第三讲、 连续

基本内容: 连续性概念; 一些重要例子 (Dirichlet 函数 、 Riemann 函数 、 多元函数的例子) ; 一 元连续与多元连续的关系: 用集合语言刻画连续性; 连续函数的保号性; 零点定理(介值定理); 有界性定 理; 最大(小)值定理; 一致连续性; 连续函数延拓.

§3.1 连续性概念

- 一、 Dirichlet 函数与 Riemann 函数
- 1. Dirichlet 函数

$$D(x) = \begin{cases} 1, & x \text{ 是有理数,} \\ 0, & x \text{ 是无理数,} \end{cases}$$

在每一点都没有极限. 所以是处处不连续.

2. Riemann 函数

$$R(x) = \begin{cases} \frac{1}{q}, & x = \frac{p}{q}, \text{ 其中 } p, q \text{ 为互素整数}, q > 0, \\ 0, & x \text{ 为无理数}. \end{cases}$$

在所有无理点处连续, 而在所有有理点处不连续, 且为可去间断点. 事实上可以证明对每 $\uparrow x_0 \in \mathbb{R}$ 成立

$$\lim_{x \to x_0} R(x) = 0. \tag{1}$$

取定 x_0 . 由于产业明(1) 村产 公芳尼 $B(x_0)$,以几个主要知 $\hat{\mathbb{Z}}_{x_0}$,之中世从 \mathbb{Z}_{x_0} 对给定的 $\varepsilon \leq 0$ 我们们 产是: 证明自 $\delta \leq C$,使得当 $0 \leq |x-x_0| \leq \delta$ 断,成立 $(0 \leq)R(x) \leq \varepsilon$. 考虑使这个不等式的反面(即 $R(x) \ge \varepsilon$) 成立的 x 是什么? 当然 x 只能是有理数. 将它写成 $x = \frac{p}{q}$, 其 中 p, q 互素, 则就是

$$R\left(\frac{p}{q}\right) = \frac{1}{q} \geqslant \varepsilon.$$

这等价于

$$q\leqslant\frac{1}{\varepsilon},\ \mathbb{H} q\in\left\{1,2,\cdots,\left[\frac{1}{\varepsilon}\right]\right\}.$$

由以上分析可见, 可以先取 $\delta_1 = 1$, 然后在去心邻域

$$(x_0-1)\cup(x_0+1)$$

中将分母 q 在集合 $\left\{1,2,\cdots,\left\lceil\frac{1}{\varepsilon}\right\rceil\right\}$ 中的所有有理数 $\frac{p}{q}$ 都避开即可. 由于这样的有理数至多只有有限个, 记为

$$x_1, x_2, \cdots, x_k,$$

然后令

$$\delta = \min\{1, |x_1 - x_0|, |x_2 - x_0|, \cdots, |x_k - x_0|\},\$$

则当 $0 < |x - x_0| < \delta$ 时就成立 $0 \leqslant R(x) < \varepsilon$. 因此 (1) 成立.

例 1. 构造一个在 $(-\infty, +\infty)$ 上有定义的函数, 使得它在 x = 1 处连续, 但在所有其他点 处都不连续.

二、多元连续函数

首先注意: 一个多元函数如果对每个变元都连续, 仍不能推出它是一个多元连续函数. 例如 函数

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0) \end{cases}$$

在全平面上对 x, y 都分别连续. 在原点分别对 x, y 连续, 但作为二元函数在原点不连续.

例 2. 用极坐标表示的函数 f(x,y) 定义为: 当 $r = \theta$, $\theta \in (0,2\pi)$ 时取 1 , 其余取 0 . 证 明在过原点的每一条直线上 f(x,y) 都趋于 f(0,0) = 0. 但 f(x,y) 在原点不连续.

例 3(多元函数连续的若干充分条件) 设 f(x,y) 在 $D \subset \mathbb{R}^2$ 上分别对 x 和 y 连续. 证明 当下列条件之一满足时 f(x,y) 是 D 上的二元连续函数.

