Homework 5

Jordan Saethre

October 20, 2020

1. Beck Exercise 6.9. Let $a, b \in \mathbb{R}^n$, $a \neq b$. For what values of μ is the set

$$S_{\mu} = \{x \in \mathbb{R}^n : ||x - a||_2 \le \mu ||x - b||_2\}$$

convex?

Proof. Consider the point $z = \lambda x + (1 - \lambda)y$. For S_{μ} to be convex we need

$$||z - a||_2 \le \mu ||z - b||_2$$

Rewrite the left hand side

$$||z - a||_2 = ||(\lambda x + (1 - \lambda)y) - b||_2$$

$$\leq \lambda ||x - y||_2 + ||y - a||_2$$

$$\leq \lambda ||x - y||_2 + \mu ||y - b||_2$$

Similarly, rewrite the right hand side

$$\mu \|z - b\|_2 = \mu \|(\lambda x + (1 - \lambda)y) - b\|_2$$

$$< \mu (\lambda \|x - y\|_2 + \|y - b\|_2)$$

Putting these together now we have

$$\lambda \|x - y\|_2 + \mu \|y - b\|_2 \le \mu \left(\lambda \|x - y\|_2 + \|y - b\|_2\right)$$

Solving for μ

$$\lambda \|x - y\|_2 \le \mu \lambda \|x - y\|_2$$

$$\implies \frac{\lambda \|x - y\|_2}{\lambda \|x - y\|_2} \le \mu$$

Therefore S_{μ} is convex if $\mu \geq 1$

2. For $a \in \mathbb{R}^n$, what is the distance between the two parallel hyperplanes

$$\{x \in \mathbb{R}^n : a^t x = b_1\}$$
 and $\{x \in \mathbb{R}^n : a^t x = b_2\}$?

Let L be a line passing through a point x_1 that is on the hyperplane

$$H_1 = \{ x \in \mathbb{R}^n \colon a^t x = b_1 \}$$

and is perpendicular to H_1 . The equation of this line is given by

$$L = x_1 + at \quad \forall t \in \mathbb{R}$$

The distance between the hyperplanes is the same as the distance between x_1 on H_1 and a point x_2 where the line L intersects $H_2 = \{x \in \mathbb{R}^n : a^t x = b_2\}$. To find this point x_2 we solve for t in the following

$$a^{t}(x_{1} + at) = b_{2} \implies t = \frac{b_{2} - b_{1}}{a^{t}a}$$

Therefore

$$x_2 = x_1 + a \left(\frac{b_2 - b_1}{a^t a} \right)$$

The distance between x_1 and x_2 and therefore between the hyperplanes is

$$||x_1 - x_2||_2 = ||x_1 - \left(x_1 + a\left(\frac{b_2 - b_1}{a^t a}\right)\right)||_2$$
$$= \frac{|b_2 - b_1|}{||a||_2}$$

3. (Voronoi sets and polyhedral decomposition) Let $x_0, \ldots, x_K \in \mathbb{R}^n$. Consider the set of points that are closer (in Euclidean norm) to x_0 than the other x_i , i.e.,

$$V = \{x \in \mathbb{R}^n \colon ||x - x_0||_2 \le ||x - x_i||_2, \ i = 1, \dots, K\}.$$

V is called the Voronoi region around x_0 with respect to x_1, \ldots, x_K .

(a) Illustrate a Voronoi region with a sketch.

(b) Show that V is a polyhedron. Express V in the form $V = \{x : Ax \leq b\}$.

$$||x - x_0||_2 \le ||x - x_i||_2$$

$$||x - x_0||_2^2 \le ||x - x_i||_2^2$$

$$(x - x_0)^t (x - x_0) \le (x - x_i)^t (x - x_i)$$

$$x^t x - 2x_0^t x + x_0^t x_0 \le x^t x - 2x_i^t x + x_i^t x_i$$

$$2(x_i - x_0)^t x \le x_i^t x_i - x_0^t x_0$$

This last equality is of the form $Ax \leq b$ where

$$A = 2 \begin{bmatrix} x_1 - x_0 \\ \cdots \\ x_K - x_0 \end{bmatrix}, b = \begin{bmatrix} x_1^t x_1 - x_0^t x_0 \\ \cdots \\ x_K^t x_K - x_0^t x_0 \end{bmatrix}$$

(c) Conversely, given a polyhedron P with nonempty interior, show how to find x_0, \ldots, x_K so that the polyhedron is the Voronoi region of x_0 with respect to x_1, \ldots, x_K .

