# FINANCIAL ECONOMETRICS

- Week 2, Lecture 1 -

### ML ESTIMATION FOR GARCH MODELS

VU ECONOMETRICS AND DATA SCIENCE 2024-2025

Paolo Gorgi



## Today's class

- ML estimation of GARCH models
  - Deriving the likelihood function
  - Asymptotic properties of the ML estimator
- Practical implementation of Maximum Likelihood
  - Numerical optimization of the log-likelihood
  - Maximum Likelihood with R

### Parameter estimation

Important: parameter values of GARCH models define stochastic properties of financial returns:

- Temporal dependence in conditional variance;
- Stationarity and unconditional distribution.
- Conditional probabilities;

In practice: we do not know what is the true parameter vector  $\theta_0 = (\omega, \alpha_1, ..., \alpha_q, \beta_1, ..., \beta_p)$  of the GARCH(p, q) that generated observed returns.

**Solution:** we can use the observed sample  $y_1, y_2, ..., y_T$  to estimate the true parameter vector  $\theta_0$  by Maximum Likelihood.



# ML estimation of GARCH models

## Deriving the likelihood function (i)

Standard estimation method: Maximum Likelihood

**Recall:** likelihood function = joint pdf  $p(y_1, ..., y_T; \theta)$ 

- The pdf is a function of data  $y_1, ..., y_T$ ;
- The likelihood is a function of parameters  $\theta = (\omega, \alpha_1, ..., \alpha_q, \beta_1, ..., \beta_p)$ .

**Recall:** a joint pdf can always be factorized as

$$f(x,y) = f(x|y) \times f(y).$$

Intro to Time Series: this factorization is useful to write the likelihood function in terms of conditional densities!

## Deriving the likelihood function (ii)

Factorizing the joint pdf...

$$p(y_1,\ldots,y_T;\theta)=p(y_2,\ldots,y_T|y_1;\theta)\times p(y_1;\theta).$$

$$p(y_2,...,y_T|y_1;\theta) = p(y_3,...,y_T|y_2,y_1;\theta) \times p(y_2|y_1;\theta)$$

Together, this implies that

$$p(y_1,...,y_T;\theta) = p(y_3,...,y_T|y_2,y_1;\theta) \times p(y_2|y_1;\theta) \times p(y_1;\theta).$$

Repeating this procedure: we write the likelihood function as

$$p(y_1,\ldots,y_T;\theta) = p(y_1;\theta) \prod_{t=2}^T p(y_t|y_{t-1},\ldots,y_1;\theta).$$

The **log-likelihood function** is given by

$$\log p(y_1,\ldots,y_T;\theta) = \log p(y_1;\theta) + \sum_{t=2}^T \log p(y_t|y_{t-1},\ldots,y_1;\theta).$$

# Deriving the likelihood function (iii)

• Question: why is this factorization useful?

**Answer 1:** joint pdf is very complicated or intractable!

**Answer 2:** each conditional pdf is perfectly simple!

• Example: for ARCH and GARCH models we have seen that the distribution of  $y_t|Y^{t-1}$  is Gaussian with mean zero and variance  $\sigma_t^2$ ,

$$y_t|y_{t-1}, y_{t-2}, \dots \sim N(0, \sigma_t^2).$$

**Hence:** the conditional pdf is given by

$$p(y_t|y_{t-1}, y_{t-2}, ...; \theta) = \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left\{-\frac{y_t^2}{2\sigma_t^2}\right\}.$$

## Log-likelihood of the ARCH(1) model (i)

Example: ARCH(1) model

$$p(y_t|y_{t-1};\theta) = \frac{1}{\sqrt{2\pi(\omega + \alpha_1 y_{t-1}^2)}} \exp\left\{-\frac{y_t^2}{2(\omega + \alpha_1 y_{t-1}^2)}\right\}.$$

**Hence:** the log-likelihood function is given by

$$\log (p(y_1, \dots, y_T; \theta)) = \log (p(y_1; \theta)) + \sum_{t=2}^{T} \log (p(y_t | y_{t-1}; \theta))$$

$$= \log (p(y_1; \theta)) - \frac{1}{2} \sum_{t=2}^{T} \left( \log(2\pi) + \log \left( \omega + \alpha_1 y_{t-1}^2 \right) + \frac{y_t^2}{\omega + \alpha_1 y_{t-1}^2} \right).$$

In practice:  $p(y_1; \theta)$  is unknown and ignored!

