Regression Discontinuity Design in Practice

Elghafiky Bimardhika

3 December 2024

elghafiky.bimardhika@alumni.anu.edu.au

Dua topik bahasan utama

Konteks evaluasi seperti apa yang bisa menggunakan RDD?

Berlatih bersama Stata

Konteks evaluasi seperti apa yang bisa menggunakan RDD?

RDD mengharuskan adanya *threshold* (*cutoff*) berdasarkan sebuah variabel numerik (*running variable*) yang memisahkan kelompok perlakuan dan kontrol

RDD in practice

Journal of Agricultural Economics doi: 10.1111/1477-9552.12299

The Impact of Credit Policy on Rice Production in Myanmar

Nilar Aung, Hoa-Thi-Minh Nguyen and Robert Sparrow 1

American Economic Journal: Applied Economics 2009, 1:1, 164–182 http://www.aeaweb.org/articles.php?doi=10.1257/app.1.1.164

The Effect of Alcohol Consumption on Mortality: Regression Discontinuity Evidence from the Minimum Drinking Age[†]

By Christopher Carpenter and Carlos Dobkin[®]

Evidence on the impact of sustained exposure to air pollution on life expectancy from China's Huai River policy

Yuyu Chen^{a,1}, Avraham Ebenstein^{b,1}, Michael Greenstone^{c,d,1,2}, and Hongbin Li^{e,1}

^aApplied Economics Department, Guanghua School of Management, Peking University, Beijing 100871, China; ^bDepartment of Economics, Hebrew University of Jerusalem, Mount Scopus 91905, Israel; ^cDepartment of Economics, Massachusetts Institute of Technology, Cambridge, MA 02142; ^dNational Bureau of Economic Research, Cambridge, MA 02138; and ^eChina Data Center and Department of Economics, School of Economics and Management, Tsinghua University, Beijing 100084, China

Berbagai contoh lain

LOCAL GOVERNMENT STUDIES 2020, VOL. 46, NO. 3, 394–413 https://doi.org/10.1080/03003930.2019.1627334

RESEARCH ARTICLE

How do mayors get elected? The causal effects of pre-electoral coalitions on mayoral election outcomes in Indonesia

Blane D. Lewis

Arndt-Corden Department of Economics, Crawford School of Public Policy, Australian National University, Canberra, Australia

International Journal of Educational Research 104 (2020) 101693

Contents lists available at ScienceDirect

International Journal of Educational Research

journal homepage: www.elsevier.com/locate/ijedures

Assessing the causal impact of compulsory schooling policy in Indonesia

Blane D. Lewis*, Hieu T.M. Nguyen

Arndt-Corden Department of Economics, HC Coombs Building, Room 7132, Crawford School of Public Policy, The Australian National University,

The Electoral Advantage to Incumbency and Voters' Valuation of Politicians' Experience:
A Regression Discontinuity Analysis of Close Elections*

David S. Lee

UC Berkeley and NBER

April 2001

Econometrica, Vol. 78, No. 6 (November, 2010), 1863-1903

THE PERSISTENT EFFECTS OF PERU'S MINING MITA

By Melissa Dell¹

Published on **Development Impact**

Regression Discontinuity Porn

DAVID EVANS | NOVEMBER 16, 2013

Jadi konteks seperti apa yang memungkinkan evaluasi dengan RDD?

Program/kebijakan yang mana penerima manfaatnya harus memiliki nilai tertentu agar berhak mendapatkan program

• Bantuan sosial, beasiswa, bantuan kredit, dsb.

Program/kebijakan/kejadian yang hanya berlaku untuk usia tertentu

• Batas usia minum alkohol, batas usia pernikahan, program wajib sekolah, program ketenagakerjaan yang bersifat wajib, dsb.

Program/kebijakan/kejadian yang hanya berlaku untuk daerah tertentu

• Kasus subsidi penghangat di Cina, kasus kerja paksa (mita) di Peru, dsb.

Program/kebijakan/kejadian yang mana ada pihak yang menang dan kalah berdasarkan skor tertentu

• Konteks pemungutan suara, konteks kompetisi, bidding, dsb.

Berlatih bersama Stata

Dua studi kasus

Sharp RDD

Can child labor reform affect adulthood? Evidence from Indonesia's 2003 Manpower Act*

Elghafiky Bimardhika[†] Firman Witoelar[‡]
November 21, 2024

Fuzzy RDD

Anticipating unintended consequences of policy: Learnings from Indonesia's child labor reform

Elghafiky Bimardhika

Crawford School of Public Policy

elghafiky.bimardhika@alumni.anu.edu.au

Firman Witoelar

Arndt-Corden Department of Economics

Crawford School of Public Policy

FirmanWitoelar.Kartaadipoetra@anu.edu.au

February 2025

Working Papers in Trade and Development

No. 2025-04

sampel sudah dewasa

sampel sudah dewasa

A Practical Introduction to Regression Discontinuity Designs: Foundations

Matias D. Cattaneo* Nicolás Idrobo† Rocío Titiunik[‡]

Pastikan syntax sudah tersedia di Stata Anda

- net install rdrobust,
 from(https://raw.githubusercontent.com/rdpackages/rdrobust/master/stata) replace
- net install rdlocrand,
 from(https://raw.githubusercontent.com/rdpackages/rdlocrand/master/stata) replace
- net install rddensity,
 from(https://raw.githubusercontent.com/rdpackages/rddensity/master/stata) replace
- net install rdpower,
 from(https://raw.githubusercontent.com/rdpackages/rdpower/master/stata) replace

Biasakan uji keabsahan metode Anda dulu sebelum mulai analisis

Alur konvensional

Regresi

Robustness checks

Biasakan uji keabsahan metode Anda dulu sebelum mulai analisis

Alur konvensional

Regresi

Robustness checks

Biasakan uji keabsahan metode Anda dulu sebelum mulai analisis

Alur konvensional

Regresi

Robustness checks

Saran saya

Regresi

Robustness checks

Mulailah pengecekan awal dengan uji manipulasi running variable

c =	0.000	Left of c	Right of c
Number	of obs	18636	9420
Eff. Number	of obs	3936	4122
Order e	st. (p)	2	2
Order b	ias (q)	3	3
BW e	st. (h)	3.879	4.635

Running variable: runvar_abp03.

