Using Joint Models to Estimate Causal Effects for Salvage Therapy after Prostatectomy

Dimitris Rizopoulos¹, Jeremy M.G. Taylor² and Grigorios Papageorgiou¹

¹Department of Biostatistics, Erasmus Medical Center Rotterdam ²Department of Biostatistics, University of Michigan

d.rizopoulos@erasmusmc.nl

@drizopoulos

Contents

Aims, Models & Estimands	3
1 Background & Aim	4
2 Causal ST Effects	14
3 Structural Models	21
4 PSA Sub-Model	24
5 Metastasis and Death Sub-Models	28
6 Causal Effect Estimation	37
7 Results	41
8 Extensions & Discussion	46

Aims, Models & Estimands

1 Background & Aim

- Setting Patients treated with surgery after diagnosis of Prostate Cancer (PCa)
 - > remain at risk of metastasis
- Follow-up
 - > PSA levels at frequent intervals

 - > ST androgen deprivation therapy, radiation therapy, chemotherapy, and combinations

- Important questions regarding Salvage Therapy

 - ▶ when to start?
 - ▷ does it work?

Quantify the amount by which Salvage Therapy reduces the risk of metastasis

University of Michigan Prostatectomy Data

- ⇒ 3672 PCa patients treated with prostatectomy 1994–2013
- baseline variables: PSA, Gleason, T-stage, age, race, gland volume, perineural invasion, planned adjuvant therapy
- - * post-surgery PSA values (median = 6)
 - * post-surgery salvage therapy (n = 324)
 - * PSA values also after salvage (median = 3)
 - * metastasis (n = 108)
 - * death information (n = 212)

Before Salvage

Challenges

- ▷ Observational Data no RCT
 - * selection bias
 - * ascertainment bias
- ▷ Time-Varying Salvage Therapy
 - * depends on previous PSA
 - * PSA time-dependent confounder
 - * endogeneity

2 Causal ST Effects

- Standard assumptions for Causal Inference
 - *Consistency:* Observed outcomes equal the counterfactual outcomes for the actually assigned treatment
 - ▷ Sequential Exchangeability: The counterfactual outcomes are independent of the assigned treatment conditionally on the history of PSA measurements and baseline covariates
 - \triangleright *Positivity:* Each patient has a nonzero probability of receiving ST at each time point t

- Setting
 - \triangleright PSA measurements up to t
 - \triangleright no Salvage Therapy given up to t
 - \triangleright we compare cumulative risk of metastasis in the medically-relevant interval $[t,t+\Delta t]$
 - □ under the two regimes
 - 1. if Salvage Therapy is **not** given in the interval $[t, t + \Delta t]$
 - 2. if Salvage Therapy is given at t

Which is the target group?

Notation

 $\triangleright T_m$: time to metastasis

 $\triangleright T_d$: time to death

 $\triangleright \mathcal{H}^*(t)$: a version of the PSA history up to t

 $hd T_m^{(a)}$ and $T_d^{(a)}$ counterfactual outcomes

* a = 1, ST given at t

* a=0, ST was not given in $[t,t+\Delta t]$

Marginal Salvage Therapy Effect

 \triangleright we average over all PSA histories, i.e., $\mathcal{H}^*(t) = \emptyset$

$$ST^{M}(t + \Delta t, t) = \Pr\{T_{m}^{(1)} \le t + \Delta t \mid T_{m} > t, T_{d} > t\} - \Pr\{T_{m}^{(0)} \le t + \Delta t \mid T_{m} > t, T_{d} > t\}$$

• Notes:

 \triangleright of lesser relevance to the urologists because they decide who gets ST based on PSA \Rightarrow more bias

 \triangleright averages over a big groups of patients \Rightarrow **less variance**

Conditional Salvage Therapy Effect

 \triangleright we condition on the PSA history of a specific patient, i.e., $\mathcal{H}^*(t) = \mathcal{H}_i(t)$

$$ST^{C}(t + \Delta t, t) = \Pr\{T_{m}^{(1)} \le t + \Delta t \mid T_{m} > t, T_{d} > t, \mathcal{H}_{i}(t)\}$$
$$-\Pr\{T_{m}^{(0)} \le t + \Delta t \mid T_{m} > t, T_{d} > t, \mathcal{H}_{i}(t)\}$$

