Homework 1

Solutions

1. (Rotation) Let u_1, \ldots, u_n be the eigenvectors of A and $\lambda_1, \ldots, \lambda_n$ its eigenvalues. We have

$$x^T A x = x^T \sum_{i=1}^n \lambda_i u_i^T x u_i \tag{1}$$

$$= \sum_{i=1}^{n} \lambda_i (u_i^T x)^2. \tag{2}$$

Let us express x in the basis of eigenvectors, $x = \sum_{i=1}^{n} \alpha_i u_i$. Then $x^T A x = 0$ if

$$\sum_{i=1}^{n} \lambda_i \alpha_i^2 = 0. (3)$$

If at least one of the eigenvalues λ_k is positive and at least one of the eigenvalues λ_l is negative, then we can set $\alpha_k = 1$, $\alpha_l = -\lambda_k/\lambda_l$, and all other coefficients to zero to make the whole sum equal zero. This implies that x and Ax are orthogonal. Otherwise, it is impossible to make the sum equal zero with setting all coefficients to zero because all terms are positive or negative.

- 2. (Matrix decomposition)
 - (a) The inner product equals

$$\operatorname{tr}\left(A^{T}B\right) = \sum_{i=1}^{n} (A^{T}B)_{ii} \tag{4}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} A_{ji} B_{ji} \tag{5}$$

$$= \operatorname{vec}(A)^T \operatorname{vec}(B), \tag{6}$$

i.e. the dot product between the vectorized matrices. Symmetry, linearity and positive-definiteness then follow from symmetry, linearity and positive-definiteness of the dot product.

(b) By the previous result

$$\operatorname{tr}(A^T B) = \operatorname{vec}(A)^T \operatorname{vec}(B) \tag{7}$$

$$= \operatorname{vec}(B)^T \operatorname{vec}(A) \tag{8}$$

$$= \operatorname{tr}\left(BA^{T}\right). \tag{9}$$

(c) For $i \neq j$ u_i and u_j are orthogonal so

$$\operatorname{tr}\left(u_{i}u_{i}^{T}u_{j}u_{j}^{T}\right) = 0. \tag{10}$$

The norm of $u_i u_i^T$ for i = 1, ..., n equals one because

$$\left|\left|u_{i}u_{i}^{T}\right|\right|_{F} = \operatorname{tr}\left(u_{i}u_{i}^{T}u_{i}u_{i}^{T}\right) \tag{11}$$

$$= \operatorname{tr}\left(u_i u_i^T\right) \tag{12}$$

$$= \operatorname{tr}\left(u_i^T u_i\right) \tag{13}$$

$$=1, (14)$$

where the penultimate step follows from the result in the previous question.

(d) The projection equals

$$\langle A, u_i u_i^T \rangle u_i u_i^T = \left\langle \sum_{j=1}^n \lambda_j u_j u_j^T, u_i u_i^T \right\rangle u_i u_i^T \tag{15}$$

$$= \sum_{j=1}^{n} \left\langle \lambda_{j} u_{j} u_{j}^{T}, u_{i} u_{i}^{T} \right\rangle u_{i} u_{i}^{T} \tag{16}$$

$$= \lambda_i u_i u_i^T, \tag{17}$$

where the last step follows from the result in the previous question.

- (e) The matrix $A' := A \lambda_1 u_1 u_1^T$ is the component of A that is orthogonal to the matrix $u_1 u_1^T$.
- 3. (Quadratic forms)

(a)

$$g_v(t) = v^T A v t^2 (18)$$

is a second-order polynomial, i.e. a quadratic function.

