

# 第1章 产品简介

#### 1.1 产品概述

EBF1052 邮票孔核心板是野火电子基于 NXP i.MX 1052 系列处理器设计的一款低功耗、 高性能的嵌入式跨界 SOC, 工业级主频最高可达 528MHz (商业级可达600MHZ), 具体见图 1-1。核心板整板元件采用工业级选料,板载32MB SDRAM,32MB NORFLASH,2Kb EEPROM,10/100M 以太网 PHY (可选,型号为LAN8720A)。PCB采用6层黑色沉金设计,单面放元件,整体尺寸32x32mm,共116个引脚,引脚间距1.0mm,除了SEMC总线没有引出,芯片其余IO均引出。该核心板适用于工业控制、手持扫码、喷墨打印机、轨道交通、无人机控制和音频输出等领域。

EBF1052 邮票孔核心板提供完整的 SDK 驱动开发包、核心板封装库,底板应用参考设计原理图,可帮助客户大大缩减产品的开发时间,加快产品上市。嵌入式实时操作系统支持 FreeRTOS 和 RT-Thread,嵌入式图形界面支持 emXGUI 和 emWIN。





图 1-1 EBF1052 邮票孔核心板,带屏蔽盖与不带屏蔽盖

EBF1052 邮票孔核心板是为了产品批量使用而开发的,为了方便用户在前期验证这个核心板,我们提供了三款底板,功能由少到多,覆盖了各个开发群体的用户,具体见图 1-2 的 Tiny、图 1-3 的 Mini 和图 1-4 的 Pro。



图 1-2 EBF1052 邮票孔核心板 EVK Tiny





图 1-3 EBF1052 邮票孔核心板 EVK Mini



图 1-4EBF1052 邮票孔核心板 EVK Pro

## 1.2 产品特性

- CPU: NXP i.MXRT1052 系列跨界处理器
- 频率:工业级最高可达 528MHZ,商业级最高可达 600MHZ
- SDRAM: 板载 32MB SDRAM
- NOR FALSH: 板载 32MB SPI FALSH
- EEPROM: 板载 2Kb EEPROM
- 以太网: PCB 上预留以太网 PHY 焊接位置,型号为 LAN8720A
- 电源: 5V±2%单电源供电
- PCB: 6层黑色沉金,尺寸为 32mm X 32mm
- 引脚: 116个引脚,引脚间距为 1.0mm
- 封装: 邮票孔封装, 单面元件, 背面没有元件, 底板不需要挖槽

#### 一基于野火 i.MX RT1052 邮票孔核心板 EBF1052

- LCD: 1 路, 当使用以太网时, 只能使用 RGB565, 不使用以太网时, RGB888 可用
- USB: 2路, 带高速 PHY
- SDIO: 2路
- I2C: 4 个
- SPI: 4个
- UART: 8个
- SAI: 3个
- CSI: 1个
- ADC: 2个,每个 ADC 有 16 个通道,12bit
- PWM: 4 个
- JTAG: 1路
- SPDIF: 2路
- CAN: 2个

注意:以上数据为最大值,可能有复用,请根据 EBF1052 核心板引脚说明作为参考设计

- ◆ 嵌入式实时操作系统: 支持 FreeRTOS 和 RT-Thread
- ◆ 嵌入式图形界面: 支持 emXGUI 和 emWIN

### 1.3 命名规则

EBF1052 邮票孔核心板的主控 MCU, SDRAM、NORFLASH 和以太网 PHY 均有不同的配置,具体的命名规则见图 1-5 和表格 1-1。



图 1-5 EBF1052 邮票孔核心板命名规则

表格 1-1 EBF1052 邮票孔核心板命名规则

| EBF  | 野火电子公司英文名 EmbedFire                          |
|------|----------------------------------------------|
| 1052 | MCU名称                                        |
| C/D  | C: MUC 为工业级、D: MCU 为商业级,SDRAM 和 NOR 还是统一用工业级 |
| xxxN | NOR FLASH 的容量,单位为 mbit                       |
| xxxS | SDRAM 的容量,单位为 mbit                           |
| X    | N:表示带以太网 PHY , 温度级别与 MCU 级别一致,空则表示不带         |

— 基于野火 i.MX RT1052 邮票孔核心板 EBF1052



# 1.4 产品选型

#### 表格 1-2 EBF1052 系列邮票孔核心板型号选型

| 型号      | EBF1052C-256N256S | EBF1052C-256N256S-N | EBF1052D-256N256S | EBF1052D-256N256S-N |
|---------|-------------------|---------------------|-------------------|---------------------|
| 主芯片     | MIMX RT1052CVL5B  | MIMX RT1052CVL5B    | MIMX RT1052DVL5B  | MIMX RT1052DVL5B    |
| 主频      | 528MHZ            | 528MHZ              | 600MHZ            | 600MHZ              |
| 温度级别    | -40° ~+85°        | -40° ~+85°          | 0° ~+70°          | 0° ~+70°            |
| SDRAM   | 32MB, 工业级         | 32MB,工业级            | 32MB, 工业级         | 32MB, 工业级           |
| FLASH   | 32MB,工业级          | 32MB,工业级            | 32MB,工业级          | 32MB, 工业级           |
| 以太网 PHY | 没有                | 有                   | 没有                | 有                   |



# 第2章 引脚功能

EBF1052 邮票孔核心板的引脚功能有两个版本,分别为板载以太网 PHY 和没有板载以太网 PHY 两个版本,有关这两个版本的引脚功能说明具体见表格 2-1 和表格 2-2。

#### 2.1 EBF1052 不带以太网 PHY 版本引脚说明

注意:表格中的"默认功能"列指的是 EBF1052 核心板接到 Pro 底板时分配的功能,如果用户单独做底板,可根据核心板引脚具体连接的芯片引脚来配置具体的功能。芯片每个引脚有很多的复用功能,并不局限于表格中我们使用的默认功能。

表格 2-1 EBF1052C-256N256S 与 EBF1052D-256N256S 引脚功能(即不带以太网 PHY 版本)

