Package 'booklet'

April 24, 2025

Type Pa	ackage
Title M	Iultivariate Exploratory Data Analysis
Version	1.0.0
sc te tiv si:	etion Exploratory data analysis methods to summarize, visualize and decribe datasets. The main principal component methods are available, those with the largest poential in terms of applications: principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) when variables are categorical, Multiple Factor Analysis (MFA) when variables are structured in groups.
License	MIT + file LICENSE
URL h	ttps://github.com/alexym1/booklet,
ht	ttps://alexym1.github.io/booklet/
BugRep	ports https://github.com/alexym1/booklet/issues
Depend	R = 4.1.0
Suggest	s covr, devtools, factoextra, FactoMineR, knitr, renv, testthat
Vignette	eBuilder knitr
Encodin	ng UTF-8
Roxyge	nNote 7.3.2
NeedsC	Compilation no
	Alex Yahiaoui Martinez [aut, cre] chttps://orcid.org/0000-0002-5315-675X)
Maintai	iner Alex Yahiaoui Martinez <yahiaoui-martinez.alex@outlook.com></yahiaoui-martinez.alex@outlook.com>
Reposit	cory CRAN
Date/Pu	ublication 2025-04-24 07:10:02 UTC
Conto	ents
	ca_col_contrib

2 ca_col_contrib

	ca_col_inertia	4
	ca_row_contrib	5
	ca_row_coords	6
	ca_row_cos2	6
	ca_row_inertia	7
	ca_standardize	8
	ca_weighted_eigen	8
	facto_ca	9
	facto_mfa	10
	facto_pca	10
	pca_eigen	11
	pca_ind_contrib	12
	pca_ind_coords	13
	pca_ind_cos2	
	pca_standardize_norm	14
	pca_var_contrib	15
	pca var coords	
	pca_var_cor	17
	pca_var_cos2	
Index		19

ca_col_contrib

Compute col contributions

Description

Return col contributions for each correspondence component

Usage

```
ca_col_contrib(col_coords, X, eigs)
```

Arguments

col_coords col coordinates

X standardized matrix

eigs eigs computed by ca_weighted_eigen

Value

A dataframe of col contributions.

ca_col_coords 3

Examples

```
library(booklet)

X_scaled <- mtcars[, c(2, 8:11)] |>
   ca_standardize()

eigs <- X_scaled |>
   ca_weighted_eigen()

eigs |>
   ca_col_coords() |>
   ca_col_contrib(X_scaled, eigs) |>
   head()
```

ca_col_coords

Compute col coordinates

Description

Return Correspondence component for columns

Usage

```
ca_col_coords(eigs)
ca_col_sup_coords(X_sup, eigs)
```

Arguments

eigs computed by ca_weighted_eigen
X_sup Supplementary dataset

Value

A dataframe of col coordinates.

```
library(booklet)

mtcars[, c(2, 8:11)] |>
  ca_standardize() |>
  ca_weighted_eigen() |>
  ca_col_coords() |>
  head()
```

4 ca_col_inertia

ca_col_cos2

Compute col squared cosines

Description

Return col squared cosines for each correspondence component

Usage

```
ca_col_cos2(col_coords, X)
ca_col_sup_cos2(col_coords, X_sup, X)
```

Arguments

col_coords col coordinates
X active dataset

X_sup supplementary dataset

Value

A dataframe of col squared cosines.

Examples

```
library(booklet)

X_scaled <- mtcars[, c(2, 8:11)] |>
   ca_standardize()

X_scaled |>
   ca_weighted_eigen() |>
   ca_col_coords() |>
   ca_col_cos2(X_scaled) |>
   head()
```

ca_col_inertia

Compute col inertia

Description

Return col inertia for each correspondence component

```
ca_col_inertia(X)
```

ca_row_contrib 5

Arguments

X standardized matrix

Value

A dataframe of col inertia.

