ROS2swarm – A ROS 2 Package for Swarm Robot Behaviors

- Tanja Katharina Kaiser, Marian Johannes Begemann, Tavia Plattenteich, Lars Schilling, Georg Schildbach, and Heiko Hamann -

CONTENTS

01 Purpose of the Study

04

Background of previous work in this field and the novelty of your approach

02 Rational for the research

05

Materials and methods

Definition of the engineering problem

06

Swarm Package Manual

01. Purpose of the study

〈연구 필요성〉

- 로봇 소프트 웨어 개발
- 군집 로봇 하드웨어 플랫폼 필요성 증가
- 로봇 로봇 통신 필요

〈ROS2 사용〉

- 오픈 소스 기반의 ROS2
- ROS2 SWARM 패키지
- · DDS 기반의 ROS2

- 모바일 로봇에 대한 군집 로봇 행동 및 군집 동작을 ROS2를 사용해 구현
- 여러 로봇 플랫폼에서도 활용할 수 있는 라이브러리 제공

02. Rational for the research

〈연구 합리성〉

- 군집 로봇 패키지에 ROS2를 제안한 것이 처음
- 군집 로봇 응용 프로그램을 위한 라이브러리 제공

BEHAVIORS THAT ARE CURRENTLY INCLUDED AS PATTERNS IN THE ROS2SWARM PACKAGE

	pattern	description
movement	attraction	Aggregation of robots based on an attractive potential field.
	dispersion	Distribution of robots based on a repulsive potential field.
	discussed dispersion	Distribution of robots while maintaining a distance decided on by the swarm.
	drive	Driving straight ahead.
	flocking	Minimalist flocking algorithm based on Moeslinger et al. [21].
	random walk	Random walk based on a simple state machine switching between driving straight ahead and turning randomly.
voting	majority rule voter model	Opinion update based on the majority opinion. Opinion update based on adopting the opinion of a random neighbor.

1. 패키지

- ROS2 Python , C++
- 로봇 간의 의견 교환
- 각 패턴의 매개변수 설정
- 하드웨어 보호 계층

2. 이동 패턴

- 로봇 모션을 시작하고 안내
- 6가지 움직임 패턴

3. 투표 패턴

- 집단적인 의사 결정 행동 구현
- ・ 2가지 투표 패턴

4. 로봇 플랫폼

- 모바일 로봇 플랫폼
- · Gazebo 시뮬레이터
- 로봇의 하드웨어 특성

03. Definition of the engineering problem

< 시뮬레이션 >

- ・ 가제보 시뮬레이션을 통한 3개의 로봇 실행
- 각각의 하드웨어 특성 , 패턴, 이동 방식 설정
- 하드웨어 충돌을 막기 위해 LiDARs를 통한 임계값 설정

〈 현실 로봇 〉

- 시뮬레이션 검증을 통한 실제 로봇 구현
- 사용 가능한 패턴의 모듈화 및 재사용 가능성을 검증
- Swarm 구성원들의 다수결 규칙 패턴 실행

(b) Aggregated swarm

04. Background of previous work in this field and the novelty of my approach

< 이전 연구의 배경 >

- 군집 로봇 패키지에 ROS2를 제안한 것이 처음
- 군집 로봇 응용 프로그램을 위한 라이브러리 제공

〈접근 방식〉

- · Ros2swarm 라이브러리를 활용해 군집 로봇 구현
- · 군집 로봇 사용 시 어떠한 이유를 가지고 그에 맞는 이동 패턴을 활용할 예정

05. Materials and methods

< 매뉴얼>

- ROS2 FOXY 기반으로 한 Gazebo 시뮬레이션 및 실제 로봇 군집 이동
- TURTLEBOT3 Burger 2~3대 + 앞으로 추가 되는 로봇
- · 적용 할 때 앞으로의 터틀봇 뿐만 아니라 추가 되는 로봇에도 군집 이동을 활용
- 각각의 이동 패턴 및 투표 패턴을 분석해 활용할 수 있는 사례를 생각
- 앞으로 nav2 나 자율주행 까지 활용.... 을 할 수 있으면 좋겠음

