CMPT 419/983: Theoretical Foundations of Reinforcement Learning

Lecture 7

Sharan Vaswani

October 20, 2023

Recap

Monte-Carlo estimation for policy evaluation

- Generate trajectory $au=(s_0,a_0,s_1,\ldots)$ and calculate $R(au)=\sum_{t=0}^{\infty}\gamma^t r_t$.
- Generate m trajectories $\{\tau_i\}_{i=1}^m$ and calculate $\hat{\mathbf{v}} := \frac{\sum_{i=1}^m R(\tau_i)}{m}$ as an approximation to $\mathbf{v}^{\pi}(s_0)$.
- Using Monte-Carlo estimation with $m = \frac{\ln(2/\delta)}{2\epsilon^2(1-\gamma)^2}$ trajectories with $H \ge \frac{\ln(1/\epsilon(1-\gamma))}{\ln(1/\gamma)}$ guarantees that $|\hat{v} v^{\pi}(s_0)| \le \epsilon$ with probability 1δ .

• Linear TD(0):

- Assumption: For the fixed policy π being evaluated, there exists a unique θ^* such that $v^{\pi} = \Phi \theta^* = v_{\theta^*}$.
- Update: $\theta_{t+1} = \theta_t + \alpha_t g_t(\theta_t)$ where $g_t(\theta) = [r_t + \gamma \langle \theta, \phi(s_{t+1}) \rangle \langle \theta, \phi(s_t) \rangle] \phi(s_t)$.
- Mean-path TD(0): $\theta_{t+1} = \theta_t + \alpha \, \bar{g}(\theta)$ where $\bar{g}(\theta) := \mathbb{E}_{s \sim \omega} \mathbb{E}_{s' \sim P(\cdot|s)} \left[r(s, \pi(s)) + \gamma \langle \theta, \phi(s') \rangle \langle \theta, \phi(s) \rangle \right] \phi(s)$ and ω is the stationary distribution.
- By using an analysis similar to GD, we showed that Mean-path TD(0) converges to θ^* at a linear rate.

1

Mean-path TD requires $\bar{g}(\theta) = \mathbb{E}_{s \sim \omega} \mathbb{E}_{s' \sim P(\cdot|s)} [r(s, \pi(s)) + \gamma \langle \theta, \phi(s') \rangle - \langle \theta, \phi(s) \rangle] \phi(s)$.

Since we do not have access to the expectation, we will adapt the previous proof.

We will assume that (s_t, s_{t+1}) are sampled i.i.d. from the stationary distribution, i.e. $s_t \sim \omega$ and $s_{t+1} \sim P(\cdot|s_t) \implies \Pr[s_t = s, s_{t+1} = s'] = \omega(s) P(s'|s)$. Hence, taking the expectation over the randomness in (s_t, s_{t+1}) , we have that for all t and θ ,

$$\mathbb{E}[g_t(\theta)] = \mathbb{E}_{s_t, s_{t+1}}[[r(s_t, \pi(s_t)) + \gamma \langle \theta, \phi(s_{t+1}) \rangle - \langle \theta, \phi(s_t) \rangle] \ \phi(s_t)]$$

$$= \sum_{s, s'} [r(s, \pi(s)) + \gamma \langle \theta, \phi(s') \rangle - \langle \theta, \phi(s) \rangle] \ \phi(s) \ \Pr[s_t = s, s_{t+1} = s'] = \bar{g}(\theta)$$

Similar to the previous proofs, we will rely on two important properties for $g_t(\theta)$. For a fixed t and θ independent of the randomness in (s_t, s_{t+1}) ,

- $(1) \mathbb{E}\left[\langle g_t(\theta), \theta^* \theta \rangle\right] = \langle \bar{g}(\theta), \theta^* \theta \rangle \geq (1 \gamma) \|v_\theta v_{\theta^*}\|_D^2.$
- (2) $\mathbb{E}[\|g_t(\theta)\|^2] \le 2\sigma^2 + 8 \|v_{\theta} v_{\theta^*}\|_D^2$ where $\sigma^2 := \mathbb{E}_{s_t, s_{t+1}} \|g_t(\theta^*)\|^2$ is the variance in $g_t(\theta^*)$. (Prove in Assignment 3!)

Claim: Assuming (s_t, s_{t+1}) are sampled i.i.d from the stationary distribution, the update $\theta_{t+1} = \theta_t + \alpha_t \, g_t(\theta)$ with $\alpha_t = \frac{1-\gamma}{8\sqrt{T}}$ has the following convergence,

$$\mathbb{E} \left\| v_{\bar{\theta}_T} - v_{\theta^*} \right\|_D^2 \leq \frac{8 \left\| \theta_0 - \theta^* \right\|^2}{(1 - \gamma)^2 \sqrt{T}} + \frac{\sigma^2}{4 \sqrt{T}},$$

where the expectation is w.r.t. $\{s_t, s_{t+1}\}_{t=0}^{T-1}$ and $\bar{\theta}_T := \frac{\sum_{t=0}^{T-1} \theta_t}{T}$ is the average iterate.

