Painel / Meus cursos / SC26EL / 6-Projeto de Controlador PID pelo Método do Lugar das Raízes

/ Questionário sobre Projeto de Controlador PID pelo Método do Lugar das Raízes

Iniciado em domingo, 18 jul 2021, 23:27

Estado Finalizada

Concluída em domingo, 18 jul 2021, 23:30

Tempo 3 minutos 1 segundo

empregado

Notas 2,1/5,0

Avaliar 4,2 de um máximo de 10,0(**42**%)

Questão 1

Correto

Atingiu 1,0 de 1,0

Marque a(s) alternativa(s) correta(s):

- a. O controlador PID pode ser empregado quando deseja-se melhorar a resposta transitória e zerar o erro em regime permanente para algum tipo de entrada.
- ☑ b. O controlador PID tem uso similar ao do controlador de avanço-atraso. A diferença é que o controlador de PID é capaz de zerar o erro em regime permanente para um certo tipo de entrada enquanto o controlador de avanço-atraso apenas reduz o erro.
- c. O termo derivativo associado ao controlador PID não sofre influência devido a ruídos de medida. Isso deve-se a existência do polo na origem do controlador que insere uma atenuação constante de -20 dB/dec. Com isso, o ganho em alta frequência do PID é limitado.
- d. O controlador PID pode ter diferentes formas de implementação tais como a forma padrão $C(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s\right)$, a forma paralela $C(s) = K_p + \frac{K_i}{s} + K_d s$ e a forma interativa ou em série $C(s) = K_c (T_d s + 1) \left(1 + \frac{1}{T_i s}\right)$. Todas estas formas, caso tenham os ganhos ajustados corretamente, são equivalentes.

Questão **2**

Parcialmente correto

Atingiu 0,5 de 1,0

Considere o sistema descrito na figura abaixo onde $G(s) = \frac{165}{(s+1)(s+2)(s+10)}$. Deseja-se projetar um controlador PID na forma $C(s) = K_p + \frac{K_i}{s} + K_d s = K(s+z_1) \frac{(s+z_2)}{s}$ para que o sistema, em malha fechada, tenha polos dominantes que forneçam sobressinal de 5% e tempo de acomodação de 2 segundos. Adicionalmente, o erro em regime permanente para uma entrada do tipo degrau deve ser nulo. Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos.

Para atender os requisitos de projeto, o coeficiente de amortecimento dos polos dominantes de malha fechada deve ser $\zeta = \frac{1}{0.600}$

🗸 . A frequência natural destes polos deve ser ω_n =

2.898

✓ rad/s

A partir destes valores, os polos dominantes de malha fechada devem estar em : $s_{1,2}$ =

-1.999

✓ ±j

2.097

~ .

A contribuição angular que o termo $(s+z_1)$ do compensador deve inserir no lugar das raízes é $\phi=$

40.133

✓ graus.

Para atender a contribuição angular ϕ , o zero do compensador em $s=-z_1$ deve estar s=

-4.486

✔.

O ganho do compensador vale K=

X .

Considerando que o zero do termo $(s+z_2)$ esteja em s=-0, 1 o compensador na forma $C(s)=\frac{K(a\cdot s^2+b\cdot s+c)}{s}$ é $C(s)=\frac{K(a\cdot s^2+b\cdot s+c)}{s}$

x (

1

 $\checkmark s^2 +$

4.586

√ s+

0.448

✓)/s.

Logo, os ganhos proporcional, integral e derivativo são dados por $K_p =$

• K _

 \mathbf{x} , $K_i =$

× e *K*_d =

x , respectivamente.

Com o controlador PID projetado, o sistema em malha fechada tem polos dominantes em $\mathit{s}_{1,2} =$

\star $\pm j$
$m{ imes}$. O sobressinal teórico associado a estes polos é $M_p=$
st % enquanto o tempo de acomodação teórico associado é de $t_s=$
× segundos.
Todavia, devido aos efeitos dos demais polos e zeros do sistema em malha fechada, o sobressinal do sistema compensado é de $M_p=$
st % enquanto o seu tempo de acomodação é de $t_{ m s}=$
× segundos.

