Министерство образования и науки Российской Федерации

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия

Дисциплина «Алгоритмы и структуры данных»

ОТЧЁТ

по лабораторной работе №7 (Week 7 Openedu)

Студенка Кузенкова Елизавета группы P3217 Преподаватель Муромцев Дмитрий Ильич

Санкт-Петербург

2019 г.

Содержание

Задача 1 Проверка сбалансированности	3
Исходный код к задаче 1	
Бенчмарк к задаче 1	
Задача 2. Делаю я левый поворот	12
Исходный код к задаче 2	13
Бенчмарк к задаче 2	20
Задача 3 Вставка в АВЛ-дерево	28
Исходный код к задаче 3	29
Бенчмарк к задаче 3	36
Задача 4 Удаление из АВЛ-дерева	43
Исходный код к задаче 4	45
Бенчмарк к задаче 4	
Задача 5 Упорядоченное множество на АВЛ-дереве	59
Исходный код к задаче 5	
Бенчмарк к задаче 5	

Задача 1 Проверка сбалансированности

1.0 из 1.0 балла (оценивается)

Имя входного файла:	input.txt
Имя выходного файла:	output.txt
Ограничение по времени:	2 секунды
Ограничение по памяти:	256 мегабайт

АВЛ-дерево является сбалансированным в следующем смысле: для любой вершины высота ее левого поддерева отличается от высоты ее правого поддерева не больше, чем на единицу.

Введем понятие баланса вершины: для вершины дерева V ее баланс B(V) равен разности высоты правого поддерева и высоты левого поддерева. Таким образом, свойство АВЛ-дерева, приведенное выше, можно сформулировать следующим образом: для любой ее вершины V выполняется следующее неравенство:

$$-1 \le B(V) \le 1$$

Обратите внимание, что, по историческим причинам, определение баланса в этой и последующих задачах этой недели "зеркально отражено" по сравнению с определением баланса в лекциях! Надеемся, что этот факт не доставит Вам неудобств. В литературе по алгоритмам — как российской, так и мировой — ситуация, как правило, примерно та же.

Дано двоичное дерево поиска. Для каждой его вершины требуется определить ее баланс.

Формат входного файла

Входной файл содержит описание двоичного дерева. В первой строке файла находится число N ($1 \le N \le 2*10^5$) — число вершин в дереве. В последующих N строках файла находятся описания вершин дерева. В (i+1)-ой строке файла ($1 \le i \le N$) находится описание i-ой вершины, состоящее из трех чисел Ki, Li, Ri, разделенных пробелами — ключа в i-ой вершине $-10^9 \le K \le 10^9$, номера левого ребенка i-ой вершины ($I < Li \le N$ или Li = 0, если левого ребенка нет) и номера правого ребенка i-ой вершины ($I < R \le N$ или Ri = 0, если правого ребенка нет).

Все ключи различны. Гарантируется, что данное дерево является деревом поиска.

Формат выходного файла

Для і-ой вершины в і-ой строке выведите одно число — баланс данной вершины.

Пример

input.txt	output.txt

```
6 3

-2 0 2 -1

8 4 3 0

9 0 0 0

3 6 5 0

6 0 0 0

0 0 0
```

```
Исходный код к задаче 1
class Lab7_1
{
    public static void Main(string[] args)
        var app = new Lab7_1();
        app.DoWork(args);
    private void DoWork(string[] args)
        using (var sw = new StreamWriter("output.txt"))
            var stdin = File.ReadAllLines("input.txt");
            var n = long.Parse(stdin[0]);
            var tree = new Tree(n);
            tree.Parse(stdin);
            for (int i = 0; i < n; i++)</pre>
                sw.WriteLine(TreeNode<long>.GetBalance(tree.Nodes[i]));
        }
    }
}
public class Tree
{
    public TreeNode<long>[] Nodes { get; private set; }
    private long _nodesCount;
    List<TreeNode<long>> _leafs = new List<TreeNode<long>>();
    public Tree(long n)
        _nodesCount = n;
        this.Nodes = new TreeNode<long>[n];
    //Parsing
    public void Parse(string[] stdin)
        for (int i = 1; i <= _nodesCount; i++)</pre>
            var temp = stdin[i].Split(' ').Select(x => long.Parse(x)).ToArray();
            if (this.Nodes[i - 1] == null)
                this.Nodes[i - 1] = new TreeNode<long>();
            this.Nodes[i - 1].Key = temp[0];
            //Left child
            if (temp[1] != 0)
            {
                if (this.Nodes[temp[1] - 1] == null)
                    this.Nodes[temp[1] - 1] = new TreeNode<long>()
```

```
{
                        Parent = this.Nodes[i - 1]
                    };
                this.Nodes[i - 1].Left = this.Nodes[temp[1] - 1];
            //Right child
            if (temp[2] != 0)
                if (temp[2] != 0 && this.Nodes[temp[2] - 1] == null)
                    this.Nodes[temp[2] - 1] = new TreeNode<long>() { Parent =
this.Nodes[i - 1] };
                this.Nodes[i - 1].Right = this.Nodes[temp[2] - 1];
            //Calc Height
            if (temp[1] == 0 \& temp[2] == 0)
                TreeNode<long> leaf = this.Nodes[i - 1];
                Stack<TreeNode<long>> curr = new Stack<TreeNode<long>>();
                while (leaf != null)
                    curr.Push(leaf);
                    leaf = leaf.Parent;
                while (curr.Count != 0)
                    leaf = curr.Pop();
                    if (leaf.Height < curr.Count)</pre>
                        leaf.Height = curr.Count;
                }
            }
       }
   }
}
public class TreeNode<T> where T : IComparable<T>
    public T Key { get; set; }
    public TreeNode<T> Parent { get; set; }
    public TreeNode<T> Left { get; set; }
    public TreeNode<T> Right { get; set; }
    public long Height { get; set; }
    public static long GetBalance(TreeNode<T> tree)
    {
        if (tree == null)
            throw new ArgumentNullException("Tree does not exist!");
        if (tree.Left != null && tree.Right != null)
            return tree.Right.Height - tree.Left.Height;
        if (tree.Left == null && tree.Right != null)
            return tree.Right.Height + 1;
        if (tree.Left != null && tree.Right == null)
            return -1 - tree.Left.Height;
        else
            return 0;
    }
}
```

Бенчмарк к задаче 1

№ теста	Результат	Время,	Память	Размер входного файла	Размер выходного файла
Max		0.500	51212288	3986010	1688889

1	OK	0.046	11689984		19
2	OK	0.062	11620352		3
3	OK	0.046	11653120		6
4	OK	0.031	11710464	17	7
5	OK	0.031	11591680	24	9
6	OK	0.031	11681792	24	10
7	OK	0.031	11661312	24	9
8	OK	0.031	11698176	24	10
9	OK	0.046	11624448	24	11
10	OK	0.046	11608064	31	12
11	OK	0.031	11644928	31	13
12	OK	0.031	11431936	31	12
13	OK	0.031	11411456	31	13
14	OK	0.015	11513856	31	14
15	OK	0.031	11431936	31	12
16	OK	0.031	11423744	31	13
17	OK	0.031	11423744	31	13
18	OK	0.031	11407360	31	14
19	OK	0.031	11468800	31	13
20	OK	0.031	11382784	31	14
21	OK	0.031	11407360	31	13
22	OK	0.031	11485184	31	14
23	OK	0.031	11415552	31	15
24	OK	0.031	11374592	38	15
25	OK	0.031	11427840	38	16
26	OK	0.046	11489280	38	15
27	OK	0.031	11431936	38	16
28	OK	0.031	11407360	38	17
29	OK	0.031	11411456	38	15
30	OK	0.015	11456512	38	16
31	OK	0.031	11395072	38	16
32	OK	0.031	11489280	38	17
33	OK	0.031	11419648	38	16
34	OK	0.046	11382784	38	17
35	OK	0.046	11399168	38	16
36	OK	0.046	11403264	38	17
37	OK	0.046	11472896	38	18
38	OK	0.031	11427840		15
39	OK	0.031	11399168		16
	Į.				I .

10					
40	OK	0.031	11464704		15
41	OK	0.046	11460608	38	16
42	OK	0.046	11419648	38	17
43	OK	0.031	11436032	38	15
44	OK	0.031	11386880	38	16
45	OK	0.031	11411456	38	16
46	OK	0.031	11403264	38	17
47	OK	0.031	11395072	38	16
48	OK	0.031	11427840	38	17
49	OK	0.031	11423744	38	16
50	OK	0.031	11522048	38	17
51	OK	0.031	11538432	38	18
52	OK	0.031	11468800	38	16
53	OK	0.015	11399168	38	17
54	OK	0.031	11481088	38	16
55	OK	0.031	11399168	38	17
56	OK	0.046	11423744	38	18
57	OK	0.046	11423744	38	16
58	OK	0.031	11464704	38	17
59	OK	0.031	11415552	38	17
60	OK	0.046	11436032	38	18
61	OK	0.031	11468800	38	17
62	OK	0.015	11476992	38	18
63	OK	0.062	11423744	38	17
64	OK	0.031	11505664	38	18
65	OK	0.031	11386880	38	19
66	OK	0.031	11411456	45	18
67	OK	0.031	11505664	45	19
68	OK	0.031	11419648	45	18
69	OK	0.031	11436032	45	19
70	OK	0.046	11411456	45	20
71	OK	0.031	11411456	45	18
72	OK	0.046	11472896	45	19
73	OK	0.031	11485184	45	19
74	OK	0.031	11505664	45	20
75	OK	0.031	11464704	45	19
76	OK	0.015	11411456		20
77	OK	0.031	11419648		19
78	OK	0.031	11423744	45	20

79	OK	0.031	11419648		21
80	OK	0.015	11419648	45	18
81	OK	0.031	11427840	45	19
82	OK	0.031	11431936	45	18
83	OK	0.031	11415552	45	19
84	OK	0.015	11485184	45	20
85	OK	0.046	11493376	45	18
86	OK	0.031	11436032	45	19
87	OK	0.031	11419648	45	19
88	OK	0.031	11403264	45	20
89	OK	0.031	11431936	45	19
90	OK	0.015	11423744	45	20
91	OK	0.031	11419648	45	19
92	OK	0.046	11501568	45	20
93	OK	0.031	11407360	45	21
94	OK	0.031	11419648	45	19
95	OK	0.046	11476992	45	20
96	OK	0.046	11436032	45	19
97	OK	0.046	11452416	45	20
98	OK	0.031	11427840	45	21
99	OK	0.031	11452416	45	19
100	OK	0.046	11403264	45	20
101	OK	0.046	11419648	45	20
102	OK	0.031	11415552	45	21
103	OK	0.031	11431936	45	20
104	OK	0.031	11415552	45	21
105	OK	0.031	11403264	45	20
106	OK	0.046	11522048	45	21
107	OK	0.031	11423744	45	22
108	OK	0.031	11485184	45	18
109	OK	0.031	11497472	45	19
110	OK	0.031	11427840	45	18
111	OK	0.031	11423744	45	19
112	OK	0.031	11436032	45	20
113	OK	0.046	11472896	45	18
114	OK	0.031	11485184	45	19
115	OK	0.015	11436032	45	19
116	OK	0.031	11464704	45	20
117	OK	0.031	11530240	45	19

440		0.016	11100000		- 0
118	OK	0.046	11489280		20
119	OK	0.031	11411456		19
120	OK	0.046	11493376		20
121	OK	0.031	11419648		21
122	OK	0.031	11395072		18
123	OK	0.062	11427840	45	19
124	OK	0.031	11476992	45	18
125	OK	0.015	11476992	45	19
126	OK	0.031	11419648	45	20
127	OK	0.031	11411456	45	19
128	OK	0.015	11472896	45	20
129	OK	0.031	11493376	45	19
130	OK	0.031	11460608	45	20
131	OK	0.031	11444224	45	21
132	OK	0.046	11419648	45	19
133	OK	0.031	11431936	45	20
134	OK	0.031	11411456	45	20
135	OK	0.046	11419648	45	21
136	OK	0.031	11476992	45	18
137	OK	0.046	11431936	45	19
138	OK	0.031	11546624	45	20
139	OK	0.031	11427840	45	21
140	OK	0.031	11419648	45	21
141	OK	0.031	11427840	45	22
142	OK	0.031	11472896	45	19
143	OK	0.031	11419648	45	20
144	OK	0.046	11415552	45	19
145	OK	0.031	11427840	45	20
146	OK	0.015	11431936	45	21
147	OK	0.031	11489280	45	19
148	OK	0.046	11407360	45	20
149	OK	0.031	11476992	45	20
150	OK	0.015	11460608	45	21
151	OK	0.031	11415552	45	20
152	OK	0.031	11452416	45	21
153	OK	0.031	11436032	45	20
154	OK	0.031	11427840	45	21
155	OK	0.031	11415552	45	22
156	OK	0.015	11423744		19
	1				I

