WEST

Generate Collection

Search Results - Record(s) 1 through 12 of 12 returned.

1. Document ID: US 6063029 A

L18: Entry 1 of 12

File: USPT

May 16, 2000

US-PAT-NO: 6063029

DOCUMENT-IDENTIFIER: US 6063029 A

TITLE: Diagnostic patch and method for diagnosis using the same

DATE-ISSUED: May 16, 2000

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Saita; Masaru	Tosu			JPX
Shimozono; Yuji	Tosu			JPX
Ohta; Shigeo	Tosu			JPX
Yonemura; Keishi	Tosu			JPX
Mukai; Mizue	Tosu			JPX
Okayama; Akira	Tosu			JPX
Imayama; Shuhei	Fukuoka			JPX

US-CL-CURRENT: 600/309; 600/362, 600/573, 600/584

Full Title Citation Front Review Classification Date Reference

KWMC Draw, Desc Image

/☐ 2. Document ID: US 5541256 A

L18: Entry 2 of 12

File: USPT

Jul 30, 1996

US-PAT-NO: 5541256

DOCUMENT-IDENTIFIER: US 5541256 A

TITLE: Process for preparing synthetic resin powder having improved blocking

resistance

DATE-ISSUED: July 30, 1996

INVENTOR-INFORMATION:

COUNTRY CITY STATE ZIP CODE NAME JPX Takaki; Akira Kobe JPX Kobe Mori; Toshiyuki JPX Takasago Shimatani; Toshiro JPX Hyogo-ken Hasegawa; Toshihiko

US-CL-CURRENT: <u>525/82</u>; <u>525/83</u>, <u>525/87</u>

Full Title Citation Front Review Classification Date Reference

KWMC Draw. Desc Image

17

temperature steaming (e.g., 500° C., 4 hours) resulted in significant loss in activity and a decrease in selectivity (Ex. 12). Material steamed at 371° C. (Ex. 11) exhibited activity and selectivity commensurate with the unsteamed material (Ex. 8).

Importantly, the mildly steamed materials, Ex. 9 (204° C.) and Ex. 10 (316° C.) give 25% conversion at 9 and 10 WHSV, respectively, while the unsteamed material, Ex. 8, requires 4 WHSV. Thus, low temperature steaming gave a 2-3 fold increase in activity. The material steamed at high temperature, Ex. 12, required 2 WHSV for this conversion level, and thus, was only half as active as the unsteamed material.

EXAMPLE 13

The catalyst of this Example was prepared via a multiple coating procedure. 5.38 gm of the untreated HZSM-5/SiO₂ material with a crystal size of 1.6 microns was subjected to three consecutive treatments with dimethylphenylmethyl polysiloxane (Dow-550) in 20 dodecane. For each treatment ca. 1.9 gm of dimethylphenylmethyl polysiloxane (Dow-550) dissolved in 10 gm of dodecane served as the impregnation solution. After each treatment the catalyst was calcined in air at 5° C./min. to 538° C. and held for 0.5 hr. The total 25 weight gain of the catalyst was approximately 8 wt. %.

The STDP runs were conducted in an automated unit with on-line sampling. Approximately one gram of catalyst extrudate was loaded into a 0.25 inch diameter, stainless steel tube reactor.

The catalytic run was initiated with pure toluene feed at 486° C., 4 WHSV, 2 H₂/HC and 500 psig. Initially the catalyst exhibited 89% p-xylene at 30% conversion (486° C., 4 WHSV, 2 H₂/HC and 500 psig). After 20 hours on stream, catalyst activity improved slightly to 35 92% p-xylene at 28% conversion. A WHSV scan at 486° C., 2 H₂/HC and 500 psig, showed that the catalyst produced very high p-xylene levels at lower conversion. At 8 WHSV, 96% p-xylene was obtained at 21% conversion. Thus, the change to a solvent of lower 40 volatility appears not to have a detrimental effect on catalyst selectivity. A temperature scan at 4 WHSV, 2 H₂/HC and 500 psig, showed that high para-selectivity (>90%) could be obtained throughout the ca. 80° C. temperature range studied. For example, 95% p-xylene 45 was obtained at 23% conversion at 465° C.

EXAMPLE 14

Following the catalytic run described in Example 13, the catalyst was removed from the catalytic unit. To 50 confirm the degree of permanency of the selectivation, the catalyst was regenerated by calcining rapidly in air at 5° C./min. to 538° C. in a muffle furnace. After calcination, an initial sample, taken during a catalytic run at 486° C., 4 WHSV, 2 H₂/HC and 500 psig on pure tolusene feed, showed 86% p-xylene at 24% conversion. After several hours on stream catalyst selectivity improved to 90% p-xylene at about 22% conversion. The overall loss in activity of the regenerated catalyst (ca. 25%) compared to the starting modified catalyst may be 60 attributable to possible inadvertent steaming resulting from the rapid air calcination of the regeneration.

EXAMPLE 15

To 20.0 grams of untreated HZSM-5/SiO₂ having a 65 crystal size of 1.6 microns was added 3.88 grams of dimethylphenylmethyl polysiloxane (Dow-550) dissolved in 60 cc of hexane. The catalyst was agitated in

18

the silicone solution for several minutes and the hexane was distilled off by high vacuum distillation. The dry catalyst was then calcined at 1° C./min. in nitrogen to 538° C. After allowing the sample to cool to room temperature, the sample was then calcined in air at 1° C./min. to 538° C. and held for 3 hours. The silicamodified catalyst had gained 1.4 wt. %, presumably as SiO₂. The catalyst was then treated in a similar manner an additional three times with 6.77 grams, 6.82 grams and 6.78 grams of Dow-550, respectively. The resulting additional weight gains were 3.54 wt % 1.67 wt % and 1.39 wt. %, respectively, for a total weight gain of about 8.23 wt. % after the four silicone treatments.

Catalytic activity and selectivity were assessed by performing an STDP run in an automated unit with on-line sampling. Approximately one gram of the modified catalyst was loaded into a 0.25 inch diameter, stainless steel tube reactor. The sample was heated to 538° C. in 200 cc/min. air at a rate of 2.0° C./min. The catalytic run was initiated with pure toluene feed at 445° C., 4 WHSV, 2 H₂/HC and 500 psig. A temperature scan showed that the catalyst was active and selective. For example, at 485° C., with other conditions identical, and at 22 hours on stream, the catalyst exhibited 88% p-xylene at 32% conversion. At 465° C., with other conditions unchanged, the catalyst showed 88% p-xylene at 26% conversion, after seven hours on stream.

Upon calcination to regenerate the catalyst, the sample produced 91% p-xylene and 30% conversion at 485° 30 C., 4 WHSV, 2 H₂/HC and 500 psig. Thus catalyst performance was maintained upon regeneration.

EXAMPLE

To assess the effect of catalyst bulk handling e.g., loading, unloading, etc., a sample of the extrudate of Example 15 was crushed to 14/30 mesh and tested for catalytic activity and selectivity. A one-gram sample was loaded and a catalytic run was performed as described in Example 15.

conversion. Thus, the change to a solvent of lower 40 volatility appears not to have a detrimental effect on catalyst selectivity. A temperature scan at 4 WHSV, 2 H₂/HC and 500 psig, showed that high para-selectivity (>90%) could be obtained throughout the ca. 80° C. temperature range studied. For example, 95% p-xylene 45 was obtained at 23% conversion at 465° C. 4 WHSV, 2 H₂/HC and 500 psig). After 19 hours on stream the catalyst exhibited 85% p-xylene at 32% conversion (485° C., 6 WHSV, 2 H₂/HC and 500 psig).

Thus, after an equivalent amount of time on stream, the crushed extrudate showed approximately the same activity/selectivity profile as the original modified material. These results suggest that physical damage to ex situ selectivated catalyst extrudate results in only minor losses (i.e., 3%) in catalyst selectivity; however, some of this loss may be regained with time on stream.

To assess the permanency of the selectivation and the effect thereon of the crushing process, the catalyst was regenerated by air calcination as described in Example 15. The catalyst showed 87% p-xylene at 32% conversion (485° C., 6 WHSV, 2 H₂/HC and 500 psig), roughly equivalent to the selectivity and activity of the crushed catalyst prior to regeneration. Crushing has apparently no effect on the regeneration behavior of the multiply-silicone coated catalyst.

EXAMPLE 17

105.0 grams of untreated HZSM-5/SiO₂ (1/16 inch extrudate dried at 130° C.) with a crystal size of 0.2 micron, was added to a soluti n of 10.0 grams dimethyl-

3. Document ID: US 5334660 A

L18: Entry 3 of 12

File: USPT

Aug 2, 1994

US-PAT-NO: 5334660

DOCUMENT-IDENTIFIER: US 5334660 A

TITLE: Vinyl chloride resin composition

DATE-ISSUED: August 2, 1994

INVENTOR - INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY
Takaki; Akira Kobe JPX
Mori; Hiroto Takasago JPX
Hasegawa; Toshihiko Hyogo JPX

US-CL-CURRENT: 525/84; 525/227, 525/241, 525/86

Full Title Citation Front Review Classification Date Reference

KWIC Draw Desc Image

4. Document ID: US 5188751 A

L18: Entry 4 of 12 File: USPT Feb 23, 1993

US-PAT-NO: 5188751

DOCUMENT-IDENTIFIER: US 5188751 A

TITLE: Vinyl chloride resin composition

DATE-ISSUED: February 23, 1993

INVENTOR-INFORMATION:

NAME STATE ZIP CODE COUNTRY CITY Takaki; Akira Kobe JPX JPX Iguchi; Hirokazu Akashi Suzuki; Satoshi Takasago JPX Mori; Hiroto Takasago JPX Hosoi; Hideki Kobe JPX

US-CL-CURRENT: 525/70; 525/239, 525/78, 525/80, 525/83, 525/86

Full Title Citation Front Review Classification Date Reference

KWIC | Draw Desc | Image

Document ID: US 4657786 A

L18: Entry 5 of 12

File: USPT

Apr 14, 1987

15

paraselectivity of the catalyst was 99.1% at 4% toluene conversion, with a TDP rate constant of 249. The oxylene diffusivity was further decreased to 0.073×10^{-6} , and the n-hexane sorption was 64 mg/g.

