ACAMICA

¡Bienvenidas/os a Data Science!

Agenda

¿Cómo anduvieron?

Explicación: Sistemas de recomendación

Break

Explicación: Sistemas de recomendación

Hands-on training

Entrega 06

Cierre

¿Cómo anduvieron?

IMPORTANTE

Bajar el siguiente dataset:

https://www.kaggle.com/netflix-inc/netflix-prize-data

Sistemas de recomendación

Hoy nos inspiramos con

http://www.mmds.org/

The long tail

Ejemplo: Into Thin Air y Touching Void

The long tail

Ejemplo: Into Thin Air y Touching Void

- Existen usuarios e ítems. Los usuarios prefieren algunos ítems por sobre otros
- Ejemplo: Usuarios de Netflix y Películas. De 1 a 5 estrellas.

	P1	P2	Р3	Р4	P5	P6	•••	P _m
Usuario 1	5	4			2			1
Usuario 2	2	1		5				5
Usuario 3		1	5		4	3		2
Usuario 4	4			2	1			
	•••							
Usuario <i>n</i>	1	2	5		5			3

- Existen usuarios e ítems. Los usuarios prefieren algunos ítems por sobre otros
- Ejemplo: Usuarios de Netflix y Películas. De 1 a 5 estrellas.

	P1	P2	Р3	P4	P5	Р6	•••	P _m
Usuario 1	5	4	?	?	2	?		1
Usuario 2	2	1	?	5	?	?		5
Usuario 3	?	1	5	?	4	3		2
Usuario 4	4	?	?	2	1	?		?
Usuario <i>n</i>	1	2	5	?	5	?		3

- Existen *usuarios* e *ítems*. Los *usuarios* prefieren algunos *ítems* por sobre otros
- Ejemplo: Usuarios de Netflix y Películas. De 1 a 5 estrellas.

El objetivo del sistema de recomendación es *poblar* la matriz de utilidad

	P1	P2	Р3	P4	P5	Р6	 P _m
Usuario 1	5	4	?	?	2	?	 1
Usuario 2	2	1	?	5	?	?	 5
Usuario 3	?	1	5	?	4	3	 2
Usuario 4	4	?	?	2	1	?	 ?
Usuario <i>n</i>	1	2	5	?	5	?	 3

- Existen *usuarios* e *ítems*. Los *usuarios* prefieren algunos *ítems* por sobre otros
- Ejemplo: Usuarios de Netflix y Películas. De 1 a 5 estrellas.

Ejemplo: Netflix tiene 150 millones suscriptores, 5 mil películas. La matriz tiene 75000000000 espacios, de los cuales la mayoría están vacíos.

 Cuando buscamos recomendar, interesa más recomendar ítems que van a gustar que aquellos que no van a gustar.

- Existen *usuarios* e *ítems*. Los *usuarios* prefieren algunos *ítems* por sobre otros
- Ejemplo: Usuarios de Netflix y Películas. De 1 a 5 estrellas.

Ejemplo: Netflix tiene 150 millones suscriptores, 5 mil películas. La matriz tiene 750000000000 espacios, de los cuales la mayoría están vacíos.

- Cuando buscamos recomendar, interesa más recomendar ítems que van a gustar que aquellos que no van a gustar.
- En algunos casos, interesa mover a los usuarios del mainstream a la cola

- Existen *usuarios* e *ítems*. Los *usuarios* prefieren algunos *ítems* por sobre otros
- Ejemplo: Usuarios de Netflix y Películas. De 1 a 5 estrellas.

Ejemplo: Netflix tiene 150 millones suscriptores, 5 mil películas. La matriz tiene 750000000000 espacios, de los cuales la mayoría están vacíos.

- Cuando buscamos recomendar, interesa más recomendar ítems que van a gustar que aquellos que no van a gustar.
- En algunos casos, interesa mover a los usuarios del mainstream a la cola
- Algunas veces, ni siquiera hay calificaciones, solamente si vio o no (o escuchó, leyó, compró, etc.).