Method	Т	P> T
Robust	0.6156	0.5382

Number of obs = 28056
Model = unrestricted
BW method = comb
Kernel = triangular
VCE method = jackknife

rddensity runvar_abp03, plot plot_range(-11 11)

Mulailah pengecekan awal dengan uji manipulasi running variable

c = 0.000	Left of c	Right of c
Number of obs	18636	9420
Eff. Number of obs	3936	4122
Order est. (p)	2	2
Order bias (q)	3	3
BW est. (h)	3.879	4.635

Running variable: runvar_abp03.

Method	Т	P> T
Robust	0.6156	0.5382

H0: Density function is

continuous

H1: Density function is

discontinuous

rddensity runvar_abp03, plot plot_range(-11 11)

Mulailah pengecekan awal dengan uji manipulasi running variable

c = 0.000	Left of c	Right of c
Number of obs	18636	9420
Eff. Number of obs	3936	4122
Order est. (p)	2	2
Order bias (q)	3	3
BW est. (h)	3.879	4.635

Running variable: runvar_abp03.

Method	Т	P> T
Robust	0.6156	0.5382

H0: Density function is

continuous

H1: Density function is

discontinuous

rddensity runvar_abp03, plot plot_range(-11 11)

Hasil uji statistik dan grafik menunjukan tidak ada cukup bukti bahwa ada manipulasi running variable

Periksa jumlah seluruh observasi dan mass points sebelum memulai estimasi

Jumlah mass-point cukup besar untuk melakukan continuity-based RDD

Table: Sample size and mass points

	Control	Treatment
Number of observations	18,636	9,420
Mass points	323	152
Observation per mass point	58	62

. distinct runvar_abp03 if itt_abp03==0

	Observations	
	total	distinct
runvar_abp03	18636	323

. distinct runvar_abp03 if itt_abp03==1

	Observations	
	total	distinct
runvar_abp03	9420	152

ssc install distinct, replace ssc install unique, replace

Selalu mulai analisis dengan RD plot

 rdplot childlabor18 runvar_abp03 if inrange(runvar_abp03,-6,6), p(1) kernel(tri)

Selalu mulai analisis dengan RD plot

- rdplot childlabor18 runvar_abp03 if inrange(runvar_abp03,-6,6), p(1) kernel(tri)
- Discontinuity di cutoff menunjukan ada potensi dampak kebijakan

Selalu mulai analisis dengan RD plot

- rdplot childlabor18 runvar_abp03 if inrange(runvar_abp03,-6,6), p(1) kernel(tri)
- Discontinuity di cutoff menunjukan ada potensi dampak kebijakan
- Grafik menunjukan ada kemungkinan hubungan nonlinear. Sebaiknya tunjukan juga quadratic fitnya (polynomial derajat dua)
- Robustness check dengan polynomial derajat 0 (randomization-based RD)

Published on **Development Impact**

How should you draw an RDD graph?

DAVID MCKENZIE | MARCH 12, 2023

. rdrobust childlabor18 runvar_abp03, p(1) covs(male javanese urban earlyenforcer bwin_formalwork
> electric filtered_water owntoilet hhsize_ch) vce(cluster runvar_abp03) all
Mass points detected in the running variable.

Covariate-adjusted Sharp RD estimates using local polynomial regression.

Cutoff c = 0	Left of c	Right of c
Number of obs Eff. Number of obs	16468 1814	8367 1725
Order est. (p) Order bias (q)	1 2	1 2
BW est. (h)	2.146	2.146
BW bias (b)	3.905	3.905
rho (h/b)	0.549	0.549
Unique obs	322	152
Number of clusters	46	47

Number of ol	bs = 24835
BW type	= mserd
Kernel	= Triangular
VCE method	= Cluster

Outcome: childlabor18. Running variable: runvar_abp03.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional	06958	.02693	-2.5839		122353	016801
Bias-corrected	05401	.02693	-2.0059		106789	001237
Robust	05401	.0317	-1.7040		116137	.008112

 Uji sensitivitas dengan polynomial derajat dua . rdrobust childlabor18 runvar_abp03 p(1) covs(male javanese urban earlyenforcer bwin_formalwork > electric filtered_water owntoilet hhsize_ch) vce(cluster runvar_abp03) all Mass points detected in the running variable.

Covariate-adjusted Sharp RD estimates using local polynomial regression.

Cutoff c = 0	Left of c	Right of c	Number of obs	= 24835 = mserd
			,,,,	
Number of obs	16468	8367	Kernel	= Triangular
Eff. Number of obs	1814	1725	VCE method	= Cluster
Order est. (p)	1	1		
Order bias (q)	2	2		
BW est. (h)	2.146	2.146		
BW bias (b)	3.905	3.905		
rho (h/b)	0.549	0.549		
Unique obs	322	152		
Number of clusters	46	47		

Outcome: childlabor18. Running variable: runvar_abp03.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Bias-corrected Robust	05401	.02693 .02693 .0317	-2.5839 -2.0059 -1.7040	0.045	122353 106789 116137	016801 001237 .008112

- Uji sensitivitas dengan polynomial derajat dua
- Gunakan kovariat untuk meningkatkan presisi estimasi (menurunkan SE)

. rdrobust childlabor18 runvar_abp03, p(1) covs(male javanese urban earlyenforcer bwin_formalwork > electric filtered_water owntoilet hhsize_ch) vce(cluster runvar_abp03) all Mass points detected in the running variable.

