Introducción a la Matemática

Iker M. Canut

February 11, 2020

Contents

1	Cor	njuntos				
	1.1	Definiciones Básicas				
	1.2	Representación de conjuntos				
	1.3	Subconjuntos				
	1.4	Operaciones				
2	Números Reales					
	2.1	Suma y Producto				
	2.2	Resta y División				
	2.3	Potenciación				
	2.4	Radicación				
	2.5	Logaritmo				
	2.6	Formas Especiales				
	2.7	Relacion de Orden del Conjunto de los Numeros Reales				
	2.8	Valor Absoluto				
3	Núi	meros Complejos				
	3.1	Forma Binómica de un Número Complejo				
	3.2	La Unidad Imaginaria				
	3.3	El conjunto de los Números Complejos				
	3.4	Definiciones				
	3.5	Conjugado de un complejo				
	3.6	Reciproco de un Complejo NO nulo				
4	Ecu	Ecuaciones e Inecuaciones				
	4.1	Ecuaciones Lineales				
	4.2	Ecuaciones Cuadráticas				
	4.3	Ecuaciones Bicuadrática				
	4.4	In course sing as				

1 Conjuntos

1.1 Definiciones Básicas

Un Conjunto es una colección de objetos. Los conjuntos se denominan con letras mayúsculas. Y los elementos que lo forman con letras minúsculas. El conjunto vacio se denomina \emptyset .

1.2 Representación de conjuntos

• Por Extensión: Se lista todo entre llaves. $\{a,b,c,d,...\}$

• Por Comprension: Se dicen las propiedades. $\{x/x...\}$

1.3 Subconjuntos

El conjunto B es subconjunto de A si y sólo si todo elemento de B, es también de A.

$$B \subset A \iff (x \in B \Rightarrow x \in A)$$

Dos conjuntos serán iguales cuando posean los mismos elementos.

$$B = A \iff (A \subset B \land B \subset A)$$

Al conjunto que contiene a todos los datos en un contexto específico lo denominaremos **Conjunto Universal** y se denota con la letra **U**.

1.4 Operaciones

• Intersección de Conjuntos: $A \cap B = \{x/x \in A \land x \in B\}$

• Unión de Conjuntos: $A \cup B = \{x/x \in A \lor x \in B\}$

Si dos conjuntos no tienen elementos en comun, entonces son **disjuntos**. A y B disjuntos $\iff A \cap B = \emptyset$

Propiedades	UNIÓN	INTERSECCIÓN
Conmutativa	$A \cup B = B \cup A$	$A \cap B = B \cap A$
Asociativa	$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$
Distributiva	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Idempotencia	$A \cup A = A$	$A \cap A = A$

• Diferencia: $A - B = \{x/x \in A \land x \notin B\}$

• Complemento: $C_A = \overline{A} = U - A$. Se cumple que $A - B = A \cap \overline{B}$

Propiedades	
Complemento	$\overline{\overline{A}} = A$ $A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$ $\overline{\emptyset} = U \wedge \overline{U} = \emptyset$
Leyes de Morgan	$\overline{\frac{A \cap B}{A \cup B}} = \overline{A} \cup \overline{B}$

3

• Cardinal de un conjunto: Es el número de elementos. |A| = card(A)

2 Números Reales

• Racionales $Q = \left\{ x/x = \frac{p}{q}, p \in Z, q \in Z, q \neq 0 \right\}$

• Naturales con cero N_0 : $\{0, 1, 2, 3, ...\}$

• Enteros Z: $\{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

• Irracionales $I = Q \cap I = \emptyset \land Q \cup I = R$

$$N \subset N_0 \subset Z \subset Q \subset R \land I \subset R$$

2.1 Suma y Producto

	Suma	Producto
Conmutativa	a+b=b+a	a.b = b.a
Asociativa	(a+b) + c = a + (b+c)	(a.b).c = a.(b.c)
∃ Elemento Neutro	a+0=a	a.1 = a
∃ Elemento Inverso	a + (-a) = 0	$a.\frac{1}{a} = 1$
Cancelativa	$a+b=a+c \Rightarrow b=c$	$a.b = a.c \Rightarrow b = c, a \neq 0$
Uniforme	$a = b \Rightarrow a + c = b + c$	$a = b \Rightarrow a.c = b.c$
Distributiva	a.(b+c) =	= a.b + a.c

