– INF01147 –Compiladores

Análise Sintática Gramáticas LL(1) e Análise LL(1)

Prof. Lucas M. Schnorr

– Universidade Federal do Rio Grande do Sul –

Conjuntos Primeiro e Sequência

(revisão da aula anterior)

Sumário sobre Conjuntos Primeiro e Sequência

- ► Compostos somente por terminais e também e no caso dos conjuntos Primeiro
- ► Algoritmo de cálculo do Primeiro(α)
 - ightharpoonup Trivial quando lpha é um terminal
 - \blacktriangleright Se α é um não-terminal
 - lacktriangle Varre todas as produções $lpha
 ightarrow \dots$
 - ightharpoonup Complica se o início de uma produção deriva em ϵ
 - ▶ Contém ϵ somente se $\alpha \Rightarrow^* \epsilon$
- Algoritmo de cálculo do Sequência(α)
 - ► Inclui o \$ em alguns casos triviais (não-terminal inicial)
 - ▶ Pois o que vem depois do símbolo inicial é o fim da entrada
 - ▶ Varre as produções onde α aparece no corpo (X \rightarrow Y α Z)
 - ► Complica se $Z \Rightarrow^* \epsilon$
 - ▶ Complica quando α aparece no fim de uma regra $(X \to Y \alpha)$
 - \blacktriangleright Nunca contém o ϵ

Exemplo de Revisão

► Considerando a gramática

$$E \to T E'$$

$$E' \to + T E' \mid \epsilon$$

$$T \to F T'$$

$$T' \rightarrow *F T' \mid \epsilon$$

 $F \rightarrow (E) \mid id$

► Calcule os conjuntos Primeiro e Sequência

Recursivo Preditivo – Usando Primeiro e Sequência

► Considerando a seguinte gramática

► Implementação possível para o não-terminal A desta gramática

```
A() {
    switch (lookahead_token) {
        //Tratando os símbolos em Primeiro(A)
        case 'a': Consome('a'); break;
        case 'b': Consome('b'); break;

        //Utilizando o Sequência(A) para tratar da produção vazia de A
        case 'c':
        case 'd':
        case 'e': break;

        //Erro
        default: abortar ("Erro Sintático");
}
```

Análise Sintática LL(1) Visão Geral

Ações da Análise LL(1)

Pilha, Entrada e Ação

- ▶ Utiliza uma pilha explícita (ao invés de ativações recursivas)
 - ► Com três tipos de ações: empilhamento, casamento e aceita
- ► Sendo a gramática que gera cadeias de parênteses balanceados

$$\mathsf{S} \ \ \, \rightarrow (\;\mathsf{S}\;)\;\mathsf{S}\;|\;\epsilon$$

Análise da entrada ()

Pilha de análise s	intática Entrada	Ação
\$ S	() \$	$S \rightarrow (S)S$
\$ S) S (() \$	casamento
\$ S) S) \$	$S o \epsilon$
\$ S)) \$	casamento
\$ S	\$	$S o \epsilon$
\$	\$	aceita

- ► Relação com os passos de uma derivação à esquerda da cadeia
- ► Decisões guiadas por uma Tabela de Análise Sintática LL(1)

Tabela de Análise Sintática LL(1)

- ightharpoonup Correlaciona cada não-terminal com cada terminal \Rightarrow M[N,T]
 - Controla as ações de empilhamento (e substituição para o ϵ)
- ► Sendo a gramática que gera cadeias de parênteses balanceados

$$S \rightarrow (S)S \mid \epsilon$$

► Tabela de Análise Sintática LL(1) para esta gramática

$$\begin{array}{c|c|c} M[N, T] & (&) & \$ \\ \hline S & S \rightarrow (S)S & S \rightarrow \epsilon & S \rightarrow \epsilon \end{array}$$

- ► A tabela guia as ações de empilhamento da análise LL(1)
 - ► Exemplo com a entrada ()()

Gramáticas LL(1)

Gramáticas LL(1)

- ► LL(1), uma classe de gramáticas onde
 - ▶ A entrada é lida da esquerda para a direita
 L de left-to-right
 - Aplica-se uma derivação mais à esquerda
 L de leftmost
 - Tomada de decisão precisa somente um token na entrada
 1
- ► Definição

Uma gramática é LL(1) se a tabela de análise sintática LL(1) associada tiver no máximo uma produção em cada célula

