Project 2 Codebook

Yingxi Kong

Table 1 presents an overall summary statistics of patients' baseline characteristics by their behavioral and pharmacological treatment assignment. Since our study is a 2×2 , factorial, randomized, placebo-controlled trial, patients are randomly assigned to either behavioral activation for smoking cessation group (BASC) or standard behavioral treatment group (ST) and either varenicline or placebo blister pack. Patients can be categorized into four treatment arm groups: BASC + placebo, BASC + varenicline, ST + placebo, and ST + varenicline. Seeing from Table 1, the two placebo groups both have 68 obervations while the two varenicline groups both have 83 observations.

Most variables are evenly distributed across the four treatment arms, which reflects successful randomization in this factorial trial. However, a few key factors, such as socioeconomic indicators (income and education) and specific mental health variables (MDD status, DSM-5 diagnoses), exhibit slight variations that may influence outcomes. Notably, treatment arms with varenicline show higher abstinence rates than placebo groups, suggesting the potential efficacy of this pharmacotherapy in combination with behavioral interventions. While many baseline characteristics are evenly distributed across groups, some may still function as moderators, potentially interacting with treatment assignment to affect abstinence success.

Table 1: Participant Characteristics by Treatment Arm

Characteristic	Behavioral and Pharmacological Treatment Assignment						
	BASC + placebo, N = 68	BASC + varenicline, N = 83	ST + placebo, N = 68	ST + varenicline, N = 81	Overall, N = 300		
Smoking abstinence	4 (5.9%)	26 (31%)	8 (12%)	26 (32%)	64 (21%)		
Age	51 (14)	50 (13)	50 (11)	49 (13)	50 (13)		
Sex							
Male	30 (44%)	39 (47%)	29 (43%)	37 (46%)	135 (45%)		
Female	38 (56%)	44 (53%)	39 (57%)	44 (54%)	165 (55%)		
Income	` ,	, ,	,	,	, ,		
Less than \$20,000	25 (37%)	30 (37%)	26 (38%)	29 (36%)	110 (37%)		
\$20,000-35,000	16 (24%)	17 (21%)	14 (21%)	21 (26%)	68 (23%)		
\$35,001-50,000	8 (12%)	13 (16%)	14 (21%)	11 (14%)	46 (15%)		
\$50,001-75,000	12 (18%)	12 (15%)	8 (12%)	6 (7.5%)	38 (13%)		
More than \$75,000	6 (9.0%)	10 (12%)	6 (8.8%)	13 (16%)	35 (12%)		
Missing	1	1	0	1	3		
Education							
Grade School	1 (1.5%)	0 (0%)	0 (0%)	0 (0%)	1 (0.3%)		
Some high school	3 (4.4%)	7 (8.4%)	2 (2.9%)	4 (4.9%)	16 (5.3%)		
High school graduate or	23 (34%)	15 (18%)	11 (16%)	27 (33%)	76 (25%)		
GED	` ,	, ,	,	,	,		
Some college/technical	22 (32%)	32 (39%)	38 (56%)	24 (30%)	116 (39%)		
school	, ,	, ,	,	,	, ,		
College graduate	19 (28%)	29 (35%)	17 (25%)	26 (32%)	91 (30%)		
FTCD score	5(2)	5(2)	5(2)	5(2)	5(2)		
Missing	0	0	1	0	1		
Smoking within 5 mins of	32 (47%)	33 (40%)	35 (51%)	38 (47%)	138 (46%)		
waking up							
BDI score	19 (12)	18 (11)	18 (11)	20 (12)	19 (11)		
Cigarettes smoked per	16 (9)	16 (9)	15 (7)	14 (7)	15 (8)		
day							
Cigarette reward value	7 (4)	7 (4)	7 (4)	7 (3)	7 (4)		
Missing	1	3	8	6	18		
Pleasurable events (substitute reinforcers)	23 (20)	23 (19)	21 (20)	23 (19)	23 (20)		

Table 1: Participant Characteristics by Treatment Arm (continued)

