11 - Introduzione al Calcolo Differenziale negli Spazi di Banach

Premesse

```
Sia E uno spazio vettoriale.

Siano \mathbf{x}, \mathbf{y} \in E.

Si dice segmento di estremi \mathbf{x} e \mathbf{y} l'insieme [\mathbf{x}, \mathbf{y}] := {\mathbf{x} + \lambda(\mathbf{y} - \mathbf{x}) \mid \lambda \in [0; 1]}.

Siano \mathbf{x}_1, \dots, \mathbf{x}_n \in E.

Si dice poligonale di vertici \mathbf{x}_1, \dots, \mathbf{x}_n l'insieme [\mathbf{x}_1, \dots, \mathbf{x}_n] := [\mathbf{x}_1, \mathbf{x}_2] \cup \dots \cup [\mathbf{x}_{n-1}, \mathbf{x}_n].

I punti \mathbf{x}_1 e \mathbf{x}_n sono detti estremi della poligonale.
```

Derivabilità secondo Gateaux e secondo Fréchet

```
Siano (X, \|\cdot\|_X) e (Y, \|\cdot\|_Y) due spazi normati.

Sia A \subseteq X.

Sia \mathbf{x}_0 \in \mathring{A}.

Sia f: A \to Y una funzione.
```

f si dice **derivabile secondo Gateaux** (o G-derivabile) in \mathbf{x}_0 quando

esiste $arphi\in\mathcal{L}(X,Y)$ tale che $\lim_{\lambda o 0^+}rac{f(\mathbf{x}_0+\lambda\mathbf{v})-f(\mathbf{x}_0)}{\lambda}=arphi(\mathbf{v})$ per ogni $\mathbf{v}\in X.$

Tale φ è unico (per unicità del limite); esso prende il nome di **derivata secondo Gateaux** di f in \mathbf{x}_0 , e si denota con $f'(\mathbf{x}_0)$.

Osservazione

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Sia $A \subseteq X$.

Sia $\mathbf{x}_0 \in \overset{\circ}{A}$.

Sia $f: A \to Y$ una funzione G-derivabile in \mathbf{x}_0 .

Allora, per ogni $\mathbf{v} \in X$ si ha $\lim_{\lambda \to 0} \frac{f(\mathbf{x}_0 + \lambda \mathbf{v}) - f(\mathbf{x}_0)}{\lambda} = f'(\mathbf{x}_0)(\mathbf{v}).$

Infatti, si ha $\lim_{\lambda \to 0^+} \frac{f(\mathbf{x}_0 + \lambda \mathbf{v}) - f(\mathbf{x}_0)}{\lambda} = f'(\mathbf{x}_0)(\mathbf{v})$ per definizione di derivata secondo Gateaux in \mathbf{x}_0 , che esiste per ipotesi.

D'altra parte, si ha

 $\lim_{\lambda \to 0^-} \frac{f(\mathbf{x}_0 + \lambda \mathbf{v}) - f(\mathbf{x}_0)}{\lambda} = \lim_{\lambda \to 0^+} \frac{f(\mathbf{x}_0 - \lambda \mathbf{v}) - f(\mathbf{x}_0)}{-\lambda} = -\lim_{\lambda \to 0^+} \frac{f(\mathbf{x}_0 + \lambda (-\mathbf{v})) - f(\mathbf{x}_0)}{\lambda} = -f'(\mathbf{x}_0)(-\mathbf{v}), \text{ che per linearità di } f'(\mathbf{x}_0) \text{ è pari a } f'(\mathbf{x}_0)(\mathbf{v}).$

₩ Definizione: Derivabilità e derivata, secondo Fréchet

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Sia $A \subseteq X$.

Sia $\mathbf{x}_0 \in \overset{\circ}{A}$.

Sia $f: A \rightarrow Y$ una funzione.

f si dice **derivabile secondo Fréchet** (o F-derivabile) in \mathbf{x}_0 quando

esiste
$$\psi \in \mathcal{L}(X,Y)$$
 tale che $\lim_{\mathbf{v} o \mathbf{0}_X} rac{f(\mathbf{x}_0 + \mathbf{v}) - f(\mathbf{x}_0) - \psi(\mathbf{v})}{\|\mathbf{v}\|_X} = \mathbf{0}_Y.$

Un tale ψ prende il nome di **derivata secondo Fréchet** di f in \mathbf{x}_0 .

Proposizione 11.1: F-derivabilità implica G-derivabilità

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Sia $A \subseteq X$.

Sia $\mathbf{x}_0 \in \overset{\circ}{A}$.

Sia f:A o Y una funzione F-derivabile in \mathbf{x}_0 .

Si hanno i seguenti fatti:

- f è G-derivabile in \mathbf{x}_0 ;
- La derivata secondo Frechet di f in \mathbf{x}_0 è unica, e coincide con $f'(\mathbf{x}_0)$.

Dimostrazione

Sia ψ una derivata secondo Fréchet di f in \mathbf{x}_0 , che esiste per ipotesi di F-derivabilità.

Sia $\mathbf{v} \in X$.

Se
$$\mathbf{v} = \mathbf{0}_X$$
, si ha $\psi(\mathbf{0}_X) = \mathbf{0}_Y$ per linearità; d'altra parte, si ha $\lim_{\lambda \to 0^+} \frac{f(\mathbf{x}_0 + \lambda \mathbf{0}_X) - f(\mathbf{x}_0)}{\lambda} = \lim_{\lambda \to 0^+} \frac{\mathbf{0}_Y}{\lambda} = \mathbf{0}_Y$, per cui $f'(\mathbf{x}_0)(\mathbf{0}_X) = \mathbf{0}_Y$.

Ne segue che $\psi(\mathbf{0}_X) = f'(\mathbf{x}_0)(\mathbf{0}_X)$.

Si supponga ora $\mathbf{v} \neq \mathbf{0}_X$, cosicché $\|\mathbf{v}\|_X \neq 0$.

Si ha
$$\lim_{\mathbf{u} \to \mathbf{0}_X} \frac{f(\mathbf{x}_0 + \mathbf{u}) - f(\mathbf{x}_0) - \psi(\mathbf{u})}{\|\mathbf{u}\|_X} = \mathbf{0}_Y$$
 per definizione di ψ ;

restringendo tale espressione ai vettori del tipo $\lambda \mathbf{v}$, con $\lambda > 0$, si ottiene che $\mathbf{0}_X$ è ancora punto di accumulazione per questo insieme, e il limite di sopra effettuato sulla restrizione, che dunque ha senso, è lo stesso.

