On the Validity of Analytic Potential Approximations for Galaxy Disks

ASTR 513, Statistics & Computation, Term Project

Himansh Rathore¹

¹Graduate Research Assistant Department of Astronomy & Steward Observatory University of Arizona

December 5, 2022

Outline

- Introduction
- Disk Models
- Motivating the Problem
- 4 Data Description
- Fitting Methodology
- 6 Results
- Consequences
- 8 Summary

- Introduction
- Disk Models
- Motivating the Problem
- Data Description
- Fitting Methodology
- Results
- Consequences
- Summary

Why Analytic Potentials?

Galaxy dynamics is directly impacted by its gravitational potential. Advantages of an analytic potential:

- Intuitive understanding of internal orbits and resonances
- Tracer particle simulations & precision control
- Satellite dynamics
- Harmonic and an-harmonic expansions
- Understanding of phase space behaviour
- Non-equilibrium processes and perturbations

- Introduction
- 2 Disk Models
- Motivating the Problem
- Data Description
- Fitting Methodology
- Results
- Consequences
- Summary

Coordinate System

Figure: Cylindrical coordinate system. Source: Wolfram

Potential - Density Pairs

Potential-Density relation:

$$\nabla^2 \Phi = 4\pi G \rho \tag{1}$$

From observations of the brightness profile of disks,

$$\rho(r,z) = \frac{M}{4\pi a^2 b} \exp\left(-\frac{r}{a}\right) \operatorname{sech}^2\left(\frac{z}{b}\right),\tag{2}$$

M is a normalization mass, a is the radial scale length, b is the vertical scale length.

Potential corresponding to this mass distribution is not analytical. Therefore, analytic approximations need to be employed.

Miyamoto-Nagai Approximation

The Miyamoto-Nagai (1975) disk is the most popular analytical approximation to the exponential density profile:

$$\Phi(r,z) = \frac{GM}{\sqrt{r^2 + \left[a + \sqrt{z^2 + b^2}\right]^2}},\tag{3}$$

The corresponding density distribution is:

$$\rho(r,z) = \frac{b^2 M}{4\pi} \left[\frac{ar^2 + \left(a + 3\sqrt{z^2 + b^2}\right) \left(a + \sqrt{z^2 + b^2}\right)^2}{\left[r^2 + \left(a + \sqrt{z^2 + b^2}\right)^2\right]^{\frac{5}{2}} (z^2 + b^2)^{\frac{3}{2}}} \right]$$
(4)

- Introduction
- 2 Disk Models
- Motivating the Problem
- 4 Data Description
- Fitting Methodology
- Results
- Consequences
- Summary

Validity of Miyamoto - Nagai Approximation ?

The validity of the Miyamoto - Nagai approximation has not been investigated quantitatively in depth. Questions I ask:

- How well does the Miyamoto Nagai profile fit the exponential disk ?
- Can the same parameters describing the exponential disk be used for the Miyamoto Nagai approximation ?
- Where does the Miyamoto Nagai approximation break down ?
- What can be the physical consequences if the Miyamoto-Nagai approximation is not valid?

I utilize existing simulation data of the equilibrium disk of the Large Magellanic Cloud for this work

- Introduction
- 2 Disk Models
- Motivating the Problem
- 4 Data Description
- Fitting Methodology
- Results
- Consequences
- Summary

LMC Equilibrium Disk

I extract the phase space information of stars (x,y,z,v_x,v_y,v_z) from Besla et al. 2012 simulations. These simulations contain 10^6 star particles $(M_*=2500)$ in an exponential disk, and 10^5 CDM particles in a Hernquist halo.

Figure: Stellar density map of the equilibrium LMC disk.

