Big Data Spark SQL

Spark SQL

- ❖ Spark SQL
 - Supports SQL operations based on the Spark Core
 - Can easily include SQL queries into Spark programs (Java, Scala, Python, R)

❖ Spark SQL

 Programmers can connect to any data source (Hive, Avro, Parquet, ORC, JSON, JDBC) the same way and easily join datasets across these different data source types

Spark SQL

❖ Spark SQL

- SchemaRDD based data abstraction
- Provides data abstraction based on DataFrames
- Provides support for structured and semi-structured data

❖ Spark SQL

- Provides DSL (Domain-Specific Language, in Scala, Java, or Python) to manipulate DataFrames
- BI (Business Intelligence) tools can be easily used as the Server mode provides industry standard JDBC and ODBC connectivity

Spark SQL

❖ Spark SQL

 Programmers can connect to any data source (Hive, Avro, Parquet, ORC, JSON, JDBC) the same way and easily join datasets across these different data source types

❖ Dataset

- Distributed collection of data
- Interface of Spark that provides RDD and Spark SQL functionality
- Constructed from JVM objects and processed using Transformations

Spark SQL

❖ DataFrame

- Dataset organized into named columns
- Similar to a R or Python based
 Data Frame, or RDB (Relational Database)
 Table

❖ DataFrame

- DataFrames are created from
 - Structured data files
 - Tables in Hive
 - External databases
 - Existing RDDs

Spark SQL

❖ Data abstraction

 Reducing process to obtain a simplified representation of the whole dataset

- ODBC (Open Database Connectivity)
 - Standard API (Application Programming Interface) to access DBMSs (Database Management Systems)
 - API designed to be independent of the DBS (Database System) and OS (Operating System)

Spark SQL

- ❖ JDBC (Java Database Connectivity)
 - Java API used for Client access to Databases
 - Java Standard Edition platform based API
 - Enables database Query and Update functionality

Big Data Spark GraphX

Spark GraphX

❖ GraphX

- Distributed graph-processing framework
- Originally developed by UC Berkeley's AMPLab and Databricks
- Later donated to the Apache Software
 Foundation and the Spark project

Spark GraphX

❖ GraphX

- Examines the entire graph (batch process)
 to derive the optimal solution/answer
- Graph computation API (Application Programming Interface)
- Optimized runtime processing of user-defined graphs

Spark GraphX

❖ GraphX

- Spark's distributed graph processing framework is based on RDDs
 - Since RDDs are immutable, GraphX's graphs are immutable
 - GraphX is unsuitable for database graphs that need to be updated
 - So if changes are made to GraphX's values or structure, a new graph will be created
 - Some programmers use GDB (Graph Database) technology with Spark GraphX

Spark GraphX

❖ GraphX

- Spark's distributed graph processing framework is based on RDDs
 - Entire graph of the RDD is transformed into a combination of VertexRDDs and EdgeRDDs
 - VertexRDDs and EdgeRDDs are suitable for graph computation and easy to apply graph optimization algorithms

Spark GraphX

❖ GraphX

- Spark's distributed graph processing framework is based on RDDs
 - APIs enable implementation of massively parallel algorithms
 - MapReduce style API
 - Pregel API

Spark GraphX

❖ GraphX

- Pregel API
 - · Enables message sending computation based on
 - Vertex attributes
 - Constrains messages to the graph structure
 - Enables more efficient distributed execution and flexibility in graph-based computations
 - · Provides database abstraction in graph form

Big Data References

References

- Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia, Learning Spark: Lightning-Fast Big Data Analysis. 1st Edition. O'Reilly, 2015.
- Sameer Farooqui, Databricks, Advanced Apache Spark Training, Devops Advanced Class, Spark Summit East 2015, http://slideshare.net/databricks, www.linkedin.com/in/blueplastic, March 2015.
- Apache Spark documents (all documents and tutorials were used)
 - http://spark.apache.org/docs/latest/rdd-programming-guide.html
 - http://spark.apache.org/docs/latest/rdd-programming-guide.html#working-with-key-value-pairs
 - https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#rdd-persistence
- Wikipedia, www.wikipedia.org
- Stackoverflow, https://stackoverflow.com/questions
- Bernard Marr, "Spark Or Hadoop -- Which Is The Best Big Data Framework?," Forbes, Tech, June 22, 2015.
- Quick introduction to Apache Spark, https://www.youtube.com/watch?v=TgiBvKcGL24
- Wide vs Narrow Dependencies, https://github.com/rohgar/scala-spark-4/wiki/Wide-vs-Narrow-Dependencies

References

- Partitions and Partitioning, https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-rdd-partitions.html
- Neo4j, "From Relational to Neo4j," https://neo4j.com/developer/graph-db-vs-rdbms/ (last accessed Jan. 1, 2018).

Image Sources

- By Robivy64 at English Wikipedia [Public domain], via Wikimedia Commons
- Teravolt at English Wikipedia [CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons
- By Konradr (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons