<

第1章 习题参考答案

1

第1章习题答案

1. 选择题

$$(1)(D)$$
 $(2)(D)$ $(3)(B)$ $(4)(D)$ $(5)(D)$

2. 填空题

- (1)10 m; $5 \, \text{mm}$ (2)23 m \cdot s⁻¹
- (3) $4t^3 3t^2 \text{ rad/s}$; $12t^2 6t \text{ m/s}^2$ (4) 3; 3; 6
- $(5)2s(1+s^2)$

- 1.3.1 (3)v = -4 m/s, $a = -4 \text{ m/s}^2$; 加速
- 1.3.2 (1) 切向加速度、法向加速度及加速度均为零
 - (2) 切向加速度为零,法向加速度和加速度不为零
 - (3) 法向加速度为零,切向加速度和加速度不为零
 - (4) 切向加速度、法向加速度及加速度均不为零
- 1.3.3 (1) -0.5 m/s (2) -6 m/s (3)2.25 m
- 1.3.4 A车; 1.19 s; 0.67 s
- 1.3.5 8 m/s; 35.8 m/s²

1.3.6
$$v = \frac{A}{R}(1 - e^{-Bt})$$

- 1.3.7 $v = 2\sqrt{x^3 + x + 25} \text{ m} \cdot \text{s}^{-1}$
- 1.3.8 705 m; 190 m/s^{-1}
- 1.3.9 (1) $a_{\tau} = 36 \text{ m} \cdot \text{s}^{-2}$; $a_{\text{n}} = 1\ 296 \text{ m} \cdot \text{s}^{-2}$; (2) $\theta = 2.67 \text{ rad}$

1.3.10 (1)
$$a = \sqrt{b^2 + \frac{(v_0 - bt)^4}{R^2}}$$
,

与半径的夹角为
$$\varphi = \arctan \frac{a_{\tau}}{a_{n}} = \frac{-Rb}{(v_{0}-bt)};$$

$$(2)t = \frac{v_0}{b}$$

- 1. 3. 11 $v = 0.16 \text{ m/s}^{-1}$; $a_n = 0.064 \text{ m} \cdot \text{s}^{-2}$; $a_{\tau} = 0.08 \text{ m} \cdot \text{s}^{-2}$; $a = 0.102 \text{ m} \cdot \text{s}^{-2}$
- * 1.3.12 $v_{21} = 50 \text{ km} \cdot \text{h}^{-1}$,北偏西 $\theta = 36.87^{\circ}$ $v_{12} = 50 \text{ km} \cdot \text{h}^{-1}$,南偏东 36.87°

第2章习题参考答案

第2章习题答案

1. 选择题

$$(1)C$$
 $(2)C$ $(3)C$ $(4)A$ $(5)D$

2. 填空题

$$(1)1/\cos^2\theta$$
 (2)140 N · s; 24 m/s (3)290 J

(4)
$$\frac{v^2}{2s}$$
; $\frac{v^2}{2gs}$ (5) E_k ; $\frac{2}{3}E_k$

3. 解答题

2.3.1 (1)
$$v = v_0 e^{-kt/m}$$
; (2) $x_{\text{max}} = mv_0/K$

2.3.2
$$y = \frac{1}{2v_0^2}g\sin\alpha \cdot x^2$$

2.3.3
$$\mathbf{v} = -\frac{5}{4}\mathbf{i} - \frac{7}{8}\mathbf{j} \text{ m} \cdot \text{s}^{-1}, \quad \mathbf{r} = -\frac{13}{4}\mathbf{i} - \frac{7}{8}\mathbf{j} \text{ m}$$

2.3.4
$$a_1 = \frac{(m_1 - m_2)g + m_2a'}{m_1 + m_2},$$

$$a_2 = \frac{(m_1 - m_2)g - m_1a'}{m_1 + m_2},$$

$$f = T = \frac{m_1m_2(2g - a')}{m_1 + m_2}$$

2.3.6 (1)56 $i \text{ kg} \cdot \text{m} \cdot \text{s}^{-1}; 5.6 i \text{ m} \cdot \text{s}^{-1};$

