

MBA大师跟学团专属

数列

董璞

懸浮团 数列

00000

- 三项数列
- 等差数列
- 等比数列
- 通项公式 a_n 与前n项和公式 S_n
- 近几年每年2-3题

够学团 数列

00000

数列基础【2016.24】 ★

三项数列【2021.02】【2019.16】【2018.19】【2017.03】★

定义和性质【2019.24】【2016.13】【2015.20】

等差数列

各项与下标间关系【2018.17】★

 S_n 最值(数列过零点的项)【2020.05】【2015.23】

等差数列片段和

常数列特值法

₍定义和性质【2021.24】

利用数列求代数式值

等比数列 〈 各项与下标间关系

「等比数列求和【2018.07】 数列的推演

 \mathbb{C} 已知 S_n 求 a_n

 a_n 与 a_{n+1} 或 a_{n-1} 的递推 \star

[2020.11] [2019.15]

00000

数列的定义和分类 依一定次序排成的一列数称为一个数列.

数列的一般表达形式为: a_1 , a_2 , a_3 , …, a_n , …简记为 $\{a_n\}$.

【有穷数列】 1, 2, 3, 4, 5, 6, 7

【无穷数列】 1, 2, 3, 4, 5, 6, 7, ...

【递增数列】第二项起,每一项都比前一项大.

单调性

【递减数列】第二项起,每一项都比前一项小.7,6,5,4,3,2,1,...

【摆动数列】1,-1,1,-1,1,-1,1,-1,... 公比为-1的等比数列

【常数列】各项均为同一个常数 2, 2, 2, 2, 2, 2, ... 常数列特值法

够学团 数列·基础知识

00000

数列 $\overline{\mathbf{k}}$ <u>卡定次序排成的一列数</u> $\{a_n\}$

$$a_1$$
, a_2 , a_3 , a_4 , a_5 , a_6 , a_7 ,

数列两大要素

(数列某项的值: a_n

(某项的序号: 下标n

数列的通项 数列的第n项a_n与其序号n之间的关系

如果数列中的第n项 a_n 与其序号n的关系可以用一个公式来表示,则称这个公式为通项公式

数列的通项公式⇒数列中的任意一项.

• • • • •

【模拟题】若数列 $\{a_n\}$ 的每一项都是它序号的平方减去序号的5倍,则 $\{a_n\}$ 的第()项.

A.30

B.20

C.18

D.15

E.11

態 愛 团 数列·基础知识

【真题2016.24】已知数列 $a_1, a_2, a_3, \cdots, a_{10}$,则 $a_1 - a_2 + a_3 - \cdots + a_9 - a_{10} \ge 0$. ()

(1)
$$a_n \ge a_{n+1}, n = 1, 2, \dots, 9$$
.

(1)
$$a_n \ge a_{n+1}, n = 1, 2, \dots, 9.$$
 (2) $a_n^2 \ge a_{n+1}^2, n = 1, 2, \dots, 9.$

数列 依一定次序排成的一列数 $\{a_n\}$

数列的通项 数列的第n项an与其序号n之间的关系

 $\left\{ ext{数列某项的值: } a_n ext{数列两大要素}
ight\}$

某项的序号: a_n 的下标n

数列前n项和S_n 从数列第一项 a_1 开始依次相加,至第n项 a_n ,这n项的和称为数列的前n项和.

$$S_n = a_1 + a_2 + a_3 + \dots + a_n$$

数列基础 ★

三项数列 🖈

定义和性质 各项与下标间关系 ★ 等差数列 S_n 最值 (数列过零点的项)

常数列特值法 利用数列求代数式值 等差数列片段和 数列的推演 a_n 与 a_{n+1} 或 a_{n-1} 的递推 \star

(定义和性质 等比数列〈 各项与下标间关系 等比数列求和

等差数列 如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一常数,即:

$$a_{n+1} - a_n = d$$

那么这个数列就叫做等差数列,这个常数叫做等差数列的公差d.