A comparison of the characteristics of the untreated 5 catalyst and the three silicone treated catalysts described in Examples 1-4, is provided below in Table 1.

TABLE 1

Characterization of Silicone Treated HZSM-5/SiO ₂ Catalyst					
Catalyst	Silica Treatment	D/r²	p-xyl/ xyl (%)	K	n-hexane sorption mg/g
Example 1 (Untreated)	None	4.7×10^{-6}	37.0	167	69
Example 2	1	1.1×10^{-6}	67.3	226	68
Example 3	2	0.29×10^{-6}	92.9	. 251	65
Example 4	3	0.073×10^{-6}	99.1	249	64

The results of Examples 1-4 show that multiple silicone coatings applied to a zeolite catalyst significantly
change the characteristics of the catalyst. The triplytreated catalyst showed an extremely high para-selectivity of 99.1% compared to 37.0% for the untreated
material. It will also be noted that the n-hexane sorption 25
is similar for all of the Examples 1-4, indicating that the
silica is deposited substantially exclusively at the crystal
exterior. Finally, the triply-treated catalyst exhibits
diffusivity about sixty-five times lower than that of the
untreated material. This observation corresponds, in a 30
general way, with the estimated quantity of silica added
to the catalyst, indicating that silica deposition has introduced a substantial diffusion barrier.

EXAMPLE 5

Catalytic evaluation of selectivated catalyst was conducted in an automated unit with on-line sampling. One gram of the triply-coated material (Example 4) was loaded into a 0.25 inch diameter stainless steel tube reactor. The sample was heated to 538° C. in 200 40 cc/min. air at a heating rate of 2.0° C./min. Pure toluene was then introduced at 485° C., 4 WHSV, 2 H₂/HC and 500 psig. After 20 hours on stream the catalyst exhibited 80% p-xylene at 37% conversion. Varying the WHSV showed that very high p-xylene selectivities 45 were possible, e.g., 96% p-xylene at 19% conversion with a WHSV of 16.

To determine the activity/selectivity of the selectivated catalyst, reactor temperature was varied to obtain a profile of toluene conversion as a function of 50 temperature. For example, at 465° C., 4 WHSV, 2 H₂/HC and 500 psig, the catalyst exhibited 93% p-xylene at 29% conversion.

EXAMPLE 6

55

To determine the level of permanency of the selectivation, the used catalyst of Example 5 was air calcined. After 24 hours on stream, at 466° C., 4 WHSV, 2 H₂/HC and 500 psig on pure toluene feed, the catalyst profile had changed to 93% p-xylene at 30% conversion. Thus, excellent catalyst performance was maintained after the regeneration.

EXAMPLE 7

In order to further examine the properties of the 65 modified catalyst f Example 5, in situ trim-selectivation with 0.1 wt. % dimethylphenylmethyl polysiloxane (Dow-550) in toluene was initiated for a four hour per-

16

iod (485° C., 4 WHSV, $2H_2HC$ and 500 psig). This trimming resulted in an increase in para-xylene selectivity, i.e., 91% para-xylene at 32% conversion versus 86% para-xylene at 35% conversion. Continued trimming under the same reaction conditions resulted in very high para-xylene selectivities.

EXAMPLE 8

HZSM-5/SiO₂ with a crystal size of approximately 10 1.6 microns was subjected to four consecutive treatments with dimethylphenylmethyl polysiloxane (Dow-550) as described above and illustrated by Examples 2-4. A sample of this modified material weighing one gram was loaded into a 0.25 inch diameter, stainless steel tube reactor. The sample was predried at 300° C. for several hours. Then a selective toluene disproportionation reaction run was initiated using a pure toluene feed at 484° C., 4 WHSV, 2 H₂/HC and 500 psig. The results are shown below in Table 2.

EXAMPLE 9

Several grams of the multiply-coated catalyst described in Example 8 was steamed (100% steam) for four hours at 204° C., at 1 atmosphere. Then the activity and selectivity of the steamed catalyst were evaluated by performing a STDP run as described in Example 8. The results are shown in Table 2.

EXAMPLE 10

Several grams of the multiply-coated catalyst described in Example 8 was steamed (100% steam) for four hours at 316° C., at 1 atmosphere. Then the activity and selectivity of the steamed catalyst were evaluated by performing a STDP run as described in Example 8.
 The results are shown in Table 2.

EXAMPLE 11

Several grams of the multiply-coated catalyst described in Example 8 was steamed (100% steam) for four hours at 371° C., at 1 atmosphere. Then the activity and selectivity of the steamed catalyst were evaluated by performing a STDP run as described in Example 8. The results are shown in Table 2.

EXAMPLE 12

Several grams of the multiply-coated catalyst described in Example 8 was steamed (100% steam) for four hours at 500° C., at 1 atmosphere. Then the activity and selectivity of the steamed catalyst were evaluated by performing a STDP run as described in Example 8.

Table 2, below, provides data comparing activity and selectivity values for the unsteamed (Example 8) and variously steamed (Examples 9-12) multiply-coated catalysts.

TABLE 2

Example	Catalyst	Para-selectivity at 25% toluene conversion	WHSV needed to achieve 25% toluene conversion
8	Unsteamed	86	4
9	Steamed at 204° C.	92	9
10	Steamed at 316° C.	96	10
11	Steamed at 371° C.	87	3.5
12	Steamed at 500° C.	83	2

Catalyst samples steamed for four hours at 204° C. (Ex. 9) or 316° C. (Ex. 10) were both more active and more selective than unsteamed material, while higher

US-PAT-NO: 4657786

DOCUMENT-IDENTIFIER: US 4657786 A

TITLE: Black-metallized substrate surfaces

DATE-ISSUED: April 14, 1987

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Sirinyan; Kirkor Leverkusen DEX
Merten; Rudolf Leverkusen DEX
Giesecke; Henning Cologne DEX

US-CL-CURRENT: 427/304; 126/908, 427/162, 427/305, 427/306, 427/443.1

Full Title Citation Front Review Classification Date Reference

KVMC Draw. Desc Image

Document ID: US 4535032 A

L18: Entry 6 of 12

File: USPT

Aug 13, 1985

US-PAT-NO: 4535032

DOCUMENT-IDENTIFIER: US 4535032 A

TITLE: Black-metallized substrate surfaces

DATE-ISSUED: August 13, 1985

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Sirinyan; Kirkor Leverkusen DEX
Merten; Rudolf Leverkusen DEX

Giesecke; Henning Cologne DEX

US-CL-CURRENT: 428/629; 428/143

Full Title Citation Front Review Classification Date Reference KMC Draw Desc Image

Document ID: US 4423193 A

L18: Entry 7 of 12

File: USPT

Dec 27, 1983

version rates include a reactor inlet temperature of from about 200° C. to about 600° C., preferably from 350° C. to about 540° C.; a pressure of from about atmospheric to about 5000 psia, preferably from about 100 to about 1000 psia; a WHSV of from about 0.1 to about 20, pref- 5 erably from about 2 to about 10; and a H2/HC mole ratio of from about 0.1 to about 20, preferably from about 2 to about 6. This process may be conducted in either batch or fluid bed operation, with the attendant fluent may be separated and distilled to remove the desired product, i.e., p-xylene, as well as other by-products. Alternatively, the C₈ fraction may be subjected to further separation, as in the case of xylenes, subjected xylene.

13

The catalyst may be further modified in order to reduce the amount of undesirable by-products, particularly ethylbenzene. The state of the art is such that the reactor effluent from standard toluene disproportion- 20 ation typically contains about 0.5% ethylbenzene byproduct. Upon distillation of the reaction products, the level of ethylbenzene in the C8 fraction often increases to between about 3% and 4%. This level of ethylbenzene is unacceptable for polymer grade p-xylene, since 25 ethylbenzene in the p-xylene product, if not removed, degrades the quality of fibers ultimately produced from the p-xylene product. Consequently, ethylbenzene content of the p-xylene product must be kept low. The specification for the allowable amount of ethylbenzene 30 in the p-xylene product has been determined by the industry to be less than 0.3%. Ethylbenzene can be substantially removed by crystallization or by superfractionation processes.

In order to avoid the need for downstream ethylben- 35 zene removal, the level of ethylbenzene by-product is advantageously reduced by incorporating a hydrogenation/dehydrogenation function within the catalyst, such as by addition of a metal compound such as platinum. While platinum is the preferred metal, other metals of 40 Groups IB to VIII of the Periodic Table such as palladium, nickel, copper, cobalt, molybdenum, rhodium, ruthenium, silver, gold, mercury, osmium, iron, zinc, cadmium, and mixtures thereof, may be utilized. The metal may be added by cation exchange, in amounts of 45 from about 0.001% to about 2%, typically about 0.5%. For example, a platinum modified catalyst can be prepared by first adding the catalyst to a solution of ammonium nitrate in order to convert the catalyst to the ammonium form. The catalyst is subsequently contacted 50 with an aqueous solution of tetraamine platinum(II) nitrate or tetraamine platinum(II) chloride. The catalyst can then be filtered, washed with water and calcined at temperatures of from about 250° C. to about 500° C. It will be appreciated by those skilled in the art that simi- 55 lar considerations apply to processes involving alkylbenzenes other than toluene.

The following non-limiting Examples illustrate the invention in relation to the disproportionation of toluene as well as in relation to the similar disproportion- 60 ation of ethylbenzene.

In the Examples, the o-xylene sorption rate parameter D_o/r^2 was measured at 120° C. and 3.8 torr.

Do=diffusivity of o-xylene

r=crystal size

Do/r2=the diffusion rate parameter is a measure of the speed of movement of o-xylene into and out of the catalyst crystals

14

Also in the Examples, the atmospheric toluene disproportionation (TDP) test was performed at 482° C., 1 atmosphere, at 4% conversion. The TDP rate constant for the catalyst was obtained under these same condi-

EXAMPLE

The atmospheric TDP test to screen catalyst activity and selectivity was performed as follows using a sample benefits of either operation readily obtainable. The ef- 10 of HZSM-5/SiO2 (65% HZSM-5/35% SiO2) with a crystal size of 1.6 microns. The untreated sample was reacted with toluene at atmospheric pressure at 482° C., and the toluene conversion was varied by adjusting the toluene WHSV. The para-selectivity of the untreated to crystallization or the PAREX process to yield p- 15 catalyst was 37% at 4% toluene conversion, with a TDP rate constant of 167. The o-xylene diffusivity of the untreated catalyst was 4.7×10^{-6} , and the n-hexane sorption was 69 mg/g.

