Appunti di Scienza delle Costruzioni

Capitolo 01b Teoria lineare o infinitesima

I contenuti del seguente documento sono protetti sotto licenza <u>Creative Commons BY-NC-SA 4.0</u>: sono quindi ammesse la **condivisione**, la **ridistribuzione** e la **modifica** del materiale ivi contenuto, sotto le seguenti condizioni:

- **Attribuzione**: nel documento originale e nelle sue modifiche deve sempre figurare il nome reale o lo pseudonimo dell'autore, nonché la bibliografia originale;
- **Non-Commerciale**: è vietato qualsiasi utilizzo del presente documento e dei suoi contenuti a scopo commerciale e/o pubblicitario; ciò include la rivendita dello stesso o di parte dei suoi contenuti, ma è permessa la vendita a prezzo di stampa;
- **Share-Alike**: (it: "*Condividi allo stesso modo*") qualsiasi ridistribuzione del documento modificato o di parte di esso deve essere reso disponibile sotto la stessa licenza dell'originale, o sotto licenza ad essa compatibile.

Si chiede inoltre, anche se non è espressamente vietato, di non ridistribuire tale documento o parte dello stesso su piattaforme cloud private per pubblicizzare associazioni o eventi.

DISCLAMER GENERALE:

L'autore - <u>PioApocalypse</u> - non si assume alcuna responsabilità per l'uso improprio dei contenuti di questo documento, né si ritiene responsabile della performance - positiva o negativa che sia - dello studente in sede d'esame.

Il materiale didattico qui fornito è da considerarsi come un supplemento al materiale indicato dal docente della materia, e <u>trova le sue utilità principali nel riepilogo di lunghi segmenti del programma e nella spiegazione di determinati argomenti in cui lo studente potrebbe aver riscontrato difficoltà</u>. Alcuni termini e semplificazioni qui utilizzati potrebbero non essere idonei durante la discussione degli argomenti del corso con il docente in sede d'esame, e sono proposti solo al fine di aiutare lo studente con la comprensione della materia.

Si prega, infine, di segnalare eventuali errori trovati all'interno del documento all'indirizzo e-mail indicato sulla <u>repository ufficiale</u>, presso la quale è anche possibile trovare un link per chiunque desiderasse fare una piccola donazione all'autore.

Si ringrazia in anticipo per la cooperazione.

PioApocalypse

TEORIA LINEARE (O INFINITESIMA) La teoria lineare ragiona dietro ipotesi di "piccole (infinitesime) deformazioni". Dui <<1 Un certo numero di applicazioni ingegneristiche soddisfano tale proprietà e seguono i modelli proposti di seguito, ad esempio automobili, travi, telai, etc. INDEFORMATO DEFORMATO Caso 1: derivate parziali delle componenti 4 di spostamento FINITE (rilevanti). Caso 2: derivate parziali delle componenti di spostamento << 1 (trascurabili). Sotto queste ipotesi, ovviamente il tensore di Green si semplifica perché: $\begin{cases} Ei = Eii = \frac{\partial u_i}{\partial x_i} \\ Eij = \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} = \frac{1}{2} \psi_{ij} \end{cases} = \begin{bmatrix} E_{11} & \frac{1}{2} \psi_{12} & \frac{1}{2} \psi_{13} \\ \frac{1}{2} \psi_{12} & E_{22} & \frac{1}{2} \psi_{23} \\ \frac{1}{2} \psi_{13} & \frac{1}{2} \psi_{23} & E_{33} \end{bmatrix}$ $\frac{ds^{2}-dS^{2}}{dS^{2}}=2\underbrace{\Xi\cdot\hat{N}\cdot\hat{N}}_{=}\underbrace{\begin{bmatrix}E_{11}&\frac{1}{2}y_{12}&\frac{1}{2}y_{13}\\\frac{1}{2}y_{12}&E_{22}&\frac{1}{2}y_{23}\\\frac{1}{2}y_{13}&\frac{1}{2}y_{23}&E_{22}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{2}\\N_{2}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{2}\\N_{2}\\N_{3}\end{bmatrix}}_{=y_{23}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{2}\\N_{3}\\N_{3}\\N_{3}\\N_{3}\\N_{3}\\N_{3}\\N_{3}}\underbrace{\begin{bmatrix}N_{1}\\N_{2}\\N_{2}\\N_{3}$ Per ogni i -> mi = mi° +) dui IN TERMINI DIFFERENZIAU: In volore assoluto: | mi = mi + Sp dui = mi + Sp dui | (Disucuaccianza TRIANCOLARE) mai | mi° | + | Salui | < | mi° | + | dui | $* = |ui^{\circ}| + \int_{P_0}^{P_0} |\overline{\partial X_A}| dX_A + \frac{\partial u_2}{\partial X_A} dX_2 + \frac{\partial u_3}{\partial X_3} dX_3$ (Da 1a) Siceone Jui <<1 da upoteni: * << |ui° | +) | 1. dX1 + 1. dX2 + 1. dX3 = |ui° | + || PP0 ||

