Advances in Quantitative MRI: Acquisition, Estimation, and Application

Gopal Nataraj

Dissertation Defense March 23, 2018

Dept. of Electrical Engineering and Computer Science University of Michigan

Example: flow imaging

¹figure borrowed from [Hope et al., 2013]

Example: diffusion imaging

qualitative fractional anisotropy (FA) directional FA²

²figure borrowed from www.diffusion-imaging.com

Example: myelin water imaging

³figure adapted from [Nataraj et al., 2017a]

Goal: rapidly and accurately localize biomarkers from MR data

Goal: rapidly and accurately localize biomarkers from MR data

• biomarker measurable tissue property (e.g., flow rate) that indicates a biological process (e.g., blockage) characteristic to specific disorders (e.g., stroke)

Goal: rapidly and accurately localize biomarkers from MR data

- biomarker measurable tissue property (e.g., flow rate)
 that indicates a biological process (e.g., blockage)
 characteristic to specific disorders (e.g., stroke)
- localize produce quantitative MR images

Goal: rapidly and accurately localize biomarkers from MR data

- biomarker measurable tissue property (e.g., flow rate)
 that indicates a biological process (e.g., blockage)
 characteristic to specific disorders (e.g., stroke)
- localize produce quantitative MR images
- accurately physically realistic signal models
- rapidly fast acquisition, fast estimation

Goal: rapidly and accurately localize biomarkers from MR data

- biomarker measurable tissue property (e.g., flow rate)
 that indicates a biological process (e.g., blockage)
 characteristic to specific disorders (e.g., stroke)
- localize produce quantitative MR images
- accurately physically realistic signal models
- rapidly fast acquisition, fast estimation

Challenge: rapidly vs. accurately often competing goals

- more accurate models typically depend on more markers
- precisely estimating more markers usually requires longer scans and more computation

Advances in Quantitative MRI:

• Acquisition [Ch. 4]

How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

Advances in Quantitative MRI:

• Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

• Estimation [Ch. 5]
Given accurate models and informative data,

how can we rapidly quantify these biomarkers?

Advances in Quantitative MRI:

• Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

- Estimation [Ch. 5]
 Given accurate models and informative data,
 - how can we rapidly quantify these biomarkers?
- Application [Ch. 6]
 Using these tools, can we design a state-of-the-art biomarker?

Advances in Quantitative MRI:

• Acquisition [Ch. 4] How can we assemble fast, informative collections of scans

• Estimation [Ch. 5]
Given accurate models and informative data.

how can we rapidly quantify these biomarkers?

to enable precise biomarker quantification?

Application [Ch. 6]
 Using these tools, can we design a state-of-the-art biomarker?

Signal Model

After reconstruction, single voxel y_d in dth image modeled as

$$y_d = s_d(\mathbf{x}; \boldsymbol{\nu}, \mathbf{p}_d) + \epsilon_d \tag{1}$$

- $\mathbf{x} \in \mathbb{R}^L$
- $\nu \in \mathbb{R}^K$
- $\mathbf{p}_d \in \mathbb{R}^A$
- $s_d: \mathbb{R}^{L+K+A} \mapsto \mathbb{C}$
- $\epsilon_d \in \mathbb{C}$

unknown parameters

"known" parameters

acquisition parameters

dth signal model

noise $\sim \mathbb{C}\mathcal{N}ig(0,\sigma_d^2ig)$

Signal Model

A scan profile is a set of D scans that produces at each voxel a measurement vector $\mathbf{y} := [y_1, \dots, y_D]^\mathsf{T}$ modeled as

$$\mathbf{y} = \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) + \boldsymbol{\epsilon} \tag{1}$$

•
$$\mathbf{x} \in \mathbb{R}^L$$

•
$$\nu \in \mathbb{R}^K$$

- $\bullet \ P := [p_1, \ldots, p_D]$
- $\mathbf{s}: \mathbb{R}^{L+K+AD} \mapsto \mathbb{C}^D$
- ullet $\epsilon \sim \mathbb{C}\mathcal{N}(oldsymbol{0}_D, oldsymbol{\Sigma})$

unknown parameters

"known" parameters

acquisition parameter matrix

vector signal model

noise, with $\mathbf{\Sigma} := \mathsf{diag} ig(\sigma_1^2, \dots, \sigma_D^2 ig)$

