Expectation: Let x be a random variable with probability distribution f(x). The mean or expected value of x is. if X is discrete,  $\mu = E(X) = \xi x f(n)$ if X 11 continuous,  $\mu = E(x) = \int_{-\infty}^{\infty} \chi f(x) dx$ if x -> g(x), discrete,  $Mg(x) = E[g(x)] = \xi g(x)f(x)$ continuous,  $fg(x) = E[g(x)] = \int_{0}^{\infty} g(x)f(x)dx$ Propenties:  $E(aX+bY+c) = \alpha E(X) + b E(Y) + c$ In particular. E(X+Y) = E(X) + E(Y) $E(\alpha X) = \alpha E(X)$ E(c) = cLet X and Y be random variables with joint probability distribution f(x,y)

The mean or expected value, of the random SSL WIRELESS

www.sslwireless.com

variable g(x, Y) is Notes if x is discrete fg(x,y) = E[g(x,y)]  $= \underbrace{52g(x,y)}_{xy}f(x,y)$ 1. Example: X=no. of bit error in digital channel 2 0 1 2 3 4 P(X=x) 0.651 0.291 0.048 0.003 0.007 M = E(X)  $= o f(0) + 1.f(1) + 2f(2) + \cdots + 4.f(4)$  $E(x^2) = 0^2 f(0) + 1^2 f(1) + 2^2 f(2) + 3^2 f(3) + 4^2 f(4)$ 2. Example: Suppose that the number of cars X that pass through a car wash between 4:00 PM and 5:00 PM on any sum sunny Froiday has the following probability distribution: 9 SSL WIRELESS 4 5 6 7 8 WWW.

Let g(x) = 2x - 1, represents the anomal of money, in dollars, paid to the attendant by the manager. Find the attendant's expected earnings for this particular time period.  $E[g(x)] = E(2x-1) = \frac{2}{5}(2x-1)f(x)$   $= xx(\frac{1}{2}) + 9(\frac{1}{12}) + \cdots + (\frac{1}{5}x)$   $+ \cdots + (17)(\frac{1}{5}) = $12.67$ 

\* Program error example:

| - | $\subseteq$         |        |          |      |      |      |        |
|---|---------------------|--------|----------|------|------|------|--------|
|   | P. (2, y)           |        | <u> </u> |      |      |      | P.(2)  |
|   | '(x,Y               | ) - 1/ | 0        |      | 2    | 3    | 'X \ / |
|   |                     | 0      | 0.20     | 0.20 | 0.05 | 0.05 | 0.50   |
|   | $\boldsymbol{\chi}$ | 1      | 0.20     | 0.10 | 0.10 | 0.10 | 0.50   |
| j | Pa                  | 4)     | 0.40     | 0.30 | 0.15 | 0.15 | 1.00   |
| l |                     | シノー    | ,        |      |      |      |        |

Expected No. of total Ennon:

$$E(X) = 0 \times 0.5 + 1 \times 0.5 = 0.5$$
  
 $E(Y) = 0 \times 0.4 + 1 \times 0.3 + 2 \times 0.15$   
 $+ 3 \times 0.15 = 1.05$   
 $E(X+Y) = 0.5 + 1.05 = 1.55$ 

SSL WIRELESS

5

3

3

3

www.sslwireless.com