Ora:	SE IPOTIZZIANO								SE IPOTIZZIANO											
	PICCOLE DEFORTATIOM:									ESISSE PO V										
				_							6	4 N		1 SF		ZA (:		
	12	n; L	<<	1~	vi -	+	PP _o						_,	= ئد	0					
								+												
		אטע	Qυ	E:	+f			مر	<u>P</u> [)	}									
					14	In	4i 1			211										
						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\														
Le compo	nenti	di s	spos	star	nen	to d	lella	ger	ierio	са р	arti	cel	la l	P de	l co	rpo	C :	sonc	tras	cural
rispetto a	ıd una	a dir	ner	ısio	ne c	ara	tter	istic	a L	dell	lo st	ess	50.							
Se noi de	cidess	simo) di	pre	nde	re o	com	e L i	l dia	ıme	tro	de	l cc	rpo	(la	più	ı gr	and	e dis	tanza
possibile	tra d	ue p	unt	i P	e Pc) qı	iant	o ar	oper	ıa a	ffer	ma	to	vale	ce	rtai	nei	ite.		
<u> </u>																			con o	uella
بد	1,	- 1																		
	« 3		ına	2101	IIIa	.d, c	11 50	11 111	n ae	IIId	SCII	ιιu	I d	uen	e 1 e	tlaz	1011	ıuı	equi	librio
PROPRIE	TÁ Þ	EL	GR	40	EN	E]	EGI	2 ا	POS	AM	ENTI									
																		1		
du = 1	Nm. o						1	بحو	Ome	7	ۍير٠	(d.)	<u>X</u> 4	· d]	<u>.</u>):	= V	m.	XX	+ 🗸	m.q]
du = 5		77.		JY	· _ 1		1			ρς	نماك	نهٰ	~~	di	A.	1	TVK	A		
		V.	٠ : (<u> </u>	۱ ا	7 3	15			(-)	1	1	JΥ	1-	7 6	7	٠Ĺ.	/		
							1	200	me	V	<u>ખ.(</u>	~ (:/-		/ <u>/</u>		_		
										ρο	يرك	سط	~~	di	0	104	ENE	·YA'		
Siccome o	_						scri	tta	com	e la	sor	nm	a c	li ur	ıa s	imı	net	rica	ed ı	ına
antisimm	etrica	ı, de	fini	am	0 U	<u>, </u>						7 -		1	12	u	(Ju;	1	
					 	_ ე	•					18	မ္ =	<u> </u>			+)~; }X;		
V	<u>~ = {</u>	<u> </u>	≌		-		- - -	ε_{i}	+ 4	Sij	1	4		2	V0	Ą	4	σXi	./	
						分 〉	(j			0) ,	Γij -	. 1	13	u;	- (Ju.j	1	
T			4		-							س) ij	2	12	X		XX.	1	
					6	,,			_,						, ,		3 '	7. Zi	,	
€=3(\\	₩+٧	坐 `		9	ج <u>ج</u>	₹ ($ abla_{\!$	· - \	~ `)											
- 2						Z) `														
Dung	re:			7.	ļ.,	/ _	10		-\ -	$\sqrt{}$		1	, ,			,_	. (٤) .	1.6	رک
· ·	(ىرىلى:	= '	′≌	d	<u> </u>	(چ	†≌	jα	<u> </u>	<u> </u>	αz	\ T	<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	d)	,=	au	T	ميد	
		oli	(٤)	imr	rim	0 11	n ca	mhi	2m	nto	, di	for	ma	(do	for	ma	7101	10 n	ura);	
dove	2:	ou	(. s	11111)1 1111	eu	II Ca	וטווו	aiiit	:1110	uı	101	1111	. (ue	101	IIIa	ZIUI	ie p	uraj,	
		di	ω) <u>λ</u>	imŗ	orim	e u	na r	otaz	zione	e rig	gida	l;								
				1	٤	->	TEI	NSO	RE I	OI D	EF(ORI	ΜA	ZIO	NE	INI	₹IN	ITES	SIMA	
Quindi	chia	sai a		۱ (
Quindi	chie	,a	me	' }																
Quindi	chia	mia	me	1	<u>실</u>	->	TE	NSO	RE I	OI R	OTA	٩ZI	ON	IE II	١FI	NI	ΓES	IMA		
Quindi	chie	mia	me	} {	<u>ଲ</u>	->	TE	NSO	RE I	OI R	OTA	AZI	ON	IE II	۱FI	NIT	ΓES	IMA		
Quindi	chia	mia	me	} {	교 교	->	TE	NSO	RE I	OI R	ROTA	AZI	ON	IE II	VFI	NIT	ΓES	IMA		
Quindi	chia	mia	me	}	3	->	TE	NSO	RE I	OI R	ROTA	AZI	ON	IE IN	\FI	NIT	ΓES	IMA		
Quindi	chia	mia		} {	<u>a</u>	->	TE	NSO	RE I	DI R	COTA	AZI	ON	IE IN	NFI	NIT	res	IMA		

