

TEST REPORT

REPORT NUMBER: B17W00112-SARV03

ON

Type of Equipment: 4G LTE mobile phone

Type of Designation: A1-901

Manufacturer: SHENZHEN FUTAIHONG PRECISION

INDUSTRY CO.,LTD

FCC ID: 2AK9KA1

ACCORDING TO

IEEE C95.1-2005 IEEE 1528-2013

China Telecommunication Technology Labs.

Month date, year

Jun 7, 2017

Signature

Zhang Yan Director

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of China Telecommunication Technology Labs.

CONTENTS

1.	TEST LABORATORY	5
1.1.	TESTING LOCATION	5
1.2.	TESTING ENVIRONMENT	5
1.3.	PROJECT DATA	5
1.4.	SIGNATURE	5
2.	STATEMENT OF COMPLIANCE	6
3.	CLIENT INFORMATION	8
3.1.	APPLICANT INFORMATION	8
3.2.	MANUFACTURER INFORMATION	8
4.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	9
4.1.	ABOUT EUT	9
4.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	10
4.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	10
5.	TEST METHODOLOGY	11
5.1.	APPLICABLE LIMIT REGULATIONS	11
5.2.	APPLICABLE MEASUREMENT STANDARDS	11
6.	SPECIFIC ABSORPTION RATE (SAR)	12
6.1.	INTRODUCTION	12
6.2.	SAR DEFINITION	12
7.	SAR MEASUREMENT SETUP	13
7.1.	MEASUREMENT SET-UP	13
7.2.	DASY5 E-FIELD PROBE SYSTEM	14
7.3.	E-FIELD PROBE CALIBRATION	14

7.4.	OTHER TEST EQUIPMENT	. 15
7.4.1.	DATA ACQUISITION ELECTRONICS(DAE)	. 15
7.4.2.	ROBOT	. 16
7.4.3.	MEASUREMENT SERVER	. 16
7.4.4.	DEVICE HOLDER FOR PHANTOM	. 17
7.4.5.	PHANTOM	. 18
8.	TISSUE SIMULATING LIQUIDS	. 19
8.1.	TARGETS FOR TISSUE SIMULATING LIQUID	. 19
8.2.	DIELECTRIC PERFORMANCE	. 20
9.	SYSTEM VALIDATION	. 26
9.1.	SYSTEM VALIDATION	. 26
9.2.	SYSTEM SETUP	. 26
10.	MEASUREMENT PROCEDURES	. 29
10.1.	TESTS TO BE PERFORMED	. 29
10.2.	GENERAL MEASUREMENT PROCEDURE	. 31
10.3.	WCDMA MEASUREMENT PROCEDURES FOR SAR	. 32
10.4.	SAR MEASUREMENT FOR LTE	. 32
10.5.	POWER DRIFT	. 33
11.	CONDUCTED OUTPUT POWER	. 34
11.1.	MANUFACTURING TOLERANCE	. 34
11.2.	POWER MEASUREMENT RESULTS	. 42
11.2.1	GSM MEASUREMENT RESULT	. 42
11.2.2	WCDMA MEASUREMENT RESULT	. 44
11.2.3	CDMA 2000 MEASUREMENT RESULT	. 45
11.2.4	LTE MEASUREMENT RESULT	. 46

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 Tel: 0086-23-88069965 FAX:0086-23-88608777

11.2.5	5 WI-FI/BT MEASUREMENT RESULT	. 51
12.	SIMULTANEOUS TX SAR CONSIDERATIONS	. 56
12.1.	INTRODUCTION	. 56
12.2.	TRANSMIT ANTENNA SEPARATION DISTANCES	. 56
12.3.	SAR MEASUREMENT POSITIONS	. 56
12.4.	STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	. 57
12.5.	SIMULTANEOUS MULTI-BAND TRANSMISSION	. 58
13.	MEASURED AND REPORTED (SCALED) SAR RESULTS	. 62
13.1.	SAR TEST RESULTS	. 65
14.	SAR MEASUREMENT VARIABILITY	. 86
15.	MEASUREMENT UNCERTAINTY	. 87
16.	MAIN TEST INSTRUMENTS	. 89
ANN	EX A GRAPHICAL MEASUREMENT RESULTS	. 90
ANN	EX B SYSTEM PERFORMANCE CHECK GRAPHICAL RESULTS1	164
ANN	EX C EUT TEST SETUP PHOTOS	180
ANN	EX D EXTERNAL PHOTOS	180
ANN	EX E INTERNAL PHOTOS	180
ANN	EX F CALIBRATION CERTIFICATES	180

1. Test Laboratory

1.1. Testing Location

Company Name:	China Telecommunication Technology Labs.
Address:	No. 8, Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China
Postal Code:	401336
Telephone:	0086-23-88069965
Fax:	0086-23-88608777

1.2. Testing Environment

Normal Temperature:	15-35℃
Relative Humidity:	20-75%
Ambient noise & Reflection:	< 0.012 W/kg

1.3. Project Data

Testing Start Date:	2017-03-04
Testing End Date:	2017-03-31

1.4. Signature

Wu Xuyang
(Prepared this test report)

Wang Lili
(Reviewed this test report)

Zhang Yan
Director of the laboratory
(Approved this test report)

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 Tel: 0086-23-88069965 FAX: 0086-23-88608777

2. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for A1-901 are as follows (with expanded uncertainty 22.4%)

Table 2.1: Max. Reported SAR Measured (1g)

Table 2.1: Max. Reported SAR Measured (1g)				
Band	Position	SAR 1g		
Dand		(W/Kg)		
	Head	0.066		
GSM850	Body	0.3069		
	Hotspot	0.3069		
	Head	0.0978		
GSM1900	Body	0.663		
	Hotspot	0.663		
	Head	0.1747		
WCDMA Band2	Body	0.7787		
	Hotspot	0.7787		
	Head	0.0924		
WCDMA Band5	Body	0.1877		
	Hotspot	0.1877		
	Head	0.1162		
CDMA 2000 BC0	Body	0.2137		
	Hotspot	0.2137		
	Head	0.1998		
CDMA 2000 BC1	Body	0.7320		
	Hotspot	1.0730		
	Head	0.1224		
LTE Band7	Body	0.5936		
	Hotspot	0.612		
	Head	0.0639		
LTE Band41	Body	0.3707		
	Hotspot	0.4452		
	Head	0.3474		
WIFI (2.4G) -Antenna1	Body	0.070304		
	Hotspot	0.0852		
	Head	0.2630		
WIFI (2.4G) -Antenna2	Body	0.0278		
	Hotspot	0.0680		
WLAN 5G UNII Band	Head	0.4686		
II-2A-Antenna1	Body	0.3454		
WLAN 5G UNII Band	Head	0.152		

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 Tel: 0086-23-88069965 FAX: 0086-23-88608777

II-2A-Antenna2	Body	0.2735
WLAN 5G UNII Band	Head	0.3151
II-2C-Antenna1	Body	0.3042
WLAN 5G UNII Band	Head	0.1754
II-2C-Antenna2	Body	0.4403
WLAN 5G UNII Band	Head	0.1847
III-Antenna1	Body	0.1505
WLAN 5G UNII Band	Head	0.1006
III-Antenna2	Body	0.3178

Table 2.2: The Maximum Reported of SAR values

	Maximum SAR value	Maximum SAR value	Maximum SAR value
	for Head	for Body	for Hotspot
GSM	0.0978	0.663	0.663
WCDMA	0.1747	0.7787	0.7787
CDMA 2000	0.1998	0.7320	1.0730
LTE	0.1224	0.5936	0.612
WIFI-2.4G	0.3474	0.070304	0.0852
WIFI-5G	0.4686	0.4403	1

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the IEEE C95.1–2005.

The measurement together with the test system set-up is described in chapter 7 of this test report. A detailed description of the equipment under test can be found in chapter 3 of this test report.

The maximum SAR value is obtained at the case of (Table 2.2), and the values are: 1.0730 W/Kg (1g).

3. Client Information

3.1. Applicant Information

Company Name:	CloudMinds(Shenzhen) Holdings Co. Ltd		
Address /Post:	Room 201 Building A No.1 Qian hai shengang Corporation Zone Qian hai Road 1st Shenzhen (Stay by Shenzhen Qianhai Commerce Secretariat Co., Ltd)		
City:	Shenzhen		
Country:	China		
Telephone:	13426155325		
Fax:			
Email:	andy.xu@cloudminds.com		
Contact Person:	andy.xu		

3.2. Manufacturer Information

Company Name:	SHENZHEN FUTAIHONG PRECISION INDUSTRY CO.,LTD
Address /Post:	Office Address Floor 2.Building 3. Zone K1. Foxcon Technology park,2ND DONGHUAN RD NO.2.LONGHUA Agency. LONGHUA NEW DISTRICT SHENZHEN
City:	Shenzhen
Country:	China
Telephone:	
Fax:	
Email:	
Contact Person:	

4. Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1. About EUT

Description:	4G LTE mobile phone
Model name:	A1-901
Operation Model(s):	GSM 850/1900,WCDMA 1900/850,CDMA 2000 BC0/1, LTE Band7/41, WIFI,BT
Tx Frequency:	825 – 848.8 MHz (GSM 850), 1850.2 – 1910 MHz (GSM 1900) 826.4–846.6 MHz (WCDMA850 Band V) 1852.4–1907.6 MHz (WCDMA1900 Band II) 824 – 849 MHz (CDMA 2000 BC0) 1850 –1909 MHz (CDMA 2000 BC1) 2500 – 2570 MHz (LTE Band 7) 2496 – 2690 MHz (LTE Band 41) 2412 – 2462 MHz (Wi-Fi 2.4G) 5150 – 5250 MHz (U-NII-1) 5250 – 5350 MHz (U-NII-2A) 5470 – 5725 MHz (U-NII-2C) 5725 – 5850 MHz (U-NII-3)
GPRS Multislot Class:	12
E-GPRS Multislot Class:	12
Operation mode:	В
Test device Production information:	Production unit
Device type:	Portable device
Antenna type:	Inner antenna
Accessories/Body-worn configurations:	Headset
Hotspot mode:	Support simultaneous transmission of hotspot and voice (or data)
Dimensions:	16.0cm×8.0cm

4.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt	
S10	IMEI1: 862851030005071	AP1	A1-901.1.130	2017-02-21	
	IMEI2: 862851030025079		, , , , , , , , , , , , , , , , , ,		

^{*}EUT ID: is used to identify the test sample in the lab internally.

4.3. Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer	
B10	Battery	NA	NA	NA	
A1	Headset	NA	NA	NA	

^{*}AE ID: is used to identify the test sample in the lab internally.

5. TEST METHODOLOGY

5.1. Applicable Limit Regulations

IEEE C95.1–2005: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2. Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

KDB447498 D01: General RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB648474 D04 Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets.

KDB941225 D01 SAR test for 3G devices v03r01: SAR Measurement Procedures for 3G Devices

KDB941225 D05 SAR for LTE Devices v02r05: SAR Evaluation Considerations for LTE Devices

KDB941225 D05A LTE Rel.10 KDB Inquiry Sheet v01r02: Rel. 10 LTE SAR Test Guidance and KDB Inquiries

KDB941225 D06 Hotspot Mode SAR v02r01: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities

KDB248227 D01 802.11 Wi-Fi SAR v02r02: SAR Measurement Procedures for IEEE 802.11 Wi-Fi Transmitters

KDB865664 D01SAR measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz.

KDB865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

NOTE: KDB is not in A2LA Scope List and CNAS Scope List.

6. Specific Absorption Rate (SAR)

6.1. Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7. SAR MEASUREMENT SETUP

7.1. Measurement Set-up

The DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture 7-1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing,
 AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

7.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model: ES3DV3

Frequency 10MHz — 2.6GHz(ES3DV3)

Range:

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 5800MHz

Linearity: $\pm 0.2 dB(30 \text{ MHz to } 26 \text{ GHz}) \text{ for ES3DV3}$

Picture 7-2 Near-field Probe

Dynamic Range: 10 mW/kg — 100W/kg

Probe Length: 330 mm

Probe Tip

Length: 20 mm Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9 mm for ES3DV3)
Tip-Center: 1 mm (2.0mm for ES3DV3)

Application:SAR Dosimetry Testing

Compliance tests of mobile phones
Dosimetry in strong gradient fields

Picture 7-3 E-field Probe

7.3. E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 Tel: 0086-23-88069965 FAX: 0086-23-88608777

be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm²..

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 $\Delta t = \text{Exposure time (30 seconds)},$

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

7.4. Other Test Equipment

7.4.1. Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Picture 7-4: DAE

7.4.2. Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX90) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- ➤ High precision (repeatability 0.02mm)
- ➤ High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- > Jerk-free straight movements (brushless synchron motors; no stepper motors)
- > Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture 7-5: DASY 5

7.4.3. Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 Tel: 0086-23-88069965 FAX: 0086-23-88608777

cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture 7-6: Server for DASY 5

7.4.4. Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters:

relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture 7-7: Device Holder

Picture 7-8: Laptop Extension Kit

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 Tel: 0086-23-88069965 FAX: 0086-23-88608777

7.4.5. Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness: $2 \pm 0.2 \text{ mm}$

Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

Available: Special

Picture 7-9: SAM Twin Phantom

8. Tissue Simulating Liquids

8.1. Targets for tissue simulating liquid

Table 8.1 Targets for tissue simulating liquid

Frequency (MHz)	Liquid Type	Conductivity (σ)	± 5% Range	Permittivity (ε)	± 5% Range
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
2550	Head	1.91	1.81~2.00	39.1	37.1~41.0
2600	Head	1.96	1.86~2.06	39.0	37.0~40.9
5300	Head	4.66	4.43~4.89	36.0	34.2~37.8
5600	Head	5.07	4.82~5.32	35.5	33.7~37.3
5800	Head	5.27	5.00~5.53	35.2	33.4~37.0
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3
2550	Body	2.09	1.98~2.19	52.6	49.9~55.2
2600	Body	2.16	2.05~2.27	52.5	49.8~55.1
5300	Body	5.30	5.04~5.56	49.0	46.6~51.4
5600	Body	5.77	5.48~6.06	48.5	46.1~50.9
5800	Body	6.00	5.70~6.30	48.2	45.8~50.6

8.2. Dielectric Performance

Table 8.2: Dielectric Performance of Head Tissue Simulating Liquid

Measurem	ent Value					
Liquid Tem	perature: 22.5°C					
Туре	Frequency	Permittivity ε	Drift (%)	Conductivity σ	Drift (%)	Test Date
Head	835MHz	41.94	+1.06%	0.909	+1.00%	2017-03-10
Head	1900MHz-1	39.92	-0.20%	1.376	-1.71%	2017-03-06
Head	1900MHz-2	39.92	-0.20%	1.391	-0.64%	2017-03-12
Head	2450MHz	38.54	-1.68%	1.829	+1.61%	2017-03-17
Head	2550MHz	38.18	-2.35%	1.941	+1.62%	2017-03-16
Head	2600MHz	37.65	-3.46%	2.022	+3.16%	2017-03-16
Head	5300MHz	37.34	+3.72%	4.876	+4.64%	2017-03-20
Head	5600MHz	34.85	-1.83%	4.966	-2.05%	2017-03-20
Head	5800MHz	35.92	+2.05%	5.252	-0.34%	2017-03-20
Body	835MHz-1	54.34	-1.56%	0.969	-0.10%	2017-03-04
Body	835MHz-2	54.54	-1.20%	0.988	+1.86%	2017-03-14
Body	1900MHz	50.92	-4.47%	1.501	-1.25%	2017-03-28
Body	2450MHz	51.95	-1.42%	1.954	+0.21%	2017-03-17
Body	2550MHz	51.21	-2.64%	2.110	+0.96%	2017-03-15
Body	2600MHz	50.84	-3.16%	2.190	+1.39%	2017-03-15
Body	5300MHz	49.48	+0.98%	5.545	+4.62%	2017-03-31
Body	5600MHz	46.43	-4.27%	5.701	-1.20%	2017-03-31
Body	5800MHz	47.48	-1.49%	5.995	-0.08%	2017-03-31

Picture 8-1: Liquid depth in the Head Phantom (835 MHz Head)

Picture 8-2: Liquid depth in the Head Phantom (1900 MHz Head)

Picture 8-3: Liquid depth in the Head Phantom (2450 MHz Head)

Picture 8-4: Liquid depth in the Head Phantom (2600 MHz Head)

Picture 8-5: Liquid depth in the Head Phantom (5GHz Head)

Picture 8-6: Liquid depth in the Flat Phantom (835 MHz Body)

Picture 8-7: Liquid depth in the Flat Phantom (1900 MHz Body)

Picture 8-8: Liquid depth in the Flat Phantom (2450 MHz Body)

Picture 8-9: Liquid depth in the Flat Phantom (2600 MHz Body)

Picture 8-10: Liquid depth in the Flat Phantom (5GHz Body)

9. System Validation

9.1. System Validation

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performace check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

9.2. System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 9-1 System Setup for System Evaluation

The output power on dipole port must be calibrated to 24 dBm (250mW) before dipole is connected.

Picture 9-2 Photo of Dipole Setup

Table 9.1: System Validation of Head

Verification Re	sults							
	Target va	alue (W/kg)	Measured v	alue (W/kg)	Devi	ation	Tool	
Frequency	10 g	1 g	10 g	1 g	10 g	1 g	Test date	
	Average	Average	Average	Average	Average	Average	uate	
835MHz	1.53	2.33	1.63	2.48	+6.54%	+6.44%	2017-03-10	
1900MHz-1	5.19	9.97	5.10	9.97	-1.73%	0.00%	2017-03-06	
1900MHz-2	5.19	9.97	5.34	10.3	+2.89%	+3.31%	2017-03-12	
2450MHz	6.14	13.1	6.06	13.3	-1.30%	+1.53%	2017-03-17	
26000MHz	6.25	14.0	6.19	14.1	-0.96%	+0.71%	2017-03-16	
5300MHz	2.33	8.12	2.27	7.88	-2.58%	-2.96%	2017-03-20	
5600MHz	2.42	8.49	2.33	8.06	-3.72%	-5.06%	2017-03-20	
5800MHz	2.20	7.82	2.23	7.72	+1.36%	-1.28%	2017-03-20	

Table 9.2: System Validation of Body

Verification Re	sults							
	Target va	Target value (W/kg)		alue (W/kg)	Devi	ation	T4	
Frequency	10 g	1 g	10 g	1 g	10 g	1 g	Test date	
	Average	Average	Average	Average	Average	Average	uate	
835MHz-1	1.61	2.41	1.60	2.41	-0.62%	+0.00%	2017-03-04	
835MHz-2	1.61	2.41	1.53	2.32	-4.97%	-3.73%	2017-03-14	
1900MHz	5.34	10.2	4.96	9.42	-7.12%	-7.65%	2017-03-28	
2450MHz	6.14	13.2	5.97	12.7	-2.77%	-3.79%	2017-03-17	
26000MHz	6.25	14.2	6.30	14.2	+0.80%	0.00%	2017-03-15	
5300MHz	2.20	7.79	2.03	7.66	-7.73%	-1.67%	2017-03-31	
5600MHz	2.23	7.97	2.09	7.23	-6.28%	-9.28%	2017-03-31	
5800MHz	2.07	7.50	2.26	7.87	+9.18%	+4.93%	2017-03-31	

10. Measurement Procedures

10.1. Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in Picture 10-1.

Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:

- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex c),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 10-1 Block diagram of the tests to be performed

10.2. General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			≤ 3 GHz	> 3 GHz		
Maximum distance from (geometric center of pro		•	5 ± 1 mm	½-δ·ln(2) ± 0.5 mm		
Maximum probe angle f normal at the measurem			30° ± 1°	20° ± 1°		
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.			
Maximum zoom scan sp	Maximum zoom scan spatial resolution: Δx _{Zoom} , Δy _{Zoom}			3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*		
	uniform g	nid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
Minimum zoom scan volume	x, y, z	ı	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: > 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

10.3. WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH &DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

For Release 5 HSDPA Data Devices:

Sub-test	$oldsymbol{eta_c}$	$oldsymbol{eta_d}$	β_d (SF)	$oldsymbol{eta}_c$ / $oldsymbol{eta}_d$	$oldsymbol{eta_{hs}}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

For Release 6 HSUPA Data Devices

Sub- test	$oldsymbol{eta_c}$	$oldsymbol{eta_d}$	eta_d	$oldsymbol{eta}_c$ / $oldsymbol{eta}_d$	$oldsymbol{eta_{hs}}$	$oldsymbol{eta_{ec}}$	$oldsymbol{eta}_{ed}$	eta_{ed}	eta_{ed} (codes)	CM (dB)	MP R (dB)	AG Index	E-TFC I
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$oldsymbol{eta_{ed1}}$:47/15 $oldsymbol{eta_{ed2}}$:47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	3.0	2.0	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.0	0.0	21	81

10.4. SAR Measurement for LTE

SAR tests for LTE are performed with a base station simulator, R&S CMW500. Closed loop power control was used so the UE transmits with maximum output power during SAR testing.

All powers were measured with the CMW500.

•

Downlink LTE CA additional specification

The device supports downlink Release 11 LTE Carrier Aggergation (CA) only. It supports a maximum of 3 carriers in the downlink. Other Release 11 features are not supported, including Uolink carrier.

Address: No. 8, Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China, 401336 Tel: 0086-23-88069965 FAX: 0086-23-88608777

Table 5.6A.1-1: E-UTRA CA configurations and bandwidth combination sets defined for intra-band contiguous CA

	E-UTRA CA configuration / Bandwidth combination set										
E-UTRA CA configuration	Uplink CA	Component carriers in o	Maximum aggregated	Bandwidth							
	configurations (NOTE 3)	Channel bandwidths for carrier [MHz]	Channel bandwidths for carrier [MHz]	bandwidth [MHz]	combination set						
		10	20								
CA_41C	CA_41C	15	15, 20	40	0						
		20									

NOTE 1: The CA configuration refers to an operating band and a CA bandwidth class specified in Table 5.6A-1 (the

indexing letter). Absence of a CA bandwidth class for an operating band implies support of all classes.

NOTE 2: For the supported CC bandwidth combinations, the CC downlink and uplink bandwidths are equal.

NOTE 3: Uplink CA configurations are the configurations supported by the present release of specifications.

Table 5.6A.1-2: E-UTRA CA configurations and bandwidth combination sets defined for inter-band CA (two bands)

E-UTRA CA configuration / Bandwidth combination set										
E-UTRA CA Configuration	Uplink CA configurations (NOTE 4)	E-UTRA Bands	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Maximum aggregated bandwidth [MHz]	Bandwidth combination set
CA 30A 41A	CA 30A 41A	39				Yes	Yes	Yes	40 0	
CA_39A-41A	41						Yes	40	U	

10.5. Power Drift

To control the output power stability during the SAR test, DASY5 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 13.1 to Table 13.26 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

11. Conducted Output Power

11.1. Manufacturing tolerance

Table 11.1-1: GSM Speech

Tuble 11.1 1. GbM bpeech										
	GSM 835									
Channel	Channel 251 Channel 190 Channel 128									
Maximum Target Value (dBm)	32.0±1	32.0±1	32.0±1							
PCS 1900										
Channel	Channel 810	Channel 661	Channel 512							
Maximum Target Value (dBm)	27.5±1	27.5±1	27.5±1							

Table 11.1-2: GPRS/EGPRS(GMSK)

Table 11.1-2. Of K5/EOFK5(OWISK)					
GSM 850 GPRS					
Channel		251	190	128	
1 Tx slots	Maximum Target Value (dBm)	32.0±1	32.0±1	32.0±1	
2 Tx slots	Maximum Target Value (dBm)	31.0±1	31.0±1	31.0±1	
3 Tx slots	Maximum Target Value (dBm)	30.0±1	30.0±1	30.0±1	
4 Tx slots	Maximum Target Value (dBm)	29.0±1	29.0±1	29.0±1	
GSM 1900 GPRS					
Channel		810	661	512	
1 Tx slots	Maximum Target Value (dBm)	27.5±1	27.5±1	27.5±1	
2 Tx slots	Maximum Target Value (dBm)	25.0±1	25.0±1	25.0±1	
3 Tx slots	Maximum Target Value (dBm)	24.0±1	24.0±1	24.0±1	
4 Tx slots	Maximum Target Value (dBm)	22.5±1	22.5±1	22.5±1	

Table 11.1-3: EGPRS(8KSK)

GSM 850 EGPRS					
Channel		251	190	128	
1 Tx slots	Maximum Target Value (dBm)	26.0±1	26.0±1	26.0±1	
2 Tx slots	Maximum Target Value (dBm)	25.0±1	25.0±1	25.0±1	
3 Tx slots	Maximum Target Value (dBm)	24.0±1	24.0±1	24.0±1	
4 Tx slots	Maximum Target Value (dBm)	22.0±1	22.0±1	22.0±1	
GSM 1900 GPRS					
Channel		810	661	512	
1 Tx slots	Maximum Target Value (dBm)	25.0±1	25.0±1	25.0±1	
2 Tx slots	Maximum Target Value (dBm)	24.5±1	24.5±1	24.5±1	
3 Tx slots	Maximum Target Value (dBm)	23.0±1	23.0±1	23.0±1	
4 Tx slots	Maximum Target Value (dBm)	22.5±1	22.5±1	22.5±1	

Table 11.1-4:WCDMA

WCDMA Band V					
Channel	Channel 4132	Channel 4182	Channel 4233		
Maximum Target Value (dBm)	23.5±1	23.5±1	23.5±1		
WCDMA Band II					
Channel	Channel 9262	Channel 9400	Channel 9538		
Maximum Target Value (dBm)	22.7±1	22.7±1	22.7±1		

Table 11.1-5 HSDPA(QPSK)

WCDMA Band V					
Channel		4132	4182	4233	
1	Maximum Target Value (dBm)	22.5±1	22.5±1	22.5±1	
2	Maximum Target Value (dBm)	22.5±1	22.5±1	22.5±1	
3	Maximum Target Value (dBm)	21.0±1	21.0±1	21.0±1	
4	Maximum Target Value (dBm)	21.0±1	21.0±1	21.0±1	
WCDMA Band II					
	Channel	9262	9400	9538	
1	Maximum Target Value (dBm)	21.7±1	21.7±1	21.7±1	
2	Maximum Target Value (dBm)	22.0±1	22.0±1	22.0±1	
3	Maximum Target Value (dBm)	21.2±1	21.2±1	21.2±1	
4	Maximum Target Value (dBm)	21.0±1	21.0±1	21.0±1	

Table 11.1-6: HSUPA (QPSK)

		WCDMA Band V		
	Channel	4132	4182	4233
1	Maximum Target Value (dBm)	215+1		21.5±1
2	Maximum Target Value (dBm)	21.5±1	21.5±1	21.5±1
3	Maximum Target Value (dBm)	21.5±1	21.5±1	21.5±1
4	Maximum Target Value (dBm)	21.5±1	21.5±1	21.5±1
5	Maximum Target Value (dBm)	21.5±1	21.5±1	21.5±1
		WCDMA Band II		
	Channel	9262	9400	9538
1	Maximum Target Value (dBm)	21.5±1	21.5±1	21.5±1
2	Maximum Target Value (dBm)	21.5±1	21.5±1	21.5±1
3	Maximum Target Value (dBm)	21.5±1	21.5±1	21.5±1
4	Maximum Target Value (dBm)	21.5±1	21.5±1	21.5±1
5	Maximum Target Value (dBm)	21.5±1	21.5±1	21.5±1

Table 11.1-7: CDMA 2000

	BC0							
Channel	1013	384	777					
Maximum Target Value (dBm)	23.1±1	23.1±1	23.1±1					
	BC1							
Channel	25	600	1175					
Maximum Target Value (dBm)	23.1±1	23.1±1	23.1±1					

Table 11.1-8: LTE

			Band7 Channel 20775	Channel 21100	Channel 21425
Bandwidth	Mode	RB Size	2502.5MHz	2535MHz	2567.5MHz
		1	21.0±1	21.0±1	21.0±1
	QPSK	12	20.5±1	20.5±1	20.5±1
5) (1)		25	20.5±1	20.5±1	20.5±1
5MHz		1	20.5±1	20.5±1	20.5±1
	16QAM	12	19.5±1	19.5±1	19.5±1
		25	19.5±1	19.5±1	19.5±1
Bandwidth	Mada	DD C:	Channel 20800	Channel 21100	Channel 21400
Bandwidth	Mode	RB Size	2505MHz	2535MHz	2565MHz
		1	21.0±1	21.0±1	21.0±1
	QPSK	25	20.5±1	20.5±1	20.5±1
10MHz		50	20.5±1	20.5±1	20.5±1
TOWILL	16QAM	1	20.5±1	20.5±1	20.5±1
		25	20.0±1	20.0±1	20.0±1
		50	20.0±1	20.0±1	20.0±1
Bandwidth	Mode	RB Size	Channel 20825	Channel 21100	Channel 21375
Dandwidth	Wiode	KD Size	2507.5MHz	2535MHz	2562.5MHz
		1	21.5±1	21.5±1	21.5±1
	QPSK	36	20.5±1	20.5±1	20.5±1
15MHz		75	20.5±1	20.5±1	20.5±1
ISWIIZ		1	21.0±1	21.0±1	21.0±1
	16QAM	36	19.0±1	19.0±1	19.0±1
		75	19.0±1	19.0±1	19.0±1
Bandwidth	Mode	RB Size	Channel 20850	Channel 21100	Channel 21350
Danawidin	Wiode	KD SIZE	2510MHz	2535MHz	2560MHz
		1	21.5±1	21.5±1	21.5±1
	QPSK	50	20.5±1	20.5±1	20.5±1
20MHz		100	20.5±1	20.5±1	20.5±1
20141112		1	20.5±1	20.5±1	20.5±1
	16QAM	50	19.5±1	19.5±1	19.5±1
		100	19.5±1	19.5±1	19.5±1

				Band41			
Bandwidth	Mode	RB Size	Channel 39675 2498.5MHz	Channel 40148 2545.8MHz	Channel 40620 2593MHz	Channel 41093 2640.3MHz	Channel 41565 2687.5MHz
	1	22.0±1	22.0±1	22.0±1	22.0±1	22.0±1	
	QPSK	12	21.0±1	21.0±1	21.0±1	21.0±1	21.0±1
5) (1)		25	21.0±1	21.0±1	21.0±1	21.0±1	21.0±1
5MHz		1	21.0±1	21.0±1	21.0±1	21.0±1	21.0±1
	16QAM	12	20.0±1	20.0±1	20.0±1	20.0±1	20.0±1
		25	20.0±1	20.0±1	20.0±1	20.0±1	20.0±1
Bandwidth	Mode	RB Size	Channel 39700 2501MHz	Channel 40160 2547MHz	Channel 40620 2593MHz	Channel 41080 2639MHz	Channel 41540 2685MHz
		1	22.0±1	22.0±1	22.0±1	22.0±1	22.0±1
	10MHz 16QAM Bandwidth Mode	25	21.0±1	21.0±1	21.0±1	21.0±1	21.0±1
101411		50	21.0±1	21.0±1	21.0±1	21.0±1	21.0±1
IUMIHZ		1	21.0±1	21.0±1	21.0±1	21.0±1	21.0±1
		25	20.0±1	20.0±1	20.0±1	20.0±1	20.0±1
		50	20.0±1	20.0±1	20.0±1	20.0±1	20.0±1
Bandwidth		RB Size	Channel 39725 2503.5MHz	Channel 40173 2548.3MHz	Channel 40620 2593MHz	Channel 41068 2637.8MHz	Channel 41515 2682.5MHz
		1	22.0±1	22.0±1	22.0±1	22.0±1	22.0±1
	QPSK	36	21.0±1	21.0±1	21.0±1	21.0±1	21.0±1
15) (1)		75	21.0±1	21.0±1	21.0±1	21.0±1	21.0±1
15MHz		1	21.0±1	21.0±1	21.0±1	21.0±1	21.0±1
	16QAM	36	20.0±1	20.0±1	20.0±1	20.0±1	20.0±1
		75	20.0±1	20.0±1	20.0±1	20.0±1	20.0±1
Bandwidth	Mode	RB Size	Channel 39750 2506MHz	Channel 40185 2549.5Hz	Channel 40620 2593MHz	Channel 44055 2636.5MHz	Channel 41490 2680MHz
		1	22.0±1	22.0±1	22.0±1	22.0±1	22.0±1
	QPSK	50	21.0±1	21.0±1	21.0±1	21.0±1	21.0±1
201.67		100	21.0±1	21.0±1	21.0±1	21.0±1	21.0±1
20MHz		1	21.0±1	21.0±1	21.0±1	21.0±1	21.0±1
	16QAM	50	20.0±1	20.0±1	20.0±1	20.0±1	20.0±1
	-	100	20.0±1	20.0±1	20.0±1	20.0±1	20.0±1

Table 11.1-9: BT

Mode	Conducted Power(dBm)						
	Channel 0(2402MHz)	Channel 39(2441MHz)	Channel 78(2480MHz)				
GFSK	8.1±1	8.1±1	8.1±1				
EDR2M-4_DQPSK	7.1±1	7.1±1	7.1±1				
EDR3M-8DPSK	7.5±1	7.5±1	7.5±1				
BLE	0.0±1	0.0±1	0.0±1				

Table 11.1-10: WiFi 2.4GHz

Mode	Conducted Power(dBm)					
	Antenna Config.1	Antenna Config.2	Total			
802.11b	15.0±1	12.0±1	/			
802.11g	18.0±1	15.0±1	/			
802.11g(20MHz)	17.5±1	15.0±1	19.5±1			
802.11g(40MHz)	18.0±1	15.5±1	20.0±1			

Table 11.1-11: WiFi 5GHz

Mode	Conducted Power(dBm)					
	Antenna Config.1	Antenna Config.2	Total			
5.2GHz WiFi	17.0±1	8.5±1	17.5/±1			
5.3GHz WiFi	17.0±1	8.5±1	17.5/±1/			
5.6GHz WiFi	17.0±1	9.0±1	17.5/±1/			
5.8GHz WiFi	16.5±1	8.0±1	17.0±1/			

11.2. power measurement results

11.2.1 GSM Measurement result

During the process of testing, the EUT was controlled via R&S Digital Radio Communication tester (CMU200) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Table 11.2-1: The conducted power measurement results for GSM850//1900

GSM	Tune-up		Conducted Power (dBm)					
850MHZ	(dBm)	Channel 128(824.2MHz)	Channel 190(826.6MHz)	Channel 251(848.8MHz)				
920MHZ	33.0	32.6	32.4	32.4				
CCM	Tune-up		Conducted Power(dBm)					
GSM 1900MHZ	(dBm)	Channel 512(1850.2MHz)	Channel 661(1880 MHz)	Channel 810(1909.8MHz)				
1900MHZ	28.5	28.4	28.1	28.3				

Table 11.2-2: The conducted power measurement results for GPRS(GMSK)

GSM 850	Tune-up	Meas	ured Power (dBm)	calculation	Avera	ged Power (dBm)
GPRS	(dBm)	128	190	251		128	190	251
1 Txslot	33.0	32.9	32.6	32.9	-9.03dB	23.87	23.57	23.87
2 Txslots	32.0	31.7	31.9	31.6	-6.02dB	25.68	25.88	25.58
3 Txslots	31.0	30.5	30.5	30.6	-4.26dB	26.24	26.24	26.34
4 Txslots	30.0	29.5	29.3	29.4	-3.01dB	26.49	26.29	26.39
GSM1900	Tune-up	Meas	ured Power (dBm)	calculation	Avera	ged Power (dBm)
GPRS	(dBm)	512	661	810		512	661	810
1 Txslot	28.5	28.3	28.0	28.1	-9.03dB	19.27	18.97	19.07
2 Txslots	26.0	25.9	25.8	26.0	-6.02dB	19.88	19.78	19.98
3 Txslots	25.0	24.6	24.2	24.5	-4.26dB	20.34	19.94	20.24
4 Txslots	23.5	23.5	23.4	23.4	-3.01dB	20.49	20.39	20.39

Table 11.2-3: The conducted power measurement results for EGPRS(GMSK)

	200 201 201 201 201 201 201 201 201 201							
GSM 850	Tune-up	Measi	Measured Power (dBm)			Avera	ged Power (dBm)
GPRS	(dBm)	128	190	251		128	190	251
1 Txslot	33.0	32.8	32.5	32.7	-9.03dB	23.77	23.47	23.67
2 Txslots	32.0	31.6	21.8	31.5	-6.02dB	25.58	15.78	25.48
3 Txslots	31.0	30.6	30.6	30.6	-4.26dB	26.34	26.34	26.34
4 Txslots	30.0	29.5	29.4	29.4	-3.01dB	26.49	26.39	26.39
GSM1900	Tune-up	Meas	ured Power (dBm)	calculation	Avera	ged Power (dBm)
GPRS	(dBm)	512	661	810		512	661	810
1 Txslot	28.5	28.3	28.0	28.1	-9.03dB	19.27	18.97	19.07
2 Txslots	26.0	25.9	25.8	26.0	-6.02dB	19.88	19.78	19.98

3 Txslots	25.0	24.6	24.1	24.6	-4.26dB	20.34	19.84	20.34
4 Txslots	23.5	23.5	23.4	23.4	-3.01dB	20.49	20.39	20.39

Table 11.2-4: The conducted power measurement results for EGPRS(8PSK)

GSM 850	Tune-up	Meas	ured Power (dBm)	calculation	Avera	ged Power (dBm)
GPRS	(dBm)	128	190	251		128	190	251
1 Txslot	27.0	26.2	26.1	26.3	-9.03dB	17.17	17.07	17.27
2 Txslots	26.0	25.1	25.0	25.2	-6.02dB	19.08	18.98	19.18
3 Txslots	25.0	24.1	24.0	24.1	-4.26dB	19.84	19.74	19.84
4 Txslots	23.0	22.9	22.8	22.9	-3.01dB	19.89	19.79	19.89
GSM1900	Tune-up	Meas	ured Power (dBm)	calculation	Avera	ged Power (dBm)
GPRS	(dBm)	512	661	810		512	661	810
1 Txslot	26.0	25.8	25.6	25.7	-9.03dB	16.77	16.57	16.67
2 Txslots	25.5	25.1	24.9	25.0	-6.02dB	19.08	18.88	18.98
3 Txslots	24.0	24.0	23.9	24.0	-4.26dB	19.74	19.64	19.74

NOTES:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01Db

According to the conducted power as above, the body measurements are performed with 4Txslots for 850MHz and 1900MHz.

