卤代烷 亲核取代反应

一、卤代烷的定义、分类、命名和物理性质

定	卤代烷(alkylhalide)是烷烃分子中一个或多个氢原子被卤素取代后的化合物。一			
义	般用 RX 表示, R 为烷基, X 为卤原子 (F、Cl、Br、I)			
分类		根据卤原子数根据卤原子数	多卤代烷 CICHO CI (伯卤代烷 CH ₃	CH ₂ Br CHCl Cl CH ₂ CH ₂ CH ₂ CH ₂ X CH ₂ CHCH ₃
命名	普通命名法	CH ₃ I 碘甲烷 methyl iodide CH ₂ =CHCH ₂ Br 烯丙基溴 allyl iodide	CH ₃ CH ₃ CCH ₃ Br 溴代叔丁烷 tert-butyl bromide	简单的一卤代烷常以相应的烃作母体,称为"卤(代)某烷";也可按与卤原子相连的烃基名称称为"某基卤"

	_		绬表
命名	系统命名法	$CH_3CH_2CHCH_2CHCH_2CH_3$ $Br + H$ CH_2CH_3 $3-甲基-5-氯戊烷$ $(R)-2-溴丁烷$ $3-chloro-5-methylheptane$ $(R)-2-bromobutane$ H CH_3 CH_3 CH_3 CH_4 CH_5 CH	以相应的烃作母体,把卤原子作为取代基。编号、命名的原则与烷烃的命名相同
	俗名	CHCl ₃ CHI ₃ 氨仿 碘仿 chloroform iodoform	有些多卤代烷有常 用的俗名
44	性状	常见的卤代烷为液体,除氟代烷和少数—氯代烷外,其 卤代烷难溶于水,易溶于醇、醚、烃等有机物,二氯甲烷 有机溶剂	
物理性质	波谱性质	IR: 碳卤键的伸缩振动吸收峰C一F1000~1400c 850cm ⁻¹ ; C—Br 500~700cm ⁻¹ ; C—I 500~600cm ⁻¹	

二、卤代烷的结构 诱导效应

	弋烷	与卤素相连的碳原子为 sp^3 杂化、碳与卤素以 σ 键相连、价键间的夹角接近 $109^{\circ}28'$ 。卤素的电负性比碳大、碳卤键为极性共价键、成键电子对偏向卤素、碳原子带部分正电荷、卤原子带部分负电荷 $ \begin{array}{c} X\delta- \\ C\delta+ \\ \end{array} $
诱导效应	定义	由于成键原子间电负性不同,使成键电子对偏向一方而发生极化的现象称为诱导效应(inductive effect)

诱导效	分类	(1) 吸电子诱导效应 ($-I$): 比氢原子 "吸"电子的原子或基团的电效应 (2) 供电子诱导效应 ($+I$): 比氢原子 "给"电子的原子或基团的电效应 δ^+ $Y \longrightarrow CR$, $H \longrightarrow CR$, $X \longleftarrow CR$, Y 具有 $+I$ 效应 标准 X 具有 $-I$ 效应
应	特点	(1)诱导效应沿着共价键在碳链上传递 (2)电效应随距离的增加而迅速减弱,一般通过三根单键以后基本消失 $C \longrightarrow C \longrightarrow C$ $C \longrightarrow C$ $C \longrightarrow C$

三、化学性质

	通式	:团	
		水解: $R - X + H_2O \Longrightarrow R - OH + HX$ $CH_3Br + NaOH \xrightarrow{H_2O} CH_3OH + NaBr$	用于研究亲核取代反 应机制 可用于合成醇
亲核取代反应	常见的亲核	Williamson 反应: $R-X+R'ONa \longrightarrow R-O-R'+NaX$ $(CH_3)_2CHONa + CH_3CH_2Br \longrightarrow (CH_3)_2CHOCH_2CH_3 + NaBr$	是合成醚的常用方法
应	取代反	氨解: $R-X+NH_3\longrightarrow R-NH_3X^{-OH}\rightarrow RNH_2+H_2O$	用于制备胺类化合物
	並	釈解: $R \longrightarrow R \longrightarrow R \longrightarrow R \longrightarrow R \longrightarrow NaX$ $CH_3CH_2Br + NaCN \xrightarrow{C_2H_5OH} CH_3CH_2CN + NaBr$ $H_3O CH_3CH_2COOH$	用于合成增加一个碳原子的化合物

