Laboratório de Redes - Atividade 1A

- 1) Para acessar o roteador de endereço 10.0.1.21, temos duas opções:
 - Através do comando ssh, ssh ea080@10.0.1.21, em que ea080 é o usuário a ser utilizado para nos conectarmos ao respectivo roteador. A figura 1 abaixo representa o resultado desta operação.

Figura 1: Terminal de acesso ao roteador.

ii. Através do *browser*, após digitarmos o endereço do router na barra de endereços, conforme representado na figura 2. No caso, acessamos o roteador **10.0.1.23**.

Figura 2: Acesso ao roteador via browser.

2) O endereço MAC de switches e roteadores pode ser determinado utilizando o comando arp no Linux. Por exemplo, para visualizar o endereço MAC do roteador arp 10.0.1.21. A seguir o endereço MAC de alguns elementos: Endereço Endereço MAC 10.0.1.21 00:0c:42:2e:e6:92 10.0.1.11 00:0f:3d:ce:d6:87

3) A tabela de encaminhamento dos switches relaciona o endereço MAC dos componentes conectados a cada uma de suas portas. A tabela abaixo corresponde ao switch 10.0.1.12.

VID	VLAN Name	MAC Address	Port Type
1	default	00-04-96-1F-1E-8C	11 Dynamic
1	default	00-0C-42-28-B3-8B	11 Dynamic
1	default	00-0C-42-2E-A4-62	11 Dynamic
1	default	00-0C-42-2E-A4-67	11 Dynamic
1	default	00-0C-42-2E-A4-71	11 Dynamic
1	default	00-0C-42-2E-A4-76	11 Dynamic
1	default	00-0C-42-2E-E6-92	11 Dynamic
1	default	00-0D-88-62-D1-80	11 Dynamic
1	default	00-0F-3D-CE-D6-87	11 Dynamic
1	default	00-0F-3D-CE-D6-F4	CPU Self
1	default	D0-27-88-98-A9-4C	11 Dynamic
1	default	D0-27-88-98-AE-02	11 Dynamic
1	default	D0-27-88-98-AE-5F	4 Dynamic
1	default	D0-27-88-98-B0-19	11 Dynamic
1	default	D0-27-88-98-B0-28	11 Dynamic
1	default	D0-27-88-98-B0-3F	3 Dynamic
1	default	D0-27-88-98-B0-41	1 Dynamic
1	default	D0-27-88-98-B0-49	11 Dynamic
1	default	D0-27-88-98-B0-50	2 Dynamic
1	default	D0-27-88-98-B0-80	11 Dynamic
1	default	D0-27-88-9C-83-93	11 Dynamic
1	default	D0-27-88-D4-E0-18	11 Dynamic
1 1 1	default default default	D0-27-88-98-B0-50 D0-27-88-98-B0-80 D0-27-88-9C-83-93	2 Dynamic11 Dynamic11 Dynamic

Observamos que as máquinas correspondentes 10.0.0.102, 10.0.0.107, 10.0.0.112 e 10.0.0.117 estão conectadas nas portas 1 a 4, respectivamente, deste switch. Os outros componentes (roteadores e outros switches) estão ligados a este switch através da porta 11. As outras portas estão desabilitadas conforme previsto.

4) Observamos a seguir o tráfego entre o PC **10.0.0.102** e o roteador **10.0.1.23** através do WireShark para algumas mensagens do protocolo ARP e ICMP (correspondente ao ping).

No.	Time	Source	Destination	Protocol Length Info				
	196 16.196022	Routerbo_28:b3:8b	HonHaiPr_98:b0:41	ARP	60	Who has 10.0.0.102?	Tell	
10.0.1	.26							
No.	Time	Source	Destination	Protocol Length Info				
	197 16.196037	HonHaiPr_98:b0:41	Routerbo_28:b3:8b	ARP	42	10.0.0.102 is at		
d0:27:	88:98:b0:41							
No.	Time	Source	Destination	Protocol Length Info				
	605 50.151330	10.0.0.102	10.0.1.23	ICMP	98	Echo (ping) request		
id=0x1	10e, seq=1/256,	ttl=64						

No. Time Source Destination Protocol Length Info 606 50.151716 10.0.1.23 10.0.0.102 ICMP 98 Echo (ping) reply id=0x110e, seq=1/256, ttl=64

As duas primeiras mensagens, correspondentes ao protocolo ARP, são produzidas quando qualquer um dos outros componentes requer o endereço MAC da minha máquina, cujo endereço IP é **10.0.0.102**. Neste caso, quando recebemos uma solicitação deste tipo (primeira mensagem da tabela acima), enviamos o resultado para a máquina que solicitou esta informação.

