(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-64229

(43)公開日 平成6年(1994)3月8日

(51) Int.Cl. ⁵ B 4 1 J 2/4		庁内整理番号	F I		技術表示箇所
	455	7514-4M			. 9
110112 33/		7246-2C	B41J 審査請求 未請求	3/21 L : 請求項の数1(全 8 頁)	最終頁に続く
(21) 出願番号	特顯平4-223928		(71)出願人	000003078 株式会社東芝	
(22)出願日	平成4年(1992)8/	月24日	(72)発明者	神奈川県川崎市幸区堀川町7 黒田 泰史 神奈川県川崎市幸区堀川町7 芝堀川町工場内	
		,	(74)代理人	弁理士 須山 佐一	

(54)【発明の名称】 光プリンタヘッド

(57)【要約】

【目的】 1 l i n e 記録期間中のデータ転送回数を低減し、かつEL発光素子へのストレス低減をもたらすような発光パターンを与える階調記録が可能な光ブリンタヘッド。

【構成】 EL発光素子からなる光ブリンタヘッドの駆動回路が、シフトレジスターと、EL発光素子1素子あたり複数個の発光データ記憶素子と、複数の発光パルスタイミング制御信号と複数の発光データ信号との論理演算を行う複数の論理素子と、ついでフレーム信号との論理演算を行う論理素子と、EL発光素子のデータ側電極に電圧を印加する発光電圧印加用ゲートとを有し、発光データ記憶素子にて一定期間中保持される複数の発光データに応じた発光回数にてEL発光素子を複数回発光させる。

【特許請求の範囲】

【請求項1】 電界発光素子と、該電界発光素子を駆動 させる薄膜トランジスタにより構成された駆動回路とを 有する光ブリンタヘッドにおいて、

前記薄膜トランジスタにより構成された駆動回路の 1エ レメントが、

シフトレジスターと、

前記シフトレジスターより転送される複数の発光データ 信号を一定期間中保持することのできる、前記電界発光 素子1素子あたり複数個の発光データ記憶素子と、

複数の発光パルスタイミング制御線と、

前記複数の発光パルスタイミング制御線からの複数の発 光パルスタイミング制御信号と前記複数の発光データ記 憶素子にて一定期間中保持された複数の発光データ信号 との論理演算を行う複数の論理素子と、ついでフレーム 信号との論理演算を行う論理素子と、

前記論理素子の論理値に基づいて、前記電界発光素子の データ側電極に電圧を印加する発光電圧印加用ゲートと を有し、前記発光データ記憶素子にて一定期間中保持さ れる複数の発光データに応じた発光回数にて前記電界発 20 光素子を複数回発光させることを特徴とする光ブリンタ ヘッド。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は発光索子を用いたプリン タヘッドに関わり、特に電界発光素子(以下、EL発光 素子と称する)を用いた光プリンタヘッドの駆動回路構 成方法に関するものである。

[0002]

【従来の技術】複写機、ファクシミリ、コンピュータな 30 どの情報処理機器は急速に市場を拡大しつつあり、そこ で用いられるデバイス等にも安価であるとともに、高品 質、高機能なものが要求されてきている。特にパーソナ ルユースを対象とした情報処理機器においてこの傾向は 強い。光ブリンタヘッドは、上述の複写機、ファクシミ リ、コンピュータ等において感光体への光照射に用いら れるデバイスであり、光ブリンタヘッドの発光素子とし て、小型化が容易なEL発光索子が注目されている。

【0003】EL発光素子を用いた従来の光プリンタへ ッドの構成を図6に示す。図6において、EL発光素子 40 問題があった。 61全体は、複数個のEL発光素子が容量の記号で表わ され、それぞれ 2つの電極を有する。直線状に配置され た複数個のEL発光素子(EL1~EL16)それぞれ の 2つの電極のうち一方の電極 (データ側電極) は隣接 する複数個ごとにまとめられELデータ側ドライバ62 へ接続されている。他方の電極(コモン側電極)はEL プリンタヘッドの主走査方向全長に引き延ばされたコモ ン電極へ接続され、これはELコモン側ドライバ63に 接続されている。