Questão **3**

Parcialmente correto

Atingiu 0,3 de 1,0

Considere o sistema descrito na figura abaixo onde $G(s) = \frac{165}{(s+1)(s+2)(s+10)}$. Deseja-se projetar um controlador PID na forma

 $C(s) = K_p + \frac{K_i}{s} + K_d s = K \frac{(s+z)^2}{s}$ para que o sistema, em malha fechada, tenha polos dominantes que forneçam sobressinal de 5% e tempo de acomodação de 2 segundos. Adicionalmente, o erro em regime permanente para uma entrada do tipo degrau deve ser nulo. Dica: para o cálculo da condição de ângulo, incorpore o integrador do controlador junta à G(s). Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos.

Para atender os requisitos de projeto, o coeficiente de amortecimento dos polos dominantes de malha fechada deve ser $\zeta=$

0.69

ullet . A frequência natural destes polos deve ser $\omega_n=$

2.898

✓ rad/s.

A partir destes valores, os polos dominantes de malha fechada devem estar em : $s_{1,2} =$

-1.999

✓ ±j

2.097

~

A contribuição angular que o termo $(s+z)^2$ do compensador deve inserir no lugar das raízes é $\phi=$

× graus.

Para atender a contribuição angular ϕ , os zeros do compensador em s=-z devem estar s=

×

O ganho do compensador vale K =

×

O compensador na forma $C(s) = \frac{K(a \cdot s^2 + b \cdot s + c)}{s}$ é C(s) =

x (

1

 $\checkmark s^2 +$

1

x s+

x)/s.

Logo, os ganhos proporcional, integral e derivativo são dados por $K_p =$

 \mathbf{x} , $K_i =$

× e *K_d* =

x , respectivamente.

Com o controlador PID projetado, o sistema em malha fechada tem polos dominantes em $s_{1,2} =$

-2
▼ ± <i>j</i>
$m{ imes}$. O sobressinal teórico associado a estes polos é $M_p=$
$lpha$ % enquanto o tempo de acomodação teórico associado é de $t_s=$
× segundos.
Todavia, devido aos efeitos dos demais polos e zeros do sistema em malha fechada, o sobressinal do sistema compensado é de $M_p=$
st % enquanto o seu tempo de acomodação é de $t_s=$
× segundos.

Questão 4

Parcialmente correto

Atingiu 0,2 de 1,0

Considere o sistema descrito na figura abaixo onde $G(s) = \frac{10}{s(s+4)}$ e C(s) é um controlador PI dado por C(s) = 0, $8\frac{(s+1)}{s}$.

Este sistema tem polos dominantes de malha fechada em $s_{1,2}=-1\pm j1$, 732 que deveriam fornecer um sobressinal $M_p=16$, 3%e tempo de acomodação $t_s=4$ s que são os objetivos de resposta transitória desejados. Todavia, devido ao polo de malha fechada em $s_3=-2$ e ao zero de malha fechada em s=-1, a resposta do sistema exibe sobressinal de 43,4% e tempo de acomodação de 4,14 s.

Visando aproximar a resposta transitória dos valores desejados e mantendo o erro nulo para entrada do tipo rampa, projete um controlador PID C(s) de forma a cancelar o polo da planta G(s) em s=-4 mantendo os polos dominantes desejados em $s_{1,2}=-1\pm j$ 1, 732 . Isso visa reduzir a ordem do sistema compensado de forma que ele se mantenha de segunda ordem após a

introdução do controlador. Suponha que o controlador PID tenha a forma $C(s) = K_c T_d \left(s + \frac{1}{T_d}\right) \frac{\left(s + \frac{1}{T_i}\right)}{s} = K(s + z_1) \frac{\left(s + z_2\right)}{s}$.

Verifique se há melhora na resposta transitória em comparação com a compensação PI apresentada acima. Dica: para a determinação da condição de ângulo do lugar das raízes considere a porção do PID responsável pelo zero para realizar o cancelamento com o polo da planta e o integrado juntamente com G(s). Preencha as lacunas com as respostas adequadas considerando 3 algarismos

significativos. A contribuição angular que o termo $(s+z_2)$ do compensador deve inserir no lugar das raízes é $\phi=$ **x** graus. Para atender a contribuição angular ϕ , o zero do compensador em $s=-z_2$ deve estar $s=-z_2$ X . O ganho do compensador vale K =**X** . O compensador na forma $C(s) = \frac{K(a \cdot s^2 + b \cdot s + c)}{s}$ é C(s) =**√** s²+ 1 **x**)/s Com o controlador PID projetado, o sistema em malha fechada tem polos dominantes em $s_{1,2}=$ -1 **∨** ±j imes . O sobressinal teórico associado a estes polos é $M_p =$ \times % enquanto o tempo de acomodação teórico associado é de $t_s =$ segundos.

