Math 230B: Homework 6

Lance Remigio

April 18, 2025

Problem 1. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.

Proof. Our goal is to show that there exists an M such that for all $n \ge 1$ and for all $x \in A$, we have

$$|f_n(x)| \leq M.$$

Since $f_n \to f$ uniformly, we know that for all $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for any m, n > N and for all $x \in A$, we have

$$|f_n(x) - f_m(x)| < \varepsilon.$$

In particular, if $\varepsilon = 1$, then

$$|f_n(x) - f_m(x)| < 1 \Longleftrightarrow |f_n(x)| < |f_m(x)| + 1 \quad \forall n, m > N.$$
(*)

Since each f_n is bounded, it follows that there exists an R_n such that

$$|f_n(x)| \le R_n$$

for all $n \in \mathbb{N}$ and for all $x \in A$. Let $R = \max\{R_1, R_2, \dots, R_m\}$. Then from (*), we can see that

$$|f_n(x)| < |f_m(x)| + 1 \le R_m + 1 \le R + 1$$

for any $x \in A$ and for any $n \in \mathbb{N}$ where M = R + 1 is the desired M we were looking for. Hence, (f_n) is a uniformly bounded sequence of functions.

Problem 2. If (f_n) and (g_n) converge uniformly on a set A, prove that $(f_n + g_n)$ converges uniformly on A. Also,

Proof. Our goal is to show that for any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for any n, m > N and for any $x \in A$, we have

$$|(f_n + g_n)(x) - (f_m + g_m)(x)| < \varepsilon.$$

Let $\varepsilon > 0$ be given. Since (f_n) converges uniformly on A, it follows from the Cauchy Criterion for uniform convergence that, with our given ε , there exists an $N_1 \in \mathbb{N}$ such that for any $n, m > N_1$ and for any $x \in A$, we have

$$|f_n(x) - f_m(x)| < \frac{\varepsilon}{2}. (1)$$

Similarly, the uniform convergence of (g_n) on A implies that there exists an $N_2 \in \mathbb{N}$ such that for any $n, m > N_2$ and for any $x \in A$ that

$$|g_n(x) - g_m(x)| < \frac{\varepsilon}{2}. (2)$$

Then for any $n, m > \max\{N_1, N_2\} + 1$ and for any $x \in A$, we have

$$|(f_n + g_n)(x) - (f_m + g_m)(x)| \le |f_n(x) - f_m(x)| + |g_n(x) - g_m(x)|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

which is our desired result.

Problem 3. If (f_n) and (g_n) are two sequences of bounded functions that converge uniformly on a set A, prove that (f_ng_n) converges uniformly on A.

Proof. Our goal is to show that for all $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for any n, m > N and for any $x \in A$, we have

$$|(f_n g_n)(x) - (f_m g_m)(x)| < \varepsilon.$$

Let $\varepsilon > 0$ be given. By problem 1, it follows from the uniform convergence of both bounded sequences (f_n) and (g_n) that there exists an $M_1, M_2 > 0$ such that for any $x \in A$ and for any $n \in \mathbb{N}$ that

$$|f_n(x)| \leq M_1$$
 and $|g_n(x)| \leq M_2$,

respectively. Since (f_n) converges uniformly on A, it follows that there exists an $N_1 \in \mathbb{N}$ such that for any $x \in A$ and for any $n, m > N_1$ that

$$|f_n(x) - f_m(x)| < \frac{\varepsilon}{2M_2}. (1)$$

Similarly, the uniform convergence of (g_n) implies that there exists an $N_2 \in \mathbb{N}$ such that for any $x \in A$ and for any $n, m > N_2$, we have

$$|g_n(x) - g_m(x)| < \frac{\varepsilon}{2M_1}. (2)$$

Now, for any $x \in A$ and for any $n, m > \max\{N_1, N_2\} + 1$, we have

$$\begin{aligned} |(f_{n}g_{n})(x) - (f_{m}g_{m})(x)| &\leq |f_{n}g_{n}(x) - f_{m}g_{n}(x) + f_{m}g_{n}(x) - f_{m}g_{m}(x)| \\ &\leq |f_{n}g_{n}(x) - f_{m}(x)g_{n}(x)| + |f_{m}(x)g_{n}(x) - f_{m}(x)g_{m}(x)| \\ &= |g_{n}(x)||f_{n}(x) - f_{m}(x)| + |f_{m}(x)||g_{n}(x) - g_{m}(x)| \\ &\leq M_{2}|f_{n}(x) - f_{m}9x| + M_{1}|g_{n}(x) - g_{m}(x)| \\ &< M_{2} \cdot \frac{\varepsilon}{2M_{2}} + M_{1} \cdot \frac{\varepsilon}{2M_{1}} \\ &= \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \varepsilon. \end{aligned}$$

