Neural Network-Based Intrusion Detection System

Submitted to: Prof. David Elizondo

Babu Pallam (P2849288)

MSc. Artificial Intelligence

CSIP5103 - Neural Systems and NLP

November 1, 2024

Project Objective and Steps

- Objective: Develop and test a neural network model to detect network intrusions.
- Goal: The model should distinguish between malicious (intrusive) and normal connections.
- Key Steps:
 - Define the problem and analyze the dataset.
 - Preprocess the KDD dataset for model readiness.
 - Design a feedforward neural network architecture.
 - Train the model and evaluate its effectiveness.
 - Analyze results and assess model performance.

Dataset Overview

KDD Cup 1999 Dataset:[2][3]

- A benchmark dataset for testing intrusion detection systems.
- Provides labeled data with both normal and attack connections.

Classes:

- Total Classes: 22 attack types plus normal connections.
- Total Features: 41 network features, including:
 - Categorical Features: Protocol type, service type, etc.
 - Continuous Features: Duration, connection count, etc.

• Challenges:

- Class Imbalance: Over-representation of certain attack types compared to others and normal traffic.
- **Feature Variety:** Combination of categorical and continuous features requires careful preprocessing.

Data Preparation

Data Loading:

 Load and explore the dataset to understand its structure and content.

• Preprocessing:

- **Encoding:** Convert categorical features into numerical values for model compatibility.
- Shuffling: To introduce randomness and reduce order bias.
- Handling Missing Values: To ensure data integrity.
- Normalization: Scale for balanced and stable training.
- Binary Transformation: Multi-class labels into binary for simplified modeling.

• Data Splitting:

- Train-Test Split: Separate data into training and testing sets.
- Cross-Validation: Apply cross-validation for robust performance estimation.

Neural Network Creation

- Architecture: Feedforward Neural Network Architecture
- Hyperparameter Selection: Define optimal hyperparameters based on dataset characteristics
- Tuning Algorithm: Bayesian Optimization
- Hyperparameter Search Space:

```
% Define optimization variables for hyperparameter tuning

optim/vars = [
    optim/zablevariable('learningRate', [0.601, 0.1], 'Transform', 'log'), % Continuous range for learning rate (log scale)
    optim/zablevariable('anomentum', [0.5, 0.9]), % Continuous range for momentum
    optim/zablevariable('numeturer', [1, 3], 'Type', 'integer'), % Integer range for norms per layer
    optim/zablevariable('epochs', [10, 50], 'Type', 'integer'), % Integer range for norms per layer
    optim/zablevariable('epochs', [10, 50], 'Type', 'integer'), % Integer range for norms per layer
    optim/zablevariable('epochs', [10, 50], 'Type', 'integer'), % Integer range for the number of epochs
    optim/zablevariable('activationfunction', '['opsig', 'transig', 'purelin'), 'Type', 'categorical'), % Activation function options
    optim/zablevariable('troiningfunction', 'traing', 'traing', 'traing', 'traing', 'traing', 'traing', 'traing', 'traing', 'traing', 'trainge', 'tr
```

1. Hyperparameter Search Space

Neural Network Creation

Handling Overfitting

- 1. **Cross-Validation:** Used to fine-tune hyperparameters and enhance model robustness.
- 2. **Early Stopping:**

Loss Handling

- MSE: Used primarily for regression tasks where the output is continuous
- CrossEntropy: Commonly used for classification tasks, particularly where outputs are probabilities over classes.

Results and Insights

These are the progress of the result obtained during different state of Neural Network Model construction

2. Hyperparameter Tuning Results

4. Best Model Performance

3. Best Hyperparameter Received

5. Best Model Training State

Results and Insights

6. hyperparameter-best-observed

Accuracy: 99.88%Precision: 99.81%Recall: 99.69%

• F1 Score: 99.75%

6. hyperparameter-best-feasible

• Accuracy: 98.85%

• **Precision:** 99.49%

• **Recall:** 95.49%

• F1 Score: 97.12%

Further Experiments

- 1. Prediction with the entire dataset **kddcup.data.gz** [2] for Testing the Best Final Model (as unseen data)
 - Impressive Performance has been Noted
- 2. Binary to Multi Class with the Best Final Model
 - Performance Observed and Challenges Exist has been Verified
- 3. Bayesian Optimization without Cross Validation
 - Compared the result with Previous Optimization Result
 - Observation has been noted

Conclusion and Contributions

Summary of Findings:

- Feedforward neural network effectively detects intrusions.
- Satisfactory precision and recall for intrusion detection.
- Effective control over overfitting.
- Contributions: Showcases practical intrusion detection and insights on feedforward network limitations for imbalanced data.

• Future Work:

- Explore advanced architectures (CNNs, RNNs).
- Address class imbalance with techniques like SMOTE.
- Further hyperparameter tuning, including Batch Size, Momentum, Weight Initialization, Dropout Rate.
- Alternative tuning methods:
 - Grid Search, Random Search, Evolutionary Algorithms, Simulated Annealing, Particle Swarm Optimization.

References

- MATLAB. (2023). MATLAB and Simulink [Software].

 MathWorks, Inc. Retrieved from

 https://www.mathworks.com/products/matlab.html
- KDD Cup 1999 Dataset. (1999). The UCI KDD Archive: Full Dataset. Information and Computer Science, University of California, Irvine. Retrieved from http://kdd.ics.uci.edu/databases/kddcup99/kddcup.data.gz (File name: kddcup.data.gz)
- KDD Cup 1999 Dataset. (1999). The UCI KDD Archive: 10% Sample Dataset. Information and Computer Science, University of California, Irvine. Retrieved from http://kdd.ics.uci.edu/databases/kddcup99/kddcup.data_10_percent.gz (File name: kddcup.data_10_percent.gz)