文献分享

20/09/25

Bidirectional Attention Network for Monocular Depth Estimation

Shubhra Aich*, Jean Marie Uwabeza Vianney*, Md Amirul Islam, Mannat Kaur, and Bingbing Liu†

Introduction

- 提出了一种用于单目深度估计的端到端的双向注意网络(BANet),改善了卷积神经网络整合局部和全局信息方面的局限性。
- 该机制的结构源于神经机器翻译(NMT,Neural Machine Translation)的强大概念基础。方法引入了双向注意(bidirectional attention)模块。
- 实验表明,方法在KITTI和DIODE两个具有挑战性的数据集上进行单目深度估计,优于或至少齐平最先进的单眼深度估计方法,并可以更少的内存和计算 复杂度来运行。

• 双向attention网络含义:

主干网络有多个特征层,利用前向后向两个方向分别分析不同层级的效果,最后结合成一个像素级别的权重,用以结合不同深度特征层的效果

Fig. 3: An illustration of the generated stage-wise attention weights using the forward and backward attention modules.

- Backbone
- Feature Extraction
- Forward Attention
- Backward Attention
- ⊗ Channel Concatenation
- Elementwise Product
- Σ Elementwise Addition
- φ Softmax
- σ Sigmoid

BRC BN+ReLU+Conv

AP Average Pooling

FC Fully Connected

UP Bilinear Upsampling

Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

DenseNet

其类似于ResNet但是又有很多区别: 1 由于特征需要反复使用,在跨层连接时使用 的是在特征维度上的 Concat操作,而不是 Addition 操作。

2 也因此,在每个单元模块的最后不需要一个 1X1 的卷积来将特征层数升维到和输入的特征 维度一致。

3 其特征量与运行时间均只有ResNet约一半左右

一层有两个部分:

- 1 DenseBlock 利用所有的输入,通过卷积层得到k个通道的特征传送至下一层
- 2 Transition 将新得到的特征与原有特征Concat并一起降采样 其中k为增长率,意为每一层都可以产生k个通道,并与之前的特征 堆叠来进入下一层,所以每一层都会比前一层多k个通道。

Result

Madal	#Params	Time (ms)	Lower is better						
Model	(10^6)		SiLog	SqRel	AbsRel	MAE	RMSE	iRMSE	
DORN [1]	89.23	36	12.22	3.03	11.78	2.04	3.80	11.68	
DenseDepth [2]	44.61	25	10.66	1.76	8.01	1.58	3.31	8.24	
BTS [3]	47.00	29	10.67	1.59	7.51	1.56	3.37	8.10	
BANet-Vanilla	28.73	20	10.88	1.65	7.74	1.63	3.51	8.34	
BANet-Forward	32.34	25	10.61	1.67	9.02	1.77	3.54	9.99	
BANet-Backward	32.34	25	10.54	1.52	7.67	1.59	3.42	8.47	
BANet-Markov	35.28	27	10.72	1.85	8.24	1.62	3.38	8.28	
BANet-Local	35.08	27	10.53	2.21	9.92	1.77	3.34	9.68	
BANet-Full	35.28	28	10.64	1.81	8.25	1.60	3.30	8.47	

Method	SILog	SqRel	AbsRel	iRMSE	
DORN [1]	11.77	2.23	8.78	12.98	
BTS [3]	11.67	2.21	9.04	12.23	
BANet-Full	11.61	2.29	9.38	12.23	

From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth Estimation

Jin Han Lee, Myung-Kyu Han, Dong Wook Ko and Il Hong Suh Department of Electronics and Computer Engineering, Hanyang University

{jinhanlee, mkhan91, pumpblack, ihsuh}@hanyang.ac.kr

Introduction

- 提出了一种在编码阶段利用新的局部平面引导层的网络结构。
- 不同与一般方法只对特征进行升降采样,该方法求出不同分辨率的深度图进行融合。
- 实验表明, 提出的方法优于目前的最先进的工作。

不同分辨率深度图 低分辨率下每个深度并 非用一个点来计算,而 是用四个参数表示一个 平面面片的位置和方向, 即局部平面假设。

• 局部平面引导图

先将输入变成H/k, k为放缩 比例, 如8/4/2。

然后三个通道分成两路,一路计算位置处的法向量,另一处计算位置处平面与点的距离。 以达到用4个参数描述k*k平面的效果。

SPP(Spatial Pyramid Pooling)

相较于普通卷积层需要切割成固定 大小,SPP则从图像分割角度入手:

给定不同分割块,每一个分割块给出一个特征,这样无论输入图像的像素,输出都是固定个数的特征。

ASPP(Atrous SPP)

利用不同rate的空洞卷积来进行SPP的提取,被称之为ASPP,其中rate的定义是指的采样点之间间隔rate-1个像素,即:

3*3, rate=6, 则实际大小为11*11

Result

Result

Method	con	higher is better			lower is better				
	cap	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$	Abs Rel	Sq Rel	RMSE	RMSE log	
Saxena et al. [39]	0-80m	0.601	0.820	0.926	0.280	3.012	8.734	0.361	
Eigen et al. [11]	0-80m	0.702	0.898	0.967	0.203	1.548	6.307	0.282	
Liu et al. [29]	0-80m	0.680	0.898	0.967	0.201	1.584	6.471	0.273	
Godard et al. (CS+K) [16]	0-80m	0.861	0.949	0.976	0.114	0.898	4.935	0.206	
Kuznietsov et al. [24]	0-80m	0.862	0.960	0.986	0.113	0.741	4.621	0.189	
Godard et al. (CS+K) [16]	0-80m	0.861	0.949	0.976	0.114	0.898	4.935	0.206	
Gan et al. [13]	0-80m	0.890	0.964	0.985	0.098	0.666	3.933	0.173	
Fu et al. [12]	0-80m	0.932	0.984	0.994	0.072	0.307	2.727	0.120	
Yin et al. [51]	0-80m	0.938	0.990	0.998	0.072	-	3.258	0.117	
Ours-ResNet	0-80m	0.954	0.992	0.998	0.061	0.261	2.834	0.099	
Ours-DenseNet	0-80m	0.955	0.993	0.998	0.060	0.249	2.798	0.096	
Ours-ResNext	0-80m	0.956	0.993	0.998	0.059	0.245	2.756	0.096	

Reference

- S. Aich, J. Vianney, M. Islam, M. Kaur and B. Liu: Bidirectional Attention Network for Monocular Depth Estimation. 2020.
- Jin Han Lee, Myung-Kyu Han, Dong Wook Ko, Il Hong Suh: From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth Estimation. 2019
- Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger Densely Connected Convolutional Networks.2017
- Wang Y, Liang B, Ding M, et al. Dense Semantic Labeling with Atrous Spatial Pyramid Pooling and Decoder for High-Resolution Remote Sensing Imagery[J]. Remote Sensing.2018.