Tema 5 Modelos de probabilidad

Carlos Montes - uc3m

1. Concepto

- 1. Introducción
- 2. El proceso de Bernoulli
 - 2.1. Definición
 - 2.2. Ley binomial (1,0) o de Bernoulli
 - 2.3. Distribución binomial
- 3. El proceso de Poisson
 - 3.1. Definición
 - 3.2. Distribución de Poisson
 - 3.3. Distribución exponencial
- 4. Distribución uniforme
- 5. Distribución normal
- 6. Distribución lognormal
- 7. Teorema central del límite
 - 7.1. Definición
 - 7.2. Aplicaciones
- 8. Modelo de regresión lineal simple

1. Proceso de Bernoulli. Definición.

- Fenómeno aleatorio dicotómico
- La observación consiste en la clasificación del resultado obtenido en una de 2 categorías posibles:

Éxito Fracaso

• La proporción de cada una de las categorías en la población es constante:

p: probabilidad de éxito q = 1-p: probabilidad de fracaso

• Las observaciones son independientes entre sí.

2.1. Variable de Bernoulli

$$x = \begin{cases} 0 \text{ si obtenemos un fracaso} \\ 1 \text{ si obtenemos un exito} \end{cases}$$

Jakob Bernoulli (1654-1715)

Carlos Montes – uc3m

2.1. Variable de Bernoulli

1. Ley binomial (1,0) o de Bernoulli

Características

Función de probabilidad

$$P(x) = p^{x}q^{1-x}; \quad x = 0,1$$

$$P(x = 1) = p$$

$$P(x=0)=q$$

Esperanza

$$E(X) = 0 \cdot q + 1 \cdot p = p$$

1. Ley binomial (1,0) o de Bernoulli

Varianza

$$var(X) = \sum_{i=1}^{n} (x_i - \mu)^2 \cdot P(X = x_i) =$$

$$= (0 - p)^2 \cdot q + (1 - p)^2 \cdot p = pq(p + q) = pq$$

La varianza será máxima si:

$$\frac{d(pq)}{dp} = \frac{d[p(1-p)]}{dp} = 1 - 2p = 0; \quad p = 0,5$$

2.3. Distribución binomial

Modeliza una serie de fenómenos dicotómicos independientes entre sí.

(nº de veces que ha aparecido el suceso S en n repeticiones independientes del experimento, con P(S)=p)

Carlos Montes – uc3m

2.2. Distribución binomial

¿Cuántas caras saldrán en n tiradas de la moneda?

Función de probabilidad, P(X=r)

E, E, E, E...E, F, F...

$$p^{r}(1-p)^{n-r}$$

(si los sucesos son independientes)

2.2. Distribución binomial

Órdenes posibles:

$$C_n^r = \binom{n}{r} = \frac{n!}{r! (n-r)!}$$

$$P(X = r) = {n \choose r} p^r (1-p)^{n-r}$$
 $r = 0,1, ... n$

2.3. Distribución binomial

Esperanza

$$E(X) = E(\sum_{j=1}^{n} x_j) = \sum_{j=1}^{n} E(x_j) = np$$

Varianza

$$var(X) = var(\sum_{j=1}^{n} x_j) = \sum_{j=1}^{n} var(x_j) = npq$$

Desviación típica: \sqrt{npq}

2.3. Distribución binomial

Carlos Montes - uc3m

La probabilidad de encontrar una persona zurda es de 0,1. En una clase de 20 alumnos hay 3 pupitres para zurdos. Calcule la probabilidad de que no haya suficientes pupitres

ej. 29

X: número de personas zurdas en la clase $\sim B(20, 0.10)$

$$P(X > 3) = 1 - P(X \le 3) =$$

$$= 1 - [P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)]$$

$$P(X = 0) = {20 \choose 0} 0.10^{0} \cdot 0.90^{20} = 0.12158$$

$${20 \choose 0} = \frac{20!}{0! \cdot 20!} = 1$$

$$P(X = 1) = {20 \choose 1} 0.10^{1} \cdot 0.90^{19} = 0.27017$$

$${20 \choose 1} = \frac{20!}{1! \cdot 19!} = \frac{20 \cdot 19!}{1 \cdot 19!} = 20$$

