COMS20011 – Data-Driven Computer Science

January 2024

Majid Mirmehdi

Lecture MM-01

What is Data?

- Data comes in many forms, e.g. symbols, patterns and signals!
- Data: Structured and Unstructured
 - Numeric (measurements, finance spreadsheets, ...)
 - > Textual (emails, social media, web pages, medical records, ...)
 - Visual (images, video, graphics, animations)
 - Auditory (speech, audio)
 - Signals (GPS signals, accelerometer, heart rate, ...)
 - Many others...

This Unit

- This unit is about doing things with data... but not
 - storing, shuffling, searching (Algorithms I & II)
 - sending (Computer Systems)
 - compressing or encrypting (Cryptology)
- This unit is about:
 - extracting knowledge from data
 - generating data and making predictions
 - making decisions based on data
 - Often referred to as:

Basic Statistics Concepts

Same Basic Stats, Different Data!

Data is the new Oil

THE LARGEST COMPANIES BY MARKET CAP

The oil barons have been replaced by the whiz kids of Silicon Valley

Data Science & Analytics

It's not about the data – it's about the science

Tracking and predicting [disease,mortality,floods,fires, and fun etc.] by Twitter!

It's not about the data – it's about the science

This Unit

Why is it important for Computer Science?

- > Fundamental to many related areas:
 - Artificial Intelligence, Machine Learning, Deep Learning
 - > Image Processing and Pattern Recognition
 - Graphics, Animation and Virtual Reality
 - Computer Vision and Robotics
 - Speech and Audio Processing.
 - With growing applications in: neuroscience, literature, agriculture, etc.
- Hence, preparation for units in years 3 and 4.

https://www.bris.ac.uk/unit-programme-catalogue/UnitDetails.jsa?unitCode=COMS20011

Ex1. A Fish Problem

Data: images of fish

Aim: distinguish between sea bass and salmon

Ex1. A Fishy Problem

13

Features

They are the intrinsic traits, properties, or characteristics that tell one data/pattern/object apart from another.

Feature extraction and representation allows:

- Data reduction and abstraction
- Focus on relevant, distinguishing parts of data

Steps:

- 1. Pre-processing e.g. Rotate and align, Segment fish from background
- 2. Feature Selection e.g. Measure length
- 3. Classification e.g. Find a threshold

Steps:

- 1. Pre-processing e.g. Rotate and align, Segment fish from background
- 2. Feature Selection e.g. Measure length or lightness
- 3. Classification e.g. Find a threshold

Multiple features could be selected, resulting in a multi-dimensional feature vector.

 $\mathbf{Fish} \to \mathbf{x} = \{x_1, x_2\}$

Complex decision model

Optimal trade-off between performance and generalization

Ex2. Speech Recognition

Data: Analogue speech signals (time series numerical data)

Aim: Convert audio into text (e.g. Alexa/Siri...)

- 1. Pre-processing Digitisation
- 2. Feature Selection Wave amplitude, frequencies
- 3. Inference Hidden Markov Models (Viterbi algorithm) or Deep learning

Ex3. Spam Filter

Data: Texts of emails

Aim: Determine whether the email is spam

- 1. Pre-processing Normalise words (e.g. remove punctuation, find word roots)
- 2. Feature Selection Presence of words

Select subset of words w_i and determine $P(w_i \mid spam)$ and $P(w_i \mid \neg spam)$ from frequencies in training data.

Ex3. Spam Filter

Data: Texts of emails

Aim: Determine whether the email is spam

- 1. Pre-processing Normalise words
- 2. Feature Selection Presence of words
- Classification Naive Bayes classifier

Select subset of words w_i and determine $P(w_i \mid spam)$ and $P(w_i \mid \neg spam)$ from frequencies in training data.

For an Email that contains $w_1, w_2, ..., w_n$ of the subset of words, assume

$$P(email|spam) = P(w_1|spam)P(w_2|spam)..P(w_n|spam)$$
 (1)

and

$$P(email \mid \neg spam) = P(w_1 \mid \neg spam)P(w_2 \mid \neg spam)...P(w_n \mid \neg spam)$$
 (2)

A new Email is spam if

$$P(email|spam) > P(email|\neg spam)$$
 (3)

Ex4.1 – Towards Autonomous Driving

Data: Video

Aim: Determine knowledge from the road or inside the vehicle

- 1. Pre-processing (Detect vanishing point)
- 2. Feature Selection (Use constraints to reduce number and dimensionality)
- 3. Recognition (Perspective transformations and OCR)

Ex4.2 – Towards Autonomous Driving

- 1. Pre-processing (Detect vanishing point)
- 2. Feature Selection (Straight lines)
- 3. Model Building (Detecting, predicting, decision making)

Ex4.3 – Towards Autonomous Driving

- 1. Pre-processing (Detect vanishing point)
- 2. Feature Selection (MSERs, Histogram of Gradients)
- 3. Classification (Support Vector Machines)

Ex4.4 – Towards Autonomous Driving

- 1. Pre-processing (Background subtraction)
- 2. Feature Selection (hand shapes)
- 3. Classification (Random Forest classifier)

COMS20011

Steps:

- 1. Pre-processing [Unit Part 1] → Majid Mirmehdi (~10%)
- 2. Feature Selection [Unit Part 3] → Majid Mirmehdi (~40%)
- 3. Modelling & Classification [Unit Part 2] → Charles Kind (~50%)

COMS20011

Lectures

- ➤ Thursdays 14:00 14:50 QUEENS PUGSLEY 1.40
- Fridays 10:00 10:50 QUEENS PUGSLEY 1.40

Unit pages: https://github.com/majidmirmehdi/COMS20011 23-24/

Labs

- Mondays 13:00 14:00 [by timetable]: Group 1
- Mondays 14:00 15:00 [by timetable]: Group 2
- Lab Environment [Jupyter + Python]
- > TA support in Teams: grp-COMS20011_2023

Lectures and Labs are both <u>essential</u> for learning unit content!

Next lecture

- Data acquisition
- Data characteristics: distance measures
- Data characteristics: summary statistics [reminder]
- Data normalisation and outliers