

ZX-Calculus

Manuel Lerchner

11.06.2023

What is ZX-Calculus?

- A graphical language extending circuit diagrams
 - Allows breaking up logic gates into smaller atoms
 - The resulting graph is a *low-level* representation of the circuit
- Using transformations on those atoms we can visually deduce
 - Properties of circuits
 - Entangled states
 - How quantum protocols work

<u>Applications</u>

- Quantum circuit optimization
 - Reduce complexity of circuits
 - T-count reduction
 - Important metric for performing fault tolerant computations
- Circuit Compilation
 - Reducing high level quantum algorithms to run on a target architecture

Quantum Circuit optimization

- Circuits use many abstract gates
- Problems of real quantum computers:
 - Limited set of gates
 - Limited connectivity between qubits
 - Noise
- Special circuit transformations
 - To swap qubits, so they can be entangled
 - Reduce depth of circuit (noise issues)
 - Allow only some set of gates
- ZX-Calculus can solve this
 - Can try to stick to those rules during the reconstruction phase

Quantum Circuit optimization

- Goal: Transform circuits into equivalent circuits
 - New Circuit must have fewer / simpler gates

- Why use ZX-Calculus for this?
- Circuit simplifications also exist for logic gates:

Unfortunately, there are more ...

```
-S B_1 = B_1 B S -B
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -\overline{S} + \overline{B} = -\overline{B} + \overline{S} + \overline{S} + \overline{S} + \overline{B} + \overline{B}
-S -S -S -S -S -S -S -S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -\overline{H} = \overline{H} \times \overline{S} + \overline{S} + \overline{S} + \overline{H} +
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -S-11-S-11-S-
                                                                                                                                                                                                  A) = (1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           B_1 = B_1 = B_1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                B_1 = B_1 X
                                                                                                                                                           B_1 = A_1  B_1  B_2  B_3  B_4  B
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   B_3 = B_3 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                B_{j} = B_{j} \times
                                                                                                                                                           B = - A)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   <u>S</u> <u>B</u> = <u>B</u> <u>S</u> <u>B</u> <u>S</u> <u>B</u>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                B_3 = B_3 \overline{X}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                \frac{1}{\sqrt{n}} = \frac{1}{\sqrt{n}} \cdot \frac{|S|}{\sqrt{n} \cdot |S|} \cdot \omega^7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   B_{4} = B_{4} = B_{5} = B_{5}
                                                                                                                                                           B3 = B3 | H + H
                                                                                                                                                           B_{i} = B_{i
                                                                                                                                                           n_{s} = n_{s} \times S \times S \times \omega
                                                                                                                                                           B_1 = B_1
                                                                                                                                                           B_1 = B_1 = B_2 = B_3 = B_4 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -(x)-(x) = -(x)
                                                                                                                                                           n_{i} = \frac{1}{12} n_{i} \times \frac{1}{12} \times \frac{1}{1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -(3)-(3)- = -(3)-
                                                                                                                                                           B = B | B | S | S | S | ω · ω
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     -S = -S -S -S -\omega^2
```


And more ...

And even more ...

- Optimizing a circuit classically is unpractical
 - Finding an optimal simplification path is hard
 - Huge number of identities to consider
- ZX-Calculus solves this problem
 - It has a massively reduced set of simplification rules
 - Finding the optimal path is still hard, but its manageable

T-Count Optimization

- Quantum computers are affected by noise
- Clifford+T Circuits can be made tolerant to noise
 - Problem: Many new T-Gates need to be introduced
 - Difficult to simulate (Hardware Limits, high latency)
- ZX-Calculus can simplify such circuits

Decomposition of a Toffoli Gate: TCount = 7

Mathematical Background: Category Theory

- Category C consists of objects and arrows (/morphisms)
 - − Objects: {*A*, *B*, *C*, *D*}
 - Morphisms: $f: A \rightarrow B$, $g: B \rightarrow C$, $h: C \rightarrow D$
- Every object *A* has an identity function
 - $-id_{A}:A\rightarrow A$
 - Represent *loops* in the diagram
- Naturally there exists an associative Composition (o)
 - Which is just the application of f and then g in a sequence
 - Example: $g \circ f : A \rightarrow C$
 - Composition with id does nothing

$$-id_B \circ f = f \circ id_A = f : A \to B$$

$$h \circ g \circ f : A \to D$$

Extension: Monoidal Category

Extend a Category C with:

- An associative Bifunctor: ⊗: C × C → C
- A special object I ∈ obj(C) with
 - $-A \otimes I = A \otimes I = A$ for all objects A

Example:

