TUNKU ABDUL RAHMAN UNIVERSITY OF MANAGEMENT AND TECHNOLOGY FACULTY OF COMPUTING AND INFORMATION TECHNOLOGY

ACADEMIC YEAR 2023/2024

JANUARY EXAMINATION

AAMS1143 INTRODUCTORY CALCULUS

FRIDAY, 12 JANUARY 2024

TIME: 3.00 PM - 5.00 PM (2 HOURS)

DIPLOMA IN COMPUTER SCIENCE

Instructions to Candidates:

Answer ALL questions. All questions carry equal marks.

AAMS1143 INTRODUCTORY CALCULUS

Question 1

a) Find the values of the following limits.

(i)
$$\lim_{x \to 9} \frac{2x^2 - 23x + 45}{x^2 - 10x + 9}$$
 (3 marks)

(ii)
$$\lim_{x \to -\infty} \frac{\sqrt{49x^6 - 5x^4}}{11x^3}$$
 (3 marks)

(iii)
$$\lim_{x \to -6} \frac{x+6}{\sqrt{x^2-11}-5}$$
 (5 marks)

b) Function f is defined as follows:

$$f(x) = \begin{cases} 3x - 6, & x < 7\\ x^2 - 5x, & x = 7\\ \frac{2x^2 - 13x - 7}{x - 7}, & x > 7 \end{cases}$$

(i) Explain whether
$$\lim_{x \to 7} f(x)$$
 exists. (5 marks)

(ii) Determine whether the function
$$f$$
 is continuous at $x = 7$. (3 marks)

Use the first principles, find the derivative of
$$y = \frac{2x}{x-1}$$
. (6 marks)

[Total: 25 marks]

Question 2

a) Differentiate the following functions with respect to x.

(i)
$$y = (x^2 + 4)e^{5-6x}$$
 (4 marks)

(ii)
$$y = \left(\frac{1-x}{1+x}\right)^3$$
 (4 marks)

(iii)
$$y = ln \sqrt{\frac{x^2 - 5}{4x + 3}}$$
 (4 marks)

b) Find
$$\frac{d^2y}{dx^2}$$
 for $y = \ln(1 + x^5) + e^{2x}$. (6 marks)

c) Use logarithmic differentiation to find the derivative of function
$$y = \frac{e^{x^3}(7-4x)^2}{\sqrt{1+6x}}$$
. (7 marks)

[Total: 25 marks]

AAMS1143 INTRODUCTORY CALCULUS

Question 3

- a) Given $x^3 + 3y^2 6x^2y^3 1 = 0$, find $\frac{dy}{dx}$ in terms of x and y. Hence determine the equation of the tangent line at the point $\left(1, \frac{1}{2}\right)$ to the curve $x^3 + 3y^2 6x^2y^3 1 = 0$. (7 marks)
- b) The area of a cube is decreasing at the rate of 120 cm²/s. At the instant when the side length is 8 cm, find the rate of change of
 - (i) the side length of the cube; (3 marks)
 - (ii) the volume of the cube. (3 marks)
- c) Let the curve $y = -2x^3 + 3x^2 + 12x 6$ for $-3 \le x \le 3$.
 - (i) Find the coordinates of the turning points and determine the nature of each of the turning points. (7 marks)
 - (ii) Find the point of inflexion if there is any. (2 marks)
 - (iii) Sketch the curve. (3 marks)

[Total: 25 marks]

Question 4

a) Integrate the following with respect to x.

(i)
$$\int \frac{(4x^2+3)^2}{x} dx,$$
 (3 marks)

(ii)
$$\int xe^{x^2} + \frac{1}{e^x} dx.$$
 (3 marks)

b) By substituting
$$u = 2 + 3x$$
, or otherwise, evaluate $\int_1^2 \frac{x}{2+3x} dx$. (6 marks)

c) Find the average value of
$$f(x) = \frac{1}{\sqrt{10-x}}$$
 on [1, 6]. (4 marks)

Sketch the region bounded by the curve $y = -x^2 - x + 2$, the x-axis and the lines x = -2 and x = 2. Hence, find the area of this region. (9 marks)

[Total: 25 marks]

AAMS1143 INTRODUCTORY CALCULUS

Formulae

Differentiation:

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

у	$\frac{dy}{dx}$
x^n	nx^{n-1}
ln(x)	$\frac{1}{x}$
ln(ax + b)	$\frac{a}{ax+b}$
e ^{mx}	me ^{mx}

Integration:

$$\int u dv = uv - \int v du$$

$$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c$$

$$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c$$

у	$\int y dx + c$
x^n	$\frac{1}{n+1}x^{n+1}$
$\frac{1}{x}$	ln(x)
$\frac{1}{ax+b}$	$\frac{1}{a}ln(ax+b)$
e ^{mx}	$\frac{1}{m}e^{mx}$