<u>Cristian González García</u> <u>gonzalezcristian@uniovi.es</u>

v 1.2.2 Noviembre 2022

**Smart Objects** 

## Introducción

- o Los *Smart Objects* e Internet de las Cosas son dos ideas que describen el futuro y que van unidas entre sí, que se complementan
- La interconexión entre objetos puede
  - Hacerlos inteligentes o expandir su inteligencia hasta límites insospechados
  - Llegar a crear una red que conecte todos los objetos del mundo
- Para interconectarlos hay que utilizar una red que soporte la heterogeneidad y la ubicuidad de los objetos
  - Una red IoT, lo que hace que ambos conceptos estén tan ligados
- Los objetos pueden ser
  - Ciudades, casas, coches, máquinas o cualquier otro objeto que pueda sentir, responder, trabajar o hacer más fácil la vida de su dueño
- Problema
  - La heterogeneidad de los objetos

¿Qué es un objeto?

## Problema con el significado y uso

- En los artículos científicos se habla de «objetos» en general ¿Por qué?
  - o «Objetos» hace referencia a cualquier dispositivo u objeto, sea inteligente o no
- Interconexión entre objetos
  - Interconexión que puede ser entre Smart Objects, entre objetos sin inteligencia o entre un Smart Object con un objeto sin inteligencia (RFID, sensores, etc.)
- o Problemas en la literatura y en la propia comprensión de los humanos
  - A veces se usa ((objeto)) y a veces ((cosa)) y ((object)) y ((thing))
    - o Algunos autores las usan indistintamente, pues es muy ambigua
    - o ((Internet of Things)), Internet de las Cosas, Internet de los Objetos, Internet del Futuro
    - o ((Smart Objects)), ((Intelligent Objects)), Objetos inteligentes, objetos, etc.

## Significados en español e inglés

• En español no hay diferencia...

«Objeto» según la Real Academia Española (RAE) [154]

1. Cosa.

«Cosa» según la Real Academia Española [154]

- 1. f. Lo que tiene entidad, ya sea corporal o espiritual, natural o artificial, concreta, abstracta o virtual.
- 2. f. Objeto inanimado, por oposición a ser viviente.
- o En <u>inglés</u> un **objeto** se **puede sentir y tocar** 
  - Coches, ciudades, sensores, actuadores, etc.
- Y cosa es inanimado
  - La economía, los datos, los gustos, las decisiones, etc.

| «Object» según Oxford [157]                                                       | «Object» según Cambridge [158]                               |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------|
| 1. A material thing that can be seen and touched.                                 | 1. A thing that can be seen or felt.                         |
| «Thing» según Oxford [157]                                                        | «Thing» según Cambridge [158]                                |
| 1. An object that one need not, cannot, or does not wish to give a specific name. | <ol> <li>An object; something that is not living.</li> </ol> |

• Definiciones ambiguas...

## «Objeto» en el marco de loT

 Cualquier dispositivo electrónico que pueda ser conectado a Internet y pueda, bien recoger datos, como puede ser un sensor, o bien ejecutar una acción que pueda ser realizada por un objeto, comúnmente llamado actuador

- Smart Object son los objetos
- o loT es cualquier cosa, incluida la economía y nuestros datos

Objetos no inteligentes

## Objetos no inteligentes

- «Object» engloba tanto los objetos inteligentes, conocidos como Smart Objects, como los objetos sin inteligencia
- Hay que saber diferenciar
  - Los diferentes tipos de objetos existentes
  - La manera en que estos pueden interactuar con nosotros
- Los objetos no inteligentes se dividen en dos grupos
  - Sensores y actuadores

## Sensores

- Dispositivos formados por células sensibles
- Permiten capturar magnitudes físicas
  - La variación de luz con un fotorresistor
  - La temperatura con un termistor
  - La detección de llamas, de sonido, de movimiento
  - o O cualquier otra alteración del entorno [154]-[156]
- o Son elementos físicos específicos que nos permiten medir una determinada magnitud física o detectar algo del entorno que rodea a este elemento

