Artificial Intelligence

K. N Toosi University of Technology

Course Instructor:

Dr. Omid Azarkasb

Teaching Assistants:

Atena Najaf Abadi Farahani Saeed Mahmoudian

Informed Search

Informed Searches

- Best-first search, Hill climbing, Beam search, A*, IDA*, RBFS, SMA*
- New terms
 - Heuristics
 - Optimal solution
 - Informedness
 - Hill climbing problems
 - Admissibility
- New parameters
 - g(n) = estimated cost from initial state to state n
 - h(n) = estimated cost (distance) from state n to closest goal
 - h(n) is our heuristic
 - Robot path planning, h(n) could be Euclidean distance
 - 8 puzzle, h(n) could be #tiles out of place
- Search algorithms which use h(n) to guide search are heuristic search algorithms

Best-First Search

- QueueingFn is sort-by-h
- Best-first search only as good as heuristic
 - Example heuristic for 8 puzzle:
 Manhattan Distance

Comparison of Search Techniques

	DFS	BFS	UCS	IDS	Best
Complete	N	Υ	Υ	Υ	N
Optimal	N	N	Υ	N	N
Heuristic	N	N	N	N	Υ
Time	b ^m	b ^{d+1}	b ^m	b ^d	b ^m
Space	bm	b ^{d+1}	b ^m	bd	b ^m

Hill Climbing (Greedy Search)

- QueueingFn is sort-by-h
 - Only keep lowest-h state on open list
- Best-first search is tentative
- Hill climbing is irrevocable
- Features
 - Much faster
 - Less memory
 - Dependent upon h(n)
 - If bad h(n), may prune away all goals
 - Not complete

Hill Climbing (gradient ascent/descent)

"Like climbing Mount Everest in thick fog with amnesia"

Hill Climbing Issues

- Also referred to as gradient descent
- Foothill problem / local maxima / local minima
- Can be solved with random walk or more steps
- Other problems: ridges, plateaus

Hill-climbing contd.

Useful to consider state space landscape

Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves Sescape from shoulders loop on flat maxima

Comparison of Search Techniques

	DFS	BFS	UCS	IDS	Best	НС
Complete	N	Υ	Υ	Υ	N	N
Optimal	N	N	Υ	N	N	N
Heuristic	N	N	N	N	Υ	Υ
Time	b ^m	b ^{d+1}	b ^m	b ^d	b ^m	bm
Space	bm	b ^{d+1}	b ^m	bd	b ^m	b

Beam Search

- QueueingFn is sort-by-h
 - Only keep best (lowest-h) n nodes on open list
- n is the "beam width"
 - -n = 1, Hill climbing
 - n = infinity, Best first search

Comparison of Search Techniques

	DFS	BFS	UCS	IDS	Best	нс	Beam
Complete	N	Υ	Υ	Υ	N	N	N
Optimal	N	N	Υ	N	N	N	N
Heuristic	N	N	N	N	Y	Υ	Υ
Time	b ^m	b ^{d+1}	b ^m	b ^d	b ^m	bm	nm
Space	bm	b ^{d+1}	b ^m	bd	b ^m	b	bn

A*

- QueueingFn is sort-by-f
 - -f(n) = g(n) + h(n)
- Note that UCS and Best-first both improve search
 - UCS keeps solution cost low
 - Best-first helps find solution quickly
- A* combines these approaches

Power of f

- If heuristic function is wrong it either
 - overestimates (guesses too high)
 - underestimates (guesses too low)
- Overestimating is worse than underestimating
- A* returns optimal solution if h(n) is admissible
 - heuristic function is admissible if never overestimates true cost to nearest goal
 - if search finds optimal solution using admissible heuristic, the search is admissible

Overestimating

- Solution cost:
 - -ABF = 9
 - -ADI = 8

- Open list:
 - A (15) B (9) F (9)
- Missed optimal solution

A* applied to 8 puzzle

A* search applet

Open List = C (0+2=2)

Open List = T (1+1=2), O (2+2=4), P (2+3=5), B(3+4=7)

Open List = O (2+2=4), P (2+3=5), B(3+4=7)

Open List = O (2+2=4), P (2+3=5), B(3+4=7)

Open List = O (2+2=4), P (2+3=5), B(3+4=7) I (6+1=7), N (7+44=51)

Open List = P (2+3=5), B(3+4=7) I (6+1=7), N (7+44=51)

Open List = P (2+3=5), L (6+0=6), B (3+4=7) I (6+1=7), F (7+8=15), D (7+10=17), N (7+44=51)

Open List = L (6+0=6), B (3+4=7) I (6+1=7), F (7+8=15), D (7+10=17), N (7+44=51)

Optimality of A*

- Suppose a suboptimal goal G₂ is on the open list
- Let n be unexpanded node on smallest-cost path to optimal goal G₁

$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
>= $g(G_1)$ since G_2 is suboptimal
>= $f(n)$ since G_2 is admissible

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion

Admissibility بر مان فان ، ترف مى لنم كى عدف ما تد ولى بنه نبائسه . F(G,1 = h(G) F(Gylsh(Gyl h(Gx) > h(G) if G, is Subabtimal -> F(6,) > F(6) Fins = g(n) + h(n) < g(n) + h*(n) F(G) = h(G) x F(Gx) ains depth union ination Fin x FCG;

Comparison of Search Techniques

	DFS	BFS	UCS	IDS	Best	НС	Beam	A*
Complete	N	Υ	Υ	Υ	N	N	N	Υ
Optimal	N	N	Υ	N	N	N	N	Υ
Heuristic	N	N	N	N	Υ	Υ	Y	Υ
Time	b ^m	b ^{d+1}	b ^m	b ^d	b ^m	bm	nm	b ^m
Space	bm	b ^{d+1}	b ^m	bd	b ^m	b	bn	b ^m

