MATH 230-1: Discussion 6 Problems

Northwestern University, Fall 2023

- 1. Let $f(x,y) = 2x^2 y$.
 - (a) Draw the level curves of f at z = -2, -1, 0, 1, 2.
- (b) Based on the level curves, explain why it makes sense that $f_x(0,0)$ is zero, $f_y(0,0)$ is negative, and $f_{yy}(0,0)$ is zero.
- (c) In which directions at (3, -2) should we face so that the graph of f is as steep (either upward or downward) as possible?

Solution. (a) The level curves look like

(b) The value of f at (0,0) is 0. As we move away from (0,0) to the left or to the right (only horizontally) the value f increases as indicated by the value at which these level curves to the right and left occur at. Thus $f(0,0) \leq f(x,0)$ for x near = 0, so (0,0) is a local minimum of f in the x-direction, so the rate of change $f_x(0,0)$ in this direction is zero. As we move vertically through (0,0) and consider points of the form (0,y), we see that the value of f decreases as we do so, so the rate of change $f_y(0,0)$ in this direction is negative.

The value of $f_y(0,0)$ is negative, as is the value of $f_y(0,y)$ for y a bit above y=0 and a bit below as well. However, these negative slopes remain the same based on the fact the level curves moving vertically through (0,0) do not get closer to one another: the space between the level curves at z=2 and z=1 is the same as that between z=1 and z=0, and between z=0 and z=-1. This means that the value of $f_0(0,y)$ remains constant as y varies, so $f_y(0,0)$, which is the derivative with respect to y of $f_y(0,y)$ at y=0, is zero.

- (c) The direction of steepest positive slope is given by the gradient of f at (3,-2). Since $\nabla f = \langle f_x, f_y \rangle = \langle 4x, -1 \rangle$, we have $\nabla f(3,-2) = \langle 12, -1 \rangle$. Thus $\langle 12, -1 \rangle$ gives the direction of steepest positive (upward) slope, and $-\nabla f(3,-2) = \langle -12, 1 \rangle$ gives the direction of steepest negative (downward) slope.
- **2.** (a) The water temperature, in polar coordinates, at a point (r, θ) in a lake is given by

$$T(r,\theta) = r^3 \sin(\theta/2)$$

in degrees celsius. Suppose a swimmer moves along some path in the lake, and that at the point $(r,\theta)=(2,\frac{\pi}{2})$ experiences a change in water temperature with respect to time of 10 degrees celsius per second. If at this instant the value of θ is changing at a rate of $\frac{\pi}{2}$ radians per second, find the rate at which the value of r is changing with respect to time. Your answer can be left unsimplified.

(b) In which Cartesian direction is T increasing most rapidly at the Cartesian point with polar coordinates $(r, \theta) = (2, \frac{\pi}{2})$?

Solution. (a) With T depending on r and θ and r and θ depending on time t, the chain rule gievs

$$\frac{dT}{dt} = \frac{\partial T}{\partial r} \frac{dr}{dt} + \frac{\partial T}{\partial \theta} \frac{d\theta}{dt}$$
$$= 3r^2 \sin(\theta/2) \frac{dr}{dt} + \frac{1}{2}r^3 \cos(\theta/2) \frac{d\theta}{dt}.$$

When r=2 and $\theta=\frac{\pi}{2}$, we have $\frac{dT}{dt}=10$ and $\frac{d\theta}{dt}=\frac{\pi}{2}$, so

$$10 = 3(2)^{2} \sin(\pi/4) \frac{dr}{dt} + \frac{1}{2} (2)^{3} \cos(\pi/4) (\frac{\pi}{2}) = 6\sqrt{2} \frac{dr}{dt} + \pi\sqrt{2}.$$

Thus at this point we have that the radius is changing at a rate of

$$\frac{dr}{dt} = \frac{10 - \pi\sqrt{2}}{6\sqrt{2}}$$

with respect to time.

