Elementos básicos de la lógica secuencial

Fundamentos de Computadores Escuela Politécnica Superior. U.A.M

Índice de la Unidad 3

- U3. Elementos básicos de la lógica secuencial.
 - U3.1. Circuitos secuenciales.
 - U3.2. Cerrojos. Tipos de cerrojos.
 - U3.3. Flip-Flops. Tipos de Flip-Flops.
 - U3.4. Circuitos con Flip-Flops. Cronogramas de temporales.
 - U3.5. Registros. Registros de desplazamiento.

Circuitos secuenciales

Motivación:

Se quiere construir un circuito que cuente las transiciones que sucedan en una única señal de entrada denominada CLK

Para las funciones S_1 y S_0 , un circuito combinacional no sirve porque para una misma entrada siempre se alcanza una misma salida.

Solución:

Se necesita un nuevo tipo de circuitos en los que las "nuevas" salidas dependan de las entradas pero también de las "viejas" salidas.

Circuitos secuenciales

0

COMBINACIONAL

SECUENCIAL

S ₁	S ₀ CLK		S' ₁ S' ₀	
0	0	Ţ	0	1
0	1	<u>_</u>	1	0
1	0	Ţ	1	1
1	1	ſ	0	0

Solución:

 S_0

Un circuito secuencial se fundamenta en sistemas realimentados (la señal de salida es a su vez una entrada) y estables.

Elemento lógico realimentado e inestable

Circuitos secuenciales

Definición

Circuito secuencial es aquel en el que las salidas dependen de las entradas y de su estado anterior.

- ✓ El valor del estado anterior se almacena en unos elementos con capacidad de memorización.
- ✓ Cada bit de información del estado se guarda en un biestable.

$$\mathbf{Q}_{t+\Delta t} = \mathbf{f}(\mathbf{E}_t, \mathbf{Q}_t)$$
 Ecuaciones de ESTADO EVOLUCIÓN TEMPORAL $\mathbf{S}_t = \mathbf{g}(\mathbf{E}_t, \mathbf{Q}_t)$ Ecuaciones de SALIDA VALORES INSTANTÁNEOS

Secuenciales asíncronos y síncronos

Biestable RS asíncrono

a, b) Mantener estado

c, d) Apagar (Reset)

e, f) Encender (Set)

g) Inscripción prioritaria

Exwela Politêcnia Superior

Biestable RS asíncrono

Con R=S='1', las salidas no son complementarias y dependen del diseño interno del biestable.

Inscripción prioritaria

Borrado prioritario

¿Cómo hacer que /Q* sea /Q siempre?

Biestables RS síncronos

Activo por nivel

Activo por flanco (edge-triggered)

Activo por flanco (master-slave)

Biestable D (flip flop D)

Cronograma del funcionamiento de un biestable D:

Tiempos de inserción de las señales de dato: t_{setup}, t_{hold} y t_{delay}

Eiwela

Superior

Frecuencia máxima operación

Otros biestables

Conversión entre biestables

Ejemplo: A partir de un biestable D, construir un biestable T

Ejemplos: A partir de un biestable JK, construir a) un biestable D y b) un biestable T

Inicialización en un biestable

El valor inicial puede ser '0' ó '1'

La inicialización asíncrona es inmediata

La inicialización síncrona espera al primer flanco activo de reloj

Las señales de inicialización suelen ser activas por nivel bajo

Ejemplo: Biestable D con reset

La inicialización síncrona se puede considerar como parte de la funcionalidad Ejemplo: Biestable D con clear

Aplicación: Carga de un biestable

En los biestables síncronos, existe la posibilidad de cargar a '0' ó a '1' por medio de una entrada especial denominada entrada de carga "L" (Load). Similar al *enable* en los circuitos combinacionales.

Ejemplo: A partir de un biestable D, construir un biestable T con entrada de carga

L	Dat	Т	Qn+1
1	0	X	0
1	1	X	1
0	X	0	Qn
0	X	1	/Q ⁿ

Cronograma temporal con Flip-Flops

Ejemplo: Completar el cronograma de la figura para cada uno de los dos ejemplos propuestos.

Registros

Registro:

✓ Sistema secuencial formado por un conjunto de biestables del mismo tipo que comparten la misma señal de reloj.

Registros

- ✓ Registro de desplazamiento: La salida de un biestable se conecta a la entrada del biestable de orden superior.
- ✓ Registro con entrada de carga: Una señal de carga, L (load) permite cargar síncronamente en el registro cualquier valor deseado.

Ejemplo: Registro de desplazamiento (4bits) con entrada de carga

Eiwelo