inoffizielles Skript

Angewandte Differentialgeometrie

Gehalten von Dr. S. Grensing im Sommersemester 2013

getippt von Aleksandar Sandic *

28. September 2017

^{*}Aleks and ar. Sandic@student.kit.edu

Inhaltsverzeichnis

V	orwo	ort	5
1	Rä	uber und Gendarm	7
	1	Metrische Räume mit oberen Krümmungsschranken	7
	2	Konvexität	10
	3	Räuber und Gendarm	12
	4	Geometrische Charakterisierung von Flucht- und Verfolgerkurven $\ .$.	22
	5	Positive Krümmungsschranken	26
2	Be	wegungsplanung & Konfigurationsräume	29
	1	Geometrie des Kubenkomplexes $K_n \mathcal{G}$	36
	2	Nichtpositive Krümmung von Kubenkomplexen	38
	3	Verallgemeinerung: Lokal rekonfigurierbare Räume	40
3	"G	estänge" (Linkages)	43
	1	Abstandsfunktion von Roboterarmen	43
	2	Polygonräume	43
	3	Walkers Vermutung	50
4	Kiı	nematik	53
	1	Vorwärtstransformation	55
	2	Linarisierung (d.h. Tangentialräume)	56
	3	Adjungierte Darstellung	57
	4	Exponentialabbildung	59
	5	Clifford Algebren	61
St	ichv	vortverzeichnis	66

Vorwort

Über dieses Skript

Dies ist eine Mitschrieb der Vorlesung "Angewandte Differentialgeometrie" von Dr. S. Grensing, gehalten im Sommersemester 2013 am Karlsruher Institut für Technologie. Dr. Grensing ist nicht für den Inhalt verantwortlich und es besteht weder eine Garantie für Vollständigkeit, noch Korrektheit der enthaltenen Aussagen.

Wer

Das Skript wurde in von Aleksandar Sandic getippt. Bei Anmerkungen bzw. beim Auffinden von Fehlern korrigierte bitte die entsprechende Stelle in Wiki oder schickt eine E-Mail an

aleksandar.sandic@student.kit.edu

\mathbf{Wo}

Link zur Vorlesung: http://www.math.kit.edu/iag5/lehre/angdifgeo2013s/de Link zum Skript: http://mitschriebwiki.nomeata.de/AngDiffGeo2013.pdf Link zum Mitschiebwiki: http://mitschriebwiki.nomeata.de/

To Do

Fertig, die Vorlesung ist beendet und der Inhalt ist vollständig. Eventuell könnte man noch die Übung in's Skript aufnehmen, aber ich bin nicht sicher ob das den Aufwand wert wäre. Ansonsten...

- Glossareinträge anlegen
- Ein richtiges Literaturverzeichnis

Kapitel 1

Räuber und Gendarm

1 Metrische Räume mit oberen Krümmungsschranken

Es sei (X,d) ein metrischer Raum. Ein Weg $c: \mathcal{I} \to X$ heißt (minimierende) Geodätische, wenn d(c(t),c(t'))=(t-t') für alle $t,t'\in \mathcal{I}$ gilt. Der Raum X heißt geodätischer Raum, wenn für alle $x,y\in X$ eine Geodätische von x nach y existiert, beziehungsweise R-geodätisch, wenn dies für $d(x,y)\leq R$ gilt. Ist $c:[a,b]\to X$ ein Weg so heißt er rektifizierbar, falls seine Länge

$$\mathcal{L}(c) = \sup \left\{ \sum d(c(t_i), c(t_{i+1})) \mid t_1 < \dots t_n, t_i \in \mathcal{I} \right\}$$

endlich ist. Es gilt $d(c(a), c(b)) \leq \mathcal{L}(c)$. Die Kurvenlänge ist invariant unter monotonen Reparametrisierungen. Die Längenfunktion $t \mapsto \mathcal{L}(c|_{[a,t]})$ ist monoton wachsend; insbesondere besitzt jede Kurve eine Bogenlängenparametrisierung. Der Raum (X,d) heißt **Längenraum** (oder d innere Metrik), falls die Metrik

$$\overline{d}(x,y) = \inf\{\mathcal{L}(c) \mid c: \mathcal{I} \to X \text{ rektif'barer Weg}, c(0) = x, c(1) = y\}$$

mit d "ubereinstimm"t.

Beispiele

- 1) \mathbb{R}^n mit der euklidischen Metrik ist ein geodätischer Raum und ein Längenraum.
- 2) Jede Riemannsche Mannigfaltigkeit ist ein Längenraum (Beweis zur Übung).
- 3) Ist (X, d) ein metrischer Raum, so folgt dass (X, \overline{d}) eine Längenmetrik ist, das heißt $\overline{\overline{d}} = \overline{d}$ (das iterieren der Konstruktion liefert keine neue Metrik).
- 4) Jeder geodätische Raum ist ein Längenraum. Es gilt stets $d \leq \overline{d}$. Sind $x, y \in X$ und ist $\gamma : [a, b] \to X$ eine Geodätische von x nach y, so gilt:

$$\mathcal{L}(\gamma) = \sup \left\{ \sum d(\gamma(t_i), \gamma(t_{i+1})) \right\}$$
$$= \sup \left\{ \sum (t_{i+1} - t_i) \right\}$$
$$= t - a = d(x, y).$$

Also

$$\overline{d}(x,y) = \inf_{c} \mathcal{L}(c) \le \mathcal{L}(\gamma) = d(x,y)$$

5) $\mathbb{R}^2 \setminus \{0\}$ ist ein Längenraum (bezüglich der euklidischen Metrik), aber kein geodätischer Raum.

Es gibt keine kürzeste Verbindung

Satz (von Hopf-Rinow; Chom-Vossen 1935)

Es sei X ein lokalkompakter Längenraum. Dann sind die folgenden Aussagen äquivalent:

- (i) X ist vollständig
- (ii) X ist **geodätisch vollständig**, das heißt jede Geodätische $c:[0,1)\to X$ kann in 1 fortgesetzt werden.
- (iii) Beschränkte abgeschlossene Mengen sind kompakt.

Jede der obigen Aussagen impliziert, dass X ein geodätischer Raum ist.

Kanten e_n der Länge $1 + \frac{1}{n} \sim$ Es gibt keine Kurve der Länge 1

Es bezeichne M_{κ}^2 die (eindeutigen) 2-dimensionalen, einfachzusammenhängenden Riemannschen Mannigfaltigkeiten mit der Schnittkrümmung sec $\equiv \kappa$, und D_{κ} ihren Durchmesser:

$$M_{\kappa}^{2} = \begin{cases} \mathbb{S}_{\frac{1}{\sqrt{\kappa}}}^{2} &, \kappa > 0\\ \mathbb{R}^{2} &, \kappa = 0\\ \mathbb{H}_{\frac{1}{\sqrt{\kappa}}}^{2} &, \kappa < 0 \end{cases}$$
$$D_{\kappa} = \begin{cases} \frac{\pi}{\sqrt{\kappa}} &, \kappa > 0\\ \infty &, \kappa \leq 0 \end{cases}$$

wobei

$$\mathbb{H}^{2}_{\frac{1}{\sqrt{\kappa}}} = \left\{ x \in \mathbb{R}^{3} \mid x_{1}^{2} + x_{2}^{2} - x_{3}^{2} = -\frac{1}{\kappa} \right\}.$$

Es sei X ein metrischer Raum. Ein **geodätisches Dreieck** $\Delta(x,y,z)$ besteht aus Geodätischen $c_{xy}=\overline{xy},\,c_{yz}=\overline{yz}$ und $c_{zx}=\overline{zx}$ zwischen den Punkten x,y und z. Ein Vergleichsdreieck in M_{κ}^2 ist ein geodätisches Dreieck $\overline{\Delta}(\overline{x},\overline{y},\overline{z})$ mit gleichen Kantenlängen wie das ursprüngliche Dreieck. Ein solches Vergleichsdrieck existiert eindeutig, falls der Umfang $d(x,y)+d(y,z)+d(z,x)\leq 2D_{\kappa}$ ist. Ein Punkt $\overline{p}\in\overline{\Delta}(\overline{x},\overline{y},\overline{z})$ heißt **Vergleichspunkt** zu $p\in\Delta(x,y,z),\,p\in\overline{xy},\,$ falls $\overline{d}(\overline{x},\overline{p})=d(x,p).$ Das Dreieck $\Delta(x,y,z)$ erfüllt die **CAT** (κ)-**Ungleichung**, wenn für alle $p,q\in\Delta(x,y,z)$ mit vergleichpunkten $\overline{p},\overline{q}$ gilt:

$$d(p,q) \leq \overline{d}(\overline{p},\overline{q})$$

Der Raum X besitzt die obere Krümmungsschranke κ , wenn für alle $x \in X$ eine geodätische Umgebung existiert, in der alle Dreiecke die $CAT(\kappa)$ -Ungleichung erfüllen. Für $\kappa = 0$ heißt X nicht-positiv gekrümmt. Erfüllt X global die $CAT(\kappa)$ -Ungleichung, so heißt X $CAT(\kappa)$ -Raum.

Beispiele

- 1) \mathbb{R}^2 ist CAT(0), $M^2 = \mathbb{R}^2/\mathbb{Z}^2$ ist nichtpositiv gekrümmt.
- 2) \mathbb{S}^1 ist CAT(1).
- 3) $\mathbb{R}^2 \setminus Q_1$, $Q_1 = \{x_1 > 0, x_2 > 0\}$, mit der induzierten Längenmetrik ist CAT(0).

4) Sei (M,g) Riemannsche Manngifaltigkeit mit der Schnittkrümmung $\sec_g \le \kappa$ und vollständig. Nach dem Satz von Topogonov hat M die obere Krümmungsschranke κ .

Eigenschaften von $CAT(\kappa)$ -Räumen

- Geodätische der Länge $< D_{\kappa}$ sind eindeutig.
- Bälle vom Radius $< \frac{1}{2}D_{\kappa}$ sind konvex und zusammenziehbar.
- CAT(0)-Räume sind zusammenziehbar.

Charakterisierung von $CAT(\kappa)$ -Räumen

Für jedes geodätische Dreieck $\Delta(x,y,z)$ vom Umfang $< 2D_{\kappa}$ und Punkte $p \in \overline{xy}$ und $q \in \overline{xz}$ gilt für Vergleichsdreiecke $\overline{\Delta}(\overline{x},\overline{y},\overline{z})$ und $\overline{\Delta}(\overline{x},\overline{p},\overline{q})$:

Ist X ein $CAT(\kappa)$ -Raum und sind c_1 und c_2 Geodätische mit gleichem Startpunkt $c_1(0) = c_2(0) = x$ so ist der Winkel $\sphericalangle_{\overline{x}}(\overline{c_1(s)}, \overline{c_2(t)})$ monoton wachsend in s und t. Damit ist der Winkel

$$\sphericalangle(c_1,c_2) = \lim_{s,t \to 0} \sphericalangle_{\overline{x}}(\overline{c_1(s)},\overline{c_2(t)}) = \lim_{t \to 0} \sphericalangle_{\overline{x}}(\overline{c_1(t)},\overline{c_2(t)})$$

wohldefiniert.

Satz (von Hadamart-Cartan; Alexander-Bishop 1990)

Es sei X ein vollständiger metrischer Raum mit der oberen Krümmungsschranke $\kappa \leq 0$. Dann ist seine universelle Überlagerung \tilde{X} (bezüglich der induzierten Metrik) (global) $\mathrm{CAT}(\kappa)$.

2 Konvexität

Eine Teilmenge C eines CAT(0)-Raumes (geodätischer Raum) heißt **konvex**, falls für alle $x,y\in C$ das geodätische Segment von x nach y existiert und in ganz C verläuft. Eine Abbildung $f:X\to\mathbb{R}$ auf einem CAT(0)-Raum heißt **konvex**, falls für jede Geodätische $c:[0,1]\to X$ die Funktion $f\circ c:[0,1]\to\mathbb{R}$ konvex im gewöhnlichen Sinne ist.

Ist X ein CAT(0)-Raum, so ist die Metrik konvex, das heißt für Geodätische c_1, c_2 : $[0,1] \to X$ ist die Funktion

$$t \mapsto d(c_1(t), c_2(t))$$

konvex, wie man in der folgenden Beweisskizze erkennt:

Beweisskizze

Wir betrachten ohne Einschränkung den Fall dass beide Geodätischen den gleichen Startpunkt $x = c_1(0) = c_2(0)$ haben:

Bei Betrachtung des Vergleichsdreiecks zu $\Delta(c_1(0), c_1(1), c_2(1))$ erhalten wir aus der CAT(0)-Ungleichung:

$$d(c_1(t),c_2(t)) \leq d_{\mathbb{R}^2}(\overline{c_1(t)},\overline{c_2(t)}) = t \cdot d_{\mathbb{R}^2}(\overline{y},\overline{z}) = t \cdot d_{\mathbb{R}^2}(c_1(1),c_2(1))$$

Betrachte nun c von $c_2(0)$ nach $c_1(1)$.

Nach der Dreiecksungleichung gilt:

$$d(c_1(t), c_2(t)) \le d(c_1(t), c(t)) + d(c_2(t), c(t))$$

$$\le (1 - t) \cdot d(c_1(0), c_2(0)) + t \cdot d(c_1(1), c_2(1))$$
 \square

Geodätische Segmente in X sind immer eindeutig, wie man mit der folgenden Skizze erkennen kann:

Die Abstandsfunktion $d(c_1(\cdot), c_2(\cdot))$ ist konvex mit Nullstellen in 0 und 1, also konstant Null und damit $c_1 = c_2$. Nun fixiere $x_0 \in X$, und sei c_x das geodätische Segment von x_0 nach x.

Damit wird $H(x,t) = c_x(t)$ eine Retraktion von X auf $\{x_0\}$.

Ist C eine vollständige konvexe Teilmenge von X, so existiert eine "orthogonale Projektion" $\pi: X \to C$ mit folgenden Eigenschaften:

(i) Für jedes $x \in X$ ist $\pi(x) \in X$ der eindeutig bestimmte Punkt mit

$$d(x, \pi(x)) = d(x, C) = \inf\{d(x, c) \mid c \in C\}$$

- (ii) Für Punkte $y \in C$ und $x \notin C$, mit $\pi(x) \neq y$, gilt $\sphericalangle_{\pi(x)}(x,y) \geq \frac{\pi}{2}$.
- (iii) Es gilt $\pi(x\pi(x)) = {\pi(x)}.$
- (iv) π ist eine Retraktion von X auf C, welche Abstände nicht vergrößert.

Konstruktion

Es seien X_1 und X_2 zwei CAT(0)-Räume. Dann ist $X_1 \times X_2$ ebenfalls ein CAT(0)-Raum bezüglich der Produktmetrik. Die Geodätischen von $X_1 \times X_2$ sind genau die Produkt $c_1 \times c_2$ von Geodätischen c_i in X_i .

Weitere CAT(0)-Räume erhält man durch "Verkleben" entlang konvexer Teilmengen. Es sei A ein vollständiger metrischer Raum und seien $\iota_i:A\hookrightarrow A_i\subseteq X_i$ Isometrien auf konvexen Teilmengen in X_1 beziehungsweise X_2 . Dann ist $X_1\cup_A X_2=X_1\dot\cup X_2/\{\iota_1(a)=\iota_2(a)\in A\}$ mit der Metrik

$$d(x,y) = \begin{cases} d_{X_i}(x,y) & x,y \in X_i \\ \inf_{a \in A} \{ d(x,\iota_i(a)) + d(\iota_j(a),y) \} & x \in X_i, y \in X_j, i \neq j \end{cases}$$

ein CAT(0)-Raum.

Betrachte die Vergleichsdreiecke $\Delta(\overline{x}, \overline{x'}, \overline{z'})$ und $\Delta(\overline{z'}, \overline{y}, \overline{x'})$

3 Räuber und Gendarm

Regeln

Das Spielfeld D sei eine zusammenhängende Teilmenge des \mathbb{R}^n . Eine Startkonfiguration sei gegeben durch eine endliche Anzahl von Verfolgern $P_1, \ldots, P_N \in D$ und einen Flüchtigen $E \in D$. Wir betrachten zunächst (zeitlich) diskrete Modelle. Es bezeichnen P_k^t beziehungsweise E^t die Positionen der Verfolger beziehungsweise des Flüchtigen zum Zeitpunkt $t \in \mathbb{N}$.

Spielverlauf

Zum Zeitpunkt t wählt zunächst E^t eine neue Position E^{t+1} mit dem Abstand $d(E^t, E^{t+1}) \leq 1$, also höchstens eine Einheit entfernt von der vorherigen Position, danach (simultan) die Verfolger P_k^t , entsprechend mit $d(P_k^t, P_k^{t+1}) \leq 1$. Die Verfolger gewinnen, wenn für jedes C > 1 ein $t \in N$ existiert, so dass $d(E^t, P_k^t) < C$ für ein $k \in \mathbb{N}$ gilt.

Satz

Auf jedem Kompaktum $D \subseteq \mathbb{R}^n$ ist "Greedy" stets erfolgreich (mit mindestens einem Verfolger).

Greedy

Der Verfolger bewegt sich um die Distanz 1 auf der Strecke $\overline{P^tE^t}$:

Beweisskizze (allgemein später)

Skizze zum Greedy Algorithmus:

Angenommen der Flüchtige würde entkommen. Dann wäre $d^{\infty} > 1$ und damit der Winkel $\alpha^t \xrightarrow{t \to \infty} 0$, das bedeutet D würde beliebig lange Geradensegmente enthalten, wäre also nicht kompakt. Das ist ein Widerspruch zur Voraussetzung.

Mehrere Verfolger in \mathbb{R}^n

Wann ist ein Entkommen bei mehreren Verfolgern überhaupt möglich? Wir schauen uns die folgende Zeichnung an:

Sei $C^t = \operatorname{conv}(P_1^t, \dots, P_N^t)$ die konvexe Hülle zum Zeitpunkt t. Ein Entkommen ist möglich, wenn es eine trennende Hyperebene gibt, also wenn $E \notin \operatorname{conv}(P_1^t, \dots, P_N^t)$, wobei conv das Innere der konvexen Hülle bezeichnet. Es stellt sich die Frage, ob die Umkehrung auch zutrifft, also ob nie ein Entkommen möglich ist, wenn $E \in \operatorname{conv}(P_1, \dots, P_N)$. Bei Greedy ist das nicht der Fall, der Beweis ist dem Leser zur Übung überlassen. Wir weden uns nun also einen neuen Algorithmus anschauen.

Planes

Die idee hinter dem Planes Algorithmus ist den Bereich um die Verfolger durch Hyperebenen einzugrenzen und systematisch zu verkleinern.

- $P_k^{t+1} = P_k^{t+1}(P_k^t, E^t, E^{t+1})$ Gerade \mathcal{L}_k^{t+1} parallel zu $\overline{E^t P_k^t}$ durch E^{t+1}

• $P_k^{t+1} \in \mathcal{L}_k^{t+1}$ mit $d(P_k^t, P_k^{t+1}) = 1$ und $d(t_k^{t+1}, E^{t+1})$ minimal

Satz (Kopperty-Ravishankar '05)

Es sei $D = \mathbb{R}^n$. Falls $E \in \overset{\circ}{\operatorname{conv}}(P_1, \dots, P_N)$ gilt, so ist Planes erfolgreich.

Beweis

Zunächst stellen wir mit der folgenden Zeichnung einige Vorüberlegungen an:

Falls $\vartheta \leq \frac{\pi}{2}$ gilt $r\cos\vartheta \geq 0$ und damit folgt $d^t - d^{t+1} \geq 0$. Im Fall $\vartheta > \frac{\pi}{2}$ gilt $r\cos\vartheta = -r\sqrt{1-\sin^2\vartheta}$ und damit folgt dann

$$d^t - d^{t+1} = \sqrt{1 - r\sin^2\vartheta} - r\sqrt{1 - \sin^2\vartheta} \overset{r \le 1}{\ge} (1 - r)\sqrt{1 - \sin^2\vartheta} \ge 0.$$

Es bezeichne $v_k := \frac{P_K^0 - E^0}{\|P_K^0 - E^0\|}$ den Einheitsvektor in Richtung $\overline{E^0 P_k^0}$. Da $E \in \overset{\circ}{\operatorname{conv}}(P_1, \dots, P_N)$ gilt, existiert ein $\varepsilon > 0$ mit der Sphäre $\mathbb{B}_{\varepsilon} \subseteq \operatorname{conv}(v_1, \dots, v_N)$. Ohne Einschränkung kann man annehmen, dass die v_1, \ldots, v_{n+1} in allgemeiner Lage sind und dass $\mathbb{B}_{\varepsilon}(0) \subseteq \overset{\circ}{\operatorname{conv}}(v_1,\ldots,v_{n+1})$, sowie E=0 ist. Für ein $v\in\mathbb{S}^{n-1}$ existieren $\lambda_1, \dots, \lambda_{n+1} \in (0,1)$ mit $\varepsilon v = \sum_{k=1}^{n+1} \lambda_k v_k$ und es folgt

$$\varepsilon = \varepsilon ||v||^2 = \langle v, \varepsilon v \rangle = \sum \lambda_k \langle v, v_k \rangle.$$

man findet also ein k, so dass $\langle v, v_k \rangle \ge \frac{\varepsilon}{n+1} = d_{\min} > 0$ gilt. Es seien $v = \frac{E^{t+1} - E^t}{\|E^{t+1} - E^t\|}$ und k = k(v) wie oben. Dann gilt $\cos \vartheta_k^t = \langle v, v_k \rangle \ge d_{\min}$.