Covariate-adjusted Sharp RD estimates using local polynomial regression.

Cutoff c = 0	Left of c	Right of c	Number of obs BW type	=	24835 msero
Number of obs	16468	8367	Kernel		Triangular
Eff. Number of obs	1814	1725	VCE method	=	Cluster
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h)	2.146	2.146			
BW bias (b)	3.905	3.905			
rho (h/b)	0.549	0.549			
Unique obs	322	152			
Number of clusters	46	47			

Outcome: childlabor18. Running variable: runvar_abp03.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Bias-corrected Robust	05401	.02693 .02693 .0317	-2.5839 -2.0059 -1.7040	0.045	122353 106789 116137	016801 001237 .008112

- Uji sensitivitas dengan polynomial derajat dua
- Gunakan kovariat untuk meningkatkan presisi estimasi (menurunkan SE)
- Kluster SE pada tingkat observasi atau running variable (jika terdapat mass points)

. rdrobust childlabor18 runvar abp03, p(1) covs(male javanese urban earlyenforcer bwin formalwork > electric filtered water owntoilet hhsize ch) vce(cluster runvar abp03) all Mass points detected in the running variable.

Covariate-adjusted Sharp RD estimates using local polynomial regression.

Cutoff c = 0	Left of c	Right of c	Number of obs = BW type =	24835 mserd
			J., 1975	
Number of obs	16468	8367	Kernel = '	Triangular
Eff. Number of obs	1814	1725	VCE method =	Cluster
Order est. (p)	1	1		
Order bias (q)	2	2		
BW est. (h)	2.146	2.146		
BW bias (b)	3.905	3.905		
rho (h/b)	0.549	0.549		
Unique obs	322	152		
Number of clusters	46	47		

Outcome: childlabor18. Running variable: runvar abp03.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Bias-corrected Robust	05401	.02693 .02693 .0317	-2.5839 -2.0059 -1.7040	0.045	122353 106789 116137	016801 001237 .008112

- Uji sensitivitas dengan polynomial derajat dua
- Gunakan kovariat untuk meningkatkan presisi estimasi (menurunkan SE)
- Kluster SE pada tingkat observasi atau running variable (jika terdapat mass points)
- Laporkan conventional coefficient estimate tapi gunakan robust SE. Hitung ulang Z statistiknya.

. rdrobust childlabor18 runvar abp03, p(1) covs(male javanese urban earlyenforcer bwin formalwork > electric filtered water owntoilet hhsize ch) vce(cluster runvar abp03) all Mass points detected in the running variable.

Covariate-adjusted Sharp RD estimates using local polynomial regression.

Cutoff c = 0	Left of c	Right of c	Number of obs	=	24835 mserd
			BW type		
Number of obs	16468	8367	Kernel	= Tr	iangular
Eff. Number of obs	1814	1725	VCE method	=	Cluster
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h)	2.146	2.146			
BW bias (b)	3.905	3.905			
rho (h/b)	0.549	0.549			
Unique obs	322	152			
Number of clusters	46	47			

Outcome: childlabor1	8. Running	variable:	runvar_ab	p03.		
Method	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Conventional Bias-corrected Robust	06958 05401 05401	.02693 .02693 .0317	-2.5839 -2.0059 -1.7040	0.010 0.045 0.088	122353 106789 116137	016801 001237 .008112

- Uji sensitivitas dengan polynomial derajat dua
- Gunakan kovariat untuk meningkatkan presisi estimasi (menurunkan SE)
- Kluster SE pada tingkat observasi atau running variable (jika terdapat mass points)
- Laporkan conventional coefficient estimate tapi gunakan robust SE. Hitung ulang Z statistiknya.
- Reformasi kebijakan buruh anak menurunkan probabilitas bekerja sebelum 18 tahun sebesar 6.9 pp.

. rdrobust childlabor18 runvar_abp03, p(1) covs(male javanese urban earlyenforcer bwin_formalwork > electric filtered_water owntoilet hhsize_ch) vce(cluster runvar_abp03) all Mass points detected in the running variable.

Covariate-adjusted Sharp RD estimates using local polynomial regression.

Cutoff c = 0	Left of c	Right of c	Number of obs BW type	=	24835 msero
Number of obs	16468	8367	Kernel		Triangular
					_
Eff. Number of obs	1814	1725	VCE method	=	Cluster
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h)	2.146	2.146			
BW bias (b)	3.905	3.905			
rho (h/b)	0.549	0.549			
Unique obs	322	152			
Number of clusters	46	47			

Outcome: childlabor18. Running variable: runvar_abp03.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional	06958	.02693	-2.5839		122353	016801
Bias-corrected	05401	.02693	-2.0059		106789	001237
Robust	05401	.0317	-1.7040		116137	.008112

Periksa statistical power untuk memastikan keabsahan hasil estimasi

- . rdpow_childlabor18 runvar_abp03, p(1) covs(male javanese urban earlyenforcer bwin_formalwork ele > ctric filtered water owntoilet hhsize ch) vce(cluster runvar abp03)
- Cutoff c = 0 Left of c Right of c Number of obs 18636 9420 Eff. Number of obs 2061 1942 BW loc. poly. (h) 2.146 2.146 Order loc. poly. (p) Number of clusters 323 152 Eff. Num. of clusters 26 Sampling BW 2.146 2,146 New cluster sample 25 26
- Number of obs = 28056
 BW type = mserd
 Kernel = Triangular
 VCE method = Cluster
 Derivative = 0
 HA: tau = 0.236
- Standard minimal kekuatan statistik = 80%
- Uji sensitivitas dengan polynomial derajat dua

Outcome: childlabor18. Running variable: runvar_abp03. Number of covariates: 9.

Power against:	H0: tau=	0.2*tau =	0.5*tau =	0.8*tau =	tau =
	0.000	0.047	0.118	0.188	0.236
Robust bias-corrected	0.050	0.318	0.960	1.000	1.000

Standard errors clustered by runvar_abp03.

