

图数据库 Nebula Graph 的架构演进 及典型应用

About Me

伊兴路 (Yee)

email: xinglu.yee@gmail.com

vesoft Inc.@hangzhou

Nebula Graph Maintainer

Contents

- ☐ Nebula Graph 2.0 Architecture
 - o nebula-graphd
 - o nebula-metad
 - nebula-storaged
- Nebula Graph use cases
- Future

Nebula Graph

DB-Engines Ranking of Graph DBMS

The DB-Engines Ranking ranks database management systems according to their popularity. The ranking is updated monthly.

This is a partial list of the complete ranking showing only graph DBMS.

Read more about the method of calculating the scores.

https://nebula-graph.com.cn

Since 2019

English | 中文 A distributed, scalable, lightning-fast graph database

Odocker passing package passing star 6313 fork 625

Neo4j Announces \$325 Million Series F Investment, the Largest in Database History

SAN MATEO, Calif. – June 17, 2021

□ inc	clude s	second	ary database models	32 systems in ranking, July 2021				
Rank					S			
Jul 2021	Jun 2021	Jul 2020	DBMS	Database Model	Jul 2021	Jun 2021	Jul 2020	
1.	1.	1.	Neo4j 🚦	Graph	57.16	+1.41	+8.24	
2.	2.	2.	Microsoft Azure Cosmos DB 🖽	Multi-model 🔃	36.70	+0.23	+6.30	
3.	3.	3.	ArangoDB 🖽	Multi-model 🔟	4.73	-0.18	-1.12	
4.	4.	4.	OrientDB	Multi-model 🔞	4.16	-0.30	-0.72	
5.	5.	5.	Virtuoso 🖪	Multi-model 👸	4.01	+0.32	+1.57	
6.	1 7.	1 0.	GraphDB 🔠	Multi-model 🔃	2.44	+0.13	+1.13	
7.	4 6.	7.	JanusGraph	Graph	2.36	-0.13	+0.34	
8.	8.	4 6.	Amazon Neptune	Multi-model 🔞	2.13	-0.07	-0.08	
9.	9.	1 3.	TigerGraph 🖽	Graph	1.91	+0.03	+0.98	
10.	10.	1 11.	Stardog 🚹	Multi-model 🔞	1.79	+0.06	+0.53	
11.	11.	4 8.	Dgraph 🖪	Graph	1.76	+0.05	+0.21	
12.	12.	4 9.	Fauna 🔠	Multi-model 🛐	1.74	+0.07	+0.27	
13.	13.	1 4.	AllegroGraph 🔠	Multi-model 🔞	1.33	0.00	+0.41	
14.	14.	4 12.	Giraph	Graph	1.21	+0.01	+0.19	
15.	15.	1 20.	Nebula Graph 🚹	Graph	1.10	+0.05	+0.79	
16.	1 7.	1 7.	TypeDB 🖽	Multi-model 🛐	0.84	+0.03	+0.24	
17.	4 16.	4 15.	Blazegraph	Multi-model 🔞	0.84	+0.02	+0.14	
18.	18.	4 16.	Graph Engine	Multi-model 🛐	0.74	+0.00	+0.12	

Nebula Graph

Nebula Graph

- ☐ Distributed Graph Database (HA, Scale in/out)
- ☐ Schema-based, Property Graph
- ☐ Low latency
- ☐ Shared-nothing
- ☐ Cloud Native(nebula on K8s)
- ☐ Open Source (Open Core)

Nebula Graph Architecture

Nebula Graph Service

How to query graph data?