| 引脚 | 网络标号        | 芯片引脚       | 默认功能            | 功能说明                     | 参考电平 | 输入<br>输出 |
|----|-------------|------------|-----------------|--------------------------|------|----------|
| 1  | ENET_RXER   | GPIO_B1_11 | GPIO2_IO27      | 普通 GPIO,与芯片直连            | 3.3V | I/O      |
| 2  | ENET_TXCLK  | GPIO_B1_10 | GPIO2_IO26      | 普通 GPIO,与芯片直连            | 3.3V | 1/0      |
| 3  | ENET_TXEN   | GPIO_B1_09 | GPIO2_IO25      | 普通 GPIO,与芯片直连            | 3.3V | I/O      |
| 4  | ENET_TXD1   | GPIO_B1_08 | GPIO2_IO24      | 普通 GPIO,与芯片直连            | 3.3V | 1/0      |
| 5  | ENET_TXD0   | GPIO_B1_07 | GPIO2_IO23      | 普通 GPIO,与芯片直连            | 3.3V | I/O      |
| 6  | ENET_CRS_DV | GPIO_B1_06 | GPIO2_IO22      | 普通 GPIO,与芯片直连            | 3.3V | 1/0      |
| 7  | ENET_RXD1   | GPIO_B1_05 | GPIO2_IO21      | 普通 GPIO,与芯片直连            | 3.3V | I/O      |
| 8  | ENET_RXD0   | GPIO_B1_04 | GPIO2_IO20      | 普通 GPIO,与芯片直连            | 3.3V | 1/0      |
| 9  | LCDIF_D15   | GPIO_B1_03 | LCD_DATA15 (R7) | 液晶驱动功能引脚,与芯片直连           | 3.3V | I/O      |
| 10 | LCDIF_D14   | GPIO_B1_02 | LCD_DATA14 (R6) | 液晶驱动功能引脚,与芯片直连           | 3.3V | 1/0      |
| 11 | LCDIF_D13   | GPIO_B1_01 | LCD_DATA13 (R5) | 液晶驱动功能引脚,与芯片直连           | 3.3V | 1/0      |
| 12 | LCDIF_D12   | GPIO_B1_00 | LCD_DATA12 (R4) | 液晶驱动功能引脚,与芯片直连           | 3.3V | 1/0      |
| 13 | LCDIF_D11   | GPIO_B0_15 | LCD_DATA11 (R3) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | 1/0      |
| 14 | LCDIF_D10   | GPIO_B0_14 | LCD_DATA10 (G7) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | 1/0      |
| 15 | LCDIF_D9    | GPIO_B0_13 | LCD_DATA09 (G6) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | 1/0      |
| 16 | LCDIF_D8    | GPIO_B0_12 | LCD_DATA08 (G5) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | 1/0      |
| 17 | LCDIF_D7    | GPIO_B0_11 | LCD_DATA07 (G4) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | 1/0      |
| 18 | LCDIF_D6    | GPIO_B0_10 | LCD_DATA06 (G3) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | 1/0      |
| 19 | LCDIF_D5    | GPIO_B0_09 | LCD_DATA05 (G2) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | I/O      |
| 20 | LCDIF_D4    | GPIO_B0_08 | LCD_DATA04 (B7) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | 1/0      |
| 21 | LCDIF_D3    | GPIO_B0_07 | LCD_DATA03 (B6) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | I/O      |
| 22 | LCDIF_D2    | GPIO_B0_06 | LCD_DATA02 (B5) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | 1/0      |
| 23 | LCDIF_D1    | GPIO_B0_05 | LCD_DATA01 (B4) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | I/O      |
| 24 | LCDIF_D0    | GPIO_B0_04 | LCD_DATA00 (B3) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | 1/0      |
| 25 | LCDIF_VS    | GPIO_B0_03 | LCD_VSYNC       | 液晶驱动功能引脚,与芯片直连           | 3.3V | 1/0      |
| 26 | LCDIF_HS    | GPIO_B0_02 | LCD_HSYNC       | 液晶驱动功能引脚,与芯片直连           | 3.3V | 1/0      |
| 27 | LCDIF_ENA   | GPIO_B0_01 | LCD_ENABLE      | 液晶驱动功能引脚,与芯片直连           | 3.3V | I/O      |
| 28 | GND         |            | GND             | 电源地                      | 0V   | -        |
| 29 | LCDIF_CLK   | GPIO_B0_00 | LCD_CLK         | 液晶驱动功能引脚,与芯片直连           | 3.3V | I/O      |
| 30 | UART5_TXD   | GPIO_B1_12 | LPUART5_TX      | 串口 5,与芯片直连               | 3.3V | 1/0      |



| 31 | UART5_RXD     | GPIO_B1_13    | LPUART5_RX         | 串口 5,与芯片直连                         | 3.3V      | I/O |
|----|---------------|---------------|--------------------|------------------------------------|-----------|-----|
| 32 | SD0_VSELECT   | GPIO_B1_14    | USDHC1_VSELECT     | SD3.0 接口电源切换引脚,内部使用,请悬空            | 3.3V      | 1/0 |
| 33 | ENET_MDIO     | GPIO_B1_15    | ENET_MDIO          | 以太网功能引脚,内部与网络 PHY 相连               | 3.3V      | I/O |
| 34 | GPIO_EMC_40   | GPIO2_IO26    | GPIO3_IO26         | 普通 GPIO,与芯片直连                      | 3.3V      | 1/0 |
| 35 | GPIO_EMC_41   | GPIO3_IO27    | GPIO3_IO27         | 普通 GPIO,与芯片直连                      | 3.3V      | I/O |
| 36 | GND           |               | GND                | ■ 电源地                              | 0V        | -   |
| 37 | SD1_CMD       | GPIO_SD_B0_00 | USDHC1_CMD         | SD3.0 功能引脚,与芯片直连,上拉 10K 电阻         | 3.3V/1.8V | 1/0 |
| 38 | SD1_CLK       | GPIO_SD_B0_01 | USDHC1_CLK         | SD3.0 功能引脚,与芯片直连                   | 3.3V/1.8V | 1/0 |
| 39 | SD1_D0        | GPIO_SD_B0_02 | USDHC1_DATA0       | SD3.0 功能引脚,与芯片直连,上拉 10K 电阻         | 3.3V/1.8V | 1/0 |
| 40 | SD1_D1        | GPIO_SD_B0_03 | USDHC1_DATA1       | SD3.0 功能引脚,与芯片直连                   | 3.3V/1.8V | 1/0 |
| 41 | SD1_D2        | GPIO_SD_B0_04 | USDHC1_DATA2       | SD3.0 功能引脚,与芯片直连                   | 3.3V/1.8V | I/O |
| 42 | SD1_D3        | GPIO_SD_B0_05 | USDHC1_DATA3       | SD3.0 功能引脚,与芯片直连                   | 3.3V/1.8V | 1/0 |
| 43 | GND           |               | GND                | 电源地                                | 0V        | -   |
| 44 | FlexSPI_D3_B  | GPIO_SD_B1_00 | USDHC2_DATA3       | SD2.0 功能引脚,与芯片直连                   | 3.3V      | I/O |
| 45 | FlexSPI_D2_B  | GPIO_SD_B1_01 | USDHC2_DATA2       | SD2.0 功能引脚,与芯片直连                   | 3.3V      | 1/0 |
| 46 | FlexSPI_D1_B  | GPIO_SD_B1_02 | USDHC2_DATA1       | SD2.0 功能引脚,与芯片直连                   | 3.3V      | 1/0 |
| 47 | FlexSPI_D0_B  | GPIO_SD_B1_03 | USDHC2_DATA0       | SD2.0 功能引脚,与芯片直连                   | 3.3V      | I/O |
| 48 | FlexSPI_CLK_B | GPIO_SD_B1_04 | USDHC2_CLK         | SD2.0 功能引脚,与芯片直连                   | 3.3V      | 1/0 |
| 49 | FlexSPI_DQS   | GPIO_SD_B1_05 | USDHC2_CMD         | SD2.0 功能引脚,与芯片直连                   | 3.3V      | I/O |
| 50 | FlexSPI_SS0   | GPIO_SD_B1_06 | FLEXSPIA_SSO_B     | 内置 QSPIflash 引脚与芯片直连,请悬空,上拉 10K 电阻 | 3.3V      | 1/0 |
| 51 | FlexSPI_CLK   | GPIO_SD_B1_07 | FLEXSPIA_SCLK      | 内置 QSPIflash 引脚与芯片直连,请悬空           | 3.3V      | I/O |
| 52 | FlexSPI_D0_A  | GPIO_SD_B1_08 | FLEXSPIA_DATA00    | 内置 QSPIflash 引脚与芯片直连,请悬空           | 3.3V      | 1/0 |
| 53 | FlexSPI_D1_A  | GPIO_SD_B1_09 | FLEXSPIA_DATA01    | 内置 QSPIflash 引脚与芯片直连,请悬空           | 3.3V      | I/O |
| 54 | FlexSPI_D2_A  | GPIO_SD_B1_10 | FLEXSPIA_DATA02    | 内置 QSPIflash 引脚与芯片直连,请悬空           | 3.3V      | 1/0 |
| 55 | FlexSPI_D3_A  | GPIO_SD_B1_11 | FLEXSPIA_DATA03    | 内置 QSPIflash 引脚与芯片直连,请悬空           | 3.3V      | I/O |
| 56 | GND           |               | GND                | 电源地                                | 0V        | -   |
| 57 | OTG2_DP       | USB_OTG2_DP   | USB_OTG2_DP        | USB OTG2 功能引脚,与芯片直连                | 3.3V      | -   |
| 58 | OTG2_DN       | USB_OTG2_DN   | USB_OTG2_DN        | USB OTG2 功能引脚,与芯片直连                | 3.3V      | -   |
| 59 | 5V_SYS        |               |                    | 电源 5V                              | 5V        | -   |
| 60 | 5V_SYS        |               |                    | 电源 5V                              | 5V        | -   |
| 61 | GND           |               | GND                | 电源地                                | 0V        | -   |
| 62 | GND           |               | GND                | 电源地                                | 0V        | -   |
| 63 | VDD_COIN_3V   |               |                    | SNVS 供电,外接纽扣电池,不用可悬空               | 3.0V      | -   |
| 64 | ONOFF         | ONOFF         | ONOFF              | 电源开关机引脚与芯片直连,长按关机                  | 3.3V      | 1   |
| 65 | PMIC_ON       | GPIO5_IO00    | CCM_PMIC_ON_REQ    | 内置 PMU 外设电源控制引脚,控制外设供电             | 3.3V      | 0   |
| 66 | PMIC_STBY     | GPIO5_IO00    | CCM_PMIC_VSTBY_REQ | 内置 PMU 待机控制引脚,控制待机功能               | 3.3V      | 0   |
| 67 | POR_B         | SRC_POR_B     | SRC_POR_B          | 复位引脚,与芯片直连,用于系统复位                  | 3.3V      | ı   |
| 68 | KEY           | GPIO5_IO00    | GPIO5_IO00         | 用户按键输入,与芯片直连                       |           | 1   |
| 69 | GND           |               | GND                | 电源地                                | 0V        | -   |
| 70 | OTG1_DN       | USB_OTG1_DP   | USB_OTG1_DP        | USB OTG1 功能引脚,与芯片直连                | -         | -   |
| 71 | OTG1_DP       | USB_OTG1_DN   | USB_OTG1_DN        | USB OTG1 功能引脚,与芯片直连                | -         | -   |
| 72 | GND           |               | GND                | 电源地                                | 0V        | -   |
| 73 | CLK1_OUT_P    | CCM_CLK1_P    | CCM_CLK1_P         | 差分时钟输入/输出,与芯片直连                    |           |     |
| 74 | CLK1_OUT_N    | CCM_CLK1_N    | CCM_CLK1_N         | 差分时钟输入/输出,与芯片直连                    |           |     |



