Metodi Matematici per l'intelligenza artificiale

Stefano Scrobogna

14 ottobre 2024

Indice

1	I nu	ımeri complessi	1
	1.1	Numeri complessi in forma trigonometrica	4
	1.2	Forma esponenziale di un numero complesso	5
	1.3	Funzioni elementari di variabile complessa	6
		1.3.1 Potenze e radici	6
		1.3.2 Esponenziale complesso	7
		1.3.3 Funzioni trigonometriche complesse	7
		1.3.4 Logaritmo di un numero complesso	7
		1.3.5 Funzioni complesse di variabile reale	8
2	Fun	zioni periodiche	8
	2.1	Richiami di risultati di analisi	13
	2.2	Analisi di Fourier	14
3	Convergenza puntuale delle serie di Fourier		16
	3.1	Risultati preliminari alla dimostrazione del Teorema 3.2	17
	3.2	Dimostrazione del Teorema 3.2	21
4	Reg	olarità di una funzione e decadimento dei coefficienti di Fourier	24
5	Con	vergenza in energia, o in $L^2_{\mathbb{C}}\left(T\right)$	26
6	Bre	vi accenni di analisi funzionale	26
	6.1	Cenni di teoria dell'integrale secondo Lebesgue	26
	6.2	Un Primer in Analisi Funzionale	29
	6.3	Gli spazi di Lebesgue	32
7	La trasformata di Fourier		32
	7.1	Integrali dipendenti da parametri	33
	7.2	Prime proprietà	34
	7.3	Relazioni tra integrali doppi e integrali iterati	37
	7.4	L'anti-trasformata di Fourier	40
		7.4.1 Dimostrazione del Teorema 7.22	42

1 I numeri complessi

I numeri complessi nascono, storicamente, per risolvere equazioni polinomiali del tipo

$$z^2 = -1. (1.1)$$

È risaputo che l'equazione (1.1) non ammette soluzione nel campo dei numeri reali, pertanto i numeri complessi sono introdotti come un'opportuna estensione dei numeri reali nei quali *ogni polinomio ammette delle radici*.

Definizione 1.1. Definiamo con la lettera i un elemento tale che

$$i^2 = -1$$
.

L'elemento i si chiama unità immaginaria.

Osservazione 1.2. Si noti che $(-i)^2 = (-1)^2 i^2 = -1$. Pertanto l'equazione (1.1) ammette due soluzioni, $\pm i$.

Definizione 1.3. Sia i l'unità immaginaria, un *numero complesso* è un'espressione della forma

$$z := x + iy,$$
 $x, y \in \mathbb{R}.$

Denotiamo l'insieme dei numeri complessi con il simbolo $\mathbb C$, tale insieme è definito come

$$\mathbb{C} := \{ z = x + iy \mid x, y \in \mathbb{R} \}.$$

Dato un numero complesso z = x + iy

- x si dice parte reale di <math>z, e lo si denota come x = Rez,
- y si dice parte immaginaria di z, e lo si denota come y = Im z,

I numeri complessi ammettono un'identificazione biunivoca con il piano reale \mathbb{R}^2 , attraverso l'isometria $z = x + iy \mapsto (x, y)$, come si può vedere in Figura 1.

Figura 1: Rappresentazione grafica del piano complesso

Definizione 1.4. Sia $z = x + iy \in \mathbb{C}$ un numero complesso, definiamo con \bar{z} il *complesso coniugato associato a z* dato da

$$\bar{z} = x - iy$$

= Rez – i Imz

Si veda, per riferimento, la Figura 2.

Esercizio 1.5. Dimostrare che per ogni $z, w \in \mathbb{C}$

- 1. $\bar{z}=z$,
- 2. $\overline{z+w} = \overline{z} + \overline{w}$,
- 3. $\overline{zw} = \bar{z} \ \bar{w}$.

Figura 2: Rappresentazione grafica di un numero complesso e del suo coniugato

Esercizio 1.6. Dimostrare le seguenti formule

$$Rez = \frac{z + \bar{z}}{2}, Imz = \frac{z - \bar{z}}{2i}.$$

Definizione 1.7. Dato $z = x + iy \in \mathbb{C}$ definiamo come *modulo di z* la quantità

$$|z| = \sqrt{z\,\bar{z}} = \sqrt{x^2 + y^2}.$$

Si veda per riferimento la Figura 3.

Figura 3: Modulo di un numero complesso

Osservazione 1.8. Notiamo che siccome $x^2 + y^2 \ge 0$ il modulo è sempre una quantità reale, e lo possiamo identificare come la norma euclidea del vettore $(x, y) \in \mathbb{R}^2$.

1.1 Numeri complessi in forma trigonometrica

Definizione 1.9. La funzione atan2, nota anche come arco tangente a due argomenti, è definita come:

$$\operatorname{atan2}(y, x) = \begin{cases} \operatorname{arctan}\left(\frac{y}{x}\right) & \text{se } x > 0, \\ \operatorname{arctan}\left(\frac{y}{x}\right) + \pi & \text{se } y \ge 0 \text{ e } x < 0, \\ \operatorname{arctan}\left(\frac{y}{x}\right) - \pi & \text{se } y < 0 \text{ e } x < 0, \\ \frac{\pi}{2} & \text{se } y > 0 \text{ e } x = 0, \\ -\frac{\pi}{2} & \text{se } y < 0 \text{ e } x = 0, \\ \operatorname{non definito} & \text{se } y = 0 \text{ e } x = 0. \end{cases}$$

Questa funzione restituisce l'angolo nell'intervallo $[-\pi,\pi]$ tra l'asse x positivo e il punto (x,y).

Sia $z = x + iy \in \mathbb{C}$ e consideriamo l'identificazione canonica

$$z\simeq (x,y)\in\mathbb{R}^2\setminus\{0\}.$$

Da ciò che sappiamo dal corso di analisi $2 \exists ! (\rho, \theta) \in (0, \infty) \times [-\pi, \pi)$ tali che

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$$
 (1.2)

si veda la Figura 4. In particolare (1.2) identifica una trasformazione

Figura 4: Forma trigonometrica di un numero complesso

$$P: \quad (0,\infty) \times [-\pi,\pi) \quad \to \quad \mathbb{R}^2 \setminus \{0\}$$

$$(\rho,\theta) \qquad \qquad \mapsto \quad \left(x(\rho,\theta),y(\rho,\theta)\right) = \left(\rho\cos\theta,\rho\sin\theta\right)'$$

Che è facilmente invertibile in quanto da (1.2) deduciamo le seguenti relazioni

$$\rho^2 = x^2 + y^2, \qquad \tan \theta = \frac{y}{x},$$

pertanto la trasformazione inversa

$$P^{-1}: \mathbb{R}^2 \setminus \{0\} \to (0, \infty) \times [-\pi, \pi)$$
$$(x, y) \mapsto (\rho(x, y), \theta(x, y))'$$

viene data dalle seguenti formule esplicite

$$\rho := \sqrt{x^2 + y^2}, \qquad \theta := \operatorname{atan2}(y, x).$$

Figura 5: Dilatazione del Cerchio Unitario complesso

Figura 6: Periodicità delle Potenze di i

Notiamo dunque che possiamo scrivere un numero complesso generico z come

$$z = x + iy = \rho (\cos \theta + i\sin \theta), \tag{1.3}$$

ossia z è la dilatazione di quantità |z| del punto della circonferenza trigonometrica $\cos\theta + i\sin\theta$, si veda la Figura 5.

Definizione 1.10. Dato $z \in \mathbb{C} \setminus \{0\}$ in forma trigonometrica come in (1.3) diciamo che

- $\rho > 0$ è il *modulo* di un numero complesso,
- θ è l'*argomento* di un numero complesso e si può indicare come θ = Arg z.

Osservazione 1.11. Notiamo che l'argomento di un numero complesso è univocamente definito qualora ci si restringa a considerare $\theta \in [-\pi,\pi)$, altrimenti, se permettiamo $\theta \in \mathbb{R}$, notiamo che l'argomento di un numero complesso è definito modulo una rotazione di $2k\pi$, $k \in \mathbb{Z}$.

1.2 Forma esponenziale di un numero complesso

Notiamo le seguenti relazioni

$$i^1 = i$$
, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$, $i^5 = i$, ...

pertanto ottengo (vedi Figura 6) che

$$i^{4k+l} = i^{4k}i^l = (i^4)^k i^l = 1^k i^l = i^l,$$
 $\forall k, l \in \mathbb{Z}.$

Consideriamo dunque ora la seguente espansione di Taylor

$$e^{i\theta} = \sum_{m=0}^{\infty} \frac{(i\theta)^m}{m!} = \sum_{n=0}^{\infty} \frac{(i\theta)^{2n}}{(2n)!} + \sum_{n=0}^{\infty} \frac{(i\theta)^{2n+1}}{(2n+1)!},$$

Figura 7: Esponenziazione intera di un numero complesso

ora notiamo che

$$i^{2n} = (i^2)^n = (-1)^n,$$
 $i^{2n+1} = (-1)^n i,$

pertanto

$$\sum_{n=0}^{\infty} \frac{(\mathrm{i}\theta)^{2n}}{(2n)!} = \sum_{n=0}^{\infty} \frac{(-1)^n \theta^{2n}}{(2n)!} = \cos\theta, \qquad \qquad \sum_{n=0}^{\infty} \frac{(\mathrm{i}\theta)^{2n+1}}{(2n+1)!} = \mathrm{i} \sum_{n=0}^{\infty} \frac{(-1)^n \theta^{2n+1}}{(2n+1)!} = \mathrm{i} \sin\theta.$$

Abbiamo pertanto ottenuto la seguente relazione

$$e^{i\theta} = \cos\theta + i\sin\theta. \tag{1.4}$$

Pertanto ogni elemento della sfera unitaria complessa $\mathbb{S}^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ si può scrivere come $e^{i\theta}$ con $\theta \in [-\pi,\pi)$. Ossia

$$\mathbb{S}^{1} = \left\{ z \in \mathbb{C} \mid z = e^{i\theta}, \ \theta \in [-\pi, \pi) \right\}$$

Notiamo che

$$\overline{e^{\mathrm{i}\theta}} = \overline{\cos\theta + \mathrm{i}\sin\theta} = \cos\theta - \mathrm{i}\sin\theta = \cos(-\theta) + \mathrm{i}\sin(-\theta) = e^{-\mathrm{i}\theta}.$$

Esercizio 1.12. Usando (1.4) dimostrare che $\forall \theta \in \mathbb{R}$

$$\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2},$$
 $\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}.$

Confrontare tale risultato con ciò che si è ottenuto nell'Esercizio 1.6.

1.3 Funzioni elementari di variabile complessa

Denotiamo con $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$.

1.3.1 Potenze e radici

Dato $z \in \mathbb{C}^*$ di ha che $\exists ! (\rho, \theta) \in (0, \infty) \times [-\pi, \pi)$ tale che $z = \rho e^{i\theta}$, pertanto

$$z^n = \rho^n \left(e^{i\theta} \right)^n = \rho^n e^{in\theta}$$

Adesso consideriamo $n \in \mathbb{N}$, dato $z \in \mathbb{C}^*$ vogliamo trovare le radici n-esime di z ossia vogliamo risolvere l'equazione

$$w^n = z$$
.

Pertanto se $z = \rho e^{i\theta}$ e $w = re^{is}$ devo ottenere che

$$\rho = r^n$$
, $e^{i\theta} = e^{ins}$.

Ovviamente $\rho = r^n$ se e solo se $r = \sqrt[n]{\rho}$, mentre per periodicità della funzione esponenziale complessa ho che

$$e^{ins} = e^{i(\theta + 2k\pi)},$$
 $k \in \mathbb{Z},$

e pertanto ottengo

$$s = s_k = \frac{\theta}{n} + \frac{2k}{n} \pi.$$

Notiamo tuttavia che se $k_1 = k_2 \mod n$ allora $e^{is_{k_1}} = e^{is_{k_2}}$, quindi otteniamo che

$$\sqrt[n]{z} = \sqrt[n]{\rho} e^{i\left(\frac{\theta}{n} + \frac{2k}{n}\pi\right)}, \qquad k = 0, 1, \dots, n-1.$$

1.3.2 Esponenziale complesso

Sia $z = x + iy \in \mathbb{C}$, definiamo

$$e^z = e^{x+iy} = \underbrace{e^x}_{>0} \underbrace{e^{iy}}_{\in \mathbb{S}^1} = e^x (\cos y + i \sin y) \in \mathbb{C}^*.$$

1.3.3 Funzioni trigonometriche complesse

Vogliamo avere una definizione di funzioni trigonometriche di variabile complessa tali che, una volta ristrette al campo reale, siano le funzioni trigonometriche conosciute. Una maniera è sfruttare le formule introdotte in Esercizio 1.12, ossia dato $z \in \mathbb{C}$

$$\cos z := \frac{e^{iz} + e^{-iz}}{2},$$
 $\sin z := \frac{e^{iz} - e^{-iz}}{2i}.$ (1.5)

Le formule in (1.5) sono conosciute sotto il nome di *Formule di Eulero* ed è come si definiscono le funzioni seno e coseno nel campo complesso. Ovviamente qualora ci si restringa a $z \in \mathbb{R}$ risulteranno essere le funzioni trigonometriche reali grazie alle relazioni evidenziate in Esercizio 1.12. Analogamente definiamo

$$\cosh z := \frac{e^z + e^{-z}}{2}, \qquad \sinh z := \frac{e^z - e^{-z}}{2}.$$

Osservazione 1.13. Notiamo che se z = ix, $x \in \mathbb{R}$ si ha che $x \mapsto \cos(ix)$ non è limitata, pertanto le funzioni seno e coseno *non sono limitate* come funzioni da \mathbb{C} in \mathbb{C} .

1.3.4 Logaritmo di un numero complesso

Dato $z \in \mathbb{C}^*$ ho che $z = |z| e^{i\operatorname{Arg} z} = |z| e^{i(\operatorname{Arg} z + 2k\pi)}$, $k \in \mathbb{Z}$. Pertanto

$$\log z = \log \left(|z| \, e^{\mathrm{i} \left(\operatorname{Arg} z + 2k\pi \right)} \right) = \log |z| + \mathrm{i} \left(\operatorname{Arg} z + 2k\pi \right), \qquad \forall \, k \in \mathbb{Z}.$$

Pertanto il logaritmo, come la radice, non è univocamente definito nel campo complesso.

Esempio 1.14. Calcoliamo $\log{(-1)}$ nel campo complesso. Sappiamo che $-1=e^{\mathrm{i}\pi}=e^{\mathrm{i}(2k+1)\pi}$, $k\in\mathbb{Z}$. Pertanto

$$\log(-1) = i(2k+1)\pi$$
,

ossia è una quantità puramente immaginaria. Questo non va in contraddizione con quanto appreso in passato in quanto dall'esempio sopra vediamo che il logaritmo di un numero negativo, effettivamente, non è una quantità reale, ma immaginaria pura.

1.3.5 Funzioni complesse di variabile reale

Definizione 1.15. Una funzione $f: I \subset \mathbb{R} \to \mathbb{C}$ è una funzione del tipo

$$f(x) = u(x) + iv(x),$$

con $u, v : I \subset \mathbb{R} \to \mathbb{R}$ funzioni reali di variabile reale.

Si ha che

- f è continua sse u, v sono continue,
- f è derivabile sse u, v sono derivabili e f'(x) = u'(x) + iv(x),
- f è integrabile in [a, b] sse u, v sono integrabili in [a, b] e $\int_a^b f(x) dx = \int_a^b u(x) dx + i \int_a^b v(x) dx$.

2 Funzioni periodiche

Definizione 2.1. Sia $f : \mathbb{R} \to \mathbb{C}$, $p \in [1, \infty)$, diciamo che f è *localmente p-integrabile* se per ogni $K \subseteq \mathbb{R}$ (ossia K compatto incluso in \mathbb{R}) si ha che

$$\int_{\mathcal{K}} \left| f(x) \right|^p \mathrm{d}x < \infty.$$

- Se p = 1 diciamo che f è localmente integrabile,
- Se p = 2 diciamo che f è localmente quadrato-integrabile.

Definizione 2.2 (Funzione periodica). Una funzione $f: \mathbb{R} \to \mathbb{C}$ è *periodica di periodo T* > 0 se

$$f(x+T) = f(x),$$
 $\forall x \in \mathbb{R}.$

La quantità 1/T è detta frequenza della funzione f, mentre $\omega := \frac{2\pi}{T}$ è detta frequenza angolare.

Osservazione 2.3. Una funzione f periodica di periodo T > 0 è univocamente determinata dalla restrizione

$$f|_{[\alpha,\alpha+T)}$$
, $\forall \alpha \in \mathbb{R}$.

Denoteremo con [-T/2, T/2) il *periodo fondamentale*.

Osservazione 2.4. Consideriamo la funzione $f(x) = \sin(2x)$, notiamo che

$$\sin(2x) = \sin(2x + \pi),$$
 $\forall x \in \mathbb{R},$

tuttavia si ha pure che

$$\sin(2x) = \sin(2x + k\pi), \quad \forall x \in \mathbb{R}, \ k \in \mathbb{Z} \setminus \{0\}.$$

Pertanto data una generica funzione g che è T > 0 periodica si ha che g è pure kT, $k \in \mathbb{Z} \setminus \{0\}$ periodica.

Esempio 2.5. 1. $f(x) = \sin(\pi x)$ è periodica di periodo 2,

- 2. $f(x) = \arcsin(\sin x)$ è periodica di periodo 2π ,
- 3. $f(x) = e^{ix}$ è periodica di periodo 2π .

Notazione 2.6. D'ora in poi consideriamo il periodo T > 0 fissato e conseguentemente la frequenza angolare $\omega = \frac{2\pi}{T}$.

Notazione 2.7. Fissato $p \in [1, \infty)$, T > 0 e $\mathbb{X} \in \{\mathbb{R}, \mathbb{C}\}$ denotiamo con

$$L^{p}\left(\left[-\frac{T}{2};\frac{T}{2}\right];\mathbb{X}\right):=L_{\mathbb{X}}^{p}\left(T\right),$$

come l'insieme delle funzioni $f: \mathbb{R} \to \mathbb{X}$, T-periodiche, localmente p-integrabili. L'insieme $L^p_{\mathbb{X}}(T)$ dotato di norma

$$||f||_{L_{X}^{p}(T)} = \left(\int_{-T/2}^{T/2} |f(x)|^{p} dx\right)^{\frac{1}{p}}$$

è uno spazio normato. Talvolta, per semplicità notazionale, utilizzeremo la notazione

$$L^p := L^p_{\mathbb{C}}(T)$$
.

Osservazione 2.8. Notiamo che la norma associata allo spazio $L^2_{\mathbb{C}}(T)$ è canonicamente indotta dal prodotto scalare su $L^2_{\mathbb{C}}(T)$

$$\langle f \mid g \rangle := \int_{-T/2}^{T/2} f(x) \ \overline{g(x)} \ \mathrm{d}x.$$

Definizione 2.9 (Energia di una funzione). Sia $f = u + iv : \mathbb{R} \to \mathbb{C}$, T-periodica, localmente quadrato integrabile, definiamo come *energia di f* la quantità

$$||f||_2^2 = ||f||_{L^2}^2 := \int_{-T/2}^{T/2} |f(x)|^2 dx = \int_{-T/2}^{T/2} (u^2(x) + v^2(x)) dx.$$

Lemma 2.10. *Sia* T > 0, *si* ha che $L^{2}_{\mathbb{C}}(T) \subset L^{1}_{\mathbb{C}}(T)$.

