Les primitives et les dérivées.

Louis Herzog

21 avril 2024

Table des matières

0.1	La fonction $x \mapsto \sin(x)$		1
	0.1.1	Dérivée de la fonction $x \mapsto \sin(x)$	2
	0.1.2	Calcul d'une primitive de la fonction $x \mapsto \sin(x)$	2
0.2	La fon	ction $x \mapsto Arcsin(x)$	2
	0.2.1	Calcul de la dérivée de la fonction $x \mapsto \operatorname{Arcsin}(x)$	2
	0.2.2	Calcul de la primitive de la fonction $x \mapsto Arcsin(x)$	3
0.3	La fonction $x \mapsto \operatorname{Arctan}(x)$		3
	0.3.1	Dérivée de la fonction $x \mapsto \operatorname{sh}(x)$	4
	0.3.2	Calcul d'une primitive de la fonction $x \mapsto \operatorname{sh}(x)$	2
0.4	La fonction $x \mapsto \operatorname{Argsh}(x)$		4
	0.4.1	Dérivée de la fonction $x \mapsto \operatorname{Argsh}(x)$	5
	0.4.2	Calcul d'une primitive de la fonction $x \mapsto Argsh(x)$	5

0.1 La fonction $x \mapsto \sin(x)$.

Définissons nos fonctions dans Sage

$$f(x) = \sin(x)$$

$$g(x) = diff(f(x),x)$$

$$F(x) = integrate(f(x),x)$$

La représentation graphique de $x\mapsto \sin(x)$ sur l'intervalle $[-\pi,\pi]$.

La fonction est impaire et périodique de période 2π .

0.1.1 Dérivée de la fonction $x \mapsto \sin(x)$.

$$\lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h} = \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \left(\frac{\sin(x)(\cos(h) - 1)}{h} + \frac{\cos(x)\sin(h)}{h}\right)$$

$$= \sin(x) \times \lim_{h \to 0} \frac{\cos(h) - 1}{h} + \cos(x) \times \lim_{h \to 0} \frac{\sin(h)}{h}$$

$$= \cos x$$

0.1.2 Calcul d'une primitive de la fonction $x \mapsto \sin(x)$.

Dans la section précédente, on a calculé la dérivée de la fonction $x \mapsto \cos(x)$ qui vaut $x \mapsto -\sin(x)$, par conséquent une primitive de $x \mapsto \sin(x)$ est égale, à une constante près, à $-\cos(x) + C^{ste}$.

On vérifie ce résultat avec Sage. Une primitive de $\sin(x)$ est $-\cos(x) + C^{ste}$ définie à une constante près.

0.2 La fonction $x \mapsto Arcsin(x)$.

La restriction de la fonction $x\mapsto \sin(x)$ à l'intervalle $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ est une bijection de $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\to [-1,1]$. Il existe donc une fonction réciproque à la fonction $x\mapsto \sin(x)$ que l'on nomme $x\mapsto \operatorname{Arcsin}(x)$. C'est également une bijection, elle est continue sur l'intervalle fermé [-1,1] et est dérivable sur l'intervalle ouvert]-1,1[.

0.2.1 Calcul de la dérivée de la fonction $x \mapsto Arcsin(x)$.

Définissons nos fonctions dans Sage

$$f(x) = arcsin(x)$$

$$g(x) = diff(f(x),x)$$

$$F(x) = integrate(f(x), x)$$

Pour ce calcul, il faut utiliser le calcul de la dérivée d'une fonction composée. On a $\sin(\operatorname{Arcsin}(x)) = x$, par conséquent la dérivée de cette expression s'exprime par $\cos(\operatorname{Arcsin}(x)) \times \operatorname{Arcsin}'(x) = 1$, d'où $\operatorname{Arcsin}'(x) = \frac{1}{\cos(\operatorname{Arcsin}(x))}$.

La difficulté est maintenant de déterminer $\cos(\operatorname{Arcsin}(x))$, or on sait que pour tout $X \in \mathbb{R}$, on a $\sin^2(X) + \cos^2(X) = 1$, d'où $\cos(X) = \sqrt{1 - \sin^2(X)}$.

En remplaçant
$$X$$
 par $\operatorname{Arcsin}(x)$, on a $\operatorname{cos}(\operatorname{Arcsin}(x)) = \sqrt{1 - \sin^2(\operatorname{Arcsin}(x))} = \sqrt{1 - x^2}$.
Finalement, $\operatorname{Arcsin}'(x) = \frac{1}{\operatorname{cos}(\operatorname{Arcsin}(x))} = \frac{1}{\sqrt{1 - \sin^2(\operatorname{Arcsin}(x))}} = \frac{1}{\sqrt{1 - x^2}}$.

On vérifie ce résultat avec Sage. La dérivée de $Arcsin(x) = \frac{1}{\sqrt{-x^2 + 1}}$.

Les représentations graphiques de $x \mapsto \operatorname{Arcsin}(x)$ et de $x \mapsto \sin(x)$.

On peut maintenant entreprendre le calcul de la primitive de la fonction $x \mapsto \operatorname{Arcsin}(x)$.

0.2.2 Calcul de la primitive de la fonction $x \mapsto Arcsin(x)$.

Je pose que u(x) est égal à la fonction $\operatorname{Arcsin}(x)$ et v'(x) est égal dx d'où u'(x) est égal à la fonction $\operatorname{Arcsin}(x)' = \frac{1}{\sqrt{1-x^2}}$ et v(x) est égal x. Alors on a $\int \operatorname{Arcsin}(x) \, dx = x \times \operatorname{Arcsin}(x) - \int \frac{1}{\sqrt{1-x^2}} \times x \, dx$.

