课程名称: 代数学

第二次作业

姓名: 樊昊

学号: 242131001

环论

题目 8 . 证明 $\mathbb{Z}[x]$ 的任一个主理想非极大。

引理 1. If f(x) is irreducible in $\mathbb{Z}[x]$, then only the following two possibilities exist:

- 1. f(x) is a prime in \mathbb{Z} ;
- 2. f(x) is irreducible in $\mathbb{Q}[x]$.

Proof. In the case $\deg f(x) = 0$: it turns out that it is a prime. In the case $\deg f(x) \geq 1$, we have $f(x) = cf_0(x)$, for a primitive polynomial $f_0(x)$ and $c \in \mathbb{Z}$. We assume $c \in \{\pm 1\}$ by irreduciblity. For a primitive polynomial, it is irreducible in $\mathbb{Z}[x]$ if and only if it is irreducible in $\mathbb{Q}[x]$.

解答.¹ 我们假设 $\mathbb{Z}[x]$ 中的主理想 $\langle f(x) \rangle$ 是极大的,则这是极大主理想,即 f(x) 是不可约元.而不可约元只有两种: $f(x) = p \in \mathbb{Z}$ 是素数; f(x) 是 $\mathbb{Q}[x]$ 中不可约多项式. 当 f(x) = p 是素数,有 $\mathbb{Z}[x]/\langle p \rangle = \mathbb{F}_p[x]$ 是整环不是域,所以主理想非极大. 当 f(x) 是 $\mathbb{Q}[x]$ 中不可约多项式,有 $\langle f(x) \rangle \subseteq \langle f(x), p \rangle \subseteq \mathbb{Z}[x]$ 其中 p 是素数; 所以主理想非极大.

更多习题

题目 13. Show that the ideal $(3, x^3 - x^2 + 2x - 1)$ in $\mathbb{Z}[x]$ is not principal.

解答.² This ideal is maximal:

$$\mathbb{Z}[x]/(3, x^3 - x^2 + 2x - 1) \cong (\mathbb{F}_3[x])/(x^3 - x^2 + 2x - 1),$$

since $x^3 - x^2 + 2x - 1$ has no roots in \mathbb{F}_3 ; it is irreducible. From \mathbb{E} \mathbb{F}_3 , we know it is not principal.

题目 28 . For a commutative ring with unit, show that the intersection of prime ideals is the set of nilpotent elements.

解答.³ Let R be a commutative ring with unit. We want to show $\bigcap \operatorname{Spec} R = \sqrt{(0)}$. Here $\sqrt{(0)}$ is the radical ideal of (0). Let $a \in \sqrt{(0)}$, then $a^n = 0$ for some $n \ge 1$. Thus $a^n \in I$ for all $I \in \operatorname{Spec} R$. Write $a^n = a^{n-1}a$. We know $a \in I$ or $a^{n-1} \in I$. If $a \in I$, then we are done; if $a^{n-1} \in I$, then write $a^{n-1} = aa^{n-2}$ when n-1 > 1. Anyway, we have $a \in I$ finally. Thus $a \in I$ for all prime ideals I and $a \in \bigcap \operatorname{Spec} R$. We proved $\bigcap \operatorname{Spec} R \supseteq \sqrt{(0)}$.

Let $a \in \bigcap \operatorname{Spec} R$. Suppose, $a \notin \sqrt{(0)}$, that is $a^n \neq 0, \forall n \geq 1$. Then $S := \{a^n : n \geq 1\}$ is a multiplicative subset of R without 0. Consider the localization $R \to RS^{-1}$, where RS^{-1} is non-trivial. We have a bijection

$${I \in \operatorname{Spec} R : I \cap S = \emptyset} = \operatorname{Spec}(RS^{-1}).$$

By Zorn's Lemma, RS^{-1} has a maximal ideal and hence a prime ideal. Thus $\operatorname{Spec}(RS^{-1}) \neq \emptyset$. The bijection gives an ideal $I \in \operatorname{Spec} R$ with $I \cap S = \emptyset$. Therefore, $a \notin \bigcap \operatorname{Spec} R$.

模论

第五章

题目 4.设 $\mathbb Q$ 为有理数域,M 和 M' 是两个左 $\mathbb Q$ 模. 证明:若 $\eta: M \to M'$ 是一个加法群同构,则 η 也是一个 $\mathbb Q$ 模同构. (* 如果用实数域 $\mathbb R$ 替代 $\mathbb Q$,问这个命题是否成立?)

