

Erweiterbarer, Umweltfreundlicher, Leistungsfähiger ETH-Rechner (euler)

A Mini-Workshop on Bioinformatics for Microbial Metagenomics on the Euler

Feng Ju, Ph D
Department of Surface Waters, Microbial Ecology Group
Eawag Kastanienbaum, Switzerland

Date: 06.07.2018

Location: Raum-KB-Bootshaus

Outlines

• Background for microbial metagenomics

• Bioinformatics Practice on the euler

Best practices for analyzing

microbiomes

Rob Knight et al., 2018

nature

Amplicon data analysis:

DADA2: amplicon sequence variants

(ASVs), written in R

Deblur: sub-operational taxonomic units

(sOTUs), 10 times faster

Written in python

Metagenome analysis:

Read-based strategy: Bowtie2,

Diomond, Metaphylan2, etc.

Assembly-based strategy: IDBA_UD,

MEGAHIT, metaSPAdes

Metatranscriptome analysis:

Read-based strategy: Bowtie2,

Metaphylan2, etc.

Assembly-based strategy: IDBA_UD,

MEGAHIT, metaSPAdes

Pros and cons of genomic analyses for evaluating microbial communities

Method	Pros	Cons
Marker gene analysis	 Quick, simple and inexpensive sample preparation and analysis^{55,59} Correlates well with genomic content^{37–41} Amenable to low-biomass and highly host-contaminated samples Large existing public data sets for comparison^{16,55,160} 	 No live, dead or active discrimination Subject to amplification biases³⁴ Choice of primers and variable region magnifies biases^{33,54,159} Requires a priori knowledge of microbial community³⁶ Resolution typically limited to genus level at best Appropriate negative controls required Functional information is limited^{39,40}
Whole metagenome analysis	 Can directly infer the relative abundance of microbial functional genes; microbial taxonomic and phylogenetic identity to species and strains level is attainable for known organisms⁴² Does not assume knowledge of microbial community (that is, captures phages, viruses, plasmids, microbial eukaryotes, etc.) No PCR-related biases Can estimate in situ growth rates for target organisms with sequenced genomes¹⁶¹ Can allow assembly of population-averaged microbial genomes^{43,162} Can be mined for novel gene families 	 Relatively expensive, laborious and complex sample preparation and analysis Contamination from host-derived DNA and organelles may obscure microbial signatures Viruses and plasmids are not typically well annotated by default pipelines Deep sequencing depths are typically required relative to other methods No live, dead or active discrimination Population-averaged microbial genomes tend to be inaccurate owing to assembly artefacts
Metatranscriptome analysis The et al., 2018.	 Can estimate which microorganisms in a community are actively transcribing when paired with marker gene analysis Inherently discriminates between active live organisms versus dormant or dead microorganisms and extracellular DNA Captures dynamic intra-individual variation⁵¹ Directly evaluates microbial activity, including responses to intervention and event exposure⁵² 	 Most expensive, laborious and complex sample preparation and analysis¹⁶³ Host mRNA contamination and rRNA must be removed^{48,164,165} Requires careful sample collection and storage Data are biased towards organisms with high transcription rates Requires paired DNA sequencing to decouple transcription rates from bacterial abundance changes

Rob Knig Nature Reviews Microbiology

16S rRNA gene amplicon NGS data mining of microbial diversity & interactions

Google scholar citation of 16S amplicon NGS data analysis tools and databases

Statistics as of May 6, 2018

NGS-based shot-gun metagenomic survey of microbial ecosystem function

Reference: Ju F, Zhang T*. 2015. Experimental design and bioinformatics analysis for the application of metagenomics in environmental sciences and biotechnology. Environmental Science & Technology. 49(21), 12628-12640