• Notes:

- \triangleright much more relevant to the urologists \Rightarrow **less bias**
- \triangleright averages over a narrow group of patients identified via modeling assumptions \Rightarrow **more variance**

Marginal-Conditional Salvage Therapy Effect

 \triangleright consider ST for patients who had PSA levels above the threshold value c at their last visit, i.e., $\mathcal{H}^*(t) = \{Y(t): Y(t) > c\}$

$$ST^{MC}(t + \Delta t, t) = \Pr\{T_m^{(1)} \le t + \Delta t \mid T_m > t, T_d > t, \mathcal{H}^*(t)\}$$
$$-\Pr\{T_m^{(0)} \le t + \Delta t \mid T_m > t, T_d > t, \mathcal{H}^*(t)\}$$

• Notes:

- \triangleright relevant to the urologists \Rightarrow compromised bias
- ▷ averages over a bigger group of patients ⇒ compromised variance

3 Structural Models

Standard Cox models not appropriate

Joint Models for Longitudinal and Time-to-Event Data

3 Structural Models (cont'd)

3 Structural Models (cont'd)

- Because joint models use all available data,
 - > they account for the time-varying confounding
 - ▷ no extra weighting is necessary
 - > they provide valid causal effects

4 PSA Sub-Model

- As PSA increases, patient may receive ST
- We let S_i denote the time a patient initiated ST
 - \triangleright for patients who did not initiate ST, $S_i = \infty$
- After ST, PSA levels are expected to drop
 - but may rise again before metastasis

$$\log\{\mathsf{PSA}_i(t)+1\} = \begin{cases} \eta_i(t) + \varepsilon_i(t) = \boldsymbol{x}_i(t)\boldsymbol{\beta} + \boldsymbol{z}_i(t)\boldsymbol{b}_i + \varepsilon_i(t), \ t < S_i \\ \\ \tilde{\eta}_i(t) + \varepsilon_i(t) = \\ \\ \eta_i(t) + \left\{\tilde{\boldsymbol{x}}_i(\tilde{t})\tilde{\boldsymbol{\beta}} + \tilde{\boldsymbol{z}}_i(t)\tilde{\boldsymbol{b}}_i\right\} + \varepsilon_i(t), \quad t \geq S_i, \end{cases}$$

The model used in the UM data

- Fixed effects
 - ▷ Before Salvage: Nonlinear PSA evolution (B-spline with 6 internal knots)
 - ▷ After Salvage: Drop in PSA, and linear evolution
 - ▷ baseline covariates: Age, Gleason score, Charlson comorbidity index
- Random effects
 - > the same time effect as in the fixed part

5 Metastasis and Death Sub-Models

- Metastasis and Death treated as *Competing Risks*
- Separate hazard models for metastasis and death

 - ▷ baseline covariates

5 Metastasis and Death Sub-Models (cont'd)

• Metastasis Sub-Model linked to baseline covariates, Salvage and PSA

$$h_i^m(t) = \begin{cases} h_0^m(t) \exp\left(\boldsymbol{\psi}_m^{\top} \boldsymbol{w}_i + \boldsymbol{\alpha}_m^{\top} f\{\eta_i(t)\}\right), & t < S_i \\ h_0^m(t) \exp\left(\boldsymbol{\psi}_m^{\top} \boldsymbol{w}_i + \gamma_m(t - S_i) + \boldsymbol{\xi}_m^{\top} g\{\tilde{\eta}_i(t)\}\right), & t \ge S_i \end{cases}$$

- ullet Functions $f(\cdot)$ and $g(\cdot)$ specify the functional form
 - before and after Salvage is linked to metastasis

• Some options are. . .

