GSERM 2021Analyzing Panel Data

June 16, 2021

Generalized Least Squares Models

For:

$$Y_{it} = \mathbf{X}_{it}\beta + u_{it}$$

i.i.d. *u_{it}*s require:

$$\mathbf{u}\mathbf{u}' \equiv \mathbf{\Omega} = \sigma^2 \mathbf{I}$$

$$= \begin{pmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma^2 \end{pmatrix}$$

GLS Models

That is, within units:

- $Var(u_{it}) = Var(u_{is}) \ \forall \ t \neq s$ (temporal homoscedasticity)
- $\mathsf{Cov}(u_{it}, u_{is}) = 0 \; \forall \; t \neq s \; (\mathsf{no} \; \mathsf{within}\text{-}\mathsf{unit} \; \mathsf{autocorrelation})$

and between units:

- $Var(u_{it}) = Var(u_{jt}) \ \forall \ i \neq j \ (cross-unit homoscedasticity)$
- Cov $(u_{it}, u_{jt}) = 0 \ \forall \ i \neq j$ (no between-unit / spatial correlation)

The Key: Ω

Estimator:

$$\hat{eta}_{\mathit{GLS}} = (\mathsf{X}'\Omega^{-1}\mathsf{X})^{-1}\mathsf{X}'\Omega^{-1}\mathsf{Y}$$

with:

$$\widehat{\mathsf{V}(\beta_{\mathit{GLS}})} = (\mathsf{X}'\Omega^{-1}\mathsf{X})^{-1}$$

Two approaches:

- ullet Use OLS \hat{u}_{it} s to get $oldsymbol{\hat{\Omega}}$ ("feasible GLS")
- \bullet Use substantive knowledge about the data to structure Ω

Getting to Know WLS

The variance-covariance matrix is:

$$\begin{aligned} \mathsf{Var}(\hat{\beta}_{\mathit{WLS}}) &= & \sigma^2 (\mathbf{X}' \Omega^{-1} \mathbf{X})^{-1} \\ &\equiv & (\mathbf{X}' \mathbf{W}^{-1} \mathbf{X})^{-1} \end{aligned}$$

A common case is:

$$\mathsf{Var}(u_i) = \sigma^2 \frac{1}{N_i}$$

where N_i is the number of observations upon which (aggregate) observation i is based.

"Robust" Variance Estimators

Recall that, if $\sigma_i^2 \neq \sigma_i^2 \forall i \neq j$,

$$Var(\beta_{Het.}) = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{W}^{-1}\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1}$$
$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{Q}(\mathbf{X}'\mathbf{X})^{-1}$$

where $\mathbf{Q} = (\mathbf{X}'\mathbf{W}^{-1}\mathbf{X})$ and $\mathbf{W} = \sigma^2 \mathbf{\Omega}$.

We can rewrite **Q** as

$$\mathbf{Q} = \sigma^{2}(\mathbf{X}'\Omega^{-1}\mathbf{X})$$
$$= \sum_{i=1}^{N} \sigma_{i}^{2}\mathbf{X}_{i}\mathbf{X}'_{i}$$

Huber's Insight

Estimate $\hat{\mathbf{Q}}$ as:

$$\widehat{\mathbf{Q}} = \sum_{i=1}^{N} \widehat{u}_i^2 \mathbf{X}_i \mathbf{X}_i'$$

Yields:

$$\widehat{\mathsf{Var}(\boldsymbol{\beta})}_{\mathsf{Robust}} = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\widehat{\mathbf{Q}}^{-1}\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1} \\
= (\mathbf{X}'\mathbf{X})^{-1} \left[\mathbf{X}' \left(\sum_{i=1}^{N} \widehat{u}_{i}^{2}\mathbf{X}_{i}\mathbf{X}_{i}' \right)^{-1} \mathbf{X} \right] (\mathbf{X}'\mathbf{X})^{-1}$$

Practical Things

"Robust" VCV estimates:

- are heteroscedasticity-consistent, but
- are biased in small samples, and
- are less efficient than "naive" estimates when $Var(u) = \sigma^2 \mathbf{I}$.

"Clustering"

Huber / White

?????????

WLS / GLS

I know very little about my error variances... I know a great deal about my error variances...

