Neural Abstract Interpretation

Shaurya Gomber (sgomber2@illinois.edu)

Department of Computer Science, University of Illinois Urbana-Champaign, IL, USA

ABSTRACT INTERPRETATION 1 Helps analyze programs, neural networks, and real-world systems by interpreting 8 Even them in an abstract domain! **Abstract Domain** $\mathcal{A}_{Even/\mathrm{Odd}}$ Concrete Domain

ABSTRACT TRANSFORMERS

Operator op in $\mathcal{C} \to \text{Need an equivalent } \widehat{op}$ in \mathcal{A}

TRANSFORMERS: TEDIOUS TO IMPLEMENT!!

Abstract Domain

Ensure soundness always.

Concrete Domain

- Most-precise implementations: computationally expensive. (join in Octagon domain is cubic and exponential in Polyhedra)
- Scalable implementations need intricate optimizations. (like octagon and polyhedral decomposition)
- Hand-crafted transformers can be <u>imprecise</u>. (like affine assignment in the octagon domain)
- Trade-off between Ease of Implementation, Soundness, Precision, and Efficiency.

- $\widehat{op}^{\#}$ just a specification -> $\mathcal{L}_{P}(a_{1}, a_{2})$ thus hard to compute!
- $\mathcal{L}_{S}(op, a, f(a))$ checks for soundness: $op(\gamma(a)) \sqsubseteq_{\mathcal{C}} \gamma(f(a))$
 - -> expensive and not differentiable!

NEURAL ABSTRACT TRANSFORMERS

As neural networks effectively approximate complex functions, we propose:

NEURAL NETWORKS THAT SERVE AS ABSTRACT TRANSFORMERS!

Neural transformers allow for data-driven learning of transformers.

We propose supervised and unsupervised relaxations of the learning problem to train these transformers.

KEY BENEFITS OF NEURAL TRANSFORMERS

- 1. Automatic generation of transformers with varying soundness and precision eases development costs.
- 2. Neural transformers are differentiable, which allows us to pose and solve interesting problems like invariant generation as gradient-guided learning methods.
- 3. Neural transformers can offer **faster alternatives** to computationally intensive transformers, such as the octagon join transformer, and more precise alternatives to transformers, like octagon affine assignment. (Unsound cases can be handled by resorting to hand-crafted transformers' outputs)

SUPERVISED LEARNING OF TRANSFORMERS

$$\min_{\theta} \mathrm{E}_{(X_i,y_i) \sim \mathcal{D}} \left[\alpha * \mathcal{L}_{S}'(y_i, N_{\theta}(X_i)) + \beta * \mathcal{L}_{P}'(y_i, N_{\theta}(X_i)) \right]$$

Soundness Enforcing Loss \mathcal{L}'_{S}

 $\mathcal{L}_S'(a_1, a_2)$: Differentiable *proxy* for size of the set $\gamma(a_1) \setminus \gamma(a_2)$ $\mathcal{L}_{S}'(a_{1}, a_{2}) = 0$ implies a_{2} over-approximates a_{1} : $\gamma(a_{1}) \sqsubseteq_{C} \gamma(a_{2})$

Intervals: $\mathcal{L}'_S([l_1, u_1], [l_2, u_2]) = \max(l_2 - l_1, 0) + \max(u_1 - u_2, 0)$ $\mathcal{L}'_{S}([1,2],[0,5]) = 0$ $\mathcal{L}'_{S}([1,6],[2,4]) = (2-1) + (6-4) = 3$ (Guides model's output to include [1, 6])

Octagons: $\mathcal{L}'_{S}(o_{1}, o_{2}) = \sum_{i} ite (c_{ij} - c'_{ij} > 0, c_{ij} - c'_{ij}, 0)$ $o_{1}: \pm v_{i} \pm v_{j} \leq c_{ij}$ $o_1: v_1 - v_2 \le 5$ $o_2: v_1 - v_2 \le 3$ $\mathcal{L}'_S(o_1, o_2) = 5 - 3 = 2$

Precision Enforcing Loss \mathcal{L}'_{P}

 $\mathcal{L}_P'(a_1, a_2)$: Differentiable approximation of how "big" a_2 is as compared to a_1 . Reducing it leads to "smaller" more-precise outputs.

