

Reti per l'automazione

Automazione

Alessandro De Luca

Il sistema di comunicazione

Ad ogni livello della piramide dell'automazione

- □ si acquisiscono informazioni
- □ si elaborano strategie
- □ si attuano azioni correttive

Importanza fondamentale del sistema di comunicazione

- l'intero sistema deve essere interconnesso per garantire il flusso di informazioni
 - comunicazione orizzontale
 - → comunicazione verticale: gerarchia di RETI
 - caratteristiche diverse ai vari livelli
 - tipologia dei dati
 - vincoli di comunicazione

Reti di comunicazione

Reti di comunicazione

Rete Enterprise

- rete per le informazioni gestionali
- client (workstation, notebook, mainframe) e server sono standard
- □ non è real-time
- la sicurezza dell'informazione è importante, ma non la "robustezza" rispetto a disturbi ambientali (in genere, minimi)
- standard Ethernet
 - Ethernet è una tecnologia "connection-less": non viene garantita la ricezione dei dati
 - è il protocollo TCP/IP che garantisce la ri-trasmissione dei dati nel caso di mancanza del segnale di acknowledgement relativo al singolo pacchetto

Reti di comunicazione

Rete di Controllo e Rete di Campo

- □ rete per le informazioni di cella, macchina e campo
- il client non è standard (PLC, controllori embedded, dispositivi di campo) perché è importante poter avere flessibilità
- dati piccoli, non strutturati, ma trasmessi con frequenza elevata
- vincoli Real Time
 - Ethernet non va bene
 - necessità di soluzioni ad hoc
- necessità di determinismo
 - ritardo di trasmissione: introduce un ritardo negli anelli di controllo che portano ad un degrado delle prestazioni
- l'ambiente industriale "ostile" necessita robustezza
- impatto sia sulle caratteristiche HW (topologia) che su quelle SW (protocolli e servizi) delle reti

Topologia

- broadcast: unico canale di comunicazione condiviso da tutte le macchine della rete
 - i pacchetti sono inviati dal trasmettitore sul canale e ricevuti da tutti gli altri host (con allocazione statica o dinamica del canale)
 - ciascun pacchetto contiene l'indirizzo del destinatario: ogni macchina controlla l'indirizzo e decide se il pacchetto è indirizzato a lei o può essere scartato
 - si possono indirizzare i pacchetti a tutte le macchine contemporaneamente (broadcasting) o anche solo a un sottoinsieme (multicasting)
- punto-punto (peer-to-peer): connessioni dedicate tra coppie di dispositivi
 - è necessario definire il cammino per trasmettere tra due macchine non fisicamente connesse

Reti broadcast (tipicamente LAN)

□ reti a bus

- in ogni istante un solo nodo dovrebbe trasmette (master)
- necessario quindi arbitraggio, centralizzato o distribuito (più comune)

reti ad anello

- i pacchetti circolano in serie sull'anello (ciascun bit in un tempo tipicamente inferiore al tempo di trasmissione dell'intero pacchetto)
- necessario arbitraggio per accessi simultanei all'anello

rete ad anello

(nodi con cablaggio locale per potersi disconnettere)

Reti peer-to-peer

- per reti di dimensioni maggiori, normalmente più reti locali (di tipo LAN) vengono connesse tramite una sottorete (subnet) di tipo punto-punto
 - ogni nodo della sottorete funge da router per la propria rete locale
 - pacchetti in ingresso sono memorizzati e poi inviati verso la destinazione finale
 - la problematica maggiore è quella della definizione del cammino che ogni pacchetto deve seguire per ottimizzare le prestazioni della rete (routing)
 - se più pacchetti relativi allo stesso messaggio seguono cammini diversi, è necessario gestire anche la sequenza con cui essi vengono ricevuti

Reti ibride

- reti broadcast, anche diverse tra di loro, connesse tramite una rete ancora broadcast
 - → è la situazione più frequente in applicazioni di controllo complesse

Estensione geografica

distanza media estensione tra due nodi geografica

	googrania	_
1 m	metro quadro	Personal Area Network (PAN) ad es., bluetooth
10 m	stanza	ad es., bidetootii
100 m	edificio	Local Area Network (LAN)
1 km	distretto	
10 km	città	Metropolitan Area Network ad es., reti telefoniche o cable-TV (MAN)
100 km	nazione	Wide Area Network (WAN)
1,000 km	continente	
10,000 km	pianeta	Internet

