Uvod Hibridna neuronska mreža Arhitekture Učenje pravila

Neizrazito, evolucijsko i neuroračunarstvo Neuro-fuzzy sustavi

dr.sc. Marko Čupić

Fakultet elektrotehnike i računarstva Sveučilište u Zagrebu

12 prosinca 2013.

Zašto neuro-fuzzy spoj?

- Različiti pristupi mekog računarstva omogućavaju rješavanje istih problema; primjerice: aproksimacija ponašanja nekog sustava.
 - Neuronske mreže mogu dobro rješavati problem samo ako imamo dovoljno podataka temeljem kojih je mrežu moguće naučiti.
 - Sustav neizrazitog upravljanja pak zahtjeva postojanje određenog znanja o problemu koji se rješava: potrebno je definirati jezične varijable, pravila i primjeren način zaključivanja.

Usporedba pristupa

• Koje su karakteristike svakog od ovih pristupa?

Neuronske mreže	Neizraziti sustavi
nije potreban matematički mo-	nije potreban matematički mo-
del o problemu koji se rješava	del o problemu koji se rješava
učenje temeljem podataka	zahtjeva apriorno znanje o pro- blemu
različiti algoritmi učenja model <i>crne kutije</i>	nemaju mogućnost učenja jednostavna interpretacija pra- vila

Uobičajene karakteristike

- neizraziti sustav koji je ostvaren neuronskom mrežom uči se temeljem dostupnih podataka
- sustav je u svakom trenutku moguće prikazati skupom pravila: prije, tijekom i nakon učenja
- postoji li kakvo apriorno znanje, moguće ga je direktno ugraditi prije početka učenja
- algoritam učenja je takav da čuva semantiku neizrazitog sustava (npr. ako su težine \equiv vrijednosti funkcije pripadnosti, tada moraju biti iz intervala [0,1])

Definicija hibridne neuronske mreže

Hibridna neuronska mreža

Hibridna neuronska mreža je mreža kod koje su signali, težine i prijenosne funkcije klasične (*crisp*). Međutim, tražimo da vrijedi:

- ulaze i težine kombiniramo *t*-normama ili *s*-normama ili sličnim kontinuiranim operatorima,
- agregacije ulaza i težina opet kombiniramo s-normama ili t-normama te
- prijenosna funkcija može biti bilo kakva kontinuirana funkcija.

Procesni element hibridne neuronske mreže naziva se *neizraziti* neuron.

Definicija neizrazitog-l neurona

<u>Neizraziti</u>-l neuron

Ulazi x_i i težine w_i kombiniraju se odabranom S-normom. Izlaz je agregacija ovih kombinacija uporabom T-norme.

$$y = T(S(x_1, w_1), S(x_2, w_2), ...)$$

Slika: Neizraziti-l neuron

Definicija neizrazitog-ILI neurona

Neizraziti-ILI neuron

Ulazi x_i i težine w_i kombiniraju se odabranom T-normom. Izlaz je agregacija ovih kombinacija uporabom S-norme.

$$y = S(T(x_1, w_1), T(x_2, w_2), ...)$$

Slika: Neizraziti-ILI neuron

Arhitekture neuro-fuzzy sustava

- različiti autori definirali su čitav niz arhitektura
 - kooperativni sustavi: npr. neuronska mreža definira samo vrijednosti funkcija pripadnosti, pravila su u sustavu neizrazitog upravljanja
 - hibridna fuzzy-neuronska mreža: neizrazit sustav ugrađen je u strukturu neuronske mreže ⇒ to ćemo dalje promatrati

Hibridne fuzzy-neuronske mreže

- definirano je više modela s različitim namjenama i vrstom zaključivanja
 - Mamdani zaključivanje (konsekvens je neizraziti skup)
 - NEFCON (Nauck, 1994) neuro-fuzzy upravljanje
 - NEFCLASS (Nauck and Kruse, 1996) klasifikacija
 - NEFPROX (Nauck and Kruse, 1997) regresija
 - Tsukamoto zaključivanje (konsekvens je neizraziti skup s monotonom funkcijom pripadnosti) te Takagi-Sugeno-Kang (konsekvens je obična funkcija od ulaznih varijabli)
 - ANFIS (Jang, 1993) niz primjena
 - •

