Computer Networks Basic Protocols

Assoc. Prof. Dr. Berk CANBERK

04/12/2018

Network Layer & Next Generation Wireless Networks -Short Introduction-

References:

- -Data and Computer Communications, William Stallings, Pearson-Prentice Hall, 9th Edition, 2010.
- -Computer Networking, A Top-Down Approach Featuring the Internet, James F.Kurose, Keith W.Ross, Pearson-Addison Wesley, 6th Edition, 2012.

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it

- Concerned with getting packets from source to destination
- Network layer must
 - know the subnet topology and
 - choose appropriate paths through it
- When source and destination are in different networks, network layer must handle
- Services provided to Transport Layer:
 - Should be independent of the subnet topology
 - Should be independent of the router
 - Transport Layer should be shielded from the number, type and topology of the subnets present
 - The network addresses available to the Transport Layer should use a uniform numbering plan

Network layer connection and connection-less service

 Datagram network provides network-layer connectionless service

VC (virtual circuit) network provides network-layer connection service

Connection Oriented (VC Networks)

"source-to-dest path behaves much like telephone circuit"

- performance-wise
- network actions along source-to-dest path

- call setup, teardown for each call before data can flow
- each packet carries VC identifier (not destination host address)
- routers on source-dest path maintains "state" for each passing connection
- link, router resources (bandwidth, buffers) may be allocated to VC

Connectionless (Datagram Networks)

- no call setup at network layer
- routers: do not maintain state for e2e connections
 - no network-level concept of "connection"
- packets forwarded using destination host address
 - packets between the same source-dest pair may take different paths

Routing

- Routing algorithm: Part of the Network Layer responsible for deciding on which output line to transmit an incoming packet.
 - Remember: For virtual circuit subnets the routing decision is made ONLY at setup

Algorithm properties:

 Efficiency, correctness, simplicity, robustness, stability, fairness, optimality, and scalability

Key Network-Layer Functions

- routing: determine route taken by packets from source to dest
- forwarding: move packets from router's input to appropriate router output

Analogy:

- routing: process of planning trip from source to dest
- forwarding: process of getting through single interchange

Relation Between Forwarding and Routing

Routing Table

Destination address

Output port

0785	7
1345	12
1566	6
5.450	1.5
2458	12

Elements of Routing Techniques

- Performance criteria: Used for selection of routes
 - # of hops, cost, delay, throughput
- Decision Place:
 - Distributed (each node)/Centralized/Source routing
- Decision Time: Packet or VC basis
- Network Information Source:
 - None, local, adjacent node, all nodes
- Network Information Update:
 - Continuous, periodical, on change

The Internet Network layer

Host, router network layer functions:

Technology Convergence..

Some Motivations: Growth of Internet DataTraffic

- In 2015, wireless devices accounted for the **48%** of IP traffic.
- Traffic from wireless and mobile devices will account for two-thirds of total IP traffic by 2020.
- Mobile data traffic will increase eightfold between 2015 and 2020.

Countries with Commercial LTE Service

Date: Dec 2016

Countries with commercial LTE Service

Countries with commercial LTE Network Deployment ongoing or planned

Countries and regions with LTE trial systems (precommitment)

Source: https://en.wikipedia.org/wiki/LTE_(telecommunication)

Some Coverage Maps: 2G/3G Turkey

Date: Dec 05, 2017

Source: OpenSignal, https://opensignal.com/networks/

Some Coverage Maps: 4G Turkey

Date: Dec 05, 2017

Source: OpenSignal, https://opensignal.com/networks/

Current Situation in Networking Usage...

In one hour, around the globe;

- -750 million SMS messages
- -148 million Google searches
- -10 million tweets
- -1.3 million mobile apps downloaded
- -3180 hours of Youtube videos uploaded
- -50000 smart phones activated

So how to handle this?

We need Innovative network designs!!!

One effective solution > Group, Cluster, Classify wireless users according to

- --Their geographic positions (indoor, outdoor, rural, urban, airport, malls, streets etc..)
 - -- Their traffic usage (Data, Voice, Video, etc)
- --Their Types of wireless technology they use (3G, 4G, WiFi, Bluetooth etc)

Mobile Network Technology Evolution

- 1989
 - GSM Radio Access Network (2G)
- 1998
 - GSM EDGE integration (2.5G- 2.75G)
- 1999
 - UMTS, HSxPA Terrestrial Radio Access Network (3G)
- 2004
 - 4G (LTE)
- 2011
 - LTE-Advanced
- Non 3GPP
 - Wifi (IEEE 802.11x, 1991-1999)
 - WiMAX (IEEE 802.16x, (2005)

LTE and LTE-Advanced

- Long Term Evolution (LTE) is the latest step in moving forward from the cellular 3G services
- LTE is based on standards developed by the 3rd Generation Partnership Project (3GPP).
- LTE and LTE Advanced may also be referred more formally as Evolved UMTS Terrestrial Radio Access (E-UTRA) and Evolved UMTS Terrestrial Radio Access Network (E-UTRAN).

What is a Small Cell?

- Small cells are low-power wireless access points that operate in licensed spectrum.
- They are operator-managed.
- They are features in an edge-based intelligence.

Different types of Small Cells

According to their coverage:

From Macro to Femto...

- -Metrocells
- -Microcells
- -Picocells
- -Femtocells

Clustering the "cells"...

- ♦ Macrocell → 10 km
- Microcell → 2 km (dedicated backhauls since deployed by operators)
- ◆ Picocell → 200 m (16-32 users) (dedicated backhauls since deployed by operators)
- Femtocell→10 m (4-8 users) (poped-up by users, connected to operators through DSL/ Cable/Ethernet)

Standards

- 3GPP (3rd Generation Partnership Project)
 - Version 8, 2009→ 3G Home NodeB

A GLOBAL INITIATIVE

- Small Cell Forum (Femto Forum)
 - 2007
 - 16 technology companies (Alcatel-Lucent, AT-T, Cisco, Ericsson, Nokia, Vodafone, ..)
 - http://www.smallcellforum.org/

Outdoor Deployment-1

T.Nakamura et al., "Trends in Small Cell Enhancements in LTE Advanced", IEEE Communications Magazine, Feb.2013.

Outdoor Deployment-2

http://www.smallcellforum.org/

Indoor Deployment-1

Gutierrez-Estevez, D. M., Canberk, B., and Akyildiz, I. F., "Spatio-Temporal Estimation for Interference Management in Femtocell Networks," in Proc. of IEEE PIMRC, Sidney, Australia, September 2012.

Indoor Deployment-2

http://www.smallcellforum.org/