数理逻辑

户保田

e-mail:hubaotian@hit.edu.cn

哈尔滨工业大学 (深圳) 计算机学院

推理部分

公理集合:

- (1) $A_1: A \to (B \to A)$
- (2) $A_2: (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
- (3) $A_3: (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$

推理规则或分离规则(Modus Ponens):

若有A和A → B成立,则必有结论B成立,可形式化表示为:

$$r_{mp}: \frac{A, A \to B}{B}$$

证明

证明: 称下列公式序列为公式A 在PC中的一个证明:

$$A_1, A_2, \dots, A_m (= A)$$

如果对任意的 $i \in \{1,2, \dots, m\}$, A_i 是PC中的公理, 或是 A_j (j < i), 或是 A_j , A_k (j, k < i)用分离规则导出的。其中 A_m 就是公式A。

A_i 只能是以下三种中的其一:

- (1) PC中的公理或已知定理
- (2) 序列 $A_1, A_2, \cdots, A_{i-1}$ 中的某一个
- (3) 序列 $A_1, A_2, \cdots, A_{i-1}$ 中某两个用分离规则导出的

基本定理

定理1: ⊢_{PC}A → A **√**

定理2: 如果 $\vdash_{PC}A \to (B \to C)$, 那么 $\vdash_{PC}B \to (A \to C)$ (前件互换定理) ✓

定理3: $\vdash (A \to (B \to C)) \to (B \to (A \to C))$ 定理 (2) 的另一种形式 ✓

定理4: $\vdash (B \to C) \to ((A \to B) \to (A \to C))$ (加前件定理) √

定理5: $\vdash (A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$ (加后件定理) √

定理6: $\vdash \neg A \rightarrow (A \rightarrow B) \checkmark$

定理7: $\vdash A \rightarrow (\neg A \rightarrow B) \checkmark$

定理8: 如果 \vdash ($A \rightarrow B$), \vdash ($B \rightarrow C$), 那么 \vdash ($A \rightarrow C$) (三段论定理) ✓

定理9. $\vdash (\neg A \rightarrow A) \rightarrow A$ (反证法) ✓

定理10. ⊢ ¬¬A → A ✓

定理11. \vdash ($A \rightarrow \neg A$) $\rightarrow \neg A$ (反证法) \checkmark

定理12. ⊢ *A* → ¬¬*A* **√**

基本定理

定理13: $\vdash (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$ (公理 A_3 的逆命题)

定理14: $\vdash (\neg A \rightarrow B) \rightarrow (\neg B \rightarrow A)$

定理15: $\vdash (A \rightarrow \neg B) \rightarrow (B \rightarrow \neg A)$

定理16: $\vdash (\neg A \rightarrow B) \rightarrow ((\neg A \rightarrow \neg B) \rightarrow A)$ (反证法)

定理13. $\vdash (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$

证明思路:

- (1) 此定理是公理3: $(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$ 的逆命题
- $(2) (\neg \neg A \rightarrow \neg \neg B) \rightarrow (\neg B \rightarrow \neg A) (公理3)$
- (3) 若能证明出 $(A \rightarrow B) \rightarrow (\neg \neg A \rightarrow \neg \neg B)$, 利用三段论定理8, 则得证。
 - ¬¬A → A (定理10)
 - *B* → ¬¬*B* (定理12)

定理13.
$$\vdash (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

证明:

$$(1) \neg \neg A \rightarrow A$$
 定理10

(2) $B \rightarrow \neg \neg B$ 定理12

$$(3)$$
 $(\neg \neg A \rightarrow A) \rightarrow ((A \rightarrow B) \rightarrow (\neg \neg A \rightarrow B))$ 加后件定理5

(4)
$$(A \to B) \to (\neg \neg A \to B)$$
 (1) 和 (3) 用rmp分离规则

(5)
$$(B \rightarrow \neg \neg B) \rightarrow ((\neg \neg A \rightarrow B) \rightarrow (\neg \neg A \rightarrow \neg \neg B))$$
 加前件定理4

(6)
$$(\neg \neg A \to B) \to (\neg \neg A \to \neg \neg B)$$
 (2) 和 (5) 用rmp分离规则

