一点域论

王玮

2021年11月7日

鉴于课时限制,这里的多数内容将作为参考阅读材料,我们将介绍基本概念,但会略过很多证明. 计划详细讲的内容有:

- 1. 商环的构造, 命题 1.12;
- 2. 第一个有限域的构造, 命题 2.5;
- 3. 多项式根的存在性命题 3.14;
- 4. 代数闭域的存在性定理 4.2 和代数闭包的唯一性定理 4.12;
- 5. 代数基本定理 5.1;
- 6. 有限域的唯一存在性定理 6.4.

若时间允许,将展开上述内容所需要的某些结论的证明.

1 环

定义 1.1. 一个 环 (ring) 是一个满足以下条件的 5-元组 $(R,0,1,+,\times)$:

- 1. *R* 是一个集合;
- 2. R 有 零元 (记为 0_R 或 0) 和 幺元 (记为 1_R 或 1) (故 R 非空);
- $3. +_R, \times_R$ (简记为 +, ×) 是 R 上的二元运算且满足以下运算规则
 - (a) x + 0 = x;
 - (b) x + (y + z) = (x + y) + z;
 - (c) x + y = y + z;

2

- (d) 每个 x 对应 (唯一的) y 使得 x + y = 0;
- (e) $x \times 1 = x$;
- (f) $x \times (y \times z) = (x \times y) \times z$;
- (g) $x \times (y+z) = (x \times y) + (x \times z);$
- (h) $(y+z) \times x = (y \times x) + (z \times x)$.

 $+, \times$ 分别称为环 R 的加法、乘法. 通常不假定环的乘法满足交换律. 但我们的课程上仅考虑乘法满足交换律的环 (称为 **交换环** (commutative ring)),即

(i) $x \times y = y \times x$.

以下环这一概念仅指交换环.

通常记 $x \times y$ 为 xy, 并且记 $(x \times y) + z$ 为 xy + z. 通常我们直接用 R 指代环 $(R, 0, 1, +, \times)$.

(d) 中断言对应于 x 的 y 记为 -x. 记 x + (-y) 为 x - y.

命题 **1.2.** 对环 R 的任意元素 x, -x = (-1)x.

例 1.3. 常见的环有: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ 等. 注意: \mathbb{N} 及其上的常见运算不构成一个环. 若 R 是一个环, 令 R[X] 记所有如下多项式构成的集合

$$a_0 + a_1 X + \dots + a_n X^n,$$

定义加法、乘法为通常的多项式加法、乘法, 0,1 分别为只有常数项 $0_R,1_R$ 的多项式. 则 R[X] 也构成一个环, 且当 R 是交换环时 R[X] 也是交换的.

若 R 是环, 令 $M_n(R)$ 记所有元素在 R 中的 $n \times n$ 方阵的集合, 即 $M_n(R)$ 中的元素如下形式

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}.$$

如同定义实矩阵的加法、乘法运算一样,可以定义 $M_n(R)$ 上的加法、乘法运算. 零元定义为所有元素都为 0_R 的 $n \times n$ 矩阵,幺元定义为对角线元素为 1_R 、其它元素为 0_R 的 $n \times n$ 矩阵. 则 $M_n(R)$ 也构成一个环. 不过,即使 R 是交换环, $M_n(R)$ 通常也不是交换环.

1 环

当谈论一个特定的环 R 时, 习惯用 n 或 n_R $(n \in \mathbb{N})$ 表示 R 中的幺元 1_R 连加 n-次; 类似地, -2 表示 R 中 (-1) + (-1), 等等. 当 n > 0, $a \in R$ 时, a^n 是 a 连乘 n 次所得的元素; $a^0 = 1 = 1_R$.

定义 1.4. 设 R 为环. 若存在正整数 n 使得 $n_R = 0_R$, 则称 R 的 特征

$$char(R) = \min\{n \in \mathbb{N} : n > 0, n_R = 0_R\};$$

否则 $\operatorname{char}(R) = 0$.

易见: $char(\mathbb{Z})$ 和很多大家熟悉的环的特征都为 0. 后面我们将看到特征大于 0 的环.

定义 1.5. 令 L_{ring} 记只有以下非逻辑符号的一阶语言:

- 两个常元符号 Ö, İ;
- 两个二元函数符号 +, ×.

 L_{ring} 称为 **环的一阶语言**, 或 **环的语言**.

当然每个环都是一个 L_{ring} -模型.

定义 1.6. 设 R 是一个环. R 的一个 子环 (subring) 是指一个满足以下条件 的 $S \subseteq R$,

- $0, \in S, 1 \in S$;
- S 对加法和乘法封闭.

例 1.7. 设 R 是环而 $A \subseteq R$. 令 $-A = \{-a : a \in A\}$,

$$\langle A \rangle^R = \{ a_1^{n_1} + \dots + a_k^{n_k} + m : k \in \mathbb{N}, n_i \in \mathbb{N}, a_i \in A \cup (-A), m \in \mathbb{Z} \}.$$

容易验证 $\langle A \rangle^R$ 是 R 的最小的包含 A 的子环. (当 R 确定时, 记 $\langle A \rangle^R$ 为 $\langle A \rangle$)

定义 1.8. 设 R 是一个环. R 的一个 **理想** (ideal) 是一个满足以下条件的 R 的非空子集 I:

- 1. 任意 $x \in I$ 和 $y \in R$, $xy \in I$;
- 2. 任意 $x \in I$ 和 $y \in I$, $x + y \in I$.

