Loading Data

```
import pandas as pd
In [0]:
        import numpy as np
        import nltk
        import string
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.feature extraction.text import TfidfTransformer
        from sklearn.feature extraction.text import TfidfVectorizer
In [0]: train data=pd.read pickle('CleanedText')
In [0]: | train data.head()
Out[0]: 138706
                  witti littl book make son laugh loud recit car...
        138683
                  rememb see show air televis year ago child sis...
        417839
                  beetlejuic well written movi everyth excel act...
        346055
                  twist rumplestiskin captur film star michael k...
        417838
                  beetlejuic excel funni movi keaton hilari wack...
        Name: CleanedText, dtype: object
```

TF-IDF

In [0]: importent_features=importent_features.tolist()

```
In [0]: ctxs = text
        mat = np.zeros((len(importent_features), len(importent_features)))
        nei = []
        nei_size = 3
        for ctx in ctxs:
            words = ctx.split(' ')
            for i, _ in enumerate(words):
                nei.append(words[i])
                if len(nei) > (nei_size * 2) + 1:
                     nei.pop(0)
                pos = int(len(nei) / 2)
                for j, _ in enumerate(nei):
                  if nei[j] in importent_features and words[i] in importent_features
                    mat[importent_features.index(nei[j]), importent_features.index(wor
        ds[i])] += 1
        mat = pd.DataFrame(mat)
        mat.index = importent features
        mat.columns = importent_features
        display(mat)
```

	tast	like	good	great	love	flavor	one	product	tri	u:
tast	27745.0	5527.0	3398.0	2737.0	1145.0	1540.0	1134.0	1100.0	1123.0	1203
like	2287.0	28071.0	1487.0	1078.0	1191.0	1982.0	1513.0	1194.0	1189.0	1081
good	1991.0	1684.0	21953.0	1049.0	1035.0	1430.0	969.0	1271.0	919.0	967
great	2290.0	1174.0	1036.0	20134.0	1250.0	1519.0	631.0	1942.0	708.0	1079
love	1471.0	1079.0	960.0	1285.0	18925.0	1345.0	963.0	1238.0	819.0	817
flavor	1867.0	2098.0	1388.0	1237.0	999.0	21956.0	1182.0	731.0	1085.0	953
one	1262.0	1355.0	991.0	828.0	874.0	969.0	19046.0	759.0	819.0	734
product	1476.0	1180.0	1293.0	1451.0	976.0	703.0	867.0	19354.0	864.0	1205
tri	1082.0	1310.0	843.0	744.0	986.0	1348.0	1388.0	929.0	16294.0	626
use	794.0	814.0	666.0	783.0	604.0	760.0	765.0	1151.0	507.0	18650
make	924.0	881.0	987.0	1480.0	484.0	524.0	661.0	643.0	427.0	799
get	728.0	705.0	728.0	683.0	562.0	540.0	749.0	569.0	422.0	717
buy	457.0	503.0	508.0	597.0	598.0	375.0	607.0	897.0	439.0	410
best	1475.0	507.0	419.0	458.0	427.0	655.0	345.0	412.0	737.0	540
would	659.0	1012.0	639.0	522.0	488.0	392.0	464.0	755.0	611.0	478
time	536.0	558.0	561.0	557.0	466.0	353.0	447.0	541.0	490.0	523
eat	534.0	739.0	623.0	499.0	555.0	301.0	816.0	446.0	426.0	29€
realli	1079.0	1873.0	1544.0	645.0	653.0	704.0	400.0	489.0	409.0	373
find	542.0	526.0	617.0	504.0	376.0	441.0	470.0	615.0	284.0	423
also	436.0	785.0	708.0	730.0	463.0	425.0	376.0	343.0	471.0	810
dont	746.0	1492.0	418.0	306.0	291.0	399.0	375.0	416.0	352.0	584
amazon	315.0	354.0	538.0	771.0	466.0	239.0	372.0	739.0	368.0	342
much	684.0	737.0	380.0	344.0	393.0	570.0	421.0	418.0	354.0	462
even	563.0	695.0	398.0	360.0	440.0	325.0	397.0	299.0	396.0	399
littl	578.0	587.0	417.0	375.0	357.0	475.0	377.0	272.0	224.0	355
tea	1922.0	1493.0	1221.0	1046.0	978.0	1873.0	1122.0	464.0	1024.0	886
order	353.0	370.0	466.0	471.0	450.0	305.0	479.0	672.0	332.0	274
price	316.0	348.0	586.0	638.0	398.0	202.0	318.0	611.0	255.0	348
well	449.0	499.0	420.0	434.0	352.0	361.0	346.0	393.0	341.0	368
better	601.0	391.0	369.0	362.0	306.0	369.0	354.0	381.0	390.0	377
stain	4.0	7.0	1.0	9.0	6.0	2.0	4.0	6.0	6.0	ξ
chunki	11.0	10.0	10.0	4.0	3.0	7.0	4.0	5.0	2.0	ξ
hemp	14.0	7.0	12.0	16.0	8.0	11.0	8.0	16.0	5.0	11
factori	7.0	6.0	3.0	2.0	2.0	5.0	2.0	5.0	6.0	4

