## Appendix

TABLE I: Code to generate the synthetic datasets with Tornado framework (Python) available on-line in https://github.com/alipsgh/tornado.

| Datasets | Code to Generate                                                              |
|----------|-------------------------------------------------------------------------------|
| Circles  | CIRCLES(concept_length=2000, noise_rate=0.1)                                  |
| Sine1    | SINE1(concept_length=2000, noise_rate=0.1)                                    |
| Sine2    | SINE2(concept_length=2000, noise_rate=0.1)                                    |
| SEA      | SEA(concept_length=2000, thresholds=[1, 9, 2, 6], noise_rate=0.1)             |
| SEARec   | SEA(concept_length=2000, thresholds=[1, 9, 2, 6, 1, 9, 2, 6], noise_rate=0.1) |



Fig. 1: Mean of accuracy over time for methods that handle virtual and real drifts on each dataset. The standard deviation is represented by shadow lines of the same color. Each point represents the accuracy for a batch observations, where 500 was used for synthetic datasets, and 1000 for real datasets.

TABLE II: Accuracy for approaches compared for all experimented datasets. The results highlighted with bold represent the best accuracy in comparison with the other approaches. Values in brackets are the standard deviations.

| Dataset            | IGMM-CD        | Dynse         | GMM-VRD        | OGMMF-VRD<br>(Filter) | OGMMF-VRD<br>(No Filter) | HAT-DDM        | HAT-EDDM       | HAT-ADWIN      | AWE            | LevBag         | OzaAD          | OzaAS          | ARF            |
|--------------------|----------------|---------------|----------------|-----------------------|--------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Circles            | 0.609 (0.033)  | 0.741 (0.033) | 0.787 (0.007)  | 0.813 (0.005)         | 0.804 (0.005)            | 0.6189 (0.005) | 0.4926 (0.003) | 0.5592 (0.013) | 0.8489 (0.001) | 0.8122 (0.001) | 0.7373 (0.008) | 0.7247 (0.001) | 0.815 (0.003)  |
| Sine1              | 0.536 (0.023)  | 0.603 (0.090) | 0.817 (0.004)  | 0.827 (0.005)         | 0.824 (0.004)            | 0.5653 (0.025) | 0.4975 (0.003) | 0.5094 (0.005) | 0.8286 (0.002) | 0.8082 (0.001) | 0.6584 (0.017) | 0.5658 (0.002) | 0.8137 (0.003) |
| Sine2              | 0.538 (0.024)  | 0.584 (0.073) | 0.722 (0.006)  | 0.750 (0.004)         | 0.739 (0.004)            | 0.7044 (0.003) | 0.4978 (0.004) | 0.6585 (0.013) | 0.7532 (0.001) | 0.7319 (0.002) | 0.5893 (0.016) | 0.5525 (0.001) | 0.7886 (0.003) |
| Virtual5           | 0.755 (0.003)  | 0.792 (0.004) | 0.815 (0.003)  | 0.827 (0.006)         | 0.824 (0.003)            | 0.6941 (0.01)  | 0.3987 (0.002) | 0.5127 (0.01)  | 0.8504 (0.001) | 0.7987 (0.001) | 0.7702 (0.005) | 0.7368 (0.002) | 0.838 (0.004)  |
| Virtual9           | 0.804 (0.007)  | 0.805 (0.007) | 0.845 (0.005)  | 0.858 (0.006)         | 0.854 (0.005)            | 0.7082 (0.011) | 0.4104 (0.002) | 0.492 (0.014)  | 0.8697 (0.001) | 0.8104 (0.004) | 0.7658 (0.014) | 0.7267 (0.001) | 0.8451 (0.003) |
| SEA                | 0.641 (0.008)  | 0.725 (0.004) | 0.779 (0.008)  | 0.841 (0.004)         | 0.832 (0.007)            | 0.6975 (0.004) | 0.5046 (0.003) | 0.5233 (0.004) | 0.8534 (0.001) | 0.8295 (0.002) | 0.8057 (0.003) | 0.8049 (0.001) | 0.8335 (0.004) |
| SEARec             | 0.641 (0.006)  | 0.747 (0.003) | 0.777 (0.004)  | 0.841 (0.004)         | 0.833 (0.002)            | 0.7146 (0.025) | 0.5014 (0.002) | 0.5279 (0.015) | 0.8558 (0.001) | 0.8304 (0.001) | 0.8106 (0.002) | 0.8094 (0)     | 0.8291 (0.003) |
| NOAA               | 0.420 (0.001)  | 0.462 (0.002) | 0.708 (0.009)  | 0.743 (0.004)         | 0.723 (0.006)            | 0.7072 (0.004) | 0.6862 (0.001) | 0.6989 (0.007) | 0.7416 (0.002) | 0.7098 (0.003) | 0.6634 (0.011) | 0.6869 (0.015) | 0.7656 (0.004) |
| ELEC               | 0.783 (0.001)  | 0.651 (0.001) | 0.685 (0.008)  | 0.745 (0.004)         | 0.755 (0.005)            | 0.6966 (0.013) | 0.6752 (0.005) | 0.6967 (0.006) | 0.7112 (0.001) | 0.7606 (0.003) | 0.7059 (0.004) | 0.6785 (0.001) | 0.7935 (0.003) |
| PAKDD              | 0.604 (0.007)  | 0.660 (0.002) | 0.702 (0.016)  | 0.773 (0.001)         | 0.785 (0.001)            | 0.8002 (0.001) | 0.8024 (0)     | 0.8001 (0.001) | 0.6205 (0.041) | 0.7109 (0.005) | 0.3951 (0.026) | 0.5484 (0.037) | 0.7955 (0.001) |
| GasSensor          | 0.009(0)       | 0.246 (0.001) | 0.3333 (0.079) | 0.5785 (0.022)        | 0.589 (0.019)            | 0.3729 (0.008) | 0.3608 (0.003) | 0.3619 (0.001) | 0.3326 (0.003) | 0.8464 (0.002) | 0.565 (0.003)  | 0.5552 (0.002) | 0.8053 (0.007) |
| INSECT-Inc-Rec-Bal | 0.3951 (0.014) | 0.656 (0.001) | 0.4941 (0.032) | 0.6555 (0.004)        | 0.651 (0.004)            | 0.4636 (0.005) | 0.4872 (0.001) | 0.4694 (0)     | 0.5788 (0.005) | 0.6789 (0.007) | 0.5007 (0.007) | 0.4851 (0.001) | 0.7228 (0.005) |
| INSECT-Inc-Abt-Bal | 0.3938 (0.013) | 0.636 (0.001) | 0.4861 (0.031) | 0.6464 (0.005)        | 0.645 (0.006)            | 0.4843 (0.003) | 0.508(0)       | 0.4919 (0)     | 0.5613 (0.006) | 0.6708 (0.005) | 0.6011 (0.004) | 0.5865 (0.001) | 0.7024 (0.004) |
| INSECT-Grad-Bal    | 0.473 (0.003)  | 0.646 (0.001) | 0.4876 (0.007) | 0.5866 (0.005)        | 0.586 (0.010)            | 0.3484 (0.01)  | 0.3841 (0.001) | 0.3631 (0.001) | 0.6013 (0.006) | 0.6921 (0.003) | 0.6232 (0.032) | 0.5441 (0.001) | 0.703 (0.017)  |
| Friedman Ranking   | 10.26 (2.93)   | 8.19 (2.92)   | 7.31 (2.19)    | 3.42 (1.59)           | 4.06 (1.09)              | 9.42 (2.77)    | 10.87 (3.28)   | 10.12 (2.72)   | 3.58 (2.87)    | 4.48 (1.85)    | 7.88 (2.25)    | 8.93 (1.65)    | 2.48 (1.60)    |



Fig. 2: Mean of accuracy over time for the five best methods in each dataset. The standard deviation is represented by shadow lines of the same color. Each point represents the accuracy for a batch observations, where 500 was used for synthetic datasets, and 1000 for real datasets.

