$f(x) = x^2 - 2$, $x \in (-\infty, -\sqrt{2}] \cup [\sqrt{2}, +\infty)$. 于是 $f(x - \frac{1}{x}) = x^2 + \frac{1}{x^2} - 4$, $x \in (-\infty, -\sqrt{2} + 1] \cup [\sqrt{2} - 1, +\infty)$.

习 题 1.2

(A)

- 1. 下列说法能否作为 a 是数列 (a,)的极限的定义? 为什么?
- (1) 对于无穷多个 $\epsilon > 0$,存在 $N \in \mathbb{N}_+$,当 n > N 时,不等式 $|a_n a| < \epsilon$ 成立;
- (2) 对于任给的 $\epsilon > 0$,存在 $N \in \mathbb{N}_+$,当 $n \ge N$ 时,有无穷多项 a_n ,使不等式 $|a_n a| < \epsilon$ 成立;
 - (3) 对于给定的很小的正数 $\epsilon_0 = 10^{-10}$,不等式 $|a_n a| < 10^{-10}$ 恒成立.
- 解 (1) 不能,有无穷多个 $\epsilon > 0$ 满足(2.2)式,不能推出对任意 $\epsilon > 0$ 满足(2.2)式.
- (2) 不能,例如发散数列 $1,\frac{1}{2},1,\frac{1}{3},\cdots,1,\frac{1}{n},\cdots$ 对 $\forall \epsilon > 0$, $\exists N = \left[\frac{1}{\epsilon}\right]$, $\exists n > N$ 时,有无穷多项 a_n 满足 $|a_n 0| < \epsilon$.
- (3) 不能,如数列 $\left\{10^{-11}\sin\frac{1}{n}\right\}$. $\varepsilon_0 = 10^{-10}$, $\left|10^{-11}\sin\frac{1}{n} 0\right| < 10^{-10}$ 恒成立. 但 $\lim_{n \to +\infty} 10^{-11}\sin\frac{1}{n}$ 不存在.
 - 2. 说明下列表述都可作为 a 是(a,)极限的定义:
 - (2) 对任给的 $\epsilon > 0$,存在 $N \in \mathbb{N}_+$,当 n > N 时,不等式 $|a_n a| \leq \epsilon$ 成立;
- (3) 对任给的 $\varepsilon > 0$,存在 $N \in \mathbb{N}_+$,当 n > N 时,不等式 $|a_n a| < k\varepsilon$ 成立,其中 k 是正常数;
- (4) 对于任给的 $m \in \mathbb{N}_+$, 存在 $N \in \mathbb{N}_+$, 当 n > N 时, 不等式 $|a_n a| < \frac{1}{m}$ 成立;
- (5) 对于任给的 $\epsilon > 0$,存在 $N \in \mathbb{N}_+$,使不等式 $|a_{N+}, -a| < \epsilon$ 对于任意的正整数 p 都成立.
 - 解 (2) $\forall \varepsilon > 0$, $\frac{\varepsilon}{10} > 0$. 则 $\exists N \in \mathbb{N}_+$, 当 n > N 时,

$$|a_n-a| \leq \frac{\varepsilon}{10} < \varepsilon$$
. $\mathbb{R} \bigcup_{n=\infty}^{\infty} a_n = a$.

(3) $\forall \varepsilon > 0, \frac{\varepsilon}{k} > 0.$ 则 $\exists N \in \mathbb{N}_+,$ 当 n > N 时,

$$|a_n-a| < k \cdot \frac{\varepsilon}{k} = \varepsilon \Rightarrow \lim_{n\to\infty} a_n = a.$$

- (4) $\forall \varepsilon > 0$, $\exists m \in \mathbb{N}_+$, 使 $\frac{1}{m} < \varepsilon$, 反之也成立.
- (5) 由题设, $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}_+$, 对一切 n > N, 恒有 $|a_n a| < \varepsilon$.
- 3. 若 $\{a_n\}$ 与 $\{b_n\}$ 是两个发散数列,它们的和与积是否发散? 为什么? 若其中一个收敛,一个发散,它们的和与积的收敛性又如何?

解 若{a_n}, {b_n}均发散,和与积不一定发散.

如 $a_n = (-1)^n$, $b_n = (-1)^{n+1}$, $a_n + b_n = 0$, 收敛. $a_n \cdot b_n = -1$ 收敛.

若 $\{a_n\}$ 收敛, $\{b_n\}$ 发散. $\{a_n+b_n\}$ 一定发散.

(假设 $c_n = a_n + b_n$ 收敛. 由极限的有理运算法则知. $b_n = c_n - a_n$ 收敛矛盾,所以 $\{c_n\}$ 发散,)

 $\{a_n \cdot b_n\}$ 不一定收敛,也不一定发散.

$$\left(\text{如} a_n = \frac{1}{n}, b_n = n^2, (a_n \cdot b_n) = (n)$$
发散. $a_n = \frac{1}{n^2}, b_n = n, (a_n \cdot b_n) = \left(\frac{1}{n} \right)$ 收敛. $\right)$

如果 $\{a_n\}$ 收敛且 $\lim a_n \Rightarrow 0, \{b_n\}$ 发散则 $\{a_n \cdot b_n\}$ 一定发散.

