Algèbre – Fonctions de plusieurs variables

Christophe Mouilleron

Généralisation de la dérivée

2 Extrema locaux de $f: \mathbb{R}^n \to \mathbb{R}$

3 Intégration de $f: \mathbb{R}^n \to \mathbb{R}$

Plan

Généralisation de la dérivée

2 Extrema locaux de $f: \mathbb{R}^n \to \mathbb{R}$

3 Intégration de $f: \mathbb{R}^n \to \mathbb{R}$

Exemple introductif

On considère les fonctions suivantes :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \mapsto f(x,y)$$

$$g: \mathbb{R} \rightarrow \mathbb{R}$$

$$x \mapsto f(x,-x)$$

Calculer g'(x).

Exemple introductif

On considère les fonctions suivantes :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 $(x,y) \mapsto f(x,y)$
 $g: \mathbb{R} \rightarrow \mathbb{R}$
 $x \mapsto f(x,-x)$

Calculer g'(x).

Difficultés :

- formule pour f inconnue
- *f* = fonction de deux variables

Exemple introductif

On considère les fonctions suivantes :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \mapsto f(x,y)$$

$$g: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \mapsto f(x,-x)$$

Calculer g'(x).

Difficultés :

• formule pour f inconnue

g'(x) dépendra de la *dérivée* de f

• f = fonction de deux variables

dérivée de f ???

Dérivée – Rappels pour le cas $f: D \subset \mathbb{R} \to \mathbb{R}$

Soit

$$f: D \subset \mathbb{R} \to \mathbb{R}$$

 \rightarrow f = fonction d'une variable réelle à valeurs réelles

Sa dérivée est définie par :

quand elle existe

5/30

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
pente de
$$x_0 \text{ à } x$$

C. Mouilleron ENSIIE – 1A – Algèbre Fonctions de plusieurs variables

Dérivée – Cas $f: D \subset \mathbb{R} \to \mathbb{R}^m$

 \rightarrow f = fonction d'une variable réelle à valeurs vectorielles

Sa dérivée est définie par :

quand elle existe

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

 \rightsquigarrow formules valides car x, x_0 , h réels

Dérivée – Cas $f:D\subset\mathbb{R}\to\mathbb{R}^m$

 \rightsquigarrow f = fonction d'une variable réelle à valeurs vectorielles

Sa dérivée est définie par :

quand elle existe

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

 \rightsquigarrow formules valides car x, x_0 , h réels

Exemple: m=2

$$f(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \end{pmatrix} = \begin{pmatrix} \sin x \\ x^3 \end{pmatrix} \qquad \rightsquigarrow \qquad f'(x) = \begin{pmatrix} f'_1(x) \\ f'_2(x) \end{pmatrix} = \begin{pmatrix} \cos x \\ 3x^2 \end{pmatrix}$$

dérivation coord, par coord.

$$f'(x) = \begin{pmatrix} f'_1(x) \\ f'_2(x) \end{pmatrix} = \begin{pmatrix} \cos x \\ 3x^2 \end{pmatrix}$$

C. Mouilleron ENSIIE - 1A - Alaèbre

Cas $f: D \subset \mathbb{R}^n \to \mathbb{R}$

 \rightsquigarrow f = fonction de plusieurs variables réelles à valeurs réelles

Problèmes:

- $\lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0}$ ne convient plus
- n variables $\Rightarrow n$ dérivées

division par un vecteur

Cas $f: D \subset \mathbb{R}^n \to \mathbb{R}$

 \rightarrow f = fonction de plusieurs variables réelles à valeurs réelles

Problèmes:

- $\lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0}$ ne convient plus
- division par un vecteur

• n variables $\Rightarrow n$ dérivées

Solution = vecteur de dérivées

Exemple: n=2

$$f(x,y) = \frac{x^2}{y} \quad \rightsquigarrow \quad \left| \nabla_f(x,y) = \left(\frac{\partial f}{\partial x}(x,y) \quad \frac{\partial f}{\partial y}(x,y) \right) \right| = \left(\frac{2x}{y} \quad -\frac{x^2}{y^2} \right)$$

C. Mouilleron

Vocabulaire, remarques

$$\partial$$
 = d rond

 ∇ = nabla

Delta (△) renversé

 ∇_f = gradient de f

- fonction de \mathbb{R}^n dans \mathbb{R}^n
- souvent écrit sous forme d'un vecteur colonne ligne = mieux ici