1 环

R 的一个理想 I 是 **真理想** (proper ideal), 当且仅当 $I \neq R$.

- 例 1.9. 1. $\{0\}$ 和 R 是任意环 R 的两个理想, 它们称为 **平凡理想** (trivial ideals).
 - 2. 设 R 是环, $a \in R$, 记

$$(a) = aR = \{ar : r \in R\}.$$

则 (a) 是一个理想, 称为 a 生成的 **主理想** (principal ideals).

- 3. (1) = R.
- 4. 在整数环 \mathbb{Z} 中, 可以证明所有理想都形如 (n).
- 5. 设 R 是环, $a_1, \ldots, a_n \in R$, 记

$$(a_1,\ldots,a_n) = \{r_1a_1 + \cdots + r_na_n : r_1,\ldots,r_n \in R\}.$$

则 (a_1,\ldots,a_n) 是一个理想, 称为 a_1,\ldots,a_n 生成的理想.

- **定义 1.10.** 环 R 的理想 I 是 **素理想** (prime ideal), 当且仅当 I 满足以下条件
 - 任意 a, b,若 $ab \in I$ 则 $a \in I$ 或 $b \in I$.
- 命题 1.11. 一个正整数 n 是素数, 当且仅当 $n\mathbb{Z}$ 是 \mathbb{Z} 的素理想

设 I 是环 R 的一个理想, 定义 R 上的二元关系如下

$$x \sim_I y \Leftrightarrow x - y \in I$$
.

此二元关系具有以下性质,

命题 1.12. 设 R, I, \sim_I 如上.

- $1. \sim_{l}$ 是一个等价关系.
- 2. \sim_I 的等价类形如 $a + I = \{a + x : x \in I\}$.
- 3. 任意 R 中元素 x,y 和 x',y',若 x+I=x'+I (即 $x\sim_I x'$) 且 y+I=y'+I 则

$$(x + y) + I = (x' + y') + I, \quad xy + I = x'y' + I.$$

2 域 5

由以上命题,我们可以定义一个环 R',其元素为 \sim_I 的等价类 x+I $(x \in R)$,加法和乘法分别如下

$$(x+I) +' (y+I) = (x+y) + I, \quad (x+I) \times' (y+I) = xy + I.$$

可以验证 $(R', 0+I, 1+I, +', \times')$ 满足定义 1.1, 并且是一个交换环 (当 R 是交换环时). R' 是一个 **商环** (quotient ring), 通常记为 R/I, 并记 $+', \times'$ 为 $+, \times$.

例 1.13. 当 $R = \mathbb{Z}$, n 是固定的正整数, $I = n\mathbb{Z}$ 时, 以上关系 \sim_I 就是相对 n 的同余关系, 即

$$x \sim_I y \Leftrightarrow x \equiv y \mod n$$
.

这时商环 $\mathbb{Z}/n\mathbb{Z}$ 就是我们介绍过的同余类的环. 且 $\operatorname{char}(\mathbb{Z}/n\mathbb{Z}) = n$.

2 域

注意, 定义 1.1 不要求环中乘法可逆.

定义 2.1. 一个域是一个满足以下条件的交换环 $(F,0,1,+,\times)$:

(j) 任意 $x \neq 0$, 存在 (唯一的) y 使得 xy = 1 (记此 y 为 x^{-1} 或 1/x). 通常用 F 指代域 (F, 0, 1, +, \times).

域 F 的所有非零元素构成的集合记为 F^{\times} , 称为 F 的 **乘法群** (multiplicative group). 显然, $1 = 1_F \in F^{\times}$, 且 F^{\times} 对乘法和 $x \mapsto x^{-1}$ 封闭.

例 2.2. 常见的域有: ℚ, ℝ, ℂ 等.

 \diamondsuit $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}.$ 容易验证 $\mathbb{Q}[\sqrt{2}]$ 构成一个域.

定义 2.3. 设 L 是一个域. L 的一个 子域 (subfield) 是 L 的一个对乘法逆元封闭的子环 K, 即: K 是 L 的子环, 且任意非零的 $a \in K$, $a^{-1} \in K$. 这时我们也称 L 是 K 的 扩域 (field extension).

例 2.4. \mathbb{R} , \mathbb{C} 和 $\mathbb{Q}[\sqrt{2}]$ 都是 \mathbb{Q} 的扩域.

设 K 是 L 的子域,将 L 作为向量集合可以定义一个 K-线性空间,其 上的加法是 L 中的加法,数乘运算为: 若 $a \in K$, $b \in L$,则 ab 是 a 和 b 在 2 域

L 中的乘积. 这时, L 作为 K-线性空间的维数记为 [L:K]. 在上面的例子中, $[\mathbb{R}:\mathbb{Q}]$ 和 $[\mathbb{C}:\mathbb{Q}]$ 都是无穷的 (不可数的), 但

$$[\mathbb{Q}[\sqrt{2}]:\mathbb{Q}]=[\mathbb{C}:\mathbb{R}]=2.$$

当 [L:K] ∈ \mathbb{N} 时,称 L 是 K 的一个 **有限扩张** (finite extension); 否则 L 是 K 的无限扩张.

命题 2.5. 一个正整数 n 是素数, 当且仅当 $\mathbb{Z}/n\mathbb{Z}$ 是域.