 $(假设 c_n = a_n \cdot b_n$ 收敛. 则 $b_n = \frac{c_n}{a_n}$ 且 $\lim a_n \neq 0$. 由有理运算法则 $\langle b_n \rangle$ 收敛产生矛盾.)

- 5. 若把保序性中的条件 $a_n \leq b_n$ 改为 $a_n < b_n$, 是否仍得到结论 a < b?
- 解 不能. 例如 $a_n = \frac{1}{n}$, $b_n = \frac{10}{n}$, $\forall n \in \mathbb{N}_+$, $a_n < b_n$. 但 $a = \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = 0 = b$.
- 6. 下列结论是否正确? 若正确,请给出证明;若不正确,请举出反例.
- (1) 若 $\lim_{n\to\infty} a_n = A$,则 $\lim_{n\to\infty} |a_n| = |A|$;
- (2) 若 $\lim |a_n| = |A|$,则 $\lim a_n = A(A \neq 0)$;
- (3) 若 $\lim |a_n| = 0$,则 $\lim a_n = 0$;
- (4) 若 $\lim_{n\to\infty} a_n = A$,则 $\lim_{n\to\infty} a_{n+1} = A$;
- (5) 若 $\lim_{n\to\infty} a_n = A$,则 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$;
- (6) 若对任何实数 α , $\lim_{n\to\infty} \alpha a_n = \alpha A$, 则 $\lim_{n\to\infty} a_n = A$.
- 解 (1) 正确. 由于 $||a_n| |A|| \le |a_n A|$,且 $\lim_{n \to +\infty} a_n = A$,所以 $\forall \epsilon > 0$, $\exists N \in \mathbb{N}_+$,使 $\forall n > N$,恒有 $||a_n| |A|| \le |a_n A| < \epsilon$.即 $\lim_{n \to +\infty} |a_n| = |A|$.
 - (2) 不正确. 如 $a_n = (-1)^n$, $\lim_{n \to +\infty} |a_n| = 1$, 但 $\lim_{n \to +\infty} a_n$ 不存在.

- (3) 正确, 由 $\lim_{n \to +\infty} |a_n| = 0$ 可知 $\forall \epsilon > 0$, $\exists N \in \mathbb{N}_+$, 当 n > N 时, $|a_n| 0| = |a_n| = |a_n 0| < \epsilon$. 故 $\lim_{n \to \infty} a_n = 0$.
- (4) 正确. 由 $\lim_{n\to+\infty} a_n = A$ 知 $\forall \varepsilon > 0$, $\exists N_1 \in \mathbb{N}_+$,当 $n > N_1$ 时, $|a_n A| < \varepsilon$ 成立. 即 $\forall \varepsilon > 0$,取 $N = N_1 1$,那么当 $n > N_1$ 时, $|a_{n+1} A| < \varepsilon$ 成立,故 $\lim_{n\to+\infty} a_{n+1} = A$.
 - (5) 不正确. 如 $a_n = \frac{\alpha^n}{n!} (\alpha \in \mathbb{R})$, $\lim_{n \to +\infty} a_n = 1$, 而 $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = 0$.
 - (6) 正确. 由于对 $\forall \alpha \in \mathbb{R}$, $\lim_{n \to \infty} \alpha a_n = \alpha A$, 所以对 $\alpha = 1$, 应有 $\lim_{n \to \infty} a_n = A$.
 - 7. 用ε-N 定义证明下列极限:
 - (1) $\lim_{n\to\infty} \frac{1}{n} \sin \frac{n\pi}{2} = 0;$ (2) $\lim_{n\to\infty} (n \sqrt{n^2 n}) = \frac{1}{2};$
 - (3) $\lim_{n\to\infty} \frac{1+\cos n}{n^2} = 0;$ (4) $\lim_{n\to\infty} \sqrt[n]{n} = 1.$
 - 解 (1) $\forall \epsilon > 0$. 取 $N = \left[\frac{1}{\epsilon}\right]$. 当 n > N 时,恒有 $\left|\frac{1}{n}\sin\frac{n\pi}{2} 0\right| \leqslant \frac{1}{n} < \epsilon \text{ th } \lim_{n \to +\infty} \frac{1}{n}\sin\frac{n\pi}{2} = 0.$
 - (2) $\forall \epsilon > 0$. 取 $N = \left[\frac{1}{2\epsilon}\right]$. $\forall n > N$,恒有 $\left|n \sqrt{n^2 n} \frac{1}{2}\right| = \frac{n}{2(n + \sqrt{n^2 n})^2} \leqslant \frac{1}{2n} < \epsilon,$

故 $\lim_{n\to+\infty} (n-\sqrt{n^2-n})=\frac{1}{2}$

(3) $\forall \epsilon > 0$, 取 $N = \left[\frac{2}{\epsilon}\right]$. 对 $\forall n > N$, 恒有 $\left|\frac{1 + \cos n}{n^2}\right| \leq \frac{2}{n^2} < \frac{2}{n} < \epsilon$, 故 $\lim_{n \to +\infty} \frac{1 + \cos n}{n^2} = 0$.

