RSA factoring, Malleability

Claim: (last time) If you can compute do given (N,e)then you can find nontrivial sqrt of unity mod N $X \neq N \pm 1$ $X^2 = N 1$

Algo: given N, e, d (ed $\equiv_{Q(N)} 1$)

write ed-1 = 2^{S} · r where r odd

pick random $w = Z_{N}$ Starting with w^{r} , keep iteratively squaring (mod N)

until you reach 1

Malleability of RSA:

RSt: m - me mod N

G: given $C = m^e$ (RS4 "encryption" of unknown m) Can you find RS4 enc of "related" msg?

A: $C \longrightarrow C^2 = (m^e)^2 = (m^2)^e = RSA \text{ enc of } m^2$ $C \longrightarrow C^{\times} \text{ is } RSA \text{ enc of } m^{\times}$ $C \longrightarrow C \cdot x^e = (m^e)(x^e) = (mx)^e$ (oksince e is public)

Claim: Suppose algo A inverts RSA (given me, N,e) but only for 1% of m & Zn

Then there is a way to invert RSA on all inputs

Claim: If given me, N, e you can determine whether m < 1/2, then you can invert RSA

Exi suppose I have come for unknown m 1) run algo on C, find that m is in 1st half ZN 012 - - N=1 N+1/-/-/N-1/ 2) run algo on $C \cdot 2^e = (2m)^e$, find that 2m is in 2^{nd} half of Z_N m: N-1 2m: N-1 N-1 N-1 N-1