Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний

інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 9 з дисципліни «Алгоритми та структури даних-1.

Основи алгоритмізації»

«ДОСЛІДЖЕННЯ АЛГОРИТМІВ ОБХОДУ МАСИВІВ»

Варіант 32

Виконав студент ІП-13, Черкасов Станіслав Олексійович

(шифр, прізвище, ім'я, по батькові)

Перевірив Вечеровська Анастасія Сергіївна

(прізвище, ім'я, по батькові)

Основи програмування – 1. Алгоритми та структури даних

Лабораторна робота 9

ДОСЛІДЖЕННЯ АЛГОРИТМІВ ОБХОДУ МАСИВІВ

Мета — дослідити алгоритми обходу масивів, набути практичних навичок використання цих алгоритмів під час складання програмних специфікацій.

Варіант 32

32 Задано матрицю дійсних чисел A[m,n]. При обході матриці по стовбцям знайти в ній перший додатний елемент X і його місцезнаходження. Порівняти X з середньоарифметичним значенням елементів над побічною діагоналлю.

Постановка задачі

- 1) Задамо матрицю MATRIX довільного розміру X*Y з дійсних значень. Ініціюємо заповненням випадковими числами.
- 2) Напишемо функцію для знаходження першого додатного елементу проходженням по стовпчиках матриці. (FP)
- 3) Напишемо функцію для знаходження середнього арифметичного значення елементів над побічною діагоналлю (AASD) (сума індексів елементів побічної діагоналі завжди дорівнює X-1 (кількість рядків 1). Отже, сума індексів елементів над нею завжди буде менше X-1.
- 4) Порівняємо два отриманих значення та виведемо результат порівняння: "більше", якщо FP > AASD, "рівно", якщо FP = AASD, "менше", якщо FP < AASD.

Побудова математичної моделі

Змінна	Тип	Ім'я	Призначення
двовимірний масив	масив Х*Ү дійсних чисел	MATRIX	Початкове дане
кількість рядків	Натуральне	ROWS	Початкове дане
кількість стовпчиків	Натуральне	COLUMNS	Початкове дане
лічильник циклу	Натуральне	I	Проміжне дане
лічильник циклу	Натуральне	J	Проміжне дане
перший додатний елемент масиву	Натуральне	FP	Проміжне дане
сума елементів над поб. діаг.	Ціле	SUM	Проміжне дане
кількість елементів над поб. діаг.	Ціле	N	Проміжне дане
Середнє арифметичне елементів над поб. діаг.	Ціле	AASD	Проміжне дане
Результат порівняння	Строкове	ANS	Кінцеве дане

 ${f Rand}({f p},{f q})$ - Функція, що повертає випадкове ціле значення між P та Q не включаючи P та Q

Розв'язання

Програмні специфікації запишемо у формі псевдокоду та у вигляді блок-схеми.

A) Функція MATRIX_INIT():

MATRIX_INIT(M, X, Y)

для I від 0 до X:

для Ј від 0 до Ү:

M[I][J] = rand(-10, 10)

все для

все для

Кінець MATRIX_INIT

Б) Функція FIRST_POSITIVE():

FIRST_POSITIVE(M, X, Y)

для Ј від 0 до Ү:

для I від 0 до X:

якщо М[I][J] > 0:

повернути M[I][J]

все для

все для

Кінець FIRST POSITIVE

B) Функція AVARAGE_ABOVE_SEC_DIAG():

AVARAGE_ABOVE_SEC_DIAG(M, X, Y)

SUM = 0

N = 0

для I від 0 до X:

для Ј від 0 до Ү:

якщо I + J < X - 1:

SUM += M[I][J]

N ++

все для

все для

повернути SUM / N

Кінець AVARAGE_ABOVE_SEC_DIAG

Б) MAIN

Псевдокод

початок

введення ROWS, COLUMNS

MATRIX = INT

[ROWS][COLUMNS]

MATRIX_INIT(MATRIX, ROWS,

COLUMNS)

FP = FIRST_POSITIVE(MATRIX,

ROWS, COLUMNS)

AASD =

 $AVARAGE_ABOVE_SEC_DIAG(MATRIX,$

ROWS, COLUMNS)

якщо FP > AASD:

ANS = "більше"

інакше якщо FP < AASD:

ANS = "менше"

інакше:

ANS = "рівно"

виведення ANS

кінець

Випробування Алгоритму:

```
M is an XxY matrix. Define X: 5
Define Y: 7

The matrix:
5 6-7 6-4 0-3
-4 7-4-4-2-4 1
-2 3-8-1 0 8-3
8 2 6 8 0-4-4
4-1-9 0 5 7-3

First positive: 5

Avarage above secondary diagonal: 1.8
5 > 1.8
```

```
M is an XxY matrix. Define X: 8
Define Y: 4

The matrix:
-1-2 2-7
    4 3 7-5
    1 0 6-3
    -9-3 1-6
    8 8 2 8
    5 7 8-4
    8 1 1 8
    -2 5 6-6

First positive: 4

Avarage above secondary diagonal: 1.18182
4 > 1.18182
```

```
M is an XxY matrix. Define X: 2
Define Y: 7

The matrix:
2-5 7-7 1-8-7
-1-1-8-3-5 1 5

First positive: 2
Avarage above secondary diagonal: 2
2 = 2
```

Висновок

Під час виконання цієї лабораторної роботи я вдосконалив навички написання математичної моделі, праці з блок схемами та випробування алгоритму.

Дослідив алгоритми обходу масивів, набув практичних навичок використання цих алгоритмів під час складання програмних специфікацій.