157 OK 0.015 11411456 45 20 158 OK 0.031 11476992 45 19 159 OK 0.031 11395072 45 20 160 OK 0.031 11456512 45 21 161 OK 0.031 11509760 45 19 162 OK 0.046 11411456 45 20 163 OK 0.031 11481088 45 21 164 OK 0.015 11481088 45 21 165 OK 0.031 11395072 45 20 166 OK 0.031 11411456 45 21 167 OK 0.046 11407360 45 20 168 OK 0.031 11415552 45 21 169 OK 0.046 11456512 45 22 170 OK 0.031 11415552 45 19 171 OK 0.031 11485184 45 19 172 OK 0.	
159 OK 0.031 11395072 45 20 160 OK 0.031 11456512 45 21 161 OK 0.031 11509760 45 19 162 OK 0.046 11411456 45 20 163 OK 0.031 11448320 45 20 164 OK 0.015 11481088 45 21 165 OK 0.031 11395072 45 20 166 OK 0.031 11411456 45 21 167 OK 0.046 11407360 45 20 168 OK 0.031 11411456 45 21 169 OK 0.046 11456512 45 22 170 OK 0.031 11415552 45 19 171 OK 0.031 11485184 45 19 172 OK 0.031 11407360	
160 OK 0.031 11456512 45 21 161 OK 0.031 11509760 45 19 162 OK 0.046 11411456 45 20 163 OK 0.031 11448320 45 20 164 OK 0.015 11481088 45 21 165 OK 0.031 11395072 45 20 166 OK 0.031 11411456 45 21 167 OK 0.046 11407360 45 20 168 OK 0.031 11411456 45 21 169 OK 0.046 11456512 45 22 170 OK 0.031 11415552 45 19 171 OK 0.031 1149648 45 20 172 OK 0.031 11407360 45 20 174 OK 0.031 11509760 45 21 175 OK 0.031 11427840 45 <t< td=""><td></td></t<>	
161 OK 0.031 11509760 45 19 162 OK 0.046 11411456 45 20 163 OK 0.031 11448320 45 20 164 OK 0.015 11481088 45 21 165 OK 0.031 11395072 45 20 166 OK 0.031 11411456 45 21 167 OK 0.046 11407360 45 20 168 OK 0.031 11411456 45 21 169 OK 0.046 11456512 45 22 170 OK 0.031 11415552 45 19 171 OK 0.031 1149648 45 20 172 OK 0.031 11485184 45 19 173 OK 0.031 11407360 45 20 174 OK 0.031 11509760 45 21 175 OK 0.031 11427840 45 <t< td=""><td></td></t<>	
162 OK 0.046 11411456 45 20 163 OK 0.031 11448320 45 20 164 OK 0.015 11481088 45 21 165 OK 0.031 11395072 45 20 166 OK 0.031 11411456 45 21 167 OK 0.046 11407360 45 20 168 OK 0.031 11411456 45 21 169 OK 0.046 11456512 45 22 170 OK 0.031 11415552 45 19 171 OK 0.031 1149648 45 20 172 OK 0.031 11485184 45 19 173 OK 0.031 11407360 45 21 174 OK 0.031 11509760 45 21 175 OK 0.031 11427840 45 19	
163 OK 0.031 11448320 45 20 164 OK 0.015 11481088 45 21 165 OK 0.031 11395072 45 20 166 OK 0.031 11411456 45 21 167 OK 0.046 11407360 45 20 168 OK 0.031 11411456 45 21 169 OK 0.046 11456512 45 22 170 OK 0.031 11415552 45 19 171 OK 0.031 1149648 45 20 172 OK 0.031 11485184 45 19 173 OK 0.031 11407360 45 20 174 OK 0.031 11509760 45 21 175 OK 0.031 11427840 45 19	
164 OK 0.015 11481088 45 21 165 OK 0.031 11395072 45 20 166 OK 0.031 11411456 45 21 167 OK 0.046 11407360 45 20 168 OK 0.031 11411456 45 21 169 OK 0.046 11456512 45 22 170 OK 0.031 11415552 45 19 171 OK 0.031 11419648 45 20 172 OK 0.031 11485184 45 19 173 OK 0.031 11407360 45 20 174 OK 0.031 11509760 45 21 175 OK 0.031 11427840 45 19	
165 OK 0.031 11395072 45 20 166 OK 0.031 11411456 45 21 167 OK 0.046 11407360 45 20 168 OK 0.031 11411456 45 21 169 OK 0.046 11456512 45 22 170 OK 0.031 11415552 45 19 171 OK 0.031 1149648 45 20 172 OK 0.031 11485184 45 19 173 OK 0.031 11407360 45 20 174 OK 0.031 11509760 45 21 175 OK 0.031 11427840 45 19	
166 OK 0.031 11411456 45 21 167 OK 0.046 11407360 45 20 168 OK 0.031 11411456 45 21 169 OK 0.046 11456512 45 22 170 OK 0.031 11415552 45 19 171 OK 0.031 11419648 45 20 172 OK 0.031 11485184 45 19 173 OK 0.031 11407360 45 20 174 OK 0.031 11509760 45 21 175 OK 0.031 11427840 45 19	
167 OK 0.046 11407360 45 20 168 OK 0.031 11411456 45 21 169 OK 0.046 11456512 45 22 170 OK 0.031 11415552 45 19 171 OK 0.031 11419648 45 20 172 OK 0.031 11485184 45 19 173 OK 0.031 11407360 45 20 174 OK 0.031 11509760 45 21 175 OK 0.031 11427840 45 19	
168 OK 0.031 11411456 45 21 169 OK 0.046 11456512 45 22 170 OK 0.031 11415552 45 19 171 OK 0.031 11419648 45 20 172 OK 0.031 11485184 45 19 173 OK 0.031 11407360 45 20 174 OK 0.031 11509760 45 21 175 OK 0.031 11427840 45 19	
169 OK 0.046 11456512 45 22 170 OK 0.031 11415552 45 19 171 OK 0.031 11419648 45 20 172 OK 0.031 11485184 45 19 173 OK 0.031 11407360 45 20 174 OK 0.031 11509760 45 21 175 OK 0.031 11427840 45 19	
170 OK 0.031 11415552 45 19 171 OK 0.031 11419648 45 20 172 OK 0.031 11485184 45 19 173 OK 0.031 11407360 45 20 174 OK 0.031 11509760 45 21 175 OK 0.031 11427840 45 19	
171 OK 0.031 11419648 45 20 172 OK 0.031 11485184 45 19 173 OK 0.031 11407360 45 20 174 OK 0.031 11509760 45 21 175 OK 0.031 11427840 45 19	
172 OK 0.031 11485184 45 19 173 OK 0.031 11407360 45 20 174 OK 0.031 11509760 45 21 175 OK 0.031 11427840 45 19	
173 OK 0.031 11407360 45 20 174 OK 0.031 11509760 45 21 175 OK 0.031 11427840 45 19	
174 OK 0.031 11509760 45 21 175 OK 0.031 11427840 45 19	
175 OK 0.031 11427840 45 19	
176 OV 0.021 11410649 45	
176 OK 0.031 11419648 45 20	
177 OK 0.031 11436032 45 20	
178 OK 0.046 11407360 45 21	
179 OK 0.031 11427840 45 20	
180 OK 0.046 11472896 45 21	
181 OK 0.046 11481088 45 20	
182 OK 0.031 11468800 45 21	
183 OK 0.031 11460608 45 22	
184 OK 0.031 11505664 45 20	
185 OK 0.031 11489280 45 21	
186 OK 0.031 11481088 45 20	
187 OK 0.031 11415552 45 21	
188 OK 0.031 11431936 45 22	
189 OK 0.046 11403264 45 20	
190 OK 0.046 11431936 45 21	
191 OK 0.031 11440128 45 21	
192 OK 0.031 11476992 45 22	
193 OK 0.031 11419648 45 21	
194 OK 0.031 11415552 45 22	
195 OK 0.031 11481088 45 21	

196	OK	0.031	11485184	45	22
197	OK	0.031	11472896	45	23
198	OK	0.046	11411456	221	55
199	OK	0.031	11419648	220	59
200	OK	0.031	11407360	220	46
201	OK	0.031	11415552	223	48
202	OK	0.031	11493376	226	45
203	OK	0.031	11460608	1786	502
204	OK	0.031	11534336	1785	555
205	OK	0.031	11476992	1785	445
206	OK	0.031	11554816	1845	365
207	OK	0.031	11620352	1847	363
208	OK	0.031	11890688	9555	3006
209	OK	0.031	11804672	9554	3297
210	OK	0.031	11812864	9554	2730
211	OK	0.031	11890688	9303	1888
212	OK	0.031	11853824	9984	1877
213	OK	0.031	12644352	37691	12907
214	OK	0.031	12603392	37690	13974
215	OK	0.078	12599296	37690	11820
216	OK	0.046	12541952	39602	7150
217	OK	0.031	12619776	38744	7125
218	OK	0.062	18423808	178903	63876
219	OK	0.078	18452480	178902	68889
220	OK	0.046	18403328	178902	58890
221	OK	0.046	19156992	185712	33049
222	OK	0.078	19148800	180580	33013
223	OK	0.250	35704832	1853240	724890
224	OK	0.234	35717120	1853239	773873
225	OK	0.250	35700736	1853239	675751
226	OK	0.265	35557376	1855624	324156
227	OK	0.281	35532800	1856715	324455
228	OK	0.453	48099328	3473125	1412256
229	OK	0.406	48447488	3473124	1501788
230	OK	0.421	48394240	3473124	1322578
231	OK	0.453	46665728	3603994	592172
232	OK	0.453	46657536	3646224	592525
233	OK	0.484	51212288	3888905	1589032
234	OK	0.484	51130368	3888904	1688889

235	OK	0.437	51187712 3888904	1488890
236	OK	0.500	49221632 3890628	661024
237	OK	0.484	49696768 3986010	661067

Задача 2. Делаю я левый поворот...

Имя входного файла:	input.txt
Имя выходного файла:	output.txt
Ограничение по времени:	2 секунды
Ограничение по памяти:	256 мегабайт

Для балансировки АВЛ-дерева при операциях вставки и удаления производятся *левые* и *правые* повороты. Левый поворот в вершине производится, когда баланс этой вершины больше 1, аналогично, правый поворот производится при балансе, меньшем -1.

Существует два разных левых (как, разумеется, и правых) поворота: большой и малый левый поворот.

Малый левый поворот осуществляется следующим образом:

Заметим, что если до выполнения малого левого поворота был нарушен баланс только корня дерева, то после его выполнения все вершины становятся сбалансированными, за исключением случая, когда у правого ребенка корня баланс до поворота равен —1. В этом случае вместо малого левого поворота выполняется большой левый поворот, который осуществляется так:

Дано дерево, в котором баланс корня равен 2. Сделайте левый поворот.

Формат входного файла

Входной файл содержит описание двоичного дерева. В первой строке файла находится число N ($3 \le N \le 2*10^5$) — число вершин в дереве. В последующих N строках файла находятся описания вершин дерева. В (i+1)-ой строке файла ($1 \le i \le N$) находится описание i-ой вершины, состоящее из трех чисел Ki, Li, Ri, разделенных пробелами —

ключа в і-ой вершине $-10^9 \le K \le 10^9$, номера левого ребенка і-ой вершины ($I < Li \le N$ или Li = 0, если левого ребенка нет) и номера правого ребенка і-ой вершины ($I < R \le N$ или Ri = 0, если правого ребенка нет).

Все ключи различны. Гарантируется, что данное дерево является деревом поиска. Баланс корня дерева (вершины с номером 1) равен 2, баланс всех остальных вершин находится в пределах от -1 до 1.

Формат выходного файла

Выведите в том же формате дерево после осуществления левого поворота. Нумерация вершин может быть произвольной при условии соблюдения формата. Так, номер вершины должен быть меньше номера ее детей.

