

CanSat Azerbaijan 2018 müsabiqəsi İlkin Hesabat Sənədi (İHS)

Komanda №2253 MS_U_FO

Təqdimatın mündəricatı (təsviri)

Texniki tapşırığın ümumi təsviri	Asim İmanov
Mexanika altsistemi	
Struktur dizaynı bölməsi	Calal Əlizadə, Emin Payızov, Kamran Əsgərov
Enməyə nəzarət bölməsi	Kamran Mikayılov
Elektronika altsistemi	
Sensorlar bölməsi	Kamran Əsgərov
Kommunikasiya və Verilənlərin İdarəedilməsi bölməsi	Kamran Əsgərov
Enerji sərfiyyatı bölməsi	Kamran Mikayılov
Proqram təminatı altsistemi	
Uçuş proqramının dizaynı bölməsi	Kamran Əsgərov
Yerüstü idarəetmə stansiyanın proqram təminatı bölməsi	Kamran Əsgərov
Əlavə tapşırıq	Kamran Əsgərov
Planlaşdırma və maliyyə hissəsi	
Planlaşdırma	Asim İmanov
Maliyyə	Emin Payızov

Komanda strukturu haqqında məlumat

Abreviaturalar

Abreviatura	Açıqlama	Abreviatura	Açıqlama
KVİ	Kommunikasiya və Verilənlərin İdarəedilməsi	CSV	Concurrent Versions System
UP	Uçuş Plani	dBi	Decibel Isotropic
YİS	Yerüstü İdarəetmə Sistemi	RTC	Real Time Clock
İHS	İlkin Hesabat Sənədi	IDE	Integrated Development Environment
TŞ	Texniki Şərt	UART	Universal Asynchronous receiver/transmitter
I2C	Inter-Integrated-Circuit	SC	Sabit cərəyan
I2S	Integrated Interchip Sound	RAM	Random Access Memory
MCU	Multipoint Control Unit	SRAM	Static Random Access Memory
GPS	Global Position System	RVS	Real vaxt saatı
PWM	Pulse-Width Modulation	YHS	Yekun Hesabat Sənədi
SPI	Serial Peripheral Interface		

Vəzifə bölgüsü

Texniki tapşırığın ümumi təsviri

Asim İmanov

Missiyanın ümumi təsviri

ID	Tələb	Səbəb	Prioritet
TŞ - 1	Hər bir komanda öz YİS proqram təminatını fərdi olaraq yazmalıdır.	Müsabiqənin şərti	Yüksək
TŞ - 2	Xbee radiomodulları ümumi yayım rejimində işlədilə bilməz.	Müsabiqənin şərti	Yüksək
TŞ – 3	Telemetriya saniyədə 1 dəfədən az olmamaq şərti ilə YİS-nə göndərilməlidir.	Müsabiqənin şərti	Yüksək
TŞ – 4	Xbee radiomodullarının yalnız 2.4GHz tezlikdə çalışan növlərindən istifadə olunmalıdır.	Müsabiqənin şərti	Yüksək
TŞ – 5	YİS proqram təminatı olan kompyuterdən, Xbee radiomoduldan və antennadan ibarət olmalıdır.	Müsabiqənin şərti	Yüksək
TŞ – 6	Qəbul edilən bütün telemetrik məlumatlar yerüstü proqram təminatında göstərilməli və yaddaşa yazılmalıdır.	Müsabiqənin şərti	Yüksək
TŞ – 7	YİS proqram təminatı qəbul edilən telemetriyanı .csv formatında fayla yazıb, yaddaşa yazmalıdır.	Müsabiqənin şərti	Yüksək
TŞ - 8	Peyk konteynerdən ayrıldıqdan dərhal sonra paraşutu açılmalıdır.	Havada daha çox qalması üçün şərt	Orta

ID	Tələb	Səbəb	Prioritet
TŞ – 9	Peyk yüksəklik haqqındakı məlumatı Yerdən qalxdığı andan etibarən model Yerə enənədək göndərməlidir.	Müsabiqənin şərti	Yüksək
TŞ – 10	Peyk havanın temperaturu, təzyiqi, batareyadakı gərginliyi və GPS qəbuledicinin göstəriciləri (koordinat, sürət, görünüşdə olan peyk sayı, UTC standartı ilə cari zaman) kimi telemetrik məlumatları konteynerdən ayrıldığı andan etibarən ölçmək və real zaman ərzində yerüstü stansiyaya göndərməlidir.	Müsabiqənin şərti	Yüksək
TŞ – 11	Peyk konteynerdən ayrıldıqdan sonra təyin olunmuş münsif tərəfindən deyildiyi zaman yerüstü stansiyadan göndəriləcək komanda əsasında Yerin şəklini minimum 480x480 piksel ölçüsündə çəkib yaddaşında saxlamalıdır.	Müsabiqənin şərti	Yüksək
TŞ – 12	Uçuşdan dərhal sonra toplanan telemetrik məlumatlar *.csv formatda münsiflərə çəkilmiş şəkil(lər)lə birlikdə təqdim olunmalıdır.	Müsabiqənin şərti	Yüksək
TŞ – 13	Model hündürlüyü 200 mm və diametri 120 mm olan silindir formalı konteynerə yerləşəcək ölçülərdə olmalıdır.	Müsabiqənin şərti	Yüksək
TŞ – 14	Peyk ən azı 120 saniyə boyunca düşməlidir.	Müsabiqənin şərti	Yüksək
TŞ – 15	CanSat-ın dəyəri 1000 AZN-dək olmalıdır	Müsabiqənin şərti	Yüksək