Risulta cioè che

$$\lim_{\lambda \to 0^+} \frac{f(\mathbf{x}_0 + \lambda \mathbf{v}) - f(\mathbf{x}_0) - \psi(\lambda \mathbf{v})}{\|\lambda \mathbf{v}\|_X} = \mathbf{0}_Y.$$

Si osservi ora che $\frac{f(\mathbf{x}_0 + \lambda \mathbf{v}) - f(\mathbf{x}_0) - \psi(\lambda \mathbf{v})}{\|\lambda \mathbf{v}\|_X} = \frac{1}{\|\mathbf{v}\|_X} \left(\frac{f(\mathbf{x}_0 + \lambda \mathbf{v}) - f(\mathbf{x}_0)}{\lambda} - \psi(\mathbf{v}) \right)$ per ogni $\lambda > 0$, per linearità di ψ e per assoluta omogeneità di $\|\cdot\|_X$.

Si ha allora che
$$\lim_{\lambda \to 0^+} \frac{f(\mathbf{x}_0 + \lambda \mathbf{v}) - f(\mathbf{x}_0)}{\lambda} = \lim_{\lambda \to 0^+} \|\mathbf{v}\|_X \cdot \underbrace{\frac{f(\mathbf{x}_0 + \lambda \mathbf{v}) - f(\mathbf{x}_0) - \psi(\lambda \mathbf{v})}{\|\lambda \mathbf{v}\|_X}}_{\to \mathbf{0}_Y} + \psi(\mathbf{v}) = \psi(\mathbf{v}).$$

Dall'arbitrarietà di $\mathbf{v} \in X$ segue allora che f è G-derivabile in \mathbf{x}_0 , e $f'(\mathbf{x}_0)(\mathbf{v}) = \psi(\mathbf{v})$ per ogni $\mathbf{v} \in X$, da cui viene l'unicità di ψ per unicità della derivata secondo Gateaux.

In virtù della proposizione precedente, la derivata secondo Gateaux e secondo Fréchet verranno denominate semplicemente "derivata".

Q Osservazione: Operatori lineari continui sono F-derivabili

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Sia $T \in \mathcal{L}(X,Y)$.

Allora, T è F-derivabile in X, con derivata pari a T.

Infatti, per ogni $\mathbf{v} \in X \setminus \{\mathbf{0}\}$ si ha $\frac{T(\mathbf{x}+\mathbf{v})-T(\mathbf{x})-T(\mathbf{v})}{\|\mathbf{v}\|_X} = \mathbf{0}_Y$ per linearità di T.

Ne segue quindi che $\lim_{\mathbf{v}\to\mathbf{0}_X} \frac{T(\mathbf{x}+\mathbf{v})-T(\mathbf{x})-T(\mathbf{v})}{\|\mathbf{v}\|_X} = \mathbf{0}_Y.$

Proposizione 11.2: F-Derivabilità implica continuità

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Sia $A \subseteq X$.

Sia $\mathbf{x}_0 \in \overset{\circ}{A}$.

Sia $f: A \to Y$ una funzione F-derivabile in \mathbf{x}_0 .

Allora, f è continua in \mathbf{x}_0 .

Dimostrazione

Si ha $\lim_{\mathbf{v} \to \mathbf{0}_X} \frac{f(\mathbf{x}_0 + \mathbf{v}) - f(\mathbf{x}_0) - f'(\mathbf{x}_0)(\mathbf{v})}{\|\mathbf{v}\|_X} = \mathbf{0}_Y$ per ipotesi.

Per acquisire la continuità di f in \mathbf{x}_0 , si mostri che $\lim_{\mathbf{v} \to \mathbf{0}_X} f(\mathbf{x}_0 + \mathbf{v}) - f(\mathbf{x}_0) = \mathbf{0}_Y$.

Si osservi intanto che $\lim_{\mathbf{v}\to\mathbf{0}_X}f'(\mathbf{x}_0)(\mathbf{v})=f'(\mathbf{x}_0)(\mathbf{0}_X)=\mathbf{0}_Y$, essendo $f'(\mathbf{x}_0)\in\mathcal{L}(X,Y)$, cioè lineare e continuo.

Si ha
$$\lim_{\mathbf{v} \to \mathbf{0}_X} f(\mathbf{x}_0 + \mathbf{v}) - f(\mathbf{x}_0) = \lim_{\mathbf{v} \to \mathbf{0}_X} \|\mathbf{v}\|_X \underbrace{\frac{f(\mathbf{x}_0 + \mathbf{v}) - f(\mathbf{x}_0) - f'(\mathbf{x}_0)(\mathbf{v})}{\|\mathbf{v}\|_X}}_{= \mathbf{0}_Y} + \underbrace{f'(\mathbf{x}_0)(\mathbf{v})}_{= \mathbf{0}_Y} = \mathbf{0}_Y.$$

Osservazione

La G-derivabilità non implica la continuità (dunque neanche la F-derivabilità, per il teorema precedente).

Ad esempio, si definisca $f:\mathbb{R}^2 o\mathbb{R}$ ponendo $f(x,y)=egin{cases} rac{y^3}{x}, & x
eq 0 \ 0, & x=0 \end{cases}$.

f è G-derivabile in (0,0).

Fissati infatti $(u,v) \in \mathbb{R}^2$ e $\lambda \neq 0$, si ha $\frac{f\big((0,0)+\lambda(u,v)\big)-f(0,0)}{\lambda} = \begin{cases} \lambda \frac{v^3}{u}, & u \neq 0 \\ 0, & u = 0 \end{cases}$; ne segue che $\lim_{\lambda \to 0} \frac{f\big((0,0)+\lambda(u,v)\big)-f(0,0)}{\lambda} = \mathbf{0}_Y$ per ogni $(u,v) \in \mathbb{R}^2$.

Pertanto, $f'(0,0)=\mathbf{0}_{(\mathbb{R}^2)^*}$.

f non è continua in (0,0).