Characteristic	Behavioral and Pharmacological Treatment Assignment						
	$\begin{array}{c} \text{BASC} + \\ \text{placebo, N} = \\ 68 \end{array}$	BASC + varenicline, N = 83	ST + placebo, N = 68	ST + varenicline, N = 81	Overall, N = 300		
Pleasurable events	28 (22)	22 (17)	27 (20)	25 (19)	25 (19)		
(complementary reinforcers)							
Anhedonia	2(3)	2(3)	3 (3)	2(3)	2(3)		
Missing	$\hat{2}$	o ´	ì	o ´	3		
Other lifetime DSM-5	35 (51%)	30 (36%)	28 (41%)	40 (49%)	133 (44%)		
diagnosis	, ,	, ,	, ,	, ,	` '		
Taking antidepressant	28 (41%)	24 (29%)	15 (22%)	15 (19%)	82 (27%)		
Current vs. past MDD	, ,	, ,	, ,	, ,	, ,		
Past MDD	36 (53%)	43 (52%)	37 (54%)	37 (46%)	153 (51%)		
Current MDD	32 (47%)	40 (48%)	31 (46%)	44 (54%)	147 (49%)		
Nicotine metabolism	0.34(0.18)	0.38(0.25)	0.37(0.27)	0.36(0.21)	0.36(0.23)		
ratio							
Missing	7	3	2	9	21		
Exclusive mentholated	40 (59%)	48 (59%)	43 (64%)	47 (58%)	178 (60%)		
cigarette user							
Missing	0	1	1	0	2		
Readiness to quit	7 (1)	7 (1)	7 (1)	7 (1)	7(1)		
smoking							
Missing	4	5	4	4	17		
Race							
Black	37 (54%)	37 (45%)	40 (59%)	43 (53%)	157 (52%)		
Hispanic	4 (5.9%)	3 (3.6%)	4 (5.9%)	5 (6.2%)	16 (5.3%)		
Non-Hispanic White	24 (35%)	34 (41%)	22 (32%)	25 (31%)	105 (35%)		
Other	3 (4.4%)	9 (11%)	2(2.9%)	8 (9.9%)	$22 \ (7.3\%)$		
¹ Mean (SD) for continuous;	n (%) for categorical	l					

To further investigate the variation among groups, we generate a series of stacked bar plots to illustrate the proportions of several key categorical variables by abstinence status and treatment arms, along with distribution plots for selected continuous variables. We can examine potential differences in these baseline characteristics across treatment and abstinence outcomes, understanding how these factors would influence or interact with our treatment effectiveness.

BASC + placebo BASC + varenicline 1.00 0.75 0.50 Income Level Less than \$20,000 0.00 **Lobortion** 1.00 \$20,000-35,000 \$35,001-50,000 ST + placebo ST + varenicline \$50,001-75,000 More than \$75,000 0.75 0.50 0.25 0.00 No Yes Abstinence Status

Figure 1: Income Levels by Abstinence Status and Treatment Group

Figure 2: Education Levels by Abstinence Status and Treatment Group

Figure 2: Race by Abstinence Status and Treatment Group

Density of FTCD Scores by Abstinence Status and Treatment Group

Density of Anhedonia by Abstinence Status and Treatment Group

Density of Readiness to Quit by Abstinence Status and Treatment Group

Figure : Distribution of Skewed Variables (Before Transformation)

