Lecture 3

Exponential, sinusoids, complex exponentials, and the delta function

Preview of today's lecture

- CT sinusoids and exponentials
 - → Determine the key parameters of a complex sinusoid and exponential
 - → Sketch a complex exponential based on its form
- ◆ Unit-impulse function also known as the Dirac delta function
 - ★ Explain the properties of delta unit impulse function
 - Exploit the sifting property to simplify expressions with deltas
 - ★ Exploit the integration property to simplify expressions with deltas

From Lecture #2: two common functions

Examples: Shifting, inverting and scaling

♦ Let

$$p(t) = \text{rect}(t - 1/2)$$

◆ Find and plot

$$p(-t)$$

$$p(-t+1)$$

$$p(-2t+1)$$

Connections back to ECE 45

Lectures 2 - 4 working with signals

Lectures 5 - 7 LTI systems in the time domain

Lectures 11-12 LTI systems in the frequency domain

Lectures 8 - 10 Fourier series

Lectures 13 - 17 Fourier transform

_	Date▼	Theme ▼	Topic 🔻	Readings v	Out 🔻	In 🔻
1	1/7	Signals	Signals, systems, circuits and phasors	1.1	HW1	· · · · ·
2	1/9	Signals	Rectangle, step functions, signal transformations, periodic, even and odd	1.2	HW2	HW1
3	1/14	Signals	Exponential, sinusoids, complex exponentials, phasors	1.3		
4	1/16	Signals	Dirac delta, Kronecker delta, Sha function	1.4	HW3	HW2
5	1/21	LTI in time	Linear and time-invariant systems	2.1		
6	1/23	LTI in time	Convolution, convolution with a sinusoid, connection to phasors	2.2	HW4	HW3
7	1/28	LTI in time	Convolution properties	2.3		
8	1/30	Fourier series	Fourier series	3.1 - 3.3	HW5	HW4
	2/4		Midterm 1			
9	2/6	Fourier series	Fourier series convergence and properties	3.4	HW6	HW5
10	2/11	Fourier series	Fourier series properties	3.5		
11	2/13	LTI in frequency	Frequency response of LTI systems	3.9	HW7	HW6
12	2/18	LTI in frequency	Filters, bode plots	3.10, 6.2.3		
13	2/20	Fourier transform	Fourier transform	4.1-4.2	HW8	HW7
	2/25		Midterm 2			
14	2/27	Fourier transform	Fourier transform properties	4.3	HW9	HW8
15	3/4	Fourier transform	Rectangle and sinc functions	4.3		
16	3/6	Fourier transform	Convolution property	4.4	HW10	
17	3/11	Fourier transform	Multiplication property	4.5		
18	3/13	Sampling	Sampling theorem	7.1		HW10
	3/19		Final exam Tuesday 3-6pm			

CT sinusoids and exponentials

Learning objectives

- Determine the key parameters of a complex sinusoid and exponential
- Sketch a complex exponential based on its form

CT real sinusoid

amplitude > 0 phase
$$x(t) = C\cos(\omega_0 t + \theta)$$
 frequency in radians/s

Periodic with period
$$T=rac{2\pi}{\omega_0}$$

Complex numbers

$$C=x+jy$$
 Cartesian
$$=|C|\ e^{j\theta} \qquad {
m Polar}$$

Euler's formula

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

$$C = |\underline{C|\cos(\theta)} + j|\underline{C|\sin(\theta)}$$

$$\overline{\text{Re}\{C\}} \quad \overline{\text{Im}\{C\}}$$

https://en.wikipedia.org/wiki/Atan2

$$\operatorname{atan2}(y,x) = \begin{cases} \arctan(\frac{y}{x}) & \text{if } x > 0, \\ \arctan(\frac{y}{x}) + \pi & \text{if } x < 0 \text{ and } y \geq 0, \\ \arctan(\frac{y}{x}) - \pi & \text{if } x < 0 \text{ and } y < 0, \\ +\frac{\pi}{2} & \text{if } x = 0 \text{ and } y > 0, \\ -\frac{\pi}{2} & \text{if } x = 0 \text{ and } y < 0, \\ \operatorname{undefined} & \text{if } x = 0 \text{ and } y = 0. \end{cases}$$

CT complex sinusoid

complex frequency in radians/s

$$x(t) = Ce^{j\omega_0 t} \quad \text{period } T = \frac{2\pi}{\omega_0}$$

$$= |C|e^{j\theta}e^{j\omega_0 t}$$

$$= |C|e^{j(\omega_0 t + \theta)} \quad \text{phase}$$

$$= |C|\cos(\omega_0 t + \theta) + j|C|\sin(\omega_0 t + \theta)$$

real and imaginary portions related through Eulers

Note: if the amplitude C is negative, then we could simply compensate for the negative by shifting the phase by pi