(4) 解法一 令 $\sqrt[n]{n} = 1 + x_n$,则 $x_n > 0$ 由二项式公式 $n = 1 + nx_n + \frac{1}{2}n(n-1)x_n^2 + \dots + x_n^n \ge 1 + \frac{1}{2}n(n-1)x_n^2$,有 $1 \le \sqrt[n]{n} = 1 + x_n \le 1 + \sqrt{\frac{2}{n}}$,

从而有

由夹逼性知 lim √n=1.

解法二 由于
$$|\sqrt[n]{n}-1| = \frac{n-1}{1+\sqrt[n]{n}+(\sqrt[n]{n})^2+\cdots+(\sqrt[n]{n})^{n-1}} < \frac{n-1}{\frac{1}{2}(n-1)\sqrt{n}} =$$

 $\frac{2}{\sqrt{n}}$,所以 $\forall \epsilon > 0$,取 $N = \left[\frac{4}{\epsilon^2}\right]$,当 n > N 时, $|\sqrt[n]{n} - 1| < \epsilon$ 成立.故 $\lim_{n \to \infty} \sqrt[n]{n} = 1$.

8. 试写出数列无上界,无下界的定义。

解 如果 $\forall M > 0$, 总 $\exists n_0 \in \mathbb{N}_+$, 使 $a_{n_0} > M$, 称数列 $\{a_n\}$ 无上界. 如 $\forall M > 0$, 总 $\exists n_0 \in \mathbb{N}_+$, 使 $a_{n_0} < -M$. 称 $\{a_n\}$ 无下界.

9. 设由数列 $\{a_n\}$ 的奇数项与偶数项组成的两个子列收敛于同一个常数 a_n 证明 $\{a_n\}$ 也收敛于 a_n

证 $\forall \varepsilon > 0$,由于 $\lim_{n \to \infty} a_{2m} = a$, $\lim_{n \to \infty} a_{2m+1} = a$, $\exists N_1, N_2 \in \mathbb{N}_+$,对 $\forall m > N_i$, i = 1, 2, 恒有 $|a_{2m} - a| < \varepsilon$, $|a_{2m+1} - a| < \varepsilon$. 所以取 $N = \max\{N_1, N_2\}$, $\exists n > N$ 时, $|a_n - a| < \varepsilon$ 成立,其中 n = 2m 或 n = 2m + 1,故 $\lim_{n \to \infty} a_n = a$.

10. 求下列数列的极限:

(1)
$$\lim_{n\to\infty} \frac{(n+1)(n+2)(n+3)}{5n^3} = \lim_{n\to\infty} \frac{1}{5} \left(1 + \frac{1}{n}\right) \left(1 + \frac{2}{n}\right) \left(1 + \frac{3}{n}\right) = \frac{1}{5}.$$

(2)
$$\lim_{n\to\infty} \frac{3^n + (-2)^n}{3^{n+1} + (-2)^{n+1}} = \lim_{n\to\infty} \frac{\frac{1}{3} + \left(-\frac{2}{3}\right)^n \frac{1}{3}}{1 + \left(-\frac{2}{3}\right)^{n+1}} = \frac{1}{3}.$$

(3)
$$\lim_{n\to\infty} \left(\frac{1+2+\cdots+n}{n+2} - \frac{n}{2}\right) = \lim_{n\to\infty} \left(\frac{n(n+1)}{2(n+2)} - \frac{n}{2}\right) = \lim_{n\to\infty} \frac{-n}{2(n+2)} = -\frac{1}{2}.$$

(4)
$$\lim_{n\to\infty} \sqrt{n} \left(\sqrt{n+4} - \sqrt{n} \right) = \lim_{n\to\infty} \frac{4}{\sqrt{1+\frac{4}{n}+1}} = 2.$$

(5)
$$\lim_{n \to \infty} (\sqrt{2}\sqrt[4]{2}\sqrt[8]{2} \cdots 2\sqrt[n]{2}) = \lim_{n \to \infty} 2^{\left(\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \cdots + \frac{1}{2^n}\right)}$$
$$= \lim_{n \to \infty} 2^{\left(1 - \frac{1}{2^n}\right)} = 2.$$

(6) 由于
$$\sqrt[n]{2} \le \sqrt[n]{2 + \sin^2 n} \le \sqrt[n]{3}$$
,且 $\lim_{n \to \infty} \sqrt[n]{2} = \lim_{n \to \infty} \sqrt[n]{3} = 1$,所以

$$\lim_{n\to\infty} \sqrt[n]{2+\sin^2 n}=1.$$

$$(7) \frac{1+4+\cdots+n^2}{n^3+n} \leqslant \frac{1}{n^3+1} + \frac{4}{n^3+2} + \cdots + \frac{n^2}{n^3+n} \leqslant \frac{1+4+\cdots+n^2}{n^3+1},$$

$$\lim_{n\to\infty} \frac{1+4+\cdots+n^2}{n^3+n} = \lim_{n\to\infty} \frac{1}{6} \frac{(n+1)(2n+1)}{n^2+1} = \frac{1}{3},$$

$$\lim_{n\to\infty} \frac{1+4+\cdots+n^2}{n^3+1} = \lim_{n\to\infty} \frac{1}{6} \frac{n(n+1)(2n+1)}{n^3+1} = \frac{1}{3},$$

所以由夹逼性
$$\lim_{n\to\infty} \left(\frac{1}{n^3+1} + \frac{4}{n^3+2} + \dots + \frac{n^2}{n^3+n} \right) = \frac{1}{3}$$
.

