COGNOME:

NOME:

MATRICOLA:

DATA: 8 gennaio 2024

Calculus 1 - Test

Scrivere nella tabella sottostante la lettera corrispondente alla risposta a ciascuna domanda. Tenere presente che le risposte esatte valgono 3 punti, quelle sbagliate -1 punto, mentre le domande senza risposta valgono 0 punti. Ciascun quesito ha una e una sola risposta corretta.

1	2	3	4	5	6	7	8	9	10

- 1. Sia $E \subseteq \mathbb{R}$ un insieme limitato. Allora
 - (A) esiste R > 0 tale che $E \subseteq [-R, R]$.
 - (B) esiste R > 0 tale che $[-R, R] \subseteq E$.
 - (C) per ogni R > 0 si ha $E \subseteq [-R, R]$.
 - (D) per ogni R > 0 si ha $[-R, R] \subseteq E$.
- **2.** Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione. Quale fra i seguenti enunciati è vero?
 - (A) Il grafico di f + 1 si ottiene traslando di 1 il grafico di f verso destra.
 - (B) Il grafico di f + 1 si ottiene traslando di 1 il grafico di f verso sinistra.
 - (C) Il grafico di f + 1 si ottiene traslando di 1 il grafico di f verso l'alto.
 - (D) Il grafico di f + 1 si ottiene traslando di 1 il grafico di f verso il basso.
- **3.** Siano f, g due funzioni tali che Im(f) = Dom(g). Allora
 - (A) $f \circ g$ è ben definita su Dom(g).
 - (B) $f \circ g$ è ben definita su Dom(f).
 - (C) $g \circ f$ è ben definita su Dom(g).
 - (D) $g \circ f$ è ben definita su Dom(f).
- **4.** Sia $E \subseteq \mathbb{R}$ e $f \colon E \to \mathbb{R}$ una funzione iniettiva. Allora
 - (A) $Dom(f^{-1}) = \mathbb{R}$.
 - (B) $\operatorname{Im}(f^{-1}) = f(E)$.
 - (C) $Dom(f^{-1}) = E$.
 - (D) $Im(f^{-1}) = E$.
- **5.** Siano $f: \mathbb{R} \to \mathbb{R}$ e $x_0, \ell \in \mathbb{R}$. Per definizione, $\lim_{x \to x_0} f(x) = \ell$ se
 - (A) per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che per ogni $x \in \mathbb{R}$ con $0 < |x x_0| < \delta$ si ha $|f(x) \ell| < \varepsilon$.
 - (B) per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che per ogni $x \in \mathbb{R}$ con $|x x_0| < \delta$ si ha $|f(x) \ell| < \varepsilon$.
 - (C) per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che per ogni $x \in \mathbb{R}$ con $0 < |x x_0| < \varepsilon$ si ha $|f(x) \ell| < \delta$.
 - (D) per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che per ogni $x \in \mathbb{R}$ con $|x x_0| < \varepsilon$ si ha $|f(x) \ell| < \delta$.

- **6.** Sia $f: \mathbb{R} \to \mathbb{R}$. Per definizione, $\lim_{x \to +\infty} f(x) = +\infty$ se
 - (A) per ogni M>0 esiste N>0 tale che per ogni $x\in\mathbb{R}$ con x>N si ha f(x) > M.
 - (B) per ogni M>0 esiste N>0 tale che per ogni $x\in\mathbb{R}$ con x>M si ha f(x) > N.
 - (C) per ogni M>0 esiste N>0 tale che per ogni $x\in\mathbb{R}$ con x>N si ha |f(x)| > N.
 - (D) nessuna delle precedenti.
- 7. Sia $f:[a,b]\to\mathbb{R}$ una funzione continua. Quale delle seguenti affermazioni è falsa?
 - (A) f ammette massimo e minimo in [a, b].
 - (B) f ammette massimo e minimo in (a, b).
 - (C) $\lim_{x\to x_0} f(x) = f(x_0)$ per ogni $x_0 \in (a, b)$.
 - (D) $\lim_{x\to a^+} f(x) = f(a) e \lim_{x\to b^-} f(x) = f(b)$.
- 8. Sia $f:[a,b]\to\mathbb{R}$ una funzione continua tale che f(a)=0 e f(b)=1. Allora
 - (A) esiste $c \in (a, b)$ tale che $f(c) = \frac{1}{2}$.
 - (B) esiste $c \in (a, b)$ tale che f(c) = 1.
 - (C) non esiste $c \in (a, b)$ tale che f(c) = 2.
 - (D) nessuna delle precedenti.
- **9.** Siano $f: \mathbb{R} \to \mathbb{R}$ una funzione derivabile in $x_0 \in \mathbb{R}$. Quale delle seguenti affermazioni è falsa?
 - (A) $\lim_{x\to x_0} f(x)$ esiste finito.

 - (B) $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ esiste finito. (C) esiste la retta tangente al grafico di f in x_0 .
 - (D) se $f'(x_0) = 0$, allora x_0 è un massimo o un minimo relativo per f.
- **10.** Siano $f: \mathbb{R} \to \mathbb{R}$ una funzione e $F: \mathbb{R} \to \mathbb{R}$ una primitiva di f. Allora
 - (A) f è derivabile e f' = F.
 - (B) $\int_0^x F(t) dt = f(x) f(0)$ per ogni $x \in \mathbb{R}$.
 - (C) F è derivabile e F' = f.
 - (D) nessuna delle precedenti.