A remark on Hofmann-Streicher universes

Steve Awodey

May 16, 2022

Abstract

We have another look at the construction by Hofmann and Streicher of a semantic universe $\mathsf{E} l \to U$ for the interpretation of Martin-Löf type theory in a presheaf category $[\mathbb{C}^{\mathrm{op}},\mathsf{Set}]$. It turns out that $\mathsf{E} l \to U$ can be described as the *categorical nerve* of the classifier $\dot{\mathsf{Set}}^{\mathsf{op}} \to \mathsf{Set}^{\mathsf{op}}$ for discrete fibrations in Cat , where the nerve is right adjoint to the well-known "Grothendieck construction" taking a presheaf $P:\mathbb{C}^{\mathsf{op}} \to \mathsf{Set}$ to its category of elements $\int_{\mathbb{C}} P$.

Let $\widehat{\mathbb{C}} = [\mathbb{C}^{op}, \mathsf{Set}]$ be the category of presheaves on a small category \mathbb{C} .

1. The Hofmann-Streicher universe

In [HS97] the authors define a (type-theoretic) universe

$$E \longrightarrow U$$
 (1)

in $\widehat{\mathbb{C}}$ as follows. For $I \in \mathbb{C}$, set

$$U(I) = \operatorname{ob}(\widehat{\mathbb{C}/I}) \tag{2}$$

$$E(I) = \coprod_{A \in U(I)} \mathsf{E}l(\langle I, A \rangle) \tag{3}$$

$$\mathsf{E}l(\langle I, A \rangle) = A(id_I) \tag{4}$$

with an evident associated action on morphisms, which need not concern us for the moment. A few comments are required:

- 1. In (2), we have taken the underlying set of objects of the category $\widehat{\mathbb{C}/I} = [\mathbb{C}/I^{\mathrm{op}}, \mathsf{Set}].$
- 2. In (4), and throughout, the authors steadfastly adopt the "categories with families" point of view in describing the morphism $E \to U$ in $\widehat{\mathbb{C}}$ as an object in

$$\widehat{\int_{\mathbb{C}} U} \simeq \widehat{\mathbb{C}}/_{U}, \tag{5}$$

and thus as a presheaf on the category of elements $\int_{\mathbb{C}} U$, rather than specifying the object E in $\widehat{\mathbb{C}}$. Thus the argument $\langle I, A \rangle \in \int_{\mathbb{C}} U$ in (4) consists of an object $I \in \mathbb{C}$ and an element $A \in U(I)$.

3. In order to account for size issues, the authors assume a Grothendieck universe \(\mathcal{U}\) in Set, the elements of which are called \(small\). The category \(\mathbb{C}\) is then assumed to be small, as are the values of the presheaves (unless otherwise stated).

The presheaf U, which is not small, is regarded as the Grothendieck universe \mathcal{U} "lifted" from Set to $[\mathbb{C}^{op}, \mathsf{Set}]$. We will analyse the construction of (1) from a slightly different perspective in order to arrive at its basic property as a classifier for small families in $\widehat{\mathbb{C}}$.

2. An unused adjunction

For a presheaf X on \mathbb{C} , recall that the category of elements is the comma category,

$$\int_{\mathbb{C}} X = y_{\mathbb{C}}/X,$$

where $y_{\mathbb{C}}: \mathbb{C} \to [\mathbb{C}^{op}, \mathsf{Set}]$ is the Yoneda embedding, which we may supress and write simply $\mathbb{C}/_X$. While the category of elements $\int_{\mathbb{C}} X$ is used in the specification of the Hofmann-Streicher universe $\mathsf{E}l \to U$ at the point (5), the authors seem to have missed a trick which would have simplified things:

Proposition 1. The category of elements functor $\int_{\mathbb{C}} : \widehat{\mathbb{C}} \longrightarrow \mathsf{Cat}\ has\ a\ right$ adjoint, which we denote

$$u_{\mathbb{C}}:\mathsf{Cat}\longrightarrow\widehat{\mathbb{C}}$$
 .

For a small category \mathbb{A} , we call the presheaf $\nu_{\mathbb{C}}(\mathbb{A})$ the \mathbb{C} -nerve of \mathbb{A} .