2.2 Resta y División

$$\bullet \ a - b = a + (-b)$$

$$\bullet \ a:b=\frac{a}{b}=a.\frac{1}{b}$$

$$\bullet \ \frac{p}{q} + \frac{r}{s} = \frac{ps + rq}{qs}, q \neq 0 \land s \neq 0$$

$$\bullet \ \frac{p}{q}.\frac{r}{s} = \frac{pr}{qs}, q \neq 0 \land s \neq 0$$

$$\bullet \ \frac{p}{q} \div \frac{r}{s} = \frac{ps}{qr}, q \neq 0 \land s \neq 0 \land r \neq 0$$

2.3 Potenciación

• Si
$$a \neq 0, a^0 = 1$$

$$\bullet \ a^1=a$$

• Si
$$n \in N, n > 1, a^n = \underbrace{a.a....a}_{\text{n factores "a"}}$$

• Si
$$a \in R \land a \neq 0 \land n \in N, a^{-n} = \frac{1}{a^n} = \underbrace{\frac{1}{a.a....a}}_{\text{n veces}}$$

Distributiva respecto a la multiplicación	$(a.b)^n = a^n.b^n$
Distributiva respecto al cociente	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, b \neq 0$
Producto de potencias de igual base	$a^n.a^m = a^{n+m}$
Cociente de potencias de igual base	$a^n \div a^m = a^{n-m}$
Potencia de potencia	$\left(a^{n}\right)^{m} = a^{n.m}$

2.4 Radicación

$$\sqrt[n]{a} = b \iff b^n = a$$

y se nombra $\sqrt[indice]{radicando}$ = raiz enesima

No existe en los reales la raiz cuadrada (y de ningún índice par) de números negativos. Es decir:

- Si n es un numero natural impar, entonces es valida para todo número real a.
- Si n es un numero natural par, entonces es valida para todo número real a no negativo.

$$a^{\frac{m}{n}} = \sqrt[n]{a^m} \wedge a^{-\frac{m}{n}} = \frac{1}{\sqrt[n]{a^m}}, a \neq 0$$

Distributiva respecto al producto	$\sqrt[n]{a.b} = \sqrt[n]{a}.\sqrt[n]{b}$
Distributiva respecto al cociente	$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
Raiz de raiz	$\sqrt[m]{\sqrt[n]{a}} = \sqrt[m \cdot n]{a}$

2.5 Logaritmo

El logaritmo en base a de x es y y lo notamos $\log_a(x) = y$, como el numero al cual tengo que elevar a a para obtener x.

$$log_a(x) = y \iff a^y = x$$
, se necesita que $a > 0 \land x > 0 \land a \neq 1$

•
$$log_a(1) = 0$$

•
$$log_a\left(\frac{x}{y}\right) = log_a(x) - log_a(y)$$

•
$$log_a(a) = 1$$

•
$$log_a(x^c) = c.log_a(x)$$

•
$$log_a(x.y) = log_a(x) + log_a(y)$$

•
$$a^{log_a(x)} = x$$

$$log_b(x) = \frac{log_a(x)}{log_a(b)}$$

2.6 Formas Especiales

Binomio al Cuadrado \leftrightarrow Trinomio Cuadrado Perfecto

$$(x+y)^2 = x^2 + 2xy + y^2$$

Binomio al Cubo \leftrightarrow Cuatrinomio Cubo Perfecto

$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$

Diferencia de Cuadrados

$$(a-b).(a+b) = a^2 - b^2$$

2.7 Relacion de Orden del Conjunto de los Numeros Reales

•
$$a < b \text{ si } 0 < b - a$$

•
$$a < b \land b < c \Rightarrow a < c$$

•
$$a < b \land c > 0 \Rightarrow a.c < b.c$$

•
$$a > b$$
 si $b < a$

•
$$a < b \Rightarrow a + c < b + c$$

5

•
$$a < b \land c < 0 \Rightarrow a.c > b.c$$

2.8 Valor Absoluto

Es la distancia que hay, en la recta numérica, desde su punto representativo al origen de coordenadas. El valor absoluto es será siempre un número positivo (o cero).

