

University of Milano-Bicocca Department of Informatics, Systems and Communications

Construction of Boolean functions and S-boxes with evolutionary algorithms

Luca Mariot

luca.mariot@unimib.it

Laboratory of population-based optimisation methods

Milan – June 17, 2019

Cryptography

Basic Goal of Cryptography: Enable two parties (Alice and Bob, A and B) to securely communicate over an insecure channel, even in presence of an opponent (Oscar, O)

Symmetric cryptosystems

Symmetric cryptosystems ($K_E = K_D = K$) can be classified as:

- Stream ciphers: each symbol of PT is combined with a symbol of a keystream, computed from K
 - GRAIN
 - TRIVIUM
 - **...**
- ▶ Block ciphers: PT is divided in blocks combined with round keys derived from K through a round function
 - DES
 - ► RIJNDAEL (AES)
 - **.**...

Vernam Stream Cipher

- K: secret key
- PRG: Pseudorandom Generator
- z: keystream

- : bitwise XOR
- ► PT: Plaintext
- CT: Ciphertext

Linear Feedback Shift Registers (LFSR)

Device computing the binary linear recurring sequence

Too weak as a PRG: 2k consecutive bits of keystream are enough to recover the LFSR initialization via the Berlekamp-Massey algorithm

An Example of PRG: The Combiner Model

▶ a Boolean function $f: \{0,1\}^n \to \{0,1\}$ combines the outputs of n LFSR [1]

Security of the combiner ⇔ cryptographic properties of f

Boolean Functions - Basic Definitions

Boolean function: a mapping $f : \mathbb{F}_2^n \to \mathbb{F}_2$, where $\mathbb{F}_2 = \{0, 1\}$

▶ Truth table: vector Ω_f specifying f(x) for all $x \in \mathbb{F}_2$

$$(x_1, x_2, x_3)$$
 000 100 010 110 001 101 011 111 Ω_f 0 1 1 1 1 0 0 0

▶ Algebraic Normal Form (ANF): Sum (XOR) of products (AND) over the finite field \mathbb{F}_2

$$f(x_1, x_2, x_3) = x_1 \cdot x_2 \oplus x_1 \oplus x_2 \oplus x_3$$

▶ Walsh Transform: correlation with the *linear* functions defined as $\omega \cdot x = \omega_1 x_1 \oplus \cdots \oplus \omega_n x_n$

$$\hat{F}(\omega) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) \oplus \omega \cdot x}$$

Cryptographic Properties: Balancedness

- ▶ Hamming weight $w_H(f)$: number of 1s in Ω_f
- ▶ A function $f: \mathbb{F}_2^n \to \mathbb{F}_2$ is balanced if $w_H(f) = 2^{n-1}$
- ▶ Walsh characterization: f balanced $\Leftrightarrow \hat{F}(0) = 0$

f is balanced

 Unbalanced functions present a statistical bias that can be exploited in attacks

Cryptographic Properties: Algebraic Degree

Algebraic degree d: the degree of the multivariate polynomial representing the ANF of f

$$f(x_1, x_2, x_3) = x_1 \cdot x_2 \oplus x_1 \oplus x_2 \oplus x_3$$

$$\downarrow \downarrow$$
 $f \text{ has degree } d = 2$

- Linear functions $\omega \cdot x = \omega_1 x_1 \oplus \cdots \oplus \omega_n x_n$ have degree d = 1
- Boolean functions of high degree make the attack based on Berlekamp-Massey algorithm less effective

Cryptographic Properties: Nonlinearity

- Nonlinearity nl(f): Hamming distance of f from linear functions
- Walsh characterization:

$$nI(f) = 2^{n-1} - \frac{1}{2} \max_{\omega \in \mathbb{F}_2^n} \left\{ \left| \hat{F}(\omega) \right| \right\}$$

 Functions with high nonlinearity resist fast-correlation attacks

Cryptographic Properties: Resiliency

- t-Resiliency: when fixing any t variables, the restriction of f stays balanced
- Walsh characterization:

$$\hat{F}(\omega) = 0 \ \forall \omega : \mathbf{w}_{H}(\omega) \leq t$$

$$F(001) = -4 \Rightarrow f$$
 is NOT 1-resilient

Resilient functions of high order t resist to correlation attacks

Bounds and Trade-offs

In summary, $f: \mathbb{F}_2^n \to \mathbb{F}_2$ should:

- be balanced
- be resilient of high order *m*
- have high algebraic degree d
- have high nonlinearity nl

But most of these properties cannot be satisfied simultaneously!