(1) f(x,y) 在 D上对 x 连续且关于 y 一致, 即 $\forall x_0, \forall \varepsilon > 0$, $\exists \delta = \delta(\varepsilon, x_0) > 0$ (与 y 无 美), 使 $|x-x_0| < \delta$ 时, 对 $\forall y, (x,y), (x_0,y) \in D$ 恒有

$$|f(x,y)-f(x_0,y)|<\varepsilon.$$

(2) f(x,y) 在 D 上对 x 满足局部 Lipschitz 条件且关于 y 一致, 即: $\forall p_0 = (x_0,y_0) \in D$, $\exists r > y_0 \in D$, 0 及L > 0, 使得对 $\forall (x_1, y), (x_2, y) \in D \cap O_r(p_0)$, 恒有

$$|f(x_1, y) - f(x_2, y)| < L|x_1 - x_2|.$$

- (3) f(x,y) 关于变量 y 是单调的.
- 证 (1) 由定义, 并用拆项补项的方法.
- $[y_0-\delta_2,y_0+\delta_2]$. 先利用 $f(x_0,y)$ 在直线 $x=x_0$ 上的连续性,可选取 δ_2 足够小,使 f 在 D 的 上下边中点 $(x_0, y_0 \pm \delta_2)$ 的值与 $f(x_0, y_0)$ 的误差不超过 $\frac{1}{2}\varepsilon$; 然后再由 $f(x, y_0 \pm \delta_2)$ 在直 线 $y = y_0 \pm \delta_2$ 上的连续性, 可取 δ_1 足够小, 使 f 在 D 的上下边上的值与 $f(x_0, y_0)$ 的误差不超 过 ε . 最后利用 f 关于 g 的单调性, 即可得 f 在 G 上的值与 $f(x_0, y_0)$ 的误差不超过 ε .

连续性除了可以用极限语言刻画之外,也可以用集合语言来刻画.下面的例题说明它们是 等价的.

例 4 设 f(x) 是定义在 \mathbb{R}^n 上的函数, 则下述命题等价:

- (1) f(x) 连续;
- (2) 任何开集的原象是开集;
- (3) 任何闭集的原象是闭集;
- (4) 对 \mathbb{R} 中的任意子集 E , 有 $f(\overline{E}) \subset \overline{f(E)}$.
- 证 我们采用循环证明的方法.
- $(1)\Rightarrow(2)$: 设 f(x) 在 \mathbb{R}^n 上连续, A 是 \mathbb{R} 中的任一开集, 如果 $f^{-1}(A)$ 是空集, 结论自然成 立; 若 $f^{-1}(A)$ 非空, $\forall x_0 \in f^{-1}(A)$, 则 $f(x_0) \in A$, 而 $A \in \mathbb{R}$ 中开集, 于是存在 $\varepsilon > 0$, 使得 x_0 的 开邻域 $(f(x_0) - \varepsilon, f(x_0) + \varepsilon) \subset A$,由于 f(x) 在 x_0 点连续知 $\exists \delta > 0$ 当 $|x - x_0| < \delta$ 时 $f(x) \in$ $(f(x_0) - \varepsilon, f(x_0) + \varepsilon)$, 于是 $O_{\delta}(x_0) = \{x \in \mathbb{R}^n, |x - x_0| < \delta\} \subset f^{-1}(A)$, 从而 $f^{-1}(A)$ 为开集.
 - $(2) \Rightarrow (3)$: 设 $S \in \mathbb{R}$ 中的任一集合,则

$$f^{-1}(S^c) = [f^{-1}(S)]^c. (2)$$

事实上,由于 $x \in f^{-1}(S^c) \iff f(x) \in S^c$,而 $x \in [f^{-1}(S)]^c \iff x \not\in f^{-1}(S) \iff f(x) \not\in S$,由此可以看出(2) 成立.

设 F 是 \mathbb{R} 中的任一闭集, 由(2) 得

$$f^{-1}(F) = f^{-1}((F^c)^c) = [f^{-1}(F^c)]^c.$$

由条件(2) 及 F^c 为开集知 $f^{-1}(F)$ 为闭集.

