Globular Cluster Candidates in Maffei 1

Samuel Hinton & Ricardo Salinas

Motivations

- GCs are excellent tracers.
- Maffei 1 is a giant elliptical, estimated to have over a thousand GCs
- Because it is the closest giant elliptical galaxy, at approximately 2.7 Mpc, we can partially resolve GCs

The aim of this project is to use imaging of Maffei 1 from the Subaru Telescope with SUPRIMECAM to select GC candidates for follow up.

The failure of the naive solution

- Use PSF subtracted photometry to manually classify sources
 - Fairly simple to do
 - Time consuming, but still feasible
 - Except this method cannot determine at all the probability for detecting a source

- Need a solution that can be tested
 - Generate artificial images
 - Determine GCs
 - Use this to quantify probability of detection

The Solution:

Data reduction:

Mosaics and calibration data use the SDFRED2 pipeline. Output mosaics are Scamped and SWarped to give correct WCS.

Tiles for classification use the *z'* band image. Scamped to correct WCS. Sources trimmed.

Colour image produced using mosaics and Stiff.

Classification System:

- Data generated using automatically selected PSF stars and BAOlab's mksynth
- Machine learning classifier
 - 40% training, 35% test, 25% validation
- Uses 2 simple Boosted Decision Trees
 - Boost number, tree depth and training weights determined by Matthews
 Correlation Coefficient score against validation data.
 - One for SExtractor, one that also uses iShape

Matthews correlation corefficient: 0.8491

Extended correct: 90.2% False negative: 9.8% Point correct: 98.0% False positive: 2.0%

Num True positive / Num Positive: 0.827

Num True positive / Num Actual Positive: 0.902

Classification System:

Classifier 1 (SExtractor)

Contamination: 31%

Classifier 2 (+ iShape)

Contamination: 17%

Photometry:

- Performed on final mosaics
- Dust extinction calculated from interpolated IRSA dust map for each target.
- Photometric calibrations calculated from Landolt standards transformed into SDSS bands.

IRSA dust map centered on Maffei 1

Classification Results:

Add cuts to absolute magnitude, colour deviation, FWHM and χ^2 cuts.

Location of final candidates around Maffei 1.

224 Class A candidates

224 Class B candidates

Classification Results:

Classification Results:

Final Product

224 Class A objects, and 224 Class B objects for spectroscopic follow up.

ID	RA	DEC	ϵ	$M_{z'}$	$m_{z'}$	r'-z'	King ₃₀ FWHM (pc)
A 1	$2^{\rm h}38^{\rm m}35.3^{\rm s}$	59° 53′ 40.45″	0.14	-8.604	18.552	0.878	2.05
A2	$2^{ m h}38^{ m m}8.8^{ m s}$	59° 52′ 29.39′′	0.10	-7.399	19.757	1.473	4.88
A3	$2^{ m h}38^{ m m}54.9^{ m s}$	59° 52′ 15.67′′	0.22	-9.129	18.028	1.198	2.80
A4	$2^{\rm h}38^{\rm m}12.9^{\rm s}$	59° 52′ 0.73″	0.07	-8.487	18.670	1.363	7.04
A5	$2^{ m h}37^{ m m}56.5^{ m s}$	59° 51′ 57.60″	0.25	-8.708	18.449	1.410	4.10
A6	$2^{\rm h}38^{\rm m}36.6^{\rm s}$	59° 51′ 36.72″	0.17	-7.123	20.033	1.004	3.64
A7	$2^{ m h}38^{ m m}10.6^{ m s}$	59° 50′ 18.02′′	0.20	-7.194	19.963	1.281	3.84
A8	$2^{ m h}38^{ m m}10.7^{ m s}$	59° 50′ 1.18″	0.24	-8.158	18.999	1.413	6.64
A9	$2^{ m h}38^{ m m}59.8^{ m s}$	59° 49′ 49.22′′	0.24	-7.544	19.613	0.985	2.71
A10	$2^{\rm h}38^{\rm m}37.2^{\rm s}$	59° 49′ 41.20″	0.10	-7.116	20.041	1.513	5.48
A11	$2^{ m h}38^{ m m}37.0^{ m s}$	59° 49′ 37.06′′	0.16	-6.685	20.471	1.459	10.54
A12	$2^{\rm h}38^{\rm m}27.5^{\rm s}$	59° 49′ 23.63″	0.17	-8.271	18.886	1.115	11.32
A13	$2^{\rm h}38^{\rm m}49.2^{\rm s}$	59° 48′ 49.93″	0.11	-8.477	18.680	0.920	9.81
A14	$2^{\rm h}38^{\rm m}43.5^{\rm s}$	59° 48′ 17.57″	0.18	-7.249	19.908	1.413	4.85
A15	$2^{\rm h}38^{\rm m}38.6^{\rm s}$	$59^{\circ}47'33.18''$	0.20	-7.096	20.061	2.325	2.19

Questions?

