寒假回顾

廖嘉琦

北京理工大学 ACM 俱乐部

2022年7月11日

◄□▶◀圖▶◀불▶◀불▶ 불 ∽٩

寒假集训都讲了些啥??

- C 语言复习与拓展
- STL 应用
- 排序,枚举,模拟
- 二分,三分,快速幂
- 贪心
- 图与搜索 (BFS, DFS)

- 拓扑排序, 最短路
- 双指针, 前缀和
- 矩阵快速幂, 简单数论
- 动态规划
- 并查集,最小生成树
- 线段树,树状数组

C 语言

- C 语言程序设计考的如何?
- C++ 学的咋样?
- C with STL!
- 相信你们对语法应该很熟练!

STL 容器

Sequence	Associative	Unordered associative	adaptors
array	set	unordered_set	stack
vector	map	unordered_map	queue
deque	multiset	unordered_multiset	priority_queue
forward_list	multimap	unordered_multimap	
list			

更多细节,详见Containers library - cppreference

算法库

- Non-modifying sequence operations
 - std::count, std::count_if
- Modifying sequence operations
 - std::reverse, std::swap
- Partitioning operations
 - std::partition, std::stable_partition
- Sorting operations
 - std::sort, std::stable_sort, std::nth_element
- Binary search operations (on sorted ranges)
 - std::lower bound, std::upper bound

算法库-续1

- Other operations on sorted ranges
 - std::merge, std::inplace_merge
- Set operations (on sorted ranges)
 - std::set_intersection, std::set_union
- Heap operations
 - std::make_heap, std::sort_heap
- Minimum/maximum operations
 - std::max, std::min, std::max_element
- Comparison operations
 - std::equal, std::lexicographical_compare

算法库-续2

- Permutation operations
 - std::is_permutation, std::next_permutation
- Numeric operations
 - std::partial_sum, std::adjacent_difference
- Operations on uninitialized memory
 - std::partial_sum, std::adjacent_difference

算法库-续2

- Permutation operations
 - std::is_permutation, std::next_permutation
- Numeric operations
 - std::partial_sum, std::adjacent_difference
- Operations on uninitialized memory
 - std::partial_sum, std::adjacent_difference

更多细节,详见Algorithms library - cppreference,或许会收获小惊喜哦

排序

- std::sort / cmp
- 比较型排序 VS. 非比较型排序
- 与贪心结合
- 高维时排序一维从而降维

枚举

- 确定解空间
- 减少枚举的空间(剪枝)
- 选择合适的顺序枚举
- DFS

模拟

- 码量大,代码长
- 建议先做好写的题, 彻底想清楚所有细节再写
- 何必折磨自己呢?

二分与三分

- 二分寻找: std::lower_bound, std::upper_bound
- 三分寻找: 查找单峰函数的最值
- 倍增: 每次翻倍, 二进制拆分组合
- 二分答案: 答案具有某种单调性

快速幂

基本思想是通过倍增减少重复计算,将指数用二进制分解,例如

$$a^{11} = a^8 a^2 a^1$$

而计算 a^{2^i} 时可以令 i=0 从小往大计算,每次平方自己。

快速幂

基本思想是通过倍增减少重复计算,将指数用二进制分解,例如

$$a^{11} = a^8 a^2 a^1$$

而计算 a^{2^i} 时可以令 i=0 从小往大计算,每次平方自己。

应用:

- $O(\log p)$ 求 a^p : 求逆元 $a^{p-2} \mod p$
- $O(k^3 \log n)$ 求 $A_{k \times k}^n$: 求解线性递推方程 $h_i = \sum_{j=1}^k a_j \times h_{i-j}$

适用范围

贪心算法在有最优子结构的问题中尤为有效。最优子结构的意思是问题 能够分解成子问题来解决,子问题的最优解能递推到最终问题的最优解。

贪心

适用范围

贪心算法在有最优子结构的问题中尤为有效。最优子结构的意思是问题 能够分解成子问题来解决,子问题的最优解能递推到最终问题的最优解。

常见证法:

- 反证法
- 归纳法

贪心

适用范围

贪心算法在有最优子结构的问题中尤为有效。最优子结构的意思是问题 能够分解成子问题来解决,子问题的最优解能递推到最终问题的最优解。

常见证法:

- 反证法
- 归纳法

常见套路:

- 按照某规则排序后选择
- 每次取出最值用于更新

图的存储 - 稠密图

使用邻接矩阵存图时,无法存储重边,具体性能如下:

- 空间复杂度: O(n²)
- 遍历点 u 的所有出边: O(n)
- 遍历整张图: O(n²)
- 判断 (*u*, *v*) 间是否存在边: *O*(1)

若 $m \ll n$,则二维数组中存在大量空位,浪费了很多空间。

图的存储 - 一般图

其一是**邻接表**,基于 C++ 提供的标准库 std::vector<int>,将点 i 所有出边的端点插入下标为 i 的 vector 中。

其二是**链式前向心**,本质上是用**链表**手动实现的**邻接表**。

图:链式前向心

图的存储 - 一般图

邻接表1的具体性能如下:

- 空间复杂度: O(m)
- 遍历点 *u* 的所有出边: *O*(*d*⁺(*u*))
- 遍历整张图: *O*(*m*)
- 判断 (*u*, *v*) 间是否存在边: O(d⁺(*u*))

 SkqLiao (BIT-ACM)
 寒假回顾
 2022 年 7 月 11 日
 15 / 52

图的遍历

- 深度优先搜索 (DFS): 每次都尝试向更深的节点走
 - 递归
 - 树上应用
- 广度优先搜索 (BFS): 每次都尝试访问同一层的节点
 - 队列
 - 无权最短路

拓扑排序

有向边 $i \rightarrow j$ 意味着节点 j 依赖于节点 i。

拓扑排序的目标是将 DAG 上的所有节点排序,使得排在前面的节点不能依赖于排在后面的节点。

BFS, 每次将入度为 0 的点入队,复杂度 O(|V| + |E|)。

拓扑排序

有向边 $i \rightarrow j$ 意味着节点 j 依赖于节点 i。

拓扑排序的目标是将 DAG 上的所有节点排序,使得排在前面的节点不能依赖于排在后面的节点。

BFS, 每次将入度为 0 的点入队,复杂度 O(|V| + |E|)。

字典序最值?将队列替换成堆,复杂度 $O(|E| + |V| \log |V|)$ 。

最短路

- 全源最短路
 - Floyd: $O(|V|^3)$
 - 传递闭包: O(^{|V|³}/_w)
 - Johnson: $O(|V||E|\log|V| + |V||E|)$
- 单源最短路
 - 非负权图: Dijkstra: O((|V| + |E|) log |V|)
 - 负权图: Bellman-Ford(SPFA): O(|V||E|)

双指针算法

- 对于所有合法区间 [/, r], 随着 r 递增, / 单调不减
- 区间限制, 记作 g(I, r)
- 区间状态, 记作 f(I,r)
- $f \Rightarrow g$
- 求合法区间长度的最值

观察转移

- ① $[I,r] \Rightarrow [I,r+1]$: 插入 a_{r+1} , 复杂度记为 $O(\alpha)$
- ② $[I, r] \Rightarrow [I+1, r]$: 删除 a_I , 复杂度记为 $O(\beta)$

合并时易删除难,通常 $O(\beta) > O(\alpha)$

举个栗子

- $f = \sum / \prod / xor$, $O(\alpha) = O(\beta) = O(1)$, 存在逆运算,插入可撤销
- $f = \min/\gcd/$ and, $O(\alpha) = O(1)$, $O(\beta) = O(n)$, 合并时丢失信息, 插入无法撤销
- f =背包, $O(\alpha) = O(V), O(\beta) = ?$

举个栗子

- $f = \sum / \prod / xor$, $O(\alpha) = O(\beta) = O(1)$, 存在逆运算,插入可撤销
- $f = \min/\gcd/$ and, $O(\alpha) = O(1)$, $O(\beta) = O(n)$, 合并时丢失信息, 插入无法撤销
- f = 背包, $O(\alpha) = O(V), O(\beta) = ?$