| 75  | SAI1_TX_SYNC  | GPIO_AD_B1_15 | SAI1_TX_SYNC    | 音频功能输入输出引脚,与芯片直连                | 3.3V | I/O |
|-----|---------------|---------------|-----------------|---------------------------------|------|-----|
| 76  | SAI1_TX_BCLK  | GPIO_AD_B1_14 | SAI1_TX_BCLK    | 音频功能输入输出引脚,与芯片直连                | 3.3V | 1/0 |
| 77  | SAI1_TXD      | GPIO_AD_B1_13 | SAI1_TX_DATA00  | 音频功能输入输出引脚,与芯片直连                | 3.3V | I/O |
| 78  | SAI1_RXD      | GPIO_AD_B1_12 | SAI1_RX_DATA00  | 音频功能输入输出引脚,与芯片直连                | 3.3V | 1/0 |
| 79  | SAI1_RX_BCLK  | GPIO_AD_B1_11 | SAI1_RX_BCLK    | 音频功能输入输出引脚,与芯片直连                | 3.3V | I/O |
| 80  | SAI1_RX_SYNC  | GPIO_AD_B1_10 | SAI1_RX_SYNC    | 音频功能输入输出引脚,与芯片直连                | 3.3V | 1/0 |
| 81  | SAI1_MCLK     | GPIO_AD_B1_09 | SAI1_MCLK       | 音频功能输入输出引脚,与芯片直连                | 3.3V | I/O |
| 82  | GND           |               | GND             | 电源地                             | 0V   | -   |
| 83  | GPIO_AD_B1_08 | GPIO_AD_B1_08 | GPIO1_IO24      | 普通 GPIO,与芯片直连                   | 3.3V | I/O |
| 84  | GPIO_AD_B1_07 | GPIO_AD_B1_07 | GPIO1_IO23      | 普通 GPIO,与芯片直连                   | 3.3V | 1/0 |
| 85  | GPIO_AD_B1_06 | GPIO_AD_B1_06 | GPIO1_IO22      | 普通 GPIO,与芯片直连                   | 3.3V | I/O |
| 86  | GPIO_AD_B1_05 | GPIO_AD_B1_05 | GPIO1_IO21      | 普通 GPIO,与芯片直连                   | 3.3V | 1/0 |
| 87  | ENET_MDC      | GPIO_AD_B1_04 | ENET_MDC        | 以太网功能引脚,内部与网络 PHY 相连            | 3.3V | I/O |
| 88  | GND           |               | GND             | 电源地                             | 0V   | -   |
| 89  | SPDIF_IN      | GPIO_AD_B1_03 | SPDIF_IN        | 光纤输入引脚,与芯片直连                    | 3.3V | 1   |
| 90  | SPDIF_OUT     | GPIO_AD_B1_02 | SPDIF_OUT       | 光纤输出引脚,与芯片直连                    | 3.3V | 0   |
| 91  | I2C1_SDA      | GPIO_AD_B1_01 | LPI2C1_SDA      | I2C 功能引脚,与 EEPROM 相连,上拉 2.2K 电阻 | 3.3V | 1/0 |
| 92  | I2C1_SCL      | GPIO_AD_B1_00 | LPI2C1_SCL      | I2C 功能引脚,与 EEPROM 相连,上拉 2.2K 电阻 | 3.3V | 1/0 |
| 93  | CAN2_RX       | GPIO_AD_B0_15 | FLEXCAN2_RX     | FLEXCAN2 功能引脚,与芯片直连             | 3.3V | I/O |
| 94  | CAN2_TX       | GPIO_AD_B0_14 | FLEXCAN2_TX     | FLEXCAN2 功能引脚,与芯片直连             | 3.3V | 1/0 |
| 95  | UART1_RX      | GPIO_AD_B0_13 | LPUART1_RX      | 串口 1 功能引脚,上拉 10K 电阻             | 3.3V | 1/0 |
| 96  | UART1_TX      | GPIO_AD_B0_12 | LPUART1_TX      | 串口 1 功能引脚,上拉 10K 电阻             | 3.3V | 1/0 |
| 97  | JTAG_nTRST    | GPIO_AD_B0_11 | GPIO1_IO11      | 普通 GPIO,与芯片直连                   | 3.3V | I/O |
| 98  | JTAG_TDO      | GPIO_AD_B0_10 | GPIO1_IO10      | 以太网 PHY 中断引脚,上拉 4.7K 电阻         | 3.3V | T   |
| 99  | JTAG_TDI      | GPIO_AD_B0_09 | GPIO1_IO09      | 以太网 PHY 复位引脚,上拉 4.7K 电阻         | 3.3V | 0   |
| 100 | GPIO_AD_B0_08 | GPIO_AD_B0_08 | JTAG_MOD        | JTAG 模式设置引脚,下拉 10K 电阻           | 3.3V | 1/0 |
| 101 | JTAG_TCK      | GPIO_AD_B0_07 | JTAG_TCK        | JTAG 功能引脚,与芯片直连                 | 3.3V | 1/0 |
| 102 | JTAG_TMS      | GPIO_AD_B0_06 | JTAG_TMS        | JTAG 功能引脚,与芯片直连                 | 3.3V | 1/0 |
| 103 | GPIO_AD_B0_05 | GPIO_AD_B0_05 | SRC_BOOT_MODE01 | 启动配置引脚,下拉 10K 电阻,上拉 1k 电阻       |      |     |
| 104 | GPIO_AD_B0_04 | GPIO_AD_B0_04 | SRC_BOOT_MODE00 | 启动配置引脚,下拉 10K 电阻                |      |     |
| 105 | GPIO_AD_B0_03 | GPIO_AD_B0_03 | GPIO1_IO03      | 普通 GPIO,与芯片直连                   | 3.3V | 1/0 |
| 106 | GPIO_AD_B0_02 | GPIO_AD_B0_02 | GPIO1_IO02      | 普通 GPIO,与芯片直连                   | 3.3V | 1/0 |
| 107 | USB_OTG2_ID   | GPIO_AD_B0_00 | GPIO1_IO00      | 普通 GPIO,上拉 4.7K 电阻              | 3.3V | I/O |
| 108 | USB_OTG1_ID   | GPIO_AD_B0_01 | GPIO1_IO01      | 普通 GPIO,上拉 4.7K 电阻              | 3.3V | 1/0 |
| 109 | GND           |               | GND             | 电源地                             | 0V   | -   |
| 110 | ETH_SPD       | -             | -               | 悬空                              |      |     |
| 111 | ETH_LINK      | -             | -               | 悬空                              |      |     |
| 112 | ETH_RXP       | -             | -               | 悬空                              |      |     |
| 113 | ETH_RXN       | -             | -               | 悬空                              |      |     |
| 114 | GND           | =             | GND             | 电源地                             | 0V   | -   |
|     |               |               |                 |                                 |      |     |



