Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 06.03.2015

Arbeitszeit: 120 min

Name:							
Vorname(n):							
Matrikelnumme	er:						Note
							_
	Aufgabe	1	2	3	4	\sum	
	erreichbare Punkt	e 11	9	8	12	40	
	erreichte Punkte						
${\bf Bitte}\;$							
tragen Sie	e Name, Vorname ur	nd Matril	kelnumi	mer au	f dem I	eckbla ⁻	tt ein,
rechnen S	ie die Aufgaben auf	separate:	n Blätt	ern, ni	cht auf	dem A	ingabeblatt,
beginnen	Sie für eine neue Au	ıfgabe im	mer au	ch eine	neue S	Seite,	
geben Sie	auf jedem Blatt der	n Namen	sowie o	die Mat	rikelnu	mmer a	ın,
begründe	n Sie Ihre Antworter	ı ausführ	lich un	d			
kreuzen S antreten l	ie hier an, an welche könnten:	m der fol	lgenden	Termi	ne Sie z	zur mür	ndlichen Prüfung
	Fr., 13.03.2015	\square Mo.	, 16.03.	2015		Di., 17	7.03.2015

1. Bearbeiten Sie die folgenden Teilaufgaben

11 P.|

3 P.

a) Gegeben ist das Blockschaltbild eines nichtlinearen zeitkontinuierlichen Systems:

Abbildung 1: Nichtlineares System.

i. Erstellen Sie das nichtlineare Zustandsmodell in der Form

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, u)$$
$$y = q(\mathbf{x}, u).$$

mit dem Zustandsvektor $\mathbf{x} = \begin{bmatrix} v & w \end{bmatrix}^T$.

- ii. Bestimmen Sie alle Ruhelagen des Systems für u(t) = 0 und $\beta = 1$. 1 P.
- iii. Linearisieren Sie das Zustandsmodell um die Ruhelage und schreiben Sie das linearisierte System vollständig an für $\beta=1$ und $\sin(v(t))=1$. 1 P.
- iv. Berechnen Sie die Übertragungsfunktion G(s) des linearisierten Systems. 1 P.
- v. Für welches α ist das linearisierte Modell BIBO stabil?
- b) Ein lineares, zeitinvariantes System der Form 5 P.|

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u$$
$$\mathbf{v} = \mathbf{C}\mathbf{x}$$

wird mit Hilfe einer regulären Zustandstransformation $\mathbf{x} = \mathbf{V}\mathbf{z}$ auf Jordansche Normalform transformiert. Es bezeichnen $\tilde{\mathbf{A}}$, $\tilde{\mathbf{b}}$ und $\tilde{\mathbf{C}}$ die Systemmatrizen des transformierten Systems. Folgende Matrizen sind bekannt

$$\tilde{\mathbf{\Phi}}(t) = \begin{bmatrix} e^{2t} & 0 \\ 0 & e^{-2t} \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \tilde{\mathbf{C}} = \begin{bmatrix} 1/2 & -1/2 \\ 1 & 1 \end{bmatrix}, \tilde{\mathbf{b}} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$$

mit der Transitionsmatrix des transformierten Systems $\Phi(t)$.

- i. Ist das System asymptotisch stabil? Begründen Sie ihre Antwort. 1 P.|
- ii. Berechnen Sie die Dynamikmatrix des transformierten Systems ${\bf A}.$ 1 ${\bf P}.$
- iii. Bestimmen Sie die Eigenwerte des Systems, sowie die Transformationsmatrix ${f V}.$
- iv. Geben Sie $\bf A$ und $\bf b$ des ursprünglichen Systems an. $2 \, \rm P.$

2. Bearbeiten Sie folgende Teilaufgaben:

9 P.|

a) Gegeben ist das System 3. Ordnung der Form

$$\frac{1}{2}y_{k+3} + 2e^{y_{k+2}} + 4\sin(u_k) = \frac{\alpha}{10}\sqrt{y_{k+1}}.$$

Stellen Sie dieses System in der Form von Differenzengleichungen 1. Ordnung dar

$$\mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_k, u_k\right)$$
$$y_k = g(\mathbf{x}_k).$$

b) Die folgende Abbildung zeigt die Pol- und Nullstellen einer Übertragungsfunktion G(z). $(x\dots Polstelle,\ o\dots Nullstelle)$. 5 P.|

Abbildung 2: Pol/Nullstellendiagramm.

