Aritmética inteira → trata das operações com números inteiros

Aritmética em ponte flutuante → trata das operações com números reais

Números reais → representados por dois campos: base e mantissa

Os algoritmos para tratar de números reais são baseados na tarefa de normalização dos operandos

Aritmética inteira → Sinalização

Duas representações:

a) Sinal e magnitude → adiciona-se 1 bit de sinal

```
EX: (13)_{10} \rightarrow 1101 (natural) com sinal +13: 01101; -13: 11101
```

b) Complemento de 2:

EX:
$$+13 \rightarrow 01101$$
; $-13 \rightarrow 10010$ (complemento de 1) e soma 1

10011 (complemento de 2)

Aritmética inteira → operação adição

Regras:

$$0+0=0$$

$$0+1=1$$

$$1+0=1$$

Α	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Aritmética inteira -> operação adição

S=
$$\overline{\text{Cin}}$$
 (A $\overline{\text{B}}$ + $\overline{\text{A}}$ B) + Cin (A B + $\overline{\text{A}}$ $\overline{\text{B}}$)

S= $\overline{\text{Cin}}$ (A \oplus B) + Cin ($\overline{\text{A}}$ \oplus B)

 $\overline{\text{X}}$

S=Cin \oplus A \oplus B

Somador completo de 1 bit → circuito lógico

 $S=A \oplus B \oplus Cin$; Cout = $ACin + B (A \oplus Cin)$

Aritmética inteira -> operação adição

Somador completo usando meio somador

Somador completo de 1 bit -> configurações (36 transistores - 18 número total de literais)

Para porta NAND → Número de transistores = 2 Fan-in

Somador completo de 1 bit -> configurações

(24 transistores – 10 número total de literais)

Porta XOR → 6 transistores

Somador completo de 1 bit -> célula básica

(Somador de N bits -→ propagação do Carry)

Carry Propagation

Aritmética inteira → operação subtração

Α	В	Bin	R	Bout
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Aritmética inteira → operação subtração

Subtrator completo de 1 bit -> circuito lógico

 $R = A \oplus B \oplus Bin$; Bout = BBin + A' (B $\oplus Bin$)

Aritmética inteira → operação subtração

Subtrator completo de 1 bit → célula básica

Subtrator de N bits → propagação de Borrow

Aritmética inteira → Subtração por complemento de 2

Aritmética inteira -> Paralela

Sejam Ai e Bi os bits de entrada

da i-esima coluna dos

operandos A e B

Variável de geração

Gi=AiBi

(1)

Variável de propagação:

Pi=Ai⊕Bi

(2)

Somador

Si=Ai⊕ Bi⊕ Cini-1 (3)

(1),(2) e $(3) \rightarrow$ gera a unidade

somadora

Aritmética inteira -> Paralela

Sejam Ai e Bi os bits de entrada da i-esima coluna dos operandos A e B

```
Variável de geração Gi=AiBi (1)
```

Usando (1) e (2) em (3) temos:

$$C_{i+1}=G_i+C_iP_i$$
 (4)

Aritmética inteira → Paralela: C_{i+1}=Gi +CiPi (4)

Aplicando (4) em cada estágio:

```
C1=G0+CoPo

C2=G1+C1P1=G1+(G0+CoPo)P1

=G1+G0P1+CoPoP1

C3=G2+C2P2=G2+(G1+G0P1+CoPoP1+CoPoP1)P2

=G2+G1P2+GoP1P2+CoPoP1P2
```

Adição inteira paralela -> Circuito lógico de 2 bits

Performance: para N bits → 4 níveis de atraso

Adição inteira paralela -> solucionar problema de Fan-in ->

Performance: 12 bits (Ripple Carry– 36 níveis de atraso ; Lockahead – 4 níveis e fan-in 12)

Método: mistura Carry Propagation com Carry Lookahead → 12 níveis

Adição inteira paralela→ Solucionar problema de Fan-in (Geração de grupos)

Geração de grupo:

$$G(1-4)=G4 + G3P4 + G2P4P3 + G1P4P3P2$$

Propagação do grupo:

Geração dos Carry lookahead

$$C5=G(1-4) + P(1-4)C0$$

$$C9=G(5-8) + P(5-8)G(1-4) + P(5-8)P(1-4)C0$$

Adição inteira paralela -> Solucionar problema de

Fan-in (Geração de grupos); Performance → 6 níveis

Comparador paralelo→ Comparador de 1 bit (célula) + lógica

_A	В	EQ	MA	MB
0	0	1	0	0
0	1	0	0	1
1	0	0	1	0
1	0 1	1	0	0

Comparador paralelo de N bits -> Comparador de 1 bit (célula) + lógica de paralelização

Comparador paralelo de N Bits Desenvolvimento da lógica de paralelização Para 2 Bits:

```
EQ_{Geral} = EQ_2 EQ_1
```

$$MAGeral = MA_2 + EQ_2 MA_1$$

Para 3 Bits:

```
EQ_{Geral} = EQ_3 EQ_2 EQ_1
```

$$MAGeral = MA_3 + EQ_3 MA_2 + EQ_3 EQ_2 MA_1$$

$$MB_{Geral} = MB_3 + EQ_3 MB_2 + EQ_3 EQ_2 MB_1$$

Comparador paralelo de 2 Bits -> Circuito lógico

Para 2 Bits:

EQGeral = EQ2 EQ1

 $MAGeral = MA_2 + EQ_2 MA_1$

 $MB_{Geral} = MB_2 + EQ_2 MB_1$