Es gilt:

$$\begin{split} d^t - d^{t+1} &= \sqrt{1 - r^2 \sin^2 \vartheta_k^t} + r \cos \vartheta_k^t \\ &\geq \sqrt{1 - r^2} + r \cos \vartheta_k^t \\ &= \sqrt{1 - r^2} - \cos \vartheta_k^t (1 - r) + \cos \vartheta_k^t \\ &\geq \sqrt{1 - r} (\sqrt{1 + r} - \sqrt{1 - r}) + \cos \vartheta_k^t \\ &\geq \langle v, v_k \rangle \geq d_{\min} > 0 \end{split}$$

und

$$d^{t+1} = \sum_{k} d_k^{t+1} \le \left(\sum_{k} d_k^t\right) - d_{\min} \le \dots \le \sum_{k} d_k^0 - t d_{\min} \qquad \Box$$

Modifikation: Spheres

Wir betrachten das LION AND MAN Problem: ein Mensch versucht einem Löwen zu entkommen.

Der Löwe wählt einen Punkt, so dass er zwischen den Menschen und dem Punkt steht. Als Abgrenzung dient im Gegensatz zu Planes keine Hyperebene, sondern eine Sphäre durch den Punkt und die Position des Löwen.

Spheres

 \bullet Initialisierung: Wähle Punkte p_k auf Geraden durch Eund P_k so, dass $P_k \in$ $\overline{p_k E}$ gilt und die Komponente von $\mathbb{R}^n \setminus \mathbb{B}_{d(p_k, P_k)}(p_k)$, welche E enthält, beschrieben ist.

- $\begin{array}{l} \bullet \ \ P_k^{t+1} = P_k^{t+1}(p_k, P_k^t, E^{t+1}) \\ \bullet \ \ P_k^{t+1} \in \overline{p_k E^{t+1}} \ \mathrm{mit} \ d(P_k^t, P_k^{t+1}) = 1 \ \mathrm{und} \ d(P_k^{t+1}, E^{t+1}) \ \mathrm{minimal}. \end{array}$

Satz

Es sei $D = \mathbb{R}^n$. Falls $E \in \overset{\circ}{\operatorname{conv}}(P_1, \dots, P_N)$ gilt, so ist Spheres erfolgreich.

Beweisskizze

Wir betrachten in dem folgenden Bild den Unterschied zwischen Planes und Sphe-RES

$$\Rightarrow d(D^{t+1}, E^{t+1}) < d(Q, E^{t+1})$$

Sei $R^t = \text{conv}(p_1, \dots, p_N) \setminus \bigcup_{k=1}^N \mathbb{B}_{d(p_k, P_k^t)}(p_k)$ der zum Zeitpunkt t von den Sphären eingeschlossene Bereich.

Wie für Planes zeigt man: Es existiert ein $\varepsilon > 0$, so dass für alle Punkte $x \in \mathbb{R}^t$ und Vektoren $v \in \mathbb{S}^{n-1}$ ein $k \leq N$ und ein $v_k = \frac{P_k - x}{\|P_k - x\|}$ mit $\langle v_k(x), v \rangle \geq d_{\min} > 0$ existieren. Es sei $v = \frac{E^{t+1} - E^t}{\|E^{t+1} - E^t\|}$ und $v_k = v_k(E^t)$. Dann folgt wie für Planes: $\underbrace{d(P^t, E_k^t)}_{=d^t} - d(Q, E^{t+1}) \geq \langle v_k, v \rangle \geq d_{\min} > 0$

$$\underbrace{d(P^t, E_k^t)}_{=d^t} - d(Q, E^{t+1}) \ge \langle v_k, v \rangle \ge d_{\min} > 0$$

Daraus folgt dann $d_k^t - d_k^{t+1} \ge d_{\min}$. (\Box)

Unser Ziel ist es nun eine Verallgemeinerung auf beliebige konvexe Gebiete zu finden. Kopparty & Ravishankar diskutieren den folgenden Fall: Das Spielfeld D besteht aus dem Schnitt von endlich vielen Halbräumen H_l .

Die orthogonale Projektion F_l von E auf den Rand von H_l stell zusätzliche (virtuelle) Verfolger dar, deren Bewegungen auf den Rand ∂H_l von H_l beschränkt sind. Für Spheres lässt sich zeigen, dass die den Bewegungsspielraum von E einschränkenden Bälle "monoton wachsen". Genauer:

Falls also $d(p_k, E_k^{t+1}) \leq$ konst. für alle $t \in \mathbb{N}$ gilt, so ist Spheres erfolgreich. Dies ist äquivalent dazu, dass E im Inneren der konvexen Hülle von $P_1, \ldots, P_k, F_1, \ldots, F_k$ liegt.

Kopparty & Ravishankar behaupten, dies sei notwendig und hinreichend für den Erfolg von Spheres. Bei unserer bisherigen Betrachtung unseres Algorithmus fallen zwei Probleme ins Auge:

• F_l liegt unter Umständen nicht in D

• Der Algorithmus ist unter Umständen nicht wohldefiniert

Es werden möglicherweise Verfolgerpositionen außerhalb von D errechnet. Das Verwerfen aller Verfolger P_k mit $p_k \notin D$ führt unter Umständen dazu, dass alle P_k verworfen werden

Die folgende Bedingung ist äquivalent zum ersten Problem:

Definition (Alexander-Bishop-Ghrist '09)

Es sei $D \subseteq \mathbb{R}^n$ abgeschlossen und konvex. Für $k \leq N$ bezeichne H_k die abgeschlossene Halbebene, welche E enthält und deren Rand durch P_k und orthogonal zu $\overline{EP_k}$ verläuft.

Die Konfiguration erfüllt die Bedingung (BC), falls $D \cap \bigcap_{k \le N} H_k$ beschränkt ist.

Die Lösung des zweiten Problems bedarf einer Modifikation von SPHERES. Im zweidimensionalen Fall ändern Randkollisionen der Verfolger (heuristisch) nichts.

Im dreidimensionalen Fall sollte es möglich sein eine Konstellation in einem "breiten und flachen" Gebiet die Verfolger in jedem Schritt zu Kollisionen zu zwingen, so dass eine Fluchtstrategie existiert. Zunächst lässt sich zeigen, dass (BC) notwendig ist: Falls $D \cap \bigcap_{k \le N} H_k$ beschränkt ist, so existiert ein Strahl c mit dem Startpunkt E und $c \cap H_k = \emptyset$ für alle $k \in \mathbb{N}$.

Dann gilt $\langle E(c, \overline{EP_k}) \rangle = \frac{\pi}{2}$ für alle $k \leq N$. Somit enthält der Halbraum $H = \{x \mid$ $\langle x,\dot{c}\rangle \leq \langle E,c\rangle\}$ alle Verfolger P_k und c ist eine Fluchtstrategie.

Zur Lösung des "Kollisionsproblems"

Modifikation von Spheres nach (A-B-G '09) zu Rotating Spheres. Die Idee besteht darin die Mittelpunkte p_k in jedem Schritt so zu bewegen, dass

- $P_k^{t+1} \in D$
- (BC) erhalten bleibt
- \bullet Die Bälle um P_k hinreichend wachsen, so dass der Bewegungsspielraum von Eeingeschränkt wird.

Rotating Spheres

- \bullet Initialisierung: Wähle Punkte p_k^0 auf dem Strahl von E durch P_k so, dass $P_k \in \overline{Ep_k}$ gilt und die Komponente von $D \setminus \bigcup_{k \leq N} \mathbb{B}_{d(p_k, P_k)}(p_k)$ welche E enthält, beschränkt ist. (folgt aus (BC))
- $\begin{array}{l} \bullet \ \ P_k^{t+1} = P_k^{t+1}(D, p_k^t, P_k^t, E^{t+1}) \\ \bullet \ \ P_k^{\,\prime\prime} \in \overline{p_k^t E^{t+1}} \ \mathrm{mit} \ d(P_k^t, P^{\prime\prime}) = 1 \ \mathrm{und} \ d(P^{\prime\prime}, E^{t+1}) \ \mathrm{minimal} \end{array}$

Falls $P'' \in D$: $P_k^{t+1} = P''$, $p_k^{t+1} = p_k^t$

Falls $P'' \notin D$: Betrachte die folgende Zeichnung

E bezeichne P^* die orthogonale Projektion von P'' auf D und p_k^{t+1} den Punkt auf dem Strahl von E^{t+1} durch P^* mit $d(E^{t+1},p_k^t)=d(E^{t+1},p_k^{t+1})$. Dann sei $P_k^{t+1}=P'$ der Punkt auf $\overline{p_k^{t+1}E^{t+1}}$ mit $d(P_k^t,P_k^{t+1})=1$ und $d(P_k^{t+1},E^{t+1})$ minimal.

Satz (A-B-G '09)

Für jedes konvexe Gebiet D ist ROTATING SPHERES erfolgreich, wenn die Konfiguration D, P_1, \ldots, P_N die Bedingung (BC) erfüllt.

Beweisskizze

1) Es gilt $d(p_k^{t+1},P_k^{t+1})^2>d(p_k^t,P_k^t)^2+1$. Setze $p=p_k^t,\ p'=p_k^{t+1},\ P=P_k^t,\ P'=P_k^t$. Wir unterscheiden nun zwei Fälle.

Falls $P'' \in D$: Es gilt

$$d(p,P'')^2 = d(p,P)^2 + d(P,P'')^2 - 2d(p,P)d(P,P'') \cdot \underbrace{\cos\alpha}_{<0} > d(p,P)^2 + 1$$

Falls $P'' \notin D$: Es gilt

 $P^* = \operatorname{proj}_D(P'') \in D$, $P'' \notin D$, $E \in D$. Damit folgt für den Winkel $\beta = \mathfrak{I}_{P*}(E',P'') \geq \frac{\pi}{2}$ und $d(p,P'') \leq d(p',P^*) \leq d(p',P')$, der Rest geht weiter wie oben.

2) Setze $C^t = D \setminus \bigcup_{k \leq N} \mathbb{B}_k^t$, $\mathbb{B}_k^t = \mathbb{B}_{d(p_k^t, P_k^t)}(p_k^t)$. Behauptung: $\overline{C^{t+1}} \subseteq C^t$.

Falls $p^{t+1} = p' = p = p^t$: Aus 1) folgt $\mathbb{B}^{t+1} \supset \mathbb{B}^t$. Falls $p^{t+1} = p' \neq p = p^t$: i) $\mathbb{B}^t \subseteq \mathbb{B}''$ und $\mathbb{B} \subseteq \mathbb{B}^{t+1}$

ii) \mathbb{B} und \mathbb{B}'' haben den gleichen Radius und $\partial \mathbb{B} \cap \partial \mathbb{B}'' \subseteq \partial H'$. Daraus folgt

$$\mathbb{B}'' \cap H' \subseteq \mathbb{B} \cap H' = \{x \mid d(x, p') < d(x, p)\}\$$

iii) $\partial H^* \cap \partial H'$ und $\partial \mathbb{B}'' \cap \partial H'$ werden durch $\overline{P''P^*} \cap \partial H'$ "getrennt", damit folgt $\mathbb{B}'' \cap H^* \subset H'$.

Insgesamt folgt aus diesen drei Punkten:

$$\mathbb{B}^t \cap D \overset{\text{(i)}}{\subset} \mathbb{B}'' \cap D \subseteq \mathbb{B}'' \cap H^* \cap D \overset{\text{(iii)}}{\subseteq} \mathbb{B}'' \cap H' \cap D \overset{\text{(ii)}}{\subset} \mathbb{B} \cap H' \cap D$$

Daraus folgt $\overline{C^{t+1}} \subset C^t$.

3) Es existiert C_1 so, dass für alle $x_k \in \mathbb{B}^0_k \cap D$ gilt $d(x_k, p_k^t) \subseteq C_1$. Wie oben gilt $x_k \in \mathbb{B}^0_k \cap D \subseteq \ldots \subseteq \mathbb{B}^t_k \cap D$. Mit den Bezeichnungen wie oben sei $H_k^{t+1} = H'$ der Halbraum durch den Mittelpunkt von $\overline{p_k^t, p_k^{t+1}}$ mit $H' \perp \overline{p_k^t p_k^{t+1}}$. Es gilt

$$x_k \in \mathbb{B}_k^t \cap D \subseteq \mathbb{B}_k " \cap H_k^*$$

$$\subseteq H' = \{x \mid d(x, p^{t+1}) \le d(x, p)\}.$$

Also gilt $d(x_k, p_k^{t+1}) \le d(x_k, p_k^t)$ und damit ist $d(x_k, p_k^t)$ uniform beschränkt.

4) $E^t \in C^t \stackrel{(2)}{\subset} C^0$ ist beschränkt. Damit folgt dass $d(x_k, E^t)$ uniform beschränkt ist durch C_2 .

$$(C_1 + C_2)^2 \stackrel{(3)}{\underset{(4)}{\geq}} (d(x_k, p_k^t) + d(x_k, E^t))^2$$

$$\geq d(p_k, E^t)^2$$

$$\geq d(p_k, P_k^t)^2$$

$$\stackrel{(1)}{\geq} d(p_k^0, P_k^0) + t \qquad (\Box)$$

Anwendung/Verallgemeinerung

Betrachte Gebiete $D \subseteq \mathbb{R}^n$, welche sich als endliche Vereinigung konvexer abgeschlossener D_{α} schreiben lassen.

Es seien $D = \bigcup_{\alpha} D_{\alpha}$ eine endliche Vereinigung abgeschlossener konvexer Gebiete D_{α} . Für $E \in D$ bezeichne $E_{\alpha} = \operatorname{proj}_{D_{\alpha}}(E)$. Eine Konfiguration $D, E, \{P_k\}$ erfüllt **(EBC)**, falls eine Partition von $\{P_k\}$ in Mengen $\{P_{\alpha i} \mid i \leq N_{\alpha}\} \subset D_{\alpha}$ existiert, so dass für $D_{\alpha}, E_{\alpha}, \{P_{\alpha,i}\}$ (BC) gilt. In diesem Fall existiert eine erfolgreiche Verfolgerstrategie. Die Schrittweite ≤ 1 für E (bezüglich der Längenmetrik von $D = \bigcup D_{\alpha}$) impliziert $d(E^t, E^{t+1}) \leq 1$ in der Metrik (jedes) $\mathbb{R}^{n_{\alpha}}$.

Da jedes $\operatorname{proj}_{D_{\alpha}}$ Abstände nicht vergrößert, gilt auch für alle E_{α} Schrittweite ≤ 1 . In jedem Gebiet D_{α} gilt nach endlicher Zeit $P_{\alpha,i}^t = E_{\alpha} = \operatorname{proj}_{D_{\alpha}}(E)$. Falls $E_{\alpha} \neq E$, setze $P_{\alpha,i}^T = E_{\alpha}^T$ für alle $T \geq t$. Nach endlicher Zeit gilt dann $P_{\alpha,i_{\alpha}}^t = E_{\alpha}^t$ für alle α und damit ist $E^t = E_{\overline{\alpha}}^t$ für ein $\overline{\alpha}$, das heißt $P_{\overline{\alpha},i_{\alpha}}^t = E^t$.

Bhadanin-Ister '12: In jedem einfachen kompakten Polygon mit Hinternissen existiert eine erfolgreiche Verfolgerstrategie.

Bei Polygonen kann man für Hindernisse eine Triangulierung wählen. Der Nachteil dabei ist dass man einen Verfolger pro Gebiet braucht. Dies funktioniert auch, wenn das Gebiet in eine Richtung unbeschränkt ist.

- A) (Aigner-Fromme '84) Jedes P kann ein geodätisches Segment c "bewachen", das heißt E wird gefangen, falls es c überquert.
- B) (Ister et al. '05) in jedem einfach zusammenhängenden Polygon existiert eine erfolgreiche Strategie mit einem Verfolger.

Wähle Kanten(züge) $c_1 \ni P_1$ und $c_2 \ni P_2$. Setzt c_3 so, dass D in Komponenten zerfällt. Dann ist entweder P_1 oder P_2 frei. Nach endlicher Zeit liegt E in einem einfach zusammenhängenden Polygon.

4 Geometrische Charakterisierung von Flucht- und Verfolgerkurven

Im Folgenden sei das Soielfeld D ein CAT(0)- (beziehungsweise CAT(1)-) Raum. Alle Resultate beziehen sich auf Greedy mit der Schrittweise d > 0, das heißt $P^{t+1} \in \overline{P^tE^t}$ mit $d(P^t, P^{t+1}) = d$.

Wie spiegelt sich der Ausgang eines Spiels in der Geometrie der Kurven P^t , beziehungsweise E^t , wider? Dabei verstehen wir die Wege P^t , beziehungsweise E^t , als stückweise geodätische Kurven $P = \bigcup \overline{P^tP^{t+1}}$. Für d=1 ist P beziehungsweise E nach der Bogenlänge parametrisiert.

Satz (Alexander-Bishop-Ghrist 2010)

Ist D ein CAT(0)-Raum, so ist D genau dann kompakt, wenn P stets gewinnt (mit einem Verfolger).

Beweis

Ist D nicht kompakt, so existiert ein geodätischer Strahl als Fluchtstrategie. Angenommen es existiert eine Fluchtstrategie. Für den Verfolgerabstand $d^t = d(P^t, E^t)$ gilt $d^{t+1} \leq (d^t - d) + d = d^t$.

Also konvergiert d^t monoton fallend gegen ein $d^{\infty} > d$. Betrachtet man den euklidischen Vergleichswinkel $\overline{\alpha}^t$ zu $\alpha^t = \not<_{P^t}(E^{t+1}, E^t)$, so folgt

$$\cos \overline{\alpha}^{t+1} = \frac{(d^{t+1})^2 + (d^t - d)^2 - d^2}{2d^{t+1}(d^t - d)}$$
$$= \frac{(d^{t+1})^2 + (d^t)^2 - 2d^t}{2d^{t+1}(d^t - d)}$$
$$\to \frac{2d^{\infty}(d^{\infty} - d)}{2d^{\infty}(d^{\infty} - d)} = 1.$$

Also konvergiert $\overline{\alpha}^t$ gegen 0. Da für Vergleichswinkel stets $\alpha^t \leq \overline{\alpha}^t$ gilt, folgt $\alpha^t \xrightarrow{t \to \infty} 0$.

Erinnerung

Es sei c eine reguläre ebene Kurve $c:[0,l]\to\mathbb{R}^2$ und κ die Krümmung von c. Dann ist $\tau_c=\int_0^l\kappa$ die **Totalkrümmung** von c. Ist c nach Bogenlänge parametrisiert, so gilt $\kappa=\|\ddot{c}\|$. Bezeichnet ϑ die Drehwinkelfunktion von \dot{c} , das heißt $\dot{c}(t)=(\cos\vartheta(t),\sin\vartheta(t)),$ so gilt $\|\ddot{c}\|=\|(-\vartheta'\sin\vartheta,\vartheta'\cos\vartheta)\|=|\vartheta'|.$ Damit ist die Totalkrümmung die akkumulierte Winkeländerung von c.

ist c_1, \ldots, c_n eine Polynomapproximation von c, so ist die Summe der Komplementärwinkel $\alpha_i = \pi - \beta_i = \pi - \sphericalangle(c_{i-1}, c_i)$ eine Approximation der Totalkrümmung von c.

Definition (Totalkümmung)

Es sei c eine stückweise geodätische Kurve in einem $CAT(\kappa)$ -Raum. Sind $0 = t_0 < t_1 < \ldots < t_n = l$ so, dass $c_i = c|_{[t_{i-1},t_i]}$ geodätisch Segmente sind, so bezeichne $\beta_i = \mathcal{L}_{c(t_i)}(c_{i-1},c_i)$ die Innenwinkel. Die **Totalkrümmung** von c sei $\tau_c = \sum_i \pi - \beta_i$. Für eine beliebige Kurve sei

$$\tau_{\gamma} = \limsup \{ \tau_c \mid c \text{ Polygonapproximation von } \gamma \}$$

$$\tau_{\gamma}(t) = \tau_{\gamma}|_{[0,t]}$$

Im Fall von CAT(0) gilt Monotonität.

Ist c eine Verfeinerung einer Polygonapproximation c' von γ , so gilt $\tau_{c'} \leq \tau_c$, wie man an der Zeichnung erkennen kann:

Es gilt

$$\tau_{c} = \pi - \beta_{1} + \pi - \beta + \pi - \beta_{2}$$

$$\geq \pi - (\beta'_{1} + \alpha_{1}) + \pi - \beta + \pi - (\beta'_{2} + \alpha_{2})$$

$$= \underbrace{\pi - \beta'_{1} + \pi - \beta'_{2}}_{\tau_{c'}} + \pi - \underbrace{(\beta + \alpha_{1} + \alpha_{2})}_{\leq \overline{\beta} + \overline{\alpha_{1}} + \overline{\alpha_{2}} = \pi}$$

$$\geq \tau_{c'}$$

Definition (Umfang einer Kurve)

Es sei c eine Kurve. Der **Umfang** R_c von c ist der Radius des kleinsten Balles, der das Bild von c enthält:

$$R_c(t) = \inf\{R \mid \text{Bild } c|_{[0,t]} \subset \mathbb{B}_R(c(0))\} = \sup_t \{d(c(0), c(t))\}$$

Satz (Alexander-Bishop-Ghrist 2010)

Es sei c eine nach Bogenlänge parametrisierte Kurve in einem CAT(0)-Raum. Dann gilt

- (i) Gilt $\liminf_{t\to\infty} \frac{\tau_c(t)}{t} = 0$, so folgt dass c unbeschränkt ist.
- (ii) Falls $\tau_c(t) \leq \text{const} \cdot t^{\lambda}$ für ein $\lambda \in (0,1)$ gilt (das heißt $\tau_c \in O(t^{\lambda})$), so folgt $R_c(t) \geq \text{const} \cdot t^{1-\lambda}$ für hinreichend große t (das heißt $R_c \in \Omega(t^{1-\lambda})$).

