一"笔记"

April 30, 2017; rev. Tuesday 26th September, 2017 Qian Wang

第一章 Adaboost

Introduction

本章内容来自于网络以及张志华老师的就《机器学习导论》课程本章基本内容就是给定一堆弱分类器,然后通过各种组合组成一个人强的分类器

1.1 离散的 Adaboost

离散的 AdaBoost 算法步骤:

w 表示给数据的权值, α 表示给分类器的权值

- 1. start with weights $w_i = rac{1}{N} \quad i = 1...N$
- 2. repeat for m=1 to M
 - 使用输入数据训练一个分类器 $G_m(x) \in (-1,1)$
 - 计算误差 err:

$$E_w[I_(y_i
ot\equiv G_m(x_i))] = rac{\sum_{i=1}^N w_i I_(y_i
ot\equiv G_m(x_i))}{\sum_{i=1}^N w_i}$$

- 输出 $\alpha_m = \frac{1}{2}log(\frac{1-err}{err})$, 从这里可以看出分类器的误差越大,权值越小
- set $w_i = \frac{w_i}{Z_m} \exp(\alpha_m I_i(y \neq G_m(x)))$,其中 Z_m 是规范化因子, $Z_m = \sum_{i=1}^N w_i \exp(-\alpha_m y_i G_m(x_i))$ 如果一个数据点分类错了,那么给这个点的权值大一点。
- 3. 这样我们就得到了 $G(x) = sign[\sum_{m=1}^{M} \alpha_m G_m(x)]$

1.2 Forward Stagest Additive Modeling

考虑加法模型 (additive model)

$$f(x) = \sum_{m=1}^{M} \beta_m b(x; \gamma_m)$$
 (2.1)

其中, $b(x; \gamma_m)$ 为基函数, γ_m 为基函数的参数, β_m 为基函数的系数。

在给定训练数据以及 Loss Function 的情况下,相当于一个加法模型 f(x) 相当于一个minimize Loss Function 的问题:

$$min_{\beta_m,\gamma_m} \sum_{i=1}^{N} L(y_i, \sum_{m=1}^{M} \beta_m b(x; \gamma_m))$$
 (2.2)

从前向后,每一步值学习一个基函数及其系数,即每一步只需优化如下的损失函数:

$$min_{\beta,\gamma} \sum_{i=1}^{N} L(y_i, \sum_{m=1}^{M} \beta b(x; \gamma))$$
 (2.3)

前向分布算法:

输入: 训练数据 $T=(x_1,y_1),...(x_N,y_N)$,Loss FunctionL(x,f(x)),基函数 $b(x;\gamma)$

输出:加法模型 f(x)

- 1. 初始化 $f_0(x) = 0$
- 2. repeat for m=1 to M
 - 计算参数 β_m, γ_m

$$(\beta_m, \gamma_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i)\beta b(x; \gamma))$$
 (2.4)

- 更新 $f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$
- 3. 得到加法模型

$$f(x) = \sum_{m=1}^{M} \beta_m b(x; \gamma_m)$$
 (2.5)

第二章 Logistic Regression

Introduction

本章内容主要来自于个人 YY

2.1 Sigmoid 函数

sigmoid 函数的主要公式如下所示:

$$p(x) = \frac{1}{1 + e^{-x}} \tag{1.1}$$

该公式主要用在二分类的问题中作为最后的预测结果分类,或者作为激活函数在神经网络中使用。

为什么要使用 sigmoid?