"Clustering"

A common case:

$$Y_{ij} = \mathbf{X}_{ij}\boldsymbol{\beta} + u_{ij}$$

with

$$\sigma_{ij}^2 = \sigma_{ik}^2.$$

"Robust, clustered" estimator:

$$\widehat{\mathsf{Var}(\boldsymbol{\beta})}_{\mathsf{Clustered}} = (\mathbf{X}'\mathbf{X})^{-1} \left\{ \mathbf{X}' \left[\sum_{i=1}^{N} \left(\sum_{j=1}^{n_j} \hat{u}_{ij}^2 \mathbf{X}_{ij} \mathbf{X}_{ij}' \right) \right]^{-1} \mathbf{X} \right\} (\mathbf{X}'\mathbf{X})^{-1}$$

Robust / Clustered SEs: A Simulation

```
url_robust <- "https://raw.githubusercontent.com/IsidoreBeautrelet/economictheoryblog/master/robust_summary.R"
eval(parse(text = getURL(url_robust, ssl.verifypeer = FALSE)),
     envir=.GlobalEnv)
> set.seed(7222009)
> X <- rnorm(10)
> Y <- 1 + X + rnorm(10)
> df10 <- data.frame(ID=seq(1:10),X=X,Y=Y)
> fit10 <- lm(Y~X,data=df10)
> summary(fit10)
Residuals:
     Min
              1Q Median
                                        Max
-1.12328 -0.65321 -0.05073 0.43937 1.81661
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.8438
                        0.3020 2.794 0.0234 *
Х
             0.3834
                        0.3938 0.974 0.3588
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.9313 on 8 degrees of freedom
Multiple R-squared: 0.1059, Adjusted R-squared: -0.005832
F-statistic: 0.9478 on 1 and 8 DF, p-value: 0.3588
> rob10 <- vcovHC(fit10,type="HC1")
> sqrt(diag(rob10))
(Intercept)
```

0.2932735 0.2859552

Robust / Clustered SEs: A Simulation (continued)

```
> # "Clone" each observation 100 times
> df1K <- df10[rep(seg len(nrow(df10)), each=100).]</pre>
> df1K <- pdata.frame(df1K, index="ID")
> fit1K <- lm(Y~X.data=df1K)
> summary(fit1K)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.84383
                       0.02704
                                 31.20
                                       <2e-16 ***
            0.38341
                      0.03526
                                10.87 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.8338 on 998 degrees of freedom
Multiple R-squared: 0.1059, Adjusted R-squared: 0.105
F-statistic: 118.2 on 1 and 998 DF, p-value: < 2.2e-16
> summary(fit1K, cluster="ID")
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.8438
                        0.2766
                               3.050 0.00235 **
Х
             0.3834
                        0.2697 1.421 0.15551
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.8338 on 998 degrees of freedom
Multiple R-squared: 0.1059, Adjusted R-squared: 0.105
F-statistic: 2.02 on 1 and 9 DF, p-value: 0.1889
```

Parks' Approach

Assume:

- $E(u_{it}^2) = E(u_{is}^2) \forall t \neq s$
- $E(u_{it}, u_{jt}) = \sigma_{ij} \ \forall \ i \neq j$,
- $E(u_{it}, u_{is}) = 0 \ \forall \ i \neq j, t \neq s$
- $E(u_{it}, u_{is}) = \rho$ or ρ_i

(B&K: "panel error assumptions").

Then:

- 1. Use OLS to generate $\hat{u}s \rightarrow \hat{\rho} \ (\rightarrow \hat{\Omega})$,
- 2. Use $\hat{\rho}$ for Prais-Winsten.

This method was widely used prior to Beck & Katz (1995)

Parks' Problems

$$\boldsymbol{\Omega} = \begin{pmatrix} \boldsymbol{\Sigma} & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Sigma} & \cdots & \boldsymbol{0} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \cdots & \boldsymbol{\Sigma} \end{pmatrix} = \boldsymbol{\Sigma} \otimes \boldsymbol{I}_{N}$$

where

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1N} \\ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1N} & \sigma_{2N} & \cdots & \sigma_N^2 \end{pmatrix}$$

Means:

- $\frac{N(N-1)}{2}$ distinct contemporaneous correlations,
- NT observations,
- ightarrow 2T/(N+1) observations per $\hat{\sigma}$

