高中物理公式、定律及其他统整

IsaaChew

Gmail: is a achewy ee xuan. little 1@gmail.com

2022 年 5 月 15 日 版本 (未完)

	录					5.3.1 弹性碰撞	9
1	直线	运动	4			5.3.2 非弹性碰撞	9
	1.1	匀速直线运动	4	6	流体	力学	10
	1.2	匀速运动的相对速度	4				10
	1.3	变速直线运动的平均速度	4		6.2	液体压强	
	1.4	匀加速直线运动	4		6.3	帕斯卡定律	10
2	牛顿	· 上學	5		6.4	阿基米德原理	10
4	2.1	カチ - 牛顿运动定律			6.5	连续性方程式	10
	2.2	动量	5		6.6	伯努力方程式	10
		2.2.1 动量的变化量	5			6.6.1 水流出的速度与深度关系	10
	2.3	力					
		2.3.1 重力	5	7	转动		11
	2.4	摩擦力	5		7.1	转动	
	2.5	弹力(胡克定律)	5		7.2	匀加速转动	11
	2.6	绳子与定滑轮	5		7.3	转动惯量	11
	2.7	力的正交分解法	5		7.4	转动动能	11
3	平面	문권	6		7.5	力矩与转矩	11
J	т щ	平抛运动	6		7.6	角动量	12
	3.2	斜抛运动	6		7.7	角动量守恒定律	12
	3.3	匀速圆周运动	6	8	答:此	运动与振动	13
	3.4	向心力	6	0	門頃 8.1	运动与派动 回复力	
	3.5	竖直平面上的圆周运动	6		8.2	振幅、周期、频率	
	3.6	开普勒行星运动定律	6		8.3	简谐运动方程	
	3.7	万有引力定律	6				
		3.7.1 推论:天体的引力关系.	7		8.4	简谐运动的周期公式	
		3.7.2 净引力为零的距离关系.	7		8.5	简谐运动的能量	14
4	功与	能	8	9	机械	波	15
	4.1	功	8		9.1	波	15
	4.2	功率	8		9.2	波的速度	15
	4.3	弹簧的功 & 弹性势能	8			9.2.1 声速	15
	4.4	动能	8		9.3	相位	15
	4.5	重力势能	8		9.4	简谐波的方程式	15
	4.6	机械能	8		9.5	弦的发声原理	15
	4.7	机械能守恒定律	8			9.5.1 基音	15
5	动量	守恒定律	9			9.5.2 频率	15
	5.1	冲量	9			9.5.3 弦线波速	15
	5.2	动量守恒定律	9		9.6	拍频	15
		5.2.1 反冲作用	9		9.7	管的发声原理	16
	5.3	碰撞	9		9.8	多普勒效应	16

10	反射与折射	17	11.2 【球面镜】焦点 F 与球心 C 的	
	10.1 实像与虚像	17	关系	19
	10.1.1 面镜 (球面镜、平面镜).	17	11.3 【球面镜、透镜】成像公式	19
	10.1.2 透镜 (凹/凸透镜、平行		11.4 【球面镜、透镜】放大率	19
	玻璃板)	17	11.5 棱镜	19
	10.2 反射定律	17	$11.5.1$ 偏向角 δ	19
	10.3 折射定律(斯涅尔定律)	17	$11.5.2$ 最小偏向角 δ_{min} 与折	
	10.4 光在介质中的速度	17	射率的关系 2	20
	10.5 水下物体的视深与实深		11.5.3 色散	20
	10.6 光通过两面平行的介质之侧移.	18	A 国际单位制 2	21
	10.7 全反射	18	A.1 基本量及其单位	21
11	球面镜、透镜与棱镜	19	A.2 单位转换词冠	21
	11.1 面镜与透镜的成像情况	19	B 希腊字母 2	22

