

Available online at www.starresearchjournal.com (Star International Journal)

MATHEMATICS

OBSERVATION ON THE BIQUADRATIC EQUATION WITH FIVE UNKNOWNS

$$4x^3 + 4y^3 - 2x^2y - 2xy^2 = 23p^2(z^2 - w^2)$$

M.A.Gopalan¹, S.Vidhyalaksmi² & J.Shanthi³

Abstract

We present different patterns of non-zero distinct integer solutions to the non-homogeneous biquadratic equation with five unknowns given by $4x^3 + 4y^3 - 2x^2y - 2xy^2 = 23p^2(z^2 - w^2)$ A few interesting properties among the solutions are also given.

Keywords: Biquadratic, Biquadratic with five unknowns, integer solutions.

2010 Mathematics subject Classification: 11D25

Notation:

$$t_{m,n} = n \left[1 + \frac{(n-1)(m-2)}{2} \right]$$

$$p_n^m = \frac{n(n+1)}{6} [n(m-2) + 5 - m)]$$

$$pr_n = n(n+1)$$

$$S_n = 6n(n-1) + 1$$

$$SO_n = n(2n^2 - 1)$$

$$j_n = 2^n + (-1)^n$$

$$J_n = \frac{1}{3} [2^n + (-1)^n]$$

Introduction:

The theory of Diophantine equations offers a rich variety of fascinating problems. In particular, biquadratic diophantine equations, homogeneous and non-homogeneous have aroused the interest of numerous mathematicians since antiquity [1-5]. In this context one may refer [6-9] for various problems on the biquadratic Diophantine equation with four variables and [10-14] for five variables and [15-16] for six variables. It is towards this end, this paper concerns with the problem of determining non-trival integral solutions of the homogeneous equation of degree four with six unknowns given by $4x^3 + 4y^3 - 2x^2y - 2xy^2 = 23p^2(z^2 - w^2)$.

Method of Analysis:

The biquadratic equation with five unknowns to be solved is

$$4x^{3} + 4y^{3} - 2x^{2}y - 2xy^{2} = 23p^{2}(z^{2} - w^{2})$$
(1)

To start with, it is observed that (1) is satisfied by the following quintuples

¹ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Tamil nadu, India, mayilgopalan@gmail.com

² Professor, Department of Mathematics, Shrimati Indira Gandhi College, Tamil nadu, India, vidhyasigc@gmail.com

³ Lecturer, Department of Mathematics, Shrimati Indira Gandhi College, Tamil nadu, India, <u>shanthivishvaa@gmail.com</u>

$$(x, y, z, w, p) = (424T, 216T, 320+1, 320T-1, 88T), (70T, -6T, 32T+1, 32T-1, 22T),$$

$$(10K^2 + 56K - 378, 6K^2 - 40K - 262, 8K^2 + 8K - 321, 8K^2 + 8K - 319, 2K^2 + 16K - 74),$$

$$(1610K^2 + 1656K + 324, 966K^2 + 920K - 216, 1288K^2 + 1288K + 321, 1288K^2 + 1288K + 321,$$

$$322K^2 + 336K + 88), (230K^2 + 276K + 17, 138K^2 + 92K + 47, 184K^2 + 184K + 33, 184K^2 + 184K + 31,$$

$$46K^2 + 60K + 22)$$

However, we have other choices of integer solution to (1) which are illustrated as follows: Introducing, the linear transformation

$$x = u + v, y = u - v, z = u + 1, w = u - 1$$
 (2)

in (1), it is written as

$$u^2 + 7v^2 = 23p^2 \tag{3}$$

(3) is solved through different methods leading to different sets of integer solutions to (1)

Method 1:

Assume
$$p = a^2 + 7b^2$$
 (4)

Write 23 as
$$23 = (4 + i\sqrt{7})(4 - i\sqrt{7})$$
 (5)

Using (4) & (5) in (3) and applying the method of factorization, define

$$u + i\sqrt{7}v = (4 + i\sqrt{7})(a + i\sqrt{7}b)^2$$

Equating the real and imaginary parts, we have

$$u = 4a^{2} - 35b^{2} - 6ab$$
$$v = a^{2} - 7b^{2} + 8ab$$

Substituting the above values of u and v in (2), the values of x, y, z, w and p are given by

$$x = x(a,b) = 5a^{2} - 35b^{2} - 6ab$$

$$y = y(a,b) = 3a^{2} - 21b^{2} - 22ab$$

$$z = z(a,b) = 4a^{2} - 28b^{2} - 14ab + 1$$

$$w = w(a,b) = 4a^{2} - 28b^{2} + 14ab - 1$$
(6)

Thus (4) and (6) represent the required integer solutions to (1).