证明. 注意在环 $\mathbb{Z}/n\mathbb{Z}$ 中, $(n)=n\mathbb{Z}$ 是加法零元, 1+(n) 是乘法幺元. 当 n=pq, 且 p 和 q 都小于 n 时,

$$(p + (n)) \times (q + (n)) = pq + (n) = (n).$$

当 n 是素数时, 所有正的 m < n 都与 n 互素. 根据 Bézout 定理, 存在 u,v 使得

$$mu + nv = 1$$
,

故

$$(m + (n)) \times (u + (n)) = mu + (n) = 1 + (n).$$

定义 2.6. 一个环 R 是一个 **整环** (domain), 当且仅当其中任意一对非零元 的乘积都非零, 即, 任意 $a,b \in R$, 若 ab = 0 则 a = 0 或 b = 0.

例 2.7. • ℤ 是整环.

- 当正整数 n 是合数时, $\mathbb{Z}/(n)$ 不是整环.
- 所有域都是整环.

设 D 是整环, 令

$$D' = \{(a, b) \in D^2 : b \neq 0\}.$$

定义 D' 上的等价关系 ~ 如下

$$(a_1, b_1) \sim (a_2, b_2) \Leftrightarrow a_1 b_2 = a_2 b_1.$$

6

(a,b) 代表的等价类记为 [a,b]. 令 Q 为所有 ~-等价类的集合. 记 $0_Q=[0,1],$ $1_Q=[1,1],$ 定义

 $[a_1,b_1]+_Q[a_2,b_2]=[a_1b_2+a_2b_1,b_1b_2], \quad [a_1,b_1]\times_Q[a_2,b_2]=[a_1a_2,b_1b_2].$ 容易验证 $+_Q,\times_Q$ 是 Q 上的二元运算.

命题 2.8. 以上 $(Q,0_Q,1_Q,+_Q,\times_Q)$ 是一个域, 称为 D 的 分式域 (fraction field).

例 2.9. 设 K 是域而 $A \subseteq K$. 例 1.7 中定义了 K 中最小的包含 A 的子环 $\langle A \rangle$. 参考 [3], $\langle A \rangle$ 的分式域为 $[A]^K$, 即

$$[A]^K = \{ab^{-1} : a \in \langle A \rangle, 0 \neq b \in \langle A \rangle\}.$$

则 $[A]^K$ 是 K 中最小的包含 A 的子域. (当 K 确定时, 记 $[A]^K$ 为 [A]). 当 $K=\mathbb{R}$ 时,

$$[1]^K = [\mathbb{Z}]^K = \mathbb{Q}.$$

3 多项式

设 K 是一个域.

K[X] 是所有以 X 为变元的、系数来自 K 的多项式 (polynomial) 的集合, 其中的元素形如

$$a_n X^n + \cdots + a_1 X + a_0$$
.

多项式的加法、乘法运算与实多项式的对应运算一致. 以下"多项式"指 K[X] 的元素.

一个 n-次多项式是指一个形如 $f(X) = a_n X^n + \cdots + a_1 X + a_0$ 且 $a_n \neq 0$ 的多项式, 这时记 $\deg f = n$. 上述 n-次多项式是 **首一的** (monic) 当且仅当 $a_n = 1$. 系数全为零的多项式记为 0, 约定 $\deg 0 = -\infty$. 多项式的次数有一些简单性质

 $\deg fg = \deg f + \deg g, \quad \deg(f+g) \le \max\{\deg f, \deg g\}.$

命题 3.1 (带余除法). 若 $f(X) \in K[X]$, $g(X) \in K[X]$, 则存在唯一的一对多项式 g(X), r(X) 满足

$$f(X) = g(X)q(X) + r(X)$$

 $\mathbb{H} \operatorname{deg} r < \operatorname{deg} g$.

在命题 3.1 中, 若 r = 0, 则称 g 整除 f, 记为 g|f.

命题 3.2 (最大公因式). 若 $f,g \in K[X]$ 且它们的次数都大于 0,则存在唯一的首一多项式 h 满足

- 1. h|f, h|g;
- 2. 任意多项式 h', 若 h'|f 且 h'|g, 则 h'|h.

命题 3.2 中的 h 称为 f 和 g 的**最大公因式** (greatest common divisor), 记为 $\gcd(f,g)$.

定理 3.3 (Bézout). 若 $f,g \in K[X]$ 且它们的次数都大于 0,则存在多项式 u,v 使得

$$\gcd(f,g) = fu + gv.$$

命题 3.2 和定理 3.3 都可以用命题 3.1 和辗转相除法证明. 分析辗转相除法还可以得到以下结论.

命题 3.4. 设 K 是域, L 是 K 的扩域. 若 $f(X), g(X) \in K[X]$ 且在 L[X] 中有最大公因式 h(X). 则 $h(X) \in K[X]$ 且 h(X) 是 f(X), g(X) 在 K[X] 中的最大公因式.

例 3.5. 若 f_1, \ldots, f_n 是 n 个多项式, 则以下集合是一个理想

$$\{f_1g_1 + \dots + f_ng_n : g_1, \dots, g_n \in K[X]\},\$$

记为 (f_1, \ldots, f_n) . 运用最大公因式的存在性, 可以证明

$$(f_1, f_2) = (\gcd(f_1, f_2)).$$

不难定义多个多项式 f_1, \ldots, f_n 的最大公因式 $\gcd(f_1, \ldots, f_n)$. 可以进一步 得到

$$(f_1, \ldots, f_n) = (\gcd(f_1, \ldots, f_n)).$$

定理 3.6 (主理想). K[X] 的所有理想都是主理想, 即形如 (f).