ID	Tələb	Səbəb	Prioritet
TŞ – 16	Göndəriləcək komanda(lar) yerüstü stansiyadakı XBee radiomodul üzərindən göndərilən siqnal vasitəsilə həyata keçirilməlidir.	Müsabiqənin şərti	Yüksək
TŞ – 17	Telemetriyadan alınan məlumatlar və ölçülən dəyərlər aşağıdakı ardıcıllıqda göndərilməlidir: <komanda i̇d-si="">,<peykin vaxtı="" çalışma="">,<paketlərin sayı>,<hündürlük>,<təzyiq>,<temperatur>,<gərginlik>,<gps vaxt="">,<gps koordinatları="">,<gps peyk<br="">sayı>,[<Əlavə göstəricilər>]</gps></gps></gps></gərginlik></temperatur></təzyiq></hündürlük></paketlərin </peykin></komanda>	Müsabiqənin şərti	Yüksək
TŞ – 18	Peyk eniş etdikdən sonra buzzer işə düşməlidir.	Enişdən sonra peykin tapılması üçün zəruridir	Yüksək
TŞ – 19	YİS-nə ən azı 120 paket göndərilməlidir.	Müsabiqənin şərti	Yüksək
TŞ – 20	Modelin və konteynerin ümumi kütləsi maksimum 500 qrama qədər olmalıdır.	Müsabiqənin şərti	Yüksək
TŞ - 21	Peyk təhlükəsiz eniş etməlidir.	Müsabiqənin şərti	Yüksək

Mexanika altsistemi

Struktur dizaynı bölməsi

Emin Payızov Calal Əlizadə Kamran Əsgərov

Modelin ümumi görünüşü

Modelin ümumi görünüşü

Tələb	Səbəb	Prioritet	
Model hündürlüyü 200 mm və diametri 120 mm olan silindir formalı konteynerə yerləşəcək ölçülərdə olmalıdır.	Müsabiqənin şərti	Yüksək	
Modelin və konteynerin ümumi kütləsi maksimum 500 qrama qədər olmalıdır.	Müsabiqənin şərti	Yüksək	
Peyk təhlükəsiz eniş etməlidir.	Müsabiqənin şərti	Yüksək	
Peyk konteynerdən ayrıldıqdan dərhal sonra paraşutu açılmalıdır.	Havada daha çox qalması üçün şərt	Orta	
Modullar bir-birilərinə maneçilik törədməməlidilər.	Konstruksiyanın davamlı olması üçün şərt	Yüksək	
CanSat-ın dəyəri 1000 AZN-dək olmalıdır	Müsabiqənin şərti	Yüksək	

CanSat 2018 İHS: Komanda №2253 MS_U_FO

Modelin konteynerdən ayrılma mexanizmi

Servo motoru işə saldığdan sonra onun çarxı qırmağdan ayrılır və cansat konteynerdən cıxır.

Modelin konteynerdən ayrılma mexanizmi

Servo motoru işə salaraq çarxlara birləşdirilən dəmir parçaları daşıyıcı sütundan ayrılaraq, cansatın içinə qirir. Və beləlikle cansat konteynerdən tam rahatlığla çıxır.

Kütlə hesabatı

Komponent	Çəki	Mənbə
5 V regulyator	1 qr	Təlimat kitabçası
Arduino nano	6 qr	Təlimat kitabçası
Adafruit Ultimate GPS	8.5 qr	Təlimat kitabçası
OV5642 + Arducam shield	20 qr	Təlimat kitabçası
Buzzer QSI-1410	2 qr	Təlimat kitabçası
BMP280	1.8 qr	Təlimat kitabçası
BME280	1.8 qr	Təlimat kitabçası
Servo motor + konstruksiya	10 qr	Təlimat kitabçası
Xbee Zegbee S2C + Antenna	20 qr	Təlimat kitabçası
Voltage Sensor	3 qr	Təlimat kitabçası
Batareya	20 qr	Təlimat kitabçası
RVS DS1307	4 qr	Təlimat kitabçası
SD kart modulu	4 qr	Təlimat kitabçası
Çevirici	3 qr	Təlimat kitabçası
Ümumi	105.1 qr	

Kütlə hesabatı

Komponent	Çəki	Mənbə
Elektronika	105.1 qr	Təlimat kitabçası
Paraşut	45 qr	Təlimat kitabçası
Konteyner	105 qr	Qiymətləndirilib
Peykin korpusu	32 qr	Qiymətləndirilib
Ümumi	287 qr	

Enməyə nəzarət bölməsi

Kamran Mikayılov

Enməyə nəzarət altsisteminə ümumi baxış

400 metrdən buraxılır. Servomotor vasitəsi ilə CanSat konteynerdən ayrılır.

Ən azı 2 dəqiqə ərzində düşən CanSat havanın təzyiqini, temperaturunu, GPS məlumatlarını yığıb, sonra 12C vasitəsi ilə bu məlumatları MCUya göndərəcək. Məlumatların paketə yığıl masından sonra, arduino **UART ilə XBee-yə** göndərəcək. Xbee bu paketi YİS-sə göndərir.

CanSat enişdən sonra məlumatları göndərməyi dayandırır və Buzzer-ı işə salır

konteynerdən ayrıldıqdan dərhal sonra avtomatik açılır.

Paraşüt

Paraşut seçimi

Paraşutun forması	Müsbət və mənfi cəhətləri	Ön görünüş
Dördbucaq	Asan konstruksiya Zəyif müqavimət	•
Heksaqon	Asan konstruksiya Yüksək müqavimət	
Oktaqon	Asan konstruksiya Müqavimətin əhəmiyyətli dərəcədə çoxaldılması	•

SEÇİLDİ: Oktaqon

Bunu seçməyimizin səbəbi ondadı ki, bu forma peyklərdə ən çox istifadə edilən variantdır. Dairə forması onun üçün baxılmadı ki, onun formasının saxlanılması üçün çoxlu hava axını lazımdır, hansı ki iplərin dolaşmasına gətirb çıxara bilər.

Paraşut seçimi

Paraşutun materialı	Müsbət və mənfi cəhətləri	Nümunə
Karton	Ən ucuz variantdır və yüngül materialdır, amma çox kövrəkdir	8
Neylon	Böyük yüngüllük, yaxşı mexaniki möhkəmliyə malikdir və onun dəyəri belə yüksək deyildir, bu raket istehsalatında ən istifadə edilən variantdır	
Plastik	Çox yüngüldür, yaxşı mexaniki möhkəmliyə malikdir və onun dəyəri çox yüksək deyildir, bu raket istehsalında ən çox istifadə edilən variantdır	

SEÇİLDİ: Neylon

Mexaniki müqaviməti ən yaxşı şəkildə təmin edir və qiyməti yüksək deyildir.

