Chapter 18 Matrices inversibles

18.1 Matrices inversibles et opérations élémentaires

Exercice 18.1

Soit $n \in \mathbb{N} \setminus \{0, 1\}$. Pour $\sigma \in \mathcal{S}_n$, on note

$$P(\sigma) = \left(\delta_{i,\sigma(j)}\right)_{\substack{i=1\dots n\\j=1\dots n}} \in \mathcal{M}_n(\mathbb{R})$$

appelée matrice de permutation associée à σ .

- **1.** Montrer que l'ensemble $E = \{ P(\sigma) \mid \sigma \in \mathcal{S}_n \}$ est un sous-groupe de $(GL_n(\mathbb{R}), \cdot)$, isomorphe à (\mathcal{S}_n, \circ) .
- 2. Vérifier

$$\forall \sigma \in \mathcal{S}_n, P(\sigma^{-1}) = (P(\sigma))^T.$$

3. Quel est le commutant de E dans $\mathcal{M}_n(\mathbb{R})$? C'est-à-dire

$$C(E) = \left\{ X \in \mathcal{M}_n(\mathbb{R}) \mid \forall A \in E, AX = XA \right\}.$$

Exercice 18.2

Trouver l'inverse éventuel des matrices suivantes

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 2 \\ 0 & 0 & 3 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 2 & 4 \\ -1 & 1 & 0 \end{pmatrix}$$

$$E = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 2 & 3 \\ -1 & 1 & 0 \end{pmatrix} \qquad F = \begin{pmatrix} 1 & 2 & -1 \\ 0 & -3 & 1 \\ 3 & 0 & -1 \end{pmatrix} \qquad G = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Exercice 18.3

En utilisant les opérations élémentaires sur les lignes, déterminer si possible l'inverse des matrices

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 2 \\ 3 & 8 & 1 \end{pmatrix}$$
 et
$$B = \begin{pmatrix} -1 & 2 & 1 \\ 0 & 1 & 2 \\ 3 & 1 & 4 \end{pmatrix}$$

Soit $b = \begin{pmatrix} 1 \\ 1 \\ 5 \end{pmatrix}$. Déterminer les solutions du système Ax = b. Déterminer les solutions du système Bx = b.

Existe-t-il un vecteur $d \in \mathbb{R}^3$ tel que le système Ax = d soit incompatible ? Existe-t-il un vecteur $d \in \mathbb{R}^3$ tel que le système Bx = d soit incompatible ? Dans chaque cas, justifier votre réponse et déterminer un tel vecteur d si il existe.

Exercice 18.4

À l'aide d'opérations élémentaires, déterminer, si possible, les inverses des matrice suivantes.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 0 \\ 0 & 1 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 0 \\ 0 & 1 & 6 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 0 & 4 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

La matrice *C* est-elle une matrice élémentaire? Si «oui», quelle est l'opération élémentaire correspondante? Si «non», l'écrire comme un produit de matrices élémentaires.

Exercice 18.5

En utilisant les opérations élémentaires sur les lignes, montrer que

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 1 & 4 & -1 \end{pmatrix}$$

est équivalente par lignes à la matrice unité I_3 . Écrire A comme un produit de matrices élémentaires.

Exercice 18.6

Étant donné un système d'équations Ax = b avec différente valeurs de b, il est souvent plus rapide de déterminer A^{-1} , si elle existe, afin de déterminer les solutions avec la relation $x = A^{-1}b$.

Utiliser cette méthode pour résoudre $Ax = b_r$ pour la matrice

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

et chacun de vecteurs b_r , r = 1, 2, 3:

$$b_1 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} \qquad \qquad b_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad \qquad b_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

Vérifier vos solutions.

Exercice 18.7

Soient
$$n \in \mathbb{N}^{\star}$$
, $A = (\min(i, j))_{1 \le i, j \le n} = \begin{pmatrix} 1 & 1 & 1 & \cdots & \cdots & 1 \\ 1 & 2 & 2 & \cdots & \cdots & 2 \\ 1 & 2 & 3 & \cdots & \cdots & 3 \\ \vdots & \vdots & \vdots & & & 4 \\ \vdots & \vdots & \vdots & & & \vdots \\ 1 & 2 & 3 & 4 & \cdots & n \end{pmatrix}$

Montrer que A est inversible et calculer A^{-1}

Exercice 18.8

Déterminer pour quelle(s) valeur(s) du paramètre réel *t* les matrices suivantes sont inversibles. Calculer leur inverse lorsqu'elle existe.

