Отчёт по лабораторной работе №4

НКАбд-04-23

Нуруллаев Бахадур Бахтыярович

Содержание

1	Цель работы	4	
2	Задание	5	
3	Теоретическое введение	6	
4	Выполнение лабораторной работы 4.1 Создание программы Hello world! 4.2 Работа с транслятором NASM 4.3 Работа с расширенным синтаксисом командной строки NASM 4.4 Работа с компоновщиком LD 4.5 Запуск исполняемого файла 4.6 Выполнение заданий для самостоятельной работы	9 10 11 11 12 12	
5	Выводы	14	
Сп	Список литературы		

Список иллюстраций

4.1	Создания каталога	9
4.2	Перемещение между директориями	9
4.3	Создание пустого файла	9
4.4	Открытие файла в текстовом редакторе	10
4.5	Заполнение файла	10
	Компиляция текста программы	10
4.7	Компиляция текста программы	11
4.8	Передача объектного файла на обработку компоновщику	11
4.9	Передача объектного файла на обработку компоновщику	11
4.10	Запуск исполняемого файла	12
4.11	Создание копии файла	12
4.12	Изменение программы	12
4.13	Компиляция текста программы	13
4.14	Передача объектного файла на обработку компоновщику	13
4.15	Запуск исполняемого файла	13

1 Цель работы

Цель данной лабораторной работы - освоить процедуры компиляции и сборки программ, написанных на ассемблере NASM.

2 Задание

- 1. Создание программы Hello world!
- 2. Работа с транслятором NASM
- 3. Работа с расширенным синтаксисом командной строки NASM
- 4. Работа с компоновщиком LD
- 5. Запуск исполняемого файла
- 6. Выполнение заданий для самостоятельной работы.

3 Теоретическое введение

Основными функциональными элементами любой ЭВМ являются центральный процессор, память и периферийные устройства. Взаимодействие этих устройств осуществляется через общую шину, к которой они подключены. Физически шина представляет собой большое количество проводников, соединяющих устройства друг с другом. В современных компьютерах проводники выполнены в виде электропроводящих дорожек на материнской плате. Основной задачей процессора является обработка информации, а также организация координации всех узлов компьютера. В состав центрального процессора входят следующие устройства: - арифметико-логическое устройство (АЛУ) — выполняет логические и арифметические действия, необходимые для обработки информации, хранящейся в памяти; - устройство управления (УУ) — обеспечивает управление и контроль всех устройств компьютера; регистры — сверхбыстрая оперативная память небольшого объёма, входящая в состав процессора, для временного хранения промежуточных результатов выполнения инструкций; регистры процессора делятся на два типа: регистры общего назначения и специальные регистры. Для того, чтобы писать программы на ассемблере, необходимо знать, какие регистры процессора существуют и как их можно использовать. Большинство команд в программах написанных на ассемблере используют регистры в каче- стве операндов. Практически все команды представляют собой преобразование данных хранящихся в регистрах процессора, это например пересылка данных между регистрами или между регистрами и памятью, преобразование (арифметические или логические

операции) данных хранящихся в регистрах. Доступ к регистрам осуществляется не по адресам, как к основной памяти, а по именам. Каждый регистр процессора архитектуры х86 имеет свое название, состоящее из 2 или 3 букв латинского алфавита. В качестве примера приведем названия основных регистров общего назначения (именно эти регистры чаще всего используются при написании программ): - RAX, RCX, RDX, RBX, RSI, RDI — 64-битные - EAX, ECX, EDX, EBX, ESI, EDI — 32-битные - AX, CX, DX, BX, SI, DI — 16-битные - AH, AL, CH, CL, DH, DL, BH, BL — 8-битные

Другим важным узлом ЭВМ является оперативное запоминающее устройство (ОЗУ). ОЗУ — это быстродействующее энергозависимое запоминающее устройство, которое напрямую взаимодействует с узлами процессора, предназначенное для хранения программ и данных, с которыми процессор непосредственно работает в текущий момент. ОЗУ состоит из одинаковых пронумерованных ячеек памяти. Номер ячейки памяти — это адрес хранящихся в ней данных. Периферийные устройства в составе ЭВМ: - устройства внешней памяти, которые предназначены для долговременного хранения больших объёмов данных. - устройства ввода-вывода, которые обеспечивают взаимодействие ЦП с внешней средой.

