EE 316: Electrical Circuits and Electronic Design Laboratory.

Lab 09 <u>Characteristics of a Bipolar Junction Transistor.</u>

Submitted by: Dan Otieno.

Date of Experiment: 10/24/22.

INTRODUCTION:

The goal of this lab was to introduce the concept of Bipolar Junction Transistors or BJTs in short. BJTs are components of MOSFETS which are comprised of a collector region, a base region, and an emitter region. We used the 2N3903 or 2N3904 BJTs for this laboratory. When current is allowed to flow through the collector and the emitter and the base is affected by that flow, the base can be referred to as the channel. In this laboratory, we used the 2N3903/04 to design a BJT circuit both digitally and using hardware.

EXPERIMENTATION:

The first part of the lab was to design and simulate the circuit shown below:

The circuit was completed in Multisim as shown:

 R_B values were provided as $10K\Omega$, $50K\Omega$, $100K\Omega$, $150K\Omega$, $200K\Omega$ and $300K\Omega$ for analysis, R_C was set at $1K\Omega$ and V_{cc} was 16V.

The analytical results from the digital simulation are included in the table further below. The hardware setup for the laboratory was completed as below:

The table below shows the Output Characteristics results for both the simulation and experimental analyses.

Table 7.1

R _B	Multisim Results				Experimental Results			
	I _B (uA)	I _C (mA)	I _E (mA)	V _{CE} (V)	I _B (mA)	I _C (mA)	I _E (mA)	V _{CE} (V)
10ΚΩ	1.529	15.903	17.432	0.097	1.538	16.338	17.876	0.0667
50ΚΩ	0.307	15.841	16.148	0.159	0.307	16.266	16.573	0.1467
100ΚΩ	0.153	12.544	12.697	3.456	0.153	16.221	16.374	0.2326
300ΚΩ	0.051	4.457	4.508	11.543	0.044	10.783	10.827	7.983
500ΚΩ	0.031	2.6	2.631	13.4	0.031	7.832	7.863	11.158
1ΜΩ	0.015	1.21	1.225	14.79	0.015	4.013	4.028	13.654
2ΜΩ	0.008	0.551	0.559	15.449	0.008	2.011	2.019	14.913
3ΜΩ	0.005	0.345	0.350	15.655	0.004	1.325	1.329	15.324

In the table above, I_E was calculated using KCL, where $I_E = I_C + I_B$. The Output Charateristic Curves for both the Multisim and Experimental results are shown below:

Multisim data Output Characteristic:

Experimental data Output Characteristic.

In the experimental analysis, the Q-point region is at around 7.9V, , while in the Multisim analysis, the Q-Point is approximately at 11.5V, and the saturation region is just under 16mA.

CONCLUSION:

Both the digital and hardware circuits seem to yield the same pattern of results that we can expect from a BJT. The Q-point is determined by selecting a mid-point that allows for amplifying the signal within bounds.