Partial Differential Equations, 2nd Edition (1st Printing),

Evans

Errata Sheet

Yung-Hsiang Huang*

March 26, 2021

Page 297, line 1, $u \in C^{\infty}(B(0,r)) \to u \in C^{\infty}(\overline{B(0,r)})$. This assumption (i.e. continuity up to the boundary) is used when we do integration by parts.

Page 352, equation (26), $\sum_{k,l=1}^{n} \to \sum_{i,j,k,l=1}^{n}$.

Page 368, Exercise 12, I think we should assume $v \in C^2(U) \cap C^1(\overline{U})$ instead of $C^2(U) \cap C(\overline{U})$ since the first-order coefficient of the elliptic operator M is required to be bounded in U, that is, $b^i + \frac{2}{v}a^{ij}D_jv$ is bounded in U. A convenient way is to assume $b^i + \frac{2}{v}a^{ij}D_jv \in C(\overline{U})$, which is guaranteed by assuming $v \in C^1(\overline{U})$.

Page 493 Line 2, delete "unique" in the assumption because I don't see the proof uses this uniqueness assumption.

Page 535 Line 15, $U \in \mathbb{R}^n \to U \subset \mathbb{R}^n$.

Page 549 Line 2, $\lambda \to \lambda_1$.

Page 575 the last term in Exercise 9(b), $(n-2)|Du|^2 \rightarrow n|Du|^2$.

Page 738, [Mi] $1947 \rightarrow 1941$, according to AMS Mathscinet.

^{*}Department of Mathematics, National Taiwan University. Email: d04221001@ntu.edu.tw