IRIS PEREIRA ESCOBAR

ALTITUDE:

Conceituação, Realização, Modelamento Matemático e Ajustamento.

Tese apresentada ao Curso de Pós-Graduação em Geofísica para obtenção do Grau de Doutor em Ciências pela Universidade de São Paulo.

UNIVERSIDADE DE SÃO PAULO

IRIS PEREIRA ESCOBAR

ALTITUDE:

Conceituação, Realização, Modelamento Matemático e Ajustamento.

Tese apresentada ao Curso de Pós-Graduação em Geofísica para obtenção do Grau de Doutor em Ciências pela Universidade de São Paulo.

UNIVERSIDADE DE SÃO PAULO

1991

"...d Ele, por Ele e para Ele..."
À Sonia, minha querida esposa
e ao meu filho Fabio.

AGRADECIMENTOS

Desejo apresentar os meus agradecimentos aos professores Dr.Camil Gemael e Dr. Denizar Blitzkow, pela orientação deste trabalho, bem como às pessoas e instituições abaixo relacionadas que contribuíram efetivamente para a sua elaboração:

UERJ

CNPq-Observatório Nacional

Instituto Astronômico e Geofísico/USP

IBGE

Eng. Newton Pereira dos Santos

Eng. Gilberto Pessanha Ribeiro

RESUMO

O problema da altitude é abordado, com vistas ao estabelecimento de uma metodologia que possa ser aplicada ao ajustamento de uma rede altimétrica. É proposto um novo modelo matemático, formulado em função dos desníveis, valores de gravidade e altitude dos pontos que compõem uma rede. O desempenho do modelo é verificado no ajustamento de uma rede altimétrica com 1248 referências de nível, interconectadas por 1259 desníveis observados e vinculadas a 7 marégrafos. O ajustamento é feito pelo método dos mínimos-quadrados, onde as altitudes de referência determinadas a partir dos marégrafos e os valores de gravidade observados não são fixados, são introduzidos através de um modelo secundário, como injunções relativas, com pesos iguais aos inversos de suas variâncias. Como resultado final obtém-se as altitudes nas referências de nível da rede, bem como as estimativas de seus desvios-padrão. O geóide, ou seja, a superfície de referência resultante, situa-se numa posição intermediária àquelas definidas pelos marégrafos.

ABSTRACT

In order to stablish an accurate procedure to be applied in the adjustment of a network, the problem of elevation is studied. A new mathematical model, based on gravity values, height and levelled height differences from a network, is proposed. To test performance of the model, a vertical network adjustment was executed. The chosen network section is composed of 1248 bench-marks conected by 1259 observed height differences, linked to 7 tide-gauges. The least squares method is adopted, where reference heights determined from tide-gauges and observed gravity values are introduced by means of a secondary model, as relative constraints, weighted according to the inverse of their variances. The adjusted values of the network bench marks and their estimated standard deviations are represented as the final result. The geoid,i.e., the reference surface, obtained by this procedure is located between those defined by the tide gauges.

SUMÁRIO

		Página
	Título Dedicatória Agradecimentos Resumo Abstract	ii iii iv v
	Sumário	vii
	CAPÍTULO 1 INTRODUÇÃO	1
2.1.	Gravidade	4
2.2.	Potencial da Gravidade	8
2.2.1.	Sentido Físico do Potencial da Gravidade	9
2.3.	Anomalia da Gravidade	12
2.3.1.	Anomalia de Ar Livre ("Free Air")	15
2.3.2.	Correção do Terreno	18
2.3.3.	Anomalia Bouguer	19

ALTITUDES

3.1.	Requisitos Básicos	21
3.2.	Número Geopotencial (C)	22
3.3.	Altitude Dinâmica (H ^D)	24
3.4.	Altitude Ortométrica (H)	26
3.5.	Altitude Normal (H ^N)	30
3.6.	Comentários Gerais sobre as Altitudes	33
	•	
	CAPÍTULO 4	
R	REALIZAÇÃO DE UM SISTEMA GEODÉSICO DE ALTITUDES	
4.1.	Datum Vertical	36
4.2.	Nivelamento Geométrico	39
4.2.1.	Efeitos Sistemáticos Envolvidos	40
4.3.	Gravimetria	43
4.3.1.	Datum Gravimétrico	43
4.3.2.	Determinação da Gravidade	44
4.3.2.1	1. Determinação Absoluta da Gravidade	44
4.3.2.2	2. Determinação Relativa da Gravidade	45
л л	Rades Gravimétricas	46

BAS	ES METODOLÓGICAS DO AJUSTAMENTO DE OBSERVAÇÕ	ES
5.1.	Metodologia	48
5.2.	Formulação do Modelo Matemático	49
5.3.	Classificação dos Modelos quanto à Solução	53
5.4.	Solução de Modelos Superabundantes por Mínimos-	
	-Quadrados	54
5.4.1.	Formulação do Problema	5
5.4.2.	Solução do Problema de Mínimos-Quadrados	58
5.4.3.	Matrizes de Covariâncias dos Resultados	65
	CAPÍTULO 6	
	DESENVOLVIMENTO E SOLUÇÃO DE MODELOS PARA	
ОВ	TENÇÃO DE UM SISTEMA DE ALTITUDES ORTOMÉTRICA	S
6.1.	Desenvolvimento de Modelos Matemáticos	7(
62	Solução dos Modelos	73

APLICAÇÃO DOS MODELOS MATEMÁTICOS NO AJUSTAMENTO

DE UMA REDE ALTIMÉTRICA

7.1.	Descrição da Rede			•	•	•		•	7 9
7.2.	Ajustamento da Rede		 •	•	•	•	•	•	81
7.2.1.	Ajustamento da Rede Nodal	•		•	•				83
7.2.2.	Ajustamento das RRNN Intercaladas			•	•	•			84
	CONCLUSÕES	_	 _		_		_	_	89

APÊNDICE A

VALORES DE GRAVIDADE E ALTITUDES
PRELIMINARES
APÊNDICE B
DESNÍVEIS OBSERVADOS
APÊNDICE C
DESNÍVEIS INTERNODAIS OBSERVADOS 103
APÊNDICE D
DESNÍVEIS INTERNODAIS AJUSTADOS 104
APÊNDICE E
DESNÍVEIS INTERCALADOS AJUSTADOS 109
APÊNDICE F
ALTITUDES AJUSTADAS. MÉTODO DOS MÍNIMOS-
QUADRADOS
REFERÊNCIAS BIBLIOGRÁFICAS 143

INTRODUÇÃO.

Tradicionalmente a atividade de posicionamento ocupa lugar de destaque na Geodésia, em grande parte devido a sua aplicação em diversas ciências. Sua importância, entretanto, transcende ao âmbito científico e faz-se sentir nas diversas áreas da atividade humana.

A descrição matemática da superfície topográfica da Terra é feita, normalmente, a partir da seleção de um conjunto finito de pontos representativos do terreno, os quais têm suas posições determinadas em um sistema de coordenadas. A realização desse sistema de coordenadas é obtida através de medições de grandezas observáveis que conectam entre si pontos previamente monumentados, de modo a se formar uma estrutura de rede.

Dependendo de como as posições dos pontos são definidas, as redes geodésicas de precisão são classificadas, tradicionalmente, em duas categorias: redes geodésicas verticais ou redes altimétricas, definidas por uma única coordenada, a "altitude acima do nível do mar" (H) e redes geodésicas horizontais, com posições geodésicas, latitude (ϕ) e longitude (λ), conhecidas. Esta separação em rede altimétrica e rede horizontal deve-se a razões de cunho eminentemente prático. Enquanto que o transporte de coordenadas horizontais é feito adequadamente usando a superfície do elipsóide de referência, é conveniente que as altitudes estejam relacionadas com o campo da gravidade da Terra, que condiciona as diversas atividades humanas, referindo-se, portanto, ao geóide, considerado como materializado pelo nível não-perturbado do mar. Além disso, as coordenadas horizontais, até o momento, não são determinadas com o mesmo grau de precisão da altitude.

Não obstante ser a coordenada geodésica conhecida com mais precisão, a altitude pode ser conceituada de variadas maneiras, de acordo com o modelo utilizado para representar o campo da gravidade da Terra. Dos diferentes tipos de altitude normalmente adotados, destaca-se a altitude ortométrica que baseia-se exclusivamente no campo da gravidade real.

Com o advento das modernas técnicas de posicionamento por satélites artificiais, mormente o "Global Positioning System" (GPS), a altitude ortométrica aumentou de importância. Devido a sua associação com a altura geoidal, N, afastamento entre o elipsóide e o geóide, e a altitude h acima do elipsóide, através da fórmula:

$$h \cong H + N, \tag{1.1}$$

visto que h pode ser determinada utilizando-se satélites artificiais, o conhecimento da altitude ortométrica, H, conduz ao conhecimento da altura geoidal, N, e vice-versa. Os dois membros de (1.1) não são rigorosamente iguais porque h e H não são colineares, a primeira é definida ao longo da normal ao elipsóide enquanto que a segunda sobre a vertical.

Um dos métodos atualmente utilizados para a obtenção de redes de altitudes ortométricas, baseia-se na correção dos desníveis observados, procurando transformá-los em desníveis ortométricos pela aplicação da correção do não-paralelismo das superfícies equipotenciais do campo da gravidade, indevidamente chamada por alguns de correção ortométrica, utilizada em diversos países do continente americano, inclusive no Brasil. Os desníveis corrigidos são, então, ajustados pelo método dos mínimos-quadrados, dando origem às altitudes. Entretanto, a eficácia de tal correção na consecução do objetivo a que se propõe pode ser contestada.

Outro método utilizado é a obtenção dos números geopotenciais, a partir dos desníveis e dos valores da gravidade observados nos pontos da rede. Através de ajustamento pelo método dos mínimos-quadrados, os números geopotenciais são estimados e, com base nestes, as altitudes ortométricas podem ser calculadas num segundo estágio.

O objetivo deste trabalho é, a partir do conceito de altitude e das técnicas usualmente adotadas na realização de sistemas de altitudes, apresentar o desenvolvimento de um modelo matemático que envolve, simultaneamente, as grandezas observáveis (altitudes maregráficas, desníveis e gravidade) e as altitudes ortométricas dos pontos da rede altimétrica. A solução do modelo conduz, dentre outras coisas, aos valores estimadores das altitudes e de suas precisões, em um único processo, sem a necessidade de determinação preliminar dos números geopotenciais (capítulo 6).

Para testar o modelo, são utilizados desníveis observados pelo IBGE e valores de gravidade observados pelo IAG/USP e CNPq/ON em uma rede de 1248 referências de nível, interconectadas por 1259 desníveis observados, situada no sul do Brasil. Como datum vertical são utilizadas as altitudes transportadas a partir das determinações em 7 marégrafos, cujos valores são introduzidos no problema através de um modelo injuntivo, secundário, que também introduz os valores de gravidade. Todas as grandezas observáveis - altitudes maregráficas, desníveis e gravidade - são ponderadas de acordo com suas precisões estimadas. O problema é resolvido pelo método dos mínimos-quadrados, dando como resultado as altitudes nas RRNN da rede, com desvios-padrão estimados entre 3 e 6 centímetros (capítulo 7).

CAMPO DA GRAVIDADE TERRESTRE.

2.1. GRAVIDADE.

As medições geodésicas, normalmente, são feitas na superfície física da Terra, ou acima dela. Os resultados dessas medições estão sujeitos, portanto, aos efeitos das forças físicas que atuam naquele espaço físico. Dentre estas forças destaca-se, notavelmente, a gravidade. Assim, os aspectos geométricos do campo da gravidade ocupam relevante posição nos estudos dos fenômenos geodésicos, mormente da altitude.

A lei da gravitação universal estabelece que todos os corpos atraem-se mutuamente com uma força cuja intensidade é proporcional ao produto de suas massas e inversamente proporcional ao quadrado da distância entre elas. Para duas massas pontuais, M e m, a lei da gravitação pode ser escrita da seguinte forma:

$$f^g = GMm/r^2 (2.1)$$

onde f^g é a intensidade da força gravitacional, M e m são massas pontuais interativas, concentradas em um volume negligenciável em comparação com a distância, r, entre elas e G é um coeficiente de proporcionalidade, conhecido como constante de gravitação, cujo valor numérico no sistema CGS é de 6,672 x10⁻⁸ cm³.g⁻¹.s⁻², com precisão estimada de 0,001x10⁻⁸ cm³.g⁻¹.s⁻² e, no SI, é de 6,672x10⁻¹¹ m³.kg⁻¹.s⁻², adotado pela União Astronômica Internacional em 1976 (Vanicek & Krakiwsky, 1986, p.71).

Embora a atração gravitacional entre duas massas seja mútua, na prática, é usual distinguir-se dentre elas a atraída e a atrativa. Assim, se m é atraída por M, composta de várias partículas, a equação (2.1) pode ser escrita como a soma das atrações exercidas sobre m pelas

partículas de M. Quando a massa M é contínua, as massas consideradas sobre o total volume, v, do corpo são integradas, em vez de serem somadas. Então a seguinte equação vetorial pode ser escrita:

$$f^{e} = -Gm_{V}(dM/r^{2})(r/r),$$
 (2.2)

onde os vetores são representados em negrito e $dM = \rho dv$, sendo ρ a massa específica do corpo.

Esta equação pode ser usada para estudar a força gravitacional exercida pela Terra sobre corpos cujas dimensões possam ser consideradas negligenciáveis em comparação com a da Terra.

Além da força gravitacional, uma outra força atua sobre as massas vinculadas à Terra, como consequência de seu movimento de rotação. Se considerarmos uma rotação com velocidade angular constante ω , com um raio de rotação \mathbf{p} , em torno de um eixo considerado fixo em relação à Terra (Fig. 2.1), essa força, chamada de *força centrífuga*, é dada por:

$$\mathbf{f}^{\mathbf{c}} = \mathbf{p}\omega^2 \mathbf{m}. \tag{2.3}$$

A resultante entre as forças gravitacional e centrífuga constitui o que é conhecido como força da gravidade, ou seja,

$$f = f^{\sharp} + f^{\sharp}$$
.

ou

$$\mathbf{f} = [-G\int_{V} (1/r^2)(\mathbf{r}/r)dM + \mathbf{p}\omega^2]m.$$
 (2.4)

Pode-se dizer que a massa M da Terra produz um efeito físico no espaço em torno de si, comumente chamado de campo da gravidade, percebido através da força exercida sobre outra massa m, situada nessa região.

O campo da gravidade g, normalmente chamado apenas gravidade, produzido pela Terra em um determinado ponto, pode ser definido como a força exercida por unidade de massa colocada naquele ponto. Então

FIG. 2.1 _ COMPONENTES DA FORÇA DE GRAVIDADE

$$\mathbf{g} = -\mathbf{G} \int_{\mathbf{v}} (1/\mathbf{r}^2)(\mathbf{r}/\mathbf{r}) d\mathbf{M} + \mathbf{p} \omega^2, \qquad (2.5)$$

cuja intensidade, negligenciando a pequena diferença de direção entre a resultante e a componente gravitacional, face à pequena intensidade da componente centrífuga, é dada por

$$g = G_y^{(1/r^2)} dM - p\omega^2 \cos \phi',$$
 (2.6)

onde ϕ ' é a latitude geocêntrica.

No SI a intensidade do campo da gravidade é medida em N.kg⁻¹ ou m.s⁻² e equivale dimensionalmente a uma aceleração. No sistema CGS a gravidade é medida em cm.s⁻², também chamada de *gal* em homenagem a Galileu. Entretanto, nas medidas gravimétricas a unidade básica adotada é o *miligal* (mGal) que é a milésima parte do gal. Assim,

$$1 \text{ gal} = 10^{-2} \text{ m.s}^{-2}$$

e

$$1 \text{ mGal} = 10^{-5} \text{ m.s}^{-2}$$
.

A intensidade da gravidade na supefície da Terra varia entre aproximadamente 978 gals no equador e 983 gals nos polos, isto é, dentro de 5 gals. Considerando o valor de $\omega = 72,92115 \times 10^{-6} \text{ rd.s}^{-1}$, a componente centrífuga é cerca de 1/288 do valor total da força da gravidade e varia de zero nos polos a 3,4 gals no equador. A despeito de sua pequena intensidade, se comparada com a componente gravitacional, a componente centrífuga atua como a causa básica da variação da gravidade na superfície da Terra. O achatamento nas regiões polares também contribui para esse efeito, aumentando da mesma forma o valor da gravidade nos polos.

2.2. POTENCIAL DA GRAVIDADE.

Sabe-se que o campo da gravidade é conservativo e que, portanto, possui um correspondente potencial escalar W = W(x,y,z), tal que

$$g = grad W$$
.

Esse escalar é conhecido como potencial da gravidade e pode ser definido como a energia potencial por unidade de massa colocada no campo da gravidade. O potencial da gravidade é então expresso em J.kg⁻¹ ou m².s⁻².

O potencial da gravidade da Terra, também chamado geopotencial, pode ser escrito como a soma do potencial gravitacional W^g com o potencial centrífugo W^c. Assim,

рага

$$W^g = G \int_{v} (1/r) dM \tag{2.7}$$

e

$$W^{c} = (1/2)p^{2}\omega^{2}, (2.8)$$

$$W = W^g + W^c$$

e

$$g = \operatorname{grad}(W^g + W^c) = \operatorname{grad}W^g + \operatorname{grad}W^c. \tag{2.9}$$

É importante observar que o potencial centrífugo age somente sobre os corpos ou partículas vinculados à Terra, incluindo a atmosfera. Assim, corpos que não giram com a Terra estão isentos do potencial centrífugo W^c, estando sujeitos apenas ao potencial gravitacional W^g, e.g., os satélites artificiais.

O incremento do geopotencial dW ao se fazer um deslocamento elementar ds = (dx, dy, dz) em uma direção arbitrária no campo da gravidade é dado por:

$$dW = (\partial W/\partial x)dx + (\partial W/\partial y)dy + (\partial W/\partial z)dz$$

ou, considerando que pela equação (2.9),

$$\mathbf{g} = (\partial \mathbf{W}/\partial \mathbf{x}, \, \partial \mathbf{W}/\partial \mathbf{y}, \, \partial \mathbf{W}/\partial \mathbf{z}),$$

conclui-se que

$$dW = g.ds (2.10)$$

donde se obtém:

$$dW = gds \cos(g, s)$$

ou

$$dW/ds = g \cos(g, s) \tag{2.11}$$

ou, ainda,

$$dW/ds = g_{s}$$

que é a componente da gravidade segundo a direção do deslocamento ds.

2.2.1. SENTIDO FÍSICO DO POTENCIAL DA GRAVIDADE.

A equação (2.10) mostra que o incremento do geopotencial é zero se o vetor deslocamento ds for perpendicular à direção do vetor g. Neste caso,

$$dW = 0$$

е

$$W = constante = C. (2.12)$$

Esta é a equação de uma superfície em relação à qual a gravidade é sempre normal. Tal superfície é chamada de superfície de nível ou superfície equipotencial do campo da gravidade ou, simplesmente, *geope*, devido à constância do potencial nela.

Atribuindo valores diferentes à constante em (2.12) obtém-se uma família de superfícies equipotenciais que têm a propriedade de não se tocarem. Caso isso acontecesse, as duas superfícies teriam o mesmo potencial C no ponto comum e, de acordo com (2.12), isso significaria que todos os pontos de ambas as superfícies teriam o mesmo potencial C, isto é, as superfícies seriam totalmente coincidentes.

Devido à distribuição irregular de massa na Terra, os geopes possuem pequenas, porém significantes, irregularidades. Seus raios de curvatura variam irregularmente de ponto para ponto, provocando torções nas linhas de força em todas as direções. Portanto a vertical não é uma curva plana mas reversa (Vanicek & Krakiwsky, 1986, p.85).

A equação (2.11) mostra que a derivada da função potencial em relação a qualquer direção é igual à componente da força segundo essa direção. Quando uma massa pontual se desloca ao longo da linha de ação da gravidade, porém em sentido contrário, então $\cos(\mathbf{g}, \mathbf{s}) = -1$ e

$$dH = -dW/g. (2.13)$$

onde dH é o deslocamento normal à superfície equipotencial, em sentido contrário ao da gravidade, e H é chamada de altitude ortométrica. Esta equação fornece a conexão entre uma quantidade física, diferença de potencial, e uma quantidade geométrica, diferença de altitude, de geopes vizinhos.

De acordo com (2.13) a distância entre duas superfícies equipotenciais infinitamente próximas é inversamente proporcional à intensidade do campo. Pode-se, portanto, concluir que as superfícies equipotenciais estão mais próximas quanto maior for a intensidade da gravidade. Assim, os geopes estão mais próximos nos polos do que no equador.

Como o incremento dW do potencial é constante na transferência de uma superfície para outra, não dependendo da posição do ponto na mesma, também não dependerá da trajetória seguida pelo ponto em seu deslocamento; será apenas função dos pontos extremos

do percurso. Donde se conclui que o incremento do potencial dW em um circuito fechado é igual a zero.

O geope mais notável é o *geóide*, do qual faria parte a superfície dos oceanos, caso estes não estivessem sujeitos à ação das marés, ventos, correntes e outros fenômenos relacionados com a sua dinâmica. Portanto, compreende-se por geóide uma superfície equipotencial do campo da gravidade terrestre, coincidente com o nível imperturbado dos oceanos e que se prolonga sob os continentes de modo tal que a direção da gravidade lhe é perpendicular em todos os seus pontos. O geóide é uma superfície contínua e levemente ondulada, mas não é uma superfície analítica, sua curvatura varia descontinuamente com a densidade no interior da Terra (Heiskanen & Moritz, 1967, p.51). Portanto, a forma do geóide, como também de qualquer geope, é resultado da distribuição de massa na Terra.

Para pontos situados no exterior ou na superfície da Terra é válida a equação diferencial generalizada de Laplace:

$$\Delta W = \frac{\partial^2 W}{\partial x^2} + \frac{\partial^2 W}{\partial y^2} + \frac{\partial^2 W}{\partial z^2} = 2\omega^2$$
 (2.14)

onde Δ é o operador laplaciano.

No interior da Terra, o geopotencial W satisfaz a equação diferencial generalizada de Poisson (Dehlinger, 1978, p.25-26):

$$\Delta W = -4\pi G \rho + 2\omega^2, \tag{2.15}$$

onde ρ é a massa específica no ponto considerado. No espaço exterior (ρ = 0, negligenciando a massa específica do ar) a equação de Poisson iguala-se à de Laplace.

Em um sistema de coordenadas locais xyz, cujo eixo z é vertical e os eixos x e y são tangentes ao geope no ponto P, origem do sistema, a curvatura média J do geope em P é definida por (Heiskanen & Moritz, 1967, p.52):

$$J = -(W_{xx} + W_{yy})/2g$$
 (2.16)

onde os subscritos denotam derivada parcial:

$$W_{xx} = \partial^2 W / \partial x^2$$
 e $W_{yy} = \partial^2 W / \partial y^2$.

A equação (2.11), para s = z, permite concluir que $\partial g/\partial z = -W_{zz}$, já que $\cos(g,z) = -1$.

Combinando-se a equação diferencial generalizada de Poisson (2.15) com a (2.16), obtém-se a relação:

$$J = -(\Delta W - W_{rr})/2g$$

ou

$$-W_{zz} = -2gJ - \Delta W$$

que, considerando $W_z = -g$ e $W_{zz} = -\partial g/\partial z = -\partial g/\partial H$, resulta:

$$\partial g/\partial H = -2gJ + 4\pi G\rho - 2\omega^2, \tag{2.17}$$

que é a relação entre a variação vertical da gravidade e a curvatura média do geope.

2.3. ANOMALIA DA GRAVIDADE.

A determinação da gravidade normalmente é feita na superfície física da Terra, algumas vezes subterrânea ou subaquática. Os valores observados dependem, principalmente, da localização do ponto na superfície da Terra (isto é, de suas coordenadas horizontais e altitude) e, em menor grau, da topografia circundante e da distribuição de massa no subsolo. Desse modo, tais valores não podem ser comparados entre si na forma como são obtidos. Estas irregularidades do campo da gravidade, embora significativas e facilmente observadas, são pequenas se comparadas com a magnitude da própria gravidade. Portanto, para melhor analizá-las é conveniente dividir o campo da gravidade em duas partes, uma que varia regularmente, refletindo uma forma ideal da Terra, representada por um modelo, e outra que varia irregularmente, chamada de *anomalia*.

A parte que varia regularmente corresponde ao campo da gravidade gerado por um elipsóide de revolução, com ligeiro achatamento polar, dotado de movimento de rotação em torno de seu eixo menor, coincidente com o eixo principal de inércia polar da Terra, com massa e velocidade angular iguais às desta. Esta terra fictícia, denominada terra normal é geradora do campo da gravidade normal, cuja intensidade é denotada por γ. O potencial da gravidade da terra normal é chamado de esferopotencial, normalmente representado pela letra U. A superfície equipotencial do campo da gravidade da terra normal é comumente chamada de esferope.

O valor de γ depende da distância ao centro de massa da Terra e da latitude ϕ . Por ser dotado de simetria rotacional, seu valor independe da longitude. O valor da gravidade normal na superfície do elipsóide de referência é geralmente denotado por γ_o .

Procurando unificar mundialmente a definição de gravidade normal, a IAG adotou em 1930, em Estocolmo, a fórmula:

$$\gamma_{o} = 978\ 049,0(1+0,005\ 2884\ sen^{2}\phi - 0,000\ 0059sen^{2}2\phi) \text{ mGal},$$
 (2.18)

recomendando o seu uso para todos os trabalhos gravimétricos. Esta fórmula tornou-se conhecida como "fórmula internacional da gravidade". Em 1967, a Assembléia Geral da IAG aprovou novos parâmetros para o elipsóide de referência, cuja gravidade normal é expressa pela fórmula:

$$\gamma_0 = 978\ 031,85(1+0,005\ 278\ 895\ \text{sen}^2\phi + 0,000\ 023\ 462\ \text{sen}^4\phi) \text{ mGal},$$
 (2.19)

ou, equivalentemente,

$$\gamma_{o} = 978031,85(1+0,005\ 3024\ sen^{2}\phi - 0,000\ 0059\ sen^{2}2\phi)\ mGal$$

com precisão de 4μ Gal. A equação (2.19) foi chamada de "fórmula internacional da gravidade 1967". A fórmula da gravidade normal mais recentemente adotada pela IAG é a "fórmula internacional da gravidade 1980":

$$\gamma_0 = 978\ 032,7(1+0,005\ 279\ 041\ 4\ \sec^2\phi + 0,000\ 023\ 271\ 8\ \sec^4\phi + 0,000\ 000\ 126\ 2\ \sec^6\phi)\ \text{mGal}$$
 (2.20)

com precisão de 0,7 µGal.

Tradicionalmente, a anomalia, Δg , é definida como a diferença entre o valor da gravidade na superfície do geóide, g_a , e o valor da gravidade normal no elipsóide, γ_a :

$$\Delta g = g_o - \gamma_o$$

Esta definição de anomalia atende aos objetivos geodésicos, visto que a aplicação da integral de Stokes, utilizada na determinação da altura geoidal N, pressupõe a inexistência de massas exteriores ao geóide.

Como a gravidade é observada na superfície física da Terra, ponto A (Fig. 2.2), para a obtenção da anomalia é necessário reduzí-la para a superfície do geóide. Esta operação é conhecida como redução dos valores da gravidade. Para tanto a distância AO entre o ponto na superfície física e o geóide, como também a lei de variação do valor da gravidade real neste trajeto, devem ser conhecidas. Visto que a variação do valor da gravidade sobre AO é função da distribuição de massa no interior da Terra e, portanto, não pode ser rigorosamente conhecida, a redução da gravidade é feita com base na variação da gravidade normal, o que preserva na anomalia o efeito daquela heterogênea distribuição.

Portanto as magnitudes das anomalias dependem de:

- a) Distribuição de massa no interior da Terra, principalmente na crosta.
- b) Altura geoidal N.

Assim, a partir do conhecimento das anomalias da gravidade sobre a superfície total da Terra, a altura do geóide em relação ao elipsóide pode ser determinada (a solução deste problema é considerada na Geodésia Física). Quando as medidas gravimétricas são utilizadas para fins geológicos, leva-se em conta a relação entre anomalias e distribuição de massa; a relação entre anomalia e altura geoidal é, então, negligenciada ou considerada na forma de pequenas correções. Como a variação na altura do geóide é pequena e gradual, o fator de

correção aplicável varia muito pouco de ponto para ponto e na prática é considerado constante em áreas não muito extensas.

Com as modernas técnicas de posicionamento por satélites, a determinação da altitude geométrica AO', em muitos casos, se tornou mais acessível do que a determinação da altitude ortométrica AO. Assim, para objetivos geofísicos é mais prático e conveniente usar a altitude geométrica, que elimina o efeito da altura geoidal N, reduzindo a gravidade observada para a superfície do elipsóide. Obviamente este procedimento não atende aos objetivos geodésicos.

Por outro lado, ao invés de utilizar a variação da gravidade normal com a altitude, para redução do valor da gravidade, poderia ser utilizada a variação da gravidade real, observada na superfície física. Este procedimento reduziria o efeito da distribuição de massa e seria conveniente para os objetivos geodésicos. Entretanto, isso não contempla os interesses geofísicos.

Assim, a definição inicial de anomalia atende, sem grandes prejuízos, aos objetivos geodésicos e geofísicos e, portanto, sempre que possível, deve ser adotada em benefício da homogeneização de sua definição.

2.3.1. ANOMALIA DE AR LIVRE ("FREE AIR").

Para se obter uma anomalia deve-se reduzir o valor de g para o ponto O a uma profundidade H. Isso pode ser feito com auxilio de uma fórmula que correlaciona a variação da gravidade normal com a altitude (Vanicek & Krakiwsky, 1986, p.498):

$$\partial \gamma / \partial \mathbf{H} = -2\gamma_0 (1 + \mathbf{m} + 2\alpha \cos^2 \phi) / a, \tag{2.21}$$

que expressa o valor da variação da gravidade normal com a altitude na superfície do elipsóide de referência.

FIG. 2.2 _ REDUÇÃO DA GRAVIDADE

FIG. 2.3 _ CORREÇÃO DO TERRENO

Para o elipsóide de referência de 1967, achatamento $\alpha = 0,003~352~9237$, razão entre a força centrífuga e a gravidade no equador m = 0,003 449 8014 e a = 6 378 160m, o valor de $\partial y/\partial H$ para a latitude de 45° é:

$$\partial y/\partial H = -0.30856 \text{ mGal/m}. \tag{2.22}$$

Este valor, que não diferencia muito daqueles para o equador e os polos, é normalmente utilizado para representar a chamada *redução de ar livre* ("free air").

A fórmula para o cálculo da *anomalia de ar livre* pode, portanto, ser escrita como a diferença entre os valores da gravidade reduzida e normal, ou seja:

$$g_0 = g + 0.3086H$$

e

$$\Delta g_{a} = g - \gamma_{o} + 0.3086H \tag{2.23}$$

Na redução de ar livre as massas situadas entre os níveis do ponto de observação e da superfície do geóide são ignoradas. Contudo a presença dessas massas aumenta o valor observado da gravidade g, o que aumenta o valor da anomalia. Esse efeito é particularmente percebido em montanhas onde a anomalia de ar livre para pontos localizados nos cumes é sempre maior do que para pontos nos vales. Assim, a anomalia de ar livre, além de refletir os efeitos da altura geoidal e das diferenças de massa específica nas rochas situadas abaixo do ponto de observação, reflete também o efeito das massas externas, causado pelas diferenças nas altitudes dos pontos de observação. Para compensar esta indesejável correlação positiva que a anomalia de ar livre possui com a altitude, algumas correções devem ser adicionadas.

Existem diversos tipos de reduções que representam correções adicionais, com base em diferentes suposições acerca das massas internas e externas da Terra e seus efeitos.

De modo geral a anomalia da gravidade pode ser escrita na forma:

$$\Delta g = g - \gamma_0 + 0.3086H + \delta g,$$

onde ôg é uma correção que define a natureza específica da redução.

2.3.2. CORREÇÃO DO TERRENO.

A correção do terreno considera todas as formas de relevo de modo a reduzir o valor da gravidade em um determinado ponto àquele que seria obtido se a camada de massa fosse plana e uniforme abaixo do ponto considerado.

A presença de uma massa extra CDE (Fig. 2.3) acima do ponto de observação originará uma força adicional dirigida para aquela massa. A componente vertical δg_t dessa força reduzirá o valor de g. A lacuna de massa na região ABC também diminuirá o valor de g em relação ao valor que seria obtido se essa região fosse completamente cheia. Portanto a correção do terreno é sempre positiva, tendendo para zero quando o terreno circunvizinho ao ponto de observação for pouco acidentado.

Ao avaliar o efeito do relevo é usual representar a área circunvizinha ao ponto de observação como prismas curvilíneos adjacentes, limitados por circunferências concêntricas no ponto e por radiais ao mesmo. O efeito de cada prisma é calculado analiticamente considerando sua espessura constante. O efeito total do relevo é obtido pela soma dos efeitos individuais dos prismas.

A atração de um prisma correpondente à n-ésima parte do anel é dada por (Sazhina & Grushinsky, 1971, p.63):

$$\delta g_{t} = 2\pi G \rho [(R_{1}^{2} + \Delta H^{2})^{1/2} - (R_{2}^{2} + \Delta H^{2})^{1/2} + R_{2} - R_{1}]/n$$
(2.24)

onde R_1 e R_2 são, respectivamente, os raios interno e externo do anel e ΔH é a altura do prisma.

Na prática, costuma-se empregar uma grade transparente que representa os prismas em planta por compartimentos em forma de trapézios curvilíneos, delimitados por circunferências concêntricas e radiais. Essa grade é superposta a um mapa topográfico de modo que seu centro

coircide com a parta emestudo. Rata cada tranézio curvilíneo é extraída do mana a sua altitude

2.3.3. ANOMALIA BOUGUER.

A redução de Bouguer é adicionada à anomalia de ar livre de modo a corrigir o efeito da atração da camada de massa existente entre a superfície do geóide e a altitude do ponto, camada essa representada por um disco homogêneo, de raio infinito e espessura constante H igual à altitude do ponto de observação. Tal correção é dada pela equação (Groten, 1981, p.309):

$$\delta g_{\rm b} = -2\pi G \rho H. \tag{2.25}$$

Substituindo π e G pelos seus valores e fazendo as adequadas conversões de unidades, obtém-se:

$$\delta g_{h} = -0.0419 \rho H,$$
 (2.26)

onde δg_b é dada em mGal, para ρ em g/cm³ e H em metros.

Essa é a expresão da correção de Bouguer propriamente dita, que corrige o efeito da atração do platô de Bouguer. Tal efeito aproxima-se sensivelmente daquele produzido por uma calota de mesma espessura e raio esférico igual a 166,7 km. Para fins geofísico é suficiente considerar apenas a correção de Bouguer propriamente dita associada à correção do terreno. Para fins geodésicos, entretanto, é incluído um terceiro termo com a função de converter o platô de Bouguer na calota mencionada. Assim, a anomalia de Bouguer é dada pela fórmula:

$$\Delta g_b = g - \gamma_o + 0.3086H - 0.0419\rho H + C + \delta g_t.$$
 (2.27)

Do ponto de vista da melhor representação do efeito das massas anômalas reveladas nas anomalias da gravidade, a anomalia Bouguer apresenta vantagens sobre a anomalia de ar livre, particularmente em virtude da remoção do efeito da camada de massa entre o ponto de observação e o geóide. A dependência da anomalia Bouguer em relação à altitude é muito menor do que na anomalia de ar livre, o que significa que em regiões montanhosas a primeira varia mais suavemente do que a segunda. Esta última qualidade torna a anomalia Bouguer mais indicada do que a de ar livre para interpolação de valores da gravidade. Aliás esta talvez seja a utilidade mais relevante da anomalia Bouguer para o geodesista. Na maioria das vezes ela é apenas utilizada como etapa intermediária para a obtenção de outros tipos mais completos de anomalias que consideram o efeito das massas externas ao geóide até o antípoda, e.g., anomalia isostática. Entretanto, para o objetivo deste trabalho é suficiente a conceituação da anomalia Bouguer. Os demais tipos de anomalias são analisados em seus pormenores por Gemael (1983) e não serão aqui abordados.

ALTITUDES.

3.1. REQUISITOS BÁSICOS.

O objetivo básico da altitude é definir o posicionamento vertical. Para tal a altitude deve preencher alguns requisitos, tais como:

- 1) deve estar ligada a um referencial terrestre suficientemente bem definido e fisicamente acessível;
 - 2) deve ser univocamente definida.

Talvez o modo mais intuitivo de se definir a altitude de um ponto seja referindo-a ao campo da gravidade terrestre, considerado invariável com o tempo, descrevendo-a em termos do geopotencial W no ponto e tomando como datum o nível médio dos mares, considerando-o como materialização do geóide. De acordo com (2.11), a diferença de potencial entre duas superfícies equipotenciais próximas pode ser escrita como

$$\delta \mathbf{W} = -\mathbf{g}\delta \mathbf{l},\tag{3.1}$$

onde δ l denota o desnível observado, através da operação de nivelamento.

