Network Layer/Internet Layer Protocols and Addressing

By,

Mr. Kumar Pudashine, (MEng, AIT)
CCNP (Security), CEH, ITIL Expert, ISO 27001, CISA, AcitivIdentity Certified
Information Technology Division,
Agricultural Development Bank,
Ramshahpath, Kathmandu
Nepal

OSI Model Compared to TCP/IP

IP Address: Representation in Dotted Decimal Notation

IP Address: Two Levels of Hierarchy

IP Address : Classes ??

	First byte	Second byte	Third byte	Fourth byte
Class A	0			
Class B	10			
Class C	110			
Class D	1110			
Class E	1111			

IP Address: Subnet and Subnet Mask

Class	Default Subnet	Subnet Mask
Class A	/8	255.0.0.0
Class B	/16	255.255.0.0
Class C	/24	255.255.255.0

IP Address: Private IP Address Space

Range	Total Hosts
10.0.0.0 - 10.255.255.255	2 ²⁴
172.16.0.0 - 172.31.255.255	2 ²⁰
192.168.0.0 - 192.168.255.255	2 ¹⁶

NAT: Network Address Translation

Site using private addresses

MTU: Maximum Transmission Unit

Frame

IPV4 Frame Format

IPV4 Frame Format: Description

- VER => Defines the Version of IP.
- HLEN => Header Length
- DS => Differentiated Service. Defines the Class of Packet for QoS.
- Total Length => Length of Data = Total Length-Header Length.
- Identification
 - When datagram is Fragmented => Identification copied to all.
 - All Fragments have the same Identification.
 - Helps in Reassembling the datagram.

Flags

- 3 Bits => Reserved, MF and DF
- DF => Don't Fragment.
- MF => More Fragment.

IPV4 Frame Format: Description

- Fragmentation Offset => Offset value of Fragment.
- TTL => Time To Live. If TTL =0 Then Packet is discarded.
- Protocol
 - Defines Higher Layer Protocols.
 - Higher Layer Protocols => TCP, UDP.
- Checksum => Computes Checksum
- Source IP Address => IP Address of Source Machine.
- Destination IP Address => IP Address of Destination Machine.
- Option => Optional Field Used for Network Testing and debugging.

Header Checksum Calculation

Question ??

- The Asia Pacific Network Information Center (APNIC) has to provide service to 8 Local ISPs from the network pool of 17.10.0.0/20. From the available pool each Local ISP has to provide service to their Six (6) dedicated clients.
- Design the complete IP Address Plan which includes IP Pool,
 Usable IP Pool and Subnet Mask for each network.

IPV6: Internet Protocol Version 6

- It is Known as Internetworking Protocol Next Generation (IPng).
- It is suitable for Fast growing Internet.
- It is also suitable for Next Generation Networks (NGN).
- Features
 - Larger Address Space (128 Bit Address Space).
 - Supports Resource Allocation via Flow Control Field.
 - Supports More Security.
 - Better Header Format (Base Header and Extension Header)

IPV6: 128 Bit Addressing Scheme

Unabbreviated FDEC BA98 0074 3210 000F BBFF 0000 FFFF FDEC BA98 74 3210 F BBFF 0 FFFF Abbreviated

IPV6: Abbreviated Address

IPV6: Header Format (Base Header + Extension Header)

	VER	PRI	Flow label					
•		Payload	length	Hop limit				
	Source address							
	Destination address							
	Payload extension headers + Data packet from the upper layer							

IPV6: Header Format Description

- VER (4 Bits) => Specifies the Version of IPV6.
- Priority (4 Bits) => Defines the Priority of Packet.
- Flow Label (24 Bits) => Used for Resource Reservation.
- Payload Length (16 Bits)
 Total Length of IP Datagram Excluding Base Header.
- Next Header (8 Bits)
 Provides Information about Extension Header.
- Hop Limit (8 Bits) => Same as TTL in IPV4.
- Source Address => 128 Bit Source IPV6 Address
- Destination Address => 128 Bit Destination IPV6 Address

IPV6 Transition Strategies

IPV6 Transition: Tunneling

IPV6 Transition: Dual Stack

IPV6 Transition: Header Translation

Routing Protocols: Approaches ??

Routing Protocols

- Interior Gateway Routing Protocols
 - Used for Routing Inside an Autonomous System (AS).
 - AS => Network under Common Administration.
 - Examples => RIP, EIGRP and OSPF
- Exterior Gateway Routing Protocols
 - Used for Routing between Autonomous System (AS)

Routing Protocols: Example

IGP vs. EGP Routing Protocols

Routing Protocols: Classification

Routing Protocols

- Distance Vector Routing Protocols
 - Incomplete View of Topology.
 - Routes are advertised as Vectors of Distance and Direction.
 - Generally Periodic Updates.
- Link State Routing Protocols
 - Complete View of Network Topology.
 - Updates are Not Periodic. (Bounded and Triggered Updates).

Thank You