Visualizing a complex sinusoid

CT real exponential signal

Increasing exponential (a > 0, C > 0)

Decaying exponential (a < 0, C > 0)

CT complex exponential: general case

$$C = c_{\sigma} + jc_{\omega}$$
, cartesian $x(t) = Ce^{at} = |C|e^{j\theta}e^{(r+j\omega_0)t}$
 $= |C|e^{j\theta}$, polar $a = r + j\omega_0$, cartesian $x(t) = |C|e^{rt}e^{j(\omega_0 t + \theta)}$

General case includes real exponential, real sinusoid, and complex sinusoid as special cases

Visualizing CT complex exponentials

$$x(t) = C e^{rt} e^{j(\omega_0 t + \theta)}$$

 $Re\{x(t)\} = |C|e^{rt}\cos(\omega_0 t + \theta)$ $Im\{x(t)\} = |C|e^{rt}\sin(\omega_0 t + \theta)$

Increasing or decaying exponential "envelope"

Complex sinusoid

$$e^{rt}$$
 is the "damping" term $\longrightarrow \begin{cases} r > 0 \rightarrow \text{ blows up} \\ r < 0 \rightarrow \text{ decays to zero} \end{cases}$

Visualizing CT complex exponentials in 3D

Example: Sketching a complex exponential

◆ Consider a complex exponential with the following values

$$x(t) = Ce^{at}$$

$$C = 3 - j, \quad a = 1 + 10j$$

- ♦ The problem:
 - + Express x(t) in terms of its envelope and complex sinusoidal parts
 - \rightarrow Express the real and imaginary parts of x(t)
 - + Express the magnitude of x(t)
 - \rightarrow Plot all of these from time t = 0 to t = 3, showing the envelope

Solution I

• Convert C = 3 - j to polar form

$$\operatorname{atan2}(y,x) = egin{cases} rctan(rac{y}{x}) & ext{if } x > 0, \ rctan(rac{y}{x}) + \pi & ext{if } x < 0 ext{ and } y \geq 0, \ rctan(rac{y}{x}) - \pi & ext{if } x < 0 ext{ and } y < 0, \ +rac{\pi}{2} & ext{if } x = 0 ext{ and } y > 0, \ -rac{\pi}{2} & ext{if } x = 0 ext{ and } y < 0, \ ext{undefined} & ext{if } x = 0 ext{ and } y = 0. \end{cases}$$

$$C = \sqrt{3^1 + 1}e^{j\operatorname{atan2}(-1,3)}$$
$$= \sqrt{10}e^{-j0.3218}$$

• Substitute to get the general form (recall a = 1 + 10j)

$$x(t) = Ce^{at}$$

$$= \sqrt{10}e^{-j0.3218}e^{t(1+10j)}$$

$$= \sqrt{10}e^{t}e^{j(10t-0.3218)}$$

Solution 2

◆ Apply Euler's to get real and imaginary parts:

$$Re\{x(t)\} = \sqrt{10}e^t \cos(10t - 0.3218)$$
$$Im\{x(t)\} = \sqrt{10}e^t \sin(10t - 0.3218)$$

◆ Use the general form to find the magnitude

$$|x(t)| = \sqrt{10}e^t$$

Sketch the signal behavior

Real and imaginary parts are just $\pi/2$ shifts (magnitude is just the positive envelope)

$$Re\{x(t)\} = \sqrt{10}e^t \cos(10t - 0.3218)$$

$$Im\{x(t)\} = \sqrt{10}e^t \sin(10t - 0.3218)$$

MATLAB to create these plots

```
C = 3-i;
a = 1 + 10i;
t = 0:.01:3; % equivalent to linspace (0,3,101)
x = C*exp(a*t);
env = abs(C)*exp(real(a) *t);
figure(1);
plot(t,real(x),t,env,t,-env);
xlabel('time');
ylabel('Real part of x(t) and its envelope');
figure(2);
plot(t,imag(x),t,env,t,-env);
xlabel('time');
ylabel('Imaginary parts of x(t) and its envelope');
```

CT exponential and sinusoidal signals in summary

- Complex exponentials and sinusoids
 - Important building blocks for future lectures
 - → Can be understood through Euler's identity
 - → Related to real exponentials and real sinusoids
 - → Will become close friends by the end of the course ©
- ◆ You should be able to
 - → Identify complex exponentials and complex sinusoids
 - → Determine the period of a complex sinusoid
 - → Plot a complex exponential sketch and in MATLAB