A self-accelerating data mining circle in an era of NGS-based metagenomcis

Shot-gun metagenomic data analysis platforms, tools and database resources

Гable 1. Platforr	ns and Software Tool	ls Available for the Bioinformatics Analysis of Metagenomes
data	platform/software	description
Pretreatment	MG-RAST CLC bio IMG/M system PRINSEQ NGS QC Toolkit DeconSeq FASTX-Toolkit	DMP, QC, DR ALR, DMP, QC, DR, OL QC, DR QC, DR, summary statistics ALR, QC DNA contamination removal ALR, DMP, QC
Assembly	Velvet ABySS SOAPdenovo2 CLC bio IDBA-UD MetaVelvet Ray Meta Omega MEGAHIT	genome assembler genome/metagenome assembler metagenome assembler
Binning	GroopM CONCOCT MaxBin METABAT PhyloPythiaS TETRA CompostBin TACAO	genome reconstruction composition-based taxonomic binning/assignment
	MetaPhlAn2 MetaPhyler PhymmBL MetaCluster	homology-based taxonomic binning/assignment composition & homology-based taxonomic binning/assignment

- ExPASy: Bioinformatics Resource Portal: https://www.expasy.org/
- OBRC: Online Bioinformatics Resources Collection: https://www.hsls.pitt.edu/obrc/
- Nucleic Acids Research Database: <u>http://www.oxfordjournals.org/our_journals/nar/database/c/</u>
- Nucleic Acids Research Web Server Issue: https://academic.oup.com/nar/issue/43/W1
- OmicsTools: https://omictools.com/
- GenomeNet: <u>https://www.genome.jp/en/gn_tools_html</u>

Outline for Bioinformatics Practice on the euler

- 1) Make data subsets of lake water sample D10
- 2) Make subfolders and sample lists for the datasets
- 3) Check and activate modules and commands
- 4) Data QC for DNA-seq and RNA-seq
- 5) *De novo* assembly of metagenomes
- 6) In-house scripts for assemblies statistics
- 7) Gene prediction from contigs
- 8) Reads mapping to contigs and genes with Bowtie2
- 9) Genes/Reads annoation using BLAST
- 10) Run a jobarray using BLAST as an example

Software to install for euler access

1. VPN connection from eawag network to the ETH Zurich

instructions here: https://www.ethz.ch/services/de/it-services/katalog/netzwerke-verbindungen/remote.html

• 2. For windows user, download and install:

Putty: https://putty.org/ (left plot for setups)

WinSCP: https://winscp.net/eng/download.php (right plot for setups) PuTTY Configuration 🖺 登录 Category: 会话 Session Basic options for your PuTTY session ■新建站点 Logging feng.ju@euler.ethz.ch 文件协议(E) Specify the destination you want to connect to Terminal SFTP Keyboard Host Name (or IP address) Rell fengju@euler.ethz.ch 22 Features 主机名(出) Window euler.ethz.ch 22 Telnet Rlogin SSH Appearance Behaviour Load, save or delete a stored session 用户名(U) 密码(P) Translation Selection Saved Sessions fengju Colours Connection 编辑(E) 高级(A)... Default Settings Data Load Proxy Telnet Save Rlogin SSH Delete Close window on exit-○ Always ○ Never Only on clean exit 工具(T) 帮助 About 管理(M) ▼ Cancel

• 3. For Macs user, open terminal to type in:

ssh <USER>@euler.ethz.ch

1) Make data subsets of sample D10

- # Change directory (cd) to the path with paired-end DNA-seq and RNA-seq
- cd /cluster/project/gdc/people/fengju/example (right click on WinSCP to get path)
- # Extract the first 1 million lines of DNA-seq
- gzip -h ### always type in '-h' or '—help' to learn about a command
- gzip -cd D10.R1_1.fq.gz | head -400000 > D10.R1_1.fq
- gzip -cd D10.R1_2.fq.gz | head -400000 > D10.R1_2.fq
- # Extract the last 1 million lines of DNA-seq
- gzip -cd D10.R2_1.fq.gz | tail -400000 > D10.R2_1.fq && gzip -cd D10.R2_2.fq.gz | tail -400000 > D10.R2_2.fq

Likewise:

- # Extract the first 1 million lines of RNA-seq
- $gzip cd R10.R1_1.fq.gz \mid head 400000 > R10.R1_1.fq$
- $gzip cd R10.R1_2.fq.gz \mid head 400000 > R10.R1_2.fq$
- # Extract the last 1 million lines of RNA-seq
- gzip -cd R10.R2_1.fq.gz | tail -400000 > R10.R2_1.fq && gzip -cd R10.R2_2.fq.gz | tail -400000 > R10.R2_2.fq