## Ejemplo – Sensores

- Detección de llamas → KY026
- Sensores de gases
  - Monóxido de carbono (CO) → MQ7
  - Dióxido de carbono (CO₂) → MG811
  - Metano ( $CH_4$ )  $\rightarrow$  MQ4
  - Hidrógeno (H₂) → MQ8
  - Alcohol ( $C_2H_5OH$ )  $\rightarrow$  MQ3
  - Gases Licuados del Petróleo (GLP), propano,  $H_2$ ,  $CH_4$  y Alcohol  $\rightarrow N$
  - GLP, gas natural y gas ciudad → MQ5
  - GLP, butano y propano → MQ6
  - CO,  $CH_4$  y  $GLP \rightarrow MQ9$
  - Amoniaco (NH<sub>3</sub>), benceno y alcohol → MQ135
- o Láser → KY008
- Termistor TM3P6 y 19B20
- Sensor de temperatura y humedad → DHT11 / KY015
- De flexión (flex sensor)
- Potenciómetros por presión (soft potentiometer)
- Ritmo cardiaco → KY039
- Receptor de infrarrojos → KY022
- o Fotorresistor → KY018
- Botones
- Potenciómetros
- ... y más



## Actuadores

- En nuestro universo de discurso (IoT)
  - o Actuadores mecánicos que permiten realizar una acción sobre sí mismo u otro dispositivo, o bien aquellas acciones que permita realizar un objeto determinado
- o Los actuadores se pueden dividir en dos grupos
  - o Dispositivos mecánicos y acciones
- Posibles actuadores mecánicos
  - Los motores, servomotores o bombas
- Posibles acciones
  - Las que permiten realizar ciertos objetos
    - Smartphone
      - Vibrar, enviar un mensaje o encender la luz de la cámara
    - o Diodo Emisor de Luz (LED)
      - Encenderse y apagarse
    - Robot
      - Moverse, entre otras muchas acciones de las que estos puedan disponer

## Ejemplo – Actuadores

### Acciones

- Vibración, enviar un correo, encender o apagar el flash de la cámara, enviar un SMS, llamar a un determinado número, etc.
- Cualquier acción disponible desde el smartphone e inseparable de este objeto

#### Actuadores

- Motor
- Servomotor
- Altavoz (KY012)
- Luces RGB (KY011, KY016 y otros)
- LEDs (KY034 y otros)
- o Emisor láser (KY008)
- Infrarrojos (KY005) (emisión)
- o ... y más







## Sensores + Actuadores

- Se pueden encontrar que ciertos objetos puedan tener sensores y actuadores, como son ciertos objetos inteligentes
  - Smartphones
    - Están compuestos, entre otras muchas cosas, de sensores y actuadores
  - Microcontrolador (Arduino)
    - Se le pueden conectar casi cualquier dispositivo electrónico
      - Se puede crear un sistema de solo sensores, solo actuadores o una combinación de ambos
- o Los **Smart Objects** están compuestos de objetos no inteligentes

## Esquema de la composición de la palabra «Objetos»



Smart Objects

## Definición

- Depende del autor...
  - Hay definiciones muy similares [7], [159]–[162] de las que se puede sacar una premisa
- Definición de «Smart Object» en este universo de discurso (IoT)
  - Un Smart Object, también conocido como Intelligent Product, es un elemento físico, identificable a lo largo de su vida útil, que interactúa con el entorno y otros objetos, y que puede actuar de manera inteligente según unas determinadas situaciones, mediante una conducta autónoma. Además, los Smart Objects poseen un sistema informático incrustado y frecuentemente poseen sensores o actuadores [7]. Esto les permite comunicarse con otros objetos, ser capaces de procesar su información, obtener datos del entorno o de realizar un evento

## Smart Objects

- Nos encontramos rodeados de ejemplos de Smart Objects en nuestra vida diaria, entre nuestros objetos cotidianos
  - Smartphones, tablets, Smart TVs, microcontroladores como el Arduino [7], [53]–[55]
  - Incluso algunas cafeteras y algunos coches son objetos inteligentes
  - Cualquier otro objeto que tenga conectividad a la red [9] y sea capaz, como mínimo, de gestionar información [26]
- o Como se puede observar, los Smart Objects pueden ser muy diferente entre ellos
  - Un smartphone no tiene apenas nada que ver con un microcontrolador o con un microordenador
    - o Lo único en común son algunos componentes electrónicos
  - o Internamente, cada uno tiene sus propios sensores y actuadores, así como su propia inteligencia, si es que disponen de ella y su propio sistema operativo, si es que tiene

https://commons.wikimedia.org/wiki/File:Arduino\_Uno\_-\_R3.jp



## Clasificación

- Se pueden clasificar en base a tres dimensiones
- La clasificación sirve para diferenciar la diferente información que nos puede dar un Smart Object acerca de su arquitectura
  - Cada dimensión se corresponde con una cualidad de la inteligencia
    - Permiten determinar la inteligencia que tiene un objeto y el tipo de Smart Object que es para así compararlo con otros