Man kann $c|_{[0,t]}$ durch eine hinreichend feine Polynomapproximation ersetzen:

Wähle eine Partitionierung $0=t_0 < t_1 < \ldots < t_n=t$ so, dass $c_i=c|_{[t_{i-1},t_i]}$ eine Totalkrümmung $\leq \frac{\pi}{2}$ hat mit $n \leq \frac{\tau_c(t)}{\frac{\pi}{2}}+1$. Es bezeichne σ_i die Sekante $\overline{c(t_{i-1})c(t_i)}$ und ϱ_i das durch e_i und σ_i definierte Polygon. Jede Kurve (und insbesondere jedes Polygon) in einem $\mathrm{CAT}(\kappa)$ -Raum lässt sich "ausfüllen".

Satz (Rechetnyak 1968)

Es sei c eine geschlossene Kurve in einem $\operatorname{CAT}(\kappa)$ -Raum X mit $l(c) < \frac{2\pi}{\sqrt{\kappa}}$. Dann existiert ein konvexes Gebiet $C \subseteq M_{\kappa}^2$ und eine Bogenlängenparametrisierung \overline{c} von ∂C , sowie eine nicht-expandierende Abbildung $\varphi: C \to X$ mit $\varphi \circ \overline{c} = c$.

Beweisskizze

Man sieht leicht ein, dass falls $c|_{[a,b]}$ geodätisch ist, so auch $\overline{c}|_{[a,b]}$ und dass für Winkel β , beziehungsweise $\overline{\beta}$ solcher aufeinanderfolgender Segmente $\beta \leq \overline{\beta}$ gilt.

Beweis (zu Alexander-Bishop-Ghrist 2010)

(i) Es existiert zu ϱ_i ein konvexes Polygon $\overline{\varrho}_i$ mit den gleichen Seitenlängen wie ϱ_i . Wie auch ϱ_i besteht $\overline{\varrho}_i$ aus einem konvexen Polygon \overline{c}_i mit der Totalkrümmung $\tau_{\overline{c}_i} = \sum \pi - \overline{\beta}_i \leq \sum \pi - \beta_i \leq \frac{\pi}{2}$ und eine Sekante σ_i .

Es gilt $\frac{l(\overline{c}_i)}{l(\overline{\sigma}_i)} \leq \sqrt{2}$, also $\sqrt{2} \geq \frac{l(\overline{c}_i)}{l(\overline{\sigma}_i)} = \frac{l(c_i)}{l(\sigma_i)} = \frac{t_i - t_{i-1}}{l(\sigma_i)}$. Damit folgt

$$t = \sum_{i} t_i - t_{i-1} \le \sqrt{2} \sum_{i=0}^{n} l(\sigma_i) \le \sqrt{2} \left(\frac{\tau_c(t)}{\frac{\pi}{2}} + 1 \right) \sup(\sigma_i)$$

also

$$\frac{\tau_c(t)}{t} \ge \frac{\pi}{2} \left(\frac{1}{\sqrt{2} \sup l(\sigma_i)} - \frac{1}{t} \right).$$

Ist c beschränkt, so folgt $\frac{\tau_c(t)}{t} \geq \text{const} > 0$. Sei nun ohne Einschränkung c eine Polynomapproximation. Zerlege c in $n \leq \frac{\tau_c(t)}{\frac{\pi}{2}} + 1$ Teilkurven c_i mit $\tau_{c_i} \leq \frac{\pi}{2}$. Bezeichnet σ_i die Sekante der Teilkurve c_i , so gilt

$$\frac{t_i - t_{i-1}}{l(\sigma_i)} = \frac{l(c_i)}{l(\sigma_i)} \le \sqrt{2}$$

und es folgt

$$t = \sum t_i - t_{i-1} \le \sqrt{2} \sum l(\sigma_i) \le \sqrt{2} \left(\frac{\tau_c(t)}{\frac{\pi}{2}} + 1 \right) \sup l(\sigma_i)$$
 (*)

und

$$\frac{\tau_c(t)}{t} \ge \frac{\pi}{2} \left(\frac{1}{\sqrt{2} \sup l(\sigma_i)} - \frac{1}{t} \right)$$

Wenn c unbeschränkt ist, so ist $l(\sigma_i)$ beschränkt. Daraus folgt $\frac{\tau_c(t)}{t} \ge \text{const} > 0$ für $t \gg 0$ und damit folgt die Aussage von (i).

(ii) Gilt $\tau_c(t) \leq \text{const} \cdot t^{\lambda}$, so folgt aus (*)

$$t \le \sqrt{2} \left(\underbrace{\frac{\tau_c(t)}{\frac{\pi}{2}}}_{< \text{const.} t^{\lambda}} + 1 \right) \underbrace{\sup_{\le 2R_c(t)} l(\sigma_i)}_{\le 2R_c(t)} \le \text{const.} t^{\lambda} \cdot R_c(t)$$

Daraus folgt die Behauptung von (ii)

Beweis (zum Beweis des ersten Satzes)

Es wurde bereits gezeigt, dass eine eine erfolgreiche Flucht gilt:

Der Winkel $\alpha_t = \not <_{P^t}(E^{t-1}, E^t)$ konvergiert für $t \to \infty$ gegen 0. Das liefert $\frac{\tau(t)}{t} = \frac{1}{t} \sum \pi - \beta_i = \frac{1}{t} \sum \alpha_i \xrightarrow{t \to \infty} 0$. Damit folgt aus Satz (i), dass die Verfolgerkurve P, und damit D unbeschränkt ist.

Satz (Alexander-Bishop-Ghrist 2010)

Es sei D ein CAT(0)-Raum. Dann gilt $\tau_P \leq \tau_E + \pi$.

Beweis

Betrachte die folgende Zeichnung:

Es gilt

$$\tau_{P}(nd) = \sum_{i=1}^{n-1} \pi - \beta_{i} \leq \sum_{i=1}^{n-1} \alpha_{i} \leq \sum_{i=1}^{n-1} \pi - \gamma_{i} - \delta_{i}$$

$$\tau_{E}(nd) = \sum_{i=1}^{n-1} \pi - \vartheta_{i} \geq \sum_{i=1}^{n-1} \pi - \gamma_{i+1} - \delta_{i}$$

$$\tau_{P} - \tau_{E}(nd) = \sum_{i=1}^{n-1} (\pi - \gamma_{i} - \delta_{i}) - (\pi - \gamma_{i+1} - \delta_{i})$$

$$= \sum_{i=1}^{n-1} \gamma_{i+1} - \gamma_{i} = \gamma_{n} - \gamma_{1} \leq \pi$$

5 Positive Krümmungsschranken

Im Folgenden Sei D stets ein CAT(1)-Raum. Beispiele für solche Räume sind die Einheitssphäre \mathbb{S}^n , die euklidische Ebene mit ausgeschnittenem offenen Ball $\mathbb{R}^2 \setminus \mathbb{B}_1^o$ oder verallgemeinert $\mathbb{R}^n \setminus \dot{\bigcup} \mathbb{B}_1^o(p_i)$

Satz (Alexander-Bishop-Ghrist 2010)

Es sei D ein CAT(1)-Raum und E_t eine erfolgreiche Fluchtstrategie mit $d_0 = d(E_0, P_0) < \pi$. Dann gilt

$$\tau_p(t) \le \operatorname{const} \cdot \sqrt{t}$$
.

Beweisskizze

Betrachte die Zeichnung

Aus der Dreiecksungleichung folgt $d_i \leq (d_{i-1} - d) + d = d_{i-1}$, also ist d_i monoton fallend. Es gilt

$$d_i \le d_0 < \pi$$

Damit hat jedes Dreieck $\Delta P_i E_{i-1} E_i$ den Umfang < 2π und besitzt damit ein eindeutiges Vergleichsdreieck in \mathbb{S}^2 . Damit gilt für den Vergleichswinkel $\overline{\alpha}_i$ dass $\alpha_i \leq \overline{\alpha}_i$ und es gilt

$$\tau_p(t) = \sum \pi - \beta_i \le \sum \alpha_i \le \sum \overline{\alpha}_i.$$

Falls E_i eine erfolgreiche Fluchtstrategie ist, gilt $d_{\infty} = \lim_{i \to \infty} d_i > d$. Es sei $\delta_i = d_i - d_{i-1} \ge 0$. Wendet man den sphärischen Kosinussatz auf das Vergleichsdreick an, so folgt

$$\cos d < \cos d + \delta_i \sin d - \operatorname{const} \cdot \overline{\alpha}_i^2$$

und daraus folgt $\overline{\alpha}_i^2 \leq \text{const} \cdot \delta_i \cdot d$. Aus der Cauchy-Schwarz-Ungleichung folgt

$$\tau_p(nd) \le \sum \overline{\alpha}_i \le \sqrt{(n-1)\sum \overline{\alpha}_i^2}$$

$$\le \sqrt{(n-1)\cdot \operatorname{const} \cdot d \cdot (d_0 - d_\infty)}$$

$$\le \operatorname{const} \sqrt{nd} \qquad (\Box)$$

Bemerkung (zu $d_0 < \pi$)

Betrachte das folgende Szenario in $\mathbb{R}^2 \setminus \mathbb{B}_{\frac{3}{2}}(0)$

E und P starten an gegenüberliegenden Polen. Im ersten Schritt läuft E den Kreis entlang nach links, während P nach rechts läuft. Da P jedes mal eine Geodätische wählt und es nun zwei kürzeste Wege gibt kann P diese ungeschickte Wahl treffen. In zweiten Schritt läuft E wieder zurück, während P erneut die unglückliche Wahl trifft und ebenfalls zurückläuft. E und P wiederholen diese Prozedur immer wieder und treffen sich niemals, weshalb $\tau_P(t)$ in diesem Szenario linear wächst.

Korollar

Ist D ein CAT(0)-Raum und E_t erfolgreich, so gilt $\tau_P(t) \leq \text{const } \sqrt{t}$.

Beweis

Winkel sind invariant unter Skalierungen. Damit sind die CAT(0) Bedingung und die Totalkrümmung invariant. Sei $\tilde{d}(\cdot,\cdot)=\frac{\pi}{2d_0}d(\cdot,\cdot)$ die skalierte Metrik, dann ist $\tilde{d}_0=\frac{\pi}{2}<\pi$. Der Rest folgt aus dem Satz.

Korollar

Unter denselben Voraussetzungen wie in obigem Korollar gilt $R_E(t) \ge \text{const.}$

Beweis

Es gilt $R_P(t) \ge \operatorname{const} \sqrt{t}$ nach dem obigen Korollar und Satz (ii). Ferner gilt

$$d(E_0, E_t) \ge d(P_0, P_t) - d(P_t, E_t) - d(E_0, P_0) \ge d(P_0, P_t) - \text{const}$$

Daraus folgt

$$R_E(t) = \sup\{d(E_0, E_t)\} \ge \dots \ge \operatorname{const} R_P(t) \ge \operatorname{const} \sqrt{t}$$

Kapitel 2

Bewegungsplanung & Konfigurationsräume

Als Motivation für das folgende Kapitel können wir uns beispielsweise die Bewegungssteuerung gleichartiger Automaten, beziehungsweise Fahrzeuge, in einer Umgebung, etwa in der euklidischen Ebene \mathbb{R}^2 oder der Ebene $\mathbb{R}^2 \setminus \bigcup_{i \leq k} I_i$ mit Hindernissen, anschauen.

Unser Ziel ist es, bestimmte Positionen oder Zyklen von Bewegungen, zum Beispiel zur Steuerung von Fahrzeugen in einer Lagerhalle, zu finden. Als Einschränkung wählen wir dabei das Umfahren von Hindernissen.

Wir modellieren das Problem, so dass x_i die Position des *i*-ten Automaten mit $x_i \notin O_i$ beschreibt, und Kollisionsfreiheit, das heißt $x_i \neq x_j$ für $i \neq j$. Wir setzen

$$X = \times_{i=1}^{n} (\mathbb{R}^{2} \setminus \bigcup_{k} O_{k}) \setminus \Delta \qquad \Delta = \{(x_{1}, \dots, x_{n}) \in \mathbb{R}^{2n} \mid x_{i} = x_{j}, i \neq j\}$$

Wir werden uns auf Graphen beschränken, das ist zum Einen motiviert durch Anwendung (Schienensysteme), und zum Anderen durch Methodik (lokale Kollisionsvermeidung).

$$F_N X = X^n \setminus \Delta_n(X)$$

heißt der Konfigurationsraum von X.

Beispiel

$$F_2 \mathbb{R}^2 = \mathbb{R}^3 \times \mathbb{S}^1$$
 (Beweis zur Übung)

Die symmetrische Fruppe S_n wirkt frei auf F_nX . Dann heißt der Quotient $C_nX = F_nX/S_n$ der (ungeordnete) Konfigurationsraum von X. Die Fundamentalgruppe $\pi_1(C_nX)$ heißt die n-te **Zopfgruppe** von X. Die klassischen Zopfgruppen sind $B_n = \pi_1(C_n\mathbb{R}^2)$:

lokale Kollisionsvermeidung

$$[x_1, x_2, \dots, x_n] = [x_2, x_1, \dots, x_n]$$

Darstellung von B_1 :

Erzeuger: g_i , $i \leq n-1$, Relationen:

• $g_ig_j=g_jg_i, |i-j|\geq 2$

• $g_i g_{i+1} g_i = g_{i+1} g_i g_{i+1}$

Ein Graph \mathcal{G} besteht aus einer nichtleeren Eckenmenge $\mathcal{V} = \mathcal{V}\mathcal{G}$, einer Kantenmenge $\mathcal{E} = \mathcal{G}\mathcal{E}$ und (surjektiven) Randabbildungen $\partial^{\pm} : \mathcal{E} \to \mathcal{V}$. Zur Notation der Kantenorientierung sei $\tilde{\mathcal{E}} = \mathcal{E} \times \{+1, -1\}$ mit den Randabbildungen

$$e^+ = (e, 1) \mapsto \partial^{\pm} e$$
 und $e^- = (e, -1) \mapsto \partial^{\mp} e$.

Dann gilt für die Kanteninversion $\overline{e}^{\pm} \to e^{\mp}$, $\partial^+ \overline{e} = \partial^- e$ und $\partial^- \overline{e} = \partial^+ e$. Es bezeichne |e| stets die unorientierte Kante e.

Der **Grad** deg v einer Ecke ist die Zahl, wie oft v als Ecke einer Kante vorkommt. Eine Ecke mit Grad ≥ 3 heißt **essentiell**, mit Grad 1 heißt sie **frei**.

Die geometrische Realisierung $|\mathcal{G}|$ eines Graphen \mathcal{G} erhält man durch das Verkleben von (Einheits-) Intervallen zu jeder Kante entsprechender Randabbildungen. Man kann sich, aus topologischer Sicht, auf Graphen beschränken, deren Ecke entweder frei oder essentiell ist. Jede essentielle Ecke v besitzt eine Umgebung U, so dass $U \setminus \{v\}$ in \mathcal{G} in mindestens drei Zusammenhangskomponenten zerfällt.

Beispiel

Wir betrachten nun speziell F_2Y . Die Position zweier Punkte x und y auf benachbarten Kanten ist durch ein Einheitsquadrat parametrisiert. Die Achsen sind für

ihre jeweiligen Punkte zugelassene Positionen, solange nicht beide Punkte null sind, da es dann zu einer Kollision käme.

Sechs dieser Parameterbereiche werden entlang der Kanten $x\equiv 0=v$ beziehungsweise $y\equiv 0=v$ miteinander verklebt

Liegen zwei Punkte x und y auf einer Kante, so sind ihre Koordinaten durch ein "halbes" Quadrat parametrisiert.

Für C_2Y ergibt sich dann

Satz (Swiatowski 2001)

Es sei \mathcal{G} ein endlicher Graph. Dann existiert ein nichtpositiv gekrümmter-Kubenkomplex $K_n \mathcal{G} \hookrightarrow C_n \mathcal{G} = F_n \mathcal{G}/S_n$, sodass $K_n \mathcal{G}$ ein Deformationsretrakt von $C_n \mathcal{G}$ ist. Es gilt dim $K_n \mathcal{G} = \min\{n, b\}$, wobei b die Anzahl der essentiellen Ecken von \mathcal{G} ist.

Die Fundamentalgruppe $\pi_1(C_n \mathcal{G})$ enthält eine frei abelsche Untergruppe vom Rang $\min\{b, \lfloor \frac{n}{2} \rfloor\}$. Die Konstruktion basiert darauf, die Verteilung von Punkten auf Ecken, beziehungsweise Kanten, beziehungsweise die Übergänge zwischen solchen Zuständen zu beschreiben.

Ansatz (Abrams 2000)

Wie erhält man die Zellenstruktur beziehungsweise die Kombinatorik von $|\mathcal{G}|^n = \{\sigma = \sigma_1 \times \ldots \times \sigma_n \mid \sigma \text{ Zelle von } \mathcal{G}\}$ in $C_n \mathcal{G}$? Man erhält $F_n \mathcal{G}$ durch das "Löschen" der verallgemeinerten Diagonale.

Analogon

 $|\mathcal{G}|^n$ ist ein Zellkomplex mit Zellen $\sigma = \sigma_1 \times \ldots \times \sigma_n$. Die kombinatorische Diagonale von $|\mathcal{G}|^n$ besteht aus Zellen der Form $\sigma = \sigma_1 \times \ldots \times \sigma_n$ mit $\partial \sigma_i \cap \partial \sigma_j \neq \emptyset$ für ein $i \neq j$. Betrachten den kombinatorischen Konfigurationsraum mit Zellen $\sigma = \sigma_1 \times \ldots \times \sigma_n$ mit $\partial \sigma_i \cap \partial \sigma_j = \emptyset$ für alle $i \neq j$. Dies sind genau die n-Tupel von Punkten, welche paarweise durch eine (offene) Kante getrennt sind.

Beispie

 $\mathcal{G}=Y$: 1-Zellen der Form $v\times e,$ wobei eeine der Ecke vgegenüberliegende Kante ist.

Anschließend lässt sich der kombinatorische Konfigurationsraum auf $C_n \mathcal{G}$ retraktieren. Leider erhält man im Allgemeinen *nicht* die Topologie von $C_n \mathcal{G}$: Beispiel $v \overset{e_2}{\longleftrightarrow} v \rightsquigarrow v \times w$. Es gilt zumindest

Satz (Abtrams 2000)

Ist \mathcal{G} ein einfacher Graph, das heißt enthält keine Schleifen der Länge ≤ 2 , so ist sein kombinatorischer Konfigurationsraum auf zwei Punkten ein Deformationsretrakt von $C_2 \mathcal{G}$.

Beispiel

 $\pi_1(C_2,Y)$

Definition (Swiatowski)

Es sei \mathcal{G} ein endlicher Graph, dessen nichtessentialle Ecken frei sind, mit Kanten \mathcal{E} und Ecken \mathcal{V} . Es bezeichne \mathcal{B} die Menge der essentiellen Ecken. Es sei $P_n^{(k)}\mathcal{G}$ die Menge der Paare (f, S) mit

- (i) $f: \mathcal{E} \cup \mathcal{B} \to \mathbb{N}_0$ eine Abbildung
- (ii) $S = \{e_1, \dots, e_k\}$ paarweise verschiedene orientierte Kanten
- (iii) $v_{e_i} = \partial^+ e_i \in \mathcal{B}$ und $v_{e_i} \neq v_{e_j}$ für $i \neq j$
- (iv) $f(v) \in \{0,1\}$ für alle $v \in \mathcal{B}$ und $f(v_{e_i}) = 0$ für alle $i \leq k$
- (v) $\sum_{|a| \in \mathcal{E} \cup \mathcal{B}} f(|a|) = n k$.

Es gelte dabe $(f, S) \prec (g, S \dot{\cup} \{e\})$ mit $e \notin S$, falls entweder

- (a) $f(v_e) = g(v_e) + 1 = 1$ und sonst f(a) = g(a) oder
- (b) f(|e|) = g(|e|) + 1 und sonst f(a) = g(a)

gilt. Es bezeichne \prec die davon erzeugte partielle Ordnung auf $P_n \mathcal{G} = \dot{\cup} P_n^{(k)} \mathcal{G}$ und $K_n \mathcal{G}$ seine geometrische Realisierung.

0-Skelett: Paare (f,\emptyset) mit $f: \mathcal{E} \cup \mathcal{B} \to \mathbb{N}_0$, $\sum_{|a| \in \mathcal{E} \cup \mathcal{B}} f(|a|) = n$, f "zählt" wieviele Punkte auf einer Kante beziehungsweise essentiellen Ecke sitzen.

$$\begin{array}{c}
\downarrow v \\
\downarrow e \\
\sim (f, \emptyset) \text{ mit } f(e) = 2, f(v) = f(w) = 0
\end{array} \qquad \tau_0 = (f, \emptyset)$$

Zwei solche 0-Zellen sind durch eine Kante (1-Zelle) verbunden, wenn einer der Punkte das Innere einer Kante durch eine essentielle Ecke betritt oder verlässt.

$$h(|e|) = 1 \stackrel{\text{(b)}}{\Longrightarrow} \tau_0 \prec \sigma, \ h(w) = 0 \stackrel{\text{(a)}}{\Longrightarrow} \tau_1 \prec \sigma \ (h(v) = 0)$$

Die höherdimensionalen Zellen bestehen aus k-Tupeln von unabhängigen Zügen wie oben. Ist $\sigma = (g, \{e_1, \dots, e_k\})$ eine k-Zelle in $K_n \mathcal{G}$, so besitzt σ genau 2k Facetten der Kodimension 1:

$$\partial_{e_i}^{\pm} \sigma = (g_i^{\pm}, \{e_1, \dots, \hat{e_i}, \dots, e_k\})$$

mit $g_i^+(v_{e_i}) = 1$, beziehungsweise $g_i^-(|e_i|) = g(|e_i|) + 1$. Damit ist $K_n \mathcal{G}$ ein Kubenkomplex: Jede Menge $\{\tau \mid \tau \prec \sigma\}$ ist ein Würfel.