Zaključivanje u neizrazitom sustavu – podsjetnik

Slika: Različite vrste zaključivanja

Struktura neuro-fuzzy sustava (tip-3)

Slika: ANFIS mreža koja ostvaruje neizraziti sustav (zaključivanje tipa 3)

Struktura neuro-fuzzy sustava (tip-1)

Slika: ANFIS mreža koja ostvaruje neizraziti sustav (zaključivanje tipa 1)

Struktura neuro-fuzzy sustava (tip-2)

Slika: ANFIS mreža koja ostvaruje neizraziti sustav (zaključivanje tipa 2)

Učenje pravila sustava neizrazitog upravljanja (1)

- Pretpostavimo da razmatramo sustav neizrazitog upravljanja koji koristi zaključivanje tipa 3 (TSK).
- Želimo sustav koji obavlje preslikavanje $x \to y$ kojim ćemo modelirati neko nepoznato funkcijsko preslikavanje.
- Pri tome ćemo za potrebe izvoda algoritma promatrati pojednostavljen sustav kod kojeg su konsekvensi konstante, a premise ispituju samo jednu varijablu.
- Primjer takvih pravila:

 \mathbb{R}_1 : Ako x je A_1 tada y je z_1

 \mathbb{R}_2 : Ako x je A_2 tada y je z_2

. . .

 \mathbb{R}_m : Ako x je A_m tada y je z_m

Učenje pravila sustava neizrazitog upravljanja (2)

 Funkcije pripadnosti neizrazitih skupova A₁...A_m pri tome su modelirane sigmoidalnim funkcijama oblika:

$$A_i(x) \equiv \mu_{A_i}(x) = \frac{1}{1 + e^{b_i(x - a_i)}}$$

gdje su a_i i b_i parametri.

• z_1, \ldots, z_m su konstante (realni brojevi).

Učenje pravila sustava neizrazitog upravljanja (3)

- Neka nam je dostupan niz od N uzoraka za učenje: $\{(x_1,y_1), \ldots, (x_N,y_N)\}.$
- Izvest ćemo *online* verziju algoritma.
- Neka je izlaz sustava neizrazitog upravljanja za predočeni k-ti uzorak označen s o_k .
- Definirajmo funkciju pogreške za taj uzorak:

$$E_k = \frac{1}{2} \left(y_k - o_k \right)^2$$

• Za slučaj batch izvedbe uzeli bismo:

$$E = \sum_{k=1}^{N} E_k$$

Učenje pravila sustava neizrazitog upravljanja (4)

- Postupak podešavanja parametara a_i i b_i koji određuju izgled funkcija pripadnosti neizrazitih skupova u premisama te parametara z_i koji određuju vrijednost funkcije u konsekventu svest ćemo na problem minimizacije funkcije pogreške uporabom gradijentnog spusta.
- ullet Za ažuriranje proizvoljnog parametra ψ pri tome ćemo koristiti izraz:

$$\psi(t+1) = \psi(t) - \eta \cdot rac{\partial \mathcal{E}_{\pmb{k}}}{\partial \psi}$$

• Trebamo utvrditi parcijalne derivacije funkcije E_k po svim parametrima (a_i, b_i, z_i) .

Učenje pravila sustava neizrazitog upravljanja (5)

Izlaz sustava neizrazitog upravljanja definiran je kao težinska suma:

$$o = \frac{\sum_{i=1}^{m} \alpha_i z_i}{\sum_{i=1}^{m} \alpha_i}$$

 $lpha_i$ je pri tome jakost paljenja i-tog pravila i u našem slučaju je jednaka

$$\alpha_i = A_i(x) = \frac{1}{1 + e^{b_i(x - a_i)}}.$$

Učenje pravila sustava neizrazitog upravljanja (6)

Računamo redom:

$$\frac{\partial E_k}{\partial z_i} = \frac{\partial E_k}{\partial o_k} \frac{\partial o_k}{\partial z_i}$$

$$\frac{\partial E_k}{\partial o_k} = \frac{\partial}{\partial o_k} \left(\frac{1}{2} (y_k - o_k)^2 \right)$$

$$= -(y_k - o_k)$$

$$\frac{\partial o_k}{\partial z_i} = \frac{\partial}{\partial z_i} \left(\frac{\sum_{j=1}^m \alpha_j z_j}{\sum_{j=1}^m \alpha_j} \right)$$

$$= \frac{\alpha_i}{\sum_{j=1}^m \alpha_j}$$

$$\frac{\partial E_k}{\partial z_i} = -(y_k - o_k) \frac{\alpha_i}{\sum_{j=1}^m \alpha_j}$$

