La théorie des ensembles.

On se place dans la logique du 1er ordre avec $\mathcal{L} = \{\in, =\}$. On se place dans un univers \mathcal{U} non vide, le modèle, dont les éléments sont appelés des *ensembles*.

Il faudra faire la différence entre les ensembles « naïfs » (les ensembles habituels), et les ensembles « formels » (les éléments de \mathcal{U}).

On a le paradoxe de Russel. On peut l'écrire

« On a un barbier qui rase tous les hommes qui ne se rasent pas eux-mêmes. Qui rase le barbier? ».

Si $\mathcal U$ est l'ensemble de tous les ensembles, alors

$$a := \{ x \in \mathcal{U} \mid x \notin x \}$$

vérifie $a \in a \iff a \notin a$, **paradoxe**. Pour éviter ce paradoxe, on choisit donc de ne pas faire \mathcal{U} un ensemble.

1 Les axiomes de la théorie de Zermelo-Fraenkel.

ZF1. Axiome d'extensionnalité : deux ensembles sont égaux ssi ils ont les mêmes éléments

$$\forall x \, \forall y \, (\forall z \, (z \in x \leftrightarrow z \in y) \leftrightarrow x = y).$$

$$\forall x \, \forall y \, \exists z \, \forall t \Big(t \in z \leftrightarrow (t = x \lor t = y) \Big).$$

[continué plus tard...]

^{1.} On verra plus tard que cet axiome est une conséquence des autres (de ${\sf ZF3}$ et ${\sf ZF4}$).

Remarque 1. Cela nous donne l'existence du *singleton* $\{x\}$ si x est un ensemble. En effet, il suffit de faire la paire $\{x,x\}$ avec l'Axiome de la paire.

Définition 1. Si a et b sont des ensembles, alors (a,b) est l'ensemble $\{\{a\},\{a,b\}\}$. Ainsi, (a,a) est l'ensemble $\{\{a\}\}$.

Lemme 1. Pour tous ensembles a, b, a', b', on a (a, b) = (a', b') ssi a = a' et b = b'.

Preuve. En exercice.

Définition 2. On peut construire des 3-uplets (a_1, a_2, a_3) avec $(a_1, (a_2, a_3))$, et ainsi de suite pour les n-uplets.

Notation. On utilise les raccourcis

- $\triangleright t = \{a\} \text{ pour } \forall x (x \in t \leftrightarrow x = a);$
- $\triangleright t = \{a, b\} \text{ pour } \forall x (x \in t \leftrightarrow (x = a \lor x = b));$
- $\triangleright t \subseteq a \text{ pour } \forall x (z \in t \rightarrow z \in a).$
- **ZF3.** Axiome des parties : l'ensemble des parties $\wp(a)$ existe pour tout ensemble a

$$\forall a \; \exists b \; \forall t \; (t \in b \leftrightarrow t \subseteq a).$$

ZF 2. Axiome de la réunion : l'ensemble $y = \bigcup_{z \in x} z$ existe

$$\forall x \,\exists y \,\forall t (t \in y \leftrightarrow \exists z (t \in z \land z \in x)).$$

Remarque 2. Comment faire $a \cup b$? La paire $x = \{a, b\}$ existe par l'Axiome de la paire, et $\bigcup_{z \in x} z = a \cup b$ est un ensemble par ZF 2.

ZF 4'. Schéma de compréhension : pour toute formule $\varphi(y, v_1, \dots, v_n)$, on a l'ensemble $x = \{ y \in v_{n+1} \mid \varphi(y, v_1, \dots, v_n) \}$

$$\forall v_1 \ldots \forall v_n \exists x \forall y \left(y \in x \leftrightarrow (y \in v_{n+1} \land \varphi(y, v_1, \ldots, v_n)) \right).$$

Remarque 3. Peut-on faire le paradoxe de Russel? On ne peut pas faire $a := \{z \in \mathcal{U} \mid z \notin z\}$ car \mathcal{U} n'est pas un ensemble! Et, on ne peut pas avoir de paradoxe avec $b := \{z \in E \mid z \notin z\}$, car on a l'ajout de la condition $b \in E$.

Définition 3. Une relation fonctionnelle en w_0 est une formule $\varphi(w_1, w_2, a_1, \ldots, w_n)$ à paramètres (où les a_i sont dans \mathcal{U}) telle que

$$\mathcal{U} \models \forall w_0 \, \forall w_1 \, \forall w_2 \, \Big(\varphi(w_0, w_1, a_1, \dots, a_n) \wedge \varphi(w_0, w_2, a_1, \dots, w_n) \to w_1 = w_2 \Big).$$

En termes naïfs, c'est une fonction partielle. On garde le terme fonction quand le domaine et la collection d'arrivée sont des ensembles, autrement dit, des éléments de \mathcal{U} .

