University of Santiago de Compostela

Manuel Mucientes

Introduction

- Support Vector Machines (SVMs) are one of the best classifiers
- SVMs are a generalization of the maximal margin classifier

esquema que vamos a seguir

- Maximal margin classifiers require that the classes are separable by a linear boundary
- Support vector classifiers are an extension of maximal margin classifiers

 SVMs extend support vector classifiers to accommodate nonlinear boundaries

Hyperplanes

■ In a p-dimensional space, a hyperplane is a flat affine (needs not to pass through the origin) subspace of dimension p-1

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p = 0$$

A hyperplane divides a pdimensional space into two halves

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p < 0$$

normalizar dividiendo entre el modulo de beta (sin incluir beta 0!!!)

Classification using a Separating Hyperplane

Separating hyperplane:

- $\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip} > 0 \text{ if } y_i = 1$
- $\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip} < 0 \text{ if } y_i = -1$
- $y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip}) > 0$
- Classify a test observation based on the sign of:

$$f(x^*) = \beta_0 + \beta_1 x_1^* + \beta_2 x_2^* + \ldots + \beta_p x_p^*$$

- The magnitude of $f(x^*)$ gives the confidence
- This classifier leads to a linear decision boundary

- If data is separable by a hyperplane, there exist an infinite number of such hyperplanes
- Maximal margin hyperplane
 - Maximal Margin Classifier (MMC)
- Support vectors: observations in p-dimensional space that "support" the hyperplane
 - If they were moved the maximal margin hyperplane would move as 🗷 ... well

Solution to the optimization problem:

maximize
$$M$$

$$\beta_0, \beta_1, \dots, \beta_p$$
subject to
$$\sum_{j=1}^p \beta_j^2 = 1,$$

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M \quad \forall i = 1, \dots, n$$

- Second condition: each observation in the correct side, at least at a distance M
- First condition: adds meaning to the second constraint; distance to the hyperplane
- Classification rule: $G(x) = sign[x^T \beta + \beta_0]$

■ Get rid of the $||\beta||=1$ constraint

$$\frac{1}{||\beta||} y_i(x_i^T \beta + \beta_0) \ge M$$

$$y_i(x_i^T \beta + \beta_0) \ge M||\beta||$$

■ We can arbitrarily set $||\beta|| = 1/M$

$$\min_{\beta,\beta_0} \frac{1}{2} ||\beta||^2$$

subject to
$$y_i(x_i^T \beta + \beta_0) \ge 1, i = 1, \dots, N$$

- Convex optimization problem:
 - Quadratic criterion
 - Linear inequality constraints

Lagrange multipliers method:

Maximize
$$f(x)$$

subject to $g_j(x) = 0$ for $j = 1, ..., J$,
and $h_k(x) \ge 0$ for $k = 1, ..., K$.

Lagrangian function:

$$L(x, \{\lambda_j\}, \{\mu_k\}) = f(x) + \sum_{j=1}^{J} \lambda_j g_j(x) + \sum_{k=1}^{K} \mu_k h_k(x)$$

subject to $\mu_k \ge 0$ and $\mu_k h_k(x) = 0$ for $k = 1, ..., K$.

- Karush-Kuhn-Tucker (KKT) conditions
- In our optimization problem, the Lagrange (primal) function to be **minimized** w.r.t. β and β_0 is:

$$L_P = \frac{1}{2} ||\beta||^2 - \sum_{i=1}^{N} \alpha_i [y_i(x_i^T \beta + \beta_0) - 1]$$

- Minimization: inverted sign
- \blacksquare α_i : Lagrange multipliers (μ_k)

$$L_P = \frac{1}{2} ||\beta||^2 - \sum_{i=1}^N \alpha_i [y_i(x_i^T \beta + \beta_0) - 1]$$
 (1)

■ Deriving w.r.t. β and β_0 and setting derivatives to zero:

$$\beta = \sum_{i=1}^{N} \alpha_i y_i x_i, \quad (2) \quad 0 = \sum_{i=1}^{N} \alpha_i y_i, \quad (3)$$

Substituting Eqs. 2-3 in Eq. 1: Lagrangian (Wolfe) dual func.

$$L_D = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \alpha_i \alpha_k y_i y_k x_i^T x_k$$
subject to $\alpha_i \ge 0$ and $\sum_{i=1}^{N} \alpha_i y_i = 0$.
$$\alpha_i [y_i(x_i^T \beta + \beta_0) - 1] = 0 \ \forall i.$$
 (KKT conditions)