Estensione geografica

- Local Area Network (LAN)
 - reti private di dimensioni ridotte, normalmente all'interno di una istituzione e di dimensioni da pochi metri fino a pochi chilometri
 - normalmente reti broadcast, con tempi e ritardi di trasmissione noti e limitati
- Wide Area Network (WAN)
 - reti che coprono una area geografica estesa
 - → la connessione su larga scala è realizzata tramite sottoreti (subnet/provider)
 - linee di trasmissione e router per la commutazione
- altri tipi di reti
 - reti metropolitane, che coprono le dimensioni tipiche di una città
 - internet di dimensione mondiale
- la dimensione di una rete ne limita le caratteristiche realizzative: reti estese non possono essere di tipo broadcast
- □ le reti di interesse per i sistemi di controllo sono normalmente LAN

Protocollo di accesso al mezzo per reti broadcast

allocazione statica del canale

- → il tempo viene suddiviso in "quanti" (time units), ed ogni nodo può eseguire il broadcast solamente in corrispondenza del quanto assegnato al nodo stesso
- → se un nodo non ha nulla da trasmettere il quanto rimane inutilizzato: l'allocazione statica in questo caso non utilizza tutta la banda disponibile

allocazione dinamica del canale

- controllo centralizzato: un master determina il prossimo nodo che trasmette
- controllo decentralizzato: ogni nodo decide autonomamente se iniziare a trasmettere
- → sistemi a collisione: è possibile che più nodi trasmettano in modo contemporaneo (le collisioni devono essere rilevate e risolte)

Architettura software

Organizzata a stack

ad ogni livello corrisponde una funzionalità: <u>layer</u>

il layer n di un host parla solo con il layer n di un altro host mediante una serie di

regole dette protocolli

International Organization for Standardization (ISO) - Open Systems Interconnection

- → dal 1983
- stack con 7 layer

http://it.wikipedia.org/wiki/Open_Systems_Interconnection

- ogni livello comunica con il livello corrispondente dei nodi di transito o destinatari usando il Service Access Point (SAP) del livello sottostante
- messaggi del livello n sono "incapsulati" nei messaggi di livello inferiore n-1 (fino a quello fisico)
- Service Data Units (SDU) (contenuto del messaggio) dentro Protocol Data Units (PDU)

- definisce la relazione tra il dispositivo ed il mezzo di trasmissione (doppino di rame o fibra ottica)
 - layout dei pins, livelli di tensione, impedenza di linea, specifiche su cavi e connettori, codifica e temporizzazione dei segnali e loro modulazione e/o conversione A/D, ripetitori e adattatori di rete o di bus, ...
 - trasmissione sincrona (clock che determina anche la velocità di trasmissione) o asincrona (con bit di start e stop)
 - direzionalità: simplex (mono-), duplex (bi-), half-duplex (mono- , ma alternata)
- □ usato dal layer fisico di Ethernet (RJ45) e di altre LAN (token ring, IEEE 802.11) o PAN (Bluetooth)

physical layer: trasmette fisicamente i bit sul canale; si fissano le convenzioni fisiche ed elettriche

Livello fisico della rete

Mezzi fisici per la trasmissione dei segnali

- doppino telefonico: coppia di cavi di rame 'twisted'
 - → cavo 10 Base-T, 100 Base-T, ...
 - throughput (quantità di dati trasmessi in un lasso di tempo): Kbps
- cavo coassiale: conduttore in rame circondato da materiale isolante
 - buona banda e reiezione ai disturbi
 - throughput: Mbps
- fibra ottica: l'informazione è tradotta in impulsi luminosi
 - → larghezza di banda decisamente superiore
 - throughput: Tbps
- wireless

Livello fisico della rete

codifica dell'informazione logica dei bit (diversi spettri di frequenza, a media nulla o meno)

sono le codifiche più semplici; entrambe "non polari": l'assenza di trasmissione è assegnata a uno dei due livelli

codifica **RZ**: seconda metà del bit (Clock 2) sempre al livello Z; ri-sincronizzazione facilitata, ma si usa doppia banda di frequenza

