Automorphism groups of some homogeneous directed graphs

Midsummer Combinatorial Workshop XXIV

Yibei Li

Imperial College London

30th July, 2019

Automorphism group of the random graph

Theorem (Truss, 1985)

The automorphism group of the random graph is simple.

Theorem (Macpherson and Tent, 2011)

Let M be a free homogeneous structure such that Aut(M) is transitive on M but is not equal to Sym(M). Then Aut(M) is a simple.

Theorem (Tent and Ziegler, 2012)

Let $\mathcal M$ be a countable homogeneous structure with a stationary independence relation. If $g\in \operatorname{Aut}(\mathcal M)$ moves almost maximally, then any element of $\operatorname{Aut}(\mathcal M)$ is the product of sixteen conjugates of g.

Automorphism group of the random graph

Theorem (Truss, 1985)

The automorphism group of the random graph is simple.

Theorem (Macpherson and Tent, 2011)

Let M be a free homogeneous structure such that Aut(M) is transitive on M but is not equal to Sym(M). Then Aut(M) is a simple.

Theorem (Tent and Ziegler, 2012)

Let $\mathcal M$ be a countable homogeneous structure with a stationary independence relation. If $g \in \operatorname{Aut}(\mathcal M)$ moves almost maximally, then any element of $\operatorname{Aut}(\mathcal M)$ is the product of sixteen conjugates of g.

Automorphism group of the random graph

Theorem (Truss, 1985)

The automorphism group of the random graph is simple.

Theorem (Macpherson and Tent, 2011)

Let M be a free homogeneous structure such that Aut(M) is transitive on M but is not equal to Sym(M). Then Aut(M) is a simple.

Theorem (Tent and Ziegler, 2012)

Let $\mathcal M$ be a countable homogeneous structure with a stationary independence relation. If $g \in \operatorname{Aut}(\mathcal M)$ moves almost maximally, then any element of $\operatorname{Aut}(\mathcal M)$ is the product of sixteen conjugates of g.

Stationary independence relation (SIR)

Definition

Let $\mathcal M$ be a structure. \bigcup is a stationary independence relation (SIR) if the following is satisfied for any substructure $A,B,C,D\subseteq\mathcal M$:

- Invariance: A, C independence over B depends only on the type of ABC
- Monotonicity: $A \perp_B CD \Rightarrow A \perp_B C$, $A \perp_{BC} D$
- Transitivity: $A \bigcup_B C$, $A \bigcup_{BC} D \Rightarrow A \bigcup_B D$
- Symmetry: $A \bigcup_B C \Rightarrow C \bigcup_B A$
- Existence: If p is a type over B and C is a finite set, then p has a realisation that is independent from C over B
- Stationarity: If \(\bar{a}\) and \(\bar{a}'\) have the same type over B and are both independent from C over B, then \(\bar{a}\) and \(\bar{a}'\) have the same type over BC.

SIR on the random graph

Theorem

Let R be the random graph. For any finite substructure $A, B, C \subseteq R$, define $A \bigcup_B C$ if for any $a \in A \setminus B$, $c \in C \setminus B$, a, c are not connected. Then || is a SIR.

For example, let's check transitivity: $A \bigcup_{B} C$, $A \bigcup_{BC} D \Rightarrow A \bigcup_{B} D$.

SIR on the random graph

Theorem

Let R be the random graph. For any finite substructure $A,B,C\subseteq R$, define $A\bigcup_B C$ if for any $a\in A\setminus B,c\in C\setminus B$, a,c are not connected. Then \bigcup is a SIR.

For example, let's check transitivity: $A \bigcup_B C$, $A \bigcup_{BC} D \Rightarrow A \bigcup_B D$.

Cherlin's graphs

Example

Suppose we have three choices of colours-red, green and blue. We want to colour the edges of the countable complete graph using these colours randomly in a way such that the following triangles do not appear.

Denote the resulting graph by \mathcal{M} . We can find a SIR on \mathcal{M} by 'putting an order' on the colours. For finite substructure $A,B,C\subseteq\mathcal{M}$, we can define $A\bigcup_B C$ if for any $a\in A\setminus B,c\in C\setminus B$, (a,c) is coloured by red if doing so does not create a forbidden triangle. Otherwise, it is coloured by green. It can be shown that \bigcup is a SIR.

