

UNIVERSIDADE FEDERAL DO CEARÁ CAMPUS DA UFC EM RUSSAS PLANO DE ENSINO DE DISCIPLINA

DISCIPLINA	CÓDIGO	CRÉDITOS	TURMA	ANO/SEMESTRE
Sistemas Multi-Agente	RUS0116	4	01A	2018

PROFESSOR RESPONSÁVEL	TITULAÇÃO	REGIME DE TRABALHO
Francisco Nauber Bernardo Gois	Doutor	DE

CURSO	UNIDADE ACADÊMICA	NÍVEL	UNIDADE CURRICULAR
Ciência da Computação	Campus de Russas	Graduação	Conteúdos Básicos

PRÉ-REQUISITOS EXIGIDOS	PRÉ-REQUISITO PARA
Inteligência Artificial	

EMENTA

Agentes inteligentes: conceitos, modelos e arquiteturas; agentes reativos; agentes deliberativos; Fundamentos da Inteligência Artificial Distribuída e, em especial, dos Sistemas Multiagentes. Aspectos de comportamento emergente, comunicação, negociação e coordenação entre agentes. Metodologias de Desenvolvimento e Arquiteturas de Sistemas Multiagentes. Apresentação de aplicações existentes e Utilização de Plataformas para o desenvolvimento de Sistemas Multiagentes.

CALENDÁRIO DE ATIVIDADES

AULA	LOCAL	DATA	ASSUNTO
Sem aula		06/08	RECEPÇÃO DOS ALUNOS
T 01	Sala	06/08	Introdução a sistemas multiagente
P 01	Laboratório	08/08	Algoritmos para otimização distribuida
P 02	Laboratório	13/08	Votação e solução de problemas em redes
P 03	Laboratório	15/08	Abordagens cooperativas
P 04	Laboratório	20/08	Modelos de Cooperação
	Sala	20/08	Aula Extra- Pesquisa em Engenharia de Software
			(Aula para possível reposição)
P 05	Laboratório	22/08	Modelos de Cooperação
P 06	Laboratório	27/08	Teoria dos Jogos
	Sala	27/08	Aula Extra- Pesquisa em Engenharia de Software – Latex
			(Aula para possível reposição)
P 07	Laboratório	29/08	Teoria dos Jogos
P 08	Laboratório	03/09	Teoria dos Jogos
T 02	Laboratório	05/09	Agentes de Raciocínio Dedutivos.
T 03	Laboratório	10/09	Agentes Reativos. Agentes Híbridos.
P 09	Laboratório	12/09	Agentes Reativos. Agentes Híbridos.
P 10	Laboratório	17/09	Simulação Baseada em Agentes.
	Sala	17/09	Aula Extra- Pesquisa em Engenharia de Software – Latex
			(Aula para possível reposição)
P 11	Laboratório	19/09	Comunicação. Cooperação.
P 12	Laboratório	24/09	Interações. Coalisões.
P 13	Laboratório	26/09	Leilões. Alocação de Recursos.

P 14	Laboratório	01/10	Security Games
T 04	Laboratório	03/10	Steering User Behavior
T 05	Sala	08/10	Cooperative Game Theory
P 15	Sala	10/10	PROVA PRÁTICA 1
	Sala	15/10	Feriado
T 06	Sala	17/10	PROVA TEÓRICA 1
T 07	Laboratório	22/10	Resolução da Prova Teórica 1
P 16	Laboratório	24/10	Encontros Universitário
P 17	Laboratório	29/10	Computational Social Choice
P 18	Laboratório	31/10	Dynamical systems and numerical integration
P 19	Laboratório	05/11	Dynamical systems and numerical integration
	Sala	05/11	Aula Extra-Pesquisa em Engenharia de Software
			(Aula para possível reposição)
P 20	Laboratório	07/11	Cellular Automata
P 21	Laboratório	12/11	Lattice Boltzmann modeling of fluid flow
P 22	Laboratório	14/11	Particles and point-like objects
T 08	Sala	19/11	Introduction to Discrete Events Simulation
T 09	Sala	21/11	PROVA PRÁTICA 2
T 10	Sala	26/11	PROVA TEÓRICA 2
	0-1-	40/40	Avalia a Sa Pinal
	Sala	10/12	Avaliação Final

SISTEMA DE AVALIAÇÃO

O sistema de avaliação utilizará três tipos de notas: de trabalhos práticos, de avaliações teóricas, e de avaliações práticas.