(8)
$$\lim_{n\to\infty} \left(1+\frac{1}{n+1}\right)^n = \lim_{n\to\infty} \left(1+\frac{1}{n+1}\right)^{n+1} \left(1+\frac{1}{n}\right)^{-1} = e.$$

(9)
$$\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n = \lim_{n\to\infty} \left[\left(1+\frac{-1}{n}\right)^{-n}\right]^{-1} = e^{-1}$$
.

(10)
$$\lim_{n\to\infty} \left(1+\frac{1}{n-4}\right)^{n+4} = \lim_{n\to\infty} \left(1+\frac{1}{n-4}\right)^{n-4} \left(1+\frac{1}{n-4}\right)^{8} = e.$$

11. 判别下列数列的敛散性。

(1)
$$a_n = \frac{1}{3+1} + \frac{1}{3^2+1} + \dots + \frac{1}{3^n+1}$$
.

$$0 \le a_n \le \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n} = \frac{1}{2} \left(1 - \frac{1}{3^n} \right) \le \frac{1}{2}, \langle a_n \rangle$$
有界,

因为
$$a_{n+1} = a_n + \frac{1}{3^{n+1} + 1} \geqslant a_n , \langle a_n \rangle$$
 单调增.

由单调有界准则,(a,)收敛。

(2)
$$a_n = \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{4}\right) \cdots \left(1 - \frac{1}{2^n}\right).$$

 $0 \le a_n \le 1, \text{ If } a_{n+1} = a_n \left(1 - \frac{1}{2^{n+1}}\right) \le a_n.$

故 $\{a_n\}$ 单减有下界,从而 $\{a_n\}$ 收敛,

(3)
$$a_1 = \sqrt{2}, a_2 = \sqrt{2 + \sqrt{2}}, \dots, a_n = \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}, \dots$$

 $0 < a_1 = \sqrt{2} < 2, 0 < a_2 = \sqrt{2+a_1} < 2$,由数学归纳法证得 $0 < a_n = \sqrt{2+a_{n-1}} < 2, n=1,2,\cdots$.

$$a_{n+1}-a_n=\sqrt{2+a_n}-a_n=\frac{(2-a_n)(a_n+1)}{\sqrt{2+a_n}+a_n}>0$$

故{a,,}为单增有界数列,即{a,,}收敛.

设 $\lim_{n\to\infty} a_n = A$,则 A > 0. 由 $a_{n+1} = \sqrt{a_n + 2}$ 得

$$A = \sqrt{A+2}$$
, 所以 $A = 2$.

(4)
$$a_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

因为
$$a_n < 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}}$$
 (因为 $k \ge 2$ 时, $2^{k-1} < k!$)
$$= 2\left(1 - \frac{1}{2^n}\right) < 2,$$

且 $a_{n+1} = a_n + \frac{1}{(n+1)!} > a_n$,故 $\{a_n\}$ 单增有上界. $\{a_n\}$ 收敛.

注意,还可用下述方法证明 a, 的有界性.

$$a_n < 1 + \frac{1}{2 \cdot 1} + \frac{1}{3 \cdot 2} + \dots + \frac{1}{n(n-1)} = 1 + \frac{1}{2} + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right)$$
$$= 2 - \frac{1}{n} < 2.$$

(5)
$$a_n = 1 + \frac{\sin 1}{1^2} + \frac{\sin 2}{2^2} + \dots + \frac{\sin n}{n^2}$$
.

$$|a_{n+p}-a_n| = \left| \frac{\sin(n+1)}{(n+1)^2} + \frac{\sin(n+2)}{(n+2)^2} + \dots + \frac{\sin(n+p)}{(n+p)^2} \right|$$

$$\leq \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+p)^2}$$

$$\leq \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} + \dots + \frac{1}{(n+p-1)(n+p)}$$

$$\leq \frac{1}{n} - \frac{1}{n+p} < \frac{1}{n},$$

则 $\forall \epsilon > 0$,取 $N = \left[\frac{1}{\epsilon}\right]$,当 n > N 时, $\forall p \in \mathbb{N}_+$,有 $|a_{n+p} - a_n| < \epsilon$,由 Cauchy 原理知,原数列 $\{a_n\}$ 收敛.

13. 求下列数列的极限点:

(1)
$$\frac{1}{2}$$
, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{3}{4}$, $\frac{1}{8}$, $\frac{7}{8}$, ..., $\frac{1}{2^n}$, $\frac{2^n-1}{2^n}$,

因为 $\lim_{n\to\infty}\frac{1}{2^n}=0$, $\lim_{n\to\infty}\frac{2^n-1}{2^n}=1$, 所以此数列有两个极限点 0,1.

(2)
$$a_n = 3\left(1 - \frac{1}{n}\right) + 2(-1)^n$$
.

因为 $\lim_{n\to\infty} a_{2n}=5$, $\lim_{n\to\infty} a_{2n+1}=1$, 所以此数列有两个极限点 5,1.

(3)
$$a_n = \frac{n + (-1)^n n}{2} + \frac{1}{n}$$
.