		
常见的实	$RX + AgNO_3 \xrightarrow{C_2H_5OH} RONO_2 + AgX \downarrow$ 不同卤代烷的反应活性次序: 3°RX > 2°RX > 1°RX	根据沉淀颜色鉴别卤代烷
取代反应	卤素交换反应: RX + NaI 一两酮 → RI + NaX (X=Cl,Br) CH ₃ CHCH ₃ + NaI → CH ₃ CHCH ₃ + NaBr ↓	由氯代烷和溴代烷制备碘代烷
消除反应	$CH_{3}CHCH_{3} \xrightarrow{NaOH/C_{2}H_{5}OH} \longrightarrow CH_{3}CH=CH_{2} + HBr$ Br CH_{3} $CH_{$	大多服从扎衣采夫规则(优先消除含氢较少的α碳上的氢,或主要生成双键碳上取代基较多的烯烃)。带有芳环或不饱和键的卤代烃消除时倾向于生成稳定的具有共轭体系的产物
与金属反应)格氏试剂的生成及性质: $C_2H_5Br + Mg \xrightarrow{\text{无水乙醚}} C_2H_5MgBr$ $Cl \qquad \qquad MgCl \qquad MgCl$	制备格氏试剂必须用无水乙醚(或四氢呋喃)做溶剂,仪器及试剂应绝对干燥,反应最好在氦气保护下进行,以避免与空气接触
	$RMgX + H \stackrel{+}{\leftarrow} CR^{1}$ $H \stackrel{+}{\rightarrow} NH_{2}$ $H \stackrel{+}{\rightarrow} CCOR^{1}$ $H \stackrel{+}{\rightarrow} CCR^{1}$ $H \stackrel{+}{\rightarrow} C \equiv CR^{1}$ $R^{1}C \equiv CMgX$	格氏试剂中带负电的碳具有强亲核性

与金属反应	$C=0 + RMgX$ $\xrightarrow{\mathcal{E}_{K} \angle \overline{M}}$ $C \stackrel{OMgX}{R}$ $\xrightarrow{H_{3}O^{*}}$ $C \stackrel{OH}{R}$ (2) 烷基锂的生成: $R-X + Li \xrightarrow{- \Box \mathcal{K}} R-Li$ $+ C_{6}H_{5}Li \longrightarrow \underbrace{C}_{Li^{*}} + C_{6}H_{6}$	烷基锂性质与格氏试 剂相似,但比格氏试 剂更活泼且价格更贵
还原反应	(1) 催化氢化(氢解): CH ₃ CH ₂ CH ₂ CH ₂ CI + H ₂ → CH ₃ CH ₂ CH ₂ CH ₃ + HCl (2) 金属还原: CH ₃ CH ₂ CHCH ₃	LiAlH ₄ 遇水即分解放 出氢气,还原反应需 在无水条件下进行; NaBH ₄ 还原能力比氢 化锂铝弱,还原过程 中分子内羧基、氰基、 酯基等基团可以保留 不被还原

四、亲核取代反应机制及影响因素

反应类型	单分子亲核取代(S _N 1)	双分子亲核取代(S _N 2)
代表反应	$(CH_3)_3CBr + OH \longrightarrow (CH_3)_3COH + Br$	$CH_3Br + OH^- \longrightarrow CH_3OH + Br^-$
动力学特征	动力学一级反应: $V_{(CH_3)_3CBr}=k[(CH_3)_3CBr]$	动力学二级反应: $V_{\text{CH}_3\text{Br}}=k[\text{CH}_3\text{Br}][\text{OH}^-]$

反应一步完成,新键的形成和旧键的断 反应分两步进行, 生成碳正离子中间体 裂同时进行 (1) $(CH_3)_3C$ —Br \Longrightarrow $[(CH_3)_3C$ —Br]** 反 N $(2) (CH_3)_3C^+ + HO^- \rightleftharpoons [(CH_3)_3C^+ - \cdots OH]^+$ 机 制 [HO---CH3----Br]* [(CH₃)₃C --- Br]" 反 能量 [(CH₃)₃C---OH]* 应 能 $(CH_3)_1C^++Br^-+OH^-$ 量 $OH^- + CH_3Br$ 变 (CH₃)₃CBr HO-CH3+Br 化 (CH₃)₃COH 反应进程 反应进程 产物外消旋化。但大多数情况下,在外一产物构型完全转化,即亲核试剂从离 消旋化的同时, 还出现一部分构型的转 去基团的背面进攻中心碳原子,产物 化, 即构型转化产物的量超过构型保持 中心碳原子的构型发生翻转, 也称瓦 产物的量 尔登转化 文 体 化 学 构型转化与构型保持产物的比例与碳正 离子的稳定性有关。生成的碳正离子越 稳定,外消旋化越彻底

