Определение систематических и случайных погрешностей при измерении удельного сопротивления нихромовой проволоки

Балдин Виктор

8 сентября 2023 г.

1 Аннотация

Цель работы: измерить удельное сопротивление проволоки и вычислить систематические и случайные погрешности при использовании таких измерительных приборов, как линейка, штангенциркуль, микрометр, амперметр, вольтметр и мост постоянного тока.

В работе используются: линейка, штангенциркуль, микрометр, отрезок проволоки из нихрома, ампеметр , вольметр, источник ЭДС, мост постоянного тока, реостат, ключ.

2 Теоретические сведения

Считая проволоку имеющей всюду одинаковую толщину, ее сопротивление можно найти по формуле:

$$R_{\rm np} = \rho \frac{4l}{\pi d^2},\tag{1}$$

где ρ — удельное сопротивление нихрома.

3 Методика измерений

Метод 1. Сопротивление проволоки можно найти с помощью одной из схем:

Сопротивление проволоки в обоих случаях находим как

$$R_{\rm np} = \frac{U_V}{I_A} \tag{2}$$

С учетом поправок, которые вносятся засчет неидеальности амперметра и вольтметра, реальное значение сопротивления для схемы 1:

$$R_{\text{np}} = R_{\text{np1}} \left(1 + \frac{R_{\text{np1}}}{R_V} \right) \tag{3}$$

Для схемы 2:

$$R_{\text{np}} = R_{\text{np2}} \left(1 - \frac{R_A}{R_{\text{np2}}} \right) \tag{4}$$

Видно, что в формуле (4) $R_A \sim R_{\rm np2}$, т. к. проволока тонкая и ее сопротивление невелико, значит, в измерении может присутствовать очень существенная поправка. Поэтому проведем измерения на схеме 1.

Метод 2. Поскольку и схема 1 имеет некоторую поправку, целесообразно потом сравнить результат с наиболее точным способом: мостом P4833.

4 Оборудование

Таблица 1: Технические характеристики используемых приборов

1	1 1	1 1
	Вольтметр	Миллиамперметр
Система	Магнитоэлетрическая	Цифровая
Класс точности	0,5	0,5
Предел измерений	0,3 B	0,15 A
Цена делений	5 мВ/дел	-
Абсолюная погрешность	5 мВ	0,4 мА
Внутреннее сопротивление	250 Ом	1 Ом

Мост постоянного тока Р4833:

Класс точности: 0,1

Разрадность магазина сопротивлений: 5

Используемый диапазон: $10^{-4} - 10$ Ом (множитель $N = 10^{-2}$)

Погрешность: $\pm 0,01$ Ом.

5 Результаты измерений и обработка данных

1. Проведем измерения диаметра проволоки в разных местах при помощи штангенциркуля и микрометра.

Таблица 2: Измерение штангенциркулем

Nº	1	2	3	4	5	6	7	8	9	10
$d, 10^{-1}, \text{ MM}$	3,5	4,0	4,0	4,0	4,0	4,0	3,5	4,0	3,5	4,0

Случайная погрешность $\sigma_d=0.3\cdot 10^{-1}$ мм. С учетом приборной погрешности штангенциркуля и случайной среднее значение $d=(3.9\pm0.8)\cdot 10^{-1}$ мм.

Таблица 3: Измерение микрометром

Nº	1	2	3	4	5	6	7	8	9	10
$d, 10^{-2} \text{ MM}$	35,5	35,5	35,5	35,0	35,0	35,0	35,0	35,5	35,0	35,5

С учетом случайной $\sigma_d=0,3\cdot 10^{-2}$ мм и приборной $\delta_d=0,5\cdot 10^{-2}$ мм погрешности $d=(35,3\pm 0,8)\cdot 10^{-2}$ мм. Будем использовать это значение, т. к. оно более точное.

2. Перейдем к измерению сопротивления. На схеме 1 будем регулировать сопротивление реостата, чтобы изменять силу тока и напряжение на проволоке. Снимем зависимость:

Таблица 4: ВАХ проволоки

l=2	0 см	l=3	0 см	l = 50 cm		
U, MB	<i>I</i> , мА	U, MB	<i>I</i> , мА	U, MB	<i>I</i> , мА	
740	350,0	720	235,4	720	143,0	
650	309,3	670	219,8	610	120,8	
545	259,6	540	175,9	512	102,4	
455	217,1	475	154,4	390	77,9	
375	179,9	365	119,7	290	57,9	
330	157,4	250	82,6	130	26,0	
265	126,1	165	52,4	45	9,9	
190	89,8	60	27,3			
130	60,8					
100	48,4					
40	10,1					

Для каждой длины построим графики I(U) (см. приложение).