Problem 4. Consider the sequences $(f_n : \mathbb{R} \to \mathbb{R})$ and $(g_n : \mathbb{R} \to \mathbb{R})$ defined as follows:

$$f_n(x) = 2 + \frac{5}{n}$$
 $g_n(x) = x + \frac{2}{n}$

Prove that both (f_n) and (g_n) converge uniformly on the set \mathbb{R} , but (f_ng_n) does not converge uniformly on \mathbb{R} .

Proof. Clearly, we see that $f_n \to f = 2$ uniformly. Also, it is not difficult to see that $g_n \to g$ where g(x) = x for all $x \in \mathbb{R}$. We will show that this convergence is uniform. Let $\varepsilon > 0$ be given. Choose $N = \frac{\varepsilon}{\varepsilon}$ and observe that for any $x \in \mathbb{R}$ and for any n > N, we have

$$|g_n(x) - g(x)| = \left|\left(x + \frac{5}{n}\right) - x\right| = \frac{5}{n} < \frac{5}{N} = \varepsilon.$$

Hence, we see that $g_n \to g$ uniformly on \mathbb{R} . Note that

$$f_n g_n(x) = \left(2 + \frac{5}{n}\right) \left(x + \frac{2}{n}\right)$$

= $\left(2 + \frac{5}{n}\right) x + \frac{4}{n} + \frac{10}{n^2}$.

Since we see that $f_n g_n \to 2x$, we have

$$f_n g_n(x) - 2x = \frac{5}{n}x + \frac{6}{n}.$$

Define $b_n = f_n g_n(n) - 2n$. Then it follows that

$$b_n = 5 + \frac{6}{n}$$

which implies that $\lim_{n\to\infty} b_n = 5 > 0$ and that

$$\sup_{x \in \mathbb{R}} |f_n g_n(x) - 2x| \ge b_n.$$

Hence, $f_n g_n(x) \to 2x$ for any $x \in \mathbb{R}$ is NOT uniform.

Problem 5. Let $A \subseteq (X, d)$. Let $(f_n : A \to \mathbb{R})$ be a sequence of continuous functions which converges uniformly to a function f on the set A. Let (x_n) be a sequence in A such that $x_n \to x \in A$. Prove that

$$\lim_{n \to \infty} f_n(x_n) = f(x).$$

Proof. Our goal is to show that for any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for any n > N, we have

$$|f_n(x_n) - f(x)| < \varepsilon.$$

Let $\varepsilon > 0$ be given. Since $f_n \to f$ uniformly where each f_n is a continuous function, we also have that f is a continuous function by a theorem proven in class. Since $x_n \to x \in A$ and f is continuous on A, it follows from the sequential criterion of continuity that $f(x_n) \to f(x)$ on A. With our given ε , there exists an $N_1 \in \mathbb{N}$ such that for any $n > N_1$, we have

$$|f(x_n) - f(x)| < \frac{\varepsilon}{2}. (1)$$

Since $f_n \to f$ uniformly, there exists an $N_2 \in \mathbb{N}$ such that for any $n > N_2$ and any $x \in A$, we have

$$|f_n(x) - f(x)| < \frac{\varepsilon}{2}. (2)$$

Choose $N = \max\{N_1, N_2\} + 1$. Because $x_n \in A$ for all $n \in \mathbb{N}$, it follows that for any $n > N_1$, we have

$$|f_n(x_n) - f(x_n)| < \frac{\varepsilon}{2}$$

from (1). For any n > N, it follows that

$$|f_n(x_n) - f(x)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(x)|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Hence, we conclude that

$$\lim_{n \to \infty} f_n(x_n) = f(x).$$

Problem 6. Let $A \subseteq (X,d)$. Suppose $g: \mathbb{R} \to \mathbb{R}$ is continuous. Prove that if $(f_n: A \to \mathbb{R})_{n \ge 1}$ is a sequence of bounded functions that converges uniformly to $f: A \to \mathbb{R}$, then $(g \circ f_n)_{n \ge 1}$ converges uniformly to $g \circ f$.

