IN THE CLAIMS

Please amend the claims as indicated:

1	1.	(previously presented) An apparatus for use on a bottom hole assembly (BHA) for
2		conveying in a borehole in an earth formation, the apparatus comprising:
3		(a) an orientation sensor making measurements indicative of a toolface angle
4		of said BHA during rotation of the BHA;
5		(b) at least one directionally sensitive formation evaluation sensor for making
6		measurements of a property of said earth formation during said continued
7		rotation; and
8		(c) a processor which estimates from said directionally sensitive
9		measurements and said orientation sensor measurements a local spatial
10		characteristic of said earth formation
11		wherein said BHA has a non-uniform rate of rotation.
12		
1	2.	(previously presented) The apparatus of claim 1 wherein said local spatial
2		characteristic comprises a dip of a bed boundary.
3		
_	_	

1

3. (previously presented) The apparatus of claim 1 wherein said local spatial characteristic comprises a dip of an oil-water contact.

3

2

(previously presented) The apparatus of claim 1 wherein said at least one 4. 10/771,675

10/771,675

2 directionally sensitive formation evaluation sensor comprises two directionally 3 sensitive formation evaluation sensors spaced apart along an axial direction of 4 said BHA.. 5 1 5. (previously presented) The apparatus of claim 1 wherein the at least one 2 directionally sensitive formation evaluation sensor comprises a galvanic 3 resistivity sensor. 4 1 6. (original) The apparatus of claim 5 wherein said galvanic sensor comprises a 2 focused sensor. 3 1 7. (previously presented) The apparatus of claim 1 wherein said at least one directionally sensitive formation evaluation sensor comprises an induction sensor. 2 3 1 8. (original) The apparatus of claim 7 wherein said induction sensor comprises a 2 sensor having a coil with an axis inclined to an axis of said BHA. 3 1 9. (previously presented) The apparatus of claim I wherein said at least one 2 directionally sensitive formation evaluation sensor comprises a resistivity sensor having a plurality of transmitter-receiver spacings and further comprises circuitry 3 for measuring at least one of (i) an amplitude difference, and, (ii) a phase

Fax:7132668510

2		difference of signals measured at said plurality of spacings.
6		
1	10.	(original) The apparatus of claim 1 wherein said orientation sensor is associated
2		with a first processor and said at least one resistivity sensor is associated with a
3		second processor, said first and second processors being on a common bus.
4		
1	11.	(previously presented) The apparatus of claim 1 wherein said orientation sensor
2	•	comprises at least one of (i) a magnetometer, (ii) an accelerometer, and, (iii) a
3		gyrsocope.
4		
1	12.	canceled
2		
1	13.	(previously presented) The apparatus of claim 1 further comprising a sensor for
2		providing a measurement indicative of an inclination and azimuth of said
3		borehole.
4		
1	14.	(original) The apparatus of claim 1 wherein said processor further determines a
2		bias in said orientation measurements.
3		
1	15.	(canceled)
2		
	10/771.	675

1

16.

2		directi	onally sensitive formation evaluation comprises a resistivity sensor is
3		mount	ted on one of (i) a pad, (ii) a rib, and, (iii) a stabilizer.
4			
l	17.	(previ	ously presented) The apparatus of claim 1 wherein said processor further
2		constr	ucts and corrects an image of said borehole.
3			
1	18.	(curre	ntly amended) The apparatus of claim 1 wherein a processor said processor
2		furthe	r controls a drilling direction of said borehole based on said local spatial
3		charac	teristic of said earth formation.
4			
1	19.	(curre	ntly amended) The apparatus of claim 1 wherein said processor determines
2		said lo	ocal spatial characteristic of said earth formation based on an apparent rate
3		of pen	etration of the BHA.
4			
1	20.	(curre	ntly amended) A method of estimating a local spatial characteristic of an
2 .		earth f	formation, the method comprising:
3		(a)	conveying a bottom hole assembly (BHA) into a borehole in an earth
4			formation;
5		(b)	using an orientation sensor on said BHA for making measurements
6			indicative of a toolface angle of said BHA during continued rotation of the
	10/771,	675	

