Ελάχιστη επιβράδυνση για αποφυγή σύγκρουσης

Αυτοκίνητο κινείται ευθύγραμμα με σταθερή ταχύτητα μέτρου $υ_0$ = 20m/s. Τη χρονική στιγμή t_0 =0 ο οδηγός του αυτοκινήτου βλέπει μπροστά του, σε απόσταση d=100m, ένα εμπόδιο. Αν ο χρόνος αντίδρασης (αντανακλαστικά) του οδηγού είναι 1s, να υπολογίσετε το

ελάχιστο μέτρο της σταθερής επιτάχυνσης (επιβράδυνσης) που πρέπει να έχει το αυτοκίνητο, ώστε να αποφύγει τη σύγκρουση με το εμπόδιο.

Λύση:

Το ελάχιστο μέτρο της σταθερής επιτάχυνσης (επιβράδυνσης) που πρέπει να έχει το αυτοκίνητο, ώστε να αποφύγει τη σύγκρουση με το εμπόδιο είναι τέτοιο, ώστε η σύγκρουση να αποφευχθεί οριακά, δηλαδή το αυτοκίνητο να φτάσει στο εμπόδιο με μηδενική ταχύτητα.

Στο χρόνο αντίδρασης του οδηγού, το αυτοκίνητο θα κινηθεί ομαλά με ταχύτητα μέτρου $υ_0 = 20$ m/s και στη συνέχεια θα αρχίσει να επιβραδύνεται ομαλά. Έστω t_1 η στιγμή που το αυτοκίνητο ακινητοποιείται μπροστά ακριβώς από το εμπόδιο.

Κατασκευάζουμε το διάγραμμα ταχύτητας - χρόνου για την κίνηση του αυτοκινήτου.

Το εμβαδόν του τραπεζίου θα είναι ίσο με τη μετατόπιση του αυτοκινήτου μέχρι να σταματήσει. Έτσι

$$\Delta x = E_{\text{trapection}} \rightarrow 100 = \frac{(t_1 + 1) \cdot 20}{2} \rightarrow t_1 = 9s$$

Όμως τη στιγμή t₁ θα είναι υ=0. Επομένως:

$$v = v_0 + \alpha \cdot (t - 1) \rightarrow 0 = 20 + \alpha \cdot (t_1 - 1) \rightarrow 0 = 20 + 8 \cdot \alpha \rightarrow \alpha = -2.5 \text{m/s}^2$$

Επομένως το ελάχιστο μέτρο της επιτάχυνσης (επιβράδυνσης) που πρέπει να έχει το αυτοκίνητο για να αποφύγει τη σύγκρουση με το εμπόδιο είναι 2.5m/s^2 .

Παπάζογλου Αποστόλης