

FEN_842 Risk Measurement

Lecture 3 Risk Measure Estimation

Winfried G. Hallerbach PhD

March 25, 2025

Make an impact

Outline of lecture 3

Risk measure estimation

Pre-requisites

Volatility estimation : Equally Weighted

GARCH

EWMA

Parametric VaR & ES

Non-parametric VaR & ES: Historical Simulation

Filtered HSim

Weighted HSim

- Monte Carlo Simulation
- Recap, ex-ante vs ex-post

Individual series estimates

Various parameters

At time t, estimate the risk measure for period t+1

Time line: distinguish between points in time & time periods

To be determined:

- forecast horizon : length of period t+1
- lookback period : length of estimation period T
- return / observation interval : length of period over which returns are calculated
- how to use the observations within T

Security returns

Arithmetic vs geometric

total returns: price appreciation plus cash disbursements

compounding:

- discrete / arithmetic / percentage returns : $r_t = \frac{P_{t+1} P_t + Div_t}{P_t}$
- continuous / geometric / log returns : $R_t = \ln(1 + r_t)$
- continuously compounded returns are mostly used in derivatives context: "continuous time", log returns aggregate over time (TS)
- discrete returns should be used in a portfolio context : aggregate in cross-section (XS)
- if returns are small (daily, e.g.), the difference is small, but henceforth we always use discrete returns so as to be consistent with a portfolio context

- Kenneth French data library, US equity market factor
- daily total returns,2-Jan-1990 29-Oct-2021(8,021 observations)
- we plot the absolute values of the returns, |r|, as a proxy for instantaneous variability

Q: what do we observe?

Outline of lecture 3

Risk measure estimation

Pre-requisites

Volatility estimation : Equally Weighted

GARCH EWMA

Parametric VaR & ES

Non-parametric VaR & ES: Historical Simulation

Filtered HSim

Weighted HSim

Monte Carlo Simulation

Recap, ex-ante vs ex-post

Volatility, equally-weighted (EW)

- estimate volatility from variance
- security characteristics do not change over time → historical observations are representative

■ EW variance :
$$\sigma_{t+1}^2 = \sum_{\tau=1}^T w_\tau (r_\tau - \overline{r})^2$$
 where : $\overline{r} = \sum_{\tau=1}^T w_\tau r_\tau$ and : $w_\tau = \frac{1}{T}$, $\forall \tau \in T$

proper weights :
$$\sum_{\tau=1}^{T} w_{\tau} = 1$$

- iff estimated mean \overline{r} is used, so apply **Bessel correction**: multiply variance with $\frac{T}{T-1}$
- for daily returns : ignore mean return, hence no Bessel correction
 - 1. mean return notoriously difficult to estimate \rightarrow introduces estimation noise in variance
 - 2. daily mean return is very small anyway

Volatility EW

Example

- Kenneth French data library, US equity market factor
- daily total returns, 2-Jan-1990 29-Oct-2021 (8,021 observations)
- T=260: 1-year EW volatility, no mean-adjustment, annualized

- volatility changes over time
- Global Financial Crisis (GFC) Aug2008 and covid crisis Mar2020 stand out
- vola plummets one year later
- always first plot the return series!

Volatility EW

Drawbacks

EW, so each week:

- a new observation is added
- the oldest observation drops out of the estimation window

Hence, the EW estimator has two serious shortcomings:

- it is not adaptive in the front end ⇔ there is no information decay each week has a constant weight of 1/260 = 0.38%
 → assign more weight to more recent observations
- 2. it suffers from the ghost effect in the rear end:
 1Y after the GFC & covid crises we observe "miraculous" decreases in vola estimates...
 → let the weight of past observations decrease smoothly over time

Financial markets volatility

Towards an adequate ex-ante vola estimator

Stylized facts about financial market volatility:

- 1. time-varying → adaptive, responsive risk measure
- 2. time clustering → persistence in a risk measure
- 3. long-run mean-reversion → high (low) volas tend to go down (up) to some long-run volatility level

This suggests the following desirable properties of a volatility measure:

- 1. short-term adaptiveness: allowing for timely risk assessments, especially when risks surge
- 2. volatility clustering : shorter-run auto-regressive behavior, "stickyness"
- **3. long-run mean reversal**: for not forgetting about the mean-reversion level,
 - ("long memory" property), especially in tranquil periods