Proof. Our goal is to show that for any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for any n > N and for any $x \in A$, we have

$$|(g \circ f_n)(x) - (g \circ f)(x)| < \varepsilon.$$

That is, we want to find an $N \in \mathbb{N}$ such that for any n > N and for any $x \in A$,

$$|g(f_n(x)) - g(f(x))| < \varepsilon. \tag{*}$$

To this end, let $\varepsilon > 0$ be given. Since (f_n) is a sequence of bounded functions that converges uniformly to $f: A \to \mathbb{R}$, we have that (f_n) is uniformly bounded by problem 1. Hence, there exists an M > 0 such

that $|f_n(x)| \leq M$ for all $x \in A$. As a consequence, we see that $|f(x)| \leq M$ for all $x \in A$. Consider the compact interval [-M,M] and $g|_{[-M,M]}$. Since g is continuous and [-M,M] is compact, it follows that g is uniformly continuous. Hence, there exists (with our given ε) a $\delta > 0$ such that for all $s,t \in [-M,M]$ whenever $|s-t| < \delta$, we have

$$|g(s) - g(t)| < \varepsilon$$
.

Since $f_n \to f$ uniformly, we can find an $\hat{N} \in \mathbb{N}$ such that for any $n > \hat{N}$ and for any $x \in A$, we have

$$|f_n(x) - f(x)| < \varepsilon.$$

We claim that this \hat{N} can be used as the same N we were looking for. Indeed, if we take $\varepsilon = \delta$, then if $|f_n(x) - f(x)| < \delta$, then (*) will hold for any $n > \hat{N}$ and we are done.

Problem 7. For each $n \in \mathbb{N}$, let $f_n: (0,1) \to \mathbb{R}$ be defined by $f_n(x) = \frac{1}{nx+1}$.

1. Explain in one line why $f_n \to f$ pointwise where $f \equiv 0$. **Proof.** Note that for all $x \in (0,1)$ and for all $n \in \mathbb{N}$, we have

$$0 \le \frac{1}{nx+1} \le \frac{1}{nx} \to 0.$$

Thus, the Squeeze Theorem implies that $\frac{1}{nx+1} \to 0$ pointwise.

- 2. Explain in one line why each f_n is continuous. **Proof.** Since 1 is a constant function and nx+1 is a polynomial function which are both continuous function where $nx+1 \neq 0$, it follows from the Algebraic Continuity Theorem that each f_n is continuous.
- 3. Explain why for each $n \in \mathbb{N}$, we have $f_{n+1} \leq f_n$. **Proof.** It immediately follows that for all $n \in \mathbb{N}$, 1 + nx is an increasing function. Define $\hat{f}_n(x) = 1 + nx$. Then from our observation $\hat{f}_n \leq \hat{f}_{n+1}$ for all $n \in \mathbb{N}$. Dividing we get

$$\frac{1}{\hat{f}_{n+1}} \leq \frac{1}{\hat{f}_n} \Longrightarrow f_{n+1} \leq f_n \quad \forall n \in \mathbb{N}.$$

Thus, f_n is a decreasing sequence of functions.

- 4. Explain why $f_n \to f$ is NOT uniform. **Solution.** Since f_n is defined over a non-compact interval (0,1), it follows from Dini's Theorem that $f_n \to f$ is NOT uniform.
- 5. Explain why this example does not contradict the following theorem. **Solution.** This does not contradict the theorem because we still have pointwise convergence of $f_n \to f$.

Problem 8. (a) Prove that $(f_n : A \to \mathbb{R})_{n \geq 1}$ converges uniformly to 0 if and only if $(|f_n|)_{n \geq 1}$ converges uniformly to 0.

(b) Let $f:[0,1] \to \mathbb{R}$ be a continuous function and assume that f(1) = 0. Prove that $(x^n f(x))$ converges uniformly on [0,1].

