Hungarian Algorithm

Shusen Wang

Minimum-Weight Bipartite Matching

Minimum-Weight Bipartite Matching

	v_1	v_2	v_3
u_1	8	25	50
u_2	50	35	75
u_3	22	48	150

Minimum-Weight Bipartite Matching

The minimum sum of weight is 50 + 35 + 22 = 107.

	v_1	v_2	v_3
u_1	8	25	50
u_2	50	35	75
u_3	22	48	150

	v_1	v_2	v_3
u_1	8	25	50
u_2	50	35	75
u_3	22	48	150

	v_1	v_2	v_3
u_1	8 -8	25 -8	50 -8
u_2	50	35	75
	-35	-35	-35
u_3	22	48	150
	-22	-22	-22

Now, the row minima are zeros.

	v_1	v_2	v_3
u_1	0	17	42
u_2	15	0	40
u_3	0	26	128

	v_1	v_2	v_3
u_1	0	17	42
u_2	15	0	40
u_3	0	26	128

	v_1	v_2	v_3
u_1	0	17	42
u_2	15	0	40
u_3	0	26	128

	v_1	v_2	v_3
u_1	0 -0	17 -0	42 -40
u_2	15 -0	O -0	40 - 4 0
u_3	0 -0	26 -0	128 -40

Now, the column minima are zeros.

	v_1	v_2	v_3
u_1	0	17	2
u_2	15	0	0
u_3	0	26	88

Iteration 1

Repeat the followings:

A. Cover all the zeros with a minimum number of lines.

B. Decide whether to stop.

C. Create additional zeros.

	v_1	v_2	v_3
u_1	0	17	2
u_2	15	0	0
u_3	0	26	88

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.
- C. Create additional zeros.

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.
- C. Create additional zeros.

Not optimal!

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.
- C. Create additional zeros.

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- - B. Decide whether to stop.
 - C. Create additional zeros.

• If *n* lines are required, the algorithm stops.

If less than *n* lines are required, then continue with Step C.

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.

C. Create additional zeros.

First, find the smallest element (denote k) that is not covered by a line.

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.

C. Create additional zeros.

First, find the smallest element (denote k) that is not covered by a line.

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.

C. Create additional zeros.

Second, subtract *k* from all uncovered elements.

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.

C. Create additional zeros.

Second, subtract *k* from all uncovered elements.

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.

C. Create additional zeros.

Third, add *k* to all the elements that are covered twice.

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.

C. Create additional zeros.

Third, add *k* to all the elements that are covered twice.

Iteration 2

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.
- C. Create additional zeros.

	v_1	v_2	v_3
u_1	0	15	0
u_2	17	0	0
u_3	0	24	86

Iteration 2A

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.
- C. Create additional zeros.

	v_1	v_2	v_3
u_1	0	15	0
u_2	17	0	0
u_3	0	24	86

Iteration 2A

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.
- C. Create additional zeros.

At least 3 lines are needed.

Iteration 2B

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- - B. Decide whether to stop.
 - C. Create additional zeros.

If *n* lines are required, the algorithm stops.

The algorithm stops.

	v_1	v_2	v_3
u_1	0	15	0
u_2	17	0	0
u_3	0	24	86

	v_1	v_2	v_3
u_1	0	15	0
u_2	17	0	0
u_3	0	24	86

- Choose a matching among the zeros.
- Think of the zeros as edges.

	v_1	v_2	v_3
u_1	0	15	0
u_2	17	0	0
u_3	0	24	86

- Choose a matching among the zeros.
- Think of the zeros as edges.

	v_1	v_2	v_3
u_1	0	15	0
u_2	17	0	0
u_3	0	24	86

	v_2	v_3
u_1	15	0
u_2	0	0
u_3	24	86

	v_2	v_3
u_1	15	0
u_2		0
u_3	24	86

	v_1	v_2	v_3
u_1		15	0
u_2			0
u_3		24	86

	v_1	v_2	v_3
u_1	0	15	0
u_2	17	0	0
u_3	0	24	86

The matching is

$$S = \{(u_3, v_1), (u_1, v_3), (u_2, v_2)\}.$$

Maximum-Weight Bipartite Matching

Maximum Matching

- Pet adoption is a max matching problem.
- A weight quantifies how much a person loves a pet.
- Maximize the weights of matching. (Maximize people's happiness.)