Пример

input.txt	output.txt
7	7
-2 7 2	3 2 3
8 4 3	-2 4 5
900	8 6 7
3 6 5	-7 0 0
600	000
000	600
-700	900

```
Исходный код к задаче 2
class Lab7 2
   public static void Main(string[] args)
        var app = new Lab7_2();
        app.DoWork(args);
   }
   private void DoWork(string[] args)
        using (var sw = new StreamWriter("output.txt"))
            string[] stdin = File.ReadAllLines("input.txt");
            TreeNode<long> root = null;
            for (int i = 1; i < stdin.Length; i++)</pre>
                root = TreeNode<long>.Insert(root, new TreeNode<long> { Key =
long.Parse(stdin[i].Split(' ')[0]) });
            root = TreeNode<long>.Balance(root);
            sw.WriteLine(stdin[0]);
            TreeNode<long>.PrintTree(sw, root);
        }
   }
   class TreeNode<T> where T : IComparable<T>
        public T Key { get; set; }
```

```
public TreeNode<T> Parent { get; set; }
public TreeNode<T> Left { get; set; }
public TreeNode<T> Right { get; set; }
private long Depth { get; set; }
public long Height { get; private set; }
public static TreeNode<T> Previous(TreeNode<T> node)
   if (node.Left == null)
        return node;
   return Maximum(node.Left);
}
public static TreeNode<T> Maximum(TreeNode<T> node)
   while (node.Right != null)
        node = node.Right;
   return node;
}
/// <returns>Root of tree after remove</returns>
public static TreeNode<T> Remove(TreeNode<T> item)
   TreeNode<T> parent = item.Parent;
   //Leaf
   if (item.Left == null && item.Right == null)
        if (parent == null)
            return null;
        if (parent.Left == item)
            parent.Left = null;
        else
            parent.Right = null;
       UpdateHeight(parent);
        return Balance(parent);
   }
   //One child
   if ((item.Left == null) ^ (item.Right == null))
        if (item.Left != null)
        {
            if (parent != null)
            {
                if (parent.Left == item)
                    parent.Left = item.Left;
                else
                    parent.Right = item.Left;
                UpdateHeight(parent);
            }
            item.Left.Parent = parent;
            return Balance(item.Left);
        }
       else
        {
            if (parent != null)
                if (parent.Left == item)
                    parent.Left = item.Right;
                else
                    parent.Right = item.Right;
```

```
UpdateHeight(parent);
            }
            item.Right.Parent = parent;
            return Balance(item.Right);
        }
    //Two child
    if ((item.Left != null) && (item.Right != null))
        TreeNode<T> prev = Previous(item);
        Remove(prev);
        item.Key = prev.Key;
    return Balance(item);
}
/// <returns>Root of tree after insert</returns>
public static TreeNode<T> Insert(TreeNode<T> root, TreeNode<T> node)
    if (root == null)
        return node;
    TreeNode<T> current = root;
    while (true)
        if (current.Key.CompareTo(node.Key) == 0)
            throw new ArgumentException("Not unique key");
        if (current.Key.CompareTo(node.Key) < 0)</pre>
        {
            if (current.Right != null)
                current = current.Right;
            else
            {
                current.Right = node;
                node.Parent = current;
                UpdateHeight(node);
                return root;
            }
        }
        else
        {
            if (current.Left != null)
                current = current.Left;
            else
            {
                current.Left = node;
                node.Parent = current;
                UpdateHeight(node);
                return root;
            }
        }
   }
}
private static void UpdateHeight(TreeNode<T> node)
   while (node != null)
    {
        long rH = node.Right != null ? node.Right.Height : -1;
        long lH = node.Left != null ? node.Left.Height : -1;
```

```
long currentH = node.Height;
        if (rH > 1H)
            node.Height = rH + 1;
        else
            node.Height = 1H + 1;
        node = node.Parent;
    }
}
/// <returns>Root of tree after balance</returns>
public static TreeNode<T> Balance(TreeNode<T> leaf)
    TreeNode<T> current = leaf;
    while (current != null)
    {
        long balance = GetBalance(current);
        if (balance > 1)
            if (GetBalance(current.Right) == -1)
                current = BigLeftTurn(current);
            else
                current = SmallLeftTurn(current);
        if (balance < -1)</pre>
            if (GetBalance(current.Left) == 1)
                current = BigRightTurn(current);
            else
                current = SmallRightTurn(current);
        if (current.Parent == null)
            return current;
        else
            current = current.Parent;
    return current;
}
public static void PrintTree(StreamWriter sw, TreeNode<T> root)
    if (root == null)
        return;
    Queue<TreeNode<T>> bfsQueue = new Queue<TreeNode<T>>();
    long counter = 1;
    bfsQueue.Enqueue(root);
    while (bfsQueue.Count != 0)
    {
        TreeNode<T> current = bfsQueue.Dequeue();
        sw.Write(current.Key);
        if (current.Left != null)
            bfsQueue.Enqueue(current.Left);
            sw.Write(" " + ++counter);
        }
        else
            sw.Write(" " + 0);
        if (current.Right != null)
            bfsQueue.Enqueue(current.Right);
            sw.WriteLine(" " + ++counter);
        else
```

```
sw.WriteLine(" " + 0);
   }
}
public static long GetBalance(TreeNode<T> tree)
   if (tree == null)
        return 0;
   if (tree.Left != null && tree.Right != null)
        return tree.Right.Height - tree.Left.Height;
   if (tree.Left == null && tree.Right != null)
        return tree.Right.Height + 1;
   if (tree.Left != null && tree.Right == null)
        return -1 - tree.Left.Height;
   else
        return 0;
}
/// <returns>Root of tree after turn</returns>
public static TreeNode<T> SmallLeftTurn(TreeNode<T> root)
   TreeNode<T> child = root.Right;
   TreeNode<T> parent = root.Parent;
   TreeNode<T> x = root.Left;
   TreeNode<T> y = root.Right.Left;
   TreeNode<T> z = root.Right.Right;
   //Parents
   child.Parent = parent;
   root.Parent = child;
   if (x != null)
       x.Parent = root;
   if (y != null)
       y.Parent = root;
   if (z != null)
       z.Parent = child;
   //Childs
   root.Left = x;
   root.Right = y;
   child.Left = root;
   child.Right = z;
   if (parent != null)
        if (parent.Right == root)
            parent.Right = child;
        else
            parent.Left = child;
   //Heights
   long xH = x != null ? x.Height : -1;
   long yH = y != null ? y.Height : -1;
   long zH = z != null ? z.Height : -1;
   if (xH > yH)
        root.Height = xH + 1;
   else
        root.Height = yH + 1;
   if (root.Height > zH)
        child.Height = root.Height + 1;
   else
        child.Height = zH + 1;
   UpdateHeight(child);
   return child;
```

```
}
/// <returns>Root of tree after turn</returns>
public static TreeNode<T> SmallRightTurn(TreeNode<T> root)
    TreeNode<T> child = root.Left;
    TreeNode<T> parent = root.Parent;
    TreeNode<T> x = root.Right;
    TreeNode<T> y = root.Left.Left;
    TreeNode<T> z = root.Left.Right;
    //Parents
    child.Parent = parent;
    root.Parent = child;
    if (x != null)
        x.Parent = root;
    if (y != null)
        y.Parent = child;
    if (z != null)
        z.Parent = root;
    //Childs
    root.Left = z;
    root.Right = x;
    child.Left = y;
    child.Right = root;
    if (parent != null)
        if (parent.Right == root)
            parent.Right = child;
        else
            parent.Left = child;
    //Heights
    long xH = x != null ? x.Height : -1;
    long yH = y != null ? y.Height : -1;
    long zH = z != null ? z.Height : -1;
    if(zH > xH)
        root.Height = zH + 1;
    else
        root.Height = xH + 1;
    if (y.Height > root.Height)
        child.Height = yH + 1;
    else
        child.Height = root.Height + 1;
    UpdateHeight(child);
    return child;
}
/// <returns>Root of tree after turn</returns>
public static TreeNode<T> BigRightTurn(TreeNode<T> root)
    TreeNode<T> w = root.Right;
    TreeNode<T> parent = root.Parent;
    TreeNode<T> b = root.Left;
    TreeNode<T> c = root.Left.Right;
    TreeNode<T> z = b.Left;
    TreeNode<T> x = c.Left;
    TreeNode<T> y = c.Right;
    //Parents
    c.Parent = parent;
    b.Parent = c;
```

```
root.Parent = c;
    if (w != null)
        w.Parent = root;
    if (z != null)
        z.Parent = b;
    if (y != null)
       y.Parent = root;
    if (x != null)
        x.Parent = b;
    //Childs
    if (parent != null)
        if (parent.Right == root)
            parent.Right = c;
        else
            parent.Left = c;
    c.Left = b;
    c.Right = root;
    b.Left = z;
    b.Right = x;
    root.Left = y;
    root.Right = w;
    //Heights
    long xH = x != null ? x.Height : -1;
    long yH = y != null ? y.Height : -1;
    long zH = z != null ? z.Height : -1;
    long wH = w != null ? w.Height : -1;
    if(zH > xH)
        b.Height = zH + 1;
    else
        b.Height = xH + 1;
    if (yH > wH)
        root.Height = yH + 1;
    else
        root.Height = wH + 1;
    if (b.Height > root.Height)
        c.Height = b.Height + 1;
    else
        c.Height = root.Height + 1;
    UpdateHeight(c);
    return c;
/// <returns>Root of tree after turn</returns>
public static TreeNode<T> BigLeftTurn(TreeNode<T> root)
    TreeNode<T> w = root.Left;
    TreeNode<T> parent = root.Parent;
    TreeNode<T> b = root.Right;
    TreeNode<T> c = root.Right.Left;
    TreeNode<T> z = b.Right;
    TreeNode<T> x = c.Left;
    TreeNode<T> y = c.Right;
    //Parents
    c.Parent = parent;
    b.Parent = c;
    root.Parent = c;
    if (w != null)
        w.Parent = root;
```

}

```
if (z != null)
            z.Parent = b;
        if (y != null)
            y.Parent = b;
        if (x != null)
            x.Parent = root;
        //Childs
        if (parent != null)
            if (parent.Right == root)
                parent.Right = c;
            else
                parent.Left = c;
        c.Left = root;
        c.Right = b;
        b.Left = y;
        b.Right = z;
        root.Left = w;
        root.Right = x;
        //Heights
        long xH = x != null ? x.Height : -1;
        long yH = y != null ? y.Height : -1;
        long zH = z != null ? z.Height : -1;
        long wH = w != null ? w.Height : -1;
        if (wH > xH)
            root.Height = wH + 1;
        else
            root.Height = xH + 1;
        if (yH > zH)
            b.Height = yH + 1;
        else
            b.Height = zH + 1;
        if (b.Height > root.Height)
            c.Height = b.Height + 1;
        else
            c.Height = root.Height + 1;
        UpdateHeight(c);
        return c;
    }
}
```

Бенчмарк к задаче 2

№ теста	Результат	Время,	Память	Размер входного файла	Размер выходного файла
Max		0.500	50868224	3986416	3986416
1	OK	0.046	11198464	54	54
2	OK	0.031	11120640	24	24
3	OK	0.031	11083776	24	24
4	OK	0.046	11153408	31	31
5	OK	0.031	11112448	45	45
6	OK	0.046	11128832	45	45
7	OK	0.031	11124736	45	45

8	OK	0.031	11206656	45	45
9	OK	0.046	11120640		52
10	OK	0.046	11169792		52
11	OK	0.031	11104256		52
12	OK	0.031	10940416		52
13	OK	0.031	11022336		52
14	OK	0.031	10956800		52
15	OK	0.031	10969088		59
16	OK	0.031	10899456		59
17	OK	0.046	10895360		59
18	OK	0.046	10928128		59
19	OK OK	0.040	10928128		66
20	OK OK	0.031	10930800		75
21	OK OK	0.031	10924032		75
22	OK OK				75
		0.031	11010048		
23	OK	0.031	10989568		75
24	OK	0.031	10989568		75
25	OK	0.031	10924032		75
26	OK	0.031	10907648		75
27	OK	0.046	10895360		75
28	OK	0.031	10919936		75
29	OK	0.046	11018240		75
30	OK	0.015	10895360		75
31	OK	0.031	10903552		75
32	OK	0.031	10952704		75
33	OK	0.046	10911744		75
34	OK	0.015	10985472		75
35	OK	0.031	10907648		75
36	OK	0.046	10956800		75
37	OK	0.046	10899456		75
38	OK	0.015	10928128		75
39	OK	0.031	10874880		75
40	OK	0.031	10960896		75
41	OK	0.031	10874880		75
42	OK	0.046	11014144		75
43	OK	0.031	10924032		75
44	OK	0.031	10960896		75
45	OK	0.046	10973184		75
46	OK	0.031	10915840	75	75

47	OK	0.031	10964992	75	75
48	OK OK	0.031			75
			10919936		
49	OK	0.031	10874880		75
50	OK	0.031	10899456		75
51	OK	0.031	10964992		75
52	OK	0.031	10928128		84
53	OK	0.031	10948608		84
54	OK	0.031	10956800		84
55	OK	0.031	10969088		84
56	OK	0.015	10948608		84
57	OK	0.031	10985472		84
58	OK	0.031	10932224		84
59	OK	0.031	11055104	84	84
60	OK	0.031	10895360	84	84
61	OK	0.031	10907648	84	84
62	OK	0.015	11001856	84	84
63	OK	0.031	10915840	84	84
64	OK	0.031	10899456	84	84
65	OK	0.031	10985472	84	84
66	OK	0.031	10887168	84	84
67	OK	0.046	10936320	84	84
68	OK	0.031	10895360	84	84
69	OK	0.031	10977280	84	84
70	OK	0.031	10977280	84	84
71	OK	0.031	10895360	84	84
72	OK	0.031	10899456	84	84
73	OK	0.031	10924032	84	84
74	OK	0.031	10915840	84	84
75	OK	0.031	10940416	84	84
76	OK	0.031	10977280	84	84
77	OK	0.031	10936320	84	84
78	OK	0.031	10915840	84	84
79	OK	0.031	10977280	84	84
80	OK	0.031	10895360	84	84
81	OK	0.031	10948608		84
82	OK	0.046	10899456		84
83	OK	0.031	10915840		84
84	OK	0.031	10903552		84
85	OK	0.031	10899456		84

0.5		0.004	1005000		
86	OK	0.031	10969088		84
87	OK	0.031	10903552		84
88	OK	0.031	10932224		84
89	OK	0.046	10932224		84
90	OK	0.031	10948608		84
91	OK	0.062	10936320	84	84
92	OK	0.031	10956800	84	84
93	OK	0.031	10915840	84	84
94	OK	0.046	10932224	84	84
95	OK	0.031	10936320	84	84
96	OK	0.031	10989568	84	84
97	OK	0.031	10944512	84	84
98	OK	0.031	10915840	84	84
99	OK	0.031	10936320	84	84
100	OK	0.031	10907648	84	84
101	OK	0.046	10924032	84	84
102	OK	0.062	10985472	84	84
103	OK	0.031	10964992	84	84
104	OK	0.046	10932224	84	84
105	OK	0.031	10964992	84	84
106	OK	0.031	10907648	84	84
107	OK	0.031	10907648	84	84
108	OK	0.031	10936320	84	84
109	OK	0.046	10899456	84	84
110	OK	0.031	10915840	84	84
111	OK	0.031	10919936	84	84
112	OK	0.046	10919936	84	84
113	OK	0.046	10948608	84	84
114	OK	0.031	10969088	84	84
115	OK	0.015	10911744	84	84
116	OK	0.015	10956800	84	84
117	OK	0.031	10887168	84	84
118	OK	0.031	10891264		84
119	OK	0.046	10928128	84	84
120	OK	0.031	10907648		84
121	OK	0.031	10964992		84
122	OK	0.046	10911744		84
123	OK	0.031	10964992		84
124	OK	0.046	10952704		84

125	OK	0.031	10977280		84
126	OK	0.031	10915840		84
127	OK	0.031	10985472		84
128	OK	0.031	10919936	84	84
129	OK	0.031	10944512	84	84
130	OK	0.031	10948608	84	84
131	OK	0.031	10903552	84	84
132	OK	0.031	10936320	93	93
133	OK	0.015	10993664	93	93
134	OK	0.031	11026432	93	93
135	OK	0.031	10985472	93	93
136	OK	0.015	10964992	93	93
137	OK	0.015	10964992	93	93
138	OK	0.031	10997760	93	93
139	OK	0.031	10895360	93	93
140	OK	0.015	10952704	93	93
141	OK	0.015	10919936	93	93
142	OK	0.031	10944512	93	93
143	OK	0.031	10932224	93	93
144	OK	0.031	10940416	93	93
145	OK	0.015	10977280	93	93
146	OK	0.031	10952704	93	93
147	OK	0.031	10977280	93	93
148	OK	0.031	10899456	93	93
149	OK	0.031	10924032	93	93
150	OK	0.031	10944512	93	93
151	OK	0.031	10887168	93	93
152	OK	0.015	11010048	93	93
153	OK	0.046	10956800	93	93
154	OK	0.031	10948608	93	93
155	OK	0.031	10956800	93	93
156	OK	0.031	11026432	93	93
157	OK	0.062	10940416	93	93
158	OK	0.031	10993664	93	93
159	OK	0.031	10936320	93	93
160	OK	0.031	10956800	93	93
161	OK	0.031	10895360	93	93
162	OK	0.031	10915840	93	93
163	OK	0.031	10940416	93	93
103	UK	0.031	10940410	73	73

164	OK	0.031	10903552	93	93
165	OK	0.031	10924032	93	93
166	OK	0.031	10964992	93	93
167	OK	0.031	10969088	93	93
168	OK	0.031	10911744	93	93
169	OK	0.046	11014144	93	93
170	OK	0.031	10969088	93	93
171	OK	0.031	10940416	93	93
172	OK	0.031	10915840	93	93
173	OK	0.031	10895360	93	93
174	OK	0.031	10911744	93	93
175	OK	0.031	10977280	93	93
176	OK	0.046	10940416	93	93
177	OK	0.031	10928128	93	93
178	OK	0.031	10948608	93	93
179	OK	0.046	10964992	93	93
180	OK	0.031	10964992	93	93
181	OK	0.031	10956800	93	93
182	OK	0.046	10895360	93	93
183	OK	0.031	10899456	93	93
184	OK	0.031	10919936	93	93
185	OK	0.031	10928128	93	93
186	OK	0.031	10952704	93	93
187	OK	0.015	10895360	93	93
188	OK	0.031	10993664	93	93
189	OK	0.031	10993664	93	93
190	OK	0.015	10907648	93	93
191	OK	0.015	10993664	93	93
192	OK	0.031	10964992	93	93
193	OK	0.015	10924032	93	93
194	OK	0.031	10903552	93	93
195	OK	0.046	10911744	93	93
196	OK	0.031	10928128	93	93
197	OK	0.031	10903552	93	93
198	OK	0.031	10960896	93	93
199	OK	0.046	10960896	93	93
200	OK	0.046	10948608	93	93
201	OK	0.031	10899456	93	93
202	OK	0.046	11001856	93	93