Vocabulaire, remarques

$$\partial$$
 = d rond

$$\nabla$$
 = nabla

Delta (△) renversé

$$\nabla_f$$
 = gradient de f

- fonction de \mathbb{R}^n dans \mathbb{R}^n
- souvent écrit sous forme d'un vecteur colonne

ligne = mieux ici

Attention: notation $\frac{\partial f}{\partial x}(x,y)$ malheureuse

- x lié à la définition de f
- x lié au point courant

 $\partial_1 f(x, y)$ préférable

1^{re} variable de *f*

1^{er} arg. de $\frac{\partial f}{\partial x} = \partial_1 f$

→ même lettre pour deux choses différentes!

Cas général - Matrice jacobienne

Soit $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$

 $\rightarrow f$ = fonction de plusieurs variables réelles à valeurs vectorielles

On lui associe une matrice jacobienne :

 \simeq dérivée

$$J_f(x_1,\ldots,x_n) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_1,\ldots,x_n) & \ldots & \frac{\partial f_1}{\partial x_n}(x_1,\ldots,x_n) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(x_1,\ldots,x_n) & \ldots & \frac{\partial f_m}{\partial x_n}(x_1,\ldots,x_n) \end{pmatrix}$$

C. Mouilleron

Cas général – Matrice jacobienne

Soit $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$

 $\rightarrow f$ = fonction de plusieurs variables réelles à valeurs vectorielles

On lui associe une matrice jacobienne :

 \simeq dérivée

9/30

$$J_{f}(x_{1},...,x_{n}) = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(x_{1},...,x_{n}) & ... & \frac{\partial f_{1}}{\partial x_{n}}(x_{1},...,x_{n}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(x_{1},...,x_{n}) & ... & \frac{\partial f_{m}}{\partial x_{n}}(x_{1},...,x_{n}) \end{pmatrix} \xrightarrow{m \text{ sorties}} \Rightarrow m \text{ lignes}$$

C. Mouilleron ENSIIE – 1A – Algèbre Fonctions de plusieurs variables

Matrice jacobienne – Exemples

Exemples:

Matrice jacobienne – Exemples

Exemples:

•
$$\operatorname{si} f: \mathbb{R}^2 \to \mathbb{R}^2$$
 , on a
$$(r,\theta) \mapsto \begin{pmatrix} r \cos \theta \\ r \sin \theta \end{pmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$J_f(r,\theta) = \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix} \longleftarrow f_1(r,\theta) = r \cos \theta$$

$$\leftarrow f_2(r,\theta) = r \sin \theta$$

Matrice jacobienne – Exemples

Exemples:

•
$$\operatorname{si} f: \mathbb{R}^2 \to \mathbb{R}^2$$
 , on a
$$(r,\theta) \mapsto \begin{pmatrix} r \cos \theta \\ r \sin \theta \end{pmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$J_f(r,\theta) = \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix} \longleftarrow f_1(r,\theta) = r \cos \theta$$

$$\leftarrow f_2(r,\theta) = r \sin \theta$$

• si $f: D \subset \mathbb{R} \to \mathbb{R}$, on a $J_f(x) = (f'(x))$ matrice 1 × 1

10/30

C. Mouilleron ENSIIE – 1A – Algèbre Fonctions de plusieurs variables

Matrice jacobienne - Propriétés

Propriété

On a

$$f(x_1+h_1,\ldots,x_n+h_n)\simeq f(x_1,\ldots,x_n)+J_f(x_1,\ldots,x_n)$$

lorsque h_1, \ldots, h_m sont suffisamment petits.

$$ightharpoonup ext{si } n = 1$$
, on retrouve $f(x+h) \simeq f(x) + h f'(x)$ $f'(x) \simeq \frac{f(x+h) - f(x)}{h}$

Matrice jacobienne - Propriétés

Propriété

On a

$$f(x_1+h_1,\ldots,x_n+h_n)\simeq f(x_1,\ldots,x_n)+J_f(x_1,\ldots,x_n)\begin{pmatrix} h_1\\ \vdots\\ h_n\end{pmatrix}$$

lorsque h_1, \ldots, h_m sont suffisamment petits.

$$ightharpoonup ext{si } n = 1, ext{ on retrouve } f(x+h) \simeq f(x) + h f'(x) \qquad f'(x) \simeq \frac{f(x+h) - f(x)}{h}$$

