Pauta de Corrección

Recuperación Primer Certamen Introducción a la Informática Teórica

6 de diciembre de 2011

1. Hay una relación entre el número de a y b, todo indicaría que no es regular.

Supongamos que el lenguaje es regular, con lo que cumple el lema de bombeo. Sea N la constante del lema, elegimos un número n en el rango N < n < 2N y un primo p > 2N, con lo que $\sigma = a^n b^p$ es parte del lenguaje y suficientemente largo para que se aplique el lema. Entonces existen x, y y z tales que:

- $\sigma = xyz$
- $|xy| \leq N$
- $y \neq \epsilon$
- Para todo $k \geq 0$ la palabra xy^kz pertenece al lenguaje

Por las condiciones dadas, x e y están formadas únicamente por a. Para $k \ge 0$ el string xy^kz tendrá $n + (k-1) \cdot |y|$ veces a y p veces b. Si elegimos k tal que

$$n + (k-1) \cdot |y| \equiv 0 \pmod{p}$$
$$k \cdot |y| \equiv |y| - n \pmod{p}$$

resulta que gcd $(n+(k-1)\cdot |y|,p)\neq 1$, lo que llevaría a una contradicción. Pero la ecuación dada tiene solución para k en \mathbb{Z}_p , ya que es un campo. Además, $|y|-n\not\equiv 0\pmod p$ porque $|y|\leq N$ y N< n< 2N, con lo que $k\not\equiv 0\pmod p$, y falla el lema.

Puntajes

Total		15
- Sospecha que no es regular	3	
– Planteo lema del bombeo	5	
– Encontrar contradicción	7	

- 2. Para demostrar que la equivalencia no vale, basta exhibir una palabra que pertenece a uno de los lados pero no el otro para valores particulares de R y S. Para demostrar que vale, debe demostrarse que expresan lo mismo.
 - (a) Informalmente, el lado izquierdo es cualquier número de R y S en cualquier orden, mientras el lado derecho es un número arbitrario de R o un número arbitrario de S.

Consideremos expresiones regulares sobre $\Sigma = \{a, b\}$:

$$ab \in (a+b)^*$$
$$ab \not\in a^* + b^*$$

Como ab pertenece al lado izquierdo y no al derecho, no son equivalentes. Si no son equivalentes en este caso particular, no lo son en general.

(b) En este caso, podemos escribir:

$$(R^*S^*)^* = ((\epsilon + R \cdot R^*) \cdot (\epsilon + S \cdot S^*))^*$$

$$\subseteq ((\epsilon + R) \cdot (\epsilon + S))^*$$

$$= (\epsilon + R + S + RS)^*$$

$$\subset (R + S)^*$$

Por otro lado:

$$(R+S)^* = ((R+S)^* \cdot (R+S)^*)^*$$

$$\subseteq (R^*S^*)^*$$

Como demostramos \subseteq en ambas direcciones, los conjuntos son iguales.

Puntajes

 Total
 20

 a)
 10

 b)
 10

 ⊆ en cada dirección
 5

3. La figura 1 da un autómata posible.

Figure 1: Un autómata finito que reconoce comentarios C

Puntajes

Total 10 Discusión 10 4. El autómata en nuestra notación gráfica es el de la figura 2.

Figure 2: El autómata finito de la pregunta

(a) $\delta(q_0, aaba)$ es el conjunto de estados en que puede estar el autómata si consume aaba partiendo en el estado q_0 . Paso a paso:

$$\delta(\lbrace q_0 \rbrace, aaba) = \delta(\lbrace q_3, q_4 \rbrace, aba)$$
$$= \emptyset$$

Acá se "traba" el autómata, con lo que $\delta(q_0, aaba) = \emptyset$.

 $\delta(q_3, b)$ acá hay varias opciones:

- En un solo paso: q_4
- Consumiendo ϵ , luego b: q_2
- Consumiendo b, luego ϵ : q_5

Resumiendo: $\delta(q_3, b) = \{q_2, q_4, q_5\}$

De la figura 2 se ve que no hay camino hasta el estado final q_2 desde los estados q_4 y q_5 , con lo que son inútiles. A los demás estados se puede llegar desde el estado inicial q_0 , por lo que son relevantes. Restringiendo el autómata a los estados $\{q_0, q_1, q_2, q_3\}$, se ve que sólo acepta ab y b. Como no hay ciclos en esta parte del autómata, el lenguaje que acepta es finito.