- For the morphisms: $f: A \rightarrow B$, $g: B \rightarrow C$, $h: C \rightarrow D$
- We can apply them in parallel

$$- f \otimes g \otimes h : A \otimes B \otimes C \rightarrow B \otimes C \otimes D$$

- So far: Very similar to regular circuit calculations
 - Matrix product for sequential gates
 - Tensor product for parallel gates

Special morphisms in Monoidal Categories

- Preparing States:
 - ν : I → A (Ket)
 - Creates State A out of nothing
- Erasing States:
 - $-\phi^{\dagger}$: $A \rightarrow I$ (Bra)
 - Deletes state A

Extension: Symmetric Monoidal Category

- Extend a Monoidal Category C with:
 - Special tensor product: Swap isomorphism
 - $\ \sigma_{A,B}:A\otimes B\to B\otimes A$
 - For all $A, B \in obj(C)$
- Some other rules must hold:
 - "Push through" rule
 - "Double Swap = Identity" rule

Extension: Compact Monoidal Category

- If a monoidal category \mathcal{C} has:
 - A dual object A^* for every object $A \in obj(C)$
 - Special morphisms:
 - Unit: $\eta_A: I \to A^* \otimes A$ - Counit: $\epsilon_A: A \otimes A^* \to I$
- The combining rule must hold:
 - Meaning: $(\epsilon_A \otimes id_A) \circ (id_A \otimes \eta_A) = id_A$ for all $A \in obj(\mathcal{C})$
 - "Push through" rule also holds
- Why do all this mathematical mess?
 - It can just be seen graphically!
 - Just follow the lines
 - "Only Topology Matters"

$$\eta_A:I\to A^*\otimes A$$

Example Network

Concrete Category: FDHilb

- Objects: Hilbert Spaces / (Vector Spaces)
 - Concrete $I = \mathbb{C}$, $Q = \mathbb{C}^n$
- Morphisms: Linear Maps
 - $-m=\mathbb{C}^{m\times n}$
- Tensor Product: Kronecker Product
- Composition: Matrix Product

Skeleton of Entanglement Circuit

- 1. Create two |0> States
- 2. Apply Hadamard
- 3. Apply CNOT

ZX-Notation

Main idea of ZX-Calculus

- Represent quantum circuit visually as network of morphisms
- Apply simplifications on the network
- "Only topology Matters"
 - If it looks like the same graph its the same thing
 - Guaranteed by the rules of the underlying Category

- We represent this atoms using spiders
- Spiders represent the morphisms from before

<u>Spiders</u>

- Spiders are the nodes in the graph
 - Arbitrary number of inputs / outputs
 - Represent linear maps
- Spider variations:
 - Green
 - Defined using with eigenbasis of Z matrix
 - Red
 - Defined using with eigenbasis of X matrix
 - Can have a phase angle α

Spiders as linear maps

• Each spider is a linear map

$$- GreenSpider(n,m)_{\alpha} = \underbrace{|0 \dots 0\rangle\langle 0 \dots 0|}_{m} + e^{i\alpha}\underbrace{|1 \dots 1\rangle\langle 1 \dots 1|}_{m}$$

$$- RedSpider(n,m)_{\alpha} = \underbrace{\lfloor + \cdots + \rfloor}_{m} \underbrace{\langle + \cdots + \rfloor}_{n} + e^{i\alpha} \underbrace{\lfloor - \cdots - \rfloor}_{m} \underbrace{\langle - \cdots - \rfloor}_{n}$$

- GreenSpider(5,3)_{α} represents a $2^3 \times 2^5 = 8 \times 32$ matrix
 - Not unitary
 - Not even square
- Spiders extend classical gates into non-dimensional matrices

Spiders for Basis States

- Spiders can represent States and Gates
 - Global scalars are omitted

• X-Basis:
$$GreenSpider(n,m)_{\alpha} = \underbrace{|0\dots0\rangle\langle 0\dots0|}_{m} + e^{i\alpha}\underbrace{|1\dots1\rangle\langle 1\dots1|}_{m}$$

- GreenSpider
$$(0,1)_0 = |0\rangle \cdot 1 + e^{i\cdot 0}|1\rangle \cdot 1 = \begin{bmatrix} 1\\1 \end{bmatrix} \propto |+\rangle$$

- GreenSpider
$$(0,1)_{\pi} = |0\rangle \cdot 1 + e^{i \cdot \pi} |1\rangle \cdot 1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \propto |-\rangle$$

• **Z-Basis:**
$$RedSpider(n,m)_{\alpha} = \underbrace{\lfloor + \cdots + \rangle \langle + \cdots + \rfloor}_{m} + e^{i\alpha} \underbrace{\lfloor - \cdots - \rangle \langle - \cdots - \rfloor}_{m}$$

