Prostorová akustika

Prostorová akustika

- zabývá se šířením zvuku v uzavřených prostorech
- představuje oblast zájmu vědy, umění, architektury i psychologie

zásadní problém: vlnová délka může být jak menší, srovnatelná i větší než rozměry překážek/rozměrů místností

Krátká historie architekturní akustiky

Antika – otevřené arény návrh založen na studiu principu odrazu vlny a dozvuku kruhová či eliptická geometrie – vhodné rozmístění diváků odrazivé plochy v blízkosti posluchačů

Epidauros

Italská renesance – uzavření poslechového prostoru

- více odrazů dozvuk (optimalizace)
- větší nároky na zvuk (rozvoj hudebních nástrojů)

La Fenice

"krabice od bot" – 19. století a i dnes

Royal Festival Hall

20. století – analytický přístup k řešení akustiky prostorů

Wallace-Clément Sabine, první čtvrtina 20. stol. první definice dozvuku (doba od identifikace zdroje až k úplnému zániku zvuku v daném prostoru), spojil ji s geometrií a kvalitou povrchu stěn, též studium odrazů.

druhá čtvrtina 20. stol. – "není to tak jednoduché" před druhou světovou válkou – modální teorie stacionární i přechodové jevy, jednoduché geometrie

třetí čtvrtina 20. stol. – rozvoj metrologie studie sálů pomocí maket, počítačové modelování metody aproximace, zrcadlení zdrojů, divergentní svazky paprsků

poslední čtvrtina – začíná zájem o akustiku malých prostor počítače mají v návrhu hlavní slovo

přesné řešení akustického pole v celém spektru v netriviální geometrii prostoru – tedy v reálu – vlastně nemožné

Verizon Hall v Kimmel Center - Philadelphia http://www.kimmelcenter.org/building/

- Auditorium ve tvaru těla houslí
- Nastavitelné akustické parametry
- Koncertní síň je společně s divadelním sálem zastřešena

Vlnová délka pro slyšitelné kmitočty

20	100	500	1k	2k	5k	10k	20k	50k
17m	3,4m	68cm	34cm	17cm	6,8cm	3,4cm	1,7cm	6,8mm

Oblast hluku

řeč a hudba

perkusní signály

- Teoretický přístup: 1) vlnový pro nízké kmitočty
 - 2) statistický "širší střední pásmo"
 - 3) geometrický pro počátky přechodových jevů

Vlnová akustika

vychází z řešení vlnové rovnice (tedy pouze jednoduché geometrie)

zkoumání vlastních módů

$$\left[\Delta - \frac{1}{c_0^2} \frac{\partial^2}{\partial t^2}\right] p(\vec{r}, t) = f(\vec{r}, t)$$

$$f_{x,y,z} = \frac{c_0}{2} \cdot \sqrt{\left(\frac{n_x}{a}\right)^2 + \left(\frac{n_y}{b}\right)^2 + \left(\frac{n_z}{c}\right)^2}$$

(z řešení vlnové rovnice pro dutý kvádr s rozměry a,b,c)

Vlastní kmitočty

na nízkých kmitočtech působí jako hřebenový filtr

útlum vlastních kmitočtů: pohlcováním stěnami, útlumem ve vzduchu, (kvalita rezonance)

na vyšších kmitočtech zvyšují svou hustotu - pro dobré poslechové podmínky – přechod jedné rezonanční křivky v druhou – co nejplošší křivka

konstanta tlumení – k = 6,91T, šířka pásma $\delta = k/\pi$, pak prostor je použitelný od kmitočtu (Schroederův kmitočet)

$$f = \sqrt{\frac{c^3}{2\pi V \delta}} = 2000\sqrt{\frac{T}{V}}$$

doporučené poměry délek stěn

malé objemy: 1:b:h = 2,5:1,5:1

velké objemy: 1:b:h = 3:2:1

(existuje hodně jiných názorů)

Geometrická akustika

intuitivní, nejstarší, pouze pro přechodové stavy v prostoru

Přístup k řešení:

- metoda paprsků
- metoda zrcadlení zdrojů
- metoda konečných prvků
- metoda hraničních prvků

zvukové paprsky

- analogie s optikou
- mají směr normály k vlnoploše
- sledování jejich dráhy od zdroje k přijímači
- při každém odrazu od stěny se jeho energie skokem sníží.
- v homogenním, izotropním prostředí, které je v klidu, jsou paprsky přímkové

cíl: konstrukce **impulzní odezvy** mezi místem zdroje a místem příjmu - základ objektivního popisu prostoru v moderní akustice, úplný popis.