Infatti, restringendo f all'insieme $\gamma_1=\{(t,t)\mid t\in\mathbb{R}\}$ si ottiene $\lim_{(x,y)\to(0,0)}f_{|\gamma_1}(x,y)=\lim_{t\to 0}f(t,t)=\lim_{t\to 0}rac{t^3}{t}=0.$

D'altra parte, restringendo f all'insieme $\gamma_2=\{(t^3,t)\mid t\in\mathbb{R}\}$ si ottiene $\lim_{(x,y)\to(0,0)}f_{|\gamma_2}(x,y)=\lim_{t\to 0}f(t^3,t)=\lim_{t\to 0}\frac{t^3}{t^3}=1.$

Derivata di funzioni a valori reali

Osservazione

Sia $(X, \langle \cdot, \cdot \rangle)$ uno spazio di Hilbert.

Sia $A \subseteq X$.

Sia $\mathbf{x}_0 \in \overset{\circ}{A}$.

Sia $f: A \to \mathbb{R}$ una funzione G-derivabile in \mathbf{x}_0 .

Per il [Teorema 10.15], la mappa $X \to X^* : \mathbf{x} \mapsto \langle \mathbf{x}, \cdot \rangle$ è un'isometria lineare biunivoca; pertanto, esiste un unico $\tilde{\mathbf{x}} \in X$ tale che $f'(\mathbf{x}_0) = \langle \tilde{\mathbf{x}}, \cdot \rangle$.

₩ Definizione: Derivata, per funzioni a valori reali

L'unico $\tilde{\mathbf{x}} \in X$ tale che $f'(\mathbf{x}_0) = \langle \tilde{\mathbf{x}}, \cdot \rangle$ si denota con $\dot{f}(\mathbf{x}_0)$.

Derivata di funzioni di variabile reale

Definizione: Derivabilità e derivata, per funzioni di variabile reale

Sia $(Y, \|\cdot\|)$ uno spazio normato.

Sia $I \subseteq \mathbb{R}$ un intervallo.

Sia $x_0 \in I$.

Sia $f: I \to Y$ una funzione.

f si dice **derivabile** in x_0 quando esiste $oldsymbol{\omega} \in Y$ tale che $\lim_{\lambda o 0} rac{f(x_0 + \lambda) - f(x_0)}{\lambda} = oldsymbol{\omega}.$

Tale ω è unico (per unicità del limite); esso prende il nome di **derivata** di f in x_0 , e si denota con $\dot{f}(x_0)$.

Proposizione 11.3: Legame tra derivabilità e F-derivabilità

Sia $(Y, \|\cdot\|)$ uno spazio normato.

Sia $I \subseteq \mathbb{R}$ un intervallo.

Sia $x_0 \in \overset{\circ}{I}$.

Sia $f: I \rightarrow Y$ una funzione.

Si hanno i seguenti fatti:

- f è derivabile in x_0 se e solo se f è F-derivabile in x_0 ;
- In caso di derivabilità, si ha $f'(x_0)(x) = \dot{f}(x_0) \, x$ per ogni $x \in \mathbb{R}$.

Osservazioni preliminari

 $f \in \mathcal{L}(\mathbb{R},Y)$ se e solo se esiste $\alpha \in Y$ tale che $f(x) = \alpha x$ per ogni $x \in \mathbb{R}$.

Infatti, le funzioni di questo tipo sono lineari e continue.

Viceversa, data una funzione $f \in \mathcal{L}(\mathbb{R},Y)$, si ha $f(x)=f(x\cdot 1)=xf(1)$ per ogni $x\in\mathbb{R}$ per linearità di f. Dunque, $f(x)=\boldsymbol{\alpha} x$ per ogni $x\in\mathbb{R}$, con $\boldsymbol{\alpha}=f(1)$.

Dimostrazione

Si supponga f F-derivabile in x_0 .

Sia $\alpha \in Y$ tale che $f'(x_0)(x) = \alpha x$ per ogni $x \in \mathbb{R}$ (che esiste per l'osservazione preliminare).

Si ha allora
$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)-f'(x_0)(h)}{|h|} = \mathbf{0}$$
, ossia $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)-\alpha h}{|h|} = \mathbf{0}$

Allora, si ha

$$\lim_{h o 0}rac{f(x_0+h)-f(x_0)(h)}{h}=\lim_{h o 0}rac{|h|}{h}\underbrace{rac{f(x_0+h)-f(x_0)(h)-oldsymbol{lpha}h}{|h|}}_{oldsymbol{>0}}+oldsymbol{lpha}=oldsymbol{lpha}.$$

Dunque, f è derivabile in x_0 , e $\dot{f}(x_0) = \boldsymbol{\alpha}$; dunque, $f'(x_0)(x) = \dot{f}(x_0) \, x$ per ogni $x \in \mathbb{R}$.

Viceversa, si supponga f derivabile in x_0 .

Sia $\psi: \mathbb{R} \to Y$ definita ponendo $\psi(x) = \dot{f}(x_0) x$ per ogni $x \in \mathbb{R}$; si ha $\psi \in \mathcal{L}(\mathbb{R}, Y)$ per l'osservazione preliminare.

Si ha
$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)-\psi(h)}{|h|} = \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)-\dot{f}(x_0)h}{|h|} = \lim_{h\to 0} \frac{h}{|h|} \underbrace{\left(\frac{f(x_0+h)-f(x_0)}{h}-\dot{f}(x_0)\right)}_{\to \mathbf{0}} = \mathbf{0}.$$

Dunque, $\psi = f'(\mathbf{x}_0)$.

\bigcirc Osservazione: Equivalenza delle definizioni di \dot{f} , per f funzione reale

Sia $I \subseteq \mathbb{R}$ un intervallo.

Sia $x_0\in \overset{\circ}{I}$.

Sia $f:I o\mathbb{R}$ una funzione derivabile in $x_0.$

La definizione di $\dot{f}(x_0)$ data per funzioni a valori reali e per funzioni di variabile reale è la stessa.

Infatti, sia $\dot{f}_1(x_0)$ la derivata $\dot{f}(x_0)$ intesa nella definizione per funzioni di variabile reale; sia $\dot{f}_2(x_0)$ la derivata $\dot{f}(x_0)$ intesa nella definizione per funzioni a valori reali.

Per definizione di $\dot{f}_1(x_0)$, esso è l'unico $\tilde{x} \in \mathbb{R}$ tale che $f'(x_0) = \tilde{x} \cdot (\,\cdot\,)$.

D'altra parte, per la [Proposizione 11.3] si ha $f'(x_0) = \dot{f}_2(x_0) \cdot (\,\cdot\,)$.

Pertanto, $\dot{f}_1(x_0) = \dot{f}_2(x_0)$.

