1. Solution

The sample size, *n*, is 63. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 63 ceil$	16	32.97
Q2	$\lceil 0.5 \times 63 \rceil$	32	33.74
Q3	$\lceil 0.75 \times 63 \rceil$	48	34.43

We determine the IQR.

$$IQR = Q3 - Q1$$

= 34.43 - 32.97
= 1.46

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $32.97 - 1.5 \times 1.46$
= 30.78
upper boundary = Q3 + $1.5 \times IQR$
= $34.43 + 1.5 \times 1.46$
= 36.62

We determine the outliers.

outliers =
$$\{30.65\}$$

We identify the ends of the whiskers: 30.91 and 34.98. We plot the boxplot.

2. Solution

The sample size, *n*, is 72. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 72 ceil$	18	43.15
Q2	$\lceil 0.5 \times 72 \rceil$	36	44.05
Q3	$\lceil 0.75 \times 72 \rceil$	54	44.59

We determine the IQR.

$$IQR = Q3 - Q1$$

= 44.59 - 43.15
= 1.44

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $43.15 - 1.5 \times 1.44$
= 40.99
upper boundary = Q3 + $1.5 \times IQR$
= $44.59 + 1.5 \times 1.44$
= 46.75

We determine the outliers.

outliers =
$$\{40.64, 40.96\}$$

We identify the ends of the whiskers: 41.26 and 44.96. We plot the boxplot.