如: 1, 2, 3, 4, 5,

等比数列 如果一个数列从第二项起,每一项与它的前一项的比都等于同一常数,即

$$\frac{a_{n+1}}{a_n} = q$$

那么这个数列就叫做等比数列,这个常数就叫做等比数列的公比 $q(q \neq 0)$

如: 2, 4, 8, 16, 32,

1, 2, 3

【标志词汇】 三项成等差数列 \Leftrightarrow $\left\{ \begin{array}{l} \underline{\text{设为}a,b,c} \; , \; \underline{\text{则有2}b=a+c} \\ \underline{\text{设为}a-d,a,a+d} \; , \; \underline{\text{自动满足}} \end{array} \right.$

可以被用在任何知识点,等同于给出一个关于a, b, c的算式条件 三元乘法公式、二次方程的三个系数、三角形三边、立方体三条棱、应用题等

连续自然数: n-1, n, n+1

连续偶数/奇数: n-2, n, n+2 (n 为偶数/奇数)

1, 2, 3

2, 6, 18

【标志词汇】 $\overline{=$ 项成等差数列 \leftrightarrow $\left\{ \begin{array}{l} \underline{0} \cap a,b,c\ ,\ \underline{0} \cap a^2b = a+c \\ \underline{0} \cap a-d,a,a+d\ ,\ \underline{0} \cap a \cap a^2b \end{array} \right.$

【标志词汇】三项成等比数列 \Leftrightarrow 设为a,b,c , 则有 $b^2 = ac$ ($b \neq 0$)

四项成等差/等比数列⇒其中连续三项成等差/等比

1, 2, 3, 4

2, 4, 8, 16

够多团 数列·三项数列

【真题2000.01.06】若 α^2 , 1, β^2 成等比数列,而 $\frac{1}{\alpha}$, 1, $\frac{1}{\beta}$ 成等差数列,则 $\frac{\alpha+\beta}{\alpha^2+\beta^2}=$ () .

$$A.-\frac{1}{2}$$
或1 $B.-\frac{1}{3}$ 或1 $C.\frac{1}{2}$ 或1 $D.\frac{1}{3}$ 或1 $E.-\frac{1}{2}$

E.
$$-\frac{1}{2}$$

郷学団 数列・三项数列

【真题2017.03】甲、乙、丙三种货车载重量成等差数列,两辆甲种车和一辆乙种车的载重量为95吨, 一辆甲种车和三辆丙种车载重量为150吨,则甲、乙、丙分别各一辆车一次最多运送货物为()

A.125

【真题2014.01.18】					
(1) 甲、乙、丙的 ————————————————————————————————————]年龄成等差数列	(2) 甲、乙、	丙的年龄成等比	公数列. 	

	数列	•	三项数列
--	----	---	------

00000

【**真题2021.02**】三位年轻人的年龄成等差数列,且最大与最小的两人年龄差的10倍是另一人的年龄,则三人中年龄最大的是().

A.19

B.20

C.21

D.22

E.23

態

 <

【真题2018.19】甲、乙、丙三人的年收入成等比数列.则能确定乙的年收入的最大值.()

- (1) 已知甲、丙两人的年收入之和.
- (2) 已知甲、丙两人的年收入之积.

数列基础 ★

三项数列 ★

等差数列

定义和性质

各项与下标间关系 ★

 S_n 最值 (数列过零点的项)

等差数列片段和

常数列特值法

利用数列求代数式值

数列的推演

定义和性质

等比数列 〈 各项与下标间关系

等比数列求和

寒雾团 等差数列

数列基础 ★

三项数列 ★

章 定义、判定与性质 名项与下标间关系 ★ S_n 最值(数列过零点的项)等差数列片段和

常数列特值法 利用数列求代数式值 数列的推演 $\left\{egin{array}{l} & \Box \Pi S_n \ddot{x} a_n \\ & a_n = a_{n+1} \ddot{u} a_{n-1} \end{pmatrix} \right\}$ 的递推 \star

郷 愛 働 等差数列・基础知识・定义

00000

次序	第1项	第2项	第3项	第4项	 第n项	
数值	1	2	3	4	 n	•••
数值	5	10	15	20	 5n	
一般表达	a_1	$a_1 + d$	$a_1 + 2d$	$a_1 + 3d$	$a_1 + (n-1)d$	

等差数列 如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一常数,即: $a_{n+1}-a_n=d$,那么这个数列就叫做<u>等差数列</u>,这个常数叫做等差数列的<u>公差</u>d.