- Existen *usuarios* e *ítems*. Los *usuarios* prefieren algunos *ítems* por sobre otros
- Ejemplo: Usuarios de Netflix y Películas. De 1 a 5 estrellas.

Ejemplo: Netflix tiene 150 millones suscriptores, 5 mil películas. La matriz tiene 750000000000 espacios, de los cuales la mayoría están vacíos.

El objetivo del sistema de recomendación es poblar la matriz de utilidad de una manera inteligente y bajo los requisitos que imponga cada entorno

- Existen usuarios e ítems. Los usuarios prefieren algunos íte
- Ejemplo: Usuarios de Netflix y Películas. De 1 a 5 estrellas.

El objetivo del sistema de recomendación es *poblar* la matriz de utilidad

	P1	P2	Р3	P4	P5	P6	•••	P _m
Usuario 1	5	4			2	?		1
Usuario 2	2	1	?	5	?	?		5
Usuario 3		1	5	?	4	3		2
Usuario 4	4	?		2	1	?		
Usuario 5		Vista	Vista	?	Vista	?		
	•••							

¿Cómo conseguir ratings?

Explicitamente

Pedir a los usuarios que puntúen los ítems.

- Los usuarios no suelen hacerlo
- Si lo hacen, puede estar sesgado (gente que prefiere puntuar cosas que no le gustan a puntuar cosas que sí, etc.).

Implicitamente

Inferir a partir de acciones

- Ejemplo: compra muchas cosas de camping → le gusta el camping, aire libre, etc.
- ¿Qué pasa con las cosas que no le gustan?

¿Cómo funcionan los sistemas de recomendación?

Algo cambió en los sistemas de recomendación...

HISTÓRICAMENTE

- Crítica de expertos, aclamadas/os por la crítica
- Listas de favoritos
- Listas de clásicos
- Más populares
- Recientes

HOY

Recomendaciones específicas para el usuario

Algo cambió en los sistemas de recomendación...

COLLABORATIVE FILTERING Read by both users Similar users Read by her,

recommended to him!

CONTENT-BASED FILTERING

	¿Cómo?	Ventaja	Desventaja / Problema
Basado en contenidos	Recomienda ítems con características similares a los que el usuario consumió (y, preferiblemente, indicó que le gustaban).	Basta con <i>conocer</i> los ítems para comenzar a recomendar	 calcular la similitud entre dos ítems puede ser una tarea difícil y muy costosa. En la mayoría de los casos hay que obtener atributos. Suele recomendar ítems que no son novedosos para el usuario

	¿Cómo?	Ventaja	Desventaja / Problema
Basado en contenidos	Recomienda ítems con características similares a los que el usuario consumió (y, preferiblemente, indicó que le gustaban).	Basta con <i>conocer</i> los ítems para comenzar a recomendar	 calcular la similitud entre dos ítems puede ser una tarea difícil y muy costosa. En la mayoría de los casos hay que obtener atributos. Suele recomendar ítems que no son novedosos para el usuario
Filtro colaborativo	Recomienda ítems basadas en medidas de similaridad entre ítems y/o usuarios.	No necesita conocer los ítems, en principio alcanza con la información de la matriz de utilidad	Necesito la matriz de utilidad

	¿Cómo?	Ventaja	Desventaja / Problema
Basado en contenidos	Recomienda ítems con características similares a los que el usuario consumió (y, preferiblemente, indicó que le gustaban).	Basta con <i>conocer</i> los ítems para comenzar a recomendar	 calcular la similitud entre dos ítems puede ser una tarea difícil y muy costosa. En la mayoría de los casos hay que obtener atributos. Suele recomendar ítems que no son novedosos para el usuario
Filtro colaborativo	Recomienda ítems basadas en medidas de similaridad entre ítems y/o usuarios.	No necesita conocer los ítems, en principio alcanza con la información de la matriz de utilidad	Necesito la matriz de utilidad
Pensarlo como problema de clasificación	Podemos entrenar un clasificador para cada usuario		Pocas calificaciones por usuario

