LECTURE 2 (CONT LL
OF LEC 1)

() PDE: Ut = UXX (HEATEON)

(BOUNDARY COND).

(BOUNDARY COND).

(3) IC (INITIAL CONDITION) U(x,0) = f(x).

GUESS "SIMPLE SOL'NS" U(x,t) = X(x) T(t) = "PURE x" TIMES" PURE t"

[SEPARATION OF VARIABLES]

 $(4) (x,t) = \frac{-\pi^2 N^2 t}{\varepsilon} \sin(x\pi x)$

BUT: PDE (+ BC!) ARE LINEAR.

9 DE: UL - UXX = 0', IF V(X,t), U(X,t)

ARE SOLINS, SO ARE CIV(x, t) + CZ W(x,t)

AND C, U, (x,t) + C, U, (x,6) -...

so $u(x_{jk}) = c_{j} u_{j}(x_{jk}) + c_{k} u_{k}(x_{jk})$ + C3 43(x,+).... GIVES LOTS OF SOLINS. BUT! WE WANT U(x,0) = f(x), FOR ANY CHOICE OF FK) [INITIAL TEMP.

DISTRIBUTION] $u(x,0) = C_1 u_1(x,0) + C_2 u_2(x,0) - \cdots$ $\{ u_{\lambda}(x,t) = e^{-\pi^2 N^2 t} \sin(N\pi x)$ $= u_{\lambda}(x,0) = \sin(N\pi x)$ $f(x) = C_1S_1N(\pi x) + C_2S_1N(2\pi x)$ + $C_3S_1N(3\pi x)$... IF CI, CZ, --- CAN BE FOUND SO THAT LUS = RUS, THEN CAN DO FOLLOWING (!!!) CI SIN (TX) SIN (TTX) f(x) SIN (17TX) = + (2 SIN (SIX) SIN (17 8X) 1 C/6 SIN (16 TX) SIN (17 TX) + (17 SIN (17 TX) SIN (17 TX) + CI8 SIN (18 TTX) SIN (17 TX)

(f(x) SIN (IZTX) dx (CI SIN (TIX) SIN (TITX) dx (2 SIN (2TTX) SIN (17 TX) dx (C16 SID (16 TX) SID (17 TX) dx \$ C17 SIN (17 πx) SIN (17 πx) dx \$ C18 SIN (18 πx) SIN (17 πx) dx $\int_{\Omega} f(x) \sin(17\pi x) dx =$ CI \ (512 (TX) SI2 (17 TX) dx C17 (312 (17TX) SIN (17TX) "JUST" INTEGRALS (SIN (MTX) SIN (NTX) dx =0, $m\neq N$ (INT.) $\int_{\Omega}^{\prime} S N \left(M \pi X \right) S N \left(M \pi X \right) dX$ $= \int_{0}^{\pi} \left(S_{JN} \left(m \pi x \right) \right)^{2} dx \stackrel{!!}{=} \frac{1}{2}$

So
$$\int_{0}^{1} f(x) SIN (IPTX) dx$$

$$= 0...10...$$

$$I C_{IP} (\frac{1}{2}) + ...$$

$$OR C_{IP} = 2 \int_{0}^{1} f(x) SIN (IPTX) dx$$

$$OE COURSE$$

$$CN = 2 \int_{0}^{1} f(x) SIN (NTX) dx$$

$$SO FINALLY, OUR SOL7N TO PDE

$$IS \quad M(x,t) = C_{I} e^{-\pi^{2}t} SIN (TX)$$

$$I CN e^{-\pi^{2}N^{2}t} IN (TX)$$

$$CN = 1 C.$$

$$= C_{I} SIN (TX)$$

$$+ C_{2} SIN (2TX) ...$$$$

MANY OUESTIONS

15

(i) WHERE DID THIS

TRICK (OME FROM?

(ANSUTE: GENIUS).(E.B.)

 $(11) f(x) = \sum_{N=1}^{\infty} C_N S_N(NTX)$

RHS = INFINITE SERIES;

FROM CALC 3, KNOW YOU HAVE
TO BE CAREFUL: INFINITE

SERIES DO NOT ACWAYS

CONVERGE!

CONCEPTUAL INTERPRETATION.

RECALL IF V IS A VECTOR SPACE

(R2, R3, ---) THEN A BASIS FOR V

IS A SET OF VECTORS {e1,e2,---ex}

SO THAT (i) EVERY VECTOR V CAN BE WRITTEN AS . - + CNEN V = C, B, + CLEZ (LINEAR COMBINATION OF BASIS VECTORS) (11) THE #'S CI, CZ, -- ARE UNIBUE. $EX: \ \overline{V} = R^3; \quad e_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} e_{2^2} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ $\epsilon_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \beta$ By s/s IT GIVEN A RANDOM VECTOR V, TINDING CI, (3, 50 THAT V = C101+C2P2+C3P3 CAN BE HARD [EX: $\vec{V} = (3)$ BUT! IF BASIS HAS SPECIAL

PROPERTIES, FINDING MUCH EASIER.