 $(3) \Rightarrow (4)$: 要证 $f(\overline{E}) \subset \overline{f(E)}$,只要证

$$\overline{E} \subset f^{-1}(\overline{f(E)}).$$

事实上,下面的包含关系显然成立,

$$E \subset f^{-1}(f(E)) \subset f^{-1}(\overline{f(E)}).$$

又由条件(3) 及 $\overline{f(E)}$ 是闭集知

$$\overline{E} \subset f^{-1}(\overline{f(E)}).$$

 $(4)\Rightarrow (1):$ 反证法, 若不然, $\exists x_0\in\mathbb{R}^n, f(x)$ 在 x_0 点不连续, 由 Heine 归结原则知, $\exists \varepsilon_0>0$ 及点列 $\{x_n,\ n=1,2,\cdots\}, x_n\to x_0$ 但

$$|f(x_n) - f(x_0)| \geqslant \varepsilon_0. \tag{3}$$

取 $E = \{x_n\}, n = 1, 2, \dots, \mathbb{N}$ $x_0 \in \overline{E}, f(E) = \{f(x_n)\}, n = 1, 2, \dots$ 由条件(4) 知 $f(x_0) \in \overline{f(E)} = \{f(x_n)\}, 5(3)$ 矛盾.

§3.2 连续函数的局部性质(保号性等)

§3.3 零点定理(介值定理)、闭区间上连续函数的性质

例 6 设 $f \in C[a,b]$, 且有 $f([a,b]) \subset [a,b]$ 或 $f([a,b]) \supset [a,b]$. 证明: 存在 $\xi \in [a,b]$, 使得 $f(\xi) = \xi$ (即 f 在区间 [a,b] 中有不动点).

例 7 设 $f \in C[0,1]$, f(0) = f(1). 证明: 对每个 $n \in \mathbb{N}$, 存在 ξ , 使得 $f(\xi + \frac{1}{n}) = f(\xi)$.

例 8 设数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 在有界闭区间 [a,b] 上收敛于 s(x), 如果 $u_n(x)$ 都是 [a,b] 上的非负连续函数, $n=1,2,\cdots$. (1). 证明 s(x) 必在 [a,b] 上取到最小值; (2). 问 s(x) 是否能取到最大值?

§3.4 **一致连续**

例 9 证明: 函数 \sqrt{x} 在区间 $(0, +\infty)$ 上一致连续.

例 10 在无界区间上的有界函数也可能是不一致连续的. $(\sin x^2)$.

例 11 设函数 f 在区间 $[a, +\infty)$ 上满足 Lipschitz 条件, 其中 a>0. 证明: $\frac{f(x)}{x}$ 在 $[a, +\infty)$ 上一致连续.

例 12 设函数 f 在区间 $[0,+\infty)$ 上一致连续,且对任何 $x\in[0,1]$ 有 $\lim_{n\to\infty}f(x+n)=0$. 证明: $\lim_{x\to+\infty}f(x)=0$.

例 13 设 f(x,y,z) 于 $a \le x,y,z \le b$ 上连续, 令

$$\varphi(x) = \max_{a \leqslant y \leqslant x} \min_{a \leqslant z \leqslant b} f(x, y, z),$$

则 $\varphi(x)$ 于 [a,b] 上连续.

例 14 设 A 是 $n \times n$ 矩阵, 它的行列式 $\det A \neq 0$. 证明存在 $\alpha > 0$, 使对任意 $\mathbf{x} \in \mathbb{R}^n$ 都有 $|A\mathbf{x}| \geqslant \alpha |\mathbf{x}|$.

例 15 设函数 f(x,y) 在非空有界闭区域 D 上连续. 证明 D 中存在无限多点 (ξ,η) , 满足

$$\iint\limits_D f(x,y)\mathrm{d}x\mathrm{d}y = f(\xi,\eta)\cdot\mathrm{mes}(D),\quad 其中\ \mathrm{mes}(D)\ 表示\ D\ 的面积.$$

最后讨论一点连续函数延拓的问题.