Siano imr	ressi ad u	n corpo (Cdue cam	ni di sp	ostamer	nti:	, (1)	(L)	
	ociati ad e						₩ ;	7	
			e di rota				E4 (54	ي يي	
Sia . il c	ampo di s _l	actamor	nti commo	di (1)	e (2)	٤	<i>2</i> 1	£ι ≈ι	
	ui sono ass	sociati i te	nsori 🗲 (2 (5	₩ ,				
			~	~ ≈					
E dimostr	abile che:	JE= \$	E1 + E2 S1 + E2	Lad	imostra	zione è c	vvia per l	e hen	
		ل ي = ي	5 ₁ + 65 ₂				derivate.	CBCII	
	. /0		1/101			4			
Eii =	2 (Duit	'ouj) =	- 1/200	: - Dusi	1+/2u	j - Duž 1) = Ei	ا (ک) انجاز	
	Llox	oxi/	2(laxj	ex;	\ \@X	i dxi	') 	<u> </u>	
	(A	naloea	dimostr	azione	per C	sii)			
ASTE OF	ente di d	0	E 1.5-00		•				
MOTFICE	EWIE IN	numinelu	LINEAR	5		S P	15	P	
Pieordia	mo dx	=d <u>X</u> +o	<u>lu</u>					a/1	
Accumian	no un cogr	nontoini	finitosimo		3	(Q/Î) (**		
	no un segr no indefor				0 2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
dell'asse		maco ran	igo ia an c		16				0
		()	.IV + 4	1	y _/2	4, 14.	Bul	1 Jul	4X
/dX1=	0 ~>	ax,-	dXs+d	11-00	(£)	- 0/\ X1	2/2	9/13	00
12X2 =	0		d X2+(2	Juz 1	Juz	ri Du	2 %		
				J. 11		1/2+ <u>9X</u>	3		
			$dX_3 + ($	Ju3 9X	Ju3	1x - Du	3/V		
		dx3=	d 13 + (9×1,01,1	, 9×5	YN DX	3 (3)		
	1 7	1 V	∂u_1	V					
4	$- ax_1 =$	$= aA_1 +$	$-\frac{\partial u_1}{\partial X_1}d$	Δ_1					
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$=\frac{\partial u_2}{\partial X_1}d$	v	(F	Riportat	e in LaTe	X per chi	arezza)	
	$ax_2 -$	$-\frac{1}{\partial X_1}u$	Λ 1						
	,	∂u_3	v						
	$ax_3 =$	$=rac{\partial u_3}{\partial X_1}d$	Λ_1	veore	dando	che d	} = \dx; .	rdx2 + d>	×3.
A .		- +							
Ausea:	1	0. \2	10. 12	10. 2		/ 2			
ds=	dXx Vf	1+24)+	(342)+	303	≈dXs	(1+	₩)=d	X2(1+)	(یع
	 	0X1/	(OXI)	OXI		6	~3/		
			20						
unaue:		د لم	(4 + 5, 4	×1 - 1	LXA				
	ds-d	7 2 2	1+ End	<u></u>		E1	(FAMIL	are!)	
	110		- dx	4					++

