

Scientific Plots in Practice

Analysis and Visualization of Big Data Franziska Peter and Josep Perelló

Contents - Creating and editing graphics

Session II

Topic 1: Scientific Plots in Practice. Static plots for scientific publication. Python plotting libraries.

Sessions VI, XI, XII

Interactive plots for web apps. Displaying Geographical Data. Dashboards.

. LIBERTAS PERF

Some references

- https://matplotlib.org/, https://seaborn.pydata.org/
- 2. Dynamical Systems with Applications using Python, Stephen Lynch, https://doi-org.sire.ub.edu/10.1007/978-3-319-78145-7, Springer Nature 2018
- 3. Rougier, Droettboom, Bourne (2014) Ten Simple Rules for Better Figures. PLOS Comp. Biology 10(9): e1003833. https://doi.org/10.1371/journal.pcbi.1003833
- 4. Python and Matplotlib Essentials for Scientists and Engineers, Matt A Wood, http://dx.doi.org/10.1088/978-1-6270-5620-5, IOP Publishing 2015
- 5. Essential Python for the Physicist, Giovanni Moruzzi, https://doi-org.sire.ub.edu/10.1007/978-3-030-45027-4, Springer Nature Switzerland AG 2020
- 6. Introduction to Scientific Programming with Python, Joakim Sundnes, https://doi-org.sire.ub.edu/10.1007/978-3-030-50356-7, Simula SpringerBriefs on Computing 2020

^{*. &}lt;a href="https://matplotlib.org/cheatsheets/cheatsheets.pdf">https://matplotlib.org/cheatsheets/cheatsheets.pdf

Evaluation

Gradual and incremental set of tasks (in class and through Campus Virtual)

Task 1: Data Management Plan Forensics, in group (Tues 9, JPerelló): 10%

Task 2: Sharing code in Github, individual (Wed 10, FPeter): 10%

Task 3: Write an abstract (Mon 15, JPerelló): 10%

Task 4: Create a dashboard (Thu 18, FPeter): 30%

Task 5: Oral presentation, in group (Fri 19, JPerelló + FPeter): 40%

To set a group between 2 and 4. You will work together during the course.

Outline

- 1. Python plotting libraries
- 2. DIY: 6 plots in 30min
- 3. Dive into Matplotlib
- 4. Scientific Journals' Requirements

	Matplotlib (mpl)	Seaborn
	oldest python plotting library (gold standard)	built on top of mpl, contains ready-made themes
pros	complete controlalmost anything is possible3Danimations	- simple syntax - if necessary, still full control - more appealing than mpl
cons	- complex syntax - not interactive	- gaining full control is harder

	Matplotlib (mpl)	Seaborn
	oldest python plotting library (gold standard)	built on top of mpl, contains ready-made themes
pros	complete controlalmost anything is possible3Danimations	- simple syntax - if necessary, still full control - more appealing than mpl
cons	- complex syntax - not interactive	- gaining full control is harder

Matplotlib vs Seaborn

```
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import sem

# Load an example dataset with long-form data
fmri = sns.load_dataset("fmri") # returns panda dataframe

# sort data in chronological order
fmri_mpl = fmri.sort_values('timepoint')

# create canvas
fig, ax =plt.subplots()

# chose color and linestyle for the different curves
colors = {"parietal":"CO", "frontal":"C1"}
line_styles = {"stim":"solid", "cue":"dashed"}

# plot curves
for event in set(fmri mpl["event"]):
```


Matplotlib vs Seaborn

```
-0.1
# axes labels
ax.set_xlabel('timepoint')
ax.set_ylabel("signal")
# dummy lines for legend
dummy lines = []
for event in set(fmri mpl["event"]):
    dummy lines.append(ax.plot([],[], c="black", ls = line styles[event])[0])
lines = ax.get_lines()
# legend regions
legend1 = plt.legend([lines[i] for i in [0,1]], ["frontal", "parietal"],
                     title = "region",
                     loc="upper right")
# legend events
legend2 = plt.legend([dummy lines[i] for i in [0,1]], ["cue", "stim"],
                     title = "event",
                     loc="center right",
                     bbox_to_anchor=(1,0.7))
ax.add_artist(legend1)
ax.add artist(legend2)
# show in API
plt.show()
```