2) Make subfolders and sample lists for the datasets

- # Create folder with name "D10" and move the DNA-seq data to "D10"
- mkdir D10
- mv -t D10 D10.R1_1.fq D10.R1_2.fq D10.R2_1.fq D10.R2_2.fq
- # Do the same for RNA-seq data with a folder name as "R10"
- mkdir R10 && mv -t R10 R10.R*.fq
- # Do the same for gzip files with a folder name as "rawdata"
- mkdir rawdata && mv -t rawdata *fq.gz

Make sample ID list for DNA-seq

- cd D10 && pwd
- $ls *_1.fq \mid sed 's/_1.fq//' > sample.DNA.txt$
- Do the same for RNA-seq
- cd ../R10 && pwd
- $ls *_1.fq \mid sed 's/_1.fq//' > sample.RNA.txt$

3) Check and activate modules and commands on the euler

#Check which modules are installed and shared by all the euler users

module avail

#Load module for gdc users

- module load gdc
- module avail

#Load all the dependencies before run a module, say "fastqc/0.11.4"

• modepend fastqc/0.11.4

(tip: left click to select the terminal output and right click to automatically paste it into terminal)

- module load gcc/4.8.2 gdc java/1.8.0_73 fastqc/0.11.4
- fastqc -h

4) Data QC for DNA-seq and RNA-seq

Before data QC, a quick summary of raw data quality in an NGS library can be obtained using FASTQC:

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Statistics and visualization of the quality of sequence data D10.R1 using fastqc cd ../D10 && pwd && ls fastqc D10.R1_1.fq

4) Data QC for DNA-seq and RNA-seq

Two QC pipelines for shot-gun metagenomic reads: prinseq: easy and rapid quality control and data preprocessing: http://prinseq.sourceforge.net/

fastp: an alternative tool for fasta preprocessing for FastQ files: https://github.com/OpenGene/fastp

One of the QC steps: whether and how to de-duplication Natural/real or artificial? Unfortunately, artificial duplicates are difficult to distinguish from exactly overlapping reads that naturally occur within deep sequence samples

For high-complexity metagenomic samples lacking dominant species, natural duplicates only make up <1% of all duplicates. But for some other samples like transcriptomic samples, majority of the observed duplicates might be natural duplicates (Niu et al., 2010, BMC bioinformatics)

Deprelication (-derep) is recommended to be disabled when processing RNA-seq data

4) Data QC for DNA-seq and RNA-seq

Quality control (QC) of DNA-seq "D10.R1" using "prinseq"

- modepend prinseq-lite/0.20.4
- module load gcc/4.8.2 gdc perl/5.18.4 prinseq-lite/0.20.4
- prinseq-lite.pl -h
- head -n 8 D10.R1_1.fq # Every four lines represent one read
- head -n 1 D10.R1_1.fq && head -n 1 D10.R1_2.fq #Ids of paired-end reads
- prinseq-lite.pl -verbose -fastq D10.R1_1.fq -fastq2 D10.R1_2.fq -out_good D10.R1.Good -ns_max_p 10 -min_qual_mean 20 -stats_dupl -derep 1

The same for DNA-seq "D10.R2"

- prinseq-lite.pl -verbose -fastq D10.R2_1.fq -fastq2 D10.R2_2.fq -out_good D10.R2.Good -ns_max_p 10 -min_qual_mean 20 -stats_dupl -derep 1
- rm *singletons.fastq ## remove files that will not be used here
- rm *_bad_* ## remove files that will not be used here

5) De novo assembly of metagenomes

k-mer: all the possible substrings of length k that are contained in a string (wiki) Longer k-mer, the smaller contig size, conting number and probably more cohrecent assemblies

• Check wiki for more about De Bruijn graph: https://en.wikipedia.org/wiki/De_Bruijn_graph8

5) De novo assembly of metagenomes

Metagenome de novo assembly of D10.R1 using megahit

- modepend megahit/1.1.3
- module load gcc/4.8.2 gdc python/2.7.11 megahit/1.1.3
- megahit -h
- megahit --k-list 21,47,71,95,121 -t 2 --out-dir D10.R1_megahit --out-prefix D10.R1_contigs_megahit --min-contig-len 300 -1 D10.R1.Good_1.fastq -2 D10.R1.Good_2.fastq

