Cursos de Deep Learning y CUDA

Manuel Ujaldón

Catedrático de Universidad Departamento de Arquitectura de Computadores Universidad de Málaga

Suscribir liderazgo tiene ventajas

¿Quieres comprar algo en Internet?

¿Quieres buscar algo en Internet?

¿Quieres aprender Deep Learning y Supercomputación?

DEEP LEARNING INSTITUTE

- Fabrica el 83% de las GPUs para PC y supercomputación.
- Plantilla (2023): 26.196 empleados en más de 50 países.
- Beneficios (2023): \$26.974.000.000.
- Líder del mercado en plataformas para supercomputación, Deep Learning y video-juegos.
 - Más de un millón de desarrolladores.
 - Más de 700 millones de plataformas censadas.

Galardones:

- Una de las 100 compañías más admiradas del mundo [Fortune].
- Segunda mejor compañía de EEUU en la que trabajar [Glassdoor].
- Segunda empresa más responsable de América [Newsweek].
- Segunda empresa más justa de América [Forbes] .

El top 10 empresarial del planeta (Sep'23)

Compañía	Sector	Capitalización bursátil	
1. Apple	Tecnología	2.785.000.000.000	
2. Microsoft	Tecnología	2.383.000.000.000	
3. Saudi Aramco	Petróleo & Gas	2.174.000.000.000	
4. Google	Tecnología	1.723.000.000.000	
5. Amazon	Comercio electr.	1.426.000.000.000	
6. Nvidia	Tecnología	1.125.000.000.000	
7. Berkshire Hathaway	Inversiones	792.000.000.000	
8. Tesla	Automoción	788.000.000.000	
9. Meta Platforms	Redes sociales	768.000.000.000	
10. Eli Lilly	Farmaceútica	556.000.000.000	

La nueva ciencia del siglo XXI

- Está basada en el uso intensivo de datos:
 - Según IDC, la mitad de los datos del planeta han sido creados en los dos últimos años. Y apenas el 2% han podido ser analizados.
 - Un humano procesa más información en un día que otro de A.C. en toda su vida.
- Muchos de los problemas de la era Big Data no pueden abordarse con algoritmos secuenciales ni basados en reglas o instrucciones.
 - Hay que reformularlos (Deep Learning), y si no se puede, habrá que acelerarlos.
- Por los dos caminos llegamos a una plataforma paralela:
 - Hardware: El chip GPU dotado de miles de cores.
 - Software: El lenguaje de programación paralelo más efectivo.
- Este curso enseña las dos cosas:
 - Los nuevos métodos computacionales basados en el aprendizaje.
 - Su paralelización en GPU, con CUDA o librerías que se apoyan en ella.

El DLI (Deep Learning Institute)

- Fundado en 2017 para acercar HPC a la educación, que siempre se topó con 2 principales obstáculos:
 - Muchos prerrequisitos técnicos para iniciarse en el tema.
 - Entornos de programación heterogéneos y difíciles de instalar y configurar.
- Adoptando OpenEdX, Jupyter notebooks y Docker (contenedores) de Amazon Web Services y GPUs en la nube, disponemos del ecosistema educacional más actual.
- Oferta de cursos en continua evolución y actualidad.

Nuestro aprendizaje en el DLI se basa en modelos prácticos y participativos

- Aprender a construir aplicaciones de aprendizaje profundo y computación acelerada para industrias como las del automóvil, finanzas, video-juegos, salud, robótica, ...
- Lograr experiencia práctica usando las herramientas más utilizadas por los líderes de la industria en estos sectores.
- Obtener una certificación del DLI de Nvidia para demostrar competencias actuales y crecer profesionalmente.
- Acceder desde cualquier lugar y en cualquier momento a recursos ya configurados en la nube para nuestras tareas.
- Aprender en actitud más práctica y relajada tiene menos desgaste y compensa en el largo plazo.

Las certificaciones del DLI, acompañadas de sus ID y URL

Deep Learning Institute acknowledges the following student accomplishment

Deep Learning Institute acknowledges the following student accomplishment

El diploma de Títulos Propios de la UMA

CURSO DE EXTENSIÓN UNIVERSITARIA DE DEEP LEARNING Y CUDA

Fecha de inicio de los estudios: 27 de febrero de 2020

Fecha de finalización de los estudios: 9 de julio de 2020.

