Preference Trees: A Language for Representing and Reasoning about Qualitative Preferences

Xudong Liu and Miroslaw Truszczynski

Department of Computer Science University of Kentucky Lexington, KY, USA

Overview

- Introduction
- Preference Trees
 - Definition
 - Relating Other Preference Formalisms
- 3 Decision Problems and Complexity
- Future Work

Liu and Truszczynski

Example

Let us consider preferences over vacations, combinations of values from domains of the following issues:

- **1** activity: hiking (x_1) or water sports $(\neg x_1)$,
- **2** destination: Florida (x_2) or Colorado $(\neg x_2)$,
- **1** *time*: summer (x_3) or winter $(\neg x_3)$, and
- transportation: car (x_4) or plane $(\neg x_4)$.

Example

Figure : Vacations

 $x_1x_2x_3x_4,... \succ \neg x_1x_2x_3x_4,... \succ x_1x_2 \neg x_3 \neg x_4,... \succ x_1x_2 \neg x_3x_4,...$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Contributions

- We introduce a novel qualitative preference representation language, preference trees, or P-trees.
- We show that the language provides an intuitive way to specify preferences over combinatorial domains and how it relates to existing preference formalisms such as LP-trees, ASO and possibilistic logic.
- We study decision problems in the setting of P-trees and obtain computational complexity results.

Liu and Truszczynski Preference Trees July 25, 2014 5 / 21

Preference Trees

- Let \mathcal{I} be a set of binary issues. The *combinatorial domain* determined by \mathcal{I} , $CD(\mathcal{I})$, is the set of outcomes represented by complete and consistent sets of literals over \mathcal{I} .
- A preference tree (P-tree) over $CD(\mathcal{I})$ is a binary tree whose nodes other than the leaves are labeled with propositional formulas over \mathcal{I} .
- Let T be a P-tree. Given an outcome $M \in CD(\mathcal{I})$, we define the leaf $I_{\mathcal{T}}(M)$ of M in T as the leaf reached by traversing the tree T. When at a node N labeled with φ , if $M \models \varphi$, we descend to the left child of N; otherwise, to the right.

Preference Trees

- For $M, M' \in CD(\mathcal{I})$, we set $M' \succeq_{\mathcal{T}} M$ if $I_{\mathcal{T}}(M') \succeq_{\mathcal{T}} I_{\mathcal{T}}(M)$, and $M' \succ_{\mathcal{T}} M$ if $I_{\mathcal{T}}(M') \succ_{\mathcal{T}} I_{\mathcal{T}}(M)$.
- We say that M is equivalent to M', $M \approx_T M'$, if $I_T(M) = I_T(M')$.
- Outcome M is *optimal* if there exists no M' such that $M' \succ_T M$.

Liu and Truszczynski Preference Trees July 25, 2014 7 / 21

Preference Trees: Example

$$\varphi_1 = x_1 \lor x_3, \ \varphi_2 = x_1 \land \neg x_2,$$

$$\varphi_3 = (x_3 \to x_4) \lor (\neg x_3 \to \neg x_4),$$

$$\varphi_4 = x_2 \land x_4.$$

Figure: P-trees

For outcomes $M = (x_1, x_2, \neg x_3, \neg x_4)$, $M' = (\neg x_1, x_2, x_3, x_4)$, and $M'' = (\neg x_1, \neg x_2, x_3, \neg x_4)$, we have $I_T(M) = I_T(M') = I_3$ and $I_T(M'') = I_4$, so $M \approx_T M' \succ_T M''$.

Compact Representation of P-trees

A compact P-tree over $CD(\mathcal{I})$ is a tree where

- lacktriangledown every node is labeled with a Boolean formula over \mathcal{I} , and
- ② every non-leaf node t labeled with φ has either two outgoing edges with the left one representing that φ is satisfied and the right representing that φ is falsified, or one outgoing edge e such that e points
 - straight-down indicating that the two subtrees of t are identical and the formulas labeling every pair of corresponding nodes in the two subtrees are the same, or
 - left (right) indicating empty right (left, resp.) subtree of t.

Liu and Truszczynski Preference Trees July 25, 2014 9 / 21

Compact Representation of P-trees

$$\varphi_1 = x_1 \lor x_3, \ \varphi_2 = x_1 \land \neg x_2,$$

$$\varphi_3 = (x_3 \to x_4) \lor (\neg x_3 \to \neg x_4),$$

$$\varphi_4 = x_2 \land x_4.$$

Figure : P-trees

Liu and Truszczynski

Compact Representation of P-trees

Figure: P-trees

Liu and Truszczynski

P-Trees and LP-Trees³

Figure: P-trees extend LP-trees

Liu and Truszczynski Preference Trees July 25, 2014 12 / 21

 $^{^{2}\}varphi = (x_{2} \rightarrow x_{4}) \lor (\neg x_{2} \rightarrow \neg x_{4})$

Booth, Chevaleyre, Lang, Mengin, and Sombattheera. Learning conditionally lexicographic preference relations, 2010. O a Comparing the Comparing Conditionally Lexicographic preference relations, 2010.