- ► Condições necessárias para ser LL(1) (reflexos da definição)
 - ▶ Sem recursão à esquerda
 - ► Fatorada à esquerda
 - Sem ambiguidade
- ► Suficiente para reconhecer a maioria das construções

Gramáticas LL(1) – Definição Formal

- ► Uma gramática G é LL(1) se e somente se
- ► Considerando $A \rightarrow \alpha \mid \beta$
- ▶ Para um terminal a, somente uma produção começa por a
 - ▶ Primeiro(α) \bigcap Primeiro(β) = \emptyset
- lacktriangle Somente uma produção pode derivar para ϵ
- ▶ Se uma produção deriva pra vazio, a outra não deve iniciar com o que vem depois de A, ou seja
 - ► Se $\alpha \Rightarrow^* \epsilon$, Primeiro(β) \bigcap Sequência(A) = \emptyset ► Se $\beta \Rightarrow^* \epsilon$, Primeiro(α) \bigcap Sequência(A) = \emptyset
- ► Esta gramática é LL(1)?

Gramáticas LL(1) – Reconhecimento

- Gramáticas LL(1) podem ser reconhecidas por analisadores sintáticos descendentes preditivos
- ► Exemplo

Única produção possível para cada terminal em Primeiro(stmt)

```
stmt → if ( expr ) stmt else stmt

| while ( expr ) stmt

| { stmt_list }
```

- ▶ Implementação
 - ► Tabela de Análise Sintática LL(1)
 - ► Correlaciona não-terminais e terminais (tokens) da entrada
 - Cada posição guarda uma única regra de produção

Tabela Preditiva

Tabela Preditiva – Algoritmo de Construção

lacktriangle Para cada produção lacktriangle lacktriangle da gramática, faça

- ▶ Para cada terminal a em Primeiro(α), inclua (A $\rightarrow \alpha$) em M[A,a]
- ▶ Se $\epsilon \in \mathsf{Primeiro}(\alpha)$, inclua (A $\rightarrow \alpha$) em M[A,b]
 - ▶ Para cada terminal b em Sequência(A)
- ▶ Se $\epsilon \in \mathsf{Primeiro}(\alpha)$ e $\$ \in \mathsf{Sequência}(\mathsf{A})$, inclua $(\mathsf{A} \to \alpha)$ em $\mathsf{M}[\mathsf{A},\$]$

- ► Ao fim do algoritmo
 - ► Células vazias na tabela são consideradas erros

Tabela Preditiva – Exemplo 1

► Considerando a gramática

Ε	\rightarrow	TE'
E'	\rightarrow	+TE' $\mid \epsilon$
Τ	\rightarrow	FT'
Τ'	\rightarrow	*FT $^{'}\mid\epsilon$
F	\rightarrow	(E) id

	Primeiro	Sequência
Е	(id) \$
E'	$+\epsilon$) \$
Т	(id	+)\$
T'	$* \epsilon$	+)\$
F	(id	+ *) \$

► Tabela Preditiva

	id	+	*	()	\$
Е						
E'						
Т						
T'						
F						

Tabela Preditiva – Solução do Exemplo 1

	id	+	*	()	\$
Е	$E \to TE'$			$E \to TE'$		
E'		E' o + TE'			$E' o \epsilon$	$E' o \epsilon$
Т	$T \to FT'$			$T \to FT'$		
T'		$T' o \epsilon$	T' o *FT'		$T' o \epsilon$	$T' o \epsilon$
F	F o id			F o (E)		

Tabela Preditiva – Exemplo 2

► Gramática do else opcional

S	\rightarrow	iEtSS'	a
S'	\rightarrow	eS $\mid \epsilon$	
Ε	\rightarrow	b	

	Primeiro	Sequência
S	i a	e \$
S'	e ϵ	e \$
Ε	b	t

► Tabela Preditiva

	a	b	e	i	t	\$
S						
S'						
Е						

Tabela Preditiva – Solução do Exemplo 2

- ► Notem como a ambiguidade se manifesta
 - ► Reconhecendo S' e temos um **else**, o que fazer?
 - Devemos escolher S' → eS (casar o else com o then mais próximo)

	a	b	e	i	t	\$
S	S o a			$S \rightarrow iEtSS'$		
S'			$S' \rightarrow eS$ $S' \rightarrow \epsilon$			$S' o \epsilon$
			$S' o \epsilon$			
Е		E o b				