2.3.5 mvo,方向竖直向下

 $56i \text{ kg} \cdot \text{m} \cdot \text{s}^{-1}$ (2) 10 s

$$2.3.7 - m\omega(ai + bj)$$

- **2.3.8** (1) $\frac{a}{b}$ (2) $\frac{a^2}{2b}$ (3) $\frac{a^2}{2bv_0}$
- 2.3.9 (1)26.5 N (2) $-4.7 \text{ N} \cdot \text{s}$
- 2.3.10 $s_0 \frac{M}{M+m}l$
- 2.3.11 (1) -45 J (2) 75 W (3) -45 J
- 2. 3. 12 0. 414 cm
- 2. 3. 13 $\frac{\Delta x_1}{\Delta x_2} = \frac{k_2}{k_1}$; $\frac{E_{p1}}{E_{p2}} = \frac{k_2}{k_1}$ 2. 3. 14 (1) 3. 66×10^7 m (2) -1.28×10^6 J

2. 3. 15 (1)
$$mg \sin \theta/k$$

$$(2)E_{k0} - \frac{1}{2}k[x - (1/k)mg\sin\theta]^2$$

2.3.16
$$v = \sqrt{\frac{2MgR}{m+M}}$$

- 2. 3. 17 $(x_1 m v_y y_1 m v_x) k$, $y_1 f k$ 2. 3. 18 (1) 15 j kg • m • s⁻¹ (2) 82. 5k kg • m² • s⁻¹
- **2.3.19** 5. 26×10^{12} m

2.3.20
$$w' = \sqrt{\frac{M_1 g}{m r_0}} \left(\frac{M_1 + M_2}{M_1} \right)^{\frac{1}{3}}, \quad r' = \left(\frac{M_1}{M_1 + M_2} \right)^{\frac{1}{3}} r_0$$

- 2.3.21 (1)1 m/s;4 m/s (2)0.6 cm
- 2.3.22 2.145 \times 10⁵ J

第3章习题参考答案

1

第3章习题答案

1. 选择题

2. 填空题

(1)
$$ma^2$$
; $\frac{1}{2}ma^2$; $\frac{1}{2}ma^2$ (2) < (3)4.0 rad

- (4)2 275 kg m² s⁻¹; 13 m s⁻¹
- (5) 对 O 轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对 O 轴的合外力矩为零,机械能守恒

3.3.1 0.15 rad
$$\cdot$$
 s⁻², 1.256 rad \cdot s⁻²

- 3.3.2 13 rad/s
- 3.3.3 0.095 s

3.3.4
$$\frac{J}{J+mR^2}\omega_0$$

3.3.6 (1)6.13 rad • s⁻²
(2)
$$T_1 = 17.1 \text{ N} \cdot T_2$$

(2)
$$T_1 = 17.1 \text{ N}; \quad T_2 = 20.8 \text{ N}$$

3.3.7 7.6
$$m \cdot s^{-2}$$

3.3.8 (1)
$$\frac{3g}{2l}$$
 (2) $\sqrt{\frac{3g\sin\theta}{l}}$

3.3.9
$$v = \frac{3m - M}{3m + M}v_0$$
, $\omega = \frac{6mv_0}{(3m + M)l}$

3. 3. 10 (1)
$$\frac{1}{2g}R^2\omega^2$$

(2)
$$\omega$$
; $\left(\frac{1}{2}MR^2 - mR^2\right)\omega$; $\frac{1}{2}\left(\frac{1}{2}MR^2 - mR^2\right)\omega^2$

3.3.11 (1)
$$\omega = \frac{m_0 v_2 \sin \theta}{(m+m_0)R}$$
 (2) $\frac{E_k}{E_k} = \frac{m_0 \sin^2 \theta}{m+m_0}$

1. 选择题

(1)B (2)B (3)B (4)A (5)D (6)C (7)C

$$(1) \frac{2}{2}s$$

(1)
$$\frac{2}{3}s$$

$$(1) \frac{2}{3}s$$

$$(2)b, f: a.e$$

1)
$$\frac{2}{3}s$$
2) $h f \cdot q e$

$$(1) \frac{-s}{3}$$

$$(2)b,f; \quad a,e$$

3
$$(2)b,f; \quad a,e$$
3)
$$(a)x = A\cos(2\pi t/T - \pi/2).$$

(2)
$$b, f; a, e$$

(3) (a) $x = A\cos(2\pi t/T - \pi/2);$
(b) $x = A\cos(2\pi t/T + \pi/3);$

初相位 $\varphi_0 = 2\pi/3$;

(7) 频率相同,振动方向相同,在相遇点的相位差恒定.

