

Econometric Analysis Lab-1(HS49002) Group Project

Factors Affecting Corruption in Developing and Emerging Countries

Aayush Joshi, 18HS200**01**Dipanshu, 18HS200**14**Hritik Mehta, 18HS200**18**Saket Mahajan, 18HS200**28**

1. ABSTRACT

A multiple regression model with social and economic parameters/ indices of a country can tell significantly about its corruption. We attempt to do so by taking in consideration 123 countries (developed, developing and underdeveloped) and creating cross-sectional datasets of the same and performing econometrics tests.

2. INTRODUCTION

Our research aims to construct a model able to **explain the level of corruption**, dependent variable, in developing and emerging countries given a set of economic parameters as the independent variables. Economic and social indices of a country are becoming increasingly important in explaining a developing and emerging country's level of corruption.

At first, a simple-regression model is developed in order to show the effect of GDP per capita on the level of corruption. To get a better picture, we further build a multiple-regression analysis model where GDP per capita, HDI, and SPI are used as independent variables in order to predict the level of corruption.

GDP per capita and corruption have always been thought to be correlated to each other, it's masked sometimes to prevent social unrest or decreased foreign direct investment. We all know that corruption

prevents an efficient allocation of resources, slowing down the growth of countries. So, we further choose to add essential growth variables such as human development index (HDI), and the social progress index (SPI). Typically, the more of each of the components within the three measures, the greater quality of life resulting in a greater awareness of the government's practices by the public.

In the past it's seen how corruption affects a nation's economy, our study decides to analyze the opposite relation; could corruption be explained by a nation's economy? We try to answer this question empirically.

3. DATA

The purpose of this paper is trying to explain corruption in countries by a set of economic parameters and measures of development; therefore the **measure of corruption** will be the dependent variable and following economic/ social indices are independent variables.

Data Sources (Hyperlinks)

- · World CPI: Control of Corruption from Worldwide Governance Indicators (WGI)
- GDP per Capita 2019 (by -World Bank): The World Bank was used as a source to determine each country's GDP per capita
- · <u>SPI</u>: Gathered from The Social Progress Imperative Organization webpage.
- · <u>Unemployment</u>: Gathered from Trading Economics
- · Gini index : Gathered from the CIA World Factbook
- · Government Type: Wikipedia
- · Personal Income Tax Rate: Gathered from Trading Economics
- <u>HDI</u>: We used the Developing Programme of the United Nations' annual HDI (Human Development Index) data

3.1 Variable description

Variable	Description	Expected Relation
Control of Corruption (cpi)	The index ranges from - 2.5(weak, very corrupt) to 2.5 (strong, transparent government).	Target Variable
GDP per Capita (ppp)	Gross Domestic Product per capita, measured in US dollars, recorded by the World Bank.	Positive
Human development Index (hdi, hdigrwoth)	Measured by life expectancy at birth, education index, and GNI per capita.	Positive
SPI (spi)	Composed of 3 dimensions: Basic Human Needs, Foundations of Wellbeing, and Opportunity	Positive
Unemployment (unemployment)	Levels of unemployment	Negative
Gini index (gini)	The Gini index (ranging from 0, being income distributed with perfect equality, to 100, being income distributed with perfect inequality) measures the degree of inequality in the distribution of family income in a country.	Negative
Government Type (head of state, constitutional form)	Three dummy variables were created for the four most common government types for these countries. The base model is the one where the country has an Absolute Monarchy (It's 1, rest are 0).	NA
Personal Income Tax Rate (tax)	This variable represents the percent of income taxed.	Negative

3.2 Data Description

. summarize cpi spi ppp unempolyment gini hdi hdigrowth tax, separator(10)

Variable	Obs	Mean	Std. Dev.	Min	Max
cpi	123	.0236585	1.016172	-1.42	2.17
spi	123	70.88577	14.89185	31.29	92.73
ppp	123	24675.9	23661.71	988	121293
unempolyment	123	9.153496	7.20796	.1	33.89
gini	123	37.66098	7.737482	24.2	63
hdi	123	.7480976	.1499248	.397	. 957
hdigrowth	123	.0066195	.0038023	.0003	.019
tax	123	30.03756	13.16779	0	57.2

.

