Artificial Neural Networks + Deep Learning

Week 11 - Day 04

Once upon a time...

This is a work of fiction. Names, characters, business, events and incidents are the products of the author's imagination. Any resemblance to actual persons, living or dead, or actual events is purely coincidental.

1940-1959

A new algorithm inspired by the brain!

"We can simulate the brain,

we'll build intelligent machines!"

What is it like?

What is it like?

Logistic regression!

1969

Ten years later...

"C'mon guys, you can't even solve the XOR problem.."

"It's true, we're fuc*ed!"

1975

The Renaissance

Algorithn

Algorithm

Backpropagation

SVM+LR > ANN

Over promising + Under delivering

Another Al winter

Deep learning

2010s

ImageNet examples

Objection classification error rate

Over promising + Under delivering

...Still today?...

What's the weather like this weekend?

Are you on a boat? Because I was not able to find any results for that location.

What's the weather like in Brooklyn this weekend?

The weather in Brooklyn, NY is 46°F and clear.

This weekend?

Excusez-moi?

Sorry, dozed off for a second. What were you saying?

Twitter taught Microsoft's AI chatbot to be a racist asshole in less than a day

By James Vincent | @jjvincent | Mar 24, 2016, 6:43am EDT

ATTEM leura Networks

Why networks?

Multi-Layer Perceptron

<pre>MLPClassifier(hidden_layer_sizes=(5,</pre>	2))

ANN Video

"One of the most ML algorithm ever"

Edoardo Venturini

Scale your features!

Tuning is needed

Black box

GB > ANN

(in most of the cases)

Deep Learning

Simple Neural Network

Deep Learning Neural Network

Deep Learning learns layers of features

Deep Learning Architectures

Pre-DL approach

Build features -> run models (SVM)

DL approach

Let the model extract the features

from raw data!