Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
Cancún, Q. Roo, 07/02/2017	Dr. Julio César Ramírez Pacheco	Actualización del programa de teoría de la información para incorporarse como asignatura básica de Ingeniería en Datos e Inteligencia Organizacional.

Relación con otras asignaturas

Anteriores	Posteriores
a) Probabilidad y estadística, b) Algebra líneal, c) Cálculo diferencial e integral.	
Tema(s)	NA
Distribuciones discretas, técnicas de integración, matrices	
manices	

Nombre de la asignatura Departamento o Licenciatura

Teoría de la información Ingeniería en Datos e Inteligencia Organizacional

Plan	Ciclo	Clave	Créditos	Área de formación curricular
2016ID	4 - 4	IT0322	6	Licenciatura Básica

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	н
Seminario	32	16	48	48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Describir los conceptos, definiciones y algoritmos de teoria de la información para el conocimiento de un marco metodológico que permita responder a la preguntas de cómo esta hecha, representada, almacenada y es trasmitida la información.

Objetivo procedimental

Aplicar los conceptos, definiciones y algoritmos de teoría de la información para la solución de problemas de análisis y ciencia de datos.

Objetivo actitudinal

Fomentar el trabajo colaborativo y la responsabilidad para la resolución de ejercicios y problemas relacionados a la aplicación de métodos de teoría de la información.

Unidades y temas

Unidad I. INTRODUCCIÓN A LA TEORÍA DE LA INFORMACIÓN

Describir la aplicación de los conceptos de teoría de la información para el conocimiento de un contexto.

- 1) Algunos aspectos básicos de la teoría de la información.
- 2) Aplicaciones en la teoría de la computación
 - a) Almacenamiento y recuperación de la información.
 - b) Motores de búsqueda.
 - c) Seguridad informática.
 - d) Representación del conocimiento
- 3) Aplicaciones a la genómica.
- 4) Aplicaciones en la transmisión de información.

Unidad II. ENTROPÍA, PROBABILIDAD E INFERENCIA

Describir las definiciones y conceptos elementales de teoría de la información para la justificación de la cuantificación de la información y la relación entre las diversas formas de información y entropía.

Revisión de conceptos de probabilidad y estadística
a) La función de densidad y distribución de variables aleatorias
b) Momentos de orden n
c) Estadística inferencial
2) El concepto de entropía.
3) Unidades de entropía.
4) Entropía máxima y mínima.
5) Entropía condicional.
6) Fuentes de información.
7) Fuentes Markovianas y su entropía.
Unidad III. COMPRESIÓN DE DATOS
Aplicar el concepto y algoritmos de comprensión de datos para la resolución de problemas de ingeniería
1) Conceptos básicos de comprensión de datos.
2) Algoritmos sin pérdidas.
a) Codificación Huffman.
b) Codificación adaptativa.
c) Codificación ¿run-length¿
3) Algoritmos con pérdidas
a) Algoritmos en el dominio del tiempo.
b) Algoritmos por transformación.

c) Algoritmos por extracción de características.

Unidad IV. TÓPICOS SELECTOS DE TEORÍA DE LA INFORMACIÓN

Aplicar las propiedades de los códigos Hash y binarios para la resolución de problemas de ingeniería de datos.

- 1) Códigos Hash
- 2) Códigos binarios

Actividades que promueven el aprendizaje

Docente Estudiante

Promover el trabajo colaborativo en la definición de propuestas de solución a problemas determinados.

Coordinar la discusión de casos prácticos.

Realizar foros para la discusión de temas o problemas.

Realizar tareas asignadas

Participar en el trabajo individual y en equipo

Resolver ejercicios y/o problemas

Discutir temas en el aula

Participar en actividades extraescolares

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal para la lectura de artículos:

http://www.mdpi.com/journal/entropy

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=18

Se promoverá el uso de mecanismos asíncronos (correo electrónico, grupo de noticias, WWW y tecnologías de información) como medio de comunicación.

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Examen	30
Evidencias individuales (investigación, ensayos, lecturas, etc.)	20
Evidencias equipo (ejercicios, casos, proyectos, etc.)	30
Evidencias grupales (asambleas, lluvias de ideas, etc.)	20
Total	100

Fuentes de referencia básica

Bibliográficas

Cover, T. M., & Thomas, J. A. (2012). Elements of information theory (2da Edición). Hoboken: John Wiley & Sons.

MacKay, D. J. (2003). Information theory, inference and learning algorithms (1a Edición). Cambridge: Cambridge university press.

Jones, G. A., & Jones, J. M. (2012). Information and coding theory (1a Edición). Londres: Springer Science & Business Media.

Sayood, K. (2012). Introduction to data compression (4a Edición). Waltham: Newnes.

Togneri, R., & Christopher, J. S. (2003). Fundamentals of information theory and coding design (1a Edición). Boca Ratón: CRC Press.

Web gráficas

Fuentes de referencia complementaria

Bibliográficas

Csiszar, I., & Körner, J. (2011). Information theory: coding theorems for discrete memoryless systems (2da Edición). Cambridge: Cambridge University Press.

Emmert-Streib, F. (2009). Information theory and statistical learning (1a Edición). Nueva York: Springer US.

Kelbert, M., & Suhov, Y. (2013). Information theory and coding by example (1a Edición). Cambridge: Cambridge University Press.

Roman, S. (1992). Coding and information theory (1a Edición). Berlin: Springer Science & Business Media.

Salomon, D. (2004). Data compression: the complete reference (3a Edición). Nueva York: Springer Science & Business Media.

Web gráficas

.

Perfil profesiográfico del docente

Académicos

Maestría en Ciencias de la Computación.

Docentes

Tener experiencia docente a nivel superior mínima de 3 años en ingeniería.

Profesionales

Tener experiencia en dirección de proyectos y solución de problemas de ingeniería.