TABLE III: G-mean for approaches compared for all experimented datasets. The results highlighted with bold represent the best accuracy in comparison with the other approaches. Values in brackets are the standard deviations.

| Dataset            | IGMM-CD       | Dynse         | GMM-VRD       | OGMMF-VRD<br>(Filter) | OGMMF-VRD<br>(No Filter) | HAT-DDM       | HAT-EDDM      | HAT-ADWIN     | AWE           | LevBag        | OzaAD         | OzaAS         | ARF           |
|--------------------|---------------|---------------|---------------|-----------------------|--------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Circles            | 0.592 (0.041) | 0.740 (0.033) | 0.787 (0.007) | 0.813 (0.005)         | 0.804 (0.005)            | 0.615 (0.008) | 0.492 (0.004) | 0.546 (0.019) | 0.848 (0.002) | 0.811 (0.002) | 0.737 (0.009) | 0.725 (0.002) | 0.815 (0.004) |
| Sine1              | 0.521 (0.041) | 0.603 (0.090) | 0.817 (0.004) | 0.827 (0.005)         | 0.824 (0.004)            | 0.562 (0.032) | 0.496 (0.004) | 0.498 (0.012) | 0.829 (0.003) | 0.808 (0.002) | 0.658 (0.029) | 0.561 (0.006) | 0.814 (0.003) |
| Sine2              | 0.530 (0.028) | 0.584 (0.073) | 0.722 (0.006) | 0.749 (0.004)         | 0.739 (0.004)            | 0.704 (0.004) | 0.497 (0.004) | 0.657 (0.017) | 0.753 (0.002) | 0.732 (0.002) | 0.588 (0.020) | 0.548 (0.003) | 0.789 (0.004) |
| Virtual5           | 0.746 (0.004) | 0.785 (0.005) | 0.809 (0.004) | 0.823 (0.006)         | 0.818 (0.004)            | 0.691 (0.013) | 0.370 (0.005) | 0.483 (0.017) | 0.844 (0.002) | 0.788 (0.002) | 0.766 (0.006) | 0.733 (0.002) | 0.836 (0.004) |
| Virtual9           | 0.799 (0.010) | 0.802 (0.007) | 0.842 (0.006) | 0.855 (0.006)         | 0.850 (0.005)            | 0.707 (0.012) | 0.404 (0.003) | 0.474 (0.024) | 0.866 (0.001) | 0.807 (0.006) | 0.761 (0.018) | 0.724 (0.001) | 0.843 (0.004) |
| SEA                | 0.633 (0.008) | 0.725 (0.005) | 0.779 (0.008) | 0.841 (0.004)         | 0.832 (0.007)            | 0.669 (0.009) | 0.496 (0.006) | 0.302 (0.090) | 0.853 (0.002) | 0.828 (0.003) | 0.805 (0.003) | 0.805 (0.001) | 0.833 (0.005) |
| SEARec             | 0.632 (0.006) | 0.747 (0.003) | 0.777 (0.004) | 0.841 (0.004)         | 0.833 (0.002)            | 0.712 (0.027) | 0.501 (0.003) | 0.489 (0.044) | 0.856 (0.001) | 0.830 (0.002) | 0.811 (0.002) | 0.809 (0.001) | 0.829 (0.003) |
| NOAA               | 0.596 (0.005) | 0.589 (0.003) | 0.679 (0.015) | 0.697 (0.005)         | 0.608 (0.010)            | 0.457 (0.053) | 0.121 (0.028) | 0.367 (0.070) | 0.683 (0.006) | 0.708 (0.003) | 0.680 (0.005) | 0.662 (0.020) | 0.654 (0.009) |
| ELEC               | 0.785 (0.001) | 0.618 (0.002) | 0.670 (0.009) | 0.729 (0.005)         | 0.744 (0.006)            | 0.644 (0.021) | 0.608 (0.010) | 0.642 (0.012) | 0.686 (0.002) | 0.740 (0.004) | 0.674 (0.009) | 0.569 (0.004) | 0.777 (0.004) |
| PAKDD              | 0.475 (0.001) | 0.518 (0.001) | 0.419 (0.013) | 0.240 (0.003)         | 0.183 (0.007)            | 0.070 (0.014) | 0.014 (0.006) | 0.071 (0.016) | 0.551 (0.030) | 0.449 (0.014) | 0.482 (0.028) | 0.557 (0.030) | 0.189 (0.008) |
| GasSensor          | 0.008 (0.000) | 0.242 (0.002) | 0.330 (0.084) | 0.585 (0.026)         | 0.587 (0.017)            | 0.328 (0.013) | 0.318 (0.009) | 0.315 (0.006) | 0.292 (0.003) | 0.848 (0.002) | 0.557 (0.003) | 0.547 (0.002) | 0.796 (0.005) |
| INSECT-Inc-Rec-Bal | 0.385 (0.014) | 0.648 (0.001) | 0.491 (0.038) | 0.651 (0.005)         | 0.645 (0.004)            | 0.449 (0.008) | 0.476 (0.001) | 0.449 (0.002) | 0.551 (0.013) | 0.660 (0.007) | 0.411 (0.011) | 0.387 (0.001) | 0.716 (0.006) |
| INSECT-Inc-Abt-Bal | 0.375 (0.015) | 0.618 (0.001) | 0.462 (0.042) | 0.633 (0.008)         | 0.629 (0.006)            | 0.453 (0.005) | 0.485 (0.001) | 0.464 (0.007) | 0.512 (0.015) | 0.633 (0.006) | 0.525 (0.005) | 0.510 (0.001) | 0.682 (0.006) |
| INSECT-Grad-Bal    | 0.458 (0.003) | 0.641 (0.001) | 0.454 (0.059) | 0.578 (0.007)         | 0.579 (0.010)            | 0.125 (0.062) | 0.357 (0.003) | 0.249 (0.033) | 0.578 (0.007) | 0.680 (0.005) | 0.596 (0.035) | 0.513 (0.002) | 0.684 (0.017) |
| Friedman Ranking   | 9.32 (3.25)   | 7.28 (2.76)   | 6.79 (2.09)   | 3.44 (1.84)           | 4.63 (2.12)              | 10.39 (1.51)  | 11.82 (1.66)  | 11.20 (1.51)  | 3.14 (2.42)   | 4.16 (1.86)   | 6.99 (2.05)   | 8.47 (2.94)   | 3.36 (2.47)   |

TABLE XI: Part 1 of Recall for approaches compared for experimented datasets. The results highlighted with bold represent the best accuracy in comparison with the other approaches.

| Dataset | Approaches | Class 0       | Class 1       | Class 2 |
|---------|------------|---------------|---------------|---------|
|         | HAT-DDM    | 0.580 (0.054) | 0.657 (0.050) | =       |
|         | HAT-EDDM   | 0.482 (0.030) | 0.503 (0.028) | -       |
|         | HAT-ADWIN  | 0.528 (0.104) | 0.590 (0.128) | -       |
|         | AWE        | 0.810 (0.003) | 0.888 (0.002) | -       |
|         | LevBag     | 0.771 (0.003) | 0.853 (0.003) | -       |
| Circles | OzaAD      | 0.742 (0.008) | 0.733 (0.012) | -       |
| Circles | OzaAS      | 0.731 (0.005) | 0.718 (0.003) | -       |
|         | ARF        | 0.817 (0.004) | 0.813 (0.005) | -       |
|         | OGMMF-VRD  | 0.806 (0.010) | 0.820 (0.009) | -       |
|         | GMM-VRD    | 0.754 (0.021) | 0.821 (0.012) | -       |
|         | Dynse      | 0.752 (0.015) | 0.729 (0.055) | -       |
|         | IGMM-CD    | 0.659 (0.115) | 0.558 (0.146) | -       |
|         | HAT-DDM    | 0.600 (0.067) | 0.531 (0.063) | =       |
|         | HAT-EDDM   | 0.522 (0.023) | 0.473 (0.023) | -       |
|         | HAT-ADWIN  | 0.597 (0.067) | 0.422 (0.065) | -       |