3. При помощи метода наименьших квадратов найдем $R_{\rm cp}$:

$$R_{\rm cp} = \frac{\sum_{i=1}^{n} U_i I_i}{\sum_{i=1}^{n} I_i^2}$$

Случайную погрешность $R_{\rm cp}$ при этом можно определить как

$$\sigma_R^{\text{\tiny c,f}} = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle U^2 \rangle}{\langle I^2 \rangle} - R_{\text{\tiny cp}}^2}$$

Систематическую погрешность считаем по формуле:

$$\sigma_R^{ ext{\tiny chct}} = R_{ ext{\tiny cp}} \sqrt{\left(rac{\sigma_U}{U}
ight)^2 + \left(rac{\sigma_I}{I}
ight)^2},$$

где U = 740 мВ, I = 250 мА.

4. Проведем измерения сопротивлений на мосте постоянного тока P4833 результат занесем в таблицу 5, в силу малости его погрешности считаем, что по формуле (1)

$$\frac{\sigma_{\rho}}{\rho} \approx 2 \frac{2\sigma_d}{d}$$

5. Занесем в таблицу посчитанные таким образом значения, а также рассчитаем $R_{\rm np}$ по формуле (3), взяв внутреннее сопротивление вольметра равным $R_V=250~{\rm Om}$:

Таблица 5: Сопротивления

l, cm	$R_{\rm cp}$, Om	$\sigma_R^{\text{\tiny c.n}}$, Om	$\sigma_R^{\text{сист}}$, Om	R_{np} , Om	σ_R , Om	$R_{\text{\tiny MOCT}}$, Om
20	2,08	0,04	0,01	2,10	0,05	2,148
30	3,13	0,06	0,02	3,17	0,08	3,129
50	5,00	0,15	0,03	5,10	0,18	5,158

Поправка $R_{\mbox{\tiny cp}}/R_V\ll 1$, поэтому ее погрешность можно не учитывать.

6. Согласно формуле (1) зависимость $R_{\rm np}(l)$ должна быть линейной, поэтому применим МНК для анализа данных, представленных в таблице 5. Погрешность найдем как

$$\frac{\sigma_{\rho}}{\rho} = \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{2\sigma_d}{d}\right)^2}$$

7. Результаты вычисления удельного сопротивления и его погрешности для использованных методов в таблице:

Таблица 6: Результаты

	Схема	Мост		
$\rho, 10^{-6} \text{ Om} \cdot \text{M}$	$0,95 \pm 0,06$	$0,95 \pm 0,03$		

6 Анализ результатов и вывод

По итогам работы было получено значение удельного сопротивления нихрома, близкое к табличному, которое лежит в диапазоне $1,05\dots 1,40\cdot 10^{-6}$ Ом·м (источник: https://ru.wikipedia.org/wiki/%D0%9D%D0%B8%D1%85%D1%80%D0%BE%D0%BC#:~:text=%D0%A3%D0%B4%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5%20%D1%81%D0%BE%D0%BF%D1%80%D0%BE%D1%82%D0%B8%D0%B2%D0%B5%D0%B5%D0%B0%D0%B8%D0%B5%201%2C13%20%D0%9E%D0%BC,%D1%82%D0%B5%D0%B5%D0%B5%D0%B5%D1%80%D0%B0%D1%82%D1%83%D1%80%D0%B0%20%D0%BF%D0%BB%D0%B0%D0%B8%D0%B5%D0%BB%D0%B8%D0%B8%D1%8F%201400%20%C2%B0C.).

Измерение на P4833 позволило сократить погрешность примерно в 2 раза, из чего можно заключить, что мостиковые схемы лучше всего подходят для точного измерения сопротивлений.

Поскольку оба метода дали значение ниже типичного для нихрома, также можно предположить, что перед нами был сплав с некоторыми примесями. Другая возможная причина состоит в том, что нам не удалось подтвердить однородность проволоки по диаметру в достаточной степени $(\sigma_d^2 \sim \delta_d^2)$.