7

Signal Model

• $\epsilon \sim \mathbb{C}\mathcal{N}(\mathbf{0}_D, \Sigma)$

A scan profile is a set of D scans that produces at each voxel a measurement vector $\mathbf{y} := [y_1, \dots, y_D]^\mathsf{T}$ modeled as

$$\mathbf{y} = \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) + \boldsymbol{\epsilon} \tag{1}$$

noise, with $\Sigma := \operatorname{diag}(\sigma_1^2, \dots, \sigma_D^2)$

•
$$\mathbf{x} \in \mathbb{R}^L$$
 unknown parameters
• $\boldsymbol{\nu} \in \mathbb{R}^K$ "known" parameters
• $\mathbf{P} := [\mathbf{p}_1, \dots, \mathbf{p}_D]$ acquisition parameter matrix
• $\mathbf{s} : \mathbb{R}^{L+K+AD} \mapsto \mathbb{C}^D$ vector signal model

Task: design P to enable precise unbiased estimation of x

Towards an Objective Function

When s is analytic in x (as is typical),

Fisher information characterizes unbiased estimator precision:

$$\mathbf{F}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) := (\nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}))^{\mathsf{H}} \boldsymbol{\Sigma}^{-1} \nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}). \tag{2}$$

Towards an Objective Function

When s is analytic in x (as is typical),

Fisher information characterizes unbiased estimator precision:

$$\mathbf{F}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) := (\nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}))^{\mathsf{H}} \boldsymbol{\Sigma}^{-1} \nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}). \tag{2}$$

When **F** is invertible, Cramér-Rao Bound (CRB) [Cramér, 1946] ensures covariance of unbiased estimates $\hat{\mathbf{x}}$ of \mathbf{x} satisfy

$$\operatorname{cov} \widehat{\mathbf{x}}; \boldsymbol{\nu}, \mathbf{P} \succeq \mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}). \tag{3}$$

Maximum-likelihood (ML) estimates achieve CRB asymptotically or (equivalently for Gaussian data) at sufficiently high SNR.

Towards an Objective Function

When s is analytic in x (as is typical),

Fisher information characterizes unbiased estimator precision:

$$\mathbf{F}(\mathbf{x}; \nu, \mathbf{P}) := (\nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \nu, \mathbf{P}))^{\mathsf{H}} \mathbf{\Sigma}^{-1} \nabla_{\mathbf{x}} \mathbf{s}(\mathbf{x}; \nu, \mathbf{P}). \tag{2}$$

When **F** is invertible, Cramér-Rao Bound (CRB) [Cramér, 1946] ensures covariance of unbiased estimates $\hat{\mathbf{x}}$ of \mathbf{x} satisfy

$$\operatorname{cov} \widehat{\mathbf{x}}; \boldsymbol{\nu}, \mathbf{P} \succeq \mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}). \tag{3}$$

Maximum-likelihood (ML) estimates achieve CRB asymptotically or (equivalently for Gaussian data) at sufficiently high SNR.

Idea: choose P such that imprecision matrix F^{-1} "small"

Idea: choose P to minimize the objective

$$\Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \text{tr}\Big(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P})\mathbf{W}^{\mathsf{T}}\Big), \tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Idea: choose P to minimize the objective

$$\Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P})\mathbf{W}^{\mathsf{T}}\right),\tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Challenge: $\mathbf{x}, \boldsymbol{\nu}$ vary spatially

Idea: choose P to minimize the objective

$$\Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P})\mathbf{W}^{\mathsf{T}}\right),\tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Challenge: $\mathbf{x}, \boldsymbol{\nu}$ vary spatially

Two problems considered:

min-max scan design

[Nataraj et al., 2017b]

$$\check{\mathbf{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \max_{\substack{\mathbf{x} \in \mathbb{X}^t \\ \boldsymbol{\nu} \in \mathbb{N}^t}} \Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) \right\}$$
(5)

where $\mathbb{X}^t \subseteq \mathbb{R}^L$ and $\mathbb{N}^t \subseteq \mathbb{R}^K$ are "tight" ranges of interest and \mathbb{P} is defined by acquisition/timing constraints

Idea: choose **P** to minimize the objective

$$\Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P})\mathbf{W}^{\mathsf{T}}\right),\tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Challenge: $\mathbf{x}, \boldsymbol{\nu}$ vary spatially

Two problems considered:

