Ring Proof Specification

21-08-2024-draft-4

Abstract

This document describes a cryptographic scheme based on SNARKs (Succinct Non-Interactive Arguments of Knowledge) that enables a prover to demonstrate knowledge of a secret scalar t and a secret index k within a group of public keys, where each public key is a point on an elliptic curve. The scheme ensures that, when combined with a public elliptic curve point H, the relation $R = PK_k + t\mathring{\mathbf{u}}H$ is satisfied. It leverages elliptic curve operations, a polynomial commitment scheme, and the Fiat-Shamir heuristic to achieve non-interactivity and zero-knowledge properties.

1. Notation

1.1. Basics

Basic Sets

- $\mathbb{N}_k = \{0, \dots, k-1\}$
- $\mathbb{B} = \mathbb{N}_2$

Vectors Operations

- $\overline{x} = (x_0, \dots, x_{n-1}), \ \overline{x}_i = x_i, \ 0 \le i < n$
- $\overline{a} \| \overline{b} = (a_0, \dots, a_{n-1}, b_0, \dots, b_{m-1})$
- $x^{\parallel n} = (x, \dots, x) \in X^n$

Kronecker Delta

•
$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Lagrange Basis Polynomials

•
$$L_i = L_{\mathbb{D},i} \in \mathbb{F}[X]^{< N}, i \in \mathbb{N}_N, L_i(\omega^j) = \delta_{ij}$$

1.2. Curves and Fields

- $\bullet \ \langle \omega \rangle = \mathbb{D} \subseteq \mathbb{F}^*, \ |\mathbb{D}| = N \in \mathbb{N}$
 - Cyclic subgroup generated by ω in the multiplicative group \mathbb{F}^* .

Elliptic Curves

- $J = J/\mathbb{F}$ Elliptic curve J defined over the field \mathbb{F} .
- $\tilde{\mathbb{J}} = J(\mathbb{F})$ Group of \mathbb{F} -rational points on J.
- $\mathbb{J} \subset \tilde{\mathbb{J}}$ Prime order subgroup of $\tilde{\mathbb{J}}$.

Scalar Field

- $\mathbb{F}_{\mathbb{J}}$ Field associated with the elliptic curve \mathbb{J} , with $|\mathbb{F}_{\mathbb{J}}| = |\mathbb{J}|$.
- $N_J = \lceil \log_2 |\mathbb{F}_{\mathbb{J}}| \rceil$ Number of bits to represent an element of $\mathbb{F}_{\mathbb{J}}$.
- $N_K = N N_J 4$ Maximum size of the ring handled with a domain of size N.

1.3. Support Functions

Unzip

- unzip: $\mathbb{J}^k \to (\mathbb{F}^k, \mathbb{F}^k)$; $\overline{p} \to (\overline{p}_x, \overline{p}_y)$
 - Given a vector \overline{p} of k elliptic curve points, unzip separates \overline{p} into two vectors: \overline{p}_x and \overline{p}_y , containing the x and y coordinates of each point, respectively.

Polynomial Interpolation

• Interpolate: $\mathbb{F}^k \to \mathbb{F}[x]^{\leq k}$; $\overline{x} \to f$

Polynomial Commitment Scheme

- PCS.Commit: $\mathbb{F}[x] \to \mathbb{G}$; $f \to C_f$
 - Commits to a polynomial f over \mathbb{F} , with commitment in group \mathbb{G} . When applied to a vector \bar{x} , the components are interpolated over the domain \mathbb{D} to form f.
- PCS.Open: $(\mathbb{G}, \mathbb{F}) \to (\mathbb{F}, \Pi); (C_f, x) \to (y, \pi)$
 - Evaluates the committed polynomial f at point x, returning evaluation y and proof π . The proof domain Π depends on the PCS.
- PCS.Verify : $(\mathbb{G}, \mathbb{F}, \mathbb{F}, \Pi) \to \mathbb{B}$; $(C_f, x, y, \pi) \to (0|1)$
 - Verifies whether y = f(x) given the commitment C_f and proof π .

Fiat-Shamir Transform

- FS: $\mathbb{S} \to \mathbb{F}$; $\mathbf{s} \to x$
 - Maps a serializable object $\mathbf{s} \in \mathbb{S}$ to \mathbb{F} , typically via some cryptographically secure hash function.

2. Parameters

2.1. Scheme Specific

- $\square \in \mathbb{J}$ Padding element, a point on \mathbb{J} with unknown discrete logarithm.
- $H \in \mathbb{J}$ Pedersen blinding base point.
- $\overline{H} = (H, 2H, 4H, \dots, 2^{N_{J-1}}H) \in \mathbb{J}^{N_J}$ Vector of scaled multiples of H.
- $S \in \tilde{\mathbb{J}} \setminus \mathbb{J}$ Point in $\tilde{\mathbb{J}}$ used as seed for accumulation, ensuring the result is never the identity.

2.2. Public Data

• $\overline{PK} \in \mathbb{J}^{N_K}$ – Vector of public keys in the ring, padded with \square to length N_K if needed.