Propriété

Si $f: \mathbb{R}^n \to \mathbb{R}^m$ et $g: \mathbb{R}^m \to \mathbb{R}^p$, alors:

$$J_{g \circ f}(x_1, \ldots, x_n) = J_g(f(x_1, \ldots, x_n)) \times J_f(x_1, \ldots, x_n)$$

$$\Rightarrow$$
 si $n = m = p = 1$, on retrouve $\left(g(f(x))\right)' = g'(f(x)) \times f'(x)$

C. Mouilleron ENSIIE – 1A – Algèbre Fonctions de plusieurs variables

11/30

Retour à l'exemple introductif

$$x \longmapsto \frac{\varphi}{\left(-x\right)} \longmapsto f(x, -x)$$

$$g = f \circ \varphi$$

$$arphi: \mathbb{R} o \mathbb{R}^2 \ x \mapsto \begin{pmatrix} x \ -x \end{pmatrix} o \mathcal{J}_{\varphi}(x) =$$

$$f: \mathbb{R}^2 \to \mathbb{R} \ (x,y) \mapsto f(x,y) \longrightarrow J_f(x,y) =$$

Retour à l'exemple introductif

$$x \longmapsto \frac{\varphi}{(-x)} \longmapsto f(x, -x)$$

$$g = f \circ \varphi$$

Retour à l'exemple introductif

$$x \longmapsto \frac{\varphi}{\left(\begin{matrix} x \\ -x \end{matrix}\right)} \longmapsto f(x, -x)$$

$$g = f \circ \varphi$$

$$\varphi: \mathbb{R} \to \mathbb{R}^2$$

$$x \mapsto \begin{pmatrix} x \\ -x \end{pmatrix} \longrightarrow J_{\varphi}(x) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$J_{g}(x) = J_{f}(\varphi(x)) \times J_{\varphi}(x) = \left(\frac{\partial f}{\partial x}(x, -x) \quad \frac{\partial f}{\partial y}(x, -x)\right) \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
$$= \left(\frac{\partial f}{\partial x}(x, -x) - \frac{\partial f}{\partial y}(x, -x)\right)$$

12/30

C. Mouilleron ENSIIE – 1A – Algèbre Fonctions de plusieurs variables

Bilan :
$$g'(x) = \frac{\partial f}{\partial x}(x, -x) - \frac{\partial f}{\partial y}(x, -x)$$

			$\frac{\partial f}{\partial x}(x,-x)$	g(x) =	
f(x,y)	$\frac{\partial f}{\partial x}(x,y)$	$\frac{\partial f}{\partial y}(x,y)$	$-\frac{\partial f}{\partial y}(x,-x)$	f(x,-x)	g'(x)
x + y					
хy					
$x^2 + y^2$					
y sin x					

Bilan :
$$g'(x) = \frac{\partial f}{\partial x}(x, -x) - \frac{\partial f}{\partial y}(x, -x)$$

			$\frac{\partial f}{\partial x}(x,-x)$	g(x) =	
f(x,y)	$\frac{\partial f}{\partial x}(x,y)$	$\frac{\partial f}{\partial y}(x,y)$	$-\frac{\partial f}{\partial y}(x,-x)$	f(x,-x)	g'(x)
x + y	1	1	1 - 1 = 0	0	0
хy					
$x^2 + y^2$					
y sin x					

Bilan :
$$g'(x) = \frac{\partial f}{\partial x}(x, -x) - \frac{\partial f}{\partial y}(x, -x)$$

			$\frac{\partial f}{\partial x}(x,-x)$	g(x) =	
f(x,y)	$\frac{\partial f}{\partial x}(x,y)$	$\frac{\partial f}{\partial y}(x,y)$	$-\frac{\partial f}{\partial y}(x,-x)$	f(x,-x)	g'(x)
x + y	1	1	1 - 1 = 0	0	0
хy	У	X	-x-x=-2x	$-x^2$	- 2 <i>x</i>
$x^2 + y^2$					
y sin x					

Bilan:
$$g'(x) = \frac{\partial f}{\partial x}(x, -x) - \frac{\partial f}{\partial y}(x, -x)$$