Involucri e chiusure convesse

₩ Definizione: Involucro convesso

Sia E uno spazio vettoriale.

Sia $A \subseteq E$.

Si dice involucro convesso (o inviluppo convesso) di A l'insieme

 $conv(A) := \bigcap \{C \subseteq E : C \text{ convesso}, C \supseteq A\}.$

Osservazione

conv(A) è il minimo sottoinsieme convesso di E contenente A, rispetto all'inclusione.

Infatti, conv(A) è contenuto in ogni sottoinsieme convesso di E contenente A per definizione; inoltre, esso è convesso in quanto l'intersezione arbitraria di insiemi convessi è convessa (segue direttamente dalla definizione di convessità).

Proposizione 11.4: Caratterizzazione di Carathéodory dell'involucro convesso

Sia E uno spazio vettoriale.

Sia $A \subseteq E$.

Si ha $\operatorname{conv}(A) = \{\lambda_1 \mathbf{x}_1 + \dots + \lambda_n \mathbf{x}_n \mid n \in \mathbb{N}, \ \mathbf{x}_1, \dots, \mathbf{x}_n \in A, \ \lambda_1, \dots, \lambda_n \geq 0 : \lambda_1 + \dots + \lambda_n = 1\}.$

Osservazioni preliminari

Siano $\lambda_1, \ldots, \lambda_{n+1} \geq 0$ tali che $\lambda_{n+1} \neq 1$ e $\lambda_1 + \cdots + \lambda_{n+1} = 1$.

Allora:

- $\lambda_{n+1} \leq 1$;
- Se $\lambda_{n+1}=1$, si ha $\lambda_1=\cdots=\lambda_n=0$;
- Se $\lambda_{n+1} \neq 1$, si ha $\frac{\lambda_1}{1-\lambda_{n+1}}, \ldots, \frac{\lambda_n}{1-\lambda_{n+1}} \geq 0$;
- Se $\lambda_{n+1} \neq 1$, si ha $\frac{\lambda_1}{1-\lambda_{n+1}} + \cdots + \frac{\lambda_n}{1-\lambda_{n+1}} = 1$.

Il primo punto si acquisisce osservando che $1=\lambda_1+\cdots+\lambda_n+\lambda_{n+1}\geq\lambda_{n+1}$, essendo $\lambda_1,\ldots,\lambda_n\geq0$ per ipotesi.

Il secondo punto si acquisice osservando che, per ogni $i \in \{1, \dots, n\}$, si ha

 $0 \le \lambda_i$ Per ipotesi

$$\leq \lambda_1 + \dots + \lambda_n$$
 Essendo $\lambda_1, \dots, \lambda_n \geq 0$ per ipotesi
$$= 1 - \lambda_{n+1}$$
 In quanto $\lambda_1 + \dots + \lambda_n + \lambda_{n+1} = 1$ per ipotesi
$$= 0$$
 In quanto si è supposto $\lambda_{n+1} = 1$

Il terzo punto si acquisice osservando che $\lambda_1,\ldots,\lambda_n\geq 0$ per ipotesi e $1-\lambda_{n+1}>0$ per il primo punto ed essendo $\lambda_{n+1}\neq 1$.

Il quarto punto si acquisisce osservando che

$$\frac{\lambda_1}{1-\lambda_{n+1}} + \dots + \frac{\lambda_n}{1-\lambda_{n+1}}$$

$$= \frac{\lambda_1 + \dots + \lambda_n}{1-\lambda_{n+1}}$$

$$= \frac{1-\lambda_{n+1}}{1-\lambda_{n+1}} = 1$$
In quanto $\lambda_1 + \dots + \lambda_n + \lambda_{n+1} = 1$ per ipotesi

Dimostrazione

Si ponga
$$B = \{\lambda_1 \mathbf{x}_1 + \dots + \lambda_n \mathbf{x}_n \mid n \in \mathbb{N}, \ \mathbf{x}_1, \dots, \mathbf{x}_n \in A, \ \lambda_1, \dots, \lambda_n \geq 0 : \lambda_1 + \dots + \lambda_n = 1\}.$$

Si provi intanto che B è convesso.

Siano dunque $\lambda_1 \mathbf{x}_1 + \cdots + \lambda_n \mathbf{x}_n$ e $\mu_1 \mathbf{y}_1 + \cdots + \mu_m \mathbf{y}_m$ con le proprietà descritte da B; siano $\alpha, \beta \geq 0$ tali che $\alpha + \beta = 1$.

Si ha
$$\alpha(\lambda_1\mathbf{x}_1+\cdots+\lambda_n\mathbf{x}_n)+\beta(\mu_1\mathbf{y}_1+\cdots+\mu_m\mathbf{y}_m)\in B.$$

Infatti,

$$\alpha(\lambda_1\mathbf{x}_1+\cdots+\lambda_n\mathbf{x}_n)+\beta(\mu_1\mathbf{y}_1+\cdots+\mu_m\mathbf{y}_m)=\alpha\lambda_1\mathbf{x}_1+\cdots+\alpha\lambda_n\mathbf{x}_n+\beta\mu_1\mathbf{y}_1+\cdots+\beta\mu_m\mathbf{y}_m;$$

si ha
$$lpha\lambda_1, \dots + lpha\lambda_n, eta\mu_1, \dots + eta\mu_m \geq 0$$
, e anche

$$\alpha \lambda_1 + \cdots + \alpha_1 \lambda_n + \beta \mu_1 + \cdots + \beta \mu_m$$

$$= \alpha(\lambda_1 + \dots + \lambda_n) + \beta(\mu_1 + \dots + \mu_m)$$

$$= \alpha + \beta$$
In quanto $\lambda_1 + \dots + \lambda_n = 1$ e $\mu_1 + \dots + \mu_m = 1$ per costruzione
$$= 1$$
Per costruzione di α e β

Ciò mostra che A è convesso.

Per acquisire la tesi resta allora da provare che, fissato $C \supseteq A$ convesso, si ha $B \subseteq C$.

Si provi induttivamente che:

per ogni $n \in \mathbb{N}$, ogni vettore del tipo $\lambda_1 \mathbf{x}_1 + \cdots + \lambda_n \mathbf{x}_n$, con $\mathbf{x}_1, \dots, \mathbf{x}_n \in A$ e $\lambda_1, \dots, \lambda_n \geq 0$ tali che $\lambda_1 + \dots + \lambda_n = 1$, appartiene a C.

