International Islamic University Chittagong Department of Electrical and Electronic Engineering

B. Sc. Engineering in EEE Final Exam, Spring 2023 (Special)

Course Code: EEE 1101

Course Title: Electrical Circuits I

Time: 2 hours 30 minutes

Full Marks: 50

(i) The figures in the right-hand margin indicate full marks

(ii) Course Outcomes and Bloom's Levels are mentioned in additional Columns

CO	se Outcomes (COs), Program Outcomes (POs) and Bloom's Levels (BL) of the				
CO1	 i) Identify (C2) the basic principles of electric circuit analysis (network theorems) to apply in electric networks with DC supply with resistive and reactive elements. ii) Identify (C2) the basic principles of magnetic circuit analysis (ampere's circuital law and others related theorems) to apply in various magnetic circuits. 	POb	C2		
CO2	Apply (C2) aircuital laws and and				
CO3	Apply (C3) circuital laws to solve problems of dc response with reactive elements and ampere's circuital law for magnetic circuits.	POa	С3		

Bloom's Levels (BL) of the Questions										
Letter Symbols	C1	C2	C3	C4	C5	C6				
Meaning	Remember	Understand	Apply	Analyze	Evaluate	Create				

Part A
[Answer the questions from the followings]

1. a) Use source conversion technique to find the current through 5 Ω resistor for CO2 C3 the network shown in Fig. 1

Fig. 1 Network for the question 1. a)

1. b) Apply Superposition theorem to determine the voltage v_x of the network CO2 C3 5 shown in Fig. 2

Fig. 2 Network for the question 1. b)

2. a) Find the Norton equivalent circuit for the network external to the resistor R CO2 C3 5

Fig. 3 Network for the question 2. a)

2. b) Find the *Thevenin* equivalent circuit for the network of Fig. 4.between the CO2 C3 5 terminals a-b.

Fig. 4 Network for the question 2. b)

Or,

a) Determine the value of R_L that will draw the maximum power from the CO2 C3 network shown in Fig. 5. Also calculate the maximum power received by R_L.

Fig. 5 Network for the question 2. a) (from Or)

b) Find the Norton equivalent circuit for the network external to the resistor R CO2 C3 5 shown in Fig. 6.

Fig. 6 Network for the question 2. b) (from Or)

Part B

[Answer the questions from the followings]

a) Analyze with necessary circuits, equations and timing diagrams; how R-C CO1 C2 5 charging and discharging transient phases work.

5

C3

CO₃

5. b) For the R-C transient circuit given below in Fig. 7.
(i) Find the mathematical expression for the transient behavior of v_C; if the switch is thrown into position 1 at t = 0 s.

(ii) Repeat part (i) for i_C.

- (iii) Find the mathematical expression for the response of v_C and i_C if the switch is thrown into position 2 at t = 15 ms.
- (iv) Find the mathematical expression for the voltage v_C and current i_C if the switch is thrown into position 3 at t = 30 ms.
- (v) Plot the waveforms obtained in parts (i) through (iv) on the same time axis for the voltage v_C and current i_C using the defined polarity and current direction shown in the circuit. The waveforms must be plotted on a graph paper and the plotted graph paper must be attached with the answerscript.

Fig. 7 Network for the question 3. b)

OR

- 3. a) Apply the concept of RL charging and discharging and explain the transient CO1 C2 5 condition for the voltage across capacitor and resistor of a RL circuit.
- 3. b) Find the voltage V₁, V₂, I₁, and I₂ for the network shown in Fig. 8 under CO₃ C₃ 5 steady state condition.

Fig. 8 Network for the question no 3. b) (from Or)

- a) What do you understand by the Hysteresis loop of the B-H curve? Explain the CO1 C2 5 B-H curve in brief in your own word.
- b) What do you understand by magnetic permeability (μ) and relative magnetic CO1 C2 5
 permeability (μ_r)? Explain several types of materials on the basis of their
 relative magnetic permeabilities.
- 5. a) For the magnetic circuit given below in Fig. 9 determine the current I CO3 C3 5 required to produce the magnetic flux φ = 0.70 X 10⁻⁴ Wb. Please ignore the φ provided in figure. Draw the electrical analogous magnetic circuit. Use B-H Plot for your calculation and attach with the answerscript.

Fig. 9 Network for the question no 5. a)

C3

CO3

5. b) Determine the magnetic flux ϕ for the magnetic circuit given below in Fig. 10. The current of the magnetic coil provided in the diagram will be replaced by 4 A. Draw the electrical analogous magnetic circuit. Use B-H Plot for your calculation and attach with the answerscript.

Fig. 10 Network for the question no 5. b)