FUN-IMP

Tipuri și recursie

Traian Florin Şerbănuță

Departamentul de Informatică, FMI, UNIBUC traian.serbanuta@fmi.unibuc.ro

2 decembrie 2014

Reguli pentru tipuri în FUN-IMP

Pregătiri

Mediul de tipuri

Extindem mediul de tipuri de la o funcție de la locații la tipuri referință la o funcție care în plus dă și tipuri pentru variabile.

Formal $\Gamma = \Gamma_I \uplus \Gamma_V$ (reuniune disjunctă) unde

- $\Gamma_I : \mathbb{L} \xrightarrow{\circ} T_{loc}$ asociază tipuri referință la locații
- $\Gamma_{v}: \mathbb{X} \stackrel{\circ}{\to} T$ asociază tipuri variabilelor

Notăm cu $\Gamma[x \mapsto T]$ mediul de tipuri care e definit la fel ca Γ peste tot, mai puțin în x unde este T.

Reguli pentru tipuri

Funcții

(tVar)
$$\Gamma \vdash X : T \quad dac \ \ \Gamma(x) = T$$

$$(\mathsf{TFun}) \quad \frac{\Gamma' \vdash e \ : \ T'}{\Gamma \vdash \mathsf{fun} \ (x : T) \to e \ : \ T \to T'} \quad \mathit{dac} \ \Gamma' = \Gamma[x \mapsto \tau]$$

$$(\text{\tiny TAPP}) \quad \frac{\Gamma \vdash e_1 \; : \; T \to T' \quad \Gamma \vdash e_2 \; : \; T}{\Gamma \vdash e_1 \; e_2 \; : \; T'}$$

Exemplu

(TAPP)
$$\frac{\vdash \operatorname{fun}(x:\operatorname{int}) \to x+2 : \operatorname{int} \to \operatorname{int} \quad (TINT) \quad \frac{\checkmark}{\vdash 2 : \operatorname{int}}}{\vdash (\operatorname{fun}(x:\operatorname{int}) \to x+2) \ 2 : \operatorname{int}}$$

Exemplu

$$(\mathsf{TAPP}) \quad \frac{\vdash \mathsf{fun}\,(x:\mathsf{int}) \to x+2 \; : \; \mathsf{int} \to \mathsf{int} \quad (\mathsf{TINT}) \quad \frac{\checkmark}{\vdash \; 2 \; : \; \mathsf{int}}}{\vdash \; (\mathsf{fun}\,(x:\mathsf{int}) \to x+2) \; 2 \; : \; \mathsf{int}}$$

$$(\mathsf{TFUN}) \quad \frac{(\mathsf{TH}) \quad \frac{(\mathsf{TVAR}) \quad \overline{x : \mathsf{int} \vdash x : \mathsf{int}} \quad (\mathsf{TINT}) \quad \overline{x : \mathsf{int} \vdash 2 : \mathsf{int}}}{x : \mathsf{int} \vdash x + 2 : \mathsf{int}} } \\ \quad \vdash \mathsf{fun} \, (x : \mathsf{int}) \to x + 2 : \mathsf{int} \to \mathsf{int}$$

Proprietăti ale sistemului de tipuri

Teoremă (Progres)

Dacă e închisă si dacă $\Gamma \vdash e : T$ si $Dom \Gamma \subseteq Dom s$, atunci fie e este valoare, fie există e', s' astfel încât $\langle e, s \rangle \longrightarrow \langle e', s' \rangle$.

Demonstratie: prin inductie structurală.

Teoremă (Conservarea tipului)

Dacă e închisă și dacă $\Gamma \vdash e : T$, $Dom \Gamma \subseteq Dom s$ și $\langle e, s \rangle \longrightarrow \langle e', s' \rangle$, atunci $\Gamma \vdash e' : T, e'$ închisă si $Dom \Gamma \subseteq Dom s'$.

Demonstratie: prin inductie deductivă.

Lemma (Substitutia conservă tipul)

Dacă $\Gamma \vdash e : T si \Gamma[x \mapsto T] \vdash e' : T'$, atunci $\Gamma \vdash e' [e/x] : T'$. PD-Funcții II

Definitii locale de variabile

Sintaxă

```
e := \dots \mid \text{let } x : T = e \text{ in } e
```

Exemple

```
let n : int = 10 in
  sum := 0 ;
  i := n ;
  while ! i > 0 do
    sum := !sum + !i;
  i := !i - 1;
  done
let x : int = 10 in
  x + (let x : int = 20 + x in
  x + x)

x + x)
```

Definire prin funcții și aplicații

Semantica declarațiilor locale

let
$$x: T = e_1$$
 in $e_2 \stackrel{\text{def}}{=} (\text{fun}(x:T) \rightarrow e_2) e_1$