Per n=1, l'insieme di tali vettori è esattamente A (in quanto del tipo $\lambda_1 \mathbf{x}_1$, con $\mathbf{x}_1 \in A$ e $\lambda_1=1$); avendo posto $A \subseteq C$, il passo base è quindi acquisito.

Sia ora $n \in \mathbb{N}$ tale che valga l'enunciato indicato sopra, e si provi questo in corrispondenza a n+1.

Si consideri dunque $\lambda_1 \mathbf{x}_1 + \cdots + \lambda_{n+1} \mathbf{x}_{n+1}$, con $\mathbf{x}_1, \ldots, \mathbf{x}_{n+1} \in A$ e $\lambda_1, \ldots, \lambda_{n+1} \geq 0$ tali che $\lambda_1 + \cdots + \lambda_{n+1} = 1$.

Se $\lambda_{n+1} = 1$, per le osservazioni preliminari si ha $\lambda_1 \mathbf{x}_1 + \cdots + \lambda_{n+1} \mathbf{x}_{n+1} = \mathbf{x}_{n+1}$, che per il passo base appartiene a C.

Se invece $\lambda_{n+1} \neq 1$, si ha

$$egin{aligned} \lambda_1 \mathbf{x}_1 + \cdots + \lambda_{n+1} \mathbf{x}_{n+1} \ &= \lambda_{n+1} \mathbf{x}_{n+1} + (1 - \lambda_{n+1}) \left(rac{\lambda_1}{1 - \lambda_{n+1}} \mathbf{x}_1 + \cdots + rac{\lambda_n}{1 - \lambda_{n+1}} \mathbf{x}_n
ight) \end{aligned}$$

$$\in C$$

Infatti,
$$\mathbf{x}_{n+1} \in A \subseteq C$$
;
$$\frac{\lambda_1}{1-\lambda_{n+1}} \mathbf{x}_1 + \dots + \frac{\lambda_n}{1-\lambda_{n+1}} \mathbf{x}_n \in C \text{ per ipotesi induttiva, in}$$
 quanto $\frac{\lambda_1}{1-\lambda_{n+1}} \mathbf{x}_1, \dots, \frac{\lambda_n}{1-\lambda_{n+1}} \geq 0$ e
$$\frac{\lambda_1}{1-\lambda_{n+1}} \mathbf{x}_1 + \dots + \frac{\lambda_n}{1-\lambda_{n+1}} = 1 \text{ per le osservazioni preliminari;}$$
 $\lambda_{n+1} \in [0;1], e \ C \ e \ convesso$

Ne segue che $B \subseteq C$.

Pertanto, B = conv(A), come si voleva.

Proposizione 11.5: Diametro dell'involucro convesso

Sia $(E,\|\cdot\|)$ uno spazio normato.

Sia $A \subseteq E$.

Si ha diam $(\operatorname{conv}(A)) = \operatorname{diam}(A)$.

Q Osservazioni preliminari

Siano $\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_n \in A$;

siano $\lambda_1, \ldots, \lambda_n \geq 0$ tali che $\lambda_1 + \cdots + \lambda_n = 1$.

Si ha $\|\lambda_1\mathbf{x}_1 + \dots + \lambda_n\mathbf{x}_n - \mathbf{x}_0\| \le \lambda_1\|\mathbf{x}_1 - \mathbf{x}_0\| + \dots + \lambda_n\|\mathbf{x}_n - \mathbf{x}_0\|.$

Infatti,

$$\begin{split} &\|\lambda_1\mathbf{x}_1+\dots+\lambda_n\mathbf{x}_n-\mathbf{x}_0\|\\ &=\|\lambda_1\mathbf{x}_1+\dots+\lambda_n\mathbf{x}_n-(\lambda_1+\dots+\lambda_n)\mathbf{x}_0\| \quad \text{Essendo } \lambda_1+\dots+\lambda_n=1 \text{ per ipotesi}\\ &=\|\lambda_1(\mathbf{x}_1-\mathbf{x}_0)+\dots+\lambda_n(\mathbf{x}_n-\mathbf{x}_0)\|\\ &\leq \lambda_1\|\mathbf{x}_1-\mathbf{x}_0\|+\dots+\lambda_n\|\mathbf{x}_n-\mathbf{x}_0\| \qquad \qquad \text{Per sub-additività e assoluta omogeneità delle norme, essendo } \lambda_1,\dots,\lambda_n\geq 0\\ &\qquad \qquad \text{per ipotesi} \end{split}$$

Dimostrazione

Poiché $A \subseteq \operatorname{conv}(A)$, si ha $\operatorname{diam}(A) \leq \operatorname{diam}(\operatorname{conv}(A))$.

Dunque, se A non è limitato, essendo $\operatorname{diam}(A) = +\infty$ si ha anche $\operatorname{diam}(\operatorname{conv}(A)) = +\infty$.

Si supponga ora A limitato, e sia d = diam(A);

si provi che $\operatorname{diam}(A) \geq \operatorname{diam}(\operatorname{conv}(A))$.

Siano $\mathbf{x}, \mathbf{y} \in \text{conv}(A)$;

per la [Proposizione 11.4], si ha

$$\mathbf{x} = \lambda_1 \mathbf{x}_1 + \dots + \lambda_n \mathbf{x}_n$$
, con $\mathbf{x}_1, \dots, \mathbf{x}_n \in A$ e $\lambda_1, \dots, \lambda_n \geq 0$ tali che $\lambda_1 + \dots + \lambda_n = 1$;

$$\mathbf{y} = \mu_1 \mathbf{y}_1 + \dots + \mu_m \mathbf{y}_m$$
, con $\mathbf{y}_1, \dots, \mathbf{y}_m \in A$ e μ_1, \dots, μ_m tali che $\mu_1 + \dots + \mu_m = 1$.