Sabe-se que a diferença de potencial δW ao se deslocar de um ponto para outro do campo da gravidade é apenas função dos pontos extremos do percurso, independentemente do caminho usado no deslocamento. Assim, a diferença de potencial δW pode ser definida univocamente a partir dos desníveis δl e dos valores observados da gravidade g. Entretanto, o mesmo não pode ser dito dos desníveis δl que, devido ao não-paralelismo das superfícies de

nível, são dependentes do percurso de integração, conforme pode ser visto na Fig. 3.1. Os desníveis δ l medidos em dois percursos distintos, a partir do geóide até o ponto P, no topo da montanha, mostram que a altitude de P, obtida pela soma dos δ l, receberá dois valores diferentes, porque as superfícies equipotenciais estão mais espaçadas no lado direito do que no esquerdo.

3.2. NÚMERO GEOPOTENCIAL (C).

Pela equação (3.1) a diferença de potencial entre um ponto A na superfície da Terra e um ponto O na superfície do geóide, conectado a A por uma linha de nivelamento (Fig. 3.2), pode ser dada por:

$$-(W_{A} - W_{A}) = \int_{C}^{A} g dl = \int_{C}^{A} g' dh = C.$$
 (3.2)

A diferença de potencial negativa $C_A = W_O - W_A$ é conhecida como número geopotencial do ponto A.

O conceito de número geopotencial foi adotado pela Associação Internacional de Geodésia em 1955, tendo por unidade a chamada unidade geopotencial (u.g.p.), tal que:

$$1 \text{ u.g.p.} = 1 \text{ kGal.m} = 10 \text{ m}^2.\text{s}^{-2}.$$

Como
$$g = 9.8 \text{ m.s}^{-2} = 0.98 \text{ kGal}$$
,

$$C = gH = 0.98H$$
,

os valores dos números geopotenciais são cerca de 2% menores do que os valores das recpectivas altitudes.

Por se tratar de uma diferença de potencial, o número geopotencial C possui as seguintes características:

- 1) é univocamente definido para cada ponto, ou seja, não depende da trajetória da linha de nivelamento usada para referir o ponto ao nível do mar;
 - 2) a integral de C em um circuito fechado é zero;
 - 3) é igual para todos os pontos de uma mesma superfície equipotencial;
 - 4) é positivo acima do geóide, zero no geóide e negativo abaixo dele;
 - 5) pode ser obtido a partir de observações feitas apenas sobre a superfície física da Terra;
 - 6) não tem dimensão de comprimento.

Na prática, g e l não são conhecidos como funções contínuas de posição. Assim, a integral na equação (3.2) não pode ser resolvida analiticamente, senão de modo discreto com o emprego de valores observados de g e ôl ao longo de linha de nivelamento. Tem-se, portanto,

$$C_{A} = \sum_{i}^{A} g_{ij} \delta l_{ij}, \qquad (3.3)$$

onde

$$g_{ij} = (g_i + g_j)/2$$
, (3.4)

 δl_{ij} é o desnível observado entre as estações de ordem i e j da linha OA e g_i e g_j são os valores observados da gravidade nas estações.

3.3. ALTITUDE DINÂMICA (H^D).

Para evitar a inconveniência do número geopotencial não ser expresso em unidades de comprimento, surgiu o conceito de *altitude dinâmica* H^D , que é obtida pela divisão do número geopotencial por uma gravidade de referência constante γ , i.e., para um ponto A,

$$_{A}H_{A}^{D}=C/\gamma_{r}, \tag{3.5}$$

onde γ_r é a gravidade normal para uma latitude padrão arbitrária ϕ_r . Tal gravidade de referência pode ser encarada como um fator de escala, cujo único objetivo é converter a unidade do número geopotencial de potencial para comprimento. Com exceção deste pormenor, a altitude dinâmica reune as mesmas propriedades do número geopotencial; seu significado físico é o de um potencial, ainda que obscurecido pela divisão por γ_r . Além disso, embora possuindo dimensão de comprimento, H^D não possui qualquer significado geométrico.

Uma diferença de altitude dinâmica pode ser decomposta em duas partes: uma principal, correspondente ao desnível observado, e uma correção, chamada de *correção dinâmica* CD, adicionada àquele, cuja expressão pode ser obtida a partir da equação (3.5). Assim, para uma linha de nivelamento que parte do ponto A para o ponto B,

$$H_{R}^{D} - H_{A}^{D} = (C_{R} - C_{A})/\gamma_{r} = (1/\gamma_{r}) \int_{A}^{B} g \, dl.$$
 (3.6)

Somando e subtraindo γ_r à integral precedente, obtém-se:

$$\Delta H_{AB}^{D} = (1/\gamma_{r}) \int_{A}^{B} (g - \gamma_{r} + \gamma_{r}) dl = \int_{A}^{B} dl + (1/\gamma_{r}) \int_{A}^{B} (g - \gamma_{r}) dl,$$
 (3.7)

onde a primeira integral representa o desnível observado Δl_{AB} entre A e B e a segunda a correção dinâmica:

$$CD_{AB} = (1/\gamma_r) \int_{A}^{B} (g - \gamma_r) dl = (1/\gamma_r) \sum_{A}^{B} (g_{ij} - \gamma_r) \delta l_{ij}.$$
 (3.8)

Consequentemente a diferença de altitude dinâmica é dada por:

$$\Delta H^{D}_{AB} = \Delta I_{AB} + CD . \qquad (3.9)$$

Não obstante a altitude dinâmica apresentar a conveniência de ser igual para uma mesma superfície equipotencial (pontos Pi, Fig. 3.3), o que corresponde à intuição de que a altitude não se altera com um deslocamento horizontal, a correção dinâmica pode atingir valores elevados, em função da variação de g do equador (cerca de 978 gals) para os polos (cerca de

983 gals). No equador, tomando para gravidade de referência o seu valor médio, $\gamma_r = 980,5$ gals, para um desnível de 1000 metros a equação (3.8) dá a correção dinâmica de aproximadamente

$$CD = (978-980,5) \times 1000/980,5 = -2,5 \text{ metros}.$$

Por isso, a altitude dinâmica não se firmou na prática geodésica.

3.4. ALTITUDE ORTOMÉTRICA (H).

Considerando a natureza geométrica das coordenadas horizontais (latitude e longitude), talvez seja mais conveniente uma coordenada vertical de mesma natureza.

A altitude ortométrica H de um ponto é definida como a distância linear do geóide ao ponto, medida ao longo da vertical que passa pelo ponto (Fig. 3.4).

Para um ponto A, na superfície física da Terra, a equação (2.13) permite escrever

$$H_A = -\int_0^A dW/g = \int_0^A dC/g,$$
 (3.10)

onde a integral é calculada sobre a vertical.

Da equação (3.2) resulta que

$$C_A = \int_{C_1}^A g' dH = H.(1/H) \int_{C_1}^A g' dH$$

ou

$$C = g^{m}H, (3.11)$$

onde

$$g^{m} = (1/H) \int_{0}^{A} g' dH$$
 (3.12)

ELIPSÓIDE (V = Vo)

FIG. 3.3 _ ALTITUDE DINÂMICA

FIG. 3.4 _ ALTITUDE ORTOMÉTRICA

é o valor médio da gravidade ao longo da vertical entre o ponto O' no geóide e o ponto A na superfície física.

Então, a altitude ortométrica H pode ser obtida da equação (3.11), uma vez conhecido o valor de g^m,

$$H = C/g^{m}. (3.13)$$

A equação (3.12) pode ser escrita como:

$$g^{m} = (1/H) \int_{O'}^{A} g(z) dz,$$
 (3.14)

onde g(z) é a gravidade real medida sobre a vertical de A a uma altitude z. Para a obtenção de g(z) pode-se considerar que

$$g(z) = g - \int_{z}^{H} (\partial g/\partial H) dH, \qquad (3.15)$$

onde g é a gravidade observada no ponto A e $\partial g/\partial H$ é a variação da gravidade com a altitude no interior da Terra, dada pela equação (2.17),

$$\partial g/\partial H = -2gJ + 4\pi G\rho - 2\omega^2, \tag{3.16}$$

que aplicada ao campo da gravidade normal com $\rho = 0$, conduz a

$$\partial \gamma / \partial \mathbf{n} = -2\gamma \mathbf{J}_{o} - 2\omega^{2}, \tag{3.17}$$

onde n é a normal ao elipsóide e J_o é a curvatura média da superfície equipotencial do campo da gravidade normal. Considerando com suficiente aproximação $gJ = \gamma J_o$, tem-se, a partir de (3.16) e (3.17):

$$\partial g/\partial H = \partial y/\partial n + 4\pi G\rho.$$
 (3.18)

ou, considerando a (2.22), $\rho = 2,67 \text{ g/cm}^3 \text{ e G} = 66,7 \times 10^{-9} \text{ unidades c.g.s.}$

$$\partial g/\partial H = -0.3086 + 0.2238 = -0.0848 \text{ mGal/m}$$
 (3.19)

Aplicando este valor na equação (3.15), resulta que

$$g(z) = g + 0.0848(H-z)$$

que substituida em (3.14), fornece

$$g^{m} = g + 0.0424 \text{ H}.$$
 (3.20)

A associação da (3.20) à (3.13), conduz a:

$$H = C/(g + 0.0424 H),$$
 (3.21)

que é conhecida como altitude de Helmert, obtida a partir da hipótese simplificativa de que a massa da Terra externa ao geóide é de espessura constante, homogênea e de massa específica ρ igual a 2,67 g/cm³.

Analogamente à altitude dinâmica, o cálculo da altitude ortométrica, normalmente, é feito corrigindo-se o desnível observado pela aplicação da chamada *correção ortométrica* CO (Heiskanen & Moritz, 1967, p.168). Assim, para uma linha de nivelamento entre dois pontos A e B,

$$CO_{AB} = \{ [\sum_{R}^{A} (g_{ij} - \gamma_{r}) \delta l_{ij}] + (g_{A}^{m} - \gamma_{R}) H_{R} - (g^{m} - \gamma_{r}) H_{r} \} / \gamma_{r},$$
 (3.22)

ou

$$CO_{AB} = CD_{AB} + [(g^{m} - \gamma_{A})H_{B} - (g^{m}_{B} - \gamma_{P})H_{B}]/\gamma_{P}$$
(3.23)

onde g_A^m e g_B^m são, respectivamente, os valores médios da gravidade ao longo das verticais de A e B, dados pela equação (3.20), e γ_r é um valor constante arbitrário, e.g., a gravidade normal para a latitude de 45°. A correção ortométrica é normalmente pequena – 15 cm para 1 km de desnível em circunstâncias bem desfavoráveis – (Heiskanen & Moritz, 1967, p.172).

Pode-se demostrar a univocidade da altitude ortométrica a partir da equação (3.23). Assim,

$$\int_{0}^{2\pi} dH = \Delta H + \Delta H = \Delta I + CO + \Delta I + CO$$

ou

$$\int_0^{2\pi} dH = \Delta l + CD + \Delta l + CD ,$$

já que os outros quatro termos cancelam-se. Portanto,

$$\int_0^{2\pi} d\mathbf{H} = \int_0^{2\pi} d\mathbf{H}^{\mathrm{D}}$$

e, como a variação da altitude dinâmica é nula em um circuito fechado, a variação da altitude ortométrica também o é. Assim,

$$\int_{0}^{2\pi} dH = 0. ag{3.24}$$

O principal inconveniente da altitude ortométrica reside no fato de que g^m não pode ser medido. Seu cálculo baseado em hipóteses simplificativas, tais como na altitude de Helmert, dá margem ao surgimento de tantos tipos de altitudes ortométricas quantos forem os valores de g^m selecionados. Além disso, exceto para o geóide, pontos situados na mesma superfície equipotencial geralmente não têm a mesma altitude ortométrica, ou seja, a altitude ortométrica da superfície imperturbada de um lago normalmente não é constante.

Não obstante estas imperfeições, a altitude ortométrica possui significados físico e geométrico muito claros (altitude acima do geóide ou, mais precisamente, do nível médio do mar), além de reunir as principais propriedades enumeradas para o número geopotencial, com a vantagem de possuir dimensão de comprimento.

3.5. ALTITUDE NORMAL (H^N).

A dificuldade na determinação de g^m levou Molodensky a estabelecer o conceito de altitude normal H^N :

$$H^{N} = C/\gamma^{m}, \tag{3.25}$$

onde

$$\gamma^{\mathrm{m}} = (1/\mathrm{H}^{\mathrm{N}}) \int_{0}^{\mathrm{H}^{\mathrm{N}}} \gamma d\mathrm{H}^{\mathrm{N}} \tag{3.26}$$

é a gravidade normal média entre o elipsóide e o ponto de altitude normal H^N.

Para compreender o significado da altitude normal, observe-se o ponto A na superfície da Terra (Fig. 3.5), situado no geope W = W(A). Sobre a normal ao elipsóide $U = U_o$ toma-se um ponto A_1 cujo esferopotencial $U = U(A_1)$ é igual a W(A). A distância A_oA_1 , medida ao longo da normal, define a altitude normal do ponto A.

Se analogamente fossem definidos pontos P₁ correspondentes a todos os pontos P da superfície física da Terra, tais pontos situar-se-iam em uma superfície que Hirvonen denominou "teluróide".

A distância AA_1 entre a superfície física e o teluróide é chamada de anomalia de altitude, comumente denotada por ζ .

Como a superfície do elipsóide não é materializável, Molodensky definiu uma superfície auxiliar à qual denominou "quase-geóide" que é o lugar geométrico dos pontos que se situam ζ da superfície do elipsóide. Desse modo a altitude normal pode ser entendida como a distância entre o ponto na superfície física e o quase-geóide, medida ao longo da normal.

O valor de γ^m pode ser obtido com precisão a partir da variação da gravidade normal com a altitude (Gemael, 1983; Heiskanen & Moritz, 1967):

$$\gamma^{\rm m} = \gamma_{\rm o} [1 - (1 + \alpha + {\rm m} - 2\alpha {\rm sen}^2 \phi) {\rm H}^{\rm N} / {\rm a} + {\rm H}^{\rm N} / {\rm a}^2], \tag{3.27}$$

que substituindo em (3.25) e desenvolvendo em série de potências de H^N, fornece:

$$H^{N} = [1 + (1 + m + \alpha \cos^{2} \phi)C/a\gamma_{o} + (C/a\gamma_{o})^{2}]C/\gamma_{o},$$
(3.28)

expandindo H^N em potências de C/γ_o .

Analogamente às correções dinâmica e ortométrica, a correção normal CN é dada por:

$$CN_{AB} = \{ [\sum_{A}^{B} (g_{ij} - \gamma_{r}) \delta l_{ij}] + (\gamma_{A}^{m} - \gamma_{r}) H_{A}^{N} - (\gamma_{B}^{m} - \gamma_{r}) H_{B}^{N} \} / \gamma_{r}$$
(3.29)

ou

$$CN_{AB} = CD_{AB} + [(\gamma_{A}^{m} - \gamma_{r})H_{A}^{N} - (\gamma_{B}^{m} - \gamma_{r})H_{B}^{N}]/\gamma_{r},$$
(3.30)

tal que

$$\Delta H_{AB}^{N} = H_{B}^{N} - H_{A}^{N} = \Delta I_{AB} + CN_{AB}.$$
(3.31)

De modo análogo àquele utilizado para o caso da altitude ortométrica, pode-se demonstrar que a variação da altitude normal é nula em um circuito fechado e, portanto, pode ser definida univocamente para qualquer ponto.

Da definição de quase-geóide decorrem duas propriedades importantes:

- 1) O quase-geóide não é uma superfície equipotencial. Como o próprio teluróide, a partir do qual ele é determinado, não é uma superfície equipotencial, o quase-geóide também não o é.
- 2) Na superfície média dos mares e oceanos o quase-geóide coincide com o geóide. Naqueles lugares, o número geopotencial e, consequentemente, a altitude normal são nulos. Portanto, as altitudes dos pontos situados na superfície dos mares, medida a partir do elipsóide, será igual à anomalia de altitude ζ , ou seja, o geóide corresponde ao quase-geóide.

3.6. COMENTÁRIOS GERAIS SOBRE AS ALTITUDES.

Os significados físico e geométrico da altitude normal são menos óbvios do que os da altitude ortométrica, que é mais intuitiva, visto estar totalmente referida ao campo da gravidade

real. Entretanto, a altitude normal pode ser rigorosamente definida, não dependendo de hipótese simplificativa, embora seja dependente do elipsóide de referência. A magnitude da correção normal é a mesma da correção ortométrica e, como a altitude ortométrica, a altitude normal não é igual para os pontos de uma mesma superfície equipotencial.

Analisando com atenção a equação (3.25), a altitude normal é nula para qualquer ponto sobre o geóide, já que ela é definida em função do número geopotencial. Assim, rigorosamente falando, a superfície de referência para a altitude normal é, na verdade, o geóide, do qual o quase-geóide é uma aproximação, que decorre da utilização da gravidade normal em lugar da gravidade real. Desse modo, a altitude normal pode ser encarada como um tipo de altitude ortométrica especial. É importante, ainda, ressaltar que com o avanço da geodésia celeste, usando dinâmica de satélites, atualmente é mais simples determinar o geóide, que é uma superfície equipotencial do campo da gravidade terrestre, do que o quase-geóide.

No início do século, a pouca disponibilidade de observações gravimétricas na superfície da Terra e, consequentemente, a dificuldade de se obter o número geopotencial, levou Bowie e Avers a desenvolverem uma expressão para correção altimétrica com base na gravidade normal, em vez da observada, dada pela equação (Vanicek et al, 1980):

$$CH = -2H \Delta \phi \alpha \operatorname{sen} 2\phi \left[1 + (\alpha - 2\beta/\alpha) \cos 2\phi\right]$$
(3.32)

onde H é a altitude média dos dois pontos extremos do desnível, ϕ é a latitude média, $\alpha = 0,002644$ e $\beta = 0,000007$ são coeficientes da fórmula da gravidade normal adotada pelo "U.S. Coast and Geodetic Survey (USCGS)":

$$\gamma_{o} = \gamma_{AS} \left(1 - \alpha \cos 2\phi + \beta \cos^{2} 2\phi \right). \tag{3.33}$$

Tal correção, utilizada nos Estados Unidos e em muitos países da América Latina, inclusive no Brasil, pretendendo ser uma aproximação da correção ortométrica, é com frequência indevidamente confundida com aquela. Todavia, sua dedução considera o não-paralelismo das superfícies equipotenciais, com base no campo da gravidade normal (Bomford, 1977, p.229), o que torna as altitudes, calculadas com sua aplicação, dependentes do

itinerário percorrido no nivelamento. Por outro lado, nenhum significado geométrico ou físico pode ser atribuído a estas altitudes. Assim, a correção altimétrica do USCGS, embora ainda esteja em uso em alguns países, não atende, rigorosamente falando, os pré-requisitos de altitude.

CAPÍTULO 4

REALIZAÇÃO DE UM SISTEMA GEODÉSICO DE ALTITUDES

A realização de um sistema geodésico de altitudes compreende essencialmente três atividades operacionais: definição e materialização do datum vertical, nivelamento geométrico e gravimetria. Neste capítulo serão abordados os principais aspectos destas três etapas.

4.1. DATUM VERTICAL.

Como já foi visto anteriormente, o datum utilizado para definição das altitudes é o geóide. A materialização do geóide pode ser feita na costa oceânica através do registro das variações do nível do mar usando marégrafos, estabelecidos em pontos adequados. O nível médio obtido após grandes intervalos de tempo (≥1 ano) é considerado como uma aproximação do geóide.

O valor médio, contudo, devido às influências sistemáticas presentes nos registros maregráficos, como consequência da dinâmica do oceano, não é rigorosamente coincidente com o geóide. O afastamento entre o nível médio do mar e o geóide é chamado de topografia da superfície do mar (Fig. 4.1) e pode atingir valores iguais ou superiores a 1 metro (Torge, 1980, p.47).

Dentre as influências sistemáticas que afetam o nível do mar podem ser destacadas as seguintes: marés oceânicas, variações na pressão atmosférica, alterações nas correntes oceânicas, variações nos ventos, mudanças na massa específica da água — em função da temperatura, salinidade e pressão — , flutuações nas descargas dos rios, alterações na configuração batimétrica e fusão glacial, entre outras.

As variações periódicas do nível do mar são, em sua maior parte, eliminadas pela adoção do nível médio. Todavia, influências não-periódicas, tais como algumas componentes da maré e efeitos oceanográficos e meteorológicos aproximadamente constantes, afetam o valor médio. Embora a precisão interna da média anual dos valores das observações do nível do mar seja da ordem de 1 cm, podem ocorrer desvios ocasionais da ordem de 10 cm, ou maiores, entre médias anuais, em função dos efeitos geradores da topografia da superfície do mar.

Com o propósito de corrigir o efeito de tal topografia na determinação do datum vertical, têm sido desenvolvidos algum métodos, tais como: nivelamento "estérico" ("steric leveling"), estudo de circulação global (Forrester,1980) e altimetria por satélite (Marsh & Martin, 1982). Entretanto, com base no conhecimento atual do comportamento do oceano, a correção da topografia da superfície do mar ainda não pode ser feita de modo eficaz. Na melhor das hipóteses os métodos propostos permitem a determinação do afastamento instantâneo entre o nível do mar e o geóide. A topografia "permanente" ou "quase-estacionária", só poderia ser obtida após a repetição das observações e cálculos durante um período relativamente longo.

Outros fenômenos, tais como: deslocamentos tectônicos de massas, redistribuição sazonal da massa atmosférica e águas subterrâneas e suas implicações nas variações do geóide, têm sido objeto de estudos (Larden, 1980). Todavia o estágio atual de desenvolvimento desses estudos ainda não permitem o estabelecimento de modelos que permitam expressá-los matematicamente com precisão desejável à sua aplicação no problema das altitudes.

Assim, não obstante a fácil definição do geóide, superfície equipotencial do campo da gravidade, atualmente o acesso físico a esta superfície só pode ser conseguido a menos da topografia da superfície do mar, o que tem gerado diferenças de datum entre redes verticais de países distintos, que podem atingir valores da ordem de 1 metro (Rapp, 1980).

4.2. NIVELAMENTO GEOMÉTRICO.

As redes geodésicas verticais são determinadas pelo método de nivelamento geométrico de precisão ou alta precisão, projetados de modo que os itinerários formem *circuitos* fechados, com perímetros de 400 km ou menos, conectados aos marégrafos. Os circuitos são compostos por *linhas de nivelamento*, de comprimento máximo de 100 km, que ligam os pontos nodais da rede. As linhas, por sua vez, são formadas por *seções* de 3 km ou menos, que conectam estações adjacentes. Uma estação da rede vertical é denominada de *referência de nível* (RN) e geralmente é materializada no terreno por uma placa cravada em construção, rocha ou marcos de concreto, ao longo das principais rodovias.

Os instrumentos utilizados no nivelamento geométrico são o *nível* e a *mira*. O nível consiste basicamente de um telescópio adequado, capaz de girar em torno de seu eixo vertical. A linha de visada é posicionada horizontalmente com auxílio de um nível de bolha em conjunção com um parafuso calante ou automaticamente por um compensador. A mira tem uma fita de invar com graduação simples ou dupla, cujos erros geralmente são menores do que 0,02 mm; quando calibradas o comprimento entre duas divisões consecutivas é determinado com erro inferior a 0,01 mm.

O desnível δ l, entre dois pontos vizinhos, ocupados por um par de miras ou a mesma mira posicionada sucessivamente em cada lado do nível (Fig. 4.2), é determinado pela diferença entre a leitura na mira de ré menos a leitura na mira de vante. De modo a reduzir os efeitos sistemáticos nos desníveis observados, são adotados cuidados operacionais, tais como o levantamento em perfil duplo (ida e volta) e o posicionamento equidistante da(s) mira(s) em relação ao nível. O desnível Δ l entre dois pontos A e B consiste do somatório dos n desníveis parciais δ l medidos entre aqueles pontos, ou seja:

$$\Delta l_{AB} = \sum_{i=1}^{n} \delta l_{i}. \tag{4.1}$$

4.2.1. EFEITOS SISTEMÁTICOS ENVOLVIDOS.

Dentre os efeitos sistemáticos que afetam o nivelamento geométrico podem ser destacados os seguintes:

- Refração atmosférica. É o efeito de curvatura da linha de visada em consequência das variações na massa específica da atmosfera, causadas basicamente pela mudança de temperatura do ar. De todos os efeitos é, provavelmente, o que exige mais cuidados (restrições no comprimento das visadas e na leitura mínima na mira mais alta, equidistância da(s) mira(s) em relação ao nível).
- Colimação imperfeita do nível. É o efeito da defasagem angular entre a linha de visada e a horizontal, devido a uma imperfeição sistemática no processo de materialização da horizontalidade da linha de visada.
- Verticalidade imperfeita da mira. É o efeito da falta de alinhamento da mira com a direção do vetor gravidade em cada estação.
- Calibração imperfeita da mira. Trata-se do efeito devido à falta de exatidão nas graduações da mira.
- Maré terrestre. É o efeito da deflexão da vertical, causado pela componente horizontal do campo de maré gerado pela interação gravitacional entre a Terra e outros corpos celestes, principalmente a Lua e o Sol.

A descrição pormenorizada dos efeitos sistemáticos envolvidos no nivelamento geométrico, bem como dos procedimentos operacionais usuais, pode ser encontrada em contribuições especializadas (D'Alge, 1986; Bomford,1977). Contudo é importante enfatizar dentre os efeitos citados aqueles que não podem ser compensados ou evitados apenas por cuidados operacionais de campo, como os efeitos de calibração imperfeita da mira e de maré terrestre, que normalmente são negligenciados nos trabalhos de nivelamento. D'Alge (1986)

apresenta uma descrição minuciosa dos efeitos sistemáticos relacionados com a falta de calibração adequada da mira. O efeito da maré terrestre merecerá aqui uma análise especial.

A componente horizontal do campo de maré luni-solar provoca um leve desvio na direção da gravidade, ocasionando inclinação na linha de visada. Este efeito é dependente do instante da observação e do azimute da linha de visada, sendo mais acentuado para linhas orientadas na direção norte-sul e menos na direção leste-oeste. Bomford (1977) apresenta a seguinte fórmula para o efeito médio da maré lunar, para o semi-período orbital da Lua de 14 dias, em uma linha norte-sul:

$$e_1 = 0.042 \operatorname{sen} 2\phi (3\cos \delta - 2) \text{ mm/km},$$
 (4.2)

onde δ é a declinação da Lua e ϕ é a latitude média do lance. Quando a declinação da Lua for máxima ($\delta \cong 28^{\circ}$) e_L será mínimo e igual a 0,027sen2 ϕ mm/km. Para $\delta = 0^{\circ}$ e_L será máximo e igual a 0,042sen2 ϕ mm/km.

Tomando para e_L o seu valor médio, ou seja, 0.035sen 2ϕ mm/km, que transformado em mm/rd dá 223sen 2ϕ mm/rd, tem-se para o efeito total da maré lunar em uma linha norte-sul que percorra o Território Nacional do equador até a latitude de -30° :

$$E_{L} = 223 \int_{0}^{\pi/6} \sin 2\phi \, d\phi \, mm$$

ou

$$E_L = -111\cos 2\phi \Big|_0^{\pi/6} \text{ mm} = 55.5 \text{ mm}.$$

O efeito médio da maré solar $\mathbf{E}_{\rm S}$ na mesma linha é cerca da metade do obtido para a Lua com o mesmo sinal, ou seja,

resultando para o efeito médio da maré luni-solar E_T , em uma linha norte-sul, na faixa de latitude de 0° a -30°:

$$E_{T} = 55,5 + 27,7 = 83,2 \text{ mm},$$

que é de mesma ordem de grandeza que a estimativa do erro acidental esperado em uma linha de nivelamento geométrico de alta precisão (2mm√k, onde k é o comprimento da linha em km). Como o efeito de maré, por ser sistemático, é cumulativo, sua correção torna-se essencial para redes verticais que abrangem grandes extensões na direção norte-sul. Tal correção é denominada correção astronômica, CA, e pode ser expressa por (Balazs & Young, 1982):

$$CA = 0.7.S[tg\eta_{L} cos(A_{L} - A) + tg\eta_{S} cos(A_{S} - A)]$$
 (4.3)

para

$$\eta_{I} = [3GM \text{ r.sen2z } /2d^3 + 3GM \text{ r}^2(5\cos^2 z - 1)\text{senz } /2d^4]/g$$

e

$$\eta_{\rm S} = (3 \text{GM r.sen} 2z / 2d^3)/g$$
,

onde, S é o comprimento da seção, η_L e η_S são respectivamente as deflexões da vertical causadas pela componente horizontal da maré lunar e solar, A_L e A_S são respectivamente os azimutes da Lua e do Sol, A é o azimute da seção, G é a constante de gravitação, M_L e M_S são respectivamente as massas da Lua e do Sol, z_L e z_S são as distâncias zenitais da Lua e do Sol, d_L e d_S são as distâncias Terra-Lua e Terra-Sol, r é a distância entre o ponto na superfície terrestre e o centro da Terra e g_m é o valor médio da gravidade na seção.

4.3. GRAVIMETRIA.

A realização de um sistema geodésico de altitudes necessita do conhecimento dos valores da gravidade nas RRNN que compõem a rede altimétrica. Tais valores são essenciais para a obtenção dos números geopotenciais, que são a base de qualquer sistema de altitudes. As operações gravimétricas de campo são bem menos dispendiosas e mais rápidas do que os procedimentos envolvidos no nivelamento geométrico de uma linha. O pequeno acréscimo no custo total dos levantamentos necessários ao estabelecimento de uma rede altimétrica, resultante da inclusão da gravimetria na sua rotina, é compensado de longe pelo benefício da realização de um sistema de altitudes unívoco, que não pode ser alcançado apenas com o nivelamento geométrico. Neste ítem serão resumidos os principais aspectos relacionados com as atividades gravimétricas necessárias à consecução dos objetivos deste trabalho.

4.3.1. DATUM GRAVIMÉTRICO.

Em geodésia é fundamental que os valores da gravidade estejam referidos a um sistema de referência global. O primeiro datum gravimétrico mundial foi o de Viena, adotado em 1900 e que vigorou até 1909, quando foi substituído pelo datum de Potsdam. Em ambos os casos o referencial era constituído de um único ponto onde o valor da gravidade foi determinado diretamente através de pêndulos. O datum de Potsdam vigorou até 1971, quando uma nova idéia foi concebida, segundo a qual a referência não é mais um único ponto mas uma rede internacional de estações gravimétricas distribuídas por diversos países. De acordo com esta nova concepção a Assembléia Geral da I.U.G.G., reunida em Moscou, adotou a "International Gravity Standardization Net" 1971(IGSN71) como novo datum. A IGSN71 é o atual datum gravimétrico mundial, que contém 1854 estações, cujos valores de gravidade foram determinados com desvios padrão inferiores a 0,1 mGal, a partir do ajustamento de 10 medidas

absolutas da gravidade, obtidas com gravímetros de queda livre (ver item 4.3.2), e aproximadamente 24000 medidas relativas (IAG,1974).

4.3.2. DETERMINAÇÃO DA GRAVIDADE.

A determinação do valor da gravidade pode ser obtida tanto pelo método absoluto como pelo relativo. No método absoluto a gravidade é determinada diretamente como função da leitura instrumental e das constantes do aparelho. No método relativo determina-se a variação da gravidade de ponto para ponto, de modo que a gravidade é obtida a partir do conhecimento prévio de seu valor em pelo menos um dos pontos.

4.3.2.1. DETERMINAÇÃO ABSOLUTA DA GRAVIDADE.

Nas últimas duas décadas a gravimetria passou por mudanças substanciais, como decorrência da evolução da tecnologia instrumental, mormente no que diz respeito aos equipamentos de determinação absoluta. Embora em alguns países do leste os pêndulos ainda sejam usados, o progresso dos instrumentos absolutos de queda livre foi tão rápido que atualmente as determinações absolutas da gravidade são feitas quase que exclusivamente com esses instrumentos.

O gravímetro de queda livre baseia-se no deslocamento de um corpo em queda livre no vácuo de acordo com a equação do movimento uniformemente acelerado:

$$z_i = z_0 + v_0(t_i - t_0) + g(t_i - t_0)^2/2$$
 (4.4)

onde z_i é a posição do corpo no instante t_i , z_o e v_o são, respectivamente, a posição e a velocidade no instante inicial t_o .

O valor de g é determinado medindo-se z_i em diversos instantes t_i, por técnicas interferométricas combinadas com cronometragem eletrônica controlada por cristal de quartzo. No caso de obtenção de um sistema superabundante, com redundância de observações, pode-se utilizar o método dos mínimos quadrados para a obtenção de g, t_o, z_o e v_o.

Os gravímetros de queda livre experimentaram grande evolução nos últimos trinta anos; sua resolução deslocou-se da casa dos centésimos de miligal para o microgal. Todavia, por não serem instrumentos portáteis e necessitarem de ambiente especial para sua instalação e operação, o uso de tais equipamentos ainda está restrito aos laboratórios, embora possam ser desmontados e transportados de um laboratório para outro. Informações pormenorizadas sobre a tecnologia envolvida nas medidas da gravidade por queda livre podem ser encontradas no trabalho de Faller(1965).

No Brasil foi implantada recentemente uma rede de estações gravimétricas absolutas, dentro do programa de cooperação da Universidade Federal do Paraná com a Universidade de Hanover, com a participação de outras instituições. Esse trabalho, de há muito almejado pela comunidade geodésica nacional, é uma grande contribuição para o estabelecimento de um referencial gravimétrico preciso no país.

4.3.2.2. DETERMINAÇÃO RELATIVA DA GRAVIDADE.

A determinação relativa da gravidade é feita com o uso de gravímetros diferenciais ou relativos. Devido à sua portabilidade e facilidade operacional, os gravímetros diferenciais são tão largamente usados que é comum associar-se o termo gravímetro a esse tipo de instrumento. Contudo, tais instrumentos não são capazes de medir diretamente a gravidade; medem somente diferenças de gravidade entre pontos. No passado recente sua precisão era significativamente mais alta do que a dos gravímetros absolutos. Entretanto, com a evolução destes, atualmente as precisões são equivalentes, variando entre 0,1 e 0,001 mGal, dependendo do tipo de instrumento.

De acordo com o tipo de sensor utilizado costuma-se distinguir dentre os gravímetros diferenciais os *mecânicos* e os *supercondutores*. Os gravímetros mecânicos são de longe os mais utilizados nos trabalhos geodésicos. Os supercondutores, até o presente momento, são usados apenas para medidas estacionárias relacionadas principalmente com estudos de variações da gravidade.

Os gravímetros mecânicos baseiam-se no princípio do dinamômetro, de acordo com a lei de Hooke. São constituídos basicamente de uma mola da qual pende uma massa, cujo peso varia com a gravidade. A variação do peso é compensada pela variação da tensão na mola, que por sua vez é proporcional à mudança no seu comprimento. Assim, a diferença de gravidade entre dois pontos pode ser determinada em função da variação do comprimento da mola.

Dentre os gravímetros mecânicos atualmente em uso destaca-se o LaCoste & Romberg, que na versão geodésica é capaz de medir diferenças de gravidade de amplitude até 7000 mGal, com precisão melhor do que 0,05 mGal. Informações mais minuciosas sobre os gravímetros, suas características e cuidados operacionais podem ser encontradas nas contribuições de Groten(1980) e Escobar(1985).

4.4. REDES GRAVIMÉTRICAS.

Analogamente às redes altimétricas, geralmente os levantamentos gravimétricos são conduzidos em linhas, ao longo das principais rodovias, de modo a formar uma estrutura de rede. As redes gravimétricas são comumente divididas em categorias, de acordo com o rigor das prescrições técnicas obedecidas nos levantamentos. Assim, costuma-se designar por rede gravimétrica fundamental, básica, de 1ª ordem ou de alta precisão, àquela que é ligada diretamente ao datum mundial (IGSN71), extraindo deste sua escala e origem e em cujo levantamento são obedecidas as prescrições adequadas (DMA,1974).

As redes fundamentais são normalmente redes nacionais que visam tornar o referencial gravimétrico mais acessível no território de um país. No Brasil, estão sendo ultimados os

esforços para o estabelecimento da rede gravimétrica fundamental brasileira, com a participação de algumas instituições, dentre as quais podem ser citadas: Observatório Nacional, Universidade Federal do Paraná e o Instituto Astronômico e Geofísico da Universidade de São Paulo (Escobar,1981).

Redes regionais, de 2ª ordem ou de adensamento, são estabelecidas normalmente com objetivos específicos, v.g., realização de sistemas de altitudes, prospecção geofísica, entre outros. As prescrições, neste caso, são menos rigorosas e variam de acordo com o objetivo colimado.

CAPÍTULO 5

BASES METODOLÓGICAS DO AJUSTAMENTO DE OBSERVAÇÕES.

5.1. METODOLOGIA.

A consecução de um objetivo científico comumente envolve a adoção de um conjunto de procedimentos que frequentemente conduzem à estimativa das quantidades que contribuem direta ou indiretamente com o tema em estudo. Dentre esses procedimentos usualmente chamados de metodologia, podem ser identificadas algumas fases:

a)Definição das grandezas a serem investigadas, denominadas parâmetros (incógnitas a determinar), e suas especificações de precisão.

b)Formulação do modelo matemático.

Geralmente os parâmetros não podem ser medidos diretamente. É necessário formular funções que os relacionem com outras grandezas que podem ser medidas - as observáveis.

c)Preanálise.