Periksa statistical power untuk memastikan keabsahan hasil estimasi

- . rdpow childlabor18 runvar_abp03, p(1) covs(male javanese urban earlyenforcer bwin_formalwork ele
- > ctric filtered_water owntoilet hhsize_ch) vce(cluster runvar_abp03)

Cutoff c = 0	Left of c	Right of c
Number of obs	18636 2061	9420 1942
BW loc. poly. (h) Order loc. poly. (p)	2.146	2.146 1
Number of clusters Eff. Num. of clusters	323 25	152 26
Sampling BW New cluster sample	2.146 25	2.146

Number of obs = 28056
BW type = mserd
Kernel = Triangular
VCE method = Cluster
Derivative = 0
HA: tau = 0.236

- Standard minimal kekuatan statistik = 80%
- Uji sensitivitas dengan polynomial derajat dua
- Jumlah observasi efektif menghasilkan kekuatan statistik sebesar 100%
- Outcome: childlabor18. Running variable: runvar_abp03. Number of covariates: 9.

Power against:	H0: tau= 0.000	0.2*tau = 0.047	0.5*tau = 0.118	0.8*tau = 0.188	tau = 0.236
Robust bias-corrected	0.050	0.318	0.960	1.000	1.000

Standard errors clustered by runvar_abp03.

Uji keabsahan hasil estimasi dengan memeriksa keseimbangan kovariat

. rdrobust male runvar_abp03, p(1) vce(cluster runvar_abp03) all Mass points detected in the running variable.

Sharp RD estimates using local polynomial regression.

Cutoff c = 0	Left of c	Right of c	Number of obs BW type	= 28056 = mserc
Number of obs	18636	9420	Kernel	= Triangular
Eff. Number of obs	5231	4588	VCE method	= Cluster
Order est. (p)	1	1		
Order bias (q)	2	2		
BW est. (h)	5.225	5.225		
BW bias (b)	8.112	8.112		
rho (h/b)	0.644	0.644		
Unique obs	323	152		
Number of clusters	97	98		

Outcome: male. Running variable: runvar_abp03.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional	.00468	.0183	0.2560	0.798	031182	.040552
Bias-corrected	.00513	.0183	0.2805	0.779	030733	.041
Robust	.00513	.02197	0.2337	0.815	037917	.048185

Std. Err. adjusted for clusters in runvar_abp03 Estimates adjusted for mass points in the running variable.

Uji keabsahan hasil estimasi dengan memeriksa keseimbangan kovariat

- Tidak ada perbedaan yang signifikan secara statistik dalam hal gender antara kelompok perlakuan dan kontrol (kovariat seimbang di sekitar cutoff) – sebuah pertanda bahwa dampak hanya muncul karena kebijakan dan tidak terpengaruhi oleh faktor lainnya
- Uji sensitivitas dengan polynomial derajat dua

. rdrobust male runvar_abp03, p(1) vce(cluster runvar_abp03) all Mass points detected in the running variable.

Sharp RD estimates using local polynomial regression.

Cutoff c = 0	Left of c	Right of c	Number of obs	_
			BW type	= mserd
Number of obs	18636	9420	Kernel	= Triangular
Eff. Number of obs	5231	4588	VCE method	= Cluster
Order est. (p)	1	1		
Order bias (q)	2	2		
BW est. (h)	5.225	5.225		
BW bias (b)	8.112	8.112		
rho (h/b)	0.644	0.644		
Unique obs	323	152		
Number of clusters	97	98		

Outcome: male. Runni	ng variabl	e: runvar_a	bp03.			
Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Bias-corrected Robust	.00468 .00513 .00513	.0183 .0183 .02197	0.2560 0.2805 0.2337	0.798 0.779 0.815	031182 030733 037917	.040552 .041 .048185

Std. Err. adjusted for clusters in runvar_abp03
Estimates adjusted for mass points in the running variable.

Uji keabsahan hasil estimasi dengan placebo cutoff (cutoff gadungan)

. rdrobust childlabor18 runvar_abp03, c(1) p(1) covs(male javanese urban earlyenforcer bwin_formal > work electric filtered_water owntoilet hhsize_ch) vce(cluster runvar_abp03) all Mass points detected in the running variable.

Covariate-adjusted Sharp RD estimates using local polynomial regression.

Cutoff c = 1	Left of c	Right of c	Number of obs	= 24835 = mserd
Number of obs	17325	7510	BW type Kernel	= mseru = Triangular
Eff. Number of obs	2090	1931	VCE method	= Cluster
Order est. (p)	1	1		
Order bias (q)	2	2		
BW est. (h)	2.511	2.511		
BW bias (b)	3.881	3.881		
rho (h/b)	0.647	0.647		
Unique obs	334	140		
Number of clusters	46	47		

Outcome: childlabor18. Running variable: runvar_abp03.

Method	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Conventional	02366	.03665	-0.6457	0.722	095498	.04817
Bias-corrected	01305	.03665	-0.3559		08488	.058788
Robust	01305	.04537	-0.2875		101967	.075876

Uji keabsahan hasil estimasi dengan placebo cutoff (cutoff gadungan)

- Tidak ada dampak kebijakan ketika cutoff dimajukan satu bulan – sebuah pertanda dampak memang disebabkan oleh cutoff kebijakan
- Uji sensitivitas dengan polynomial derajat dua

. rdrobust childlabor18 runvar_abp03, c(1) p(1) covs(male javanese urban earlyenforcer bwin_formal > work electric filtered_water owntoilet hhsize_ch) vce(cluster runvar_abp03) all Mass points detected in the running variable.

Covariate-adjusted Sharp RD estimates using local polynomial regression.