Proof: We have proved that (1) $\mathbb{E}\left[\langle g_t(\theta), \theta^* - \theta \rangle\right] \geq (1 - \gamma) \|v_\theta - v_{\theta^*}\|_D^2$ and (2)

 $\mathbb{E}[\|g_t(\theta)\|^2] \leq 2\sigma^2 + 8 \|v_{\theta} - v_{\theta^*}\|_D^2$. Proceeding similar to the previous proof,

$$\|\theta_{t+1} - \theta^*\|^2 = \|\theta_t - \theta^*\|^2 + 2\alpha_t \langle g_t(\theta_t), \theta_t - \theta^* \rangle + \alpha_t^2 \|g_t(\theta)\|^2$$

Taking expectation w.r.t the randomness at iteration t

$$\mathbb{E} \|\theta_{t+1} - \theta^*\|^2 = \|\theta_t - \theta^*\|^2 + 2\alpha_t \,\mathbb{E}[\langle g_t(\theta_t), \theta_t - \theta^* \rangle] + \alpha_t^2 \,\mathbb{E} \|g_t(\theta)\|^2$$

$$\leq \|\theta_t - \theta^*\|^2 - 2\alpha_t \,(1 - \gamma) \,\|v_{\theta_t} - v_{\theta^*}\|_D^2 + \alpha_t^2 \,\mathbb{E} \,\|g_t(\theta)\|^2$$
(Using Property (1))

We have shown that $\mathbb{E} \|\theta_{t+1} - \theta^*\|^2 \le \|\theta_t - \theta^*\|^2 - 2\alpha_t (1 - \gamma) \|v_{\theta_t} - v_{\theta^*}\|_D^2 + \alpha_t^2 \mathbb{E} \|g_t(\theta)\|^2$. Using Property (2),

$$\mathbb{E} \|\theta_{t+1} - \theta^*\|^2 \le \|\theta_t - \theta^*\|^2 - 2\alpha_t (1 - \gamma) \|v_{\theta_t} - v_{\theta^*}\|_D^2 + \alpha_t^2 \left[2\sigma^2 + 8 \|v_{\theta_t} - v_{\theta^*}\|_D^2 \right]$$

$$\le \|\theta_t - \theta^*\|^2 - \alpha_t (1 - \gamma) \|v_{\theta_t} - v_{\theta^*}\|_D^2 + 2\alpha_t^2 \sigma^2 \quad (\text{For } \alpha_t \le \frac{1 - \gamma}{8})$$

$$\implies (1 - \gamma) \|v_{\theta_t} - v_{\theta^*}\|_D^2 \le \frac{\mathbb{E}[\|\theta_t - \theta^*\|^2 - \|\theta_{t+1} - \theta^*\|^2]}{\alpha_t} + 2\alpha_t \sigma^2$$

Using constant step-size $\alpha_t = \frac{1-\gamma}{8\sqrt{T}}$, and taking expectation w.r.t the randomness in iterations 0 to T-1,

$$(1 - \gamma) \mathbb{E} \| v_{\theta_t} - v_{\theta^*} \|_D^2 \le \mathbb{E} \left[\frac{\| \theta_t - \theta^* \|^2 - \| \theta_{t+1} - \theta^* \|^2}{\alpha_t} \right] + 2\alpha_t \sigma^2$$

$$\le \frac{8\sqrt{T}}{1 - \gamma} \mathbb{E} \left[\| \theta_t - \theta^* \|^2 - \| \theta_{t+1} - \theta^* \|^2 \right] + \frac{\sigma^2 (1 - \gamma)}{4\sqrt{T}}$$

4

Recall $(1 - \gamma) \mathbb{E} \|v_{\theta_t} - v_{\theta^*}\|_D^2 \le \frac{8\sqrt{T}}{1 - \gamma} \mathbb{E} \left[\|\theta_t - \theta^*\|^2 - \|\theta_{t+1} - \theta^*\|^2 \right] + \frac{\sigma^2 (1 - \gamma)}{4\sqrt{T}}$. Summing from t = 0 to T - 1,

$$(1 - \gamma) \sum_{t=0}^{T-1} \mathbb{E} \| v_{\theta_t} - v_{\theta^*} \|_D^2 \le \frac{8\sqrt{T}}{1 - \gamma} \| \theta_0 - \theta^* \|^2 + \frac{\sigma^2 (1 - \gamma) \sqrt{T}}{4}$$

$$\implies \frac{\sum_{t=0}^{T-1} \mathbb{E} \| v_{\theta_t} - v_{\theta^*} \|_D^2}{T} \le \frac{8 \| \theta_0 - \theta^* \|^2}{(1 - \gamma)^2 \sqrt{T}} + \frac{\sigma^2}{4\sqrt{T}} \qquad \text{(Dividing by } (1 - \gamma) T)$$

Using Jensen's inequality,

$$\mathbb{E} \left\| v_{\bar{\theta}_{T}} - v_{\theta^*} \right\|_{D}^{2} \leq \frac{8 \left\| \theta_{0} - \theta^* \right\|^{2}}{(1 - \gamma)^{2} \sqrt{T}} + \frac{\sigma^{2}}{4 \sqrt{T}} \quad \Box$$

By using more complicated step-size sequences, we can also show convergence for the last-iterate θ_T (similar to the previous proofs).

Linear TD(0) Analysis – Markovian

The previous analysis assumes that (s_t, s_{t+1}) are sampled i.i.d from the stationary distribution. However, (s_t, s_{t+1}) are gathered from a single trajectory of the Markov chain induced by policy π .