Antes de fazer as medidas requeridas suas exatidões devem ser especificadas, em função das exatidões desejadas para os parâmetros e do modelo matemático.

d) Medição e análise das observações.

As medidas são efetuadas e as observações são analisadas para verificar se reunem, ou não, as especificações de exatidão prescritas.

e)Obtenção dos parâmetros.

Os parâmetros e suas exatidões são obtidos pela solução do modelo matemático, em função das observações pré-processadas.

f)Análise simultânea das observações e modelo matemático.

É feita a análise de adequação do modelo matemático, buscando o seu aperfeiçoamento, bem como das observações, procurando corrigí-las quando necessário.

g) Análise dos parâmetros.

O último estágio envolve a análise dos parâmetros calculados e um exame de suas compatibilidades com outras determinações independentes, se estas existirem.

5.2.FORMULAÇÃO DO MODELO MATEMÁTICO.

Genericamente pode-se definir um modelo matemático como uma relação matemática entre grandezas particulares, baseado em certas leis. É o elemento central do planejamento da experiência e do processamento dos dados observados. Consiste na formulação da relação funcional entre os parâmetros e as grandezas observadas que, genericamente, pode ser escrita:

$$\mathbf{f}(\mathbf{x},\mathbf{i}) = 0 \tag{5.1}$$

onde,

 $f = f_i$, i = 1, ..., m é o vetor das funções;

 $x = x_i$, i = 1, ..., u são grandezas sobre as quais há pouca ou nenhuma informação, conhecidas como parâmetros, e.g., altitudes ou outras coordenadas, deflexão da vertical, alturas geoidais etc;

l=l_i, i = 1, ..., n são grandezas físicas ou geométricas capazes de serem observadas, denominadas observáveis às quais são atribuídos números, com uma certa precisão,

denominados observações. O processo de atribuição destes números é denominado medição e é executado através de um instrumento ou sensor.

Além das grandezas mencionadas, outras grandezas consideradas perfeitamente conhecidas, ou seja, isentas de erro, denominadas constantes, podem estar presentes no modelo matemático, e.g., constante gravitacional de Newton, velocidade da luz no vácuo etc.. Estas grandezas, entretanto, são consideradas como inerentes ao modelo matemático.

Correspondendo às três componentes do modelo matemático (5.1) estão os três espaços vetoriais: parâmetros, X, observações, L, e espaço do modelo, F, (Fig. 5.1). As matrizes A e B, e suas funções, serão definidas adiante neste capítulo.

A equação (5.1) está formulada no espaço do modelo, cujos elementos são as m funções; dim f = m. Tal forma é conhecida como modelo implícito, ou combinado, que envolve simultaneamente as observáveis e os parâmetros e pode ser linear ou não-linear.

O modelo implícito linear pode ser escrito como:

$$\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{l} + \mathbf{w} = \mathbf{0},\tag{5.2}$$

onde A é a matriz dos coeficientes de x, com dimensão (m,u); B é a matriz dos coeficientes de l, com dimensão (m,n); enquanto que w é o vetor constante cuja dimensão é igual a m.

O modelo implícito é o mais geral, mas podem ser destacados dois casos especiais de formas explícitas que derivam dele: modelo explícito em x e modelo explícito em l.

a) O modelo explícito em x é escrito como

$$\mathbf{x} = \mathbf{f}(\mathbf{I}) \tag{5.3}$$

onde f é função explícita. Como f transforma L em X, ambos os lados de (5.3) pertencem a X e o modelo é dito ser formulado no espaço dos parâmetros X. O modelo explícito linear em x é obtido fazendo-se A = -I na equação (5.2), onde I é a matriz unidade. Assim,

$$\mathbf{x} = \mathbf{Bl} + \mathbf{w} \tag{5.4}$$

FIG.5.1. _ RELAÇÃO ENTRE OS ESPAÇOS DO MODELO, DOS PARÂMETROS E DAS OBSERVAÇÕES.

e, neste caso, dim $\mathbf{B} = (\mathbf{u}, \mathbf{n})$, dim $\mathbf{w} = \mathbf{u} = \mathbf{m}$.

O caso mais simples de um modelo explícito ocorre quando é possível medir diretamente o parâmetro incógnita. Nesta situação, a equação (5.4) toma a forma:

$$\mathbf{x} = \mathbf{l} \tag{5.5}$$

tal que B = I; w = 0 e u = n = m.

Sob certas circunstâncias os parâmetros podem estar totalmente ausentes do modelo explícito. Neste caso, o modelo torna-se:

$$\mathbf{f}(\mathbf{l}) = \mathbf{0},\tag{5.6}$$

e é conhecido como "modelo condição", que reflete condições físicas ou geométricas que relacionam apenas as observáveis entre si. O modelo condição linear é obtido fazendo a matriz A = 0 na equação (5.2), já que não existem parâmetros. Assim,

$$\mathbf{Bl} + \mathbf{w} = \mathbf{0},\tag{5.7}$$

onde dim $\mathbf{B} = (\mathbf{m}, \mathbf{n})$, dim $\mathbf{l} = \mathbf{n}$ e dim $\mathbf{w} = \mathbf{m}$. Por exemplo, na relação com os três ângulos, α, β e γ , de um triângulo plano, a matriz \mathbf{B} é dada por:

$$B = (1, 1, 1),$$

o vetor de observáveis é

$$\mathbf{l} = (\alpha, \beta, \gamma)^{\mathrm{T}}$$

e o vetor constante, neste caso de um elemento, é igual a

$$\mathbf{w} = (-\pi)$$
.

b) O modelo explícito em l expressa as observações como funções dos parâmetros, ou seja,

$$1 = f(x). (5.8)$$

Como f transforma X em L, este tipo de modelo é dito ser formulado no espaço das observações. A forma linear deste modelo pode ser obtido da equação (5.2), fazendo $\mathbf{B} = -\mathbf{I}$, ou seja,

$$1 = Ax + w, (5.9)$$

onde dim A = (n,u) e dim w = n = m.

É importante notar que A transforma X em F ou L, e B transforma L em F ou X (Fig. 5.1). As dimensões das matrizes A e B, e suas características, ditam se o modelo é indeterminado, indefinido ou univocamente determinado.

5.3. CLASSIFICAÇÃO DOS MODELOS QUANTO À SOLUÇÃO.

De modo geral, a solução de um modelo consiste na determinação do vetor dos parâmetros, x, e sua precisão, a matriz de covariâncias C.

Existem três tipos de solução possíveis para modelos lineares ou linearizados: única, indeterminada e indefinida. Se o modelo não é naturalmente linear deve ser linearizado, conforme será visto no item 5.4.1. Modelos não-lineares, caracterizados por parâmetros incógnitas encerrados em expressões funcionais, são solucionados através de técnicas matemáticas especiais, no domínio das soluções não-lineares, tal como análise espectral. A explanação dessas técnicas está fora dos objetivos deste trabalho.

No exame da possibilidade de solução de um modelo linear podem ser encontradas as seguintes situações:

a) u = m e A é regular. Neste caso o modelo tem solução única, obtida da equação (5.2); isto é,

$$\mathbf{x} = -\mathbf{A}^{-1}(\mathbf{Bl} + \mathbf{w}). \tag{5.10}$$

No entanto, se A for singular não haverá solução única e será necessário o uso de inversas generalizadas.

b) u > m. Deparamos com um modelo com soluções indeterminadas, ou seja, apresentam um número infinito de soluções que satisfazem as equações. Tudo o que se pode fazer é expressar alguns parâmetros incógnitas em função de outros.

c) u < m. Trata-se de um modelo superabundante, com solução indefinida de x, ou seja, geralmente não existe x que satisfaça o sistema de equações. Esta classe de modelo é muito comum nos trabalhos geodésicos. Portanto será analisada em seus pormenores no próximo item.

5.4. SOLUÇÃO DE MODELOS SUPERABUNDANTES POR MÍNIMOS-QUADRADOS.

Quando o modelo é superabundante, ou seja, tem mais equações do que os u parâmetros, a solução é indefinida. Geralmente, o excesso de equações indica que foram feitas mais observações do que o necessário para a determinação das incógnitas, prática comum nas operações geodésicas, que visa reduzir o efeito dos erros acidentais inerentes às observações. Tais erros tornam o sistema matematicamente inconsistente, que fornece soluções diferentes para cada conjunto de u equações.

Para contornar o problema da indefinição pode-se reformular o modelo através da substituição de l por seu estimador, i. e.,

$$l = l^{\circ} + v$$

onde l° é o vetor das observações e v é denominado vetor dos resíduos. Assim, o modelo pode ser escrito na forma

$$f(x, l) = f(x, l^0 + v) = 0.$$
 (5.11)

O vetor v é introduzido para tornar as equações consistentes ao admitir mudar as observações (de l para l°). Nota-se que o valor estimado para l depende do critério a ser empregado na estimativa de v. A melhor solução é normalmente procurada no espaço das observações com a introdução da condição de mínimos-quadrados através da minimização da função v $^{T}C_{\nu}^{-1}$ v, ou seja:

$$\min_{\mathbf{x},\mathbf{y}}(\mathbf{v}^{\mathsf{T}}\mathbf{C}_{\mathbf{v}}^{-1}\mathbf{v}),$$

onde C_v é a matrix de covariâncias do vetor dos resíduos. Como C_v é equivalente à matriz de covariâncias das observações, C_lo (Vanicek &Krakiwsky, 1986, p.201), a condição de mínimos-quadrados pode ser expressa por:

$$\min_{\mathbf{v},\mathbf{v}}(\mathbf{v}^{\mathrm{T}}\mathbf{C}_{\mathbf{I}}^{\bullet^{-1}}\mathbf{v}). \tag{5.12}$$

É importante notar que, com a reformulação do problema, existem agora dois vetores incógnitas (x e v) e, portanto, a minimização deve ser conduzida com respeito a ambos.

Esta condição é frequentemente referida como "forma quadrática mínima dos resíduos ponderados", ou como "soma mínima dos quadrados dos resíduos ponderados". Entretanto, esta última designação só é verdadeira quando a matriz C_{i0} é diagonal, ou seja, quando v for estatisticamente independente.

As aplicações práticas da técnica de mínimos-quadrados frequentemente esbarram no problema do desconhecimento da escala da matriz C_{10} , i.e., apenas os tamanhos relativos dos seus elementos são conhecidos. A solução do problema passa pela definição da matriz P, inversa da matriz dos elementos de escala arbitrária, ou seja,

$$\mathbf{P} = \sigma_0^2 \mathbf{C}_0^{-1} \tag{5.13}$$

ou

$$C_1 \circ^{-1} = P/\sigma_0^2$$

onde o fator de escala σ_o^2 é denominado de fator de variância, variância da unidade de peso ou, ainda, variância da observação de peso unitário, e a matriz **P** é chamada de matriz de pesos. Assim, a condição de mínimos-quadrados pode ser escrita como

$$\min_{\mathbf{x},\mathbf{v}}(\mathbf{v}^{\mathsf{T}}\mathbf{P}\mathbf{v}). \tag{5.14}$$

No item 5.4.3 será demonstrado que o conhecimento de σ_o^2 a priori não é necessário para se chegar aos valores corretos de x e v, e que, embora a obtenção das matrizes covariâncias C_x , C_v e C_l dependam de σ_o^2 , é possível obter-se um valor estimado dessa grandeza com base nos resultados, antes da estimativa das covariâncias.

5.4.1. FORMULAÇÃO DO PROBLEMA.

Objetivando a simplificação da solução, o modelo matemático é normalmente aproximado com a parte linear de uma série de Taylor. Geralmente são escolhidos para pontos de expansão os valores observados (\mathbf{l}°) no espaço das observações L e valores aproximados (\mathbf{x}°) dos parâmetros no espaço dos parâmetros X, que resulta em:

$$f(x, 1) = f(x^{0} + d, 1^{0} + v)$$

onde d=x-xo é o vetor das correções que devem ser atribuîdas a xo para se obter x.

Portanto,

$$f(x, 1) = f(x^{0}, 1^{0}) + \partial f / \partial x \big|_{x = x^{0}, 1 = 1^{0}} (x - x^{0}) + \partial f / \partial 1 \big|_{x = x^{0}, 1 = 1^{0}} (1 - 1^{0}) = 0$$

ou, simplesmente,

$$Ad + Bv + w = 0, (5.15)$$

cuja forma é identica à (5.2) para

$$\mathbf{A} = \partial \mathbf{f}/\partial \mathbf{x} \big|_{\mathbf{x} = \mathbf{x}^{\mathbf{0}}, \mathbf{l} = \mathbf{l}^{\mathbf{0}}} \quad , \qquad \mathbf{B} = \partial \mathbf{f}/\partial \mathbf{l} \big|_{\mathbf{x} = \mathbf{x}^{\mathbf{0}}, \mathbf{l} = \mathbf{l}^{\mathbf{0}}} \quad , \qquad \mathbf{w} = \mathbf{f}(\mathbf{x}^{\mathbf{0}}, \mathbf{l}^{\mathbf{0}}), \tag{5.16}$$

onde w é chamado de vetor de fechamento.

As soluções práticas de alguns problemas são condicionadas à introdução de informações adicionais, não contidas no modelo principal f. Estas informações podem ser expressas na forma de relações funcionais adicionais entre os parâmetros e as observáveis. Na literatura tais funções são conhecidas como funções injuntivas ("constraint functions") ou vínculos.

O modelo injuntivo também pode ser implícito ou explícito, linear ou não-linear mas, normalmente, não é tratado isoladamente. Funciona como modelo secundário, associado ao modelo principal e, simbolicamente, pode ser escrito:

$$f'(x,l')=0$$

onde,

 $\mathbf{f}' = \mathbf{f}'_i$, i = 1,...,r é o vetor das funções injuntivas;

x é o mesmo vetor dos parâmetros considerado no modelo principal e

 $l'=l'_{,i}$, i=1,...,s é o vetor das observáveis injuntivas.

Como o modelo principal, o modelo injuntivo também pode ser aproximado por série de Taylor, o que resulta em:

$$f'(x,l') = f'(x^0 + d, l'^0 + v')$$
(5.17)

ou

$$\mathbf{A'd} + \mathbf{B'v'} + \mathbf{w'} = \mathbf{0} \tag{5.18}$$

com A', B' e w' definidos de modo análogo a A, B e w, para f=f', l=l' e l°=l'°.

Costuma-se distinguir três tipos de injunções (de Andrade, 1977):

- a) Injunção funcional: quando o modelo matemático correlaciona apenas parâmetros entre si, através de uma relação física ou matemática.
- b) Injunção absoluta: quando o modelo matemático expressa uma condição física ou matemática em que os parâmetros são correlacionados com constantes, ou seja, são considerados fixos.
- c) Injunção relativa: quando o modelo matemático correlaciona parâmetros com observações. Neste caso as observações devem estar associadas a pesos que expressem suas precisões relativas.

As equações (5.15) e (5.18) são formas diferenciais dos modelos matemáticos principal e injuntivo que descrevem as relações das grandezas nas vizinhanças de x^0 , l^0 , l^{*0} , w e w^* (Fig. 5.2). As matrizes A e B transportam as grandezas d e v para o espaço m-dimensional do modelo principal F, assim como as matrizes A^* e B^* transportam as grandezas d e v^* para o espaço r-dimensional do modelo injuntivo F^* . Portanto, os termos de (5.15) -Ad, Bv e w - são vetores m-dimensionais e os termos de (5.18) $-A^*d$, B^*v^* e w^* - são vetores r-dimensionais. A, B, w, A^* , B^* e w^* são conhecidos, enquanto que d, v e v^* são incógnitas.

5.4.2. SOLUÇÃO DO PROBLEMA DE MÍNIMOS-QUADRADOS.

O problema injungido, ou vinculado, com modelos principal e secundário na forma implícita, é o caso mais geral, e, portanto, será tratado neste ítem. Os demais casos podem ser considerados como casos particulares, cujas soluções podem ser obtidas a partir de considerações simplificativas análogas àquelas abordadas no ítem 5.2.

Com a introdução do modelo injuntivo, uma nova incógnita foi introduzida no problema, o vetor dos resíduos das observações injuntivas, v'. Portanto, as soluções do problema injungido

FIG. 5.2 _ LINEARIZAÇÃO

por mínimos-quadrados são: d, v e v', que devem ser obtidos minimizando os comprimentos dos vetores v e v', utilizando a condição expressa por:

$$\min_{\mathbf{d},\mathbf{v},\mathbf{v}}(\mathbf{v}^{\mathsf{T}}\mathbf{P}\mathbf{v}+\mathbf{v}^{\mathsf{T}}\mathbf{P}^{\mathsf{s}}\mathbf{v}^{\mathsf{s}}),\tag{5.19}$$

onde P' é a matriz dos pesos associados às observações injuntivas.

Visto que as matrizes **B** e **B**', geralmente, não são regulares, as substituições de **v** e **v**' em (5.19) a partir de (5.15) e (5.18) não são possíveis. A solução normalmente usada para o problema foi oferecida por Lagrange, que baseou-se na idéia de envolver outras grandezas no modelo, através de um artifício matemático. Os vetores equação (5.15) e (5.18) são multiplicados por vetores arbitrários **k** e **k**'. Os produtos escalares resultantes são nulos para quaisquer **k** e **k**' finitos, desde que **d**, **v** e **v**' satisfaçam as equações (5.15) e (5.18). Assim, tais produtos podem ser subtraídos das formas quadráticas (**v**^TPv e **v**'^TP'v') sem afetar seus valores. Portanto, é valida a seguinte expressão:

$$\min_{\mathbf{d},\mathbf{v'}\mathbf{v'}} (\mathbf{v^T} \mathbf{P} \mathbf{v} + \mathbf{v'^T} \mathbf{P'} \mathbf{v'}) =$$

$$\min_{\mathbf{d},\mathbf{v'}\mathbf{v'}} [\phi = \mathbf{v^T} \mathbf{P} \mathbf{v} + \mathbf{v'^T} \mathbf{P} \mathbf{v'} - 2\mathbf{k^T} (\mathbf{A} \mathbf{d} + \mathbf{B} \mathbf{v} + \mathbf{w}) - 2\mathbf{k'^T} (\mathbf{A'} \mathbf{d} + \mathbf{B'} \mathbf{v'} + \mathbf{w'})].$$
(5.20)

A função ϕ é usualmente chamada de "função de variação" e os vetores \mathbf{k} e \mathbf{k} ' são os correlatos de Lagrange ou lagrangianos, que desempenham papel de incógnitas como os vetores \mathbf{d} , \mathbf{v} e \mathbf{v} .

A minimização da função ϕ é um problema de extremo da matemática. O método padrão para solução é achar as derivadas de ϕ com relação a d, v, v', k e k', igualando-as a vetores nulos. Assim,

$$(1/2) \cdot (\partial \phi / \partial \mathbf{v}) = \mathbf{P} \mathbf{v} - \mathbf{B}^{\mathsf{T}} \mathbf{k} = \mathbf{0}, \tag{5.21}$$

$$(1/2) \cdot (\partial \phi / \partial \mathbf{v}') = \mathbf{P}' \mathbf{v}' - \mathbf{B}'^{\mathsf{T}} \mathbf{k}' = \mathbf{0}, \tag{5.22}$$

$$(-1/2) \cdot (\partial \phi/\partial \mathbf{d}) = \mathbf{A}^{\mathsf{T}} \mathbf{k} + \mathbf{A}^{\mathsf{T}} \mathbf{k}' = \mathbf{0}, \tag{5.23}$$

$$(-1/2) \cdot (\partial \phi / \partial \mathbf{k}) = \mathbf{Ad} + \mathbf{Bv} + \mathbf{w} = \mathbf{0}, \tag{5.24}$$

$$(-1/2) \cdot (\partial \phi / \partial \mathbf{k'}) = \mathbf{A'd} + \mathbf{B'v'} + \mathbf{w'} = \mathbf{0}. \tag{5.25}$$

Resolvendo a equação (5.21) em relação a v e substituindo o resultado em (5.24), tem-se:

$$\mathbf{v} = \mathbf{P}^{-1} \mathbf{B}^{\mathrm{T}} \mathbf{k} \tag{5.26}$$

 $Ad + BP^{-1}B^{T}k + w = 0$

ou, fazendo

$$\mathbf{M} = \mathbf{BP}^{\mathbf{I}}\mathbf{B}^{\mathbf{T}},\tag{5.27}$$

Ad + Mk + w = 0,

que, resolvida em relação a k, conduz a:

$$k = -M^{-1}(Ad + w).$$
 (5.28)

Procedendo de modo análogo com as equações (5.22) e (5.25), resulta:

$$\mathbf{v}' = \mathbf{P}^{-1} \mathbf{B}^{-1} \mathbf{k}', \tag{5.29}$$

$$\mathbf{M'} = \mathbf{B'P'}^{-1}\mathbf{B'}^{T} \tag{5.30}$$

e

$$k' = -M^{r^1}(A'd + w').$$
 (5.31)

Substituindo (5.28) e (5.31) em (5.23), resulta:

$$A^{T}M^{-1}(Ad+w) + A^{T}M^{-1}(A'd+w') = 0,$$

ou

$$(A^{T}M^{-1}A + A^{-1}M^{-1}A')d + (A^{T}M^{-1}w + A^{-1}M^{-1}w') = 0.$$
(5.32)

ou, fazendo

$$N = A^{T}M^{-1}A + A^{T}M^{-1}A'$$
 (5.33)

e

$$u = A^{T}M^{-1}w + A^{T}M^{-1}w^{2},$$
 (5.34)

tem-se

$$Nd + u = 0. (5.35)$$

Esta equação matricial é chamada de sistema de equações normais, onde N é denominada matriz dos coeficientes e u é um vetor constante.

De modo a determinar se o extremo é máximo ou mínimo, deve-se achar a segunda derivada da (5.35) que é igual a N, que é uma matriz positivo-definida. Então o extremo é mínimo, que é o que se deseja.

A solução de mínimos-quadrados é então escrita como:

$$d = -N^{-1}u. (5.36)$$

Os correlatos, k e k', são determinados usando as equações (5.28) e (5.31) e os resíduos, v e v', são obtidos através das equações (5.26) e (5.29). Finalmente, o estimador de mínimos-quadrados dos parâmetros e das observações são dados, respectivamente, por:

$$\mathbf{x} = \mathbf{x}^{\circ} + \mathbf{d},\tag{5.37}$$

$$1 = 1^{\circ} + v, \tag{5.38}$$

e

$$\mathbf{l'} = \mathbf{l'}^{0} + \mathbf{v'} \,. \tag{5.39}$$

Quando o modelo matemático não é linear, a aproximação linear por série de Taylor introduz o "efeito de não-linearidade", aludido no item 5.3. Neste caso, a solução do problema pode ser obtida iterativamente até que se estabeleça a convergência das grandezas ajustadas. Assim, para a n-ésima iteração, o modelo linearizado é dado por:

$$A^{(n)}(x^{(n+1)}-x^{(n)})+B^{(n)}(l^{(n+1)}-l^{(n)})+f(x^{(n)},l^{(n)})=0,$$
(5.40)

onde $(\mathbf{x}^{(n)}, \mathbf{l}^{(n)})$ é o último ponto de expansão e $\mathbf{A}^{(n)}$, $\mathbf{B}^{(n)}$ são estimadores neste ponto (Fig. 5.3). Entretanto, se bem que do ponto de vista matemático o problema estaria bem formulado, do ponto de vista estatístico o resíduo $\mathbf{v}^{(n)}$ deve refletir a discrepância entre o último valor estimado de \mathbf{l} e seu valor observado, \mathbf{l}^{0} , e não o valor estimado na iteração anterior, ou seja, $\mathbf{v}^{(n)} = \mathbf{l}^{(n+1)} - \mathbf{l}^{0}$. Para compatibilizar conceitualmente a equação 5.40, deve-se observar que

$$l^{(n+1)}-l^{(n)}=v^{(n)}-l^{(n)}+l^{0}$$

que substituída naquela equação conduz a:

$$A^{(n)}d^{(n)} + B^{(n)}v^{(n)} + B^{(n)}(l^o - l^{(n)}) + f(x^{(n)}, l^{(n)}) = 0$$

ou, fazendo

$$\mathbf{w}^{(n)} = \mathbf{f}(\mathbf{x}^{(n)}, \mathbf{l}^{(n)}) + \mathbf{B}^{(n)}(\mathbf{l}^{o} - \mathbf{l}^{(n)}), \tag{5.41}$$

chega-se a

$$A^{(n)}d^{(n)} + B^{(n)}v^{(n)} + w^{(n)} = 0$$

que apresenta a mesma forma de (5.15) e (5.18) e, portanto, pode ser resolvida usando as mesmas equações.

Observe-se que é o segundo termo em (5.41) que torna a n-ésima iteração diferente da solução inicial, isto é, se $\mathbf{l^{(n)}} = \mathbf{l^{o}}$, então $\mathbf{w^{(n)}} = \mathbf{w^{o}}$ se reduz à equação (5.16). A iteração deve ser conduzida até que dois incrementos sucessivos, i.e., $\mathbf{d^{(n)}} \in \mathbf{d^{(n+1)}}$, sejam nulos.

5.4.3. MATRIZES DE COVARIÂNCIAS DOS RESULTADOS.

Nesta seção serão deduzidas as fórmulas para os cálculos das matrizes de covariâncias dos vetores erros de fechamento, w e w', correções aos parâmetros aproximados, d, resíduos, v e v', e observações ajustadas, l e l'.

a) Visto que xº é constante, aplicando a lei da covariância à equação (5.16), obtém-se:

$$\mathbf{C}_{\mathbf{w}} = \mathbf{B}\mathbf{C}_{\mathbf{l}}\mathbf{B}^{\mathsf{T}} = \sigma_{\mathbf{0}}^{2}\mathbf{B}\mathbf{P}^{\mathsf{-1}}\mathbf{B}^{\mathsf{T}}$$

ou

$$\mathbf{C}_{\mathbf{v}} = \sigma_{\mathbf{v}}^{2} \mathbf{M}. \tag{5.42}$$

Analogamente,

$$C_{\mathbf{y}} = \sigma_0^2 \mathbf{M}'. \tag{5.43}$$

b)Considerando a equação (5.37), como xº é constante,

$$C_x = C_d$$
.

Com base na equação (5.36) pode-se escrever:

$$\mathbf{d} = -\mathbf{N}^{-1}\mathbf{A}^{T}\mathbf{M}^{-1}\mathbf{w} - \mathbf{N}^{-1}\mathbf{A}^{T}\mathbf{M}^{T}\mathbf{w}^{T}. \tag{5.44}$$

Aplicando a lei da covariância à equação acima, obtém-se:

$$\begin{split} \mathbf{C}_{\mathbf{x}} &= (-\mathbf{N}^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{M}^{-1})\mathbf{C}_{\mathbf{w}} (-\mathbf{N}^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{M}^{-1})^{\mathsf{T}} + (-\mathbf{N}^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{M}^{\mathsf{y-1}})\mathbf{C}_{\mathbf{w}'} (-\mathbf{N}^{-1}\mathbf{A}^{\mathsf{y}}\mathbf{M}^{\mathsf{y-1}})^{\mathsf{T}} \\ \mathbf{C}_{\mathbf{x}} &= \sigma_{o}^{2}\mathbf{N}^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{M}^{-1}\mathbf{M}\mathbf{M}^{-1}\mathbf{A}\mathbf{N}^{-1} + \sigma_{o}^{2}\mathbf{N}^{-1}\mathbf{A}^{\mathsf{y}}\mathbf{M}^{\mathsf{y-1}}\mathbf{A}^{\mathsf{y}}\mathbf{M}^{\mathsf{y-1}}\mathbf{A}^{\mathsf{y}}\mathbf{N}^{-1} \\ \mathbf{C}_{\mathbf{x}} &= \sigma_{o}^{2}\mathbf{N}^{-1}(\mathbf{A}^{\mathsf{T}}\mathbf{M}^{-1}\mathbf{A})\mathbf{N}^{-1} + \sigma_{o}^{2}\mathbf{N}^{-1}(\mathbf{A}^{\mathsf{y}}\mathbf{M}^{\mathsf{y-1}}\mathbf{A}^{\mathsf{y}})\mathbf{N}^{-1} \\ \mathbf{C}_{\mathbf{x}} &= \sigma_{o}^{2}\mathbf{N}^{-1}(\mathbf{A}^{\mathsf{T}}\mathbf{M}^{-1}\mathbf{A} + \mathbf{A}^{\mathsf{y}}\mathbf{M}^{\mathsf{y-1}}\mathbf{A}^{\mathsf{y}})\mathbf{N}^{-1} \end{split}$$

que resulta, considerando a (5.33),

$$C_{y} = \sigma_{0}^{2} N^{-1}$$
. (5.45)

c)Considerando as equações (5.26) e (5.28), obtém-se:

$$v = -P^{-1}B^{T}M^{-1}(Ad + w).$$

Substituindo d pela sua expressão, dada pela equação (5.44), vem:

$$v = -P^{-1}B^{T}M^{-1}[A(-N^{-1}A^{T}M^{-1}w - N^{-1}A^{*T}M^{*-1}w') + w]$$

ou

$$v = (P^{-1}B^{T}M^{-1}AN^{-1}A^{T}M^{-1} - P^{-1}B^{T}M^{-1})w + P^{-1}B^{T}M^{-1}AN^{-1}A^{*T}M^{*-1}w'$$
(5.46)

que é uma expressão que envolve apenas as variáveis independentes w e w'.

Aplicando a lei das covariâncias à (5.46) resulta que

$$\begin{matrix} C_v = (-P^{\text{-}1}B^TM^{\text{-}1}AN^{\text{-}1}A^TM^{\text{-}1} - P^{\text{-}1}B^TM^{\text{-}1})C_v(-P^{\text{-}1}B^TM^{\text{-}1}AN^{\text{-}1}A^TM^{\text{-}1} - P^{\text{-}1}B^TM^{\text{-}1})^T + \\ + (P^{\text{-}1}B^TM^{\text{-}1}AN^{\text{-}1}A^{\text{-}1}A^{\text{-}1}M^{\text{-}1})C_{vv}(P^{\text{-}1}B^TM^{\text{-}1}AN^{\text{-}1}A^{\text{-}1}M^{\text{-}1})^T \end{matrix}$$

ou, substituindo C_w e C_w , por suas expressões dadas pela equações (5.42) e (5.43), tem-se, após algumas simplificações algébricas:

$$C_{v} = \sigma_{o}^{2} P^{-1} B^{T} M^{-1} [I - A N^{-1} A^{T} M^{-1}] B P^{-1}.$$
 (5.47)

De modo análogo chega-se a

$$C_{r} = \sigma_{0}^{2} P^{r1} B^{r} M^{r1} [I - A^{r} N^{-1} A^{r} M^{r1}] B^{r} P^{r1}.$$
 (5.48)

d)As expressões para as observações ajustadas são dadas pelas equações (5.38) e (5.39). Assim,

$$l = l^0 + v$$

ou, substituindo v pela sua expressão dada pela equação (5.46),

$$l = l^{\circ} + (P^{-1}B^{T}M^{-1}AN^{-1}A^{T}M^{-1} - P^{-1}B^{T}M^{-1})w + P^{-1}B^{T}M^{-1}AN^{-1}A'M^{-1}w'.$$
 (5.49)

Considerando que

$$w = f(x^0, l^0)$$
 e $w' = f'(x^0, l'^0)$

a expressão contém duas variáveis independentes, lº e lº. Assim, visto que

$$\partial \mathbf{w}/\partial \mathbf{l}^{\circ} = \mathbf{B} \quad \mathbf{e} \quad \partial \mathbf{w}'/\partial \mathbf{l}^{\circ} = \mathbf{B}',$$

tem-se

$$\partial I/\partial I^{\circ} = I + P^{-1}B^{T}M^{-1}AN^{-1}A^{T}M^{-1}B - P^{-1}B^{T}M^{-1}B$$

e

$$\partial I/\partial I^{\prime 0} = P^{-1}B^{T}M^{-1}AN^{-1}A^{\prime}M^{\prime -1}B^{\prime}$$
.

Aplicando a lei das covariâncias à equação (5.49) resulta que

$$\mathbf{C}_{\mathbf{i}} = (\partial \mathbf{l}/\partial \mathbf{l}^{\mathbf{o}}) \mathbf{C}_{\mathbf{i}^{\mathbf{o}}} (\partial \mathbf{l}/\partial \mathbf{l}^{\mathbf{o}})^{\mathrm{T}} + (\partial \mathbf{l}/\partial \mathbf{l}^{\mathbf{o}}) \mathbf{C}_{\mathbf{p}^{\mathbf{o}}} (\partial \mathbf{l}/\partial \mathbf{l}^{\mathbf{o}})^{\mathrm{T}}.$$

Considerando a equação (5.13), substituindo as derivadas pelas respectivas expressões, observando que $BP^{-1}B^{T} = M$, $B'P^{-1}B^{T}_{,} = M'$, $A'M'^{-1}A'^{T}_{,} = A'^{T}M'^{-1}A'$ e $N = A^{T}M'^{-1}A + A'^{T}M'^{-1}A'$, chega-se a

$$C_{1} = \sigma_{0}^{2} [P^{-1} + P^{-1}B^{T}M^{-1}AN^{-1}A^{T}M^{-1}BP^{-1} - P^{-1}B^{T}M^{-1}BP^{-1}].$$
 (5.50)

Analogamente, obtem-se

$$C_{p} = \sigma_{0}^{2} [P^{r1} + P^{r1}B^{r}M^{r1}A^{r}N^{-1}A^{r}M^{r1}B^{r}P^{r1} - P^{r1}B^{r}M^{r1}B^{r}P^{r1}].$$
 (5.51)

Comparando-se (5.47) com (5.50) observa-se que

$$C_1 = C_1 \circ - C_v . \tag{5.52}$$

Como era de se esperar, a variância das observações ajustadas são menores do que as variâncias antes do ajustamento.

Uma análise da equação (5.44) permite verificar que é desnecessário o conhecimento a priori de um valor de σ_0^2 para se chegar ao valor correto de **d**.

Analogamente, (5.46) mostra que v também não é dependente do conhecimento de σ_o^2 a priori. Entretanto, as matrizes de covariâncias são dependentes de σ_o^2 e, portanto, deve-se conhecer o seu valor antes da estimativa daquelas matrizes. Isso pode ser feito a partir dos resultados, ou seja,

$$\sigma_o^2 = (\mathbf{v}^T \mathbf{P} \mathbf{v} + \mathbf{v}'^T \mathbf{P}' \mathbf{v}') / (\mathbf{m} + \mathbf{r} - \mathbf{u})$$
 (5.53)

onde

$$m+r-u=\nu$$

define o número de graus de liberdade, também chamado redundância.

CAPÍTULO 6

DESENVOLVIMENTO E SOLUÇÃO DE MODELOS PARA OBTENÇÃO DE UM SISTEMA DE ALTITUDES ORTOMÉTRICAS.

Neste capítulo serão desenvolvidos e solucionados modelos matemáticos com o objetivo de gerar um sistema de altitudes ortométricas, em função das observáveis e dos parâmetros envolvidos neste problema. Os modelos são baseados nos conceitos expostos nos capítulos precedentes e estão sendo propostos neste trabalho como sua principal contribuição.

6.1. DESENVOLVIMENTO DE MODELOS MATEMÁTICOS.

Partindo da equação da altitude ortométrica, dada pela equação (3.13), aplicada a um ponto genérico de ordem i, tem-se:

$$H_i = C/g_i^m$$

ou

$$C_i = g^m H_i$$

Considerando um segundo ponto de ordem j, obtém-se a equação

$$g^{m}_{i}H_{i}-g^{m}_{i}H_{i}=C_{i}-C_{i}$$

que, tendo em vista a equação (3.2), resulta em:

$$g_{i}^{m}H_{i}-g_{j}^{m}H_{j}=W_{j}-W_{i}=\delta W_{ij}.$$
 (6.1)

Com base na equação (3.20) pode-se escrever:

$$g^{m} = g - \theta H/2, \tag{6.2}$$

onde $\theta = \partial g/\partial H$ é a variação da gravidade com a altitude no interior da crosta terrestre e g é o valor da gravidade observado na superfície física.

Aplicando a (6.2) aos pontos i e j e substituindo em (6.1) chega-se a

$$(g_i - \theta H_i/2) H_i - (g_j - \theta H_j/2) H_j = \delta W_{ij}.$$
 (6.3)

Para pontos i e j de uma linha de nivelamento, suficientemente próximos, pode-se escrever, com base na equação (3.1):

$$\delta W_{ij} = -(g_i + g_j) \delta l_{ij} / 2 \tag{6.4}$$

que substituindo em (6.3), conduz a:

$$g_{i}H_{i}-g_{j}H_{j}+(H_{j}^{2}-H_{i}^{2})\theta/2+(g_{i}+g_{j})\delta l_{ij}/2=0$$
(6.5)

onde g_i e g_j são valores de gravidade observados nos pontos de ordem i e j, H_i e H_j são as altitudes ortométricas nos mesmos pontos e δl_{ij} é o desnível observado. O valor de θ depende do tipo de altitude que se deseja obter. Se $\theta = -0.0848$ mGal/m serão obtidas altitudes de Helmert.