- (b) By basic calculus $g_v''(t) = 2v^T A v$.
- (c) By the spectral theorem the vectors u_1 and u_n that maximize and minimize $v^T A v$ on the unit circle are the eigenvectors corresponding to the maximum and minimum eigenvalues. The maximum and minimum curvature is equal to the maximum and minimum eigenvalue respectively.
- 4. (Projected gradient ascent)
 - (a) For any x, the function

$$f(y) := ||x - y||_2^2 \tag{19}$$

$$= y^{T}y - 2x^{T}y + x^{T}x (20)$$

is a second order polynomial and therefore continuous, so by the same argument as in Lemma 5.1 it achieves a maximum on the unit sphere by the extreme value theorem. Now, in order for a point z to be the maximum, the gradient of f has to be

orthogonal to the tangent plane to the unit circle, or equivalently, it must be aligned with z. This implies that there exists a constant α such that

$$\nabla f(z) = 2(z - x) \tag{21}$$

$$= \alpha z, \tag{22}$$

Note that $\alpha = 2$ would imply x = 0, which is equidistant to all points in the unit sphere so they are all projections. Assuming $\alpha \neq 2$, we have

$$z = \frac{2}{2 - \alpha} x,\tag{23}$$

so z is collinear with x. If $x \neq 0$ there are only two such vectors on the unit circle, $x/||x||_2$ and $-x/||x||_2$. The distance between x and the former is $|||x||_2 - 1|$. The distance between x and the latter is $||x||_2 + 1$. We conclude that if $x \neq 0$, its projection equals $x/||x||_2$.

(b) To find the largest eigenvalue we maximize the quadratic function $f(x) := x^T A x$ on the unit sphere. The gradient ascent iterations are

$$x^{[k]} = \mathcal{P}_{\mathcal{S}}(x^{[k-1]} + \alpha \nabla f(x^{[k-1]}))$$
 (24)

$$= \mathcal{P}_{\mathcal{S}}(x^{[k-1]} + 2\alpha A x^{[k-1]}) \tag{25}$$

$$= \frac{(I + 2\alpha A)x^{[k-1]}}{||(I + 2\alpha A)x^{[k-1]}||_2}.$$
 (26)

(c) We have

$$(I + 2\alpha A)x^{[k-1]} = \sum_{i=1}^{n} \beta_i^{[k-1]} (1 + 2\alpha \lambda_i) u_i,$$
 (27)

$$\left| \left| (I + 2\alpha A)x^{[k-1]} \right| \right|_{2}^{2} = \sum_{i=1}^{n} \left(\beta_{i}^{[k-1]} (1 + 2\alpha \lambda_{i}) \right)^{2}$$
 (28)

so that

$$x^{[k]} = \frac{(I + 2\alpha A)x^{[k-1]}}{||(I + 2\alpha A)x^{[k-1]}||_2}$$
(29)

$$= \sum_{i=1}^{n} \frac{\beta_i^{[k-1]} (1 + 2\alpha \lambda_i)}{\sum_{i=1}^{n} \left(\beta_i^{[k-1]} (1 + 2\alpha \lambda_i)\right)^2} u_i.$$
 (30)

Therefore

$$\beta_i^{[k]} = \frac{\beta_i^{[k-1]} (1 + 2\alpha \lambda_i)}{\sum_{i=1}^n \left(\beta_i^{[k-1]} (1 + 2\alpha \lambda_i)\right)^2}$$
(31)

and

$$\frac{\beta_1^{[k]}}{\beta_i^{[k]}} = \frac{\beta_1^{[k-1]} (1 + 2\alpha\lambda_1)}{\beta_i^{[k-1]} (1 + 2\alpha\lambda_i)}$$
(32)

$$= \left(\frac{1+2\alpha\lambda_1}{1+2\alpha\lambda_i}\right)^k \frac{\beta_1^{[0]}}{\beta_i^{[0]}}.$$
 (33)

If $\beta_1^{[0]}$ is nonzero, then the ratio of $\frac{|\beta_1^{[k]}|}{|\beta_i^{[k]}|}$ grows with k as long as $|1 + 2\alpha\lambda_1|$ is larger than all other $|1 + 2\alpha\lambda_i|$, so $\beta_1^{[k]}$ is eventually much larger than the other coefficients and $x^{[k]}$ converges to u_1 .