- Maximize L_D: simpler convex optimization problem
 - Obtains α_i

- \blacksquare if $\alpha_i > 0$, then $y_i(x_i^T \beta + \beta_0) = 1$:
 - \mathbf{x}_i is in the edge of the margin
- if $y_i(x_i^T \beta + \beta_0) > 1$: $\alpha_i = 0$
 - \mathbf{x}_i is outside the margin
- Support vectors: x_i with $\alpha_i > 0$

 \blacksquare β : linear combination of the support vectors (eq. 2)

$$\beta = \sum_{i=1}^{N} \alpha_i y_i x_i,$$

- \blacksquare β_0 obtained solving eq. 4 for any support vector
 - Average of all the solutions for numerical stability

- No separating hyperplane exists
- Sometimes, a classifier based on a separating hyperplane is not desirable
 - Extremely sensitive to one observation: overfitting

- A classifier that does not perfectly separate the two classes
 - Greater robustness to individual observations
 - Better classification of most training observations

On the margin: 2, 9 Wrong side of the margin: 1, 8

On the margin: 2, 7, 9
Wrong side of the margin: 1, 8
Wrong side of the hyperplane: 11, 12

- ϵ_i tells where the i-th observation is located: percentage of M
 - ε_i=0: observation in the correct side of the margin
 - ε_i>0: observation in the wrong side of the margin
 - ε_i>1: observation in the wrong side of the hyperplane (misclassification)

Optimization problem:

$$\max_{\beta_0,\beta_1,...,\beta_p,\epsilon_1,...,\epsilon_n} M$$
subject to
$$\sum_{j=1}^p \beta_j^2 = 1,$$

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_p x_{ip}) \ge M(1 - \epsilon_i)$$

$$\epsilon_i \ge 0, \sum_{i=1}^n \epsilon_i \le constant$$

Rephrasing the problem:

min
$$\|\beta\|$$
 subject to
$$\begin{cases} y_i(x_i^T\beta + \beta_0) \ge 1 - \xi_i \ \forall i, \\ \xi_i \ge 0, \ \sum \xi_i \le \text{constant.} \end{cases}$$

Computationally convenient to re-express as:

$$\min_{\beta,\beta_0} \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^N \xi_i$$

subject to $\xi_i \ge 0$, $y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i \ \forall i$

- C proportional to the inverse of the constant
 - Inverse of a regularization parameter
 - Separable case: $C=\infty$

Lagrange (primal) function: minimize w.r.t. β, β₀, ε_i

$$L_P = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i [y_i(x_i^T \beta + \beta_0) - (1 - \xi_i)] - \sum_{i=1}^{N} \mu_i \xi_i$$
(1)

Setting the derivatives to zero:

$$\beta = \sum_{i=1}^{N} \alpha_i y_i x_i \quad (2) \qquad 0 = \sum_{i=1}^{N} \alpha_i y_i \quad (3)$$

$$\alpha_i = C - \mu_i, \ \forall i \quad (4) \qquad \alpha_i, \ \mu_i, \ \xi_i \ge 0 \ \forall i \quad (5)$$

Substituting eqs. 2-4 in eq. 5: Lagrangian (Wolfe) dual func.

$$L_D = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{i'=1}^{N} \alpha_i \alpha_{i'} y_i y_{i'} x_i^T x_{i'}$$

■ Maximize L_D : α_i , μ_i , $\xi_i \geq 0 \ \forall i$

$$\mu_i \xi_i = 0, \qquad (2)$$

$$y_i(x_i^T \beta + \beta_0) - (1 - \xi_i) \ge 0, \tag{3}$$

- Support vectors: $\alpha_i > 0$ (eq. 1)
 - Support vectors in the edge: ε_i =0, 0< α_i <C (eqs. 2, 5)
 - ullet From eq. 1 use any of these margin points to solve for eta_0
 - Average all the solutions for numerical stability
 - The remainder support vectors: $\varepsilon_i > 0$, $\alpha_i = C$ (eqs. 2, 5)
- Decision function: $G(x) = sign[x^T \beta + \beta_0]$

- C is the tuning parameter
 - Bias-variance trade-off
 - Choose the value of *C* via cross-validation
- Note: in James et al. the C parameter is not the standard one, but inversely proportional!!!

