Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance

By: Gehler, Rother, Kiefel, Zhang and Scholkopf

Niels Backer Iris Verweii

Paper Presentation Computer Vision 2, 2017

Related Work Probabilistic model Experiments and results Follow up Research Summary

Figure 2: Global sparsity prior on Reflectance based on the properties shown in this figure. An image often contains only a few different basis colorlines (d). Assume basis colors as a mixture of Gaussians.

< □ > < Ø > < ≥ > < ≥ > ≥ < 27</br>

Outline

Introduction

Related Work

Probabilistic model

Experiments and results

Follow up Research

Authors
Edwin H. Land, John J. McCann

Summary

• Seminal work on intrinsic image decomposition

• Theory based on biological cone receptors to separate reflectance from illumination (flux)

• Basic assumption: small image gradients more likely to be caused by shading, strong gradients by change in reflectance

• Later extended to 2D, color Retinex

Ground truth dataset and baseline evaluations for intrinsic image algorithms

Authors

Roger Grosse, Micah K. Johnson, Edward H. Adelson, William T. Freeman

Summary

- Comparison paper on intrinsic image decomposition
- Provides a ground-truth data set (16 images) and evaluation standard
- Main difference between algorithms lies in estimation of log reflectance derivatives

Intrinsic Image Decomposition with Non-Local
Texture Cues
2008

Authors
Li Shen, Ping Tan, Stephen Lin
Summary

• Examine texture information to obtain non-local restraints on reflectance
• Extends Retinex algorithm with texture constraints to local derivative analysis
• Same intuition (sparse set of reflectances in scene), but different image representation (wavelet transform vs. RGB)

Intrinsic Images Decomposition Using a Local and Global Sparse Representation of Reflectance 2011

Authors
Li Shen, Chuohao Yeo
Summary

• Extends Retinex by clustering into super-pixels
• Neighbouring pixels usually have same reflectance if chromacity is similar
• Results in sparse representation of reflectance components
• Uses wavelets instead of RGB, and no joint probability model

(の) イミ・イミ・ ミ りく 7/2

) Q (P

Conditional Probability Distribution

Conditional Random Fields

$$p(\mathbf{s}, R|I) \propto exp(-E(\mathbf{s}, R|I))$$

Complexity Reduction

Assume delta-prior:

$$I_i^c = s_i R_i^c$$
 thus: $R_i = r_i \cdot \overrightarrow{R}_i$
with: $\overrightarrow{R}_i = I_i / |I_i||$ and $s_i = ||I_i|| / r_i$

ntroduction Related Work **Probabilistic model** Experiments and results Follow up Research Summary

Model: Gradient Consistency

Potinov bacod

"Disambiguate between edges that are due to shading variations from those that are caused by material reflectance changes"

$$E_{ret}(\mathbf{r}) = \sum_{i \sim j} (\log(r_i) - \log(r_j) - g_{ij}(I)(\log(||I_i||) - \log(||I_j||)))^2$$

Classification function g(I)

- θ_{σ} : threshold for gradient of the intensity image
- ullet θ_c : threshold for gradient of the chromaticity change
- $g_{ij}(I) = 1 \rightarrow$ "reflectance edge"

troduction Related Work **Probabilistic model** Experiments and results Follow up Research Summary

Model: Optimization

Coordinate Descent

- Initialization of r Output has a fix range $(0 \ge R_i^c, s_i \ge 1 \text{ for all } c, i)$
- Initialization of α Use initialization of r with K-means clustering. Use best from 5 restarts.
- updating r
- updating α

Introduction Related Work Probabilistic model Experiments and results Follow up Research Summary

Model: MAP Energy Function

$$\min_{\mathbf{r}_{l},\alpha;l} w_{s} E_{s}(\mathbf{r}) + w_{s} E_{ret}(\mathbf{r}) + w_{cl} E_{cl}(\mathbf{r},\alpha)$$

+□ > +□ > +≥ > +≥ > ≥ +9 q 11/2

duction Related Work **Probabilistic model** Experiments and results Follow up Research Summary

Model: Global Sparse Reflectance Prior (GSRP)

"...include a term that acts as a global potential on reflectance and favors decomposition into clusters..."

$$E_{cl}(\mathbf{r},\alpha) = \sum_{i=1}^{n} ||r_i \overrightarrow{R}_i - \widetilde{R}_{\alpha_i}||^2$$

Global potential

- C different reflectance clusters, $\tilde{R_c}$, $c \in \{1, ..., C\}$
- r_i has cluster membership: $\alpha_i \in \{1, ..., C\}$
- Cluster means depend on assignment of all pixels in image

Introduction Related Work Probabilistic model **Experiments and results** Follow up Research **Experiments**

Data and Error metric

- 16 images with ground truth information
- Evaluated using Local Mean Squared Error (LMSE) and average rank

Parameter estimation

- 5 free parameters: $w_{cl}, w_s, w_r, \theta_c, \theta_g$
- Leave-One-Out estimate (LOO-CV) using median error
- · Both global optimal and image-optimal settings evaluated

+ 4B + 4E + 4E + E + 9Q

Introduction Related Work Probabilistic model Experiments and results Follow up Research Summary

Model: Shading Prior

 $E_s(r) = \sum_{i \sim i} (r_i^{-1}||I_i|| - r_j^{-1}||I_j||)^2$

- Assume: Shading varies smoothly over image
- 4-connected pixel graph → neighbourhood relation
- · Potential problem of multiple local minima: use restarts

12/27

Figure 3: True decomposition is shown on the left hand side, the columns show the results for various settings for smoothness prior (E_s) and clusters regarding the Global Sparse Reflectance Prior (E_{cl})

4□ > 4∰ > 4 € > 4 € > € 9 Q (** 15/27

Introduction Related Work Probabilistic model Experiments and results Follow up Research Summary

Results

Comparing component influences

Figure 4: LMSE results of different component combinations

	LOO-CV	rank	best single	im. opt.
TAP05 [17]	56*	-	-	-
TAP06 [16]	39*	-	-	-
SHE [14] ⁺	n/a	n/a	56.2	n/a
SHE [15]×	n/a	n/a	(20.4)	-
BAS [7]	72.6	5.1	60.3	36.6
Gray-Ret [7]	40.7	4.9	40.7	28.9
Col-Ret	29.5	3.7	29.5	25.5
full model	27.4	3.0	24.4	16.1
Weiss [19]	21.5	2.7	21.5	21.5
Weiss+Ret [7]	16.4	1.7	16.4	15.0

□ > + Ø > + ≥ > + ≥ → 9 < 0 19/27

Introduction Related Work Probabilistic model Experiments and results Follow up Research Summary