作为定理 3.6 的特例, 若 $f_1, ..., f_n$ 是 n 个多项式, 则唯一存在首一多项式 g 使得 $(g) = (f_1, ..., f_n)$. 容易验证 g 整除每一个 f_i , 且任意同时整除每一个 f_i 的多项式 h 都能整除 g. 因此, g 称为 $f_1, ..., f_n$ 的 **最大公因式**, 记 $g = \gcd(f_1, ..., f_n)$.

设 $f \in K[X]$ 的次数大于 0. 若存在多项式 g,h 使得 f = gh 且 $\deg f > \max\{\deg g, \deg h\}$, 则 f 是 **可约的** (reducible); 否则 f 是 **不可约的** (irreducible).

例 3.7. • 任意一次多项式都不可约.

- 在 $\mathbb{Q}[X]$ 中, 当 k > 0 时 $X^k 2$ 是不可约多项式.
- 在 $\mathbb{R}[X]$ 中, $X^2 2$ 是可约多项式, $X^2 + 1$ 是不可约多项式. $\mathbb{R}[X]$ 中 次数 > 2 的多项式都可约.
- 在 $\mathbb{C}[X]$ 中,一个多项式不可约,当且仅当它是一次多项式,即形如 X-a.

定理 3.8 (唯一不可约分解). 任意非零多项式 f 都对应一组 a, p_1, \ldots, p_k 和 n_1, \ldots, n_k , 使得

- 1. $f = ap_1^{n_1} \cdots p_k^{n_k}$,
- 2. $0 \neq a \in K$,
- 3. pi 都是各不相同的首一不可约多项式,
- $4. n_i$ 都是正整数.

并且, 若 b, q_1, \ldots, q_ℓ 和 m_1, \ldots, m_ℓ 也满足以上四个条件, 则 $a = b, k = \ell$, 且存在双射 $\sigma: \{1, \ldots, k\} \to \{1, \ldots, k\}$ 使得 $q_i = p_{\sigma(i)}, m_i = n_{\sigma(i)}$.

与命题 2.5 类似, 利用 Bézout 定理 3.3 可得

命题 3.9. $f(X) \in K[X]$ 不可约, 当且仅当 K[X]/(f) 是域.

K 可以看作 K[X]/(f) 的一个子环, 因为可以定义环单同态

$$i: K \to K[X]/(f), \quad i(a) = a + (f).$$

这样, $f(X) = \sum_{k=0}^{n} a_k X^k \in K[X]$ 也可以看作 (K[X]/(f))[X] 中的如下多项式

$$\sum_{k=0}^{n} (a_k + (f))X^k.$$

定义 3.10. 设 K 是域同时是环 R 的子环, $f(X) \in K[X]$. $a \in R$ 是 f(X) 的 **根** (root), 当且仅当 f(a) = 0.

命题 **3.11.** 若 $f(X) \in K[X]$ 在环 $R \supseteq K$ 中有不同的根 a_1, \ldots, a_n , 则 $\prod_{i=1}^n (X - a_i) | f(X)$. 因此, n-次多项式最多有 n 个不同的根 (在任何环中).

由以上命题,可定义: $a \in R$ 是 $f(X) \in K[X]$ 的 n-重根,当且仅当 $(X-a)^n|f(X)$ 但 $(X-a)^{n+1}$ $\chi f(X)$,这时 n 称为 a 作为 f(X) 的根的 **重数** (multiplicity). **单根** (simple root) 指 1-重根. 在代数中,"f(X) 在 R 中有 n 个根",通常指: f(X) 在 R 中有 n_1 -重根 $a_1, ..., n_r$ -重根 $a_r, a_1, ..., a_r$ 各不相同且 $n_1 + \cdots + n_r = n$.

命题 3.12. 设 $f(X) \in K[X]$. 则在 K[X]/(f) 中, X + (f) 是 f(X) 的根.

证明. 设 $f(X) = a_0 + a_1 X + \dots + a_n X^n$, 在 K[X]/(f) 中, f(X) 的系数分别是 $a_0 + (f), a_1 + (f), \dots, a_n + (f)$. 则

$$f(X + (f)) = \sum_{k=0}^{n} (a_k + (f))(X + (f))^k = \sum_{k=0}^{n} (a_k X^k + (f))$$
$$= \sum_{k=0}^{n} a_k X^k + (f) = (f).$$

注释 3.13. 以上命题的证明中 X 扮演了两个角色: 一个作为变元符号, 一个作为 K[X] 中的元素 (一次单项式 X). 为了厘清这两个角色, 我们考察以下一阶语言: 给 K 中每个元素 a 添加一个常元符号 c_a 到环的语言 L_R 中,所得的语言记为 $L_{R,K}$. 定义以 K 为论域的 $L_{R,K}$ -模型 (K,I) 如下:

- $I(\dot{0}), I(\dot{1}), I(\dot{+}), I(\dot{\times})$ 分别解释为 K 中的零元、幺元、加法和乘法;
- $I(c_a) = a$.

K[X] 中的多项式 $a_0 + a_1X + \cdots + a_kX^k$ 都可以看作 $L_{R,K}$ -项

$$c_{a_0} + c_{a_1} x + \cdots + c_{a_k} x^k$$
.

因此 K[X] 是 $L_{R,K}$ -项的集合, 以它为论域定义 L_R 的解释就构成一个 L_{R} -模型 (即一个环).