Outline of lecture 3

Risk measure estimation

Pre-requisites

Volatility estimation : Equally Weighted

GARCH

EWMA

Parametric VaR & ES

Non-parametric VaR & ES: Historical Simulation

Filtered HSim

Weighted HSim

- Monte Carlo Simulation
- Recap, ex-ante vs ex-post

ARCH variance models

Variance modeling

- ARCH: AutoRegressive Conditional Heteroskedasticity, Engle [1982]
- based on two observations:

heteroskedasticity: variance changes over time squared returns $\{r_t^2\}$ are serially correlated \rightarrow autoregressive process

- → hence conditional estimate
- this suggests that the cond'l variance can be modeled as an autoregressive process
- this gives the ARCH(q) process:

$$var(r_{t+1}|t) = \sigma_{t+1}^2 = \alpha_0 + \alpha_1 \cdot r_t^2 + \alpha_2 \cdot r_{t-1}^2 + \dots + \alpha_q \cdot r_{t+1-q}^2 \quad with \quad \sum_{i=0}^q \alpha_i = 1$$

- empirical applications: many lags are required (i.e. large q) \rightarrow computational problems
- hence, moving average (MA) terms were added to subsume higher order AR terms

Note: We here assume that the conditional mean return is zero. In case of non-zero mean, square mean-adjusted returns.

GARCH(1,1) variance

Volatility work horse

- benchmark conditional volatility model in academic finance literature
- GARCH: Generalized Autoregressive Conditional Heteroskedasticity, Bollerslev [1986]
- GARCH(p,q) : q = # auto-regressive lags, ARCH terms : past squared returns $\rightarrow \alpha_{i=1,...,q}$ p = # moving-average lags, GARCH terms : past cond'l variances $\rightarrow \beta_{i=1,...,q}$
- p = q = 1 performs very well in financial markets \rightarrow GARCH(1,1)

Next period's conditional variance is weighted average of 3 terms :

$$\operatorname{var}(r_{t+1}|t) = \sigma_{t+1}^2 = \gamma \cdot \sigma_L^2 + \alpha \cdot r_t^2 + \beta \cdot \sigma_t^2$$
 with $\gamma + \alpha + \beta = 1$

where σ_l^2 is the long-run or **unconditional variance**

Note: We here assume that the conditional mean return is zero. In case of non-zero mean, square mean-adjusted returns.

Details

GARCH(1,1):

$$\sigma_{t+1}^2 = \gamma \cdot \sigma_L^2 + \alpha \cdot r_t^2 + \beta \cdot \sigma_t^2$$

For **estimating parameters**, conditional variance equation is rewritten as:

$$\sigma_{t+1}^2 = \omega + \alpha \cdot r_t^2 + \beta \cdot \sigma_t^2$$

Use Law of Iterated Expectations to find unconditional variance:

$$E(\sigma_{t+1}^2) = \omega + \alpha \cdot E(r_t^2) + \beta \cdot E(\sigma_t^2) \qquad \Rightarrow \quad \sigma_L^2 = \omega + \alpha \cdot \sigma_L^2 + \beta \cdot \sigma_L^2$$

Solving yields:
$$\sigma_L^2 = \frac{\omega}{1 - \alpha - \beta}$$

so we require

$$\alpha + \beta < 1$$

otherwise the long-run variance will explode

Explanation of parameters or "weights"

$$\sigma_{t+1|t}^2 = \gamma \cdot \sigma_t^2 + \alpha \cdot r_t^2 + \beta \cdot \sigma_t^2 \quad with \quad \gamma + \alpha + \beta = 1$$

- mean-reversion driven by $\gamma = 1 (\alpha + \beta)$: the higher γ , the stronger the mean-reversion
- hence, $\alpha + \beta$ relates to "persistence" or the continuation of differences from the LT variance, in practice : $\alpha + \beta < 1$ but close to unity
- β indicates persistence or **stickyness**, in the sense that a high β makes conditional variance and deviations from LT variance very persistent \rightarrow less variation of conditional variance over time β is usually large, close to unity
- α is a responsiveness parameter, controls updating from innovations
 if α is large, then a large return causes an immediate large change in conditional variance
 → more variation of conditional variance over time

Maximum Likelihood estimation of parameters

Non-linear model \rightarrow maximum likelihood estimation \rightarrow numerical optimization Assume that returns r_t are zero-mean and normally distributed conditional on variance