数列的通项 数列的第n项 a_n 与其序号n之间的关系

等差数列的通项公式 $a_n = a_1 + (n-1)d$

 $a_1 + nd \implies$ 等差数列的通项公式 \implies 等差数列中的任何一项.

够 (图) 等差数列·基础知识·通项

0000

【举例】已知等差数列 $\{a_n\}$,其中 $2a_2 + a_5 = 24$, $a_6 = 17$,那么299是数列 $\{a_n\}$ 的第______项?

00000

等差数列的通项公式
$$a_n=a_1+(n-1)d$$
 公差 $d>0$ ⇔递增数列 公差 $d<0$ ⇔递减数列 公差 $d=0$ ⇔常数列

数列前n项和S_n 从数列第一项 a_1 开始依次相加,至第n项 a_n ,这n项的和称为数列的前n项和.

$$S_n = a_1 + a_2 + a_3 + \dots + a_n$$

等差数列前n项和公式
$$S_n = \frac{n(a_1 + a_n)}{2} = na_1 + \frac{n(n-1)}{2}d = \frac{d}{2}n^2 + \frac{2a_1 - d}{2}n$$

郷 愛 団 等差数列・基础知识

等差数列的通项公式 $a_n = a_1 + (n-1)d$

等差数列前
$$n$$
项和公式 $S_n = na_1 + \frac{n(n-1)}{2}d$

【举例】等差数列
$$\{a_n\}$$
的前 n 项和为 S_n ,且 $S_6=a_6$,则 $\frac{a_5}{a_4}$ 的值为_____.

够 **③ 等差数列•基础知识•判定**

定义角度 任意相邻两项之差 $a_{n+1}-a_n$ 是否为常数,若为常数,则 $\{a_n\}$ 为等差数列

从表达式代数特征角度

通项公式:
$$a_n = a_1 + (n-1)d = dn + (a_1 - d) = dn + m$$
 (其中 $m = a_1 - d$)

形似关于n的一次函数

判断下列通项对应的数列是否为等差数列

(1)
$$a_n = 3n + 2$$
 (2) $a_n = -n$

(2)
$$a_n = -n$$

(3)
$$a_n = 5$$

(3)
$$a_n = 5$$
 (4) $a_n = n^2 + 1$

够 愛 働 等差数列・基础知识・判定

从表达式代数特征角度

前n项和:
$$S_n = na_1 + \frac{n(n-1)}{2}d = \frac{d}{2}n^2 + \frac{2a_1 - d}{2}n = An^2 + Bn$$

形似关于n的二次函数,其中A与B均可能为0,且一定不含常数项

$$\underline{\exists A=0,\ B\neq 0}$$
 即 $d=0,\ a_1\neq 0,\ S_n=na_1$ 为非零常数列,如1,1,1,1,1、…

当
$$A \neq 0$$
, $B = 0$ 时 即 $2a_1 = d \neq 0$, $S_n = \frac{d}{2}n^2$ 如1, 3, 5, 7, 9, $11 \cdots S_n = n^2$

够 **③ 图 等差数列·基础知识·判定**

从表达式代数特征角度

前n项和:
$$S_n = na_1 + \frac{n(n-1)}{2}d = \frac{d}{2}n^2 + \frac{2a_1 - d}{2}n = An^2 + Bn$$

$$\begin{cases} A = \frac{d}{2} \\ B = \frac{2a_1 - d}{2} \end{cases}$$

形似关于n的二次函数,其中A与B均可能为0,且一定不含常数项

判断下列前n项和对应的数列是否为等差数列

(1)
$$S_n = 4n^2 + n$$
 (2) $S_n = -2n^2$

够 愛 國 等差数列·基础知识·判定

• • • • •

从表达式代数特征角度

前n项和:
$$S_n = na_1 + \frac{n(n-1)}{2}d = \frac{d}{2}n^2 + \frac{2a_1 - d}{2}n = An^2 + Bn$$

