

FastSLAM: Outdoor Implementation with Known and Unknown Data Association

J. Nieto, J. Guivant, E. Nebot, S. Thrun

Australian Centre for Field Robotics
Department of Mechanical and Mechatronic Engineering
University of Sydney, NSW 2006, Australia

Eduardo Nebot

Hybrid Navigation Architecture

SLAM in Large Environments:

CEKF

 Solve the problem for high frequency sensors in local areas

Decorrelation Techniques

 Address the problem of full update and memory requirements

Cluttered Environments:

 Data association will be a continuous problem

Eduardo Nebot

FastSLAM

Probabilistic Motion Model

$$p(x_t/u_t, x_{t-1})$$

Measurement Model

$$p(z_t/x_t,\theta,n_t)$$

SLAM Problem

$$p(x^t, \theta/z^t, u^t)$$
 time:1..t

 If the path of the robot is known then all individual landmarks estimation problems are independent

Eduardo Nebot

Hybrid Navigation Architecture

FastSLAM

- Decomposes the SLAM problem into a localization problem and a number or landmark estimation problems conditioned on the robot pose estimate
 - Uses a particle filter to estimate the posteriori over the robot paths.
 - Each Particle possesses k Kalman filters that estimate the k landmarks location conditioned on the path estimate.
 - The computational requirement will be O(M*k) with M and k the number of particles and landmarks respectively

Eduardo Nebot

FastSLAM

- The slam Problem can be decomposed into K+1 estimation problems:
 - Posteriori over the robot path

$$p(x',\theta/z',u') = p(x'/z',u') \prod_{k} p(\theta_k/x',z',u')$$

- K problems estimating the location of the landmarks
- The Robot path estimation is implemented with a particle filter

 $p(x^t/z^t,u^t)$

- The landmark positions are estimated with Kalman Filters
- $p(\theta_k/x^t,z^t,u^t)$
- The full posteriori of path and landmark is represented by the following sample set

$$X_{t} = \{x^{t,[m]}, \overline{\theta}_{1}^{[m]}, P_{\theta_{1}}^{[m]}, \dots, \overline{\theta}_{K}^{[m]}, P_{\theta_{K}}^{[m]}\}$$

Eduardo Nebot

Hybrid Navigation Architecture

Known Data Association

- The Experimental results are done with real data
- It is not possible to "measure" correspondence (Data association)
- The data association was implemented by a KF based SLAM
 - Landmarks were extracted
 - Once accepted, they were included in a list with appropriate time stamp
 - This list has the observations used by FastSLAM

Eduardo Nebot

Known Data association

Experimental Runs

Car Park

- Beacon consisted of 60 mm steel poles
- Clearly defined and easily extracted from the environment
- Accurate Determination of landmark Position

Eduardo Nebot

Hybrid Navigation Architecture

Known Data association

Experimental Run:

Victoria park

- Large Environment
- Different type of landmark
- Larger errors in landmark position determination

Eduardo Nebot

Hybrid Navigation Architecture

FastSLAM: Victoria Park

Eduardo Nebot

Hybrid Navigation Architecture

Unknown Data Association

Data Association Problem:

- Associating the observation to the correct state
- Initializing new tracks
- Detecting and rejecting spurious measurements

Eduardo Nebot

Hybrid Navigation Architecture

 $Beacon = \min(innov \cdot S^{-1} \cdot innov^{T} + \ln(|S|))$

Unknown Data Association

Principle of Data Association

• Innovations sequence

$$v_{ij}(k) = z_i(k) - \hat{z}_j(k)$$

Normalised Innovations sequence

$$d_{ij}^{2}(k) = V_{ij}^{T}(k)S_{ij}^{-1}(k)V_{ij}$$

Eduardo Nebot

 $Red con = \min_{T} (\sum_{i,j} (S_{n_i}^{ij} + \sum_{i,j} (S_{n_i}^{ij})) + \lim_{n \to \infty} (|S|)$

Unknown Data Association

- Gate Validation: Associate only if there is one possible hypothesis
- Nearest Neighbour: Select the "nearest" state to the observation
- Multi Hypothesis Tracking: Use all the possible hypothesis

Eduardo Nebot

Hybrid Navigation Architecture

Unknown Data Association

Multi Hypothesis Tracking

- EKF Slam:
 - 1. Run a new filter in parallel
 - 2. Pruning Techniques
- FastSlam
 - 1. Create a new particle
 - 2. Resampling

Eduardo Nebot

Experimental Results Victoria Park

Eduardo Nebot

Hybrid Navigation Architecture

Current Research

- Data Association
 - Multiple Hypothesis
 - H1-n: All Possible Existing Landmarks
 - Ho : Spurious measurement
 - Hn : New object
 - Control of number of Particles
- Addressing the covariance reduction Problem
- Consistency
- Extension to larger systems

Eduardo Nebot