• min-max scan design

[Nataraj et al., 2017b]

$$\mathbf{\check{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \max_{\substack{\mathbf{x} \in \mathbb{X}^{t} \\ \boldsymbol{\nu} \in \mathbb{N}^{t}}} \Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) \right\} \tag{5}$$

• Bayesian scan design

$$\breve{\mathbf{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \, \mathsf{E}_{\mathbf{x}, \nu}(\Psi(\mathbf{x}; \nu, \mathbf{P})) \right\} \tag{6}$$

Idea: choose **P** to minimize the objective

$$\Psi(\mathbf{x}; \nu, \mathbf{P}) = \operatorname{tr}\left(\mathbf{W}\mathbf{F}^{-1}(\mathbf{x}; \nu, \mathbf{P})\mathbf{W}^{\mathsf{T}}\right),\tag{4}$$

where $\mathbf{W} \in \mathbb{R}^{L \times L}$ is a pre-selected diagonal matrix of weights.

Challenge: $\mathbf{x}, \boldsymbol{\nu}$ vary spatially

Two problems considered:

min-max scan design

[Nataraj et al., 2017b]

$$\mathbf{\check{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \max_{\substack{\mathbf{x} \in \mathbb{X}^{t} \\ \boldsymbol{\nu} \in \mathbb{N}^{t}}} \Psi(\mathbf{x}; \boldsymbol{\nu}, \mathbf{P}) \right\} \tag{5}$$

Bayesian scan design

$$\mathbf{\check{P}} \in \left\{ \arg \min_{\mathbf{P} \in \mathbb{P}} \, \mathsf{E}_{\mathbf{x}, \nu}(\Psi(\mathbf{x}; \nu, \mathbf{P})) \right\} \tag{6}$$

Detailed Example Study

Task: design fast acquisition for precise estimation of relaxation parameters T_1 , T_2 in white/gray matter (WM/GM) of brain

Detailed Example Study

Task: design fast acquisition for precise estimation of relaxation parameters T_1 , T_2 in white/gray matter (WM/GM) of brain

- Consider scan profiles consisting of two fast pulse sequences
 - Spoiled Gradient-Recalled Echo (SPGR) [Zur et al., 1991]
 - Dual-Echo Steady-State (DESS) [Redpath and Jones, 1988]

Detailed Example Study

Task: design fast acquisition for precise estimation of relaxation parameters T_1 , T_2 in white/gray matter (WM/GM) of brain

- Consider scan profiles consisting of two fast pulse sequences
 - Spoiled Gradient-Recalled Echo (SPGR) [Zur et al., 1991]
 - Dual-Echo Steady-State (DESS) [Redpath and Jones, 1988]
- For each scan profile feasible under total time constraint:
 - 1. Let **s** model corresponding single-component signal
 - $\mathbf{x} \leftarrow [m_0, T_1, T_2]^\mathsf{T}$, where m_0 is a scale factor
 - ullet u \leftarrow flip angle variation
 - ullet P \leftarrow nominal flip angles, repetition times
 - 2. Optimize **P** subject to flip angle, sequence timing constraints
 - $\mathbf{W} \leftarrow \mathsf{diag}(0, 0.1, 1)$ emphasizes T_1, T_2 est roughly equally
 - ullet \mathbb{X}^t chosen to focus on WM/GM at 3T field strength
 - ullet \mathbb{N}^t chosen to allow 10% flip angle variation

Scan Profile Comparison

(#SPGR, #DESS) Profiles	(2,1)	(1, 1)	(0, 2)
SPGR nom. flip (deg)	(15, 5)	15	_
DESS nom. flip (deg)	30	10	(35, 10)
SPGR rep. times (ms)	(12.2, 12.2)	13.9	_
DESS rep. times (ms)	17.5	28.0	(24.4, 17.5)
optimal max cost	4.0	4.9	3.5

Scan Profile Comparison

(#SPGR, #DESS) Profiles	(2,1)	(1, 1)	(0, 2)
SPGR nom. flip (deg)	(15, 5)	15	_
DESS nom. flip (deg)	30	10	(35, 10)
SPGR rep. times (ms)	(12.2, 12.2)	13.9	_
DESS rep. times (ms)	17.5	28.0	(24.4, 17.5)
optimal max cost	4.0	4.9	3.5

Main finding: 2 DESS sequences can yield T_1 , T_2 WM/GM estimates that are at least as precise as T_1 , T_2 estimates from SPGR/DESS scan profiles, under this competitive time constraint.