| l        | AWE              | 0.835 (0.005)                  | 0.822 (0.004)                  | I             |
|----------|------------------|--------------------------------|--------------------------------|---------------|
|          | LevBag           | 0.809 (0.002)                  | 0.822 (0.004)                  |               |
|          | OzaAD            | 0.666 (0.031)                  | 0.651 (0.032)                  | _             |
|          | OzaAS            | 0.638 (0.031)                  | 0.494 (0.033)                  | -             |
|          | ARF              | 0.809 (0.004)                  | 0.818 (0.004)                  | -             |
|          | OGMMF-VRD        | 0.826 (0.009)                  | 0.827 (0.007)                  | -             |
|          | GMM-VRD          | 0.815 (0.009)                  | 0.819 (0.003)                  | -             |
|          | Dynse            | 0.604 (0.093)                  | 0.602 (0.088)                  | -             |
|          | IGMM-CD          | 0.534 (0.121)                  | 0.538 (0.125)                  | -             |
|          | HAT-DDM          | 0.699 (0.015)                  | 0.709 (0.016)                  | -             |
|          | HAT-EDDM         | 0.483 (0.016)                  | 0.513 (0.016)                  | -             |
|          | HAT-ADWIN        | 0.631 (0.040)                  | 0.686 (0.029)                  | -             |
|          | AWE              | 0.750 (0.002)                  | 0.756 (0.003)                  | -             |
|          | LevBag           | 0.726 (0.003)                  | 0.737 (0.002)                  | -             |
| Sine2    | OzaAD            | 0.554 (0.021)                  | 0.624 (0.022)                  | -             |
| SHICZ    | OzaAS            | 0.491 (0.015)                  | 0.613 (0.013)                  | -             |
|          | ARF              | 0.785 (0.005)                  | 0.792 (0.005)                  | -             |
|          | OGMMF-VRD        | 0.752 (0.008)                  | 0.748 (0.008)                  | -             |
|          | GMM-VRD          | 0.721 (0.013)                  | 0.724 (0.015)                  | -             |
|          | Dynse            | 0.582 (0.076)                  | 0.586 (0.072)                  | -             |
|          | IGMM-CD          | 0.497 (0.081)                  | 0.578 (0.077)                  | -             |
|          | HAT-DDM          | 0.700 (0.043)                  | 0.715 (0.041)                  | 0.663 (0.043) |
|          | HAT-EDDM         | 0.466 (0.016)                  | 0.478 (0.017)                  | 0.229 (0.014) |
|          | HAT-ADWIN        | 0.532 (0.053)                  | 0.642 (0.054)                  | 0.338 (0.063) |
|          | AWE              | 0.819 (0.003)                  | 0.937 (0.002)                  | 0.784 (0.004) |
|          | LevBag           | 0.790 (0.004)                  | 0.900 (0.002)                  | 0.689 (0.003) |
| Virtual5 | OzaAD            | 0.709 (0.006)                  | 0.852 (0.013)                  | 0.743 (0.012) |
| Virtuals | OzaAS            | 0.704 (0.003)                  | 0.804 (0.003)                  | 0.696 (0.008) |
|          | ARF              | 0.803 (0.004)                  | 0.882 (0.008)                  | 0.827 (0.006) |
|          | OGMMF-VRD        | 0.798 (0.010)                  | 0.901 (0.009)                  | 0.775 (0.013) |
|          | GMM-VRD          | 0.796 (0.009)                  | 0.901 (0.005)                  | 0.738 (0.012) |
|          | Dynse            | 0.778 (0.007)                  | 0.875 (0.008)                  | 0.710 (0.016) |
|          | IGMM-CD          | 0.694 (0.007)                  | 0.884 (0.004)                  | 0.676 (0.011) |
|          | HAT-DDM          | 0.664 (0.023)                  | 0.712 (0.050)                  | 0.748 (0.027) |
|          | HAT-EDDM         | 0.380 (0.016)                  | 0.485 (0.017)                  | 0.360 (0.015) |
|          | HAT-ADWIN        | 0.363 (0.070)                  | 0.610 (0.064)                  | 0.493 (0.067) |
|          | AWE              | 0.833 (0.003)                  | 0.942 (0.002)                  | 0.827 (0.003) |
|          | LevBag           | 0.760 (0.013)                  | 0.873 (0.010)                  | 0.794 (0.006) |
| Virtual9 | OzaAD            | 0.733 (0.011)                  | 0.848 (0.015)                  | 0.710 (0.034) |
|          | OzaAS            | 0.710 (0.004)                  | 0.784 (0.003)                  | 0.682 (0.004) |
|          | ARF              | 0.806 (0.007)                  | 0.889 (0.008)                  | 0.836 (0.005) |
|          | IGMM-CD          | 0.760 (0.017)                  | 0.889 (0.008)                  | 0.756 (0.011) |
|          | OGMMF-VRD        | 0.814 (0.011)                  | 0.922 (0.009)                  | 0.834 (0.012) |
|          | GMM-VRD          | 0.810 (0.013)                  | 0.913 (0.004)                  | 0.807 (0.010) |
|          | Dynse            | 0.773 (0.014)                  | 0.866 (0.006)                  | 0.772 (0.010) |
|          | HAT-DDM          | 0.880 (0.019)                  | 0.509 (0.011)                  | -             |
|          | HAT-EDDM         | 0.584 (0.025)                  | 0.422 (0.026)                  | -             |
|          | HAT-ADWIN        | 0.914 (0.092)                  | 0.118 (0.093)                  | -             |
|          | AWE              | 0.878 (0.002)                  | 0.828 (0.003)                  | -             |
|          | LevBag           | 0.861 (0.003)                  | 0.797 (0.005)                  | -             |
| SEA      | OzaAD            | 0.815 (0.010)                  | 0.796 (0.004)                  | -             |
|          | OzaAS            | 0.811 (0.002)                  | 0.799 (0.002)                  | -             |
|          | ARF              | 0.838 (0.006)                  | 0.829 (0.010)                  | -             |
|          | OGMMF-VRD        | 0.855 (0.007)                  | 0.826 (0.008)                  | -             |
|          | GMM-VRD          | 0.797 (0.010)                  | 0.761 (0.015)                  | -             |
|          | Dynse<br>IGMM-CD | 0.701 (0.018)<br>0.740 (0.011) | 0.750 (0.019)<br>0.543 (0.015) | -             |
|          | IGIVIIVI-CD      | 0.740 (0.011)                  | 0.545 (0.015)                  | -             |

|        | HATDDM              | 0.725 (0.064) | 0.604 (0.069) |   |
|--------|---------------------|---------------|---------------|---|
|        | HAT-DDM<br>HAT-EDDM | 0.735 (0.064) | 0.694 (0.068) | - |
|        |                     | 0.519 (0.017) | 0.484 (0.017) | - |
|        | HAT-ADWIN           | 0.660 (0.133) | 0.396 (0.153) | - |
|        | AWE                 | 0.876 (0.002) | 0.835 (0.002) | - |
|        | LevBag              | 0.868 (0.003) | 0.793 (0.004) | - |
| SEARec | OzaAD               | 0.819 (0.004) | 0.802 (0.004) | - |
|        | OzaAS               | 0.821 (0.001) | 0.798 (0.001) | - |
|        | ARF                 | 0.836 (0.006) | 0.822 (0.009) | - |
|        | OGMMF-VRD           | 0.853 (0.005) | 0.828 (0.007) | - |
|        | GMM-VRD             | 0.790 (0.013) | 0.764 (0.010) | - |
|        | Dynse               | 0.734 (0.007) | 0.760 (0.008) | - |
|        | IGMM-CD             | 0.744 (0.009) | 0.538 (0.013) | - |
|        | HAT-DDM             | 0.230 (0.053) | 0.925 (0.020) | - |
|        | HAT-EDDM            | 0.016 (0.006) | 0.992 (0.003) | - |
|        | HAT-ADWIN           | 0.148 (0.056) | 0.950 (0.020) | - |
|        | AWE                 | 0.569 (0.015) | 0.821 (0.010) | - |
|        | LevBag              | 0.705 (0.013) | 0.712 (0.010) | - |
| NOAA   | OzaAD               | 0.738 (0.036) | 0.630 (0.037) | - |
| NOAA   | OzaAS               | 0.613 (0.066) | 0.721 (0.056) | - |
|        | ARF                 | 0.478 (0.015) | 0.897 (0.004) | - |
|        | OGMMF-VRD           | 0.603 (0.009) | 0.806 (0.006) | - |
|        | GMM-VRD             | 0.628 (0.035) | 0.735 (0.030) | - |
|        | Dynse               | 0.462 (0.006) | 0.750 (0.004) | - |
|        | IGMM-CD             | 0.573 (0.007) | 0.619 (0.010) | - |
|        | HAT-DDM             | 0.494 (0.033) | 0.841 (0.018) | - |
|        | HAT-EDDM            | 0.439 (0.016) | 0.843 (0.008) | - |
|        | HAT-ADWIN           | 0.489 (0.023) | 0.844 (0.014) | - |
|        | AWE                 | 0.589 (0.005) | 0.798 (0.004) | - |
|        | LevBag              | 0.656 (0.007) | 0.835 (0.006) | - |
| FLEC   | OzaAD               | 0.563 (0.025) | 0.807 (0.021) | - |
| ELEC   | OzaAS               | 0.357 (0.007) | 0.907 (0.004) | - |
|        | ARF                 | 0.705 (0.007) | 0.857 (0.006) | - |
|        | OGMMF-VRD           | 0.659 (0.011) | 0.807 (0.008) | - |
|        | GMM-VRD             | 0.606 (0.020) | 0.740 (0.017) | - |
|        | Dynse               | 0.508 (0.004) | 0.752 (0.002) | - |
|        | IGMM-CD             | 0.793 (0.002) | 0.777 (0.002) | - |
|        | HAT-DDM             | 0.996 (0.001) | 0.005 (0.002) | - |
|        | HAT-EDDM            | 1.000 (0.000) | 0.000 (0.000) | _ |
|        | HAT-ADWIN           | 0.996 (0.002) | 0.005 (0.002) | _ |
|        | AWE                 | 0.656 (0.086) | 0.476 (0.098) | - |
|        | LevBag              | 0.826 (0.014) | 0.245 (0.020) | - |
|        | OzaAD               | 0.299 (0.048) | 0.788 (0.041) | _ |
| PAKDD  | OzaAS               | 0.537 (0.094) | 0.594 (0.083) | - |
|        | ARF                 | 0.982 (0.001) | 0.037 (0.003) | - |
|        | OGMMF-VRD           | 0.948 (0.002) | 0.061 (0.001) | _ |
|        | GMM-VRD             | 0.830 (0.015) | 0.212 (0.017) | _ |
|        | Dynse               | 0.417 (0.002) | 0.644 (0.002) | _ |
|        | IGMM-CD             | 0.376 (0.001) | 0.601 (0.001) | _ |
|        | 10141141-CD         | 0.570 (0.001) | 0.001 (0.001) |   |

