2) Attempt ONE sub question from Q.1 to Q.5 as per the number shown against your roll number in the attached list.

Q.1	Attempt the following
1	Consider, $A = \begin{bmatrix} 8 & 0 & 3 \\ 2 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$. (i) Write the Characteristic Equation of A
	Consider, $A = \begin{bmatrix} 2 & 2 & 1 \end{bmatrix}$. (i) Write the Characteristic Equation of A
	(ii) Find eigen values and eigen vectors of A. (iii) State Algebraic and Geometric
	multiplicaties of each eigen value (iii) Find eigen values of $A^2 + 5A-3I$. (iv) Is A diagonalizable? (v) If yes, find the spectral and modal matrices.
2	
	Consider, $A = \begin{bmatrix} -14 & 1 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$. (i) Write the Characteristic Equation of A
	Consider, $A = \begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$. (1) Write the Characteristic Equation of A
	(ii) Find eigen values and eigen vectors of A. (iii) State Algebraic and Geometric
	multiplicaties of each eigen value (iii) Find eigen values of $A^2 + 5A-3I$.
	(iv) Is A diagonalizable? Why? (v) If yes, find the spectral and modal matrices.
3	Consider, $A = \begin{bmatrix} 3 & 1 & 0 \\ -1 & 4 & 3 \\ 1 & -2 & -1 \end{bmatrix}$. (i) Write the Characteristic Equation of A
	Consider, $A = \begin{vmatrix} -1 & 4 & 3 \end{vmatrix}$. (i) Write the Characteristic Equation of A
	$\begin{vmatrix} 1 & -2 & -1 \end{vmatrix}$
	(ii) Find eigen values and eigen vectors of A. (iii) State Algebraic and Geometric
	multiplicities of each eigen value (iii) Find eigen values of $A^2 + 5A-3I$.
	(iv) Is A diagonalizable? Why? (v) If yes, find the spectral and modal matrices.
4	
	Consider, $A = \begin{bmatrix} 4 & 2 & 3 \\ -1 & 1 & -3 \\ 2 & 4 & 9 \end{bmatrix}$. (i) Write the Characteristic Equation of A
	2 4 0
	(ii) Find eigen values and eigen vectors of A. (iii) State Algebraic and Geometric
	multiplicities of each eigen value (iii) Find eigen values of $A^2 + 5A - 3I$.
5	(iv) Is A diagonalizable? Why? (v) If yes, find the spectral and modal matrices.
	Consider, $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & -3 & 0 \\ 4 & -13 & 1 \end{bmatrix}$. (i) Write the Characteristic Equation of A
	Consider, $A = \begin{bmatrix} 1 & -3 & 0 \end{bmatrix}$. (i) Write the Characteristic Equation of A
	[4 -13 1]
	(ii) Find eigen values and eigen vectors of A. (iii) State Algebraic and Geometric
	multiplicities of each eigen value (iii) Find eigen values of $A^2 + 5A-3I$.
	(iv) Is A diagonalizable? Why? (v) If yes, find the spectral and modal matrices.
6	Consider, $A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$. (i) Write the Characteristic Equation of A
	Consider, $A = \begin{bmatrix} 2 & 0 & 2 \end{bmatrix}$. (i) Write the Characteristic Equation of A
	4 2 3
	(ii) Find eigen values and eigen vectors of A. (iii) State Algebraic and Geometric
	multiplicities of each eigen value (iii) Find eigen values of $A^2 + 5A-3I$.
	(iv) Is A diagonalizable? Why? (v) If yes, find the spectral and modal matrices.
Q.2	Attempt the following
1	If $z(x+y) = x^2 + y^2$, show that $\left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)^2 = 4\left(1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)$ If $u(x, t) = Ae^{-gx}\sin(nt - gx)$ satisfies the one dimensional heat equation
2	If $u(x, t) = Ae^{-gx} \sin(nt - gx)$ satisfies the one dimensional heat equation

Assignment _Eigen Values and Eigen Vectors, Partial Differentiation, Differential Equations Note: 1) There are total 5 questions.