## Log-likelihood of the ARCH(1) model (ii)

**Important:** the constant term  $\log(2\pi)$  can also be ignored!

Hence: the simplified log-likelihood takes the form

$$L(y_1, ..., y_T, \theta) = \sum_{t=2}^{T} l_t(\theta)$$

$$l_t(\theta) = -\frac{1}{2} \left( \log \left( \omega + \alpha_1 y_{t-1}^2 \right) + \frac{y_t^2}{\omega + \alpha_1 y_{t-1}^2} \right).$$

Simplifications: Logarithmic transformation of the likelihood and adding constants to the log-likelihood does not change the optimization problem (i.e. the maximizer is the same, see next slide)

# Maximum likelihood: simplifications



Figure: Likelihood functions for Apple daily log-returns for different values of  $\alpha_1$  with fixed  $\omega = 2$ .

## Log-likelihood of the GARCH(1,1) model (i)

**Another example:** the GARCH(1,1) model

$$p(y_t|y_{t-1}, y_{t-2}, \dots; \theta) = \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left\{-\frac{y_t^2}{2\sigma_t^2}\right\}.$$
where:  $\sigma_t^2 = \omega + \alpha_1 y_{t-1}^2 + \beta_1 \sigma_{t-1}^2.$ 

**Hence:** we have the log-likelihood function

$$\log (p(y_1, ..., y_T; \theta)) = \log (p(y_1; \theta)) + \sum_{t=2}^{T} \log (p(y_t | y_{t-1}, ..., y_1; \theta))$$
$$= \log (p(y_1; \theta)) - \frac{1}{2} \sum_{t=2}^{T} \left( \log(2\pi) + \log \sigma_t^2 + \frac{y_t^2}{\sigma_t^2} \right)$$

## Log-likelihood of the GARCH(1,1) model (ii)

### Simplified log-Likelihood:

$$L(y_1, ..., y_T, \theta) = \sum_{t=2}^{T} l_t(\theta) = \sum_{t=2}^{T} -\frac{1}{2} \left( \log \sigma_t^2 + \frac{y_t^2}{\sigma_t^2} \right),$$

where

$$\sigma_t^2 = \omega + \alpha_1 y_{t-1}^2 + \beta_1 \sigma_{t-1}^2.$$

**Note:**  $\sigma_1^2$  must be fixed to some value!

**Note:** A good option is setting  $\sigma_1^2$  equal to the sample variance.

**Important:** log-Likelihood is the same for GARCH(p,q)... only difference lies in updating equation!



## Maximum Likelihood Estimator (MLE)

**Recall:** the MLE is defined as

$$\hat{\theta}_T = \arg\max_{\theta \in \Theta} L(y_1, ..., y_T, \theta).$$

**Important:**  $L(y_1,...,y_T,\theta)$  is a random function.

Every new realization  $y_1, ..., y_T$  defines a new log-likelihood function to be maximized with respect to  $\theta$ .

**Hence:** the MLE  $\hat{\theta}_T$  is also a random variable!

Every new realization  $y_1, ..., y_T$  defines a new point estimate of the true parameter  $\theta_0$ .



## MLE and asymptotic properties

**Note:** the MLE  $\hat{\theta}_T$  is a continuous random variable.

**Hence:** there is zero probability that  $\hat{\theta}_T = \theta_0$ .

**However:** the MLE does have important properties!

Most important: the MLE  $\hat{\theta}_T$  is consistent and asymptotically normal for  $\theta_0$ .

**Recall:**  $\hat{\theta}_T$  is consistent for  $\theta_0$  if  $\hat{\theta}_T \stackrel{p}{\to} \theta_0$  as  $T \to \infty$ .

**Recall:**  $\hat{\theta}_T$  is asymptotically Normal if  $\sqrt{T}(\hat{\theta}_T - \theta_0) \stackrel{d}{\to} N(\mathbf{0}, \Omega)$  as  $T \to \infty$ .