Cutoff c = 1	Left of c	Right of c	Number of obs	=	24835 mserd
Number of obs	17325	7510	BW type Kernel		Triangular
Nulliber 01 003	1/323	7310	Kerner	_	II. Taligutai.
Eff. Number of obs	2090	1931	VCE method	=	Cluster
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h)	2.511	2.511			
BW bias (b)	3.881	3.881			
rho (h/b)	0.647	0.647			
Unique obs	334	140			
Number of clusters	46	47			

Outcome: childlabor18. Running variable: runvar abp03.

Method	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Conventional	02366	.03665	-0.6457	0.722	095498	.04817
Bias-corrected	01305	.03665	-0.3559		08488	.058788
Robust	01305	.04537	-0.2875		101967	.075876

Covariate-adjusted estimates. Additional covariates included: 9

Std. Err. adjusted for clusters in runvar_abp03

Estimates adjusted for mass points in the running variable.

-0.825

0.762

. rdrandinf childlabor18 runvar_abp03, kernel(triangular) cov(male javanese urban earlyenforcer bw

> in formalwork electric filtered water owntoilet hhsize ch) wmasspoints level(0.1)

Calculating window	cected in covariates	.5 10001(0.1	, Wind	low	Bal. test p-value	Var. name (min p-value)	Bin. test p-value	
Consider dropmissing option to exclude missing values Mass points detected in running variable You may use wmasspoints option for constructing windows at each mass point					0.008 0.090 0.175	0.337 0.168 0.213	electric owntoilet hhsize ch	0.184 0.003 0.000
Window selection f	For RD under local randomizati	on		-0.238 -0.323 -0.405 -0.490	0.258 0.342 0.427	0.201 0.309 0.136	hhsize_ch bwin_formalwork owntoilet	0.000 0.000 0.000
Cutoff c = 0.00	Left of c Right of c	Number of obs = Order of poly =	28056 0	-0.573 -0.658 -0.742	0.510 0.595 0.677	0.466 0.374 0.323	male electric urban	0.002 0.002 0.011

Cutoff $c = 0.00$	Left of c	Right of c	Number of obs	=	28056
			Order of poly	=	0
Number of obs	18636	9420	Kernel type	=	uniform
1st percentile	253	74	Reps	=	1000
5th percentile	957	531	Testing method	=	rdrandinf
10th percentile	1780	956	Balance test	=	diffmeans
20th percentile	3675	1864			

Variable used in binomial test (running variable): runvar abp03

0.386

Covariates used in balance test: male javanese urban earlyenforcer bwin formalwo > rk electric filtered water owntoilet hhsize ch

Recommended window is [-0.825; 0.762] with 1427 observations (674 below, 753 above).

javanese

Obs<c Obs>=c

63

146

226

307

387

470

537

611

696

753

48

99

154

221

278

346

438

508

603

674

0.039

Selected window = [-.82465744 ; .76164436]

- . rdrandinf childlabor18 runvar abp03, kernel(triangular) cov(male javanese urban earlyenforcer bw
- > in_formalwork electric filtered_water owntoilet hhsize_ch) wmasspoints level(0.1)
 Calculating window...

Missing values detected in covariates

Consider dropmissing option to exclude missing values

Mass points detected in running variable

You may use wmasspoints option for constructing windows at each mass point

Window selection for RD under local randomization

Cutoff $c = 0.00$	Left of c	Right of c	Number of obs	=	28056
			Order of poly	=	0
Number of obs	18636	9420	Kernel type	=	uniform
1st percentile	253	74	Reps	=	1000
5th percentile	957	531	Testing method	=	rdrandinf
10th percentile	1780	956	Balance test	=	diffmeans
20th percentile	3675	1864			

 Otomatis melakukan pengujian keseimbangan kovariat untuk mencari bandwidth/window yang tepat

Wind	OW	Bal. test p-value	Var. name (min p-value)	Bin. test p-value	0bs <c< th=""><th>0bs>=c</th></c<>	0bs>=c
-0.077 -0.153 -0.238 -0.323 -0.405 -0.490 -0.573 -0.658 -0.742	0.008 0.090 0.175 0.258 0.342 0.427 0.510 0.595 0.677	0.337 0.168 0.213 0.201 0.309 0.136 0.466 0.374 0.323	electric owntoilet hhsize_ch hhsize_ch bwin_formalwork owntoilet male electric urban	0.184 0.003 0.000 0.000 0.000 0.000 0.002 0.002 0.011	48 99 154 221 278 346 438 508 603	63 146 226 307 387 470 537 611 696
-0.825	0.762	0.386	javanese	0.039	674	753

Variable used in binomial test (running variable): runvar_abp03

Covariates used in balance test: male javanese urban earlyenforcer bwin_formalwo

> rk electric filtered_water owntoilet hhsize_ch

```
Recommended window is [-0.825; 0.762] with 1427 observations (674 below, 753 above)
Selected window = [-.82465744 ; .76164436]
```

- . rdrandinf childlabor18 runvar_abp03, kernel(triangular) cov(male javanese urban earlyenforcer bw
- > in_formalwork electric filtered_water owntoilet hhsize_ch) wmasspoints level(0.1)

Calculating window...