速度最大值 2.51 m · s⁻¹;
加速度最大值 63.2 m · s⁻²;
(2) 最大回复力 0.63 N;
$$E = 3.16 \times 10^{-2}$$
 J

$$\overline{E}_{p} = \overline{E}_{k} = 1.58 \times 10^{-2} \text{ J};$$
动能与势能相等的位置是 $x = \pm \frac{\sqrt{2}}{20} \text{ m}.$

(3)
$$\Delta \varphi = 32\pi$$

4.3.2 (1) $\varphi_1 = \pi$, $x = A\cos\left(\frac{2\pi}{T}t + \pi\right)$;
(2) $\varphi_2 = \frac{3}{2}\pi$, $x = A\cos\left(\frac{2\pi}{T}t + \frac{3}{2}\pi\right)$;

 $(3)\varphi_3 = \frac{\pi}{3}, \quad x = A\cos\left[\frac{2\pi}{T}t + \frac{\pi}{3}\right];$

 $(4)\varphi_4 = \frac{5\pi}{4}, \quad x = A\cos\left(\frac{2\pi}{T}t + \frac{5}{4}\pi\right).$

4.3.4 $T = 1.26 \text{ s}; \quad x = \sqrt{2} \times 10^{-2} \cos \left[5t + \frac{5}{4} \pi \right] \text{ m}.$

其振动方程为 $x = 0.1\cos\left[2t + \frac{\pi}{6}\right]$ m.

相所代表的运动状态在t=1.28 s

(2) 波沿 x 轴向向传播, $\varphi'_{0} = -\frac{\pi}{2}$, $\varphi'_{A} = 0$,

(2) t = 0 时的波形如图 4. 14(b) 所示,距离波源

4.3.3 (1)
$$x_{0.5} = 0.17 \text{ m}$$
;
 $F = -4.2 \times 10^{-3} \text{ N,方向沿} x$ 轴负向.
(2) $t = \frac{2}{3} \text{ s}$;

$$x_b = 0.1\cos\left(\frac{5}{6}\pi t + \frac{5\pi}{3}\right)$$
m.
4.3.6 $A_2 = 0.1$ m,两振动的相位差为 $\frac{\pi}{2}$.

4.3.7 (1)A = 10 cm; (2)A = 0.

4.3.8 $A_{\oplus} = 0.1 \text{ m}, \varphi = \frac{\pi}{6}$

 $(3)E = 7.1 \times 10^{-4} \text{ J}.$

4.3.5 $x_a = 0.1\cos\left[\pi t + \frac{3}{2}\pi\right]$ m;

4.3.9 (1) 振幅为
$$A$$
,波速 $u = \frac{B}{C}$,频率 $\frac{B}{2\pi}$,

周期 $\frac{2\pi}{R}$,波长 $\frac{2\pi}{C}$.

(3)
$$\Delta \varphi = Cd$$
.
4.3.10 (1) $v_{\text{max}} = 0.5\pi \text{ m} \cdot \text{s}^{-1}$, $a_{\text{max}} = 5\pi^2 \text{ m} \cdot \text{s}^{-2}$; (2) 是原点,在 $t_0 = 0.92 \text{ s}$ 时的相位;

 $(2)y = A\cos(Bt - Cl)$

4.3.11 (1) 波沿
$$x$$
 轴正向传播, $\varphi_0 = \frac{\pi}{2}$, $\varphi_A = 0$,

x = 0.825 m 处.

 $\varphi_B = \frac{\pi}{2}, \varphi'_C = \frac{3\pi}{2}.$

4. 3. 12 (1) $y = 0.1\cos\left[5\pi\left(t - \frac{x}{5}\right) + \frac{3\pi}{2}\right]$ m;

0.5 m 处质点振动曲线如图 4.14(c) 所示. y(m)0.1

题 4.14 图(b) 题 4.14 图(c)

4. 3. 13 (1) 波动方程为
$$y = 0.1\cos\left[\pi\left(t - \frac{x}{2}\right) + \frac{\pi}{2}\right]$$
 m; (2) P 点振动方程为

$$y = 0.1\cos\left[\left(\pi t - \frac{\pi}{2} + \frac{\pi}{2}\right)\right] = 0.1\cos\pi t \text{ m.}$$
4.3.14 (1) 波动方程为 $y = 0.1\cos\left[10\pi\left(t - \frac{x}{10}\right) + \frac{\pi}{3}\right]\text{ m,}$ (2) P 点振动方程为 $y_P = 0.1\cos\left[10\pi t - \frac{4}{3}\pi\right];$

(4) 所需的最短时间
$$\Delta t = \frac{1}{12}$$
 s.

