

Artificial Intelligence & Machine Learning Lab.

Cascade RPN: Delving into High-Quality Region Proposal Network with Adaptive Convolution

Thang Vu, Hyunjun Jang, Trung X. Pham, Chang D. Yoo Korea Advanced Institute of Science and Technology

Abstract

- This paper considers an architecture referred to as Cascade Region Proposal Network (Cascade RPN).
- Cascade RPN uses single anchor per location and perform multistage refinement instead of using multiple anchors.
- Cascade RPN systematically maintains alignment through stages using proposed adaptive convolution
- Cascade RPN achieves state-of-the-art region proposal performance on COCO dataset.

Introduction

Problem description.

- Conventional RPN uses multiple scales and aspect ratios which are heuristically defines and requires tuning for good performance.
- → Cascade RPN relies on a single anchor per location and performs multi-stage refinement.
- Alignment between anchor box and feature is not wellpreserved in existing multi-stage RPN.
- → Cascade RPN relies on adaptive convolution.

Image space Feature space

Misalignment problem in iterative RPN

Cascade RPN

Architectures of Cascade RPN and others.

Adaptive convolution

- In standard convolution, feature weighted sum is performed on regular grid $y[p] = \sum_{r \in \mathbb{R}} w[r] \cdot x[p+r]$
- In adaptive convolution, the regular grid \R is replaced by the offset grid $\Bbb O$: $m{y}[m{p}] = \sum_{m{o} \in \Bbb O} m{w}[m{o}] \cdot m{x}[m{p}+m{o}]$
- The offset o can be decoupled into center offset and shape offset: $m{o} = m{o}_{ctr} + m{o}_{shp}$

 $oldsymbol{o}_{ctr}$: position alignment $oldsymbol{o}_{shp}$:semantic scope alignment

Sampling locations of Adaptive Convolution and others.

Experiments

Region proposal results on COCO 2017 val.

Method	Backbone	AR_{100}	AR_{300}	AR_{1000}	AR_S	AR_M	AR_L	Time (s)
SharpMask [30]	ResNet-50	36.4	-	48.2	-	-	-	0.76
GCN-NS [28]	VGG-16 (Sync BN)	31.6	-	60.7	-	-	-	0.10
AttractioNet [14]	VGG-16	53.3	-	66.2	31.5	62.2	77.7	4.00
ZIP [22]	BN-inception	53.9	-	67.0	31.9	63.0	78.5	1.13
RPN [34]		44.6	52.9	58.3	29.5	51.7	61.4	0.04
Iterative RPN	ResNet-50-FPN	48.5	55.4	58.8	32.1	56.9	65.4	0.05
Iterative RPN+		54.0	60.4	63.0	35.6	62.7	73.9	0.06
GA-RPN [37]		59.1	65.1	68.5	40.7	68.2	78.4	0.06
Cascade RPN		61.1	67.6	71.7	42.1	69.3	82.8	0.06

Ablation study of Cascade RPN.

Baseline	1 anchor	Cascade	Align.	AFAB	Stats.	IoU loss	AR_{100}	AR_{300}	AR_{1000}
\checkmark							44.6	52.9	58.3
	\checkmark						44.7	51.2	55.8
	\checkmark	\checkmark					48.2	54.4	58.0
	\checkmark	\checkmark	\checkmark				57.4	63.7	67.8
	\checkmark	\checkmark	\checkmark	\checkmark			57.3	64.2	68.6
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		60.8	67.3	71.5
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	61.1	67.6	71.7
Overall Improvement						+16.5	+14.7	+13.4	

Qualitative results for stage 1 and stage 2 of Cascade RPN.

Detection results on COCO 2017 test-dev.

Method	Proposal method	# proposals	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
	RPN Cascade RPN	1000	37.0 40.1	59.5 59.5	39.9 43.7	21.1 22.8	39.4 42.4	47.0 50.9
Fast R-CNN	RPN Iterative RPN+ GA-RPN Cascade RPN	300	36.6 38.6 39.5 40.1	58.6 58.8 59.3 59.4	39.5 42.2 43.2 43.8	20.3 21.1 21.8 22.1	39.4 39.4 39.1 1 41.5 3 42.0 4 42.4 4 39.8 4 42.9 1 39.6 5 42.0 0 42.6	47.0 50.0 50.7 51.6
Faster R-CNN	RPN Cascade RPN	1000	37.1 40.5	59.3 59.3	40.1 44.2	21.4 22.6		46.5 51.5
	RPN Iterative RPN+ GA-RPN Cascade RPN	300	36.9 39.2 39.9 40.6	58.9 58.2 59.4 58.9	39.9 43.0 43.6 44.5	21.1 21.5 22.0 22.0	42.0 42.6	46.5 50.4 50.9 52.6