Wir definieren die Dimension als dim $K_n \mathcal{G} = \min\{|\mathcal{B}|, n\}$. Es gilt dann dim $K_n \mathcal{G} = \max\{k \mid P_n^{(k)} \mathcal{G} \neq \emptyset\}$. Wir beweisen die Aussage:

Aus (ii) und (iii) folgt dim $K_n \mathcal{G} \leq |\mathcal{B}|$. Ist $k = \min\{|\mathcal{B}|, n\}$, so existieren paarweise verschiedene essentielle Ecken v_1, \ldots, v_n . Da v_i essentiell ist, existieren paarweise

verschiedene Kanten e_1, \ldots, e_k mit $v_i = v_{e_i}$. Es sei $S = \{e_1, \ldots, e_k\}$ und

$$f: \mathcal{E} \cup \mathcal{B} \to \mathbb{N}_0$$
 $|a| \mapsto \begin{cases} n-k & |a| = e_1 \\ 0 & \text{sonst} \end{cases}$.

Dann gilt $(f, S) \in P_n^{(k)} \mathcal{G}$.

Beispiel

Betrachte wieder den Graphen $\mathcal{G} = Y$, wir suchen K_2Y mit $\mathcal{B} = \{v\}$, $\mathcal{E} = \{e_1, e_2, e_3\}$ und dim $K_2Y = \min\{|\mathcal{B}|, n\} = \min\{2, 1\} = 1$.

$$\mathcal{G} = \underbrace{\begin{array}{c} e_3 & e_2 \\ v & \\ \end{array}}_{e_1}$$

Für die 1-Zellen setze $\sigma = (g, S)$ mit |S| = 1, also $S = \{e_i\}$ für ein $i \in \{1, 2, 3\}$. Dann folgt $g(v_{e_i}) = g(v) = 0$ nach (iv). Daraus ergibt sich für die Summe

$$\sum_{|a| \in \mathcal{E} \cup \mathcal{B}} g(|a|) = g(|e_1|) + g(|e_2|) + g(|e_3|) + 0 = n - k = 2 - 1 = 1$$

Da alle Summanden positiv sind muss es genau ein j mit $g(|e_j|)=1$ geben, und damit existieren insgesamt genau neun 1-Zellen $\sigma_{ij}=(|e_j|\mapsto 1,\{e_i\})$ als Ränder. Für die 0-Zellen ergibt sich dann:

(a)
$$\partial^+ \sigma_{ij} = \begin{pmatrix} v & \mapsto 1 \\ |e_j| & \mapsto 1 \end{pmatrix}, \emptyset) = \tau_j \text{ (deg } \tau_j = 3)$$

(b)
$$i \neq j$$
: $\partial^- \sigma_{ij} = \begin{pmatrix} |e_i| \mapsto 1 \\ |e_j| \mapsto 1 \end{pmatrix}$, \emptyset) $= \tau_{ij} = \tau_{ji} \pmod{\tau_{ij}} = 2$) $i = j$: $\partial^- \sigma_{ii} = (|e_i| \mapsto 2, \emptyset) = \tau_{ii} \pmod{\tau_{ii}} = 1$

Anschaulich ergibt sich schließlich folgendes Bild:

Einbettung $\iota: K_n \mathcal{G} \hookrightarrow C_n \mathcal{G}$

Sei die Verteilung von k Punkten auf einer Kante e durch $D_e(k,(s,t)) \subset C_n \mathcal{G} \cap e$, mit $(s,t) \in [0,1]$, gegeben mit

als koordinaten auf einem Würfel $\sigma = (f, S) \in P_n^{(k)}$. Definiere $t : \sigma \to [0, 1]^s$ durch lineare Fortsetzung der Abbildung auf seinen 0-Zellen $p = (f, \emptyset)$:

$$t(p): S \to [0,1] \qquad \qquad e \mapsto 1 - f(e).$$

Für jedes $x \in \sigma = (g, S) \subset K_n \mathcal{G}$ ist t(x) eine Abbildung von S in [0, 1]. Setze fort

$$t(x): \mathcal{E} \to [0,1]$$
 $e \mapsto \begin{cases} t(x)(e) & e \in S \\ 1 & \text{sonst} \end{cases}$.

Daraus erhält man eine Einbettung $\iota_{\sigma}: \sigma = (g,S) \to C_n \mathcal{G}, x \mapsto \{v \in \mathcal{B} \mid g(v) = 1\} \bigcup_{e \in \mathcal{E}} D_e(\tilde{g}(|e|), (t(x)(\overline{e}), t(x)(e))),$ wobei $\tilde{g}(|e|) = g(|e|) + \#\{s \in S \mid |s| = e\}.$ Es sei $x \in \tau = (f,S) \prec \sigma = (g,S\dot{\cup}\{e\}).$ Wir beschränken und im Folgenden zunächst nur auf den Fall (a), der Fall (b) folgt dann analog. Sei $f(v_e) = g(v_e) + 1 = 1$, also $t_{\sigma}(x)(e) = 0$ und $v_e \in v_{\tau}(x)$ für $e \notin S$. Dann folgt $t_{\tau}(x)(e) = 1$. Aus f(|e|) = g(|e|) folgt $\tilde{g}(|e|) = \tilde{f}(|e|) + 1$.

Es folgt

$$\begin{split} &D_{e}(\underbrace{\tilde{g}(|e|)}_{=\tilde{f}(|e|)+1},(t_{\sigma}(x)(\overline{e}),\underbrace{t_{\sigma}(x)(e)}_{=0}))\\ &=D_{e}(\tilde{f}(|e|)+1,(s,0))\\ &=\{v_{e}\}\cup D_{e}(\tilde{f}(|e|),(s,1)) \\ &\Rightarrow \iota_{\sigma}(x)=\iota_{\tau}(x) \end{split}$$

Damit definiert $\iota = \bigcup_{\sigma} \iota_{\sigma}$ eine Einbettung $K_n \mathcal{G} \hookrightarrow C_n \mathcal{G}$.

Retraktion $r: C_n \mathcal{G} \to K_n \mathcal{G}$

Sei $C \in C_n \mathcal{G}$ und bezeichne $n_e^C = \#(C \cap e) \setminus \mathcal{B}$ die Anzahl der Punkt auf e. Setze

$$d_e^0 = \begin{cases} 1 & n_e^C = 0\\ \min\{|v_e - x| \mid x \in C \cap e \setminus \mathcal{B}\} & \text{sonst} \end{cases} \qquad \delta_e^C = d_e^C(n_e^C + 1)$$

und die mittlere Segmentlänge $\frac{1}{n_e^C+1}.$ Setzte weiterhin

$$t_e^C = \begin{cases} 1 & \text{falls } v_e \text{ frei oder } v_e \in C \\ \min\{1, \frac{\delta_e^C}{\min\{\delta_e^C | e' \neq e \land v_{e'} = v_e\}}\} & \text{sonst} \end{cases}$$

Definiere

$$r: C_n \mathcal{G} \to \iota(K_n \mathcal{G})$$
 $C \mapsto (C \cap \mathcal{B}) \cup \bigcup_e D_e(n_e^C, (t_{\overline{e}}^C, t_e^C))$

Homotopie id $\cong r$

Für beliebiges $C \in C_n \mathcal{G}$ gilt

- $C \cap \mathcal{B} = r(C) \cap \mathcal{B}$
- $\#(C \cap e) \setminus \mathcal{B} = \#(r(C) \cap e) \setminus \mathcal{B}$ für alle $e \in \mathcal{E}$

Definiere die Homotopie kantenweise, so dass Punkte in die vorgegebene Standardposition bewegt werden.

1 Geometrie des Kubenkomplexes $K_n \mathcal{G}$

Definition $(M_{\kappa}\text{-Komplex})$

Es sei σ_i , für $i \in I$, eine disjunkte Familie konvexer Polyeder, das heißt σ_i ist eine konvexe Hülle endlich vieler Punkte in $M_{\kappa}^{n_i}$. Es sei \sim eine Äquivalenzrelation auf $\sqcup_{i \in I} \sigma_i$, $X = \sqcup_i \sigma_i /_{\sim}$ und $\pi : \sqcup_i \sigma_i \to X$ die kanonische Projektion. X heißt M_{κ} -Polyederkomplex, falls gilt:

 $\mathring{\tau}$ offenes Inneres von τ

- (i) Ist $\tau \leq \sigma_i$ eine Seite, so ist $\pi|_{\mathring{\tau}}$ injektiv.
- (ii) Sind $x_1 \in \sigma_1$ und $x_2 \in \sigma_2$ mit $\pi|_{\sigma_1}(x_1) = \pi|_{\sigma_2}(x_2)$, so existiert eine Isometrie $\varphi : \operatorname{supp}(x_1) \to \operatorname{supp}(x_2)$ mit $\pi|_{\sigma_1}(y) = \pi|_{\sigma_2}(\varphi(y))$ für alle $y \in \operatorname{supp}(x_1)$; wobei $\operatorname{supp}(x_i)$ die eindeutige Seite $\tau < \sigma_i$ mit $\mathring{\tau} \ni x_i$ ist.

Ein M_{κ} -Polyederkomplex ist im Allgemeinen kein simplizialer Komplex. Betrachte die folgenden beiden Beispiele:

(1) 2-Torus:

 $\sigma=[0,1]^2$ einziger Polyeder, \sim Kantenidentifikation (wie üblich) Kein simplizialer Komplex, denn $\pi|_{\sigma}$ ist nicht injektiv

(2) Digon: zwei (maximale) Polyeder $e_1 \cong e_2 \cong [0,1], \sim =$ Identifikation der Randpunkte

- (i) $\pi|_{e_i}$ ist injektiv.
- (ii) $\pi(e_1) \cap \pi(e_2) = \{v, w\}$ ist *nicht* gemeinsame Seite des Polyeders.

Der Kubenkomplex $K_n \mathcal{G}$ ist ein M-Polyederkomplex im obigen Sinne. $K_n \mathcal{G}$ enhält keine Schleifen. Ist $\sigma \subset K_n \mathcal{G}$ ein 1-Würfel, das heiß $\sigma = (f, \{e\})$, so gilt $\partial^+(f, \{e\}) = \begin{pmatrix} v_e & \mapsto & 0 \\ |e| & \mapsto & f(|e|) + 1 \end{pmatrix}, \emptyset) \neq \partial^-(f, \{e\}) = \begin{pmatrix} v_e & \mapsto & 1 \\ |e| & \mapsto & f(|e|) \end{pmatrix}, \emptyset$.

Es gibt Digone in $K_n \mathcal{G}$: Es gelte $n \geq 1$ und \mathcal{G} enthalte eine Schleife. betrachte die folgenden Konfigurationen:

Es gelte $v_e = v = v_{\overline{e}}$, damit existieren zwei Intervalle in $K_n \mathcal{G}$, welche das Verlassen der orientierten Kante e parametrisieren:

Jeder höherdimensionale Würfel in $K_n \mathcal{G}$ ist eindeutig durch seine Kodimension-1-Seiten bestimmt: Es seien (g, S) und (h, T) Würfel der Dimension ≥ 2 in $K_n \mathcal{G}$ mit $\{\partial_i^{\pm}(g, S)\} = \{\partial_i^{\pm}(h, T)\}$. Es gilt

$$2|S| = \#\{\partial_i^{\pm}(g,S)\} = \#\{\partial_i^{\pm}(h,T)\} = 2|T|.$$

Daraus folgt $|S| = |T| \ge 2$, also S = T. Man sieht leicht ein, dass dann auch g = h gilt, also (g, S) = (h, T).

Metrik auf $K_n \mathcal{G}$ (bzw. M_{κ} -Polyederkomplexen)

Es seien $x, y \in X$. Ein $s \in \{x_0, \dots, x_k\}$ mit $x_0 = x$, $x_k = y$ und $x_i, x_{i+1} \in \sigma_i$ für einen Würfel (bzw. Polyeder) heißt **k-Kette**. Mit $l(s) = \sum_i d_{\sigma_i}(x_i, x_{i+1})$ sei ihre Länge bezeichnet, wobei d_{σ_i} die Metrik auf σ_i ist. Es sei

$$d(x, y) = \inf\{l(s) \mid s \text{ Kette von } x \text{ nach } y\}.$$

Dies definiert im Allgemeinen keine Metrik. Es sei X der Polyederkomplex aus abzählbar vielen Kanten e_k der Länge $\frac{1}{k}$. Dann gilt

$$d(v, w) \le \inf\{l(e_k) \mid k \in \mathbb{N}\} = \inf_k \frac{1}{k} = 0.$$

Auf dem Kubenkomplex $K_n \mathcal{G}$ definiert d eine Metrik: $K_n \mathcal{G}$ ist zusammenhängend, da \mathcal{G} zusammenhängend ist. Es genügt zu zeigen, dass $d(x,y) \neq 0$ für $x \neq y$ gilt: Liegen x und y in einem Würfel σ , so ist dies offensichtlich $(d|_{\sigma}$ ist eine euklidische Metrik auf diesem Würfel). Andernfalls betrachte für $x \in \sigma$

$$\varepsilon_{\sigma}(x) = \inf\{d_{\sigma}(x,\tau) \mid \tau < \sigma, \tau \not\ni x\}$$

Dies ist in $K_n \mathcal{G}$ stets positiv. Man kann zeigen, dass $l(s) \geq \varepsilon_{\sigma}(x)$ für jede Kette s von x nach y gilt, also d(x,y) > 0. Man sieht leicht ein, dass d eine Längenmetrik ist.

Geodäzität und Vollständigkeit

Satz (Bridson 1991)

Es sei X ein zusammenhängender M_{κ} -Polyederkomplex. Falls in X nur endlich viele Isometrietypen von Polyedern existieren, so ist X ein geodätisch vollständiger metrischer Raum.

Ohne Einschränkung kann man annehmen, dass X simplizial ist. Betrachte straffe Ketten $s = \{x_0, \dots, x_k\}$.

- (i) Kein Tripel X_{i-1}, x_i, x_{i+1} liege in einem gemeinsamen Simplex.
- (ii) Gilt $x_{i-1}x_i \in \sigma_{i-1}$ und $x_ix_{i+1} \in \sigma_i$, so sei $\overline{x_{i-1}x_i} \cup \overline{x_ix_{i+1}}$ geodätisches Segment in $\sigma_{i-1} \cup_{\sim} \sigma_i$.

Beachte: Das heißt nicht, dass $\overline{x_{i-1}x_i} \cup \overline{x_ix_{i+1}}$ geodätisch in X ist, wie man an dieser Zeichnung erkennt:

Es gilt $d(x,y) = \inf\{l(s) \mid s \text{ straffe Kette von } x \text{ nach } y\}$. Für jede Länge l existiert eine Schranke N, abhängig von l und den Isometrietypen von Simplices, so dass jede straffe Kette der Länge l höchstens N Simplices durchläuft.

Für $x, y \in X$ durchlaufen straffe Ketten hinreichend kleiner Länge nur endlich viele "Modellräume", welche durch die endlichen Kombinationen der endlich vielen Isometrietypen gegeben sind. Jeder solche "Modellraum" enhält eine kürzeste Geodätische (Moussong 1988).

2 Nichtpositive Krümmung von Kubenkomplexen

Das Innere der Kuben ist CAT(0), da jeder Kubus die euklidische Metrik trägt. Die Kümmung des Komplexes "konzentriert" sich in den Ecken, das heißt 0-dimensionalen Würfeln

Zur Erinnerung: Das Komplement eines Quadranten in \mathbb{R}^2 ist CAT(0) und gegeben durch $\mathbb{R}^2 \setminus Q = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \leq 0, x_2 \leq 0\}.$

Das Komplement eines Oktanten in \mathbb{R}^3 ist *nicht* CAT(0).

Die folgenden Würfelkomplexe sind euklidisch und CAT(0):

Allerdings ist dies hier nicht mehr CAT(0), vergleichbar mit dem Oktanten:

Man kann den Knoten v als Spitze eines Kegels betrachten und den Link lk(v) als den Grundkreis. Je größer der Link, umso flacher der Kegel.

Es sei v eine Ecke. Der **Link** $\mathrm{lk}(v)$ ist ein abstrakter simplizialer Komplex mit einem k-Simplex für jeden (k+1)-Würfel, der v enthält. Für K sieht der Link $\mathrm{lk}_K(v)$ folendermaßen aus:

Satz (Gromovs Link-Bedingung)

Es sei K ein endlichdimensionaler Kubenkomplex. K ist genau dann nichtpositiv gekrümmt, wenn der Link jeder Ecke ein Fahnenkomplex ist.

Ein **Fahnenkomplex** ist ein simplizialer Komplex, in welchem jede Menge von Ecken, die paarweise durch Kanten verbunden sind, einen Simplex aufspannen. Ein Komplex, welcher maximal unter allen Komplexen mit dem gleichen 1-Skelett ist, ist ein Fahnenkomplex.

Link-Bedingung in $K_n \mathcal{G}$

Es sei $x \in K_n \mathcal{G}$ eine Ecke, das heißt $x = (f, \emptyset)$ mit $f : \mathcal{E} \cup \mathcal{B} \to \mathbb{N}_0$, $\sum_{a \in \mathcal{E} \cup \mathcal{B}} f(|a|) = n$ und $f(v) \in \{0, 1\}$ für alle $v \in \mathcal{B}$. Es gilt $lk(x) = \{\sigma \in K_n \mid (f, \emptyset) \prec \sigma\}$. Ein $\sigma = (g, S)$ enthält genau dann (f, \emptyset) , wenn gilt

$$g(a) = \begin{cases} f(a) & a \in \mathcal{B} \land a \neq v_e, e \in S \\ 0 & a = v_e, e \in S \\ f(a) + \sum_{\substack{s \in S \\ |s| = a}} (f(v_s) - 1) & a \in \mathcal{E} \end{cases}$$

Solche $\sigma=(g,S)$ sind eindeutig bestimmt duch Teilmengen $S\subset\mathcal{E},$ welche die folgenden Bedingungen erfüllen:

- (i) $v_e \in \mathcal{B}$ für alle $e \in S$
- (ii) $v_e \neq v_{e'}$ für $e, e' \in S$
- (iii) $f(|e|) + f(v_e) \ge 1$ für alle $e \in S$
- (iv) $f(|e|) + f(v_e) + f(v_{\overline{e}}) \ge 2$

Der Link von x besteht aus den Teilmengen S, die (i) bis (iv) erfüllen. Jede solche Teilmenge S definiert einen (|S|-1)-Simplex von lk(x). Die Bedingungen (i) bis (iv) gelten genau dann für eine Teilmenge S, wenn wie für alle ein- und zweielementigen Teilmengen gelte.

Ist dann $(g_i, \{e_i\})_{i \leq k}$ eine Menge von Ecken in lk(x), das heißt Kanten in $K_n \mathcal{G}$, die x enthalten, und sind diese alle durch Kanten $(h_{ij}, \{e_i, e_j\})$ verbunden, so sind (i) - (iv) für $\{e_i\}$ und $\{e_i, e_j\}$ erfüllt. Damit gelten die Bedingungen auch für $S = \{e_1, \ldots, e_k\}$ und es existiert ein g mit $(g, S) \succ x = (f, \emptyset)$; Die Kanten $(h_{ij}, \{e_i, e_j\})$ in lk(x) spannen also einen Simplex auf. Damit ist lk(x) ein Fahnenkomplex.

Somit ist nach Gromovs Link-Bedingung $K_n \mathcal{G}$ nichtpositiv gekrümmt. Das liefert uns

- $\widetilde{K_n \mathcal{G}}$ ist (global) CAT(0)
- $\pi_k(K_n \mathcal{G}) = 0$ für alle $k \geq 2$
- $K_n \mathcal{G} \hookrightarrow C_n \mathcal{G}$ Deformationsretrakt $\Rightarrow \pi_*(K_n \mathcal{G}) = \pi_*(C_n \mathcal{G})$
- $\pi_1(C_n \mathcal{G}) = \pi_1(K_n \mathcal{G}), \, \pi_k(C_n \mathcal{G}) = 0, \, k \ge 2$

Sei $k = \min\{|\mathcal{B}|, \lfloor \frac{n}{2} \rfloor\}$, dann gilt $\pi_1(C_n \mathcal{G}) \geq \mathbb{Z}^k = \pi_1(T)$, ein Torus durch die Wirkung $\pi_1(C_n \mathcal{G}) \curvearrowright K_n \mathcal{G}$. Finde T^k in $K_n \mathcal{G}$, das heißt "finde \mathbb{S}^1 en in $K_n \mathcal{G}$ ".

Jede essentielle Ecke $v \in \mathcal{B}$ in \mathcal{G} hat $\deg(v) \geq 3$. Für jeden Erzeuger einer \mathbb{S}^1 in $K_n \mathcal{G}$ benötigt man zwei Teilchen und eine essentielle Ecke von \mathcal{G} .