(7)
$$(A \to B) \to (\neg \neg A \to \neg \neg B)$$
 (4) 和 (6) 用三段论定理8

(8)
$$(\neg \neg A \rightarrow \neg \neg B) \rightarrow (\neg B \rightarrow \neg A)$$
 公理3

(9)
$$(A \to B) \to (\neg B \to \neg A)$$
 (7) 和 (8) 用三段论定理8

定理14.
$$\vdash (\neg A \rightarrow B) \rightarrow (\neg B \rightarrow A)$$

- (1) $B \rightarrow \neg \neg B$ 定理12
- (2) $(B \rightarrow \neg \neg B) \rightarrow ((\neg A \rightarrow B) \rightarrow (\neg A \rightarrow \neg \neg B)$ 对 (1) 用加前件定理4
- (3) $(\neg A \to B) \to (\neg A \to \neg \neg B)$ (1) 和 (2) 用rmp分离规则
- $(4) (\neg A \rightarrow \neg \neg B) \rightarrow (\neg B \rightarrow A)$ 公理3
- (5) $(\neg A \to B) \to (\neg B \to A)$ (3) 和 (4) 用三段论定理8

定理15.
$$\vdash (A \rightarrow \neg B) \rightarrow (B \rightarrow \neg A)$$

- (1) $\neg \neg A \rightarrow A$ 定理10
- (2) $(\neg \neg A \rightarrow A) \rightarrow ((A \rightarrow \neg B) \rightarrow (\neg \neg A \rightarrow \neg B))$ 加后件定理5
- (3) $(A \to \neg B) \to (\neg \neg A \to \neg B)$ (1) 和 (2) 用rmp分离规则
- $(4) (\neg \neg A \rightarrow \neg B) \rightarrow (B \rightarrow \neg A)$ 公理3
- (5) $(A \to \neg B) \to (B \to \neg A)$ (3) 和 (4) 用三段论定理8

定理16. $\vdash (\neg A \rightarrow B) \rightarrow ((\neg A \rightarrow \neg B) \rightarrow A)$ (反证法)

证明思路: 要证 $(\neg A \rightarrow B) \rightarrow ((\neg A \rightarrow \neg B) \rightarrow A)$, 只需证

$$(\neg A \rightarrow B) \rightarrow (\neg A \rightarrow \neg (\neg A \rightarrow \neg B))$$
 (逆否命题)

发现上式前件一致,利用公理2,只需证

$$\neg A \rightarrow (B \rightarrow \neg (\neg A \rightarrow \neg B))$$

利用前件互换定理2,只需证

$$B \rightarrow (\neg A \rightarrow \neg (\neg A \rightarrow \neg B))$$

结合公理3证明 $(\neg A \rightarrow \neg (\neg A \rightarrow \neg B))$ 的逆否命题,只需证

$$B \to ((\neg A \to \neg B) \to A)$$

利用前件互换定理2,只需证

$$(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$$
(公理3)

定理16.
$$\vdash (\neg A \rightarrow B) \rightarrow ((\neg A \rightarrow \neg B) \rightarrow A)$$

- $(1) (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$ 公理3
- (2) $B \to ((\neg A \to \neg B) \to A)$ 对 (1) 用前件互换定理2
- (3) $((\neg A \rightarrow \neg B) \rightarrow A) \rightarrow (\neg A \rightarrow \neg (\neg A \rightarrow \neg B))$ 定理13
- (4) $B \to (\neg A \to \neg (\neg A \to \neg B))$ (2) 和 (3) 用三段论定理8
- (5) $\neg A \rightarrow (B \rightarrow \neg(\neg A \rightarrow \neg B))$ 对 (4) 用前件互换定理2
- (6) $(\neg A \rightarrow (B \rightarrow \neg (\neg A \rightarrow \neg B))) \rightarrow$ $((\neg A \rightarrow B) \rightarrow (\neg A \rightarrow \neg (\neg A \rightarrow \neg B))) \triangle 22$
- (7) $(\neg A \to B) \to (\neg A \to \neg (\neg A \to \neg B))$ (5) 和 (6) 用rmp分离规则
- (8) $(\neg A \rightarrow \neg (\neg A \rightarrow \neg B)) \rightarrow ((\neg A \rightarrow \neg B) \rightarrow A)$ 公理3
- (9) $(\neg A \to B) \to ((\neg A \to \neg B) \to A)$ (7) 和 (8) 用三段论定理8

