

#### SMART INDUSTRY LABORATORY

### Scheduling Algorithms (9)

- Production Scheduling Algorithm (3) -

Graduate School of Information, Production and Systems Shigeru FUJIMURA

# Scheduling Methods for Production Scheduling Problems

- ☐ Method to derive a near optimum solution
  - Meta Heuristic Methods
  - Dispatching Rule Method
    a method which derives a good solution empirically.
- Method to derive an Optimum Solution
  - Jackson Algorithm
  - Branch and Bound Method a search method for excluding solution space which is no need to search

### **Branch and Bound Method**

- Disassemble the given whole problem to several partial problems
- ☐ Solve the given whole problem by solving several partial problems.

branching operation: Disassemble to partial problems bounding operation: Set the best value at current stage as *upper bound*. This operation is a procedure that bounds the node that has bigger *lower bound* than *upper bound*, that is, it becomes clear that there is no possibility to get better results

### Scheduling Example for Branch and Bound Method

Find a job sequence which makespan is shortest.

| Job | Processing Time |               |               |
|-----|-----------------|---------------|---------------|
|     | Ope1 using M1   | Ope2 using M2 | Ope3 using M3 |
| 1   | 20              | 180           | 80            |
| 2   | 140             | 120           | 40            |
| 3   | 40              | 40            | 160           |
| 4   | 100             | 20            | 60            |

Job Sequence







#### Lower Bound Calculation

- lower bound = maximum value for all operation stages
  - (1) Latest Ending time of the operations on the operation stage of the scheduled jobs
  - +2Total processing time of the operations on the operation stage of the unscheduled jobs
  - +3Minimum value of the total processing time of the operations remaining after the operation stage for each job)

lower bound of job 1 in Level 1 =

$$max (1st stage: 20 + (140+40+100)+min(160,200,80) = 380$$

$$2^{\text{nd}}$$
 stage:  $200+(120+40+20)+\min(40,160,60) = 420$ 

$$3^{rd}$$
 stage:  $280+(40+160+60)+0$  =  $540$ ) =  $540$ 



| Job | Processing Time |      |      |
|-----|-----------------|------|------|
|     | Ope1            | Ope2 | Ope3 |
| 1   | 20              | 180  | 80   |
| 2   | 140             | 120  | 40   |
| 3   | 40              | 40   | 160  |
| 4   | 100             | 20   | 60   |

#### Lower Bound Calculation

lower bound of job 1 in Level 1 =

max (1<sup>st</sup> stage: 20 + (140+40+100)+min(160,200,80) = 380

 $2^{\text{nd}}$  stage:  $200+(120+40+20)+\min(40,160,60) = 420$ 

3<sup>rd</sup> stage: 280+(40+160+60)+0

= 540) = 540



| Job | Processing Time |      |      |  |
|-----|-----------------|------|------|--|
|     | Ope1            | Ope2 | Ope3 |  |
| 1   | 20              | 180  | 80   |  |
| 2   | 140             | 120  | 40   |  |
| 3   | 40              | 40   | 160  |  |
| 4   | 100             | 20   | 60   |  |

#### Lower Bound Calculation

lower bound of job 2 in Level 2 =

max ( 1st stage: 160 + (40+100) + min(200,80)

2<sup>nd</sup> stage: 320 + (40+20) + min(160,60)

time

 $3^{rd}$  stage: 360 + (160+60) + 0

= 440

= 580) = 580



| Job | Processing Time |      |      |
|-----|-----------------|------|------|
|     | Ope1            | Ope2 | Ope3 |
| 1   | 20              | 180  | 80   |
| 2   | 140             | 120  | 40   |
| 3   | 40              | 40   | 160  |
| 4   | 100             | 20   | 60   |







### Searched by Best First Search



SMART INDUSTRY LABORATORY





Thank you