Course Code: 23CS0504

SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY:: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Data Structure(23CS0504) **Year &Sem:** I-B.Tech & II-Sem

Course & Branch: CSE(Common to All) UNIT-I Regulation: R23

Introduction to Linear Data Structure

	a) What is a data structure?	[L1, CO1]	[2M]
	b) Define ADT (Abstract Data Type).	[L1, CO1]	[2M]
1	c) Compare binary search and linear search techniques	[L2, CO1]	[2M]
	d) What is the need of data structures?	[L2, CO1]	[2M]
	e) List some common data structures	[L1, CO1]	[2M]
2	a) What do you mean by Searching? Explain sequential search.	[L3,CO1]	[5M]
	b) Explain about binary search.	[L2, CO1]	[5M]
3	a) How data structures are classified?	[L6,CO1]	[5M]
	b) Differentiate linear and non-linear data structure.	[L2, CO2]	[5M]
4	a) Define sorting. Explain any one sorting techniques? of sorting.	[L1,CO1]	[5M]
	b) Define ADT (Abstract Data Type) Mention the advantages of ADT.	[L4,CO1	[5M]
5	Discuss the algorithm to sort the elements using Bubble sort.	[L2,CO1]	[10M]
6	A Sort the following numbers using Bubble sort : 14,33,27,35,10.	[L4,CO1]	[5M]
0	B Explain insertion sort with an example.	[L3,CO1]	[5M]
7	Sort the following numbers using selection sort : 45, 25, 10, 2, 9, 85, 102, 1	[L4,CO1]	[10M]
8	a) Explain about Space Complexities.	[L2,CO1]	[5M]
	b) Explain about Time Complexities.	[L2,CO1]	[5M]
9	Explain about classification of Data Structures	[L2,CO1]	[10M]
	A Write a C program to sort the elements using bubble sort.	[L5,CO1]	[5M]
10	B Sort the following numbers using Insertion sort :	[L4,CO1]	[5M]
	24,9,29,14.19,27,50,10,30		
11	A Write a C program to sort the elements using selection sort.	[L5, CO1]	
	b) Write a C program to sort the elements using insertions sort.	[L5, CO1]	[5M]

<u>UNIT-II</u> Linked List

	a) What are the ways of implementing linked list?	[L1, CO2]	[2M]
	b) What are the types of linked lists?	[L1, CO2]	[2M]
1	c) How the singly linked lists can be represented?	[L2, CO2]	[2M]
_	d) How the doubly linked list can be represented?	[L2, CO2]	[2M]
	e) What are the advantages of linked list?	[L1, CO2]	[2M]
2	a) Explain the operations of singly linked lists.	[L3, CO2]	[5M]
	b) What are the advantages of linked list?	[L2, CO2]	[5M]
3	a) Explain the insertion operation in Single linked list. How nodes are inserted after a specified node	[L6, CO2]	[5M]
	b) Illustrate the use of linked list.	[L3, CO2]	[5M]
4	a) Explain the operations of doubly linked lists	[L1, CO2]	[5M]
	b) Explain the operations of circularly linked lists.	[L4, CO2]	[5M]
5	Explain the applications of linked lists in detail.	[L2, CO2]	[10M]
	a) Advantages of Linked List over Array.	[L4, CO2]	[5M]
6	b) Explain Representation of linked list.	[L3, CO2]	[5M]
7	What is the draw backs of single linked list? Explain how to implement insert and	[L4, CO2]	[10M]
7	traverse operations in circular linked list	[T. C. CO.]	F=3.63
8	a) Create a Doubly linked list by inserting following elements in a list 13,45,23,20,25.	[L6, CO2]	[5M]
	b) Write algorithm for insert and delete a node from doubly linked list.	[L2, CO2]	[5M]
	What is linked list? Write and explain the algorithm for crate, insertion and	[L2, CO2]	[10M]
9	traverse operations in doubly linked list with example		[23.6]
10	a) Explain the circular linked list in detail.	[L5, CO2]	
11	b) List the advantages of circular linked list.a) Differentiate linked list and Array	[L4, CO2]	
11	a) Differentiate linked list and Arrayb) Specify the use of Header node in a linked list.	[L2, CO2] [L2, CO2]	
	o) specify the use of freduct hour in a filliked list.	[LZ, CO2]	[DIAT]

<u>UNIT-III</u>

STACKS

1	a) What are the various Operations performed on the Stack?	[L1, CO3]	[2M]
	b) Define Stack.	[L1, CO3]	[2M]
	c) Write the postfix form for the expression -A+B-C+D?	[L2, CO3]	[2M]
	d) Give one example of a problem where backtracking algorithms are used	[L2, CO3]	[2M]
	e) List any four applications of stack	[L1, CO3]	[2M]
2	Write an algorithm for Push and Pop operations on Stack using Arrays.	[L3,CO3]	[10M]
3	Write an algorithm for Push and Pop operations on Stack using Linked list.	[L6,CO3]	[10M]
4	Write an algorithm for converting an Infix to Postfix notation using stack.	[L1,CO3]	[5M]
	Convert the following Infix into Postfix expression: A+(B*C)/D	[L4,CO3]	[5M]
5	List the various operations that can be performed on stack? Explain with suitable example.	[L2,CO3]	[10M]
6	a) What do you mean by stack overflow and stack underflow?	[L4,CO3]	[5M]
	b) List and explain the applications of stack	[L3,CO3]	[5M]
7	Discuss the use of stacks in backtracking algorithms, citing a problem like N-Queens or maze solving	[L4,CO3]	[10M]
8	Explain how stacks are used in expression evaluation, specifically in converting infix to postfix notation. Provide an example.	[L2,CO3]	[10M]
9	Investigate how stacks are used in backtracking algorithms. Give an example of a problem that can be solved using backtracking and explain how a stack helps in finding the solution.	[L2,CO3]	[10M]
10	Describe how stacks can be made using arrays and linked lists. Explain how to add	[L5,CO3]	[10M]
	(push) and remove (pop) items from each type of stack. Discuss the benefits and drawbacks of using arrays versus linked lists for implementing stacks.		
11	Detail a stack-based algorithm for reversing a singly linked list. Analyze its time and	[L5, CO3]	[10M]
	space complexity.		

<u>UNIT-IV</u>

QUEUES AND DEQUES

1	a)	Define queue	[L1,CO4]	[2M]
	b)	Define priority queue	[L1,CO4]	[2M]
	c)	List the applications of queues	[L1,CO5]	[2M]
	d)	What is Deque	[L1,CO4]	[2M]
	e)	What are the types of queues	[L1,CO4]	[2M]
2	a)	Describe the properties of queues	[L2,CO4]	[5M]
	b)	Illustrate the operations on queues	[L2,CO4]	[5M]
3		Describe the implementation of queues using arrays	[L2,CO4]	[10M]
4		Represent the implementation of queues using linked lists	[L2,CO5]	[10M]
5		Discuss the applications of queues in breadth first search	[L2,CO4]	[10M]
6	a)	Explain about scheduling	[L2,CO4]	[5M]
	b)	Discuss about Deques	[L2,CO4]	[5M]
7	a)	What are the operations on Deques	[L1,CO4]	[5M]
	b)	Explain the applications of Deques	[L2,CO5]	[5M]
8	a)	Define queue? Discuss about queue ADT?	[L1,CO5]	[5M]
	b)	Discuss about implementation of queues?	[L2,CO4]	[5M]
9		What is circular queue? Discuss about circular queue in detail?	[L2,CO4]	[10M]
10		Define queue.Explain Types of queues?	[L2,CO4]	[10M]
11		Develop a program to simulate a simple printer queue system	[L6,CO5]	[10M]