基本定理

定理13: $\vdash (A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$ **(公理** A_3 **的逆命题)** √

定理14: $\vdash (\neg A \rightarrow B) \rightarrow (\neg B \rightarrow A) \checkmark$

定理15: $\vdash (A \rightarrow \neg B) \rightarrow (B \rightarrow \neg A) \checkmark$

定理16: $\vdash (\neg A \rightarrow B) \rightarrow ((\neg A \rightarrow \neg B) \rightarrow A)$ (反证法) \checkmark

反证法思想的运用

例1: 证明 $\vdash ((A \rightarrow B) \rightarrow A) \rightarrow A$

证明思路(利用反证法):

假设上述命题为假,则:一个蕴含式只有一种情况为假,就 是前真后假,即:

 $(A \rightarrow B) \rightarrow A$ 为真, A为假

那么, A为假并且使得 $(A \rightarrow B) \rightarrow A$ 为真, 则:

 $(A \rightarrow B)$ 一定为假。

又已知A为假,则 $(A \rightarrow B)$ 一定为真,

那么 $(A \rightarrow B)$ 真假性就产生了矛盾。根据假设可知上述定理是

真。

反证法思想的运用

例1: 证明 $\vdash ((A \rightarrow B) \rightarrow A) \rightarrow A$

证明 (反证法思想):

$$\diamondsuit P = ((A \to B) \to A) \to A$$

(1)
$$\neg((A \rightarrow B) \rightarrow A) \rightarrow (((A \rightarrow B) \rightarrow A) \rightarrow A)$$
 \overline{z}

(2)
$$(\neg((A \to B) \to A) \to (((A \to B) \to A) \to A))$$

 $\to (\neg(((A \to B) \to A) \to A) \to ((A \to B) \to A))$ **\rightleftharpoons 14**

(3)
$$\neg P \rightarrow ((A \rightarrow B) \rightarrow A)(1)$$
 和 (2) 用rmp分离规则而得

(5)
$$(A \rightarrow P) \rightarrow (\neg P \rightarrow \neg A)$$
 定理13

(7)
$$((A \rightarrow B) \rightarrow A) \rightarrow (\neg A \rightarrow \neg (A \rightarrow B))$$
 定理13

(8)
$$\neg A \rightarrow (A \rightarrow B)$$
 定理6

反证法思想的运用

(接上页)

(9)
$$\neg P \rightarrow (A \rightarrow B)$$
 由(6)和(8)用三段论定理8

(10)
$$(\neg P \to (\neg A \to \neg (A \to B)))$$

 $\to ((\neg P \to \neg A) \to (\neg P \to \neg (A \to B)))$ $\triangle 22$

(11)
$$\neg P \rightarrow (\neg A \rightarrow \neg (A \rightarrow B))$$
 由(3)和(7)用三段论定理8

(12)
$$(\neg P \rightarrow \neg A) \rightarrow (\neg P \rightarrow \neg (A \rightarrow B))$$
 (10)和(11)用rmp分离规则

(13)
$$\neg P \rightarrow \neg (A \rightarrow B)$$
 (6)和(12)用rmp分离规则

(14)
$$(\neg P \rightarrow (A \rightarrow B)) \rightarrow ((\neg P \rightarrow \neg (A \rightarrow B)) \rightarrow P)$$
 定理16

(15)
$$(\neg P \rightarrow \neg (A \rightarrow B)) \rightarrow P$$
 (9)和(14)用rmp分离规则

(16) P (13)和(15)用rmp分离规则而得

总结:通过假定字符串P为假,那么其否定¬P为真,推出(¬ $P \to Q$)和(¬ $P \to Q$)都成立,再由定理16 (¬ $P \to Q$) \to ((¬ $P \to Q$) \to P) 通过分离规则,分离得到P成立。

例1的其他证明方法(1)

例: 证明 $\vdash ((A \rightarrow B) \rightarrow A) \rightarrow A$

证明思路:用反证法的思想证明过程过于复杂,是否有更简化的证明方式

? 如果可证明 $(\neg A \rightarrow \neg (A \rightarrow B)) \rightarrow A$ 成立,结合定理13 : $(A \rightarrow B) \rightarrow$

 $(\neg B \rightarrow \neg A)$,和三段论定理8,是否可以证明?

