Un exemple de régression linéaire

Exercice 1 (Calculs pour une régression linéaire)

Soient $p \in]0;1[$, et $X,Y \hookrightarrow \mathcal{G}(p)$ indépendantes.

On s'interesse au couples de variables aléatoires : $S = \max(X, Y)$

$$I = \min(X, Y)$$

- **1.** Justifier les relations *a priori*: I + S = X + Y.
 - $I \cdot S = X \cdot Y$.
 - $I^2 + S^2 = X^2 + Y^2.$
- **2.** Rappels sur la loi géométrique On a choisi $X \hookrightarrow \mathcal{G}(p)$.
 - a) Rappeler $X(\Omega)$, et pour $n \in X(\Omega)$, la probabilité $\mathbb{P}(X = n)$.

(
$$^{1-n}p \cdot q = (n = X)^{\mathbb{q}}$$
 , $1 \le n \text{ root is } ^*\mathbb{N} = (\Omega)X$: senoth

b) Rappeler l'expression de $\mathbb{E}[X]$ et de Var(X).

Par la formule de Kœnig-Huygens, en déduire : $\mathbb{E}[X^2] = \frac{1+q}{r^2}$.

(*Réponse*:
$$\mathbb{E}[X] = \frac{1}{p}$$
, $\text{Var}(X) = \frac{q}{p^2} = \mathbb{E}[X^2] - \mathbb{E}^2[X]$.)

c) Rappeler, pour $n \in \mathbb{N}$, la probabilité : $\mathbb{P}(X > n)$. (for

(fonction d'**antirépartition** de X.)

Réponse:
$$(x < X) = \prod_{n=0}^{\infty} p \cdot q = \prod_{n=0}^{\infty} p \cdot q = \prod_{n=0}^{\infty} (n < X)$$

- 3. Lois marginales de I,S
 - a) Montrer l'égalité d'événements : $[S \le k] = [X \le k] \cap [Y \le k],$

$$\blacktriangleright \quad [I>k] = [X>k] \cap [Y>k].$$

b) En déduire : $\mathbb{P}(S \le n) = 1 - 2q^n + (q^2)^n$,

$$\mathbb{P}(I > n) = (q^2)^n.$$

c) Déduire enfin : $P(S = n) = 2 \cdot p \cdot q^{n-1} - (1 - q^2) \cdot (q^2)^{n-1}, \text{ pour } n \ge 1,$

$$I \hookrightarrow \mathcal{G}(1-q^2).$$

- 4. Calcul de la covariance
 - **a)** Justifier que l'on a : $\mathbb{E}[I] = \frac{1}{1-a^2}$.
 - **b)** Montrer: $\mathbb{E}[S] = \mathbb{E}[X] + \mathbb{E}[Y] \mathbb{E}[I]$. (On utilisera l'une des relations de 1..)

En déduire : $\mathbb{E}[S] = \frac{2p-1}{p^2}$.

- **c)** Montrer: $\mathbb{E}[I \cdot S] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$. (On utilisera 1., et l'indépendance de X, Y.) En déduire : $\mathbb{E}[I \cdot S] = \frac{1}{n^2}$.
- **d)** Obtenir enfin: $Cov(I,S) = \frac{1}{p^2} \frac{2p-1}{p^3 \cdot (2-p)} = \frac{1}{p^3 \cdot (2-p)} \left[p \cdot (2-p) (2p-1) \right] = \frac{1-p^2}{p^3 \cdot (2-p)}.$

Exercice 2 (Calculs pour la régression linéaire)

Soient *X* et *Y* deux variables aléatoires admettant un moment d'ordre 2.

Toutes les espérances, variances, covariances apparaissant convergent donc bien.

On fait la régression linéaire de *Y* par *X*, en approximant *Y* par $\widehat{Y} = a \cdot X + b$.

On cherche pour quelles valeurs de $a,b \in \mathbb{R}$, l'erreur quadratique $r_{a,b} = \mathbb{E}[(Y - aX - b)^2]$.

- 1. Détermination des coefficients a,b optimaux
 - a) Par la formule de Kœnig-Huygens, montrer : $r_{a,b} = \text{Var}(Y aX) + (\mathbb{E}[Y] a \cdot \mathbb{E}[X] b)^2$.
 - **b)** Montrer que: $\operatorname{Var}(Y aX) = \left[a \cdot \sigma_X \frac{\operatorname{Cov}(X, Y)}{\sigma_X} \right]^2 + \operatorname{Var}(Y) \frac{1}{\operatorname{Var}(X)} \cdot \left[\operatorname{Cov}(X, Y) \right]^2$

(On écrira: $Var(Y - aX) = Var(Y) - 2a \cdot Cov(X,Y) + a^2 \cdot \sigma_X^2$)

- c) En déduire que $r_{a,b}$ est minimisée pour : $a = \frac{\text{Cov}(X,Y)}{\text{Var}(X)}$,
 - $b = \mathbb{E}[Y] a \cdot \mathbb{E}[X].$
- **2.** On choisit ces valeurs de a,b. Le résidu est noté : $\epsilon = Y a \cdot X b$.
 - **a)** Montrer que $\mathbb{E}[\epsilon] = 0$. En déduire : $\mathbb{E}[a \cdot X + b]$.
 - **b)** Montrer que : $Var(\epsilon) = Var(Y) \frac{1}{Var(X)} \cdot [Cov(X,Y)]^2$.
 - **c)** Montrer que : $Cov(X,\epsilon) = 0$.

En déduire que : $Var(a \cdot X + b) + Var(\epsilon) = Var(Y)$

- **d)** Montrer: $\operatorname{Var}(a \cdot X + b) = \rho^2(X, Y) \cdot \operatorname{Var}(Y)$,
 - $Var(\epsilon) = [1 \rho^2(X, Y)] \cdot Var(Y).$

Détermination pratique en Scilab

La commande reglin permet de faire la régression linéaire d'un échantillon X par Y.

Syntaxe

```
1 // x,y sont deux échantillons de même longueur
2 [a,b] = reglin(x,y) // la régression linéaire s'écrit alors : yr = a*x + b
```

Écart-type du résidu

La syntaxe [a,b,sig] = reglin(x,y) retourne de plus sig l'écart-type du résidu.

- Part expliquée, part inexpliquée de la variance
 - On obtient la part expliquée $Var(a \cdot X + b) = \rho^2(X, Y) \cdot Var(Y)$ comme suit :

```
partExpliquee = variance(a*x+b)
```

• On obtient la part inexpliquée $Var(\epsilon) = [1 - \rho^2(X, Y)] \cdot Var(Y)$ comme suit :

```
partInexpliquee = sig^2
coefDetermination = 1 - sig^2 / variance(Y)
// coefDetermination proche de 1 <=> régression linéaire de qualité
// coefDetermination proche de 0 <=> piètre régression linéaire
```