$$\begin{cases} A = \frac{d}{2} \\ B = \frac{2a_1 - d}{2} \end{cases}$$

形似关于n的二次函数,其中A与B均可能为0,且一定不含常数项

判断下列前n项和对应的数列是否为等差数列

(3)
$$S_n = 5n$$

(4)
$$S_n = n^2 + 1$$

够 **多 逾** 等差数列·基础知识·判定

• • • • •

【真题2019.25】 (条件充分性判断) 设数列 $\{a_n\}$ 的前n项和为 S_n ,则 $\{a_n\}$ 为等差数列.()

(1)
$$S_n = n^2 + 2n$$
, $n = 1,2,3$.

(2)
$$S_n = n^2 + 2n + 1$$
, $n = 1,2,3$.

够像团 等差数列

数列基础 ★

三项数列 🖈

定义、判定与性质 等差数列。

各项与下标间关系 ★ S_n 最值 (数列过零点的项) 等差数列片段和

常数列特值法

利用数列求代数式值

 $\left\{egin{aligned} & \Box \Omega S_n ar{\mathbf{x}} a_n \ & a_n = a_{n+1} ar{\mathbf{x}} a_{n-1} \end{aligned}
ight.$

(定义和性质 等比数列 〈 各项与下标间关系 等比数列求和

郷学団 等差数列・下标

等差数列 $a_{n+1}-a_n=d$ 等差数列的通项公式 $a_n=a_1+(n-1)d$

$$a_1 \xrightarrow{+d} a_2 \xrightarrow{+d} a_3 \xrightarrow{+d} a_4 \xrightarrow{+d} a_5 \xrightarrow{+d} a_6 \cdots \xrightarrow{+d} a_m \cdots \xrightarrow{+d} a_n \cdots$$

$$a_n = a_1 + (n-1)d$$

$$a_m = a_1 + (m-1)d$$

$$a_m = a_1 + (m-1)d$$

求公差
$$d = \frac{a_n - a_m}{n - m}$$
 求某一项/通项 $a_n = a_m + (n - m)d$

寒ぽ園 等差数列・下标

【举例】已知数列 $\{a_n\}$ 为等差数列,其中 $a_{2015}=57$, $a_{2021}=75$,则公差d=______

【举例】已知数列 $\{a_n\}$ 为等差数列,其中 $a_{2015}=57$, $a_{2021}=75$,则通项 $a_n=$ ____

郷 (多) 第差数列・下标

【标志词汇】 $\overline{\underline{-项成等差数列}}$ \longleftrightarrow $\begin{cases} \frac{\partial ba,b,c}{\partial ba-d,a,a+d}, \underline{adab} \\ \underline{bha} \end{cases}$ bha + bha +

 a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 , a_8 , a_9 ...

$$a_4 + a_6 = 2a_5$$

$$a_3 + a_7 = 2a_5$$

$$a_4 + a_6 = 2a_5$$
 $a_3 + a_7 = 2a_5$ $a_2 + a_8 = 2a_5$ $a_1 + a_9 = 2a_5$

$$a_1 + a_9 = 2a_5$$

等差数列中项的性质

郷愛園 等差数列・下标

00000

等差数列下标和相等的两项之和相等 等号左右下标和相等, 项数也要相等

 a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 , a_8 , a_9 ...

$$\underline{a_5 + a_5} = \underline{a_4 + a_6} = \underline{a_3 + a_7} = \underline{a_2 + a_8} = \underline{a_1 + a_9}$$

 a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 , a_8 , a_9 , a_{10} ...

 $\underline{a_5 + a_6} = \underline{a_4 + a_7} = \underline{a_3 + a_8} = \underline{a_2 + a_9} = \underline{a_1 + a_{10}}$

 a_1 , a_2 , a_3 , a_4 , a_5 , $a_{5.5}$, a_6 , a_7 , a_8 , a_9 , a_{10} ...