Area under the curve: 0.8204

Figure 4: Calibration Plot Comparison

Appendix

```
knitr::opts_chunk$set(echo = FALSE, warning = FALSE, message = FALSE)
# load necessary packages
library(tidyverse)
library(mice)
library(gt)
library(gtsummary)
library(kableExtra)
library(RColorBrewer)
library(scico)
library(caret)
library(glmnet)
library(pROC)
library(predtools)
library(gridExtra)
library(ggpubr)
# set working directory
setwd("C:/Users/yingx/OneDrive/Desktop/Fall 2024/PHP 2550/Data/")
# read in data
data <- read.csv("project2.csv")</pre>
data[, c("abst", "Var", "BA", "sex_ps", "NHW",
         "Black", "Hisp", "inc", "edu", "ftcd.5.mins",
         "otherdiag", "antidepmed", "mde_curr",
         "Only.Menthol")] <- lapply(data[, c("abst", "Var", "BA", "sex ps", "NHW",
                                              "Black", "Hisp", "inc", "edu",
                                              "ftcd.5.mins", "otherdiag", "antidepmed",
                                              "mde_curr", "Only.Menthol")], as.factor)
# Recode factor levels in the dataset
averaged data factor <- data %>%
  mutate(abst = fct_recode(as.factor(abst), "Yes" = "1", "No" = "0"),
         inc = fct_recode(as.factor(inc),
                          "Less than $20,000" = "1",
                          "$20,000-35,000" = "2",
                          "$35,001-50,000" = "3"
                          "$50,001-75,000" = "4",
                          "More than $75,000" = "5"),
         sex_ps = fct_recode(as.factor(sex_ps), "Male" = "1", "Female" = "2"),
         edu = fct_recode(as.factor(edu),
                          "Grade School" = "1",
                          "Some high school" = "2",
                          "High school graduate or GED" = "3",
                          "Some college/technical school" = "4",
                          "College graduate" = "5"),
         ftcd.5.mins = fct_recode(as.factor(ftcd.5.mins), "Yes" = "1", "No" = "0"),
         otherdiag = fct_recode(as.factor(otherdiag), "Yes" = "1", "No" = "0"),
         antidepmed = fct_recode(as.factor(antidepmed), "Yes" = "1", "No" = "0"),
         mde_curr = fct_recode(as.factor(mde_curr), "Current MDD" = "1", "Past MDD" = "0"),
         Only.Menthol = fct_recode(as.factor(Only.Menthol), "Yes" = "1", "No" = "0"),
         race = case_when(Black == 1 ~ "Black",
```

```
Hisp == 1 ~ "Hispanic",
                          NHW == 1 ~ "Non-Hispanic White",
                          TRUE ~ "Other"),
         trt = case when(Var == 1 & BA == 1 ~ "BASC + varenicline",
                         Var == 0 & BA == 1 ~ "BASC + placebo",
                         Var == 1 & BA == 0 ~ "ST + varenicline",
                         Var == 0 & BA == 0 ~ "ST + placebo",
                         TRUE ~ NA_character_))
averaged_data_factor <- averaged_data_factor %>%
  mutate(inc = fct_relevel(inc, "Less than $20,000", "$20,000-35,000",
                           "$35,001-50,000", "$50,001-75,000", "More than $75,000"),
         edu = fct_relevel(edu, "Grade School", "Some high school", "High school graduate or GED",
                           "Some college/technical school", "College graduate"))
# Now create the summary table
summary_table <- averaged_data_factor %>%
  select(-c("id", "Var", "BA", "Black", "Hisp", "NHW")) %>%
  tbl_summary(by = trt, label = list(abst ~ "Smoking abstinence",
                                     race ~ "Race",
                                     age_ps ~ "Age",
                                     sex_ps ~ "Sex",
                                     inc ~ "Income",
                                     edu ~ "Education",
                                     ftcd_score ~ "FTCD score",
                                     ftcd.5.mins ~ "Smoking within 5 mins of waking up",
                                     bdi_score_w00 ~ "BDI score",
