

Model Development Phase Template

Date	15 March 2024	
Team ID	740089	
Project Title	Acoustic Fire Extinguishing Prediction	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code

```
[ ] def model_evaluation(classifier):
    cm = confusion_matrix(y_test, classifier.predict(x_test))
    counts = [value for value in cm.flatten()]
    labels = [f'{v1}' for v1 in counts]
    labels = np.asarray(labels).reshape(2,2)
    sns.heatmap(cm, annot = labels, cmap = 'Greens', fmt = '')
    y_pred = classifier.predict(x_test)
    yt_pred = classifier.predict(x_train)
    print('The Training Accuracy of the algorithm is', accuracy_score(y_train, yt_pred))
    print('The Testing Accuracy of the algorithm is', accuracy_score(y_test, y_pred))
    return [(accuracy_score(y_train * 100, yt_pred * 100) * 100), (accuracy_score(y_test * 100, y_pred * 100) * 100), precision_score(y_test, y_pred,average='macro')]
```


Training the model in multiple Algorithms (K Nearest Neighbors Model)

[] knn = KNeighborsClassifier()
knn.fit(x_train,y_train)

* KNeighborsClassifier
KNeighborsClassifier()

```
(Naive Bayes)

[ ] gnb = GaussianNB()
    gnb.fit(x_train, y_train)

The GaussianNB
    GaussianNB()
```


₹

₹


```
lr.fit(x train, y train)
                 ₹
                       ▼ LogisticRegression
                      LogisticRegression()
Decision Tree Model
    dt = DecisionTreeClassifier(max_depth= 11)
    dt.fit(x_train, y_train)
            DecisionTreeClassifier
     DecisionTreeClassifier(max depth=11)
(Random Forest Model)
     rf = RandomForestClassifier(max_depth=11)
     rf.fit(x_train, y_train)
             RandomForestClassifier
     RandomForestClassifier(max_depth=11)
```

lr = LogisticRegression()

(Logistic Regression)


```
(Gradient Boosting Model)

[ ] gb = GradientBoostingClassifier()
    gb.fit(x_train,y_train)

→ GradientBoostingClassifier
    GradientBoostingClassifier()
```

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix
KNN	(K Nearest Neighbors Model) ■ ken_r - model_evaluation(ken) = the Training Accuracy of the algorithm is 0.048521472888551 The Texting Accuracy of the algorithm is 0.0487477977331614	94&91	-
SVM	(SVM Model) Svm r = model_evaluation(Svm) The Training_accuracy of the algorithm is 0.8899161678651673 the testing Accuracy of the algorithm is 0.8899161678651673	88&89	-
Naïve bayes	(Main'e Boyes) • gsb_r - mokel_evaluation(gsb) • gsb_r - mokel_evaluation(gsb) • Tartining Accuracy of the algorithm is 0.868220858886312 The Testing Accuracy of the algorithm is 0.868220858886312	86&87	-
Logistic regression	(Logistic regression) Of tr r = model evalual ion(tr) The Training Accuracy of the algorithm is 0.875725559307764 the testing Accuracy of the algorithm is 0.87781336768871	87&87	-
Decision Tree	(Decision Tree Model) dt_r - model_evaluation(dt) from the training Accuracy of the algorithm is 0.0000000000000000000000000000000000	98&94	-
Random Forest Model	Random Forest Model orf_r - model_cvaluation(rf) ff_r - model_cvaluation(rf) the Training Accuracy of the algorithm is 0.980578647285822 The Testing Accuracy of the algorithm is 0.9852888481313327	98&95	-
Gradient boosting model	Gradient Boosting Model property of the algorithm is 0.9532726978427578 The Training Accuracy of the algorithm is 0.9532726978427578 the testing Accuracy of the algorithm is 0.951274694811808699	95&94	-