

1 CCCGCCAGGAGATCTACGTCAATTAACTGGCCCTACTGCCAAGGACAGACACCCCTCAGACTGATGAATGCGCTCAGAATTACTTAGACAA
97 ACGGGATATTCGCCACTCTCTTCCCCCTTCTGTGTTTCTGACTGAGAGACCTGAAAGAAAAGTAGGGAGAACATAATGAGAACAAATACG
193 GAACTCTCTTCATTTGCTAGTCAGTGCTGGACTTGGGACTTAGGAGGGCAATGGAGCCGCTACTGCCATACATCTGACTTGGACTGAAATATA
289 CCTGAGAGACAAAGATTGTCATATCCGGGAAATCATACCTATGACTAGGACGGAGAGGAACCACTGCCCTTACTTCAGTGGAAATCTCGGC
385 CTCAGCCTGCAAGCCAAAGTCTCACAGTGAGAAAGCAAGAGAAATAAGCTAAATACTCCTGCTCTGAAACAGGAGCGGCTCTTGGTAAGCTACT
481 CCTTGATCGATCTTGCACCGGATTGTCAGTGGAACCCAGGGAGAAGTCGGAGCAAAAGAACMTACCACCAAGCAGTCCAAAGAGCCCCAGAA
577 GCAAACCTGGAGGTGAGACCCAAAGAAAGCTGGAAACCATGCTGACTTGTACACTGTGAGGACACAGAGTCTGTTCTGGAAAGCCCAGTGTCAAC
LE V R P K E S W N H A D F V H C E D T E S V P G K P S V N 30
673 CCAGATCAGGAAAGTCGGACGTCCCAAAATCTCCGTGATGTGGGACAAGGCCACTGGCTATCACTTCATGACATGTGAAGGATGCCAG
A D E E V G G P Q I C R V C G D K A T G Y H X N V M T C Z G C K 62
769 GGCCTTTTCAGGAGGGCCATCARACCAACGCCCCGGCTAGGTGCCCCTTCCGGAGGGGGCCTGCGAGATCACCCGGAGAACCCGGGCCACAGTGC
G F Y R R A M K R N A R L R C P F R X G A C E I T R K T R R . Q C 94
865 CAGGCCCTGCCGCCCTGGCAAGTGGCTGGAGAGCGGCATGAAGAAGGGAGATGATCACTGCTGGCAGGAGGCCGTGGAGGAGAGGGGGCTTGTCAAG
Q A C R L R K C L E S G K K K E M I H S D E A V E E R R A L I K 126
961 CGGAAGAAAAGTCAACCCGACAGGGACTCRGCCACTGGGACTGCCAGGGCTGACAGAGGAGCAGGGATGATGATCAGGAGCTGATGGACGCTCAG
R K K S E R T G T Q P L G V Q G L T E E Q R H M I R E L M D A Q 158
1057 ATGAAAACCTTGTACACTACCTTCTCCCATTTCTAGAAATTCCGGCTGCCAGGGCTGCTTACCTCTCCGAGTTGCCACACCCCTCTGCAGGCC
M K T F D T T F S H F K N F R L P G V L S S G C E L P E P L Q A 190
1153 CCATCGAGGGAGGAAGCTGCCAGTGGAGCCAGGTCGGGAAGATCTGTGCTCTTGAGGTCTCTGCCAAGCTGGGGGGGAGGATGCCAGTGT
P S R E E A A K W S Q V R K D L C S L K V S L Q A A G G G W Q C 222
1249 CTGCAACTACAAACNCCAGCCACAGTGCGGAAAGAGATCTTCTCCGTGCCAGCCACATGGCTGACATGTCACCTACAGTTCAAGGCATC
L E L Q T P S R Q W R K E I F S L L P H M A D M S T Y M F K G I 254
1345 ATCGCTTGTCCAAGTCACTCTCTACTTCAGGGACTTGGCCATGGAGGACAGATCTCCCTGCTGAGGGGGGGCTTCTGAGCTGTGTCACAG
I S P A K V I S Y F R D L P I E D Q I S L L K G A A F E L C Q L 286
1441 AGATTCACACAGTGTCAACGGGAGACTGGAACTTGGAGTGTCCTGGCTACTGCTGGAAAGACACTGCAAGGTGGCTTCCAGCAACTT
R F N T V F N A E T G T W E C G R L S Y C L E D T A G G F Q Q L 318
1537 CTACTGGAGGCCCATGCTGAATTCTCACTACATGCTGAGGAAGCTGCCAGCTGCAAGGAGGAGGATATGTCAGTGTGCTGAGGCCATCTCCCTCTTCTCC
L L E P M L K F H Y M L K L Q L H E E E Y V L H Q A I S L F S 350
1633 CCAGACGGCCCAAGGTCTCTGCCAGCACCCGGTGGCAACAGCTGCCAGGAGCAATGCCATTACTCTGAACTCTACATGCAATGCCAATGGGCC
P D R P G V L Q H R V V D Q L Q E Q F A I T L K S Y I E C N R P 382
1729 CAGGCCCTCATAGGTCTGTCTCTGAAAGATCAAGCTATGCCATGCCACGGAGCTCCGCAGCATCAATGCTCAGCACACCCAGGGCTGCGGCATC
Q P A H R F L F L K I M A H L T E L R S I N A Q H T Q R L L R I 414
1825 CAGGACATACACCCCTTGTAGGCCCTCATGCCAGGAGTGTTCGGCATCACAGGTAGCTGAGGGCTGCTTGGGTGACACCTTGGAGAGGCAG
Q D I K P F A T P L M Q E L F G I T G S * 434
1921 CCAGACCCAGAGCCCTCTGAGCCGGACTTCCGGCCAAACACAGATGGACACTGCCAAGACCCGACAATGCCCTGCTGGCCCTCTCCCTAGGGAA
117 TTCTTGCTATGACAGCTGGTAGGATCTCTCAGGAAGGACATGGGGCTGCGG 2068

FIG. 1A

hSXR

431

mPXR.1

386

xBXR

427

hVDR

348

hCAR α

469

rFXR

474

mPPAR α

440

hLXR α

462

hRAR α 1

456

hTR β

462

hRXR α

777

hGR α

FIG. 1B

FIG. 2

FIG. 3

FIG. 4

FIG. 5

DR-3
 rCYP3A1 tagac AGTTCA tga AGTTCA tctac
 rCYP3A2 taagc AGTTCA taa AGTTCA tctac
 rUGT1A6 actgt AGTTCA taa AGTTCA catgg

DR-4
 rbCYP2C1 caatc AGTTCA acag GGTTCA ccaat
 rP450R cac AGGTGA gctg AGGCCA gcagc AGGTCG aaa

DR-5
 rCYP2A1 gtgca GGTTCA actgg AGGTCA acatg
 rCYP2A2 gtgct GGTTCA actgg AGGTCA gtatg
 rCYP2C6 agtct AGTTCA gtggg GGTTCA gtctt
 hCYP2E1 gagat GGTTCA aggaa GGGTCA ttaac

FIG. 6A

CYP3A4 tagaata TGAACt caaagg AGGTCA gtgagtgg
 CYP3A5 tagaata TGAACt caaagg AGGTAA gcaaaggg
 CYP3A7 tagaata TTAACT caatgg AGGC.A gtgagtgg

FIG. 6B

FIG. 6C

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12