TABLE XII: Part 2 of Recall for approaches compared for all experimented datasets. The results highlighted with bold represent the best accuracy in comparison with the other approaches.

| Datasets | Algorithms | Class 0       | Class 1       | Class 2       | Class 3       | Class 4       | Class 5       |
|----------|------------|---------------|---------------|---------------|---------------|---------------|---------------|
|          | IGMM-CD    | 0.011 (0.001) | 0.009 (0.000) | 0.010 (0.001) | 0.018 (0.002) | 0.009 (0.001) | 0.002 (0.000) |
|          | Dynse      | 0.181 (0.004) | 0.284 (0.003) | 0.248 (0.003) | 0.251 (0.002) | 0.272 (0.002) | 0.234 (0.002) |
|          | GMM-VRD    | 0.554 (0.110) | 0.442 (0.104) | 0.365 (0.114) | 0.261 (0.099) | 0.261 (0.082) | 0.248 (0.098) |

|              | OGMMF-VRD | 0.673 (0.012) | 0.662 (0.035) | 0.582 (0.053) | 0.558 (0.052) | 0.522 (0.012) | 0.539 (0.070) |
|--------------|-----------|---------------|---------------|---------------|---------------|---------------|---------------|
|              | HAT-DDM   | 0.342 (0.017) | 0.386 (0.032) | 0.420 (0.018) | 0.201 (0.048) | 0.246 (0.039) | 0.481 (0.037) |
|              | HAT-EDDM  | 0.323 (0.024) | 0.412 (0.047) | 0.430 (0.022) | 0.201 (0.042) | 0.222 (0.058) | 0.436 (0.062) |
|              | HAT-ADWIN | 0.303 (0.012) | 0.396 (0.033) | 0.437 (0.010) | 0.165 (0.048) | 0.265 (0.049) | 0.456 (0.037) |
|              | AWE       | 0.383 (0.005) | 0.381 (0.010) | 0.573 (0.004) | 0.269 (0.017) | 0.181 (0.003) | 0.153 (0.002) |
|              | LevBag    | 0.904 (0.014) | 0.837 (0.010) | 0.865 (0.003) | 0.844 (0.006) | 0.822 (0.013) | 0.819 (0.004) |
|              | OzaAD     | 0.793 (0.002) | 0.623 (0.006) | 0.595 (0.011) | 0.459 (0.007) | 0.471 (0.002) | 0.468 (0.004) |
|              | OzaAS     | 0.792 (0.002) | 0.600 (0.005) | 0.577 (0.002) | 0.449 (0.005) | 0.466 (0.002) | 0.466 (0.003) |
|              | ARF       | 0.815 (0.028) | 0.840 (0.025) | 0.829 (0.008) | 0.748 (0.016) | 0.707 (0.020) | 0.848 (0.018) |
|              | IGMM-CD   | 0.340 (0.008) | 0.266 (0.008) | 0.449 (0.011) | 0.345 (0.028) | 0.615 (0.010) | 0.378 (0.015) |
|              | Dynse     | 0.493 (0.002) | 0.561 (0.002) | 0.693 (0.002) | 0.798 (0.001) | 0.675 (0.001) | 0.715 (0.002) |
|              | GMM-VRD   | 0.417 (0.038) | 0.432 (0.055) | 0.465 (0.046) | 0.672 (0.112) | 0.489 (0.030) | 0.522 (0.033) |
|              | OGMMF-VRD | 0.615 (0.016) | 0.616 (0.013) | 0.556 (0.012) | 0.823 (0.006) | 0.700 (0.009) | 0.629 (0.011) |
|              | HAT-DDM   | 0.591 (0.024) | 0.449 (0.041) | 0.377 (0.036) | 0.587 (0.044) | 0.463 (0.038) | 0.310 (0.048) |
| INS-Inc-Rec  | HAT-EDDM  | 0.552 (0.010) | 0.471 (0.016) | 0.407 (0.002) | 0.665 (0.004) | 0.499 (0.002) | 0.330 (0.007) |
| INS-IIIC-RCC | HAT-ADWIN | 0.618 (0.003) | 0.435 (0.020) | 0.344 (0.001) | 0.643 (0.001) | 0.497 (0.003) | 0.279 (0.021) |
|              | AWE       | 0.502 (0.005) | 0.597 (0.005) | 0.451 (0.007) | 0.330 (0.040) | 0.750 (0.002) | 0.845 (0.008) |
|              | LevBag    | 0.388 (0.004) | 0.585 (0.005) | 0.767 (0.015) | 0.819 (0.021) | 0.742 (0.004) | 0.781 (0.006) |
|              | OzaAD     | 0.144 (0.012) | 0.186 (0.009) | 0.486 (0.020) | 0.784 (0.005) | 0.559 (0.008) | 0.847 (0.006) |
|              | OzaAS     | 0.123 (0.002) | 0.171 (0.003) | 0.442 (0.001) | 0.783 (0.002) | 0.549 (0.002) | 0.838 (0.001) |
|              | ARF       | 0.649 (0.010) | 0.682 (0.011) | 0.574 (0.007) | 0.809 (0.003) | 0.803 (0.006) | 0.811 (0.017) |
|              | IGMM-CD   | 0.322 (0.005) | 0.257 (0.011) | 0.425 (0.006) | 0.375 (0.032) | 0.578 (0.014) | 0.363 (0.021) |
|              | Dynse     | 0.410 (0.001) | 0.528 (0.001) | 0.630 (0.002) | 0.873 (0.001) | 0.671 (0.001) | 0.699 (0.002) |
|              | GMM-VRD   | 0.352 (0.066) | 0.384 (0.045) | 0.337 (0.056) | 0.759 (0.104) | 0.534 (0.072) | 0.547 (0.067) |
|              | OGMMF-VRD | 0.547 (0.014) | 0.542 (0.020) | 0.458 (0.010) | 0.883 (0.007) | 0.747 (0.015) | 0.717 (0.016) |
|              | HAT-DDM   | 0.482 (0.008) | 0.251 (0.026) | 0.317 (0.020) | 0.767 (0.003) | 0.607 (0.024) | 0.488 (0.031) |
| INS-Inc-Abt  | HAT-EDDM  | 0.457 (0.009) | 0.328 (0.005) | 0.383 (0.000) | 0.780 (0.002) | 0.656 (0.002) | 0.441 (0.005) |
| INS-IIIC-AU  | HAT-ADWIN | 0.475 (0.013) | 0.298 (0.059) | 0.340 (0.000) | 0.755 (0.001) | 0.638 (0.004) | 0.443 (0.054) |
|              | AWE       | 0.344 (0.004) | 0.564 (0.004) | 0.605 (0.010) | 0.239 (0.042) | 0.779 (0.003) | 0.840 (0.003) |
|              | LevBag    | 0.300 (0.005) | 0.515 (0.006) | 0.757 (0.013) | 0.877 (0.021) | 0.789 (0.001) | 0.795 (0.006) |
|              | OzaAD     | 0.171 (0.006) | 0.372 (0.011) | 0.609 (0.020) | 0.815 (0.007) | 0.780 (0.004) | 0.850 (0.004) |
|              | OzaAS     | 0.163 (0.001) | 0.365 (0.004) | 0.557 (0.001) | 0.792 (0.001) | 0.779 (0.002) | 0.857 (0.001) |
|              | ARF       | 0.581 (0.009) | 0.573 (0.005) | 0.496 (0.013) | 0.866 (0.002) | 0.819 (0.010) | 0.863 (0.006) |
|              | IGMM-CD   | 0.464 (0.003) | 0.305 (0.004) | 0.542 (0.026) | 0.372 (0.004) | 0.676 (0.003) | 0.478 (0.002) |
|              | Dynse     | 0.604 (0.003) | 0.532 (0.003) | 0.745 (0.003) | 0.593 (0.002) | 0.682 (0.004) | 0.720 (0.003) |
|              | GMM-VRD   | 0.413 (0.087) | 0.400 (0.075) | 0.670 (0.028) | 0.457 (0.089) | 0.421 (0.070) | 0.439 (0.068) |
|              | OGMMF-VRD | 0.488 (0.027) | 0.501 (0.018) | 0.714 (0.023) | 0.553 (0.028) | 0.622 (0.031) | 0.626 (0.018) |
|              | HAT-DDM   | 0.058 (0.020) | 0.322 (0.010) | 0.808 (0.074) | 0.262 (0.070) | 0.008 (0.013) | 0.603 (0.057) |
| Ins-Grad     | HAT-EDDM  | 0.232 (0.014) | 0.264 (0.020) | 0.591 (0.012) | 0.437 (0.002) | 0.262 (0.029) | 0.509 (0.022) |
| ms-Grau      | HAT-ADWIN | 0.074 (0.007) | 0.318 (0.010) | 0.713 (0.081) | 0.373 (0.002) | 0.083 (0.056) | 0.608 (0.077) |
|              | AWE       | 0.627 (0.004) | 0.579 (0.007) | 0.313 (0.002) | 0.566 (0.042) | 0.723 (0.006) | 0.802 (0.006) |
|              | LevBag    | 0.619 (0.012) | 0.494 (0.010) | 0.848 (0.006) | 0.722 (0.014) | 0.704 (0.002) | 0.752 (0.009) |
|              | OzaAD     | 0.565 (0.018) | 0.322 (0.033) | 0.716 (0.055) | 0.649 (0.102) | 0.666 (0.017) | 0.805 (0.040) |
|              | OzaAS     | 0.537 (0.004) | 0.254 (0.009) | 0.573 (0.004) | 0.466 (0.007) | 0.618 (0.002) | 0.811 (0.003) |
|              | ARF       | 0.529 (0.037) | 0.482 (0.021) | 0.819 (0.022) | 0.710 (0.039) | 0.812 (0.021) | 0.857 (0.020) |