- Non-linear class boundaries
- Enlarge the feature space

- Feature space enlarged with functions of the predictors
 - Huge number of possible features
- SVM enlarge the feature space using kernels
- Support vector classifier: inner products of the observations

$$G(x) = \operatorname{sign}[x^T \beta + \beta_0]$$

$$\beta = \sum_{i=1}^{N} \alpha_i y_i x_i$$

$$\langle x_i, x_{i'} \rangle = \sum_{j=1}^p x_{ij} x_{i'j}$$

$$\langle x_i, x_{i'} \rangle = \sum_{j=1}^p x_{ij} x_{i'j} \qquad f(x) = \beta_0 + \sum_{i=1}^N \alpha_i \langle x, x_i \rangle \mathbf{y}_i$$

- Transformed feature vectors h(x):
 - Solution function: $f(x) = h(x)^T \beta + \beta_0$ $= \sum_{i=1}^N \alpha_i y_i \langle h(x), h(x_i) \rangle + \beta_0$
 - Cheap computations of the inner products for particular choices of h
 - All we need are inner products
 - To represent the linear classifier f(x)
 - To compute its coefficients
- Need not to specify h(x), but the kernel function:

$$K(x, x') = \langle h(x), h(x') \rangle$$

Similarity between two observations

Solution:
$$\hat{f}(x) = \sum_{i=1}^{N} \hat{\alpha}_i y_i K(x, x_i) + \hat{\beta}_0$$

- Kernel vs. enlarging the feature space using functions
 - Computational advantage: n(n-1)/2 inner products
 - Without explicitly working in the enlarged feature space
- Linear kernel: SVC $K(x_i, x_{i'}) = \sum_{i=1}^{p} x_{ij} x_{i'j}$
- Combination of SVC with a non-linear kernel: SVM
- Polynomial kernel of degree d: $K(x_i, x_{i'}) = (1 + \sum_{i=1}^{P} x_{ij} x_{i'j})^d$
- Radial kernel: $K(x_i, x_{i'}) = \exp(-\gamma \sum_{j=1}^{p} (x_{ij} x_{i'j})^2)$
 - Very local behavior: training observations far from x play no role

Example: Heart dataset

- Training (upper row)
 - 207 observations
 - Best: SVM- γ =10⁻¹
- Test (lower row)
 - 90 observations
 - Best: SVC, SVM- $\gamma = 10^{-2}$, SVM- $\gamma = 10^{-3}$

SVMs with more than Two Classes

K classes

- One vs. One
 - Learn K(K-1)/2 (all the pairs) of classifiers
 - Test: count the number of times that the observation is assigned to each of the K classes

- One vs. All
 - Learn K classifiers: k-th class vs. remaining K-1 classes
 - Test: assign the observation to the class with largest f(x) (highest level of confidence)

Support Vector Regression

Minimize:

$$H(\beta, \beta_0) = \sum_{i=1}^{N} V(y_i - f(x_i)) + \frac{\lambda}{2} \|\beta\|^2$$

$$V_{\epsilon}(r) = \begin{cases} 0 & \text{if } |r| < \epsilon, \\ |r| - \epsilon, & \text{otherwise.} \end{cases}$$

- \blacksquare λ : regularization parameter
- SVR not as good for regression as SVMs for classification

Exercise

Given the following classification data set with 6 examples, 2 input variables and 1 output variable, using a linear SVM with C=1, we have obtained the corresponding alpha values indicated in the last column.

What	are	the	support		vectors		and
which	of	them	are	in	the	ma	argin
bound							

- What are the hyperplane coefficients (beta, beta_0) and the value of M?
- What are the values of epsilon?
- Which examples are incorrectly classified?

Example	X_1	X_2	Y	alpha
1	-1	-2	+1	0.944
2	-1	+2	+1	0
3	+1	+4	+1	0.111
4	+3	+4	-1	0.056
5	0	-2	-1	1
6	+3	-5	-1	0

Exercise

- Given the following classification data set with 16 examples, 2 input variables and 1 output variable, using a linear SVM with C=1, we have obtained the corresponding alpha values indicated in the last column.
 - What are the support vectors and which of them are in the margin boundary?
 - What are the hyperplane coefficients (beta, beta_0) and the value of M?
 - What are the values of epsilon?
 - Which examples are incorrectly classified?

Example	X ₁	X_2	Y	alpha
1	2	6	1	0
2	4	3	1	1
2 3	4	4	1	0,3333
4	4	6	1	0
5	6	3	1	1
4 5 6 7 8 9	7	7	1	0,1667
7	8	4	1	1
8	9	8	1	1
9	2	1	-1	1
10	6	2	-1	0,5
11	7	4	-1	1
12	8	8	-1	1
13	9	1	-1	0
14	10	3	-1	0
15	10	6	-1	1
16	12	4	-1	0

Bibliography

- G. James, D. Witten, T. Hastie, y R. Tibshirani, An Introduction to Statistical Learning with Applications in R. Springer, 2021.
 - Chapter 9
- T. Hastie, R. Tibshirani, y J. Friedman, The elements of statistical learning. Springer, 2009.
 - Chapter 12