EXAMPLE 2

To 8.0 grams of the untreated catalyst (Ex. 1) was added 1.55 grams of dimethylphenylmethyl polysiloxane (Dow-550) dissolved in 40 cc of hexane. The catalyst was agitated in the silicone solution for several minutes and the hexane was distilled off by high vacuum distillation. After allowing the dry catalyst to cool to room temperature, the sample was then calcined in air at 1° C./min. to 538° C. and held for 3 hours. The silica modified catalyst had gained 3.7 wt. %, presumably as SiO₂.

The atmospheric TDP test was performed on the once-treated catalyst, as described in Example 1. The para-selectively of the catalyst was 67.3% at 4% toluene conversion, with a TDP rate constant of 226. The o-xylene diffusivity was decreased to 1.1×10^{-6} , and the n-hexane sorption was 68 mg/g.

EXAMPLE 3

To 5.75 grams of the once-treated catalyst (Ex. 2) was added 1.12 grams of dimethylphenylmethyl polysiloxane (Dow-550) dissolved in 40 cc of hexane. The catalyst was agitated in the silicone solution for several minutes and the hexane was distilled off by high vacuum distillation. After allowing the dry catalyst to cool to room temperature, the sample was then calcined in air at 1° C./min. to 538° C. and held for 3 hours. The silica modified catalyst had gained an additional 5.0 wt. %, presumably as SiO2.

The atmospheric TDP test was performed on the twice-treated catalyst, as described in Example 1. The paraselectivity of the catalyst was increased to 92.9% at 4% toluene conversion, with a TDP rate constant of 251. The o-xylene diffusivity was lowered to 0.29×10^{-6} , and the n-hexane sorption was 65 mg/g.

EXAMPLE 4

To 4.18 grams of the twice-treated catalyst (Ex. 3) was added 0.81 grams of dimethylphenylmethyl polysiloxane (Dow-550) dissolved in 40 cc of hexane. The catalyst was agitated in the silicone solution for several minutes and the hexane was distilled off by high vacnum distillation. After allowing the dry catalyst to cool t room temperature, the sample was then calcined in air at 1° C./min. to 538° C. and held for 3 hours. The silica modified catalyst had gained an additional 0.8 wt. %, presumably as SiO2.

The atmospheric TDP test was performed n the twice-treated catalyst, as described in Example 1. The US-PAT-NO: 4423193

DOCUMENT-IDENTIFIER: US 4423193 A

TITLE: Dehydrochlorination of vinyl chloride resins followed by graft

copolymerization with copolymerizable monomers

DATE-ISSUED: December 27, 1983

INVENTOR-INFORMATION:

NAME

CITY

STATE ZIP CODE

COUNTRY

Melby; Earl G.

Uniontown

ОН

Cocain; Harry W.

Cuyahoga Falls

OH

Fabris; Hubert J.

Akron

OH

US-CL-CURRENT: $\underline{525}/\underline{296}$; $\underline{525}/\underline{242}$, $\underline{525}/\underline{309}$, $\underline{525}/\underline{313}$, $\underline{525}/\underline{331.5}$, $\underline{525}/\underline{340}$, $\underline{525}/\underline{366}$,

525/367

Full Title Citation Front Review Classification Date Reference

KMC Draw Desc Image

Document ID: US 4287312 A

L18: Entry 8 of 12

File: USPT

Sep 1, 1981

US-PAT-NO: 4287312

DOCUMENT-IDENTIFIER: US 4287312 A

TITLE: Process for producing a graft-copolymer and blends therewith

DATE-ISSUED: September 1, 1981

INVENTOR-INFORMATION:

NAME

CITY

STATE

ZIP CODE

COUNTRY

Yusa; Haruhiko

Iwaki Iwaki

JPX JPX

Oota; Masanori Suzuki; Katumi

Iwaki

Title Citation Front Review Classification Date Reference

JPX

KWIC Draw, Desc

US-CL-CURRENT: <u>525/83</u>; <u>525/261</u>, <u>525/262</u>, <u>525/86</u>

Document ID: US 4220734 A

L18: Entry 9 of 12

9.

File: USPT

Sep 2, 1980

3,307,03

As explained in greater detail herein, the present invention provides a process for obtaining p-xylene at toluene conversions of at least 10%, preferably at least about 15-25%, with a p-xylene selectivity of greater than 85%, preferably at least 90%.

11

The toluene feedstock preferably includes about 50% to 100% toluene, more preferably at least about 80% toluene. Other compounds such as benzene, xylenes, and trimethylbenzene may also be present in the toluene feedstock without adversely affecting the present invention.

The toluene feedstock may also be dried, if desired, in a manner which will minimize moisture entering the reaction zone. Numerous methods known in the art are suitable for drying the toluene charge for the process of the invention. These methods include percolation through any suitable desiccant, for example, silica gel, activated alumina, molecular sieves or other suitable substances, or the use of liquid charge dryers.

The catalytic molecular sieves useful in accordance with the methods of the present invention are preferably in the hydrogen form prior to modification, but may be in the ammonium or sodium form. Preferably, the catalytic molecular sieve comprises an intermediate pore-size zeolite such as a ZSM-5, ZSM-11, ZSM-22, ZSM-23, or ZSM-35 as discussed above. The catalytic molecular sieves also preferably have a Constraint Index of about 1-12. The details of the method by which Constraint Index is determined are described fully in U.S. Pat. No. 4,016,218, incorporated herein by reference.

The crystal size of zeolites used herein is preferably greater than 0.1 micron. The accurate measurement of crystal size of zeolite materials is frequently very difficult. Microscopy methods, such SEM and TEM, are 35 often used, but these methods require measurements on a large number of crystals and for each crystal measured, values may be required in up to three dimensions. For ZSM-5 materials described in the examples below, estimates were made of the effective average crystal size by measuring the rate of sorption of 2,2-dimethylbutane at 90° C. and 60 torr hydrocarbon pressure. The crystal size is computed by applying the diffusion equation given by J. Crank, "The Mathematics of Diffusion" Oxford at the Clarendon Press, 1957, pp 52-56, for the rate of sorbate uptake by a solid whose diffusion properties can be approximated by a plane sheet model. In addition, the diffusion constant of 2,2-dimethylbutane, D, under these conditions is taken to be 1.5×10^{-14} cm²/sec. The relation between crystal size measured in microns, d, and diffusion time measured in minutes, to.3, the time required for the uptake of 30% of capacity of hydrocarbon, is:

$d=0.0704\times t_{0.3}^{\frac{1}{2}}$.

In the present case these measurements have been made on a computer controlled, thermogravimetric electrobalance, but there are numerous ways one skilled in the art could obtain the data. The larger crystal material used herein has a sorption time, $t_{0.3}$, of 497 minutes, 60 which gives a calculated crystal size of 1.6 microns. The smaller crystal material has a sorption time of 7.8 minutes, and a calculated crystal size of 0.20 micron.

The "alpha value" of a catalyst is an approximate indication of the catalytic cracking activity of the catalyst compared to a standard catalyst, and it gives the relative rate constant (rate of normal hexane conversion per volume of catalyst per unit time). It is based on the

activity of the amorphous silica-alumina cracking catalyst taken as an alpha of 1 (Rate Constant=0.016 sec-1). The alpha test is described in U.S. Pat. No. 3,354,078 and in The Journal of Catalysis, Vol. 4, pp. 522-529 (August 1965); Vol. 6, p. 278 (1966); and Vol. 61, p. 395 (1980), each incorporated herein by reference as to that description. It is noted that intrinsic rate constants for many acid-catalyzed reactions are proportional to the alpha value for a particular crystalline silicate catalyst (see "The Active Site of Acidic Aluminosilicate Catalysts," Nature, Vol. 309, No. 5959, pp. 589-591, 14 June 1984). The experimental conditions of the test used herein include a constant temperature of 538° C. and a variable flow rate as described in detail in the Journal of Catalysis, Vol. 61, p. 395 (1980). The catalyst in the present invention preferably has an alpha value greater than 1, for example, from about 1 to about 2000. The alpha value of the catalyst may be increased by initially treating the catalyst with nitric acid or by mild steaming before preselectivaton. This type of steaming is discussed in U.S. Pat. No. 4,326,994.

12

The silica to alumina ratio of the catalysts of the invention may be determined by conventional analysis. This ratio is meant to represent, as closely as possible, the ratio in the rigid atomic framework of the zeolite crystal and to exclude aluminum in the binder or in cationic or other form within the channels. Although zeolites with a silica to alumina ratio of up to about 10,000 are useful, it is preferred to use zeolites having ratios of at least about 20 to about 2000.

For the improved disproportionation process of this invention, the suitable molecular sieve may be employed in combination with a support or binder material such as, for example, a porous inorganic oxide support or a clay binder. While the preferred binder is silica, other non-acidic binder materials may be employed, generally in the form of dried inorganic oxide gels or gelatinous precipitates. Suitable clay materials include, by way of example, bentonite and kieselguhr. The relative proportion of suitable crystalline molecular sieve to the total composition of catalyst and binder or support may be from about 30% to about 98% by weight and is preferably from about 50% to about 80% by weight of the composition. The composition may be in the form of an extrudate, beads or fluidizable microspheres.

Operating conditions employed in the process of the present invention will affect the para-selectivity and toluene conversion. Such conditions include the temperature, pressure, space velocity, molar ratio of the reactants, and the hydrogen to hydrocarbon mole ratio (H₂/HC). It has also been observed that an increased space velocity (WHSV) can enhance the paraselectivity of the modified catalyst in alkylbenzene disproportionation reactions. This characteristic of the modified catalyst allows for substantially improved throughput when compared to current commercial practices. In addition, it has been observed that the disproportionation process may be performed using H2 as a diluent, thereby dramatically increasing the cycle length of the catalyst. For example, it has been observed that an increase in temperature can increase the activity of the modified catalyst.