Proof. As suggested by the name, the adjunction $\int_{\mathbb{C}} \exists \nu_{\mathbb{C}}$ can be seen as the familiar "realization \exists nerve" construction with respect to the covariant functor $\mathbb{C}/-:\mathbb{C}\to\mathsf{Cat}$, as indicated below.

$$\widehat{\mathbb{C}} \xrightarrow{\nu_{\mathbb{C}}} \operatorname{Cat}$$

$$\downarrow^{y} \qquad \qquad \downarrow^{\mathbb{C}/-}$$

$$\downarrow^{0} \qquad \qquad \downarrow^{0} \qquad$$

In detail, for $\mathbb{A} \in \mathsf{Cat}$ and $c \in \mathbb{C}$, let $\nu_{\mathbb{C}}(\mathbb{A})(c)$ be the Hom-set of functors,

$$\nu_{\mathbb{C}}(\mathbb{A})(c) = \mathsf{Cat}(\mathbb{C}/_c, \mathbb{A}),$$

with contravariant action on $h:d\to c$ given by precomposing a functor $P:\mathbb{C}/_c\to\mathbb{A}$ with the postcomposition functor

$$\mathbb{C}/_h:\mathbb{C}/_d\longrightarrow\mathbb{C}/_c$$
.

For the adjunction, observe that the slice category \mathbb{C}/c is the category of elements of the representable functor yc,

$$\int_{\mathbb{C}} \mathsf{y} c \cong \mathbb{C}/c$$
.

Thus for representables yc, we have the required natural isomorphism

$$\widehat{\mathbb{C}}\big(\mathrm{y} c\,,\,\nu_{\mathbb{C}}(\mathbb{A})\big) \;\cong\; \nu_{\mathbb{C}}(\mathbb{A})(c) \;=\; \mathsf{Cat}\big(\mathbb{C}/_c\,,\,\mathbb{A}\big) \;\cong\; \mathsf{Cat}\big(\int_{\mathbb{C}} \mathrm{y} c\,,\,\mathbb{A}\big)\,.$$

For arbitrary presheaves X, one uses the presentation of X as a colimit of representables over the index category $\int_{\mathbb{C}} X$, and the easy to prove fact that $\int_{\mathbb{C}}$ itself preserves colimits. Indeed, for any category \mathbb{D} , we have an isomorphism in Cat,

$$\varinjlim_{d\in\mathbb{D}} \mathbb{D}/_d \cong \mathbb{D}.$$

When \mathbb{C} is fixed, as here, we may omit the subscript from the notation $y_{\mathbb{C}}$ and $\int_{\mathbb{C}}$ and $\nu_{\mathbb{C}}$. The unit and counit maps of the adjunction $\int \neg \nu$, vis.

$$\eta: X \longrightarrow \nu \int X,$$
 $\epsilon: \int \nu \mathbb{A} \longrightarrow \mathbb{A},$

are as follows. At $c \in \mathbb{C}$, for $x : \mathsf{y}c \to X$, the functor $(\eta_X)_c(x) : \mathbb{C}/_c \to \mathbb{C}/_X$ is just composition with x,

$$(\eta_X)_c(x) = \mathbb{C}/_x : \mathbb{C}/_c \longrightarrow \mathbb{C}/_X.$$
 (7)

For $\mathbb{A} \in \mathsf{Cat}$, the functor $\epsilon : \int \nu \mathbb{A} \to \mathbb{A}$ takes a pair $(c \in \mathbb{C}, f : \mathbb{C}/c \to \mathbb{A})$ to the object $f(1_c) \in \mathbb{A}$,

$$\epsilon(c, f) = f(1_c).$$

Lemma 2. For any $f: Y \to X$, the naturality square below is a pullback.

$$Y \xrightarrow{\eta_Y} \nu \int Y$$

$$f \downarrow \qquad \qquad \downarrow \nu \int f$$

$$X \xrightarrow{\eta_X} \nu \int X.$$
(8)