4. 3. 15 (1) 图(a) 的波动方程为
$$y = A\cos\left[\omega\left(t + \frac{1}{u} - \frac{x}{u}\right) + \varphi_0\right],$$
图(b) 的波动方程为

 $y = A\cos\left[\omega\left(t + \frac{x}{u}\right) + \varphi_0\right];$

 $y_Q = A\cos\left[\omega\left(t - \frac{b}{u}\right) + \varphi_0\right],$

图(b) 中 Q 点的振动方程为

(2)图(a)中Q点的振动方程为

(3)P点的坐标x = 1.67 m;

$$y_Q = A\cos\left[\omega\left(t + \frac{b}{u}\right) + \varphi_0\right].$$
4.3.16 (1) 波峰位置的坐标式为 $x = (k-8.4)$ m, $(k = 0, \pm 1, \pm 2, \cdots)$; 离原点最近的波峰位置为 -0.4 m, 从此时刻算起, 该波峰是在 4 s时通过原点的.

(2) P 处合振动的振幅 $A_P = 4 \times 10^{-3}$ m.

 $(1)\Delta\varphi=0$,

4. 3. 18

第5章习题参考答案

1

第5章习题答案

1. 选择题

2. 填空题

(1) 3.
$$2 \times 10^{17} / \text{m}^3$$

(2)1.33
$$\times$$
 10⁵ Pa

$$(3)8.31 \times 10^3$$
 3.32×10^3

$$(4)(2);$$
 (1)

(5)2

5. 3. 1 (1)
$$n = 2.45 \times 10^{24} \text{ m}^{-3}$$
;
(2) $m = 5.32 \times 10^{26} \text{ kg}$;
(3) $\rho = 0.13 \text{ kg} \cdot \text{m}^{-3}$

5.3.2
$$1.91 \times 10^{-6} \text{ kg}$$

5.3.3
$$1.90 \text{ kg/m}^3$$

5.3.4 (1)
$$\overline{w} = 6.21 \times 10^{-21} \,\mathrm{J}; \quad (v^2)^{1/2} = 483 \,\mathrm{m/s};$$

(2) $T = 2\overline{w}/(3k) = 300 \,\mathrm{K}.$

5.3.5 295 m/s;
$$4.8 \times 10^{-17}$$
 Pa

5. 3. 6 (1)4.
$$14 \times 10^5$$
 J; (2)2. 76×10^5 Pa

5.3.8 (1)300 K; (2)1.24
$$\times$$
 10⁻²⁰ J; 1.04 \times 10⁻²⁰ J

5. 3. 11 6.
$$15 \times 10^2 3 \text{ mol}^{-1}$$

5. 3. 13
$$(1) f(v) = \begin{cases} av/Nv_0 & (0 \leqslant v \leqslant v_0) \\ a/N & (v_0 \leqslant v \leqslant 2v_0); \\ 0 & (v \geqslant 2v_0) \end{cases}$$

$$(2)a = \frac{2N}{3v_0}; \quad (3)N/3$$

5.3.14 3.33
$$\times$$
 10¹⁷ m⁻³; $\bar{\lambda} = 7.5$ m

5.3.15
$$2.1 \times 10^{-3} \text{ m}$$
; $8.1 \times 10^{9} \text{ s}^{-1}$

第6章习题参考答案

1

第6章习题答案

1. 选择题

(1)B; (2)D; (3)C; (4)B; (5)D; (6)A;

(7)D; (8)C; (9)A

2. 填空题

$$(1) - |W_1|; - |W_2|$$

(2)
$$\frac{3}{2}p_1V_1$$

(3)124.7 J - 84.3 J

(4)500; 700

$$(5)\left(\frac{1}{3}\right)^{\gamma-1}T_0, \quad \left(\frac{1}{3}\right)^{\gamma}p_0$$

(6) 33. 3%; 8. 31×10^3 J

3. 解答题

6.3.2 1.654 kW

6. 3. 3 (1)
$$Q = \Delta E = 623.25 \text{ J}, W = 0;$$

(2) $Q = 1.038.75 \text{ J}, \Delta E = 623.25 \text{ J}, W = 415.5 \text{ J}$

6.3.4 (1)598 J (2) $\Delta E = 1.00 \times 10^3$ J (3) $\gamma = 1.6$

6.3.5 (1)7.48 × 10³ J; (2) - 7.48 × 10³ J;
(3)1.96 × 10²⁶
$$\uparrow$$
 /m³

6.3.6
$$a^2 \frac{5}{2} \left(\frac{1}{V_1} - \frac{1}{V_2} \right)$$

6.3.7 37.5%/28.7%

6.3.8 53.8 kg

6.3.9 (1)
$$\eta = 1 - \frac{T_3}{T_2}$$
; (2) 不是卡诺循环.