			次衣
	烃基的结构	(1)不同卤代烷进行 S _N 1 反应的相对活性次序是: 3°RX > 2°RX > 1°RX > CH ₃ X (2)烯丙型卤烃和苄基型卤烃发生 S _N 1 反应的活性比相应的卤代烷大 得多,原因是生成的碳正离子相当 稳定(见第七章)	(1) 不同卤代烷进行 S _N 2 反应的相对活性次序是: CH ₃ X > 1° RX > 2° RX > 3° RX (2) 同是一级卤代烷, α-碳上取代基越多, S _N 2 反应速率越慢 (3) 烯丙型卤烃和苄基型卤烃发生 S _N 2 反应的活性比相应的卤代烷大得多,原因是生成的 S _N 2 反应过渡态比较稳定(见第七章)
影响亲核取代反应		C-X 键键长短,键能大,不易断裂 CH ₂ =CH-X	\pm S_N1 反应还是 S_N2 反应都很困难,因为 $ X$ 无论按 S_N1 还是 S_N2 机制,反应活性都非常 $ X$ X Y
的因素	离去基团	反应受离去基团离去能力的影响较大 烃基相同时,卤代烷的亲核取代反应 序是: RI>RBr>RCl>RF	11回本日 X丁至2 八 \
	亲核试剂	反应速率只取决于 $C-X$ 键的解离 亲核试剂无关,故亲核试剂亲核性的 S_N1 反应无明显的影响	1章 10 34 729 10 10 10 20 14 17 10 15 40
	溶剂的极性	质子性溶剂(如水、醇、羧酸)有 反应 溶剂的极性越大,越有利于 S _N 1 反应	当
	争 .应	单分子消除反应(E1)	双分子消除反应(E2)

五、消除反应的机制及影响因素

单分子消除(E1)	双分子消除(E2)
动力学一级反应,反应速率只与底 物的浓度成正比	动力学二级反应,反应速率与底物的浓度和 进攻试剂的浓度成正比
. ' ']	反应一步完成:
$\begin{bmatrix} & & & & & & & \\ & & & & & \\ & & & & & $	\rightarrow $C=C$ + HB + X
→ C=C + HB E1 反应经历碳正离子中间体,对卤代 E2 反应过渡态中的轨道结合状态:	烃中卤原子和 α-Η 之间的立体要求不高
B H C 处于sp ³ 和sp ² 杂	有部分π键特征 处于sp ³ 和p 轨道之间
	动力学一级反应,反应速率只与底物的浓度成正比

要求两个被消除的原子或基团(X,H)和与它们相连的两个碳原子(即X-C-C-H)在反式共平面的位置上。例如:

$$H \xrightarrow{Ph} Br$$
 $H \xrightarrow{Ph} CH_3$ $=$ $H \xrightarrow{Ph} H$ $H \xrightarrow{ROH} CH_3$ $C = C \xrightarrow{Ph} H$ $H \xrightarrow{ROH} CH_3$ $C = C \xrightarrow{Ph} H$ $H \xrightarrow{ROH} CH_3$ $C = C \xrightarrow{Ph} H$

立体化学

$$H \rightarrow Br$$
 $E \rightarrow H$ E

影响反应的因

素

烃基的结构: 卤代烷无论按 E1 机制还是 E2 机制进行反应, 其相对反应活性次序都是: 3° RX $> 2^{\circ}$ RX $> 1^{\circ}$ RX

试剂的碱性:稀碱或弱碱条件下,仲和叔卤代烷易发生 E1 消除;但在浓的强碱及低极性溶剂中,它们可从 E1 转成 E2 消除为主。伯卤代烷由于不易生成碳正离子,因此 E1 反应十分困难,在浓的强碱存在下,发生 E2 反应,但反应速度也很慢

