Problem 6

- Let x(t) be a real-valued signal for which $X(\omega) = 0$ when $|\omega| > 2,000\pi$. Amplitude modulation is performed to produce the signal $g(t) = x(t) \sin(2000\pi t)$.
- A proposed demodulation technique is illustrated below where g(t) is the input, y(t) is the output, and the ideal lowpass filter has cutoff frequency 2000 π and passband gain of 2. Determine y(t).

Solution 1

•
$$G(\omega) = \frac{1}{2j} [X(w - 2000\pi) - X(w + 2000\pi)]$$

Max freq at 4000π

Solution 1 (cont)

• $Z(\omega) = \frac{1}{2} [G(w - 2000\pi) + G(w + 2000\pi)]$

Solution 1 (cont)

Solution 2

$$z(t) = x(t) \sin(2000\pi) \times \cos(2000\pi)$$

= 1/2 x(t) sin(4000\pi)

$$Z(\omega) = \frac{1}{2} [X(w - 4000\pi) + X(w + 4000\pi)]$$

Max freq at 6000π

