

4. (n) athongo /// mathongo /// mathongo

If a complex number if purely imaginary, then it must be equal to minus times its conjugate.

$$\Rightarrow |z|^2 = \alpha^2$$
/// mathongo // mathongo /// mathongo /// mathongo // mathongo // mathongo // mathongo // mathongo // mat

5. (2)
$$\sqrt{x^2+y^2}-x \le 1$$
 mathongo /// mathongo // mathongo /// mathongo /// mathongo // mathongo /// mathongo /// mathongo /// mathongo /// mathon

$$y^2 \le 2x + 1$$
 mathongo y mathongo y

6. (3)
$$\frac{(1+i)^5 \left(1+\sqrt{3}i\right)^2}{4(1-2i\left(-\sqrt{3}+i\right)^2)} = \frac{\left(\sqrt{2}\right)^5 \left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^5 \cdot 2^2 \left(\frac{1}{2}+\frac{\sqrt{3}}{2}i\right)^2}{(2i)^2 \left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^2 + (2i)^2 \left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^2}$$
 (3) mathongo | /// mathongo |

$$\therefore$$
 argument $=\frac{5\pi}{4}+\frac{2\pi}{3}-\frac{\pi}{2}+\frac{\pi}{6}=\frac{19\pi}{12}$ athongo $///$ mathongo $///$ matho

We know that, from the property of modulus function if

$$|z_1| \le a$$
, $a > 0 \Rightarrow -a \le z_1 \le a$ mathongo $|z_1| = a$ mathongo $|z_1$

$$|z+4| \leq 3 \Rightarrow -3 \leq z+4 \leq 3$$

 \therefore principal argument is $-\frac{5\pi}{12}$

/// math
$$\Rightarrow$$
 $-6 \le z+1 \le 0$ ongo /// mathongo /// mathong

8. (2)

$$||\mathcal{M}|| \Rightarrow |z|^2 + 2|z| - 2 \le 0$$
 mathongo $|\mathcal{M}|$ mathongo $|\mathcal{$

$$1-\sqrt{3} < z < 1+\sqrt{3}$$

Hence, maximum value of
$$|z|$$
 is $1+\sqrt{3}$ mathongo ## mathongo

Complex Number JEE Main Crash Course

Answer Keys and Solutions

9. (3) athongo /// mathongo				
We have, $z^2 = \overline{z}$ Let $z = x + iy$ $z^2 = (x + iy)^2 = x^2 - y^2 + i2xy$	(i) mathongo			
$ar{z}=x-iy$ (ii) From (i) and (ii) on equating imaginary parts				
$\Rightarrow 2xy = -y$ $\Rightarrow y(2x+1) = 0$ $\Rightarrow y = 0 \text{ or } x = -\frac{1}{2}$				
on equating real parts $\Rightarrow x^2 - y^2 = x$ Case 1: when $y = 0$				
$\Rightarrow x^{2} - x = 0$ $\Rightarrow x(x_{\text{off}} 1) = 0 \text{ mathongo}$ $\Rightarrow x = 0 \text{ or } x = 1$				
Case 2: when $x = -\frac{1}{2}$ $\Rightarrow \frac{1}{4} + y^2 = -\frac{1}{2}$ mathongo $\Rightarrow y^2 = \frac{3}{4}$				
$\Rightarrow y = \pm \frac{\sqrt{3}}{\sqrt{3}}$				
10. (3) $x + iy + \sqrt{2} (x+1) + iy + i = x + \sqrt{2}\sqrt{(x+1)^2 + y^2} + (y+1)$	0 /// mathongo			
$x + \sqrt{2(x+1)^2 + 2y^2} + (y+1)$ $x + \sqrt{2(x+1)^2 + 2} = 0 \text{ and } y = 0$	i = 0			
$\sqrt{2(x+1)^2+2} = -x \text{ and } y = -x$ $2(x+1)^2+2 = x^2 \text{ and } y = -1$	-1			
$x^{2} + 4x + 4 = 0$ and $y = -1$ $(x + 2)^{2} = 0$ and $y = -1$ x = -2 and $y = -1$				
Hence, $z = x + iy = -2 - i$ mathongo mathongo				