Seaborn vs Matplotlib

Seaborn vs Matplotlib


```
    parietal

    0.3

    frontal

                                                                       event
    0.2
                                                                      -- cue
signal
    0.0
   -0.1
          0.0
                    2.5
                              5.0
                                       7.5
                                                10.0
                                                          12.5
                                                                   15.0
                                                                             17.5
                                          timepoint
```

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.set theme(style="darkgrid")
```


	Matplotlib (mpl)	Seaborn
	oldest python plotting library (gold standard)	built on top of mpl, contains ready-made themes
pros	complete controlalmost anything is possible3Danimations	- simple syntax - if necessary, still full control - more appealing than mpl
cons	- complex syntax - not interactive	- gaining full control is harder

	Matplotlib (mpl)	Seaborn	Plotly	Bokeh	Altair	RFVNDET.
	oldest python plotting library (gold standard)	built on top of mpl, contains ready-made themes	for web apps (essentially JavaScript)	for web apps (output = html)	for web apps	MUET
pros	complete controlalmost anything is possible3Danimations	 simple syntax if necessary, still full control more appealing than mpl 	 interactive plots quick plotting with plotly.express 3D >community than bokeh 	- interactive plots	- focus on statistics	
cons	- complex syntax - not interactive	- gaining full control is harder	- might not stay FOSS for ever - different syntax than mpl (but similar concepts)	onlyinteractiveplotsdifferentsyntax thanmpl	no 3Dnot fullycustomizabledifferentsyntax thanmpl	LVCE 13

	Matplotlib (mpl)	Seaborn	Plotly	Bokeh	Altair	RFVNDET
	oldest python plotting library (gold standard)	built on top of mpl, contains ready-made themes	for web apps (essentially JavaScript)	for web apps (output = html)	for web apps	ANDEY.
pros	complete controlalmost anything is possible3Danimations	 simple syntax if necessary, still full control more appealing than mpl 	quick plotting with plotly.express	URSD/ eractivalization	ve	
cons	- complex syntax - not interactive	- gaining full control is harder	- might not stay FOSS for ever - different syntax than mpl (but similar concepts)	- only interactive plots - different syntax than mpl	- no 3D - not fully customizable - different syntax than mpl	LVCE 14

	Matplotlib (mpl)	Seaborn	Plotly	Bokeh	Altair	pandas
	oldest python plotting library (gold standard)	built on top of mpl, contains ready-made themes	for web apps (essentially JavaScript)	for web apps (output = html)	for web apps	essentially mpl
pros	complete controlalmost anything is possible3Danimations	 simple syntax if necessary, still full control more appealing than mpl 	 interactive plots quick plotting with plotly.express 3D >community than bokeh 	- interactive plots	- focus on statistics	quick plot of DataFramesgeopandas
cons	- complex syntax - not interactive	- gaining full control is harder	- might not stay FOSS for ever - different syntax than mpl (but similar concepts)	only interactive plotsdifferent syntax than mpl	no 3Dnot fullycustomizabledifferentsyntax thanmpl	- very basic

	Matplotlib (mpl)	Seaborn	Plotly	Bokeh	Altair	pandas
	oldest python plotting library (gold standard)	built on top of mpl, contains ready-made themes	for web apps (essentially JavaScript)	for web apps (output = html)	for web apps	essentially mpl
pros	complete controlalmost anything is possible3Danimations	- simple syntax - if necessary, still full control - more appealing than mpl	- interactive plots - quick plotting with plotly.express - 3D - >community than bokeh	- interactive plots	- focus on statistics	quick plot ofDataFramesgeopandas
cons	- complex syntax - not interactive	- gaining full control is harder	- might not stay FOSS for ever - different syntax than mpl (but similar concepts)	only interactive plotsdifferentsyntax than mpl	no 3Dnot fullycustomizabledifferentsyntax than mpl	- very basic