203	OK	0.031	10952704	93	93
204	OK	0.031	10915840		93
205	OK	0.031	10924032		93
206	OK	0.031	10903552		93
207	OK	0.031	10981376		93
208	OK	0.031	10952704		93
209	OK OK	0.031	10956800		93
210	OK OK	0.015	10924032		93
211	OK OK		10997760		93
212	OK OK	0.046	10937700		93
213	OK OK	0.040	11046912		93
214	OK OK	0.015	10993664		93
215	OK OK	0.013	10956800		93
216	OK OK	0.046	10930000		93
217	OK OK	0.040	10883072		93
218	OK OK	0.031	11014144		93
219	OK OK	0.031	10948608		93
220	OK	0.031	10993664		93
221	OK OK	0.031	10911744		93
222	OK OK	0.015	10903552		93
223	OK OK	0.031	10981376		93
224	OK OK	0.046	10977280		93
225	OK	0.031	10973184		93
226	OK	0.031	10928128		93
227	OK	0.015	10915840		93
228	OK OK	0.031	10919936		93
229	OK	0.046	10944512		93
230	OK	0.031	10936320		93
231	OK	0.031	10952704		93
232	OK	0.015	10919936		93
233	OK	0.015	10952704		93
234	OK	0.031	10899456		93
235	OK	0.031	10964992		93
236	OK	0.031	10948608		93
237	OK	0.015	10948608		93
238	OK	0.015	10948608		93
239	OK	0.031	10952704		93
240	OK	0.046	10907648		93
241	OK	0.046	10936320	93	93

			_		
242	OK	0.031	10948608	93	93
243	OK	0.031	10924032	93	93
244	OK	0.031	10928128	93	93
245	OK	0.031	10915840	93	93
246	OK	0.015	10964992	93	93
247	OK	0.031	10911744	93	93
248	OK	0.031	10928128	93	93
249	OK	0.031	10948608	93	93
250	OK	0.031	10952704	93	93
251	OK	0.046	11014144	93	93
252	OK	0.015	10973184	220	220
253	OK	0.031	11034624	1798	1798
254	OK	0.031	11038720	1842	1842
255	OK	0.031	11390976	9606	9606
256	OK	0.031	11325440	9569	9569
257	OK	0.046	11341824	9662	9662
258	OK	0.046	11366400	9777	9777
259	OK	0.031	12046336	37717	37717
260	OK	0.046	12070912	37874	37874
261	OK	0.031	12038144	39268	39268
262	OK	0.046	12095488	39470	39470
263	OK	0.062	18653184	181024	181024
264	OK	0.046	18624512	183405	183405
265	OK	0.046	18579456	180784	180784
266	OK	0.078	18653184	183152	183152
267	OK	0.046	18612224	181246	181246
268	OK	0.046	18673664	180886	180886
269	OK	0.250	33234944	1843051	1843051
270	OK	0.234	33296384	1888721	1888721
271	OK	0.250	33304576	1866794	1866794
272	OK	0.234	33271808	1898864	1898864
273	OK	0.234	33239040	1908693	1908693
274	OK	0.250	33198080	1881384	1881384
275	OK	0.437	48955392	3526463	3526463
276	OK	0.453	49078272	3559824	3559824
277	OK	0.421	49217536	3598289	3598289
278	OK	0.453	49270784	3590402	3590402
279	OK	0.437	49332224	3567894	3567894
280	OK	0.468	48984064	3566660	3566660

281	OK	0.437	48902144	3487414	3487414
282	OK	0.500	50360320	3874088	3874088
283	OK	0.484	50589696	3978208	3978208
284	OK	0.484	50823168	3957801	3957801
285	OK	0.484	50737152	3978349	3978349
286	OK	0.484	50868224	3986416	3986416
287	OK	0.468	50642944	3933437	3933437
288	OK	0.484	50577408	3926735	3926735

Задача З Вставка в АВЛ-дерево

Имя входного файла:	input.txt
Имя выходного файла:	output.txt
Ограничение по времени:	2 секунды
Ограничение по памяти:	256 мегабайт

Вставка в АВЛ-дерево вершины V с ключом X при условии, что такой вершины в этом дереве нет, осуществляется следующим образом:

- находится вершина W, ребенком которой должна стать вершина V
- вершина V делается ребенком вершины W
- производится подъем от вершины W к корню, при этом, если какая-то из вершин несбалансирована, производится, в зависимости от значения баланса, левый или правый поворот.

Первый этап нуждается в пояснении. Спуск до будущего родителя вершины V осуществляется, начиная от корня, следующим образом:

- Пусть ключ текущей вершины равен Ү
- Если X < Y и у текущей вершины есть левый ребенок, переходим к левому ребенку.
- Если X < Y и у текущей вершины нет левого ребенка, то останавливаемся, текущая вершина будет родителем новой вершины.
- Если X > Y и у текущей вершины есть правый ребенок, переходим к правому ребенку.
- Если X > Y и у текущей вершины нет правого ребенка, то останавливаемся, текущая вершина будет родителем новой вершины.

Отдельно рассматривается следующий крайний случай — если до вставки дерево было пустым, то вставка новой вершины осуществляется проще: новая вершина становится корнем дерева.

Формат входного файла

Входной файл содержит описание двоичного дерева. В первой строке файла находится число $N(0 \le N \le 2*10^5)$ — число вершин в дереве. В последующих N строках файла находятся описания вершин дерева. В (i+1)-ой строке файла $(1 \le i \le N)$ находится

описание і-ой вершины, состоящее из трех чисел Ki, Li, Ri, разделенных пробелами — ключа в і-ой вершине $-10^9 \le Ki \le 10^9$, номера левого ребенка і-ой вершины (i < Li < N или Li = 0, если левого ребенка нет) и номера правого ребенка і-ой вершины (I < Ri < N или Ri = 0, если правого ребенка нет).

Все ключи различны. Гарантируется, что данное дерево является корректным АВЛ-деревом.

В последней строке содержится число $X(X \le 10^9)$ — ключ вершины, которую требуется вставить в дерево. Гарантируется, что такой вершины в дереве нет.

Формат выходного файла

Выведите в том же формате дерево после осуществления операции вставки. Нумерация вершин может быть произвольной при условии соблюдения формата.

Пример

input.txt	output.txt
2	3
3 0 2	4 2 3
400	3 0 0
5	500

```
Исходный код к задаче 3
class Lab7_3
   public static void Main(string[] args)
        var app = new Lab7_3();
        app.DoWork(args);
   }
   private void DoWork(string[] args)
        using (var sw = new StreamWriter("output.txt"))
        {
            string[] stdin = File.ReadAllLines("input.txt");
            TreeNode<long> root = null;
            for (int i = 1; i <= long.Parse(stdin[0]); i++)</pre>
                root = TreeNode<long>.Insert(root, new TreeNode<long> { Key =
long.Parse(stdin[i].Split(' ')[0]) });
            for (int i = int.Parse(stdin[0]) + 1; i < stdin.Length; i++)</pre>
                TreeNode<long> node = new TreeNode<long> { Key =
long.Parse(stdin[i].Split(' ')[0]) };
                root = TreeNode<long>.Insert(root, node);
                root = TreeNode<long>.Balance(node);
            sw.WriteLine(stdin.Length - 1);
            TreeNode<long>.PrintTree(sw, root);
        }
   }
   class TreeNode<T> where T : IComparable<T>
```

```
{
    public T Key { get; set; }
    public TreeNode<T> Parent { get; set; }
    public TreeNode<T> Left { get; set; }
    public TreeNode<T> Right { get; set; }
    private long Depth { get; set; }
    public long Height { get; private set; }
    public static TreeNode<T> Previous(TreeNode<T> node)
        if (node.Left == null)
            return node;
        return Maximum(node.Left);
    public static TreeNode<T> Maximum(TreeNode<T> node)
        while (node.Right != null)
            node = node.Right;
        return node;
    }
    /// <returns>Root of tree after remove</returns>
    public static TreeNode<T> Remove(TreeNode<T> item)
    {
        TreeNode<T> parent = item.Parent;
        //Leaf
        if (item.Left == null && item.Right == null)
            if (parent == null)
                return null;
            if (parent.Left == item)
                parent.Left = null;
            else
                parent.Right = null;
            UpdateHeight(parent);
            return Balance(parent);
        }
        //One child
        if ((item.Left == null) ^ (item.Right == null))
            if (item.Left != null)
            {
                if (parent != null)
                {
                    if (parent.Left == item)
                        parent.Left = item.Left;
                    else
                        parent.Right = item.Left;
                    UpdateHeight(parent);
                }
                item.Left.Parent = parent;
                return Balance(item.Left);
            }
            else
            {
                if (parent != null)
                    if (parent.Left == item)
                        parent.Left = item.Right;
```

```
else
                    parent.Right = item.Right;
                UpdateHeight(parent);
            }
            item.Right.Parent = parent;
            return Balance(item.Right);
        }
    //Two child
    if ((item.Left != null) && (item.Right != null))
        TreeNode<T> prev = Previous(item);
        Remove(prev);
        item.Key = prev.Key;
    }
    return Balance(item);
}
/// <returns>Root of tree after insert</returns>
public static TreeNode<T> Insert(TreeNode<T> root, TreeNode<T> node)
    if (root == null)
        return node;
    TreeNode<T> current = root;
    while (true)
    {
        if (current.Key.CompareTo(node.Key) == 0)
            throw new ArgumentException("Not unique key");
        if (current.Key.CompareTo(node.Key) < 0)</pre>
        {
            if (current.Right != null)
                current = current.Right;
            else
            {
                current.Right = node;
                node.Parent = current;
                UpdateHeight(node);
                return root;
                //return Balance(node);
            }
        }
        else
        {
            if (current.Left != null)
                current = current.Left;
            else
            {
                current.Left = node;
                node.Parent = current;
                UpdateHeight(node);
                return root;
                //return Balance(node);
            }
        }
   }
}
private static void UpdateHeight(TreeNode<T> node)
    while (node != null)
    {
```

```
long rH = node.Right != null ? node.Right.Height : -1;
        long lH = node.Left != null ? node.Left.Height : -1;
        long currentH = node.Height;
        if (rH > 1H)
            node.Height = rH + 1;
        else
            node.Height = 1H + 1;
        node = node.Parent;
    }
}
/// <returns>Root of tree after balance</returns>
public static TreeNode<T> Balance(TreeNode<T> leaf)
    TreeNode<T> current = leaf;
    while (current != null)
        long balance = GetBalance(current);
        if (balance > 1)
        {
            if (GetBalance(current.Right) == -1)
                current = BigLeftTurn(current);
            else
                current = SmallLeftTurn(current);
        if (balance < -1)</pre>
            if (GetBalance(current.Left) == 1)
                current = BigRightTurn(current);
            else
                current = SmallRightTurn(current);
        if (current.Parent == null)
            return current;
            current = current.Parent;
    return current;
}
public static void PrintTree(StreamWriter sw, TreeNode<T> root)
    if (root == null)
        return;
    Queue<TreeNode<T>> bfsQueue = new Queue<TreeNode<T>>();
    long counter = 1;
    bfsQueue.Enqueue(root);
    while (bfsQueue.Count != 0)
        TreeNode<T> current = bfsQueue.Dequeue();
        sw.Write(current.Key);
        if (current.Left != null)
            bfsQueue.Enqueue(current.Left);
            sw.Write(" " + ++counter);
        else
            sw.Write(" " + 0);
        if (current.Right != null)
        {
            bfsQueue.Enqueue(current.Right);
```

```
sw.WriteLine(" " + ++counter);
        }
        else
            sw.WriteLine(" " + 0);
   }
}
public static long GetBalance(TreeNode<T> tree)
   if (tree == null)
        return 0;
   if (tree.Left != null && tree.Right != null)
        return tree.Right.Height - tree.Left.Height;
   if (tree.Left == null && tree.Right != null)
        return tree.Right.Height + 1;
   if (tree.Left != null && tree.Right == null)
        return -1 - tree.Left.Height;
   else
        return 0;
}
/// <returns>Root of tree after turn</returns>
public static TreeNode<T> SmallLeftTurn(TreeNode<T> root)
   TreeNode<T> child = root.Right;
   TreeNode<T> parent = root.Parent;
   TreeNode<T> x = root.Left;
   TreeNode<T> y = root.Right.Left;
   TreeNode<T> z = root.Right.Right;
   //Parents
   child.Parent = parent;
   root.Parent = child;
   if (x != null)
        x.Parent = root;
   if (y != null)
       y.Parent = root;
   if (z != null)
        z.Parent = child;
   //Childs
   root.Left = x;
   root.Right = y;
   child.Left = root;
   child.Right = z;
   if (parent != null)
        if (parent.Right == root)
            parent.Right = child;
        else
            parent.Left = child;
   //Heights
   long xH = x != null ? x.Height : -1;
   long yH = y != null ? y.Height : -1;
   long zH = z != null ? z.Height : -1;
   if(xH > yH)
        root.Height = xH + 1;
   else
        root.Height = yH + 1;
   if (root.Height > zH)
        child.Height = root.Height + 1;
   else
        child.Height = zH + 1;
```

```
UpdateHeight(child);
   return child;
}
/// <returns>Root of tree after turn</returns>
public static TreeNode<T> SmallRightTurn(TreeNode<T> root)
   TreeNode<T> child = root.Left;
   TreeNode<T> parent = root.Parent;
   TreeNode<T> x = root.Right;
   TreeNode<T> y = root.Left.Left;
   TreeNode<T> z = root.Left.Right;
   //Parents
   child.Parent = parent;
   root.Parent = child;
   if (x != null)
        x.Parent = root;
   if (y != null)
       y.Parent = child;
   if (z != null)
        z.Parent = root;
   //Childs
   root.Left = z;
   root.Right = x;
   child.Left = y;
   child.Right = root;
   if (parent != null)
        if (parent.Right == root)
            parent.Right = child;
            parent.Left = child;
   //Heights
   long xH = x != null ? x.Height : -1;
   long yH = y != null ? y.Height : -1;
   long zH = z != null ? z.Height : -1;
   if (zH > xH)
        root.Height = zH + 1;
   else
        root.Height = xH + 1;
   if (y.Height > root.Height)
        child.Height = yH + 1;
   else
        child.Height = root.Height + 1;
   UpdateHeight(child);
   return child;
}
/// <returns>Root of tree after turn</returns>
public static TreeNode<T> BigRightTurn(TreeNode<T> root)
   TreeNode<T> w = root.Right;
   TreeNode<T> parent = root.Parent;
   TreeNode<T> b = root.Left;
   TreeNode<T> c = root.Left.Right;
   TreeNode<T> z = b.Left;
   TreeNode<T> x = c.Left;
   TreeNode<T> y = c.Right;
```

```
//Parents
    c.Parent = parent;
    b.Parent = c;
    root.Parent = c;
    if (w != null)
        w.Parent = root;
    if (z != null)
        z.Parent = b;
    if (y != null)
        y.Parent = root;
    if (x != null)
        x.Parent = b;
    //Childs
    if (parent != null)
        if (parent.Right == root)
            parent.Right = c;
        else
            parent.Left = c;
    c.Left = b;
    c.Right = root;
    b.Left = z;
    b.Right = x;
    root.Left = y;
    root.Right = w;
    //Heights
    long xH = x != null ? x.Height : -1;
    long yH = y != null ? y.Height : -1;
    long zH = z != null ? z.Height : -1;
    long wH = w != null ? w.Height : -1;
    if(zH > xH)
        b.Height = zH + 1;
    else
        b.Height = xH + 1;
    if (yH > wH)
        root.Height = yH + 1;
    else
        root.Height = wH + 1;
    if (b.Height > root.Height)
        c.Height = b.Height + 1;
    else
        c.Height = root.Height + 1;
    UpdateHeight(c);
    return c;
/// <returns>Root of tree after turn</returns>
public static TreeNode<T> BigLeftTurn(TreeNode<T> root)
    TreeNode<T> w = root.Left;
    TreeNode<T> parent = root.Parent;
    TreeNode<T> b = root.Right;
    TreeNode<T> c = root.Right.Left;
    TreeNode<T> z = b.Right;
    TreeNode<T> x = c.Left;
    TreeNode<T> y = c.Right;
    //Parents
    c.Parent = parent;
    b.Parent = c;
```

