# Prediction on Market Values of FIFA Players

Group 6 Randolph Zhao, Nathan Heller, Ergis Mecaj, Nguyen Luu

## Introduction/Insight

FIFA (Federation Internationale de Football Association) is an international non-profit organization that oversees organizations related to football, futsal, and beach soccer.

FIFA oversees six international confederations of association football, with each confederation serving a different continental region of the world.

Each national association within each international confederation is a direct member of FIFA

The FIFA series of video games is meant to be a realistic soccer simulation game that uses real-world players and data collected from those players.

### **Problem Statement**

How closely are the market values of FIFA players predicted by:

- Their background information?
- Their **abilities** within different positions and skills?
- Their **performances** over their current careers?

From the trained model, we can

- predict the values of new players
- highlight most effective manners to increase existing players' values

## **Initial Dataset**

FIFA 19 Complete Player Dataset: over 18000 samples / 89 features

Information regarding personal background, current employment, ratings for each position

- Ratings determined by over 9000 data reviewers and over 300 editors

| Crossing T | Finishing <sup>y</sup> | Heading Accura | Short Passing | Volleys ₹ | Dribbling * | Curve Y |
|------------|------------------------|----------------|---------------|-----------|-------------|---------|
| 84         | 95                     | 70             | 90            | 86        | 97          | 93      |
| 84         | 94                     | 89             | 81            | 87        | 88          | 81      |
| 79         | 87                     | 62             | 84            | 84        | 96          | 88      |
| 17         | 13                     | 21             | 50            | 13        | 18          | 21      |
| 93         | 82                     | 55             | 92            | 82        | 86          | 85      |
| 81         | 84                     | 61             | 89            | 80        | 95          | 83      |
| 86         | 72                     | 55             | 93            | 76        | 90          | 85      |
| 77         | 93                     | 77             | 82            | 88        | 87          | 86      |

# **Preprocessing Data: Feature Engineering**

- Remove unit of some features: '\$' in 'wages' and "values', ''lbs' in 'weight'
- Separate 'Joined' to 'Joined\_month' and 'Joined\_year'
- Change 'height' into inch
- Transform text value into numeric value
- Re-map categorical variables into smaller bins
- Rescale, normalize, and eliminate the outliers of the data

# Preprocessing Data: Missing Values & Drop Columns

#### Missing Values:

- 'Club': fill with 'No Club'
- 'Position': fill with 'Unknown'
- 'Simple\_position': fill with 'Unknown'
- 'Body Type': fill with 'Unknown'
- Others: fill with mean

#### Column dropped:

- Useless:
  - 'Unnamed: O', 'ID', 'Name', 'Photo', 'Flag',
     'Club Logo', 'Real Face', 'Joined', 'Special',
     'Joined\_month', 'Jersey Number', 'Loaned From', 'Contract Valid Until'
- Transformed to other features:
  - o 'Nationality', Work Rate', Position', 'Club'

## **Preprocessing Data: Multicollinearity Reduction**



In feature engineering, we looked at features that were highly correlated and combined them

- The standingTackle and slidingTackle features were highly correlated, so they were combined into a single "Tackle" feature
- The various goalkeeping features, indicated with a GK, were all highly correlated with each other, so they were combined into an aggregate goalkeeping feature.
- There were far too many correlated features when looking at the features that described how well a player could play a specific position, so we combined those into general "Forward", "Mid", and "Defense" features instead, rather than making a distinction between right wing and left forward.

## **Model Selection & Feature Selection**









GradientBoostingRegressor: LinearRegression:

Lasso:

6217628050008.035 17715346477530.023 + 1509903485396.85

17715346557704.79 + 2968672

+ 2968663261528.3794 + 2968672219817.735

# **Tuning Hyperparameters**

```
{'learning_rate': 0.1,
'loss': 'squared_error',
'max_depth': 5,
'n_estimators': 240}
```

```
{'max_features': 13,
'min_samples_leaf': 20,
'min_samples_split': 25,
'subsample': 1.0}
```





## **Model Results & Conclusion**

MSE cross validation score:

```
mean = 4,399,891,465,323.725std = 984,225,798,043.3031
```

R2 cross validation score:

```
mean = 0.8598939706399216std = 0.014417427062726796
```

- Based on R2 score, the model performs well in the regression of values of FIFA players.
  - o i.e. we can have an approximation on values of each player based on their personal data.