Použití v **auralizaci** – konvoluce impulzní odezvy se "suchou" hudbou

- možnost simulace reprodukce v prostoru, který je pouze matematicky modelován
- možnost použití fyzických modelů ve zmenšeném měřítku
- pomoc při sofistikovanějším návrhu poslechových síní

hlavní slabina – modelování odrazu od stěn (zrcadlový, difúzní, hybridní). Difrakce (vliv sedadel, lóží...) se neuvažuje.

hustota odrazů se zvyšuje s časem kvadraticky, od určitého okamžiku není možno spočítat všechny odrazy. Limit použitelnosti – 200 ms. Pak model statistický.

model impulzní odezvy: přímý zvuk, první odrazy, dozvuk

Statistická akustika

zjednodušení založeno na energetických veličinách hustotě zvukové energie

difúzní pole

Pole vzniklé z odražených vln, v prostoru s hodně odrazivými stěnami. Intenzita a energie jsou uniformní a v prostoru izotropní, prostor je velký, bez symetrií, axiální či tangenciální módy jsou potlačeny, hlavně módy kosé, má dlouhou dobu dozvuku

statistický přístup: (podmínky – difúzní pole, pole odražených vln)

- energie dána součtem středních hodnot odražené energie
- hustota zvukové energie je všude stejně veliká
- úhly příchodu zvukové energie do daného bodu jsou všechny stejně pravděpodobné
- vyzařování a pohlcování je kontinuální

zákon zachování energie v uzavřeném prostoru:

$$P = V \frac{dw}{dt} + P_S$$

Vlna je charakterizována směrem šíření, který je popsán směrovými úhly (Θ, Φ) , amplitudou tlaku A, intenzitou $(absA_{eff})^2/\rho_0c_0$.

Celkový tlak v daném bodě je dán superpozicí všech rovinných vln:

$$p = \int_{0}^{2\pi} d\Phi \int_{0}^{\pi} A \exp(-jkr + j\omega t) \sin\Theta d\Theta$$

Hustota energie w je v daném bodě sumou energií jednotlivých rovinných vln:

$$w = \frac{1}{\rho_0 c_0^2} \int_0^{2\pi} d\Phi \int_0^{\pi} \left| A_{eff} \right|^2 \sin \Theta d\Theta$$

tok energie jednotkou plochy, která je normálou na daný směr, tedy akustická intenzita v tomto směru – suma intenzit:

$$I = \frac{1}{\rho_0 c_0} \int_0^{2\pi} d\Phi \int_0^{\pi} \left| A_{eff} \right|^2 \cos \Theta \sin \Theta d\Theta$$

pokud platí podmínka, že dopad vln ze všech směrů má stejnou pravděpodobnost, je amplituda nezávislá na směrových úhlech (platí i ve fázi). Proto:

$$w = 4\pi \frac{A_{eff}^2}{\rho_0 c_0^2} = \frac{p_{rms}^2}{\rho_0 c_0^2} \quad a \quad I = \pi \frac{A_{eff}^2}{\rho_0 c_0} = \frac{p_{rms}^2}{4\rho_0 c_0}$$

a tedy
$$4I = c_0 w$$

Zákon zachování energie v uzavřeném prostoru

Definice činitel zvukové pohltivosti pomocí dopadající a odražené energie:

$$lpha = rac{W_{poh}}{W_{dop}}$$

A.. Celková absorbce, $A = \alpha.S$

Zákon zachování energie mezi dodávanou a absorbovanou energií a změnou za jednotku času, řešení variací konstant:

$$\frac{d}{dt} \left[\frac{4VI(t)}{c_0} \right] = P_0(t) - AI(t) \qquad I(t) = \frac{c_0}{4V} e^{-\frac{Ac_0}{4V}t} \int_{-\infty}^{t} e^{\frac{Ac_0}{4V}\tau} P_0(\tau) d\tau$$