(previously presented) The apparatus of claim 1 wherein said at least one

7			BHA;
8		(c)	using a first directionally sensitive formation valuation sensor on said
9			BHA for making measurements indicative of of said local spatial
10			characteristic of said earth formation during said continued rotation; and
11		(d)	estimating the local spatial characteristic of the earth formation from using
12			said measurements of said directionally sensitive formation evaluation
13			sensor and said orientation sensor measurements said local spatial
14			characteristic of said carth-formation, said estimation correcting for a non-
15			uniform rate of rotation of said BHA.
16			
1	21.	(previ	ously presented) The method of claim 20 further comprising using said
2		detern	nined local spatial characteristic for controlling a drilling direction of
3		said b	orehole.
4			·
1	22.	(previ	ously presented) The method of claim 20 wherein said local spatial
2		charac	eteristic comprises a apparent dip angle between an axis of said borehole and
3	•	a bed	boundary in said earth formation.
4			
1	23.	(curre	ntly amended) The method of claim 20 wherein determining said dip
2		local o	characteristic further comprises using measurements from a second
3		directi	onally sensitive formation evaluation sensor spaced apart axially from said
	10/771,	67 <i>5</i>	

4 first directionally sensitive formation evaluation sensor. 5 24. 1 (previously presented) The method of claim 20 wherein the first directionally 2 sensitive formation evaluation sensor comprises a galvanic sensor. 3 1 25. (original) The method of claim 24 wherein said galvanic sensor comprises a 2 focused sensor. 3 1 26. (previously presented) The method of claim 20 wherein saidfirst directionally 2 sensitive formation evaluation sensor comprises an induction sensor. 3 1 27. (previously presented) The method of claim 26 wherein said induction sensor 2 comprises a sensor having a coil with an axis inclined to an axis of said BHA. 3 1 28. (currently amended) The method of claim 20 wherein said first directionally 2 sensitive formation evaluation sensor comprises a resistivity sensor with a 3 plurality of transmitter-receiver spacings, and using said resistivity sensor further comprises a making measurements of at least one of (i) and amplitude 4 5 difference, and, (ii) a phase difference of signals measured at said plurality of 6 spacings.

10/771,675

1	29.	(previously presented) The method of claim 20 further comprising coupling a first
2		processor associated with said orientation sensor and a second processor
3		associated with the first directionally sensitive formation evaluation sensor to a
4		common bus.
5		
1	30.	(previously presented) The method of claim 20 wherein said orientation sensor
2		is selected from the group consisting of: (i) a magnetometer, (ii) an
3		accelerometer, and, (iii) a gyroscope
4		
1	31.	canceled
2		
1	32.	(previously presented) The method of claim 20 further comprising using an
2		additional sensor for providing a measurement indicative of an inclination and
3		azimuth of said borehole.
4		
1	33.	(original) The method of claim 20 further comprising determining a bias in said
2		orientation measurements.
3		
1	34.	canceled
2		
1	35.	(previously presented) The method claim 20 wherein said first directionally
	10/771,	675 o

2	Harding .	sensitive formation evaluation sensor is mounted on one of (i) a pad, (ii) a rib,
3		and, (iii) a stabilizer.
4		
1	36.	(original) The method of claim 20 further comprising obtaining an image of said
2		borehole.
3		
1	37.	(original) The method of claim 36 further comprising correcting said image.
2		
1	38.	(original) The method of claim 36 further comprising identifying tool face angles
2		associated with a sticking of the BHA.
3		
1	39.	(previously presented) The apparatus of claim 1 wherein said directionally
2		sensitive formation evaluation sensor is selected from the group consisiting of (i)
3		a resistivity sensor, and, (ii) a nuclear sensor.
4		
1	40.	(previously presented) The apparatus of claim 1 wherein said local spatial
2		characteristic of said earth formation is selected from the group consisting of (i)
3		a dip of an interface in said earth formation, and, (ii) an image of a wall of said
4		borehole.
5		
1	41.	(previously presented) The apparatus of claim 4 further comprising a processor
	1000	

Fax:7132668510

2 for determining from measurements made by said two directionally sensitive 3 formation evaluation sensors a rate of penetration of said BHA. 4 1 42. (previously presented) The apparatus of claim 13 wherein said sensor for 2 providing a measurement indicative of an inclination and azimuth of said 3 borehole comprises a gyroscope. 4 1 43. (previously presented) The method of claim 20 wherein said directionally 2 sensitive formation evaluation sensor is selected from the group consisiting of (i) 3 a resistivity sensor, and, (ii) a nuclear sensor. 4 1 44. (previously presented) The apparatus of claim 20 wherein said local spatial 2 characteristic of said earth formation is selected from the group consisting of (i) a 3 dip of an interface in said earth formation, and, (ii) an image of a wall of said 4 borehole. 5 1 45. canceled 2 46. (currently amended) The method of claim claim 20 further comprising altering a direction of drilling of said BHA based at least in part on said estimated local spatial characteristic of said earth formation.