Proof. It suffices to prove it for the case $f: X \to 1$. Thus consider the square

$$\begin{array}{ccc}
X & \xrightarrow{\eta_X} \nu \int X \\
\downarrow & & \downarrow \\
1 & \xrightarrow{\eta_1} \nu \int 1.
\end{array} \tag{9}$$

Evaluating at $c \in \mathbb{C}$ and applying (7) then gives the following square in Set.

$$Xc \xrightarrow{\mathbb{C}/_{-}} \mathsf{Cat}(\mathbb{C}/_{c}, \mathbb{C}/_{X})$$

$$\downarrow \qquad \qquad \downarrow$$

$$1c \xrightarrow{\mathbb{C}/_{-}} \mathsf{Cat}(\mathbb{C}/_{c}, \mathbb{C}/_{1})$$

$$(10)$$

The image of $* \in 1c$ along the bottom is the forgetful functor $U_c : \mathbb{C}/c \to \mathbb{C}$, and its fiber under the map on the right is therefore the set of functors $F : \mathbb{C}/c \to \mathbb{C}/X$ such that $U_X \circ F = U_c$, where $U_X : \mathbb{C}/X \to \mathbb{C}$ is also a forgetful functor. But any such F is easily seen to be uniquely of the form \mathbb{C}/x for $x = F(1_c) : yc \to X$.

3. Classifying families

For the terminal presheaf $1 \in \widehat{\mathbb{C}}$, we have $\int 1 \cong \mathbb{C}$, so for every $X \in \widehat{\mathbb{C}}$ there is a canonical projection $\int X \to \mathbb{C}$, which is easily seen to be a discrete fibration. It follows that for any map $Y \to X$ of presheaves, the associated map $\int Y \to \int X$ is also a discrete fibration. Ignoring size issues for the moment, recall that discrete fibrations in Cat are classified by the forgetful functor $\operatorname{Set}^{\operatorname{op}} \to \operatorname{Set}^{\operatorname{op}}$ from (the opposites of) the category of pointed sets to that of sets. For every presheaf $X \in \widehat{\mathbb{C}}$, we therefore have a pullback diagram in Cat,

$$\int X \longrightarrow \operatorname{Set}^{\operatorname{op}}
\downarrow \qquad \qquad \downarrow
\mathbb{C} \xrightarrow{X} \operatorname{Set}^{\operatorname{op}}.$$
(11)

Transposing by the adjunction $\int \exists \nu$ then gives a commutative square in $\widehat{\mathbb{C}}$,

$$\begin{array}{ccc}
X & \longrightarrow \nu \dot{\mathsf{Set}}^{\mathrm{op}} \\
\downarrow & & \downarrow \\
1 & \xrightarrow{\tilde{X}} \nu \mathsf{Set}^{\mathrm{op}}.
\end{array} \tag{12}$$

Lemma 3. The square (12) is a pullback in $\widehat{\mathbb{C}}$. More generally, for any map $Y \to X$ in $\widehat{\mathbb{C}}$, there is a pullback square

$$Y \longrightarrow \nu \dot{\mathsf{Set}}^{\mathrm{op}}$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \longrightarrow \nu \mathsf{Set}^{\mathrm{op}}.$$

$$(13)$$

Proof. Apply the right adjoint ν to the pullback square (11) and paste the naturality square (8) from Lemma 2 on the left, to obtain the transposed square (13) as a pasting of two pullbacks.

Let us write $\dot{\mathcal{V}} \to \mathcal{V}$ for the vertical map on the right in (13), so that

$$\dot{\mathcal{V}} = \nu \dot{\mathsf{Set}}^{\mathrm{op}}$$
 (14) $\mathcal{V} = \nu \mathsf{Set}^{\mathrm{op}}$.

We can summarize our results so far as follows.

Proposition 4. The nerve $\dot{\mathcal{V}} \to \mathcal{V}$ of the classifier for discrete fibrations $\dot{\text{Set}}^{\text{op}} \to \text{Set}^{\text{op}}$, as defined in (14), classifies natural transformations $Y \to X$ in $\widehat{\mathbb{C}}$, in the sense that there is always a pullback square,

$$\begin{array}{ccc}
Y & \longrightarrow & \dot{\mathcal{V}} \\
\downarrow & \downarrow & \downarrow \\
X & \xrightarrow{\tilde{Y}} & \mathcal{V}.
\end{array} \tag{15}$$

The classifying map $\tilde{Y}: X \to \mathcal{V}$ is determined by the adjunction $\int \exists \nu$ as the transpose of the classifying map of the discrete fibration $\int X \to \int Y$.

