Ensayo 1

Respiración acumulada en frutos I y M

Immature and mature ubajay fruits were selected and randomly distributed in 4 jars, 2 immature and 2 mature, then respiration was quantified from accumulated CO2 every 15 minutes for 150 minutes.

CO₂ acumulation

Descriptive table

A tibble: 20 x 7

Groups: time_min [10]

##		time_min	matu	carbon_ac_n	${\tt carbon_ac_Mean}$	carbon_ac_sd	${\tt carbon_ac_min}$
##		<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	15	I	2	42.5	4.97	39.0
##	2	15	M	2	39.6	1.86	38.3
##	3	30	I	2	62.2	5.13	58.5
##	4	30	M	2	59.4	2.79	57.4
##	5	45	I	2	75.2	5.23	71.5
##	6	45	M	2	76.6	0.110	76.6
##	7	60	I	2	94.9	5.39	91.1
##	8	60	M	2	99.0	4.66	95.7
##	9	75	I	2	108.	5.50	104.
##	10	75	M	2	116.	1.97	115.
##	11	90	I	2	124.	10.3	117.
##	12	90	M	2	136.	2.91	134.
##	13	105	I	2	137.	10.4	130.
##	14	105	M	2	153.	0.221	153.
##	15	120	I	2	157.	10.5	150.
##	16	120	M	2	176.	4.77	172.
##	17	135	I	2	170.	10.6	163.
##	18	135	M	2	190.	6.59	185.
##	19	150	I	2	186.	15.4	176.
##	20	150	M	2	213.	3.02	211.
##	# 1	i 1 more	variabl	le: carbon_ac	c_max <dbl></dbl>		

Correlations over time

Covariance matrix

##		15	30	45	60	75	90	105	120	135	150
##	15	12.28	12.95	7.38	7.79	2.21	7.31	1.73	2.14	2.50	1.66
##	30	12.95	13.93	7.77	9.75	3.59	9.42	3.25	5.23	6.22	4.90
##	45	7.38	7.77	9.77	11.46	13.46	23.37	25.37	27.07	27.76	38.97
##	60	7.79	9.75	11.46	22.55	24.26	38.94	40.66	51.74	56.09	68.14
##	75	2.21	3.59	13.46	24.26	34.14	52.90	62.77	73.57	77.63	102.21
##	90	7.31	9.42	23.37	38.94	52.90	83.40	97.35	112.92	118.82	157.38
##	105	1.73	3.25	25.37	40.66	62.77	97.35	119.47	134.76	140.36	191.45
##	120	2.14	5.23	27.07	51.74	73.57	112.92	134.76	159.43	168.68	220.61
##	135	2.50	6.22	27.76	56.09	77.63	118.82	140.36	168.68	179.37	231.42
##	150	1.66	4.90	38.97	68.14	102.21	157.38	191.45	220.61	231.42	309.86

Marginal model with first-order autoregressive structure

```
## gls(model = (carbon_ac) ~ time_min * matu + basal, data = resp2w,
## correlation = corAR1(form = ~1 | rep))
```

Assumptions


```
##
## Shapiro-Wilk normality test
##
## data: e
## W = 0.97616, p-value = 0.5498
```

Model coefficients

##	(Intercept)	time min30	time min45	time min60
##	-1088.3098591	19.6250543	32.7084238	52.3334782
##	time_min75	time_min90	time_min105	time_min120
##	65.4168477	81.7897236	94.8730931	114.4981474
##	time_min135	time_min150	matuM	basal
##	127.5815169	143.9543928	24.0203019	43.2170578
##	time_min30:matuM	time_min45:matuM	time_min60:matuM	time_min75:matuM
##	0.1712202	4.3272497	7.0553453	11.2113748
##	time_min90:matuM	${\tt time_min105:matuM}$	${\tt time_min120:matuM}$	time_min135:matuM
##	14.6347734	18.7908030	21.5188986	22.4853372
##	${\tt time_min150:matuM}$			
##	29.0983267			

Anova

```
## Denom. DF: 19
                numDF
                         F-value p-value
                    1 12422.598 <.0001
## (Intercept)
                         497.680 < .0001
## time_min
                     9
## matu
                         23.524 0.0001
                     1
## basal
                     1
                          18.306 0.0004
## time_min:matu
                     9
                          4.645 0.0024
```