由于 $\lim_{n\to\infty} a_{2n+1}=0$,所以此数列有唯一的极限点 0.

14. 设 $0 < x_1 < 1, x_{n+1} = 1 - \sqrt{1-x_n}$,证明:数列 $\{x_n\}$ 收敛,并求 $\lim_{n \to \infty} x_n$ 与 $\lim_{n \to \infty} \frac{x_{n+1}}{x_n}$.

解 因为 $0 < x_1 < 1$. 设 $0 < x_{n-1} < 1$, 由数学归纳法证得 $0 < x_n < 1$.

又因为 $\frac{x_{n+1}}{x_n} = \frac{1 - \sqrt{1 - x_n}}{x_n} = \frac{1}{1 + \sqrt{1 - x_n}} < 1$,即 $x_{n+1} < x_n$, $\{x_n\}$ 单调减,由

单调有界准则知{x,,}收敛.

设 $\lim_{n\to\infty} x_n = A$. 由等式 $x_{n+1} = 1 - \sqrt{1-x_n}$ 得 $A = 1 - \sqrt{1-A}$,故 A = 0,或 A = 1 (含),故 $\lim_{n\to\infty} x_n = 0$.

$$\lim_{n\to\infty}\frac{x_{n+1}}{x_n} = \lim_{n\to\infty}\frac{1}{1+\sqrt{1-x_n}} = \frac{1}{2}.$$

15. 设
$$a > 0$$
, $x_1 > 0$, $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$, 证明: $\lim_{n \to \infty} x_n = \sqrt{a}$.

证 因为 a>0, $x_1>0$, 所以 $x_2=\frac{1}{2}\left(x_1+\frac{a}{x_1}\right) > \sqrt{a}>0$, 由数学归纳法可知

 $x_n > \sqrt{a}$,从而

$$\frac{x_{n+1}}{x_n} = \frac{1}{2} \left(1 + \frac{a}{x_n^2} \right) \leq \frac{1}{2} (1+1) = 1, \text{ If } x_{n+1} < x_n,$$

故(a,)单减有下界.故(a,)收敛.

设 $\lim_{n\to\infty} a_n = A$. 由于 $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$ 且 $x_n \geqslant \sqrt{a} > 0$,所以 A > 0 且 $A = \frac{1}{2} \left(A + \frac{a}{A} \right)$. 故 $A = \sqrt{a}$.

16. 设 $\{a_n\}$ 单调增, $\{b_n\}$ 单调减, $\lim_{n\to\infty}(b_n-a_n)=0$. 证明 : $\{a_n\}$ 与 $\{b_n\}$ 都收敛,并且有相同的极限。

证 由于 $\{a_n\}$ 单调增, $\{b_n\}$ 单调减,所以 $\{b_n-a_n\}$ 单调减,又由于 $\lim_{n\to\infty}(b_n-a_n)=0$,即 0 为单减数列 $\{b_n-a_n\}$ 的下确界,所以 $\forall n\in\mathbb{N}_+,b_n-a_n\geqslant 0$,即 $b_n\geqslant a_n$ 。故单增数列 $\{a_n\}$ 有上界 b_1 ,单调减数列 $\{b_n\}$ 有下界 a_1 . 从而 $\{a_n\}$ 与 $\{b_n\}$ 均收敛. 且 $\lim_{n\to\infty}b_n=\lim_{n\to\infty}[(b_n-a_n)+a_n]=\lim_{n\to\infty}(b_n-a_n)+\lim_{n\to\infty}a_n=\lim_{n\to\infty}a_n$.

(B)

1. 判别数列(x,)的收敛性,其中

$$x_n = a_0 + a_1 q + a_2 q^2 + \dots + a_n q^n (|q| < 1, |a_k| \le M, k = 0, 1, 2, \dots).$$

解 若 q=0, $x_n=a_0$, $\{x_n\}$ 收敛.

若 0 < |q| < 1,由于 $|a_k| \le M, k = 1, 2, \dots$,所以 $\forall n, p \in \mathbb{N}_+$,

$$|x_{p+n}-x_n| = |a_{n+1}q^{n+1} + \dots + a_{n+p}q^{n+p}|,$$

$$\leq M|q|^{n+1} \frac{1-|q|^p}{1-|q|} < \frac{M}{1-|q|}|q|^{n+1}.$$

注意到 $\ln |q| < 0$. 对 $\forall \epsilon > 0$,取 $N = \left[\frac{\ln(1-|q|)\epsilon - \ln M}{\ln |q|}\right] \in \mathbb{N}_+$,对 $\forall n > N$, $p \in \mathbb{N}_+$,恒有 $|x_{n+p} - x_n| < \epsilon$,由 Cauchy 收敛原理知 $\langle x_n \rangle$ 收敛.