ZF 4. Schéma de substitution/de remplacement : « la collection des images par une relation fonctionnelle des éléments d'un ensemble est aussi un ensemble ». Pour tout n-uplet \bar{a} , si la formule à paramètres $\varphi(w_0, w_1, \bar{a})$ définit une relation fonctionnelle $f_{\bar{a}}$ en w_0 et si a_0 est un ensemble alors la collection des images par $f_{\bar{a}}$ des éléments de a_0 est un ensemble nommé a_{n+1}

$$\forall a_0 \cdots \forall a_n$$

$$(\forall w_0 \forall w_1 \forall w_2 (\varphi(w_0, w_1, a_1, \dots, a_n) \land \varphi(w_0, w_2, a_1, \dots, a_n)) \rightarrow w_1 = w_2)$$

$$\downarrow$$

$$\exists a_{n+1} \forall a_{n+2} (a_{n+2} \in a_{n+1} \leftrightarrow \exists w_0 \ w_0 \in a_0 \land \varphi(w_0, a_{n+2}, v_1, \dots, v_n)).$$

Théorème 1. Si ZF1, ZF2, ZF3 et ZF4 sont vrais dans \mathcal{U} , il existe (dans \mathcal{U}) un et un seul ensemble sans élément, que l'on notera \emptyset .

Preuve. $\triangleright Unicit\'e par ZF 1.$

ightharpoonup Existence. On procède par compréhension : l'univers \mathcal{U} est non vide, donc a un élément x. On considère la formule $\varphi(w_0, w_1) := \bot$ qui est une relation fonctionnelle. Par ZF 4 (avec la formule φ et l'ensemble $a_0 := x$) un ensemble a_{n+1} qui est vide.

Proposition 1. Si ZF1, ZF2, ZF3 et ZF4 sont vrais dans \mathcal{U} , alors l'Axiome de la paire est vrai dans \mathcal{U} .

Preuve. On a \emptyset dans \mathcal{U} et également $\wp(\emptyset) = \{\emptyset\}$ et $\wp(\wp(\emptyset)) = \{\emptyset, \{\emptyset\}\}$ par ZF 3.

Étant donné deux ensemble a et b, on veut montrer que $\{a,b\}$ est un ensemble avec $\mathsf{ZF}\,\mathsf{4}$

$$\varphi(w_0, w_1, a, b) := (w_0 = \emptyset \land w_1 = a) \lor (w_0 = \{\emptyset\} \land w_1 = b),$$

οù

- $\triangleright w_0 = \emptyset$ est un raccourci pour $\forall z (z \notin w_0)$;
- $\triangleright w_0 = \{\emptyset\}$ est un raccourci pour $\forall z (z \in w_0 \leftrightarrow (\forall t \ t \not\in z)).$

Ces notations sont compatibles avec celles données précédemment.

Comme φ est bien une relation fonctionnelle et $\{a,b\}$ est l'image de $\{\emptyset, \{\emptyset\}\}$.

Proposition 2. Si ZF1, ZF2, ZF3 et ZF4 sont vrais dans \mathcal{U} , alors ZF4' est vrai dans \mathcal{U} .

Preuve. On a la formule $\varphi(y, v_1, \dots, v_n)$ et on veut montrer que

$$\mathcal{U} \models \forall v_1 \cdots \forall v_{n+1} \exists x \forall y (y \in x \leftrightarrow (y \in v_{n+1} \land \varphi(y, v_1, v_n))).$$

On considère la formule $\psi(w_0, w_1, \bar{v}) := w_0 = w_1 \wedge \varphi(w_0, \bar{v})$, qui est bien une relation fonctionnelle en w_0 . La collection

$$\{ y \in v_{n+1} \mid \varphi(y, v_1, \dots, v_n) \}$$

est l'image de v_{n+1} par ψ par $\mathsf{ZF}\,\mathsf{4}.$

Remarque 4. La réciproque du théorème précédent est fausse! Les axiomes ZF4 et ZF4' ne sont pas équivalents. On le verra en TD (probablement).

Proposition 3. Le produit ensembliste de deux ensembles est un ensemble.

Preuve. Soient v_1 et v_2 deux ensembles. On considère

$$X := v_1 \times v_2 = \{ (x, y) \mid x \in v_1 \text{ et } y \in v_2 \} \text{ (en naı̈f) }.$$

La notation (x,y) correspond à l'ensemble $\{\{x\},\{x,y\}\}\in \wp(\wp(v_1\cup v_2)).$

On applique ZF 4' dans l'ensemble ambiant $\wp(\wp(v_1 \cup v_2))$, on définit le produit comme la compréhension à l'aide de la formule

$$\varphi(z, v_1, v_2) := \exists x \,\exists y \, \Big(z = \{\{x\}, \{x, y\}\} \land x \in v_1 \land y \in v_2\Big).$$

C'est bien un élément de \mathcal{U} .