Answer Set Optimization (ASO)

• An ASO-rule⁴ r over \mathcal{I} is a preference rule of the form

$$C_1 > \ldots > C_m \leftarrow B$$
,

where all C_i 's and B are propositional formulas over \mathcal{I} .

• For an outcome $M \in CD(\mathcal{I})$, the rule determines its satisfaction $degree^5$, denoted by $SD_r(M)$ such that

$$SD_r(M) = egin{cases} 1, & M \models \neg B \\ m+1, & M \models B \land igwedge_{1 \le i \le m} \neg C_i \\ min\{i: M \models C_i\}, & \text{otherwise}. \end{cases}$$

• $M \succeq_r M'$ if $SD_r(M) \leq SD_r(M')$.

This definition is a slight adaptation of the original one.

Liu and Truszczynski Preference Trees July 25, 2014

⁴ Brewka, Niemela, and Truszczynski. *Answer set optimization*, 2003.

From ASO-Rules to P-Trees

From the ASO-rule r, we build a P-tree T_r , where $\varphi_1 = \neg B \lor C_1$, $\varphi_i = C_i$ $(2 \le i \le m)$.

Figure : A P-tree T_r

Theorem

Given an ASO-rule r, there exists a P-tree T_r of size polynomial in the size of r such that for every two outcomes M and M'

$$M \succeq_r^{ASO} M'$$
 iff $M \succeq_{T_r} M'$

- ◀ □ ▶ ◀ 🗇 ▶ ◀ 필 Þ - (필 ·) 역 Q @

From P-Trees to ASO-Rules?

Figure : A P-tree T

$$r_T: \underbrace{\varphi_1 \wedge \ldots \wedge \varphi_m \succ \varphi_1 \wedge \ldots \wedge \neg \varphi_m \succ \ldots \succ \neg \varphi_1 \wedge \ldots \wedge \neg \varphi_m}_{2^m \text{ formulas!}}$$

- 4 ロ ト 4 園 ト 4 恵 ト 4 恵 ト 9 年 9 9 9 0

Ranked Answer Set Optimization (RASO)

- An (unranked) ASO-theory, or ASO-theory, P is a set of ASO-rules aggregated by the Pareto method.
 - **1** $M \succeq_P^{un} M'$ if $SD_r(M) \leq SD_r(M')$ for every $r \in P$.
 - ② $M \succ_{P}^{un} M'$ if $M \succeq_{P}^{un} M'$ and $SD_r(M) < SD_r(M')$ for some $r \in P$.
- An ranked ASO-theory⁶, or RASO-theory, $P = \{P_1, \dots, P_g\}$ is a set of ASO-rules with g ranks, the smaller the rank the more important the rules.
 - ① $M \succeq_P^{rk} M'$ if for every i, $1 \le i \le g$, $M \approx_{P_i}^{un} M'$, or if there exists a rank i such that $M \approx_{P_i}^{un} M'$ for every j, j < i, and $M \succ_{P_i}^{un} M'$.

Brewka, Niemela, and Truszczynski. Answer set optimization, 2003.

From P-trees to RASO-Theories

Figure : P-trees

Theorem

Given a P-tree T, there exists an RASO-theory Φ_T of size polynomial in the size of T such that for every two outcomes M and M'

$$M \succeq_{\Phi_T}^{RASO} M'$$
 iff $M \succeq_T M'$

(ロ) (部) (注) (注) 注 のQの

P-Trees and Answer Set Optimization

ASO-rules \subset P-trees \subset RASO-theories

Decision Problems

Dominance-testing (DomTest)

Given a P-tree T and its two distinct outcomes M and M', decide whether $M' \succeq_T M$.

Optimality-testing (OPTTEST)

Given a P-tree T and an outcome M, decide whether M is an optimal outcome with respect to T.

Optimality-with-property (OPTPROP)

Given a P-tree T and some property α expressed as a Boolean formula, decide whether there is an optimal outcome that satisfies α .

Computational Complexity Results

DomTest	OptTest	ОртРпор
Р	coNP-complete ⁷	$\Delta_2^P(P^{NP})$ -complete ⁸

Figure : Computational complexity results

Liu and Truszczynski Preference Trees July 25, 2014 20 / 21

 $^{^{7}\}mbox{The complement problem is reduced from the SAT problem.}$

⁸The problem is reduced from the Maximum Satisfying Assignment (MSA) problem: () + ()

Future Work

- Relating P-trees with CP-nets⁹.
- Learning P-trees: elicitation, learning.
- Aggregating P-trees: the Pareto method, social choice rules.

Questions? Thank you!

Liu and Truszczynski Preference Trees July 25, 2014 21 / 21

⁹ Boutilier, Brafman, Domshlak, Hoos, and Poole. *CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements*, 2004.