 $\frac{\text{UNIT-V}}{\text{TREES, HASHING AND HASH FUNCTION}}$

1	a)	Define trees in data structure	[L1,CO5]	[2M]
	b)	What is Binary search tree	[L1,CO5]	[2M]
	c)	Define Graph.	[L1,CO5]	[2M]
	d)	List out types of Graph.	[L1,CO5]	[2M]
	e)	Give any Two Applications of Graph.		[2M]
2	a)	Explain the Representation of Trees in data structure	[L2,CO5]	[5M]
	b)	Define Trees and explain types of trees with example	[L1,CO5]	[5M]
3		Examine the operations of trees in data structures	[L3,CO5]	[10M]
4		Examine the operations of binary search trees	[L3,CO5]	[10M]
5	a)	Classify BST traversals for inorder, preorder and post order.	[L4,CO5]	[5M]
		8 20 25 40		
	b)	Explain BST traversals ?	[L2,CO5]	[5M]
6	a)	Create a C program for traversing BST	[L6,CO5]	[5M]
	b)	Create an algorithm for Binary search trees	[L6,CO5]	[5M]
7	a)	Examine Operations of AVL Tree?	[L3,CO5]	[5M]
	b)	Examine Rotations of AVL Tree?	[L3,CO5]	[5M]
8	a)	Discuss RR and LL Rotations in AVL Tree?	[L2,CO5]	[5M]
	b)	Describe Applications of Graphs?	[L2,CO6]	[5M]
9	a)	Define Graph and Explain Representation of Graph?	[L2,CO6]	[5M]
	b)	Explain Types of Graph?	[L2,CO6]	[5M]
10		Explain Breadth First Traversal with Example?	[L2,CO6]	[10M]
11		Explain Depth First Traversal with example?	[L2,CO6]	[10M]

SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY:: PUTTUR

BITBANK (OBJECTIVE)

Subject with Code: Data Structures (23CS0504) Course & Branch: CSE & Allied

Regulation: R23 Year &Sem: I-B.Tech & II-Sem

<u>UNIT –I</u>

1.	A) Elements are ar	aracteristic of linear da ranged sequentially arranged hierarchicall	B) Elements	are arranged random	-]
2.	-	structures important?	B) They a	re difficult to implem	[ent]
	C) They require co	•	· · · · · · · · · · · · · · · · · · ·	re rarely used in prog		
3.	What defines linear A) Sequential organ C) Complex arrangements	nization	B) Randor D) Numer	n access ical values only	[]
4.	Which is an exampl A)Binary tree	e of a linear data struct B) Hash table	ture? C) Stack	D) Graph	[]
5.	What is an Abstract A) Concrete impler C) Programming	• • • • •	B) Set of o D) Space optimiz	-	[]
6.	ADTs separate which A) Time and space C) Insertion and	ee	· · ·	nentation and interf r and non-linear	[ace]
7.	Example of an ADT		_,		[]
8.	What does O(n) der	B) Priority queue note in time complexity		D) Heap	[]
	A) Constant time	B) Linear time	C) Logarithmic time	D) Exponential tim	ne	
9.	Linear data structur			D)	[]
	A) Constant	B) Varying	C) Logarithmic	D) Irrelevant		

10. Space complexity in linear data structures? A) Memory required B) Time taken C) Element arrangement D) Algorithm eff	[iciency]
11. Common notation for time complexity? A) O(n) B) Θ (n) C) Ω (n) D) All]
12. What's O(n) in time complexity?	[]
A) Best-case B) Worst-case C) Average-case D) Upper boun	d	
13. Which operation typically has the highest time complexity in linear data structures? A) Search B) Insertion C) Deletion D) Traversal	[]
14. What does the notation $\Theta(n)$ represent in time complexity analysis?	[]
A) Best-case time B) Worst-case time C) Average-case time D) Tight 15. Which linear data structure is best suited for implementing a Last-In-First-Out (LIFO) by A) Queue B) Stack C) Linked list D) Priority queue	oehavior? [time]
16. What is the time complexity of searching for an element in an unsorted array, assuming scenari	[]
A) $O(1)$ B) $O(\log n)$ C) $O(n)$ D) $O(n^2)$ 17. Which linear data structure efficiently supports both insertion and deletion operations a	t the beginni	ing
and end? A) Array b. Stack C) Queue D) Linked l	[ist	J
18. What is the primary purpose of using abstract data types?	[]
A) To hide implementation details B) To make algorithms faster		
C) To increase memory usage D) To improve user interface 19. In the above notation, which is not asymptotic notation	ſ	1
A) Bing – O(O) B) Big-Theta(Θ) C) Big-Omega(Ω) d) Big-n(n)	L	J
20. Which search technique involves scanning through each element until the target is found. A) Linear search B) Binary search C) Bubble sort D) Insertion sort	d? []
21. What is the time complexity of linear search in the worst-case scenario?	[]
A) $O(1)$ B) $O(\log n)$ C) $O(n)$ D) $O(n^2)$		
22. Binary search can only be applied to which type of data structure?	[]
A) Sorted arrays B) Unsorted arrays C) Linked lists D) Stacks 23. What is the time complexity of binary search? A) O(1) B) O(log n) C) O(n) D) O(n^2)	[]
24. Which sorting technique repeatedly steps through the list, compares adjacent elements,	and swaps tl	hem i
they are in the wrong order?	[]
A) Bubble sort B) Selection sort C) Insertion sort D) Linear search 25. In bubble sort, what is the time complexity in the worst-case scenario?	[]
A) $O(1)$ B) $O(\log n)$ C) $O(n)$ D) $O(n^2)$ 26. Which sorting technique divides the input list into two parts: a sorted sublist and an uns	orted cublict	. 1 c _•
A) Bubble sort B) Selection sort C) Insertion sort D) Binary search		.: []
27. What is the time complexity of selection sort?	[]
A).O(1) B) $O(\log n)$ C) $O(n)$ D) $O(n^2)$ 28. Which sorting technique is considered stable, meaning it does not change the relative or	der of equal	
elements A) Bubble sort B) Selection sort C) Insertion sort D) Linear searce	L ch	J
, , , , , , , , , , , , , , , , , , , ,		

29. In insertion sort, what is the time complexity in the worst-case scenario?	[]
A) $O(1)$ B) $O(\log n)$ C) $O(n)$ D) $O(n^2)$		
30. Linear search is efficient for:	[]
A)Small data sets. B) Large data sets C) Sorted arrays D) Linked	lists	
31 Binary search requires the elements to be:	[]
A)Unsorted B) Sorted in descending order		
C) Sorted in ascending order D) Randmly arranged		
32. Bubble sort is an example of	[1
A) Divide and conquer algorithm B) Greedy algorithm	•	-
B) Dynamic programming D) Comparison-based sorting algorithm	n	
33. Selection sort repeatedly selects the:	[]
A) Smallest element and places it at the beginning B) Largest element and places	es it at the be	ginning
C) Largest element and places it at the end D) Smallest element and place		-
34. Insertion sort works by:	Γ	1
A) Swapping adjacent elements B) Dividing the list into sublists	L	,
C) Moving elements one at a time to their correct positions		
D) Selecting the smallest element and placing it at the beginning		
35In bubble sort, how many passes are required to sort an array of size n?	[1
A) n B) n-1 C) 2n D) n\2		•
36. It performs two nested loops	[]
A) It performs two nested loops B) It recursively divides the array		
C) It randomly selects elements to swap D) It performs multiple compari	sons	
beforeswapping	.50115	
37. Insertion sort is considered efficient for	ſ	1
A) Large data sets B) Partially sorted arrays C) Randomly arranged elements	-	-
D) Arrays with unique elements only		
38. Binary search is more efficient than linear search for large datasets because:	[]
A) It requires fewer comparisons B) It always finds the element in the first atter	npt	_
C) It doesn't require the data to be sorted D) It has a time complex	-	
b) it doesn't require the data to be sorted by it has a time compress	1119 01 0(1)	
40. Which sorting algorithm has the best time complexity in the average case?	[]
A) Bubble sort B) Selection sort C) Insertion sort D) Quick	sort	

