MSO201A (End-Semester Examination)

Name: Roll Number: Time: Three hours Maximum Marks = 45

Group A

This group consists of fifteen questions, and each of them carries one mark. Each question has only one correct answer.

- (i) If you tick (\checkmark) the correct answer, you will get one (i.e., 1) for that question.
- (ii) If you don't tick (\checkmark) any answer, you will get zero (i.e., 0) for that question.
- (iii) If you tick (\checkmark) a wrong answer, you will get negative one (i.e., -1) for that question.
- 1. Let X_1,\ldots,X_n be a sequence of i.i.d. random variables with probability density function $f_X(x;\theta)=\frac{1}{\theta}1_{(0< x<\theta)}$, where $\theta>0$. Here the random variable X has the same distribution as X_1 , and $1_{(A)}=1$ if A is true and $1_{(A)}=0$ if A is false. The maximum likelihood estimator of θ is
- (a) $\max\{X_1, \dots, X_n\}$ (b) $\min\{X_1, \dots, X_n\}$ (c) $\frac{1}{n} \sum_{i=1}^n X_i$ (d) none of (a), (b) and (c).
- 2. Let X_1, \ldots, X_{11} be i.i.d. random variables with uniform distribution over (0, 1). Then $E\left[\frac{X_2 + X_9 + X_{11}}{\sum\limits_{i=1}^{11} X_i}\right] =$
- (a) $\frac{11}{3}$ (b) $\frac{9}{11}$ (c) $\frac{3}{11}$
- 3. Let X be a continuous random variable with probability density function f is such that f(x) = f(-x) for all x. Suppose that $E[X^k] < \infty$ for any integer k. Then $E[X^{1003}] =$
- (a) 1003 (b) 0 (c) 1003f(0) (d) f(0).
- 4. Let X be a random variable with probability mass function $P[X = x] = \binom{n}{x} p^x (1-p)^{n-x}$, where $x = 0, \ldots, n$ and $0 . Suppose that Y is a random variable obtained from the random variable X when <math>n \to \infty$, $p \to 0$ and $np \to \lambda$, where λ (> 0) is a constant. Then for any integer y, P[Y = y] = 0
- (a) $\frac{\exp(-\lambda)\lambda^y}{y!}$ (b) $\frac{1}{\sqrt{2\pi}} \exp(-\frac{y^2}{2})$ (c) $\binom{n}{y} p^y (1-p)^{n-y}$ (d) 0.
- 5. Consider a random sample X_1, \ldots, X_n associated with the probability density function $f(x; \theta) = \exp\{-(x 7\theta)\}$, where $x \geq 7\theta$, and suppose that $X_{(i)}$ is the *i*-th order statistic, where $i = 1, \ldots, n$. The maximum likelihood estimator of θ is
- (a) $X_{(n)}$ (b) $\frac{X_{(n)}}{7}$ (c) $\frac{X_{(1)}}{7}$
- 6. Let X be a Poisson random variable with mean $=\frac{1}{2}$. Then E[(X+1)!] equals
- (a) $2e^{-\frac{1}{2}}$ (b) $4e^{-\frac{1}{2}}$ (c) $4e^{-1}$
- 7. Let X_1, \ldots, X_n be a sequence of i.i.d. random variables with normal distribution mean = 5 and variance = 1. Then $\lim_{n\to\infty} P\left[\left|\frac{1}{n}\sum_{i=1}^n X_i 7\right| < 10^{-101}\right] =$ (a) 10^{-101} (b) 1 (c) 0 (d) $\frac{1}{2}$

(a) $\int_{0}^{\infty} F(x)dx$	(b) $\int_{0}^{\infty} \{1 - F(x)\} dx$	c (c) $\int_{0}^{1} \{1 - 1\}$	F(x) dx	(d) $\int_{0}^{1} F(x)dx$			
10. Let (X,Y) follows bivariate normal distribution with means $=(0,0)$, variances $=(1,1)$ and the correlation coefficient $=\rho(\neq 0)$. Then $P[X>0,Y>0]=$							
(a) $\frac{1}{4}$	(b) 0	(c) $\frac{1}{4} + \frac{1}{2\pi} \sin^{-1} \rho$	(d) $\frac{1}{4} + \frac{1}{2\pi} \cos^{-1} \rho$			
11. Let Φ and ϕ be the CDF and the PDF of the standard normal distribution, respectively. Then $\int\limits_{-\infty}^{\infty}\Phi(x)\phi(x)dx=$							
(a) $\frac{1}{2}$	(b) 1	(c) $\frac{1}{4}$	(d) None of (a), (b) and (c)			
12. Let X be a random variable with p.m.f. $P[X=n]=\frac{1}{10},$ where $n=1,2,\ldots,10.$ Then $E[\max\{X,5\}]=$							
(a) 5	(b) 6.5	(c)	1	(d) 10			
13. Let X_1, \ldots, X_n be a sequence of i.i.d. random variables with p.d.f. $f(x) = \frac{1}{4}e^{- x-4 } + \frac{1}{4}e^{- x-6 }$,							
$x \in \mathbb{R}$. Then as $n \to \infty$, $\frac{1}{n} \sum_{i=1}^{n} X_i$ converges in probability to							
(a) 5	(b) 4	(c)	6	(d) 0.			
14. Let E, F and G be three events such that $P(E \cap F \cap G) = 0.1, P(G F) = 0.3$ and $P(E F \cap G) = P(E F)$. Then $P(G E \cap F) =$							
(a) 1	(b) 0.5	(c)	0	(d) 0.3			
15. Suppose that X_1 and X_2 are two independent random variables (identical with X) with probability mass function $f(x \theta)$, where $x=0$ and 1. We now want to test $H_0:\theta=0$ against $H_1:\theta=1$. The form of $f(x \theta)$ is as follows. At $\theta=0$, $P[X=0]=0.3$ and $P[X=1]=0.7$, whereas at $\theta=1$, $P[X=0]=0.5$ and $P[X=1]=0.5$. Suppose, we reject H_0 when $X_1+X_2<2$. Here, the probability of Type-I error is							
(a) 0.25	(b) 0.75	(c) 0.51	(d) None of (a), (b) and (c) are true.			
		2					

