh,Sh,T){
  cmp1=(grandNh*grandNh * Sh *Sh)
  cmp2=(Sh * Sh * grandNh)
  cmp3=(k*T)*(k*T)
  cmp=cmp1/(cmp2+ cmp3)
  return(cmp)|
}
```

III - 6 - o - Allocation optimale par Strate

```
## allocation optimale

calNhStNey=function(grandNh,Sh,nNey){
   cmp1=(grandNh*Sh)
   cmp2=sum(grandNh*Sh)
   cmp3=cmp1/ cmp2
   cmp= cmp3*nNey
   return(cmp)
}
```

III - 6 - p - Résultats des Estimation de nombre d'unités par Strate si k = 2%

Strate	K	nAP.par.Strate	nAP.arrondi.Strate	nNey.par.Strate	nNey.arrondiStrate
AA1	0.02	0.0066943	0	1.396411	1
AA2	0.02	0.0865921	0	5.022454	5
AA3	0.02	0.0426780	0	3.525959	4
AA4	0.02	0.2084614	0	7.793676	8
AA5	0.02	12.1335933	12	59.902869	60
AA6	0.02	0.1298431	0	6.163722	6
BB1	0.02	0.0196289	0	2.391161	2
BB2	0.02	0.4070930	0	10.890397	11
BB3	0.02	0.1431622	0	6.458073	6
BB4	0.02	0.4708533	0	11.713950	12
BB5	0.02	4.5893823	5	36.706055	37
BB6	0.02	0.0437661	0	3.573389	4
CC1	0.02	0.0285611	0	2.884356	3
CC2	0.02	0.4991820	0	12.059513	12
CC3	0.02	0.1649961	0	6.933093	7
CC4	0.02	0.4805611	0	11.834117	12
CC5	0.02	7.6902664	8	47.609582	48
CC6	0.02	0.0357189	0	3.228619	3
DD1	0.02	0.0079955	0	1.526097	2
DD2	0.02	0.1500124	0	6.610664	7

Strate	K	nAP.par.Strate	nAP.arrondi.Strate	nNey.par.Strate	nNey.arrondiStrate
DD3	0.02	0.0567112	0	4.064542	4
DD4	0.02	0.1991909	0	7.618332	8
DD5	0.02	6.7835785	7	44.698110	45
DD6	0.02	0.0629609	0	4.290424	4

En comparant les tailles d'échantillon des strates par zone obtenus si la précision relative est de 2%, on se rend compte à quel point l'allocation de Neyman est bien plus efficace par rapport à l'allocation proportionnelle, dans la mesure où, pour avoir un même niveau de précision, un petit nombre d'individus à enquêter est nécessaire.

CHAPITRE IV: Stratification de la variable quantitative VAR 1

IV - 7 - Estimation de la précision relative de la variable VAR1

Strate	Nh	Total	Moyenne	Sh	nhAp	nhAp1	NhSh	nhNey
AA1	2438	15277	6.266202	18.855651	61	60.950	45970.08	10
AA2	641	165405	258.042122	115.913154	16	16.025	74300.33	16
AA3	336	237157	705.824405	141.101600	8	8.400	47410.14	10
AA4	331	481413	1454.419940	286.543056	8	8.275	94845.75	20
AA5	491	1829518	3726.105906	1650.678877	12	12.275	810483.33	169
AA6	10	159333	15933.300000	6835.238207	2	0.250	68352.38	14
BB1	6128	12212	1.992820	11.028441	153	153.200	67582.29	14
BB2	383	92437	241.349870	111.470926	10	9.575	42693.36	9
BB3	198	141700	715.656566	147.724064	5	4.950	29249.36	6
BB4	163	234673	1439.711656	296.796845	4	4.075	48377.89	10
BB5	212	744066	3509.745283	1613.375441	5	5.300	342035.59	71
BB6	8	97986	12248.250000	2239.323543	2	0.200	17914.59	4
CC1	6861	18260	2.661420	12.661830	172	171.525	86872.81	18
CC2	602	141614	235.239203	111.722853	15	15.050	67257.16	14
CC3	202	137149	678.955445	136.927962	5	5.050	27659.45	6
CC4	122	164639	1349.500000	270.164757	3	3.050	32960.10	7
CC5	134	482092	3597.701492	1746.927344	3	3.350	234088.26	49
CC6	0	0	0.000000	0.000000	0	0.000	0.00	0
DD1	3905	3985	1.020487	7.811305	98	97.625	30503.15	6
DD2	171	45467	265.888889	119.642332	4	4.275	20458.84	4
DD3	138	98408	713.101449	146.289149	3	3.450	20187.90	4
DD4	194	278438	1435.247423	284.115919	5	4.850	55118.49	12
DD5	321	1189653	3706.084112	1647.398021	8	8.025	528814.76	110
DD6	11	155524	14138.545454	7464.689376	2	0.275	82111.58	17

IV - 7 - q - Allocation proportionnelle

Moyenne Strate	Variance moyenne Stratifié	Précision relative
288.6003	297.9287	5.980802

IV - 7 - r - Allocation optimale

Moyenne Strate	Variance moyenne Stratifié	Précision relative
288.6003	16.28766	1.398404

Commentaire

Pour la variable VAR1, on constate dans le cas de l'allocation proportionnelle, la précision relative est supérieure à 5%, l'échantillon est non significativement représentatif au niveau 5% donc présente beaucoup de marge d'erreur.

