Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0+}^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0}^{\#1} - 2 \bar{l} k \sigma_{0}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_{1}^{\#2}\alpha + 2ik \ \sigma_{1}^{\#2}\alpha = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi} t^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_2^{\#1}\alpha\beta - 2ik \ \sigma_2^{\#1}\alpha\beta == 0$	$-2ik \sigma_2^{\#1}{}^{\alpha\beta} == 0 \left -i(4\partial_\delta\partial_\chi\partial^\beta\partial^\alpha\tau^{\chi\delta} + 2\partial_\delta\partial^\delta\partial^\beta\partial^\alpha\tau^\chi_{\chi} - \right $	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\alpha\chi}$ - $3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\chi\alpha}$ +	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$4\ i \ k^{\chi}\ \partial_{arepsilon}\partial_{\chi}\partial^{eta}\partial^{lpha}\sigma^{\deltaarepsilon}_{\ \ \delta}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 \ i \ k^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{eta \delta lpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} t^{\chi}_{\chi}$ -	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}_{\delta}) == 0$	
Total constraints/gauge generators:	ge generators:	16

	$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\sigma_{1}^{\#2}$	$\tau_{1}^{\#1}_{+} _{\alpha\beta}$	$\sigma_{1}^{\#1}{}_{\alpha}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1^{-}\alpha}^{\#1}$	$\tau_{1}^{\#2}{}_{\alpha}$
$\sigma_{1}^{\#1} + \alpha \beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2} + \alpha \beta$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	0	0	0	0
$\tau_1^{\#1} + ^{\alpha \beta}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1} +^{lpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$\frac{2ik}{t_1 + 2k^2t_1}$
$\sigma_1^{\#2} \dagger^{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{1}{(1+2k^2)^2t_1}$	0	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$
$\tau_{1}^{\#_1} + \alpha$	0	0	0	0	0	0	0
$\tau_{1}^{\#2} +^{\alpha}$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	$\frac{2k^2}{(1+2k^2)^2t_1}$
Quadr	atic (free	Quadratic (free) action					
S == []	$\iiint (f_{\alpha\beta})^{1}$	$S == \iiint (f^{\alpha \beta} \iota_{\alpha \beta} + \mathcal{A}^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} +$	$\sigma_{\alpha\beta\chi}$ +				

ı										0 .	
			$f_{I\theta}$	_			dlt	$\sigma_{0}^{\#1}$	† - _ (1-	1 +2 k ²) ²	_ t ₁
		١	3 -2 θ_{α}	$g_{\theta}f_{\alpha i}$			カタダ	$\sigma_{0}^{\#1}$ $\tau_{0}^{\#1}$ $\tau_{0}^{\#2}$ $\sigma_{0}^{\#1}$	† - 	$\frac{i\sqrt{2}k}{(2k^2)^2}$	_ t ₁
		$\partial' f^{\alpha}$	$\partial_{ heta} f_{,}^{\ \ \ \ }$	$\theta f_{\alpha \prime}$	+ ((,	+ 68] d z ($ au_{0}^{\#2}$	†	0	
		$\mathcal{A}_{\theta}^{\theta}$	$\partial' f^{\alpha}_{\ \ \alpha}$	e + , _{α,}	2 o _e fa	$\partial_{ert} \mathcal{A}_{lphaeta}$	i, y, z	$\sigma_0^{\#1}$	†	0	
		4	+ 4	$g^{\theta}f$	+	Эα-	t, X	ı		1	
)' <i>f</i>	$\theta f_{\alpha}^{\theta}$	$\partial_i f_{\alpha \theta}$	$\mathcal{A}^{\alpha \iota \theta}$	$\partial_{eta}\mathcal{A}_{',\ell}$	d _{αβ'})[$f_{1^-}^{\#2}$	0	0	O
		$q^{\theta}_{\alpha \theta}$	$g'f_{\alpha'}$	$+$ $^{\prime}f^{\alpha\prime}$ $+$	$A_{\alpha\theta_{I}}$ (θ + 2	$_{eta}^{ heta}$ $_{eta}^{ heta}$	$f_{1}^{\#1}$	0	0	O
		θ_{θ} -4 3	$2\partial_{i}f^{\theta}_{}\partial^{i}f^{\alpha}_{}-2\partial_{i}f^{\alpha i}\partial_{\theta}f^{}_{}+4\partial^{i}f^{\alpha}_{}\partial_{\theta}f^{}_{}-2\partial_{\alpha}f_{i\theta}$	$\partial^{\theta}f^{\alpha\prime} - \partial_{\alpha}f_{\theta\prime}\partial^{\theta}f^{\alpha\prime} + \partial_{\prime}f_{\alpha\theta}\partial^{\theta}f^{\alpha\prime} + \partial_{\theta}f_{\alpha\prime}\partial^{\theta}f^{\alpha\prime} +$	$\partial_{\theta} f_{ \prime \alpha} \partial^{\theta} f^{\alpha \prime} + 2 \mathcal{A}_{\alpha \theta \prime} (\mathcal{A}^{\alpha \prime \theta} + 2 \partial^{\theta} f^{\alpha \prime})) + \\$	$\partial_{eta} \mathcal{A}_{lpha}$	$\partial_{\theta}\mathcal{R}_{\alpha\beta_{l}}$ -2 $\partial_{\theta}\mathcal{R}_{\alpha_{l}\beta}$) $\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}$)[t, x, y, z]dzdydxdt	${\mathscr A}_{1^{\text{-}}\alpha}^{\#_2}$	0 0 0	0	Û
	+ ^χ θ ^χ +	α' α'	$f^{\theta}{}_{\theta}\partial'f$	$\theta^{f_{\alpha l}}$ -9	$'^{\alpha}\partial^{\theta}f^{c}$	$\mathcal{A}_{\alpha^{\prime}\theta}$ -2	A _{αβ1} -2	${\mathscr A}_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	O
	$(^{\alphaeta\chi}\ \sigma_{_{_{m{lpha}}}}$	$\frac{1}{2}t_1(2\mathcal{A}^{\alpha\prime}_{\alpha}\mathcal{A}^{\theta}_{\prime}-4\mathcal{A}^{\theta}_{\alpha}\partial_{\prime}f^{\alpha\prime}+4\mathcal{A}^{\theta}_{\prime}\partial^{\prime}f^{\alpha}_{\prime}-$	29	0	$\partial_{\theta}f$	$\frac{1}{3}r_2 (4 \partial_{\beta} \mathcal{A}_{\alpha \prime \theta} - 2 \partial_{\beta} \mathcal{A}_{\alpha \theta \prime} + 2 \partial_{\beta} \mathcal{A}_{\beta \alpha} - \partial_{\beta} \mathcal{A}_{\alpha \beta \theta} +$	$\partial_{ heta} S_{ heta}$	$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{i k t_1}{\sqrt{2}}$	0	
	$\tau_{\alpha\beta} + \mathcal{F}$	$\frac{1}{2}t$				1 ×		$\mathcal{A}_{1}^{\#2}{}_{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	c
	$S == \iiint (f^{\alpha\beta} \ \tau_{\alpha\beta} + \mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} +$							$\mathcal{A}_{1}^{\#1} $	$\mathcal{A}_{1}^{\#1} + \alpha \beta - \frac{t_1}{2}$	$\mathcal{A}_{1}^{\#2} + \alpha \beta - \frac{t_1}{\sqrt{2}}$	$ \epsilon^{\#1} + \alpha \beta \qquad i k t_1 $
	=)								$+^{\alpha \beta}$	$+^{\alpha \beta}$	$+\alpha\beta$
	S								$\binom{#1}{1}^+$	1,4	.#J
									Q2	Q2	*