- **例** (1) 设 f 在有限闭区间 [a,b] 上连续, 证明 f 可以连续地延拓到 \mathbb{R} 上, 即存在 \mathbb{R} 上 的连续函数 F , 使 $x \in [a,b]$ 时, 有 F(x) = f(x) .
- (2) 设二元函数 f(x,y) 在闭圆盘 $B = \{ (x,y): x^2 + y^2 \le 1 \}$ 上连续, 证明存在 \mathbb{R}^2 上的连续函数 F(x,y),使 $(x,y) \in B$ 时,有 F(x,y) = f(x,y).
- (3) 设 f 在有限开区间 (a,b) 上连续, 是否有 \mathbb{R} 上的连续函数 F , 使 $x \in (a,b)$ 时有 F(x) = f(x) ? 分别考虑 f 为无界、有界函数的情况.

对 (1), 有直观的解答.

- (2) 的解答可以仿照 (1) 的解答来做.
- (3) 要根据 f 常不同情况过 ϕ 可定凭实 后的一个活要条件是 $\lim_{x\to a+b} f(x)$ 存在且有限.

进一步考虑把有限开区间 (a,b) 弯曲成圆周去掉一点的集合 Γ , f 定义在 Γ 上, 端点的"左"、"右"极限存在但不相等. 那么 f 是不能连续延拓到 \mathbb{R}^2 上的.

问题 定义在 $E \subset \mathbb{R}^n$ 上的连续函数 f 在 E 符合什么条件时可以连续延拓到 \mathbb{R}^n 上?回答是非常著名的 Tietze 扩张定理(f 有界, E 为闭集. 见《数学分析习题课讲义》(下册)第 18 章参考题).

第三讲练习题

- 1. 求出 Dirichlet 函数和 Riemann 函数的所有极值点和最值点.
- 2. 设函数 f 在区间 I 上满足带指数的Lipschitz 条件, 即存在 $M>0, \alpha>0$, 使得当 $x,y\in I$ 时, 成立 $|f(x)-f(y)|\leqslant M|x-y|^{\alpha}$. 证明: 若 $\alpha>1$, 则 f 在 I 上是常值函数.

[因此在文献中若提到带指数的Lipschitz 条件时, 总假定其中的指数不大于 1.]

- 3. 举出一个函数 f, 它的定义域为 [0,1], 处处不连续, 但它的值域为区间.
- 4. 作一个在有界区间(0,1)上连续、有界但非一致连续的函数 f(x).
- 5. 若 $f \in C[a,b]$, 证明: 对每个给定的 $\varepsilon > 0$, 存在区间 [a,b] 上的分段线性函数 L(x) 使得 $|f(x) L(x)| < \varepsilon$ 在区间 [a,b] 上处处成立.

[本题有重要的意义, 即可以用简单的分段线性函数来一致逼近任何连续函数.]

6. 设 $f \in C(-\infty, +\infty)$, 且 $\lim_{x \to \infty} f(f(x)) = \infty$, 证明: $\lim_{x \to \infty} f(x) = \infty$.

- 7. 设 f 在 $(-\infty, +\infty)$ 上一致连续, 证明: 存在非负常数 a 和 b, 使得成立 $|f(x)| \le a|x| + b$. [由此知道在 $(\infty, +\infty)$ 上的一致连续函数 f 满足一个必要条件: f(x) = O(x) $(x \to \infty)$.]
- 8. 设函数 f 在区间 [0,n] 上连续, 且有 f(0) = f(n), 其中 n 是一个自然数. 证明: 至少 有 n 对不同的 (x,y), 使得 f(x) = f(y), 同时 x-y 为非零整数.

[本题只需要连续函数的零点存在定理. 试从 n=2.3 做起, 看什么时候你会有个飞跃.]

- 9. 是否存在定义于 $(-\infty, +\infty)$ 上的连续函数 f, 使对于任何 $c \in \mathbb{R}$,
 - (a) 方程 f(x) = c 都恰有两个解?
 - (b) 方程 f(x) = c 都恰有三个解?

[第一小题的答案是不存在. 请证明: 第二小题的答案是存在. 需要举出例子.]