                                     cpd_ps ~ "Cigarettes smoked per day",
                                     crv_total_pq1 ~ "Cigarette reward value",
                                     hedonsum_n_pq1 ~ "Pleasurable events (substitute reinforcers)",
                                     hedonsum_y_pq1 ~ "Pleasurable events (complementary reinforcers)",
                                     shaps_score_pq1 ~ "Anhedonia",
                                     otherdiag ~ "Other lifetime DSM-5 diagnosis",
                                     antidepmed ~ "Taking antidepressant",
                                     mde_curr ~ "Current vs. past MDD",
                                     NMR ~ "Nicotine metabolism ratio",
                                     Only.Menthol ~ "Exclusive mentholated cigarette user",
                                     readiness ~ "Readiness to quit smoking"),
              type = list(readiness ~ "continuous"),
              statistic = all_continuous() ~ "{mean} ({sd})",
              missing = "ifany",
              missing_text = "Missing") %>%
  add_overall(last = TRUE) %>%
  modify_spanning_header(update = all_stat_cols() ~ "**Behavioral and Pharmacological Treatment Assignm
  modify_footnote(update = all_stat_cols() ~ "Mean (SD) for continuous; n (%) for categorical") %>%
  bold_labels()
summary_table %>%
  as_kable_extra(booktabs = TRUE, caption = "Participant Characteristics by Treatment Arm",
                 longtable = TRUE, linesep = "") %>%
  kableExtra::kable_styling(font_size = 7,
                            latex_options = c("repeat_header", "HOLD_position", "scale_down"))%>%
  column_spec(1, width = "3.5cm") %>%
```

```
column_spec(2, width = "2cm") %>%
  column_spec(3, width = "2cm") %>%
  column_spec(4, width = "2cm") %>%
  column_spec(5, width = "2cm") %>%
  column_spec(6, width = "2cm") %>%
  row_spec(0, bold = TRUE, font_size = 7)
ggplot(averaged_data_factor, aes(x = abst, fill = inc)) +
  geom bar(position = "fill") +
  facet_wrap(~ trt) +
  labs(title = "Figure 1: Income Levels by Abstinence Status and Treatment Group",
       x = "Abstinence Status",
       y = "Proportion",
       fill = "Income Level") +
  theme minimal() +
  scale_fill_brewer(palette = "GnBu") +
  theme(axis.title = element_text(size = 8),
        title = element_text(size = 10),
        axis.text = element_text(size = 8),
        legend.text = element_text(size = 8))
ggplot(averaged_data_factor, aes(x = abst, fill = edu)) +
  geom_bar(position = "fill") +
  facet_wrap(~ trt) +
  labs(title = "Figure 2: Education Levels by Abstinence Status and Treatment Group",
       x = "Abstinence Status",
       y = "Proportion",
       fill = "Education Level") +
  theme minimal() +
  scale_fill_brewer(palette = "GnBu") +
  theme(axis.title = element_text(size = 8),
       title = element_text(size = 10),
        axis.text = element_text(size = 8),
        legend.text = element_text(size = 8))
ggplot(averaged_data_factor, aes(x = abst, fill = race)) +
  geom_bar(position = "fill") +
  facet_wrap(~ trt) +
  labs(title = "Figure 2: Race by Abstinence Status and Treatment Group",
       x = "Abstinence Status",
       y = "Proportion",
       fill = "Race Group") +
  theme_minimal() +
  scale fill brewer(palette = "GnBu") +
  theme(axis.title = element_text(size = 8),
        title = element_text(size = 10),
        axis.text = element_text(size = 8),
        legend.text = element_text(size = 8))
ggplot(averaged_data_factor, aes(x = ftcd_score, fill = abst)) +
  geom_density(alpha = 0.5) +
  facet_wrap(~ trt) +
  labs(title = "Density of FTCD Scores by Abstinence Status and Treatment Group",
       x = "FTCD Score",
       y = "Density",
```

```
fill = "Abstinence Status") +
  theme_minimal() +
  scale_fill_manual(values = c("No" = "#FF9999", "Yes" = "#99CCFF"))
ggplot(averaged_data_factor, aes(x = shaps_score_pq1, fill = abst)) +