Proof. (a) (\Longrightarrow) Our goal is to show that $(|f_n|)_{n\geq 1}$ converges uniformly to 0. It suffices to show that for any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for any m, n > N and for any $x \in A$, we have

$$||f_n(x)| - |f_m(x)|| < \varepsilon.$$

Let $\varepsilon > 0$. Since $(f_n)_{n \geq 1}$ converges uniformly on A, it follows from our given ε that there exists an $\hat{N} \in \mathbb{N}$ such that for any $n, m > \hat{N}$, we have

$$|f_n(x) - f_m(x)| < \varepsilon.$$

We claim that we can use \hat{N} as the N we were looking for. Indeed, we can see that for any $n, m > \hat{N}$ and $x \in A$ that

$$||f_n(x)| - |f_m(x)|| \le |f_n(x) - f_m(x)| < \varepsilon$$

which is our desired result.

(\Leftarrow) Our goal is to show that $(f_n : A \to \mathbb{R})_{n \ge 1}$ converges uniformly to 0. It suffices to show that for any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for any n > N and for any $n \in A$, we have

$$|f_n(x)| < \varepsilon.$$

Let $\varepsilon > 0$. Clearly, since $|f_n|$ converges uniformly to 0, then there exists an $\hat{N} \in \mathbb{N}$ such that for any $n > \hat{N}$ and $x \in A$,

$$|f_n(x)| < \varepsilon$$

with \hat{N} as the same N we were looking for as desired. Hence, $f_n \to 0$ uniformly.

- (b) We will show that f_n defined by $f_n(x) = x^n f(x)$ for all $x \in [0,1]$ converges to 0 uniformly using Dini's theorem. In what follows, we will show that each f_n satisfies the following conditions:
 - (1) [0,1] is a compact set.
 - (2) For each $n \in \mathbb{N}$, $f_n : [0,1] \to \mathbb{R}$ is continuous.
 - (3) $f_n \to 0$ pointwise on K (Clearly, the zero function is continuous).
 - (4) For each $n \in \mathbb{N}$, we have $f_{n+1} \leq f_n$.

Clearly, (1) is satisfied by the Heine-Borel theorem on \mathbb{R} . Also, since f is continuous on [0,1] and x^n is a polynomial function which is clearly continuous on [0,1], it follows from the Algebraic Continuity Theorem that each f_n is a continuous function and so (2) is satisfied. Next, notice that for $x=0, f_n \to 0$ immediately. Similarly, if x=1, then it immediately follows that $f_n \to 0$. On the other hand, if $x \in (0,1)$, then $x^n \to 0$. Using the Algebraic Limit Theorem, it follows that $f(x)x^n \to 0$ for any $x \in (0,1)$. Thus, we see that (3) is satisfied with the pointwise limit being clearly continuous on [0,1]. Lastly, we see that for any $x \in [0,1]$, x^n is a decreasing function. Hence, $f_n(x) = f(x)x^n$ is a decreasing function and so (4) is satisfied.

By Dini's Theorem, we can conclude that $f_n \to 0$ uniformly on [0,1].

Problem 9. Let $f: \mathbb{R} \to \mathbb{R}$ be a uniformly continuous function, and for each $n \in \mathbb{N}$, let $f_n: \mathbb{R} \to \mathbb{R}$ be defined by $f_n(x) = f(x + \frac{1}{n})$. Prove that $(f_n)_{n \geq 1}$ converges uniformly to f on \mathbb{R} .

Proof. It suffices to show that for any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for any n, m > N and for any $x \in \mathbb{R}$, we have

$$|f_n(x) - f_m(x)| < \varepsilon. \tag{*}$$

That is, we need to find an $N \in \mathbb{N}$ such that for any n, m > N and for any $x \in \mathbb{R}$, we have

$$\left|f\Big(x+\frac{1}{n}\Big)-f\Big(x+\frac{1}{m}\Big)\right|<\varepsilon.$$

Since f is uniformly continuous, it follows from our given ε that there exists a $\delta > 0$ such that for all $x, y \in \mathbb{R}$ satisfying $|x - y| < \delta$, we have

