Linear regression

RLLAB

이홍중, 정호준, 이준서, 김준석

Setup

• Download zip file from etl.

 Open "Linear_Regression.ipynb" on colab.

(Review) Linear Regression

- 1D inputs $\{(x_i, y_i) : 1 \le i \le N\}$ model : y = h(x) = ax + b
- Multi-dimensional inputs $\{(x_i,y_i):1\leq i\leq N\}, x_j=\left[1,x_{j1},x_{j2},...,x_{jd}\right]^T$ model : y = h(x) = w^Tx
- General linear regression $\phi(x) = [1, \phi_1(x), \phi_2(x), ..., \phi_k(x)]^T$ model : $y = h(x) = w^T \phi(x)$
- LOSS = $\sum_{i=1}^{N} (y_i h(x_i))^2$ => use gradient descent!

Overview

- Define the true model h(x)
- Generate random data using Gaussian noise ($y_i = h(x_i) + \epsilon, \epsilon \sim N(0, \sigma^2)$)
- Generate torch model (model = torch.nn.Linear(input_size, output_size))
- Minimize MSE Loss using gradient descent
- Visualize the result