

Using multiplication:

37

37

259

111

This matches with the result obtained using the column method.

(iii) Here, a = 5, b = 4

Step 1. Make 3 columns and write the values of a^2 , 2 x a x b and b^2 in these columns.

Column I	Column II	Column III	6
a ²	2 x a x b	b^2	
25	40	16	

Step 2. Underline the unit digit of b^2 (in Column III) and add its tens digit, if any, with 2 x a x b (in Column II).

Column I	Column II	Column III	
a ²	2 x a x b	b ²	
25	40 + 1	1 <u>6</u>	
	41		

Step 3. Underline the unit digit in Column II and add the number formed by the tens and other digits, if any, with a2 in Column I.

Column I	Column II	Column III	
a ²	2 x a x b	b ²	
25 + 4	40 + 1	1 <u>6</u>	
29	4 <u>1</u>		*

Step 4. Underline the number in Column I.

Column I	Column II	Column III	
a ²	2 x a x b	b ²	
25 + 4	40 + 1	1 <u>6</u>	
29	4 <u>1</u>		

Step 5. Write the underlined digits at the bottom of each column to obtain the square of the given number.

In this case, we have:

 $54^2 = 2916$

Using multiplication:

54

__54

216

270 2916

This matches with the result obtained using the column method.

(iv) Here, a = 7, b = 1

Step 1. Make 3 columns and write the values of a^2 , 2 x a x b and b^2 in these columns.

otop 1. manto o colan	mo dira mino mo valado or a , E n c	no and b in those columns.	
Column I	Column II	Column III	
a ²	2 x a x b	b ²	
49	14	1	

Step 2. Underline the unit digit of b^2 (in Column III) and add its tens digit, if any, with 2 x a x b (in Column II).

Column I	Column II	Column III	
Column I	Column	Column III	
a ²	2 x a x b	b ²	
49	14 + 0	1	
	14		

Step 3. Underline the unit digit in Column II and add the number formed by the tens and other digits, if any, with a^2 in Column I.

Column I	Column II	Column III	
a ²	2 x a x b	b ²	
49 + 1	14 + 0	1	
50	1 <u>4</u>	0	

Step 4. Underline the number in Column I.

Column I	Column II	Column III	
a ²	2 x a x b	b ²	
49 + 1	14 + 0	1	
<u>50</u>	1 <u>4</u>		

Step 5. Write the underlined digits at the bottom of each column to obtain the square of the given number.

In this case, we have:

 $71^2 = 5041$

Using multiplication:

71

__71

71

497

5041

This matches with the result obtained using the column method.

(v) Here, a = 9, b = 6

Step 1. Make 3 columns and write the values of a^2 , 2 x a x b and b^2 in these columns.

Column I	Column II	Column III	
a ²	2 x a x b	b ²	
81	108	36	

Step 2. Underline the unit digit of b^2 (in Column III) and add its tens digit, if any, with 2 x a x b (in Column II).

Column I	Column II	Column III	
a ²	2 x a x b	b ²	
81	108 + 3	3 <u>6</u>	
	111		

Step 3. Underline the unit digit in Column II and add the number formed by the tens and other digits, if any, with a^2 in Column I.

Column I	Column II	Column III	
a ²	2 x a x b	b ²	
81 + 11	108 + 3	3 <u>6</u>	
92	11 <u>1</u>		

Step 4. Underline the number in Column I.

Column I	Column II	Column III	
a ²	2 x a x b	b ²	
81 + 11	108 + 3	3 <u>6</u>	
92	11 <u>1</u>	(5	

Step 5. Write the underlined digits at the bottom of each column to obtain the square of the given number.

In this case, we have:

96² = 9216

Using multiplication:

96

96

576

864

9216

This matches with the result obtained using the column method.

********* END *******