**Recall:**  $\Omega$  is called the *asymptotic variance* of  $\hat{\theta}_T$ .



## Asymptotic distribution of the MLE

### Lemma (Asymptotic distribution)

Under appropriate regularity conditions  $\hat{\theta}_T$  is consistent and asymptotically normal for  $\theta_0$ ,

$$\hat{\theta}_T \stackrel{p}{\to} \theta_0 \quad as \quad T \to \infty,$$

and 
$$\sqrt{T}(\hat{\theta}_T - \theta_0) \stackrel{d}{\to} N(\mathbf{0}, \Omega)$$
 as  $T \to \infty$ ,

where  $\Omega = \mathcal{I}(\theta_0)^{-1}$  is the inverse Fisher Information matrix

$$\mathcal{I}(\theta_0) = -\mathbb{E}\left(\frac{\partial^2 l_t(\theta)}{\partial \theta \partial \theta^{\mathsf{T}}}\right) = \frac{1}{2}\mathbb{E}\left(\frac{1}{\sigma_t^4} \frac{\partial \sigma_t^2}{\partial \theta} \frac{\partial \sigma_t^2}{\partial \theta^{\mathsf{T}}}\right).$$

## Derivative process

The Fisher information  $\mathcal{I}(\theta_0)$  depends on the derivative process  $\frac{\partial \sigma_t^2}{\partial \theta}$ ; **Note that:** the random sequence  $\frac{\partial \sigma_t^2}{\partial \theta}$  is obtained by its own updating equation!

**Example:** Fort the GARCH(1,1) model we have

$$\frac{\partial \sigma_t^2}{\partial \theta} = \begin{bmatrix} \frac{\partial \sigma_t^2}{\partial \omega} & \frac{\partial \sigma_t^2}{\partial \alpha} & \frac{\partial \sigma_t^2}{\partial \beta} \end{bmatrix}^\mathsf{T},$$

where

$$\begin{split} \frac{\partial \sigma_{t}^{2}}{\partial \omega} &= \frac{\partial \omega}{\partial \omega} + \frac{\partial \alpha y_{t-1}^{2}}{\partial \omega} + \frac{\partial \beta \sigma_{t-1}^{2}}{\partial \omega} = 1 + 0 + \beta \frac{\partial \sigma_{t-1}^{2}}{\partial \omega} \\ \frac{\partial \sigma_{t}^{2}}{\partial \alpha} &= \frac{\partial \omega}{\partial \alpha} + \frac{\partial \alpha y_{t-1}^{2}}{\partial \alpha} + \frac{\partial \beta \sigma_{t-1}^{2}}{\partial \alpha} = 0 + y_{t-1}^{2} + \beta \frac{\partial \sigma_{t-1}^{2}}{\partial \alpha} \\ \frac{\partial \sigma_{t}^{2}}{\partial \beta} &= \frac{\partial \omega}{\partial \beta} + \frac{\partial \alpha y_{t-1}^{2}}{\partial \beta} + \frac{\partial \beta \sigma_{t-1}^{2}}{\partial \beta} = 0 + 0 + \sigma_{t-1}^{2} + \beta \frac{\partial \sigma_{t-1}^{2}}{\partial \alpha} \end{split}$$

## GARCH(1,1): derivative process

Note: Taking all equations together, we obtain the following lemma

### Lemma (Derivative process)

The conditional volatility derivative process  $\{\partial \sigma_t^2/\partial \theta\}$  of the GARCH(1,1) model satisfies the following updating equation

$$\frac{\partial \sigma_t^2}{\partial \theta} = \begin{bmatrix} 1 \\ y_{t-1}^2 \\ \sigma_{t-1}^2 \end{bmatrix} + \beta \frac{\partial \sigma_{t-1}^2}{\partial \theta}.$$