Hence, the samples are correlated and assuming that they are i.i.d is not valid. However, under certain standard assumptions, we can adapt the previous proof.

Assumption: The underlying Markov chain is "fast-mixing" i.e. for constants m > 0 and $\rho \in (0,1)$, and all t, if $\mathsf{TV}(P,Q)$ is the total variation distance between distributions P,Q, then,

$$\sup_{s} \mathsf{TV}(\mathrm{Pr}^{\pi}[s_t|s_0=s],\omega) \leq m \, \rho^t$$

i.e. the distribution over states approaches the stationary distribution exponentially fast.

Define $\tau_{\text{mix}}(\epsilon) = \min\{t | \rho^t \le \epsilon\}$ as the mixing time of the Markov chain.

Linear TD(0) Analysis – Markovian

Projected linear TD(0) update: $\theta_{t+1} = \text{Proj} [\theta_{t+1} + \alpha_t g_t(\theta)]$. The projection is onto the ball $\mathcal{B} = \{\theta | \|\theta\| \le R\}$ where R is an upper-bound on $\|\theta^*\|$.

Claim: Assuming fast-mixing of the underlying Markov chain, Projected linear TD(0) with $\alpha_t = \frac{1}{\sqrt{T}}$ has the following convergence:

$$\mathbb{E} \left\| v_{\overline{\theta}_{\mathcal{T}}} - v_{\theta^*} \right\|_D^2 \leq O\left(\frac{\left\| \theta_0 - \theta^* \right\|^2}{\sqrt{T}} + \frac{(1 + 2R)^2 \left(1 + \tau_{\mathsf{mix}} \left(\frac{1}{\sqrt{T}} \right) \right)}{\sqrt{T}} \right).$$

- Intuitively, every cycle of $\tau_{\text{mix}}(\cdot)$ samples provides as much information as a single independent sample from the stationary distribution.
- If (s_t, s_{t+1}) were sampled i.i.d. from ω , $\tau_{\text{mix}}(\cdot) = 0$ and we would obtain the IID result.
- The proof is similar to the i.i.d case except that it needs to carefully handle correlations and bound $\mathbb{E}\left[\langle g_t(\theta_t) \bar{g}(\theta_t), \theta_t \theta^* \rangle\right] \neq 0$.
- For more details, refer to [BRS18, Section 8].

Interpolating between TD(0) and Monte-Carlo

- Recall the derivation of TD(0): (i) use the Bellman equation: $v^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot|s)} \mathbb{E}_{s' \sim \mathcal{P}(\cdot|s,a)} [r(s,a) + \gamma v^{\pi}(s')]$, (ii) sampling a from $\pi(\cdot|s)$, $s' \sim \mathcal{P}(\cdot|s,a)$ gives $\hat{v}^{\pi}(s) = r(s,a) + \gamma v^{\pi}(s')$, (iii) using estimate $\hat{v}^{\pi}(s')$ in place of $v^{\pi}(s')$ (bootstrapping) results in the TD(0) update.
- Instead of using $\hat{v}^{\pi}(s')$, (i) use the Bellman equation for $v^{\pi}(s')$: $\hat{v}^{\pi}(s) = r(s,a) + \gamma v^{\pi}(s') = r(s,a) + \gamma \mathbb{E}_{a_1 \sim \pi(\cdot|s_1)} \mathbb{E}_{s_2 \sim \mathcal{P}(\cdot|s_1,a_1)} [r(s_1,a_1) + \gamma v^{\pi}(s_2)]$, (ii) sampling a_1 from $\pi(\cdot|s_1)$, $s_2 \sim \mathcal{P}(\cdot|s_1,a_1)$ gives $\hat{v}^{\pi}(s) = r(s,a) + \gamma r(s_1,a_1) + \gamma^2 v^{\pi}(s_2)$, (iii) using estimate $\hat{v}^{\pi}(s_2)$ in place of $v^{\pi}(s_2)$ (bootstrapping) results in the TD(1) update.
- Similarly, we can derive TD(n) updates for $n \ge 0$, $\hat{v}^{\pi}(s) = \sum_{t=0}^{n} \gamma^{t} r_{t} + \gamma^{n+1} \hat{v}^{\pi}(s_{n+1})$.
- As $n \to \infty$, we get the update $\hat{v}^{\pi}(s) = \sum_{t=0}^{\infty} \gamma^t r_t$ corresponding to Monte-Carlo estimation.
- TD(0) has a higher bias, lower variance, while Monte-Carlo estimation has lower bias, higher variance. As n increases, the bias (proportional to γ^n) decays exponentially fast.
- For more details, refer to [SB18, Chapter 7].

Approximate Policy Iteration

Approximate Policy Iteration

For approximate policy iteration (without access to \mathcal{P} , r), we will make use of q functions.

State-action value function for policy π : $q^{\pi}: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ such that for $s \in \mathcal{S}$, $a \in \mathcal{A}$,

$$q^{\pi}(s,a) := r(s,a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}[s'|s,a] \ v^{\pi}(s')$$

i.e. $q^{\pi}(s, a)$ corresponds to the cumulative discounted reward obtained when starting at state s, taking action a and following policy π from then on. (See Assignment 2 for details)

Algorithm Approximate Policy Iteration

- 1: **Input**: MDP $M = (S, A, \rho)$, π_0 .
- 2: for $k = 0 \rightarrow K$ do
- 3: **Policy Evaluation**: Compute the estimate \hat{q}^{π_k} (for example, using TD, Monte-Carlo).
- 4: **Policy Improvement**: $\forall s, \ \pi_{k+1}(s) = \arg \max_a \hat{q}^{\pi_k}(s, a)$.
- 5: end for

First, we will study how the error in estimating the q function affects v^{π_K} , the value function corresponding to the policy output by the algorithm.

