

LoRa & LoRaWAN (Long-Range Wide Area Network)

- Noël Jumin
- Clément Gauché
- Robin Marin-Muller
- Yohan Boujon

Introduction

Noël Jumin

- Long Range
- Long distance communication

- Low power consumption
- Created by a grenoble's start up in 2009

History, Creation, Development, Evolution of LoRa

Clément Gauché

History & creation of LoRa

Formation of the LoRa Alliance

Evolution of LoRa Technology

Adoption and Industry Applications

Smart Cities

Environmental Monitoring

Agriculture

Logistic

LoRa's competitors

https://www.rcrwireless.com/20190829/carriers/lpwa-matchup-round-five

Physical Layer

Robin Marin-Muller

Picture by Shawn Stutzman 9

LoRa Physical Layer

Role of the PHY Layer: Provide a robust, long-range radio communication link with low power consumption.

ISM Bands: 169 MHz, 433 MHz (Asia), 868 MHz (Europe), and 915 MHz (North America).

Modulation Chirp Spread Spectrum (CSS): Basics

Modulation: LoRa uses a unique spread spectrum modulation type capable of transmitting information below the noise level.

Advantages:

- High immunity to noise and interference.
- Ability to transmit over long distances with low power levels.

Modulation Chirp Spread Spectrum (CSS): Basics

Chirp Signals: Uses chirp signals whose frequency varies linearly over time, enabling interference-resistant encoding.

Modulation Chirp Spread Spectrum (CSS): Spreading Factor

Facteur d'étalement (Spreading Factor)

Orthogonalité des Spreading

Factors: Les signaux LoRa utilisant différents SF peuvent coexister sur le même canal sans interférer entre eux: le récepteur différencie en fonction du SF.

NB: Orthogonal = Produit Scalaire Nul, les signaux ne se chevauchent pas ni n'interfèrent de manière constructive.

$$\int_0^T f(t) \cdot g(t) \, dt = 0$$

Modulation Chirp Spread Spectrum (CSS): Symbols

Symbol Representation: A symbol represents one or more data bits. A symbol has 2^SF possible values.

Direct Influence on Range and Data Rate: The higher the SF (SF6 to SF12), the greater the range but the lower the data rate.

Structure et composition d'une trame LoRa

Preamble Synchronization Payload CRC

Preamble: Synchronization sequence used by the receiver to lock onto the signal.

Synchronization

Payload: Contains the data transmitted by the node.

CRC (Cyclic Redundancy Check): Ensures data integrity.

LoRa Demodulation: Correlation

NB: Transmitter symbols must be the same as receiver symbols, in other words the Spreading Factor must match between RX and TX!

Temps de montée de la trame (ToA) et Sensibilité

$$\label{eq:toa} \mathbf{ToA} = \frac{\mathbf{nombre} \; \mathbf{de} \; \mathbf{symboles} \times \mathbf{dur\acute{e}e} \; \mathbf{d'un} \; \mathbf{symbole}}{\mathbf{fr\acute{e}quence} \; \mathbf{de} \; \mathbf{transmission}}$$

Factors Influencing ToA (Time on Air):

- High SF = increased ToA reduces energy consumption but increases latency.
- Bandwidth: A wider BW decreases ToA.

$$Sensibilit\'e = -174 + 10 \log(BW) + NF + SNRmin$$

-174dBm: Thermal noise level.

BW: Bandwidth in Hz.

NF: Noise Figure of the receiver (lower NF means better

sensitivity).

SNR: Signal-to-noise ratio.

Receiver Sensitivity: The receiver's ability to detect a weak signal while maintaining sufficient reception quality.

Range and Limitations

ISM Band Concurrency: Shared bands can lead to collisions and interference.

Regulatory Duty Cycle: 1% in Europe.

Transmission Power: Limited to 14 dBm in

Europe for 868 MHz.

Signal attenuation through different materials

Material attenuation	(dB)			
Glass (6mm)	0.8			
Glass (13mm)	2			
Wood (76mm)	2.8			
Brick (89mm)	3.5			
Brick (178mm)	5			
Brick (267mm)	7			
Concrete (102mm)	12			
Stone wall (203mm)	12			
Brick concrete (192mm)	14			
Stone wall (406mm)	17			
Concrete (203mm)	23			
Reinforced concrete (89mm)	27			
Stone wall (610mm)	28			
Concrete (305mm)	35			

Media Access Control in LoRa

Yohan Boujon

Differences between LoRa and LoRaWAN

- "LoRa" is only the physical layer
- LoRaWAN is an open protocol that can be used or not
- Using the LoRaWAN protocol stack can help greatly extend the distance between devices

LoRaWAN

LoRa

LoRaWAN protocol in depth

MacPayload

• Class A: Low power

Class B: Periodic checking

 Class C: High power usage, constantly checking for packets

 MType: Indicates the type of the message, here only data

LoRaWAN protocol in depth

Join Request

OTAA: Over the Air Activation Protocol

• **JoinEUI**: Similar to an IP Address/DNS domain name

DevEUI: Similar to a Mac address

DevNonce: Random number generated by the device. Used later for security.