В основе вычислительного процесса ЭВМ лежит принцип программного управления. Это означает, что компьютер решает поставленную задачу как последовательность действий, записанных в виде программы.

Коды команд представляют собой многоразрядные двоичные комбинации из 0 и 1. В коде машинной команды можно выделить две части: операционную и адресную. В операционной части хранится код команды, которую необходимо выполнить. В адресной части хранятся данные или адреса данных, которые участвуют в выполнении данной операции. При выполнении каждой команды процессор выполняет определённую последовательность стандартных действий, которая называется командным циклом процессора. Он заключается в следующем: 1. формирование адреса в памяти очередной команды; 2. считывание кода команды из памяти и её дешифрация; 3. выполнение команды; 4. переход к

следующей команде.

Язык ассемблера (assembly language, сокращённо asm) — машинноориентированный язык низкого уровня. NASM — это открытый проект ассемблера, версии которого доступны под различные операционные системы и который позволяет получать объектные файлы для этих систем. В NASM используется Intel-синтаксис и поддерживаются инструкции х86-64.

4 Выполнение лабораторной работы

4.1 Создание программы Hello world!

С помощью команды mkdir создаю каталог для работы с программами на языке ассемблера NASM (рис. [4.1]).

bnurullaev@Ubuntu:~\$ mkdir -p ~/work/arch-pc/lab04

Рис. 4.1: Создания каталога

С помощью утилиты cd перемещаюсь в каталог, в котором буду работать (рис. [4.2]).

bnurullaev@Ubuntu:~\$ cd ~/work/arch-pc/lab04

Рис. 4.2: Перемещение между директориями

Создаю в текущем каталоге пустой текстовый файл hello.asm с помощью утилиты touch (рис. [4.3]).

bnurullaev@Ubuntu:~/work/arch-pc/lab04\$ touch hello.asm

Рис. 4.3: Создание пустого файла

Открываю созданный файл в текстовом редакторе с помощью команды gedit (рис. [4.4]).

bnurullaev@Ubuntu:~/work/arch-pc/lab04\$ gedit hello.asm,

Рис. 4.4: Открытие файла в текстовом редакторе

Заполняю файл, вставляя в него программу для вывода "Hello world!" (рис. [4.5]).

```
*hello.asm
2 SECTION .data
3 hello: DB 'Hello world!',10; 'Hello world!' плюс
4 ; символ перевода строки
5 helloLen: EQU Ş-hello ; Длина строки hello
6
7 SECTION .text
8 GLOBAL _start
9
10 _start: ; Точка входа в программу
11 mov eax,4 ; Системный вызов для записи (sys_write)
12 mov ebx,1 ; Описатель файла '1' - стандартный вывод
13 mov ecx,hello ; Адрес строки hello в есх
14 mov edx,helloLen; Размер строки hello в есх
15 int 80h ; Вызов ядра
16
17 mov eax,1 ; Системный вызов для выхода (sys_exit)
18 mov ebx,0 ; Выход с кодом возврата '0' (без ошибок)
19 int 80h ; Вызов ядра
```