2. 求下列数列的极限:

(2)
$$\lim_{n\to\infty} \left[1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots + \frac{(-1)^{n-1}}{3^{n-1}}\right] = \lim_{n\to\infty} \frac{1 - \left(-\frac{1}{3}\right)^n}{1 + \frac{1}{3}} = \frac{3}{4}.$$

(3)
$$\lim_{n \to \infty} \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right)$$

$$= \lim_{n \to \infty} \frac{(2^2 - 1)(3^2 - 1) \cdots (n^2 - 1)}{2^2 \cdot 3^2 \cdot \cdots \cdot n^2}$$

$$= \lim_{n \to \infty} \frac{(2 - 1)(3 - 1) \cdots (n - 1)(2 + 1)(3 + 1) \cdots (n + 1)}{2^2 \cdot 3^2 \cdot \cdots \cdot n^2}$$

$$= \lim_{n \to \infty} \frac{(n - 1)!(n + 1)!}{2(n!)^2} = \lim_{n \to \infty} \frac{n + 1}{2n} = \frac{1}{2}.$$

(4)
$$\lim_{n \to \infty} \sqrt[n]{2\sin^2 n + \cos^2 n}$$

解 因为 $1 \le \sqrt[n]{2\sin^2 n + \cos^2 n} = \sqrt[n]{1 + \sin^2 n} \le \sqrt[n]{2}$,由夹逼性 $\lim_{n \to \infty} \sqrt[n]{2\sin^2 n + \cos^2 n} = 1$.

(5) **解法**-
$$\lim_{n\to\infty} \left(\frac{n+1}{n+2}\right)^{3n} = \lim_{n\to\infty} \frac{\left(1+\frac{1}{n}\right)^{3n}}{\left(1+\frac{2}{n}\right)^{3n}} = \frac{e^3}{e^6} = \frac{1}{e^3}.$$
解法- $\lim_{n\to\infty} \left(\frac{n+1}{n+2}\right)^{3n} = \lim_{n\to\infty} \left[\left(1+\frac{-1}{n+2}\right)^{-(n+2)}\left(1-\frac{1}{n+2}\right)^2\right]^{-3} = e^{-3}.$

(6) 解法
$$\lim_{n\to\infty} \left(\frac{n^3-1}{n^3-2}\right)^{4n^3} = \lim_{n\to\infty} \left[\left(1+\frac{-1}{n^3}\right)^{-n^3} \right]^{-4} / \left[\left(1+\frac{-2}{n^3}\right)^{-\frac{n^3}{2}} \right]^{-8} = e^4.$$

$$\mathbf{解法} = \lim_{n\to\infty} \left(\frac{n^3-1}{n^3-2}\right)^{4n^3} = \lim_{n\to\infty} \left[\left(1+\frac{1}{n^3-2}\right)^{n^3-2} \left(1+\frac{1}{n^3-2}\right)^2 \right]^4 = e^4.$$

3. 证明:

(1) 若
$$a_n \rightarrow 0$$
,则 $b_n = \frac{a_1 + a_2 + \dots + a_n}{n} \rightarrow 0 (n \rightarrow \infty)$;

(2) 若 $a_n \rightarrow a$,则 $b_n \rightarrow a(n \rightarrow \infty)$, b_n 同(1).

解 (1) 由 $a_n \to 0$ $(n \to \infty)$ 知: $\forall \epsilon > 0$, $\exists N_1 \in \mathbb{N}_+$, $\notin \forall n > N_1$, $|a_n| < \frac{\epsilon}{2}$.

而由
$$\frac{1}{n}$$
 $\rightarrow 0$ $(n \rightarrow \infty)$ 知: $\exists N_2 \in \mathbb{N}_+$.使 $\forall n > N_2$, $\frac{|a_1 + \cdots + a_{N_1}|}{n} < \frac{\varepsilon}{2}$,

从而
$$|b_n| = \left| \frac{a_1 + \dots + a_{N_1}}{n} + \frac{a_{N_1+1} + \dots + a_n}{n} \right| < \frac{\varepsilon}{2} + \left(1 - \frac{N_1}{n}\right) \frac{\varepsilon}{2} < \varepsilon,$$

故 $\lim b_n = 0$.

(2) 令 $\bar{a}_n = a_n - a$. 则 $\lim_{n \to \infty} \bar{a}_n = 0$. 由结论(1),

$$\lim_{n\to\infty}\bar{b}_n=\lim_{n\to\infty}\frac{\bar{a}_1+\cdots+\bar{a}_n}{n}=\lim_{n\to\infty}\left(\frac{a_1+\cdots+a_n}{n}-a\right)=0,$$

 $\mathbb{P}\lim_{n\to\infty}b_n=a.$

4. 证明下列数列收敛,并求其极限:

(1)
$$x_n = \frac{n^k}{a^n} (a > 1, k > 0).$$

证 因为 $a>1,a^{\frac{1}{k}}>1,$ 令 $a^{\frac{1}{k}}=1+b(a>b>0),$ 则

$$\begin{split} &\frac{n^k}{a^n} = \left[\frac{n}{(1+b)^n}\right]^k = \left[\frac{n}{1+nb+\frac{1}{2}n(n-1)b^2+\dots+b^n}\right]^k \leqslant \left[\frac{n}{nb+\frac{n}{2}(n-1)b^2}\right]^k \\ &= \left[\frac{1}{b+\frac{1}{2}b^2(n-1)}\right]^k \cdot 2 \approx \lim_{n\to\infty} \frac{1}{b+\frac{1}{2}b^2(n-1)} = 0, \quad \lim_{n\to\infty} \frac{n^k}{a^n} = 0. \end{split}$$

(2)
$$a_n = \sqrt{a + \sqrt{a + \sqrt{a + \cdots + \sqrt{a}}}}$$
 (a>0).