<u>UNIT –II</u>

	3, 4]	B) (1) -> (2) -> (3) -> (4	C) {1, 2, 3, 4}	D) <1, 2, 3, 4>	
! . \	A) insertEnd()	insert a new node at the beginning o B) insertMiddle() linked list allows traversal in both fo	C) insertBeginning()] D) insertAfter() ctions? []
	A) Singly linke C) Circular li	ed list B) Doubly linked list None of the above		
	4. In a doubly link	ked list, each node contains how mar	,	[]
	5. What operation A) deleteEnd()	n is used to delete a node from the en B) deleteE	d of a doubly linked list? Beginning()	[]
	C) deleteMido 6. Circular linked A) Implementin	lists are used for	V	[]
	C) Implement 7. Which data stru	ting hash tables D) All of the abucture allows constant time insertion	pove and deletion at both ends	s? [) Circular linked lists]
	8. Arrays have bet	tteraccess compared to li	nked lists	[]
		ollowing is NOT an advantage of lin		above []
	, ,	is memory allocation D) None	_	Г	1
	A) Browser history C) Implement	· ·	sts? B) Undo functional: D) Music playlis]
	, 1	nters are required to implement a circ B) 2 C)3	,	[]
	12. Which operation A) insertEnd()	on is used to insert a new node aft B) insertBeginning() C) insertBeginning()	sertAfter() D) in	_]
	A) getLast()	n is used to access the last element in B) getEnd()	0.0	None of the above	J
	• •	aversal is used to print the elements on B) Breadth-first C) In-order	of a linked list? D) Linear	[]
	, <u>*</u>	ked list, the last node points to the: B) Second node C) Null not	,	[]
	16. Which of the fol	llowing operations cannot be perform]
7. 1	C) Searching	,	of the above	Γ]	
	A) Wastage of memo	ory B) Contiguous memory allocation NOT an application of a doubly link	•	D) None of the above	
	A) Browser history	B) Implementing a stack C) Impl	ementing a queue D)Und	lo functionality in text ed	ditors

19. Which operation is used to delete a node from the middle of a singly linked list?		[]
A) deleteBeginning() B) deleteEnd() C) deleteNode() D) deleteMiddle()			
20. What is the time complexity for accessing an element in a linked list?	[]
A) $O(1)$ B) $O(n)$ C) $O(\log n)$ D) $O(n^2)$		г	7
21. Which of the following statements about circular linked lists is true?A) They have a fixed size.B) They do not have a beginning or a	n onD)	L	J
A) They have a fixed size.B) They do not have a beginning or aC) They can be traversed only in one direction.D) They cannot be use	•	alomo	ont augues
22. In a doubly linked list, how many pointers does each node have?	ս ա ուղ	L	A][
1 B) 2 C) 3 D)	4	L	J/
23. Which operation is used to insert a new node at the end of a circular linked list?		[]
A) insertBeginning() B) insertEnd() C) insertMiddle() D) insertAfter	()	_	_
	r		1
24. Which of the following operations on arrays can be performed in O(1) time? A) Insertion at the end B) Deletion at the beginning	L]
C) Accessing an element by index D) None of the above			
25. Which of the following statements about linked lists is true?	Γ]
A) They occupy contiguous memory. B) They allow for constant-time access to el	lements.		-
C) They have a fixed size. D) They are dynamic in size.			
26. In a doubly linked list, how many pointers does the last node have?	[]A)
1 B) 4 C) 3 D) 2	-		-
27. Which of the following is a disadvantage of using linked lists?	Ĺ		J
A) Efficient memory usage B) Random access D) Fixed size			
C) Sequential access D) Fixed size 28. Which of the following operations can be performed on a circular linked list?	Г		1
A) Traversing from the beginning to the end B) Traversing from the end to the	۔ beginni ا	ng.	J
C) Insertion at the end D) Deletion from the middle	, 008		
29. Which data structure is most suitable for implementing a stack?		Γ	1
A) Array B) Singly linked list		_	-
C) Doubly linked list D) Circular linked list	t		
30. Which operation is used to delete a node from the middle of a doubly linked list?		[]
A) deleteBeginning() B) deleteEnd() C) deleteNode() D) del	eteMido	ile()	
31. Which of the following is NOT a benefit of using linked lists?		[]
A) Dynamic size B) Ease of insertion and deletion			
C) Random access D) None of the above 32. Which type of linked list allows traversal only in one direction?	i	=	1
A) Singly linked list B) Doubly linked list	l	-	J
C) Circular linked list D) None of the above			
33. Which of the following is an application of a circular linked list?		[]
A) Implementing a stack B) Implementing a queue			
C) Browser history D) Music playlistmanagement			
34. Which operation is used to insert a new node before a specific node in a doubly lir	ıked list?	?[]
A) insertEnd() B) insertBeginning() C) insertAfter() D) insertBefore() 35. In a circular linked list, which node is considered the starting point?		Г	1
A) First node B) Last node C) Middle node D)None of the ab	ove	L	J
36. Which of the following is a characteristic of arrays but not of linked lists?		[]
A) Dynamic size B) Random access C) Ease of insertion and deletion D) None	e	_	_
37. Which operation is used to delete the last node from a circular linked list? A) delete Regioning ()	D) NT = -	L]
A) deleteBeginning() B) deleteEnd() C) deleteNode() I 38. Which data structure allows efficient insertion and deletion at any position?	D) Non	e 「	1
55. Then data structure allows efficient insertion and deterior at any position:		L	1

