ML Lab-7 Assessment

```
In [1]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          from sklearn.model_selection import train_test_split
          from sklearn.neighbors import KNeighborsClassifier
In [2]:
          fruits = pd.read table('fruit data with colors.txt')
In [3]:
          fruits.head()
Out[3]:
            fruit_label fruit_name fruit_subtype
                                              mass width height color_score
         0
                   1
                                                192
                                                       8.4
                                                              7.3
                                                                         0.55
                           apple
                                  granny_smith
                   1
                                                180
                                                       8.0
                                                              6.8
                                                                         0.59
                           apple
                                  granny_smith
                   1
                                  granny_smith
                                                176
                                                       7.4
                                                              7.2
                                                                         0.60
                           apple
                   2
         3
                        mandarin
                                     mandarin
                                                 86
                                                       6.2
                                                              4.7
                                                                         0.80
                   2
                        mandarin
                                     mandarin
                                                 84
                                                       6.0
                                                              4.6
                                                                         0.79
In [4]:
          fruits.shape
Out[4]: (59, 7)
In [5]:
          predct = dict(zip(fruits.fruit label.unique(), fruits.fruit name.unique()))
          predct
Out[5]: {1: 'apple', 2: 'mandarin', 3: 'orange', 4: 'lemon'}
        Data Preprocessing
```

```
In [6]:
         fruits['fruit name'].value counts()
        apple
                     19
Out[6]:
        orange
                     19
                     16
        lemon
        mandarin
        Name: fruit name, dtype: int64
In [7]:
         apple_data=fruits[fruits['fruit_name']=='apple']
         orange_data=fruits[fruits['fruit_name']=='orange']
         lemon_data=fruits[fruits['fruit_name']=='lemon']
         mandarin data=fruits[fruits['fruit name']=='mandarin']
```

21, 9:59 AM		2K19EE032 Amal Chawla ML Lab-7									
In [8]:	ap	pple_data.head()									
Out[8]:		fruit_label	fruit_name	fruit_subtype	mass	width	he	ight	col	or_score	
	0	1	apple	granny_smith	192	8.4		7.3		0.55	
	1	1	apple	granny_smith	180	8.0		6.8		0.59	
	2	1	apple	granny_smith	176	7.4		7.2		0.60	
	8	1	apple	braeburn	178	7.1		7.8		0.92	
	9	1	apple	braeburn	172	7.4		7.0		0.89	
In [9]:	ma	andarin_da	ta.head()								
Out[9]:		fruit_label	fruit_name	fruit_subtype	mass	width	he	ight	col	or_score	
	3	2	mandarin	mandarin	86	6.2		4.7		0.80	
	4	2	mandarin	mandarin	84	6.0		4.6		0.79	
	5	2	mandarin	mandarin	80	5.8		4.3		0.77	
	6	2	mandarin	mandarin	80	5.9		4.3		0.81	
	7	2	mandarin	mandarin	76	5.8		4.0		0.81	
In [10]:	or	ange_data	.head()								
Out[10]:		fruit_label	fruit_name	fruit_subtyլ	oe m	ass w	idth	hei	ght	color_sc	ore
	24	3	orange	spanish_jumb	00	342	9.0		9.4	(0.75
	25	3	orange	spanish_jumb	00	356	9.2		9.2	(0.75
	26	3	orange	spanish_jumb	00	362	9.6		9.2	(0.74
	27	3	orange	selected_secon	ds	204	7.5		9.2	(0.77
	28	3	orange	selected_secon	ds	140	6.7		7.1	(0.72
[n [11]:	16	emon_data.	head()								
Out[11]:		fruit_label	fruit_name	fruit_subtype	mas	s wid	th l	heigh	t c	olor_sco	'e
	43	4	lemon	spanish_belsan	19	4 7	7.2	10.3	3	0.7	0
	44	4	lemon	spanish_belsan	20	0 7	7.3	10.	5	0.7	'2
	45	4	lemon	spanish_belsan	18	6	7.2	9.7	2	0.7	'2

216

196

7.3

7.3

10.2

9.7

0.71

0.72

Data Visualisation

4

4

46

47

lemon spanish_belsan

lemon spanish_belsan

```
In [12]:
           figure = plt.figure(figsize=(20, 5))
           plt.subplot(1, 3, 1)
           plt.scatter(fruits['width'],fruits['height'], color='r')
           plt.title("Width vs Height", fontweight='bold')
           plt.xlabel('Width')
           plt.ylabel('Height')
           plt.subplot(1, 3, 2)
           plt.scatter(fruits['mass'],fruits['color_score'])
           plt.title("Mass vs Color-Score", fontweight='bold')
           plt.xlabel('Mass')
           plt.ylabel('Color-Score')
           plt.subplot(1, 3, 3)
           plt.plot(fruits['height'],label='Height')
           plt.plot(fruits['width'],label='Width')
           plt.legend()
           plt.show()
                     Width vs Height
                                                    Mass vs Color-Score
```


KNN Classifier

Checking the Prediction

```
prediction1=knn.predict([[100,6.3,8]])
predct[prediction1[0]]
```