Chapitre 35

Familles sommables

35	Familles sommables
	35.2 Reformulation
	35.5 Croissance de la somme
	35.8 Lien avec les séries à termes positifs
	35.10Invariance de la somme d'une série à termes positifs par permutation des termes
	35.12Restriction
	35.13Preque linéarité
	35.14Sommation par paguets

35.2 Reformulation

Soit $\sum a_n$ une séries à termes positifs. Alors $\sum_{n\geq 0} a_n$ est bien définie dans \mathbb{R}_+ et

$$\sum_{n>0} a_n = \sup \left\{ \sum_{k \in J} a_k, J \in \mathcal{P}_f(\mathbb{N}) \right\}$$

En notant, pour $n \in \mathbb{N}, S_n = \sum_{k=0}^n a_k$, on a:

$$S_n \xrightarrow[n \to +\infty]{} \sum_{k>0}^{a_k}$$

Or pour tout $n \in \mathbb{N}$, $S_n \in \left\{ \sum_{k \in J} a_k \mid J \in \mathcal{P}_f(\mathbb{N}) \right\}$. Donc $\sum_{k \geq 0} a_k \leq \sup \left\{ \sum_{k \in J} a_k \mid J \in \mathcal{P}_f(\mathbb{N}) \right\} = S$. Par ailleurs, pour $J \in \mathcal{P}_f(\mathbb{N})$, on pose $N = \max J$ et $J \subset \llbracket 0, N \rrbracket$ et :

$$\sum_{k \in J} a_k \le \sum_{k=0}^N a_k \le \sum_{k>0} a_k$$

Par définition de la borne supérieure :

$$S \leq \sum_{k \geq 0} a_k$$

Donc:

$$\sum_{k>0} a_k = S$$

Croissance de la somme 35.5

Soit $(a_i)_{i\in I}$ et $(b_i)_{i\in I}$ deux familles à valeurs dans $\overline{\mathbb{R}}_+$. Si pour tout $i\in I, a_i\leq b_i$, alors

$$\sum_{i \in I} a_i \le \sum_{i \in I} b_i$$

Soit $J \in \mathcal{P}_f(I)$. Comme:

$$\forall i \in J, a_i < b_i$$

Alors:

$$\sum_{i \in j} a_i \le \sum_{i \in I} i \in Jb_i \le \sum_{i \in I} b_i$$

 $\sum_{i \in I} b_i \text{ est un majorant de } \left\{ \sum_{i \in J} a_i \mid J \in \mathcal{P}_f(I) \right\}.$

Par définition:

$$\sum_{i \in I} a_i \le \sum_{i \in I} b_i$$

35.8 Lien avec les séries à termes positifs

Propostion 35.8

Soit $\sum a_n$ une séries à termes positifs.

- 1. On a $\sum_{n=0}^{+\infty} a_n = \sum_{n \in \mathbb{N}} a_n$ (le terme de gauche correspond à la somme de la série tandis que le terme de droite à la somme de la famille sommable).
- 2. En particulier, $\sum a_n$ converge si et seulement si la famille $(a_n)_{n\in\mathbb{N}}$ est sommable.
- 1. (35.2)
- 2. Théorème de la Limite Monotone

35.10 Invariance de la somme d'une série à termes positifs par permutation des termes

Corollaire 35.10

Soit $\sum a_n$ une série à termes positifs et $\sigma \in S_{\mathbb{N}}$. Alors

$$\sum_{n=0}^{+\infty} a_n = \sum_{n=0}^{+\infty} a_{\sigma(n)}$$

Cette égalité reste vraie dans $\overline{\mathbb{R}}_+$.

Soit $\sigma \in \mathcal{S}_{\mathbb{N}}$.

 σ induit une bijection $\mathcal{P}_f(\mathbb{N}) \to \mathcal{P}_f(\mathbb{N})$; $J \mapsto \sigma(J)$ de $\{\sum_{i \in J} | J \in \mathcal{P}_f(\mathbb{N}) \}$ sur $\{\sum_{i \in I} a_{\sigma(i)} | J \in \mathcal{P}_f(\mathbb{N}) \}$. Ces deux ensembles ont donc la même borne supérieure. Donc :

$$\sum_{i\in\mathbb{N}} a_i = \sum_{i\in\mathbb{N}} a_{\sigma(i)}$$

Soit:

$$\sum_{i=0}^{+\infty} a_i = \sum_{i=0}^{+\infty} a_{\sigma(i)} (35.8)$$

35.12 Restriction

Propostion 35.12

Soit $(a_i)_{i\in I}$ une famille d'éléments de $\overline{\mathbb{R}}_+$. Soit $J\subset I$, alors :

$$\sum_{i \in J} a_i \le \sum_{i \in I} a_i$$

Comme $\mathcal{P}_f(J) \subset \mathcal{P}_f(I)$:

$$\left\{ \sum_{j \in K} a_j \mid K \in \mathcal{P}_f(J) \right\} \subset \left\{ \sum_{j \in K} a_j \mid K \in \mathcal{P}_f(I) \right\}$$

Donc (Chapitre 9):

$$\sum_{i \in J} a_i \le \sum_{i \in I} a_i$$

35.13 Preque linéarité

Propostion 35.13

Soit (a_i) et (b_i) deux familles d'éléments de $\overline{\mathbb{R}}_+$ et $(\lambda,\mu)\in\overline{\mathbb{R}}_+^2$. On a

$$\sum_{i \in I} (\lambda a_i + \mu b_i) = \lambda \sum_{i \in I} a_i + \mu \sum_{i \in I} b_i$$

On rappelle (Chapitre 9) que :

$$\sup(aA + bB) = a\sup A + b\sup B$$

 $(a \ge 0, b \ge 0 \text{ et sup } A, \sup B \text{ existent}).$