39. Which operation is used to delete the first node from a doubly linked list? A) deleteBeginning() B) deleteEnd() C) deleteNode() D) None of the above 40. Which of the following is NOT an application of a singly linked list? A) Undo functionality in text editors B) Browser history C) Music playlist management D) Implementing a queue UNIT — III 1. What principle do stacks follow? A) First In First Out (FIFO) C) Last In Last Out (LIFO) C) Last In Last Out (LIFO) D) First In Last Out (FILO) 2. Which of the following is a primary operation on a stack? A) Enqueue B) Dequeue C) Push D) Peek 3. What operation removes an item from the top of the stack? A) Pop B) Push C) Peer D) Insert 4. How is a stack typically implemented using arrays? A) Linked structure B) Dynamic resizing C) Fixed size D) Circular structure 5. What is the time complexity of the push and pop operations on a stack implemented using arrays? A) O(1) B) O(n) C) O(log n) D) O(n^2) 6. Which data structure can efficiently implement a stack with a dynamic size? A) Array B) Linked List C) Tree D) Hash Table 7. In a linked list implementation of a stack, where are new elements added? A) Ageginning of the list B) End of the list C) Middle of the list D) Random position 8. What is the time complexity of the push and pop operations on a stack implemented using linked lists? A) O(1) B) O(n) C) O(log n) D) O(n^2) 9. Which operation retrieves the top element of the stack without removing it? A) Push B) Pop C) Peek D) Insert 10. What application uses stacks for evaluating mathematical expressions? A) Stack B) Queue C) Array D) Linked List Vhat algorithmic technique uses stacks for backtracking? A) Greedy algorithms B) Divide and conquer C) Dynamic programming D) Backtracking	A) Arrays B) Singly linked list	s C) Doubly linked lists D) Circula	ar linked lis	its
40. Which of the following is NOT an application of a singly linked list? A) Undo functionality in text editors B) Browser history C) Music playlist management D) Implementing a queue LINIT – III 1. What principle do stacks follow? A) First In First Out (FIFO) C) Last In Last Out (LILO) D) First In Last Out (FILO) 2. Which of the following is a primary operation on a stack? A) Enqueue B) Dequeue C) Push D) Peek 3. What operation removes an item from the top of the stack? A) Enqueue B) Dequeue C) Push D) Peek 4. How is a stack typically implemented using arrays? A) Linked structure B) Dynamic resizing C) Fixed size D) Circular structure 5. What is the time complexity of the push and pop operations on a stack implemented using arrays? A) O(1) B) O(n) C) O(log n) D) O(n^22) 6. Which data structure can efficiently implement a stack with a dynamic size? A) Array B) Linked List C) Tree D) Hash Table 7. In a linked list implementation of a stack, where are new elements added? [] A) Beginning of the list B) End of the list C) Middle of the list D) Random position 8. What is the time complexity of the push and pop operations on a stack implemented using linked lists? A) O(1) B) O(n) C) O(log n) D) O(n^2) 9. Which operation retrieves the top element of the stack without removing it? A) Push B) Pop C) Peek D) Insert 10. A) Searching algorithms B) Sorting algorithms C) Expression evaluation D) Memory allocation 11. In infix expression evaluation, which data structure is typically used? [] A) Stack B) Queue C) Array D) Linked List UNHAT What algorithmic technique uses stacks for backtracking? [] I	-	-	the above]
UNIT – III 1. What principle do stacks follow? A) First In First Out (FIFO) C) Last In Last Out (LILO) D) First In Last Out (FILO) 2. Which of the following is a primary operation on a stack? A) Enqueue B) Dequeue C) Push D) Peek 3. What operation removes an item from the top of the stack? A) Pop B) Push C) Peer D) Insert 4. How is a stack typically implemented using arrays? A) Linked structure B) Dynamic resizing C) Fixed size D) Circular structure 5. What is the time complexity of the push and pop operations on a stack implemented using arrays? A) O(1) B) O(n) C) O(log n) D) O(n^2) 6. Which data structure can efficiently implement a stack with a dynamic size? A) Array B) Linked List C) Tree D) Hash Table 7. In a linked list implementation of a stack, where are new elements added? A) Beginning of the list B) End of the list C) Middle of the list D) Random position 8. What is the time complexity of the push and pop operations on a stack implemented using linked lists? A) O(1) B) O(n) C) O(log n) D) O(n^2) 9. Which operation retrieves the top element of the stack without removing it? A) Push B) Pop C) Peek D) Insert 10. What application uses stacks for evaluating mathematical expression evaluation D) Memory allocation 11.In infix expression evaluation, which data structure is typically used? [] A) Stack B) Queue C) Array D) Linked List UNIT — III D) Implementing a queue	,	, , , , , , , , , , , , , , , , , , , ,	г]
UNIT — III 1. What principle do stacks follow? A) First In First Out (FIFO) B) Last In First Out (LIFO) C) Last In Last Out (LILO) D) First In Last Out (FILO) 2. Which of the following is a primary operation on a stack? A) Enqueue B) Dequeue C) Push D) Peek 3. What operation removes an item from the top of the stack? A) Pop B) Push C) Peer D) Insert 4. How is a stack typically implemented using arrays? A) Linked structure B) Dynamic resizing C) Fixed size D) Circular structure 5. What is the time complexity of the push and pop operations on a stack implemented using arrays? A) O(1) B) O(n) C) O(log n) D) O(n^2) 6. Which data structure can efficiently implement a stack with a dynamic size? A) Array B) Linked List C) Tree D) Hash Table 7. In a linked list implementation of a stack, where are new elements added? A) Beginning of the list B) End of the list C) Middle of the list D) Random position 8. What is the time complexity of the push and pop operations on a stack implemented using linked lists? A) O(1) B) O(n) C) O(log n) D) O(n^2) 9. Which operation retrieves the top element of the stack without removing it? A) Push B) Pop C) Peek D) Insert 10. application uses stacks for evaluating mathematical expression evaluation D) Memory allocation 11.In infix expression evaluation, which data structure is typically used? A) Stack B) Queue C) Array D) Linked List UNIT — III UNIT —	· · · · · · · · · · · · · · · · · · ·	•		
1. What principle do stacks follow? A) First In First Out (FIFO) B) Last In First Out (LIFO) C) Last In Last Out (LILO) D) First In Last Out (FILO) 2. Which of the following is a primary operation on a stack? A) Enqueue B) Dequeue C) Push D) Peek 3. What operation removes an item from the top of the stack? A) Pop B) Push C) Peer D) Insert 4. How is a stack typically implemented using arrays? A) Linked structure B) Dynamic resizing C) Fixed size D) Circular structure 5. What is the time complexity of the push and pop operations on a stack implemented using arrays? A) O(1) B) O(n) C) O(log n) D) O(n^2) 6. Which data structure can efficiently implement a stack with a dynamic size? A) A rray B) Linked List C) Tree D) Hash Table 7. In a linked list implementation of a stack, where are new elements added? A) Beginning of the list B) End of the list C) Middle of the list D) Random position 8. What is the time complexity of the push and pop operations on a stack implemented using linked lists? A) O(1) B) O(n) C) O(log n) D) O(n^2) 9. Which operation retrieves the top element of the stack without removing it? A) Push B) Pop C) Peek D) Insert 10. What application uses stacks for evaluating mathematical expressions? A) Searching algorithms B) Sorting algorithms C) Expression evaluation D) Memory allocation 11. In infix expression evaluation, which data structure is typically used? A) Stack B) Queue C) Array D) Linked List Uhat algorithmic technique uses stacks for backtracking? []	C) Music playlist management	D) Implementing a queue		
1. What principle do stacks follow? A) First In First Out (FIFO) B) Last In First Out (LIFO) C) Last In Last Out (LILO) D) First In Last Out (FILO) 2. Which of the following is a primary operation on a stack? A) Enqueue B) Dequeue C) Push D) Peek 3. What operation removes an item from the top of the stack? A) Pop B) Push C) Peer D) Insert 4. How is a stack typically implemented using arrays? A) Linked structure B) Dynamic resizing C) Fixed size D) Circular structure 5. What is the time complexity of the push and pop operations on a stack implemented using arrays? A) O(1) B) O(n) C) O(log n) D) O(n^2) 6. Which data structure can efficiently implement a stack with a dynamic size? A) A Array B) Linked List C) Tree D) Hash Table 7. In a linked list implementation of a stack, where are new elements added? A) Beginning of the list B) End of the list C) Middle of the list D) Random position 8. What is the time complexity of the push and pop operations on a stack implemented using linked lists? A) O(1) B) O(n) C) O(log n) D) O(n^2) 9. Which operation retrieves the top element of the stack without removing it? A) Push B) Pop C) Peek D) Insert 10. What application uses stacks for evaluating mathematical expressions? A) Searching algorithms B) Sorting algorithms C) Expression evaluation 11. In infix expression evaluation, which data structure is typically used? A) Stack B) Queue C) Array D) Linked List What algorithmic technique uses stacks for backtracking? []				
1. What principle do stacks follow? A) First In First Out (FIFO) B) Last In First Out (LIFO) C) Last In Last Out (LILO) D) First In Last Out (FILO) 2. Which of the following is a primary operation on a stack? A) Enqueue B) Dequeue C) Push D) Peek 3. What operation removes an item from the top of the stack? A) Pop B) Push C) Peer D) Insert 4. How is a stack typically implemented using arrays? A) Linked structure B) Dynamic resizing C) Fixed size D) Circular structure 5. What is the time complexity of the push and pop operations on a stack implemented using arrays? A) O(1) B) O(n) C) O(log n) D) O(n^2) 6. Which data structure can efficiently implement a stack with a dynamic size? A) A Array B) Linked List C) Tree D) Hash Table 7. In a linked list implementation of a stack, where are new elements added? A) Beginning of the list B) End of the list C) Middle of the list D) Random position 8. What is the time complexity of the push and pop operations on a stack implemented using linked lists? A) O(1) B) O(n) C) O(log n) D) O(n^2) 9. Which operation retrieves the top element of the stack without removing it? A) Push B) Pop C) Peek D) Insert 10. What application uses stacks for evaluating mathematical expressions? A) Searching algorithms B) Sorting algorithms C) Expression evaluation 11. In infix expression evaluation, which data structure is typically used? A) Stack B) Queue C) Array D) Linked List What algorithmic technique uses stacks for backtracking? []	UNI	T – III		
C) Last In Last Out (LILO) D) First In Last Out (FILO) 2. Which of the following is a primary operation on a stack? [] A) Enqueue B) Dequeue C) Push D) Peek 3. What operation removes an item from the top of the stack? [] A) Pop B) Push C) Peer D) Insert 4. How is a stack typically implemented using arrays? [] A) Linked structure B) Dynamic resizing C) Fixed size D) Circular structure 5. What is the time complexity of the push and pop operations on a stack implemented using arrays? A) O(1) B) O(n) C) O(log n) D) O(n^2) 6. Which data structure can efficiently implement a stack with a dynamic size? [] A) Array B) Linked List C) Tree D) Hash Table 7. In a linked list implementation of a stack, where are new elements added? [] A) Beginning of the list B) End of the list C) Middle of the list D) Random position 8. What is the time complexity of the push and pop operations on a stack implemented using linked lists? [] A) O(1) B) O(n) C) O(log n) D) O(n^2) 9. Which operation retrieves the top element of the stack without removing it? A) Push B) Pop C) Peek D) Insert 10. What application uses stacks for evaluating mathematical expression evaluation D) Memory allocation 11. In infix expression evaluation, which data structure is typically used? [] A) Stack B) Queue C) Array D) Linked List 12. What algorithmic technique uses stacks for backtracking? []	· .		[]
2. Which of the following is a primary operation on a stack? A) Enqueue B) Dequeue C) Push D) Peek 3. What operation removes an item from the top of the stack? A) Pop B) Push C) Peer D) Insert 4. How is a stack typically implemented using arrays? A) Linked structure B) Dynamic resizing C) Fixed size D) Circular structure 5. What is the time complexity of the push and pop operations on a stack implemented using arrays? A) O(1) B) O(n) C) O(log n) D) O(n^2) 6. Which data structure can efficiently implement a stack with a dynamic size? A) Array B) Linked List C) Tree D) Hash Table 7. In a linked list implementation of a stack, where are new elements added? A) Beginning of the list B) End of the list C) Middle of the list D) Random position 8. What is the time complexity of the push and pop operations on a stack implemented using linked lists? A) O(1) B) O(n) C) O(log n) D) O(n^2) 9. Which operation retrieves the top element of the stack without removing it? A) Push B) Pop C) Peek D) Insert 10. What application uses stacks for evaluating mathematical expressions? A) Searching algorithms B) Sorting algorithms C) Expression evaluation D) Memory allocation 11. In infix expression evaluation, which data structure is typically used? [] A) Stack B) Queue C) Array D) Linked List 12. What algorithmic technique uses stacks for backtracking? [] A) What algorithmic technique uses stacks for backtracking?				