-
$$RedSpider(0,1)_0 = |+\rangle \cdot 1 + e^{i \cdot 0}|-\rangle \cdot 1 = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \propto |0\rangle$$

-
$$RedSpider(0,1)_{\pi} = |+\rangle \cdot 1 + e^{i \cdot \pi}|-\rangle \cdot 1 = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \propto |1\rangle$$

$$\bigcirc - = |+\rangle$$

$$\pi$$
 = $|-\rangle$

$$\bigcirc - = |0\rangle$$

$$\pi$$
 = $|1\rangle$

Spiders for Pauli Matrices

• Pauli-Z:
$$GreenSpider(n,m)_{\alpha} = \underbrace{|0\dots0\rangle}_{m}\underbrace{\langle 0\dots0|}_{n} + e^{i\alpha}\underbrace{|1\dots1\rangle}_{m}\underbrace{\langle 1\dots1|}_{n}$$

$$-(\pi)$$
 = 2

-
$$GreenSpider(1,1)_{\pi} = |0\rangle\langle 0| + e^{i\cdot\pi}|1\rangle\langle 1| = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = Z$$

• Pauli-X:
$$RedSpider(n,m)_{\alpha} = \underbrace{\lfloor + \cdots + \rangle \langle + \cdots + \rfloor}_{m} + e^{i\alpha} \underbrace{\lfloor - \cdots - \rangle \langle - \cdots - \rfloor}_{m}$$

$$-(\pi)$$
 = X

-
$$RedSpider(1,1)_{\pi} = |+\rangle\langle +| + e^{i\cdot\pi}|-\rangle\langle -| = \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} = X$$

Pauli-Y:

$$- \ \textit{RedSpider}(1,1)_{\pi} \circ \textit{GreenSpider}(1,1)_{\pi} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \circ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \propto Y$$

Spider for Identity Matrix

- Every spider of arity 2 and phase angle $\alpha = 0$ is an identity matrix
 - If spider has no angle, it implicitly means $\alpha = 0$

- GreenSpider
$$(1,1)_0 = |0\rangle\langle 0| + e^{i\cdot 0}|1\rangle\langle 1| = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = id_2$$

$$- RedSpider(1,1)_0 = |+\rangle\langle +| + e^{i\cdot 0}| -\rangle\langle -| = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = id_2$$

- This is an important rewrite rule!
 - Identity spiders can just be removed from the diagram

Spider for Bell State

Spiders can generate entangled States

$$- GreenSpider(0,2)_0 = |00\rangle \cdot 1 + e^{i \cdot 0}|11\rangle \cdot 1 = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix} \propto |\Phi^+\rangle$$

- Using the identity rule from before we get a CAP
 - |Φ⁺⟩ represent the Unit-Morphism from the compact monoidal category

Combining Spiders

- Bigger Graphs can be constructed by connecting spiders
 - Every output of a spider gets connected to the input of another spider
 - Again: Only Topology matters
- The resulting graph can represent a quantum circuit
 - But not every graph is a valid circuit

Calculating a Graph

- To calculate the matrix representation
 - Divide the graph into regions
 - Each region must contain exactly one spider
- Simplification works just like normal circuits
 - "parallel" parts are combined using the tensor product
 - "sequential" parts are combined using the matrix product
- The resulting matrix represents the circuit
 - It is not necessary square / unitary

Example: CNOT

1. Evaluate parallel Sections

- $-A = A_1 \otimes A_2 = id_2 \otimes RedSpider(1, 2)$
- $B = B_1 \otimes B_1 = GreenSpider(2,1) \otimes id_2$

2. Combine sequential Regions

- $CNOT = B \circ A$

Example: CNOT Parallel Sections

•
$$A = id_2 \otimes RedSpider(1,2) = id_2 \otimes (|+\rangle\langle + +|+|-\rangle\langle - -|)$$

$$-A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Example: CNOT Sequential Sections

•
$$R = B \circ A$$

Where to draw the Regions?