Theorem $Aut(\mathcal{M})$ is simple.

Cherlin's graphs

Example

Suppose we have three choices of colours-red, green and blue. We want to colour the edges of the countable complete graph using these colours randomly in a way such that the following triangles do not appear.

Denote the resulting graph by \mathcal{M} . We can find a SIR on \mathcal{M} by 'putting an order' on the colours. For finite substructure $A, B, C \subseteq \mathcal{M}$, we can define $A \bigcup_B C$ if for any $a \in A \setminus B$, $c \in C \setminus B$, (a, c) is coloured by red if doing so does not create a forbidden triangle. Otherwise, it is coloured by green. It can be shown that \bigcup is a SIR.

Theorem

 $Aut(\mathcal{M})$ is simple.

Cherlin's digraphs

Example

Suppose we have two choices of colours-red and green. We want to choose a colour and a direction randomly for every edge of the countable complete graph in a way such that the following triangles do not appear.

Denote the resulting graph by \mathcal{M} . For finite substructure $A, B, C \subseteq \mathcal{M}$.

Question

is there a SIR on M? Is Aut(M) simple?

Cherlin's digraphs

Example

Suppose we have two choices of colours-red and green. We want to choose a colour and a direction randomly for every edge of the countable complete graph in a way such that the following triangles do not appear.

Denote the resulting graph by \mathcal{M} . For finite substructure $A, B, C \subseteq \mathcal{M}$.

Question

is there a SIR on \mathcal{M} ? Is Aut(\mathcal{M}) simple?

Stationary independence relation (SIR)

Definition

Let $\mathcal M$ be a structure. \bigcup is a stationary independence relation (SIR) if the following is satisfied for any substructure $A,B,C,D\subseteq\mathcal M$:

- Invariance: A, C independence over B depends only on the type of ABC
- Monotonicity: $A \perp_B CD \Rightarrow A \perp_B C$, $A \perp_{BC} D$
- Transitivity: $A \bigcup_B C$, $A \bigcup_{BC} D \Rightarrow A \bigcup_B D$
- Symmetry: $A \bigcup_B C \Rightarrow C \bigcup_B A$
- Existence: If p is a type over B and C is a finite set, then p has a realisation that is independent from C over B
- Stationarity: If \(\bar{a}\) and \(\bar{a}'\) have the same type over B and are both independent from C over B, then \(\bar{a}\) and \(\bar{a}'\) have the same type over BC.

Stationary weak independence relation (SWIR)

Definition

Let \mathcal{M} be a homogeneous structure and suppose $A \bigcup_B C$ is a ternary relation among finite substructure A, B, C of \mathcal{M} . We say that \bigcup is a stationary weak independence relation if the following axioms are statisfied:

- Invariance: for any $g \in Aut(\mathcal{M})$, if $A \bigcup_B C$, then $gA \bigcup_{aB} gC$
- Monotonicity: $A \downarrow_B CD \Rightarrow A \downarrow_B C$, $A \downarrow_{BC} D$ $AD \downarrow_B C \Rightarrow A \downarrow_B C$, $D \downarrow_{AB} D$
- Transitivity: $A \bigcup_{B} C$, $A \bigcup_{BC} D \Rightarrow A \bigcup_{B} D$ $A \bigcup_{B} C$, $D \bigcup_{AB} C \Rightarrow D \bigcup_{B} C$

Stationary weak independence relation (SWIR)

Definition (continued)

- Existence: If p is a type over B and C is a finite set, then p has a realisation a such that $a \downarrow_B C$.

 If p is a type over B and C is a finite set, then p has a
 - If p is a type over B and C is a finite set, then p has a realisation a such that $C \bigcup_B a$.

Theorem

Let \mathcal{M} be a countable homogeneous structure with a stationary weak independence relation. If $g \in Aut(\mathcal{M})$ moves almost R-maximally and L-maximally, then any element of $Aut(\mathcal{M})$ is the product of sixteen conjugates of g.

