Course		Course		Course	_		L	Т	Р	С
Code	18CSE392T	Name	MACHINE LEARNING - I	Category	E	Professional Elective	3	0	0	3

Pre-requisite Nil	Co-requisite Courses	Nil	Progressive Courses
Course Offering Department	CSE	Data Book / Codes/Standards	Nil

Course Learning Rationale (CLR): The purpose of learning this course is to:				ng	
CLR-1: To provide basic concepts of machine learning					
CLR-2: To provide deeper understa	anding of various tools and techniques for Machine learning Algorithms and outputs				
CLR-3: Understand and Implement	the major classification techniques		Proficiency	e e	
CLR-4: Understand and Implement	the various Clustering Methods	ng	.e	Ē	
CLR-5: Learn and Understand the	Tree based machine Learning Algorithms	hinking	<u>ī</u>	Attainment	
		h t	cted F	y pe:	
Course Learning Outcomes (CLO):	At the end of this course, learners will be able to:	Level (Expect (%)	Expected (%)	
CLO-1: Understand the concepts of	f machine learning	2	80	85	
CLO-2: Learn and understand mac	hine tools and libraries of machine learning	2	75	80	
CLO-3: Learn and understand the li	inear learning models and classification in machine learning	2	85	80	
CLO-4: Understand the clustering techniques and their utilization in machine learning					
CLO-5: Study the tree based machine	ine learning techniques and to appreciate their capability	2	75	85	

				Prog	ram l	_earni	ing O	utco	mes (PLO)				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Engineering Knowledge	Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual & Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO - 3
H	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Н	Н	Н	-	Н	-	-	-	-	-	-	-	-	-	-
Н	Н	-	-	Н	-	-	-	-	-	-	-	-	-	-
Н	Н	-	-	Н	-	-	-	-	-	-	-	-	-	-
Н	Н	-	Н	Н	-	-	-	-	-	-	-	-	-	-

Durat	ion (hour)	9	9	9	9	9		
S-1	SLO-1	Machine Learning: What and Why?	Platform for machine learning	Pidas Pagrassian	Measuring (dis)similarity	Desigion tree representation		
3-1	SLO-2	Types of Machine Learning	Machine learning python libraries	Ridge Regression	Evaluating output of clustering methods	Decision tree representation		
	SLO-1	Supervised Learning	Scikit-learn	Maximum likeliwood estimation (least	Spectral clustering			
S-2	SLO-2	Unsupervised Learning	training data – testing data – validation data	squares)	Hierarchical clustering	Basic decision tree learning algorithm		
S-3	SLO-1	Reinforcement learning	k-fold cross validation	principal component analysis	Agglomerative clustering	Inductive bias in decision tree		
3-3	SLO-2	The Curse of dimensionality	Features	principal component analysis	Divisive clustering	Inductive bias in decision tree		
	SLO-1	Over fitting and under fitting	Performance metrics		Choosing the number of clusters			
S-4	SLO-2	linear regression	MSE, accuracy, confusion matrix, precision	Bayesian classifier	Clustering datapoints and features	Decision tree construction		
S-5	SLO-1	Bias and Variance tradeoff	recall. F- score	Support vector machine	Bi-clustering	Issues in decision tree		
3-3	SLO-2	Testing – cross validation	Tecali, 1 - Score	Support vector machine	Bi-clustering	issues in decision tree		
S-6	SLO-1	Regularization	Linear Regression with multiple variables	Support vector machine + kernels	Multi-view clustering	Classification and regression trees (CART)		
0-0	SLO-2	Learning Curve	Eliteal Regression with multiple variables	''	Inditi-view clastering			
S-7	SLO-1	Classification	Logistic Regression	Multi class classification	K-Means clustering	Random Forest		
<u> </u>	SLO-2	Error and noise	Logistic Megression		Trivicans diastering	Random Forest with scikit-learn		
	SLO-1	<u></u>		K nearest neighbour classification	L	Multivariate adaptive regression trees		
S-8		Parametric vs. non-parametric models	spam filtering with logistic regression		K-meloids clustering	(MART)		
	SLO-2			4 5 6 7 7 70 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Introduction to Artificial Neural Networks		
S-9	SLO-1	Linear Algebra for machine learning	Naive Bayes with scikit-learn	Application: face recognition with PCA	Application: image segmentation using K-	Perceptron learning		
	SLO-2		1		means clustering			

Learning Resources

- Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012. Ethem Alpaydin, "Introduction to Machine Learning", Prentice Hall of India, 2005 Tom Mitchell, "Machine Learning", McGraw-Hill, 1997.

- Sebastian Raschka, Vahid Mirjilili,"Python Machine Learning and deep learning", 2nd edition, kindle
- Carol Quadros,"Machine Learning with python, scikit-learn and Tensorflow", Packet Publishing,
- Gavin Hackeling," Machine Learning with scikit-learn", Packet publishing, O'Reily, 2018.

Learning As	sessment												
_	Bloom's	Continuous Learning Assessment (50% weightage)									Final Examination (50% weightage)		
	Level of Thinking	CLA -	1 (10%)	CLA -	2 (15%)	CLA -	3 (15%)	CLA -	4 (10%)#	Final Examination	m (50% weightage)		
	Leveror minking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-		
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-		
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-		
	Total	100 %		100 %		100 %		100 %		100 %			

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
		Dr.G. Vadivu
		Dr. UshaKiruthika
		Mr.S.Joseph James