Si ha

$$\|\mathbf{x} - \mathbf{y}\|$$

$$=\|\lambda_1\mathbf{x}_1+\cdots+\lambda_n\mathbf{x}_n-\mu_1\mathbf{y}_1-\cdots-\mu_m\mathbf{y}_m\|$$

$$\leq \sum\limits_{i=1}^{n} \lambda_i \|\mathbf{x}_i - \mu_1 \mathbf{y}_1 - \dots - \mu_m \mathbf{y}_m\|$$

Per l'osservazione preliminare

$$=\sum_{i=1}^n \lambda_i \|\mu_1 \mathbf{y}_1 + \cdots + \mu_m \mathbf{y}_m - \mathbf{x}_i\|$$

$$\leq \sum\limits_{i=1}^n \lambda_i \sum\limits_{i=1}^m \mu_j \|\mathbf{y}_j - \mathbf{x}_i\|$$

$$\|\mu_1\mathbf{y}_1+\cdots+\mu_m\mathbf{y}_m-\mathbf{x}_i\|\leq \sum\limits_{j=1}^m\mu_j\|\mathbf{y}_j-\mathbf{x}_i\|$$
 per ogni $i\in\{1,\dots,n\}$, per

l'osservazione preliminare

$$\leq \sum\limits_{i=1}^n \lambda_i \sum\limits_{j=1}^m \mu_j \, d$$

Per definizione di d, essendo $\mathbf{y}_i, \mathbf{x}_i \in A$ per ogni $i \in \{1, \dots, n\}$ e per ogni $j \in \{1, \ldots, m\}$

$$= \mathcal{d}\left(\sum\limits_{i=1}^n \lambda_i
ight)\left(\sum\limits_{j=1}^m \mu_j
ight)$$

Essendo
$$\lambda_1$$
 +

Essendo $\lambda_1 + \cdots + \lambda_n = 1$ e $\mu_1 + \cdots + \mu_m = 1$ per costruzione

Dunque, $\|\mathbf{x} - \mathbf{y}\| \le d = \operatorname{diam}(A)$ per ogni $\mathbf{x}, \mathbf{y} \in \operatorname{conv}(A)$;

ne segue che $diam(A) \ge diam(conv(A))$, come si voleva.

=d

₩ Definizione: Chiusura convessa

Sia $(X, \|\cdot\|)$ uno spazio normato.

Sia $A \subseteq X$.

Si dice **chiusura convessa** di A l'insieme

 $\overline{\operatorname{conv}}(A) := \bigcap \{ C \subseteq E : C \text{ chiuso e convesso}, C \supseteq A \}.$

Osservazioni

• $\overline{\text{conv}}(A)$ è il minimo sottoinsieme chiuso e convesso di E contenente A, rispetto all'inclusione.

Infatti, $\overline{\text{conv}}(A)$ è contenuto in ogni sottoinsieme chiuso e convesso di E contenente A per definizione; inoltre, esso è chiuso e convesso in quanto l'intersezione arbitraria di insiemi chiusi e convessi è chiusa e convessa. • $\overline{\operatorname{conv}}(A) = \overline{\operatorname{conv}(A)}$.

Infatti, $\overline{\text{conv}(A)}$ è chiuso, e convesso essendo chiusura di un insieme convesso (Si veda l'Osservazione 2 sulla convessità, capitolo 7).

Dunque, $\overline{\operatorname{conv}(A)} \supseteq \overline{\operatorname{conv}}(A)$.

D'altra parte, $\overline{\text{conv}}(A)$ è convesso e contiene A;

allora, $\overline{\operatorname{conv}}(A) \supseteq \operatorname{conv}(A)$.

Essendo $\overline{\operatorname{conv}}(A)$ anche chiuso, contenendo $\operatorname{conv}(A)$ si ha $\overline{\operatorname{conv}}(A) \supseteq \overline{\operatorname{conv}(A)}$.

• $\operatorname{diam}\left(\overline{\operatorname{conv}}(A)\right) = \operatorname{diam}(A)$.

Infatti,

 $\operatorname{diam}(\overline{\operatorname{conv}}(A)) = \operatorname{diam}\left(\overline{\operatorname{conv}(A)}\right)$ Per l'osservazione precedente

 $= \operatorname{diam} (\operatorname{conv}(A))$

In quanto il diametro di un insieme coincide con il diametro della sua chiusura

 $= \operatorname{diam}(A)$

Per la [Proposizione 11.5]

Proposizione 11.6: Maggiorazione della distanza tra un punto in un insieme e un punto nella sua chiusura convessa

Sia $(X, \|\cdot\|)$ uno spazio normato.

Sia $A \subseteq X$.

Sia $\mathbf{x} \in A$.

Sia $\mathbf{y} \in \overline{\operatorname{conv}}(A)$.

Allora, $\|\mathbf{x} - \mathbf{y}\| \leq \operatorname{diam}(A)$.

Dimostrazione

Essendo $\mathbf{x} \in A \subseteq \overline{\operatorname{conv}}(A)$ e $\mathbf{y} \in \overline{\operatorname{conv}}(A)$ per ipotesi, si ha $\|\mathbf{x} - \mathbf{y}\| \leq \operatorname{diam}\left(\overline{\operatorname{conv}}(A)\right)$;

poiché $\operatorname{diam}\left(\overline{\operatorname{conv}}(A)\right) = \operatorname{diam}(A)$ per quanto osservato prima.

Dimostrazione alternativa: Senza fare uso dell'osservazione diam $\left(\overline{\operatorname{conv}}(A)\right) = \operatorname{diam}(A)$, che utilizza le [Proposizioni 11.4, 11.5]

Se A non è limitato, la tesi è di immediata acquisizione essendo $diam(A) = +\infty$.

Si supponga quindi A limitato, e sia d = diam(A).

Dalla definizione di d segue che, per ogni $\mathbf{z} \in A$ si ha $\|\mathbf{z} - \mathbf{x}\| \le d$; si ha cioè $A \subseteq \overline{B}(\mathbf{x}, d)$.

Essendo $\overline{B}(\mathbf{x}, d)$ un intorno sferico chiuso, esso è chiuso e convesso; segue allora dalla definizione di chiusura convessa che $\overline{\mathrm{conv}}(A) \subseteq \overline{B}(\mathbf{x}, d)$.

Essendo allora $\mathbf{y} \in \overline{\operatorname{conv}}(A)$, si ha $\mathbf{y} \in \overline{B}(\mathbf{x}, d)$, ossia $\|\mathbf{y} - \mathbf{x}\| \le d = \operatorname{diam}(A)$, come si voleva.

Il teorema di Lagrange

🖹 Teorema 11.7: Teorema di Lagrange

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Sia $A \subseteq X$.

Sia f:A o Y una funzione, continua su $A imes \overset{\circ}{A}$, e G-derivabile su $\overset{\circ}{A}$.

Siano $\mathbf{x},\mathbf{z}\in A$ tali che $\mathbf{x}+\lambda(\mathbf{z}-\mathbf{x})\in \overset{\circ}{A}$ per ogni $\lambda\in]0;1[$.