}

```
root.Parent = c;
            if (w != null)
                w.Parent = root;
            if (z != null)
                z.Parent = b;
            if (y != null)
                y.Parent = b;
            if (x != null)
                x.Parent = root;
            //Childs
            if (parent != null)
                if (parent.Right == root)
                    parent.Right = c;
                else
                    parent.Left = c;
            c.Left = root;
            c.Right = b;
            b.Left = y;
            b.Right = z;
            root.Left = w;
            root.Right = x;
            //Heights
            long xH = x != null ? x.Height : -1;
            long yH = y != null ? y.Height : -1;
            long zH = z != null ? z.Height : -1;
            long wH = w != null ? w.Height : -1;
            if (wH > xH)
                root.Height = wH + 1;
            else
                root.Height = xH + 1;
            if (yH > zH)
                b.Height = yH + 1;
            else
                b.Height = zH + 1;
            if (b.Height > root.Height)
                c.Height = b.Height + 1;
            else
                c.Height = root.Height + 1;
            UpdateHeight(c);
            return c;
        }
   }
}
```

Бенчмарк к задаче 3

№ теста	Результат	Время,	Память	Размер входного файла	Размер выходного файла
Max		0.546	50647040	4011957	4011966
1	OK	0.031	11149312	20	24
2	OK	0.046	11264000	6	10
3	OK	0.031	11210752	14	18
4	OK	0.031	11120640	13	17
5	OK	0.046	11210752	21	25

6	OK	0.031	11173888	20	24
7	OK	0.031	11145216	20	24
8	OK	0.031	11120640	21	25
9	OK	0.046	11145216	20	24
10	OK	0.062	11128832	20	24
11	OK	0.046	11116544	28	32
12	OK	0.062	10948608	27	31
13	OK	0.031	10936320	27	31
14	OK	0.031	10989568	27	31
15	OK	0.015	10948608	35	39
16	OK	0.031	10952704	34	38
17	OK	0.031	10952704	34	38
18	OK	0.031	10973184	34	38
19	OK	0.031	10936320	34	38
20	OK	0.031	10915840	35	39
21	OK	0.031	10924032	34	38
22	OK	0.031	10993664	34	38
23	OK	0.031	10948608	34	38
24	OK	0.015	10928128	34	38
25	OK	0.031	10993664	35	39
26	OK	0.031	10964992	34	38
27	OK	0.031	10969088	34	38
28	OK	0.031	10960896	34	38
29	OK	0.046	10907648	34	38
30	OK	0.031	10964992	35	39
31	OK	0.031	10948608	34	38
32	OK	0.031	10899456	34	38
33	OK	0.031	10977280	34	38
34	OK	0.015	10960896	34	38
35	OK	0.031	10928128	42	46
36	OK	0.062	11001856	41	45
37	OK	0.015	10919936	41	45
38	OK	0.031	10997760	41	45
39	OK	0.031	10919936	41	45
40	OK	0.031	10919936	41	45
41	OK	0.031	11026432	42	46
42	OK	0.046	10936320	41	45
43	OK	0.031	10903552	41	45
44	OK	0.031	10981376	41	45

			_		
45	OK	0.031	10973184	41	45
46	OK	0.031	10911744	41	45
47	OK	0.031	11026432	42	46
48	OK	0.031	10940416	41	45
49	OK	0.031	10964992	41	45
50	OK	0.031	10936320	41	45
51	OK	0.031	10924032	41	45
52	OK	0.046	10989568	41	45
53	OK	0.031	10952704	42	46
54	OK	0.031	10960896	41	45
55	OK	0.015	10928128	41	45
56	OK	0.062	10932224	41	45
57	OK	0.031	10924032	41	45
58	OK	0.031	10928128	41	45
59	OK	0.031	10981376	42	46
60	OK	0.031	10956800	41	45
61	OK	0.031	10928128	41	45
62	OK	0.031	10932224	41	45
63	OK	0.031	10948608	41	45
64	OK	0.031	10915840	41	45
65	OK	0.046	10989568	42	46
66	OK	0.031	10924032	41	45
67	OK	0.031	10960896	41	45
68	OK	0.031	10956800	41	45
69	OK	0.031	10993664	41	45
70	OK	0.046	10956800	41	45
71	OK	0.031	10960896	50	54
72	OK	0.046	10928128	49	53
73	OK	0.031	10911744	49	53
74	OK	0.046	10932224	49	53
75	OK	0.031	10989568	49	53
76	OK	0.031	11042816	49	53
77	OK	0.031	10944512	50	54
78	OK	0.062	10911744	50	54
79	OK	0.046	10989568	49	53
80	OK	0.046	10993664	49	53
81	OK	0.031	10956800	49	53
82	OK	0.031	10907648	49	53
83	OK	0.031	10895360	49	53

84	OK	0.015	10944512	50	54
85	OK	0.031	10924032	50	54
86	OK	0.015	10973184	49	53
87	OK	0.031	10903552	49	53
88	OK	0.031	10915840	49	53
89	OK	0.031	10960896	49	53
90	OK	0.031	10948608	49	53
91	OK	0.031	10985472	50	54
92	OK	0.031	10936320	50	54
93	OK	0.031	10924032	49	53
94	OK	0.078	10919936	49	53
95	OK	0.046	10981376	49	53
96	OK	0.046	10924032	49	53
97	OK	0.031	10924032	49	53
98	OK	0.031	10989568	50	54
99	OK	0.031	10932224	58	62
100	OK	0.031	11018240	57	61
101	OK	0.031	10973184	57	61
102	OK	0.015	10960896	57	61
103	OK	0.046	10956800	57	61
104	OK	0.031	10960896	57	61
105	OK	0.031	10907648	58	62
106	OK	0.046	10903552	58	62
107	OK	0.031	10956800	58	62
108	OK	0.031	10932224	57	61
109	OK	0.031	10969088	57	61
110	OK	0.031	10911744	57	61
111	OK	0.031	10997760	57	61
112	OK	0.046	10936320	57	61
113	OK	0.031	10969088	58	62
114	OK	0.031	10915840	58	62
115	OK	0.046	10944512	58	62
116	OK	0.031	10940416	57	61
117	OK	0.031	10915840	57	61
118	OK	0.031	10969088	57	61
119	OK	0.031	10944512	57	61
120	OK	0.031	10960896	57	61
121	OK	0.031	10924032	58	62
122	OK	0.031	10985472	58	62

123	OK	0.031	10997760	58	62
124	OK	0.031	10915840		61
125	OK	0.031	10903552		61
126	OK	0.015	10952704		61
127	OK	0.031	10936320		61
128	OK	0.015	10924032		61
129	OK	0.031	10915840	58	62
130	OK	0.031	10907648		62
131	OK	0.031	10948608	58	62
132	OK	0.015	10969088	57	61
133	OK	0.031	10919936	57	61
134	OK	0.015	11014144	57	61
135	OK	0.031	10952704	57	61
136	OK	0.031	10907648	57	61
137	OK	0.093	10948608	58	62
138	OK	0.031	10952704	58	62
139	OK	0.046	10956800	58	62
140	OK	0.031	10928128	57	61
141	OK	0.031	10907648	57	61
142	OK	0.031	11005952	57	61
143	OK	0.031	11079680	57	61
144	OK	0.031	10919936	57	61
145	OK	0.015	11001856	58	62
146	OK	0.031	10964992	58	62
147	OK	0.015	10928128	58	62
148	OK	0.031	10981376	57	61
149	OK	0.015	10981376	57	61
150	OK	0.031	10964992	57	61
151	OK	0.015	10964992	57	61
152	OK	0.046	10907648	57	61
153	OK	0.031	10993664	58	62
154	OK	0.031	10956800	58	62
155	OK	0.046	10911744	58	62
156	OK	0.031	11030528	57	61
157	OK	0.031	10944512	57	61
158	OK	0.046	10944512	57	61
159	OK	0.031	10989568	57	61
160	OK	0.015	10924032	57	61
161	OK	0.031	11014144	58	62

162	OK	0.031	10932224	58	62
163	OK	0.031	10936320	58	62
164	OK	0.078	11026432	57	61
165	OK	0.031	10960896	57	61
166	OK	0.031	10924032	57	61
167	OK	0.031	10944512	57	61
168	OK	0.015	10960896	57	61
169	OK	0.031	11026432	58	62
170	OK	0.031	10899456	58	62
171	OK	0.031	10985472	58	62
172	OK	0.031	10948608	57	61
173	OK	0.031	10952704	57	61
174	OK	0.031	10936320	57	61
175	OK	0.031	10981376	57	61
176	OK	0.015	10956800	57	61
177	OK	0.031	10944512	58	62
178	OK	0.031	10895360	58	62
179	OK	0.031	10940416	58	62
180	OK	0.046	10993664	57	61
181	OK	0.031	10919936	57	61
182	OK	0.031	10981376	57	61
183	OK	0.031	10981376	57	61
184	OK	0.031	10973184	57	61
185	OK	0.031	10977280	58	62
186	OK	0.031	10969088	58	62
187	OK	0.031	10989568	58	62
188	OK	0.031	10932224	57	61
189	OK	0.015	10936320	57	61
190	OK	0.015	10936320	57	61
191	OK	0.031	10952704	57	61
192	OK	0.015	11067392	57	61
193	OK	0.046	10956800	58	62
194	OK	0.031	11026432	58	62
195	OK	0.031	10932224	58	62
196	OK	0.031	10932224	57	61
197	OK	0.015	10989568	57	61
198	OK	0.046	10964992	57	61
199	OK	0.015	10936320	57	61
200	OK	0.015	10952704	57	61

201	OK	0.015	10915840	58	62
202	OK	0.031	11001856	58	62
203	OK	0.031	10993664	58	62
204	OK	0.031	10911744	57	61
205	OK	0.031	10944512	57	61
206	OK	0.031	10977280	57	61
207	OK	0.062	10915840	57	61
208	OK	0.031	10960896	57	61
209	OK	0.015	10997760	58	62
210	OK	0.015	10932224	58	62
211	OK	0.046	10924032	58	62
212	OK	0.031	10907648	57	61
213	OK	0.046	10981376	57	61
214	OK	0.031	10944512	57	61
215	OK	0.031	10952704	57	61
216	OK	0.031	10944512	57	61
217	OK	0.031	10940416	58	62
218	OK	0.031	10907648	58	62
219	OK	0.031	10973184	58	62
220	OK	0.031	10969088	57	61
221	OK	0.031	10989568	57	61
222	OK	0.031	10915840	57	61
223	OK	0.031	10911744	57	61
224	OK	0.015	10993664	57	61
225	OK	0.031	10940416	58	62
226	OK	0.046	10940416	58	62
227	OK	0.046	10919936	58	62
228	OK	0.031	10960896	57	61
229	OK	0.031	10977280	57	61
230	OK	0.031	10960896	57	61
231	OK	0.031	10940416	57	61
232	OK	0.031	10989568	57	61
233	OK	0.031	10973184	58	62
234	OK	0.031	10932224	58	62
235	OK	0.031	11001856	240	245
236	OK	0.031	10944512	243	248
237	OK	0.031	11096064	1835	1841
238	OK	0.031	11055104	1815	1821
239	OK	0.031	11018240	1834	1840

240	OK	0.031	11403264	9951	9957
241	OK	0.015	11354112	9831	9837
242	OK	0.046	11382784	9854	9860
243	OK	0.031	12140544	38301	38308
244	OK	0.031	12083200	37664	37671
245	OK	0.046	12083200	39108	39115
246	OK	0.046	12136448	39190	39197
247	OK	0.046	18604032	183695	183703
248	OK	0.062	18657280	184258	184266
249	OK	0.046	18612224	185065	185073
250	OK	0.062	18616320	185428	185436
251	OK	0.046	18702336	185741	185749
252	OK	0.250	33198080	1900094	1900102
253	OK	0.265	33271808	1860225	1860233
254	OK	0.265	33341440	1899455	1899463
255	OK	0.265	33325056	1861088	1861096
256	OK	0.265	33202176	1942127	1942135
257	OK	0.265	33370112	1930200	1930208
258	OK	0.265	33304576	1861244	1861252
259	OK	0.468	48869376	3510448	3510457
260	OK	0.453	49311744	3650901	3650910
261	OK	0.437	49225728	3552374	3552383
262	OK	0.453	48939008	3435983	3435992
263	OK	0.468	49324032	3562689	3562698
264	OK	0.453	49086464	3521159	3521168
265	OK	0.453	49156096	3539149	3539158
266	OK	0.531	50618368	3985264	3985273
267	OK	0.500	50536448	3866892	3866901
268	OK	0.500	50647040	3942753	3942762
269	OK	0.484	50626560	3824263	3824272
270	OK	0.500	50585600	4011957	4011966
271	OK	0.531	50511872	3955420	3955429
272	OK	0.546	50606080	3946583	3946592
273	OK	0.515	50638848	3891536	3891545

Задача 4 Удаление из АВЛ-дерева

Имя входного файла:	input.txt
Имя выходного файла:	output.txt

Ограничение по времени:	2 секунды
Ограничение по памяти:	256 мегабайт

Удаление из АВЛ-дерева вершины с ключом X, при условии ее наличия, осуществляется следующим образом:

- путем спуска от корня и проверки ключей находится V удаляемая вершина;
- если вершина V лист (то есть, у нее нет детей)
 - удаляем вершину;
 - поднимаемся к корню, начиная с бывшего родителя вершины V, при этом если встречается несбалансированная вершина, то производим поворот.
- если у вершины V не существует левого ребенка:
 - следовательно, баланс вершины равен единице и ее правый ребенок лист;
 - заменяем вершину V ее правым ребенком;
 - поднимаемся к корню, производя, где необходимо, балансировку.