Učenje pravila sustava neizrazitog upravljanja (7)

Ažuriranje se tada radi prema izrazu:

$$z_i(t+1) = z_i(t) + \eta(y_k - o_k) \frac{\alpha_i}{\sum_{j=1}^m \alpha_j}$$

Učenje pravila sustava neizrazitog upravljanja (8)

Za određivanje pravila učenja parametara a_i i b_i uočimo lance:

- a_i utječe na α_i , α_i utječe na o_k ; stoga $a_i \Rightarrow \alpha_i \Rightarrow o_k$
- b_i utječe na α_i , α_i utječe na o_k ; stoga $b_i \Rightarrow \alpha_i \Rightarrow o_k$

Ovaj slijed iskoristit ćemo za izračun parcijalnih derivacija $\frac{\partial E_k}{\partial a_i}$ i $\frac{\partial E_k}{\partial b_i}$:

$$\frac{\partial E_k}{\partial a_i} = \frac{\partial E_k}{\partial o_k} \frac{\partial o_k}{\partial \alpha_i} \frac{\partial \alpha_i}{\partial a_i}$$

$$\frac{\partial E_k}{\partial b_i} = \frac{\partial E_k}{\partial o_k} \frac{\partial o_k}{\partial \alpha_i} \frac{\partial \alpha_i}{\partial b_i}$$

Učenje pravila sustava neizrazitog upravljanja (9)

$$\frac{\partial E_k}{\partial a_i} = \frac{\partial E_k}{\partial o_k} \frac{\partial o_k}{\partial \alpha_i} \frac{\partial \alpha_i}{\partial a_i}$$

$$\frac{\partial E_k}{\partial o_k} = -(y_k - o_k)$$

$$\frac{\partial o_k}{\partial \alpha_i} = \frac{\sum_{j=1, j \neq i}^m \alpha_j (z_i - z_j)}{\left(\sum_{j=1}^m \alpha_j\right)^2}$$

$$\frac{\partial \alpha_i}{\partial a_i} = b_i \alpha_i (1 - \alpha_i)$$

$$\frac{\partial E_k}{\partial a_i} = -(y_k - o_k) \frac{\sum_{j=1, j \neq i}^m \alpha_j (z_i - z_j)}{\left(\sum_{j=1}^m \alpha_j\right)^2} b_i \alpha_i (1 - \alpha_i)$$

Učenje pravila sustava neizrazitog upravljanja (10)

Ažuriranje se tada radi prema izrazu:

$$a_i(t+1) = a_i(t) + \eta(y_k - o_k) \frac{\sum_{j=1, j \neq i}^m \alpha_j(z_i - z_j)}{\left(\sum_{j=1}^m \alpha_j\right)^2} b_i \alpha_i(1 - \alpha_i)$$

Učenje pravila sustava neizrazitog upravljanja (11)

$$\frac{\partial E_k}{\partial b_i} = \frac{\partial E_k}{\partial o_k} \frac{\partial o_k}{\partial \alpha_i} \frac{\partial \alpha_i}{\partial b_i}$$

$$\frac{\partial E_k}{\partial o_k} = -(y_k - o_k)$$

$$\frac{\partial o_k}{\partial \alpha_i} = \frac{\sum_{j=1, j \neq i}^m \alpha_j (z_i - z_j)}{\left(\sum_{j=1}^m \alpha_j\right)^2}$$

$$\frac{\partial \alpha_i}{\partial b_i} = -(x - a_i)\alpha_i (1 - \alpha_i)$$

$$\frac{\partial E_k}{\partial a_i} = (y_k - o_k) \frac{\sum_{j=1, j \neq i}^m \alpha_j (z_i - z_j)}{\left(\sum_{j=1}^m \alpha_j\right)^2} (x - a_i)\alpha_i (1 - \alpha_i)$$

Učenje pravila sustava neizrazitog upravljanja (12)

Ažuriranje se tada radi prema izrazu:

$$b_{i}(t+1) = b_{i}(t) - \eta(y_{k} - o_{k}) \frac{\sum_{j=1, j \neq i}^{m} \alpha_{j}(z_{i} - z_{j})}{\left(\sum_{j=1}^{m} \alpha_{j}\right)^{2}} (x - a_{i}) \alpha_{i}(1 - \alpha_{i})$$

Učenje pravila sustava neizrazitog upravljanja (13)

Primjer (demonstracija).

