# Correspondence analysis: introduction

Correspondence Analysis (CA) is a multivariate statistical technique used to analyze and visualize the relationships between categorical variables in a contingency table. It reduces the dimensionality of the data, representing the associations between rows and columns in a low-dimensional space, typically two dimensions, for an easier interpretation. The Chi-squared distance between rows or columns to highlight associations:

$$\chi^2 = \sum_{i=1}^n \sum_{j=1}^m \frac{(n_{ij} - Np_{ij})^2}{Np_{ij}}$$

where  $n_{ij}$  is the observed frequency and  $Np_{ij}$  is the expected frequency under the independence assumption.

## 'HairEyeColor' dataset

**HairEyeColor**: dataset of 592 observations x 3 variables.

Hair: qualitative variable: Black, Brown, Red, Blond Eye: qualitative variable: Brown, Blue, Hazel, Green

Sex: qualitative variable: Male, Female

```
1 > head(HaiEyeColor)
2 > HaiEyeColor
3 > head(HairEveColor)
  . . Sex = Male
5
         Eye
7 Hair
          Brown Blue Hazel Green
    Black
            32
                 11
    Brown
            53
                   50
                               15
10
  Red
             10 10
11
                   30
  Blond
12
13
  . . Sex = Female
14
15
         Eye
16 Hair
          Brown Blue Hazel Green
17
    Black
              36
18
    Brown
              66
                   34
                                14
19
    Red
              16
20
    Rl ond
```

## Summary

In order to perform a correspondence analysis, we typically call the function 'ca()' from the package 'ca' on a contingency table. The summary of our analysis is displayed below.

```
1 > ca result = ca(contingency table)
2 > ca_result
   Principal inertias (eigenvalues):
6 Value
             0.208773 0.022227 0.002598
7 Percentage 89.37% 9.52%
                              1.11%
   Rows:
10
              Black
                        Brown
                                    Red
                                           Blond
11 Mass
          0.182432 0.483108 0.119932 0.214527
12 ChiDist 0.551192 0.159461 0.354770 0.838397
13 Inertia 0.055425 0.012284
                              0.015095 0.150793
14 Dim. 1 -1.104277 -0.324463 -0.283473 1.828229
15 Dim. 2 1.440917 -0.219111 -2.144015 0.466706
16
17
  Columns:
18
              Brown
                        R111e
                                 Hazel
                                           Green
19 Mass
           0.371622 0.363176
                              0.157095
                                        0.108108
20 ChiDist 0.500487 0.553684
                              0.288654
                                        0.385727
21 Inertia 0.093086 0.111337
                              0.013089
                                        0.016085
22 Dim. 1
          -1.077128 1.198061 -0.465286
                                        0.354011
```

### Plot of factors in main dimentions



### Main observations

- Dimension Reduction: The relationships between hair color and eye color in a lower-dimensional space, here the first two on the plot.
- Association Visualization: Points close to each other in the plot indicate a stronger association between the corresponding hair and eye colors. For example, if "Black Hair" and "Brown Eyes" are close together (frequently observed together).
- Dimensional Interpretation: The axes (Dimension 1 and Dimension 2) represent the principal dimensions that capture the most variance in the data.
- Categorical Differentiation: The plot visually differentiates between hair and eye colors using different shapes and colors, making it easy to interpret the correspondence between categories.

#### References

An Introduction to Applied Multivariate Analysis with R, 2011, B. Everitt, T. Hothorn, Springer, e-ISBN 978-1-4419-9650-3

The R Project for Statistical Computing: https://www.r-project.org/