Enmə sürətinin hesablanması və stabilliyin təmini Müqayisə & Seçim

Paraşutun sahəsini hesablamaq üçün bu düsturdan istifadə olunub:

$$Sp = \frac{2mg}{\rho CxV^2}$$

Paraşutun formasını oktaqon seçdiyimizə görə biz sahəni belə sayırıq:

- Cx Əmsal = 0.75
- V Enmə sürəti = 3 m/s
- P Havanın sıxlığı = 1.2 kq/m³
- m = 0.42 kg
- $g = 9.81 \text{ m/s}^2$

Hesablanmalardan sonra aldıqlarımız:

Sp - Paraşutun sahəsi = 1 m²

St - \ddot{U} çbucaq seqmentin sahəsi = 0.125 m²

A - Hər seqmentin oturacağı = 0.443 m

H - Hər seqmentin hündürlüyü = 0.564 m

ightharpoonup CanSatın uçuş zamanı stabilizasiyası üçün paraşutun ortasında deşik nəzərdə tutulub $S = 0.15 \text{ m}^2 \text{ (r} = 0.218 \text{ m)}$

Elektronika alt sistemi

Sensorlar bölməsi

Əsgərov Kamran

Elektrik dövrənin ümumi quruluşu

Mikrokontrollerin seçilməsi və əsaslandırılması

Model	Yaddaş	İşçi tezliyi	Enerji sərfiyyatı	gçio	Qiyməti
Arduino Nano	32 KB	16 MHz	5V	SPI x4, UART x1, I2C x1	\$3
ESP 32	512 KB	160 MHz	3.3V	SPI x4, I2C x2, UART x2, I2S x2, CAN x1	\$6
Arduino Micro	32 KB	16 MHz	5V	SPI x4, UART x1, I2C x1	\$2

Hündürlük sensorunun seçilməsi və əsaslandırılması

Model	Ölçmə aralığı	Enerji sərfiyyatı	Ölçüsü	Çəkisi	İnterfeys	Qiyməti
BMP280	300 ~ 1100 hPa	1.71 ~ 3.6V	2.5 x 2.0 x 0.95 mm	1.8 qr	SPI, 12C	\$2
BMP180	300 ~ 1100 hPa	1.80 ~ 3.6V	3.6 x 3.8 x 0.93 mm	1 qr	I2C	\$3
BME680	300 ~ 1100 hPa	1.71 ~ 3.6V	3.0 x 3.0 x 0.93 mm	3 qr	SPI, I2C	\$42

Hündürlüyün təzyiq ilə ölçülməsi üçün düstur:

altitude = 44330*
$$\left(1 - \left(\frac{p}{p_0}\right)^{\frac{1}{5.255}}\right)$$

SEÇİLDİ: BMP280

- Ucuz qiymət
- Kiçik ölçü və yüngül çəki
- Yüksək hündürlük dəqiqliyi
- Çox aşağı gərginlik və enerji istehlakı
- Əlavə olaraq istilik sensoruna malikdir

Təzyiq sensorunun seçilməsi və əsaslandırılması

Model	Ölçmə aralığı	Enerji sərfiyyatı	Ölçüsü	Çəkisi	İnterfeys	Qiyməti
BMP280	300 ~ 1100 hPa	1.71 ~ 3.6V	2.5 x 2.0 x 0.95 mm	1.8 qr	SPI, I2C	\$2
BMP180	300 ~ 1100 hPa	1.80 ~ 3.6V	3.6 x 3.8 x 0.93 mm	1 qr	I2C	\$2
BME680	300 ~ 1100 hPa	1.71 ~ 3.6V	3.0 x 3.0 x 0.93 mm	3 qr	SPI, I2C	\$42

SEÇİLDİ: BMP280

- Ucuz qiymət
- Kiçik ölçü və yüngül çəki
- Yüksək təzyiq dəqiqliyi
- Çox aşağı gərginlik və enerji istehlakı
- Əlavə olaraq istilik sensoruna malikdir
- Eyni anda həm 3 sensor kimi fəaliyyət göstərə bilər (hündürlük, təzyiq, temperatur)

Temperatur sensorunun seçilməsi və əsaslandırılması

Model	Ölçmə aralığı	Enerji sərfiyyatı	Ölçüsü	Çəkisi	Dəqiqlik	Qiyməti
BMP280	-40 ~ 85°C	1.71 ~ 3.6V	2.5 x 2.0 x 0.95 mm	1.8 qr	±0.01 °C	\$2.00
DHT22	-40 ~ 125°C	3.3 ~ 5.5V	11.5 x 25.0 x 7.7 mm	2.4 qr	±0.5 °C	\$3.40
LM35	-55 ~ 150°C	4 ~ 30V	4.7 x 4.7 x 3.0 mm	1 qr	±0.5 °C	\$0.70

SEÇİLDİ: BMP280

- Ucuz qiymət
- Kiçik ölçü və yüngül çəki
- Yüksək temperatur dəqiqliyi
- Çox aşağı gərginlik və enerji istehlakı
- SPI və I2C interfeysi
- Eyni anda həm 3 sensor kimi fəaliyyət göstərə bilər (hündürlük, təzyiq, temperatur)

GPS qəbuledicinin seçilməsi və əsaslandırılması

Model	Mövqe təyin etmə dəqiqliyi	Yeniləmə dərəcəsi	Enerji sərfiyyatı	GÇİO	Ölçüsü	Çəkisi	Qiyməti
Adafruit Ultimate GPS	1.8m	1 ~ 10Hz	3 ~ 5.5V	UART	15.0 x 15.0 x 4.0 mm	8.5 qr	\$40
Gowoops U-Blox NEO-6M	>3m	1 ~ 5Hz	3 ~ 5V	I2C, UART	25.5 x 31.5 x 4.6 mm	25 qr	\$21

SEÇİLDİ: Adafruit Ultimate GPS

- Yüksək dəqiqlik
- Kiçik ölçü və yüngül çəki
- Tez yeniləmə dərəcəsi
- -165dBm izləmə həssaslığı
- -145dBm aşkarlama həssaslığı

