(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004年6月3日(03.06.2004)

PCT

(10) 国際公開番号 WO 2004/046350 A1

(51) 国際特許分類7:

C12N 9/16, 15/55

(21) 国際出願番号:

PCT/JP2003/012982

(22) 国際出願日:

2003年10月9日(09.10.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2002-337212

2002年11月20日(20.11.2002)

(71) 出願人(米国を除く全ての指定国について): 独立 行政法人科学技術振興機構 (JAPAN SCIENCE AND TECHNOLOGY AGENCY) [JP/JP]; 〒332-0012 埼玉 県川口市本町4丁目1番8号 Saitama (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 今村 博臣 (IMA-MURA, Hiromi) [JP/JP]; 〒227-0048 神奈川県 横浜市 青葉区柿の木台 3 2-1 3 コーポカワハラ 2 0 3 Kanagawa (JP). 吉田 賢右 (YOSHIDA,Masasuke) [JP/JP]; 〒251-0035 神奈川県 藤沢市 片瀬海 岸 1-9-13-1103 Kanagawa (JP). 横山 謙 (YOKOYAMA,Ken) [JP/JP]; 〒194-0032 東京都 町田 市本町田1165-2B Tokyo (JP).
- (74) 代理人: 西澤 利夫 (NISHIZAWA, Toshio); 〒107-0062 東京都 港区 南青山6丁目11番1号 スリーエフ南 青山ビルディング 7 F Tokyo (JP).
- (81) 指定国 (国内): US.

[続葉有]

(54) Title: ROTARY MOTOR MOLECULE V1-ATPase

(54) 発明の名称: 回転モーター分子V1-ATPase

A...Ni-NTA COATED GLASS PLATE

B...STREPTOAVIDIN

C...HIS8-TAG

D...BEAD

(57) Abstract: Complex molecule comprising one D-subunit, three B-subunits and three A-subunits constituting V₁ portion of V₀V₁-ATPase, characterized in that the complex molecule performs rotational motion in the presence of ATP.

(57) 要約: V₀V₁-ATPaseのV₁部分を構成するAサブユニット3個、Bサブユニット3個、Dサブユニット1個を有する複 合体分子であって、ATP存在下で回転

/鏡葉有/

(84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

添付公開書類:

— 国際調査報告書

明細書

回転モーター分子 V₁-ATPase

5

技術分野

この出願の発明は、マイクロマシンやナノマシンの駆動部(ナノアクチュエータ)等として有用な新規回転モーター分子 V₁-ATPase に関するものである。

10

15

. 20

背景技術

分子サイズの大きさで機械的な動きをするマイクロマシンやナノマシンの開発が注目されている。このようなマイクロマシンやナノマシンは、例えば、分子コンピューターの配線を加工する分子ロボットや体内で治療作業を行う医療用ロボットとして有望視されているからである。

マイクロマシンやナノマシンを作成するためには、個々の要素デバイス(センサ、アクチュエータ、ミニチュア機械)や、それらの組立方法(マイクロマシニングやナノマシニング)に至るまで、様々な技術開発が必要とされている。特に、マイクロマシン駆動部であるマイクロアクチュエータやナノアクチュエータ(回転モーター)の開発は、マシンの自律運動にとって不可欠であり、様々な微細加工技術を利用したモーターデバイスの開発が進められている。しかしながら微細加工技術を応用した方法で作成できるマイクロアクチュエータは、小さいものでも 100 μ 配程度であり、マイクロマシンやナノマシンに装備するには、モーター装置の更なる微少化が求められている。

そこで、微細加工技術によってモーターを構築するのではなく、回転運動能を 25 有する単一分子をモーターとして利用することが提案されている。

一般に、モーターとして利用できる分子は、外部エネルギーを回転運動に変換する動力機構があること、および1方向の回転を実現できることの2点を満たすことが求められている。そして、このような条件を満たす低分子有機化合物とし

ては、例えば、

5

10

15

20

25

(3R, 3'R) - (P, P) -trans-1, 1', 2, 2', 3, 3', 4, 4'-octahydro-3, 3'-dimethyl-4, 4'-b ipheanthrydiene (Nature 401:152-155, 1999) と Triptycyl (4) helicene (Nature 401:150-152, 1999) が知られている。前者は、炭素一炭素二重結合を挟んで左右対称的な形を持っているが、立体的な込み合いのためねじれた構造となっている。これに適当な熱や光を加えると4つのプロセスを経て1方向に回転させることができる。また2回の光反応と熱異性化反応で1サイクルを完了し、1方向のみに進行する。すなわち、この有機化合物は、熱異性化反応と光反応とによって回転運動を行う。光反応による回転は非常に速い(ピコセカンドのレベル)が、熱異性化反応による回転には数分以上かかるため、実用化に適していない。また、駆動力が極めて弱いという問題点を有してもいる。一方、後者はフォスゲン付加反応とウレタン結合形成、開裂という化学反応を利用して分子の一方向の回転を示す。しかしながら、この分子は繰り返し回転ができないという、アクチュエータとしての致命的な欠陥を有している。

一方、マイクロマシンやナノマシン等に利用可能な単一分子モーターとしては、鞭毛モーター (Microbiol. 6:1-18, 1967、Nature 245:380-382, 1973)、ATP 合成酵素 (Nature 386:299-302, 1997)、ミオシンモーター (Biochem Biophys. Res. Comm. 199:1057-1063, 1994、Curr. Opin. Cell Biol. 7: 89-93, 1995)、微少管系モーター (Cell 42:39-50, 1985)、核酸合成酵素の運動タンパク質 (Nature 409: 113-119, 2001) 等の生体分子も知られている。

このうち、ATP 合成酵素は、真核生物のミトコンドリア内膜、葉緑体のチラコイド膜、原核細胞膜などに普遍的に存在する膜タンパク質であり、細胞の消費する ATP の大部分を合成している。ATP 合成酵素(F_oF_1 -ATP 合成酵素)は分子量約50万にも及ぶ巨大膜タンパク質複合体であり、膜中に存在する F_o 部分と膜の外に存在する F_1 部分からなる。 F_o 部分は膜をプロトン(H)が通過するために通り道になっており、 F_1 部分には ATP を合成/加水分解する触媒部位がある。 F_1 部分の分子量は約38万であり、例えばバクテリア由来の ATP 合成酵素における F_1 部

10

15

20

分のサブユニット組成は $\alpha_3\beta_3\delta\gamma_1\epsilon_1$ である。 α と β サブユニットはどちらにも 似たような ATP 結合部位を有するが、触媒活性は β サプユニットにある。両者は 交互に並んでリングを形成しており、この $\alpha_3\beta_3$ リングの中心部に γ サブユニッ トが存在している。 δ サブユニットは $\alpha_3\beta_3$ リングの頂上に結合し、ATP 加水分 解活性を制御している ϵ サブユニットは γ サブユニットに結合している。一方、 F。部分は分子量約 10 万であり、そのアミノ酸組成は、プロトンの移動に必須な グルタミン酸およびアスパラギン酸を多く含んでいる。サブユニット組成は $a_1b_2c_{9-12}$ であり、c サブユニットは膜の中でリング状に配列し(c リング)、それ に a サブユニットと、膜の外に長く突き出した腕を持つ b サブユニット 2 個が結 合している。従って、 F_aF_1 -ATP 合成酵素は、 F_1 部分と F_a 部分とが、 γ ϵ -c リング、 δ -b₂の2箇所で結合している。さらに特筆すべきは、この $F_{o}F_{i}$ -ATP 合成酵素分 子が2種類のトルク発生装置を備えている点である。一つは F_1 部分に存在する ATP 駆動型装置であり、他方は F_o 部分に存在するプロトン駆動型装置である。す なわち、『。部分がプロトンを細胞膜内に取り込む場合には c リングが時計回りに 回転し、プロトンを細胞膜外に排出する場合には c リングは反時計回りに回転す る。一方、 \mathbb{F}_1 部分は、ATP 合成時にはその γ サブユニットが \mathbb{F}_0 側からみた場合に 時計回りに回転し、ATP 分解時には反時計回りに回転する。そして、このような 2種類のトルク発生装置を備えることによって、ATP 合成酵素が生み出すトルク は数十ピコニュウトン・mmであり、分子モーターとしての十分な駆動力を有して いる。また水系で作動するため体内でのアクチュエータとして最適であり、アク チンを充分に動かす力があるために生体内の蛋白質、糖質、脂質、核酸を操作す ることも可能である。

そしてこの出願の発明者らは、この F_oF_o-ATP 合成酵素分子を改良して、広範な 回転速度の制御が可能な改変型 F_oF_o-ATP 合成酵素分子とその利用発明を既に発明 し、特許出願している(特願 2002-148232:出願日 2002 年 5 月 22 日)。また、最 近になって、F_o-ATP 合成酵素分子に亜鉛結合部位を導入し、亜鉛によって回転の 開始・停止を制御することのできる回転モーター分子が報告されてもいる

25

(Nature Materials 1:173-177, 2002).