11.2.2 WCDMA Measurement result

Table 11.2-5: The conducted Power for WCDMA

	WCDMA Band V Result (dBm)												
24.1	T	ADECN	Channel 4132	Channel 4182	Channel 4233								
Mode	Tune-up	ARFCN	(826.4MHz)	(836.4MHz)	(846.6MHz)								
WCDMA	24.5	RMC	24.42	24.26	24.26								
	23.5	1	23.38	23.28	23.30								
HSDPA	23.5	2	23.21	23.22	23.16								
(QPSK)	22.0	3	21.85	21.86	21.74								
	22.0	4	21.64	21.58	21.50								
	22.5	1	22.24	21.90	21.95								
HSUPA	22.5	2	22.11	21.91	21.94								
(QPSK)	22.5	3	22.14	21.98	21.97								
(QPSK)	22.5	4	22.11	21.94	22.04								
	22.5	5	22.12	22.00	21.97								
	_	WCD:	MA Band II Result (dF	Bm)									
Mode	Tune-up	ARFCN	Channel 9262	Channel 9400	Channel 9538								
Wiode	Tune-up	ARTON	(1852.4MHz)	(1880MHz)	(1907.6MHz)								
WCDMA	23.7	RMC	23.67	22.13	21.72								
	22.7	1	22.67	21.21	20.83								
HSDPA	23.0	2	22.88	21.41	21.01								
(QPSK)	22.2	3	22.11	20.65	20.39								
	22.0	4	21.97	20.67	20.11								
	22.5	1	22.43	21.15	20.57								
HSUPA	22.5	2	22.37	21.11	20.66								
(QPSK)	22.5	3	22.49	21.08	20.60								
(Qrsk)	22.5	4	22.39	21.10	20.74								
	22.5	5	22.38	21.09	20.67								

11.2.3 CDMA 2000 Measurement result

Table 11.2-6: The conducted Power for CDMA 2000

			CDMA M	Iaximum ou	itput powe	er [dBm]	1x EvDo		
D 1	Cl. 1	Tune-up (dBm)	SC)55	SC)32	Rel.0	Rel.A	
Band	Channel		RC1	RC3	RC1	RC3	RTAP	RETAP	
	1013	24.1	23.89	23.94	23.92	23.90	23.93	24.01	
BC0	384	24.1	23.96	23.87	23.88	23.84	23.98	23.92	
	777	24.1	23.94	23.81	23.97	23.92	24.05	24.07	
	25	24.1	23.95	23.98	23.93	24.01	24.08	24.06	
BC1	600	24.1	23.84	23.84	23.87	23.88	23.95	24.03	
	1175	24.1	23.93	23.97	23.96	23.94	24.01	24.10	

11.2.4 LTE Measurement result

Table 11.2-7: The conducted Power for LET BAND

		14	DIC 11.2-7. 11	Band7	ower for EET B	ITE		
				Dana	Actus	al output power(dRm)	
Bandwidth	Mode	Tune-up (dBm)	RB Size	RB Offset	Channel 20775 2502.5MHz	Channel 21100 2535MHz	Channel 21425 2567.5MHz	
		22.0	1	0	21.81	21.99	21.81	
		22.0	1	13	21.93	21.91	21.76	
		22.0	1	24	21.43	21.80	21.80	
	QPSK	21.5	12	0	21.42	20.47	20.73	
	C - 2-2	21.5	12	6	21.50	20.53	20.75	
		21.5	12	13	21.03	20.51	20.74	
		21.5	25	0	20.96	20.52	20.73	
5MHz		21.5	1	0	20.89	20.81	21.08	
		21.5	1	13	20.78	20.95	21.10	
		21.5	1	24	20.66	20.63	21.17	
	16QAM	20.5	12	0	20.02	19.67	19.78	
		20.5	12	6	19.86	19.71	19.81	
		20.5	12	13	19.87	19.68	19.80	
		20.5	25	0	19.78	19.56	19.90	
					Actual output power(dBm)			
Bandwidth	Mode	Tune-up (dBm)	RB Size	RB Offset	Channel 20800	Channel 21100	Channel 21400	
					2505MHz	2535MHz	2565MHz	
		22.0	1	0	21.92	21.80	21.95	
		22.0	1	25	21.78	21.57	21.85	
		22.0	1	49	21.34	21.64	21.71	
	QPSK	21.5	25	0	21.06	20.51	20.84	
		21.5	25	13	20.93	20.59	20.65	
		21.5	25	25	20.87	20.46	20.74	
10MHz		21.5	50	0	20.92	20.56	20.76	
			1	0	21.34	20.87	21.11	
			1	25	21.17	20.49	20.92	
			1	49	20.88	20.63	21.09	
	16QAM	21.0	25	0	20.67	19.52	19.80	
		21.0	25	13	20.49	19.55	19.74	
		21.0	25	25	19.76	19.51	19.70	
		21.0	50	0	20.57	19.54	19.80	

					Actu	al output power(dBm)
D am d! dut	Mad.	Tune-up	DD G!	DD Office	Channel	Channel	Channel
Bandwidth	Mode	(dBm)	RB Size	RB Offset	20825	21100	21375
					2507.5MHz	2535MHz	2562.5MHz
		22.5	1	0	22.33	22.41	22.32
		22.5	1	38	22.13	21.89	22.01
		22.5	1	74	22.04	21.70	22.07
	QPSK	21.5	36	0	20.92	20.63	21.13
		21.5	36	18	20.75	20.60	20.98
		21.5	36	39	20.72	20.56	20.79
15MHz		21.5	75	0	20.82	20.60	20.84
1 JWII IZ		22.0	1	0	21.71	21.02	21.17
		22.0	1	38	21.59	20.79	21.00
		22.0	1	74	21.20	20.70	20.96
	16QAM	20.0	36	0	19.76	19.71	19.89
		20.0	36	18	19.83	19.64	19.77
		20.0	36	39	19.69	19.60	19.72
		20.0	75	0	19.72	19.61	19.86
					Actu	al output power(dBm)
Bandwidth	Mode	Tune-up	RB Size	RB Offset	Channel	Channel	Channel
Zwii w i w i w i	1,1000	(dBm)	100 2120	100 011500	20850	21100	21350
					2510MHz	2535MHz	2560MHz
		22.5	1	0	22.22	21.92	22.42
		22.5	1	50	22.04	21.56	21.77
		22.5	1	99	21.71	21.61	21.73
	QPSK	21.5	50	0	20.82	20.82	21.34
		21.5	50	25	20.66	20.68	2093
		21.5	50	50	20.73	20.76	20.76
20MHz		21.5	100	0	21.01	20.72	20.78
ZOWITIZ		21.5	1	0	21.39	21.21	21.36
		21.5	1	50	20.86	20.81	21.02
		21.5	1	99	20.99	20.76	21.22
	16QAM	20.5	50	0	19.96	19.81	20.00
		20.5	50	25	19.77	19.68	19.86
		20.5	50	50	19.79	19.70	19.83
		20.5	100	0	19.94	19.83	19.91

					Band4	1			
		_				Ac	tual output power(d	Bm)	
Bandwidth	Mode	Tune-up (dBm)	RB Size	RB Offset	Channel 39675 2498.5MHz	Channel 40148 2545.8MHz	Channel 40620 2593MHz	Channel 41093 2640.3MHz	Channel 41565 2687.5MHz
		23.0	1	0	21.08	21.34	21.78	22.16	22.53
		23.0	1	13	21.12	21.30	21.90	22.14	22.50
		23.0	1	24	21.10	21.29	21.87	22.13	22.43
	QPSK	22.0	12	0	20.16	20.55	21.01	21.21	21.72
		22.0	12	6	20.17	20.51	21.02	21.14	21.71
		22.0	12	13	20.21	20.54	20.95	21.13	21.65
5MHz		22.0	25	0	20.14	20.49	21.01	21.15	21.64
SMHZ		22.0	1	0	21.10	20.58	21.08	21.39	21.79
		22.0	1	13	21.18	20.64	21.11	21.45	21.87
		22.0	1	24	21.12	20.49	21.05	21.36	21.75
	16QAM	21.0	12	0	20.16	19.64	20.05	20.41	20.72
		21.0	12	6	20.19	19.61	20.05	20.31	20.71
		21.0	12	13	20.17	19.62	20.02	20.32	20.70
		21.0	25	0	20.18	19.54	20.00	20.19	20.69
		T	RB			Ac	tual output power(d	Bm)	
Bandwidth	Mode	Tune-up (dBm)	Size	RB Offset	Channel 39700 2501MHz	Channel 40160 2547MHz	Channel 40620 2593MHz	Channel 41080 2639MHz	Channel 41540 2685MHz
		23.0	1	0	21.10	21.45	21.83	22.12	22.59
		23.0	1	25	21.08	21.32	21.84	22.01	22.43
		23.0	1	49	21.00	21.28	21.78	21.89	22.41
	QPSK	22.0	25	0	20.28	20.55	20.92	21.25	21.67
		22.0	25	13	20.30	20.52	21.00	21.22	21.62
		22.0	25	25	20.32	20.51	21.10	21.23	21.72
10MHz		22.0	50	0	20.20	20.48	21.01	21.31	21.69
10MHz		22.0	1	0	20.47	20.70	21.09	21.50	21.92
		22.0	1	25	20.46	20.60	21.04	21.31	21.86
		22.0	1	49	20.57	20.54	21.10	21.30	21.78
	16QAM	21.0	25	0	19.36	19.64	19.94	20.32	20.77
	IOQAM	21.0	25	13	19.39	19.58	20.01	20.26	20.66
		21.0	25	25	19.40	19.48	20.02	20.28	20.62
		21.0	50	0	19.42	19.60	20.02	20.35	20.72

						Ac	tual output power(d	Bm)	
Bandwidth	Mode	Tune-up (dBm)	RB Size	RB Offset	Channel 39725 2503.5MHz	Channel 40173 2548.3MHz	Channel 40620 2593MHz	Channel 41068 2637.8MHz	Channel 41515 2682.5MHz
		23.0	1	0	21.14	21.64	21.89	22.24	22.68
		23.0	1	38	21.09	21.24	21.76	22.03	22.42
		23.0	1	74	21.22	21.18	21.72	21.91	22.43
	QPSK	22.0	36	0	20.36	20.62	20.89	21.23	21.63
		22.0	36	18	20.24	20.36	20.95	21.08	21.54
		22.0	36	39	20.23	20.41	21.00	21.01	21.53
15MII-		22.0	75	0	20.42	20.46	20.88	21.06	21.52
15MHz		22.0	1	0	20.37	21.04	21.20	21.46	21.99
		22.0	1	38	20.30	20.80	21.06	21.19	21.74
		22.0	1	74	20.41	20.74	21.07	21.06	21.78
	16QAM	21.0	36	0	19.38	19.57	19.88	20.25	20.71
		21.0	36	18	19.30	19.53	19.94	20.17	20.57
		21.0	36	39	19.33	19.47	19.95	20.06	20.54
		21.0	75	0	19.31	19.49	19.93	20.14	20.58
		T	DD			Ac	tual output power(d	Bm)	
Bandwidth	Mode	Tune-up (dBm)	RB Size	RB Offset	Channel 39750 2506MHz	Channel 40185 2549.5Hz	Channel 40620 2593MHz	Channel 44055 2636.5MHz	Channel 41490 2680MHz
		23.0	1	0	21.59	21.76	22.03	22.31	22.79
		23.0	1	50	21.15	21.29	21.74	21.91	22.33
		23.0	1	99	21.29	21.49	21.89	21.95	22.44
	QPSK	22.0	50	0	20.38	20.75	20.92	21.16	21.76
		22.0	50	25	20.49	20.56	20.92	21.08	21.60
		22.0	50	50	20.34	20.49	20.97	21.06	21.59
201411		22.0	100	0	20.40	20.47	20.89	21.15	21.64
20MHz		22.0	1	0	20.62	21.13	21.39	21.47	21.98
		22.0	1	50	20.38	20.76	21.23	20.97	21.61
		22.0	1	99	20.52	20.79	21.28	21.06	21.69
	16QAM	21.0	50	0	19.42	19.78	20.00	20.34	20.82
		21.0	50	25	19.39	19.59	20.05	20.18	20.70
		21.0	50	50	19.50	19.56	20.17	20.14	20.64
		21.0	100	0	19.44	19.57	19.98	20.14	20.70

The conducted power measurement results of downlink LTE CA Conducted power are as below:

				F	PCC		SCC		Power		
DL LTE CA Class	PCC Band	PCC Bandwidth(MHz) PCC UL PCC UL RB PCC DL RB PCC DL RB PCC DL RB PCC UP PCC DL Channel PCC UP PCC DL Channel								R8 LTE Tx Power(dBm)	R10 LTE DL LTE CA Tx Power(dBm)
CA_39A-41A	LTE Band 41	20	1	0	100	0	41490	41490	LTE Band 39	22.79	22.83

				PCC				SCC1	SCC2	Po	wer
DL LTE CA Class	PCC Band	PCC Bandwidth(MHz)	PCC UL RB size	PCC UL RB offset	PCC DL RB size	PCC DL RB offset	PCC UP Channel	SCC Band	SCC Band	R8 LTE Tx Power(dBm)	R10 LTE DL LTE CA Tx Power(dBm)
CA_41A+41A/41A	LTE Band 41	20	1	0	100	0	41490	LTE Band 41	LTE Band 41	22.79	22.81

11.2.5 Wi-Fi/BT Measurement result

Table11.2-8: The output power of BT antenna

		,		
Mode	Tune-up		Conducted Power(dBm)	
	(dBm)	Channel 0(2402MHz)	Channel 39(2441MHz)	Channel 78(2480MHz)
GFSK	9.1	7.84	9.09	7.40
EDR2M-4_DQPSK	8.1	6.74	8.01	6.27
EDR3M-8DPSK	8.5	7.14	8.40	6.71

BLE

	Tune-up		Conducted Power(dBn	n)
Mode	(dBm)	Channel 0(2402MHz)	Channel 19(2440MHz)	Channel 39(2480MHz)
BLE	1.0	-0.48	0.99	0.11

Wifi 2.4GHz

1.01				Average Po	ower (dBm)		
wifi 2450MHz	Channel	Antenna Co	nfig.1(dBm)	Antenna Co	nfig.2(dBm)	Total	(dBm)
2450MHZ		Measure	Tune-up	Measure	Tune-up	Salde	Tune-up
	1	15.77	16.0	12.38	13.0	/	/
802.11b	6	15.82	16.0	12.36	13.0	/	/
	11	15.28	16.0	12.41	13.0	/	/
wifi 2450MHz	Channel	Measure	Tune-up	Measure	Tune-up	Measure	Tune-up
	1	18.18	19.0	15.83	16.0	/	/
802.11g	6	18.30	19.0	15.58	16.0	/	/
	11	17.46	19.0	15.28	16.0	/	/
wifi 2450MHz	Channel	Measure	Tune-up	Measure	Tune-up	Measure	Tune-up
002.11	1	18.34	18.5	15.28	16.0	20.08441	20.5
802.11n 20M	6	17.92	18.5	15.63	16.0	19.93452	20.5
20101	11	17.34	18.5	15.44	16.0	19.50339	20.5
wifi 2450MHz	Channel	Measure	Tune-up	Measure	Tune-up	Measure	Tune-up
802.11n	3	18.67	19.0	16.10	16.5	20.58269	21.0
802.11n 40M	6	18.09	19.0	16.25	16.5	20.27703	21.0
7011	9	18.68	19.0	15.94	16.5	20.53289	21.0

Wifi 5GHz

				Average Po	ower (dBm)		
wifi 5G	Channel	Antenna Co	onfig.1(dBm)	Antenna Co	onfig.2(dBm)	Total	(dBm)
		Measure	Tune-up	Measure	Tune-up	Salde	Tune-up
	36	16.99	18.0	8.11	9.5	/	/
	40	16.99	18.0	7.72	9.5	/	/
	44	17.10	18.0	7.72	9.5	/	/
	48	17.63	18.0	7.73	9.5	/	/
	52	17.60	18.0	8.09	9.5	/	/
	56	17.51	18.0	8.20	9.5	/	/
	60	17.53	18.0	8.87	9.5	/	/
	64	17.49	18.0	8.98	9.5	/	/
	100	17.41	18.0	8.01	10.0	/	/
	104	17.33	18.0	8.33	10.0	/	/
802.11a	108	17.14	18.0	8.27	10.0	/	/
	112	17.28	18.0	8.75	10.0	/	/
	116	17.00	18.0	9.09	10.0	/	/
	132	17.02	18.0	8.94	10.0	/	/
	136	16.88	18.0	8.77	10.0	/	/
	140	16.74	18.0	8.75	10.0	/	/
	149	16.95	17.5	7.43	9.0	/	/
	153	16.78	17.5	7.49	9.0	/	/
	157	16.87	17.5	7.06	9.0	/	/
	161	16.90	17.5	7.33	9.0	/	/
	165	16.88	17.5	7.64	9.0	/	/

				Average Po	ower (dBm)		
wifi 5G	Channel	Antenna Co	nfig.1(dBm)	Antenna Co	onfig.2(dBm)	Total((dBm)
		Measure	Tune-up	Measure	Tune-up	Salde	Tune-up
	36	16.80	18.0	8.04	9.5	17.34247	18.5
	40	16.91	18.0	7.65	9.5	17.39666	18.5
	44	17.00	18.0	7.63	9.5	17.47513	18.5
	48	17.52	18.0	7.64	9.5	17.94497	18.5
	52	17.50	18.0	7.96	9.5	17.95782	18.5
	56	17.45	18.0	8.05	9.5	17.92203	18.5
	60	17.44	18.0	8.83	9.5	18.00036	18.5
	64	17.39	18.0	8.86	9.5	17.96012	18.5
	100	17.23	18.0	7.89	10.0	17.70825	18.5
802.11ac	104	16.99	18.0	7.66	10.0	17.46929	18.5
20M	108	17.12	18.0	8.34	10.0	17.66013	18.5
20111	112	16.84	18.0	8.75	10.0	17.46672	18.5
	116	16.93	18.0	8.96	10.0	17.57304	18.5
	132	16.88	18.0	8.92	10.0	17.52441	18.5
	136	16.76	18.0	8.87	10.0	17.41413	18.5
	140	16.67	18.0	8.73	10.0	17.31718	18.5
	149	16.84	17.5	7.31	9.0	17.29882	18.0
	153	16.76	17.5	7.23	9.0	17.21882	18.0
	157	16.86	17.5	7.94	9.0	17.38399	18.0
	161	16.83	17.5	7.64	9.0	17.32413	18.0
	165	16.80	17.5	7.55	9.0	17.28772	18.0

		Average Power (dBm)								
wifi 5G	Channel	Antenna Co	onfig.1(dBm)	Antenna Co	onfig.2(dBm)	Total	Total(dBm)			
		Measure	Tune-up	Measure	Tune-up	Salde	Tune-up			
	38	17.47	18.0	8.53	9.5	17.99172	18.5			
	46	17.89	18.0	8.25	9.5	18.33792	18.5			
	54	17.92	18.0	8.58	9.5	18.39825	18.5			
902 11	62	17.89	18.0	9.34	9.5	18.45766	18.5			
802.11ac 40M	102	17.76	18.0	8.40	10.0	18.23617	18.5			
40101	110	17.61	18.0	8.84	10.0	18.1513	18.5			
	134	17.36	18.0	9.79	10.0	18.06032	18.5			
	151	17.36	17.5	7.95	9.0	17.831	18.0			
	159	17.25	17.5	8.82	9.0	17.83255	18.0			

		Average Power (dBm)								
wifi 5G	Channel	Antenna Config.1(dBm)		Antenna Co	Antenna Config.2(dBm)		dBm)			
		Measure	Tune-up	Measure	Tune-up	Salde	Tune-up			
	42	17.68	18.0	8.37	9.5	18.16139	18.5			
902.11	58	17.76	18.0	8.64	9.5	18.26172	18.5			
802.11ac 80M	106	17.46	18.0	8.37	10.0	17.965	18.5			
OUIVI	138	17.24	18.0	9.42	10.0	17.90399	18.5			
	155	17.27	17.5	8.08	9.0	17.76413	18.0			

12. Simultaneous TX SAR Considerations

12.1. Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters.