Examples

```
library(booklet)

mtcars[, c(2, 8:11)] |>
  ca_standardize() |>
  ca_col_inertia()
```

ca_row_contrib

Compute row contributions

Description

Return row contributions for each correspondence component

Usage

```
ca_row_contrib(row_coords, X, eigs)
```

Arguments

row_coords row coordinates

X standardized matrix

eigs eigs computed by ca_weighted_eigen

Value

A dataframe of row contributions.

```
library(booklet)

X_scaled <- mtcars[, c(2, 8:11)] |>
   ca_standardize()

eigs <- X_scaled |>
   ca_weighted_eigen()

eigs |>
   ca_row_coords() |>
   ca_row_contrib(X_scaled, eigs) |>
   head()
```

6 ca_row_cos2

ca_row_coords

Compute row coordinates

Description

Return Correspondence component for individuals

Usage

```
ca_row_coords(eigs)
ca_row_sup_coords(X_sup, eigs)
```

Arguments

eigs computed by ca_weighted_eigen

X_sup Supplementary dataset

Value

A dataframe of row coordinates.

Examples

```
library(booklet)

mtcars[, c(2, 8:11)] |>
  ca_standardize() |>
  ca_weighted_eigen() |>
  ca_row_coords() |>
  head()
```

ca_row_cos2

Compute row squared cosines

Description

Return row squared cosines for each correspondence component

```
ca_row_cos2(row_coords, X)
ca_row_sup_cos2(row_coords, X_sup, X)
```

ca_row_inertia 7

Arguments

row_coords row coordinates

X Active standardized matrix

X_sup Supplementary standardized matrix

Value

A dataframe of row squared cosines.

Examples

```
library(booklet)

X_scaled <- mtcars[, c(2, 8:11)] |>
   ca_standardize()

X_scaled |>
   ca_weighted_eigen() |>
   ca_row_coords() |>
   ca_row_cos2(X_scaled) |>
   head()
```

ca_row_inertia

Compute row inertia

Description

Return row inertia for each correspondence component

Usage

```
ca_row_inertia(X)
```

Arguments

Χ

standardized matrix

Value

A dataframe of row inertia.

```
library(booklet)

mtcars[, c(2, 8:11)] |>
  ca_standardize() |>
  ca_row_inertia()
```

8 ca_weighted_eigen

ca_standardize

Data standardization for CA

Description

Perform data standardization for multivariate exploratory data analysis.

Usage

```
ca_standardize(X, weighted_row = rep(1, nrow(X)))
ca_standardize_sup(X, type = c("row", "col"), weighted_row = rep(1, nrow(X)))
```

Arguments

X Active or supplementary datasets

weighted_row row weights

type standardization for supplementary rows or cols

Value

A dataframe of the same size as X.

Examples

```
library(booklet)
mtcars[, c(2, 8:11)] |>
  ca_standardize() |>
  head()
```

ca_weighted_eigen

Compute eigenvalues and eigenvectors for CA

Description

Return eigenvalues and eigenvectors of a matrix

Usage

```
ca_weighted_eigen(X)
```

Arguments

Χ

X_active

facto_ca 9

Value

A list containing results of Single Value Decomposition (SVD).

Examples

```
library(booklet)

mtcars[, c(2, 8:11)] |>
  ca_standardize() |>
  ca_weighted_eigen() |>
  head()
```

facto_ca

Perform CA with FactoMineR's style

Description

Return CA results with FactoMineR's style

Usage

```
facto_ca(X, ncp = 5, row_sup = NULL, col_sup = NULL, weighted_row = NULL)
```

Arguments

Χ	a data frame with n rows (individuals) and p columns (numeric variables)
ncp	an integer, the number of components to keep (value set by default)
row_sup	a vector indicating the indexes of the supplementary rows
col_sup	a vector indicating the indexes of the supplementary cols
weighted_row	row weights

Value

A list containing results of FactoMineR's correspondence analysis (CA).

```
library(booklet)
res <- facto_ca(X = mtcars[, c(2, 8:11)], ncp = 2)</pre>
```

10 facto_pca

facto_mfa

Perform MFA with FactoMineR's style

Description

Return MFA results with FactoMineR's style

Usage

```
facto_mfa(X, groups, ncp = 2)
```

Arguments

X a data frame with n rows (individuals) and p columns (numeric variables)

groups a vector indicating the group of each variable

ncp an integer, the number of components to keep (value set by default)

Value

A list containing results of FactoMineR's multiple factor analysis (MFA).