- Introduction
- Disk Models
- Motivating the Problem
- Data Description
- Fitting Methodology
- 6 Results
- Consequences
- Summary

Obtaining Radial & Vertical Densities

- Extract stars in a cuboidal volume $x \in (-4.5, 4.5)$ kpc, $y \in (-0.5, 0.5)$ kpc, $z \in (-1, 1)$ kpc, and binned them.
- Density:

$$\rho(x,z) = \frac{N(x,z)M_*}{\Delta V}$$

Error on density:

$$\delta \rho(x,z) = \frac{\sqrt{N(x,z)}M_*}{\Delta V}$$

Sampling Setup

I use parallel MCMC to sample the posterior distribution of the model parameters. The χ^2 is defined as:

$$\chi^{2} = \sum_{ij} \left(\frac{\rho_{data}(r_{i}, z_{j}) - \rho_{model}(r_{i}, z_{j}, a, b, M)}{\sigma_{ij}} \right)^{2}, \tag{5}$$

where $model \in \{exponential, Miyamoto - Nagai\}.$

The likelihood is defined as:

$$\mathcal{L} = e^{-\frac{\chi^2}{2}} \tag{6}$$

The parameters $a, b, log(M/M_{\odot})$ are sampled using uniform priors.

15/25

Himansh Rathore Analytic Potentials ASTR 513 Term Project

Fitting of Exponential Profile

Priors:

- $a \in (0.1, 5) \text{ kpc}$
- $b \in (0.1, 0.5) \text{ kpc}$
- $log(M/M_{\odot}) \in (9,10)$

Chain length = 200No. of // chains = 200

Analytic Potentials

Fitting of Miyamoto-Nagai Profile

Priors:

- $a \in (0.1, 5) \text{ kpc}$
- $b \in (0.1, 0.5)$ kpc
- $log(M/M_{\odot}) \in (9, 10)$

Chain length = 200 No. of // chains = 200

- Introduction
- 2 Disk Models
- Motivating the Problem
- Data Description
- Fitting Methodology
- 6 Results
- Consequences
- Summary

Exponential Profile Fit

8.0 9.7.5 10.0

Figure: Radial density profile

Figure: Vertical density profile

Exponential profile fit

Miyamoto-Nagai Profile Fit

Miyamoto-Nagai fit Vertical density data 8.0 log(ρ(z)) (M_☉ kpc⁻³) 6.5 0.25 I 0.00 -0.25 0.2 0.4 0.6 0.8 1.0 0.0 z (kpc)

Figure: Radial density profile

Figure: Vertical density profile

- Introduction
- 2 Disk Models
- Motivating the Problem
- 4 Data Description
- Fitting Methodology
- Results
- Consequences
- Summary

Comparison of Exponential & Miyamoto-Nagai Fits

Exponential fit:

•
$$a = 1.78 \pm 0.01 \; \mathrm{kpc}$$

•
$$b = 0.343 \pm 0.001 \text{ kpc}$$

•
$$log(\frac{M}{M_{\odot}}) = 9.405 \pm 0.004$$

•
$$\chi^2_{red,dof} = 1.03$$

Miyamoto-Nagai fit:

•
$$a = 2.14 \pm 0.01 \text{ kpc}$$

•
$$b = 0.326 \pm 0.001 \; \mathrm{kpc}$$

•
$$log(\frac{M}{M_{\odot}}) = 9.514 \pm 0.003$$

•
$$\chi^2_{red,dof} = 13.42$$

Mass Profile Comparison

- Introduction
- 2 Disk Models
- Motivating the Problem
- Data Description
- Fitting Methodology
- Results
- Consequences
- 8 Summary

Conclusions

I explored quantitatively how well does the Miyamoto-Nagai analytical approximation describe an exponential galaxy disk:

- Miyamoto-Nagai is a considerably worse fit to the exponential disk, particularly in the vertical direction and disk outskirts
- The parameters of the exponential disk cannot be used to describe the Miyamoto-Nagai approximation
- Miyamoto-Nagai approximation can lead to underestimation of forces by a factor of \sim 2 and orbital speeds by a factor of \sim 1.5 in the disk outskirts

Multiple component Miyamoto-Nagai potential, or a combination of Miyamoto-Nagai and Hernquist potential might be the way to go forward.