

#### **TELNET Basics**

#### BUPT/QMUL 2010-11-15

Refer to Chapter 24, Textbook







## Agenda

- A brief introduction to TELNET
- Concept of remote/virtual terminal
- TELNET operations
- TELNET protocol
- TELNET options negotiation
- Other remote access technologies





## A Brief Introduction to TELNET



## **Brief Introduction To TELNET**

- Use of TELNET: BBS
- What is TELNET?
- History
- Major Ideas

4



## BBS: Bulletin Board System

- A computer system running software that allows users to connect and log in to the system using a terminal program.
- Once logged in, a user can perform functions such as
  - uploading and downloading software and data,
  - reading news and bulletins,
  - and exchanging messages with other users, either through Email or in public message boards.

## Traditional BBS example:



5







#### What Is TELNET? (1)

- A protocol used to establish a dumb terminal session to another computer on the Internet
- An important Internet application for remote access



9



## What Is TELNET? (2)

- Definition in RFC854
  - The purpose of the TELNET Protocol is to provide a general, bi-directional, byte oriented communications facility.
  - Its primary goal is to allow a standard method of interfacing terminal devices and terminal-oriented processes to each other.
  - It is envisioned that the protocol may also be used for terminal-terminal communication ("linking") and process-process communication (distributed computation).

10



#### TELNET vs. telnet

- TELNET is a protocol that provides "a general, bi-directional, eight-bit byte oriented communications facility"
- telnet is a program that supports the TELNET protocol over TCP
- Many application protocols are built upon the TELNET protocol



## The History Of Telnet

- Telnet is simple
  - Total pages of RFC 854 is 15
  - HTTP (we will see later) is 176 pages
- The idea of option negotiation was a very good design feature
  - Enables telnet to evolve to meet new demands without endless new versions of basic protocol
- Currently over 100 RFCs on telnet and its options

11



## Major Ideas Of TELNET

- The concept of a NVT (Network Virtual Terminal)
  - Providing a standard interface to remote systems
- The principle of negotiated options
  - Enabling Telnet to evolve to meet new demands without endless new versions of basic protocol
- A symmetric view of terminals and processes
  - Allowing an arbitrary program to become a client



Network Virtual Terminal

Command/Data
Server
Process

Standard language
Connection
TCP

14



#### Concept Of Remote / Virtual Terminal

1

## **Remote Terminal Access**

- Early motivation for networks was remote access to interactive systems
- Dumb terminals (see <u>figure</u> on the next slide)
  - Keyboard and screen with primitive communication hardware
  - Local host computer establish connection to remote host
- The challenge is that terminals and host systems were not standardized
  - local terminal was not speaking the same language as the remate best



. .

15

## Telnet Operation Environment On Early Internet



Pr

#### Problem

 Lack of common language between the terminal and the remote host



17



## **Network Virtual Terminal**

- The approach to solve the problem of lack of a common language was to define a common language
   Virtual terminal protocol (VTP)
- Transform local characteristics into standardized form
  - Network virtual terminal (NVT)
- Imaginary device
  - Well defined set of characteristics
- Both sides generate data and control signals in native language but translates them to NVT form
  - The sending side translates native data and control signals into NVT form before sending out
  - the receiving side gets the NVT data and signals and translates into its native form

19

21





## **NVT Format**

- NVT use two sets of characters: data and control
- Format of data characters



Format of control characters



4

## **TELNET Operations**

22



## **TELNET Operations**

- Connection management
  - Connection request, establish and terminate
  - Telnet uses TCP (port 23) by default
- Negotiation
- To determine mutually agreeable set of characteristics and options
- Exchange of control information (e.g. end of line), commands and transfer of data between two correspondents
- A typical telnet session is exchange of data between terminal and host
  - Multiple rounds
  - Not only for accessing remote accounts; was also used for interactive system
    - Try "telnet bbs.byr.edu.cn"



#### **TELNET Protocol**

23



#### Related RFCs

- Basic protocol
  - RFC854: Telnet Protocol Specification
- Options
  - RFC855: Telnet Option Specifications
  - RFC856: Telnet Binary Transmission
  - RFC857: Telnet Echo Option
  - RFC858: Telnet Suppress Go Ahead Option
  - RFC859: Telnet Status Option
  - .