• иначе:

- находим R самую правую вершину в левом поддереве;
- переносим ключ вершины К в вершину V;
- удаляем вершину R (у нее нет правого ребенка, поэтому она либо лист, либо имеет левого ребенка, являющегося листом);
- поднимаемся к корню, начиная с бывшего родителя вершины R, производя балансировку.

Исключением является случай, когда производится удаление из дерева, состоящего из одной вершины — корня. Результатом удаления в этом случае будет пустое дерево.

Указанный алгоритм не является единственно возможным, но мы просим Вас реализовать именно его, так как тестирующая система проверяет точное равенство получающихся деревьев.

Формат входного файла

Входной файл содержит описание двоичного дерева. В первой строке файла находится число $N(0 \le N \le 2*10^5)$ — число вершин в дереве. В последующих N строках файла находятся описания вершин дерева. В (i+1)-ой строке файла $(1 \le i \le N)$ находится описание i-ой вершины, состоящее из трех чисел Ki, Li, Ri, разделенных пробелами — ключа в i-ой вершине $-10^9 \le Ki \le 10^9$, номера левого ребенка i-ой вершины (i < Li < N или Li = 0, если левого ребенка нет) и номера правого ребенка i-ой вершины (I < Ri < N или Ri = 0, если правого ребенка нет).

Все ключи различны. Гарантируется, что данное дерево является корректным АВЛ-деревом.

В последней строке содержится число $X(X \le 10^9)$ — ключ вершины, которую требуется вставить в дерево. Гарантируется, что такой вершины в дереве нет.

Формат выходного файла

Выведите в том же формате дерево после осуществления операции удаления. Нумерация вершин может быть произвольной при условии соблюдения формата.

Пример

input.txt	output.txt
3	2
4 2 3	3 0 2
3 0 0	5 0 0
500	
4	

```
Исходный код к задаче 4
class Lab7_4
{
    public static void Main(string[] args)
        var app = new Lab7 4();
        app.DoWork(args);
    }
    private void DoWork(string[] args)
        using (var sw = new StreamWriter("output.txt"))
            string[] stdin = File.ReadAllLines("input.txt");
            int n = int.Parse(stdin[0]);
            TreeNode<long> root = null;
            for (int i = 1; i <= n; i++)</pre>
                root = TreeNode<long>.Insert(root, new TreeNode<long> { Key =
long.Parse(stdin[i].Split(' ')[0]) });
            for (int i = n + 1; i < stdin.Length; i++)</pre>
                TreeNode<long> node = TreeNode<long>.Search(root, long.Parse(stdin[i]));
                if (node != null)
                    root = TreeNode<long>.Remove(node);
            }
            sw.WriteLine(n - (stdin.Length - 1 - n));
            TreeNode<long>.PrintTree(sw, root);
        }
    }
    class TreeNode<T> where T : IComparable<T>
        public T Key { get; set; }
        public TreeNode<T> Parent { get; set; }
        public TreeNode<T> Left { get; set; }
        public TreeNode<T> Right { get; set; }
        private long Depth { get; set; }
        public long Height { get; private set; }
```

```
public static TreeNode<T> Search(TreeNode<T> root, T key)
{
    while (root != null && root.Key.CompareTo(key) != 0)
        if (root.Key.CompareTo(key) > 0)
            root = root.Left;
        else
            root = root.Right;
    return root;
}
public static TreeNode<T> Previous(TreeNode<T> node)
    if (node.Left == null)
        return node;
    return Maximum(node.Left);
}
public static TreeNode<T> Maximum(TreeNode<T> node)
    while (node.Right != null)
        node = node.Right;
    return node;
}
/// <returns>Root of tree after remove</returns>
public static TreeNode<T> Remove(TreeNode<T> item)
{
    TreeNode<T> parent = item.Parent;
    //Leaf
   if (item.Left == null && item.Right == null)
        if (parent == null)
            return null;
        if (parent.Left == item)
            parent.Left = null;
        else
            parent.Right = null;
        UpdateHeight(parent);
        return Balance(parent);
    }
    //One child
    if ((item.Left == null) ^ (item.Right == null))
        if (item.Left != null)
        {
            if (parent != null)
            {
                if (parent.Left == item)
                    parent.Left = item.Left;
                else
                    parent.Right = item.Left;
                UpdateHeight(parent);
            }
            item.Left.Parent = parent;
            return Balance(item.Left);
        }
        else
        {
            if (parent != null)
            {
```

```
if (parent.Left == item)
                    parent.Left = item.Right;
                else
                    parent.Right = item.Right;
                UpdateHeight(parent);
            }
            item.Right.Parent = parent;
            return Balance(item.Right);
        }
    //Two child
    if ((item.Left != null) && (item.Right != null))
        TreeNode<T> prev = Previous(item);
        Remove(prev);
        item.Key = prev.Key;
    }
    return Balance(item);
}
/// <returns>Root of tree after insert</returns>
public static TreeNode<T> Insert(TreeNode<T> root, TreeNode<T> node)
    if (root == null)
        return node;
    TreeNode<T> current = root;
    while (true)
    {
        if (current.Key.CompareTo(node.Key) == 0)
            throw new ArgumentException("Not unique key");
        if (current.Key.CompareTo(node.Key) < 0)</pre>
        {
            if (current.Right != null)
                current = current.Right;
            else
            {
                current.Right = node;
                node.Parent = current;
                UpdateHeight(node);
                return root;
                //return Balance(node);
            }
        }
        else
        {
            if (current.Left != null)
                current = current.Left;
            else
            {
                current.Left = node;
                node.Parent = current;
                UpdateHeight(node);
                return root;
                //return Balance(node);
            }
        }
   }
}
private static void UpdateHeight(TreeNode<T> node)
```

```
while (node != null)
        long rH = node.Right != null ? node.Right.Height : -1;
        long lH = node.Left != null ? node.Left.Height : -1;
        long currentH = node.Height;
        if (rH > 1H)
            node.Height = rH + 1;
        else
            node.Height = 1H + 1;
        node = node.Parent;
    }
}
/// <returns>Root of tree after balance</returns>
public static TreeNode<T> Balance(TreeNode<T> leaf)
    TreeNode<T> current = leaf;
   while (current != null)
        long balance = GetBalance(current);
        if (balance > 1)
        {
            if (GetBalance(current.Right) == -1)
                current = BigLeftTurn(current);
            else
                current = SmallLeftTurn(current);
        if (balance < -1)</pre>
            if (GetBalance(current.Left) == 1)
                current = BigRightTurn(current);
            else
                current = SmallRightTurn(current);
        if (current.Parent == null)
            return current;
        else
            current = current.Parent;
    return current;
}
public static void PrintTree(StreamWriter sw, TreeNode<T> root)
{
    if (root == null)
        return;
    Queue<TreeNode<T>> bfsQueue = new Queue<TreeNode<T>>();
    long counter = 1;
    bfsQueue.Enqueue(root);
    while (bfsQueue.Count != 0)
        TreeNode<T> current = bfsQueue.Dequeue();
        sw.Write(current.Key);
        if (current.Left != null)
        {
            bfsQueue.Enqueue(current.Left);
            sw.Write(" " + ++counter);
        else
            sw.Write(" " + 0);
        if (current.Right != null)
```

```
{
            bfsQueue.Enqueue(current.Right);
            sw.WriteLine(" " + ++counter);
        }
        else
            sw.WriteLine(" " + 0);
   }
}
public static long GetBalance(TreeNode<T> tree)
   if (tree == null)
        return 0;
   if (tree.Left != null && tree.Right != null)
        return tree.Right.Height - tree.Left.Height;
   if (tree.Left == null && tree.Right != null)
        return tree.Right.Height + 1;
   if (tree.Left != null && tree.Right == null)
        return -1 - tree.Left.Height;
   else
        return 0;
}
/// <returns>Root of tree after turn</returns>
public static TreeNode<T> SmallLeftTurn(TreeNode<T> root)
   TreeNode<T> child = root.Right;
   TreeNode<T> parent = root.Parent;
   TreeNode<T> x = root.Left;
   TreeNode<T> y = root.Right.Left;
   TreeNode<T> z = root.Right.Right;
   //Parents
   child.Parent = parent;
   root.Parent = child;
   if (x != null)
       x.Parent = root;
   if (y != null)
       y.Parent = root;
   if (z != null)
        z.Parent = child;
   //Childs
   root.Left = x;
   root.Right = y;
   child.Left = root;
   child.Right = z;
   if (parent != null)
        if (parent.Right == root)
            parent.Right = child;
        else
            parent.Left = child;
   //Heights
   long xH = x != null ? x.Height : -1;
   long yH = y != null ? y.Height : -1;
   long zH = z != null ? z.Height : -1;
   if(xH > yH)
        root.Height = xH + 1;
   else
        root.Height = yH + 1;
   if (root.Height > zH)
        child.Height = root.Height + 1;
```

```
else
        child.Height = zH + 1;
   UpdateHeight(child);
   return child;
}
/// <returns>Root of tree after turn</returns>
public static TreeNode<T> SmallRightTurn(TreeNode<T> root)
   TreeNode<T> child = root.Left;
   TreeNode<T> parent = root.Parent;
   TreeNode<T> x = root.Right;
   TreeNode<T> y = root.Left.Left;
   TreeNode<T> z = root.Left.Right;
   //Parents
   child.Parent = parent;
   root.Parent = child;
   if (x != null)
        x.Parent = root;
   if (y != null)
       y.Parent = child;
   if (z != null)
        z.Parent = root;
   //Childs
   root.Left = z;
   root.Right = x;
   child.Left = y;
   child.Right = root;
   if (parent != null)
        if (parent.Right == root)
            parent.Right = child;
            parent.Left = child;
   //Heights
   long xH = x != null ? x.Height : -1;
   long yH = y != null ? y.Height : -1;
   long zH = z != null ? z.Height : -1;
   if (zH > xH)
        root.Height = zH + 1;
   else
        root.Height = xH + 1;
   if (y.Height > root.Height)
        child.Height = yH + 1;
   else
        child.Height = root.Height + 1;
   UpdateHeight(child);
   return child;
}
/// <returns>Root of tree after turn</returns>
public static TreeNode<T> BigRightTurn(TreeNode<T> root)
   TreeNode<T> w = root.Right;
   TreeNode<T> parent = root.Parent;
   TreeNode<T> b = root.Left;
   TreeNode<T> c = root.Left.Right;
   TreeNode<T> z = b.Left;
   TreeNode<T> x = c.Left;
```

```
TreeNode<T> y = c.Right;
    //Parents
    c.Parent = parent;
    b.Parent = c;
    root.Parent = c;
    if (w != null)
        w.Parent = root;
    if (z != null)
        z.Parent = b;
    if (y != null)
        y.Parent = root;
    if (x != null)
        x.Parent = b;
    //Childs
    if (parent != null)
        if (parent.Right == root)
            parent.Right = c;
        else
            parent.Left = c;
    c.Left = b;
    c.Right = root;
    b.Left = z;
    b.Right = x;
    root.Left = y;
    root.Right = w;
    //Heights
    long xH = x != null ? x.Height : -1;
    long yH = y != null ? y.Height : -1;
    long zH = z != null ? z.Height : -1;
    long wH = w != null ? w.Height : -1;
    if(zH > xH)
        b.Height = zH + 1;
    else
        b.Height = xH + 1;
    if (yH > wH)
        root.Height = yH + 1;
    else
        root.Height = wH + 1;
    if (b.Height > root.Height)
        c.Height = b.Height + 1;
    else
        c.Height = root.Height + 1;
    UpdateHeight(c);
    return c;
/// <returns>Root of tree after turn</returns>
public static TreeNode<T> BigLeftTurn(TreeNode<T> root)
    TreeNode<T> w = root.Left;
    TreeNode<T> parent = root.Parent;
    TreeNode<T> b = root.Right;
    TreeNode<T> c = root.Right.Left;
    TreeNode<T> z = b.Right;
    TreeNode<T> x = c.Left;
    TreeNode<T> y = c.Right;
    //Parents
```

}

{

```
c.Parent = parent;
            b.Parent = c;
            root.Parent = c;
            if (w != null)
                w.Parent = root;
            if (z != null)
                z.Parent = b;
            if (y != null)
                y.Parent = b;
            if (x != null)
                x.Parent = root;
            //Childs
            if (parent != null)
                if (parent.Right == root)
                    parent.Right = c;
                else
                    parent.Left = c;
            c.Left = root;
            c.Right = b;
            b.Left = y;
            b.Right = z;
            root.Left = w;
            root.Right = x;
            //Heights
            long xH = x != null ? x.Height : -1;
            long yH = y != null ? y.Height : -1;
            long zH = z != null ? z.Height : -1;
            long wH = w != null ? w.Height : -1;
            if (wH > xH)
                root.Height = wH + 1;
            else
                root.Height = xH + 1;
            if (yH > zH)
                b.Height = yH + 1;
            else
                b.Height = zH + 1;
            if (b.Height > root.Height)
                c.Height = b.Height + 1;
            else
                c.Height = root.Height + 1;
            UpdateHeight(c);
            return c;
        }
   }
}
```

Бенчмарк к задаче 4

№ теста	Результат	Время,	Память	Размер входного файла	Размер выходного файла
Max		0.515	50823168	4077288	4077255
1	OK	0.046	11120640	27	17
2	OK	0.031	11096064	13	3
3	OK	0.031	11161600	20	10
4	OK	0.031	11190272	20	10

5	OK	0.031	11161600	20	10
6	OK	0.031	11153408	20	10
7	OK	0.031	11132928	27	17
8	OK	0.046	11153408	27	17
9	OK	0.031	11182080	27	17
10	OK	0.031	11153408	34	24
11	OK	0.046	11145216	34	24
12	OK	0.031	10928128	34	24
13	OK	0.046	10928128	34	24
14	OK	0.031	10948608	34	24
15	OK	0.046	10964992	34	24
16	OK	0.031	10973184	34	24
17	OK	0.046	10940416	34	24
18	OK	0.031	10940416	34	24
19	OK	0.031	10952704	34	24
20	OK	0.031	10981376	34	24
21	OK	0.031	10903552	34	24
22	OK	0.031	10924032	34	24
23	OK	0.031	10956800	34	24
24	OK	0.031	10907648	34	24
25	OK	0.046	10985472	34	24
26	OK	0.031	10940416	41	31
27	OK	0.031	10936320	41	31
28	OK	0.015	10899456	41	31
29	OK	0.046	10915840	41	31
30	OK	0.046	10997760	41	31
31	OK	0.031	10960896	41	31
32	OK	0.031	10924032	41	31
33	OK	0.031	10919936	41	31
34	OK	0.031	10997760	41	31
35	OK	0.031	10977280	41	31
36	OK	0.031	10915840	41	31
37	OK	0.031	10952704	41	31
38	OK	0.031	10948608	41	31
39	OK	0.031	10919936	41	31
40	OK	0.031	10924032	41	31
41	OK	0.046	10964992	41	31
42	OK	0.031	10956800	41	31
43	OK	0.031	10952704	41	31
	1				I .

