

Europäisches Patentamt

European Patent Office

Office européen des brevets

11) Publication number:

0 497 103 A2

(12)

EUROPEAN PATENT APPLICATION

21) Application number: 92100271.3

② Date of filing: 09.01.92

(51) Int. Cl.⁵: **C12N** 15/55, C12N 9/18, C12N 1/20, C12P 41/00, C12P 7/40, //(C12N1/21, C12R1:19)

The microorganism(s) has (have) been deposited with the Fermentation Research Institute under number(s) FERM BP-3658.

- (3) Priority: 10.01.91 JP 1537/91
- 43 Date of publication of application: 05.08.92 Bulletin 92/32
- Designated Contracting States:
 CH DE FR GB LI NL

- (7) Applicant: SUMITOMO CHEMICAL COMPANY LIMITED 5-33, Kitahama 4-chome, Chuo-ku Osaka-shi, Osaka 541(JP)
- | Inventor: Nishizawa, Masako 1-4-39-904, Tsukimiyama Takarazuka-shi, Hyogo-ken(JP) Inventor: Okawa, Hideo 14-3-403, Asahigaoka-cho Ashiya-shi, Hyogo-ken(JP) Inventor: Kanaoka, Masaharu 2-10-1-123, Sonehigashinocho Toyonaka-shi, Osaka-fu(JP)
- (4) Representative: Vossius & Partner Siebertstrasse 4 P.O. Box 86 07 67 W-8000 München 86(DE)
- Gene encoding asymmetrically active esterase.
- An isolated gene encoding an esterase capable of asymmetrically hydrolysing an ester of chrysanthemumic acid or its derivative to give an intermediate useful for the production of pharmaceutically and/or agriculturally useful compounds, expression plasmids containing said gene, microorganisms transformed with said expression plasmids, and the production of the esterase by culturing said transformants.

This invention relates to an isolated gene encoding an esterase originated from a microorganism. More particularly, it relates to an isolated gene (or an isolated DNA) encoding an esterase useful for the asymmetric hydrolysis, expression plasmids containing said DNA, microorganisms transformed with said expression plasmids, and the production of the esterase by culturing said transformants.

The recombinant esterase obtained according to the present invention can be used for the preparation of an optically active compound useful as an intermediate for clinically or agriculturally important substances. Examples of optically active compounds which can be produced by means of the esterase of the invention include an optically active chrysanthemumic acid (KCA; 2,2-dimethyl-3-isobutenylcyclopropane-1-carboxylic acid), i.e., (+)-trans-KCA, useful as an acidic part for the production of pyrethroid insecticides.

Medically and/or agriculturally useful compounds, as well as their intermediates, often show complicated structure, which leads to the hardness of synthesis thereof by conventional organic synthetic methods. It should be more difficult when the desired compound is optically active. For example, pyrethrins, which can be produced from KCA, possess three asymmetric carbons and their insecticidal activity varies from one stereoisomer to another. Therefore, it has been needed to establish methods for preparing KCA or KCA derivative of a desired structure for the preparation of desired stereoisomer of pyrethrins. However, the complexity of the structure prevented the development of such methods.

Recently, a bioreactor-system which utilizes an enzyme derived from organisms as a catalyst has been developed. This system takes advantage of the rigid stereospecificity of enzymes. Examples of enzymes employed in such reactions include an esterase derived from pig liver (Laumen et al, Tetrahedron Lett. 26:407-410 (1985); and Wang et al (J.Am.Chem.Soc. 106: 3695 (1984)). Microorganism-derived enzymes have also been used for the same purpose. For example, an esterase derived from Bacillus subtilis NRRL-B-558 was used for the synthesis of cephalosporin derivatives (Appl Microbiol. 30: 413-419 (1975)). However, the isolation and purification of enzyme from an organism in sufficient amount is not easy. Furthermore, the enzymes derived from mammal tissue are usually unstable (like PLE), hard to handle and uneconomical because of the limited supply, and therefore are often unsuitable for the industrial application. When an organism-derived hydrolytic enzyme such as esterase, lipase or the like is used as a bioreactor for the production of an optically active compound, it can catalyze the following illustrative reactions: (a) stereoselective hydrolysis of a pro-chiral compound which gives rise to a chiral compound; or (c) stereoselective ester-formation as the reverse reaction of the above (a) or (b).

In order to apply a microorganism-derived esterase to the stereoselective hydrolysis of a racemic ester, it is necessary to search into a lot of naturally occurring microorganisms to select a particular strain capable of producing a desired enzyme with a high specific activity, culture the same, and isolate and purify the produced enzyme, if desired. However, these processes generally involve many problems such as difficulty of cultivation, inadequate activity, poor efficiency, low productivity and the like. These facts made it difficult to proceed the industrial production of an optically active compound by means of a cultured microorganism or a purified enzyme therefrom. Thus, it has been needed to obtain a sufficient amounts of an esterase broadly employable for the organic synthesis of optically active compounds such as KCA. In this regard, bacterial esterase are especially useful because many kinds of biologically active enzymes can be synthesized by means of recombinant DNA technology using bacterial cells as hosts.

The present inventors, under these circumstances, had searched into various microorganisms and have found that a strain of Arthrobacter globiformis, designated as IFO-12958, produces an esterase having a high stereoselectivity to various kinds of substrates and disclosed (Japanese Patent Publication (KOKAI) No. 181788/1989). However, owing to the low expression of the esterase, A. globiformis IFO-12958 could not give sufficient hydrolytic effeciency and was not suited for the industrial application. In the course of further investigation, the inventors isolated the gene encoding the esterase from SC-6-98-28 (FERM BP-3618), which produces the esterase with an excellent property.

In order to establish the production of an esterase having stereoselective activity by means of recombinant DNA technology, the inventors have isolated and purified a peptide having an esterase activity from SC-6-98-28, cloned said gene and determined the nucleotide sequence of the gene encoding the esterase.

For the purpose of the invention as is herein disclosed, when the term "gene" or "DNA" are used to express a structural gene or DNA encoding an esterase, it means an isolated gene or DNA encoding esterase originated from A. globiformis SC-6-98-28.

The DNA of the invention can be transformed into a host cell such as a procaryotic cell to obtain a transformant capable of producing a recombinant esterase abundantly. The transformed cells, when cultured in an appropriate medium, give a cultured broth having significantly elevated catalytic activity of the esterase. Thus obtained cultured broth or processed material thereof, or purified esterase therefrom can

55

be used as a bioreactor in the asymmetric hydrolysis of a precursor compound to give a compound having a desired structure.

Once the gene has been identified and cloned, the preparation of microorganisms capable of producing the esterase and the production of said esterase can be easily accomplished using known recombinant DNA technology, which comprises, for example, constructing expression plasmids encoding said gene and transforming a microorganism with said expression plasmids, cultivating the transformant in a medium under a suitable conditions for the expression of the esterase, and isolating the product having the esterase activity, if desired.