- 10. 设 f 在闭区间 [a, b] 上单调增加, f(a) > a, f(b) < b. 证明: f 在 (a, b) 内必有不动点.
- 11. 设 f_1 , f_2 是分别以 T_1 , T_2 为周期的连续函数, 且均非常值函数, 证明: 若周期 T_1 , T_2 不可 公约,则 $f_1 + f_2$ 不是周期函数.
- 12. 设 f, g 是周期函数, 且有 $\lim_{x \to \infty} [f(x) g(x)] = 0$, 证明: $f(x) \equiv g(x)$. (注意: 本题并不需 要 f 和 g 为连续函数的条件.)
- 13. 设 f 在开区间 I 上连续, 且于每点 $x \in I$ 取到极大值. 证明: f 为 I 上的常值函数.
- 14. (上一题要求 f 在区间 I 的每一点上同时取极大值或同时取极小值. 但实际上这个要求可 以去掉.) 设 f 在开区间 I 上连续, 且于每点 $x \in I$ 取到极值. 证明: f 为 I 上的常值函数.
- 15. 设 f(x,y) 定义在 $[a,b] \times [c,d]$ 上且关于 x 连续, 关于 y 单调. 又对任意的 x 、 f(x,y)当 $y \to d$ 时收敛到 f(x,d). 证明 f(x,y) 的收敛关于 $x \in [a,b]$ 一致.
- 16. 设 f(x,y) 在 $D \subset \mathbb{R}^2$ 上分别对 x 和 y 连续. 且 f(x,y) 关于变量 x 是单调的. 证
- 17. 证明: $f(x,y) = \sqrt{x^2 + y^2}$ 在 $\mathbb{P}^{\frac{1}{2}}$ 上文连续.
- 18. 如果 f 把 ℝ 中的任意开集映为开集,问 f 是否是 ℝ 上的连续函数.
- 19. f(x,y) 在 \mathbb{R}^2 上连续, 且 $\lim_{|x|+|y|\to\infty} f(x,y)$ 存在, 则 f(x,y) 在 \mathbb{R}^2 上有界, 且一致连 绿
- 20. 证明: 若 $D \subset \mathbb{R}^2$ 是有界闭域, f 为 D 上连续函数, 则 f(D) 是一个有界闭区间.
- 21. f(x,y) 在 $[a,b] \times [a,b]$ 上连续, 定义

$$\varphi(x) = \max_{a \leqslant \xi \leqslant x} \max_{a \leqslant y \leqslant \xi} f(\xi, y),$$

则 $\varphi(x)$ 在 [a,b] 上连续.

22. 设 $f_1(x)$, $f_2(x)$, ..., $f_n(x)$ 是 [0,1] 上的连续函数. 称 $f_1(x)$, $f_2(x)$, ..., $f_n(x)$ 在 [0,1] 上 线性相关, 若存在不全为零的常数 c_1, c_2, \dots, c_n , 使得

$$\sum_{j=1}^{n} c_j f_j(x) \equiv 0, \ x \in [0, 1].$$

证明: $f_1(x)$, $f_2(x)$, \cdots , $f_n(x)$ 在 [0,1] 上线性相关的充要条件是

$$\det\left(\left(\int_0^1 f_i(x)f_j(x)dx\right)_{n\times n}\right) = 0,$$

其中 det(A) 是 A 的行列式.

- 23. 设 p_1 , p_2 , · · · , p_k 是 \mathbb{R}^2 上的 k 个相异的点,证明存在一个最小半径的圆盘 B, 把 这 k 个点覆盖. 对于 \mathbb{R}^n 中的点,也有类似的命题.
- 24. 设 A, B 是两个 n 阶的实对称方阵, 其中 B 是正定矩阵. 设函数 $G(x) = (x^T B x)^{-1} (x^T A x)$ 定义在 $E = \mathbb{R}^n \setminus \{0\}$ 上. 证明:
 - (1) G(x) 可以在 E 上取到最大值;
 - (2) G(x) 的最大值点是与 A, B 有关的某个矩阵的特征向量. 请写出这个矩阵.

苏州大学数学科学学院