A) Enqueue B) Dequeue C) Push D) Peek 3. What operation removes an item from the top of the stack? [] A) Pop B) Push C) Peer D) Insert 4. How is a stack typically implemented using arrays? [] A) Linked structure B) Dynamic resizing C) Fixed size D) Circular structure 5. What is the time complexity of the push and pop operations on a stack implemented using arrays? A) O(1) B) O(n) C) O(log n) D) O(n\(^2\)2 6. Which data structure can efficiently implement a stack with a dynamic size? [] A) Array B) Linked List C) Tree D) Hash Table 7. In a linked list implementation of a stack, where are new elements added? [] A) Beginning of the list B) End of the list C) Middle of the list D) Random position 8. What is the time complexity of the push and pop operations on a stack implemented using linked lists? A) O(1) B) O(n) C) O(log n) D) O(n\(^2\)2 9. Which operation retrieves the top element of the stack without removing it? A) Push B) Pop C) Peek D) Insert 10. What application uses stacks for evaluating mathematical expressions? [] A) Searching algorithms B) Sorting algorithms C) Expression evaluation D) Memory allocation 11. In infix expression evaluation, which data structure is typically used? [] A) Stack B) Queue C) Array D) Linked List 12. What algorithmic technique uses stacks for backtracking? []	, , , , , , , , , , , , , , , , , , , ,	` ,	Г	1
3. What operation removes an item from the top of the stack? A) Pop B) Push C) Peer D) Insert 4. How is a stack typically implemented using arrays? A) Linked structure B) Dynamic resizing C) Fixed size D) Circular structure 5. What is the time complexity of the push and pop operations on a stack implemented using arrays? A) O(1) B) O(n) C) O(log n) D) O(n^2) 6. Which data structure can efficiently implement a stack with a dynamic size? A) Array B) Linked List C) Tree D) Hash Table 7. In a linked list implementation of a stack, where are new elements added? A) Beginning of the list B) End of the list C) Middle of the list D) Random position 8. What is the time complexity of the push and pop operations on a stack implemented using linked lists? A) O(1) B) O(n) C) O(log n) D) O(n^2) 9. Which operation retrieves the top element of the stack without removing it? A) Push B) Pop C) Peek D) Insert 10. What application uses stacks for evaluating mathematical expressions? A) Searching algorithms B) Sorting algorithms C) Expression evaluation D) Memory allocation 11. In infix expression evaluation, which data structure is typically used? A) Stack B) Queue C) Array D) Linked List 12. What algorithmic technique uses stacks for backtracking?			L	J
4. How is a stack typically implemented using arrays? A) Linked structure B) Dynamic resizing C) Fixed size D) Circular structure 5. What is the time complexity of the push and pop operations on a stack implemented using arrays? [] A) O(1) B) O(n) C) O(log n) D) O(n^2) 6. Which data structure can efficiently implement a stack with a dynamic size? [] A) Array B) Linked List C) Tree D) Hash Table 7. In a linked list implementation of a stack, where are new elements added? [] A) Beginning of the list B) End of the list C) Middle of the list D) Random position 8. What is the time complexity of the push and pop operations on a stack implemented using linked lists? [] A) O(1) B) O(n) C) O(log n) D) O(n^2) 9. Which operation retrieves the top element of the stack without removing it? [] A) Push B) Pop C) Peek D) Insert 10. What application uses stacks for evaluating mathematical expressions? [] A) Searching algorithms B) Sorting algorithms C) Expression evaluation D) Memory allocation 11. In infix expression evaluation, which data structure is typically used? [] A) Stack B) Queue C) Array D) Linked List 12. What algorithmic technique uses stacks for backtracking? []	, 1 , 1 , ,		[]
A) Linked structure B) Dynamic resizing C) Fixed size D) Circular structure 5. What is the time complexity of the push and pop operations on a stack implemented using arrays? A) O(1) B) O(n) C) O(log n) D) O(n^2) 6. Which data structure can efficiently implement a stack with a dynamic size? [] A) Array B) Linked List C) Tree D) Hash Table 7. In a linked list implementation of a stack, where are new elements added? [] A) Beginning of the list B) End of the list C) Middle of the list D) Random position 8. What is the time complexity of the push and pop operations on a stack implemented using linked lists? [] A) O(1) B) O(n) C) O(log n) D) O(n^2) 9. Which operation retrieves the top element of the stack without removing it? [] A) Push B) Pop C) Peek D) Insert 10. What application uses stacks for evaluating mathematical expressions? [] A) Searching algorithms B) Sorting algorithms C) Expression evaluation D) Memory allocation 11. In infix expression evaluation, which data structure is typically used? [] A) Stack B) Queue C) Array D) Linked List 12. What algorithmic technique uses stacks for backtracking? []	, 1 , , , , , ,		_	_
5. What is the time complexity of the push and pop operations on a stack implemented using arrays? A) O(1) B) O(n) C) O(log n) D) O(n^2) 6. Which data structure can efficiently implement a stack with a dynamic size? [] A) Array B) Linked List C) Tree D) Hash Table 7. In a linked list implementation of a stack, where are new elements added? [] A) Beginning of the list B) End of the list C) Middle of the list D) Random position 8. What is the time complexity of the push and pop operations on a stack implemented using linked lists? [] A) O(1) B) O(n) C) O(log n) D) O(n^2) 9. Which operation retrieves the top element of the stack without removing it? [] A) Push B) Pop C) Peek D) Insert 10. What application uses stacks for evaluating mathematical expressions? [] A) Searching algorithms B) Sorting algorithms C) Expression evaluation D) Memory allocation 11. In infix expression evaluation, which data structure is typically used? [] A) Stack B) Queue C) Array D) Linked List 12. What algorithmic technique uses stacks for backtracking? []			[]
A) O(1) B) O(n) C) O(log n) D) O(n^2) 6. Which data structure can efficiently implement a stack with a dynamic size? [] A) Array B) Linked List C) Tree D) Hash Table 7. In a linked list implementation of a stack, where are new elements added? [] A) Beginning of the list B) End of the list C) Middle of the list D) Random position 8. What is the time complexity of the push and pop operations on a stack implemented using linked lists? [] A) O(1) B) O(n) C) O(log n) D) O(n^2) 9. Which operation retrieves the top element of the stack without removing it? [] A) Push B) Pop C) Peek D) Insert 10. What application uses stacks for evaluating mathematical expressions? [] A) Searching algorithms B) Sorting algorithms C) Expression evaluation D) Memory allocation 11. In infix expression evaluation, which data structure is typically used? [] A) Stack B) Queue C) Array D) Linked List 12. What algorithmic technique uses stacks for backtracking? []	, ,	O ,		ng arravs?
6. Which data structure can efficiently implement a stack with a dynamic size? A) Array B) Linked List C) Tree D) Hash Table 7. In a linked list implementation of a stack, where are new elements added? A) Beginning of the list B) End of the list C) Middle of the list D) Random position 8. What is the time complexity of the push and pop operations on a stack implemented using linked lists? [] A) O(1) B) O(n) C) O(log n) D) O(n^2) 9. Which operation retrieves the top element of the stack without removing it? [] A) Push B) Pop C) Peek D) Insert 10. What application uses stacks for evaluating mathematical expressions? [] A) Searching algorithms B) Sorting algorithms C) Expression evaluation D) Memory allocation 11. In infix expression evaluation, which data structure is typically used? [] A) Stack B) Queue C) Array D) Linked List 12. What algorithmic technique uses stacks for backtracking? []	or the pass as	na pop operacione on a succe impres	[]
A) Array B) Linked List C) Tree D) Hash Table 7. In a linked list implementation of a stack, where are new elements added? [] A) Beginning of the list B) End of the list C) Middle of the list D) Random position 8. What is the time complexity of the push and pop operations on a stack implemented using linked lists? [] A) O(1) B) O(n) C) O(log n) D) O(n^2) 9. Which operation retrieves the top element of the stack without removing it? [] A) Push B) Pop C) Peek D) Insert 10. What application uses stacks for evaluating mathematical expressions? [] A) Searching algorithms B) Sorting algorithms C) Expression evaluation D) Memory allocation 11. In infix expression evaluation, which data structure is typically used? [] A) Stack B) Queue C) Array D) Linked List 12. What algorithmic technique uses stacks for backtracking? []		0 / / /	_	_
7 . In a linked list implementation of a stack, where are new elements added? [] A) Beginning of the list B) End of the list C) Middle of the list D) Random position 8. What is the time complexity of the push and pop operations on a stack implemented using linked lists? [] A) O(1) B) O(n) C) O(log n) D) O(n^2) 9. Which operation retrieves the top element of the stack without removing it? [] A) Push B) Pop C) Peek D) Insert 10. What application uses stacks for evaluating mathematical expressions? [] A) Searching algorithms B) Sorting algorithms C) Expression evaluation D) Memory allocation 11.In infix expression evaluation, which data structure is typically used? [] A) Stack B) Queue C) Array D) Linked List 12. What algorithmic technique uses stacks for backtracking? []		<u> </u>	L	J
A) Beginning of the list B) End of the list C) Middle of the list D) Random position 8. What is the time complexity of the push and pop operations on a stack implemented using linked lists? A) O(1) B) O(n) C) O(log n) D) O(n^2) 9. Which operation retrieves the top element of the stack without removing it? A) Push B) Pop C) Peek D) Insert 10. What application uses stacks for evaluating mathematical expressions? [] A) Searching algorithms B) Sorting algorithms C) Expression evaluation D) Memory allocation 11. In infix expression evaluation, which data structure is typically used? [] A) Stack B) Queue C) Array D) Linked List 12. What algorithmic technique uses stacks for backtracking?	, , , , , , , , , , , , , , , , , , , ,		Г	1
linked lists? [] A) O(1) B) O(n) C) O(log n) D) O(n^2) 9. Which operation retrieves the top element of the stack without removing it? [] A) Push B) Pop C) Peek D) Insert 10. What application uses stacks for evaluating mathematical expressions? [] A) Searching algorithms B) Sorting algorithms C) Expression evaluation D) Memory allocation 11. In infix expression evaluation, which data structure is typically used? [] A) Stack B) Queue C) Array D) Linked List 12. What algorithmic technique uses stacks for backtracking? []			m position	
A) O(1) B) O(n) C) O(log n) D) O(n^2) 9. Which operation retrieves the top element of the stack without removing it? [] A) Push B) Pop C) Peek D) Insert 10. What application uses stacks for evaluating mathematical expressions? [] A) Searching algorithms B) Sorting algorithms C) Expression evaluation D) Memory allocation 11. In infix expression evaluation, which data structure is typically used? [] A) Stack B) Queue C) Array D) Linked List 12. What algorithmic technique uses stacks for backtracking? []		d pop operations on a stack impleme	ented using	g
9. Which operation retrieves the top element of the stack without removing it? A) Push B) Pop C) Peek D) Insert 10. What application uses stacks for evaluating mathematical expressions? A) Searching algorithms B) Sorting algorithms C) Expression evaluation D) Memory allocation 11. In infix expression evaluation, which data structure is typically used? A) Stack B) Queue C) Array D) Linked List 12. What algorithmic technique uses stacks for backtracking? []		D) O(^2)	[]
A) Push B) Pop C) Peek D) Insert 10. What application uses stacks for evaluating mathematical expressions? [] A) Searching algorithms B) Sorting algorithms C) Expression evaluation D) Memory allocation 11. In infix expression evaluation, which data structure is typically used? [] A) Stack B) Queue C) Array D) Linked List 12. What algorithmic technique uses stacks for backtracking? []	, , , , , , , , , , , , , , , , , , , ,	, , ,	Г	1
10. What application uses stacks for evaluating mathematical expressions? [] A) Searching algorithms B) Sorting algorithms C) Expression evaluation D) Memory allocation 11. In infix expression evaluation, which data structure is typically used? [] A) Stack B) Queue C) Array D) Linked List 12. What algorithmic technique uses stacks for backtracking? []			L	J
A) Searching algorithms B) Sorting algorithms C) Expression evaluation D) Memory allocation 11.In infix expression evaluation, which data structure is typically used? (A) Stack B) Queue C) Array D) Linked List 12. What algorithmic technique uses stacks for backtracking? []	10.	,	W]	hat
11.In infix expression evaluation, which data structure is typically used? A) Stack B) Queue C) Array D) Linked List 12. What algorithmic technique uses stacks for backtracking?		•	[]
A) Stack B) Queue C) Array D) Linked List 12. What algorithmic technique uses stacks for backtracking? []			nory alloca r	_
12. What algorithmic technique uses stacks for backtracking? []	<u> </u>	5 2 5	L	J
		,	W	hat
A) Greedy algorithms B) Divide and conquer C) Dynamic programming D) Backtracking		=] []
	A) Greedy algorithms B) Divide and conquer	C) Dynamic programming D) Back	ktracking	

