Entregar por escrito el Jueves 12 de Marzo. Los ejercicios pueden hacerse en grupo; entregar en grupo, escribiendo por orden alfabético los nombres de todos los participantes, no penaliza.

Se asume siempre que estamos trabajando en un espacio de probabilidad (Ω, \mathcal{F}, P) , y que $\mathcal{G} \subset \mathcal{F}$ es una sub- σ -álgebra.

- 1) A veces uno lee que la aproximación normal a la binomial es factible para n=30 y 1/10 . En torno a este asunto, se os pide echar algunas cuentas en el caso extremo <math>p=1/10, n=30. Sea $S_{30} \sim B(30,1/10)$. Calcular la probabilidad de tener al menos tres éxitos, es decir, $P(S_{30} \ge 3)$, usando la distribución binomial. Estimar la probabilidad de tener al menos tres éxitos, es decir, $P(S_{30} \ge 3)$, usando la aproximación normal sin corrección de continuidad. Estimar la probabilidad de tener como máximo dos éxitos, es decir, $P(S_{30} \le 2)$, usando la aproximación normal sin corrección de continuidad. Hacer lo mismo pero con corrección de continuidad, o de de Moivre-Laplace.
- 2) La media y cualquier mediana m de una v.a. no pueden estar muy alejadas. Más precisamente, sea $X \in L^2$ una v.a. y sea m tal que $P(X \ge m) \ge 1/2$ y $P(X \le m) \ge 1/2$, es decir, m es una mediana de X. Demostrar que $|E(X) m| \le \sigma_X$.
- 3) Probar directamente (sin usar Jensen condicional) que $|E(X|\mathcal{G})| \leq E(|X||\mathcal{G})$. Sugenercia: escindir X en sus partes positiva y negativa.
- 4) Dadas dos variables aleatorias X e Y con media cero, demostrar las siguientes afirmaciones:
 - a) X y E[X|Y] tienen correlación positiva.
 - b) El coeficiente de correlación de Y y E[X|Y] tiene el mismo signo que el de X y Y.
- 5) Sea $X:[0,1)\to[0,1)$ la función $X(w)=w^2$, donde a [0,1) se le asigna la probabilidad uniforme (en este caso, la medida de Lebesgue). Sea $\mathcal{A}_n:=\sigma([0,1/2^n),[1/2^n,2/2^n),\ldots,[(2^n-1)/2^n,1))$ la σ -álgebra generada por los intervalos diádicos $[j/2^n,(j+1)/2^n),j=1\ldots,n-1$. Calcular $E(X|\mathcal{A}_n)$. Decidir razonadamente si la sucesión de v.a. $\{E(X|\mathcal{A}_n)\}_{n=0}^{\infty}$ converge (y en caso de respuesta afirmativa, determinar a qué) en alguno de los siguientes sentidos: a) uniformemtente, b) en L^p , determinando para que valores de p hay convergencia, c) en casi todo punto, d) en medida, e) en distribución. Decidir razonadamente si la sucesión de v.a. $\{E(X|\mathcal{A}_n)\}_{n=0}^{\infty}$ es una martingala con respecto a la filtración $\{\mathcal{A}_n\}_{n=0}^{\infty}$.
- **6)** Probar que si $X := \{X_n\}_{n=0}^{\infty}$ es un proceso estocástico, y $0 < r \le s \le \infty$, entonces $\|X\|_r \le \|X\|_s$, donde $\|X\|_p := \sup_{n \in \mathbb{N}} \|X_n\|_p$.
- 7) Probar que si $X:=\{X_n\}_{n=0}^\infty$ es una martingala, y $\|X\|_s<\infty$, donde $1\leq s<\infty$, entonces $Y:=\{|X_n|^s\}_{n=0}^\infty$ es una submartingala.
- 8) Sea $(\Omega, \mathcal{F}, P) = ((0, 1], Borel(0, 1], \lambda)$, donde $\lambda = U$ es la probabilidad uniforme o medida de Lebesgue. Sea $X_n := 2^n \mathbf{1}_{(0, 2^{-n}]}$. Probar que $X := \{X_n\}_{n=0}^{\infty}$ es una martingala con respecto a la filtración $\{\sigma(X_0, \ldots, X_n)\}_{n=0}^{\infty}$. Decidir si $\lim X_n$ existe, y en que sentido (en distribución, en probabilidad, c.s., y en L^p para 0).
- 9) Sea $X := \{X_n\}_{n=0}^{\infty}$ una martingala tal que para todo $n \ge 0$, $X_n \in L^2$. Probar que los incrementos son ortogonales, donde los incrementos se definen como $Y_0 := X_0$, y para n > 0, $Y_n := X_n X_{n-1}$. Es decir, demostrar que si $j \ne k$, entonces $(Y_j, Y_k) = \int Y_j Y_k = 0$.