```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

data = pd.read_csv('/content/Bigbazaar_sales_data.csv')
data

:em_Visibility Year		Outlet_Identifier	Item_Type	Item_MRP	MRP_Level	Outlet_Size (
0.016047	17	OUT049	Dairy	249.8092	Very_High	2
0.019278	7	OUT018	Soft Drinks	48.2692	Low	2
0.016760	17	OUT049	Meat	141.6180	High	2
0.022930	18	OUT010	Fruits and Vegetables	182.0950	High	2
0.014670	29	OUT013	Household	53.8614	Low	1
0.013496	19	OUT046	Snack Foods	141.3154	High	3
0.142991	7	OUT018	Starchy Foods	169.1448	High	2
0.073529	14	OUT045	Health and Hygiene	118.7440	Medium	2
0.098200	9	OUT017	Canned	214.6218	Very_High	2
0.104720	14	OUT045	Canned	79.7960	Medium	2

Next steps: Generate code with data View recommended plots

print(data.head())

	Item_Identifier	Item_Weight	<pre>Item_Visibility</pre>	Year	Outlet_Identifier	\
(FDA15	9.30	0.016047	17	OUT049	
1	DRC01	5.92	0.019278	7	OUT018	
2	P FDN15	17.50	0.016760	17	0UT049	
3	FDX07	19.20	0.022930	18	OUT010	
4	NCD19	8.93	0.014670	29	OUT013	

Item_Type Item_MRP MRP_Level Outlet_Size \

```
Dairy 249.8092 Very_High
                                                    2
1
           Soft Drinks 48.2692
                                                    2
                                     Low
2
                  Meat 141.6180
                                     High
                                                   2
3 Fruits and Vegetables 182.0950
                                    High
                                                    2
                                                    1
             Household 53.8614
                                     Low
```

	Outlet_Location_Type	Outlet_Type	<pre>Item_Outlet_Sales</pre>	Converted Sales
0	Tier 1	Supermarket Type1	3735.1380	2.428
1	Tier 3	Supermarket Type2	443.4228	0.288
2	Tier 1	Supermarket Type1	2097.2700	1.363
3	Tier 3	Grocery Store	732.3800	0.476
4	Tier 3	Supermarket Type1	994.7052	0.647

column_count = data.count()
print(column_count)

14204
14204
14204
14204
14204
14204
14204
14204
14204
14204
14204
14204
14204

group_data = data.groupby('Item_Type').size() #how many item sells
print(group_data)

<pre>Item_Type</pre>	
Baking Goods	1086
Breads	416
Breakfast	186
Canned	1084
Dairy	1136
Frozen Foods	1426
Fruits and Vegetables	2013
Hard Drinks	362
Health and Hygiene	858
Household	1548
Meat	736
Others	280
Seafood	89
Snack Foods	1989
Soft Drinks	726
Starchy Foods	269
dtype: int64	

```
#Is there any correlation between the weight of the items and their sales? Does heavier of correlation = data['Item_Weight'].corr(data['Item_Outlet_Sales'])
print("correlation between the weight of the items and their sales",correlation)
plt.figure(figsize=(10,6))
plt.scatter(data['Item_Weight'], data['Item_Outlet_Sales'])
plt.title('Item_Weight vs. Sales')
plt.xlabel('Item_Weight')
plt.ylabel('Item_Outlet_Sales')
plt.show()

if correlation > 0:
    print("There is positive correlation between weight and sales.")
elif correlation < 0:
    print("There is Negative correlation between weight and sales.")
else:
    print("There is No correlation between weight and sales.")</pre>
```

correlation between the weight of the items and their sales 0.023162408761173252

Item Weight vs. Sales

There is positive correlation between weight and sales.

```
yearly_sales = data.groupby('Year')['Item_Outlet_Sales'].sum()
# Step 2: Plot the sales trend over the years
plt.figure(figsize=(10, 6))
yearly_sales.plot(kind='line', marker='o', color='b', linestyle='-')
plt.title('Sales Trend Over the Years')
plt.xlabel('Year')
plt.ylabel('Total Sales')
plt.grid(True)
plt.xticks(yearly_sales.index) # Set x-axis ticks to the years in the data
plt.show()
```



```
group_data1 = data.groupby('MRP_Level').size() #which type of item sell most
print(group_data1)
plt.figure()
plt.gcf().set_facecolor('lightgrey')#background color sentax
group_data1.plot(marker ='o', color = 'green')
plt.title('MRP level data analysis')
plt.xlabel('MRP_level')
plt.ylabel('count')
plt.grid()
```

MRP_Level High 4935 Low 2208

Medium 4661 Very_High 2400

dtype: int64

#How does the visibility of items in stores affect their sales? Are items with higher vi: visibility_groups = data.groupby('Item_Visibility')

```
# Step 2: Calculate mean sales for each visibility group
mean_sales_by_visibility = visibility_groups['Item_Outlet_Sales'].mean()