More Parks Problems

From PROC PANEL in SAS:

Standard Corrections

For the PARKS option, the first-order autocorrelation coefficient must be estimated for each cross section. Let ρ be the $N \times 1$ vector of true parameters and $R = (r_1, \dots, r_N)'$ be the corresponding vector of estimates. Then, to ensure that only range-preserving estimates are used in PROC PANEL. the following modification for R is made:

$$r_i = \begin{cases} r_i & \text{if } |r_i| < 1\\ \max(.95, \text{rmax}) & \text{if } r_i \ge 1\\ \min(-.95, \text{rmin}) & \text{if } r_i \le -1 \end{cases}$$

where

$$\operatorname{rmax} = \begin{cases} 0 & \text{if} \quad r_i < 0 \quad \text{or} \quad r_i \ge 1 \quad \forall i \\ \max_j [r_j : 0 \le r_j < 1] & \text{otherwise} \end{cases}$$

and

$$\text{rmin} = \begin{cases} 0 & \text{if} \quad r_i > 0 \quad \text{or} \quad r_i \leq -1 \quad \forall i \\ \max_j [r_j : -1 < r_j \leq 0] & \text{otherwise} \end{cases}$$

Whenever this correction is made, a warning message is printed.

Panel-Corrected Standard Errors

Key to PCSEs:

$$\hat{\sigma}_{ij} = \frac{\sum_{t=1}^{T} \hat{u}_{it} \hat{u}_{jt}}{T}$$

Define:

$$\mathbf{U}_{T \times N} = \begin{pmatrix} \hat{u}_{11} & \hat{u}_{21} & \cdots & \hat{u}_{N1} \\ \hat{u}_{12} & \hat{u}_{22} & \cdots & \hat{u}_{N2} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{u}_{1T} & \hat{u}_{2T} & \cdots & \hat{u}_{NT} \end{pmatrix}$$

$$\boldsymbol{\hat{\Sigma}} = \frac{(\boldsymbol{\mathsf{U}}'\boldsymbol{\mathsf{U}})}{T}$$

$$\hat{\Omega}_{\textit{PCSE}} = \frac{(\textbf{U}'\textbf{U})}{\textit{T}} \otimes \textbf{I}_{\textit{T}}$$

Panel-Corrected Standard Errors

Correct formula:

$$\mathsf{Cov}(\hat{eta}_{PCSE}) = (\mathbf{X}'\mathbf{X})^{-1}[\mathbf{X}'\mathbf{\Omega}\mathbf{X}](\mathbf{X}'\mathbf{X})^{-1}$$

General Issues:

- PCSEs do not fix unit-level heterogeneity (a la "fixed" / "random" effects)
- They also do not deal with dynamics
- They depend critically on the "panel data assumptions" of Park / Beck & Katz

Panel Assumptions and Numbers of Parameters to be Estimated

Panel Assumptions	No AR(1)	Common $\hat{ ho}$	Separate $\hat{ ho_i}$ s
$\sigma_i^2 = \sigma^2$, $Cov(\sigma_{it}, \sigma_{jt}) = 0$	k + 1	k+2	k + N + 1
$\sigma_i^2 \neq \sigma^2$, $Cov(\sigma_{it}, \sigma_{jt}) = 0$	k + N	k + N + 1	k + 2N
$\sigma_i^2 \neq \sigma^2$, $Cov(\sigma_{it}, \sigma_{jt}) \neq 0$	$\frac{N(N-1)}{2} + k + N$	$\frac{N(N-1)}{2} + k + N + 1$	$\frac{N(N-1)}{2} + k + 2N$

Example Data: Demonstrations, 1945-2014

Data:

- Data are (a subset of) Banks (2019)
- N = 180 countries, T = 70 years [1945-2014]
- Variables:
 - Demonstrations: Number of social/political demonstrations in that country in that year
 - POLITY: The country's POLITY IV score that year (-10 = fully autocratic; 10 = fully democratic)
 - · POLITY²: POLITY IV squared (expected curvilinear relationship)
 - · GDP: The per capita GDP (PPP, in constant \$US) for that country / year
 - · Monarch: Whether (=1) or not (=0) that country was a monarchy in that year
 - ColdWar: Indicator variable, coded 1 for the period 1945-1989, 0 otherwise