. tabulate headofstate , generate(headofstate)

Head of state	Freq.	Percent	Cum.
Ceremonial Executive	50 73	40.65 59.35	40.65 100.00
Total	123	100.00	

. tabulate constitutionalform , generate(constitutionalform)

Constitutional form	Freq.	Percent	Cum.
Absolute monarchy	2	1.63	1.63
Constitutional monarchy	21	17.07	18.70
Provisional	1	0.81	19.51
Republic	99	80.49	100.00
Total	123	100.00	

4. METHODOLOGY

We have constructed **a model to explain the level of corruption**, dependent variable, in developing and emerging countries **given a set of economic parameters as the independent variables**: country's gross domestic product (GDP) per capita, human development index (HDI), the social progress index (SPI), the type of government in the country, included as a dummy variable, the level of unemployment in the country, the income tax rate collected in the country, and the Gini index which measures the degree of inequality in the distribution of family income in a country

After checking the descriptive statistics of all the variables and standardizing them; we have **built a multiple-regression analysis model using OLS** to analyse the level of corruption with mentioned independent variables. Then we checked the significance of the model and all the variables. From there **we picked up significant variables** and we checked for **severity of multicollinearity** and **heteroscedasticity**. Later robustness tests (**restricted –F tests**) are conducted on the obtained models to check whether the independent variables are jointly significant.

4.1 Initial Model

Source

In our initial model, without manipulating the data, both variables and data were used as it is.

Model 1.1:
$$cpi = \beta_0 + \beta_1(spi) + \beta_2(ppp) + \beta_3(hdi) + \beta_4(unempolyment) + \beta_5(gini) + \beta_6(hdigrowth) + \beta_7(tax) + \beta_8(constitutional form 2) + \beta_9(constitutional form 3) + \beta_{10}(constitutional form 4) + \beta_{11}(head of state 2)$$

Our first dummy variable set, head of state has two values where ceremonial is headofstate1 and executive is headofstate 2. And the second dummy variable set, which has four values Absolute monarchy, Constitutional monarchy, provisional, republic which are constitutional form1, 2, 3 and 4 respectively.

Number of obs =

123

note: headofstatel omitted because of collinearity

SS

					F(11,	111) = 52	.11
Model	105.	53932 11	9.5944836		Prob >		000
Residual	20.43	85327 111	.184130925		R-squar	ed = 0.8	378
2					Adj R-s	quared = 0.8	217
Total	125.9	77852 122	1.03260535		Root MS	E = .4	291
Œ	cpi	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	spi	.0582794	.0110344	5.28	0.000	.036414	.0801448
	ppp	.0000241	3.10e-06	7.75	0.000	.0000179	.0000302
unempoly	ment	.0070352	.0061262	1.15	0.253	0051043	.0191747
	gini	.0011342	.0062125	0.18	0.855	0111762	.0134447
	hdi	-3.414467	1.123858	-3.04	0.003	-5.641467	-1.187466
hdigr	owth	20.98907	15.64057	1.34	0.182	-10.00376	51.98191
	tax	.0092395	.0036173	2.55	0.012	.0020716	.0164074
headofst	ate2	0283816	.0999802	-0.28	0.777	2264991	.169736
headofst	atel	0	(omitted)				
constitutionalf	orm2	0393889	.3868375	-0.10	0.919	8059333	.7271555
constitutionalf	orm3	682962	.5796401	-1.18	0.241	-1.831558	.4656336
constitutionalf	orm4	3766897	.3729671	-1.01	0.315	-1.115749	.3623695
-	cons	-2.338131	.601402	-3.89	0.000	-3.529849	-1.146413

At first, we get a significant model with decent R value, the coefficients of variables spi, ppp, hdi, tax turn out to be significant at 5% level. But, all the dummy variables and unemployment, gini, hdigrowth are statistically insignificant.

Model 1.2: $cpi = \beta_0 + \beta_{01}(spi) + \beta_{02}(ppp) + \beta_{03}(hdi) + \beta_{04}(unempolyment) + \beta_{05}(gini) + \beta_{06}(hdigrowth) + \beta_{07}(tax)$

. regress cpi	spi ppp unemp	olymen	t gi	ni hdi ho	digrowth	tax		
Source	SS	df		MS		Number of obs		123
Model	103.54472	7	1.4	7921029		F(7, 115) Prob > F	=	75.83
		-						
Residual	22.4331323	115	.19	5070715		R-squared	=	0.8219
						Adj R-squared	=	0.8111
Total	125.977852	122	1.0	3260535		Root MSE	=	.44167
cpi	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
spi	.0547275	.0108	923	5.02	0.000	.0331519		0763031
ppp	.0000264	2.94e	-06	8.98	0.000	.0000206		0000323
unempolyment	.0069426	.0062	485	1.11	0.269	0054345		0193198
gini	.0009568	.0059	331	0.16	0.872	0107956		0127092
hdi	-3.156112	1.128	131	-2.80	0.006	-5.390723		9215011
hdigrowth	18.62057	15.93	686	1.17	0.245	-12.94729	5	0.18842
tax	.0109551	.0034	893	3.14	0.002	.0040434		0178668
_cons	-2.698799	.5038	204	-5.36	0.000	-3.696771	-1	.700828

