Predicting Short Term Solar Energy Production

CONNOR MCANUFF - SEPTEMBER 2019

Content	Slide Index
Project Overview:	3-6
Data Wrangling:	7-12
Exploratory Data Analysis:	13-20
Statistical Data Analysis:	21-27
Machine Learning:	28-46
Conclusions:	47-48
References:	49

Project Overview – Solar Energy

- Global solar energy generation capacity increasing exponentially since 2006 [1]
- A form of solar energy generation is using photovoltaic (PV)
 panels which produce electricity through interaction with
 photons from the sun [2]

Project Overview – Solar Energy Availability

- Solar energy availability at a given location can be described by the level of solar irradiance (W/m²)
- Solar irradiance can be measured using a pyranometer [3]
- Solar irradiance is used as a measure of the energy available to enter a solar PV system [4]

Project Overview – Predicting solar energy generation

- The system configuration and energy losses through a PV system are well known
- Thus, if the solar irradiance is known, solar energy production can be accurately determined
- i.e. Predicting solar energy production can be done by proxy by predicting solar energy availability
- Solar energy availability is in part determined by weather conditions [4]

Project Overview – Value to Client

- Utility companies sourcing solar energy are presented with the unique challenge of variable input to the grid as solar energy generation varies in part depending on weather conditions
- Energy generation must be accurately forecasted to prevent energy shortages and surpluses
- Utility companies must be able to make informed grid-balancing decisions to minimize costs and operational complications

Data Wrangling – Data Overview

Raw data has been provided in the following format (source – Kaggle [5]):

- 1) station_info.csv
 - Array of station ID, latitude, longitude, elevation
 - 98 rows (stations) x 4 columns
- 98 Mesonet weather monitoring stations are acting as solar farm stations spread across U.S. state of Oklahoma
- The project objective is to predict the solar energy availability daily at each of these 98 stations given daily weather forecasts

Data Wrangling – Data Overview (2)

Raw data has been provided in the following format (source – Kaggle): 2) train.csv

- Array of dates and recorded total daily solar energy at each of the 98 Mesonet Solar Farms from 1994-01-01 to 2007-12-31
- 5113 rows (days) x 98 columns (stations)
- The total daily solar energy is the target variable for the machine learning models

Data Wrangling – Data Overview (3)

Raw data has been provided in the following format (source – Kaggle):

- 3) Weather forecast variables
 - 15 NETCDF4 files (one for each weather variable) listing the forecast value for each of the 11 predictive models, 5 daily forecast hours, 9 latitudes, and 16 longitudes for each of the 5113 forecast days
 - Dimensions 11 x 5 x 9 x 16 x 5113 (x15 files)
- The weather forecast variables are used as machine learning features i.e. the predictors of solar energy availability

Data Wrangling – Data Overview (4)

Raw data has been provided in the following format (source – Kaggle): 3) Weather forecast variables:

3-Hour accumulated precipitation at the surface	Maximum Temperature over the past 3 hours at 2 m above the ground
Downward long-wave radiative flux average at the surface	Minimum Temperature over the past 3 hours at 2 m above the ground
Downward short-wave radiative flux average at the surface	Current temperature at 2 m above the ground
Air pressure at mean sea level	Temperature of the surface
Precipitable Water over the entire depth of the atmosphere	Upward long-wave radiation at the surface
Specific Humidity at 2 m above ground	Upward long-wave radiation at the top of the atmosphere
Total cloud cover over the entire depth of the atmosphere	Upward short-wave radiation at the surface
Total column-integrated condensate over the entire atmosphere	

Data Wrangling – Cleaning

- No null values in dataset
- Fictional values
 - Client stated that the pyranometers occasionally stopped functioning correctly
 - Fictional values were input to train.csv (daily energy data)
 - These fictional values have been located and removed from the dataset (< 1% of total energy data)

Data Wrangling – Formatting

Goal: Create list of observations that include the date, station, solar energy (target variable) and the weather forecast variables for that day and station

- 1) Merge the list of energy data for a specific station with the list of stations
- 2) Determine the closest weather forecast grid point (by longitude and latitude) to a given station and get the weather forecast variables for that grid point
- 3) Use the median value of the 11 predictive models as a single weather forecast
- 4) Pivot the 5 daily forecast hours to be considered 5 different variables (for each of the 15 weather variables)
- 5) Merge the weather variable forecast data with the daily energy availability for each day and station

Exploratory Data Analysis – Mesonet Stations

Exploratory Data Analysis – Energy over Time

Exploratory Data Analysis – Energy over Time (2)

Exploratory Data Analysis – Energy over Time (3)

Exploratory Data Analysis – Energy over Time (4)

Exploratory Data Analysis – Energy over Space

Exploratory Data Analysis – Weather Forecast Variables

Exploratory Data Analysis – Weather Forecast Variables (2)

Statistical Data Analysis – Bootstrap Inference

Goal: Determine a confidence interval for the mean daily energy availability for a single station for a given month.

