Student Information

Full Name: Mithat Can Timurcan

Id Number: 2581064

Answer 1

a)

p	q	$\neg q$	$p \rightarrow q$	$p \land \neg q$	$(p \to q) \oplus (p \land \neg q)$
T	Т	F	T	F	T
T	F	Т	F	Т	T
F	Т	F	${ m T}$	\mathbf{F}	${ m T}$
F	F	T	T	F	Т

b)

$$\begin{array}{lll} p \rightarrow ((q \vee \neg p) \rightarrow r) \equiv \neg p \vee ((q \vee \neg p) \rightarrow r) & table \ 7, Equivalence \ 1 \\ \equiv \neg p \vee ((\neg q \vee \neg p) \vee r) & table \ 7, Equivalence \ 1 \\ \equiv \neg p \vee ((\neg q \wedge \neg p) \vee r) & table \ 6, De \ Morgan's \ Second \ Law \\ \equiv \neg p \vee ((\neg q \wedge p) \vee r) & table \ 6, Double \ Negation \ Law \\ \equiv \neg p \vee (r \vee (\neg q \wedge p)) & table \ 6, Commutative \ Laws \\ \equiv \neg p \vee (r \vee \neg q) \wedge (r \vee p)) & table \ 6, Distributive \ Laws \\ \equiv (\neg p \vee (r \vee \neg q)) \wedge (\neg p \vee (r \vee p)) & table \ 6, Commutative \ Laws \\ \equiv (\neg p \vee (r \vee \neg q)) \wedge ((\neg p \vee p) \vee r) & table \ 6, Associative \ Laws \\ \equiv (\neg p \vee (r \vee \neg q)) \wedge (\mathbf{T} \vee r) & table \ 6, Negation \ Laws \\ \equiv (\neg p \vee (r \vee \neg q)) \wedge \mathbf{T} & table \ 6, Domination \ Laws \\ \equiv \neg p \vee (r \vee \neg q) & table \ 6, Commutative \ Laws \\ \equiv \neg p \vee (\neg q \vee r) & table \ 6, Associative \ Laws \\ \equiv \neg p \vee (\neg q \vee r) & table \ 6, Associative \ Laws \\ \equiv (p \wedge q) \vee r & table \ 6, De \ Morgan's \ First \ Law \\ \equiv (p \wedge q) \rightarrow r & table \ 7, Equivalence \ 1 \end{array}$$

c)

- F
- F
- F
- T
- T

Answer 2

- (a) $\exists x (P(Can, x) \land T(x, L))$
- (b) $\forall x (T(x,S) \to \exists y (P(y,x) \land N(y,Turkish)))$
- (c) $\forall x \exists y (T(x,S) \to (T(y,S) \land R(x,y) \land \forall z ((T(z,S) \land R(x,z)) \to y = z)))$
 - (d) $\forall x(W(M, x) \rightarrow \neg \exists y(P(y, x) \land N(y, English)))$
- (e) $\exists x \exists y (x \neq y \land P(x,G) \land P(y,G) \land N(x,Turkish) \land N(y,Turkish) \land \forall z ((P(z,G) \land N(z,Turkish)) \rightarrow (z = x \lor z = y)))$
 - (f) $\exists x \exists y \exists z (T(x,y) \land T(x,z) \land y \neq z)$

Answer 3

	$p \to q, (r \land s) \to p, r \land \neg q \vdash \neg s$	
1.	p o q	premise
2.	$(r \wedge s) \to p$	premise
3.	$r \wedge \neg q$	premise
4.	r	$\wedge e, 3$
5.	$\neg q$	$\wedge e, 3$
6.	p	assumed
7.	q	$\rightarrow e, 1, 6$
8.	\perp	$\neg e, 5, 7$
9.	$\neg p$	$\neg i, 6-8$
10.	$r \wedge s$	assumed
11.	p	$\rightarrow e, 2, 10$
12.	\perp	$\neg e, 9, 11$
13.	$\neg(r \land s)$	$\neg i, 10 - 12$
14.	S	assumed
15.	$r \wedge s$	$\wedge i, 4, 14$
16.	\perp	$\neg e, 13, 15$
17.	$\neg s$	-i, 14 - 16

Answer 4

a)

- $\exists x (P(x) \to S(x))$ (1st premise)
 - $\forall x(P(x))$ (2nd premise)
 - $\exists x(S(x))$ (claim)

b)

1. 2. 3. 4. 5. 6.

7.

$\exists x (P(x) \to S(x)), \forall x (P(x)) \vdash \exists x (S(x))$	
$\exists x (P(x) \to S(x))$	premise
$\forall x (P(x))$	premise
$P(c) \to S(c)$	assumed
P(c)	$\forall e, 2$
S(c)	$\rightarrow e, 3, 4$
$\exists x(S(x))$	$\exists i.5$

 $\exists e, 3-6$

 $\exists x(S(x))$