Kamera modulunun seçilməsi və əsaslandırılması

Model	Ayırdetmə həssaslığı	Ölçüsü	Çəkisi	Enerji sərfiyyatı	GÇİO	Yaddaş qurğusu	Qiyməti
OV5642 + arducam shield	5MP	34 x 24 mm	20 qr	3.3 ~ 5V	I2C, SPI		\$40
Y3000	8MP	27 x 26 x 26 mm	11 qr	5V		Daxili	\$22
OV7670	0.3MP	30.5 x 30.5 mm	12 qr	2.5 ~ 3V	I2C		\$12

SEÇİLDİ: OV5642 + Arducam shield

- Yaxşı keyfiyət
- Sərfəli enerji sərfiyyatı
- I2C və SPI interfeys optimallığı
- 2592 x 1944 Şəkil ölçüsü

Gərginlik sensorunun seçilməsi və əsaslandırılması

Model	Ölçmə aralığı	Ölçüsü	Çəkisi	Enerji sərfiyyatı	Qiyməti
Voltage Sensor	0.02 ~ 25V	27 x 14 x 15 mm	3 qr	3.3 ~ 5V	\$0.5
AttoPilot Voltage Sense Breakout	0 ~ 51.8V	4 x 15 x 19 mm	1.3 qr	3.3V	\$20
ACS712	4.27 ~ 47V	27 x 15 x 4 mm	2 qr	5V	\$12

SEÇİLDİ: Voltage Sensor

- Uyğun ölçmə aralığı
- Ucuz qiymət

Real vaxt saatı sensorunun seçilməsi və əsaslandırılması

Model	Enerji sərfiyyatı	İnterfeysi	Ölçüsü	Çəkisi	Qiyməti
DS1307	3.3 ~ 5 V	I2C	24 x 30 x 5 mm	4 qr	\$2
DS3231	2.3 ~ 5.5 V	I2C	38 x 22 x 14 mm	3 qr	\$3
DS3234	2.0 ~ 5.5 V	SPI	21 x 21 x 6 mm	4 qr	\$20

SEÇİLDİ: DS1307

- Ucuz qiymət
- Kiçik olçü və yüngül çəki
- Sərfəli enerji sərfiyyatı

Kommunikasiya və Verilənlərin İdarəedilməsi (KVİ) bölməsi

Kamran Əsgərov

KVİ altsisteminin tələbləri

Tələb	Səbəb	Prioritet
Xbee radiomodullarının yalnız 2.4GHz tezlikdə çalışan növlərindən istifadə olunmalıdır.	Müsabiqənin texniki şərti	Yüksək
Telemetriya saniyədə 1 dəfədən az olmamaq şərti ilə YİS-nə göndərilməlidir.	Müsabiqənin texniki şərti	Yüksək
Xbee radiomodulları ümumi yayım rejimində işlədilə bilməz.	Müsabiqənin texniki şərti	Yüksək
Qəbul edilən bütün telemetrik məlumatlar real zamanlı olaraq yerüstü proqram təminatında göstərilməlidir.	Müsabiqənin texniki şərti	Yüksək
Telemetriyadan alınan məlumatlar və ölçülən dəyərlər aşağıdakı ardıcıllıqda göndərilməlidir: <pre><komanda i̇d-si="">,<peykin vaxtı="" çalışma="">,<paketlərin sayı="">,<hündürlük>,<təzyiq>,<temperatur>,<gərginlik>,<gps vaxt="">,<gps koordinatları="">,<gps peyk="" sayı="">,[<Əlavə göstəricilər>]</gps></gps></gps></gərginlik></temperatur></təzyiq></hündürlük></paketlərin></peykin></komanda></pre>	Müsabiqənin texniki şərti	Yüksək

Təqdimatçı: Kamran Əsgərov

KVİ-nə ümumi baxış

Funksialar

Məlumatları

ötürülməsi

Şəkilin

çəkilməsi

Məlumatları

n yaddaşa

yazılması

GPS

Məlumatları

Məlumatları

yığır

Gərginliyi

göstərir

UART

SPI

SPI

I2C

Təqdimatçı: Kamran Əsgərov

Prosessor, Yaddaşın Paylanması və ilkin seçimlər

	Operativ Giriş		Hər bir G/Ç pini Rəqəm	Rəqəmsal		Hər bir pin üçün	Yaddaş			
Prosessor	Gərginlik (V)	Gərginliyi (V)	üçün SC cərəyan <i>(mA)</i>	G/Ç pini <i>(mA)</i>	pinləri <i>(mA)</i>	operativ güc mənbəyi (W)	Flash (kB)	SRAM (kB)	EEPROM (kB)	interfeys
ATmega328 (Arduino Pro Mini)	5	3.3 ~ 5	40	14	6	0.13	32	2	1	UART SPI I2C
ATmega32 U4 (Arduino Micro)	5	7 ~ 12	20	20	12	0.1	32	2.5	1	UART SPI I2C JTAG
ATmega328 (Arduino Nano)	5	5 ~ 12	40	14	8	0.2	32	2	1	UART SPI I2C

Təqdimatçı: Kamran Əsgərov

SEÇİLDİ: ATmega328 (Arduino Nano)

- Arduino bir çox kitabxanaya malikdir və bu onun proqramlaşdırılmasını asanlaşdırır.
- Kiçik ölçü və yüngül çəkiyə malikdir.
- Qiyməti ucuzdur.

Üfüqi istiqamətdə şüalanma diaqramı

XBee Pro Series with whip antenna*:

- UART interfeys
- Kiçik ölçü və yüngül çəki

Antenanın tipi	Birləşdirilmiş kabel TH XBEE (S2C) ZigBee
Ötürülmənin gücü	6.3 mV (+8 dBm), sürətləndirilmiş rejim 3.1 mV (+5 dBm), normal rejim
Tezlik (MHz)	2400-2500
Uzunluq (sm)	2,5

Artıq birləşdirilmişdir

Radiomodulun ilkin konfiqurasiyası

Xbee modeli	Xarici diapazon	Ötürülmə gücü	Tezlik	İşçi gərginliyi	Məlumatların ötürülmə sürəti
Xbee S2C Zegbee	1200 m	33 mA	2.4 GHz	3.3 V	250 kbps
Xbee-PRO S2C Zegbee	3200 m	120 mA	2.4 GHz	3.3 V	250 kbps
Xbee-PRO 802.15.4	1600 m	215 mA	2.4 GHz	3.3 V	250 kbps