Likelihood of observing specific return:

of observing all T independent returns:

$$\frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left(\frac{-r_t^2}{2\sigma_t^2}\right)$$

$$\prod_{t=1}^{T} \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left(\frac{-r_t^2}{2\sigma_t^2}\right)$$

Maximizing Likelihood ⇔ maximizing Log Likelihood, hence we estimate the parameters by :

$$\max_{\{parameters\}} \sum_{t=1}^{T} \left[-\ln(\sigma_t^2) - \frac{r_t^2}{\sigma_t^2} \right]$$

GARCH(1,1) parameter estimation

Example in Excel use in Solver

use in conditional variance

For estimating parameters, write conditional variance equation as: $\sigma_{t+1}^2 = \omega + \alpha \cdot r_t^2 + \beta \cdot \sigma_t^2$

	A	В	С	D	E	F				
1		ра	rameters:	scaled	unscaled			1 .		
2			omega	0.018930	0.000002	→ =D2/:	10,000		Solver:	
3			alpha	0.105427	0.105427				maximize F7	
4			beta	0.087828	0.878278	→ =D4*	10		by changing cells	: D2·D4
5	_							' L	by changing cens	02.04
6	squared returns		returns			sum :				
7					67398.12		=sum(F10:F8029)			
8	date	day	return	return^2	cond'l var	LogLikelih	L	=Sum(F1	0.78029)	
9	1/2/1990	1	0.01466	0.00021	0.00021		─ ──		2 2	
10	1/3/1990	2	-0.00034	0.00000	0.00021	8.4522	ļi	initialize	$: \sigma_1^2 = r_1^2$	
11	1/4/1990	3	-0.00684	0.00005	0.00019	8.3252	_			
12	1/5/1990	4	-0.00824	0.00007	0.00017	8.2696		-E¢3∓E¢	3*D9+ <mark>E</mark> \$4*E9	
	:	:	:	:	:	:	L	-L32+L33 D3+L34 L3		
	:	:	:	:	:	:	, г	salaulata	log likalihaad F	
8028	10/28/2021	8020	0.01140	0.00013	0.00006	7.4671		calculate log likelihood F from D & E		
8029	10/29/2021	8021	0.00220	0.00000	0.00006	9.5711	1			

US equity data example cont'd

from estimated parameters :

LT var	alpha	beta
0.00012	0.105	0.878

- alpha + beta = 0.984
 - → persistent variance
 - \rightarrow LT vola \neq 17.38% p.a.
- averaging cond'l variances gives
 18.26% vola p.a.
- when calculating full-sample vola : no mean-adjustment (: 18.48%)

Conditional normality?

- use GARCH volatilities to construct 95% confidence intervals on daily returns
- assume : $\tilde{r}_{t+1} \sim N(0, \hat{\sigma}_{t+1|t})$ so 95% confidence interval for r_{t+1} is $\pm 1.96 \cdot \hat{\sigma}_{t+1|t}$
- fraction of exceedances :

upper: $2.20\% \approx 2.5\%$ expected

lower: 3.32% = too high

reveals stylized fact #4:
 volatility asymmetry:
 volatility is higher in declining markets
 than in rising markets

- time-varying volatility:
 each period, a return is drawn from a distribution with a different volatility
 → cf. mixture distribution
- this induces "fat tails" or excess kurtosis
- in our US equity data example, the overall excess kurtosis of daily returns is: 10.51
- use GARCH(1,1) volatilities to scale returns = make z-scores : $z_{t+1} = \frac{7}{2}$

$$z_{t+1} = \frac{r_{t+1}}{\sigma_{t+1|t}}$$
 $\sim N(0,1)$

- if GARCH captures time-varying volatility, then :
 - 1. the standard deviation of the z-scores should be close to 1: stdev(z) = 1.00!
 - 2. the excess kurtosis of the z-scores should be much lower: kurt(z) = 1.86
- GARCH(1,1) does a pretty good job! Note: we here evaluate GARCH estimates in-sample!