前記のとおり、様々な回転モーター分子がマイクロマシンやナノマシン等の駆動部材として提案されており、回転の形態や回転数、トルク、回転の制御方法等においてそれぞれに特徴を有している。従って、実際にマイクロマシンやナノマシンを作成するためには、その用途やマシン構成に応じて多くの候補分子から適切なものを選択する必要がある。しかしながら、これまでに報告されている回転モーター分子のそれぞれは、マイクロマシンやナノマシンの他種多様な用途や構成の全てに対応可能であるとは言い難い。そのため、マイクロマシンやナノマシン等の開発に当たっては、回転モーター分子のラインナップを一つでも多く充実させることが望まれている。

従って、この出願は、従来の回転モーター分子とは特性の異なった新しい回転 モーター分子を提供することを課題としている。

また出願は、その回転運動をさらに円滑なものにするために、さらには回転運動の伝達手段等を分子に付加するために改良された新規回転モーター分子を提供することを課題としてもいる。

発明の開示

この出願は、前記の課題を解決するための発明として、 V_0V_1 -ATPase の V_1 部分 20 を構成する A サブユニット 3 個、B サブユニット 3 個、D サブユニット 1 個を有する複合体分子であって、ATP 存在下で回転運動することを特徴とする回転モーター分子 V_1 -ATPase を提供する。

この発明の V_1 -ATPase は、触媒部位の A サブユニットを含み、A と B サブユニットは交互に配列し、 F_0F_1 -ATPase の $\alpha_3\beta_3$ のように六量体の円筒を形成するものであって、D サブユニットは A_3B_3 の円筒の中央の空洞を埋めており、F サブユニットは、D サブユニットに結合しており、D サブユニットとF サブユニットは、D ロ転シャフト、回転軸)として働く。

この発明の回転モーター分子 V₁-ATPase は、耐熱性分子であることを一つの態

10

15

20

25

様としており、その場合に好熱菌 Thermus thermophilus 由来の分子であることを好ましい態様としている。

さらにこの好熱菌 Thermus thermophilus 由来の回転モーター分子 V_1 -ATPase は、A サブユニットに相当する配列番号 3 のポリペプチド 3 個、B サブユニットに相当する配列番号 4 のポリペプチド 3 個、D サブユニットに相当する配列番号 5 のポリペプチド 1 個を有する複合体であることを一つの好ましい態様としている。

さらにこの発明の回転モーター分子 V1-ATPase は、配列番号 3 における第 232 番目 Ser 残基の Ala 残基への置換、および第 235 番目 Thr 残基の Ser 残基への置換の少なくとも一方を有する改変型分子であることを別の態様としている。

この改変された V_1 -ATPase は、触媒部位である A サブユニットを改変することにより MgADP 阻害が解消され、ATP 加水分解活性が亢進する。すなわち野生型 V_1 -ATPase は MgADP 阻害によって回転た抑制される傾向にあるが、MgADP 阻害が解消された変異型 V_1 -ATPase は、効率よい回転運動を示す。

またさらに、この発明の回転モーター分子 V₁-ATPase は、A サブユニットおよびB サブユニットの少なくとも一方が基板上に固定されている改変型分子であることを別の態様としている。そしてこの場合には、A サブユニットの N 端に結合した His タグを介して基板上に固定されていることを好ましい態様としている。

この発明の回転モーター分子 V_1 -ATPase はまた、D サブユニットにジョイント 部材が結合していることを別の態様としている。そしてこの場合には、配列番号 5 における第 48 番目 Glu 残基を置換した Cys 残基、および第 55 番目 Gln 残基を置換した Cys 残基の少なくとも一方の Cys 残基にジョイント部材を結合している こと、さらには A サブユニットおよび B サブユニットにおける全ての Cys 残基が 非 Cys 残基に置換されていることをそれぞれ好ましい態様としている。

すなわち、この発明の回転モーター分子 V_1 -ATPase は、細菌や真核生物のオルガネラ (液胞、リソソーム、ゴルジ体、細胞膜、被覆小胞、分泌顆粒等) に存在する V型 (液胞膜型) ATPase (V_0V_1 -ATPase) の、 V_1 部分 (A サブユニット 3 個、B

10

15

20

サブユニット 3 個、D サブユニット 1 個からなる複合体)である。従来、 F_0F_1 -ATP 合成酵素が回転モーター分子として機能することは知られていたが、この V_0V_1 -ATPase の V_1 部分(V_1 -ATPase)が回転運動することは全く知られていなかった。この発明の V_1 -ATPase は、A サブユニット 3 個および B サブユニット 3 個によって構成される「筒状体」の内側に位置する D サブユニットが回転シャフトとして機能することを初めて見出して完成されたものである。

なお、 V_0V_1 -ATPase の V_1 部分は D サブユニットに F サブユニット 1 個を結合しているが、この発明の V_1 -ATPase はこの F サブユニットを結合した分子をも包含する。また、この発明の V_1 -ATPase は野性型だけでなく、前記のとおりの各種変異体をも包含する。さらに、前記の Nature Materials 1:173-177, 2002 に開示されているような亜鉛認識部位の導入変異体をも包含する。

以下、発明の実施形態を示し、前記各発明について詳しく説明するが、この発明を実施するために使用する様々な技術は、特にその出典を明示した技術を除いては、公知の文献等に基づいて当業者であれば容易かつ確実に実施可能である。例えば、遺伝子工学および分子生物学的技術は Sambrook and Maniatis, in Molecular Cloning-A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 1989; Ausubel, F. M. et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y, 1995 等の記載を参考にすることができる。

図面の簡単な説明

図1は、 V_1 -ATPase の回転観察の状態を示した模式図である。矢印は回転方向を示す。

図 2 は、D または F サブユニットのビオチン化を確認したウェスタンブロット 分析の結果である。左側 (レーン 1-4) は CBB 染色、右側 (レーン 5-8) は alkal ine phosphatase-streptavidine コンジュゲート染色である。レーン 1 および 5 は D サブユニットがビオチン化された V_1 -ATPase、レーン 2 および 6 はビオチン化さ

れた F サブユニットを持つ V_1 -ATPase、レーン 3 および 7 はビオチン化されていない V_1 -ATPase、レーン 4 および 8 は分子量マーカーである。

図3は、Dサブユニットに固定したビーズ回転の経時変化を測定した結果である。A は 4mM ATP、0.5 mM sodium azide 存在下でのビーズの回転である。B-D は sodium azide 非存在下で、B は 4 mM ATP、C は 0.5 mM ATP、D は 0.2 mM ATP 溶 液中でのビーズ回転の結果である。

図4は、Fサブユニットに固定したビーズ回転の経時変化を、4 mM ATP 溶液中で測定した結果である。

10

15

20

25

5

発明を実施するための最良の形態

この発明の回転モーター分子 V_1 -ATPase は、各種細菌や真核生物が産生する V_0V_1 -ATPase の V_1 部分(V_1 -ATPase)であり、この V_1 -ATPase をコードするポリヌ クレオチド(DNA 断片、RNA 断片。好ましくは cDNA 断片。以下「 V_1 -ATPase ポリ ヌクレオチド」と記載することがある)を用いて遺伝子工学的に製造することが できる。すなわち V_0V_1 -ATPase をコードするポリヌクレオチド(cDNA 断片)の配列 は 公 知 の データ ベース (例 え ば GenBank データ ベース: URL: http://www.ncbi.nlm.nih.gov 等)において多数公開されており、これらの配列 情報を利用したプローブハイブリダイゼーション法や PCR 法によって既存の cDNA ライブラリー等から容易に取得することができる。

そして、この V_1 -ATPase ポリヌクレオチドを公知の遺伝子工学的方法で発現させることによって、A サブユニット 3 個、B サブユニット 3 個、D サブユニット 1 個からなる複合体 V_1 -ATPase を取得することができる。例えば、例えば、RNA ポリメラーゼプロモーターを有する発現ベクターに V_1 -ATPase ポリヌクレオチドを組換え、この組換えベクターをプロモーターに対応する RNA ポリメラーゼを含むウサギ網状赤血球溶解物や小麦胚芽抽出物などのインビトロ翻訳系に添加すれば、回転能を有する V_1 -ATPase をインビトロで生産することができる。RNA ポリメラーゼプロモーターとしては、 V_1 -ATPase をインビトロで生産することができる。これらの RNA

ポリメラーゼプロモーターを含むベクターとしては、pKA1、pCDM8、pT3/T7 18、 pT7/3 19、pBluescript II などが例示できる。また、V₁-ATPase ポリヌクレオチ ドを適当な宿主ーベクター系において発現させれば、回転モーター分子 V₁-ATPase を大腸菌、枯草菌等の原核細胞や、酵母、昆虫細胞、哺乳動物細胞、 5 植物細胞等の真核細胞などで生産することができる。例えば、大腸菌などの微生 物で発現させる場合には、微生物中で複製可能なオリジン、プロモーター、リボ ソーム結合部位、DNA クローニング部位、ターミネーター等を有する発現ベクタ ーにポリヌクレオチドを組換えて発現ベクターを作成し、この発現ベクターで宿 主細胞を形質転換し、この形質転換体を培養すれば、その培養物から目的の 10 V.-ATPase 分子を大量生産することができる。大腸菌用発現ベクターとしては、 pUC 系、pBluescript II、pET 発現システム、pGEX 発現システムなどが例示でき る。さらに、ポリヌクレオチドを真核細胞で発現させる場合には、ポリヌクレオ チドをプロモーター、スプライシング領域、ポリ(A)付加部位等を有する真核細 胞用発現ベクターに挿入して組換えベクターを作製し、このベクターをトランス 15 フェクトした真核細胞から目的の V₁-ATPase 分子を得ることができる。発現ベク ターとしては、pKA1、pCDM8、pSVK3、pMSG、pSVL、pBK-CMV、pBK-RSV、EBV ベク ター、pRS、pYES2などが例示できる。真核細胞としては、ヒト胎児腎臓細胞HEK293、 サル腎臓細胞 COS7、チャイニーズハムスター卵巣細胞 CHO などの哺乳動物培養細 胞、あるいはヒト臓器から単離した初代培養細胞などが使用できる。出芽酵母、 20 分裂酵母、カイコ細胞、アフリカツメガエル卵細胞なども使用できる。発現ベク ターを細胞に導入するには、電気穿孔法、リン酸カルシウム法、リポソーム法、 DEAE デキストラン法など公知の方法を用いることができる。形質転換細胞で発現 させた V1-ATPase を単離精製するためには、公知の分離操作を組み合わせて行う ことができる。例えば、尿素などの変性剤や界面活性剤による処理、超音波処理、 25 酵素消化、塩析や溶媒沈殿法、透析、遠心分離、限外濾過、ゲル濾過、SDS-PAGE、 等電点電気泳動、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、 アフィニティークロマトグラフィー、逆相クロマトグラフィーなどが挙げられる。