- ► Covering Radius bound: $nI \le 2^{n-1} 2^{\frac{n}{2}-1}$
- Siegenthaler's bound: d ≤ n − t − 1
- ► Tarannikov's bound: $nl \le 2^{n-1} 2^{t+1}$

Constructions of good Boolean Functions

- Number of Boolean functions of n variables: 2²ⁿ
- ▶ \Rightarrow too huge for exhaustive search when n > 5!
- ▶ Functions used in the combiner model have $n \ge 13$ variables

In practice, one usually resorts to:

- Algebraic constructions [1]
 - Maiorana-McFarland construction
 - Rothaus' construction
 - **.**...
- Heuristic techniques
 - Simulated Annealing [3]
 - Evolutionary Algorithms [5]
 - **.**..

Evolutionary Search of Boolean Functions

- Evolutionary search offers a promising way to optimize cryptographic boolean functions
- ▶ Usual approach: directly search the space of truth tables, represented as 2ⁿ-bit strings [6]
- ► Fitness function measuring nonlinearity, algebraic degree, and deviation from correlation-immunity
- Specialized variation operators for preserving balancedness

Spectral Inversion [2]

▶ Applying the Inverse Walsh Transform to a generic spectrum yields a pseudoboolean function $f : \mathbb{F}_2^n \to \mathbb{R}$

$$\mathcal{S}_f = (0, -4, -2, 2, 2, 4, 4, -2)$$

$$\Downarrow \hat{F}^{-1}$$

$$\Omega_{\hat{f}} = (0, 0, 0, -1, 0, -1, 2)$$

- New objective: minimize the deviation of Walsh spectra which satisfy the desired cryptographic constraints
- Heuristic techniques proposed for this optimization problem:
 - Clark et al. [2]: Simulated Annealing (SA)
 - Mariot and Leporati [5]: Genetic Algorithms (GA)

Plateaued Functions [8]

- Our GA evolves spectra of plateaued functions
- ▶ A (pseudo)boolean function f is plateaued if its Walsh spectrum takes only three values: $-W_M(f)$, 0 and $+W_M(f)$

$$S_f = (0,0,0,0,-4,4,4,4) \Rightarrow \text{plateaued}$$

- Motivations:
 - Simple combinatorial representation of candidate solutions, determined by a single parameter $r \ge n/2$
 - Plateaued functions reach both Siegenthaler's and Tarannikov's bounds

Chromosome Encoding

Resiliency Constraint: ignore positions with at most m ones

► The chromosome *c* is the permutation of the spectrum in the positions with more than *m* ones:

The multiplicities of 0, $-W_M(f)$ and $+W_M(f)$ in the permutation depend on plateau index r

Fitness Function

▶ Given $\hat{f}: \mathbb{F}_2^n \to \mathbb{R}$, the nearest boolean function $\hat{b}: \mathbb{F}_2^n \to \mathbb{F}_2$ is defined for all $x \in \mathbb{F}_2^n$ as:

$$\hat{b}(x) = \begin{cases} +1 & \text{, if } \hat{f}(x) > 0 \\ -1 & \text{, if } \hat{f}(x) < 0 \\ +1 \text{ or } -1 \text{ (chosen randomly)} & \text{, if } \hat{f}(x) = 0 \end{cases}$$

Objective function proposed in [2]:

$$obj(f) = \sum_{x \in \mathbb{F}_2^n} (\hat{f}(x) - \hat{b}(x))^2$$

► Fitness function maximised by our GA: fit(t) = -obj(t)

Genetic Operators

- ► Crossover between two Walsh spectra p_1, p_2 must preserve the multiplicities of $-W_M(f)$, 0 and $+W_M(f)$
- Idea: use counters to keep track of the multiplicities [6]
- Mutation: swap two random positions in the chromosome with different values
- Selection operators adopted:
 - ► Roulette-Wheel (RWS)
 - Deterministic Tournament (DTS)