Of course, $\dot{\mathcal{V}} \to \mathcal{V}$ itself cannot be a map in $\widehat{\mathbb{C}}$, for reasons of size.

4. Small maps

Let α be a cardinal number and call the sets that are strictly smaller α -small. Let $\mathsf{Set}_\alpha \hookrightarrow \mathsf{Set}$ be the full subcategory of α -small sets. Call a presheaf $X:\mathbb{C}^{\mathrm{op}} \to \mathsf{Set}$ α -small if all of its values are α -small sets, and thus if, and only if, it factors through $\mathsf{Set}_\alpha \hookrightarrow \mathsf{Set}$. Call a map $f:Y \to X$ of presheaves α -small if all of the fibers $f_c^{-1}\{x\} \subseteq Yc$ are α -small sets (for all

 $c \in \mathbb{C}$ and $x \in Xc$). The latter condition is of course equivalent to saying that, in the pullback square over the element $x : yc \to X$,

$$Y_{x} \longrightarrow Y$$

$$\downarrow \qquad \qquad \downarrow f$$

$$yc \longrightarrow_{x} X,$$

$$(16)$$

the presheaf Y_x is α -small.

Now let us restrict the specification (14) of $\dot{\mathcal{V}} \to \mathcal{V}$ to the α -small sets:

$$\dot{\mathcal{V}}_{\alpha} = \nu \mathsf{Set}_{\alpha}^{\mathsf{op}}$$

$$\mathcal{V}_{\alpha} = \nu \mathsf{Set}_{\alpha}^{\mathsf{op}}.$$
(17)

Then the evident forgetful map $\dot{\mathcal{V}}_{\alpha} \to \mathcal{V}_{\alpha}$ is a map in the category $\widehat{\mathbb{C}}$ of presheaves, and it is in fact α -small. Moreover, it has the following basic property, which is just a restriction of the basic property of $\dot{\mathcal{V}} \to \mathcal{V}$ stated in Proposition 4.

Proposition 5. The map $\dot{\mathcal{V}}_{\alpha} \to \mathcal{V}_{\alpha}$ classifies α -small maps $f: Y \to X$ in $\widehat{\mathbb{C}}$, in the sense that there is always a pullback square,

$$\begin{array}{ccc}
Y & \longrightarrow \dot{\mathcal{V}}_{\alpha} \\
\downarrow & \downarrow \\
X & \xrightarrow{\tilde{Y}} \mathcal{V}_{\alpha}.
\end{array} (18)$$

The classifying map $\tilde{Y}: X \to \mathcal{V}_{\alpha}$ is determined by the adjunction $\int \dashv \nu$ as (the factorization of) the transpose of the classifying map of the discrete fibration $\int X \to \int Y$.

Proof. If $Y \to X$ is α -small, its classifying map $\tilde{Y}: X \to \mathcal{V}$ factors through $\mathcal{V}_{\alpha} \hookrightarrow \mathcal{V}$, as indicated below,

$$Y \xrightarrow{\nu \operatorname{Set}_{\alpha}^{\operatorname{op}}} \xrightarrow{\nu \operatorname{Set}^{\operatorname{op}}} \downarrow \qquad (19)$$

$$X \xrightarrow{\tilde{Y}} V \operatorname{Set}_{\alpha}^{\operatorname{op}} \hookrightarrow \nu \operatorname{Set}^{\operatorname{op}},$$

in virtue of the following adjoint transposition,

$$\int Y \longrightarrow \dot{\operatorname{Set}}_{\alpha}^{\operatorname{op}} \longrightarrow \dot{\operatorname{Set}}^{\operatorname{op}}
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
\int X \longrightarrow \operatorname{Set}_{\alpha}^{\operatorname{op}} \longrightarrow \operatorname{Set}^{\operatorname{op}}.$$
(20)

Note that the square on the right is evidently a pullback, and the one on the left therefore is, too, because the outer rectangle is the classifying pulback of the discrete fibration $\int Y \to \int X$, as stated. Thus the left square in (19) is a pullback.

