- **23.** Defina $T: \mathbb{M}_{nn} \to \mathbb{M}_{nn}$ por $TA = A A^{\top}$. Demuestre que nu $T = \{\text{matrices simétricas de } n \times n\}$ e im $T = \{\text{matrices antisimétricas de } n \times n\}$.
- **24.** Defina $T: C^2(0, 1) \to C(0, 1); T(f) = f'' + f$. Encuentre el núcleo y la imagen de T.

- *25. En el problema 7.1.52 se le pidió que demostrara que un conjunto de transformaciones lineales de un espacio vectorial V a un espacio vectorial W, denotadas por L(V, W), es un espacio vectorial. Suponga que dim $V = n < \infty$ y dim $W = m < \infty$. Encuentre dim L(V, W).
- **26.** Sea H un subespacio de V donde dim H = k y dim V = n. Sea U el subconjunto de L(V, V) que tiene la propiedad de que si $T \in U$, entonces $T\mathbf{h} = \mathbf{0}$ para todo $\mathbf{h} \in H$.
 - a) Demuestre que U es un subespacio de L(V, V).
 - **b)** Encuentre dim *U*.
- *27. Sean S y T en L(V, V) tales que ST es la transformación cero. Demuestre o contradiga que TS es la transformación cero.

7.3 Representación matricial de una transformación lineal

Si A es una matriz de $m \times n$ y T: $\mathbb{R}^n \to \mathbb{R}^m$ está definida por $T\mathbf{x} = A\mathbf{x}$, entonces, como se observó en el ejemplo 7.1.7 de la página 467, T es una transformación lineal. Ahora se verá que para toda transformación lineal de \mathbb{R}^n en \mathbb{R}^m existe una matriz A de $m \times n$ tal que $T\mathbf{x} = A\mathbf{x}$ para todo $\mathbf{x} \in \mathbb{R}^n$. Este hecho es de gran utilidad. Como se dijo en la observación de la página 482, si $T\mathbf{x} = A\mathbf{x}$, entonces nu $T = N_A$ e im $T = R_A$ Más aún, $\nu(T) = \dim \mathrm{im} \ T = \nu(A)$ y $\rho(T) = \dim \mathrm{im} \ T = \rho(A)$. Así se puede determinar el núcleo, la imagen, la nulidad y el rango de una transformación lineal de $\mathbb{R}^n \to \mathbb{R}^m$ determinando el espacio nulo y la imagen de la matriz correspondiente. Adicionalmente, una vez que se sabe que $T\mathbf{x} = A\mathbf{x}$, se puede evaluar $T\mathbf{x}$ para cualquier \mathbf{x} en \mathbb{R}^n mediante una simple multiplicación de matrices.

Pero esto no es todo. Como se verá, cualquier transformación lineal entre espacios vectoriales de dimensión finita se puede representar mediante una matriz.

Teorema 7.3.1

Sea $T: \mathbb{R}^n \to \mathbb{R}^m$ una transformación lineal. Existe entonces una matriz única de $m \times n$, A_T tal que

$$T\mathbf{x} = A_T\mathbf{x}$$
 para toda $\mathbf{x} \in \mathbb{R}^n$ (7.3.1)

Demostración

Considere a la base canónica en \mathbb{R}^n dada por $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ sea $\mathbf{w}_1 = T\mathbf{e}_1, \mathbf{w}_2 = T\mathbf{e}_2, \dots, \mathbf{w}_n = T\mathbf{e}_n$. Sea A_T la matriz cuyas columnas son $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n$ y hagamos que A_T denote también a la transformación de $\mathbb{R}^n \to \mathbb{R}^m$, que multiplica un vector en \mathbb{R}^n por A_T Si

$$\mathbf{w}_{i} = \begin{pmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{mi} \end{pmatrix} \text{ para } i = 1, 2, \dots, n$$