Data Link Layer

Department of Computer Engineering Faculty of Engineering King Mongkut's Institute of Technology Ladkrabang

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

Connectionless Communication

The sender doesn't know:

If the receiver is present
If the packet arrived
If the receiver can read the packet

The receiver doesn't know:

When it is coming

Best Effort Process

Media Independent Process

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

802.11 HDLC

Frame Relay

Ethernet

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

Protocol Data Units

Data Link Layer

Data Link Layer

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

Data Link Layer

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

10

Position of the data-link layer

11

Sublayers

• LLC and MAC sublayers

IEEE standards for LANs

Project 802

Chapter 11 Data Link Control

Jirasak Sittigorn

Department of Computer Engineering
Faculty of Engineering

King Mongkut's Institute of Technology Ladkrabang

Framing

- Data Link Layer (bits) <-> Physical Layer (Signal)
- Physical Layer
 - -Bit Synchronization (bit duration & timing)
- Data Link Layer
 - -Addressing (Destination & Source)
 - -Flow control & Error control
 - -Framing (Size)
 - Fixed-Size Framing
 - Variable-Size Framing

Data Link Layer

- Main function
 - Data link control: node-to-node comm.
 - Framing
 - Flow control
 - Error control
 - Software-implemented protocols
 - -Media access control: Share link comm.

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

Character-oriented protocol

• A frame in a character-oriented protocol

• Byte stuffing and unstuffing

Bit-Oriented Protocol

• A frame in a bit-oriented protocol

		bata nom apper ayer		
		Variable number of bits		
01111110	Header	01111010110 11011110	Trailer	01111110
Flag				Flag

• Bit stuffing and unstuffing

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

Flow & Error control

- Flow control refers to a set of procedures used to restrict the amount of data that the sender can send before waiting for acknowledgment.
- Error control in the data link layer is based on automatic repeat request, which is the retransmission of data.

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

10

Protocols (Activity)

• ให้ นศ. ออกแบบขั้นตอนในการรับส่งข้อมูล แล้วแสดงลำดับการส่งข้อมูล

Simplest Protocol

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

• Flow diagram

Simplest Protocol

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

22

Stop-and-Wait Protocol

23

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

while(true) //Repeat forever WaitForEvent(); // Sleep until an even if (Event(ArrivalNotification)) // Data frame arrives // Sleep until an event oc ReceiveFrame(); ExtractData(); Deliver(data); //Deliver data to network laye: SendFrame(); //Send an ACK frame

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

Stop-and-Wait Automatic Repeat Request

- copy & retransmitting frame
 - -when the timer expires -> Error correction
- frame sequence numbers
 - -based on modulo-2 arithmetic
- the acknowledgment number
 - modulo-2 arithmetic the sequence number of the next frame expected

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

25

27

Stop-and-Wait Automatic Repeat Request

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

26

Stop-and-Wait Automatic Repeat Request

• Algorithm

```
canSend = true;
                                      // Allow the first request to go
   while(true)
                                      // Repeat forever
                                     // Sleep until an event occurs
      WaitForEvent();
      if (Event (RequestToSend) AND canSend)
          GetData();
          MakeFrame(Sn);
                                                 //The seqNo is S_n
          StoreFrame(S<sub>n</sub>);
SendFrame(S<sub>n</sub>);
12
13
14
15
16
          StartTimer();
         S_n = S_n + 1;
canSend = false;
      WaitForEvent();
         if (Event (ArrivalNotification)
                                                 // An ACK has arrived
          if(not corrupted AND ackNo == Sn) //Valid ACK
                                                 //Copy is not needed
               PurgeFrame (S. .) :
27
28
29
         if (Event (TimeOut)
                                                 // The timer expired
          StartTimer();
                                                 //Resend a copy check
          ResendFrame(Sn.1);
```

Stop-and-Wait Automatic Repeat Request

- Flow diagram
 - -Send 5
 - -Data 2nd lost
 - -ACK 3th lost

Go-Back-N Automatic Repeat Request

b. Send window after sliding

the sequence numbers are modulo 2^m, where m is the size of the sequence number field in bits.

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

Go-Back-N Automatic Repeat Request

a. Receive window

b. Window after sliding

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

Go-Back-N Automatic Repeat Request

Go-Back-N Automatic Repeat Request


```
5 while (true)
                                            //Repeat forever
     WaitForEvent();
      if(Event(RequestToSend))
                                            //A packet to send
                                            //If window is full
          if(S_n-S_f >= S_w)
                 Sleep();
          GetData();
          MakeFrame(Sn);
          StoreFrame (Sn) ;
          SendFrame (S.);
          if(timer not running)
18
19
20
                StartTimer();
       if(Event(ArrivalNotification)) //ACK arrives
21
22
23
24
25
26
27
28
          if(corrupted(ACK))
                Sleep();
          if((ackNo>S_f)&&(ackNo<=S_n)) //If a valid ACK
          While(Sr <= ackNo)
29
30
31
32
33
             PurgeFrame(S<sub>f</sub>);
           StopTimer();
34
35
36
37
38
39
       if(Event(TimeOut))
                                            //The timer expires
        StartTimer();
        while (Temp < Sn);
          SendFrame(S<sub>f</sub>);
42
43
44
```

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

35

Go-Back-N Automatic Repeat Request

• Flow diagram

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

24

Go-Back-N Automatic Repeat Request

• Flow diagram

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

Selective Repeat Automatic Repeat Request

Send window

Receive window

Selective Repeat Automatic Repeat Request

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

Selective Repeat Automatic Repeat Request

b. Window size > 2^{m-1}

B. A. Forouzan, Data Communications and Networking, 4th edition, McGRAW-HILL

while (true) if (Event (RequestToSend)) //There is a packet to send $if(S_n-S_f >= S_w)$ $MakeFrame(S_n);$ StoreFrame (S,) 15 16 17 18 SendFrame(Sn);

22 23

43

```
3 AckNeeded = false;
4 Repeat(for all slots)
                                                                                   Marked(slot) = false;
                                                                                 WaitForEvent();
                                                                                 if (Event (ArrivalNotification))
                                                                                    Receive (Frame):
                                                                                      SendNAK(R.)
   S_n = S_n + 1;
StartTimer(S_n);
                                                                                      Sleep();
if(Event(ArrivalNotification)) //ACK arrives
   Receive(frame);
                                     //Receive ACK or NAK
   if(corrupted(frame))
                                                                                      NakSent = true;
   if (FrameType == NAK)
                                                                                       while (Marked (Rn))
        StartTimer(nakNo);
                                                                                        DeliverData(Rn);
                                                                                        Purge (R.);
                                                                                        R<sub>n</sub> = R<sub>n</sub> + 1;
AckNeeded = true;
       if (ackNo between Sf and Sn)
          while(s_f < ackNo)
                                                                                        if (AckNeeded) :
           StopTimer(s.);
                                                                                        SendAck(R<sub>n</sub>);
AckNeeded = false;
           S_t = S_t + 1;
                                                                          42
if(Event(TimeOut(t)))
                                     //The timer expires
 StartTimer(t);
 SendFrame(t);
```

D. A. I OLOUZAII, DAIA COMMUNICATIONS AND EVERWOLKING, 4th edition, McGRAW-HILL

//Repeat forever /Data frame arrives if(corrupted(Frame))&& (NOT NakSent) if(seqNo <> Rn)&& (NOT NakSent) if ((seqNo in window)&&(!Marked(seqNo))

Selective Repeat Automatic Repeat Request