			$\frac{\partial f}{\partial x}(x,-x)$	g(x) =	
f(x, y)	$\frac{\partial f}{\partial x}(x,y)$	$\frac{\partial f}{\partial y}(x,y)$	$-\frac{\partial f}{\partial y}(x,-x)$	f(x,-x)	g'(x)
x + y	1	1	1 - 1 = 0	0	0
хy	У	X	-x-x=-2x	$-x^2$	- 2 <i>x</i>
$x^2 + y^2$	2 <i>x</i>	2 <i>y</i>	2x-(-2x)=4x	2 x ²	4 <i>x</i>
y sin x					

Bilan:
$$g'(x) = \frac{\partial f}{\partial x}(x, -x) - \frac{\partial f}{\partial y}(x, -x)$$

			$\frac{\partial f}{\partial x}(x,-x)$	g(x) =	
f(x, y)	$\frac{\partial f}{\partial x}(x,y)$	$\frac{\partial f}{\partial y}(x,y)$	$-\frac{\partial f}{\partial y}(X,-X)$	f(x,-x)	g'(x)
x + y	1	1	1 - 1 = 0	0	0
хy	У	X	-x-x=-2x	$-x^2$	- 2 <i>x</i>
$x^2 + y^2$	2 <i>x</i>	2 <i>y</i>	2x-(-2x)=4x	2 x ²	4 <i>x</i>
y sin x	y cos x	sin X	$-x\cos x - \sin x$	— <i>X</i> sin <i>X</i>	— sin <i>X</i> — <i>X</i> cos <i>X</i>

C. Mouilleron

Plan

Généralisation de la dérivée

2 Extrema locaux de $f: \mathbb{R}^n \to \mathbb{R}$

3 Intégration de $f: \mathbb{R}^n \to \mathbb{R}$

Rappels – Cas n = 1

Schéma général quand n = 1:

 $f: D \subset \mathbb{R} \to \mathbb{R}$

- calcul de f'
- 2 résolution de $f'(x) = 0 \rightsquigarrow \text{points critiques}$
- tableau de variations

Problèmes quand n > 1:

- f' n'a pas de sens
- variations + complexes

Rappels – Cas n = 1

Schéma général quand n = 1:

 $f: D \subset \mathbb{R} \to \mathbb{R}$

- calcul de f'
- 2 résolution de $f'(x) = 0 \Leftrightarrow \text{points critiques}$
- 3 tableau de variations

Problèmes quand n > 1:

- f' n'a pas de sens
- variations + complexes

f' remplacé par ∇_f

→ besoin de dériver deux fois

C. Mouilleron

Matrice hessienne - Définitions

Notation:

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right)$$

 \rightsquigarrow dérivée par rapport à x_i , puis par rapport à x_i

Matrice hessienne de $f: \mathbb{R}^n \to \mathbb{R}$

 \simeq dérivée seconde

$$H_f(x_1,\ldots,x_n) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1}(x_1,\ldots,x_n) & \ldots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x_1,\ldots,x_n) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x_1,\ldots,x_n) & \ldots & \frac{\partial^2 f}{\partial x_n \partial x_n}(x_1,\ldots,x_n) \end{pmatrix}$$

C. Mouilleron

Matrice hessienne - Exemple, Propriété

Exemple:
$$f(x,y) = \frac{x^2}{y}$$

$$\nabla_f(x,y) = \left(\frac{2x}{y} - \frac{x^2}{y^2}\right) \quad \rightsquigarrow \quad H_f(x,y) = \left(\frac{2x}{y} - \frac{x^2}{y^2}\right)$$

Matrice hessienne – Exemple, Propriété

Exemple:
$$f(x,y) = \frac{x^2}{y}$$
 \uparrow $n = 2$

$$\nabla_f(x,y) = \left(\frac{2x}{y} - \frac{x^2}{y^2}\right) \quad \rightsquigarrow \quad H_f(x,y) = \left(\frac{2}{y} - \frac{2x}{y^2}\right) \leftarrow \frac{\partial}{\partial x} \leftarrow \frac{\partial}{\partial y}$$

Matrice hessienne – Exemple, Propriété

Exemple:
$$f(x,y) = \frac{x^2}{y}$$
 $\qquad \qquad \qquad \qquad \qquad n = 2$

$$\nabla_f(x,y) = \left(\frac{2x}{y} - \frac{x^2}{y^2}\right) \quad \rightsquigarrow \quad H_f(x,y) = \left(\frac{2}{y} - \frac{2x}{y^2}\right) \leftarrow \frac{\partial}{\partial x} \leftarrow \frac{\partial}{\partial y}$$