TABLE IV: Time for approaches compared for all experimented datasets. The results highlighted with bold represent the best accuracy in comparison with the other approaches.

| Datasets           | IGMM-CD          | Dynse          | GMM-VRD         | OGMMF-VRD       | HAT-DDM       | HAT-EDDM     | HAT-ADWIN    | AWE          | LevBag       | OzaAD        | OzaAS        | ARF           |
|--------------------|------------------|----------------|-----------------|-----------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|
| Circles            | 221.2 (90.9)     | 733.5 (56.8)   | 55.6 (14.6)     | 140.9 (44.6)    | 16.8 (0.1)    | 17.1 (0.1)   | 16.7 (0.1)   | 18.9 (0.7)   | 20.6 (0.1)   | 18.5 (0.1)   | 16.1 (0.1)   | 27.6 (0.2)    |
| Sine1              | 249.3 (86.2)     | 1078.7 (33.7)  | 78.4 (24.6)     | 205.6 (68.6)    | 25.5 (0.1)    | 25.4 (0.1)   | 24.8 (0.1)   | 27.9 (0.1)   | 29.9 (0.1)   | 27.2 (0.1)   | 24.3 (0.1)   | 36.5 (0.2)    |
| Sine2              | 258.4 (87.1)     | 1048.6 (38.2)  | 84.5 (25.5)     | 237.4 (85.2)    | 25.5119 (0.1) | 25.4 (0.1)   | 25.4 (0.1)   | 27.9 (0.1)   | 29.8 (0.1)   | 27.3 (0.1)   | 24.3 (0.1)   | 36.6 (0.1)    |
| Virtual5           | 648.3 (193.1)    | 881.2 (63.5)   | 102.4 (25.7)    | 346.6 (121.2)   | 25.0807 (0.2) | 24.5 (0.1)   | 23.9 (0.1)   | 27.8 (0.1)   | 29.1 (0.1)   | 26.6 (0.1)   | 23.3 (0.1)   | 38.6 (0.5)    |
| Virtual9           | 499.4 (162.6)    | 839.6 (61.1)   | 75.2 (20.5)     | 219.9 (62.4)    | 20.8 (0.1)    | 20.3 (0.1)   | 19.7 (0.1)   | 23.2 (0.1)   | 24.4 (0.1)   | 22.1 (0.1)   | 19.2 (0.1)   | 32.6 (0.6)    |
| SEA                | 233.6 (88.3)     | 589.5 (50.1)   | 60.7 (19.8)     | 149.5 (61.4)    | 17.3 (0.1)    | 17.1 (0.1)   | 16.5 (0.1)   | 19.8 (0.1)   | 21.2 (0.1)   | 18.9 (0.1)   | 16.3 (0.1)   | 28.5 (0.3)    |
| SEARec             | 549.7 (183.9)    | 1099.7 (81.7)  | 166.6 (55.3)    | 385.4 (117.3)   | 62.5 (0.5)    | 60.9 (0.3)   | 60.1 (0.4)   | 66.9 (0.2)   | 69.5 (0.2)   | 64.9 (0.2)   | 59.6 (0.1)   | 86.3 (1.3)    |
| NOAA               | 1099.1 (367.8)   | 2495.7 (125.5) | 367.1 (119.7)   | 987.3 (354.9)   | 76.8 (1.2)    | 76.4 (1.2)   | 75.8 (1.3)   | 88.5 (1.3)   | 90.4 (1.5)   | 81.9 (1.2)   | 74.6 (1.1)   | 120.5 (3.7)   |
| ELEC               | 1202.8 (215.6)   | 3383.5 (43.6)  | 528.6 (67.9)    | 1122.2 (69.1)   | 165.6 (0.9)   | 165.4 (0.8)  | 164.7 (0.8)  | 178.5 (0.8)  | 183.8 (0.9)  | 174.6 (0.6)  | 165.1 (0.1)  | 212.1 (2.5)   |
| PAKDD              | 2858.6 (1085.1)  | 7285.5 (61.1)  | 2498.1 (2244.3) | 3997.9 (1476.1) | 548.6 (16.9)  | 533.8 (12.1) | 549.7 (14.9) | 667.5 (16.8) | 652.3 (16.8) | 596.1 (15.9) | 559.6 (16.1) | 749.2 (35.2)  |
| GasSensor          | 11504.4 (219.3)  | 1657.9 (19.4)  | 1646.8 (188.7)  | 3096.7 (234.6)  | 96.2 (10.2)   | 97.9 (11.1)  | 84.1 (11.6)  | 206.3 (22.9) | 243.7 (27.4) | 419.6 (30)   | 264.3 (28.7) | 96.1 (11.3)   |
| INSECT-Inc-Rec-Bal | 24868.9 (1638.1) | 8230.7 (685.4) | 4690.9 (181.6)  | 6313.6 (49.1)   | 1294.3 (6.1)  | 1325.4 (1.9) | 1279.2 (1.9) | 1588.6 (4.5) | 1686 (6.9)   | 1916.5 (5.8) | 1639.2 (7.5) | 1725.1 (65.5) |
| INSECT-Inc-Abt-Bal | 24650.4 (1642.4) | 8135.3 (130.6) | 4739.3 (232.6)  | 6377.1 (48.9)   | 1372.3 (62.5) | 1323.5 (1.2) | 1278.6 (1.9) | 1585.1 (4.5) | 1685.6 (5.4) | 1925.2 (5.7) | 1647.3 (5.2) | 1634.5 (8.3)  |
| INSECT-Grad-Bal    | 5294.7 (931.7)   | 2189.8 (21.9)  | 867.7 (73.9)    | 1366.9 (77.7)   | 161.6 (13.9)  | 184.3 (16)   | 166.2 (8)    | 253.6 (25.9) | 276.9 (31)   | 349.5 (38.8) | 251.3 (25.8) | 253.4 (22.7)  |
| Friedman Ranking   | 11.25 (0.57)     | 11.58 (0.71)   | 9.38 (0.62)     | 9.79 (0.55)     | 3.12 (0.98)   | 3.02 (0.52)  | 1.91 (0.83)  | 5.60 (0.77)  | 6.87 (0.33)  | 5.92 (1.38)  | 2.53 (2.16)  | 7.03 (1.67)   |