Missing values detected in covariates

Consider dropmissing option to exclude missing values

Mass points detected in running variable

You may use wmasspoints option for constructing windows at each mass point

Window selection for RD under local randomization

Cutoff c = 0.00	Left of c	Right of c	Number of obs =	28056
			Order of poly =	0
Number of obs	18636	9420	Kernel type =	uniform
1st percentile	253	74	Reps =	1000
5th percentile	957	531	Testing method =	rdrandinf
10th percentile	1780	956	Balance test =	diffmeans
20th percentile	3675	1864		

- Otomatis melakukan pengujian keseimbangan kovariat untuk mencari bandwidth/window yang tepat
- Putuskan apakah ingin menggunakan setiap mass point sebagai potensi window

′			Bal. test	Var. name	Bin. test		
	Windo	w	p-value	(min p-value)	p-value	0bs <c< td=""><td>Obs>=c</td></c<>	Obs>=c
t	-0.077	0.008	0.337	electric	0.184	48	63
۱	-0.153	0.090	0.168	owntoilet	0.003	99	146
۱	-0.238	0.175	0.213	hhsize_ch	0.000	154	226
۱	-0.323	0.258	0.201	hhsize_ch	0.000	221	307
۱	-0.405	0.342	0.309	bwin_formalwork	0.000	278	387
١	-0.490	0.427	0.136	owntoilet	0.000	346	470
١	-0.573	0.510	0.466	male	0.002	438	537
١	-0.658	0.595	0.374	electric	0.002	508	611
١	-0.742	0.677	0.323	urban	0.011	603	696
	-0.825	0.762	0.386	javanese	0.039	674	753

Variable used in binomial test (running variable): runvar_abp03

Covariates used in balance test: male javanese urban earlyenforcer bwin_formalwo

> rk electric filtered_water owntoilet hhsize_ch

Recommended window is [-0.825; 0.762] with 1427 observations (674 below, 753 above).

Selected window = [-.82465744 ; .76164436]

- . rdrandinf childlabor18 runvar_abp03, kernel(triangular) cov(male javanese urban earlyenforcer bw

> in_formalwork electric filtered_water owntoilet hhsize_ch) wmasspoints level(@	ð.:
Calculating window	
Missing values detected in covariates	
Consider dropmissing option to exclude missing values	
Mass points detected in running variable	
You may use wmasspoints option for constructing windows at each mass point	
Window selection for RD under local randomization	

Cutoff $c = 0.00$	Left of c	Right of c	Number of obs	=	28056
			Order of poly	=	0
Number of obs	18636	9420	Kernel type	=	uniform
1st percentile	253	74	Reps	=	1000
5th percentile	957	531	Testing method	=	rdrandinf
10th percentile	1780	956	Balance test	=	diffmeans
20th percentile	3675	1864			

- Otomatis melakukan pengujian keseimbangan kovariat untuk mencari bandwidth/window yang tepat
- Putuskan apakah ingin menggunakan setiap mass point sebagai potensi window
- Putuskan tingkat signifikansi

Window	Bal. test p-value	Var. name (min p-value)	Bin. test p-value	0bs <c< th=""><th>Obs>=c</th></c<>	Obs>=c
-0.077 0.008	0.337	electric	0.184	48	63
-0.153 0.090	0.168	owntoilet	0.003	99	146
-0.238 0.175	0.213	hhsize_ch	0.000	154	226
-0.323 0.258	0.201	hhsize_ch	0.000	221	307
-0.405 0.342	0.309	bwin_formalwork	0.000	278	387
-0.490 0.427	0.136	owntoilet	0.000	346	470
-0.573 0.510	0.466	male	0.002	438	537
-0.658 0.595	0.374	electric	0.002	508	611
-0.742 0.677	0.323	urban	0.011	603	696
-0.825 0.762	0.386	javanese	0.039	674	753

Variable used in binomial test (running variable): runvar abp03 Covariates used in balance test: male javanese urban earlyenforcer bwin formalwo > rk electric filtered water owntoilet hhsize ch

Recommended window is [-0.825; 0.762] with 1427 observations (674 below, 753 above).

Selected window = [-.82465744 ; .76164436]

Inference for sharp design

 Besaran sampel menentukan inference

Cutoff $c = 0.00$	Left of c	Right of c	Number of obs =	28056
		· · · · · · · · · · · · · · · · · · ·	Order of poly =	0
Number of obs	18636	9420	Kernel type =	triangular
Eff. Number of obs	766	840	Reps =	1000
Mean of outcome	0.321	0.251	Window =	rdwinselect
S.D. of outcome	0.467	0.434	H0: tau =	0.000
Window	-0.825	0.762	Randomization $=$	fixed margins

Outcome: childlabor18. Running variable: runvar_abp03.

	_	Finite sample		Large sample	
Statistic	Т	P> T	P> T	Power vs d =	0.23
Diff. in means	-0.062	0.019	0.022		1.000

- Besaran sampel menentukan inference
- Prosedur otomatis melakukan perhitungan kekuatan statistik

Inference for sharp design

Cutoff $c = 0.00$	Left of c	Right of c	Number of obs =	28056
		· · · · · · · · · · · · · · · · · · ·	Order of poly =	0
Number of obs	18636	9420	Kernel type =	triangular
Eff. Number of obs	766	840	Reps =	1000
Mean of outcome	0.321	0.251	Window =	rdwinselect
S.D. of outcome	0.467	0.434	H0: tau =	0.000
Window	-0.825	0.762	Randomization =	fixed margins

Outcome: childlabor18. Running variable: runvar_abp03.

		Finite sample	ı	Large sample	
Statistic	Т	P> T	P> T	Power vs d =	0.23
Diff. in means	-0.062	0.019	0.022		1.000

Besaran sampel menentukan inference

- Prosedur otomatis melakukan perhitungan kekuatan statistik
- Kebijakan reformasi pekerja anak menurunkan kemungkinan bekerja sebelum 18 tahun sebesar 6.2 pp.

Inference for sharp design

Cutoff c = 0.00	Left of c	Right of c	Number of obs =	28056
		· · · · · · · · · · · · · · · · · · ·	Order of poly =	0
Number of obs	18636	9420	Kernel type =	triangular
Eff. Number of obs	766	840	Reps =	1000
Mean of outcome	0.321	0.251	Window =	rdwinselect
S.D. of outcome	0.467	0.434	H0: tau =	0.000
Window	-0.825	0.762	Randomization $=$	fixed margins

Outcome: childlabor18. Running variable: runvar_abp03.

