实验 XXX

(R, H, A) 分别为直径, 距离, 角度。第一次实验中只允许 R 进行一定变化, 实验代号为 XXX, 指三个量均不可变。实验原理如下图:

当连线中心水平时, A=0, H与R均固定。

实验数据

首先将 R 设为 2000, 收集三次数据后,将 R 减半,直至 R=最小像素点。实验数据如下,蓝色线条代表第一次,橙色线条代表第二次,绿色线条代表第三次:

数据分析

理论分析:

在单次实验当中,当目标物突然出现,人眼识别到信号以后,会有一个大脑的处理过程,直到速度开始变化,开始反应的时间叫做反应时间。当开始加速移动后,会快速地接近目标,到达目标附近会减速,减速到大脑能够反应鼠标现在的位置,这段时间叫做加速移动时间,在这时间内不需要投放注意力,大脑的注意力均在目标身上。当鼠标的位置确定以后,大脑会持续的给鼠标和目标均投放注意力,直至点击目标,这段时间叫做对准时间

实验数据分析

R=2000

总时间为约 0.55 秒,反应时间为 0.22 秒。在这个图中没有对准时间,分析原因:因为目标太大,还不需要进行减速,在移动的过程中就对目标进行点击了。

点击时间约 0.55 秒。反应时间约 0.22 秒。和 R=2000 时模式几乎相同。说明目标现在仍然是太大了,还不需要进行对准动作。

在 R=500 至 31.25 之间,有相同的模式,即反应时间,加速移动时间,加一次对准时间。

R=500 时,点击时间约 0.75 秒,反应时间约 0.22 秒,加速移动时间约 0.3 秒,对准时间 0.25 秒。

在这段区间内,能够发现反应时间明显变长,对准时间也更长, 而且还会有一段长尾,低速移动以求使得鼠标能够对准目标。

当 R=7.8 时,发现连反应时间也长短不一了,说明目标已经小到 大脑都需要更长时间来反应,而且加速移动时间阶段过了之后会有多 个对准时间,进行多次对准动作。长尾期甚至更长。需要 2 秒多才能 够点击到目标。

R 越来越小,需要的对准时间也更长。

数据汇总

R	点击时 间	反应时 间	加速移动时间	对准时 间	长尾时 间
2000	0.55	0.22	0.33	0	0
1000	0.55	0.22	0.33	0	0
500	0.75	0.22	0.3	0. 23	0
250	0.9	0.22	0.4	0. 28	0
125	0.9	0.22	0.4	0. 28	0
62. 5	1.2	0.22	0.5	0.25	0.23
31.5	1.2	0.22	0.4	0.25	0.33
15.625	1.4	0.4	0.4	0.2	0.4
7.8125	2. 25	0.5	0.5	0. 25	1
3. 90625	7	0.5	0.5	0.25	5. 75

对表中数据分析发现:

- 1. 反应时间只有在目标极小时才会增加
- 2. 加速移动时间变化幅度不大
- 3. 对准时间基本不变
- 4. 长尾时间随着目标减小而急剧增加,最后甚至成为最影响点 击时间的因素