О вычислительных основах научной работы

Чарльз Беббидж

член Лондонского королевского общества, профессор математических наук Кембриджского университета

17 октября 1848 года

Современная наука достигла того порога сложности, при котором большая часть научных экспериментов выходит за пределы возможностей сознания человека. Задачи, которые ставит перед нами общество и природа, уже не могут целиком уместиться в голове ученого и должны быть разбиты на меньшие эксперименты и подзадачи. Благодаря появлению вычислительных маших, наука получила универсальный и небывалый по мощности способ решения численных научных задач. В этой работе рассматриваются фундаментальные закономерности, которые следует учитывать при численном решении задач современной науки.

Как уважаемому, ученому сообществу уже известно, в основе любой науки лежит Закон преобразования слов [1]. Приведем здесь основные постулаты этого закона лежат следующие правила преобразования слов:

- 1. стартовое и финальное слово должны четко ассоциироваться именно с тем научным результатом, который хочет получить ученый;
- 2. можно преобразовывать слова, если фонетически одно от другого отличаться менее чем на 50%;
- 3. можно преобразовывать слова, если они синонимы, антонимы, когипонимы, гипонимы, гиперонимы;
- 4. можно преобразовывать слова, если они однокоренные;
- 5. можно преобразовывать слова анаграммой, добавляя, убирая или заменяя не более одной буквы;
- 6. длина цепочки преобразования слов ничем не ограничена.

Для того, чтобы перейти от содержания научной работы к математической модели, используется следующий прием. Каждому слову w в цепочке (включая первое и посдеднее) ставится в соответствие своя функция действительного аргумента f(x) по следующим правилам:

$$f_w(x) = ae^{-\frac{x^2}{b} - \sin\left(\frac{c}{b-a}x\right)}$$

Где, параметры a, b и c вычисляются следующим образом: a — число гласных букв в слове w, b — число букв в слове w и c — год рождения автора патента в пределах этого века (т.е. минус 1800).

Каждое правило перехода также представляет собой функци g(x), которая строится на основе функций двух слов $f_1(x)$ и $f_2(x)$, участвующих в переходе:

Правило (2) $g(x) = \frac{f_1(x) + f_2(x)}{2}$ — среднее арифметическое;

Правило (3) $g(x) = \frac{(f_2(x) - f_1(x))^2}{(f_1(x)f_2(x))^2 + 1}$ — квадрат от разности функций, деленый на квадрат произведения функций плюс 1;

Правило (4) $g(x) = e^{f_2(x) - f_1(x)}$ — экспонента от разницы функций;

Правило (5) $g(x) = \sqrt{f_1^2(x) + f_2^2(x)}$ — квадратный корень из суммы квадратов функций.

Для получения финальной функции F(x) для вычисления, все функции переходов складываются:

$$F(x) = \sum_{i=1}^{n} g_i(x)$$

Дальнейшие состоят во взятии определенного интеграла A от функции F(x) на интервале [-10; 10] [2]:

$$A = \int_{-10}^{10} F(x) \, dx \tag{1}$$

Очевидно, что данный интеграл в общем случае очень сложно посчитать точно, поэтому применяются численные методы расчета интегралов, реализуемые на вычислительных машинах. Подробнее о методах машинного вычисления интегралов подробнее сказано, например, в работе [3], а также работах немецких ученых, например, [4]. Современные британские вычислительные машины, в частности Машина Различий прекрасно справляются с решением таких задач. Однако, высокое требование к машинному времени при решение таких численных задач оставляет огромное поле для оптимизации процессов построения и вычисления рассмотренных функций. Это является темой дальнейших исследований.

В завершение, рассмотрим простой пример.

Пусть ученый Смит разрабатывает устройство для подрыва динамита силой мысли¹. Он связывает слова *мысль* и *тринитротолуол*. Ученый предлагает следующую последовательность слов:

- 1. мысль применяем правило (2)
- 2. смысл применяем правило (5)
- 3. смолы применяем правило (3)
- 4. толуол применяем правило (4)
- 5. нитротолуол применяем правило (4)
- 6. тринитротолуол

Например, для слов, представленных в цепочке, и автора Смита, родившегося в 1815 году, соответствующие функции будут равны:

$$f_1(x) = e^{-\frac{x^2}{5} - \sin\frac{15x}{4}}$$

$$f_2(x) = e^{-\frac{x^2}{4} - \sin\frac{15x}{3}}$$

$$f_3(x) = 2e^{-\frac{x^2}{5} - \sin\frac{15x}{3}}$$

$$f_4(x) = 3e^{-\frac{x^2}{6} - \sin\frac{15x}{3}}$$

$$f_5(x) = 5e^{-\frac{x^2}{11} - \sin\frac{15x}{6}}$$

$$f_6(x) = 6e^{-\frac{x^2}{14} - \sin\frac{15x}{8}}$$

В нашем примере финальная функция будет иметь вид:

$$F(x) = \frac{f_1(x) + f_2(x)}{2} + \sqrt{f_2(x)^2 + f_3(x)^2} + \frac{(f_4(x) - f_3(x))^2}{(f_3(x)f_4(x))^2 + 1} + e^{f_5(x) - f_4(x)} + e^{f_6(x) - f_5(x)}$$

Численный расчет интеграла (1) для данной функции показывает результативность использованной научной и математической моди. Формула и полученный результат прикрепляются к патентному свидетельству.

¹Этот пример взят из заявки на панент, которая рассматривалась Лондонским королевским обществом в 1843 году, реальная фамилия автора и детали исследования опущены.

Список литературы

- [1] Джон Радфорд Юнг Основы научного метода Философский журнал, 1830
- [2] Чарльз Бэббидж О математических основах научного метода Кембриджский университет, 1839
- [3] Чарльз Бэббидж О машинном вычислении сложных функций и интегралов — Кембриджский университет, 1841
- [4] Карл Фридрих Гаусс Теория биквадратичных вычетов Университет Геттинтена, 1843