Laboratório de Redes - Atividade 1B

1) A tabela a seguir mostra os resultados obtidos no WireShark para os pacotes trocados em uma requisição de um PING feito pela máquina virtual **10.0.0.122** para o host **10.0.0.102**.

No. Time Source Destination Protocol Length Info
1 0.000000 Routerbo_28:b3:8b HonHaiPr_98:b0:41 ARP 60 Who has 10.0.0.102? Tell
10.0.1.26

Frame 1: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)
Ethernet II, Src: Routerbo_28:b3:8b (00:0c:42:28:b3:8b), Dst: HonHaiPr_98:b0:41 (d0:27:88:98:b0:41)
Address Resolution Protocol (request)

No. Time Source Destination Protocol Length Info 2 0.000015 HonHaiPr_98:b0:41 Routerbo_28:b3:8b ARP 42 10.0.0.102 is at d0:27:88:98:b0:41

Frame 2: 42 bytes on wire (336 bits), 42 bytes captured (336 bits)
Ethernet II, Src: HonHaiPr_98:b0:41 (d0:27:88:98:b0:41), Dst: Routerbo_28:b3:8b (00:0c:42:28:b3:8b)
Address Resolution Protocol (reply)

No. Time Source Destination Protocol Length Info 5 6.794434 10.0.0.102 10.0.0.122 ICMP 98 Echo (ping) request id=0x12ba, seq=1/256, ttl=64

Frame 5: 98 bytes on wire (784 bits), 98 bytes captured (784 bits)
Ethernet II, Src: HonHaiPr_98:b0:41 (d0:27:88:98:b0:41), Dst: CadmusCo_30:b0:54 (08:00:27:30:b0:54)
Internet Protocol Version 4, Src: 10.0.0.102 (10.0.0.102), Dst: 10.0.0.122 (10.0.0.122)
Internet Control Message Protocol

Frame 6: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)
Ethernet II, Src: CadmusCo_30:b0:54 (08:00:27:30:b0:54), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
Address Resolution Protocol (request)

No. Time Source Destination Protocol Length Info 7 6.794709 CadmusCo_30:b0:54 Broadcast ARP 60 Who has 10.0.0.102? Tell 10.0.0.122

Frame 7: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)
Ethernet II, Src: CadmusCo_30:b0:54 (08:00:27:30:b0:54), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
Address Resolution Protocol (request)

No. Time Source Destination Protocol Length Info

HonHaiPr 98:b0:41 CadmusCo 30:b0:54 10.0.0.102 is at 8 6 794719 d0:27:88:98:b0:41 Frame 8: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) Ethernet II, Src: HonHaiPr 98:b0:41 (d0:27:88:98:b0:41), Dst: CadmusCo 30:b0:54 (08:00:27:30:b0:54) Address Resolution Protocol (reply) No. Time Source Destination Protocol Length Info 9 6.794843 10.0.0.122 10.0.0.102 TCMP 98 Echo (ping) reply id=0x12ba, seq=1/256, ttl=64 Frame 9: 98 bytes on wire (784 bits), 98 bytes captured (784 bits) Ethernet II, Src: CadmusCo_30:b0:54 (08:00:27:30:b0:54), Dst: HonHaiPr_98:b0:41 (d0:27:88:98:b0:41) Internet Protocol Version 4, Src: 10.0.0.122 (10.0.0.122), Dst: 10.0.0.102 (10.0.0.102) Internet Control Message Protocol Time Destination Protocol Length Info No. Source 10 7.793431 10.0.0.102 10.0.0.122 98 Echo (ping) request id=0x12ba, seq=2/512, ttl=64 Frame 10: 98 bytes on wire (784 bits), 98 bytes captured (784 bits) Ethernet II, Src: HonHaiPr 98:b0:41 (d0:27:88:98:b0:41), Dst: CadmusCo 30:b0:54 (08:00:27:30:b0:54) Internet Protocol Version 4, Src: 10.0.0.102 (10.0.0.102), Dst: 10.0.0.122 (10.0.0.122) Internet Control Message Protocol

Observamos que a tabela ARP da máquina virtual é atualizada com a nova entrada do endereço MAC da máquina host, conforme abaixo:

```
? (10.0.1.254) em 00:0d:88:62:d1:80 [ether] em eth0

? (10.0.0.122) em 08:00:27:30:b0:54 [ether] em eth0

? (10.0.1.26) em 00:0c:42:28:b3:8b [ether] em eth0
```

2) O endereço MAC de destino do pacote ARP de requisição correspondente à máquina **10.0.0.102** é d0:27:88:98:b0:41.

