Name: Jerry Jiang

1. Suppose $f: G \to G'$ is a group homomorphism with identities e and e' respectively. Prove that f(e) = e'. 10 Excellent!

2. Show that the improper integral $\int_0^\infty \frac{1}{1+x^2} dx$ converges and find its value.

Let
$$x = tan(u)$$
, then $dx = [tan(u)]'du = \frac{1}{\cos^2 u} du$

Therefore,
$$\int_0^\infty \frac{1}{1+\chi^2} d\chi = \int_0^\infty \frac{1}{\frac{\cos^2 u}{\cos^2 u} + \frac{\sin^2 u}{\cos^2 u}} \cdot \frac{1}{\cos^2 u} du$$

$$= \int_0^\infty \frac{1}{(2\pi s^2 u + sin^2 u)} du$$

$$= u \int_0^\infty \frac{1}{(2\pi s^2 u + sin^2 u)} du$$

$$\int_{1+x^{2}}^{\infty} dx = \arctan x \Big|_{0}^{\infty} = \frac{11}{2}.$$

3. Suppose $\phi \colon \mathbb{Z}_{30} \to \mathbb{Z}_{30}$ is a homomorphism with $\ker(\phi) = \{0, 10, 20\}$. If $\phi(23) = 9$ find all elements that map to 9.

. To verify,
$$\ker(\phi)$$
 is indeed $\{0, 10, 20\}$.

. For
$$\phi(x) = 9$$
, $3x \mod 30 = 9$, $3x = 9 + 30 k$ where $k \in \mathbb{Z}$.

.
$$x = 3 + 10k$$
. Since x is integer from 0 to 29, the three possible x are 3, 13, and 23.

Mare simply
$$p(123 + 10) = q(123) + q(10)$$
 by homomorphing $Q(13) = q(13) = q(123) + q(10)$

4. By considering the permutations $\alpha = (12)$ and $\beta = (123)$ in S_4 , show that $f: S_4 \to S_4$ defined by $f(p) = p \circ p$ is not a homomorphism.

$$f(\alpha \circ \beta) = f((12)(123)) = f((12)(12)(23)) = (12)(23) = (12)(23) = (12)(12)(12) = (12)(13) = (12)($$

5. Consider the curve $y = x^3$. The tangent at a point P on the curve meets the curve again at Q. The tangent at Q meets the curve again at R. Denoting the x-coordinates of P, Q, R by x_1 , x_2 , x_3 respectively where $x_1 \neq 0$, show that x_1 , x_2 , x_3 form the first three terms of a divergent geometric sequence.

• Let P be
$$(a, a^3)$$
.
• $f'(x) = 3x^2$, $f(a) = 3a^2$.
• $f'(x) = 3x^2$, $f(a) = 3a^2$.
• $f'(x) = 3x^2$, $f(a) = 3a^2$.
• $f'(x) = 3x^2$, $f'(a) = 3x^2$.
• $f'(x) = 3x^2$, $f'(x) = 2x^2$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x^2) = 0$.
• $f'(x) = (x^2 + 2x$

Therefore,
$$\chi_1 = \alpha$$
, $\chi_2 = -2\alpha$, $\chi_3 = 4\alpha$.
 $r = -2$.

Since |r|>1, the sequence diverge.