Sia
$$C = \{f'(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))(\mathbf{z} - \mathbf{x}) \mid \lambda \in]0; 1[\}.$$

Allora, $f(\mathbf{z}) - f(\mathbf{x}) \in \overline{\operatorname{conv}}(C)$.

Dimostrazione

Si proceda per assurdo, supponendo $f(\mathbf{z}) - f(\mathbf{x}) \notin \overline{\operatorname{conv}}(C)$.

Dalle osservazioni sulla chiusura convessa, si ha che $\overline{\text{conv}}(C)$ è chiuso e convesso.

 $\{f(\mathbf{z}) - f(\mathbf{x})\}\$ è compatto e convesso, e disgiunto da $\overline{\operatorname{conv}}(C)$ per ipotesi di assurdo.

Per il Teorema di Separazione ([Teorema 7.10]), esiste allora $\varphi \in Y^*$ tale che

$$\sup_{\mathbf{y} \in \operatorname{conv}(C)} arphi(\mathbf{y}) < arphi(f(\mathbf{z}) - f(\mathbf{x})).$$

In particolare, essendo $C \subseteq \overline{\operatorname{conv}}(C)$, ne segue che $\varphi(f'(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))(\mathbf{z} - \mathbf{x})) < \varphi(f(\mathbf{z}) - f(\mathbf{x}))$ per ogni $\lambda \in]0;1[$.

Si definisca ora la funzione $\gamma:[0;1]\to\mathbb{R}$ ponendo $\gamma(\lambda)=\varphi\big(f\big(\mathbf{x}+\lambda(\mathbf{z}-\mathbf{x})\big)\big)$ per ogni $\lambda\in[0;1]$.

Si provi che γ è derivabile in]0;1[.

Si fissi dunque $\lambda_0 \in]0;1[$; fissato $h \in \mathbb{R}$ dimodoché $\lambda_0 + h \in]0;1[$, si ha

$$\frac{\gamma(\lambda_0 + h) - \gamma(\lambda_0)}{h} = \frac{\varphi\big(f\big(\mathbf{x} + (\lambda_0 + h)(\mathbf{z} - \mathbf{x})\big)\big) - \varphi\big(f\big(\mathbf{x} + \lambda_0(\mathbf{z} - \mathbf{x})\big)\big)}{h} \quad \text{Definizione di } \gamma$$

$$= \frac{\varphi\big(f\big(\mathbf{x} + \lambda_0(\mathbf{z} - \mathbf{x}) + h(\mathbf{z} - \mathbf{x})\big)\big) - \varphi\big(f\big(\mathbf{x} + \lambda_0(\mathbf{z} - \mathbf{x})\big)\big)}{h}$$

$$= \varphi\left(\frac{f\big(\mathbf{x} + \lambda_0(\mathbf{z} - \mathbf{x}) + h(\mathbf{z} - \mathbf{x})\big) - f\big(\mathbf{x} + \lambda_0(\mathbf{z} - \mathbf{x})\big)}{h}\right)$$
Per linearità di φ

Per ipotesi, $\mathbf{x} + \lambda_0(\mathbf{z} - \mathbf{x}) \in \overset{\circ}{A}$, e f è G-derivabile su $\overset{\circ}{A}$;

pertanto,
$$\lim_{h\to 0} \frac{f(\mathbf{x}+\lambda_0(\mathbf{z}-\mathbf{x})+h(\mathbf{z}-\mathbf{x}))-f(\mathbf{x}+\lambda_0(\mathbf{z}-\mathbf{x}))}{h} = f'(\mathbf{x}+\lambda_0(\mathbf{z}-\mathbf{x}))(\mathbf{z}-\mathbf{x}).$$

Dalla continuità di φ (essendo $\varphi \in Y^*$) segue allora che

$$\lim_{h o 0}rac{\gamma(\lambda_0+h)-\gamma(\lambda_0)}{h}=\lim_{h o 0}arphi\left(rac{fig(\mathbf{x}+\lambda_0(\mathbf{z}-\mathbf{x})+h(\mathbf{z}-\mathbf{x})ig)-fig(\mathbf{x}+\lambda_0(\mathbf{z}-\mathbf{x})ig)}{h}
ight)=arphiig(f'(\mathbf{x}+\lambda_0(\mathbf{z}-\mathbf{x}))ig(\mathbf{z}-\mathbf{x})ig).$$

Dunque, è stato ricavato che γ è derivabile in]0;1[, e che

$$\dot{\gamma}(\lambda) = \varphi \big(f'(\mathbf{x} + \lambda_0(\mathbf{z} - \mathbf{x})) (\mathbf{z} - \mathbf{x}) \big)$$
 per ogni $\lambda \in]0;1[$.

Si ha inoltre che γ è continua in 0 e 1.

Infatti, la funzione $[0;1] \to \mathbb{R}$ è continua in 0 e 1; $\lambda \mapsto f(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))$

questo fatto si acquisisce osservando che, su \mathbf{x} e su \mathbf{z} , la restrizione di f al segmento $[\mathbf{x}, \mathbf{z}]$ è continua per G-derivabilità di f, se $\mathbf{x}, \mathbf{z} \in \mathring{A}$, oppure per ipotesi di continuità di f su $A \setminus \mathring{A}$, se $\mathbf{x}, \mathbf{z} \notin \mathring{A}$.

Essendo γ composizione di φ , continua, con tale funzione, segue la continuità di γ in 0 e 1.

Allora, γ soddisfa le ipotesi del teorema di Lagrange.

Pertanto, esiste $\tilde{\lambda} \in]0;1[$ tale che $\gamma(1)-\gamma(0)=\dot{\gamma}(\tilde{\lambda}),$ ossia

$$\varphi(f(\mathbf{z})) - \varphi(f(\mathbf{x})) = \varphi(f'(\mathbf{x} + \tilde{\lambda}(\mathbf{z} - \mathbf{x}))(\mathbf{z} - \mathbf{x}));$$

sfruttando la linearità di φ al primo membro, si ottiene allora

 $\varphi(f(\mathbf{z}) - f(\mathbf{x})) = \varphi(f'(\mathbf{x} + \tilde{\lambda}(\mathbf{z} - \mathbf{x}))(\mathbf{z} - \mathbf{x}))$, in contraddizione con la disuguaglianza ottenuta inizialmente per costruzione di φ .