$$\binom{20}{2} = \frac{20!}{2! \, 18!} = \frac{20 \cdot 19 \cdot 18!}{2 \cdot 18!} = 190$$

$$P(X = 3) = \binom{20}{3} 0.10^3 \cdot 0.90^{17} = 0.190120$$

$$\binom{20}{3} = \frac{20!}{3! \, 17!} = \frac{20 \cdot 19 \cdot 18 \cdot 17!}{3 \cdot 2 \cdot 17!} = 1140$$

 $P(X = 2) = {20 \choose 2} 0.10^2 \cdot 0.90^{18} = 0.28518$

$$P(X > 3) = 1 - [P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)]$$

$$P(X > 3) = 1 - [0.12158 + 0.27017 + 0.28518 + 0.190120] =$$

= 0.13295

Carlos Montes – uc3m

avec: Tail	Am (<)	-0050	7.NF-5-	-	VII-12
For letter	Dist. I.	DM. 2	Date F	Disc. 4	Din 1
	0.676501	11000	1000	1	1
Farutie	Dist. 7	Dist 2	Dbs 8	Dist. 4	21ax 3
10000	Dat 1	Dis 2	Zhu 3	Dui 4	Zlay 3
Parustie I Ioner Tal	-	Dist 2	Zhu 3	Dui 4	Zlay 3
10000	4,19862	Dur 3	Des 3	Dui 4	Zlay 3

$$P(X > 3) = 0.132953$$

$$P(X > 3) = 1 - (0.676927 + 0.19012) = 0.132953$$

3.1. Proceso de Poisson. Definición

Aparición de sucesos puntuales sobre un soporte continuo, suponiendo que el proceso generador de estos sucesos:

- es estable.
- produce sucesos independientes.

3.2. Distribución de Poisson

Modeliza la aparición de cierto número de sucesos sobre un soporte continuo en un intervalo de longitud fija.

X: número de sucesos en un intervalo de longitud fija T

p pequeña ⇒ probabilidad despreciable de aparición de 2 o más sucesos en uno de los n segmentos.

Observamos si aparece o no el suceso estudiado en cada segmento.

3.2. Distribución de Poisson

Es una distribución binomial en la cual:

$$n \rightarrow \infty$$

$$p \rightarrow 0$$

$$np \rightarrow \lambda$$

Simeon Denis Poisson (1781-1840)

Carlos Montes – uc3m

3.2. Distribución de Poisson

Características

Función de probabilidad

$$P(X=r) = \binom{n}{r} p^r (1-p)^{n-r}$$

$$P(X=r) {n \choose r} \left(\frac{\lambda}{n}\right)^r \left(1 - \frac{\lambda}{n}\right)^{n-r} \qquad r = 0, 1, 2 \dots$$

Tomando límites:

$$P(X = r) = \frac{\lambda^r}{r!} e^{-\lambda}$$
 $r = 0,1,2...$

(1838)

3.2. Distribución de Poisson

Esperanza

$$E(X) = \lambda$$

Varianza

$$var(X) = \lambda$$

3.2. Distribución de Poisson

Es una distribución asimétrica, que tiende a la simetría al aumentar $\boldsymbol{\lambda}$

3.2. Distribución de Poisson

La suma de varias variables de Poisson independientes, también es una variable de Poisson.

Sea $X_i \sim P(\lambda_i)$, i=1,...,k, un conjunto de variables de Poisson independientes.

$$Y = \sum_{i=1}^{k} X_i \to P(\lambda^*)$$

$$\lambda^* = \sum_{i=1}^k \lambda_i$$

Carlos Montes – uc3m

Un servidor de una pequeña red recibe una media de 7 accesos por minuto. Suponiendo que los accesos a dicho servidor suceden de forma independiente y con ritmo medio constante, se quiere calcular la probabilidad de que reciba más de 10 accesos en un minuto, porque el servidor tendría entonces un rendimiento deficiente.