Puntajes

Total			20
$\mathbf{a})$		10	
$\delta(q_0, aaba)$	5		
$\delta(q_3,b)$	5		
b)		10	
Eliminar estados inútiles	3		
No hay ciclos, el lenguaje es finito	7		

- 5. Cada situación por turno.
 - (a) Sean $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1 \text{ y } M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ autómatas finitos deterministas tales que $\mathcal{L}_1 = \mathcal{L}(M_1) \text{ y } \mathcal{L}_2 = \mathcal{L}(M_2)$. Construimos el autómata determinista $M = (Q_1 \times Q_2, \Sigma, \delta, (q_1, q_2), F_1 \times F_2)$, en el cual la función de transición está dada por:

$$\delta((q', q''), a) = (\delta_1(q', a), \delta_2(q'', a))$$

Este autómata traza el funcionamiento de M_1 en la primera componente de su estado, y simultáneamente el de M_2 en la segunda. Acepta sólo si ambos aceptan, vale decir, acepta la intersección.

Alternativamente, sabemos que la clase de los lenguajes regulares es cerrada respecto de la unión, y es cerrada respecto de complemento (tome un autómata determinista $M = (Q, \Sigma, \delta, q_0, F)$ que acepta \mathcal{L} , el autómata $\overline{M} = (Q, \Sigma, \delta, q_0, Q \setminus F)$ acepta $\overline{\mathcal{L}}$). Como $A \cap B = \overline{\overline{A} \cup \overline{B}}$, también es cerrada respecto de intersección.

- (b) No es regular en todos los casos.
 - Supongamos que fuera regular para $\mathcal{L}_1 = \{a,b\}^*$, es aplicable el lema de bombeo. Sea N la constante del lema, elegimos ab^Nab^N en el lenguaje, al dividir en xyz con |xy| < N resulta que si $x = \epsilon$ en xy^2z hay b repetidas en la primera parte, que no se replican en la segunda; de ser y sólo a, la segunda b no estará en el punto central. O sea, xy^kz no siempre pertenece al lenguaje, que no es regular.
- (c) ¡Esto es trampa! Este lenguaje no es más que Σ^+ (cualquier cosa no vacía que se pueda obtener de $(\omega\omega)^*$ pertenece a Σ^+), y por tanto regular.
- (d) Podemos usar una construcción similar a la de la parte (a), sólo que cambiando el segundo autómata para que acepte cualquier símbolo:

$$\delta((q',q''),a) = (\delta_1(q',a),\delta_2(q'',\Sigma))$$

El resultado es un autómata no determinista, pero igualmente el lenguaje aceptado es regular. Alternativamente, podemos definir el homomorfismo h(x) = a para todo $x \in \Sigma$, entonces por propiedades de los lenguajes regulares es regular $\mathcal{L}_1 \cap h^{-1}(h(\mathcal{L}_2))$, que es exactamente el lenguaje pedido.

Puntajes

	-	
Total		15
$\mathbf{a})$	3	
b)	4	
c)	4	
ď)	4	

6. Construimos un autómata finito determinista que alternativamente da un paso en \mathcal{L}_1 y uno en \mathcal{L}_2 . Sean $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ y $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ autómatas finitos deterministas tales que $\mathcal{L}_1 = \mathcal{L}(M_1)$ y $\mathcal{L}_2 = \mathcal{L}(M_2)$. La estrategia es que el estado es el estado de M_1 , el estado de M_2 y el turno. Construimos el autómata determinista $M = (Q_1 \times Q_2 \times \{1,2\}, \Sigma, \delta, (q_1, q_2, 1), F_1 \times F_2 \times \{2\})$, en el cual la función de transición está dada por:

$$\delta((q', q'', t), a) = \begin{cases} (\delta(q', a), q'', 2) & \text{si } t = 1\\ (q', \delta(q'', a), 1) & \text{si } t = 2 \end{cases}$$

Entonces M acepta SHUFFLE($\mathcal{L}_1, \mathcal{L}_2$).

Otra alternativa es usar propiedades. Sea x un nuevo símbolo, definimos homomorfismos:

$$h_1(a) = ax$$
 para todo $a \in \Sigma$

$$h_2(a) = xa$$
 para todo $a \in \Sigma$

$$h_3(a) = x$$
 para todo $a \in \Sigma$

Entonces

$$h_1(\mathcal{L}_1) = \{a_1 x a_2 x \dots a_n x : a_1 a_2 \dots a_n \in \mathcal{L}\}$$

$$h_2(\mathcal{L}_2) = \{xb_1xb_2\dots xb_m : b_1b_2\dots b_m \in \mathcal{L}\}$$

Así $h_3^{-1}(h_1(\sigma_1))$ para $\sigma_1 \in \mathcal{L}_1$ es alternativamente un símbolo de σ_1 y uno cualquiera, y similarmente $h_3^{-1}(h_2(\sigma_2))$ con $\sigma_2 \in \mathcal{L}_2$. La intersección entre ambos es SHUFFLE($\mathcal{L}_1, \mathcal{L}_2$). Pero la clase de lenguajes regulares es cerrada respecto de todas estas operaciones.

Puntajes

Total 20 Discusión 20