用空间换时间的方法可以解决删除问题,但此处地方不够,略过不讲。

前缀和

- 不支持修改
- 提前计算好前 i 项,通过逆运算 O(1) 查询区间和
- 高维前缀和基于容斥原理
- 树上前缀和维护路径和
- 与差分互为逆运算

对于一个 k 次的线性递推:

$$h_n = a_1 h_{n-1} + a_2 h_{n-2} + ... + a_k h_{n-k}, \forall n \in \mathbb{N}, n > k$$

对于一个 k 次的线性递推:

$$h_n = a_1 h_{n-1} + a_2 h_{n-2} + ... + a_k h_{n-k}, \forall n \in \mathbb{N}, n > k$$

构造转移矩阵 A 和初始向量 x

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_{k-2} & a_{k-1} & a_k \\ 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 \end{bmatrix}_{k \times k} x = \begin{bmatrix} h_{k-1} \\ h_{k-2} \\ \vdots \\ h_2 \\ h_1 \\ h_0 \end{bmatrix}_{k \times 1}$$

则

$$Ax = \begin{bmatrix} a_1 & a_2 & \cdots & a_{k-2} & a_{k-1} & a_k \\ 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} h_{k-1} \\ h_{k-2} \\ \vdots \\ h_2 \\ h_1 \end{bmatrix} = \begin{bmatrix} h_k \\ h_{k-1} \\ \vdots \\ h_3 \\ h_2 \\ h_1 \end{bmatrix}$$

则

$$Ax = \begin{bmatrix} a_1 & a_2 & \cdots & a_{k-2} & a_{k-1} & a_k \\ 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} h_{k-1} \\ h_{k-2} \\ \vdots \\ h_2 \\ h_1 \\ h_0 \end{bmatrix} = \begin{bmatrix} h_k \\ h_{k-1} \\ \vdots \\ h_3 \\ h_2 \\ h_1 \end{bmatrix}$$

因此
$$A^{n-k+1}x = [h_n, h_{n-1}, \cdots, h_{n-k+1}]^{\top}$$
。

 $^{^2}$ 特征多项式 +FFT 可以优化到 $O(k \log k \log n)$

欧几里得算法

$$gcd(m, n) = gcd(n, m \mod n)$$

欧几里得算法就是不断地递归应用这个等式,直到 n=0 时结束。复杂度 $O(\log m)$ 。

裴蜀定理

若 a 和 b 是整数,方程 ax + by = d 有整数解当且仅当 gcd(a, b)|d。 裴蜀定理仅能知道解是否存在,具体求解的方法为扩展欧几里得算法。

拓展欧几里得算法

求方程 $ax + by = \gcd(a, b)$ 的整数解(根据裴蜀定理判定有解)。

显然 $bx' + (a \mod b)y' = \gcd(a, b)$ 同样存在整数解。

同时, $a \mod b = a - b \lfloor \frac{a}{b} \rfloor$, 再联立方程可以得到

$$ax + by = bx' + (a - b\lfloor \frac{a}{b} \rfloor)y'$$

整理后,

$$ax + by = ay' + b(x' - \lfloor \frac{a}{b} \rfloor)y'$$

扩展欧几里得算法

如果已经知道了(x,y),那么在满足下式的情况下方程成立。

$$\begin{cases} x = y' \\ y = x' - \lfloor \frac{a}{b} \rfloor \end{cases}$$

这样就可以利用方程 $bx + (a \mod b)y = \gcd(a, b)$ 的整数解 (x', y') 来计算出方程 $ax + by = \gcd(a, b)$ 的整数解了。

最后只要按照前面计算最大用因数的方法,在递归的过程中加入 x 和 y 的计算就可以了。当递归到末尾的时候 b 变为 0,这是方程有整数解 x = 1, y = 0。