Lungo ma divisione arbitorie
$$\hat{N}$$
 $E(P, \hat{N}) = \frac{ab-dS}{dS}$

$$\frac{ds^2 - dS^2}{dS^2} = \frac{(ds+dS)(ds-dS)}{adS} \approx \frac{2abS(ds-dS)}{adS} = \frac{2ds-adS}{adS}$$

$$\frac{ds^2 - dS^2}{dS^2} = \frac{(ds+dS)(ds-dS)}{adS} \approx \frac{2abS(ds-dS)}{adS} = \frac{2ds-adS}{adS}$$

$$\frac{ds^2 - dS^2}{dS^2} = \frac{(ds+dS)(ds-dS)}{adS} \approx \frac{2abS(ds-adS)}{adS} = \frac{2ds-adS}{adS}$$

$$\frac{ds^2 - dS^2}{dS^2} = \frac{(ds+dS)(ds-dS)}{adS} \approx \frac{2abS(ds-adS)}{adS} = \frac{2ds-adS}{adS} = \frac{2ds-adS}{adS} = \frac{2ds-adS}{adS} = \frac{2ds-adS}{adS} = \frac{2ds-adS}{adS} = \frac{2ds-adS}{adS} = \frac{2as-adS}{adS} = \frac{$$

COEFFICIENTE DI DILATAZIONE VOLUMETRICA

Si consideri un intorno del corpo C indeformato a forma di parallelepipedo retto.

Post-deformazione, il parallelepipedo potrebbe essere non-retto, e presentare un volume differente. Assumiamo sia questo il caso.

$$dv = \left| \operatorname{olet} \left(\frac{2(x_1 x_2 x_3)}{2(X_1 X_2 X_3)} \right) \right| dV$$

$$= \det \left(8ij + \frac{\partial u_i}{\partial X_j} \right) \approx 1 + \frac{\partial u_i}{\partial X_2} + \frac{\partial u_2}{\partial X_2} + \frac{\partial u_3}{\partial X_2} = 1 + \operatorname{tr}(\underline{\varepsilon})$$

La traccia del tensore di deformazione pura equivale approssimativamente al coefficiente di dilatazione (o contrazione) volumetrica.

ROTAZIONE INFINITESIMA

Si consideri un tensore R associato ad una rotazione intorno ad un asse, supponiamo l'asse 3. Per effetto di una rotazione rigida:

$$R$$
 $\exists x : 1 \times = \underline{R} \cdot \underline{X} \longrightarrow \underline{w} = \underline{x} - \underline{X} = (\underline{R} - \underline{I}) \cdot \underline{X}$

Ricordando di essere sotto ipotesi di spostamenti infinitesimi, per cui:

$$R = \begin{cases} \cos \varphi_3 - \sin \varphi_5 & 0 \\ \cos \varphi_3 - \sin \varphi_5 & 0 \\ \cos \varphi_3 & 0 \end{cases} \approx \begin{cases} A - \varphi_3 & 0 \\ \varphi_3 & 0 \end{cases} = \begin{cases} 0 - \varphi_3 & 0 \\ \varphi_3 & 0 \end{cases} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{cases} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{cases} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{cases} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{cases} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{cases} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{cases} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{cases} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{cases} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{cases} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{cases} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{cases} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{cases} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{cases} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{cases} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{cases} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{cases} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{cases} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I}_{=} \begin{bmatrix} 0 - \varphi_3 & 0 \\ 0 & 0 \end{bmatrix} + \underbrace{I$$