Experimental Setup

Candidate (2,1), (1,1), (0,2) SPGR/DESS scan profiles

- Prescribed optimized nominal flip angles, repetition times
- Used $256 \times 256 \times 8$ 3D matrix over $24 \times 24 \times 4$ cm FOV
- Required 1m37s scan time for each profile

Experimental Setup

Candidate (2,1), (1,1), (0,2) SPGR/DESS scan profiles

- Prescribed optimized nominal flip angles, repetition times
- Used $256 \times 256 \times 8$ 3D matrix over $24 \times 24 \times 4$ cm FOV
- Required 1m37s scan time for each profile

Reference scan profile

- Four inversion recovery (IR) scans for T_1 estimation
- Four spin-echo (SE) scans for T_2 estimation
- 256×256 matrix over $24 \times 24 \times 0.5$ cm FOV
- Required 40m58s scan time total

Experimental Setup

Candidate (2,1), (1,1), (0,2) SPGR/DESS scan profiles

- Prescribed optimized nominal flip angles, repetition times
- Used $256 \times 256 \times 8$ 3D matrix over $24 \times 24 \times 4$ cm FOV
- Required 1m37s scan time for each profile

Reference scan profile

- ullet Four inversion recovery (IR) scans for \mathcal{T}_1 estimation
- Four spin-echo (SE) scans for T_2 estimation
- 256×256 matrix over $24 \times 24 \times 0.5$ cm FOV
- Required 40m58s scan time total

Bloch-Siegert (BS) acquisition for separate flip angle calibration

- Acquired 2 BS-shifted 3D SPGR scans in 1m40s total
- ullet Used for T_1, T_2 est from both candidate and reference profiles

Phantom Accuracy Results

Compared against NIST NMR measurements [Keenan et al., 2016]

Phantom Precision Results

- Repeated each profile 10 times
- ullet Estimated $\mathcal{T}_1,\,\mathcal{T}_2$ std dev of typical voxel across repetitions

Phantom Precision Results

	(2, 1)	(1, 1)	(0, 2)
V5 $\widehat{\sigma}_{\widehat{T}_1^{ ext{ML}}}$	50 ± 12	40 ± 10 .	39 ± 9.4
V6 $\widehat{\sigma}_{\widehat{\mathcal{T}}_1^{\mathrm{ML}}}$	70 ± 18	60 ± 15	60 ± 16
V7 $\widehat{\sigma}_{\widehat{T}_1^{\mathrm{ML}}}$	60 ± 13	50 ± 13	50 ± 13
V5 $\widehat{\sigma}_{\widehat{\mathcal{T}}_2^{\mathrm{ML}}}$	2.6 ± 0.63	6 ± 1.4	3.5 ± 0.84
V6 $\widehat{\sigma}_{\widehat{\mathcal{T}}_2^{\mathrm{ML}}}$	1.9 ± 0.46	5 ± 1.1	2.3 ± 0.54
V7 $\widehat{\sigma}_{\widehat{T}_2^{ ext{ML}}}$	1.4 ± 0.34	3.4 ± 0.80	1.5 ± 0.35
$\sqrt{\text{opt max cost}}$ estimate	8.9 ± 1.8	11 ± 2.6	$\textbf{8.3} \pm \textbf{2.1}$

Table 1: Pooled sample standard deviations \pm pooled standard errors of sample standard deviations (ms), from optimized SPGR/DESS profiles.

Phantom Precision Results

	(2, 1)	(1, 1)	(0, 2)
V5 $\widehat{\sigma}_{\widehat{T}_1^{ ext{ML}}}$	50 ± 12	40 ± 10 .	39 ± 9.4
V6 $\widehat{\sigma}_{\widehat{\mathcal{T}}_1^{\mathrm{ML}}}$	70 ± 18	60 ± 15	60 ± 16
$ extsf{V7} \ \widehat{\sigma}_{\widehat{T}_1^{ ext{ML}}}$	60 ± 13	50 ± 13	50 ± 13
V5 $\widehat{\sigma}_{\widehat{T}_2^{ ext{ML}}}$	2.6 ± 0.63	6 ± 1.4	3.5 ± 0.84
V6 $\widehat{\sigma}_{\widehat{T}_2^{\mathrm{ML}}}$	1.9 ± 0.46	5 ± 1.1	2.3 ± 0.54
$ extsf{V7} \ \widehat{\sigma}_{\widehat{T}_2^{ ext{ML}}}$	1.4 ± 0.34	3.4 ± 0.80	1.5 ± 0.35
$\sqrt{\text{opt max cost}}$ estimate	8.9 ± 1.8	11 ± 2.6	$\textbf{8.3} \pm \textbf{2.1}$