No campo TIPO dos cabeçalhos Ethernet observamos os tipos IP e ARP.

Quando a máquina real **10.0.0.102** tenta realizar uma operação de ping para a máquina virtual **10.0.0.122**, ela consulta sua tabela ARP para verificar se o endereço MAC desta máquina já está presente nela. Caso não esteja, a máquina real necessita atualizar sua tabela e para isso envia uma mensagem ARP perguntando para as máquinas presentes na rede qual delas possui o endereço procurado. A máquina que possui este endereço responde com o MAC procurado e em seguida está pronta para continuar a enviar os pacotes ICMP.

3) O comando *netstat -in* tem como resultado

eth0	1500 0	78054	0	0 0	63065	0	0	0 BMRU
lo	16436 0	37	0	0 0	37	0	0	0 LRU

Logo, nosso host apresenta duas interfaces, *eht0* e *lo*, com MTU igual a 1500 e 16436, respectivamente.

O comando **netstat -s,** por sua vez, resulta na lista abaixo. Em negrito, estão representados as quantidades solicitadas de datagramas, pacotes e mensagens.

```
70378 total de pacotes recebidos
      0 encaminhado
      O pacotes de entrada descartados
      70373 pacotes de entrada entregues
      64290 requisições enviadas
Icmp:
      880 mensagens ICMP recebidas
      29 mensagens ICMP de entrada com problemas.
      Histograma de entrada ICMP:
      destino inalcançável: 36
      redirecionamentos: 139
      requisições de eco: 492
      respostas de eco: 213
      858 mensagens ICMP enviadas
      0 mensagens ICMP falharam
      Histograma de saída ICMP
      destino inalcancável: 159
      requisição echo: 233
      respostas de eco: 466
IcmpMsg:
      InType0: 213
      InType3: 36
      InType5: 139
      InType8: 492
      OutType0: 466
      OutType3: 159
      OutType8: 233
Tcp:
      530 conexões ativas abertas
      51 conexões passivas abertas
      8 tentantivas de conexão que falharam
      2 reinícios de conexões recebidos
      4 conexões estabelecidas
      63095 segmentos recebidos
      60426 segmentos enviados
      229 segmentos retransmitidos
      13 segmentos inválidos recebidos
      219 reinícios enviados
Udp:
      3945 pacotes recebidos
      145 pacotes recebidos para uma porta desconhecida
      0 erros na recepção de pacotes
      2775 pacotes enviados
```

Um loopback é um canal de comunicação com apenas um ponto final. Qualquer mensagem transmitida por meio de tal canal é imediatamente recebida pelo mesmo canal. Esse tipo de interface pode ser utilizada para testar o funcionamento do canal de comunicação. A diferença de comportamento entre *RX-OK* e *TX-OK* nos dois casos se explica justamente pela característica da interface eth0, na qual nem todos os pacotes são transmitidos com sucesso (por exemplo, as mensagens UDP perdidas não são reenvidas).

4) Após realizar uma operação de ping para uma determinada máquina, a tabela ARP passa a conter em uma de suas entradas esta máquina e seu endereço MAC correspondente. Após alguns minutos, esta entrada é eliminada da tabela ARP, como esperado.

A saída abaixo foi capturada pelo Wireshark após um comando de ping para uma máquina desconhecida até então pelo host. Essa máquina tem endereço 10.0.0.116 e, conforme esperado, primeiramente o host pergunta o respectivo endereço MAC e, após recebê-lo, efetua o comando ping.