Regression model:

```
ln(\mathsf{Demonstrations}+1)_{it} = \beta_0 + \beta_1 \mathsf{POLITY}_{it} + \beta_2 \mathsf{POLITY}_{it}^2 + \beta_3 \mathsf{In}(\mathsf{GDP})_{it} + \beta_4 \mathsf{Monarch}_{it} + \beta_5 \mathsf{Cold} \, \mathsf{War}_{it} + u_{it}
```

Data Summary

```
> summary(Demos)
     ccode
                    Year
                                   POLITY
                                                      GDP
        . 2
               Min.
                       :1945
                                      :-10.00
                                                            185
 Min.
                               Min.
                                                Min.
 1st Qu.:235
               1st Qu.:1969
                               1st Qu.: -7.00
                                                1st Qu.:
                                                           1580
 Median:451
               Median:1985
                               Median: 0.00
                                                Median:
                                                          4002
 Mean
        :456
               Mean
                      :1984
                               Mean
                                    : 0.63
                                                Mean
                                                      : 8120
 3rd Qu.:663
               3rd Qu.:2000
                               3rd Qu.:
                                         8.00
                                                3rd Qu.: 10365
 Max.
        :950
               Max.
                      :2014
                               Max.
                                      : 10.00
                                                Max.
                                                        :134040
                               NA's
                                      :111
                                                 NA's
                                                        :2348
    Monarch
                   1nDemons
                                   ColdWar
                                                    1nGDP
 Min.
        :0.0
                       :0.0
                                       :0.000
                                                        : 5.2
                Min.
                                Min.
                                                Min.
 1st Qu.:0.0
                1st Qu.:0.0
                                1st Qu.:0.000
                                                1st Qu.: 7.4
 Median:0.0
                Median:0.0
                                Median :1.000
                                                Median: 8.3
 Mean
        :0.1
                Mean
                       :0.3
                                       :0.563
                                                        : 8.3
                                Mean
                                                Mean
 3rd Qu.:0.0
                3rd Qu.:0.0
                                3rd Qu.:1.000
                                                3rd Qu.: 9.2
 Max.
        :1.0
                Max.
                       :4.3
                                Max.
                                       :1.000
                                                Max.
                                                        :11.8
 NA's
        :1198
                NA's
                       :1149
                                                 NA's
                                                        :2348
```

Example: OLS

```
> OLS<-plm(lnDemons~POLITY+I(POLITY^2)+lnGDP+Monarch+ColdWar,
          data=PDF, model="pooling")
> summary(OLS)
Pooling Model
Call:
plm(formula = lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch +
   ColdWar, data = PDF, model = "pooling")
Unbalanced Panel: n = 145, T = 1-62, N = 6505
Residuals:
  Min. 1st Qu. Median 3rd Qu.
-0.4501 -0.2930 -0.2176 -0.0754 4.1073
Coefficients:
            Estimate Std. Error t-value Pr(>|t|)
(Intercept) -0.124639 0.058208 -2.14 0.032 *
POT.TTY
            0.006296  0.001179  5.34  9.5e-08 ***
I(POLITY^2) -0.002267  0.000255  -8.90 < 2e-16 ***
1 nGDP
          0.057679 0.007513 7.68 1.9e-14 ***
Monarch -0.046393 0.028572 -1.62 0.104
        0.027883 0.013961
ColdWar
                                2.00 0.046 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Total Sum of Squares:
                        1850
Residual Sum of Squares: 1800
R-Squared:
               0.0261
Adj. R-Squared: 0.0253
F-statistic: 34.8228 on 5 and 6499 DF, p-value: <2e-16
```

Example: Prais-Winsten

```
> PraisWinsten<-panelAR(lnDemons~POLITY+I(POLITY^2)+lnGDP+Monarch+ColdWar.
                     data=Demos,panelVar="ccode",timeVar="Year",autoCorr="ar1",
                     panelCorrMethod="none", rho.na.rm=TRUE)
> summary(PraisWinsten)
Panel Regression with AR(1) Prais-Winsten correction and homoskedastic variance
Unbalanced Panel Design:
Total obs.:
                 6505 Avg obs. per panel 44.862
Number of panels: 145 Max obs. per panel 62
Number of times: 62 Min obs. per panel 1
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.150924 0.083548 -1.81 0.0709 .
            0.005223 0.001632 3.20 0.0014 **
POLITY
I(POLITY^2) -0.002332  0.000346  -6.74  1.7e-11 ***
lnGDP 0.063335 0.010705 5.92 3.5e-09 ***
Monarch -0.042863 0.040289 -1.06 0.2874
ColdWar 0.004206 0.019559 0.22 0.8297
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
R-squared: 0.0131
Wald statistic: 91.5428, Pr(>Chisq(5)): 0
> PraisWinsten$panelStructure$rho
Γ17 0.3897
```