gallery	matplotlib.org/stable /gallery	seaborn.pyda ta.org/exampl es	plotly.com/py thon	docs.bokeh.or g/en/latest/d ocs/gallery.ht ml	altair- viz.github.io/g allery/	pandas.pydata.org /pandas- docs/stable/user_ guide/visualization .html

See also:

Mayavi (3D plots)

FIG. 2. (color online) Phase space of $\mathcal{H}_{r:s}$ (thin [gray] lines) and leaky region \mathcal{L} (shaded area). Real tori an complex paths (thick lines and arrows) are labeled in the figure.

https://arxiv.org/pdf/1609.09276.pdf

See also:

Mayavi (3D plots)

Folium (geodata mostly)

www.nagarajbhat.com/post/folium-visualization

. OMNIA LVCE

See also:

- Mayavi (3D plots)
- Folium (geodata mostly)
- ggplot2 (fun themes and beautiful visualizations)

www.garrickadenbuie.com/project/ggpomological

timogrossenbacher.ch/2019/04/bivariate-maps-with-ggplot2-and-sf

See also:

- Mayavi (3D plots)
- <u>Folium</u> (geodata mostly)
- ggplot2 (fun themes and beautiful visualizations)
- <u>Datashader</u> (Big Data, plots: bokeh or holoviews)

See also:

- Mayavi (3D plots)
- Folium (geodata mostly)
- ggplot2 (fun themes and beautiful visualizations)
- <u>Datashader</u> (Big Data, plots: bokeh or holoviews)
- SciencePlots (adapted to several journals)

See also:

- Mayavi (3D plots)
- Folium (geodata mostly)
- ggplot2 (fun themes and beautiful visualizations)
- <u>Datashader</u> (Big Data, plots: bokeh or holoviews)
- SciencePlots (adapted to several journals)
- Xkcd style (developer stage)

NOW YOU! Try them out on your own:

- pick one plot from each gallery
- copy the source code to a .py file on your pc
- try to make code run (e.g. by installing the necessary packages*)

* for bokeh please install version 2.2.2 (we'll need that later) pip install 'bokeh==2.2.2'

	Matplotlib (mpl)	Seaborn	Plotly	Bokeh	Altair	pandas
gallery	matplotlib.org /stable/gallery	seaborn.pyda ta.org/exampl es	plotly.com /python	docs.bokeh.org/ en/latest/docs/ gallery.html#sta ndalone- examples	altair- viz.github.io/ga llery/	pandas.pydata.org /pandas- docs/stable/user_ guide/visualization .html
To actually plot sth, add lines:		from matplotlib import pyplot as plt plt.show()			<chart>.show()</chart>	from matplotlib import pyplot as plt plt.show()

from matplotlib import pyplot as plt

Matplotlib Object Hierarchy

f, ax = plt.subplots()

Anatomy of a figure

We have a canvas, now we need sth we can plot, i.e: data!

get it from:

- Formulas (explicit or implicit)
- Numerical simulations
- Own measurements
- Open databases

--> jupyter notebooks on https://github.com/Chaotique/Master_Visualizations_2021

Homework until Thursday

Search on <u>analisi.transparenciacatalunya.cat/browse?limitTo=datasets</u> for datasets that might be interesting to visualize (on a dashboard) ERFV

- What data do they "offer" exactly? (e.g. columns of the table)
- Does it contain
 both geographical and
 temporal data?
 (would be nice)

On **Thursday** (session VI) we decide for one or two topics/datasets together, for which we create a simple **dashboard** in sessions VI, XI, and XII.

Plot should be 'readable' in printed version (<u>cubehelix palettes</u>)

FPs dissertation

Plot should be 'readable' in printed version (<u>cubehelix palettes</u>)

In other words.

- Plot should be 'readable' in printed version (<u>cubehelix palettes</u>)
- Plot should fit into a column of the paper
- Limits to number of figures
- Concise end descriptive caption

- Plot should be 'readable' in printed version (<u>cubehelix palettes</u>)
- Plot should fit into a column of the paper
- Limits to number of figures
- Concise end descriptive caption

Other Aspects to consider

- Think of <u>colorblind people</u>
- Figure fontsize = fonsize of article
- Limit axes to range of data (exception bar diagrams)
- consider using log, polar etc
- Clear not cluttered, consistent, self-explanatory, and not misleading
- Labels, specifications in the caption (reproducibility)
- As complex as necessary, as simple as possible

Stateful vs stateless approach

stateful

import matplotlib.pyplot as plt

```
plt.figure()
plt.plot([0, 1, 2, 3])
```

get current figure and current axes
plt.gcf().gca().set_xlabel("tide")

stateless (OOP)

import matplotlib.pyplot as plt

```
fig = plt.figure()
ax = fig.add_subplot(111)
li = ax.plot([0,1], [1,0])
```

