STP - Projekt 2.24

Jakub Postępski

12 stycznia 2018

1 Wyznaczanie modeli rekurencyjnych

Dla podanych danych wyznaczono modele rekurencyjne (tab. 1). Na początku przebiegu modele wykazują mniejszy błąd wyjścia. Wizualne obserwacje wyjść modeli potwierdzdają obliczenia błędu.

Wybrano najlepszy model dla $\tau = 6$.

Dla najlepszego modelu: $b_6 = -0.1854, b_7 = -0.918, a_1 = -1.0403, a_2 = 0.1135.$

Mamy:

$$y(k) + a_1 y(k-1) + a_2 y(k-2) = b_6 u(k-6) + b_7 u(k-7)$$

Po zastosowaniu transformaty Z:

$$(1 + a_1 z^{-1} + a_2 z^{-2})Y(z) = (b_6 z^{-6} + b_7 z^{-7})U(z)$$

Więc transmitancja:

$$G(z) = \frac{Y(z)}{U(z)} = \frac{b_6 z^{-6} + b_7 z^{-7}}{1 + a_1 z^{-1} + a_2 z^{-2}} = \frac{-0.1854 z^{-6} - 0.918 z^{-7}}{1 - 1.0403 z^{-1} + 0.1135 z^{-2}}$$

τ	$b_{ au}$	$b_{\tau+1}$	$-a_1$	$-a_2$	E	rys.
1	-0.0082	-0.0679	1.6619	-0.6799	79.2282	1
2	0.0027	-0.1003	1.5901	-0.6135	54.2224	2
3	-0.0014	-0.1337	1.4685	-0.5010	39.9572	3
4	-0.0568	-0.1271	1.3107	-0.3552	32.3080	4
5	-0.1188	-0.1281	1.1146	-0.1763	20.9694	5
6	-0.1854	-0.0918	1.0403	-0.1135	16.3988	6
7	-0.1575	-0.0517	1.2836	-0.3445	46.8691	7
8	-0.1146	0.0001	1.5764	-0.6144	176.8823	8

Tablica 1: Porównanie modeli rekurencyjnych

Rysunek 1: Wyjścia modelu dla $\tau=1$

Rysunek 2: Wyjścia modelu dla $\tau=2$

Rysunek 3: Wyjścia modelu dla $\tau=3$

Rysunek 4: Wyjścia modelu dla $\tau=4$

Rysunek 5: Wyjścia modelu dla $\tau=5$

Rysunek 6: Wyjścia modelu dla $\tau=6$

Rysunek 7: Wyjścia modelu dla $\tau=7$

Rysunek 8: Wyjścia modelu dla $\tau=8$

2 Odpowiedz skokowa

Obliczono ze wzoru odpowiedz skokową (rys. 9). Wzmocnienie statyczne:

$$K_{stat} = \lim_{z \to 1} G(z) = -3.7848$$

Rysunek 9: Odpowiedz skokowa modelu

3 Regulator PID

Dla regulatora postaci:

$$G_r(z) = \frac{u(k)}{e(k)} = \frac{r_2 z^{-2} + r_1 z^{-1} + r_0}{1 - z^{-1}}$$

Mamy:

$$r_2 = K \frac{T_d}{T}$$

$$r_1 = K(\frac{T}{2T_i} - 2\frac{T_d}{T} - 1)$$

$$r_0 = K(1 + \frac{T}{2T_i} + \frac{T_d}{T})$$

Zgodnie z eksperymentem Zieglera-Nicholsa:

$$K_k =$$

$$T_k =$$

$$K = 0.6K_k =$$

$$T_i = 0.5T_k =$$

$$T_d = 0.12T_k =$$

4 Regulator DMC

4.1 Strojenie nastawów

Przyjęto $Y_{zad}=5$. Dla podpunktów a) do d
) dobrano regulator ($D=70,~N=20,~N_u=6,~\lambda=1$) o odpowiednio małych horyzontach niepogarszających regulacji (rys. 10). Uzyskano $J_y=4.23$ oraz $J_y=184.99$.

Rysunek 10: Symulacja regulacji dla $D=70,\,N=20,\,N_u=6,\,\lambda=1$

Przy zmniejszaniu wartości parametru λ uzyskiwano gorszej jakości wyjście modelu (większe oscylacje) oraz mniejsze zmiany sterowania (np. $J_y = 5.60$, $J_u = 180.31$ dla symulacji z rys. 11)

Rysunek 11: Symulacja regulacji dla $D=70,\,N=20,\,N_u=6,\,\lambda=0.6$

Przy zwiększaniu wartości parametru λ uzyskiwano lepszej jakości wyjście modelu (mniejsze oscylacje, brak przeregulowania) i wejście o większych zmianach (np. $J_y=1.63,\ J_u=210.50$ dla symulacji z rys. 12

Rysunek 12: Symulacja regulacji dla $D=70,\,N=20,\,N_u=6,\,\lambda=6$

Ostatecznie ustalono optymalne nastawy dla $\lambda=3$ ($J_y=2.43,\ J_u=198.40,\ {\rm rys.}\ 13$).

Rysunek 13: Symulacja regulacji dla $D=70,\,N=20,\,N_u=6,\,\lambda=3$

4.2 Niemierzalne zakłócenie wyjścia

Do wyjścia modelu dodano zakłócenie wartości $Y_{szum}=1$ od chwili T=40 (rys. 14). Spowodowało to zmianę w sterowaniu modelem przez regulator i zmianę w przebiegu wyjścia modelu lecz ostatecznie poprawną regulację. Nawet podczas dalszego zwiększania (np. $Y_{szum}=6$, rys. 15) obiekt był regulowany poprawnie, co spowodowane wykorzystaniem różnic poprzednich sterowań w regulatorze.

Rysunek 14: Symulacja regulacji z niemierzalnym zakłóceniem wartości 1.

Rysunek 15: Symulacja regulacji z niemierzalnym zakłóceniem wartości 6.

4.3 Testowanie odporności

Przyjęto w/w przyjęte parametry regulacji. Co oczywiste, im bardziej zmienimy inercję modelu tym trudniej będzie go wyregulować. Dla zmniejszonego czasu odpowiedzi występują oscylacje wejścia i wyjścia modelu (rys. 16, rys.17, rys.18). Dla zwiększonego czasu odpowiedzi występują oscylację sygnału wejściowego i pogorszenie regulacji (rys. 19, 20, 21). Dla opóźnień oraz małych przyspieszeń inercji obiektu udaje się uzyskać regulację.

Rysunek 16: Testowanie odporności dla $y(k) = b_6 u(k-5) + b_7 u(k-6) - a_1 y(k-1) - a_2 y(k-2) =$.

Rysunek 17: Testowanie odporności dla $y(k) = b_6 u(k-3) + b_7 u(k-4) - a_1 y(k-1) - a_2 y(k-2)$.

Rysunek 18: Testowanie odporności dla $y(k) = b_6 u(k-1) + b_7 u(k-2) - a_1 y(k-1) - a_2 y(k-2)$.

Rysunek 19: Testowanie odporności dla $y(k) = b_6 u(k-7) + b_7 u(k-8) - a_1 y(k-1) - a_2 y(k-2)$.

Rysunek 20: Testowanie odporności dla $y(k) = b_6 u(k-9) + b_7 u(k-10) - a_1 y(k-1) - a_2 y(k-2)$.

Rysunek 21: Testowanie odporności dla $y(k) = b_6 u(k-16) + b_7 u(k-17) - a_1 y(k-1) - a_2 y(k-2)$.