六、消除反应与亲核取代反应的竞争

在强碱和极性较小的溶剂的反应条件下,直链的伯卤代烷主要得取代产物(S_N2), 仲和叔卤代烷更多得消除产物 (E2)。例如:

$$CH_3CH_2CH_2CH_2Br \xrightarrow{C_2H_5OH} CH_3CH_2CH_2CH_2OC_2H_5 + CH_3CH_2CH=CH_2$$
90% 10%

$$(CH_3)_3CBr \xrightarrow{C_2H_5ONa} CH_3C = CH_2 + (CH_3)_3COC_2H_5$$
 93%
 7%

 α -C 上连有支链的伯卤代烷因空间位阻导致 S_n 2 反应速率减慢,有利于试剂对 α -H 的进攻, E2 反应产物的比例相应增加。例如:

$$R - Br \xrightarrow{C_2H_3ONa} S_N 2 \text{产物} + E2 \text{产物}$$

$$CH_3CH_2CH_2Br 91\% 9\%$$

$$(CH_3CH_2CH_2Br 40\%)$$

(CH₃)₂CHCH₂Br 40% 60%

在无强碱存在时, 卤代烷主要发生 S_N1 和 E1 反应, 并以 S_N1 为主。但 α -C 上支链 增多时, E1 的比例会增加。例如:

$$R-Br \xrightarrow{C_2H_3OH} S_N1$$
产物 + $E1$ 产物 (CH₃)₂CHCH₂Br 95% 5% (CH₃)₃CBr 81% 19%

如果卤代烷消除后能生成稳定的 π - π 共轭体系,会增加反应速率,提高消除反应产 率。例如:

试 剂 的 结 构

和

性

质

卤

代

烷 的

结

构

试剂的影响主要表现在双分子反应中。若试剂的碱性强,浓度大,体积大,则有利 于试剂进攻 β-H, 形成 E2 过渡态, 生成消除产物。若试剂的亲核性强, 浓度大, 体积小,则有利于进攻 α -C,形成 S_N 2 过渡态,生成取代产物。例如:

	244
试	CH ₃ CHCH ₃ CH ₃ COON _a CH ₃ CHCH ₃ CH ₃ CHCH ₃
剂	
的	CI OCOCH ₃ 100%
结	CH ₃ CH ₃
构	$(CH_3)_2CHCH_2Br \xrightarrow{RONa} CH_3C = CH_2 + CH_3CHCH_2OC_2H_5$
和	
性	CH ₃ CH ₂ ONa,CH ₃ CH ₂ OH 62% 38%
质	(CH ₃) ₃ COK,(CH ₃) ₃ COH 92% 8%
溶剂的极性	$\begin{bmatrix} \delta_{-} & 1 & \delta_{-} \\ Nu & \cdots & C & X \end{bmatrix}^{\neq} & \begin{bmatrix} \delta_{-} & H & 0 \\ -C & -C & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}^{\neq} \\ S_{N}2 过渡态 & E2 过渡态 \\ 由于 E2 过渡态比 S_{N}2 过渡态的电荷更分散,溶剂的极性大,对 S_{N}2 过渡态不利,$
	对 E2 过渡态更为不利

七、碳正离子的结构、相对稳定性和重排

	共价键异裂产生碳正离子:	
	$R: \widetilde{X} \longrightarrow R'$	+ X 7
结构	R _m C R R sp ² 杂化	缺电子的碳原子是 sp² 杂化 的, 三个 sp² 轨道分别和其 他三个原子形成σ键, 剩下 一个空 p 轨道, 垂直于σ键 骨架平面
相对稳定性	烷基碳正离子的相对稳定性顺序: $R_3\overset{+}{C} > R_2\overset{+}{C}H > R\overset{+}{C}H_2 > \overset{+}{C}H_3$	烷基的给电子诱导效应和超 共轭效应(见第七章)使碳 正离子稳定

正	重	重	头衣
CH ₃ CH ₃ CH ₃ CH ₃ CH ₄ CH ₅	(1); (1) 的中心碳邻位上的氢带着电子重排(迁移)到缺电子的碳上,生成更稳定的叔碳正离子(2) CH ₃ CH ₃ CH ₄ CH ₅ CH ₂ CH ₃ CH ₂ CH ₃ CH ₄ CH ₅	□ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₄ CH	93%的重排产物 2- 甲基 - 丁醇 戈基溴和乙醇反应,除了 成少量烯烃外,几乎全部
CH ₃ CH ₃	CH ₃ CH ₃ CH ₃ 亲核试剂 H ₂ O 与碳正离子 (2) 结合生成产物 2- 甲基 - 2- 丁醇	The CH ₃);(1)的中心碳邻位上 氢带着电子重排(迁移 映电子的碳上,生成更稳
反	应	应)结合生成产物 2-甲基-
	CH_3 CH_3 CH_3 CH_3 碳正离子 W正离子 W正离子 CH ₃ CCH ₂ CH ₃ CH_3 CCH ₂ CH ₃ C_2 H ₅ OH 与碳正离	CH_3	