

Larutan Elektrolit

A. PENDAHULUAN

- ▲ Larutan elektrolit adalah larutan yang dapat menghantarkan listrik.
- ▲ Larutan non-elektrolit adalah larutan yang tidak dapat menghantarkan listrik.
- Menurut teori ion Arrhenius:
 - Larutan elektrolit adalah zat yang mengandung atau dapat terion.
 Contoh: Larutan magnesium klorida.
 MgCl₂(aq) → Mg²+(aq) + 2Cl⁻(aq)
 - 2) Larutan non-elektrolit adalah zat yang tidak mengandung atau tidak dapat terion.
 Contoh: Alkohol.
 C₂H₅OH(l) → C₂H₅OH(aq)
- Ionisasi adalah proses terurainya suatu larutan menjadi molekul-molekul ion pembentuknya.
- Derajat ionisasi adalah derajat yang menunjukkan tingkat kesempurnaan ionisasi.

 $\alpha = \frac{\text{jumlah zat terion}}{\text{jumlah zat awal}}$

B. LARUTAN ELEKTROLIT

- Larutan elektrolit merupakan senyawa dengan ikatan kovalen polar atau ionik.
- Nifat larutan elektrolit:
 - 1) Dapat menghantarkan listrik.
 - 2) Memiliki derajat ionisasi yang berkisar antara $0 < \alpha \le 1$.
 - 3) Dapat menyalakan lampu dan/atau menghasilkan gelembung pada elektroda karena dapat menghantarkan listirk.
- **Larutan elektrolit** dapat menghantarkan listrik karena:
 - Pada senyawa ionik, larutan terion menjadi ion-ion bermuatan listrik yang bergerak bebas menghantarkan listrik.
 - 2) Pada senyawa kovalen polar, larutan terion akibat gaya tarik antar molekul yang memutuskan ikatan atom molekul.
- 🔪 Daya hantar lelehan dan larutan senyawa:

-			
Daya hantar	Ionik	Kovalen	
larutan	+	+	
lelehan	+	_	

Larutan elektrolit dapat bersifat elektrolit kuat atau elektrolit lemah.

- Senyawa yang tergolong larutan elektrolit kuat:
 - 1) Golongan asam kuat dan basa kuat

Asam kuat		Basa kuat		
HCl	HNO ₃	NaOH	Mg(OH) ₂	
HBr	HClO₄	КОН	Ca(OH) ₂	
HI	H ₂ SO ₄		Sr(OH) ₂	

2) Garam dari asam kuat-basa kuat

Contoh:

NaCl (dari NaOH dan HCl), NaBr (dari NaOH dan HBr), KI (dari KOH dan HI), KNO $_3$ (dari KOH dan HNO $_3$), dll.

Nerbedaan larutan elektrolit kuat dan lemah:

Elektrolit Kuat	Elektrolit Lemah
Berupa asam kuat/ basa kuat/ garam dari asam-basa kuat	Selain elektrolit kuat
Molaritas besar	Molaritas kecil
Jumlah ion banyak	Jumlah ion sedikit
Derajat ionisasi α = 1	Derajat ionisasi 0 < α < 1
Nyala lampu terang	Nyala lampu redup/mati
Banyak terbentuk gelembung	Sedikit terbentuk gelembung

C. LARUTAN NON-ELEKTROLIT

- **Larutan non-elektrolit** merupakan senyawa netral dan/atau kovalen non-polar.
- Sifat larutan non-elektrolit:
 - Tidak dapat menghantarkan listrik, karena tidak dapat terionisasi.
 - 2) Memiliki derajat ionisasi $\alpha = 0$ (tidak terion).
 - Tidak dapat menyalakan lampu dan tidak menghasilkan gelembung pada elektroda, karena tidak dapat menghantarkan listrik.

D. PERSAMAAN REAKSI IONISASI

- Persamaan reaksi ionisasi adalah persamaan reaksi yang menjelaskan proses ionisasi larutan elektrolit.
- Reaksi ionisasi elektrolit kuat merupakan reaksi searah karena zat terion sempurna (α = 1).
 Contoh:
 - Reaksi ionisasi asam klorida,
 HCl(aq) → H⁺(aq) + Cl⁻(aq)
 - Reaksi ionisasi asam sulfat,

 $H_2SO_4(aq) \rightarrow 2H^+(aq) + SO_4^{2-}(aq)$

Reaksi ionisasi elektrolit lemah merupakan reaksi kesetimbangan karena zat terion sebagian $(0 < \alpha < 1)$.

Contoh:

Reaksi ionisasi asam tiosulfat,
 H₂S₂O₃(aq) ⇒ 2H⁺(aq) + S₂O₃²⁻ (aq)

Reaksi ionisasi besi (III) hidroksida,
 Fe(OH)₃(aq) ⇒ Fe³⁺(aq) + 3OH⁻(aq)

E. PENCEMARAN LINGKUNGAN

- Parameter pencemaran air didasarkan atas sifat air sebagai larutan elektrolit.
- 🔦 Parameter pencemaran air:
 - 1) **pH**, yaitu tingkat keasaman yang dimiliki oleh air.
 - 2) DO (*Dissolved Oxygen*), yaitu jumlah oksigen yang terlarut dalam air.
 - 3) **BOD** (*Biochemical Oxygen Demand*), yaitu jumlah oksigen yang dibutuhkan makhluk hidup dalam air untuk hidup.
 - COD (Chemical Oxygen Demand), yaitu jumlah oksigen yang dibutuhkan untuk melakukan reaksi kimia dalam air.
 BOD dan COD yang tinggi akan menurunkan
 - nilai DO.
 5) TDS (*Total Dissolved Solid*), yaitu jumlah zat
- terlarut dalam air. **^ Air yang baik** adalah air yang memiliki pH sekitar
- 7 (netral), DO yang tinggi, BOD, COD dan TDS yang rendah.
- Air yang buruk adalah air yang memiliki pH < 7 (asam) atau pH > 7 (basa), DO yang rendah, BOD, COD dan TDS yang tinggi.