Thus, the first object of the invention is to provide an isolated gene encoding an esterase capable of catalyzing a stereoselective hydrolysis.

The gene of the invention preferably encodes an amino acid sequence shown by the SEQ ID No.1 in the accompanying Sequence Listing, more preferably, it has the nucleotide sequence shown by the SEQ ID No.2.

The esterase-encoding gene of the invention can be obtained from a microorganism which produces a desired esterase such as A. globiformis SC-6-98-28. Thus, the cloning of a gene can be accomplished by constructing a genomic library from total DNA obtained from chromosomal DNA of a microorganism such as A. globiformis SC-6-98-28 according to a conventional technique, probing said library, and cloning a DNA encoding esterase as will be further explained below. In the illustrative example, the cloning was carried out conventionally by preparing a genomic library by isolating chromosomal DNA from SC-6-98-28, digesting the total DNA with a restriction enzyme and cloning the obtained fragments into a phage vector gt\(\lambda\)11 or a plasmid vector pUC19, transfecting the phage or transforming the competent E. coli JM cells with the mixture of the cloned fragments, and screening the plaques or colonies obtained.

Selection of DNA can be conducted by any of known methods such as immunometric assay using antiesterase antibody, hybridization using synthetic DNA probes corresponding to partial amino acid sequences of a purified peptide, or screening the clones on the basis of the esterase activity. When only a part of the DNA fragment encoding the esterase is obtained, the remaining part of DNA, and consequently the full length of esterase encoding DNA, can be obtained using said fragment as a probe. In the following Example, a part of a positive clone pK-12 was used for screening pEH16, which was followed by the construction of a clone pAGE-1 encoding the entire coding region of the esterase. Thus obtained gene preferably contains a nucleotide sequence encoding an amino acid sequence shown by the SEQ ID No.1. More preferably, the gene has the nucleotide sequence shown by the SEQ ID No.2.

The DNA encoding esterase is then used to construct expression plasmids which enables a microorganism to produce the esterase using the known recombinant technology.

Thus, the second object of the invention is to provide expression plasmids containing a nucleotide sequence encoding an esterase.

Preferably, expression vectors which can be used in the invention contain sequences necessary for the replication in a host cell and are autonomously replicable. It is also preferable that the vectors contain selectable marker(s) and can be easily selected from the untransformed cells. Many vectors and restriction enzymes used for the digestion of given DNA are obtainable from commercial sources and the operations are well-known to those skilled in the art. For the purpose of the invention, it is preferable to use vectors functional in E. coli. Although it is in no way limited to the use of a particular vector, for the expression in E. coli, vectors containing promoters such as lac, tac, trp and the like are preferable. Such expression vectors are conveniently obtained as promoter cartridges from Farmacia PL, Inc. Examples of especially preferred expression plasmids of the invention are PAGE-201, PAGE-202 and PAGE-203 which contain the gene shown by the above-mentioned nucleotide sequence.

The third object of the invention is to provide a microorganism transformed by an expression plasmid of the invention and capable of producing an esterase having the above-mentioned activity. Examples of suitable host cells include various eucaryotic and procaryotic cells such as E. coli, Bacillus subtilis, lactic acid bacterium and fungi. Preferred host cell is E. coli. Examples of preferred microorganisms are Escherichia coli JM109 (PAGE-201), E. coli JM109 (PAGE-202), E. coli JM109 (PAGE-203), E. coli JM105 (PAGE-201), E. coli JM105 (PAGE-202) and E. coli JM105 (PAGE-203). The host cell can be transformed with an expression plasmid of the invention and cultivated using any of the well known procedures in the art to give a cultured broth comprising esterase-producing cells. In the working example as mentioned below, illustrative expression plasmids pAGE-201, 202 and 203 containing the DNA encoding esterase under the control of tac promotor were constructed and used to transform E. coli JM109 or JM105. The resultant transformants expressed products having esterase activity to a high extent after cultivation. The cultured broth containing the esterase activity is then subjected to centrifugation or filtration to separate the supernatant.

-1 0 707 100 AL

E. coli host cells harboring either of expression plasmids of the invention were grown in M9 medium at 37°C using IPTG as an inducer. A part of the harvested cells, when assayed by SDS-PAGE, gave a main band at 40,000, showing that the cell expressed desired esterase abundantly.

The esterase activity usually exists in the transformed cell and therefore cells separated from the cultured broth by filtration or centrifugation can be used in the hydrolytic reactions. However, preparations which are usually obtained from the cultured cells in conventional manners are also useful. Examples of such preparations include dried cells, cell-free extract, enzyme solution, immobilized cells or enzyme using an appropriate solid support.

Thus, the present invention further provides a method for preparing an esterase by culturing a transformant of the invention in an aqueous nutrient medium containing assimilable carbon or nitrogen sources under aerobic conditions.

When the resultant preparations are used for the asymmetric hydrolysis, the preparation is contacted with a compound to be hydrolysed to give an optically active stereoisomer useful in the pharmaceutical and/or agricultural fields. In the following Examples, an racemic ethyl ester of KCA (referred to as KCE) was hydrolyzed to give (+)-trans KCA exclusively, which is useful as an intermediate for the production of effective pyretyroid insecticides. According to the present invention, it is possible to produce plenty of esterase useful as a bioreactor by culturing transformants.

In the accompanying Figures:

Figure 1, shows a deduced amino acid sequence of an entire 2,174 bp DNA insert in plasmid PAGE-1. The DNA sequence contains a translational region encoding esterase (nucleotides 211 - 1335) and the N-terminal sequence used as a DNA probe for the screening (nucleotides 211 - 230).

Figure 2 shows a positive clones PK-12 and pEH16 obtained by a colony hybridization and a restriction map of a plasmid PAGE-1 constructed from these clones, which contains (a) a DNA originated from A. globiformis and (b) the entire coding region of the esterase.

Figure 3 shows a construction strategy of the esterase expression plasmids pAGE-201, pAGE-202, and pAGE-203. Each plasmid contains a synthetic DNA (c) and a tac promoter (bold arrow).

Following Examples further illustrate and detail the invention disclosed, but should not be construed to limit the invention.

