

Systèmes mécaniques et automatiques

Notes de cours IngéSpé Automatique

Année 2018–2019

Systèmes mécaniques et automatiques

Notes de cours IngéSpé Automatique

Filipe Manuel Vasconcelos

écrit sous IAT_EX, TikZ v1.0 janvier 2018. v2.0 été 2018.

Ce document est mis à disposition selon les termes de la licence

Creative Commons "Attribution - Partage dans les mêmes conditions 4.0 International".

Table des matières

Table	des n	natières	5
Chapi	tre 1	Systèmes linéaires, continus	11
1	Intro	oduction	11
	1.1	Système	11
	1.2	Système linéaire	11
	1.3	Système à temps continu	11
	1.4	Système invariant	11
2	Mod	élisation d'un signal	11
	2.1	Types de signaux	11
	2.2	Propriétés générales des signaux analogiques	11
	2.3	Signaux usuels	13
3	La t	ransformée de Laplace	18
	3.1	Définition	18
	3.2	Transformées des signaux usuels	18
	3.3	Propriétés	20
	3.4	Application de la transformée de Laplace	22
4	Fond	tion de Transfert	26
	4.1	Représentation de la fonction de transfert	26
Chapi	tre 2	Schéma fonctionnels	33
1	Intro	oduction	33
2	Tern	ninologie relative aux schémas fonctionnels	33
3	Tran	sformation des schémas fonctionnels	35
	3.1	Réduction de schéma-bloc	35
	3.2	Manipulation de schéma-bloc	38
4	Cas	d'entrées multiples	40
5	Rédu	action de schéma-bloc de grande taille	41
	5.1	Exemple à entrée simple	41
	5.2	Exemple à entrées multiples	43
6	Grap	ohe de fluence	44
	6.1	Définitions	44
	6.2	Algèbre des graphes de fluences	45
	6.3	Règle de Mason	48

Chapi	itre 3	Modélisation des SLCI	5
1	Intro	oduction	5
2	Syste	ème du premier ordre	5
	2.1	Définition d'un système du premier ordre	5
	2.2	Fonction de transfert d'un système du premier ordre	5
	2.3	Pôle de la fonction de transfert du premier ordre	5
	2.4	Réponses temporelles d'un système du premier ordre	5
3	Syste	ème du second ordre	5
	3.1	Définition d'un système du second ordre	5
	3.2	Fonction de transfert d'un système du second ordre	5
	3.3	Pôles de la fonction de transfert du second ordre	5
	3.4	Réponses temporelles d'un système du second ordre	6
4	Cas	particulier d'un système du second ordre sans amortissement	7
5	Autr	es modèles particuliers	7
	5.1	Gain pur	7
	5.2	Intégrateur pur	7
	5.3	Dérivateur pur	7
	5.4	Retard pur	7
6	Géné	éralisation des modèles de SLCI	7
Chapi	itre 4	Analyse fréquentielle	7
1	Répo	onse harmonique	7
	1.1	Exemple de réponse harmonique dans le domaine temporelle	7
2	Repr	résentation graphique de la réponse harmonique	8
	2.1	Diagramme de Bode	8
	2.2	Diagramme de Nyquist	8
	2.3	Diagramme de Black	8
3	Anal	yse fréquentielle des modèles usuels	8
	3.1	Diagrammes de Bode : méthodologie générale	8
	3.2	Diagrammes de Nyquist : méthodologie générale	10
	3.3	Diagrammes de Black : méthodologie générale	11
4	Etud	le du transitoire de la réponse harmonique	11
	4.1	Exemple d'un système du premier ordre	11
	4.2	Exemple d'un système du second ordre	11
Chapi	itre 5	Asservissements linéaires des systèmes	11
1	Intro	oduction	11
2	Orga	anisation d'un asservissement	11
3	Perfo	ormances des systèmes asservis	11
	3.1	Précision	11
	3.2	Rapidité	11
	3.3	Dépassement	11