A equação (6.5) é válida para cada par de pontos da rede altimétrica, onde os valores da gravidade foram determinados e entre os quais o desnível foi observado. Tal equação é a expressão de uma função típica que compõe o modelo matemático principal no ajustamento de uma rede altimétrica. O modelo é composto por n equações, correspondentes aos n desníveis

ôl observados, que formam o vetor l. Envolve u parâmetros, vetor x, referentes às u/2 altitudes H e igual número de valores de gravidade g obtidos nas referências de nível contidas na rede.

Na verdade os valores de gravidade conhecidos poderiam ser considerados como constantes neste modelo, preservando como parâmetros apenas as altitudes, que são as verdadeiras incógnitas do problema. Entretanto, para evitar que um erro ou equívoco no valor da gravidade influencie negativamente a estimativa das próprias altitudes, é preferível encará-los como parâmetros no modelo principal e introduzí-los no problema, como injunções relativas, ponderadas de acordo com os inversos das estimativas de suas variâncias, através de um modelo secundário.

O referencial da rede é extraído das altitudes transportadas a partir das determinações do nível médio do mar nos marégrafos. Devido aos erros inerentes à determinação do nível médio do mar, mencionados no ítem 4.1, mormente a existência da topografia da superfície do mar, a coerência entre as altitudes maregráficas é muito menor do que a coerência interna da rede altimétrica. A escolha de um único marégrafo, dentre os existentes, para servir de referência esbarra na dificuldade de se discernir a priori qual deles fornece valor de nível médio mais próximo do geóide. Um critério poderia ser utilizar a série histórica de observações , escolhendo-se, por exemplo, o de maior período de observação. Entretanto, isso não elimina o efeito da topografia da superfície do mar. Assim, em lugar de se selecionar uma única altitude maregráfica e fixá-la, como constante no modelo, é preferível utilizar todas as altitudes maregráficas conhecidas, sem fixá-las, inserindo-as como injunções relativas através do modelo injuntivo, ponderando-as em função das correções que o próprio ajustamento lhes atribuir. Deste modo, a incoerência entre as determinações maregráficas será evidenciada pela maior coerência interna da rede, que, por sua vez, extrairá das altitudes maregráficas o seu referencial.

Do exposto depreende-se que é necessária a formulação de um modelo matemático injuntivo, que introduza no problema os valores de gravidade e as altitudes maregráficas. As equações desse modelo são, portanto, de dois tipos:

$$H_i - H_i^I = 0$$

e (6.6)

$$g_i - g_i^I = 0$$

onde H_i^I e g^Ii são os valores observados de altitude maregráfica e gravidade, que compõem o vetor l' das observações injuntivas. O número de equações do primeiro tipo é igual ao de pontos de referência, enquanto que as equações do segundo tipo são em quantidade igual ao número de estações da rede. Portanto, o número total de equações do modelo injuntivo é igual à soma do número de equações dos dois tipos. O vetor dos parâmetros aqui é o mesmo do modelo principal.

6.2. SOLUÇÃO DOS MODELOS.

Considerando o modelo principal (6.5), o vetor dos parâmetros, x, é:

$$x = (H_1, H_2, H_3, ..., H_{u/2}, g_1, g_2, g_3, ..., g_{u/2})^T.$$

O vetor I, das observações, é composto pelos desníveis observados. Supondo, por exemplo, que os pontos extremos dos desníveis sejam 1 e 2, 2 e 3, 3 e 1, etc., o vetor I será:

$$\mathbf{l} = (\delta_{12}, \delta_{12}, \delta_{13}, \delta_{11}, \ldots, \delta_{1i})^{\mathrm{T}}.$$

Na forma linear, expressa pela equação (5.15), ou seja,

$$Ad + Bv + w = 0$$

para as equações do modelo principal, correspondentes aos desníveis que compõem l, as matrizes A e B e o vetor w, dados pelas equações (5.16), para xº e lº, são:

$$\mathbf{A} = \begin{bmatrix} \mathbf{g}^{0} - \theta \mathbf{H}^{0} & -\mathbf{g}^{0} + \theta \mathbf{H}^{0} & 0 & \dots & \mathbf{H}^{0} + \delta \mathbf{I}^{0} / 2 & -\mathbf{H}^{0} + \delta \mathbf{I}^{0} / 2 & 0 & \dots \\ 0 & \mathbf{g}^{0} - \theta \mathbf{H}^{0} & -\mathbf{g}^{0} + \theta \mathbf{H}^{0} & \dots & 0 & \mathbf{H}^{0} + \delta \mathbf{I}^{0} / 2 & -\mathbf{H}^{0} + \delta \mathbf{I}^{0} / 2 & \dots \\ -\mathbf{g}^{0} + \theta \mathbf{H}^{0} & 0 & \mathbf{g}^{0} - \theta \mathbf{H}^{0} & \dots - \mathbf{H}^{0} + \delta \mathbf{I}^{0} / 2 & 0 & \mathbf{H}^{0} + \delta \mathbf{I}^{0} / 2 & \dots \\ 1 & 1 & 1 & 31 & 31 & 31 & 31 & \dots \end{bmatrix}$$

$$\mathbf{B} = \begin{pmatrix} (\mathbf{g}^{0}_{1} + \mathbf{g}^{0}_{2})/2 & 0 & 0 & \cdots \\ 0 & (\mathbf{g}^{0}_{2} + \mathbf{g}^{0}_{3})/2 & 0 & \cdots \\ 0 & 0 & (\mathbf{g}^{0}_{1} + \mathbf{g}^{0}_{3})/2 & \cdots \end{pmatrix}$$

e

$$\mathbf{w} = \mathbf{g}^{0} \mathbf{H}^{0} - \mathbf{g}^{0} \mathbf{H}^{0} + (\mathbf{H}^{02} - \mathbf{H}^{02})\theta/2 + (\mathbf{g}^{0} + \mathbf{g}^{0})\delta_{1}^{0}/2$$

$$\mathbf{w} = \mathbf{g}^{0} \mathbf{H}^{0} - \mathbf{g}^{0} \mathbf{H}^{0} + (\mathbf{H}^{02} - \mathbf{H}^{02})\theta/2 + (\mathbf{g}^{0} + \mathbf{g}^{0})\delta_{1}^{0}/2$$

$$\mathbf{w} = \mathbf{g}^{0} \mathbf{H}^{0} - \mathbf{g}^{0} \mathbf{H}^{0} + (\mathbf{H}^{02} - \mathbf{H}^{02})\theta/2 + (\mathbf{g}^{0} + \mathbf{g}^{0})\delta_{1}^{0}/2$$

$$\mathbf{w} = \mathbf{g}^{0} \mathbf{H}^{0} - \mathbf{g}^{0} \mathbf{H}^{0} + (\mathbf{H}^{02} - \mathbf{H}^{02})\theta/2 + (\mathbf{g}^{0} + \mathbf{g}^{0})\delta_{1}^{0}/2$$

$$\mathbf{g}^{0} \mathbf{g}^{0} \mathbf{h}^{0} - \mathbf{g}^{0} \mathbf{h}^{0} + (\mathbf{h}^{02} - \mathbf{h}^{02})\theta/2 + (\mathbf{g}^{0} + \mathbf{g}^{0})\delta_{1}^{0}/2$$

Supondo, por exemplo, que as estações de referência sejam as de ordem 1, 4 e 6, o modelo injuntivo pode ser escrito:

O vetor dos parâmetros x é o mesmo do modelo principal e o vetor l' é dado por:

$$\mathbf{l'} = (\mathbf{H_1^I}, \mathbf{H_4^I}, \mathbf{H_6^I}, \mathbf{g_1^I}, \mathbf{g_2^I}, ..., \mathbf{g_{u/2}^I})^T.$$

Considerando a forma linear, dada pela equação (5.18),

$$A'd + B'v' + w' = 0,$$

a matriz A' é:

B' = -I e, se forem tomados para valores aproximados dos parâmetros os próprios valores conhecidos, w' = 0.

As matrizes de pesos P e P' podem ser obtidas a partir das estimativas das variâncias das observações. No caso de P é usual admitir que a variância de um desnível é proporcional à distância nivelada, S, ou seja,

$$\sigma_{\delta_1}^2 = \sigma^2 S \qquad e \qquad p_{\delta_1} = 1/\sigma^2 S, \tag{6.7}$$

onde $\sigma_1^{\ 2}$ é a variância da distância unitária, normalmente adotada igual a 1 km. A equação (6.7) é obtida supondo desníveis observados estatisticamente independentes e, portanto, a matriz P será diagonal. P' pode ser montada sem dificuldade, uma vez conhecidas as estimativas das variâncias das altitudes maregráficas e dos valores de gravidade. Estas últimas normalmente são facilmente avaliadas, contudo as variâncias das altitudes maregráficas por serem de avaliação mais complexa é aconselhável que sejam inicialmente arbitradas e posteriormente aprimoradas em sucessivos ajustamentos, em função das correções a elas atribuídas e da análise da variância da unidade de peso a posteriori, que para os pesos aqui adotados deverá ser aproximadamente igual a 1.

Do que foi exposto anteriormente é possível aplicar as equações dos itens 5.4.2 e 5.4.3 na solução do problema em estudo. Assim, considerando que $\bf B$ é diagonal e $\bf B'=-I$, as equações (5.27) e (5.30), conduzem a:

$$M = BP^{-1}B^{T} = P^{-1}BB^{T}$$
 e $M' = B'P^{-1}B'^{T} = P^{-1}$, (6.8)

donde

$$M^{-1} = P(BB^{T})^{-1}$$
 e $M^{-1} = P'$, (6.9)

que substituídas em (5.33) e (5.34), resulta:

$$\mathbf{N} = \mathbf{A}^{\mathsf{T}} \mathbf{M}^{\mathsf{-1}} \mathbf{A} + \mathbf{A}^{\mathsf{+T}} \mathbf{P}^{\mathsf{+}} \mathbf{A}^{\mathsf{+}} \tag{6.10}$$

e

$$\mathbf{u} = \mathbf{A}^{\mathsf{T}} \mathbf{M}^{\mathsf{-1}} \mathbf{w} + \mathbf{A}^{\mathsf{-T}} \mathbf{P}^{\mathsf{-}} \mathbf{w}^{\mathsf{-}}. \tag{6.11}$$

O vetor d pode ser obtido a partir da equação (5.36):

$$\mathbf{d} = -\mathbf{N}^{-1}\mathbf{u},\tag{6.12}$$

o que permite o cálculo dos parâmetros x com a aplicação da equação (5.37), ou seja,

$$\mathbf{x} = \mathbf{x}^{0} + \mathbf{d}. \tag{6.13}$$

As equação (5.28), considerando a primeira das (6.9), conduz a:

$$\mathbf{k} = -\mathbf{P}(\mathbf{B}\mathbf{B}^{\mathrm{T}})^{-1}(\mathbf{A}\mathbf{d} + \mathbf{w})$$

que substituída em (5.26) resulta, para o vetor dos resíduos v:

$$v = -P^{-1}B^{T}P(BB^{T})^{-1}(Ad + w)$$

donde

$$\mathbf{v} = -\mathbf{B}^{-1}(\mathbf{Ad} + \mathbf{w}). \tag{6.14}$$

Da equação (5.31), considerando a segunda das (6.9) e como w' = 0, pode-se chegar a:

$$\mathbf{k'} = -\mathbf{P'}\mathbf{A'}\mathbf{d}$$

que, substituída na (5.29), permite escrever:

$$\mathbf{v'} = -\mathbf{P'}^{\mathbf{i}}\mathbf{B'}^{\mathbf{T}}\mathbf{P'}\mathbf{A'}\mathbf{d}.$$

Como B' = -I, conclui-se que

$$\mathbf{v'} = \mathbf{A'd}.\tag{6.15}$$

A variância da observação de peso unitário σ_0^2 é obtida pela equação (5.53), onde m é a dimensão do modelo principal (igual à quantidade de desníveis), r é a dimensão do modelo injuntivo, igual ao número de equações, e u é a dimensão do vetor dos parâmetros x.

A matriz de covariâncias dos parâmetros ajustados $C_{\mathbf{x}}$ é dada pela equação (5.45), ou seja,

$$\mathbf{C}_{\mathbf{x}} = \sigma_0^2 \,\mathbf{N}^{-1} \tag{6.16}$$

e as matrizes de covariâncias das observações, C_{l} , e observações injuntivas, C_{l} , ajustadas são obtidas a partir de (5.50) e (5.51), considerando as (6.9) e que B' = -I. Assim,

$$C_{1} = \sigma_{0}^{2} (B^{-1}AN^{-1}A^{T}B^{-1})$$
 (6.17)

e

$$C_{r} = \sigma^{2} (A'N^{-1}A'^{T}).$$
 (6.18)

CAPÍTULO 7

APLICAÇÃO DOS MODELOS MATEMÁTICOS NO AJUSTAMENTO DE UMA REDE ALTIMÉTRICA.

7.1. DESCRIÇÃO DA REDE.

Neste capítulo, os conceitos emitidos nos capítulos precedentes serão aplicados no ajustamento de parte da rede altimétrica implantada pelo IBGE, na região sul do Brasil. Tal ajustamento visa eliminar as ambiguidades resultantes dos erros acidentais inerentes às observações efetuadas nos levantamentos que deram origem à rede. Esta parte da rede, representada esquematicamente pela figura 7.1, é constituída de 1248 RRNN, das quais 7 possuem altitudes transportadas a partir de marégrafos, a saber: 25A (Paranaguá), 15D (São Francisco do Sul), 13U (Itajaí), 13I (Porto Belo), 6O (Florianópolis), 4X (Imbituba) e 12X (Torres). As RRNN são ligadas por 1259 desníveis, medidos de acordo com as especificações de nivelamento geométrico de precisão, adotadas pelo IBGE, sem a aplicação da correção ortométrica. Os valores de gravidade nas referências de nível foram observados pelo IAG/USP e pelo Observatório Nacional. Para os poucos pontos onde não se dispunha de valor observado de gravidade, esta grandeza foi determinada por interpolação linear a partir dos pontos adjacentes, utilizando para isso a anomalia de Bouguer propriamente dita. Os levantamentos gravimétricos foram, em sua maior parte, efetuados com gravímetros LaCoste & Romberg. Apenas algumas observações mais antigas foram efetuadas com gravímetro Worden.

Para a execução dos cálculos foi desenvolvido um programa em linguagem FORTRAN, implantado no computador IBM/370-XA, modelo 4381, do Laboratório Nacional de Computação Científica, LNCC, com acesso através dos terminais instalados no Observatório Nacional.

No apêndice A é apresentada uma amostra do arquivo de RRNN, onde são discriminados os códigos, valores de gravidade com respectivas estimativas de desvios-padrão e valores preliminares de altitudes, obtidos por transporte a partir do marégrafo de Imbituba. A letra à frente do código designa um tipo especial de RN: conhecida (C), com altitude transportada a partir dos marégrafos, para as quais são apresentadas as respectivas estimativas de desvios-padrão; nodal (N), que constitui um nó da rede. Aquelas que não são precedidas de letra intercalam-se entre as conhecidas e nodais.

As altitudes maregráficas atribuídas às RRNN conhecidas foram extraídas do trabalho elaborado por de Alencar (1990). Para o transporte rigoroso deveriam ser conhecidos os valores de gravidade nos marégrafos. Face à inexistência de tais valores o transporte foi feito com base apenas nos desníveis observados. Contudo, considerando os curtos comprimentos das linhas de nivelamento usadas nos transportes, é pouco provável que haja diferenças significativas.

Uma amostragem dos desníveis observados pode ser encontrada no apêndice B. Estes são identificados pelos seus extremos (origem e destino) e para cada um, além do valor observado, é assinalado o comprimento da seção em km.

7.2. AJUSTAMENTO DA REDE.

O primeiro passo a seguir no ajustamento de uma rede é a análise de sua coerência, onde são eliminados eventuais enganos e avaliadas as estimativas das precisões das observações, com vistas à atribuição de pesos. Esta não é uma operação apenas matemática, mas exige o conhecimento das circunstâncias em que as observações foram obtidas e, consequentemente, da magnitude dos erros aos quais podem estar sujeitas.

O critério de pesos para os desníveis foram abordados no item 6.2, onde a equação (6.7) define o peso em função do comprimento da seção. Resta, contudo, determinar o valor de σ_1 . Nas especificações técnicas do IBGE a tolerância para fechamento de uma linha de nivelamento

de alta precisão é de 2 mm \sqrt{S} e no caso de nivelamento de precisão é de 4 mm \sqrt{S} . Portanto é razoável começar o ajustamento com um valor de σ_1 compreendido entre 2 mm e 4 mm.

Para os valores de gravidade, considerando que em sua maior parte foram obtidos sem controle, ou seja, em perfil simples, sem volta, uma estimativa razoável de erro estaria situada nas proximidades de 0,1 mGal. Quanto as altitudes maregráficas, suas precisões são de difícil avaliação a priori, não só devido às razões relacionadas com a dinâmica dos oceanos, abordadas no item 4.1, como também à falta de informações precisas sobre os períodos de observações e demais circunstâncias envolvidas na obtenção daqueles valores. Assim, a única alternativa é arbitrar um valor inicial como desvio-padrão, igual para todas as altitudes maregráficas, adequando-os durante sucessivos ajustamentos, com base nos resíduos que lhes são atribuídos. Os valores finais obtidos desse modo são aqueles registrados no apêndice A ao lado das respectivas altitudes.

A fim de reduzir as dimensões do sistema de equações, com reflexo positivo no tempo de processamento e no espaço de armazenamento na memória do computador, o ajustamento da rede foi efetuado em duas etapas: inicialmente foram considerados apenas os desníveis internodais, entendendo-se por tais aqueles que interligam RRNN nodais (N) ou conhecidas (C), ou, ainda, uma nodal com uma conhecida. Com este artifício, as dimensões da matriz N na equação (6.10), são reduzidas ao número de estações nodais acrescido do número de conhecidas. Após o ajustamento nodal, foram ajustados os desníveis e altitudes intercaladas.

Com o objetivo de reduzir o comprimento de alguns desníveis internodais, de modo a torná-los mais homogêneos neste particular, foram inseridas na rede algumas RRNN nodais falsas, ou seja, que não são realmente nós da rede.

O apêndice C apresenta os 69 desníveis internodais que compõem a rede, calculados a partir dos desníveis observados apresentados no apêndice B, bem como o comprimento de cada um deles. A coluna índice serve apenas para assinalar com o número 1 os desníveis entre RRNN conhecidas. A composição dos desníveis internodais foi feita de modo que o comprimento máximo se situasse em torno de 100 km, visando a aplicabilidade da equação 6.4.

7.2.1. AJUSTAMENTO DA REDE NODAL.

O ajustamento da rede foi feito com base nos modelos propostos no capítulo 6, onde os valores de gravidade e as altitudes maregráficas são inseridos como injunções relativas, com pesos iguais aos inversos dos quadrados das estimativas dos respectivos desvios-padrão. O mesmo critério é usado para atribuição dos pesos aos desníveis observados. Como as observações são consideradas estatisticamente independentes, as matrizes dos pesos P e P' são diagonais, compostas pelos pesos obtidos conforme foi descrito no ítem anterior. Caso os desvios-padrão estimados estejam coerentes e, consequentemente, os pesos atribuídos sejam válidos, o valor da variância da observação de peso unitário a posteriori, σ^2 , deve ser próximo da unidade. Após poucas tentativas o valor $\sigma_0^2 = 0,99447$ foi obtido, adotando-se 3,4 mm \sqrt{S} para estimativa dos desvios-padrão dos desníveis e os valores registrados no apêndice A para as altitudes maregráficas. Quanto aos valores de gravidade, observou-se que com os desvios-padrão estimados em 0,1 mGal, não haviam correções para os valores iniciais destas grandezas, e que tais correções só apareciam, assim mesmo em valor negligenciável, a partir da estimativa de 0,5 mGal para os desvios-padrão, interferindo muito pouco no valor de σ^2 . Portanto, este último valor foi adotado. Para os valores interpolados arbitrou-se a precisão de 5 mGal.

O apêndice D apresenta os resultados do ajustamento da rede nodal. No primeiro bloco são apresentados os valores dos parâmetros ajustados com as respectivas correções. No segundo bloco são exibidos os desníveis ajustados e seus respectivos resíduos. É importante notar que, como as próprias altitudes maregráficas foram utilizados para valores preliminares de altitudes (apêndice A), as correções a estes valores são os próprios resíduos. As correções obtidas foram as seguintes:

RN	Localidade	Correção (m)	
25A	Paranaguá	-0,0182	
15D	São Francisco do Sul	-0,0151	
13U	Itaja í	0,0994	
13 I	Porto Belo	0,2007	
6O	Florianópolis	-0,1289	

4X	Imbituba	-0,0050
12X	Torres	0,0152

Analisando os valores absolutos das correções, observa-se que o menor foi atribuído à RN 4X (Imbituba) que é o atual datum geodésico vertical brasileiro. O maior valor incidiu sobre a RN 13I (Porto Belo), seguida da 6O (Florianópolis) e 13U (Itajaí). O melhor valor em Imbituba pode ser explicado em função de seu maior período de registros maregráficos, que justificou a sua escolha para datum vertical. Motivo inverso pode ser alegado para os resultados mais desfavoráveis nas outras três referências. Entretanto, não se pode excluir a possibilidade de influência da topografia da superfície do mar, que poderia ser responsável pela maior correção em Porto Belo.

As correções incidentes sobre os valores de gravidade, que também coincidem com os resíduos, pela mesma razão apontada para o caso das altitudes maregráficas, são em sua maior parte na casa do microgal, com excessão daquelas RRNN para as quais os valores de gravidade foram obtidos por interpolação, cujos pesos são menores. Assim mesmo, nesses casos, as correções não passaram da casa dos centésimos de mGal (0,064 mGal para a RN 5L).

O maior resíduo obtido para os desníveis internodais foi de 43,8 mm, atribuído ao desnível de ordem 12. Este valor é da ordem de 4 mm \sqrt{S} , que é a tolerância admitida para o nivelamento de precisão. Os desvios-padrão dos desníveis ajustados, obtidos através da equação (6.17), são indicados ao lado de cada desnível. A última linha do apêndice D registra o valor de σ^2 a posteriori, obtido no ajustamento.

7.2.2. AJUSTAMENTO DAS RRNN INTERCALADAS.

As altitudes nas RRNN intercaladas foram obtidas efetuando-se um ajustamento para cada linha internodal, de modo análogo ao empregado no ajustamento nodal. Contudo, neste caso, não é conveniente que os valores ajustados na primeira etapa sofram correções. Isso reintroduziria ambiguidades na rede, que é exatamente o que o ajustamento se propõe eliminar.

Assim, as altitudes e os valores de gravidade obtidos no primeiro ajustamento são considerados constantes, ou seja, isentos de erro nos ajustamentos intercalados. Todavia a matriz de covariâncias das altitudes ajustadas, dada pela equação (6.16), basicamente, será função dos erros cometidos nas observações dos desníveis, sem a influência das variâncias das grandezas ajustadas na primeira etapa. Para resolver este problema é necessário deduzir a influência da propagação das variâncias das altitudes e gravidades nodais na estimativa das variâncias das altitudes intercaladas. Isto pode ser feito considerando a equação (6.5) aplicada a um ponto genérico de ordem i, intercalado em uma linha internodal, cujos extremos são os pontos A e B. Neste caso, a altitude H_i no ponto de ordem i pode ser obtida resolvendo-se o sistema de equações:

$$g_A^H H_A - g_i^H H_i^- [H_A^2 - (H_i^0)^2] \theta / 2 + (g_A^2 + g_i^0) \delta l_{Ai}^2 / 2 = 0,$$

$$g_B^H H_B^- - g_i^H H_i^- (H_B^2 - (H_i^0)^2] \theta / 2 + (g_B^2 + g_i^0) \delta l_{Bi}^2 / 2 = 0.$$

O único parâmetro do sistema é a própria altitude H_i que se deseja determinar. As observações são os desníveis δl_{Ri} e δl_{Ri} . Assim, as matrizes A e B serão dadas por:

$$A = \begin{cases} -g_{i} + \theta H^{o}_{i} & (g_{A} + g_{i})/2 & 0 \\ -g_{i} + \theta H^{o}_{i} & 0 & (g_{B} + g_{i})/2 \end{cases}$$

A solução do sistema conduz a:

$$x_i = c (aw_A + bw_B)/(a + b)$$
 (7.1)

рага

$$w_{A} = g_{A} H_{A} - g_{i} H^{o}_{i} - [H^{2}_{A} - (H^{o}_{i})^{2}] \theta / 2 + (g_{A} + g_{i}) \delta l^{o}_{Ai} / 2$$
(7.2)

$$w_{B} = g_{B}H_{B} - g_{i}H_{i}^{o} - [H_{B}^{2} - (H_{i}^{o})^{2}]\theta/2 + (g_{B} + g_{i})\delta l_{Bi}^{o}/2$$
(7.3)

$$a = p_A / (g_A + g_i)^2$$
 (7.4)

$$b = p_{\rm B}/(g_{\rm B} + g_{\rm i})^2$$

$$c = 1/(g_{\rm i} - \theta H^{\rm o}_{\rm i})$$
(7.5)

onde p_A e p_B são respectivamente os pesos dos desníveis δl_{Ai} e δl_{Bi} . Como $H_i = H^o_i + x_i$ e $H^o_i = constante$, $\sigma^2_{Hi} = \sigma^2_{xi}$. Portanto, H_i pode ser expressa como função das variáveis que comparecem na expressão de x_i . Assim,

$$H_{i} = f(g_{A}, H_{A}, g_{B}, H_{B}, g_{i}, \delta l_{Ai}, \delta l_{Bi}),$$
 (7.7)

já que θ , H_i^o , p_A^o e p_B^o são constantes.

As variáveis que compõem a expressão de H_i , por sua vez, podem ser divididas em dois vetores: $\mathbf{y} = (H_A, H_B, g_A, g_B)^T$ e $\mathbf{z} = (g_i, \delta l_{Ai}, \delta l_{Bi})$. O vetor \mathbf{y} é composto pelas grandezas ajustadas na rede nodal, enquanto que \mathbf{z} é composto pelas grandezas observadas. Portanto, pode-se escrever:

$$H_i = f(y, z)$$

e, portanto,

$$\sigma_{H_i}^2 = (\partial H_i / \partial y) C_y (\partial H_i / \partial y)^T + (\partial H_i / \partial z) C_z (\partial H_i / \partial z)^T$$
(7.8)

considerando que y e z são estatisticamente independentes.

O segundo termo do segundo membro de (7.8) corresponde ao termo de ordem i da diagonal .principal da matriz de covariâncias, resultante do ajustamento dos desníveis intercalados, visto serem funções das mesmas variáveis. O primeiro termo representa a contribuição da propagação das variâncias das grandezas ajustadas na rede nodal e é o que se deseja deduzir. Assim, denotando este termo por σ_y^2 ,

$$\sigma^{2}_{v} = (\partial \mathbf{H}_{i} / \partial \mathbf{y}) \mathbf{C}_{v} (\partial \mathbf{H}_{i} / \partial \mathbf{y})^{\mathrm{T}}$$
(7.9)

onde C_y é a matriz de covariâncias dos elementos de y, que é conhecida do ajustamento nodal e

$$\partial \mathbf{H}_{i} / \partial \mathbf{y} = (\partial \mathbf{H}_{i} / \partial \mathbf{H}_{A}, \partial \mathbf{H}_{i} / \partial \mathbf{H}_{B}, \partial \mathbf{H}_{i} / \partial \mathbf{g}_{A}, \partial \mathbf{H}_{i} / \partial \mathbf{g}_{B})$$

sendo

$$\partial H_{A} / \partial H_{A} = \operatorname{ca}(g_{A} - \theta H_{A}) / (a + b),$$
 (7.10)

$$\partial H_{\mathbf{p}} / \partial H_{\mathbf{p}} = cb(g_{\mathbf{p}} - \theta H_{\mathbf{p}})/(a+b),$$
 (7.11)

$$\partial H_i / \partial g_A = ca[(a+b)(H_A + \delta l_{Ai}/2) + 2b(w_B - w_A) / (g_A + g_i)]/(a+b)^2,$$
 (7.12)

$$\partial H_i / \partial g_B = cb[(a+b)(H_B + \delta l_{Bi}/2) + 2a(w_B - w_A) / (g_B + g_i)]/(a+b)^2.$$
 (7.13)

Para efeito prático pode-se considerar que: $c \approx 1/g$, $a \approx p_A / 4g^2$, $b \approx p_B / 4g^2$, $g_A - \theta H_A \approx g_B - \theta H_B \approx g$ e $g_A + g_i \approx g_B + g_i \approx 2g$. Assim, substituindo nas derivadas parciais, tem-se:

$$\partial H_{i}/\partial H_{A} \cong p_{A},$$
 (7.14)

$$\partial \mathbf{H}_{i} / \partial \mathbf{H}_{\mathbf{R}} \cong \mathbf{p}_{\mathbf{R}},$$
 (7.15)

$$\partial \mathbf{H}_{i} / \partial \mathbf{g}_{\Delta} \cong [(\mathbf{H}_{\Delta} + \delta \mathbf{I}_{\Delta i} / 2) + \mathbf{p}_{R}(\mathbf{w}_{R} - \mathbf{w}_{\Delta}) / \mathbf{g}] \mathbf{p}_{\Delta} / \mathbf{g}$$
 e (7.16)

$$\partial \mathbf{H}_{i} / \partial \mathbf{g}_{\mathbf{B}} \cong [(\mathbf{H}_{\mathbf{B}} + \delta \mathbf{I}_{\mathbf{B}i} / 2) + \mathbf{p}_{\mathbf{A}} (\mathbf{w}_{\mathbf{B}} - \mathbf{w}_{\mathbf{A}}) / g] \mathbf{p}_{\mathbf{B}} / g.$$
 (7.17)

Estas equações são as expressões das componentes do vetor $\partial \mathbf{H}_i / \partial \mathbf{y}$, que, substituído na equação (7.9), fornece o valor de σ_y^2 . Este valor adicionado ao i-ésimo elemento da diagonal principal da matriz de covariâncias das altitudes intercaladas ajustadas, fornece a estimativa da variância da altitude correspondente.

O apêndice E apresenta uma amostragem dos ajustamentos dos desníveis intercalados, consistindo de 6 linhas referentes aos desníveis internodais de ordem 3, 4, 10, 11, 13 e 14. Os resultados são dispostos na mesma forma utilizada no ajustamento da rede nodal. Observa-se,

entretanto, que os valores de σ_o^2 a posteriori são diferentes entre si e todos são diferentes da unidade. Esta divergência de valores, deve-se ao fato de ter sido usado para os desníveis intercalados o mesmo padrão de peso utilizado no ajustamento nodal, ou seja, $\sigma_{\delta_1} = 3.4 \text{ mm}\sqrt{5}$. Aquele valor, entretanto, é representativo do total dos desníveis da rede. Cada desnível internodal pode apresentar desvio-padrão distinto dos demais, maior ou menor do que aquele que representa o conjunto, o que resulta em diferentes valores para σ_o^2 a posteriori. Assim, os desníveis internodais 3, 4 e 14 apresentam valores de σ_o^2 bem inferiores à unidade, o que significa que os pesos dos desníveis intercalados, neste caso, deveriam ser maiores. O desnível internodal 10 mostra valor de σ_o^2 próximo da unidade, indicando que os pesos não devem ser muito diferentes do utilizado. As linhas referentes aos desníveis entre nós de ordens 11 e 13 exibem σ_o^2 superiores à unidade, revelando que, neste caso, os pesos deveriam ser menores.

Embora o valor de σ_0^2 a posteriori dependa dos pesos adotados, esta variação, contudo, não afeta o resultado final das matrizes de covariâncias, dadas pelas equações (6.16), (6.17) e (6.18), já que a mudança em σ_0^2 é compensada pela alteração na matriz N em decorrência da mesma variação de peso.

O apêndice F exibe os valores das altitudes ajustadas para todas as RRNN da rede e os respectivos desvios-padrão. Ao final da lista encontra-se o valor de θ adotado, ou seja, $\theta = -0.0848$ mGal/m, o que indica tratar-se de altitudes de Helmert. Os desvios-padrão variam entre 3 e 6 cm, sendo menores para as estações mais próximas dos marégrafos e maiores nas mais afastadas, como consequência da propagação dos erros proporcionalmente às distâncias.

CONCLUSÕES.

Os resultados apresentados no capítulo 7 mostram a adequação do modelo matemático proposto, ao ajustamento da rede altimétrica, tomada como exemplo. Os resíduos pequenos e normalmente distribuídos, com $\sigma_o^2 = 0.999474$, revelam que os resultados não estão afetados por efeitos sistemáticos significativos. A introdução das altitudes maregráficas como injunções relativas, através de um modelo secundário, revela o grau de coerência entre elas e ao mesmo tempo possibilita a adoção de um geóide intermediário como superfície de referência. Desse modo, além de se evitar a subordinação a uma única altitude maregráfica, que pode eventualmente estar sujeita a problemas de natureza operacional ou física (topografia da superfície do mar), o ajustamento é enriquecido com informações adicionais, geralmente disponíveis, ainda que de qualidade heterogênea.

O modelo matemático proposto permite a obtenção direta das altitudes em um único processo, ou seja, não necessita o cálculo prévio dos números geopotenciais ou a aplicação da correção ortométrica aos desníveis observados.

O ensaio feito no ítem 4.2.1 mostrou que a correção astronômica pode ser significativa para uma rede altimétrica com grande extensão na direção norte-sul. Considerando as dimensões territoriais do Brasil, seria aconselhável introduzí-la na rotina dos cálculos dos desníveis. O valor médio obtido, cerca de 8 cm, para uma linha entre as latitudes de 0° e -30° , é maior do que os desvios-padrão estimados para as altitudes ajustadas neste trabalho.

Foram feitas algumas tentativas para se obter altitudes ortométricas sem a fixação do valor da variação da gravidade com a altitude no interior da crosta, θ , inserindo-o como parâmetro a determinar. Entretanto esta iniciativa não teve êxito; o valor de θ não convergiu em nenhuma tentativa. A causa deste insucesso pode estar relacionada com a falta de resolução do modelo para determinação de θ , face à pequena magnitude do termo que o envolve, em comparação com os demais. Por isso, o valor de θ foi considerado como constante igual a -0.0848mGal/m, o que conduz às altitudes de Helmert, conforme definida no ítem 3.4. Por

outro lado, como o efeito do não-paralelismo entre os geopes aumenta com a estensão da rede, principalmente devido à variação da componente centrífuga da gravidade e ao achatamento polar da Terra, a representabilidade do modelo matemático proposto é proporcional à variação de latitude abrangida pela rede. Para o intervalo de latitude da rede geodésica vertical brasileira este modelo é bastante representativo. Entretanto, para intervalos de latitude muito pequenos, os geopes tendem ao paralelismo, ou seja g = constante, negligenciando as influências menores devidas às anomalias decorrentes da heterogeneidade na distribuição de massas no interior da Terra e da topografia. Neste caso, o modelo matemático proposto tende a expressar apenas a relação entre as altitudes e os desnîveis observados.

Talvez a maior dificuldade na tarefa de ajustamento de redes resida na necessidade de solução de grandes sistemas de equações. Com frequência é necessário recorrer-se à computadores de grande porte. Uma das maneiras de se contornar o problema é diminuir as dimensões do sistema de equações, resolvendo o problema para os nós da rede. Como as ambiguidades que se deseja eliminar se manifestam nesses pontos notáveis, ajustar a rede nodal é, praticamente, ajustar toda a rede, restando, após isso, tornar compatíveis as observações e parâmetros intercalados, ajustando-os aos nós. Um outro método seria a aplicação da técnica de partição de matrizes, resolvendo o sistema em sua dimensão total, por partes. Este método forneceria, em um único processo, os valores das grandezas ajustadas e suas estimativas de precisão em todos os pontos da rede. Neste trabalho adotou-se o método dos nós, por ser de mais simples programação e satisfazer o objetivo de testar o modelo matemático. A principal restrição a este método está relacionada com a aplicabilidade da equação (6.4) no tocante à distância entre os pontos extremos do intervalo. Entretanto, como pode ser visto no apêndice E, as magnitudes dos resíduos encontrados nos ajustamentos dos desníveis intercalados foram pequenas, a maioria na casa do décimo de milímetro, o que mostra que a distância da ordem de 100 km, adotada para os intervalos internodais, é compatível com a solução do problema.

Finalmente, é importante ressaltar que a realização de um sistema de altitudes depende fundamentalmente de três tipos de grandezas observáveis: nível do mar, desníveis e gravidade. No Brasil, a atividade de nivelamento tem sido executada pelo IBGE desde 1945, contando hoje com mais de 150000 km nivelados (de Alencar,1990), contudo a gravimetria sobre RRNN

apenas recentemente começou a ser executada com mais intensidade, o que possibilitou a realização deste trabalho. Porém, é necessário que sejam apoiadas as iniciativas no sentido de se incorporar a gravimetria à rotina do nivelamento geométrico de precisão, incluindo aí os marégrafos. Afinal, sem gravimetria o nivelamento de precisão perde boa parte do seu sentido. Quanto às medições do nível do mar, é imperiosa a adoção de um sistema de coordenação dessa atividade, tão importante para a Geodésia, que permita o levantamento das condições atuais dos marégrafos existentes nas costas brasileiras e a padronização dos sistemas operacionais, de modo a se obter informações homogêneas e de alta qualidade, compatíveis com a qualidade do nivelamento e da gravimetria que estão sendo executados.