Hungarian Algorithm for Maximum Matching

Idea: Max Matching → Min Matching

- Flip the signs of all the weights.
- It is equivalent to the minimum matching.
- Run the Hungarian algorithm.

Hungarian Algorithm for Maximum Matching

Idea: Max Matching → Min Matching

- Flip the signs of all the weights.
- It is equivalent to the minimum matching.
- Run the Hungarian algorithm.

Hungarian Algorithm for Maximum Matching

Subtract Row Minima

	v_1	v_2	v_3	v_4
u_1	0	-3	5	0
u_2	0	-2	-1	-4
u_3	٦	-5	0	0
u_4	0	0	-2	-5

Subtract Row Minima

	v_1	v_2	v_3	v_4
u_1	0	-3	-5	0
	- (-5)	-(-5)	-(-5)	- (-5)
u_2	0	-2	-1	-4
	-(-4)	-(-4)	-(-4)	-(-4)
u_3	-3	-5	0	0
	-(-5)	-(-5)	- (-5)	- (-5)
u_4	0	0	-2	-5
	- (-5)	- (-5)	-(-5)	-(-5)

Subtract Row Minima

Now, the row minima are zeros.

	v_1	v_2	v_3	v_4
u_1	5	2	0	5
u_2	4	2	3	0
u_3	2	0	5	5
u_4	5	5	3	0

	v_1	v_2	v_3	v_4
u_1	5	2	0	5
u_2	4	2	3	0
u_3	2	0	5	5
u_4	5	5	3	0

	v_1	v_2	v_3	v_4
u_1	5	2	0	5
u_2	4	2	3	0
u_3	2	0	5	5
u_4	5	5	3	0

	v_1	v_2	v_3	v_4
u_1	5 -2	2 -0	0 -0	5 -0
u_2	4 -2	2 -0	ى 0	0 -0
u_3	2 -2	0 -0	5 -0	5 -0
u_4	5 -2	5 -0	3 -0	0 -0

Now, the column minima are zeros.

	v_1	v_2	v_3	v_4
u_1	3	2	0	5
u_2	2	2	3	0
u_3	0	0	5	5
u_4	3	5	3	0

Iteration 1

Repeat the followings:

A. Cover all the zeros with a minimum number of lines.

B. Decide whether to stop.

C. Create additional zeros.

	v_1	v_2	v_3	v_4
u_1	3	2	0	5
u_2	2	2	3	0
u_3	0	0	5	5
u_4	3	5	3	0

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.
- C. Create additional zeros.

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- **B**.
 - B. Decide whether to stop.
 - C. Create additional zeros.
 - If *n* lines are required, the algorithm stops.
 - If less than *n* lines are required, then continue with Step C.

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.

C. Create additional zeros.

First, find the smallest element (denote k) that is not covered by a line.

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.

C. Create additional zeros.

First, find the smallest element (denote k) that is not covered by a line.

	v_1	v_2	v_3	v_4
u_1	3	2	0	5
u_2	2	2 =k	3	0
u_3	0	0	5	5
u_4	3	5	3	ф

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.

C. Create additional zeros.

Second, subtract *k* from all uncovered elements.

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.

C. Create additional zeros.

Second, subtract *k* from all uncovered elements.

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.

C. Create additional zeros.

Third, add *k* to all the elements that are covered twice.

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.

C. Create additional zeros.

Third, add *k* to all the elements that are covered twice.

	v_1	v_2	v_3	v_4
u_1	3	2	0	7
u_2	0	0	1	0
u_3	0	0	5	7
u_4	1	3	1	Ф

Iteration 2

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.
- C. Create additional zeros.

	v_1	v_2	v_3	v_4
u_1	3	2	0	7
u_2	0	0	1	0
u_3	0	0	5	7
u_4	1	3	1	0

Iteration 2A

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.
- C. Create additional zeros.

	v_1	v_2	v_3	v_4
u_1	3	2	0	7
u_2	0	0	1	0
u_3	0	0	5	7
u_4	1	3	1	0

Iteration 2A

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- B. Decide whether to stop.
- C. Create additional zeros.