4	Asser	vissement d'un système du premier ordre						
5	Asser	vissement d'un système du second ordre						
Chapita	hapitre 6 Précision des systèmes asservis							
Chapita	re 7	Stabilité des systèmes asservis 127						
1	Défini	tions de la stabilité						
2	Critèr	e de stabilité						
	2.1	Critère algébrique de Routh						
	2.2	Critère graphique du revers						
	2.3	Critère de Nyquist						
Chapita	re 8	Correction des systèmes asservis 137						
Chapita	re 9	Initiation à la représentation d'état 141						
Chapita	re A	Transformation de Laplace 147						
1	Défini	tions						
2	Propr	<mark>iétés</mark>						
3	Table	des transformées de Laplace						
Chapita	re B	Rappel sur les nombres complexes 151						
Chapita		Décomposition en éléments simples 157						
1		-propos						
2	Fracti	on rationnelle rencontrées en automatique						
3		nposition en éléments simples						
4	Déter	mination des coefficients de la DES						
	4.1	Par identification						
	4.2	Multiplication/Substitution						
	4.3	Évaluation						
	4.4	Parité						
	4.5	Passage à la limite						
Chapit		Systèmes du second ordre 161						
1	_	les						
2	_	nses temporelles						
3		se fréquentielle						
Chapit		Initiation à Scilab 167						
1		ntation générale						
2		xe : console						
3		ômes et fractions rationnelles						
4		urs et matrices						
5	_	ammation						
6		avec Scilab						
	6.1	Définition d'un système linéaire						
	6.2	Simulation temporelle d'un système linéaire						
	6.3	Système du premier ordre						

7	Scilab	-Xcos				182
	7.1	Lancer Xcos				182
	7.2	Diagramme simple				182
	7.3	Simulation				183
	7.4	Blocs « To Workspace » ou « From Workspace »				183
Chapit	$\mathbf{re} \; \mathbf{F}$	Échelle logarithmique et le décibel				185
1	Rappe	el sur le logarithme décimal				185
2	Échell	e logarithmique décimale				185
3	Le déc	^z ibel				187
4	Diagra	amme de Bode				187
5	Tracer	du diagramme de Bode avec Scilab				189
Référe	nces					191

7 Stabilité des systèmes asservis

1 Définitions de la stabilité

Un système est dit stable si à une entrée bornée le système produit une sortie bornée¹

Un système est dit stable lorsque écarté de sa position d'équilibre, il tend à y revenir

Ces deux définitions sont équivalentes dans le cas des SLCI.

FIGURE 7.1 – Représentation schématique de la stabilité

2 Critère de stabilité

Condition fondamentale de stabilité

Un système est stable si sa fonction de transfert ne possède aucun pôles à partie réelle positive.

 $^{^1\}mathrm{Chez}$ nos amis anglo-saxons, on rencontre le concept de BIBO (« bounded input bounded output »)

FIGURE 7.2 – Stabilité d'un SLCI d'après la carte des pôles de sa fonction de transfert et de leurs réponses impulsionnelles. (Vert) Deux pôles complexes conjugués. (Rouge) Pôle à partie réel négative. (Gris) Deux pôles complexes conjugués à partie réelle nulle. (Noir) Pôle nul. (Bleu) Deux pôles complexes conjugués à partie réelle positive. (Orange) Pôle à partie réel positive.

Notion de pôles dominants

Inconvénients de la condition fondamentale

2.1 Critère algébrique de Routh

Routh²

$$H_{BF}(p) = \frac{N(p)}{D(p)} = \frac{a_m p^m + a_{m-1} p^{m-1} + \dots + a_1 p + a_0}{b_n p^n + b_{n-1} p^{n-1} + \dots + b_1 p + b_0}$$

l'équation caractéristique :

$$D(p) = 0$$

$$b_n p^n + b_{n-1} p^{n-1} + \dots + b_1 p + b_0 = 0$$
(7.1)

Condition nécessaire (Routh)

Un système d'ordre n est stable si tous les coefficients $(b_i \forall i \neq n)$ de son équation caractéristique sont de même signe que b_n .

