Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum ...

Úloha č					
Název úlohy:					
Jméno:		Obor:	FOF	FAF	FMUZV
Datum měření:	Datum o	devzdá	ní:		

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

Posuzoval:	dne:

Pracovní úkoly

- 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.
- 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci krystalu.
- 3. Proměřte spektrum rentgenového záření při konstantním anodovém napětí rentgenky $U_a=20\,\mathrm{kV}.$
- 4. Z mezní hodnoty energie spojitého spektra určete Planckovu konstantu, porovnejte s tabelovanou hodnotou. Určete vlnové délky čar K_{α} , K_{β} (porovnejte s tabelovanými hodnotami), spočtěte jejich vlnočty a odpovídající energetické rozdíly vyjádřete v keV. Určete konstanty stínění.

Teoretická část

Elementární buňka krystalu fluoridu lithného je plošně centrovaná a platí pro ní

$$\varrho = \frac{m}{V} = \frac{4m_u(A_{Li} + A_F)}{(2d)^3} \,, \tag{1}$$

kde $\varrho = 2601 \,\mathrm{kg} \,\mathrm{m}^{-3}$ je hustota krystalu, m_u je atomová hmotnostní konstanta, d je hledaná vzdálenost hlavních atomových rovin a A_X značí relativní atomovou hmotnost prvku X. Po úpravě a dosazení dostáváme

$$d = \sqrt[3]{\frac{m_u}{2\varrho}(A_{Li} + A_F)} \approx 202.3 \,\mathrm{pm}\,.$$
 (2)

Po dopadu na krystal se paprsek difraktuje. Dopadající i difraktovaný paprsek svírají s atomovými rovinami stejný úhel. Největší intenzitu má difraktovaný paprsek tehdy, když je splněna Braggova podmínka [1]

$$2d\sin\vartheta = k\lambda\,, (3)$$

kde ϑ je úhel doplňkový k úhlu dopadu a k je celé číslo. Spektrum rentgenového záření proměříme tak, že změříme intenzitu difraktovaného paprsku při různých úhlech ϑ , které odpovídají maximům prvního řádu různých vlnových délek.

Na krátkovlnné straně spektra bude od určité mezní hodnoty λ_m již intenzita nulová. Platí [1]

$$\frac{hc}{\lambda_m} = eU_a \,, \tag{4}$$

kde h je Planckova konstanta, c je rychlost světla, e je náboj elektronu a U_a je anodové napětí rentgenky. Změřením λ_m můžeme určit Planckovu konstantu.

V diskrétním spektru charakteristického záření budeme pozorovat dvě spektrální čáry K_{α} a K_{β} odpovídající přechodu z energetické hladiny s hlavním kvantovým číslem $2 \to 1$ respektive $3 \to 1$. Při přechodu z hladiny n_1 na n_2 se vyzáří foton s vlnočtem [1]

$$\nu_{12} = R(Z - s)^2 \left(\frac{1}{n_2^2} - \frac{1}{n_1^2}\right), \tag{5}$$

kde $R=1,0973\cdot 10^7\,\mathrm{m}^{-1}$ je Rydbergova konstanta, Z je atomové číslo prvku a s je korekční stínící konstanta. Spektrální čáře s vlnovou délkou lambda odpovídá energetický rozdíl

$$E = \frac{hc}{\lambda} \,. \tag{6}$$

Výsledky měření

Uvedené hodnoty intenzity jsou v relativních jednotkách, uvádíme počet částic, které Geigerův-Müllerův počítač zaznamenal za konstantní čas.

Změřili jsme úhlovou závislost intenzity difraktovaného záření při pevné orientaci krystalu $\vartheta=14^\circ$. Naměřená závislost je uvedena v tabulce 1 a grafu 1. Úhel detektoru (první sloupec v tabulce) měříme od směru dopadajícího paprsku.

Dále jsme změřili spektrum rentgenového záření při konstantním anodovém napětí rentgenky $U_a=21\,\mathrm{kV}$. Naměřené hodnoty jsou v tabulce 2 a grafu 2. V okolí mezní vlnové délky jsme změřili několik hodnot ještě pro

anodové napětí rentgenky 20 kV a 18 kV (viz tabulka 3). Mezní vlnové délky jsou v tabulce vyznačeny tučným písmem. Vlnové délky odpovídající spektrálním čarám jsou vyznačeny podtržením.

Určili jsme vlnové délky λ_{α} a λ_{β} spekrálních čar K_{α} a K_{β} , jejich vlnočty ν_{α} a ν_{β} a odpovídající energetické rozdíly E_{α} a E_{β} . Dále jsme z (5) s dosazením Z=29 pro měď vyjádřili stínící konstanty s_{α} a s_{β} . Chybu určení λ_{α} a λ_{β} odhadujeme jako polovinu rozestupu mezi sousedními hodnotami, tedy v obou případech přibližně 2 pm.

$$\lambda_{\alpha} = 158(2) \,\mathrm{pm} \qquad \lambda_{\beta} = 145(2) \,\mathrm{pm}
\nu_{\alpha} = 6,33(8) \cdot 10^{9} \,\mathrm{m}^{-1} \qquad \nu_{\beta} = 6,90(9) \cdot 10^{9} \,\mathrm{m}^{-1}
E_{\alpha} = 7,84(10) \,\mathrm{keV} \qquad E_{\beta} = 8,55(12) \,\mathrm{keV}
s_{\alpha} = 1,3(2) \qquad s_{\beta} = 2,4(2)$$
(7)

Plackova konstanta vypočtená z (4) pro všechna tři napětí vyšla téměř totožně $6.74(25) \cdot 10^{-34} \,\mathrm{J}\,\mathrm{s}$, rozdíl pro jednotlivá napětí byl o řád menší než nejistota přenesená z určování mezní vlnové délky.

