Computational Linear Algebra - Assignment 3

(points: 35)

Problem 1 (points: 3 + 3 + 2 = 8)

Let $\mathcal P$ be the collection of polynomials defined on the real line. Is $\mathcal P$ a vector space? Argue that $\mathcal P$ cannot be finite-dimensional.

Next, let \mathcal{P}_0 be those polynomials $p \in \mathcal{P}$ such that p(0) = 1. Is \mathcal{P}_0 a subspace of \mathcal{P} ?

Problem 2 (points: 2 + 3 = 5)

Let $\mathbb{V} = \mathbb{R}^3$ and $\mathbb{U} = \{(x_1, x_2, x_3) \in \mathbb{V} : x_1 + x_2 + x_3 = 0\}$. Verify that \mathbb{U} is a subspace of \mathbb{V} ? What would be a complementary subspace of \mathbb{U} , i.e, a subspace $\mathbb{W} \subset \mathbb{V}$ such that $\mathbb{V} = \mathbb{U} \oplus \mathbb{W}$?

Problem 3 (points: 3 + 2 + 4 = 9)

Consider the space \mathcal{P}_n of real polynomials of degree at most n. Show that the functions $p_0(t) = 1, p_1(t) = t, \dots, p_n(t) = t^n$ form a basis for \mathcal{P}_n .

Now, consider the set

$$Q = \left\{ p \in \mathcal{P}_n : \int_0^1 p(t)dt = 0 \right\}.$$

Is Q a subspace of P_n ? Find the dimension of Q, and in particular give a basis for Q.

Problem 4 (points: 3 + 2 + 2 + 2 = 9)

Let \mathcal{M}_n be the set of real $n \times n$ matrices. Is \mathcal{M}_n a vector space? What is its dimension? Next, consider the set of matrices in $\mathbf{A} \in \mathcal{M}_n$ such that $\mathbf{A}^\top = -\mathbf{A}$. Show that this forms a subspace of \mathcal{M}_n and determine its dimension.

Problem 5 (points: 5)

Let p_0, p_1, \ldots, p_n be polynomials of degree at most n. If $p_0(1) = \cdots = p_n(1) = 0$, then show that p_0, p_1, \ldots, p_n cannot be linearly independent.