11					
44	OK	0.015	10891264		31
45	OK	0.046	10964992	41	31
46	OK	0.031	10952704	41	31
47	OK	0.046	10907648	41	31
48	OK	0.031	10952704	41	31
49	OK	0.031	10948608	41	31
50	OK	0.031	10940416	41	31
51	OK	0.046	10928128	41	31
52	OK	0.031	11034624	41	31
53	OK	0.031	10919936	41	31
54	OK	0.031	10989568	41	31
55	OK	0.031	10924032	41	31
56	OK	0.031	10940416	48	38
57	OK	0.031	10903552	48	38
58	OK	0.046	10977280	48	38
59	OK	0.031	10993664	48	38
60	OK	0.031	10919936	48	38
61	OK	0.015	10956800	48	38
62	OK	0.031	11018240	48	38
63	OK	0.031	10928128	48	38
64	OK	0.031	10989568	48	38
65	OK	0.046	10899456	48	38
66	OK	0.031	10969088	48	38
67	OK	0.031	10964992	48	38
68	OK	0.046	11010048	48	38
69	OK	0.031	10964992	48	38
70	OK	0.046	10944512	48	38
71	OK	0.031	10936320	48	38
72	OK	0.031	10960896	48	38
73	OK	0.031	10964992	48	38
74	OK	0.046	10932224	48	38
75	OK	0.031	10964992	48	38
76	OK	0.031	10903552	48	38
77	OK	0.031	10891264	48	38
78	OK	0.031	10956800	48	38
79	OK	0.031	10940416	48	38
80	OK	0.031	10989568	55	45
81	OK	0.031	10907648	55	45
82	OK	0.031	10932224	55	45

0.2	OV	0.046	10056000	EE	45
83	OK	0.046	10956800		45
84	OK	0.031	10956800		45
85	OK	0.031	10919936		45
86	OK	0.046	10952704		45
87	OK	0.031	10940416		45
88	OK	0.031	10981376		45
89	OK	0.031	11042816		45
90	OK	0.031	10919936		45
91	OK	0.031	10956800	55	45
92	OK	0.031	10964992	55	45
93	OK	0.062	10948608	55	45
94	OK	0.031	10985472	55	45
95	OK	0.046	10919936	55	45
96	OK	0.062	10928128	55	45
97	OK	0.031	10915840	55	45
98	OK	0.031	10907648	55	45
99	OK	0.031	10981376	55	45
100	OK	0.031	10973184	55	45
101	OK	0.031	10932224	55	45
102	OK	0.046	10936320	55	45
103	OK	0.031	10919936	55	45
104	OK	0.046	10964992	55	45
105	OK	0.031	10944512	55	45
106	OK	0.031	10977280	55	45
107	OK	0.078	10948608	55	45
108	OK	0.031	10928128	55	45
109	OK	0.031	10944512	55	45
110	OK	0.031	10989568	55	45
111	OK	0.031	10981376	55	45
112	OK	0.031	10919936	55	45
113	OK	0.031	10973184	55	45
114	OK	0.031	10989568	55	45
115	OK	0.031	10964992	55	45
116	OK	0.031	11005952	55	45
117	OK	0.031	10940416		45
118	OK	0.031	10948608		45
119	OK	0.031	10928128		45
120	OK	0.031	10977280		45
121	OK	0.031	10936320		45
141	OIX	0.031	10730320		13

122	OK	0.031	11005952	55	45
123	OK	0.031	10944512	55	45
124	OK	0.031	10969088	55	45
125	OK	0.031	10981376	55	45
126	OK	0.031	10940416	55	45
127	OK	0.031	10985472	55	45
128	OK	0.031	10964992	55	45
129	OK	0.031	10919936	55	45
130	OK	0.046	10911744	55	45
131	OK	0.031	10969088	55	45
132	OK	0.046	10928128	55	45
133	OK	0.031	10952704	55	45
134	OK	0.031	10919936	55	45
135	OK	0.031	10969088	55	45
136	OK	0.031	10948608	55	45
137	OK	0.031	10944512	55	45
138	OK	0.031	10997760	55	45
139	OK	0.031	10915840	55	45
140	OK	0.046	10911744	55	45
141	OK	0.031	10969088	55	45
142	OK	0.031	10985472	55	45
143	OK	0.031	10964992	55	45
144	OK	0.031	10969088	55	45
145	OK	0.031	10940416	55	45
146	OK	0.031	10964992	55	45
147	OK	0.015	10948608	55	45
148	OK	0.031	10948608	55	45
149	OK	0.031	10952704	55	45
150	OK	0.031	10948608	55	45
151	OK	0.031	10924032	55	45
152	OK	0.031	10928128	55	45
153	OK	0.031	10952704	55	45
154	OK	0.031	10981376	55	45
155	OK	0.031	10936320	55	45
156	OK	0.031	10964992	55	45
157	OK	0.046	10956800	55	45
158	OK	0.031	10940416	55	45
159	OK	0.046	10944512	55	45
160	OK	0.031	11001856	55	45
				ı	t .

161 OK 0.031 10936320 55 45 162 OK 0.031 10919936 55 45 163 OK 0.031 10919936 55 45 164 OK 0.015 10936320 55 45 165 OK 0.031 10919936 55 45 166 OK 0.031 10952704 55 45 167 OK 0.031 10969088 55 45	
163 OK 0.031 10919936 55 45 164 OK 0.015 10936320 55 45 165 OK 0.031 10919936 55 45 166 OK 0.031 10952704 55 45 167 OK 0.031 10969088 55 45	
164 OK 0.015 10936320 55 45 165 OK 0.031 10919936 55 45 166 OK 0.031 10952704 55 45 167 OK 0.031 10969088 55 45	
165 OK 0.031 10919936 55 45 166 OK 0.031 10952704 55 45 167 OK 0.031 10969088 55 45	
166 OK 0.031 10952704 55 45 167 OK 0.031 10969088 55 45	
167 OK 0.031 10969088 55 45	
168 OK 0.031 10981376 55 45	
169 OK 0.031 10915840 55 45	
170 OK 0.046 10944512 55 45	
171 OK 0.015 10956800 55 45	_
172 OK 0.015 10948608 55 45	
173 OK 0.031 10895360 55 45	
174 OK 0.031 10944512 55 45	
175 OK 0.015 10973184 55 45	
176 OK 0.031 10932224 55 45	
177 OK 0.031 11005952 55 45	
178 OK 0.031 10936320 55 45	
179 OK 0.031 10924032 55 45	
180 OK 0.015 10940416 55 45	
181 OK 0.031 10956800 55 45	
182 OK 0.046 10964992 55 45	
183 OK 0.031 10924032 55 45	
184 OK 0.046 10956800 55 45	
185 OK 0.046 10907648 55 45	
186 OK 0.031 10940416 55 45	
187 OK 0.015 10928128 55 45	
188 OK 0.031 10956800 55 45	
189 OK 0.046 10907648 55 45	
190 OK 0.031 10960896 55 45	
191 OK 0.031 10919936 55 45	
192 OK 0.046 11010048 55 45	
193 OK 0.015 10981376 55 45	
194 OK 0.031 10936320 55 45	
195 OK 0.046 10940416 55 45	
196 OK 0.031 10948608 55 45	
197 OK 0.031 10960896 55 45	
198 OK 0.031 10977280 55 45	
199 OK 0.031 11014144 239 210	

200	OK	0.031	10960896	235	208
201	OK	0.031	11059200	1797	1769
202	OK	0.031	11083776	1809	1781
203	OK	0.046	11104256	1831	1803
204	OK	0.031	11448320	9625	9597
205	OK	0.046	11354112	10026	9996
206	OK	0.031	11431936	9672	9642
207	OK	0.031	12058624	39459	39428
208	OK	0.031	12099584	39672	39641
209	OK	0.031	12066816	38780	38749
210	OK	0.046	12214272	38392	38361
211	OK	0.046	18624512	179425	179394
212	OK	0.062	18673664	182878	182845
213	OK	0.062	18706432	185986	185953
214	OK	0.062	18636800	186275	186244
215	OK	0.046	18624512	179082	179051
216	OK	0.250	33349632	1912349	1912319
217	OK	0.250	33280000	1864033	1864003
218	OK	0.265	33243136	1913940	1913908
219	OK	0.250	33353728	1879988	1879958
220	OK	0.234	33292288	1887512	1887482
221	OK	0.234	33378304	1932558	1932526
222	OK	0.250	33280000	1875036	1875006
223	OK	0.437	49283072	3597394	3597361
224	OK	0.437	49090560	3569973	3569940
225	OK	0.437	49139712	3512224	3512193
226	OK	0.437	49209344	3624329	3624296
227	OK	0.421	45637632	3523352	3523321
228	OK	0.453	49262592	3638077	3638044
229	OK	0.453	48955392	3512844	3512813
230	OK	0.468	50806784	4001320	4001287
231	OK	0.468	50536448	3954282	3954249
232	OK	0.484	50589696	3907814	3907783
233	OK	0.484	50774016	3983014	3982983
234	OK	0.484	50823168	4029895	4029862
235	OK	0.515	50683904	4046188	4046157
236	OK	0.484	50823168	4077288	4077255
237	OK	0.500	50507776	3902092	3902061

Задача 5 Упорядоченное множество на АВЛ-дереве

Имя входного файла:	input.txt
Имя выходного файла:	output.txt
Ограничение по времени:	2 секунды
Ограничение по памяти:	256 мегабайт

Если Вы сдали все предыдущие задачи, Вы уже можете написать эффективную реализацию упорядоченного множества на АВЛ-дереве. Сделайте это.

Для проверки того, что множество реализовано именно на АВЛ-дереве, мы просим Вас выводить баланс корня после каждой операции вставки и удаления.

Операции вставки и удаления требуется реализовать точно так же, как это было сделано в предыдущих двух задачах, потому что в ином случае баланс корня может отличаться от требуемого.

Формат входного файла

В первой строке файла находится число $N(1 \le N \le 2*10^5)$ — число операций над множеством. Изначально множество пусто. В каждой из последующих N строк файла находится описание операции.

Операции бывают следующих видов:

- A r Bставить число в множество. Если число х там уже содержится, множество изменять не следует.
- $D \times$ удалить число из множества. Если числа X нет в множестве, множество изменять не следует.
- С х проверить, есть ли число в множестве.

Формат выходного файла

Для каждой операции вида $\mathbb{C} \times \mathbb{R}$ выведите \mathbb{Y} , если число \mathbb{X} содержится в множестве, и \mathbb{N} , если не содержится.

Для каждой операции вида $A \times u$ ли $D \times выведите баланс корня дерева после выполнения операции. Если дерево пустое (в нем нет вершин), выведите 0.$

Вывод для каждой операции должен содержаться на отдельной строке.