Propriété

Si f est suffisamment régulière, on a :

$$\bullet \ \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

• $H_f(x_1, ..., x_n)$ est symétrique par rapport à sa diagonale principale

--- ordre des dérivées sans importance en pratique

C. Mouilleron

Condition suffisante pour un ??? local

Cas
$$n = 1$$

 $f'(x^*) = 0$
 $f''(x^*) > 0$

Condition suffisante pour un ??? local

Cas
$$n = 1$$

 $f'(x^*) = 0$
 $f''(x^*) > 0$

X	X *
f	
<i>f</i> ′(<i>x</i>)	Ф
f'	
f''(x)	+

Condition suffisante pour un ??? local

Cas
$$n = 1$$

 $f'(x^*) = 0$
 $f''(x^*) > 0$

Condition suffisante pour un ??? local

Cas
$$n = 1$$

 $f'(x^*) = 0$
 $f''(x^*) > 0$

Condition suffisante pour un minimum local

Cas
$$n = 1$$

 $f'(x^*) = 0$
 $f''(x^*) > 0$

Condition suffisante pour un minimum local

Cas
$$n = 1$$

 $f'(x^*) = 0$
 $f''(x^*) > 0$

Cas général

$$\nabla_f(x_1^*,\ldots,x_n^*)=0$$

$$\lambda>0$$

pour chaque valeur propre λ de $H_f(x_1^*, \dots, x_n^*)$

f strictement convexe autour de (x_1^*, \dots, x_n^*)

Condition suffisante pour un maximum local

Cas
$$n = 1$$

 $f'(x^*) = 0$
 $f''(x^*) < 0$

Cas général

$$\nabla_f(x_1^*,\ldots,x_n^*)=0$$

$$\lambda<0$$

pour chaque valeur propre λ de $H_f(x_1^*, \dots, x_n^*)$

f strictement concave autour de (x_1^*, \dots, x_n^*)

Résumé

Pour chercher les extrema de $f: \mathbb{R}^n \to \mathbb{R}$:

- lacktriangledown calculer ∇_f
- ② résoudre $\nabla_f(x_1,\ldots,x_n)=0$ pour trouver les points critiques
- **3** pour chaque point critique (x_1^*, \dots, x_n^*) :
 - calculer $H_t(x_1^*, \ldots, x_n^*)$
 - trouver ses valeurs propres
 - conclure en fonction des signes de ces valeurs propres

Conclusions possibles:

- toutes les vp > 0 \Rightarrow minimum local (x_1^*, \dots, x_n^*)
- toutes les vp $< 0 \Rightarrow$ maximum local (x_1^*, \dots, x_n^*)
- une vp > 0 + une $vp < 0 \Rightarrow point col$
- une vp nulle ⇒ tout est possible

point-scelle

Plan

Généralisation de la dérivée

2 Extrema locaux de $f: \mathbb{R}^n \to \mathbb{R}$

3 Intégration de $f: \mathbb{R}^n \to \mathbb{R}$

Intégrales doubles

$$\iint_D f(x,y) d(x,y) \quad \text{où } D \subset \mathbb{R}^2 \text{ et } f: D \to \mathbb{R}$$

- intégrabilité?
- calcul?

Intégrales doubles

$$\iint_{D} f(x,y) d(x,y) \quad \text{où } D \subset \mathbb{R}^{2} \text{ et } f : D \to \mathbb{R}$$

lorsque $\iint_{\mathbb{R}} |f(x,y)| d(x,y) < +\infty$

- intégrabilité ?
- calcul?

Théorème de Fubini-Tonelli

Si $f: D_X \times D_Y \to \mathbb{R}$ est intégrable, alors

D = rectangle

$$\iint_{D_x \times D_y} f(x, y) d(x, y) = \iint_{D_x} \left(\int_{D_y} f(x, y) dy \right) dx = \iint_{D_y} \left(\int_{D_x} f(x, y) dx \right) dy$$

C. Mouilleron

Intégrales doubles – Cas de variables séparables

$$\iint_D xy \, d(x,y) \qquad \text{où } D = \{ (x,y), \ 0 \le x \le 2 \text{ et } 1 \le y \le 3 \}$$

