Applying decision intelligence to an industrial filtration system

K.C. Lewis

Johns Hopkins University Applied Physics Laboratory Force Projection Sector October 10, 2023

Critical Systems Thinking [Jackson, 2019]

Designed to

- incorporate progress made in systems thinking over many decades
- avoid the biases of looking through just one lens
- leverage other approaches, such as decision intelligence, strategic options, system dynamics, etc

Critical Systems Thinking is a meta-framework for choosing the best combination of approaches for a given scenario

Decision Intelligence [Pratt and Malcolm, 2023]

Designed to

- enhance decision making in mission-centric scenarios
- avoid common pitfalls of group-based problem solving
- optimize use of decision assets (data mining, simulations, etc)

We sketch an end-to-end application of Decision Intelligence, showing how it can empower decision makers by leveraging decision assets as effectively as possible.

Objective statement for a hypothetical shipping company

"How can we improve the efficiency of our contaminant filtering systems?"

We frame the objective more precisely by answering questions such as...

- who has the authority to make the decisions?
- who has responsibility for the outcomes?
- what are the hard constraints?

Brainstorming outcomes

Putting ourselves in the decision maker's position, we could try to...

- reduce total cost of running the systems
- increase the volumetric flow rate of purified fluid

Brainstorming actions

Actions that might get us to those goals:

- use different filter designs
- optimize maintenance
- purge filters with chemical treatments
- increase pressure differential to eject more biomass

Causal decision diagram

System dynamics

$$\dot{C} = \delta V - \mu MC$$

System vector field

Sample machine parts/maintenance data

pump type	filter type	maintenance schedule		longevity
1	1	0		5
0	1	1		2
1	0	0	•••	5

Decision tree classifier

How well do the models do?

Both the decision tree and the neural net perform at around 64% accuracy, with similar confusion matrices:

Figure: Confusion matrices for decision tree (left) and neural net (right) classifiers.

Summary

- Critical systems thinking is a general framework for systems thinking that encourages tailoring other approaches
- On of those of sub-frameworks, Decision Intelligence (DI), is an especially powerful approach for mission-centric problem-solving
- Using DI, we can create a causal decision diagram (CDD) as the basis of a decision model
- Machine learning models and other assets support the links in the CDD, which can be converted into a "digital twin" if the benefits of doing so outweigh costs
- We can use the resulting decision model as a collaborative and iterative approach for making complex, goal-directed decisions

References

MC Jacson (2019)

Critical Systems Thinking and the management of complexity *Wiley*

LY Pratt and NE Malcom (2023)

The Decision Intelligence handbook: practical steps for evidence-based decisions in a complex world *O'Reilly*

The End

Questions? Comments?