12.2. Transmit Antenna Separation Distances

Picture 12.1 Antenna Locations

12.3. SAR Measurement Positions

According to the KDB941225 D06 Hotspot Mode SAR v02r01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

SAR measurement positions										
Mode	Back	Front	Left edge	Right edge	Тор	Bottom				
Mode	Dack	Piont	Left edge	Right edge	edge	edge				
Main antenna Yes Yes Yes No No Yes										
WLAN2.4G-Antenna1	Yes	Yes	Yes	No	Yes	No				
WLAN2.4G-Antenna2	Yes	Yes	Yes	No	Yes	No				
WLAN 5G-Antenna1	Yes	Yes	No	No	No	No				
WLAN 5G-Antenna2 Yes Yes No No No No										
Note: The devices cannot of	perate in	WLAN 5G "	hotspot" mod	les.						

12.4. **Standalone SAR Test Exclusion Considerations**

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied.

The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}]$ \leq 3.0 for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

According to the KDB447498 appendix A, the SAR test exclusion threshold for 2450MHz at 5mm test separation distances is 10mW.

Estimated SAR= $\frac{\sqrt{f(GHz)}}{7.5}$. $\frac{(Max Power of chananel ,mW)}{Min.Separation Distance ,mm}$

24.1	E (MIL)	Max.Tune-up Power	Separation	Estimated SAR
Mode	Frequency(MHz)	(dBm)	Distance(mm)	1g(W/kg)
Bluetooth-Head	2441	9.1	5	0.337
Bluetooth-Body	2441	9.1	10	0.169

12.5. Simultaneous multi-band transmission

			Stan	dalone I	Report SA	R(1g) for	2/3/4G(V	V/Kg)			
Test Position			GSM 850	GSM 1900	WCDMA 1900	WCDMA 850	CDMA BC0	CDMA BC1	LTE Band7	LTE Band41	Highest SAR
	Y C	Cheek	0.066	0.083	0.131	0.092	0.103	0.156	0.080	0.051	0.156
Head	Left	Tilt 15°	0.025	0.044	0.076	0.042	0.040	0.092	0.038	0.022	0.092
Head	Diaha	Cheek	0.059	0.098	0.175	0.085	0.116	0.200	0.122	0.064	0.200
	Right	Tilt 15°	0.027	0.036	0.072	0.044	0.052	0.075	0.026	0.025	0.075
	Gro	und Side	0.249	0.410	0.382	0.180	0.202	0.458	0.327	0.264	0.458
	Phar	ntom Side	0.307	0.663	0.779	0.188	0.214	0.732	0.594	0.371	0.779
Body	Le	eft Side	0.166	0.116	0.103	0.041	0.090	0.138	0.096	0.080	0.166
10mm	10mm Ri		/	/	/	/	/	/	/	/	/
	Bottom Side		0.183	0.560	0.658	0.110	0.174	1.073	0.612	0.445	1.073
	То	op Side	/	/	/		/	/	/	/	/

				Standalon	e Report S	AR(1g) for	r WiFi+BT	(W/Kg)			
Test Position		2.4G Antenna1	2.4G Antenna2	5.3G Antenna1	5.3G Antenna2	5.6G Antenna1	5.6G Antenna2	5.8G Antennal	5.8G Antenna2	Bluetooth	
		Cheek	0.309	0.106	0.412	0.152	0.291	0.175	0.108	0.101	0.337
Head	Left	Tilt 15°	0.347	0.080	0.309	0.069	0.315	0.069	0.181	0.052	0.337
Ticad	Di alas	Cheek	0.235	0.263	0.469	0.109	0.162	0.047	0.133	0.003	0.337
	Right	Tilt 15°	0.235	0.125	0.438	0.025	0.297	0.047	0.185	0.011	0.337
	Grou	nd Side	0.045	0.014	0.345	0.274	0.304	0.440	0.150	0.318	0.169
	Phant	om Side	0.070	0.068	0.117	0.017	0.042	0.022	0.006	0.002	0.169
Body	Lef	t Side	/	0.024	/	/	/	/	/	/	0.169
10mm	Rigi	ht Side	/	/	/	/	/	/	/	/	0.169
	Botto	om Side	/	/	/	/	/	/	/	/	0.169
	Toj	p Side	0.085	0.013	/	/	/	/	/	/	0.169

	Transmission SAR(W/Kg) 2/3/4G+WiFi(2.4G)										
	Test Position		2/3/4G	WIFI 2.4G	WIFI 2.4G	SUM					
	Test Position			Antenna1	Antenna2	SUM					
	Loft	Cheek	0.156	0.309	0.106	0.571					
Head	Leit	Left Tilt 15°		0.347	0.080	0.519					
neau	Dight	Cheek	0.200	0.235	0.263	0.698					
	Right	Tilt 15°	0.075	0.235	0.125	0.435					
	Ground Side		0.458	0.045	0.014	0.517					
	Phantom	Phantom Side		0.070	0.068	0.917					
Dodo 10mm	Left Si	Left Side		/	0.024	0.19					
Body 10mm	Right S	ide	/	/	/	/					
	Bottom S	Bottom Side		/	/	1.073					
	Top Sie	de	/	0.085	0.013	0.098					

	Transmission SAR(W/Kg) 2/3/4G+WiFi(5.3G)									
	Test Desition		2/3/4G	WIFI 5.3G	WIFI 5.3G	SUM				
	Test Position			Antenna1	Antenna2	SUM				
	Left	Cheek	0.156	0.412	0.152	0.720				
Head	Len	Tilt 15°	0.092	0.309	0.069	0.470				
Head	Di aha	Cheek	0.200	0.469	0.109	0.778				
	Right	Tilt 15°	0.075	0.438	0.025	0.538				
	Ground S	Ground Side		0.345	0.274	1.077				
	Phantom	Side	0.779	0.117	0.017	0.913				
Dode 10mm	Left Si	de	0.166	/	/	0.166				
Body 10mm	Right S	ide	/	/	/	/				
	Bottom Side		1.073	/	/	1.073				
	Top Side		/	/	/	/				

	Transmission SAR(W/Kg) 2/3/4G+WiFi(5.6G)										
	Test Position		2/3/4G	WIFI 5.6G	WIFI 5.6G	SUM					
	Test Position			Antenna1	Antenna2	SOM					
	Left	Cheek	0.156	0.291	0.175	0.622					
Head	Leit	Tilt 15°	0.092	0.315	0.069	0.476					
Head	Diaba	Cheek	0.200	0.162	0.047	0.409					
	Right	Tilt 15°	0.075	0.297	0.047	0.419					
	Ground Side		0.458	0.304	0.440	1.202					
	Phantom	Phantom Side		0.042	0.022	0.843					
Dode 10mm	Left Si	Left Side		/	/	0.166					
Body 10mm	Right S	ide	/	/	/	/					
	Bottom S	Bottom Side		/	/	1.073					
	Top Sie	de	/	/	/	/					

	Transmission SAR(W/Kg) 2/3/4G+WiFi(5.8G)										
	Test Desition		2/3/4G	WIFI 5.8G	WIFI 5.8G	SUM					
	Test Position			Antenna1	Antenna2	SUM					
	Loft	Cheek	0.156	0.108	0.101	0.365					
Head	Leit	Left Tilt 15°		0.181	0.052	0.325					
Head	70.1	Cheek	0.200	0.133	0.003	0.336					
	Right	Tilt 15°	0.075	0.185	0.011	0.271					
	Ground Side		0.458	0.150	0.318	0.926					
	Phantom	Phantom Side		0.006	0.002	0.787					
Dodo 10mm	Left Si	Left Side		/	/	0.166					
Body 10mm	Right S	ide	/	/	/	/					
	Bottom	Side	1.073	/	/	1.073					
	Top Side		/	/	/	/					

	Transmission	SAR(W/K	Kg) 2/3/4G+B	T	
	Test Position		2/3/4G	ВТ	SUM
	Left	Cheek	0.156	0.337	0.493
Head	Len	Tilt 15°	0.092	0.337	0.429
Head	Right	Cheek	0.200	0.337	0.537
		Tilt 15°	0.075	0.337	0.412
	Ground S	Side	0.458	0.169	0.627
	Phantom	Side	0.779	0.169	0.948
Dodu 10mm	Left Sic	le	0.166	0.169	0.335
Body 10mm	Right Si	de	/	0.169	0.169
	Bottom Side		1.073	0.169	1.242
	Top Sic	le	/	0.169	0.169

So no simultaneous multi-band transmission test is required.

13. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels wi thin the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- \bullet \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 648474 D04 Handset SAR:

With headset attached, when the reported SAR for body-worn accessory, measured wi thout a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

KDB 648474 D04 Handset SAR (Phablet Only):

This device qualifies as a phablet (display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm as applicable), and phablet procedures have been applied. Extremity SAR (10g SAR) at 5mm for hot spot mode is not required as the 1g SAR values at 10mm are all less than 1.2W/Kg.

KDB 941225 D01 SAR test for 3G devices:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel.
- When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- \bullet Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and Hi gh Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and

its output power is not more than 0.5 dB higher than that of QPSK.

 \bullet Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.

KDB 248227 D01 SAR meas for 802.11:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements.

For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini -tablet configurations may be reduced according to the highest reported SAR determined using the initial test position(s) by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The initial test position(s) is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the reported SAR for the initial test position is:

- $\bullet \le 0.4$ W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- \bullet > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the <u>initial test</u> <u>position</u> to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the <u>reported SAR</u> is \le 0.8 W/kg or all required test positions are tested.
- o For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- \bullet For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the reported SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required test channels are considered.
- The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.

• When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

To determine the <u>initial test position</u>, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the <u>initial test position</u>.

13.1. SAR Test Results

Table 13.1: SAR Values (GSM 850 MHz Band-Head)

Freque	ency		Test	Conducted	Max.Tune-up	Scaling	Measured	Reported	Power	Figure
MHz	Ch.	Side	Position	Power (dBm)	Power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)	No.
824.2	128	Left	Touch	32.6	33.0	1.10	0.0600	0.066	0.04	Fig.1
824.2	128	Left	Tilt	32.6	33.0	1.10	0.0231	0.02541	-0.13	/
824.2	128	Right	Touch	32.6	33.0	1.10	0.0539	0.05929	-0.11	/
824.2	128	Right	Tilt	32.6	33.0	1.10	0.0244	0.02684	-0.03	/

Table 13.2: SAR Values (GSM 850 MHz Band-Body)

Frequ MHz	ency	Mode/Band	Service/Headset	Test Position	Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling factor	Spacing (mm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)	Figure No.
824.2	128	GPRS 4TS	Class12	Toward Ground	29.5	30.0	1.12	10	0.222	0.2486	0.07	/
824.2	128	GPRS 4TS	Class12	Toward Phantom	29.5	30.0	1.12	10	0.274	0.3069	0.08	Fig.2

Table 13.3: SAR Values (GSM 850 MHz Band-Hotspot)

Frequ	ency	Mode/Band	Service/Headset	Test Position	Conducted Power	Max.Tune-up Power	Scaling factor	Spacing (mm)	Measured SAR(1g)	Reported SAR(1g)	Power Drift(dB)	Figure No.
MHz	Ch.				(dBm)	(dBm)			(W/kg)	(W/kg)	, ,	
824.2	128	GPRS 4TS	Class12	Toward Ground	29.5	30.0	1.12	10	0.222	0.2486	0.07	/
824.2	128	GPRS 4TS	Class12	Toward Phantom	29.5	30.0	1.12	10	0.274	0.3069	0.08	Fig.2
824.2	128	GPRS 4TS	Class12	Toward Left	29.5	30.0	1.12	10	0.148	0.1658	-0.18	/
824.2	128	GPRS 4TS	Class12	Toward Bottom	29.5	30.0	1.12	10	0.163	0.1826	-0.09	1
824.2	128	EGPRS 4TS	Class12	Toward Phantom	29.5	30.0	1.12	10	0.181	0.2027	-0.07	1

Table 13.4: SAR Values (GSM 1900 MHz Band-Head)

Freque	ency		Test	Conducted	Max.Tune-up	Scaling	Measured	Reported	Power	Figure
MHz	Ch.	Side	Position Touch	Power (dBm)	Power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)	No.
1850.2	512	Left	Touch	28.4	28.5	1.02	0.081	0.0826	-0.07	/
1850.2	512	Left	Tilt	28.4	28.5	1.02	0.043	0.0439	0.06	/
1850.2	512	Right	Touch	28.4	28.5	1.02	0.0959	0.0978	0.13	Fig.3
1850.2	512	Right	Tilt	28.4	28.5	1.02	0.0351	0.0358	0.15	/

Table 13.5: SAR Values (GSM 1900 MHz Band-Body)

Freque	ency	Mode/Band	Service/Headset	Test Position	Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling factor	Spacing (mm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)	Figure No.
1850.2	512	GPRS 4TS	Class12	Toward Ground	23.5	23.5	1.00	10	0.410	0.410	0.11	/
1850.2	512	GPRS 4TS	Class12	Toward Phantom	23.5	23.5	1.00	10	0.663	0.663	-0.08	Fig.4

Table 13.6: SAR Values (GSM 1900 MHz Band- Hotspot)

					`							
Freque	ency	Mode/Band	Service/Headset	Test Position	Conducted Power	Max.Tune-up Power	Scaling factor	Spacing (mm)	Measured SAR(1g)	Reported SAR(1g)	Power Drift(dB)	Figure No.
MHz	Ch.			1 00101011	(dBm)	(dBm)	140001	(11111)	(W/kg)	(W/kg)	2111(02)	1,00
1850.2	512	GPRS 4TS	Class12	Toward Ground	23.5	23.5	1.00	10	0.410	0.410	0.11	/
1850.2	512	GPRS 4TS	Class12	Toward Phantom	23.5	23.5	1.00	10	0.663	0.663	-0.08	Fig.4
1850.2	512	GPRS 4TS	Class12	Toward Left	23.5	23.5	1.00	10	0.116	0.116	-0.02	/
1850.2	512	GPRS 4TS	Class12	Toward Bottom	23.5	23.5	1.00	10	0.560	0.560	-0.06	/
1850.2	512	EGPRS 4TS	Class12	Toward Phantom	23.5	23.5	1.00	10	0.286	0.286	-0.04	1

Table 13.7: SAR Values (WCDMA 1900MHz Band-Head)

Frequ	ency		Test	Conducted	Max.Tune-up	Scaling	Measured	Reported	Power	Figure
MHz	Ch.	Side	Position	Power (dBm)	Power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)	No.
1852.4	9262	Left	Touch	23.67	23.7	1.01	0.130	0.1313	-0.08	/
1852.4	9262	Left	Tilt	23.67	23.7	1.01	0.075	0.0758	-0.05	1
1852.4	9262	Right	Touch	23.67	23.7	1.01	0.173	0.1747	-0.06	Fig.5
1852.4	9262	Right	Tilt	23.67	23.7	1.01	0.0713	0.072	0.18	1

Table 13.8: SAR Values (WCDMA 1900 MHz Band-Body)

Frequ	Ch.	Mode/Band	Service/Headset	Test Position	Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling factor	Spacing (mm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)	Figure No.
1852.4	9262	Band II	12.2kbps RMC	Toward Ground	23.67	23.7	1.01	10	0.378	0.3818	0.10	/
1852.4	9262	Band II	12.2kbps RMC	Toward Phantom	23.67	23.7	1.01	10	0.771	0.7787	0.07	Fig.6

Table 13.9: SAR Values (WCDMA 1900 MHz Band-Hotspot)

Frequ		Mode/Band	Service/Headset	Test Position	Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling factor	Spacing (mm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)	Figure
MHz	Ch.				(ubiii)	(dDIII)			(Wing)	(WAS)		
1852.4	9262	Band II	12.2kbps RMC	Toward Ground	23.67	23.7	1.01	10	0.378	0.3818	0.10	/
1852.4	9262	Band II	12.2kbps RMC	Toward Phantom	23.67	23.7	1.01	10	0.771	0.7787	0.07	Fig.6
1852.4	9262	Band II	12.2kbps RMC	Toward Left	23.67	23.7	1.01	10	0.102	0.103	-0.04	1
1852.4	9262	Band II	12.2kbps RMC	Toward Bottom	23.67	23.7	1.01	10	0.651	0.6575	-0.07	/

Table 13.10: SAR Values (WCDMA 850MHz Band-Head)

Emogra				Conducted	Max.Tune-up	Scaling	Measured	Reported		
Frequ	ency		Test	Conducted	Max. Tune-up	Staning	Wieasureu	Reported	Power	Figure
		Side	Position	Power	Power	factor	SAR(1g)	SAR(1g)	D.::f4(dD)	No
MHz	Ch.		Position	(dBm)	(dBm)		(W/kg)	(W/kg)	Drift(dB)	No.
826.4	4132	Left	Touch	24.42	24.5	1.02	0.0906	0.0924	-0.09	Fig.7
826.4	4132	Left	Tilt	24.42	24.5	1.02	0.0410	0.0418	-0.04	/
826.4	4132	Right	Touch	24.42	24.5	1.02	0.0835	0.0852	-0.14	/
826.4	4132	Right	Tilt	24.42	24.5	1.02	0.0435	0.0444	0.07	/

Table 13.11: SAR Values (WCDMA 850 MHz Band-Body)

Frequ	Ch.	Mode/Band	Service/Headset	Test Position	Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling factor	Spacing (mm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)	Figure No.
826.4	4132	Band V	12.2kbps RMC	Toward Ground	24.42	24.5	1.02	10	0.176	0.1795	0.08	/
826.4	4132	Band V	12.2kbps RMC	Toward Phantom	24.42	24.5	1.02	10	0.184	0.1877	-0.07	Fig.8

Table 13.12: SAR Values (WCDMA 850 MHz Band-Hotspot)

Frequ	ency	Mode/Band	Service/Headset	Test Position	Conducted Power	Max.Tune-up Power	Scaling factor	Spacing (mm)	Measured SAR(1g)	Reported SAR(1g)	Power Drift(dB)	Figure
MHz	Ch.				(dBm)	(dBm)			(W/kg)	(W/kg)		
826.4	4132	Band V	12.2kbps RMC	Toward Ground	24.42	24.5	1.02	10	0.176	0.1795	0.08	1
826.4	4132	Band V	12.2kbps RMC	Toward Phantom	24.42	24.5	1.02	10	0.184	0.1877	-0.07	Fig.8
826.4	4132	Band V	12.2kbps RMC	Toward Left	24.42	24.5	1.02	10	0.0406	0.0414	0.03	1
826.4	4132	Band V	12.2kbps RMC	Toward Bottom	24.42	24.5	1.02	10	0.108	0.1102	0.14	/

Table 13.13: SAR Values (CDMA BC 0-Head)

