STAT 344: Chapter 2.1

Connor Baker

August 2018

Definition (Random experiment). An experiment that can result in different outcomes, even if it is performed the same way every time.

Definition (Sample Space). The set of all possible outcomes of a random experiment, which is denoted by an S.

Definition (Discrete Sample Space). A sample space in which the number of elements are finite or countably infinite. That is, $|S| \leq |\mathbb{N}|$.

Definition (Continuous Sample Space). A sample space in which the number of elements are uncountably infinite. That is, $|S| = |\mathbb{R}|$.

Definition (Event). A subset of the sample space of a random experiment.

Definition (Union). The event that consists of all outcomes that are contained in either of two events E_1 and E_2 , denoted $E_1 \cup E_2$.

Definition (Intersection). The event that consists of outcomes that are contained in both of two events E_1 and E_2 , denoted $E_1 \cap E_2$.

Definition (Complement). The set of outcomes in the sample space that are not in the event E, denoted E'.

Remark. Events are used to define outcomes of interest from a random experiment. One is often interested in the probabilities of specified events.

Definition (Mutually Exclusive Events). Two events E_1 and E_2 are said to be mutually exclusive if and only if

$$E_1 \cap E_2 = \emptyset$$
.

Definition (Complement (Double Negation)). By the definition of the complement,

$$(E')' = E.$$

Definition (Distributive Law). Union and intersection are distributive as follows:

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

and

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C).$$

Definition (Multiplication Rule (for Counting Techniques)/Fundamental Counting Principle). Assume that there are k steps to finish a process, and n_k is the number of ways the kth step can be completed. Then the total number of ways the process can be finished is

$$n_1 \times n_2 \times \cdots \times n_k$$
.

Definition (Permutation). An ordered sequence of the elements in a set used to determine the number of outcomes in events and sample spaces. The number of outcomes for n elements is given as

$$n! = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1.$$

Remark. Such permutations are sometimes called linear permutations.

Definition (Permutations of Subsets). The number of subsets of r elements selected form a set of n different elements is

$$P_r^n = n \times (n-1) \times \cdots \times (n-r+1) = \frac{n!}{(n-r)!}.$$

Definition (Permutations of Similar Objects). The number of permutations of n, where $n = n_1 + n_2 + \cdots + n_r$, objects of which n_i are each of distinct type is

$$\frac{n!}{n_1!n_2!\cdots n_r!}$$

Definition (Combinations). A subset selected without replacement from a set used to determine the number of outcomes in events and sample spaces, denoted

$$C_r^n = \binom{n}{r} = \frac{n!}{r!(n-r)!}.$$

Definition (Sampling with Replacement). A method to select samples in which items are replaced between successive selections.

Definition (Sampling without Replacement). A method to select samples in which items are not replaced between successive selections.