郷 (多) 等差数列・下标

....

【举例】已知数列 $\{a_n\}$ 为等差数列,其中 $a_1 + a_7 = 8$,则 $a_4 =$ _______

【举例】已知数列 $\{a_n\}$ 为等差数列,其中 $a_1 + a_7 = 8$, $a_6 = 5$,则 $a_8 = ______$

郷愛園 等差数列・下标

00000

【真题2013.01.13】已知 $\{a_n\}$ 为等差数列,若 a_2 与 a_{10} 是方程 $x^2-10x-9=0$ 的两个根,则

$$a_5 + a_7 = ()$$

郷愛園 等差数列・下标

00000

等差数列下标和相等的<u>同数量项</u>之和相等 两组项下标和相等,项数相同,则这两组项的和相等

 a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 , a_8 , a_9 … 等差数列的通项公式 $a_n = a_1 + (n-1)d$

$$a_2 = a_1 + d$$

$$a_3 = a_1 + 2d$$

$$a_3 + a_7 = 2a_5$$

$$a_4 = a_1 + 3d$$

$$a_5 = a_1 + 4d$$

$$a_3 + a_5 + a_7 = a_2 + a_4 + a_9$$

$$a_6 = a_1 + 5d$$

$$a_7 = a_1 + 6d$$

$$3 + 5 + 7 = 2 + 4 + 9$$

$$a_8 = a_1 + 7d$$

$$a_9 = a_1 + 8d$$

® ③ の 等差数列・下标关系在S_n中应用

等差数列的通项公式 $a_n = a_1 + (n-1)d$

等差数列前n项和公式
$$S_n = \frac{n(a_1 + a_n)}{2} = na_1 + \frac{n(n-1)}{2}d = \frac{d}{2}n^2 + \frac{2a_1 - d}{2}n$$

$$= \frac{n(a_2 + a_{n-1})}{2} = \frac{n(a_3 + a_{n-2})}{2} = \cdots$$

$$= \frac{2}{2} = \frac{2}{2}$$

$$S_n = a_1 + a_2 + a_3 + \dots + a_{n-2} + a_{n-1} + a_n$$

$$S_n = a_n + a_{n-1} + a_{n-2} \dots + a_3 + a_2 + a_1$$
④ 序相加

$$2S_n = (a_1 + a_n) + (a_2 + a_{n-1}) + \dots + (a_{n-1} + a_2) + (a_n + a_1)$$

 $= n(a_1 + a_n)$ 【标志词汇】等差数列某几项和 \Rightarrow 下标和相等的两项之和相等

®愛園 等差数列・下标关系在Sn中应用

00000

【模拟题】已知数列 $\{a_n\}$ 为等差数列,且 $a_3+a_{12}=8$,则数列 $\{a_n\}$ 的前14项和 $S_{14}=($)

A. 36

B. 48

C. 56

D. 64

E. 72

態 \mathfrak{F} 個 等差数列・下标关系在 S_n 中应用

00000

【模拟题】等差数列 $\{a_n\}$ 中前 $a_1 + a_2 + \cdots + a_6 = 43$, $a_{23} + a_{24} + \cdots + a_{28} = 53$, 则 $S_{28} = ($)

A.224

B.223

C.225

D.227

E.228

態 \mathfrak{F} の 等差数列・下标关系在 S_n 中应用

.

【模拟题】等差数列 $\{a_n\}$ 中前 $\{a_n\}$ 中间 $\{a_n\}$ 中间 $\{a_n\}$ 中前 $\{a_n\}$ 中前 $\{a_n\}$ 中前 $\{a_n\}$ 中前 $\{a_n\}$ 中前 $\{a_n\}$ 中前 $\{a_n\}$ 中的 $\{a_n\}$ 中的