Г				1			1	· ·			_
	Freque	ency		Test	Conducted	Max.Tune-up	Scaling	Measured	Reported	Power	Figure
Ī		- CI	Side	Position	Power	Power	factor	SAR(1g)	SAR(1g)	Drift(dB)	No.
	MHz	Ch.		1 OSITION	(dBm)	(dBm)		(W/kg)	(W/kg)	Difft(ub)	140.
	824.7	1013	Left	Touch	23.94	24.1	1.04	0.0991	0.1028	0.06	1
	824.7	1013	Left	Tilt	23.94	24.1	1.04	0.0387	0.0402	-0.09	1
Ī	824.7	1013	Right	Touch	23.94	24.1	1.04	0.112	0.1162	0.15	Fig.9
Ī	824.7	1013	Right	Tilt	23.94	24.1	1.04	0.0506	0.0525	0.12	1

Table 13.14: SAR Values (CDMA BC 0-Body)

Frequ	Ch.	Mode/Band	Service/Headset	Test Position	Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling factor	Spacing (mm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)	Figure No.
848.3	777	BC0	RC3 SO32	Toward Ground	23.92	24.1	1.04	10	0.194	0.2022	0.10	/
848.3	777	всо	RC3 SO32	Toward Phantom	23.92	24.1	1.04	10	0.205	0.2137	0.09	Fig.10

Table 13.15: SAR Values (CDMA BC 0-Hotspot)

Frequency		Mode/Band	Service/Headset	Test Position	Conducted Power	Max.Tune-up Power	Scaling factor	Spacing (mm)	Measured SAR(1g)	Reported SAR(1g)	Power Drift(dB)	Figure
MHz	Ch.				(dBm)	(dBm)			(W/kg)	(W/kg)		
848.3	777	BC0	RC3 SO32	Toward Ground	23.92	24.1	1.04	10	0.194	0.2022	0.10	1
848.3	777	всо	RC3 SO32	Toward Phantom	23.92	24.1	1.04	10	0.205	0.2137	0.09	Fig.10
848.3	777	BC0	RC3 SO32	Toward Left	23.92	24.1	1.04	10	0.0865	0.0902	-0.12	/
848.3	777	BC0	RC3 SO32	Toward Bottom	23.92	24.1	1.04	10	0.167	0.1741	-0.04	/

Table 13.16: SAR Values (CDMA BC 1-Head)

Freque	Frequency		Test	Conducted	Max.Tune-up	Scaling	Measured	Reported	Power	Figure
MHz	Ch.	Side	Position	Power (dBm)	Power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)	No.
1851.3	25	Left	Touch	23.98	24.1	1.03	0.151	0.1555	0.10	/
1851.3	25	Left	Tilt	23.98	24.1	1.03	0.0893	0.0920	0.17	1
1851.3	25	Right	Touch	23.98	24.1	1.03	0.194	0.1998	0.09	Fig.11
1851.3	25	Right	Tilt	23.98	24.1	1.03	0.0728	0.0750	-0.08	1

Table 12.17: SAR Values (CDMA BC 1-Body)

Frequ MHz	ency Ch.	Mode/Band	Service/Headset	Test Position	Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling factor	Spacing (mm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)	Figure No.
1851.3	25	BC1	RC3 SO32	Toward Ground	24.01	24.1	1.02	10	0.449	0.4584	-0.08	/
1851.3	25	BC1	RC3 SO32	Toward Phantom	24.01	24.1	1.02	10	0.717	0.7320	0.06	Fig.12

Table 12.18: SAR Values (CDMA BC 1-Hotspot)

-	Table 12:10: SAR values (CDIVIA DC 1-Hotspot)												
Frequency MHz Ch.		Mode/Band	Service/Headset	Test Position	Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling factor	Spacing (mm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)	Figure No.	
1851.3	25	BC1	RC3 SO32	Toward Ground	24.01	24.1	1.02	10	0.449	0.4584	-0.08	/	
1851.3	25	BC1	RC3 SO32	Toward Phantom	24.01	24.1	1.02	10	0.717	0.7320	0.06	/	
1851.3	25	BC1	RC3 SO32	Toward Left	24.01	24.1	1.02	10	0.135	0.1378	0.10	/	
1851.3	25	BC1	RC3 SO32	Toward Bottom	24.01	24.1	1.02	10	0.890	0.9086	-0.13	/	
1908.8	1175	BC1	RC3 SO32	Toward Bottom	23.94	24.1	1.04	10	1.020	1.0583	0.03	/	
1880	600	BC1	RC3 SO32	Toward Bottom	23.88	24.1	1.05	10	1.020	1.0730	-0.02	Fig.13	
					F	irst Retest							
1851.3	25	BC1	RC3 SO32	Toward Bottom	24.01	24.1	1.02	10	0.889	0.9076	-0.07	/	
1908.8	1175	BC1	RC3 SO32	Toward Bottom	23.94	24.1	1.04	10	1.020	1.0583	0.03	/	

中國春育廣富 China Telecommunication Technology Labs.

1880	600	BC1	RC3 SO32	Toward Bottom	23.88	24.1	1.05	10	1.020	1.0730	0.00	1		
	Worse Case of SIM2													
1880	600	BC1	RC3 SO32	Toward Bottom	23.88	24.1	1.05	10	0.871	0.9352	0.04	1		

Table 13.19: SAR Values (LTE Band 7 (20MHz) -Head)

Frequ	uency	RB	RB		Test	Conducted	Max.Tune-up	Scaling	Measured	Reported	Power	Figure
MHz	Ch.	Size	Offset	Side	Position	Power (dBm)	Power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)	No
2560	21350	1	0	Left	Touch	22.42	22.5	1.02	0.0779	0.0795	0.16	1
2560	21350	1	0	Left	Tilt	22.42	22.5	1.02	0.0161	0.0164	0.00	1
2560	21350	1	0	Right	Touch	22.42	22.5	1.02	0.1200	0.1224	-0.10	Fig.14
2560	21350	1	0	Right	Tilt	22.42	22.5	1.02	0.0256	0.0261	0.08	1
2560	21350	50	0	Left	Touch	21.34	21.5	1.04	0.0563	0.0586	0.07	1
2560	21350	50	0	Left	Tilt	21.34	21.5	1.04	0.0369	0.0384	0.04	1
2560	21350	50	0	Right	Touch	21.34	21.5	1.04	0.0892	0.0928	0.09	1
2560	21350	50	0	Right	Tilt	21.34	21.5	1.04	0.0179	0.0186	0.09	1

Table 13.20: SAR Values (LTE Band 7 (20MHz) -Body)

Frequency MHz Ch.		RB Size	RB Offset	Test Position	Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling factor	Spacing (mm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)	Figure No.
2560	21350	1	0	Toward Ground	22.42	22.5	1.02	10	0.3210	0.3274	0.05	/
2560	21350	1	0	Toward Phantom	22.42	22.5	1.02	10	0.5820	0.5936	-0.14	Fig.15
2560	21350	50	0	Toward Ground	21.34	21.5	1.04	10	0.2500	0.26	-0.06	1
2560	21350	50	0	Toward Phantom	21.34	21.5	1.04	10	0.4370	0.4545	0.07	1

Table 13.21: SAR Values (LTE Band7 (20MHz) -Hotspot)

Free	quency	RB Size	RB Offset	Test Position	Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling factor	Spacing (mm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)	Figure No.
2560	21350	1	0	Toward Ground	22.42	22.5	1.02	10	0.3210	0.3274	0.05	1
2560	21350	1	0	Toward Phantom	22.42	22.5	1.02	10	0.5820	0.5936	-0.14	1
2560	21350	1	0	Toward Left	22.42	22.5	1.02	10	0.0939	0.0958	-0.12	1
2560	21350	1	0	Toward Bottom	22.42	22.5	1.02	10	0.6000	0.612	-0.07	Fig.16
2560	21350	50	0	Toward Ground	21.34	21.5	1.04	10	0.2500	0.26	-0.06	1
2560	21350	50	0	Toward Phantom	21.34	21.5	1.04	10	0.4370	0.4545	0.07	1
2560	21350	50	0	Toward Left	21.34	21.5	1.04	10	0.0718	0.0747	0.16	1
2560	21350	50	0	Toward Bottom	21.34	21.5	1.04	10	0.4510	0.469	-0.05	1

Table 13.22: SAR Values (LTE Band 41 (20MHz) -Head)

Frequ	uency	RB	RB		Test	Conducted	Max.Tune-up	Scaling	Measured	Reported	Power	Figure
MHz	Ch.	Size	Offset	Side	Position	Power (dBm)	Power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)	No
2680	41490	1	0	Left	Touch	22.79	23.0	1.05	0.0489	0.0513	0.09	1
2680	41490	1	0	Left	Tilt	22.79	23.0	1.05	0.0207	0.0217	-0.04	1
2680	41490	1	0	Right	Touch	22.79	23.0	1.05	0.0609	0.0639	0.10	Fig.17
2680	41490	1	0		Tilt	22.79	23.0	1.05	0.0238	0.0250	-0.14	1
2680	41490	50	0	Left	Touch	21.76	22.0	1.06	0.0368	0.0390	-0.04	1
2680	41490	50	0	Left	Tilt	21.76	22.0	1.06	0.0209	0.0222	0.00	/
2680	41490	50	0	Right	Touch	21.76	22.0	1.06	0.0409	0.0434	-0.05	1
2680	41490	50	0	Right	Tilt	21.76	22.0	1.06	0.0171	0.0181	0.07	/

Table 13.23: SAR Values (LTE Band 41 (20MHz) -Body)

	quency	RB Size	RB Offset	Test Position	Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling factor	Spacing (mm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)	Figure No.
MHz	Ch.				(ubiii)	(ubiii)			(11/1ng)	(11/118)		
2680	41490	1	0	Toward Ground	22.79	23.0	1.05	10	0.251	0.2636	0.13	/
2680	41490	1	0	Toward Phantom	22.79	23.0	1.05	10	0.353	0.3707	0.05	Fig.18
2680	41490	50	0	Toward Ground	21.76	22.0	1.06	10	0.193	0.2046	-0.12	/
2680	41490	50	0	Toward Phantom	21.76	22.0	1.06	10	0.265	0.2809	0.05	1

Table 13.24: SAR Values (LTE Band41 (20MHz) -Hotspot)

Fre	quency	RB Size	RB Offset	Test Position	Conducted Power	Max.Tune-up Power	Scaling factor	Spacing (mm)	Measured SAR(1g)	Reported SAR(1g)	Power Drift(dB)	Figure
MHz	Ch.				(dBm)	(dBm)			(W/kg)	(W/kg)		
2680	41490	1	0	Toward Ground	22.79	23.0	1.05	10	0.251	0.2636	0.13	1
2680	41490	1	0	Toward Phantom	22.79	23.0	1.05	10	0.353	0.3707	0.05	1
2680	41490	1	0	Toward Left	22.79	23.0	1.05	10	0.0765	0.0803	0.15	1

中國泰育實驗室 China Telecommunication Technology Labs.

2680	41490	1	0	Toward Bottom	22.79	23.0	1.05	10	0.424	0.4452	-0.06	Fig.19
2680	41490	50	0	Toward Ground	21.76	22.0	1.06	10	0.193	0.2046	-0.12	/
2680	41490	50	0	Toward Phantom	21.76	22.0	1.06	10	0.265	0.2809	0.05	1
2680	41490	50	0	Toward Left	21.76	22.0	1.06	10	0.0662	0.0702	0.06	/
2680	41490	50	0	Toward Bottom	21.76	22.0	1.06	10	0.370	0.3922	0.10	1

14.4 WLAN Evaluation

13.4.1 SAR measurement Result of WiFi 2.4G

Table 13.25: SAR Values (Antenna1-Head)

Freque	ency	Test	Side	Test	Area (W/		Conducted Power	Max.Tune-up Power	Scaling	Measured SAR(1g)	Reported SAR(1g)	Power	Figure
MHz	Ch.	Mode		Position	10g	1g	(dBm)	(dBm)	factor	(W/kg)	(W/kg)	Drift(dB)	No
2437	6	802.11b	Left	Touch	0.138	0.297	15.82	16.0	1.04	/	0.30888	0.11	/
2437	6	802.11b	Left	Tilt	0.146	0.313	15.82	16.0	1.04	0.334	0.3474	0.15	Fig.20
2437	6	802.11b	Right	Touch	0.106	0.226	15.82	16.0	1.04	/	0.23504	0.11	/
2437	6	802.11b	Right	Tilt	0.109	0.226	15.82	16.0	1.04	/	0.23504	-0.08	/
2452	9	802.11n 40M	Left	Tilt	0.132	0.247	18.68	19.0	1.08	1	0.26676	0.08	/

Table 13.26: SAR Values (Antenna1-Body)

Freq	uency	Test Mode	Test Position	Area (W	Scan /kg)	Conducted Power	Max.Tune-up Power	Scaling factor	Spacing (mm)	Measured SAR(1g)	Reported SAR(1g)	Power Drift(dB)	Figure
MHz	Ch.			10g	1g	(dBm)	(dBm)		(====)	(W/kg)	(W/kg)		- 100
2437	6	802.11b	Toward Ground	0.0189	0.0433	15.82	16.0	1.04	10	/	0.045032	0.06	/
2437	6	802.11b	Toward Phantom	0.0325	0.0676	15.82	16.0	1.04	10	0.067	0.070304	0.09	Fig.21

Table 13.27: SAR Values (Antenna1-Hotspot)

Freq	uency	Test Mode	Test Position	Area (W	Scan /kg)	Conducted Power	Max.Tune-up Power	Scaling factor	Spacing (mm)	Measured SAR(1g)	Reported SAR(1g)	Power Drift(dB)	Figure
MHz	Ch.			10g	1g	(dBm)	(dBm)			(W/kg)	(W/kg)		
2437	6	802.11b	Toward Ground	0.0189	0.0433	15.82	16.0	1.04	10	1	0.045032	0.06	1
2437	6	802.11b	Toward Phantom	0.0325	0.0676	15.82	16.0	1.04	10	1	0.070304	0.09	1
2437	6	802.11b	Toward Top	0.0394	0.0818	15.82	16.0	1.04	10	0.0819	0.0852	-0.07	Fig.22
2452	9	802.11n 40M	Toward Top	0.0141	0.0272	18.68	19.0	1.08	10	1	0.028288	0.02	1

Table 13.28: SAR Values (Antenna2-Head)

Freque	ency	Test Mode	Side	Test Position		Scan /kg)	Conducted Power	Max.Tune-up Power	Scaling factor	Measured SAR(1g)	Reported SAR(1g)	Power Drift(dB)	Figure No
MHz	Ch.	Mode		FOSITION	10g	1g	(dBm)	(dBm)	lactor	(W/kg)	(W/kg)	Dint(ub)	140
2462	11	802.11b	Left	Touch	0.0475	0.0922	12.41	13.0	1.15	/	0.10603	0.19	1
2462	11	802.11b	Left	Tilt	0.0365	0.0700	12.41	13.0	1.15	/	0.0805	-0.16	1
2462	11	802.11b	Right	Touch	0.113	0.206	12.41	13.0	1.15	0.196	0.2250	0.04	1
2462	11	802.11b	Right	Tilt	0.0556	0.109	12.41	13.0	1.15	/	0.12535	0.07	1
2437	6	802.11n 40M	Right	Touch	0.140	0.255	16.25	16.5	1.06	0.248	0.2630	0.14	Fig.23

Table 13.29: SAR Values (Antenna2-Body)

Frequ	ency	Test Mode	Test Position	Area (W	Scan /kg)	Conducted Power	Max.Tune-up Power	Scaling factor	Spacing (mm)	Measured SAR(1g)	Reported SAR(1g)	Power Drift(dB)	Figure No.
MHz	Ch.			10g	1g	(dBm)	(dBm)			(W/kg)	(W/kg)		
2462	11	802.11b	Toward Ground	0.00663	0.0119	12.41	13.0	1.15	10	/	0.013685	0.05	/
2462	11	802.11b	Toward Phantom	0.014	0.0245	12.41	13.0	1.15	10	0.0242	0.0278	0.11	Fig.24

Table 13.30: SAR Values (Antenna2-Hotspot)

							values (111		T	/			
Frequ	ency	Test Mode	Test Position	Area (W	Scan /kg)	Conducted Power	Max.Tune-up Power	Scaling factor	Spacing (mm)	Measured SAR(1g)	Reported SAR(1g)	Power Drift(dB)	Figure No.
MHz	Ch.			10g	1g	(dBm)	(dBm)			(W/kg)	(W/kg)		
2462	11	802.11b	Toward Ground	0.00663	0.0119	12.41	13.0	1.15	10	/	0.013685	0.05	/
2462	11	802.11b	Toward Phantom	0.014	0.0245	12.41	13.0	1.15	10	0.0242	0.0278	0.11	/
2462	11	802.11b	Toward Left	0.0107	0.0208	12.41	13.0	1.15	10	1	0.02392	0.08	1
2462	11	802.11b	Toward Top	0.0062	0.0116	12.41	13.0	1.15	10	1	0.01334	-0.14	/
2437	6	802.11n 40M	Toward Phantom	0.0367	0.0649	16.25	16.5	1.06	10	0.0641	0.0680	0.05	Fig.25

13.4.2 SAR measurement Result of WiFi 5G

Table 13.31: SAR Values (Antenna1-Head)

Frequen	ncy	Test Mode	Side	Test Position	Area (W	Scan /kg)	Conducted Power	Max.Tune-up Power	Scaling factor	Measured SAR(1g)	Reported SAR(1g)	Power Drift(dB)	Figure No
MHz	Ch.				10g	1g	(dBm)	(dBm)		(W/kg)	(W/kg)	, ,	
						Test	data of 5.3GH	z Band					
5260	52	802.11a	Left	Touch	0.129	0.375	17.60	18.0	1.10	/	0.4125	0.13	1
5260	52	802.11a	Left	Tilt	0.115	0.281	17.60	18.0	1.10	/	0.3091	0.09	1
5260	52	802.11a	Right	Touch	0.173	0.480	17.60	18.0	1.10	0.426	0.4686	-0.10	Fig.26
5260	52	802.11a	Right	Tilt	0.166	0.530	17.60	18.0	1.10	0.398	0.4378	0.11	1
5270	54	802.11ac 40M	Right	Touch	0.173	0.462	17.92	18.0	1.02	0.408	0.4162	-0.16	/
						Test	data of 5.6GH	z Band					
5500	100	802.11a	Left	Touch	0.079	0.253	17.41	18.0	1.15	/	0.29095	-0.12	1
5500	100	802.11a	Left	Tilt	0.0973	0.293	17.41	18.0	1.15	0.274	0.3151	0.17	Fig.27
5500	100	802.11a	Right	Touch	0.0547	0.141	17.41	18.0	1.15	/	0.16215	0.07	1
5500	100	802.11a	Right	Tilt	0.0864	0.258	17.41	18.0	1.15	/	0.2967	-0.14	1
5510	102	802.11ac 40M	Left	Tilt	0.100	0.279	17.76	18.0	1.06	0.295	0.3127	0.13	/
						Test	data of 5.8GH	z Band					
5745	149	802.11a	Left	Touch	0.0342	0.0948	16.95	17.5	1.14	1	0.108072	-0.14	/
5745	149	802.11a	Left	Tilt	0.0505	0.161	16.95	17.5	1.14	0.159	0.1813	0.11	1
5745	149	802.11a	Right	Touch	0.0299	0.117	16.95	17.5	1.14	1	0.13338	0.05	1
5745	149	802.11a	Right	Tilt	0.0460	0.151	16.95	17.5	1.14	0.162	0.1847	0.13	Fig.28
5755	151	802.11ac 40M	Right	Tilt	0.0036	0.0138	17.36	17.5	1.03	1	0.14214	-0.04	1

Note: The same maximum output power is specified for U-NII-1 and U-NII-2A Bands, the highest reported SAR of U-NII-2A Bands for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band.