ための駆動パルス投入のタイミングチャート例を図7に 示す。 Jline記録期間中に発光素子において 4回発 光させるとしてある。 ELコモン例ドライパからはコモ ン側駆動ラインCa, Cb, Cc, Cdに順次正負のパ ルスが投入されていく。これにあわせてELデータドラ イバ側からもパルス投入される。双方の電圧の重畳によ り各EL発光素子の発光、非発光が決まる。図7に示し たようにこの1line分記録時間中EL1~EL4ま で非発光であればDaにはコモン側と同相のパルスが投 10 入される。EL5~EL8まで発光とするとDbはコモ ン側と逆相のパルスの投入される。EL9~EL16に 関してはEL9、EL11、EL14が発光するとして Dc, Ddの例はしめした。コモン側は 200V ぐらいの 正負のパルスを印加し、データ側は 20 Vぐらいのパル スを印加する。このようにELプリンタヘッドの駆動で は通常マトリックス駆動が用いられている。

【0005】しかしながら近年こうした駆動回路部に、 大面積での形成が容易なことから薄膜トランジスタ(T FT)が多用されつつある。このTFTを用いたデータ 側駆動回路は、データ入力のより簡単なダイレクトドラ イプ方式を可能にする結果、データ入力を高速化できる 利点がある。また、EL発光素子とTFT駆動回路とを 用いたプリンタはメンテナンスが容易、コンパクトであ り、レーザープリンタにおけるポリゴンミラーが不要と いった優れた特徴をもっている。

[0006]

【発明が解決しようとする課題】しかしながら、ダイレ クトドライブ方式を用いて階調記録をしようとした場 合、通常ELの発光回数を制御することにより階調表現 を得ているEL発光素子は111ne記録時間中に複数 回のデータ入力が必要になる。たとえば、従来の同路機 成で発光回数を 4段階(非発光をのぞいて) 制御しよう とした場合、111ne記録時間中に 4回データを書き 換えねばならない。11ine記録時間中における複数 回のデータ入力に際して、データ入力数が少ないと、発 光回数が1 line記録期間中の特定部に集中する傾向 があり、発光分布が不均一となる問題があった。さらに その結果、ELへのストレスを増加させEL発光素子の 寿命を低下させ、EL発光の経時変化を起こさせるとの

【0007】一方、1line時間中でのデータ書換え を頻繁に行うことにより、発光分布の不均一を避けるこ とができる。しかしTFTにより形成されたデータ転送 部(シフトレジスタ)の駆動周波数は一般に 10 MHz 程度と低いため、全発光素子にたいするデータ入力端子 数を増加させなければならない。その結果、高速記録に 適さなく、また入力前のデータ処理の煩雑化、プリンタ ヘッド構成の複雑化をもたらすとの問題があった。

【0008】本発明は、このような問題を解決するため 【0004】図6に示すELプリンタヘッドを駆動する 50 になされたもので、11ine記録期間中のデータ転送

回数を低減し、かつEL発光素子へのストレスを増加さ せないような発光パターンを与える階調記録が可能な光 プリンタヘッドを提供することを目的とする。

[0009]

【課題を解決するための手段】本発明の光プリンタヘッ ドは、EL発光素子と、該EL発光素子を駆動させる薄 膜トランジスタにより構成された駆動回路とを有する光 プリンタヘッドにおいて、薄膜トランジスタにより構成 された駆動回路の 1エレメントが、シフトレジスター と、このシフトレジスターより転送される複数の発光デ 10 ータ信号を一定期間中保持することのできる、EL発光 索子1索子あたり複数個の発光データ記憶索子と、複数 の発光パルスタイミング制御線からの複数の発光パルス タイミング制御信号と複数の発光データ記憶素子にて一 定期間中保持された複数の発光データ信号との論理演算 を行う複数の論理索子と、ついでフレーム信号との論理 演算を行う論理素子と、これら論理素子の論理値に基づ いて、EL発光素子のデータ側電極に電圧を印加する発 光電圧印加用ゲートとを有し、発光データ記憶素子にて 一定期間中保持される複数の発光データに応じた発光回 20 数にてEL発光素子を複数回発光させることを特徴とす