1 直线运动

1.1 匀速直线运动

$$v = \frac{\Delta x}{\Delta t}$$

1.3 变速直线运动的平均速度

$$v = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}$$

1.4 匀加速直线运动

1.2 匀速运动的相对速度

A 相对于 B 的速度 v_{AB} (对于 B 来讲, A 的速度):

$$v_{AB} = v_A - v_B$$

$$v = v_0 + at$$

$$s = v_0 t + \frac{1}{2}at^2$$

$$v^2 - v_0^2 = 2as$$

2 牛顿力学

2.1 牛顿运动定律

- 1. **牛顿第一定律(惯性定律):**一切物体总是保持匀速直线运动状态或静止状态,直到有外力迫使他改变这种状态为止。(见第2.2节 of pg5)
- 2. **牛顿第二定律**: 物体所受作用力与物体 动量的变化率成正比,力的方向与动量 的方向相同。(见第2.3节 of pg5)
- 3. 牛顿第三定律: 作用力 = 反作用力。

2.2 动量

$$p = mv$$

2.2.1 动量的变化量

物体与另一物体碰撞后, 动量的变化。

$$\Delta p = p' - p$$

2.3 力

$$F = ma = \frac{\Delta p}{\Delta t}$$

2.3.1 重力

$$W = ma$$

2.4 摩擦力

- 1. **静摩擦力**: 推物体时推不动的、让物体稳 站的摩擦力。(它的大小见本节第3项的 刮胡内第一个情况, 其中的 *f* 是静摩擦 力)
- 2. **动摩擦力:** 推某物时推得动的, 该物体动时与地面的摩擦力。

$$f = \mu_K F_N$$

3. **最大静摩擦力**: 使物体稳站的静摩擦力 极限, 若某外力克服了它(大于它)则该 物会动起来。(当 $F < f_m$ 时,则 f = F; 当 $F > f_m$ 时,则 $f = \mu_K F_N$)

$$f_m = \mu_s F_N$$

2.5 弹力 (胡克定律)

$$F = kx$$
$$\frac{F_1}{x_1} = \frac{F_2}{x_2}$$

2.6 绳子与定滑轮

$$a = \left| \frac{m_B \sin \beta - m_A \sin \alpha}{m_A + m_B} g \right|$$

推导过程:

 $F_T - m_A g \sin \alpha = m_A a$ $m_B \sin \beta - F_T = m_B a ,$

$$\therefore m_A a + m_A g \sin \alpha = m_B g \sin \beta - m_B a$$
$$a(m_A + m_B) = g(m_B \sin \beta - m_A \sin \alpha)$$
$$a = \frac{m_B \sin \beta - m_A \sin \alpha}{m_A + m_B} g.$$

2.7 力的正交分解法

$$F_x = F \cos \theta$$

$$F_y = F \sin \theta$$

$$F = \sqrt{v_x^2 + v_y^2}$$

$$\tan \theta = \frac{F_y}{F}$$

3 平面运动

3.1 平抛运动

水平方向 (v_x) —— 匀速直线运动; 垂直方向 (v_y) —— 自由落体运动。

$$v_x = v_0$$
 $v_y = -gt = -\sqrt{2gh}$
 $s = v_0 t_{\hat{\Xi}}$ $h = -\frac{1}{2}gt_{\hat{\Xi}}^2$
 $x = v_0 t$ $y = -\frac{1}{2}gt$

$$\tan \theta = \frac{v_y}{v_x}$$
$$v^2 = v_x^2 + v_y^2$$

3.2 斜抛运动

水平方向 (v_x) —— 匀速直线运动; 垂直方向 (v_y) —— 自由落体运动。

* $\theta = 45^{\circ}$ 时,射程 s 最远。

$$v_{0x} = v_0 \cos \theta \qquad v_{0y} = v_0 \sin \theta$$

$$v_x = v_{0x} \qquad v_y = v_{0y} - gt$$
$$x = v_{0x}t \qquad y = v_{0y}t - \frac{1}{2}gt^2$$

$$t_s = \frac{2v_{0y}}{g} \qquad t_h = \frac{v_{0y}}{g}$$

$$s = \frac{v_0^2 \sin 2\theta}{g} \qquad h = \frac{v_0^2 \sin^2 \theta}{2g}$$

3.3 匀速圆周运动

$$v = \frac{\Delta s}{\Delta t} = \frac{2\pi r}{T}$$
$$\omega = \frac{\Delta \theta}{\Delta t} = \frac{2\pi}{T}$$
$$v = \omega r$$
$$f = \frac{1}{T}$$