$$|f(x) - f(y)| < \varepsilon.$$

Notice that $x_n = x + \frac{1}{n}$ converges to $x \in \mathbb{R}$. Hence, (x_n) is a Cauchy sequence in \mathbb{R} . Thus, for any $\varepsilon > 0$, there exists an $\hat{N} \in \mathbb{N}$ such that for any $n, m > \hat{N}$, we have

$$|x_n - x_m| < \varepsilon.$$

That is,

$$|x_n - x_m| = \left| \left(x - \frac{1}{n} \right) - \left(x - \frac{1}{m} \right) \right| = \left| \frac{1}{n} - \frac{1}{m} \right| < \varepsilon$$

for any $n, m > \hat{N}$. Using $\varepsilon = \delta$, it follows from (*) that whenever $|x_n - x_m| = \left|\frac{1}{n} - \frac{1}{m}\right| < \delta$,

$$\left| f\left(x + \frac{1}{n}\right) - f\left(x + \frac{1}{m}\right) \right| < \varepsilon \quad \forall n, m > \hat{N}.$$

That is,

$$|f_n(x) - f_m(x)| < \varepsilon$$

for any $n, m > \hat{N}$. Hence, (f_n) converges to f uniformly.

Problem 10. For each case, determine whether the given sequence of functions converges pointwise. If it does, determine whether the convergence is uniform.

- 10-1) $f_n: [0,1] \to \mathbb{R}$ defined by $f_n(x) = n^3 x^n$. Solution. f_n diverges since $n^3 \to \infty$ as $n \to \infty$.
- 10-2) $f_n:[0,\pi]\to\mathbb{R}$ defined by $f_n(x)=\sin^n(x)$. **Solution.** Note that $|\sin x|\leq 1$ for all $x\in[0,\pi]$. Furthermore, f_n is a sequence of continuous functions (since $\sin x$ is a continuous function and x^n is a polynomial which is continuous so their composition is continuous) and decreasing. Also, note that the convergence of f_n to 0 is pointwise

and [0,1] is a compact set in \mathbb{R} . Dini's theorem implies that $f_n \to 0$ uniformly.

- 10-3) $f_n:(0,1)\to\mathbb{R}$ defined by $f_n(x)=2nxe^{-n^2x^2}$. **Proof.** Converges pointwise to 0 but convergence is not uniform since $(0,\infty)$ is not a compact set (By Dini's Theorem).
- 10-4) $f_n:(0,\infty)\to\mathbb{R}$ defined by $f_n(x)=\frac{n^2x}{(nx+1)^3}$. **Proof.** Converges pointwise to 0 but convergence is not uniform since $(0,\infty)$ is not a compact set (By Dini's theorem).
- 10-5) $f_n:(0,1)\to\mathbb{R}$ defined by $f_n(x)=\frac{x}{nx+1}$. **Proof.** Converges pointwise to 0 but convergence is not uniform since (0,1) is not a compact set (By Dini's theorem).
- 10-6) $f_n: \mathbb{R} \to \mathbb{R}$ defined by $f_n(x) = \frac{x}{nx^2+1}$. **Proof.** Converges pointwise to 0 but convergence is not uniform since \mathbb{R} is not a compact set (By Dini's theorem).
- 10-7) $f_n:[0,\infty)\to\mathbb{R}$ defined by $f_n(x)=\frac{nx}{n^3+x^3}$. **Solution.** Note that f_n is a sequence of continuous functions (since it is a ratio of continuous functions) which converges to 0 pointwise, but not uniform since $[0,\infty)$ is not a compact set by Dini's Theorem.
- 10-8) $f_n:[0,\infty)\to\mathbb{R}$ defined by $f_n(x)=\frac{nx^2}{n^3+x^3}$. **Solution.** Note that f_n is a sequence of continuous functions (since it is a ratio of continuous functions) which converges to 0 pointwise, but not uniform since $[0,\infty)$ is not a compact set by Dini's Theorem.
- 10-9) $f_n:[0,1]\to\mathbb{R}$ with $g_n=f_n'$ where $f_n:[0,1]\to\mathbb{R}$ is defined by $f_n(x)=\frac{\ln(1+nx)}{n}$. **Solution.** Note that for all $x\in[0,1]$, we have

$$g_n(x) = f'_n(x) = \frac{1}{nx+1}$$

which is a sequence of continuous functions and that converges to 0 pointwise. Since [0,1] is compact and g_n is a decreasing sequence of functions, it follows from Dini's Theorem that $g_n \to 0$ uniformly. Notice that for x = 0, the sequence $f_n(0) \to 0$. Hence, Exercise 12 from homework 5 implies that $f_n \to 0$ uniformly on [0,1].