Dimostrazione. È una diretta applicazione della diseguaglianza di Cauchy-Schwarz

$$||f||_{L^{1}_{\mathbb{C}}(T)} = \int_{-T/2}^{T/2} |f(x)| \, \mathrm{d}x = \langle |f| \, |1\rangle \leq ||1||_{L^{2}_{\mathbb{C}}(T)} \, ||f||_{L^{2}_{\mathbb{C}}(T)} = \sqrt{T} \, ||f||_{L^{2}_{\mathbb{C}}(T)}.$$

Definizione 2.11 (Armoniche elementari). Consideriamo le seguenti tre famiglie di funzioni:

$$\begin{split} \mathcal{A}_{\mathbb{R}} &:= \left\{ \frac{a_0}{2}, \ a_n \cos\left(n\omega x\right), \ b_n \sin\left(n\omega x\right) \ \middle| \ n \in \mathbb{N} \setminus \{0\}, \ a_0, a_n, b_n \in \mathbb{R} \right\}, \\ \mathcal{A}_{\mathbb{C}} &:= \left\{ c_n e^{\mathrm{i}n\omega x} \ \middle| \ n \in \mathbb{Z}, \ c_n \in \mathbb{C} \right\}, \\ \tilde{\mathcal{A}}_{\mathbb{R}} &:= \left\{ A_0, \ A_n \cos\left(n\omega x + \varphi_n\right), \ A_n \sin\left(n\omega x + \varphi_n\right) \ \middle| \ n \in \mathbb{N} \setminus \{0\}, \ A_0 \in \mathbb{R}, A_n \geq 0, \varphi_n \in -\pi, \pi \right\}, \end{split}$$

esse sono dette *armoniche elementari*. Le famiglie $\mathcal{A}_{\mathbb{R}}$ e $\tilde{\mathcal{A}}_{\mathbb{R}}$ sono composte da funzioni reali di variabile reale, pertanto sono dette *armoniche reali*, mentre la famiglia $\mathcal{A}_{\mathcal{C}}$ è composta da funzioni complesse di variabile reale, e pertanto verrà spesso indicata come *armoniche complesse*.

Si considerino ora i seguenti tre spazi vettoriali

$$\langle \mathcal{A}_{\mathbb{R}} \rangle$$
, $\langle \tilde{\mathcal{A}}_{\mathbb{R}} \rangle$, $\mathcal{B}_{\mathbb{C}} := \left\{ c_0 + \sum_{n=1}^N c_n e^{\mathrm{i}n\omega x} + \bar{c}_n e^{-\mathrm{i}n\omega x} \mid c_0 \in \mathbb{R}, \ c_n \in \mathbb{C}, \ N \in \mathbb{N} \right\}$. (2.1)

Osservazione 2.12. Notiamo che l'insieme $\mathcal{B}_{\mathbb{C}}$ è l'insieme delle combinazioni lineari di armoniche complesse (vedi Definizione 2.11) nei quali $c_0 \in \mathbb{R}$ e $\bar{c}_n = c_{-n}$.

Notiamo che gli spazi vettoriali in (2.1) sono costruiti a partire da elementi di basi che sono esattamente le armoniche elementari definite in Definizioni 2.11. Abbiamo il seguente risultato

Lemma 2.13. Ogni elemento appartenente ad uno degli spazi vettoriali in (2.1) è una funzione reale di variabile reale.

Dimostrazione. È immediato per $\langle \mathcal{A}_{\mathbb{R}} \rangle$ e $\langle \tilde{\mathcal{A}}_{\mathbb{R}} \rangle$ in quanto sono combinazioni lineari finite di funzioni reali di variabile reale. Notiamo ora che

$$c_n e^{\mathrm{i} n \omega x} + \bar{c}_n e^{-\mathrm{i} n \omega x} = c_n e^{\mathrm{i} n \omega x} + \overline{c_n e^{\mathrm{i} n \omega x}} = 2 \mathrm{Re} \left(c_n e^{\mathrm{i} n \omega x} \right),$$

che è ovviamente una funzione reale di variabile reale, pertanto ogni elemento di $\mathcal{B}_{\mathbb{C}}$, che dunque si può scrivere nella forma

$$c_0 + \sum_{n=1}^{N} 2 \operatorname{Re} \left(c_n e^{\mathrm{i} n \omega x} \right),$$

è una funzione reale di variabile reale.

Osservazione 2.14. L'insieme $\mathcal{B}_{\mathbb{C}}$ definito in Eq. (2.1) è 'insieme di funzioni reali di variabile reale che si possono generare a partire dalla famiglia di armoniche elementari $\mathcal{A}_{\mathbb{C}}$.

Proposizione 2.15. *Si ha che* $\langle A_{\mathbb{R}} \rangle = \langle \tilde{A}_{\mathbb{R}} \rangle = \mathcal{B}_{\mathbb{C}}$.

Dimostrazione. Proviamo dapprincipio che $\langle A_{\mathbb{R}} \rangle = \mathcal{B}_{\mathbb{C}}$. Innanzitutto basta definire

$$\frac{a_0}{2} = c_0, (2.2)$$

per identificare le componenti costanti. Usiamo le formule di Eulero date in Eq. (1.5) ed otteniamo che

$$a_n\cos(n\omega x) + b_n\sin(n\omega x) = a_n\frac{e^{\mathrm{i}n\omega x} + e^{-\mathrm{i}n\omega x}}{2} + b_n\frac{e^{\mathrm{i}n\omega x} - e^{-\mathrm{i}n\omega x}}{2\mathrm{i}} = \underbrace{\frac{a_n - \mathrm{i}b_n}{2}}_{:=c_n}e^{\mathrm{i}n\omega x} + \underbrace{\frac{a_n + \mathrm{i}b_n}{2}}_{:=c_{-n}}e^{\mathrm{i}n\omega x},$$

ed ovviamente abbiamo che $c_{-n} = \bar{c}_n$, pertanto $\langle \mathcal{A}_{\mathbb{R}} \rangle \subset \mathcal{B}_{\mathbb{C}}$. Per dimostrare $\mathcal{B}_{\mathbb{C}} \subset \langle \mathcal{A}_{\mathbb{R}} \rangle$ basta invertire il sistema lineare

$$\begin{cases}
c_n = \frac{a_n - ib_n}{2} \\
c_{-n} = \frac{a_n + ib_n}{2}
\end{cases}
\Leftrightarrow
\begin{bmatrix}
c_n \\
c_{-n}
\end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -i \\
1 & i \end{bmatrix} \begin{bmatrix} a_n \\
b_n \end{bmatrix}$$
(2.3)

ossia

$$\begin{cases} a_n = c_n + c_{-n} \\ b_n = i(c_n - c_{-n}) \end{cases}$$
 (2.4)

pertanto otteniamo che

$$c_n e^{\mathrm{i}n\omega x} + c_{-n} e^{-\mathrm{i}n\omega x} = \underbrace{(c_n + c_{-n})}_{=2\mathrm{Re}c_n \in \mathbb{R}} \cos(n\omega x) + \underbrace{\mathrm{i}(c_n - c_{-n})}_{=-2\mathrm{Im}c_n \in \mathbb{R}} \sin(n\omega x),$$

e quindi $\mathcal{B}_{\mathbb{C}} \subset \langle \mathcal{A}_{\mathbb{R}} \rangle$.

Dimostriamo ora che $\langle A_{\mathbb{R}} \rangle = \langle \tilde{A}_{\mathbb{R}} \rangle$. Usando le formule di prostaferesi ottengo che

$$A_n \cos (n\omega x + \varphi_n) = \underbrace{A_n \cos \varphi_n}_{:=a_n} \cos (n\omega x) \underbrace{-A_n \sin \varphi_n}_{:=b_n} \sin (n\omega x),$$

pertanto $\langle \tilde{\mathcal{A}}_{\mathbb{R}} \rangle \subset \langle \mathcal{A}_{\mathbb{R}} \rangle$. Possiamo dunque invertire la trasformazione definita sopra

$$\begin{cases} a_n = A_n \cos \varphi_n \\ b_n = -A_n \sin \varphi_n \end{cases}$$

ottenendo

$$\begin{cases} A_n = \sqrt{a_n^2 + b_n^2} \\ \varphi_n = -\operatorname{atan2}(b_n, a_n) \end{cases}$$

il quale implica $\langle \mathcal{A}_{\mathbb{R}} \rangle \subset \langle \tilde{\mathcal{A}}_{\mathbb{R}} \rangle$, concludendo.

Definizione 2.16 (Polinomio trigonometrico). Dato $N \in \mathbb{N}$ definiamo come *Polinomio Trigonometrico* un'espressione della forma

$$P_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} [a_n \cos(n\omega x) + b_n \sin(n\omega x)],$$

$$Q_N(x) = \sum_{n=-N}^{N} c_n e^{in\omega x}.$$

Osservazione 2.17. Alternativamente, un polinomio trigonometrico è una combinazione lineare finita di armoniche elementari.

Lemma 2.18 (Energia di un polinomio trigonometrico). Si hanno le seguenti identità

$$\|P_N\|_{L^2}^2 = \frac{T}{2} \left[\frac{a_0^2}{2} + \sum_{n=1}^N \left(a_n^2 + b_n^2 \right) \right], \tag{2.5}$$

$$\|Q_N\|_{L^2}^2 = T \sum_{n=-N}^N |c_n|^2.$$
 (2.6)

Dimostrazione. Iniziamo dimostrando (2.6). Si ha che

$$\|Q_N\|_{L^2}^2 = \int_{-T/2}^{T/2} \sum_{n=-N}^{N} c_n e^{in\omega x} \sum_{m=-N}^{N} \bar{c}_m e^{-im\omega x} dx$$
$$= \sum_{n,m=-N}^{N} c_n \bar{c}_m \int_{-T/2}^{T/2} e^{i(n-m)\omega x} dx.$$

Se $n \neq m$ ho che

$$\int_{-T/2}^{T/2} e^{\mathrm{i}(n-m)\omega x} \, \mathrm{d}x = \frac{e^{\mathrm{i}(n-m)\omega x}}{\mathrm{i}(n-m)\omega x} \bigg|_{-T/2}^{T/2} = \frac{e^{\mathrm{i}(n-m)\pi} - e^{-\mathrm{i}(n-m)\pi}}{\mathrm{i}(n-m)\omega x},$$

tuttavia siccome $e^{\pm i\pi} = -1$ ottengo

$$\int_{-T/2}^{T/2} e^{\mathrm{i}(n-m)\omega x} \, \mathrm{d}x = T \, \delta_{nm},\tag{2.7}$$

dove δ_{nm} è la delta di Kronecker. Pertanto

$$\|Q_N\|_{L^2}^2 = \sum_{n,m=-N}^N c_n \bar{c}_m T \ \delta_{nm} = T \sum_{n=-N}^N |c_n|^2.$$

Per dimostrare (2.5) usiamo Proposizione 2.15 ed in particolare otteniamo che

$$P_N(x) = \sum_{n=-N}^{N} c_n e^{in\omega x},$$

doev i coefficienti c_n soddisfano Eq. (2.2) e (2.3). Applichiamo (2.6) ed ottengo

$$||P_N||_{L^2}^2 = T \sum_{n=-N}^N |c_n|^2 = \frac{T}{4} \left[\sum_{n=1}^N |a_n - ib_n|^2 + a_0^2 + \sum_{n=1}^n |a_n + ib_n|^2 \right] = \frac{T}{2} \left[\frac{a_0^2}{2} + \sum_{n=1}^N (a_n^2 + b_n^2) \right].$$

Esercizio 2.19. Utilizzare (2.7) per dedurre che la famiglia di funzioni

$$\left(\frac{e^{\mathrm{i}n\omega x}}{\sqrt{T}}\right)_{n\in\mathbb{Z}}$$
,

è ortonormale rispetto a (• | •).

Figura 8: Esempio di convergenza puntuale ma non uniforme

Definizione 2.20 (Serie trigonometrica). Si dice *serie trigonometrica* (o *di Fourier*) un'espressione della forma

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(n\omega x\right) + b_n \sin\left(n\omega x\right) \right), \qquad a_0, a_n, b_n \in \mathbb{R}, \tag{2.8}$$

$$\sum_{n=-\infty}^{+\infty} c_n e^{\mathrm{i}n\omega x}, \qquad c_n \in \mathbb{C}. \tag{2.9}$$

Definizione 2.21 (Ridotta N-esima). Sia $N \in \mathbb{N}$, denotiamo come ridotta N-esima di (2.8) il polinomio trigonometrico

$$S_N(x) := \frac{a_0}{2} + \sum_{n=1}^{N} \left(a_n \cos(n\omega x) + b_n \sin(n\omega x) \right),$$

mentre la ridotta N-esima di (2.9) è il polinomio trigonometrico

$$S_N(x) := \sum_{n=-N}^N c_n e^{\mathrm{i}n\omega x}.$$

Definizione 2.22 (Convergenza puntuale e uniforme). Sia $f \in L^2_{\mathbb{C}}(T)$, diciamo che una serie trigonometrica come in Eq. (2.8) e (2.9)

• Converge puntualmente a f in \mathbb{R} se

$$\lim_{N \to \infty} S_N(x) = f(x), \qquad \forall x \in \mathbb{R},$$

• Converge uniformemente a f in \mathbb{R} se

$$\lim_{N\to\infty}\sup_{x\in\mathbb{R}}\left(S_{N}\left(x\right)-f\left(x\right)\right)=0.$$

Osservazione 2.23. Se una successione converge uniformemente ad una funzione target allora converge pure puntualmente, mente non è vero il contrario, si veda la Figura 8. Se una successione converge uniformemente ad una funzione target allora i grafici delle funzioni della successione dovranno stare in un intorno tubolare del grafico della funzione target, come in Figura 9.

Figura 9: Esempio di convergenza uniforme

2.1 Richiami di risultati di analisi

Notazione 2.24. Dati $X \subset \mathbb{R}$ e $Y = \mathbb{R}$, \mathbb{C} denotiamo con $\mathcal{C}^k(X;Y)$ l'insieme delle funzioni k volte derivabili con continuità in X a valori in Y. L'insieme $\mathcal{C}^0 = \mathcal{C}$ denota lo spazio delle funzioni continue. Se X = Y scriveremo $\mathcal{C}^k(X)$.

Teorema 2.25 (M-Test di Weierstrass). Sia $\{f_n\}$ una successione di funzioni definite su un insieme $E \subset \mathbb{R}$ e sia M_n una successione di numeri reali positivi. Se per ogni n si ha

1.
$$|f_n(x)| \leq M_n$$
,

$$2. \sum_{n} M_n < \infty,$$

allora la serie di funzioni $\sum_n f_n$ converge uniformemente su E.

Esercizio 2.26. Quale ipotesi del Teorema 2.25 fallisce per la successione $(x^n)_{n\geq 1}$ in [0,1] come illustrato in Figura 8?

Lemma 2.27 (Continuità del limite). $Sia(f_n)_{n\in\mathbb{N}} \subset \mathcal{C}(E;\mathbb{C}), E \subset \mathbb{R}. Se \sum_{n\in\mathbb{N}} f_n \text{ converge uniformemente a } f$ allora $f \in \mathcal{C}(E;\mathbb{C})$.

Lemma 2.28 (Integrazione termine a termine). $Sia\ f_n:[a,b]\subset\mathbb{R}\to\mathbb{C}$, integrabile in [a,b], $\forall n.\ Se\ \sum_n f_n$ converge uniformemente $a\ f$ in [a,b] allora f è integrabile in [a,b] e

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \sum_{n} f_{n}(x) dx = \sum_{n} \int_{a}^{b} f_{n}(x) dx.$$

Lemma 2.29. $Sia(f_n)_{n\in\mathbb{N}}\subset \mathcal{C}^1([a,b];\mathbb{C})$, $se\sum_n f_n$ converge puntualmente $a\ f\ e\sum_n f'_n$ converge uniformemente $a\ g\ in\ [a,b]\ allora\ f\in \mathcal{C}^1([a,b];\mathbb{C})$ $e\ si\ ha\ f'=g$, ossia

$$\frac{\mathrm{d}}{\mathrm{d}x}\sum_{n}f_{n}=\sum_{n}\frac{\mathrm{d}}{\mathrm{d}x}f_{n}.$$

Esempio 2.30. Provare che la serie

$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^4},\tag{2.10}$$

converge uniformemente in $\mathbb R$ e stabilire la regolarità della funzione limite.

Definisco $M_n := n^{-4}$ e posso applicare il Teorema 2.25 ottenendo la convergenza uniforme di (2.10) and una funzione target che denotiamo con f. Le successioni

$$\sum_{n=1}^{\infty} \frac{\cos(nx)}{n^3}, \qquad -\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2},$$

che sono ottenute derivando termine a termine (2.10), convergono uniformemente grazie al Teorema 2.25. Applico i Lemmi 2.27 e 2.29 ed ottengo che $f \in C^2(\mathbb{R})$.

Corollario 2.31. 1. Se $\frac{|a_0|}{2} + \sum_{n=1}^{\infty} (|a_n| + |b_n|) < \infty$ allora la serie trigonomentrica (2.8) converge uniformemente in \mathbb{R} ,

2. $Se \sum_{n=-\infty}^{\infty} |c_n| < \infty$ allora la serie trigonomentrica (2.9) converge uniformemente in \mathbb{R} .

Dimostrazione. È un'applicazione diretta del Teorema 2.25.

2.2 Analisi di Fourier

Una domanda che sorge spontaneamente è la seguente: esiste una relazione tra i coefficienti di una determinata serie di Fourier e la funzione target alla quale eventualmente essa converge? Si si, di che natura è tale relazione? Tale domanda viene risposta dalla seguente Proposizione:

Proposizione 2.32. i Consideriamo una serie trigonometrica come in Eq. (2.9) e supponiamo che essa converga uniformemente ad una funzione target f, allora si ha che

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} f(x) e^{-in\omega x} dx.$$
 (2.11)

ii Consideriamo una serie trigonometrica come in Eq. (2.8) e supponiamo che essa converga uniformemente ad una funzione f, allora si ha che

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \cos(n\omega x) dx, \ n \ge 0, \qquad b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \sin(n\omega x) dx, \ n \ge 1.$$
 (2.12)

Dimostrazione. i Siccome supponiamo una convergenza uniforme della serie (2.9) ad f ho che, puntualmente

$$f(x) = \sum_{n \in \mathbb{Z}} c_n e^{\mathrm{i}n\omega x}.$$

fissiamo ora $k \in \mathbb{Z}$ e calcoliamo

$$\left\langle f \mid e^{\mathrm{i}k\omega \bullet} \right\rangle = \int_{-T/2}^{T/2} f(x) \, \overline{e^{\mathrm{i}k\omega x}} \mathrm{d}x = \int_{-T/2}^{T/2} \sum_{n \in \mathbb{Z}} c_n e^{\mathrm{i}(n-k)\omega x} \mathrm{d}x.$$
 (2.13)

Applico il Lemma 2.28 ed ottengo

$$\int_{-T/2}^{T/2} \sum_{n \in \mathbb{Z}} c_n e^{\mathrm{i}(n-k)\omega x} \mathrm{d}x = \sum_{n \in \mathbb{Z}} c_n \int_{-T/2}^{T/2} e^{\mathrm{i}(n-k)\omega x} \mathrm{d}x,$$

applico ora (2.7) e deduco

$$\int_{-T/2}^{T/2} \sum_{n \in \mathbb{Z}} c_n e^{i(n-k)\omega x} dx = \sum_{n \in \mathbb{Z}} c_n \ T\delta_{nk} = Tc_k.$$
 (2.14)

Inserisco (2.14) in (2.13) e ricaviamo

$$c_k = \frac{1}{T} \int_{-T/2}^{T/2} f(x) e^{-ik\omega x} dx.$$

ii Le relazioni in Eq. (2.12) sono una conseguenza diretta di (2.11) grazie alle relazioni fornite in Eq. (2.4). Infatti usando le formule di Eulero (1.5) nel caso in cui $n \ge 1$

$$a_n = c_n + c_{-n} = \frac{1}{T} \int_{-T/2}^{T/2} f(x) \left(e^{-in\omega x} + e^{in\omega x} \right) dx = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \cos(n\omega x) dx.$$

Similmente si deduce la relazione per b_n ed a_0 .

