學號: B05901189 系級: 電機一 姓名: 吳祥叡

- 1. 請簡明扼要地闡述你如何抽取模型的輸入特徵 (feature) 答:
- (1) for hw1_best.sh

取連續 9 小時的 pm2.5 數據[x0,x1,...,x8]

以及每兩個數據點的相乘:[x1*x1,x1*x2...].總共9+9*10/2=54項.

(2)for hw1.sh

取連續 9 小時的 pm2.5 和 pm10 數據[x0,x1,...,x17]

以及每兩個數據點的相乘:[x1*x1,x1*x2...].總共 18+18*19/2=189 項.

2.請作圖比較不同訓練資料量對於 PM2.5 預測準確率的影響 答:

以下均用簡化模型探討,只輸入9小時的pm2.5數據當作feature.

最大訓練資料量定為 24*240-10 組,由 train.csv 給定.

下圖 y 軸為 RMS Error,x 軸為訓練資料量.

一階模型在 training set 上看起來訓練資料量越大會越準確,但在 test set 上其實沒有明顯進步.

3. 請比較不同複雜度的模型對於 PM2.5 預測準確率的影響

答:

模型	RMS Error after 10 min training
All feature, 1 st order	5.90903
Feature pm2.5, 1 st order	5.82595
Feature pm2.5, 2 nd order	5.73658
Feature pm2.5, 3 rd order	5.75398
Feature pm2.5 and pm10, 2 nd order	5.89915

K Nearest Neighbor, K=1	10.2160
KNN, K=all, weight=exp(-distance**3/10)	7.58452
KNN, K=all weight=distance**-1	10.69424
KNN, K=all weight=distance**-3	7.30354
KNN, K=all weight=distance**-5	8.11685

以上除了 K Nearest Neighbor 模型以外均為 non-stochastic adagrad gradient descent linear regression without regularization 的結果,且 1 階 2 階 3 階的意思在第一題有説明.KNN method 的 distance 定義為 9 個 pm2.5 數據標準化後的方差合. 4. 請討論正規化(regularization)對於 PM2.5 預測準確率的影響答:

Method	Resulting RMS Error
2 nd order lambda=0	5.73658
2 nd order lambda=1000*r_learn/sigma	5.80373
2 nd order lambda=10*r_learn/sigma	5.74601
3 rd order lambda=1000*r_learn/sigma	5.80230
3 rd order lambda=0.01r_learn	5.75398

以上均為 non-stochastic adagrad gradient descent linear regression, 取 pm2.5 的數據當作 feature.

5. 在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n ,其標註(label)為一存量 \mathbf{y}^n ,模型參數為一向量 \mathbf{w} (此處忽略偏權值 \mathbf{b}),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^N \left(\mathbf{y}^n - \mathbf{w} \cdot \mathbf{x}^n \right)^2$ 。若將所有訓練資料的特徵值以矩陣 $\mathbf{X} = [\mathbf{x}^1 \ \mathbf{x}^2 \ ... \ \mathbf{x}^N]$ 表示,所有訓練資料的標註以向量 $\mathbf{y} = [\mathbf{y}^1 \ \mathbf{y}^2 \ ... \ \mathbf{y}^N]^T$ 表示,請以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 \mathbf{w} 。答:

$$W = (X^T X)^{-1} X^T Y$$

Reference: http://cs229.stanford.edu/notes/cs229-notes1.pdf page 11

##To 助教: 我的程式會跑 10 分鐘 而且會生出暫存的 txt 檔 希望不會有意外