APÊNDICE A VALORES DE GRAVIDADE E ALTITUDES PRELIMINARES

NO. ORD.	1	estação	GRAVIDADE (mGal)	DPG	ALTITUDE (m)	DPAL
1	N	2045L	978779.61	0.50	843.270	0.0
1 2		2047A	978774.60	0.50	869.080	0.0
3		2047B	978764.57	0.50	907.290	0.0
4		2047C	978798.21	0.50	720.180	0.0
5		2047D	978823.82	0.50	579.790	0.0
5 6		2047E	978844.72	0.50	469.260	0.0
7		2047F	978868.14	0.50	353.290	0.0
8		2047G	978897.41	0.50	203.460	0.0
9		2047H	978928.78	0.50	80.460	0.0
10		2047J	978938.18	0.50	56.860	0.0
11		2047L	978948.72	0.50	24.860	0.0
12		2047M	978938.76	0.50	74.950	0.0
13		2047N	978950.09	0.50	20.820	0.0
14		2047V	978955.19	0.50	10.150	0.0
15		2047X	978956.90	0.50	11.160	0.0
16		24K	978957.98	0.50	8.260	0.0
17		2048A	978958.83	0.50	7.030	0.0
18		2048B	978957.37	0.50	9.540	0.0
19		2048C	978955.99	0.50	7.420	0.0
20		2048D	978950.53	0.50	21.660	0.0
21		2048E	978954.14	0.50	9.830	0.0
22		2048F	978955.04	0.50	19.310	0.0
23		2048H	978953.83	0.50	17.270	0.0
24		2048J	978958.54	0.50	13.600	0.0
25		2048L	978963.43	0.50	10.690	0.0
26		2048M	978963.33	0.50	15.450	0.0
27		2048N	978966.37	0.50	9.400	0.0
28		2048P	978965.90	0.50	9.260	0.0
29		2048R	978966.03	0.50	11.410	0.0
30 21		2048T	978966.01	0.50	4.710	0.0
31	~	2048U 25A	978966.44	0.50 0.50	3.900	0.0
32	С		978967.91 978757.67	0.50	3.633 926.010	0.050 0.0
33 34		2042J 2053H	978757.04	0.50	921.560	0.0
			978754.91	0.50	929.120	0.0
35 36		2053L 2053V	978759.62	0.50	911.070	0.0
36 37		2053V 2053X	978761.90	0.50	911.420	0.0
38		2053X 2053Z	978769.77	0.50	878.420	0.0
39		20532 2054A	978773.15	0.50	880.710	0.0
40		2054R	978770.98	0.50	904.670	0.0
41		2054C	978770.86	0.50	902.600	0.0
42		2054E	978772.80	0.50	893.220	0.0
43		2054E	978770.21	0.50	901.520	0.0
44		2054G	978772.29	0.50	894.040	0.0
45		2054H	978767.47	0.50	916.920	0.0
46		2054J	978764.36	0.50	926.480	0.0
47	N	2054L	978761.33	0.50	936.160	0.0
48		2054M	978761.10	0.50	937.050	0.0

NO. ORD.	esi	PAÇÃO	GRAVIDA	DE(mGal)	DPG	ALTI	TUDE (m)	DPAL
344	14	109U	9788	68.88	0.50	88	7.520	0.0
345		09N		01.38	0.50		8.540	0.0
346		09M		00.56	0.50		4.020	0.0
347		09L		96.84	0.50		7.320	0.0
348		09J		90.06	0.50		0.270	0.0
349		09H		84.61	0.50		6.390	0.0
350		109C		45.69	0.50		5.440	0.0
351		09E		57.74	0.50		7.310	0.0
352		09D		53.22	0.50		2.850	0.0
353		09A		55.34	0.50		2.180	0.0
354		08Z		63.66	0.50		4.450	0.0
355		15I		17.05	0.50		4.510	0.0
356		15J		16.60	5.00		4.970	0.0
357		15K		16.50	5.00		6.190	0.0
358	С	15D		21.60	5.00		2.977	0.050
359	_	15E		25.55	0.50		3.950	0.0
360		14S		16.75	0.50		0.810	0.0
361		14R		17.45	0.50		9.540	0.0
362		140		26.55	0.50		0.570	0.0
363		14L		30.15	0.50		7.980	0.0
364		14I	-	29.85	0.50		6.760	0.0
365		14G		38.35	0.50		1.160	0.0
366		14D		44.15	0.50		9.990	0.0
367		14B		47.75	0.50		6.440	0.0
368		13V		48.35	0.50		2.860	0.0
369	С	13U		51.80	5.00		1.500	0.100
370		13T		55.45	0.50		1.700	0.0
371		13R		57.95	0.50		9.480	0.0
372		130		53.35	0.50		4.230	0.0
373		13M		32.95	0.50		1.270	0.0
374		13J		63.60	5.00		2.088	0.0
375	С	13I		66.85	0.50		2.552	0.200
376	-	13F		65.95	0.50		2.390	0.0
377	N	8P		64.65	0.50		2.120	0.0
378		8K		68.15	0.50	1	5.660	0.0
379		8G		B1.35	0.50	_	7.360	0.0
380		8C		95.45	0.50		4.750	0.0
381	С	60		05.45	0.50		8.518	0.150
382	N	21G		72.00	5.00		6.760	0.0
383	•	19J		11.00	0.50		0.850	0.0
384		13E		66.83	0.50	, ,	1.710	0.0
385		211		72.56	0.50	91	6.090	0.0
386		21L		69.94	0.50		0.240	0.0
387		21N		65.44	0.50		5.660	0.0
388		21P		64.56	0.50		3.150	0.0
389		21R		B4.25	0.50		5.710	0.0
390		21T		90.06	0.50		3.130	0.0
370		ـ ـ ـ	2,07		0.50	71		0.0

391	21V	978795.13	0.50	926.030	0.0
392	21Y	978813.06	0.50	858.080	0.0

NO. ORD	. ESTAÇÃO	GRAVIDADE (mGal)	DPG	ALTITUDE (m)	DPAL
687	S5N	979100.88	5.00	7.130	0.0
688	5 M	979098.38	0.50	4.950	0.0
689	5N	979100.81	5.00	7.630	0.0
690	5K	979110.94	0.50	16.080	0.0
691	5B	979145.88	0.50	10.150	0.0
692	C 4X	979152.63	5.00	8.636	0.050
693	N 4P	979153.63	0.50	19.790	0.0
694	1446X	979122.25	0.50	119.030	0.0
695	1446V	979113.94	0.50	147.940	0.0
696	1446T	979104.94	0.50	188.230	0.0
697	1446S	979091.31	0.50	244.950	0.0
698	1446R	979071.88	0.50	326.980	0.0
699	1446N	979075.31	0.50	296.210	0.0
700	1446H	979090.13	0.50	219.970	0.0
701	1446G	979074.88	0.50	289.880	0.0
702	1446F	979061.00	0.50	348.150	0.0
703	1446D	979059.81	0.50	346.240	0.0
704	1446B	979041.75	0.50	431.600	0.0
705	1445Z	979007.94	0.50	581.720	0.0
706	1445X	978986.88	0.50	671.750	0.0
707	N 1445V	978962.50	0.50	768.940	0.0
708	1445M	978853.81	0.50	1356.070	0.0
709	1445J	978874.88	0.50	1245.010	0.0
710	1445G	978883.88	0.50	1203.440	0.0
711	1445E	978859.44	0.50	1312.250	0.0
712	1445D	978880.94	0.50	1201.540	0.0
713	1445B	978838.13	0.50	1415.240	0.0
714	1417N	978851.75	0.50	1353.800	0.0
715	1417P	978824.00	0.50	1385.390	0.0
716	1417U	978821.44	0.50	1480.490	0.0
717	1417X	978823.63	0.50	1467.280	0.0
718	1417Z	978821.81	0.50	1485.330	0.0
719	1444X	978855.06	0.50	1320.440	0.0
720	1444Z	978856.31	0.50	1322.930	0.0
721	1445A	978827.06	0.50	1473.200	0.0
722	1445H	978880.38	0.50	1218.370	0.0
723	1445L	978869.25	0.50	1277.090	0.0
724	1445N	978850.38	0.50	1370.340	0.0
725	1445P	978834.31	0.50	1419.140	0.0
726	1445R	978850.69	0.50	1346.190	0.0
727	C 12X	979220.94	0.05	18.015	0.050
728	40	979155.88	0.50	7.560	0.0
729	4 M	979162.44	0.50	6.220	0.0
730	4L	979166.13	0.50	6.560	0.0
731	41	979136.25	0.50	10.290	0.0
732	4G	979102.25	0.50	121.310	0.0

733		4D	979121.94	0.50	32.300	0.0
734		4A	979131.06	0.50	15.810	0.0
735	N	1K	979133.75	0.50	13.200	0.0

NO. ORD.	ESTAÇÃO	GRAVIDADE (mGal)	DPG	ALTITUDE (m)	DPAL
1226	1906M	979063.19	0.50	663.020	0.0
1227	1906L	979050.88	0.50	711.970	0.0
1228	1906F	979046.00	0.50	724.340	0.0
1229	N 1906H	979050.00	0.50	719.660	0.0
1230	1906E	979047.94	0.50	691.820	0.0
1231	1906C	979063.38	0.50	567.240	0.0
1232	1906B	979074.75	0.50	493.250	0.0
1233	1905Z	979054.88	0.50	583.350	0.0
1234	1905X	979079.31	0.50	458.440	0.0
1235	1905V	979074.06	0.50	477.010	0.0
1236	1905U	979084.69	0.50	423.230	0.0
1237	1905T	979063.56	0.50	517.700	0.0
1238	1905S	979078.19	0.50	452.040	0.0
1239	1905R	979086.19	0.50	415.110	0.0
1240	1905P	979074.38	0.50	472.600	0.0
1241	1905N	979071.00	0.50	500.380	0.0
1242	1905M	979084.88	0.50	442.530	0.0
1243	1905J	979063.25	0.50	553.840	0.0
1244	1905H	979072.94	0.50	503.270	0.0
1245	1905G	979067.00	0.50	520.780	0.0
1246	1905F	979058.75	0.50	541.250	0.0
1247	N 1905E	979051.50	0.50	563.410	0.0
1248	1784C	979246.94	0.50	43.940	0.0

APÊNDICE B DESNÍVEIS OBSERVADOS

DESNÍVEIS OBSERVADOS

NO. ORD.	ORIGEM	DESTINO	DESNÍVEL(m)	DISTÂNCIA (km)
1	14222	1423A	5.8550	3.01
1 2	1423A	1423B	-40.5550	3.30
	1423B	1423F	-159.4981	5.00
4	1423F	1423G	-50.4105	2.89
5	1423G	1423H	-85.5489	2.15
5 6	1423H	1423L	-117.1822	5.71
7	1423L	1423N	13.8444	5.97
8	1423N	1423P	151.5326	2.72
9	1423P	1423R	25.5026	3.07
10	1423R	1423T	-139.2090	4.75
11	1423T	1424E	-45.5618	6.51
12	1424E	1424G	-86.6014	6.47
13	1424G	1424H	-68.7702	3.33
14	1424H	1424J	- 76.2338	3.31
15	1424J	1424L	-88.8270	3.08
16	1424L	1424M	128.6600	2.82
17	1424M	1424P	100.5736	5.27
18	1422Z	1427T	-51.3477	6.13
19	1427T	1427V	-37.5274	6.67
20	1427V	1427X	22.2968	3.09
21	1427X	1427Z	45.0211	3.12
22	1427Z	1428A	-90.0228	3.00
23	1428A	1428B	- 14.2811	2.30
24	1428B	1428E	52.5489	3.18
25	1428E	1428F	20.2159	2.78
26	1428F	1428G	-145.4316	2.99
27	1428G	1428H	-105.9706	2.74
28	1428H	1428J	-4.0604	1.47
29	1428J	1428M	18.5850	3.12
30	1428M	1428N	-19.4795	2.48
31	1428N	1428P	-1.7893	1.30
32	1428P	1428S	51.5621	3.70
33	14285	1428T	-73.8774	2.75
34	1428T	1428U	131.9850	2.22
35	1428U	1428X	101.5484	4.18
36	1428X	1429A	-36.4648	5.47
37	1429A	1429B	-43.3099	2.88
38	1429B	1429C	-13.8366	3.02
39	1429C	1429D	28.2758	2.50
40	1429D	1429G	-183.2863	6.86
41	1429G	1429H	-63.8122	2.88
42	1429H	1429J	-33.1936	3.12
43	1429J	1429R	31.8203	2.87
44	1429R	1429U	80.9642	6.45
45	1429U	1429X	-4.1788	5.41
46	1750P	1750R	-39.2802	3.43
47	1750R	1750S	-58.3804	3.07
48	1750S	1750T	-40.1290	3.17
49	1750T	1750U	-14.3612	3.09

DESNÍVEIS OBSERVADOS

NO.	ORD.	ORIGEM	DESTINO	DESNÍVEL(m)	DISTÂNCIA(km)
6	38	2039P	2039R	51.4221	2.67
	39	2039R	20395	-22.5476	2.80
	40	2039S	2039Т	-11.4153	2.78
6	41	2039T	2039U	-26.0381	2.41
6	42	2039U	2039V	56.9332	2.50
6	43	2039V	2039X	-22.6980	2.83
6	44	2039X	2039Z	-20.8061	2.90
6	45	2039Z	2061G	22.0638	2.83
6	46	2061G	2061H	-20.8450	2.80
	47	2061H	2061J	9.5133	3.09
	48	2061J	2061L	-3.6874	2.86
	49	2061L	2061M	23.1528	2.93
	50	2061M	2061N	-16.6289	2.86
	51	2061N	2061P	11.3544	3.09
	52	2061P	2061R	10.8834	3.02
	53	2061R	2061S	-1.0579	2.80
	54	2061S	2061T	1.7669	2.36
	55	2061T	2061U	-2.8893	2.05
	56	2061U	2061V	10.6725	2.90
	57	2061V	2061X	-15.3066	2.81
	58	2061X	2061Z	-50.2332	2.87
	59	2061Z	2062A	-63.9772	2.68
	60	2062A	2062C	-223.2189	5.12
	61	2062C	2062D	-75.8459	2.18
	62 63	2062D	2062E	-9.0542	1.41
	63	2062E	2062M	130.8677	15.31
	64	2062M	2062N	53.3125	2.60
	65	2062N	2062R	317.5388	5.07
	66 67	2062R	2062S	88.2731	2.66
	67 68	2062S 2062T	2062T 2062U	-69.5015 -179.9292	2.70
	68 69	2062U	2062V	-102.3636	2.20 2.63
	70	2062V	2062V 2062X	-51.8131	2.76
	70 71	2062V 2062X	2062Z	-10.4864	2.80
	71 72	2062Z	2063B	200.3286	4.80
	72 73	2063B	2063C	37.3672	2.42
	74	2063C	2063D	-63.7804	2.31
	75	2063D	2063E	-17.2484	0.88
	76	2063E	2063F	-13.2480	2.63
	,	2063F	2063G	25.4130	2.60
	78	2063G	2063J	-355.8583	4.61
	, 3 79	2063J	2063L	-149.0966	2.73
	80	2063L	2063M	-68.0132	2.82
	81	2063M	2063N	-12.2586	2.53
	82	2063N	2063P	-22.1242	2.71
	83	2063P	2063R	-7.3530	2.27
	84	2063R	2063T	-33.4128	5.48
	85	2063T	2063U	-27.3793	2.17
6	86	2063U	2063V	-70.9622	2.51

DESNÍVEIS OBSERVADOS

NO. ORD.	ORIGEM	DESTINO	DESNÍVEL(m)	DISTÂNCIA(km)
1226	1908B	1908C	-78.7672	3.16
1227	1908C	1908D	32.3710	3.30
1228	1908D	1908E	3.4616	3.11
1229	1908E	1908F	-22.7446	2.82
1230	1905E	1905F	-22.1147	3.32
1231	1905F	1905G	-20.4956	3.57
1232	1905G	1905H	-17.4934	3.06
1233	1905H	1905J	50.5368	2.69
1234	1905J	1905M	-111.2834	6.23
1235	1905M	1905N	57.8648	4.24
1236	1905N	1905P	-28.0282	3.63
1237	1905P	1905R	-57.2597	3.33
1238	1905R	1905S	36.9306	3.33
123 9	1905S	1905T	65.6754	3.17
1240	1905T	1905U	-94.5270	3.11
1241	1905U	1905V	53.8227	3.00
1242	1905V	1905X	-18.5778	3.24
1243	1905X	1905Z	124.9154	3.62
1244	1905Z	1906B	-90.1074	6.84
1245	1906B	1906C	73.7718	3.35
1246	1906C	1906E	124.8063	6.20
1247	1906E	1906F	32.5217	2.93
1248	1906F	1906H	-4.6627	3.42
1249	1768B	1768C	-39.5862	3.26
1250	1768C	1768D	-22.0352	2.98
1251	1768D	1768F	3.2030	6.66
1252	1768F	1768G	-12.2231	3.04
1253	1768G	1768H	-46.2754	3.10
1254	1768H	1768L	28.0622	6.40
1255	1768L	1768M	-9.9386	2.80
1256	1768M	1768N	-24.1484	3.23
1257	1768N	1768P	7.3538	3.91
1258	1768P	1768R	-19.0942	3.60
1259	1768R	1905E	3.8589	3.31

APÊNDICE C DESNÍVEIS INTERNODAIS OBSERVADOS

DESNÍVEIS INTERNODAIS OBSERVADOS

NO. ORD.	ORIGEM	DESTINO	DESNÍVEL(m)	DISTÂNCIA	ÍNDICE
1	2045L	25 A	-839.9180	85.99	0
2	2045L	21G	63.2269	50.75	0
3	2054L	21G	-29.6989	66.64	0
4	2054L	2012C	-69.2575	83.46	0
5	2012C	1752X	-100.8661	97.12	0
6	2012C	2011X	-21.4026	11.70	0
7	2011X	2010L	-24.4404	79.10	0
8	2011X	2013X	395.1993	103.51	0
9	2010L	1401A	-752.3488	71.95	0
10	1401A	1400E	-52.1993	15.92	Ō
11	1401A	1403X	297.9278	102.96	0
12	1400E	8P	-14.5182	112.59	Ō
13	1403X	1406J	489.5622	91.56	Ō
14	1406J	2013X	384.4120	96.59	Ō
15	1406J	1420A	-87.5022	115.31	Ō
16	1752X	1752E	-15.4549	40.06	Ō
17	1752E	1750P	591.8522	88.11	Ō
18	1750P	1422Z	-235.1116	61.70	Ō
19	1422Z	1424P	-532.4297	69.36	Ō
20	1422Z	1429X	-337.0465	98.68	Ŏ
21	1422Z	1421H	-246.2942	63.14	Ö
22	1424P	14258	42.7266	53.17	Ö
23	1421H	1420A	-92.2993	71.32	ō
24	1420A	1410B	177.0290	94.75	ŏ
25	15D	13U	-1.3531	73.26	ĺ
26	15D	22C	767.6816	86.89	ō
27	13U	131	1.1538	37.41	ì
28	131	8P	-0.6165	14.12	ō
29	8P	60	6.2691	49.84	Ō
30	60	5L	-4.2505	25.85	Ō
31	21G	22C	-136.0607	59.56	Ō
32	1417L	2038J	-446.7891	86.63	Ō
33	1417L	1418M	-350.2664	119.56	Ō
34	1417L	1445V	-590.4319	66.23	Ō
35	2062T	2039X	-106.3471	81.90	Ō
36	2062T	5L	-977.9875	79.92	Ö
37	2039X	2038J	36.8591	79.75	Ŏ
38	1418M	1414N	-46.4083	62.86	Ö
39	1414N	1410B	-16.8356	65.00	Ö
40	1410B	1425S	-328.1614	104.36	ŏ
41	14255	1755X	12.1736	44.86	Ŏ
42	5L	4P	15.5526	60.24	ŏ
43	4X	4P	11.0222	12.66	ō
44	4P	1K	-6.3952	85.29	ŏ
45	4P	2001J	-12.1861	73.53	ő
46	1445V	2	-707.1730	76.60	Ö
47	12X	12 E	25.8648	70.30	ŏ
48	1K	2	48.7040	74.04	Ŏ
49	2	12 E	-18.0075	86.91	ŏ
• •	~		20.00.0		•

DESNÍVEIS INTERNODAIS OBSERVADOS

NO. ORD.	ORIGEM	DESTINO	DESNÍVEL(m)	DISTÂNCIA	ÍNDICE
50	2001Ј	1777X	15.0224	81.23	0
51	1777X	1766J	1049.1649	99.40	0
52	1777X	1780G	-8.2458	86.63	0
53	1766J	1764G	-109.2416	81.55	0
54	1764G	1762B	-127.8300	74.89	0
55	1764G	1767S	-213.3375	47.10	0
56	1762B	1755X	-204.5190	61.89	0
57	1755X	1768B	64.6665	90.30	0
58	1768B	1770F	-213.1223	89.83	0
59	1768B	1905E	-130.8232	42.29	0
60	1770F	1771Z	189.6632	103.46	0
61	1767S	1774V	-284.0127	80.47	0
62	1774V	1785S	-457.2805	109.02	0
63	1774V	1771Z	206.1227	59.72	0
64	1771Z	1908F	-617.5634	100.10	0
65	1785S	1781S	18.7199	75.80	0
66	1785S	1908F	45.9009	108.14	0
67	1780G	1781S	12.1513	81.51	0
68	1908F	1906H	666.5459	110.87	0
69	1906H	1905E	-156.2956	72.28	0

APÊNDICE D DESNÍVEIS INTERNODAIS AJUSTADOS

RN	ALT. AJUST.	CORR. A	G AJUST.	CORR. G
2045L	843.5765	0.3065	978779.609	-0.001
25A	3.6151	-0.0182	978967.909	-0.001
2054L	936.5054	0.3454	978761.330	0.000
2012C	867.2250	0.4350	978789.040	-0.000
2011X	845.8175	0.2775	978793.620	-0.000
2010L	821.3160	0.2360	978854.721	0.001
1401A	68.9052	0.0052	979033.132	0.002
1400E	16.6992	0.1092	979049.300	0.000
1403X	366.8624	0.2824	978992.842	0.002
1406J	856.4874	0.1174	978887.691	0.001
2013X	1241.0147	0.4847	978754.470	-0.000
1752X	766.3715	0.3815	978803.610	-0.000
1752E	750.9211	0.1711	978808.561	0.001
1750P	1342.8172	0.4772	978732.191	0.001
1422Z	1107.6376	0.4576	978815.459	-0.001
1429X	770.6027	0.3327	978831.910	-0.000
1424P	575.1297	0.3897	978961.649	-0.001
1421H	861.3246	0.4046	978858.480	-0.000
1420A	769.0080	0.3080	978891.920	0.000
15D	2.9615	-0.0151	979021.643	0.043
13U	1.5993	0.0994	979051.801	0.001
131	2.7529	0.2007	979066.850	0.000
8P	2.1371	0.0171 -0.1289	979064.650	0.000
60 21G	8.3892 906.8010	0.0410	979105.450 978772.001	-0.000 0.001
21G 22C	770.6979	-0.0121	978829.441	0.001
1417L	1359.6070	0.4471	978850.380	-0.000
2062T	982.2856	0.2656	978886.131	0.001
2039X	875.9408	0.2408	978898.440	-0.000
2038J	912.8094	0.2393	978890.630	0.000
1418M	1009.2926	0.4027	978905.191	0.001
1414N	962.8544	0.1645	978929.690	0.000
1410B	946.0294	0.4593	978910.380	0.000
1425S	617.8700	0.4701	978946.630	-0.000
5L	4.1270	-0.0730	979298.064	0.064
4 X	8.6312	-0.0050	979152.629	-0.001
4P	19.6531	-0.1369	979153.630	-0.000
1445V	769.1218	0.1819	978962.497	-0.003
12X	18.0297	0.0152	979220.940	0.000
1K	13.2339	0.0339	979133.750	-0.000
2	61.9166	-0.7634	979136.748	-0.002
12E	43.9008	0.0008	979176.630	0.000
2001J	7.4515	0.1015	979163.750	-0.000
1777X	22.4567	0.3367	979180.187	-0.003
1766J	1071.6821	0.4321	978938.997	-0.003
1764G	962.4186	0.1386	978950.001	0.001
1762B	834.5776	0.4775	978949.191	0.001
1755X	630.0330	0.4729	978976.941	0.001
1768B	694.6662	0.4062	979009.940	0.000

RN	ALT. AJUST.	CORR. A	G AJUST.	CORR. G
1770F	481.5132	0.2832	979051.940	0.000
1767S	749.0361	0.3462	979021.810	-0.000
1774V	464.9856	-0.0244	979112.311	0.001
1771Z	671.1324	0.0025	979078.750	-0.000
1785S	7.6494	0.1594	979289.561	0.001
1780G	14.2130	0.2930	979241.880	0.000
1781S	26.3665	0.2765	979283.880	-0.000
1908F	53.5336	0.4036	979244.749	-0.001
1906H	720.1229	0.4630	979049.999	-0.001

NO.	ORD.	ORIGEM	DESTINO	DESNÍVEL(m)	DIST. (km)	RES.(m)	DPDES (m)
	1	2045L	25A	-839.9107	85.99	0.0073	0.02900
	2	2045L	21G	63.2226	50.75	-0.0043	0.02313
	3	2054L	21G	-29.6967	66.64	0.0022	0.02586
	4	2054L	2012C	-69.2603	83.46	-0.0028	0.02835
	5	2012C	1752X	-100.8485	97.12	0.0176	0.03035
	6	2012C	2011X	-21.4051	11.70	-0.0025	0.01146
	7	2011X	2010L	-24.4512	79.10	-0.0108	0.02658
	8	2011X	2013X	395.1912	103.51	-0.0081	0.02961
	9	2010L	1401A	-752.3586	71.95	-0.0098	0.02570
•	10	1401A	1400E	-52.2055	15.92	-0.0062	0.01335
	11	1401A	1403X	297.9538	102.96	0.0260	0.02985
:	1.2	1400E	8P	-14.5620	112.59	-0.0438	0.03098
:	13	1403X	1406J	489.5853	91.56	0.0231	0.02868
	L4	1406J	2013X	384.4195	96.59	0.0075	0.02896
-	15	1406J	1420A	-87.4821	115.31	0.0201	0.03148
:	16	1752X	1752E	-15.4476	40.06	0.0073	0.02075
3	L7	1752E	1750P	591.8682	88.11	0.0160	0.02921
	18	1750P	1422Z	-235.1004	61.70	0.0112	0.02517
:	19	1422Z	1424P	-532.4210	69.36	0.0087	0.02555
	20	1422Z	1429X	-337.0465	98.68	-0.0000	0.03388
	21	1422Z	1421H	-246.2907	63.14	0.0035	0.02437
	22	1424P	1425S	42.7333	53.17	0.0067	0.02298
	23	1421H	1420A	-92.2953	71.32	0.0040	0.02551
	24	1420A	1410B	177.0508	94.75	0.0218	0.02809
	25	15D	13U	-1.3621	73.26	-0.0090	0.02575
	26	15D	22C	767.6861	86.89	0.0045	0.02808
	27	13U	13I	1.1536	37.41	-0.0002	0.01966
	28	13I	8P	-0.6158	14.12	0.0007	0.01254
	29	8P	60	6.2523	49.84	-0.0168	0.02220
	30	60	5L	-4.2609	25.85	-0.0104	0.01665
	31	21G	22C	-136.0638	59.56	-0.0031	0.02426
	32	1417L	2038J	-446.7948	86.63	-0.0057	0.02904
	33	1417L	1418M	-350.2840	119.56	-0.0176	0.03338
	34	1417L	1445V	-590.4178	66.23	0.0141	0.02572
	35	2062T	2039X	-106.3417	81.90	0.0054	0.02839
	36	2062T	5L	-977.9928	79.92	-0.0053	0.02810
	37	2039X	2038J	36.8644	79.75	0.0053	0.02808
	38	1418M	1414N	-46.4175	62.86	-0.0092	0.02559
	39	1414N	1410B	-16.8452	65.00	-0.0096	0.02597
	10	1410B	1425S	-328.1527	104.36	0.0087	0.02892
	41	1425S	1755X	12.1830	44.86	0.0094	0.02204
	42 42	5L	4P	15.5243	60.24	-0.0283	0.02343
	43	4X	4P	11.0219	12.66	-0.0003	0.01194
	14 15	4P	1K 2001J	-6.4195 -12.2015	85.29	-0.0243	0.02778
	45 46	4P		-12.2015 -707 1567	73.53 76.60	-0.0154	0.02753
	46 47	1445V	2 12E	-707.1567	76.60	0.0163	0.02731
	4 / 4 8	12X 1K		25.8698	70.30 74.04	0.0050 -0.0211	0.02681
		2 2	2 12F	48.6829			0.02637
•	49	4	12E	-18.0137	86.91	-0.0062	0.02932

NO. ORD.	ORIGEM	DESTINO	DESNÍVEL(m)	DIST. (km)	RES.(m)	DPDES (m)
50	2001J	1777X	15.0054	81.23	-0.0170	0.02874
51	1777X	1766J	1049.1404	99.40	-0.0245	0.02984
52	1777X	1780G	-8.2425	86.63	0.0033	0.02893
53	1766J	1764G	-109.2617	81.55	-0.0201	0.02775
54	1764G	1762B	-127.8516	74.89	-0.0216	0.02635
55	1764G	1767S	-213.3355	47.10	0.0020	0.02182
56	1762B	1755X	-204.5369	61.89	-0.0179	0.02448
57	1755X	1768B	64.6593	90.30	-0.0072	0.02875
58	1768B	1770F	-213.1386	89.83	-0.0163	0.02802
59	1768B	1905E	-130.8189	42.29	0.0043	0.02098
60	1770F	1771Z	189.6444	103.46	-0.0188	0.02931
61	1767S	1774V	-284.0093	80.47	0.0034	0.02695
62	1774V	1785S	-457.3028	109.02	-0.0223	0.02769
63	1774V	1771Z	206.1374	59.72	0.0147	0.02309
64	1771Z	1908F	-617.5568	100.10	0.0066	0.02672
65	1785S	1781S	18.7170	75.80	-0.002 9	0.02741
66	1785S	1908F	45.8829	108.14	-0.0180	0.02850
67	1780G	1781S	12.1544	81.51	0.0031	0.02824
68	1908F	1906H	666.5347	110.87	-0.0112	0.03053
69	1906H	1905E	-156.3029	72.28	-0.0073	0.02625

VARIÂNCIA DA OBSERVAÇÃO DE PESO UNITÁRIO = 0.994474211

APÊNDICE E DESNÍVEIS INTERCALADOS AJUSTADOS

DESNÍVEIS INTERCALADOS AJUSTADOS DESNÍVEL INTERNODAL 3 (2054L -21G CORR. G G AJUST. ALT. AJUST. CORR. A RN 978764.360 -0.000 0.3726 2054J 926.8526 978767.470 -0.000 0.1244 2054H 917.0444 -0.000 2054G 894.3722 0.3322 978772.290 978770.210 0.3393 -0.000 901.8593 2054F 978772.800 0.000 0.3154 893.5354 2054E 978770.860 0.000 902.9392 0.3392 2054D -0.0000.3391 978770.980 2054C 905.0091 978773.150 -0.000881.0571 0.3471 2054A 0.000 0.3620 978769.770 878.7820 2053Z 978761.900 0.000 0.3269 2053X 911.7469 0.000 978759.620 2053V 911.4447 0.3747 0.0177 978754.910 0.000 929.1377 2053L -0.000 0.3310 978757.040 921.8910 2053H 0.000 -0.0042978757.670 2042J 926.1398 -0.000 978757.880 2042H 923.9682 0.3382 0.3221 978765.360 -0.000 2042G 888.5121 RESÍDUO(m) DPDES (m) **DESTINO** DISTÂNCIA(km) DESNÍVEL(m) ORIGEM 0.00044 2054J -9.65072.71 0.0001 2054L 2054H -9.8060 2.75 0.0001 0.00045 2054J -22.6695 2.70 0.0001 0.00044 2054H 2054G 0.0001 0.00045 2.77 2054F 7.4857 2054G 0.00045 0.0001 -8.3221 2.81 2054F 2054E 9.4027 3.02 0.0001 0.00047 2054D 2054E 0.0001 0.00045 2.0702 2.82 2054D 2054C 0.0001 0.00051 -23.9519 3.60 2054C 2054A -2.2783 2.90 0.0001 0.00046 2053Z 2054A 32.9603 1.90 0.0001 0.00037 2053X 2053Z 0.0001 0.00045 -0.30432.76 2053V 2053X 0.0002 0.00059 17.6900 5.04 2053V 2053L 0.00058 4.78 0.0002 2053L 2053H -7.24532053H 2042J 4.2498 7.52 0.0003 0.00071 -2.17161.12 0.0000 0.00029 2042H 2042J 0.0001 0.00037 1.86 -35.45192042H 2042G 0.00095 15.58 0.0005 21G 18.2964 2042G

0.189498138E-01

VARIÂNCIA DA OBSERVAÇÃO DE PESO UNITÁRIO =

DESNÍVEIS INTERCALADOS AJUSTADOS DESNÍVEL INTERNODAL 4 (2054L - 2012C CORR. G RN ALT. AJUST. CORR. A G AJUST. 0.000 937.4478 0.3978 978761.100 2054M 0.000 2054N 909.7326 0.3926 978766.260 0.3149 978780.210 0.000 2055C 881.6849 2055D 836.5627 0.3127 978790.120 0.000 2055E 822.8629 0.2929 978794.240 0.000 978797.160 -0.000 813.3821 0.2921 2055G 0.2827 978790.050 0.000 2055H 853.3227 780.9924 0.1424 978811.000 0.000 19J -0.000 2012F 788.4280 0.3280 978808.130 802.4431 0.3431 978805.030 -0.000 2012E ORIGEM **DESTINO** DESNIVEL(m) DISTÂNCIA (km) RESÍDUO(m) DPDES (m) -0.0001 2054L 0.00060 2054M 0.9423 2.92 -0.0001 0.00060 -27.7126 2.92 2054M 2054N 2054N 2055C -28.03708.80 -0.0003 0.00101 2055C 2055D -45.1169 2.99 -0.0001 0.00061 -0.0001 2055D 2055E -13.6972 2.88 0.00060 -0.0001 -9.47912.82 0.00059 2055E 2055G -0.0001 0.00061 2055G 2055H 39.9375 3.00 2055H 19J -72.3180 44.89 -0.0018 0.00163 19J 0.00070 2012F 7.4338 4.04 -0.0002 2012F 2012E 14.0135 2.38 -0.0001 0.00055 2012C 64.7730 5.82 -0.0002 0.00083 2012E

VARIÂNCIA DA OBSERVAÇÃO DE PESO UNITÁRIO = 0.321420002E-01

DESNÍVEIS INTERCALADOS AJUSTADOS DESNÍVEL INTERNODAL 10 (1401A - 1400E CORR. G RN ALT. AJUST. CORR. A G AJUST. 0.2052 979034.450 0.000 60.7752 1400Z 0.000 0.2370 979034.970 1400J 64.9170 0.0032 0.000 36.7332 979041.070 1400L 0.000 1400H 36.3218 0.2018 979044.330 1400G 27.4910 0.3610 979043.750 0.000 32.7813 0.3313 979046.820 0.000 1400F DISTÂNCIA (km) RESÍDUO(m) DPDES (m) DESNÍVEL(m) ORIGEM DESTINO -0.0008 0.00212 1400Z -8.1300 2.14 1401A -0.0012 2.96 0.00241 1400Z 1400J 4.1418 1400L -28.1836 1.55 -0.0006 0.00184 1400J -0.0007 0.00199 1400H -0.41121.86 1400L 2.80 -0.0011 0.00236 1400G -8.8309 1400H 2.90 -0.0011 0.00239 1400G 1400F 5.2905 1400F 1400E -16.0821 1.71 -0.0007 0.00192