解答.⁴ 对 $x, y \in M, p_1/q_1, p_2/q_2 \in \mathbb{Q}$ 有 $x/q_1, y/q_2 \in M$ 且

$$\eta(rx + sy) = \eta \left(\sum_{i=1}^{p_1} \frac{x}{q_1} + \sum_{j=1}^{p_2} \frac{y}{q_2} \right) = \sum_{i=1}^{p_1} \eta \left(\frac{x}{q_1} \right) + \sum_{j=1}^{p_2} \eta \left(\frac{y}{q_2} \right);$$

另一方面,

$$\eta(x) = \eta\Big(\sum_{i=1}^{q_1} \frac{x}{q_1}\Big) = \sum_{i=1}^{q_1} \eta\Big(\frac{x}{q_1}\Big) = q\eta\Big(\frac{x}{q_1}\Big) \implies \eta\Big(\frac{x}{q_1}\Big) = \frac{1}{q_1}\eta\Big(\frac{x}{q_1}\Big),$$

综上所述,

$$\eta(rx + sy) = \frac{p_1}{q_1}\eta(x) + \frac{p_2}{q_2}\eta(y).$$

此时, η 成 ℚ 模同构.

对 \mathbb{R} 模, 命题不成立: 视 \mathbb{R} 为 \mathbb{Q} 模, 依 Zorn 引理可取一组基 $\{e_i\}_{i\in I}$. 定义 η : \mathbb{R} $\to \mathbb{R}$, $\sum_{f \in \mathbb{R}} r_i e_i \mapsto \sum_{f \in \mathbb{R}} r_i \lambda_i e_i$. 则 η 的矩阵形式为对角矩阵 $\operatorname{diag}(\lambda_i)_i$; 命这个对角矩阵可逆且 λ_i 不全相同, 则 η 是加法群同构, 但不是 \mathbb{R} 模同构.

题目 19.将 $\mathbb{Z}/(n)$ 看作 \mathbb{Z} 模,问下列模是否可写成两个非零子模的直和:

- (i) $\mathbb{Z}/(p^e)$, p 为素数, $e \geq 1$;
- (ii) $\mathbb{Z}/(n)$, $n=p_1^{e_1}\cdots p_r^{e_r}, p_1,\ldots,p_r$ 为不同的素数, $e_i\geq 1, i=1,\ldots,r$.

解答.5 作为 Z 模的直和分解, 即分解为 Abel 群的直和.

若有分解,分析子群的阶数,可知分解必然形如

$$\mathbb{Z}/(p^e) = \mathbb{Z}/(p^r) \oplus \mathbb{Z}/(p^s),$$

其中 r+s=e. 此时, 左边有 p^e 阶元, 而右边元素阶数最大为 $\max\{p^r,p^s\}$; 应当相等, 故 r=e 或者 s=e, 于是 $\mathbb{Z}/(p^e)$ 的分解一定是平凡的.

根据中国剩余定理,有分解

$$\mathbb{Z}/(n) = \mathbb{Z}/(p_1^{e_1}) \oplus \mathbb{Z}/(p_2^{e_2} \cdots p_r^{e_r}),$$

这里两个子模均非零.

题目 20. 证明: $\mathbb Q$ 作为 $\mathbb Z$ 模,它的任一有限生成的子模是循环模.由此证明, $\mathbb Q$ 不是一个自由 $\mathbb Z$ 模.

解答.6 设 $M = \langle p_1/q_1, \cdots, p_n/q_n \rangle \subseteq \mathbb{Q}$ 是有限生成子模, 其中 p_i, q_i 互素. 令 $q \coloneqq \operatorname{lcm}(q_1, \cdots, q_n)$, 则

$$M = \left\langle \frac{p_1 r_1}{q}, \cdots, \frac{p_n r_n}{q} \right\rangle, \quad r_i := \frac{q}{q_i}.$$

可见 $M = \left\langle \frac{\gcd(p_1 r_1, \dots, p_n r_n)}{q} \right\rangle$, 是循环模.

假设 \mathbb{Q} 是自由 \mathbb{Z} 模, 而前述性质表明, 它没有秩 > 1 的有限生成子模, 故只能是秩为 1 的自由模, 这不可能: 若是秩为 1 的自由 \mathbb{Z} 模, 则正的部分应有最小元.

第六章

补充

题目 3. 设 R 是交换环,I 为 R 的理想. M 是有限生成的 R 模, $\varphi \in \operatorname{End}_R(M)$.

