BE – 165

V Semester B.E. (CSE/ISE) Degree Examination, December 2016 (2K11 Scheme)

CI - 53: COMPUTER NETWORKS - I

Time: 3 Hours Max. Marks: 100

Instructions: Answer any five questions choosing atleast any two questions from each Part.

PART-A

1.	a)	What is protocol stack? Justify the need of layered architecture.	6
	b)	Bring out differences between OSI and TCP/IP architecture.	7
	c)	Explain the different impairments with examples.	7
2.	a)	What is modulation? Draw the waveform of ASK, PSK and FSK for an input 10110101. Calculate the bit rate, given that baud rate = 2000 baud and use 16 QSM.	8
	b)	Explain the various modulation techniques to convert analog data to analog signal.	6
	c)	What are the objectives of encoding techniques? Encode the following 1001100011001110 using Manchester, differential Manchester and NRZ encoding method.	6
3.	a)	What is data encoding? Encode the data 01001100011 into digital signal using NRZ, Manchester and differential Manchester, Bipolar.	6
	b)	Describe the frame format of HDLC and PPP standard protocol.	6
	c)	What is multiplexing? Explain FDM, TDM and WDM with example.	8
4.	a)	Show that the channel efficiency in slotted Aloha is twice that in pure Aloha.	8
	b)	Explain the simplex stop and wait protocol. What are the advantages?	5
	c)	How is hamming code used to detect and correct errors? Distinguish between bit and burst error and explain method to detect them.	7

BE – 165

PART-B

5.	a)	With a frame format of 802.3, explain how frames are sent from same to destination. Explain its performance.	10
	b)	Distinguish P-persistent and non-persistent CSMA protocols. Explain the different scheduling approaches to access transmission medium.	10
6.	a)	Explain bluetooth architecture with frame format and protocol stack.	10
	b)	With the frame format of 802.11 (WLAN), explain the steps involved in data communication in wireless network.	10
7.	a)	Explain working of CSMA/CA. Why CSMA/CA cannot be used in a wireless network?	8
	b)	Explain the steps involved in making mobile call from one module to another mobile station.	6
	c)	Bring out the differences between 2G and 3G.	6
8.	Wı	rite short notes on : (5×4=	20)
	1)	Bus topology, star topology	
	2)	Bridges, repeater	
	3)	Spread spectrum	
	4)	Multiplexing.	