B.Sc.(Hons.) Physics 32221501

Teacher: Mamta

S.G.T.B. Khalsa College Quantum Mechanics (2022-23) Lab Assignment # 13 Anharmonic Oscillator

Due Date and Time: 20.10.2022, 11:59PM Max. Marks : 20

- The objective of this assignment is to estimate the eigenvalues and eigenvectors associated with the harmonic oscillator Hamiltonian perturbed with a cubic term.
- This assignment is based upon the problem 3 of the syllabus.

1. (6 marks) **Theory**

A particle of mass μ constrained to move in 1-dimension is subjected to the potential

$$V(x) = \frac{1}{2}kx^2 + bx^3; \quad k = \mu \omega^2.$$
 (1)

- (a) Convert the equation into a dimensionless form by defining $x = \xi x_0$, where $x_0 = \sqrt{\hbar/\mu\omega}$ and ξ is the dimensionless position variable. Also define dimensionless potential energy $v(\xi) = V(x_0 \xi)/E_0$ and dimensionless energy eigenvalue $\epsilon = E/E_0$ where $E_0 = \frac{1}{2}\hbar\omega$ is the ground state energy of the harmonic oscillator.
- (b) Plot the potential energy $v(\xi)$ as a function of ξ for $\alpha = 0$ and $\alpha = 10^{-q}$ with q = 0, 1, 2, 3, 4, where $\alpha = \frac{bx_0}{k}$.
- (c) Discuss what do you expect for the bound state eigen values.

2. (12 marks) **Programming**

- (a) Write a Python code to solve the Schrödinger Equation for a particle of mass $\mu = 940 \,\mathrm{MeV/c^2}$ subjected to the potential given in equation (1) using any method known to you giving reasons for your choice of method. The code should
 - i. obtain the first ten energy eigenvalues ϵ_n for each value of α mentioned above.
 - ii. print the eigen values obtained along with the values given by second order perturbation theory in a tabulated form rounded off to the first six significant digits.
 - iii. plot ϵ_n as a function of n and compare the behaviour with that for harmonic oscillator.
- (b) Extend your program to print the energy eigenvalues in MeV.
- (c) Further extend your program to
 - i. obtain the first five normalised eigenfunctions (dimensionless form) and corresponding probability densities in the range $[-\xi_{\text{max}}:\xi_{\text{max}}]$ with an appropriate value of ξ_{max} .
 - ii. plot these normalised wavefunctions for $\alpha = 0, 0.01, 0.1$ (all wavefunctions for one α in one plot). Verify that $\alpha = 0$ gives the same result as for harmonic oscillator.
 - iii. plot the probability densities similarly.
 - iv. plot the probability densities in ground state for $\alpha = 0$ and $\alpha = 10^{-q}$ with q = 0, 1, 2, 3, 4.
 - v. Repeat above for the first excited state.

3. (2 marks) **Discussion**

Interpret and discuss your results.

$$\epsilon_n = (2n+1) - \frac{1}{8}\alpha^2 \left[15(2n+1)^2 + 7\right]$$

¹The perturbation theory estimates the energy eigenvalues upto second order to be (the reference will be shared with you along with the assignment):