Claim: For Markov policies $\pi, \tilde{\pi}$, define $\hat{q} \in \mathbb{R}^{S \times A}$ as an estimate of q^{π} s.t. $\hat{q}^{\pi} = q^{\pi} + \epsilon$ for some $\epsilon \in \mathbb{R}^{S \times A}$. If $\tilde{\pi}$ is the greedy policy w.r.t \hat{q}^{π} , then,

$$\left\| \mathbf{v}^* - \mathbf{v}^{\tilde{\pi}} \right\|_{\infty} \leq \gamma \left\| \mathbf{v}^* - \mathbf{v}^{\pi} \right\|_{\infty} + \frac{1}{1 - \gamma} \left\| \epsilon \right\|_{\infty}$$

Proof: Since π^* is optimal, using the fundamental theorem, $\mathcal{T}v^* = v^* = \mathcal{T}_{\pi^*}v^*$. Since $v^{\tilde{\pi}}$ is the fixed point of $\mathcal{T}_{\tilde{\pi}}$, $v^{\tilde{\pi}} = \mathcal{T}_{\tilde{\pi}}v^{\tilde{\pi}}$. Hence,

$$\begin{split} \mathbf{v}^* - \mathbf{v}^{\tilde{\pi}} &= \mathcal{T}_{\pi^*} \mathbf{v}^* - \mathcal{T}_{\tilde{\pi}} \mathbf{v}^{\tilde{\pi}} \\ &= \mathcal{T}_{\pi^*} \mathbf{v}^* - \mathcal{T}_{\pi^*} \mathbf{v}^{\pi} + \mathcal{T}_{\pi^*} \mathbf{v}^{\pi} - \mathcal{T}_{\tilde{\pi}} \mathbf{v}^{\pi} + \mathcal{T}_{\tilde{\pi}} \mathbf{v}^{\pi} - \mathcal{T}_{\tilde{\pi}} \mathbf{v}^{\tilde{\pi}} \\ &= [[\mathbf{r}_{\pi^*} + \gamma \mathbf{P}_{\pi^*} \mathbf{v}^*] - [\mathbf{r}_{\pi^*} + \gamma \mathbf{P}_{\pi^*} \mathbf{v}^{\pi}]] + \mathcal{T}_{\pi^*} \mathbf{v}^{\pi} - \mathcal{T}_{\tilde{\pi}} \mathbf{v}^{\pi} + \left[[\mathbf{r}_{\tilde{\pi}} + \gamma \mathbf{P}_{\tilde{\pi}} \mathbf{v}^{\pi}] - [\mathbf{r}_{\tilde{\pi}} + \gamma \mathbf{P}_{\tilde{\pi}} \mathbf{v}^{\tilde{\pi}}] \right] \\ &= [(\mathbf{r}_{\pi^*} + \gamma \mathbf{P}_{\pi^*} \mathbf{v}^*) - (\mathbf{r}_{\pi^*} + \gamma \mathbf{P}_{\pi^*} \mathbf{v}^{\pi})] \\ &= \gamma \mathbf{P}_{\pi^*} [\mathbf{v}^* - \mathbf{v}^{\pi}] + \mathcal{T}_{\pi^*} \mathbf{v}^{\pi} - \mathcal{T}_{\tilde{\pi}} \mathbf{v}^{\pi} + \gamma \mathbf{P}_{\tilde{\pi}} [\mathbf{v}^{\pi} - \mathbf{v}^{\tilde{\pi}}] \\ &\leq \gamma \mathbf{P}_{\pi^*} [\mathbf{v}^* - \mathbf{v}^{\pi}] + \mathcal{T}_{\mathbf{v}}^{\pi} - \mathcal{T}_{\tilde{\pi}} \mathbf{v}^{\pi} + \gamma \mathbf{P}_{\tilde{\pi}} [\mathbf{v}^{\pi} - \mathbf{v}^{\tilde{\pi}}] \\ &= \gamma \mathbf{P}_{\pi^*} [\mathbf{v}^* - \mathbf{v}^{\pi}] + \delta + \gamma \mathbf{P}_{\tilde{\pi}} [\mathbf{v}^{\pi} - \mathbf{v}^{\tilde{\pi}}] \end{split}$$
(Since $\mathcal{T}_{\pi^*} \mathbf{v}^{\pi} \leq \mathcal{T} \mathbf{v}^{\pi}$)
$$= \gamma \mathbf{P}_{\pi^*} [\mathbf{v}^* - \mathbf{v}^{\pi}] + \delta + \gamma \mathbf{P}_{\tilde{\pi}} [\mathbf{v}^{\pi} - \mathbf{v}^{\tilde{\pi}}]$$
(Define $\delta := \mathcal{T} \mathbf{v}^{\pi} - \mathcal{T}_{\tilde{\pi}} \mathbf{v}^{\pi}$)