【0010】本発明の光プリンタヘッドに係わるシフト レジスターは外部回路にて制御されて入力された各発光 **秦子の発光パルスデータを隣接する駆動エレメントへ順** 次転送する機能を有する。

【0011】発光データ配憶索子は、ラッチであって、 外部回路からのラッチ信号を受けて、シフトレジスター から入力された発光パルスデータにラッチをかけてその ときの発光パルスデータを保持し、これを論理素子へと 30 送出する機能を有する。本発明においては、階調データ を各EL発光素子ごとに保持するため、EL発光素子1 秦子あたり少なくとも 2個以上のラッチを必要とする。

【0012】発光パルスタイミング制御線は、外部から のコントロール信号線であり、各階調に対応した発光パ ルスが11ine分の記録時間の間で分散されるように 選択制御される。

【0013】論理素子は、ANDおよびOR回路ならび に排他的論理和回路とからなり、ラッチにより保持され たデータと外部からのコントロール信号との演算をAN 40 DおよびOR回路で行ったのち、さらにフレーム信号と の演算を排他的論理和回路で行い、電圧制御用ゲートへ 正電圧(H)または負電圧(L)パルス信号を送出する 機能を有する。

【0014】発光電圧印加用ゲートは、演算結果のHま たはしパルスを受け、Hパルスに対してはコモン側パル スと逆相のパルスを、またレパルスに対してはコモン側 パルスと同相のパルスをEL発光素子に印加する機能を 有する。

コモン側パルス電圧と、このコモン側パルス電圧に対し て逆相または同相でデータ側電極に印加されるデータ側 バルス電圧を受けて、発光または非発光の動作を実行す る。この動作により、発光データ記憶素子にて一定期間 中保持される複数の発光データに応じた発光回数にてE し発光素子を複数回発光させることができる。

【0016】なお本発明はファクシミリ、デジタルコピ アの記録部等にも適用できることは言うまでもない。

[0017]

【作用】本発明では各EL発光素子に対応した階調デー 夕を各EL発光索子ごとに保持できるので、発光、非発 光のデータを発光パルスの投入ごとに、あるいは階調に 対応したいくつかのパルス数の投入ごとに転送する必要 がなくなる。なおかつ隣接するEL発光素子に対応した データを連続して入力できるため入力前のデータの処理 が容易となる。また11ine記録時間中に発光パルス を特定の部分に集中しないように設定できる良好な配録 特性を持つ光プリンタヘッドが得られる。

[0018]

【実施例】本発明の一実施例を図1から図5を用いて説 明する。図1は本発明の光プリンタヘッドのプロック図 である。ここでは簡便のため発光素子を 4つにして記述 するが実際の光プリンタヘッドではEL発光索子数は数 千になる。EL発光素子がライン状に複数ピット配置さ れており(EL1~EL4)、1つの発光素子、例えば EL1はシフトレジスタSR、複数おかれたラッチL 1, L2, ラッチでの保持データに対するAND回路A 1, A2, A3およびOR回路O1, 排他的論理和回路 EX1、電圧印加用ゲートG1によって駆動され、1エ レメントを構成する。各発光素子の発光データはシフト レジスタSRを転送されたのちラッチ部L1~L8によ り保持される。

【0019】1つの発光素子に対する2つのラッチのう ち奇数番のラッチには低位ピット、偶数番のラッチには 上位ピットの階調表示データを保持する。これにより非 発光もふくめて 4階調表示が可能となる。ラッチL1~ L8によりEL素子部EL1~EL4を1line配録 期間中駆動させている間に次の11ineでの階調表示 データを、低位ビット、上位ビットあわせてシフトレジ スタSRを転送できる。

【0020】ここで階間データ分の存在のためシフトレ ジスタ自身は 2倍の素子数となるが、11ine配録期 間中は階調表現に対応したデータの再転送はおこなわな いため結局、高速印字に対応できる。 ラッチL1~L8 により保持されたデータは外部からのコントロール信号 CTL1, CTL2との演算ののちフレーム信号FRと 排他的論理和がとられ、それにより電圧制御用ゲートG 1からG4の開閉が行われる。この排他的論理和回路E X-1 のためラッチに保持された階調データによりフレー 【0015】EL発光素子は、コモン電極に印加される 50 ム信号FRと同相あるいは逆相の電圧印加をEL発光素 子に対しておこなうことができる。