SEÇİLDİ: Xbee S2C Zegbee

- Zəif ötürülmə gücü
- Kiçik ölçü və yüngül çəki
- Məlumatların eyni ötürülmə sürəti
- Şərtlərimizə uyğun diapazon
- Peer-to-peer rejimində işləyə bilir

Telemetriya formatı

<komanda id-si=""></komanda>	Bizim komandanın ID-si: №2253
<peykin vaxtı="" çalışma=""></peykin>	Peykin çalışma vaxtı saniyə ilə
<paketlərin sayı=""></paketlərin>	Alınan telemetriya paketlərinin sayı
<hündürlük></hündürlük>	Peykin olduğu hündürlük metrlə
<təzyiq></təzyiq>	Peykin olduğu hündürlükdəki təzyiq Pa-ilə
<temperatur></temperatur>	Havanın temperaturu °C-ilə
<gərginlik></gərginlik>	Batareyanın gərginliyi V-ilə
<gps vaxt=""></gps>	GPS-in vaxt göstəricisi
<gps koordinatları=""></gps>	GPS-in koordinat göstəricisi
<gps peyk="" sayı=""></gps>	GPS-in qəbul etdiyi peyk sayı
<Əlavə göstəricilər>	Əlavə göstəricilər

Telemetriya nümünəsi

<Komanda İD-si>,<Peykin çalışma vaxtı>,<Paketlərin sayı>,<Hündürlük>,<Təzyiq>,<Temperatur>,<Gərginlik>,<GPS vaxt>,<GPS koordinatları>,<GPS peyk sayı>,[<Əlavə göstəricilər>]

Nümunə: 2253,14:16,23,134.9,11009.3,31.0,9.0,14:17:02,41.7653,42.6748,4,60

Təqdimatçı: Kamran Əsgərov CanSat 2018 İHS: Komanda №2253 **MS_U_FO**

Enerji sərfiyyatı bölməsi

Kamran Mikayılov

Batareya tutumunun hesablanması

Komponent	Cərəyan	Gərginlik	Güc	Vəzifə dövrü	Mənbə
Arduino nano	200 mA	5 V	1 W	100 %	Təlimat kitabçası
Adafruit ultimate GPS	20 mA	3.3 V	66 mW	100 %	Təlimat kitabçası
OV5642 + Arducam shield (bikar)	40 μΑ	1.8 V	72 μW	90 %	Təlimat kitabçası
OV5642 + Arducam shield (aktiv)	20 mA	5 V	100 mW	10 %	Təlimat kitabçası
Buzzer QSI-1410	8 mA	2 V	16 mW	20 %	Təlimat kitabçası
BMP280	5 μΑ	3.3 V	16.5 μW	100 %	Təlimat kitabçası
BME280	5 μΑ	3.3 V	16.5 μW	100 %	Təlimat kitabçası
SG – 90 Servo motor	650 mA	5 V	3.25 W	10 %	Təlimat kitabçası
SD card modulu	100 mA	5 V	500 mW	10 %	Təlimat kitabçası
Xbee Zegbee S2C (bikar)	1 μΑ	3.3 V	3.3 μW	80 %	Təlimat kitabçası
Xbee Zegbee S2C (aktiv)	33 mA	3.3 V	108.9 mW	20 %	Təlimat kitabçası
5 V regulyator (7805)	0.02 mA	3.7 V	0.074 mW	100 %	Təlimat kitabçası
DS1307 saat modulu	1.6 mA	3.3 V	5.28 mW	100 %	Təlimat kitabçası
Toplam	1.032.671 mA		5046.362 mW		

Təqdimatçı: Kamran Mikayılov

CanSat 2018 İHS: Komanda №2253 MS_U_FO

Batareya tutumunun hesablanması

Toplam cərəyan:	1.032.671 mA
Vəzifə dövrünü hesaba qataraq cərəyan:	306.866 mA
Toplam güc:	5046.362 mW
Vəzifə dövrünü hesaba qataraq güc:	1461.434 mW

$$E = I \cdot t$$

- E Batareyanın həcmi (mAsaat)
- I Cərəyanın ümumi sərfiyyatı (mA)
- t − iş vaxtı (saat)

$$E = 306.866 \cdot 1 \approx 322 \ (mAsaat)$$

Natica:

Peykin ən azı 1 saat iləməsi üçün 400mAsaat həcmində olan batareya kifayətdir.

Batareya tutumunun hesablanması

Model	Gərginlik	Нәст	Çəkisi	Gövdənin materialı	Qiymət
DOUBLEPOW	3.7 V	300 mA/saat	20 gr	Li - Ion	10 AZN
Okcell	9 V	800 mA/saat	20 gr	Li - Ion	12 AZN
Sunmol	1.5 V	1200 mA/saat	10 gr	Qələvi	0.2 AZN

SEÇİLDİ: Okcell

- Kiçik ölçü (4 x 2 x 1.5 sm)
- 9 V gərginlik
- Lazəmı qədər həcm
- Mikro USB ilə doldurma imkanı

Proqram təminatı altsistemi

Uçuş Programının (UP) dizaynı

Kamran Əsgərov

Təqdimatçı: Kamran Əsgərov

UP-na qoyulmuş tələblər

Tələb	Səbəb	Prioritet
Peyk konteynerdən ayrıldıqdan sonra təyin olunmuş münsif tərəfindən deyildiyi zaman yerüstü stansiyadan göndəriləcək komanda əsasında Yerin şəklini minimum 480x480 piksel ölçüsündə çəkib yaddaşında saxlamalıdır.	Müsabiqənin texniki şərti	Yüksək
Peyk havanın temperaturu, təzyiqi, batareyadakı gərginliyi və GPS qəbuledicinin göstəriciləri (koordinat, sürət, görünüşdə olan peyk sayı, UTC standartı ilə cari zaman) kimi telemetrik məlumatları konteynerdən ayrıldığı andan etibarən ölçməli və real zaman ərzində yerüstü stansiyaya göndərməlidir.	Müsabiqənin texniki şərti	Yüksək
Peyk yüksəklik haqqındakı məlumatı Yerdən qalxdığı andan etibarən model Yerə enənədək göndərməlidir.	Müsabiqənin texniki şərti	Yüksək
Qəbul edilən bütün telemetrik məlumatlar yerüstü proqram təminatında göstərilməli və yaddaşa yazılmalıdır.	Müsabiqənin texniki şərti	Yüksək
Telemetriya saniyədə 1 dəfədən az olmamaq şərti ilə (1Hz) yerüstü stansiyaya göndərilməlidir.	Müsabiqənin texniki şərti	Yüksək
Peyk konteynerdən ayrıldıqdan dərhal sonra paraşutu açmalıdır.	Məntiqi şərt	Orta
Peyk təhlükəsiz eniş etməlidir.	Müsabiqənin texniki şərti	Yüksək