3.4 向心力

$$a_c = \frac{v^2}{r} = \omega^2 r = v\omega$$

$$F_c = ma_c$$

3.5 竖直平面上的圆周运动

1. 拱形桥: $W = F_N + F_c$

车速限制:
$$v = \sqrt{gr}$$

- 2. **凹形桥:** $F_N = F_c + W$
- 3. **水流星表演:** 最低点与"凹形桥"的原理一样; 最高点: $F_N = F_c W$,

if 要使水不落下,则: $v \geq \sqrt{gr}$

3.6 开普勒行星运动定律

- 1. **开普勒第一定律(椭圆定律):** 所有行星 绕太阳运动的轨道都是椭圆,太阳处于 椭圆的一个焦点上。
- 2. **开普勒第二定律 (面积定律)**: 对每个行星而言,太阳与行星的连线在相等的时间内扫过相等的面积。
- 3. 开普勒第三定律 (周期定律):

$$\frac{R^3}{T^2} = k$$

3.7 万有引力定律

$$F = G \frac{m_1 m_2}{r^2}$$

3.7.1 推论: 天体的引力关系

(试卷二记得写上步骤)

$$\label{eq:final_continuous_form} \begin{split} \therefore F_{\vec{r}|} &= W = F_c \ , \\ \therefore G\frac{M}{R^2} &= g \\ G\frac{M}{R} &= v^2 \\ GM &= \omega^2 R^3 = 4\pi^2 k \end{split}$$

3.7.2 净引力为零的距离关系

已知 r_{AB} ,求 C 在净引力 = 0 时,与 A、B 之距离:

$$r_{AC} = \sqrt{m_A}k$$
$$r_{BC} = \sqrt{m_B}k$$

$$k = \frac{r_{AB}}{\sqrt{m_A} + \sqrt{m_B}}$$

推导过程:

$$\begin{array}{c} :: \; F_{BC} - F_{AC} = 0 \; , \\ \\ :: \; G \frac{m_B m_C}{r_{BC}^2} = G \frac{m_A m_C}{r_{AC}^2} \\ \\ \frac{m_B}{r_{BC}^2} = \frac{m_A}{r_{AC}^2} \\ \\ \frac{r_{AC}^2}{r_{BC}^2} = \frac{m_A}{m_B} \\ \\ \frac{r_{AC}}{r_{BC}} = \frac{\sqrt{m_A}}{\sqrt{m_B}} \; , \end{array}$$