  geom_density(alpha = 0.5) +
  facet_wrap(~ trt) +
  labs(title = "Density of Anhedonia by Abstinence Status and Treatment Group",
      x = "Anhedonia",
      y = "Density",
      fill = "Abstinence Status") +
  theme minimal() +
  scale_fill_manual(values = c("No" = "#FF9999", "Yes" = "#99CCFF"))
ggplot(averaged_data_factor, aes(x = readiness, fill = abst)) +
  geom_density(alpha = 0.5) +
  facet_wrap(~ trt) +
  labs(title = "Density of Readiness to Quit by Abstinence Status and Treatment Group",
      x = "Readiness to Quit",
      y = "Density",
      fill = "Abstinence Status") +
  theme_minimal() +
  scale_fill_manual(values = c("No" = "#FF9999", "Yes" = "#99CCFF"))
par(mfrow = c(2, 2), mar = c(4, 4, 2, 1), oma = c(0, 0, 4, 0))
hist(averaged_data_factor$hedonsum_n_pq1, main = "", xlab = "hedonsum_n_pq1",
    col = "lightblue", breaks = 15, cex.main = 1, cex.lab = 1, cex.axis = 0.8, font.main = 1)
hist(averaged_data_factor$hedonsum_y_pq1, main = "", xlab = "hedonsum_y_pq1",
    col = "lightblue", breaks = 15, cex.main = 1, cex.lab = 1, cex.axis = 0.8, font.main = 1)
hist(averaged_data_factor$shaps_score_pq1, main = "", xlab = "shaps_score_pq1",
    col = "lightblue", breaks = 15, cex.main = 1, cex.lab = 1, cex.axis = 0.8, font.main = 1)
hist(averaged_data_factor$NMR, main = "", xlab = "NMR",
    col = "lightblue", breaks = 15, cex.main = 1, cex.lab = 1, cex.axis = 0.8, font.main = 1)
mtext("Figure : Distribution of Skewed Variables (Before Transformation)", outer = TRUE, cex = 0.8, fon
\# par(mfrow = c(2, 2), mar = c(4, 4, 2, 1), oma = c(0, 0, 4, 0))
# hist(averaged_data_factor$hedonsum_n_pq1, main = "", xlab = "hedonsum_n_pq1",
      col = "lightblue", breaks = 15, cex.main = 1, cex.lab = 1, cex.axis = 0.8, font.main = 1)
col = "lightblue", breaks = 15, cex.main = 1, cex.lab = 1, cex.axis = 0.8, font.main = 1)
col = "lightblue", breaks = 15, cex.main = 1, cex.lab = 1, cex.axis = 0.8, font.main = 1)
# hist(averaged_data_factor$NMR, main = "", xlab = "NMR",
      col = "lightblue", breaks = 15, cex.main = 1, cex.lab = 1, cex.axis = 0.8, font.main = 1)
# mtext("Figure : Distribution of Skewed Variables (After Transformation)", outer = TRUE, cex = 0.8, fo
# multiple imputation with m = 5
imputed_data <- mice(data, m = 5, method = 'pmm', maxit = 50, seed = 2550, printFlag = FALSE)
# extract the five imputed datasets
completed_datasets <- list()</pre>
for (i in 1:5) {
  completed_datasets[[i]] <- complete(imputed_data, i)</pre>
```

```
# calculate average/mode of each missing variable
averaged_data <- completed_datasets[[1]]</pre>
for (var in names(averaged data)) {
  if (any(is.na(data[[var]]))) {
    if (is.numeric(averaged_data[[var]])) {
      averaged_data[[var]] <- rowMeans(sapply(completed_datasets, function(x) x[[var]]))</pre>
    } else {
      averaged_data[[var]] <- apply(sapply(completed_datasets, function(x) x[[var]]), 1, function(vals)
        vals <- as.factor(vals)</pre>
        unique_vals <- unique(vals)</pre>
        unique_vals[which.max(tabulate(match(vals, unique_vals)))]
      })
    }
 }
new_data <- averaged_data %>%
  mutate(race = as.factor(case_when(Black == 1 ~ "Black",
                           Hisp == 1 ~ "Hispanic",
                           NHW == 1 ~ "Non-Hispanic White",
                           TRUE ~ "Other")),
         trt = as.factor(case_when(Var == 1 & BA == 1 ~ "BASC + varenicline",
                          Var == 0 & BA == 1 ~ "BASC + placebo",
                          Var == 1 & BA == 0 ~ "ST + varenicline",
                          Var == 0 \& BA == 0 \sim "ST + placebo",
                          TRUE ~ NA_character_)),
         inc = fct_recode(as.factor(inc),
                           "Less than $20,000" = "1",
                           "$20,000-35,000" = "2",
                           "$35,001-50,000" = "3",
                           "$50,001-75,000" = "4",