Təqdimatçı: Kamran Əsgərov

UP-na ümumi baxış

Ümumi baxış:

- > Başlanğıcda CanSat hansı mərhələdə olduğunu müəyyənləşdirir.
- Eniş (düşüş) mərhələsindədirsə, CanSat telemetriyanı yaddaşına yazır və YİS-nə göndərir.
- > Yerdədirsə, CanSat telemetriyanı yazmağı dayandırır və səs siqnalını işə salır.

Programlaşdırma dili:

> Arduino

Programlaşdırma mühiti:

> Arduino IDE

UP-nın vəzifələri:

- ➤ 1Hz tezlikdə telemetriya toplayır.
- ➤ Telemetriyanı YİS-nə göndərir.
- > Komanda verildikdə yerin şəklin çəkib yaddaşına yazır.

UP programlaşdırma dili

Arduino 1.8.5

Platformamıza əsaslanaraq seçdiyimiz Arduino dili JAVA ilə yazılmış və Processing əsaslı bir dildir. Öz məcrasında ən yaxşı və sadə dil olaraq tanınır.

Açıq mənbə koduyla Arduino-un proqram təminatı asan kod yazmağa və onu yükləməyə icazə verir.

UP-nın hal diaqramı

UP-nın hazırlanması planı

PDR

Uçuş program təminatının demo

Bəzi sensor və modulların test edilməsi.

Uçuş proqram təminatının tam

PFR

Tamami ilə hazır və bütün testlərdən keçmiş bir sistem.

Yerüstü İdarəetmə Sisteminin (YİS) dizaynı

Kamran Əsgərov

YİS-nə qoyulmuş tələblər

Tələb	Səbəb	Prioritet
Hər bir komanda öz YİS proqram təminatını fərdi olaraq yazmalıdır.	Müsabiqənin texniki şərti	Yüksək
Xbee radiomodulları ümumi yayım rejimində işlədilə bilməz.	Müsabiqənin texniki şərti	Yüksək
Telemetriya saniyədə 1 dəfədən az olmamaq şərti ilə YİS-nə göndərilməlidir.	Müsabiqənin texniki şərti	Yüksək
Xbee radiomodullarının yalnız 2.4GHz tezlikdə çalışan növlərindən istifadə olunmalıdır.	Müsabiqənin texniki şərti	Yüksək
YİS proqram təminatı olan kompyuterdən, Xbee radiomoduldan və antennadan ibarət olmalıdır.	Müsabiqənin texniki şərti	Yüksək
YİS proqram təminatı olan kompyuter ən azı 1 saatlıq batareya həcminə sahib olmalıdır.	Məntiqi şərt	Yüksək
YİS proqram təminatı qəbul edilən telemetriyanı *.csv formatında fayla yazıb, yaddaşa yazmalıdır.	Müsabiqənin texniki şərti	Yüksək
YİS proqram təminatı qəbul edilən telemetriyanı verilənlər bazasına əlavə etməlidir.	Əlavə şərt.	Aşağı

YİS-nə ümumi baxış

YİS-nin hal diaqramı

YİS proqram təminatı

YİS proqram təminatının dizaynı

YİS proqram təminatı daxil olan məlumatlar bölməsi, batareyanın həcmini göstərən interaktiv batareya bölməsi, 6 müxtəlif məlumatların zamandan asılı qrafikini göstərən bölmə, komanda göndərmə bölməsi və yekun olaraq xəta və bildiriş bölməsindən ibarətdir.

Əlavə olaraq qəbul edilən telemetriya lokal olaraq verilənlər bazasında və *.csv fayla yazılaraq yaddaşda saxlanılır.

YİS proqram təminatı - istifadə edilən kitabxanalar


```
import processing.serial.*;
import de.bezier.data.sql.*;
import controlP5.*;
```

İstifadə edilən kitabxanalar:

- 1) Processing.serial Processing programlaşdırma dilinin üstündə gələn bir kitabxanadır.
 2) Sal-library Processing programlaşdırma dilinin
- *Sql-library* Processing proqramlaşdırma dilinin üstündə gələn bir kitabxanadır.
- controlP5 Andreas Schlegel tərəfindədən yazılmış açıq mənbə kodlu bir kitabxanadır.

Qeyd:

İstifadə olunan digər kitabxanalar isə komandanın proqramçıları tərəfindən yazılmışdır.

YİS proqram təminatı

Telemetriyanın verilənlər bazasında saxlanılmasının təsviri

YİS proqram təminatında telemetriya qəbul olunur-olunmaz **verilənlər bazasına** yazılır. Həmçinin proqram təminatında verilənlər bazasını sıfırlamaq üçün də funksiya əlavə edilmişdir.

Verilənlər bazası kimi **MySQL Workbench** - **lokal hosting** seçilmişdir.

YİS proqram təminatı

Yazılmış *.csv fayl nümünəsi

YİS proqram təminatı qəbul edilən telemetriyanın verilənlər bazasına yazılması ilə yanaşı olaraq *.csv fayl formatında da məlumatların yazılıb yaddaşda saxlanılması funksiyası ilə təmin edilib.

YİS programlaşdırma dili

Processing 3.3.7

Processing proqramlaşdırma dili 2001ci ilin yaz fəslində *Ben Fry* və *Casey Reas* tərəfindən yazılmışdır.