Diskuze

Úhlová závislost intenzity při pevné orientaci krystalu dopadla podle očekávání. Většina záření se difraktuje pod úhlem rovným úhlu dopadu.

Vlnové délky pozorovaných spektrálních čar se v rámci standardní odchylky neshodují s tabelovanými hodnotami $\lambda_{\alpha t} = 154 \, \mathrm{pm}$, $\lambda_{\beta t} = 139 \, \mathrm{pm}$, avšak v rámci 3σ už ano.

Námi změřená Planckova konstanta se shoduje s tabelovanou hodnotou $6,626 \cdot 10^{-34} \, \mathrm{J} \, \mathrm{s}.$

Při určování mezních vlnových délek by bylo možné postupovat přesněji, kdybychom krátkovlnnou stranu spektra nafitovali přímkou a určili průsečík s nulou, místo toho abychom vzali nejkratší vlnovou délku, při které intenzita klesne pod určitou prahovou hodnotu. Stejně tak peaky od spektrálních čar by bylo možné nafitovat Gaussovou funkcí a jejich střed určit přesněji. Ještě větší přesnosti by se dalo dosáhnout přesnějším měřením úhlů a kratšími kroky v okolí těchto význačných vlnových délek. Proto jsme tento postup nepoužili.

Závěr

Urřili jsme vzdálenost hlavních atomových rovin v krystalu fluoridu lithného $d=202,3\,\mathrm{pm}.$

Změřili jsme úhlovou závislost intenzity difraktovaného záření při pevné orientaci krystalu (viz graf 1 a tabulka 1).

Dále jsme změřili spektrum rentgenového záření při anodovém napětí rentgenky $U_a = 20 \,\mathrm{kV}$ (viz graf 2 a tabulka 2).

Změřili jsme mezní vlnovou délku pro anodová napětí 21 kV, 20 kV a 18 kV, což nám umožnilo vypočítat Planckovu konstantu $6.74(25) \cdot 10^{-34} \, \mathrm{J} \, \mathrm{s}$.

Změřili jsme dvě spektrální čáry K_{α} a K_{β} a určili jejich vlnovou délku, vlnočet, energetický rozdíl a stínící konstantu (viz (7) výše).

Seznam použité literatury

1. Základní fyzikální praktikum [online]. [cit. 2016-04-06]. Dostupný z WWW: http://physics.mff.cuni.cz/vyuka/zfp/start.

úhel (°)	intenzita	úhel (°)	intenzita	úhel (°)	intenzita
10,0	73	26,5	273	34,0	24
12,0	56	27,0	1744	36,0	37
14,0	67	27,5	2602	38,0	35
16,0	50	28,0	2695	40,0	42
18,0	46	28,5	2259	42,0	44
20,0	51	29,0	1464	44,0	24
22,0	46	29,5	866	46,0	39
24,0	55	30,0	462	48,0	35
26,0	88	32,0	42	50,0	36

Tabulka 1: Úhlová závislost intenzity při pevné orientaci krystalu $\vartheta=14^\circ$

ϑ (°)	$\lambda \text{ (pm)}$	I	ϑ (°)	$\lambda \text{ (pm)}$	I
5,0	35	90	18,0	125	1247
$5,\!5$	39	96	18,5	128	1117
6,0	42	73	19,0	132	1227
6,5	46	55	19,5	135	1193
7,0	49	76	20,0	138	1094
7,5	53	58	20,5	142	2008
8,0	56	68	21,0	<u>145</u>	6050
$8,\!5$	60	62	$\overline{21,5}$	148	1196
9,0	63	334	22,0	152	908
9,5	67	1150	22,5	155	1132
10,0	70	1673	23,0	<u>158</u>	<u>18646</u>
10,5	74	2159	$\overline{23,5}$	161	11208
11,0	77	2526	24,0	165	631
11,5	81	2590	24,5	168	490
12,0	84	2706	25,0	171	453
12,5	88	2669	25,5	174	431
13,0	91	2663	26,0	177	326
13,5	94	2588	26,5	181	334
14,0	98	2554	27,0	184	304
14,5	101	2137	27,5	187	323
15,0	105	1954	28,0	190	246
15,5	108	1654	28,5	193	238
16,0	112	1613	29,0	196	234
16,5	115	1506	29,5	199	210
17,0	118	1544	30,0	202	181
17,5	122	1312			

Tabulka 2: Spektrum rentgenového záření při konstantním anodovém napětí rentgenky $U_a=21\,\mathrm{kV}$

į	$U_a = 20 \mathrm{kV}$	I	U	$a = 18 \mathrm{kV}$	
<i>θ</i> (°)	$\lambda \text{ (pm)}$	I	ϑ (°)	$\lambda \text{ (pm)}$	I
8,5	60	56	9,5	67	40
9,0	63	45	10,0	70	77
9,5	67	277	10,5	74	362
10,0	70	$> \!\! 800$			

Tabulka 3: Spektrum v okolí mezní vlnové délky pro různá anodová napětí

Graf 1: Úhlová závislost intenzity při pevné orientaci krystalu $\vartheta=14^\circ$

Graf 2: Spektrum rentgenového záření při konstantním anodovém napětí rentgenky $U_a=21\,\mathrm{kV}$