Experimental Settings

Common parameters:

Number of variables n = 6,7 and plateau index r = 4

(n, m, d, nl)	0 _{res}	0 _{add}	$ -W_M(f) $	$ +W_M(f) $	
(6,2,3,24)	22	26	6	10	
(7,2,4,56)	29	35	28	36	

GA-related parameters:

- Population size N = 30
- ▶ max generations G = 500000
- GA runs R = 500
- Crossover probability $p_{\chi} = 0.95$
- Mutation probability $p_u = 0.05$
- ▶ Tournament size k = 3

SA-related parameters:

- ► Inner loops *MaxIL* = 3000
- Moves in loop MIL = 5000
- ► SA runs R = 500
- Initial temperatures T = 100,1000
- Cooling parameter: $\alpha = 0.95, 0.99$

Results

Statistics of the best solutions found by our GA and SA over R=500 runs.

n	Stat	GA(RWS)	GA(DTS)	$SA(T_1, \alpha_1)$	$SA(T_2,\alpha_2)$
6	avg _o	14.08	13.02	19.01	19.03
	min_o	0	0	0	0
	max_o	16	16	28	28
	std_o	5.21	6.23	4.89	4.81
	#opt	60	93	11	10
	avg_t	83.3	79.2	79.1	79.4
7	avg _o	53.44	52.6	45.09	44.85
	min_o	47	44	32	27
	max_o	58	59	63	57
	std_o	2.40	2.77	4.39	4.18
	#opt	0	0	0	0
	avgt	204.2	204.5	180.3	180.2

Block Ciphers: Substitution-Permutation Network

Round function of a SPN cipher:

- ▶ $S_i : \mathbb{F}_2^n \to \mathbb{F}_2^n$ are S-boxes providing confusion [7]
- ▶ Security of confusion layer \Leftrightarrow cryptographic properties of S_i

Background on S-boxes (1/2)

- ▶ A Substitution Box (S-box) is a mapping $F : \{0,1\}^n \to \{0,1\}^m$ defined by m coordinate functions $f_i : \{0,1\}^n \to \{0,1\}$
- ► The component functions $v \cdot F : \{0,1\}^n \to \{0,1\}$ for $v \in \{0,1\}^m$ of F are the linear combinations of the f_i

- ► The nonlinearity of a S-box F is defined as the minimum nonlinearity among all its component functions
- S-boxes with high nonlinearity allow to resist to linear cryptanalysis attacks

Background on S-Boxes (2/2)

delta difference table of F wrt a, b:

$$D_F(a,b) = \left\{ x \in \mathbb{F}_2^n : F(x) \oplus F(x \oplus a) = b \right\}.$$

• Given $\delta_F(a,b) = |D_F(a,b)|$, the differential uniformity of F is:

$$\delta_F = \max_{\substack{a \in \{0,1\}^{n*} \\ b \in \{0,1\}^m}} \delta_F(a,b).$$

 S-boxes with low differential uniformity are able to resist differential cryptanalysis attacks

Cellular Automata S-boxes

- One-dimensional Cellular Automaton (CA): a discrete parallel computation model composed of a finite array of n cells
- ► Each cell updates its state $s \in \{0, 1\}$ by applying a local rule $f: \{0, 1\}^d \rightarrow \{0, 1\}$ to itself and the d-1 cells to its right

Example:
$$n = 6$$
, $d = 3$, $f(s_i, s_{i+1}, s_{i+2}) = s_i \oplus s_{i+1} \oplus s_{i+2}$,
Truth table: $\Omega(f) = 01101001 \rightarrow \text{Rule } 150$

No Boundary CA - NBCA

Periodic Boundary CA - PBCA

Problem Statement

- ► Goal: Find PBCA of length n and diameter d = n having cryptographic properties equal to or better than those of other real-world S-boxes
- ▶ Considered S-boxes sizes: from n = 4 to n = 8
- Using tree encoding, exhaustive search is already unfeasible for n = 4
- We adopted Genetic Programming to address this problem

Genetic Programming (GP)