Cette condition nécessaire s'avère suffisante si le système est du premier ou du second ordre. Pour un ordre supérieur il faut construire le tableau de Routh à partir des coéfficients de D(p), pour appliquer un critère suplémentaire.

2.1.1 Tableau de Routh

Dans le cas où la condition nécessaire est respectée et n > 2, il faut constuire le tableau de Routh à partir des coéfficients de l'équation caractéristique de la foction de transfert en boucle fermée.

Le tableau de Routh est constitué de n lignes et de k colonnes où $k = n/2 + 1^3$. L'élément A_{ij} correspond à l'élément de la i-ème ligne et j-ème colonne.

²Edward John Routh (1831-1907), mathématicien anglais.

³On réalise ici une division entière. Par exemple si n = 5, k = 2 + 1 = 3 et si n = 6, k = 3 + 1 = 4

Les deux premières lignes du tableau sont directement construites à partir des coéfficients de D(p).

si n est impaire la dernière colonne de la seconde ligne est non-nulle :

Les éléments de la troisième ligne sont construits à partir du déterminant⁴ d'élements des deux premières lignes.

$$\frac{p^n}{p^{n-1}} \begin{vmatrix} b_n & b_{n-2} & b_{n-4} & \cdots & b_3 & b_1 \\ b_{n-1} & b_{n-3} & b_{n-5} & \cdots & b_2 & b_0 \\ \hline p^{n-2} & A_{31} & A_{32} & A_{33} & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \end{vmatrix} \Rightarrow A_{32} = -\frac{1}{b_{n-1}} \begin{vmatrix} b_n & b_{n-4} \\ b_{n-1} & b_{n-5} \end{vmatrix}$$

On construit de la même manière la quatrième ligne :

Et ainsi de suite jusque la dernière ligne du tableau.

⁴Nous rappellons le calcul d'un déterminant d'une matrice 2×2 tel que $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$

La formule générale pour obtenir l'élément A_{ij} est alors :

$$A_{ij} = -\frac{1}{A_{(i-1)1}} \begin{vmatrix} A_{(i-2)1} & A_{(i-2)(j+1)} \\ A_{(i-1)1} & A_{(i-1)(j+1)} \end{vmatrix}$$
 (7.2)

Le critère s'applique sur la première colonne (dite des pivots) du tableau de Routh ainsi construit.

Critère de Routh

Un système est stable si tous les termes de la colonne des pivots du tableau de Routh sont de même signes.

Remarques:

Le nombre de changement de signe, nous donne le nombre de pôles à partie réelle positives (instables) de la fonction de transfert en boucle fermée.

Un propriété du tableau de Routh :

Une ligne de zéros pour les coefficients de l'avant-dernière ligne du tableau de Routh indique que le polynôme du dénominateur possède une paire de pôles, qui sont racines de l'équation auxiliaire :

$$Ap^2 + B = 0$$

où A et B sont les coefficients de la ligne précédente du tableau. On peut alors continuer le tableau en remplaçant la ligne de coefficients nuls par les coefficients de la dérivée de l'équation auxiliaire.

Une ligne de zéro implique la présence d'une paire de racines imaginaires pures donnant lieu à une forme sinusoïdale dans la réponse transitoire. Le système diverge en oscillant s'il y a au moins une racines à partie réelle positive, ou il converge vers des oscillations entretenues si les autres racines ont toutes une partie réelle négative.