由于 sigmoid 的良好性质,求导容易,反向传播速度快,输出全部在 0-1 之间,永远为正,严格递增

缺点: 在中心点变化快, 比较敏感

2.2 Logistic Regression

逻辑回归主要用在二分类问题中,最后给出该样本属于正类或者负类的概率,公式如下所示:

$$J(heta) = -rac{1}{m} \left[\sum_{i=1}^m y^{(i)} log h_ heta(x^{(i)}) + (1-y^{(i)}) log (1-h_ heta(x^{(i)}))
ight]$$

(2.2)

通俗的来说, LR 就是用来将两堆数据分来

LR 优点:

- 预测结果是介于 0 和 1 之间的概率
- 容易使用和解释
- 预测速度较快, 计算量小

缺点:

- 当特征空间很大时, LR 的性能不是很好, 不能处理大量的特征
- 容易欠拟合
- 不能处理线性不可分的数据
- 对于非线性特征,需要进行转换
- 预测结果呈 S 型,中间的概率变化很大,很敏感

2.3 一些其他的问题

1. LR 是基于概率的一个模型,所有的点都会参与模型参数的更新。SVM 是基于最大化间隔的模型,由少量的支持向量决定。

第三章 正则化方法

Introduction

本章节内容主要介绍机器学习、深度学习总的正则化方法 一般来说,所有的监督学习都可以最小化下面的函数来表示:

$$w = \arg\min_{w} \sum_{i} L(y_i, f(x_i; w)) + \lambda \Omega(w)$$
 (0.1)

其中,第一项一般为模型预测的结果与真实的结果之间的差距,可以用各种各样不同的 函数来表示,第二项一般为正则化项,主要目的是使我们的模型更加简单,防止过拟合。

3.1 L1 L2

3.1.1 ill-condition

我们都知道优化问题有两大难题。一个是局部最小值的问题:我们要找的是全局最小值,如果局部最小值太多,那我们的优化算法就很容易陷入局部最小而不能自拔。另外一个就是ill-condition 的问题。加入我们有个方程组 Ax = b,我们要做的是求解 x,如果 A 或者 b 稍微的改变,会使得 x 发生很大的变化,那么这个方程组系统就是 ill-condition 的,反之就是well-condition 的。

Figure 3.1: ill-condition

第一行我们假设 Ax = b, 第二行我们稍微改变下 A, 结果的变化就非常大, 第三行我们

稍微改变下 b, 结果的改变同样是非常大的,因此我们可以认为我们的模型对错误的容忍力太低了,即对误差太敏感了。那么对于数据中难免存在的误差来说,模型的效果就非常差。

因此我们需要一个指标去衡量 ill-condition 问题中的变化问题。

condition number 衡量的就是在输入发生微小改变的时候,输出会发生多大的变化。也就是对系统微小变化的敏感度。condition number 比较小(在 1 附近)的就是 well-condition的,比较大的(远大于 1 的)就是 ill-condition的。

另外如果使用迭代优化的算法,当 condition number 太大的时候,会拖慢迭代的收敛速度。

3.1.2 L1

L1 norm 就是绝对值的和,公式如下

$$||x||_p = |x_1| + |x_2| + \dots + |x_n|$$

3.1.3 L2

L2 norm 就是我们经常说的欧几里得范数,公式如下

$$||x||_2 = \left(\sum_{i=1:n} x_i^p\right)^{\frac{1}{p}} \tag{1.2}$$

caffe 中 weight decay 这个参数代表 L2 范数前的系数。 L2 的优点:

- 可以防止过拟合,提升模型的泛化能力
- L2 范数有助于处理 condition number 不好的情况下逆矩阵求逆很困难的情况 (待定)。

3.1.4 L1 与 L2 的不同

对于 L1 和 L2 规则化的代价函数来说,我们可以写成如下的形式

Lasso
$$\min_{w} \frac{1}{n} ||y - Xw||^2, s.t. ||w||_1 <= C$$
 (1.3)

$$Ridge \min_{w} \frac{1}{n} ||y - Xw||^{2}, s.t. ||w||_{2} <= C$$
 (1.4)

为了便于可视化,我们考虑两维的情况,在 (w_1, w_2) 平面上画出目标函数的等高线,而约束条件则成为平面上半径为 C 的一个 norm ball。等高线与 norm ball 相交的地方就是最优解:

Figure 3.2: 图

可以看到,在相交的地方,L1 在和每个坐标轴相交的地方都有出现解,即更容易出现 w_1 或者 w_2 为 0 的解,可以用来提取特征,更加容易产生稀疏性。

L2 的话更容易出现 w_1 和 w_2 都不是 0 的情况,虽然有时候会出现很小的值。在更高维的情况下也是这样的,即基本上只是用来正则化而已。

第四章 Deep Learing

Introduction

本章节内容主要是来自于深度学习中遇到的一些坑以及问题

4.1 一些小的 trick

- 1. 一定要对数据进行归一化
- 2. 训练可能会出现 loss 一开始迅速下降,然后稳定在一定的值上,这时候不要以为网络已经收敛了,有时候会出现一个拐点,即在训练很后面的时候会重新出现一个新的下降的区间,这时候网络基本上会收敛。但是不排除会出现多的拐点的情况。结论:训练过程中一定要耐心耐心再耐心。

4.2 weight decay

在损失函数中,weight decay 是放在正则项(regularization)前面的一个系数,正则项一般指示模型的复杂度,所以 weight decay 的作用是调节模型复杂度对损失函数的影响,若 weight decay 很大,则复杂的模型损失函数的值也就大。我所理解的 weight decay 就是一个调节正则化项的系数,增大则对正则化项的依赖会更高,不容易过拟合,反之则反之。

利用 weight decay 给损失函数加了个惩罚项,使得在常规损失函数值相同的情况下,学习算法更倾向于选择更简单(即权值和更小)的 NN。是一种减小训练过拟合的方法。

Weight decay is equivalent to L2 regularizer.

在训练神经网络的时候,可以先设置 weight decay 为 0, 然后使网络过拟合,查看测试结果。结果正确后,设置 weight decay 为大一点的值,即加入正则化项,这样可以防止过拟合现象。具体大小需要在网络中调试。

遇到的问题: 在训练 U-net 的时候, 出现训练结果全是黑图的情况。原因是 weight decay 设置过大,导致网络结果没有过拟合。解决方案:设置 weight decay 为更小的值。

4.3 momentum

momentum 是梯度下降法中一种常用的加速技术。对于一般的 SGD,其表达式为 $x \leftarrow x - \alpha * dx$,x 沿负梯度下降。而带 momentum 项的 SGD 则写生如下形式: $v = \beta * v - a * dx$,x 公 $x \leftarrow x + v$,其中 $x \leftarrow x + v$,其中 x

神经网络的训练过程(也就是梯度下降法)是在高维曲面上寻找全局最优解的过程(也就是寻找波谷),每经过一次训练 epoch,搜寻点应该更加靠近最优点所在的区域范围,这时进行权重衰减便有利于将搜寻范围限制在该范围内,而不至于跳出这个搜索圈,反复进行权重衰减便逐渐缩小搜索范围,最终找到全局最优解对应的点,网络收敛。momentum 是冲量单元,也就是下式中的 m,作用是有助于训练过程中逃离局部最小值,使网络能够更快速地收敛,也是需要经过反复地 trial and error 获得的经验值

主要作用: 防止陷入局部最小值

第五章 Caffe

Introduction

本章节内容主要是关于 caffe 框架的一些知识。

5.1 lmdb

lmdb 格式的文件在使用 Python 程序进行生成的时候,如果需要重复生成,则需要先删除原来的。否则会在原先的 lmdb 上重新添加文件。

5.2 net protobuf

此部分内容有待添加

5.3 solver

solver 文件为 caffe 的训练参数的文件,主要存储一些训练的超参数

运行代码为: caffe train -solver=*slover.prototxt

一个例子:

```
train_net: "lenet_train.prototxt"

test_net: "lenet_test.prototxt"

test_iter: 100

test_interval: 500

base_lr: 0.01

lr_policy: "fixed"

momentum: 0.9
```

```
      10
      type: SGD

      11
      weight_decay: 0.0005

      12
      display: 100

      13
      max_iter: 20000

      14
      snapshot: 5000

      15
      snapshot_prefix: "models"

      16
      solver_mode: CPU
```

下面来一个一个解释这些程序的意思

1.

train_ net: "lenet_ train.prototxt"

test net: "lenet test.prototxt"