Examples

```
library(booklet)
res <- facto_mfa(X = iris[, -c(5)], groups = c(2, 2), ncp = 2)</pre>
```

facto_pca

Perform PCA with FactoMineR's style

Description

Return PCA results with FactoMineR's style

```
facto_pca(
   X,
   ncp = 5,
   scale.unit = TRUE,
   ind_sup = NULL,
   quanti_sup = NULL,
   weighted_col = NULL)
```

pca_eigen 11

Arguments

Χ	a data frame with n rows (individuals) and p columns (numeric variables)
ncp	an integer, the number of components to keep (value set by default)
scale.unit	a boolean, if TRUE (value set by default) then data are scaled to unit variance
ind_sup	a vector indicating the indexes of the supplementary individuals
quanti_sup	a vector indicating the indexes of the quantitative supplementary variables
weighted_col	column weights

Value

A list containing results of FactoMineR's principal components analysis (PCA).

Examples

Description

Return eigenvalues and eigenvectors of a matrix

Usage

```
pca_eigen(X)

pca_weighted_eigen(
   X,
   weighted_row = rep(1, nrow(X))/nrow(X),
   weighted_col = rep(1, ncol(X))
)
```

Arguments

```
egin{array}{lll} X & X_active \\ weighted\_row & row weights \\ weighted\_col & column weights \\ \end{array}
```

Details

Standardization depends on what you need to perform factor analysis. We implemented two types:

- pca_weighted_eigen: This is the default method in FactoMineR to compute eigvalues, eigvectors and U matrix.
- pca_eigen: This is the standard method to compute eigenvalues, eigenvectors.

pca_ind_contrib

Value

A list containing results of Single Value Decomposition (SVD).

Examples

```
library(booklet)

iris[, -5] |>
  pca_standardize_norm() |>
  pca_eigen()
```

pca_ind_contrib

Compute individual contributions

Description

Return individual contributions for each principal component

Usage

```
pca_ind_contrib(
  ind_coords,
  eigs,
  weighted_row = rep(1, nrow(ind_coords))/nrow(ind_coords)
)
```

Arguments

```
ind_coords individual coordinates
eigs eigs computed by pca_eigen or pca_weighted_eigen
weighted_row row weights
```

Details

If you want to compute the contributions of the individuals to the principal components, you have to change the weighted_col argument to rep(1, nrow(ind_cos2)).

Value

A dataframe of individual contributions.

pca_ind_coords 13

Examples

```
library(booklet)
eigs <- iris[, -5] |>
  pca_standardize_norm() |>
  pca_weighted_eigen()

eigs |>
  pca_ind_coords() |>
  pca_ind_contrib(eigs) |>
  head()
```

pca_ind_coords

Compute coordinates for individuals

Description

Return principal component for individuals

Usage

```
pca_ind_coords(eigs)
```

Arguments

eigs

eigs computed by pca_eigen or pca_weighted_eigen

Value

A dataframe of individual coordinates.

```
library(booklet)

iris[, -5] |>
  pca_standardize_norm() |>
  pca_weighted_eigen() |>
  pca_ind_coords() |>
  head()
```

14 pca_standardize_norm

pca_ind_cos2

Compute individual squared cosines

Description

Return individual squared cosines for each principal component

Usage

```
pca_ind_cos2(ind_coords, weighted_col = rep(1, ncol(ind_coords)))
```

Arguments

```
ind_coords individual coordinates
weighted_col column weights
```

Value

A dataframe of individual squared cosines.