Recall that
$$\|v^* - v^{\tilde{\pi}}\|_{\infty} \leq \gamma \|v^* - v^{\pi}\|_{\infty} + \frac{1}{1-\gamma} \|\delta\|_{\infty}$$
 where $\delta = \mathcal{T}v^{\pi} - \mathcal{T}_{\tilde{\pi}}v^{\pi}$. In order to bound $\|\delta\|_{\infty}$, recall the following definitions from Assignment 2: $\mathcal{M}_{\pi} : \mathbb{R}^{S \times A} \to \mathbb{R}^{S}$, $\mathbb{R}^{S \times A} \to \mathbb{R}^{S}$, such that for $u \in \mathbb{R}^{S \times A}$ and $w \in \mathbb{R}^{S}$, $(\mathcal{M}_{\pi}u)(s) = \sum_{a} \pi(a|s) u(s,a) ; (\mathbb{P}w)(s,a) = \sum_{s' \in \mathcal{S}} \mathcal{P}(s'|s,a) w(s') ; (\mathcal{M}u)(s) = \max_{a \in \mathcal{A}} u(s,a)$
$$\mathcal{T}v^{\pi} \geq \mathcal{T}_{\tilde{\pi}}v^{\pi} \qquad \qquad \text{(Since } \mathcal{T} \text{ is the Bellman optimality operator)}$$

$$= \mathcal{M}_{\tilde{\pi}}(r + \gamma \mathbb{P} v^{\pi}) \qquad \qquad \text{(Since } \mathcal{T}_{\pi}w = \mathcal{M}_{\pi}(r + \gamma \mathbb{P} w) \text{ for all } w \in \mathbb{R}^{S})$$

$$= \mathcal{M}_{\pi}q^{\pi} \qquad \qquad \text{(By definition of } q^{\pi})$$

$$= \mathcal{M}_{\tilde{\pi}}[\hat{q}^{\pi} - \epsilon] \qquad \qquad \text{(Since } q^{\pi} = \hat{q}^{\pi} - \epsilon)$$

$$= \mathcal{M}_{\tilde{\pi}}\hat{q}^{\pi} - \mathcal{M}_{\tilde{\pi}}\epsilon \qquad \qquad \text{(Since } \tilde{\pi} \text{ is greedy w.r.t } \hat{q}^{\pi})$$

$$= \mathcal{M}(q^{\pi} + \epsilon) - \mathcal{M}_{\tilde{\pi}}\epsilon \qquad \qquad \text{(Since } \tilde{q}^{\pi} = q^{\pi} + \epsilon)$$

$$\Rightarrow \mathcal{T}v^{\pi} \geq \mathcal{T}_{\tilde{\pi}}v^{\pi} \geq \mathcal{M}(q^{\pi} - \|\epsilon\|_{\infty}1) - \mathcal{M}_{\tilde{\pi}}\epsilon \qquad \text{(Since } \epsilon \geq -\|\epsilon\|_{\infty}1 \text{ and } \mathcal{M} \text{ is monotone)}$$

Recall that
$$\mathcal{T}v^{\pi} \geq \mathcal{T}_{\tilde{\pi}}v^{\pi} \geq \mathcal{M}(q^{\pi} - \|\epsilon\|_{\infty} 1) - \mathcal{M}_{\tilde{\pi}}\epsilon$$

$$\mathcal{T}v^{\pi} \geq \mathcal{T}_{\tilde{\pi}}v^{\pi} \geq \mathcal{M}q^{\pi} - \|\epsilon\|_{\infty} 1 - \mathcal{M}_{\tilde{\pi}}\epsilon$$
(Since \mathcal{M} is non-expansive, $\|\mathcal{M}(q^{\pi} - \|\epsilon\|_{\infty} 1) - \mathcal{M}q^{\pi}\|_{\infty} \leq \|\epsilon\|_{\infty}$)
$$\geq \mathcal{M}q^{\pi} - \|\epsilon\|_{\infty} 1 - \|\epsilon\|_{\infty} 1$$
(Since \mathcal{M}_{π} is non-expansive, $\|\mathcal{M}_{\pi}(\|\epsilon\|_{\infty} 1)\|_{\infty} \leq \|\epsilon\|_{\infty}$)
$$= \mathcal{M}q^{\pi} - 2\|\epsilon\|_{\infty} 1 = \mathcal{M}(r + \gamma \mathbb{P}v^{\pi}) - 2\|\epsilon\|_{\infty} 1 = \mathcal{T}v^{\pi} - 2\|\epsilon\|_{\infty} 1$$
(By def. of q and since $\mathcal{T}u = \mathcal{M}(r + \gamma \mathbb{P}u)$)

$$\implies \delta = \mathcal{T} v^{\pi} - \mathcal{T}_{\tilde{\pi}} v^{\pi} \leq 2 \|\epsilon\|_{\infty} 1 \implies \|\delta\|_{\infty} \leq 2 \|\epsilon\|_{\infty} \quad \text{(Taking norms on both sides)}$$

Putting everything together,

 $\implies \mathcal{T} v^{\pi} \geq \mathcal{T}_{\tilde{\pi}} \ v^{\pi} \geq \mathcal{T} v^{\pi} - 2 \left\| \boldsymbol{\epsilon} \right\|_{\infty} 1$

$$\left\| \mathbf{v}^* - \mathbf{v}^{\tilde{\pi}} \right\|_{\infty} \le \gamma \left\| \mathbf{v}^* - \mathbf{v}^{\pi} \right\|_{\infty} + \frac{2 \left\| \boldsymbol{\epsilon} \right\|_{\infty}}{1 - \gamma} \quad \Box$$

Approximate Policy Iteration

For approximate policy iteration, $\pi_{k+1}(s) = \arg\max_a \hat{q}^{\pi_k}(s, a)$, i.e. π_{k+1} is greedy w.r.t \hat{q}^{π_k} .