Bu proqlamlaşdırma dili JAVA əsaslı bir dildir. Həmçinin də çox sadə, və *Arduino* kimi platformalar ilə uyumludur.

```
Battery.pde
                                                                  IncomingData.pde
                                                                                                                                                                                                GroundStation.pde
      tiGraph.pde
  this.heightOfGraph = heightOfGraph;
                                                                                                                                                                                                  newRow.setFloat("Temperature", temperatur
  this.nameOfValue = nameOfValue;
                                                                                 float humidity
  this.valForMap1 = valForMap1;
                                                                                                                                                                                                  newRow.setString("GPS Time", GPStime);
                                                                                                                                                                                                  newRow.setFloat("GPS Longtitude", GPSlong
                                                               this.xPosOfTable = xPosOfTable;
                                                                                                                                                                                                  newRow.setInt("GPS Satellites", GPSsatell
                                                                                                                                                 {172, 187, 1},
                                                                                                                                                                                                  newRow.setFloat("Humidity", humidity);
                                                               this.teamID = teamID;
                                                               this.missionTime = missionTime
                                                                                                                                                 {121, 190, 0},
                                                                                                                                                                                                  some = new incomingData(590-26, 470, team
public void setValue(float moduleValue) {
                                                                                                                                                                                                 grafic1.setValue(pressure);
                                                               this.temperature = temperature:
                                                                                                                            xPosOfBat = xPosOfBat;
                                                                                                                            yPosOfBat = yPosOfBat
                                                               this.humidity = humidity:
                                                                                                                                                                                                  rect(850, 50, 680, 345);
                                                                                                                                                                                                  line(1110, 50, 1110, 395)
                                                                                                                                                                                                 line(1110, 85, 850 + 680, 85);
                                                                                                                                                                                                 grafic1.drawGraph()
                                                                                                                             loadImage("battery2.png");
                                                                                                                                                                                                 grafic3.drawGraph()
                                                                font = loadFont("ArialMT-48.vlw");
                                                                                                                            (btr, xPosOfBat, yPosOfBat, widthOfBat, heightOf
                                                                                                                                                                                                 grafic4.drawGraph()
                                                                                                                                                                                                 grafic5.drawGraph()
                                                                                                                                                                                                 grafic6.drawGraph()
                                                                text("INCOMING DATA", xPosOfTable + fontSize,
                                                                                                                                                                                                  bat = new Battery(850 - 10 + 60, 28 + 50
                                                                textSize(fontSizeElm):
                                                                                                                            data + " %", xPosOfBat + widthOfBat/2 - fontSize
  text(nameOfValue + ": " + valhist[i], xPos0
                                                                                                                                                                                                  text("Last Value: " + com, xPosOfCommLine
                                                                                                                                                                                                  text("Last Command Time: " + h + ":" + mi
                                                                                                                                                                                                  text("Errors and notifications: ", 1110 +
                                                                                                                                                                                                  text("0 Tivole corporation 2018", xPosOfC
  if(x > widthOfGraph) {
                                                                                                                                                                                                    mysql.query("insert into telemetrydata.
                                                                text("Voltage
                                                                 text("Humidity
```


YİS

Uçuşun Avgust ayında keçiriləcəyini nəzərə alaraq YİS kompyuterini günəş şüası və istidən qorumaq üçün çətir nəzərdə tutulub.

YİS kompyuteri tam dolu batareya həcmi ilə ən azı 4saat çalışma vaxtına malikdir. Hər ehtimala qarşı isə, 2-ci ehtiyyat kompyuter nəzərdə tutulub.

Yarana biləcək problemlər

Uçuş zamanı YİS kompyuteri ilə yarana biləcək nasazlıqlardan (avto-yeniləmə kimi) qaçmaq üçün, kompyuterin internetdən tamami ilə ayrılmış olması nəzərdə tutulub.

YİS kompyuterinin internetdən tamamilə ayrılmış olacağını nəzərə alaraq, proqram təminatının internetdən asılı olmayacaq şəkildə proqramlaşdırdıq.

Model	Gücləndirmə əmsalı	Şüa bucağı	Ölçüsü	Çəkisi	Tezlik	Qiymət
TL-ANT2412D	12 dBi	Üfüqi: 360° Şaquli: 12°	48 x 1200 x 48 mm	0.5 kg	2.4GHz	\$26
TL-ANT2424B	24 dBi	Üfüqi: 10° Şaquli: 14°	1000 x 600 mm	3.5 kg	2.4GHz	\$59.59

Üfüqi və şaquli istiqamətdə şüalanma (radiation pattern) diaqramı

Üfüqi istiqamətdə şüalanma diaqramı (2450MHz)

Şaquli istiqamətdə şüalanma diaqramı (2450MHz)

TL-ANT2412D				
Birləşdiricinin tipi N Dişi				
Şüalanma	Hər istiqamətə yönələ bilən			
Tam müqavimət	50 Om			
İşləyə bildiyi rütubət	10%~90% kondensasiyasız			
İşləyə bildiyi temperatur	-40°C ~ 65°C			
Quraşdırma	Qütbi quraşdırılma / Divarüstü quraşdırılma			

Əlavə tapşırıq

Kamran Əsgərov

Əlavə tapşırıq bölməsi – Rütubət Sensoru

Model	Ölçmə aralığı	Enerji sərfiyyatı	Ölçüsü	Çəkisi	İnterfeys	Qiyməti
BME680	0 ~ 100 %	1.71 ~ 3.6V	3.0 x 3.0 x 0.93 mm	3 qr	SPI, I2C	\$42
BME280	0 ~ 100 %	1.71 ~ 3.6 V	2.5 x 2.0 x 0.95 mm	1.8 qr	SPI, I2S	\$3
DHT22	0 ~ 100 %	3.3 ~ 5.5 V	11.5 x 25.0 x 7.7 mm	2.4 qr	ADC	\$3.40

SEÇİLDİ: BME280

- Ucuz qiymət
- Kiçik ölçü və yüngül çəki
- Çox aşağı gərginlik və enerji istehlakı
- SPI və I2C interfeysi

Əlavə tapşırıq bölməsi – Verilənlər bazası

Əlavə tapşırıq olaraq YİS proqram təminatında əks edilən bütün telemetriya məlumatlarının Verilənlər Bazasına yazılmağı nəzərdə tutulub.

