Machine Learning from Data

Lecture 20: Spring 2021

Today's Lecture

- Multilayer Perceptron
 - Multiple Layers
 - Approximation
 - Neural Network

RECAP: Unsupervised Learning

k-Means Clustering

Gaussian Mixture Model

Neural Network – Biologically Inspired

XOR Function: Limitation of the Linear Model

Mutilages Percepti

The Multilayer Perceptron (MLP)

More layers allow us to implement f

These additional layers are called *hidden layers*

Universal Approximation

Any target function f that can be decomposed into linear separators can be implemented by a 3-layer MLP.

Universal Approximation

A sufficiently smooth separator can "essentially" be decomposed into linear separators.

Relan the ability to update in every layer opened approximation power.

Generalization will/may suffer.

Approximation of generalization of January suffer. Kerception -> PLA Portet, Pseudo Trucese, modient Descent. Sign fmhon -> The rigmoid (tamh)
The Newal Network.

The Neural Network

Zooming into a Hidden Node

layer ℓ parameters

signals in		$d^{(\ell)}$ dimensional input vector
outputs		$d^{(\ell)} + 1$ dimensional output vector
weights in	$W^{(\ell)}$	$(d^{(\ell-1)}+1)\times d^{(\ell)}$ dimensional matrix
		$(d^{(\ell)} + 1) \times d^{(\ell+1)}$ dimensional matrix

MILIP

layers $\ell=0,1,2,\ldots,L$ layer ℓ has "dimension" $d^{(\ell)}\implies d^{(\ell)}+1$ nodes

$$\mathbf{W}^{(\ell)} = \begin{bmatrix} \mathbf{w}_1^{(\ell)} & \mathbf{w}_2^{(\ell)} & \cdots & \mathbf{w}_{d^{(\ell)}}^{(\ell)} \\ & & & \vdots & & \end{bmatrix}$$

Thanks!