6.3.10 (1)71.4 J,2 000J; (2) 对制冷是不利

6. 3. 12 6. 48 J/K

6.3.13 (1) 612 J/K (2) -570 J/K (3) 42 J/K

第7章习题参考答案

第7章习题答案

(1)D (2)D (3)C (4)D (5)C

1. 选择题

2. 填空题

(1)相同; (2) $q/(6\epsilon_0)$, 0;

(3) $\frac{q}{4\pi\varepsilon_0 r^2}$, 0; (4) $\varepsilon_0 \varepsilon_r E$; (5) σ , $\sigma/(\varepsilon_0 \varepsilon_r)$.

7.3.1 (1) $q' = -\frac{\sqrt{3}}{2}q;$

3. 解答题

(2) 与三角形边长无关.

7.3.2 $q = 2l\sin\theta \sqrt{4\pi\epsilon_0 mg} \tan\theta$.

点电荷是不对的,第二种说法把合场强 $E = \frac{4}{\epsilon s}$ 看成是一个带电板在另一带电板处的场强也是 不对的. 正确解答应为一个板的电场为 E = $\frac{q}{2\epsilon_0 S}$,另一板受它的作用力 $f = q \frac{q}{2\epsilon_0 S} = \frac{q^2}{2\epsilon_0 S}$,这 是两板间相互作用的电场力. 7.3.4 (1) $E_P = 6.74 \times 10^2 \,\mathrm{N} \cdot \mathrm{C}^{-1}$ 方向水平向土 (2) $E_Q = E_{Qy} = 14.96 \times 10^2 \,\mathrm{N} \cdot \mathrm{C}^{-1}$, π

7.3.3 两种说法均不对. 第一种说法中把两带电板视为

正向. 7.3.5 (1) $\Phi_{\rm e} = \frac{q}{6\epsilon_{\rm e}};$ (2) 不包含 q 所在的顶点,则 $\Phi_e = \frac{q}{24\epsilon_0}$,如果它包

含 q 所在顶点则 $\Phi_e = 0$.

- $10^4 \,\mathrm{N} \cdot \mathrm{C}^{-1}$,方向沿半径向外; $r = 12 \,\mathrm{cm}$ 时,E =4. 10 × 10⁴ N • C⁻¹ 沿半径向外.
- $(2)R_1 < r < R_2, E = \frac{\lambda}{2\pi\epsilon_0 r}$ 沿径向向外; $(3)_r > R_2, E = 0.$

7.3.7 (1) $r < R_1$ 时,E = 0;

 σ_1 面外, $\mathbf{E} = -\frac{1}{2\varepsilon_0}(\sigma_1 + \sigma_2)\mathbf{n};$

7.3.8 两面间, $E = \frac{1}{2\varepsilon_0}(\sigma_1 - \sigma_2)n$;

- σ_2 面外, $\mathbf{E} = \frac{1}{2\varepsilon_0}(\sigma_1 + \sigma_2)\mathbf{n};$ n:垂直于两平面由 σ_1 面指为 σ_2 面.
- 7.3.10 (1) $U_0 = 8.99 \times 10^2 \text{ V};$ (2) $W_{\infty 0} = -8.99 \times 10^{-7} \, \text{J}$,电场力做负功,说明

7.3.9 $U = \frac{q}{8\pi\epsilon_0 L} \ln \frac{2L + a}{a}$.

- 实际需要外力克服电场力做功. 7.3.11 $W_A = \frac{q_o q}{6\pi\varepsilon_o R}$.
- 7.3.13 A板的电势 $U = 8 \times 10^4 \text{ V}$.

7.3.12 $E = \frac{-\lambda}{2\pi\epsilon_0 R}$, $U_O = \frac{\lambda}{2\pi\epsilon_0} \ln 2 + \frac{\lambda}{4\epsilon_0}$.

- 7.3.14 (1) $U = \frac{q}{4\pi\epsilon_0 R}$;
- (2)U = 0.7.3.15 (1) $E_{\beta} = \frac{Qr}{4\pi\epsilon_0\epsilon_r r^3}, \quad E_{\beta} = \frac{Qr}{4\pi\epsilon_0 r^3};$
- (2) $U_{p_1} = \frac{Q}{4\pi\varepsilon_0\varepsilon_r} \left(\frac{1}{r} + \frac{\varepsilon_r 1}{R_2} \right),$
- $U_{\mathfrak{H}} = \int_{-\pi}^{\infty} \mathbf{E}_{\mathfrak{H}} \cdot \mathrm{d}\mathbf{r} = \frac{Q}{4\pi\varepsilon_{0}r};$
- (3) 金属球的电势 $U = \frac{Q}{4\pi\epsilon_0\epsilon_r} \left(\frac{1}{R_1} + \frac{\epsilon_r 1}{R_2} \right)$.
- 7.3.16 $C = 4\pi\epsilon_0 \frac{R_2R_1}{R_2 R_1}$, 能量 $W = \frac{Q_2}{8\pi\epsilon_0} \left(\frac{1}{R_1} \frac{1}{R_2}\right)$.