给定多项式 $f \in K[X]$, 可以定义 K[X] 上的等价关系. K[X]/(f) 就是对应的等价类的集合; 以它为论域, 可以定义 $L_{R,K}$ -的解释 J, 其中 $J(c_a) = a + (f)$. 将 f 看作 $L_{R,K}$ -项 t(x), 以上命题说明

$$(K[X]/(f), J) \models \exists x(t(x) \approx \dot{0}).$$

以上两个命题可得出,

命题 3.14. 设 K 是域而 $f \in K[X]$, 且 $\deg f > 0$. 则存在 K 的扩域 K' 和 $a \in K'$ 使得 f(a) = 0.

证明. 设 $f \in K[X]$, $\deg f > 0$. 由唯一不可约分解定理 3.8, 取 f 的一个不可约因式 p(X).

令 L=K[X]/(p(X)). 由命题 3.9 知 L 是一个域. 由命题 3.12 知 p(X) 在 L 中有根.

定义 $\sigma: K \to L$ 为

$$\sigma(a) = a + (p(X)),$$

即: σ 将 K 的元素 a 映射为 K[X] 中零次多项式 a 的等价类 a+(p(X)). 容易验证 σ 是单同态,即 L_{ring} -模型 K 至 K[X]/(p(X)) 的嵌入映射. 由此 嵌入映射,我们就可以仿照 [3, 引理 1.4.3] 的证明,构造 K 的扩域 K',使之 与 K[X]/(p(X)) 同构.

设 $f(X) = \sum_{i=0}^n a_i X^i \in K[X]$. 定义 f(X) 的 形式导式 (formal deriviative) 为

$$f'(X) = \sum_{i=1}^{n} i a_i X^{i-1} = a_1 + 2a_2 X + \dots + na_n X^{n-1}.$$

显然 $f'(X) \in K[X]$.

定理 3.15. 设 K 是域, $f(X) \in K[X]$. 则以下等价

- 1. 存在 K 的扩域 L 使得 f(X) 在 L 中有重根 (即 L 中有 a 使得 $(X-a)^2|f(X)$).
- 2. (f, f') = 1.

由定理 3.15 及命题 3.4 可知,一个 K-多项式能否有重根,只与 K[X] 有关.

4 代数闭域

定义 4.1. 一个域 K 是 **代数闭域**, 当且仅当任意 $f(X) \in K[X]$ 都在 K 中 有根, 即存在 $a \in K$ 使得 f(a) = 0.

定理 4.2. 任意域都有代数闭的扩域.

我们需要以下引理,

引理 4.3. 设 K 是一个域. 则存在 K 的一个扩域 K', 使得 $|K'| \le \max\{|K|,\omega\}$, 且任意 $f(X) \in K[X]$ 在 K' 中有根.

证明. 我们只证明 $|K| \le \omega$ 的情况. 这时 K[X] 可数, 故可以列举其中多项式如下:

$$f_0(X), f_1(X), \ldots, f_n(X), \ldots$$

令 $K_0 = K$. 设 K_n 是 K 的扩域且 $|K_n| \le \omega$. 若 $f_n(X) \in K[X] \subseteq K_n[X]$ 在 K_n 中有根, 则令 $K_{n+1} = K_n$. 否则, 由命题 3.14, 取 K_n 的扩域 K_{n+1} 使得 f(X) 在 K_{n+1} 中有根; 注意由命题 3.14 的证明及 3.12 知, K_{n+1} 同构于 $K_n[X]$ 的一个商, 因此

$$|K_{n+1}| \le |K_n[X]| \le \max\{|K_n|, \omega\} \le \omega.$$

最后, 令
$$K' = \bigcup_{n \in \mathbb{N}} K_n$$
.

证明定理 4.2. 设 K 是一个域. 同样我们只证明 $|K| \le \omega$ 的情况. 由引理 4.3, 我们可构造域的序列 $(K_n)_{n \in \mathbb{N}}$, 使得

- $K_0 = K$;
- $|K_n| \leq \omega$;
- $K_n \subseteq K_{n+1}$;

最后, 令
$$K' = \bigcup_{n \in \mathbb{N}} K_n$$
.

定义 4.4. 设 k 是域, K 是 k 的扩域. $a \in K$ 是 k-代数的 (algebraic over k), 当且仅当存在 $f(X) \in k[X]$ 使得 f(a) = 0.

 $a \in K$ 是 k-超越的 (transcendental over k), 当且仅当 a 不是 k-代数的. 我们可以将代数/超越元的概念推广至 K 的一般子集上. 设 $S \subseteq K$. $b \in k$ 是 S-代数的 (S-超越的), 当且仅当 b 是 $[S]^K$ -代数的 ($[S]^K$ -超越的). 记

$$(S^{\operatorname{alg}})^K = \{a \in K : a \ \mathbb{E}S\text{-代数的}\},$$

称为 S 在 K 中的 **代数闭包** (algebraic closure).

k 的扩域 K 是一个 **代数扩域** (algebraic extension), 当且仅当 $K = (k^{\text{alg}})^K$, 即所有 $a \in K$ 都是 k-代数的.

在 \mathbb{C} 或 \mathbb{R} 中, \mathbb{Q} -超越元简称为 **超越数**,其它数称为 **代数数**. 由康托的 定理 $|\mathbb{Q}| < |\mathbb{R}| = |\mathbb{C}|$ 可知,"多数" 实数或复数是超越数. 但要证明具体的实数是超越数并不容易. 根据 Lindemann-Weierstrass 定理, e 和 π 是超越数.

定义 4.5. 设 k, K 如上. 若 $a \in K$ 是 k-代数的,则有次数最小的首一多项式 $f(X) \in k[X]$ 使得 f(a) = 0,称之为 a 的 k-最小多项式 (minimal polynomial).

