Lecture 4: Model-Free Prediction

Outline

- 1 Introduction
- 2 Monte-Carlo Learning
- 3 Temporal-Difference Learning
- 4 TD(λ)

Model-Free Reinforcement Learning

- Last lecture:
 - Planning by dynamic programming
 - Solve a known MDP
- This lecture:
 - Model-free prediction
 - Estimate the value function of an unknown MDP
- Next lecture:
 - Model-free control
 - Optimise the value function of an unknown MDP

Monte-Carlo Reinforcement Learning

- MC methods learn directly from episodes of experience
- MC is *model-free*: no knowledge of MDP transitions / rewards
- MC learns from *complete* episodes: no bootstrapping
- MC uses the simplest possible idea: value = mean return
- Caveat: can only apply MC to episodic MDPs
 - All episodes must terminate

Monte-Carlo Policy Evaluation

■ Goal: learn v_{π} from episodes of experience under policy π

$$S_1, A_1, R_2, ..., S_k \sim \pi$$

Recall that the return is the total discounted reward:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

Recall that the value function is the expected return:

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right]$$

 Monte-Carlo policy evaluation uses empirical mean return instead of expected return

First-Visit Monte-Carlo Policy Evaluation

- To evaluate state s
- The first time-step t that state s is visited in an episode,
- Increment counter N(s) ← N(s) + 1
- Increment total return $S(s) \leftarrow S(s) + G_t$
- Value is estimated by mean return V(s) = S(s)/N(s)
- By law of large numbers, $V(s) \rightarrow v_{\pi}(s)$ as $N(s) \rightarrow \infty$

Every-Visit Monte-Carlo Policy Evaluation

- To evaluate state s
- **Every** time-step *t* that state *s* is visited in an episode,
- Increment counter $N(s) \leftarrow N(s) + 1$
- Increment total return $S(s) \leftarrow S(s) + G_t$
- Value is estimated by mean return V(s) = S(s)/N(s)
- Again, $V(s) \rightarrow v_{\pi}(s)$ as $N(s) \rightarrow \infty$

Blackjack Example

- States (200 of them):
 - Current sum (12-21)
 - Dealer's showing card (ace-10)
 - Do I have a "useable" ace? (yes-no)
- Action stick: Stop receiving cards (and terminate)
- Action twist: Take another card (no replacement)
- Reward for stick:
 - +1 if sum of cards > sum of dealer cards
 - 0 if sum of cards = sum of dealer cards
 - -1 if sum of cards < sum of dealer cards
- Reward for twist:
 - -1 if sum of cards > 21 (and terminate)
 - 0 otherwise
- Transitions: automatically twist if sum of cards < 12</p>

Blackjack Value Function after Monte-Carlo Learning

Policy: stick if sum of cards ≥ 20, otherwise twist

Incremental Mean

The mean $\mu_1, \mu_2, ...$ of a sequence $x_1, x_2, ...$ can be computed incrementally,

$$\mu_k = \frac{1}{k} \sum_{j=1}^k x_j$$

$$= \frac{1}{k} \left(x_k + \sum_{j=1}^{k-1} x_j \right)$$

$$= \frac{1}{k} \left(x_k + (k-1)\mu_{k-1} \right)$$

$$= \mu_{k-1} + \frac{1}{k} \left(x_k - \mu_{k-1} \right)$$

Incremental Monte-Carlo Updates

- Update V(s) incrementally after episode S_1 , A_1 , R_2 , ..., S_T
- For each state S_t with return G_t

$$N(S_t) \leftarrow N(S_t) + 1$$

$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t))$$

In non-stationary problems, it can be useful to track a running mean, i.e. forget old episodes.