$$\therefore \sqrt{m_A}k + \sqrt{m_B}k = r_{AB}$$

$$k = \frac{r_{AB}}{\sqrt{m_A} + \sqrt{m_B}} ,$$

$$\therefore r_{AC} = \sqrt{m_A}k$$

$$r_{BC} = \sqrt{m_B}k .$$

4 功与能

4.1 功

$$W = Fs\cos\theta$$

4.2 功率

平均功率,
$$P = \frac{W}{t}$$
瞬时功率, $P = Fv \cos \theta$

汽车最大速率,
$$v_m = \frac{P}{f}$$

4.3 弹簧的功 & 弹性势能

详细关于弹簧能量,可见第8.5节 of pg14。

$$W = E_p = \frac{1}{2}kx^2$$

4.4 动能

$$E_k = \frac{1}{2}mv^2 = \frac{1}{2}Fs$$

动能定理: 合外力对物体所做的功等于物体动能的增量。

$$W = E_k - E_{k0}$$
$$= \frac{1}{2}mv^2 - \frac{1}{2}mv_0^2$$

4.5 重力势能

$$E_p = mgh$$

$$W = E_{p1} - E_{p2}$$

$$= mgh_1 - mgh_2$$

4.6 机械能

物体的动能和势能之和就是机械能。

$$E = E_p + E_k$$

4.7 机械能守恒定律

$$E_{p1} + E_{k1} = E_{p2} + E_{k2}$$

5 动量守恒定律

5.1 冲量

冲量 = 动量的增量。

$$I = F\Delta t = mv - mv_0 = F(t - t_0)$$
$$I = F\Delta t = mv' - mv$$

5.2 动量守恒定律

用于碰撞等,物体1改变物体2运动状态时。

$$m_1 v_1' + m_2 v_2' = m_1 v_1 + m_2 v_2$$

5.2.1 反冲作用

一个**静止的**物体在内力作用下分裂成两部分, 两部分相互朝反方向运动。eg:发射子弹、火 箭发射等等。

$$m_1 v_1' + m_2 v_2' = 0$$

5.3 碰撞

5.3.1 弹性碰撞

碰撞后形状会恢复,能量不会损失。

$$\begin{cases} v_1' = \frac{m_1 - m_2}{m_1 + m_2} v_1 + \frac{2m_2}{m_1 + m_2} v_2 \\ v_2' = \frac{2m_1}{m_1 + m_2} v_1 + \frac{m_2 - m_1}{m_1 + m_2} v_2 \end{cases}$$

- 1. 对心碰撞
- 2. 非对心碰撞

5.3.2 非弹性碰撞

碰撞后形状不恢复,能量会损失。

用动量守恒: $m_1v_1' + m_2v_2' = m_1v_1 + m_2v_2$

- 1. **不完全非弹性碰撞:** 有一点反弹, 损失能量少。
- 2. **完全非弹性碰撞:** 完全没有反弹,直接合体,损失能量大。

6 流体力学

流体:气体 & 液体。

	液体	气体
体积	固定	不固定
正始州	不可被压缩	可被压缩
压缩性	(都可改多	变形状)
粘滯性	较高	几乎没有

表 1: 液体 vs 气体

6.1 压强

$$p = \frac{F}{S}$$

6.2 液体压强

$$p = p_0 + \rho g h$$
* 1 atm = 1.01×10⁵ Pa

6.3 帕斯卡定律

$$\frac{F_1}{S_1} = \frac{F_2}{S_2}$$

6.4 阿基米德原理

处理浮力。

$$F_{\text{F}} = \rho_{\text{in}} g V_{\text{fi}}$$

6.5 连续性方程式

$$v_1S_1 = v_2S_2 = 常量 = 流量$$

6.6 伯努力方程式

$$p + \frac{1}{2}\rho v^2 + \rho g h = 常量$$

p: **静压强:** 流体的压强能。

 $\frac{1}{2}\rho v^2$: **动压强:** 单位体积流体的动能。

ρgh: **重力压强:** 单位体积流体的重力势能。

6.6.1 水流出的速度与深度关系

$$v = \sqrt{2gh}$$

7 转动

7.1 转动

* 1 rpm =
$$\frac{1}{60}$$
 Hz

$$\omega = \frac{\Delta\theta}{\Delta t} = \frac{2\pi}{T} = 2\pi f$$

$$v = \frac{\Delta s}{\Delta t} = \frac{2\pi r}{T} = 2\pi r f$$

$$v = \omega r$$

$$n = \frac{\theta}{2\pi}$$

匀加速直线运动	匀角加速运动
x (位移)	θ (弧度)
v (速度)	ω (角速度)
a (加速度)	α (角加速度)
m (质量)	I (转动惯量)
F (力)	M (力矩)
p (动量)	L (角动量)
$v = v_0 + at$	$\omega = \omega_0 + \alpha t$
$s = v_0 t + \frac{1}{2}at^2$	$\theta = \omega_0 t + \frac{1}{2}\alpha t^2$
$v^2 - v_0^2 = 2as$	$\omega^2 - \omega_0^2 = 2\alpha\theta$
F = ma	$M = I\alpha$
$E_k = \frac{1}{2}mv^2$	$E_k = \frac{1}{2}I\omega^2$
p = mv	$L = I\omega$

表 2: 平动与转动的对应列表 (除了"动量守恒"与"角动量守恒"不对应)

7.2 匀加速转动

$\omega = \omega_0 + \alpha t$ $\theta = \omega_0 t + \frac{1}{2} \alpha t^2$ $\omega^2 - \omega_0^2 = 2\alpha \theta$

