

Data Selection and Initial Analysis

Data was originally in two sets-- they were joined by brewery ID

L	Loading the Dataset and Understanding the Data												
	rewery = por		_csv	r('c	data/	beer	_and_brewery.c	esv')					
	Unnamed: 0	beer_i	d a	bv	ibu	id	beer_name	style	brewery_id	ounces	brewery_name	city	state
0	0		0.0	50	NaN	1436	Pub Beer	American Pale Lager	408	12.0	10 Barrel Brewing Company	Bend	OR
1	1		1 0.0	66	NaN	2265	Devil's Cup	American Pale Ale (APA)	177	12.0	18th Street Brewery	Gary	IN
2	2	1	2 0.0	71	NaN	2264	Rise of the Phoenix	American IPA	177	12.0	18th Street Brewery	Gary	IN
3	3		3 0.0	90	NaN	2263	Sinister	American Double / Imperial IPA	177	12.0	18th Street Brewery	Gary	IN
4	4		4 0.0	75	NaN	2262	Sex and Candy	American IPA	177	12.0	18th Street Brewery	Gary	IN

Here we see distribution plots of ABV and IBU and value counts of beers from the top 10 states:

Test 1: Comparing ABV from Colorado and California

- Is there a difference in ABV between beers brewed in Colorado and California?
 - We examine the box-plot and QQ plot to get a sense of the data:

We set our Null and Alternative Hypothesis:

Null Hypothesis:

$$H_0$$
: $\mu_1 = \mu_2$

Alternative hypothesis

$$H_a$$
: $\mu_1! = \mu_2$

Test 1: Comparing Beers from Colorado and California

• We run a user-generated function to determine the t-statistic, critical t-values, and p-value

```
In [32]: 1 import test_moduls as test
2 t_stat = test.twosample_tstatistic(CA_brewery, CO_brewery, alpha=0.05)

Null hypothesis is True with t-statistic = 1.149 , critical t-value = 1.9701 and p-value = 0.2517

-----group info------
The groups contain 113 and 125 observations. Means are: 0.065 and 0.063 respectivelly
```

We run a user-generated function to generate and view a visualization

Test 2: Comparing IBU from East Coast and West Coast

- Is there a difference in IBU between beers brewed on the East Coast and West Coast?
 - Outliers are removed from the set; we examine the box-plots

We set our null-hypothesis and alternative hypothesis

2.1. Set Null Hypotheses

The null hypothesis is there is no difference in IBU between beers brewed on the East Coast and beers brewed on the West Coast.

 H_0 : The mean IBU difference between East Coast beers and West Coast beers is zero. i.e. $H_0=H_1$

2.2. Set Alternate Hypothesis

H₁ (2-tailed): The mean difference between East Coast and West Coast beers is different.

Test 2: Comparing IBU from East Coast and West Coast

- We run user-generated functions to determine the t-statistic, critical t-values, and p-value
 - Two-tailed t-test and Welch's t-test

```
t stat = test.twosample tstatistic(wc ibu, ec ibu)
        Null hypohesis rejected. Results are statistically significant
                                                                                  with t-statistic= 2.585 , critical t-val
        ue= 1.9631 and p-value = 0.005
        ----group info-----
        The groups contain 427 and 329 observations. Means are: 46.452 and 41.6717 respectivelly
In [23]: welch t = test.welch t(wc ibu, ec ibu)
        print("Welch's t-statistic is: ", round(welch t,4))
        welch df = test.welch df(wc ibu, ec ibu)
        print("Welch's degrees of fredoom (df):", round(welch df,4))
        # converting this to p value
        p welch = test.p value welch ttest(wc ibu, ec ibu, two sided=True)
        Welch's t-statistic is: 2.6058
        Welch's degrees of fredoom (df): 724.9698
        Null hypohesis rejected. Results are statistically significant
                 with t-value = 2.6058, critical t-value = 1.647, and p-value = 0.0047
```

- We see that the t-statistic is 2.585 in the two-tailed t-test and 2.606 in the Welch's t-test
 - Using both tests, we reject the null hypothesis

	Sample Mean	Sample Size	Sample Variance
East Coast	42.69	333	25.88
West Coast	46.67	428	26.22

Test 3: ANOVA test

Is there a difference in IBU between beers brewed in DC/MD/VA, MA, MN, TX, and CO?

	Sample Size	Sample Mean	Sample Variance		
Washington State	41	41.66	356.42		
Minnesota	44	49.27	543.20		
DMV	44	45.32	594.35		
Texas	83	42.60	658.70		
Colorado	136	49.93	632.40		

• We set our **null-hypothesis** and **alternative hypothesis**

Null Hypothesis:

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$

Alternative Hypothesis:

 H_a : not all means are equal

Test 3: Comparing IBU from Five States

- We fail to reject the Null Hypothesis with f_statistic = **1.6114**, and p_value = 0.1777.
 - We say the mean IBU is the same in WA, MN, CO, TX , DMV area:

Conclusions

• There is no mean ABV difference between beers from Colorado and beers from Californias

- There is a significant mean IBU difference between beers from the East Coast and West Coast
 - West Coast beers are more bitter!

There is no mean IBU difference among beers from CO, WA, MN, DMV, TX

Next Steps

- Data
 - Collect more US data
 - Collect data that includes foreign beers
 - o Collect time-series data to explore changes to the industry over time
- Tests
 - Explore the relationship between ABV and IBU using two-way ANOVA

Q&A