VARIÂNCIA DA OBSERVAÇÃO DE PESO UNITÁRIO = 0.604217226E+00

11 (1401A DESNÍVEL INTERNODAL - 1403X CORR. G RN ALT. AJUST. CORR. A G AJUST. 979029.380 0.000 75.1438 0.2838 1401C 0.1528 979029.310 0.000 1401D 72.5028 79.9296 0.2996 979029.310 0.000 1401E 1401F 76.4847 0.2947 979026.290 -0.000 1401G 78.6189 0.3489 979026.940 0.000 0.1514 979021.900 0.000 81.1814 1401J 0.1651 979023.110 0.000 81.2951 1401L 0.000 1401N 87.8371 0.0171 979023.910 0.000 1401R 93.2767 0.2667 979024.530 979023.200 99.7007 0.1207 0.000 1401S 0.000 111.1976 0.1776 979021.330 1401T 1401V 130.2659 -0.0341979017.003 0.003 0.002 1402B 395.7481 0.2881 978963.492 978976.530 -0.000 1402C 333.2144 0.2244 0.000 1402D 345.7297 0.0397 978975.390 1402E 345.3977 0.3077 978980.470 -0.000 0.2725 978982.420 -0.000 1402F 338.3425 342.3035 1403H 0.3035 978989.550 -0.000 338.2523 0.2823 978993.080 -0.000 1403J 0.000 1403L 341.3371 0.3471 978995.410 1403S 355.5012 0.2912 978993.591 0.001 1403T 402.7899 0.3599 978983.061 0.001 1403U 442.6109 0.3809 978975.720 -0.000 RESÍDUO(m) ORIGEM **DESTINO** DESNÍVEL(m) DISTÂNCIA (km) DPDES (m) 1401C 6.2383 5.64 0.0016 0.00675 1401A 1401C 1401D -2.64102.48 0.0007 0.00455 1401D 1401E 7.4268 2.82 0.0008 0.00484 2.90 0.0008 1401E 1401F -3.44520.00491 0.00497 2.98 1401G 0.0009 1401F 2.1343 1401G 1401J 2.5621 5.63 0.0016 0.00675 2.73 1401J 1401L 0.1138 0.0008 0.00477 1401L 1401N 6.5421 4.68 0.0013 0.00618 1401R 5.4396 5.63 0.0016 0.00675 1401N 6.4240 2.03 0.0006 1401R 1401S 0.00412 1401S 1401T 11.4967 2.60 0.0007 0.00466 1401T 19.0680 5.86 0.0017 1401V 0.00687 1401V 1402B 265.4738 9.87 0.0028 0.00874 -62.53071402B 1402C 2.64 0.0008 0.00469 1402C 1402D 12.5152 2.78 0.0008 0.00481 2.79 0.0008 1402D 1402E -0.33020.00482 1402E 1402F -7.05472.40 0.0007 0.00448 15.60 0.0045 1402F 1403H 3.9636 0.01064 1403H 1403J -4.05012.59 0.0007 0.00465 1403J 1403L 3.0856 2.54 0.0007 0.00460 1403L 1403S 14.1639 5.78 0.0017 0.00683 47.2862 0.0007 1403S 1403T 2.32 0.00440 1403T 1403U 39.8194 2.62 0.0008 0.00467 1403U 1403X -75.74415.05 0.0015 0.00641

DESNÍVEIS INTERCALADOS AJUSTADOS

VARIÂNCIA DA OBSERVAÇÃO DE PESO UNITÁRIO = 0.213754713E+01

DESNÍVEL INTERNODAL 13 (1403X - 1406J RN ALT. AJUST. CORR. A G AJUST. CORR. G 1403Z 374.6441 0.2841 978991.980 -0.000 355.9978 0.4078 978994.340 1404B -0.000 1404D 354.3197 0.0397 978994.770 0.000 1404F 380.1571 0.2771 978990.090 0.000 0.2888 978994.121 0.001 1404G 357.9688 1404J 437.9537 0.2837 978974.474 0.004 1404N 751.0291 0.4091 978902.774 0.004 1404R 0.3941 0.001 856.1641 978880.221 1404T 868.9594 0.3794 978878.690 -0.000 1404U 847.4394 0.3694 978884.660 -0.000 1404X 848.0175 0.3775 978888.810 0.000 0.000 1404Z 0.3439 978881.920 891.2339 1405C 884.1584 0.1084 978886.419 -0.001 1405M 834.2809 0.3109 978892.020 -0.000 1405R 861.0164 0.4064 978885.750 0.000 1405S 836.7283 0.2783 0.000 978890.450 1405T 878.4751 0.3051 978882.580 0.000 1405U 883.8693 0.3293 978881.810 -0.000 866.5717 1406B 0.3917 978885.940 -0.000 1406C 861.2608 0.3808 978888.080 0.000 868.3054 1406D 0.3854 978886.930 -0.000 1406E 826.8171 0.3471 978895.060 -0.000 1406F 843.4344 0.0944 978891.280 0.000 ORIGEM **DESTINO** DESNÍVEL(m) DISTÂNCIA (km) RESÍDUO(m) DPDES (m) 1403X 1403Z 7.7817 1.79 0.0005 0.00359 1403Z 1404B 3.23 -18.64610.0009 0.00478 1404B 1404D -1.67800.85 0.0002 0.00248 1404D 1404F 25.8365 3.03 0.0009 0.00463 1404F 1404G -22.1875 3.16 0.0009 0.00473 1404G 1404J 79.9797 5.43 0.0015 0.00612 1404J 1404N 313.0479 7.77 0.0022 0.00722 1404N 1404R 105.1238 4.27 0.0012 0.00546 1404R 1404T 12.7950 5.24 0.0015 0.00602 1404T 1404U -21.51642.91 0.0008 0.00454 1404U 1404X 0.5817 5.68 0.0016 0.00625 1404X 1404Z 43.2136 2.79 0.0008 0.00445 1404Z 1405C -7.07216.18 0.0017 0.00650 1405C 1405M -49.8762 11.25 0.0032 0.00850 1405M 1405R 26.7320 8.20 0.0023 0.00740 1405R 1405S -24.2858 2.72 0.0008 0.00440 41.7430 1405S 1405T 1.71 0.0005 0.00351 1405T 1405U 5.3939 2.46 0.0007 0.00419 1405U 1406B -17.29522.09 0.0006 0.00387 1406B 1406C -5.3094 2.21 0.0006 0.00398 1406C 1406D 7.0442 2.31 0.0007 0.00406 1406D 1406E -41.48432.40 0.0007 0.00414 1406E 1406F 16.6153 2.30 0.0007 0.00405 1406F 1406J 13.0508 1.58 0.0004 0.00337

DESNÍVEIS INTERCALADOS AJUSTADOS

0.183203307E+01

VARIÂNCIA DA OBSERVAÇÃO DE PESO UNITÁRIO =

DESNÍVEIS INTERCALADOS AJUSTADOS DESNÍVEL INTERNODAL 14 (1406J - 2013X ALT. AJUST. CORR. G CORR. A G AJUST. RN 978851.890 0.000 0.3175 2015G 986.9375 978862.100 -0.000 2015F 920.6427 0.3627 2015E 961.5466 0.4566 978854.660 0.000 0.3803 978826.570 0.000 1082.6903 2015C 978824.900 -0.000 0.3418 1056.3818 2015B -0.000 0.4096 978833.240 2014X 933.3396 0.4636 978819.140 0.000 2014V 986.6736 -0.000 960.9345 0.1345 978823.660 2014U 0.000 0.3402 978821.440 974.0902 2014T 1057.9658 978806.320 0.000 0.3358 2014R 0.000 2014N 1084.0893 0.3893 978805.330 0.4432 978791.310 0.000 2014J 1146.4432 -0.000 0.1493 978792.320 1128.8893 2014G 0.4433 978789.700 -0.000 2014F 1136.7933 1065.6175 0.3775 978804.490 -0.000 2014E 0.4002 978794.650 0.000 2014D 1093.9202 0.000 0.4044 978787.460 1129.8144 2014C 0.000 0.4382 978784.840 2014B 1130.5082 978781.790 0.000 2014A 1135.3806 0.4506 ORIGEM **DESTINO** DESNÍVEL(m) DISTÂNCIA (km) RESÍDUO(m) DPDES (m) 13.03 0.0011 0.00288 1406J 2015G 130.4268 0.0003 0.00147 2015F -66.2903 3.04 2015G 3.19 0.0003 0.00150 2015F 2015E 40.9001 5.90 0.0005 0.00202 2015E 2015C 121.1251 0.0003 -26.31283.62 0.00160 2015C 2015B 0.0008 0.00250 2014X -123.04449.40 2015B 2.36 0.0002 0.00130 2014V 53.3246 2014X 0.0003 2.88 0.00143 2014U -25.7367 2014V 0.00149 3.14 0.0003 13.1546 2014U 2014T 0.0005 0.00206 2014T 2014R 83.8673 6.19 2014R 2014N 26.1248 6.22 0.0005 0.00207 62.3439 9.40 0.0008 0.00250 2014N 2014J 0.00173 -17.55444.28 0.0004 2014J 2014G 0.00092 2014G 2014F 7.9017 1.16 0.0001 3.20 0.0003 0.00151 2014F 2014E -71.1659 28.2945 2014E 2014D 3.61 0.0003 0.00160 3.01 0.0003 0.00146 2014C 35.8895 2014D 2.94 0.0003 0.00145 2014C 2014B 0.6909 2014B 2014A 4.8693 3.72 0.0003 0.00162 0.00208 105.6118 6.30 0.0005 2014A 2013X

VARIÂNCIA DA OBSERVAÇÃO DE PESO UNITÁRIO = 0.183542314E+00

APÊNDICE F ALTITUDES AJUSTADAS

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO. ORD	. ESTAÇÃO	ALTITUDE (m)	DPAL
1	N 2045L	843.576	0.039
2	2047A	869.392	0.039
3	2047B	907.636	0.039
4	2047C	720.466	0.038
5	2047D	580.079	0.038
6	2047E	469.594	0.038
7	2047F	353.548	0.038
8	2047G	203.712	0.038
9	2047H	80.729	0.037
10	2047Ј	57.117	0.037
11	2047L	25.135	0.037
12	2047 M	75.210	0.037
13	2047N	21.025	0.037
14	2047V	10.459	0.037
15	2047X	11.415	0.037
16	24K	8.526	0.037
17	2048A	7.340	0.037
18	2048B	9.842	0.036
19	2048C	7.694	0.037
20	2048D	21.872	0.037
21	2048E	10.151	0.037
22	2048F	19.703	0.037
23	2048H	17.545	0.037
24	2048J	13.896	0.037
25	2048L	10.975	0.037
26	2048M	15.769	0.037
27	2048N	9.661	0.037
28	2048P	9.542	0.038
29	2048R	11.653	0.038
30	2048T	4.797	0.038
31	2048U	4.136	0.039
32	C 25A	3.615	0.039
33	2053H	921.891	0.037
34	2053L	929.138	0.038
35	2053V	911.445	0.038
36	2053X	911.747	0.038
37	2053Z	878.782	0.038
38	2054A	881.057	0.038
39	2054C	905.009	0.039
40	2054D	902.939	0.039
41	2054E	893.535	0.040
42	2054F	901.859 894.372	0.040
43	2054G 2054H		0.040
45 46		917.044 926.853	0.041
46	2054J N 2054L	936.505	0.041
47			0.042
48	2054M	937.448	0.041
49	2054N	909.733	0.041

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO.	ORD.	ESTAÇÃO	ALTITUDE (m)	DPAL
(50	2055D	836.563	0.040
	51	2055E	822.863	0.040
	52	2055G	813.382	0.040
	53	2055H	853.323	0.040
	5 4	2055C	881.685	0.040
	55	2012F	788.428	0.041
	56	2012E	802.443	0.042
	57	N 2012C	867.225	0.042
	58	2012B	830.935	0.042
	59	2012A	837.524	0.042
	60	2011Z	832.539	0.042
	61	N 2011X	845.817	0.043
	62	2011V	932.763	0.042
	63	2011U	948.014	0.042
	64	2011T	934.272	0.042
	65	2011P	962.179	0.042
	66	2011N	1011.558	0.042
	67	2011M	979.310	0.042
	68	2011H	924.355	0.042
	69	2011G	955.045	0.042
	70	2011F	936.210	0.042
	71	2011E	945.588	0.042
	72	2011D	938.410	0.042
	73	2011C	970.628	0.042
	74	2011B	939.416	0.042
	75	2011A	943.703	0.042
	76	2010Z	938.961	0.042
	77	2010X	965.822	0.042
	78	2010V	989.591	0.043
	79	2010U	968.076	0.043
	80	2010T	974.265	0.043
	81	2010S	957.176	0.043
	82	2010R	969.856	0.044
	83	2010B	517.805	0.043
	84	2010D	522.087	0.043
	85 86	2010E	526.680	0.043
	86	2010G	601.721	0.044
	87	2010H	654.914	0.044
	88	N 2010L	821.316	0.045 0.044
	89	2010P	980.469	0.044
	90	2010J	711.924 519.042	0.043
	91 92	2010A 2009Z	524.102	0.042
	92 93	2009Z 2009X	486.649	0.042
	93 94	2009X 2009V	440.705	0.042
	95	2009V 2009U	407.074	0.042
	96	2009T	295.441	0.042
	97	2009S	228.108	0.042
	98	2009B	146.073	0.042
		20011		

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO.	ORD.	F	STAÇÃO	ALTIT	TUDE (m)	DPAL
9	99		2009P	139	9.952		0.042
	00		2009M		7.390		0.042
	01		1402T	67	7.331		0.042
10	02		1402L	62	2.840		0.042
10	03	N	1401A	68	3.905		0.043
10	04		1400Z	60	775		0.042
10	05		1400J	64	.917		0.042
10	06		1400L		5.733		0.042
1	07		1400H	36	5.322		0.042
10	80		1400G		7.491		0.042
10	09		1400F		2.781		0.042
1	10	N	1400E		5.699		0.042
1	11		1401C		5.144		0.043
1	12		1401D		2.503		0.043
1	13		1401E		9.930		0.043
1	14		1401F		5.485		0.043
1	15		1401G		3.619		0.043
1	16		1401J		1.181		0.044
1	17		1401L		1.295		0.044
1	18		1401N		7.837		0.044
1	19		1401R		3.277		0.044
1.	20		1401S		9.701		0.044
	21		1401T		1.198		0.045
	22		1401V		0.266		0.045
	23		1402B		5.748		0.045
	24		1402C		3.214		0.046
	25		1402D		5.730		0.046
	26		1402E		5.398		0.046
	27		1402F		3.343		0.046
	28		1403H		2.304		0.047
	29		1403J		3.252		0.047
	30		1403L		1.337		0.047
	31		1403S		5.501		0.047
	32		1403T		2.790		0.047
	33		1403U		2.611		0.047
	34	Ŋ	1403X		6.862		0.048
	35		1403Z		4.644		0.048
	36		1404B		5.998		0.048
	37		1404D		4.320		0.048
	38		1404F		0.157		0.047
	39		1404G		7.969		0.047
	40		1404J		7.954		0.047
	41		1404N		1.029		0.047
	42		1404R		6.164		0.047
	43		1404T		8.959		0.047
	44		1404U		7.439		0.047
	45		1404X		B.017		0.047
	46		1404Z		1.234		0.047
1	47		1405C	88	4.158		0.047

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO.	ORD.	ESTAÇÃO	ALTITUDE (m)	DPAL
1.	48	1405M	834.281	0.047
	49	1405R	861.016	0.046
	50	1405S	836.728	0.046
	51	1405T	878.475	0.046
	52	1405U	883.869	0.046
	53	1406B	866.572	0.046
1.	54	1406C	861.261	0.046
1	55	1406D	868.305	0.046
1:	56	1406E	826.817	0.046
1:	57	1406F	843.434	0.046
1.	58	N 1406J	856.487	0.047
1.	59	1406P	863.140	0.046
1	60	2015G	986.938	0.046
1	61	2015F	920.643	0.046
1	62	2015E	961.547	0.045
1	63	2015C	1082.690	0.045
1	64	2015B	1056.382	0.045
1	65	2014X	933.340	0.045
	66	2014V	986.674	0.045
	67	2014U	960.934	0.045
	68	2014T	974.090	0.045
	69	2014R	1057.966	0.045
	70	2014N	1084.089	0.045
	71	2014J	1146.443	0.046
	72	2014G	1128.889	0.046
	73	2014F	1136.793	0.046
	74	2014E	1065.618	0.046
	75	2014D	1093.920	0.047
	76	2014C	1129.814	0.047
	77	2014B	1130.508	0.047
	78	2014A	1135.381	0.047
	79	N 2013X	1241.015	0.048
	80	2013V	1247.568	0.048
	81	2013U	1154.991	0.047
	82	17472	1164.049	0.047
	83	2013T	1109.208	0.047
	84 0.5	2013P	802.022	0.046
	85 86	2013N	816.013	0.046
	86 87	2013M	800.821	0.045
	87 22	2013L	804.363	0.045
	88 20	2013C	803.591	0.043
	89 00	2013D	797.161	0.044
	90 91	2013F	804.004	0.044
	91 92	2013G	804.628 709.664	
	92 93	2013H 2013B	798.664 813.475	0.044
	93 94	2013B 2013A	813.475 842.925	0.043
	9 4 95	2013A 2012Z	836.112	0.043
	96	2012Z 2012X	820.410	0.043
_	<i>y</i> 0	CULLA	020.410	0.043

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO.	ORD.	I	ESTAÇÃO	ALTITUDE (m	ı)	DPAL
1	97		2012V	816.480		0.043
	98		2012U	838.999		0.043
	99		2012T	801.905		0.043
	00		2012S	794.924		0.042
	01		2012P	809.540		0.042
	02		2012N	816.173		0.042
	03		2012M	843.414		0.042
2	04		2012Ј	925.029		0.042
2	05		1754M	823.314		0.042
2	06		1754L	909.893		0.042
2	07		1754J	829.786		0.042
	08		1754H	907.179		0.042
	09		1754F	866.663		0.043
	10		1754E	846.385		0.043
	11		1754C	797.017		0.043
	12		1754A	811.632		0.043
	13		1753Z	799.453		0.043
	14		1753V	810.697		0.044
	15		1753U	811.658		0.044
	16		1753T	797.062		0.044
	17		1753P	784.219		0.045
	18		1753M	778.441		0.045
	19		1753L	796.885		0.045
	20		1753H	829.690		0.046
	21 22		1753G	781.316		0.046
	22 22		1753F 1753E	778.378 771.622		0.046
	23 24		1753E	809.339		0.047
	24 25		1753E	764.094		0.047
	25 26		1753A	771.298		0.048
	20 27		1752Z	787.338		0.048
	2.7 2.8	N		766.372		0.049
	29 29		1752V	762.162		0.049
	30		1752T	810.521		0.049
	31		1752S	767.550		0.048
	32		1752R	758.470		0.048
	33		1752M	752.393		0.049
	34		1752L	752.444		0.049
	35		1752G	751.059		0.049
	36		1752F	750.236		0.050
	37	N	1752E	750.921		0.050
	38	N	1750P	1342.817		0.050
	39		1750R	1303.528		0.050
	40		1750S	1245.136		0.050
2	41		1750T	1205.000		0.049
	42		1750U	1190.634		0.049
2	43		1750V	1239.598		0.049
2	44		1750X	1232.170		0.048
2	45		1750Z	1252.167		0.048

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO.	ORD.	ESTAÇÃO	ALTITUDE (m)	DPAL
24	46	1751A	1243.946	0.048
	47	1751B	1244.026	0.048
	48	1751C	1236.801	0.048
	49	1751D	1240.008	0.048
	50	1751E	1202.709	0.048
	51	1751F	1072.228	0.048
	52	1751G	1096.863	0.048
	53	1751L	1068.207	0.048
	54	1751M	1034.158	0.048
	55	N 1422Z	1107.638	0.048
	56	1427T	1056.290	0.048
	57	1427V	1018.755	0.049
	58	1427X	1041.054	0.049
	59	1427Z	1086.083	0.049
2	60	1428A	996.053	0.049
2	61	1428B	981.771	0.049
2	62	1428E	1034.328	0.049
2	63	1428F	1054.551	0.049
	64	1428G	909.109	0.050
	65	1428H	803.135	0.050
2	66	1428J	799.077	0.050
	67	1428M	817.664	0.050
	68	1428N	798.183	0.051
2	69	1428P	796.394	0.051
2	70	1428S	847.965	0.051
2	71	1428T	774.081	0.051
2	72	1428U	906.081	0.052
2	73	1428X	1007.646	0.052
2	74	1429A	971.180	0.053
2	75	1429B	927.867	0.053
2	76	1429C	914.029	0.054
2	77	1429D	942.307	0.054
2	78	1429G	758.996	0.055
2	79	1429H	695.176	0.056
2	80	1429J	661.978	0.056
2	81	1429U	774.777	0.058
2	82	1429R	693.802	0.057
2	83	N 1429X	770.603	0.059
2	84	N 1424P	575.130	0.049
2	85	1424M	474.551	0.049
2	86	1424L	345.886	0.048
	87	1424J	434.716	0.048
2	88	1424H	510.955	0.048
	89	1424G	579.729	0.048
2	90	1424E	666.337	0.047
2	91	1423T	711.902	0.047
2	92	1423R	851.127	0.047
2	93	1423P	825.624	0.047
2	94	1423N	674.080	0.047

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

No.	ORD.	ESTAÇÃO	ALTITUDE (m)	DPAL
2	95	1423L	660.236	0.047
	96	1423H	777.431	0.047
	97	1423G	862.991	0.047
	98	1423F	913.408	0.048
	99	1423A	1113.491	0.048
	00	1423B	1072.928	0.048
	01	1422X	1150.944	0.048
	02	1422V	1182.402	0.048
	03	1422U	1165.918	0.048
	04	1422R	880.227	0.047
	05	1422P	851.381	0.047
3	06	1422M	870.677	0.047
3	07	1422J	947.138	0.047
3	08	1422G	945.522	0.047
3	09	1422C	856.452	0.048
3	10	1422D	968.482	0.047
3	11	1422B	817.775	0.048
3	12	1422A	736.038	0.048
3	13	1421Z	775.036	0.048
3	14	1421X	773.371	0.048
3	15	1421M	537.185	0.048
3	16	1421L	673.158	0.049
3	17	1421J	738.425	0.049
	18	N 1421H	861.325	0.049
3	19	1421G	810.432	0.049
	20	1421F	674.373	0.049
	21	1421E	690.845	0.048
	22	1421D	835.321	0.048
	23	1421B	738.786	0.048
	24	1421A	840.718	0.047
	25	1420R	934.944	0.046
	26	1420T	947.168	0.047
	27	1420V	872.977	0.047
	28	1420X	868.311	0.047
	29	1420Z	850.831	0.047
	30	1420U	884.788	0.047
	31	1420N	910.564	0.046
	32	1420M	876.315	0.046
	33	1420L	898.855	0.046
	3 4	1420J	929.782	0.046
	35 36	1420H	922.442	0.046
	36 37	1420G	895.892	0.046
	37 38	1420F 1420E	872.663 893.929	0.046
	3 6 39	1420E 1420D	934.483	0.046
	40	1420D 1420C	934.483 815.543	0.047
	40 41	1420C 1420B	790.228	0.047
	41 42	N 1420A	769.008	0.047
	42 43	1409V	860.403	0.047
3	. J	T#034	000.403	0.04/

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO.	ORD.	ES	STAÇÃO	ALTITUDE (1	n) DPAL
3	44		L409U	887.950	0.047
	45		L409N	708.912	0.046
3	46	:	L409M	714.165	0.046
	47		L409L	737.744	0.046
3	48	:	L409J	770.655	0.046
3	49		L409H	786.727	0.045
3.	50	:	L409C	995.835	0.045
3.	51	:	L409E	917.693	0.045
3.	52		L409D	943.140	0.045
3.	53	:	L409A	1012.578	0.045
3	54	:	L408Z	964.858	0.045
3	55		15I	14.454	0.034
3	56		15J	4.946	0.034
3	57		15K	6.168	0.034
	58	C	15D	2.962	0.033
3	59		15E	3.891	0.034
	60		14 S	10.839	0.033
	61		14R	9.477	0.033
	62		140	10.511	0.032
	63		14L	7.920	0.032
	64		14I	16.699	0.032
	65		14G	11.099	0.032
	66		14D	9.921	0.033
	67		14B	6.372	0.033
	68	_	13V	2.959	0.035
	69	С	13U	1.599	0.035
	70		13T	1.641	0.035
	71		13R	9.408	0.034
	72		130	4.163	0.034
	73		13M	121.280	0.034
	74	_	13J	2.288	0.035
	75 75	С	13I	2.753	0.035
	76		13F	2.377	0.035
	77 70	N	8P	2.137	0.035
	78		8K	15.645	0.035
	79		8G	7.361	0.035
	80 81	_	8C	4.754	0.035
	81 02	C	60	8.389 906.801	0.036
	82 03	N	21G	780.992	0.038
	83 0.4		19J	1.877	0.041
	84 85		13E		0.035 0.037
	85 86		21I 21L	916.089 890.250	0.037
	86 87		21L 21N	925.677	0.037
	88		21N 21P	963.167	0.036
	89		21P 21R	945.709	0.036
	90		21K 21T	913.209	0.036
	90 91		21V	926.024	0.037
	92		21V 21Y	858.070	0.037
3	J &			030.070	0.03/

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO.	ORD.	ESTAÇÃ O	ALTITUDE (m)	DPAL
3:	93	22A	871.288	0.038
	94	N 22C	770.698	0.038
	95	22D	707.613	0.038
	96	22F	401.382	0.038
	97	22G	256.165	0.038
	98	221	140.494	0.037
	99	22J	90.932	0.037
	00	22K	50.005	0.037
4	01	22M	22.633	0.037
4	02	22N	21.608	0.036
4	03	22P	7.886	0.036
4	04	22S	23.656	0.036
4	05	17I	22.017	0.035
4	06	2045B	907.518	0.037
4	07	2045C	924.477	0.037
4	80	2045D	918.876	0.037
4	09	2045E	915.126	0.038
4	10	2045F	859.590	0.038
4	11	2045G	834.187	0.038
4	12	2045H	836.872	0.038
4	13	2045J	854.195	0.039
4	14	2043A	898.187	0.037
4	15	2043B	896.085	0.037
	16	2043C	921.869	0.037
	17	2042G	888.512	0.037
	18	2042H	923.968	0.037
	19	2042Ј	926.140	0.037
	20	2004S	5.362	0.046
	21	2004R	4.635	0.042
	22	2004P	32.835	0.035
	23	2004H	4.096	0.036
	24	2004G	5.098	0.036
	25	2004F	4.916	0.036
	26	2004D	8.244	0.036
	27	2004C	4.236	0.036
	28	2004A	69.549	0.036
	29	2003Z	61.826	0.036
	30	2003V	15.629	0.035
	31	2003U	9.472	0.035
	32	2003T	5.751	0.035
	33	2003S	16.808	0.035
	34 35	2003R	22.772 25.205	0.034
	35 36	2003P N 1417L	25.295 1359.607	0.034
	36 37	N 1417L 2061F	1286.415	0.044
	3 <i>1</i> 38	2061F 2061E	1168.604	0.044
	36 39	2061E 2061D	1272.226	0.044
	40	2061B	12/2.226	0.044
	41	2061A	1250.653	0.044
		LUUIN	1230.000	0.044

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO.	ORD.	estação	ALTITUDE (m)	DPAL
4	42	2064D	8.028	0.049
	43	2064C	18.320	0.051
	44	2064B	9.546	0.053
	45	2064A	12.634	0.055
	46	2063Z	35.601	0.057
	47	2063X	69.768	0.058
	48	2063V	59.930	0.059
	49	2063U	130.897	0.060
	50	2063T	158.279	0.061
	51	2063R	191.700	0.062
	52	2063P	199.056	0.063
	53	2063N	221.184	0.063
	54	2063M	233.446	0.063
	5 5	2063L	301.463	0.063
	56	2063J	450.571	0.062
	57	2063G	806.463	0.061
	58	2063F	781.056	0.060
	59	2063E	794.309	0.059
	60	2063D	811.561	0.059
	61	2063C	875.350	0.058
	62	2063B	837.983	0.057
	63	20622	637.647	0.054
	64	2062X	648.138	0.051
	65	2062V	699.958	0.049
	66	2062U	802.333	0.046
	67	N 2062T	982.286	0.043
	68	2062S	1051.795	0.043
	69	2062R	963.512	0.043
	70	2062N	645.946	0.043
4	71	2062M	592.630	0.043
4	72	2062E	461.758	0.043
4	73	2062D	470.813	0.043
4	74	2062C	546.663	0.043
4	75	2062A	769.898	0.043
4	76	2061Z	833.880	0.043
4	77	2061X	884.117	0.043
4	78	2061V	899.424	0.043
4	79	2061U	888.750	0.043
4	80	2061T	891.641	0.043
4	81	2061S	889.875	0.044
4	82	2061R	890.933	0.044
	83	2061P	880.050	0.044
	84	2061N	868.696	0.044
4	85	2061 M	885.329	0.045
	86	2061L	862.174	0.045
	87	2061J	865.863	0.045
	88	2061H	856.349	0.046
	89	2061G	877.196	0.046
4	90	2039Z	855.132	0.046

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO.	ORD.	ESTAÇÃO	ALTITUDE (m)	DPAL
4	92	2039V	898.640	0.047
	93	2039U	841.701	0.046
	94	2039T	867.742	0.046
	95	2039S	879.158	0.046
	96	2039R	901.707	0.046
	97	2039P	850.279	0.046
	98	2039N	887.053	0.046
	99	2039M	866.833	0.045
	00	2039L	848.360	0.045
	01	2039J	888.508	0.045
	02	2039H	852.166	0.045
	03	2039G	859.106	0.045
	04	2039F	868.368	0.045
	05	2039E	858.742	0.045
	06	2039D	864.592	0.045
	07	2039C	867.508	0.045
	08	2039B	860.578	0.045
	09	2039A	851.096	0.045
	10	2038Z	878.235	0.045
	11	2038X	872.679	0.045
	12	2038V	854.640	0.045
	13	2038U	854.746	0.046
	14	2038T	868.613	0.046
	15	20385	917.911	0.046
	16	2038R	880.094	0.046
	17	2038P	883.841	0.046
	18	2038N	878.875	0.046
	19	2038M	956.322	0.047
	20	2038L	938.135	0.047
	21	N 2038J	912.809	0.047
	22	2059X	888.170	0.046
	23	2060A	907.566	0.046
	24	2060B	890.260	0.045
	25	2060C	895.787	0.045
	26	2060D	969.434	0.045
	27 27	2060E	1059.081	0.045
	28	2060F	1117.920	0.044
	29	2060G	1114.344	0.044
	30	2060H	1123.267	0.044
	31	2060J	1177.178	0.044
	32	2060L	1270.588	0.044
	33	2060P	1230.234	0.043
	34	2060R	1133.884	0.043
	35	2060T	1078.518	0.043
	36	2060U	1119.059	0.043
	37	1417D	1240.486	0.044
	38	1417A	1208.324	0.044
	39	1418B	684.391	0.047
		14100	004.071	0.07/

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO.	ORD.	ESTAÇÃO	ALTITUDE (m)	DPAL
5.	40	1418D	914.736	0.047
	41	1418N	1042.926	0.048
	42	1418P	1055.338	0.048
	43	1418R	1076.248	0.048
5	44	1418S	1099.101	0.048
5	45	1418T	1066.678	0.047
5	46	1418U	1015.046	0.047
5.	47	1418V	908.253	0.047
5	48	1418X	941.206	0.047
5	49	1418Z	924.940	0.046
5	50	1419A	973.133	0.046
	51	1419B	997.795	0.046
5	52	1419C	1008.272	0.046
5.	53	1419E	953.819	0.046
	54	1419F	1016.630	0.045
	55	1419H	1019.689	0.045
	56	1419Ј	1048.335	0.045
	57	1419L	1094.134	0.045
	58	1419M	1069.385	0.045
	59	1419N	1107.131	0.045
	60	1419P	1089.134	0.044
	61	1419R	1082.476	0.044
	62	1419S	1048.680	0.044
	63	1416B	1101.509	0.044
	64	1416A	1063.398	0.044
	65	1415Z	1099.080	0.044
	66 67	1415V	957.989	0.044
	67 62	1415U	1005.943	0.044
	68 68	1415T	961.735	0.044
	69 70	1416G	1124.680	0.044
	70	1416H	1123.529	0.044
	71 72	1416J	1121.735	0.044
	72 72	1416M	1230.418	0.043
	73 74	1416N	1203.920	0.043
	74 75	1416P	1143.092	0.043
	75 76	N 1418M	1009.293	0.049 0.047
	76 77	1415N	701.182 803.557	
	77 70	1415M 1415L	832.525	0.047 0.047
	78 79	1415L 1415J	852.113	0.047
	80	1415G	980.179	0.047
	81	1415G 1415F	989.163	0.047
	82	1415F 1415E	1012.571	0.047
	83	1415E 1415D	978.192	0.047
	84	1415C	989.416	0.047
	85	1415B	996.036	0.047
	86	1415A	982.129	0.047
	87	1414Z	974.712	0.048
	88	1414X	936.941	0.048
	- -			0.040

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO. ORD.	ESTAÇÃO	ALTITUDE (m)	DPAL
589	1414S	930.539	0.048
590	1414R	898.582	0.048
591	1414P	921.746	0.048
592	N 1414N	962.854	0.049
593	1414M	961.245	0.048
594	1414L	965.824	0.048
595	1414J	983.318	0.048
596	1414H	964.162	0.047
597	1414G	979.758	0.047
598	1414F	945.149	0.047
599	1414E	909.805	0.047
600	1414V	935.902	0.048
601	1414D	907.841	0.047
602	1413F	951.357	0.046
603	1413H	951.591	0.046
604	1413J	957.142	0.046
605	1413L	914.124	0.046
606	1413M	923.157	0.046
607	1413N	944.438	0.046
608	1413P	944.689	0.046
609	1413R	921.154	0.046
610	1413S	880.493	0.046
611	1413T	859.131	0.046
612	1413U	922.411	0.046
613	1413V	961.720	0.046
614	1413X	877.748	0.046
615	1414T	941.014	0.046
616	1414A	889.662 843.241	0.046
617 618	1414B	843.241 837.803	0.046
618 610	1414C 1413D	934.459	0.047
619 620	N 1410B	946.029	0.047 0.047
621	1410B	949.274	0.047
622	1410C 1410D	933.842	0.047
623	1410B 1410F	957.233	0.047
624	1410F 1410G	945.950	0.047
625	1410H	944.618	0.047
626	1410H 1410J	923.921	0.046
627	1410L	920.287	0.046
628	1410N	936.981	0.046
629	1410P	939.124	0.046
630	1411L	885.882	0.046
631	1411J	919.157	0.046
632	1411H	985.521	0.046
633	1411G	931.201	0.046
634	1411F	945.600	0.046
635	1411D	899.396	0.046
636	1411B	658.447	0.046
637	1410Z	484.867	0.046

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO.	ORD.	ESTAÇÃO	ALTITUDE (m)	DPAL
63	38	1410V	602.195	0.046
	39	1410T	817.231	0.046
	10	1410R	899.288	0.046
64	11	1412A	744.454	0.047
64	12	1412M	716.660	0.046
64	13	1427P	964.099	0.047
64	14	1427N	956.257	0.046
64	15	1427M	931.145	0.046
64	16	1427L	908.520	0.046
64	17	1427J	911.190	0.046
	18	1427H	889.190	0.046
64	19	1427G	900.862	0.046
	50	1427F	875.699	0.046
	51	1427 E	870.059	0.045
	52	1427D	827.948	0.045
	53	1427C	762.028	0.045
	54	1427B	771.470	0.045
	55	1427A	818.797	0.045
	56	1426S	766.660	0.045
	57	1426R	760.093	0.045
	58	1426P	743.885	0.045
	59	1426M	699.525	0.045
	50	1426L	767.516	0.045
	51	1426J	783.690	0.045
	52	1426H	757.653	0.046
	53	1426G	752.976	0.046
	5 4	1426E	795.085	0.046
	55 56	1426A	722.076	0.046
	56 57	1425Z	703.089	0.047
	57 58	1425X 1425V	601.525	0.047
	59	N 1425S	513.838 617.870	0.047 0.048
	70	1425R	589.827	0.048
	71	1425R 1425P	624.516	0.047
	72	1425F 1425M	412.663	0.047
	73	1425M 1425J	605.181	0.047
	74	1425H	497.973	0.047
	75	1425G	436.125	0.047
	76	1425F	400.240	0.047
	77	1425E	385.347	0.047
	78	1425D	396.296	0.047
	79	1425C	406.000	0.047
	30	1424X	409.195	0.048
	31	1424V	395.711	0.048
	32	1424U	475.894	0.048
	33	1424T	562.516	0.048
	34	14245	386.154	0.049
	35	1424R	552.936	0.049
	36	N 5L	4.127	0.035

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO.	ORD.	I	estação	ALTITUDE (m)	DPAL
6	87		S5N	7.131	0.035
	88		5 M	4.916	0.035
	89		5N	7.632	0.035
	90		5K	16.056	0.036
	91		5B	10.085	0.035
	92	C	4X	8.631	0.034
	93	N	4P	19.653	0.034
6	94		1446X	119.308	0.040
6	95		1446V	147.977	0.040
6	96		1446T	188.391	0.040
6	97		1446S	245.366	0.040
6	98		1446R	327.309	0.041
6	99		1446N	296.359	0.041
7	00		1446H	220.268	0.042
7	01		1446G	290.420	0.042
7	02		1446F	348.580	0.042
7	03		1446D	349.565	0.042
	04		1446B	431.984	0.043
	05		1445Z	582.315	0.043
	06		1445X	672.075	0.043
	07	N	1445V	769.122	0.044
	80		1445M	1356.699	0.043
	09		1445J	1245.487	0.043
	10		1445G	1203.982	0.043
	11		1445E	1312.794	0.043
	12		1445D	1202.053	0.043
	13		1445B	1415.815	0.043
	14		1417N	1354.040	0.044
	15		1417P	1386.017	0.044
	16		1417U	1480.942	0.043
	17 10		1417X	1467.700	0.043
	18 10		1417Z	1485.855	0.043
	19		1444X	1320.674	0.043
	20		14442	1323.414	0.043
	21		1445A	1473.736 1218.907	0.043
	22 22		1445H 1445L	1218.907	0.043
	23		1445L 1445N	1370.920	0.043
	24 25		1445N 1445P	1419.689	0.043
	25 26		1445P 1445R	1346.674	0.043
	20 27	С	1445K	18.030	0.043
	2 <i>1</i> 28	C	40	7.540	0.040
	26 29		40 4M	6.270	0.034
	29 30		4H 4L	6.452	0.035
	30 31		4I	9.931	0.035
	32		4G	120.671	0.037
	32 33		40 4D	31.472	0.037
	34		4A	15.259	0.039
	35	N	1K	13.234	0.040
•				72.524	0.040