TABLE V: Grid search for radius parameter of the OGMMF-VRD. The results highlighted with bold represent the best accuracy. According to the p-value 4.21E-01 obtained by the Friedman test. the H0 was not rejected. which means that this parameter did not have significant impact on the models' accuracy.

| Datasets | radius=10      | radius=15      | radius=20      | radius=25      |
|----------|----------------|----------------|----------------|----------------|
| Circles  | 0.8143 (0.003) | 0.8145 (0.003) | 0.813 (0.004)  | 0.8136 (0.003) |
| Sine1    | 0.8225 (0.003) | 0.823 (0.004)  | 0.8239 (0.003) | 0.8224 (0.003) |
| Sine2    | 0.7475 (0.003) | 0.7482 (0.004) | 0.7475 (0.003) | 0.7481 (0.002) |
| Virtual5 | 0.8299 (0.003) | 0.8295 (0.003) | 0.8298 (0.003) | 0.8292 (0.003) |
| Virtual9 | 0.8555 (0.003) | 0.8543 (0.003) | 0.8569 (0.004) | 0.8558 (0.002) |
| SEA      | 0.8415 (0.003) | 0.841 (0.005)  | 0.8436 (0.004) | 0.8417 (0.003) |

TABLE VI: Grid search for EDDM drift level threshold used in OGMMF-VRD. The results highlighted with bold represent the best accuracy. According to the p-value 8.29E-01 obtained by the Friedman test, the H0 was not rejected, which means that this parameter did not have significant impact on the models' accuracy.

| Datasets | c=1            | c=1.5          | c=2            | c=2.5          |
|----------|----------------|----------------|----------------|----------------|
| Circles  | 0.8138 (0.003) | 0.8133 (0.004) | 0.813 (0.004)  | 0.8129 (0.004) |
| Sine1    | 0.8221 (0.003) | 0.8219 (0.002) | 0.8227 (0.003) | 0.8212 (0.003) |
| Sine2    | 0.7478 (0.003) | 0.7467 (0.003) | 0.7488 (0.003) | 0.7478 (0.003) |
| Virtual5 | 0.8293 (0.004) | 0.8287 (0.003) | 0.8288 (0.003) | 0.8295 (0.003) |
| Virtual9 | 0.8563 (0.004) | 0.8573 (0.003) | 0.8564 (0.003) | 0.8564 (0.004) |
| SEA      | 0.8416 (0.005) | 0.8416 (0.004) | 0.8408 (0.004) | 0.8416 (0.004) |



Fig. 3: Friedman and Nemenyi tests for OGMMF-VRD with m=50 (chunk size) for average accuracy in synthetic datasets with different noise levels. Friedman's p-value were p=4.38E-23, p=5.44E-23, p=4.50E-22, p=1.04E-22 and its ranking is shown from left (best) to right (worst). Any pair of approaches whose distance between them is larger than CD is considered to be significantly different.



Fig. 4: Friedman and Nemenyi tests for OGMMF-VRD with m=50 (chunk size) for average G-mean and Accuracy in all synthetic datasets with all different noise levels. Friedman's p-value were p=1.72E-83 and p=9.73E-25 and its ranking is shown from left (best) to right (worst). Any pair of approaches whose distance between them is larger than CD is considered to be significantly different.



Fig. 5: Friedman and Nemenyi tests for OGMMF-VRD with m=200 (chunk size) for average G-mean and Accuracy in all synthetic datasets with all different noise levels. w/o means the system without the mechanism. Friedman's p-value were p=4.27E-133 and p=8.18E-132 and its ranking is shown from left (best) to right (worst). Any pair of approaches whose distance between them is larger than CD is considered to be significantly different.

TABLE VII: Average accuracy for synthetic datasets with different noise levels. w/o means the system without the mechanism. m is the chunk size used in the experiments. The results highlighted with bold represent the best accuracy in comparison with the other approaches.