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

•
$$|a| \ge 0$$

•
$$|a|.|b| = |a|.|b|$$

$$\bullet |a| = 0 \iff a = 0$$

$$\forall a, b \in R \land k > 0$$

$$\bullet ||a+b| \le |a| + |b|$$

$$\bullet ||a-b| \ge ||a| - |b||$$

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

$$\bullet \ \left| \frac{a}{b} \right| = \frac{|a|}{|b|}, b \neq 0$$

$$\bullet \ |-a| = |a|$$

•
$$\sqrt{a^2} = |a|$$

•
$$|a| < k \iff -k < a < k$$

•
$$|a| > k \iff (a > k \lor a < (-k))$$

3 Números Complejos

Se define i como:

$$i^2 = -1$$

3.1 Forma Binómica de un Número Complejo

z = a + bi

donde ${\bf a}$ y ${\bf b}$ son numeros reales, e ${\bf i}$ se define por la relacion $i^2=-1$

El numero $\mathbf{a} = Re(z)$ es la parte real de z y $\mathbf{b} = Im(z)$ es la parte imaginaria de z.

3.2 La Unidad Imaginaria

El número i recibe el nombre de unidad imaginaria, aceptandose que se comporta como un número real.

 $\bullet \ i^r.i^s = i^{r+s}$

• $i^0 = 1$

• $i^2 = -1$

- $(i^r)^s = i^{r.s}$, con $r, s \in Z$
- $i^1 = 1$

 $\bullet \ i^3 = -i$

$$i^n = i^r$$
, donde r=n%4

3.3 El conjunto de los Números Complejos

Se simboliza con la C y contiene los números de la forma a+bi, donde $a,b\in R$ e i es la unidad imaginaria.

$$C = \{z = a + bi/a, b \in R \land i^2 = -1\}$$

- Los números reales son complejos $R \subset C$, ya que si $x \in R \Rightarrow x = x + 0i$.
- A los complejos de la forma bi (aquellos que su parte real es nula), se los llama imaginarios puros.

3.4 Definiciones

- Igualdad de Números Complejos: $z_1 = z_2 \iff (a_1 = a_2 \land b_1 = b_2).$
- Opuesto de un Número Complejo: -z = (-a) + (-b)i.
- Suma y Resta: $z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i$. De manera analoga, $z_1 z_2 = (a_1 a_2) + (b_1 b_2)i$
- Multiplicación: $z_1.z_2 = (a_1.a_2 b_1.b_2) + (a_2.b_1 + a_1.b_2)i$.
- División: $\frac{a+bi}{c+di} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i$

3.5 Conjugado de un complejo

El conjugado de un número complejo z = a + bi es $\overline{z} = a - bi$.

- $\bullet \ z=\overline{z} \iff z\in R$
- $\bullet \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- $z.\overline{z} = a^2 + b^2 = Re(z)^2 + Im(z)^2$

 $\bullet \ \overline{z_1.z_2} = \overline{z_1}.\overline{z_2}$

• $z - \overline{z} = 2bi$

 \bullet $-\overline{z} = \overline{-z}$

3.6 Reciproco de un Complejo NO nulo

Definimos el reciproco de $z \neq 0, z \in C$, como aquel complejo $w / z \times w = 1$ y lo denotamos $z^{-1} = \frac{1}{z}$.

7

$$\bullet \ \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}, z_2 \neq 0$$

$$\bullet \ \overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}, z \neq 0$$

4 Ecuaciones e Inecuaciones

Una **ecuación** es una igualdad entre dos expresiones algebraicas: P(x) = Q(x). Resolverla consta de encontrar el o los valores numéricos de la incógnita que verifican la ecuación.

4.1 Ecuaciones Lineales

Una ecuación es lineal cuando se puede escribir de la forma:

$$a.x + b = 0$$
, con $a \neq 0$

4.2 Ecuaciones Cuadráticas

Una ecuación es cuadratica cuando se puede escribir de la forma:

$$a.x^2 + b.x + c = 0$$
, con $a \neq 0$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

El numero $\triangle = b^2 - 4ac$ se llama **discriminante** y decide la naturaleza de las soluciones.

- \bullet Si $\triangle > 0$ entonces las dos soluciones son reales y distintas.
- Si $\triangle = 0$ entonces tiene una solución doble.
- \bullet Si $\triangle < 0$ entonces las dos soluciones son numeros complejos conjugados.

$$x_1 + x_2 = -\frac{b}{a}$$
$$x_1 \cdot x_2 = \frac{c}{a}$$

4.3 Ecuaciones Bicuadrática

Una ecuación es **bicuadratica** cuando se puede escribir de la forma: $a.x^4 + b.x^2 + c = 0$, con $a \neq 0$ Para resolverlas, primero se sustituye $y = x^2$ y despues se sigue normal.

4.4 Inecuaciones

Una inecuación es una desigualdad entre dos expresiones algebraicas: $P(x) \leq Q(x)$. Resolverla consta de encontrar el o los valores numéricos de la incógnita que verifican la ecuación.

8