# Statistical inference (i)

**Inference:** for large T, the MLE  $\hat{\theta}_T$  is:

- approximately Gaussian
- centered at the unknown  $\theta_0$
- with variance  $\frac{1}{T} \mathcal{I}(\theta_0)^{-1}$  that vanishes to zero as  $T \to \infty$

$$\sqrt{T}(\hat{\theta}_T - \theta_0) \stackrel{app}{\sim} N(0, \mathcal{I}(\theta_0)^{-1})$$

where  $\stackrel{app}{\sim}$  denotes an 'approximate' distribution

As a result:

$$\hat{\theta}_T - \theta_0 \stackrel{app}{\sim} N \Big( 0 , \frac{1}{T} \mathcal{I}(\theta_0)^{-1} \Big)$$

and 
$$\hat{\theta}_T \stackrel{app}{\sim} N(\theta_0 , \frac{1}{T} \mathcal{I}(\theta_0)^{-1}).$$

## Statistical inference (ii)



Figure: Distribution of the ML estimator  $\hat{\theta}_T = (\hat{\omega}_T, \hat{\alpha}_T, \hat{\beta}_T)$  for different sample sizes T. The red line denotes the true value  $\theta_0$ .



## Statistical inference (iii)



Figure: Distribution of  $\sqrt{T}(\hat{\theta}_T - \theta_0)$  the for different sample sizes T. The red line denotes the normal density function.

# Statistical inference in practice (i)

In practice: the Fisher information matrix  $\mathcal{I}(\theta_0) = -\mathbb{E}(\partial^2 l_t(\theta)/\partial\theta\partial\theta^{\mathsf{T}})$  is unknown since

- It depends on the unknown true parameter  $\theta_0$ .
- The expectation  $\mathbb{E}$  is unknown.

**However:** we can approximate  $\mathcal{I}(\theta_0)$  by its *plug-in estimator* 

$$\mathcal{I}(\theta_0) = -\mathbb{E}\left(\frac{\partial^2 l_t(\theta)}{\partial \theta \partial \theta^{\mathsf{T}}}\right) \approx -\frac{1}{T} \sum_{t=1}^T \frac{\partial^2 l_t(\hat{\theta}_T)}{\partial \theta \partial \theta^{\mathsf{T}}}.$$

**Note 1:** we replaced  $\mathbb{E}$  by the sample average  $1/T \sum_{t=1}^{T}$ 

**Note 2:** we replaced  $\theta_0$  by the sample estimate  $\hat{\theta}_T$ .



# Statistical inference in practice (ii)

Final step: invert the estimate of  $\mathcal{I}(\theta_0)$  and obtain an estimate of the asymptotic covariance matrix

$$\hat{\Omega} = \left(-\frac{1}{T} \sum_{t=1}^{T} \frac{\partial^{2} l_{t}(\hat{\theta}_{T})}{\partial \theta \partial \theta^{\mathsf{T}}}\right)^{-1}.$$

**Note:** we can use  $\hat{\Omega}$  to:

- Report standard errors;
- ② Construct confidence intervals for  $\theta_0$ ;
- Produce p-values.

Note: this is all done as in your intro to statistics courses!



### Standard errors and confidence intervals

Standard errors of the *i*th element of the vector  $\hat{\theta}_T$ :

$$SE(\hat{\theta}_T^i) = \sqrt{\frac{1}{T}\hat{\Omega}_{ii}}$$

Approximate 95% confidence interval for the *i*th element of  $\theta_0$ :

$$\left[\hat{\theta}_T^i - 1.96 \times \sqrt{\frac{1}{T}\hat{\Omega}_{ii}} \quad , \quad \hat{\theta}_T^i + 1.96 \times \sqrt{\frac{1}{T}\hat{\Omega}_{ii}}\right]$$

# Practical implementation of Maximum Likelihood

# Numerical optimization of the log-likelihood (i)

**Question:** how can we find the maximizer  $\hat{\theta}_T$ ?

#### Intro Econometrics:

- Take derivative of the log-likelihood;
- Set derivative to zero;
- $\odot$  Solve for  $\hat{\theta}_T$

### **Example:** linear Gaussian regression model

For the model 
$$y_t = \beta x_t + \epsilon_t$$
 we obtained  $\hat{\beta} = \frac{\sum_{t=1}^T y_t x_t}{\sum_{t=1}^T x_t^2}$ 

### **Example:** Linear Gaussian AR(1) model

For the model 
$$x_t = \rho x_{t-1} + \epsilon_t$$
 we obtained  $\hat{\rho} = \frac{\sum_{t=1}^T x_t x_{t-1}}{\sum_{t=1}^T x_{t-1}^2}$ 

## Numerical optimization of the log-likelihood (ii)

**Problem:** GARCH models are too complicated!

**Problem:** We cannot solve analytically for  $\hat{\theta}_T$ 

Solution: We must proceed numerically!

