

Decimal into other bases Whole number Floating point number Binary Decimal Octal Decimal Hexadecimal

Decimal into other bases Whole number

Decimal

Binary

Divide the given number by 2

Decimal

Octal

Divide the given number by 8

Decimal

Hexadecimal

Divide the given number by 16

Decimal into Binary

Convert
$$(198)_{10} = (11000110)_2$$

Whole number

2	198	
2	-	
2	-	
2	-	
2	-	
2	-	
2	-	
2	-	

 Quotient
 99492412631

 Remainder
 0 1 1 0 001

Answer (11000110)₂

Decimal into Octal

Convert
$$(798)_{10} = (1436)_{8}$$

Whole number

8	798		
8	-	Quotient	99121
8	-		1 2 4
	-	Remainder	6 3 4

Answer (1436)

Decimal into Hexadecimal

Convert
$$(798)_{10} = (31E)_{16}$$

Whole number

Answer (31E)₁₆

Floating point number

Decimal into Binary

Convert
$$(.625)_{10} = (.101)_{2}$$

Is the Fractional Part = 0

Ans

Now the fractional part = 0 So, ST

Answer

$$(.625)_{10} = (.101)_{2}$$

Floating point number

Decimal into Octal

Convert
$$(0.015625)_{10} = (0.01)_{8}$$

Is the Fractional Part

Integer Part

Fractional Part

.015625 * 8 = 0.125

.125

8 = 1.000

0.0

Now the fractional part = 0 So, **STOP**

Answer

 $(.015625)_{10} = (0.01)_{8}$

Floating point number

Decimal into Hexadecimal Conversion

Convert
$$(.93)_{10} = ($$

Is the Fractional Part = 0

Integer Part

Fractional Part

.88

Ans

$$16 = 14.88$$

$$16 = 14.08 14$$

$$16 = 1.28$$

$$16 = 4.48$$

$$16 = 7.68$$

0.08

Now the fractional part not ending.. So,

Doing it five times is enough if it is not ending (You can do it more if you want)

Answer

$$(.93)_{10} = (.EE147)_{16}$$

Decimal into other bases

What if we are given with the number that has integer part as well as fractional part ?? How will we solve it ?

- e.g (198.625)10 into ()2
- Solution
- the integral part (198) using Prime factorization method
- & the fractional part (0.625) using the conversion method of decimal into other bases for floating point numbers
- & then Combine both answers to get final answer

Decimal into Binary

Convert
$$(198.625)_{10} = ($$
 $)_2$

Final Answer

 $(198.625)_{10} = (11000110.101)_{2}$

Decimal into Octal

Convert
$$(798.015625)_{10} = ($$

Final Answer

 $(798.015625)_{10} = (1436.01)_{8}$

Decimal into Hexadecimal

Convert
$$(798.93)_{10} = ($$
 $)_{16}$

Final Answer

 $(798.93)_{10} = (31E.EE147)_{16}$