Rappels de première année : suites et puissances de matrices le 18 septembre 2016

Suites récurrentes

Exercice 1 (Rappels de cours)

Définir:

- 1. Suite arithmétique, rappeler la formule de sommation
- 2. Suite géométrique, rappeler la formule de sommation
- 3. Suite arithmético-géométrique et rappeler le plan d'étude

Exercice 2 (Une convergence géométrique de suite itérée)

Soit f la fonction définie sur \mathbb{R} par $\forall x \in \mathbb{R}$, $f(x) = \frac{1}{3}(2x - x^2)$. Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie par : $u_0 = 1$ $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.

- 1. Encadrement de (u_n)
 - a) Montrer que $\forall x \in [0;1]$, on a $f(x) \in [0;1]$.
 - **b)** Montrer par récurrence $\forall n \in \mathbb{N}, \ 0 \leq u_n \leq 1$
- 2. Variations et convergence de (u_n)
 - a) Montrer que $\forall x \in [0;1]$, on a $0 \leqslant f(x) \leqslant x$.
 - b) En déduire que la suite (u_n) est décroissante.
 - c) En déduire que la suite (u_n) converge vers une limite ≥ 0 .
- 3. Limite et vitesse de convergence de (u_n)
 - a) Montrer que $\forall x \in [0;1]$, on a $0 \leqslant f(x) \leqslant \frac{2}{3}x$.
 - **b)** Montrer par récurrence $\forall n \in \mathbb{N}, \ 0 \leqslant u_n \leqslant \left(\frac{2}{3}\right)^n$.
 - c) En déduire que la suite (u_n) converge vers 0.

(on parle de convergence de vitesse géométrique.)

Exercice 3 ($Une\ \acute{e}tude\ \it{``un\ peu\ plus\ "}\ d\acute{e}licate)$

Soit f la fonction définie sur \mathbb{R} par $\forall x \in \mathbb{R}$, $f(x) = \frac{x^2+1}{2}$ Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie par : $\begin{vmatrix} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n). \end{vmatrix}$

- **1.** Montrer que $\forall x \in [0; 1], f(x) \in [0; 1].$
- **2.** Montrer que l'on peut écrire $f\left(1-\frac{2}{n}\right) = 1 2\frac{n-1}{n^2} = 1 \frac{2}{n+1} + \frac{2}{n^2(n+1)}$
- **3.** En déduire que $f(1 \frac{2}{n}) \ge 1 \frac{2}{n+1}$.
- **4.** Montrer par récurrence que $1 \frac{2}{n} \leqslant u_n \leqslant 1$.
- 5. En déduire que (u_n) converge et préciser sa limite.

Suites et puissances de matrices

Exercice 4 (Calcul de puissance de matrices (cas diagonalisable))

On étudie la matrice $A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$. On pose aussi $P = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ et $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$.

- **1.** Montrer par récurrence que $\forall n \in \mathbb{N}, A^n = \begin{bmatrix} 2^n & 3^n 2^n \\ 0 & 3^n \end{bmatrix}$.
- 2. Calcul par diagonalisation
 - a) Montrer que la matrice P est inversible et calculer P^{-1} .
 - **b)** Calculer les puissances de la matrice D.
 - c) Vérifier la formule $A = PDP^{-1}$.
 - d) Retrouver le résultat de la question 1..

Exercice 5 (Calcul de puissance de matrices (cas D + N))

On étudie la matrice $B=\begin{bmatrix}3&2\\-2&-1\end{bmatrix}$. On pose aussi $I=\begin{bmatrix}1&0\\0&1\end{bmatrix}$ et N=B-I.

- **1.** Montrer par récurrence que $\forall n \in \mathbb{N}, B^n = \begin{bmatrix} 2n+1 & 2n \\ -2n & -2n+1 \end{bmatrix}$.
- **2.** a) Calculer N. Calculer N^2 .
 - **b)** Exprimer B^n en fonction de I et de N.
 - c) Réécrire l'hérédité de la question 1. en utilisant cette écriture.

Exercice 6 (Somme de la progression arithmétique)

- **1.** Soit $T = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$. Montrer que l'on peut écrire $\forall n \in \mathbb{N}, \ T^n = \begin{bmatrix} 1 & a_n & b_n \\ 0 & 1 & a_n \\ 0 & 0 & 1 \end{bmatrix}$ où les suites $(a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}}$ sont définies par : $\begin{cases} a_0 = 0 & a_{n+1} = a_n + 1 \\ b_0 = 0 & b_{n+1} = a_n + b_n \end{cases}$.
- **2.** Montrer que la suite $(b_n)_{n\in\mathbb{N}}$ satisfait $b_n = \sum_{k=0}^{n-1} a_k$.
- **3.** Montrer que la suite $(a_n)_{n\in\mathbb{N}}$ est arithmétique et déduire une formule explicite.
- **4.** En déduire l'expression $b_n = \frac{n(n-1)}{2}$
- 5. En déduire que $\forall n \in \mathbb{N}$, $T^n = I_3 + nN + \frac{n(n-1)}{2}N^2$ pour une certaine matrice N.

 $(\textbf{Remarque}: c'est \ la \ formule \ du \ binôme \ de \ Newton \ pour \ l'écriture \ T=I_3+N, \ lorsque \ N^3=0.)$