8. Let X_1, \ldots, X_n be a sequence of i.i.d. random variables with uniform distribution over $(0, \theta)$, where

9. Suppose that X is a continuous, non-negative random variable with distribution function F(x).

(c) $X_{(n-7)}$

(d) $X_1 + X_2$

 $\theta > 0$, and $X_{(i)}$ (i = 1, ..., n) denotes the *i*-th order statistic. A consistent estimator of θ is

(b) $2X_{(1)}$

(a) $2X_1$

Then E(X) =

Group B This group consists of fifteen questions, and each of them carries two marks. Each question may have

more than one correct answer.

(i) If you tick (✓) all correct answers, you will get two (i.e., 2) for that question.

(ii) If you don't tick (✓) all correct answers but tick (✓) at least one correct answer (without any wrong answer), you will get one (i.e., 1) for that question.

(iiI) If you don't tick (✓) any answer, you will get zero (i.e., 0) for that question.

(iv) If you tick (✓) any wrong answer, you will get negative one (i.e., -1) for that question.

1. Let X and Y have the joint p.d.f. $f_{(X,Y)}(x,y) = e^{-y}$ if $0 < x < y < \infty$, and $y < \infty$, and $y < \infty$, and $y < \infty$ and $y < \infty$,						
(a) $\frac{1}{3}$ (b) $\frac{1}{\sqrt{3}}$	(c) $\frac{1}{\sqrt{2}}$	(d) $\frac{2}{\sqrt{3}}$				
2. Let X_1, \ldots, X_n be a sequence i.i.d. random variables from uniform distribution over $(\theta, \theta + 1)$, where $\theta \in \mathbb{R}$. Let $U_n = \max\{X_1, \ldots, X_n\}$ and $V_n = \min\{X_1, \ldots, X_n\}$. Then						
(a) U_n is consistent for θ (c) $2U_n - V_n - 2$ is a consistent estimator of θ	. ,	(b) V_n is consistent for θ (d) $2V_n - U_n + 1$ is a consistent estimator for θ				
3. Let A_1 , A_2 and A_3 be three events such that $P(A_i) = \frac{1}{3}$, $i = 1, 2, 3$; $P(A_i \cap A_j) = \frac{1}{6}$, $1 \le i \ne j \le 3$ and $P(A_1 \cap A_2 \cap A_3) = \frac{1}{6}$. Then the probability that none of the events A_1 , A_2 and A_3 occur equals						
(a) $\frac{1}{3}$ (b) $\frac{2}{3}$	(c) $\frac{1}{2}$	(d) 0				
4. Let X_1, \ldots, X_n be a sequence i.i.d. random variables with normal distribution having mean $= \mu$ and variance $= 1$. Then which of the following statement(s) is (are) true?						
(a) X_1 is an unbiased estimator of μ	(b) $\frac{X_1 + X_2 + X_3}{3}$ is	(b) $\frac{X_1+X_2+X_3}{3}$ is an unbiased estimator of μ				
(c) $\frac{1}{n-3}\sum_{i=4}^{n}X_{i}$ is a consistent estimator of μ (d) X_{1} is a consistent estimator of μ .						
5. Let X_1, \ldots, X_n be a random sample from a Bernoulli distribution with unknown parameter p , where $0 . Let T_{1,n} = X_1 and T_{2,n} = \frac{1}{n} \sum_{i=1}^{n} X_i. Which of the following statement(s) is (are) true?$						
(a) Both $T_{1,n}$ and $T_{2,n}$ are unbiased estimators of p . (b) $T_{1,n}$ is more efficient than $T_{2,n}$ when $n \ge 1$. (c) Variance $(T_{1,n}) = \text{Variance } (T_{2,n})$ for all p . (d) $T_{2,n}$ is the UMVUE of p .						
6. Let P be a probability function that assigns the same weight to each of the points of the sample space $\Omega = \{1, 2, 3, 4\}$. Consider the events $E = \{1, 2\}$, $F = \{1, 3\}$ and $G = \{3, 4\}$. Then						
(a) E and F are independent.(c) F and G are independent		(b) E and G are independent (d) E , F and G are independent.				
7. Let X be a random variable, whose moment generating function is $M_X(t) = e^{\frac{t^2}{2}}$, and let \mathbb{Q} denotes the set of rational number. Then $P[X \in \mathbb{Q}] =$						
(a) 0 (b) 1	(c) $\frac{1}{4}$	(d) $\frac{1}{2}$.				
3						