注意: 同一个域 K 可能是两个域 k_1 和 k_2 的扩域, 其中同一个元素 a 可能既是 k_1 -代数元又是 k_2 -代数元, 这时相对不同域 a 可能有不同的最小多项式. 比如: 当 $K = \mathbb{R}$ 时, 取 $k_1 = \mathbb{Q}[\sqrt{2}]$ 和 $k_2 = \mathbb{Q}[\sqrt[3]{2}]$ (参加以下定理 4.7), 则 $a = \sqrt[6]{2}$ 是 k_i -代数元, 其 k_1 -最小多项式为 $X^3 - \sqrt{2}$, k_2 -最小多项式为 $X^2 - \sqrt[3]{2}$.

命题 4.6. 设 $a \in K \supset k$ 是 k-代数的. 设 $h(X) \in k[X]$ 是 a 的最小多项式.

- (1) h(X) 是不可约的.
- (2) 若 $f(X) \in k[X]$ 且 f(a) = 0, 则 h(X)|f(X). 故代数元的最小多项式是唯一的.

- 证明. (1) 可由定理 3.8 得到.
 - (2) 可由命题 3.2 得到.

我们有如下的代数元判别定理.

定理 4.7 ([4], 定理 5.4). 设 $K \in \mathcal{K}$ 的扩域, $a \in K$. 则以下命题等价:

- 1. a 是 k-代数的.
- 2. $k[a] = \{f(a) : f(X) \in k[X]\}$ 是有限维 k-线性空间.
- 3. k[a] 是域.

设 $f(X) = b_0 + b_1 X + \dots + b_n X^n \in k[X]$, $a \in K \supset k$. 严格来说,以上 f(a) 应该记作 $f(a)^K$,表示其中的加法、乘法是域 K 上的加法、乘法. 这时 k[a] 应该记作 $k[a]^K$. 若将 K 和 k 看作 L_{ring} -模型, k 是 K 的子模型, $k[a]^K$ 是在 K 中构造的、包含 $k \cup \{a\}$ 的最小子模型.

推论 4.8. 若 $a \in K \supset k$ 是 k-代数的, $b \in K$ 是 k[a]-代数的, 则 b 也是 k-代数的.

证明. 用定理 4.7 之 2.

命题 **4.9.** 设 k 有两个扩域 $K, L, a \in K, b \in L$. 设 $a \in k$ -代数的且有最小 多项式 f(X). 若 f(b) = 0 则 $k[a] \cong k[b]$.

证明. 只要验证以下映射是同构映射

$$\sigma: k[a] \to k[b], \quad \sigma(f(a)) = f(b).$$

命题 4.10. 若 K 是域, $\emptyset \neq S \subseteq K$. 设 $A = (S^{alg})^K$. 则 $A = (A^{alg})^K$.

证明. 设 $b \in (A^{alg})^K$, 则有 $a_0, \ldots, a_n \in A$ 及 $f(X) = \sum_{i=0}^n a_i X^i$ 使得 f(b) = 0.

令 $k_0 = [S]$, $k_1 = k_0[a_0]$, $k_{i+1} = k_i[a_i]$ (i < n). 则 k_n 是域, $f(X) \in k_n[X]$. 故 $b \in k_n$ -代数的.

多次运用推论 4.8 可知 $b \in k_0$ -代数的, 即 S-代数的.

命题 4.11. 若 K 是域, $\emptyset \neq S \subseteq K$. 则 $(S^{alg})^K$ 是域.

证明. \diamondsuit $k = [S]^K$.

若 $0 \neq a, b \in (k^{\text{alg}})^K$,则 $b \in (k[a]^{\text{alg}})^K$. 由定理 4.7 知, $k_1 = k[a]$ 和 $k_2 = k_1[b]$ 都是域. 由于 $a, b \in k_2$,故 $a^{-1}, a + b, ab$ 都在 $k_2 \subseteq (k^{\text{alg}})^K$ 中. \square

定理 4.12. 若 k 是域, K 和 L 都是 k 的代数闭扩域. 则 $(k^{\text{alg}})^K \cong (k^{\text{alg}})^L$.

证明. 这里只处理 $|k| \le \omega$ 的情况. 这时 k[X] 可数, 因此 $(k^{\text{alg}})^K$ 和 $(k^{\text{alg}})^L$ 都至多可数. 因此可分别枚举 $(k^{\text{alg}})^K$ 和 $(k^{\text{alg}})^L$ 的元素如下

$$a_0, a_1, \ldots \in (k^{\text{alg}})^K, \quad b_0, b_1, \ldots, \in (k^{\text{alg}})^L.$$

令 $E_0 = F_0 = k$, $\sigma_0 : E_0 \to F_0$ 为恒等映射 $\sigma_0(a) = a$. 设 $E_{2n}, F_{2n}, \sigma_{2n}$ 满足:

- $E_{2n}, F_{2n} \neq k$ 的扩域;

5 代数基本定理 15

- $k \subseteq E_{2n} \subseteq (k^{\text{alg}})^K$, $k \subseteq F_{2n} \subseteq (k^{\text{alg}})^L$;
- $\sigma_0 \subseteq \sigma_{2n} : E_{2n} \to F_{2n}$ 是同构映射.

 a_n 是 k-代数的,因此也是 E_{2n} -代数的,故有最小多项式 $f(X) \in E_{2n}[X]$ 使得 $f(a_n) = 0$. 设 $f(X) = c_0 + c_1 X + \cdots + c_m X^m$. 令 $g(X) = \sigma_{2n}(c_0) + \sigma_{2n}(c_1)X + \cdots + \sigma_{2n}(c_m)X^m$,则 $g(X) \in F_{2n}[X]$. 由于 L 是代数闭域,故存在 $b_{n'} \in (k^{\text{alg}})^L$ 使得 $g(b_{n'}) = 0$ (当然在 L 中计算). 由命题 4.9 (的证明) 知, σ_{2n} 可以扩展为同构映射 $\sigma_{2n+1} : E_{2n}[a_n] \to F_{2n}[b_{n'}]$.