IDA*

- Series of Depth-First Searches
- Like Iterative Deepening Search, except
 - Use A* cost threshold instead of depth threshold
 - Ensures optimal solution
- QueuingFn enqueues at front if f(child) <= threshold
- Threshold
 - h(root) first iteration
 - Subsequent iterations
 - f(min_child)
 - min_child is the cut off child with the minimum f value
 - Increase always includes at least one new node
 - Makes sure search never looks beyond optimal cost solution

limit = f(C) = 2

$$limit = f(C) = 2$$

Nodes on frontier: B (3+4=7), O(2+2=4), P(2+3=5) New limit = f(O) = 4

limit = f(O) = 4

limit = f(O) = 4

$$limit = f(O) = 4$$

Nodes on frontier: B (3+4=7), P (2+3=5)

I (6+1=7), N (7+44=51)

New limit = f(P) = 5

limit = f(L) = 6

Nodes on frontier: B (3+4=7), I (6+1=7), N (7+44=51) L (6+0=6), F (7+8=15), D (7+10=17)

Analysis

- Some redundant search
 - Small amount compared to work done on last iteration
- Dangerous if continuous-valued h(n) values or if values very close
 - If threshold = 21.1 and value is 21.2, probably only include 1 new node each iteration
- Time complexity is O(b^m)
- Space complexity is O(m)

Comparison of Search Techniques

	DFS	BFS	UCS	IDS	Best	НС	Beam	A *	IDA*
Complete	N	Υ	Υ	Υ	N	N	N	Υ	Υ
Optimal	N	N	Υ	N	N	N	N	Υ	Υ
Heuristic	N	N	N	N	Υ	Υ	Y	Υ	Υ
Time	b ^m	b ^{d+1}	b ^m	b ^d	b ^m	bm	nm	b ^m	b ^m
Space	bm	b ^{d+1}	b ^m	bd	b ^m	b	bn	b ^m	bm

RBFS

- Recursive Best First Search
 - Linear space variant of A*
- Perform A* search but discard subtrees when perform recursion
- Keep track of alternative (next best) subtree
- Expand subtree until f value greater than bound
- Update f values before (from parent) and after (from descendant) recursive call

Algorithm

```
// Input is current node and f limit
// Returns goal node or failure, updated limit
RBFS(n, limit)
  if Goal(n)
   return n
  children = Expand(n)
  if children empty
   return failure, infinity
  for each c in children
   f[c] = max(g(c)+h(c), f[n])
                                            // Update f[c] based on parent
  repeat
   best = child with smallest f value
   if f[best] > limit
     return failure, f[best]
   alternative = second-lowest f-value among children
   newlimit = min(limit, alternative)
   result, f[best] = RBFS(best, newlimit) // Update f[best] based on descendant
 if result not equal to failure
   return result
```


Analysis

- Optimal if h(n) is admissible
- Time is O(bm)
- Features
 - Potentially exponential time in cost of solution
 - More efficient than IDA*
 - Keeps more information than IDA* but benefits from storing this information

SMA*

- Simplified Memory-Bounded A* Search
- Perform A* search
- When memory is full
 - Discard worst leaf (largest f(n) value)
 - Back value of discarded node to parent
- Optimal if solution fits in memory

- Let MaxNodes = 3
- Initially B&G added to open list, then hit max
- B is larger f value so discard but save f(B)=15 at parent A
 - Add H but f(H)=18. Not a goal and cannot go deper, so set f(h)=infinity and save at G.
 - Generate next child I with f(I)=24, bigger child of A. We have seen all children of G, so reset f(G)=24.
- Regenerate B and child C.
 This is not goal so f(c) reset to infinity
- Generate second child D with f(D)=24, backing up value to ancestors
- D is a goal node, so search terminates.

Heuristic Functions

- Q: Given that we will only use heuristic functions that do not overestimate, what type of heuristic functions (among these) perform best?
- A: Those that produce higher h(n) values.

Reasons

- Higher h value means closer to actual distance
- Any node n on open list with
 - $-f(n) < f^*(goal)$
 - will be selected for expansion by A*
- This means if a lot of nodes have a low underestimate (lower than actual optimum cost)
 - All of them will be expanded
 - Results in increased search time and space

Informedness

- If h1 and h2 are both admissible and
- For all x, h1(x) > h2(x), then h1 "dominates" h2
 - Can also say h1 is "more informed" than h2
- Example
 - h1(x): $|x_{goal} x|$
 - h2(x): Euclidean distance $\sqrt{(x_{goal} x)^2 + (y_{goal} y)^2}$
 - h2 dominates h1

Effect on Search Cost

- If h2(n) >= h1(n) for all n (both are admissible)
 - then h2 dominates h1 and is better for search
- Typical search costs
 - d=14, IDS expands 3,473,941 nodes
 - A* with h1 expands 539 nodes
 - A* with h2 expands 113 nodes
 - d=24, IDS expands ~54,000,000,000 nodes
 - A* with h1 expands 39,135 nodes
 - A* with h2 expands 1,641 nodes

Which of these heuristics are admissible?

Which are more informed?

- h1(n) = #tiles in wrong position
- h2(n) = Sum of Manhattan distance between each tile and goal location for the tile
- h3(n) = 0
- h4(n) = 1
- h5(n) = min(2, h*[n])
- h6(n) = Manhattan distance for blank tile
- h7(n) = max(2, h*[n])

Generating Heuristic Functions

- Generate heuristic for simpler (relaxed) problem
 - Relaxed problem has fewer restrictions
 - Eight puzzle where multiple tiles can be in the same spot
 - Cost of optimal solution to relaxed problem is an admissible heuristic for the original problem
- Learn heuristic from experience