7.3 转动惯量

$$I = mr^2$$

$$I = \sum_{i} m_i r_i^2$$

各类刚体的转动惯量也不同,需要注意题目(见表3 of pg12)。

7.4 转动动能

$$E_k = \frac{1}{2}I\omega^2$$

7.5 力矩与转矩

M = Fd $M = I\alpha$

7.6 角动量

7.7 角动量守恒定律

$$L = I\omega = mrv = Mt$$

$$L = mrv \sin \theta \qquad \qquad L_1 = L_2$$

		att Fel de
圆环 (通过圆心)	圆环 (通过直径)	薄圆盘
$I = mr^2$	$I = \frac{mr^2}{2}$	$I = \frac{mr^2}{2}$
att //		
~		** ** ** ** ** ** ** **
	'	
圆筒	圆柱体	球壳
$I = \frac{m(r_1^2 + r_2^2)}{2}$	$I = \frac{1}{2}mr^2$	$I = \frac{2}{3}mr^2$
		K
		$\Psi_{}$
r_1		(
	()(
		'
细棒 (通过中心)	细棒 (通过端点)	球体
$I = \frac{1}{12}ml^2$	$I = \frac{1}{2}ml^2$	$\frac{2}{5}mr^2$
		*
		$\Big \Big $
		\
l	l	

表 3: 各类物体的转动惯量

8 简谐运动与振动

图 1: 简谐运动——弹簧振子(配合表4)

		C		O		B
	位移		左	无	右	
方向	速度	无	(看	情况	兄)	无
	加速度		右	无	左	
	位移	大	\longleftrightarrow	0	\longleftrightarrow	大
大小	速度	0	\longleftrightarrow	大	\longleftrightarrow	0
	加速度	大	\longleftrightarrow	0	\longleftrightarrow	大

表 4: 简谐运动——弹簧振子 (其中 O 是平衡位置)

8.1 回复力

F = -kx $a = -\frac{k}{m}x$

弹簧: $k=\frac{F}{x}$, k 是颈度系数。 单摆: $k=\frac{mg}{l}$, 条件: $0^{\circ} \le \theta \le 5^{\circ}$ 。

8.3 简谐运动方程

$$\omega = \sqrt{\frac{k}{m}}$$

 $x = A\cos\theta$ $y = A\sin\theta$ $v = -v\sin\theta = -\omega A\sin\theta$ $a = -a_T\cos\theta = -\omega^2 A\cos\theta = -\omega^2 x$

8.2 振幅、周期、频率

1. **振幅:** 如图1 of pg13, 其中 $OB = OC = 振幅A = x_m$ 。

8.4 简谐运动的周期公式

弹簧:
$$T = 2\pi \sqrt{\frac{m}{k}}$$

单摆: $T = 2\pi \sqrt{\frac{l}{g}}$

2. 周期与频率:

$$f = \frac{1}{T}$$

8.5 简谐运动的能量

注:
$$x_m = A$$

$$E_k = \frac{1}{2}mv^2$$

$$= \frac{1}{2}m\omega^2 A^2 \sin^2 \omega t$$

$$E_p = \frac{1}{2}kx^2$$

$$= \frac{1}{2}kA^2 \cos^2 \omega t$$

$$E = E_k + E_p$$

$$= \frac{1}{2}kA^2 = \frac{1}{2}m\omega^2 A^2$$

9 机械波

图 2: 横波 (垂直传播)

图 3: 纵波 (平行传播)