#### 一基于野火 i.MX RT1052 邮票孔核心板 EBF1052

| 115 | ETH_TXP | - | -   | 悬空  |    |   |
|-----|---------|---|-----|-----|----|---|
| 116 | ETH_TXN | - | -   | 悬空  |    |   |
| 117 | GND     |   | GND | 电源地 | 0V | - |
| 118 | GND     |   | GND | 电源地 | 0V | - |
| 119 | GND     |   | GND | 电源地 | 0V | - |
| 120 | GND     |   | GND | 电源地 | 0V | - |

# 2.2 EBF1052 带以太网 PHY 版本引脚说明

表格 2-2 EBF1052C-256N256S-N 与 EBF1052D-256N256S-N 引脚功能(即带以太网 PHY 版本)

| 引脚 | 网络标号        | 芯片引脚       | 默认功能            | 功能说明                     | 参考电平 | 输入<br>输出 |
|----|-------------|------------|-----------------|--------------------------|------|----------|
| 1  | ENET_RXER   | GPIO_B1_11 | ENET_RX_ER      | 以太网功能引脚,内部与网络 PHY 相连     | 3.3V | 1/0      |
| 2  | ENET_TXCLK  | GPIO_B1_10 | ENET_TX_CLK     | 以太网功能引脚,内部与网络 PHY 相连     | 3.3V | 1/0      |
| 3  | ENET_TXEN   | GPIO_B1_09 | ENET_TX_EN      | 以太网功能引脚,内部与网络 PHY 相连     | 3.3V | 1/0      |
| 4  | ENET_TXD1   | GPIO_B1_08 | ENET_TX_DATA01  | 以太网功能引脚,内部与网络 PHY 相连     | 3.3V | 1/0      |
| 5  | ENET_TXD0   | GPIO_B1_07 | ENET_TX_DATA00  | 以太网功能引脚,内部与网络 PHY 相连     | 3.3V | 1/0      |
| 6  | ENET_CRS_DV | GPIO_B1_06 | ENET_RX_EN      | 以太网功能引脚,内部与网络 PHY 相连     | 3.3V | 1/0      |
| 7  | ENET_RXD1   | GPIO_B1_05 | ENET_RX_DATA01  | 以太网功能引脚,内部与网络 PHY 相连     | 3.3V | 1/0      |
| 8  | ENET_RXD0   | GPIO_B1_04 | ENET_RX_DATA00  | 以太网功能引脚,内部与网络 PHY 相连     | 3.3V | 1/0      |
| 9  | LCDIF_D15   | GPIO_B1_03 | LCD_DATA15 (R7) | 液晶驱动功能引脚,与芯片直连           | 3.3V | 1/0      |
| 10 | LCDIF_D14   | GPIO_B1_02 | LCD_DATA14 (R6) | 液晶驱动功能引脚,与芯片直连           | 3.3V | 1/0      |
| 11 | LCDIF_D13   | GPIO_B1_01 | LCD_DATA13 (R5) | 液晶驱动功能引脚,与芯片直连           | 3.3V | 1/0      |
| 12 | LCDIF_D12   | GPIO_B1_00 | LCD_DATA12 (R4) | 液晶驱动功能引脚,与芯片直连           | 3.3V | 1/0      |
| 13 | LCDIF_D11   | GPIO_B0_15 | LCD_DATA11 (R3) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | 1/0      |
| 14 | LCDIF_D10   | GPIO_B0_14 | LCD_DATA10 (G7) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | 1/0      |
| 15 | LCDIF_D9    | GPIO_B0_13 | LCD_DATA09 (G6) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | 1/0      |
| 16 | LCDIF_D8    | GPIO_B0_12 | LCD_DATA08 (G5) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | 1/0      |
| 17 | LCDIF_D7    | GPIO_B0_11 | LCD_DATA07 (G4) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | I/O      |
| 18 | LCDIF_D6    | GPIO_B0_10 | LCD_DATA06 (G3) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | 1/0      |
| 19 | LCDIF_D5    | GPIO_B0_09 | LCD_DATA05 (G2) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | 1/0      |
| 20 | LCDIF_D4    | GPIO_B0_08 | LCD_DATA04 (B7) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | 1/0      |
| 21 | LCDIF_D3    | GPIO_B0_07 | LCD_DATA03 (B6) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | 1/0      |
| 22 | LCDIF_D2    | GPIO_B0_06 | LCD_DATA02 (B5) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | 1/0      |
| 23 | LCDIF_D1    | GPIO_B0_05 | LCD_DATA01 (B4) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | 1/0      |
| 24 | LCDIF_D0    | GPIO_B0_04 | LCD_DATA00 (B3) | 液晶驱动功能引脚,与芯片直连,下拉 10K 电阻 | 3.3V | 1/0      |
| 25 | LCDIF_VS    | GPIO_B0_03 | LCD_VSYNC       | 液晶驱动功能引脚,与芯片直连           | 3.3V | 1/0      |
| 26 | LCDIF_HS    | GPIO_B0_02 | LCD_HSYNC       | 液晶驱动功能引脚,与芯片直连           | 3.3V | 1/0      |
| 27 | LCDIF_ENA   | GPIO_B0_01 | LCD_ENABLE      | 液晶驱动功能引脚,与芯片直连           | 3.3V | 1/0      |
| 28 | GND         |            | GND             | 电源地                      | 0V   | -        |
| 29 | LCDIF_CLK   | GPIO_B0_00 | LCD_CLK         | 液晶驱动功能引脚,与芯片直连           | 3.3V | 1/0      |
| 30 | UART5_TXD   | GPIO_B1_12 | LPUART5_TX      | 串口 5,与芯片直连               | 3.3V | 1/0      |