		Finite sample		Large sample	
Statistic	Т	P> T	P> T	Power vs d =	0.23
Diff. in means	-0.062	0.019	0.022		1.000

Gunakan metode estimasi parametrik sebagai alternatif uji sensitivitas hasil analisis heterogenitas

```
. reg childlabor18 itt_abp03##c.runvar_abp03 male javanese urban earlyenforcer bwin_formalwork ele
> ctric filtered_water owntoilet hhsize_ch if male==1
> r(runvar abp03)
% inrange(runvar_abp03,-2.146,2.146), cluste
```

note: male omitted because of collinearity

Linear regression

Number of obs = 1,572 F(11, 50) = 22.04 Prob > F = 0.0000 R-squared = 0.0837 Root MSE = .46054

(Std. Err. adjusted for 51 clusters in runvar_abp03)

		Robust				
childlabor18	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
1.itt_abp03	1235322	.0346101	-3.57	0.001	1930486	0540158
runvar_abp03	.0124526	.0266385	0.47	0.642	0410524	.0659576
itt_abp03#c.runvar_abp03						
1	0491396	.0331433	-1.48	0.144	11571	.0174308
male	0	(omitted)				
javanese	.0283876	.0267537	1.06	0.294	0253488	.0821239
urban	0027145	.0234074	-0.12	0.908	0497296	.0443006
earlyenforcer	.0106785	.0297797	0.36	0.721	0491358	.0704928
bwin_formalwork	0964517	.026041	-3.70	0.001	1487565	0441469
electric	1371552	.0295582	-4.64	0.000	1965247	0777858
filtered_water	0436332	.0940113	-0.46	0.645	2324605	.145194
owntoilet	130619	.0261872	-4.99	0.000	1832175	0780205
hhsize_ch	0007053	.0055401	-0.13	0.899	0118329	.0104223
	.6426779	.0609032	10.55	0.000	.5203503	.7650056

Gunakan metode estimasi parametrik sebagai alternatif uji sensitivitas hasil analisis heterogenitas

- . reg childlabor18 itt_abp03##c.runvar_abp03 male javanese urban earlyenforcer bwin_formalwork ele
- > ctric filtered_water owntoilet hhsize_ch if male==1 & inrange(runvar_abp03,-2.146,2.146), cluste
- > r(runvar_abp03)

note: male omitted because of collinearity

Linear regression

Number of obs = 1,572 F(11, 50) = 22.04 Prob > F = 0.0000 R-squared = 0.0837 Root MSE = .46054

(Std. Err. adjusted for 51 clusters in runvar abp03)

		Robust				
childlabor18	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
1.itt_abp03	1235322	.0346101	-3.57	0.001	1930486	0540158
runvar_abp03	.0124526	.0266385	0.47	0.642	0410524	.0659576
itt_abp03#c.runvar_abp03						
1	0491396	.0331433	-1.48	0.144	11571	.0174308
male	0	(omitted)				
javanese	.0283876	.0267537	1.06	0.294	0253488	.0821239
urban	0027145	.0234074	-0.12	0.908	0497296	.0443006
earlyenforcer	.0106785	.0297797	0.36	0.721	0491358	.0704928
bwin_formalwork	0964517	.026041	-3.70	0.001	1487565	0441469
electric	1371552	.0295582	-4.64	0.000	1965247	0777858
filtered_water	0436332	.0940113	-0.46	0.645	2324605	.145194
owntoilet	130619	.0261872	-4.99	0.000	1832175	0780205
hhsize_ch	0007053	.0055401	-0.13	0.899	0118329	.0104223
_cons	.6426779	.0609032	10.55	0.000	.5203503	.7650056

- Atur bandwidth secara manual berdasarkan hasil nonparametrik
- Bobot observasi pasti uniform

Gunakan metode estimasi parametrik sebagai alternatif uji sensitivitas hasil analisis heterogenitas

- . reg childlabor18 itt_abp03##c.runvar_abp03 male javanese urban earlyenforcer bwin_formalwork ele
 > ctric filtered_water owntoilet hhsize_ch if male==1 & inrange(runvar_abp03,-2.146,2.146), cluste
 > r(runvar abp03)
- note: male omitted because of collinearity

Linear regression Number of obs = 1,572 F(11, 50) = 22.04 Prob > F = 0.0000 R-squared = 0.0837 Root MSE = .46054

(Std. Err. adjusted for 51 clusters in runvar abp03)

childlabor18	Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
1.itt_abp03	1235322	.0346101	-3.57	0.001	1930486	0540158
runvar_abp03	.0124526	.0266385	0.47	0.642	0410524	.0659576
itt_abp03#c.runvar_abp03	0404306	0224422	4 40		44574	0474700
1	0491396	.0331433	-1.48	0.144	11571	.0174308
male	0	(omitted)				
javanese	.0283876	.0267537	1.06	0.294	0253488	.0821239
urban	0027145	.0234074	-0.12	0.908	0497296	.0443006
earlyenforcer	.0106785	.0297797	0.36	0.721	0491358	.0704928
bwin_formalwork	0964517	.026041	-3.70	0.001	1487565	0441469
electric	1371552	.0295582	-4.64	0.000	1965247	0777858
filtered_water	0436332	.0940113	-0.46	0.645	2324605	.145194
owntoilet	130619	.0261872	-4.99	0.000	1832175	0780205
hhsize_ch	0007053	.0055401	-0.13	0.899	0118329	.0104223
_cons	.6426779	.0609032	10.55	0.000	.5203503	.7650056

- Atur bandwidth secara manual berdasarkan hasil nonparametrik
- Bobot observasi pasti uniform
- Reformasi kebijakan buruh anak menurunkan probabilitas bekerja sebelum 18 tahun sebesar 12.35 pp.