Definizione 2.33 (Coefficienti di Fourier). Le quantità $(c_n)_{n\in\mathbb{Z}}$ e a_0 , $(a_n,b_n)_{n\geq 1}$ definite in Eq. (2.11) e (2.12) sono detti, rispettivamente, *coefficienti di Fourier* della serie in Eq. (2.8) e (2.9).

Il procedimento che associa ad una funzione f una serie trigonometrica (della forma in Eq. (2.8) e (2.9), indipendentemente) è detto *Analisi di Fourier*, ossia

$$f(x) \mapsto \sum_{n \in \mathbb{Z}} c_n e^{\mathrm{i}n\omega x}.$$

Le Proposizione 2.32 ci indica una maniera naturale per definire una serie trigonometrica a partire da una determinata funzione, in particolare abbiamo il seguente risultato

Lemma 2.34. $Sia \ \mathbb{X} \in \{\mathbb{R}, \mathbb{C}\}\ e\ f \in L^1_{\mathbb{X}}(T)$ allora i coefficienti di Fourier in Eq. (2.11) e (2.12) sono ben definiti, pertanto è possibile associare canonicamente una serie trigonometrica alla funzione f.

Dimostrazione. Supponiamo $\mathbb{X}=\mathbb{C}$ e dimostriamo il Lemma 2.34 in questo caso. Sia c_n come in Eq. (2.11), si ha dunque, visto che $f\in L^1_{\mathbb{C}}(T)$, che

$$|c_n| \le \frac{1}{T} \int_{-T/2}^{T/2} |f(x)| \, \mathrm{d}x < \infty,$$

e quindi i coefficienti di Fourier sono be definiti.

Osservazione 2.35. Notiamo che Proposizione 2.32 e Lemma 2.34 sono **fondamentalmente** diversi. In Proposizione 2.32 si assume la convergenza della serie di Fourier alla funzione target e si deduce una relazione dei coefficienti, mentre nel Lemma 2.34 si parte da f e si deriva una serie trigonometrica, la serie dedotta dal procedimento descritto in Lemma 2.34 $non \ \hat{e} \ tuttavia \ detto \ che \ converga$, tantomeno alla funzione f.

Definizione 2.36 (Spettro di una funzione). Sia $f \in L^1_{\mathbb{X}}(\mathbb{T})$

- 1. Se $\mathbb{X} = \mathbb{C}$ allora l'insieme $(c_n)_{n \in \mathbb{Z}} = (c_n(f))_{n \in \mathbb{Z}}$ definito grazie alla relazione in Eq. (2.11) è detto *spettro di f*,
- 2. Se $\mathbb{X} = \mathbb{R}$ allora l'insieme $\{a_0, (a_n, b_n)_{n \geq 1}\} = \{a_0, (f)(a_n(f), b_n(f))_{n \geq 1}\}$ definito grazie alla relazione in Eq. (2.12) è detto *spettro di f*.

Il processo di Analisi di Fourier consiste nel definire una serie trigonometrica data una funzione, ossia

$$f \mapsto \sum_{n \in \mathbb{Z}} c_n(f) e^{\mathrm{i}n\omega x},$$

mentre il concetto di **Sintesi di Fourier** è il procedimento inverso. Partendo da una successione di valori complessi $c = (c_n)_n : \mathbb{Z} \to \mathbb{C}$ si definisce canonicamente, attaverso la relazione in Eq. (2.9), una serie trigonometrica, e si studia la convergenza di tale serie

$$(c_n)_{n\in\mathbb{Z}}\mapsto\sum_{n\in\mathbb{Z}}c_ne^{\mathrm{i}n\omega x}\stackrel{?}{\to}f,$$

osiia ci si chiede se esiste una funzione f per la quale la successione c sia lo spettro.

Ovviamente il processo di analisi e di sintesi non è detto che sia commutativo, uno degli obbiettivi principali del presente corso è quello di identificare condizioni necessarie e/o sufficienti affinché, data una funzione $f \in L^1_{\mathbb{X}}(T)$, sia possibile ricostruire f dalla sua serie di Fourier, ossia il procedimento di sintesi ridia la funzione f di partenza.

Esempio 2.37. Consideriamo la funzione

$$f(x) = \begin{cases} 1 & \text{se } x \in [0, \pi], \\ -1 & \text{se } x \in (-\pi, 0). \end{cases}$$

Ovviamente $f \in L^1_{\mathbb{R}}(2\pi)$ e pertanto possiamo calcolarne i coefficienti di Fourier. È immediato che $a_n(f) \equiv 0 \ \forall n \geq 0$, mentre i coefficienti $b_n, \ n \geq 1$ sono esplicitamente calcolabili (per casa). Abbiamo dunque ottenuto la serie trigonometrica

$$\mathfrak{S}(x) = \sum_{n=1}^{\infty} b_n \sin(n\omega x). \tag{2.15}$$

Notiamo che non abbiamo *nessuna informazione* riguardo alla convergenza della serie in (2.15) per $x \neq 0$, tuttavia non ne abbiamo bisogno in questo contesto, infatti otteniamo immediatamente che

$$\mathfrak{S}(0) = 0 \neq 1 = f(0)$$
,

pertanto abbiamo un esempio canonico di come il processo di analisi e sintesi di Fourier possano generare una funzione diversa da quella di partenza.

Esempio 2.38. Determinare le serie di Fourier delle seguenti funzioni definite periodicamente per $x \in [-\pi, \pi]$:

- 1. $f(x) = \chi_{\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]}(x)$,
- 2. f(x) = x,
- 3. f(x) = |x|,
- 4. $f(x) = x^2$.

3 Convergenza puntuale delle serie di Fourier

Domanda. Sia $f \in L^1_{\mathbb{C}}(T)$, fissiamo x_0 in \mathbb{R} , sia $(c_n(f))_{n \in \mathbb{Z}}$ come in Eq. (2.11). Definiamo

$$S_N(x) = \sum_{n=-N}^{N} c_n(f) e^{in\omega x},$$

quando si ha che

$$\lim_{N} S_{N}(x_{0}) = f(x_{0})?$$

Abbiamo visto che l'esempio 2.37 da un esempio canonico, triviale di una successione di Fourier che non converge puntualmente in zero a f (0). Possiamo tuttavia costruire controesempi più complessi come il seguente

Teorema 3.1 (Du Bois-Reymond 1813). *Esiste una funzione* $f \in \mathcal{C}(\mathbb{T};\mathbb{R})$ *tale che*

$$\sup_{N} S_{N}(0) = \sup_{N} \sum_{n=-N}^{N} c_{n}(f) e^{in\omega x} \bigg|_{x=0} = \infty$$

Posponiamo la dimostrazione del Teorema 3.1 alla fine della sezione, essendo tecnicamente un po' più delicata.

Il risultato principale che dimostreremo nella presente sezione è il teorema di Dirichelet-Weierstrass, che stabilisce una condizione necessaria e sufficiente per la convergenza d'una serie di Fourier ad una funzione target.

Teorema 3.2 (Dirichelet-Weierstrass). $Sia\ f \in L^1_{\mathbb{C}}(T)$, $e\ sia\ x_0 \in \mathbb{R}$. $Supponiamo\ che\ esistono\ finiti\ i\ 4\ limiti\ unilaterali$

$$\lim_{x \to x_0^{\pm}} f(x) =: f\left(x_0^{\pm}\right), \qquad \lim_{x \to x_0^{\pm}} \frac{f(x) - f\left(x_0^{\pm}\right)}{x - x_0} =: f'\left(x_0^{\pm}\right), \tag{3.1}$$

allora esiste il limite

$$\lim_{N \to \infty} S_N(x_0) = \frac{f(x_0^+) + f(x_0^-)}{2}.$$
 (3.2)

Osservazione 3.3. 1. Si noti come i limiti in Eq. (3.1) sono di tipo unilaterale, dunque non si richiede nemmeno la continuità della funzione di partenza in x_0 , tuttavia si richiede derivabilità unilaterale.

- 2. L'esempio 2.37 sfrutta esattamente la mancanza di continuità della funzione in zero e vediamo che il limite è dunque coerente con l'enunciato del Teorema 3.2.
- 3. IL Teorema 3.2 ci assicura dunque che se consideriamo una funzione $f \in \mathcal{C}^1([-T/2, T/2); \mathbb{C})$ allora $S_N(x) \xrightarrow{N \to \infty} f(x)$ per ogni $x \in [-T/2, T/2)$.

3.1 Risultati preliminari alla dimostrazione del Teorema 3.2

Per dimostrare il Teorema 3.2 avremo bisogno di alcuni risultati preliminari

Lemma 3.4 (Disuguaglianza di Bessel). Sia $f \in L^2_{\mathbb{C}}(T)$, si ha che

$$\sum_{n \in \mathbb{Z}} |c_n|^2 \le \frac{1}{T} \|f\|_2^2 = \frac{1}{T} \int_{-T/2}^{T/2} |f(x)|^2 dx.$$
 (3.3)

Dimostrazione. Sia $S_N(x) = \sum_{n=-N}^N c_n e^{in\omega x}$. Calcolo

$$0 \le \|f - S_N\|_2^2 = \int_{-T/2}^{T/2} |f(x) - S_N(x)|^2 dx$$

$$= \int_{-T/2}^{T/2} (f(x) - S_N(x)) \overline{(f(x) - S_N(x))} dx$$

$$= \|f\|_2^2 + \|S_N\|_2^2 - \int_{-T/2}^{T/2} f(x) \overline{S_N(x)} dx - \int_{-T/2}^{T/2} S_N(x) \overline{f(x)} dx.$$
(3.4)

Notiamo che

$$\int_{-T/2}^{T/2} f(x) \, \overline{S_N(x)} \, \mathrm{d}x = \sum_{n=-N}^{N} \bar{c}_n \underbrace{\int_{-T/2}^{T/2} f(x) \, e^{-\mathrm{i}n\omega x} \, \mathrm{d}x}_{=Tc_n} = T \sum_{n=-N}^{N} |c_n|^2,$$

e similmente si ottiene che

$$\int_{-T/2}^{T/2} S_N(x) \overline{f(x)} dx = T \sum_{n=-N}^{N} |c_n|^2,$$

inoltre usando Eq. (2.6) otteniamo che $\|S_N\|_2^2 = T\sum_{n=-N}^N |c_n|^2$, sostituendo in Eq. (3.4) otteniamo

$$\sum_{n=-N}^{N} |c_n|^2 \le \frac{1}{T} \|f\|_2^2. \tag{3.5}$$

Notiamo che il lato destro di (3.5) è indipendente da N, pertanto possiamo passare al limite per $N \to \infty$ nel termine sx di (3.5) concludendo la dimostrazione.

Osservazione 3.5. Notiamo che se $f \in L^2_{\mathbb{R}}(T)$ allora usando Eq. (2.3), otteniamo che $|c_n|^2 = \frac{a_n^2 + b_n^2}{4}$, pertanto (3.3) diventa

$$\frac{1}{2} \left(\frac{a_0^2}{2} + \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) \right) \le \frac{1}{T} \| f \|_2^2.$$

Corollario 3.6 (Lemma di Riemann-Lebesgue in L^2). Sia $f \in L^2_{\mathbb{C}}(T)$ e sia $c_n = c_n(f)$ come in Eq. (2.11), allora

$$c_n(f) \xrightarrow{|n| \to \infty} 0.$$

Dimostrazione. La dimostrazione è un'immediata conseguenza di (3.3).

Definizione 3.7 (Nucleo di Dirichelet). Sia T > 0, $\omega = \frac{2\pi}{T}$ definiamo il *nucleo di Dirichelet* di ordine $N \in \mathbb{N}$ la funzione

$$D_N(x) := \frac{1}{T} \sum_{|n| < N} e^{\mathrm{i}n\omega x}.$$

Lemma 3.8 (Prime proprietà del nucleo di Dirichelet). Si fissi T > 0 e $N \in \mathbb{N}$. Si ha che

- 1. $D_N
 ilde{e} T$ -periodica,
- 2. la funzione D_N è una funzione pari.

Dimostrazione. 1. $D_N(x+T) = T^{-1} \sum_{|n| \le N} e^{in\frac{2\pi}{T}(x+T)} = T^{-1} \sum_{|n| \le N} e^{i(n\omega x + 2\pi)} = D_N(x),$

2.
$$D_N(-x) = T^{-1} \sum_{|n| \le N} e^{in\omega(-x)} = T^{-1} \sum_{|-n| \le N} e^{i(-n)\omega x} = D_N(x)$$
.

Definizione 3.9 (Convoluzione di funzioni periodiche). Sia T > 0, $f, g \in L^1_{\mathbb{C}}(T)$. Definiamo con *convoluzione* (*periodica*) *di f e g* la funzione

$$f \star g(x) = \int_{-T/2}^{T/2} f(x - y) g(y) dy.$$

Lemma 3.10 (Proprietà fondamentali della convoluzione). Sia T > 0 fissato. Si ha che

- 1. Se $f, g \in L^1_{\mathbb{C}}(T)$ allora $f \star g \in L^1_{\mathbb{C}}(T)$,
- 2. $f \star g = g \star f$,
- 3. $f \in L^1_{\mathbb{C}}(T)$ $e g \in \mathcal{C}^k\left(\left[-\frac{T}{2}, \frac{T}{2}\right]; \mathbb{C}\right)$ allora $f \star g \in \mathcal{C}^k\left(\left[-\frac{T}{2}, \frac{T}{2}\right]; \mathbb{C}\right)$.

Definizione 3.11 (Funzione caratteristica). Sia $A \subset B$ un insieme, denotiamo con $\mathbb{I}_A : B \to \{0,1\}$ la *funzione caratteristica di A* definita come

$$\mathbb{1}_A(x) = \begin{cases} 1 & \text{se } x \in A \\ 0 & \text{se } x \notin A \end{cases}.$$

Definizione 3.12 (Funzione semplice). Si dice funzione semplice o funzione a scalini una funzione del tipo

$$\varphi(x) = \sum_{i=1}^{L} \alpha_{i} \mathbb{1}_{\left[a_{i},b_{i}\right)}(x),$$

dove $L \in \mathbb{N}$, $\alpha_j \in \mathbb{C}$ e $[a_j, b_j]$ disgiunti. Definiamo l'insieme delle funzione semplici periodiche con

$$FS_{\chi}(T) = \left\{ \varphi : \left[-\frac{T}{2}, \frac{T}{2} \right] \to \mathbb{X} \mid \varphi \text{ funzione semplice, } T\text{-periodica} \right\},$$

Osservazione 3.13. Una funzione semplice è una funzione costante a tratti.

Notazione 3.14. Sia $Y \subset X$ con (X, d_X) spazio metrico. Denotiamo con \overline{Y}^X la chiusura di Y nella topologia di X, ossia

$$\overline{Y}^X = \left\{ \bar{x} \in X \mid \exists (y_n)_{n \in \mathbb{N}} \subset Y \text{ tale che } \mathsf{d}_X (\bar{x}, y_n) \xrightarrow{n \to \infty} 0 \right\}.$$

Il seguente risultato può essere utilizzato come definizione alternativa di funzioni L^p integrabili, noi lo enunciamo solamente.

Proposizione 3.15. *Sia* T > 0, $p \in [1, \infty)$, $X \in \{\mathbb{R}, \mathbb{C}\}$ *allora*

$$L_{\mathbb{X}}^{p}(T) = \overline{\mathrm{FS}_{\mathbb{X}}(T)}^{L_{\mathbb{X}}^{p}(T)}.$$

Osservazione 3.16. L'enunciato della Proposizione 3.15 ci dice che l'insieme delle funzioni semplici è *denso* nello spazio normato $L^p_{\chi}(T)$, ossia

$$\forall f \in L^p, \ \forall \delta > 0 \ \exists \varphi \in FS : \ \left\| f - \varphi \right\|_{L^p} < \delta. \tag{3.6}$$

Definizione 3.17. Definiamo con $\ell^{\infty} = \ell^{\infty}(\mathbb{Z}; \mathbb{C})$ come lo spazio delle successioni $n \in \mathbb{Z} \mapsto z_n \in \mathbb{C}$ tali che

$$||z||_{\ell^{\infty}} = \sup_{n \in \mathbb{Z}} |z_n| < \infty.$$

Definizione 3.18 (Continuità di una funzione tra spazi metrici). Dati due spazi metrici (X, d_X) , (Y, d_Y) ed una funzione $F: X \to Y$ e $x_0 \in X$ diciamo che F è continua in x_0 se

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in X : \ d_X(x, x_0) < \delta \implies d_Y(F(x), F(x_0)) < \epsilon.$$

Oppure, analogamente

$$\lim_{\mathsf{d}_{X}(x,x_{0})\to 0}F\left(x\right) =F\left(x_{0}\right) .$$

Lemma 3.19. L'operatore

$$\mathcal{F} = \mathcal{F}_{x \to n} : L^{1}_{\mathbb{C}}(T) \to \ell^{\infty}(\mathbb{Z}; \mathbb{C})$$

$$f \mapsto c_{n}(f) = \frac{1}{T} \int_{-T/2}^{T/2} f(x) e^{-in\omega x} dx$$

è un operatore lineare continuo tra $L^1_{\mathbb{C}}(T)$ e $\ell^{\infty}(\mathbb{Z};\mathbb{C})$.

Dimostrazione. 1. Linearità: siano $f,g\in L^1_{\mathbb{C}}(T)$ e $\lambda\in\mathbb{C}$, ho che

$$c_n(f) + \lambda c_n(g) = \frac{1}{T} \int_{-T/2}^{T/2} f(x) e^{-in\omega x} dx + \lambda \frac{1}{T} \int_{-T/2}^{T/2} g(x) e^{-in\omega x} dx$$

$$= \frac{1}{T} \int_{-T/2}^{T/2} (f(x) + \lambda g(x)) e^{-in\omega x} dx = c_n(f + \lambda g).$$

2. Continuità: calcoliamo

$$\|\mathcal{F}f - \mathcal{F}g\|_{\ell^{\infty}} = \sup_{n \in \mathbb{Z}} |c_{n}(f) - c_{n}(g)| \le \sup_{n \in \mathbb{Z}} \frac{1}{T} \int_{-T/2}^{T/2} |f(x) - g(x)| \underbrace{|e^{-i\omega nx}|}_{\equiv 1} dx$$

$$= \frac{1}{T} \int_{-T/2}^{T/2} |f(x) - g(x)| dx = \|f - g\|_{L^{1}}.$$

Pertanto notiamo che se $f \to g$ in L^1 allora $\mathcal{F}f \to \mathcal{F}g$ in ℓ^{∞} , che è la definizione di continuità.