Número de horas de docencia impartidas:

Presenciales: 25 horas.

On Line: 25 horas.

Calificación global: 8.

Expresión en créditos europeos (ECTS): 5 créditos (equivalente a 125 horas de trabajo del estudiante para cumplir los objetivos del programa de estudio). Programa Docente:

Módulo I: Aceleración en GPU con CUDA.

- Arquitectura de la GPU.
- Aceleración con GPUs dotadas de miles de cores.
- Jerarquia de millones de hilos en CUDA.
- Despliegue, coordinación y sincronización de millones de hilos.
- Los multiprocesadores y su memoria.

 Elvica concurrentes en CLIDA (atraces
- Flujos concurrentes en CUDA (streams).
- Gestión de la memoria de video.
 Casos estudio de paralelismo masivo

Módulo II: Herramientas de Nvidia para Deep Learning.

- Entrenamiento e inferencia de redes neuronales profundas en GPUs. Estado del arte.
- El big bang en aprendizaje profundo. Tendencias actuales.
- Arquitecturas de las redes neuronales para aplicaciones de supercomputación.
- Componentes del modelo y su despliegue en GPU con Caffe.
 Rendimiento y optimizaciones con Nvidia TensorRT.
- Técnicas de big-data para mejorar el modelo.
- Caso estudio: Clasificación de imágenes temáticas con DIGITS.
- Premisas para mejorar la arquitectura de la red y extender la funcionalidad.

Registro Número: 7718

El programa de actividades del curso y su secuencia temporal

Evento o tarea	Acciones a realizar	Fecha tope	
Preinscripción	Completar ficha en	30 de Septiembre	
en el curso	la Web de la UMA		
Matriculación	Completar el	30 de Septiembre	
en el curso	pago del curso		
Lectura de	Registrarse	1 de Octubre	
este documento	en el DLI		
Uso de tu cuenta en el	Probar acceso al	1 de Octubre	
Campus Virtual UMA	curso en la UMA		
Entrada en tus	da en tus Utilizar el código		
workshops del DLI	promocional gratuito	y 4 de Noviembre (DL)	
Comienzo	Familiarizarse antes con los	15 de Octubre	
de las clases	recursos del DLI / AWS / UMA		
Fin de	Superar el examen	18 de Noviembre	
las clases	de la UMA		
Entregar la encuesta de	Rellenar el formulario	18 de Noviembre	
satisfacción del curso	disponible en el Campus Virtual		
Entrega de diplomas	Retirarlo del despacho	Mes de	
UMA del curso	2.2.49 del profesor	Enero	

Agenda de trabajo para los primeros 2 días

Día 1	Módulo	Descripción	
9:00-10:40	Introducción al hardware de la GPU	Conoce el chip GPU y su arquitectura, bloques constructivos, generaciones y modelos.	
10:40-11:00	Descanso		
11:00-12:45	Aceleración de Aplicaciones con CUDA C/C++	Aprende la sintaxis esencial y los conceptos que permiten escribir aplicaciones C/C++ con CUDA: (1) Escribe, compila y ejecuta código en GPU. (2) Controla la jerarquía de hilos paralelos. su organización y la sincronización CPU-GPU. (3) Lanza <i>kernels</i> básicos.	
12:45-13:00	Descanso		
13:00-14:00	Aceleración de Aplicaciones con CUDA C/C++	Aplica paralelismo de datos a un código secuencial: (1) Distingue los procedimientos que admiten mejor paralelización. (2) Identifica las dependencias del código que afectan al paralelismo. (3) Aprovecha las mejores oportunidades de paralelismo masivo.	
Día 2	Módulo	Descripción	
9:00-10:45	Multiprocesadores y gestión de memoria en CUDA C/C++	•	
10:45-11:15	Descanso		
11:15-12:30	Multiprocesadores y gestión de memoria en CUDA C/C++	Conoce la gestión de memoria en CUDA y el comportamiento de la memoria unificada según se referencia desde la CPU y/o la GPU.	
12:30-12:45	Descanso		
12:45-13:00	Visual Profiler y Streams. Revisión final del módulo de CUDA. Evaluación	Optimiza el código. Analiza su rendimiento. Síntesis de los principales conceptos. Completa tu evaluación para obtener tu certificación CUDA del DLI.	