Example: GLS with Homoscedastic AR(1) Errors

```
> GLS<- gls(lnDemons~POLITY+I(POLITY^2)+lnGDP+Monarch+ColdWar.
               Demos.correlation=corAR1(form=~1|ccode).
               na.action="na.omit")
> summarv(GLS)
Generalized least squares fit by REML
 Model: lnDemons ~ POLITY + I(POLITY^2) + lnGDP + Monarch + ColdWar
Correlation Structure: AR(1)
Formula: ~1 | ccode
Parameter estimate(s):
  Phi
0 4391
Coefficients:
              Value Std.Error t-value p-value
(Intercept) -0.15206 0.09001 -1.689 0.0912
POT.TTY
            0.00495 0.00174 2.851 0.0044
T(POLTTY^2) -0.00233  0.00037 -6.361  0.0000
1 nGDP
          0.06405 0.01151 5.565 0.0000
        -0.04368 0.04319 -1.011 0.3119
Monarch
ColdWar
          -0.00296 0.02090 -0.142 0.8874
Correlation:
           (Intr) POLITY I (POLI InGDP Monrch
POT.TTY
            0.370
T(POLTTY^2) 0.262 -0.199
1 nGDP
          -0.969 -0.368 -0.428
Monarch
          0.161 0.447 -0.189 -0.164
          -0.235 0.204 -0.225 0.146 0.077
ColdWar
Standardized residuals:
                   Med
                                   May
-0.8982 -0.5537 -0.4148 -0.1423 7.6882
Residual standard error: 0.5299
Degrees of freedom: 6505 total: 6499 residual
```

Example: PCSEs

```
> PCSE<-panelAR(lnDemons~POLITY+I(POLITY^2)+lnGDP+Monarch+ColdWar,
                    data=Demos,panelVar="ccode",timeVar="Year",
                    autoCorr="ar1",panelCorrMethod="pcse",
                    rho.na.rm=TRUE)
> summary(PCSE)
Panel Regression with AR(1) Prais-Winsten correction and panel-corrected standard errors
Unbalanced Panel Design:
Total obs.:
                6505 Avg obs. per panel 44.862
Number of panels: 145 Max obs. per panel 62
Number of times: 62 Min obs. per panel 1
Coefficients:
          Estimate Std. Error t value
                                       Pr(>|t|)
(Intercept) -0.15092 0.09430 -1.60
                                          0.110
POT.TTY
           0.00522 0.00212 2.47
                                          0.014 *
1 nGDP
          0.06334 0.01336 4.74 0.0000021559 ***
Monarch -0.04286 0.03590 -1.19
                                          0.232
ColdWar 0.00421 0.04000
                             0 11
                                          0.916
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
R-squared: 0.0131
Wald statistic: 63.66, Pr(>Chisq(5)): 0
> PCSE$panelStructure$rho
[1] 0.3897
```

Dynamics!

Time Series: Autocorrelation

Example:

$$Y_t = \beta_0 + \beta_1 X_t + u_t$$

$$u_t = \rho u_{t-1} + e_t$$

with $e_t \sim i.i.d. N(0, \sigma_u^2)$ and $\rho \in [-1, 1]$ (typically).

 \rightarrow "First-order autoregressive" ("AR(1)") errors.

Serially Correlated Errors and OLS

Detection

- Plot of residuals vs. lagged residuals
- Runs test (Geary test)
- Durbin-Watson d
 - · Calculated as:

$$d = \frac{\sum_{t=2}^{N} (\hat{u}_t - \hat{u}_{t-1})^2}{\sum_{t=1}^{N} \hat{u}_t^2}$$

- · Non-standard distribution
- · Only detects first-order autocorrelation

Serially Correlated Errors and OLS

What to do about it?