GARCH(1,1) as $ARCH(\infty)$

A moving average of squared returns

GARCH(1,1) is a recursive model

$$\begin{array}{ll} \bullet & \text{expand}: & \sigma_{t+1}^2 = \omega + \alpha \cdot r_t^2 + \beta \cdot \sigma_t^2 \\ & \text{substitute} \Rightarrow & = \omega + \alpha \cdot r_t^2 + \beta \cdot \left[\omega + \alpha \cdot r_{t-1}^2 + \beta \cdot \sigma_{t-1}^2\right] \\ & \text{collecting terms} \Rightarrow & = \omega \Big[1 + \beta \Big] + \alpha \cdot \Big[r_t^2 + \beta \cdot r_{t-1}^2\Big] + \beta^2 \cdot \sigma_{t-1}^2 \\ & \text{substitute} \Rightarrow & = \omega \Big[1 + \beta \Big] + \alpha \cdot \Big[r_t^2 + \beta \cdot r_{t-1}^2\Big] + \beta^2 \cdot \Big[\omega + \alpha \cdot r_{t-2}^2 + \beta \cdot \sigma_{t-2}^2\Big] \\ & \text{collecting terms} \Rightarrow & = \omega \Big[1 + \beta + \beta^2\Big] + \alpha \cdot \Big[r_t^2 + \beta \cdot r_{t-1}^2 + \beta^2 \cdot r_{t-2}^2\Big] + \beta^3 \cdot \sigma_{t-2}^2 \end{aligned} \quad \text{etc.}$$

note the specific pattern!

$$\sigma_{t+1}^2 = \frac{\omega}{1-\beta} + \alpha \cdot \sum_{i=0}^{\infty} \beta^i \cdot r_{t-i}^2 \Rightarrow \text{exponential function of past squared returns} \\ = \text{restricted ARCH}(\infty)$$

Evaluating GARCH(1,1)

From theory to practice ...

- benchmark model for conditional volatility in academic finance literature
- does fit data very well
- cumbersome to use in practice: requires 3 parameter estimates per security volatility;
 cumbersome in a multivariate context (covariance matrix)

solution:

- retain exponentially declining weights → information decay + no ghost effect
- ignore mean-reversion → ignore LT variance level
- let the coefficients for past squared return & variance sum to unity \rightarrow one parameter only
 - → Exponentially Weighted Moving Average (EWMA) volatility

Outline of lecture 3

Risk measure estimation

Pre-requisites

Volatility estimation : Equally Weighted

GARCH

EWMA

Parametric VaR & ES

Non-parametric VaR & ES: Historical Simulation

Filtered HSim

Weighted HSim

Monte Carlo Simulation

Recap, ex-ante vs ex-post

EWMA variance

Exponential weighting scheme

exponentially declining weights of squared returns :

$$\sigma_{t+1}^2 \leftarrow r_t^2 + \lambda \cdot r_{t-1}^2 + \lambda^2 \cdot r_{t-2}^2 + \lambda^3 \cdot r_{t-3}^2 + \dots = \sum_{i=0}^{\infty} \lambda^i \cdot r_{t-i}^2$$

• sum of weights : $\sum_{i=0}^{\infty} \lambda^i = \frac{1}{1-\lambda}$, hence normalize weights to sum to unity :

$$\sigma_{t+1}^2 = (1-\lambda) \cdot r_t^2 + (1-\lambda) \cdot \lambda \cdot r_{t-1}^2 + (1-\lambda) \cdot \lambda^2 \cdot r_{t-2}^2 + \dots$$

$$\sigma_{t+1}^2 = (1-\lambda) \cdot \sum_{i=0}^{\infty} \lambda^i \cdot r_{t-i}^2$$

Note: We here assume that the conditional mean return is zero. In case of non-zero mean, square mean-adjusted returns.

EWMA variance

Make recursive

■ EWMA variance :
$$\sigma_{t+1}^2 = (1-\lambda) \cdot \left[r_t^2 + \lambda \cdot r_{t-1}^2 + \lambda^2 \cdot r_{t-2}^2 + \lambda^3 \cdot r_{t-3}^2 + \dots \right]$$

subtract:
$$\lambda \cdot \sigma_t^2 = (1 - \lambda) \cdot \left[\lambda \cdot r_{t-1}^2 + \lambda^2 \cdot r_{t-2}^2 + \lambda^3 \cdot r_{t-3}^2 + \dots \right]$$

to obtain :
$$\sigma_{t+1}^2 - \lambda \cdot \sigma_t^2 = (1 - \lambda) \cdot r_t^2$$

• or :
$$\sigma_{t+1}^2 = (1-\lambda) \cdot r_t^2 + \lambda \cdot \sigma_t^2 \quad : \text{ simple recursive updating formula}$$

parameter λ :

• persistence parameter: higher
$$\lambda$$
 implies higher variance persistence, sticky variance (new estimate stays close to previous),

small impact / low weight of innovation

• decay parameter: higher
$$\lambda$$
 implies slower decay,

weights decrease only slowly, requires long lookback period

EWMA volatilities

The impact of high / low persistence λ

compare persistence parameters :

Q: what do you observe?

