Problem 5.1

A particle is in the orbital angular momentum state

$$|\psi\rangle = a_{-1}|1, -1\rangle + a_0|1, 0\rangle$$

where a_{-1}, a_0 are complex numbers obeying $|a_{-1}|^2 + |a_0|^2 = 1$, and $|l, m\rangle$ are the eigenkets of \hat{L}^2 and \hat{L}_z such that $\hat{L}^2|l, m\rangle = \hbar^2 l(l+1)|l, m\rangle$ and $\hat{L}^z|l, m\rangle = \hbar m|l, m\rangle$.

- a) Which values can be gotten when measuring the z-component of the angular momentum in this state. Give also their respective probabilities.
- b) Compute the probability of finding the particle in state $|\psi\rangle$ north of the 30^0 latitude (1 > z > 1/2).
- c) Repeat a), but now measuring the angular momentum in the x-direction. (Find the eigenkets of \hat{L}_x in terms of linear combinations of the $|l,m\rangle$ states. Hint: Use $\hat{L}_x = (\hat{L}_+ + \hat{L}_-)/2$).

Problem 5.2

A tritium atom, consisting of a nucleus(one proton and two neutrons) and an electron, is in its ground state. A radioactive decay changes the nucleus suddenly to a ³He nucleus(two protons and one neutron). Assume that the electron wavefunction is unaffected by the radioactive decay.

- a) What are the possible values that an energy measurement can give after the radioactive decay?
- b) Compute the probability of getting the lowest energy value (finding the atom ³He in its ground state) just after the radioactive decay.