1.
$$\begin{pmatrix} 1 & t & 0 \\ t & 1 & t \\ 0 & t & 1 \end{pmatrix}$$
 2. $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & t \\ 1 & t & 1 \end{pmatrix}$

Exercice 18.9

Inverser les matrices suivantes.

Exercice 18.10

Calculer l'inverse de
$$A = \begin{pmatrix} \alpha - \beta - \gamma & 2\alpha & 2\alpha \\ 2\beta & \beta - \alpha - \gamma & 2\beta \\ 2\gamma & 2\gamma & \gamma - \alpha - \beta \end{pmatrix} \in \mathcal{M}_3(\mathbb{C})$$
, quand cet inverse existe.

Exercice 18.11

Soit A et B deux matrices inversibles d'ordre n.

Montrer que si B se déduit de A par échange des i-ème et j-ème lignes $(1 \le i < j \le n)$, alors B^{-1} se déduit de A^{-1} par échange des i-ème et j-ème colonnes.

Exercice 18.12

Soient
$$n \in \mathbb{N}$$
 et $A = \begin{pmatrix} -1 & -2 & -2 & 2 \\ 0 & 5/2 & 1/2 & 0 \\ 0 & 1/2 & 5/2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. L'objectif de cet exercice est de calculer A^n .

1. Soit
$$P = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & -1/2 & 1/2 & 0 \\ 1 & 1/2 & 1/2 & -1 \\ 0 & -1/2 & -1/2 & 0 \end{pmatrix}$$
. Calculer P^{-1} , puis PAP^{-1} .

2. En déduire A^n

Exercice 18.13

On considère les deux matrices

$$A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 2 & -2 & 0 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 4 \end{pmatrix} \quad \text{et} \quad P = \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

1. Justifier l'inversibilité de la matrice P et calculer son inverse par la méthode du pivot.

2. Soit *a* un réel. Former la matrice
$$A - aI$$
 où $I = I_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ et déterminer, sans calcul, les

valeurs de a telles que A - aI ne soit pas inversible.

La matrice A est-elle inversible?

- 3. Vérifier que $P^{-1}AP = D$ où D est une matrice diagonale. Que remarquez vous?
- **4.** Montrer par récurrence que $A^n = PD^nP^{-1}$ pour tout entier $n \ge 1$.

Écrire la matrice A^n sous forme de tableau.

5. Exprimer A^{-1} , puis A^{-n} pour tout entier $n \ge 1$, à l'aide de P, P^{-1} et D^{-1} . Écrire la matrice A^{-1} sous forme de tableau.

18.2 Opérations élémentaires sur les colonnes

18.3 Critères d'inversibilité d'une matrice

Exercice 18.14

Soit A et B deux matrices (n, n).

Montrer que si AB est inversible, alors A et B sont inversibles.

Exercice 18.15

Soit $(a_1, \ldots, a_n) \in (\mathbb{R}_+^*)^n$. Soit la matrice

$$A = \begin{pmatrix} 1 + a_1 & 1 & \cdots & \cdots & 1 \\ 1 & 1 + a_2 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 1 \\ 1 & \cdots & \cdots & 1 & 1 + a_n \end{pmatrix}$$

- **1.** Soit $(x_1, \dots, x_n) \in \mathbb{R}^n$. Posons $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. En écrivant la matrice A comme somme d'une matrice diagonale et d'une matrice simple, calculer X^TAX .
- **2.** En déduire que la matrice *A* est inversible.

Exercice 18.16 *Matrice* à diagonale strictement dominante, lemme d'Hadamart Soit $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{C})$, telle que

$$\forall i \in \{1, 2, ..., n\}, |a_{i,i}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{i,j}|.$$

Montrer que A est inversible.