#### Some Features

- TCP connection: directed toward port 23 of the server being asked to perform a service
- Data and control multiplexed over the same connection
- NVT representation of a generic terminal
- Negotiated options provides a standard language for communication of terminal control functions

25

26



#### TELNET Protocol

- Transmission of data
- Standard representation of control functions



## Transmission Of Data (1)

Data path from the user's keyboard to the remote system



27



## Transmission Of Data (2)

- Data sent half-duplex
  - Terminal-to-process, newline signifies end of user input
  - Process-to-terminal, Telnet Go Ahead(GA) signal used
- Underlying TCP full duplex
  - Control signals sent any time regardless of current data direction
- Data sent as stream of 8-bit bytes
  - No other formatting
- Control signals and other non-data information sent as Telnet commands
  - Byte strings embedded in data stream
  - User control signals, commands between Telnet processes as part of protocol and option negotiation and subnegotiation

4

## Control Functions (1)

- TELNET includes support for a series of control functions commonly supported by servers
- This provides a uniform mechanism for communication of (the supported) control functions
- You can imagine them as some extra virtual keys in the NVT keyboard

29



## Control Functions (2)

- Interrupt Process (IP)
  - Suspend/interrupt/abort/terminate process
- Abort Output (AO)
  - allow a process, which is generating output, to run to completion but without sending the output to the user's terminal
- Are You There (AYT)
  - check to see if system is still running
- Erase Character (EC)
  - delete last character sent
- typically used to edit keyboard input
- Erase Line (EL)
  - · delete all input in current line
  - typically used to edit keyboard input

31

33



## Control Functions (3) – delivery

| Command | Decimal<br>Codes | Description                                  |
|---------|------------------|----------------------------------------------|
| IAC     | 255              | Interpret next octet as command              |
| DONT    | 254              | Denial of request to perform specific option |
| DO      | 253              | Approval to allow specific option            |
| WONT    | 252              | Refusal to perform specific option           |
| WILL    | 251              | Agreement to perform specific option         |
| SB      | 250              | Start of option subnegotiation               |
| GA      | 249              | Go ahead                                     |
| EL      | 248              | Erase line                                   |
| EC      | 247              | Erase character                              |
| AYT     | 246              | Are you there                                |
| AO      | 245              | Abort output                                 |
| IP      | 244              | Interrupt process                            |
| BRK     | 243              | Break                                        |
| DMARK   | 242              | Data mark                                    |
| NOP     | 241              | No operation                                 |
| SE      | 240              | End of subnegotiation                        |
| EOR     | 239              | End of record                                |



#### Control Functions (4) – IAC

- TELNET command structure
  - at least a two byte sequence: the IAC (Interpret as Command) escape character followed by the code for the
- The IAC code is 255
  - If a 255 is sent as data it must be followed by another 255
- Looking for a command
  - Each receiver must look at each byte that arrives and look for an IAC
  - If IAC is found and the next byte is "IAC" a single data byte (value 255) is presented to the application/ terminal
     If IAC is followed by any other code the TELNET layer interprets this as a command



#### Control Functions (5) DO, DONT, WILL, WONT

- Used for options negotiation
- Examples

| Sender         | Receiver | Meaning                                                        |  |
|----------------|----------|----------------------------------------------------------------|--|
| WILL →         | ← DO     | Sender wants to active a option, and receiver agrees           |  |
| WILL → ← DON'T |          | Sender wants to active a option, and receiver refuses          |  |
| DO →           | ← WILL   | Sender wants receiver to active a option, and receiver agrees  |  |
| DO →           | ← WONT   | Sender wants receiver to active a option, and receiver refuses |  |

36



## **TELNET Options Negotiation**



#### **Motivations**

- All NVTs support a minimal set of capabilities
- Some terminals have more capabilites than the minimal set
- The two endpoints negotiate a set of mutually acceptable options (character set, echo mode, etc)
- The set of options is not part of the TELNET protocol, so that new terminal features can be incorporated without changing the TELNET protocol



## **Option Examples**

- echo modes
  - Keyboard input be echoed on the terminal side or not
- Line mode vs. character mode
  - One line or one character per transmission
- character set (EBCDIC vs. ASCII)
  - EBCDIC Extended Binary-Coded Decimal Interchange Code
  - ASCII American Standard Code for Information Interchange

4

## **Options Negotiation**

- Each option is assigned a byte value
- The DO, DONT, WILL, and WONT commands are used to negotiate options
- Options negotiation is symmetric
- Steps must be taken to avoid option processing loops
- Subnegotiations are used when more information is needed, such as when negotiating terminal type, window size, etc

