DESIGN AND ANALYSIS OF ALGORITHMS

CS 4120/5120
SELECTION IN WORST-CASE LINEAR TIME

AGENDA

- Quick review on the time-complexity of RANDOMIZED-SELECT algorithm
- Select in worst-case scenario
- A two-dimensional array has 5 rows and 7 columns. How many elements are contained in the two-dimensional array?

RANDOMIZED-SELECT TIME COMPLEXITY

- The **best-case** scenario of the normal case $T(n) = \underline{\Theta(n) + T(n/2)} = O(\underline{n})$.
- Recursion tree

- The worst-case scenario of the normal case $T(n) = \Theta(n) + T(n-1) = O(n^2)$.
- Recursion tree

IMPROVING RANDOMIZED SELECT

- If we can find the **median** (close to median) of the input in O(n), we can guarantee a good split.
- The algorithm is SELECT.
 - Input array has n distinct numbers.
 - Determines the *i*th smallest number of the input array.
 - Select in worst-case linear time.

LOGIC PROBLEM I I I I

- Three geniuses A, B, and C.
 - Give each a hat.
 - They can see the colors of the hats of the other two.
 - They can't see the color of their own hat.
- I ask them a question, "what is the color of your hat?"
 - No answer
- Ask the same question, again.
 - No answer
- Ask the same question for the 3rd time.
 - They all shout out the color of their own hat.

- **Step I**: Divide the *n* elements of the input array into groups of 5 elements.
 - The number of groups = ______.
 - The last group has ______ elements.
 - The running time of this step is ______.

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

The input array after the grouping

- **Step 2**: Find the median of each group by
 - 2a: first insertion-sorting the elements of each group.
 - The cost of insertion-sorting ONE group is _______.
 - The cost of insertion-sorting ALL groups is

The input array after sorting each group. Greater element ---- smaller

SELECT ALGORITHM STEP 2 (CONT'D)

- **Step 2**: Find the median of each group by
 - 2b: then picking the median from the sorted list of group elements.
 - The cost of finding the median of ONE group is ______.
 - The cost of finding the median of ALL groups is ______.
 - The overall running time of step 2is ______

The input array after sorting each group. The orepresents the median of each group.

SELECT ALGORITHM STEP 2 (A CLOSER LOOK)

- **Step 2**: Find the median of each group.
 - On an input instance
 - Each vertical group has been sorted in increasing order from top to bottom.

9	9	2	5	1	7	1	L	_	1	2	2	6	ĵ		
1	0	2	6	1	8	2)	[]	<u> </u>	2	3	1	4	-	7
1	1	2	7	1	9	(1)	3	3	6	2	4	1	5	8	3
1	2	2	8	2	0	3	2	3	7	3	0	1	6	3	3
1	3	2	9	2	1	3	4	3	8	3	1	3	5		

The input array after sorting each group.

- Step 3: Use SELECT <u>recursively</u> to find the median x of the $\lfloor n/5 \rfloor$ medians found in step 2.
 - If there are two medians, then by convention, m is the lower median.
 - The overall running time of step 3is ______

The array after finding the median x of the medians. Assume that the x is located at the midpoint of the medians.

SELECT ALGORITHM STEP 3 (A CLOSER LOOK)

- Step 3: Use SELECT recursively to find the median x of the $\lfloor n/5 \rfloor$ medians found in step 2.
 - On an input instance
 - There are 8 medians, the median of the 8 medians should be the $\left\lfloor \frac{1+8}{2} \right\rfloor = 4$ th order statistic of all medians.

3	9	2	5	1	7	1	L	_	1	2	2	6	5		
1	0	2	6	1	8	2)	[]	<u> </u>	2	3	1	4		7
1	1	2	7	1	9	(1)	3	3	6	2	4	1	5	8	3
1	2	2	8	2	0	3	2	3	7	3	0	1	6	3	3
1	3	2	9	2	1	3	4	3	8	3	1	3	5		

The array after finding the median x of the medians.

- Step 4: Partition the GROUPS around the median-of-medians x using the modified PARTITION algorithm.
 - The PARTITION-PIVOT take the element to partition around as an input parameter.

PA	ARTITION-PIVOT (A, p, r, q)
I	pivot = A[q]
2	i = p - 1
3	for $j = p$ to $r - 1$
4	if $A[j] < pivot$
5	i = i + 1
6	exchange $A[i]$ with $A[j]$
7	exchange $A[i+1]$ with $A[q]$
8	return $i+1$

SELECT ALGORITHM STEP 4 (A CLOSER LOOK)

9	25	17	1	4	22	6	
10	26	18	2	5	23	14	7
11	27	19	3	36	24	15	8
12	28	20	32	37	30	16	33
13	29	21	34	38	31	35	

• Step 4: Partition the GROUPS around the median-of-medians \boldsymbol{x} using the modified PARTITION algorithm.