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$

Algorithm 1: First-Visit MC Prediction

Input: policy π , positive integer $num_episodes$

Output: value function $V (\approx v_{\pi})$, if $num_episodes$ is large enough)

Initialize N(s) = 0 for all $s \in \mathcal{S}$

Initialize Returns(s) = 0 for all $s \in \mathcal{S}$

for episode $e \leftarrow 1$ to $e \leftarrow num_episodes$ do

Generate, using π , an episode $S_0, A_0, R_1, S_1, A_1, R_2, \dots, S_{T-1}, A_{T-1}, R_T$

$$G \leftarrow 0$$

for time step $t = T - 1$ to $t = 0$ (of the episode e) do

if state
$$S_t$$
 is **not** in the sequence $S_0, S_1, \ldots, S_{t-1}$ then

 $\operatorname{Returns}(S_t) \leftarrow \operatorname{Returns}(S_t) + G_t$

 $N(S_t) \leftarrow N(S_t) + 1$

end

end

$$V(s) \leftarrow \frac{\text{Returns}(s)}{N(s)} \text{ for all } s \in \mathcal{S}$$

return V

Algorithm 2: Every-Visit MC Prediction

Input: policy π , positive integer $num_episodes$

Output: value function $V (\approx v_{\pi})$, if $num_episodes$ is large enough)

 $V(s) \leftarrow \frac{\text{Returns}(s)}{N(s)} \text{ for all } s \in \mathcal{S}$

 $G \leftarrow 0$

end end

return V

Generate, using π , an episode $S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T$

for episode $e \leftarrow 1$ to $e \leftarrow num_episodes$ do

Initialize Returns(s) = 0 for all $s \in \mathcal{S}$

Initialize N(s) = 0 for all $s \in \mathcal{S}$

 $G \leftarrow G + R_{t+1}$ Returns(S_t) \(\simes \text{Returns}(S_t) + G_t \) $N(S_t) \leftarrow N(S_t) + 1$

for time step t = T - 1 to t = 0 (of the episode e) do

Temporal-Difference Learning

- TD methods learn directly from episodes of experience
- TD is *model-free*: no knowledge of MDP transitions / rewards
- TD learns from *incomplete* episodes, by *bootstrapping*
- TD updates a guess towards a guess

MC and TD

- Goal: learn v_{π} online from experience under policy π
- Incremental every-visit Monte-Carlo
 - Update value $V(S_t)$ toward actual return G_t

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\mathbf{G_t} - V(S_t) \right)$$

- Simplest temporal-difference learning algorithm: TD(0)
 - Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t)\right)$$

- \blacksquare $R_{t+1} + \gamma V(S_{t+1})$ is called the *TD target*
- $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ is called the *TD error*

Driving Home Example

State	Elapsed Time (minutes)	Predicted Time to Go	Predicted Total Time
leaving office	0	30	30
reach car, raining	5	35	40
exit highway	20	15	35
behind truck	30	10	40
home street	40	3	43
arrive home	43	0	43

Driving Home Example: MC vs. TD

Changes recommended by Monte Carlo methods (α =1)

Changes recommended! by TD methods (α =1)

Advantages and Disadvantages of MC vs. TD

- TD can learn *before* knowing the final outcome
 - TD can learn online after every step
 - MC must wait until end of episode before return is known
- TD can learn without the final outcome
 - TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments

Bias/Variance Trade-Off

- Return $G_t = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-1} R_T$ is unbiased estimate of $v_{\pi}(S_t)$
- True TD target $R_{t+1} + \gamma v_{\pi}(S_{t+1})$ is *unbiased* estimate of $v_{\pi}(S_t)$
- TD target $R_{t+1} + \gamma V(S_{t+1})$ is biased estimate of $v_{\pi}(S_t)$
- TD target is much lower variance than the return:
 - Return depends on *many* random actions, transitions, rewards
 - TD target depends on one random action, transition, reward

Advantages and Disadvantages of MC vs. TD (2)

- MC has high variance, zero bias
 - Good convergence properties
 - (even with function approximation)
 - Not very sensitive to initial value
 - Very simple to understand and use
- TD has low variance, some bias
 - Usually more efficient than MC
 - TD(0) converges to $v_{\pi}(s)$
 - (but not always with function approximation)
 - More sensitive to initial value

Monte-Carlo Backup

$$V(S_t) \leftarrow \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) \right]$$

Temporal-Difference Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

Dynamic Programming Backup

$$V(S_t) \leftarrow \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) \right]$$