EWMA volatility

Determining the λ parameter

- use maximum likelihood, or minimum RMS of forecast errors to derive specific parameter value
- popular "ex cathedra" choices for persistence parameter λ :

MSCI *RiskMetrics*: **0.97 for monthly data**

0.94 for daily data

- . overall parameters, optimized over various asset classes & time periods
- . compare realized squared return and estimated variance
- . showed minimum Root Mean Squares (RMS) of differences
- pick your own λ :
 - . to match desired half-life H
 - . to choose "effective history" so as to match EW estimate

see EWMA statistics later

EWMA 0.94 vs GARCH(1,1)

Comparison

daily data, very similar patterns

vola p.a.	avge	min	max
EWMA 0.94	15.9%	5.1%	84.9%
GARCH(1,1)	16.1%	7.2%	101.6%

- GARCH vola somewhat higher because part of weight goes to higher LT volatility of 17.38%
- Q: why is average cond'l volatility smaller than full-sample / overall vola: 18.48% or LT / uncond'l vola: 17.38%?
- sqrt(E[var]): EWMA 18.48% GARCH 18.26%

EWMA for confidence intervals

Conditional normality?

- use EWMA volatilities to construct 95% confidence intervals on daily returns
- fraction of exceedances :

exceedances	lower	upper
EWMA 0.94	3.47%	2.94%
GARCH(1,1)	3.32%	2.20%

- note: EWMA is responsive, but always "one day late", as is GARCH
- confirms stylized fact #4 : volatility asymmetry

EWMA 0.94 vs GARCH(1,1)

- time-varying volatility → "fat tails", excess kurtosis
- again, use conditional volatility forecasts to make z-scores : $z_{t+1} = \frac{r_{t+1}}{\sigma_{t+1|t}} \sim N(0,1)$

	_	z-scores		
	initial	EWMA 0.94	GARCH(1,1)	
exc kurt	10.51	2.68	1.86	
stdev		1.05	1.00	

- GARCH(1,1) is somewhat better: kurtosis reduction EWMA slightly under-estimates vola
- what if we use Maximum Likelihood estimate of EWMA persistence? same procedure as for GARCH! $\lambda^* = 0.9338$ \rightarrow very close to 0.94, in this particular case z-score results above do **not** change

EWMA versus GARCH(1,1)

$$\sigma_{t+1}^2 = (1-\lambda) \cdot r_t^2 + \lambda \cdot \sigma_t^2$$

Compare with GARCH(1,1): $\sigma_{t+1}^2 = \gamma \cdot \sigma_t^2 + \alpha \cdot r_t^2 + \beta \cdot \sigma_t^2$

For EWMA:

$$\bullet \quad \alpha + \beta = 1$$

• $\gamma = 0$ \rightarrow no long-run mean-reversion

EWMA = IGARCH(1,1) with zero intercept

Hence, EWMA variance is **non-stationary**, and in theory can wander off ("explode"), but we do not observe this in practice.

EWMA works very well in practice despite this non-stationarity issue.

EWMA statistics

Some practical statistics: half-life

- important characteristic : "half life" H
- defined as the period over which the EWMA weight has decreased by 50%
- current time t
- first (most recent) weight: $w_t = (1 \lambda)$ & weight at half-life lag H: $W_{t-H} = (1 \lambda) \cdot \lambda^H$