Table 13.32: SAR Values (Antenna1-Body)

Frequ	uency	Test Mode	Test Position	Area (W	Scan //kg)	Conducted Power	Max.Tune-up Power	Scaling factor	Spacing (mm)	Measured SAR(1g)	Reported SAR(1g)	Power Drift(dB)	Figure
MHz	Ch.			10g	1g	(dBm)	(dBm)			(W/kg)	(W/kg)		
						Test dat	a of 5.3GHz Ban	d					
5260	52	802.11a	Toward Ground	0.171	0.442	17.60	18.0	1.10	10	0.314	0.3454	0.16	Fig.29
5260	52	802.11a	Toward Phantom	0.0358	0.106	17.60	18.0	1.10	10	/	0.1166	0.08	1
5270	54	802.11ac 40M	Toward Ground	0.164	0.408	17.92	18.0	1.02	10	0.312	0.3203	0.16	1
						Test dat	a of 5.6GHz Band	d					
5500	100	802.11a	Toward Ground	0.108	0.285	17.41	18.0	1.15	10	0.258	0.2967	-0.06	1
5500	100	802.11a	Toward Phantom	0.012	0.0361	17.41	18.0	1.15	10	/	0.041515	0.00	1
5510	102	802.11ac 40M	Toward Ground	0.117	0.316	17.76	18.0	1.06	10	0.287	0.3042	0.07	Fig.30
						Test dat	a of 5.8GHz Ban	d					
5745	149	802.11a	Toward Ground	0.0499	0.143	16.95	17.5	1.14	10	0.132	0.1505	0.12	Fig.31
5745	149	802.11a	Toward Phantom	0.0008	0.0053	16.95	17.5	1.14	10	/	0.006042	0.17	/
5755	151	802.11ac 40M	Toward Ground	0.0413	0.120	17.36	17.5	1.03	10	/	0.1236	-0.07	1

Note: 1. The same maximum output power is specified for U-NII-1 and U-NII-2A Bands, the highest reported SAR of U-NII-2A Bands for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band.

^{2.} The devices cannot operate in WLAN 5G "hotspot" modes.

Table 13.33: SAR Values (Antenna2-Head)

Area Scan Conducted Max.Tune-up Measured Reported													
Freque	ency	Test	Side	Test		Scan /kg)	Conducted Power	Max.Tune-up Power	Scaling	Measured SAR(1g)	Reported SAR(1g)	Power	Figure
MHz	Ch.	Mode		Position	10g	1g	(dBm)	(dBm)	factor	(W/kg)	(W/kg)	Drift(dB)	No
						Test	data of 5.3GH	z Band					
5320	64	802.11a	Left	Touch	0.053	0.133	8.98	9.5	1.13	0.129	0.146	0.14	/
5320	64	802.11a	Left	Tilt	0.0251	0.0612	8.98	9.5	1.13	/	0.069156	0.07	1
5320	64	802.11a	Right	Touch	0.0338	0.0968	8.98	9.5	1.13	/	0.109384	0.08	1
5320	64	802.11a	Right	Tilt	0.00657	0.0221	8.98	9.5	1.13	/	0.024973	0.09	1
5310	62	802.11ac 40M	Left	Touch	0.0552	0.138	9.34	9.5	1.04	0.146	0.152	-0.06	Fig.32
						Test	data of 5.6GH	z Band					
5580	116	802.11a	Left	Touch	0.0376	0.107	9.09	10.0	1.23	0.100	0.123	-0.14	1
5580	116	802.11a	Left	Tilt	0.0202	0.0561	9.09	10.0	1.23	/	0.069003	0.09	1
5580	116	802.11a	Right	Touch	0.0119	0.0386	9.09	10.0	1.23	/	0.047478	0.10	1
5580	116	802.11a	Right	Tilt	0.0096	0.0385	9.09	10.0	1.23	/	0.047355	0.07	1
5670	134	802.11ac 40M	Left	Touch	0.0557	0.142	9.79	10.0	1.05	0.167	0.1754	0.09	Fig.33
						Test	data of 5.8GH	z Band					
5825	165	802.11a	Left	Touch	0.0191	0.0566	7.64	9.0	1.37	0.0712	0.0975	0.12	1
5825	165	802.11a	Left	Tilt	0.0165	0.0385	7.64	9.0	1.37	1	0.052745	0.05	1
5825	165	802.11a	Right	Touch	0.00028	0.00232	7.64	9.0	1.37	1	0.003178	-0.08	1
5825	165	802.11a	Right	Tilt	0.00143	0.00866	7.64	9.0	1.37	/	0.011864	0.00	1
5795	159	802.11ac 40M	Left	Touch	0.0118	0.0552	8.82	9.0	1.04	0.0967	0.1006	0.05	Fig.34

Note: The same maximum output power is specified for U-NII-1 and U-NII-2A Bands, the highest reported SAR of U-NII-2A Bands for a test configuration is \leq 1.2 W/kg, SAR is not required for U-NII-1 band.

Table 13.34: SAR Values (antenna2-Body)

Frequ	iency	Test Mode	Test Position	Area (W	Scan /kg)	Conducted Power	Max.Tune-up Power	Scaling factor	Spacing (mm)	Measured SAR(1g)	Reported SAR(1g)	Power Drift(dB)	Figure
MHz	Ch.			10g	1g	(dBm)	(dBm)		, ,	(W/kg)	(W/kg)		
						Test dat	a of 5.3GHz Ban	d					
5320	64	802.11a	Toward Ground	0.104	0.266	8.98	9.5	1.13	10	0.241	0.2723	0.16	/
5320	64	802.11a	Toward Phantom	0.0026	0.015	8.98	9.5	1.13	10	/	0.01695	-0.08	/
5310	62	802.11ac 40M	Toward Ground	0.109	0.278	9.34	9.5	1.04	10	0.263	0.2735	0.14	Fig.35
						Test dat	a of 5.6GHz Ban	d					•
5580	116	802.11a	Toward Ground	0.148	0.404	9.09	10.0	1.23	10	0.358	0.4403	0.18	Fig.36
5580	116	802.11a	Toward Phantom	0.00375	0.0181	9.09	10.0	1.23	10	1	0.022263	0.00	1
5670	134	802.11ac 40M	Toward Ground	0.140	0.375	9.79	10.0	1.05	10	0.347	0.3644	0.09	/
						Test dat	a of 5.8GHz Ban	d					
5825	165	802.11a	Toward Ground	0.0996	0.265	7.64	9.0	1.37	10	0.232	0.3178	0.16	Fig.37
5825	165	802.11a	Toward Phantom	0.001	0.0016	7.64	9.0	1.37	10	/	0.002192	0.16	/
5795	159	802.11ac 40M	Toward Ground	0.116	0.319	8.82	9.0	1.04	10	0.277	0.2881	0.14	/

Note: 1. The same maximum output power is specified for U-NII-1 and U-NII-2A Bands, the highest reported SAR of U-NII-2A Bands for a test configuration is $\leq 1.2 \text{ W/kg}$, SAR is not required for U-NII-1 band.

^{2.} The devices cannot operate in WLAN 5G "hotspot" modes.

SAR results for Standard procedure

There is zoom scan measurement to be added for the highest measured SAR in each exposure configuration/band.

Table 13.35: SAR Values for 2/3/4G Head

Freque	ncy	Side	Test	Conducted Power	Max.Tune-	Scaling	Measured	Reported	Power Drift	Figure
Band	Fre	Side	Position	(dBm)	up Power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	(dB)	No.
824.2	128	Left	Touch	32.6	33.0	1.10	0.0600	0.066	0.04	Fig.1
1850.2	512	Right	Touch	28.4	28.5	1.02	0.0959	0.0978	0.13	Fig.3
1852.4	9262	Right	Touch	23.67	23.7	1.01	0.173	0.1747	-0.06	Fig.5
826.4	4132	Left	Touch	24.42	24.5	1.02	0.0906	0.0924	-0.09	Fig.7
824.7	1013	Right	Touch	23.94	24.1	1.04	0.112	0.1162	0.15	Fig.9
1851.3	25	Right	Touch	23.98	24.1	1.03	0.194	0.1998	0.09	Fig.11

F	requency	7	RB	RB		Test	Conducted	Max.Tune-up	Scaling	Measured	Reported	Power	Figure
MI	Hz Cl	h.	Size	Offset	Side	Position	Power	Power	factor	SAR(1g)	SAR(1g)	Drift(dB)	No
							(dBm)	(dBm)		(W/kg)	(W/kg)		
25	60 213	350	1	0	Right	Touch	22.42	22.5	1.02	0.1200	0.1224	-0.10	Fig.14
26	80 414	190	1	0	Right	Touch	22.79	23.0	1.05	0.0609	0.0639	0.10	Fig.17

Table 13.36: SAR Values for 2/3/4G Body worn

Frequ	-	Mode/Band	Service/Headset	Test Position	Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling factor	Spacing (mm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)	Figure
MHz	Ch.				(ubiii)	(ubiii)			(W/Kg)	(VV/Rg)		
824.2	128	GPRS 4TS	Class12	Toward	29.5	30.0	1.12	10	0.274	0.3069	0.08	Fig.2
				Phantom								
1850.2	512	GPRS 4TS	Class12	Toward	23.5	23.5	1.00	10	0.663	0.663	-0.08	Fig.4
1630.2	312	GFK5 415	Class12	Phantom	23.3	23.3	1.00	10	0.003	0.003	-0.06	rig.4
				Toward								
1852.4	9262	Band II	12.2kbps RMC	Phantom	23.67	23.7	1.01	10	0.771	0.7787	0.07	Fig.6
0264	4122	D 117	12.211 PMG	Toward	24.42	24.5	1.02	10	0.104	0.1077	0.07	F: 0
826.4	4132	Band V	12.2kbps RMC	Phantom	24.42	24.5	1.02	10	0.184	0.1877	-0.07	Fig.8
0.40.4				Toward								
848.3	777	BC0	RC3 SO32	Phantom	23.92	24.1	1.04	10	0.205	0.2137	0.09	Fig.10
1051.6	25	P.C.I	DG2 GG2C	Toward	24.01	24.1	1.02	10	0.717	0.7220	0.06	F: 10
1851.3	25	BC1	RC3 SO32	Phantom	24.01	24.1	1.02	10	0.717	0.7320	0.06	Fig.12
1000	600	P.C.I	D G2 G022	Toward	22.00	24.1	1.05	10	1.020	1.0720	0.02	F: 10
1880	600	BC1	RC3 SO32	Bottom	23.88	24.1	1.05	10	1.020	1.0730	-0.02	Fig.13

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 Tel: 0086-23-88069965 FAX: 0086-23-88608777

Free	quency Ch.	RB Size	RB Offset	Test Position	Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling factor	Spacing (mm)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift(dB)	Figure No.
2560	21350	1	0	Toward Phantom	22.42	22.5	1.02	10	0.5820	0.5936	-0.14	Fig.15
2560	21350	1	0	Toward Bottom	22.42	22.5	1.02	10	0.6000	0.612	-0.07	Fig.16
2680	41490	1	0	Toward Phantom	22.79	23.0	1.05	10	0.353	0.3707	0.05	Fig.18
2680	41490	1	0	Toward Bottom	22.79	23.0	1.05	10	0.424	0.4452	-0.06	Fig.19

Table 13.37: SAR Values (WiFi 2.4G Antenna1-Head)

Freque	ency			Test		Measured	Reported	Power
MHz	Ch.	Mode/Band	Side	Position	Figure No.	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)
2437	6	802.11b	Left	Tilt	Fig.20	0.334	0.3474	0.15

Table 13.38: SAR Values (WiFi 2.4G Antenna1-Body)

Freque	ency		Test	Spacing	Figure	Measured	Reported	Power	
MHz	Ch.	Mode/Band	Position	(mm)	No.	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)	
2437	6	802.11b	Toward Phantom	10	Fig.21	0.067	0.070304	0.09	
2437	6	802.11b	Toward Top	10	Fig.22	0.0819	0.0852	-0.07	

Table 13.39: SAR Values (WiFi 2.4G Antenna2-Head)

Freque	ency			Test		Measured	Reported	Power
MHz	Ch.	Mode/Band	Side	Position	Figure No.	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)
2437	6	802.11n 40M	Right	Touch	Fig.23	0.248	0.2630	0.14

Table 13.40: SAR Values (WiFi 2.4G Antenna2-Body)

Freque	ency		Test	Spacing	Figure	Measured	Reported	Power
MHz	Ch.	Mode/Band	Position	(mm)	No.	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)
2462	11	802.11b	Toward Phantom	10	Fig.24	0.0242	0.0278	0.11
2437	6	802.11n 40M	Toward Phantom	10	Fig.25	0.0641	0.0680	0.05

Table 13.41: SAR Values (WiFi 5G Antenna1-Head)

Freque	ency			Test		Measured	Reported	Power
MHz	Ch.	Mode/Band	Side	Position	Figure No.	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)
						(W/Kg)	(W/Kg)	
5260	52	802.11a	Right	Touch	Fig.26	0.426	0.4686	-0.10
5500	100	802.11a	Left	Tilt	Fig.27	0.274	0.3151	0.17
5745	149	802.11a	Right	Tilt	Fig.28	0.162	0.1847	0.13

Table 13.42: SAR Values (WiFi 5G Antenna1-Body)

Frequency			Test	Spacing	Figure	Measured	Reported	Power
MHz	Ch.	Mode/Band	Position	(mm)	No.	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)
5260	52	802.11a	Toward Ground	10	Fig.29	0.314	0.3454	0.16
5510	102	802.11ac 40M	Toward Ground	10	Fig.30	0.287	0.3042	0.07
5745	149	802.11a	Toward Ground	10	Fig.31	0.132	0.1505	0.12

Table 13.43: SAR Values (WiFi 5G Antenna2-Head)

Frequency				Test		Measured	Reported	Power
MHz	MHz Ch.	Mode/Band	Side	Position	Figure No.	SAR(1g)	SAR(1g)	Drift(dB)
1,112	CII.					(W/kg)	(W/kg)	
5310	62	802.11ac 40M	Left	Touch	Fig.32	0.146	0.152	-0.06
5670	134	802.11ac 40M	Left	Touch	Fig.33	0.167	0.1754	0.09
5795	159	802.11ac 40M	Left	Touch	Fig.34	0.0967	0.1006	0.05

Table 13.44: SAR Values (WiFi 5G Antenna2-Body)

Frequ	ency		Test	Spacing	Figure	Measured	Reported	Power
MHz	Ch.	Mode/Band	Position (mm)		No.	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift(dB)
5310	62	802.11ac 40M	Toward Ground	10	Fig.35	0.263	0.2735	0.14
5580	116	802.11a	Toward Ground	10	Fig.36	0.358	0.4403	0.18
5825	165	802.11a	Toward Ground	10	Fig.37	0.232	0.3178	0.16

14. SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.
- 2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 14.1: SAR Measurement Variability for Body (1g)

Frequ MHz	Ch.	Test Position	Spacing (mm)	Original SAR (W/kg)	First Repeated SAR (W/kg)	The Ratio	Second Repeated SAR (W/kg)
1851.3	25	Toward Bottom	10	0.890	0.889	1.001	/
1908.8	1175	Toward Bottom	10	1.020	1.020	1.0	/
1880	600	Toward Bottom	10	1.020	1.020	1.0	/

15. Measurement Uncertainty

Measurement uncertainty evaluation for SAR test

Error Description	Unc.	Prob.	Div.	c _i	c _i	Std.Unc.	Std.Unc.	V _i
	value,	Dist.		1g	10g	±%,1g	±%,10g	v _{eff}
	±%							
Measurement System								
Probe Calibration	6.0	N	1	1	1	6.0	6.0	∞
Axial Isotropy	0.5	R	√3	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	2.6	R	√3	0.7	0.7	1.1	1.1	∞
Boundary Effects	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Linearity	0.6	R	$\sqrt{3}$	1	1	0.3	0.3	∞
System Detection Limits	1.0	R	√3	1	1	0.6	0.6	∞
Readout Electronics	0.7	N	1	1	1	0.7	0.7	∞
Response Time	0	R	√3	1	1	0	0	∞
Integration Time	2.6	R	√3	1	1	1.5	1.5	∞
RF Ambient Noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
RF Ambient Reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Probe Positioner	1.5	R	$\sqrt{3}$	1	1	0.9	0.9	8
Probe Positioning	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Max. SAR Eval.	1.0	R	√3	1	1	0.6	0.6	∞
Test Sample Related								
Device Positioning	2.9	N	1	1	1	2.9	2.9	145
Device Holder	3.6	N	1	1	1	3.6	3.6	5
Phantom and Setup								
Phantom Uncertainty	4.0	R	√3	1	1	2.3	2.3	∞
Liquid Conductivity (target)	5.0	R	√3	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (meas.)	2.5	N	1	0.64	0.43	1.6	1.1	∞
Liquid Permittivity (target)	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (meas.)	2.5	N	1	0.6	0.49	1.5	1.2	∞

Measurement uncertainty evaluation for system validation

Error Description	Unc.	Prob.	Div.	c_{i}	c _i	Std.Unc.	Std.Unc.	V _i
•	value,	Dist.		1g	10g	±%,1g	±%,10g	v _{eff}
	±%							
Measurement System								
Probe Calibration	6.0	N	1	1	1	6.0	6.0	∞
Axial Isotropy	0.5	R	√3	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	2.6	R	$\sqrt{3}$	0.7	0.7	1.1	1.1	∞
Boundary Effects	0.8	R	√3	1	1	0.5	0.5	∞
Linearity	0.6	R	√3	1	1	0.3	0.3	∞
System Detection Limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Readout Electronics	0.7	N	1	1	1	0.7	0.7	∞
Response Time	0	R	$\sqrt{3}$	1	1	0	0	∞
Integration Time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
RF Ambient Noise	3.0	R	√3	1	1	1.7	1.7	∞
RF Ambient Reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Probe Positioner	1.5	R	√3	1	1	0.9	0.9	∞
Probe Positioning	2.9	R	√3	1	1	1.7	1.7	∞
Max. SAR Eval.	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Diople								
Power Drift	5.0	R	√3	1	1	2.9	2.9	∞
Dipole Positioning	2.0	N	1	1	1	2.0	2.0	∞
Dipole Input Power	5.0	N	1	1	1	5.0	5.0	∞
Phantom and Setup								
Phantom Uncertainty	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid Conductivity (target)	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (meas.)	2.5	N	1	0.64	0.43	1.6	1.1	∞
Liquid Permittivity (target)	5.0	R	√3	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (meas.)	2.5	N	1	0.6	0.49	1.5	1.2	∞
a 11 1011						44	10.511	0.5=
Combined Std Uncertainty						±11.2%	±10.9%	387
Expanded Std Uncertainty						±22.4%	±21.8%	