			BIT BAI	NK 2023	}
13. In backtrad A) Push	cking, what operation B) Pop	on is performed whe C) Peek	n reaching a dead end? D) Delete	[]
.14. Which op	eration reverses the	order of elements ir	ı a stack?	[]
A) Reverse	B) Flip	C) Pop	D) Rotate		
15. In reversin	g a list using a stacl	k, what is the time c	omplexity?	[]
A) O(1)	B) O(n)	C) O(log n)	D) O(n^2)		
16. What appli	ication uses stacks f	or maintaining func	tion calls?	[]
A) Memory al	location B) Funct	tion evaluation C)	Backtracking D) Recursion		
17. In recursiv	e algorithms, what	operation is used to	return from a function call?	[-
A) Push	B) Pop	C) Peek	D) Return		
18.Which oper	ration is used to che	ck if a stack is empt	y?	[
A) Empty	B) Is Empty	C) Check Empt	y D) Is Full		
19. What is the	e result of popping f	from an empty stack	?	[
A) Stack Unde	erflow B) Stack C	Overflow C) Null	D) Segmentation Fault		
20. In postfix	expression evaluation	on, which data struct	ture is typically used?	[
A) Stack	B) Queue	C) Array	D) Linked List		
	ration is used to add	d an element to the t	op of the stack without removing a	any existin	ıg
elements? A) Push	B) Pop	C) Peek	D) Insert	[
•	, 1	of a stack with n ele	,	Г	
				L	
A) O(1)	B) O(n)	C) O(log n)	D) O(n^2)		
23. What oper	ation is used to rem	ove all elements fro	m a stack?	[
A) Clear	B) Purge	C) Empty	D) Pop All		
24. Which of t	he following is a dis	sadvantage of using	arrays to implement stacks?	[-
A) Dynamic re	esizing B) Rando	m access C) Fixe	d size D) Efficient push and po	p	
25. What is the	e primary use of sta	cks in the context of	backtracking algorithms?	[
					tes

