1. (2 valores) Resolva a equação

$$\cos(z) = 3.$$

2. (2 valores) Verifique se a seguinte função, definida em \mathbb{C} , é holomorfa:

$$f(x+iy) = ix + y.$$

3. (2 valores) Calcule o integral

$$\int_{\gamma} z^2 \ dz$$

ao longo do contorno $\gamma = \{z(t) = e^{it} : t \in [0, \pi/2]\}.$

4. $(2 \ valores)$ Determine a série de Laurent em torno de p=0, e o seu anel de convergência, da função

$$f(z) = \frac{e^{1/z}}{z} \,.$$

5. $(2 \ valores)$ Determine e classifique as singularidade isoladas e calcule os respetivos resíduos da função

$$f(z) = \frac{1}{z(z-2)}$$

6. (2 valores) Calcule o integral

$$\oint_{|z|=1} \frac{1}{z(z-2)} \, dz \, .$$

7. (2 valores) Calcule o integral

$$\int_0^{2\pi} \frac{d\theta}{2 + \cos(\theta)} \,.$$

8. (2 valores) Calcule a série de Fourier de senos $\sum_{n=1}^{\infty} b_n \sin(nx)$ da função definida, no intervalo $[0,\pi]$, por

$$\varphi(x) = \left\{ \begin{array}{ll} 0 & \text{se } 0 \leq x \leq \pi/2 \\ 1 & \text{se } \pi/2 < x \leq \pi \end{array} \right.,$$

9. (2 valores) Determine a solução formal da equação de calor

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

no intervalo $x \in [0, \pi]$ com condições de fronteira $u(0, t) = u(\pi, t) = 0$ para todo tempo $t \ge 0$, e condição inicial $u(x, 0) = \varphi(x)$ (definida no exercício 8).

10. (2 valores) Calcule a transformada de Fourier $F(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i \xi x} dx$ da função

$$f(x) = \begin{cases} 1 & \text{se } 0 \le x \le 1\\ 0 & \text{caso contrário} \end{cases}$$