Graph Query Language

nGQL: SQL-like

```
nebula> GO FROM "player100" \
    OVER follow BIDIRECT \
    YIELD $$.player.name as Name | \
    GROUP BY $-. Name \
    YIELD $-.Name as Player, count(*) AS Name_Count;
+----+
          | Name_Count |
| Player
+----+
| "Tiago Splitter" | 1
+----+
| "Aron Baynes" | 1
+----+
| "Boris Diaw"
+----+
| "Manu Ginobili" | 2
+----+
| "Dejounte Murray" | 1
+----+
| "Danny Green" | 1
+----+
| "Tony Parker"
+----+
| "Shaquille O'Neal" | 1
+----+
| "LaMarcus Aldridge" | 1
+----+
| "Marco Belinelli" | 1
+----+
Got 10 rows (time spent 3527/4423 us)
```

```
LOOKUP ON ME WHERE ME.code == "1234" | \
YIELD $-.VertexID AS dst | \
GO FROM $-.dst OVER P YIELD P._dst AS dst | \
GO FROM $-.dst OVER T \
WHERE any(cur IN split($^.HB.curr, ",") WHERE cur == "CNY") \
YIELD T. dst AS dst, $^.HB.bn as bn0, $^.HB.c as c0 | \
GO FROM $-.dst OVER T \
WHERE any(cur IN split($^.HB.curr, ",") WHERE cur == "CNY") \
YIELD T. dst AS dst, $-.bn0 AS bn0, $-.c0 AS c0 | \
GO FROM $-.dst OVER T \
WHERE any(cur IN split($^.HB.curr, ",") WHERE cur == "CNY") \
YIELD T._dst AS dst, $-.bn0 AS bn0, $-.c0 AS c0 | \
GO FROM $-.dst OVER P REVERSELY \
WHERE any(cur IN split($^.HB.curr, ",") WHERE cur == "CNY") \
  AND $$.ME.code=="4321" AND $$.ME.name=="Global" \
YIELD $^.HB.bn as bn3, $^.HB.c as c3, $-.bn0 AS bn0, $-.c0 AS c0 | \
ORDER BY $-.bn3 | \
LIMIT 100;
```

Graph Query Language

openCypher: Declarative language

```
MATCH (:ME{code:"4321"})-[:P]->(t0:HB)-[:T]-(t1:HB)-[:T]-(t2:HB)-[:T]-(t3:HB)<-[:P]-(:ME{code:"1234",name:"Global"})
WHERE
    any(cur IN split(t0.curr, ",") WHERE cur=="CNY") AND
    any(cur IN split(t3.curr, ",") WHERE cur=="CNY")
RETURN t0.bn, t3.bn, t0.c, t3.c
ORDER BY t3.bn
LIMIT 100
```


Graph Query Language

Nebula Graph 2.0: compatible with openCypher (MATCH)

Possible Timeline for a GQL Standard

The following is a speculative, optimistic timeline for the progression of a formal Graph Query Language Standard

- 2019-09 39075 Database Language GQL project approved this is the start
- 2021-03 CD Ballot starts
- 2021-06 CD Ballot comment resolution
- 2021-09 DIS (Draft International Standard) Ballot
- 2022-02 Comment resolution
- 2022-05 FDIS (Final DIS) Ballot
- 2022-08 International Standard

This timeline depends on work that has not yet been done.

nebula-graphd (1.0)

- ☐ Fast, no scheduling overhead
- ☐ Simple but each executor class is huge
- ☐ Hard to support new operations

nebula-graphd (2.0)

- ☐ Validator: Semantic Checking
- ☐ Optimizer: RBO, PushFilterDownXRules, TopNRule etc.
- ☐ Scheduler: Asynchronous execution framework
- ☐ Share Physical Operators for nGQL and openCypher (MATCH)

Operators

GetNeighbors

GetVertices

GetProps

Project

Join

Filter

Union

Dedup

EdgeIndexFullScan

EdgeIndexPrefixScan

 ${\sf EdgeIndexRangeScan}$

VertexIndexFullScan

VertexIndexPrefixScan

VertexIndexRangeScan

Loop

Select

...

