Aula 001

Professores:

Geraldo Xexéo Geraldo Zimbrão

Conteúdo:

Modelagem de Informação

Modelagem da Informação

O que é um Modelo?

- Permite explicar, testar, analisar, resolver problemas no sistema real
- Nós veremos como o uso de abstrações nos permite construir um modelo adequado

Sistemas

Usamos a palavra sistema de muitas formas

- Sistemas no mundo real
 - Composições de objetos, ações, pessoas, etc...
- Sistemas de informática
 - Sistemas de computador
 - Programas de computador
 - Sistemas de informação

Exemplo de Modelos

$$F = m \times a$$

- ─ É um modelo matemático para relacionar grandezas físicas
 - Composições de objetos, ações, pessoas, etc...

─ É um modelo de uma célula

O que é um Modelo de Informação?

Mas sistemas de computação também são bastante abstratos

Exemplo de Modelo de Informação

Exemplo de Modelo de Informação

Exemplo de Modelo de Informação

Quem faz um modelo de informação?

Modelagem de Informação: Por que é feita?

Verificar x Validar

Confirmar a correção de um modelo em relação a outro modelo ou a si mesmo

 Confirmar a correção de um modelo em relação ao mundo real

Modelagem de Informação: Quando é feita?

Modelagem de Informação: Como é feita?

Existem vários métodos

- Orientado a Objeto UML
- Entidades e Relacionamentos
- Relacional

Técnica Geral

- Observação dos objetos
- Entendimento dos conceitos
 - Identificar
 - Conceituar
 - Entender
 - Assimilar
- Representação dos objetos
- Verificação da fidelidade e coerência
- Validação do Modelo

Níveis de Abstração

Conceitual

Lógico

Físico

Modelo Conceitual

- Representa o ambiente observado
- Independente da tecnologia
 - Não está sujeito às suas limitações
- ldeal para entendimento e conversação
- Estável a longo prazo
- Tipicamente:
 - Modelo ER
 - Modelo OO

Modelo Lógico

Adota uma tecnologia

Não adota um produto, dispositivo específico ou meio de armazenamento

Tipicamente:

- Modelo Relacional
- Modelo OO

Modelo Físico

- Exige o conhecimento físico das estruturas de dados
- Representa os dados na aplicação
- Totalmente dependente da solução adotada
 - Tecnologia
 - Produtos
- Tipicamente:
 - Modelo Relacional de um SGDB
 - Modelo OO + Relacional

O que veremos no curso?