Unit-impulse function also known as the Dirac delta function

Learning objectives

- Explain the properties of delta unit impulse function
- Exploit the sifting property to simplify expressions with deltas
- Exploit the integration property to simplify expressions with deltas

Unit step function

$$u(t) = \begin{cases} 0 & t < 0 \\ 1 & t > 1 \end{cases}$$

Rectangle function

$$rect(t) = \begin{cases} 0, & |t| > \frac{1}{2} \\ 1, & |t| \le \frac{1}{2} \end{cases}$$

Consider the following sequence

Dirac delta or unit-impulse function

Delta function is a generalized function that requires some care

Unit area property

$$\int_{-\infty}^{\infty} \delta(t)dt = 1$$

Connection to the unit step function

$$\frac{du(t)}{dt} = \delta(t)$$

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$

Sifting property

Avoid common error: be sure to leave in delta function!

Example

$$x(t)\delta(t) = x(0)\delta(t)$$

$$x(t)\delta(t - t_0) = x(t_0)\delta(t - t_0)$$

Sifting property example

Consider the following signal

$$x(t) = 2t$$

Find a simplified expression for

$$y(t) = x(t)(\delta(t-2) + \delta(t-4))$$

and plot the result

We draw deltas like this

Sifting property example

$$x(t) = 2t$$

$$y(t) = x(t)(\delta(t-2) + \delta(t-4))$$

$$= 2t(\delta(t-2) + \delta(t-4))$$

$$= 2t\delta(t-2) + 2t\delta(t-4)$$

$$= 4\delta(t-2) + 8\delta(t-4)$$

We label deltas like this

Integration property

$$\int_{-\infty}^{\infty} x(\tau)\delta(\tau)d\tau = x(0)$$

$$\int_{-\infty}^{\infty} x(\mathbf{t} - \tau)\delta(\tau)d\tau = x(\mathbf{t})$$

There are <u>no delta</u>
<u>functions</u> in the final
expression, they were
integrated out

Integration property examples

◆ Simplify the following expressions

$$\int_{-\infty}^{\infty} \cos\left(\frac{\pi t^2}{2}\right) \delta(t+2) dt$$

$$\int_{-\infty}^{\infty} \delta(t-2)\delta(t+2)dt$$

$$\int_{-\infty}^{\infty} x(\tau)\delta(t-\tau)d\tau$$

Integration property examples

Simplify the following expressions

$$\int_{-\infty}^{\infty} \cos\left(\frac{\pi t^2}{2}\right) \delta(t+2) dt \qquad \int_{-\infty}^{\infty} \cos\left(\pi \frac{(-2)^2}{2}\right) \delta(t+2) dt = \cos(2\pi) = 1$$

$$\int_{-\infty}^{\infty} \delta(t-2)\delta(t+2)dt$$

$$\int_{-\infty}^{\infty} x(\tau)\delta(t-\tau)d\tau \qquad \qquad x(t)$$

Time scaling the delta function (1/3)

lacktriangle What is $\int_{-\infty}^{\infty} \delta(a\tau) d\tau$?

• Suppose that a > 0

$$\int_{-\infty}^{\infty} \delta(a\tau)d\tau = \int_{-\infty}^{\infty} \frac{1}{a} \delta(t)dt$$
$$= \frac{1}{a}$$

Time scaling the delta function (2/3)

lacktriangle Suppose that a < 0

$$\int_{-\infty}^{\infty} \delta(a\tau)d\tau = \int_{-\infty}^{\infty} \frac{1}{-a} \delta(t)dt$$
$$= \frac{1}{-a}$$

Time scaling the delta function (3/3)

lacktriangle Conclude that for any real value $\,a\,$

$$\int_{-\infty}^{\infty} \delta(a\tau)d\tau = \frac{1}{|a|}$$

$$\delta(at) = \frac{1}{|a|}\delta(t)$$

Cautionary notes on the delta function

- ◆ The unit-impulse function, also called the Direct delta function, is really a generalized function
 - + It does not really behave like a normal function
 - + It is either zero or undefined
- lacktriangle We should technically only be using $\delta(t)$ under the integral sign
 - + It is well defined in the integral sign
 - → Some Professors will complain if not in the integral sign (but not me)
 - + Take real analysis in the math department for further enlightenment
- ◆ Despite these quirks, the delta function is extremely useful for modeling and understanding signals and systems
 - "All models are wrong, but some are useful" George Box (statistician)

Summary of the delta function

- ◆ Unit-impulse or Dirac delta in important basic signal
 - → Generalized function of time
- Sifting with deltas pulls out the signal value but leaves the delta

$$x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$$

Integrating with deltas eliminates the delta and gives a value

$$\int_{-\infty}^{\infty} x(t)\delta(t-t_0)dt = x(t_0)$$