ISIMA - Recherche Operationnelle

TP1 - Minimum Weight Spanning Trees

Renaud Chicoisne & Annegret Wagler

20 Janvier 2023

L'objectif de ce TP est d'implementer l'algorithme de Prim en C (rappelé dans l'Algorithme 1 ci-dessous) et de trouver un arbre couvrant de poids minimum dans un graphe donné.

Algorithm 1: Prim

Data: A connected graph G = (V, E) with edge weights $(c_e)_{e \in E}$

Result: A minimum weight spanning tree T = (V, E') of G

- 1 Choose a start node $x \in V$, initialize a tree T = (V', E') with $V' := \{x\}$ and $E' := \emptyset$;
- 2 while |V'| < |V| do
- Choose an edge $e = (u, v) \in E$ with minimal weight c_e from the set $\{(u, v) \in E : u \in V', v \in V | V' \}$;
- $\mathbf{4} \quad E' \leftarrow E' \cup \{e\}, \ V' \leftarrow V' \cup \{v\};$
- 5 return T;

Votre code source devra comporter deux fichiers principaux : TP1.C et TP1Functions.c que vous compilerez avec la commande gcc TP1.c -o TP1, ce qui génèrera un fichier executable que vous executerez avec la commande ./TP1.

Votre code devra lire un fichier d'instance TP1instance.csv qui contient toutes les informations du graphe considéré sous le format suivant :

- 1. La premiere ligne n,m contient le nombre de noeuds n = |V| et d'aretes m = |E|
- 2. Chacune des m lignes suivantes i,j,c contient l'information d'une arete $(i,j) \in E$ et son poids $c_{ij} = c$

Votre code devra retourner les informations relatives a l'arbre trouve dans un fichier TP1solution.csv contenant en premiere ligne le poids total de l'arbre et a chacune des n-1 lignes suivantes l'index des aretes composant votre arbre. Testez votre implémentation sur le réseau suivant :

	Aachen	Bonn	Dusseldorf	Frankfurt	Koeln	Wuppertal
Aachen	-	91	80	-	70	-
Bonn	91	-	-	175	27	84
Dusseldorf	80	-	-	-	47	29
Frankfurt	-	175	-	-	189	-
Koeln	70	27	47	189	-	55
Wuppertal	-	84	29	-	55	-

Executez votre programme six fois en selectionnant un noeud initial x different a chaque execution.