3 Verallgemeinerung: Lokal rekonfigurierbare Räume

Wir betrachten das folgende motivierende Beispiel von Chirikjiam aus den 1990er Jahren. In einem zweidimensionalen Modell liegen sechseckige Bausteine, angeheftet an Kanten und drehbar an Ecken.

Es sei \mathcal{G} ein Graph und \mathcal{A} eine Menge. Ein **Zustand** ist eine "Färbung" von \mathcal{G} durch \mathcal{A} , das heißt $u: \mathcal{V}\mathcal{G} \to \mathcal{A}$.

In dem obigen Beispiel ist \mathcal{G} ein hexagonaler Graph und $\mathcal{A} = \{0, 1\}$. Ist eine Position $v \in \mathcal{G}$ durch ein Sechseck besetzt, so sei u(v) = 1, sonst 0. Ein **Erzeuger** φ besteht aus

- einem Träger supp $\varphi \subseteq \mathcal{G}$, einem Teilgraph von \mathcal{G}
- seiner Spur $\operatorname{tr} \varphi \subseteq \operatorname{supp} \varphi$, einem Teilgraph von $\operatorname{supp} \varphi$
- einem Paar lokaler Zustände u_i^{φ} : supp $\varphi \to \mathcal{A}$, $u_0^{\varphi}|_{\text{supp }\varphi \setminus \text{tr }\varphi} = u_1^{\varphi}|_{\text{supp }\varphi \setminus \text{tr }\varphi}$ Der Erzeuger gibt uns also Aufschluss über die Drehung

Bei einer Drehung passiert ein Punkt mehrere Sechsecke, daher zählen diese Sechsecke auch zum Träger

Ein Erzeuger heißt **zulässig** auf einem Zustand u, falls $u|_{\text{supp }\varphi}=u_0^{\varphi}$ gilt. Dann sei

$$\varphi.u: \mathcal{VG} \hookrightarrow \mathcal{A} \qquad \qquad v \mapsto \begin{cases} u(v) & v \notin \operatorname{supp} \varphi \\ u_1^{\varphi}(v) & v \in \operatorname{supp} \varphi \end{cases}$$

die Wirkung von φ auf u. Ein lokal rekonfigurierbares System (LRS) sei eine Menge von Zuständen und Erzeugern, welches abgeschlossen unter dieser Wirkung ist. Ein geeignetes geometrisches Modell von $C_n \mathcal{G}$ erhielt man aus den unabhängigen Bewegungen von Punkten durch essentielle Ecken.

Eine Familie von Erzeugern $\{\varphi_i\}$ heißt **kommutativ**, wenn tr $\varphi_i \cap \text{supp } \varphi_j = \emptyset$ für alle $i \neq j$. Analog zu $C_n \mathcal{G}$ beziehungsweise $K_n \mathcal{G}$ erhält man so einen Kubenkomplex, ein geometrisches Modell für den Zustandsraum des LRS.

Es seien u und w Zustände und $\varphi_1, \ldots, \varphi_k$ zulässige kommutativ Erzeuger. Die Paare $(u, \{\varphi_i\})$ und $(w, \{\varphi_i\})$ heißen **äquivalent**, wenn $u|_{\mathcal{VG}\setminus\bigcup_i\operatorname{supp}\varphi_i}=w|_{\mathcal{VG}\setminus\bigcup_i\operatorname{supp}\varphi_i}$ gilt.

Der **Zusatandskomplex** eines LRS besteht aus den Äquivalenzklassen von Zuständen u und Erzeugern $\varphi_1, \ldots, \varphi_k$, seinen k-Kuben $[u, \{\varphi_i\}]$, mit den Randabbildungen $\partial_j^-[u, \{\varphi_i\}] = [u, \{\varphi_i\}_{i \neq j}]$ beziehungsweise $\partial_j^+[u, \{\varphi_i\}] = [\varphi.u, \{\varphi_i\}_{i \neq j}]$. (im Allgemeinen nicht lokal endlich)

Satz (Ghrist '07?)

Ein lokal endlicher Zustandskomplex eines LRS ist nicht-positiv gekrümmt.

Als Konsequenz ergibt sich daraus, dass \mathcal{C} ein Eilenberg-McLane-Raum ist, das heißt $\pi_k(\mathcal{C}) = 0$ für $k \geq 2$.

- Jede Homotopieklasse von Wegen besitzt genau einen geodätischen Repräsentanten.
- Die Fundamentalgruppe ist torsionsfrei.
- $\pi(\mathcal{C}) \hookrightarrow \mathcal{G}_{\mathcal{C}} = \langle \varphi_i \mid \varphi_i^2 = \mathrm{id}, [\varphi_i, \varphi_j] \rangle$, rechtwinklige Artin-Gruppe

Ein weiteres Beispiel für ein LRS ist ein diskretes Modell für $C_n \mathcal{G}$, homöomorph zu $K_n \mathcal{G}$ (nach eventueller Unterteilung von \mathcal{G}). Wir schauen uns nun ein konkretes Beispiel an.

"Diskreter" Roboterarm

Um die Bewegungen der Gelenke diskret zu machen legen wir ein Gitter und lassen Bewegungen von entweder 90° oder 180° zu.

Für die Erzeuger gilt

Entsprechend gilt für die Träger und Spuren

$$\operatorname{supp} \varphi = \operatorname{supp} \psi = \frac{1}{1-\varepsilon} \quad \operatorname{mit} \ \operatorname{tr} \varphi = \underbrace{\hspace{1cm}} \ \operatorname{und} \ \operatorname{tr} \psi = \underbrace{\hspace{1cm}}$$

Kapitel 3

"Gestänge" (Linkages)

Betrachte einen (stilisierten) Roboterarm mit zwei Gelenken, eines in $0 \in \mathbb{R}^2$ fixiert, und zwei Stangen fixer Länge $l_1 > l_2$, die über das weitere Gelenk miteinander verbunden sind.

Der Konfigurationsraum C, das heißt der Raum aller möglichen Positionen beider Stangen , wird durch ihre Winkel zur x-Achse parametrisiert, das heißt $C = T^2 = \mathbb{S}^1 \times \mathbb{S}^1$. Sein Arbeitsbereich W, das heißt die Menge der Positionen des Endpunktes, ist ein Annulus mit äußerem Radius $l_1 + l_2$ und innerem Radius $l_1 - l_2$. Das liefert die Parametrisierung

$$\alpha: C = T^2 \to W$$
 $(\vartheta_1, \vartheta_2) \mapsto l_1 \cdot \vartheta_1 + l_2 \cdot \vartheta_2$

Lemma

Es bezeichne Δ die Diagonale in T^2 und $\Delta^* = \{(\vartheta, -\vartheta) \mid \vartheta \in \mathbb{S}^1\}$. Das Komplement $T^2 \setminus \Delta \cup \Delta^*$ besitzt zwei Komponenten, deren jede von α diffeomorph auf W abgebildet wird.

1 Abstandsfunktion von Roboterarmen

Zur Untersuchung der Abstandsfunktion $\|\sum_{i\leq n} l_i \vartheta_i\|$ genügt die Betrachtung des Raumes aller möglichen "Gestalten" des Armes, seines Modellraumes: Seine "Gestalt" hängt nicht vom ersten Winkel, beziehungsweise seiner Länge im \mathbb{R}^2 ab. Der Modellraum sei definiert als

$$W = (\vartheta_1, \dots, \vartheta_n) \in \mathbb{S}^1 \times \dots \times \mathbb{S}^1 / SO(2)$$

Durch die Abbildung $[\vartheta_1, \ldots, \vartheta_n] \mapsto (1, \vartheta_2 \vartheta_1^{-1}, \ldots, \vartheta_n \vartheta_1^{-1})$ erhält man einen Diffeomorphismus $M \cong T^{n-1}$. Für jeden festen Abstand $\|\sum_{i \leq n} l_i \vartheta_i\|$ ist das Urbild der Abstandsfunktion der Raum der geschlossenen polygone mit Kantenlängen l_1, \ldots, l_n .

2 Polygonräume

Jedes geschlossene Polygon ist, bis auf euklidische Bewegungen, durch l_1,\ldots,l_n und die orientierten Winkel zwischen den Kanten charakterisiert. Normalisiert man die letzte Kante auf die x-Achse mit $\vartheta_n = -e_1$, so erhält man als Modulraum $M_l = \{(\vartheta_1,\ldots,\vartheta_n) \in \mathbb{S}^1 \times \ldots \times \mathbb{S}^1 \mid \sum l_i \vartheta_i = 0, \vartheta_n = -e_1\}$. Jede solche Normalisierung entspricht einer Drehung, also

$$M_l = \{(\vartheta_1, \dots, \vartheta_n) \in \mathbb{S}^1 \times \dots \times \mathbb{S}^1 \mid \sum l_i \vartheta_i = 0\}/SO(2)$$

wobei auch hier SO(2) diagonal auf dem n-Torus wirkt.

Jede Permutation $\sigma \in S_n$ induziert einen Diffeomorphismus $\varphi_{\sigma}: T^n \to T^n$ durch $\varphi_{\sigma}(\vartheta_1, \ldots, \vartheta_n) = (\vartheta_{\sigma(1)}, \ldots, \vartheta_{\sigma(n)})$. Da die Summation und SO(2)-Wirkung invariant unter der Permutation sind, erhält man so einen Diffeomorphismus $M_l \to M_{l_{\sigma}}$, mit $\tilde{l} = (l_{\sigma(1)}, \ldots, l_{\sigma(n)})$. Das Diffeomorphismus hängt nicht von der Reihenfolge der Kantenlängen ab.

 $l_2/$ $l_3/$ l

Im Fall n=3 nehmen wir $l_1 \geq l_2 \geq l_3$ an. Falls $l_1=l_2+l_3$ gilt, so ist das Dreieck entartet, es gilt $M_l=\{*\}$. Ist die Dreickesungleichung strikt erfüllt, das heißt $l_1 < l_2 + l_3$, so existieren zwei Dreiecke mit genau diesen Kantenlängen, welche sich durch eine Spiegelung unterscheiden. Gilt $l_1 > l_2 + l_3$, so existiert kein Dreieck mit diesen Kantenlängen und $M_l=\emptyset$.

Lemma

Für $n \geq 3$ gilt genau dann $M_l = \emptyset$, wenn $l_i > l_1 + l_2 + \ldots + \hat{l_i} + \ldots + l_n$ für ein $i \leq n$ gilt.

Beweis

Offensichtlich ist die Bedingung hinreichend. Es gelte $l_i = \sum_{i \neq j} l_j$ für alle $i \leq n$. Für n = 3 ist die Aussage klar. Für $n \geq 4$ existiert ein $i \leq n$, so dass

$$l_i + l_{i+1} \le l_1 + \ldots + l_{i-1} + l_{i+2} + \ldots + l_n$$

gilt, denn wäre dem nicht so, so gälte

$$2(l_i + l_{i+1}) > \sum l_i = \mathcal{L}$$

für alle i und es folgte

$$4 \cdot \mathcal{L} = \sum_{i \le n} 2(l_i + l_{i+1}) > n \cdot \mathcal{L}.$$

Nach Induktion existiert ein geschlossenes Polygon mit Kantenlängen $l_1, l_2, \ldots, l_i + l_{i+1} + \ldots + l_n$, das heißt ein n-gon mit kollinearen Kanten der Längen l_i und l_{i+1} . Damit gilt $M_l \neq \emptyset$.

Wann ist M_l eine Mannigfaltigkeit? Ein **Längenvektor** $l = (l_1, \ldots, l_n)$ heißt **generisch**, wenn es $keine \ \varepsilon_i \in \{+1, -1\}$ gibt mit $\sum_{i < n} \varepsilon_i l_i = 0$.

Satz

Ist $l \in \mathbb{R}^n_{>0}$ generisch, so ist M_l eine kompakte orientierbare (n-3)-Mannigfaltigkeit ohne Rand.

Es sei $W = T^n/SO(2)$ der Modulraum eines Roboterarmes mit n Stangen und

$$f_l: W \to \mathbb{R}$$
 $[\vartheta_1, \dots, \vartheta_n] \mapsto \|\sum_{i \le n} l_i \vartheta_i\|^2$

die **Höhenfunktion** zum Längenvektor $l = (l_1, \ldots, l_n)$. Ist $f_l(p) = 0$, so ist der Arm geschlossen, das heißt p bestimmt ein geschlossenes ebenes n-gon mit Kantenlängen l_1, \ldots, l_n , d. h. $p \in M_l$. Der Modulraum liegt als Nullstellenmenge von f_l in dem (n-1)-Torus W; M besteht genau aus den Maximalstellen von f_l .

Kollineare Konfigurationen sind (topologisch) interessante Punkte in W.

Eine Teilmenge $\mathcal{J} \subseteq \{1, \ldots, n\}$ heißt **kurz** (beziehungsweise **lang**), falls $\sum_{j \in \mathcal{J}} l_j < \sum_{i \neq j} l_j$ (beziehungsweise ... > ...) gilt, andernfalls heiße sie **ausgewogen**. \mathcal{J} ist genau dann ausgewogen, wenn sein Komplement \mathcal{J}^c ausgewogen ist. Es existiert genau dann ein ausgewogenes \mathcal{J} , wenn l nicht generisch ist.

Ist \mathcal{J} lang oder ausgewogen, so sei $p_{\mathcal{J}} = [\vartheta_1, \dots, \vartheta_n] \in W$ mit $\vartheta_i = 1$ für $i \in \mathcal{J}$ und $\vartheta_i = -1$ sonst. Insbesondere gilt $p_{\mathcal{J}} = p_{\mathcal{J}^c}$ für ausgewogenes \mathcal{J} .

Lemma

Die kritischen Punkte von $f_l: W \setminus M_l \to \mathbb{R}$ sind genau die Konfigurationen $p_{\mathcal{J}}$ für lange Teilmengen \mathcal{J} . Jeder solche Punkt ist nicht-entartet und hat den Morse-Index $n - |\mathcal{J}|$.

Bevor wir mit dem eigentliche Beweis beginnen erinnern wir uns noch zunächst an die Vorlesung vom letzten Semester. Die **Hessesche** ist gegeben durch $H_f = \nabla^2 f$ für ein $f \in C^{\infty}(M)$ und es gilt (ACHTUNG, stimmt nicht mit Kapitel 9.1 der alten VL überein!)

$$H_f(X,Y) = X(\mathrm{d}f(Y)) - \mathrm{d}f(\nabla_X f) = X(Y(f)) - (\nabla_X f)(f)$$

$$= [X,Y](f) + Y(Xf) - \underbrace{(\nabla_X Y - \nabla_Y X)}_{=[X,Y]f} f - \nabla_Y X f$$

$$= Y(Xf) - \nabla_Y X f = H_f(Y,X)$$

 H_f ist im Allgemeinen nicht C^{∞} -linear, aber in kritischen Punkten von f: Sei $X_p \in T_p M$, setze fort zu Vektorfeldern X und \tilde{X} auf M. Dann gilt

$$H_f(\tilde{X},Y)|_p = \tilde{X}_p(Yf) - (\nabla_{\tilde{X}_p}Y)f = X_p(Yf) - \underbrace{\mathrm{d}f|_p}_{=0}(\nabla_{\tilde{X}_p}Y) = X_p(Yf).$$

In kritischen Punkten ist H_f C^{∞} -linear und hängt nicht von der Wahl des Zusammenhangs ab. In lokalen Koordinaten sei dann $X_p = \sum_{i \leq n} \zeta^i \frac{\mathrm{d}}{\mathrm{d}x^i}$, $Y_p = \sum_{i \leq n} \eta^i \frac{\mathrm{d}}{\mathrm{d}x^i}$, und ζ^i, η^i konstant. Dann folgt

$$H_f(X_p, Y_p) = X_p(Yf) = X_p \Big(\sum_{i \le n} \eta^i \frac{\partial}{\partial x^i} \Big)$$

$$= \sum_{j \le n} \zeta^i \Big(\underbrace{\frac{\partial \eta^i}{\partial x^i}}_{-0} \frac{\partial f}{\partial x^i} + \eta^i \frac{\partial^2 f}{\partial x^i \partial x^j} \Big) = \sum_{i,j \le n} \eta^i \zeta^j \frac{\partial^2 f}{\partial x^i \partial x^j}$$

Für den beweis des Lemmas setzen wir $l = (l_1, \ldots, l_n)$ und $f_l : W \setminus M_l \to \mathbb{R}$ mit $[u_1, \ldots, u_n] \mapsto \|-\sum l_i u_i\|^2$. Die kritischen Punkte von f_l sind genau die (kollinearen) Konfigurationen $p_{\mathcal{J}}$ für lange Teilmengen $\mathcal{J} \subseteq \{1, \ldots, n\}$ $(\sum_{i \in \mathcal{J}} l_i > \sum_{j \notin \mathcal{J}} l_j)$ und $p_{\mathcal{J}} = (u_1, \ldots, u_n)$ mit $u_i = 1$ für $i \in \mathcal{J}$ und $u_i = -1$ sonst). Jeder solche kritische Punkt $p_{\mathcal{J}}$ ist nicht ausgeartet und hat den Morse-Index $n - |\mathcal{J}|$.

Beweis (vom Lemma)

Wir betrachten die Abbildung

$$f_l: T^n \twoheadrightarrow W \xrightarrow{f_l} \mathbb{R}$$
 $(u_1, \dots, u_n) \mapsto -\|\sum l_i u_i\|^2$

und setzen $u_i = e^{i\vartheta_i} = (\cos\vartheta_i, \sin\vartheta_i)$. Dann gilt

$$\begin{split} f_l(u) &= -\left(\sum_{i \le n} l_i^2 \cos \vartheta_i\right)^2 - \left(\sum_{i \le n} l_i \sin \vartheta_i\right)^2 \\ &= -\left(\sum_{i \le n} l_i^2 \cos^2 \vartheta_i + 2\sum_{i < j} l_i l_j \cos \vartheta_i \cos \vartheta_j\right) \\ &- \left(\sum_{i \le n} l_i^2 \sin^2 \vartheta_i + 2\sum_{i < j} l_i l_j \sin \vartheta_i \sin \vartheta_j\right) \\ &= -\left(\sum_{i \le n} l_i^2 (\cos^2 \vartheta_i + \sin^2 \vartheta_i)\right) - 2\sum_{i < j} l_i l_j \underbrace{\left(\cos \vartheta_i \cos \vartheta_j + \sin \vartheta_i \sin \vartheta_j\right)}_{=\cos(\vartheta_i - \vartheta_i)} \end{split}$$

Wie steht es nun um die kritischen Punkte? Es gilt

$$\frac{\partial f_l}{\partial \vartheta_k} = -2l_k \sum_{i \le n} l_i \sin(\vartheta_i - \vartheta_k) = -2l_k \sum_{i \le n} l_i (\sin \vartheta_i \cos \vartheta_k - \cos \vartheta_i \sin \vartheta_k) = 0$$

genau dann, wenn

$$\cos \vartheta_k \underbrace{\sum_{i \le n} l_i \sin \vartheta_i}_{=:y(u)} = \sin \vartheta_k \underbrace{\sum_{i \le n} l_i \cos \vartheta_i}_{=:x(u)}$$

- **1. Fall:** $x(u) = y(u) = 0 \Leftrightarrow -x^2(u) y^2(u) = f_l(u) = 0 \Leftrightarrow u \in M_l$ **2. Fall:** $\tan \vartheta_k \equiv \frac{y(u)}{x(u)} \forall k \leq n \Leftrightarrow \vartheta_i \in \{\vartheta_1, \vartheta_1 + \pi, \vartheta_1 \pi\} \Leftrightarrow u_i = \pm u_j \forall i, j \Leftrightarrow u \text{ ist}$ kollineare Konfiguration

Es sei $\mathcal{J} \subseteq \{1, \ldots, n\}$ eine lange Teilmenge, $p_{\mathcal{J}} = (u_1, \ldots, u_n)$ mit $u_i = 1$ für $i \in \mathcal{J}$ und $u_i = -1$ für $i \notin \mathcal{J}$. Dann ist $\mathcal{L}_{\mathcal{J}} = \sum_{i \leq n} l_i u_i > 0$ und es gilt $f_l(p_{\mathcal{J}}) = -\mathcal{L}_{\mathcal{J}}^2$. Die Hessesche von f_l im Punkt $p_{\mathcal{.}\mathcal{T}}$ ist

$$\frac{\partial^2 f_l}{\partial \vartheta_i \partial \vartheta_j} = \begin{cases} -2l_i l_j \cos(\vartheta_j - \vartheta_i) & \text{falls } i \neq j \\ 2l_i \sum_{k \neq i} l_k \underbrace{\cos(\vartheta_i - \vartheta_k)}_{=u_i u_k} & \text{falls } i = k \end{cases}.$$

Es gilt

$$l_i \sum_{k \neq i} l_k u_i u_k = l_i u_i \sum_{k \neq i} l_k u_k = l_i u_i (\mathcal{L}_{\mathcal{J}} - l_i u_i) = l_i^2 \left(\frac{l_i \mathcal{L}_i}{l_i} - 1 \right) \quad \text{und} \quad d_i = \frac{u_i \mathcal{L}_{\mathcal{J}}}{l_i},$$

also folgt

$$\frac{1}{2} \frac{\partial^2 f_l}{\partial \vartheta_i \partial \vartheta_j} = \begin{cases} -l_i l_j u_i u_j = (l_i u_i)(l_j u_j)(-1) \\ l^2 (d_i - 1) = (l_i u_i)(l_i u_i)(d_i - 1) \end{cases}.$$

Wir setzen nun für drei Matrizen

$$D = \begin{pmatrix} d_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & d_n \end{pmatrix} \qquad A = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{pmatrix} \qquad B = \begin{pmatrix} l_1 u_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & l_n u_n \end{pmatrix}$$

und schreiben dann

$$\frac{1}{2}H_f(p_{\mathcal{J}}) = B^T(D - A)B.$$

Es genügt zu zeigen, dass D-A auf $\mathcal{T}_{[p_{\mathcal{J}}]}\,W$ nicht ausgeartet mit Signatur $n-|\,\mathcal{J}\,|$ ist:

$$\det(D - A) = \prod_{i \le n} d_i (1 - \sum_{j \le n} \frac{1}{d_j})$$

Ohne Einschränkung sei $\mathcal{J} = \{k, k+1, \dots, n\}$. Dann gilt $u_i = 1$ und $d_i < 0$ für i < k, dann gilt für die Hauptminoren von Ordnung l < k

$$\det(D - A)_{ll} = \prod_{i \le n} d_i \left(\underbrace{1 - \sum_{j \le l} \frac{1}{d_j}}_{>0} \right).$$

Für $l \ge k$ gilt

$$1 - \sum_{j \le l} \frac{1}{d_j} = 1 - \sum_{j \le l} \frac{l_{\mathcal{J}}}{u_j \mathcal{L}_{\mathcal{J}}} = \mathcal{L}_{\mathcal{J}}^{-1} \left(\mathcal{L}_{\mathcal{J}} - \sum_{j \le l} l_j u_j \right) = \mathcal{L}_{\mathcal{J}}^{-1} \left(\sum_{i \le n} l_i u_i - \sum_{j \le l} l_j u_j \right)$$

$$= \mathcal{L}_{\mathcal{J}}^{-1} \left(\sum_{i > l} l_i u_i \right) \begin{cases} > 0 & \text{für } k \le l < n \\ = 0 & \text{für } l = n \end{cases}$$

Es gilt

$$\operatorname{sign}(\det(D-A)_{ll}) = \begin{cases} (-1)^{l} & \text{für } l < k \\ (-1)^{k-1} & \text{für } k \le l < k \end{cases}$$

und D-A hat $n-|\mathcal{J}|$ negative Eigenwert, $n-k=|\mathcal{J}|-1$ positive Eigenwerte und genau einen Eigenwert 0. Da f_l invariant unter der SO(2)-Wirkung ist, gilt in $p_{\mathcal{J}}$ in Richtung der Faser $H_{f_l}(p_{\mathcal{J}},p_{\mathcal{J}})=\frac{\mathrm{d}^2}{\mathrm{d}\lambda^2}f_l(\lambda p_{\mathcal{J}})=0$. Damit ist H_{f_l} auf W in $[p_{\mathcal{J}}]$ nicht ausgeartet und hat Signatur $n-|\mathcal{J}|$.