Metagenome de novo assembly of D10.R2 using megahit

• megahit --k-list 21,47,71,95,121 -t 2 --out-dir D10.R2_megahit --out-prefix D10.R2_contigs_megahit --min-contig-len 300 -1 D10.R2.Good_1.fastq -2 D10.R2.Good_2.fastq

```
# Homework 1: (if you like): using idba/1.1.1 for de novo assembly
```

Homework 2: (if you like): *de novo* assembly of raw reads vs. Post-QC reads to check how much it affect the assemblies statistics

6) In-house scripts for some statistics on the contig assemblies

- # Change to the "example" folder and build "contigs" folder
- cd.. && cd..
- mkdir contigs
- find . -name '*megahit.contigs.fa' -exec mv -t contigs {} +

The N50 (N80) statistic is the length for which the collection of all contigs of that length or longer contains at least 50% (80%) of the sum of the lengths of all contigs

- # Calculate the N50, max., average and min. length of sequence in a file
- python scripts/N50_GC.py -h
- python scripts/N50_GC.py -i contigs -o contigs.summary.csv

7) Gene prediction from contigs

Load module for prodigal access on the euler

- module avail
- modepend prodigal/2.6.3
- module load gcc/4.8.2 gdc prodigal/2.6.3
- prodigal -h
- mkdir genes

#Gene prediction from contigs using prodigal

Start codon: usually ATG, GTG, or TTG; stop codon: usually TAA, TGA, or TAG)

- prodigal -i contigs/D10.R1_contigs_megahit.contigs.fa -a genes/D10.R1.megahit.prodigal.faa -d genes/D10.R1.megahit.prodigal.fna -p meta -f gff -o genes/D10.R1.megahit.prodigal.gff
- prodigal -i contigs/D10.R2_contigs_megahit.contigs.fa -a genes/D10.R2.megahit.prodigal.faa -d genes/D10.R2.megahit.prodigal.fna -p meta -f gff -o genes/D10.R2.megahit.prodigal.gff
 - •Partial: An indicator of if a gene runs off the edge of a sequence or into a gap. "11" indicates both edges are incomplete, and "00" indicates a complete gene with a start and stop codon.

8) Reads mapping to contigs and genes --- Bowtie2/BWA mapping

- # Load modules and create reference databases for mapping
- #module load gdc && module avail && modepend bowtie2/2.2.6
- module load gcc/4.8.2 gdc bowtie2/2.2.6
- bowtie2-build -h #always invoke help to check the software usage
- bowtie2-build contigs/D10.R1_contigs_megahit.contigs.fa D10.R1_contigs.bt.db
- mkdir databases && mv *.bt2 databases

Bowtie2 mapping of reads to reference sequences (e.g., contigs or genes)

- bowtie2 -h #always invoke help to help
- bowtie2 -x databases/D10.R1_contigs.bt.db -1 D10/D10.R1.Good_1.fastq -2 D10/D10.R1.Good_2.fastq --threads 1 -S D10.R1_contigs.sam -q
- mkdir D10_bowtie2 && mv D10.R1_contigs.sam D10_bowtie2

8) Reads mapping to contigs and genes --- Coverage calculation

Load modules to use samtools

- #module load gdc && module avail && modepend bowtie2/2.2.6
- module load gcc/4.8.2 gdc perl/5.18.4 samtools/1.3
- samtools view -bS D10_bowtie2/D10.R1_contigs.sam > D10_bowtie2/D10.R1_contigs.bam # file format conversion
- samtools sort D10_bowtie2/D10.R1_contigs.bam -o D10_bowtie2/D10.R1_contigs.sorted.bam # bam file sorting
- samtools depth D10_bowtie2/D10.R1_contigs.sorted.bam > D10_bowtie2/D10.R1_contigs.depth.txt # generate depth info.
- perl scripts/calc.coverage.in.bam.depth.pl -i D10_bowtie2/D10.R1_contigs.depth.txt -o D10.R1_contigs.coverage.csv

For space efficiency, remove or gzip temporary files

- rm D10_bowtie2/D10.R1_contigs.sam && rm D10_bowtie2/D10.R1_contigs.sorted.bam
- gzip D10_bowtie2/D10.R1_contigs.bam