第8章习题参考答案

第8章习题答案

(2)C (3)B (4)B (5)C (6)A (7)B

1. 选择题

(8)C

(1) 能;不能;

2. 填空题

- (2) 相同;不相同;
- (3) 6. 67 \times 10⁻⁶ T, 7. 20 \times 10⁻²¹ A m²;
- (4) $\frac{e^2B}{4}\sqrt{\frac{r}{\pi\varepsilon_0 m_e}};$ (5) $NIa^2B\sin\theta$;
- $(6)\mu_{\rm r}\mu_{\rm 0}nI$; nI;
- $(7)R = \frac{mv\sin\theta}{aB}, \quad T = \frac{2\pi m}{aB}, \quad h = \frac{2\pi mv\cos\theta}{aB};$
- 3. 解答题

(8) 曲线Ⅱ是顺磁质,曲线Ⅲ是抗磁质,曲线Ⅰ是铁磁质.

8.3.1 一般不相等; 一般不相等;

- 8.3.2 不能; 8.3.3 (1)0.24 Wb;
- (2)0;(3)0.24 Wb 或 - 0.24 Wb;
- 8.3.4 $B_0 = \frac{\mu_0 I}{2\pi R} \left[1 \frac{\sqrt{3}}{2} + \frac{\pi}{6} \right]$, 方向垂直纸面向里;
 - $B_B = 1.33 \times 10^{-5} \text{ T, 方向垂直纸面向外;}$

8.3.6 0;

8.3.5 $B_A = 1.2 \times 10^{-4} \text{ T, 方向垂直纸面向里;}$

(2) 不为零; 8.3.8 提示:利用安培环路定理进行证明;

8.3.7 (1) 不相等;

- 8.3.9 (1) $r < a, B = \frac{\mu_0 Ir}{2\pi R^2};$
- (2) $a < r < b, B = \frac{\mu_0 I}{2\pi r};$ (3) $b < r < c, B = \frac{\mu_0 I(c^2 - r^2)}{2\pi r(c^2 - b^2)};$

r = 0.1 m;

(4)r > c, B = 0.8.3.10 $F_{ab} = BI \, ab$,方向垂直ab 向上;

8.3.11 (1) $F_{CD} = 8.0 \times 10^{-4} \text{ N, 方向垂直 } CD$ 向左;

 $F_{CF} = 9.2 \times 10^{-5} \text{ N, 方向垂直 } CF$ 向上;

合力知 M = 0;

(2) 合力 $F = 7.2 \times 10^{-4} \text{ N, 方向向左;}$

8.3.12 2.23 \times 10⁻⁵ V; 8.3.13 $M = 3.6 \times 10^{-6} \text{ N} \cdot \text{m};$

 $F_{FE} = 8.0 \times 10^{-5} \text{ N, 方向垂直 } FE$ 向右;

 $F_{ED} = 9.2 \times 10^{-5} \text{ N, 方向垂直 ED 向下;}$

8.3.14 (1) 轨道如图

- 下,由电子旋转方向确定; (1) $H = 200 \text{ A} \cdot \text{m}^{-1}$; $B_0 = 2.5 \times 10^{-4} \text{ T}$; 8.3.16
- (2) $H = 200 \text{ A} \cdot \text{m}^{-1}$; B = 1.05 T.

第9章习题参考答案

第9章习题答案

(1)B (2)D (3)C (4)A (5)D (6)A (7)B

1. 选择题

- (8)C

(1) 磁力;

2. 填空题

- (2) 洛伦磁力; 涡旋电场力; 变化的磁场;
- (3)端点; $\frac{1}{2}B\omega l^2$; 中点, 0;
- (4)33 V;
- $(6)\varepsilon_i = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} = -\int \frac{\partial \mathbf{B}}{\partial t} \cdot \mathrm{d}\mathbf{s};$

(5) 感应电流的效果,总是反抗引起感应电流的原因;

(7)
$$|\Psi_{12}| = |\Psi_{21}|;$$

3. 解答题

(8)1:16.