| 31 | UART5_RXD             | GPIO_B1_13               | LPUART5 RX                |                                                 | 3.3V         | 1/0 |
|----|-----------------------|--------------------------|---------------------------|-------------------------------------------------|--------------|-----|
|    |                       |                          | _                         |                                                 | 3.3V         |     |
| 32 | SD0_VSELECT ENET MDIO | GPIO_B1_14<br>GPIO_B1_15 | USDHC1_VSELECT  ENET MDIO | SD3.0 接口电源切换引脚,内部使用,请悬空<br>以太网功能引脚,内部与网络 PHY 相连 | 3.3V<br>3.3V | 1/0 |
| 34 | GPIO EMC 40           | GPIO_B1_13               | GPIO3 IO26                | 普通 GPIO、与芯片直连                                   | 3.3V         | 1/0 |
| 35 | GPIO_EMC_40           | GPIO2_IO26<br>GPIO3_IO27 | GPIO3_IO26<br>GPIO3_IO27  | 普通 GPIO,与芯片直连                                   | 3.3V         | 1/0 |
| 36 | GND                   | GF103_1021               | GND                       | 电源地                                             | 0V           | 1/0 |
| 37 | SD1_CMD               | GPIO SD B0 00            | USDHC1_CMD                | SD3.0 功能引脚,与芯片直连,上拉 10K 电阻                      | 3.3V/1.8V    | 1/0 |
| 38 |                       |                          |                           | SD3.0 功能引脚,与芯片直连,工拉 10k 电阻 SD3.0 功能引脚,与芯片直连     | 3.3V/1.8V    | 1/0 |
|    | SD1_CLK               | GPIO_SD_B0_01            | USDHC1_CLK                |                                                 |              |     |
| 39 | SD1_D0                | GPIO_SD_B0_02            | USDHC1_DATA1              | SD3.0 功能引脚,与芯片直连,上拉 10K 电阻                      | 3.3V/1.8V    | 1/0 |
| 40 | SD1_D1                | GPIO_SD_B0_03            | USDHC1_DATA1              | SD3.0 功能引脚,与芯片直连                                | 3.3V/1.8V    | 1/0 |
| 41 | SD1_D2                | GPIO_SD_B0_04            | USDHC1_DATA2              | SD3.0 功能引脚,与芯片直连                                | 3.3V/1.8V    | 1/0 |
| 42 | SD1_D3                | GPIO_SD_B0_05            | USDHC1_DATA3              | SD3.0 功能引脚,与芯片直连                                | 3.3V/1.8V    | 1/0 |
| 43 | GND                   |                          | GND                       | 电源地                                             | 0V           | -   |
| 44 | FlexSPI_D3_B          | GPIO_SD_B1_00            | USDHC2_DATA3              | SD2.0 功能引脚,与芯片直连                                | 3.3V         | 1/0 |
| 45 | FlexSPI_D2_B          | GPIO_SD_B1_01            | USDHC2_DATA2              | SD2.0 功能引脚,与芯片直连                                | 3.3V         | 1/0 |
| 46 | FlexSPI_D1_B          | GPIO_SD_B1_02            | USDHC2_DATA1              | SD2.0 功能引脚,与芯片直连                                | 3.3V         | 1/0 |
| 47 | FlexSPI_D0_B          | GPIO_SD_B1_03            | USDHC2_DATA0              | SD2.0 功能引脚,与芯片直连                                | 3.3V         | 1/0 |
| 48 | FlexSPI_CLK_B         | GPIO_SD_B1_04            | USDHC2_CLK                | SD2.0 功能引脚,与芯片直连                                | 3.3V         | 1/0 |
| 49 | FlexSPI_DQS           | GPIO_SD_B1_05            | USDHC2_CMD                | SD2.0 功能引脚,与芯片直连                                | 3.3V         | 1/0 |
| 50 | FlexSPI_SS0           | GPIO_SD_B1_06            | FLEXSPIA_SSO_B            | 内置 QSPIflash 引脚与芯片直连,请悬空,上拉 10K 电阻              | 3.3V         | 1/0 |
| 51 | FlexSPI_CLK           | GPIO_SD_B1_07            | FLEXSPIA_SCLK             | 内置 QSPIflash 引脚与芯片直连,请悬空                        | 3.3V         | 1/0 |
| 52 | FlexSPI_D0_A          | GPIO_SD_B1_08            | FLEXSPIA_DATA00           | 内置 QSPIflash 引脚与芯片直连,请悬空                        | 3.3V         | 1/0 |
| 53 | FlexSPI_D1_A          | GPIO_SD_B1_09            | FLEXSPIA_DATA01           | 内置 QSPIflash 引脚与芯片直连,请悬空                        | 3.3V         | I/O |
| 54 | FlexSPI_D2_A          | GPIO_SD_B1_10            | FLEXSPIA_DATA02           | 内置 QSPIflash 引脚与芯片直连,请悬空                        | 3.3V         | 1/0 |
| 55 | FlexSPI_D3_A          | GPIO_SD_B1_11            | FLEXSPIA_DATA03           | 内置 QSPIflash 引脚与芯片直连,请悬空                        | 3.3V         | I/O |
| 56 | GND                   |                          | GND                       | 电源地                                             | 0V           |     |
| 57 | OTG2_DP               | USB_OTG2_DP              | USB_OTG2_DP               | USB OTG2 功能引脚,与芯片直连                             | 3.3V         | -   |
| 58 | OTG2_DN               | USB_OTG2_DN              | USB_OTG2_DN               | USB OTG2 功能引脚,与芯片直连                             | 3.3V         | -   |
| 59 | 5V_SYS                |                          |                           | 电源 5V                                           | 5V           |     |
| 60 | 5V_SYS                |                          |                           | 电源 5V                                           | 5V           | -   |
| 61 | GND                   |                          | GND                       | 电源地                                             | 0V           | -   |
| 62 | GND                   |                          | GND                       | 电源地                                             | 0V           | -   |
| 63 | VDD_COIN_3V           |                          |                           | SNVS 供电,外接纽扣电池,不用可悬空                            | 3.0V         | -   |
| 64 | ONOFF                 | ONOFF                    | ONOFF                     | 电源开关机引脚与芯片直连,长按关机                               | 3.3V         | 1   |
| 65 | PMIC_ON               | GPIO5_IO00               | CCM_PMIC_ON_REQ           | 内置 PMU 外设电源控制引脚,控制外设供电                          | 3.3V         | 0   |
| 66 | PMIC_STBY             | GPIO5_IO00               | CCM_PMIC_VSTBY_REQ        | 内置 PMU 待机控制引脚,控制待机功能                            | 3.3V         | 0   |
| 67 | POR_B                 | SRC_POR_B                | SRC_POR_B                 | 复位引脚,与芯片直连,用于系统复位                               | 3.3V         | I   |
| 68 | KEY                   | GPIO5_IO00               | GPIO5_IO00                | 用户按键输入,与芯片直连                                    |              | 1   |
| 69 | GND                   |                          | GND                       | 电源地                                             | 0V           | -   |
| 70 | OTG1_DN               | USB_OTG1_DP              | USB_OTG1_DP               | USB OTG1 功能引脚,与芯片直连                             | -            | -   |
| 71 | OTG1_DP               | USB_OTG1_DN              | USB_OTG1_DN               | USB OTG1 功能引脚,与芯片直连                             | -            | -   |
| 72 | GND                   |                          | GND                       | 电源地                                             | 0V           | -   |
| 73 | CLK1_OUT_P            | CCM_CLK1_P               | CCM_CLK1_P                | 差分时钟输入/输出,与芯片直连                                 |              |     |
| 74 | CLK1_OUT_N            | CCM_CLK1_N               | CCM_CLK1_N                | 差分时钟输入/输出,与芯片直连                                 |              |     |