证 显然 $a_n > 0$. $a_1 = \sqrt{a} < 1 + \sqrt{a}$. 设 $a_{n-1} < 1 + \sqrt{a}$, 则 $a_n = \sqrt{a + \sqrt{a_{n-1}}} < \sqrt{a + \sqrt{a + 1}} < \sqrt{a} + 1$. 由数学归纳法知. $\forall n \in \mathbb{N}_+, 0 < a_n < \sqrt{a} + 1$. 即 $\{a_n\}$ 有界.

又由数学归纳法: $a_1 = \sqrt{a}$, $a_2 = \sqrt{a + a_1} > \sqrt{a} > a_1$,假设 $a_n > a_{n-1}$,那么 $a_{n+1} = \sqrt{a + a_n} > \sqrt{a + a_{n-1}} = a_n$.故 $\{a_n\}$ 为单增数列.从而 $\{a_n\}$ 收敛.

设
$$\lim_{n\to\infty} a_n = A$$
,由 $a_{n+1} = \sqrt{a+a_n}$ 可知 $A = \sqrt{a+A}$.

注意到 $0 < a_n < \sqrt{a} + 1$,可得 $A = \frac{1 + \sqrt{1 + 4a}}{2}$,即 $\lim_{n \to \infty} a_n = \frac{1 + \sqrt{1 + 4a}}{2}$.

(3)
$$0 < x_1 < \sqrt{3}, x_{n+1} = \frac{3(1+x_n)}{3+x_n}$$
.

证 因为 $0 < x_1 < \sqrt{3}$,所以 $x_n > 0$. $(\forall n \in \mathbb{N}_+)$.

$$x_2 - \sqrt{3} = \frac{(3 - \sqrt{3})(x_1 - \sqrt{3})}{3 + x_1} < 0. \text{ MU } 0 < x_2 < \sqrt{3}.$$

假设 $0 < x_{n-1} < \sqrt{3}$,那么 $x_n - \sqrt{3} = \frac{(3 - \sqrt{3})(x_{n-1} - \sqrt{3})}{3 + x_{n-1}} < 0$,由数学归纳法知 $0 < x_n < \sqrt{3}$,即 $\{x_n\}$ 有界。

因为 $x_{n+1}-x_n=\frac{3-x_n^2}{3+x_n}=\frac{(\sqrt{3}-x_n)(\sqrt{3}+x_n)}{3+x_n}>0$,所以 $x_{n+1}>x_n$, $\{x_n\}$ 单调增. 故 $\{x_n\}$ 收敛.

设 $\lim_{n\to\infty} x_n = A$,则 $0 \le A \le \sqrt{3}$. 且 $A = \frac{3(1+A)}{3+A}$,即 $A = \sqrt{3}$. 故 $\lim_{n\to\infty} x_n = \sqrt{3}$.

(4)
$$a_1 = 1, a_n = 1 + \frac{1}{a_{n-1} + 1}$$
 $(n = 2, 3, \dots).$

证 由 $a_1 = 1 < \sqrt{2}, a_n > 0$ 且 $a_n = \sqrt{2} = \frac{-(a_{n-1} - \sqrt{2})(\sqrt{2} - 1)}{a_{n-1} + 1}$ 知 $a_n = \sqrt{2}$ 与 $a_{n-1} = \sqrt{2}$ 与 $a_n = \sqrt{2}$ 与 $a_{n-1} = \sqrt{2}$ 与 $a_n = \sqrt$

又因为
$$a_{n+2}-a_n=1+\frac{1}{1+\left(1+\frac{1}{1+a_n}\right)}-a_n=\frac{2(2-a_n^2)}{2a_n+3}, n=1,2,\cdots$$

所以{a_{2m}}单调减,{a_{2m-1}}单调增,

由单调收敛准则,{a_{2m}},{a_{2m-1}}均收敛.

不妨设 $\lim_{m\to\infty} a_{2m} = A$,则 $A \gg \sqrt{2}$. 又因为 $a_{2m+2} = \frac{3a_{2m}+4}{2a_{2m}+3}$,所以 $A = \frac{3A+4}{2A+3}$,即 $A = \sqrt{2}$.

同理可证 $\lim a_{2m-1} = \sqrt{2}$,故 $\lim a_n = \sqrt{2}$.

5. $\{a_n\}$ 为一单增数列,并且有一子列收敛于a,证明 $\lim_{n\to\infty} a_n = a$.

证法一 设 $\{a_n\}$ 为 $\{a_n\}$ 的收敛于a的子列.

假设 $\{a_n\}$ 无上界,则 $\forall M>0$. $\exists n_0 \in \mathbb{N}_+$,使 $a_{n_0}>M$. 又因为 $\{a_n\}$ 单调增,所以 $\{a_{n_0}+p>a_{n_0}>M$, $\exists p_0 \in \mathbb{N}_+$ 使 $\{a_{n_0}+p_0 \in \{a_{n_k}\}$,所以 $\{a_{n_k}\}$ 无界与已知矛盾. 所以 $\{a_n\}$ 有上界. 由单调收敛原理, $\{a_n\}$ 收敛且 $\{a_n\}$ 本。. $\{k\to\infty\}$.

