Министерство образования и науки Российской Федерации Федеральное агентство по образованию Федеральное государственное бюджетное образовательное учреждение высшего образования «Вятский государственный университет»

Факультет автоматики и вычислительной техники
Кафедра электронных вычислительных машин
Отчет по лабораторной работе №3 дисциплины «Организация памяти ЭВМ»
Исследование двухпортового ОЗУ
Выполнил студент группы ИВТ-31/Крючков И. С./ Проверил/Мельцов В. Ю./

1. Задание

Разработать микропрограммы, выполняющие следующие функции:

- 1) Исследовать ОЗУ в режиме произвольного доступа при записи и чтении:
 - а) выполнить запись данных во все ячейки ОЗУ в режимах:
 - записи одновременно по порту А и В;
 - раздельной записи по одному из портов А и В.
 - b) выполнить сочетание процедур чтения и записи одновременно по портам A и B:
 - порт А чтение, порт В запись;
 - порт В чтение, порт А запись;
 - порт В чтение, порт А чтение;
 - раздельное чтение по порту A или B.
 - с) выполнить попытку записи по портам А и В в одну и ту же ячейку и сделать выводы.
 - d) на основе ОЗУ организовать стек типа FIFO для очереди команд с возможностью параллельного пополнения очереди команд через каждые 4 считанные из очереди команды:
 - порт А запись х8;
 - порт В чтение х4;
 - порт А запись, порт В чтение х4;
 - порт A запись, порт B чтение x4 (потоком);
 - сброс очереди команд (команда БП)

2. Функциональная схема

Управляющие сигналы:

- y1 запись в RgAA, RgAB
- y2 запись в RgDIOA
- ~y3 разрешение выдачи из RgDIOB

 \sim WRA — инкремент RgAA, запись в RAM, разрешение выдачи из RgDIOA

~RDB – инкремент RgAB, чтение из RAM, запись в RgDIOB

Функциональные схема стека FIFO на основе двухпортовой памяти представлена на рисунке 1.

Рисунок 1 — Функциональная схема стека FIFO на двухпортовой памяти

3. Граф-схемы алгоритмов

Граф-схемы записи по порту A и чтения по порту В представлены на рисунках 2-3 соответственно.

Рисунок 2 – Граф-схема записи по порту А

Рисунок 3 – Граф-схема чтения по порту В

Граф схема параллельной записи по порту A и чтения по порту B представлена на рисунке 4.

Рисунок 4 – Граф-схема записи по порту А и чтения по порту В

4. Текст микропрограммы

Текст микропрограммы представлен на рисунках 5-6

	039 канала А						RgA			DIO		039 кана	ала В	RgA			RgDIO			
N≗	Адр.	DIOA	~EA	~RA	~WA	ΕV	EWRUC		ST ~EO		Адр.	DIOB	~EB	~RB	~WB	ΕV	VR U	J C	ST	~E0
00	0	00111101	1	1	1	1	1	1	1	1	0	00000000	1	1	1	1	1	1	0	1
01	0	11111111	0	1	0	0	0	0	0	0	0	00000000	1	1	1	0	0	0	0	0
02	0	00000000	1	1	1	0	0	1	1	1	0	10101111	1	1	1	0	0	1	1	1
03	0	00000000	1	1	1	0	0	0	0	0	0	11111111	0	1	0	0	0	0	0	0
04	0	00010010	1	1	1	0	0	1	1	1	3	01110000	1	1	1	1	0	1	1	1
05	0	11111111	0	1	0	0	0	0	0	0	0	11111111	0	1	0	0	0	0	0	0
06	4	01110001	1	1	1	1	0	1	1	1	0	00110011	1	1	1	0	0	1	1	1
07	0	11111111	0	1	0	0	0	0	0	0	0	11111111	0	1	0	0	0	0	0	0
80	0	00101000	1	1	1	0	0	1	1	1	0	00000000	1	1	1	0	0	0	0	1
0.9	0	11111111	0	1	0	0	0	0	0	0	0	11111111	0	1	0	0	0	0	0	0
0A	0	01011111	1	1	1	0	0	1	1	1	7	01110000	1	1	1	1	0	1	1	1
0B	0	11111111	0	1	0	0	0	0	0	0	0	11111111	0	1	0	0	0	0	0	0
0C	7	00000000	1	1	1	1	0	1	0	1	0	00000000	1	1	1	0	0	0	0	1
0D	0	11111111	0	0	1	0	0	0	1	1	0	00000000	1	1	1	0	0	0	0	1
0E	0	11111111	1	1	1	0	0	0	0	0	0	00000000	1	1	1	0	0	0	0	1
0F	0	00000000	1	1	1	0	1	1	0	1	0	00000000	1	1	1	0	1	1	0	1
10	0	11111111	0	0	1	0	0	0	1	1	0	11111111	0	0	1	0	0	0	1	1
11	0	11111111	1	1	1	0	0	0	0	0	0	11111111	1	1	1	0	0	0	0	0
12	0	00000000	1	1	1	0	1	1	0	1	4	00000000	1	1	1	1	0	1	0	1
13	0	11111111	0	0	1	0	0	0	1	1	0	11111111	0	0	1	0	0	0	1	1
14	0	11111111	1	1	1	0	0	0	0	0	0	11111111	1	1	1	0	0	0	0	0
15	4	11010110	1	1	1	1	0	1	1	1	0	00000000	1	1	1	1	0	1	0	1
16	0	11111111	0	1	0	0	0	0	0	0	0	11111111	0	0	1	0	0	0	1	1