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO.	ORD.	E	STAÇÃO	AI	TITUDE	(m)	DPAL
7	36		1 M		94.24	9	0.039
	37		10		58.71		0.039
	38		1Q		120.63		0.039
	39		1S		140.03		0.039
	40		1U		199.72		0.039
	41	N	2		61.91		0.040
	42	••	3C		29.25		0.038
	43		3 F		21.42		0.038
	44		3J		4.89		0.039
	45		3L		10.84		0.039
	46	N	12E		43.90		0.041
	47		12H		143.66		0.040
	48		12K		18.91		0.039
	49		12P		42.79		0.038
	50		12R		13.21		0.038
	51		12U		12.48		0.039
	52		2000A		16.24		0.035
	53		2000B		15.00		0.035
	54		2000C		8.93		0.035
	5 5		2000D		8.52		0.035
	56		2000E		5.97		0.035
	57		2000F		8.68		0.036
	58		2000G		10.80		0.036
	59		2000J		18.61		0.037
	60		2000L		5.16		0.037
	61		2000M		28.68		0.037
	62		2000R		16.27		0.038
	63		2000T		18.37		0.039
	64		2000V		8.34		0.039
	65		2000Z		8.48		0.040
	66		2002B		16.35		0.043
	67		2001E		24.61		0.041
	68		2001G		7.05		0.041
	69	N	2001J		7.45		0.042
	70		2001L		12.15		0.042
	71		2001M		9.81		0.042
	72		2001N		28.53		0.042
	73		2001P		39.27		0.042
	74		2001R		15.48		0.042
	75		2001S		20.09		0.042
	76		2001T		46.76		0.042
	77		2001X		10.11		0.043
	78		2001Z		9.70		0.043
	79		2002A		14.36		0.043
	80		1778P		21.47		0.043
	81		1778N		29.84		0.043
	82		1778M		13.61		0.044
	83		1778L		19.65		0.044
7	84		1778J		16.77	7	0.044

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

785 1778H 13.268 0.045 786 1778F 4.216 0.045 787 1778D 12.250 0.046 788 N 1777X 22.457 0.048 789 1777Z 26.538 0.047 790 1778B 26.664 0.047 791 1778B 19.038 0.046 792 1778C 13.651 0.046 793 1777U 11.179 0.047 794 1777T 18.673 0.047 795 1777S 28.117 0.047 796 1777P 34.878 0.047 797 1777M 45.473 0.047 799 1777L 73.981 0.047 801 1777M 60.678 0.047 802 1777D 96.284 0.047 803 1777F 222.237 0.048 803 1777F 222.237 0.048 804 1777TE	NO.	ORD.	ESTAÇÃO	ALTITUDE (m)	DPAL
786 1778F 4.216 0.045 787 1778D 12.250 0.046 788 N 1777X 22.457 0.048 789 1777Z 26.538 0.047 790 1778A 26.664 0.047 791 1778B 19.038 0.046 792 1778C 13.651 0.046 793 1777U 11.179 0.047 794 1777T 18.673 0.047 795 1777S 28.117 0.047 796 1777P 34.878 0.047 797 177NM 45.473 0.047 798 177TM 60.678 0.047 799 177TL 73.981 0.047 800 177TJ 96.284 0.047 801 177TB 124.006 0.047 802 177TG 164.819 0.048 803 177TF 222.237 0.048 804 177TE	7	85	1778H	13.268	0.045
787 1778D 12.250 0.046 788 N 1777X 22.457 0.048 789 1777Z 26.538 0.047 790 1778A 26.664 0.047 791 1778C 13.651 0.046 792 1777C 11.179 0.047 794 1777T 18.673 0.047 795 1777S 28.117 0.047 796 1777P 34.878 0.047 797 177NM 45.473 0.047 798 177M 60.678 0.047 799 177TL 73.981 0.047 800 177TJ 96.284 0.047 801 177TH 124.006 0.047 801 177TH 124.006 0.047 801 177TF 222.237 0.048 803 177TF 222.237 0.048 805 177D 693.909 0.048 806 177TC				4.216	0.045
788 N 1777X 22.457 0.048 789 1777Z 26.538 0.047 790 1778A 26.664 0.047 791 1778B 19.038 0.046 792 1778C 13.651 0.046 793 1777U 11.179 0.047 794 1777T 18.673 0.047 795 1777B 34.878 0.047 796 1777P 34.878 0.047 797 1777M 45.473 0.047 798 1777M 60.678 0.047 799 177TL 73.981 0.047 800 1777J 96.284 0.047 801 1777H 124.066 0.047 802 1777G 164.819 0.048 803 1777F 222.237 0.048 804 1777E 462.599 0.048 805 1777D 693.909 0.048 806 1777C			1778D		0.046
789 1777Z 26.538 0.047 790 1778A 26.664 0.047 791 1778B 19.038 0.046 792 1778C 13.651 0.046 793 1777U 11.179 0.047 794 1777T 18.673 0.047 795 1777S 28.117 0.047 796 1777M 45.473 0.047 797 1777M 45.473 0.047 799 1777L 73.981 0.047 799 1777L 73.981 0.047 800 1777J 96.284 0.047 801 1777H 124.006 0.047 802 1777G 164.819 0.048 803 1777F 222.237 0.048 804 1777E 462.599 0.048 805 177D 693.909 0.048 806 1777C 907.020 0.048 807 1777B				22.457	0.048
790 1778A 26.664 0.047 791 1778B 19.038 0.046 792 1778C 13.651 0.046 793 1777U 11.179 0.047 794 1777T 18.673 0.047 795 1777S 28.117 0.047 796 1777P 34.878 0.047 797 177N 45.473 0.047 798 1777M 60.678 0.047 799 1777L 73.981 0.047 800 1777J 96.284 0.047 801 1777H 124.006 0.047 802 1777G 164.819 0.048 803 1777F 222.237 0.048 804 1777E 462.599 0.048 805 1777D 693.909 0.048 806 1777C 907.020 0.048 807 1777B 1157.098 0.048 808 1777A 1184.641 0.048 809 1766Z 1143.853 0.049 811 1766V 1230.810 0.049 811 1766V 1230.810 0.049 811 1766C 1186.802 0.049 813 1766T 1189.415 0.050 814 1766S 1191.364 0.050 815 1766R 1166.412 0.050 816 1766P 1127.019 0.051 817 1766D 1080.296 0.052 820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766L 1038.410 0.052 826 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765X 1011.097 0.051 829 1765X 1011.097 0.051 830 1765V 1036.965 0.051					
791 1778B 19.038 0.046 792 1778C 13.651 0.046 793 1777U 11.179 0.047 794 177TT 18.673 0.047 795 1777S 28.117 0.047 796 177TP 34.878 0.047 797 177TM 45.473 0.047 798 177TM 60.678 0.047 799 177TL 73.981 0.047 800 177TJ 96.284 0.047 801 177TH 124.006 0.047 802 177TG 164.819 0.048 803 177TF 222.237 0.048 804 177TE 462.599 0.048 805 177TD 693.909 0.048 806 177TC 907.020 0.048 807 177B 1157.098 0.048 808 177TA 1184.641 0.049 811 1766Z			1778A	26.664	0.047
793 1777U 11.179 0.047 794 1777T 18.673 0.047 795 1777S 28.117 0.047 796 1777P 34.878 0.047 797 1777M 45.473 0.047 798 1777M 60.678 0.047 800 1777J 96.284 0.047 801 1777H 124.006 0.047 802 1777G 164.819 0.048 803 1777F 222.237 0.048 804 1777E 462.599 0.048 805 177D 693.909 0.048 806 1777C 907.020 0.048 807 177B 1157.098 0.048 808 1777A 1184.641 0.048 809 1766Z 1143.853 0.049 810 1766X 1181.039 0.049 811 1766V 1230.810 0.049 812 1766U <td></td> <td></td> <td>1778B</td> <td>19.038</td> <td>0.046</td>			1778B	19.038	0.046
794 1777T 18.673 0.047 795 1777S 28.117 0.047 796 1777P 34.878 0.047 797 1777N 45.473 0.047 798 1777M 60.678 0.047 799 1777L 73.981 0.047 800 1777J 96.284 0.047 801 1777H 124.006 0.047 802 1777G 164.819 0.048 803 1777E 222.237 0.048 804 1777E 462.599 0.048 805 1777D 693.909 0.048 806 1777C 907.020 0.048 807 177B 1157.098 0.048 808 1777A 1184.641 0.048 809 1766Z 1143.853 0.049 810 1766X 1181.039 0.049 811 1766V 1230.810 0.049 812 1766V </td <td>7</td> <td>92</td> <td>1778C</td> <td>13.651</td> <td>0.046</td>	7	92	1778C	13.651	0.046
795 1777S 28.117 0.047 796 1777P 34.878 0.047 797 1777M 45.473 0.047 798 1777M 60.678 0.047 799 1777L 73.981 0.047 800 1777J 96.284 0.047 801 1777H 124.006 0.047 802 1777G 164.819 0.048 803 1777F 222.237 0.048 804 1777E 462.599 0.048 805 1777D 693.909 0.048 806 1777C 907.020 0.048 807 1777B 1157.098 0.048 808 1777A 1184.641 0.048 809 1766Z 1143.853 0.049 810 1766Z 1143.853 0.049 811 1766V 1230.810 0.049 812 1766U 1186.802 0.049 813 1766	7	93	1777U	11.179	0.047
796 1777P 34.878 0.047 797 1777N 45.473 0.047 798 1777M 60.678 0.047 799 1777L 73.981 0.047 800 1777J 96.284 0.047 801 1777H 124.006 0.047 802 1777G 164.819 0.048 803 1777F 222.237 0.048 804 1777E 462.599 0.048 805 1777D 693.909 0.048 806 1777C 907.020 0.048 807 1777B 1157.098 0.048 808 1777A 1184.641 0.048 809 1766Z 1143.853 0.049 811 1766X 1181.039 0.049 811 1766V 1230.810 0.049 811 1766V 1230.810 0.049 812 1766G 1186.802 0.049 813 1766T 1189.415 0.050 814 1766S 1191.364 0.050 815 1766R 1166.412 0.050 816 1766P 1127.019 0.051 817 1766N 1070.053 0.051 818 1766B 1054.096 0.052 820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766L 1038.410 0.052 826 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765X 1011.097 0.051 830 1765V 1036.965 0.051 831 1765V 1036.965 0.051	7	94	1777T	18.673	0.047
797 1777N 45.473 0.047 798 1777M 60.678 0.047 799 1777L 73.981 0.047 800 1777J 96.284 0.047 801 1777H 124.006 0.047 802 1777G 164.819 0.048 803 1777F 222.237 0.048 804 1777E 462.599 0.048 805 1777D 693.909 0.048 806 1777C 907.020 0.048 807 1777B 1157.098 0.048 808 1777A 1184.641 0.048 809 1766Z 1143.853 0.049 810 1766X 1181.039 0.049 811 1766V 1230.810 0.049 812 1766U 1186.802 0.049 813 1766T 1189.415 0.050 814 1766S 1191.364 0.050 814 1766S 1191.364 0.050 815 1766R 1166.412 0.050 816 1766P 1127.019 0.051 817 1766N 1070.053 0.051 818 1766B 1054.096 0.052 820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766L 1038.410 0.052 826 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765Z 1030.802 0.051 830 1765V 1036.965 0.051 831 1765V 1036.965 0.051	7	95	1777S	28.117	0.047
798 1777M 60.678 0.047 799 1777L 73.981 0.047 800 1777J 96.284 0.047 801 1777H 124.006 0.047 802 1777G 164.819 0.048 803 1777F 222.237 0.048 804 1777E 462.599 0.048 805 1777D 693.909 0.048 806 1777C 907.020 0.048 807 177B 1157.098 0.048 808 1777A 1184.641 0.048 809 1766Z 1143.853 0.049 810 1766X 1181.039 0.049 811 1766V 1230.810 0.049 812 1766U 1186.802 0.049 813 1766T 1189.415 0.050 814 1766S 1191.364 0.050 815 1766R 1166.412 0.050 816 1766P 1127.019 0.051 819 1766D 1080.296 <td>7</td> <td>96</td> <td>1777P</td> <td>34.878</td> <td></td>	7	96	1777P	34.878	
799 1777L 73.981 0.047 800 1777J 96.284 0.047 801 1777H 124.006 0.047 802 1777G 164.819 0.048 803 1777F 222.237 0.048 804 1777E 462.599 0.048 805 1777D 693.909 0.048 806 1777C 907.020 0.048 807 1777B 1157.098 0.048 808 1777A 1184.641 0.048 809 1766Z 1143.853 0.049 810 1766X 1181.039 0.049 811 1766V 1230.810 0.049 812 1766U 1186.802 0.049 813 1766T 1189.415 0.050 814 1766S 1191.364 0.050 815 1766R 1166.412 0.050 816 1766P 1127.019 0.051 817 1766D 1080.296 0.052 821 1766F 1055.661<	7	97	1777N	45.473	0.047
800 1777J 96.284 0.047 801 1777H 124.006 0.047 802 1777G 164.819 0.048 803 1777F 222.237 0.048 804 1777E 462.599 0.048 805 1777D 693.909 0.048 806 1777C 907.020 0.048 807 177B 1157.098 0.048 808 1777A 1184.641 0.048 809 1766Z 1143.853 0.049 810 1766X 1181.039 0.049 811 1766V 1230.810 0.049 812 1766U 1186.802 0.049 813 1766T 1189.415 0.050 814 1766S 1191.364 0.050 815 1766R 1166.412 0.050 816 1766P 1127.019 0.051 817 1766N 1070.053 0.051 818 1766B 1054.096 0.052 821 1766F 1055.661	7	98	1777M	60.678	0.047
801 1777H 124.006 0.047 802 1777G 164.819 0.048 803 1777F 222.237 0.048 804 1777E 462.599 0.048 805 1777D 693.909 0.048 806 1777C 907.020 0.048 807 177B 1157.098 0.048 808 1777A 1184.641 0.048 809 1766Z 1143.853 0.049 810 1766X 1181.039 0.049 811 1766V 1230.810 0.049 812 1766U 1186.802 0.049 813 1766T 1189.415 0.050 814 1766S 1191.364 0.050 815 1766R 1166.412 0.050 816 1766P 1127.019 0.051 817 1766N 1070.053 0.051 818 1766B 1054.096 0.052 820 1766F 1063.566 0.052 821 1766F 1055.6	7	99	1777L	73.981	0.047
802 1777G 164.819 0.048 803 1777F 222.237 0.048 804 1777E 462.599 0.048 805 1777D 693.909 0.048 806 1777C 907.020 0.048 807 177B 1157.098 0.048 808 1777A 1184.641 0.048 809 1766Z 1143.853 0.049 810 1766X 1181.039 0.049 811 1766V 1230.810 0.049 812 1766U 1186.802 0.049 813 1766T 1189.415 0.050 814 1766S 1191.364 0.050 815 1766R 1166.412 0.050 816 1766P 1127.019 0.051 817 1766N 1070.053 0.051 818 1766B 1054.096 0.052 820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.	8	00	1777J	96.284	
803 1777F 222.237 0.048 804 1777E 462.599 0.048 805 1777D 693.909 0.048 806 1777C 907.020 0.048 807 1777B 1157.098 0.048 808 1777A 1184.641 0.048 809 1766Z 1143.853 0.049 810 1766X 1181.039 0.049 811 1766V 1230.810 0.049 812 1766U 1186.802 0.049 813 1766T 1189.415 0.050 814 1766S 1191.364 0.050 815 1766R 1166.412 0.050 816 1766P 1127.019 0.051 817 1766N 1070.053 0.051 818 1766B 1080.296 0.052 820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 103					
804 1777E 462.599 0.048 805 1777D 693.909 0.048 806 1777C 907.020 0.048 807 1777B 1157.098 0.048 808 1777A 1184.641 0.048 809 1766Z 1143.853 0.049 810 1766X 1181.039 0.049 811 1766V 1230.810 0.049 812 1766U 1186.802 0.049 813 1766T 1189.415 0.050 814 1766S 1191.364 0.050 815 1766R 1166.412 0.050 816 1766P 1127.019 0.051 817 1766N 1070.053 0.051 818 1766B 1054.096 0.052 820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J					
805 1777D 693.909 0.048 806 1777C 907.020 0.048 807 1777B 1157.098 0.048 808 1777A 1184.641 0.048 809 1766Z 1143.853 0.049 810 1766X 1181.039 0.049 811 1766V 1230.810 0.049 812 1766U 1186.802 0.049 813 1766T 1189.415 0.050 814 1766S 1191.364 0.050 815 1766R 1166.412 0.050 816 1766P 1127.019 0.051 817 1766N 1070.053 0.051 818 1766B 1054.096 0.052 820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766M <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
806 1777C 907.020 0.048 807 1777B 1157.098 0.048 808 1777A 1184.641 0.048 809 1766Z 1143.853 0.049 810 1766X 1181.039 0.049 811 1766V 1230.810 0.049 812 1766U 1186.802 0.049 813 1766T 1189.415 0.050 814 1766S 1191.364 0.050 815 1766R 1166.412 0.050 816 1766P 1127.019 0.051 817 1766N 1070.053 0.051 818 1766B 1054.096 0.051 819 1766D 1080.296 0.052 820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766M <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
807 1777B 1157.098 0.048 808 1777A 1184.641 0.048 809 1766Z 1143.853 0.049 810 1766X 1181.039 0.049 811 1766V 1230.810 0.049 812 1766U 1186.802 0.049 813 1766T 1189.415 0.050 814 1766S 1191.364 0.050 815 1766R 1166.412 0.050 816 1766P 1127.019 0.051 817 1766N 1070.053 0.051 818 1766B 1054.096 0.051 819 1766D 1080.296 0.052 820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766M 1069.690 0.051 827 1766A <					
808 1777A 1184.641 0.048 809 1766Z 1143.853 0.049 810 1766X 1181.039 0.049 811 1766V 1230.810 0.049 812 1766U 1186.802 0.049 813 1766T 1189.415 0.050 814 1766S 1191.364 0.050 815 1766R 1166.412 0.050 816 1766P 1127.019 0.051 817 1766N 1070.053 0.051 818 1766B 1054.096 0.051 819 1766D 1080.296 0.052 820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z <					
809 1766Z 1143.853 0.049 810 1766X 1181.039 0.049 811 1766V 1230.810 0.049 812 1766U 1186.802 0.049 813 1766T 1189.415 0.050 814 1766S 1191.364 0.050 815 1766R 1166.412 0.050 816 1766P 1127.019 0.051 817 1766N 1070.053 0.051 818 1766B 1054.096 0.051 819 1766D 1080.296 0.052 820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765X <					
810 1766X 1181.039 0.049 811 1766V 1230.810 0.049 812 1766U 1186.802 0.049 813 1766T 1189.415 0.050 814 1766S 1191.364 0.050 815 1766R 1166.412 0.050 816 1766P 1127.019 0.051 817 1766N 1070.053 0.051 818 1766B 1054.096 0.051 819 1766D 1080.296 0.052 820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766L 1038.410 0.052 826 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765X <					
811 1766V 1230.810 0.049 812 1766U 1186.802 0.049 813 1766T 1189.415 0.050 814 1766S 1191.364 0.050 815 1766R 1166.412 0.050 816 1766P 1127.019 0.051 817 1766N 1070.053 0.051 818 1766B 1054.096 0.051 819 1766D 1080.296 0.052 820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766L 1038.410 0.052 826 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765X 1011.097 0.051 831 1765U <					
812 1766U 1186.802 0.049 813 1766T 1189.415 0.050 814 1766S 1191.364 0.050 815 1766R 1166.412 0.050 816 1766P 1127.019 0.051 817 1766N 1070.053 0.051 818 1766B 1054.096 0.051 819 1766D 1080.296 0.052 820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766L 1038.410 0.052 826 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765X 1011.097 0.051 831 1765U 1001.415 0.051					
813 1766T 1189.415 0.050 814 1766S 1191.364 0.050 815 1766R 1166.412 0.050 816 1766P 1127.019 0.051 817 1766N 1070.053 0.051 818 1766B 1054.096 0.051 819 1766D 1080.296 0.052 820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766L 1038.410 0.052 826 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765X 1011.097 0.051 830 1765V 1036.965 0.051 831 1765U 1001.415 0.051					
814 1766S 1191.364 0.050 815 1766R 1166.412 0.050 816 1766P 1127.019 0.051 817 1766N 1070.053 0.051 818 1766B 1054.096 0.051 819 1766D 1080.296 0.052 820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766L 1038.410 0.052 826 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765X 1011.097 0.051 830 1765V 1036.965 0.051 831 1765U 1001.415 0.051					
815 1766R 1166.412 0.050 816 1766P 1127.019 0.051 817 1766N 1070.053 0.051 818 1766B 1054.096 0.051 819 1766D 1080.296 0.052 820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766L 1038.410 0.052 826 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765X 1011.097 0.051 830 1765V 1036.965 0.051 831 1765U 1001.415 0.051					
816 1766P 1127.019 0.051 817 1766N 1070.053 0.051 818 1766B 1054.096 0.051 819 1766D 1080.296 0.052 820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766L 1038.410 0.052 826 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765X 1011.097 0.051 830 1765V 1036.965 0.051 831 1765U 1001.415 0.051					
817 1766N 1070.053 0.051 818 1766B 1054.096 0.051 819 1766D 1080.296 0.052 820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766L 1038.410 0.052 826 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765X 1011.097 0.051 830 1765V 1036.965 0.051 831 1765U 1001.415 0.051					
818 1766B 1054.096 0.051 819 1766D 1080.296 0.052 820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766L 1038.410 0.052 826 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765X 1011.097 0.051 830 1765V 1036.965 0.051 831 1765U 1001.415 0.051					
819 1766D 1080.296 0.052 820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766L 1038.410 0.052 826 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765X 1011.097 0.051 830 1765V 1036.965 0.051 831 1765U 1001.415 0.051					
820 1766E 1063.566 0.052 821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766L 1038.410 0.052 826 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765X 1011.097 0.051 830 1765V 1036.965 0.051 831 1765U 1001.415 0.051					
821 1766F 1055.661 0.052 822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766L 1038.410 0.052 826 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765X 1011.097 0.051 830 1765V 1036.965 0.051 831 1765U 1001.415 0.051					
822 1766G 1044.928 0.052 823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766L 1038.410 0.052 826 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765X 1011.097 0.051 830 1765V 1036.965 0.051 831 1765U 1001.415 0.051					
823 1766H 1030.772 0.052 824 N 1766J 1071.682 0.052 825 1766L 1038.410 0.052 826 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765X 1011.097 0.051 830 1765V 1036.965 0.051 831 1765U 1001.415 0.051					
824 N 1766J 1071.682 0.052 825 1766L 1038.410 0.052 826 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765X 1011.097 0.051 830 1765V 1036.965 0.051 831 1765U 1001.415 0.051					
825 1766L 1038.410 0.052 826 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765X 1011.097 0.051 830 1765V 1036.965 0.051 831 1765U 1001.415 0.051					_
826 1766M 1069.690 0.051 827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765X 1011.097 0.051 830 1765V 1036.965 0.051 831 1765U 1001.415 0.051					
827 1766A 1041.993 0.051 828 1765Z 1030.802 0.051 829 1765X 1011.097 0.051 830 1765V 1036.965 0.051 831 1765U 1001.415 0.051					
828 1765Z 1030.802 0.051 829 1765X 1011.097 0.051 830 1765V 1036.965 0.051 831 1765U 1001.415 0.051					
8291765X1011.0970.0518301765V1036.9650.0518311765U1001.4150.051					
830 1765V 1036.965 0.051 831 1765U 1001.415 0.051					
831 1765U 1001.415 0.051					
			1765T		0.051
833 1765S 1030.769 0.051					

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO.	ORD.	1	ESTAÇÃO	ALTITUDE (m) DPAL
8:	34		1765R	1032.061	0.051
	35		1765P	1004.504	0.051
	36		1765N	1017.190	0.051
	37		1765M	998.183	0.051
	38		1765L	944.574	0.051
8	39		1765J	959.754	0.051
8	40		1765H	969.442	0.051
8-	41		1765G	966.732	0.051
8	42		1765F	968.555	0.051
	43		1765E	963.208	0.051
	44		1765C	968.066	0.051
	45		1765D	955.361	0.051
	46		1765B	967.917	0.052
	47	N	1764G	962.419	0.052
	48		1764E	960.750	0.052
	49		1764D	931.993	0.051
	50		1764C	900.005	0.051
	51		1764B	915.885	0.051
	52		1764A	902.477	0.051
	53		1762Z	877.359	0.051
	54		1762X	903.126	0.051
	55		1762A	810.415	0.052
	56	N		834.578	0.052
	57 50		1762C	850.165	0.052
	58 50		1762D	845.170	0.052
	59		1762E	834.577	0.052
	60		1762F	780.548	0.051
	61 62		1762G 1762H	856.971 791.364	0.051 0.051
	63		1762H 1762J	754.626	0.051
	64		1762L	788.645	0.051
	65		1762M	840.603	0.051
	66		1762N	859.105	0.051
	67		1762P	895.856	0.051
	68		1762R	955.322	0.051
	69		1762S	875.090	0.051
	70		1762T	831.910	0.051
	71		1762U	911.283	0.051
	72		1762V	858.191	0.051
	73		1761S	726.306	0.051
	74		1761R	762.047	0.051
8	75		1761P	790.989	0.051
	76		1761D	645.771	0.049
	77		1761C	662.102	0.049
	78		1761B	676.599	0.049
	79		1761A	696.433	0.049
	80		1755A	711.837	0.048
8	81		1755B	718.185	0.047
8	82		1755C	741.650	0.047

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO.	ORD.	1	ESTAÇÃO	ALTITUDE (m)	DPAL
8	83		1755E	724.230	0.047
	84		1755F	747.605	0.047
	85		1755G	752.405	0.048
	86		1755H	755.617	0.048
	87		1755J	755.562	0.048
	88		1755L	743.432	0.048
	89		1755M	764.068	0.048
	90		1755N	774.091	0.048
	91		1755R	615.463	0.049
8	92		1755V	646.716	0.049
8	93	N	1755X	630.033	0.049
8	94		1763J	674.918	0.050
8	95		1763L	651.342	0.050
8	96		1763M	632.895	0.051
8	97		1763N	654.981	0.051
8	98		1763S	667.106	0.052
	99		1763T	679.831	0.052
	00		1763U	672.385	0.052
	01		1763V	707.512	0.053
	02		1763Z	691.811	0.053
	03	N	1768B	694.666	0.054
	04		1769A	705.906	0.054
	05		1769B	732.158	0.054
	06		1769C	644.594	0.054
	07		1769D	703.210	0.054
	08		1769E	640.546	0.054
	09		1769F	611.286	0.054
	10		1769L	549.571	0.055
	11		1769G	645.574	0.054
	12		1769H	643.844	0.054
	13		1769J	615.269	0.055
	14		1769M	515.383	0.055
	15 16		1769N	525.955	0.055
	16		1769R	449.726	0.055 0.055
	17 10		1769S	450.977 463.962	0.055
	18 19		1769T 1769U	482.689	0.056
	20		1769V	523.568	0.056
	20 21		1769X	646.139	0.056
	21 22		1769Z	607.013	0.056
	22 23		17092 1770A	596.851	0.056
	24		1770B	609.231	0.057
	25 25		1770D	510.125	0.057
	26 26		1770E	490.120	0.057
	27	N	1770F	481.513	0.058
	28		1770G	548.828	0.058
	29		1770H	511.470	0.057
	30		1770J	539.404	0.057
	31		1770L	582.578	0.057

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO.	ORD.	ESTAÇÃO	ALTITUDE (m)	DPAL
9	32	1767A	915.722	0.052
	33	1767B	904.092	0.052
9:	34	1767C	888.519	0.051
9:	35	1767D	853.687	0.051
9	36	1767E	838.292	0.052
9	37	1767F	804.006	0.052
9	38	1767G	816.533	0.052
9	39	1767H	723.176	0.052
9	40	1767J	827.820	0.052
9	41	1767L	873.325	0.052
9	42	1767M	851.283	0.053
9	43	1767N	835.139	0.053
	44	1767P	819.915	0.053
	45	1767R	770.625	0.054
9	46	N 1767S	749.036	0.054
	47	1767T	739.303	0.054
	48	1767U	632.264	0.054
	49	1767X	295.776	0.053
	50	1767Z	399.874	0.053
	51	1773Z	703.780	0.053
	52	1774D	735.759	0.053
	53	1774C	683.295	0.053
	54	1774A	664.869	0.053
	55 -	1774B	773.254	0.053
	56 	1774F	660.600	0.053
	57 	1774G	709.209	0.053
	58 	1774H	671.103	0.053
	59	1774J	514.969	0.053
	60	1774M	679.020	0.053
	61 62	1774N	753.402	0.053
	62 63	1774P	862.325	0.053
	63	1774R	852.450	0.054
	64 65	1774S	821.476	0.054
		N 1774V	464.986	0.055 0.055
	66 67	1775B	96.099	
	67 68	1775C	74.396	0.055
	68 69	1775D	196.193 494.341	0.055 0.055
	70	1775F 1775G	586.345	0.055
	70 71	1775M	102.936	0.055
	71 72	1775M 1775N	87.693	0.055
	72 73	1775N 1776H	19.510	0.055
	73 74	1776G	34.927	0.055
	7 5 75	1776J	22.155	0.055
	76	1776L	6.881	0.055
	70 77	1776M	6.279	0.055
	,, 78	1776N	26.838	0.055
	70 79	1776P	15.815	0.055
	80	1776F	36.208	0.055
_			-	

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO.	ORD.	ESTAÇÃO	ALTITUDE (m)	DPAL
9	81	1776D	135.881	0.055
	82	1776C	147.069	0.055
9	83	1776A	162.548	0.055
9	84	1775Z	303.068	0.055
9	85	1775X	474.397	0.055
9	86	1775V	531.042	0.055
9	87	1775 U	441.493	0.055
9	88	1775 T	429.977	0.055
9	89	1775R	279.373	0.055
9:	90	1775P	109.979	0.055
9	91	1773R	756.928	0.054
9	92	1773N	742.135	0.055
	93	1773H	730.865	0.055
	94	1773G	625.366	0.055
-	95	1773E	564.505	0.055
	96	1773D	573.154	0.055
	97	N 1771Z	671.132	0.056
	98	1773C	535.279	0.055
	99	1773B	584.430	0.055
10		1773A	528.823	0.056
10		1771U	614.045	0.056
10		1771T	556.056	0.056
10		1771S	600.993	0.056
10		1771R	582.106	0.056
10		1771P	486.313	0.056
10		1771N	363.924	0.056
10		1771M	206.594	0.056
10		1771L	191.740	0.056
10		1771J	347.880	0.056
10		1771H	521.341	0.056
10		1771G	587.904	0.056
10		1771F	607.348	0.056
10		1771E	654.628	0.056
10		1771D	678.927	0.056
10		1771C	664.685	0.056
10		1771B	698.901	0.056
10		1771 A 1770X	720.191 655.230	0.056
10		1770X 1770V	688.339	0.056 0.056
10			651.646	
10 10		1770U	598.574	0.057 0.057
		1770S		
10 10		1770P 1770N	568.611 633.310	0.057 0.057
10		1770N 1755Z	605.779	0.037
10		1756A	514.377	0.049
10		1756B	481.961	0.049
10		1756C	581.802	0.049
10		1756D	604.529	0.049
10		1756E	634.163	0.049
TO	- 7	1,505	034.103	0.043

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO.	ORD.	ESTAÇÃO	ALTITUDE (m)	DPAL
10	30	1756F	645.560	0.049
10		1756H	508.738	0.049
10		1756J	500.020	0.049
10		1756L	512.469	0.049
10		1756M	529.151	0.049
10		1756N	569.657	0.050
10		1756P	654.778	0.050
10	37	1756S	614.890	0.050
10	38	N 1785S	7.649	0.055
10	39	1779A	19.938	0.047
10	40	1779B	15.054	0.047
10		1779C	11.108	0.047
10		1779D	8.824	0.047
10		1779E	13.430	0.047
10		1779F	18.614	0.047
10		1779G	7.564	0.048
10		1779H	8.687	0.048
10	-	1779 J	5.881	0.048
10		1779L	1.872	0.048
10		1779M	2.079	0.048
10		1779P	20.003	0.048
10		1779R	20.750	0.049
10		1779S	15.546	0.049
10		1779 T	7.838	0.049
10		1779U 1779V	9.411 16.307	0.049 0.050
10 10		1779X 1779X	8.436	0.050
10		1779Z	11.669	0.050
10		17792 1780A	14.146	0.051
10		1780B	4.213	0.051
10		1780B	10.064	0.052
10		1780D	5.909	0.052
10		1780E	3.228	0.053
10		1780F	11.098	0.053
10		N 1780G	14.213	0.053
10		1780H	13.760	0.053
10		1780J	6.695	0.053
10		1780L	13.222	0.053
10		1780M	5.407	0.053
10	69	1780N	17.350	0.053
10	70	1780P	10.869	0.053
10	71	1780R	8.809	0.053
10	72	1780S	8.859	0.053
10	73	1780T	7.564	0.053
10	74	1780U	16.370	0.053
10		1780V	8.025	0.053
10		1780X	7.366	0.053
10		1780Z	8.136	0.053
10	78	1781A	10.775	0.053

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO.	ORD.	ESTAÇÃO	ALTITUDE (m)	DPAL
10	79	1781B	6.481	0.053
10	B0	1781C	8.717	0.053
10	B1	1781D	16.754	0.053
10	82	1781E	15.987	0.053
10	B 3	1781F	16.611	0.053
10	84	1781G	14.292	0.054
10	85	1781H	14.309	0.054
10	86	1781J	12.888	0.054
10	B7	1781L	13.065	0.054
10	88	1781M	13.802	0.054
10	89	1781N	13.562	0.055
109	90	1781P	14.944	0.055
109	91	1781R	50.185	0.055
109	92	N 1781S	26.367	0.056
109	93	1781T	26.533	0.055
10	94	1781U	23.302	0.055
10	95	1781V	21.967	0.055
10	96	1781X	21.530	0.055
10	97	1781Z	22.945	0.055
10		1782A	28.287	0.054
10		1782B	21.495	0.054
11		1782C	41.043	0.054
11		1782D	55.528	0.054
11		1782E	57.231	0.054
110		1782F	41.906	0.054
11		1782G	84.537	0.054
11		1782H	68.456	0.054
11		1782J	39.558	0.054
11		1782L	9.580	0.054
11		1782M 1782N	8.598 9.867	0.054 0.054
11				
11:		1782P 1782R	5.755 6.263	0.054
11		1782K 1782S	5.256	0.054 0.054
11:		1782T	5.619	0.054
11		1782U	5.048	0.055
11		1776Z	2.665	0.055
11		1776X	4.512	0.055
11		1776V	5.112	0.055
11		1776U	13.961	0.055
11		1776T	20.794	0.055
11		1768C	655.076	0.054
11:		1768D	633.038	0.054
11		1768F	636.240	0.054
11		1768G	624.014	0.054
11		1768H	577.734	0.054
11		1768R	559.969	0.056
11		1768P	579.065	0.056
11		1768N	571.710	0.055

