OBJECT: - To verify Norton's Theorem.

APPARATUS: -

RATUS: - Regulated D.C. Power supply	0-30V, 3A	1 No.
Regulated D.C. Power supply Rheostats	50Ω, 2.3A 0-30V 0-3A	4 No. 1 No. 1 No.
M.C. Voltmeter		
M.C. Ammeter		

One - way key Connecting leads

CIRCUIT DIAGRAM: -

This theorem states that the current flowing through a resistance connected across THEORY: any two terminal of a network can be determined by replacing the whole network by an equivalent circuit of a constant current source I_{SC} in parallel with a resistance R_N. Where,

 I_{SC} is the short circuit current supplied by the source that would flow between the two selected terminals when they are short circuited. It is called Norton current (I_{SC} or

R_N is the equivalent resistance of the network as seen from the two terminals with I_N). all other e.m.f. sources are replaced by their internal resistances and current sources replaced by open circuit. It is called Norton resistance.

$$I_{LC} = (I_{SC} \times R_N)/(R_N + R_L)$$

PROCEDURE: -

- Make the circuit diagram as shown in figure A.
- 2. Switch on the power supply. Keep the switch S open, note down the reading of ammeter (I_L) and voltmeter (V_L). This gives load current I_L & value of load resistance $R_L = V_L/I_L$
- 3. Next short the load resistance (when the switch S closed). Note down the reading of ammeter. This gives short-circuit current I_{SC}.
- 4. Next connect the circuit as shown in figure B. Note down the readings of voltmeter and ammeter. This gives value of R_N.

R_N = Voltmeter reading/Ammeter reading

5. Switch off the power supply.

OBSERVATIONS: -

The observations made in the experiments are recorded as under:

1. When switch S is open (from step 2 of the procedure)

$$I_L = \dots A$$
, $V_L = \dots V$

2. When switch S is closed (from step 3 of the procedure)

$$I_{SC} = \dots A$$

3. From step 4 of the procedure

$$V = \dots Volts$$
, $I = \dots Amp$.

CALCULATIONS: -

- 1. $R_L = V_I / I_L$ (From observation first)
- 2. $R_N = V/I$ (From observation third)
- 3. $I_{LC} = (I_{SC} \times R_N)/(R_N + R_L)$

RESULT: - The actual value of the load current I_L (From observation first) and calculated value of the load current I_{LC} (from calculation third) are equal. Hence Norton's theorem is verified.

PRECAUTIONS: -

- 1. All the connections must be tight.
- The rheostats should be set at suitable position so that the current in the ammeter is less than the rheostat current ratings.
- 3. Before connecting the instruments check their zero setting.
- 4. The terminals of the rheostats should be connected properly.
- 5. At no instant of time the current in the ammeter should exceed the current rating of rheostats.