DR. FRANCESCO GALLINARO TUTORAT: MAX HERWIG

Modelltheorie

Blatt 8 Abgabe: 19.12.2023, 12 Uhr

Aufgabe 1 (8 Punkte).

In der Sprache $\mathcal{L} = \{E\}$, welche aus einem 2-stelligem Relationzeichen E besteht, sei \mathcal{K} die Klasse der endlich erzeugten \mathcal{L} -Strukturen \mathcal{A} derart, dass $E^{\mathcal{A}}$ eine Äquivalenzrelation so ist, dass jede $E^{\mathcal{A}}$ -Klasse höchstens 2 Elementen besitzt.

- a) Zeige, dass \mathcal{K} eine Fraïssé Klasse bildet.
- b) Gib eine Axiomatisierung der Theorie T des Fraïssé Limes \mathcal{M} an.
- c) Ist T total transzendent?
- d) Wie viele nicht-isolierte Typen gibt es in $S_1^{\mathcal{M}}(M)$?

Aufgabe 2 (4 Punkte).

Zeige, dass jede schmale vollständige abzählbare Theorie ein Primmodell besitzt.

Hinweis: Wann genau besitzt eine vollständige abzählbare Theorie ein Primmodell?

Aufgabe 3 (3 Punkte).

Eine endliche Färbung der natürlichen Zahlen ist eine Zerlegung $\mathbb{N} = \bigcup_{i=1}^{n} C_i$ in disjunkte Teilmengen (oder Farben) C_i . Zeige, dass es für jede endliche Färbung der natürlichen Zahlen ein monochromatisches Tripel der Form $\{x, y, x + y\}$ gibt.

Hinweis: Wir färben alle 2-elementige Teilmengen von \mathbb{N} mit n Farben so, dass $\{a,b\}$ die Farbe i besitzt, falls |a-b| in C_i liegt.

Aufgabe 4 (5 Punkte).

Sei \mathcal{M} eine \mathcal{L} -Struktur, sowie B eine Teilmenge von M und $(a_n)_{n\in\mathbb{N}}$ eine über B unuterscheidbare Folge in M.

a) Wir nehmen zuerst an, dass es eine \mathcal{L} -Formel $\phi[x_1, \ldots, x_n, \bar{y}]$ und ein Tupel \bar{b} aus B derart gibt, dass $\mathcal{M} \models \phi[a_1, \ldots, a_n, \bar{b}]$ und die definierbare Menge $\phi[a_1, \ldots, a_{n-1}, M, \bar{b}]$ endlich ist. Zeige, dass die Folge konstant ist.

Im Folgenden sei $B = \emptyset$, also die Folge $(a_n)_{n \in \mathbb{N}}$ ununterscheidbar über \emptyset . Sei nun $\bar{c} = (c_1, \dots, c_m)$ ein Tupel aus M.

- b) Falls $\mathcal{M} \models \text{DLO}$, zeige, dass es ein N_0 aus \mathbb{N} so gibt, dass die Teilfolge $(a_n)_{n \geq N_0}$ ununterscheidbar über c_1, \ldots, c_m ist.
- c) Wir nehmen nun an, dass \mathcal{M} ein Zufallsgraph ist. Gib eine Wahl einer über \emptyset ununterscheidbaren Folge $(a_n)_{n\in\mathbb{N}}$ sowie eines Elementes c derart an, dass die Behauptung aus Teil b) falsch ist.

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IM FACH 3.33 IM KELLER DES MATHEMATISCHEN INSTITUTS.