Calcul de
$$\int \frac{x}{\sqrt{1-x^2}} dx$$
. $\int \frac{x}{\sqrt{1-x^2}} dx = \frac{1}{2} \int \frac{d(1-x^2)}{\sqrt{1-x^2}} = \sqrt{1-x^2}$. Finalement, une primitive de la fonction $x \mapsto \operatorname{Arcsin}(x)$ est une fonction $x \mapsto x \operatorname{Arcsin}(x) - \sqrt{1-x^2} + C^{ste}$.

On vérifie ce résultat avec Sage. Une primitive de la fonction $Arcsin(x) = x Arcsin(x) + \sqrt{-x^2 + 1} + C^{ste}$.

0.3 La fonction $x \mapsto \operatorname{Arctan}(x)$.

La restriction de la fonction $x\mapsto \tan(x)$ à l'intervalle $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ est une bijection de $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\to\mathbb{R}$. Il existe donc une fonction réciproque à la fonction $x\mapsto \tan(x)$ que l'on nomme $x\mapsto \operatorname{Arctan}(x)$. C'est également une bijection, elle est continue sur l'intervalle fermé [-1,1] et est dérivable sur l'intervalle ouvert]-1,1[.

0.3.1 Dérivée de la fonction $x \mapsto sh(x)$.

$$sh(x)' = \left(\frac{\exp(x) - \exp(-x)}{2}\right)'$$

$$= \frac{\exp(x)' - \exp(-x)'}{2}$$

$$= \frac{\exp(x) + \exp(-x)}{2}$$

$$= ch(x)$$

0.3.2 Calcul d'une primitive de la fonction $x \mapsto sh(x)$.

$$\int \operatorname{sh}(x)dx = \int \frac{\exp(x) - \exp(-x)}{2} dx = \frac{1}{2} \times \left(\int \exp(x) dx - \int \exp(-x) dx \right) = \frac{\exp(x) + \exp(-x)}{2} = \operatorname{ch}(x) + C^{ste}$$

On vérifie ce résultat avec Sage. Une primitive de $Arcsin(x) = x Arcsin(x) + \sqrt{-x^2 + 1} + C^{ste}$.

0.4 La fonction $x \mapsto Argsh(x)$.

Définissons nos fonctions dans Sage

$$f(x) = arcsinh(x)$$

$$g(x) = diff(f(x), x)$$

$$F(x) = integrate(f(x), x)$$

La fonction $x \mapsto \operatorname{sh}(x)$ est inversible sur son domaine de définition \mathbb{R} , car elle y est bijective, son inverse est notée « Argsh » et définit la fonction « argument sinus hyperbolique » telle que $x \mapsto \operatorname{Argsh}(x)$.

La représentation graphique de $x \mapsto \operatorname{Argsh}(x)$.

On observe que la fonction est croissante, impaire $\operatorname{Argsh}(-x) = -\operatorname{Argsh}(x)$ et on observe que la fonction est continue et dérivable sur \mathbb{R} .

4

0.4.1 Dérivée de la fonction $x \mapsto Argsh(x)$.

On a la fonction composée $Id = sh \circ Argsh$ telle que $x \mapsto sh(Argsh(x)) = x$ dont la dérivée s'écrit alors $1 = Argsh' \times sh' \circ Argsh$.

$$x = \operatorname{sh}\left(\operatorname{Argsh}(x)\right)(x) \quad \text{en d\'erivant, on a}$$

$$1 = \operatorname{Argsh}'(x) \times \operatorname{sh'} \circ \operatorname{Argsh}(x) \quad \operatorname{d'o\`u}$$

$$\operatorname{Argsh'}(x) = \frac{1}{\operatorname{sh'} \circ \operatorname{Argsh}(x)} = \frac{1}{\operatorname{ch}\left(\operatorname{Argsh}(x)\right)} \quad \text{or}$$

$$\operatorname{ch}\left(\operatorname{Argsh}(x)\right) = \sqrt{1 + \operatorname{sh}^2\left(\operatorname{Argsh}(x)\right)} = \sqrt{1 + x^2} \quad \operatorname{done}$$

$$\operatorname{Argsh'}(x) = \frac{1}{\sqrt{1 + x^2}}$$

On vérifie ce résultat avec Sage. La dérivée de arsinh $(x) = \frac{1}{\sqrt{x^2 + 1}}$.

0.4.2 Calcul d'une primitive de la fonction $x \mapsto Argsh(x)$.

Pour calculer $\int \operatorname{Argsh}(x) \, dx$, on procède par une intégration par parties en posant $u(x) = \operatorname{Argsh}(x)$ et v'(x) = dx, d'où $u'(x) = \frac{1}{\sqrt{1+x^2}}$ et v(x) = x. On a donc

$$\int \operatorname{Argsh}(x) \, dx = x \operatorname{Argsh}(x) - \int \frac{x}{\sqrt{1+x^2}} \, dx \quad \text{or}$$

$$\int \frac{x}{\sqrt{1+x^2}} \, dx = \int \left(\sqrt{1+x^2}\right)' \, dx = \sqrt{1+x^2} \quad \text{d'où}$$

$$\int \operatorname{Argsh}(x) \, dx = x \operatorname{Argsh}(x) - \sqrt{1+x^2} + C^{ste} \quad \text{que l'on retrouve avec Sage.}$$

On vérifie ce résultat avec Sage. Une primitive de arsinh (x) = x arsinh $(x) - \sqrt{x^2 + 1} + C^{ste}$.

Les représentations graphiques respectivement de $x \mapsto \operatorname{Argsh}(x)$, de sa dérivée et de sa primitive.