TeamID	MissionTime	PacketCount	Altitude	Pressure	Temperature	Voltage	GPSTime	GPSLatitude	GPSLongtitude	GPSSatellites	Humidity
7604	5:34	97	80.1	19652.2	25.4	8.5	0:50:26	23.6789	24.2174	7	29.2
8370	18:36	26	9.2	28776.2	40.4	8.3	14:18:35	28.6536	39.8869	15	10.6
4654	11:32	1	132.5	16960.6	29.3	10.4	0:49:5	34.5054	25.8697	6	48.3
4169	11:32	23	290.1	29388.2	33.8	6.1	16:19:56	32.9294	37.1779	9	30
7847	8:25	48	266.1	23257.7	29.1	4.8	20:10:38	27.5325	42.4104	8	48
6718	20:9	88	89.3	23742.7	30.6	7.2	9:31:28	42.5688	39.7417	6	36.4
8981	21:33	6	299	21442.1	25.6	6.3	18:40:55	34.4437	24.4564	2	43.4
1703	19:29	37	128.7	25628.3	32.4	1.7	1:11:18	29.2597	23.8287	9	85.8
2088	11:19	89	49.5	26032.5	21	10.7	13:25:10	36.552	37.3396	11	92.4
4009	15:50	29	118.6	16259.6	33.8	3.5	9:26:31	31.4784	38.4362	0	50.1
1011	8:37	97	263.4	15458.3	35.5	6.6	16:58:19	28.5383	38.6472	19	73.8
9438	12:27	55	41.3	15491.1	36.3	1.5	16:33:26	41.201	29.2803	18	59.8
6610	11:45	57	207	17966.4	40.5	6.8	7:2:14	33.8551	26.1577	6	49.6
4644	0:38	61	234	28226.8	34.5	9.4	17:26:3	30.1645	23.4346	14	83.6
7031	19:27	38	394.1	11604	27.1	1.7	16:20:57	43.3952	29.5856	16	77.5
4072	9:45	94	329.8	21888.1	23.3	4.1	9:37:52	28.6246	26.5687	7	50.6
8141	9:19	98	118	26677.5	21.5	6.4	15:56:5	35.6584	25.902	6	60.3
9012	9:56	82	98.8	24162.6	38.3	9.6	20:9:16	33.3261	44.2552	2	56.4
4494	7:49	83	232.1	13103.8	23.6	10.2	15:19:31	37.542	29.487	5	50.8
9789	14:51	9	149.4	22270.2	36.1	5.7	15:28:1	44.9177	44.6153	14	87.6
3128	13:11	8	195.6	18937.7	25.6	11.8	5:55:11	44.9119	44.2373	5	10.1
9026	19:34	73	371.7	23798.6	39.4	8.6	10:0:14	38.6639	34.2065	14	49
6359	4:58	74	87.7	29241.3	27.8	2.6	11:33:27	30.3306	25.561	10	20
7764	12:39	64	360.3	29799.8	27.6	7.3	17:27:45	38.2551	33.2086	5	38.6
5116	2:1	45	258.8	11927.4	30.3	11.1	20:29:32	38.7009	31.3516	9	39.4
6201	9:53	74	373.1	14874.1	38.1	10.3	11:41:34	34.4945	36.3466	15	16.1
7612	15:49	27	75	27127.2	38.2	11.7	7:41:57	37.1882	40.9658	13	66.1
3630	20:58	44	129.2	21638.4	22	1.1	8:27:56	23.9328	44.2035	3	35.4
4977	18:7	57	327	29379.8	30.3	1.2	14:31:17	23.572	37.1065	5	54.5
3700	14:21	84	305	15667.4	30	10.4	6:23:25	25.126	40.1273	6	53
5280	1:8	95	120	16643.6	31.1	8.8	1:20:56	32.6381	30.4136	8	57.8
7351	4:49	74	179.2	14482.2	39.6	3.1	12:22:35	24.4057	40.8753	1	16.7
5924	4:55	26	135.1	12470.6	32.4	7.5	15:55:52	40.3081	24.4403	4	35.3

Planlaşdırma və maliyyə

Emin Payızov Asim İmanov

Planlaşdırma

PL - 1	CanSatın düzəldilməsi üçün lazımı materialları sifariş etmişik. CanSatın əsas hissələri çatdırılandan sonra komandamız, aparılan hesablara uyğun olaraq onu yığmağa başlayacaq. Onun işlək vəziyyətdə olduğunu yoxlayacayığ.
PL - 2	Yaranacağı təqdirdə, proqram təminatının və CanSatın konstuksiyasının səhfləri düzəldiləcək. Bütün çatışmamazlıqların səbəbləri izah olunacaq və YHS-nin hazırlanma prosesində qeydə alınacaq.
PL - 3	Komandamız CanSat-ı dahada təkmilləşdirməyə və yaxşılaşdırmaya çalışacaq. Bütün əlavələr YHS-də qeyd olunacaqlar.
PL - 4	Komandamızın hər bir fərdi maksimal nəticə əldə etmək üçün eyni altsistemdəcə işinə dəvam edəcək. Bu gələcəkdə CanSatın inkişafı üçün ən doğru seçimdir.

Maliyyə

Komponentlər - Elektronika	Qiymət	Dəqiqilik		
5 V regulyator	\$0.10	Dəqiq		
Arduino nano	\$2.98	Dəqiq		
Adafruit ultimate GPS	\$38.63	Dəqiq		
OV5641 + Arducam shield	\$39.98	Dəqiq		
Buzzer QSI-1410	\$0.12	Dəqiq		
BMP280	\$1.18	Dəqiq		
BME280	\$3.59	Dəqiq		
SG – 90	\$1.49	Dəqiq		
XBee Zegbee S2C	\$31.00	Dəqiq		
Xbee-PRO S2C	\$72	Dəqiq		
RVS DS1307	\$0.99	Dəqiq		
SD kart modul	\$0.99	Dəqiq		
Çevirici	\$1.38	Dəqiq		
Məftillər	\$5.00	Təxmini		
Toplam	\$198.44(340 AZN)			

Təqdimatçı: Emin Payızov

Maliyyə

Komponentlər - Ümumi	Qiymət	Dəqiqlik	
Elektronika	\$200	Dəqiq	
Paraşut	\$10	Dəqiq	
CanSatın korpusu	\$2	Dəqiq	
Konteyner	\$3	Təxmini	
Toplam	\$215		