5. Examples

1. Let $\alpha = \kappa$ a strongly inaccessible cadinal, so that $\mathsf{ob}(\mathsf{Set}_{\kappa})$ is a Grothendieck universe. Then the Hofmann-Streicher universe of (1) is recovered in the present setting as the κ -small map classifier

$$E \cong \dot{\mathcal{V}}_{\kappa} \longrightarrow \mathcal{V}_{\kappa} \cong U$$

in the sense of Proposition 5. Indeed, for $c \in \mathbb{C}$, we have

$$\mathcal{V}_{\kappa}c \ = \ \nu(\mathsf{Set}^{\mathsf{op}}_{\kappa})(c) = \mathsf{Cat}\big(\mathbb{C}/_{c} \,,\, \mathsf{Set}^{\mathsf{op}}_{\kappa}\big) \ = \ \mathsf{ob}(\widehat{\mathbb{C}/_{c}}) \ = \ Uc \,. \tag{21}$$

For \mathcal{V}_{κ} we then have,

$$\begin{array}{rcl} \dot{\mathcal{V}}_{\kappa}c &=& \nu(\,\dot{\mathsf{Set}}^{\mathsf{op}}_{\kappa})(c) &=& \mathsf{Cat}\big(\mathbb{C}/_{c}\,,\,\,\dot{\mathsf{Set}}^{\mathsf{op}}_{\kappa}\big) \\ &\cong& \coprod_{A\in\mathcal{V}_{\kappa}c} \mathsf{Cat}_{\mathbb{C}/_{c}}\big(\mathbb{C}/_{c}\,,\,\,A^{*}\mathsf{Set}^{\mathsf{op}}_{\kappa}\big) \end{array} \tag{22}$$

where the A-summand in (22) is defined by taking sections of the pullback indicated below.

$$A^* \operatorname{Set}_{\kappa}^{\operatorname{op}} \longrightarrow \operatorname{Set}_{\kappa}^{\operatorname{op}}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{C}/_c \longrightarrow_A \operatorname{Set}_{\kappa}^{\operatorname{op}}$$

$$(23)$$

But $A^*\mathsf{Set}^\mathsf{op}_\kappa\cong\int_{\mathbb{C}/c}A$ over \mathbb{C}/c , and sections of this discrete fibration in Cat correspond uniquely to natural maps $1\to A$ in $\widehat{\mathbb{C}/c}$. Since 1 is

representable in $\widehat{\mathbb{C}/c}$ we can continue (22) by

$$\begin{array}{rcl} \dot{\mathcal{V}}_{\kappa}c &\cong& \coprod_{A\in\mathcal{V}_{\kappa}c}\mathsf{Cat}_{\mathbb{C}/c}\big(\mathbb{C}/c\,,\,A^{*}\mathsf{Set}_{\kappa}^{\mathsf{op}}\big)\\ &\cong& \coprod_{A\in\mathcal{V}_{\kappa}c}\widehat{\mathbb{C}/c}(1,A)\\ &\cong& \coprod_{A\in\mathcal{V}_{\kappa}c}A(1_{c})\\ &=& \coprod_{A\in\mathcal{V}_{\kappa}c}\mathsf{E}l(\langle c,A\rangle)\\ &=& Ec\,. \end{array}$$

2. By functoriality of $\nu: \mathsf{Cat} \to \widehat{\mathbb{C}}$, a sequence of Grothendieck universes

$$\mathcal{U} \subseteq \mathcal{U}' \subseteq ...$$

in Set gives rise to a (cumulative) sequence of type-theoretic universes

$$\mathcal{V} \rightarrowtail \mathcal{V}' \rightarrowtail ...$$

in $\widehat{\mathbb{C}}$. More precisely, there is a sequence of cartesian squares,

$$\dot{\mathcal{V}} \longmapsto \dot{\mathcal{V}}' \longmapsto \dots$$

$$\downarrow^{\perp} \qquad \downarrow^{\perp}$$

$$\mathcal{V} \longmapsto \mathcal{V}' \longmapsto \dots$$
(24)

in the image of $\nu:\mathsf{Cat}\longrightarrow\widehat{\mathbb{C}},$ classifying small maps in $\widehat{\mathbb{C}}$ of increasing size, in the sense of Proposition 5.

