- Na putu od predajnika do prijamnika je 10km vlakna, pa
- Ukupni gubici uključuju gubitke nastale prolaskom kroz vlakno i
- Ukupno signal prelazi 10km + 10km = 20km puta kroz vlakno
- Možemo izračunati L_{fiber}:
- $L_{fiber} = a * D = 0.2 dB/km * 20km = 4 dB$

- Ostaje nam odrediti gubitke uzrokovane rasprežnikom
- Svaki ulazni signal prolazi kroz 4 sprežnika (2 combinera i 2 couplera)
- Spojeni signal prolazi kroz 2 rasprežnika (splitter) kako bi došao na
- Ukupno signal prolazi kroz 4 + 2 = 6 elementa na putu do izlaza
- Gubitak prolaskom kroz jedan element je 3 dB
- Ukupni gubitak prolazkom kroz rasprežnik je:
- L_{coupler} = 6 * 3 dB = 18 dB

- S dobivenim rezultatima možemo izračunati ukupne gubitke X:
- Iz prethodnog zadatka poznata nam je jednadžba ukupnih
 - P(L) = 10 -×/10 * P(0 km)
 - U ovom sustavu:
 - · P(0 km) = PTX
 - · P (L) = PRX
 - · Tj.
 - · PRX = 10 -X/10 * PTX

- Tražimo minimalnu snagu predajnika za koju će sustav normalno raditi, tj. tražimo snagu predajnika s kojom ćemo na prijamniku dobiti snagu · PRX = 10 -X/10 * PTX
- 0.01 mW = 10-22/10 * PTX
- P_{TX} = 1,584 mW
- Kako bi sustav ispravno radio minimalna snaga predajnika mora biti

- Ukupno pojačanje G:
 - G = F_{gain} * P_{pumpa} = 5 dB/mW * 5 mW = 25 dB
- Izlazna snaga zasićenja
 - $P_{izlaz} = 20 \text{ mW} = 10 * log_{10} 20 = 13 \text{ dB}$
- Kolika je snaga na ulazu da izlazna snaga bude Pizlaz?
 - $P_{ulaz} = P_{izlaz} G = 13 dB 25 dB = -12 dB$
 - P _{ulaz} = 0.06 mW

 $P_{\text{(dBm)}} = 10 \cdot \log_{10}(P_{\text{(mW)}} / 1\text{mW})$

Komentar dBm ili dB?

- BW_T valni pojas u kojem se može ostvariti konekcija
- B brzina prijenosa
- λ centralna valna duljina

- Frekvencijski raspon možemo podijeliti na frekvenciju potrebnu za prijenos podataka i frekvenciju potrebnu za razmak između kanala:
- Modulacijska efikasnost je 2 Hz po bit/s, a trebamo prenijeti 1
- Δf_{prijenos, kanal} = 2 Hz * 1 Gbit/s
- Želimo uspostaviti 16 kanala, pa je za prijenos ukupno potrebno:
- Δf_{prijenos} = 2 Hz * 1 Gbit/s * W = 2 Hz * 1 Gbit/s * 16

- Δf_{razmak} nam još nedostaje
- Razmak je barem 6 puta veći od brzine prijenosa, tj. jedan
- Ako imamo W kanala imamo (W 1) razmaka između kanala
- Ukupno Δf_{razmak} onda možemo izračunati kao:
- Δf_{razmak} = 6B * (W 1) = 6 * 1 Gbit/sec * 15

- Uvrštavamo dobivene vrijednosti natrag u jednadžbu;

 - * Δf = 2 Hz * 1 Gbit/s * 16 + 6 * 1 Gbit/sec * 15 = 122 GHz

- BW_T valni pojas u kojem se može ostvariti konekcija
- - BW_T = [1450 1600 nm]
- · Za prijamnik:
 - BW_T = [1500 1650 nm]
- Po definiciji, valni pojas u kojem se može ostvariti konekcija je presjek valnog pojasa predajnika i valnog pojasa prijamnika, tj.:
 - BW_T = [15Q0 1600 nm]

- Postavljamo jednadžbu:
 - $\Delta f = \Delta f_{prijenos} + \Delta f_{razmak}$
- Za prijenos nam je potreban frekvencijski pojas od:
 - Δf_{prijenos} = (Modulacijska efikasnost) * B * W
 - Δf_{prijenos} = 2 B W
- Za razmake između kanala potreban je frekvencijski pojas od:
 - Δf_{razmak} = (Razmak između kanala) * (Broj razmaka između kanala)
 - Δf_{razmak} = 6B * (W 1)

- U jednadžbu za Δf uvrštavamo dobivene vrijednosti za Δf_{prijenos} i
 - $\Delta f = \Delta f_{prijenos} + \Delta f_{razmak}$
 - Δf = 2 B W + 6B * (W 1)
- Obzirom da nas u zadatku traži broj kanala izlučujemo W:

• W =
$$\frac{\Delta f + 6B}{8B}$$

- B je zadan, preostaje nam izračunati Δf:
 - $\Delta f = \frac{cBWt}{\lambda * \lambda}$

- Širina frekvencijskog pojasa:
 - · $\Delta f = \frac{3000000000 * 0.00000001}{1500nm * 1600nm}$ 12.5 = THZ

- Uvrštavamo rješenje u dobivenu jednadžbu za W, dobivamo:
- W = 1563 kanala