"polare": il livello Z è associato alla non trasmissione; le codifiche NRZ (No Return to Zero) necessitano di una sola tensione di alimentazione (circuito TTL con +5V) ma hanno problemi in caso di perdita di sincronismo

codifica **Manchester** (2 livelli): seconda metà indica transizione (a Z); per lunghe sequenze di bit identici, problemi di sincronizzazione ⇒ codice Manchester differenziale

Livello fisico della rete

Standard di connessione elettrica/meccanica tra host e linea di trasmissione

□ IEEE RS232 (seriale, tra i più consolidati)

IEEE RS422

- ampiamente in uso in ambito industriale
- → segnale negato B=-A e poi differenziale X=A-B
 - range del segnale raddoppiato: più immune ai disturbi
- 10Mbps, fino a 1200 metri di distanza
- intrinsecamente simplex
 - (due coppie di cavi + massa per avere full duplex)
- → 1 solo trasmettitore e fino a 10 ricevitori
- oppure, più comune è l'uso punto-punto

□ IEEE RS485

- ampiamente in uso in ambito industriale
- stessa logica differenziale del RS422
- più trasmettitori e ricevitori (fino a 32)
- ma solo 1 attivo per volta (con TX enable)
 - gli altri hanno il circuito di ingresso al canale in uno stato "ad alta impedenza" = come se fossero scollegati
 - occorre gestire i conflitti di accesso

- stabilisce un collegamento "affidabile" tra due nodi connessi direttamente a livello fisico
 - rileva e, se possibile, corregge errori avvenuti nella comunicazione tra layer fisici
- esempio: PPP (Point-to-Point Protocol) di TCP/IP

data link layer: nel trasmettitore divide il dato in frames, nel ricevitore spedisce gli ACK di ricezione dei frames; effettua il controllo del flusso (velocità di trasmissione); in reti broadcast gestisce l'accesso al mezzo (MAC)

Gestione dinamica accessi (MAC)

Sistema a collisione: Carrier Sense Multiple Access Collision Detection (CSMA-CD)

- ogni nodo è sempre in ascolto del canale
- il nodo che trasmette confronta il dato sul canale con quello trasmesso (corrotto o meno)
- rilevata la collisione il nodo attende un tempo casuale e poi ritrasmette

1) t=0: A inizia a trasmettere dato che il canale è libero

3) t=τ: B rileva la collisione ricevendo la versione corrotta del suo messaggio

2) t=τ-ε: B inizia a trasmettere e i due messaggi collidono

4) t=2τ: A rileva la collisione ricevendo la versione corrotta del suo messaggio

Gestione dinamica access (MAC)

Sistema a collisione: Carrier Sense Multiple Access Collision Resolution (CSMA-CR)

- come sopra
- ... ma esiste uno stato fisico dominante del canale
- l'host (nodo) che ha trasmesso l'informazione corrispondente allo stato dominante vince la collisione e continua a trasmettere (ad es.: stato zero in un AND)
- occorre garantire che un solo host sopravviva...

Gestione dinamica accessi (MAC)

Sistema ad assenza di collisioni: Token Bus/Ring (IEEE 802.4/.5)

- il token circola continuamente (⇒ stesso tempo deterministico tra due successive interrogazioni del canale da parte di ogni host)
- un nodo trasmette quando è in possesso dell'abilitazione data dal token "originale": lo modifica e rispedisce in circolo assieme al frame del dato (e con un host destinatario)
- la presenza del token "modificato" non permette la trasmissione agli altri nodi

un grosso successo

commerciale

il ritorno del token modificato al nodo trasmettente indica l'avvenuto successo della trasmissione: il token originale viene rimesso in circolo e altri nodi potranno quindi trasmettere

- stabilisce funzioni e procedure per trasferire sequenze di dati di *lunghezza variabile* (pacchetti) tra nodi della *stessa* rete
 - ogni nodo della rete ha un indirizzo unico
- include algoritmi e tabelle di routing, di gestione di gruppi multicast, di assegnazione di indirizzi ai nodi della rete, ...

network layer: indirizzamento nelle subnet; decisione del percorso (routing) da host a host