_			
	% enquan	to o seu tempo de acomodação é de $t_{\mathfrak s}=$	
_			
	segundos	. Mas, observa-se que os resultados obtidos com o controlador PID melhoraram	✓ .

Considere o sistema descrito na figura abaixo onde $G(s) = \frac{10}{s(s+4)}$ e C(s) é um controlador a ser projetado.

Deseja-se sobressinal $M_p=16$, 3%, tempo de acomodação $t_s=4$ s e erro nulo em regime permanente para entrada rampa. Para atender os requisitos de resposta transitória, os polos dominantes de malha fechada devem ser $s_{1,2}=-1\pm j1$, 732 e deve-se incluir um integrador para zerar o referido erro de interesse. Um controlador PI dado por C(s) = 0, $8\frac{(s+1)}{s}$ zera o erro e fornece os polos de malha fechada desejados. Todavia, devido ao polo de malha fechada em $s_3=-2$ e ao zero de malha fechada em s=-1, a resposta do sistema exibe sobressinal de 43,4% e tempo de acomodação de 4,14 s. Visando melhorar a resposta transitória ao mesmo tempo em que se zera o erro em regime permanente para a entrada rampa, é possível se projetar um controlador C(s) do tipo PID de forma a cancelarmos o polo da planta em s=-4. Isso faz com que o sistema compensado seja de segunda ordem e há uma melhora da resposta. Ainda assim, devido ao zero do sistema em malha fechada, devido ao controlador, obtém-se um sobressinal maior do que o desejado e o sistema tem tempo de acomodação menor do que o especificado. Para atendermos o mais próximo possível as especificações do problema, uma possível abordagem é o uso do controlador PID com o cancelamento do polo da planta em s=-4porém, devemos escolher polos dominantes de malha fechada com um coeficiente de amortecimento ζ maior para reduzirmos o sobressinal e frequência natural ω_n menor para deixarmos o sistema mais lento. Assim, escolhendo zeta=0, 89 e $\omega_n=1$, 3 rad/sresulta nos polos dominantes de malha fechada $s_{1,2}=-1$, $157\pm j0$, 593. Com base nesses novos polos de malha fechada, projete um controlador PID na forma $C(s) = K_c T_d \left(s + \frac{1}{T_d}\right) \frac{\left(s + \frac{1}{T_i}\right)}{s} = K(s + z_1) \frac{(s + z_2)}{s}$ e verifique se as especificações do problema são atendidas. Dica: para a determinação da condição de ângulo do lugar das raízes considere a porção do PID responsável pelo zero para realizar o cancelamento com o polo da planta e o integrado juntamente com G(s). Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos.

A contribuição angular que o termo $(s+z_2)$ do compensador deve inserir no lugar das raízes é $\phi=$
🗙 graus.
Para atender a contribuição angular ϕ , o zero do compensador em $s=-z_2$ deve estar $s=$
x .
O ganho do compensador vale $K=$
$oldsymbol{x}$.
O compensador na forma $C(s) = \frac{K(a \cdot s^2 + b \cdot s + c)}{s} \notin C(s) =$
x (
$\checkmark s^2 +$ 2
x s+ 1
x)/s.
Com o controlador PID projetado, o sistema em malha fechada tem polos dominantes em $s_{1,2} =$
★ ± <i>j</i>

imes . O sobressinal teórico associado a estes polos é $M_p =$

× % 6	$rac{\%}{}$ enquanto o tempo de acomodação teórico associado é de $ au_{s}=$		
× se	segundos.		
	avia, mesmo o sistema resultante sendo de segunda ordem, devido aos efeitos do $$ zenpensado é de $$ $M_p=$	ero em malha fechada, o sobre	essinal do sistema
× % 6	$rac{\% ext{ enquanto o seu tempo de acomodação é de } extit{$t_{s} = $}$		
× se	segundos. Mas, observa-se que os resultados obtidos com o controlador PID projeta	do melhoraram 🗸 .	
⊸ Scr	Script Python		
Segui	guir para		
	Aula 7 - Projeto de Cont	roladores pelos Métodos de 2	Ziegler-Nichols ►