Définition 4. Une fonction (sous-entendu totale) d'un ensemble a dans un ensemble b est un sous-ensemble de $a \times b$ qui vérifie la

propriété

$$\varphi(f,a,b) := \begin{pmatrix} f \subseteq a \times b \\ \land \\ \forall x \, \forall y \, \forall y' \, (x,y) \in f \land (x,y') \in f \rightarrow y = y' \\ \land \\ \forall x \, x \in a \rightarrow \exists y \, y \in b \land (x,y) \in f \end{pmatrix}.$$

On identifie ainsi f et son graphe.

Une fonction partielle d'un ensemble a dans un ensemble b est un sous-ensemble de $a\times b$ qui vérifie la propriété

$$\varphi(f,a,b) := \begin{pmatrix} f \subseteq a \times b \\ & \wedge \\ \forall x \, \forall y \, \forall y' \, (x,y) \in f \wedge (x,y') \in f \rightarrow y = y' \end{pmatrix}.$$

On note b^a la collection des fonctions partielles de a dans b.

Proposition 4. La collection b^a est un ensemble, *i.e.* si a et b sont dans $\mathcal U$ alors b^a aussi.

Preuve. En exercice.

Remarque 5 (Réunion indexée). Soit a une famille d'ensemble indexée par l'ensemble I, i.e. a est une fonction de domaine I. Si $i \in I$, on note a_i pour a(i).

Proposition 5. Si I est un ensemble et a est une fonction de domaine I, alors $\bigcup_{i \in I} a_i$ est un ensemble. Autrement dit, si dans \mathcal{U} , ZF 1, ZF 2, ZF 3, ZF 4 sont vraies, et que I et a sont dans \mathcal{U} , et a est une fonction, alors la collection définie naïvement par $\bigcup_{i \in I} a_i$ appartient à \mathcal{U} .

Preuve. On pose $b := \{a_i \mid i \in I\}$. C'est bien un ensemble car b

est l'ensemble des images des éléments de I par a. On peut écrire a comme relation fonctionnelle :

$$\varphi(w_0, w_1, a) := (w_0, w_1) \in a.$$

On a donc que b est un ensemble avec $\mathsf{ZF} 4$.

Et,
$$\bigcup_{i \in I} a_i = \bigcup_{z \in b} z$$
 donc on conclut par ZF 2.

Proposition 6 (Propriété d'intersection). Si I est un ensemble non vide et a est une fonction de domaine I alors $\bigcap_{i \in I} a_i$ est un ensemble.

Preuve. On pose $c := \bigcup_{i \in I} a_i$ qui est un ensemble par ZF 2. On considère

$$\varphi(x, a, I) := \forall i \ i \in I \to x \in a_i.$$

Par compréhension (ZF4') on construit l'ensemble

$$\bigcap_{i \in I} a_i := \{ x \in c \mid \varphi(x, a, I) \}.$$

Proposition 7. Si I est un ensemble et a une fonction de domaine i alors $\prod_{i \in I} a_i$ est un ensemble.

Preuve. La collection $\prod_{i \in I} a_i$ est l'ensemble des fonctions de I dans $\bigcup_{i \in I} a_i$ telles que $f(i) \in a_i$ pour tout i.

ZF5 Axiome de l'infini : il existe un ensemble ayant une infinité d'élément

$$\exists x \ (\emptyset \in x \land \forall y \ (y \in x \to y \cup \{y\} \in x)).$$

On encode les entiers avec des ensembles :

$$\triangleright 0 \leadsto \emptyset$$

$$\triangleright 1 \leadsto \{\emptyset\}$$

$$\begin{array}{ccc} \rhd & 2 \leadsto \{\emptyset, \{\emptyset\}\} \\ \rhd & & \vdots \\ \rhd & n+1 \leadsto n \cup \{n\} \\ \rhd & & \vdots \end{array}$$

Ainsi, on a bien $n = \{0, 1, ..., n - 1\}$.

Remarque 6. Si on retire $\emptyset \in x$, on peut avoir $x = \emptyset$ qui satisfait la version modifiée de ZF 5.

Cependant, sans retirer $\emptyset \in x$, on peut quand même avoir un ensemble fini s'il existe un ensemble fini y tel que $y \in y$. Ceci est impossible avec l'axiome de bonne fondation.

Remarque 7. Les français sont les seuls à considérer que l'axiome de bonne fondation ne fait pas partie de la théorie de ZF.

2 Ordinaux et induction transfinie.

Théorème 2 (Cantor). 1. Soient A et B deux ensembles et supposons qu'il existe des injections $A \to B$ et $B \to A$ alors il existe une bijection $A \to B$.