10

15

20

25

またこのこの発明の回転モーター分子 V₁-ATPase は、工業的な利用の観点から、 耐熱性分子であることが好ましい。従って、65℃以上で生育する Thermus 属、 Methanococcus 属やSulfolobus 属等の細菌由来のVI-ATPase ポリヌクレオチドを 使用することが好ましい。さらに、70℃以上でも生育することができる好熱菌 Thermus thermophilus 由来の V₁-ATPase ポリヌクレオチドを使用することが特に 好ましい。この Thermus thermophilus 由来の V₁-ATPase ポリヌクレオチドは配列 番号1に示した塩基配列を有している。この Thermus thermophilus 由来の V_i -ATPase ポリヌクレオチドは、配列番号 2 のアミノ酸配列からなるポリペプチ ド (F サブユニット)、配列番号3のポリペプチド (A サブユニット)、配列番号 4のポリペプチド (B サブユニット) および配列番号 5 のポリペプチド (D サブ ユニットからなる複合体)をコードしている。従って、配列番号1の334-4196 nt 配列を前記の遺伝子工学的方法により発現させることにより、A サブユニット3 個、B サブユニット3個および D サブユニット1個からなる耐熱性 V1-ATPase を 得ることができる。また配列番号1の 1-4196 nt 配列を発現させることによって、 D サブユニットに F サブユニット 1 個を結合した耐熱性 V1-ATPase を得ることが できる。

この発明の回転モーター分子 V_1 -ATPase のさらに別の好ましい態様は、配列番号 3 における第 232 番目 Ser 残基の Ala 残基への置換、および第 235 番目 Thr 残基の Ser 残基への置換の少なくとも一方、さらに好ましくはこれらの置換の両方を有する改変型分子(以下、両方の置換を有する分子を「TSSA 変異体」と記載することがある)である。すなわち、真核細胞の V-ATPase と異なり、T. thermophilus等の細菌由来の V_1 -ATPase は触媒の代謝回転の間、いわゆる MgADP 阻害によって反応が中断するという傾向を有しており(J Biol Chem 273、20504-20510、1998)、通常は ATP を基質として加えてから 5 分以内この ADP 抑制を示し、約 10 分間で ATP 加水分解を停止する。そこでこの出願の発明者らは幾つかの変異体を作成して ADP 抑制の効果を検討した結果、前記の TSSA 変異体が、ATP を基質として加えてから 1 時間も ATP 活性を持続させることを見出した。

10

15

20

25

この発明の回転モーター分子 V₁-ATPase のさらにまた別の好ましい態様は、A サブユニットまたはBサブユニットの少なくとも一方が基板上に固定されている 改変型分子である。すなわち、この固定によって、D サブユニットの回転を効率 よく伝達することが可能となる。このような A および/または B サブユニットの 基板への結合は、例えば共有結合を用いた各種の方法によって行うことができる が、好ましくは、A サブユニットの N 端に His タグ (ヘクタヒスチジン) を結合 させ、この His タグを Ni-NTA スライドに結合する方法 (Nature 386:299-302, 1997: FEBS Letters 470:244-248, 2000) を採用することができる。

この発明の回転モーター分子 V₁-ATPase はまた、D サブユニットにジョイント 部材が結合していることを別の好ましい態様としている。この場合の「ジョイン ト部材」とは、 V_1 -ATPase における D サブユニットの回転運動を他の部材(例え ば、ギアや運動機関のシャフト等) に伝達するための部材である。またこのジョ イント部材は他の部材との連結用としてではなく、V₁-ATPase の回転を観察する ための「プローブ」、あるいは「プロペラ」としても利用することができる。こ のようなジョイント部材としては、例えば後記実施例に例示したようなビーズを 複数個連結したもの (マイクロスフェア) や、あるいはアクチンフィラメント (Nature 386:299-302, 1997) 等の微細繊維を利用することができる。そして、 このようなジョイント部材は、D サブユニットの Cys 残基に、例えばマレイミド、 ジスルフィド結合等によって結合することができる。ただし、配列番号5にアミ ノ酸配列を示した Thermus thermophilus 由来 V₁-ATPase の D サプユニットには Cys 残基が存在しないため、適当な非 Cys 残基を Cys 残基に置換する必要がある。 そこでこの発明は、配列番号 5 における第 48 番目 Glu 残基を置換した Cys 残基、 および第 55 番目 Gln 残基を置換した Cys 残基の少なくとも一方(好ましくは両 方) の Cys 残基にジョイント部材を結合していることを好ましい態様とする。ま た、D サプユニット以外の Cys 残基 (A サプユニットの合計 9 個、B サブユニット の合計 3 個)にジョイント部材が結合しないように、これらの Cys 残基を他の残 基(例えば Ser 残基)に置換することが好ましい。

10

20

また、ジョイント部材は D サブユニットではなく、D サブユニットに結合した F サブユニットに結合させることもできる。その場合には、例えば配列番号 2の アミノ酸における第 28 番目 Ser および/または第 35 番目 Ser 残基を Cys 残基に置換し、これらの Cys 残基にジョイント部材を結合させればよい。

なお、前記の各変異体 V₁-ATPase は、V₁-ATPase ポリヌクレオチドにおける所 定のアミノ酸残基をコードするトリプレットを、ミューテーション・キット等を 使用する方法、変異導入型の PCR 法、ポリヌクレオチド合成法 (例えば、Nucleic Acid Res. 25:3440-3444, 1997等) によって置換し、この変異型ポリヌクレオチ ドを遺伝子工学的方法によって発現させることによって取得することができる。 以下、実施例を示してこの出願の発明についてさらに詳細かつ具体的に説明す るが、この出願の発明は以下の例によって限定されるものではない。

実施例

- 15 1. 材料と方法
 - 1-1. タンパク質の調製

T. thermophilus HB8 由来 V_1 -ATPase の A、B、D、F の各サブユニットをコードする DNA 配列を lac プロモーター支配下に保持しているプラスミド pUCV1 によって形質転換した大腸菌株 BL21-CodonPlus-RP (Stragene) を用いて V_1 -ATPase を発現させた。なお、A、B、D、F の各サブユニットをコードする DNA 配列には以下の変異体作成のための改変を加えた(アミノ酸位置は配列番号 2-5 に対応する)。 $I:V_1$ -ATPase (A-His8-tags/ Δ Cys/A-S232A/A-T235S/D-E48C/D-Q55C)

- (1) AサブユニットのN端にHis タグを結合 (A-His8-tags)
- (2) A および B サブユニットの全ての Cys 残基が Ser 残基に置換 (ΔCys)
- 25 (3) A サブユニットの第 232 番目 Ser が Ala に置換 (A-S232A)
 - (4) A サプユニットの第 235 番目 Thr が Ser に置換 (A-T235S)
 - (5) D サプユニットの第 48 番目 Glu が Cys に置換 (D-E48C)
 - (6) D サプユニットの第 55 番目 Gln が Cys に置換 (D-Q55C)

- II: V_1 -ATPase (A-His8-tags/ Δ Cys/A-S232A/A-T235S/F-S28C/F-S35C)
- (1) A サブユニットの N 端に His タグを結合 (A-His8-tags)
- (2) A および B サブユニットの全ての Cys 残基が Ser 残基に置換 (ΔCys)
- 5 (3) A サブユニットの第 232 番目 Ser が Ala に置換 (A-S232A)
 - (4) A サプユニットの第 235 番目 Thr が Ser に置換 (A-T235S)
 - (7) F サプユニットの第 28 番目 Ser が Cys に置換 (S28C)
 - (8) F サプユニットの第 35 番目 Ser が Cys に置換 (S35C)

形質転換細胞を、0.3M NaCl を含む 20mM imidazole/HCI (pH8.0) に懸濁し、65℃ で 30 分間熱処理をした後、熱に不安定なタンパク質を除き、Ni²+-affinity column (Amersham) に供して 0.3M NaCl を含む 0.5M imidazole/HCl (pH8.0) で溶出した。緩衝液をかえ、限外濾過 (VIVA-Spin, VIVA science) し、RESOURCE Q column に供した。V₁-ATPase を含む部分を Superdex 200 column (Amersham) にかけ、コンタミネーションしているタンパク質を除去した。精製された V₁-ATPase を 2 モ ル 過 剰 の 6- [N'-[2-(N-maleimido) ethyl] -N-piperazinylamido] hexyl D-biotinamide (biotin-PEAC₅-malaimide, Dojindo) でビオチン化した。25℃で15 分間インキュベーションした後、タンパク質を PD-10 Column (Amersham) に供し、未反応試薬を除いた。D および F サブユニットのビオチン化は、streptavidin-alkalinephosphatase conjugate (Amersham) を用いて、ウエスタンプロッティングにより確認した (図 2)。