Siccome nel caso più generale una rotazione rigida può essere una rotazione intorno a tutti e tre i versori del SDR, in generale vale che:

```
DEFORMAZIONI PRINCIPALI E DIREZ. PRINCIPALI DI DEFORMAZIONE
   Ricordiamo che:
                                                                                                       du = dx - dX = \nabla u \cdot dX = (\varepsilon + \omega) \cdot dX = \varepsilon \cdot dX + \omega \cdot dX
                                                                                                                                                                                         duque: du = du + du
Serviamo:
                                         dx = ds r
                                                                                                                                                                       dove N sarà il versore di un generico segmento orientato PQ
  A vettori PQ disposti lungo una stessa direzione si può dunque associare un unico versore.
  Verifichiamo dunque se esiste una direzione associabile al versore N per la quale,
   per effetto della sola deformazione pura, si trasformi in se stessa:
                                                                                                                                                                                             OSSIA: (\mathcal{E} - \lambda \cdot \mathbf{I}) \cdot \hat{\mathcal{N}} = \mathcal{Q} (HATEIGE NULLA)
                                                                                                 \varepsilon \cdot \hat{N} = \lambda \hat{N}
 Dinque:

| E1- \lambda \frac{1}{2} \mu_{12} \frac{1}{2} \mu_{13} | Existono \lambda_{\pi} \ge \lambda_{\pi} \ge \lambda_{\pi} \ge \lambda_{\pi} \frac{\pi}{2} \mu_{\pi} \mu_
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          PRINCIPAL"
            \frac{1}{2}\mu_{12} \frac{1}{2}\mu_{23} \frac{1}{2}\mu_{23} = 0 Existono ê1, ê2, ê3 "DREZIONI PRINCIPALI DI DEFORMAZIONI DI DEFORMAZIONI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DI DEFORMAZ."
                                                                                                                                                                                                                                                                                                (ε-λιΙ)·êι=0 Vie {1,2,3}
    Se dati i e j (indici querici de 1 a 3)...
                    → Ei ≠ E; allora êi Lêj (TERNA ORTONORMOLE)
 Dimostrazione: \begin{bmatrix} \mathcal{E} \cdot \hat{\mathbf{e}}_1 \cdot \hat{\mathbf{e}}_2 = \mathcal{E}_1 \hat{\mathbf{e}}_1 \cdot \hat{\mathbf{e}}_2 \end{bmatrix} \Rightarrow \mathcal{E}(\hat{\mathbf{e}}_1 \cdot \hat{\mathbf{e}}_2 - \hat{\mathbf{e}}_2 \cdot \hat{\mathbf{e}}_1) = (\mathcal{E}_1 - \mathcal{E}_{\overline{\mathbf{u}}}) \hat{\mathbf{e}}_1 \cdot \hat{\mathbf{e}}_2
\begin{bmatrix} \mathcal{E} \cdot \hat{\mathbf{e}}_2 \cdot \hat{\mathbf{e}}_1 = \mathcal{E}_{\overline{\mathbf{u}}} \cdot \hat{\mathbf{e}}_2 \cdot \hat{\mathbf{e}}_1 \end{bmatrix} \Rightarrow \mathcal{E}(\hat{\mathbf{e}}_1 \cdot \hat{\mathbf{e}}_2 - \hat{\mathbf{e}}_2 \cdot \hat{\mathbf{e}}_1) = (\mathcal{E}_1 - \mathcal{E}_{\overline{\mathbf{u}}}) \hat{\mathbf{e}}_1 \cdot \hat{\mathbf{e}}_2
\Rightarrow \mathcal{E}_1 = \mathcal{E}_1 \Rightarrow \mathcal{E}_1 \Rightarrow \mathcal{E}_1 \Rightarrow \mathcal{E}_2 \Rightarrow \mathcal{E}_1 \Rightarrow \mathcal{E}_2 \Rightarrow \mathcal{E}_2 \Rightarrow \mathcal{E}_2 \Rightarrow \mathcal{E}_2 \Rightarrow \mathcal{E}_3 \Rightarrow \mathcal{E}_4 \Rightarrow \mathcal{E
   Dimostrazione: esiste N = ali + Bez
                              E.N = QE. ên + BE. êz = QEI. ên + BEI. êz
                                  me E_I = E_{II} per ipoteri, quindi * = E_I(\alpha \hat{e}_1 + \alpha \hat{e}_2) = E_I \cdot \hat{N}
 In pratica abbiamo dimostrato che, indipendentemente da lpha e eta...
                                                                                                                                                                                        E. N = E, N Va, B c. s.d.
```