9.3.1 $8 \times 10^{-4} \text{ V};$

- **9.3.2** $\frac{\mu_0 I v}{2\pi} \ln \frac{a+b}{a-b}$; $U_M U_N = \frac{\mu_0 I v}{2\pi} \ln \frac{a+b}{a-b}$
- **9.3.3** (1) $\Phi_{\rm m} = \frac{\mu_0 Il}{2\pi} \left[\frac{b+a}{b} \ln \frac{d+a}{d} \right];$ $(2)\varepsilon = \frac{\mu_0 l}{2\pi} \left[\frac{d+a}{d} - \ln \frac{b+a}{b} \right] \frac{\mathrm{d}I}{\mathrm{d}t}.$
- 9.3.4 1.6×10-8 V 方向沿顺时针.
- 9.3.5 klvt, 方向沿顺时针.
- 9.3.6 9.3.7 (1) $\frac{1}{6}B\omega l^2$;

(2)b 点电势高.

- 9.3.8 $6 \times 10^{-4} \text{ V}$; 9.3.9 $\left[\frac{\sqrt{3}R^2}{4} + \frac{\pi R^2}{12}\right] \frac{dB}{dt}$; $\mathcal{M} a \to c$.
- 9.3.10 证明提示:按定义 $L = \frac{\Phi}{I}$ 讨论,设导线内部的磁

通量可以略去.

- 9.3.11 0.15H; 9.3.12 (1) $L = \frac{\mu_0 N^2 h}{2\pi} \ln \frac{b}{a};$
- (2) $W_{\rm m} = \frac{\mu_0 N^2 I^2 h}{4\pi} \ln \frac{b}{a}$.

9.3.13
$$W = \frac{\mu_0 I^2}{16\pi}$$
;

- * 9.3.14 $j = \frac{\varepsilon k}{r \ln \frac{R_2}{D}};$ * 9. 3. 15 仍适用.
- * 9.3.16 $I_D \approx 2.8 \text{ A}; \quad B_r = \frac{\mu_0 \varepsilon_0 r}{2} \frac{dE}{dt};$ $B_R = 5.6 \times 10^{-6} \text{ T}.$

第10章习题参考答案

第10章习题答案

1. 选择题

2. 填空题

(1)B (2)A (3)B (4)A (5)D (6)B (7)B

(1) 不变,变小,变小;

(4) 变密;

(2)0.45 mm;

- (3)900 nm;
- (5) 向下;

(6) 棱边,保持不变;

(8)4;

(9) 变疏,变疏;

 $(7)\lambda/\sin\theta$;

- (10) 不会,不会; (11)3.0 nm;

(15)波动,横波.

 $(14) \sqrt{3}$;

3. 解答题

 $(2)\Delta x = 3 \text{ mm}.$

- 10.3.2 $e = 6.6 \mu m$.
- (2) 厚度差为 $\Delta e = 3.4 \times 10^{-7}$ m; (3) 相邻两暗纹间距 l = 0.85 mm;

10.3.1 (1) $\lambda = 600 \text{ nm}$;

- $(4)\Delta N \approx 141$ 条. 10.3.5 $(1)n_2 > n$;
- 10.3.6 (1)1.85 \times 10⁻³ m;

10.3.7 $n \approx 1.22$.

10.3.8 628.9 nm.

- 10.3.9 5.9 $\times 10^{-2}$ mm.
- 10.3.11 428.6 nm.
- (2) 若 $\lambda_3 = 600 \text{ nm}$,则 P 点是第 3 级明纹;
- 1 = 9个半波带. 3 级明条纹. 10. 3. 13
- 不到). 10. 3. 15 (1)2. 4 cm;
- 迹内有 $k = 0, \pm 1, \pm 2, \pm 3, \pm 4 \pm 9$ 条双 缝衍射明条纹.
- 10. 3. 19 (1) 54°28';

10.3.20

10.3.21 解:题解见下图.

n = 1.60.

(8)D (9)B (10)B (11)C (12)B

- (12)线偏振光(或完全偏振光,或平面偏振光), 振动,偏振化; (13) 完全偏振光(或线偏振光),垂直;
- 99.6 nm; 当 k 为其他整数倍时,也都满足要求. 10.3.4 (1) 夹角 $\theta = 4.0 \times 10^{-4}$ (弧度);

10.3.3 e = 199.3k + 99.6(nm), 当k = 0, 膜的最薄厚度为

(3)各级条纹向棱边方向移动,原来第10条暗纹

 $(3)a+b=4a,k=4,8,12,\cdots$ 级次缺级.

当 k = 4 时,单缝处的波面可分成 2k +

(3) 因土4, ±8 缺级, 所以实际呈现的全部级数

为 $k = 0, \pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 7, \pm 9$

共 15 条明条纹($k = \pm 10$ 在 $k = \pm 90$ ° 处看

现被第21级暗纹占据.