Tipul asociat (regulă derivată)

$$({\scriptscriptstyle\mathsf{TLET}}) \quad \frac{\Gamma \vdash e_1 \; : \; T_1 \quad \Gamma' \vdash e_2 \; : \; T_2}{\Gamma \vdash \mathsf{let} \; x : T = e_1 \; \mathsf{in} \; e_2 \; : \; T_2} \quad \textit{dacă} \; \Gamma' = \Gamma[x \mapsto T]$$

Evaluarea (strictă) a declarațiilor locale

Reguli derivate

(LETS)
$$\frac{\langle e_1, s \rangle \to \langle e_1', s' \rangle}{\langle \text{let } x : T = e_1 \text{ in } e_2, s \rangle \to \langle \text{let } x : T = e_1' \text{ in } e_2, s' \rangle}$$

$$\text{(LET)} \quad \langle \text{let } x : T = v \text{ in } e_2, s \rangle \to \langle e_2 \text{ } [v/x], s \rangle$$

α -echivalență penrtu declarații locale

- Operatorul let $x : T = e_1$ in e_2 este un operator de legare (derivat)
 - Leagă variabila x în termenul e₂ (dar nu și în e₁)
 - Usor de observat din definitia lui let în functie de λ

- $var(let x : T = e_1 in e_2) = var(e_1) \cup (var(e_2) \setminus \{x\})$
- (alet) let $x:T=e_1$ in $e_2\equiv_{\alpha}$ let $x':T=e_1$ in e_2' dacă $x'\notin var(e_2)$ și $e_2[x'/x]=e_2'$
 - let $x : \text{int} = 10 \text{ in } x + (\text{let } x : \text{int} = 20 + x \text{ in } x + x) \equiv_{\alpha} 1 \text{ let } x : \text{int} = 10 \text{ in } x + (\text{let } y : \text{int} = 20 + x \text{ in } y + y)$

Definiții recursive

Întrebare: La ce se evaluează următorul program?

let $f: \text{int} \rightarrow \text{int} = \text{fun} (n: \text{int})$. if $n \le 0$ then 0 else n + f(n + -1) in f 10

Definitii recursive?

Întrebare: La ce se evaluează următorul program?

let $f: \text{int} \rightarrow \text{int} = \text{fun} (n: \text{int})$. if $n \le 0$ then 0 else n + f(n + -1) in f 10

Răspuns: La nimic

Deoarece programul nu este închis: f apare liber în definiția lui f. Avem nevoie de un mecanism separat pentru a putea defini functii recursive.

Limbajul λ^+ -IMP

Sintaxă

```
e := \dots \mid \text{let rec } x : T = e \text{ in } e
```

Exemplu

```
let rec sum : int -> int =
  fun (n : int) ->
    if n <= 0
    then 0
    else n + sum (n + -1)
in sum 10</pre>
```

Variabile libere, substituție și α -echivalență

- let rec $x = e_1$ in e_2 leagă variabila x atât în e_1 cât și în e_2 let rec f: int \rightarrow int =fun (n: int) \rightarrow if $n \le 0$ then 0 else n + f(n + -1) in f 10
- $var(let rec x : T = e_1 in e_2) = (var(e_1) \cup var(e_2)) \setminus \{x\}$
- $\frac{e_1[e/y] = e_1' \quad e_2[e/y] = e_2'}{(\text{let rec } x : T = e_1 \text{ in } e_2)[e/y] = \text{let rec } x : T = e_1' \text{ in } e_2'}{\text{dacă } x \notin var(e) \cup \{y\}}$
- let $\operatorname{rec} x = e_1$ in $e_2 \equiv_{\alpha}$ let $\operatorname{rec} y = e_1'$ in e_2' $\operatorname{daca} y \notin \operatorname{var}(e_1) \cup \operatorname{var}(e_2), \, e_1[y/x] = e_1' \text{ si } e_2[y/x] = e_2'$

Semantică let rec

Regula de tipuri

$$(\text{\tiny TLETREC}) \quad \frac{\Gamma' \vdash e_1 \; : \; T \quad \Gamma' \vdash e_2 \; : \; T_2}{\Gamma \vdash \text{let rec } x : T = e_1 \text{ in } e_2 \; : \; T_2} \quad \textit{dacă} \; \Gamma' = \Gamma[x \mapsto T]$$

Regula semantică

(LETREC)
$$\langle \text{let rec } x : T = e_1 \text{ in } e_2, s \rangle \rightarrow \langle e_2[\text{let rec } x : T = e_1 \text{ in } e_1/x], s \rangle$$