	tast	like	good	great	love	flavor	one	product	tri	u:
rope	3.0	9.0	6.0	11.0	9.0	4.0	11.0	3.0	3.0	3
starch	3.0	8.0	2.0	1.0	2.0	13.0	3.0	3.0	0.0	8
fault	6.0	4.0	4.0	4.0	2.0	3.0	4.0	23.0	3.0	5
mash	6.0	10.0	4.0	4.0	2.0	4.0	1.0	5.0	4.0	11
nestl	9.0	7.0	11.0	4.0	3.0	5.0	7.0	12.0	5.0	4
bug	4.0	9.0	4.0	1.0	3.0	1.0	10.0	3.0	4.0	5
assur	5.0	2.0	10.0	1.0	3.0	6.0	3.0	19.0	3.0	4
plump	4.0	7.0	12.0	5.0	2.0	14.0	1.0	3.0	1.0	4
truth	5.0	7.0	6.0	1.0	2.0	7.0	0.0	6.0	2.0	5
ensur	8.0	3.0	6.0	4.0	6.0	3.0	1.0	19.0	2.0	7
ketchup	21.0	17.0	11.0	8.0	8.0	11.0	11.0	7.0	7.0	8
access	6.0	4.0	7.0	4.0	7.0	4.0	10.0	7.0	3.0	E
swiss	7.0	9.0	12.0	3.0	1.0	1.0	6.0	6.0	4.0	7
graham	14.0	14.0	3.0	6.0	7.0	4.0	4.0	2.0	1.0	5
north	4.0	4.0	2.0	4.0	3.0	1.0	2.0	7.0	4.0	2
reserv	5.0	9.0	6.0	8.0	7.0	6.0	5.0	6.0	6.0	4
petit	1.0	8.0	3.0	4.0	7.0	9.0	3.0	8.0	8.0	2
master	9.0	9.0	2.0	8.0	5.0	10.0	9.0	1.0	8.0	4
lemonad	16.0	18.0	6.0	10.0	8.0	18.0	11.0	5.0	6.0	2
avid	2.0	5.0	2.0	5.0	8.0	3.0	4.0	2.0	8.0	3
concept	4.0	9.0	7.0	6.0	3.0	5.0	10.0	6.0	3.0	3
quarter	6.0	6.0	5.0	7.0	3.0	4.0	6.0	6.0	3.0	5
focus	2.0	2.0	3.0	1.0	1.0	8.0	8.0	9.0	5.0	7
cough	13.0	9.0	13.0	8.0	7.0	5.0	6.0	5.0	8.0	7
yuck	17.0	16.0	8.0	8.0	4.0	9.0	3.0	8.0	7.0	Ę
passion	10.0	11.0	11.0	5.0	2.0	24.0	4.0	1.0	4.0	2