2. Il n'existe pas de surjection de $A \to \wp(A)$.

Preuve. En TD.

Définition 5. Deux ensembles sont *équipotents* s'il existe une bijection entre-eux.

Définition 6. Soit A un ensemble. Un ordre (partiel, strict) sur A est une relation binaire < (donnée par un sous-ensemble de $A \times A$) telle que

1. $transitivit\acute{e} : \forall x \ \forall y \ \forall z \ x < y \rightarrow y < z \rightarrow x < z;$

2. $anti-réflexif: \forall x, x \not< x$.

Notation. On note $x \leq y$ pour x < y ou x = y.

Exemple 1. L'ordre \subseteq sur $\wp(\mathbb{N})$ est partiel. Les ordres $<_{\mathbb{N}}, <_{\mathbb{R}}, <_{\mathbb{Z}}$ sur $\mathbb{N}, \mathbb{R}, \mathbb{Z}$ sont totaux.

Définition 7. Soit (A, <) ordonné. Soient $a, a' \in A$ et $B \subseteq A$. On dit que

- \triangleright a est un plus petit élément de B si $a \in B$ et pour tout $b \in B$ et si $b \neq a$ alors b > a;
- $\triangleright \ a$ est un élément minimal de B si $a \in B$ et pour tout $b \in B$, $b \not < a$;
- $\triangleright a$ est un minorant de B si pour tout $b \in B$, $a \leq b$;
- $\,\triangleright\,$ de la même manière, on définit plus grand élément, élément maximal, majorant ;
- \triangleright a est une borne inférieure de B si a est un plus grand élément de l'exemple des minorants de B;
- $\triangleright a$ et a' sont incomparables si $a \neq a'$ et $a \not< a'$ et $a' \not< a$;
- \triangleright un ordre est bien fondé si toute partie non vide de A a un élément minimal;
- ▷ un bon ordre est un ordre total bien fondé.

Proposition 8. Un ordre total est bien fondé ssi il n'existe pas de suite infinie décroissante.

Preuve. En exercice.

Exemple 2. \triangleright L'ordre < sur \mathbb{N} est bien fondé.

- \triangleright L'ordre < sur \mathbb{Z} n'est pas bien fondé.
- \triangleright L'ordre \subseteq sur $\wp_{\text{finies}}(\mathbb{N})$ est bien fondé.

- **Définition 8.** \triangleright Deux ensembles ordonnés sont *isomorphes* s'il existe une bijection préservant l'ordre de l'un vers l'autre. On note $A \simeq B$.
 - \triangleright Soit X totalement ordonné. Un sous-ensemble $J \subseteq X$ est un segment initial si pour tous $a,b \in X$ avec a < b alors $b \in J$ implique $a \in J$.
 - \triangleright Un ensemble X est transitif si pour tout $x \in X$ et $y \in x$ alors $y \in X$.
 - \triangleright Un ensemble X est un ordinal s'il est transitif et que \in défini un bon ordre sur X.
 - ho On note 0 la classe des ordinaux, et on note indifféremment les relations \in et <.

Exemple 3. Les entiers de Von Neumann sont des ordinaux.

Proposition 9. Soient α et β des ordinaux. On a les propriétés suivantes :

- 1. \emptyset est un ordinal;
- 2. si $\alpha \neq \emptyset$ alors $\emptyset \in \alpha$;
- 3. $\alpha \notin \alpha$;
- 4. si $x \in \alpha$ alors $x = \{y \in \alpha \mid y < x\}$.
- 5. si $x \in \alpha$ alors x est un ordinal (on a l'abus de notation $x \in \mathfrak{G}$);
- 6. $\beta \leq \alpha \operatorname{ssi} \beta = \alpha \operatorname{ou} \beta \in \alpha$;
- 7. $x = \alpha \cup \{\alpha\}$ est un ordinal noté $\alpha + 1$.

Preuve. 1. C'est vrai.

- 2. La relation \in est un bon-ordre sur α , soit β le plus petit élément. Si $\beta \neq \emptyset$ alors il contient au moins un élément γ d'où $\gamma < \beta$ et $\gamma \in \alpha$ (par transitivité), absurde car β minimal.
- 3. Le reste sera vu en TD ou en exercice.

Proposition 10. \triangleright Si α et β sont des ordinaux et que l'on a $\alpha \le \beta \le \alpha + 1$ alors $\beta = \alpha$ ou $\beta = \alpha + 1$.

 \triangleright Si X est un ensemble non vide d'ordinaux alors $\bigcap_{\alpha \in X} \alpha$ est le plus petit élément de X.

Définition 9. Soit β un ordinal.

- \triangleright S'il existe α tel que $\beta = \alpha + 1$ alors on dit que β est un ordinal successeur;
- ▷ Sinon, c'est un ordinal limite.