Cosa rappresentano le deformazioni principali?

Rappresentano la massima e la minima dilatazione lineare possibile; infatti...

$$\mathcal{E} \cdot \hat{N} \cdot \hat{N} = \begin{bmatrix} \mathcal{E}_{\mathbf{I}} & 0 & 0 \\ 0 & \mathcal{E}_{\mathbf{I}\mathbf{I}} & 0 \\ 0 & 0 & \mathcal{E}_{\mathbf{I}\mathbf{I}} \end{bmatrix} \cdot \begin{bmatrix} N_{1} \\ N_{2} \\ N_{3} \end{bmatrix} \cdot \begin{bmatrix} N_{1} \\ N_{2} \\ N_{3} \end{bmatrix} = \mathcal{E}_{\mathbf{I}} \cdot N_{1}^{2} + \mathcal{E}_{\mathbf{I}\mathbf{I}} \cdot N_{2}^{2} + \mathcal{E}_{\mathbf{I}\mathbf{I}} \cdot N_{3}^{2}$$

Ma per ipoteri:
$$\# \leq E_{I} (N_1^2 + N_2^2 + N_3^2) = E_{I}$$

Cosa rappresentano le direzioni principali di deformazione?

Rappresentano la terna di versori per i quali il tensore di deformazione pura è diagonale.

$$\mathcal{E} = \begin{bmatrix} \mathcal{E}_{\Sigma} & \circ & \circ \\ \circ & \mathcal{E}_{\overline{u}} & \circ \\ \circ & \circ & \mathcal{E}_{\overline{u}} \end{bmatrix} \text{ for } \hat{\mathcal{E}}_{1}, \hat{\mathcal{E}}_{2}, \hat{\mathcal{E}}_{3}$$

SPOSTAMENTI RIGIDI INFINITESIMI

Un campo di spostamenti si definisce rigido infinitesimo se ad esso corrisponde un tensore di deformazione infinitesima nullo in tutti i punti del corpo continuo:

$$\forall X \rightarrow \xi(X) = 0$$

Per detto campo di spostamenti si può dimostrare agevolmente come la parte antisimm. del suo gradiente si uguale da punto a punto, ossia che 🗸 = 💉

$$\underline{u}(Y) = \underline{u}(X) + \underline{w}(Y - X)$$
Dove $\begin{cases} Y \rightarrow Posizione & w \\ Y \rightarrow Posizione & w \\ Punto & Q \in C: Q \neq P \end{cases}$

e dove..

