MT234P - MULTIVARIABLE CALCULUS - 2022

Fiacre Ó Cairbre

Lecture 17

Section 4.2 - Surface Area.

Definition 4.

Suppose f(x,y) and its partial derivatives are continuous on the closed region T in the xy-plane. Then, the area of the surface given by z = f(x,y) over T is given by

$$\int_{T} \int \sqrt{1 + f_x^2 + f_y^2} \, dA$$

where

$$f_x = \frac{\partial f}{\partial x}, \quad f_x^2 = (\frac{\partial f}{\partial x})^2, \quad f_y = \frac{\partial f}{\partial y}, \quad f_y^2 = (\frac{\partial f}{\partial y})^2$$

Example 7.

Find the surface area of the portion of the surface $z = \frac{1}{2}(x^2 - 2y)$ lying above the triangular region T in the xy-plane bounded by the lines y = 0, x = 2 and y = 3x.

Solution.

We see that $T = \{(x, y) : 0 \le x \le 2, \ 0 \le y \le 3x\}.$

Let
$$f(x,y) = \frac{1}{2}(x^2 - 2y)$$
. Then

$$f_x = x$$
 and $f_y = -1$

So, the required surface area is

$$S = \int_{T} \int \sqrt{1 + f_x^2 + f_y^2} \, dA$$

$$= \int_{0}^{2} \left(\int_{0}^{3x} \sqrt{2 + x^2} \, dy \right) dx$$

$$= \int_{0}^{2} \left[y\sqrt{2 + x^2} \right]_{0}^{3x} \, dx$$

$$= \int_0^2 \left(3x\sqrt{2+x^2} \right) \, dx \qquad (*)$$

Now use substitution on (*) with $u = 2 + x^2$ to get

$$(*) = \frac{3}{2} \int_2^6 \sqrt{u} \, du$$
$$= \left[u^{\frac{3}{2}} \right]_2^6$$
$$= 6\sqrt{6} - 2\sqrt{2}$$

Example 8.

Find the surface area of the portion of the surface z=2x+3y lying above the rectangular region T given by $-1 \le x \le 2, \ 0 \le y \le 2$.

Solution.

Let f(x,y) = 2x + 3y. Then

$$f_x = 2$$
 and $f_y = 3$

So, the required surface area is

$$S = \int_{T} \int \sqrt{1 + f_x^2 + f_y^2} \, dA$$

$$= \int_{-1}^{2} \left(\int_{0}^{2} \sqrt{1 + 4 + 9} \, dy \right) dx$$

$$= \int_{-1}^{2} \left[y\sqrt{14} \right]_{0}^{2} \, dx$$

$$= \int_{-1}^{2} \left(2\sqrt{14} \right) \, dx$$

$$= \left[2x\sqrt{14} \right]_{-1}^{2} \, dx$$

$$= 6\sqrt{14}$$

Section 4.3 – Line Integrals.

Remark 9.

We will first discuss what a piecewise smooth curve is. Suppose C is a curve in the xy-plane given by the parametric equations x = x(t), y = y(t) for $a \le t \le b$. An example of such a curve is the circle with centre (0,0) and radius 1 which has parametric equations $x = \cos t, \ y = \sin t$ for $0 \le t \le 2\pi$.

We now say that C is smooth if

$$\frac{dx}{dt}$$
 and $\frac{dy}{dt}$

are continuous on [a, b]. Similarly, suppose B is a curve in \mathbb{R}^3 given by the parametric equations x = x(t), y = y(t), z = z(t) for $a \le t \le b$. We say that B is smooth if

$$\frac{dx}{dt}$$
, $\frac{dy}{dt}$ and $\frac{dz}{dt}$

are continuous on [a, b].

A curve W is piecewise smooth if the interval [a, b] can be subdivided into a finite number of subintervals, on each of which W is smooth.

Example 9.

Consider the curve C given by $x = \cos t$, $y = \sin t$, for $0 \le t \le 2\pi$. Then, C is smooth. C is the circle of radius 1 with centre at the origin (as mentioned above).

Consider the curve W given by $x = \cos t$, $y = \sin t$, z = t for $0 \le t \le 4\pi$. Then, W is smooth. W is a helix.