Satz

Ist $l = (l_1, ..., l_n)$ generisch, das heißt gilt $\sum_{i \le n} l_i u_i \ne 0$ für alle $u_i \in \{1, -1\}$, so ist M_l eine kompakte orientierbare (n-3)-Mannigfaltigkeit ohne Rand.

Beweis

Seien $l'=(l_1,\ldots,l_{n-1})$ und $f_{l'}^{-1}=(-l_n^2)=M_l$. Betrachte den "Roboterarm" mit (n-1) Segmenten und $f_{l'}:W=T^{n-2}\to\mathbb{R}$. Nach dem obigen Lemma hat $f_{l'}$ genau einen kritischen Wert $-a^2\neq 0$, wenn eine kollineare Konfiguration (u_1,\ldots,u_{n-1}) existiert mit $u_i\in\{1,-1\}$, so dass $-a^2=\|\sum_{i\leq n}l_iu_i\|^2=f_{l'}(u)\Leftrightarrow \pm a+\sum l_iu_i=0\Leftrightarrow (l_1,\ldots,l_{n-1},a)$ ist nicht generisch.

 l_1 l_n

Das heißt $-l_n^2$ ist ein regulärer Wert von $f_{l'}$ und damit ist $f_{l'}^{-1}(-l_n^2) = M_l$ eine kompakte orientierbare Mannigfaltigkeit in $W \cong T^{n-2}$ der Kodimension 1.

Was ist mit nicht-generischen Längenvektoren? Betrachte die Urbilder von kritischen Punkten.

Lemma (Morse-Lemma)

Es sei p ein nicht-entarteter kritischer Punkt von Index k einer glatten Funktion f auf einer Mannigfaltigkeit M. Dann existieren lokale Koordinaten $x=(x^1,\ldots,x^n)$ von M um p mit

$$f = f(p) - (x^1)^2 - \dots - (x^k)^2 + (x^{k+1})^2 + \dots + (x^n)^2$$

Beweisskizze

Für f(p) = 0 schreibe

$$f(x) = \int_0^1 \frac{\mathrm{d}(f(tx^1, \dots, tx^n))}{\mathrm{d}t} \mathrm{d}t = \sum_{i \le n} x^i \underbrace{\int_0^1 \frac{\partial f}{\partial x^i}(tx) \mathrm{d}t}_{=:g_i(x)}$$

$$g_i(0) = \frac{\partial f}{\partial x^i}(0) = 0$$

wobei analog zu f für ensprechends \tilde{g}_{ij}

$$g_i(x) = \sum_{j \le n} x^j \tilde{g}_{ij}(x)$$
$$f(x) = \sum_{i,j} x^i x^j \left(\frac{\tilde{g}_{ij} + \tilde{g}_{ji}}{2}\right) = \sum_i x^i x^j h_{ij}$$

und dementsprechend

$$H_f(0) = (h_{ij})_{ij}.$$

"Verbiege" nun die Koordinaten so, dass gilt

$$(h_{ij}) = \begin{pmatrix} -1 & & & & & \\ & \ddots & & & \sigma & \\ & & -1 & & & \\ & & & +1 & & \\ & \sigma & & \ddots & \\ & & & & +1 \end{pmatrix}$$

Lokal hat f um p entlang k Kurven in linear unabhängige Richtungen Maxima und entsprechend n-k Minima.

Allgemein gilt $f(q) = c - (x^1)^2 - \ldots + (x^{k+1})^2 + \ldots + (x^n)^2 = c - \sum_{i \le k} (x^i)^2 + \sum_{i > k} (x^i)^2$, und mit $x = (x^1, \ldots, x^k)$ und $y = (y^1, \ldots, y^{n-k}) = (x^{k+1}, \ldots, x^n)$ schreibe $f(q) = c - \|x\|^2 + \|y\|^2$. Es gilt genau dann f(q) = c, wenn $\|x\| = \|y\|$.

Dies ist genau dann der Fall, wenn entweder x(q) = y(q) = 0 gilt, oder $\zeta \in \mathbb{S}^{k-1}$, $\eta \in \mathbb{S}^{n-k-1}$ und $r \in \mathbb{R}_{>0}$ existieren, mit $x(q) = r\zeta$ und $y(q) = r\eta$. Es existiert also eine Umgebung U von p, so dass

$$f^-(c)\cap U\cong C(\mathbb{S}^{k-1}\times\mathbb{S}^{n-k-1})=\mathbb{S}^{k-1}\times\mathbb{S}^{n-k-1}\times [0,1]/\!\!/\mathbb{S}^{k-1}\times\mathbb{S}^{n-k-1}\times \{0\}$$

und

$$\overline{x}(t\zeta^1,\dots,t\zeta^k,t\eta^1,\dots,t\eta^{n-k}) \leftarrow [\zeta,\eta,t]$$

Eine weitere Folgerung des Morse-Lemmas ist, dass nicht-entartete kritische Punkte stets isoliert sind. Eine Teilmenge $\mathcal{J} \subset \{1,\ldots,n\}$ ist genau dann **ausgewogen** bezüglich eines Längenvektors (l_1,\ldots,l_n) , das heißt $\sum_{i\in\mathcal{J}}l_i=\sum_{i\notin\mathcal{J}}l_i$, wenn entweder $\mathcal{I}=\mathcal{J}$ oder sein Komplement $\mathcal{J}=\mathcal{J}^c$ eine lange Teilmenge in $\{1,\ldots,n-1\}$ bezüglich $l'=(l_1,\ldots,l_{n-1})$ ist und $f_{l'}=(p_{\mathcal{J}})=-l_n^2$.

In einer Umgebung eines kritischen Punktes ist $f_{l'}^-(-l_n^2)$ homöomorph zu einem Kegel über dem Produkt der Spären der Dimensionen

$$\operatorname{ind}(p_{\mathcal{I}}) - 1 = (n-1) - |\mathcal{J}| - 1 = n - |\mathcal{J}| - 2$$

und

$$(n-1) - \text{ind}(p_{\mathcal{J}}) - 1 = |\mathcal{J}| - 2.$$

Damit gilt der folgende Satz:

Satz

Ist $l = (l_1, \ldots, l_n)$ ein nicht-generischer Längenvektor, so ist M_l kompakt und bis auf endlich viele Punkte eine (n-3)-Mannigfaltigkeit. Eine Umgebung jeder dieser unendlich vielen Singularitäten ist homöomorph zu

$$C(\mathbb{S}^{n-|\mathcal{J}|-2}\times\mathbb{S}^{|\mathcal{J}|-2}),$$

wobei \mathcal{J} eine bezüglich l ausgeartete Teilmenge ist.

Der Diffeomorphietyp von M_l hängt nicht von der Reihenfolge der Längen l_1, \ldots, l_n ab, das heißt $\sigma \in S_n$ definiert einen Diffeomorphismus von M_l auf $M_{\sigma(l)}$.

$$[M_l \hookrightarrow \mathbb{R}^n]$$

Satz (Ferber-Schütz)

Es sei $l = (l_1, \ldots, l_n)$ ein geordneter Längenvektor, das heißt $l_1 \geq l_2 \geq \ldots \geq l_n > 0$, und es bezeichne σ_k (beziehungsweise μ_k) die Anzahl der kurzen (beziehungsweise ausgewogenen) Teilmengen $\mathcal{J} \subseteq \{1, \ldots, n\}$ mit $|\mathcal{J}| = k + 1$ und $1 \in \mathcal{J}$. Dann ist $H_k(M_l; \mathbb{Z})$ frei abelsch vom Rang $\sigma_k + \mu_k + \sigma_{(n-3)} - k$, wobei $n - 3 = \dim M_l$.

Beispiel

Sei l=(3,2,2,1,1), n=5 und dim $M_l=2$. Es existieren keine ausgewogenen Teilmengen, das heißt $\mu_k=0$.

$$\sigma_{0} = \# \underset{1 \in \mathcal{J}, |\mathcal{J}| = 1}{\text{kurze}} \mathcal{J} = \#\{\{1\}\} = 1$$

$$\sigma_{1} = \# \underset{1 \in \mathcal{J}, |\mathcal{J}| = 2}{\text{kurze}} \mathcal{J} = \#\{\{1, 4\}, \{1, 5\}\} = 2$$

$$\sigma_{2} = \# \underset{1 \in \mathcal{J}, |\mathcal{J}| = 3}{\text{kurze}} \mathcal{J} = 0$$

Damit:

$$\underbrace{\chi^{(M_l)}}_{=2-2g} = \sum_{k} (-1)^k \beta_k = (1+0+0) - (2+0+2) + (0+0+1) = 1-4+1 = -2$$

Also:

$$M_l = \bigcirc$$

3 Walkers Vermutung

Welche Invarianten von M_l bestimmen den Längenvektor von l (bis auf geeignete Äquivalenz)? Für $l \in \mathbb{R}^n_{>0}$ und $t \in \mathbb{R}_{>0}$ gilt $M_l \cong M_{tl}$. Zur Definition der geforderten Äquivalenz betrachtet man zunächst Längenvektoren im Inneren $A \subset \Delta^{n-1} - \{(l_1, \ldots, l_n) \in \mathbb{R}^n_{>0} \mid \sum l_i = 1\}$ des Standardsimplex.

Weiter zerlegt man A wie folgt in Teilmengen niedrigerer Dimension. Für jedes $\mathcal{J}\subseteq\{1,\ldots,n\}$ definiert

$$\sum_{i \in \mathcal{J}} l_i = \sum_{i \notin \mathcal{J}} l_i$$

eine Hyperebene $H_{\mathcal{J}}$. Es bezeichnen $A^{(k)} \subset A$ die Menge der Längenvektoren l, welche in mindestens (n-1)-k solcher Hyperebenen $H_{\mathcal{J}}$ enthalten sind, das heißt

$$A^{(0)} \subset A^{(1)} \subset A^{(2)} \subset \ldots \subset A^{(n-1)} \subset A$$
.

Ein **k-Stratum** ist eine Zusammenhangskomponente von $A^{(k)} \setminus A^{(k-1)}$. Zwei Längenvektoren liegen in demselben Stratum, falls sie die gleichen kurzen Teilmengen besitzen.

Maximale Strata, Zusammenhangskomponenten von $A^{(n-1)} \setminus A^{(n-2)}$, heißen **Kammern**. Betrachte die Involution (Spiegelung an der x-Achse)

$$\tau: M_l \to M_l$$
 $[u_1, \dots, u_n] \mapsto [\overline{u}_1, \dots, \overline{u}_n]$

Ist n ein Fixpunkt von τ , so gilt $u_i \in \mathbb{R}$, $u_i = \pm 1$ für alle $i \leq n$, und somit ist jeder Fixpunkt eine kollineare Konfiguration. Insbesondere besitzt τ für generische l keine Fixpunkte.

Satz (Hausmann, Rodriguez '04)

Falls l und l' in denselben Straten liegen, so sind M_l und $M_{l'}$ τ -äquivariant diffeomorph.

Walkers Vermutung

Es seien $l, l' \in A$ generische Längenvektoren. Falls die ganzzahligen Kohomologieringe von M_l und $M_{l'}$ graduiert isomorph sind, so existiert ein $\sigma \in S_n$ so, dass l und $\sigma(l')$ in derselben Kammer liegen.

Satz (Faber, Hausmann, Schütz '07)

Es seien $l, l' \in A$ geoordnete Längenvektoren. Falls dann ein Isomorphismus geraduierter Ringe von $H^*(M_l; \mathbb{Z})$ nach $H^*(M_{l'}; \mathbb{Z})$ existiert, welcher mit τ^* kommutiert, so liegen l und l' in demselben Stratum. Insbesondere sind dann M_l und $M_{l'}$ τ -äquivalent diffeomorph.

Betrachte den Modulraum N_l der geschlossenen Polygone in \mathbb{R}^3 mit Kantenlängen l_1, \ldots, l_n , das heißt

$$N_l = \{(u_1, \dots, u_n) \in \mathbb{S}^2 \times \dots \times \mathbb{S}^2 \mid \sum l_i u_i = 0\}_{SO(3)}$$

Hier lässt sich zeigen, dass für generische l N_l eine Mannigfaltigkeit der Dimension 2(n-3) ist.

Satz (Faber, Hausmann, Schütz '07)

Es sei $n \neq 4$ und es seien $l, l' \in A$ generische geordnete Längenvektoren. Falls $H^*(M_l; \mathbb{Z})$ und $H^*(M_{l'}; \mathbb{Z})$ isomorph (siehe oben) sind, so liegen l und l' in derselben Kammer.

Für n=4 ist die Aussage falsch: Die Längenvektoren l=(2,1,1,1) und l'=(2,2,2,1) liegen in unterschiedlichen Kammern. Es gilt

$$M_l\cong \mathbb{S}' \hspace{1cm} M_{l'}\cong \mathbb{S}^1\dot{\cup}\mathbb{S}^1 \hspace{1cm} N_l\cong \mathbb{S}^2\cong N_{l'}$$

Ein Längenvektor heißt normal, falls gilt

$$\bigcap_{\substack{|\mathcal{J}|=3\\\text{lang und ausgew.}}} \mathcal{J} \neq \emptyset.$$

Eine Kammer heißt **normal**, wenn sie einen normalen Längenvektor enthält; damit sind alle darin normal.

Satz (Faber, Hausmann, Schütz '07)

Es seien l und l' geordnete Längenvektoren und es gäbe einen Isomorphismus $H^*(M_l; \mathbb{Z}) \to H^*(M_{l'}; \mathbb{Z})$. Falls l normal ist, so ist l' normal und l und l' liegen in denselben Straten.

Dieser Satz liefert uns

1) Die Anzahl der S_n -Bahnen von normalen Kammern ist höchstens so groß wie die Anzahl der Diffeomorphie Typen von M_l für generische l. Diese Anzahl wiederum ist höchstens so groß wie die Anzahl der S_n -Bahnen von Kammern.

$$\#_{\text{norm. Kammern}}^{S_n\text{-Bahnen}} \leq \#_{\text{von }M_l,l}^{\text{Diffeom.-Typen}} \leq \#_{\text{v. Kammern}}^{S_n\text{-Bahnen}}$$

2) Die Anzahl der S_n -Bahnen von normalen Strata ist höchstens so groß wie die Anzahl der Diffeomorphie Typen von M_l . Diese Anzahl wiederum ist höchstens so groß wie die Anzahl der S_n -Bahnen von Strata.

$$\# \frac{S_n\text{-Bahnen}}{\text{norm. Strata}} \leq \# \frac{\text{Diffeom.-Typen}}{\text{von } M_l} \leq \# \frac{S_n\text{-Bahnen}}{\text{v. Strata}}$$

Für große n existieren wenige nicht-normale Strata: Es sei $\mathcal{N}_n\subseteq A^{(n-1)}$ die Vereinigung aller normalen Strata. Dann gilt

$$\frac{\operatorname{vol}(A^{(n-1)}\setminus\mathcal{N}_n)}{\operatorname{vol}(A^{(n-1)})}\leq \frac{n^6}{2^n}.$$

Kapitel 4

Kinematik

Bewegungen und Zustände eines (idealisierten) Roboterarmes werden durch abstandserhaltende Transformationen, das heißt Isometrien des \mathbb{R}^3 , beschrieben. Jede solche Transformation ist von der Gestalt

$$\mathbb{R}^3 \ni x \mapsto Ax + b$$

mit $A \in \mathcal{O}(3)$ und $b \in \mathbb{R}^3$, wobei $\mathcal{O}(3) = \{A \in \mathbb{R}^{3 \times 3} \mid A^T A = \mathrm{id}_{\mathbb{R}^3}\}$ die Menge der skalarprodukterhaltenden linearen Abbildungen bezeichnet, die orthogonale Gruppe. Die Hintereinanderausführung

$$A'(Ax + b) + b' = A'Ax + A'b + b'$$

ist wieder eine Isometrie des \mathbb{R}^3 . Die Gruppe E(3) der euklidischen Bewegungen ist das semidirekte Produkt E(3) = O(3) × \mathbb{R}^3 mit der Multiplikation

$$(A', b')(A, b) = (AA', A'b + b').$$

Die orthogonale Gruppe O(3) besitzt zwei Zusammenhangskomponenten, die orientierungserhaltenden Drehungen mit Determinante 1, also die Spezielle Orthogonale Gruppe oder Drehgruppe SO(3), und die (Dreh-)Spiegelungen. Da mechanisch keine Spiegelung realisierbar ist, betrachtet man nur die orientierungserhaltenden euklidischen Bewegungen $SE(3) = SO(3) \times \mathbb{R}$.

