

F٧	an	nnl	2 م) · I	ia	ht
ᅜ	an	IUI	C 4	L. L	⊥ıu	ш

A 633nm laser is passed through a double slit with 100um between slits

a) If the screen is 5m away, where is the 3rd node?

$$\lambda = 633 \times 10^{-9} \text{ m}$$
 $d = 100 \times 10^{-6} \text{ m}$

$$\chi_3$$
?

$$x_3 = \frac{(n-\frac{1}{2})}{2}$$

$$x_{3} = \frac{(n - \frac{1}{2})\lambda}{2}$$

$$x_{3} = \frac{(5)(3 - \frac{1}{2})(633 \times 10^{-9})}{100 \times 10^{6}}$$

Example 1 Ripple Tank with approximation

$$\frac{\chi_n}{L} = (N-0.5)\frac{\lambda}{q}$$

THIS

$$\lambda = \frac{x_n d}{L(n-05)}$$

n = 3

Terminologies:							
Light Example: When light passes through a "double slit" (two thin slits that allow light through, the rest							
is blocked), the two slits act like two point sources for light which behaves like a wave. The light waves							
diffract at slit (opening) creating circular wave patterns.							
The width of each maxima (bands of light - in this case blue) are equal. The nodes are technically a thin							
line (white), however because the maxima weakens in intensity outward from central maxima, the							
nodes appear wider.							
Dark fringes - nodal lines or minima (4th order dark fringe referring to 4th nodal line)							
Bright fringes - maxima							
Monochromatic - light with a single frequency							
nth order dark angle - angle theta in formula using nth node information (for bright, you'd use the							
equivalent maxima equation)							