For each iteration $k \in [K]$, if we can estimate \hat{q}^{π_k} such that $\hat{q}^{\pi_k} = q^{\pi_k} + \epsilon_k$, then, by using the previous claim,

$$\|v^* - v^{\pi_{k+1}}\|_{\infty} \le \gamma \|v^* - v^{\pi_k}\|_{\infty} + \frac{2\|\epsilon_k\|_{\infty}}{1-\gamma}$$

Claim: If the policy evaluation error at iteration k is controlled s.t. $\hat{q}^{\pi_k} = q^{\pi_k} + \epsilon_k$, then, approximate policy iteration has the following convergence,

$$\|v^{\pi_{k+1}} - v^*\|_{\infty} \le \gamma^K \|v^{\pi_0} - v^*\|_{\infty} + \frac{2 \max_{k \in \{0, \dots, K-1\}} \|\epsilon_k\|_{\infty}}{(1 - \gamma)^2}$$

Prove in Assignment 3!

- ullet This generalizes the claim for exact policy iteration (corresponding to $\epsilon_k=0$) in Lecture 5.
- The convergence is only to a *neighbourhood* of v^* and the error ϵ is amplified by $\frac{2}{(1-\gamma)^2}$.
- This error amplification is tight for approximate policy iteration. See Csaba's notes for the formal lower-bound.

For Approximate Policy Iteration to be effective, we need to control the policy evaluation error in each iteration. We have seen that,

- Without any structural assumption, Monte-Carlo estimation required rolling out trajectories from each state, making it sample inefficient.
- TD(0) can exploit the linear assumption in an efficient manner.
- However, for TD(0) to have theoretical guarantees, we needed to make assumptions about the ergodicity (can reach all states) and mixing of the underlying Markov chain. This side-steps the important issue of exploration in MDPs.
- In order to handle exploration and still be sample-efficient, we will use Monte-Carlo estimation with a linear assumption on $q^{\pi}(s, a)$. This will enable us to control the policy evaluation error in theoretically principled manner.

Assumption: Have access to features $\Phi \in \mathbb{R}^{SA \times d}$, such that the q functions for policy π are ε_b -close to the span of Φ . Consider a fixed π . There exists a θ^* s.t.

$$\max_{(s,a)} |q^{\pi}(s,a) - \langle \theta^*, \phi(s,a) \rangle| \leq \varepsilon_{\mathbf{b}}$$

• Given a "good" estimate of $\hat{\theta}$, we can estimate $q^{\pi}(s,a)$ by $\hat{q}^{\pi}(s,a) = \langle \hat{\theta}, \phi(s,a) \rangle$.

Algorithm Idea:

- Choose a set $\mathcal{C} \subset \mathcal{S} \times \mathcal{A}$, and for each $(s, a) \in \mathcal{C}$, rollout trajectories (truncated to horizon H) starting from state s, taking action a and then following policy π .
- For each trajectory τ , calculate the cumulative discounted reward $\sum_{t=0}^{H} \gamma^t r_t$.
- ullet For each $(s,a)\in\mathcal{C}$, run m trajectories and use the average as an estimate for $q^\pi(s,a)$.
- Define z := (s, a) and the corresponding empirical mean as $\hat{R}(z)$. For weights $\zeta \in \Delta_{|\mathcal{C}|}$ (to be determined later), compute the estimate $\hat{\theta}$ by weighted linear regression:

$$\hat{\theta} := \underset{\theta}{\operatorname{arg\,min}} \frac{1}{2} \sum_{z \in \mathcal{C}} \zeta(z) \left[\langle \theta, \phi(z) \rangle - \hat{R}(z) \right]^2$$

Similar to the proof in Lecture 6, we have the following result that shows that the error in estimating $q^{\pi}(z)$ for $z \in \mathcal{C}$ can be controlled.

Claim: Using $m=\frac{\ln(2\,|\mathcal{C}|/\delta)}{2\varepsilon_{\bullet}^2(1-\gamma)^2}$ trajectories with $H\geq \frac{\ln(1/\varepsilon_{\bullet}(1-\gamma))}{\ln(1/\gamma)}$ guarantees that $|\hat{R}(z)-q^{\pi}(z)|\leq \varepsilon_{\bullet}$ with probability $1-\delta$ for all $z\in\mathcal{C}$.

Prove in Assignment 3!

- (i) We require control over the *generalization error*, the estimation error for $z \notin \mathcal{C}$.
- (ii) For computational efficiency, we want that $|\mathcal{C}|$ not depend on $|\mathcal{S}|$.

Next, we will see how to choose C such that both (i) and (ii) are satisfied.