| 75  | SAI1_TX_SYNC  | GPIO_AD_B1_15 | SAI1_TX_SYNC    | 音频功能输入输出引脚,与芯片直连                | 3.3V | I/O |
|-----|---------------|---------------|-----------------|---------------------------------|------|-----|
| 76  | SAI1_TX_BCLK  | GPIO_AD_B1_14 | SAI1_TX_BCLK    | 音频功能输入输出引脚,与芯片直连                | 3.3V | 1/0 |
| 77  | SAI1_TXD      | GPIO_AD_B1_13 | SAI1_TX_DATA00  | 音频功能输入输出引脚,与芯片直连                | 3.3V | I/O |
| 78  | SAI1_RXD      | GPIO_AD_B1_12 | SAI1_RX_DATA00  | 音频功能输入输出引脚,与芯片直连                | 3.3V | 1/0 |
| 79  | SAI1_RX_BCLK  | GPIO_AD_B1_11 | SAI1_RX_BCLK    | 音频功能输入输出引脚,与芯片直连                | 3.3V | I/O |
| 80  | SAI1_RX_SYNC  | GPIO_AD_B1_10 | SAI1_RX_SYNC    | 音频功能输入输出引脚,与芯片直连                | 3.3V | 1/0 |
| 81  | SAI1_MCLK     | GPIO_AD_B1_09 | SAI1_MCLK       | 音频功能输入输出引脚,与芯片直连                | 3.3V | I/O |
| 82  | GND           |               | GND             | 电源地                             | 0V   | -   |
| 83  | GPIO_AD_B1_08 | GPIO_AD_B1_08 | GPIO1_IO24      | 普通 GPIO,与芯片直连                   | 3.3V | I/O |
| 84  | GPIO_AD_B1_07 | GPIO_AD_B1_07 | GPIO1_IO23      | 普通 GPIO,与芯片直连                   | 3.3V | 1/0 |
| 85  | GPIO_AD_B1_06 | GPIO_AD_B1_06 | GPIO1_IO22      | 普通 GPIO,与芯片直连                   | 3.3V | I/O |
| 86  | GPIO_AD_B1_05 | GPIO_AD_B1_05 | GPIO1_IO21      | 普通 GPIO,与芯片直连                   | 3.3V | 1/0 |
| 87  | ENET_MDC      | GPIO_AD_B1_04 | ENET_MDC        | 以太网功能引脚,内部与网络 PHY 相连            | 3.3V | I/O |
| 88  | GND           |               | GND             | 电源地                             | 0V   | -   |
| 89  | SPDIF_IN      | GPIO_AD_B1_03 | SPDIF_IN        | 光纤输入引脚,与芯片直连                    | 3.3V | 1   |
| 90  | SPDIF_OUT     | GPIO_AD_B1_02 | SPDIF_OUT       | 光纤输出引脚,与芯片直连                    | 3.3V | 0   |
| 91  | I2C1_SDA      | GPIO_AD_B1_01 | LPI2C1_SDA      | I2C 功能引脚,与 EEPROM 相连,上拉 2.2K 电阻 | 3.3V | I/O |
| 92  | I2C1_SCL      | GPIO_AD_B1_00 | LPI2C1_SCL      | I2C 功能引脚,与 EEPROM 相连,上拉 2.2K 电阻 | 3.3V | I/O |
| 93  | CAN2_RX       | GPIO_AD_B0_15 | FLEXCAN2_RX     | FLEXCAN2 功能引脚,与芯片直连             | 3.3V | I/O |
| 94  | CAN2_TX       | GPIO_AD_B0_14 | FLEXCAN2_TX     | FLEXCAN2 功能引脚,与芯片直连             | 3.3V | 1/0 |
| 95  | UART1_RX      | GPIO_AD_B0_13 | LPUART1_RX      | 串口 1 功能引脚,上拉 10K 电阻             | 3.3V | 1/0 |
| 96  | UART1_TX      | GPIO_AD_B0_12 | LPUART1_TX      | 串口 1 功能引脚,上拉 10K 电阻             | 3.3V | 1/0 |
| 97  | JTAG_nTRST    | GPIO_AD_B0_11 | GPIO1_IO11      | 普通 GPIO,与芯片直连                   | 3.3V | I/O |
| 98  | JTAG_TDO      | GPIO_AD_B0_10 | GPIO1_IO10      | 以太网 PHY 中断引脚,上拉 4.7K 电阻         | 3.3V | 1   |
| 99  | JTAG_TDI      | GPIO_AD_B0_09 | GPIO1_IO09      | 以太网 PHY 复位引脚,上拉 4.7K 电阻         | 3.3V | 0   |
| 100 | GPIO_AD_B0_08 | GPIO_AD_B0_08 | JTAG_MOD        | JTAG 模式设置引脚,下拉 10K 电阻           | 3.3V | 1/0 |
| 101 | JTAG_TCK      | GPIO_AD_B0_07 | JTAG_TCK        | JTAG 功能引脚,与芯片直连                 | 3.3V | I/O |
| 102 | JTAG_TMS      | GPIO_AD_B0_06 | JTAG_TMS        | JTAG 功能引脚,与芯片直连                 | 3.3V | 1/0 |
| 103 | GPIO_AD_B0_05 | GPIO_AD_B0_05 | SRC_BOOT_MODE01 | 启动配置引脚,下拉 10K 电阻,上拉 1k 电阻       |      |     |
| 104 | GPIO_AD_B0_04 | GPIO_AD_B0_04 | SRC_BOOT_MODE00 | 启动配置引脚,下拉 10K 电阻                |      |     |
| 105 | GPIO_AD_B0_03 | GPIO_AD_B0_03 | GPIO1_IO03      | 普通 GPIO,与芯片直连                   | 3.3V | 1/0 |
| 106 | GPIO_AD_B0_02 | GPIO_AD_B0_02 | GPIO1_IO02      | 普通 GPIO,与芯片直连                   | 3.3V | 1/0 |
| 107 | USB_OTG2_ID   | GPIO_AD_B0_00 | GPIO1_IO00      | 普通 GPIO,上拉 4.7K 电阻              | 3.3V | I/O |
| 108 | USB_OTG1_ID   | GPIO_AD_B0_01 | GPIO1_IO01      | 普通 GPIO,上拉 4.7K 电阻              | 3.3V | I/O |
| 109 | GND           | -             | GND             | 电源地                             | 0V   | -   |
| 110 | ETH_SPD       | -             | ETH_SPD         | 以太网 PHY 速度指示灯输出                 |      |     |
| 111 | ETH_LINK      | =             | ETH_LINK        | 以太网 PHY 链接指示灯输出                 |      |     |
| 112 | ETH_RXP       | -             | ETH_RXP         | 以太网 PHY 差分输入                    |      |     |
| 113 | ETH_RXN       | -             | ETH_RXN         | 以太网 PHY 差分输入                    |      |     |
| 114 | GND           | =             | GND             | 电源地                             | 0V   | -   |
|     |               |               |                 |                                 |      |     |



| 115 | ETH_TXP | _ | ETH_TXP | 以太网 PHY 差分输出 |    |   |
|-----|---------|---|---------|--------------|----|---|
| 116 | ETH_TXN | - | ETH_TXN | 以太网 PHY 差分输出 |    |   |
| 117 | GND     |   | GND     | 电源地          | 0V | - |
| 118 | GND     |   | GND     | 电源地          | 0V | - |
| 119 | GND     |   | GND     | 电源地          | 0V | - |
| 120 | GND     |   | GND     | 电源地          | 0V | - |



# 第3章 最小系统应用电路设计

EBF1052 是一款为产品批量化而设计的一款低功耗、高性能的硬件 SOC,为了方便用户快速搭建起硬件平台,我们提供了一个最小系统的参考设计,该参考设计基于 EBF1052 EVK Tiny,具体见图 3-1。接下来将简单为大家介绍下 Tiny 的各个功能模块的电路设计。