9.1 波

• 机械波: 声波、简谐运动

• 电磁波: 光

• 引力波

• 物质波

机械波需要介质传播 一般上,纵波比横波快。

9.2 波的速度

$$v = f\lambda$$
$$v = \frac{\lambda}{T}$$

- v 由介质 决定。
- *f&T* 由波源 决定。 (:: 频率在波的传播过程中,不会改变)
- λ由介质&波源

9.2.1 声速

常温 (15°C) 下, 空气中: 340ms⁻¹ 水中: 1480ms⁻¹

 $0^{\circ}\mathrm{C}$ 下,

空气中: 331ms⁻¹

* 在空气中,每上升 1°C, $v_{\rm p}$ 上升 $0.6ms^{-1}$ 。 **9.6 拍频**

9.3 相位

$$\varphi=2\pi\frac{x}{\lambda}$$

9.4 简谐波的方程式

$$y = A\cos[2\pi(\frac{t}{T} \mp \frac{x}{\lambda})]$$

$$y = A\sin[2\pi(\frac{x}{\lambda} \mp \frac{t}{T})]$$

* 向右移动 用 -; 向左移动 用 +。

9.5 弦的发声原理

9.5.1 基音

9.5.2 頻率

$$f_n = n \cdot \frac{v}{2L}, (n = 1, 2, 3...)$$

9.5.3 弦线波速

$$v = \sqrt{\frac{F_T}{\mu}}$$
$$\mu = \frac{m}{L}$$

每秒的拍数。

$$f_{
mu} = |f_2 - f_1|$$

* 1 bpm = $\frac{1}{60}$ Hz

9.7 管的发声原理

9.8 多普勒效应

 $f_O = \frac{v \pm v_O}{v \mp v_S} f_S$

情形	+/-的运用
$O \rightarrow \leftarrow S$	<u>+</u> -
\leftarrow O S \rightarrow	<u>=</u> +
$O \rightarrow S \rightarrow$	<u>+</u> +
$S \rightarrow O \rightarrow$	=

*S 经过 O

$$f_O = (情形S \to O) - (情形O S \to)$$
$$= \frac{v}{v - v_S} f_S - \frac{v}{v + v_S} f_S$$

10 反射与折射

图 4: 反射定律

图 5: 折射定律

10.1 实像与虚像

(图中表示正方体的像处于何处方为实像 or 虚像)

10.1.1 面镜 (球面镜、平面镜)

10.1.2 透镜 (凹/凸透镜、平行玻璃板)

10.2 反射定律

(图4)

$$i = r$$

疏介质 \rightarrow **密介质**: 入射线与反射线存在相位 差 $\varphi = 180^{\circ}$ 。

密介质 → **硫介质**: 无相位差。

10.3 折射定律(斯涅尔定律)

(图5) $\frac{\sin i}{\sin r} = \frac{n_2}{n_1} = \frac{v_1}{v_2}$

光通过 A 到 B 再到 C:

$$n_A \sin A = n_B \sin B = n_C \sin C$$

*
$$n_{\rm TK}=1.33pprox rac{4}{3}$$
 $n_{\rm TC}=1$

10.4 光在介质中的速度

$$n = \frac{c}{v}$$

10.5 水下物体的视深与实深

 $\frac{n_2}{n_1} = \frac{\Im \Im}{\Im \Im \Im}$

10.6 光通过两面平行的介质之侧移

10.7 全反射

临界角 C: 折射角 $r=90^\circ$ 时的入射角 i (按 照此原理进行推导)。

当 $i \ge C$ 时,则发生全反射。

$$\sin C = \frac{n_2}{n_1}$$

从水下照射到空气的临界角:

$$\sin C = \frac{1}{n_{7 \text{k}}}$$

$$C \approx 48^{\circ}35'$$

11 球面镜、透镜与棱镜

图 6: 各镜之图

11.1 面镜与透镜的成像情况

控	情形	像的性质			4年14日	夕 注	
镜		状态	大小	像	焦点状况	备注	
	u > 2f		缩小			-	
凹面镜	u = 2f	倒立	相同放大	实	主焦点 (F)	-	
口画現 凸透镜	2f > u > f					-	
口透視	u = f	不成像				-	
	u < f	正立	放大	虚		【凹面镜】镜像翻转	
凸面镜		正立	缩小	虚	 虚焦点 (F')		
凹透镜	_	11.1/.	2月71,	四比		-	
平面镜	-	正立	相同	虚	工住占	镜像翻转	
平行玻璃板	-	TE'T	7日1円 	实	无焦点	-	