- GLS, incorporating ρ / $\hat{\rho}$ into the equation
- First-difference equations (regressing changes of Y on changes of X)
- Cochrane-Orcutt / Prais-Winsten:
 - 1 Estimate the basic equation via OLS, and obtain residuals
 - 2 Use the residuals to consistently estimate $\hat{\rho}$ (i.e. the empirical correlation between u_t and u_{t-1})
 - 3 Use this estimate of $\hat{\rho}$ to estimate the difference equation:

$$(Y_t - \rho Y_{t-1}) = \beta_0(1 - \rho) + \beta_1(X_t - \rho X_{t-1}) + (u_t - \rho u_{t-1})$$

- 4 Save the residuals, and use them to estimate $\hat{\rho}$ again
- 5 Repeat this process until successive estimates of $\hat{\rho}$ differ by a very small amount

Time Series: Stationarity

Stationarity: A constant d.g.p. over time.¹

Mean stationarity:

$$E(Y_t) = \mu \ \forall \ t$$

Variance stationarity:

$$Var(Y_t) = E[(Y_t - \mu)^2] \equiv \sigma_Y^2 \ \forall \ t$$

Covariance stationarity:

$$Cov(Y_t, Y_{t-s}) = E[(Y_t - \mu)(Y_{t-s} - \mu)] = \gamma_s \ \forall \ s$$

 $^{^1}A$ stricter form of stationarity requires that the joint probability distribution (in other words, all the moments) of series of observations $\{Y_1,Y_2,...Y_t\}$ is the same as that for $\{Y_{1+s},Y_{2+s},...Y_{t+s}\}$ for all t and s.

The "ARIMA" Approach

"ARIMA" = Autoregressive Integrated Moving Average...

A (first-order) integrated series ("random walk") is:

$$Y_t = Y_{t-1} + u_t, \ u_t \sim i.i.d.(0, \sigma_u^2)$$

...a/k/a a "random walk":

$$Y_t = Y_{t-2} + u_{t-1} + u_t$$

$$= Y_{t-3} + u_{t-2} + u_{t-1} + u_t$$

$$= \sum_{t=0}^{T} u_t$$

I(1) Series Properties

I(1) series are not stationary.

Variance:

$$Var(Y_t) \equiv E(Y_t)^2 = t\sigma^2$$

Autocovariance:

$$Cov(Y_t, Y_{t-s}) = |t - s|\sigma^2.$$

Both depend on t...

I(1) series (continued)

More generally:

- $|\rho| > 1$
 - Series is nonstationary / explosive
 - Past shocks have a greater impact than current ones
 - Uncommon
- $|\rho| < 1$
 - Stationary series
 - ullet Effects of shocks die out exponentially according to ho
 - Is mean-reverting
- \bullet $|\rho|=1$
 - Nonstationary series
 - Shocks persist at full force
 - Not mean-reverting; variance increases with t

Time Series Types, Illustrated

I(1) Series: Differencing

For an I(1) series:

$$Y_t - Y_{t-1} = u_t$$

which we often write in terms of the difference operator Δ (or sometimes ∇):

$$\Delta Y_t = u_t$$

The differenced series is just the (stationary, ergoditic) white-noise process u_t .

Unit Root Tests Review: Dickey-Fuller

Two steps:

- Estimate $Y_t = \rho Y_{t-1} + u_t$,
- test the hypothesis that $\hat{\rho} = 0$, but
- this requires that the *u*s are uncorrelated.

But suppose:

$$\Delta Y_t = \sum_{i=1}^p d_i \Delta Y_{t-i} + u_t$$

which yields

$$Y_t = Y_{t-1} + \sum_{i=1}^{p} d_i \Delta Y_{t-i} + u_t.$$

D.F. tests will be incorrect.