Exemple 4. Quelques ordinaux limites :

$$\omega \qquad \omega \cdot 2 \qquad \omega \cdot 3 \qquad \omega \cdot \omega$$
$$\omega^2 + \omega \qquad \omega^\omega \qquad \omega^{\omega^\omega} \cdot \cdots$$

Lemme 2. Soit X un ensemble d'ordinaux. Le plus petit élément de X est $\bigcap_{\alpha \in X} \alpha$.

Théorème 3. Si α et β sont des ordinaux alors une et une seule de ces propriétés est vérifiée :

$$\alpha = \beta$$
 $\alpha \in \beta$ $\alpha \ni \beta$.

Preuve. Soit $X = \{\alpha, \beta\}$, on sait que $\alpha \cap \beta$ est le plus petit élément de X.

- \triangleright Si $\alpha \cap \beta = \alpha$ alors $a \subseteq \beta$ donc $\alpha = \beta$ ou $\alpha \in \beta$.
- \triangleright Si $\alpha \cap \beta = \beta$ alors $a \supseteq \beta$ donc $\alpha = \beta$ ou $\alpha \ni \beta$.

Proposition 11. Soit X un ensemble d'ordinaux. Alors l'ensemble $b := \bigcup_{\alpha \in X} \alpha$ est un ordinal. On le note $b = \sup_{\alpha \in X} \alpha$. De plus si $\gamma \in b$ alors il existe un certain $\alpha \in X$ tel que $\gamma \in \alpha$.

Preuve. En exercice.

Proposition 12. Soit λ un ordinal non vide. On a :

$$\overbrace{\lambda \text{ est limite}}^{(1)} \quad \Longleftrightarrow \quad \overbrace{\lambda = \bigcup_{\alpha \in \lambda} \alpha}^{(2)}.$$

Preuve. 1. Par contraposée, si λ n'est pas limite, c'est donc un successeur d'un certain ordinal β et donc $\lambda = \beta \cup \{\beta\}$. On a

$$\bigcup_{\alpha \in \lambda} \alpha = \beta \cup \bigcup_{\alpha \in \beta} \alpha = \beta \neq \lambda.$$

2. Soit λ limite. Montrons qu'il n'a pas de plus grand élément β . Sinon, $\lambda = \beta \cup \{\beta\}$. Donc, pour tout $\alpha \in \lambda$ il existe un certain $\gamma \in \lambda$ tel que $\alpha < \gamma$, *i.e.* $\alpha \in \gamma$. On en conclut que $\lambda = \bigcup_{\gamma \in \lambda} \gamma$.

Théorème 4 (Induction transfinie). Soit \mathcal{P} une propriété sur les ordinaux. On suppose que :

- $\triangleright \emptyset$ satisfait \mathscr{P} ;
- \triangleright pour tout ordinal α tel que, pour tout $\beta < \alpha$ satisfait \mathcal{P} , alors α satisfait \mathcal{P} :

$$\forall \alpha, \ (\forall \beta < \alpha, \ \mathcal{P}(\beta)) \implies \mathcal{P}(\alpha) ;$$

alors to us les ordinaux satisfont $\mathcal{P}.$

Preuve. Par l'absurde, soit α ne satisfaisant pas \mathcal{P} . Soit β le plus

petit ordinal de $\alpha \cup \{\alpha\}$ ne satisfaisant pas \mathcal{P} . Tous les ordinaux plus petit que β satisfont \mathcal{P} , d'où $\mathcal{P}(\beta)$, **absurde**. On en conclut que α n'existe pas.

Remarque 8. En pratique on décompose :

- \triangleright on montre pour \emptyset ;
- \triangleright on montre pour α successeur;
- \triangleright on montre pour α limite.

Définition 10. Un ordinal α est fini si $\alpha = \emptyset$ ou si α et sous ses éléments sont des successeurs.

Proposition 13. L'ensemble des ordinaux finis ω est un ordinal. C'est le plus petit ordinal limite.

Preuve. En exercice.

Lemme 3. Soit $f: \alpha \to \alpha'$ une fonction strictement croissante entre deux ordinaux α et α' . Alors $f(\beta) \geq \beta$ pour tout $\beta \in \alpha$. De plus, on a $\alpha' \geq \alpha$. Aussi si f est un isomorphisme alors $\alpha = \alpha'$ et f est l'identité.