这两行用于定于训练网络和测试网络,可以是同一个网络,用 net: train_ test.prototxt 来表示, 为上一节的内容。注意:文件的路径要从 caffe 的根目录开始,其他所有的配置都是这样的。

2. 接下来 test_ iter 表示一次训练需要加载多少个数据,许训练中的 batch size 是一致的; test_ iterval 表示经过多少此训练的 Iteration 后进行一次测试,如 500 表示没经过 500个 Iteration 进行一次测试。另外,如果网络不想进行测试的话,可以在 solver 文件中加入如下的参数 test_ initialization: false 这样不管经过多少次的 Iteration 都不会进行测试。

3. 有关于 learing rate 的东西

base_ lr 表示初始的一个 learing rate,如果 lr_ policy 如果设置为 fixed,训练过程中会一直维持这个 learing rate 不再改变,其他的都是会在训练过程中逐渐变化的。

lr_policy 可设置的值如下所示:

- fixed: 保持 base_ lr 不变
- exp: 返回 $base_lr*gamma^iter$, iter 为当前迭代次数
- inv: 如果设置为 inv, 还需要设置一个 power, 返回 $base_lr*(1+gamma*iter)^{-power}$
- multistep: 如果设置为 multistep, 则还需要设置一个 stepvalue。这个参数和 step 很相似, step 是均匀等间隔变化, 而 multistep 则是根据 stepvalue 值变化
- poly: 学习率进行多项式误差, 返回 $base_lr(1-iter/max_iter)^{power}$
- sigmoid: 学习率进行 sigmod 衰减,返回 $base_lr(1/(1 + exp(-gamma*(iter-stepsize))))$

需要设置参数的数量随着 lr pilicy 的不同而有所变化。如设置为 fixed 则不需要添加任何参数,设置为 step 则需要添加 gamma 和 stepsize 两个参数,设置为 step 的策略后 solver 配置如下所示:

base_lr: 0.01

lr_policy: "step"

3 gamma: 0.9

stepsize: 100

4. 对于 momentum,一般取值在 0.5–0.99 之间。通常设为 0.9,momentum 可以让使用 SGD 的深度学习方法更加稳定以及快速。详细的资料,参考 Hinton 的论文《A Practical Guide to Training Restricted Boltzmann Machines》

5. type:SGD

表示优化算法,总共有六种: SGD、AdaDelta、AdaGrad、Adam、NAG、RMSprop 6.weight decay 为权重衰减项,详细的内容已经在上一章解释过了。

7.display: 100 表示没训练 100 个 Iteration 显示一次 loss

8.max iter:2000 表示最大的迭代此时为 2000

9.

snapshot:500

snapshot_ prefix :"models"

表示没训练 500 个 Iteration,保存一次网络的参数数据,保存路径为 models。同时会保存另外一个 solverstate 文件,以便下次训练的时候可以从这一步继续训练。

10.solver_ mode: CPU 设置运行模式为 CPU

5.4 一些其他的问题

5.4.1 loss=87.3365

- 如果一开始就出现这种情况,有可能是参数的初始化方式不对,使用 xavier 可以避免这种情况
- 在 caffe 中数据的标签必须从 0 开始,且为整数 (1.0,2.0 也可以)
- 数据可能会出现问题(一定要反复确定数据没有问题才可以)
- 如果是图片数据可能是图片没有进行归一化,最好是进行归一化并且减去均值
- 如果一开始的 loss 是在下降的,但是训练到后期出现了 87.3365 这个值,代表网络发散了,需要调整 learing rate 到一个较小的值,建议从 0.01 开始,到 0.0001 即可适合

大部分网络结构

5.4.2 一些差别

solver.step(1) 表示网络进行一次迭代,即进行一次前向过程和一次反向传播 solver.net.forward() 表示网络只进行一次前向的过程,可用于网络的预测

5.4.3 多 GPU 计算

如果使用 solver 文件: build/tools/caffe train –solver=models/bvlc_alexnet/solver.prototxt –gpu=0,1

如果使用 Python 文件: python yourpythonfile.py CUDA_ VISIBLE_ DEVICES=0, 1

Bibliography