A.22

B.23

C.25

D.27

E.28

®愛園 等差数列・下标关系在S_n中应用

等差数列前n项和公式 $S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(a_2 + a_{n-1})}{2} = \frac{n(a_3 + a_{n-2})}{2} = \cdots$

$$S_9 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9$$

$$2a_5$$

$$S_9 = \frac{9(a_1 + a_9)}{2} = \frac{9(a_2 + a_8)}{2} = \dots = \frac{9 \times 2a_5}{2} = 9a_5$$
 $a_5 = \frac{1}{9}S_9$

$$S_n = n \cdot a_{\text{中间项}}$$
 前 n 项和等于中间项乘以项数 $a_{\text{中间项}} = \frac{1}{n} S_n$

(象学) 等差数列・下标关系在S,中应用

【真题2018.17】设 $\{a_n\}$ 为等差数列,则能确定 $a_1 + a_2 + \cdots + a_9$ 的值. ()

- (1) 已知a₁的值
- (2) 已知 a5的值

【拓展1】设 $\{a_n\}$ 为等差数列,则能确定 $a_1 + a_2 + \cdots + a_9$ 的值. ()

- (1) 已知*a*₁的值
- (2) 已知 $a_4 + a_6$ 的值

【拓展2】设 $\{a_n\}$ 为等差数列,则能确定 $a_1 + a_2 + \cdots + a_9$ 的值. ()

- (1) 已知a₁的值
- (2) 已知 a 6 的值

够 \mathfrak{F} の 等差数列・下标关系在 S_n 中应用

等差数列前n项和公式 $S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(a_2 + a_{n-1})}{2} = \frac{n(a_3 + a_{n-2})}{2} = \cdots$

$$S_8 = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8$$

$$2a_{4.5}$$

$$S_8 = \frac{9(a_1 + a_8)}{2} = \frac{9(a_2 + a_7)}{2} = \frac{n(a_3 + a_6)}{2} = \frac{9 \times (a_4 + a_5)}{2}$$

对于奇数个项:前n项和等于中间项乘以项数

对于偶数数个项: $S_n = \frac{n}{2} \cdot ($ 中间两项之和)

®愛園 等差数列・下标关系在Sn中应用

【模拟题】已知 $a_8 = 11$ 和 $a_{13} = 21$,求 S_{15} 和 S_{20} 分别是().

A. 165, 320

B. 165, 340 C. 185, 300 D. 185, 320 E. 205, 320

® \mathfrak{F} \mathfrak{g} 等差数列・下标关系在 S_n 中应用

【真题2009.01.25】 $\{a_n\}$ 的前n项和 S_n 与 $\{b_n\}$ 的前n项和 T_n 满足 S_{19} : $T_{19}=3:2$ ()

(1) $\{a_n\}$ 和 $\{b_n\}$ 是等差数列

(2) a_{10} : $b_{10} = 3:2$

® \mathfrak{F} \mathfrak{g} 等差数列・下标关系在 S_n 中应用

 $A.-\frac{13}{20}$

⑱嗲থ 等差数列・下标关系在 S_n 中应用

【模拟题】等差数列 $\{a_n\}$, $\{b_n\}$ 的前n项和分别为 S_n , T_n , 若 $\frac{S_n}{T_n} = \frac{2n}{3n+1}$, 则 $\frac{a_8}{b_8}$ 的值为(). $A.-\frac{13}{20}$ $B.\frac{13}{20}$ $C.\frac{13}{10}$ $D.\frac{1}{3}$ $E.\frac{15}{23}$

$$A. - \frac{13}{20}$$

$$B.\frac{13}{20}$$

$$C.\frac{13}{10}$$

$$D.\frac{1}{3}$$

$$E \cdot \frac{15}{23}$$

定义、判定与性质

等差数列

$$\int d = \frac{a_n - a_m}{n - m} \qquad a_n = a_m + (n - m)d$$

等差数列下标和相等的同数量项之和相等

两组项下标和相等, 项数相同, 则这两组项的和相等

$$S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(a_2 + a_{n-1})}{2} = \frac{n(a_3 + a_{n-2})}{2} = \cdots$$
 首尾配对求和

对于等差数列前奇数个项,有 $S_n = n \cdot a_{\text{中间项}}$

对于等差数列前偶数个项,有 $S_n = \frac{n}{2}$ (中间两项之和)

前n项和之比=中间项之比