- Trabalhos práticos (em equipes): Somente para a matéria de cálculo numérico, todos os métodos numéricos deverão ser implementados.
- Avaliações teóricas (individuais): Serão seis avaliações teóricas, três por semestre. A terceira avaliação de cada semestre serve como segunda chamada para quem faltou alguma das duas primeiras avaliações. Caso um aluno falte as duas primeiras avaliações do semestre, a terceira avaliação contará como segunda chamada para as duas avaliações.
- Avaliações práticas (em equipes): Serão duas avaliações práticas, uma por semestre. Em cada avaliação, a equipe resolverá um ou mais problemas implementando uma solução por um método numérico, utilizando as implementações dos trabalhos práticos.

A média parcial (MP) será uma média aritmética das notas dos dois semestres (MS₁ e MS₂). Em cada semestre, as notas serão como a sequir:

- Trabalhos práticos (MT): Será feita a média aritmética de todos os métodos pontuados. A média dos trabalhos práticos vale de 0 a 10.
- Avaliações teóricas (AT): Das três avaliações de cada semestre, as duas maiores notas serão contabilizadas. Caso um aluno falte uma das avaliações, a nota dessa avaliação será 0. Cada avaliação vale de 0 a 10.
- Avaliação prática (AP): Vale de 0 a 10.

A média semestral será uma média aritmética, feita entre as notas do trabalho, da avaliação prática e das avaliações teóricas.

De maneira geral, o cálculo é apresentado a seguir. MP é a média parcial, MS_1 é a média do primeiro semestre, MS_2 é a média do segundo semestre, $AT_{1/1m}$ e $AT_{1/2m}$ são duas maiores notas das avaliações teóricas do primeiro semestre, $AT_{2/1m}$ e $AT_{2/2m}$ são as duas maiores notas das avaliações teóricas do segundo semestre, AP_1 é a nota da primeira avaliação prática, AP_2 é a nota da segunda avaliação prática, MT_1 é a média do trabalhos do primeiro semestre, e MT_2 é a média dos trabalhos do segundo semestre.

$$\mathbf{M} = \frac{\mathbf{M}_{1} + \mathbf{M}_{2}}{2};$$

$$\mathbf{M}_{1} = \frac{\mathbf{X}_{1/1m} + \mathbf{X}_{2} \cdot \mathbf{A}_{1/2m} + \mathbf{X$$

Se MP \geq 7, o aluno está aprovado. Se MP < 4, o aluno está reprovado. Se 4 \leq MP < 7, o aluno precisará fazer a avaliação final (AF), e sua nota final será MF = (MP + AF)/2. Se AF > 4 e MF \geq 5, o aluno está aprovado. Senão, está reprovado.

No critério de frequência, se o aluno tiver faltado a mais de 25% das aulas, o aluno estará reprovado por faltas. Não existe falta justificada.

BIBLIOGRAFIA RECOMENDADA

Bibliografia Básica:

- 1. WOOLDRIDGE, Michael J. An introduction to multiagent systems. 2. ed. New York: J. Wiley & Sons, 2009. 461 p. ISBN 9780470519462 (broch.).
- 2. RUSSELL, Stuart J.; NORVIG, Peter. Inteligência artificial. Rio de Janeiro: Elsevier, Campus, 2004. 1021 p. ISBN 8535211772 (broch.).
- 3. FOWLER, Martin. UML essencial: um breve guia para a linguagem-padrão de modelagem de objetos .
- 3. ed. Porto Alegre: Bookman, 2005. 160 p. ISBN 8536304545 (broch.).

Bibliografia Complementar:

- 1. DEITEL, Paul J.; DEITEL, Harvey M. Java: como programar. 8. ed. São Paulo: Pearson Prentice Hall, 2010. 1144 p. ISBN 9788576055631 (broch.).
- 2. RUMBAUGH, James. Modelagem e projetos baseados em objetos. Rio de Janeiro: Campus, 2006. 652p. ISBN 857001841X.
- 3. MEYER, Bertrand. Object oriented software construction. 2nd. ed. New Jersey: Prentice Hall PTR, 1997. 1254 p. ISBN 0136291554.
- 4. FIPA. Especificações FIPA. Disponível em: http://www.fipa.org. Acesso em: 24 jan. 2013.
- 5. KENNETH BARCLAY, JOHN SAVAGE; Object-Oriented Design with UML and Java [Paperback]. Butterworth-Heinemann; 1 edition (February 10, 2004). ISBN-13: 978-0750660983.

DATA: 07/08/2018			
-			
	PROFESSOR		
-	COORDENADOR DO CURSO		

HOMOLOGADO PELA COORDENAÇÃO ACADÊMICA		
COORDENADOR AC	CADÊMICO	
COORDENADOR AC	CADÊMICO	