1-2. 回転観察

25

 $5\mu1$ のフローセルを、2枚のカバースリップ(50nm 厚のスペーサーを介在)から作成した。底のガラス表面は Ni^{24} -nitrilotriacetic acid でコートし、ビオチン化した V_1 -ATPase (0. 1- 1μ M) を緩衝液(50mM Tris-HCl,pH8. 0, 100mM KCl,5mM MgCl₂,and 0. 5% (w/v) BSA からなる A 溶液中でフローセルに注入し、His タグをガラスに結合させて V_1 -ATPase を固定した。

0.1% (w/v) の Stereptavidin でコートしたビーズ (ϕ =0.56 μ m, Bangs Laboratories inc.)溶液をフローセルに満たし、未結合ビーズは洗浄除去して、

biotin-streptavidine 結合によってDまたはFサブユニットにビーズを結合した。 V₁-ATPase 分子の回転は、所定濃度の ATP 中 (0.2mg/ml creatine kinase と 2.5mM creatine phosphate ATP 再生システム中) で、ビーズの回転を明視野顕微鏡 (IX70, Olympus、倍率 1000) を使用して観察した。また回転の状態は CCD カメラでビデオ記録した。なお、この V₁-ATPase の回転観察システムは、F₁-ATPase の回転システム (Proc Natl Acad Sci U S A 98, 13649-54, 2001) と同様である。すなわち、回転は D または F サブユニットに結合したビーズにより、斜めに結合された形で観察された (図 2)。

10 1-3. その他のアッセイ

タンパク質濃度は UV 測定によって行った。ATP 加水分解活性は、pyruvate kinase と lactate dehydrogenase とをカップリングさせた NADH 酸化により測定した。

2. 結果

20

15 2-1. 回転の観察

 V_1 —ATPase (A-His8-tags/ Δ Cys/A-S232A/A-T235S/ D-E48C/D-Q55C) および V_1 —ATPase (A-His8-tags/ Δ Cys/A-S232A/A-T235S/F-S28C/F-S35C) の2つの変異体について回転を観察した。2つの変異体は、同じような Michaelis Menten タイプの Kinetics を示し、Km=0.3-0.5mM, Vmax (turnover rate) = \sim 10sec-1 を示した。これらの数値は、野生型の FoF₁-ATP 合成酵素と同程度であった(J Biol Chem 273, 20504-1014, 1998).

2-2. D サブユニットの回転

ATP を含む緩衝液をフローセルに注入させる場合に、 V_1 -ATPase の D サブユニットに結合したビーズの回転が観察された(図 3 A-3D)。一つのフローセルでは、

25 5-10 個の回転ビーズが観察された。

回転は一方向であり、 F_1 -ATPase の回転方向と同様に、細胞膜側からみると常に反時計回りであった。ATP を含まない緩衝液中では、ブラウン運動との区別のつく一方向の回転は観察されなかった。

アジド (Azide) は F_1 -ATPase の ATPase 活性も回転も阻害するが (Nature 386, 299-302, 1997)、 V_1 -ATPase の ATPase 活性は阻害していないことが知られている (J Biol Chem 265, 21946-50, 1990)。変異体 V_1 -ATPase の回転についても同様であり、アジド (Azide) は 4mM ATP 存在下(図 3 A、B)や 0.1mM ATP 存在下での V_1 -ATPase の回転に影響を与えなかった。

4mm ATP 存在下での平均回転数は、約2.6 rps (revolutions per sec:回転数/秒)以下であった。1 mm ATP 存在下での平均回転数は約2.4 rps 以下であった。1 回転に3分子のATP が使用されると仮定すれば、回転速度は、バルクの酵素反応速度論(~10 ATPs の加水分解/秒)から観察されるATP 加水分解速度に良く一致している。また、0.5 mm ATP では平均回転数は約2.2 rps と低下している(図30)。

2-3. Fサブユニットの回転

『サブユニットに結合したビーズ回転も観察された。4 ml ATP 濃度の条件では、 15 1~3個の回転ビーズが観察された(図4)。回転方向も常に反時計回りであった。回転速度は、約2.5 rps であり、Dサブユニットの回転速度と同程度であった。

産業上の利用可能性

20 以上詳しく説明したとおり、この出願の発明によって、新規の回転モーター分子 V_1 -ATPase が提供される。また、この回転モーター分子 V_1 -ATPase の さらに実用的形態としての各種変異体 V_1 -ATPase が提供される。これらは、マイクロマシンやナノマシン等の作成に大きく寄与する。

15

請求の範囲

- 1. V_0V_1 -ATPase の V_1 部分を構成する A サプユニット 3 個、B サプユニット 3 個、D サプユニット 1 個を有する複合体分子であって、ATP 存在下で回転運動することを特徴とする回転モーター分子 V_1 -ATPase。
- 2. 耐熱性を有する請求項1の回転モーター分子 V₁-ATPase。
- 3. 好熱菌 Thermus thermophilus 由来である請求項2の回転モーター分子 V₁-ATPase。
- 4. A サブユニットに相当する配列番号 3 のポリペプチド 3 個、B サブユニット に相当する配列番号 4 のポリペプチド 3 個、D サブユニットに相当する配列番号 5 のポリペプチド 1 個を有する複合体である請求項 3 の回転モーター分子 V_1 -ATPase。
 - 5. 配列番号 3 における第 232 番目 Ser 残基の Ala 残基への置換、および第 235 番目 Thr 残基の Ser 残基への置換の少なくとも一方を有する請求項 4 の回転モーター分子 V_1 -ATPase。
 - 6. A サブユニットおよび B サブユニットの少なくとも一方が基板上に固定されている請求項1から5のいずれかの回転モーター分子 V_1 -ATPase。
 - 7. AサプユニットのN端に結合したHis タグを介して基板上に固定されている 請求項 6 の回転モーター分子 V_1 -ATPase。
- 20 8. D サブユニットにジョイント部材が結合している請求項1から7のいずれかの回転モーター分子 V_1 -ATPase。
 - 9. 配列番号 5 における第 48 番目 Glu 残基を置換した Cys 残基、および第 55 番目 Gln 残基を置換した Cys 残基の少なくとも一方の Cys 残基にジョイント部材を結合している請求項 8 の回転モーター分子 V_1 -ATPase。
- 25 10. A サブユニットおよび B サプユニットにおける全ての Cys 残基が非 Cys 残基に置換されている請求項 9 の回転モーター分子 V_t -ATPase。

PCT/JP2003/012982

1/4 図 1

2/4 図 2

PCT/JP2003/012982

4/4 図 4

PCT/JP2003/012982

1/13

SEQUENCE LISTING

<110> Japan Science and Technology Corporation	
<120> A Rotary Motor molecule V1-ATPase	
<130> 03F044PCT	
<140> JP2002-337212	
<141> 2002-11-20	
<160> 5 170> Betont To Week 0 1	
<170> PatentIn Ver. 2.1	
<210> 1	
<211> 4199 ·	
<213> Thermus thermophilus <220>	
<221> CDS	
⟨222⟩ (1) (318)	
⟨220⟩	
<221> CDS	
<222> (334) (2067)	
<220>	
<221> CDS	
<222> (2081) (3514)	
<220>	
<221> CDS	
<222> (3528) (4196)	
<400> 1	
gtg agg atg gcg gtg atc gcc gat ccc gag acc gcc cag ggg ttc cgg	48
Val Arg Met Ala Val Ile Ala Asp Pro Glu Thr Ala Gln Gly Phe Ar	g
1 5 10 15	
ctc gcg ggc ctc gag ggc tac ggg gcc tct tcg gcg gag gag gcc caa	96
Leu Ala Gly Leu Glu Gly Tyr Gly Ala Ser Ser Ala Glu Glu Ala Gln	
20 25 30	
age etc etg gaa ace etc gtg gag egg gge gge tae gee etg gtg gee	144
Ser Leu Leu Glu Thr Leu Val Glu Arg Gly Gly Tyr Ala Leu Val Ala	
35 40 45	
gtg gac gag gcg ctc ctc ccc gac ccc gag cgg gcg gtg gag cgc ctc	192
Val Asp Glu Ala Leu Leu Pro Asp Pro Glu Arg Ala Val Glu Arg Leu	
50 55 60	
atg cgg ggc agg gac ctc ccc gtg ctc ctg ccc atc gcg ggg ctg aag	240
Met Arg Gly Arg Asp Leu Pro Val Leu Leu Pro Ile Ala Gly Leu Lys	

65					70				75					80	
											cgg Arg				288
				85				9	0				(95	
-	_			ggc Gly		-		_	taga	atgg	gag g	gace		atc : Ile	339
				_	_		 	_			atc Ile		_		387
				_				_	_		ggc Gly				435
ctc											gcc Ala				483
											ccc Pro		Val	_	531
			Pro		_						atg Met 185				579
		_									cgg Arg				627
											ctg Leu				675
									Pro		gac Asp				723
		_	_	Leu		_		Glu			ttc Phe				771
	-	_	ccc Pro	ccg		_	Gly				gag Glu 265				819
											ctc Leu			ggc Gly	867