# 1ª dimensión –Nivel de inteligencia I

- Describe la capacidad de inteligencia del objeto y cuán listo puede ser
- Consta de tres niveles
  - o La gestión de la información
    - Es la capacidad para manejar la información que recoge a través de sensores, lectores u otras técnicas
      - Es el nivel más básico que debe de tener un objeto para considerarse Smart Object, es decir, ser capaz de manejar la información que recibe
      - o Sin este nivel, simplemente sería un objeto no inteligente
        - Un sensor que solo mide el dato y lo devuelve

Smart Objects' Level diagram



# 1ª dimensión –Nivel de inteligencia II

- La notificación del problema
  - Posibilidad de que un objeto sea capaz de notificar a su propietario cuando ocurre un determinado problema o evento en el propio Smart Object
    - o Detección de bajada de temperatura
  - o En este nivel, los objetos aún no poseen libre albedrío
- La toma de decisiones
  - Es el nivel más inteligente que puede poseer un objeto
  - Posee los dos niveles anteriores y la capacidad de toma de decisiones sin intervención de un control externo (IA, lógica difusa, reglas, etc.)
  - o Tienen libre albedrío

Level of Intelligence

Decision Making

Notification of the Problem

Information Handling

# 2ª dimensión – Localización de la inteligencia

Intelligence in the Object

Intelligence through the Network

Location of the Intelligence

Combined Intelligence

- Consta de tres niveles
  - o La inteligencia en el objeto

    - o Los objetos computan todo por sí mismo, es decir, toda la inteligencia es llevada por ellos y no necesitan de agentes externos para ser inteligentes
    - Las plataformas que tienen objetos que poseen este nivel suelen llamarse plataformas integradas (Embedded platforms) [164]
  - La inteligencia a través de la red
    - o Consiste en que la inteligencia del objeto depende totalmente de un agente externo al propio objeto, pues este no tiene ninguna incorporada
      - Este agente puede ser una red a la que se encuentra conectado, comúnmente llamadas **plataformas** portal (Portal platform) [164]
        - Un servidor que tenga los agentes inteligentes corriendo (Los robots Kiva de Amazon)
        - U otro objeto que se dedique a tomar decisiones o contenga la inteligencia global
  - La inteligencia combinada
    - o El objeto tienes ambos tipos de inteligencias
    - o Tiene inteligencia propia y es capaz de usar también la inteligencia en la red
    - o Estas plataformas se llaman **plataformas de sustitución** (Surrogated platforms) [164]

# 3ª dimensión – Agregación del nivel de inteligencia l

- Esta dimensión describe **aquellos objetos que se componen de partes**, de manera que, se pueda **detectar si cada parte es individual o si el objeto es un todo indivisible**
- Ejemplo
  - A una Raspberry Pi se le puede conectar un Arduino y a ambos se le pueden conectar sensores, actuadores y otros microcontroladores
  - Los objetos no inteligentes (actuadores y sensores) no tienen inteligencia por sí mismos, pero los microcontroladores, como el Arduino, sí. Así, si este es separado de la Raspberry Pi, ambos pueden seguir funcionando independientemente
- Consta de tres niveles
  - o La inteligencia en el elemento
    - o Aquellos objetos que pueden manejar información, notificaciones y/o decisiones
    - Si contienen otros componentes, estos no pueden ser distinguidos como objetos individuales
    - **Ejemplo**: los smartphones contienen sensores y estos no pueden ser separados, ya que van integrados

      Intelligence in the Item

Intelligence in the Container

Distributed Intelligence

Aggregation Level of Intelligence

# 3° dimensión – Agregación del nivel de inteligencia II

- o La inteligencia en el contenedor
  - o Los objetos deben de poder manejar información, notificaciones y/o decisiones, y además, ser conscientes de los componentes de los que están formados, permitiendo funcionar como un proxy entre ellos y la red o la inteligencia
  - o Además, estos objetos, son capaces de seguir funcionando como contenedor u objeto inteligente a pesar de que se les desensamble alguna parte de él
  - **Ejemplo**: una placa Arduino con como mínimo dos sensores. Si se le quita un sensor, puede seguir funcionando como contenedor
  - **Ejemplo 2**: una estantería/armario/nevera inteligente que notifica cuando se queda sin stock de algún producto (tienen RFID)