- **Preuve.** \triangleright Soit β_0 le plus petit élément tel que $f(\beta_0) < \beta_0$. Comme f strictement croissante, on a $f(f(\beta_0)) < f(\beta_0) < \beta_0$ absurde car β_0 est le plus petit.
 - ▷ Soit $\beta \in \alpha$. On a $f(\beta) \in \alpha'$ et $\beta \leq f(\beta)$ donc $\beta \in \alpha'$, donc $\beta \in \alpha'$, d'où $\alpha \subseteq \alpha'$ et donc $\alpha \leq \alpha'$.
 - \triangleright Si f est un isomorphisme alors f^{-1} est strictement croissante. On applique le point précédent à f^{-1} , d'où $\alpha = \alpha'$.
 - ▷ Montrons que f est l'identité. On sait que, pour tout $\beta \in \alpha$, on a $f_{|\beta}$ strictement croissante de β dans $f(\beta)$ et bijective, d'où $\beta = f(\beta)$ par le point précédent. D'où f est l'identité.

- 13/20 -

Théorème 5. Tout ensemble bien ordonné est isomorphe à un ordinal. Cet ordinal ainsi que l'isomorphisme sont uniques.

Preuve. Cette preuve ressemble à une induction sans en être une. On aura le droit d'en faire quand on aura le théorème.

Si l'isomorphisme existe, il est unique grâce au lemme précédent. En effet, s'il y en a deux f et g alors $f \circ g^{-1}$ est un isomorphisme entre deux ordinaux égaux, donc c'est l'identité.

Notons $\mathcal{P}(x)$ la propriété « il existe un ordinal α_x et un isomorphisme $f_x: S_{\leq x} \to \alpha_x$ » où $S_{\leq x}:=\{y\in X\mid y\leq x\}$. Pour montrer $\mathcal{P}(x)$ pour tout $x\in X$, on pose

$$Y := \{ x \in X \mid \mathcal{P}(x) \text{ est vraie} \}.$$

et on montre Y = X.

Supposons $Y \neq X$ et soit $a = \min(X \setminus Y)$.

- \triangleright Si Y a un plus grand élément b, alors il existe un isomorphisme $f_b: S_{\leq b} \to \alpha_b$ (car $\mathcal{P}(b)$). Or, $S_{\leq a} = S_{\leq b} \cup \{a\}$ (il faudrait montrer que Y est un segment initial de X). Et, on construit $f_a: S_{\leq a} \to \alpha_b \cup \{\alpha\}_b$ qui est un isomorphisme, donc $a \in Y$, absurde.
- ▷ Si Y n'a pas de plus grand élément, on considère $\alpha := \bigcup_{x \in Y} \alpha_x$ un ordinal. Pour tout $x < \alpha$ il existe un isomorphisme de $S_{\leq x}$ dans α_x . Si on prend $x < y < \alpha$ alors $(f_y)_{|S_{\leq x}}$ est un isomorphisme et, par unicité, on a donc que f_y prolonge f_x . On peut définir un isomorphisme $f_{\leq \alpha}$ comme limite des f_x pour $x < \alpha$. C'est un isomorphisme de $S_{<a}$ dans $\beta := \bigcup_{x < \alpha} \alpha_x$. On peut prolonger f en $f_X : S_{\leq \alpha} \to \beta + 1$ où $\alpha \mapsto \beta$, d'où $\alpha \leq Y$, **absurde**.

Lemme 4 (Définition récursive transfinie des fonctions). Soient

 $\triangleright \alpha$ un ordinal;

- \triangleright S une collection;
- \triangleright \mathcal{F} la collection des applications définies sur les ordinaux $\beta \le \alpha$ et prenant leur valeurs dans S;
- \triangleright F une relation fonctionnelle de domaine \mathcal{F} à valeur dans S.

Alors il existe une fonction f dans \mathcal{F} (et une unique définie sur α) telle que :

(*) pour tout
$$\beta < \alpha$$
 $f(\beta) = F(f_{|\beta})$.

Preuve. Unicité. Soient f et g satisfaisant (\star) . Montrons $\mathcal{P}(\beta)$: « si $\beta < \alpha$ alors $f(\beta) = g(\beta)$ » par induction transfinie.

- \triangleright On a direct ement $\mathcal{P}(\emptyset)$ car il y a une unique fonction de $\emptyset \to \emptyset$.
- \triangleright Supposons que $f(\gamma) = g(\gamma)$ pour tout $\gamma < \beta$. Alors $f_{|\beta} = g_{|\beta}$ et donc par (\star) on a $f(\beta) = g(\beta)$.

Existence. Soit τ l'ensemble des ordinaux $\gamma \in \alpha$ tels qu'il existe $f_{\gamma} \in \mathcal{F}$ définie sur γ et vérifiant (\star) . Alors τ est un segment initial de α donc un ordinal. Par unicité si $\gamma < \gamma'$ alors $f_{\gamma'}$ prolonge f_{γ} . On définit f_{τ} par $f_{\tau}(\gamma) := F(f_{\gamma})$ si $\gamma < \tau$.