	270					275					280					
acc	gag	ctc	aag	atg	tac	cac	acc	tgg	ccc	gtt	cgc	cgg	gcg	agg	ccc	915
Thr	Glu	Leu	Lys	Met	Tyr	His	Thr	Trp	Pro	Val	Arg	Arg	Ala	Arg	Pro	
285					290					295					300	
gtg	caa	agg	aag	ctt	gac	ccc	aac	acc	ccc	ttc	ctc	acg	ggg	atg	cgc	963
Val	Gln	Arg	Lys	Leu	Asp	Pro	Asn	Thr	Pro	Phe	Leu	Thr	Gly	Met	Arg	
				305					310					315		
				ctc												1011
He	Leu	Asp	Val	Leu	Phe	Pro	Val	Ala	Met	Gly	Gly	Thr	Ala	Ala	Ile	
			320					325					330			•
				ggc												1059
Pro	Gly	Pro	Phe	Gly	Ser	Gly	Lys	Thr	Val	Thr	Gln		Ser	Leu	Ala	
		335					340					345				
				gcc												1107
Lys	Trp	Ser	Asn	Ala	Asp		Val	Val	Tyr	Val		Cys	Gly	Glu	Arg	
	350					355					360					44==
				acc												1155
	Asn	Glu	Met	Thr		Val	Leu	Val	Glu			Glu	Leu	Thi	Asp	
365					370					375					380	4000
				ggg												1203
Pro	Lys	Thr	Gly		Pro	Leu	Met	His			Val	Leu	116		Asn	
				385					390				,	395		1051
				ccc												1251
Thr	Ser	Asn			Val	Ala	Ala			Ala	Ser	116			Gly	
		_	400					405		_	11.	1	410			1900
				gag												1299
Val	Thr			Glu	lyr	Phe			GII	1 613	7 Pne			l Ali	a Leu	
	-	415					420			+	* * * *	425		ata	tat	1947
				acg												1347
met			ser	ınr	261			Ala	GIL	1 Ale	44(3 111	и 11	e Ser	
	430					435		~~	~~~				000	tac	oto	1395
				gag												1030
		Leu	Glu	GIU			Ala	GIU	GI	45		LII	<i>)</i> [1	O 19	r Leu 460	
445					450		+ 0.0		o a a			220	ata	ato		1443
				gcc												1440
Ala	Ala	r AL8	s ref	1 Ala 465		LIL	; 1 y i	. עונ	47)		a UI	у БУ	o ra	47	e Thr	
a + ~						· · ·	at m	900			gaa	gee	ort n		ccg	1491
															r Pro	
ւեն	r AT)	/ Ul)	y Ull	ı aın	ו מו)	V VI (ı rai	rmi	111	e va	TOI	, vr	u 1a	T DC	0	

			480					485					490			
ccg	ggc	ggc	gac	atg	tcc	gag	ccc	gtg	acc	cag	tcc	acc	ttg	agg a	atc	1539
Pro	Gly	Gly	Asp	Met	Ser	Glu	Pro	Val	Thr	Gln	Ser	Thr	Leu	Arg	Ile	
		495					500			•		505				
gtg	ggg	gcc	ttc	tgg	cgg	ctt	gac	gcc	tcc	ctg	gcc	ttc	cgc	cgc (cac	1587
Val	Gly	Ala	Phe	Trp	Arg	Leu	Asp	Ala	Ser	Leu		Phe	Arg	Arg	His	
	510					515					520					1005
ttc	ccc	gcc	atc	aac	tgg	aac	ggc	tcc	tac	agc	ctc	ttc	acc	tcc	gcc	1635
	Pro	Ala	Ile	Asn		Asn	Gly	Ser	Tyr			Phe	Thr	Ser		
525			•		530					535					540	1609
ctt	gac	ccc	tgg	tac	cgg	gag	aac	gtg	gcc	gag	gac	tac	CCC	gag	CIC	1683
Leu	Asp	Pro	Trp		Arg	Glu	Asn	vai			Asp	IYI	Pro	Glu 555	Leu	
				545	_	_ 1 1			550		~~~	~~~	ata			1731
cgc	gac	gcc	atc	Com	gag	CII	ilg	Cag	Cgg	gag . Clu	gug Ala	GIv.	. Tan	cag	645 6111	1101
Arg	ASP	Ala			Glu	Leu	Leu	. 6111 565		Giu	nia	GIZ	570	Gln	Giu	
a t a	a t a	005	560		aaa	cca	as c			cag	gac	gee	_	cgc	ctc	1779
alc	gic Wal	Cag	Tou	gig leV	688 61v	Dro	gac Agr	900 A1a	T.e.	ı Glm	a Asn	A12	Gli	ı Arg	Leu	*****
116	Val	575		l Agr	GIY	110	580		. DC	UIL	ı mop	588	. u		, 200	
ato	att			gge	୯ଟଟ	atc			gag	gac	ttc			cag	aac	1827
Val	Tle	Gli	ı Val	61v	Arg	: Tle	i Ile	e Arg	Glı	ı Ast) Phe	Lei	1 Gl1	ı Gln	Asn	
741	590					.595				_	600					
gco			gag	gtg	gac			tgc	tcc	atg	aag	aag	gcc	tac	ggg	1875
Ala	Tvi	His	Gli	ı Val	Ası	Ala	а Ту	r Cys	s Se	r Me	t Lys	Ly	s Ala	а Туі	Gly	
605					610					61					620	
ato	ate	g aag	g ate	atc	ctc	gcc	ttc	tac	aag	gag	gcg	gag	gcg	gcc	atc	1923
He	e Me	Ly	s Me	t Ile	e Lei	1 Ala	a Ph	e Ty:	r Ly	s G11	u Ala	a Gl	u Al	a Ala	a Ile	
				625					63					63		
aas	g cgs	g ggs	g gt	t tcc	ata	gac	gas	s atc	cts	cag	ctc	ccc	gtt	ctg	gag	1971
Ly	s Ar	g G1:	y Va	1 Sea	r Ile	e As	p Gl			u Gl	n Le	u Pr	o Va	l Let	u Glu	
			64					64	_				65		4	2010
cg	c at	c gg	c cg	c gcc	cgo	tao	c gts	gago	gag	g gag	gag)]] ; D1	CCC	gcc	lac	2019
Ar	g Il			g Ala	a Ar	g Ty			r Gl	u GI	u GI	u Po	e Pr	0 A1	a Tyr	
	_	65					66	-				66	_	o t a	are e	2067
tt	t ga	g ga	g gc	c ats	g aas	g ga	g ato	c cas	3 888	g gc(i i i C	aat A In	g guu	ctg	, gcc 11 А1а	
Ph			u Al	a Me	ιLy			e Gl	H AI	уАІ	a PH 68	U C TÀ	S MI	a DC	u Ala	•
La	67		 -			67		900	220	gag		-	ggr	atc	acc	2116
ιa	aagg	ggga	gag	alg tam	gac Aen	ULL I DII	ULB IIAII	aag Lve	lve	545 (С1 п	lac Tvr	Thi	Glv	Ile	Thr	~ 1 1 0
				いたし	ron	บบน	LUCU	פעעי	113	, ulu		~ 44.4				

			€	385				(690				į	695		
tac	atc	tcg	ggg	cct	ctt	ctc	ttc	gtg	gag	aac	gcc	aag	gac	ctg	gcc	2164
Tyr	Ile	Ser	Gly 700	Pro	Leu	Leu	Phe	Val 705	Glu	Asn	Ala	Lys	Asp 710	Leu	Ala	
												cgg				2212
lyr	GIY	715	116	vai	ASP	116	720	ASP	GIY	1111	GIY	725		Arg	Gly	
												atc				2260
Gly	Gln 730	Val	Ile	Glu	Val	Ser 735	Glu	Glu	Tyr	Ala	Val 740	Ile	Gln	Val	Phe	
gag	gaa	acc	act	ggg	ctg	gac	ctg	gcc	acg	acc	agc	gtg	agc	ctg	gtg	2308
G1u 745	Glu	Thr	Thr	Gly	Leu 750	Asp	Leu	Ala	Thr	Thr 755		Val	Ser	Leu	Val 760	
gag	gac	gtg	gcc	cgg	ctt	ggg	gtc	tcc	aag	gag	atg	ctg	ggc	cgc	cgc	2356
Glu	Asp	Val	Ala	Arg 765	Leu	Gly	Val	Ser	Lys 770		Met	Leu	Gly	Arg 775	Arg	
												ccc				2404
Phe	Asn	Gly	Ile 780	Gly	Lys	Pro	Ile	Asp 785		Leu	Pro) Pro	11e 790		Pro	
-	_	-										ccc				2452
Glu	Lys	Arg 795	Leu	Pro	Ile	Thr	Gly 800		Pro	Leu	ASI	805		Ala	Arg	
															gtg	2500
Arg	Lys 810	Pro	Glu	Gln	Phe	11e 815		Thr	Gly	lle	Se 1 820		· Ile	Asp	Val	
															tcg	2548
Met 825	Asn	Thr	Leu	Val	Arg 830		Gln	Lys	Leu	Pro 835		e Phe	e Ser	Gly	Ser 840	
												cgc				2596
Gly	Leu	Pro	Ala	Asn 845		Ile	Ala	Ala	Gln 850		e Ala	a Arg	g Gln	1 Ala 855	Thr	
												gag				2644
Val	Arg	Pro	Asp 860		Ser	Gly	r Glu	Gly 865		ı Lys	Glı	ı Glu	Pro 870		e Ala	
												ctc				2692
Val	Val	Phe 875		Ala	Met	Gly	7 Ile 880		Gli	ı Arg	g Gli	1 Let 888		Туі	Phe	
															ttc	2740
Hle	Gln	- G1 11	Phe	Glu	l Arg	. Tht	· Glv	7 Als	ı Lei	1 Se 1	r Ars	g Sei	r Val	Lei	ı Phe	