Problem 11. For each $n \in \mathbb{N}$, let $f_n : [0,1] \to \mathbb{R}$ be defined by

$$f_n(x) = \begin{cases} \frac{1}{n} & \text{if } \frac{1}{2^n} < x \le \frac{1}{2^{n-1}} \\ 0 & \text{otherwise} \end{cases}$$

Prove that the Weierstrass M-Test cannot be applied to establish the uniform convergence of $\sum_{n=1}^{\infty} f_n$. Nevertheless, show that this series converges uniformly.

Proof. Note that we cannot use the Weierstrass M-Test because $\sum_{n=1}^{\infty} \frac{1}{n}$ is a harmonic series which diverges. Hence, we will show via the Cauchy Criterion that $\sum f_n$ converges uniformly on [0, 1].

Clearly, if $x \notin (\frac{1}{2^n}, \frac{1}{2^{n-1}}]$, then $f_n(x) = 0$ for all $n \in \mathbb{N}$, then the series $\sum_{n=1}^{\infty} f_n(x)$ converges. Suppose $x \in (\frac{1}{2^n}, \frac{1}{2^{n-1}}]$. Then for all $n \in \mathbb{N}$, $f_n(x) = \frac{1}{n}$. Our goal is to show that for any $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for any $n, m \ge N$, we have

$$\left|\sum_{k=m+1}^{n} f_n(x)\right| < \varepsilon.$$

Since at most one $f_n(x)$ is nonzero for any x, and $f_n(x) = \frac{1}{n}$, it follows that we can find an N large enough so that $\frac{1}{N} < \varepsilon$. Then for all $x \in [0,1]$ and for all n,m > N, we have

$$\Big|\sum_{k=m+1}^{n} f_n(x)\Big| \le \sup_{n \in \mathbb{N}} \frac{1}{n} < \frac{1}{N} < \varepsilon.$$

Hence, f_n converges uniformly on [0,1].

Problem 12. Prove that $\sum_{n=1}^{\infty} \frac{x}{1+n^4x^2}$ converges uniformly on $[0,\infty)$.

Proof. Our goal is to show that the series $\sum_{n=1}^{\infty} \frac{x}{1+n^4x^2}$ converges uniformly. It suffices to show that the series above satisfies the Weierstrass M-Test. Indeed, we see that for all $n \in \mathbb{N}$ and for all $x \in [0, \infty]$,

$$\left| \frac{x}{1 + n^4 x^2} \right| \le \left| \frac{x}{n^4 x^2} \right| = \left| \frac{1}{n^4 x} \right| = \frac{1}{|n^4||x|} \le \frac{1}{n^4}$$

where $M_n = \frac{1}{n^4}$. Clearly, the series $\sum_{n=1}^{\infty} M_n$ converges via the p-series test. Hence, the Weierstrass M-Test implies that $\sum_{n=1}^{\infty} \frac{x}{1+n^4x^2}$ converges uniformly.

Problem 13. (a) Use Taylor's Theorem with Lagrange remainder to prove that for all x > 0, we have $e^x > \frac{x^2}{2}$.

(b) Prove that $\sum_{n=1}^{\infty} x^2 e^{-nx}$ converges uniformly on $[0, \infty)$.

Proof. (a) Clearly, we can see that e^x is differentiable n+1 times and so by Taylor's Theorem with Lagrange Remainder, it follows that

$$e^x = \sum_{k=1}^n \frac{x^k}{k!} > \frac{x^2}{2!} = \frac{x^2}{2}$$

for all x > 0.