Statistical Data Analysis – Bootstrap Inference (2)

Statistical Data Analysis – Bootstrap Inference (3)

Statistical Data Analysis – Bootstrap Inference (4)

Statistical Data Analysis – Bayesian Inference

Goal: Model the distribution of daily energy availability for a single station for a given month.

Statistical Data Analysis – Bayesian Inference (2)

Statistical Data Analysis – Bayesian Inference (3)

Machine Learning – Overview

Goal: Predict the solar energy availability daily at each of the 98 stations given daily weather forecasts.

Machine learning models built:

- Ordinary least squares linear regression
 - Varying features
- Stochastic Gradient Descent (SGD)
 - Hyperparameter optimization
- Gradient Boosting Regressor (GBR)
 - Hyperparameter optimization

Machine Learning – Model Evaluation

Cross-validation:

- Time series energy data displays auto-correlation year-to-year
- Data split into contiguous folds for cross-validation:
 - 1994-1995: Contiguous Fold 1
 - 1996-1997: Contiguous Fold 2
 - 1998-1999: Contiguous Fold 3
 - 2000-2001: Contiguous Fold 4
 - 2002-2003: Contiguous Fold 5
 - 2004-2007: Test Data

Test Data is not used in hyperparameter optimization or cross-validation. Each model is evaluated on average CV **Mean Absolute Error (MAE)**, Test Data MAE, and Test Data Adjusted R²

Machine Learning – Linear Regression

Model Theory:

- Fitting a hyperplane to a set of points in N-dimensions (N = number of features)
- Generally requires the following assumptions:
 - 1) Linear relationship between the target variable and features exists
 - 2) Data should not exhibit multicollinearity
 - 3) Homoscedasticity (constant variance) of residuals
 - 4) Normally distributed residuals

Machine Learning – OLS Model 1a

Baseline Model 1a: No Feature Selection

- 15 weather forecast variables at 5 different timestamps = 75 features
- Latitude, longitude, elevation, month of the year = 4 features
- Total = 79 features

Machine Learning – OLS Model 1a (2)

Assumption #1: Linear relationship between the target variable and features exists

- Regression coefficients non-zero
- T-test p-values very close to 0, indicating that the features have predictive power

Machine Learning – OLS Model 1a (3)

Assumption #2: Data should not exhibit multicollinearity

Machine Learning – OLS Model 1a (4)

Assumption #3: Homoscedasticity (constant variance) of residuals

Breusch-Pagan Test:

- Null hypothesis of homoscedasticity
- Null hypothesis rejected due to near-zero p-value of the test statistic

Machine Learning – OLS Model 1a (4)

Assumption #3: Homoscedasticity (constant variance) of residuals

Breusch-Pagan Test:

- Null hypothesis of homoscedasticity
- Null hypothesis rejected due to near-zero p-value of the test statistic

Machine Learning – OLS Model 1a (5)

Assumption #4: Normally distributed residuals

Anderson-Darling Test:

- Null hypothesis of normal distribution
- Null hypothesis rejected due to near-zero p-value of the test statistic

Machine Learning – Linear Regression Feature Reduction

- Two additional models constructed using reduced features to address multicollinearity:
 - Model 1b features removed using forecast hour 0 correlation matrix (multicollinearity between forecast hours ignored)
 - Model 1c all features exhibiting multicollinearity (|R²| > 0.7) removed

Machine Learning – Linear Regression Conclusions

- All OLS models violate homoscedasticity and normality of residuals
- All OLS models have the greatest errors at low and high values of energy
- All models have predictive power:

	Model 1a	Model 1b	Model 1c
# Features	79	38	11
CV MAE (W/m ²)	2,353,201	2,552,359	3,021,995
Test MAE (W/m ²)	2,203,998	2,360,389	2,844,928
Test Data Adj. R ²	0.915	0.901	0.867