	890					895					900					
	aac															2788
	Asn	Lys	Ala	Asp	_	Pro	Thr	Ile	Glu			Leu	Thr	Pro	Arg	
905		,			910		1			915				<u>.</u>	920	0000
	gcc				_	_										2836
mel	Ala	ren	1111	925	Ala	GIU	1 9 1	Leu	930	rne	Glu	nıs	ASP	935	His	
gtc	ctc	gtc	atc		acg	gac	atg	acc		tac	tgc	gag	gcc			2884
															Arg	2001
			940					945					950	l		
gag	atc	ggg	gcc	gcc	cgc	gag	gag	atc	ccg	ggc	cgc	cgc	ggt	tac	ccc	2932
Glu	Ile		Ala	Ala	Arg	Glu		Ile	Pro	Gly	Arg			Tyr	Pro	
		955					960					965			, .	0000
		-			_	-						-			gtg	2980
GIY	970	Met	TYI	1111	ASP	975	Ala	1111	116	1 7 1	980		Ala	. Gly	v Val	
gtg	gag	ggg	ลลฮ	aag	ggg		gtg	acc	cag	atc			ctc	tcc	atg	3028
-			-	_		-			_						Met	0020
985		•	•	-	990					995					1000	
ccc	gac	gac	gac	cgc	acc	cac	ccc	atc	ccc	gac	ctc	acg	ggc	tac	atc	3076
Pro	Asp	Asp			Thr	His	Pro	Ile			Leu	Thr	Gly		Ile	
				1005		_ 1 _	4		1010					1015		0104
	gag															3124
1111	Giu	_	1020	116	GIH	ren		1025		Leu	11115	Alg	1030		Ile	
tac	ccg			gac	ccc	ttg				tcc	cgg	ctc			aac	3172
															ı Asn	
		1035					1040					1045	;			
	gtg				_											3220
			Lys	Gly	Lys			Glu	Asp	His			ı Val	l Se	r Asp	
	1050		4			1055			~ t ~		1060			a t a	~+ ~	2260
	ctc														gig 1 Val	3268
106		1 7 1	Set	піа	1070		. von	. GIY		. Ası 1075		, Alf	5 Ly) LC	1080	
		atc	ggc	gag			ctc	acg	gag			cgc	cgt	tac	ctc	3316
			-												r Leu	
				1085					1090					109		
	ttc	_	-	_												3364
Gln	Phe	Ala	Asp	Ala	Phe	Glu	Arg	Phe	Phe	e Ile	Ası	ı Glı	ı Gly	y G11	n Gln	

		1	100				1	105				1	1110			
aac o	cgc	tcc	att	gag	gag	agc	ctg	cag	atc	gcc	tgg s	gcc	ctc (ctc 1	tcc	3412
Asn A																
		115					120					125				
atg (ctg	ccc	cag	ggc	gag	ctc	aag	cgc	atc	tcc	aag	gac	cac	atc g	ggc	3460
Met 1	_		_		_											
	130			·		135					1140			•		
aag	tac	tac	ggc	cag	aag	ctg	gag	gag	atc	tgg	ggc	gcg	ccc	cag	gcc	3508
Lys																
1145	-	٠.	-	1	150					1155					1160	•
	gac	taas	ggag	gg t	ag a	tg a	gc c	ag g	tg a	igc c	cc a	сс с	gg a	tg a	ac	3557
Leu											Pro :					
	_							165					170			
ctt	ctg	cag	agg	cgg	ggg	cag	ctc	cgc	ctg	gcg	cag	aag	ggg	gtg	gac	3605
											Gln					
		175	_	_	Ţ		1180					1185				
ctc	ctc	aag	aag	aag	cgg	gac	gcc	ctg	gtg	gcc	gag	ttc	ttc	ggc	ctg	3653
											Glu					
	190	-		_		1195					1200					
		gag	gcc	atg	gag	gcc	agg	aag	gcc	ctg	gac	cag	gcg	gcc	aag	3701
Val	Arg	Glu	Ala	Met	Glu	Ala	Arg	Lys	Ala	Leu	Asp	Gln	Ala	Ala	Lys	
1205					1210					1215					1220	
gag	gcc	tac	gcc	gcc	ctc	ctc	ctg	gcc	cag	gcc	ttt	gac	ggg	ccg	gag	3749
Glu	Ala	Tyr	Ala	Ala	Leu	Leu	Leu	Ala	Gln	Ala	Phe	Asp	Gly	Pro	Glu	
				1225					1230					1235		
gtg	gtg	gcg	ggg	gcg	gcc	ċtt	ggg	gtc	ccg	ccc	ctc	gag	ggg	gtg	gag	3797
Val	Val	Ala	Gly	Ala	Ala	Leu	Gly	Val	Pro	Pro	Leu	Glu	Gly	Val	Glu	
			1240					1245	ı				1250			
gcg	gag	gtg	gag	aac	gtc	tgg	ggg	agc	aag	gtg	ccg	agg	ctc	aag	gcc	3845
Ala	Glu	Val	Glu	Asn	Val	Trp	Gly	Ser	Lys	Val	Pro	Arg	Leu	Lys	Ala	•
		1255					1260	1				1265	j			
acc	ttc	ccc	gac	ggg	gcc	ctc	ctt	tcc	ccg	gtg	ggg	acc	ccg	gcc	tac	3893
Thr	Phe	Pro	Asp	Gly	Ala	Leu	Leu	Ser	Pro	Val	Gly	Thi	Pro	Ala	Tyr	
]	1270					1275					1280	Ì				
acc	ctc	gag	gcc	agc	cgg	gcc	ttc	cgc	cgc	tac	gcc	gag	gcc	ctg	atc	3941
Thr	Leu	Glu	Ala	Ser	Arg	Ala	Phe	Arg	, Are	g Ty1	r Ala	Gli	ı Ala	Leu	Ile	
1289	5				1290					1298	5				1300	
cgg	gtg	gcc	aac	acc	gag	acc	cgc	ctg	aag	aag	atc	ggg	gag	gag	atc	3989
Arg	Val	Ala	Asn	Thr	Glu	Thr	Arg	Let	ı Lys	s Lys	s Ile	Gly	r Glu	ı Glu	lle	

			1	305				1	310				13	15	
aag	aag	acc	acg	cgg	cgg	gtg	aac g	gcc (tg 8	gag (ag gt	ggt	g at	c ccs	4037
											Gln V				
		1	320				1	325				13	30		
ggg	atc	cgc	gcc	cag	atc	cgc	ttc a	atc o	ag	ag g	gtc ci	tg ga	g ca	g cg	g 4085
Gly	Ile	Arg	Ala	Gln	Ile	Arg	Phe	He	Gln	Gln	Val L	eu G	lu G	ln Ai	rg
	1	335				1	340				13	45			
gaa	cgg	gag	gac	acc	ttc	cgc	ctc a	aag (ege a	atc a	aag gg	gc aa	g at	t gas	g 4133
Glu	Arg	Glu	Asp	Thr	Phe	Arg	Leu	Lys	Arg	Ile	Lys G	ly L	ys I	le G	lu
	1350					1355				1	360				
gcc	cgg	gag	gcc	gag	gag	gag	ggc :	ggc	cgg (ccc :	aac c	cg ca	ıg gt	g ga	g 4181
Ala	Arg	Glu	Ala	Glu	Glu	Glu	Gly	Gly	Arg	Pro	Asn F	ro G	ln V	al G	lu
136	5				1370				1	375				13	80
atc	ggg	gcg	ggc	ctt	taa	-									4199
Ile	Gly	Ala	Gly	Leu											
				1385	5										
<21	0> 2								•						
<21	1> 10)6													
	2> PI														
	3> T1	1e rm	us t	herm	ophi	lus									
-	0> 2							_							
	Arg	Met	Ala			Ala	Asp	Pro		Thr	Ala (3ln G	ly P		rg
_ 1			-	5		_			10	_		<i>~</i> .	~ 1	15	
Leu	Ala	Gly			ı Gly	/ Tyi	Gly		•	Sei	Ala	Glu			GIn
_	_	_	20		_	1	a.	. 2			m		30		
Ser	Leu			Thi	Let	ı vai			G13	GI	y Tyr			vaı	Ala
77 1		35				. n	40		01.		. 41.	45		A	T and
Val			Ala	Let	ı Lei			Pro	GII	l Ar	g Ala		GIU	Arg	ren
	50					5		T	, T.,	. D	6(C1	T	T
		GIY	Arg	ASI) vai	Leu	Let		lle	Ala	GIY	Leu	
65		Di	41	01-	7		. 37 - 1	01		_	′5 - V-1	A	C1	T	80 V-1
Glu	Ala	Pne	GII			s Ası	y vai	GIU			r Met	Arg	GIU		
4		/D1		8	-		. 71.	T		0				95)
Arg	Lys	Ini			y Pne	e Ası	Ile			I					
/ 01	Λ\ n		100	J				10	อ						
	0> 3														
	1> 5														
	2> P		1	· h c	non1	: 1									
\ 21	3> T	пел	ius I	леп	nobu	11112									