2) Attempt ONE sub question from Q.1 to Q.5 as per the number shown against your roll number in the attached list.

mum	per in the attached list.
	$\frac{\partial u}{\partial t} = k^2 \frac{\partial^2 u}{\partial x^2}$ where A, g, n and k are constants, show that $n = 2k^2 g^2$.
3	If $u = x \log(x+r) - r$ where $r^2 = x^2 + y^2$, Is u satisfy Laplace equation
	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0?$
	cx cy
4	At a given instant the sides of a rectangle are 4 ft. and 3 ft. respectively and they
	are increasing at the rate of 1.5 ft/sec and 0.5 ft/sec respectively, find the rate at which area is increasing at that instant.
5	Evaluate f_x , f_y and f_z at the given point $f(x, y, z) = x^3yz^2$ at $(1,1,1)$
6	If $u = \tan^{-1}\left(\frac{y}{x}\right)$ where $x = e^t - e^{-t}$ and $y = e^t + e^{-t}$, find $\frac{du}{dt}$.
7	If $x = \sqrt{v w}$, $y = \sqrt{u w}$, $z = \sqrt{u v}$, prove that
	$x \frac{\partial \Phi}{\partial x} + y \frac{\partial \Phi}{\partial y} + z \frac{\partial \Phi}{\partial z} = u \frac{\partial \Phi}{\partial u} + v \frac{\partial \Phi}{\partial y} + w \frac{\partial \Phi}{\partial w}, \text{ where } \Phi \text{ is a function of } x, y, z.$
	$\frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} = \frac{\partial u}{\partial u} + \frac{\partial v}{\partial v} + \frac{\partial w}{\partial w}$, where Φ is a range of x, y, z .
8	Evaluate f_x , f_y and f_z at the given point $f(x, y, z) = \log\left(\frac{xy}{x^2 + y^2 + z^2}\right)$ at (1,1,1)
9	If x increases at the rate of 2 cm/sec at the instant when $x = 3$ cm and $y = 1$ cm, at
	what rate must be y changing in order that the function $2xy^2 - 3x^2y$ shall be
10	neither increasing nor decreasing.
10	If $z = f(x, y)$, where $x = e^u \cos v$, $y = e^v \sin v$, prove that
	(a) $y \frac{\partial z}{\partial u} + x \frac{\partial z}{\partial v} = e^{2u} \frac{\partial z}{\partial y}$ (b) $\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 = e^{-2u} \left[\left(\frac{\partial f}{\partial u}\right)^2 + \left(\frac{\partial f}{\partial v}\right)^2\right]$
Q.3	(a) $y \frac{\partial z}{\partial u} + x \frac{\partial z}{\partial v} = e^{2u} \frac{\partial z}{\partial y}$ (b) $\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 = e^{-2u} \left[\left(\frac{\partial f}{\partial u}\right)^2 + \left(\frac{\partial f}{\partial v}\right)^2\right]$ Attempt the following
Q.3 1	
	Attempt the following
2	Attempt the following Discuss the stationary values of $u = x^4 + y^4 - 2x^2 + 4xy - 2y^2$.
1	Attempt the following Discuss the stationary values of $u = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. Find the stationary points of the function $f(x, y) = y^2 + 4xy + 3x^2 + x^3$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3y^2(1 - x - y)$ and hence
3	Attempt the following Discuss the stationary values of $u = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. Find the stationary points of the function $f(x, y) = y^2 + 4xy + 3x^2 + x^3$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3y^2(1 - x - y)$ and hence identify these points as maxima/ minima/ saddle points.
2	Attempt the following Discuss the stationary values of $u = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. Find the stationary points of the function $f(x, y) = y^2 + 4xy + 3x^2 + x^3$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3y^2(1 - x - y)$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$
3	Attempt the following Discuss the stationary values of $u = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. Find the stationary points of the function $f(x, y) = y^2 + 4xy + 3x^2 + x^3$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3y^2(1 - x - y)$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ and hence identify these points as maxima/ minima/ saddle points.
3	Attempt the following Discuss the stationary values of $u = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. Find the stationary points of the function $f(x, y) = y^2 + 4xy + 3x^2 + x^3$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3y^2(1 - x - y)$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3 + y^3 - 3xy$ and hence
3	Attempt the following Discuss the stationary values of $u = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. Find the stationary points of the function $f(x, y) = y^2 + 4xy + 3x^2 + x^3$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3y^2(1 - x - y)$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ and hence identify these points as maxima/ minima/ saddle points.
3 4 5	Attempt the following Discuss the stationary values of $u = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. Find the stationary points of the function $f(x, y) = y^2 + 4xy + 3x^2 + x^3$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3y^2(1 - x - y)$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3 + y^3 - 3xy$ and hence identify these points as maxima/ minima/ saddle points. Solve by the method of variation of parameter
3 4 5 Q.4	Attempt the following Discuss the stationary values of $u = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. Find the stationary points of the function $f(x, y) = y^2 + 4xy + 3x^2 + x^3$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3y^2(1 - x - y)$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3 + y^3 - 3xy$ and hence identify these points as maxima/ minima/ saddle points. Solve by the method of variation of parameter
3 4 5 Q.4 1	Attempt the following Discuss the stationary values of $u = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. Find the stationary points of the function $f(x, y) = y^2 + 4xy + 3x^2 + x^3$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3y^2(1 - x - y)$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3 + y^3 - 3xy$ and hence identify these points as maxima/ minima/ saddle points.
3 4 5 Q.4 1	Attempt the following Discuss the stationary values of $u = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. Find the stationary points of the function $f(x, y) = y^2 + 4xy + 3x^2 + x^3$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3y^2(1 - x - y)$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3 + y^3 - 3xy$ and hence identify these points as maxima/ minima/ saddle points. Solve by the method of variation of parameter $(D^2 + D)y = \frac{1}{1 + e^x}$ $(D^2 - 4D + 4)y = e^{2x}\sec^2x$ $(D^2 - 1)y = (1 + e^{-x})^{-2}$
3 4 5 Q.4 1 2 3	Attempt the following Discuss the stationary values of $u = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. Find the stationary points of the function $f(x, y) = y^2 + 4xy + 3x^2 + x^3$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3y^2(1-x-y)$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3 + y^3 - 3xy$ and hence identify these points as maxima/ minima/ saddle points. Solve by the method of variation of parameter $(D^2 + D)y = \frac{1}{1 + e^x}$ $(D^2 - 4D + 4)y = e^{2x} \sec^2 x$ $(D^2 - 1)y = (1 + e^{-x})^{-2}$ $y'' - 2y' + 2y = e^x \tan x$.
3 4 5 Q.4 1 2 3 4	Attempt the following Discuss the stationary values of $u = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. Find the stationary points of the function $f(x, y) = y^2 + 4xy + 3x^2 + x^3$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3y^2(1 - x - y)$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ and hence identify these points as maxima/ minima/ saddle points. Find the stationary points of the function $f(x, y) = x^3 + y^3 - 3xy$ and hence identify these points as maxima/ minima/ saddle points. Solve by the method of variation of parameter $(D^2 + D)y = \frac{1}{1 + e^x}$ $(D^2 - 4D + 4)y = e^{2x}\sec^2x$ $(D^2 - 1)y = (1 + e^{-x})^{-2}$