DEF: A BASIS IS CALLED [7]

ORTHOGONAL IF
$$e_i \cdot e_j = 0$$

WHEN $i \neq j$ ($\cdot = DOT \cdot PRODUCT$)

EX: $e_1 = \binom{i}{0} \cdot e_2 = \binom{i}{0} \cdot e_3 = \binom{0}{0}$

"NEO e's"

 $e_1 \cdot e_2 = e_1 \cdot e_3 = e_2 \cdot e_3 = 0$
 $e_1 \cdot e_1 = 2 \cdot e_2 = 2 \cdot e_3 \cdot e_3 = 1$
 $e_1 \cdot e_2 = e_1 \cdot e_3 = e_2 \cdot e_3 = 1$
 $e_2 \cdot e_1 = 2 \cdot e_2 = 2 \cdot e_3 \cdot e_3 = 1$
 $e_3 \cdot e_1 = 2 \cdot e_2 \cdot e_2 = 2 \cdot e_3 \cdot e_3 = 1$
 $e_1 \cdot e_1 = 2 \cdot e_2 \cdot e_2 + c_3 \cdot e_3 \cdot e_1$
 $e_2 \cdot e_1 = (c_1 \cdot e_1 + c_2 \cdot e_2 + c_3 \cdot e_3 \cdot e_1)$
 $e_3 \cdot e_1 = (c_1 \cdot e_1 + c_2 \cdot e_2 + c_3 \cdot e_3 \cdot e_1)$
 $e_1 \cdot e_2 = e_1 \cdot e_3 - e_2 \cdot e_1 + c_3 \cdot e_3 \cdot e_1$
 $e_1 \cdot e_1 = c_1 \cdot e_1 + c_2 \cdot e_2 \cdot e_1 + c_3 \cdot e_3 \cdot e_1$
 $e_1 \cdot e_2 = c_1 \cdot e_1 + c_2 \cdot e_2 \cdot e_1 + c_3 \cdot e_3 \cdot e_1$
 $e_1 \cdot e_2 = e_1 \cdot e_3 - e_2 \cdot e_1 + c_3 \cdot e_3 \cdot e_1$
 $e_2 \cdot e_1 = (c_1 \cdot e_1 + c_2 \cdot e_2 + c_3 \cdot e_3 \cdot e_1)$
 $e_3 \cdot e_1 = c_1 \cdot e_1 \cdot e_2 \cdot e_1 + c_3 \cdot e_3 \cdot e_1$
 $e_4 \cdot e_1 = c_1 \cdot e_2 \cdot e_1 + c_3 \cdot e_3 \cdot e_1$
 $e_4 \cdot e_1 = c_1 \cdot e_1 \cdot e_2 \cdot e_1 + c_3 \cdot e_3 \cdot e_1$
 $e_4 \cdot e_1 = c_1 \cdot e_2 \cdot e_2 \cdot e_1 + c_3 \cdot e_3 \cdot e_1$
 $e_4 \cdot e_1 = c_1 \cdot e_2 \cdot e_2 \cdot e_3 \cdot e_3 \cdot e_1$
 $e_4 \cdot e_1 = c_1 \cdot e_2 \cdot e_2 \cdot e_3 \cdot e_3 \cdot e_1$
 $e_4 \cdot e_1 = c_1 \cdot e_2 \cdot e_3 \cdot e_3 \cdot e_1$
 $e_4 \cdot e_1 = c_1 \cdot e_2 \cdot e_3 \cdot e_3 \cdot e_1$
 $e_4 \cdot e_1 = c_1 \cdot e_2 \cdot e_3 \cdot e_3 \cdot e_1$
 $e_4 \cdot e_1 = c_1 \cdot e_2 \cdot e_3 \cdot e_3 \cdot e_1$
 $e_4 \cdot e_1 = c_1 \cdot e_2 \cdot e_3 \cdot e_3 \cdot e_3 \cdot e_1$
 $e_4 \cdot e_1 = c_1 \cdot e_2 \cdot e_3 \cdot e_3 \cdot e_3 \cdot e_1$
 $e_4 \cdot e_1 = c_1 \cdot e_2 \cdot e_3 \cdot e_3 \cdot e_3 \cdot e_1$
 $e_4 \cdot e_1 = c_1 \cdot e_1 \cdot e_2 \cdot e_3 \cdot e_3 \cdot e_3 \cdot e_1$
 $e_4 \cdot e_1 = c_1 \cdot e_2 \cdot e_3 \cdot e_3 \cdot e_3 \cdot e_1$
 $e_4 \cdot e_1 = c_1 \cdot e_2 \cdot e_3 \cdot e_3$

$$\vec{V} \cdot e_2 = c_2 (e_2 \cdot e_2) = 2 c_2 \quad [8]$$

$$\vec{V} \cdot e_1 = \binom{3}{3} \cdot \binom{1}{3} \cdot e_3 = 0 \quad [c_2 = 0]$$

$$\vec{V} \cdot e_3 = c_3 (e_3 \cdot e_3) = c_3$$

$$\binom{3}{2} \cdot \binom{3}{3} \cdot \binom{3}{3} = 1$$

$$\binom{3}{3} = 3 \binom{1}{3} + 6 \binom{-1}{3} + 2 \binom{0}{3}$$

$$\begin{array}{ll}
\overline{U} = & FUNCTIONS & ON & INTERVAL \\
\hline
[0,1]; & f(x), g(x) & FUNCTIONS \\
\hline
THEN & C, f(x) + C, g(x) \\
V = f(x) & IS & A FUNCTION \\
W = g(x) & V \cdot W = \int_{U}^{1} f(x) g(x) dx \\
\overline{U} & \overline{U} \\
\end{array}$$

3 e, = SID (TX), e2 = SID (2TX)

 $e_n \cdot e_n = \int_0^1 S_{1N}(m\pi x) S_{1N}(\chi \pi x) d\chi$ $= G \quad \chi \neq M$

e3 = SIN (3TX), -..

 $e_{m} \cdot e_{N} = \frac{1}{2}.$ $so \quad f(x) = c_{1} S/N(\pi x)$ $f(x) = c_{2} S/N(\pi \cdot 2x)$ $f(x) S/N(N\pi x) dx = \frac{1}{2} CN, \sigma R$ $c_{N} = 2 \int_{0}^{1} f(x) S/N(N\pi x) dx$

INTERPRETATION OF FOURIER SERIES IN TERMS OF LINEAR ALGEBRA