# Step 3: Visualize the relationship
plt.figure(figsize=(10, 6))
mean_sales_by_visibility.plot(kind='bar', color='skyblue')
plt.title('Mean Sales by Item Visibility')
plt.xlabel('Item Visibility')
plt.ylabel('Mean Sales')
plt.grid(axis='y')
plt.show()
```

Mean Sales by Item Visibility

visibility_groups1 = data.groupby('Item_Visibility').mean() print(visibility_groups1)

	Item_Weight	Year	Item_MRP	Outlet_Size	<pre>Item_Outlet_Sales</pre>	\
<pre>Item_Visibility</pre>						
0.003575	5.880	31.0	154.6998	2.0	3229.795800	
0.003589	5.880	29.0	155.5998	1.0	1691.797800	
0.003591	5.880	12.0	153.3998	3.0	2597.995487	
0.003592	5.880	19.0	154.1998	3.0	2466.073202	
0.003598	5.880	17.0	153.8998	2.0	2922.196200	
• • •	• • •			• • •	• • •	
0.313935	8.355	18.0	146.5418	2.0	382.273706	
0.321115	8.985	31.0	100.7700	3.0	199.740000	
0.323637	7.670	31.0	35.5216	3.0	-1354.072946	
0.325781	7.825	31.0	252.7698	3.0	761.009400	
0.328391	8.355	31.0	146.0418	3.0	588.567200	

Converted Sales

Item_	_Visibility	
0.003	3575	

2.099 0.003589 1.100

```
0.003591
                            1.689
0.003592
                            1.603
0.003598
                            1.899
. . .
                               . . .
0.313935
                            0.248
                            0.130
0.321115
0.323637
                            -0.880
0.325781
                            0.495
0.328391
                            0.383
```

[13688 rows x 6 columns]

<ipython-input-42-4c0566e070be>:1: FutureWarning: The default value of numeric_only
 visibility_groups1 = data.groupby('Item_Visibility').mean()

```
outlet_type_group= data.groupby('Outlet_Type').size()
print(outlet_type_group)
outlet_type_group.plot(kind='bar', color='skyblue')
plt.title('compare outlet type sell')
plt.xlabel('Outlet_type')
plt.ylabel('Total count sell')
plt.grid(axis='y')
plt.show()
```

Outlet_Type
Grocery Store 1805
Supermarket Type1 9294
Supermarket Type2 1546
Supermarket Type3 1559

dtype: int64

sort1 = data[data['Outlet_Type']=='Supermarket Type1']
print(sort1)

	Item_Identifier	Item_Weight	<pre>Item_Visibility</pre>	Year Ou	tlet_Identifier	\
0	FDA15	9.30	0.016047	17	0UT049	
2	FDN15	17.50	0.016760	17	0UT049	
4	NCD19	8.93	0.014670	29	OUT013	
6	FD010	13.65	0.012741	29	OUT013	
8	FDH17	16.20	0.016687	14	0UT045	
	• • •		• • •	• • •	• • •	
14198	FDW46	13.00	0.070411	17	0UT049	
14199	FDB58	10.50	0.013496	19	0UT046	
14201	NCO17	10.00	0.073529	14	0UT045	
14202	FDJ26	15.30	0.098200	9	OUT017	
14203	FDU37	9.50	0.104720	14	0UT045	
	Item_Ty	pe Item_MRP	MRP_Level Out	let_Size	\	
0	Dai	ry 249.8092	Very High	2		

```
2
                         Meat 141.6180
                                              High
     4
                    Household 53.8614
                                                              1
                                               Low
     6
                  Snack Foods 57.6588
                                               Low
                                                              1
     8
                 Frozen Foods
                                96.9726
                                            Medium
                                                              2
                                              . . .
                                                             . . .
                  Snack Foods 63.4484
                                                              2
     14198
                                               Low
     14199
                  Snack Foods 141.3154
                                              High
                                                              3
                                                              2
     14201 Health and Hygiene 118.7440
                                            Medium
     14202
                        Canned 214.6218 Very_High
                                                              2
                        Canned
                                            Medium
                                                              2
     14203
                                79.7960
                                      Outlet_Type Item_Outlet_Sales
           Outlet_Location_Type
     0
                        Tier 1 Supermarket Type1
                                                         3735.138000
     2
                        Tier 1 Supermarket Type1
                                                         2097.270000
     4
                        Tier 3 Supermarket Type1
                                                         994.705200
                        Tier 3 Supermarket Type1
     6
                                                         343.552800
     8
                         Tier 2 Supermarket Type1
                                                         1076.598600
                                              . . .
                            . . .
                        Tier 1 Supermarket Type1
                                                         1184.601202
     14198
     14199
                        Tier 1 Supermarket Type1
                                                         2308.372585
     14201
                        Tier 2 Supermarket Type1
                                                         1809.869722
                        Tier 2 Supermarket Type1
     14202
                                                         3538.210920
     14203
                        Tier 2 Supermarket Type1
                                                         1267.453484
            Converted Sales
     0
                     2.428
     2
                     1.363
                     0.647
     4
     6
                     0.223
     8
                     0.700
     14198
                     0.770
     14199
                     1.500
     14201
                     1.176
     14202
                     2.300
     14203
                     0.824
     [9294 rows x 13 columns]
MRP type = sort1.groupby('MRP Level').size() #which type of item sell most
print(MRP_type)
plt.figure()
plt.gcf().set_facecolor('lightgrey')#background color sentax
MRP_type.plot(marker ='o', color = 'green' )
plt.title('MRP level data analysis')
plt.xlabel('MRP level')
plt.ylabel('count')
plt.grid()
     MRP_Level
```

MRP_Level

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.