- There may exist multiple ways of drawing the regions
 - Obvious, as you are allowed to move components around
 - "Only topology matters"
- This leads to different matrices in the calculation process
 - But the final matrices are always equivalent
 - (neglecting the global scalar factor)
- But why do it this way?
 - It is just as bad as the classical matrix approach

Simplification Rules

- We don't want to calculate the graph using its matrix form
- There exist many rules to simplify ZX-Graphs
 - But far fewer rules as for classical circuits
- We can apply the rules anywhere in the graph if:
 - The pattern for the substitution matches
 - The order of the input / output wires of regions are unchanged
 - All rule still holds if the spiders flip colors

Spider Fusion

- Idea: Two spiders of the same color fuse together
 - Phase angles add up
 - Can simplify graph a lot
- This rule allows to freely change input and outputs!
 - Only topology matters

Hopf Rule

 Idea: If two spiders of different color are connected by 2 lines, both lines can be deleted

State Copy Rules

- Idea: "Green copies Red", "Red copies Green"
 - Only works for computational basis states
 - $-|0\rangle$, $|1\rangle/|+\rangle$, $|-\rangle$ depending on colors

Bi-Algebra Rule

- Analog to digital logic
 - Create XOR using spider fusion
 - Use Copy-Rule from before

π -Commutation

- Idea: A spider with angle π copy through a spider of opposite color
 - The phase of the other spider gets flipped

Color Change Rule

- Idea: We can change the color of a single spider
 - But we need to add Hadamard gates to all its inputs / outputs to compensate
- Analog: A Hadamard Gate can push through a spider
 - By copying itself to every other output

Hadamard Gate

- Hadamard Gates can be constructed using euler angles
 - Set up Hadamard as sequence of rotations

Hadamard Gate Cancelation

Two Hadamard Gates should cancel!

Using a visual proof, we see that the rule holds

— H— Н—

ТИП

 $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$

 $\frac{\pi}{2}$ (Translate to ZX)

 $-\left(\frac{\pi}{2}\right)-\left(\frac{\pi}{2}\right)-\left(\pi\right)$

(Spider-Fusion)

- $-\frac{\pi}{2}$
- $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$
- (π -Commutation)

 $-\frac{3\pi}{2}$ 0 $\frac{7}{2}$

(Spider-Fusion)

(Identity-Removal)

(Spider-Fusion)

(Modulo)

(Identity-Removal)

Circuit containing 3 alternating CNOTS

- Transform into ZX-Diagram
 - Remember CNOT Gate from earlier

ТИП

- Apply the bi-algebra rule
 - We need to morph the graph first!

- Morph the ZX-Diagram
 - Allowed, since we are allowed to move stuff freely
 - Guaranteed by underlying category

- Apply spider fusion rule
 - Attention, two wires remain between the first nodes!

Apply the Hopf-Law

Identity Removal

- Complicated CNOT circuit is actually a swap operation
 - Since we are working at the atom-level many other circuits can be simplified like this
 - Extracting back quantum circuits is hard
 - But it's possible for simple circuits
 - (In general: Graph needs to have "gFlow")

Translating Circuits

identity		$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
Pauli Z	(π)	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
Pauli X NOT gate		$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
Pauli Y	i — (T)—	$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$
Hadamard gate		$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$
S gate	$\left(\frac{\pi}{2}\right)$	$\begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$
V gate	$ \left(\frac{\pi}{2}\right)$ $-$	$\frac{1}{2} \begin{pmatrix} 1+i & 1-i \\ 1-i & 1+i \end{pmatrix}$
T gate	<u></u>	$\begin{pmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{pmatrix}$

CNOT gate CX gate	$\sqrt{2}$	$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$
CZ gate	$\sqrt{2}$	$ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} $

Challenge: Try to prove this identity!

From Quantum Circuits to ZX-Diagrams

- Example Circuit:
 - Custom gates need to be handled separately
- Backwards direction also possible

Quantum Teleportation

Quantum Teleportation

Shared Bell State, is just a bent wire!

Toffoli Gate

- Toffoli gate calculates a "quantum-AND" between two states
 - We introduced a new Generator: A "H-Box" to simplify the circuit. (Normally it has 25 Spiders)

Toffoli Gate

• Toffoli Gate applied to |111)

<u>Completeness</u>

- ZX Calculus is complete
 - Any two ZX-Graphs for the same Quantum circuit can be transformed into each other
 - By just using the rules from before!
- This means that if a simpler circuit exists, it can be found using ZX-calculus
 - But the path between those transformations may traverse invalid quantum circuits

Quellen

- Circuit compilation: https://www.cda.cit.tum.de/files/eda/2020 iscas efficient correct compilation quantum circuits.pdf
 - https://quantum-journal.org/papers/q-2020-06-04-279/
- Mathematical Background https://www.youtube.com/watch?v=UQTTJV0ejfw
- Teleportation https://pennylane.ai/qml/demos/tutorial-zx-calculus

<u>Images</u>

- Circuit optimization P.4: https://quantum-journal.org/papers/q-2020-06-04-279/
- Spider Fusion P.33: https://www.cs.ox.ac.uk/people/bob.coecke/ZX-lectures_JPG.pdf