| Datasets     | OGMMF-VRD<br>(w/o pool)<br>m = 200 | OGMMF-VRD<br>(w/o filter and pool)<br>m = 200 | OGMMF-VRD<br>m = 200 | OGMMF-VRD<br>(w/o filter)<br>m = 50 | OGMMF-VRD<br>m = 50 | GMM-VRD        | Dynse          | IGMM-CD        |
|--------------|------------------------------------|-----------------------------------------------|----------------------|-------------------------------------|---------------------|----------------|----------------|----------------|
| Circles 5%   | 0.871 (0.003)                      | 0.872 (0.003)                                 | 0.885 (0.002)        | 0.8657 (0.004)                      | 0.8652 (0.003)      | 0.8583 (0.004) | 0.8227 (0.013) | 0.7923 (0.003) |
| Circles 10%  | 0.828 (0.003)                      | 0.826 (0.003)                                 | 0.828 (0.005)        | 0.814 (0.004)                       | 0.8143 (0.003)      | 0.798 (0.004)  | 0.78 (0.011)   | 0.7291 (0.002) |
| Circles 15%  | 0.727 (0.005)                      | 0.725 (0.003)                                 | 0.725 (0.004)        | 0.7043 (0.004)                      | 0.703 (0.004)       | 0.6854 (0.004) | 0.6944 (0.014) | 0.6276 (0.003) |
| Circles 20%  | 0.628 (0.005)                      | 0.630 (0.003)                                 | 0.624 (0.005)        | 0.611 (0.004)                       | 0.6118 (0.003)      | 0.5991 (0.006) | 0.6124 (0.009) | 0.5619 (0.003) |
| Sine1 5%     | 0.846 (0.004)                      | 0.848 (0.005)                                 | 0.885 (0.006)        | 0.8902 (0.003)                      | 0.889 (0.005)       | 0.8519 (0.002) | 0.7791 (0.001) | 0.7628 (0.003) |
| Sine1 10%    | 0.802 (0.003)                      | 0.802 (0.002)                                 | 0.827 (0.005)        | 0.8295 (0.004)                      | 0.8313 (0.004)      | 0.8121 (0.003) | 0.7445 (0.001) | 0.7042 (0.001) |
| Sine1 15%    | 0.755 (0.003)                      | 0.755 (0.003)                                 | 0.775 (0.006)        | 0.8295 (0.004)                      | 0.8313 (0.004)      | 0.8121 (0.003) | 0.7445 (0.001) | 0.7042 (0.001) |
| Sine1 20%    | 0.713 (0.001)                      | 0.712 (0.003)                                 | 0.722 (0.004)        | 0.715 (0.004)                       | 0.7157 (0.003)      | 0.7207 (0.003) | 0.6738 (0.001) | 0.6156 (0.002) |
| Sine2 5%     | 0.766 (0.005)                      | 0.765 (0.004)                                 | 0.790 (0.008)        | 0.7888 (0.003)                      | 0.7888 (0.003)      | 0.7821 (0.003) | 0.4781 (0.026) | 0.7741 (0.002) |
| Sine2 10%    | 0.727 (0.005)                      | 0.725 (0.005)                                 | 0.749 (0.003)        | 0.7476 (0.003)                      | 0.7475 (0.003)      | 0.7349 (0.003) | 0.4819 (0.024) | 0.7133 (0.002) |
| Sine2 15%    | 0.658 (0.004)                      | 0.659 (0.003)                                 | 0.666 (0.004)        | 0.6601 (0.004)                      | 0.658 (0.004)       | 0.6482 (0.003) | 0.5602 (0.093) | 0.612 (0.002)  |
| Sine2 20%    | 0.596 (0.002)                      | 0.599 (0.004)                                 | 0.597 (0.007)        | 0.587 (0.002)                       | 0.5856 (0.003)      | 0.5788 (0.004) | 0.6024 (0.002) | 0.5449 (0.003) |
| Virtual5 5%  | 0.799 (0.003)                      | 0.809 (0.001)                                 | 0.809 (0.003)        | 0.8014 (0.003)                      | 0.8018 (0.004)      | 0.8076 (0.002) | 0.7575 (0.001) | 0.7176 (0.001) |
| Virtual5 10% | 0.725 (0.005)                      | 0.738 (0.002)                                 | 0.738 (0.003)        | 0.724 (0.004)                       | 0.7243 (0.003)      | 0.7309 (0.006) | 0.6894 (0.001) | 0.6236 (0.001) |
| Virtual5 15% | 0.622 (0.004)                      | 0.647 (0.003)                                 | 0.648 (0.003)        | 0.6257 (0.003)                      | 0.6226 (0.003)      | 0.6349 (0.006) | 0.5992 (0.001) | 0.5228 (0.002) |
| Virtual5 20% | 0.521 (0.004)                      | 0.544 (0.001)                                 | 0.545 (0.004)        | 0.5167 (0.004)                      | 0.5189 (0.004)      | 0.5196 (0.005) | 0.4904 (0.001) | 0.4357 (0.001) |
| Virtual9 5%  | 0.825 (0.004)                      | 0.831 (0.003)                                 | 0.831 (0.002)        | 0.806 (0.004)                       | 0.8042 (0.003)      | 0.7879 (0.006) | 0.7641 (0.026) | 0.7568 (0.002) |
| Virtual9 10% | 0.739 (0.005)                      | 0.753 (0.001)                                 | 0.753 (0.003)        | 0.7143 (0.003)                      | 0.7153 (0.004)      | 0.6843 (0.007) | 0.6849 (0.022) | 0.6413 (0.002) |
| Virtual9 15% | 0.739 (0.004)                      | 0.752 (0.003)                                 | 0.753 (0.003)        | 0.7145 (0.004)                      | 0.7177 (0.004)      | 0.6836 (0.008) | 0.6958 (0.004) | 0.6449 (0.002) |
| Virtual9 20% | 0.599 (0.006)                      | 0.619 (0.004)                                 | 0.620 (0.004)        | 0.572 (0.004)                       | 0.5752 (0.003)      | 0.5141 (0.012) | 0.5689 (0.002) | 0.5108 (0.001) |
| SEA 5%       | 0.900 (0.004)                      | 0.899 (0.004)                                 | 0.913 (0.003)        | 0.9118 (0.002)                      | 0.9133 (0.002)      | 0.9052 (0.002) | 0.8718 (0.001) | 0.6476 (0.001) |
| SEA 10%      | 0.854 (0.004)                      | 0.853 (0.003)                                 | 0.856 (0.005)        | 0.8576 (0.002)                      | 0.8555 (0.002)      | 0.8487 (0.005) | 0.8221 (0.001) | 0.6103 (0.001) |
| SEA 15%      | 0.801 (0.003)                      | 0.804 (0.003)                                 | 0.800 (0.004)        | 0.7992 (0.004)                      | 0.798 (0.003)       | 0.7911 (0.003) | 0.7717 (0.001) | 0.5885 (0.001) |
| SEA 20%      | 0.750 (0.003)                      | 0.752 (0.003)                                 | 0.747 (0.002)        | 0.7474 (0.002)                      | 0.7458 (0.004)      | 0.7475 (0.007) | 0.7275 (0.001) | 0.5687 (0.001) |
| SEARec 5%    | 0.900 (0.002)                      | 0.899 (0.002)                                 | 0.912 (0.001)        | 0.9128 (0.001)                      | 0.9115 (0.002)      | 0.9022 (0.004) | 0.8671 (0)     | 0.635 (0.001)  |
| SEARec 10%   | 0.849 (0.002)                      | 0.850 (0.002)                                 | 0.854 (0.002)        | 0.8541 (0.001)                      | 0.8519 (0.002)      | 0.8307 (0.005) | 0.8197 (0.001) | 0.6066 (0.002) |
| SEARec 15%   | 0.802 (0.002)                      | 0.800 (0.002)                                 | 0.795 (0.004)        | 0.7943 (0.002)                      | 0.7924 (0.003)      | 0.7766 (0.004) | 0.7733 (0.001) | 0.5859 (0.001) |
| SEARec 20%   | 0.749 (0.002)                      | 0.747 (0.003)                                 | 0.743 (0.002)        | 0.7399 (0.002)                      | 0.7405 (0.002)      | 0.7224 (0.003) | 0.7289 (0.001) | 0.5611 (0.001) |

TABLE VIII: Average G-mean for synthetic datasets with different noise levels. w/o means the system without the mechanism. m is the chunk size used in the experiments. The results highlighted with bold represent the best accuracy in comparison with the other approaches.