# 3° dimensión – Agregación del nivel de inteligencia III

- La inteligencia distribuida
  - Es la fusión entre las dos anteriores
  - Los elementos y los contenedores tienen inteligencia, pero pueden negociar entre ellas para tomar la mejor decisión en base a todo el sistema y el resto de elementos
  - Ejemplo
    - Un objeto inteligente modular que se compone de otros objetos inteligentes, como por ejemplo, una Raspberry Pi que tiene enchufados dos Arduino
    - Cada Arduino tiene su propia inteligencia y pueden tomar sus propias decisiones
    - Pero, a veces, pueden preguntar a las Raspberry Pi por algún dato o estado del otro Arduino para realizar alguna acción



## Ejemplos





- Nota: todo depende del uso que les demos/programemos
  - El Arduino depende de la programación que le añadamos, pues si está conectado a un PC y hacemos todo en el PC, entonces el Arduino tiene un nivel de inteligencia de 1 o 2 y no de 3

Campos de uso

## Campos de uso I

- o Los Smart Objects están presentes desde hace mucho en nuestra vida diaria
- o Están fuertemente ligados a loT
- o Hay ejemplos mucho más precisos del uso de solo Smart Objects sin el uso de loT
- Ámbito comercial
  - o Diferentes sistemas que ayuden a controlar la manufacturación[159]
- o Para mejorar la distribución y gestión de productos en las cadenas de suministro
  - o Mantener localizados los objetos durante todo el proceso de su ciclo de vida
  - Uso de lectores para averiguar el estado del producto, monitorizarlos o acceder a su historial [26]
  - Ejemplo
    - Una estanterías inteligentes que notifiquen cuando esta se ha quedado sin stock de un producto [160]
      - Este tipo de aplicaciones son muy útiles de cara a las empresas
        - Les otorga ventajas para mejorar y evitar problemas de falta de stock a lo largo de toda la cadena de vida de un producto
    - La nevera inteligente

## Campos de uso II

### • Alquiler de objetos [50]

- Controlar el uso de objetos alquilados para cobrar la cantidad de dinero adecuada según su utilización
- Añadir una sanción en el caso de que se detectase un uso incorrecto del objeto por parte del usuario
- Este sistema ayuda a cliente y empresa pues, en el primer caso, se le cobra exactamente por el uso que le da y en el caso de la empresa sirve para detectar un mal uso del objeto y compensarlo

### o Seguridad en el trabajo

- Sistema para avisar a los trabajadores acerca del almacenaje incorrecto e inseguro de materiales químicos [50]
- Sistema muy útil para controlar el almacenaje de posibles sustancias peligrosas y evitar muchos desastres y problemas

#### Salud

- Monitorización de pacientes con problemas [60]
- Sistemas como este podrían llegar a salvar muchas vidas humanas
  - Conectan el marcapasos con un centro de vigilancia para detectar inmediatamente un posible ataque al corazón o un fallo en el marcapasos

## Preguntas tema

ohttps://forms.office.com/e/L37aguP1D



## Referencias

## Referencias

- o Todo el contenido pertenece a
  - o los capítulos 4 y 19 de:
    - González García, C., 2017. MIDGAR: Interoperabilidad de objetos en el marco de Internet de las Cosas mediante el uso de Ingeniería Dirigida por Modelos. University of Oviedo. doi:10.13140/RG.2.2.26332.59529
    - <a href="https://www.researchgate.net/publication/314188769">https://www.researchgate.net/publication/314188769</a> MIDGAR interoperabilidad de objetos en el marco de Internet de las Cosas mediante el uso de Ingenieria Dirigida por Modelos
  - González García, C., Meana-Llorián, D., G-Bustelo, B.C.P., Lovelle, J.M.C., 2017. A review about Smart Objects, Sensors, and Actuators. Int. J. Interact. Multimed. Artif. Intell. 4, 7–10. doi:10.9781/ijimai.2017.431

<u>Cristian González García</u> <u>gonzalezcristian@uniovi.es</u>

**Smart Objects** 

v 1.2.2 Noviembre 2022