• for half-life, we must have :
$$\frac{w_{t-H}}{w_t} = \frac{(1-\lambda) \cdot \lambda^H}{(1-\lambda)} = \lambda^H = \frac{1}{2}$$

hence:

$$H = \frac{\ln(\frac{1}{2})}{\ln(\lambda)} \iff \lambda = (\frac{1}{2})^{1/H}$$

λ	<u> </u>
0.995	138
0.99	69
0.975	27
0.95	14
0.90	7

EWMA statistics

Some practical statistics: Weighted Average Lag, and number of periods

- look for equivalence with EW estimate: equate "effective history" how far do you look back? how large is the weight of distant observation?
- combine lag & weight to calculate Weighted Average Lag (WAL):

$$WAL_{EW} = \sum_{t=1}^{N} w_t \cdot t = \sum_{t=1}^{N} \frac{1}{N} \cdot t = \frac{1}{N} \cdot [\%N(N+1)] = \%(N+1)$$

$$WAL_{EWMA} = \sum_{t=1}^{\infty} (1-\lambda)\lambda^{t-1} \cdot t = \frac{1}{1-\lambda}$$

hence: $\lambda = \frac{N-1}{N+1} \iff N = \frac{1+\lambda}{1-\lambda}$ "N" = number of periods

N]	<u>λ Η</u>	H/N
520	0.99	6 180	0.35
260	0.99	2 90	0.35
130	0.98	5 45	0.35
65	0.97	0 23	0.35
32	0.94	0 11	0.35
21	0.90	9 7	0.35

Half-life ≈ one-third of N

EWMA volatility over fixed windows

Normalizing weights over fixed lookback period T

- recursive EWMA: volas in first part of sample depend on EWMA starting value
- in statistical analyses, a **fixed lookback** window of *T* periods can be desirable

solution: fixed window EWMA → re-scale weights to sum to 1

■ total weight in [1,T] =

$$\sum_{\tau=1}^{T} w_{\tau} = \sum_{t=1}^{T} (1 - \lambda) \cdot \lambda^{\tau-1} = (1 - \lambda) \frac{1 - \lambda^{T}}{1 - \lambda} = 1 - \lambda^{T}$$

• rescaled weights analytically: $\mathbf{w}_{\tau} = \frac{1-\lambda}{1-\lambda^{T}} \cdot \lambda^{\tau-1}$

only background info (assignment), not for exam

Half-life revisited

- for half-life, we must have : $\frac{w_{t-H}}{w_t} = \frac{(1-\lambda) \cdot \lambda^H}{(1-\lambda)} = \lambda^H = \frac{1}{2}$
 - → the weight has halved for period H
- total weight comprised in most recent T periods : $\sum_{\tau=1}^T w_{\tau} = 1 \lambda^T$

hence, over half-life: $\sum_{\tau=1}^{H} w_{\tau} = 1 - \lambda^{H} = 50\%$

• so over the half-life: the **individual weight** has decreased by 50%, and the **sum of the weights** has reached 50%

RiskMetrics settings revisited

Monthly versus daily

- "0.94 daily & 0.97 monthly persistences are inconsistent"
- theoretical reason: EWMA = IGARCH(1,1): $\lambda + (1 \lambda) = 1 \rightarrow$ non-stationary variance ...
- practical perspective :
 compare implied weights for each trading day
- as expected, the faster 0.94 EWMA vola allocates much larger weights to recent days than the slower 0.97 monthly EWMA vola
- not wrong or "inconsistent", but different
- obviously, daily & monthly returns have different volatility processes ...

Outline of lecture 3

Risk measure estimation

Pre-requisites

Volatility estimation : Equally Weighted

GARCH

EWMA

Parametric VaR & ES

Non-parametric VaR & ES: Historical Simulation

Filtered HSim

- Monte Carlo Simulation
- Recap, ex-ante vs ex-post

Estimating parametric VaR & ES

Parametrics risk measures : assume a return distribution

- assume normality
- given our volatility estimate for period t+1, we can calculate the parametric VaR & ES:

$$VaR_{t+1}(c) = N^{-1}(c) \cdot \sigma_{t+1}$$
 $ES_{t+1}(c) = \frac{n(N^{-1}(c))}{1-c} \sigma_{t+1}$

■ 1-day VaR \rightarrow daily vola 95% confidence \rightarrow c = 0.95 $z_c = N^{-1}(0.95) = 1.645$

 $z_c = N^{-1}(0.95) = 1.645$ = NORM.S.INV(0.95) n(1.645) = 0.1031 = NORM.S.DIST(1.645,FALSE)

Example:

- using close of 29-Oct-2021, estimate the 95% 1-day VaR & ES of US Equities
- lookback = 260 days, starts on 20-Oct-2020 → daily EW vola = 0.0089%
- parametric VaR = 1.645 * 0.0089% = 1.46%
- parametric ES = 0.1031/(1-0.95) * 0.0089% = 1.83%

Outline of lecture 3

Risk measure estimation

Pre-requisites

Volatility estimation : Equally Weighted

GARCH

EWMA

Parametric VaR & ES

Non-parametric VaR & ES: Historical Simulation

Filtered HSim

- Monte Carlo Simulation
- Recap, ex-ante vs ex-post

Estimating non-parametric VaR & ES

What if we're not willing or able to specify a return distribution?

