Übungsblatt 9 zur Algebra I

Abgabe bis 17. Juni 2013, 17:00 Uhr

Aufgabe 1. ...

- a) Sei $x \in \mathbb{Q}(\sqrt{3})$. Liegt dann immer auch eine Quadratwurzel von x in $\mathbb{Q}(\sqrt{3})$?
- b) Zeige, dass der goldene Schnitt $\Phi = \frac{1+\sqrt{5}}{2}$ eine ganz algebraische Zahl ist, obwohl in diesem Ausdruck Nenner vorkommen, die sich nicht offensichtlich wegkürzen lassen.

Aufgabe 2. Linearkombinationen

- a) Sei x eine Lösung der Gleichung $X^4 2X^3 + 12X 10 = 0$. Drücke x^6 als Linear-kombination der Zahlen $1, x, x^2, x^3$ mit rationalen Koeffizienten aus.
- b) Sei $z := \sqrt{2} + \sqrt[3]{2}$ gegeben. Gib eine natürliche Zahl n und eine verschwindende nichttriviale Linearkombination von $1, z, z^2, \ldots, z^n$ mit rationalen Koeffizienten an.

Aufgabe 3. Grade algebraischer Zahlen

- a) Berechne den Grad von $\sqrt{2} + i$ über \mathbb{Q} , über $\mathbb{Q}(\sqrt{2})$ und über $\mathbb{Q}(i)$.
- b) Finde ein Polynom mit rationalen Koeffizienten, dass über \mathbb{Q} irreduzibel ist, über $\mathbb{Q}(\sqrt{2})$ in genau zwei und über $\mathbb{Q}(\sqrt{2}+i)$ in genau vier irreduzible Polynome zerfällt.
- c) Seien a und d ganze Zahlen. Zeige, dass $a + \sqrt{d}$ eine ganz algebraische Zahl ist und berechne ihren Grad in Abhängigkeit von a und d.
- d) Sei ζ eine Lösung der Polynomgleichung $X^4 + X^3 + X^2 + X + 1 = 0$. Zeige, dass ζ eine in $\alpha := \exp(\pi i/5)$ rationale Zahl ist, und gib eine Basis von $\mathbb{Q}(\alpha)$ über $\mathbb{Q}(\zeta)$ an.

Aufgabe 4. Primitive Elemente

- a) Finde ein primitives Element zu i und $\sqrt[3]{2}$.
- b) Drücke $\sqrt{2}$ und $\sqrt{3}$ als Polynome in $\sqrt{2} + \sqrt{3}$ mit rationalen Koeffizienten aus.
- c) Seien z_1, \ldots, z_n algebraische Zahlen. Zeige, dass es eine algebraische Zahl z mit $\mathbb{Q}(z) = \mathbb{Q}(z_1, \ldots, z_n)$ gibt.
- d) Sei f(X) ein Polynom mit rationalen Koeffizienten. Zeige, dass eine algebraische Zahl y existiert, sodass f(X) über $\mathbb{Q}(y)$ vollständig in Linearfaktoren zerfällt.

Aufgabe 5. Irrationale Zahlen für Fortgeschrittene

Zeige mit elementaren Methoden direkt über den Ansatz $\sqrt{2} = a + b\sqrt{3}$ mit rationalen Zahlen a und b, dass $\sqrt{2}$ kein Element von $\mathbb{Q}(\sqrt{3})$ ist, also keine in $\sqrt{3}$ rationale Zahl ist.