(b) We proceed via the Weierstrass M-Test to prove that $\sum_{n=1}^{\infty} x^2 e^{-nx}$ converges uniformly on $[0, \infty)$. From part (a), it follows for all $n \in \mathbb{N}$ that

$$|x^2e^{-nx}| = x^2e^{-nx} < 2e^x \cdot e^{-nx} = 2e^{x(1-n)} = \frac{2}{e^{x(n-1)}} < 2e \cdot \left(\frac{1}{e}\right)^n.$$

Note that $|r| = \frac{1}{e} < 1$ and so the series

$$\sum_{n=1}^{\infty} 2e \cdot \left(\frac{1}{e}\right)^n.$$

is geometric which converges. Hence, the Weierstrass M-Test implies that $\sum_{n=1}^{\infty} x^2 e^{-nx}$ converges uniformly.

Problem 14. Let a>0 be a fixed number. Prove that $\sum_{n=1}^{\infty} 2^n \sin(\frac{1}{3^n x})$ converges uniformly on $[a,\infty)$ and does not converge uniformly on $(0,\infty)$.

Proof. Our goal is to show that $\sum_{n=1}^{\infty} 2^n \sin(\frac{1}{3^n x})$ converges uniformly on $[a, \infty)$. We will do this via the Weierstrass M-Test. Note that for all $n \in \mathbb{N}$ and for all $x \in [a, \infty)$, we can use a result from homework 10 in Math 230A to write

$$\left| 2^n \sin\left(\frac{1}{3^n x}\right) \right| \le \frac{2^n}{|x|3^n} = \frac{1}{|x|} \cdot \left(\frac{2}{3}\right)^n \le \frac{1}{a} \cdot \left(\frac{2}{3}\right)^n.$$
 (*)

Observe that $\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$ is a convergent series because it is geometric series $(|r| = \frac{2}{3} < 1)$. Thus, the Algebraic Theorem for Series implies that $\sum_{n=1}^{\infty} \frac{1}{a} \cdot (\frac{2}{3})^n$ converges. Using the Weierstrass M-Test, it follows that $\sum_{n=1}^{\infty} 2^n \sin(\frac{1}{3^n x})$ converges uniformly on $[a, \infty)$.

Now, let us consider the same series on the interval $(0, \infty)$. From our inequality in (*), we see that the series defined on the following sequence term

$$\frac{1}{|x|} \cdot \left(\frac{2}{3}\right)^n$$

depends on $x \in (0, \infty)$ and is not a constant sequence. Hence, it follows that $\sum_{n=1}^{\infty} 2^n \sin(\frac{1}{3^n x})$ does not converge uniformly via the Weierstrass M-Test.

Problem 15. Let a > 0 be a fixed number. Prove that the series

$$\sum_{n=1}^{\infty} \frac{nx}{1 + n^4 x^2}$$

converges uniformly on $[a, \infty)$ and does not converge uniformly on $[0, \infty]$.

Proof. Consider $\sum_{n=1}^{\infty} \frac{nx}{1+n^4x^2}$ over the interval $[a, \infty)$ where a > 0 is fixed. For all $n \in \mathbb{N}$, it follows that

$$\left|\frac{nx}{1+n^4x^2}\right| \leq \frac{n|x|}{|1+n^4x^2|} \leq \frac{1}{n^3|x|} \leq \frac{1}{an^3}.$$

Since $\sum_{n=1}^{\infty} \frac{1}{n^3}$ is a convergent series (via the P-Series Test), we know by the Algebraic Limit Theorem for Series that $\sum_{n=1}^{\infty} \frac{1}{an^3}$ is also a convergent series. Hence, the Weierstrass M-Test implies that $\sum_{n=1}^{\infty} \frac{nx}{1+n^4x^2}$ converges uniformly on $[a, \infty)$

Now, consider the same series over $[0, \infty)$. Clearly, the series converges if x = 0. Performing a similar set of computations, we obtain the following inequality

$$\left|\frac{nx}{1+n^4x^2}\right| \leq \frac{n|x|}{|1+n^4x^2|} \leq \frac{n|x|}{2n^2|x|} \leq \frac{1}{2n}$$

for any $x \in (0, \infty)$. Note that the series on the right-hand side of the above inequality diverges because it is a harmonic series. Hence, it follows from the Weierstrass M-Test that the series does NOT converge uniformly on the interval $(0, \infty)$.