Teoretyczne podstawy informatyki zadanie 9

Jarosław Socha

19 marca 2024

1 Treść zadania

Zadanie 9

Zaprojektuj jednotaśmową deterministyczną maszynę Turinga rozstrzygającą język

$$\{ww : w \in \{0,1\}^*\}.$$

2 Cel

Maszynę Turinga definiujemy jako zbiór stanów, alfabet taśmy oraz funkcję przejścia, która danemu stanowi i literze na taśmie przypisuje nowy stan, nową literę, która zastąpi czytaną, oraz operację przejścia (o jeden symbol w lewo, prawo lub brak przejścia). Aby sprawdzić, czy słowo na taśmie jest postaci ww deterministyczną maszyną Turinga musimy najpierw sprawdzić, czy słowo jest parzyste, tym samym znajdując jego środek, a następnie porównywać kolejne litery ze sobą.

3 Alfabet

Na alfabet składają się litery 1 i 0, dodatkowo mamy symbol $_{-}$ (blank) oraz dodamy trzy symbole: 1 - oznaczony symbol 1, 0 - oznaczony symbol 0 oraz symbol X, oznaczający, że zbadaliśmy już daną literę.

4 Funkcja przejścia

Teraz zbudujemy funkcję przejścia wraz ze stanami. Stanem początkowym będzie $q_{L\#}$ i zaczynamy na pierwszej od lewej literze słowa.

TPI zadanie 9 Jarosław Socha

4.1 Ustalanie parzystości i środka

Na początku oznaczamy pierwszą literę po lewej, po czym idziemy na koniec słowa i oznaczamy ostatnią literę po prawej. W ten sposób oznaczamy litery od zewnątrz do wewnątrz. Odpowiednie nazwy stanów oznaczają:

- L# oznacz literę po lewej stronie słowa
- $\bullet~R\#$ oznacz literę po prawej stronie słowa
- $\bullet\,$ L idź w lewo aż do oznaczenia
- $\bullet~R$ idź w prawo aż od oznaczenia

	1	0	1	0	-	X
$q_{L\#}$	$q_R \mathbb{1} \to$	$q_R \mathbb{O} \to$	$s_1X \leftarrow$		ACC (puste słowo)	
q_R	$q_R 1 \rightarrow$	$q_R 0 \rightarrow$	$q_{R\#}\mathbb{1} \leftarrow$ nieparzyste	$q_{R\#}\mathbb{O} \leftarrow$	$q_{R\#-} \leftarrow$	
$q_{R\#}$	$q_L \mathbb{1} \leftarrow$	$q_L \mathbb{O} \leftarrow$	nieparzyste	nieparzyste		
q_L	$q_L 1 \leftarrow$	$q_L 0 \leftarrow$	$q_{L\#}\mathbb{1} \to$	$q_{L\#}\mathbb{O} \to$		

Tabela 1: Pierwsza część funkcji przejścia maszyny Turinga

Jeśli słowo jest parzyste, to po procesie będziemy na oznaczonej literze w stanie $q_{L\#}$, a jeśli jest nieparzyste, to skończymy w stanie $q_{R\#}$

4.2 Porównywanie słów

Po znalezieniu się w środku słowa będziemy sprawdzać literę stanem r, przechodzić do odpowiadającego jej stanu s_1 lub s_0 , po czym sprawdzać poprawność litery stanem p_1 i p_0 . Jeśli słowa są równe, to w stanie r maszyna zobaczy symbol blank. Odpowiednie nazwy stanów oznaczają:

- \bullet s_1, s_0 przesuwaj w lewo, gdzie indeks dolny stanu to pierwsza niesprawdzona litera prawego słowa
- $\bullet \ p_1, p_0$ sprawdź, czy w słowie pierwszym litera jest taka sama
- f przesuwaj w prawo aż do pierwszego X
- ullet r przesuń za ostatni symbol X

	1	0	1	0	_	X
s_1			$s_1\mathbb{1} \leftarrow$	$s_1 0 \leftarrow$	$p_{1-} \rightarrow$	$s_1X \leftarrow$
s_0			$s_0\mathbb{1} \leftarrow$	$s_0 \mathbb{O} \leftarrow$	$p_{0-} \rightarrow$	$s_0X \leftarrow$
p_1			f \longrightarrow	niezgodność		
p_0			niezgodność	$f \longrightarrow$		
f			$f\mathbb{1} \longrightarrow$	$f \mathbb{0} o$		$rX \to$
r			$s_1X \leftarrow$	$s_0X \leftarrow$	ACC	$rX \to$

Tabela 2: Druga część funkcji przejścia maszyny Turinga

TPI zadanie 9 Jarosław Socha

5 Przykład działania

Rysunek 1: Przykład działania maszyny na słowie 1010, gdzie na różowo oznaczony jest najnowszy zastąpiony element, po lewej od obecnego wyglądu taśmy jest obecny stan, a przesunięcia pokazane są niebieskimi strzałkami