Lemma 3.20 (Lemma di Riemann-Lebesgue in L^1). $Sia\ f \in L^1_{\mathbb{C}}(T)\ e\ sia\ c_n = c_n(f)\ come\ in\ Eq.\ (2.11),\ allora$

$$c_n(f) \xrightarrow{|n| \to \infty} 0.$$

Dimostrazione. Dividiamo la dimostrazione in steps

Step 1. Sia $f = \mathbb{I}_{[a,b)}$, $[a,b) \subset \left[\frac{-T}{2}, \frac{T}{2}\right]$. Si ha che

$$c_n(f) = \frac{1}{T} \int_a^b e^{-in\omega x} dx = \frac{e^{-in\omega b} - e^{-in\omega a}}{T(-in\omega)} = \mathcal{O}(n^{-1}) \xrightarrow{|n| \to \infty} 0.$$

Step 2. Sia ora $f = \varphi$ funzione semplice,

$$c_n\left(\varphi\right) = \sum_{j=1}^L \alpha_j c_n\left(\mathbb{1}_{[a_j,b_j)}\right) = \sum_{j=1}^L \alpha_j \; \frac{e^{-\mathrm{i} n\omega b_j} - e^{-\mathrm{i} n\omega a_j}}{T\left(-\mathrm{i} n\omega\right)} = \mathcal{O}\left(n^{-1}\right).$$

Step 3. Consideriamo ora $f \in L^1_{\mathbb{C}}(T)$ generica. Dobbiamo dimostrare che

$$\forall \varepsilon > 0 \,\exists n_0 \in \mathbb{N} : \, \forall \, |n| > n_0 \Rightarrow |c_n(f)| < \varepsilon. \tag{3.7}$$

Sia δ il modulo di continuità dell'applicazione $\mathcal{F}: L^1 \to \ell^\infty$ associato a $\varepsilon/2$ nel punto f, ossia

$$\forall g \in L^1 : \|f - g\|_{L^1} < \delta \Rightarrow \|\mathcal{F}(f) - \mathcal{F}(g)\|_{\ell^{\infty}} < \frac{\varepsilon}{2}. \tag{3.8}$$

Dalla Proposizione 3.15 sappiamo che l'insieme delle funzioni semplici è denso in $L^1_{\mathbb{C}}(T)$ (analogamente ci si riferisca a (3.6)), pertanto esiste un $\varphi_{\delta} \in FS_{\mathbb{C}}(T)$ tale che

$$\|\varphi_{\delta} - f\|_{L^{1}} < \delta. \tag{3.9}$$

Applicando al disuguaglianza triangolare

$$|c_n(f)| \le |c_n(f) - c_n(\varphi_\delta)| + |c_n(\varphi_\delta)|, \tag{3.10}$$

si noti che

$$\left|c_{n}(f)-c_{n}(\varphi_{\delta})\right| < \sup_{n \in \mathbb{Z}}\left|c_{n}(f)-c_{n}(\varphi_{\delta})\right| = \left\|\mathcal{F}(f)-\mathcal{F}(\varphi_{\delta})\right\|_{\ell^{\infty}}.$$
(3.11)

Combinando Eq. (3.8) e (3.9) otteniamo che

$$\|\mathcal{F}(f) - \mathcal{F}(\varphi_{\delta})\|_{\ell^{\infty}} < \frac{\varepsilon}{2},$$
 (3.12)

combinando Eq. (3.11) e (3.12) ottengo

$$\left|c_n(f) - c_n(\varphi_\delta)\right| < \frac{\varepsilon}{2}.\tag{3.13}$$

Dallo Step 2 so che $|c_n(\varphi_\delta)| = O(|n|^{-1})$, pertanto esiste una costante C > 0 tale che

$$\left|c_n\left(\varphi_\delta\right)\right| < \frac{C}{|n|} \qquad \forall n \in \mathbb{Z}.$$
 (3.14)

inserisco Eq. (3.13) e (3.14) in (3.10) ed ottengo che

$$\left|c_n(f)\right| < \frac{\varepsilon}{2} + \frac{C}{|n|}, \quad \forall n \in \mathbb{Z}.$$

È dunque sufficiente scegliere $|n| > n_0 := \lceil \frac{2C}{\varepsilon} \rceil$ ed otteniamo che $|c_n(f)| < \varepsilon$. Siccome $\varepsilon > 0$ arbitrario abbiamo provato la proposizione in (3.7), concludendo.

Proposizione 3.21 (Formule di Dirichelet). $Sia f \in L^1_{\mathbb{C}}(T) \ ed \ N \in \mathbb{N}$, allora

$$S_N(x) = \sum_{|n| \le N} c_n(f) e^{in\omega x} = \int_{-T/2}^{T/2} f(x - y) D_N(y) dy = \int_{-T/2}^{T/2} f(x + y) D_N(y) dy,$$

dove D_N è definito in Definizione 3.7.

Osservazione 3.22. Notiamo che $S_N = f \star D_N$.

Dimostrazione. Si tratta di svolgere dei calcoli diretti

$$S_N(x) = \sum_{|n| \le N} c_n(f) e^{in\omega x}$$
$$= \sum_{|n| \le N} \frac{1}{T} \int_{-T/2}^{T/2} f(y) e^{-in\omega y} dy e^{in\omega x}$$

¹Ricordiamo che dato $x \in \mathbb{R}$ la quantità [x] è il più piccolo intero più grande di x.

$$= \int_{-T/2}^{T/2} f(y) \frac{1}{T} \sum_{|n| \le N} e^{in\omega(x-y)} dy$$

$$= \int_{-T/2}^{T/2} f(y) D_N(x-y) dy$$

$$= \int_{-T/2}^{T/2} f(x-z) D_N(z) dz$$

dove nell'ultima identità si è usato il cambio di variabile z = x - y e la T-periodicità delle funzioni f e D_N . La seconda identità la si ottiene con un cambio di variabile e sfruttando la parità di D_N .

Lemma 3.23. Sia $N \in \mathbb{N}$ e T > 0

$$\int_{0}^{T/2} D_{N}(x) \, \mathrm{d}x = \frac{1}{2} \, .$$

Osservazione 3.24. Siccome D_N è pari si ha immediatamente che $\int_{-T/2}^{T/2} D_N(x) \, \mathrm{d}x = 1$.

Dimostrazione. Si ha che

$$\int_{-T/2}^{T/2} D_N(x) \, \mathrm{d}x = \frac{1}{T} \sum_{|n| < N} \int_{-T/2}^{T/2} e^{\mathrm{i}n\omega x} \, \mathrm{d}x,$$

e usando (2.7) ottengo $\int_{-T/2}^{T/2} e^{\mathrm{i}n\omega x} \mathrm{d}x = T\delta_{0n}$, dal quale ottengo che $\int_{-T/2}^{T/2} D_N(x) \, \mathrm{d}x = 1$. La tesi segue per parità della funzione D_N .

Lemma 3.25. *Sia* $N \in \mathbb{N}$ *e* T > 0, *si ha che*

$$D_N(x) = \begin{cases} \frac{1}{T} \frac{e^{\mathrm{i}(N+1)\omega x} - e^{-\mathrm{i}N\omega x}}{e^{\mathrm{i}\omega x} - 1} & x \neq kT, \ k \in \mathbb{Z}, \\ \frac{2N+1}{T} & x = kT, \ k \in \mathbb{Z}, \end{cases}$$

Osservazione 3.26. Notiamo che usando le formule di Eulero (1.5) otteniamo che nel caso $x \neq kT$, $k \in \mathbb{Z}$, raccogliendo a fattor comune al numeratore e al denominatore $e^{i\frac{\omega}{2}x}$, si ha che $D_N(x) = \frac{1}{T} \frac{\sin((N+\frac{1}{2})\omega x)}{\sin(\frac{\omega}{2}x)}$. Da tale espressione possiamo quindi dedurre che D_N è continua in kT.

Dimostrazione. Se x = kT la dimostrazione è immediata. Sia ora $x \neq kT$, e fissiamo $z = e^{i\omega x} \in \mathbb{S}^1$, si ha che

$$D_{N}\left(x\right) = \frac{1}{T} \sum_{|n| \leq N} z^{n} = \frac{z^{-N}}{T} \sum_{n=0}^{2N} z^{n} = \frac{z^{-N}}{T} \frac{1 - z^{2N+1}}{1 - z} = \frac{1}{T} \frac{z^{N+1} - z^{-N}}{z - 1} = \frac{1}{T} \frac{e^{\mathrm{i}(N+1)\omega x} - e^{-\mathrm{i}N\omega x}}{e^{\mathrm{i}\omega x} - 1}.$$

3.2 Dimostrazione del Teorema 3.2

Dobbiamo dimostrare (3.2). Fissiamo $N \in \mathbb{N}$ e $x_0 \in \left[-\frac{T}{2}, \frac{T}{2}\right]$, grazie alla Proposizione 3.21 ho che

$$S_N(x_0) = \int_{-T/2}^{T/2} f(x_0 + y) D_N(y) dy,$$

calcoliamo ora

$$S_{N}(x_{0}) - \frac{f(x_{0}^{+}) + f(x_{0}^{-})}{2} = \int_{-T/2}^{T/2} f(x_{0} + y) D_{N}(y) dy - \frac{f(x_{0}^{+}) + f(x_{0}^{-})}{2}$$

$$= \left(\int_{-T/2}^{0} f(x_{0} + y) D_{N}(y) dy - \frac{f(x_{0}^{-})}{2}\right) + \left(\int_{0}^{T/2} f(x_{0} + y) D_{N}(y) dy - \frac{f(x_{0}^{+})}{2}\right)$$

pertanto usando Lemma 3.23 e la linearità dell'integrale ottengo

$$S_N(x_0) - \frac{f(x_0^+) + f(x_0^-)}{2} = \int_{-T/2}^0 \left[f(x_0 + y) - f(x_0^-) \right] D_N(y) \, \mathrm{d}y + \int_0^{T/2} \left[f(x_0 + y) - f(x_0^+) \right] D_N(y) \, \mathrm{d}y. \tag{3.15}$$

Applico ora il Lemma 3.25 ed ottengo

$$\int_{-T/2}^{0} \left[f\left(x_{0} + y\right) - f\left(x_{0}^{-}\right) \right] D_{N}(y) \, \mathrm{d}y = \frac{1}{T} \int_{-T/2}^{0} \left[f\left(x_{0} + y\right) - f\left(x_{0}^{-}\right) \right] \frac{e^{\mathrm{i}(N+1)\omega y} - e^{-\mathrm{i}N\omega x}}{e^{\mathrm{i}\omega y} - 1} \, \mathrm{d}y \,, \tag{3.16a}$$

$$\int_{0}^{T/2} \left[f\left(x_{0} + y\right) - f\left(x_{0}^{+}\right) \right] D_{N}(y) \, \mathrm{d}y = \frac{1}{T} \int_{0}^{T/2} \left[f\left(x_{0} + y\right) - f\left(x_{0}^{+}\right) \right] \frac{e^{\mathrm{i}(N+1)\omega y} - e^{-\mathrm{i}N\omega x}}{e^{\mathrm{i}\omega y} - 1} \, \mathrm{d}y \,. \tag{3.16b}$$

$$\int_0^{T/2} \left[f(x_0 + y) - f(x_0^+) \right] D_N(y) \, \mathrm{d}y = \frac{1}{T} \int_0^{T/2} \left[f(x_0 + y) - f(x_0^+) \right] \, \frac{e^{\mathrm{i}(N+1)\omega y} - e^{-\mathrm{i}N\omega x}}{e^{\mathrm{i}\omega y} - 1} \, \mathrm{d}y \,. \tag{3.16b}$$

Uso l'identità $e^{i\omega y} - 1 = (\cos(\omega y) - 1) + i \sin(\omega y)$ e la funzione ausiliaria

$$g(y) := \begin{cases} \frac{f(x_0 + y) - f(x_0^-)}{y} & \frac{y}{(\cos(\omega y) - 1) + i \sin(\omega y)} & y \in \left[-\frac{T}{2}, 0 \right) \\ \frac{f(x_0 + y) - f(x_0^+)}{y} & \frac{y}{(\cos(\omega y) - 1) + i \sin(\omega y)} & y \in \left[0, \frac{T}{2} \right) \end{cases}$$
(3.17)

prolungata periodicamente in \mathbb{R} . Si noti che g definita come in (3.17) trasforma Eq. (3.16) in

$$(3.16a) = \frac{1}{T} \int_{-T/2}^{0} g(y) \left[e^{i(N+1)\omega y} - e^{-iN\omega y} \right] dy$$
 (3.18a)

$$(3.16b) = \frac{1}{T} \int_0^{T/2} g(y) \left[e^{i(N+1)\omega y} - e^{-iN\omega y} \right] dy$$
 (3.18b)

Dimostriamo ora il seguente risultato

Lemma 3.27. Sia $f \in L^1_{\mathbb{C}}(T)$ tali che il limiti in Eq. (3.1) esistono e sono finiti. Sia g come in Eq. (3.17), si ha che $g \in L^1_{\mathbb{C}}(T)$ ed in particolare esiste una costante $C_0 > 0$ tale che

$$||g||_{L^{1}} < C_{0}(||f||_{L^{1}} + |f(x_{0}^{+})| + |f(x_{0}^{-})| + |f'(x_{0}^{+})| + |f'(x_{0}^{-})|) < \infty.$$

$$(3.19)$$

Dimostrazione. Fissiamo $\delta \in (0, \frac{T}{2})$, definiamo

$$I^{\delta}(g) := \int_{\delta \le |y| \le \frac{T}{2}} |g(y)| \, \mathrm{d}y$$
$$I_{\delta}(g) := \int_{|y| < \delta} |g(y)| \, \mathrm{d}y$$

e notiamo che

$$\|g\|_{L^1} = I^{\delta}(g) + I_{\delta}(g). \tag{3.20}$$

Vogliamo dimostrare che esiste un $\delta_0 > 0$ tale che per ogni $\delta \in (0, \delta_0)$, esistono due constanti $C_j(\delta) \in$ $(0,\infty)$, j=1,2 tali che

$$I^{\delta}(g) < C_{1}(\delta) \left[\|f\|_{L^{1}} + |f(x_{0}^{+})| + |f(x_{0}^{-})| \right] < \infty$$

$$I_{\delta}(g) < C_{2}(\delta) \left[|f'(x_{0}^{+})| + |f'(x_{0}^{-})| \right] < \infty$$
(3.21)

La diseguaglianza (3.19) è una diretta conseguenza delle maggiorazioni in (3.21) inserite in (3.2). Usando (3.1) e calcoli espliciti è semplice vedere che

$$\lim_{y \to 0^{\pm}} g(y) = \frac{f'(x_0^{\pm})}{\mathrm{i}\omega}, \tag{3.22}$$

pertanto g è limitata localmente vicino a zero. Notiamo che da (3.22) e dal fatto che g è continua in ogni punto diverso da zero, ottengo che esiste un $\delta_0' \in (0,1)$ t.c. se $\delta \in (0,\delta_0')$ e $|y| < \delta$ allora

$$\left|g(y)\right| < 2\left(\left|\lim_{y \to 0^{+}} g(y)\right| + \left|\lim_{y \to 0^{-}} g(y)\right|\right) < \frac{2}{\omega}\left[\left|f'(x_{0}^{+})\right| + \left|f'(x_{0}^{-})\right|\right],$$

pertanto

$$I_{\delta}(g) < \underbrace{\frac{2\delta}{\omega}}_{:=C_{2}(\delta)} \left[\left| f'(x_{0}^{+}) \right| + \left| f'(x_{0}^{-}) \right| \right].$$

Calcoliamo ora la maggiorazione per I^{δ} , certamente si ha che per $|y| \in [\delta, \frac{T}{2}]$

$$|g(y)| < \frac{|f(x_0 + y)| + |f(x_0^{\pm})|}{|y|} \frac{|y|}{|(\cos(\omega y) - 1) + i\sin(\omega y)|} < \frac{|f(x_0 + y)| + |f(x_0^{\pm})| + |f(x_0^{\pm})|}{\delta} \frac{T/2}{|y| \in [\delta, \frac{T}{2}]} |(\cos(\omega y) - 1) + i\sin(\omega y)|$$
(3.23)

Notiamo ora che $e^{i\omega y} - 1 = (\cos(\omega y) - 1) + i \sin(\omega y)$ descrive la circonferenza unitaria di raggio uno e centro -1 (nel piano complesso), pertanto

$$\inf_{|y| \in \left[\delta, \frac{T}{2}\right]} \left| \left(\cos\left(\omega y\right) - 1\right) + \mathrm{i} \, \sin\left(\omega y\right) \right| = \left| \left(\cos\left(\omega \delta\right) - 1\right) + \mathrm{i} \, \sin\left(\omega \delta\right) \right|$$

$$\geq |\sin(\omega\delta)| - |\cos(\omega\delta) - 1| \geq \frac{1}{2} \left(\omega\delta - \frac{(\omega\delta)^2}{2} \right),$$

quindi se $\delta < (4\omega)^{-1}$ ottengo che

$$\inf_{|y|\in[\delta,\frac{T}{2}]}\left|\left(\cos(\omega y)-1\right)+\mathrm{i}\,\sin(\omega y)\right|>\frac{\omega\delta}{4}.\tag{3.24}$$

inserisco (3.24) in (3.23) ed ottengo che

$$\left|g\left(y\right)\right| \le \frac{2T}{\omega\delta^{2}}\left(\left|f\left(x_{0}+y\right)\right| + \left|f\left(x_{0}^{+}\right)\right| + \left|f\left(x_{0}^{-}\right)\right|\right), \qquad \forall \delta \le \left|y\right| \le \frac{T}{2} \tag{3.25}$$

integrando in y es usando (3.25) ottengo

$$I^{\delta}(g) = \int_{\delta \le |y| \le \frac{T}{2}} |g(y)| \, \mathrm{d}y \le \frac{2T}{\omega \delta^2} \int_{-T/2}^{T/2} |f(x_0 + y)| \, \mathrm{d}y + \frac{2T^2}{\omega \delta^2} (|f(x_0^+)| + |f(x_0^-)|). \tag{3.26}$$

Calcoli standard mostrano che $\int_{-T/2}^{T/2} |f(x_0 + y)| dy = ||f||_{L^1}$ e pertanto (3.26) implica la prima diseguaglianza in (3.21) fissando $C_1(\delta) := \frac{2T(1+T)}{\omega \delta^2}$.

Dimostriamo ora (3.19), ho che

$$\|g\|_{L^1} = I^{\delta}(g) + I_{\delta}(g),$$

quindi, applicando le maggiorazioni in (3.21) e l'arbitrarietà di $\delta \in (0, \delta_0)$, dove $\delta_0 := \min \left\{ \delta_0', (4\omega)^{-1} \right\}$, ottengo

$$\|g\|_{L^{1}} < \underbrace{\left(\inf_{\delta \in (0,\delta_{0})} \{C_{1}(\delta) + C_{2}(\delta)\}\right)}_{:=C_{0}} \left(\|f\|_{L^{1}} + |f(x_{0}^{+})| + |f(x_{0}^{-})| + |f'(x_{0}^{+})| + |f'(x_{0}^{-})|\right) < \infty.$$

Concludiamo ora la dimostrazione del Teorema 3.2, da (3.15) ho che

$$S_{N}(x_{0}) - \frac{f(x_{0}^{+}) + f(x_{0}^{-})}{2} = (3.16a) + (3.16b)$$

$$= (3.18a) + (3.18b)$$

$$= \frac{1}{T} \int_{-T/2}^{T/2} g(y) e^{i(N+1)\omega y} dy - \frac{1}{T} \int_{-T/2}^{T/2} g(y) e^{iN\omega y} dy$$

$$= c_{N+1}(g) - c_{N}(g)$$

tuttavia, grazie a (3.19), $g \in L^1_{\mathbb{C}}(T)$ applicando Lemma 3.20 ottengo che $c_{N+1}(g) - c_N(g) \xrightarrow{|N| \to \infty} 0$, il che conclude la dimostrazione del Teorema 3.2.

4 Regolarità di una funzione e decadimento dei coefficienti di Fourier

Lemma 4.1. Siano $f, g \in C^1\left(\left[-\frac{T}{2}, \frac{T}{2}\right]; \mathbb{C}\right)$ e T-periodiche e supponiamo che $c_n\left(f\right) = c_n\left(g\right)$ per ogni $n \in \mathbb{Z}$, allora $f\left(x\right) = g\left(x\right)$ per ogni $\left[-\frac{T}{2}, \frac{T}{2}\right]$.

Dimostrazione. Notiamo che se $f,g\in\mathcal{C}^1\left(\left[-\frac{T}{2},\frac{T}{2}\right];\mathbb{C}\right)$ allora possiamo applicare il Teorema 3.2 ed otteniamo che

$$f(x) = \sum_{n \in \mathbb{Z}} c_n(f) e^{in\omega x},$$
 $g(x) = \sum_{n \in \mathbb{Z}} c_n(g) e^{in\omega x}$

per ogni $x \in \left[-\frac{T}{2}, \frac{T}{2}\right]$, tuttavia se $c_n(f) = c_n(g)$ allora ottengo che f(x) = g(x) per ogni $\left[-\frac{T}{2}, \frac{T}{2}\right]$.