Nel caso in cui $Y = \mathbb{R}$, il teorema di Lagrange si può dimostrare senza procedere per assurdo:

Teorema 11.7*: Teorema di Lagrange (per funzioni a valori reali)

Sia $(X, \|\cdot\|_X)$ uno spazio normato.

Sia $A \subseteq X$.

Sia $f:A o\mathbb{R}$ una funzione, continua su $A imes \overset{\circ}{A}$, e G-derivabile su $\overset{\circ}{A}$.

Siano $\mathbf{x},\mathbf{z}\in A$ tali che $\mathbf{x}+\lambda(\mathbf{z}-\mathbf{x})\in \overset{\circ}{A}$ per ogni $\lambda\in]0;1[$.

Sia
$$C = \{f'(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))(\mathbf{z} - \mathbf{x}) \mid \lambda \in]0; 1[\}.$$

Allora, $f(\mathbf{z}) - f(\mathbf{x}) \in \overline{\operatorname{conv}}(C)$.

Dimostrazione

Sia $\gamma:[0;1]\to\mathbb{R}$ definita ponendo $\gamma(\lambda)=f(\mathbf{x}+\lambda(\mathbf{z}-\mathbf{x}))$ per ogni $\lambda\in[0;1]$.

Tale funzione è derivabile in]0; 1[;

infatti, fissato $\lambda_0 \in]0;1[$, si ha $\mathbf{x}+\lambda_0(\mathbf{z}-\mathbf{x})\in \overset{\circ}{A}$, e f G-derivabile su $\overset{\circ}{A}$ per ipotesi; pertanto,

$$\lim_{h\to 0}\frac{\gamma(\lambda_0+h)-\gamma(\lambda_0)}{h}=\lim_{h\to 0}\frac{f(\mathbf{x}+(\lambda_0+h)(\mathbf{z}-\mathbf{x}))-f(\mathbf{x}+\lambda_0(\mathbf{z}-\mathbf{x}))}{h}=$$

$$=\lim_{h o 0}rac{f(\mathbf{x}+\lambda_0(\mathbf{z}-\mathbf{x})+h(\mathbf{z}-\mathbf{x}))-f(\mathbf{x}+\lambda_0(\mathbf{z}-\mathbf{x}))}{h}=f'(\mathbf{x}+\lambda_0(\mathbf{z}-\mathbf{x}))ig(\mathbf{z}-\mathbf{x}ig).$$

Inoltre, γ è continua in 0 e 1;

questo fatto si acquisisce osservando che, su \mathbf{x} e su \mathbf{v} , la restrizione di f al segmento $[\mathbf{x}, \mathbf{z}]$ è continua per G-derivabilità di f, se

 $\mathbf{x}, \mathbf{z} \in \overset{\circ}{A}$, oppure per ipotesi di continuità di f su $A \setminus \overset{\circ}{A}$, se $\mathbf{x}, \mathbf{z} \notin \overset{\circ}{A}$.

Allora, γ soddisfa le ipotesi del teorema di Lagrange.

Pertanto, esiste $\tilde{\lambda} \in]0;1[$ tale che $\gamma(1)-\gamma(0)=\dot{\gamma}(\tilde{\lambda}),$ ossia

$$f(\mathbf{z}) - f(\mathbf{x}) = f'(\mathbf{x} + \tilde{\lambda}(\mathbf{z} - \mathbf{x}))(\mathbf{z} - \mathbf{x}) \in C \subseteq \overline{\operatorname{conv}}(C).$$

Corollario 11.8: Corollario al teorema di Lagrange

Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ due spazi normati.

Sia $A \subseteq X$.

Sia $f: A \rightarrow Y$ una funzione.

Si supponga f continua su $A \setminus \overset{\circ}{A}$, e G-derivabile su $\overset{\circ}{A}$.

Siano $\mathbf{x}, \mathbf{z} \in A$ tali che, per ogni $\lambda \in]0; 1[$, si abbia $\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}) \in \overset{\circ}{A}$ ed esista M > 0 tale che $\|f'(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))\|_{\mathcal{L}(X,Y)} \leq M$.

Allora, $||f(\mathbf{z}) - f(\mathbf{x})||_Y \leq M||\mathbf{z} - \mathbf{x}||_X$.

Dimostrazione

Valgono tutte le ipotesi del teorema di Lagrange ([Teorema 11.7]);

dunque,
$$f(\mathbf{z}) - f(\mathbf{x}) \in \overline{\operatorname{conv}}(C)$$
, dove $C = \{f'(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))(\mathbf{z} - \mathbf{x}) \mid \lambda \in]0; 1[\}$.

Per ogni $\lambda \in]0;1[$, si ha

$$\|f'(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))(\mathbf{z} - \mathbf{x})\|_Y \le \|f'(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))\|_{\mathcal{L}(X,Y)} \cdot \|\mathbf{z} - \mathbf{x}\|_X$$
 Per come è definita la norma $\|\cdot\|_{\mathcal{L}(X,Y)}$

$$\implies \|f'(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))(\mathbf{z} - \mathbf{x})\|_Y \le M\|\mathbf{z} - \mathbf{x}\|_X$$
 Essendo $\|f'(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))\|_{\mathcal{L}(X,Y)} \le M$ per ipotesi

$$\implies f'(\mathbf{x} + \lambda(\mathbf{z} - \mathbf{x}))(\mathbf{z} - \mathbf{x}) \in \overline{B}(\mathbf{0}_Y, M \|\mathbf{z} - \mathbf{x}\|_X)$$

Pertanto, si ha $C\subseteq \overline{B}(\mathbf{0}_Y, M\|\mathbf{z}-\mathbf{x}\|_X)$.

Essendo $\overline{B}(\mathbf{0}_Y, M \| \mathbf{z} - \mathbf{x} \|_X)$ un intorno sferico chiuso in Y, esso è chiuso e convesso; contenendo C, si ha che $\overline{\mathrm{conv}}(C) \subseteq \overline{B}(\mathbf{0}_Y, M \| \mathbf{z} - \mathbf{x} \|_X)$.

Per quanto osservato inizialmente si ha allora $f(\mathbf{z}) - f(\mathbf{x}) \in \overline{\operatorname{conv}}(C) \subseteq \overline{B}(\mathbf{0}_Y, M \| \mathbf{z} - \mathbf{x} \|_X)$, per cui vale $\|f(\mathbf{z}) - f(\mathbf{x})\|_Y \leq M \|\mathbf{z} - \mathbf{x}\|_X$.