

Generalization in diffusion models arises from geometry-adaptive harmonic representations

By Zahra Kadkhodaie, Florentin Guth, Eero P. Simoncelli, Stéphane Mallat

Thodoris Kouzelis

NTUA & Archemides AI

CV & Robotics reading group

14 October 2024

Main Question addressed in the Paper

Q: High dimension density estimation is difficult! Yet DMs manage to generate HQ samples even when trained on limited data. How?

- 1) Memorizing the training set?
- 2) Interpolating between training images? (Generalize)
- 3) If they do are there any inductive biases that restrict the hypothesis space?

Training Set

Generated Image

Figure: Figure from Carlini et al 2024

But how do Diffusion Models work in the first place ?

But how do Diffusion Models work in the first place ?

- A forward Gaussian process adds noise to the data
 - $q(\mathbf{x_t}|\mathbf{x_{t-1}}) = \mathcal{N}(\mathbf{x_t}; \sqrt{1-\beta_t}\mathbf{x_{t-1}}, \beta_t \mathbf{I})$
 - $q(\mathbf{x_t}|\mathbf{x_0}) = \mathcal{N}(\mathbf{x_t}; \sqrt{\bar{a}}\mathbf{x_0}, (1-\bar{a})\mathbf{I})$, where $\bar{a}_t = \prod_{i=1}^T a_i$ and $a_t = 1 \beta_t$
- A learned reverse Gaussian process p_{θ} generated data from noise
 - $p_{\theta}(\mathbf{x_T}) = \mathcal{N}(\mathbf{x_T}; 0, \mathbf{I})$
 - $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \mu_{\theta}(\mathbf{x}_t, t)), \sigma(\mathbf{x}_t, t))$
- The goal is to learn the reverse process i.e. $\mu_{\theta}(x_t, t), \sigma(x_t, t)$ from data

Diffusion Models Intro

What objective will be optimized?

Maximize
$$p_{\theta}(\mathbf{x}_0)$$
?

$$p_{\theta}(\mathbf{x}_0) = \int p_{\theta}(\mathbf{x}_{0:T}) d\mathbf{x}_{1:T}$$

What objective will be optimized?

Marginalizing over all possible trajectories is intractable.

$$p_{ heta}(\mathbf{x}_0) = \int p_{ heta}(\mathbf{x}_{0:T}) d\mathbf{x}_{1:T}$$

What objective will be optimized?

- View $x_1, x_2, ... x_T$ as latent variables
- And x_0 as the observed variable
- Maximize an Evidence Lower Bound (ELBO)

Evidence Lower Bound:

$$\log p(x) \geq \underbrace{\mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{p(x,z)}{q_{\phi}(z|x)}\right]}_{\text{ELBO}}$$

$$\text{ELBO} = \underbrace{\mathbb{E}_{q_{\phi}(z|x)} [\log p_{\theta}(x|z)]}_{\text{how good the "decoder" is}} - \underbrace{D_{KL}(q(z|x)||p(z))}_{\text{how good the "encoder" is}}$$

Diffusion Models Intro

- ELBO: $\log p_{\theta}(x_0) \geq \mathbb{E}_{q(x_{1:T}|x_0)} \left[\log \frac{p_{\theta}(x_{0:T})}{q(x_{1:T}|x_0)}\right]$
- $\operatorname{argmax}_{\theta} \left\{ \mathbb{E}_{q(x_{1:T}|x_0)} \left[\log \frac{p_{\theta}(x_{0:T})}{q(x_{1:T}|x_0)} \right] \right\}$ as a proxy for maximizing $p(x_0)$

..

• $\operatorname{argmin}_{\theta} D_{KL}(q(x_{t-1}|x_t, x_0) || p_{\theta}(x_{t-1}|x_t))$

...

•
$$q(x_{t-1}|x_t,x_0) = \mathcal{N}(x_{t-1};\underbrace{\frac{\sqrt{a_t}(1-\bar{a}_{t-1})x_t+\sqrt{\bar{a}_{t-1}}(1-a_t)x_0}{1-\bar{a}_t}}_{\mu_q(x_t,x_0)},\underbrace{\frac{(1-a_t)(1-\bar{a}_{t-1})}{(1-\bar{a}_t)}I}_{\sum_q(t)})$$

- Now we can derive an objective for the mean of the reverse process:
 - $\operatorname{argmin}_{\theta} \frac{1}{2\sigma_a^2(t)} \mathbb{E}_{q(x_t|x_0)} \left[||\mu_{\theta}(x_t) \mu_q||_2^2 \right]$
- Which can be reformulated to:
 - $\operatorname{argmin}_{\theta} \frac{1}{2\sigma_q^2(t)} \lambda_t \mathbb{E}_{q(x_t|x_0)} \left[||x_{\theta}(x_t) x_0||_2^2 \right]$ (where λ_t is dependent on the noise schedule)
- x_{θ} is an MSE denoiser parameterized with a DNN.
- And is trained to perform denoising at all noise levels