Domaća zadaća (1a)

Izvedite pravilo učenja za sustav koji preslikava $(x,y) \rightarrow z$. Kod tog sustava neka pravila budu oblika:

 \mathbb{R}_i : Ako x je A_i i y je B_i tada z je z_i

Pri tome su A_i i B_i neizraziti skupovi. Neka su a_i i b_i parametri od A_i a c_i i d_i parametri od B_i .

Operator I u antecedent dijelu (odnosno t-normu) modelirajte umnoškom.

Potrebno je za i-to neizrazito pravilo odrediti pravila učenja koja ažuriraju 5 parametara: a_i , b_i , c_i , d_i , z_i .

Domaća zadaća (1b)

Pomoć: uvedite oznake: $\alpha_i = A_i(x)$, $\beta_i = B_i(y)$. Tada je jakost antecedenta:

$$\pi_i = t - norma(\alpha_i, \beta_i) = \alpha_i \cdot \beta_i.$$

Izlaz sustava tada je:

$$o_k = \frac{\sum_{i=1}^m \pi_i z_i}{\sum_{i=1}^m \pi_i}$$

Uočite lanac: $a_i \Rightarrow \alpha_i \Rightarrow \pi_i \Rightarrow o_k$, $a_i \not\Rightarrow \beta_i$ pa računajte:

$$\frac{\partial E_k}{\partial a_i} = \frac{\partial E_k}{\partial o_k} \frac{\partial o_k}{\partial \pi_i} \frac{\partial \pi_i}{\partial \alpha_i} \frac{\partial \alpha_i}{\partial a_i}$$

Slično postupite i za ostale parametre.

Napomene uz ANFIS (1)

 Umjesto sigmoidalnih funkcija pripadnosti često se koriste "zvonolike" funkcije poput:

•

$$\mu_{A_i}(x) = \frac{1}{1 + \left[\left(\frac{x - c_i}{a_i} \right)^2 \right]^{b_i}}$$

•

$$\mu_{A_i}(x) = e^{-\left[\left(\frac{x-c_i}{a_i}\right)^2\right]^{b_i}}$$

Napomene uz ANFIS (2)

 U konsekvens dijelu koriste se funkcije koje su linearne kombinacije ulaza; npr. ako imamo ulaze x i y, funkcije su oblika:

$$f_i = p_i x + q_i y + r_i$$

gdje su p_i , q_i i r_i parametri koje je moguće podešavati algoritmom učenja.

• ANFIS je univerzalni aproksimator!

Domaća zadaća (2)

Izvedite pravilo učenja za sustav koji preslikava $(x,y) \rightarrow z$. Kod tog sustava neka pravila budu oblika:

 \mathbb{R}_i : Ako x je A_i i y je B_i tada z je $p_i \cdot x + q_i \cdot y + r_i$ Pri tome su A_i i B_i neizraziti skupovi. Neka su a_i i b_i parametri od A_i , c_i i d_i parametri od B_i te p_i , q_i i r_i parametri koji određuju kako se računa vrijednost konsekventa za poznate x i y. Operator I u antecedent dijelu (odnosno t-normu) modelirajte umnoškom.

Potrebno je za i-to neizrazito pravilo odrediti pravila učenja koja ažuriraju 8 parametara: a_i , b_i , c_i , d_i , z_i , p_i , q_i , r_i .

Zaključak

- Postoji čitav niz različitih načina kombiniranja neuro i fuzzy pristupa.
- Spomenuli smo samo mali podskup a detaljnije obradili samo jednog predstavnika.
- Osim učenja koje se temelji na klasičnom pristupu (gradijentni spust i slične tehnike) moguća je uporaba algoritama evolucijskog računanja koji daju dobre rezultate.