

Division of construction engineering

Computational Methods

Dr. Abdelkader AMMERI

Homework Nbre 4

Exercise 1

Consider the following integral: $\int_{1}^{3} \left(x^{3} + x^{2} + \frac{1}{x^{2}} \right) dx$

We give the exact value of the integral: 88/3.

- (a) Compute an approximate value of this integral using the trapezoidal rule of integration with n=3 and give the true relative error.
- (b) Compute an approximate value of this integral using the trapezoidal rule of integration with n=4 and give the true relative error and the absolute relative approximate error.
- (c) Compute an approximate value of this integral using the Simpson's 1/3rd Rule of integration with n=4 and give the true relative error and the absolute relative approximate error.

Exercise 2

Consider the following integral: $\int_{0}^{4} e^{-\frac{x^{2}}{2}} dx$

- (a) Compute an approximate value of this integral using the trapezoidal rule of integration with n=3.
- (b) Compute an approximate value of this integral using the trapezoidal rule of integration with n=4 and give the absolute relative approximate error.
- (c) Compute an approximate value of this integral using the Simpson's 1/3rd Rule of integration with n=4 and give the absolute relative approximate error.

Solution

Exercise 1

a)
$$h = \frac{b-a}{n} = \frac{3-1}{3} = \frac{2}{3}$$

 $f(x) = x^3 + x^2 + \frac{1}{x^2}$

x	f(x)	α	$\alpha f(x)$
1	3	1	3
$1 + \frac{2}{3} = \frac{5}{3}$	7.767	2	15.535
$\frac{7}{3}$	18.331	2	36.664
3	36.111	1	36.111
Σ			91.310

$$f(1) = 1 + 1 + 1 = 3$$

$$f(\frac{5}{3}) = \frac{125}{27} + \frac{25}{9} + \frac{9}{25} = \frac{125 \times 25 + 25 \times 3 \times 25 + 9 \times 27}{27 \times 25} = \frac{5243}{675} = 7.767$$

$$f(\frac{7}{3}) = \frac{343}{27} + \frac{49}{9} + \frac{9}{49} = \frac{343 \times 49 + 49 \times 3 \times 49 + 9 \times 27}{27 \times 49} = \frac{24253}{1323} = 18.331$$

$$f(3) = 27 + 9 + \frac{1}{9} = \frac{27 \times 9 + 9 \times 9 + 1}{9} = \frac{325}{9} = 36.111$$

$$I \approx \frac{h}{2}\Sigma = \frac{\frac{2}{3}}{\frac{3}{2}} * 91.310 \approx 30.437$$

$$e_{i} = \frac{\frac{88}{3} - 30.437}{\frac{88}{3}} \approx -3.76\%$$

b)
$$h = \frac{b-a}{n} = \frac{3-1}{4} = \frac{2}{4} = 0.5$$

 $f(x) = x^3 + x^2 + \frac{1}{x^2}$

х	f(x)	α	$\alpha f(x)$
1	3	1	3
1.5	6.069	2	12.14
2	12.25	2	24.5
2.5	22.035	2	44.07
3	36.111	1	36.111
Σ			119.821

$$I \approx \frac{h}{2}\Sigma = \frac{0.5}{2} * 119.821 = 29.96$$

$$\epsilon_{t} = \frac{\frac{88}{3} - 29.96}{\frac{88}{2}} * 100 = -2.12\%$$

$$\left| \in_{a} \right| = \frac{\left| 29.96 - 30.44 \right|}{29.96} * 100 = 1.60\%$$

c)
$$h = \frac{b-a}{n} = \frac{3-1}{4} = \frac{2}{4} = 0.5$$

 $f(x) = x^3 + x^2 + \frac{1}{x^2}$

x	f(x)	α	$\alpha f(x)$
1	3	1	3
1.5	6.069	4	24.28
2	12.25	2	24.5
2.5	22.035	4	88.14
3	36.111	1	36.111
Σ			176.031

$$I \approx \frac{h}{3}\Sigma = \frac{0.5}{3} * 176.031 = 29.34$$

$$\epsilon_t = \frac{\frac{88}{3} - 29.34}{\frac{88}{3}} * 100 = -0.023\%$$

$$\left| \in_a \right| = \frac{\left| 29.34 - 29.96 \right|}{29.34} * 100 = 2.11\%$$

Exercise 2
a)
$$h = \frac{b-a}{n} = \frac{4-0}{3} = \frac{4}{3} = 1.33$$

х	f(x)	α	$\alpha f(x)$
0	1.0000	1	1.0000
$0 + \frac{4}{3} = \frac{4}{3}$	0.4111	2	0.8222
$\frac{8}{3}$	0.0286	2	0.0571
4	0.0003	1	0.0003
Σ			1.8797

Σ

$$I \approx \frac{h}{2}\Sigma = \frac{\frac{4}{3}}{2} * 1.8797 = 1.2531$$

b)
$$h = \frac{b-a}{n} = \frac{4-0}{4} = \frac{4}{4} = 1$$

х	f(x)	α	$\alpha f(x)$
0	1.0000	1	1.0000
1	0.6065	2	1.2131
2	0.1353	2	0.2707
3	0.0111	2	0.0222
4	0.0003	1	0.0003
Σ			2.5063

$$I \approx \frac{h}{2}\Sigma = \frac{1}{2} * 2.5063 = 1.2531$$

$$\left| \in_a \right| = \frac{\left| 1.2531 - 1.2531 \right|}{1.2531} * 100 = 0.0\%$$

c)
$$h = \frac{b-a}{n} = \frac{4-0}{4} = \frac{4}{4} = 1$$

 $f(x) = e^{-\frac{x^2}{2}}$

x	f(x)	α	$\alpha f(x)$
0	1.0000	1	1.0000
1	0.6065	4	2.4261
2	0.1353	2	0.2707
3	0.0111	4	0.0444
4	0.0003	1	0.0003
Σ			4.9888

$$I \approx \frac{h}{3}\Sigma = \frac{1}{3} * 4.9888 = 1.2472$$

$$\left| \in_{a} \right| = \frac{\left| 1.2472 - 1.2531 \right|}{1.2472} * 100 = 0.48\%$$