Pokud se vyzařovaný (dodávaný) výkon mění jen málo, pak:

$$I(t) = \frac{P_0(t)}{A}$$

Při vypnutí zdroje v čase t = 0 platí pro kladná t:

$$I(t) = \frac{c_0}{4V} e^{-\frac{Ac_0}{4V}t} \int_{-\infty}^{0} e^{\frac{Ac_0}{4V}\tau} P_0(\tau) d\tau = e^{-\frac{Ac_0}{4V}t} \frac{P_0(0)}{A}$$

Dozvukový proces

Definice doby dozvuku

Doba, za kterou poklesne hladina akustického tlaku o 60 dB po vypnutí zdroje budícího difúzní pole

Na základě předchozích vztahů je možno ji vyjádřit (Sabine):

$$T = 0.16 \frac{V}{A} = 0.16 \frac{V}{\alpha S}$$

Pole v uzavřené místnosti

Zdroj se nachází v počátku souřadné soustavy.

Akustické pole vyzařované bodovým zdrojem ve stacionárním stavu

velmi blízko zdroje

daleko od zdroje

$$I = \frac{|p|^2}{2\rho_0 c_0} = \frac{P_0}{4\pi r^2} \qquad I(t) = \frac{P_0(t)}{A}$$

Intenzita se neměří přímo, ale přes střední kvadratickou hodnotu akustického tlaku:

$$p_{rms}^2 = \rho_0 c_0 I$$
 $p_{rms}^2 = \rho_0 c_0^2 W = 4\rho_0 c_0^- I$

a proto vztah mezi vyzařovaným výkonem zdroje a střední kvadratickou hodnotou tlaku:

$$p_{rms} = \sqrt{\rho_0 c_0 I} = \sqrt{\rho_0 c_0 \frac{P_0}{4\pi r^2}} \qquad p_{rms} = \sqrt{4\rho_0 c_0 I} = \sqrt{4\rho_0 c_0 \frac{P_0}{A}}$$
 volné pole difúzní pole

Jejich porovnáním je možno zjistit hranice mezi volným a difúzním polem (dozvuková vzdálenost):

$$r_L = \sqrt{\frac{A}{50}}$$

Doba dozvuku dle Sabina

$$T = 0.164 \frac{V}{A}$$

Nevyhovuje pro hodnoty α blízké 1 (když dosadíme do vzorce, dostaneme nenulovou dobu dozvuku i když by se mělo vše pohltit)

proto T dle Sabina nevyhovuje pro $\alpha>0,3$

Doba dozvuku dle Eyringa

předpoklad skokového pohlcování (ne kontinuální)

$$T_E = 0.164 \frac{V}{-S \ln(1-\alpha)}$$

Doba dozvuku dle Milingtona (pro $\alpha > 0.8$)

$$T_{M} = 0.164 \frac{V}{-\sum_{i=1}^{n} S_{i} \ln(1-\alpha_{i})}$$

Pro prostory s velkým objemem je nutno k pohltivosti stěn připočítat pohltivost vzduchu 4mV

Průběh činitele útlumu m (objemová pohltivost)

Příklad použití v Sabinově vzorci:

$$T = 0.164 \frac{V}{\alpha S + 4mV}$$

Hodnoty činitele zvukové pohltivosti běžných materiálů

	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
Betonový blok						
neupravený	0.36	0.44	0.31	0.29	0.39	0.25
Okenní sklo	0.35	0.25	0.18	0.12	0.07	0.04
Těžké závěsy	0.14	0.35	0.55	0.72	0.7	0.65
Podlaha terasy	0.01	0.01	0.02	0.02	0.02	0.02
Závěsná akustická						
dlaždice (příklad)	0.76	0.93	0.83	0.99	0.99	0.94

Silný koberec a závěsy mohou pohlcovat pouze na vyšších kmitočtech

Nízké kmitočty se utlumí rezonančními prvky

základní skupiny pohltivých materiálů:

- porézní
- kmitající panely a membrány
- rezonátory
- rozptylové prvky (rozbití módů, nasměrování vln na jiné pohltivé prvky)

pohlcování – nevratná přeměna akustické energie v jinou (nakonec téměř vždy v teplo)

- tření pohyb podél plochy (limitní vrstvy). Plocha musí být co největší porézní látky.
- pokles akustického tlaku (relaxační ztráty), zvýšení celkového tlaku a následkem toho snížení ak. tlaku snížením energie jejím odvodem tepla nebo jeho vyrovnáním
- nepružná deformace těles deformační hystereze