11.2 【球面镜】焦点 F 与球心 C 的 11.4 【球面镜、透镜】放大率 关系

$$f = \frac{1}{2}r$$

 $m = \left| \frac{v}{u} \right| = \frac{\Re \tilde{B}}{\Re \tilde{B}}$

* 亦可用此公式来找像高。

11.3 【球面镜、透镜】成像公式

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

* 主焦点(F): f为正; 虚焦点(F'): f为负。

* 实像 : v为正; 虚像 : v为负。 * 实物 : u为正; 虚物 : u为负。

11.5 棱镜

11.5.1 偏向角 δ

 $\delta = i_1 + i_2 - A$ $r_1 + r_2 = A$

11.5.2 最小偏向角 δ_{min} 与折射率的关系

$$\therefore i_1 = i_2, \ r_1 = i_2$$

$$\delta_{min} = 2i - A$$
$$r = \frac{A}{2}$$

$$n = \frac{\sin i}{\sin r} = \frac{\sin \frac{\delta_{min} + A}{2}}{\sin \frac{A}{2}}$$

11.5.3 色散

根据 $n = \frac{c}{v}$,且每种色光的折射率都不同,二 每种色光在同一介质中的光速 v 都不同。 v_{II} 最大、 δ 红 最小,红橙黄绿蓝靛紫 以此类 推。

A 国际单位制

A.1 基本量及其单位

基本量		基	量纲		
名称	符号	中文	英文	国际符号	里判
长度	l	米	meter	m	[L]
质量	m	千克	kilogram	kg	[M]
时间	t	秒	second	s	[T]
热力学温度	T	开尔文 (简称开)	kelvin	K	[Θ]
电流	I	安培 (简称安)	ampere	A	[I]
发光强度	I_V	坎德拉 (简称坎)	candela	cd	[J]
物质的量	n	摩尔 (简称摩)	mole	mol	[N]

A.2 单位转换词冠

因数	英文	中文	词头	因数	英文	中文	词头
10^{-1}	deci-	分	d	10^{1}	deca-	+	da
10^{-2}	centi-	厘	c	10^{2}	hecto-	百	h
10^{-3}	milli-	毫	m	10^{3}	kilo-	千	k
10^{-6}	micro-	微	μ	10^{6}	mega-	兆	M
10^{-9}	nano-	纳 (诺)	n	10^{9}	giga-	吉 (咖)	G
10^{-12}	pico-	皮 (可)	p	10^{12}	tera-	太 (拉)	Т
10^{-15}	femto-	飞 (母托)	f	10^{15}	peta-	拍 (它)	Р
10^{-18}	atto-	阿 (托)	a	10^{18}	exa-	艾 (可萨)	E
10^{-21}	zepto-	仄 (普托)	Z	10^{21}	zetta-	泽 (它)	Z
10^{-24}	yocto-	幺 (科托)	У	10^{24}	yotta-	尧 (它)	Y

B 希腊字母

序	大写	小写	名称	拉丁转写 (传统)	读法 (用英语)
1	A	α	Alpha	a	al-fah
2	B	β	Beta	b	bay-tah
3	Γ	γ	Gamma	g	gam-ah
4	Δ	δ	Delta	d	del-tah
5	E	$\epsilon(\varepsilon)$	Epsilon	e	ep-si-lon
6	Z	ζ	Zeta	${f z}$	zay-tah
7	H	η	Eta	ē	ay-tah
8	Θ	$\theta(\vartheta)$	Theta	h	thay-tah
9	I	ι	Iota	i	eye-o-tah
10	K	κ	Kappa	k	cap-ah
11	Λ	λ	Lambda	1	lam-dah
12	M	μ	Mu	m	mew
13	N	ν	Nu	n	new
14	Ξ	ξ	Xi	X	zzEye
15	0	o	Omicron	О	om-ah-cron
16	П	$\pi(\varpi)$	Pi	р	pie
17	P	$\rho(\varrho)$	Rho	r	row
18	Σ	σ	Sigma	\mathbf{s}	sig-ma
19	T	τ	Tau	t	tawh
20	Υ	v	Upsilon	u	oop-si-lon
21	Φ	$\phi(\varphi)$	Phi	$_{ m ph}$	figh 或 fie
22	X	χ	Chi	ch	kigh
23	Ψ	ψ	Psi	ps	sigh
24	Ω	ω	Omega	ō	o-may-gah
25	-	ς	Stigma	st	stig-ma