After removing all the dummy variables, we again regress the model and find it to be **significant** and a bit of reduced but decent value of R-square value. The reduction in R-Square may be because of dummy variables multicollinearity.

We now check for the problem of multicollinearity and heteroscedasticity in the above model.

. vif

Variable	VIF	1/VIF	. estat hettest
hdi spi ppp hdigrowth	17.89 16.46 3.03 2.30	0.055894 0.060771 0.329497 0.435450	Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of cpi
tax gini unempolyment	1.32 1.32 1.27	0.757399 0.758692 0.788227	chi2(1) = 5.40 Prob > chi2 = 0.0202
Mean VIF	6.23		

The model is exposed to multicollinearity and heteroscedasticity.

Before removing other insignificant independent variables we wanted to see their relationship with the other independent variables and the dependent variables. Hence we have obtained the following correlation matrix and scatter plots.

	cpi	spi	ppp	unempo~t	hdi	hdigro~h	gini
cpi	1.0000						
spi	0.8122*	1.0000					
ppp	0.8282*	0.7498*	1.0000				
unempolyment	-0.0833	-0.0919	-0.2389*	1.0000			
hdi	0.7778*	0.9591*	0.8039*	-0.1536	1.0000		
hdigrowth	-0.5348*	-0.7205*	-0.5716*	0.2430*	-0.7179*	1.0000	
gini	-0.2901*	-0.3873*	-0.3245*	0.3245*	-0.3998*	0.3762*	1.0000
tax	0.4680*	0.3724*	0.2794*	-0.0186	0.2818*	-0.1683	-0.1082

*significance at 5%

Model 1.3: $cpi = \beta_0 + \beta_{01}(spi) + \beta_{02}(ppp) + \beta_{03}(hdi) + \beta_{04}(tax)$

. regress cpi spi ppp hdi tax

Source	SS	df		MS		Number of obs		123
Model Residual	102.8075 23.1703521	4 118		7018751 5358916		F(4, 118) Prob > F R-squared	=	130.89 0.0000 0.8161
Total	125.977852	122	1.03	3260535		Adj R-squared Root MSE	=	0.8098
cpi	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
spi ppp hdi tax _cons	.0543684 .0000257 -3.454254 .0113752 -2.222953	.010 2.91e 1.119 .0034	-06 393 672	5.21 8.85 -3.09 3.28 -7.50	0.000 0.000 0.003 0.001 0.000	.0337182 .00002 -5.670956 .0045093 -2.809998	-1	0750186 0000315 .237551 0182411 .635908

Model is significant with a good R-square value. "Spi", "ppp", "hdi", "tax" and intercept have significant coefficients with "hdi" having negative relationship with "cpi" and intercept is also negative.

Variable	VIF	1/VIF	. estat hettest
hdi	17.50	0.057145	Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
spi	14.98	0.066741	Ho: Constant variance
ppp	2.94	0.340064	Variables: fitted values of cpi
tax	1.30	0.772182	
			chi2(1) = 4.05
Mean VIF	9.18		Prob > chi2 = 0.0441

Multicollinearity is present and Heteroscedasticity is also present at 5% **significance** level.

4.2 Corrective Measures

The last model i.e. <u>model 1.3 has multicollinearity and heteroscedasticity issues</u>. Possibility is there that "spi" and "hdi" variables are collinear because both measure development opportunities in a country, this can be also observed from the Mean VIF table. We have assumed our model to have statistically significant multicollinearity if our VIF exceeds above '5' or our Tolerance comes out to be less than '0.2'.