2000 rows × 2000 columns

```
In [0]: mat.shape
Out[0]: (2000, 2000)
In [0]: from sklearn.decomposition import TruncatedSVD
In [0]: svd=TruncatedSVD(n_components=1999, algorithm='randomized', n_iter=5, random_s tate=None, tol=0.0)
    svd_data = svd.fit_transform(np.array(mat))
```



```
In [0]: svd=TruncatedSVD(n_components=250, algorithm='randomized', n_iter=5, random_st
    ate=0, tol=0.0)
    svd_data = svd.fit_transform(np.array(mat))
```

In [0]: svd_data.shape

Out[0]: (2000, 250)

In [0]: word_representation=pd.DataFrame(svd_data,index=importent_features)

```
In [0]: word_representation.head()
```

Out[0]:

	0	1	2	3	4	5	
tast	19867.851188	-9392.463216	-9185.686962	16733.948963	1333.374574	-1613.922750	20
like	18176.675242	-11587.669187	19070.585302	-1226.902196	-1960.026390	141.428067	-20
good	11117.953339	72.133948	-5681.124213	-3315.888183	-4671.581243	17627.393415	-32
great	9708.345237	663.042864	-5817.894817	-3243.333243	-886.272399	-7775.811348	-109
love	8162.171842	1946.523810	-2351.628411	-4474.893086	-904.163180	-3123.765228	24

5 rows × 250 columns

```
In [0]: from sklearn.cluster import KMeans
```

```
In [0]: wcss=[]
    for i in range(1, 20):
        kmeans = KMeans(n_clusters = i, init ='k-means++', random_state = 0)
        kmeans.fit(svd_data)
        wcss.append(kmeans.inertia_)
    plt.plot(range(1, 20), wcss)
    plt.title('The Elbow Method')
    plt.xlabel('Number of clusters')
    plt.ylabel('WCSS')
    plt.show()
```



```
In [0]: kmeans = KMeans(n_clusters = 4, init = 'k-means++', random_state = None)
        kmeans.fit(svd_data)
Out[0]: KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
            n_clusters=4, n_init=10, n_jobs=1, precompute_distances='auto',
            random_state=None, tol=0.0001, verbose=0)
In [0]:
        word_representation['cluster']=kmeans.labels_
In [0]:
        word_representation['cluster'].value_counts()
Out[0]: 0
             1987
        3
               11
                1
                1
        Name: cluster, dtype: int64
```

```
In [0]: from wordcloud import WordCloud, STOPWORDS
for j in [0,3,1]:
    DF = word_representation[word_representation['cluster']==j]
    comment_words=' '
    for val in DF.index:
        comment_words = comment_words + val + ' '
        print("Word cloud for cluster "+ str(j))
        wordcloud = WordCloud(width = 800, height = 800, background_color ='black',
        min_font_size =5,max_words =200).generate(comment_words)
        plt.figure(figsize = (8, 8), facecolor = None)
        plt.imshow(wordcloud)
        plt.axis("off")
        plt.tight_layout(pad = 0)
        plt.show()
```

Word cloud for cluster 0

Word cloud for cluster 3

Word cloud for cluster 1


```
In [0]: def compute_similarity(Word):
    dataSetI=word_representation.loc[Word].values
    similarities=[]
    for val in word_representation.index:
        dataSet2=word_representation.loc[val].values
        result = spatial.distance.cosine(dataSetI, dataSet2)
        similarities.append(result)
    indices=np.array(similarities).argsort()
    index=indices[-10:]
    return np.take((word_representation.index).tolist(),index)
```

Conclusion

No Of Importent Words Considered are 2000 for calculating co-occurence Matrix

Vectorizing Each word Using TruncatedSVD

250 Dimensions are considered for each word by plotting Explained Varience Ratio

No of Clusters Obtained by Using K-Means are 4

buy, best, new, food, order, realli, time are some importent words in cluster 0

flavor, good, product, tea, make, love, are some importent words in cluster 1

tast importent word in cluster 2