Examples

```
library(booklet)

iris[, -5] |>
  pca_standardize_norm() |>
  pca_weighted_eigen() |>
  pca_ind_coords() |>
  pca_ind_cos2() |>
  head()
```

pca_standardize_norm

Data standardization for PCA

Description

Perform data standardization for multivariate exploratory data analysis.

```
pca_standardize_norm(X, center = TRUE, scale = TRUE)
pca_standardize(X, scale = TRUE, weighted_row = rep(1, nrow(X))/nrow(X))
```

pca_var_contrib 15

Arguments

X matrix

center centering by the mean

scale scaling by the standard deviation

weighted_row row weights

Details

Standardization depends on what you need to perform factor analysis. Two methods are implemented:

- standardize: standardization is performed by centering the data matrix and dividing by the square root of the sum of squares of the weights. This is the same method used in FactoMineR::PCA().
- standardize_norm: standardization is performed by centering and scaling the data matrix. $(X \mu) / S$, where μ is the mean and S is the standard deviation.

Value

A dataframe of the same size as X.

Examples

```
library(booklet)

iris[, -5] |>
  pca_standardize_norm() |>
  head()
```

pca_var_contrib

Compute variable contributions

Description

Return variable contributions

Usage

```
pca_var_contrib(var_cos2, eigs, weighted_col = rep(1, ncol(var_cos2)))
```

Arguments

var_cos2 variable coordinates

eigs eigs computed by pca_eigen or pca_weighted_eigen

weighted_col column weights

pca_var_coords

Value

A dataframe of variable contributions.

Examples

```
library(booklet)
eigs <- iris[, -5] |>
  pca_standardize_norm() |>
  pca_weighted_eigen()

eigs |>
  pca_var_coords() |>
  pca_var_cos2() |>
  pca_var_contrib(eigs) |>
  head()
```

pca_var_coords

Compute variable coordinates

Description

Return variable coordinates

Usage

```
pca_var_coords(eigs)
```

Arguments

eigs

eigs computed by pca_eigen or $pca_weighted_eigen$

Value

A dataframe of variable coordinates.

```
library(booklet)

iris[, -5] |>
  pca_standardize_norm() |>
  pca_weighted_eigen() |>
  pca_var_coords() |>
  head()
```

pca_var_cor 17

pca_var_cor

Compute variable correlation

Description

Return variable correlation

Usage

```
pca_var_cor(eigs)
```

Arguments

eigs

eigs computed by pca_eigen or pca_weighted_eigen

Value

A dataframe of variable correlation.

Examples

```
library(booklet)

iris[, -5] |>
  pca_standardize_norm() |>
  pca_weighted_eigen() |>
  pca_var_cor() |>
  head()
```

pca_var_cos2

Compute variable squared cosines

Description

Return variable squared cosines

Usage

```
pca_var_cos2(var_coords)
```

Arguments

var_coords

variable coordinates

Value

A dataframe of variable squared consines.

pca_var_cos2

```
library(booklet)

iris[, -5] |>
  pca_standardize_norm() |>
  pca_weighted_eigen() |>
  pca_var_coords() |>
  pca_var_cos2() |>
  head()
```

Index

```
ca_col_contrib, 2
ca_col_coords, 3
ca_col_cos2, 4
ca_col_inertia, 4
ca_col_sup_coords (ca_col_coords), 3
ca_col_sup_cos2 (ca_col_cos2), 4
ca_row_contrib, 5
ca_row_coords, 6
ca_row_cos2, 6
ca_row_inertia, 7
ca_row_sup_coords (ca_row_coords), 6
ca_row_sup_cos2 (ca_row_cos2), 6
ca_standardize, 8
\verb|ca_standardize_sup| (\verb|ca_standardize|), 8
ca_weighted_eigen, 8
facto_ca, 9
facto_mfa, 10
facto_pca, 10
pca_eigen, 11
pca_ind_contrib, 12
pca_ind_coords, 13
pca\_ind\_cos2,\, 14
pca_standardize(pca_standardize_norm),
pca_standardize_norm, 14
pca_var_contrib, 15
pca_var_coords, 16
pca_var_cor, 17
pca_var_cos2, 17
pca_weighted_eigen(pca_eigen), 11
```