4.2.3 If $a \equiv b \pmod{n}$, prove that gcd(a, n) = gcd(b, n).

Proof. Suppose that $a \equiv b \pmod{n}$. Let $d = \gcd(a, n)$ and $e = \gcd(b, n)$. Then nk = a - b for some $n \in \mathbb{Z}$. Note that $d \mid a$ and $d \mid n$ implies that a = ud and n = vd for $u, v \in \mathbb{Z}$. Then

$$nk = a - b$$
$$vdk = du - b$$
$$b = d(u - vk)$$

implies that $d \mid b$. Since $d \mid b$ and $d \mid n$ we see that $d \mid e$. So $d \leq e$. Similarly, $e \mid b$ and $e \mid n$ implies that b = xe and n = ye for some $x, y \in \mathbb{Z}$. Observe that

$$nk = a - b$$
$$yek = a - xe$$
$$a = e(yk + x)$$

gives $e \mid a$. Since $e \mid a$ and $e \mid n$, we have $e \mid d$. Therefore $e \leq d$. Thus e = d.

4.2.6(c) For $n \ge 1$, establish $27 \mid 2^{5n+1} + 5^{n+2}$.

Proof. Let $n \geq 1$. Notice that

$$2^{5n+1} = 2 \cdot 32^n \equiv 2 \cdot 5^n \pmod{27}.$$

Then

$$2^{5n+1} + 5^{n+2} \equiv 2 \cdot 5^n + 5^{n+2} \pmod{27}$$
$$\equiv 5^n (2+25) \pmod{27}$$
$$\equiv 27 \cdot 5^n \pmod{27}$$
$$\equiv 0 \cdot 5^n \pmod{27}$$
$$\equiv 0 \pmod{27}.$$

Thus $27 \mid 2^{5n+1} + 5^{n+2}$.

4.2.8(d) Prove that if the integer a is not divisible by 2 or 3, then $a^2 \equiv 1 \pmod{24}$.

Proof. Suppose that the integer a is not divisible by 2 or 3. Then a = 12k + r where r = 1, 5, 7, or 11.

For
$$r = 1$$
: $(12k + 1)^2 = 6 \cdot 24k^2 + 24k + 1 \equiv 1 \pmod{24}$.

For
$$r = 5$$
: $(12k + 5)^2 = 6 \cdot 24k^2 + 24 \cdot 5k + 1 \equiv 1 \pmod{24}$.
For $r = 7$: $(12k + 7)^2 = 6 \cdot 24k^2 + 24 \cdot 7k + 1 \equiv 1 \pmod{24}$.
For $r = 11$: $(12k + 11)^2 = 6 \cdot 24k^2 + 24 \cdot 11k + 121 \equiv 1 \pmod{24}$.
Thus $a^2 \equiv 1 \pmod{24}$.

4.2.16 Use the theory of congruence to verify that

$$89 \mid 2^{44} - 1$$
 and $97 \mid 2^{48} - 1$.

Proof. We want to show that 89 divides $2^{44} - 1$. Notice that

$$2^{44} = (2^{11})^4 = (2048)^4 \equiv 1^4 \pmod{89}.$$

So

$$2^{44} - 1 \equiv 1 - 1 \equiv 0 \pmod{89}$$
.

Thus $89 \mid 2^{44} - 1$.

Proof. We want to show that 97 divides $2^{48} - 1$. Notice that

$$2^{48} = (2^{12})^4 = (4096)^4 \equiv 22^4 \pmod{97}.$$

Then

$$22^4 = 484^2 \equiv 96^2 \equiv (-1)^2 \pmod{97}$$
.

Therefore

$$2^{48} - 1 \equiv 96^2 - 1 \equiv (-1)^2 - 1 \equiv 0 \pmod{97}.$$

Thus $97 \mid 2^{48} - 1$.

4.2.18 If $a \equiv b \pmod{n_1}$ and $a \equiv c \pmod{n_2}$, prove that $b \equiv c \pmod{n}$, where the integer $n = \gcd(n_1, n_2)$.

Proof. Suppose $a \equiv b \pmod{n_1}$ and $a \equiv c \pmod{n_2}$. Let $n = \gcd(n_1, n_2)$. Then $a - b = kn_1$ for some $k \in \mathbb{Z}$. Since $n \mid n_1$, we see that $n_1 = ln$ for some $l \in \mathbb{Z}$. Therefore a - b = kln implying that $a \equiv b \pmod{n}$. Similarly, since $n \mid n_2$, we find that $n_2 = rn$ for some $r \in \mathbb{Z}$. Then since we know $a - c = xn_2$ for some $x \in \mathbb{Z}$, we see that a - c = xn. Therefore $a \equiv c \pmod{n}$. Thus since $a \equiv b \pmod{n}$ and $a \equiv c \pmod{n}$, it follows that $b \equiv c \pmod{n}$.