证法二 由 $\{a_n\}$ 的子列 $\{a_{n_k}\}$ 收敛于 a 知; $\forall \varepsilon > 0$, $\exists N_1 \in \mathbb{N}_+$,使 $\forall k > N_1$, $|a_{n_k} - a| < \varepsilon$. 取 $N = n_{N_1+1}$. $\forall n > N$ 存在 $k \in \mathbb{N}_+$,使 a_{n_k} , $a_{n_{k+1}} \in \{a_{n_k}\}$ 且 $n_k \le n \le n_{k+1}$. 再注意到 $\{a_n\}$ 单调增可得 $a_{n_k} \le a_n \le a_{n_{k+1}}$. 从而

$$|a_n-a| \leq \max\{|a_{n_k}-a|, |a_{n_{k+1}}-a|\} < \varepsilon,$$

故{a,}收敛于 a.

6. 设
$$a_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n-1}}{n}$$
,证明数列 $\{a_n\}$ 收敛.

证 由于
$$\forall n, p \in \mathbb{N}_+, |a_{n+p} - a_n| = \left| \frac{1}{n+1} - \frac{1}{n+2} + \dots + \frac{(-1)^{p-1}}{n+p} \right|.$$

当
$$p$$
 为偶数时, $\left(\frac{1}{n+1} - \frac{1}{n+2}\right) + \cdots + \left(\frac{1}{n+p-1} - \frac{1}{n+p}\right) > 0$.

当
$$p$$
 为奇数时, $\left(\frac{1}{n+1} - \frac{1}{n+2}\right) + \dots + \left(\frac{1}{n+p-2} - \frac{1}{n+p-1}\right) + \frac{1}{n+p} > 0$.

利用上述结论易得
$$|a_{n+p}-a_n|=\frac{1}{n+1}-\left(\frac{1}{n+2}-\frac{1}{n+3}+\cdots+\frac{(-1)^{p-1}}{n+p}\right)<$$

 $\frac{1}{n+1}$, 所以 $\forall \epsilon > 0$, 只要取 $N = \left[\frac{1}{\epsilon}\right]$, 则 $\forall n > N$ 及 $p \in \mathbb{N}_+$, 恒有 $|a_{n+p} - a_n| < \epsilon$. 故 $\langle a_n \rangle$ 为 Cauchy 列,因而收敛.

证 数列 $\{a_n\}$ 单增, $\{b_n\}$ 单减且 $\lim_{n\to\infty}(b_n-a_n)=0$. 由习题 1. 2(A)第 16 题, $\{a_n\}$, $\{b_n\}$ 均收敛. 且 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\xi$ 且 $a_n\leqslant \xi\leqslant b_n$,即 $\forall n\in \mathbb{N}_+$, $\xi\in\bigcap_{n=1}^\infty[a_n,b_n]$. 由极限的唯一性知 $\bigcap_{n=1}^\infty[a_n,b_n]=\{\xi\}$.

8. 利用闭区间套定理(第7题)证明 Weierstrass 定理.

证 设 $\{x_n\}$ 是有界数列,则必存在 $a_1,b_1 \in \mathbb{R}$,使得 $\forall n \in \mathbb{N}_+$,都有 $x_n \in [a_1,b_1]$,等分 $[a_1,b_1]$ 为两个子区间,则至少有一个含 $\{x_n\}$ 的无穷多项,记该子区间为 $[a_2,b_2]$ (若两个子区间都含 $\{x_n\}$ 的无穷多项,则可任取其一)。等分 $[a_2,b_2]$,按照同样的方法又可得含 $\{x_n\}$ 无穷多项的子区间 $[a_3,b_3]$ 。照此办理,可得一个闭区间列 $\{[a_k,b_k]\}$,满足:

$$[a_1,b_1] \supseteq [a_2,b_2] \supseteq \cdots \supseteq [a_k,b_k] \supseteq \cdots,$$

$$b_k - a_k = \frac{b_1 - a_1}{2^{k-1}} \rightarrow 0 (k \rightarrow \infty),$$

因此它是一个闭区间套。根据闭区间套定理,存在唯一的 $\xi \in \mathbb{R}$,使得 $\bigcap_{k=1}^{\infty} [a_k, b_k] = \{\xi\}$,并且 $\lim_{k \to \infty} a_k = \lim_{k \to \infty} b_k = \xi$.

由于每个闭区间都含数列 $\{x_n\}$ 的无穷多项,所以我们能在每个 $[a_k,b_k]$ 中选取 $\{x_n\}$ 的一项 x_{n_k} ,并使 $n_1 < n_2 < \cdots < n_k < \cdots$,从而得到 $\{x_n\}$ 的一个子列 $\{x_{n_k}\}$,满足: $a_k \leqslant x_{n_k} \leqslant b_k (\ \forall \ k \in \mathbb{N}_+)$.

根据夹逼原理, $\lim_{x_n} = \xi$.

习 题 1.3

(A)

3. 设 $\lim_{x \to x_0} f(x) = a$,且 f(x)在 x_0 有定义.问在 $x \to x_0$ 的过程中,x 可否取