$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$		$\frac{2}{(1+2k^2)^2t_1}$			$-\frac{2\pi\sqrt{2k}}{(1+2k^2)^2t_1}$		0		
$ au_2^{\#1} \dagger^{lphaeta}$		ιβ	$\frac{2i\sqrt{2}}{(1+2k^2)}$	$\frac{1}{2} \frac{k}{t_1}$	•	$\frac{4k^2}{(1+2k^2)^2t_1}$		0	
$\sigma_2^{\#1}$	† ^{αβ}	3 <i>x</i>	0		0			$\frac{2}{t_1}$	
$\alpha eta \chi$]			
	U	>	0	$\overline{\mathbb{T}_2}$	7				
$f_{2}^{\#1}$	<u>ikt1</u>	$\sqrt{2}$	$k^2 t_1$	0)				
$\mathcal{A}_{2}^{\#1}_{+}$ $f_{2}^{\#1}_{+}$ $\mathcal{A}_{2}^{\#1}_{-}$		2	$\frac{ikt_1}{\sqrt{2}}$	С)				
'	$1 + \alpha \beta$	_ +	$f_2^{#1} + \alpha \beta$	$\mathcal{A}_{\tilde{x}_1}^{\#_1} + \alpha \beta \chi$	_	-			
$\mathcal{R}^{\#1}_{2^+}.$		2,2	f_2^*	# ₁ #	7.				
			$\mathcal{A}_{0}^{\sharp 1}$			$f_{0}^{#1}$	$f_{0}^{#2}$	${\mathcal R}_0^{\sharp 1}$	
$\mathcal{A}_{0}^{#1}$ †			-t ₁		$i\sqrt{2} kt_1$		0	0	
$f_{0+}^{#1} \dagger$ -		- [$\sqrt{2} kt_1$		$-2 k^2 t_1$		0	0	
$f_{0}^{#2}$ †			0		0		0	0	
$\mathcal{A}_0^{\#}$	¹ †		0		0		0	$k^2 r_2 - t_1$	-

 $au_{0}^{\#2} \quad \sigma_{0}^{\#1}$

 $\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$

 $-\frac{2k^2}{(1+2k^2)^2t_1}$

0

0

0

0

0

 $\mathcal{A}_{1}^{\#1} + \alpha$ $\mathcal{A}_{1}^{\#2} + \alpha$ $f_{1}^{\#1} + \alpha$ $f_{1}^{\#2} + \alpha$

0

0 0

Massive and massless spectra

	Massive particle										
	Pole residue:	$-\frac{1}{r_2} > 0$	No massles								
?	Polarisations:	1	ssle								
!	Square mass:	$\frac{t_1}{r_2} > 0$	S								
	Spin:	0	particles								
	Parity:	Odd	les)								

Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$