2.1.2 Exemple

Soit un système asservi caractérisé par le schéma-bloc suivant :

$$E(p) \longrightarrow \underbrace{F(p) - \underbrace{K}_{p(p^2 + p + 3)}} S(p)$$

La fonction de transfert en boucle fermée H_{BF} s'écrit :

$$H_{BF} = \frac{H(p)}{1 + H(p)} = \frac{K}{p^3 + p^2 + 3p + K}.$$

L'équation caractéristique D(p) de H_{BF} est donc

$$D(p) = p^3 + p^2 + 3p + K,$$

Nous constatons que le système est d'ordre 3 dont les coefficients sont :

$$b_3 = 1$$
$$b_2 = 1$$
$$b_1 = 3$$
$$b_0 = K$$

Le critère nécessaire de Routh est donc respecté pour K>0. Construisons maintenant le tableau de Routh :

$$\frac{p^{3} \begin{vmatrix} 1 & 3 \\ p^{2} \end{vmatrix} \frac{1}{1} \frac{K}{K}}{K} \\
\frac{p^{1} \begin{vmatrix} A_{31} & 0 \\ A_{41} & 0 \end{vmatrix}}$$

$$A_{31} = -\begin{vmatrix} 1 & 3 \\ 1 & K \end{vmatrix} = 3 - K$$

$$A_{41} = -\frac{1}{A_{31}} \begin{vmatrix} 1 & K \\ A_{31} & 0 \end{vmatrix} = K$$

$$\begin{vmatrix} p^{3} \begin{vmatrix} 1 & 3 \\ A_{31} & 0 \end{vmatrix} = K$$

$$\begin{vmatrix} p^{3} \begin{vmatrix} 1 & K \\ p^{1} \end{vmatrix} & 1 & K \\ p^{1} \end{vmatrix} & 1 & K \\ p^{0} \end{vmatrix} & 1 & K \\ p^{0} \end{vmatrix} = K$$

La colonne des pivots sont tous de même signe si 3-K>0 et K>0 (déjà établie par la condition nécessaire de Routh). La condition sur K pour que le système soit stable est donc :

2.2 Critère graphique du revers

Routh s'applique sur la fonction de transfert en boucle fermée, les critères graphiques permettent d'étudier la stabilité du système en boucle ouverte.

En effet si l'on considère la boucle de contre réaction unitaire pour l'asservissement d'un système de fonction de transfert H(p), telle que :

la fonction de transfert en boucle ouverte $H_{BO}(p)$ est simplement donné par H(p), et comme nous l'avons déjà rencontré à plusieurs occasions, la fonction de transfert en boucle fermée H_{BF} est égale à

$$H_{BF}(p) = \frac{N(p)}{D(p)} = \frac{H_{BO}(p)}{1 + H_{BO}(p)},$$

ainsi étudier les pôles de l'équation caractéristique D(p)=0 est équivalent à étudier l'équation

$$1 + H_{BO}(p) = 0 \Leftrightarrow H_{BO}(p) = -1$$

Il est alors possible d'étudier la fonction de transfert en boucle ouverte par rapport au point critique du plan complexe (-1,0)

2.2.1 Critère du revers de Nyquist

Critère du revers (Nyquist)

Un système est stable en boucle fermée si lorsque parcourant le lieu de Nyquist de la boucle ouverte dans le sens des pulsations croissantes, on laisse le point critique sur la gauche.

FIGURE 7.3 – Représentation schématique de lieux de Nyquist de trois systèmes : stable, critique et instable vérifiant le critère du revers.

2.2.2 Critère du revers de Black

2.2.3 Critère du revers de Bode

2.3 Critère de Nyquist

Le critère de Nyquist est également un critère graphique mais est plus générale que le critère du revers. Il s'appuie sur le principe de l'argument de Cauchy⁵.

