Linear algebra: Core definitions

Linear algebra: Core definitions

Notation

Linear algebra: Core definitions

- \mathbb{R}^m and \mathbb{C}^m are the m-dimensional spaces of real and complex numbers, respectively.
 - The term "scalar" will refer to a member of $\mathbb R$ or $\mathbb C$ depending whether we're working in $\mathbb R^m$ or $\mathbb C^m$.
- In what follows, $S=\left\{\mathbf{a}_j\right\}_{j=1}^n$ is a set of vectors, with each $\mathbf{a}_j\in\mathbb{C}^m$ or $\mathbb{R}^m.$

Definition: Linear combination and span

Linear algebra: Core definitions

Definition (Linear combination and span)

A *linear combination* (LC) of the members of S is a scalar-weighted sum such as

$$\mathbf{a}_1x_1+\mathbf{a}_2x_2+\cdots+\mathbf{a}_nx_n,$$

where the n coefficients $\{x_j\}_{j=1}^m$ are scalars. The **span** of S, denoted span S, is the set of all linear combinations that can be formed by the members of S.

Definition: Vector space and subspace

Linear algebra: Core definitions

Definition (Vector space and subspace)

A set V of vectors is called a **vector space** if it obeys the axioms listed in Appendix B of the notes. We needn't go into all the axioms for this course; as long as one defines addition and scalar multiplication "reasonably," then it is sufficient to consider the **closure conditions**

- $\mathbf{x} + \mathbf{y} \in V$ for all $\mathbf{x}, \mathbf{y} \in V$
- $\bullet \ \alpha \mathbf{x} \in V \ \text{for all} \ \mathbf{x} \in V \ \text{and for all scalars} \ \alpha$

and the zero condition,

V contains the zero vector 0.

A subset of V that is itself a vector space is called a *subspace*.

Definition: Matrix-vector product

Linear algebra: Core definitions

Definition

Form the matrix $A \in \mathbb{C}^{m \times n}$ by packing the members of S into the columns of A. Given a vector $\mathbf{x} \in \mathbb{C}^n$, the **matrix-vector product** $A\mathbf{x}$ is the linear combination of the \mathbf{a} 's weighted by the entries in \mathbf{x} ,

$$A\mathbf{x} = \mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \cdots + \mathbf{a}_n x_n.$$

Example: Matrix-vector product

Linear algebra: Core definitions

$$ullet$$
 Let $A=\left[egin{array}{cc} -2 & 1 \ 3 & 5 \end{array}
ight]$ and ${f x}=\left[egin{array}{cc} 4 & 7 \end{array}
ight]^T$. Then

$$A\mathbf{x} = 4 \begin{bmatrix} -2 \\ 3 \end{bmatrix} + 7 \begin{bmatrix} 1 \\ 5 \end{bmatrix} = \begin{bmatrix} -1 \\ 47 \end{bmatrix}.$$

Compare to the "dot product" approach,

$$A\mathbf{x} = \begin{bmatrix} -2 \cdot 4 + 1 \cdot 7 \\ 3 \cdot 4 + 5 \cdot 7 \end{bmatrix} = \begin{bmatrix} -1 \\ 47 \end{bmatrix}.$$

Definition: Linear dependence and independence

Linear algebra: Core definitions

Definition

The set S is called *linearly dependent* (LD) if there is a *nonzero* vector $\mathbf{x} \in \mathbb{C}^n$ such that

$$\mathbf{a}_1x_1+\mathbf{a}_2x_2+\cdots+\mathbf{a}_nx_n=\mathbf{0}.$$

If no such vector exists, then we call S linearly independent (LI).

Example: Linear dependence and independence

Linear algebra: Core definitions

- Let $\mathbf{a}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{a}_2 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$. The set $\{\mathbf{a}_1, \mathbf{a}_2\}$ is LD because $\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 = \mathbf{0}$ for nonzero vector $\mathbf{x} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} s$, where s is any constant.
- Let $\mathbf{a}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{a}_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$. The set $\{\mathbf{a}_1, \mathbf{a}_2\}$ is LI because the linear combination

$$\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 = \left[\begin{array}{c} x_1 + 2x_2 \\ 2x_1 + 2x_2 \end{array} \right]$$

cannot be zero unless $x_1 = x_2 = 0$.

Definition: Null space of a matrix

Linear algebra: Core definitions

Definition (Null space)

The *null space* of a matrix $A \in \mathbb{C}^{m \times n}$, denoted null (A), is the set of vectors $\mathbf{x} \in \mathbb{C}^n$ such that $A\mathbf{x} = \mathbf{0}$.

- Notice that null (A) always contains the zero vector. If null (A) contains only the zero vector, that null space is called trivial; otherwise, it is called nontrivial.
- It's not hard to show that null(A) obeys the closure conditions and is therefore a vector space.
- Notice that null (A) is trivial iff the columns of A are LI.

Example: Null spaces

Linear algebra: Core definitions

• Let $A=\begin{bmatrix}1&2\\2&4\end{bmatrix}$. Then $\operatorname{null}(A)$ consists of all scalar multiples of $\begin{bmatrix}-2\\1\end{bmatrix}$,

$$\operatorname{null}(A) = \left\{ c \begin{bmatrix} -2 \\ 1 \end{bmatrix} : c \in \mathbb{R} \right\}.$$

• Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$. Then null (A) is trivial.

Definition: Range space of a matrix

Linear algebra: Core definitions

Definition (Range space)

The **range space** of a matrix $A \in \mathbb{C}^{m \times n}$, denoted range (A), is the set of vectors $\mathbf{y} \in \mathbb{C}^m$ that can be formed by linear combination of the columns of A. In formal notation,

range
$$(A) = \{ \mathbf{y} \in \mathbb{C}^m : \exists \mathbf{x} \in \mathbb{C}^n \text{ for which } A\mathbf{x} = \mathbf{y} \}.$$

 It's not hard to show that range (A) obeys the closure conditions and is therefore a vector space. • Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$. Then range (A) consists of all scalar multiples of $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$,

range
$$(A) = \left\{ c \begin{bmatrix} 1 \\ 2 \end{bmatrix} : c \in \mathbb{R} \right\}.$$

• Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$. Then range (A) consists of all linear combinations $x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, which is \mathbb{R}^2 .