Claim: Assuming $V := \sum_{z \in \mathcal{C}} \zeta(z) \phi(z) \phi(z)^T \in \mathbb{R}^{d \times d}$ is invertible, for any $z \in \mathcal{S} \times \mathcal{A}$, $|q^{\pi}(z) - \langle \hat{\theta}, \phi(z) \rangle| \leq \varepsilon_{\mathbf{b}} + \|\phi(z)\|_{V^{-1}} \left[\varepsilon_{\mathbf{s}} + \varepsilon_{\mathbf{b}}\right]$

Proof: Since $\hat{\theta}$ is computed by minimizing $\frac{1}{2} \sum_{z \in \mathcal{C}} \zeta(z) \left[\langle \theta, \phi(z) \rangle - \hat{R}(z) \right]^2$ and V is invertible,

 $\implies |q^{\pi}(z) - \langle \hat{\theta}, \phi(z) \rangle| < \varepsilon_{\mathsf{L}} + |\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle|$

$$\begin{split} \hat{\theta} &= V^{-1} \left[\sum_{z' \in \mathcal{C}} \zeta(z') \, \hat{R}(z') \, \phi(z') \right] \\ |q^{\pi}(z) - \langle \hat{\theta}, \phi(z) \rangle| &= |q^{\pi}(z) - \langle \theta^*, \phi(z) \rangle + \langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| \\ &\qquad \qquad (\mathsf{Add/subtract} \, \, \langle \theta^*, \phi(z) \rangle) \\ &\leq |q^{\pi}(z) - \langle \theta^*, \phi(z) \rangle| + |\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| \\ &\qquad \qquad (\mathsf{Triangle inequality}) \end{split}$$

We will now bound $|\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle|$.

For $z' \in \mathcal{C}$, define $\mathcal{E}(z') := \hat{R}(z') - \langle \theta^*, \phi(z') \rangle$. Hence,

$$\begin{split} \hat{\theta} &= V^{-1} \left[\sum_{z' \in \mathcal{C}} \zeta(z') \left[\langle \theta^*, \phi(z') \rangle + \mathcal{E}(z') \right] \phi(z') \right] \\ &= V^{-1} \left[\sum_{z' \in \mathcal{C}} \zeta(z') \phi(z') \phi(z')^T \right] \theta^* + V^{-1} \left[\sum_{z' \in \mathcal{C}} \zeta(z') \mathcal{E}(z') \phi(z') \right] \\ \Longrightarrow \hat{\theta} - \theta^* &= V^{-1} \left[\sum_{z' \in \mathcal{C}} \zeta(z') \mathcal{E}(z') \phi(z') \right] \end{split}$$

Hence, for an arbitrary $z \in \mathcal{S} \times \mathcal{A}$,

$$\begin{aligned} |\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| &= \left| \left\langle V^{-1} \left[\sum_{z' \in \mathcal{C}} \zeta(z') \, \mathcal{E}(z') \, \phi(z') \right], \phi(z) \right\rangle \right| \\ &= \left| \left\langle \sum_{z' \in \mathcal{C}} \zeta(z') \, \mathcal{E}(z') \, V^{-1} \phi(z'), \phi(z) \right\rangle \right| &= \left| \sum_{z' \in \mathcal{C}} \zeta(z') \, \mathcal{E}(z') \, \langle \phi(z), V^{-1} \phi(z') \rangle \right| \end{aligned}$$

Recall that
$$|\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| = |\sum_{z' \in \mathcal{C}} \zeta(z') \mathcal{E}(z') \langle \phi(z), V^{-1} \phi(z') \rangle|.$$

$$|\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| \leq \sum_{z' \in \mathcal{C}} |\mathcal{E}(z')| |\zeta(z')| |\langle \phi(z), V^{-1} \phi(z') \rangle|.$$

$$\leq \left(\max_{z' \in \mathcal{C}} |\mathcal{E}(z')| \right) \sum_{z' \in \mathcal{C}} |\zeta(z')| |\langle \phi(z), V^{-1} \phi(z') \rangle|.$$

$$\sum_{z' \in \mathcal{C}} |\zeta(z')| |\langle \phi(z), V^{-1} \phi(z') \rangle| = \sqrt{\left(\mathbb{E}_{z'} |\langle \phi(z), V^{-1} \phi(z') \rangle| \right)^2} \stackrel{\text{Jensen}}{\leq} \sqrt{\mathbb{E}_{z'} |\langle \phi(z), V^{-1} \phi(z') \rangle|^2}$$

$$= \sqrt{\mathbb{E}_{z'} [\phi(z)^T V^{-1} \phi(z') \phi(z')^T V^{-1} \phi(z)]} = \sqrt{\phi(z)^T V^{-1} \left[\sum_{z'} \zeta(z') \phi(z') \phi(z')^T \right] V^{-1} \phi(z)}$$

$$\implies \sum_{z' \in \mathcal{C}} |\zeta(z')| |\langle \phi(z), V^{-1} \phi(z') \rangle| = \sqrt{\phi(z)^T V^{-1} \phi(z)} = ||\phi(z)||_{V^{-1}}$$

$$\implies |\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| \leq \max_{z' \in \mathcal{C}} |\mathcal{E}(z')| ||\phi(z)||_{V^{-1}}$$