Unit Root Alternatives

Augmented Dickey-Fuller Tests:

Estimate

$$\Delta Y_t = Y_{t-1} + \sum_{i=1}^{p} d_i \Delta Y_{t-i} + u_t$$

• Test $\hat{\rho} = 0$

Phillips-Perron Tests:

• Estimate:

$$\Delta Y_t = \alpha + \rho Y_{t-1} + u_t$$

- Calculate modified test statistics (Z_{ρ} and Z_{t})
- Test $\hat{\rho} = 0$

Issues with Unit Roots in Panel Data

- ullet Short series + Asymptotic tests \to "borrow strength"
- Requires uniform unit roots across cross-sectional units
- Many tests require balanced panels...
- Various alternatives:
 - Maddala and Wu (1999)
 - Hadri (2000)
 - Levin, Lin and Chu (2002)
- What to do?
 - Difference the data...
 - Error-correction models

Panel Unit Root Tests: R

```
> lnDemos<-cbind(Demos$ccode,Demos$Year,Demos$lnDemons)
> lnDemos<-na.omit(lnDemos)
> purtest(lnDemos,exo="trend",test=c("levinlin"))
Levin-Lin-Chu Unit-Root Test (ex. var.: Individual Intercepts and Trend)
data: InDemos
z = -3.2, p-value = 0.0007
alternative hypothesis: stationarity
> purtest(lnDemos,exo="trend",test=c("hadri"))
Hadri Test (ex. var.: Individual Intercepts and Trend) (Heterosked.
Consistent)
data: InDemos
z = 671, p-value <2e-16
alternative hypothesis: at least one series has a unit root
> purtest(lnDemos.exo="trend".test=c("ips"))
Im-Pesaran-Shin Unit-Root Test (ex. var.: Individual Intercepts and Trend)
data: lnDemos
Wtbar = -24, p-value <2e-16
alternative hypothesis: stationarity
```

Lagged: Y?

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta}_{LDV} + \epsilon_{it}$$

If ϵ_{it} is perfect...

- $\hat{\beta}_{LDV}$ is biased (but consistent),
- O(bias) = $\frac{-1+3\beta_{LDV}}{T}$

If ϵ_{it} is autocorrelated...

- $\hat{\beta}_{LDV}$ is biased and inconsistent
- IV is one (bad) option...

Lagged Ys and GLS-ARMA

Can rewrite:

$$Y_{it} = \mathbf{X}_{it} \boldsymbol{\beta}_{AR} + u_{it}$$

 $u_{it} = \phi u_{it-1} + \eta_{it}$

as

$$Y_{it} = \mathbf{X}_{it}\beta_{AR} + \phi u_{it-1} + \eta_{it}$$

$$= \mathbf{X}_{it}\beta_{AR} + \phi(\mathbf{Y}_{it-1} - \mathbf{X}_{it-1}\beta_{AR}) + \eta_{it}$$

$$= \phi \mathbf{Y}_{it-1} + \mathbf{X}_{it}\beta_{AR} + \mathbf{X}_{it-1}\psi + \eta_{it}$$

where $\psi = \phi \beta_{AR}$ and $\psi = 0$ (by assumption).

Lagged Ys and World Domination

In:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \beta_{LDV} + \epsilon_{it}$$

Achen: Bias "deflates" $\hat{\beta}_{LDV}$ relative to $\hat{\phi}$, "suppress" the effects of **X**...

Keele & Kelly (2006):

- ullet Contingent on ϵ s having autocorrelation
- Key: In LDV, long-run impact of a unit change in X is:

$$\hat{\beta}_{LR} = \frac{\hat{\beta}_{LDV}}{1 - \hat{\phi}}$$

Long-Run Impact for $\hat{eta}=1$

Lagged Ys and Unit Effects

Consider:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta} + \alpha_i + u_{it}.$$

If we omit the unit effects, we have:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta} + u_{it}^*$$

with

$$u_{it}^* = \alpha_i + u_{it}$$

Lagging yields:

$$Y_{it-1} = \phi Y_{it-2} + \mathbf{X}_{it-1} \boldsymbol{\beta} + \alpha_i + u_{it-1}$$

which means

$$Cov(Y_{it-1}, u_{it}^*) \neq 0. \rightarrow bias in \hat{\phi}, \hat{\beta}$$

"Nickell" Bias

Bias in $\hat{\phi}$ is

- toward zero when $\phi > 0$,
- increasing in ϕ .

Including unit effects still yields bias in $\hat{\phi}$ of $O(\frac{1}{T})$, and bias in $\hat{\beta}$.