Table 1: Pooled sample standard deviations \pm pooled standard errors of sample standard deviations (ms), from optimized SPGR/DESS profiles.

Similar trends across profiles of empirical vs. theoretical std dev!

Contributions

- MR scan design method for precise parameter estimation
- \bullet Fast SPGR/DESS scan profile for ${\it T}_1, {\it T}_2$ estimation in brain

Contributions

- MR scan design method for precise parameter estimation
- Fast SPGR/DESS scan profile for T_1 , T_2 estimation in brain
 - Phantom (and omitted simulation) results validate method as a predictor of unbiased estimation precision.

Figure 1: Colorbar ranges in ms.

Contributions

- MR scan design method for precise parameter estimation
- Fast SPGR/DESS scan profile for T_1 , T_2 estimation in brain
 - Phantom (and omitted simulation) results validate method as a predictor of unbiased estimation precision.
 - In vivo results reveal discrepancies (especially in T₂ estimates), suggesting T₁, T₂ estimates sensitive to model mismatch.

Contributions

- MR scan design method for precise parameter estimation
- Fast SPGR/DESS scan profile for T_1 , T_2 estimation in brain
 - Phantom (and omitted simulation) results validate method as a predictor of unbiased estimation precision.
 - In vivo results reveal discrepancies (especially in T₂ estimates), suggesting T₁, T₂ estimates sensitive to model mismatch.

How to address in vivo model mismatch?

- More accurate in vivo signal models
- More scalable parameter estimation

Advances in Quantitative MRI:

• Acquisition [Ch. 4] How can we assemble fast, informative collections of scans to enable precise biomarker quantification?

- Estimation [Ch. 5]
 Given accurate models and informative data,
- Application [Ch. 6]

how can we rapidly quantify these biomarkers?

Using these tools, can we design a state-of-the-art biomarker?

Advances in Quantitative MRI:

• Acquisition [Ch. 4] How can we assemble fast, informative collections of scans

• Estimation [Ch. 5]

Given accurate models and informative data, how can we rapidly quantify these biomarkers?

to enable precise biomarker quantification?

• **Application** [Ch. 6] Using these tools, can we design a state-of-the-art biomarker?

References i

Cramér, H. (1946).

Mathematical methods of statistics.

Princeton Univ. Press, Princeton.

Hope, M. D., Wrenn, S. J., and Dyverfeldt, P. (2013).

Clinical applications of aortic 4d flow imaging.

Curr. Cardiovasc. Imag. Rep., 6(2):128–39.

Keenan, K. E., Stupic, K. F., Boss, M. A., Russek, S. E., Chenevert, T. L., Prasad, P. V., Reddick, W. E., Cecil, K. M., Zheng, J., Hu, P., and Jackson, E. F. (2016).

Multi-site, multi-vendor comparison of T1 measurement using ISMRM/NIST system phantom.

In Proc. Intl. Soc. Mag. Res. Med., page 3290.

References ii

Nataraj, G., Nielsen, J.-F., and Fessler, J. A. (2017a).

 $\label{thm:matter} \mbox{Myelin water fraction estimation from optimized steady-state} \\ \mbox{sequences using kernel ridge regression.}$

In Proc. Intl. Soc. Mag. Res. Med., page 5076.

Nataraj, G., Nielsen, J.-F., and Fessler, J. A. (2017b).

Optimizing MR scan design for model-based T1, T2 estimation from steady-state sequences.

IEEE Trans. Med. Imag., 36(2):467-77.

Redpath, T. W. and Jones, R. A. (1988).

FADE-A new fast imaging sequence.

Mag. Res. Med., 6(2):224-34.

Zur, Y., Wood, M. L., and Neuringer, L. J. (1991).

Spoiling of transverse magnetization in steady-state sequences.

Mag. Res. Med., 21(2):251-63.