<400	> 3															
Me t	Ile	Gln	Gly	Val	Ile	Gln	Lys	Ile	Ala	Gly	Pro	Ala	Val	Ile	Ala	
1				5					10					15		
Lys	Gly	Met	Leu	Gly	Ala	Arg	Met	Tyr	Asp	Ile	Cys	Lys	Val	Gly	Glu	
•			20					25					30			
Glu	Gly	Leu	Val	Gly	Glu	Ile	Ile	Arg	Leu	Asp	Gly	Asp	Thr	Ala	Phe	
	•	35		·			40					45				
Va1	Gln		Tvr	Glu	Asp	Thr	Ser	Gly	Leu	Lys	Val	Gly	Glu	Pro	Val	•
,	50	. 41	-,-			55					60					
Val		Thr	Glv	Leu	Pro	Leu	Ala	Val	G1u	Leu	Gly	Pro	Gly	Met	Leu ·	
65	501	****	u.j		70					75					80	
	Glv	Πe	Tvr	Asp			Gln	Arg	Pro	Leu	Glu	Arg	Ile	Arg	Glu	
IXOII	ulj	110	1,1	85					90					95		
Ive	Thr	G1v	Tle	Tyr	Tle	Thr	Arg	Glv			Va1	His	Ala	Leu	Asp	
цуs	IIII	uly	100		110	****	*** 0	105					110	· ·		
Δτσ	Glu	Lvg		Trp	Ala	Trp	Thr			Val	Lvs	Рго			Glu	
WI P	ulu	115		LIP	1114	115	120					12				
Va 1	Aro			Met	Va 1	T.e.11			Val	Pro	Glu			Phe	Thr	
141	130		ar,	1110 0	,	135					140)				
Hic			Leu	Val	Pro			Val	Arg	Glv			Lys	Glu	Val	
145		110	ь	, , ,,,	150		115P		0	15					160	
		Δ1 a	G1v	Glu			Val	Glu	Glu			Val	Val	Leu	Glu	•
פעע	110	ni u	, uly	165		1111			170					17	5	
Aen	Glv	The	- G1 11	Leu		Met	Tvr	His			Pro	Val	Arg	Arg	Ala	
пор	GIJ	1111	180		1,5	11100	-,-	18					19			
Δτσ	Dro	Val		, Arg	T.vs	I.eii	Asn			Thi	Pro	Phe			Gly	
ur 9	110	19			2,5	204	200					20	5			
Mot	Δτα			1 Asp	Val	T.en			Val	A1a	a Met			Thr	Ala	
MCt	210		, пос	i iibb	141	21					22					
A 1 a	714 11a	, Σ Ρτ	n (61x	y Pro	Phe			· G1x	, Lvs	Th			Gln	Gln	Ser	
225		, 11(o dra	, 110	230					23	5				240	
7 A1	, , 11,	1 T 37	о Т г т	Ser			ı Ast	v Val	Va1			- Val	G1v	cvs	Gly	
Pen	ı Alc	т гу	9 111	24		ı mı	· Hub	, , ,	25		,.			25	5	·
C1 ₁	1 Are	- C1:	er Aci	n Glu		Th:	r Ast	n Vai			1 G11	ı Phe	Pro			
GIL	I VI	5 01	y Asi 26		i mc	. 1111	LILDI	26			. 01.		27			
Th.	- Acı	n Dr		s Thi	- Gly	7 G1v	v Pro			t. Hi	s Ars	z Thi			Ile	
TIII	. AS	27		o ini	. 01;	, ur;	28		4 1110	. 111	~(28			- -	
۸1.	ο Λαι			r Ası	Me:	t Pro			a A1:	a Ar	g G11			r Ile	Tvr	
Ali	1 AS		1 26	ı usı	T W.C.	29		1111		. 111	30					
	49	v				43	U				0(, 0				

Val 305	Gly	Val	Thr	Ile					Arg	Asp 315		G1y			Va1 320
	Leu	Met	Ala		-	Thr	Ser	Arg	Trp	Ala				Arg 335	
Ile	Ser	Ser	Arg 340	Leu		Glu	Met	Pro	Ala	Glu	Glu	Gly	Tyr		Pro
Tyr	Leu	Ala 355		Arg	Leu	Ala	Ala	Phe	Tyr	Glu	Arg	Ala	Gly	Lys	Val
Ile	Thr 370	Leu		Gly	Glu		Gly	Ala		Thr		Val	Gly	Ala	Val .
Ser 385						Met	Ser	Glu		Val	Thr				Leu 400
	Ile	Val	Gly	Ala 405	Phe	Trp	Arg	Leu	Asp	Ala	Ser	Leu	Ala		Arg
Arg	His	Phe	Pro 420	Ala		Asn	Trp	Asn	Gly	Ser	Tyr	Ser	Leu	Phe	
Ser	Ala	Leu 435	Asp	Pro	Trp	Tyr	Arg	Glu	Asn	Val	Ala	Glu	Asp		Pro
Glu	Leu 450	Arg		Ala	Ile	Ser	Glu	Leu	Leu	Gln	Arg	Glu		Gly	Leu
Gln 465	Glu	Ile	Val	Gln	Leu	Val	Gly	Pro	Asp	Ala	Leu	Gln			Glu 480
					Val	Gly	Arg	Ile		Arg	Glu		Phe	Leu	Gln
Gln	Asn	Ala	Tyr 500	His	Glu	Val	Asp	Ala	Tyr		Ser	Met	Lys	Lys	Ala
Tyr	Gly	Ile 515	Met	Lys	Met	Ile	Leu	Ala	Phe		Lys		Ala		Ala
Ala	Ile 530	Lys					Ile			Ile		Gln		Pro	Val
Leu 545	Glu		Ile	Gly	Arg 550	Ala		Tyr	Val	Ser 55	Glu		Glu	Phe	Pro 560
		Phe	Glu	Glu 565	Ala		Lys	Glu	11e	Gln		Ala	Phe	Lys 57	Ala
<21 <21 <21	Ala 0> 4 1> 4 2> F	! !78 'RT				1			•	•					
<21	3> 1	hern	ius t	nern	loph 1	1 U S									

<400	> 4														
Met	Asp	Leu	Leu	Lys	Lys	Glu	Tyr	Thr	Gly	Ile	Thr	Tyr	Ile	Ser	Gly
1				5					10					15	
Pro	Leu	Leu	Phe 20	Val	Glu	Asn	Ala .	Lys 25		Leu	Ala	Tyr	Gly 30		Ile
Val	Asp	Ile 35		Asp	Gly	Thr	Gly 40			Arg	Gly	Gly 45		Val	Ile
Glu	Val 50		Glu	G1u	Tyr	Ala 55		Ile	Gln	Val	Phe 60	Glu		Thr	Thr
Gly 65		Asp	Leu	Ala	Thr 70	-	Ser	Val	Ser	Leu 75	Val		Asp	Val	Ala . 80
	Leu	Gly	Val	Ser 85	Lys	Glu	Met	Leu	Gly 90		Arg	Phe	Asn	Gly 98	
Gly	Lys	Pro	Ile 100		Gly		Pro	Pro 105		Thr	Pro	Glu	Lys 110		Leu
Pro	Ile	Thr 115	Gly	Leu			Asn 120	Pro		Ala	Arg	Arg 125	Lys		Glu
Gln	Phe 130	Ile	Gln	Thr	Gly	Ile 135		Thr		Asp	Val 140		Asn	Thr	Leu
Val 145		Gly	Gln	Lys	Leu 150	Pro	Ile	Phe				Gly	Leu	Pro	Ala 160
	Glu	Ile	Ala	Ala 165	Gln		Ala	Arg		Ala	Thr	Val		Pro	
Leu	Ser	Gly	Glu 180	Gly		Lys	Glu	Glu 185	Pro		Ala			Phe	
Ala	Met	Gly 195	Ile	Thr	Gln	Arg	Glu 200	Leu				Ile 205		Glu	Phe
Glu	Arg 210		Gly	Ala	Leu	Ser 215		Ser	Val	Leu	Phe 220		Asn	Lys	Ala
Asp 225	Asp		Thr	Ile	G1u 230	Arg		Leu	Thr	Pro 235		Met	Ala	Leu	Thr 240
		Glu	Tyr	Leu 245		Phe	Glu	His	Asp 250		His	Val	Leu	Val 25	
Leu	Thr	Asp	Met 260		Asn	Tyr	Cys	G1u 265		Leu	Arg	Glu	Ile 27		Ala
Ala	Arg	Glu 275	Glu	Ile	Pro	Gly	Arg 280	Arg		Tyr	Pro	Gly 28		Met	Tyr
Thr	Asp	Leu		Thr	Ile	Tyr 295	Glu		Ala	Gly	Val	Val		Gly	Lys

WO 2004/046350 PCT/JP2003/012982

Lys 305	Gly	Ser	Val	Thr	Gln 310	Ile	Pro	Ile	Leu	Ser 315		Pro	Asp	Asp	Asp 320
	Thr	His	Pro	Ile 325		Asp	Leu	Thr	Gly 330	Tyr		Thr	Glu	Gly 335	G1n
Ile	Gln	Leu	Ser 340		Glu	Leu	His	Arg 345	Lys		Ile	Tyr	Pro 350	Pro	
Asn	Pro	Len		Ser	T.en	Set	Arg			Asn	Asn	Glv		Gly	Lvs
пор	110	355	110	501	Dou	501	360		1110			365		41 ,	2,0
Gly	Lys 370	Thr	Arg		Asp	His 375			Val	Ser	Asp 380	Gln		Tyr	Ser .
Ala		Ala	Asn	Gly	Val		Ile	Arg	Lys	Leu	Val	Ala	Ile	Ile	Gly
385						_			_	395					400
	Asp	Ala	Leu	Thr 405	G1u	Asn	Asp	Arg	Arg 410		Leu	Gln	Phe	Ala 415	
Ala	Phe	G1u	Arg		Phe	Ile	Asn	Gln			Gln	Asn	Arg	Ser	
			420						j				430		
G1u	G1u	Ser 435	Leu	Gln	Ile	Ala	Trp 440	Ala			Ser	Me t 44		Pro	Gln
G1y	Glu	Leu	Lys	Arg	Ile	Ser	Lys	Asp	His	Ile	Gly	Lys	Tyr	Tyr	Gly
	450					455					460)			
Gln	Lys	Leu	Glu	Glu	Ile	Trp	Gly	Ala	Pro	Gln	Ala	Leu	Asp		
465					470					47	5				
<21	0> 5														
<21	1> 2	23													
	2> P					_								Ť	
			us t	herm	ophi	lus									
•	0> 5			_	_		Ā			-	_				01
		Gln	Val			Thr	Arg	Met			Leu	GID	Arg		Gly
1			-	5			01	77 1	10		¥	T	T	1	
GIn	Leu	Arg	Leu 20		Gin	Lys	Gly	vai 2		Leu	Leu	Lys	Lys 3	Lys O	Arg
Asp	Ala	Leu			G1u	Phe	Phe		-	Val	Arg	Glu		Met	Glu
		35					4(_	4			
Ala	Arg			Leu	Asp	Gln	Ala	Ala	Lys	Glu	Ala	Tyr	Ala	Ala	Leu
	50					5						0			
Leu	Leu	Ala	Gln	Ala	Phe	Asp	Gly	Pro	G1u	Val	Val	Ala	Gly	Ala	Ala
65					70					7					80
Leu	Gly	v Val	Pro	Pro	Leu	Glu	Gly	Val	G1u	Ala	Glu	Val	Glu	Asn	Val
				8					9					9	