Esercizio 4.2. Dimostrare che le funzioni $f(x) = \mathbb{I}_{(-\pi,0)\cup(0,\pi)}(x) + \mathbb{I}_{\{-\pi\}\cup\{0\}}(x)$ e $g(x) = \mathbb{I}_{(-\pi,0)\cup(0,\pi)}(x) - \mathbb{I}_{\{-\pi\}\cup\{0\}}(x)$ hanno gli stessi coefficienti di Fourier, ma sono, ovviamente, diverse.

Notazione 4.3. Siano $n \in \mathbb{Z} \mapsto z_n \in \mathbb{C}$ e $n \in \mathbb{Z} \mapsto w_n \in \mathbb{C}$ due successioni complesse, diciamo che $z_n = o(w_n)$ se

$$\lim_{|n|\to\infty}\frac{z_n}{w_n}=0.$$

Diremo che la successione $(z_n)_{n\in\mathbb{Z}}$ è un *o piccolo* di $(w_n)_{n\in\mathbb{Z}}$ e scriveremo $z_n=0$ (w_n) .

Esempio 4.4. • La successione $a_n = (1 + |n|)^{\alpha}$ è o di $b_n = (1 + |n|)^{\beta}$ se e solo se $\beta > \alpha$.

• La successione $x_n = 2^{-|n|}$ è o di $y_n = (1 + n^2)^{\gamma/2}$ per ogni $\gamma \in \mathbb{R}$.

Proposizione 4.5. Sia $k \in \mathbb{N}$, $f \in L^1_{\mathbb{C}}(T)$, derivabile k volte e tale che $f^{(j)} \in L^1_{\mathbb{C}}(T)$, per ogni j = 0, ..., k allora

$$c_n(f^{(j)}) = (i\omega n)^j c_n(f), \qquad \forall n \in \mathbb{Z}, j \in \{0, ..., k\}.$$

Dimostrazione. Dimostriamo tale risultato per induzione su j. Se j=0 non c'è nulla da dimostrare, sia ora $j=1,\ldots,k$

$$c_n(f^{(j)}) = \frac{1}{T} \int_{-T/2}^{T/2} f^{(j)}(x) e^{-in\omega x} dx = \frac{1}{T} \int_{-T/2}^{T/2} \partial_x f^{(j-1)}(x) e^{-in\omega x} dx.$$

integro per parti

$$c_n(f^{(j)}) = \partial_x f^{(j-1)}(x) e^{-in\omega x} \Big|_{-T/2}^{T/2} - \frac{1}{T} \int_{-T/2}^{T/2} \partial_x f^{(j-1)}(x) \partial_x (e^{-in\omega x}) dx.$$

Notiamo che $\partial_x f^{(j-1)}(x) e^{-\mathrm{i}n\omega x}\Big|_{-T/2}^{T/2} = 0$ per periodicità e che $\partial_x \left(e^{-\mathrm{i}n\omega x}\right) = (-\mathrm{i}n\omega) e^{-\mathrm{i}n\omega x}$ pertanto $c_n\left(f^{(j)}\right) = \mathrm{i}\omega n \ c_n\left(f^{(j-1)}\right)$, che è ben definito siccome supponiamo $f^{(j-1)} \in L^1_{\mathbb{C}}(T)$, ed applicando il passo induttivo concludo

Ricordiamo che grazie al Lemma 3.20 abbiamo che se una funzione $f \in L^1_{\mathbb{C}}(T)$ allora $c_n(f) \xrightarrow{|n| \to \infty} 0$. Supponiamo ora che f sia k volte derivabile con derivate in $L^1_{\mathbb{C}}(T)$, la Proposizione 4.5 ci dice che se $n \neq 0$

$$c_n(f) = \frac{1}{(\mathrm{i}\omega n)^k} c_n(f^{(k)}),$$

tuttavia se $f^{(k)} \in L^1_{\mathbb{C}}(T)$ allora $c_n(f^{(k)}) \xrightarrow{|n|} \infty$, pertanto

$$|c_n(f)| = o(|n|^{-k}).$$

Quindi più è regolare una funzione più velocemente i coefficienti di Fourier decadono per $|n| \to \infty$.

La domanda che sorge spontanea è dunque la seguente: dato che una certa regolarità di una funzione implica un certo rate di decadimento dei coefficienti di Fourier, è per caso vero pure il contrario, ossia un certo decadimento dei coefficienti di Fourier implica che una funzione è derivabile un certo numero di volte?

Una risposta, parziale, vine fornita dal seguente risultato:

Figura 10: Estensione periodica della funzione x^2

Lemma 4.6. Sia T > 0, $k \in \mathbb{N}$, consideriamo la serie trigonometrica

$$\sum_{n\in\mathbb{Z}}\gamma_n e^{\mathrm{i}n\omega x},\tag{4.1}$$

che converge puntualmente ad f in [-T/2, T/2) e supponiamo esiste un p > k+1 tale che

$$|\gamma_n| = \mathcal{O}(|n|^{-p}),$$

allora $f \in C^k([-T/2, T/2); \mathbb{C})$.

Dimostrazione. Procediamo per induzione su k. Se k=0 allora p>1 e per il Teorema 2.25 otteniamo che la serie in Eq. (4.1) converge uniformemente ad f ed applicando il Lemma 2.27 ottengo che f ∈ C ([−T/2, T/2); $\mathbb C$). Sia ora k>0 e considero il passo induttivo verificato per $j=0,\ldots,k-1$ e p>k+1. Se è così ho che

$$\sum_{n \in \mathbb{Z}} (in\omega)^j \gamma_n, \qquad j = 0, \dots, k$$
(4.2)

converge assolutamente, pertanto uso Teorema 2.25 ed il passo induttivo ed ottengo che la serie in Eq. (4.1) converge uniformemente a $f^{(j)}$ per $j=0,\ldots,k-1$ mentre converge uniformemente a g se j=k. Applico il Lemma 2.29 ed ottengo che $g=f^{(k)}$, inoltre $f^{(k)}$ è continua grazie al Lemma 2.27.

Domanda. Supponiamo che p = k + 1, tale ipotesi è sufficiente a verificare il risultato del Lemma 4.6?

La risposta è no, vediamo il perché.

Dimostrazione. Sia f l'estensione 2π -periodica della funzione x^2 , si veda la Figura 10. La sue serie di Fourier è data da

$$f(x) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos(nx).$$
 (4.3)

Usando le formule in Eq. (1.5) possiamo scrivere l'espressione in (4.3) come serie di exponenziali complessi, in particolare ottengo

$$c_0(f) = \frac{\pi^2}{3}, \qquad c_n(f) = \frac{(-1)^n}{2n^2}, \quad n \neq 0,$$

pertanto $c_n(f) = \mathcal{O}(|n|^{-2})$ quindi p = 2 e k = 1, tuttavia la funzione f non è derivabile in $(2l+1)\pi$, $l \in \mathbb{Z}$, pertanto $f \notin \mathcal{C}^1(\mathbb{R})$.

Esempio 4.7. Consideriamo la serie

$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n!},\tag{4.4}$$

la serie in Eq. (4.4) converge ad una funzione target f? Se si, che regolarità ha f?

Dimostrazione. La serie è ovviamente assolutamente convergente (uniformemente in \mathbb{R}) applicando il Teorema 2.25

$$\sum_{n=1}^{\infty} \left| \frac{\sin(nx)}{n!} \right| \le \sum_{n=1}^{\infty} \frac{1}{n!} = e - 1,$$

inoltre $1/n! = o(2^{-n}) = o(n^{-p})$ per ogni p > 0, pertanto $f \in \mathcal{C}^k(\mathbb{R})$ per ogni $k \in \mathbb{N}$ e quindi $f \in \mathcal{C}^{\infty}(\mathbb{R})$.

5 Convergenza in energia, o in $L^2_{\mathbb{C}}(T)$

Definizione 5.1. Fisso T > 0. Una serie trigonometrica come in Eq. (2.9) converge in $L^2_{\mathbb{C}}(T)$ ad una funzione limite f se, data S_N la ridotta N-esima della serie (cf. Definizione 2.21), si ha che

$$\lim_{N \to \infty} \|f - S_N\|_{L_{\mathbb{C}}^2(T)} = \lim_{N \to \infty} \left(\int_{-T/2}^{T/2} |f(x) - S_N(x)|^2 \, \mathrm{d}x \right)^{\frac{1}{2}} = 0.$$

Teorema 5.2 (Identità di Parseval). Sia $f \in L^2_{\mathbb{C}}(T)$, $N \in \mathbb{N}$ e si consideri la ridotta N-esima S_N associata ad f con coefficienti come in Eq. (2.11). Allora $\|f - S_N\|_{L^2} \xrightarrow{N \to \infty} 0$ se e solamente se

$$\sum_{n \in \mathbb{Z}} |c_n(f)|^2 = \frac{1}{T} \int_{-T/2}^{T/2} |f(x)|^2 dx.$$
 (5.1)

Dimostrazione. Nella dimostrazione del Lemma 3.4 abbiamo visto che

$$||f - S_N||_{L^2}^2 = ||f||_{L^2}^2 - T \sum_{|n| \le N} |c_n(f)|^2.$$
 (5.2)

- \Rightarrow Notiamo che se $S_N \xrightarrow[N \to \infty]{L^2} f$ allora da Eq. (5.2) deduciamo che Eq. (5.1) è verificata.
- $\Leftarrow \text{ Analogamente se Eq. (5.1) \`e vera da Eq. (5.2) deduciamo che } \left\|f S_N\right\|_{L^2} \xrightarrow{N \to \infty} 0.$

enunciamo, senza dimostrazione, il seguente risultato:

Teorema 5.3 (Convergenza in L^2). $Sia f \in L^2_{\mathbb{C}}(T)$ allora $S_N \xrightarrow[N \to \infty]{L^2_{\mathbb{C}}(T)} f$.

Osservazione 5.4. Notiamo che il Teorema 5.3 ci garantisce che *ogni funzione localmente quandrato integrabile e periodica è approssimabile in* L^2 *dalla sua serie di Fourier*.

6 Brevi accenni di analisi funzionale

6.1 Cenni di teoria dell'integrale secondo Lebesgue

Motivazione: Colmare alcune debolezze della teoria di integrazione secondo Riemann.

Definizione 6.1 (Funzione integrabile secondo Riemann). Sia $f:I:=[a,b)\subset\mathbb{R}\to\mathbb{R}$ limitata, $J\in\mathbb{N}$ e consideriamo la *partizione* di I

$$I = \bigsqcup_{j=1}^{J} I_j, \qquad I_j := \left[a + \frac{b-a}{J} \left(j - 1 \right), \ a + \frac{b-a}{J} j \right).$$

consideriamo le somme parziali superiori ed inferiori definite come

$$\Sigma_{J} \coloneqq \sum_{j=1}^{J} \left| I_{j} \right| \sup_{x \in I_{j}} f(x)$$

$$\sigma_{J} := \sum_{j=1}^{J} |I_{j}| \inf_{x \in I_{j}} f(x)$$

Se esiste, finito, il limite

$$\lim_{J\to\infty}\sigma_J=\lim_{J\to\infty}\Sigma_J=\mathcal{I},$$

allora f è R-integrabile in [a, b) e sia ha che

$$\int_{a}^{b} f(x) \, \mathrm{d}x := \mathcal{I}.$$

Esempio 6.2. 1. Se f è continua allora è integrabile.

2. La funzione di Dirichelet $\mathbb{I}_{\mathbb{O}\cap[0,1]}$ non è integrabile.

Definizione 6.3 (Insieme di misura nulla secondo Peano-Jordan). Sia $d \ge 1$, e sia $T \subset \mathbb{R}^d$, diciamo che T ha PJ-misura nulla se pero ogni $\varepsilon > 0$ esiste un $N \in \mathbb{N}$ e N rettangoli R_n , n = 1, ..., N t.c. $T \subset \bigcup_{n=1}^N R_n$ e tali che $\sum_{n=1}^N |R_n| < \varepsilon$. L'insieme R_n , n = 1, ..., N è detto *ricoprimento* di T.

Osservazione 6.4. N può dipendere da ε ma è sempre una quantità finita.

Esempio 6.5 (Esempi di insiemi con PJ-misura nulla). 1. $A := \{x_n \in \mathbb{R} \mid n = 1, ..., N\}$. Fissiamo $\varepsilon > 0$ e consideriamo i rettangoli $R_n := \left[x_n - \frac{\varepsilon}{4N}, x_n + \frac{\varepsilon}{4N}\right]$, essi formano un ricoprimento di A ed abbiamo che $\sum_{n=1}^{N} |R_n| = \varepsilon/2 < \varepsilon$.

2. $B := \{\frac{1}{n} \mid n \in \mathbb{N} \setminus 0\}$. Fisso $\varepsilon \in (0,1)$ e definisco $R_0 := [-\varepsilon/8, \varepsilon/8]$. Definisco $N := \max\{n \in \mathbb{N} \setminus 0 \mid \frac{1}{n} > \varepsilon\}$ e $R_n := [\frac{1}{n} - \frac{\varepsilon}{8N}, \frac{1}{n} + \frac{\varepsilon}{8N}]$, per n = 1, ..., N. Ovviamente ho che $R_n, n = 0, ..., N$ è un ricoprimento di B ed inoltre

$$\underbrace{|R_0|}_{=\varepsilon/4} + \underbrace{\sum_{n=1}^{N} |R_n|}_{=\varepsilon/4} = \frac{\varepsilon}{2}.$$

Definizione 6.6 (Insieme di misura nulla secondo Lebesgue). Sia $d \ge 1$, e sia $T \subset \mathbb{R}^d$, diciamo che T ha L-misura nulla se pero ogni $\varepsilon > 0$ esiste una successione di rettangoli $(R_n)_{n \in \mathbb{N}}$ che è un ricoprimento di T e tale che

$$T \subset \bigcup_{n \in \mathbb{N}} R_n$$
 e
$$\sum_{n \in \mathbb{N}} |R_n| < \varepsilon.$$

Esempio 6.7 (Esempi di insiemi con misura nulla secondo Lebesgue ma non secondo Peano-Jordan). Notiamo dapprincipio che ogni insieme numerabile $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ ha L-misura nulla. È infatti sufficiente definire il ricoprimento

$$R_n := \left[x_n - \frac{\varepsilon}{2^{n+1}}, x_n + \frac{\varepsilon}{2^{n+1}} \right].$$

Una semplice generalizzazione può venire formulata in più dimensioni. Pertanto

- 1. L'insieme N ha L-misura nulla, ma ovviamente non esiste ricoprimento finito di misura arbitrariamente piccola,
- 2. L'insieme $\mathbb{Q} \cap [0,1]$ ha L-misura nulla e ammetterà ricoprimenti finiti, ma la cui misura è, al minimo, uno.

Definizione 6.8 (Proprietà verificate quasi ovunque). Si dice che una proprietà (o predicato) p è verificato quasi ovunque (q.o.) in $E \subset \mathbb{R}^d$ se p(x) è verificata per ogni $x \in E' \subset E$ e tale che $|E \setminus E'| = 0$.

Esempio 6.9. • p(x) := (x irrazionale), E := [0, 1]

•
$$p(x) := \left(\lim_{n \to \infty} e^{-nx^2} = 0 \right), E := \mathbb{R},$$

•
$$p(x, y) := (xy \neq 0), E := \mathbb{R}^2$$
.

Definizione 6.10 (Convergenza puntuale q.o.). Sia $d \ge 1$ e sia $(f_n)_{n \in \mathbb{N}}$ una successione di funzioni $f_n : E \subset \mathbb{R}^d \to \mathbb{C}$ e sia $f : E \subset \mathbb{R}^d \to \mathbb{C}$ diciamo che f_n converge $ad\ f$ q.o. se

$$\lim_{n\to\infty} f_n(x) = f(x)$$
 q.o. in E.

Esempio 6.11. • $f_n(x) := e^{-nx^2}$ converge q.o. a $f(x) \equiv 0$ in $E = \mathbb{R}$,

• $g_n(x) := x^n$ converge q.o. a $g(x) \equiv 0$ in F := [0, 1],

Definizione 6.12. Sia $d \ge 1$, $E \subset \mathbb{R}^d$ e $X \in \{\mathbb{R}, \mathbb{C}\}$. Definiamo con FS (E; X) l'insieme delle funzioni semplici (cf. Definizioni 3.12) da E in X, i.e. funzioni della forma

$$\varphi = \sum_{n=1}^{N} \alpha_n \mathbb{1}_{R_n}, \qquad \alpha_n \in \mathbb{X},$$

con $(R_n)_n \subset E$ rettangoli disgiunti.

Definizione 6.13 (funzioni integrabili secondo Lebesgue). Sia $d \ge 1$, diciamo che $f : \mathbb{R}^d \to \mathbb{C}$ è *integrabile secondo Lebesgue* in \mathbb{R}^d se esiste una successione $(\varphi_n)_{n \in \mathbb{N}} \in FS(\mathbb{R}^d; \mathbb{C})$ tale che

1.
$$\varphi_n(x) \xrightarrow{n \to \infty} f(x)$$
 L-q.o. in \mathbb{R}^d ;

2.
$$\int_{\mathbb{R}^d} \left| \varphi_n - \varphi_m \right| \xrightarrow{n,m \to \infty} 0$$
 (condizione di Cauchy integrale);

in tal caso si pone

$$\int_{\mathbb{D}^d} f := \lim_n \int_{\mathbb{D}^d} \varphi_n. \tag{6.1}$$

Osservazione 6.14. Una prima osservazione che può esser fatta è la seguente: siamo sicuri che il membro a destra in Eq. (6.1) esista? Definiamo con $J_n := \int_{\mathbb{R}^d} \varphi_n \in \mathbb{C}$, si ha che

$$|J_n - J_m| \le \int_{\mathbb{D}^d} |\varphi_n - \varphi_m| \xrightarrow{n,m \to \infty} 0,$$

tuttavia ($\mathbb{C}, |\bullet|$) è uno spazio normato completo, e pertanto il limite in Eq. (6.1) esiste.

Definizione 6.15 (Funzioni L-misurabili in \mathbb{R}^d). Diciamo che $f: \mathbb{R}^d \to \mathbb{C}$ è L-misurabile se esiste una successione $(\varphi_n)_{n \in \mathbb{N}} \subset FS(\mathbb{R}^d; \mathbb{C})$ t.c. $\varphi_n(x) \xrightarrow{n \to \infty} f(x)$ L-q.o.

Definizione 6.16 (Insiemi L-misurabili in \mathbb{R}^d). Diciamo che $E \subset \mathbb{R}^d$ è L-misurabile se la funzione $\mathbb{1}_E$ è L-misurabile, in tal caso si ha che $|E| := \int_{\mathbb{R}^d} \mathbb{1}_E$.

Definizione 6.17 (Funzioni L-integrabili in sottoinsiemi di \mathbb{R}^d). Sia $f: E \subset \mathbb{R}^d \to \mathbb{C}$ con E L-misurabile. Si dice che f è L-integrabile in E se l'estensione

$$f_0(x) := \begin{cases} f(x) & \text{se } x \in E \\ 0 & \text{se } x \notin E \end{cases}$$
(6.2)

è L-integrabile.

Definizione 6.18 (Funzioni L-misurabili in sottoinsiemi di \mathbb{R}^d). Diciamo che $f: E \subset \mathbb{R}^d \to \mathbb{C}$ è L-misurabile in E se l'estensione in Eq. (6.2) lo è in \mathbb{R}^d .