A selectivated and steamed catalytic molecular sieve may be contacted with a toluene feedstock under conditions for effecting vapor-phase disproportionation. Conditions effective for accomplishing the high para-selectivity and acceptable toluene disproportionation conUS-PAT-NO: 4220734

DOCUMENT-IDENTIFIER: US 4220734 A

TITLE: Impact and weather resistant composite of polyvinylchloride and acrylic

modifier

DATE-ISSUED: September 2, 1980

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY Kosugi; Takumi Kobe JPX Yasunaga; Shigeki Kobe JPX Akashi Tanaka; Yutaka JPX Hashimoto; Yoshihiko Kobe JPX

US-CL-CURRENT: 525/85; 524/460

Full Title Citation Front Review Classificati	- Data Datasana	1004C Danie Danie I Inchina
ruli Inte Citation Front Neview Classificati	on vate reference	KWIC Drawl Desc Image

Document ID: US 4021508 A

L18: Entry 10 of 12

File: USPT

May 3, 1977

US-PAT-NO: 4021508

DOCUMENT-IDENTIFIER: US 4021508 A

TITLE: Vinyl chloride -EPDM resin compositions

DATE-ISSUED: May 3, 1977

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY Nakanishi; Kakusaburo Uozu JA Yoshida; Tatsuro Namerikawa JA Nakatubo; Kyoku Kurobe JA

US-CL-CURRENT: <u>524/519</u>; <u>524/178</u>, <u>524/180</u>, <u>524/385</u>, <u>524/399</u>, <u>524/400</u>, <u>525/75</u>

Title Citation Front Review Classification Date Reference KMC Draw Desc Image 11. Document ID: US 4014842 A

L18: Entry 11 of 12

File: USPT

Mar 29, 1977

sphere and less than 400 psia, with hydrogen/ethylene ratio of 0.5 to 10 to reduce aging of the catalyst. The zeolite described in U.S. Pat. No. 4,117,024 has a crystal size greater than one micron, and is modified as the catalyst in U.S. Pat. No. 4,086,287 to attain the sorption 5 capacity described in U.S. Pat. No. 4,086,287.

U.S. Pat. No. 4,117,026 to Haag and Olson describes the production of para-dialkyl benzenes having alkyls of 1 to 4 carbons under conditions which vary according to the feed. When the feed includes monoalkyl-sub- 10 stituted benzenes having an alkyl group of 1 to 4 carbons, olefins of 2 to 15 carbons, or paraffins of 3 to 60 carbons or mixtures thereof, conversion conditions include a temperature of 250° C. to 750° C., a pressure of 0.1 to 100 atmospheres and a WHSV of 0.1 to 2000. For 15 the disproportionation of toluene, the conditions include a temperature of 400° C. to 700° C., a pressure of 1 to 100 atmospheres and a WHSV of 1-50. When the feed includes olefins of 2 to 15 carbons including cyclic olefins, the conversion conditions include a temperature 20 of 300° C. to 700° C., a pressure of 1 to 100 atmospheres and a WHSV of 1 to 1000. When the feed includes paraffins of 3 to 60 carbons, conditions include a temperature of 300° C. to 700° C., a pressure of 1 to 100 atmospheres and a WHSV of 0.1 to 100. However for 25 lower paraffins of 3 to 5 carbons, the temperature should be above 400° C. When the feed includes mixed aromatics such as ethylbenzene and toluene, and also optionally olefins of 2 to 20 carbons or paraffins of 5 to 25 carbons, conversion conditions include a tempera- 30 ture of 250° C. to 500° C. and a pressure greater than 200 psia. In the absence of added aromatics, the olefins and higher paraffins are more reactive and require lower severity of operation, e.g., a temperature of 250° C. to 600° C., preferably 300° C. to 550° C.

In general, therefore, catalytic conversion conditions over a catalyst comprising the modified zeolite include a temperature of from about 100° C. to about 760° C., a pressure of from about 0.1 atmosphere (bar) to about 200 atmospheres (bar), a weight hourly space velocity 40 of from about 0.08 to about 2000, and a hydrogen/organic, e.g., hydrocarbon compound, mole ratio of from 0 to about 100.

Toluene Disproportionation

The present invention is described in detail below in relation to the disproportionation of alkyl-substituted benzenes, such as toluene and ethylbenzene, over a multiply-selectivated and optionally steamed catalyst. Normally a single pass conversion of an alkylbenzene 50 stream results in a product stream which includes dialkylbenzenes having alkyl groups at all locations, i.e., o-, m-, and p-dialkylbenzenes. A catalyst treated in the manner described herein exhibits a desirable decreased ortho-dialkylbenzene sorption rate parameter and yields 55 a significantly para-selected product from alkylbenzene disproportionation. For example, diffusion rate constants in toluene disproportionation have been discussed by D. H. Olson and W. O. Haag, "Structure-Selectivity Relationship in Xylene Isomerization and Selective 60 Toluene Disproportionation", Catalytic Materials: Relationship Between Structure and Reactivity, ACS Symposium Ser. No. 248 (1984).

In toluene disproportionation, toluene diffuses into the zeolite with a diffusivity D_T . The toluene undergoes 65 disproportionation to p-, m-, and o-xylene and benzene at a total rate constant k_D . For high selectivity and catalyst efficiency it is desirable to have

$$k_D << \frac{D_T}{r^2}$$
.

The degree of para-selectivity depends on the activity and the diffusion characteristics of the catalyst. The primary product will be rich in the para isomer if initially produced m- and o-xylene diffuse out of the zeolite crystal at a rate $(D_{m,o}/r^2)$ that is lower than that of their conversion to p-xylene (k_l) , as well as lower than that of the p-xylene diffusion (D_p/r^2) out of the catalyst, where:

 D_m =diffusion of m-xylene;

Do=diffusion of o-xylene;

 D_p =diffusion of p-xylene;

r=length of diffusion path (crystal size);

k=rate of interconversion via isomerization of xylene isomers yielding secondary xylene product mxylene and o-xylene.

It is desirable to increase the para-selectivity of the catalyst. Practically, this involves decreasing the o- and mxylene diffusivities such that

$$k_I > \frac{D_{m,o}}{r^2}.$$

In such a case the rate of conversion of m- and o-xylenes to p-xylene exceeds the diffusivities of the m- and o-xylenes. As a result, the proportion of the xylene yield that is p-xylene will be increased. Those skilled in the art will appreciate that similar considerations apply to the diffusivities of other alkylbenzenes.

The invention also comprises the near regioselective conversion of toluene to para-xylene by disproportionating toluene in a reaction stream containing a toluene feed with a selectivated and optionally steamed catalytic molecular sieve in the presence of hydrogen and at reaction conditions suitable to provide p-xylene selectivity of greater than about 80%, preferably greater than 90%. The production stream may also contain small amounts of o- and m-xylene and trace amounts of impurities such as ethylbenzene.

As used herein, the term "para-xylene selectivity" means the proportion of p-xylene, indicated as a percentage, among all of the xylene products, i.e., p-xylene, o-xylene, and mxylene. Those skilled in the art will appreciate that the relative proximity of the boiling points of these xylene isomers necessitates relatively expensive separation processes for the isolation of p-xylene. On the other hand, p-xylene is more readily separated from other components in the product stream such as benzene, toluene, and p-ethyltoluene.

Furthermore, the alkylbenzenes are known to proceed in reactions which produce unwanted heavier alkylbenzenes. For example, the xylenes can react to produce unwanted ethylbenzene by the following reaction:

$$\bigoplus_{\text{CH}_3}^{\text{CH}_2} \bigoplus_{\text{CH}_3}^{\text{CH}_2\text{CH}_2}$$

US-PAT-NO: 4014842

DOCUMENT-IDENTIFIER: US 4014842 A

TITLE: Vinyl chloride resin compositions

DATE-ISSUED: March 29, 1977

INVENTOR - INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY Kosugi; Takumi Kobe JA Yasunaga; Shigeki Kobe JA Tanaka; Yutaka Akashi JA Hashimoto; Yoshihiko Kobe JA

US-CL-CURRENT: 525/80; 524/504, 525/70, 525/73, 525/74, 525/82, 525/85

Full Title Citation Front Review Classification Date Reference

KWC Draw Desc Image

Document ID: US 3939049 A

L18: Entry 12 of 12

File: USPT

Feb 17, 1976

US-PAT-NO: 3939049

DOCUMENT-IDENTIFIER: US 3939049 A

TITLE: Process for radiation grafting hydrogels onto organic polymeric substrates

DATE-ISSUED: February 17, 1976

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Ratner; Buddy D. Seattle WA Hoffman; Allan S. Seattle WA

US-CL-CURRENT: <u>522/116</u>; <u>522/123</u>, <u>522/138</u>, <u>522/144</u>, <u>522/65</u>, <u>522/66</u>, <u>525/283</u>, <u>525/303</u>, <u>525/455</u>, <u>525/479</u>

Full Title Citation Front Review Classification Date Reference

KMC Draw Desc Image

Generate Collection

	Terms	Documents
((polyvir	ylchloride or (polyvinyl adj chloride) or (vinyl adj chloride	
adj resin) same (water or aqueous) same (graft) same (polymer or	12
copolym	er or resin or binder) same (styrene or diene or butadiene or	12
acrylate	or methacrylate or acrylonitrile))[ab,ti,clm]	

Display 30 Documents, starting with Document: 12

7

The selectivated molecular sieve catalyst, with or without binder, can show improved selectivity upon steaming. Alternatively, excessive steaming can be detrimental to a selectivated catalyst.

The alkylbenzene may be fed simultaneously with a second selectivating agent and hydrogen at reaction conditions until the desired p-dialkylbenzene selectivity, e.g., 90%, is attained, whereupon the co-feed of selectivating agent is discontinued. This co-feeding of selectivating agent with alkylbenzene is termed "trimselectivation". Reaction conditions for this in situ trimselectivation step generally include a temperature of from about 350° C. to about 540° C. and a pressure of from about atmospheric to about 5000 psig. The reaction stream is fed to the system at a rate of from about 150.1 WHSV to about 20 WHSV. Hydrogen may be fed at a hydrogen to hydrocarbon molar ratio of from about 0.1 to about 20.