【0021】EL発光素子EL1~EL4のコモン側電極に印加される電圧Vcにたいして該EL素子のデータ側電極に印加される電圧が逆相となって、EL発光素子両端にかかる電圧があるしきい値電圧を越えるときそのEL発光素子は発光することになる。

【0022】図2はこの回路の動作時の信号のタイミン グチャートである。ここには111ne分の発光期間を しめした。この期間中EL発光素子のコモン側電極の正 負6個ずつのパルスによりデータ側電極にコモン側と逆・10 相の電圧印加の和により発光しきい値電圧以上の電圧印 加がおこなわれれば発光する。そのため最大12回の発 光がえられる。これは 1発光素子に対応した 2つのラッ チの双方に2値で1のデータがあればA2, A5, A 8, AllのAND回路出力はHighレベルになりF R信号と逆相の信号がG1~G4のゲートにはいる。こ の結果ゲートからの出力は反転されたかたちとなりFR と同相の電圧印加がEL発光素子のデータ側電極になさ れる。FRはELコモン側電極と逆相にて投入されてい るため、このときEL発光素子は発光をおこなう。20 20 のラッチの保持データを(低位ピット、上位ピット)で あらわしてELのデータ側電極への電圧がどうなるかを 図2にはしめしてある。これは同じく図2中にしめした CTL1, CTL2の信号によりコントロールされた例 である。ここでわかるように(1, 1)のラッチデータ にたいして 12 回発光する時、(0, 1) では 8回、 (1, 0) では 4回の発光になっている。 すなわち、コ モン側のパルスに図2中に示すように1~12の番号づ けをしたとき、ラッチデータが(1,1)の場合、1~ 12のすべてで発光し、ラッチデータが(0,1)では 30 1, 4, 5, 6, 7, 8, 9, 12の8回、ラッチデー 夕が(1,0)では1,4,7,10の4回発光とな

【0023】コントロール信号CTL1, CTL2はそれぞれ各階調に対応した発光パルスが11ine分の記録時間の間で分散されるように選択されている。発光パルスのパターンは11ine分の記録時間の間で分散されるパターンであればよく、このパターンに限るわけではない。

【0024】従来の回路構成では図2中下部に矢印でし 40 めしたように 9回のデータ転送が必要である。これは (1,1)、(0,1)、(1,0)のレベルがFR信号の反転時に、それ以前の状態を反転したものと異なる状態に選移するさいには従来回路においてはラッチに保持されたデータを変えてやる必要があるからである。これが本発明に係わる回路では最初の 1回の転送のみでよく、たとえシフトレジスタの素子数が 2倍になったところでデータ転送に要する時間は大幅に低減される。またこれは階調数がおおきくなるほど本提案のように複数のラッチをもうける効果はよりおおきくなる。 50

【0025】なお、駆動回路部にTFTを用いた場合、シフトレジスタ、ラッチ、AND回路、OR回路、排他的論理和回路などは比較的小素子で形成でき、最終段のEL電板への電圧印加用ゲートは耐圧、耐電流特性を満たす必要があるため比較的大きくなる。そのため複数ラッチ化での素子およびその占有面積の増加は比較的小さくてよい。

【0026】本発明の他の実施例を図3及び図4に示す。ここではシフトレジスタの素子数は従来回路に比べて増加していないが、階間表現用の2つのラッチしanとしbnのほかにしcnのラッチも持つ(ここでn=1~3)。シフトレジスタにはまず各発光素子の階間データの上位ビット分のデータが転送されして1~Lc3にて保持される。その後階間データの下位ビット分のデータがシフトレジスタ中を転送される。しatch-B、しatch-Aの信号を順次かけることでして1等に保持されていたデータはしa1~3に転送される。この後しatch-C、しatch-Bの信号の順次投入によりシフトレジスタ中を転送された階間データの下位ビット分のデータはしb1~3に保持される。