30 Example 1

Isolation of DNA Clone Encoding an Esterase

1. Preparation of Chromosomal DNA

35

20

25

Arthrobacter globiformis SC-6-98-28 strain (FERM P-11851) was pre-cultivated in a 5 ml medium (3 .0% soluble starch, 0.7 % polypeptone, 0.5 % yeast extract, 0.5% KH₂PO₄,pH 5.0) for 24 hr at 30 °C with shaking. The culture was inoculated to a 500 ml of growth medium (6 .0% soluble starch, 1.0 % polypeptone, 0.2 % yeast extract, 0.5% KH₂PO₄,pH 5.0) and grown at 30 °C with shaking until the absorbance at 660 nm (OD₆₆₀) reached to 0.25, where penicillin G was added to the final concentration of 300 units/ml culture and the cultivation was continued until the OD₆₆₀ reached to 1.0. Cells were harvested by centrifugation and suspended into 45 ml of a mixture of 150 mM NaCl, 15 mM sodium citrate, 10 mM EDTA and 27% sucrose, and egg lysozyme was added to the final concentration of 5 mg/ml. The mixture was incubated at 37 °C for 30 min and 10 ml of 10% SDS was added thereto. After the addition of protease K to the final concentration of 200 µg/ml, the incubation continued at 37 °C for 4 hr. The culture was extracted with an equal volume of 0.1 M Tris-saturated phenol (x2) and ether (x2). DNA was precipitated from the aqueous layer by adding 2 volumes of ethanol and recovered by winding threads of DNA on a glass rod. After dryness, the recovered nucleic acids were dissolved into 5 ml Tris-EDTA (10 mM Tris-HCl, pH 8.0 and 1 mM EDTA) and treated with RNase at the final concentration of 100 μg/ml at 37 °C for 2 hr. The mixture was extracted with an equal volume of phenol-chloroform (1:1 in volume) (x2) and DNA was precipitated from the aqueous layer by the addition of 2 volumes of cold ethanol. The resultant DNA was washed with 80% ethanol, dried and dissolved into Tris-EDTA buffer. About 5.8 mg of a chromosomal DNA was obtained.

Screening of Genomic Library

Chromosomal DNA obtained in the above 1. was digested with Kpnl. Vector pUC 19 (Takara Shuzo, Japan) was digested with Kpnl and treated with alkaline phosphatase. The Kpnl-digested DNA fragments

were ligated into the KpnI site of pUC 19 using T4 DNA ligase and the ligation mixture was transformed into a competent E. coli K-12 JM109 (Takara Shuzo, Japan). When the E. coli JM109 cells containing pUC 19 are grown on LB-agar medium containing ampicillin, IPTG and X-Gal, colonies give blue color as the result of the cleavage of X-Gal by β -galactosidase produced in the JM 109 cells. However, the transformed E. coli JM109 cells which has a foreign DNA fragment inserted into the multi-cloning site of pUC 19 are grown under the same condition, colorless colonies are obtained because the transformants lack the ability to express the galactosidase activity.

Thus, white colonies were selected on the plate and subjected to the colony hybridization using synthesized DNA probes corresponding to N-terminal amino acid sequence of a purified esterase. The white colonies spread on a plate was transferred onto a nylon membrane conventionally, or inoculated onto the membrane with bamboo spits. The membrane was placed on a LB-ampicillin plate and incubated at 37 °C for several hours until colonies appeared on the membrane. DNA was extracted from the colonies by soaking (x2) the membrane into 0.5N NaOH to lyse cells, washing (x2) the membrane with 1M Tris-HCl (pH 7.5) for the neutralization. DNA was then fixed onto the membrane by drying at 80 °C under vacuum for 2 hr.

The membrane was treated at 55 °C for 1 hr in a mixture (A) comprising 6x SSC, 10 x Denhardt's reagent (0.2% Ficol, 0.2% polyvinylpyrrolidone, 0.2% bovine serum albumin) and then at 55 °C for 4 hr in a mixture (B) comprising 6x SSC, 1% SDS, 10 x Denhardt's reagent, 100 μ g/ml denatured salmon sperm DNA. The hybridization was performed at 55 °C for overnight in a plastic bag containing membranes, the above mixture (B) and radiolabeled probes (5 x 10⁵ cpm/membrane) prepared by labeling the DNA mixture at the 5' terminus with [γ^{32} P] ATP and purifying by a column chromatography. After hybridization, the membranes were washed sequentially (1) at 55 °C for 15 min in 6x SSC, (2) at 55 °C for 30 min in 6x SSC, (3) at 55 °C for 30 min in 6x SSC plus 1% SDS. The membranes were air-dried and autoradiogramed by exposing to X-ray film (FUJI RX) with an intensifying screen. A positive clone pK-12 strain was separated.

The clone pK-12 was not long enough to encode the entire esterase. The nucleotide sequence of pK-12 was determined by the dideoxy method and a part of the sequence was used to probe a DNA library prepared by digesting chromosomal DNA with EcoRI and ligating the fragments to EcoRI-digested vector pUC19. By the colony hybridization, a positive clone pEH-16 was isolated. Plasmid pAGE-1, which containing the whole translational region encoding esterase, was constructed by removing an EcoRI fragment from pK-12 and ligating said fragment to EcoRI site of pEH-16. The construction of plasmid pAGE-1 is shown in Figure 2.

3. Sequence Analysis of Esterase Gene and Construction of Restriction Map

A restriction map of the cloned DNA obtained in the above 2. was prepared as follows.

E. coli JM109 each transformed with plasmid pK1 and pEH16 was grown and plasmid DNA was prepared according to the method of Birnboim-Doly. Plasmid DNA was digested with various restriction enzymes and the length of each DNA fragment was determined by 1% agarose gel electrophoresis and 5% polyacrylamide gel electrophoresis. Comparing the length of strands of resultant DNA fragments, a restriction map was completed.

4. Determination of Nucleotide Sequence of DNA Encoding Esterase and Deduced Amino Acid Sequence

The sequence of 2,175 base pairs of an insert in the plasmid pAGE-1 was determined by the dideoxy method using forward and reverse primer DNAs (Takara Shuzo) for pUC plasmid, successively synthesized primer DNAs and 7-deaza sequencing kit (Takara Shuzo). The over all 2,174 bp nucleotide sequence of an insert in pAGE-1 is provided in Figure 1 and Sequence Listing (SEQ ID No.2). An investigation into the base sequence revealed that there is unique open-reading frame (nucleotide 211 (in GTG) to 1335). Additionally, amino acid sequence encoded by the nucleotide sequence down stream of the possible translational initiation codon of said frame is consistent with that of the N-terminal sequence of purified esterase peptide, which demonstrates that said region of the sequence is the open reading frame encoding the esterase. Thus, esterase was proved to be a protein of a molecular weight of 39,839 composed of 375 amino acid residues. Deduced amino acid sequence is also provided in Figure 1 and Sequence Listing (SEQ ID No.1).

Example 3

Construction of Expression Plasmids for Esterase

55

15

25

Plasmid pKK223-4 was prepared by deleting one BamHI restriction site from an expression vector pKK223-3 (Boyer et al, Proc. Natl. Acad Sci. USA, 80: 21-25 (1983); Farmacia). The pKK223-3 was partially digested with BamHI, blunted with T4 DNA polymerase and religated to give the desired plasmid pKK223-4.

To modify the upstream region of the translational initiation codon of the esterase gene, the following DNA fragments were synthesized using Applied Biosystems DNA synthesizer (Model 380A).

DNA fragment	Sequence identifier number
PH-22	SEQ ID No.3
PH-21	SEQ ID No.4
ES-01	SEQ ID No.5
ES-02	SEQ ID No.6
ES-13	SEQ ID No.7
ES-11	SEQ ID No.8
ES-12	SEQ ID No.9
ES-21	SEQ ID No.10
ES-22	SEQ ID No.11

Synthesized oligonucleotides fragments PH-21, ES-01, ES-11, ES-21, and ES-13 were 5'-end phosphorylated and subjected to the ligation and annealing with untreated fragments to give the following three double-stranded DNA fragments.