2.3. Witness Data

- $t \in \mathbb{F}_{\mathbb{J}}$ Prover's one-time secret.
- $k \in \mathbb{N}_{N_K}$ Prover's index within the ring, identifying which public key in \overline{PK} belongs to the prover.

2.4. Preprocessing

2.4.1. Public Input Preprocessing Concatenate ring points with scaled multiples of H:

$$\overline{P} = \overline{PK} \| \overline{H} = (P_0, \dots, P_{N-5}) \in \mathbb{J}^{N-4}$$

$$\overline{p}_x = (P_{x,0}, \dots, P_{x,N-5}, 0, 0, 0, 0) \in \mathbb{F}^N$$

$$\overline{p}_y = (P_{y,0}, \dots, P_{y,N-5}, 0, 0, 0, 0) \in \mathbb{F}^N$$

Ring items selector:

$$\overline{s} = 1^{\parallel N_K} \parallel 0^{\parallel N - N_K} \in \mathbb{F}^N$$

2.4.1 Interpolation The resulting vectors are interpolated over \mathbb{D} :

- $p_x = \text{Interpolate}(\overline{p}_x)$.
- $p_y = \text{Interpolate}(\overline{p}_y)$.
- $s = \text{Interpolate}(\overline{s}).$

2.4.2. Commit to the constructed vectors:

$$C_{p_x} = \text{PCS.Commit}(\overline{p}_x)$$

$$C_{p_y} = \text{PCS.Commit}(\overline{p}_y)$$

$$C_s = \text{PCS.Commit}(\overline{s})$$

2.5. Relation to Prove

Knowledge of k and t such that $R = PK_k + tH$.

$$\mathfrak{R}_{H} = \{ (R, \overline{PK}; k, t) \mid R = PK_{k} + tH; R \in \mathbb{J}, \overline{PK} \in \mathbb{J}^{N_{K}}, k \in \mathbb{N}_{N_{K}}, t \in \mathbb{F}_{\mathbb{J}} \}$$

3. Prover

3.1. Witness Polynomials

3.1.1. Bits Vector

- $\overline{k} \in \mathbb{B}^{N_K}$ Binary vector representing the index k in the ring. \overline{k} has N_K elements where $k_i = \delta_{ik}$
- $\bar{t} \in \mathbb{B}^{N_J}$ Binary representation of the secret scalar t, with t_i representing the i-th bit of t in little-endian order, i.e., $t = \sum t_i 2^i$, for $i \in \mathbb{N}_{N_J}$

The bits vector \bar{b} is constructed by concatenating \bar{k} and \bar{t} , followed by a single 0.

$$\overline{b} = \overline{k} ||\overline{t}||(0)$$

3.1.2. Conditional Sum Accumulator Vectors

$$ACC_0 = S$$
, $ACC_i = ACC_{i-1} + b_{i-1}P_{i-1}$, $i = 1, ..., N-4$

- The accumulator is initialized with the seed point S.
- The accumulator is updated at each index i based on the previous value and the product of b_{i-1} and P_{i-1} .

The resulting accumulator points are finally separated into x and y coordinates:

$$(\overline{acc}_x, \overline{acc}_y) = \operatorname{unzip}(\overline{ACC})$$

3.1.3. Inner Product Accumulator Vector

$$acc_{ip_0} = 0$$
, $acc_{ip_i} = acc_{ip_{i-1}} + b_{i-1}s_{i-1}$, $i = 1, \dots, N-4$

- The accumulator is initialized with 0.
- The accumulator is updated at each index i based on the previous value and the product of b_{i-1} and s_{i-1}

3.1.4. Interpolation The resulting vectors are interpolated over \mathbb{D} with random values $\{r_i\}$ appended as padding for the final entries. This padding helps obscure the resulting polynomial, even when committing to identical witness values.

- $b = \text{Interpolate}(\overline{b}||(r_1, r_2, r_3)).$
- $acc_x = \text{Interpolate}(\overline{acc_x} || (r_4, r_5, r_6)).$
- $acc_y = \text{Interpolate}(\overline{acc_y} || (r_7, r_8, r_9)).$
- $acc_{ip} = Interpolate(\overline{acc}_{ip} || (r_{10}, r_{11}, r_{12})).$

3.2. Constraints

Constraints are polynomials constructed to evaluate to zero when satisfied; a non-zero evaluation indicates a violation.

Note. When evaluating a polynomial f at $x = \omega^k \in \mathbb{D}$ for some $k \in \mathbb{N}$, $f(\omega x)$ gives the value of the polynomial at the next position in the evaluation domain $(\omega x = \omega^{k+1})$.

3.2.1. Inner Product

$$c_1(x) = \left(acc_{ip}(\omega x) - acc_{ip}(x) - b(x)s(x)\right)(x - \omega^{N-4})$$

This constraint ensures the inner product accumulator $acc_{ip}(x)$ is correctly updated, satisfying $acc_{ip}(\omega x) = acc_{ip}(x) + b(x)s(x)$.

The factor $(x - \omega^{N-4})$ ensures the constraint holds at all points including $x = \omega^{N-4}$, where $c_1(x)$ automatically vanishes.