```
In [2]: import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
```

```
In [3]: df = pd.read_csv("myFile.txt", header = None)
```

```
In [4]: df.drop([0], axis=1,inplace = True)
```

In [5]: df.head(10)

Out[5]:	

	1	2	3	4	5	6	7	8	9	10	 40	41	42	43	
0	0.65154	0.225050	0.322140	0.62432	0.558980	0.176040	0.21325	0.48730	0.19964	0.21688	 0.42650	0.35935	0.46189	0.41379	С
1	0.62432	0.095281	0.383850	0.58348	0.211430	0.224140	0.18875	0.12976	0.38294	0.16697	 0.42468	0.33757	0.36207	0.46098	С
2	0.69510	0.251360	0.203270	0.25953	0.211430	0.310340	0.30672	0.12976	0.17967	0.17423	 0.33212	0.33122	0.41561	0.41833	О
3	0.68512	0.184210	0.304900	0.57169	0.226860	0.354810	0.43103	0.10799	0.19056	0.49274	 0.43285	0.48276	0.32305	0.38022	О
4	0.67604	0.127040	0.166060	0.59437	0.613430	0.096189	0.17423	0.17060	0.26044	0.19238	 0.39927	0.39837	0.36388	0.32668	С
5	0.65880	0.112520	0.107990	0.59165	0.338480	0.236840	0.43466	0.21416	0.19328	0.14610	 0.41742	0.36751	0.47731	0.38294	С
6	0.70054	0.261340	0.235030	0.19419	0.094374	0.328490	0.11525	0.17786	0.21143	0.34846	 0.46370	0.51452	0.32759	0.37659	С
7	0.69510	0.245010	0.099819	0.39927	0.216880	0.142470	0.43194	0.31579	0.20599	0.17695	 0.31488	0.38838	0.32214	0.42468	С
8	0.70145	0.600730	0.617060	0.37931	0.159710	0.174230	0.10163	0.43376	0.10254	0.26497	 0.38838	0.37931	0.37750	0.39564	С
9	0.68966	0.447370	0.235930	0.36570	0.159710	0.169690	0.31851	0.30581	0.20599	0.17514	 0.31307	0.41742	0.21960	0.31670	О

10 rows × 49 columns

heatmap of missrate

```
In [6]: import seaborn as sns; sns.set()
ax = sns.heatmap(df)
```


In [7]: df.describe()

Out[7]:

	1	2	3	4	5	6	7	8	9	10	
count	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	 10
mean	0.685027	0.470064	0.262741	0.288784	0.277287	0.280935	0.285944	0.277967	0.275871	0.304229	 6.0
std	0.025436	0.203976	0.150361	0.154659	0.152538	0.142155	0.145984	0.130362	0.125997	0.137216	 0.1
min	0.596190	0.094374	0.091652	0.082577	0.084392	0.090744	0.094374	0.098004	0.096189	0.104360	 0.1
25%	0.669693	0.258392	0.141108	0.171960	0.159710	0.168330	0.171277	0.167880	0.181718	0.182847	 0.2
50%	0.689205	0.589835	0.204630	0.286300	0.250910	0.260890	0.258620	0.263615	0.245460	0.272235	 0.3
75%	0.702360	0.610255	0.356625	0.355943	0.339387	0.374318	0.367058	0.370915	0.355720	0.417652	 0.4
max	0.732300	0.716880	0.669690	0.639750	0.661520	0.641560	0.622500	0.588020	0.634300	0.598910	 0.6

8 rows × 49 columns

In
$$[9]$$
: $a4_dims = (7, 4)$

histogram of k that generate minimum missrate

```
In [10]: fig, ax = plt.subplots(figsize=a4_dims)
fig=sns.distplot(df.idxmin(axis = 1),bins=40)
```


histogram of gamma that generate minimum missrate

```
In [11]: fig, ax = plt.subplots(figsize=a4_dims)
fig=sns.distplot(df.idxmin(axis = 0),bins=10)
```


median of missrate w.r.t. gamma

```
In [12]: ax = plt.subplots(figsize=a4_dims)
sns.lineplot(data = df.median(axis = 1))
```

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x1a18ad4438>

median of missrate w.r.t. k

```
In [13]: ax = plt.subplots(figsize=a4_dims)
sns.lineplot(data = df.median(axis = 0))
```

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x1a18bbc898>