Zur Vereinfachung der Notation betrachtet man die 4-dimensional Darstellung

$$SE(3) \hookrightarrow GL_4(\mathbb{R})$$
 $(A,b) \mapsto \begin{pmatrix} A & b \\ \hline 0 & 1 \end{pmatrix}.$

Tatsächlich gilt

$$\left(\begin{array}{c|c}A' & b'\\\hline 0 & 1\end{array}\right)\left(\begin{array}{c|c}A & b\\\hline 0 & 1\end{array}\right) = \left(\begin{array}{c|c}AA' & A'b+b'\\\hline 0 & 1\end{array}\right)$$

mit Inversem

$$\left(\begin{array}{c|c}A&b\\\hline0&1\end{array}\right)^{-1}=\left(\begin{array}{c|c}A^T&-A^Tb\\\hline0&1\end{array}\right).$$

Nach einem Satz von Chasles (1832):

Jede euklidische Bewegung kann als "Schraubbewegung" aufgefasst werden: Für alle $\begin{pmatrix} A & b \\ 0 & 1 \end{pmatrix} \in SE(3)$ existieren eine Richtung $v \in \mathbb{S}^2 \subset \mathbb{R}^3$, ein Drehwinkel ϑ , eine Steigung $s \in \mathbb{R}$ und ein Translationsvektor $u \in \mathbb{R}^3$.

$$\left(\begin{array}{c|c}A & b \\\hline 0 & 1\end{array}\right) = \left(\begin{array}{c|c}\operatorname{id} & u \\\hline 0 & 1\end{array}\right) \underbrace{\left(\begin{array}{c|c}R(\vartheta,v) & \frac{\vartheta}{2\pi}sv \\\hline 0 & 1\end{array}\right)}_{} \left(\begin{array}{c|c}\operatorname{id} & -u \\\hline 0 & 1\end{array}\right) = \left(\begin{array}{c|c}R & \frac{\vartheta}{2\pi}sv + (\operatorname{id} - R)u \\\hline 0 & 1\end{array}\right)$$

"Schraube" mit Achse $R \cdot v$ und Steigung s

Bestimmte Roboterarme, beziehungsweise Teile davon, können im Allgemeinen nur bestimmte Bewebungen ausführen, zum Beispiel lässt ein Drehgelenk keine translationen aus SE(3) zu. Der Konfigurationsraum dieses Drehgelenkes ist anschaulich $\mathbb{S}^1 = \mathrm{SO}(2) < \mathrm{SE}(3)$. Es stellt sich also die Frag nach den Untergruppen von SE(3): Ist G eine Untergruppe von SE(3) = $\mathrm{SO}(3) \times \mathbb{R}^3$, so ist auch $G \cap \mathbb{R}^3 = (\{1\} \times \mathbb{R}^3)$ eine Untergruppe von \mathbb{R}^3 , also $0, \mathbb{R}, \mathbb{R}^2, \mathbb{R}^3, r \mathbb{Z}, r \mathbb{Z} \times \mathbb{R}, r \mathbb{Z} \times \mathbb{R}^2, r \mathbb{Z} \times s \mathbb{Z}, r \mathbb{Z} \times s \mathbb{Z} \times \mathbb{R}$ und $r \mathbb{Z} \times s \mathbb{Z} \times t \mathbb{Z}$. Wegen

$$\left(\begin{array}{c|c}A & b\\\hline 0 & 1\end{array}\right)\left(\begin{array}{c|c}\operatorname{id} & t\\\hline 0 & 1\end{array}\right)\left(\begin{array}{c|c}A^T & -A^Tt\\\hline 0 & 1\end{array}\right) = \left(\begin{array}{c|c}\operatorname{id} & A(-A^Tb+t)+b\\\hline 0 & 1\end{array}\right) = \left(\begin{array}{c|c}\operatorname{id} & At\\\hline 0 & 1\end{array}\right),, \in ``\mathbb{R}^3$$

ist \mathbb{R}^3 ein Normalteiler in SE(3), das heißt die Projektion SE(3) \twoheadrightarrow SE(3)/ $\mathbb{R}^3 \cong$ SO(3) ist eine Gruppenhomomorphismus und jede Untergruppe G < SE(3) projeziert auf eine Untergruppe in SO(3), also SO(3), SO(2) oder {1}. Welche "Bausteine" ergeben Untergruppen von SE(3)? Genau jene, für welche der "Faktor" in \mathbb{R}^3 normal in der Untergruppe liegt.

$$G_{\mathbb{R}^3} \cong SO(3)$$
: $G \cap \mathbb{R}^3 = \{0\}$

• $G \cap \mathbb{R}^3 = \mathbb{R}^3$, denn SO(3) ist transitiv auf S^2 .

$$G_{\mathbb{R}^3} \cong \mathrm{SO}(2)$$
: $\bullet \ G \cap \mathbb{R}^3 = \{0\} \Rightarrow G \cong \mathrm{SO}(2)$

•
$$G \cap \mathbb{R}^3 = \mathbb{R}^3$$
, $G \cong SO(2) \times \mathbb{R}^3 = SE(2) \times \mathbb{R}$

•
$$G \cap \mathbb{R}^2 = \mathbb{R}^3$$
, $G \cong SO(2) \times \mathbb{R}^2 = SE(2)$

•
$$G \cap \mathbb{R} = \mathbb{R}^3$$
, $G \cong SO(2) \times \mathbb{R}$

•
$$G \cap \mathbb{R}^3 = s \mathbb{Z}$$

$$G = \left\{ \begin{pmatrix} 1 & 0 & 0 & \left| \frac{\vartheta}{2\pi} s \right| \\ 0 & \cos \vartheta & -\sin \vartheta & 0 \\ 0 & \sin \vartheta & \cos \vartheta & 0 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix} \right\} = H_s \cong \mathbb{R}$$

"Schraube" durch die x-Achse mit Steigung $s \in \mathbb{R}$. Alle diese H_s sind nicht zu $\mathbb{R} \hookrightarrow SE(3)$ konjugiert.

•
$$G \cap \mathbb{R}^3 = s \, \mathbb{Z} \times \mathbb{R}^2 \Rightarrow G = H_s \times \mathbb{R}^2$$

Reuleux-Paare (1875)

Bewegungen, welche durch das gegeneinander Verschieben oder Verdrehen zweier gleicher Flächen(-stücke) im \mathbb{R}^3 entstehen. Diese entsprechen den Orbiten von einund zweidimensionalen Untergruppen von SE(3).

1 Vorwärtstransformation

Wie berechnet man zu gegebenen Winkeln, beziehungsweise Translationen, die Endpositionen eines Roboters? Man kann sich diese Frage etwa am Puma (Programmable Universal Machine for Assembly) veranschaulichen:

Jedes Gelenk bestimmt eine Ein-Paramter-Untergruppe in SE(3), $\vartheta \mapsto A_i(\vartheta)$, wobei $A_i(\vartheta)$ eine Schraube in obigem Sinne ist, zum Beispiel

$$A_{i}(\vartheta) = \begin{pmatrix} \frac{\operatorname{id} u}{0 & 1} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \vartheta & -\sin \vartheta & 0 \\ 0 & \sin \vartheta & \cos \vartheta & 1 \end{pmatrix} \begin{pmatrix} \frac{\operatorname{id} u}{0 & 1} \end{pmatrix}$$

oder

$$A_i(\vartheta) = \left(\begin{array}{c|c} \operatorname{id} & \frac{\vartheta s}{2\pi} \cdot v \\ \hline 0 & 1 \end{array}\right)$$

für eine Translation in Richtung v. Nach Wahl einer Ausgangsposition des Roboters, welche den Winkeln $\vartheta_1 = \vartheta_2 = \ldots = \vartheta_k = 0$ enstpricht, erhält man die Endposition, beziehungsweise die **Gestalt**, durch Anwenden der Transformation $\vartheta = (\vartheta_1, \ldots, \vartheta_k)$.

$$K(\vartheta) = A_1(\vartheta_1)A_2(\vartheta_2)\dots A_k(\vartheta_k)$$
 $\mathbb{T}^k \to SE(3)$

Es bleiben immer noch einige Fragen offen:

- Geschwindigkeiten, Beschleunigungen, etc.
- Effizienz
- Umkehrbarkeit der Abbildung
- Geometrie, insbesondere in singulären Punkten

2 Linarisierung (d.h. Tangentialräume)

Die Geschwindigkeit eines Werkzeugs ist gegeben durch die erste Ableitung (nach der Zeit) des Positionvektors p(t) des Roboterarmes. Es gilt $p(t) = K(\vartheta_t)p_0$. Da jede Gestalt durch eine Transformation $g = K(\vartheta)$ beschrieben ist, genügt es, die durch Wege $t \mapsto g_t(gp_0)$, mit $g_0 = \mathrm{id}$, zu beschreiben. Dann gilt

$$\dot{p}(t) = \dot{g}_t(gp_0).$$

Die Gruppe $SE(3) = so(3) \times \mathbb{R}^3$ ist eine Lie-Gruppe, das heißt eine Glatte Mannigfaltigkeit und die Gruppenoperationen sind glatt bezüglich dieser differenzierbaren Struktur.

Als Untermannigfaltigkeit von GL(3) ist SO(3) durch die Gleichung $A^TA = id$ bestimmt. Ist $g_t = A(t)$ ein glatter Weg durch $id \in SO(3)$, so gilt

$$0 = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \mathrm{id} = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \left(A(t)^T A(t) \right) = A'(0)^T \underbrace{A(0)}_{=\mathrm{id}} + \underbrace{A(0)^T}_{=\mathrm{id}} A'(0) = A'(0)^T + A'(0).$$

Also gilt $A'(0) = -A'(0)^T$, das heißt der Tangentialraum in 1 von SO(3), T_1 SO(3) = SO(3), besteht aus schiefsymmetrischen Matrizen. Ist $g_t = \begin{pmatrix} A_t & b_t \\ 0 & 1 \end{pmatrix}$ ein glatter Weg in SE(3) mit $g_0 = \mathrm{id}_{\mathbb{R}^4}$, das heißt $A_0 = \mathrm{id}$, $b_0 = 0$, dann gilt

$$g_0' = \begin{pmatrix} A_0' & b_0' \\ \hline 0 & 0 \end{pmatrix} = \begin{pmatrix} \Omega & v \\ \hline 0 & 0 \end{pmatrix},$$

wobei

$$\Omega = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix}$$

eine schiefe Matrix ist und $v \in \mathbb{R}^3$. Für einen durch $x_t = g_t \cdot x_0$ parametrisierten Weg in \mathbb{R}^3 gilt dann

$$\dot{x}_0 = \Omega x_0 + v = \omega \times x_0 + v,$$

wobei $\omega = (\omega_x, \omega_y, \omega_z)^T$. Ist g_t eine Schraubbewegung, das heißt existieren $\overline{u}, \overline{v} \in \mathbb{R}^3$ und $s \in \mathbb{R}$ mit

$$g_t = \left(\begin{array}{c|c} R(\vartheta_t, \overline{v}) & \frac{\vartheta_t s}{2\pi} \overline{v} + (\operatorname{id} - R(\vartheta_t, \overline{v})) \\ \hline 0 & 1 \end{array}\right),$$

so gilt

$$\Omega = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \left(R(\vartheta_t, \overline{v})\right) = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix} \\
v = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \left(\frac{\vartheta_t s}{2\pi} \overline{v} + (\mathrm{id} \cdot R_t) \overline{u}\right) = \vartheta_0' \cdot \frac{s}{2\pi} \overline{v} - \Omega \overline{u} \\
\dot{x}_0 = \Omega x_0 + \vartheta_0' \frac{s}{2\pi} \overline{v} - \Omega \overline{u} = \underbrace{\omega x (x_0 - u)}_{\text{Rotations-geschwindigkeit}} \underset{\text{,,Vortrieb" der Schraube}}{\text{,Vortrieb"}} \underbrace{\psi}_{\text{vortrieb}} \left(\frac{s}{2\pi} \overline{v}\right) + \underbrace{\psi}_{\text{off Schraube}}^{s} \left(\frac{s}{2\pi} \overline{v}\right) + \underbrace{\psi}_{\text{off S$$

wobei ω die Winkelgeschwindigkeit ist.

3 Adjungierte Darstellung

Im Allgemeinen ist

$$\mathrm{Ad}: G \to \mathrm{Aut}(\mathfrak{g}) \qquad \quad \mathrm{Ad}(g): (h \mapsto ghg^{-1})_{*e}: \mathrm{T}_e \, G \cong \mathfrak{g} \to \mathrm{T}_e \, G = \mathfrak{g}.$$

Für die Gruppe SO(3), beziehungsweise die Lie-Algebra so(3), ist die Konjugation von Metriken gegeben durch

$$\Omega' = \operatorname{Ad}(R)\Omega = R\Omega R^T.$$

Für SO(3) existiert eine Orthonormalbasis r_1, r_2, r_3 von \mathbb{R}^3 mit $R^T = (r_1|r_2|r_3)$. Ist dann

$$\Omega = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix} = \omega \times (\cdot),$$

so gilt

$$\Omega' = R\Omega R^{T} = R(\omega \times r_{1} | \omega \times r_{2} | \omega \times r_{3})$$

$$= \begin{pmatrix} 0 & \langle r_{1}, \omega \times r_{2} \rangle & \langle r_{1}, \omega \times r_{3} \rangle \\ \langle r_{2}, \omega \times r_{1} \rangle & 0 & \langle r_{2}, \omega \times r_{3} \rangle \\ \langle r_{3}, \omega \times r_{1} \rangle & \langle r_{3}, \omega \times r_{2} \rangle & 0 \end{pmatrix} = \dots = \begin{pmatrix} 0 & -\langle r_{3}, \omega \rangle & \langle r_{2}, \omega \rangle \\ \langle r_{3}, \omega \rangle & 0 & -\langle r_{1}, \omega \rangle \\ -\langle r_{2}, \omega \rangle & \langle r_{1}, \omega \rangle & 0 \end{pmatrix} = R\omega \times (\cdot)$$

In SE(3) gilt damit

$$\begin{pmatrix}
\frac{\Omega' \mid v'}{0 \mid 0}
\end{pmatrix} = \operatorname{Ad}\left(\frac{R \mid \overline{v}}{0 \mid 1}\right) \begin{pmatrix} \frac{\Omega \mid v}{0 \mid 0} \end{pmatrix} = \begin{pmatrix} \frac{R \mid \overline{v}}{0 \mid 1} \end{pmatrix} \begin{pmatrix} \frac{\Omega \mid v}{0 \mid 0} \end{pmatrix} \begin{pmatrix} \frac{R \mid \overline{v}}{0 \mid 1} \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} \frac{R \mid \overline{v}}{0 \mid 1} \end{pmatrix} \begin{pmatrix} \frac{\Omega \mid v}{0 \mid 0} \end{pmatrix} \begin{pmatrix} \frac{R^T \mid -R^T \overline{v}}{0 \mid 1} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{R\Omega R^T \mid Rv - R\Omega R^T \overline{v}}{0 \mid 0} \end{pmatrix}$$

Da $R\Omega R^T \overline{v} = (R\omega) \times \overline{v}$ gilt, folgt für

$$V = \begin{pmatrix} 0 & -v_z & v_y \\ v_z & 0 & -v_x \\ -v_y & v_x & 0 \end{pmatrix}$$

mit $\overline{v} = (v_x, v_y, v_z)^T$ für alle $x \in \mathbb{R}^3$:

$$Vx = -x \times \overline{v} = \overline{v} \times x,$$

das heißt

$$-R\Omega R^T \overline{v} = -(R\omega) \times \overline{v} = VR\omega.$$

Stellt man ein Lie-Algebra-Element $\begin{pmatrix} \Omega & V \\ 0 & 0 \end{pmatrix}$ durch $\begin{pmatrix} \omega \\ v \end{pmatrix} \in \mathbb{R}^6$ dar, so gilt

$$\begin{pmatrix} \omega' \\ v \end{pmatrix} = \operatorname{Ad} \begin{pmatrix} \hline R & \overline{v} \\ \hline 0 & 1 \end{pmatrix} \begin{pmatrix} \omega \\ v \end{pmatrix} = \begin{pmatrix} R & 0 \\ VR & R \end{pmatrix} \begin{pmatrix} \omega \\ v \end{pmatrix}$$

Adjungierte Darstellung der Lie-Algebren so (3) und se (3)

Es gilt

$$\operatorname{Ad}: G \to \operatorname{Aut}(\mathfrak{g})$$
 $(g^{-1}(\cdot)g)_* = \operatorname{Ad}(g)$
 $\operatorname{Ad}_{*e} = \operatorname{ad}: \mathfrak{g} \to \operatorname{Der}(\mathfrak{g})$ $\operatorname{ad}(X)Y = [X, Y]$

Die Lie-Algebra so(3) von SO(3) besteht aus den schiefsymmetrischen Matrizen Ω wie sie im letzten Abschnitt definiert wurden. Die Matrizen

$$X = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \qquad Y = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \qquad Z = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

bilden eine Basis von SO(3). Nun gilt

$$ad(X)Y = XY - YX = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = Z$$

$$ad(Y)Z = YZ - ZY = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = X$$

$$ad(Z)X = ZX - XZ = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} = Y,$$

wobei man leicht sieht, dass ad(X)Y = [X, Y] = -[Y, X] = -ad(Y)X, und entsprechend für die übrigen Matrizen. In der Basis gilt dann

$$ad(X) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} = X \qquad ad(Y) = Y \qquad ad(Z) = Z.$$

Zu se(3) betrachte die Basis

$$\omega_{i} = \begin{pmatrix} X & 0 \\ \hline 0 & 0 \end{pmatrix} \qquad \omega_{j} = \begin{pmatrix} Y & 0 \\ \hline 0 & 0 \end{pmatrix} \qquad \omega_{k} = \begin{pmatrix} Z & 0 \\ \hline 0 & 0 \end{pmatrix}$$

$$v_{i} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{pmatrix} \qquad v_{j} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 \end{pmatrix} \qquad v_{k} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 \end{pmatrix}$$

Wie oben berechnet man mit den Kommutatoren der Basiselementen

$$ad(\omega_i) = \begin{pmatrix} X & 0 \\ 0 & X \end{pmatrix} \qquad ad(\omega_j) = \begin{pmatrix} Y & 0 \\ 0 & Y \end{pmatrix} \qquad ad(\omega_k) = \begin{pmatrix} Z & 0 \\ 0 & Z \end{pmatrix}$$
$$ad(v_i) = \begin{pmatrix} 0 & 0 \\ X & 0 \end{pmatrix} \qquad ad(v_j) = \begin{pmatrix} 0 & 0 \\ Y & 0 \end{pmatrix} \qquad ad(v_k) = \begin{pmatrix} 0 & 0 \\ Z & 0 \end{pmatrix}$$

in der obigen Basis.

4 Exponentialabbildung

Die gewöhnliche Exponentialabbildung für Matrizen

$$\exp(X) = \sum_{n=0}^{\infty} \frac{1}{n!} X^n$$

stimmt für Matrixgruppen wie SO(3) und SE(3), beziehungsweise ihre Lie-Algebren so(3) und se(3), mit der Exponentialabbildung des Zusammenhanges welcher durch Paralleltransport durch die Linksmultiplikation defniert ist, überein.

Bezüglich dieses Zusammenhanges sind die Integralkurven von linksinvarianten Vektorfeldern Geodätische, das heißt $g_t = \exp(tX)$ löst $\dot{g}_t = g_t X$. Es sei $\Omega \in \text{so}(3)$ wie im letzten Abschnitt und $\omega = (\omega_x, \omega_y, \omega_z)^T$. Wie berechnet man $\exp(\Omega)$? Zerlege Ω (und id) in orthogonale Idempotente:

$$\Omega^{3}x = \omega \times (\omega \times (\omega \times x))$$

$$= \langle \omega, \omega \times x \rangle \omega - \langle \omega, \omega \rangle \omega \times x$$

$$= 0 - \|\omega\|^{2} \omega \times x$$

$$= -\|\omega\|^{2} \Omega x$$

Also gilt $\Omega^3 + \|\omega\|^2 \Omega = 0$. Setzt man

$$P_{0} = \frac{1}{\|\omega\|^{2}} (\Omega + i\|\omega\| \operatorname{id}) (\Omega - i\|\omega\| \operatorname{id})$$

$$P_{+} = \frac{-1}{2\|\omega\|^{2}} (\Omega - i\|\omega\| \operatorname{id})$$

$$P_{-} = \frac{-1}{2\|\omega\|^{2}} (\Omega + i\|\omega\| \operatorname{id})$$

so gilt

$$P_0P_+ = P_0P_- = P_+P_- = 0$$

$$P_0 + P_+ + P_- = id$$

$$P_0^2 = P_0, P_+^2 = P_+, P_-^2 = P_-$$

$$\Omega = i\|\omega\|(P_- - P_+).$$

Damit folgt

$$\Omega^{n} = (i\|\omega\|)^{n} P_{-} + (-i\|\omega\|)^{n} P_{+}$$

und

$$\begin{split} \exp(\Omega) &= \mathrm{id} + \sum_{n=1}^{\infty} \frac{1}{n!} \Omega^{n} \\ &= P_{0} + P_{-} + P_{+} + \sum_{n=1}^{\infty} \frac{1}{n!} \left((i \| \omega \|)^{n} P_{-} + (-i \| \omega \|)^{n} P_{+} \right) \\ &= P_{0} + e^{i \| \omega \|} P_{-} + e^{-i \| \omega \|} P_{+} \\ &= \dots \\ &= \mathrm{id} + \frac{1}{2 \| \omega \|} \left(e^{-i \| \omega \|} - e^{i \| \omega \|} \right) \Omega - \frac{1}{2 \| \omega \|} \left(e^{i \| \omega \|} - e^{-i \| \omega \|} - 2 \right) \Omega^{2} \\ &= \mathrm{id} + \frac{1}{\| \omega \|} \sin \| \omega \| \Omega + \frac{1}{\| \omega \|^{2}} (1 - \cos \| \omega \|) \Omega^{2}. \end{split}$$

Mit $\vartheta = \|\omega\|$ und $v = \frac{\omega}{\|\omega\|}$ erhält man die sogenannte **Rodrigues-Formel** für die Drehung um die Achse $\mathbb{R} \cdot v$ mit dem Winkel ϑ :

$$R(\vartheta,v)x = e^{\vartheta v}x = x + \sin\vartheta(v\times x) + (1-\cos\vartheta)v\times(v\times x)$$

Analog erhält man in der Darstellung von se(3)

$$S = \left(\begin{array}{c|c} \Omega & v \\ \hline 0 & 0 \end{array}\right)$$

eine Gleichung vierten Grades

$$S^4 + \|\omega\|^2 S = 0.$$

Wie oben zerlegt man S und id in Idempotente und ein Nilpotent und erhält

$$\exp(S) = id + \frac{1}{\|\omega\|} \sin \|\omega\| S + \frac{1}{\|\omega\|^2} (1 - \cos \|\omega\|) S^2.$$

In bestimmten Fällen lässt sich damit die Kinematik eines Roboters lösen. Zum Beispiel findet man damit für Roboter mit drei Gelenken (generisch) für einen Ausgangspunkt $p_0 \in \mathbb{R}^3$ und einen Zielpunkt $p \in \mathbb{R}^3$ Elemente S_1 , S_2 und S_3 in se(3), so dass

$$e^{\vartheta_1 S_1} e^{\vartheta_2 S_2} e^{\vartheta_3 S_3} \begin{pmatrix} p_0 \\ 1 \end{pmatrix} = \begin{pmatrix} p \\ 1 \end{pmatrix}$$

5 Clifford Algebren

Eine (reelle) Clifford-Algebra ist bestimmt durch die Wahl einer Basis $e_1, \ldots, e_n \in V \cong \mathbb{R}^n$ und die Relationen

- $e_i e_j + e_j e_i = 0$ für $i \neq j$
- $e_i^2 \in \{0, +1, -1\}$

Eine Clifford Algebra ist eindeutig bestimmt durch die Anzahlen der Basiselemente, deren Quadrate 1, -1 oder 0 ergeben. Man schreibt sie dann als Cl(p, q, r)

Beispiel

Die Clifford-Algebra Cl(0,1,0) wird erzeugt von e_1 und \mathbb{R} mit

$$e_1^2 = -1$$
 $(x + ye_1)(z + we_1) = xz + ywe_1^2 + yze_1 + xwe_1$
= $(xz - yw) + (yz + xw)e_1$

Mit einem Isomorphismus, der die Abbildungen $e_1 \mapsto i$ und $1 \mapsto 1$ enthält ist die Algebra isomorph zu den komplexen Zahlen, also $Cl(0,1,0) \cong \mathbb{C}$

Jedes Monom von Erzeugern e_{i_1}, \ldots, e_{i_k} kann als Produkt von Erzeugern e_{j_1}, \ldots, e_{j_l} mit $j_1 < j_2 < \ldots < j_l$ (für $l \le k$) geschrieben werden. Diese Elemente bilden eine Vektorraum-Basis von $\mathrm{Cl}(p,q,r)$, man erhält eine direkte Zerlegung

$$Cl(p,q,r) = \bigoplus_{k=0}^{n} V_k.$$

Insbesondere gilt dim $Cl(p,q,r) = 2^{(p+q+r)}$. Diese Vektorraum-Graduierung hängt im Allgemeinen von der Wahl der Basis ab, allerdings ist die Zerlegung

$$Cl(p,q,r) = Cl(p,q,r)^- \oplus Cl(p,q,r)^+$$

in Produkte mit einer ungeraden beziehungsweise geraden Anzahl abhängig von der Wahl der Basis. Das ist eine Involution von Cl mit $e_i \mapsto e_i^* = -e_i$ und $(ab)^* = b^*a^*$.