		λ(1	۸	١) ٧
5	GGCTT	Nsp(7524)V	GGCTT CCGAAGC Nsp(7524)V	ICTT SGAAGC Nsp(7524)V
10	TCGCACCC	0.5	TCGCACCC AGCGTGGC 12	GCACCGGC CGTGGCCC
15	PH-22 GATCCTTTTTAATAAAATC AGGAGGTAAAA AACGATGGACGCACAGACCATCGCACGGGCTT GAAAAAATTATTTTAG TCCTCCATTTT TTGCTACCTGCGTGGTGGCGTGGCCCGAAGC	BS-02	GATCCTTTTTAATAAAATC AGGAGGAAAAA ATCGATGGACGCACAGACCATCGCACGGGCTT GAAAAAATTATTTTAG TCCTCCTTTTT TAGCTACCTGCGTGGTAGCGTGGCCCGAAGC Bamhi BS-13 Nsp(7)	PH-22 GATCCTTTTTAATAAAATC AGGAGGAAAAA ATATGGACGCACAGACCATCGCACCGGGCTT GAAAAAATTATTTTAG TCCTCCTTTTT TATACCTGCGTGGTGGGTGGCCGGAAGC BamH1 BS-13 NSp
20	BS-01 AACGATGGAC TTGCTACCTC	BS-11	ATCGATGGAC TAGCTACCTG	BS-21 ATATGGACGC TATACCTGCG
	4GGTAAAA 3CATTT		GGAAAA Ctttti	GGAAAA Cttttt
30	ATC AGG. TAG TCCT(PH-21	ATC AGG/ TAG TCCT(BS-13	ATC AGG/ TAG TCCT(ES-13
35	22 FTAATAAA VATTATTT		TTAATAAA/ VATTATTT	22 ITAATAAA/ AATTATTT1 E
40	PH-22 GATCCTTTTTA GAAAAAA	BamHI PH-22	GATCCTTTT GAAAA/ Bamhi	PH-22 GATCCTTTTTA GAAAAA1 BamH1
45				

The double-stranded DNA fragments were kinased at the both ends. An esterase coding region was isolated from plasmid pAGE-1 by the double digestion with restriction enzymes Nsp(7524) V and HindIII. A ligation reaction was carried out in a mixture containing the isolated esterase-encoding DNA fragment, synthesized DNA fragment and BamHI, HindIII-digested, alkaline phosphatase-treated vector pKK223-4. Thus, expression plasmids pAGE-201, 202 and 203 for transforming E. coli host cells, which contain down stream of a tac promoter a modified DNA sequence and an esterase gene in this order, were obtained.

Example 4

Preparation of Stereoselective Esterase

1. Growth of Transformants

The esterase capable of asymmetrically hydrolyzing a racemic ester of chrysanthemumic acid (KCA) was produced by culturing E. coli JM109/pAGE-201, 202 or 203. E. coli JM109 was transformed with a expression plasmid prepared in Example 3 and cultured in a M9 medium (10.5 g K₂HPO₄, 4.5 g KH₂PO₄, 1.0 g (NH₄)₂SO₄, 0.5 g sodium citrate, 0.2 g MgSO₄ 7H₂O, 2.0 g glucose, 2 mg/ml thiamine HCl) at 37 °C to a logarithmic phase, where IPTG (isopropyl thio-β-D-galactoside) was added to the final concentration of 1 mM to induce the expression of the esterase.

Cells were harvested by centrifugation. SDS-PAGE analysis conducted using a portion of cells gave a main band at molecular weight of 40,000 demonstrating that the esterase was expressed to a high extent in E. coli transformed by either of plasmid pAGE-201, 202 or 203.

2. Asymmetric Hydrolysis of a Racemic Ethyl Ester by Recombinant E. coli JM109 Cells

The E. coli cells transformed with plasmid pAGE-201, 202 or 203 was evaluated as to the effect on the asymmetric hydrolysis of a racemic ethyl ester (referred to as KCE) of crysanthemumic acid (cis:trans = 10:90; (+):(-) = 50:50). E. coli JM109/pAGE-201, 202 or 203 cells obtained from 100 ml culture were suspended into 50 ml of 200 mM glycine/sodium hydroxide buffer (pH 10.0). To the suspension was added 1.0 g of KCE and reacted at 37 °C with stirring at 1,000 rpm for 6 hr and the reaction stopped by the addition of 5.0 ml of 35 % HCl. The resultant KCA product and unreacted KCE were extracted with methyl isobutyl ketone (MIBK) from the acidic mixture. The extract was analyzed by gas chromatography (column: Shinchrom $F_{5:1}$ + $H_{9}po_{4}$ (10+1%), 2.6 m, 190 °C) and the hydrolytic effeciency was calculated according to area percentage.

To the organic extract was added 20 ml of 0.01 N NaOH and only KCA was extracted into aqueous layer as a sodium salt. The aqueous solution was again treated with 35% HCl and KCA was extracted with MIBK. The extract was concentrated and dehydrated. The content of four isomers of KCA was analyzed as follows. A portion of the extract was mixed with dicyclohexylcarbodiimide and 3,5-dichloroanilline and allowed to stand for 3 hr at room temperature, which was followed by the analysis by a high-performance liquid chromatography (column: SUMIPAX OA-2100 x 2; mobile phase: n-hexane/1,2-dichloromethane (17:3, v/v); flow rate: 1.5 ml/min, detection: 254 nm). Results are given in Table 1 below.

Table 1

10

30

35

40

45

50

Strain	hydrolytic	cis/	cis/trans ratio (%)						
	effeciency(1)	(+)-	(-)	(+)- (-)-					
	(%)	cis	:-cis	s:trans:trans					
JM109/pAGE-201	96.3	0:	0:	100:	0				
JM109/pAGE-202	100	0:	0:	100:	0				
JM109/pAGE-203	89.1	0:	0:	100:	0				
JM109	0								

(+)-trans KCA to the amount of (+)-trans KCE in the starting material.

3. Asymmetric Hydrolysis of a Racemic Ethyl Ester by Recombinant E. coli JM105 Cells

Transformants producing esterase activity were prepared and evaluated in the same manner as above 2 except that E. coli JM105 was used as a host cell. E. coli JM105 cells were transformed with plasmids

pAGE-201, 202 or 203 and grown in M9 medium at 37 $^{\circ}$ C by inducing the expression of esterase by the addition of IPTG to a final concentration of 1 mM at the logarithmic phase. Cells were harvested and used for hydrolysis of a racemic ethyl ester of KCE (cis:trans = 10:90; (+):(-) = 50:50) in the same manner as above 2. Hydrolytic effeciency was evaluated by the gas chromatography (column: Shinchrom F_{51} + H_3PO_4 (10+1%), 2.6 m, 190 $^{\circ}$ C). The hydrolytic effeciency was evaluated according to the area percentage. The content of four isomers of KCA was analyzed by HPLC in the same manner as above 2. Results are given in Table 2 below.