Simple effects

```
## $emmeans
## time min = 15:
  matu emmean
                        SE
                           df lower.CL upper.CL
##
         29.05593 3.996413 4.38 18.32747 39.78439
## M
         53.07623 3.996413 4.26 42.24267 63.90980
##
## time_min = 30:
## matu emmean
                        SE
                           df lower.CL upper.CL
##
  Ι
         48.68099 3.996413 4.37 37.94735 59.41462
##
         72.87251 3.996413 4.38 62.14744 83.59757
##
## time_min = 45:
                            df lower.CL upper.CL
   matu emmean
                        SE
         61.76435 3.996413 4.23 50.90664 72.62207
##
         90.11191 3.996413 4.30 79.31519 100.90863
##
## time_min = 60:
##
  matu
                        SE df lower.CL upper.CL
          emmean
         81.38941 3.996413 4.35 70.64128 92.13754
##
##
        112.46506 3.996413 4.37 101.73142 123.19869
##
## time_min = 75:
                        SE df lower.CL upper.CL
##
   matu
           emmean
##
         94.47278 3.996413 4.28 83.65659 105.28897
##
        129.70446 3.996413 4.31 118.91264 140.49627
##
## time_min = 90:
                           df lower.CL upper.CL
   matu
           emmean
                        SE
        110.84565 3.996413 4.38 100.11719 121.57412
        149.50073 3.996413 4.26 138.66717 160.33429
##
##
## time min = 105:
   matu
          emmean
                        SE
                            df lower.CL upper.CL
        123.92902 3.996413 4.37 113.19539 134.66266
##
        166.74013 3.996413 4.38 156.01506 177.46520
##
##
## time_min = 120:
## matu emmean
                        SE
                           df lower.CL upper.CL
## I
       143.55408 3.996413 4.23 132.69637 154.41179
## M
        189.09328 3.996413 4.30 178.29656 199.89000
##
```

```
## time_min = 135:
## matu emmean SE df lower.CL upper.CL
      156.63745 3.996413 4.35 145.88932 167.38558
        203.14309 3.996413 4.37 192.40945 213.87672
## M
## time_min = 150:
                   SE df lower.CL upper.CL
## matu emmean
       173.01032 3.996413 4.28 162.19413 183.82652
## M
       226.12895 3.996413 4.31 215.33714 236.92077
##
## Degrees-of-freedom method: satterthwaite
## Results are given on the ( (not the response) scale.
## Confidence level used: 0.95
##
## $contrasts
## time_min = 15:
## contrast estimate SE df t.ratio p.value
         -24.02030 7.197624 6.29 -3.337 0.0146
##
## time min = 30:
## contrast estimate
                       SE df t.ratio p.value
         -24.19152 7.197624 6.30 -3.361 0.0141
##
## time min = 45:
## contrast estimate SE df t.ratio p.value
## I - M -28.34755 7.197624 4.51 -3.938 0.0135
##
## time_min = 60:
## contrast estimate
                      SE df t.ratio p.value
         -31.07565 7.197624 6.28 -4.317 0.0045
## I - M
##
## time_min = 75:
## contrast estimate
                          SE
                             df t.ratio p.value
          -35.23168 7.197624 6.24 -4.895 0.0024
## I - M
##
## time_min = 90:
## contrast estimate SE df t.ratio p.value
## I - M
         -38.65508 7.197624 6.29 -5.371 0.0015
##
## time_min = 105:
## contrast estimate SE df t.ratio p.value
## I - M -42.81110 7.197624 6.30 -5.948 0.0008
## time_min = 120:
## contrast estimate
                       SE df t.ratio p.value
         -45.53920 7.197624 4.51 -6.327 0.0021
## I - M
##
## time_min = 135:
## contrast estimate
                         SE df t.ratio p.value
## I - M
         -46.50564 7.197624 6.28 -6.461 0.0005
##
## time_min = 150:
## contrast estimate SE df t.ratio p.value
## I - M -53.11863 7.197624 6.24 -7.380 0.0003
```

```
##
## Note: contrasts are still on the ( scale
## Degrees-of-freedom method: satterthwaite
```

Statistically significant differences were found in the $\rm CO2$ respiration rate in each time between immature and mature Hexachlamys edulis fruits.

Comparison chart

Fitted model plot

