Ray-tracing Based RIS Size, Position and Target Points Optimization for Coverage Enhancement

Inputs:

- The scene geometry: A 3D representation of the area where coverage is to be enhanced, including obstacles, walls, etc.
- Transmitter (TX) position: Coordinates of the transmitter in the scene.
- Minimum power threshold $P_{\rm th}$: The threshold for acceptable signal power, below which cells are considered low-power.
- Range of possible target points \mathcal{N} : The set of possible cluster counts to be used in K-means algorithm, e.g., $\mathcal{N} = \{1, 2, ..., 5\}$.
- Set of possible RIS widths W: The set of candidate RIS widths, e.g., $W = \{0.2, 0.4, \dots, 3.0\}$ m.
- Minimum performance improvement threshold $\Delta \mathcal{M}_{min}$: The minimum performance improvement required to justify increasing the RIS width.

Optimization Parameters:

- Optimal number of target points N^{opt} .
- \bullet Optimal RIS width $W_{\rm RIS}^{\rm opt}.$
- Optimal RIS position r_{RIS}.

Steps:

- 1. Compute the transmitter-only coverage map $\mathbf{P}_{\mathrm{TX}}(x,y)$.
- 2. Set a minimum power threshold $P_{\rm th}$ for acceptable signal quality.
- 3. Identify low-power cells in $\mathbf{P}_{\mathrm{TX}}(x,y)$ where the power level is below the minimum power threshold P_{th} , denoted as $\mathcal{C}_{\mathrm{low}}$:

$$C_{\text{low}} = \{(x, y) \mid \mathbf{P}_{\text{TX}}(x, y) < P_{\text{th}}\}$$

- 4. For each number of target points $N \in \mathcal{N}$:
 - (a) Apply K-means algorithm to C_{low} to group the low-power cells into N clusters and obtain N centroids:

$$K\text{-means}(N, \mathcal{C}_{low}) \to Centroids \{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_N\}$$

where each centroid \mathbf{c}_i represents a target point where coverage enhancement is needed.

(b) Identify the set of feasible RIS positions \mathcal{R}_N that provide line-of-sight (LoS) to both the transmitter and all N target points:

$$\mathcal{R}_N = \{ \mathbf{r}_{RIS} \mid LoS(\mathbf{r}_{RIS}, \mathbf{TX}) \wedge LoS(\mathbf{r}_{RIS}, \mathbf{c}_i) \ \forall \mathbf{c}_i \}$$

- (c) For each RIS width $W_{RIS} \in \mathcal{W}$:
 - i. Compute the combined coverage $\mathbf{P}_{\text{comb}}(x, y)$ at each low-power cell, considering both TX and RIS contributions, for each RIS position $\mathbf{r}_{\text{RIS}} \in \mathcal{R}_N$.
 - ii. Calculate the performance metric $\mathcal{M}(\mathbf{r}_{RIS}, N, W_{RIS})$ for all parameter combinations as the average power of low-power cells after placing the RIS at \mathbf{r}_{RIS} :

$$\mathcal{M}(\mathbf{r}_{\mathrm{RIS}}, N, W_{\mathrm{RIS}}) = \frac{1}{|\mathcal{C}_{\mathrm{low}}|} \sum_{(x,y) \in \mathcal{C}_{\mathrm{low}}} \mathbf{P}_{\mathrm{comb}}(x, y)$$

- 5. Determine the optimal RIS configuration:
 - (a) Identify the RIS configuration $(\mathbf{r}_{\mathrm{RIS}}^{W_{\mathrm{RIS}}}, N^{W_{\mathrm{RIS}}}, W_{\mathrm{RIS}})$ that maximizes the performance metric \mathcal{M} for each W_{RIS} :

$$(\mathbf{r}_{\mathrm{RIS}}^{W_{\mathrm{RIS}}}, N^{W_{\mathrm{RIS}}}) = \arg\max_{\mathbf{r}_{\mathrm{RIS}} \in \mathcal{R}_{N}, N \in \mathcal{N}} \mathcal{M}(\mathbf{r}_{\mathrm{RIS}}, N, W_{\mathrm{RIS}})$$

- (b) Select the smallest RIS width $W_{\rm RIS}^{\rm opt}$ for which increasing the RIS width further does not yield a performance improvement exceeding $\Delta \mathcal{M}_{\rm min}$. Assign corresponding parameters $\mathbf{r}_{\rm RIS}^{\rm opt} = \mathbf{r}_{\rm RIS}^{W_{\rm RIS}^{\rm opt}}$ and $N^{\rm opt} = N^{W_{\rm RIS}^{\rm opt}}$.
- 6. For multi-RIS deployment extension, each RIS is assigned to a subset of target points and the algorithm optimizes the size and position of each RIS independently.