Théorème du principe de l'argument de Cauchy

Principe de l'argument de Cauchy

Si un contour \mathcal{C} contient Z zéros et P pôles d'une fonction analytique F(p) sans en traverser aucun, alors quand on le parcourt dans le sens antitrigonométrique, le contour $\Gamma = F(\mathcal{C})$ fait un nombre de tours autour de l'origine dans le sens trigonométrique égal à,

$$N = Z - P$$

⁵Nous ne donnerons qu'une présentation élémentaire et sans démonstration de ce théorème. Un cours d'analyse complexe permettra de compléter cette présentation. On trouvera dans [3], une introduction plus détaillée ainsi qu'une bibliographie très fournie sur le sujet.

FIGURE 7.4 – Représentation de la transformation d'un contour $\mathcal C$ en son image par une fonction analytique F(p)

Exercices du chapitre

Exercice 1 Q1.

Corrigé des exercices

Références

- [1] http://www.demosciences.fr/projets/scilab-xcos/utilisation/premiers-pas.
- [2] Xcos pour les vrais debutants. https://scilab.developpez.com/tutoriels/debuter/apprendre-xcos-debutant/.
- [3] Denis Arzelier. Représentation et analyse des systèmes lineaires (pc7bis), 2005.
- [4] B. Bayle and J. Gangloff. Systèmes et asservissements à temps continu, 2009.
- [5] S. L. Campbell, J.-P. Chancelier, and R. Nikoukhah. *Modeling and Simulation in Scilab/Scicos*. Springer, 2006.
- [6] H. Garnier. http://w3.cran.univ-lorraine.fr/hugues.garnier/?q=content/teaching.
- [7] Y. Granjon. Automatique: systèmes linéaires, non linéaires, à temps continu, à temps discret, représentation d'état, événements discrets. Dunod, Paris, 2015.
- [8] E. Laroche and H. Halalchi. Asservissement des systèmes lineaires à temps continu. http://eavr.u-strasbg.fr/~laroche/student.
- [9] O. Le Gallo. Automatique des systèmes mécaniques : Cours, travaux pratiques et exercices corrigés. Sciences de l'ingénieur. Dunod, 2009.
- [10] Joe Mabel. Régulateur à boules au Georgetown PowerPlant Museum à Seattle. CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=5694146.
- [11] B. Marx. Outils Mathématiques pour l'ingénieur Traitement du Signal. http://w3.cran.univ-lorraine.fr/perso/benoit.marx/enseignement.html.
- [12] B. Marx. Contrôle des systèmes linéaires. http://w3.cran.univ-lorraine.fr/perso/benoit.marx/enseignement.html.
- [13] F. Orieux. Automatique : Systèmes linéaires et asservissements. Notes de Cours, Master 2 Outils et systèmes de l'astronomie et de l'Espace, 20017-1018.
- [14] E. Ostertag. Systèmes et asservissements continus : Modélisation, analyse, synthèse des lois de commande. Ellipses Marketing, 2004.

192 RÉFÉRENCES

[15] R. Papanicola. Schéma-blocs avec PGF/TIKZ. https://sciences-indus-cpge.papanicola.info/IMG/pdf/schema-bloc.pdf.

- [16] R. Papanicola. Sciences industrielles PCSI: Mécanique et automatique. Ellipses Marketing, 2003.
- [17] R. Papanicola. Sciences industrielles PSI: Mécanique et automatique. Ellipses Marketing, 2010.
- [18] Marsyas-Travail personnel. Clepsydre athénienne reconstituée, Musée de l'Agora antique d'Athènes. CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=476174.
- [19] Consortium Scilab. Introduction to Scilab. www.scilab.org/content/download/247/1702/file/introscilab.pdf.
- [20] S. Steer and Y. Degré. Scilab: De la théorie à la pratique II. Modéliser et simuler avec Xcos. Éditions D-BookeR, 2014.
- [21] C. Sueur, P. Vanheeghe, and P. Borne. Automatique des systèmes continus. Editions Technip.
- [22] E. Thomas. TP Scilab. http://cpgeptljg.free.fr/scenari/TP_INFO/TP_info_12_ordre/co/module_TP_1_2_ordre_5.html.