No. Tell	Time 1 0.000000 10.0.0.137	Source CadmusCo_86:81:19	Destination Broadcast	Protocol Length Info ARP 60 Who has 10.0.0.102?
No. d0:27	Time 2 0.000016 :88:98:b0:41	Source HonHaiPr_98:b0:41	Destination CadmusCo_86:81:19	Protocol Length Info ARP 42 10.0.0.102 is at
No. Tell	Time 3 0.242449 10.0.1.26	Source Routerbo_28:b3:8b	Destination HonHaiPr_98:b0:41	Protocol Length Info ARP 60 Who has 10.0.0.102?
No. d0:27	Time 4 0.242465 :88:98:b0:41	Source HonHaiPr_98:b0:41	Destination Routerbo_28:b3:8b	Protocol Length Info ARP 42 10.0.0.102 is at
No. Tell	Time 15 1.000927 10.0.0.137	Source CadmusCo_86:81:19	Destination Broadcast	Protocol Length Info ARP 60 Who has 10.0.0.102?
No. d0:27	Time 16 1.000951 :88:98:b0:41	Source HonHaiPr_98:b0:41	Destination CadmusCo_86:81:19	Protocol Length Info ARP 42 10.0.0.102 is at
No. Tell	Time 51 23.272486 10.0.0.102	Source HonHaiPr_98:b0:41	Destination Broadcast	Protocol Length Info ARP 42 Who has 10.0.0.116?
No. d0:27	Time 52 23.272714 :88:98:ad:fc	Source HonHaiPr_98:ad:fc	Destination HonHaiPr_98:b0:41	Protocol Length Info ARP 60 10.0.0.116 is at
No.	Time 53 23.272731 1367, seq=1/25		Destination 10.0.0.116	Protocol Length Info ICMP 98 Echo (ping) request
No.	Time 54 23.272910 1367, seq=1/25		Destination 10.0.0.102	Protocol Length Info ICMP 98 Echo (ping) reply
No.	Time 55 24.271480 1367, seq=2/51		Destination 10.0.0.116	Protocol Length Info ICMP 98 Echo (ping) request
No.	Time 56 24.271680 1367, seq=2/51		Destination 10.0.0.102	Protocol Length Info ICMP 98 Echo (ping) reply
No.	Time	Source	Destination	Protocol Length Info

	57 25.270480	10.0.0.102	10.0.0.116	ICMP	98	Echo	(pinį	g) r	equest
id=0x	1367, seq=3/76	8, ttl=64							
No.	Time	Source	Destination		ol Leng	-			
id=0x	58 25.270740 1367, seq=3/76		10.0.0.102	ICMP	98	Echo	(ping)	reply	
No.	Time	Source	Destination	Protoc	ol Leng	gth Inf	ō		
id=0x	59 26.270232 1367, seq=4/10	10.0.0.102 24, ttl=64	10.0.0.116	ICMP	98	Echo	(ping	g) r	equest
No.	Time	Source	Destination	Protoc	ol Leng	gth Inf	o		
id=0x	60 26.270483 1367, seq=4/10		10.0.0.102	ICMP	98	Echo	(ping)	reply	
No.	Time	Source	Destination	Protoc	ol Leng	gth Inf	ō		
Tell :	63 28.282191 10.0.0.116	HonHaiPr_98:ad:fc	HonHaiPr_98:b0:41	ARP	60	Who	has	10.0.	0.102?
No.	Time	Source	Destination	Protoc	ol Leng	gth Inf	ō		
d0:27	64 28.282207 :88:98:b0:41	HonHaiPr_98:b0:41	HonHaiPr_98:ad:fc	ARP	42	10.0.0	9.102	is	at
No.	Time	Source	Destination	Protoc	ol Leng	gth Inf	ō		
Tell :	73 33.228372 10.0.1.26	Routerbo_28:b3:8b	HonHaiPr_98:b0:41	ARP	60	Who	has	10.0.	0.102?
No.	Time	Source	Destination	Protoc	ol Leng	gth Inf	ō		
d0:27	74 33.228388 :88:98:b0:41	HonHaiPr_98:b0:41	Routerbo_28:b3:8b	ARP	42	10.0.0	9.102	is	at

4) a)

No.

Time

Source

Address Resolution Protocol (reply/gratuitous ARP)

Ao realizar um *gratuitous reply* com o comando arping, observamos no relatório de atividades as mensagens abaixo.