- $0 \le x \ y \le 6 \ \text{sur le carré} \ D = [0, 2] \times [1, 3]$
- \rightarrow xy intégrable sur D $\iint_D |x y| d(x, y) \le 6 \times 2 \times 2 < +\infty$

Intégrales doubles – Cas de variables séparables

$$\iint_D xy \, d(x,y) \qquad \text{où } D = \{ (x,y), \ 0 \le x \le 2 \text{ et } 1 \le y \le 3 \}$$

• $0 \le x y \le 6$ sur le carré $D = [0,2] \times [1,3]$

$$ightarrow$$
 xy intégrable sur D
$$\iint_D |x \, y| \, \mathrm{d}(x,y) \leq 6 \times 2 \times 2 < +\infty$$

calcul en séparant les variables :

$$\iint_{D} xy \, d(x, y) = \int_{y=1}^{3} \left(\int_{x=0}^{2} xy \, dx \right) dy = \int_{y=1}^{3} \left(y \int_{x=0}^{2} x \, dx \right) dy$$
$$= \left(\int_{x=0}^{2} x \, dx \right) \left(\int_{y=1}^{3} y \, dy \right) = \left[\frac{x^{2}}{2} \right]_{0}^{2} \left[\frac{y^{2}}{2} \right]_{1}^{3} = \frac{4}{2} \frac{9-1}{2} = 8$$

C. Mouilleron ENSIIE – 1A – Algèbre Fonctions de plusieurs variables

Intégrales doubles – Cas d'un domaine simple

$$I = \iint_D x \, d(x, y)$$
 où $D = \{ (x, y), 0 \le x \le 1 \text{ et } 0 \le y \le x \}$

$$I = \int_{x=0}^{1} \left(\int_{y=0}^{x} x \, dy \right) \, dx$$
$$= \int_{x=0}^{1} x^{2} \, dx = \frac{1}{3}$$

Intégrales doubles – Cas d'un domaine simple

$$I = \iint_D x \, d(x, y)$$
 où $D = \{ (x, y), \ 0 \le x \le 1 \text{ et } 0 \le y \le x \}$

$$I = \int_{x=0}^{1} \left(\int_{y=0}^{x} x \, dy \right) dx$$
$$= \int_{x=0}^{1} x^{2} dx = \frac{1}{3}$$

$$I = \int_{y=0}^{1} \left(\int_{x=y}^{1} x \, dx \right) \, dy$$
$$= \int_{y=0}^{1} \frac{1 - y^{2}}{2} \, dy = \frac{1}{2} - \frac{1}{6} = \frac{1}{3}$$

C. Mouilleron

Intégrales doubles – Cas d'un domaine simple

$$I = \iint_D x \, d(x, y)$$
 où $D = \{ (x, y), \ 0 \le x \le 1 \text{ et } 0 \le y \le x \}$

$$I = \int_{x=0}^{1} \left(\int_{y=0}^{x} x \, dy \right) \, dx$$
$$= \int_{x=0}^{1} x^2 \, dx = \frac{1}{3}$$

$$I = \int_{y=0}^{1} \left(\int_{x=y}^{1} x \, dx \right) \, dy$$
$$= \int_{y=0}^{1} \frac{1 - y^{2}}{2} \, dy = \frac{1}{2} - \frac{1}{6} = \frac{1}{3}$$

ATTENTION aux bornes → faire un dessin

Changement de variables 2D

Théorème

Si
$$\varphi: D \rightarrow D'$$
 est un C^1 -difféomorphisme = $(u,v) \mapsto (x,y)$

- ullet φ est bijective
- φ est C^1 = ses dérivées partielles existent et sont continues
- φ^{-1} est C^1

alors on a
$$\iint_{D'} f(x,y) \, \mathrm{d}(x,y) = \iint_{D} f(\varphi(u,v)) \, \Big| \, \mathrm{det} \, J_{\varphi}(u,v) \Big| \, \mathrm{d}(u,v)$$

où
$$J_{\varphi}(u, v) = \text{matrice jacobienne de } \varphi = \begin{pmatrix} \frac{\partial x}{\partial u}(u, v) & \frac{\partial x}{\partial v}(u, v) \\ \frac{\partial y}{\partial u}(u, v) & \frac{\partial y}{\partial v}(u, v) \end{pmatrix}$$