16. MAIN TEST INSTRUMENTS

Table 16.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	probe	EX3DV4	3844	2016-04-15	2017-04-14
02	DAE	DAE4	797	2016-04-15	2017-04-14
03	Power Meter	N1914A	MY50001660	2017-03-04	2018-03-03
	Radio				
04	Communication	CMW500	128181	2017-03-04	2018-03-03
	Analyzer				
	Radio				
05	Communication	CMU200	122818	2017-03-04	2018-03-03
	Analyzer				
06	Signal Generator	N5181A	MY50143363	2017-03-04	2018-03-03
07	Power Sensor	E8481H	MY51020011	2017-03-04	2018-03-03
08	Power Amplifier	ZHL	QA1202003	2017-03-03	2017-08-02
09	Power Amplifier	ZVE	421401127	2017-03-03	2017-08-02
10	Attenuator	8491A	MY39267989	2017-03-04	2018-03-03
11	Probe kit	85070E	3G-S-00139	NA	NA
12	Network Analyzer	E5071C	US39175666	2017-03-04	2018-03-03
13	D850V2	dipole	4d135	2017-03-29	2018-03-28
14	D1900V2	dipole	5d153	2016-03-30	2017-03-29
15	D2450V2	dipole	886	2016-04-01	2017-03-31
16	D2600V2	dipole	1045	2016-03-31	2017-03-30
17	D5GHzV2	dipole	1121	2016-04-08	2017-04-07

END OF REPORT BODY

Annex A Graphical Measurement Results

GSM 850MHz Head Left Check Low

Date/Time: 2017/3/10 Electronics: DAE4 Sn797 Medium: Head 850MHz

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.899 \text{ S/m}$; $\epsilon r = 42.082$; $\rho = 1000$

kg/m3

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 850MHz; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Probe: EX3DV4 – SN3844ConvF(9.57, 9.57, 9.57);

Low Cheek Left GSM 850MHz/Area Scan (9x13x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.0610 W/kg

Low Cheek Left GSM 850MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.067 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.0770 W/kg

SAR(1 g) = 0.060 W/kg; SAR(10 g) = 0.046 W/kg

Fig.1 GSM 850MHz Left Cheek Low

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 Tel: 0086-23-88069965 FAX: 0086-23-88608777

GPRS 850MHz 4TS Body Toward Phantom Low

Date/Time: 2017/3/14 Electronics: DAE4 Sn797 Medium: Body 850MHz

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.978 \text{ S/m}$; $\epsilon r = 54.682$; $\rho = 1000$

kg/m3

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GRPS 850MHz 4TS; Frequency: 824.2 MHz; Duty Cycle: 1:2

Probe: EX3DV4 – SN3844ConvF(9.99, 9.99, 9.99);

Low Toward Phantom GPRS 850MHz 4TS/Area Scan (12x19x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.302 W/kg

Low Toward Phantom GPRS 850MHz 4TS/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.86 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.517 W/kg

SAR(1 g) = 0.274 W/kg; SAR(10 g) = 0.156 W/kgMaximum value of SAR (measured) = 0.300 W/kg

Fig.2 GPRS 850MHz 4TS Phantom Mode Low 10mm

GSM 1900MHz Head Right Check Low

Date/Time: 2017/3/12 Electronics: DAE4 Sn797 Medium: Head 1900MHz

Medium parameters used (extrapolated): f = 1850.2 MHz; $\sigma = 1.35$ S/m; $\epsilon r = 40.137$; $\rho =$

1000 kg/m3

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GSM 1900MHz; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Probe: EX3DV4 – SN3844ConvF(8.17, 8.17, 8.17);

Low Cheek Right GSM 1900MHz/Area Scan (9x13x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.102 W/kg

Low Cheek Right GSM 1900MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.644 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.145 W/kg

SAR(1 g) = 0.096 W/kg; SAR(10 g) = 0.059 W/kgMaximum value of SAR (measured) = 0.104 W/kg

Fig.3 GSM 1900MHz Right Cheek Low

GPRS 1900MHz 4TS Body Toward Phantom Low

Date/Time: 2017/3/28 Electronics: DAE4 Sn797 Medium: Body 1900MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.459$ S/m; $\epsilon r = 51.138$; $\rho =$

1000 kg/m3

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: GRPS 1900MHz 4TS; Frequency: 1850.2 MHz; Duty Cycle: 1:2

Probe: EX3DV4 – SN3844ConvF(7.93, 7.93, 7.93);

Low Toward Phantom GPRS 1900MHz 4TS/Area Scan (12x19x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.743 W/kg

Low Toward Phantom GPRS 1900MHz 4TS/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.671 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.663 W/kg; SAR(10 g) = 0.338 W/kg

Maximum value of SAR (measured) = 0.769 W/kg

Fig.4 GPRS 1900MHz 4TS Phantom Mode Low 10mm

WCDMA Band II Head Right Check Low

Date/Time: 2017/3/6

Electronics: DAE4 Sn797 Medium: Head 1900MHz

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.283$ S/m; $\epsilon r = 40.126$; $\rho =$

1000 kg/m3

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band II; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3844ConvF(8.17, 8.17, 8.17);

Low Cheek Right WCDMA Band II/Area Scan (9x13x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.182 W/kg

Low Cheek Right WCDMA Band II/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.528 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.258 W/kg

SAR(1 g) = 0.173 W/kg; SAR(10 g) = 0.109 W/kg

Maximum value of SAR (measured) = 0.187 W/kg

Fig.5 WCDMA 1900MHz Right Cheek Low

WCDMA Band II Body Toward Phantom Low

Date/Time: 2017/3/28 Electronics: DAE4 Sn797 Medium: Body 1900MHz

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.461$ S/m; $\epsilon r = 51.126$; $\rho = 1.461$ MHz

1000 kg/m3

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band II; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(7.93, 7.93, 7.93);

Low Toward Phantom WCDMA Band II/Area Scan (12x19x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.769 W/kg

Low Toward Phantom WCDMA Band II/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.669 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.40 W/kg

SAR(1 g) = 0.771 W/kg; SAR(10 g) = 0.385 W/kgMaximum value of SAR (measured) = 0.894 W/kg

Fig.6 WCDMA 1900MHz Phantom Mode Low 10mm

WCDMA Band V Head Left Check Low

Date/Time: 2017/3/10 Electronics: DAE4 Sn797 Medium: Head 850MHz

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.901$ S/m; $\epsilon r = 42.06$; $\rho = 1000$

kg/m3

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band V; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3844ConvF(9.57, 9.57, 9.57);

Low Cheek Left WCDMA Band V/Area Scan (9x13x1):Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.0917 W/kg

Low Cheek Left WCDMA Band V/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.468 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.110 W/kg

SAR(1 g) = 0.091 W/kg; SAR(10 g) = 0.071 W/kgMaximum value of SAR (measured) = 0.0947 W/kg

Fig.7 WCDMA 850MHz Left Cheek Low

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 Tel: 0086-23-88069965 FAX: 0086-23-88608777

WCDMA Band V Body Toward Phantom Low

Date/Time: 2017/3/4

Electronics: DAE4 Sn797 Medium: Body 850MHz

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.96$ S/m; $\epsilon r = 54.404$; $\rho = 1000$

kg/m3

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: WCDMA Band V; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3844ConvF(9.99, 9.99, 9.99);

Low Toward Phantom WCDMA Band V/Area Scan (12x19x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.193 W/kg

Low Toward Phantom WCDMA Band V/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.629 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.336 W/kg

SAR(1 g) = 0.184 W/kg; SAR(10 g) = 0.106 W/kgMaximum value of SAR (measured) = 0.203 W/kg

Fig.8 WCDMA 850MHz Phantom Mode Low 10mm

CDMA2000 BC0 Head Right Check Low

Date/Time: 2017/3/10 Electronics: DAE4 Sn797 Medium: Head 850MHz

Medium parameters used: f = 825 MHz; $\sigma = 0.9$ S/m; $\epsilon r = 42.073$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CDMA2000 BC0; Frequency: 824.7 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(9.57, 9.57, 9.57);

Low Cheek Right CDMA2000 BC0/Area Scan (9x13x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.112 W/kg

Low Cheek Right CDMA2000 BC0/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.799 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.138 W/kg

SAR(1 g) = 0.112 W/kg; SAR(10 g) = 0.086 W/kg

Maximum value of SAR (measured) = 0.118 W/kg

Fig.9 CDMA2000 BC0 Right Cheek Low

CDMA2000 BC0 Body Toward Phantom High

Date/Time: 2017/3/14 Electronics: DAE4 Sn797 Medium: Body 850MHz

Medium parameters used (interpolated): f = 848.31 MHz; $\sigma = 1$ S/m; $\epsilon r = 54.388$; $\rho = 1000$

kg/m3

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CDMA2000 BC0; Frequency: 848.31 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(9.99, 9.99, 9.99);

High Toward Phantom CDMA2000 BC0/Area Scan (12x19x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.224 W/kg

High Toward Phantom CDMA2000 BC0/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.901 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.374 W/kg

SAR(1 g) = 0.205 W/kg; SAR(10 g) = 0.117 W/kgMaximum value of SAR (measured) = 0.226 W/kg

Fig.10 CDMA2000 BC0 Phantom Mode High 10mm

CDMA2000 BC1 Head Right Check Low

Date/Time: 2017/3/12 Electronics: DAE4 Sn797 Medium: Head 1900MHz

Medium parameters used (interpolated): f = 1851.3 MHz; $\sigma = 1.351$ S/m; $\epsilon r = 40.132$; $\rho = 1.351$ MHz; $\sigma = 1.351$ S/m; $\epsilon r = 40.132$; $\epsilon r = 40.132$

1000 kg/m3

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CDMA2000 BC1; Frequency: 1851.3 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(8.17, 8.17, 8.17);

Low Cheek Right CDMA2000 BC1/Area Scan (9x13x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.209 W/kg

Low Cheek Right CDMA2000 BC1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.298 W/kg

SAR(1 g) = 0.194 W/kg; SAR(10 g) = 0.119 W/kgMaximum value of SAR (measured) = 0.211 W/kg

Fig.11 CDMA2000 BC1 Right Cheek Low

CDMA2000 BC1 Body Toward Phantom Low

Date/Time: 2017/3/28 Electronics: DAE4 Sn797 Medium: Body 1900MHz

Medium parameters used (interpolated): f = 1851.3 MHz; $\sigma = 1.46$ S/m; $\epsilon r = 51.132$; $\rho = 1000$

kg/m3

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CDMA2000 BC1; Frequency: 1851.3 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(7.93, 7.93, 7.93);

Low Toward Phantom CDMA2000 BC1/Area Scan (12x19x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.783 W/kg

Low Toward Phantom CDMA2000 BC1/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.74 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.717 W/kg; SAR(10 g) = 0.377 W/kgMaximum value of SAR (measured) = 0.819 W/kg

Fig.12 CDMA2000 BC1 Phantom Mode Low 10mm

CDMA2000 BC1 Body Toward Bottom Middle

Date/Time: 2017/3/28 Electronics: DAE4 Sn797 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.484 \text{ S/m}$; $\epsilon r = 50.897$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CDMA2000 BC1; Frequency: 1908.8 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(7.93, 7.93, 7.93);

Middle Toward Bottom CDMA2000 BC1/Area Scan (5x11x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.02 W/kg

Middle Toward Bottom CDMA2000 BC1/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.04 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.80 W/kg

SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.555 W/kgMaximum value of SAR (measured) = 1.15 W/kg

Fig.13 CDMA2000 BC1 Bottom Mode Middle 10mm

LTE Band 7 20MHz 1RB Head Right Check High

Date/Time: 2017/3/16 Electronics: DAE4 Sn797 Medium: Head 2600MHz

Medium parameters used: f = 2560 MHz; $\sigma = 1.947 \text{ S/m}$; $\epsilon r = 38.115$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: LTE Band 7; Frequency: 2560 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(7.42, 7.42, 7.42);

High Cheek Right LTE Band 7 20MHz 1RB/Area Scan (9x13x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.109 W/kg

High Cheek Right LTE Band 7 20MHz 1RB/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.165 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.226 W/kg

SAR(1 g) = 0.120 W/kg; SAR(10 g) = 0.060 W/kgMaximum value of SAR (measured) = 0.134 W/kg

Fig.14 LTE Bnad7 Right Cheek High

LTE Band 7 20MHz 1RB Body Toward Phantom High

Date/Time: 2017/3/15 Electronics: DAE4 Sn797 Medium: Body 2600MHz

Medium parameters used: f = 2560 MHz; $\sigma = 2.126$ S/m; $\epsilon r = 51.138$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: LTE Band 7; Frequency: 2560 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(7.39, 7.39, 7.39);

High Toward Phantom LTE Band 7 20MHz 1RB/Area Scan (12x19x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.604 W/kg

High Toward Phantom LTE Band 7 20MHz 1RB/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.268 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.582 W/kg; SAR(10 g) = 0.281 W/kg

Maximum value of SAR (measured) = 0.673 W/kg

Fig.15 LTE Band7 Phantom Mode High 10mm

LTE Band 7 20MHz 1RB Body Toward Bottom High

Date/Time: 2017/3/15 Electronics: DAE4 Sn797 Medium: Body 2600MHz

Medium parameters used: f = 2560 MHz; $\sigma = 2.126 \text{ S/m}$; $\epsilon r = 51.138$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: LTE Band 7; Frequency: 2560 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(7.39, 7.39, 7.39);

High Toward Bottom LTE Band 7 20MHz 1RB/Area Scan (5x11x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.637 W/kg

High Toward Bottom LTE Band 7 20MHz 1RB/Zoom Scan (7x7x7)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.67 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.600 W/kg; SAR(10 g) = 0.274 W/kgMaximum value of SAR (measured) = 0.697 W/kg

Fig.16 LTE Band7 Bottom Mode High 10mm

LTE Band 41 20MHz 1RB Head Right Check High

Date/Time: 2017/3/16 Electronics: DAE4 Sn797 Medium: Head 2600MHz

Medium parameters used: f = 2680 MHz; $\sigma = 2.076 \text{ S/m}$; $\epsilon r = 37.624$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: LTE Band 41; Frequency: 2680 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(7.42, 7.42, 7.42);

High Cheek Right LTE Band 41 20MHz 1RB/Area Scan (9x13x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0539 W/kg

High Cheek Right LTE Band 41 20MHz 1RB/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.121 W/kg

SAR(1 g) = 0.061 W/kg; SAR(10 g) = 0.030 W/kgMaximum value of SAR (measured) = 0.0680 W/kg

Fig.17 LTE Band41 Right Cheek High

LTE Band 41 20MHz 1RB Body Toward Phantom High

Date/Time: 2017/3/15 Electronics: DAE4 Sn797 Medium: Body 2600MHz

Medium parameters used: f = 2680 MHz; $\sigma = 2.322 \text{ S/m}$; $\epsilon r = 50.249$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: LTE Band 41; Frequency: 2680 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(7.39, 7.39, 7.39);

High Toward Phantom LTE Band 41 20MHz 1RB/Area Scan (12x19x1): Measurement

grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.367 W/kg

High Toward Phantom LTE Band 41 20MHz 1RB/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.785 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.693 W/kg

SAR(1 g) = 0.353 W/kg; SAR(10 g) = 0.173 W/kgMaximum value of SAR (measured) = 0.399 W/kg

Fig.18 LTE Band41 Phantom Mode High 10mm

LTE Band 41 20MHz 1RB Body Toward Bottom High

Date/Time: 2017/3/15 Electronics: DAE4 Sn797 Medium: Body 2600MHz

Medium parameters used: f = 2680 MHz; $\sigma = 2.322 \text{ S/m}$; $\epsilon r = 50.249$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: LTE Band 41; Frequency: 2680 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(7.39, 7.39, 7.39);

High Toward Bottom LTE Band 41 20MHz 1RB/Area Scan (5x11x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.470 W/kg

High Toward Bottom LTE Band 41 20MHz 1RB/Zoom Scan (7x7x7)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.281 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.848 W/kg

SAR(1 g) = 0.424 W/kg; SAR(10 g) = 0.195 W/kgMaximum value of SAR (measured) = 0.490 W/kg

Fig.19 LTE Band41 Bottom Mode High 10mm

Wi-Fi 802.11b Antenna1 Head Left Tilt CH6

Date/Time: 2017/3/17 Electronics: DAE4 Sn797 Medium: Head 2450MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.818$ S/m; $\epsilon r = 38.658$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: Wi-Fi; Frequency: 2437 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(7.54, 7.54, 7.54);

CH6 Tilt Left WiFi 802.11b Chain0/Area Scan (9x13x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.369 W/kg

CH6 Tilt Left WiFi 802.11b Chain0/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.37 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.787 W/kg

SAR(1 g) = 0.334 W/kg; SAR(10 g) = 0.140 W/kg

Maximum value of SAR (measured) = 0.376 W/kg

Fig.20 WiFi 802.11b Left Tilt CH6

Wi-Fi 802.11b Antenna1 Body Toward Phantom CH6

Date/Time: 2017/3/17 Electronics: DAE4 Sn797 Medium: Body 2450MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.937$ S/m; $\epsilon r = 52.036$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: Wi-Fi; Frequency: 2437 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(7.56, 7.56, 7.56);

Middle Toward Phantom WiFi 802.11b Chain0/Area Scan (12x19x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.0721 W/kg

Middle Toward Phantom WiFi 802.11b Chain0/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.129 W/kg

SAR(1 g) = 0.067 W/kg; SAR(10 g) = 0.032 W/kgMaximum value of SAR (measured) = 0.0764 W/kg

Fig.21 WiFi 802.11b Phantom Mode CH6 10mm

Wi-Fi 802.11b Antenna1 Body Toward Top CH6

Date/Time: 2017/3/17 Electronics: DAE4 Sn797 Medium: Body 2450MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.937$ S/m; $\epsilon r = 52.036$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: Wi-Fi; Frequency: 2437 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(7.56, 7.56, 7.56);

CH6 Toward Top WiFi 802.11b Chain0/Area Scan (5x11x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 0.0919 W/kg

CH6 Toward Top WiFi 802.11b Chain0/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.621 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.152 W/kg

SAR(1 g) = 0.082 W/kg; SAR(10 g) = 0.040 W/kgMaximum value of SAR (measured) = 0.0925 W/kg

Fig.22 WiFi 802.11b Top Mode CH6 10mm

Wi-Fi 802.11n 40MHz Antenna2 Head Right Cheek CH6

Date/Time: 2017/3/17 Electronics: DAE4 Sn797 Medium: Head 24500MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.818$ S/m; $\epsilon r = 38.658$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: Wi-Fi; Frequency: 2437 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(7.54, 7.54, 7.54);

CH6 Cheek Right WiFi 802.11n 40MHz Chain1/Area Scan (8x13x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.263 W/kg

CH6 Cheek Right WiFi 802.11n 40MHz Chain1/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.327 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.616 W/kg

SAR(1 g) = 0.248 W/kg; SAR(10 g) = 0.121 W/kg

Maximum value of SAR (measured) = 0.262 W/kg

Fig.23 WiFi 802.11n 40MHz Right Cheek CH6

Wi-Fi 802.11b Antenna2 Body Toward Phantom CH11

Date/Time: 2017/3/17 Electronics: DAE4 Sn797 Medium: Body 2450MHz

Medium parameters used: f = 2462 MHz; $\sigma = 1.972 \text{ S/m}$; $\epsilon r = 51.863$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: Wi-Fi; Frequency: 2462 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(7.56, 7.56, 7.56);

High Toward Phantom WiFi 802.11b Chain1/Area Scan (12x19x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.0251 W/kg

High Toward Phantom WiFi 802.11b Chain1/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.513 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.0440 W/kg

SAR(1 g) = 0.024 W/kg; SAR(10 g) = 0.014 W/kgMaximum value of SAR (measured) = 0.0266 W/kg

Fig.24 WiFi 802.11b Phantom Mode CH11 10mm

Wi-Fi 802.11n 40MHz Antenna2 Body Toward Phantom CH6

Date/Time: 2017/3/17 Electronics: DAE4 Sn797 Medium: Body 2450MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.937$ S/m; $\epsilon r = 52.036$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: Wi-Fi; Frequency: 2437 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(7.56, 7.56, 7.56);