Data Structures

BI	I BANK	202
26. In expression evaluation, what is the purpose of using a stack?	[]
A) To store operators B) To store operands C) To store intermediate results D) To store p	arenthes	ses
27. Which operation allows checking the element at the top of the stack without removing i	it? []
A) Push B) Pop C) Peek D) Insert		
28. What happens if an attempt is made to push an element onto a full stack?	[]
A) Stack Underflow B) Stack Overflow C) Null D) Segmentation Fault		
29. Which of the following applications does NOT typically involve the use of stacks?	[]
A) Parsing expressions B) Recursion C) Queue management D) Undo functionality		
30. What is the result of peeking into an empty stack?	[]
A) Stack Underflow B) Stack Overflow C) Null D) Segmentation Fault		
31. Which operation is used to remove all elements from a stack?	[]
A) Empty B) Purge C) Clear D) Pop All		
32. data structure is commonly used in implementing undo functionality?	Wha [at 1
A) Stack B) Queue C) Linked List D) Tree	L	ı
33. What is the primary use of stacks in the context of expression parsing?	[1
A) Storing intermediate result B) Evaluating expressions	L	,
C) Storing parentheses D) Searching elements		
34. In postfix expression evaluation, what is the role of a stack?	[]
A) To store operators B) To store operands C) To store parentheses D) To store intermed	liate resu	ılts
35. Which of the following operations on a stack has a time complexity of O(1)?	[]
A) Push B) Pop C) Peek D) Clear		
36.	What	t is
the main advantage of using linked lists to implement stacks?	[]
A) Fixed size B) Dynamic resizing C) Random access D) Efficient pu	sh and p	ор
37. Which of the following is NOT a typical application of stacks?	[]
A) Expression parsing B) Function call management C) Memory allocation D) Undo functions.38. operation is used to check if a stack is full?A) Full B) Is Full C) Check Full D) Is Empty	ctionality What [

Data Structures		

		BIT BANK	2023	
39. What is the primary use of sta	cks in the context of function call managemen	nt?	[]
A) Storing intermediate results	B) Evaluating expressions			
C) Storing operands	D) Storing function calls			
40. <mark>In expression evaluation, what</mark>	is the primary role of a stack?		[]
A) To store operators	B) To store operands			
C) To store intermediate results	D) To store parentheses			
,	,			

Data Structures

2023

<u>UNIT – IV</u>

1. What princip	<mark>ple do queues follow</mark>	?		[]
A) Last In Fir	rst Out (LIFO)	B) First I	n First Out (FIFO)		
C) Last In Las	st Out (LILO)	D) First	In Last Out (FILO)		
2. Which of the	following is a prima	nry operation on a qu	ieue?	[]
A) Push	B) Pop C)	En queue D)	Peek		
3. What operat	ion removes an item	from the front of the	e queue?	[]
A) Pop	B) Push (C) De queue D) Insert		
4. How is a qu	ueue typically imple	mented using arrays		[]
A) Linked str	ucture B) Circular s	structure C) Dynam	ic resizing D) Fixed size		
	time complexity of t	<mark>he enqueue and deq</mark>	ueue operations on a queue imple	emented u	sing
arrays?				L	J
A) O(1)	B) O(n)	C) O(log	n) D)O(n^2)		
6. Which data	structure can efficie	ently implement a qu	eue with a dynamic size?	[]
A) Array	B) Linked List	C) Tree	D) Hash Table		
7. In a linked li	st implementation o	f a queue, where are	new elements added?	[]
A) Beginning	of the list B) End	of the list C) Middl	le of the list D) Random position	on	
	ime complexity of th	<mark>e enqueue and dequ</mark>	eue operations on a queue impler		_
linked lists?				[]
A) O(1)	B) O(n)	C) O(log n)	D) O(n^2)		
9. Which operat	tion retrieves the fro	<mark>nt element of the que</mark>	eue without removing it?	[]
A) Push	B) Pop	C) Peek	D) Insert		
10. What applic	cation uses queues fo	<mark>r exploring nodes at</mark>	the same level in a graph or tree	<mark>?</mark> []
A) Depth-Fir	st Search (DFS)	B) Breadth-I	First Search (BFS)		
C) Dijkstra's	Algorithm	D) Quick So	rt		
11. In BFS, who	at data structure is ty	pically used?		[]
A) Stack	B) Queue	C) Array	D) Linked List		
12. What is the	main advantage of u	sing linked lists to i	mplement queues?	[]
Data Structures					

				BIT BAN
A) Fixed size	B) Dynamic resizing	ng C) Random access	s D) Efficient enqueue ar	ıd dequeu
13. Which operati	on is used to add an e	element to the end of th	ne queue without removing	any
existing elements?				[
A) Push	B) Pop	C) Enqueue	D) Insert	
What is the result of o	dequeuing from an en	npty queue?	[]
A) Queue Unde	erflow B) Queue (Overflow C) Null	D) Segmentation Fau	lt
Vhat application uses	s queues for managin	g tasks to be executed?	[]
A) Searching al	gorithms B) Sortin	g algorithms C) Scheo	duling D) Memory alloca	ition
	what data structure is		[]
			D) Linked List	J
A) Stack	B) Queue	C) Arrays	,	-
Vhich operation is us	sed to check if a queu	e is empty?	[J
A) Empty	B) IsEmpty	C) CheckEmpty	D) IsFull	
Vhat is the result of p	peeking into an empty	<mark>/ queue?</mark>]]
A) Queue Unde	erflow B) Queue Ov	verflow C) Null	D) Segmentation Fault	
Which operation is us	sed to remove all elen	nents from a queue?]]
A) Clear	B) Purge	C) Empty	D) DequeueAll	
Vhat data structure is	commonly used in i	mplementing task sche	duling algorithms? []
A) Stack	B) Queue	C) Linked List	D) Tree	
Vhat is a deque?	, (,	(]
A) Double-ende	nd quarra P) Dym	amic quayo (C) Priorit	y queue D) Circular que	
ŕ	, ,	,	, ,	
	ng operations are sup	, , , , , , , , , , , , , , , , , , , 	[]
A) Enqueue and	d dequeue B) Push	and pop C) Insert and	d delete D) All of the abov	re
What is the result of	popping from an em	pty deque?]]
A) Deque Unde	erflow B) Deque O	verflow C) Null	D) Segmentation Fault	
Which operation adds	an element to the fro	ont of a deque?]]
A) Enqueue	B) Dequeue	C) PushFront	D) PushBack	

25. What application uses deques for maintaining a sliding window of elements?

[

]