At least 4 lines are needed.

Iteration 2B

Repeat the followings:

- A. Cover all the zeros with a minimum number of lines.
- - B. Decide whether to stop.
 - C. Create additional zeros.

If n lines are required, the algorithm stops.

The algorithm stops.

	v_1	v_2	v_3	v_4
u_1	3	2	0	7
u_2	0	0	1	0
u_3	0	0	5	7
u_4	1	3	1	0

• Return the matching:

$$S = \{(u_1, v_3), (u_4, v_4), (u_2, v_1), (u_3, v_2)\}.$$

• Or return the matching:

$$S = \{(u_1, v_3), (u_4, v_4), (u_3, v_1), (u_2, v_2)\}.$$

	v_1	v_2	v_3	v_4
u_1	3	2	(0)	7
u_2	\bigcirc	0	1	0
u_3	0	0	5	7
u_4	1	3	1	0

Return the matching:

$$S = \{(u_1, v_3), (u_4, v_4), (u_2, v_1), (u_3, v_2)\}.$$

• Or return the matching:

$$S = \{(u_1, v_3), (u_4, v_4), (u_3, v_1), (u_2, v_2)\}.$$

	v_1	v_2	v_3	v_4
u_1	3	2	(o)	7
u_2	0	(0)	1	0
u_3		0	5	7
u_4	1	3	1	0

Return the matching:

$$S = \{(u_1, v_3), (u_4, v_4), (u_2, v_1), (u_3, v_2)\}.$$

- The matching is equal to 15.
- Or return the matching:

$$S = \{(u_1, v_3), (u_4, v_4), (u_3, v_1), (u_2, v_2)\}.$$

Return the matching:

$$S = \{(u_1, v_3), (u_4, v_4), (u_2, v_1), (u_3, v_2)\}.$$

- The matching is equal to 15.
- Or return the matching:

$$S = \{(u_1, v_3), (u_4, v_4), (u_3, v_1), (u_2, v_2)\}.$$

• The matching is equal to 15.

Summary

Maximum-Weight Bipartite Matching

- Weighted bipartite graph: $G = (U, V, \mathcal{E})$. (Edges have weights: w_{uv} .)
- Matching is a subset of edges without common vertices.
- Denote the matching by set $S \subseteq \mathcal{E}$.
- Sum of weights in matching S:

$$f(\mathcal{S}) = \sum_{(u,v)\in\mathcal{S}} w_{uv}.$$

• Find matching S that has the maximum weight:

$$\max_{\mathcal{S}} f(\mathcal{S}).$$

- Maximum matching: $\max_{S} f(S)$.
- Minimum matching: $\min_{\mathcal{S}} f(\mathcal{S})$.
- Maximum matching can be reduced to minimum matching by flipping the signs of weights.
- Algorithms that find the minimum matching can also find the maximum matching.

Hungarian Algorithm

- Hungarian algorithm finds a minimum-weight bipartite matching.
- It requires $|\mathcal{U}| = |\mathcal{V}| = n$.
- Time complexity: $O(n^3)$.

Questions

Question 1

- The right is the adjacency matrix of a bipartite graph.
- Find the minimum matching on the graph.

	v_1	v_2	v_3	v_4	v_5
u_1	20	15	18	24	25
u_2	18	20	12	14	15
u_3	21	23	25	27	26
u_4	17	18	21	23	22
u_5	19	22	16	21	20

Question 2

- The right is the adjacency matrix of a bipartite graph.
- Find the maximum matching on the graph.

	v_1	v_2	v_3	v_4	v_5
u_1	20	15	18	24	25
u_2	18	20	12	14	15
u_3	21	23	25	27	26
u_4	17	18	21	23	22
u_5	19	22	16	21	20

Thank You!