CH6 Toward Phantom WiFi 802.11n 40MHz Chain1/Area Scan (12x19x1): Measurement

grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.0678 W/kg

CH6 Toward Phantom WiFi 802.11n 40MHz Chain1/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.019 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.115 W/kg

SAR(1 g) = 0.064 W/kg; SAR(10 g) = 0.036 W/kgMaximum value of SAR (measured) = 0.0699 W/kg

Fig.25 WiFi 802.11n 40MHz Phantom Mode CH6 10mm

WI-FI 802.11a Antenna1 Head Right Check CH52

Date/Time: 2017/3/20 Electronics: DAE4 Sn797 Medium: Head 5300MHz

Medium parameters used: f = 5260 MHz; $\sigma = 4.672 \text{ S/m}$; $\epsilon r = 34.929$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: Wi-Fi; Frequency: 5260 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(5.41, 5.41, 5.41);

CH52 Cheek Right WiFi 802.11a Chain0/Area Scan (9x13x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.453 W/kg

CH52 Cheek Right WiFi 802.11a Chain0/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.15 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 1.35 W/kg

SAR(1 g) = 0.426 W/kg; SAR(10 g) = 0.135 W/kg

Maximum value of SAR (measured) = 0.499 W/kg

Fig.26 WiFi 802.11a Right Cheek CH52

WI-FI 802.11a Antenna1 Head Left Tilt CH100

Date/Time: 2017/3/20 Electronics: DAE4 Sn797 Medium: Head 5600MHz

Medium parameters used: f = 5500 MHz; $\sigma = 5.014 \text{ S/m}$; $\epsilon r = 35.254$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: Wi-Fi; Frequency: 5500 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(5.14, 5.14, 5.14);

CH100 Tilt Left WiFi 802.11a Chain0/Area Scan (9x13x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.321 W/kg

CH100 Tilt Left WiFi 802.11a Chain0/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.065 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.906 W/kg

SAR(1 g) = 0.274 W/kg; SAR(10 g) = 0.075 W/kg

Maximum value of SAR (measured) = 0.361 W/kg

Fig.27 WiFi 802.11a Left Tilt CH100

WI-FI 802.11a Antenna1 Head Right Tilt CH149

Date/Time: 2017/3/20 Electronics: DAE4 Sn797 Medium: Head 5800MHz

Medium parameters used: f = 5745 MHz; $\sigma = 5.281$ S/m; $\epsilon r = 35.685$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: Wi-Fi; Frequency: 5745 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(4.95, 4.95, 4.95);

CH149 Tilt Right WiFi 802.11a Chain0/Area Scan (9x13x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (measured) = 0.172 W/kg

CH149 Tilt Right WiFi 802.11a Chain0/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.725 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.653 W/kg

SAR(1 g) = 0.162 W/kg; SAR(10 g) = 0.050 W/kgMaximum value of SAR (measured) = 0.196 W/kg

0.196
0.157
0.118
0.079
0.039

Fig.28 WiFi 802.11a Right Tilt CH149

WI-FI 802.11a Antenna1 Body Toward Ground CH52

Date/Time: 2017/3/31 Electronics: DAE4 Sn797 Medium: Body 5300MHz

Medium parameters used: f = 5260 MHz; $\sigma = 5.369 \text{ S/m}$; $\epsilon r = 47.028$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: Wi-Fi; Frequency: 5260 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3844ConvF(4.98, 4.98, 4.98);

CH52 Toward Ground WiFi 802.11a Chain0/Area Scan (12x19x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.460 W/kg

CH52 Toward Ground WiFi 802.11a Chain0/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.825 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.560 W/kg

SAR(1 g) = 0.314 W/kg; SAR(10 g) = 0.119 W/kgMaximum value of SAR (measured) = 0.473 W/kg

Fig.29 WiFi 802.11a Ground Mode CH52 10mm

WI-FI 802.11ac 40MHz Antenna1 Body Toward Ground CH102

Date/Time: 2017/3/31 Electronics: DAE4 Sn797 Medium: Body 5600MHz

Medium parameters used: f = 5510 MHz; $\sigma = 5.876$ S/m; $\varepsilon r = 47.469$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: Wi-Fi; Frequency: 5510 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(4.56, 4.56, 4.56);

CH102 Toward Ground WiFi 802.11ac 40MHz Chain0/Area Scan (12x19x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.327 W/kg

CH102 Toward Ground WiFi 802.11ac 40MHz Chain0/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.646 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.851 W/kg

SAR(1 g) = 0.287 W/kg; SAR(10 g) = 0.105 W/kgMaximum value of SAR (measured) = 0.337 W/kg

Fig.30 WiFi 802.11ac 40MHz Ground Mode CH102 10mm

WI-FI 802.11a Antenna1 Body Toward Ground CH149

Date/Time: 2017/3/31 Electronics: DAE4 Sn797 Medium: Body 5800MHz

Medium parameters used: f = 5745 MHz; $\sigma = 6.133$ S/m; $\epsilon r = 46.795$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: Wi-Fi; Frequency: 5745 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(4.58, 4.58, 4.58);

CH149 Toward Ground WiFi 802.11a Chain0/Area Scan (12x19x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.0991 W/kg

CH149 Toward Ground WiFi 802.11a Chain0/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.6100 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.627 W/kg

SAR(1 g) = 0.132 W/kg; SAR(10 g) = 0.047 W/kgMaximum value of SAR (measured) = 0.112 W/kg

Fig.31 WiFi 802.11a Ground Mode CH149 10mm

WI-FI 802.11ac 40MHz Antenna2 Head Left Check CH62

Date/Time: 2017/3/20 Electronics: DAE4 Sn797 Medium: Head 5300MHz

Medium parameters used: f = 5310 MHz; $\sigma = 4.69$ S/m; $\epsilon r = 37.396$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: Wi-Fi; Frequency: 5310 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(5.41, 5.41, 5.41);

CH62 Cheek Left WiFi 802.11ac 40MHz Chain1/Area Scan (9x13x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.138 W/kg

CH62 Cheek Left WiFi 802.11ac 40MHz Chain1/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.7800 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.554 W/kg

SAR(1 g) = 0.146 W/kg; SAR(10 g) = 0.054 W/kgMaximum value of SAR (measured) = 0.159 W/kg

Fig.32 WiFi 802.11ac 40MHz Left Cheek CH62

WI-FI 802.11ac 40MHz Antenna2 Head Left Check CH134

Date/Time: 2017/3/20 Electronics: DAE4 Sn797 Medium: Head 5600MHz

Medium parameters used: f = 5670 MHz; $\sigma = 5.218 \text{ S/m}$; $\epsilon r = 36.651$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: Wi-Fi; Frequency: 5670 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(4.87, 4.87, 4.87);

CH134 Cheek Left WiFi 802.11a 40MHz Chain1/Area Scan (9x13x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.120 W/kg

CH134 Cheek Left WiFi 802.11a 40MHz Chain1/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 0 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.570 W/kg

SAR(1 g) = 0.167 W/kg; SAR(10 g) = 0.062 W/kgMaximum value of SAR (measured) = 0.180 W/kg

Fig.33 WiFi 802.11ac 40MHz Left Cheek CH134

WI-FI 802.11ac 40MHz Antenna2 Head Left Check CH159

Date/Time: 2017/3/20 Electronics: DAE4 Sn797 Medium: Head 5800MHz

Medium parameters used: f = 5795 MHz; $\sigma = 5.288$ S/m; $\varepsilon r = 36.137$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: Wi-Fi; Frequency: 5795 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(4.95, 4.95, 4.95);

CH159 Cheek Left WiFi 802.11ac 40MHzChain1/Area Scan (9x13x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0544 W/kg

CH159 Cheek Left WiFi 802.11ac 40MHz Chain1/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.492 W/kg

SAR(1 g) = 0.097 W/kg; SAR(10 g) = 0.032 W/kgMaximum value of SAR (measured) = 0.0825 W/kg

Fig.34 WiFi 802.11ac 40MHz Left Cheek CH159

WI-FI 802.11ac 40MHz Antenna2 Body Toward Ground CH62

Date/Time: 2017/3/31 Electronics: DAE4 Sn797 Medium: Body 5300MHz

Medium parameters used: f = 5310 MHz; $\sigma = 5.355 \text{ S/m}$; $\epsilon r = 49.655$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: Wi-Fi; Frequency: 5310 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(4.98, 4.98, 4.98);

CH62 Toward Ground WiFi 802.11ac 40MHz Chain1/Area Scan (12x19x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.280 W/kg

CH62 Toward Ground WiFi 802.11ac 40MHz Chain1/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.283 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.796 W/kg

SAR(1 g) = 0.263 W/kg; SAR(10 g) = 0.099 W/kg

Maximum value of SAR (measured) = 0.304 W/kg

Fig.35 WiFi 802.11ac 40MHz Ground Mode CH62 10mm

WI-FI 802.11a Antenna2 Body Toward Ground CH116

Date/Time: 2017/3/31 Electronics: DAE4 Sn797 Medium: Body 5600MHz

Medium parameters used: f = 5580 MHz; $\sigma = 5.63$ S/m; $\epsilon r = 47.365$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: Wi-Fi; Frequency: 5580 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(4.51, 4.51, 4.51);

CH116 Toward Ground WiFi 802.11a Chain1/Area Scan (12x19x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.404 W/kg

CH116 Toward Ground WiFi 802.11a Chain1/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.109 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.358 W/kg; SAR(10 g) = 0.132 W/kgMaximum value of SAR (measured) = 0.408 W/kg

Fig.36 WiFi 802.11a Ground Mode CH116 10mm

WI-FI 802.11a Antenna2 Body Toward Ground CH165

Date/Time: 2017/3/31 Electronics: DAE4 Sn797 Medium: Body 5800MHz

Medium parameters used (extrapolated): f = 5825 MHz; $\sigma = 5.904$ S/m; $\epsilon r = 47.673$; $\rho = 1000$

kg/m3

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: Wi-Fi; Frequency: 5825 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(4.58, 4.58, 4.58);

CH165 Toward Ground WiFi 802.11a Chain1/Area Scan (12x19x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.232 W/kg

CH165 Toward Ground WiFi 802.11a Chain1/Zoom Scan (7x7x7)/Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.9400 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.742 W/kg

SAR(1 g) = 0.232 W/kg; SAR(10 g) = 0.086 W/kgMaximum value of SAR (measured) = 0.263 W/kg

Fig.37 WiFi 802.11a Ground Mode CH165 10mm

Annex B System Performance Check Graphical Results

System 835MHz Head

Date/Time: 2017/3/10 Electronics: DAE4 Sn797 Medium: Head 850MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.909$ S/m; $\epsilon r = 41.944$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3844ConvF(9.57, 9.57, 9.57);

System Check Dipole 835 MHz/Area Scan (5x19x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 2.61 W/kg

System Check Dipole 835 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.83 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.62 W/kg

SAR(1 g) = 2.48 W/kg; SAR(10 g) = 1.63 W/kgMaximum value of SAR (measured) = 2.69 W/kg

Address: No. 8,Yuma Road, Chayuan New City, Nan'an District, Chongqing, P. R. China,401336 Tel: 0086-23-88069965 FAX: 0086-23-88608777

System 835MHz-1 Body

Date/Time: 2017/3/4

Electronics: DAE4 Sn797 Medium: Body 850MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.969$ S/m; $\epsilon r = 54.343$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3844ConvF(9.99, 9.99, 9.99);

System Check Dipole 835 MHz/Area Scan (5x19x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 2.59 W/kg

System Check Dipole 835 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 53.72 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 3.52 W/kg

SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.6 W/kg

Maximum value of SAR (measured) = 2.60 W/kg

System 835MHz-2 Body

Date/Time: 2017/3/14 Electronics: DAE4 Sn797 Medium: Body 850MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.988$ S/m; $\epsilon r = 54.544$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(9.99, 9.99, 9.99);

System Check Dipole 835 MHz/Area Scan (5x19x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 2.50 W/kg

System Check Dipole 835 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.74 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 3.40 W/kg

SAR(1 g) = 2.32 W/kg; SAR(10 g) = 1.53 W/kg

System 1900MHz-1 Head

Date/Time: 2017/3/6

Electronics: DAE4 Sn797 Medium: Head 1900MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.376 \text{ S/m}$; $\epsilon r = 39.919$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3844ConvF(8.17, 8.17, 8.17);

System Check Dipole 1900 MHz/Area Scan (5x19x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 10.9 W/kg

System Check Dipole 1900 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 89.41 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 18.8 W/kg

SAR(1 g) = 9.97 W/kg; SAR(10 g) = 5.1 W/kg

Maximum value of SAR (measured) = 11.3 W/kg

System 1900MHz-2 Head

Date/Time: 2017/3/12 Electronics: DAE4 Sn797 Medium: Head 1900MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.391 \text{ S/m}$; $\epsilon r = 39.919$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(8.17, 8.17, 8.17);

System Check Dipole 1900 MHz/Area Scan (5x19x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 11.3 W/kg

System Check Dipole 1900 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 92.04 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 19.2 W/kg

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.34 W/kg

Maximum value of SAR (measured) = 11.5 W/kg

System 1900MHz Body

Date/Time: 2017/3/28 Electronics: DAE4 Sn797 Medium: Body 1900MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.501 \text{ S/m}$; $\epsilon r = 50.919$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(7.93, 7.93, 7.93);

System Check Dipole 1900 MHz/Area Scan (5x19x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 10.4 W/kg

System Check Dipole 1900 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 85.96 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 17.1 W/kg

SAR(1 g) = 9.42 W/kg; SAR(10 g) = 4.96 W/kg

Maximum value of SAR (measured) = 10.6 W/kg

System 2450MHz Head

Date/Time: 2017/3/17 Electronics: DAE4 Sn797 Medium: Head 2450MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.829$ S/m; $\epsilon r = 38.538$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(7.54, 7.54, 7.54);

System Check Dipole 2450 MHz/Area Scan (5x9x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 12.5 W/kg

System Check Dipole 2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 82.90 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 28.6 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.06 W/kg

Maximum value of SAR (measured) = 15.1 W/kg

System 2450MHz Body

Date/Time: 2017/3/17 Electronics: DAE4 Sn797 Medium: Body 2450MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.954 \text{ S/m}$; $\epsilon r = 51.952$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(7.56, 7.56, 7.56);

System Check Dipole 2450 MHz/Area Scan (5x9x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 14.3 W/kg

System Check Dipole 2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 87.46 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 24.8 W/kg

SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.97 W/kg

Maximum value of SAR (measured) = 14.6 W/kg

System 2600MHz Head

Date/Time: 2017/3/16 Electronics: DAE4 Sn797 Medium: Head 2600MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.022 \text{ S/m}$; $\epsilon r = 37.648$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(7.42, 7.42, 7.42);

System Check Dipole 2600 MHz/Area Scan (5x9x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 14.9 W/kg

System Check Dipole 2600 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 85.69 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 31.8 W/kg

SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.19 W/kg

Maximum value of SAR (measured) = 16.1 W/kg

System 2600MHz Body

Date/Time: 2017/3/15 Electronics: DAE4 Sn797 Medium: Body 2600MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.19 \text{ S/m}$; $\epsilon r = 50.842$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(7.39, 7.39, 7.39);

System Check Dipole 2600 MHz/Area Scan (5x9x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 15.7 W/kg

System Check Dipole 2600 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 85.03 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 29.6 W/kg

SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.3 W/kg

Maximum value of SAR (measured) = 16.4 W/kg

System 5300MHz Head

Date/Time: 2017/3/20 Electronics: DAE4 Sn797 Medium: Head 5300MHz

Medium parameters used: f = 5300 MHz; $\sigma = 4.876$ S/m; $\epsilon r = 37.343$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW; Frequency: 5300 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(5.41, 5.41, 5.41);

System Check Dipole 5300 MHz/Area Scan (5x5x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 9.00 W/kg

System Check Dipole 5300 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 43.55 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 26.7 W/kg

SAR(1 g) = 7.88 W/kg; SAR(10 g) = 2.27 W/kgMaximum value of SAR (measured) = 10.0 W/kg

System 5300MHz Body

Date/Time: 2017/3/31 Electronics: DAE4 Sn797 Medium: Body 5300MHz

Medium parameters used: f = 5300 MHz; $\sigma = 5.545 \text{ S/m}$; $\epsilon r = 49.483$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW; Frequency: 5300 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(4.98, 4.98, 4.98);

System Check Dipole 5300 MHz/Area Scan (5x7x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 6.23 W/kg

System Check Dipole 5300 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 33.82 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 48.5 W/kg

SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.03 W/kg

Maximum value of SAR (measured) = 6.97 W/kg

System 5600MHz Head

Date/Time: 2017/3/20 Electronics: DAE4 Sn797 Medium: Head 5600MHz

Medium parameters used: f = 5600 MHz; $\sigma = 4.966 \text{ S/m}$; $\epsilon r = 34.847$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(4.87, 4.87, 4.87);

System Check Dipole 5600 MHz/Area Scan (5x5x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 9.07 W/kg

System Check Dipole 5600 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 43.58 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 27.2 W/kg

SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.33 W/kgMaximum value of SAR (measured) = 10.2 W/kg

System 5600MHz Body

Date/Time: 2017/3/31 Electronics: DAE4 Sn797 Medium: Body 5600MHz

Medium parameters used: f = 5600 MHz; $\sigma = 5.701 \text{ S/m}$; $\epsilon r = 46.427$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(4.51, 4.51, 4.51);

System Check Dipole 5600 MHz/Area Scan (5x7x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 7.18 W/kg

System Check Dipole 5600 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 36.58 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 24.3 W/kg

SAR(1 g) = 7.23 W/kg; SAR(10 g) = 2.09 W/kg

Maximum value of SAR (measured) = 9.20 W/kg

System 5800MHz Head

Date/Time: 2017/3/20 Electronics: DAE4 Sn797 Medium: Head 5800MHz

Medium parameters used: f = 5800 MHz; $\sigma = 5.252 \text{ S/m}$; $\epsilon r = 35.915$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(4.95, 4.95, 4.95);

System Check Dipole 5800 MHz/Area Scan (5x5x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 8.65 W/kg

System Check Dipole 5800 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 41.34 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 26.0 W/kg

SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 9.86 W/kg

System 5800MHz Body

Date/Time: 2017/3/31 Electronics: DAE4 Sn797 Medium: Body 5800MHz

Medium parameters used: f = 5800 MHz; $\sigma = 5.995 \text{ S/m}$; $\epsilon r = 47.476$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5°C Liquid Temperature:22.5°C

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3844ConvF(4.58, 4.58, 4.58);

System Check Dipole 5800 MHz/Area Scan (5x7x1): Measurement grid: dx=10mm,

dy=10mm

Maximum value of SAR (measured) = 7.90 W/kg

System Check Dipole 5800 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 37.69 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 26.2 W/kg

SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.26 W/kgMaximum value of SAR (measured) = 10.0 W/kg

Annex C EUT Test Setup Photos

See the Pic1~Pic10in the document"A1-901-SAR test setup photos".

Annex D External Photos

See the document"A1-901-External Photos".

Annex E Internal Photos

See the document" A1-901-Internal Photos".

Annex F Calibration Certificates

See the documents"A1-901_DAE Calibration Certificate", "A1-901_Dipole Calibration Certificate" and "A1-901_Probe Calibration Certificate".

End Of Report*