Stationary weak independence relation (SWIR)

Definition (continued)

- Existence: If p is a type over B and C is a finite set, then p has a realisation a such that $a \downarrow_R C$.
 - If p is a type over B and C is a finite set, then p has a realisation a such that $C \bigcup_B a$.
- Stationarity: If a and a' have the same type over B and a
 _B C,
 a'
 _B C, then a and a' have the same type over BC.

 If a and a' have the same type over B and C
 _B a,
 C
 _B a', then a and a' have the same type over BC.

Theorem

Let $\mathcal M$ be a countable homogeneous structure with a stationary weak independence relation. If $g \in \operatorname{Aut}(\mathcal M)$ moves almost R-maximally and L-maximally, then any element of $\operatorname{Aut}(\mathcal M)$ is the product of sixteen conjugates of g.

Cherlin's digraphs

Example

Suppose we have two choices of colours-red and green. We want to choose a colour and a direction randomly for every edge of the countable complete graph in a way such that the following triangles do not appear.

Denote the resulting graph by \mathcal{M} . For finite substructure $A, B, C \subseteq \mathcal{M}$. we can define $A \bigcup_B C$ if for any $a \in A \setminus B, c \in C \setminus B$, (a, c) is coloured by red with direction $a \to c$ if doing so does not create a forbidden triangle. Otherwise, it is coloured by red with direction $c \to a$. It can be checked that $\bigcup_C S = C \setminus B$ is a SWIR.

Theorem

 $Aut(\mathcal{M})$ is simple.

+□→ ←□→ ← ≧→ ← ≧→ → ♀

Cherlin's digraphs

Example

Suppose we have two choices of colours-red and green. We want to choose a colour and a direction randomly for every edge of the countable complete graph in a way such that the following triangles do not appear.

Denote the resulting graph by \mathcal{M} . For finite substructure $A,B,C\subseteq\mathcal{M}$. we can define $A\bigcup_B C$ if for any $a\in A\setminus B,c\in C\setminus B$, (a,c) is coloured by red with direction $a\to c$ if doing so does not create a forbidden triangle. Otherwise, it is coloured by red with direction $c\to a$. It can be checked that \bigcup is a SWIR.

Theorem

 $Aut(\mathcal{M})$ is simple.

- dense linear order (\mathbb{Q}, \leq)
- the linearly ordered random graph (linearly ordered free homogeneous structure)

- G. L. Cherlin. The Classification of Countable Homogeneous Directed Graphs and Countable Homogeneous n-Tournaments. American Mathematical Soc., 1998.
- K. Tent and M. Ziegler. "On the isometry group of the Urysohn space". In: Journal of the London Mathematical Society 87.1 (2013), pp. 289-303.

- dense linear order (\mathbb{Q}, \leq)
- the linearly ordered random graph (linearly ordered free homogeneous structure)

- G. L. Cherlin. The Classification of Countable Homogeneous Directed Graphs and Countable Homogeneous n-Tournaments. American Mathematical Soc., 1998.
- K. Tent and M. Ziegler. "On the isometry group of the Urysohn space". In: Journal of the London Mathematical Society 87.1 (2013), pp. 289-303.

- dense linear order (\mathbb{Q}, \leq)
- the linearly ordered random graph (linearly ordered free homogeneous structure)

- G. L. Cherlin. The Classification of Countable Homogeneous Directed Graphs and Countable Homogeneous n-Tournaments. American Mathematical Soc., 1998.
- K. Tent and M. Ziegler. "On the isometry group of the Urysohn space". In: Journal of the London Mathematical Society 87.1 (2013), pp. 289-303.

- dense linear order (\mathbb{Q}, \leq)
- the linearly ordered random graph (linearly ordered free homogeneous structure)

- G. L. Cherlin. The Classification of Countable Homogeneous Directed Graphs and Countable Homogeneous n-Tournaments. American Mathematical Soc., 1998.
- K. Tent and M. Ziegler. "On the isometry group of the Urysohn space". In: Journal of the London Mathematical Society 87.1 (2013), pp. 289-303.