Table	2

Strain	hydrolytic	cis/	trans	ratio	(%)
	effeciency	(+)-	(-)-	(+)-	(-) -
	(%)	cis	:-cis	trans	trans
JM105/pAGE-201	55.9	0:	0:	100:	0
JM105/pAGE-202	92.9	0:	0:	100:	0
JM105/pAGE-203	100	0:	0:	100:	0

As is clear from the above Tables 1 and 2, the expression of esterase in transformants was extremely promoted by cloning the gene into <u>E. coli</u> cells and changing the promoter and upstream region to a suitable sequence for <u>E. coli</u>, whereby the asymmetric hydrolysis of racemic compound was surprisingly improved. Thus, according to the present invention, desired (+)-trans KCA can be produced in high yield. When <u>Arthrobacter globiformis IFO-12958</u>, which expresses esterase slightly, was grown and 20 µg of a purified enzyme (corresponding to 2.5 L culture) was used for the hydrolysis of 90KCE (concentration: 2 w/v %; temperature: 40 °C; reaction period: 24 hr), the hydrolytic effeciency was only 6.4 % (Japanese Patent Publication (KOKAI) No. 181788/1989).

SEQUENCE LISTING

5		SE	Q I	D N	0:1												
		SE	QUE	NCE	LEN	GTH	: 3	75 a	min	o a	cids	5					
		SE	QUE	NCE	TYP	E: .	amiı	no a	cid								
10																	
		TO	POL	OGY:	11	nea	r										
	are the second	MO	LEC	JLE	TYP	E: I	prot	ein			- +						-
15		Met	Ası	Ala	Gln	1 Thr	- 116	e Ala	a Pro	o G1:	y Phe	e Glu	ı Ser	- Val	l Ala	ı Glu	Leu
						5					10					15	
20		Phe	Gly	, Arg	Phe	Leu	Ser	Gli	ı Ası	Arg	g Glu	і Туі	Ser	Ala	Gln	Leu	
20					20					25					30		
		Ala	Tyr	His	Arg	Gly	Val	Lys	Val	Lei	ı Asp	He	Ser	Gly	Gly	Pro	His
25				35					40)				45			
		Arg	Arg	Pro	Asp	Ser	Val	Thr	Gly	Val	Phe	Ser	Cys	Ser	Lys	Gly	Val
			50					55					60				
30		Ser	Gly	Leu	Val	Ile	Ala	Leu	Leu	Val	Gln	Asp	Gly	Phe	Leu	Asp	Leu
		65					70					75					80
		Asp	Ala	Glu	Val	Val	Lys	Tyr	Тгр	Pro	Glu	Phe	Gly	Ala	Glu	Gly	Lys
35						85					90					95	
		Ala	Thr	lle	Thr	Val	Ala	Gln	Leu	Leu	Ser	His	GIn	Ala	Gly	Leu	Leu
					100					105					110		
40		Gly	Val		Gly	Gly	Leu	Thr	Leu	Ala	Glu	Tyr	Asn	Asn	Ser	Glu.	Leu
				115	_				120					125			
				Ala	Lys	Leu	Ala		Met	Arg	Pro	Leu	Trp	Lys	Pro	Gly	Thr
45			130		_	•••		135					140				
			rne	Gly	Tyr			Leu	Thr	He	Gly		Phe	Met	Glu	Glu	Leu
50		145	A	A	,,		150	_				155					160
50	(LYS A	ALĞ	AГg			Gly	Ser	Thr	Leu		Glu	lle	Туг	Glu	Gln .	Arg
						165					170					175	

	Ile	Arg	Ser	Val	Thr	Gly	Ala	His	Phe	Phe	Leu	Gly	Leu	Pro	Glu	Ser
				180					185					190		
5	Glu	Glu	Pro	Arg	Tyr	Ala	Thr	Leu	Arg	Тгр	Ala	Ala	Asp	Pro	Ser	Gln
			195					200					205			
10	Pro	Trp	lle	Asp	Pro	Ala	Ser	His	Phe	Gly	Leu	Ser	Ala	Asn	Ser	Ala
		210					215					220				
45	Val	Gly	Asp	lle	Leu	Asp	Leu	Pro	Asn	Leu	Arg	Glu	Val	Arg	Ala	Ala
15	225					230					235					240
	Gly	Leu	Ser	Ser	Ala	Ala	Gly	Val	Ala	Ser	Ala	Glu	Gly	Met	Ala	Arg
20					245					250					255	
	Val	Tyr	Ala	Ala	Ala	Leu	Thr	Gly	Leu	Ala	Ala	Asn	Gly	Asp	Arg	Ala
or				260					265					270		
25	Ala	Val	Ala	Pro	Leu	Leu	Ser	Glu	Glu	Thr	lle	Gln	Thr	Val	Thr	Ala
			275				•	280					285			
30	Glu	Gln	Val	Phe	Gly	He	Asp	Arg	Val	Phe	Gly	Glu	Thr	Ser	Cys	Phe
		290					295					300				
35	Gly	Thr	Val	Phe	Met	Lys	Ser	His	Ala	Arg	Ser	Pro	Tyr	Gly	Ser	Tyr
	305					310					315					320
	Arg	Ala	Phe	Gly	His	Asp	Gly	Ala	Ser	Ala	Ser	Leu	Gly	Phe	Ala	Asp
40					325					330					335	
	Pro	Val	Tyr	Glu	Leu	Ala	Phe	Gly	Tyr	Val	Pro	Gln	Gln	Ala	Glu	Pro
45				340					345					350		
40	Gly	Gly	Ala	Gly	Cys	Arg	Asn	Leu	Glu	Leu	Ser	Ala	Ala	Val	Arg	Lys
			355					360					365			
50	Ala	Val	Thr	Glu	Leu	Ala	Gln									
	3	70					375									