$$\omega = \begin{bmatrix}
0 & \frac{1}{2} \left(\frac{\partial \omega_1}{\partial X_2} - \frac{\partial \omega_2}{\partial X_1} \right) & \frac{1}{2} \left(\frac{\partial \omega_1}{\partial X_3} - \frac{\partial \omega_3}{\partial X_1} \right) \\
\frac{1}{2} \left(\frac{\partial \omega_2}{\partial X_1} - \frac{\partial \omega_1}{\partial X_2} \right) & 0 & \frac{1}{2} \left(\frac{\partial \omega_2}{\partial X_3} - \frac{\partial \omega_3}{\partial X_2} \right) \\
\frac{1}{2} \left(\frac{\partial \omega_2}{\partial X_1} - \frac{\partial \omega_1}{\partial X_2} \right) & \frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\partial \omega_2}{\partial X_3} \right) & 0 & -\frac{1}{2} \left(\frac{\partial \omega_2}{\partial X_1} - \frac{\partial \omega_3}{\partial X_2} \right) \\
\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_1} - \frac{\partial \omega_1}{\partial X_3} \right) & \frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\partial \omega_2}{\partial X_3} \right) & 0 & -\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_1} - \frac{\partial \omega_3}{\partial X_2} \right) \\
\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_1} - \frac{\partial \omega_1}{\partial X_3} \right) & \frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\partial \omega_2}{\partial X_3} \right) & 0 & -\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\partial \omega_3}{\partial X_2} \right) \\
\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_1} - \frac{\partial \omega_1}{\partial X_3} \right) & \frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\partial \omega_2}{\partial X_3} \right) & 0 & -\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\partial \omega_3}{\partial X_2} \right) \\
\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_1} - \frac{\partial \omega_1}{\partial X_3} \right) & \frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\partial \omega_2}{\partial X_3} \right) & 0 & -\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\partial \omega_3}{\partial X_2} \right) \\
\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_1} - \frac{\partial \omega_1}{\partial X_3} \right) & \frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\partial \omega_2}{\partial X_3} \right) & 0 & -\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\partial \omega_2}{\partial X_3} \right) \\
\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_1} - \frac{\partial \omega_1}{\partial X_2} \right) & \frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\partial \omega_2}{\partial X_3} \right) & 0 & -\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\partial \omega_2}{\partial X_3} \right) \\
\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_1} - \frac{\partial \omega_1}{\partial X_2} \right) & \frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\partial \omega_2}{\partial X_3} \right) & 0 & -\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\partial \omega_2}{\partial X_3} \right) \\
\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_1} - \frac{\partial \omega_1}{\partial X_2} \right) & \frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\partial \omega_2}{\partial X_3} \right) & 0 & -\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\partial \omega_2}{\partial X_3} \right) \\
\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_1} - \frac{\partial \omega_2}{\partial X_2} \right) & \frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\partial \omega_2}{\partial X_3} \right) \\
\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\partial \omega_2}{\partial X_3} \right) & 0 & -\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\partial \omega_2}{\partial X_3} \right) \\
\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\partial \omega_2}{\partial X_3} \right) & 0 & -\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\partial \omega_2}{\partial X_3} \right) \\
\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\omega_2}{\partial X_3} \right) & 0 & -\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X_2} - \frac{\omega_2}{\partial X_3} \right) \\
\frac{1}{2} \left(\frac{\partial \omega_3}{\partial X$$

The property of the second section $\mathcal{L}(X) = \mathcal{L}(X) + \mathcal{L}(Y - X)$ $\hat{\mathcal{L}}(X) = \mathcal{L}(X) + \mathcal{L}(Y - X)$ $\hat{\mathcal{L}}(X) = \mathcal{L}(X) + \mathcal{L}(Y - X)$

Assumiamo che Q sia il polo del campo di spostamenti rigidi infinitesimi.

In questo caso, $m{arphi}$ sarà il vettore della rotazione del corpo lungo i tre assi e intorno a Q.

Il campo di spostamenti è in questo caso di tipo roto-traslatorio; cambiando il polo cambia anche il vettore traslazione, mentre il vettore rotazione rimane immutato.

rimane immutato.

Dato
$$Q:|X'$$
 me sia vettou positione, $X' \neq X$
 $\{ \omega(Y) = \omega(X) + \varphi \wedge (Y - X) \} \xrightarrow{\text{Softer2}} \omega(Y) - \omega(X') = \varphi \wedge (Y - X')$
 $\omega(X') = \omega(X) + \varphi \wedge (X' - X) \xrightarrow{\text{Points}} \psi(Y - X')$
 $\omega(Y) = \omega(X') + \varphi \wedge (Y - X')$
 $\psi(X') = \omega(X') + \varphi \wedge (Y - X')$
 $\psi(X') = \omega(X') + \varphi \wedge (Y - X')$