The high efficiency para-dialkylbenzene selectivating agent for trim-selectivation may comprise a silicon 20 compound discussed in greater detail above. For example, organic silicon compounds such as phenylmethyl silicone, dimethyl silicone, and mixtures thereof are suitable. According to one embodiment of the present invention, a silicone containing phenylmethylsilicone 25 and dimethylsilicone groups in a ratio of about 1:1 is co-fed to the system, while the other components, e.g., alkylbenzene and hydrogen, are fed in the amounts set forth above. The high-efficiency para-dialkylbenzene selectivating agent is fed in an amount of from about 30 0.001 wt. % to about 10 wt. % of the alkylbenzene according to this preferred embodiment. Depending upon the percentage of selectivating agent used, the trim-selectivation will last for at least one hour, preferably about 1 to about 48 hours, most preferably less than 35 24 hrs.

In this scheme the silicon compound will decompose to deposit additional silica to on the catalyst. During the selectivation procedure the para-selectivity of the catalyst will be observed to increase further. The siliconcontaining polymer or molecular species may be dissolved in toluene or other appropriate aromatic or hydrocarbon carrier.

Alternatively, the catalyst, prior to contacting with alkylbenzene under disproportionation conditions, may be subjected to trim-selectivation with a thermally decomposable organic compound at an elevated temperature of said compound but below the temperature at which crystallinity of the zeolite is adversely affected. Generally, this temperature will be less than about 650° C.

Organic materials, thermally decomposable under the above temperature conditions to provide coke trimming, encompass a wide variety of compounds including by way of example, hydrocarbons, such as paraf- 55 finic, cycloparaffinic, olefinic, cycloolefinic and aromatic; oxygen-containing organic compounds such as alcohols, aldehydes, ethers, ketones and phenols; heterocyclics such as furans, thiophenes, pyrroles and pyridines. Usually, it is contemplated that a thermally de- 60 composable hydrocarbon, such as an alkyl-substituted aromatic, will be the source of coke, most preferably the alkylbenzene being subjected to disproportionation itself. In the latter case, the alkylbenzene is initially brought into contact with the catalyst under conditions 65 of temperature and hydrogen concentration amenable to rapid coke formation. Typically, coke trimming is conducted at conditions outside the operating parame8

ters used during the main time span of the catalytic cycle. When the desired coke deposition has been effected, the alkylbenzene feed is continued in contact with the coke-containing catalyst under conditions of temperature and hydrogen concentration conducive to disproportionation, with a greatly reduced coking rate.

While not wishing to be bound by theory, it is believed that the advantages of the present invention are in part obtained by rendering acid sites on the external surfaces of the catalyst substantially inaccessible to reactants, while increasing catalyst tortuosity. Acid sites existing on the external surface of the catalyst are believed to isomerize the solution-phase p-xylene back to an equilibrium level with the other two isomers, thereby reducing the amount of p-xylene in the xylenes to only about 24%. By reducing the availability of these acid sites to the solution-phase p-xylene, the relatively high proportion of p-xylene can be maintained. It is believed that the high-efficiency, p-xylene selectivating agents of the present invention block or otherwise render these external acid sites unavailable to the p-xylene by chemically modifying said sites.

Disproportionation of Alkyl-Substituted Benzenes

The modified zeolite catalysts useful in the present invention are advantageously used in the conversion of aromatic compounds to provide dialkyl-substituted benzene products which are highly enriched in the paradialkyl substituted benzene isomer. Conversion reactions of this type include alkylation, transalkylation and disproportionation of aromatics. Alkylations of aromatics in which the catalysts of the invention can be used are described, for example, in U.S. Pat. Nos. 3,755,483, 4,086,287, 4,117,024 and 4,117,026, which are incorporated herein by reference.

As described in U.S. Pat. No. 3,755,483 to Burress, aromatic hydrocarbons such as benzenes, naphthalenes, anthracenes and substituted derivatives thereof, e.g., toluene and xylene, may be alkylated with alkylating agents such as olefins ethylene, propylene, dodecylene, and formaldehyde, alkyl halides, and alkyl alcohols with 1 to 24 carbons under vapor phase conditions including a reactor inlet temperature up to about 482° C., with a reactor bed temperature up to about 566° C., at a pressure of about atmospheric to about 3000 psia, a mole ratio of aromatic/alkylating agent of from about 1:1 to about 20:1, and a WHSV of 20 to 3000 over ZSM-12 which is a ZSM-5 type catalyst.

As described in U.S. Pat. No. 4,086,287 to Kaeding et al., monoalkylbenzenes having alkyls of 1-2 carbons, such as toluene and ethylbenzene, may be ethylated to produce a paraethyl derivative, e.g., para-ethyltoluene at a temperature of from about 250° C. to about 600° C., a pressure of 0.1 atmospheres to 100 atmospheres, a weight hourly space velocity (WHSV) of 0.1 to 100, and a ratio of feed/ethylating agent of 1 to 10 over a catalyst having an acid activity, i.e., alpha, of 2 to 5000, modified by pre-coking or combining with oxides of phosphorus, boron or antimony to attain a catalyst with a xylene sorption capacity greater than 1 g/100 g of zeolite and an ortho xylene sorption time for 30% of said capacity of greater than 10 minutes, where sorption capacity and sorption time are measured at 120° C. and a xylen pressure f 4.5±0.8 mm of mercury.

U.S. Pat. No. 4,117,024 to Kaeding describes a process for the ethylation of toluene or ethylbenzene to produce pethyltoluene at a temperature of 350° C. to 550° C., a critical pressure of greater than one atmo-

Search Results -

Terms	Documents
((polyvinylchloride or (polyvinyl adj chloride) or (vinyl adj chloride adj resin)) same (water	
or aqueous) same (graft) same (polymer or copolymer or resin or binder) same (styrene or	12
diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	

Database:

	((polyvinylchloride or (polyvinyl adj	
Refine Search:	chloride) or (vinyl adj chloride adj resin)) same (water or aqueous) same	Clear

Search History

Today's Date: 10/18/2001

DB Name	Query	Hit Count	Set Name
USPT	((polyvinylchloride or (polyvinyl adj chloride) or (vinyl adj chloride adj resin)) same (water or aqueous) same (graft) same (polymer or copolymer or resin or binder) same (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	12	<u>L18</u>
USPT	((polyvinylchloride or (polyvinyl adj chloride) or (vinyl adj chloride adj resin)) same (water or aqueous) same (graft) same (polymer or copolymer or resin or binder) and (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	13	<u>L17</u>
USPT	((polyvinylchloride or (polyvinyl adj chloride) or (vinyl adj chloride adj resin)) same (water or aqueous) same (graft) and (polymer or copolymer or resin or binder) and (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	13	<u>L16</u>
	((polyvinylchloride or (polyvinyl adj chloride) or (vinyl adj chloride		

2,307,027

at least an hour to enhance activity by raising the alpha. U.S. Pat. No. 4,522,929 describes pre-steaming a fresh zeolite catalyst so that the alpha activity first rises then falls to the level of the fresh unsteamed catalyst, producing a stable catalyst which may be used in xylene isomerization. U.S. Pat. No. 4,443,554 describes steaming inactive zeolites (Na ZSM-5) to increase alpha activity. U.S. Pat. No. 4,487,843 describes contacting a zeolite with steam prior to loading with a Group IIIB

3

It has also now been found that a multiple impregnation scheme for zeolite catalyst selectivation followed by steam treatment produces additional unexpectedly better results than the multiple impregnation treatment alone. It has also been found that the optional steam 15 treatment, to be advantageous according to the present invention, must be performed within a limited range of conditions.

Accordingly, it is an object of the invention to improve selectivity in catalytic molecular sieves thereby 20 improving shape selectivity in hydrocarbon conversion processes over the molecular sieves.

Various organic compounds have been employed as carriers for selectivating agents in the impregnation methods applied to zeolite catalysts. For example, U.S. 25 Pat. Nos. 4,145,315, 4,127,616, 4,090,981 and 4,060,568 describe the use of inter alia C₅₋₇ alkanes as solvents for impregnation of zeolites with selectivating agents containing silicon.

There has been no suggestion, however, of the use of 30 lower volatility alkanes as carriers for impregnation of zeolites. It has now been found that organic carriers of lower volatility and flammability, having the advantages of ease and safety of industrial application, unexpectedly provide results that are at least substantially 35 equivalent to those achieved by employment of solvents having higher volatility.

Accordingly, it is another object of the invention to provide for the use of organic carriers of lower volatility and flammability and thereby to improve the ease 40 with which silicon impregnation of zeolite catalysts may be achieved as well as to improve the safety of such method.

SUMMARY OF THE INVENTION

The invention is a process of shape selective toluene disproportionation over a modified catalytic molecular sieve by contacting a reaction stream comprising toluene, under conversion conditions, with a modified catalytic molecular sieve. The modification method includes exposing the catalytic molecular sieve to at least two ex situ selectivation sequences. Each ex situ selectivation sequence includes impregnating the catalytic molecular sieve with a selectivating agent, followed by calcination after each impregnation. Selectivating 55 agents useful in the present invention include a large variety of silicon-containing compounds, preferably silicon polymers soluble in organic carriers. Such organic carriers include various alkanes, preferably paraffins having 7 or more carbons.

The invention further includes a process of shape selective disproportionation of toluene by contacting a reaction stream comprising toluene, under conversion conditions, with a modified catalytic molecular sieve that has been further modified by steaming the modified 65 catalytic molecular sieve at moderate temperatures.

The invention also includes a process f shape selective toluene disproportionation over a modified cata-

lytic molecular sieve that has been optionally further modified by steaming at moderate temperatures and that has been further modified by in situ trim-selectivating the modified catalytic molecular sieve. The in situ trim-selectivating may be performed by coke trim-selectivating wherein an organic compound is decomposed in the presence of the modified catalytic molecular sieve, at conditions suitable for decomposing the organic compound. Alternatively, the trim-selectivating may be performed by exposing the modified catalytic molecular sieve to a reaction stream that includes a hydrocarbon to be converted and a trim-selectivating agent selected from a group of compounds including a large variety of silicon-containing compounds, at reaction conditions.

Advantageously, the described modified catalysts have enhanced shape selectivity for para-xylene production. Accordingly, the disproportionation process of the invention exhibits increased selectivity for para-xylene and may exhibit an increased toluene disproportionation rate constant.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to enhanced shape selective hydrocarbon conversion reactions, particularly the shape selective conversion of toluene to commercially useful para-xylene.

