Basic Definitions Alexander Golovnev

Outline

The Degree of a Vertex

Paths

Connectivity

Directed Graphs

Weighted Graphs

Definitions

An isolated vertex forms a component

Definitions

An isolated vertex forms a component

The number of friends

• The Degree of a vertex is the number of its incident edges

- The Degree of a vertex is the number of its incident edges
- I.e., the Degree of a vertex is the number of its neighbors

- The Degree of a vertex is the number of its incident edges
- I.e., the Degree of a vertex is the number of its neighbors
- The degree of a vertex v is denoted by deg(v)

- The Degree of a vertex is the number of its incident edges
- I.e., the Degree of a vertex is the number of its neighbors
- The degree of a vertex v is denoted by deg(v)
- The degree of a graph is the maximum degree of its vertices

The Degree of a Vertex: Examples

The degree of v is 6: deg(v) = 6

The degree of v_6 is 1: $deg(v_6) = 1$

The Degree of a Vertex: Examples

The degree of every vertex is 2: $\forall i, \deg(v_i) = 2$

$$deg(v_2) = 2$$

 $\deg(v_2) = 2$ $\deg(v_8) = 1$

 $deg(v_2) = 2$

 $deg(v_8) = 1$

 $deg(v_0) = 0$. v_0 is an Isolated Vertex

Regular Graphs

A Regular graph is a graph where each vertex has the same degree

Regular Graphs

A Regular graph is a graph where each vertex has the same degree A regular graph of degree k is also called k-Regular

Regular Graphs

A Regular graph is a graph where each vertex has the same degree
A regular graph of degree k is also called k-Regular
E.g., this graph is 3-Regular

The Complement of a graph G = (V, E) is a graph G
 = (V, E
) on the same set of vertices V and the following set of edges:

- The Complement of a graph G = (V, E) is a graph G
 = (V, E
) on the same set of vertices V and the following set of edges:
- Two vertices are connected in \overline{G} if and only if they are not connected in G

- The Complement of a graph G = (V, E) is a graph G
 = (V, E
) on the same set of vertices V and the following set of edges:
- Two vertices are connected in \overline{G} if and only if they are not connected in G
- I.e., $(u, v) \in \overline{E}$ if and only if $(u, v) \notin E$

Outline

The Degree of a Vertex

Paths

Connectivity

Directed Graphs

Weighted Graphs

Paths

Is there a path from one point to another?

 A Walk in a graph is a sequence of edges, such that each edge (except for the first one) starts with a vertex where the previous edge ended

- A Walk in a graph is a sequence of edges, such that each edge (except for the first one) starts with a vertex where the previous edge ended
- The Length of a walk is the number of edges in it

- A Walk in a graph is a sequence of edges, such that each edge (except for the first one) starts with a vertex where the previous edge ended
- The Length of a walk is the number of edges in it
- A Path is a walk where all edges are distinct

- A Walk in a graph is a sequence of edges, such that each edge (except for the first one) starts with a vertex where the previous edge ended
- The Length of a walk is the number of edges in it
- A Path is a walk where all edges are distinct
- A Simple Path is a walk where all vertices are distinct

A walk of length 6: $(e_1, e_2, e_4, e_5, e_3, e_1)$

A walk of length 6: $(e_1, e_2, e_4, e_5, e_3, e_1)$

A walk of length 6: $(e_1, e_2, e_4, e_5, e_3, e_1)$

A walk of length 6: $(e_1, e_2, e_4, e_5, e_3, e_1)$ Not a path: uses e_1 twice

A path of length 4: $(e_7, e_6, \frac{e_4}{e_4}, e_5)$

A path of length 4: (e_7, e_6, e_4, e_5) Not a simple path: visits v_2 twice

It is sometimes convenient to specify a path (walk) by a list of its vertices

 (v_4, v_5, v_2) is a path of length 2

Cycles

• A Cycle in a graph is a path whose first vertex is the same as the last one

Cycles

- A Cycle in a graph is a path whose first vertex is the same as the last one
- In particular, all the edges in a Cycle are distinct

Cycles

- A Cycle in a graph is a path whose first vertex is the same as the last one
- In particular, all the edges in a Cycle are distinct
- A Simple Cycle is a cycle where all vertices except for the first one are distinct. (And there first vertex is taken twice)

A cycle of length 6: $(e_2, e_3, e_8, e_4, e_7, e_6)$ Not a simple cycle: visits v_5 three times

Outline

The Degree of a Vertex

Paths

Connectivity

Directed Graphs

Weighted Graphs

Connected Components

The number of islands

Connectivity

• A graph is called Connected if there is a path between every pair of its vertices

Connectivity

- A graph is called Connected if there is a path between every pair of its vertices
- A Connected Component of a graph *G* is a maximal connected subgraph of *G*

Connectivity

- A graph is called Connected if there is a path between every pair of its vertices
- A Connected Component of a graph *G* is a maximal connected subgraph of *G*
- I.e., a connected subgraph of *G* which is not contained in a larger connected subgraph of *G*

 v_1, v_2, v_3 form a connected subgraph

 v_1, v_2, v_3 form a connected subgraph But not a connected component

 v_1, v_2, v_3 form a connected subgraph But not a connected component

v₁, v₂, v₃ form a connected subgraph
But not a connected component
v₁, v₂, v₃, v₄, v₅, v₆ form a Connected Component

 $v_7,\,v_8$ form a Connected Component $v_1,\,v_2,\,v_3,\,v_4,\,v_5,\,v_6$ form a Connected Component

 v_0 forms a Connected Component $v_7,\,v_8$ form a Connected Component $v_1,\,v_2,\,v_3,\,v_4,\,v_5,\,v_6$ form a Connected Component

Each isolated vertex forms a Connected Component

Each isolated vertex forms a Connected Component

Outline

The Degree of a Vertex

Paths

Connectivity

Directed Graphs

Weighted Graphs

Directed Graphs

One-way Streets

Directed Graphs

Undirected Edge (Edge)

Edge { *u*, *v*}

Arc(u, v)

Arc(u, v)

Arc (*u*, *v*)

The Degree of a Vertex

• The Indegree of a vertex v is the number of edges ending at v

The Degree of a Vertex

- The Indegree of a vertex v is the number of edges ending at v
- The Outdegree of a vertex ν is the number of edges leaving ν

The Degree of a Vertex: Examples

The Degree of a Vertex: Examples

The Indegree of v_3 is 3, the Outdegree of v_3 is 1

The Degree of a Vertex: Examples

The Indegree of v_1 is 1, the Outdegree of v_1 is 2

Directed Paths

Directed Paths

 (v_2, v_3, v_4) is a Path of length 2

Directed Paths

Outline

The Degree of a Vertex

Paths

Connectivity

Directed Graphs

Weighted Graphs

Weighted Graphs

Distance, Driving Time, etc.

Weighted Graphs: Examples

Weighted Graphs: Examples

Weighted Graphs: Examples

 A Weighted Graph associates a weight with every edge

- A Weighted Graph associates a weight with every edge
- The Weight of a path is the sum of the weights of its edges

- A Weighted Graph associates a weight with every edge
- The Weight of a path is the sum of the weights of its edges
- A Shortest Path between two vertices is a path of the minimum weight

- A Weighted Graph associates a weight with every edge
- The Weight of a path is the sum of the weights of its edges
- A Shortest Path between two vertices is a path of the minimum weight
- The Distance between two vertices is the length of a shortest path between them