- invio "affidabile" di segmenti/pacchetti (messaggi) di dati tra nodi (iniziale e finale/i, con indirizzi) della rete
- il controllo di consistenza può essere realizzato con diversi livelli di completezza
 - fino al livello error-free (reinvio dopo timeout)
- esempio: TCP nel protocollo Internet standard

transport layer: divisione/ricostruzione di segmenti di dati in/da pacchetti; controllo di consistenza (vs. errori)

session layer: gestione delle connessioni tra host; controllo dei conflitti

- □ regola i dialoghi tra i dispositivi e/o computer
- inizia, gestisce e termina le connessioni (sessioni) tra applicazioni locali e remote
 - opera in modo full-duplex, half-duplex, o simplex
 - inserisce checkpoint (riavvio dopo malfunzionamenti), gestisce token, ...

presentation layer: codifica e conversione dei dati, inserimento dei bit di controllo, verifica della correttezza

- fornisce il "contesto" tra entità dell'application layer
 - mappatura tra sintassi e semantiche differenti usate dallo strato superiore
 - a volte chiamato anche "syntax layer"
- permette l'indipendenza dalla rappresentazione dei dati, traducendo tra diversi formati applicativi e di rete
 - in/da codice ASCII, in/da XML, ...
 - crittografia, compressione, ...

application layer: protocolli necessari all'utilizzatore finale (HTTP, POP, FTP, SMTP ...)

 verifica l'identità tra gli host che comunicano, determina la disponibilità delle risorse necessarie e sincronizza la comunicazione

N.B: protocolli e layer del modello TCP/IP di Internet sono deliberatamente meno rigidi del modello OSI

- application layer (resto del 5, 6-7)
- transport layer (4, parte del 5)
- internet layer (resto del 3)
- link layer (1-2, parte 3)

Comunicazione real-time: specifiche

Comunicazione tra task real-time

- messaggi periodici
 - generati o utilizzati da task periodici
 - es: letture sensori, comandi di controllo agli attuatori
- messaggi aperiodici
 - generati o utilizzati da task aperiodici
 - es: comandi operatore
- messaggi sporadici
 - generati da task aperiodici con vincoli hard real-time
 - → es: allarmi

Comunicazione real-time: specifiche

Comunicazione tra task real-time

- missed packet: pacchetti non arrivati in tempo
- lost packet: pacchetti persi (ad es., per evitare overflow dei buffer si scartano pacchetti verso task non ready)
- □ delay: ritardo di comunicazione, tipicamente aleatorio ⇒ jitter

qui: uso di algoritmi di scheduling in real time

Fieldbus

- la struttura con 7 livelli del modello OSI è tipicamente troppo onerosa per applicazioni con bus di campo
 - overhead eccessivo, anche considerando che le dimensioni dei singoli messaggi è tipicamente piccola
 - molti servizi dei livelli intermedi non sono necessari
 - grande attenzione ai metodi di accesso al mezzo trasmissivo (MAC) che impattano sulle caratteristiche temporali dei messaggi scambiati

Riduzione dell'architettura ISO-OSI

utilizzo finale del dato

codifica e preparazione dato

gestione connessioni

divisione/ricostruzione dati complessi

funzioni di routing

accesso al mezzo

gestione del supporto fisico

DATO SEMPLICE

TRASMISSIONE ORIENTATA AL MESSAGGIO

DATO SEMPLICE

RETE BROADCAST

Fieldbus

Fieldbus

Bus di Campo: norme IEC

- □ IEC 62026 (07/2000): controller/device interface
 - → Smart distributed systems, AS-I, DeviceNet
- □ IEC 61158 (04/2003): fieldbus standard for use in industrial control systems (real time, a livello di campo)
 - regolamento del livello fisico
 - regolamento del livello dati
 - regolamento del livello applicazione
- □ IEC 61784 (05/2003): definizione delle communication profile family
 - Fieldbus Foundation (1994)
 - Controlnet (1997)
 - → Profibus (1996)
 - → P-net (1990)
 - → WorldFIP (1993)
 - → Interbus (1998)
 - → Swiftnet (2000)
- CanOpen, ModBus ecc: bus di campo diffusi ma non ancora normati

