Program RESCALE

Richard Fitzpatrick

September 12, 2021

1 Rescaling gFile

1.1 Grad-Shafranov Equation

The Grad-Shafranov equation takes the form

$$\frac{\partial^2 \psi}{\partial R^2} - \frac{1}{R} \frac{\partial \psi}{\partial R} + \frac{\partial^2 \psi}{\partial Z^2} = -R^2 \frac{dP}{d\psi} - \frac{1}{2} \frac{dT^2}{d\psi},\tag{1}$$

where

$$j_{\phi} = -R \frac{dP}{d\psi} - \frac{1}{2R} \frac{dT^2}{d\psi},\tag{2}$$

$$q = \frac{T}{2\pi} \oint_{\psi} \frac{dl}{R |\nabla \psi|}.$$
 (3)

1.2 Type I Rescaling

The following rescaling of variables leaves the Grad-Shafranov equation invariant:

$$R_{\text{new}} = R_{\text{old}},$$
 (4)

$$Z_{\text{new}} = Z_{\text{old}},$$
 (5)

$$\psi_{\text{new}} = a_1 \, \psi_{\text{old}},\tag{6}$$

$$T_{\text{new}} = a_1 T_{\text{old}}, \tag{7}$$

$$P_{\text{new}} = a_1^2 P_{\text{old}}.$$
 (8)

It follows that

$$I_{\phi \text{ new}} = a_1 I_{\phi \text{ old}}, \tag{9}$$

$$q_{\text{new}} = q_{\text{old}}. (10)$$

1.3 Type II Rescaling

The following rescaling of variable also leaves the Grad-Shafranov equation invariant:

$$R_{\text{new}} = R_{\text{old}},\tag{11}$$

$$Z_{\text{new}} = Z_{\text{old}},$$
 (12)

$$\psi_{\text{new}} = \psi_{\text{old}},\tag{13}$$

$$T_{\text{new}} = \text{sgn}(T_{\text{old}}) \sqrt{T_{\text{old}}^2 + a_2}, \tag{14}$$

$$P_{\text{new}} = P_{\text{old}}. (15)$$

It follows that

$$I_{\phi \text{ new}} = I_{\phi \text{ old}},\tag{16}$$

$$q_{\text{new}} = \frac{T_{\text{new}}}{T_{\text{old}}} q_{\text{old}}.$$
 (17)

1.4 Program RESCALE

Let

$$\Psi_N = \frac{\psi - \psi_{\text{axis}}}{\psi_{\text{separatrix}} - \psi_{\text{axis}}}.$$
(18)

Program RESCALE first performs a type II rescaling such that

$$a_2 = \left(\frac{q_{95 \text{ target}}^2}{q_{95 \text{ old}}^2} - 1\right) T_{95 \text{ old}}^2, \tag{19}$$

where

$$q_{95} \equiv q(\Psi_N = 0.95),\tag{20}$$

$$T_{95} \equiv T(\Psi_N = 0.95).$$
 (21)

It follows that

$$\psi_{\text{new}} = \psi_{\text{old}}, \tag{22}$$

$$T_{\text{new}} = T_{\text{old}} \sqrt{1 + \left(\frac{q_{95\,\text{target}}^2}{q_{95\,\text{old}}^2} - 1\right) \frac{T_{95\,\text{old}}^2}{T_{\text{old}}^2}},$$
 (23)

$$P_{\text{new}} = P_{\text{old}}, \tag{24}$$

and

$$I_{\phi \text{ new}} = I_{\phi \text{ old}}, \tag{25}$$

$$q_{\text{new}} = q_{\text{old}} \sqrt{1 + \left(\frac{q_{95 \,\text{target}}^2}{q_{95 \,\text{old}}^2} - 1\right) \frac{T_{95 \,\text{old}}^2}{T_{\text{old}}^2}}.$$
 (26)

Program RESCALE then performs a type I rescaling such that

$$a_1 = \frac{T_{1 \text{ old}}}{T_{1 \text{ new}}},\tag{27}$$

where

$$T_1 \equiv T(\Psi_N = 1). \tag{28}$$

It follows that

$$\psi_{\text{new new}} = a_1 \, \psi_{\text{old}},\tag{29}$$

$$T_{\text{new new}} = a_1 T_{\text{new}} = T_{1 \text{ old}} \sqrt{\frac{T_{\text{old}}^2 + (q_{95 \text{ target}}^2 / q_{95 \text{ old}}^2 - 1) T_{95 \text{ old}}^2}{T_{1 \text{ old}}^2 + (q_{95 \text{ target}}^2 / q_{95 \text{ old}}^2 - 1) T_{95 \text{ old}}^2}},$$
(30)

$$P_{\text{new new}} = a_1^2 P_{\text{old}}, \tag{31}$$

and

$$I_{\phi \text{ new new}} = a_1 I_{\phi \text{ old}}, \tag{32}$$

$$q_{\text{new new}} = q_{\text{new}} = q_{\text{old}} \sqrt{1 + \left(\frac{q_{95 \text{ target}}^2}{q_{95 \text{ old}}^2} - 1\right) \frac{T_{95 \text{ old}}^2}{T_{\text{old}}^2}}.$$
 (33)

Note that

$$q_{95 \text{ new new}} = q_{95 \text{ target}}, \tag{34}$$

$$T_{1 \text{ new new}} = T_{1 \text{ old}}, \tag{35}$$

$$P_{\text{new new}} = a_1^2 P_{\text{old}}.$$
 (36)

2 Rescaling pFile

The variables in pFiles are rescaled as follows:

$$ne \rightarrow a_1 ne,$$
 (37)

$$te \rightarrow a_1 te,$$
 (38)

$$ni \rightarrow a_1 ni,$$
 (39)

$$ti \rightarrow a_1 ti,$$
 (40)

$$\mathsf{nb} \to a_1 \, \mathsf{nb}, \tag{41}$$

$$\mathsf{pb} \to a_1^{\,2}\,\mathsf{pb}, \tag{42}$$

$ptot o a_1^{2}ne,$	(43)
$omeg \to a_1 omeg,$	(44)
$omegp \to a_1 omegp,$	(45)
omegvb $ o a_1$ omegvb,	(46)
$omegpp o a_1 omegpp,$	(47)
$omegeb \to a_1 omegeb,$	(48)
$er o a_1 er,$	(49)
$ommvb \to a_1 ommvb,$	(50)
$ommpp \to a_1 ommpp,$	(51)
$omevb \to a_1 omevb,$	(52)
$omepp \to a_1 omepp,$	(53)
$kpol o a_1 kpol,$	(54)
$omghb \to a_1omghb,$	(55)
$nz1 o a_1nz1,$	(56)
$vtor1 \rightarrow a_1 vtor1,$	(57)
$vpol1 o a_1 vpol1,$	(58)
$NZA \rightarrow NZA$.	(59)