| Datasets     | OGMMF-VRD<br>(w/o pool)<br>m = 200 | OGMMF-VRD<br>(w/o filter and pool)<br>m = 200 | OGMMF-VRD<br>m = 200 | OGMMF-VRD<br>(w/o filter)<br>m = 50 | OGMMF-VRD<br>m = 50 | GMM-VRD       | Dynse         | IGMM-CD       |
|--------------|------------------------------------|-----------------------------------------------|----------------------|-------------------------------------|---------------------|---------------|---------------|---------------|
| Circles 5%   | 0.871 (0.003)                      | 0.872 (0.003)                                 | 0.885 (0.002)        | 0.866 (0.005)                       | 0.868 (0.004)       | 0.857 (0.005) | 0.803 (0.003) | 0.792 (0.003) |
| Circles 10%  | 0.828 (0.003)                      | 0.826 (0.003)                                 | 0.828 (0.005)        | 0.813 (0.005)                       | 0.809 (0.006)       | 0.799 (0.005) | 0.764 (0.003) | 0.728 (0.004) |
| Circles 15%  | 0.727 (0.005)                      | 0.725 (0.003)                                 | 0.724 (0.004)        | 0.703 (0.005)                       | 0.703 (0.005)       | 0.684 (0.007) | 0.673 (0.004) | 0.628 (0.003) |
| Circles 20%  | 0.627 (0.005)                      | 0.629 (0.004)                                 | 0.623 (0.005)        | 0.608 (0.004)                       | 0.609 (0.005)       | 0.598 (0.006) | 0.602 (0.007) | 0.562 (0.004) |
| Sine1 5%     | 0.846 (0.004)                      | 0.847 (0.005)                                 | 0.885 (0.006)        | 0.890 (0.004)                       | 0.887 (0.007)       | 0.852 (0.004) | 0.872 (0.002) | 0.763 (0.004) |
| Sine1 10%    | 0.801 (0.003)                      | 0.801 (0.003)                                 | 0.827 (0.005)        | 0.829 (0.005)                       | 0.831 (0.005)       | 0.811 (0.005) | 0.868 (0.002) | 0.704 (0.002) |
| Sinel 15%    | 0.755 (0.003)                      | 0.755 (0.003)                                 | 0.775 (0.006)        | 0.774 (0.007)                       | 0.777 (0.007)       | 0.765 (0.004) | 0.860 (0.002) | 0.658 (0.004) |
| Sinel 20%    | 0.713 (0.001)                      | 0.712 (0.003)                                 | 0.722 (0.004)        | 0.715 (0.005)                       | 0.715 (0.004)       | 0.721 (0.004) | 0.856 (0.002) | 0.616 (0.003) |
| Sine2 5%     | 0.766 (0.005)                      | 0.765 (0.004)                                 | 0.790 (0.008)        | 0.788 (0.006)                       | 0.789 (0.004)       | 0.781 (0.004) | 0.515 (0.003) | 0.775 (0.003) |
| Sine2 10%    | 0.727 (0.005)                      | 0.725 (0.005)                                 | 0.749 (0.003)        | 0.745 (0.004)                       | 0.746 (0.004)       | 0.735 (0.003) | 0.516 (0.003) | 0.713 (0.002) |
| Sine2 15%    | 0.658 (0.004)                      | 0.659 (0.003)                                 | 0.666 (0.004)        | 0.658 (0.003)                       | 0.657 (0.004)       | 0.646 (0.003) | 0.668 (0.002) | 0.612 (0.004) |
| Sine2 20%    | 0.596 (0.002)                      | 0.599 (0.004)                                 | 0.597 (0.007)        | 0.587 (0.004)                       | 0.587 (0.003)       | 0.579 (0.005) | 0.602 (0.002) | 0.545 (0.004) |
| Virtual5 5%  | 0.793 (0.003)                      | 0.803 (0.001)                                 | 0.803 (0.003)        | 0.797 (0.004)                       | 0.798 (0.005)       | 0.803 (0.004) | 0.798 (0.003) | 0.711 (0.002) |
| Virtual5 10% | 0.719 (0.005)                      | 0.732 (0.002)                                 | 0.732 (0.003)        | 0.718 (0.006)                       | 0.720 (0.005)       | 0.726 (0.009) | 0.749 (0.001) | 0.619 (0.002) |
| Virtual5 15% | 0.616 (0.004)                      | 0.639 (0.003)                                 | 0.641 (0.003)        | 0.620 (0.005)                       | 0.617 (0.005)       | 0.628 (0.010) | 0.686 (0.003) | 0.686 (0.003) |
| Virtual5 20% | 0.514 (0.004)                      | 0.536 (0.001)                                 | 0.537 (0.004)        | 0.511 (0.007)                       | 0.512 (0.006)       | 0.512 (0.008) | 0.628 (0.002) | 0.433 (0.002) |
| Virtual9 5%  | 0.821 (0.005)                      | 0.827 (0.003)                                 | 0.827 (0.002)        | 0.799 (0.003)                       | 0.800 (0.006)       | 0.786 (0.006) | 0.725 (0.003) | 0.752 (0.003) |
| Virtual9 10% | 0.734 (0.005)                      | 0.749 (0.001)                                 | 0.749 (0.003)        | 0.709 (0.006)                       | 0.709 (0.006)       | 0.685 (0.010) | 0.651 (0.003) | 0.637 (0.004) |
| Virtual9 15% | 0.595 (0.006)                      | 0.615 (0.005)                                 | 0.616 (0.004)        | 0.714 (0.003)                       | 0.715 (0.003)       | 0.681 (0.006) | 0.687 (0.003) | 0.642 (0.003) |
| Virtual9 20% | 0.595 (0.006)                      | 0.615 (0.005)                                 | 0.616 (0.004)        | 0.569 (0.004)                       | 0.570 (0.004)       | 0.511 (0.015) | 0.564 (0.003) | 0.510 (0.002) |
| SEA 5%       | 0.900 (0.004)                      | 0.899 (0.004)                                 | 0.913 (0.003)        | 0.912 (0.003)                       | 0.913 (0.003)       | 0.906 (0.002) | 0.863 (0.002) | 0.640 (0.002) |
| SEA 10%      | 0.854 (0.005)                      | 0.853 (0.003)                                 | 0.855 (0.005)        | 0.858 (0.003)                       | 0.855 (0.003)       | 0.847 (0.007) | 0.834 (0.003) | 0.605 (0.001) |
| SEA 15%      | 0.801 (0.003)                      | 0.803 (0.003)                                 | 0.800 (0.004)        | 0.798 (0.006)                       | 0.799 (0.005)       | 0.790 (0.006) | 0.799 (0.002) | 0.585 (0.002) |
| SEA 20%      | 0.750 (0.003)                      | 0.752 (0.003)                                 | 0.746 (0.003)        | 0.746 (0.004)                       | 0.746 (0.003)       | 0.746 (0.008) | 0.761 (0.003) | 0.565 (0.002) |
| SEARec 5%    | 0.900 (0.002)                      | 0.899 (0.002)                                 | 0.912 (0.001)        | 0.912 (0.003)                       | 0.913 (0.002)       | 0.902 (0.007) | 0.901 (0.001) | 0.627 (0.002) |
| SEARec 10%   | 0.849 (0.002)                      | 0.849 (0.002)                                 | 0.854 (0.002)        | 0.852 (0.003)                       | 0.854 (0.002)       | 0.830 (0.007) | 0.861 (0.001) | 0.599 (0.002) |
| SEARec 15%   | 0.801 (0.002)                      | 0.800 (0.002)                                 | 0.794 (0.004)        | 0.792 (0.004)                       | 0.794 (0.003)       | 0.776 (0.005) | 0.822 (0.001) | 0.580 (0.002) |
| SEARec 20%   | 0.748 (0.002)                      | 0.747 (0.003)                                 | 0.743 (0.003)        | 0.740 (0.004)                       | 0.740 (0.003)       | 0.721 (0.005) | 0.787 (0.002) | 0.557 (0.002) |



Fig. 6: Line graph with the accuracy of the models for synthetic datasets with different noise levels. w/o means the system without the mechanism.

TABLE IX: Accuracy improvements obtained by each of OGMMF-VRD's mechanisms. Each column represents OGMMF-VRD without a given mechanism (e.g. w/o non-severe drift adaptation). P-values representing statistically significant difference at the level of  $\alpha$  = 0:05 are marked by \*. The results highlighted with bold represent the best accuracy.

| Datasets | W/0 Virtual + Ns Real | W/0 Severe Real | W/0 Pool        | OGMMF-VRD      |
|----------|-----------------------|-----------------|-----------------|----------------|
| Circles  | 0.8313 (0.005)        | 0.5983 (0.012)* | 0.8314 (0.003)  | 0.8332 (0.004) |
| Sine1    | 0.8341 (0.004)        | 0.567 (0.004)*  | 0.8098 (0.005)* | 0.8356 (0.005) |
| Sine2    | 0.7533 (0.003)*       | 0.5519 (0.004)* | 0.739 (0.004)*  | 0.757 (0.004)  |
| Virtual5 | 0.841 (0.003)*        | 0.5762 (0.014)* | 0.8408 (0.003)* | 0.8436 (0.003) |
| Virtual9 | 0.8662 (0.004)*       | 0.4684 (0.022)* | 0.8656 (0.004)* | 0.8721 (0.004) |
| SEA      | 0.8606 (0.003)        | 0.7501 (0.025)* | 0.8588 (0.003)* | 0.8625 (0.003) |
| SEARec   | 0.86 (0.002)*         | 0.7499 (0.014)* | 0.858 (0.002)*  | 0.8611 (0.002) |

TABLE X: Time execution obtained by each of OGMMF-VRD's mechanisms. Each column represents OGMMF-VRD without a given mechanism (e.g. w/o non-severe drift adaptation). The results highlighted with bold represent the best time.

| Datasets | w/o Virtual + Ns. Real | w/o Real   | w/o Pool    | w/o Filter  | Full        |
|----------|------------------------|------------|-------------|-------------|-------------|
| Circles  | 35.4 (0.4)             | 29.8 (1)   | 39.4 (0.3)  | 45.8 (0.3)  | 46.1 (0.4)  |
| Sine1    | 48.8 (0.5)             | 43.8 (1.8) | 55.1 (0.2)  | 64.3 (0.3)  | 63.8 (0.5)  |
| Sine2    | 52.6 (0.2)             | 44.4 (1.1) | 57.3 (0.3)  | 67.9 (0.2)  | 67.8 (0.3)  |
| Virtual5 | 52.1 (0.4)             | 49 (1.3)   | 56.4 (0.3)  | 68.1 (0.3)  | 68 (0.4)    |
| Virtual9 | 40.5 (0.4)             | 41.4 (2.2) | 47 (0.2)    | 55.4 (0.3)  | 55.5 (0.4)  |
| SEA      | 35.2 (0.4)             | 32.2 (0.5) | 40.1 (0.2)  | 47.4 (0.5)  | 47.5 (0.4)  |
| SEARec   | 97.5 (0.3)             | 86.1 (1)   | 107.3 (0.3) | 122.5 (0.3) | 122.4 (0.6) |



Fig. 7: Friedman and Nemenyi tests for average time execution for each OGMMF-VRD's mechanisms in all synthetic datasets. Friedman's p-value was p=1.07E-49. Each approach represents OGMMF-VRD without a given mechanism (e.g. w/o Virtual + Ns. Real adaptation). The last column (Full) represents the complete OGMMF-VRD. Any pair of approaches whose distance between them is larger than CD is considered to be significantly different.