X: número de accesos en un minuto

$$X \sim P(\lambda = 7)$$

$$P(X > 10) = 1 - P(X \le 10) = 1 - \sum_{r=0}^{10} \frac{7^r}{r!} e^{-7} = 0.09852$$

Commission Distribution Distribution Process

Lower Tall Acea (G)							
Unrighte	Dtr. J	Day 3	Dixt. 8	Dist. 4	Dat 1		
10	3350496				17 1		

Probability Mass (#)						
Variable	Dur. I	Dur 2	Det 3	Dar 4	Date 5	
10	0,0709833	2000	111.	Title !	21112	

Oper Tell Arm (2)						
Fortaile	Der I	Dev. 2	Dir. 3	Derit 4	Des 5	1
19	0,0965206	1		1		1

$P(X > 10) = 1 - P(X \le 10)$ = 1 - (0.830496 + 0.0709833) = 0.09852

3. Distribución exponencial

Modela el tiempo entre la ocurrencia de dos sucesos consecutivos, siendo estos independientes y estables.

Características

Función de distribución

$$F(t) = P(T \le t) = 1 - e^{-\lambda t}$$

Con λ número medio de sucesos **por unidad de tiempo**.

3.3. Distribución exponencial

$$f(t) = \frac{dF(t)}{dt} = \lambda e^{-\lambda t}$$

Esperanza

$$E(T) = \frac{1}{\lambda}$$

Varianza

$$var(T) = \frac{1}{\lambda^2}$$

Carlos Montes – uc3m

Considerando la red anterior, se pide:

a) Calcular el tiempo medio que transcurre entre dos accesos consecutivos.

$$\lambda = 7$$
 accesos/minuto

$$E(T) = \frac{1}{\lambda} = \frac{1}{7} = 0.143 \text{ minutos/acceso}$$

b) Probabilidad de que entre dos accesos consecutivos transcurran más de 15 segundos.

$$P(T > 0.25 \text{ minutos}) = 1 - P(T < 0.25) = 1 - (1 - e^{-\lambda t}) = e^{-\lambda t} = e^{-7.0.25} = 0.17$$

ej. 35

La duración de ciertos componentes electrónicos sigue una distribución exponencial de media 100 días.

a) ¿Cuál es la probabilidad de que uno de los componentes anteriores dure más de 50 días?

X: duración de un componente $\rightarrow \exp(\lambda = \frac{1}{100})$

$$P(X > 50) = 1 - P(X \le 50) = 1 - (1 - e^{-\lambda t})$$
$$= 1 - (1 - e^{-50/100}) = e^{-\frac{1}{2}} = 0.607$$

b) Un equipo electrónico está formado por 5 componentes de los anteriores, que trabajan de manera independiente, y funciona mientras funcionen correctamente al menos dos de ellos, ¿cuál es la probabilidad de que dicho equipo dure más de 50 días?

Y: Número de componentes que funcionan más de 50 días $Y \rightarrow B(5, 0.607)$

$$P(equipo\ funcione) = P(Y \ge 2) = 1 - P(Y = 0) - P(Y = 1) = 1 - {5 \choose 0} 0.607^{0} \cdot 0.393^{5} - {5 \choose 1} 0.607^{1} \cdot 0.393^{4} = 0.9182$$

Carlos Montes – uc3m

4. Distribución uniforme

Características

$$f(x) = \frac{1}{b-a} \quad a \le x \le b$$

4. Distribución uniforme

Función de distribución

$$F(x) = P(X \le x) = \int_a^x \frac{1}{b-a} dx = \frac{x-a}{b-a}$$

$$a \le x \le b$$

4. Distribución uniforme

Esperanza

$$E(X) = \frac{a+b}{2}$$

$$Varianza \qquad var(X) = \frac{(b-a)^2}{12}$$

4. Distribución normal

Es la distribución con función de densidad:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2} - \infty \le x \le \infty$$

4. Distribución normal

La distribución normal depende de dos parámetros:

- ✓ Media µ
- ✓ Desviación típica σ

4. Distribución normal

- Es uno de los modelos más frecuentes para describir variables reales continuas.
- \bullet Simétrica, centrada en la media μ que es su mediana y su moda.
- Forma de campana.
- Coeficiente de apuntamiento igual a 3.