C. Mouilleron ENSIIE – 1A – Algèbre Fonctions de plusieurs variables

25/30

Exemple : passage en coordonnées polaires (1)

$$\varphi^{-1}: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^*_+ \times] - \pi, \pi]$$

$$(x,y) \mapsto \left(\sqrt{x^2 + y^2}, 2 \arctan\left(\frac{y}{x + \sqrt{x^2 + y^2}}\right)\right)$$

$$\varphi: \mathbb{R}^*_+ \times] - \pi, \pi] \to \mathbb{R}^2 \setminus \{(0,0)\}$$

$$(\rho,\theta) \mapsto (\rho \cos \theta, \rho \sin \theta)$$

$$|\det(J_{\varphi})| = \left|\det \begin{pmatrix} \cos \theta & -\rho \sin \theta \\ \sin \theta & \rho \cos \theta \end{pmatrix} \right| = |\rho(\cos \theta)^2 + \rho(\sin \theta)^2| = \rho$$

26/30

C. Mouilleron ENSIIE – 1A – Algèbre Fonctions de plusieurs variables

Exemple : passage en coordonnées polaires (2)

Calcul de l'aire d'un disque de rayon r:

•
$$D = \{ (x, y), 0 \le x^2 + y^2 \le r^2 \}$$

$$0 \le |x + iy|^2 \le r^2$$

• f(x, y) = 1

chaque point compte pour 1

$$\iint_{D} d(x, y) = \int_{\rho=0}^{r} \int_{\theta=-\pi}^{\pi} \rho \, d\theta \, d\rho$$

$$= \left(\int_{\rho=0}^{r} \rho \, d\rho \right) \left(\int_{\theta=-\pi}^{\pi} d\theta \right)$$

$$= \left[\frac{\rho^{2}}{2} \right]_{0}^{r} [\theta]_{-\pi}^{\pi} = \frac{r^{2}}{2} \left(\pi - (-\pi) \right) = \pi r^{2}$$

Exemple : passage en coordonnées polaires (3)

Calcul de
$$\iint_{\mathbb{R}^2} \exp(-x^2 - y^2) \, \mathrm{d}(x,y)$$
: fct. continue en $(0,0)$ $\Rightarrow \iint_{\mathbb{R}^2} = \iint_{\mathbb{R}^2 \setminus \{(0,0)\}}$

$$\iint_{\mathbb{R}^2} \exp(-x^2 - y^2) \, \mathsf{d}(x, y) = \int_{\rho=0}^{+\infty} \int_{\theta=-\pi}^{\pi} \exp(-\rho^2) \, \rho \, \mathsf{d}\theta \, \mathsf{d}\rho$$
$$= \int_{\rho=0}^{+\infty} 2\pi \, \rho \exp(-\rho^2) \, \mathsf{d}\rho$$
$$= \left[-\pi \, \exp(-\rho^2) \right]_{\rho=0}^{+\infty} = \pi$$

C. Mouilleron

Bonus pour le cours de proba.

Soit
$$A = \int_{-\infty}^{+\infty} \exp(-x^2) dx$$
.

$$A^{2} = \left(\int_{-\infty}^{+\infty} \exp(-x^{2}) dx \right) \left(\int_{-\infty}^{+\infty} \exp(-y^{2}) dy \right)$$
$$= \iint_{\mathbb{R}^{2}} \exp(-x^{2} - y^{2}) d(x, y) = \pi$$

Donc $A = \sqrt{\pi}$.

Ainsi, pour tout $\sigma > 0$ et en posant $t = x \sigma \sqrt{2}$:

$$\frac{\mathrm{d}t}{\mathrm{d}x} = \sigma\sqrt{2}$$

$$\int_{-\infty}^{+\infty} \exp\left(-\frac{t^2}{2\sigma^2}\right) dt = \int_{-\infty}^{+\infty} \exp(-x^2) \, \sigma\sqrt{2} \, dx = A \, \sigma\sqrt{2} = \sigma \, \sqrt{2\pi}$$

C. Mouilleron

Bilan sur les intégrales multiples

Intégrales doubles = représentatif du cas général

Pour les intégrales multiples :

- notations similaires pour n = 3
- notations allégées pour n ≥ 4
- techniques de calculs similaires :
 - variable par variable
 - changement de variables

 $f: \mathbb{R}^n \to \mathbb{R}$

Fubini

jacobienne $n \times n$