ISYE 7406: Data Mining and Statistical Learning

W

March 30, 2024

Contents

1	Boo	otstrapping algorithm	1
	1.1	Motivating example	1
	1.2	Idea in Bootstrapping algorithm	1
	1.3	Resample with replacement	2

1 Bootstrapping algorithm

9.1.3

1.1 Motivating example

- Data: $z = (z_1, ..., z_n)$ where $z_i = (Y_i, x_{i1}, ..., x_{ip}), i = 1, ..., n$
- Parameter estimation: we derived real-valued summary statistics $S(z) = S(z_1, ..., z_n)$ which is en estimator of population parameter θ (e.g. mean, median, correlation coefficient, regression coefficient, etc.)
- Objective: derive a **robust** estimator of the confidence interval of θ or the standard error of S(z)
- Challenges: we don't know the distribution of data, and are unable to obtain additional training datasets

1.2 Idea in Bootstrapping algorithm

- Intuitive idea:
 - Estimate the standard error of $S(z) = S(z_1, ..., z_n)$ based on the sample standard deviation if we have many values of S(z) or many independent copies of training data

– from the original training dataset $(z = z_1, z_2, ..., z_n)$ to generate many copies of "new" training dataset. This allows us to compute many values of S(z)

1.3 Resample with replacement

- High level:
 - Input Data: $z = (z_1, ..., z_n)$ where $z_i = (Y_i, x_{i1}, ..., x_{ip}), i = 1, ..., n$ and estimator of S(z) for θ
 - For b = 1, ..., B
 - * Sample with replacement to get bootstrap sample $z^{*b} = (z_1^{*b}, ..., z_n^{*b})$
 - * Compute the value $S(z^{*b}) = S(z_1^{*b},...,z_n^{*b})$ for this bootstrap sample
 - Once the B values of $S(z^{*b})$ have been computed,
 - * The quantiles of $S(z^{*b})$'s provide an empirical distribution of S(z)
 - * They can be used to provide confidence intervals of θ