Properties:

1.
$$x(t_{3,a+1},1) - y(t_{3,a+1},1) - p(t_{3,a+1},1) + 21 = t_{3,a+1}^{2} + 48 pr^{3}$$

2. $3p(a, a^2)$ is a Nasty Number.

3.
$$p(a, a+1) + y(a, a+1) - z(a, a+1) - s_a + 16t_{3,a} - 2t_{10,a} \equiv -28 \pmod{40}$$

Method 2:

Rewrite (3) as

$$u^2 + 7v^2 = 23p^2 *1 \tag{7}$$

Write 1 as
$$1 = \frac{(3+i\sqrt{7})(3-i\sqrt{7})}{16}$$
 (8)

Following the procedure presented above in Method 1, the corresponding integer solutions to (1) are given by

$$x = x(A, B) = 48A^{2} - 352AB - 336B^{2}$$

$$y = y(A, B) = -8A^{2} - 432AB + 56B^{2}$$

$$z = z(A, B) = 20A^{2} - 392AB - 140B^{2} + 1$$

$$w = w(A, B) = 20A^{2} - 392AB - 140B^{2} - 1$$

$$p = p(A, B) = 16A^{2} + 112B^{2}$$

Properties:

1.
$$x(a,1) - z(a,1) - w(a,1) - 8pr_a = 368 \pmod{424}$$

$$z(a^2,1) - p(a^2,1) - t_{10,a} \equiv 144 \pmod{395}$$

$$3[y(A, A+1) + p(A, A+1) + 640t_{3,A}]$$
 is a Nasty Number.

$$z(a+1,a) - x(a+1,a) - y(a+1,a) - 20S_a - 392pr_a = -79 \pmod{80}.$$

Note:

Instead (7), one may write 1 in two different ways as

$$1 = \frac{(1+i3\sqrt{7})(1-i3\sqrt{7})}{64} \quad ; \quad 1 = \frac{(3+i20\sqrt{7})(3-i20\sqrt{7})}{53^2}$$

In this case, corresponding two sets of non zero distinct integer solutions to (1) are found to be

Set 1:

$$x = x(A, B) = -32A^{2} - 1728AB + 224B^{2}$$

$$y = y(A, B) = -240A^{2} - 1184AB + 1680B^{2}$$

$$z = z(A, B) = -136A^{2} - 1456AB + 952B^{2} + 1$$

$$w = w(A, B) = -136A^{2} - 1456AB + 952B^{2} - 1$$

$$p = p(A, B) = 64A^{2} + 448B^{2}$$

Set 2:

$$x = x(A, B) = -2385A^{2} - 75154AB + 16695B^{2}$$

$$y = y(A, B) = -11183A^{2} - 48018AB + 78281B^{2}$$

$$z = z(A, B) = -6784A^{2} - 61586AB + 47488B^{2} + 1$$

$$w = w(A, B) = -6784A^{2} - 61586AB + 47488B^{2} - 1$$

$$p = p(A, B) = 2809A^{2} + 19663B^{2}$$

Method 3:

Introducing, the linear transformation

$$u = 4U, p = X + 7T, v = X + 23T$$
 (9)

in (3), it leads to

$$X^2 = U^2 + 161T^2 \tag{10}$$

Which is satisfied by

T = 2rs
U =
$$161r^2 - s^2$$

 $X = 161r^2 + s^2$

Using the above U, T, X in (9) and (2), the corresponding non zero integer solutions to (1) are given by

$$x = x(r,s) = 805r^2 + 46rs - 3s^2$$

$$y = y(r,s) = 483r^2 - 46rs - 5s^2$$

$$z = z(\mathbf{r}, \mathbf{s}) = 644\mathbf{r}^2 - 4s^2 + 1$$

$$w = w(r,s) = 644r^2 - 4s^2 - 1$$

$$p = p(r,s) = 161r^2 + 14rs + s^2$$

Properties:

1.
$$x(\alpha, t_{3,\alpha+1}) - w(\alpha, t_{3,\alpha+1}) - p(\alpha, t_{3,\alpha+1}) = 96p_{\alpha}^3 + 1$$

2.
$$x(2^n,1) - y(2^n,1) - p(2^n,1) = 47J_{2n} + 117J_n + 162$$

Note:

In (9), consider p and v as p = X - 7T, v = X - 23T.