The catalytic molecular sieves useful herein have a Constraint Index from about 1 to about 12 and include intermediate pore zeolites. Zeolites which conform to the specified values of constraint index for intermediate pore zeolites include ZSM-5, ZSM-11, ZSM-5/ZSM-11 intermediate, ZSM-12, ZSM-22, ZSM-23, ZSM-35, ZSM-48, ZSM-50, and ZSM-57. Such zeolites are described, for example, in U.S. Pat. Nos. 3,702,886 and Re. 29,949, 3,709,979, 3,832,449, 4,046,859, 4,556,447, 4,076,842, 4,016,245, 4,229,424, 4,397,827, 4,640,849, 4,046,685, 3,308,069 and Re. 28,341, to which reference is made for the details of these zeolites.

For the process of the present invention, a zeolite, either incorporated with a binder or in unbound form, is impregnated at least twice, preferably between about two and about six times, with a selectivating agent. The selectivating agent comprises a compound or polymer containing a main group or transition metal, preferably silicon. In each phase of the selectivation treatment, the selectivating agent is deposited on the external surface of the catalyst by any suitable method. For example, a selectivating agent, such as a silicon compound, may be dissolved in a carrier, mixed with the catalyst, and then dried by evaporation or vacuum distillation. This method is termed "impregnation". The molecular sieve may be contacted with the silicon compound at a molecular sieve/silicon compound weight ratio of from about 100/1 to about 1/100.

The silicon compound employed may be in the form of a solution, an emulsion, a liquid or a gas under the conditions of contact with a zeolite. The deposited silicon compound extensively covers, and resides substantially exclusively on, the external surface of the molecular sieve. Examples of methods of depositing silicon on the surface of the zeolite are found in U.S. Pat. Nos. 4,090,981, 4,127,616, 4,465,886 and 4,477,583 to Rodewald, which are incorp rated by reference herein. Further examples f the deposition of a silicon comp und on zeolite surfaces are described in H. Nakajima, M. Koya, H. Ishida, and M. Kohno, Sekiyu

USPT	adj resin)) same (water or aqueous) and (graft) and (polymer or copolymer or resin or binder) and (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	21	<u>L15</u>
USPT	((polyvinylchloride or (polyvinyl adj chloride) or (vinyl adj chloride adj resin)) and (water or aqueous) and (graft) and (polymer or copolymer or resin or binder) and (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	85	<u>L14</u>
USPT	((polyvinylchloride or (polyvinyl adj chloride) or (vinyl adj chloride adj resin)) and (water or aqueous) and (core) and (shell) and (polymer or copolymer or resin or binder) and (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	10	<u>L13</u>
USPT	(((525/70-87)/\$)!.CCLS.)	0	<u>L12</u>
USPT	110 and (523 or 524 or 525)/\$.ccls.	47	<u>L11</u>
USPT	((water or aqueous) same (polymer or copolymer or resin or binder) same (graft) same (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti]	101	<u>L10</u>
USPT	((water or aqueous) same (polymer or copolymer or resin or binder) same (graft) same (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	290	<u>L9</u>
USPT	17 and (523 or 524 or 525)/\$.ccls.	13	<u>L8</u>
USPT	((water or aqueous) same (polymer or copolymer or resin or binder) same (core) same (shell) same (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti]	14	<u>L7</u>
USPT	((water or aqueous) same (polymer or copolymer or resin or binder) same (core) same (shell) same (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	30	<u>L6</u>
USPT	((water or aqueous) same (polymer or copolymer or resin or binder) same (core) same (shell) and (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	115	<u>L5</u>
USPT	((water or aqueous) same (polymer or copolymer or resin or binder) same (core) and (shell) and (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	136	<u>L4</u>
USPT	((water or aqueous) same (polymer or copolymer or resin or binder) and (core) and (shell) and (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	213	<u>L3</u>
USPT	((water or aqueous) and (polymer or copolymer or resin or binder) and (core) and (shell) and (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	255	<u>L2</u>
USPT	(water or aqueous) and (polymer or copolymer or resin or binder) and (core) and (shell) and (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile)	6986	<u>L1</u>

5

SELECTIVE TOLUENE DISPROPORTIONATION PROCESS (STDP) WITH EX SITU SELECTIVATED ZEOLITE CATALYST

BACKGROUND OF THE INVENTION

The present invention is directed to shape selective hydrocarbon conversion process over a modified catalytic molecular sieve. The invention also relates to a modified catalytic molecular sieve and a method for its modification.

The term "shape-selective catalysis" describes unexpected catalytic selectivities in zeolites. The principles behind shape selective catalysis have been reviewed extensively, e.g., by N. Y. Chen, W. E. Garwood and F. G. Dwyer, "Shape Selective Catalysis in Industrial Applications," 36, Marcel Dekker, Inc. (1989). Within a zeolite pore, hydrocarbon conversion reactions such as paraffin isomerization, olefin skeletal or double bond isomerization, oligomerization and aromatic disproportionation, alkylation or transalkylation reactions are governed by constraints imposed by the channel size. Reactant selectivity occurs when a fraction of the feedstock is too large to enter the zeolite pores to react; 25 while product selectivity occurs when some of the products cannot leave the zeolite channels. Product distributions can also be altered by transition state selectivity in which certain reactions cannot occur because the reaction transition state is too large to form within 30 the zeolite pores or cages. Another type of selectivity results from configurational constraints on diffusion where the dimensions of the molecule approach that of the zeolite pore system. A small change in the dimensions of the molecule or the zeolite pore can result in 35 large diffusion changes leading to different product distributions. This type of shape selective catalysis is demonstrated, for example, in selective toluene disproportionation to p-xylene.

The production of para-xylene is typically performed 40 by methylation of toluene or by toluene disproportionation over a catalyst under conversion conditions. Examples include the reaction of toluene with methanol as described by Chen et al., J. Amer. Chem. Sec. 101, 6783 (1979), and toluene disproportionation, as described by 45 Pines in "The Chemistry of Catalytic Hydrocarbon Conversions", Academic Press, N.Y., 1981, p. 72. Such methods typically result in the production of a mixture including para-xylene, ortho-xylene, and meta-xylene. Depending upon the degree of selectivity of the catalyst 50 for para-xylene (para-selectivity) and the reaction conditions, different percentages of para-xylene are obtained. The yield, i.e., the amount of xylene produced as a proportion of the feedstock, is also affected by the catalyst and the reaction conditions.

The equilibrium reaction for the conversion of toluene to xylene and benzene proceeds as follows:

-co: 46.09	ntinued g	62.63 g	
Γ	15.03 g	33.02 g	13.70 g
	para- xylene	meta- xylene	ortho- xylene
	(24%)	(54%)	(22%)

p-Xylene Yield = $100 \times \frac{15.03}{184.27} = 8.2\%$

p-Xylene Selectivity = $100 \times \frac{15.03}{62.63} = 24\%$

Various methods are known in the art for increasing the para-selectivity of zeolite catalysts. One such method is to modify the catalyst by treatment with a "selectivating agent". For example, U.S. Pat. Nos. 5,173,461, 4,950,835, 4,927,979, 4,465,886, 4,477,583, 4,379,761, 4,145,315, 4,127,616, 4,100,215, 4,090,981, 4,060,568 and 3,698,157 disclose specific methods for contacting a catalyst with a selectivating agent containing silicon ("silicon compound").

U.S. Pat. No. 4,548,914 describes another modification method involving impregnating catalysts with oxides that are difficult to reduce, such as those of magnesium, calcium, and/or phosphorus, followed by treatment with water vapor to improve para-selectivity.

European Patent No. 296,582 describes the modification of aluminosilicate catalysts by impregnating such catalysts with phosphorus-containing compounds and further modifying these catalysts by incorporating metals such as manganese, cobalt, silicon and Group IIA elements. The patent also describes the modification of zeolites with silicon compounds.

Traditionally, ex situ pre-selectivation of zeolites has involved single applications of the selectivating agent. It may be noted, however, that the suggestion of multiple treatments was made in U.S. Pat. No. 4,283,306 to Herkes. The Herkes patent discloses the promotion of crystalline silica catalyst by application of an amorphous silica such as ethylorthosilicate. The Herkes patent contrasts the performance of catalyst treated once with an ethylorthosilicate solution followed by calcination against the performance of catalyst treated twice with ethylorthosilicate and calcined after each treatment. The Herkes disclosure shows that the twicetreated catalyst is less active and less selective than the once-treated catalyst as measured by methylation of toluene by methanol, indicating that multiple ex situ selectivation confers no benefit and in fact reduces a catalyst's efficacy in shape-selective reactions.

There has been no suggestion, however, that the selectivation of zeolites by the multiple ex situ impregnation of the zeolites with selectivating agents such as silicon compounds, followed by calcination after each impregnation would improve the selectivity and activity of the catalysts. It has now been found that a multiple impregnation scheme provides unexpectedly better results in shape-critical toluene conversions than single silicon impregnation pre-treatment schemes.

It has also now been found that a multiple impregnation scheme provides unexpectedly more efficient deposition of the selectivating agent on the catalyst than schemes emplying impregnations.

Steaming has also been used in the preparation of zeolite catalysts to modify the alpha r improve stability. For example, U.S. Pat. No. 4,559,314 describes steaming a zeolite/binder composite at 200°-500° C. for

Search Results -

Terms	Documents
((polyvinylchloride or (polyvinyl adj chloride) or (vinyl adj chloride adj resin)) and (water	
or aqueous) and (core) and (shell) and (polymer or copolymer or resin or binder) and	10
(styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	

US Patenis Full Text Database

US Pre-Grant Publication Full-Text Database

JPO Abstracts Database

EPO Abstracts Database

Derwent World Patents Index

IBM Technical Disclosure Bulletins

Refine Search:	((polyvinylchloride or (polyvinyl adj chloride) or (vinyl adj chloride adj resin)) and (water or aqueous) and	Clear
	Search History	

Today's Date: 10/18/2001

A5289742002U

£78'9*L*†'S

[11] Patent Number:

United States Patent [19]

Beck et al.