	¿Cómo?	Ventaja	Desventaja / Problema
Basado en contenidos	Recomienda ítems con características similares a los que el usuario consumió (y, preferiblemente, indicó que le gustaban).	Basta con <i>conocer</i> los ítems para comenzar a recomendar	 calcular la similitud entre dos ítems puede ser una tarea difícil y muy costosa. En la mayoría de los casos hay que obtener atributos. Suele recomendar ítems que no son novedosos para el usuario
Filtro colaborativo	Recomienda ítems basadas en medidas de similaridad entre ítems y/o usuarios.	No necesita conocer los ítems, en principio alcanza con la información de la matriz de utilidad	Necesito la matriz de utilidad
Pensarlo como problema de clasificación	Podemos entrenar un clasificador para cada usuario		Pocas calificaciones por usuario
Híbridos	Combinar lo mejor de varios mundos		

	¿Cómo?	Ventaja	Desventaja / Problema				
Basado en contenidos	Recomienda ítems con características similares	Basta con <i>conocer</i> los ítems para comenzar	1) calcular la similitud entre dos ítems puede ser una tarea difícil y muy				
	que le (Cold Start dar ítems que no so l usuario					
Filtro colaborativo		ems have no l sers have no l					
		matriz de utilidad					
Pensarlo como problema de clasificación	Podemos entrenar un clasificador para cada usuario		Pocas calificaciones por usuario				
Híbridos	Combinar lo mejor de varios mundos						

Sistemas de recomendación

- 1. Basado en contenidos
- 2. Filtro colaborativo

SR · Basado en contenidos

SR · Basado en contenidos

Idea: recomendar ítems al usuario que sean similares a aquellos que puntuó positivamente antes (o, en su defecto, que consumió). Para ello:

- 1. Para cada ítem, debemos construir un perfil.
 - a. Casos sencillos: información fácilmente disponible. Películas: director, género, actores, año, etc.
 - b. Casos no-sencillos. Debemos extraer features de los ítems. Noticias: hay que usar la batería de herramientas de NLP (tf-idf, etc.)
- 2. Idealmente, también hay que construir un perfil de qué cosas le gustan al usuario.
- 3. Usamos una métrica de distancia para encontrar ítems similares.
 - a. Índice Jaccard
 - b. Distancia coseno
- 4. Recomendamos

SR · Basado en contenidos

No necesitamos información de otros usuarios. (Sin *Cold-Start*)

Puede recomendar a usuarios con "paladar exquisito" o único

Puede recomendar ítems nuevos o poco populares (basta ver su contenido)

Explicable

Hay que armar el perfil de los ítems. Puede ser difícil encontrar buenos features.

Difícil recomendar a nuevos usuarios.

Puede ser muy específico: no recomienda ítems por fuera perfil del usuario. El usuario puede tener muchos intereses.

Sistemas de recomendación

- 1. Basado en contenidos
- 2. Filtro colaborativo

SR • Filtro colaborativo

	P1	P2	Р3	P4	P5	Р6	•••	P _m
Usuario 1	5	4			2			1
Usuario 2	2	1		5				5
Usuario 3		1	5		4	3		2
Usuario 4	4			2	1			
Usuario <i>n</i>	1	2	5		5			3

SR • Filtro colaborativo

	P1	P2	Р3	P4	P5	P6	 P _m
Usuario 1	5	4	?	?	2	?	 1
Usuario 2	2	1	?	5	?	?	 5
Usuario 3	?	1	5	?	4	3	 2
Usuario 4	4	?	?	2	1	?	 ?
•••							
Usuario <i>n</i>	1	2	5	?	5	?	 3

SR • Filtro colaborativo

Funciona para cualquier tipo de ítem (películas, libros, música, etc.).

Puede recomendar ítems por fuera del *perfil* del usuario

Necesitamos la matriz de utilidad

La matriz de utilidad está, en general, vacía y es muy grande. Esto trae dificultades computacionales.