Machine Learning – Stochastic Gradient Descent

Model Theory:

- Process that can be used to optimize a linear regression by minimizing a cost function by following a gradient
- 'Stochastic' means that the process is linked with random probability
 - Samples of the dataset are randomly selected for each iteration
- Sensitive to feature scaling features are scaled before fitting
- Several hyperparameters to be tuned

Machine Learning – Stochastic Gradient Descent (2)

Hyperparameter Tuning:

- The following hyperparameters have been tuned using GridSearchCV the resulting best parameters are also listed:
 - Alpha (0.00001)
 - Max iterations (60)
 - Epsilon (0.1)
 - Loss function (sum of squared differences)

Results:

Residuals violate homoscedasticity and normality

Evaluation Criteria	Score	
CV MAE (W/m ²)	2,360,498	
Test MAE (W/m ²)	2,204,851	
Test Data Adj. R ²	0.914	

Machine Learning – Gradient Boosting Regressor

Model Theory:

- Ensemble prediction process (i.e., uses a collection of predictors to give a final prediction)
 - Reduce noise, variance, and bias
- Uses boosting, meaning the ensemble of predictors are made sequentially
 - Observations with higher errors from previous predictors are more likely to appear in subsequent predictors
- Several hyperparameters to be tuned

Machine Learning – Gradient Boosting Regressor (2)

Hyperparameter Tuning:

- The following hyperparameters have been tuned using GridSearchCV the resulting best parameters are also listed:
 - Number of estimators (1000)
 - Max features (10)
 - Max depth (6)

Results:

Residuals violate homoscedasticity and normality

Evaluation Criteria	Score	
CV MAE (W/m ²)	2,123,177	
Test MAE (W/m ²)	1,975,215	
Test Data Adj. R ²	0.924	

Machine Learning – Model Comparison

	OLS Model 1a	SGD	GBR
CV MAE (W/m ²)	2,353,201	2,360,498	2,123,177
Test MAE (W/m²)	2,203,998	2,204,851	1,975,215
Train Data Adj. R ²	0.915	0.914	0.924

Machine Learning – Model Comparison (2)

Train Data Actual Energy Train Data Fitted Value

OLS Model 1a

GBR Model

Machine Learning – Model Comparison (2)

Test Data Actual Energy Test Data Fitted Value

OLS Model 1a

GBR Model

Machine Learning – Model Comparison (3)

Conclusions

- Linear regression models have predictive power but also many shortcomings
 - Low values were over-estimated while high values were under-estimated
 - Residuals violate homoscedasticity and normality
- GBR model performed best according to visual assessment and the evaluation criteria
 - On test dataset, model predicts total daily energy with a mean absolute error of 1,975,215 (W/m²), approximately 11.9% of the mean total daily energy value

Further Work

- More time tuning GBR hyperparameters using randomized and grid searches
- Use all 11 weather forecast models to train 11 regression models and average the predictions
- Use distance-weighted average of weather forecasts (at multiple grid points)
 as the weather forecast variable features

References

- [1] Forecast International Powerweb, "Renewable Energy," 2016. [Online]. Available: http://www.fi-powerweb.com/Renewable-Energy.html.
- [2] Live Science, "How Do Solar Panels Work?," Live Science, 2017. [Online]. Available: https://www.livescience.com/41995-how-do-solar-panels-work.html. [Accessed 2019].
- [3] Hukseflux, "Pryanometers," Hukseflux, 2019. [Online]. Available: https://www.hukseflux.com/products/solar-radiation-sensors/pyranometers. [Accessed 2019].
- [4] J. Lago, "Forecasting in the Electrical Grid," Incite, 2018. [Online]. Available: http://www.incite-itn.eu/blog/forecasting-in-the-electrical-grid/. [Accessed 2019].
- [5] https://www.kaggle.com/c/ams-2014-solar-energy-prediction-contest/overview
- [6] J. Slingo and T. Palmer, "Uncertainty in weather and climate prediction," *Philos Trans A Math Phys Eng Sci*, vol. 369, no. 1956, p. 4751–4767, 2011.
- [7] http://www.apricus.com/solar-pv-systems-pv-panels-19.html#.XYkWZyhKiUk
- [8] https://en.wikipedia.org/wiki/Solar_panel#/media/File:Photovoltaik_Dachanlage_Hannover_-_Schwarze_Heide_-_1_MW.jpg