Non-parametric → do not make any explicit distribution assumption

→ use empirical distribution (historical frequency distribution)

Q: Is the empirical distribution the "actual" distribution?

Historical simulation (HSim)

- select lookback window T and return interval (ideally matching the forecast horizon),
 say: daily returns, over 260 days
- construct a frequency distribution, or simply rank the returns
- the VaR_c is given by the (1-c) percentile of this distribution
- the ES_c is given by the average of returns up to the (1-c) percentile of this distribution

Historical simulation

Example US Equity cont'd

- using close of 29-Oct-2021, estimate the 95% 1-day VaR of US Equities
- lookback = 260 days, starts on 20-Oct-2020
- rank returns from lowest to highest
- select 5% percentile = 13th lowest observation = 1.43%

parametric VaR = 1.46%

95% 1-day ES is average of 13 lowest returns = 2.06%

parametric ES = 1.83%

date	rank	returns
1/4/2021	15	-0.0141
7/19/2021	14	-0.0141
10/4/2021	13	-0.0143
10/30/2020	12	-0.0145
3/3/2021	11	-0.0157
3/4/2021	10	-0.017
1/29/2021	9	-0.0184
10/26/2020	8	-0.0185
9/20/2021	7	-0.0187
3/18/2021	6	-0.0188
9/28/2021	5	-0.0218
5/12/2021	4	-0.0234
1/27/2021	3	-0.0253
2/25/2021	2	-0.0274
10/28/2020	1	-0.0341

HSim

Evaluation

strong points:

- simple to use : historical data & ranking
- light on explicit assumptions : no need to specify or assume an underlying distribution

weak points:

- do the observations in the lookback window capture the distribution that is relevant "now" ?
 → under-responsive to changes in conditional risk
- for trading portfolios: asymmetric risk response: large losses increase risk, but large gains not
- uses only (1-c) of the observations to estimate VaR and ES \rightarrow large estimation error

So the **trade-off** in using HSim or parametric is:

- sufficient confidence in (normal) distribution \rightarrow parametric, uses all observations to estimate
- fat tails or non-linear securities
 → HSim, use empirical distribution

HSim refinements

Is the historical distribution representative for the next day?

- stylized facts → time-varying volatility
- in our example: the EWMA daily vola is on average 0.89% over the lookback period, but 0.76% on 29-Oct-2021 = time t so there is also a level difference
- 1. Filtered HSim (or volatility-weighted HSim):
- estimate conditional volatilities : EWMA, GARCH,...
- first normalize each return with its forecasted vola into z-scores : $z_{\tau} = \frac{r_{\tau}}{\sigma_{\tau|\tau-1}}$
- next multiply z-scores with most recent vola to get rescaled returns : $r_{\tau}' = r_{\tau} \cdot \frac{\sigma_{t+1|t}}{\sigma_{\tau|\tau-1}}$
- these rescaled returns reflect tomorrow's (t+1) forecasted vola level

Filtered HSim: FHSim

Example US Equity cont'd

- using close of 29-Oct-2021, estimate the 95% 1-day VaR of US Equities
- lookback = 260 days, starts on 20-Oct-2020
- rescale returns & rank
- select 5% percentile = 13th lowest observation = 1.26%

parametric VaR = 1.46% HSim VaR = 1.43%

95% 1-day ES is average of 13 lowest returns = 1.89%

parametric ES = 1.83% HSim ES = 2.06%

date	rank	rescaled r
10/4/2021	15	-0.0124
3/18/2021	14	-0.0124
8/18/2021	13	-0.0126
10/26/2020	12	-0.0130
5/10/2021	11	-0.0135
6/18/2021	10	-0.0147
1/29/2021	9	-0.0150
1/4/2021	8	-0.0152
7/19/2021	7	-0.0173
5/12/2021	6	-0.0221
9/28/2021	5	-0.0232
10/28/2020	4	-0.0234
2/25/2021	3	-0.0243
9/20/2021	2	-0.0251
1/27/2021	1	-0.0265