Nebula Storage Service

How to store graph data?

nebula-metad

- ☐ User accounts
- □ Partitions
- ☐ Graph spaces
- □ Schema information
- ☐ TTL-based data eviction
- □ Jobs
- □ Sessions
- ☐ Slow queries

nebula-storaged

- ☐ Graph Interface(Vertex/Edge)
- Move compute to data
- ☐ Strong Consistency (Raft)
- ☐ Learner for 3rd-party Systems
- ☐ Backup & Restore
- Zone

Graph on KV store

□Cut edge□Hash partition□Adjacency list

Graph on KV store

	Edge							
V1.x	Type	PartID	VertexID	Edge Type	Rank	VertexID	Timestamp	
	(1 byte)	(3 bytes)	(8 bytes)	(4 bytes)	(8 bytes)	(8 bytes)	(8 bytes)	
V2.x	Type	PartID	VertexID	Edge Type	Rank	VertexID	PlaceHolder	
	(1 byte)	(3 bytes)	(n bytes)	(4 bytes)	(8 bytes)	(n bytes)	(1 byte)	

Index

- ☐ Stored in same partition with vertex/edge
- ☐ Support MATCH/LOOKUP functionality, not speed up query
- ☐ Fulltext Index powered by Elastic Search

Key								
Partiti	onld	IndexId	Index	Index binary Ve				
Kev								
incy								
PartitionId	IndexId	Index binary	SrcVertexId	EdgeRank	DstVertexId	l k		

Nebula fulltext Architecture

Zone

- Disaster Recovery
- ☐ Space
- ☐ Group
- ☐ Zone
- ☐ Host

Backup & Restore

Graph Computing

- Point queries
- Whole Graph Computing
- ☐ Think like a vertex(Vertex-Centric)

Cloud Native

- ☐ nebula-operator: CRD nebulacluster
- ☐ nebula-stats-exporter: Grafana/Prometheus

Nebula Benchmark (1.0 vs 2.0)

☐ Data: Idbc_snb_sf100

☐ Query:

GO {x} STEP FROM {id} OVER knows \ YIELD DISTINCT knows.`time` as t, \$\$.person.first_name, \$\$.person.last_name, \$\$.person.birthday as birth | \ order by \$-.t,\$-.birth | limit 10

More Infos: https://discuss.nebula-graph.com.cn/search?q=benchmark

Nebula Graph Use Cases

Nebula Graph Adopters

Use case

Knowledge Graph

Use case

security information

Use case

Data lineage Analysis

Future

- ☐ Support more openCypher(MATCH) features
- ☐ Performance tuning (memory, plan, expression...)
- ☐ Ease of use (Studio, Dashboard and more tools)
- ☐ Transaction
- HTAP
- ☐ ...

https://nebula-graph.com.cn/nuc2021/

Nebula User Conference

▶ 2021.08.08
◎ 北京北辰洲际酒店

Nebula Graph 用户大会(NUC)是欧若数网旗下开源分布式图数据库 Nebula Graph 举办的一年一度的图数据库大会盛宴,它 面向所有 Nebula 社区用户及对图数据库有兴趣的架构师、技术负责人和技术从业人员。大会旨在帮助企业和研发人员快速了 解图数据库的应用场景和技术趋势。期间,来自多家一线互联网科技公司的技术人员将会参与分享和讨论。

我要报名

麦思博(msup)有限公司是一家面向技术型企业的培训咨询机构,携手2000余位中外客座导师,服务于技术团队的能力提升、软件工程效能和产品创新迭代,超过3000余家企业续约学习,是科技领域占有率第1的客座导师品牌,msup以整合全球领先经验实践为己任,为中国产业快速发展提供智库。

高可用架构主要关注互联网架构及高可用、可扩展及高性能领域的知识传播。订阅用户覆盖主流互联网及软件领域系统架构技术从业人员。 高可用架构系列社群是一个社区组织, 其精神是"分享+交流", 提倡社区的人人参与, 同时从社区获得高质量的内容。