Рисунок 5 – Микропрограмма работы с двухпортовым ОЗУ

			Rg∆	,	RgDIO		039 канала В						Rg4	١	RgDIO					
N≗	Адр.	DIOA	~EA~RA~WA			EWRUC			ST	~E0	Адр.	DIOB	~EB	~RB	~WB	ΕV	VR U	J C	ST	~E0
16	0	11111111	0	1	0	0	0	0	0	0	0	11111111	0	0	1	0	0	0	1	1 /
17	0	00000000	1	1	1	0	0	0	0	1	0	11111111	1	1	1	0	0	0	0	0
18	0	00101110	1	1	1	0	0	1	1	1	0	00000000	1	1	1	0	0	1	1	1
19	0	11111111	0	1	0	0	0	0	0	0	0	11111111	0	0	1	0	0	0	1	1
1A	0	00000000	1	1	1	0	0	0	0	1	0	11111111	1	1	1	0	0	0	0	0
1B	0	10111011	1	1	1	0	0	1	1	1	0	00000000	1	1	1	0	0	1	1	1
1C	0	11111111	0	1	0	0	0	0	0	0	0	11111111	0	0	1	0	0	0	1	1
1D	0	00000000	1	1	1	0	0	0	0	1	0	11111111	1	1	1	0	0	0	0	0
1E	0	10111011	1	1	1	0	0	1	1	1	0	00000000	1	1	1	0	0	1	1	1
1F	0	11111111	0	1	0	0	0	0	0	0	0	11111111	0	0	1	0	0	0	1	1
20	0	00000000	1	1	1	0	0	0	0	1	0	11111111	1	1	1	0	0	0	0	0
21	0	01010111	1	1	1	1	0	1	1	1	0	00000000	1	1	1	1	0	1	1	1
22	0	11111111	0	1	0	0	0	0	0	0	0	00000000	1	1	1	0	0	0	0	1
23	0	11000110	1	1	1	0	0	1	1	1	0	00000000	1	1	1	0	0	0	0	1
24	0	11111111	0	1	0	0	0	0	0	0	0	11111111	0	0	1	0	0	0	1	1
25	0	01000000	1	1	1	0	0	1	1	1	0	00000000	1	1	1	0	0	1	0	0
26	0	11111111	0	1	0	0	0	0	0	0	0	11111111	0	0	1	0	0	0	1	1
27	0	10101000	1	1	1	0	0	1	1	1	0	00000000	1	1	1	0	0	1	0	1
28	0	11111111	0	1	0	0	0	0	0	0	0	11111111	0	0	1	0	0	0	1	1
29	0	00000000	1	1	1	0	0	0	0	1	0	00000000	1	1	1	0	0	1	0	0
2A	0	00000000	1	1	1	0	0	0	0	1	0	11111111	0	0	1	0	0	0	1	1
2B	0	00000000	1	1	1	0	0	0	0	1	0	00000000	1	1	1	0	0	0	0	0
2C	0	00000000	1	1	1	1	0	1	0	1	0	00000000	1	1	1	1	0	1	0	1
I I																				

Рисунок 6 – Микропрограмма работы с двухпортовым ОЗУ

5. Экранные формы

10.

Экранные формы работы микропрограммы представлены на рисунках 7-

Рисунок 7 – Запись одновременно по порту А и В

Рисунок 8 – Запись по портам А и В по одному адресу

Рисунок 9 – Чтение одновременно по портам А и В

Рисунок 10 – Запись по порту А и чтение по порту В (потоком)

6. Вывод

В ходе лабораторной работы были изучен принцип работы двухпортового оперативного запоминающего устройства. Была разработана микропрограмма, реализующая чтения и записи в стек FIFO. Так же реализованы микропрограммы, позволяющие выполнять чтение и запись независимо по разным портам двухпортового ОЗУ.