Travail pratique no. 1 Automne 2024

1. Objectif

Ce travail vise l'application des techniques vues en cours sur un jeu de données réel. Il nécessite la maîtrise du langage *Python*, un apprentissage personnel pourrait donc s'avérer nécessaire. Vous êtes encouragé à consulter la documentation de *pandas* pour trouver des fonctions ou des méthodes que vous n'avez peut-être pas encore utilisées.

2. Méthode de remise et autres consignes

Le travail devrait être remis sur le site *moodle* du cours. Vous devez déposer un fichier .zip avec :

- Votre rapport contenant les réponses aux questions. Le fichier doit être en format PDF (-2 pts si autre format).
 N'oubliez pas d'indiquer les identifiants (nom, code permanent) de tous les membres de votre équipe. Ne pas mettre de code dans le rapport.
- Votre *notebook* avec tout le code ayant servi pour les réponses aux questions. Indiquez bien la réponse à chaque question par le numéro respectif. Notez que toute réponse doit être appuyée par un bout de code qui la produit.

3. Échéancier

Le dépôt doit être fait au plus tard le 20 novembre(23:59 EDT). Pour chaque jour de retard, une pénalité de 20% sera appliquée. De plus, au bout de 3 jours la note sera fixée à 0. Aucune période de grâce ne sera octroyée.

4. Critères d'évaluation

Le travail compte pour 15% de votre note finale. Il est noté sur 40 selon les critères suivants :

- Exactitude des réponses aux questions de l'énoncé : 36/40
- Présentation du rapport et du notebook : 4/40

5. Description des données

Dans ce travail, nous utilisons un jeu de données décrivant une population de personnes (32 561 au total) en mettant l'accent sur les informations pertinentes à leurs revenus annuels. Au lieu des valeurs exactes de ce revenu, une séparation en deux classes est utilisée (≤ 50 000 , > 50 000). Les entrées sont décrites par douze attributs représentant différents traits des personnes (valeurs traduites en français lorsque justifié) :

- Age: Entier positif
- Travail (nature du poste occupé) : Nominal = {Privee, Travailleur-Auto-inc, Travailleur-Auto-non-inc, Gow_Local, Gow-Provincial, etc.}
- Éducation (le plus haut niveau éducatif acquis): Nominal = {Preschool, 1st-4th, 5th-6th, 7th-8th, 9th, 10th, 11th, 12th, Assocardm, Assoc-voc, Prof-school, HS-grad, Some-college, Bachelors, Masters, Doctorate}
- Nombre (années) d'éducation : Entier positif
- État civil (statut matrimonial) : Nominal = { Jamais_marié, Marié_civil, Veuf, Divorcé, Séparé, etc.}
- Occupation (secteur de l'emploi) : Nominal = {Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, etc.}
- Lien de parenté avec la personne du même ménage : Nominal = {Pas_dans_famille, Célibataire, Mari, etc.}
- Race: Nominal = {Blanc, Noir, Asiatique, Amérindien, Autre}
- Sexe: Nominal
- Heures (travaillées) par semaine : Entier positif
- Pays d'origine : Nominal
- Revenu: Booléen = $\{ \le 50\,000, > 50\,000 \}$

6. Travail à faire

Utiliser *Python* pour établir les réponses aux questions de cet énoncé. Il n'est pas interdit de faire les calculs à l'aide d'un autre outil ou à la main, toutefois les réponses qui ne sont pas appuyées par un code *Python* fonctionnant ne seront pas prises en compte.

1. Étude exploratoire (5 pts)

- 1. Combien de personnes travaillent-elles dans le privé?
- 2. Quels sont les pays d'origine des femmes dans ce jeux de données ?
- 3. Quel est le pourcentage d'hommes avant un niveau éducatif HS-grad?
- 4. Quelles sont les **attributs** pour lesquels **manquent** de valeurs ? Combien de valeurs manquent par attribut ? Quels attributs ont le **nombre** de valeurs **manquantes maximal** ? Et **minimal** (mais > 0) ?
- 5. Quelles sont les valeurs la **plus élevée** et la **moins élevée** de l'attribut *nombre d'années d'éducation* ?

2. Statistiques et probabilités (22 pts)

Pour la suite, nous considérons le jeux de données complet ainsi qu'un échantillon dont la taille est 10% de la taille complète (3256 lignes). Pour des raisons de déterminisme, on prendra les premiers 10% des enregistrements (lignes 1 à 3256).

- 1. Extraire les 3 valeurs du nombre d'années d'éducation les plus fréquentes. Correspondent-elles à un intervalle complet (ex. 8, 9 et 10) ?
- 2. **Moyenne** des nombre d'années d'éducation ? Et **médiane** ?
- 3. Quels pays ont les moyennes des âges de leurs ressortissants les plus élevées ?
- 4. Quelle % des femmes ayant une maîtrise ont un salaire >50K ? Quelle est ce % chez les hommes ?
- 5. Quelle % des personnes **ne vivant pas en famille** ont un diplôme universitaire (baccalauréat, maîtrise ou doctorat) ?
- 6. Quelle race a la proportion la plus élevée de salaires ≤50K ? Qu'en est il pour la valeur >50K ?

- 7. Existe-t-il une **différence** dans les *salaires* des hommes **mariées** et les hommes **ne vivant pas en famille** ? Dans quel sens va-t-elle ?
- 8. Quelle est la variance des âges dans notre jeu de données complet ? Quelle est sa valeur pour l'échantillon ?
- 9. Parmi les *années d'éducation* et l'âge, quel attribut a plus d'influence sur la valeur du salaire ? Dit autrement, lequel des deux est plus **corrélé** avec le salaire ? Pour y répondre, il faudrait coder l'attribut ordinal salaire par de nombres, par ex., ≤50K par 1 et >50K par 2.
- 10. Est-ce que *l'âge* est un facteur d'influence important pour le *salaire* des femmes ? Répondez en comparant les *ages* moyens dans les groupes de femmes à salaires ≤50K et >50K, respectivement.
- 11. Quelle est la différence entre les écarts types des heures par semaine pour le jeux complet et pour l'échantillon?

3. Tests d'hypothèses (9 pts)

Dans cette partie, nous allons considérer le jeu de données complet comme étant notre « population » et notre attention sera portée sur l'échantillon des 1 ers 3256 lignes qui nous servira comme base pour la validation de diverses hypothèses. On assume aussi que l'attribut nombre d'heures par semaine suit une loi normale.

- 1. On émet l'hypothèse que la **moyenne** des heures par semaine sur le jeu de données complet n'est pas plus élevée que 40 hrs/sem. En vous basant sur **l'échantillon**, et en utilisant un **écart type** de la population égal à 12,35 , testez cette hypothèse à l'aide d'un **t-test**. Prenez un niveau de signification de 5%.
 - N.B. Pour des raisons pédagogiques, on ignore la valeur effective de la moyenne pour le jeu complet : ce qu'on veut tester est si la valeur observée sur l'échantillon est suffisamment extrême pour permettre de rejeter l'hypothèse H₀ que vous aurez formulée.
- 2. On émet une autre hypothèse : les femmes travaillent, en moyenne, plus d'heures que la **moyenne** hypothétique de 40 hrs/sem. En vous basant uniquement sur la partie pertinente de **l'échantillon**, testez cette hypothèse à l'aide d'un **t-test**. Prenez un niveau de signification de 10%.
- 3. Finalement, existe-t-il un écart significatif (à 5%) entre le salaire moyen **de la population** et celui des femmes ? Pour y répondre, utilisez le codage suggéré par la question 9. Avec ce codage, l'écart type de la population est arrondi à 0,43.