### **Data Shape:**

Raw data: 991 rows, 14 columns

Cleaned data: 979 rows, 13 columns

Current\_Clients: 776 rows, 13 columns

Former\_Clients: 203 rows, 13 columns

### **Data Cleaning:**

#### **Missing Values:**

• Last\_Name - 1 missing value

- Valid methods would be to either remove the entire row (which in this case contains other valuable information) or fill in the missing value with 'Unknown'.
- Chosen method: filling in the missing value with 'Unknown'.
- Credit Score 3 missing values
  - o The mean and median are very close which indicates there likely aren't any major outliers.
  - o Chosen method: Imputation with the mean of credit scores.
- Gender 1 missing value
  - o There are 528 males
  - o There are 462 females
  - There are several ways of handling this missing data
    - Impute the missing gender record with the mode (most common gender) -- This could introduce bias
    - Remove the record altogether -- This would remove data that may have been beneficial from the other columns.
    - Fill in the missing value as 'unknown' -- When performing aggregations or charts based on the gender variable, having an unknown gender would not benefit the analysis.
  - Chosen method: Remove the record. Due to there only being one missing value, I chose to remove this record as there will be very minimal impact to the analysis. Had there been many missing values, another method would have been chosen.
- Age 1 missing value
  - There are several ways of handling this missing data
    - Impute the missing age record with the mean age
    - Remove the record altogether -- This would remove data that may have been beneficial from the other columns.
    - Fill in the missing value as 'unknown' -- When performing aggregations or charts based on the age variable, having an unknown age would not benefit the analysis.
  - Chosen method: Impute the record with the mean age.
- Estimated Salary 2 missing values

- o The mean and median are very close which indicates there likely aren't any major outliers.
- o Chosen method: Imputation with the mean estimated salary.

#### Mixed-Data Types:

There were no mixed-data types found, however the following data types were changed.

| Column Name      | Original Data Type | Updated Data Type |
|------------------|--------------------|-------------------|
| Credit Score     | float64            | int64             |
| Age              | float64            | int64             |
| Balance          | object             | float64           |
| HasCrCard?       | int64              | boolean           |
| IsActiveMember   | int64              | boolean           |
| Estimated Salary | object             | float64           |
| ExitedFromBank?  | int64              | boolean           |

#### **Duplicates:**

There were no duplicates found.

# **Data Wrangling:**

#### **Dropped Columns:**

'Row\_Number' was dropped as it was just an index column and not relevant to the analysis.

## **Data Consistency:**

Country and Gender columns had abbreviated and spelled out values. Corrections shown in the table below.

Country Code Abbreviations: https://www.yourdictionary.com/articles/country-abbreviations

| Column Name | Value to Change | Changed to |
|-------------|-----------------|------------|
| Country     | FR              | France     |
| Country     | ES              | Spain      |
| Country     | DE              | Germany    |
| Gender      | М               | Male       |
| Gender      | F               | Female     |

There were 11 records with Age less than 18. Confirmed with stakeholders that these should be removed. Dropping these records only eliminates  $\sim 1\%$  of the dataset and will not have any major impact on the analysis.

# **Top Risk Factors:**

- 1. Active Member: Non active members are higher risk
- 2. Number of Products: Only having 1 product is a higher risk
- 3. Gender: Females have a higher risk
- 4. Age: 36 and 55 years old has a higher risk

