

Xian Zhou, Li Zhang, Chuliang Guo, Xunzhao Yin, Cheng Zhuo College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Outline

- Motivation
- Architecture and Dataflow
- Optimization and Tradeoff
- Experimental Results

CNN in Mobile Applications

CNN has been widely deployed in various deep learning domains

CNN hardware accelerator become a popular solution

Difficulties in CNN Deployment

CNN algorithm complexity continues growing and significant arithmetic and storage consumption

Model	Top-1	Top-5	Ops (Bn)	GPU (ms)	CPU (s)	Weights (MB)
Densenet 201	77	93.7	10.85	32.6	1.38	66
Darknet19	72.9	91.2	7.29	6.2	0.87	80
Darknet53	77.2	93.8	18.57	13.7	2.11	159
Resnet 18	70.7	89.9	4.69	4.6	0.57	44
Resnet 34	72.4	91.1	9.52	7.1	1.11	83
Resnet 50	75.8	92.9	9.74	11.4	1.13	87
Resnet 101	77.1	93.7	19.7	20	2.23	160
Resnet 152	77.6	93.8	29.39	28.6	3.31	220
ResNeXt 50	77.8	94.2	10.11	24.2	1.2	220
AlexNet	57	80.3	2.27	3.1	0.29	238
VGG-16	70.5	90	30.94	9.4	4.36	528

High consumption and limited memory size in hardware deployment

Weight Distribution

Most weights with a low effective bit-width and few with a high effective bit-width

Weight Storage Pattern in A Single Precision System

Format of 16-bit fixed-point data in Memory

data1: 20	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	
data2: -32	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	
data3: 8	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
data4: 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	
data5: 0	0	0	0	0	0 n	onef	ectiv	e bit	0	0	0	0	0	0	effec	tiye l	oit
data6: 12	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	
data7: 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Too many noneffective bit makes a significant waste of storage resources!

Operation in A Single Precision System

All data is processed using the multiplier with the largest bit-width A significant waste of operation resources!

Related Work

DNPU(ISSCC2017)

ENVISION(ISSCC2017)

UNPU(JSSC2019)

The prior work do not support mixed precision computing within the same layer

Commonly-Used CNN Accelerators Architecture

*Data from Y. H. Chen, etc, "Eyeriss: An energy efficient reconfigurable accelerator for deep convolutional neural networks," IEEE J. Solid-State Circuits

Mixed Precision CNN Accelerators Architecture

Structure of The Proposed FPPE

Decoder in FPPE

Decoder translates weight position into FPPE parameter by PE and CNN shape

Weight position
Channel:1

Row:2

Col:3

Arbiter Logic

Assume that a 16-bit signed fixed-point weight is fetched as $\{W_{15}, W_{14} \dots W_{1}, W_{0}\}$

For a given bit-width threshold W_i :

low precision weights: $\{W_{14}, W_{13} ... W_{i-1}\} = (16 - i)\{W_{15}\}$

full precision weights: $\{W_{14}, W_{13} ... W_{i-1}\} \neq (16 - i)\{W_{15}\}$

	Bit ₁₅	Bit ₁₄	Bit ₁₃	Bit ₁₂	Bit ₁₁	Bit ₁₀	Bit ₉	Bit8	Bit ₇	Bit ₆	Bit5	Bit4	Bit3	Bit2	Bit ₁	Bito
-68:	1		1	1	1	1	1	> 1	1	0	1	1	1	1	0	0
												-				
	↓					bit-w	idth t	hresh	nold(1/	1 ∕i) "⋅	-68" is	s low	precis	sion		
Si	gn bit							10				Yes	;			
								8				Yes				
								5				No				

Comparison of Weight Storage Size

Weight storage for **single** precision architecture

Weight storage for **mixed** precision architecture

$$S_{PE} = N \times W \times k$$
$$S_{GLB} = M \times W$$

Full precision part

$$S_{FPPE}^{'} = N \times k \times (1 - p(W_i)) \times W$$
$$S_{FPB}^{'} = M \times (1 - p(W_i)) \times W$$

Low precision part

$$S_{LPPE}^{'} = N \times k \times W_{i}$$

 $S_{GLB}^{'} = M \times W_{i}$

Bit-Width Threshold Selection

Relative storage saving for PE (or GLB) can be approximately calculated by above EQs, and simplified to:

Area saving rate of PE:
$$\alpha \approx \frac{S_{PE} - S_{PE} - S_{FP PE}}{S_{PE}} = p(W_i) - \frac{W_i}{W}$$

Area saving rate of GLB:
$$\beta \approx \frac{S_{GLB} - S_{GLB}^{'} - S_{FPB}^{'}}{S_{GLB}} = p(W_i) - \frac{W_i}{W} = \alpha$$

Experimental Setup

- -Low power
- -Data reuse
- -Reconfigurable

Baseline Accelerator								
Board	ZCU102							
Dataflow	Row Stationary							
Arithmetic Precision	16-bit fixed point							
Clock Rate	200Mhz							
GLB storage size	224KB							
#PE in a row	14							
#PE in a col	12							
PE storage size	608B							
#LUT used for MAC	280							
#LUT used for PE	1313							

Experimental Result——Area Reduction

		Baseline/PE	Prop./LPPE	Prop./FPPE			
Number		168	168	14			
Storage(Byte)		608	384	1003			
#LUTs(MAC)		280	128	280			
#LUTs(PE)		1313	777	1606			
Total	Storage(Byte)	102,144(1x)	78,554	(0.77x)			
#LUTs		220,584(1x)	153,020(0.69x)				

Experimental Result

		Sto	rage (KE	3)	# LU	Norm.	
		Weight	Ifmap	Psum	MAC	System	power
	Baseline	116.8	69.3	137.7	47k	204k	1x
Alex	Proposed	62.0	69.5	142.9	25k	192k	0.88x
Net	Saving	46.9%	-0.3%	-3.8%	45.9%	6.2%	12.1%
VGG	Proposed	58.9	69.5	142.5	23k	183k	0.88x
16	Saving	49.6%	-0.3%	-3.5%	49.8%	10.5%	12.1%

- Weight storage area reduced by nearly 50%
- Number of LUTs for calculation is reduced by nearly 50%
- Number of LUTs in the system is reduced by 6% to 10%
- Save about 12% power than baseline
- Actual total storage saving in AlexNet and VGG16 is almost 17.8% and 16.8%

Conclusion

- Proposed architecture of PE to simultaneously store and calculate with different employ two separate groups precisions
- Implement the proposed CNN accelerator using an FPGA platform
- Weight storage area in PE and GLB reduced by nearly 50%
- Total storage area reduced by almost 17.8%
- Critical path delay is reduced by almost 28%
- Dynamic power saving by 12.1% without timing penalty

Q&A