- $(1) \qquad \neg A \to (A \to B)$ 定理6
- (2) $(\neg A \rightarrow (A \rightarrow B)) \rightarrow ((\neg A \rightarrow \neg (A \rightarrow B)) \rightarrow A)$ 定理16
- (3) $(\neg A \rightarrow \neg (A \rightarrow B)) \rightarrow A$ 由(1) 和(2) 用分离规则
- (4) $(A \rightarrow B) \rightarrow A) \rightarrow (\neg A \rightarrow \neg (A \rightarrow B)$ 定理13, 逆否命题
- (5) $((A \to B) \to A) \to A$ (4) 和(3)用三段论定理8

例1的其他证明方法 (2)

例1: 证明 $\vdash ((A \rightarrow B) \rightarrow A) \rightarrow A$

证明思路: 这个公式与定理6: $\vdash \neg A \rightarrow (A \rightarrow B)$ 形式上比较相似,是否可以

从定理6出发证明,通过加后件构造出要证的公式。

- (1) ¬ $A \rightarrow (A \rightarrow B)$ 定理6
- $(2) (\neg A \to (A \to B))$

$$\rightarrow (((A \rightarrow B) \rightarrow A) \rightarrow (\neg A \rightarrow A))$$
 加后件定理5

- (3) $((A \rightarrow B) \rightarrow A) \rightarrow (\neg A \rightarrow A)$ 由(1) 和 (2)用rmp分离规则
- $(4) (((A \to B) \to A) \to (\neg A \to A))$ $\to (((\neg A \to A) \to A) \to (((A \to B) \to A) \to A))$ **加后件定理5**
- (5) $((\neg A \rightarrow A) \rightarrow A) \rightarrow (((A \rightarrow B) \rightarrow A) \rightarrow A)$ 由(3) 和 (4)用rmp分离规则
- (6) $(\neg A \rightarrow A) \rightarrow A$ 定理9
- (7) $((A \to B) \to A) \to A$ 由(6) 和 (5)用rmp分离规则

例1的其他证明方法(3)

例1: 证明 $\vdash ((A \rightarrow B) \rightarrow A) \rightarrow A$

证明思路: 这个公式与定理6: $\vdash \neg A \rightarrow (A \rightarrow B)$ 形式上比较相似,从定理6出

发,结合三段论定理证明。

证明:

- $(1) \quad \neg A \to (A \to B)$ 定理6
- (2) $(\neg A \rightarrow (A \rightarrow B)) \rightarrow (((A \rightarrow B) \rightarrow A) \rightarrow (\neg A \rightarrow A))$ 加后件定理5
- (3) $((A \rightarrow B) \rightarrow A) \rightarrow (\neg A \rightarrow A)$ 由(1) 和 (2)用rmp分离规则
- (4) $(\neg A \rightarrow A) \rightarrow A$ 定理9
- (5) $((A \to B) \to A) \to A$ 由(3) 和(4)用三段论定理8

从例1的证明可以看出,命题的证明方法并不唯一,需要自己仔细分析找到切入点,用定理一步一步推理,所得的结果就都是正确的。

基本定理

定理17: $\vdash (A \rightarrow B) \rightarrow ((A \rightarrow \neg B) \rightarrow \neg A)$

定理18: $\vdash \neg A \rightarrow C$, $\vdash B \rightarrow C$ 当且仅当 $\vdash (A \rightarrow B) \rightarrow C$

定理19: $\vdash A \rightarrow A \lor B$, 其中, $A \lor B$ 定义为 $\neg A \rightarrow B$, 也即

 $A \rightarrow A \lor B \Leftrightarrow A \rightarrow (\neg A \rightarrow B)$ (等价于定理7)

定理20: $\vdash A \rightarrow B \lor A$, 其中, $A \lor B$ 定义为 $\neg A \rightarrow B$, 也即

 $A \rightarrow B \lor A \Leftrightarrow A \rightarrow (\neg B \rightarrow A)$ (等价于公理1)

定理21: $\vdash (A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C))$ 也即

 $(A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((\neg A \rightarrow B) \rightarrow C))$ (二难推理)