No puede recomendar ítems que no hayan sido calificados previamente

Tiende a recomendar ítems populares

¿Cómo funciona un filtro colaborativo?

SR • Filtro colaborativo

Hay muchas formas de llenar la matriz.

Ejemplo:

Podemos probar con técnicas de clusterización para encontrar grupos de usuarios similares. De esos usuarios similares, los que tengan algún faltante en un ítem, se lo completa con, por ejemplo, el promedio del cluster.

Preprocesamiento

Normalización: hay usuarios que tienden a dar calificaciones altas y otros que tienden a dar calificaciones bajas. Entonces, restamos a cada calificación la calificación promedio del usuario.

Vamos a contarles Descomposición UV

Reducción de dimensionalidad - Descomposición UV

$$\begin{bmatrix} 5 & 2 & 4 & 4 & 3 \\ 3 & 1 & 2 & 4 & 1 \\ 2 & & 3 & 1 & 4 \\ 2 & 5 & 4 & 3 & 5 \\ 4 & 4 & 5 & 4 \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \\ u_{31} & u_{32} \\ u_{41} & u_{42} \\ u_{51} & u_{52} \end{bmatrix} \times \begin{bmatrix} v_{11} & v_{12} & v_{13} & v_{14} & v_{15} \\ v_{21} & v_{22} & v_{23} & v_{24} & v_{25} \end{bmatrix}$$

Reducción de dimensionalidad - Descomposición UV

$$\begin{bmatrix} 5 & 2 & 4 & 4 & 3 \\ 3 & 1 & 2 & 4 & 1 \\ 2 & 3 & 1 & 4 \\ 2 & 5 & 4 & 3 & 5 \\ 4 & 4 & 5 & 4 \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \\ u_{31} & u_{32} \\ u_{41} & u_{42} \\ u_{51} & u_{52} \end{bmatrix} \times \begin{bmatrix} v_{11} & v_{12} & v_{13} & v_{14} & v_{15} \\ v_{21} & v_{22} & v_{23} & v_{24} & v_{25} \end{bmatrix}$$

$$5 \times 5 \qquad \qquad U: 5 \times 2 \qquad \qquad V: 2 \times 5$$

Reducción de dimensionalidad - Descomposición UV

$$\begin{bmatrix} 5 & 2 & 4 & 4 & 3 \\ 3 & 1 & 2 & 4 & 1 \\ 2 & 3 & 1 & 4 \\ 2 & 5 & 4 & 3 & 5 \\ 4 & 4 & 5 & 4 \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \\ u_{31} & u_{32} \\ u_{41} & u_{42} \\ u_{51} & u_{52} \end{bmatrix} \times \begin{bmatrix} v_{11} & v_{12} & v_{13} & v_{14} & v_{15} \\ v_{21} & v_{22} & v_{23} & v_{24} & v_{25} \end{bmatrix}$$

$$5 \times 5 \qquad \qquad U: 5 \times 2 \qquad \qquad V: 2 \times 5$$

d: lo elegimos, es un hiperparámetro

Reducción de dimensionalidad - Descomposición UV

$$\begin{bmatrix} 5 & 2 & 4 & 4 & 3 \\ 3 & 1 & 2 & 4 & 1 \\ 2 & 3 & 1 & 4 \\ 2 & 5 & 4 & 3 & 5 \\ 4 & 4 & 5 & 4 \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \\ u_{31} & u_{32} \\ u_{41} & u_{42} \\ u_{51} & u_{52} \end{bmatrix} \times \begin{bmatrix} v_{11} & v_{12} & v_{13} & v_{14} & v_{15} \\ v_{21} & v_{22} & v_{23} & v_{24} & v_{25} \end{bmatrix}$$

Buscamos u_{ij} y v_{ij} de forma que cuando multipliquemos las matrices se aproximen bastante a los valores originales. Ej: $5 = u_{11}^* v_{11} + u_{12}^* v_{21}^*$

