NLA Assignment 1 - Word Alignment

Harshita Sharma - 20171099

IBM Model 1

Data preprocessing:

- The datasets are already tokenised.
- All words are changed to lower case.
- 'NULL' is added to source and target sentences.

Training the model:

 Approach: The following pseudocode has been used in order to implement IBM Model 1 in Python:

```
Input: set of sentence pairs (e, f)
                                                          // collect counts
                                                 14:
Output: translation prob. t(e|f)
                                                 15:
                                                          for all words e in e do
 1: initialize t(e|f) uniformly
                                                             for all words f in f do
                                                 16:
                                                                count(e|f) += \frac{t(e|f)}{s-total(e)}
 2: while not converged do
                                                 17:
       // initialize
                                                                total(f) += \frac{t(e|f)}{s-total(e)}
                                                 18:
       count(e|f) = 0 for all e, f
 4:
                                                             end for
                                                 19:
       total(f) = 0 for all f
 5:
                                                 20:
                                                          end for
       for all sentence pairs (e,f) do
 6:
                                                        end for
          // compute normalization
 7:
                                                        // estimate probabilities
                                                 22:
         for all words e in e do
 8:
                                                        for all foreign words f do
                                                 23:
            s-total(e) = 0
 9:
                                                          for all English words e do
                                                 24:
            for all words f in f do
                                                             t(e|f) = \frac{\operatorname{count}(e|f)}{e}
 10:
                                                 25:
                                                                        total(f)
               s-total(e) += t(e|f)
11:
                                                          end for
                                                 26:
            end for
12:
                                                        end for
         end for
 13:
                                                 28: end while
```

- Used defaultdict as a translation probability table to improve training time and space, where each entry takes key-value pairs in the following format: tef([hindi_word, english_word]) = translation_probability.
- Using this only relevant pairs of words are looked at.

- Each Hindi word in each Hindi sentence is paired with the corresponding English translated sentence's words instead of using all possible word pairs from the entire dataset.
- The EM algorithm is run i.e. the model is trained for 15 epochs.

Output Analysis:

- Top 20 pairs with the highest probabilities are:

P(रिंक skatin)	1.0	
P(महादेव mahadeva)	1.0	
P(गंगा ganges)	0.99	
P(राजस्थान rajasthan)	0.99	
P(भ्टान bhutan)	0.99	
P(भवन bhavan)	0.99	
P(दिल्ली delhi)	0.99	
P(ऐतिहासिक historical)	0.99	
P(महादेव mahadev)	0.99	
P(हजार thousand)	0.99	
P(आज today)	0.99	
P(बस्तर bastar)	0.99	
P(पटना patna)	0.99	
P(मिजोरम mizoram)	0.99	
P(धर्मशाला dharamshala	a) 0.9	99
P(नेहरू nehru)	0.99	
P(नदी river)	0.99	
P(जैन jain)	0.98	
P(नाम name)	0.98	
P(बंगाल bengal)	0.98	

Error Analysis:

- Since IBM model 1 does not take word order into consideration as no LM is used the errors generated are substantial.
- IBM Model 1 is weak in terms of conducting reordering or adding and dropping words.