**Idea:** We can evaluate the log-likelihood function for several values of  $\theta$  and pick the one that attains the maximum value! (table below)

Of course: There are better methods! Newton-type algorithms evaluate the log-Likelihood sequentially and step in the most promising direction

## Numerical optimization of the log-likelihood (iii)

Table: Log-likelihood function of the GARCH(1,1) model for daily Apple log-returns evaluated at different values of  $\theta$ .

| parameter value $\theta = (\omega, \alpha_1, \beta_1)$ | log-lik value |
|--------------------------------------------------------|---------------|
| (0.30, 0.10, 0.70)                                     | -2962.5       |
| (0.20, 0.10, 0.70)                                     | -3090.0       |
| (0.20, 0.07, 0.70)                                     | -3211.4       |
| (0.20, 0.07, 0.80)                                     | -2941.6       |
| (0.20, 0.07, 0.85)                                     | -2882.3       |

## The Newton-Raphson algorithm (i)

### A simple and more efficient algorithm...

### Definition: Newton-Raphson Algorithm

Starting from an initial value  $\theta^{(1)}$ , update the parameter vector as follows

$$\theta^{(k+1)} = \theta^{(k)} - \nabla L_T(\theta^{(k)}) \left( \nabla^2 L_T(\theta^{(k)}) \right)^{-1}$$

where  $\nabla L_T(\theta^{(k)})$  and  $\nabla^2 L_T(\theta^{(k)})$  denote the Gradient vector and the Hessian matrix respectively

$$\nabla L_T(\theta^{(k)}) = \frac{\partial L_T(\theta^{(k)})}{\partial \theta} \quad and \quad \nabla^2 L_T(\theta^{(k)}) = \frac{\partial^2 L_T(\theta^{(k)})}{\partial \theta \partial \theta^{\top}}.$$

## The Newton-Raphson algorithm (ii)

### Lemma (numerical optimization)

Under appropriate regularity conditions, the Newthon-Raphson algorithm converges to the MLE as the number of iterations k go to infinity; i.e.  $\theta^{(k)} \to \hat{\theta}_T$  as  $k \to \infty$ .

**Note:** you can try to implement the Newton-Raphson and other algorithms in R to practice and have fun!

However: strictly speaking, you do not have to do this...

Efficient Newton-type algorithms are already implemented in most software packages



## Parameter estimation with R (i)

**Estimation with R:** we first create an R function to evaluate the log-likelihood function of the GARCH(1,1).

```
llik_fun_GARCH <- function(par, x){</pre>
```

Note: We call this function llik\_fun\_GARCH

- llik\_fun\_GARCH takes as input a vector of data labeled x and a parameter vector labeled par
- llik\_fun\_GARCH returns as output the average log-likelihood

Note: You can find this function in the course's R folder!



## Parameter estimation with R (ii)

**First:** We define the sample size and parameter values from the inputs par and x.

```
n <- length(x)
omega <- exp(par[1])
alpha <- exp(par[2])/(1+exp(par[2]))
beta <- exp(par[3])/(1+exp(par[3]))</pre>
```

Note that: The input vector par is transformed through link functions to impose some restriction on  $\omega$ ,  $\alpha$  and  $\beta$ , which are useful to avoid numerical problems. In particular, the link function  $\exp(p)$  ensures  $\omega > 0$  and the logistic link function logistic  $(p) = \exp(p)/(1 + \exp(p))$  ensures  $0 < \alpha, \beta < 1$ .

### Parameter estimation with R (iii)

**Next:** We obtain the conditional variance  $\sigma_t^2(\theta)$  (labeled sig2) using a for loop

```
sig2 <- rep(0,n)
sig2[1] <- var(x)

for(t in 2:n){
    sig2[t] <- omega + alpha*x[t-1]^2 + beta*sig2[t-1]}</pre>
```

Note that: The updating equation of  $\sigma_t^2(\theta)$  is initialized using the sample variance. Alternative initializations may be considered.