P	PARTITION-PIVOT (A, p, r, q)					
I	pivot = A[q]					
2	i = p - 1					
3	$\mathbf{for}j=p\;\mathbf{to}\;r\;-1$					
4	if $A[j] < pivot$					
5	i = i + 1					
6	exchange $A[i]$ with $A[j]$					
7	exchange $A[i+1]$ with $A[pivot]$					
8	return $i+1$					

9	1		6	4	22	25	17
10	2	7	14	5	23	26	18
11	3	8-	-15-	-36	24	27	19
12	32	33	16	37	30	28	20
13	34		35	38	31	29	21

SELECT ALGORITHM STEP 4 (CONT'D)

- Step 4: Partition the GROUPS around the median-of-medians \boldsymbol{x} using the modified PARTITION algorithm.
 - Low side of the partition convers all the elements known to be less than the median-of-medians x.
 - High side of the partition convers all the elements known to be greater than the median-of-medians x.

The array after applying PARTITION around the median x. Larger element \longrightarrow smaller

SELECT ALGORITHM STEP 4 (CONT'D)

- Step 4: Partition the GROUPS around the median-of-medians \boldsymbol{x} using the modified PARTITION algorithm.
 - Let k be one less than the index of median of medians x.

SELECT ALGORITHM STEP 4 (RUNNING TIME)

 Step 4: Partition the GROUPS around the median-of-medians x using the modified PARTITION algorithm.

– The running time of step 4 is O(n).

	1110 101111116 011000 1110 0 (10)				
P/	PARTITION-PIVOT (A, p, r, q)				
I	pivot = A[q]				
2	i = p - 1				
3	$\mathbf{for}j=p\;\mathbf{to}\;r\;-1$				
4	if $A[j] \leq pivot$				
5	i = i + 1				
6	exchange $A[i]$ with $A[j]$				
7	exchange $A[i+1]$ with $A[q]$				
8	return $i+1$				

```
PARTITION-GROUPS (A, p, r, q)

I pivot = A[q]

2 i = ?

3 for j = ?to?by?

4 if A[j] \le pivot

5 i = ?

6 exchange A[?] with A[?]

7 exchange A[?] with A[?]

8 return ?
```

Completing this code is part of the HW.

- **Step 5**: Depending on the relationship between *i* and *k*, proceed accordingly.
 - Case I: $i \leq k$
 - The ith order statistic does NOT exist in
 - Recurse on Set A {high side}
 to find the <u>i</u> th order statistic;

- **Step 5**: Depending on the relationship between i and k, proceed accordingly.
 - Case 2: i > k
 - The *i*th order statistic does NOT exist in
 - Recurse on $Set A \{low \ side \}$ to find the $\underline{i k}$ th order statistic.

SELECT ALGORITHM STEP 5 RUNNING TIME

- Step 5: Depending on the relationship between i and k, proceed accordingly.
 - Calculate a lower-bound on the number of elements that are in either the low side or the high side of the partition.
 - At least _____ groups contribute
 at least _____ elements to either the low side or the high side.

SELECT ALGORITHM STEP 5 WORST-CASE RUNNING TIME

- Step 5: Depending on the relationship between i and k, proceed accordingly.
 - The lower-bound on the number of elements that are in the low side or the high side of the partition is

$$3\left(\left\lceil \frac{n}{5}\right\rceil /2\right\rceil -2\right) \geq$$

The algorithm needs to recurse on

SELECT ALGORITHM STEP 5 WORST-CASE RUNNING TIME

- Step 5: Depending on the relationship between i and k, proceed accordingly.
 - The algorithm needs to recurse on at most

_____ ≤ _____ elements.

- In the worst-case scenario, the running time of step 5 is

$$T\left(\frac{7n}{10}+6\right)$$

SELECT ALGORITHM TOTAL RUNNING TIME

SELECT ALGORITHM RUNNING TIME FUNCTION

• The running time function of the SELECT algorithm is

$$T(n) \le \begin{cases} O(1) & \text{if } n < 140 \\ T(\lceil n/5 \rceil) + T(\frac{7n}{10} + 6) + O(n) & \text{if } n \ge 140 \end{cases}$$

- The function $T(n) = O(\underline{\hspace{1cm}})$.
 - Detailed proof can be found on page 222 of the textbook.

NEXT UP SORTING

REFERENCE