- \triangleright Si $\tau \in \alpha$ alors f_{τ} prolonge tous les f_{γ} et donc $\tau \in \tau$, *impossible*.
- \triangleright D'où $\tau = \alpha$.

Exercice 1. Généraliser la preuve ci-dessus en replaçant α par la classe de tous les ordinaux \mathfrak{G} (et remplacer \mathcal{F} par autre chose).

Proposition 14. 1. La classe 6 n'est pas un ensemble.

- 2. Il n'existe pas de relation fonctionnelle bijective entre $\mathfrak G$ et un ensemble a.
- **Preuve.** 1. En effet, supposons $\mathfrak G$ un ensemble. On a que $\mathfrak G$ est transitif et \in y définit un ordre total, donc $\mathfrak G$ est un ordinal.

D'où $\emptyset \in \emptyset$ ce qui est impossible pour un ordinal.

2. Sinon © serait un ensemble.

3 Axiome de choix et variantes équivalentes.

Les axiomes du choix sont exprimable au premier ordre!

- **AC1.** Le produit d'une famille d'ensembles non vides est non vide.
- **AC 2.** Pour tout ensemble a non vide, il existe une fonction de $\mathcal{P}(a)$ dans a tel que si $x \subseteq a$ est non vide alors $f(x) \in x$. (C'est une fonction de choix.)
- **AC 3.** Si a est un ensemble dont tous les éléments sont non vides et deux à deux disjoints alors il existe un ensemble c tel que, pour tout $x \in a$, $x \cap c$ a exactement un élément.
- (Lemme de) Zorn. Tout ensemble non vide partiellement ordonné et inductif admet un élément maximal.

On rappelle qu'un ensemble partiellement ordonné X est inductif si $X \neq \emptyset$ et si tout sous-ensemble $Y \subseteq X$ totalement ordonné admet un majorant dans X.

(Lemme de) Zermelo. Tout ensemble non vide peut être mini d'un bon ordre (*i.e.* un ordre total où toute partie non vide a un plus petit élément).

En supposant les axiomes $\mathsf{ZF}\,1,\ldots,\mathsf{ZF}\,5,$ on va montrer les implications suivantes :

3.1 AC1 implique AC2.

On rappelle que l'ensemble $\prod_{i \in I} a_i$ est l'ensemble de fonctions f de la forme $f: I \to \bigcup_{i \in I} a_i$ tel que $f(i) \in a_i$ pour tout i.

Soit a non vide. On considère $\prod_{\emptyset \neq x \subseteq a} x$ qui est non vide par AC 1. Soit f un de ces éléments. On a, pour tout $\emptyset \neq x \subseteq a$, que $f(x) \in x$ donc f est une fonction de choix.

3.2 AC 2 implique AC 3.

Soit a un ensemble dont les éléments sont non vides et deux à deux disjoints. On considère $b = \bigcup_{x \in a} x$ qui est un ensemble. Par AC 2, on a une fonction de choix f sur $\wp(b)$. On prend $c = \{f(x) \mid x \in a\}$. Comme les x sont disjoints, on obtient la propriété recherchée.

3.3 AC 3 implique AC 1.

Soit $X = \prod_{i \in I} a_i$ un produit d'ensemble non vides. On considère $A := \{\{i\} \times a_i \mid i \in I\}$. Par AC 3, il existe c tel que, pour tout $x \in A$, $x \cap c$ a exactement un élément. D'où, c peut s'écrire

$$c = \{(i, d_i) \mid i \in I \text{ et } d_i \in a_i\}.$$

On a donc $c \in \prod_{i \in I} a_i$ (c'est le graphe d'une fonction) et donc $\prod_{i \in I} a_i \neq \emptyset$.

3.4 AC 2 implique Zermelo.

Soit a un ensemble non vide.

Remarque 9 (Idée). L'idée est qu'on utilise $f: \mathcal{P}(a) \to a$ une fonction de choix pour définir l'ordre. On peut imaginer définir $x \leq y$ ssi $f(\{x,y\}) = x$ (on traite donc f comme la fonction minimum), mais on n'a pas la transitivité. Il faut être plus futé.

On va construire en partant du plus petit une bijection entre a et un ordinal.

Soit $\theta \notin a$ (pour « détecter » quand l'ensemble $a \setminus \{h(0), \ldots\}$ est vide). Il existe car a est un ensemble donc pas l'univers tout entier.

On définit

$$F(\alpha) := \begin{cases} f(a \setminus \{F(\beta) \mid \beta < \alpha\}) & \text{ si } a \setminus \{F(\beta) \mid \beta < \alpha\} \neq \emptyset \\ \theta & \text{ sinon} \end{cases}.$$

D'après le dernier lemme de la section précédente, on peut construire l'application F ainsi et elle est unique.

