Qiaori Yao

EDUCATION

Huazhong University of Science and Technology

Wuhan, China

M.Sc. in Computer System Architecture

09/2019 - 06/2022

Advised by Prof. Yuchong Hu

Lanzhou, China

B.Eng. in Computer Science and Technology

09/2015 - 06/2019

GPA 85/100, Rank 5/70

Lanzhou University

Publications

[1] PivotRepair: Fast Pipelined Repair for Erasure-Coded Hot Storage [link]

Qiaori Yao, Yuchong Hu, Xinyuan Tu, Patrick P. C. Lee, Dan Feng, Xia Zhu, Xiaoyang Zhang, Zhen Yao,

Wenjia Wei

42nd IEEE International Conference on Distributed Computing Systems, ICDCS 2022

- [2] StripeMerge: Efficient Wide-Stripe Generation for Large-Scale Erasure-Coded Storage [link]
 Qiaori Yao, Yuchong Hu, Liangfeng Cheng, Patrick P. C. Lee, Dan Feng, Weichun Wang, Wei Chen
 41st IEEE International Conference on Distributed Computing Systems, ICDCS 2021
- [3] Exploiting Combined Locality for Wide-Stripe Erasure Coding in Distributed Storage [link] Yuchong Hu, Liangfeng Cheng, Qiaori Yao, Patrick P. C. Lee, Weichun Wang, Wei Chen 19th USENIX Conference on File and Storage Technologies, FAST 2021

Research Experience

Data Storage and Application Lab (DSAL), HUST

Wuhan, China

Research Assistant

09/2019 - 06/2022

Advisor: Prof. Yuchong Hu; Collaborator: Prof. Patrick P. C. Lee (CUHK)

• PivotRepair

- * Conducted measurement analysis and found that congestion is frequent and rapidly changing in hot storage clusters, while some nodes (pivots) still have abundant bandwidth
- * Designed a fast greedy algorithm for constructing optimal pipelined repair tree that exploits pivots to bypass congested links and accelerate the repair in erasure-coded hot storage

StripeMerge

- * Proposed an efficient wide-stripe generation approach for erasure-coded storage, which carefully selects and merges narrow stripes into wide stripes to minimize wide-stripe generation bandwidth
- * Used the bipartite graph model to prove the existence of an optimal scheme that does not incur any data transfer for wide-stripe generation, yet which is computationally expensive
- * Designed two heuristics that can efficiently generate schemes with only limited wide-stripe generation bandwidth overhead

• ECWide

- * Engaged in the design of a repair-efficient mechanism that utilizes the combination of both parity locality and topology locality to reduce repair penalty for wide stripes as a major contributor
- * Implemented and evaluated the prototype for cold storage that supports multi-node encoding

KV Storage Group, Wechat, Tencent

Software Engineer

Guangzhou, China 07/2022 - Present

- Designed and implemented the full-text index for a distributed table-like database system atop LevelDB
- Built a scheduling mechanism to reduce request latency while keeping workload balance for the distributed KV storage system based on dynamic routing
- Contributed to the KV storage system in other respects, including new feature development, bug fixes, performance benchmarks, and technical surveys

Inference Engine Group, Cambricon

Beijing, China

Software Engineer Intern

11/2021 - 02/2022

- Investigated passes in MLIR, including passes within the same dialect and passes between different dialects
- Helped with fixing bugs and testing for the inference engine based on Cambricon's Domain Specific Architecture (DSA) machine learning accelerator

Honors

• Outstanding Contributor in 2023H2, Tencent	01/2024
\bullet Outstanding Graduate (Top 10%), $HUST$	06/2022
\bullet National Scholarship for Graduate Students (Top 1%), Ministry of Education of China	12/2021
\bullet Scholarship of Sangfor, $HUST$	04/2021

SKILLS

Programming Languages: C/C++, Python, Java, SQL, Bash

Operating Systems: Linux

Tools: Git, GDB, Bazel, Docker, LATEX