4. Distribución normal

4. Distribución normal

- Se ajusta a lo observado en muchos procesos de medición, si no influyen los errores sistemáticos.
- La normal de media 0 y desviación típica 1 se denomina:
 - ❖ normal tipificada (Z)
 - ❖ normal estándar
 - ❖ normal (0,1)

y su función de distribución está tabulada.

Carlos Montes – uc3m

La longitud L en milímetros, de las piezas fabricadas en un proceso es una variable aleatoria que se distribuye según una N(32, 0.3²), considerándose aceptables aquellas cuya medida se encuentra dentro del intervalo (31.1, 32.6). Calcule la probabilidad de que una pieza elegida al azar sea aceptable.

4. Distribución normal

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{b - \mu}{\sigma}\right)$$

$$\downarrow$$

$$Z \rightarrow N(0,1)$$

$$L \to N(32, 0.3^2)$$

P(aceptable) = P(31.1 < L < 32.6)

$$P\left(\frac{31.1 - 32}{0.3} < Z < \frac{32.6 - 32}{0.3}\right) = P(-3 < Z < 2)$$

$$F(2) - F(-3) = F(2) - [1 - F(3)] = F(2) - 1 + F(3) =$$

= 0.9772 - 1 + 0.9987 = 0.9759

4. Distribución normal

$$F(2) - 1 + F(3)$$

0.9772 0.9987

0.9759

6. Distribución lognormal

Se llama *lognormal* a la variable aleatoria cuyo logaritmo neperiano es normal:

$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{1}{2\sigma^2}(\ln x - \mu)^2}$$

$$E(X) = e^{\mu + \frac{1}{2}\sigma^2}$$
 $var(X) = (e^{\sigma^2} - 1) \cdot e^{2\mu + \sigma^2}$

6. Distribución lognormal

Si la variable y puede considerarse como un producto de variables aleatorias:

$$y = x_1 \cdot x_2 \cdot x_3 \dots x_n$$

su logaritmo neperiano seguirá una distribución normal (distribución lognormal o de Mac Alister).

6. Distribución lognormal

7.1. Teorema central del Límite. Definición

La suma de un conjunto de variables aleatorias se aproxima, al aumentar el número de variables, a una variable aleatoria **normal** independientemente de cual sea la distribución de esas variables.

Carlos Montes - uc3m

7.1. Teorema central del Límite. Definición

$$Y \to N\left(\sum \mu_i, \sqrt{\sum \sigma_i^2}\right)$$

La desviación típica es la raíz cuadrada de la suma de varianzas, NO la suma de las desviaciones típicas.

7.1. Teorema central del Límite. Definición

Sean x_1 , x_2 ,... , x_n v.a. independientes con media μ_i , desviación típica σ_i y distribución

CUALQUIERA

$$Y = x_1 + x_2 + ... + x_n$$
 Al crecer n:
 $\frac{Y - \sum \mu_i}{\sqrt{\sum \sigma_i^2}} \to N(0,1)$ $Y \to N\left(\sum \mu_i, \sqrt{\sum \sigma_i^2}\right)$

7.2. Teorema central del Límite. Aplicaciones

Normal F(x) –

$$E(x_i) = p \quad Var(x_i) = pq$$

Aplicando el Teorema Central del Límite:

Binomial

$$Y \to N(np, \sqrt{npq})$$

n > 30 npq > 5

7.2. Teorema central del Límite. Aplicaciones

Carlos Montes – uc3m

7.2. Teorema central del Límite. Aplicaciones

Sea Y(0,T)una variable de Poisson que cuenta el no de sucesos en el intervalo (0,T)

$$Y(0,T) = x_1(0,t_1) + x_2(t_1,t_2) + \dots + x_n(t_{n-1},T)$$

Para $\lambda > 5$ podemos aproximar esta variable mediante una distribución Normal