Destination

Protocol Length Info

```
111 46.851314
                     HonHaiPr_98:b0:41
                                            Broadcast
                                                                ARP
                                                                      42
                                                                          Gratuitous
                                                                                          ARP
for 10.0.0.102 (Reply)
Frame 111: 42 bytes on wire (336 bits), 42 bytes captured (336 bits)
Ethernet II, Src: HonHaiPr_98:b0:41 (d0:27:88:98:b0:41), Dst: Broadcast (ff:ff:ff:ff:ff)
Address Resolution Protocol (reply/gratuitous ARP)
No.
      Time
                   Source
                                      Destination
                                                          Protocol Length Info
      132 47.851364 HonHaiPr_98:b0:41 Broadcast
                                                                ARP
                                                                      42
                                                                            Gratuitous
                                                                                          ARP
for 10.0.0.102 (Reply)
Frame 132: 42 bytes on wire (336 bits), 42 bytes captured (336 bits)
Ethernet II, Src: HonHaiPr_98:b0:41 (d0:27:88:98:b0:41), Dst: Broadcast (ff:ff:ff:ff:ff)
```

No. Time Source Destination Protocol Length Info 133 48.851415 HonHaiPr_98:b0:41 Broadcast ARP 42 Gratuitous ARP for 10.0.0.102 (Reply)

Frame 133: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) Ethernet II, Src: HonHaiPr_98:b0:41 (d0:27:88:98:b0:41), Dst: Broadcast (ff:ff:ff:ff:ff) De modo análogo, ao realizar um *gratuitous request* com o comando arping, observamos no relatório de atividades as mensagens abaixo:

```
No.
      Time
                   Source
                                       Destination
                                                           Protocol Length Info
      16 2.859567 HonHaiPr_98:b0:41
                                       Broadcast
                                                           ARP
                                                                  42
                                                                         Gratuitous
                                                                                      ARP
                                                                                             for
10.0.0.102 (Request)
Frame 16: 42 bytes on wire (336 bits), 42 bytes captured (336 bits)
Ethernet II, Src: HonHaiPr_98:b0:41 (d0:27:88:98:b0:41), Dst: Broadcast (ff:ff:ff:ff:ff)
Address Resolution Protocol (request/gratuitous ARP)
                                                           Protocol Length Info
No.
      Time
                   Source
                                       Destination
      17 3.859613 HonHaiPr 98:b0:41
                                                                  42
                                                                        Gratuitous
                                                                                      ARP
                                       Broadcast
                                                                                             for
10.0.0.102 (Request)
Frame 17: 42 bytes on wire (336 bits), 42 bytes captured (336 bits)
Ethernet II, Src: HonHaiPr_98:b0:41 (d0:27:88:98:b0:41), Dst: Broadcast (ff:ff:ff:ff:ff)
Address Resolution Protocol (request/gratuitous ARP)
      Time
                   Source
                                       Destination
                                                           Protocol Length Info
      18 4.859661 HonHaiPr_98:b0:41
                                                                        Gratuitous
                                       Broadcast
                                                           ARP
                                                                  42
                                                                                      ARP
                                                                                             for
10.0.0.102 (Request)
Frame 18: 42 bytes on wire (336 bits), 42 bytes captured (336 bits)
Ethernet II, Src: HonHaiPr_98:b0:41 (d0:27:88:98:b0:41), Dst: Broadcast (ff:ff:ff:ff:ff)
Address Resolution Protocol (request/gratuitous ARP)
```

As situações nas quais é interessante utilizar esse tipo de mensagem são: ajudar na detecção de conflitos de endereços IP, atualização de tabelas ARP de outras máquinas e informar aos switches o endereço MAC da máquina dada uma porta do switch. Esses comandos também são utilizados na inicialização de componentes.

4) b)

