3D Data Processing - Stereo Matching Lab

Luca Scattolaro

April 2021

1 Main Goal

The goal of the homework is to compute disparity maps of stereo images using Patch Matching algorithm. I extend and provided C++ software with the patch match core functionalities: disparity propagation and random search.

2 Implementation

The goal is to extend the *process()* method to perform:

- 1. Spatial propagation
- 2. Random search around the current disparity
- 3. View propagation

Let's now focus on the idea applied for each of the aforementioned method.

2.0.1 Spatial propagation

 $spatial_propagation()$: we evaluate whether assigning to p the disparity d_q of spatial neighbor pixel q decrease the matching costs.

If $m(p, d_q) < m(p, d_p)$, accept the new disparity.

2.0.2 Random search around the current disparity

 $disp_perturbation()$: we should perturb the disparity at position (x,y) by a factor of $delta_z$ where $delta_z \in [end_{dz}, max_{delta_z}]$.

In this method I decide to iterate n times (n is 3 times the int difference $max_{delta_z} - end_{dz}$) and for each iteration I randomly compute $delta_z$ and I add it to the old disparity and If I get a smaller cost with the new disparity we accept it.

2.0.3 View propagation

 $view_propagation()$: we check all pixels $p^{'}$ of the second view that have our current pixel p as a matching point according to their current disparity.

If $m(p, -d_p) < m(p, d_p)$ accept the new disparity.

3 Results

In this section we report the results obtained for all the 3 datasets:

- Aloe
- Cones
- Rocks1

3 RESULTS 2

3.1 Aloe Dataset

Left Image MSE error: 20.4217 Right Image MSE error: 33.7995

3 RESULTS 3

3.2 Cones Dataset

Left Image MSE error: **32.6951** Right Image MSE error: **36.1007**

3 RESULTS 4

3.3 Rocks Dataset

e) Left Disparity Left Image MSE error: **17.8111**

f) Right Disparity Right Image MSE error: **23.8406**