Teorema 6.19 (di convergenza dominata di Lebesgue). $Sia\ E \subseteq \mathbb{R}^d$ un insieme L-misurabile in \mathbb{R}^d e sia (f_n) una successione di funzioni con $f_n: E \to \mathbb{C}$ misurabile $\forall n$, convergente L-q.o. in E a una funzione $f: E \to \mathbb{C}$. Se esiste una funzione $g: E \to \mathbb{R}^+$ integrabile e tale che $\forall n$

$$|f_n(x)| \le g(x)$$
 q.o. in E

allora f_n è integrabile \forall n e pure il limite puntuale q.o. f è integrabile e si ha che

$$\lim_{n\to\infty}\int_E f_n = \int_E f$$

Esempio 6.20. Calcolare, se esiste il limite $\lim_{x\to\infty}\int_{\mathbb{R}}e^{-nx^4}$. Dimostriamo $\forall n\geq 1$, la funzione $f_n(x)=e^{-nx^4}$ è continua (infatti è C^{∞}) e quindi è una funzione misurabile.

· Notiamo che

$$\lim_{n \to \infty} e^{-nx^4} = \begin{cases} 0 & \text{se } x \neq 0 \\ 1 & \text{se } x = 0 \end{cases}$$

Questo limite (puntuale) risulta uguale per la funzione target, denotato come f(x) numerato del teorema di convergenza dominata di Lebesgue. Ossia f(x) = 0.

 $\bullet ||f_n(x)| = |e^{-nx^4}| \le |e^{-x^4}|$

Abbiamo selezionato un candidato per essere adoperato come funzione g nell'enunciato del teorema di Lebesgue, ossia

$$g(x) = e^{-x^4}$$

Sappiamo che la funzione g è integrabile su \mathbb{R} . Applichiamo il teorema di convergenza dominata di Lebesgue:

$$\lim_{n\to\infty}\int_{\mathbb{R}}f_n=\int_{\mathbb{R}}f=0$$

Osservazione 6.21. Non è così banale il fatto che esista un limite degli integrali dell'esempio sopra. Infatti, stiamo integrando una funzione che si converge a zero (puntualmente), ma che viene integrato su un dominio illimitato (\mathbb{R}^d).

Esempio 6.22. Siano:

$$\phi_n(x) = \begin{cases} 1/n & \text{se } x \in [0, n^2] \\ 0 & \text{altrimenti} \end{cases}$$

Rappresentando graficamente, la funzione è un rettangolo di altezza n e larghezza n^2 . L'integrale della funzione su \mathbb{R}^d è:

$$\int_{\mathbb{R}^d} \phi_n = \frac{1}{n} \cdot n^2 = n$$

6.2 Un Primer in Analisi Funzionale

Definizione 6.23 (Spazio normato). Sia V uno spazio vettoriale sul campo $X \in \{\mathbb{R}, \mathbb{C}\}$. Un'applicazione

$$\|\cdot\|:V\to\mathbb{R}$$

si dice *norma* se le seguenti condizioni sono verificate $\forall x, y \in V$ e $\lambda \in \mathbb{X}$:

- 1. $||x|| = 0 \Leftrightarrow x = 0$ (non-degeneratezza)
- 2. $\|\lambda x\| = |\lambda| \|x\|$ (omogeneità)
- 3. $||x + y|| \le ||x|| + ||y||$ (subadditività)

In tal caso, la coppia $(V, \|\cdot\|)$ si dice *spazio normato*.

Figura 11: Esempio di funzioni vicine rispetto alla metrica indotta dalla $\|\bullet\|_{L^1}$ ma lontane nella topologia uniforme.

Osservazione 6.24. Se definiamo la funzione $d_X : X \times X \to \mathbb{R}^+$ come

$$\mathsf{d}_X(x,y) := \|x - y\|$$

otteniamo che (X, d_X) è uno spazio metrico. Pertanto *ogni spazio metrico* è *normato*.

Esempio 6.25. Sono spazi normati:

- (ℝ, | |)
- $(\mathbb{C}, |\bullet|)$
- $(\mathbb{R}^N, |\bullet|_2)$, dove $|x|_2 = (\sum_{i=1}^N x_i^2)^{\frac{1}{2}}$
- $(\mathcal{C}([a,b]), \| \bullet \|_{\infty})$, dove $\| f \|_{\infty} = \sup_{x \in [a,b]} |f(x)|$
- $(C^1([-a,b]), \mathbb{R}), \| \bullet \|_1)$, dove

$$||f||_1 = \int_a^b |f(x)| \, \mathrm{d}x$$

Definizione 6.26 (Successione di Cauchy). Sia (X, d_X) uno spazio metrico e sia $x := (x_n)_n \subset X$, diciamo ch e la successione x è di *Cauchy* se per ogni $\varepsilon > 0$ esiste un $n_0 \in \mathbb{N}$ tale che per ogni $n, m \ge n_0$ si ha che $\mathsf{d}_X(x_n, x_m) < \varepsilon$.

Osservazione 6.27. La Definizioni 6.26 è equivalente a dire che

$$\lim_{m,n\to\infty}\mathsf{d}_X\left(x_n,x_m\right)=0.$$

Lemma 6.28. Ogni successione convergente è di Cauchy.

Osservazione 6.29. Bisogna fare attenzione perché il contrario, in Lemma 6.28, *non è vero*. L'esempio canonico di una successione di Cauchy non convergente è il seguente: Consideriamo lo spazio normato $(\mathbb{Q}, |\cdot|)$. Consideriamo la successione

$$q_n \in B\left(\sqrt{2}, \frac{1}{n}\right) \cap \mathbb{Q},$$
 $n \ge 1,$

tale successione è ben definita per denistà di $\mathbb Q$ in $\mathbb R$. Ovviamente si ha che

$$|q_n - q_m| \le 4\left(\frac{1}{n} + \frac{1}{m}\right) \xrightarrow{n,m \to \infty} 0.$$

Per costruzione, tuttavia, si ha che $q_n \xrightarrow{n \to \infty} \sqrt{2} \notin \mathbb{Q}$, pertanto la successione $(q_n)_{n \ge 1}$ non converge in \mathbb{Q} .

Esercizio 6.30 (Costruzione di successioni di Cauchy non convergenti). Dimostrare che le seguenti successioni di Cauchy non sono convergenti negli spazi metrici indicati:

- 1. $u_n(x) := \max\{-\log|x|, 1/n\}, n \ge 1 \text{ nello spazio metrico } (\mathcal{C}([-1, 1]); ||\cdot||_{L^1});$
- 2. Sia $(q_n)_{n\in\mathbb{N}}:=\mathbb{Q}\cap[0,1]$ e sia $v_n(x):=\mathbb{I}_{\bigcup_{n'=0}^n\{q_{n'}\}}(x)$, dimostrare che la successione $(v_n)_{n\in\mathbb{N}}$ è di Cauchy ma non è convergente nello spazio della funzioni *Riemann*-integrabili con norma L^1 .

Definizione 6.31 (Spazio metrico completo). Uno spazio metrico (X, d_X) si dice *completo* se ogni successione di Cauchy è convergente.

Definizione 6.32 (Spazio di Banach). Uno spazio $(B, \|\bullet\|_B)$ normato e completo si dice spazio di Banach

.

Definizione 6.33 (Prodotto scalare). Sia $\mathbb{X} \in \{\mathbb{R}, \mathbb{C}\}$ e sia V un o spazio vettoriale su \mathbb{X} . L'applicazione binaria $(\bullet \mid \bullet) : V^2 \to \mathbb{X}$ si dice *prodotto scalare* se $x, y, z \in V$ e $\lambda \in \mathbb{X}$

- 1. $(x \mid x) \ge 0$ e $(x \mid x) = 0$ implica x = 0;
- 2. $(x \mid y) = \overline{(y \mid x)}$;
- 3. $(x + \lambda y \mid z) = (x \mid z) + \lambda (y \mid z)$.

Osservazione 6.34. Notiamo che si ha che

$$(x \mid y + \lambda z) = \overline{(y + \lambda z \mid x)} = \overline{(y \mid x)} + \overline{\lambda} \overline{(z \mid x)} = (x \mid y) + \overline{\lambda} (x \mid z).$$

Analogamente possiamo facilmente vedere che x = 0 implica $(x \mid x) = 0$ per linearità.

Esercizio 6.35. Sia $(\bullet \mid \bullet): V^2 \to \mathbb{X}$ un prodotto scalare, definiamo $\|v\|_V := \sqrt{(v \mid v)}$, dimostrare che $\|\bullet\|_V$ è una norma.

Lemma 6.36 (Disuguaglianza di Cauchy-Schwarz). Sia V uno spazio vettoriale e (\bullet | \bullet) un prodotto scalare definito su V. Allora per ogni $v_1, v_2 \in V$ si ha

$$(v_1 \mid v_2) \leq ||v_1||_V ||v_2||_V$$
.

Definizione 6.37 (Spazio di Hilbert). Sia H un insieme, e sia $\langle \bullet \mid \bullet \rangle_H$ un prodotto scalare definito su H tale che $\left(H, \sqrt{\langle \bullet \mid \bullet \rangle_H}\right)$ è di Banach. Allora $(H, \langle \bullet \mid \bullet \rangle_H)$ è detto spazio di Hilbert. Denoteremo con $\|\bullet\|_H := \sqrt{\langle \bullet \mid \bullet \rangle_H}$.

Osservazione 6.38. Ricordiamo le seguenti importanti implicazioni

Hilbert \Rightarrow Banach \Rightarrow spazio metrico completo.

Definizione 6.39 (Ortogonalità). Sia H uno spazio di Hilbert, un famiglia $(e_{\alpha})_{\alpha \in A}$, $A \subset \mathbb{R}$ si dice *ortogonale* rispetto al prodotto scalare $\langle \bullet \mid \bullet \rangle_H$ se

$$\langle e_{\alpha} \mid e_{\beta} \rangle = \delta_{\alpha\beta} \|e_{\alpha}\|_{H} \|e_{\beta}\|_{H}.$$

La famiglia $(e_{\alpha})_{\alpha \in A}$, $A \subset \mathbb{R}$ si dice *ortonormale* se $||e_{\alpha}||_{H} \equiv 1$ per ogni $\alpha \in A$.

6.3 Gli spazi di Lebesgue

Definizione 6.40 (Spazi di Lebesgue). Sia $d \ge 1$, $p \in [1, \infty)$ e sia $E \subset \mathbb{R}^d$ un insieme L-misurabile. Definiamo

$$L^{p}(E;\mathbb{C}) := \left\{ f : E \to \mathbb{C} \text{ L-misurabile } \left| \int_{E} \left| f \right|^{p} < \infty \right\}.$$

Lo spazio $L^p(E;\mathbb{C})$ dotato della norma

$$||f||_{L^p(E;\mathbb{C})} := \left(\int_E |f|^p\right)^{\frac{1}{p}},$$

è uno spazio di Banach.

Definizione 6.41 (Lo spazion L^{∞}). Con le stesse ipotesi della Definizione 6.40 definiamo

$$L^{\infty}(E;\mathbb{C}) := \{ f : E \to \mathbb{C} \text{ L-misurabile } | \exists K > 0 \text{ t.c. } | f(x) | \le K \text{ L-q.o. in } E \}.$$

Lo spazio $L^{\infty}(E;\mathbb{C})$ dotato della norma

$$||f||_{L^{\infty}(E;\mathbb{C})} := \inf\{K > 0 \mid |f(x)| \le K \text{ L-q.o. in } E\} := \underset{x \in E}{\operatorname{ess sup}} |f(x)|,$$

è uno spazio di Banach.

Proposizione 6.42. Sia $p \in [1,\infty)$ ed E come in Definizione 6.40, sia $(f_n)_{n \in \mathbb{N}}$ una successione convergente a f in $L^p(E;\mathbb{C})$. Allora esiste una sottosuccessione $(f_{n_k})_{k \in \mathbb{N}}$ che converge puntualmente L-q.o. a f in E.

Osservazione 6.43. Notimao che, solo nel caso p = 2, possiamo definire canonicamente il prodotto scalare

$$\langle f \mid g \rangle_{L^2(E;\mathbb{C})} := \int_E f(x) \, \overline{g(x)} \, \mathrm{d}x.$$

Pertanto lo spazio $L^2(E;\mathbb{C})$ è uno spazio di Hilbert.

Lemma 6.44 (Disuguaglianza di Hölder). Siano $p, p' \in [1, \infty]$ t.c. $\frac{1}{p} + \frac{1}{p'} = 1$, si ha che

$$\langle f \mid g \rangle_{L^2(E;\mathbb{C})} \leq \left\| f \right\|_{L^p(E;\mathbb{C})} \left\| g \right\|_{L^{p'}(E;\mathbb{C})}$$

Osservazione 6.45. Notiamo che se p = p' = 2 in Lemma 6.44 otteniamo la disuguaglianza di Cauchy-Schwarz per il prodotto scalare in $L^2(E;\mathbb{C})$.

Lemma 6.46. Sia $1 \le p \le q \le \infty$ e sia E L-misurabile e con misura finita, allora si ha che $L^q(E;\mathbb{C}) \subset L^p(E;\mathbb{C})$ ed in particolare si ha che

$$||f||_{L^p(E;\mathbb{C})} \le |E|^{\frac{q-p}{pq}} ||f||_{L^q(E;\mathbb{C})}.$$

Dimostrazione. È sufficiente notare che $\|f\|_{L^p(E;\mathbb{C})}^p = \langle |f|^p | 1 \rangle_{L^2(E;\mathbb{C})}$ ed applicare il Lemma 6.44 con esponenti r = q/p e r' = q/(q-p)

7 La trasformata di Fourier

Problema: Definire la trasformata di Fourier per funzioni non periodiche definite in tutto ℝ.

Notazione 7.1. Sia $p \in [1, \infty]$ denotiamo con $L^p := L^p(\mathbb{R}; \mathbb{C})$.

Un'introduzione euristica Consideriamo la serie di Fourier di una funzione di periodo T e facciamo tendere $T \to \infty$, abbiamo che

$$f(x) = \sum_{n \in \mathbb{Z}} c_n(f) e^{in\omega x}, \qquad c_n(f) = \frac{1}{T} \int_{-T/2}^{T/2} f(y) e^{-in\omega y} dy.$$

Se T è molto grande ho che

$$\int_{-T/2}^{T/2} f(y) e^{-in\omega y} dy \approx \int_{\mathbb{R}} f(y) e^{-in\omega y} dy =: \hat{f}(n\omega),$$

pertanto

$$f(x) \approx \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} \omega \hat{f}(n\omega) e^{in\omega x}.$$

Pertanto denotando $\omega := \mathrm{d}\xi$, $n\omega := \xi$ nel passaggio al minite possiamo trasformare la somma discreta nell'integrale

$$f(x) \approx \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(\xi) e^{i\xi x} d\xi.$$

Definizione 7.2 (La trasformata di Fourier). Sia $f \in L^1$ definiamo la trasformata di Fourier come la funzione $\mathcal{F}f := \hat{f} : \mathbb{R} \to \mathbb{C}$ definita come

$$\hat{f}(\xi) := \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-ix\xi} dx. \tag{7.1}$$

Lemma 7.3. Sia \mathcal{F} l'operatore $f \in L^1 \mapsto \mathcal{F}f = \hat{f}$ definita in Eq. (7.1), si ha che $\mathcal{F} \in \mathcal{L}(L^1; L^{\infty})$.

Dimostrazione. La dimostrazione è analoga a quella proposta per il Lemma 3.19 e pertanto è omessa. □

Esempio 7.4. Primi esempi di trasformata di Fourier per funzioni L^1 :

1. $f(x) := \mathbb{1}_{[a,b)}(x)$. Si ha che se $\xi \neq 0$

$$\hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{a}^{b} e^{-ix\xi} dx = \frac{i}{\sqrt{2\pi}} \frac{e^{-i\xi b} - e^{-i\xi a}}{\xi},$$

mentre, chiaramente, per $\xi=0$ si ha che $\hat{f}(0)=\frac{b-a}{\sqrt{2\pi}}$. Notiamo dunque che la funzione \hat{f} è continua in zero.

2. $g(x) := e^{-\alpha|x|}, \alpha > 0$ calcoliamo

$$\hat{g}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-x(\alpha \operatorname{sgn} x + \mathrm{i} \xi)} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{x(\alpha - \mathrm{i} \xi)} dx + \frac{1}{\sqrt{2\pi}} \int_{0}^{+\infty} e^{-x(\alpha + \mathrm{i} \xi)} dx.$$

Si ha che

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{x(\alpha - i\xi)} dx = \frac{1}{\sqrt{2\pi}} \frac{1}{\alpha - i\xi}, \qquad \frac{1}{\sqrt{2\pi}} \int_{0}^{+\infty} e^{-x(\alpha + i\xi)} dx = \frac{1}{\sqrt{2\pi}} \frac{1}{\alpha + i\xi},$$

e quindi $\hat{g}(\xi) = \frac{1}{\pi} \frac{\alpha}{\alpha^2 + \xi^2}$.

7.1 Integrali dipendenti da parametri

Teorema 7.5 (di continuità). *Sia I* $\subset \mathbb{R}$ *e h* : $\mathbb{R} \times I \to \mathbb{C}$ *tale che*

- 1. $h(\bullet, t) \in L^1(\mathbb{R}; \mathbb{C})$ per ogni $t \in I$;
- 2. $h(x, \bullet) \in \mathcal{C}(I; \mathbb{C})$ per $q.o. x \in \mathbb{R}$;

se esiste $g \in L^1(\mathbb{R}; \mathbb{R}_+)$ tale che

$$|h(x,t)| \le g(x)$$
 $\forall t \in I, per q.o. x \in \mathbb{R},$ (7.2)

allora la funzione $H: I \to \mathbb{C}$ definita come

$$H(t) := \int_{\mathbb{R}} h(x, t) \, \mathrm{d}x,$$

è continua in I.

Dimostrazione. Notiamo che grazie a (7.2) si ha che $|H(t)| < \infty \ \forall t \in I$. Sia $\epsilon_0 > 0$ ed $\epsilon \in (0, \epsilon_0)$, definiamo $K_{\epsilon}(t) := H(t + \epsilon) - H(t)$, vogliamo dimostrare che per ogni $t \in I$

$$\lim_{\epsilon \to 0} K_{\epsilon}(t) = 0.$$

Notiamo che $K_{\varepsilon}(t) = \int_{\mathbb{R}} k_{\varepsilon}(x,t) \, dx$ dove $k_{\varepsilon}(x,t) := h(x,t+\varepsilon) - h(x,t)$. Da (7.2) si ha che $|k_{\varepsilon}(t,x)| \le 2g(x)$ ed inoltre $k_{\varepsilon}(\bullet,x) \xrightarrow{\varepsilon \to 0} 0$ per q.o. $x \in \mathbb{R}$ grazie al punto 2 nell'enunciato del Teorema 7.5, pertanto possiamo applicare il Teorema 6.19 ed otteniamo che

$$\lim_{\epsilon \to 0} K_{\epsilon}(t) = \lim_{\epsilon \to 0} \int_{\mathbb{R}} k_{\epsilon}(x, t) \, \mathrm{d}x = 0,$$

concludendo.

Esempio 7.6. L'esempio canonico in cui si applicherà il teorema Teorema 7.5 è quando $h(x,\xi) = (2\pi)^{-1/2} f(x) e^{-\mathrm{i}\xi x}$.