As corrective measures we start with **standardizing** all the independent variables i.e. dividing them by their standard deviation. **cpi_2**, **spi_2**, **hdi_2**, **tax_4** are standardized.

regress	cpi	2	spi	4	ppp	4	hdi	4	tax 4
_							_		_

_		_	_				
Source	SS	df	MS		Number of obs		123
Model Residual	102.807501 23.1703508		5.7018754 196358905		F(4, 118) Prob > F R-squared	=	0.0000 0.8161
Total	125.977852	122 1	.03260535		Adj R-squared Root MSE	=	0.8098
	<u> </u>						
cpi_2	Coef.	Std. Er	r. t	P> t	[95% Conf.	Int	erval]
spi_4	.8096461	.155291	5 5.21	0.000	.5021266	1.	117166
ppp_4	.6089966	.068796	3 8.8	0.000	.4727612	.7	452319
hdi_4	5178784	.167824	7 -3.09	0.003	850217	1	855397
tax_4	.1497866	.045654	7 3.28	0.001	.0593778	. 2	401953
_cons	-2.222953	.296446	7 -7.50	0.000	-2.809998	-1.	635908

. vif

ole	VIF	1/VIF
i_4 i_4 o_4 x_4	17.50 14.98 2.94 1.30	0.057145 0.066741 0.340064 0.772182
VIF	9.18	

Again "Spi", "ppp", "hdi", "tax" and intercept have significant coefficients with "hdi" having negative relationship with "cpi" and intercept in this model is also negative. Goodness is the same after standardization. Here we could resolve heteroscedasticity but multicollinearity couldn't be resolved.

After trying different functional forms we came to the conclusion that the multicollinearity is due to "spi" and "hdi". But removing "hdi" or "spi" makes the R-square value to drop so we move to do **restricted F-Test** for "hdi" and "spi".

The F statistic is highly significant, which means we reject the hypothesis that the two effects are equal. For now we move forward without dropping any of the variables.

Now we move forward to log transformation

Inppp = Ln(ppp),

lnspi = Ln(spi),

lnhdi = Ln(hdi),

lntax = Ln(tax)

Model 1.4: $cpi = \beta_0 + \beta_1(\ln of spi) + \beta_2(\ln of ppp) + \beta_3(\ln of hdi) + \beta_4(\ln of tax)$

. . regress cpi_3 lnspi_3 lnppp_3 lnhdi_3 lntax_3

Source	SS	df	MS		Number of obs	
Model Residual	91.6850145 30.7906277		9212536 0093225		F(4, 114) Prob > F R-squared	= 0.0000 = 0.7486
Total	122.475642	118 1.0	3792917		Adj R-squared Root MSE	= .5197
cpi_3	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnspi_3 lnppp_3	4.538417 .8405465	.7800237 .1701302	5.82 4.94	0.000	2.993196 .50352	6.083638 1.177573
lnhdi_3 lntax_3	-5.506323 .5182982	1.254633	-4.39 4.79	0.000	-7.991741 .3041571	-3.020906 .7324394

-7.31

4.204241

0.000

. vif

Variable	VIF	1/VIF
lnhdi_3	31.28	0.031966
lnppp_3	15.57	0.064217
lnspi_3	13.22	0.075657
lntax_3	1.12	0.892354
Mean VIF	15.30	

_cons

. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance

-30.72871

Variables: fitted values of cpi 3

chi2(1) = 1.38

Prob > chi2 = 0.2408

In log transformation we drop those countries which had tax of 0%

-39.05728 -22.40014

By log transformation we could tackle heteroscedasticity but the severity of multicollinearity has increased.

We finally decided to drop the "hdi" variable and perform our modelling and testing.

* Farrar-Glauber Multicollinearity Tests

Ho: No Multicollinearity - Ha: Multicollinearity

* (1) Farrar-Glauber Multicollinearity Chi2-Test:
Chi2 Test = 220.1657 P-Value > Chi2(3) 0.0000

* (2) Farrar-Glauber Multicollinearity F-Test:

Variable	F_Test	DF1	DF2	P_Value
lnspi_3	306.256	116.000	2.000	0.003
lnppp_3	309.075	116.000	2.000	0.003
lntax 3	3.460	116.000	2.000	0.250

* (3) Farrar-Glauber Multicollinearity t-Test:

Variable	lnsp~3	lnpp~3	lnta~3
lnspi_3			
lnppp_3	24.748		
lntax 3	2.442	2.628	

Just for more strength of the analysis, we also conducted **Farror Glauber test of multicollinearity** in which we conducted chi square test, F- test and t-tests and found that there is severe multicollinearity by the chi square test, then conducted F-test for the location of multicollinearity, then t-test for the pattern of multicollinearity.

