Set de problemas 3

Asignatura: Leyes Físicas III

Instructor: Dr. Wladimir E. Banda Barragán Correo electrónico: we.banda@uta.edu.ec

Fecha de envío: 16 de abril de 2018

Fecha de entrega: 23 de abril de 2018

Créditos: 20 puntos a ponderarse.

Instrucciones:

- Este trabajo debe remitirse en físico de forma grupal hasta las 15:00 del día lunes 23 de abril de 2018. Habrá una deducción del 30% en la calificación por cada día de atraso en la entrega.
- El trabajo consiste en resolver problemas de aplicación. Expresar las respuestas en unidades del Sistema Internacional (SI).

Ejercicios y problemas:

- 1. Un bloque de 2 kg de masa se mueve por una trayectoria horizontal lisa, X, a una velocidad de $\vec{v_1} = 6 \vec{\,\mathrm{r}} \,\mathrm{m} \,\mathrm{s}^{-1}$. Si en $x_1 = -\frac{\pi}{2} \,[\mathrm{m}]$ se le aplica una fuerza $\vec{F} = 3 \cos\left(\frac{x}{2}\right) \,\vec{\,\mathrm{r}} \,[N]$:
 - (a) Calcule el trabajo realizado por la fuerza \vec{F} entre $x_1 = -\frac{\pi}{2}$ [m] y $x_2 = +\frac{\pi}{2}$ [m].
 - (b) Represente gráficamente el trabajo realizado por la fuerza \vec{F} entre x_1 y x_2 .
 - (c) Calcule la velocidad $\vec{v_2}$ del bloque en x_2 .
- 2. Se lanza una piedra de $20 \,\mathrm{N}$ de peso verticalmente hacia arriba desde el suelo. Se observa que cuando está a $15 \,\mathrm{m}$ sobre el suelo, viaja a $25 \,\mathrm{m}\,\mathrm{s}^{-1}$ hacia arriba. Determine:
 - (a) su rapidez en el momento de ser lanzada, y
 - (b) su altura máxima.
- 3. El sistema de la Figura 1 se abandona partiendo del reposo con el bloque de 24 kg, ubicado a 2.4 m por encima del suelo. Utilice el principio de conservación de la energía para calcular la velocidad con la que el bloque de 24 kg llega al suelo. Despréciense el rozamiento y la inercia de la polea.

Figura 1: Problema 3.

- 4. Un bloque de 50 kg es empujado una distancia de 8 m sobre un piso horizontal, a velocidad constante, mediante una fuerza que forma, hacia abajo, un ángulo de 30° con la horizontal. El coeficiente de rozamiento cinético entre el bloque y el piso es $\mu_k = 0.30$.
 - (a) Grafique el diagrama del cuerpo libre del sistema.
 - (b) ¿Qué trabajo se ha realizado contra la fuerza de rozamiento?
 - (c) ¿Qué trabajo ha realizado la fuerza de rozamiento sobre el bloque?
 - (d) ¿Cuál es el trabajo neto realizado por todas las fuerzas durante la traslación?
- 5. Un pequeño cuerpo de masa m desliza sin rozamiento sobre el rizo representado en la Figura 2. Parte del reposo en el punto A a una altura 3R por encima del punto inferior del rizo. Cuando alcanza el punto B en el extremo de un diámetro horizontal del rizo, calcular:
 - (a) su aceleración normal,
 - (b) su aceleración tangencial,
 - (c) su aceleración resultante.
 - (d) Representar estas aceleraciones en un esquema, aproximadamente a escala.

Figura 2: Problema 5.

- 6. Un bloque de 2 kg se empuja contra un resorte con masa despreciable y constante de fuerza $k = 400 \,\mathrm{N \, m^{-1}}$, comprimiéndolo $0.22 \,\mathrm{m}$. Al soltarse el bloque, se mueve por una superficie sin fricción que primero es horizontal y luego sube a 37° (ver Figura 3).
 - (a) ¿Qué rapidez tiene el bloque al deslizarse sobre la superficie horizontal después de separarse del resorte?
 - (b) ¿Qué altura alcanza el bloque antes de pararse y regresar?

Figura 3: Problema 6.

- 7. Una pelota de caucho de $650\,\mathrm{g}$ de masa se deja caer desde una altura de $2.5\,\mathrm{m}$ y en cada rebote alcanza el $75\,\%$ de la altura que alcanzó en el rebote anterior.
 - (a) Calcule la energía mecánica inicial de la pelota, inmediatamente después de soltarse desde la altura original.
 - (b) ¿Cuánta energía mecánica pierde la pelota en su primer rebote?
 - (c) ¿Qué sucede con esa energía mecánica perdida?
 - (d) ¿Cuánta energía mecánica se pierde durante el segundo rebote?

- 8. Demostrar que la ventaja mecánica ideal:
 - (a) del plano inclinado representado en el Panel A de la Figura 4 es igual a la longitud del plano dividida por su altura.
 - (b) del torno representado en el Panel B de la Figura 4 es igual a la longitud de la manivela dividida por el radio de la rueda.
 - (c) de la palanca representada en el Panel C de la Figura 4 es la distancia desde el fulcro hasta el punto de aplicación de la fuerza **F** dividida por la distancia desde el fulcro hasta el punto de aplicación de la carga.
 - (d) En base a los resultados ideales obtenidos, ¿Cuál de las máquinas simples escogería para realizar el trabajo de levantar el mismo peso una misma distancia vertical?

Figura 4: Problema 8.

- 9. Se requiere una fuerza de 6 N para elevar un peso de 18 N por medio de un polipasto. Si el peso se eleva 1 m mientras la fuerza aplicada actúa durante un recorrido de 6 m, encontrar:
 - (a) La ventaja mecánica ideal, la ventaja mecánica real, y el rendimiento del polipasto.
 - (b) Diseñe y grafique un polipasto que permita obtener el rendimiento calculado en (a).
 - (c) Modifique el diseño anterior y grafique un nuevo polipasto cuya ventaja mecánica sea de $R_A = 4$.
- 10. Sobre un objeto de masa $m=0.01\,\mathrm{kg}$ que se mueve en el plano XY actúa una fuerza conservativa descrita por la función de energía potencial $U(x,y)=2~(x^2-y^2)$ [J].
 - (a) Grafique U(x,y) utilizando el software de su preferencia.
 - (b) Deduzca una expresión para la fuerza en términos de los vectores unitarios i y j.
 - (c) Encuentre ecuaciones para la aceleración, velocidad y desplazamiento del objeto, también en términos de los vectores unitarios \vec{i} y \vec{j} .