同理, 可定义 E_{2n+2} , F_{2n+2} , 和同构映射 $\sigma_{2n+2}: E_{2n+2} \to F_{2n+2}$.

最终, $\bigcup_n E_n = (k^{\text{alg}})^K$, $\bigcup_n F_n = (k^{\text{alg}})^L$, 且 $\sigma = \bigcup_n \sigma_n$ 是从 $(k^{\text{alg}})^K$ 到 $(k^{\text{alg}})^L$ 的同构映射.

由定理 4.12, 可以将 k 在不同代数闭扩域中的代数闭包等同, 简记为 k^{alg} , 称为 k 的代数闭包. 由定理 4.12, 可知 k^{alg} 是 k 的最小的代数闭扩域.

定理 4.13. 若 k 是域, K 和 L 是 k 的代数闭扩域且 $|K| = |L| > \max\{|k|, \omega\}$. 则 $K \cong L$.

证明. [3, 定理 3.1.2 和 3.3.3].

5 代数基本定理

这里的证明参考 [4, §5.1].

定理 5.1 (希尔伯特的代数基本定理). 复数域 \mathbb{C} 是代数闭域.

我们先介绍复数域上多项式函数的两个性质. 对 $r \in \mathbb{R}$ 和 $a \in \mathbb{C}$, 令

$$D_r(a) = \{x \in \mathbb{R} : |x - a| < r\}, \quad \bar{D}_r(a) = \{x \in \mathbb{R} : |x - a| \le r\}.$$

记 $D_r = D_r(0), \bar{D}_r = \bar{D}_r(0).$

命题 5.2. 设 $f(X) \in \mathbb{C}[X], \ 0 < s \in \mathbb{R}$. 存在正实数 r 使得任意 $b \in \mathbb{C} - D_r$ 都满足 |f(b)| > s.

证明. 当 f(X) = 0 时结论显然成立.

设
$$f(X) = a_n X^n + \cdots + a_1 X + a_0$$
, 其中 $a_n \neq 0$. 则任意 $b \in \mathbb{C}$,

$$|f(b)| = \left| a_n b^n + \sum_{i=0}^{n-1} a_i b^i \right| \ge |a_n| |b|^n - \sum_{i=0}^{n-1} |a_i| |b|^i.$$

5 代数基本定理

16

上式右边是一个关于 |b| 的、最高次项系数大于零的实多项式. 因此,当 |b| 足够大时,|f(b)| > s.

命题 5.3. 设 r 是正实数, $f(X) \in \mathbb{C}[X]$. 则 |f(X)| 在 \bar{D}_r 上有最大值和最小值, 即, 存在 $x_m, x_M \in \bar{D}_r$ 使得

$$|f(x_m)| = \min\{|f(a)| : a \in \bar{D}_r\}, \quad |f(x_M)| = \max\{|f(a)| : a \in \bar{D}_r\}.$$

命题 5.4. 设 f(X) 是复系数多项式. 则 |f(X)| 在 \mathbb{C} 上有最小值.

证明. 假设 f(X) 是复系数多项式. 设 s=|f(0)|. 取正实数 r 使得任意 $a\in\mathbb{C}-\bar{D}_r$ 都满足 |f(a)|>s. 设 |f(X)| 在 \bar{D}_r 上取得最小值 $|f(x_m)|$, 则 $|f(x_m)|\leq s$, 故

$$|f(x_m)| = \min\{|f(a)|a \in \mathbb{C}\}.$$

证明定理 5.1. 假设 $f(X) = a_n X^n + \cdots + a_1 X + a_0$ 是复系数多项式且在复数域上没有根, $a_n \neq 0$. 设

$$|f(x_m)| = \min\{|f(a)| : a \in \mathbb{C}\}.$$

不妨设 $x_m = 0$. 则

$$s = |f(0)| = |a_0|.$$

不妨设 $a_0 = 1$. 则

$$f(X) = a_n X^n + \dots + a_k X^k + 1 = 1 + a_k X^k (1 + Xg(X)),$$

其中 $a_k \neq 0$, $g(X) \in \mathbb{C}[X]$. 令 $t \in \mathbb{R}$, 则

$$f(t(-a_k)^{-1/k}) = 1 - t^k(1 + th(t)) = 1 - t^k - t^{k+1}h(t),$$

其中 h 是一个复系数多项式. 当 t 是充分小的正实数时,

$$\begin{split} |f(t(-a_k)^{-1/k})| &\leq |1 - t^k| + t^{k+1}|h(t)| \\ &= 1 - t^k + t^{k+1}|h(t)| \\ &= 1 - t^k(1 - t|h(t)|) < 1. \end{split}$$

这与 |f| 在 0 处取得最小值的假设矛盾.

6 有限域

在命题 2.5 中, 我们看到只有有限多个元素的域 $\mathbb{Z}/p\mathbb{Z}$ (p 是素数), 这时 $\mathrm{char}(\mathbb{Z}/p\mathbb{Z})=p$.

