3.7 MSstatsTMT: Details of parameter estimation and testing for differential abundance

Pairwise comparisons between conditions Model-based testing for differentially abundant proteins between pairs of conditions is carried out through a contrast of the condition means. Denote $\beta=(\beta_1,\beta_2,\ldots,\beta_C)$ the parameters associated with the terms Condition in Supplementary Equation S1-5, and $l=(l_1,l_2,\ldots,l_C)$ a vector of coefficients where $\sum l_c=0$. A contrast is defined as $l^T\beta=\sum_c l_c\beta_c$. For example, a pairwise comparison testing proteins for differential abundance between Condition 1 and Condition 2 can be expressed as a contrast with $l=(1,-1,0,\ldots,0)$. We are interested in the null hypothesis $l^T\beta=\sum l_c\beta_c=0$.

We estimate the parameters of the model using restricted maximum likelihood [7, 8, 9] to obtain $\hat{\beta}$, the contrast $l^T \hat{\beta} = \sum_c l_c \hat{\beta}_c$, and the corresponding t-statistic [10]

$$t = \frac{l^T \hat{\beta}}{\sqrt{ls^2 \hat{V} l^T}} \tag{6}$$

Here s^2 is the estimate of σ^2 in Supplementary Equation S1, and \hat{V} is the unscaled variance-covariance matrix of $\hat{\beta}$, such that $s^2\hat{V}$ is the variance-covariance matrix of $\hat{\beta}$, and $\sqrt{ls^2\hat{V}l^T}$ is the standard error of the contrast. The estimates s^2 and \hat{V} are obtained by restricted maximum likelihood. The matrix \hat{V} is a function of estimates $\hat{\sigma}_M^2$ for the random effect of technical replicates, and $\hat{\sigma}_S^2$ for the random effect of subject. Therefore, the standard error of the contrast takes into account both technical variance σ_M^2 , σ_T^2 , σ^2 and biological variance σ_S^2 .

In general and unbalanced designs, the degrees of freedom of the t-statistic in Supplementary Equation S6 are derived by Satterthwaite approximation [11]

$$df = \frac{2(s^2l\hat{V}l^T)^2}{[\text{VAR}(s^2l\hat{V}l^T)]}.$$
(7)

The calculation of $[VAR(s^2l\hat{V}l^T)]$ is described in [12, 10]. In unbalanced design, different contrasts of a same protein may have different degrees of freedom.

Empirical Bayes variance moderation When the number of biological replicates in each condition is small, we adopt Empirical Bayes moderation from *limma* [13]. Briefly, we assume that the estimate of the error variance σ^2 in Supplementary Equation S1 s^2 follows a scaled chi-square distribution with ν degrees of freedom

$$s^2|\sigma^2 \sim \frac{\sigma^2}{\nu}\chi_{\nu}^2,\tag{8}$$

The variance σ^2 of each protein is in turn assumed to follow a scaled inverse chi-square prior distribution with prior degrees of freedom d_0 and prior variance s_0^2

$$\frac{1}{\sigma^2} \sim \frac{1}{d_0 s_0^2} \chi_{d_0}^2. \tag{9}$$

The degree of freedom ν is estimated as implemented in the R package ImerTest [12]. The parameters d_0 and s_0^2 are estimated from the distribution of the observed s^2 of all the proteins using an Empirical Bayes approach as implemented in the R package limma [14]. Finally, the posterior variance estimate is incorporated into the residual variance of each protein

$$\tilde{s}^2 = \frac{s_0^2 d_0 + s^2 \nu}{d_0 + \nu}. (10)$$

Then, the moderated t-statistic for the contrast l becomes

$$\tilde{t} = \frac{l^T \hat{\beta}}{\sqrt{l\tilde{s}^2 \hat{V} l^T}},\tag{11}$$

with $df + d_0$ degrees of freedom.