Пример

input.txt	output.txt
6	0
A 3	1
A 4	0
A 5	Υ
C 4	N
	-1

```
C 6
D 5
```

```
Исходный код к задаче 5
class Lab7 5
{
    public static void Main(string[] args)
        var app = new Lab7_5();
        app.DoWork(args);
    }
    private void DoWork(string[] args)
        using (var sw = new StreamWriter("output.txt"))
            string[] stdin = File.ReadAllLines("input.txt");
            TreeNode<long> root = null;
            for (int i = 1; i < stdin.Length; i++)</pre>
                string[] temp = stdin[i].Split(' ');
                switch (temp[0])
                {
                    case "A":
                        TreeNode<long> s = TreeNode<long>.Search(root,
long.Parse(temp[1]));
                        if (s == null)
                            root = TreeNode<long>.Insert(root, new TreeNode<long> { Key =
long.Parse(temp[1]) });
                        sw.WriteLine(TreeNode<long>.GetBalance(root));
                        break;
                    case "D":
                        TreeNode<long> t = TreeNode<long>.Search(root,
long.Parse(temp[1]));
                        if (t != null)
                            root = TreeNode<long>.Remove(t);
                        sw.WriteLine(TreeNode<long>.GetBalance(root));
                        break;
                    case "C":
                        TreeNode<long> x = TreeNode<long>.Search(root,
long.Parse(temp[1]));
                        if (x != null)
                             sw.WriteLine("Y");
                        else
                             sw.WriteLine("N");
                        break;
                }
            }
        }
    }
    class TreeNode<T> where T : IComparable<T>
        public T Key { get; set; }
        public TreeNode<T> Parent { get; set; }
        public TreeNode<T> Left { get; set; }
        public TreeNode<T> Right { get; set; }
        public long Height { get; set; }
```

```
public static TreeNode<T> Next(TreeNode<T> node)
    if (node.Right == null)
        return node;
    return Minimum(node.Right);
}
public static TreeNode<T> Previous(TreeNode<T> node)
    if (node.Left == null)
        return node;
    return Maximum(node.Left);
}
public static TreeNode<T> Maximum(TreeNode<T> node)
    while (node.Right != null)
        node = node.Right;
    return node;
}
public static TreeNode<T> Minimum(TreeNode<T> node)
    while (node.Left != null)
        node = node.Left;
    return node;
}
/// <returns>Root of tree after remove</returns>
public static TreeNode<T> Remove(TreeNode<T> item)
{
    TreeNode<T> parent = item.Parent;
    //Leaf
   if (item.Left == null && item.Right == null)
    {
        if (parent == null)
            return null;
        if (parent.Left == item)
            parent.Left = null;
        else
            parent.Right = null;
        UpdateHeight(parent);
        return Balance(parent);
    }
    //One child
    if ((item.Left == null) ^ (item.Right == null))
        if (item.Left != null)
        {
            if (parent != null)
            {
                if (parent.Left == item)
                    parent.Left = item.Left;
                else
                    parent.Right = item.Left;
                UpdateHeight(parent);
            }
            item.Left.Parent = parent;
            return Balance(item.Left);
        }
```

```
else
        {
            if (parent != null)
            {
                if (parent.Left == item)
                    parent.Left = item.Right;
                    parent.Right = item.Right;
                UpdateHeight(parent);
            }
            item.Right.Parent = parent;
            return Balance(item.Right);
        }
    //Two child
    if ((item.Left != null) && (item.Right != null))
        TreeNode<T> prev = Previous(item);
        Remove(prev);
        item.Key = prev.Key;
    }
    return Balance(item);
}
/// <returns>Root of tree after insert</returns>
public static TreeNode<T> Insert(TreeNode<T> root, TreeNode<T> node)
    if (root == null)
        return node;
    TreeNode<T> current = root;
    while (true)
    {
        if (current.Key.CompareTo(node.Key) == 0)
            throw new ArgumentException("Not unique key");
        if (current.Key.CompareTo(node.Key) < 0)</pre>
        {
            if (current.Right != null)
                current = current.Right;
            else
            {
                current.Right = node;
                node.Parent = current;
                UpdateHeight(node);
                return Balance(node);
            }
        }
        else
        {
            if (current.Left != null)
                current = current.Left;
            else
            {
                current.Left = node;
                node.Parent = current;
                UpdateHeight(node);
                return Balance(node);
            }
       }
   }
}
```

```
private static void UpdateHeight(TreeNode<T> node)
{
    while (node != null)
    {
        long rH = node.Right != null ? node.Right.Height : -1;
        long lH = node.Left != null ? node.Left.Height : -1;
        long currentH = node.Height;
        if (rH > 1H)
            node.Height = rH + 1;
        else
            node.Height = 1H + 1;
        node = node.Parent;
    }
}
public static TreeNode<T> Search(TreeNode<T> root, T key)
    while (root != null && root.Key.CompareTo(key) != 0)
        if (root.Key.CompareTo(key) > 0)
            root = root.Left;
        else
            root = root.Right;
    return root;
}
/// <returns>Root of tree after balance</returns>
public static TreeNode<T> Balance(TreeNode<T> leaf)
    TreeNode<T> current = leaf;
    while (current != null)
        long balance = GetBalance(current);
        if (balance > 1)
        {
            if (GetBalance(current.Right) == -1)
                current = BigLeftTurn(current);
            else
                current = SmallLeftTurn(current);
        if (balance < -1)</pre>
            if (GetBalance(current.Left) == 1)
                current = BigRightTurn(current);
            else
                current = SmallRightTurn(current);
        if (current.Parent == null)
            return current;
        else
            current = current.Parent;
    return current;
}
public static void PrintTree(TreeNode<T> root)
    if (root == null)
        return;
    Queue<TreeNode<T>> bfsQueue = new Queue<TreeNode<T>>();
    long counter = 1;
    bfsQueue.Enqueue(root);
    while (bfsQueue.Count != 0)
```

```
{
        TreeNode<T> current = bfsQueue.Dequeue();
       Console.Write(current.Key);
        if (current.Left != null)
        {
            bfsQueue.Enqueue(current.Left);
            Console.Write(" " + ++counter);
        else
            Console.Write(" " + 0);
        if (current.Right != null)
            bfsQueue.Enqueue(current.Right);
            Console.WriteLine(" " + ++counter);
        else
            Console.WriteLine(" " + 0);
   }
}
public static long GetBalance(TreeNode<T> tree)
   if (tree == null)
        return 0;
   if (tree.Left != null && tree.Right != null)
        return tree.Right.Height - tree.Left.Height;
   if (tree.Left == null && tree.Right != null)
        return tree.Right.Height + 1;
   if (tree.Left != null && tree.Right == null)
        return -1 - tree.Left.Height;
   else
        return 0;
}
/// <returns>Root of tree after turn</returns>
public static TreeNode<T> SmallLeftTurn(TreeNode<T> root)
{
   TreeNode<T> child = root.Right;
   TreeNode<T> parent = root.Parent;
   TreeNode<T> x = root.Left;
   TreeNode<T> y = root.Right.Left;
   TreeNode<T> z = root.Right.Right;
   //Parents
   child.Parent = parent;
   root.Parent = child;
   if (x != null)
       x.Parent = root;
   if (y != null)
       y.Parent = root;
   if (z != null)
        z.Parent = child;
   //Childs
   root.Left = x;
   root.Right = y;
   child.Left = root;
   child.Right = z;
   if (parent != null)
        if (parent.Right == root)
            parent.Right = child;
        else
```

```
parent.Left = child;
   //Heights
   long xH = x != null ? x.Height : -1;
   long yH = y != null ? y.Height : -1;
   long zH = z != null ? z.Height : -1;
   if(xH > yH)
        root.Height = xH + 1;
   else
        root.Height = yH + 1;
   if (root.Height > zH)
        child.Height = root.Height + 1;
   else
        child.Height = zH + 1;
   UpdateHeight(child);
   return child;
}
/// <returns>Root of tree after turn</returns>
public static TreeNode<T> SmallRightTurn(TreeNode<T> root)
   TreeNode<T> child = root.Left;
   TreeNode<T> parent = root.Parent;
   TreeNode<T> x = root.Right;
   TreeNode<T> y = root.Left.Left;
   TreeNode<T> z = root.Left.Right;
   //Parents
   child.Parent = parent;
   root.Parent = child;
   if (x != null)
       x.Parent = root;
   if (y != null)
       y.Parent = child;
   if (z != null)
       z.Parent = root;
   //Childs
   root.Left = z;
   root.Right = x;
   child.Left = y;
   child.Right = root;
   if (parent != null)
        if (parent.Right == root)
            parent.Right = child;
        else
            parent.Left = child;
   //Heights
   long xH = x != null ? x.Height : -1;
   long yH = y != null ? y.Height : -1;
   long zH = z != null ? z.Height : -1;
   if(zH > xH)
       root.Height = zH + 1;
   else
        root.Height = xH + 1;
   if (y.Height > root.Height)
        child.Height = yH + 1;
   else
        child.Height = root.Height + 1;
```

```
UpdateHeight(child);
    return child;
}
/// <returns>Root of tree after turn</returns>
public static TreeNode<T> BigRightTurn(TreeNode<T> root)
    TreeNode<T> w = root.Right;
    TreeNode<T> parent = root.Parent;
    TreeNode<T> b = root.Left;
    TreeNode<T> c = root.Left.Right;
    TreeNode<T> z = b.Left;
    TreeNode<T> x = c.Left;
    TreeNode<T> y = c.Right;
    //Parents
    c.Parent = parent;
    b.Parent = c;
    root.Parent = c;
    if (w != null)
        w.Parent = root;
    if (z != null)
        z.Parent = b;
    if (y != null)
        y.Parent = root;
    if (x != null)
        x.Parent = b;
    //Childs
    if (parent != null)
        if (parent.Right == root)
            parent.Right = c;
            parent.Left = c;
    c.Left = b;
    c.Right = root;
    b.Left = z;
    b.Right = x;
    root.Left = y;
    root.Right = w;
    //Heights
    long xH = x != null ? x.Height : -1;
    long yH = y != null ? y.Height : -1;
    long zH = z != null ? z.Height : -1;
    long wH = w != null ? w.Height : -1;
    if (zH > xH)
        b.Height = zH + 1;
    else
        b.Height = xH + 1;
    if (yH > wH)
        root.Height = yH + 1;
    else
        root.Height = wH + 1;
    if (b.Height > root.Height)
        c.Height = b.Height + 1;
    else
        c.Height = root.Height + 1;
    UpdateHeight(c);
    return c;
}
```

```
public static TreeNode<T> BigLeftTurn(TreeNode<T> root)
        {
            TreeNode<T> w = root.Left;
            TreeNode<T> parent = root.Parent;
            TreeNode<T> b = root.Right;
            TreeNode<T> c = root.Right.Left;
            TreeNode<T> z = b.Right;
            TreeNode<T> x = c.Left;
            TreeNode<T> y = c.Right;
            //Parents
            c.Parent = parent;
            b.Parent = c;
            root.Parent = c;
            if (w != null)
                w.Parent = root;
            if (z != null)
                z.Parent = b;
            if (y != null)
                y.Parent = b;
            if (x != null)
                x.Parent = root;
            //Childs
            if (parent != null)
                if (parent.Right == root)
                    parent.Right = c;
                else
                    parent.Left = c;
            c.Left = root;
            c.Right = b;
            b.Left = y;
            b.Right = z;
            root.Left = w;
            root.Right = x;
            //Heights
            long xH = x != null ? x.Height : -1;
            long yH = y != null ? y.Height : -1;
            long zH = z != null ? z.Height : -1;
            long wH = w != null ? w.Height : -1;
            if (wH > xH)
                root.Height = wH + 1;
            else
                root.Height = xH + 1;
            if (yH > zH)
                b.Height = yH + 1;
            else
                b.Height = zH + 1;
            if (b.Height > root.Height)
                c.Height = b.Height + 1;
            else
                c.Height = root.Height + 1;
            UpdateHeight(c);
            return c;
       }
    }
}
```

/// <returns>Root of tree after turn</returns>

Бенчмарк к задаче 5

№ теста	Результат	Время,	Память	Размер входного файла	Размер выходного файла
Max		0.703	46481408	2678110	731071
1	OK	0.031	10629120	33	19
2	OK	0.031	10592256	114	66
3	OK	0.062	10555392	154	90
4	OK	0.031	10645504	154	91
5	OK	0.015	10706944	154	90
6	OK	0.031	10543104	154	95
7	OK	0.031	10575872	154	91
8	OK	0.031	10637312	154	94
9	OK	0.031	10596352	154	95
10	OK	0.015	10539008	154	90
11	OK	0.031	10559488	154	90
12	OK	0.015	10387456	154	90
13	OK	0.031	10375168	154	95
14	OK	0.031	10346496	154	97
15	OK	0.031	10522624	154	94
16	OK	0.015	10416128	154	93
17	OK	0.046	10342400	154	90
18	OK	0.031	10321920	154	90
19	OK	0.031	10424320	154	98
20	OK	0.031	10362880	154	93
21	OK	0.015	10358784	154	92
22	OK	0.015	10452992	154	98
23	OK	0.171	28426240	1000008	616458
24	OK	0.171	28397568	1000008	622272
25	OK	0.156	28405760	1000008	625335
26	OK	0.156	28479488	1000008	628546
27	OK	0.156	28418048	1000008	631472
28	OK	0.203	28401664	1000008	632217
29	OK	0.171	28442624	1000008	631772
30	OK	0.156	28401664	1000008	631071
31	OK	0.156	28364800	1000008	630132
32	OK	0.156	28553216	1017957	630451
33	OK	0.156	28495872	1000008	616595
34	OK	0.156	28356608	1000008	622199
35	OK	0.140	28372992	1000008	625057

36	OK	0.140	28385280	1000008	628040
37	OK	0.156	28442624		631495
38	OK OK	0.156	28401664		632086
39	OK	0.171	28479488	I	631753
40	OK	0.171	28389376		630849
41	OK	0.171	28446720		630110
42	OK	0.171	28594176	I	630800
43	OK	0.130	10366976		369
44	OK	0.031	10360976		432
45	OK	0.031	10428416	I .	408
46	OK	0.031	10428410		383
47					
	OK	0.031	10375168		385
48	OK	0.031	10473472		415
49	OK	0.031	10452992		415
50	OK	0.031	10448896		377
51	OK	0.031	10366976	I .	396
52	OK	0.031	10674176		2337
53	OK	0.031	10600448		2848
54	OK	0.046	10657792		2648
55	OK	0.031	10616832		2343
56	OK	0.015	10665984	I	2465
57	OK	0.031	10588160		2719
58	OK	0.046	10592256		2719
59	OK	0.046	10715136	10450	2421
60	OK	0.031	10706944		2405
61	OK	0.031	11542528	32784	12708
62	OK	0.031	11522048	32787	14896
63	OK	0.046	11599872	56716	12715
64	OK	0.031	11616256	31674	12778
65	OK	0.046	11546624	31674	13220
66	OK	0.031	11530240	31674	14383
67	OK	0.031	11591680	31674	14825
68	OK	0.046	11563008	56748	13671
69	OK	0.031	11595776	56716	13193
70	OK	0.062	17539072	162462	57855
71	OK	0.062	17477632	162466	68948
72	OK	0.062	18395136	258205	71756
73	OK	0.046	16871424	152067	59306
74	OK	0.078	16855040	152067	59903

75	OK	0.062	16834560	152067	66900
76	OK	0.046	16834560	152067	67497
77	OK	0.078	17768448	258312	70001
78	OK	0.062	17584128	258332	58111
79	OK	0.203	27082752	811002	274035
80	OK	0.218	27099136	811006	332612
81	OK	0.281	28688384	1222794	299942
82	OK	0.171	27275264	799892	286940
83	OK	0.171	27267072	799892	282227
84	OK	0.156	27332608	799892	324420
85	OK	0.187	27303936	799892	319707
86	OK	0.218	27226112	1222871	284516
87	OK	0.187	27176960	1223246	288111
88	OK	0.437	44290048	1888898	600000
89	OK	0.421	44371968	1888903	731071
90	OK	0.703	46481408	2677526	600067
91	OK	0.328	37707776	1777788	601696
92	OK	0.312	37699584	1777788	632768
93	OK	0.328	37670912	1777788	698302
94	OK	0.312	37728256	1777788	698303
95	OK	0.531	41881600	2678110	611713
96	OK	0.390	41930752	2677266	600286