(b) The Cartesian point with polar coordinates $(r, \theta) = (2, \frac{\pi}{2})$ is $(x, y) = (2\cos\frac{\pi}{2}, 2\sin\frac{\pi}{2}) = (0, 2)$. The direction in which T increases most rapidly at this point is $\nabla T(0, 2)$, so we must compute T_x and T_y . Since T depends on r and θ and r and θ each depend on x and y, the chain rule gives (using $r = \sqrt{x^2 + y^2}$ and $\theta = \arctan(y/x)$)

$$\begin{split} \frac{\partial T}{\partial x} &= \frac{\partial T}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial T}{\partial \theta} \frac{\partial \theta}{\partial x} \\ &= 3r^2 \sin(\theta/2) \frac{2x}{\sqrt{x^2 + y^2}} + \frac{1}{2} r^3 \cos(\theta/2) \frac{-\frac{y}{x^2}}{1 + \frac{y^2}{x^2}} \\ &= 3r^2 \sin(\theta/2) \frac{2x}{\sqrt{x^2 + y^2}} + \frac{1}{2} r^3 \cos(\theta/2) \frac{-y}{x^2 + y^2} \end{split}$$

and

$$\begin{split} \frac{\partial T}{\partial y} &= \frac{\partial T}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial T}{\partial \theta} \frac{\partial \theta}{\partial y} \\ &= 3r^2 \sin(\theta/2) \frac{2y}{\sqrt{x^2 + y^2}} + \frac{1}{2} r^3 \cos(\theta/2) \frac{\frac{1}{x}}{1 + \frac{y^2}{x^2}} \\ &= 3r^2 \sin(\theta/2) \frac{2y}{\sqrt{x^2 + y^2}} + \frac{1}{2} r^3 \cos(\theta/2) \frac{x}{x^2 + y^2}. \end{split}$$

(We use the fact that $\frac{d}{du} \arctan u = \frac{1}{1+u^2}$.) Evaluating at $(r,\theta) = (2,\frac{\pi}{2})$ and (x,y) = (0,2) we get

$$\frac{\partial T}{\partial x} = 6\sqrt{2} \left(\frac{0}{\sqrt{0+4}} \right) + 2\sqrt{2} \left(-\frac{2}{0+4} \right) = -\sqrt{2}$$

and

$$\frac{\partial T}{\partial y} = 6\sqrt{2}\left(\frac{4}{0+4}\right) + 2\sqrt{2}\left(\frac{0}{0+4}\right) = 6\sqrt{2},$$

so $\langle -\sqrt{2}, 6\sqrt{2} \rangle$ gives the Cartesian direction in which the value of T increases most rapidly as the given point.

- **3.** Let $f(x, y, z) = xy^2z^3 + xy 3ye^{yz}$.
 - (a) Compute $\nabla f(x, y, z)$.
 - (b) Give two directions in which the rate of change of f at the point (1, 2, 0) is zero.
 - (c) Find an equation for the tangent plane to the surface

$$xy^2z^3 + xy - 3ye^{yz} = -4$$

at the point (1, 2, 0).

Solution. (a) We have

$$\nabla f = \langle f_x, f_y, f_z \rangle = \langle y^2 z^3 + y, 2xyz^3 + x - 3e^{yz} - 3yze^{yz}, 3xy^2 z^2 - 3y^2 e^{yz} \rangle$$
.

(b) At the point (1, 2, 0) we get

$$\nabla f(1,2,0) = \langle 2, 1-3-6, -12 \rangle = \langle 2, -8, -12 \rangle.$$

Directions in which the rate of change at (1,2,0) is zero are given by unit vectors \mathbf{u} for which $D_{\mathbf{u}}f(1,2,0) = \nabla f(1,2,0) \cdot \mathbf{u} = 0$, so we need only find two nonzero vectors that are orthogonal to $\nabla f(1,2,0) = \langle 2, -8, -12 \rangle$. One such direction is $\langle 8,2,0 \rangle$, and another is $\langle 0,12,-8 \rangle$.

(c) Note first that f(1,2,0) = -4, so (1,2,0) does lie on the given surface. We can view this surface as the level surface of f at -4, so the gradient vector $\nabla f(1,2,0)$ is orthogonal to this surface at (1,2,0). Hence we take $\nabla f(1,2,0) = \langle 2,-8,-12 \rangle$ as a normal vector for the desired tangent plane. The tangent plane is thus given by

$$2(x-1) - 8(y-2) - 12z = 0.$$