Friday, February 28, 2025 9:34 AM

Nonton Decrement: Y(x) = { DE(x) DE(x) }

When we are close to a minimizer px

3(x) => Estimple of how else we en to px

\$(x) - \$ 22 3(x)2

some foots: (1) Athir Dx = - x(x)

- 7 F(x) 7 F(x)

1128(x) 11 11 Dxnt 1 COS (B)

(2) $\lambda(x) = \left(\nabla x^{ut} \int_{x} f(x) \nabla x^{ut} \right)_{x}$

P-Quadratic norm of a rector when PES++ $\|x\|_{p} = (x^{T}Px)^{1/2}$

3) N(x) is invested under affine transformations of the Gurdin fla)

Newton's Step:
$\chi = \chi + \xi \Delta x_{n\xi}$
$\chi = \chi + \xi \Delta \chi_1$
-72f(x) Vf(x)
-2 f(x) 2 f(x)
2 f(m) > 0
(π)
when $E = 1 \Rightarrow Full Newton Step.$
03.31, 2 = 3.1000 1000 100) 2104.
1
5 Full Newton Step Should be taken only when
= 10011 (2 m) Stob 2 months 25 (1000)
It is very close to the local (or global) minimum.
Ve 12 1. 9 100 100 (00) (0. 2/000)
Othersise, the wethod can diverge.
Olderson, the Monda Call sunches
lead a st solo and an established had
1/50/2 18/17 1 LCINION (13270AMIN) WE SAN CLOSE 10 OF 10 OF
Newbor's Method (Assuming use one close to a look winimum or one working with
o course proposition
'nput': x & dont; tolerance & >0
input: X & don't; tolerance 6 10
Instidize: K<0
Repeat:
201 (m) 201 (m) 110
© Dxnt < - √2 f(xes) √2(xes) / Compute
2 notuses
Smell Sure direction
$\angle \sqrt{\mathcal{L}(x_m)} > 0$
1 +00 > 0
21 (m) 201 (m) 201 (m) 201 (m)
② Compute \(\frac{1}{2} \left(\frac{1}{2} \right) \) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
•
11 compute wenter decreme
) Salvare
V
(3) $\sum \{x \}^{2} (\chi^{(u)}) \leq \epsilon$
(3) \forall λ λ λ

7-

break

(4) Line Search; Choose to using back tracking

(w) 4 t 12 (v) = (v) + t 12 (v)

(G) x ~ x +1

 \sim \sim \sim \sim \sim \sim

Chapter 2: Conver Sets

@ Line: Civen x, +x2 ER

X (X 2

G= 0x, + (1-0)x2, OEB OC CON

2(0)

Ly one-dimensional linear function

4(0) is a line passing through &, and x2

2) Line Segment: when OE [0,1],

y(0) = 0x, + (1-0)x2; is the

line seement joining of and of

-0 . 0 / ~ ~ ~ ~

= $\chi_{1} + \theta(\chi_{1} - \chi_{2})$ 0 => Tells us how for we are from 22 in the Smoother (x1-x2) 3) Affine Set: A set C = R is affine if the or 29il a ni storod tonitert and already suit the Set C. Xxxx EC and BER 0x, + (1-0)x, E C Combination Sum to 2. Veimple induction arguners

Vsimple induction arguneat 59 C is an affine Set, $x_1, \dots, x_k \in C$ $0_1, \dots, 0_k \in \mathbb{R}$ S.t. $\sum_{j=1}^k \theta_j = 1$ then $0_1, \dots, 0_k \in \mathbb{R}$ S.t. $0_2 \times 1_2 \times 1_2 \times 1_3 \times 1_4 \times 1_4$

Affine Combination of Points

Civen $x_1, --- x_k \in \mathbb{R}^n$ and $\theta_1, --, \theta_k \in \mathbb{R}$ 8.4. $\sum_{j=1}^{\infty} \theta_j = 1$

9, x, + 8 2x2+ ---+ 8xxx is celled on offine combination.

Connection to a Subspace

An affine Set is a Subspace Shifted from the oxigin.

If C 12 an affine Set and X & C for any so then

 $V = C - x_0 = \frac{1}{3}x - x_0 : x \in C^{\frac{1}{3}}$

Some Vis a subspace.

Jim =1 3 snockaer

Since sed 3 snockaer

Dimenzion of on Office Ect

It is the dimension of the subspace associated .) Nition

Exi C= {x: Ax=b; b & R'}

IS Caffine?

Approach I: Use the definition of an affine let.

Let x, and x2 E C Show that Bx, + (1-8)x2 EC x, 6 C => Ax,=b XZEC => Axz = 6 9x1 + (1-8)x2 ⇒ € C? $\Rightarrow \mathcal{A}(\beta x_1 + (1-\beta)x_2) = 0$ Enous $=\frac{9 A \chi_1 + (1-9) A \chi_2}{5}$ = 86+ (1-8) b = 6 Approach 2. Zx: Ax=0} is a subspace null space of A Zx: Ax=b} is simply a shifted version of fr: Ax=03=) C is an affine set. Dimensionality of C = dimensionality of the null space of A.

Affine Hull of points in a set in R.

Cinen a Set C, which may not be affine,

Mr. 29:100 hull of C :00 destined acc.

Civen a set co which may not be attine, the affine hull of C is defined as: aff C = } 0, x, +--- + 0, x, : x, --, x, E C 0,+02+~- Que1 } Affine hull of a Set C is the Smallest affine set that contains C. That is, let S be any affine let such that: CCS. Then. aff c e s Examples: 0,79 (·) - / aff (-) = // $aff \left(\begin{array}{c} \\ \\ \end{array} \right) = \mathbb{R}^2$

Reding: 2.1.1 and 2.1.2 (BV)
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Conver Set
A Set C is convide if the line segment between
any two points in c, lies in c.
y x1, x2 € C and 0 € [0,1]
0x, + (1-0)x2 EC
- Every affine 80% is a convex set
Sonver = nonconver
Cenvix Den Son cover
Nonconver $\frac{1}{2}\theta_{i}=1$
Subspaces affine sets Convex sets
Convex Combination of Points
Civen $x_1, x_2, x_k \in C$ and $\theta_1, - x_0 \neq 0$ 8.4. $\geq \theta_0' = 1$

	θ	X,+	~ ~-	+ Durk	21	pslle	Q	Conver
Combine		•	//	1 1	-			
Compuny	611	1	The	baum	10	Ċ,		
		"		3				