Reducción de dimensionalidad - Descomposición UV

$$\begin{bmatrix} 5 & 2 & 4 & 4 & 3 \\ 3 & 1 & 2 & 4 & 1 \\ 2 & \bigcirc & 3 & 1 & 4 \\ 2 & 5 & 4 & 3 & 5 \\ 4 & 4 & 5 & 4 \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \\ u_{31} & u_{32} \\ u_{41} & u_{42} \\ u_{51} & u_{52} \end{bmatrix} \times \begin{bmatrix} v_{11} & v_{12} & v_{13} & v_{14} & v_{15} \\ v_{21} & v_{22} & v_{23} & v_{24} & v_{25} \end{bmatrix}$$

Buscamos u_{ij} y v_{ij} de forma que cuando multipliquemos las matrices se aproximen bastante a los valores originales. Ej: $5 = u_{11}^* v_{11} + u_{12}^* v_{21}$

Para completar los lugares vacíos, simplemente ponemos lo que de la multiplicación de la derecha. Ej: $\bigcirc = u_{31}^* v_{12} + u_{32}^* v_{22}$

Reducción de dimensionalidad - Descomposición UV

¿Cómo encontramos los valores para U y V?

Reducción de dimensionalidad - Descomposición UV

¿Cómo encontramos los valores para U y V?

1. Necesitamos una métrica para minimizar. En general, RMSE para los **valores no nulos de la matriz**.

Reducción de dimensionalidad - Descomposición UV

¿Cómo encontramos los valores para U y V?

- Necesitamos una métrica para minimizar. En general, RMSE para los valores no nulos de la matriz.
- 2. Empezamos en algún lugar al azar.

Reducción de dimensionalidad - Descomposición UV

¿Cómo encontramos los valores para U y V?

- Necesitamos una métrica para minimizar. En general, RMSE para los valores no nulos de la matriz.
- 2. Empezamos en algún lugar al azar.
- 3. Buscamos el mínimo de la función de costo

¿Les suena?

Reducción de dimensionalidad - Descomposición UV

¿Cómo encontramos los valores para U y V?

- 1. Necesitamos una métrica para minimizar. En general, RMSE para los **valores no nulos de la matriz**.
- 2. Empezamos en algún lugar al azar.
- 3. Buscamos el mínimo de la función de costo

¡ Es el problema que resuelve el descenso por gradiente !

¿Sabías que...?

Netflix Challenge

Netflix Challenge

- Lanzada en 2006, finalizada en 2009.
- 1.000.000 de dólares en premio a quienes mejoren su sistema de recomendación, CineMatch, en un diez por ciento. Varios premios más por año.
- **Entrenamiento**: ratings de ~500 mil usuarios a ~17 mil series y películas. En total, 100 millones de puntajes (no todos los usuarios puntúan todos los ítems).
- Testeo: 3 millones de ratings (que se guardó Netflix).

Hands-on training

Hands-on training

DS_Encuentro_40_Sistemas_Recomendacion.ipynb

Proyecto 2: Lanzamiento Entrega 06

Proyecto 2: Sistemas de recomendación (Entrega 06)

Entrega 6: Sistema de recomen...

Creá tu propio sistema de recomendación mediante el aprendizaje no supervisado

Principiante

- Fra
 - Francisco Dorr

- 1. Bajar los materiales.
- 2. Leer la Checklist
- 3. ¡Empezar a trabajar en la entrega!

Para la próxima: Data Science en mi vida

Data Science en mi vida

¡Preparen sus charlas relámpago! En 7 minutos con 7 slides comparte con tus compañeros:

En qué problemas estás aplicando lo aprendido en Data Science y cómo lo estás haciendo.

O bien, en qué problemas te gustaría aplicar Data Science y cómo lo harías.

¡Elige algún tema o proyecto que te interese y relaciónalo con lo aprendido!

Para la próxima

- 1. Completar el notebook de hoy (Secciones 1 a 3).
- 2. Terminar de ver los videos de sistemas de recomendación.
- 3. Comenzar con la Entrega 06.
- 4. Preparar el relato "Data Science en mi vida".

ACAMICA