12

3

3

IN THE CLAIMS

Please amend the claims as indicated:

- 1 1. (previously presented) An apparatus for use on a bottom hole assembly (BHA) for conveying in a borehole in an earth formation, the apparatus comprising:
- (a) an orientation sensor making measurements indicative of a toolface angle
 of said BHA during rotation of the BHA;
- 5 (b) at least one directionally sensitive formation evaluation sensor for making
 6 measurements of a property of said earth formation during said continued
 7 rotation; and
- 8 (c) a processor which estimates from said directionally sensitive
 9 measurements and said orientation sensor measurements a local spatial
 10 characteristic of said earth formation
- 11 wherein said BHA has a non-uniform rate of rotation.

1 2. (previously presented) The apparatus of claim 1 wherein said local spatial
2 characteristic comprises a dip of a bed boundary.

- (previously presented) The apparatus of claim 1 wherein said local spatial
 characteristic comprises a dip of an oil-water contact.
- 1 4. (previously presented) The apparatus of claim 1 wherein said at least one

10/771,675

Fax:7132668510

2		directionally sensitive formation evaluation sensor comprises two directionally
3		sensitive formation evaluation sensors spaced apart along an axial direction of
1		said BHA
5		
l	5.	(previously presented) The apparatus of claim 1 wherein the at least one
2		directionally sensitive formation evaluation sensor comprises a galvanic
3		resistivity sensor.
1		
L	6.	(original) The apparatus of claim 5 wherein said galvanic sensor comprises a
2		focused sensor.
3		
l	7.	(previously presented) The apparatus of claim 1 wherein said at least one
2		directionally sensitive formation evaluation sensor comprises an induction sensor.
3		
l	8.	(original) The apparatus of claim 7 wherein said induction sensor comprises a
2		sensor having a coil with an axis inclined to an axis of said BHA.
3		
l	9.	(previously presented) The apparatus of claim 1 wherein said at least one
2		directionally sensitive formation evaluation sensor comprises a resistivity sensor
3		having a plurality of transmitter-receiver spacings and further comprises circuitry
1		for measuring at least one of (i) an amplitude difference, and, (ii) a phase

Fax:7132668510

5 difference of signals measured at said plurality of spacings. 6 (original) The apparatus of claim 1 wherein said orientation sensor is associated 1 10. 2 with a first processor and said at least one resistivity sensor is associated with a 3 second processor, said first and second processors being on a common bus. 4 1 11. (previously presented) The apparatus of claim 1 wherein said orientation sensor 2 comprises at least one of (i) a magnetometer, (ii) an accelerometer, and, (iii) a 3 gyrsocope. 4 1 12. canceled 2 1 13. (previously presented) The apparatus of claim 1 further comprising a sensor for 2 providing a measurement indicative of an inclination and azimuth of said 3 borehole. 4 1 (original) The apparatus of claim 1 wherein said processor further determines a 14. 2 bias in said orientation measurements. 3 1 15. (canceled) 2 10/771,675

1	16.	(prev	iously presented) The apparatus of claim 1 wherein said at least one
2		direct	tionally sensitive formation evaluation comprises a resistivity sensor is
3		moun	ated on one of (i) a pad, (ii) a rib, and, (iii) a stabilizer.
4			
1	17.	(prev	iously presented) The apparatus of claim 1 wherein said processor further
2		const	ructs and corrects an image of said borehole.
3			
1	18.	(curre	ently amended) The apparatus of claim 1 wherein a processor said processor
2		furthe	er controls a drilling direction of said borehole based on said local spatial
3		chara	cteristic of said earth formation.
4			
1	19.	(curre	ently amended) The apparatus of claim 1 wherein said processor determines
2		said l	ocal spatial characteristic of said earth formation based on an apparent rate
3		of per	netration of the BHA.
4			
1	20.	(curre	ently amended) A method of estimating a local spatial characteristic of an
2		earth	formation, the method comprising:
3		(a)	conveying a bottom hole assembly (BHA) into a borehole in an earth
4			formation;
5		(b)	using an orientation sensor on said BHA for making measurements
6			indicative of a toolface angle of said BHA during continued rotation of the
	10/771,	,675	