4.3 Final Model

Model 2: $cpi = \beta_0 + \beta_1(lnspi) + \beta_2(ppp) + \beta_3(tax)$

. regress cpi_2 ppp_4 lnspi tax_4

Source	SS	df		MS		Number of obs		123
Model Residual	99.7000694 26.2777829	3 119		2333565 0821705		F(3, 119) Prob > F R-squared	=	150.50 0.0000 0.7914
Total	125.977852	122	1.03	3260535		Adj R-squared Root MSE	=	0.7862 .46992
cpi_2	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
ppp_4 lnspi tax_4 _cons	.5628419 1.341857 .2159999 -6.740734	.0601 .2654 .0451 1.067	914 .832	9.35 5.05 4.78 -6.31	0.000 0.000 0.000 0.000	.4436508 .8161578 .1265327 -8.854483		.682033 .867557 3054671 .626986

As per the **Mean VIF** and **Breusch-Pagan test**, our current model is free of multicollinearity and heteroscedasticity

	Variable	VIF	1/VIF
	lnspi ppp_4 tax_4	2.07 2.00 1.13	0.482723 0.499538 0.886601
Π	Mean VIF	1.73	

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: fitted values of cpi_2

chi2(1) = 0.72Prob > chi2 = 0.3974 For confirming that heteroscedasticity is not present in the model, we also verify it with **White's test**. Our model also passed it stating homoscedasticity presence.

. . estat imtest, white

White's test for Ho: homoskedasticity
against Ha: unrestricted heteroskedasticity

chi2(9) = 6.71
Prob > chi2 = 0.6671

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	р
Heteroskedasticity Skewness Kurtosis	6.71 7.98 0.00	9 3 1	0.6671 0.0463 0.9973
Total	14.70	13	0.3267

* Farrar-Glauber Multicollinearity Tests

Ho: No Multicollinearity - Ha: Multicollinearity

* (1) Farrar-Glauber Multicollinearity Chi2-Test:
Chi2 Test = 97.2896 P-Value > Chi2(3) 0.0000

* (2) Farrar-Glauber Multicollinearity F-Test:

Variable	F_Test	DF1	DF2	P_Value
ppp_4	60.111	120.000	2.000	0.016
lnspi	64.295	120.000	2.000	0.015
tax_4	7.674	120.000	2.000	0.122

* (3) Farrar-Glauber Multicollinearity t-Test:

tax_4	lnspi	ppp_4	Variable
			ppp_4
	5× 1	10.912	lnspi
	3.834	3.188	tax 4

We find that multicollinearity is present but the reason behind seems to be the **sample-set**. On trying with **different samples**, multicollinearity was changing a lot.

4.4 Robustness Test

Restricted Model #1: cpi= \(\beta 0 + \beta 1 \ln SPI + u \)

The significant F-test, 58.52, means that the collective contribution of these two variables is significant. One way to think of this, is that there is a significant difference between a model with **ppp_4** and **tax_4** as compared to a model without them, i.e., there is a significant difference between the "full" model and the "reduced" models.

Restricted Model #2: cpi= \(\beta 0 + \beta 1 \)ppp+ u

Since the F-Statistic is again greater than the critical value obtained previously (about 3.10 at a 5% confidence), the null hypothesis is rejected and it can be concluded that ln(spi) and tax_4 are also jointly significant at a 5% confidence level.

- (1) ppp 4 = 0
- (2) tax 4 = 0

$$F(2, 119) = 58.52$$

 $Prob > F = 0.0000$

- (1) lnspi = 0
- (2) tax 4 = 0

$$F(2, 119) = 30.08$$

 $Prob > F = 0.0000$

5. CONCLUSION

We can conclude from our research that **ln(spi)** is positively correlated with the Control of Corruption index in the simple regression model. This is because as SPI increases, wellbeing and social progress of the nation increases implying that corruption is more controlled (approaching a score of 2.5 which is typically seen in a strong, transparent government). Similar relationship can be seen with **per Capita GDP** and **Personal Income Tax.**

We also saw that our final model didn't show symptoms of heteroscedasticity but the severity of multicollinearity of the model kept on changing when we changed the sample size. So we chose the significant model with the best goodness of fit and least multicollinearity. To tackle multicollinearity, we had to drop "hdi" variable after speculating its high collinearity with "spi"

An important caveat to note here is that even though we didn't choose the model with "hdi", "unemployment" as our final model, the effects of unemployment, human development and government type should not be ruled out when explaining corruption in developing and emerging countries. Different methodologies to conduct the measurement of each of these excluded variables could represent a greater impact on corruption than what is discovered.