11

SEQ ID NO:2

_	SEQUENCE LENGTH: 1125 base pairs													
5	SEQUENCE TYPE: nucleic acid													
10	STRANDNESS: double													
70	TOPOLOGY: linear													
	MOLECULE TYPE: genomic DNA													
15														
	ORIGINAL SOURCE:													
	ORGANISM: Arthrobacter globiformis													
20	STRAIN: SC-6-98-28 (FERM BP-3618)													
	FEATURES:													
25	NAME/KEY: CDS													
	LOCATION: from 1 to 1125													
	IDENTIFICATION METHOD: E													
30	GTGGATGCAC AGACGATTGC CCCTGGATTC GAATCAGTCG CCGAACTCTT TGGCCGTTTC													
	CTGAGCGAAG ACCGGGAATA TTCAGCCCAG CTCGCGGCCT ACCACCGCGG AGTCAAGGTA	60												
	TTGGACATCA GCGGTGGGCC GCACCGCCGC CCGGATTCCG TGACCGGTGT TTTCTCCTGC	120												
35	TCCAAGGGAG TATCCGGGCT GGTCATCGCA CTTTTGGTCC AGGACGGCTT CCTCGACCTC	180												
	GACGCCGAAG TGGTCAAGTA CTGGCCGGAA TTCGGCGCCG AAGGAAAGGC CACGATTACC	240 300												
10	GTGGCCCAGC TGCTCTCCCA CCAGGCCGGG CTTCTGGGAG TCGAAGGCGG ACTCACCCTC	360												
40	GCGGAATACA ACAACTCCGA ACTGGCCGCC GCCAAGCTCG CGCAGATGCG GCCGCTGTGG	420												
	AAGCCCGGGA CCGCCTTCGG GTACCACGCC CTGACCATCG GCGTCTTCAT GGAGGAGCTT	480												
45	TGCCGCCGGA TCACCGGGTC CACGCTCCAG GAAATCTACG AACAGCGGAT CCGCTCGGTC	540												
	ACGGGCGCCC ACTTCTTCCT GGGACTGCCT GAGTCCGAGG AACCCCGCTA TGCCACCCTC	600												
	CGTTGGGCTG CAGACCCCTC CCAGCCGTGG ATTGATCCCG CCAGCCATTT CGGCCTTTCC	660												
50	GCAAACTCGG CCGTGGGGGA CATCCTTGAC CTGCCCAACC TCCGCGAGGT CCGCGCAGCC	720												
	GGCCTGAGTT CAGCCGCCGG AGTCGCCAGC GCGGAAGGCA TGGCCCGCGT CTACGCTGCG	780												
	GCACTCACCC CACTTCCCCC CAACCCCCAC CCACCCCCCC TOOCCCCCC	840												

GAGACCATCC AAACCGTCAC GGCCGAGCAG GTCTTCGGCA TCGACCGGGT GTTCGGCGAG

900

_	ACGAGCTGCT TTGGGACAGT CTTCATGAAA TCGCATGCAC GCTCGCCTTA TGGCAGCTAC	960												
5	CGGGCGTTCG GGCACGACGG CGCCAGCGCA TCTTTGGGGT TCGCTGACCC TGTGTATGAA	1020												
	CTCGCCTTCG GGTACGTGCC GCAACAGGCC GAGCCGGGCG GAGCGGGATG CCGCAACCTT	1080												
10	GAGCTGAGCG CCGCCGTGCG GAAGGCAGTC ACCGAACTGG CTCAG	1125												
	SEQ ID NO:3													
15	SEQUENCE LENGTH: 20 base pairs													
	SEQUENCE TYPE: nucleic acid													
	STRANDNESS: single													
20	TOPOLOGY: linear													
	MOLECULE TYPE: Other nucleic acid, synthetic DNA													
25	GATCCTTTTT TAATAAAATC	20												
	SEQ ID NO:4													
30	SEQUENCE LENGTH: 27 base pairs													
	SEQUENCE TYPE: nucleic acid													
35	STRANDNESS: single													
	TOPOLOGY: linear													
	MOLECULE TYPE: Other nucleic acid, synthetic DNA													
40	TTTTACCTCC TGATTTTATT AAAAAAG	27												
45	SEQ ID NO:5													
45	SEQUENCE LENGTH: 44 base pairs													
	SEQUENCE TYPE: nucleic acid													
50	STRANDNESS: single													
	TOPOLOGY: linear													
	MOLECULE TYPE: Other nucleic acid, synthetic DNA													

	AGGAGGTAAA AAACGATGGA CGCACAGACC ATCGCACCGG GCTT	34
5	SEQ ID NO:6	
	SEQUENCE LENGTH: 35 base pairs	
10	SEQUENCE TYPE: nucleic acid	
	STRANDNESS: single	
15	TOPOLOGY: linear	
	MOLECULE TYPE: Other nucleic acid, synthetic DNA	
20	CGAAGCCCGG TGCGATGGTC TGTGCGTCCA TCGTT	35
	SEQ ID NO:7	
25	SEQUENCE LENGTH: 27 base pairs	
	SEQUENCE TYPE: nucleic acid	
30	CMD A NONDECC. Ginale	
	STRANDNESS: single TOPOLOGY: linear	
35	MOLECULE TYPE: Other nucleic acid, synthetic DNA	
33	TTTTTCCTCC TGATTTTATT AAAAAAG	07
	TITITOOTOO TONTITINIT AAAAAA	27
40	SEQ ID NO:8	
	SEQUENCE LENGTH: 44 base pairs	
45	SEQUENCE TYPE: nucleic acid	
	STRANDNESS: single	
50	TOPOLOGY: linear	
	MOLECULE TYPE: Other nucleic acid, synthetic DNA	
55	AGGAGGAAAA AATCGATGGA CGCACAGACC ATCGCACCGG GCTT	44
	The second secon	44

	SEQ ID NO:9	
5	SEQUENCE LENGTH: 35 base pairs	
	SEQUENCE TYPE: nucleic acid	
10		
	STRANDNESS: single	
	TOPOLOGY: linear	
15	MOLECULE TYPE: Other nucleic acid, synthetic DNA	
	CGAAGCCCGG TGCGATGGTC TGTGCGTCCA TCGAT	35
20		
	SEQ ID NO:10	
	SEQUENCE LENGTH: 42 base pairs	
25	SEQUENCE TYPE: nucleic acid	
30	STRANDNESS: single	
	TOPOLOGY: linear	
	MOLECULE TYPE: Other nucleic acid, synthetic DNA	
35	AGGAGGAAAA AATATGGACG CACAGACCAT CGCACCGGGC TT	42
40	SEQ ID NO:11	
	SEQUENCE LENGTH: 33 base pairs	
	SEQUENCE TYPE: nucleic acid	
<i>4</i> 5		
	STRANDNESS: single	
50	TOPOLOGY: linear	
	MOLECULE TYPE: Other nucleic acid, synthetic DNA	
	CGAAGCCCGG TGCGATGGTC TGTGCGTCCA TAT	33
55		

15

Claims

- 1. An isolated gene encoding an esterase capable of asymmetrically hydrolysing racemic ester of chrysanthemumic acid or its derivative.
- 5 2. The gene of Claim 1, wherein said gene encodes an amino acid sequence presented in the Sequence Listing, SEQ ID No.1.
 - 3. The gene of Claim 1, wherein the DNA molecule comprises the nucleotide sequence presented in the Sequence Listing, SEQ ID No.2.
 - 4. The gene of Claim 1, wherein the gene is originated from Arthrobacter globiformis SC-6-98-28.
 - 5. A plasmid which contains a DNA of Claim 3.
- 15 6. Plasmid pAGE-201.
 - 7. Plasmid pAGE-202.
 - 8. Plasmid pAGE-203.