S'il n'existe pas d'ordinal α tel que $F(\alpha) = \theta$ alors F est une injection de $\mathfrak G$ dans a. **Absurde**. Il existe donc α tel que $F(\alpha) = \theta$.

Le sous-ensemble $\{\beta \in \alpha \mid F(\beta) = \theta\}$ a un plus petit élément β . Montrons que $F_{|\beta}$ est une bijection de β dans α .

- D'une part, on sait que c'est une injection.
- ho D'autre part, $F(\beta) = \theta$ implique $\{F(\gamma) \mid \gamma < \beta\} = a$ donc $F_{|\beta}$ est une surjection.

On définit le bon ordre $x \prec y$ ssi $F^{-1}(x) < F^{-1}(y)$.

3.5 Zermelo implique AC 2.

Soit a non vide. Il existe un bon-ordre < sur a. Soit $\emptyset \neq x \subseteq a$. On définit $f(x) = \min x$, c'est bien une fonction de choix.

3.6 Zorn implique AC 3.

Soit a un ensemble dont les éléments sont disjoints et non vides. On pose :

$$b:=\bigcup_{x\in a}x\quad \text{ et }\quad X:=\{c\subseteq b\mid \forall x\in a,\; |c\cap x|\leq 1\}.$$

Montrons que l'ensemble (X, \subsetneq) est inductif.

Soit $Y \subseteq X$ est totalement ordonné. Montrons que Y a un majorant dans X. On pose $z = \bigcup_{y \in Y} y$ qui majore Y. On a bien $z \in X$ (on ne duplique pas les éléments). On en conclut que X est inductif. Soit d un élément maximal de X (il existe par Zorn).

- ightharpoonup S'il existe $x \in a$ tel que $x \cap d = \emptyset$ alors prenons $u \in x$ et posons $d_1 := d \cup \{u\}$. D'où $d_1 \in X$ et $d \subsetneq d_1$ donc d non maximal, **absurde**.
- ▷ Pour tout $x \in a$, on a $|d \cap x| = 1$, d'où d est l'ensemble recherché (appelé c dans AC 3).

3.7 AC 2 implique Zorn.

Soit a un ensemble inductif.

Remarque 10 (Idée). On construit une chaîne dans a (i.e. un ensemble totalement ordonné) de taille maximale (c'est ici qu'on utilise la fonction de choix de AC 2). Elle a un majorant car a est inductif. Ce majorant va être l'élément maximal.

Soit $f : \wp(a) \to a$ une fonction de choix donnée par AC 2. Si $x \subseteq a$ on appelle majorant strict de x un $y \in a$ tel que z < y pour tout $z \in x$.

Remarque 11 (Idée – suite). \triangleright On part de \emptyset : tout élément de a a un majorant strict de \emptyset en choisissant $a_1 = f(a)$.

 \triangleright Soit X_1 l'ensemble des majorants de $\{a_1\}$. On pose $a_2 := f(X_1)$.

 \triangleright Soit X_2 l'ensemble des majorants de $\{a_1, a_2\}$. On pose $a_3 := f(X_2)$.

Formellement, soit $C := \{x \subseteq a \mid x \text{ a un majorant strict dans } a\}$. On a $\emptyset \in C$. On définit

$$m: C \longrightarrow a$$

$$x \longmapsto f(\{y \in a \mid y \text{ est un majorant strict de } x \text{ dans } a\}).$$

On définit par induction la chaîne maximale (dernier lemme de la section précédente). Soit $\theta \notin a$. On définit :

$$F(\alpha) := \begin{cases} m(\{F(\beta) \mid \beta < \alpha\}) & \text{si } \{F(\beta) \mid \beta < \alpha\} \in C \\ \theta & \text{sinon} \end{cases}.$$

La fonction F n'est pas une injection de 6 dans a donc il existe un ordinal α tel que $F(\alpha) = \theta$. Comme $\alpha + 1$ est un ordinal, l'ensemble $\{\beta \in \alpha + 1 \mid F(\beta) = \theta\}$ a un plus petit élément α_0 . D'où l'ensemble $\{F(\beta) \mid \beta < \alpha_0\}$ n'a pas de majorant strict mais a un majorant M car a inductif. Et, a n'a pas d'élément plus grand que a. Ainsi M est maximal dans a.

3.8 Indépendance de ZF et de l'axiome du choix.

On a les deux théorèmes suivants (que l'on admet).

Théorème 6 (Gödel, 1938). S'il est cohérent, ZF ne réfute pas l'axiome du choix.

Théorème 7 (Cohen, 1963). S'il est cohérent, ZF ne montre pas l'axiome du choix.

Ainsi l'axiome du choix est indépendant de ZF. Cependant, il existe des versions plus faibles : axiome du choix dépendant (ACD), axiome du choix dénombrable (AC $_{\omega}$).