Assignment _Eigen Values and Eigen Vectors, Partial Differentiation, Differential Equations Note: 1) There are total 5 questions.

2) Attempt ONE sub question from Q.1 to Q.5 as per the number shown against your roll number in the attached list.

num	number in the attached list.		
6	$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = \frac{e^x}{1 + e^x}$		
7	$\frac{d^2y}{dx^2} + a^2y = \sec ax$		
8	$(D^2 - 4D + 4)y = e^{2x} \csc^2 x$		
9	$\frac{d^2y}{dx^2} + y = \tan x$		
10	$\frac{d^2y}{dx^2} + 16y = \cot 4x$		
Q.5	Solve by method of undetermined coefficients		
1	$(D^2 - 2D)y = e^x + 5e^{-2x}.$		
2	$(D^2 + 10D + 25)y = 100\left(\frac{e^{5x} - e^{-5x}}{2}\right)$		
3	$(D^2 + D - 6)y = 6x^3 - 3x^2 + 12x$		
4	$\frac{d^2y}{dx^2} + 7\frac{dy}{dx} + 13y = 5e^{-3x} + 7e^x$		
5	$(D^2 + 4D + 5)y = 25x^2$		
6	$\frac{d^2y}{dx^2} + y = 4\sin x$		
7	$(D^2 - 2D + 3)y = \cos x.$		
8	$\frac{d^2y}{dx^2} + y = 2\cos x$		
9			
	$(D^2 - 2D + 3)y = 2x^3 + 5.$		