5) a) A seguir a resposta para um ping gerado para o próprio host. Observamos um tempo médio de resposta de 0,018 ms.

```
ea080@le25-2:~$ ping 10.0.0.102 -c 25

PING 10.0.0.102 (10.0.0.102) 56(84) bytes of data.

64 bytes from 10.0.0.102: icmp_req=1 ttl=64 time=0.019 ms

64 bytes from 10.0.0.102: icmp_req=2 ttl=64 time=0.021 ms

64 bytes from 10.0.0.102: icmp_req=3 ttl=64 time=0.027 ms

64 bytes from 10.0.0.102: icmp_req=4 ttl=64 time=0.020 ms

64 bytes from 10.0.0.102: icmp_req=5 ttl=64 time=0.020 ms

64 bytes from 10.0.0.102: icmp_req=6 ttl=64 time=0.020 ms

64 bytes from 10.0.0.102: icmp_req=7 ttl=64 time=0.021 ms

64 bytes from 10.0.0.102: icmp_req=8 ttl=64 time=0.019 ms

64 bytes from 10.0.0.102: icmp_req=9 ttl=64 time=0.017 ms

64 bytes from 10.0.0.102: icmp_req=10 ttl=64 time=0.016 ms

64 bytes from 10.0.0.102: icmp_req=11 ttl=64 time=0.022 ms

64 bytes from 10.0.0.102: icmp_req=11 ttl=64 time=0.020 ms

64 bytes from 10.0.0.102: icmp_req=11 ttl=64 time=0.020 ms

64 bytes from 10.0.0.102: icmp_req=11 ttl=64 time=0.020 ms
```

```
64 bytes from 10.0.0.102: icmp_req=14 ttl=64 time=0.016 ms
64 bytes from 10.0.0.102: icmp_req=15 ttl=64 time=0.015 ms
64 bytes from 10.0.0.102: icmp_req=16 ttl=64 time=0.019 ms
64 bytes from 10.0.0.102: icmp_req=17 ttl=64 time=0.020 ms
64 bytes from 10.0.0.102: icmp_req=18 ttl=64 time=0.018 ms
64 bytes from 10.0.0.102: icmp_req=19 ttl=64 time=0.016 ms
64 bytes from 10.0.0.102: icmp_req=20 ttl=64 time=0.015 ms
64 bytes from 10.0.0.102: icmp_req=21 ttl=64 time=0.020 ms
64 bytes from 10.0.0.102: icmp_req=21 ttl=64 time=0.020 ms
64 bytes from 10.0.0.102: icmp_req=22 ttl=64 time=0.019 ms
64 bytes from 10.0.0.102: icmp_req=23 ttl=64 time=0.015 ms
64 bytes from 10.0.0.102: icmp_req=24 ttl=64 time=0.015 ms
64 bytes from 10.0.0.102: icmp_req=25 ttl=64 time=0.016 ms
65 packets transmitted, 25 received, 0% packet loss, time 23999ms
66 rtt min/avg/max/mdev = 0.015/0.018/0.027/0.006 ms
```

A seguir a resposta para um ping gerado para um host a um switch de distância. Observamos um tempo médio de resposta de 0,164 ms, consideravelmente maior do que anteriormente.

```
64 bytes from 10.0.0.107: icmp_req=1 ttl=64 time=0.354 ms
64 bytes from 10.0.0.107: icmp_req=2 ttl=64 time=0.174 ms
64 bytes from 10.0.0.107: icmp_req=3 ttl=64 time=0.169 ms
64 bytes from 10.0.0.107: icmp_req=4 ttl=64 time=0.169 ms
64 bytes from 10.0.0.107: icmp_req=5 ttl=64 time=0.163 ms
64 bytes from 10.0.0.107: icmp_req=6 ttl=64 time=0.170 ms
64 bytes from 10.0.0.107: icmp_req=7 ttl=64 time=0.177 ms
64 bytes from 10.0.0.107: icmp_req=8 ttl=64 time=0.169 ms
64 bytes from 10.0.0.107: icmp_req=9 ttl=64 time=0.168 ms
64 bytes from 10.0.0.107: icmp_req=10 ttl=64 time=0.164 ms
64 bytes from 10.0.0.107: icmp_req=11 ttl=64 time=0.167 ms
64 bytes from 10.0.0.107: icmp_req=12 ttl=64 time=0.181 ms
64 bytes from 10.0.0.107: icmp_req=13 ttl=64 time=0.121 ms
64 bytes from 10.0.0.107: icmp_req=14 ttl=64 time=0.184 ms
64 bytes from 10.0.0.107: icmp_req=15 ttl=64 time=0.185 ms
64 bytes from 10.0.0.107: icmp_req=16 ttl=64 time=0.180 ms
64 bytes from 10.0.0.107: icmp_req=17 ttl=64 time=0.119 ms
64 bytes from 10.0.0.107: icmp_req=18 ttl=64 time=0.113 ms
64 bytes from 10.0.0.107: icmp_req=19 ttl=64 time=0.151 ms
64 bytes from 10.0.0.107: icmp_req=20 ttl=64 time=0.185 ms
64 bytes from 10.0.0.107: icmp_req=21 ttl=64 time=0.118 ms
64 bytes from 10.0.0.107: icmp_req=22 ttl=64 time=0.191 ms
64 bytes from 10.0.0.107: icmp_req=23 ttl=64 time=0.114 ms
64 bytes from 10.0.0.107: icmp_req=24 ttl=64 time=0.108 ms
64 bytes from 10.0.0.107: icmp_req=25 ttl=64 time=0.109 ms
--- 10.0.0.107 ping statistics ---
25 packets transmitted, 25 received, 0% packet loss, time 23996ms
rtt min/avg/max/mdev = 0.108/0.164/0.354/0.047 ms
```