 $\mathcal{L}'_{P}([l_1, u_1], [l_2, u_2]) = (u_2 - l_2) - (u_1 - l_1)$

 $\mathcal{L}'_{P}([1,2],[0,5]) = 5 - 1 = 4$ (Guides model's output to match size of [1,2])

Octagons: $\mathcal{L}'_{P}(o_{1}, o_{2}) = \sum_{i,j} |c_{ij} - c_{ij}'|$ $\begin{array}{c} o_{1}: \pm v_{i} \pm v_{j} \leq c_{ij} \\ o_{2}: \pm v_{i} \pm v_{j} \leq c_{ij}' \end{array}$

lpha and eta are soundness and precision weights that manage the trade-off!

UNSUPERVISED LEARNING OF TRANSFORMERS

$$\min_{\theta} \mathrm{E}_{(X_i) \sim \mathcal{D}} \left[\alpha * \mathcal{L}_{S}^{\prime\prime}(op, X_i, N_{\theta}(X_i)) + \beta * \mathcal{L}_{P}^{\prime\prime}(N_{\theta}(X_i)) \right]$$

Soundness Enforcing Loss $\mathcal{L}_{S}^{\prime\prime}$

 $\mathcal{L}_{S}^{\prime\prime}(op, a_{1}, a_{2})$ should guide a_{2} to be a sound output of op on a_{1} : $op(\gamma(a_{1})) \sqsubseteq_{\mathcal{C}} \gamma(a_{2})$

 $a_1 = [-10, 15]$ $a_2 = [0, 12]$ $op(a_1) = [0, 15]$ 12 $\mathcal{L}_{S}^{"} = 3$

Intervals

op = abs

Octagons

Precision Enforcing Loss $\mathcal{L}_{P}^{"}$

 $\mathcal{L}_P''(a)$ gives a differentiable approximation of the size of a.

Intervals

Octagons

$$\mathcal{L}_P''([l,u]) = (u - l)$$

RESULTS

Supervised Learning

Soundness increases

Weights (α, β)	Interval Abs		Interval Join	
(Soundness, Precision)	Soundness (%)	Imprecision	Soundness (%)	Imprecision
(-, -)	20.03	4.44	3.88	0.16
(1, 1)	26.39	1.57	32.34	40.16
(2, 1)	47.43	5.74	40.53	25.70
(5, 1)	66.88	11.70	63.10	43.58
(7, 1)	84.02	10.39	73.07	113.78
(10, 1)	97.72	18.41	89.24	116.31
(50, 1)	99.99	40.63	99.57	191.72

Precision decreases

Soundness %: Percentage of sound outputs on a test set of 10,000 input-output pairs.

Imprecision: The avg. difference in sizes of intervals produced by the model and the ground truth (for SOUND cases).

Soundness	Precision	Soundness	Imprecision	Soundness %:
Weight (α)	Weight (β)	Measure (%)	Measure	on a test set of 1000 input-output pa
1	1	9.6	49.96	
10	1	36.6	85.30	Improsicione average difference
20	1	49.0	110.51	Imprecision: average difference between the inequality constants of
50	1	64.5	129.26	the model's output and the
100	1	79.0	184.58	ground truth.
250	1	86.3	291.23	O. 0 3 3. 3. 3. 3

Neural Octagon Join (3 variables)

Unsupervised Learning

Weights (α, β)	Interval	Abs	Interval Join	
(Soundness, Precision)	Soundness (%)	Imprecision	Soundness (%)	Imprecision
(-, -)	20.03	4.44	3.91	26.80
(20, 10)	25.04	4.29	38.99	164.61
(30, 10)	63.04	25.86	53.65	219.08
(50, 10)	85.96	36.95	93.03	255.93
(75, 10)	100	73.17	97.95	277.70

Soundness Weight (α)	Precision Weight (β)	Soundness Measure (%)	Imprecision Measure
10	10	20.6	85.30
20	10	35.1	150.51
50	10	57.1	229.26
100	10	80.0	384.58

Octagon affine assignment x = ax + by

Benefits of Differentiability: Invariant Search

Consider a while program: $P = \langle init \rangle$ while (B) do C od

1. $\{y \ge 65.51, \ x - y \le -49.95, -x - y \le 74.89\}$ $2.\{x - y \le 13.239\}$

ILLINOIS