El programa de actividades para hoy

CONTENIDOS DEL PRIMER DÍA DEL CURSO PARA LA UNDÉCIMA EDICIÓN (SÁBADO 21)

Hora	Contenido Contenido	Duración	Autor	Disponibilidad del material en:
9:00	Presentación y agenda de trabajo	10'	M.U.	Nuestra web: nvidiaDLI.uma.es
9:10	Introducción a CUDA	30′	M.U.	C.V.: PDF y grabación 1
9:40	Lote 1/6 de diapositivas	10'	DLI	C.V.: PDF y grabación 2 / DLI
9:50	Ejercicios 1.0 a 1.5	20'	DLI	DLI: Guión en jupyter notebook
10:10	- Resolvemos ejercicios 1.0 a 1.5	10'	Ambos	C.V.: PDF de sols. / DLI: Sols
10:20	Hardware CUDA	30'	M.U.	C.V.: PDF y grabación 3
10:50	Primer descanso	20'		
11:10	Programación CUDA	30'	M.U.	C.V.: PDF y grabación 4
11:40	Lote 2/6 de diapositivas	10'	DLI	C.V.: PDF y grabación 5 / DLI
11:50	Ejercicios 2.1 a 2.3	10'	DLI	DLI: Guión en jupyter notebook
12:00	- Resolvemos ejercicios 2.1 a 2.3	10'	Ambos	C.V.: PDF de sols. / DLI: Sols.
12:10	Lote 3/6 de diapositivas	10′	DLI	C.V.: PDF y grabación 6 / DLI
12:20	Ejercicios 3 y 4	15'	DLI	DLI: Guión en jupyter notebook
12:35	- Resolvemos ejercicios 3 y 4	5'	Ambos	C.V.: PDF de sols. / DLI: Sols.
12:40	Segundo descanso	20'		
13:00	Lote 4/6 de diapositivas	10′	DLI	C.V.: PDF y grabación 7 / DLI
13:10	Ejercicio 5	10'	DLI	DLI: Guión en jupyter notebook
13:20	- Resolvemos ejercicio 5	5'	Ambos	C.V.: PDF de sols. / DLI: Sols.
	Lotes 5/6 y 6/6 de diapositivas	Self-paced	DLI	C.V.: PDF / DLI
	Ejercicios 6, 7, 8 y 9	Self-paced	DLI	DLI: Guión y soluciones
13.25	Paralelización de 5 kernels CUDA	20′	M.U.	C.V.: PDF y grabación 8
13:45	Final Exercise: VectorAdd	10'	DLI	DLI: Guión en jupyter notebook
13:55	- Resolvemos VectorAdd	5'	Ambos	C.V.: PDF de sols. / DLI: Sols.
	Gestión de errores	Self-paced	DLI	DLI: Guión de contenidos
	Advanced Exercise: MatrixMul	Self-paced	Ambos	C.V.: PDF de ideas / DLI: Guión
	- Se propone como reto	Self-paced	DLI	DLI: Soluciones
	Advanced Ex. 2: Heat Conduction	Self-paced	DLI	DLI: Guión en jupyter notebook
	- Lo resolvemos el próximo día	10′	Ambos	C.V.: PDF de sols. / DLI: Sols.

TABLA 3: Hoja de ruta del primer día de clase en la undécima edición (sábado 21 de Octubre por la mañana). Dentro del DLI, corresponde al primer módulo íntegro del primer Workshop, Fundamentals of Accelerated Computing with CUDA C/C++. Los contenidos que aparecen en este color son aportaciones de M. Ujaldón y no se encuentran en el DLI. Junto a las 8 grabaciones que hemos indicado en la última columna, estarán disponibles para su descarga a través del Campus Virtual de la UMA.