同余

同余的概念提供了一种描述整除性质的简便方法。

如果 m 整除 a-b,我们就说 a 与 b 模 m 同余并记为

$$a \equiv b \pmod{m}$$

同余

如果

$$a_1 \equiv b_1 \pmod{m}$$

$$a_2 \equiv b_2 \pmod{m}$$

那么

$$a_1 \pm a_2 \equiv b_1 \pm b_2 \pmod{m}$$

 $a_1 a_2 \equiv b_1 b_2 \pmod{m}$

乘法逆元

在模 p 意义下, x 的乘法逆元 x^{-1} 满足如下同余方程:

$$xx^{-1} \equiv 1 \pmod{p}$$

在同余意义下,逆元就是除法,但逆元可能不存在。

素数与素数筛

素数

大于 1 的正整数 a,除了可以被 1 和 a 整除,没有其他的约数

如何判定?

- 暴力判定: O(√x)
- Miller-Rabin: $O(k \log x)$
- Eratosthenes 筛法: $O(n \log \log n)$
- 欧拉筛法: O(n)

Eratosthenes 筛法

基本思路:删去所有素数的倍数,未被删除的就是素数了。

从 2 开始自增,先删去 2 的所有倍数。下一个未被删去的数一定是素

数,并删去它的所有倍数,然后不断进行这个操作。

被删的数总共有 $n(\frac{1}{2} + \frac{1}{3} + \cdots) = O(n \log \log n)$ 。

本筛法常用于预处理 $1 \sim n$ 中每个数的所有因数。

欧拉筛法

对于任意一个合数,通过埃氏筛法,它的所有质因数都会将它删除一次, 即它被删除了多次、效率不高。

欧拉筛的核心思想是让每个合数都只被它的最小质因子删除。

代码实现时只比埃氏筛法多一行,实际表现上看提升并不大。

筛法的应用

- 求 x 的所有约数和
- 求 x 的约数个数
- 求某个积性函数 f(x)
- . . .

GCD 与 LCM

- 最大公约数: $gcd(a, b) = gcd(b, a \mod b)$
- 最小公倍数: $lcm(a,b) = \frac{a \times b}{\gcd(a,b)}$
- 欧拉函数: $\varphi(n)$ 表示小于等于 n 且和 n 互质的数的个数
- 费马小定理: 对于任意整数 $a, a^{p-1} \equiv 1 \pmod{p}$
- 欧拉定理: 若 gcd(a, m) = 1, 则 $a^{\varphi(m)} \equiv 1 \pmod{m}$

组合数学

- 排列: $A_m^n = \frac{n!}{(n-m)!}$ (有序)
- 组合: $C_m^n = \frac{n!}{(n-m)!m!}$ (无序)
- 加法原理: 分类完成
- 乘法原理: 分步完成
- 容斥原理: $|\bigcup_{i=1}^n S_i| = \sum_{m=1}^n (-1)^{m-1} \sum_{a_i < a_{i+1}} |\bigcap_{i=1}^m S_{a_i}|$
- 抽屉原理: n 个物体划分为 k 组,至少一组含有 $\geq \left\lceil \frac{n}{k} \right\rceil$ 个物品
- 卡特兰数: $H_n = \frac{H_{n-1}(4n-2)}{n+1}$

组合数

递推式:

$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$$

对称性:

$$\binom{m}{n} = \binom{n-m}{m}$$

卢卡斯定理 (p 为质数):

$$\binom{n}{m} \bmod p = \binom{\lfloor n/p \rfloor}{\lfloor m/p \rfloor} \cdot \binom{n \bmod p}{m \bmod p} \bmod p$$

动态规划

动态规划解决的最优化问题(否则是递推)需要满足两点性质:

- 重叠子问题
- 最优子结构

动态规划

动态规划解决的最优化问题(否则是递推)需要满足两点性质:

- 重叠子问题
- 最优子结构

动态规划有两种实现方式:

- 制表法: 自底向上
- 记忆化搜索: 自顶向下

重叠子问题

大前提:原问题可被拆分成求解形式相同的子问题

- 状态数有限 ⇒ 可计算、存在边界
- 求解存在依赖关系 ⇒ DAG 结构
- 边界答案已知 ⇒ 与状态直接相关

最优子结构

大前提:原问题的最优解由相关子问题的最优解组合而成

- 子问题的其他解对原问题无贡献 ⇒ 无需计算
- 贪心也是可能的解法

常见 DP

- 线性 DP (序列 DP、区间 DP)
- 图上 DP (树形 DP、DAG 上 DP)
- 状压 DP
- 期望 DP
- 插头 DP
- 动态 DP
- **.** . .