7.2. Teorema central del Límite. Aplicaciones

Para $\lambda > 5$ podemos aproximar esta variable mediante una distribución Normal

$$x_p \to P(\lambda) \quad \lambda > 5$$

$$x_p \to P(\lambda) \quad \lambda > 5$$

$$x_n \to N(\lambda, \sqrt{\lambda})$$

7.2. Teorema central del Límite. Aplicaciones

La aproximación es válida cuando:

$$np > 1$$
$$p < 0,1$$

$$\lambda = np$$

7.2. Teorema central del Límite. Aplicaciones

Carlos Montes - uc3m

8. Modelo de regresión lineal simple

La recta de regresión de y sobre x es de la forma:

$$y_i = a + bx_i + e_i \longrightarrow \text{T\'ermino de error}$$
 Valor observado de la variable y para el individuo i-ésimo valor observado i-ésimo

Si queremos definir un tipo de relación válido para toda la población, encontramos numerosos factores que no controlamos.

8. Modelo de regresión lineal simple

8. Modelo de regresión lineal simple

Si fijamos el valor de la variable X en $X = x_i$ repitiendo el experimento, observaremos valores diferentes debidos al efecto de las variables recogidas en el término e.

$$y_{i} = \underbrace{a + bx_{i} + e_{i}}_{\Rightarrow \text{ fijo}} \Rightarrow \text{ aleatorio (ruido)}$$

8. Modelo de regresión lineal simple

Si asumimos que todas las variables que influyen sobre Y lo hacen de forma lineal (aditiva):

$$Y = a + bX + (c_1Z_1 + c_2Z_2 + c_3Z_3 + ...)$$

Por el Teorema del Límite Central, e seguirá una distribución normal.

Carlos Montes – uc3m

8. Modelo de regresión lineal simple

$$E(e) = 0$$

$$\operatorname{var}(e) = \sigma^{2} \quad \text{(constante)}$$

$$e \to N(0, \sigma^{2})$$

$$E(Y \setminus X = x_{i}) = E(a + bx_{i} + e) = a + bx_{i} + E(e) = a + bx_{i}$$

$$\operatorname{var}(Y \setminus X = x_{i}) = \operatorname{var}(a + bx_{i} + e) = \operatorname{var}(e)$$

$$Y \to N(a + bx_{i}, \sigma^{2})$$

8. Modelo de regresión lineal simple

Cada punto y_i que observamos se interpreta como un valor al azar de la normal.

$$y_i \to N(a+bx_i,\sigma^2)$$

8. Modelo de regresión lineal simple

Suponemos que el "ruido" es homogéneo a lo largo de la recta (varianza constante u homocedasticidad).

Sea el modelo de regresión simple Y=50+2X+e, siendo $e=N(0, 5^2)$. Calcule la probabilidad de que Y sea mayor que 160 para los casos siguientes:

a)
$$X=60$$

b)
$$X=50$$

Carlos Montes - uc3m

$$P(Y > 160) Y = 50 + 2X + e,$$

$$b) Y \to N(a + bx_i; \sigma^2)$$

$$Y = 50 + 2X + e = 50 + 2 \cdot 50 + e = 150 + e$$

$$Y \to N(150; 5^2)$$

$$P(Y > 160) = P\left(Z > \frac{160 - 150}{5}\right) =$$

$$= P(Z > 2) = 1 - P(Z < 2) = 1 - 0.9772 = 0.0228$$

$$P(Y > 160)$$
 $Y=50 + 2X + e$,

a) Necesitamos el modelo que sigue Y

$$Y \to N(a + bx_i; \sigma^2)$$

 $Y = 50 + 2X + e = 50 + 2 \cdot 60 + e = 170 + e$
 $Y \to N(170; 5^2)$
 $P(Y > 160) = P\left(Z > \frac{160 - 170}{5}\right) =$
 $= P(Z > -2) = P(Z < 2) = 0.9772$