【0027】この様子を図4のタイミングチャートに示す。 t 。-1, t 。, t 。+1 はそれぞれ第n-1ライン、第nライン、第n+1ラインの印字時間である。 t 。-1 ラインの印字時間中に次のラインの印字データがおくられる。11ineの記録時間中のそれぞれ 1/2をもちいて階調データの上位ピット、下位ピットが順次おくられる。次の印字期間の最初にはこの上位ピット、下位ピットのデータはLa1~3、Lb1~3に保持され、このデータにたいしCTL1, CTL2の制御線によりさきに示した本発明の実施例と同様の発光パルス制御が行われる。ただしここでは1lineあたりの発光パルス数は14パルスとして、そのうち最初の12パルスなでラインの印字データを用いた制御をおこない、最後の2パルスは次のラインの印字データのうち上位ピットを用いている。

【0028】連続する線などではつぎの上位ピットも1である傾向が強く、この2パルスをいれることで線が明瞭化する。反面、それ以外での各ドットごとを分離したいような場合にはこの2パルスを投入しない。11in40 e印字時間の後半には次のラインの上位ピットがLc1~3に存在しているため、このデータをもちいての制御が可能である。これはCTL3の制御線によっておこなっている。次ラインでの制御を行わない場合にはCTL3をのぞき、Lc1~3の出力とのAND回路をのぞけばそのまま先にしめした実施例と同じ制御になる。(この場合でもLc1~3は読み込んだデータのパッファとして必要である。)図5はこのEL発光素子の輝度電圧特性の典型的例である。図中、Vthは発光しきい値電圧であり駆動時発光EL素子には図中のVaの電圧の正50 負のパルスがデータ側、コモン側電極により印加される

のに対し非発光EL素子ではV t h以下の電圧のパルス 印加となるため発光がおこらない。

[0029]

【発明の効果】本発明の光プリンタヘッドは、薄膜トラ ンジスタにより構成された駆動回路の1エレメントが、 シフトレジスターより転送される複数の発光データ信号 を一定期間中保持することのできる、EL発光素子1素 子あたり複数個の発光データ記憶素子と、複数の発光バ ルスタイミング制御線からの複数の発光パルスタイミン グ制御信号と複数の発光データ記憶素子にて一定期間中 10 型例を示す図である。 保持された複数の発光データ信号との論理演算を行う複 数の論理索子とを特徴として有し、発光データ記憶索子 にて一定期間中保持される複数の発光データに応じた発 光回数にてEL発光素子を複数回発光させることができ るので、階調表現時、1 line記録時の複数の発光パ ルスをデータ転送回数を増やす事なく、1 l ine記録 時間中に分散して設定できる。その結果、高速記録性、 信頼性上有利な、高記録品位のEL発光素子を用いた光 プリンタヘッドを得ることができる。

【0030】この光プリンタヘッドは、小型化や高機能 20 化の進む複写機、ファクシミリ、コンピュータなどの情 報処理機器の出力用高速印字デバイスとして好適であ る。

【図面の簡単な説明】

【図1】本発明の光プリンタヘッドの第 1の実施例の構 成を示すプロック図である。

【図2】本発明の光プリンタヘッドの第 1の実施例にお ける駆動タイミングチャートを示す図である。

【図3】本発明の光プリンタヘッドの他の実施例の構成 を示すプロック図である。

【図4】本発明の光プリンタヘッドの他の実施例におけ る駆動タイミングチャートを示す図である。

【図5】本発明の光プリンタヘッドの輝度電圧特性の典

【図6】光プリンタヘッドの従来例の要部構成を示すプ ロック図である。

【図7】光プリンタヘッドの従来例での駆動タイミング チャートを示す図である。

【符号の説明】

EL1~EL16……EL発光素子、SR……シフ トレジスタ、L1~L8, La1~La3, Lb1~L …AND回路、O1~O4……OR回路、Ex1~E x4 ·······排他的論理和回路、G1~G4········電圧印 加用ゲート、61 ·······EL発光素子全体、62 ········ ELデータ側ドライバ、63……ELコモン側ドライ バ。

[図1]

【図5】

【図4】

[図6]

[図7]

フロントページの続き

(51) Int. C1.5 H 0 4 N 1/036 **識別記号 庁内整理番号 FI** A 9070-5C

技術表示箇所