Wo ist SO(3) (euklidische Bewegungen)

Betrachte die Clifford-Algebra Cl(0, n, 0). Dann liegt \mathbb{R}^n in Cl(0, n, 0) durch

$$\delta_{ij} = \begin{cases} 1 & : i = j \\ 0 & : i \neq j \end{cases}$$
Kronecker-Delta

$$\begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix} \mapsto x^1 e_1 + \dots + x^n e_n \qquad \langle x, y \rangle = -\sum_{i,j \le n} x^i y^j (-\delta_{ij})$$
$$= -\frac{1}{2} \sum_{i,j \le n} x^i y^j (e_i e_j + e_j e_i)$$
$$= \frac{1}{2} (xy^* + yx^*)$$

Betrachte die Gruppe

$$Pin(n) = \{ g \in Cl(0, n, 0) \mid gg^* = 1, (-1)^{|g|} g \times g \in \mathbb{R}^n \text{ für alle } x \in \mathbb{R}^n \subseteq Cl \}$$

Die oben bschriebene Wirkung $Pin(n) \curvearrowright \mathbb{R}$ erhält das Skalarprodukt:

$$\frac{1}{2} \left(((-1)^{|g|} gxg^*) ((-1)^{|g|} gyg)^* + ((-1)^{|g|} gyg^*) ((-1)^{|g|} gxg^*)^* \right)
= \frac{1}{2} \left((-1)^{|g|} gx(\underbrace{g^*g}) y^* (-1)^{|g|} g^* + \dots \right)
= g \left(\frac{1}{2} (xy^* + yx^*) \right) g^*
= gg^* \langle x, y \rangle = \langle x, y \rangle$$

Damit existiert ein Homomorphismus von $\operatorname{Pin}(n)$ nach O(n). Man kann zeigen, dass dieser surjektiv ist und $\mathbb{Z}_2 := \mathbb{Z}/_{2\mathbb{Z}}$ als Kern hat. Es gilt $\operatorname{Pin}(n) \cap \mathbb{R}^n = \mathbb{S}^{n-1}$, denn

$$1 = vv^* = \frac{1}{2}(vv^* + vv^*) = \langle v, v \rangle = ||v||^2$$

und man rechnet schnell nach, dass $-vwv^* \in \mathbb{R}^n$ für alle $w \in \mathbb{R}^n$. Jedes solche v wirkt als Spiegelung an der Hyperebene v^{\perp} :

$$(-1)^{|v|}v(\lambda v)v^* = -\lambda vvv^* = -\lambda v$$

Ist $w \in v^{\perp}$, so gilt

$$0 = \langle w, v \rangle = \frac{1}{2}(wv^* + vw^*),$$

also

$$wv^* = -vw^* = vw$$

und es folgt

$$(-1)^{|v|}vwv^* = -vvw = v^*vw = w.$$

Fasst man Drehungen in \mathbb{R}^n als Verkettung von Spiegelungen auf, so ist klar, dass die von geraden Elemente erzeugte Untergruppe

$$Spin(n) = \{g \in Cl^+(0, n, 0) \mid gg^* = 1 \text{ und } (-1)^{|g|}gxg^* \in \mathbb{R}^n \text{ für alle } x \in \mathbb{R}^n \}$$

gerade die zweifache Überlagerung von SO(n) ist. Wir werden uns nun im Folgenden auf den Fall n=3 beschränken. Sei $g\in \mathrm{Cl}^+(0,3,0)$ mit

$$g = a_0 + a_1 e_2 e_3 + a_2 e_3 e_1 + a_3 e_1 e_2$$

und

$$g^* = a_0 + a_1(e_2e_3)^* + a_2(e_3e_1)^* + a_3(e_1e_2)^*$$

$$= a_0 + a_1e_3^*e_2^* + a_2e_1^*e_3^* + a_3e_2^*e_1^*$$

$$= a_0 + a_1(-e_3)(-e_2) + a_1(-e_1)(-e_3) + a_1(-e_2)(-e_1)$$

$$= a_0 - a_1e_2e_3 - a_2e_3e_1 - a_3e_1e_2$$

und damit

$$gg^* = \ldots = a_0^2 + a_1^2 + a_2^2 + a_3^2$$

und man rechnet leicht nach, dass für alle $x \in \mathbb{R}^n$ schon $(-1)^{|g|}gxg^* \in \mathbb{R}^n$ gilt, Danmit gilt

$$Spin(3) \subseteq \mathbb{S}^3 \subseteq Cl^+(0,3,0) = [e_2^i e_3, e_3^j e_1, e_1^k e_2] = \mathbb{H}$$

Beispiel

Die Drehung um den Winkel ϑ um die Achse e_k wird definiert durch

$$g = \cos\frac{\vartheta}{2} + \sin\frac{\vartheta}{2}e_ie_j,$$

wobe
i $k\notin\{i,j\}$ für $i\neq j$ gelte. Damit erhält man

$$ge_k g^* = \left(\cos\frac{\vartheta}{2} + \sin\frac{\vartheta}{2}e_i e_j\right) e_k \left(\cos\frac{\vartheta}{2} - \sin\frac{\vartheta}{2}e_i e_j\right)$$

$$= \cos^2\frac{\vartheta}{2}e_k + \cos\frac{\vartheta}{2}\sin\frac{\vartheta}{2}e_i e_j e_k - \cos\frac{\vartheta}{2}\sin\frac{\vartheta}{2}e_k e_i e_j + \sin^2\frac{\vartheta}{2}e_i e_j e_k e_i e_j$$

$$= \left(\cos\frac{\vartheta}{2} + \sin^2\frac{\vartheta}{2}\right) e_k = e_k$$

$$ge_j g^* = \left(\cos\frac{\vartheta}{2} + \sin\frac{\vartheta}{2}e_i e_j\right) e_k \left(\cos\frac{\vartheta}{2} - \sin\frac{\vartheta}{2}e_i e_j\right)$$

$$= \dots = \left(\cos^2\frac{\vartheta}{2} - \sin^2\frac{\vartheta}{2}\right) e_j - 2\cos\frac{\vartheta}{2}\sin\frac{\vartheta}{2}e_i$$

$$= \cos\vartheta e_j - \sin\vartheta e_i$$

Betracht Spin $(n) \times \mathbb{R}^n = \{,g+t^*\}$. Betrachte Cl(0,n,1) mit den Erzeugern e_1,\ldots,e_n mit $e_i^2 = -1$, sowie e mit $e^2 = 0$. Cl(0,n,1) enthält mit $(x^1,\ldots,x^n)^T \mapsto 1 + (x^1e_1 + \ldots + x^ne_n)e$ einen \mathbb{R}^n , und die Gruppe

$$\operatorname{Spin}(n) \times \mathbb{R}^n = \{ (g + \frac{1}{2}tge) \in \operatorname{Cl}(0, n, 1) \mid g \in \operatorname{Spin}(n), t = t^1e_1 + \dots + t^ne_n \}$$

wirkt durch

$$(g + \frac{1}{2}tge)(1 + xe)(g - \frac{1}{2}tge)^* = \dots = 1 + (gxg^* + t)e.$$

Das sind unsere gesuchten euklidischen Bewegungen.

Beispiel

Ist $h = (g + \frac{1}{2}tge)$ eine reine Drehung, also t = 0, so gilt

$$h(1+xe)h^* = g(1+xe)g^* = gg^* + gxeg^* = 1 + (gxg^*)e$$

Die letzte Gleichheit kommt daher, dass g gerade ist. Ist $h=(1+\frac{1}{2}te)$ reine reine Translation, so gilt

$$(1 + \frac{1}{2}te)(1 + xe)(1 - \frac{1}{2}te)^* = (1 + \frac{1}{2}te + xe + \frac{1}{2}texe) \cdot (1 - \frac{1}{2}te)^*$$

$$= (1 + \frac{1}{2}te + xe)(1 - \frac{1}{2}et)$$

$$= 1 + \frac{1}{2}te + xe - \frac{1}{2}et - \frac{1}{4}te^2t - \frac{1}{2}xe^2t$$

$$= 1 + te + xe = 1 + (x + t)e$$

Wo ist die "Geometrie"?

Ebenen im \mathbb{R}^3 sind mit einer Einheitsnormalen $n \in \mathbb{S}^2 \subseteq \mathbb{R}^3$ und einem "Abstand" d gegeben durch

$$H_{n,d} = \{ x \in \mathbb{R}^3 \mid \langle n, x \rangle = d \}.$$

Ist (R, v) eine euklidische Bewegung, so gilt

$$(R, v)H_{n,d} = \{x \mid d = \langle n, R^T x - R^T v \rangle = \langle Rn, x \rangle - \langle Rn, v \rangle \} = H_{Rn,d + \langle Rn, v \rangle}.$$

Betrachte Elemente vom Grad 1 in Cl(0,3,1), also $\pi = n_x e_1 + n_y e_2 + n_z e_3 + de$. Für $n = (n_x, x_y, x_z)^T$ gilt genau dann ||n|| = 1, falls $\pi \pi^* = 1$. Ist $h = g + \frac{1}{2}tge$ eine euklidische Bewegung, so gilt

$$h\pi h^* = \left(g + \frac{1}{2}tge\right)(n + de)\left(g - \frac{1}{2}tge\right)^* = \dots$$
$$= gng^* + \left(d - \frac{1}{2}(gng^*t + tgng^*)\right)e, = " - \langle Rn, v \rangle.$$

Im Gegensatz zu den vorangegeangen Betrachtungen werden jetzt "geometrische" **Punkte** nicht als Grad 1 Elemente in Cl(0,3,1) modelliert, sondern wie folgt: Ein Punkt ist von der Form

$$p = e_1e_2e_3 + xe_2e_3e + ye_3e_1e + ze_1e_2e.$$

Die ist äquivalent (bis auf Vorzeichen) zu $pp^* = 1$. Die Wirkung von Spin(3) × \mathbb{R}^3 (beziehungsweise SE(3)) ist wieder gegeben durch

$$(g+\frac{1}{2}tge)p(g-\frac{1}{2}tge).$$

Im \mathbb{R}^3 ist eine **Gerade** L durch einen Punkt $p \in L$ und eine Richtung $v \in \mathbb{R}^3$ L/ gegeben. In $\mathrm{Cl}(0,3,1)$ ist dann die entsprechende Gerade gegeben durch

$$L = (v_x e_2 e_3 + v_y e_3 e_1 + v_z e_1 e_2) + (u_x e_1 e_2 + u_y e_2 e_2 + u_z e_3 e)$$

mit $u = (u_x, u_y, u_z)^T = p \times v$. Dies ist äquvalent zu $ll^* = 1$. Die Wirkung ist durch Konjugation gegeben.

Durch die Relation $x \wedge y = -y \wedge x$ für $x, y \in \mathbb{R}^n$ erhält man die äußere Algebra $\bigwedge \mathbb{R}^n$ über \mathbb{R}^n . Diese findet sich wie folgt in der Clifford Algebra wieder: Sind $x \in \mathbb{R}^n$ und $c \in \text{Cl}$, so sind

$$x \wedge c = \frac{1}{2}(xc + (-1)^{|c|}cx)$$
 $c \wedge x = \frac{1}{2}(cx + (-1)^{|c|}xc).$

Die \mathbb{R} -lineare und assoziative Einbettung ergibt ein (weites) Produkt in Cl. Für Basiselemente $e_i, e_j \in \mathbb{R}^n$ gilt:

$$e_i \wedge e_j = \frac{1}{2}(e_i e_j - e_j e_i) = \begin{cases} 0 & i = j \\ -e_j \wedge e_i & i \neq i \end{cases}.$$

Damit erhält Cl die äußere Algebra. Für $i \neq j$ gilt ferner

$$e_i \wedge e_j = \frac{1}{2}(e_i e_j - e_j e_i) = \frac{1}{2}(e_i e_j + e_i e_j) = e_i e_j.$$

Betrachte das äußere Produkt eines Punktes $p = e_1e_2e_3 + xe_2e_3e + ye_3e_1e + ze_1e_2e$ und einer Ebene $\pi = n_xe_1 + n_ye_2 + n_ze_3 + de$. Dann gilt

$$\pi \wedge p = \frac{1}{2}(\pi p - p\pi) = (xn_x + yn_y + zn_z - d)e_1e_2e_3e.$$

Damit liegt genau dann der Punkt p in der Ebene π , wenn $\pi \wedge p = 0$ gilt. Analog zeigt man, dass eine Gerade l genau dann in einer Ebene π liegt, wenn $\pi \wedge l = 0$ gilt. Der Ausdruck $l \wedge p$ verschwindet (formal), da Grad $l \wedge p > 4$. Ein Punkt p liegt jedoch genau dann auf einer Geraden l, wenn $pl^* + lp^* = 0$ gilt.

Allgemeiner lässt sich der Schnitt zweier geometrischer Objekte mit Hilfe des äußeren Produktes charakterisieren: Es seien π_1 und π_2 zwei Ebenen. Dann ist jedenfalls $\pi_1 \wedge \pi_2$ ein Grad 2 Element. Es bleibt zu zigen, dass das eine Gerade definiert, also die Bedingung $ll^* = 1$ erfüllt ist. Es gilt

$$(\pi_1 \wedge \pi_2) = \frac{1}{2}(\pi_1 \pi_2 + (-1)^{|\pi_2|} \pi_2 \pi_1) = \frac{1}{2}(\pi_1 \pi_2 - \pi_2 \pi_1),$$

also

$$(\pi_1 \wedge \pi_2)(\pi_1 \wedge \pi_2)^* = \frac{1}{4}(\pi_1 \pi_2 - \pi_2 \pi_1)(\pi_1 \pi_2 - \pi_2 \pi_1)^*$$

$$= \frac{1}{4}(\pi_1 \pi_2 - \pi_2 \pi_1)(\pi_2 \pi_1 - \pi_1 \pi_2)$$

$$= \frac{1}{4}(\pi_1 \pi_2 \pi_2 \pi_1 + \pi_2 \pi_1 \pi_1 \pi_2 - \pi_2 \pi_1 \pi_2 \pi_1 - \pi_1 \pi_2 \pi_1 \pi_2)$$

$$= \frac{1}{4}(2 - \pi_2 \pi_1 \pi_2 \pi_1 - \pi_1 \pi_2 \pi_1 \pi_2)$$

Man rechnet nach, dass sich alle Grad 4 Terme aufheben, und dass keine Grad 1 oder Grad 2 Terme auftreten, da $(\pi_1 \wedge \pi_2)(\pi_1 \wedge \pi_2)^*$ selbstandjungiert ist. Damit ist

$$l = \frac{\pi_1 \wedge \pi_2}{\sqrt{\pm (\pi_1 \wedge \pi_2)(\pi_1 \wedge \pi_2)^*}}$$

eine Gerade. Wegen $\pi_1 \wedge (\pi_1 \wedge \pi_2) = 0 = \pi_2 \wedge (\pi_1 \wedge \pi_2)$ ist l in π_1 und π_2 enthalten. Analog zeigt man, dass sowohl das äußere Produkt p einer Geraden l und einer Ebene π mit

$$p = \frac{l \wedge \pi}{\sqrt{\pm (l \wedge \pi)(l \wedge \pi)^*}},$$

als auch das äußere Produkt dreier Ebenen $p = \frac{1}{(...)} \pi_1 \wedge \pi_2 \wedge \pi_3$ einen Punkt ergeben.

Anwendung

Die inverse Kinematik eine Roboters mit sechse Gelenken ist lösbar, falls drei aufeinanderfolgende Drehachsen entweder einen gemeinsamen Schnittpunkt haben (Piper 1968) oder parallel sind (Duffy 1980). Die inverse Kinematik ist gegeben durch

$$k(\vartheta) = a_1(\vartheta_1)a_2(\vartheta_2)\dots a_6(\vartheta_6),$$

wobei jedes Drehgelenk durch den Drehwinkel ϑ_i eines Elementes

$$a_i(\vartheta_i) = \cos\frac{\vartheta_i}{2} + \sin\frac{\vartheta_i}{2}l_i$$

parametrisiert wird.

Beweisskizze

Angenommen die Achsen l_2 , l_3 und l_4 seien parallel. Dann ist eine Ebene π orthogonal zu den Richtungsvektoren aller drei Geraden l_2 , l_3 und l_4 und invariant unter a_2 , a_3 und a_4 , das heißt $\pi = a_2 a_3 a_4 \pi a_4^* a_3^* a_2^*$. Stellt man die direkte Kinematik um, so folgt $a_1^*ka_6^*a_5^*=a_2a_3a_4$, und mit der obigen Gleichung $\pi=a_1^*ka_6^*a_5^*\pi a_5a_6k^*a_1$. Es gilt also die folgenden Gleichungen zu lösen:

$$k^* a_1 \pi a_1^* k = a_6^* \underbrace{a_5^* \pi a_5}_{=\pi'} a_6$$

$$a_2 a_3 a_4 = a_1^* k a_6^* a_5^* = k'$$
(2)

$$a_2 a_3 a_4 = a_1^* k a_6^* a_5^* = k' \tag{2}$$

Lösungen zu (2) lassen sich auf die klassische Art finden. Zu (1), der Schnittpunkt $l_6 \wedge (a_5^*\pi a_5)$ ist invariant unter der Drehung um l_6 . Damit gilt

$$l_6 \wedge (k^* a_1 \pi a_1^* k) = l_6 \wedge (a_6^* a_5^* \pi a_5 a_6) = l_6 \wedge (a_5^* \pi a_5).$$

Dies liefert Lösungen für $\sin \vartheta_1$, $\cos \vartheta_1$, $\sin \vartheta_5$, $\cos \vartheta_5$, beziehungsweise für ϑ_1 und ϑ_5 . Damit erhält man direkt eine Lösung für ϑ_6 durch (1).

Stichwortverzeichnis

Arbeitsbereich, 43	Kante, 30
ausgewogen, 45	Orientierung, 30
ausgewogene Teilmenge, 49	Konfigurationsraum, 29, 43
(BC), 18	ungeordneter, 29
	konvex, 10
$CAT(\kappa)$ -Ungleichung, 8	kurz, 45
Clifford-Algebra, 61	
0111014 11180014, 01	Längenvektor, 44
Diagonale	generischer, 44
verallgemeinerte, 29	normaler, 51
Dreieck	lang, 45
geodatisches, 8	Link, 39
(FD C)	LION AND MAN, 15
(EBC), 21	lokal rekonfigurierbares System, 41
Ecke, 30	äquivalentes, 41
essentielle, 30	25
freie, 30	Metrik
Erzeuger, 40	innere, 7
kommumtativer, 41	M_{κ} -Polyederkomplex, 36
zulässiger, 41	Planes, 13
Eahnankaranlar 20	Puma
Fahnenkomplex, 39	
generisch, 47	Puma, 55
Geodätische	Punkt, 64
minimierende, 7	Vergleichs-, 8
gerümmt	Randabbildung, 30
nicht-positiv, 9	Raum
Gerade, 64	R-geodätischer, 7
Gestalt, 56	$CAT(\kappa)$ -, 9
Grad	geodätischer, 7
einer Ecke, 30	Längen-, 7
Graph, 30	Rodrigues-Formel, 60
Greedy, 12	ROTATING SPHERES, 18
Höhenfunktion, 44	Spheres, 15
Hessesche, 45	Stratum, 50
	, o
k-Kette, 37	Totalkrümmung, 23
Kammer, 50	
normale, 51	Umfang, 24

```
vollständig
geodätisch, 8
Weg
rektifizierbarer, 7
Wirkung, 41
Zopfgruppe, 29
Zusatandskomplex, 41
Zustand, 40
```