Análise Preditiva Tabular

Análise Preditiva Tabular

- ► Vimos até agora dois métodos
 - ► Recursivo com Retrocesso
 - ► Recursivo Preditivo para Gramáticas LL(1)
- ► Implementação
 - ► Cada não-terminal tem um procedimento associado
 - Realiza chamadas recursivas quando apropriado Exemplo: $S \rightarrow iEtSS'$
 - ► Utilizam uma pilha implícita de chamadas
- ► Desvantagens desta abordagem
 - ► Relativo sobrecusto por chamada
 - Pilha tem tamanho limitado pela memória
- ► Análise Preditiva Tabular
 - ► Tem uma pilha explícita para armazenar os não-terminais
 - ► Usa a Tabela Preditiva para guiar derivações

Análise Preditiva Tabular – Visão Geral

- ► Buffer de tokens na entrada (o token \$ marca o fim)
- ► Pilha com fundo marcado por \$
 - ► Inicializada com o símbolo não-terminal S
- ► Tabela preditiva

Análise Preditiva Tabular – Funcionamento

- ▶ Seja
 - X um símbolo no topo da pilha
 - ▶ a um token no buffer de entrada
- ▶ Etapas
 - ▶ Se X ==\$ e a ==\$ \sim Reconheceu a sentença
 - ► Se X == a e a != \$ \times Desempilha e avança
 - ▶ Se X é um não-terminal \sim Consulta a tabela M[X,a]
 - ▶ Se contém $X \rightarrow UVW \rightarrow Empilha WVU$
 - ► Se for vazia → tratamento de erros

Análise Preditiva Tabular – Exemplo 1

- ► Reconhecer id+id*id
- ► Considerando a tabela preditiva
- ► A pilha começa com E

	id	+	*	()	\$
Е	$E \to TE'$			E o TE		
E'		E' o + TE'			$E' \to \epsilon$	$E' o \epsilon$
Τ	$T \to FT'$			$T \to FT'$		
T'		$T' o \epsilon$	T' o *FT'		$T' o \epsilon$	$T' o \epsilon$
F	F o id			F o (E)		

Análise Preditiva Tabular – Exemplo 2

- ► Reconhecer ibtibtaeaea
- ► Considerando a tabela preditiva
- ► A pilha começa com S
- ► Devemos tratar a ambiguidade em M[S',e]
 - ullet Faça desconsiderando S' $ightarrow \epsilon$
 - ▶ O que acontece se desconsiderarmos $S' \rightarrow eS$?

	a	b	e	i	t	\$
S	S o a			$S \rightarrow iEtSS'$		
S'			S' o eS			$S' \to \epsilon$
			$S' o \epsilon$			
Е		E o b				

Gerenciamento de Erros

- ▶ Modo pânico
 - Descarte até achar um token de sincronismo
 - Existe uma série de heurísticas
- Heurística: utilizar o conjunto Sequência(A)
- Exemplo para a gramática de operadores aritméticos

	id	+	*	()	\$
Е	$E \to TE'$			$E \to TE'$	synch	synch
E'		$E' \rightarrow +TE'$			$E' o \epsilon$	$E' o \epsilon$
T	$T \to FT'$	synch		$T \rightarrow FT'$	synch	synch
T'		$T' o \epsilon$	$T' \to *FT'$		$T' o \epsilon$	$T' o \epsilon$
F	F o id	synch	synch	F o (E)	synch	synch

- ► Funcionamento
 - ▶ Se M[A,a] é branco ~ ignore o token na entrada
 - Se M[A,a] é synch \sim desempilhe
 - ► Se terminal na pilha for diferente da entrada → desempilhe
- ► Teste as entradas erradas: + id * + id

) id * + ic

Sumário da Aula

- ► Análise descendente para gramáticas LL(1)
 - ► Eficiente e simples
 - ► Implementação preditiva com tabela
 - ► Baseada nos cálculos dos conjuntos Primeiro/Sequência
- ► Limitação
 - ► O que fazer se a gramática não é LL(1)?

Conclusão

- ► Leituras Recomendadas
 - ► Livro do Dragão
 - ► Seções 4.4.3 até 4.4.6
 - ► Série Didática
 - ► Seção 3.2.2 e 3.2.3

- ▶ Próxima Aula
 - ► Apresentação da Etapa 2
 - ► Sala 104 do Prédio 67 (Turma A)
 - ► Sala 101 do Prédio 67 (Turma B)