The condition $|1 + 2\alpha\lambda_1|$ is larger than all other $|1 + 2\alpha\lambda_i|$ can be analyzed in the following three cases:

i. All $\lambda_i > 0$: if all $\lambda_i > 0$ and $\lambda_1 > \lambda_i$ for all $i \neq 1$ then $1 + 2\alpha\lambda_1 > 1 + 2\alpha\lambda_i > 0$ for all $i \neq 1$ and the algorithm converges for all values of $\alpha(>0)$. Taking the limit when $\alpha \to \infty$ we have

$$\lim_{\alpha \to \infty} \frac{\beta_1^{[k]}}{\beta_i^{[k]}} = \left(\frac{\lambda_1}{\lambda_i}\right)^k \frac{\beta_1^{[0]}}{\beta_i^{[0]}},\tag{34}$$

so the algorithm will still converge to λ_1 (or u_1) when α is arbitrarily large.

ii. All $\lambda_i < 0$: if all $\lambda_i > < 0$ then we have $|\lambda_1| < |\lambda_i|$ for all $i \neq 1$. The algorithm converges when

$$|1 + 2\alpha\lambda_1| > |1 + 2\alpha\lambda_i| \tag{35}$$

$$(1 + 2\alpha\lambda_1)^2 > (1 + 2\alpha\lambda_i)^2 \tag{36}$$

$$(2 + 2\alpha(\lambda_i + \lambda_1))(2\alpha(\lambda_1 - \lambda_i)) > 0$$
(37)

Note that $(\lambda_1 - \lambda_i) > 0$ which implies

$$2 + 2\alpha(\lambda_i + \lambda_1) > 0 \tag{38}$$

$$\alpha < \frac{2}{|\lambda_i| + |\lambda_1|} \tag{39}$$

So, we need $\alpha < \frac{2}{|\lambda_n| + |\lambda_1|}$.

Taking the limit when $\alpha \to \infty$ we should converge to λ_n (or u_n) here.

iii. $\lambda_n < 0$ and $\lambda_1 > 0$: The algorithm converges when

$$|1 + 2\alpha\lambda_1| > |1 + 2\alpha\lambda_i| \tag{40}$$

$$(1 + 2\alpha\lambda_1)^2 > (1 + 2\alpha\lambda_i)^2 \tag{41}$$

$$(2 + 2\alpha(\lambda_i + \lambda_1))(2\alpha(\lambda_1 - \lambda_i)) > 0$$
(42)

If $|\lambda_1| < |\lambda_n|$, then $(\lambda_1 - \lambda_i) > 0$ for all $i \neq 1$ which implies

$$2 + 2\alpha(\lambda_i + \lambda_1) > 0 \tag{43}$$

$$\alpha < \frac{1}{|\lambda_i| + |\lambda_1|} \tag{44}$$

So, we need $\alpha < \frac{1}{|\lambda_n| + |\lambda_1|}$. and in this case, when $\alpha \to \infty$ we should converge to λ_n (or u_n) here. $(\lambda_1 - \lambda_i) > 0$ for all $i \neq 1$ So we need

$$2 + 2\alpha(\lambda_i + \lambda_1) > 0 \tag{45}$$

$$1 + \alpha(\lambda_i + \lambda_1) > 0 \tag{46}$$

if $|\lambda_1|>|\lambda_i|$ for all $i\neq 1$ i.e $|\lambda_1|>|\lambda_n|$ then this equation is satisfied for all $\alpha > 0$. And in this case, when $\alpha \to \infty$ we should converge to λ_1 (or u_1) here. if $|\lambda_1| < |\lambda_n|$ then we have

$$1 + \alpha(\lambda_1 - |\lambda_n|) > 0 \tag{47}$$

$$\alpha < \frac{1}{(-\lambda_1 + |\lambda_n|)} \tag{48}$$

So, we need $\alpha < \frac{1}{|\lambda_n| - \lambda_1}$. And in this case, when $\alpha \to \infty$ we should converge to λ_n (or u_n) here.

(d) If using the **older** version of support code

Figure 1: 2×2 matrix

(e) If using the new version of support code

Figure 2: 3×3 matrix

Figure 3: 4×4 matrix

Figure 4: 2×2 matrix

Figure 5: 3×3 matrix

Figure 6: 4×4 matrix