Metode estimasi parametrik juga bisa menggunakan polynomial derajat >1

```
. reg childlabor18 itt_abp03##c.runvar_abp03 itt_abp03##c.runvarsq_abp03 male javanese urban early
> enforcer bwin_formalwork electric filtered_water owntoilet hhsize_ch if male==1 & inrange(runvar)
> _abp03,-4.4993,4.4993), cluster(runvar_abp03)
note: male omitted because of collinearity
```

Linear regression

Number of obs	=	3,351
F(13, 107)	=	36.30
Prob > F	=	0.0000
R-squared	=	0.0827
Root MSE	=	.45224

(Std. Err. adjusted for 108 clusters in runvar_abp03)

childlabor18	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	. Interval]
1.itt_abp03 runvar_abp03	1455523 .0323629	.0350004 .0318234	-4.16 1.02	0.000 0.311	2149364 0307233	0761682 .095449
itt_abp03#c.runvar_abp03 1	0926572	.0391846	-2.36	0.020	1703361	0149784
runvarsq_abp03	0043211	.0069294	-0.62	0.534	0180578	.0094157
itt_abp03#c.runvarsq_abp03 1	.0215125	.0087192	2.47	0.015	.0042278	.0387972

International Journal of Educational Research 104 (2020) 101693

Contents lists available at ScienceDirect

International Journal of Educational Research

journal homepage: www.elsevier.com/locate/ijedures

Assessing the causal impact of compulsory schooling policy in Indonesia

Arndt-Corden Department of Economics, HC Coombs Building, Room 7132, Crawford School of Public Policy, The Australian National University, Canberra, ACT, 2601, Australia

Ada potensi masalah apa?

Ada potensi masalah apa?

Setup mengasumsikan anak memulai sekolah tepat waktu

Gunakan fuzzy RDD jika terdapat imperfect compliance dalam pembagian kontrol-perlakuan

. rdrobust gJSS runvar_0978, c(0) p(1) kernel(tri) fuzzy(treat_tot_0978) vce(cluster runvar_0978)

Mass points detected in the running variable.

Fuzzy RD estimates using local polynomial regression.

Cutoff c = 0	Left of c	Right of c
Number of obs	12292 3249	19700 3990
Order est. (p)	1	1
Order bias (q) BW est. (h)	44.279	2 44.279
BW bias (b) rho (h/b)	78.732 0.562	78.732 0.562
Unique obs	249 78	265 79
Number of clusters	/8	/9

Number of obs = 31992 BW type = mserd Kernel = Triangular VCE method = Cluster

First-stage estimates. Outcome: treat_tot_0978. Running variable: runvar_0978.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	08396 -	.03277 -			148189 180932	019739 .000432

Treatment effect estimates. Outcome: gJSS. Running variable: runvar_0978. Treatment Status: treat_
> tot 0978.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	17256 -	.28713			735317 778154	.390205

Std. Err. adjusted for clusters in runvar 0978

Estimates adjusted for mass points in the running variable.

> masspoints(adjust)

Gunakan fuzzy RDD jika terdapat imperfect compliance dalam pembagian kontrol-perlakuan

. rdrobust gJSS runvar_0978, c(0) p(1) kernel(tri) fuzzy(treat_tot_0978) vce(cluster runvar_0978)

> masspoints(adjust)

Mass points detected in the running variable.

Fuzzy RD estimates using local polynomial regression.

Cutoff c = 0	Left of c	Right of c
Number of obs	12292	19700
Eff. Number of obs	3249	3990
Order est. (p)	1	1
Order bias (q)	2	2
BW est. (h)	44.279	44.279
BW bias (b)	78.732	78.732
rho (h/b)	0.562	0.562
Unique obs	249	265
Number of clusters	78	79

Number of obs = 31992 BW type mserd Kernel = Triangular VCE method = Cluster

First-stage estimates. Outcome: treat tot 0978. Running variable: runvar 0978.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	08396 -	.03277 -			148189 180932	019739 .000432

Treatment effect estimates. Outcome: gJSS. Running variable: runvar 0978. Treatment Status: treat > tot 0978.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	17256 -	.28713			735317 778154	.390205

Std. Err. adjusted for clusters in runvar 0978

Estimates adjusted for mass points in the running variable.

Variabel ITT menjadi instrument untuk TOT

Gunakan fuzzy RDD jika terdapat imperfect compliance dalam pembagian kontrol-perlakuan

. rdrobust gJSS runvar_0978, c(0) p(1) kernel(tri) fuzzy(treat_tot_0978) vce(cluster runvar_0978)

> masspoints(adjust)

Mass points detected in the running variable.

Fuzzy RD estimates using local polynomial regression.

Cutoff c = 0	Left of c	Right of c
Number of obs	12292	19700
Eff. Number of obs	3249	3990
Order est. (p)	1	1
Order bias (q)	2	2
BW est. (h)	44.279	44.279
BW bias (b)	78.732	78.732
rho (h/b)	0.562	0.562
Unique obs	249	265
Number of clusters	78	79

Number of obs	=	31992
BW type	=	mserd
Kernel	=	Triangular
VCE method	=	Cluster

First-stage estimates. Outcome: treat_tot_0978. Running variable: runvar_0978.						ar_0978.
Method	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Conventional Robust	08396 -	.03277 -	-2.5623 -1.9506		148189 180932	019739 .000432

Treatment effect estimates. Outcome: gJSS. Running variable: runvar 0978. Treatment Status: treat > tot_0978.

Method	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Conventional Robust	17256 -	.28713			735317 778154	.390205 .52471

Std. Err. adjusted for clusters in runvar 0978

Estimates adjusted for mass points in the running variable.

- Variabel ITT menjadi instrument untuk TOT
- Instrumen harus tetap memenuhi persyaratan IV
- Instrumen lemah dan berhubungan negatif dengan TOT
- F statistic sekitar 10 ekuivalen ke 7 statistic sekitar 3.16

Regression Discontinuity Design in Practice

Elghafiky Bimardhika

3 December 2024

elghafiky.bimardhika@alumni.anu.edu.au