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

1128 1768M 595.859 0.055 1129 1768L 605.798 0.055 1130 1772A 494.013 0.056 1131 1772B 582.191 0.056 1132 1772C 535.079 0.055 1133 1772D 572.015 0.055 1134 1772E 473.861 0.055 1135 1772F 431.176 0.055 1136 1772G 451.102 0.055 1137 1772H 303.643 0.055 1138 1772L 83.850 0.055 1139 1772M 70.320 0.055 1140 1772N 65.011 0.055 1141 1772P 92.120 0.055 1141 1772R 122.499 0.055 1143 1772Z 122.499 0.055 1144 1772T 56.858 0.055 1145 1772U 58.117 0.055 1146 1772V 58.197 0.055 1147 1773E 42.01	NO.	ORD.	ESTAÇÃO	ALTITUDE (m)	DPAL
1129 1768L 605.798 0.055 1130 1772A 494.013 0.056 1131 1772B 582.191 0.056 1132 1772C 535.079 0.055 1133 1772D 572.015 0.055 1134 1772F 431.176 0.055 1135 1772F 431.176 0.055 1136 1772G 451.102 0.055 1137 1772H 303.643 0.055 1138 1772L 83.850 0.055 1139 1772M 70.320 0.055 1140 1772M 70.320 0.055 1140 1772M 65.011 0.055 1141 1772P 92.120 0.055 1142 1772R 122.499 0.055 1143 1772S 75.499 0.055 1144 1772T 56.858 0.055 1144 1772T 56.858 0.055 1144 1772T 58.117 0.055 1145 1772V 58.197<	112	28	1768M	595.859	0.055
1130 1772A 494.013 0.056 1131 1772B 582.191 0.056 1132 1772C 535.079 0.055 1133 1772D 572.015 0.055 1134 1772F 473.861 0.055 1135 1772F 431.176 0.055 1136 1772G 451.102 0.055 1137 1772H 303.643 0.055 1138 1772L 83.850 0.055 1139 1772M 70.320 0.055 1140 1772N 65.011 0.055 1141 1772P 92.120 0.055 1142 1772R 122.499 0.055 1143 1772S 75.499 0.055 1144 1772T 56.858 0.055 1145 1772U 58.117 0.055 1146 1772V 58.197 0.055 1147 1772Z 103.232 0.055 1148 1783B 69.863 0.055 1149 1783C 66.303 0.055 1149 1783C 66.303 0.055 1150 1783D 83.257 0.055 1151 1783E 46.969 0.055 1152 1783F 42.016 0.056 1153 1783G 51.069 0.056 1155 1783J 64.560 0.056 1155 1783L 45.586 0.056 1157 1783M 34.212 0.056 1158 1783N 83.515 0.057 1159 1785R 3.711 0.055 1159 1785R 3.711 0.055 1160 1785P 3.339 0.055 1161 1785N 10.703 0.055 1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1164 1785J 66.699 0.055 1165 1785H 4.062 0.055 1166 1785C 90.687 0.055 1169 1785C 90.687 0.055 1170 1785C 90.687 0.055 1171 1785B 60.958 0.055 1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055			1768L	605.798	0.055
1132 1772C 535.079 0.055 1133 1772D 572.015 0.055 1134 1772E 473.861 0.055 1135 1772F 431.176 0.055 1136 1772G 451.102 0.055 1137 1772H 303.643 0.055 1138 1772L 83.850 0.055 1139 1772M 70.320 0.055 1140 1772N 65.011 0.055 1141 1772P 92.120 0.055 1142 1772R 122.499 0.055 1143 1772S 75.499 0.055 1144 1772T 56.858 0.055 1145 1772U 58.117 0.055 1146 1772V 58.197 0.055 1147 1772Z 103.232 0.055 1148 1783B 69.863 0.055 1149 1783C 66.303 0.055 1150 1783D 83.257 0.055 1151 1783E 46.969 0.055 1152 1783F 42.016 0.056 1153 1783G 51.069 0.056 1154 1783H 72.858 0.056 1155 1783J 64.560 0.056 1156 1783L 45.586 0.056 1157 1783M 34.212 0.056 1158 1783M 34.212 0.056 1159 1785R 3.711 0.055 1160 1785P 3.339 0.055 1161 1785N 10.703 0.055 1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1164 1785J 66.99 0.055 1165 1785H 4.062 0.055 1166 1785G 23.220 0.055 1167 1785F 50.728 0.055 1168 1785E 42.893 0.055 1169 1785D 71.995 0.055 1169 1785D 71.995 0.055 1170 1785C 90.687 0.055 1171 1785B 60.958 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1174 1784X 49.357 0.055			1772A	494.013	0.056
1132 1772C 535.079 0.055 1133 1772D 572.015 0.055 1134 1772E 473.861 0.055 1135 1772F 431.176 0.055 1136 1772M 451.102 0.055 1137 1772H 303.643 0.055 1138 1772L 83.850 0.055 1139 1772M 70.320 0.055 1140 1772N 65.011 0.055 1141 1772P 92.120 0.055 1141 1772R 122.499 0.055 1143 1772S 75.499 0.055 1143 1772T 56.858 0.055 1144 1772T 56.858 0.055 1145 1772U 58.197 0.055 1146 1772V 58.197 0.055 1147 1772Z 103.232 0.055 1148 1783B 69.863 0.055 1150 1783F 42.016 0.056 1151 1783F 42.016 <td>11:</td> <td>31</td> <td>1772B</td> <td>582.191</td> <td>0.056</td>	11:	31	1772B	582.191	0.056
1133 1772D 572.015 0.055 1134 1772E 473.861 0.055 1135 1772F 431.176 0.055 1136 1772G 451.102 0.055 1137 1772H 303.643 0.055 1138 1772L 83.850 0.055 1139 1772M 70.320 0.055 1140 1772N 65.011 0.055 1141 1772P 92.120 0.055 1142 1772R 122.499 0.055 1143 1772S 75.499 0.055 1144 1772T 56.858 0.055 1145 1772U 58.117 0.055 1146 1772V 58.197 0.055 1147 1772Z 103.232 0.055 1148 1783B 69.863 0.055 1149 1783C 66.303 0.055 1150 1783D 83.257 0.055 1151 1783E 46.969 0.055 1152 1783F 42.016 0.056 1153 1783G 51.069 0.056 1155 1783J 64.560 0.056 1156 1783L 45.586 0.056 1156 1783L 45.586 0.056 1157 1783M 34.212 0.056 1158 1783M 34.212 0.056 1159 1785R 3.711 0.055 1160 1785P 3.339 0.055 1161 1785R 3.711 0.055 1162 1785M 41.540 0.056 1155 1785M 41.540 0.055 1166 1785L 26.440 0.055 1167 1785F 3.339 0.055 1161 1785F 50.728 0.055 1166 1785G 23.220 0.055 1167 1785F 50.728 0.055 1169 1785D 71.995 0.055 1169 1785D 71.995 0.055 1169 1785D 71.995 0.055 1170 1785B 60.958 0.055 1171 1785B 60.958 0.055 1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1174 1784X 49.357 0.055 1175 1784V 566.130 0.055			1772C	535.079	0.055
1134 1772E 473.861 0.055 1135 1772F 431.176 0.055 1136 1772G 451.102 0.055 1137 1772H 303.643 0.055 1138 1772L 83.850 0.055 1139 1772M 70.320 0.055 1140 1772N 65.011 0.055 1141 1772P 92.120 0.055 1142 1772R 122.499 0.055 1143 1772S 75.499 0.055 1144 1772T 56.858 0.055 1145 1772U 58.117 0.055 1146 1772V 58.197 0.055 1147 1772Z 103.232 0.055 1148 1783B 69.863 0.055 1149 1783C 66.303 0.055 1149 1783C 66.303 0.055 1150 1783D 83.257 0.055 1151 1783E 46.969 0.055 1152 1783F 42.016 0.056 1153 1783G 51.069 0.056 1154 1783H 72.858 0.056 1155 1783J 64.560 0.056 1155 1783J 64.560 0.056 1157 1783M 34.212 0.056 1158 1783N 83.515 0.057 1159 1785R 3.711 0.055 1160 1785P 3.339 0.055 1161 1785N 10.703 0.055 1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1164 1785J 6.699 0.055 1165 1785H 4.062 0.055 1166 1785G 23.220 0.055 1167 1785F 50.728 0.055 1168 1785E 42.893 0.055 1169 1785D 71.995 0.055 1160 1785P 71.995 0.055 1161 1785B 60.958 0.055 1170 1785C 90.687 0.055 1171 1785B 60.958 0.055 1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1175 1784V 56.130 0.055				572.015	0.055
1135 1772F 431.176 0.055 1136 1772G 451.102 0.055 1137 1772H 303.643 0.055 1138 1772L 83.850 0.055 1139 1772M 70.320 0.055 1140 1772N 65.011 0.055 1141 1772P 92.120 0.055 1142 1772R 122.499 0.055 1143 1772S 75.499 0.055 1144 1772T 56.858 0.055 1145 1772U 58.117 0.055 1146 1772V 58.197 0.055 1147 1772Z 103.232 0.055 1148 1783B 69.863 0.055 1149 1783C 66.303 0.055 1150 1783D 83.257 0.055 1151 1783E 46.969 0.056 1153 1783F 42.016 0.056 1153 1783H 72.858 0.056 1154 1783H 72.858				473.861	0.055
1136 1772G 451.102 0.055 1137 1772H 303.643 0.055 1138 1772M 70.320 0.055 1140 1772N 65.011 0.055 1141 1772P 92.120 0.055 1142 1772R 122.499 0.055 1143 1772T 56.858 0.055 1144 1772T 56.858 0.055 1145 1772U 58.117 0.055 1146 1772V 58.197 0.055 1147 1772Z 103.232 0.055 1147 1772Z 103.232 0.055 1148 1783B 69.863 0.055 1149 1783C 66.303 0.055 1150 1783D 83.257 0.055 1151 1783E 46.969 0.056 1153 1783F 42.016 0.056 1153 1783G 51.069 0.056 1154 1783H 72.858 0.056 1155 1783M 34.212				431.176	0.055
1137 1772H 303.643 0.055 1138 1772L 83.850 0.055 1139 1772M 70.320 0.055 1140 1772N 65.011 0.055 1141 1772P 92.120 0.055 1142 1772R 122.499 0.055 1143 1772S 75.499 0.055 1144 1772T 56.858 0.055 1145 1772U 58.117 0.055 1146 1772V 58.197 0.055 1147 1772Z 103.232 0.055 1147 1772Z 103.232 0.055 1149 1783C 66.303 0.055 1150 1783B 69.863 0.055 1151 1783E 46.969 0.055 1152 1783F 42.016 0.056 1153 1783G 51.069 0.056 1154 1783H 72.858 0.056 1155 1783M 34.212 0.056 1158 1783M 34.212	11:	36	1772G		0.055
1139 1772M 70.320 0.055 1140 1772N 65.011 0.055 1141 1772P 92.120 0.055 1142 1772R 122.499 0.055 1143 1772S 75.499 0.055 1144 1772T 56.858 0.055 1145 1772U 58.117 0.055 1146 1772V 58.197 0.055 1147 1772Z 103.232 0.055 1148 1783B 69.863 0.055 1149 1783C 66.303 0.055 1150 1783D 83.257 0.055 1151 1783E 46.969 0.055 1152 1783F 42.016 0.056 1153 1783G 51.069 0.056 1154 1783H 72.858 0.056 1155 1783J 64.560 0.056 1157 1783M 34.212 0.056 1158 1783N 83.515 0.057 1159 1785R 3.711	11:	37	1772H		0.055
1140 1772N 65.011 0.055 1141 1772P 92.120 0.055 1142 1772R 122.499 0.055 1143 1772S 75.499 0.055 1144 1772T 56.858 0.055 1145 1772U 58.117 0.055 1146 1772V 58.197 0.055 1147 1772Z 103.232 0.055 1148 1783B 69.863 0.055 1149 1783C 66.303 0.055 1150 1783D 83.257 0.055 1151 1783E 46.969 0.055 1152 1783F 42.016 0.056 1153 1783G 51.069 0.056 1154 1783H 72.858 0.056 1155 1783J 64.560 0.056 1156 1783L 45.586 0.056 1157 1783M 34.212 0.056 1158 1783N 83.515 0.057 1159 1785R 3.711 0.055 1160 1785P 3.339 0.055 1161 1785N 10.703 0.055 1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1164 1785J 6.699 0.055 1165 1785H 4.062 0.055 1166 1785G 23.220 0.055 1167 1785F 50.728 0.055 1168 1785E 42.893 0.055 1169 1785D 71.995 0.055 1169 1785D 71.995 0.055 1170 1785C 90.687 0.055 1171 1785B 60.958 1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055	11:	38	1772L	83.850	0.055
1141 1772P 92.120 0.055 1142 1772R 122.499 0.055 1143 1772S 75.499 0.055 1144 1772T 56.858 0.055 1145 1772U 58.117 0.055 1146 1772V 58.197 0.055 1147 1772Z 103.232 0.055 1148 1783B 69.863 0.055 1149 1783C 66.303 0.055 1150 1783D 83.257 0.055 1151 1783E 46.969 0.055 1151 1783E 46.969 0.055 1153 1783G 51.069 0.056 1154 1783H 72.858 0.056 1155 1783J 64.560 0.056 1156 1783L 45.586 0.056 1157 1783M 34.212 0.056 1158 1783N 83.515 0.057 1159 1785R 3.711 0.055 1160 1785P 3.339	11:	39	1772M	70.320	0.055
1142 1772R 122.499 0.055 1143 1772S 75.499 0.055 1144 1772T 56.858 0.055 1145 1772U 58.117 0.055 1146 1772V 58.197 0.055 1147 1772Z 103.232 0.055 1148 1783B 69.863 0.055 1149 1783C 66.303 0.055 1150 1783D 83.257 0.055 1151 1783E 46.969 0.055 1152 1783F 42.016 0.056 1153 1783G 51.069 0.056 1154 1783H 72.858 0.056 1155 1783J 64.560 0.056 1154 1783H 72.858 0.056 1155 1783M 34.212 0.056 1156 1783M 34.212 0.056 1157 1785M 3711 0.055 1160 1785P 3.339 0.055 1161 1785M 41.540	11	40	1772N	65.011	0.055
1143 1772S 75.499 0.055 1144 1772T 56.858 0.055 1145 1772U 58.117 0.055 1146 1772V 58.197 0.055 1147 1772Z 103.232 0.055 1148 1783B 69.863 0.055 1149 1783C 66.303 0.055 1150 1783D 83.257 0.055 1151 1783E 46.969 0.055 1152 1783F 42.016 0.056 1153 1783G 51.069 0.056 1154 1783H 72.858 0.056 1155 1783J 64.560 0.056 1154 1783H 72.858 0.056 1155 1783M 34.212 0.056 1156 1783H 34.212 0.056 1157 1783M 34.212 0.056 1158 1785N 3.711 0.055 1160 1785P 3.339 0.055 1161 1785N 10.703	11	41	1772P	92.120	0.055
1144 1772T 56.858 0.055 1145 1772U 58.117 0.055 1146 1772V 58.197 0.055 1147 1772Z 103.232 0.055 1148 1783B 69.863 0.055 1149 1783C 66.303 0.055 1150 1783D 83.257 0.055 1151 1783E 46.969 0.055 1152 1783F 42.016 0.056 1153 1783G 51.069 0.056 1154 1783H 72.858 0.056 1155 1783J 64.560 0.056 1155 1783J 64.560 0.056 1155 1783M 34.212 0.056 1157 1783M 34.212 0.056 1158 1783N 83.515 0.057 1159 1785R 3.711 0.055 1160 1785P 3.339 0.055 1161 1785M 41.540 0.055 1163 1785H 40.62 <	11	42	1772R	122.499	
1145 1772U 58.117 0.055 1146 1772V 58.197 0.055 1147 1772Z 103.232 0.055 1148 1783B 69.863 0.055 1149 1783C 66.303 0.055 1150 1783D 83.257 0.055 1151 1783E 46.969 0.055 1152 1783F 42.016 0.056 1153 1783G 51.069 0.056 1154 1783H 72.858 0.056 1155 1783J 64.560 0.056 1156 1783L 45.586 0.056 1157 1783M 34.212 0.056 1158 1783N 83.515 0.057 1159 1785R 3.711 0.055 1160 1785P 3.339 0.055 1161 1785N 10.703 0.055 1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1164 1785F 50.728	11	43	1772S	75.499	
1146 1772V 58.197 0.055 1147 1772Z 103.232 0.055 1148 1783B 69.863 0.055 1149 1783C 66.303 0.055 1150 1783D 83.257 0.055 1151 1783E 46.969 0.055 1152 1783F 42.016 0.056 1153 1783G 51.069 0.056 1154 1783H 72.858 0.056 1155 1783J 64.560 0.056 1156 1783L 45.586 0.056 1157 1783M 34.212 0.056 1158 1783N 83.515 0.057 1159 1785R 3.711 0.055 1160 1785P 3.339 0.055 1161 1785M 41.540 0.055 1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1164 1785G 23.220 0.055 1165 1785H 4.062 <	11	44	1772T	56.858	0.055
1147 1772Z 103.232 0.055 1148 1783B 69.863 0.055 1149 1783C 66.303 0.055 1150 1783D 83.257 0.055 1151 1783E 46.969 0.055 1152 1783F 42.016 0.056 1153 1783G 51.069 0.056 1154 1783H 72.858 0.056 1155 1783J 64.560 0.056 1156 1783L 45.586 0.056 1157 1783M 34.212 0.056 1158 1783N 83.515 0.057 1159 1785R 3.711 0.055 1160 1785P 3.339 0.055 1161 1785N 10.703 0.055 1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1164 1785J 6.699 0.055 1165 1785H 4.062 0.055 1166 1785G 23.220 <t< td=""><td>11</td><td>45</td><td>1772U</td><td></td><td>0.055</td></t<>	11	45	1772U		0.055
1148 1783B 69.863 0.055 1149 1783C 66.303 0.055 1150 1783D 83.257 0.055 1151 1783E 46.969 0.055 1152 1783F 42.016 0.056 1153 1783G 51.069 0.056 1154 1783H 72.858 0.056 1155 1783J 64.560 0.056 1156 1783L 45.586 0.056 1157 1783M 34.212 0.056 1158 1783N 83.515 0.057 1159 1785R 3.711 0.055 1160 1785P 3.339 0.055 1161 1785N 10.703 0.055 1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1164 1785J 6.699 0.055 1165 1785H 4.062 0.055 1166 1785G 23.220 0.055 1169 1785D 71.995 <td< td=""><td>11</td><td>46</td><td>1772V</td><td>58.197</td><td>0.055</td></td<>	11	46	1772V	58.197	0.055
1149 1783C 66.303 0.055 1150 1783D 83.257 0.055 1151 1783E 46.969 0.055 1152 1783F 42.016 0.056 1153 1783G 51.069 0.056 1154 1783H 72.858 0.056 1155 1783J 64.560 0.056 1156 1783L 45.586 0.056 1157 1783M 34.212 0.056 1158 1783N 83.515 0.057 1159 1785R 3.711 0.055 1160 1785P 3.339 0.055 1161 1785N 10.703 0.055 1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1164 1785J 6.699 0.055 1165 1785H 4.062 0.055 1166 1785G 23.220 0.055 1169 1785D 71.995 0.055 1170 1785C 90.687 <td< td=""><td>11</td><td>47</td><td>1772Z</td><td></td><td>0.055</td></td<>	11	47	1772Z		0.055
1150 1783D 83.257 0.055 1151 1783E 46.969 0.055 1152 1783F 42.016 0.056 1153 1783G 51.069 0.056 1154 1783H 72.858 0.056 1155 1783J 64.560 0.056 1156 1783L 45.586 0.056 1157 1783M 34.212 0.056 1158 1783N 83.515 0.057 1159 1785R 3.711 0.055 1160 1785P 3.339 0.055 1161 1785N 10.703 0.055 1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1164 1785J 6.699 0.055 1165 1785H 4.062 0.055 1166 1785G 23.220 0.055 1167 1785F 50.728 0.055 1169 1785D 71.995 0.055 1170 1785C 90.687 <td< td=""><td>11</td><td>48</td><td>1783B</td><td></td><td></td></td<>	11	48	1783B		
1151 1783E 46.969 0.055 1152 1783F 42.016 0.056 1153 1783G 51.069 0.056 1154 1783H 72.858 0.056 1155 1783J 64.560 0.056 1156 1783L 45.586 0.056 1157 1783M 34.212 0.056 1158 1783N 83.515 0.057 1159 1785R 3.711 0.055 1160 1785P 3.339 0.055 1161 1785N 10.703 0.055 1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1164 1785J 6.699 0.055 1165 1785H 4.062 0.055 1166 1785G 23.220 0.055 1168 1785E 42.893 0.055 1169 1785D 71.995 0.055 1171 1785B 60.958 0.055 1172 1785A 91.456 <td< td=""><td>11</td><td>49</td><td>1783C</td><td>66.303</td><td>0.055</td></td<>	11	49	1783C	66.303	0.055
1152 1783F 42.016 0.056 1153 1783G 51.069 0.056 1154 1783H 72.858 0.056 1155 1783J 64.560 0.056 1156 1783L 45.586 0.056 1157 1783M 34.212 0.056 1158 1783N 83.515 0.057 1159 1785R 3.711 0.055 1160 1785P 3.339 0.055 1161 1785N 10.703 0.055 1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1163 1785L 26.440 0.055 1164 1785J 6.699 0.055 1165 1785H 4.062 0.055 1166 1785G 23.220 0.055 1168 1785E 42.893 0.055 1169 1785D 71.995 0.055 1170 1785B 60.958 0.055 1171 1785A 91.456 <td< td=""><td>11</td><td>50</td><td>1783D</td><td>83.257</td><td>0.055</td></td<>	11	50	1783D	83.257	0.055
1153 1783G 51.069 0.056 1154 1783H 72.858 0.056 1155 1783J 64.560 0.056 1156 1783L 45.586 0.056 1157 1783M 34.212 0.056 1158 1783N 83.515 0.057 1159 1785R 3.711 0.055 1160 1785P 3.339 0.055 1161 1785N 10.703 0.055 1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1163 1785L 26.440 0.055 1164 1785J 6.699 0.055 1165 1785H 4.062 0.055 1166 1785G 23.220 0.055 1168 1785E 42.893 0.055 1169 1785D 71.995 0.055 1170 1785B 60.958 0.055 1171 1785A 91.456 0.055 1173 1784Z 95.618 <td< td=""><td>11</td><td>51</td><td>1783E</td><td>46.969</td><td>0.055</td></td<>	11	51	1783E	46.969	0.055
1154 1783H 72.858 0.056 1155 1783J 64.560 0.056 1156 1783L 45.586 0.056 1157 1783M 34.212 0.056 1158 1783N 83.515 0.057 1159 1785R 3.711 0.055 1160 1785P 3.339 0.055 1161 1785N 10.703 0.055 1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1164 1785J 6.699 0.055 1165 1785H 4.062 0.055 1166 1785G 23.220 0.055 1167 1785F 50.728 0.055 1168 1785D 71.995 0.055 1170 1785C 90.687 0.055 1171 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1175 1784V 56.130 <td< td=""><td>11</td><td>52</td><td>1783F</td><td>42.016</td><td>0.056</td></td<>	11	52	1783F	42.016	0.056
1155 1783J 64.560 0.056 1156 1783L 45.586 0.056 1157 1783M 34.212 0.056 1158 1783N 83.515 0.057 1159 1785R 3.711 0.055 1160 1785P 3.339 0.055 1161 1785N 10.703 0.055 1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1164 1785J 6.699 0.055 1165 1785H 4.062 0.055 1166 1785G 23.220 0.055 1168 1785E 42.893 0.055 1169 1785D 71.995 0.055 1170 1785C 90.687 0.055 1171 1785B 60.958 0.055 1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1175 1784V 56.130 <td< td=""><td>11</td><td>53</td><td>1783G</td><td>51.069</td><td>0.056</td></td<>	11	53	1783G	51.069	0.056
1156 1783L 45.586 0.056 1157 1783M 34.212 0.056 1158 1783N 83.515 0.057 1159 1785R 3.711 0.055 1160 1785P 3.339 0.055 1161 1785N 10.703 0.055 1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1164 1785J 6.699 0.055 1165 1785H 4.062 0.055 1166 1785G 23.220 0.055 1167 1785F 50.728 0.055 1168 1785E 42.893 0.055 1169 1785D 71.995 0.055 1170 1785C 90.687 0.055 1171 1785B 60.958 0.055 1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1175 1784V 56.130 <td< td=""><td>11</td><td>54</td><td>1783H</td><td>72.858</td><td></td></td<>	11	54	1783H	72.858	
1157 1783M 34.212 0.056 1158 1783N 83.515 0.057 1159 1785R 3.711 0.055 1160 1785P 3.339 0.055 1161 1785N 10.703 0.055 1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1164 1785J 6.699 0.055 1165 1785H 4.062 0.055 1166 1785G 23.220 0.055 1167 1785F 50.728 0.055 1168 1785E 42.893 0.055 1169 1785D 71.995 0.055 1170 1785C 90.687 0.055 1171 1785B 60.958 0.055 1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1175 1784V 56.130 0.055	11	55	1783J		0.056
1158 1783N 83.515 0.057 1159 1785R 3.711 0.055 1160 1785P 3.339 0.055 1161 1785N 10.703 0.055 1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1164 1785J 6.699 0.055 1165 1785H 4.062 0.055 1166 1785G 23.220 0.055 1167 1785F 50.728 0.055 1168 1785E 42.893 0.055 1169 1785D 71.995 0.055 1170 1785C 90.687 0.055 1171 1785B 60.958 0.055 1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1175 1784V 56.130 0.055	11:	56	1783L	45.586	0.056
1159 1785R 3.711 0.055 1160 1785P 3.339 0.055 1161 1785N 10.703 0.055 1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1164 1785J 6.699 0.055 1165 1785H 4.062 0.055 1166 1785G 23.220 0.055 1167 1785F 50.728 0.055 1168 1785E 42.893 0.055 1169 1785D 71.995 0.055 1170 1785C 90.687 0.055 1171 1785B 60.958 0.055 1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1175 1784V 56.130 0.055	11	57	1783M	34.212	
1160 1785P 3.339 0.055 1161 1785N 10.703 0.055 1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1164 1785J 6.699 0.055 1165 1785H 4.062 0.055 1166 1785G 23.220 0.055 1167 1785F 50.728 0.055 1168 1785E 42.893 0.055 1169 1785D 71.995 0.055 1170 1785C 90.687 0.055 1171 1785B 60.958 0.055 1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1175 1784V 56.130 0.055	11	58	1783N	83.515	
1161 1785N 10.703 0.055 1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1164 1785J 6.699 0.055 1165 1785H 4.062 0.055 1166 1785G 23.220 0.055 1167 1785F 50.728 0.055 1168 1785E 42.893 0.055 1169 1785D 71.995 0.055 1170 1785C 90.687 0.055 1171 1785B 60.958 0.055 1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1175 1784V 56.130 0.055	11	59	1785R	3.711	0.055
1162 1785M 41.540 0.055 1163 1785L 26.440 0.055 1164 1785J 6.699 0.055 1165 1785H 4.062 0.055 1166 1785G 23.220 0.055 1167 1785F 50.728 0.055 1168 1785E 42.893 0.055 1169 1785D 71.995 0.055 1170 1785C 90.687 0.055 1171 1785B 60.958 0.055 1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1175 1784V 56.130 0.055	11	60	1785P	3.339	0.055
1163 1785L 26.440 0.055 1164 1785J 6.699 0.055 1165 1785H 4.062 0.055 1166 1785G 23.220 0.055 1167 1785F 50.728 0.055 1168 1785E 42.893 0.055 1169 1785D 71.995 0.055 1170 1785C 90.687 0.055 1171 1785B 60.958 0.055 1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1175 1784V 56.130 0.055	11	61	1785N		0.055
1164 1785J 6.699 0.055 1165 1785H 4.062 0.055 1166 1785G 23.220 0.055 1167 1785F 50.728 0.055 1168 1785E 42.893 0.055 1169 1785D 71.995 0.055 1170 1785C 90.687 0.055 1171 1785B 60.958 0.055 1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1175 1784V 56.130 0.055					
1165 1785H 4.062 0.055 1166 1785G 23.220 0.055 1167 1785F 50.728 0.055 1168 1785E 42.893 0.055 1169 1785D 71.995 0.055 1170 1785C 90.687 0.055 1171 1785B 60.958 0.055 1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1175 1784V 56.130 0.055	11	63	1785L		
1166 1785G 23.220 0.055 1167 1785F 50.728 0.055 1168 1785E 42.893 0.055 1169 1785D 71.995 0.055 1170 1785C 90.687 0.055 1171 1785B 60.958 0.055 1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1175 1784V 56.130 0.055	11	64	1785J		
1167 1785F 50.728 0.055 1168 1785E 42.893 0.055 1169 1785D 71.995 0.055 1170 1785C 90.687 0.055 1171 1785B 60.958 0.055 1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1175 1784V 56.130 0.055	11	65	1785H	4.062	
1168 1785E 42.893 0.055 1169 1785D 71.995 0.055 1170 1785C 90.687 0.055 1171 1785B 60.958 0.055 1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1175 1784V 56.130 0.055	11	66	1785G		
1169 1785D 71.995 0.055 1170 1785C 90.687 0.055 1171 1785B 60.958 0.055 1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1175 1784V 56.130 0.055	11	67	1785F		
1170 1785C 90.687 0.055 1171 1785B 60.958 0.055 1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1175 1784V 56.130 0.055	11	68			
1171 1785B 60.958 0.055 1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1175 1784V 56.130 0.055					
1172 1785A 91.456 0.055 1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1175 1784V 56.130 0.055					
1173 1784Z 95.618 0.055 1174 1784X 49.357 0.055 1175 1784V 56.130 0.055					
1174 1784X 49.357 0.055 1175 1784V 56.130 0.055					
1175 1784V 56.130 0.055					
1176 1784U 82.798 0.055					
	11	76	1784U	82.798	0.055

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO.	ORD.	ESTAÇÃO	ALTITUDE (m)	DPAL
11	77	1784T	77.523	0.055
11		1784S	26.896	0.055
11		1784R	62.916	0.055
11		1784P	84.833	0.055
11:		1784N	68.690	0.055
11		1784M	82.656	0.055
11	83	1784L	72.125	0.055
11	84	1784J	134.366	0.056
11	85	1784H	102.763	0.056
11	86	1784G	68.271	0.056
11	87	1784F	70.021	0.056
11	88	1784E	55.945	0.056
11	89	1784D	26.277	0.056
11		1784B	53.222	0.056
11		1784A	33.286	0.056
11		N 1908F	53.534	0.057
11		1908H	31.847	0.057
11		1908E	76.278	0.057
11		1908D	72.817	0.056
11		1908C	40.445	0.056
11		1908B	119.213	0.056
11		1908A	50.890	0.056
11		1907Z	78.105	0.056
12		1907X	53.746	0.056
12		1907V	99.191	0.056
12		1907U	93.616	0.056
12		1907T	75.130	0.056
12		1907S	73.621	0.056
12		1907R	98.631	0.056
12		1907P	129.995	0.056
12		1907M	394.717	0.056
12		1907L	499.099	0.056
12		1907J	545.316	0.056
12		1907H	552.503	0.056
12 12		1907B	639.166 643.822	0.056
		1907G		0.056
12		1907F	649.698 647.313	0.056 0.056
12	14 15	1907E	626.378	0.056
		1907D 1907C	693.350	0.056
12 12		1907A	589.103	0.057
12		1907A 1906Z	689.694	0.057
12		1906Z 1906V	773.831	0.057
12		1906U	763.490	0.057
12		1906T	709.543	0.057
12		1906S	743.447	0.057
12		1906R	690.524	0.058
12		1906P	657.977	0.058
12		1906N	675.530	0.058

* ALTITUDES AJUSTADAS *
* MÉTODO DOS MÍNIMOS QUADRADOS *

NO.	ORD.	E	ESTAÇÃO	ALTIT	UDE (m)	DPAL
12	26		1906M	663	.467		0.058
12:	27		1906L	712	.426		0.058
12:	28		1906F	724	.788		0.058
12:	29	N	1906H	720	.123		0.059
12:	30		1906E	692	.267		0.058
12:	31		1906C	567	.457		0.058
12:	32		1906B	493	.682		0.057
12:	33		1905Z	583	.795		0.057
12:	34		1905X	458	.872		0.057
12:	35		1905V	477	.451		0.057
123	36		1905U	423	.626		0.056
12:	37		1905T	518	.159		0.056
12:	38		1905S	452	.478		0.056
12:	39		1905R	415	.545		0.056
12	40		1905P	472	.808		0.056
12	41		1905N	500	.836		0.056
124	42		1905M	442	.967		0.056
12	43		1905J	554	.256		0.056
124	44		1905H	503	.716		0.056
12	45		1905G	521	.211		0.056
12	46		1905F	541	.710		0.057
12	47	N	1905E	563	.828		0.057
12	48		1784C	43	.901		0.056

VARIAÇÃO DA GRAVIDADE NA CROSTA= -0.0848000 mGal/m

REFERÊNCIAS BIBLIOGRÁFICAS

and the same of th

- 01. BALAZS, E.I. & YOUNG, G.M. <u>Corrections applied by the National Geodetic Survey to precise leveling observations</u>. Rockville, NOAA, 1982. p.6-8. (NOAA Technical Memorandum NOS NGS 34).
- 02. BOMFORD, G. <u>Geodesy</u>. 3^a ed. Oxford University Press, 1977. 228p.
- 03. DE ALENCAR, J.C.M. Datum altimétrico brasileiro. IBGE, Rio de Janeiro, <u>Cadernos</u> <u>de Geociências</u>, 5:69-73, 1990.
- 04. D'ALGE, J.C.L. <u>Estabelecimento de um sistema de altitudes a partir do nivelamento geométrico</u>. Curitiba, UFPr, Curso de Pós-Graduação em Ciências Geodésicas, 1986. 112p.
- 05. DE ANDRADE, J.B. <u>Photogrametric refraction</u>. The Ohio State University, 1977. 117p.
- 06. DEHLINGER, P. <u>Marine gravity</u>. Amsterdam, Elsevier, 1978, 322p.
- 07. DRAGOMIR, V. et alii, <u>Theory of the earth's shape</u>. Amsterdam, Elsevier, 1972. 694p.
- 08. EBONG, M.B. On the use of multiple comparisons tests for the analysis of levelling discrepancies. <u>Bulletin Géodésique</u>, 59:1-10, 1985.
- 09. EBONG, M.B. On the choice of random variable wich eliminates the bias cause by variable spacing in geodetic levelling.

 <u>Bulletin Géodésique</u>, 60:279-287, 1986.
- 10. ESCOBAR, I.P. <u>Contribuição do Observatório Nacional no estabelecimento da Rede Gravimétrica Fundamental Brasileira</u>. Anais do 10º Congresso Brasileiro de Cartografia, Sociedade Brasileira de Cartografia, Brasília, 2 (1):435-448, 1981.
- 11. ESCOBAR, I.P. <u>Injunções relativas em ajustamento gravimétrico</u>. UFPr, 1985. 122p.
- 12. ESTADOS UNIDOS. Defense Mapping Agency Topographic Center.

 <u>General land gravity survey instructions</u>. s.l., 1974. 50p.
- FALLER, J.E. Results of an absolute determination of the acceleration of gravity. <u>Journal of Geophysical Research</u>, 70:4035-4038, 1965.
- 14. FISHER, I. Does mean sea level slope up or down towards north? <u>Bulletin Géodésique</u>, 115:17-26, 1975.

- 15. FORRESTER, W.D. <u>Principles of oceanographic levelling</u>. INTERNATIONAL SYMPOSIUM ON PROGRAMS RELATED TO THE REDEFINITION OF NORTH AMERICAN VERTICAL GEODETIC NETWORKS, Ottawa, (2): 125-132, 1980.
- 16. GEMAEL, C. Geodésia física. Curitiba, UFPr, 1983. Apostila.

and the second second

And the second s

- 17. GROTEN, E. <u>Geodesy and the earth's gravity field</u>. Bonn, Dummlers Verlag, 1980. 724p.
- 18. HEISKANEN, W.A. & MORITZ, H. <u>Physical geodesy</u>. San Francisco, W.H. Freeman, 1967. 364p.
- 19. INTERNATIONAL ASSOCIATION OF GEODESY, <u>The International Gravity Standardization Net 1971 (IGSN71)</u>, publicação especial n^o 4, Paris, 1974, 194p.
- 20. KARL, J.H. The normal vertical gradient of gravity.

 <u>Geophysics</u>, 48 (7):1011-1013, 1983.
- 21. LARDEN, D.R. <u>Some geopysical effects on geodetic levelling networks</u>. INTERNATIONAL SYMPOSIUM ON PROBLEMS RELATED TO THE REDEFINITION OF NORTH AMERICAN VERTICAL GEODETIC NETWORKS, Ottawa, (2):151-167,1980.
- 22. LONGMAN, I.M. Formulas for computing the tidal accelerations due to the moon and the sun. <u>Journal of Geophysical Research</u>, 64 (12): 2351-2355, 1959.
- 23. MARSH, J.G. & MARTIN, V.T. The SEASAT altimeter mean sea surface model. <u>Journal of Geophysical Research</u>, 87(C5): 3269-3280, 1982.
- 24. MERRY, C.L. & VANICEK, P. Investigation of local variations of sea surface topography. <u>Marine Geodesy</u>, New York, 7:101-126,1983
- 25. RAPP. R.H. <u>Precise definition of de geoid and its realization for vertical datum applications</u>. INTERNATIONAL SYMPOSIUM ON PROBLEMS RELATED TO THE REDEFINITION OF THE NORTH AMERICAN VERTICAL GEODETIC NETWORKS, Ottawa, (2):553-566,1980.
- 26. RUMMEL. R. & TEUNISSEN, P. Height datum definition, height datum connection and role of the geodetic boundary value problem. <u>Bulletin Géodésique</u>, 62:477-498, 1988.
- 27. SAZHINA, N. & GRUSHINSKY, N. Gravity prospecting. Moscou, Mir Publishers, 1971. 491p.
- 28. STRANGE, W.E. An evaluation of orthometric height accuracy using bore hole gravimetry. <u>Bulletin Géodésique</u>, 56:300-311, 1982.

29. TORGE, W. Geodesy. Berlim, Walter de Gruyter, 1980. p.111-112.

- 30. VANICEK, P. et alii. Geodetic leveling and its applications.

 Reviews of Geophysics and Space Physics, 18(2):505-524,

 1980.
- 31. VANICEK, P. & GRAFAREND, E.W. On the weight estimation in leveling. Rockville, NOAA Technical Report NOS 86 NGS 17, 1980. 34p.
- 32. VANICEK, P. & KRAKIWSKY, E.J. <u>Geodesy: the concepts</u>. Amsterdam, North-Holland, 1986. 697p.
- 33. WHALEN, C.T. Results of levelling refraction tests by the National Geodetic Survey. Rockville, NOAA Technical Report NOS 92 NGS 22, 1981. 20p.
- 34. WOODWARD, D.J. The gravitational attraction of triangular prisms. Geophysical Prospecting, 23:526-532,1975.