Choose a point $x_0 \in P$ and reflect this point across each hyperplane

$$H_i = \{x | a_i^t x = b_i\}$$

Each of the points x_i are written as

$$x_i = x_0 + ma_i$$

where m is chosen so that the distance from x_0 to H_i is the same as the distance from x_i to H_i . Using this we can solve for m

$$b_{i} - a_{i}^{t}x_{0} = a_{i}^{t}x_{i} - b_{i}$$

$$= a_{i}^{t}(x_{0} + ma_{i}) - b_{i}$$

$$= a_{i}^{t}x_{0} + ma_{i}^{t}a_{i} - b_{i}$$

$$\cdots$$

$$\implies m = \frac{2}{\|a_{i}\|_{2}^{2}}(b_{i} - a_{i}^{t}x_{0})$$

Therefore the polyhedron P is the Voronoi region around x_0 with respect to the points

$$x_i = x_0 + \frac{2}{\|a_i\|_2^2} (b_i - a_i^t x_0) a_i$$
 for $i = 1, \dots, K$

(d) We can also consider the sets

$$V_k = \{ x \in \mathbb{R}^n \colon ||x - x_k||_2 \le ||x - x_i||_2, \ i \ne k \}.$$

The set V_k consists of points in \mathbb{R}^n for which the closest point in the set $\{x_0, \ldots, x_K\}$ is x_k . The sets $V_0, \ldots V_K$ give a polyhedral decomposition of \mathbb{R}^n . More precisely, the sets V_k are polyhedra, $\bigcup_{k=0}^K V_k = \mathbb{R}^n$, and $\operatorname{int}(V_i) \cap \operatorname{int}(V_j) = \emptyset$ for all $i \neq j$, i.e., V_i and V_j intersect at most along a boundary. Suppose that P_1, \ldots, P_m are polyhedra such that $\bigcup_{i=1}^m P_i = \mathbb{R}^n$, and $\operatorname{int}(P_i) \cap \operatorname{int}(P_j) = \emptyset$ for all $i \neq j$. Can this polyhedral decomposition of \mathbb{R}^n be described as the Voronoi regions generated by an appropriate set of points?

Consider an example in \mathbb{R}^2 . If we have two hyperplanes H_1 and H_2 we can arbitrarily pick a point x_1 in P_1 and x_2 in P_2 . The position of the points x_3 and x_4 is then determined by reflecting x_1 and x_2 across H_2 , but as can be seen in the diagram below x_1 and x_2 can be chosen so that the distance from x_4 to H_1 is not equal to the distance from x_3 to H_1 . Therefore this polyhedral decomposition of \mathbb{R}^n cannot be described as the Voronoi regions generated by a set of points.

4. Beck Exercise 6.10. Let $C \subset \mathbb{R}^n$ be a nonempty convex set. For each $x \in C$, define the normal cone of C at x by

$$N_C(x) = \{ w \in \mathbb{R}^n \colon \langle w, y - x \rangle \le 0 \text{ for all } y \in C \}$$

and define $N_C(x) = \emptyset$ when $x \notin C$. Show that $N_C(x)$ is a closed convex cone.

Proof. First we show that $N_C(x)$ is a convex cone. Consider the points $w_1, w_2 \in N_C(x)$.

$$\langle w_1 + w_2, y - x \rangle = \langle w_1, y - x \rangle + \langle w_2, y - x \rangle \le 0$$

Next consider $\lambda \geq 0$

$$\langle \lambda w, y - x \rangle = \lambda \langle w, y - x \rangle \le 0$$

Therefore $N_C(x)$ is a convex cone. $N_C(x)$ can be rewritten as

$$\bigcap_{y \in C} \{ w \in \mathbb{R}^n \colon \langle w, y - x \rangle \le 0 \}$$

The intersection of a collection of closed sets is also closed. Hence $N_C(x)$ is a closed convex cone.

5. Beck Exercise 7.4. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable convex function. Show that for any $\varepsilon > 0$, the function

$$g_{\varepsilon}(x) = f(x) + \varepsilon ||x||^2$$

is coercive.

Proof. Since f is a continuously differentiable convex function we know that

$$f(x) + \nabla f(x)^{t}(y - x) \le f(y) \quad \forall x, y \in \mathbb{R}$$

$$\implies f(x) \le f(y) - \nabla f(x)^{t}(y - x)$$

$$\implies f(x) + \varepsilon ||x||^{2} \le f(y) - \nabla f(x)^{t}(y - x) + \varepsilon ||x||^{2}$$

$$\implies g(x) \le f(y) - \nabla f(x)^{t}(y - x) + \varepsilon ||x||^{2}$$

Clearly as $||x|| \to \infty$ we have $g(x) \to \infty$. Therefore g(x) is coercive.