A seguir a resposta para um ping gerado para um host a dois switches de distância. Observamos um tempo médio de resposta de 0,258 ms, ligeiramente maior do que o resultado anterior.

```
ea080@le25-2:~$ ping 10.0.0.103 -c 25

PING 10.0.0.103 (10.0.0.103) 56(84) bytes of data.

64 bytes from 10.0.0.103: icmp_req=1 ttl=64 time=0.938 ms

64 bytes from 10.0.0.103: icmp_req=2 ttl=64 time=0.193 ms

64 bytes from 10.0.0.103: icmp_req=3 ttl=64 time=0.216 ms
```

```
64 bytes from 10.0.0.103: icmp_reg=4 ttl=64 time=0.188 ms
64 bytes from 10.0.0.103: icmp_req=5 ttl=64 time=0.211 ms
64 bytes from 10.0.0.103: icmp_req=6 ttl=64 time=0.195 ms
64 bytes from 10.0.0.103: icmp_req=7 ttl=64 time=0.177 ms
64 bytes from 10.0.0.103: icmp_req=8 ttl=64 time=0.166 ms
64 bytes from 10.0.0.103: icmp_reg=9 ttl=64 time=0.157 ms
64 bytes from 10.0.0.103: icmp_req=10 ttl=64 time=0.162 ms
64 bytes from 10.0.0.103: icmp_req=11 ttl=64 time=0.170 ms
64 bytes from 10.0.0.103: icmp_req=12 ttl=64 time=0.706 ms
64 bytes from 10.0.0.103: icmp_req=13 ttl=64 time=0.206 ms
64 bytes from 10.0.0.103: icmp_req=14 ttl=64 time=0.194 ms
64 bytes from 10.0.0.103: icmp_reg=15 ttl=64 time=0.156 ms
64 bytes from 10.0.0.103: icmp_req=16 ttl=64 time=0.191 ms
64 bytes from 10.0.0.103: icmp_req=17 ttl=64 time=0.194 ms
64 bytes from 10.0.0.103: icmp_req=18 ttl=64 time=0.169 ms
64 bytes from 10.0.0.103: icmp_req=19 ttl=64 time=0.178 ms
64 bytes from 10.0.0.103: icmp_req=20 ttl=64 time=0.172 ms
64 bytes from 10.0.0.103: icmp_req=21 ttl=64 time=0.749 ms
64 bytes from 10.0.0.103: icmp_req=22 ttl=64 time=0.192 ms
64 bytes from 10.0.0.103: icmp_req=23 ttl=64 time=0.200 ms
64 bytes from 10.0.0.103: icmp_req=24 ttl=64 time=0.191 ms
64 bytes from 10.0.0.103: icmp_req=25 ttl=64 time=0.190 ms
--- 10.0.0.103 ping statistics ---
25 packets transmitted, 25 received, 0% packet loss, time 23997ms
rtt min/avg/max/mdev = 0.156/0.258/0.938/0.203 ms
```

Devido à arquitetura da rede, todos os hosts estão separados de no máximo 2 switches, logo não é possível enviar um ping para um host que esteja a 3 switches de distância.

5) b) Como o tempo de propagação do sinal pelos fios é desprezível, podemos estimar o tempo de comutação de um switch como a diferença entre os tempos médios obtidos nos 2 últimos resultados. Assim, estima-se um tempo de comutação de 1 switch de 0,094 ms, equivalente a uma frequência de aproximadamente 10,6 kHz, um valor bem elevado.