Weighted HSim

A hybrid approach

- allow for information decay when using historical percentiles
- combine exponential smoothing with HSim → hybrid approach

2. Weighted HSim:

- determine EWMA weights over lookback period T
- rank returns, as in HSim
- instead of using equal 1/T frequencies, use EWMA weights to determine:
 the percentile for the VaR, and
 the weighted average return for the ES

Weighted HSim

Example US Equity cont'd

- using close of 29-Oct-2021, estimate the 95% 1-day VaR
- lookback = 260 days, starts on 20-Oct-2020
- rank returns & cumulate EWMA frequency
- select 5% percentile, interpolate betw 21&22 = 1.03%

parametric VaR = 1.46% HSim VaR = 1.43% tered HSim VaR = 1.26%

• 95% 1-day ES is wighted avge of lowest returns = 1.69%

parametric ES = 1.83% HSim ES = 2.06% Filtered HSim ES = 1.89%

date	rank	returns	weight c	um wght
9/30/2021	22	-0.0102	0.0164	0.0602
12/9/2020	21	-0.0103	0.0000	0.0439
3/2/2021	20	-0.0105	0.0000	0.0439
2/22/2021	19	-0.0113	0.0000	0.0439
3/23/2021	18	-0.0117	0.0000	0.0439
6/18/2021	17	-0.0122	0.0002	0.0439
5/10/2021	16	-0.0136	0.0000	0.0437
1/4/2021	15	-0.0141	0.0000	0.0437
:	:	:	:	:
:	:	:	:	:
9/28/2021	5	-0.0218	0.0145	0.0145
5/12/2021	4	-0.0234	0.0000	0.0000
1/27/2021	3	-0.0253	0.0000	0.0000
2/25/2021	2	-0.0274	0.0000	0.0000
10/28/2020	1	-0.0341	0.0000	0.0000
				16

Outline of lecture 3

Risk measure estimation

Pre-requisites

Volatility estimation : Equally Weighted

GARCH

EWMA

Parametric VaR & ES

Non-parametric VaR & ES: Historical Simulation

Filtered HSim

- Monte Carlo Simulation
- Recap, ex-ante vs ex-post

Simulation: HSim or Monte Carlo

HSim:

uses implied empirical distribution

- scenarios are drawn from history
- limited number of data points ...
- ... but perhaps more relevant

Monte Carlo (MC) simulation:

- the joint distibutions of assets / underlying risk factors are either
 - . assumed or
 - . estimated from historical data
- scenarios are generated from these distributions
- unlimited number of draws possible
- ... but perhaps specification error in joint distributions
- → same flexibility in using the scenarios to :
 - . reprice instruments (full-revaluation of non-linear derivatives, e.g.)
 - . estimate statistics

Risk measure estimation

Pre-requisites

Volatility estimation : Equally Weighted

GARCH

EWMA

Parametric VaR & ES

Non-parametric VaR & ES: Historical Simulation

Filtered HSim

- Monte Carlo Simulation
- Recap, ex-ante vs ex-post

Ex-ante ex-post: clean vs dirty returns

Using the portfolio composition

"clean returns": use fixed current portfolio composition with historical returns data:

$$\left\{w_{i,t}\right\}_{i\in p,t}$$
 and $\left\{r_{i,\tau}\right\}_{i\in p,\tau\in T}$

"dirty returns": realized portfolio returns, includes effect of time-changing portfolio composition:

$$\{w_{i,t}\}_{i\in p,t\in T}$$
 and $\{r_{i,t}\}_{i\in p,i\in T}$

Q: What can you say about the volatility of the dirty versus clean portfolio returns?

- for risk analyses, we are interested in the risk of the current portfolio
 - → ex-ante perspective
 - → use clean returns
- ex-post perspective : 1. clean returns : "portfolio simulation"
 - 2. dirty returns: descriptive, performance for investors

Ex-ante ex-post: cond'l & uncond'l

ex-ante:

- . use portfolio composition as per time *t*
- . use information up to time t to make forecast for period t+1
- . market conditions change over time → use adaptive risk estimate
- . this is by definition a **conditional forecast**

ex-post:

- . descriptive use only
- . use EW metrics → unconditional estimates