3. Let $\alpha = 2$ so that $1 \to 2$ is the subobject classifier of Set, and

$$\mathbb{1}=\dot{\mathsf{Set}}^{\mathsf{op}}_2\longrightarrow\mathsf{Set}^{\mathsf{op}}_2=\mathbb{2}$$

is then a classifier in Cat for full subcategories $\mathbb{S} \hookrightarrow \mathbb{A}$ that are closed under the domains of arrows $a \to s$ for $s \in \mathbb{S}$ ("total sieves"). The "lifted universe" $\dot{\mathcal{V}}_2 \to \mathcal{V}_2$ is then the subobject classifier $1 \to \Omega$ of $\widehat{\mathbb{C}}$,

$$1 = \nu \mathbb{1} = \dot{\mathcal{V}}_2 \longrightarrow \mathcal{V}_2 = \nu \mathbb{2} = \Omega$$
.

4. Let $i: 2 \hookrightarrow \mathsf{Set}_{\kappa}$ and $p: \mathsf{Set}_{\kappa} \to 2$ be the embedding-retraction pair with $i: 2 \hookrightarrow \mathsf{Set}_{\kappa}$ the inclusion of the full subcategory on the sets $\{0,1\}$ and $p: \mathsf{Set}_{\kappa} \to 2$ the retraction that takes $0 = \emptyset$ to itself,

and everything else (i.e. the non-empty sets) to $1 = {\emptyset}$. There is a retraction (of arrows) in Cat,

$$\begin{array}{cccc}
\mathbb{1} & & \stackrel{\cdot}{\longrightarrow} & \operatorname{Set}_{\kappa} & \longrightarrow & \mathbb{1} \\
\downarrow & & & \downarrow & & \downarrow \\
\mathbb{2} & & & \downarrow & & \downarrow \\
\mathbb{2} & & & & \searrow & \mathbb{2}
\end{array} \tag{25}$$

where the left square is a pullback.

By the functoriality of $\nu: \mathsf{Cat} \to \widehat{\mathbb{C}}$ we then have a retract diagram in $\widehat{\mathbb{C}}$, again with a pullback on the left,

$$\begin{array}{cccc}
1 & \longrightarrow & \dot{\mathcal{V}}_{\kappa} & \longrightarrow & 1 \\
\downarrow & & \downarrow & & \downarrow \\
\Omega & & \longleftarrow & \mathcal{V}_{\kappa} & \longrightarrow & \Omega
\end{array}$$

$$(26)$$

where for any $\phi: X \to \Omega$ the subobject $\{\phi\} \to X$ is classified as a small map by the composite $\{\phi\}: X \to \mathcal{V}_{\kappa}$, and for any small map $A \to X$, the image $[A] \to X$ is classified as a subobject by the composite $[\alpha]: X \to \mathcal{V}_{\kappa} \to \Omega$, where $\alpha: X \to \mathcal{V}_{\kappa}$ classifies $A \to X$. The idempotent composite

$$\|-\| = \{[-]\} : \mathcal{V}_{\kappa} \longrightarrow \mathcal{V}_{\kappa}$$

is the propositional truncation modality in the natural model of type theory given by $\dot{\mathcal{V}}_{\kappa} \to \mathcal{V}_{\kappa}$ (see [AGH21]).

Acknowledgement

Thanks to Mathieu Anel and Emily Riehl for discussions.

References

- [AGH21] S. Awodey, N. Gambino, and S. Hazratpour. Kripke-Joyal forcing for type theory and uniform fibrations, October 2021. Preprint available as https://arxiv.org/abs/2110.14576.
- [HS97] Martin Hofman and Thomas Streicher. Lifting Grothendieck universes. Spring 1997. Unpublished note.