算法 8.5 RMSProp 算法 A Grad fing 30
Require: 全局学习速率 ϵ ,衰减速率 ρ
——— Require: 初始参数 $ heta$
Require: 小常数 δ , 通常设为 10^{-6} (用于被小数除时的数值稳定)
初始化累积变量 $r=0$
while 没有达到停止准则 do
————————————————————————————————————
十算梯度: $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), \mathbf{y}^{(i)})$ 累积平方梯度: $\mathbf{r} \leftarrow \rho \mathbf{r} + (1 - \rho) \mathbf{g} \odot \mathbf{g}$
计算参数更新: $\Delta oldsymbol{ heta} = -rac{\epsilon}{\sqrt{\delta+r}}\odot oldsymbol{g} (rac{1}{\sqrt{\delta+r}}$ 逐元素应用)
应用更新: $oldsymbol{ heta}\leftarrowoldsymbol{ heta}+\Deltaoldsymbol{ heta}$
end while
下,它也许最好被看作结合 RMSProp 和具有一些重要区别的动量的变种。首先,在
Adam 中, 动量直接并入了梯度一阶矩(带指数加权)的估计。将动量加入 RMSProp
最直观的方法是应用动量于缩放后的梯度。结合重放缩的动量使用没有明确的理论
动机。其次(Adam 包括负责原点初始化的一阶矩(动量项)和(非中心的)二阶矩
的估计修正偏置(算法8.7)。RMSProp 也采用了(非中心的)二阶矩估计,然而缺