- Optimization method inspired by evolutionary principles, introduced by Koza [4]
- Each candidate solution (individual) is represented by a tree
 - Terminal nodes: input variables
 - ► Internal nodes: Boolean operators (AND, OR, NOT, XOR, ...)
- New solutions are created through genetic operators like tree crossover and subtree mutation applied to a population of candidate solutions
- Optimization is performed by evaluating the new candidate solutions wrt a fitness function

GP Tree Encoding - Example

Fitness Function

- Considered cryptographic properties:
 - ▶ balancedness/invertibility (BAL = 0 if F is balanced, -1 otherwise)
 - nonlinearity N_F
 - differential uniformity δ_F
- Fitness function maximized:

$$\textit{fitness} = BAL + \Delta_{BAL,0} \bigg(N_F + \bigg(1 - \frac{nMinN_F}{2^n} \bigg) + \big(2^n - \delta_F \big) \bigg).$$

where $\Delta_{BAL,0}=1$ if F is balanced and 0 otherwise, and $nMinN_F$ is the number of occurrences of the current value of nonlinearity

Experimental Setup

- ▶ Problem instance / CA size: n = 4 up to n = 8
- Maximum tree depth: equal to n
- Genetic operators: simple tree crossover, subtree mutation
- Population size: 2000
- Stopping criterion: 2000000 fitness evaluations
- ▶ Parameters determined by initial tuning phase on n = 6 case

Results

Table: Statistical results and comparison.

S-box size	T_max		GP		N_F	$\delta_{ extsf{F}}$
		Max	Avg	Std dev		
4×4	16	16	16	0	4	4
5×5	42	42	41.73	1.01	12	2
6×6	86	84	80.47	4.72	24	4
7×7	182	182	155.07	8.86	56	2
8×8	364	318	281.87	13.86	82	20

- From n = 4 to n = 7, we obtained CA rules inducing S-boxes with optimal crypto properties
- Only for n = 8 the performances of GP are consistently worse wrt to the theoretical optimum

Conclusions

- Boolean functions and S-boxes play a fundamental role in the design of symmetric ciphers
- The design of Boolean functions and S-boxes with good properties is a hard optimization problem
- For Boolean functions, GA are more efficient than SA under the spectral inversion approach
- For S-boxes, GP is able to find optimal solutions up to size 7×7

References I

C. Carlet.

Boolean Functions for Cryptography and Error Correcting Codes.

In Y. Crama and P. L. Hammer, editors, *Boolean Models and Methods in Mathematics, Computer Science, and Engineering*, pages 257–397. Cambridge University Press, 2010.

J. A. Clark, J. L. Jacob, S. Maitra, and P. Stanica.

Almost boolean functions: The design of boolean functions by spectral inversion. *Computational Intelligence*, 20(3):450–462, 2004.

J. A. Clark, J. L. Jacob, S. Stepney, S. Maitra, and W. Millan.

Evolving boolean functions satisfying multiple criteria.

In Progress in Cryptology - INDOCRYPT 2002, Third International Conference on Cryptology in India, Hyderabad, India, December 16-18, 2002, pages 246–259, 2002.

J. R. Koza.

Genetic programming - on the programming of computers by means of natural selection.

Complex adaptive systems. MIT Press, 1993.

L. Mariot and A. Leporati.

A genetic algorithm for evolving plateaued cryptographic boolean functions.

In Theory and Practice of Natural Computing - Fourth International Conference, TPNC 2015, Mieres, Spain, December 15-16, 2015. Proceedings, pages 33–45, 2015.

References II

W. Millan, A. J. Clark, and E. Dawson.

Heuristic design of cryptographically strong balanced boolean functions.

In Advances in Cryptology - EUROCRYPT '98, International Conference on the Theory and Application of Cryptographic Techniques, Espoo, Finland, May 31 - June 4, 1998, Proceeding, pages 489–499, 1998.

C. E. Shannon.

Communication theory of secrecy systems.

Bell system technical journal, 28(4):656-715, 1949.

Y. Zheng and X. Zhang.

Plateaued functions.

In Information and Communication Security, Second International Conference, ICICS'99, Sydney, Australia, November 9-11, 1999, Proceedings, pages 284–300, 1999.