

Pathfinder Program

Presented at the
NASA Reusable Launch Vehicle Technology Exposition

June 22, 2000
John R. London III
Marshall Space Flight Center, AL

Program Overview

■ RLV Goal: to Significantly Reduce the Cost of Access to Space

■ X-34 Project Objectives

- Test Bed Vehicle for Demonstrating Key Reusable Launch Vehicle (RLV) Operations and Technologies
- Focus Areas

- ◆ **Investigation of New Methods for Low-Cost Operations**

- ◆ **New RLV Technologies Embedded in Vehicle Design**

- ◆ **Demonstration of Hosted RLV and Hypersonic Experiments**

■ X-37 Project Objectives

- Test Bed Vehicle for Demonstrating RLV In-Space and Re-Entry Technologies and Flight Experiments
- Focus Areas

- ◆ **Investigation of New Methods for Design and Manufacturing**

- ◆ **New RLV Technologies Embedded in Vehicle Design**

- ◆ **Demonstration of Hosted RLV and Re-Entry Experiments**

High Visibility Flight Projects

Pathfinder Flight Experiments

■ Flight Experiments

- Flown on X-34:
 - ◆ **GAMMA-TITANIUM ALUMINUM-BASED TPS**
(ALENIA AEROSPACE)
 - ◆ **ADVANCED C/SIC TPS** (ESA-DAIMLER-BENZ)
 - ◆ **MECHANICALLY ATTACHED FLEXIBLE TPS**
(BOEING)
 - ◆ **ENCAPSULATED WATERPROOF 2500F CMC TPS**
(MDA [Now BOEING])
 - ◆ **FLIGHT TEST DETAILED SPECIMENS IN CERTIFIED HOLDER** (MDA [Now BOEING])
 - ◆ **ACTIVE DAMAGE INTERROGATION HEALTH MONITORING SYSTEM** (MDA [Now BOEING])
 - ◆ **ACOUSTIC EMISSION HEALTH MONITORING SYSTEM** (BOEING)
 - ◆ **AUTONOMOUS ABORT LANDINGS** (DRAPER LAB)
 - ◆ **INTEGRATED VEHICLE HEALTH MANAGEMENT**
(IVHM) (NASA AMES)
 - ◆ **COMPOSITE LOX TANK** (LOCKHEED-MARTIN)
- 40 Embedded or Carry-On Experiments Baseline for X-37

■ Flight Experiments

- Other Flight Experiments:
 - ◆ **REDUCED COST SMALL PAYLOAD TECHNOLOGIES (AERO-ASTRO)**
 - Deployed from the Space Shuttle
 - ◆ **CERAMICS FOR SHARP LEADING EDGES (NASA AMES)**
 - Flown on a Minuteman III
 - ◆ **ProSEDS (NASA MSFC)**
 - Flown as a secondary payload on a Delta I upper stage
 - ◆ **HALL EFFECT THRUSTER (NASA GRC)**
 - Instrumentation flown on a Russian communications satellite
 - ◆ **CRYOGENIC PROPELLANT GAUGE (NASA GRC)**
 - Flown on the USAF Solar Orbit Transfer Vehicle Space Experiment

X-37 Configuration Modification Options

Baseline

Increased Propellant

On-Orbit Only

Auxiliary Propulsion

Fuselage Plugs

Main Engine Upgrades

Small Payload Bay

Large Payload Bay

Flight Testing for a Multistage Reusable System

The X-34 Flight Regime Duplicates the Environment and Mission Characteristics Of a Reusable First Stage

X-34 Vehicle Description

X-34 Overview

■ Single Stage, Sub-Orbital, Fully Reusable, Unmanned Testbed Aerospace Plane

■ Three airframes: A-1A, A-2, A-3

- A-1A is unpowered, A-2 and A-3 are powered

■ Vehicle Characteristics

- Length 58.3ft
- Wing Span 27.7 ft
- Gross Weight *45,488 lbs.
- Propellant *30,350 lbs.
- Payload 450 lbs.
- Operating Weight Empty* 15,138 lbs.
- Target Weight

■ Airframe

- Composite structure and skin
- One piece wing with center carry through structure
- Elevon control surfaces

- All-flying vertical tail
- Body flap for pitch axis trim

■ Avionics

- Single string with exception of dual string flight termination system

X-34 Expanded View

Vehicle Size Comparison

Pegasus XL

X-34 Technology Testbed Vehicle

X-34 Experiment Status

Integrated Structural Health Monitoring System for the X-34 RP1 Tank (Boeing, St. Louis).

Detail Test Specimen Model Holder (Boeing, Huntington Beach).

Mechanically Attached Thermal Protection System (Boeing, Seattle).

Government Participation

Government and Industry Participants

- ♦ AlliedSignal Aerospace
- ♦ The C. S. Draper Labs
- ♦ Oceaneering Space Systems
- ♦ Vermont Composites

- ♦ Litton
- ♦ OR Computers
- ♦ AP Precision Hydraulics
- ♦ Summa

- ♦ Aurora Flight Sciences
- ♦ R-Cubed Composites
- ♦ Spincraft
- ♦ Advanced Composites
- ♦ Lockheed Martin-Michoud

- ♦ Marshall Space Flight Center
- ♦ Ames Research Center
- ♦ Langley Research Center
- ♦ Dryden Flight Research Center
- ♦ Johnson Space Center
- ♦ Holloman Air Force Base
- ♦ White Sands Test Facility
- ♦ Edwards AFB
- ♦ White Sands Missile Range
- ♦ Kennedy Space Center
- ♦ Stennis Space Center

X-34 Project Status

■ Restructuring effort underway

- Possible increase in ground testing for engine and vehicle, avionics mods, and new propulsion test article

- Focused to support 2nd Gen Program

■ A-1A unpowered vehicle complete and on the runway at Edwards AFB

- Series of captive-carry flights and high-speed tow tests underway

■ A-2 powered vehicle complete and undergoing tests at Orbital's Dulles facility

■ A-3 airframe essentially complete at Orbital's Dulles facility

■ MC-1 (formerly Fastrac) engine testing continuing at Rocketdyne's SSFL in Calif.

- 45 hot-fire tests already completed at SSC

X-34 Captive Carry Flight

5469.17

Little Joe III

Crew Escape System Demonstrator

Little Joe II

Little Joe

Little Joe III

Crew Escape System Demonstrator

Little Joe II

Little Joe

fastpac

ISS Fast Package Delivery System

CISLUNAR TUG

Cislunar Tug With Notional Lunar Lander

CISLUNAR TUG

Summary

- Pathfinder vehicles flight test key technologies for future low cost Reusable Launch Vehicles (RLV) quickly and inexpensively

