1. а) Двойственная задача:

$$\begin{cases} 24y_1 + 20y_2 - 4y_3 \to \min \\ 3y_1 + y_2 + 2y_3 \ge 4 \\ y_1 - 3y_3 \ge -1 \\ -2y_1 + y_2 - y_3 = 4 \\ y_1 + 2y_2 - y_3 \ge 7 \\ y_1 \ge 0, y_2 \in \mathbb{R}, y_3 \ge 0 \end{cases}$$

б) Двойственная задача в каноническом виде:

$$\begin{cases} 24y_1 + 20(p_2 - n_2) - 4y_3 \to \min \\ 3y_1 + (p_2 - n_2) + 2y_3 - y_4 = 4 \\ y_1 - 3y_3 - y_5 = -1 \\ -2y_1 + (p_2 - n_2) - y_3 = 4 \\ y_1 + 2(p_2 - n_2) - y_3 - y_6 = 7 \\ y_1 \ge 0, p_2 \ge 0, n_2 \ge 0, y_3 \ge 0, y_4 \ge 0, y_5 \ge 0, y_6 \ge 0. \end{cases}$$

в) Специальные ограничения можно записать в виде Av=b, где

$$A = \begin{pmatrix} 3 & 1 & -1 & 2 & -1 & 0 & 0 \\ 1 & 0 & 0 & -3 & 0 & -1 & 0 \\ -2 & 1 & -1 & -1 & 0 & 0 & 0 \\ 1 & 2 & -2 & -1 & 0 & 0 & -1 \end{pmatrix}, \quad b = \begin{pmatrix} 4 \\ -1 \\ 4 \\ 7 \end{pmatrix}, \quad v = \begin{pmatrix} y_1 \\ p_2 \\ n_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{pmatrix}.$$

- г) В двойственной задаче в каноническом виде 7 переменных и 4 специальных ограничения.
- д) Допустимым базисным решением задачи в каноническом виде называется любой вектор v, у которого все $v_i \geq 0$, и столбцы матрицы специальных ограничений $\operatorname{col}(A,i)$ при $v_i \neq 0$ линейно независимы.
- е) Например, вектор $v=(y_1=0,p_2=13/3,n_2=0,y_3=1/3,y_4=1,y_5=0,y_6=4/3)$ является базисным допустимым решением, соответствующие ненулевым числам столбцы матрицы A линейно-независимы:

$$\operatorname{col}(A, \langle p_2 \rangle) = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}, \operatorname{col}(A, \langle y_3 \rangle) = \begin{pmatrix} 2 \\ -3 \\ -1 \\ -1 \end{pmatrix}, \operatorname{col}(A, \langle y_4 \rangle) = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \operatorname{col}(A, \langle y_6 \rangle) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$

Например, вектор $v=(y_1=-1,p_2=-2,n_2=-3,y_3=-4,y_4=-5,y_5=-6,y_6=-7)$ не является базисным допустимым решением.

2. а) Двойственная задача:

$$\begin{cases} w = 9y_1 + 6y_2 \to \min \\ y_1 + y_2 \ge 4 \\ 5y_1 + y_2 \ge 12 \\ y_1 + 8y_2 \ge 18 \\ y_1 \ge 0, y_2 \ge 0 \end{cases}$$

Прямые ℓ_1 , ℓ_2 и ℓ_3 пересекаются в одной точке.

Решение двойственной задачи: $y_1 = 2$, $y_2 = 2$, минимум равен 30.

б) В двойственной задаче $y_1>0$, поэтому $x_1+5x_2+x_3=9$. В двойственной задаче $y_2>0$, поэтому $x_1+x_2+8x_3=6$.

Решение исходной задачи: $x_3 \in [0; 21/39], x_2 = (3+7x_3)/4, x_1 = (21-39x_3)/4$, максимум равен 30.

Решение исходной задачи можно также записать в виде Convex(A, B), где A = (21/4, 3/4, 0), B = (0, 22/13, 21/39).

- в) Сравниваем два варианта:
 - і. Решение двойственной задачи сохраняется. Изменение прибыли равно $\Delta \pi = -\Delta b_1 \cdot p + \Delta b_1 \cdot y_1 = 2 \cdot 2 2 \cdot 2 = 0.$
 - іі. Решение двойственной задачи сохраня
ется. Изменение прибыли равно $\Delta\pi = -\Delta b_2 \cdot p + \Delta b_2 \cdot y_2 = -3 \cdot 1 + 3 \cdot 2 = 3$. Данный вариант выгоднее.

3.

	Грузоподъёмность	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
4.	$A \\ A, B$												$\frac{12}{13/12}$	16 13/16	16 17/16	16 18/16	20 18/20	$\frac{20}{21/20}$	20 22/20

a)

б)

$$\begin{cases} 4x_a + 9x_b + 10x_c \to \max \\ 3x_a + 7x_b + 8x_c \le 17 \\ x_a, x_b, x_c \in \{0, 1, 2, 3, \ldots\} \end{cases}$$

	вершина									
	A_1	0	0*							
5.	A_2	∞	6	3	3	3*				
	A_3	∞	2	2	2^*					
	A_4	∞	1	1*						
	A_5	∞	∞	∞	7	6	6*			
	A_6	∞	∞	8	8	8	7	7^{*}		
	A_7	∞	∞	9	9	9	9	8	8*	
	A_8	∞	∞	∞	∞	∞	11	9	9	9*

а) Оптимальные маршруты:

$$A_1 \xrightarrow{1} A_4 \xrightarrow{2} A_2 \xrightarrow{3} A_5 \xrightarrow{1} A_6 \xrightarrow{2} A_8$$
, $A_1 \xrightarrow{1} A_4 \xrightarrow{2} A_2 \xrightarrow{3} A_5 \xrightarrow{1} A_6 \xrightarrow{1} A_7 \xrightarrow{1} A_8$,

стоимость равна 9.

б) $A_2 \stackrel{3}{\to} A_5 \stackrel{1}{\to} A_6 \stackrel{1}{\to} A_7$, стоимость равна 5.