



# Tracking and Vertexing Short Exercise Introduction

CMS Data Analysis School at CERN 2023



Marco Musich, Brunella D'Anzi, Erica Brondolin, Karla Pena, Adriano Di Florio, Pauli Felix Krueper

June 5th, 2023

#### Introduction

 Welcome to the wrap-up session of the Tracking and Vertexing Short Exercise (<u>Twiki</u>, <u>Mattermost Channel</u>)!

#### Recap: Goals of the exercise

- We wanted to you to familiarize yourself with the basic properties of charged particle tracks
- What information is available and how can it be accessed in different analysis data formats?
- How can tracks be used to find the real physics in our events?
- How to combine tracks to reconstruct vertices and use them to improve our understanding of an event

- · In this session we want to go through the results of the exercises and discuss them
- Your chance to ask all your questions and make sure you understood it all!

#### Exercise 1 - Accessing track variables

Distributions of track variables before and after high purity track selection



• Do these distributions make sense to you? (mind, plots are normalized to the area!)

#### Exercise 1 - Accessing track variables in miniAOD

- All tracks are stored in the generalTracks collection in AOD
- In MiniAOD they are accessible in a less straightforward way (packedPFCandidates, lostTracks collection)
- Not all tracks are available!





#### Exercise 1 - Accessing track variables in miniAOD

- The pre-selection of tracks in MiniAOD also affects the distribution of the track quality parameters (w.r.t. AOD)
- Do these changes make sense when you keep in mind that very low p<sub>T</sub> tracks are left out?



#### **Exercise 2: Tracks as particles**

- Tracks give us a direct handle on actual particles
- Thus they can easily be used to reconstruct other particles in the event
- · Here we simply combined muon tracks and calculated the invariant mass
- · What does this distribution tell us?



#### **Exercise 3: Vertexing**

- Two or more tracks can be used to reconstruct their common point of origin, the vertex
- Requiring two tracks to originate from the same vertex is a powerful tool to identify particles that decayed in the detector
- In this case we reconstructed the K 0s
- In the exercise we presented this plot of the flight distance distribution of the K<sub>S</sub><sup>0</sup>. Were you able to explain the weird structures in the distribution?



#### **Exercise 3: Vertexing in MiniAOD**

- \* In the MiniAOD format, collection of two long-lived mesons,  $K_S^0$  and  $\Lambda^0$  are already present
- Here we plotted the mass distribution of the  $\Lambda^0$ s



#### **Exercise 3: Vertex Distributions**

- From the secondary vertices we advanced to primary vertices.
- Looking at the distribution of the distance between two primary vertices in z, can you remember the reason for the dip at 0?
- What do we learn from the rho-z distribution of the vertices?





## **Exercise 3: Primary Vertex Distributions**

- The number of tracks versus the number of primary vertices shows a roughly linear correlation
- Is that what you expect?



## **Exercise 3: Primary vertices and the beam spot**

- The exercise emphasized the difference between the primary vertices and the beam spot. Can you recall what it is?
- We had a look at the 2D distribution of primary vertices in the x-y, z-x, and z-y projections. What can we learn from that about the interaction region in CMS?



#### **Exercise 3: Primary vertices and the beam spot**

 Another way to visualize the relation between the primary vertices and the beam spot is this plot that compares the x-coordinate of the beam spot position (red) with the average x-position of the primary vertices, as a function of how many vertices are averaged



#### Exercise 3: Vertices improve physics results

- In the last step of the exercise, we combined primary and secondary vertices
- Here we are making use of the fact that for K <sup>0</sup> meson its flight direction
  will align with the direction from the primary vertex to the secondary vertex
  - We therefore consider the distribution of the cosine of the angle bewteen the two direction and apply a cut



#### Exercise 3: Vertices improve physics results

 We use the angle from the previous slide as a discriminator to improve our signal to background ratio of our K<sub>S</sub><sup>0</sup> sample



# Appendix Exercise: Tracking Efficiency via Tag and Probe technique

- Finally, we matched tracks from lostTrack collection to StandAlone Muons and computed the CMS tracking performance via the data-driven Tag and Probe technique using the Z resonance for Data (part of 2018 Run 2) and MC
- Did you get the same efficiency plot at your first trial?
- · Is this symmetrical distribution expected?