Recall that
$$|\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| \le \max_{z' \in \mathcal{C}} |\mathcal{E}(z')| \ \|\phi(z)\|_{V^{-1}}$$
. Bounding $\max_{z' \in \mathcal{C}} |\mathcal{E}(z')|$,
$$|\mathcal{E}(z')| = |\hat{R}(z) - \langle \theta^*, \phi(z) \rangle| = |\hat{R}(z) - q^\pi(z) + q^\pi(z) - \langle \theta^*, \phi(z) \rangle|$$
 (Add/subtract $q^\pi(z)$)
$$\le |\hat{R}(z) - q^\pi(z)| + |q^\pi(z) - \langle \theta^*, \phi(z) \rangle|$$
 (Triangle inequality)
$$\le \varepsilon_* + \varepsilon_\mathbf{b}$$

$$\implies |\langle \theta^*, \phi(z) \rangle - \langle \hat{\theta}, \phi(z) \rangle| \le [\varepsilon_* + \varepsilon_\mathbf{b}] \ \|\phi(z)\|_{V^{-1}}$$

Putting everything together,

$$|q^{\pi}(z) - \langle \hat{\theta}, \phi(z) \rangle| \le \varepsilon_{\mathsf{b}} + [\varepsilon_{\mathsf{s}} + \varepsilon_{\mathsf{b}}] \|\phi(z)\|_{V^{-1}}$$

Hence, in order to control the generalization error, we have to control $\|\phi(z)\|_{V^{-1}}$, while controlling the size of \mathcal{C} .

Kiefer-Wolfowitz Theorem: There exists a $\mathcal{C} \subset \mathcal{S} \times \mathcal{A}$ and a distribution $\zeta \in \Delta_{|\mathcal{C}|}$ such that for $V := \sum_{z \in \mathcal{C}} \zeta(z) \phi(z) \phi(z)^T \in \mathbb{R}^{d \times d}$,

$$\sup_{z \in \mathcal{S} \times \mathcal{A}} \left\| \phi(z) \right\|_{V^{-1}} \leq \sqrt{d} \quad ; \quad |\mathcal{C}| \leq \frac{d \left(d+1\right)}{2}$$

- Intuitively, this means that we can find a *coreset* of feature vectors that captures most of the information in Φ. Finding such a coreset is referred to as *G-optimal design* in statistics.
- C and ζ can be approximately computed using a greedy algorithm that has access to Φ (Need to do this in Assignment 3!)

Combining the Kiefer-Wolfowitz theorem with our previous result gives,

$$|q^{\pi}(z) - \hat{q}^{\pi}(z)| = |q^{\pi}(z) - \langle \hat{\theta}, \phi(z) \rangle| \le \varepsilon_{\mathbf{b}} + \sqrt{d} \left[\varepsilon_{\mathbf{s}} + \varepsilon_{\mathbf{b}} \right] = \varepsilon_{\mathbf{b}} \left(1 + \sqrt{d} \right) + \varepsilon_{\mathbf{s}} \sqrt{d}$$

- Note that the \sqrt{d} amplification in the error is tight.
- Algorithmically, we need to run Monte-Carlo estimation from $O(d^2)$ (s,a) pairs, and we can estimate $q^{\pi}(s,a)$ upto an $\varepsilon_{\mathbf{b}}$ $\left(1+\sqrt{d}\right)+\varepsilon_{\mathbf{s}}\sqrt{d}$ error for all (s,a) pairs.

Convergence of Approximate Policy Iteration

We have seen the following results:

$$\begin{aligned} \|v^{\pi_{k+1}} - v^*\|_{\infty} &\leq \gamma^K \|v^{\pi_0} - v^*\|_{\infty} + \frac{2 \max_{k \in \{0, \dots, K-1\}} \|\epsilon_k\|_{\infty}}{(1 - \gamma)^2} \\ |q^{\pi}(s, a) - \hat{q}^{\pi}(s, a)| &\leq \varepsilon_{\mathbf{b}} \left(1 + \sqrt{d}\right) + \varepsilon_{\mathbf{s}} \sqrt{d} \qquad \qquad \text{(for all } \pi \text{ and } (s, a) \text{ pairs)} \\ \implies \|v^{\pi_{k+1}} - v^*\|_{\infty} &\leq \gamma^K \|v^{\pi_0} - v^*\|_{\infty} + \frac{2\varepsilon_{\mathbf{b}} \left(1 + \sqrt{d}\right) + \varepsilon_{\mathbf{s}} \sqrt{d}}{(1 - \gamma)^2} \end{aligned}$$

- If the q functions are exactly in the span of Φ , $\varepsilon_b = 0$. For example, in the *tabular* setting where d = S and the features are one hot vectors, the error depends on $\sqrt{S} \varepsilon_{\bullet}$.
- The algorithm for constructing C requires iterating through the states, and this can be inefficient. [YHAY⁺22] considers an online algorithm that does not require global access to the full Φ matrix, but has similar theoretical guarantees.
- Next, we will see an alternative algorithm Politex that has slower convergence [O(1/K)], but smaller error amplification $[O(1/(1-\gamma))]$.

References i

- Jalaj Bhandari, Daniel Russo, and Raghav Singal, *A finite time analysis of temporal difference learning with linear function approximation*, Conference on learning theory, PMLR, 2018, pp. 1691–1692.
- Richard S Sutton and Andrew G Barto, *Reinforcement learning: An introduction*, MIT press, 2018.
- Dong Yin, Botao Hao, Yasin Abbasi-Yadkori, Nevena Lazić, and Csaba Szepesvári, *Efficient local planning with linear function approximation*, International Conference on Algorithmic Learning Theory, PMLR, 2022, pp. 1165–1192.