En plus, on remarque que la précision obtenue avec l'allocation de Neyman est bien meilleure que celle obtenue avec l'allocation proportionnelle, et est inférieure à 2%, l'échantillon est significativement représentatif au niveau 2%, très significativement représentatif au niveau 5% donc très moindre de marge d'erreur.

IV - 7 - s - Estimation de nombre d'unités si k = 2%

Nombre de strate	K	nAP	nAP.arrondi	nNey	nNey.arrondi
24	0.02	4476.612	4477	714.9129	715

Commentaire

On remarque pour une précision relative de 2%, la taille d'échantillon d'enquête dans le cas de l'allocation proportionnelle est très supérieure à celle de l'allocation de Neyman qui est beaucoup moins couteux à réaliser dans le cas d'une enquête.

IV - 7 - t - Résultats des Estimations de nombre d'unités par Strate si k = 2%

Strate	K	nAP.par.Strate	nAP.arrondi.Strate	nNey.par.Strate	nNey arrondi Strate
AA1	0.02	0.1101172	0	11.430181	11
AA2	0.02	0.2875483	0	18.474327	18
AA3	0.02	0.1170888	0	11.788243	12
AA4	0.02	0.4681071	0	23.582821	24
AA5	0.02	31.9995527	32	201.521766	202
AA6	0.02	0.2376756	0	16.995405	17
BB1	0.02	0.2379979	0	16.803926	17
BB2	0.02	0.0949592	0	10.615446	11
BB3	0.02	0.0445717	0	7.272677	7
BB4	0.02	0.1218689	0	12.028868	12
BB5	0.02	5.9258994	6	85.045077	85
BB6	0.02	0.0166890	0	4.454354	4
CC1	0.02	0.3932484	0	21.600399	22
CC2	0.02	0.2356303	0	16.723084	17
CC3	0.02	0.0398589	0	6.877354	7
CC4	0.02	0.0565848	0	8.195329	8
CC5	0.02	2.7959276	3	58.204628	58
DD1	0.02	0.0484851	0	7.584422	8
DD2	0.02	0.0218087	0	5.086966	5
DD3	0.02	0.0212344	0	5.019600	5

Strate	K	nAP.par.Strate	nAP.arrondi.Strate	nNey.par.Strate	nNey arrondi Strate
DD4	0.02	0.1581847	0	13.704878	14
DD5	0.02	13.9395917	14	131.486585	131
DD6	0.02	0.3404696	0	20.416547	20

$\pmb{CHAPITRE\ V: Stratification\ de\ la\ variable\ quantitative\ VAR\ 2}\\$

V - 8 - Estimation de la précision relative de la variable VAR2

Strate	Nh	Total	Moyenne	Sh	nhAp	nhAp1	NhSh	nhNey
AA1	2091	51182	24.47728	28.88378	52	52.275	60395.978	8
AA2	949	233716	246.27608	115.55179	24	23.725	109658.652	14
AA3	501	356920	712.41517	143.57774	13	12.525	71932.448	9
AA4	409	571813	1398.07579	283.14146	10	10.225	115804.856	15
AA5	290	1027422	3542.83448	1688.64033	7	7.250	489705.696	63
AA6	7	78527	11218.14286	568.70772	0	0.175	3980.954	1
BB1	2618	104926	40.07869	30.11369	65	65.450	78837.646	10
BB2	2286	543241	237.63823	111.80389	57	57.150	255583.696	33
BB3	939	681405	725.67093	147.75503	23	23.475	138741.975	18
BB4	874	1214920	1390.06865	272.09564	22	21.850	237811.592	31
BB5	364	1170053	3214.43132	1386.97885	9	9.100	504860.300	65
BB6	11	140105	12736.81818	2964.91912	0	0.275	32614.110	4
CC1	2754	112173	40.73094	29.53432	69	68.850	81337.511	10
CC2	2629	619983	235.82465	109.46480	66	65.725	287782.971	37
CC3	1107	800571	723.18970	145.20024	28	27.675	160736.669	21
CC4	911	1269651	1393.68935	277.89384	23	22.775	253161.291	33
CC5	509	1784886	3506.65226	1606.20501	13	12.725	817558.349	105
CC6	11	151601	13781.90909	3671.09740	0	0.275	40382.071	5
DD1	1938	72343	37.32869	30.07983	48	48.450	58294.701	8
DD2	1455	336486	231.26186	107.97364	36	36.375	157101.641	20

Strate	Nh	Total	Moyenne	Sh	nhAp	nhAp1	NhSh	nhNey
DD3	567	409475	722.17813	142.95178	14	14.175	81053.657	10
DD4	486	690885	1421.57407	274.07490	12	12.150	133200.404	17
DD5	290	1013653	3495.35517	1632.84579	7	7.250	473525.279	61
DD6	4	54778	13694.50000	1660.60642	0	0.100	6642.426	1

V - 8 - u - Allocation proportionnelle

Moyenne Strate	Variance moyenne stratifiée	Précision relative	
562.1131	287.0739	3.014208	

V - 8 - v - Allocation optimale

Moyenne Strate	Variance moyenne stratifiée	Précision relative	
562.1131	55.3681	1.32375	

Commentaire

Pour la variable VAR2, on constate dans le cas de l'allocation proportionnelle, la précision relative est inférieure à 5%, l'échantillon est significativement représentatif au niveau 5% donc moindre de marge d'erreur.

