- 4. (1 pkt) 1. Pokaż, że istnieje graf G, taki, że dla dowolnego grafu G' istnieje homomorfizm z G' w G.
 - 2. Udowodnij lub podaj kontrprzykład na stwierdzenie: dla dowolnych grafów G_1 i G_2 następujące warunki są równoważne:
 - istnieją homomorfizmy $h_1:G_1\to G_2$ oraz $h_2:G_2\to G_1$ (mówimy, że takie grafy są homomorficznie równoważne)
 - istnieje izomorfizm $f: G_1 \to G_2$.

Homomorfizm (gr. ὄμοιος, homoios – podobny; μορφή, morphē – kształt, forma) – funkcja odwzorowująca jedną algebrę ogólną (np. monoid, grupę, pierścień czy przestrzeń wektorową) w drugą, zachowująca przy tym odpowiadające sobie działania, jakie są zdefiniowane w obu algebrach^[1].

Homomorfizm bijektywny, nazywa się izomorfizmem algebr i z punktu widzenia algebry oznacza ich identyczność.

 $\textbf{Homomorfizmem} \ \text{grafu G' w graf G (ozn. $f:G' \to G$) nazwiemy odwzorowanie $f:$ $V(G') \to V(G)$ o tej własności, że jeśli $(u,v) \in E(G')$, to $(f(u),f(v)) \in E(G)$. Zauważmy, że G' jest podgrafem G dokładnie wtedy, gdy pewien homomorfizm $f:G' \to G$ jest różnowartościowy.}$

t) Pokaż, że istnieje graf G, taki, że dla dowolnego grafu G' istnieje homomorfizm z G' w G.

Udowodnij lub podaj kontrprzykład na stwierdzenie: dla dowolnych grafów G_1 i G_2 następujące warunki są równoważne:

istnieją homomorfizmy h₁: G₁ → G₂ oraz h₂: G₂ → G₁ (mówimy, że takie grafy są homomorficznie równoważne)

rosmunto sciono ale nie "no"

o, eroznava Hosciowa Funkyte "nu"