8. Let X and Y be two independent standard normal random variables. Then the pdf of $Z = \frac{ X }{ Y }$ is						
(a) $f_Z(z) = e^{-z}, z > 0$	(b)	$f_Z(z) = \frac{1}{\pi} \frac{1}{(1+z^2)}, \ z > 0$				
(c) $f_Z(z) = \frac{2}{\pi} \frac{1}{(1+z^2)}, z > 0$	(d)	$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}, \ z > 0.$				
9. Let X_1, \ldots, X_n be a random sample from a distribution with p.d.f. $f(x; \theta) = c(\theta)e^{-(x-\theta)}$ if $x \ge 2\theta$ and $x = 0$, otherwise, where $x \in \mathbb{R}$ is the unknown parameter. Then						
(a) The maximum likeliho(c) The maximum likeliho	od estimator of θ is $\frac{\min\{\lambda\}}{\min\{\lambda\}}$ od estimator of θ is $\min\{\lambda\}$	X_1, \dots, X_n (b) $c(\theta) = X_1, \dots, X_n$ (d) $c(\theta) = X_n$	= 1 for all $\theta \in \mathbb{R}$. = θ for all $\theta \in \mathbb{R}$.			
10. Let $\{X_n\}_{n\geq 1}$ be a sequence of i.i.d. random variables with uniform distribution over $(0,1)$, and as						
$n \to \infty$, $\frac{1}{n} \sum_{i=1}^{n} X_i^2 \stackrel{p}{\to} c$. The	en					
(a) $c = \frac{1}{2}$	(b) $c = 1$	(c) $c = \frac{1}{3}$	(d) $c = \frac{1}{12}$			
11. Let (X,Y) has the joint p.d.f. $f(x,y)=2$ if $0 \le x \le y \le 1$, and $=0$, otherwise. Let $a=E(Y X=\frac{1}{2})$ and $b=Var(Y X=\frac{1}{2})$. Then $(a,b)=$						
(a) $(\frac{3}{4}, \frac{7}{12})$	(b) $(\frac{1}{4}, \frac{1}{48})$	(c) $(\frac{1}{4}, \frac{7}{12})$	(d) $(\frac{3}{4}, \frac{1}{48})$			
12. Let X_1, \ldots, X_n be a random sample from normal distribution with mean $= \mu$ and variance $= \sigma^2 > 0$ and define $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$. Then						
and define $X_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ &	and $S_n = \frac{1}{n-1} \sum_{i=1}^{n} (\Lambda_i - \Lambda_n)$) 1 nen				
(a) \bar{X}_n and S_n^2 are independent (c) $Var\left(\frac{(n-1)S_n^2}{\sigma^2}\right) = 2(n-1)$		(b) $E(\bar{X}_n) = \mu$ and Va (d) $E\left(\frac{(n-1)S_n^2}{\sigma^2}\right) = (n - 1)$	10			
13. Let X and Y be jointly distributed random variables with $E(X) = E(Y) = 0$, $E(X^2) = E(Y^2) = 2$, and $\rho(X,Y) = \frac{1}{3}$, where ρ denotes the correlation coefficient. Then $\rho\left(\frac{X}{3} + \frac{2Y}{3}, \frac{2X}{3} + \frac{Y}{3}\right) =$						
(a) $\frac{34}{38}$	(b) $\frac{38}{27}$	(c) $\frac{2}{3}$	(d) 1			
14. The cumulative distribution function of a random variable X defined over \mathbb{R} is $F_X(x) = 1 - e^{-\beta x^2}$, where $\beta > 0$. Then						
(a) $E(X) = \frac{\sqrt{\pi}}{2\sqrt{\beta}}$ (b)	$Variance(X) = \frac{1}{\beta} - \frac{\pi}{4\beta}$	(c) $E(X) = \frac{1}{\beta}$	(d) $E(X^2) = \frac{1}{\beta}$			
15. Let $\{X_n\}_{n\geq 1}$ be a sequence of i.i.d. random variables with mean $=\mu$ and finite variance. Then as $n\to\infty$,						

(a) $\frac{1}{n-3} \sum_{i=1}^{n} X_i \xrightarrow{p} \mu$ (b) $\frac{2}{n(n+1)} \sum_{i=1}^{n} i X_i \xrightarrow{p} \mu$ (c) $\frac{6}{n(n+1)(2n+1)} \sum_{i=1}^{n} i^2 X_i \xrightarrow{p} \mu$ (d) $\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{p} \mu$