(1) 如果 $M \subseteq IM$, 证明:存在 $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n (a_1, \ldots, a_n \in I)$, 使得

$$f(\varphi)(=\varphi^n+\varphi^{n-1}a_1+\cdots+\operatorname{id}|_Ma_n)=0\in\operatorname{End}_R(M)$$

(2) Nakayama 引理 (重要): R 的所有极大理想的交称为 R 的 Jacobson 根,记为 J(R). 如果 MJ(R) = M, 证明 M = (0).

尝试....

我们证明 $\mathrm{id}|_M^M=0$, 从而 M=(0); 简记 $\mathrm{id}=\mathrm{id}|_M^M$. 由 (1), 有 $f(x)=x^n+a_1x^{n-1}+\cdots+a_n, (a_i\in I)$ 使得

$$f(id) = (1 + \sum_{i=1}^{n} a_i)id = 0.$$

记 $a = \sum_{i=1}^{n} a_i \in I$, 下证明 1 + a 是 R 中可逆元: 如果不然, 则主理想 $\langle 1 + a \rangle$ 是非平凡的, 于是有某极大理想 $I_0 \supseteq \langle 1 + a \rangle$, 但是 $a \in J(R) \implies a \in I_0$, 所以 $1 = (1 + a) - a \in I_0$, 矛盾: 极大理想不是平凡理想, 不应该有 1. 综上所述, 1 + a 是可逆的, 故 id = 0.

题目 6. 设 $\varphi: M \to M$ 是 R 的模同态,且 $\varphi \varphi = \varphi$.证明:

$$M = \ker \varphi \oplus \operatorname{im} \varphi.$$

解答.8 对 $x \in M$.

$$x = \underbrace{x - \varphi x}_{\in \ker \varphi} + \underbrace{\varphi x}_{\in \operatorname{im} \varphi}.$$

另一方面, $x \in \ker \varphi \cap \operatorname{im} \varphi \implies x = 0$; 因为 $x = \varphi y \implies 0 = \varphi x = \varphi y \implies 0 = x$. 综上所述, 分解 $M = \ker \varphi + \operatorname{im} \varphi$ 是直和分解, 即 $M = \ker \varphi \oplus \operatorname{im} \varphi$.

题目 10. Determine $\operatorname{End}(\mathbb{Q}, +, 0)$.

解答.9 It is isomorphic to the ring \mathbb{Q} :

$$\operatorname{End}(\mathbb{Q}, +, 0) \to \mathbb{Q}, \ f \mapsto f(1).$$
 (1)

It suffices to show the morphism is injective. Suppose f(1) = g(1), then $\forall m \in \mathbb{Z}, \forall n \geq 1$,

$$f(1) = n \cdot f\left(\frac{1}{n}\right) = n \cdot g\left(\frac{1}{n}\right) = g(1);$$

$$f\left(\frac{m}{n}\right) = mf\left(\frac{1}{n}\right) = mg\left(\frac{1}{n}\right) = g\left(\frac{m}{n}\right).$$

Thus f = g, (1) is injective. It keeps addition, and also multiplication:

$$f\left(\frac{m}{n}\right) = \frac{m}{n}f(1) \implies (f \circ g)(1) = f(g(1)) = f(1)g(1).$$

域论

第七章

题目 2. 设 K/F 为一有限扩张, $\alpha \in K$ 是 F 上一个 n 次元素,证明 $n \mid [K:F]$.

解答.10 有中间域 $F(\alpha)$, 于是

$$[K:F] = [K:F(\alpha)][F(\alpha):F] = [K:F(\alpha)] \times n$$

因为 $[F(\alpha):F]=\deg \alpha=n$.

题目 4.设 K 为 F 上域扩张. 证明: 如果 $u \in K$ 是 F 上代数元且次数为奇数,则 u^2 也是 F 上奇次数代数元且 $F(u) = F(u^2)$.

解答.¹¹ 设 u 在 F 上的极小多项式为 $p_u(x) = x^{2n+1} + \sum_{j=0}^{2n} \lambda_j x^j$. 则

$$p(u) = 0, \quad p(x) := \left((u^2)^n + \sum_{j=1}^n \lambda_{2j-1} u^{2j-2} \right) x + \sum_{j=0}^n \lambda_{2j} (u^2)^j \in F(u^2)[x].$$

所以, u 在 $F(u^2)$ 上的极小多项式的次数不超过 1(也就只能是 1), 故 $[F(u):F(u^2)]=1$, 这就是 $F(u)=F(u^2)$. 由

$$[F(u):F] = [F(u):F(u^2)][F(u^2):F]$$

可知 u^2 在 F 上次数也是奇数次.