9) Gene/Read annoation using BLAST: Basic Local Alignment Search Tool

Load modules to use NCBI's BLAST tools for nucleotide sequence search

- #module load gdc && module avail && modepend blast/2.2.30
- module load blast/2.2.30
- makeblastdb -h
- makeblastdb -in databases/91_otus.fasta -parse_seqids -dbtype nucl
- blastn -query genes/D10.R1.megahit.prodigal.fna -db databases/91_otus.fasta -out D10.R1_gene.GG91.blastp -evalue 1e-5 -max_target_seqs 10 -num_threads 1 outfmt 6

Use blastp for protein sequence search

- makeblastdb -in databases/SARG_20170328.fasta -parse_seqids -dbtype prot
- blastp -query genes/D10.R1.megahit.prodigal.faa -db databases/SARG_20170328.fasta -out D10.R1_gene.SARG.blastp -evalue 1e-5 -max_target_seqs 1 -num_threads 1 -outfmt 6
- grep '>' genes/D10.R1.megahit.prodigal.faa | wc -l ### count sequence number in fasta

9) Gene/Read annoation using BLAST: blast outfmt 6 (tab-delimited)

10 hits of 1 gene sequence in the 91% OTU set of GreenGene database

1.	asoaid	k121_369_1	806314 97.92	192	3	1	1	192	556	746			331
1.	qseqid	k121_369_1	4296689 96.35	192	7	0	1	192	575	766			316
		k121_369_1	329744 95.83	192	8	0	1	192	567	758			311
2.	ssegid	k121_369_1	329171 95.34	193	7	2	1	192	565	756			305
۷٠	Joeqia	k121_369_1	559843 94.27	192	11	0	1	192	568	759			294
		k121_369_1	4415092 94.21	190	9	2	4	192	550	738	7,70		289
3.	pident	k121_369_1	877884 93.23	192	13	0	1	192	569	760			283
	1	k121_369_1	865748 93.12	189	13	0	4	192	554	742	1e-7	4	278
1	longth	k121_369_1	1130640 92.63	190	12	2	4	192	526	714	5e-7	3	272
4.	length	k121_369_1	667312 92.63	190	12	2	4	192	575	763	5e-7	3	272
5.	mismatch	The	e best hit for	20	gene :	seque	nces i	n the	struct	ured A	ARDB		
		k121_6_2	gi 610427609 gb	AHW764	85.1	40.00	90	54	0	1	90 3	90	479
6.	gapopen	k121_57_1		27.64	123	62	4	14	111	20	140 5	e-06	42.0
0.	Sapoperi	k121_103_1	AAG07763	56.20	121	52	1	1	120	884	1004 3	e-36	132
_		k121_157_1	U82085.gene.p01	43.06	72	40	1	66	136	5	76 4	e-11	58.9
7.	gstart	k121_157_1	U82085.gene.p01		74	43	2	61	133	288	357 6	e-06	43.1
	1	k121_185_1	gi 488156254 ref				35.71	112	72	0		14	7
0	a a ba d	k121_223_2	gi 1011730119 re				26.76	142	93	5		37	6
8.	qend	k121_349_1	gi 445996732 ref				30.69	101	70	0		01	7
	_	k121_386_1	gi 542061059 gb			36.84	95	53	2	6		44	232
9.	sstart	k121_573_1		37.93	87	53	1	14	100	49		e-13	64.3
٦.	Jotait	k121_707_2	gi 817122037 ref		235		66.67	27 4	9 211	0 166	1 2 396 9	e-24	570 98.2
4.0		k121_758_1 k121_758_1	X63451.gene.p01 X63451.gene.p01		60	128 31	0	4	63	467		e-24 e-09	53.9
10.	send	k121_738_1 k121_798_1		41.25	80	44	2	9	88	73		e-11	60.1
		k121_816_2	NC 002951.323822		41.24	177	101	2	1	177		74	3e-39
11.	evalue	k121_010_2 k121_836_1	gi 1004359922 gb			32.14	84	54	1	4	7.00 April 1997	40	420
11.	evalue	k121_859_1	gi 779850732 ref				41.49	94	55	0		02	110
		k121_876_1	FJ349556.1.gene2		39.66	58	35	0	4	61	- T	2	4e-08
12.	bitscore	k121 898 1		40.19	107	57	3	12	116	49	150 5	e-15	71.2
12.	DICOCOTO	k121_1044_1	gi 446026113 ref	WP_00	0103968.	1	33.95	162	101	2		67	1