Teorema 7.7 (di derivazione sotto segno di integrale). *Sia h* : $\mathbb{R} \times I \to \mathbb{C}$ *tale che*

- 1. $h(\bullet, t) \in L^1(\mathbb{R}; \mathbb{C});$
- 2. $h(x, \bullet) \in C^1(I; \mathbb{C})$ per q.o. $x \in \mathbb{R}$;

e due funzioni $g_i \in L^1(\mathbb{R}; \mathbb{R}_+)$, j = 1, 2 tali che

$$|h(x,t)| \le g_1(x), \qquad |\partial_t h(x,t)| \le g_2(x),$$

allora la funzione

$$H(t) := \int_{\mathbb{R}} h(x, t) dx \in C^{1}(I; \mathbb{C}),$$

e si ha che

$$\partial_t H(t) = \int_{\mathbb{R}} \partial_t h(x, t) dx.$$

7.2 Prime proprietà

Proposizione 7.8 (Proprietà della trasformata di Fourier). Sia $f \in L^1(\mathbb{R}; \mathbb{C})$ e sia \hat{f} definita come in Equazione (7.1). Si ha che

- $i \ \hat{f} \in \mathcal{C} \cap L^{\infty}(\mathbb{R}; \mathbb{C}) \ e \ sia \ ha \ che \ \big\| \hat{f} \big\|_{L^{\infty}} \leq \big\| f \big\|_{L^{1}};$
- ii (Lemma di Riemann-Lebesgue) $\hat{f}(\xi) \rightarrow 0 \ per |\xi| \rightarrow \infty$;
- iii (Traslazione in x) $sia\ x_0 \in \mathbb{R}\ e\ g\ (x) := f\ (x-x_0)$, $si\ ha\ che\ \hat{g}\ (\xi) = e^{-\mathrm{i}x_0\xi}\ \hat{f}\ (\xi)$;
- iv (Traslazione in ξ) $sia\ \xi_0 \in \mathbb{R}\ e\ g\ (x) := e^{\mathrm{i}\xi_0 x} f\ (x)\ allora\ \hat{g}\ (\xi) = \hat{f}\ (\xi \xi_0);$
- v (Cambio di scala) $sia \lambda \in \mathbb{R} \setminus 0$ $e g(x) := f(x/\lambda)$ $allora \hat{g}(\xi) = |\lambda| \hat{f}(\lambda \xi);$
- vi (Coniugio) $sia\ g(x) := \overline{f(x)}$, $si\ ha\ che\ \hat{g}(\xi) = \overline{\hat{f}(-\xi)}$;
- vii (Derivazione in x) $sia\ f \in \mathcal{C}^1 \cap L^1(\mathbb{R};\mathbb{C})\ e\ sia\ f' \in L^1(\mathbb{R};\mathbb{C})\ allora\ \frac{\widehat{\mathrm{d}f}}{\mathrm{d}x}\ (\xi) = \mathrm{i}\xi\ \hat{f}\ (\xi);$

viii (Derivate successive) $sia\ k \in \mathbb{N}\ e\ f \in \mathcal{C}^k \cap L^1(\mathbb{R};\mathbb{C})\ con\ f^{(j)} \in L^1(\mathbb{R};\mathbb{C})\ per\ j=1,...,k\ allora$

$$\widehat{\frac{d^{j}f}{dx^{j}}}(\xi) = (i\xi)^{j} \hat{f}, \qquad j = 1, \dots, k$$

ix (Derivazione in ξ) Sia $f \in L^1(\mathbb{R};\mathbb{C})$ e g(x) := x f(x) tale che $g \in L^1(\mathbb{R};\mathbb{C})$ allora si ha che

$$\frac{\mathrm{d}\hat{f}}{\mathrm{d}\xi}(\xi) = -\mathrm{i}\hat{g}(\xi) = -\frac{\mathrm{i}}{\sqrt{2\pi}} \int_{\mathbb{R}} x f(x) e^{-\mathrm{i}x\xi} \mathrm{d}x$$

- Dimostrazione. i Il fatto che $\hat{f} \in L^{\infty}$ e la diseguaglianza $\|\hat{f}\|_{L^{\infty}} \le \|f\|_{L^{1}}$ è una conseguenza diretta del Lemma 7.3. Resta da dimostrare che $\hat{f} \in \mathcal{C}$. Definisco $h(x,\xi) := \frac{1}{\sqrt{2\pi}} f(x) e^{-ix\xi}$ e noto che $|h(x,\xi)| \le \frac{|f(x)|}{\sqrt{2\pi}}$ per ogni $\xi \in \mathbb{R}$, pertanto $h(\bullet,\xi) \in L^{1}(\mathbb{R};\mathbb{C})$, inoltre $\xi \mapsto h(x,\xi)$ è continua per ogni $x \in \mathbb{R}$ tale che $|f(x)| < \infty$, ossia q.o. Posso dunque applicare il Teorema 7.5 ed ottengo che $\hat{f} \in \mathcal{C}(\mathbb{R};\mathbb{C})$, concludendo.
 - ii La dimostrazione è del tutto analoga al caso periodico, con le opportune modifiche, si veda il Lemma 3.20.
- iii Calcoliamo

$$\hat{g}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} g(x) e^{-ix\xi} dx = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x - x_0) e^{-ix\xi} dx = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(y) e^{-i(y + x_0)\xi} dy = e^{-ix_0\xi} \hat{f}(\xi).$$

iv Calcoliamo

$$\hat{g}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} g(x) e^{-ix\xi} dx = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-ix(\xi - \xi_0)} dx = \hat{f}(\xi - \xi_0).$$

v Calcoliamo

$$\hat{\mathbf{g}}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathbf{g}(x) e^{-ix\xi} dx = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f\left(\frac{x}{\lambda}\right) e^{-ix\xi} dx,$$

fissiamo $y := x/\lambda$ e con tale cambio di variabile otteniamo

$$\hat{g}\left(\xi\right) = \frac{1}{\sqrt{2\pi}} \int_{-\operatorname{sgn}\lambda}^{+\operatorname{sgn}\lambda} \int_{-\operatorname{sgn}\lambda}^{+\operatorname{sgn}\lambda} f\left(y\right) e^{-\mathrm{i}y(\lambda\xi)} \left(\lambda \mathrm{d}y\right) = \frac{|\lambda|}{\sqrt{2\pi}} \int_{\mathbb{R}} f\left(y\right) e^{-\mathrm{i}y(\lambda\xi)} \mathrm{d}y = |\lambda| \, \hat{f}\left(\lambda\xi\right).$$

vi Calcoliamo

$$\hat{g}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \overline{f(x)} e^{-ix\xi} dx = \overline{\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{ix\xi} dx} = \overline{\hat{f}(-\xi)}.$$

vii Siccome $f' \in L^1$ allora posso calcolare la trasformata di Fourier di f', pertanto si ha che, dopo un'integrazione per parti

$$\widehat{f}'(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \partial_x f(x) e^{-ix\xi} dx = \frac{1}{\sqrt{2\pi}} f(x) e^{ix\xi} \Big|_{x=-\infty}^{+\infty} + \underbrace{\frac{i\xi}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-ix\xi} dx}_{=i\xi \, \widehat{f}(\xi)}.$$

È sufficiente dunque a questo punto dimostrare che $\frac{1}{\sqrt{2\pi}}f(x)\,e^{-\mathrm{i}x\xi}\Big|_{x=-\infty}^{+\infty}=0$, ossia che $\left|f(x)\right|\xrightarrow{|x|\to\pm\infty}0$. Supponiamo per assurdo che non sia così, esiste dunque un $\epsilon>0$ ed un M>0 tale che per ogni $x\geq M$ o $x\leq -M$ si ha che $\left|f(x)\right|\geq\epsilon$. Supponiamo che tale condizione si verifiche per gli $x\geq M$ (nell'altro caso si ragiona in maniera strettamente analoga). Si ha dunque che

$$||f||_{L^1} \ge \int_{\{x \ge M\}} \underbrace{|f(x)|}_{\ge \epsilon} dx = \infty,$$

che è ovviamente un assurdo in quanto assumiamo $f \in L^1$. Abbiamo pertanto ottenuto che $\hat{f}'(\xi) = i\xi \hat{f}(\xi)$.

Figura 12: Funzione Gaussiana al variare di $\alpha > 0$

viii Si prova per induzione seguendo i passaggi logici del punto precedente. È lasciato per esercizio.

ix Usiamo il Teorema 7.7 definendo la funzione ausiliaria

$$h : \mathbb{R} \times \mathbb{R} \to \mathbb{C}$$

 $(x,\xi) \mapsto \frac{1}{\sqrt{2\pi}} f(x) e^{-ix\xi}.$

Usiamo come funzioni dominanti le funzioni

$$g_1(x) := |h(x,\xi)| = \left| f(x) \right|, \qquad g_2(x) := \left| \partial_{\xi} h(x,\xi) \right| = \left| \frac{\mathrm{i}x}{\sqrt{2\pi}} f(x) e^{-\mathrm{i}\xi x} \right| = \left| \frac{\mathrm{i}x}{\sqrt{2\pi}} f(x) \right|.$$

Possiamo dunque applicare il Teorema 7.7 ed otteniamo che $\hat{f} \in \mathcal{C}^1(\mathbb{R};\mathbb{C})$ e si ha che

$$\frac{\mathrm{d}\hat{f}}{\mathrm{d}\xi}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \partial_{\xi} h(x,\xi) \,\mathrm{d}x = -\mathrm{i}\hat{g}(\xi).$$

Definizione 7.9 (Funzione Gaussiana). Sia $\sigma > 0$ e $\mu \in \mathbb{R}$, una funzione Gaussiana è una funzione del tipo

$$G_{\sigma,\mu}(x) := \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2},$$

si veda Figura 12.

Proposizione 7.10 (Trasformata di Fourier di una Gaussiana). Sia $\sigma > 0$ e $\mu \in \mathbb{R}$ e $G_{\sigma,\mu}$ come in Definizioni 7.9, si ha che

$$\hat{G}_{\sigma,\mu}(x) = \frac{1}{\sqrt{2\pi}} e^{-\left(\frac{(\sigma\xi)^2}{2} + i\mu\xi\right)}$$

$$(7.3)$$

Dimostrazione. La dimostrazione viene suddivisa in tre passaggi:

Step 1. Caso in cui $(\sigma, \mu) = (1,0)$. Notiamo che $G_{1,0} \in L^1$ così come $x \mapsto xG_{1,0}(x) \in L^1$ pertanto possiamo applicare la Proposizione 7.8-ix ed otteniamo

$$\partial_{\xi} \hat{G}_{1,0}(\xi) = -\frac{i}{\sqrt{2\pi}} \int_{\mathbb{R}} x G_{1,0}(x) e^{-i\xi x} dx.$$
 (7.4)

Ovviamente $G_{1,0} \in \mathcal{C}^{\infty}$ e $G'_{1,0} \in L^1$ pertanto possiamo applicare Proposizione 7.8-vii ed otteniamo

$$i\xi \ \hat{G}_{1,0}(\xi) = \widehat{G'_{1,0}}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} G'_{1,0}(x) e^{-i\xi x} dx = -\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} x G_{1,0}(x) e^{-i\xi x} dx. \tag{7.5}$$

Definiamo ora $A(\xi) := \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} x G_{1,0}(x) e^{-\mathrm{i}\xi x} \mathrm{d}x$, usando le Equazioni (7.4) e (7.5) possono dunque leggersi come

$$\partial_{\xi} \hat{G}_{1,0} = -iA,$$
 $i\xi \hat{G}_{1,0} = -A,$

ossia otteniamo l'equazione differenziale

$$\partial_{\xi} \hat{G}_{1,0} = -\xi \hat{G}_{1,0}. \tag{7.6}$$

L'ODE (7.6) è a variabili separabili e pertanto è esplicitamente risolvibile e si ottiene che

$$\hat{G}_{1,0}(\xi) = Ce^{-\xi^2/2},\tag{7.7}$$

per una costante C > 0 che dobbiamo ancora identificare. Calcoliamo ora $\hat{G}_{1,0}(0)$

$$\hat{G}_{1,0}(0) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} G_{1,0}(x) \, \mathrm{d}x = \frac{1}{\sqrt{2\pi}},\tag{7.8}$$

pertanto le Equazioni (7.7) e (7.8) ci danno $C = \frac{1}{\sqrt{2\pi}}$ ed otteniamo quindi $\hat{G}_{1,0}(\xi) = \frac{1}{\sqrt{2\pi}}e^{-\xi^2/2}$.

Step 2. Caso $(\sigma, \mu) \in (0, \infty) \times \{0\}$. Notiamo che $G_{\sigma,0}(x) = \sigma^{-1}G_{1,0}(x/\sigma)$ pertanto

$$\hat{G}_{\sigma,0}(\xi) = \sigma^{-1} \widehat{G_{1,0}(x/\sigma)}(\xi),$$

ed applichiamo Proposizione 7.8-v ottenendo che $\widehat{G_{1,0}(x/\sigma)}(\xi) = \sigma \widehat{G}_{1,0}(\sigma \xi)$, quindi

$$\hat{G}_{\sigma,0}(\xi) = \frac{1}{\sqrt{2\pi}} e^{-(\sigma\xi)^2/2}.$$

Step 3. Caso $(\sigma, \mu) \in (0, \infty) \times \mathbb{R}$. Ovviamente si ha che $G_{\sigma,\mu}(x) = G_{\sigma,0}(x - \mu)$ pertanto applico Proposizione 7.8-iii e deduco (7.3).

7.3 Relazioni tra integrali doppi e integrali iterati

Domanda: quando si ha che

$$\int_{X\times Y} f(x,y) d(x,y) = \int_{Y} \left(\int_{X} f(x,y) dx \right) dy = \int_{X} \left(\int_{Y} f(x,y) dy \right) dx ?$$

Ossia quando possiamo scambiare l'ordine di integrazione senza modificare l'integrale?

Teorema 7.11 (di Fubini). $Sia\ h \in L^1(\mathbb{R}^2;\mathbb{C})$ allora

- 1. per q.o. $x \in \mathbb{R}$ si ha che $h(x, \bullet) \in L^1(\mathbb{R}; \mathbb{C})$;
- 2. per q.o. $y \in \mathbb{R}$ si ha che $h(\bullet, y) \in L^1(\mathbb{R}; \mathbb{C})$;
- 3. $si\ ha\ che\ \int_{\mathbb{R}}h\left(\bullet,y\right)\mathrm{d}y\in L^{1}\left(\mathbb{R};\mathbb{C}\right);$
- 4. Vale la seguente identità

$$\int_{\mathbb{R}^2} h(x,y) d(x,y) = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} h(x,y) dy \right) dx = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} h(x,y) dx \right) dy.$$

Teorema 7.12 (di Tonelli). *Sia h* : $\mathbb{R}^2 \to \mathbb{R}$ *misurabile e tale che*

- $h(x, y) \ge 0$ q.o. in \mathbb{R}^2 ;
- per q.o. $x \in \mathbb{R}$ si ha che $h(x, \bullet) \in L^1(\mathbb{R}; \mathbb{R})$;
- $si\ ha\ che\ \int_{\mathbb{R}}h\left(\bullet,y\right)\mathrm{d}y\in L^{1}\left(\mathbb{R};\mathbb{R}\right);$

allora $h \in L^1(\mathbb{R}^2; \mathbb{R})$ e si ha che

$$\int_{\mathbb{R}^2} h(x, y) d(x, y) = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} h(x, y) dy \right) dx.$$

Osservazione 7.13. Esiste una versione del Teorema 7.12 con *x* e *y* invertiti.

Definizione 7.14 (Convoluzione di funzioni). Siano $f,g:\mathbb{R}\to\mathbb{C}$ tali che, posto

$$h(x,y) := f(x-y)g(y) \tag{7.9}$$

si ha che $h(x, \bullet) \in L^1(\mathbb{R}; \mathbb{C})$ per q.o. $x \in \mathbb{R}$. Definiamo come *convoluzione* di f e g la funzione data da

$$f * g(x) := \int_{\mathbb{R}} f(x - y) g(y) dy.$$

Osservazione 7.15. In analogia a quanto visto per la convoluzione di funzioni periodiche (si veda Definizioni 3.9) si ha che f * g = g * f. La dimostrazione di tale fatto è lasciata come esercizio.

Teorema 7.16. Siano $f, g \in L^1$ e sia h definita come in Eq. (7.9), si ha che $h(x, \bullet) \in L^1$ per q.o. $x \in \mathbb{R}$ e si ha che

$$||f * g||_{L^1} \le ||f||_{L^1} ||g||_{L^1}.$$

Dimostrazione. Dimostriamo che la funzione $|h(\bullet, \bullet)| \in L^1(\mathbb{R}^2; \mathbb{R}_+)$. Si ha che

• per q.o. $y \in \mathbb{R}$ la funzione $|h(\bullet, y)| \in L^1(\mathbb{R}; \mathbb{R}_+)$. Infatti

$$\int_{\mathbb{R}} |h(x,y)| \, \mathrm{d}x \le \int_{\mathbb{R}} |f(x-y)| \, |g(y)| \, \mathrm{d}x \le |g(y)| \, ||f||_{L^{1}} < \infty \text{ q.o. ,}$$

• $\int_{\mathbb{R}} |h(x, \bullet)| dx \in L^1(\mathbb{R}; \mathbb{R}_+)$, infatti definendo $H(y) := \int_{\mathbb{R}} |h(x, y)| dx$ si ha che

$$||H||_{L^{1}} \le \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x-y)| |g(y)| dx \right) dy = \int_{\mathbb{R}} |g(y)| \left(\int_{\mathbb{R}} |f(x-y)| dx \right) dy \le ||f||_{L^{1}} ||g||_{L^{1}}.$$

Possiamo quindi applicare il Teorema 7.12 e Osservazione 7.13 ottenendo che $h \in L^1(\mathbb{R}^2;\mathbb{C})$. Il Teorema 7.11 ci garantisce inoltre che $h(x, \bullet) = f(x - \bullet) g(\bullet) \in L^1$ e $f * g = \int_{\mathbb{R}} f(\bullet - y) g(y) dy \in L^1$. Inoltre si ha che

$$\begin{split} \|f * g\|_{L^{1}} &\leq \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x - y)| |g(y)| \, \mathrm{d}x \right) \mathrm{d}y \\ &= \int_{\mathbb{R}} |g(y)| \left(\int_{\mathbb{R}} |f(x - y)| \, \mathrm{d}x \right) \mathrm{d}y \\ &= \int_{\mathbb{R}} |g(y)| \left(\int_{\mathbb{R}} |f(t)| \, \mathrm{d}t \right) \mathrm{d}y \qquad t = x - y \\ &= \int_{\mathbb{R}} |g(y)| \, \mathrm{d}y \int_{\mathbb{R}} |f(t)| \, \mathrm{d}t \qquad = \|f\|_{L^{1}} \|g\|_{L^{1}}. \end{split}$$

Un'applicazione diretta del Teorema 7.11 ci da il seguente risultato

Proposizione 7.17 (Trasformata di Fourier della convoluzione). Siano $f, g \in L^1$, si ha che

$$\widehat{f*g}(\xi) = \sqrt{2\pi} \; \widehat{f}(\xi) \, \widehat{g}(\xi) \, .$$

Figura 13: Grafico della funzione p_1 e $p_1 * p_1$

Dimostrazione. Grazie al Teorema 7.16 ed alla Proposizione 7.8-i si ha che

$$\widehat{f * g}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x - y) g(y) dy \right) e^{-ix\xi} dx$$
$$= \int_{\mathbb{R}} g(y) \left(\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x - y) e^{-ix\xi} dx \right) dy,$$

ed applicando Proposizione 7.8-iii ottengo che $\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}f\left(x-y\right)e^{-\mathrm{i}x\xi}\mathrm{d}x=e^{-\mathrm{i}y\xi}\hat{f}\left(\xi\right)$, pertanto

$$\widehat{f * g}(\xi) = \widehat{f}(\xi) \int_{\mathbb{R}} g(y) e^{-\mathrm{i} y \xi} \mathrm{d}y = \sqrt{2\pi} \, \widehat{f}(\xi) \, \widehat{g}(\xi) \,,$$

concludendo.