题目 6. 求下列扩域的一基:

- (i) $K = \mathbf{Q}(\sqrt{2}, \sqrt{3});$
- (ii) $K = \mathbf{Q}(\sqrt{3}, \sqrt{-1}, \omega), \ \ \sharp \ \ \omega = \frac{1}{2}(-1 + \sqrt{-3}).$

解答.¹² 有 $K = \operatorname{span}_{\mathbb{Q}}(1, \sqrt{2}, \sqrt{3}, \sqrt{6}),$ 一组基是 $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}.$ 有 $K = \operatorname{span}_{\mathbb{Q}}(1, \sqrt{3}, \sqrt{-1}, \sqrt{-3}),$ 一组基是 $\{1, \sqrt{3}, \sqrt{-1}, \sqrt{-3}\}.$

题目 10. 确定下列多项式在有理数域上的分裂域:

- (i) $f(x) = x^4 2$;
- (ii) $f(x) = x^3 2x 2$.

解答.13

- (i) 即 $\mathbb{Q}(\sqrt[4]{2},i)$.
- (ii) 有理根只可能是 $\pm 1, \pm 2$, 计算可见没有有理根, 从而他是不可约多项式. 判别式 $\Delta = -4(-2)^3 27(-2)^2 = -66$ 不是 $\mathbb Q$ 中平方元. 所以分裂域是 $\mathbb Q(\alpha, \sqrt{\Delta})$, 其中 α 是 f(x) 的实数根.

第八章

题目 2. 证明域 F 的每个非零自同态都保持 F 内素域的元素不动. 设 P 为含于 F 内的素域,于是 $\operatorname{Aut} F = \operatorname{Gal}(F/P)$.

解答.¹¹ 设 σ : $F \to F$ 是非零的自同态, 则 σ 是 F 的自同构, 所以 σ (1) 是单位元即 σ (1) = 1. 于是, σ 保持素域内的元素不动, 因为素域由 1 生成. 现在 Aut $F = \operatorname{Gal}(F/P)$ 按照定义直接成立.

题目 4. 确定 $Gal(K/\mathbb{Q})$, 其中 $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.

解答.¹⁵ 记所求为 *G*. 域自同构保持多项式的根集, 所以 $\sqrt{2} \mapsto \sqrt{2}$ 或者 $\sqrt{2} \mapsto -\sqrt{2}$, 且这两种必有一种成立, 同理于 $\sqrt{3}$. 令 $\sigma(\sqrt{2}) = -\sqrt{2}, \sigma(\sqrt{3}) = \sqrt{3}$; $\tau(\sqrt{2}) = \sqrt{2}, \tau(\sqrt{3}) = -\sqrt{3}$. 可知 $G = \langle \sigma, \tau \rangle \cong (\mathbb{Z}/\langle 2 \rangle)^2$.

题目 6. 设 F 为多项式环 $\mathbb{F}_p[t]$ 的商域,即 $F = \mathbb{F}_p(t)$. 令 K 为多项式 $f(x) = x^p - t$ 在 F 上的分裂域. 证明 $\mathrm{Gal}(K/F) = \{1\}$.

题目 7. 设 $F = \mathbb{F}_p(t)$ 如习题 6. 令 K 为 $f(x) = x^{2p} + tx^p + t$ 在 F 上的分裂域. 试决定 Gal(K/F),并定出 Gal(K/F) 的不动域和 F 在 K 内的可分闭包.

题目 14. 设 $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}), \theta = (2 - \sqrt{2})(3 + \sqrt{3}), E = K(\sqrt{\theta}).$ 证明 E/\mathbb{Q} 正规,并决定 $Gal(E/\mathbb{Q})$.