37

38

# 1

# Example: Negotiation of Echo Option



39

41

# TELNET Options List (1) Option Name References

| Орион | IVALING                            | References |
|-------|------------------------------------|------------|
| 0     | Binary Transmission                | RFC 856    |
| 1     | Echo                               | RFC 857    |
| 2     | Reconnection                       | NIC 50005  |
| 3     | Suppress Go Ahead                  | RFC 858    |
| 4     | Approx Message Size Negotiation    | ETHERNET   |
| 5     | Status                             | RFC 859    |
| 6     | Timing Mark                        | RFC 860    |
| 7     | Remote Controlled Trans and Echo   | RFC 726    |
| 8     | Output Line Width                  | NIC 50005  |
| 9     | Output Page Size                   | NIC 50005  |
| 10    | Output Carriage-Return Disposition | RFC 652    |
| 11    | Output Horizontal Tab Stops        | RFC 653    |
| 12    | Output Horizontal Tab Disposition  | RFC 654    |
| 13    | Output Formfeed Disposition        | RFC 655    |
| 14    | Output Vertical Tabstops           | RFC 656    |
| 15    | Output Vertical Tab Disposition    | RFC 657    |
| 16    | Output Linefeed Disposition        | RFC 658    |
| 17    | Extended ASCII                     | RFC 698    |
| 18    | Logout                             | RFC 727    |
| 19    | Byte Macro                         | RFC 735    |

40

## TELNET Options List (2)

| Option | Name                        | References        |
|--------|-----------------------------|-------------------|
| 20-    | Data Entry Terminal         | RFC 1043, RFC 732 |
| 21     | SUPDUP                      | RFC 736, RFC 734  |
| 22     | SUPDUP Output               | RFC 749           |
| 23     | Send Location               | RFC 779           |
| 24     | Terminal Type               | RFC 1091          |
| 25     | End of Record               | RFC 885           |
| 26     | TACACS User Identification  | RFC 927           |
| 27     | Output Marking              | RFC 933           |
| 28     | Terminal Location Number    | RFC 946           |
| 29     | Telnet 3270 Regime          | RFC 1041          |
| 30     | X.3 PAD                     | RFC 1053          |
| 31     | Negotiate About Window Size | RFC 1073          |
| 32     | Terminal Speed              | RFC 1079          |
| 33     | Remote Flow Control         | RFC 1372          |
| 34     | Linemode                    | RFC 1184          |
| 35     | X Display Location          | RFC 1096          |
| 36     | Environment Option          | RFC 1408          |
| 37     | Authentication Option       | RFC 2941          |
| 38     | Encryption Option           | RFC 2946          |

1

## A Telnet Session Example (1)

C:\Documents and Settings\Administrator>telnet 192.168.1.253

Red Hat Enterprise Linux AS release 4 <Nahant Update 1>
Kernel 2.6.9-11.Elsmp on an i686

Login: shiyan

Password:

Last login: Sun Nov 11 17:48:30 from 192.168.1.168

[shiyan@localhost -]\$













## Summary (1) – usages of telnet

- Use Internet accounts you may have on remote computers
  - you need an account (login ID) and password on the remote computer to permit access
- Use free services accessible with telnet, e.g.
  - library catalogues
  - databases
  - BBS (Bulletin Board System)



#### Summary (2) - Disadvantages of telnet

- Poor user interface
  - Based on dumb terminal
  - Text-only display
  - Monochrome
    - One color for text, one for background
  - Have to type command-line commandsOften have complex syntax
  - Not very secure, SSH made enhancement
    - TELNET does not encrypt any data sent over the connection (including passwords)

49

51



#### Other Remote Access Technologies

50



#### Other Remote Access Technologies

- Remote login in text-based system
  - telnet
  - SSH
  - Rlogin
- Remote desktop in windowing system
  - VNC (Virtual Network Computing)
  - RDP (Remote Desktop Protocol)



## SSH (1) – brief information

- Secure Shell
- Command line terminal connection tool
- All traffic encrypted
- Both ends authenticate themselves to the other end
- Ability to carry and encrypt non-terminal traffic
- Private key kept on client, public key stored on server
- Now, it is an IETF standard
  - RFC4251, The Secure Shell (SSH) Protocol Architecture

52



#### SSH (2) – two enhancements of telnet

- Providing secure communications
- Providing users with the ability to perform additional, independent data transfer over the same connection that is used for remote login



#### SSH (3) – three major mechanisms

- A transport layer protocol that provides sever authentication, data confidentiality, and data integrity with perfect forward secrecy
- A user authentication protocol that authenticates the user to the server
- A connection protocol that multiplexes multiple logical communications channels over a single underlying SSH connection
  - Port forwarding, could be used as a secure tunnel

53





55





## Other Ways Of Remote Access

- Except telnet, there are other ways
  - rlogin family utility
  - VNC (Virtual network computing)
  - RDP (Remote Desktop Protocol)
- Comparison with Telnet



## Helpful URLs

- RFCs
  - http://www.ietf.org/
- Useful utilities

  - http://bj.onlinedown.net/sort/50\_1.htm
     http://winfiles.search.com/search?cat=316&tag=ex.sa.fd.srch.wf&q=TELNET
- About telnet
  - http://www.52dot.com/other/network/TELNET/
- About SSH
  - http://www.ssh.com
  - http://www.openssh.org
- About realVNC
  - http://www.realvnc.com/