$\mathbf{Math}\ \mathbf{342W}/\mathbf{642}/\mathbf{742W}$

Recitation – Day #8 (2.27.25)

I. OLS Basics

1. 01.0 Basics	
(i) Define \boldsymbol{b} in terms of the solution to the normal equations to the least squares problem?	
(ii) What does finding \boldsymbol{b} accomplish in the context of the overall machine learning problem of regression?	
(iii) Define the " hat " matrix, denoted by H .	
(iv) What are the two properties H ? What do we call such matrices?	
(v) What does H do to the given vector of responses/labels \boldsymbol{y} ?	
II. Preliminaries for Geometric Interpretation of OLS	_
We have $X \in \mathbb{R}^{n \times (p+1)}$.	
(i) Define $colsp[X]$.	
(ii) What is the rank of X ? How so? What does this mean for the rank of H ?	

(iii) Unpack mathematically what $\hat{\boldsymbol{y}} \in \operatorname{colsp}[X]$ means.

III. Geometric Interpretation of OLS (i) Give an illustration of OLS with $y, \hat{y}, e, \mathbb{R}^n$ and $\operatorname{colsp}[X]$. (ii) In what space does the $residual\ vector$, e reside in? What is its dimension? (iii) What is the matrix that projects y onto the residual space? What is its rank? (iv) In what way can the "full space", \mathbb{R}^n , be decomposed in? IV. QR-Decomposition (i) What is the goal behind the QR-decomposition/factorization of a matrix? What is accomplished? (ii) What is the process that creates the QR-decomposition of a matrix called? (iii) How will we now define the orthogonal projection matrix H?