20

10

- 9. A microorganism transformed by a plasmid of Claim 6, 7 or 8.
- 10. The microorganism of Claim 9 which is Escherichia coli.
- 11. The microorganism of Claim 9 which is Escherichia coli JM109.
 - 12. E. coli JM109/pAGE-201.
 - **13.** E. coli JM109/pAGE-202.

30

- 14. E. coli JM109/pAGE-203.
- 15. The microorganism of Claim 9 which is Escherichia coli JM105.
- 35 **16.** E. coli JM105/pAGE-201.
 - E. coli JM105/pAGE-202.
 - 18. E. coli JM105/pAGE-203.

19. A process for producing an esterase useful for the asymmetric hydrolysis, which comprises culturing the transformed microorganism of Claim 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 in an appropriate medium until a sufficient amount of esterase is produced.

45 20. A process for asymmetrically hydrolyzing a racemic ester of chrysanthemumic acid or its derivatives to produce (+)-trans acid, which comprises by contacting a culture obtained according to the process of Claim 19 or purified esterase from the culture to the ester to be hydrolyzed.

50

40

Fig. 1 (a)

GGTAC	CGC1	ra c	CTTT	rcat(G CA	CCCC	AGCG	GTG	AGGAI	CCT	GAAA'	rtcc	TG T	CACG	CCTGG	60
TTTCC	GAG	GG G	AAAC'	TGCA	A CC	CGTG	GTGG	ACA	GCAG	CTA '	TCCG	CTCG	AA A	AGAT	CGGC(5 120
ACGTT	TCG	CC G	CGCT	GGAG	C AG	GGAC	GCGC	CAA	GGGC	AAG	ATCG'	rggt	GA C	CATG	GACA(2 180
GCGCG	GCA	GT T	AGGC	AGTT	A GG	CTGT	CCGG	GTG	GAT	GCA	CAG	ACG	ATT	GCC	CCT	234
											Gln					
												5				
GGA T	TC I	GAA	TCA	GTC	GCC	GAA	CTC	TTT	GGC	CGT	TTC	CTG	AGC	GAA	GAC	282
Gly P	he	Glu	Ser	Val	Ala	Glu	Leu	Phe	Gly	Arg	Phe	Leu	Ser	Glu	Asp	
	10					15					20					
CGG G	AA:	TAT	TCA	GCC	CAG	CTC	GCG	GCC	TAC	CAC	CGC	GGA	GTC	AAG	GTA	330
Arg 0	ilu	Tyr	Ser	Ala	Gln	Leu	Ala	Ala	Tyr	His	Arg	Gly	Val	Lys	Val	
25					30					35					40	
TTG (SAC	ATC	AGC	GGT	GGG	CCG	CAC	CGC	CGC	CCG	GAT	TCC	GTG	ACC	GGT	378
Leu /																
				45			•		50					55		
GTT '	TTC	TCC	TGC	TCC	AAG	GGA	GTA	TCC	GGG	CTG	GTC	ATC	GCA	CTT	TTG	426
Val'	Phe	Ser	Cys	Ser	Lys	Gly	Val	Ser	Gly	Leu	Val	Ile	Ala	Leu	Leu	
			60					65					70			
GTC	CAG	GAC	GGC	TTC	СТС	GAC	CTC	GAC	GCC	GAA	GTG	GTC	"AAG	TAC	TGG	474
Val	Gln	λsp	Gly	Phe	leu	Åsp	Leu	Asp	Ala	Glu	Val	Val	Lys	Туг	Trp	
•		75					80					85				
CCG	GΛΛ	TTC	GGC	GCC	GΛλ	GGA	۸۸G	GCC	λCG	ΛTT	ΛCC	GTG	GCC	CVC	CTG	522
															Leu	
	90					95				_	100					
CTC	TCC	C۷C	CAG	GCC	GGG	CTT	CTG	GGA	GTC	GAA	GGC	GGA	CTC	, VC(CTC	570
Leu	Ser	His	s Gln	۸la	Gly	Leu	Leu	Gly	Val	Glu	Gly	Gly	Lei	ı Thi	Leu	
105					110					115					120	

Fig. 1 (b)

GCO	GAA	TAC	C AAC	AAC	TCC	GAA	CTG	GCC	GCC	GCC	AAG	CTC	GCG	CAG	ATG	618
Ala	Glu	Туг	. Asn	Asn	Ser	Glu	Leu	Ala	Ala	Ala	Lys	Leu	Ala	Gln	Met	
				125					130					135		
CGG	CCG	CTO	TGG	AAG	CCC	GGG	ACC	GCC	TTC	GGG	TAC	CAC	GCC	CTG	ACC	666
Arg	Pro	Lei	і Тгр	Lys	Pro	Gly	Thr	Ala	Phe	Gly	Tyr	His	Ala	Leu	Thr	-
			140					145					150			
ATC	GGC	GTC	TTC	ATG	GAG	GAG	CTT	TGC	CGC	CGG	ATC	ACC	GGG	TCC	ACG	714
lle	Gly	Val	Phe	Met	Glu	Glu	Leu	Cys	Arg	Arg	lle	Thr	Gly	Ser	Thr	
		155	i				160					165				
CTC	CAG	GAA	ATC	TAC	GAA	CAG	CGG	ATC	CGC	TCG	GTC	ACG	GGC	GCC	CAC	762
Leu	Gln	Glu	lle	Туг	Glu	Gln	Arg	Ile	Årg	Ser	Val	Thr	Gly	Ala	His	
	170					175					180					
TTC	TTC	CTG	GGA	CTG	CCT	GAG	TCC	GAG	GAA	CCC	CGC	TAT	GCC	ACC	CTC	810
Phe	Phe	Leu	Gly	Leu	Pro	Glu	Ser	Glu	Glu	Pro	Arg	Туг	Ala	Thr	Leu	
185					190					195					200	
CGT	TGG	GCT	GCA	GAC	CCC	TCC	CAG	CCG	TGG	ATT	GAT	CCC	GCC	AGC	CAT	858
Arg	Trp	Ala	Ala	Asp	Pro	Ser	Gln	Pro	Trp	lle	Asp	Pro	Ala	Ser	His	
				205					210					215		
TTC	GGC	CTT	TCC	GCA	AAC	TCG	GCC	GTG	GGG	GAC	ATC	CTT	GAC	CTG	CCC	906
Phe	Gly	Leu	Ser	Ala	Asn	Ser	Ala	Val	Gly	Asp	lle	Leu	Asp	Leu	Pro	
			220					225					230			
VVC	CTC	CGC	GNG	GTC	CGC	GCA	GCC	GGC	CTG	AGT	TCΛ	GCC	GCC	GGA	GTC	954
Asn	Leu	۸rg	Glu	Va l	Arg	Λla	۸la	Gly	Leu	Ser	Ser	۸la	Λla	Gly	Va I	
		235					240.					245				
GCC	۸GC	GCG	GAA	GGC	ΛTG	GCC	CGC	GTC	TAC.	GCT	GCG	GCA	CTC	۸CC	GGA	1002
λla	Ser	λla	Glu	Gly	Мet	Λla	۸rg	Va I	Туг	۸la	۸la	Λla	Lcu	Thr	Gly	
	250					255					260					