En plus, on remarque que la précision obtenue avec l'allocation de Neyman est bien meilleure que celle obtenue avec l'allocation proportionnelle, et est inférieure à 2%, l'échantillon est significativement représentatif au niveau 2%, très significativement représentatif au niveau 5% donc très moindre de marge d'erreur.

V - 8 - w - Estimation de nombre d'unités si k = 2%

Nombre de strates	K	nAP	nAP.arrondi	nNey	nNey.arrondi
24	0.02	1320.836	1321	280.7524	281

On remarque pour une précision relative de 2%, la taille d'échantillon d'enquête dans le cas de l'allocation proportionnelle est très supérieure à celle de l'allocation de Neyman qui est beaucoup moins couteux à réaliser dans le cas d'une enquête.

V - 8 - x - Résultats des Estimations de nombre d'unités par Strate si k = 2%

Strate	K	nAP.par.Strate	nAP.arrondi.Strate	nNey.par.Strate	nNey.arrondiStrate
AA1	0.02	0.0501044	0	3.6459665	4
AA2	0.02	0.1651507	0	6.6198411	7
AA3	0.02	0.0710654	0	4.3423967	4
AA4	0.02	0.1841315	0	6.9908733	7
AA5	0.02	3.2571294	3	29.5624087	30
AA6	0.02	0.0002177	0	0.2403211	0
BB1	0.02	0.0853735	0	4.7592477	5
BB2	0.02	0.8969452	1	15.4290010	15
BB3	0.02	0.2643404	0	8.3755345	8
BB4	0.02	0.7761582	1	14.3561399	14
BB5	0.02	3.4678091	3	30.4772574	30
BB6	0.02	0.0145917	0	1.9688390	2
CC1	0.02	0.0908736	0	4.9101588	5
CC2	0.02	1.1371359	1	17.3727973	17
CC3	0.02	0.3547814	0	9.7033037	10
CC4	0.02	0.8795189	1	15.2827660	15
CC5	0.02	9.0186924	9	49.3541207	49
CC6	0.02	0.0223544	0	2.4377729	2
DD1	0.02	0.0466786	0	3.5191173	4
DD2	0.02	0.3389459	0	9.4838654	9
DD3	0.02	0.0902290	0	4.8930232	5
DD4	0.02	0.2435922	0	8.0410026	8
DD5	0.02	3.0476716	3	28.5856341	29
DD6	0.02	0.0006060	0	0.4009880	0

COMMENTAIRE GÉNÉRAL

À l'issu de cette étude de cas, nous pouvons dire que les meilleures précisions sont obtenues pour la variable VAR3, car les précisions sont inférieures à 5% dans chacune des zones, et dans une moindre mesure, pour la variable 2 pour laquelle la précision est toutefois supérieure à 5%.

Les précisions sont mauvaises pour la variable VAR1. Cela ne nous surprend pas dans la mesure où nous avions trouvé un coefficient de variation très élevé pour cette dernière variable dans chaque zone.

On remarque que les précisions obtenues avec l'allocation de Neyman sont globalement bien meilleures que celles obtenues avec l'allocation proportionnelle.

La précision est ainsi toujours inférieure à 2% pour la variable VAR3, donc très bonne. Elle est toujours inférieure à 5% pour la variable 2, donc bonne.

Elle est bonne pour la variable VAR1 dans les régions AA et DD, mais reste légèrement supérieure à 5% dans les régions BB et CC.

L'allocation de Neyman est bien plus efficace par rapport l'allocation proportionnelle, dans la mesure où, pour avoir un même niveau de précision, un petit nombre d'individus à enquêter est nécessaire donc revient moins couteux.