定理 $17: \vdash (A \rightarrow B) \rightarrow ((A \rightarrow \neg B) \rightarrow \neg A)$ 证明思路: 要证 $(A \rightarrow B) \rightarrow ((A \rightarrow \neg B) \rightarrow \neg A)$ 成立, 因为定理 15, 只需证 $(A \rightarrow B) \rightarrow (A \rightarrow \neg (A \rightarrow \neg B))$ 前件一致, 逆向运用公理2, 只需证 $A \rightarrow (B \rightarrow \neg (A \rightarrow \neg B))$ 只需证 (逆否命题) $A \rightarrow ((A \rightarrow \neg B) \rightarrow \neg B)$ 前件互换定理2. 只需证 $(A \rightarrow \neg B) \rightarrow (A \rightarrow \neg B)$ (定理1)

定理17: $\vdash (A \rightarrow B) \rightarrow ((A \rightarrow \neg B) \rightarrow \neg A)$ (与定理16恰好相反)

(1)
$$(A \rightarrow \neg B) \rightarrow (A \rightarrow \neg B)$$
 定理1

(2)
$$A \rightarrow ((A \rightarrow \neg B) \rightarrow \neg B)$$
前件互换定理2

(3)
$$((A \rightarrow \neg B) \rightarrow \neg B) \rightarrow (B \rightarrow \neg (A \rightarrow \neg B))$$
 定理15

(4)
$$A \to (B \to \neg (A \to \neg B))$$
 由(2) 和(3)用三段论定理8

(5)
$$(A \to (B \to \neg (A \to \neg B)))$$

 $\to ((A \to B) \to (A \to \neg (A \to \neg B)))$ \text{\tiny{\tilitet{\text{\tilitet{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tilitet{\text{\tilit{\text{\tilit{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tilitet{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texict{\text{\text{\text{\text{\text{\text{\text{\texit{\text{\tex{\text{\text{\text{\text{\texi{\texi\texi{\texi{\texi{\tilitet{\tilit{\texit{\texi{\texi{\texi{\texictex{\texi}\texi{\texi{\texi}

(6)
$$(A \to B) \to (A \to \neg (A \to \neg B))$$
 (4) 和(5)用rmp 分离规则

(7)
$$(A \rightarrow \neg (A \rightarrow \neg B)) \rightarrow ((A \rightarrow \neg B) \rightarrow \neg A)$$
 \overline{z}

(8)
$$(A \to B) \to ((A \to \neg B) \to \neg A)$$
 由(6) 和(7)用三段论定理8

定理17另一种证明方法

定理17: $\vdash (A \rightarrow B) \rightarrow ((A \rightarrow \neg B) \rightarrow \neg A)$ (与定理16恰好相反)

(1)
$$(A \rightarrow B) \rightarrow ((B \rightarrow \neg A) \rightarrow (A \rightarrow \neg A))$$
 加后件定理5

$$(2)$$
 $(A \rightarrow \neg A) \rightarrow \neg A$ 定理11

$$(3) \quad ((A \to \neg A) \to \neg A)$$

$$\rightarrow (((B \rightarrow \neg A) \rightarrow (A \rightarrow \neg A)) \rightarrow ((B \rightarrow \neg A) \rightarrow \neg A))$$
加前件定理4

(4)
$$((B \rightarrow \neg A) \rightarrow (A \rightarrow \neg A)) \rightarrow ((B \rightarrow \neg A) \rightarrow \neg A)$$
 (2)和(3)用rmp分离规则

(5)
$$(A \to B) \to ((B \to \neg A) \to \neg A)$$
 (1)和(4)用三段论定理8

(6)
$$(A \rightarrow \neg B) \rightarrow (B \rightarrow \neg A)$$
 定理15

$$(7) \qquad ((A \to \neg B) \to (B \to \neg A))$$

$$\rightarrow (((B \rightarrow \neg A) \rightarrow \neg A) \rightarrow ((A \rightarrow \neg B) \rightarrow \neg A))$$
 加后件定理5

(8)
$$((B \rightarrow \neg A) \rightarrow \neg A) \rightarrow ((A \rightarrow \neg B) \rightarrow \neg A)$$
 (6)和(7)用rmp分离规则

(9)
$$(A \to B) \to ((A \to \neg B) \to \neg A)$$
 (5)和(8)用三段论定理8