图 3-1 EBF1052 邮票孔核心板 EVK Tiny

### 3.1 电源电路

#### 3.2 主系统供申

EBF1052 核心板板载时序控制电路,其中一路 3.3 V LDO 为 MCU 的 PMU 供电,一路 3.3 V LDO 为核心板的外设(SDRAM、SPI FLASH、EEPROM 等)供电,极大地降低了核心板的供电设计,使得整个核心板外部单电源 5V 供电即可,电源通过第 PIN-59- 5V\_SYS 和 PIN-60- 5V\_SYS 引脚并接输入。整个核心板提供了 8 个电源地,均匀分布在引脚的四周,可以为信号提供完整的回流路径,提供系统稳定性。

## 3.3 RTC 供电

RTC 供电可通过 PIN-63-VDD\_COIN\_3V 引脚输入,如果不需要用到 RTC,该引脚悬空即可。

## 3.4 外设供电

RT1052 芯片对上电时序有具体的要求:即芯片内部的 PMU 要先上电,确保 PMU 启动成功,然后才能向内部 DCDC 供电,最后外设再上电。

在 EBF1052 核心板中的上电时序是这样的:核心板 5V 上电后,板载的 3.3V LDO 先启动,为系统 PMU 提供电源,然后 RT1052 芯片内部的 PMU 模块开始工作控制 PMIC\_ON 引脚输出 3.3V 使能板载的 3.3V 的 LDO 输出 3.3V, LDO 输出 3.3V 为 RT1052 芯片的内部 DCDC 提供电源输入,内部 DCDC 输出 1.2V,与此同时核心板上的其它外设



才正常通过 3.3V 的 LDO 正常供电,比如 SDRAM、NORFLASH、EEPROM、以太网 PHY 和 SD3.0 等外设,这个是整个 EBF1052 核心板的上电时序。

当用户把 EBF1052 整个核心板嵌入到底板中时,如果底板中再加入了其它的外设,如 LCD、SD 卡等,这些外设的供电同样要遵循 RT1052 的上电时序,即芯片要先于外设上电,最好的做法就是,外设的供电由 PMIC\_ON(即核心板的 PIN-65-CCM\_PMIC\_ON\_REQ 这个引脚)这个引脚来控制。具体的应用设计可参考 EBF1052 EVK Tiny 中的电源设计,具体见图 3-2。



图 3-2 EBF1052 EVK Tiny 外设供电电路参考设计

要注意的是图 3-2 中的 Q2 应该选用低压差的 NMOS 管,而不是用三极管(如 S8050),因为 PMIC\_ON 最大的驱动电流只有 10ma。如果选用了三极管,可能会出现外设电源启动不了的情况。

因为 EBF1052 EVK Tiny 中的外设很少,且外设需要的电流也不大,所以选用了 RT9193-33GB 这种小电流的 LDO,如果你设计的底板需要的功耗比较大,切忌不要依葫芦 画瓢使用 RT9193-33GB,而是应该选用大功率的 DCDC,要学会具体情况具体分析。

## 3.5 复位电路



图 3-3 EBF1052 EVK Tiny 复位电路设计

图 3-3 的电容 C1 用于消除按键抖动,当按键按下接地的时候,POR\_B 引脚保持 1us 的低电平即可实现系统的外部复位。



## 3.6 SWD 调试电路

EBF1052 邮票孔核心板为了最大化的使用 RT1052 处理器的引脚资源只支持 SWD 下载接口,相比于 JTAG 需要 5 根信号线,SWD 仅需要 2 根信号线即可。SWD 参考设计电路具体见图 3-4。



图 3-4 EBF1052 EVK Tiny SWD 调试电路设计

图 3-4 的 3V3 是为外部调试器提供参考电压,D1 是防止仿真器的电流倒灌到核心板影响电源的上电时序。POR\_B 连接到外部仿真器的复位引脚,D7 是实现仿真器和核心板之间的电平转换。JTAG\_TCK 和 JTAG\_TMS 用于连接外部仿真器 SWD 接口的时钟和数据引脚,如果是使用杜邦线连接,GND 线应放置在 TCH 和 TMS 之间,防止这两根数据线的串扰。

### 3.7 串口电路

EBF1052 邮票孔核心板引出一路 TTL 电平串口调试接口,在 EBF1052 EVK Tiny 中通过 2.54 间距排针引出,具体见图 3-5, UART1\_TXD 与 UART1\_RXD 连接的是 RT1052 芯片的 GPIO\_AD\_B0\_12 和 GPIO\_AD\_B0\_13,这两个引脚在核心板均已 10K 上拉。



图 3-5 EBF1052 EVK Tiny 串口电路设计



#### 3.8 BOOT 电路

EBF1052 邮票孔核心板 PIN-103-GPIO\_AD\_B0\_05 已内部下拉 10K 电阻、上拉 1K 电阻 , PIN-104-GPIO\_AD\_B0\_04 已内部下拉 10K 电阻,通过这两个引脚已默认配置为核心板的 SPI FLASH 启动。

但是,当你编写的程序出现错误跑飞的情况下,你想再一次把程序下载到 SPI FALSH 启动将是不可能的,会出现程序下载不了的情况,这个时候我们可以把启动模式配置为 USB 启动,配置为 USB 启动之后不仅可以用 USB 的方式下载程序(需要使用官方的 FlashLoader 下载软件),还可以使用原来的 SWD 或者 JTAG 下载程序,从而解决程序跑飞锁死的情况。那么如何将启动方式配置为 USB 启动?即将 GPIO\_AD\_B0\_04 和 GPIO\_AD\_B0\_05 引出来接到图 3-6 的电路上。具体的操作步骤是:当你的程序跑飞锁死导致启动不了的时候,按下按键 SW1 并按复位键 SW2,先松开复位键 SW2,再松开 SW1 即可从 USB 启动,通过 USB 启动的方式烧录固件或者 SWD 方式烧录固件。



图 3-6 EBF1052 EVK Tiny BOOT 电路设计

### 3.9 USB 电路

EBF1052 核心板 EVK Tiny 板载了一个 microusb 接口,可用于 usb 下载固件,具体见图 3-7,OTG1\_DN、OTG1\_DP 和 USB\_OTG1\_ID 分别与 RT1052 处理器的 USB\_OTG1\_DN、USB\_OTG1\_DP 和 GPIO\_AD\_B0\_01 芯片引脚直连。



图 3-7 EBF1052 EVK Tiny USB 电路设计

15 / 26

论坛: www.firebbs.cn

淘宝: https://fire-stm32.taobao.com



## 3.10 SD 卡电路

使用 EBF1052 核心板如果需要使用到 SD 卡,核心板已内置 SD3.0 电源自适应电路,即这部分数据口工作在 SD3.0 模式的时候 IO 电平为 1.8V,如果是 SD2.0 模式时 IO 电平为 3.3V,为确保每次都能正常切换电平,图 3-8 左侧部分用于 SD 卡供电的控制,保证每次初始化 SD 时,现将 SD 卡的供电完全放电,再上电。



图 3-8 EBF1052 EVK Tiny SD 卡电路设计

## 3.11 LCD 接口电路

EBF1052 EVK Tiny 板载了一个 40P 的 FPC 接口电路,具体见图 3-9,可通过排线直连 野火的 5/7 寸电容屏。





图 3-9 EBF1052 EVK Tiny LCD 接口电路设计



# 第4章 电气参数

#### 4.1 电源电气参数

EBF1052 核心板共有 2 组电源,分别为:核心板电源、处理器内部 RTC 电源, 其中核心板电源必须连接,而内部 RTC 电源仅在使用相应功能时才需要连接,不用可处于悬空状态。

#### 4.1.1 核心板电源

EBF1052 核心板使用单电源方案设计,RT1052 芯片需要的 3.3V 电源和核心板上其它外设(SDRAM、SPI FLASH、EEPROM 和 SD3.0等)需要的 3.3V 电源和上电时序均已在核心板上设计好,外部仅需提供+5V 电源即可正常工作,推荐使用精确并且纹波小的+5V 电源供电。