[95]

Dec. 19, 1995

[45] Date of Patent:

C14 1000 1000000000000000000000000000000		
Beck et al 585/475	11\166t	660,7 <i>6</i> £,2
Beck et al 585/475	11/1664	\$365,00 4
Chang et al 585/470	11/1664	5,365,003
Logo et al 585/475	76 61/6	5,349,114
Chang et al 585/475	7661/6	5,349,113
Abzil et al 502/62	15/1665	194,571,2
Wang et al 585/467	0661/8	\$£8,02 <i>6</i> ,4
Yamagishi et al 568/791	0661/5	6L6'LZ6'\$
Absil et al 585/475	686T/L	409'I58'b
D'Amore et al 502/263	6861/9	LS0,E48,4
IT\\(102\) idsdid?	15/1985	41 £ '6 55 '4
Pieters et al 502/85	\$861/11	4 <i>°22</i> 4°560
Сри 202/85	10/1682	416'84S't

OTHER PUBLICATIONS

Process for the Recovery of High-Purity M-Ethylphenol, Publication No. EP0296582A2 Jun. 23, 1988.
Nakajima et al., "p-Xylene-Selective Disproportionation of Toluene over a Modified Pentasil Type Zeolite", Sekiyu Gakkaishi, 35(2), 185-189 (1992).
Hilbing et al. "Spare-Selectivity over HYSM-5 Modified

Hibino et al., "Shape-Selectivity over HZSM-5 Modified by Chemical Vapor Deposition of Silicon Alkoxide", Journal of Catalysis, 128, 551-558 (1991).

Primary Examiner—Asok Pal Attorney, Agent, or Firm—Alexander J. McKillop; Dennis P. Santani; Edward F. Kenehan, Jr.

[L] VBZLKVCL

An ex situ selectivated catalytic molecular sieve for enhanced shape selective hydrocarbon conversions in which a catalytic molecular sieve is modified by being exposed to at least two selectivation sequences, each sequence including an impregnation of the molecular sieve with a selectivation stated molecular sieve. The ex situ selectivation method is also described, including the use of low volatility organic carriers for the selectivating agent. Also, a method for moderate steaming of the ex situ selectivated molecular sieve. Also a method for in situ trim-selectivating the ex situ selectivated molecular sieve. Also a method for in situ trim-selectivated existing selectivated catalytic molecular sieve. Also a method for in situ trim-selectivated consectivated catalytic molecular sieve. Also a method for in situ trim-selectivating the ex situ selectivated catalytic molecular sieve prising contacting a hydrocarbon feedstream under conversion contacting contacting a modified catalytic molecular sieve.

72 Claims, No Drawings

122,60ov. IqqA	[12]
Assignee: Mobil Oil Corp., Fairfax, Va.	[£L]
Inventors: Jeffrey S. Beck, Princeton; David H. Olson, Pennington, both of N.J.; Sharon B. McCullen, Newtown, Pa.	[SL]
INCKEVEE THE ACTIVITY THEREOF APPLICATIONS AND METHOD TO SELECTIVE SELECTIVE SELECTIVE CATALYSTS FOR METHOD OF PREPARATION OF EX SITU	[24]

Field of Search	[88]
U.S. CL 502/62; 502/62; 502/64;	[25]
Int. CL. ⁶ BOLJ 29/06	[15]
Filed: May 28, 1993	[22]
122,69ov. fqqA	[12]
Assignee: Mobil Oil Corp., Fairfax, Va.	[٤٤]

U.S. PATENT DOCUMENTS

References Cited

29 '98/705

rester et al	e/1682 CP	4,522,929
Mord et al502/85	12/1984 Te	£48,784,
dewald502/71	10/1984 Ro	£85,774,4
734/282	8/1984 Ko	988'594'ቱ
IT/202 usss:		\$\$\$ ` E\$\$
dewald252/455	9/1983 Ro	4,402,867
\$8/Z0\$ \$pq	6/1983 Co	4,390,414
Z 52/425 252/425 Z	4/1982 Hg	4,326,994
zkes252/432	PH 1861/8	4,283,306
.cn et al502/86	11/1980 CP	4,231,899
ornison et al 208/134	W 0861/6	4,224,141
dewald 252/455 Z	3/1979 Ro	4,145,315
Ackwald 260/671 R		4,127,616
Я 173/032 260/671 R	6\16\8 K8	4,117,024
M I78/082 ns	1/1978 Ch	4,100,215
Z 222/455 Z		186,090,4
eding et al 260/671 R	4/1978 Ka	782,380,4
dewald 260/682	11/1977 Ro	895,030,4
Ag et al 260/671 R	eH 7761/4	4,016,218
len et al260/674	10/1972 AI	72 I,892,E
	8/1972 Ke	3,682,996
Deft et al 208/120	₩ 6961/b	782,7E4,E
my et sj 208/120	e/16 9 9 Id	9,2 <i>5</i> 7,310

DB Name	Query	Hit Count	Set Name
USPT	((polyvinylchloride or (polyvinyl adj chloride) or (vinyl adj chloride adj resin)) and (water or aqueous) and (core) and (shell) and (polymer or copolymer or resin or binder) and (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	10	<u>L13</u>
USPT	(((525/70-87)/\$)!.CCLS.)	0	<u>L12</u>
USPT	110 and (523 or 524 or 525)/\$.ccls.	47	<u>L11</u>
USPT	((water or aqueous) same (polymer or copolymer or resin or binder) same (graft) same (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti]	101	<u>L10</u>
USPT	((water or aqueous) same (polymer or copolymer or resin or binder) same (graft) same (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	290	<u>L9</u>
USPT	17 and (523 or 524 or 525)/\$.ccls.	13	<u>L8</u>
USPT	((water or aqueous) same (polymer or copolymer or resin or binder) same (core) same (shell) same (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti]	14	<u>L7</u>
USPT	((water or aqueous) same (polymer or copolymer or resin or binder) same (core) same (shell) same (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	30	<u>L6</u>
USPT	((water or aqueous) same (polymer or copolymer or resin or binder) same (core) same (shell) and (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	115	<u>L5</u>
USPT	((water or aqueous) same (polymer or copolymer or resin or binder) same (core) and (shell) and (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	136	<u>L4</u>
USPT	((water or aqueous) same (polymer or copolymer or resin or binder) and (core) and (shell) and (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	213	<u>L3</u>
USPT	((water or aqueous) and (polymer or copolymer or resin or binder) and (core) and (shell) and (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	255	<u>L2</u>
USPT	(water or aqueous) and (polymer or copolymer or resin or binder) and (core) and (shell) and (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile)	6986	<u>L1</u>

halogenated alkaryl, halogenated aralkyl, aryl, and nated aryl, aralkyl, halogenated aralkyl, aryl, haloge-

33. The process of claim 31, wherein the silicone polymers comprises dimethylphenylmethyl polysilox-

34. The process of claim 2, wherein the disproportionation conditions further comprise a hydrogen/hy10 drocarbon mole ratio of from greater than 0 to about

kyl, halogenated aralkyl, alkaryl, and halogenated alkaryl, and n is between 2 and 1000, and the silanes are selected from the group of compounds having the structure

wherein R₃, R₄, R₅ and R₅ are independently selected from the group consisting of hydrogen, halogen, hy-

۶ī

52

30

35

0₺

54

0۶

SS

وي ،

Today's Date: 10/18/2001

In addition, it has been observed that the disproportionation process may be performed using H_2 as a diluent, thereby dramatically increasing the cycle length of the catalyst.

A selectivated and steamed catalytic molecular sieve may be contacted with an alkylbenzene feedstock under conditions for effecting vapor-phase disproportionation. Conditions effective for accomplishing the high para-selectivity and acceptable alkylbenzene disproportionation conversion rates include a reactor inlet temperature of from about 200° C. to about 600° C., preferably from 350° C. to about 540° C.; a pressure of from about atmospheric to about 5000 psia, preferably from about 100 to about 1000 psia; a WHSV of from about 0.1 to about 20, preferably from about 2 to about 10; and a H₂/HC mole ratio of from about 0.05 to about 20, preferably from about 0.5 to about 6. This process may be 15 conducted in either batch or fluid bed operation, with the attendant benefits of either operation readily obtainable. The effluent may be separated and distilled to remove the desired product, i.e., the para isomer, as well as other by-products. Alternatively, the appropriate fraction may be subjected to further separation, as in the case of xylenes, subjected to crystallization or the PAREX process to yield p-xylene.

The catalyst may be further modified in order to reduce the amount of undesirable by-products, such as, in the case of xylenes, ethylbenzene. The state of the art is such that the reactor effluent from standard toluene disproportionation typically contains about 0.5% ethylbenzene by-product. Upon distillation of the reaction products, the level of ethylbenzene in the Cs fraction often increases to between about 3% and 4%. This level of ethylbenzene is unacceptable for polymer grade p-xylene since ethylbenzene in the p-xylene, if not removed, degrades the quality of fibers ultimately produced from the p-xylene product. Consequently, ethylbenzene content of the p-xylene product must be kept low. The specification for the allowable amount of ethylbenzene in the p-xylene product has been determined by the industry to be less than 0.3%. Ethylbenzene can be substantially removed by crystallization or by superfractionation processes.

In order to avoid the need for downstream ethylbenzene 40 removal, the level of ethylbenzene by-product is advantageously reduced by incorporating a hydrogenation/dehydrogenation function within the catalyst, such as by addition of a metal compound such as platinum. While platinum is the preferred metal, other metals of Groups IB to VIII of the Periodic Table such as palladium, nickel, copper, cobalt, molybdenum, rhodium, ruthenium, silver, gold, mercury, osmium, iron, zinc, cadmium, and mixtures thereof, may be utilized. The metal may be added by cation exchange, in amounts of from about 0.001% to about 2%, typically about $_{50}$ 0.5%. For example, a platinum modified catalyst can be prepared by first adding the catalyst to a solution of ammonium nitrate in order to convert the catalyst to the ammonium form. The catalyst is subsequently contacted with an aqueous solution of tetraamine platinum(II) nitrate or tetraamine platinum(II) chloride. The catalyst can then be filtered, washed with water and calcined at temperatures of from about 250° C. to about 500° C. It will be appreciated by those skilled in the art that similar considerations apply to processes involving alkylbenzenes other than toluene.

The following non-limiting Examples illustrate the invention in relation to the disproportionations of toluene and ethylbenzene.

In the examples, the o-xylene sorption rate parameter D_{ν}/r^2 was measured at 120° C. and 3.8 torr.

D_o=diffusivity of o-xylene r=crystal size

D_o/r²the diffusion rate parameter is a measure of the speed of movement of o-xylene into and out of the catalyst crystals.