Trp	Gly	Ser	Lys	Val	Pro	Arg	Leu	Lys	Ala	Thr	Phe	Pro	Asp	Gly	Ala
			100					105					110	j	
Leu	Leu	Ser	Pro	Val	Gly	Thr	Pro	Ala	Tyr	Thr	Leu	Glu	Ala	Ser	Arg
		115					120					125	i		
Ala	Phe	Arg	Arg	Tyr	Ala	Glu	Ala	Leu	Ile	Arg	Val	Ala	Asn	Thr	Glu
	130					135					140)			
Thr	Arg	Leu	Lys	Lys	Ile	Gly	Glu	Glu	Ile	Lys	Lys	Thr	Thr	Arg	Arg
145					150					155	I				160
Val	Asn	Ala	Leu	Glu	Gln	Val	Val	Ile	Pro	Gly	Ile	Arg	Ala	Gln	Ile
				165					170)				175	; ·
Arg	Phe	Ile	Gln	Gln	Val	Leu	Glu	Gln	Arg	Glu	Arg	Glu	Asp	Thr	Phe
			180					185					190)	
Arg	Leu	Lys	Arg	Ile	Lys	Gly	Lys	Ile	Glu	Ala	Arg	Glu	Ala	Glu	Glu
		195					200)				205	i		
Glu	Gly	Gly	Arg	Pro	Asn	Pro	Gln	Val	Glu	Ile	Gly	Ala	Gly	Leu	
	210					215					220)			

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/12982

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ Cl2N9/16, 15/55							
INC.C1 C12N3/10, 13/33							
	International Patent Classification (IPC) or to both nati	onal classification and IPC					
B. FIELDS	SEARCHED cumentation searched (classification system followed by	y classification symbols)					
Int.(Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ Cl2N9/16, 15/55						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched							
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) SwissProt/PIR/GeneSeq, GenBank/EMBL/DDBJ/GeneSeq, BIOSIS/WPI(DIALOG)							
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.				
X/Y/A	YOKOYAMA, K. et al., Thermus t associated ATPase., Indication V-type ATPase., J.Biol.Chem., p.21946-50	n of a eubacterial	1-4/6-10/5				
X/Y/A	YY/A YOKOYAMA, K. et al., Isolation of prokaryotic V_0V_1 -ATPase from a thermophilic eubacterium Thermus thermophilus., J.Biol.Chem., 1994, 269(16), p.12248-53						
x/Y/A	YOKOYAMA, K. et al., V-ATPase philus is inactivated during can synthesize ATP.J.Biol.Chep.20504-10	ATP hydrolysis but	1-4/6-10/5				
× Furth	er documents are listed in the continuation of Box C.	See patent family annex.					
* Specia "A" docum consid "E" earlier date "L" docum cited to specia "O" docum means "P" docum than th Date of the	emational filing date or the application but cited to derlying the invention claimed invention cannot be ered to involve an inventive e claimed invention cannot be by when the document is th documents, such in skilled in the art family rch report (24.12.03)						
Name and r Japa	nailing address of the ISA/ anese Patent Office	Authorized officer					
Facsimile N	io	Telephone No.					

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/12982

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
X/Y/A	YOKOYAMA, K. et al., V-Type H ⁺ -ATPase/synthase from a thermophilic eubacterium, thermus thermo philus.Subunit structure and operon., J.Biol. Chem., 2000, 275(18), p.13955-61	1-4/6-10/5	
Y/A	KATO-YAMADA, Y. et al., Direct observation of the rotation of ϵ subunit in F_1 -ATPase., J.Biol.Chem., 1998, 273(31), p.19375-7	6-10/1-5	
Y/A	NOJI, H. et al., Direct observation of the rotation of F_1 -ATPase., Nature, 1997, 386(6622), p.299-302	6-10/1-5	
P,X	IMAMURA, H. et al., Evidence for rotation of V_1 -ATPase.Proc.Natl.Acad.Sci.U.S.A., 2003, March, 100(5), p.2312-5	1-10	
P,X	YOKOYAMA, K., Rotation of the proteolipid ring in the V-ATPase., J.Biol.Chem., 04 July, 2003 (04.07.03), 278(27), p.24255-8	1-10	
A	TSUNODA, S.P. et al., Observations of rotation within the F_0F_1 -ATP synthase: deciding between rotation of the F_0 c subunit ring and artifact., FEBS Lett., 31 March, 2000 (31.03.00); 470(3): 244-8	1-10	
А	MATSUI, T. et al., Catalytic activity of the $\alpha3\beta3\gamma$ complex of F_1 -ATPase without noncatalytic nucleo tide binding site., J.Biol.Chem., 1997, 272(13), p.8215-21	1-10	
A	BALD D. et al., ATP synthesis by F_0F_1 -ATP synthase independent of noncatalytic nucleotide binding sites and insensitive to azide inhibition., J. Biol.Chem., 1998, 273(2), p.865-70	1-10	

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl ⁷ Cl2N9/16, 15/55							
D 细本丸外	テった分野						
B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl' Cl2N9/16, 15/55							
最小限資料以外の資料で調査を行った分野に含まれるもの							
SwissProt/ GenBank/EM	国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) SwissProt/PIR/GeneSeq GenBank/EMBL/DDBJ/GeneSeq BIOSIS/WPI (DIALOG)						
	ると認められる文献						
引用文献の カテゴリー*	 引用文献名 及び一部の箇所が関連すると	きは、その関連する箇所の表示	関連する 請求の範囲の番号				
X/Y/A							
X/Y/A	YOKOYAMA K. et al., Isolation of pr thermophilic eubacterium Thermus J. Biol. Chem., 1994, 269 (16), p. 12248	thermophilus.	1-4/6-10/5				
区欄の続	区欄の続きにも文献が列挙されている。 □ パテントファミリーに関する別紙を参照。						
「E」以後先生 の際後先者献頭「O」「O」「C」「C」「O」「C」「C」「C」「C」「C」「C」「C」「C」「C」「C」「C」「C」「C」	のカテゴリー 連のある文献ではなく、一般的技術水準を示す 願日前の出願または特許であるが、国際出願日 公表されたもの 主張に疑義を提起する文献又は他の文献の発行 くは他の特別な理由を確立するために引用する 理由を付す) よる開示、使用、展示等に言及する文献 願日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの 「&」同一パテントファミリー文献					
国際調査を完	了した日 08.12.03	国際調査報告の発送日 24.1	2.03				
日本	の名称及びあて先 国特許庁(ISA JP) 郵便番号100-8915 都千代田区設が関三丁目4番3号	特許庁審査官(権限のある職員) 本間 夏子 (日本) 電話番号 03-3581-1101	内線 3448				
/ 水水	金二丁/日内皮//。第一1日4年の万	周加田で ひこ ここのエーエエリエ	Linux Orango				

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X/Y/A	YOKOYAMA K. et al., V-ATPase of Thermus thermophilus is inactivated during ATP hydrolysis but can synthesize ATP. J. Biol. Chem., 1998, 273(32), p. 20504-10	1-4/6-10/5
X/Y/A	YOKOYAMA K. et al., V-Type H'-ATPase/synthase from a thermophilic eubacterium, Thermus thermophilus. Subunit structure and operon. J. Biol. Chem., 2000, 275 (18), p. 13955-61	1-4/6-10/5
Y/A	KATO-YAMADA Y. et al., Direct observation of the rotation of ε subunit in F ₁ -ATPase. J. Biol. Chem., 1998, 273(31), p. 19375-7	6-10/1-5
Y/A	NOJI H. et al., Direct observation of the rotation of F ₁ -ATPase. Nature, 1997, 386 (6622), p. 299-302	6-10/1-5
PX	IMAMURA H. et al., Evidence for rotation of V ₁ -ATPase. Proc. Natl. Acad. Sci. U. S. A., 2003 Mar, 100(5), p. 2312-5	1-10
PX	YOKOYAMA K., Rotation of the proteolipid ring in the V-ATPase. J. Biol. Chem., 2003 Jul 4, 278(27), p. 24255-8	1-10
A	TSUNODA S.P. et al., Observations of rotation within the F ₀ F ₁ -ATP synthase: deciding between rotation of the F ₀ c subunit ring and artifact. FEBS Lett. 2000 Mar 31;470(3):244-8.	1-10
A	MATSUI T. et al., Catalytic activity of the $\alpha 3 \beta 3 \gamma$ complex of F ₁ -ATPase without noncatalytic nucleotide binding site. J. Biol. Chem., 1997, 272(13), p. 8215-21	1-10
A	BALD D. et al., ATP synthesis by F ₀ F ₁ -ATP synthase independent of noncatalytic nucleotide binding sites and insensitive to azide inhibition. J. Biol. Chem., 1998, 273(2), p. 865-70	1-10