#### 表格 4-1EBF1052 核心板电源参数

| 参数   | 最小值  | 典型值  | 最大值  | 说明                 |
|------|------|------|------|--------------------|
| 输入电压 | 4.5V | 5.0V | 5.5V | 电压范围和纹波应在+5V的 3%以内 |
| 输入电流 | -    | 6ma  | -    | 电流大小与负载和使用的外设多少有关  |

#### 4.1.2 内部 RTC 电源

如果需要使用处理器内部的 RTC 功能,则需要在外部接入一个后备电池,用于核心板断电后维持处理器内部的 RTC 继续运行, 后备电池接入的引脚为 PIN-63-VDD\_COIN\_3V; 如果不需要使用处理器内部的 RTC 功能,而是采用外接 RTC 芯片的方式,则 PIN-63-VDD\_COIN\_3V 引脚处于悬空状态即可,核心板上已做好相应处理。

表格 4-2 处理器内部 RTC 电源参数

| 参数   | 最小值  | 典型值  | 最大值  | 说明        |
|------|------|------|------|-----------|
| 输入电压 | 2.9V | 3.0V | 3.1V | 外接 RTC 电池 |
| 输入电流 | 2μΑ  | 36μΑ | 42μΑ |           |

## 4.2 SDRAM 电气参数

SDRAM 默认配置的运行频率为 132MHz, 最高运行频率可达 166MHz, 实际测得的 读写速度如下表所示。

| 参数         | 最小值     | 典型值     | 最大值     | 说明           |
|------------|---------|---------|---------|--------------|
| SDRAM 运行频率 | 100MHz  | 132MHz  | 132MHZ  |              |
| SDRAM 读速度  | 64MB/S  | 74MB/S  | 96MB/S  | 132MHZ下测得的数据 |
| SDRAM 写速度  | 242MB/S | 246MB/S | 250MB/S |              |



# 4.1 SPI FLASH 电气参数

EBF1052 邮票孔核心板板载 SPI FALSH,通过 FlexSPI 接口连接至 RT1052 处理器,既可以用作程序存储器,也可以用作数据存储器,默认配置的运行频率为 120MHz,实测的数据读写速度具体见表格 4-3。

表格 4-3 SPI Flash 电气参数

| 参数           | 说明     | 最小值       | 典型值        | 最大值        |
|--------------|--------|-----------|------------|------------|
| FlexSPI 运行频率 |        |           | 120MHz     | _          |
| FlexSPI 读速度  | 不带文件系统 | 9.766MB/S | 13.021MB/S | 13.021MB/S |
|              | 带文件系统  | 7.831MB/S | 7.813MB/S  | 7.813MB/S  |
| FlexSPI 写速度  | 不带文件系统 | 0.058MB/S | 0.058MB/S  | 0.058MB/S  |
|              | 带文件系统  | 0.098MB/S | 0.098MB/S  | 0.098MB/S  |



# 第5章 产品图片

# 5.1 EBF1052 系列邮票孔核心板型号

EBF1052 系列邮票孔核心板总共有四个型号,具体区别体现在主控的温度级别和是否带以太网 PHY,具体区别见表格 5-1,具体图片见图 5-1、图 5-2、图 5-3 和图 5-4。

表格 5-1 EBF1052 系列邮票孔核心板型号选型

| 型号      | EBF1052C-256N256S | EBF1052C-256N256S-N | EBF1052D-256N256S | EBF1052D-256N256S-N |
|---------|-------------------|---------------------|-------------------|---------------------|
| 主芯片     | MIMX RT1052CVL5B  | MIMX RT1052CVL5B    | MIMX RT1052DVL5B  | MIMX RT1052DVL5B    |
| 主频      | 528MHZ            | 528MHZ              | 600MHZ            | 600MHZ              |
| 温度级别    | -40° ~+85°        | -40° ~+85°          | 0° ~+70°          | 0° ~+70°            |
| SDRAM   | 32MB, 工业级         | 32MB,工业级            | 32MB, 工业级         | 32MB, 工业级           |
| FLASH   | 32MB, 工业级         | 32MB,工业级            | 32MB, 工业级         | 32MB,工业级            |
| 以太网 PHY | 没有                | 有                   | 没有                | 有                   |



图 5-1 EBF1052C-256N256S (CPU 为工业级,不带以太网 PHY)



图 5-2 EBF1052C-256N256S-N (CPU 为工业级, 带以太网 PHY)



图 5-3 EBF1052D-256N256S (CPU 为商业级,不带以太网 PHY)





图 5-4 EBF1052D-256N256S-N (CPU 为商业级, 带以太网 PHY)

# 5.2 EBF1052 系列邮票孔核心板评估板

EBF1052 核心板总共配套了 3 个评估板,功能由少到多,覆盖了各个开发群体的用户,具体见图 1-2 的 Tiny、图 1-3 的 Mini 和图 1-4 的 Pro。



图 5-5 EBF1052 邮票孔核心板 EVK Tiny



图 5-6 EBF1052 邮票孔核心板 EVK Mini



图 5-7 EBF1052 邮票孔核心板 EVK Pro



# 第6章 机械尺寸

EBF1052 核心板的尺寸为 32mm×32mm, 具体见图 6-1。EBF1052 可以作为一个模组嵌入到 PCB 底板中,为了减少用户在制作核心板的 PCB 封装时的尺寸误差,我们提供了核心板的 DWG 文件,在设计底板 PCB 时候,只需将我们提供好的核心板 DWG 文件导入到底板 PCB 即可。



图 6-1 EBF1052 邮票孔核心板尺寸图,单位 mm



# 第7章 免责声明

# 7.1 开发预备知识

EBF1052 系列核心板将尽可能全面的提供开发模板、驱动程序及其应用说明文档以方便用户使用,但 EBF1052 系列核心板不是教学开发平台。对于需要熟悉 Cortex-M7 体系架构, RT1050 系列 ARM 处理器特性的用户,建议同时购买我公司配套的通用教学/竞赛/工控开发平台。

#### 7.2 文档修改权利

野火电子保留在任何时候不事先声明的情况下,对 EBF1052 系列邮票孔核心板相关文档修改的权力。

#### 7.3 EMI和EMC

EBF1052 系列邮票孔核心板机械结构决定了其 EMI 性能必然与一体化电路设计有所差异,用户如有特殊要求,必须事先与野火电子沟通。

EBF1052 系列邮票孔核心板 EMC 性能与底板的设计密切相关,尤其是电源电路、 I/O 隔离、复位电路,用户在设计底板时必须充分考虑以上因素。野火电子将努力完善 EBF1052 系列邮票孔核心板的电磁兼容特性,但不对用户最终应用产品 EMC 性能提供任何保证。

## 7.4 ESD 静电放电保护

将 EBF1052 核心板用电烙铁自行焊接在自己的底板上或者批量装配时,请先将积累在身体上的静电释放,例如佩戴可靠接地的静电环。



— 基于野火 i.MX RT1052 邮票孔核心板 EBF1052

# 第8章 手册版本

| 版本    | 时间         | 备注   |
|-------|------------|------|
| V1.00 | 2018/10/24 | 创建文档 |



# 第9章 销售与服务网站

#### 东莞野火电子科技有限公司

地址: 东莞市大岭山镇石大路 2 号艺华综合办公大楼 301

官网: www.embedfire.com

电话: 0769-33894118 论坛: www.firebbs.cn

邮箱: firege@embedfire.com

QQ: 313303034

淘宝: https://fire-stm32.taobao.com



关注野火公众号, 可免费获取野火全部产品的资料。