CS150A Quiz09

FD Properties
'd like some properties for my functional dependencies please.
2. 1) Select all the FD's that follow from Armstrong's Axioms * Hint: there's at least one Check all that apply.
if $X \rightarrow Y$ and $Z \rightarrow W$, then $XZ \rightarrow YW$
if $X \to Y$ and $WY \to Z$, then $WX \to Z$
if $X \to YZ$, then $X \to Y$ and $X \to Z$
if $XZ \rightarrow YZ$, then $X \rightarrow Y$
if $X \to Y$ and $W \to Y$, then $X \to W$
FD Example
We have a relation R(A, B, C, D, E). We are told that the set of functional dependencies is F = {E \rightarrow BC, A \rightarrow B, C \rightarrow D, AD \rightarrow C}.
Find the attribute closures for each of the attributes. If the attribute closure for X was WXZ, you would fill in "WXZ" without quotes in the answer box.
We will be grading with a script so *please submit your answers in alphabetical order* and without any whitespace.
3. 2) A+: *
4. 3) B+: *

5. 4) C+: *
6. 5) D+: *
7. 6) E+: *
8. 7) Select the attribute set(s) that are keys for relation R * Hint: there's at least one Check all that apply.
EABCBCDACEABCDE
9. 8) The attribute closure of (AD)+ is equivalent to the attribute closure of (AC)+.* By equivalent we mean the intersection is equivalent to the union of both closure sets. Mark only one oval.
True False
10. 9) Is relation R already in Boyce-Codd Normal Form (BCNF)? * Mark only one oval.
Yes No
Normalization
BCNF stands for Boyce-Codd Normal Form. For this question, assume the decomposition is performed using the algorithm described in lecture.
11. 10) Decomposing a relation in BCNF will always guarantee a dependency preserving decomposition. * Mark only one oval.
True
False

12	2. 11) Decomposing a relation in BCNF will always guarantee a lossless decomposition. * Mark only one oval.
	True
	False
13	B. 12) Relation R(A, B, C, D, E) is decomposed into R(A, C, D) and R(A, B, C, E) with the set of functional dependencies F = {BC → A, C → D}. Is this decomposition lossless? Note: the decomposition might not follow the BCNF algorithm discussed in class. Mark only one oval.
	Yes
	No