Solutions:

- Difference/GMM estimation
- Bias correction approaches

First Difference Estimation

$$Y_{it} - Y_{it-1} = \phi(Y_{it-1} - Y_{it-2}) + (\mathbf{X}_{it} - \mathbf{X}_{it-1})\beta + (\alpha_i - \alpha_i) + (u_{it} - u_{it-1})$$

$$\Delta Y_{it} = \phi\Delta Y_{it-1} + \Delta \mathbf{X}_{it}\beta + \Delta u_{it}$$

Anderson/Hsiao: If \nexists autocorrelation, then use ΔY_{it-2} or Y_{it-2} as instruments for ΔY_{it-1} ...

- Consistent in theory,
- in practice, the former is preferred, and both have issues if ϕ is high;
- both are inefficient.

Arellano & Bond (also Wawro): Use all lags of Y_{it} and \mathbf{X}_{it} from t-2 and before.

- "Good" estimates, better as $T \to \infty$,
- Easy to handle higher-order lags of Y,
- Easy software (plm in R , xtabond in Stata).
- Model is fixed effects...
- \mathbf{Z}_i has T-p-1 rows, $\sum_{i=p}^{T-2} i$ columns \rightarrow difficulty of estimation declines in p, grows in T.

Bias-Correction Models

Kiviet (1995, 1999; Bun and Kiviet 2003; Bruno 2005a,b): Derive the bias in $\hat{\phi}$ and $\hat{\beta}$, then correct it...

- \bullet More accurate than the instrumental-variables/GMM estimators of A&H/A&B...
- ...especially when T is small; but not as T gets reasonably large $(T \approx 20)$

Another Approach: Orthogonalization

Note: We're rarely substantively interested in the fixed effects $\hat{\alpha}$...

- \rightarrow reparameterize the α s so that they are *information-orthogonal* to the other parameters in the model (including the β s and ϕ)
- Key idea: Transform the α s so that (for example):

$$\mathsf{E}\left(\frac{\partial^2 L_i}{\partial \alpha \partial \beta}\right) = 0$$

- Can do this via imposition of priors, in a Bayesian framework...
- In general, this approach is less assumption-laden and more efficient than the IV/GMM-based approaches discussed above.

References:

- Lancaster, T. 2002. "Orthogonal Parameters and Panel Data." Review of Economic Studies 69:647-666.
- Pickup et al. (2017) [the "orthogonalized panel model" ("OPM")]

Some Dynamic Models

	LDV	First Difference	FE	LDV + FE
Intercept	-0.104	0.010		
	(0.053)	(0.007)		
Lagged In(Demonstrations)	0.440*			0.267*
	(0.012)			(0.013)
POLITY	0.003*	0.001	0.002	< 0.001
	(0.001)	(0.004)	(0.002)	(0.002)
POLITY Squared	-0.001*	-0.003*	-0.002*	-0.002*
	(< 0.001)	(0.001)	(< 0.001)	(< 0.001)
In(GDP)	0.038*	-0.108	0.055*	0.049*
	(0.007)	(0.079)	(0.015)	(0.015)
Monarch	-0.017	-0.004	0.048	0.070
	(0.026)	(0.139)	(0.068)	(0.067)
Cold War	0.011	-0.134*	-0.035*	-0.029
	(0.013)	(0.052)	(0.016)	(0.016)
\mathbb{R}^2	0.200	0.004	0.013	0.077
Adj. R ²	0.199	0.003	-0.010	0.055
Num. obs.	6419	6360	6505	6419

p < 0.05

FE + Dynamics Using Orthogonalization

- > library(OrthoPanels)
- > set.seed(7222009)

OPM Results: Short- and Long-Run Effects

For $\hat{\phi} \approx 0.32$:

Parameter	Short-Run	Long-Run
POLITY	0.0010	0.0015
POLITY Squared	-0.0018	-0.0027
In(GDP)	0.0655	0.0956
Monarch	0.0629	0.0913
Cold War	-0.0206	-0.0310

Unit Effects Models: Software

R:

- the plm package (purtest for unit roots; plm for first-difference models)
- the panelAR package (GLS-ARMA models)
- the gls package (GLS)
- the pgmm package (A&B)
- the dynpanel package (A&H, A&B)

Stata:

- xtgls (GLS)
- xtpcse (PCSEs)
- xtabond / xtdpd (A&H A&B dynamic models)

Final Thoughts: Dynamic Panel Models

- N vs. T...
- Are dynamics nuisance or substance?
- What problem(s) do you really care about?