4. Combinational Logic Circuits (Half Adder, Full Adder), MUX & DEMUX

Combinational circuits' output depends on present input only whereas sequential circuits' output depends on the present input as well as the past output.

Eg: dequential -> traffic lights registers, counters

Combinational -> analog signals to digital displays, alarm systems

HALF ADDER

Inputs		Outputs	
Α	В	S	C
0	0	0	0
0	- 1	1	0
t	٥	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0
1	1	0	

Half adder using only NAND gates

FULL ADDER

Inputs			Outputs	
X	У	Z	С	S
0	0	0	0	0
0	0	ı	0	•
0	·	0	0	
0	1	1	1	0
	0	0	0	1
1	0		l l	0
1	t	0	t	0
	·		1	1

Full adder circuit using only NAND gates

MULTIPLEXER & DEMULTIPLEXER

DEMUX

& Data processing units

Acts like a token system; condrols which input goes through MUX at any time

MUX Input: Output

Using basic gates

Using NAND gotes

2 4:1 MUX

3 1:2 DEMUX

A	4.	γ,
0	I	0
1	0	I

$$Y_o = \overline{A}I$$

 $Y_i = AI$

Using basic gates

Using NAND gates