## Parameter estimation with R (iv)

**Finally:** We calculate the log-likelihood contribution of each observation  $y_t$  and the average log-likelihood value 11ik, which is returned as output of the R function.

Note that: 1 is a vector containing the log-likelihood values  $l_t(\theta)$  from t = 1 to t = T

## Parameter estimation with R (v)

### Stacking all the code together: we obtain the script

```
llik_fun_GARCH <- function(par,x){</pre>
  n \leftarrow length(x)
  omega <- exp(par[1])
  alpha \leftarrow exp(par[2])/(1+exp(par[2]))
  beta \leftarrow \exp(\operatorname{par}[3])/(1+\exp(\operatorname{par}[3]))
  sig2 < -rep(0,n)
  sig2[1] <- var(x)
  for(t in 2:n){
    sig2[t] \leftarrow omega + alpha*x[t-1]^2 + beta*sig2[t-1]
  1 < -(1/2)*log(2*pi) - (1/2)*log(sig2) - (1/2)*x^2/sig2
  llik <- mean(1)
  return(llik)
```

## Optimizing the likelihood function (i)

We are now ready to optimize the log-likelihood function!

Note: The code for estimation of GARCH(1,1) is available in the R file Estimate\_ML\_GARCH.R

**First:** We load the series of interest and store it in the object x.

**Next:** We define initial value for  $\theta$  for the optimization

```
a <- 0.2
b <- 0.6
omega <- var(x)*(1-a-b)
par_ini <- c(log(omega),log(a/(1-a)),log(b/(1-b)))</pre>
```

Note: We set the initialization par\_ini by using the inverse of the link functions we have used for the likelihood.



## Optimizing the likelihood function (ii)

**Finally:** We obtain the point estimate  $\hat{\theta}_T$  by optimizing the log-likelihood function.

**Note:** We use optim() to minimize the *negative* of the log-likelihood function. We set par\_ini as initialization and we select the algorithm BFGS.

The output of the optimization is stored in est.

## Optim output

Note: The output of optim() includes

- The point estimates  $\hat{\theta}_T$  (est\$par).
- ② The value of negative average log-likelihood evaluated at  $\hat{\theta}_T$  (est\$value).
- Exit flag that indicates if the optimization has been successful (est\$convergence). The value zero indicates a successful optimization (see help(optim)).

## Standard errors and confidence intervals (i)

We can obtain an estimate of the covariance matrix of the MLE  $\hat{\Omega}$  from the hessian matrix of the average negative log-likelihood function (2nd derivative matrix).

Note: The function Hess\_fun\_GARCH() gives the average log likelihood without transforming the parameter input with the link functions (see the R file Hess\_fun\_GARCH.R). This is needed because we want the hessian with respect to the original parameters not through the link functions.

First: We obtain the hessian matrix using the R function optimHess() as follows:

```
hessian <- optimHess(par=theta_hat,
fn=function(par)-Hess_fun_GARCH(par,x))
```

## Standard errors and confidence intervals (ii)

**Next:** We obtain  $\hat{\Omega}$  by inverting the hessian of the average negative log-likelihood.

```
SIGMA <- solve(hessian)
```

**Finally:** We obtain a 95% level confidence interval for  $\beta$ .

```
lb_beta <- theta_hat[3]-1.96*sqrt(SIGMA[3,3])/sqrt(length(x))
ub_beta <- theta_hat[3]+1.96*sqrt(SIGMA[3,3])/sqrt(length(x))
ci beta <- c(lb beta, ub beta)</pre>
```

## Summary of the lecture

- The parameter vector  $\theta_0 = (\omega, \alpha_1, ..., \alpha_q, \beta_1, ..., \beta_p)$  of GARCH models can be estimated by ML.
- The log-likelihood function can be obtained as the sum of the conditional log-densities.
- The MLE is consistent and asymptotically Normal with covariance matrix given by the inverse on the Fisher Information.
- In practice, the log-likelihood function needs to be optimized using numerical algorithms (such as Newton-Raphson). This can be done in R using optim().