< 매뉴얼 >

- Ubuntu 20.04 의 ROS2 FOXY 버전 사용
- 설치 가이드
 - GAZEBO 를 포함한 ROS2 패키지 설치
 - TURTLEBOT3 패키지 설치
 - ROS2 SWARM 패키지가 TURTLEBOT3 패키지를 커밋할 수 있게 설정
 - ROS2 Swarm 패키지 설치

깃허브 링크: https://github.com/yeonsoo98/ros2swarm

설치 가이드: https://gitlab.iti.uni-luebeck.de/ROS2/ros2swarm/-/blob/master/INSTALL_GUIDE.md

< 매뉴얼 >

- 실행 가이드
 - 터미널에서 설치된 파일 터미널 열기 cd ros2swarm (디렉토리 이동하기)
 - 가제보 시뮬레이션 실행: ./start_simulation.sh
 - 실제 로봇 실행: ./start_robot.sh
 - 로봇에게 동작 실행 명령:./start_command.sh
 - 가제보 환경에 로봇 추가: ./add_robots_to_simulation.sh

< 매뉴얼 >

- ・ 실행 가이드 가제보 시뮬레이션 실행
 - 실행시 ROS_DOMAIN 설정
 - 가제보 월드 설정
 - 패턴 설정
 - 생성 로봇 수 설정
 - 로봇 종류 설정
 - 주석 처리된 내용에서 수정

< 매뉴얼 >

・ 실행 가이드 - 가제보 시뮬레이션 실행: ./start_simulation.sh

< 매뉴얼 - 가제보 시뮬레이션 실행>

- ROS_DOMAIN_ID=42 -> DOMAIN의 숫자를 일치하게 설정
- Ros2 launch launch_turtlebot_gazebo create_environment.launch.py
 -> turtlebot_gazebo 파일의 create_environment.launch.py 파일을 실행하게 하는 코드
- gazebo_world:=arena_large.world -> 가제보 월드 설정
- · pattern:=drive_pattern -> 이동할 패턴 설정
- · number_robots:=4 -> 생성할 로봇 개수 설정
- robot:=burger -> 로봇의 종류 설정 (burger, waffle, jackal)
- 선택할 수 있는 경우를 주석처리 해서 편리하게 사용 가능

< 매뉴얼 – 실제 로봇 실행>

- ROS_DOMAIN_ID=42 -> DOMAIN의 숫자를 일치하게 설정
- ros2 launch ros2swarm bringup_robot.launch.py
 ros2swarm의 bringup_robot.launch.py 을 실행 (실제 로봇을 이동하기 위해 필요)
- pattern:=dispersion_pattern -> 이동할 패턴 설정
- robot:=burger -> 로봇의 종류 설정 (burger, waffle , jackal)
- robot_number:=2 -> 사용할 로봇의 개수 설정 (추후 네임스페이스 관련 중요) (if문으로 자동으로 네임스페이스 생성)
- 선택할 수 있는 경우를 주석처리 해서 편리하게 사용 가능

< 매뉴얼 >

- ・ 실행 가이드 로봇에게 동작 명령
 - 같은 ros_domain에 있는 로봇들에게 명령 전달
 - 각각 다른 ros_domain에 있는 로봇들에게 각자 설정 가능
 - 명령을 전달시 그에 해당하는 메시지를 전달
 - 각각의 타입이 다름 (특징을 살려서 활용)

```
ROS_DOMAIN_ID=42 ros2 topic pub --once /swarm_command communication_interfaces/msg/Int8Message "{data: 1}"
ROS_DOMAIN_ID=42 ros2 topic pub --once /swarm_command communication_interfaces/msg/Int8Message "{data: 1}"
ROS_DOMAIN_ID=42 ros2 topic pub --once /swarm_command communication_interfaces/msg/Int8Message "{data: 1}"
ROS_DOMAIN_ID=42 ros2 topic pub --once /swarm_command communication_interfaces/msg/Int8Message "{data: 1}"
ROS_DOMAIN_ID=42 ros2 topic pub --once /swarm_command communication_interfaces/msg/Int8Message "{data: 1}"
```


< Github >

< Github >

- 깃허브 가이드
 - branch 기능을 사용해 버전을 다르게 하거나, main, test 용을 만들어 진행 가능
 - 일정 관리 가능

- README (마크다운 기반)을 통해 전체적인 정리 가능 - > (다른 개인적으로 만든 Multi Turtlebot Package)
- vscode 와 연동해 실시간적으로 수정 가능