 $(2)\lambda_2 = 409.1 \text{ nm}.$

 $(2)\Delta e = 1.5 \times 10^{-3} \text{ mm};$

- 10.3.10 (1)a+b=2a时, $k=2,4,6,\cdots$ 偶数级缺级; (2)a+b-3a 时, $k=3,6,9,\cdots$ 级次缺级:
- 10.3.12 (1) 当 k = 3, 得 $\lambda_3 = 600$ nm, 当 k = 4, 得 $\lambda_4 = 470$ nm;
 - (3) 当 k = 3 时,单缝处的波面可分成 2k + 1 =7个半波带;
- 10.3.14 (1)6.0 \times 10⁻⁶ m; $(2)1.5 \times 10^{-6} \text{ m};$

10.3.16 透过检偏器后光的强度分别是 I_0 的 $\frac{3}{8}$, $\frac{1}{4}$, $\frac{1}{8}$ 倍.

- (2) 因 $k = 5,10,15,\cdots$ 缺级. 中央明纹的边缘 对应 k'=1,所以单缝衍射的中央明纹包
- (2)35°16'. (2)35°32'.

10. 3. 17 $\frac{I}{I} = 2.25$.

10. 3. 18 (1)50°44′;

第11章习题参考答案

1

第11章习题答案

1. 选择题

2. 填空题

(1)c, c;

(2)0,
$$3 \times 10^{-7}$$
 s;

(3)
$$\frac{\sqrt{3}}{2}$$
, $\frac{\sqrt{3}}{2}$.

11. 3. 1 (1)
$$v = -1.5 \times 10^8 \text{ m} \cdot \text{s}^{-1}$$
,
(2) $x_2' - x_1' = 5.2 \times 10^4 \text{ m}$

$$(2)x_2 \quad x_1 - 5.2 \wedge 10 \text{ m}$$

11.3.3 (1)1.8
$$\times$$
 10⁸ m • s⁻¹,

$$(2) - 9 \times 10^8 \text{ m}.$$

11.3.6
$$-0.98c$$
.

* 11.3.8
$$v = \frac{\sqrt{n^2 + 2n}}{n+1}c$$
.

* 11.3.10 (1)2.57
$$\times$$
 10³ eV, (2)3.21 \times 10⁵ eV.

* 11. 3. 12
$$4.7 \times 10^{-14}$$
 J.

* 11.3.13
$$m = 2m_0$$
, $p = \sqrt{3} m_0 c$.

^{* 11. 3. 9 3. 1} Mev.

第12章习题参考答案

第12章习题答案

1. 选择题

- (1)D; (2)C; (3)D; (4)C; (5)A; (6)D;
- (7)A; (8)A; (9)B; (10)A.

2. 填空题

- $(1)2.5 4.0 \times 10^{14}$
- (2)0.586
- (3)2.55; 4.
- (4) hc/λ ; h/λ $h/(c\lambda)$.
- (5)0, $\sqrt{2}\hbar$, $\sqrt{6}\hbar$, $\stackrel{\text{def}}{=} n = 3 \text{ ff}, t = 0,1,2$.
- $(6)1.33 \times 10^{-23}$
- $(7) \frac{1}{2}; -\frac{1}{2}$
- (8)8
- (9) 泡利不相容; 能量很小

- 12.3.1 5.3 \times 10³ K; 8.3 \times 10³ K; 1.0 \times 10⁴ K;
- 12.3.2 1.42 \times 10³ K;
- 12.3.3 2.0 eV; 2.0 V; 296 nm
 - 12.3.4 1.99 \times 10⁻¹⁸ W
 - 12.3.5 1.236 \times 10²⁰ Hz; 0.002 427 1 nm; $2.73 \times 10^{-22} \text{ kg} \cdot \text{m/s};$
 - 12.3.6 0.073 1 nm; 0.075 6 nm
 - 12.3.7 4; 线赖曼系3条,巴尔末系2条,帕邢系1条, 共计6条.
 - 12.3.8 657.3 nm, 487.2 nm; $3.08 \times 10^{15} \text{ Hz}$
 - 12.3.9 9倍
 - 12.3.10 3.3 \times 10⁻²⁴ kg m/s, 3.3 \times 10⁻²⁴ kg m/s;
 - $6.2 \times 10^3 \text{ eV}, 0.51 \text{ eV}$
 - 12. 3. 11 5. 3×10^{-8} s
 - **12. 3. 12** 30 cm
 - 12.3.13 2; 2(2l+1); $2n^2$