Fig. 1 (c)

CTT	GCC	GCC	AAC	GGC	GAC	CGA	GCC	GCC	GTC	GCG	CCC	CTC	CTC	AGC	GAA	1050
Leu	Ala	Ala	Asn	Gly	Asp	Arg	Ala	Ala	Val	Ala	Pro	Leu	Leu	Ser	Glu	
265					270					275					280	
GAG	ACC	ATC	CAA	ACC	GTC	ACG	GCC	GAG	CAG	GTC	TTC	GGC	ATC	GAC	CGG	1098
Glu	Thr	lle	Gln	Thr	Val	Thr	Ala	Glu	Gln	Val	Phe	Gly	lle	Asp	Arg	
				285					290					295		
						TGC										1146
Val	Phe	Gly	Glu	Thr	Ser	Cys	Phe	Gly	Thr	Val	Phe	Met	Lys ·	Ser	His	
			300					305					310			
						AGC										1194
Ala	Arg	Ser	Pro	Туг	Gly	Ser	Туг	Arg	Ala	Phe	G1y	His	Asp	Gly	Ala	
		315					320					325				_
						GCT										1242
Ser	Ala	Ser	Leu	Gly	Phe	Ala	Asp	Pro	Val	Tyr	Glu	Leu	Ala	Phe	Gly	
	330					335					340					
						GAG										1290
Tyr	Val	Pro	Gln	Gln	Ala	Glu	Рго	Gly	Gly	Ala	Gly	Cys	Arg	Asn		
345					350					355					350	
						CGG										1335
Glu	Leu	Ser	Ala	Ala	Val	Arg	Lys	۸la	Val	Thr	Glu	Leu	Ala	Gln		
				365					370					375		
															CCGAAG	1395
															TGGCGG	1455
															ACGACA	1515
															AGCGTG	1575
															GATGAAG	
CCC	TCG1	TCT	GCAT	ATCO	CV C	AGGA	CCAT	`G A(CGCC/	CCCT	` GG1	CVV(SATC	GCC1	rgenaeg	1695

Fig. 1 (d)

CCCACAACTC	CGTGCCGGAG	CGCGTGCGGG	CGCTCGCCGA	AAAGTGGCCG	GALAAGGLAL	1/00
CCAGCACGCG	CTACGCAGAC	GCCCGGGAAG	TGCTCTACAA	GGCGGTGCCA	CGGGGTGAAA	1815
TCCACTTGGT	CCTGCAACGC	ATCAACCCTG	ATCTGCTGTC	CGAGATGGAC	CGGCTGGCGG	1875
ACTAGTAGTT	CGACGCGGCA	GGTCTCGCCT	GTCTACGGTT	TCGTCGGTTC	GTCCTGAATC	1935
GGGTTGGCAG	CGGCCGCCGC	CTCCCGGGTA	GCGGATGCGG	TGACGTCCGC	GAGAATCCGT	1995
TGGTGGATCT	GGGCGGTGAG	CTCGTGAATC	GCACGCGTCA	GGTCGGTGTT	CTCCTCGAGC	2055
AGATGCTCCT	GGGCGTTGTA	GTCATGGTCT	GCCTTCACCT	GCTGGAAAGC	CGCCTGACGG	2115
TTCTGTCCGA	TCATGACGAA	GGTCGAGAGG	AAGATCGCTT	CGAGCGAGAC	GATCAAGGT	2175

Fig. 2

Fig. 3

(1) Publication number:

0 497 103 A3

(12)

EUROPEAN PATENT APPLICATION

21 Application number: 92100271.3

2 Date of filing: 09.01.92

(5) Int. Cl.⁵: **C12N 15/55**, C12N 9/18, C12N 1/20, C12P 41/00, C12P 7/40, //(C12N1/21, C12R1:19)

3 Priority: 10.01.91 JP 1537/91

Date of publication of application: 05.08.92 Bulletin 92/32

Designated Contracting States:
CH DE FR GB LI NL

Date of deferred publication of the search report:23.06.93 Bulletin 93/25

71 Applicant: SUMITOMO CHEMICAL COMPANY LIMITED 5-33, Kitahama 4-chome, Chuo-ku Osaka-shi, Osaka 541(JP)

Inventor: Nishizawa, Masako 1-4-39-904, Tsukimiyama Takarazuka-shi, Hyogo-ken(JP) Inventor: Okawa, Hideo 14-3-403, Asahigaoka-cho Ashiya-shi, Hyogo-ken(JP) Inventor: Kanaoka, Masaharu 2-10-1-123, Sonehigashinocho Toyonaka-shi, Osaka-fu(JP)

Representative: Vossius & Partner Siebertstrasse 4 P.O. Box 86 07 67 W-8000 München 86 (DE)

(54) Gene encoding asymmetrically active esterase.

An isolated gene encoding an esterase capable of asymmetrically hydrolysing an ester of chrysanthemumic acid or its derivative to give an intermediate useful for the production of pharmaceutically and/or agriculturally useful compounds, expression plasmids containing said gene, microorganisms transformed with said expression plasmids, and the production of the esterase by culturing said transformants.

EUROPEAN SEARCH REPORT

Application Number

EP 92 10 0271

Category	Citation of document with i of relevant pa	ndication, where appropriate,	Relevant to claim	CLASSIFICATION OF THAPPLICATION (Int. Cl.5)
A	EP-A-0 264 457 (SUM 27 April 1988 * claims; examples	,	1	C12N15/55 C12N9/18 C12N1/20
A	CHEMICAL ABSTRACTS, 26 March 1990, Colu abstract no. 117365 SUGIMOTO, M. ET AL. manufacture with Ar page 610; * abstract * & JP-A-1 181 788 (S 19 July 1989	mbus, Ohio, US; v, 'Novel esterase throbacter.'	1	C12P41/00 C12P7/40 //(C12N1/21, C12R1:19)
A	EP-A-0 299 558 (GIS 18 January 1989 * claims *	T-BROCADES)	1	
E	CHEMICAL ABSTRACTS, 18 January 1993, Co abstract no. 21081x	olumbus, Óhio, UŠ;	1	TECHNICAL FIELDS
	MITSUTA, MASARU ET	AL. 'Arthrobacter resolution of racemic		SEARCHED (Int. Cl.5)
	chrysanthemic acid (page 583; * abstract * & JP-A-4 234 991 (SI 24 August 1992	ester.'		C12N C12P C12R
	The present search report has be	en drawn up for all claims Date of completion of the search		Rounday:
T	HE HAGUE	20 APRIL 1993	,	DELANGHE L.L.M.
X : parti Y : parti docu	CATEGORY OF CITED DOCUMEN cularly relevant if taken alone cularly relevant if combined with anot ment of the same category nological background	E : earlier pater after the fili her D : document ci	inciple underlying the ot document, but publing date ted in the application ted for other reasons	ished on, or