• *Time-dependent Slopes:* The hazard of metastasis at t is associated with both the current value and the slope of the PSA trajectory at t:

$$h_i^m(t \mid \mathcal{H}_i(t)) = h_0^m(t) \exp\{\boldsymbol{\psi}_m^{\mathsf{T}} \boldsymbol{w}_i + \alpha_{m1} \eta_i(t) + \alpha_{m2} \eta_i'(t)\},$$

where

$$\eta_i'(t) = \frac{d}{dt} \{ x_i^{\top}(t)\beta + z_i^{\top}(t)b_i \}$$

• *Cumulative Effects:* The hazard of metastasis at t is associated with the whole area under the trajectory up to t:

$$h_i(t \mid \mathcal{M}_i(t)) = h_0(t) \exp\left\{ \gamma^{\top} w_i + \alpha \frac{\int_0^t m_i(s) ds}{t} \right\}$$

We account for the observation period

Models used in the UM data

- Functional forms
 - ▷ Before Salvage: Nonlinear PSA evolution (B-spline with 6 internal knots)
 - * value
 - * value + slope
 - * value + cumulative effect
 - ▷ After Salvage: Drop in PSA, and linear evolution
 - * drop in PSA
 - * slope
 - ▷ baseline covariates: Age, Gleason score, Charlson comorbidity index

• Death Sub-Model linked to baseline covariates, Salvage and but not PSA

$$h_i^d(t) = \begin{cases} h_0^d(t) \exp(\boldsymbol{\psi}_d^{\top} \boldsymbol{w}_i), & t < S_i \\ h_0^d(t) \exp(\boldsymbol{\psi}_d^{\top} \boldsymbol{w}_i + \gamma_d), & t \ge S_i \end{cases}$$

6 Causal Effect Estimation

• From the joint model, we can obtain the conditional causal effect

$$\Pr\{T_{mi}^{(a)} \leq t + \Delta t \mid T_{mi} > t, T_{di} > t, \mathcal{H}_{i}(t), \mathcal{X}_{i}\} =$$

$$\int \int \Pr\{T_{mi}^{(a)} \leq t + \Delta t \mid T_{mi} > t, T_{di} > t, \boldsymbol{u}_{i}, \mathcal{X}_{i}, \boldsymbol{\theta}\}$$

$$\times p\{\boldsymbol{u}_{i} \mid T_{mi} > t, T_{di} > t, \mathcal{H}_{i}(t), \mathcal{X}_{i}, \boldsymbol{\theta}\} \ p(\boldsymbol{\theta} \mid \mathcal{D}) \ d\boldsymbol{u}_{i} d\boldsymbol{\theta}$$

- ullet Monte Carlo scheme to estimate $\mathrm{ST}_i^C(t+\Delta t,t)$
 - riangle sample $reve{m{ heta}}^{(l)}$ from the posterior of the parameters $[m{ heta} \mid \mathcal{D}]$
 - ightharpoonup sample $m{ar{u}}_i^{(l)}$ from the posterior of the random effects $[m{u}_i \mid T_{mi} > t, T_{di} > t, \mathcal{H}_i(t), \mathcal{X}_i, m{ar{ heta}}^{(l)}]$

$$ho$$
 calculate $\pi_i^{(l)}(t + \Delta t \mid t, a) = \Pr\{T_{mi}^{(a)} \leq t + \Delta t \mid T_{mi} > t, T_{di} > t, \boldsymbol{\check{u}}_i^{(l)}, \boldsymbol{\mathcal{X}}_i, \boldsymbol{\check{\theta}}^{(l)}\}$

• We repeat L times and get

$$\widehat{\mathsf{ST}}_i^C(t + \Delta t, t) = \frac{1}{L} \sum_{l=1}^L \pi_i^{(l)}(t + \Delta t \mid t, a = 1) - \pi_i^{(l)}(t + \Delta t \mid t, a = 0)$$

- ullet Estimation of $\mathrm{ST}^M(t+\Delta t,t)$ and $\mathrm{ST}^{MC}(t+\Delta t,t)$ proceeds by averaging the conditional effects over the respective groups of patients
- ullet For example, for $\mathrm{ST}^M(t+\Delta t,t)$
 - $\triangleright \mathcal{R}(t)$ the subset of patients at risk at time t and who have not initiated ST by t
 - ho for each patient in $\mathcal{R}(t)$, we calculate $\widehat{\mathsf{ST}}_i^C(t+\Delta t,t)$

$$\widehat{\mathsf{ST}}^M(t+\Delta t,t) = n_r^{-1} \sum_{i:i \in R(t)} \widehat{\mathsf{ST}}_i^C(t+\Delta t,t),$$

ullet To estimate the variance of the causal effects, we need to take into account that they are a function of both the parameters ullet and the data $\mathcal D$

$$\mathsf{Var}_{\mathcal{D}}\big\{\widehat{\mathsf{ST}}^{M}\big(t+\Delta t,t;\boldsymbol{\theta},\mathcal{D}\big)\big\} = \mathsf{Var}_{\mathcal{D}}\bigg[E_{\boldsymbol{\theta}|\mathcal{D}}\Big\{\mathsf{ST}^{M}\big(t+\Delta t,t;\boldsymbol{\theta},\mathcal{D}\big)\Big\}\bigg]$$