                           "More than $75,000" = "5"),
         edu = fct_recode(as.factor(edu),
                           "Grade School" = "1",
                           "Some high school" = "2",
                           "High school graduate or GED" = "3",
                           "Some college/technical school" = "4",
                           "College graduate" = "5"))
new_data <- new_data %>%
  mutate(inc = fct_relevel(inc, "Less than $20,000", "$20,000-35,000",
                            "$35,001-50,000", "$50,001-75,000", "More than $75,000"),
         edu = fct_relevel(edu, "Grade School", "Some high school", "High school graduate or GED",
                            "Some college/technical school", "College graduate"))
# new_data$hedonsum_n_pq1 <- log(new_data$hedonsum_n_pq1)</pre>
# new_data$hedonsum_y_pq1 <- log(new_data$hedonsum_y_pq1)</pre>
# new_data$shaps_score_pq1 <- log(new_data$shaps_score_pq1)</pre>
# new_data$NMR <- log(new_data$NMR)</pre>
set.seed(2550)
train_index <- createDataPartition(new_data$trt, p = 0.7, list = FALSE)
train_data <- new_data[train_index, ]</pre>
test_data <- new_data[-train_index, ]</pre>
```

```
X <- model.matrix(abst ~ trt + age_ps + sex_ps + inc + edu + ftcd_score + ftcd.5.mins +
                   bdi_score_w00 + cpd_ps + crv_total_pq1 + hedonsum_n_pq1 + hedonsum_y_pq1 +
                   shaps_score_pq1 + otherdiag + antidepmed + mde_curr + NMR + Only.Menthol +
                   readiness + race, data = train data)[, -1]
y <- train_data$abst
cv_model <- cv.glmnet(X, y, family = "binomial", alpha = 1, nfolds = 10, nlambda = 100)</pre>
best_lambda <- cv_model$lambda.min</pre>
lasso_model <- glmnet(X, y, family = "binomial", alpha = 1, lambda = best_lambda)</pre>
X_interaction <- model.matrix(abst ~ trt * (ftcd_score + NMR + race + mde_curr),</pre>
                               data = train_data)[, -1]
y_interaction <- train_data$abst</pre>
cv_model_interaction <- cv.glmnet(X_interaction, y_interaction, family = "binomial",</pre>
                                    alpha = 1, nfolds = 10, nlambda = 100)
best_lambda_interaction <- cv_model_interaction$lambda.min</pre>
lasso_model_interaction <- glmnet(X_interaction, y_interaction, family = "binomial",</pre>
                                    alpha = 1, lambda = best_lambda_interaction)
prediction_train <- predict(lasso_model_interaction, X_interaction, type = "response")</pre>
roc_train <- roc(y_interaction, prediction_train)</pre>
auc_train <- auc(roc_train)</pre>
print(auc_train)
X_test_interaction <- model.matrix(abst ~ trt * (ftcd_score + NMR + race + mde_curr),</pre>
                                     data = test_data)[, -1]
y_test_interaction <- test_data$abst</pre>
prediction_test <- predict(lasso_model_interaction, X_test_interaction, type = "response")</pre>
roc_test <- roc(y_test_interaction, prediction_test)</pre>
auc_test <- auc(roc_test)</pre>
par(mfrow = c(1,2), oma = c(0, 0, 2, 0))
plot(roc_train, main = "Train Data", font.main = 1, cex.main = 0.8)
text(0.3, 0.2, paste("AUC =", round(auc_train, 3)), col = "blue", cex = 0.7)
plot(roc_test, main = "Test Data", font.main = 1, cex.main = 0.8)
text(0.3, 0.2, paste("AUC =", round(auc_test, 3)), col = "blue", cex = 0.7)
train_data$pred <- prediction_train</pre>
test_data$pred <- prediction_test</pre>
train data <- train data %>%
  mutate(abst_num = as.numeric(as.character(abst)))
test_data <- test_data %>%
  mutate(abst_num = as.numeric(as.character(abst)))
cal_plot_train <- calibration_plot(data = train_data, obs = "abst_num", pred = "pred", title = "Train D
cal_plot_test <- calibration_plot(data = test_data, obs = "abst_num", pred = "pred", title = "Test Data</pre>
grid.arrange(cal_plot_train$calibration_plot,
             cal_plot_test$calibration_plot, ncol = 2,
             top = text_grob("Figure 4: Calibration Plot Comparison"))
```