For this choice, the corresponding integer solutions to (1) are given by

$$x = x(r,s) = 805r^2 - 46rs - 5s^2$$

$$y = y(r,s) = 483r^2 + 46rs - 3s^2$$

$$z = z(r,s) = 644r^2 - 4s^2 + 1$$

$$w = w(r,s) = 644r^2 - 4s^2 - 1$$

$$p = p(r,s) = 161r^2 - 14rs - s^2$$

Conclusion:

In this paper, we have illustrated different methods of obtaining integer solutions to the b biquadratic equation with five unknowns are rich in variety, one may search for the non zero distinct integer solutions for other choices of biquadratic equation with five or more unknowns.

Acknowledgement:

The financial support from the UGC, New Delhi (F.MRP-5123/14 (SERO/UGC) dated March 2014) for a part of this work is gratefully acknowledged.

References:

- Dickson, L.E.," History of the theory numbers", Vol.2: Diophantine Analysis, New York: Dover, 2005
- 2. Carmichael, R.D., "The theory of numbers and Diophantine Analysis", New York: Dover, 1959
- 3. Gopalan M.A, Manjusomanath and Vanitha.N., Parametric integral solutions of $x^2 + y^3 = z^4$, Acta Ciencia India, Vol-XXXIIIM (No-4).,1261-1265.,2007.
- 4. Gopalan M.A, Pandiselvi.V, on the Ternary biquadratic Diophantine equation $x^2 + ky^3 = z^4$, Pacific Asian Journal of Mathematics, Vol-2, No 1-2, 57-2, 2008.
- 5. Gopalan M.A, Janaki.G, Observation on $2(x^2 y^2) + 4xy = z^4$, Acta Ciencia India , Vol-XXXVM (No-2),445-448,2009.
- 6. Gopaln M.A, Manjusomanath and Vanitha .N, Integral solution of $x^2 + xy + y^2 = (k^2 + 3)^n z^4$, Pure and Applied Mathematika Sciences, Vol-LXIX, No 1-2, 149-152,2009.
- 7. Gopalan M.A and Sangeetha.G, Integral Solutions of ternary biquadratic equation $(x^2 y^2) + 2xy = z^4$, Antartica J.Math., 7(1),95-101,2010.
- 8. Gopalan M.A and Janaki.G, Observation on $3(x^2 y^2) + 9xy = z^4$, Antartica J.Math., 7(2), 239-245, 2010.
- 9. Gopalan M.A and Vijayasankar.A, Integral solutions of ternary biquadratic equation $x^2 + 3y^2 = z^4$, Impact J.Sci.Tech, Vol 4 (No-3), 47-51, 2010.

- 10. Gopalan M.A, Vidhyalakshmi.S and Devibala.S, Ternary biquadratic Diophantine equation $2^{4n+3}(x^3 y^3) = z^4$, Impact J.Sci.Tech, Vol 4 (No-3), 57-60, 2010.
- 11. Gopalan M.A, Sumathi.G and Vidhyalakshmi.S, Integral solution of ternary non-homogeneous equation $(\alpha + 1)(x^2 + y^2) + (2\alpha + 1)xy = z^4$, JARCE, Vol-6, No-2, 97-98, 2012.
- 12. Gopalan.M.A, Vidhyalakshmi.S and Sumathi.G, Integral solution of ternary non-homogeneous equation $(2k + 1)(x^2 + y^2 + xy) = z^4$, Indian Journal of Engineering, Vol-1, No -1, 37-39, 2012.
- 13. Gopalan M.A, Sumathi G and Vidhyalakshmi.S, Integral solution of ternary biquadratic non-homogeneous equation $(k+1)(x^2+y^2)-(2k+1)xy=z^4$, Archimedes J. Math, Vol-3, No-1, 67-71, 2013.
- 14. Gopalan M.A, Sumathi.G, Vidhyalakshmi.S,On the ternary biquadratic non-homogeneous equation $x^2 + ny^3 = z^4$, Cayley J.Math, Vol-2, Issue-2, 169-174, 2013.
- 15. Gopalan.M.A, Vidhyalakshmi.S and Sumathi.G, Integral solution of ternary non-homogeneous equation $(2k + 1)(x^2 + y^2 + xy) = z^4$, Indian Journal of Engineering, Vol-1, No -1, 37-39, 2012.
- 16. Gopalan M.A, Sumathi G and Vidhyalakshmi.S, Integral solution of ternary biquadratic non-homogeneous equation $(k+1)(x^2+y^2)-(2k+1)xy=z^4$, Archimedes J. Math, Vol-3, No-1, 67-71, 2013.
- 17. Gopalan M.A, Sumathi.G, Vidhyalakshmi.S,On the ternary biquadratic non-homogeneous equation $x^2 + ny^3 = z^4$, Cayley J.Math, Vol-2, Issue-2, 169-174, 2013.