有限域 (finite field) 是只有有限多个元素的域. 以上 $\mathbb{Z}/p\mathbb{Z}$ 是有限域, 记为 \mathbb{F}_p .

命题 6.1. 一个域 (作为环) 的特征或是 0 或是一个素数.

证明. 假设域 K 的特征 $\operatorname{char}(K) = n$ 是正整数且 n = ab, $1 < a \in \mathbb{N}$. 则 $n_K = a_K b_K = 0_K$. 因此 $a_K = 0_K$ 或 $b_K = 0_K$. 由于 a < n 且 b < n, 这与 $\operatorname{char}(K) = n$ 矛盾.

定理 6.2. 任何有限域的元素个数是某个素数的幂 $p^n > 1$, 且 p 是其特征.

证明. 设 F 是有限域且 char(F) = p > 0.

不难验证 $\{0_F, 1_F, \dots, (p-1)_F\}$ 构成 F 的一个子域, 且同构于 \mathbb{F}_p , 因此可将其等同于 \mathbb{F}_p 并将 F 看作 \mathbb{F}_p 的一个扩域.

故 F 可看作一个 \mathbb{F}_p -线性空间,向量加法是域 F 的加法,数乘运算为: 若 $a \in \mathbb{F}_p$, $u \in F$, 则 au 是 a 和 u 在域 F 中的乘积. 由 F 有限知, F 作为 \mathbb{F}_p -线性空间有一个基

$$\mathcal{B} = \{u_1, \dots, u_n\}.$$

在此基下的坐标映射是 F 与 \mathbb{F}_p^n 之间的一个双射,而 $|\mathbb{F}_p^n|=p^n$. 因此 $|F|=p^n$.

一个域 K 的非零元素的集合通常记为 K^{\times} , 也称为 K 的乘法群. 以下引理来自 [2, Lemma 3.3.1].

引理 6.3. 若 F 是大小为 p^n 的有限域, $0 \neq a \in F$, 则 $a^{p^n} = a$.

证明. 设 $q = p^n$, $F^{\times} = \{b_1, \dots, b_{q-1}\}$. 由 $a \neq 0$ 知, $ab_i \neq ab_i$ $(i \neq j)$, 故

$$F^{\times} = aF^{\times} = \{ab_1, \dots, ab_{q-1}\}.$$

以上所有非零元素相乘可得

$$\prod_{i=1}^{q-1} b_i = \prod_{i=1}^{q-1} ab_i = a^{q-1} \prod_{i=1}^{q-1} b_i.$$

因此 $a^{q-1} = 1$, 从而 $a^q = a$.

参考文献 18

定理 6.4. 对任意素数 p 和正整数 n, 存在一个刚好有 p^n 个元素的有限域. 且两个有限域同构当且仅当它们大小相同.

证明. 先证存在性, 这部分的证明参考 $[1, \S V.5]$. 任取素数 p 和正整数 n. 设 $K = \mathbb{F}_p^{\text{alg}}$ 是 \mathbb{F}_p 的代数闭包. 令

$$F = \{ a \in K : a^{p^n} - a = 0 \}.$$

即, F 是多项式 $f(X) = X^{p^n} - X$ 在 K 中的所有根构成的集合.

由 $f'(X) = p^n X^{p^n-1} - 1 = -1$ (因为 char(K) = p) 及定理 3.15 知 f(X) 没有重根. 故 $|F| = p^n$.

再验证 F 是域. 显然 $0_K, 1_K \in F$.

设 $a, b \in F$, 则

$$(a+b)^{p^n} = \sum_{i=0}^{p^n} C_{p^n}^i a^i b^{p^n - i},$$

其中 $C_{p^n}^i$ 是二项式系数,且当 0 < i < n 时 p 整除 $C_{p^n}^i$. 由 $\operatorname{char}(K) = p$ 知, 上式右边等于 $a^{p^n} + b^{p^n}$;再由 $a, b \in F$ 知,上式等于 a + b,故 $a + b \in F$. 另 一方面,显然

$$(ab)^{p^n} = a^{p^n}b^{p^n} = ab,$$

故 $ab \in F$.

容易验证 F 对减法和除法封闭,因此 F 是域. 这就证明定理的存在性部分.

再证同构意义上的唯一性. 设 F 如上, 而 E 是另一个大小为 p^n 的有限域. 由定理 6.2 知, E 是 \mathbb{F}_p 的扩域; 由定理 4.7 知, E 是 \mathbb{F}_p 的代数扩域. 因此 E 的代数闭包 E^{alg} , 记为 L, 也是 \mathbb{F}_p 的代数闭包. 由定理 4.12 知, 存在同构映射 $\sigma: K \to L$. 由 F 的定义知 $F = \{a \in K: a^{p^n} = a\}$, 由引理 6.3 知 $E = \{b \in L: b^{p^n} = b\}$. 因此 σ 限制在 F 上也是一个同构映射 $\sigma \upharpoonright F: F \to E$.

由有限域的唯一存在性, 可将大小为 p^n 的有限域等同, 记为 \mathbb{F}_{p^n} .

参考文献

[1] Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New York, third edition, 2002.

参考文献 19

[2] San Ling and Chaoping Xing. *Coding theory: a first course*. Cambridge University Press, Cambridge, 2004.

- [3] 姚宁远. 初等模型论. 复旦大学出版社, 2018.
- [4] 莫宗坚, 蓝以中, 赵春来. 代数学(上). 高等教育出版社, 2014.