				BIT BANK	(202)
A) Searching al	gorithms	B) Sortir	ng algorithms		
C) Sliding wind	low problems	D) Mem	ory allocation		
26. Which operation	on removes an elem	nent from the back of	a deque?	[]
A) PopFront	B) PopBack	C) Dequeue	D) Enqueue		
27. In a deque, wh	ich end is typically	considered the front?		[]
A) Left end	B) Right end	C) Middle	D) Both ends		
28. What is the spa	ace complexity of a	deque with n elemen	ts?	[]
A) O(1)	B) O(n)	C) O(log n)	D) O(n^2)		
29. What applicati	on uses deques for	efficiently adding and	l removing elements from bot	h ends? []
A) Searching al	gorithms	B) Sorting	algorithms		
C) Sliding wind	low problems	D) Memory	allocation		
30. Which operation	on retrieves the eler	ment at the front of a	deque without removing it?	[]
A) PeekFront	B) PeekBack	C) Peek	D) PeekFirst		
31. What is the tin implemented using		e pushFront and push	Back operations on a deque	[]
A) O(1)	B) O(n)	C) O(log n	D) O(n^2)		
32. Which operat	tion removes all ele	ments from a deque?		[]
A) Clear	B) Purge	C) Empty	D) DequeueAll		
33. What applicati insertion and delet	•	maintaining a collecti	on of elements with efficient	[]
A) Searching al	gorithms	B) Sorting	algorithms		
C) Sliding wind	low problems	D) Memor	y allocation		
34. What is the pr	rimary advantage of	f using deques over qu	ieues?	[]
A) Faster insert	ion and deletion at l	both ends	B) Lower space complexity		
C) Simpler impl	lementation		D) Support for dynamic resiz	zing	
35. Which of the	following is NOT a	typical application of	f deques?	[]
A) Sliding wind	low problem	B)	Task scheduling		
C) Implementat	ion of stacks	Γ) Expression parsing		

			BIT BANK	2023	
5. In a deque, which ope	eration adds an element (to the back?		[]
A) PushFront	B) PushBack	C) Enqueue	D) Dequeue		
. What is the result of p	popping from an empty o	deque?		[]
A) Deque Underflow	B) Deque Overflow	C) Null	D) Segmentation Fault		
. Which of the followir	ng operations is NOT typ	pically supported	by deques?	[]
A) PushFront	B) PushBack	C) Peer	D) Pop		
What is the result of p	peeking into an empty de	<mark>eque?</mark>		[]
A) Deque Underflow	B) Deque Overflow	C) Null	D) Segmentation Fault		
. Which of the following	ng operations is NOT typ	pically supported	by deques?	[]
A) PushFront B) Pu	ıshBack C) Peek	D) Pop			

<u>UNIT –V</u>

1.	a. 2	B) any numbe	er of children C) 0 or 1 or 2	D) 0 or 1	J
2.	a. 2 ^l -1	B) l-1	C) 1	D) 21]]
3.	a. Height	B) Depth		[C) Length] D) Width	
4.] a. Height C) Length		B) Depth D) Width		[
5.	a. h = O(loglogn)		B) h = O(nlogn	C) h = O(n)	D) h = O(log	[n
6.	In a full binary tree a. $L = 2*I$		ternal nodes is I, C) $L = I - 1$		eaves L are? []
7.	[a. N = 2*I B)	N = I + 1	C) N = I - 1 D)	N = 2*I + 1]
8.	[a. N = 2*L	B) N	= L + 1	C) N = L – 1] D) N = 2*L -	1
9.	Which of the followa. Post order			used to traverse in Post order	a tree? D) Randomized	
10.	Level order travers a. breadth first search C) dijkstra's algor	h	B) dep	lp of th first search rims algorithm	[]
11.	What is the n	naximum numbe	r of children tha	t a binary tree noo	le can have? []

				BIT BAI	1K 202
a. 0		B) 1	C) 2	D) 3	
12. How many com	non operations are p	erformed in a binar	y tree??	[]
a.1	B) 2	C) 3	D) 4		
13. What is the trava. depth-first trav		-	first traversal y traversal	[]
=	ers of traversal are ap	plicable to a binary C) 2	tree (In General)? D) 3	[]
15. The average dep a. O(N)	oth of a binary tree is	given as? B) O(√N) C)	O(N ²)	[D) O(lo] og N)
16. If binary trees a if the node has a		ays, what formula c	an be used to calculat	e a left chile []	d,
a. 2i+1 B)	2i+2 C) 2i	D) 4i		,	
17. a. (i+1)/2 C) i/2		B) (i-1)/2 D) 2i/2		[]
a. to avoid forma	a binary tree which tion of skew trees er memory access	B) to save m		[]
19.					[
a. p B) log	(p)	C) log(p)/2	D) p/2		J
	difference in height is the number of node		of a AVL tree is poss n where n is the numbe D) atmost 1	r of nodes	[]
a. (n*(n+1))/2	B) (n*((n-1))/2 C) n	D) nformation give		

							BIT	BAN	K2023
	22. A connected planar graph having	6 verti	ces, 7 edge	s contai	ins		[regions
	a. 15	B)	3	C) 1			D)	1	J
	23. If a simple graph G, contains n ve of G)is	rtices	and m edge	es, the n	umber of	edges in	the Gra	aph G	'(Compl
	a. (n*n-n-2*m)/2		B) (n*	n+n+2*ı	•				
	C) (n*n-n-2*m)/2				D) (n*r	n-n+2*m))/2		
	24. Which of the following properties a. Must be connected edges D) Musthav	B)	Must be un	weighted		Must have	[e no loc	ps or] multiple
	25. a. 24 B) 21 C) 2 26. For which of the following combineulerian?			D) 16 rees of	vertices w	ould the	[connec	cted g] raph be]
	a. 1,2,3		B) 2,3	3,4	C) 2,4,5		D)	1,3,5	
)	27. a. Multi Graph B) Regular Complete Graph		ph			[]		
	28. What is the maximum number of a. n-1 B) r	_	in an acycl	ic undir C) n+			vertice 2n-1	es?	[]
	29. An adjacency matrix representationa. NodesC) Direction of Edges	B)	graph canı Edges Parallel ed		ain inform	nation of	[]
	30. If every node in a graph 'G' is adj	acent	o equal nu	mber of	f nodes, th	en the gr	aph G	is said	d to

B) Finite C) Complete D) Strongly Connected

]

31. Using the Cyclomatic complexity of a graph G having 13 vertices, 4 decision vertices, 1

be [

a. Regular

connector, the number of edges in G is

22									
0.0	a. 13			B) 9	C) 10	D) 8			
32.	The data struc	cture required B) array		th First Trav stack		graph is O) Tree	[]	
33.	Consider an un included in G s	_	<u>*</u>		The maxim	um number	of edges to	be	
	included in O s	o that the gra	apii is not c	.omiected is			[]
	a. 2451	B) 485	1	C) 4950	D) 9	801			
34.	A connected (a (N-1) edges. N			that can be		l are	[]
	a. 1			B) n		C) n-1	D) n*(n	1-1)	
35.	The Data struc	cture used in	standard ir	nplementatio	on of Breac	lth First Sea			7
	a. Stack			В) (116116		[]
	C) Linked Lis	st	I	D) Tree	queue				
36	The Depth Fir	st Search tra	versal of a	oranh will re	esult into?				
50.	The Depuit in	st Scarcii tia	versar or a	grapii wiii i	.suit into:		[]	
	a. Linked list			B) Tree	C) Gr	aph with bacl	k edge	D) .	Array
th 1	First Soorsh ha	w many time	se a nodo ia	vicitod?		г	1		
. C	First Search, ho Once A connected g a. free graph	_	B) Tout any cyc	'wice		[e of the node] D) Thr [ice	
a. C	Once A connected g	raph T witho	B) Tout any cyc	wice les is called	raph	_] D) Thr	ice	=]
. C	Once A connected g a. free graph	raph T witho	B) Tout any cyc I	wice les is called no cycle g circular	raph	_	[ice	•]
38.	A connected g a. free graph C) non cycle	raph T without graph ee if and only	B) Tout any cyc I	les is called B) no cycle g C) circular S B) Co	raph	e of the node] D) Thr [ice]