• We achieve this using an adaptation of the procedure of Antonelli et al. (2021)

7 Results

https://emcbiostatistics.shinyapps.io/Plots_PSA/

8 Extensions & Discussion

• Competing Risks ⇒ Multi-State

Competing Risks

- > salvage as a time-varying covariate

• Multi-State

- \triangleright metastasis \rightarrow death transition

8 Extensions & Discussion (cont'd)

8 Extensions & Discussion (cont'd)

- Implementation available in **JMbayes2**
 - > predict() cumulative incidence risks
- Shiny app...

Thank for your attention!

https://www.drizopoulos.com/

Where the first term is written as

$$\Pr\{T_{mi}^{(a)} \leq t + \Delta t, | T_{mi} > t, T_{di} > t, \boldsymbol{u}_i, \boldsymbol{\mathcal{X}}_i, \boldsymbol{\theta}\} =$$

$$\frac{\int_{t}^{t+\Delta t} h_{i}^{m(a)}(v) \exp \left(-\int_{t}^{v} \left\{h_{i}^{m(a)}(s) + h_{i}^{d(a)}(s)\right\} \, \mathrm{d}s - \int_{0}^{t} \left\{h_{i}^{m(0)}(s) + h_{i}^{d(0)}(s)\right\} \, \mathrm{d}s\right) \, \mathrm{d}v}{\exp \left(-\int_{0}^{t} \left\{h_{i}^{m(0)}(s) + h_{i}^{d(0)}(s)\right\} \, \mathrm{d}s\right)}$$

• Using telescoping we get:

$$p(\boldsymbol{\theta}, \boldsymbol{u}, \boldsymbol{\theta}_{N} \mid T, \delta, \boldsymbol{Y}, \boldsymbol{N})$$

$$\propto \prod_{i=1}^{n} \prod_{j=1}^{n_{i}} p\{Y_{i}(t_{ij}), T_{i}, \delta_{i} \mid \mathcal{Y}_{i}(t_{i,j-1}), \mathcal{N}_{i}(t_{i,j-1}), \mathcal{X}_{i}, \boldsymbol{\theta}, \boldsymbol{u}_{i}\}$$

$$\times \prod_{j=1}^{n_{i}} p\{N_{i}(t_{ij}) \mid \mathcal{Y}_{i}(t_{i,j-1}), \mathcal{N}_{i}(t_{i,j-1}), Y_{i}(t_{ij}), T_{i}, \delta_{i}, \mathcal{X}_{i}, \boldsymbol{\theta}_{N}, \boldsymbol{u}_{i}\}$$

$$\times p(\boldsymbol{u}_{i} \mid \boldsymbol{\theta}) \times p(\boldsymbol{\theta}) \times p(\boldsymbol{\theta}_{N})$$

• Under sequential exchangeability, we have that

$$p\{N_i(t_{ij}) \mid \mathcal{Y}_i(t_{i,j-1}), \mathcal{N}_i(t_{i,j-1}), Y_i(t_{ij}), T_i, \delta_i, \mathcal{X}_i, \boldsymbol{\theta}_N, \boldsymbol{u}_i\} = p\{N_i(t_{ij}) \mid \mathcal{Y}_i(t_{i,j-1}), \mathcal{N}_i(t_{i,j-1}), \mathcal{X}_i, \theta_N\}$$

ullet \Rightarrow inference can be based on the first term (i.e., the observed data model) and ignore the second term

8 Computational Details (cont'd)

- Custom-made and tailored MCMC algorithm
 - □ Gibbs sampling (hierarchical centering for fixed effects)
 - ▷ adaptive Metropolis-Hastings
 - ▷ (Metropolis-adjusted Langevin algorithm for certain parameter)
 - > centered design matrices
- Speed via parallel sampling of random effects
- Chains run in parallel