LoRaWAN protocol in depth Join Accept

Join-Accept

PHY (N) (8) JoinNonce Home_NetID DevAddr (24) (32) (8)	st PHY (16)
--	-------------

- **JoinNonce**: Random number generated by the gateway. Used later for security.
- NetID: Multi-network ID given by the gateway.
- DevAddr: Non-unique ID, similar to a Virtual IP.
- DLSettings & RxDelay: Data rate and Delay.
- **CFList**: Optional field for the network.

LoRaWAN protocol in depth

Rejoin Request (Type 0/2 & 1)

- Type 0/2: Reset any parameters of the network, asks for a new DevAddr.
- **Type 1**: Similar to a *Join-Request*.
- **RJ Count 0/1**: Number of time the device did a *Rejoin-Request*.

Rejoin Request (Type 0 or 2)

PHY	MHDR	Rejoin Type	NetID	DevEUI	RJcount0	MIC	PHY
(N)	(8)		(24)	(64)	(16)	(32)	(16)

Rejoin Request (Type 1)

Channel access & Collision avoidance

- Multiple channels available
- **Software confirmation** (Confirm Data)
- **Delay Slot** with random number
- Low bandwidth
- Short duty cycle

Security Mechanisms

- NwkSKey (Network) & AppSKey (Device) calculated to encrypt data.
- JoinNonce/AppNonce & DevNonce gathered during OTAA process.
- Message Integrity Control uses these field.
- AppKey is stored inside the device and is a unique ID.

Power Consumption

Noël Jumin

Image by Walid Beno 27

Power consumption

Compare to SIGFOX or NB-IOT, LoRA is the one that consume the less The important parameters are:

- Transmission power
- Bandwidth
- Payload size
- Spreading factory

High SF = High range and improve noise resilience

Low SF = Shorter transmission time (high data rate) and low power consumption

Power consumption

Example:

We want a communication over a long

range with theses parameters:

- SF = 12
- Bandwidth = 125kHz
- TX power = 100mW
- Payload = 10 bytes

Low consumption per bit for a communication of more than 1km

$$Symbol\ Duration\ =\ \frac{2^{sF}}{Bandwidth(Hz)}\ =\ 32.8\ ms$$

$$Transmission\ Duration\ =\ Symbol\ Duration(s)\ *\ Number\ of\ Bits\ =\ 2.624\ s$$

$$Energy\ per\ bit\ =\ \frac{Transmission\ Power(W)\ *\ Transmission\ Duration(s)}{Number\ of\ Bits}\ =\ 3.28\ mJ$$

Comparison with other protocols

- BLE is better one in energy saving BUT
- BLE cannot go further than ~15 meters
- LoRA can go further than 1 km
- Compare to SIGFOX or NB-IOT, LoRA is the one that consume the less

Different t, and data size s, in bytes, leading to varying r, impact lifetime for a starting energy E,=13.5kJ, PER=0. The bottom x-axis is the data size in bytes per t, while the top x-axis presents the corresponding data rate r, in b/s. No packet loss or clock drift is assumed. (a) legend. (b) varying s, constant t,=1 day. (c) varying s, constant t,=100s. (d) varying s, constant t=1s. (e) varying s, constant t=10ms

Sources

History of LoRa

- "Full understanding of LoRa and LoRaWAN", Mokorola
- "Lora & LoRaWAN Explained", ElectronicsInnovation.com
- "http://www.cycleo.net/", WebArchive.org
- "LoRaWAN A low power WAN protocol for Internet of Things: A review and opportunities", IEEE

Power management

- "Hybrid Low-Power Wide-Area Mesh Network for IoT Applications" by Xiaofan Jiang and Heng Rhang
- "Energy Efficient Coded Communication for IEEE 802.15.4 Compliant Wireless Sensor Networks" by V.
 Nithya, B. Ramachandran and Vidhyacharan Bhaskar
- "Comparison of LoRa and NB-loT in Terms of Power Consumption" by LUNTE TAN
- "WiFi and LoRa Energy Consumption Comparison in IoT ESP 32/ SX1278 Devices" by L. Garcia, JM.
 Jimenez, J. Lloret, P. Lorenz
- "Comparison of the Device Lifetime in Wireless Networks for the Internet of Things" by Elodie Morin, Mickael Mman, Roberto Guizzetti and Andrzej Duda
- "The Effect of Packet Size and Spreading Factor" from SEMTECH

MAC Address

- "LoRa technology, MAC layer operation and Research issues", Science Direct:
 - https://www.sciencedirect.com/science/article/pii/S1877050918305283
- https://resources.lora-alliance.org/technical-specifications/lorawan-specification-v1-1
- https://www.thethingsnetwork.org/docs/lorawan/
 - "On the Limits of LoRaWAN Channel Access" Russian Academy of Sciences, Moscow:

 https://www.researchgate.net/profile/Evgeny-Khorov/publication/312485284_On_the_Limits_of_LoRaWAN

 Channel Access/links/59de3bda0f7e9bcfab23f3ca/On-the-Limits-of-LoRaWAN-Channel-Access.pdf
- A Slotted Transmission with Collision Avoidance for LoRa Networks University of Ulsan, Hanoi University of Science and Technology:
 - https://www.sciencedirect.com/science/article/pii/S187705092032281X
- https://docs.lora.tetaneutral.net/lorawan/crypto/

LoRa Physical Layer

- https://ieeexplore.ieee.org/document/8067462
- https://hal.science/hal-01977497/document