Also in the Examples, the atmospheric toluene disproportionation (TDP) test was performed at 482° C., 1 atmosphere, at 4% conversion. The TDP rate constant for the catalyst was obtained under these same conditions.

EXAMPLE 1

The atmospheric TDP test to screen catalyst activity and selectivity was performed as follows using a sample of HZSM-5/SiO₂ (65% HZSM-5/35% SiO₂) with a crystal size of 1.6 microns. The untreated sample was reacted with toluene at atmospheric pressure at 482° C., and the toluene conversion was varied by adjusting the toluene WHSV. The para-selectivity of the untreated catalyst was 37% at 4% toluene conversion, with a TDP rate constant of 167. The o-xylene diffusivity of the untreated catalyst was 4.7×10^{-6} , and the n-hexane sorption was 69 mg/g.

EXAMPLE 2

To 8.0 grams of the untreated catalyst (Ex. 1) was added 1.55 grams of dimethylphenylmethyl polysiloxane (Dow-550) dissolved in 40 cc of hexane. The catalyst was agitated in the silicone solution for several minutes and the hexane was distilled off by high vacuum distillation. After allowing the dry catalyst to cool to room temperature, the sample was then calcined in air at 1° C./min to 538° C. and held for 3 hours. The silica modified catalyst had gained 3.7 wt. %, presumably as SiO₂.

The atmospheric TDP test was performed on the oncetreated catalyst, as described in Example 1. The paraselectively of the catalyst was 67.3% at 4% toluene conversion, with a TDP rate constant of 226. The o-xylene diffusivity was decreased to 1.1×10⁻⁶, and the n-hexane sorption was 68 mg/g.

EXAMPLE 3

To 5.75 grams of the once-treated catalyst (Ex. 2) was added 1.12 grams of dimethylphenylmethyl polysiloxane (Dow-550) dissolved in 40 cc of hexane. The catalyst was agitated in the silicone solution for several minutes and the hexane was distilled off by high vacuum distillation. After allowing the dry catalyst to cool to room temperature, the sample was then calcined in air at 1° C./min. to 538° C. and held for 3 hours. The silica modified catalyst had gained an additional 5.0 wt. %, presumably as SiO₂.

The atmospheric TDP test was performed on the twice-treated catalyst, as described in Example 1. The paraselectivity of the catalyst was increased to 92.9% at 4% toluene conversion, with a TDP rate constant of 251. The o-xylene diffusivity was lowered to 0 29×10⁻⁶, and the n-hexane sorption was 65 mg/g.

EXAMPLE 4

To 4.18 grams of the twice-treated catalyst (Ex. 3) was added 0.81 grams of dimethylphenylmethyl polysiloxane (Dow-550) dissolved in 40 cc of hexane. The catalyst was agitated in the silicone solution for several minutes and the hexane was distilled off by high vacuum distillation. After allowing the dry catalyst to cool to room temperature, the sample was then calcined in air at 1° C./min. to 538° C. and held for 3 hours. The silica modified catalyst had gained an additional 0.8 wt % presumably as SiO₂.

10/18/01 2:47 PM

more readily separated from other components in the product stream such as benzene, monoalkylbenzenes and other alkyl-substituted benzenes.

Furthermore, the dialkylbenzenes are known to proceed in reactions which produce unwanted heavier alkylbenzenes. 5 For example, the xylenes can react to produce unwanted ethylbenzenes by the following reaction:

As explained in greater detail herein, the present invention provides a process for obtaining p-dialkylbenzenes at alkylbenzene conversions of at least 10%, preferably at least about 15–25% with a p-dialkylbenzene selectivity of greater 20 than 85%, preferably at least 90%.

The alkylbenzene feedstock preferably includes about 50% to 100% alkylbenzene, more preferably at least about 80% alkylbenzene. Other compounds such as benzene and other alkyl-substituted benzenes may also be present in the 25 toluene feedstock without adversely affecting the present invention.

The alkylbenzene feedstock may also be dried, if desired, in a manner which will minimize moisture entering the reaction zone. Numerous methods known in the art are 30 suitable for drying the alkylbenzene charge for the process of the invention. These methods include percolation through any suitable desiccant, for example, silica gel, activated alumina, molecular sieves or other suitable substances, or the use of liquid charge dryers.

The catalytic molecular sieves useful in accordance with the methods of the present invention are preferably in the hydrogen form, prior to modification, but may be in the ammonium or sodium form. Preferably, the catalytic molecular sieve comprises an intermediate pore-size zeolite 40 such as a ZSM-5, ZSM-11, ZSM-22, ZSM-23, or ZSM-35 as discussed above. The catalytic molecular sieves also preferably have a Constraint Index of about 1–12. The details of the method by which Constraint Index is determined are described fully in U.S. Pat. No. 4,016,218, 45 incorporated herein by reference.

The crystal size of zeolites used herein is preferably greater than 0.1 micron. The accurate measurement of crystal size of zeolite materials is frequently very difficult. Microscopy methods, such SEM and TEM, are often used, 50 but these methods require measurements on a large number of crystals and for each crystal measured, values may be required in up to three dimensions. For ZSM-5 materials described in the examples below, estimates were made of the effective average crystal size by measuring the rate of 55 sorption of 2,2-dimethylbutane at 90° C. and 60 torr hydrocarbon pressure. The crystal size is computed by applying the diffusion equation given by J. Crank, "The Mathematics of Diffusion", Oxford at the Clarendon Press, 1957, pp 52-56, for the rate of sorbate uptake by a solid whose 60 diffusion properties can be 15 approximated by a plane sheet model. In addition, the diffusion constant of 2,2-dimethylbutane, D, under these conditions, is taken to be 1.5×10⁻¹⁴ cm²/sec. The relation between crystal size measured in microns, d, and diffusion time measured in minutes, to 3, the 65 time required for the uptake of 30% f capacity of hydrocarbon, is:

 $d=0.0704 \times t_{0.3}^{1/2}$

In the present case these measurements have been made on a computer controlled, thermogravimetric electrobalance, but there are numerous ways one skilled in the art could obtain the data. The larger crystal material used herein has a sorption time, $t_{0.3}$, of 497 minutes, which gives a calculated crystal size of 1.6 microns. The smaller crystal material has a sorption time of 7.8 minutes, and a calculated crystal size of 0.20 micron.

The "alpha value" of a catalyst is an approximate indication of the catalytic cracking activity of the catalyst compared to a standard catalyst, and it gives the relative rate constant (rate of normal hexane conversion per volume of catalyst per unit time). It is based on the activity of the amorphous silica-alumina cracking catalyst taken as an alpha of 1 (Rate Constant=0.016 sec-1). The alpha test is described in U.S. Pat. No. 3,354,078 and in The Journal of Catalysis, Vol. 4, pp. 522-529 (August 1965); Vol. 6, p. 278 (1966); and Vol. 61, p. 395 (1980), each incorporated herein by reference as to that description. It is noted that intrinsic rate constants for many acid-catalyzed reactions are proportional to the alpha value for a particular crystalline silicate catalyst (see "The Active Site of Acidic Aluminosilicate Catalysts," Nature, Vol 309, No. 5959, pp. 589-591, 14 June 1984). The experimental conditions of the test used herein include a constant temperature of 538° C. and a variable flow rate as described in detail in the Journal of Catalysis. Vol. 61, p. 395 (1980). The catalyst in the present invention preferably has an alpha value greater than 1, for example, from about 1 to about 2000. The alpha value of the catalyst may be increased by initially treating the catalyst with nitric acid or by mild steaming before pre-selectivation. This type of steaming is discussed in U.S. Pat. No. 4,326,994.

The silica to alumina ratio of the catalysts of the invention may be determined by conventional analysis. This ratio is meant to represent, as closely as possible, the ratio in the rigid atomic framework of the zeolite crystal and to exclude aluminum in the binder or in cationic or other form within the channels. Although zeolites with a silica to alumina ratio of up to about 10,000 are useful, it is preferred to use zeolites having ratios of at least about 20 to about 2000.

For the improved disproportionation process of this invention, the suitable molecular sieve may be employed in combination with a support or binder material such as, for example, a porous inorganic oxide support or a clay binder. While the preferred binder is silica, other non-acidic binder materials may be employed, generally in the form of dried inorganic oxide gels or gelatinous precipitates. Suitable clay materials include, by way of example, bentonite and kieselguhr. The relative proportion of suitable crystalline molecular sieve to the total composition of catalyst and binder or support may be from about 30% to about 98% by weight and is preferably from about 50% to about 80% by weight of the composition. The composition may be in the form of an extrudate, beads or fluidizable microspheres.

Operating conditions employed in the process of the present invention will affect the para-selectivity and alkylbenzene conversion. Such conditions include the temperature, pressure, space velocity, molar ratio of the reactants, and the hydrogen to hydrocarbon mole ratio (H₂/HC). For example, it has been observed that an increase in temperature can increase the activity of the modified catalyst. It has also been observed that an increased space velocity (WHSV) can enhance the para-selectivity of the modified catalyst in alkylbenzene disproportionation reactions. This characteristic of the modified catalyst allows for substantially improved throughput when compared to current commercial practices.

Today's Date: 10/18/2001

Sheet 10 of 10

DB Name	Query	Hit Count	Set Name
USPT	17 and (523 or 524 or 525)/\$.ccls.	13	<u>L8</u>
USPT	((water or aqueous) same (polymer or copolymer or resin or binder) same (core) same (shell) same (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti]	14	<u>L7</u>
USPT	((water or aqueous) same (polymer or copolymer or resin or binder) same (core) same (shell) same (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	30	<u>L6</u>
USPT	((water or aqueous) same (polymer or copolymer or resin or binder) same (core) same (shell) and (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	115	<u>L5</u>
USPT	((water or aqueous) same (polymer or copolymer or resin or binder) same (core) and (shell) and (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	136	<u>L4</u>
USPT	((water or aqueous) same (polymer or copolymer or resin or binder) and (core) and (shell) and (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	213	<u>L3</u>
USPT	((water or aqueous) and (polymer or copolymer or resin or binder) and (core) and (shell) and (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile))[ab,ti,clm]	255	<u>L2</u>
USPT	(water or aqueous) and (polymer or copolymer or resin or binder) and (core) and (shell) and (styrene or diene or butadiene or acrylate or methacrylate or acrylonitrile)	6986	<u>L1</u>

\$85,580,6

FIG, II