LECTURE 9-1

NEURAL NETS(NN) FOR XOR

Sung Kim <hunkim+ml@gmail.com> http://hunkim.github.io/ml

NAVER | Clova

One Logistic Regression Unit Cannot Separate XOR

Multiple Logistic Regression Units

Neural Network (NN)

"No one on earth had found a viable way to train"

XOR Using NN

X ₁	X ₂	XOR
0	0	0(-)
0	1	1(+)
1	0	1(+)
1	1	0(-)

 $W = \begin{bmatrix} -7 \\ -7 \end{bmatrix}, b = 3$

X ₁	X ₂	Y ₁	Y ₂	Ÿ	XOR
0	0				0
0	1				1
1	0				1
1	1				0

$$\begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 5 \end{bmatrix} - 8 =$$

$$\begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} -7 \\ -7 \end{bmatrix} + 3 =$$

X ₁	X ₂	Y1	Y ₂	Ÿ	XOR
0	0				0
0	1				1
1	0				1
1	1				0

$$W = \begin{bmatrix} 5 \\ 5 \end{bmatrix}, b = -8$$
 $W = \begin{bmatrix} -7 \\ -7 \end{bmatrix}, b = 3$ $W = \begin{bmatrix} -11 \\ -11 \end{bmatrix}, b = 6$
 $X_1 \longrightarrow X_2 \longrightarrow Y_1 \longrightarrow Y_2 \longrightarrow \overline{Y}$

$$\begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 5 \end{bmatrix} - 8 = 0 + 0 - 8 = -8$$
, Sigmoid(-8) = 0

$$\begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} -7 \\ -7 \end{bmatrix} + 3 = 0 + 0 + 3 = 3$$
, Sigmoid(3) = 1

$$\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} -11 \\ -11 \end{bmatrix}$$
 +6 = 0 + (-11) + 6 = -5
Sigmoid(-5) = 0

X ₁	X ₂	Υ1	Y ₂	Ÿ	XOR
0	0	0	1	0	0
0	1				1
1	0				1
1	1				0

X ₁	X ₂	Υ1	Y ₂	Ÿ	XOR
0	0	0	1	0	0
0	1	0	0	1	1
1	0				1
1	1				0

$$W = \begin{bmatrix} 5 \\ 5 \end{bmatrix}, b = -8$$

$$W = \begin{bmatrix} -7 \\ -7 \end{bmatrix}, b = 3$$

$$X_1$$

$$X_2$$

$$Y_1$$

$$Y_2$$

$$Y_1$$

$$Y_2$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 5 \end{bmatrix} - 8 = 5 + 0 - 8 = -3$$
, Sigmoid(-3) = 0

$$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} -7 \\ -7 \end{bmatrix} + 3 = (-7) + 0 + 3 = -4$$
, Sigmoid(-4) = 0

$$\begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} -11 \\ -11 \end{bmatrix}$$
 +6 = 0 + 0 + 6 = 6
Sigmoid(6) = 1

X ₁	X ₂	Y1	Y ₂	Ÿ	XOR
0	0	0	1	0	0
0	1	0	0	1	1
1	0	0	0	1	1
1	1				0

X ₁	X ₂	Y ₁	Y ₂	Ÿ	XOR
0	0	0	1	0	0
0	1	0	0	1	1
1	0	0	0	1	1
1	1	1	0	0	0

Forward Propagation

Forward Propagation

Can you find another W and b for the XOR?

Recap: Lec 6-1 Multinomial Classification

How can we learn W, and b from training data?

[1,0]

[1,1]

```
# NN
K = tf.sigmoid(tf.matmul(X, W1) + b1)
hypothesis = tf.sigmoid(tf.matmul(K, W2) + b2)
```


- [0,0]
- [0,1]
- [1,0]
- [1,1]

```
# NN
K = tf.sigmoid(tf.matmul(X, W1) + b1)
hypothesis = tf.sigmoid(tf.matmul(K, W2) + b2)
```


[0,0]

[0,1]

[1,0]

[1,1]

How can we learn W1, W2, B1, b2 from training data?

BACKPROPAGATION