Esempio 7.18 (Proprietà regolarizzanti della convoluzione). Consideriamo la funzione $p_1(x) := \mathbb{I}_{\left[-\frac{1}{2},\frac{1}{2}\right]}(x)$, calcoliamo

$$p_1 * p_1(x) = \int_{\mathbb{R}} p_1(x-y) p_1(y) dy = \int_{-\frac{1}{2}}^{\frac{1}{2}} p_1(x-y) dy.$$

Calcoliamo ora la funzione

$$p_1(x-y) = \begin{cases} 1 & \text{se } -\frac{1}{2} \le x - y \le \frac{1}{2} \\ 0 & \text{altrimenti} \end{cases}$$

pertanto $p_1(x-y) \neq 0$ se e solamente se $x-\frac{1}{2} \leq y \leq x+\frac{1}{2}$. Sostituendo nell'integrale sopra otteniamo che

$$p_1 * p_1(x) = \int_{\left[-\frac{1}{2}, \frac{1}{2}\right] \cap \left[x - \frac{1}{2}, x + \frac{1}{2}\right]} dy = \left| \left[-\frac{1}{2}, \frac{1}{2} \right] \cap \left[x - \frac{1}{2}, x + \frac{1}{2} \right] \right|.$$

Notiamo che la funzione p_1 non è continua mentre la funzione $p_1 * p_1$ lo è, si veda Figura 13.

Proposizione 7.19 (Proprietà della convoluzione). *Siano* f, g, $h \in L^1$, $\lambda \in \mathbb{C}$, si ha che

- 1. f * g = g * f;
- 2. (f+g)*h=f*h+g*h;
- 3. (f * g) * h = f * (g * h);
- 4. $(\lambda f) * g = \lambda (f * g);$
- 5. se, addizionalmente, $f' \in L^1$ si ha che $\partial_x (f * g) = f' * g$.

7.4 L'anti-trasformata di Fourier

Definizione 7.20. Sia $f \in L^1$ definiamo come *anti-trasformata di Fourier* l'operatore

$$\mathcal{G}f(x) = \check{f}(x) := \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(\xi) e^{i\xi x} d\xi.$$

Domanda. Quando vale l'identità $\mathcal{G}(\mathcal{F}f)(x) = f(x)$ q.o.?

Osservazione 7.21. Notiamo che $\check{g}(x) = \hat{g}(-x)$, pertanto dalla Proposizione 7.8-i ne deduciamo che $\check{g} \in \mathcal{C} \cap L^{\infty}$. Quindi, supponiamo che esista una funzione $f \in L^1$ t.c. $\mathcal{G}(\mathcal{F}f) = f$ q.o., allora esisterà una funzione $h \in \mathcal{C} \cap L^{\infty}$ con h = f q.o. (basta definire $g := \mathcal{F}f$ ed applicare Proposizione 7.8-i a $\mathcal{G}g$).

Il risultato principale della sezione attuale è il seguente:

Teorema 7.22 (di inversione). Sia $f \in L^1$ tale che $\hat{f} \in L^1$ allora per q.o. $(x, \xi) \in \mathbb{R}^2$ si ha che

$$\frac{1}{2\pi} \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f\left(y\right) e^{-\mathrm{i}\xi y} \mathrm{d}y \right) e^{\mathrm{i}x\xi} \mathrm{d}\xi = f\left(x\right), \qquad \qquad \frac{1}{2\pi} \int_{\mathbb{R}} \left(\int_{\mathbb{R}} \hat{f}\left(\eta\right) e^{\mathrm{i}\eta x} \mathrm{d}\eta \right) e^{-\mathrm{i}x\xi} \mathrm{d}x = \hat{f}\left(\xi\right).$$

Corollario 7.23 (Conseguenze del Teorema 7.22). Siano $f, g, \hat{f}, \hat{g}, \widehat{fg} \in L^1$:

- **i** Formula di dualità: $(\mathcal{F} \circ \mathcal{F}) f(x) = f(-x) q.o. in \mathbb{R}$;
- **ii** Teorema di unicità: $se\ \hat{f} = \hat{g}\ in\ \mathbb{R}$, allora $f = g\ q.o.\ in\ \mathbb{R}$;
- iii Trasformata di Fourier del prodotto di funzioni: $\widehat{fg} = \frac{1}{\sqrt{2\pi}} \widehat{f} * \widehat{g}$.

Dimostrazione. I primi due punti sono immediati, dimostriamo il punto iii solamente. Siccome per ipotesi $\hat{f}, \hat{g} \in L^1$ applicando il Teorema 7.16 ottengo che $\hat{f} * \hat{g} \in L^1$, pertanto $\mathcal{G}(\hat{f} * \hat{g})$ è una funzione ben definita ed appartiene allo spazio $\mathcal{C} \cap L^{\infty}$. Possiamo dunque applicare Proposizione 7.17 el punto i ed otteniamo

$$\mathcal{G}\left(\hat{f}*\hat{g}\right)(x) = \mathcal{F}\left(\hat{f}*\hat{g}\right)(-x) = \sqrt{2\pi}\;\mathcal{F}\hat{f}\left(-x\right)\;\mathcal{F}\hat{g}\left(-x\right) = \sqrt{2\pi}\;f\left(x\right)g\left(x\right).$$

Pertanto possiamo applicare l'operatore $\mathcal F$ ad entrambi i lati dell'identità sopra ed applicando il Teorema 7.22 otteniamo che $\hat f*\hat g=\sqrt{2\pi}\ \mathcal F(fg)$.

Domanda. Come possiamo estendere la trasformata di Fourier a funzioni che non sono in L^1 ? Un setting naturale nel quale possiamo lavorare è quello delle funzioni ad energia cinetica finita, ossia L^2 , tuttavia, quando il dominio è illimitato come nel caso di \mathbb{R} , esistono funzioni che sono quadrato integrabili ma non assolutamente integrabili, come ad esempio le funzioni $x \mapsto (1+|x|)^{-1}$ e $x \mapsto \frac{\sin x}{x}$.

Notazione 7.24. Sia $p \in [1,\infty]$, d'ora in poi denotiamo con L_z^p l'insieme delle funzioni $L^p(\mathbb{R};\mathbb{C})$ nella variabile z, ossia

$$L_{z}^{p} := \{z \mapsto f(z) \mid f \in L^{p}(\mathbb{R}; \mathbb{C})\}.$$

Teorema 7.25 (di Plancherel). L'operatore trasformata di Fourier $\mathcal{F}:L^1\cap L^2\to L^\infty\cap\mathcal{C}$ si estende ad un operatore $\bar{\mathcal{F}}:L^2_x\to L^2_\xi$ lineare, continuo e biiettivo che verifica per ogni $f,g\in L^2$

$$\langle \bar{\mathcal{F}}f \mid \bar{\mathcal{F}}g \rangle_{L^2_{\xi}} = \langle f \mid g \rangle_{L^2_{x}},$$

ed in particolare

$$\|\bar{\mathcal{F}}f\|_{L^2_{\xi}} = \|f\|_{L^2_x}.$$

La dimostrazione del Teorema 7.25 richiede una minima conoscenza della teoria delle distribuzioni, pertanto è omessa.

Osservazione 7.26. • Il punto principale del Teorema 7.25 è il seguente: come estendere il dominio dell'operatore trasformata di Fourier? Notiamo ch eil prezzo da pagare è quello di estendere il codominio, ossia possiamo dire che la trasformata di Fourier di una funzione L^2 è "solamente" L^2 e non più $L^{\infty} \cap \mathcal{C}$.

• Notiamo che l'operatore $\bar{\mathcal{F}}$ nel Teorema 7.25 è definito in modo implicito, ossia non è più esprimibile attraverso la formula (7.1), in quanto non siamo sicuri che l'operatore integrale sia ben definito per funzioni in L^2 .

Proposizione 7.27 (Formule di approssimazione di Plancherel-Carleson). $Sia\ f,g\in L^2\ con\ g=\bar{\mathcal{F}}f,\ sia\ inoltre\ \bar{\mathcal{G}}:L^2_{\mathcal{E}}\to L^2_x\ l'operatore\ definito\ come\ \bar{\mathcal{G}}h(x)=\bar{\mathcal{F}}h(-x).\ Si\ ha\ che$

1.
$$\bar{\mathcal{F}}f(\xi) = \lim_{K \to \infty} \frac{1}{\sqrt{2\pi}} \int_{-K}^{K} f(x) e^{-ix\xi} dx \text{ in } L^2 \text{ e q.o. in } \mathbb{R};$$

2.
$$f(x) = \bar{\mathcal{G}}g(x) := \lim_{K \to \infty} \frac{1}{\sqrt{2\pi}} \int_{-K}^{K} g(\xi) e^{ix\xi} d\xi$$
 in L^2 e q.o. in \mathbb{R} .

Dimostrazione. Ricordiamo che per K > 0 abbiamo $p_{2K} := \mathbb{1}_{[-K,K]}$. Sia $f_K := f$ p_{2K} , notiamo che se $f \in L^2$ allora grazie al Lemma 6.46 ho che $f_K \in L^1$, pertanto Proposizione 7.8-i ci assicura che $\widehat{f_K}$ è una funzione ben definita in L^{∞} che si può esprimere esplicitamente come

$$\widehat{f_K}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-K}^{K} f(x) e^{-ix\xi} dx.$$

Definiamo ora la famiglia di funzioni

$$\phi_K(x) := |f(x) - f_K(x)|^2 = |f(x)|^2 |p_{2K}(x) - 1|^2,$$

si ha che

- $\phi_K(x) \xrightarrow{K \to \infty} 0$ per ogni $x \in \mathbb{R}$;
- $|\phi_K(x)| \le |f(x)|$ per ogni K > 0 e $x \in \mathbb{R}$;

posso pertanto applicare il Teorema 6.19 ed ottengo che $\phi_K \xrightarrow[K \to \infty]{L^1} 0$, ossia

$$\lim_{K \to \infty} \int_{\mathbb{R}} \left| f_K(x) - f(x) \right|^2 dx = 0 \qquad \Leftrightarrow \qquad f_K \xrightarrow{L^2} f.$$

Notiamo ora che l'operatore $\bar{F}: L_x^2 \to L_{\bar{x}}^2$ è *continuo*, pertanto

$$\bar{\mathcal{F}}f_K \xrightarrow{L^2} \bar{\mathcal{F}}f,$$

tuttavia $\bar{\mathcal{F}}$ è un'estensione di \mathcal{F} , pertanto siccome $f_K \in L^1$ ho che $\bar{\mathcal{F}} f_K = \mathcal{F} f_K$, quindi ottengo che

$$\mathcal{F}f_K = \frac{1}{\sqrt{2\pi}} \int_{-K}^{K} f(x) e^{-i \cdot x} dx \xrightarrow{L^2} \bar{\mathcal{F}}f,$$

dimostrando il primo punto. Il punto 2 si dimostra in maniera analoga.

Definizione 7.28 (Nucleo di convoluzione). Sia $\eta \in L^1(\mathbb{R}; \mathbb{R}_+)$ e tale che $\|\eta\|_{L^1(\mathbb{R}; \mathbb{R}_+)} = 1$ allora η si dice *nucleo di convoluzione*.

Esempio 7.29. Nuclei di convoluzione standard:

- 1. $G(x) := \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$, la Gaussiana normalizzata detta anche *nucleo di Gauss*;
- 2. $P(x) := \frac{1}{\pi} \frac{1}{1+x^2}$ detto *nucleo di Poisson*;
- 3. Sia

$$c_0 := \int_{-1}^1 e^{-\frac{1}{1-x^2}} dx,$$

e definiamo

$$M(x) := \begin{cases} c_0^{-1} e^{-\frac{1}{1-x^2}} & \text{se } |x| < 1\\ 0 & \text{se } |x| \ge 1 \end{cases}.$$

Notiamo che $\lim_{x\to\pm 1^{\mp}}M(x)=0$, pertanto M è continua in ± 1 . Addizionalmente risulta che (dimostrazione omessa) $M\in\mathcal{C}^{\infty}(\mathbb{R};\mathbb{R})$.

Osservazione 7.30. Notiamo che M nell'esempio 7.29 è l'unico nucleo con *supporto compatto*, ossia M è identicamente nulla al di fuori di un compatto (in questo caso particolare l'insieme [-1,1]).

Osservazione 7.31. Notiamo che, dato $k \in \mathbb{N} \setminus 0$ e definendo $\eta_k(x) := k\eta(kx)$ otteniamo che η_k è nucleo di convoluzione secondo la Definizioni 7.28, infatti

$$\int_{\mathbb{R}} \eta_k(x) \, \mathrm{d}x = k \int_{\mathbb{R}} \eta(kx) \, \mathrm{d}x = \int_{\mathbb{R}} \eta(y) \, \mathrm{d}y = 1.$$

Lemma 7.32. Sia η un nucleo di convoluzione come da Definizioni 7.28, sia $f \in \mathcal{C} \cap L^{\infty}(\mathbb{R}; \mathbb{C})$, si η_k definita come in Osservazione 7.31, si ha che

$$\lim_{k \to \infty} f * \eta_k(x) = f(x), \qquad q.o. \ x \in \mathbb{R}.$$

Dimostrazione. Si ha, usando Proposizione 7.19-1, che

$$f * \eta_k(x) = \eta_k * f(x) = \int_{\mathbb{R}} \eta_k(x - y) f(y) dy = k \int_{\mathbb{R}} \eta(k(x - y)) f(y) dy = \int_{\mathbb{R}} \eta(z) f(x - \frac{z}{k}) dz, \tag{7.10}$$

considero ora la successione

$$z \mapsto \eta(z) f\left(x - \frac{z}{k}\right), \qquad \forall x \in \mathbb{R}, \ k \in \mathbb{N} \setminus 0,$$
 (7.11)

indicizzata da $k \in \mathbb{N} \setminus 0$, di funzioni di variabile indipendente z. Si ha che

- $\eta(z) f\left(x \frac{z}{k}\right) \xrightarrow{k \to \infty} \eta(z) f(x)$ per ogni $(x, z) \in \mathbb{R}^2$ grazie al fatto che f è continua in \mathbb{R} ;
- $|\eta(z) f(x \frac{z}{k})| \le |\eta(z)| \sup_{\zeta \in \mathbb{R}} |f(\zeta)| = \eta(z) \|f\|_{L^{\infty}}$, pertanto la funzione $z \mapsto \eta(z) \|f\|_{L^{\infty}}$ domina (in modulo) ogni elemento della successione definita in Equazione (7.11) uniformemente in $k \in \mathbb{N} \setminus 0$, inoltre

$$\int_{\mathbb{R}} \eta(z) \|f\|_{L^{\infty}} dz = \|\eta\|_{L^{1}} \|f\|_{L^{\infty}} < \infty,$$

per ipotesi;

possiamo quindi applicare il Teorema 6.19 ed otteniamo che

$$\lim_{k \to \infty} \int_{\mathbb{R}} \eta(z) f\left(x - \frac{z}{k}\right) dz = \int_{\mathbb{R}} \eta(z) f(x) dz = f(x), \tag{7.12}$$

per q.o. $x \in \mathbb{R}$. Combiniamo le Equazioni (7.10) e (7.12) ed otteniamo il risultato cercato.

7.4.1 Dimostrazione del Teorema 7.22

Osservazione 7.33. Ricordiamo che nell'enunciato del Teorema 7.22 richiediamo $\hat{f} \in L^1_{\xi}$ in maniera che $\mathcal{G}\hat{f}$ sia ben definita.

Supponiamo, per semplicità, che $f \in \mathcal{C} \cap L^{\infty} \cap L^{1}$. Tale scelta non è un'ostruzione findamentale nella dimostrazione del Teorema 7.22, ma solo una scelta pedagogica attuata per semplificare la dimostrazione. Vogliamo dimostrare che

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{f}(\xi) e^{ix\xi} d\xi = \frac{1}{2\pi} \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(y) e^{-iy\xi} dy \right) e^{ix\xi} d\xi.$$
 (7.13)

Per ogni $k \in \mathbb{N} \setminus 0$ definiamo

$$v_k(\xi) := e^{-\frac{1}{2} \left(\frac{\xi}{k}\right)^2} = k\sqrt{2\pi} G_{k,0}(\xi), \tag{7.14}$$

e consideriamo la serie di operatori

$$\mathcal{G}_{k}\hat{f}(x) := \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{f}(\xi) v_{k}(\xi) e^{ix\xi} d\xi = \mathcal{G}(\hat{f}v_{k})(x),$$

e vogliamo dimostrare le seguenti identità (q.o.)

$$\lim_{k \to \infty} \mathcal{G}_k \hat{f}(x) = f(x) \tag{7.15}$$

$$\lim_{k \to \infty} \mathcal{G}_k \hat{f}(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{f}(\xi) \, e^{ix\xi} d\xi \tag{7.16}$$

ed ovviamente combinando le Eq. (7.15) e (7.16) otteniamo (7.13) q.o. in \mathbb{R} .

Step 1 (Dimostrazione di (7.15)). Notiamo che

$$\mathcal{G}_{k}\hat{f}(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(y) e^{-iy\xi} dy \right) v_{k}(\xi) e^{ix\xi} d\xi,$$

posso dunque definire, per ogni $x \in \mathbb{R}$, la funzione

$$\phi_x(y,\xi) := f(y)v_k(\xi)e^{i(x-y)\xi},$$

ovviamente si ha che $|\phi_x(y,\xi)| \le |f(y)| |v_k(\xi)|$, pertanto, visto che $f \in L^1_y$ e $v_k \in L^1_\xi$ per ogni $k \in \mathbb{N} \setminus 0$ ottengo che $\phi_x \in L^1\left(\mathbb{R}^2_{(y,\xi)};\mathbb{C}\right)$ per ogni $x \in \mathbb{R}$. Possi dunque applicare il Teorema 7.11 alla funzione ϕ_x ed ottengo che

$$\mathcal{G}_{k}\hat{f}(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} \phi_{x}(y,\xi) d\xi dy$$
$$= \frac{1}{2\pi} \int_{\mathbb{R}} f(y) \left(\int_{\mathbb{R}} v_{k}(\xi) e^{i(x-y)\xi} d\xi \right) dy$$

Notiamo che

$$\int_{\mathbb{R}} v_k(\xi) e^{i(x-y)\xi} d\xi = \sqrt{2\pi} \mathcal{F}_{\xi \to y-x} (v_k(\xi)) (y-x),$$

inoltre usando Equazioni (7.3) e (7.14) otteniamo che

$$\mathcal{F}_{\xi \to X}(\nu_k(\xi))(X) = k e^{-\frac{(kX)^2}{2}},$$

quindi, usando la notazione introdotta in Osservazione 7.31

$$\int_{\mathbb{T}} v_k(\xi) e^{i(x-y)\xi} d\xi = k\sqrt{2\pi} e^{-\frac{k^2(x-y)^2}{2}} = k 2\pi G_{1,0}(k(x-y)) = 2\pi (G_{1,0})_k(x-y),$$

pertanto usando Proposizione 7.19-1 e Lemma 7.32

$$\mathcal{G}_k \hat{f}(x) = \int_{\mathbb{R}} \left(G_{1,0} \right)_k \left(x - y \right) f\left(y \right) dy = f * \left(G_{1,0} \right)_k (x) \xrightarrow{k \to \infty} f(x),$$

per q.o. $x \in \mathbb{R}$.

Step 2 (Dimostrazione di (7.16)). Osserviamo che (cf. (7.14))

$$\lim_{k\to\infty}\hat{f}\left(\xi\right)\nu_{k}\left(\xi\right)e^{\mathrm{i}\xi x}=\hat{f}\left(\xi\right)e^{\mathrm{i}\xi x},$$

per ogni $(x, \xi) \in \mathbb{R}^2$. Inoltre

$$\left| \hat{f}(\xi) v_k(\xi) e^{i\xi x} \right| \le \left| \hat{f}(\xi) \right|,$$

quindi possiamo applicare il Teorema 6.19 ed otteniamo che

$$\lim_{k\to\infty}\int_{\mathbb{R}}\hat{f}(\xi)\,\nu_k(\xi)\,e^{\mathrm{i}\xi x}\mathrm{d}\xi=\int_{\mathbb{R}}\hat{f}(\xi)\,e^{\mathrm{i}\xi x}\mathrm{d}\xi,$$

per q.o. $x \in \mathbb{R}$, dimostrando (7.16).

Mettiamo assieme i risultati dimostrati nelle Equazioni (7.15) e (7.16) ed otteniamo il risultato enunciato nell'Equazione (7.13), concludendo. \Box