补充

题目 1. 令 K 是有理数 $\mathbb Q$ 上全体代数数做成的数域,证明: K 是 $\mathbb Q$ 的代数扩张,但不是有限扩张。

解答.¹⁹ 任取 $x \in K$, 由定义, 存在 $f(X) \in \mathbb{Q}[X]$ 使得 f(x) = 0. 于是是代数扩张. 考虑子扩张 $\mathbb{Q}(\{\sqrt[n]{2} \mid n \ge 1\})/\mathbb{Q}$. 这不是有限扩张: 注意 $\mathbb{Q}(\{\sqrt[n]{2} \mid n \ge 1\}) = \bigcup_{n \ge 1} \mathbb{Q}(\sqrt[n]{2})$, 如果这是有限扩张, 则一定有

$$\mathbb{Q}(\{\sqrt[n]{2}\mid n\geq 1\})=\bigcup_{n\in[N]}\mathbb{Q}(\sqrt[n]{2})=\mathbb{Q}(\sqrt[N]{2}),$$

对某个 N 成立. 这不可能, $^{N+1}\sqrt{2}$ 不在里面. 综上所述, 这个子扩张无限, 所以问题中的扩张无限. ■

更多习题

题目 1. Let F be a field of characteristic p, a an element of F not of the form $b^p - b$, $b \in F$. Determine the Galois group over F of a splitting field of $x^p - x - a$.

解答.²⁰ Let β be a root of $f(x) := x^p - x - a$ in the algebraic closure of F. We claim that $x^p - x - a$ splits in $F(\beta)$. Notice that f(x+1) = f(x) by the Frobenius endomorphism. Thus, $\beta + 1, \beta + 2, \ldots, \beta + p - 1$ are also roots of f(x). The splitting field is $F(\beta)$. There is a automorphism σ of $F(\beta)$, determined by $\beta = \beta + 1$. We find ord $\sigma = p$. Thus $\langle \sigma \rangle \cong C_p$, the cyclic group of order p. From $|\operatorname{Gal}(F(\beta)/F)| = [F(\beta) : F] = n$, we have $\langle \sigma \rangle = \operatorname{Gal}(F(\beta)/F)$.

题目 21. Let F be a finite field of characteristic p (a prime). Show that $(p-1) \mid (|F|-1)$. Hence conclude that if |F| is even then the characteristic is two. (We shall see later that |F| is a power of p.)

解答.²¹ The prime field is $\mathbb{F}_p \hookrightarrow F$. Then $\mathbb{F}_p^{\times} \leq F^{\times}$ as a subgroup. Langrange's Theorem ensures $p-1 \mid (|F|-1)$. Thus, |F|-1=(p-1)k for some $k \in \mathbb{Z}$ and thus

$$|F| = 0 \pmod{2} \implies (p-1)k = 1 \pmod{2}$$
.

This can happen in the case p = 2 only.

题目 26. Determine the Galois group $Gal(\mathbb{Q}(\sqrt[p]{2},\zeta_p)/\mathbb{Q})$.

解答. 22 Let G denote the Galois group. By the Galois main theorem, we have diagrams:

Let $\mathbb{Z}/\langle p \rangle = \langle \tau \rangle$ and $(\mathbb{Z}/\langle p \rangle)^* = \langle \sigma \rangle$, where

$$\tau \colon \begin{cases} \zeta_p \mapsto \zeta_p \\ \sqrt[p]{2}\zeta_p^i \mapsto \sqrt[p]{2}\zeta_p^{i+1} & i \in [p] \end{cases}, \quad \sigma \colon \begin{cases} \zeta_p \mapsto \zeta_p^a \\ \sqrt[p]{2} \mapsto \sqrt[p]{2} \end{cases},$$

where $a \in (\mathbb{Z}/\langle p \rangle)^*$. Thus we find two subgroups $\mathbb{Z}/\langle p \rangle, (\mathbb{Z}/\langle p \rangle)^*$ of G, where $(\mathbb{Z}/\langle p \rangle)^*$ is normal (because it is the Galois group of a Galois extension). For the structure of the group:

- They have trivial intersection: because $\mathbb{Q}(\sqrt[p]{2}) \cap \mathbb{Q}(\zeta_p) = \mathbb{Q}$;
- They generate the group G because $\text{Inv}\langle \tau, \sigma \rangle = \mathbb{Q}$.
- They satisfy: $\sigma \tau \sigma^{-1} = \tau^a$.

Above all, we have $G \cong \mathbb{Z}/\langle p \rangle \rtimes (\mathbb{Z}/\langle p \rangle)^*$, which is isomorphic to the matrix group:

$$\left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a \in (\mathbb{Z}/\langle p \rangle)^*, b \in \mathbb{Z}/\langle p \rangle \right\} \subseteq \operatorname{GL}(2, \mathbb{Z}/\langle p \rangle)$$

题目 27. Please state the Galois main theorem clearly.