Рис. 4.5: Заполнение файла

4.2 Работа с транслятором NASM

Превращаю текст программы для вывода "Hello world!" в объектный код с помощью транслятора NASM, используя команду nasm -f elf hello.asm, ключ -f указывает транслятору nasm, что требуется создать бинарный файл в формате ELF (рис. [4.6]). Далее проверяю правильность выполнения команды с помощью утилиты ls: действительно, создан файл "hello.o".

```
bnurullaev@Ubuntu:~/work/arch-pc/lab04$ nasm -f elf hello.asm
bnurullaev@Ubuntu:~/work/arch-pc/lab04$ lf
lf: команда не найдена
bnurullaev@Ubuntu:~/work/arch-pc/lab04$ ls
hello.asm hello.o
```

Рис. 4.6: Компиляция текста программы

4.3 Работа с расширенным синтаксисом командной строки NASM

Ввожу команду, которая скомпилирует файл hello.asm в файл obj.o, при этом в файл будут включены символы для отладки (ключ -g), также с помощью ключа -l будет создан файл листинга list.lst (рис. [4.7]). Далее проверяю с помощью утилиты ls правильность выполнения команды.

```
bnurullaev@Ubuntu:-/work/arch-pc/lab04$ nasm -o obj.o -f elf -g -l list.lst hello.asm
bnurullaev@Ubuntu:-/work/arch-pc/lab04$ ls
hello.asm hello.o list.lst obj.o
```

Рис. 4.7: Компиляция текста программы

4.4 Работа с компоновщиком LD

Передаю объектный файл hello.o на обработку компоновщику LD, чтобы получить исполняемый файл hello (рис. [4.8]). Ключ -о задает имя создаваемого исполняемого файла. Далее проверяю с помощью утилиты ls правильность выполнения команды.

```
bnurullaev@Ubuntu:~/work/arch-pc/lab04$ ld -m elf_i386 hello.o -o hello
```

Рис. 4.8: Передача объектного файла на обработку компоновщику

Выполняю следующую команду (рис. [4.9]). Исполняемый файл будет иметь имя main, т.к. после ключа -о было задано значение main. Объектный файл, из которого собран этот исполняемый файл, имеет имя obj.o

Рис. 4.9: Передача объектного файла на обработку компоновщику

4.5 Запуск исполняемого файла

Запускаю на выполнение созданный исполняемый файл hello (рис. [4.10]).

Рис. 4.10: Запуск исполняемого файла

4.6 Выполнение заданий для самостоятельной работы.

С помощью утилиты ср создаю в текущем каталоге копию файла hello.asm с именем lab4.asm (рис. [4.11]).

```
bnurullaev@Ubuntu:~/work/arch-pc/lab04$ cp hello.asm lab4.asm
bnurullaev@Ubuntu:~/work/arch-pc/lab04$ ls
hello hello.asm hello.o lab4.asm list.lst main obj.o
```

Рис. 4.11: Создание копии файла

С помощью текстового редактора открываю файл lab4.asm и вношу изменения в программу так, чтобы она выводила моё имя и фамилию. (рис. [4.12]).

Рис. 4.12: Изменение программы

Компилирую текст программы в объектный файл (рис. [4.13]). Проверяю с помощью утилиты ls, что файл lab4.o создан.

bnurullaev@Ubuntu:~/work/arch-pc/lab04\$ nasm -f elf lab4.asm

Рис. 4.13: Компиляция текста программы

Передаю объектный файл lab4.o на обработку компоновщику LD, чтобы получить исполняемый файл lab4 (рис. [4.14]).

bnurullaev@Ubuntu:~/work/arch-pc/lab04\$ ld -m elf_i386 lab4.o -o lab4

Рис. 4.14: Передача объектного файла на обработку компоновщику

Запускаю исполняемый файл lab4, на экран действительно выводятся моё имя и фамилия (рис. [4.15]).

bnurullaev@Ubuntu:~/work/arch-pc/lab04\$./lab4
Nurullaev Bahadur

Рис. 4.15: Запуск исполняемого файла

5 Выводы

При выполнении данной лабораторной работы я освоил процедуры компиляции и сборки программ, написанных на ассемблере NASM.

Список литературы

1. Архитектура ЭВМ