Self-written scripts are needed to process the blast output tables and extract and match assignment information to the database annotations

10) Standard ways to submit your jobs on the euler --- single jobs and jobararrys

- # Use bsub to submit single jobs
- #module load gdc && module avail && modepend blast/2.2.30
- module load blast/2.2.30
- bsub -n1 -W 1:00 -R "rusage[mem=500]" -J "BLASTP" "blastp query genes/D10.R1.megahit.prodigal.faa -db databases/SARG_20170328.fasta -out D10.R1_gene.SARG.blastp evalue 1e-5 -max_target_seqs 1 -num_threads 1 -outfmt 6"

Use bsub to submit jobsarrarys

- cd genes/ && ls *.fna | sed 's/.fna//'> sample_list.txt
- bsub < scripts/submit.usearch16s.jobarrays.cmds.lsf # Open the .lsf to edit
- bjobs # check the states of the jobs
- More information about the "**7. Running jobs The batch system**" are available GDC_Euler_manual.v01.09.2017.pdf

Final remarks and advice

- Basic bioinformatics precedures for microbial metagenomes may include data pretreatment, *de novo* assembly, gene prediction, and gene annotation
- Microbial metatranscriptomes can be annoated via RNA reads mapping to predicted genes and/or assembled contigs from paired metagenomes
- Microbial community structure and function could be explored based on both read-based and assembly-based annotation strategies
- You are the best teacher of your bioinformatics
- Always Google for published codes or de-bugging
- Learn from and share codes through open-source platforms (e.g., github)
- Make a electronic note/diary for your bioinformatics experiments

•

Appendix I: commnd lines for genome binning on the euler

- Using metabat for automated coverage-composition-based binning of genome contigs using metabat/2.12.1
- module load gdc
- module avail
- modepend metabat/2.12.1
- module load gcc/4.9.2 gdc boost/1.55.0 python/2.7.11 metabat/2.12.1
- metabat2 -h

Metric	Full definition	Definition	Reference	
RPK	Number of assigned reads divided		(Katz et al 2010)	
PMSF	"Per million" scaling factor.	The sum of all the RPK values in a sample divided by one million	(Li and Dewey 2011)	
TPM	Transcripts Per (Kilobase) Million	The RPK values of each transcripts divided by the PMSF of its sample	(Li and Dewey 2011)	
GPM	Genes Per (Kilobase) Million The RPK values of each gene divided by the PMSF of its sample		This study	
RPK-16S	Reads per kilobase 16S rRNA gene	The sum of RPKs of all identified 16S rRNA genes	This study	
16S%MG	Number of reads identified as 16S rRNA		This study	
GP16S	Genes Per 16S rRNA gene	RPK of a give gene divided by RPK-16S	This study	
16S-GCN	16S rRNA Gene Conv. Composition-weighted average 16S rRNA		(Yang et al 2016	
16S-GPL	16S rRNA Gene copies Per Liter	S rRNA Gene copies Per Copies of 16S rRNA gene per liter of		
CPL	Cells Per Liter	16S-GPL divided by composition- weighted 16S-GCN	This study	
GPL	Gene copies Per Liter	Gene copies Per Liter 16S-GPL multiplied by GP16S of a given gene		
TPL	Transcript copies Per Liter Read abundance of a transcript multiplied per-liter normalization factor (NF1) as determined by spiked RNA standard (Table S4)		This study	
ТРВ	Transcript copies Per gram- of-biomass	Read abundance of a transcript multiplied by per-gram normalization factor (NF2) as determined by spiked RNA standard (Table S4)	This study	
TPG	Transcript copies Per Gene copy (i.e., gene expression ratio)	TPL divided by GPL	This study	
TPC	Transcript copies Per Cell	TPL divided by CPL	This study	

Appendix II:

Quantitative meta-omics metrics of microbial gene and transcripts

Cite my papers and gihub link

My Github Profile

https://github.com/RichieJu520

Followe