7		BHA;
8		(c) using a first directionally sensitive formation valuation sensor on said
9		BHA for making measurements indicative of of said local spatial
10		characteristic of said earth formation during said continued rotation; and
11		(d) estimating the local spatial characteristic of the earth formation from using
12		said measurements of said directionally sensitive formation evaluation
13		sensor and said orientation sensor measurements said-local spatial
14		characteristic of said earth formation, said estimation correcting for a non-
15		uniform rate of rotation of said BHA.
16		
1	21.	(previously presented) The method of claim 20 further comprising using said
2		determined local spatial characteristic for controlling a drilling direction of
3		said borehole.
4		
1	22.	(previously presented) The method of claim 20 wherein said local spatial
2		characteristic comprises a apparent dip angle between an axis of said borehole and
3		a bed boundary in said earth formation.
4		
1	23.	(currently amended) The method of claim 20 wherein determining said dip
2		local characteristic further comprises using measurements from a second
3		directionally sensitive formation evaluation sensor spaced apart axially from said
	10/771,	675

4 first directionally sensitive formation evaluation sensor. 5 1 24. (previously presented) The method of claim 20 wherein the first directionally 2 sensitive formation evaluation sensor comprises a galvanic sensor. 3 1 25. (original) The method of claim 24 wherein said galvanic sensor comprises a 2 focused sensor. 3 1 26. (previously presented) The method of claim 20 wherein saidfirst directionally 2 sensitive formation evaluation sensor comprises an induction sensor. 3 1 27. (previously presented) The method of claim 26 wherein said induction sensor 2 comprises a sensor having a coil with an axis inclined to an axis of said BHA. 3 1 28. (currently amended) The method of claim 20 wherein said first directionally 2 sensitive formation evaluation sensor comprises a resistivity sensor with a 3 plurality of transmitter-receiver spacings, and using said resistivity sensor further 4 comprises a making measurements of at least one of (i) and amplitude 5 difference, and, (ii) a phase difference of signals measured at said plurality of 6 spacings. 7

29.	(previously presented) The method of claim 20 further comprising coupling a first
	processor associated with said orientation sensor and a second processor
	associated with the first directionally sensitive formation evaluation sensor to a
	common bus.
30.	(previously presented) The method of claim 20 wherein said orientation sensor
	is selected from the group consisting of: (i) a magnetometer, (ii) an
	accelerometer, and, (iii) a gyroscope
31.	canceled
32.	(previously presented) The method of claim 20 further comprising using an
	additional sensor for providing a measurement indicative of an inclination and
	azimuth of said borehole.
33.	(original) The method of claim 20 further comprising determining a bias in said
	orientation measurements.
34.	canceled
35.	(previously presented) The method claim 20 wherein said first directionally
10/771,	675 8
	31.32.34.35.

Z		sensitive formation evaluation sensor is mounted on one of (1) a pad, (11) a rib,
3		and, (iii) a stabilizer.
4		
1	36.	(original) The method of claim 20 further comprising obtaining an image of said
2		borehole.
3		
1	37.	(original) The method of claim 36 further comprising correcting said image.
2		
1	38.	(original) The method of claim 36 further comprising identifying tool face angles
2		associated with a sticking of the BHA.
3		
1	39.	(previously presented) The apparatus of claim 1 wherein said directionally
2		sensitive formation evaluation sensor is selected from the group consisiting of (i)
3		a resistivity sensor, and, (ii) a nuclear sensor.
4		
1	40.	(previously presented) The apparatus of claim 1 wherein said local spatial
2		characteristic of said earth formation is selected from the group consisting of (i)
3		a dip of an interface in said earth formation, and, (ii) an image of a wall of said
4		borehole.
5		
1	41.	(previously presented) The apparatus of claim 4 further comprising a processor
	10/771,	675
		9

Fax:7132668510

2 for determining from measurements made by said two directionally sensitive 3 formation evaluation sensors a rate of penetration of said BHA. 4 1 42. (previously presented) The apparatus of claim 13 wherein said sensor for 2 providing a measurement indicative of an inclination and azimuth of said 3 borehole comprises a gyroscope. 4 1 43. (previously presented) The method of claim 20 wherein said directionally 2 sensitive formation evaluation sensor is selected from the group consisiting of (i) 3 a resistivity sensor, and, (ii) a nuclear sensor. 4 (previously presented) The apparatus of claim 20 wherein said local spatial 1 44. 2 characteristic of said earth formation is selected from the group consisting of (i) a dip of an interface in said earth formation, and, (ii) an image of a wall of said 3 borehole. 5 1 45. canceled 2 46. (currently amended) The method of claim claim 20 further comprising altering a direction of drilling of said BHA based at least in part on said estimated local

10/771,675

spatial characteristic of said earth formation.