- i. Ist das in Abbildung 2 dargestellte System BIBO-stabil? Begründen Sie Ihre Antwort.
- ii. Ermitteln Sie G(z) so, dass $\lim_{z\to 1} G(z) = 1$ gilt. 2 P.|
- iii. Berechnen Sie allgemein die Impulsantwort (g_k) des Systems. 2 P.
- c) Gegeben ist das Abtastsystem mit der z-Übertragungsfunktion $2\,\mathrm{P.l}$

$$G(z) = \frac{2z+1}{4z^2}$$

und der Abtastzeit $T_a = 1$ s. Bestimmen Sie die eingeschwungene Lösung (y_k) aufgrund der Eingangsfolge

$$(u_k) = 3\sin\left(\frac{\pi}{4}k + 1\right) + (1^k) + \cos\left(\frac{\pi}{3}k + \pi\right)e^{-k}.$$

3. Gegeben sei das lineare, zeitdiskrete System der Form

8 P.|

$$\mathbf{x}_{k+1} = \begin{bmatrix} 0 & -\frac{1}{2} \\ \frac{1}{4} & -\frac{3}{4} \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u_k,$$

$$y_k = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}_k.$$
(1)

Lösen Sie folgende Teilaufgaben:

- a) Überprüfen Sie das System (1) auf Erreichbarkeit. Verwenden Sie dazu den PBH-Eigenvektortest. $2.5\,\mathrm{P.}|$
- b) Entwerfen Sie für das zeitdiskrete System (1) einen Zustandsregler der Form

$$u_k = \mathbf{k}^{\mathrm{T}} \mathbf{x}_k + g r_k,$$

sodass die Eigenwerte des geschlossenen Kreises bei $z = \frac{1}{4}$ zu liegen kommen. 3 P.

c) Berechnen Sie den Verstärkungsfaktor g derart, dass für den geschlossenen Kreis für eine Eingangsfolge $(r_k)=r_0(1^k)=(r_0,r_0,r_0,\ldots)$

$$\lim_{k \to \infty} y_k = r_0$$

gilt. 1.5 P.|

d) Für das betrachtete System (1) lautet die Hankelmatrix

$$H = \begin{bmatrix} 0 & -1 \\ -1 & \frac{3}{4} \end{bmatrix}$$

Beurteilen Sie anhand der Hankelmatrix die Beobachtbarkeit des vorliegenden Systems. Begründen Sie ihre Antwort ausführlich.

4. Bearbeiten Sie die folgenden Teilaufgaben:

 $12 \, P.$

a) Abbildung 3 zeigt den Amplitudengang sowie die Nyquist-Ortskurve einer zeitkontinuierlichen Übertragungsfunktion G(s). Welche der folgenden Übertragungsfunktionen entspricht den dargestellten Verläufen. Zeichnen Sie in der Nyquist-Ortskurve die Frequenzen $\omega \to \pm \infty$ und $\omega = 0$ ein. Begründen Sie Ihre Antworten ausführlich.

4 P.

1)
$$G_1(s) = \frac{4+s}{2s^2+s+4}$$

2)
$$G_2(s) = \frac{4}{(2s^2 + s + 4)(1+s)}$$

3)
$$G_3(s) = \frac{(4-s)}{(2s^2+s+4)}$$

1)
$$G_1(s) = \frac{4+s}{2s^2+s+4}$$
 2) $G_2(s) = \frac{4}{(2s^2+s+4)(1+s)}$
3) $G_3(s) = \frac{(4-s)}{(2s^2+s+4)}$ 4) $G_4(s) = \frac{4}{(2s^2+s+4)(1-s)}$

Abbildung 3: Amplitudengang und Nyquist-Ortskurve zu Aufgabe 4 a).

Abbildung 4: Geschlossener Regelkreis zu Aufgabe 4 b).

b) Im folgenden wird der Regelkreis nach Abbildung 4 mit der Streckenübertragungsfunktion

$$G(s) = \frac{12\left(s + \frac{4}{\sqrt{3}}\right)}{s\left(s + 4\sqrt{3}\right)(s + 4)}$$

betrachtet. Für die Übertragungsfunktion der Messeinrichtung M(s) gilt vorerst M(s) = 1.

i. Entwerfen Sie für die Streckenübertragungsfunktion G(s) und M(s)=1 mit Hilfe des Frequenzkennlinienverfahrens einen Regler der Form

$$R(s) = V_R \frac{1 + sT_R}{s^{\beta}},$$

welcher folgende Spezifikationen erfüllt.

- Anstiegszeit $t_r = \frac{3}{8}$ s
- \bullet Prozentuelles Überschwingen $\ddot{u}=25\%$
- $\bullet e_{\infty}|_{r(t)=t}=0.$
- A. Zeigen Sie mit Hilfe des Endwertsatzes, dass der Parameter β zu $\beta=1$ gewählt werden muss. 3 P.
- B. Berechnen Sie die Reglerkoeffizienten V_R und T_R für $\beta=1$. 3 P.
- ii. Es gelte nun $M(s)=e^{-sT_t}$. Wie groß darf T_t maximal werden, damit der Regelkreis noch BIBO-stabil ist? 2 P.