常见的 DP 的优化方法

- 基于单调性的优化 ⇒ 优化转移方程的计算
 - 斜率优化
 - ② 单调队列/单调栈优化
 - ③ 四边形不等式优化
- 基于状态设计的优化 ⇒ 改变转移方程的形式
- 基于数据结构的优化
 - 线段树
 - ② 平衡树 (set、map 等)

DP 的一般解题思路

- 数学符号化待求问题
- ② 设计状态表示和最优化值
 - 状态表示: 对当前子问题的解的局面集合的一种充分的描述
 - 最优化值: 对应的状态集合下的最优化信息, 最终得到答案
- 推出状态转移方程、分析复杂度
- 考虑是否需要优化(或者回到第2 步修改状态表示)
- ⑤ 写代码、跑样例、调试、提交、AC!

背包 DP

给定一些物品,每个物品有价值、花费、个数等参数,要求在满足花费 限制下求得最大价值,物品间可能存在一些额外限制。

背包 DP

给定一些物品,每个物品有价值、花费、个数等参数,要求在满足花费 限制下求得最大价值,物品间可能存在一些额外限制。

- 01 背包
- 完全背包
- 多重背包
- 混合背包
- 分组背包
- <u>. . . .</u>

如何优化 DP——以多重背包为例

问题

有 N 种物品和一个容量为 V 的背包。第 i 种物品的体积是 C_i ,价值是 W_i ,有 M_i 个。

求解如何使背包中物品总价值最大。

多重背包——朴素做法

- 把「每种物品选 k 次」等价转换为「有 k 个相同的物品,每个物品选一次」,转换成 01 背包模型
- 设计状态 f[i,j] 为前 i 种物品,占用 j 的空间的最大价值
- 转移方程: $f[i,j] = \max_{k=0}^{M_i} f[i-1,j-k \times C_i] + k \times W_i$
- 复杂度 O(V∑ M_i)

多重背包·优化 1——二进制分组

- 原状态中哪里存在冗余?
- 一次性选择 x 件和选择 x 次 1 件是等价的
- 将 M_i 进行二进制分组,将它分成 $\lceil \log_2 M_i \rceil$ 件物品
- 例如 $30 = 2^1 + 2^2 + 2^3 + 2^4$,将 $M_i = 30$ 拆成 4 件物品,它们的体积和价值为对应倍数的单个物品
- 复杂度降为 $O(V \sum \log_2 M_i)$

多重背包·优化 2——单调队列

- 观察转移方程: $f[i,j] = \max_{k=0}^{M_i} f[i-1,j-k \times C_i] + W_i \times k$
- $f[i,j], f[i,j+C_i], f[i+j+2 \times C_i], \cdots$ 属于同一组
- 它们与 C_i 前的系数 k 有关, 且 k 是连续的
- 因此我们要维护的是 k 在某段可行区间内的 $\max\{f[i,j+k\times C_i]\}$
- 因此可以用单调队列维护 $\max\{f[i,j+k\times C_i]\}$
- 复杂度 O(VN)

并查集

并查集是一种树形的数据结构,它用于处理一些不交集的问题。 它支持两种操作:

- 查找: 确定某个元素处于哪个子集 ⇒ 路径压缩
- 合并:将两个子集合并成一个集合 ⇒ 启发式合并

最小生成树

最小生成树是在连通加权无向图中一棵权值最小的生成树。

- Kruskal: $O(|E|\log|E|)$, 基于并查集
 - Kruskal 重构树
- Prim: O((|V| + |E|) log |V|), 基于最短路
- 次小生成树
- 最小树形图

线段树与树状数组

掏出老古董课件!

详见 线段树与树状数组 by Skqliao