KHÔLLE Nº 12

Exercice 2. Posons les événements P_n « le $1^{\underline{\text{er}}}$ PILE apparaît au n-ième lancer, » et B « tirer une boule blanche. » Les événements $(P_n)_{n\in\mathbb{N}}$ forment un système quasi-complet d'événements, d'où, d'après la formule des probabilités totales,

$$P(B) = \sum_{k=1}^{\infty} P(B \cap P_n)$$
$$= \sum_{k=1}^{\infty} P(B \mid P_n) \times P(P_n)$$

Or, par équiprobabilité, pour tout $n \in \mathbb{N}$, $P(P_n) = \left(\frac{1}{2}\right)^n$. De plus et aussi par équiprobabilité, pour tout $n \in \mathbb{N}$, $P(B \mid P_n) = \frac{1}{n}$ car il y a une seule boule blanche, et n-1 boules noires. On en déduit donc que

$$P(B) = \sum_{k=1}^{\infty} \frac{1}{n2^n}.$$

On reconnaît le développement en série entière de $-\ln(1-x)$, dans le cas $x=\frac{1}{2}$. Or, le rayon de convergence de cette série est de 1, et $\frac{1}{2}\in]-1,1[$, la série numérique $\sum \frac{1}{n2^n}$ converge donc. On en déduit que

$$P(B) = -\ln\left(1 - \frac{1}{2}\right) = -\ln\frac{1}{2} = \ln 2.$$

Exercice 3.

1. Soit $x \in]-R, R[$. On calcule :

$$(1 - x - x^{2}) \cdot f(x) = (1 - x - x^{2}) \sum_{n=0}^{\infty} u_{n} x^{n}$$

$$= \sum_{n=0}^{\infty} u_{n} x^{n} - \sum_{n=0}^{\infty} u_{n} x^{n+1} - \sum_{n=0}^{\infty} u_{n} x^{n+2}$$

$$= \sum_{n=0}^{\infty} u_{n} x^{n} - \sum_{n=1}^{\infty} u_{n-1} x^{n} - \sum_{n=2}^{\infty} u_{n-2} x^{n}$$

$$= \sum_{n=2}^{\infty} (u_{n} - u_{n-1} - u_{n-2}) x^{n} + u_{0} - u_{1} + u_{1} x$$

$$= \sum_{n=0}^{\infty} 0 \cdot x^{n} + u_{0} - u_{1} + u_{1} x$$

$$= u_{0} + u_{1} (x - 1)$$

On en déduit que

$$(1 - x - x^2) \cdot f(x) = x - 1.$$

- 2. Prouvons le par récurrence forte : posons P_n le prédicat « $u_n \leqslant 2^n.$ »
 - On a bien $u_0 = 0 \leqslant 2^0 = 1$, d'où P_0 .
 - On a bien $u_1 = 1 \le 2^1 = 1$, d'où P_0 .
 - Soit $n \in \mathbb{N}$, avec $n \ge 1$. Supposons, pour $k \le n$, P_k vrai. Montrons P_{n+1} . Par définition de la suite, on a

$$u_{n+1} = u_n + u_{n-1} \le 2^n + 2^{n-1} \le 2^n + 2^n \le 2^{n+1}$$

d'où P_{n+1} .

Par récurrence forte, on en déduit que, pour tout $n\in\mathbb{N},$ $u_n\leq 2^n$. Or, la série entière $\sum 2^n x^n = \sum (2x)^n$ est une série géométrique, dont le rayon de convergence vaut $\frac{1}{2}$. On en déduit que

$$R \geqslant \frac{1}{2}$$
.

3. Résolvons l'équation caractéristique de la suite (u_n) :

(C):
$$z^2 - z - 1 = 0$$
.

Le discriminant du polynôme X^2-X-1 vaut $\Delta=5>0\,;$ les solutions φ et ψ sont donc

$$\varphi = \frac{1+\sqrt{5}}{2} \qquad \quad \psi = \frac{1-\sqrt{5}}{2}.$$

Ainsi, il existe A et B deux réels tels que, pour $n \in \mathbb{N}$.

$$u_n = A\varphi^n + B\psi^n.$$

Or, $u_0 = A + B = 0$, et

$$u_1 = A\varphi + B\psi = \frac{A + B + \sqrt{5}(A - B)}{2} = (A - B) \cdot \frac{\sqrt{5}}{2} = 1.$$

D'où B=-A, et donc $A-B=2A=2/\sqrt{5}$. Ainsi, on en déduit que

$$A = \frac{1}{\sqrt{5}} \qquad \text{et} \qquad B = -\frac{1}{\sqrt{5}}.$$

On en déduit le terme général de la suite $(u_n)_{n\in\mathbb{N}}$:

$$\forall n \in \mathbb{N}, \quad u_n = \frac{1}{\sqrt{5}} \cdot (\varphi^n - \psi^n).$$

D'où, $\sum u_n x^n = \frac{1}{\sqrt{5}} \sum \varphi^n x^n - \frac{1}{\sqrt{5}} \sum \psi^n x^n = \frac{1}{\sqrt{5}} \left(\sum (\varphi x)^n - \sum (\psi x)^n \right)$. La série entière $\sum (\varphi x)^n$ est géométrique, et a pour rayon de convergence $\frac{1}{\varphi}$; de même, la série entière $\sum (\psi x)^n$ a pour rayon de convergence $\frac{1}{\psi}$. Comme $\frac{1}{\varphi} \neq \frac{1}{\psi}$, on en déduit que le rayon de convergence de la série entière $\sum u_n x^n$ vaut

$$R = \min\left(\frac{1}{\varphi}, \frac{1}{\psi}\right) = -\frac{1 - \sqrt{5}}{2}.$$

Exercice 1.

1. Soit $S \in \mathcal{S}_n(\mathbb{R})$, et soit $M \in \mathcal{M}_n(\mathbb{R})$. On sait que $\mathcal{S}_n(\mathbb{R}) \perp \mathcal{A}_n(\mathbb{R})$, et $\mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$. Et, nous avons l'égalité

$$(\star) \qquad M = \underbrace{\frac{M - M^{\top}}{2}}_{\in \mathcal{S}_n(\mathbb{R})} + \underbrace{\frac{M + M^{\top}}{2}}_{\in \mathcal{S}_n(\mathbb{R})}.$$

D'après le théorème de Pythagore,

$$\|M-S\|^2 = \left\|\frac{M-M^\top}{2}\right\|^2 + \left\|\frac{M+M^\top}{2} - S\right\|^2 \leqslant \left\|\frac{M-M^\top}{2}\right\|^2.$$

Ainsi, comme la norme est positive ou nulle, et par croissance de la fonction racine carrée, on en déduit que

$$\|M - S\| \leqslant \left\| \frac{M - M^{\top}}{2} \right\|.$$

2. L'inéquation ci-dessus est vraie pour toute matrice symétrique S. En particulier, si $S = \frac{M-M^{\top}}{2} \in \mathcal{S}_n(\mathbb{R})$, alors

$$M-S = \frac{M-M^\top}{2} \qquad \text{d'où} \qquad \|M-S\| = \left\|\frac{M-M^\top}{2}\right\|,$$

d'après (*). Or, par définition $d(M, \mathcal{S}_n(\mathbb{R}))$ est le minimum des normes $\|M-S\|$, d'où

$$d(M, \mathcal{S}_n(\mathbb{R})) = \left\| \frac{M - M^\top}{2} \right\|.$$