Training the denoiser at all noise levels

Sampling is performed according to:
$$x_{t-1} = \frac{(1-\bar{a}_{t-1})\sqrt{a_t}}{1-\bar{a}_t}x_t + \frac{(1-a_t)\sqrt{\bar{a}_{t-1}}}{1-\bar{a}_t}x_{\theta}(x_t) + \sigma_q(t)\epsilon$$

Density estimation error

How good is the estimation of the density p_{θ} the denoiser learns (implicitly)

- $D_{KL}(p(x)||p_{\theta}(x)) \leq \int_{0}^{\infty} \left(MSE(x_{\theta}, \sigma^{2}) MSE(x^{*}, \sigma^{2})\right) \sigma^{-3} d\sigma$ (x^{*} is the optimal denoiser)
- The density estimation error is bounded by the denoiser error (integrated over all noise levels)
- Thus, learning the true density model is equivalent to performing optimal denoising at all noise levels

Density estimation error

However the optimal denoiser x^* for photographic images is unknown.

- Separate two factors that contribute to sub-optimal performance:
 - Model Variance
 - Low variance implies the model generalizes well across different datasets
 - Can be evaluated without knowledge of x^*
 - Model Bias
 - Model bias measures the distance of the true denoiser to the approximated
 - Cannot be evaluated without knowledge of x*

TRCHIMEDES Transition from Memorization to Generalization

Figure: PSNR = $10\log_{10} \frac{255^2}{MSE}$ [Kadkhodaie et al. 2024]

RCHIMEDES Transition from Memorization to Generalization

Figure: Kadkhodaie et al. 2024

RCHIMEDES Transition from Memorization to Generalization

Model Variance is tending to zero!

Figure: Kadkhodaie et al. 2024

Figure: Kadkhodaie et al. 2024

What are the inductive Biases of the denoiser

Classical denoising framework:

- Transform the image to a **new basis** where noise and signal are seperable
- Suppress the noise (perform shrinkage)
- Transform back to pixel space

Wavelet based be - Fixed basis e_k , and adaptive shrinkage λ_k :

•
$$f(y) = \sum_k \lambda_k < y, e_k > e_k$$

- Sparse representation in the Wavelet basis
- Adaptive thresholding:

$$\lambda_k = \begin{cases} 1 & \text{if } | < y, e_k > | > \alpha \sigma \\ 0 & \text{otherwise} \end{cases}$$

What if we could also make the basis adaptive?

A deep denoiser without bias terms written as:

•
$$f(y) = W_L R(W_{L-1} ... R(W_1 y)) = A_y y$$

- $f(y) = J_y y$, where J_y is the jacobian of the denoiser w.r.t y
- Is nearly symmetric \rightarrow Eigendecomposition!

The eigendecomposition of the Jacobian:

- $J_y = V \Lambda V^T = \sum_i \lambda_i v_i v_i^T$, where λ_i, v_i are the eigenvalues and eigenvectors
- Thus $f(y) = \sum_{i} \lambda_{i} < x, v_{i} > v_{i}$
- Both shrinkage factors and basis are adaptive!

Observations:

- Small eigenvalues $\lambda_k(y)$ reveal local invariances of the denoising function (effective null space) i.e. $f(y+v) \approx f(y)$
- Such invariances are a desirable property for a denoiser

On the low-rankness of the Jacobian:

- The optimal denoiser is the conditional mean of the posterior $f^* = \mathbb{E}_{\mathbf{x}}[\mathbf{x}|y]$
- The jacobian of the optimal denoiser is proportional to the posterior covariance matrix $J_y^* = \nabla f^*(y) = \sigma^{-2} \text{Cov}[x|y]$
- Thee optimal denoising error is then given by: $\mathsf{MSE}(f^*,\sigma^2) = \mathbb{E}_y[\mathsf{tr}(\mathsf{Cov}[x|y])] = \sigma^2\mathbb{E}_y[\mathsf{tr}(\nabla f^*(y)] = \sigma^2\mathbb{E}_y\Big[\sum_k \lambda_k^*(y)\Big]$
- A small denoising error thus implies an approximately low-rank Jacobian

27

Geometry Adaptive Harmonic Basis (GAHB)

Figure: DNN trained on 10⁵ images from CelebA, [Kadkhodaie et al. 2024]

- Oscillating patterns both along the contours and in uniformly regular regions
- Thus adapt to the geometry of the input image
- The coefficients are sparse in this basis, and the fast rate of decay of eigenvalues exploits this sparsity

Conjecture: DNN denoisers have inductive biases towards learning GAHBs

Aligned inductive bias and optimality

Test on C_a images [Peyre & Mallat, 2008]:

- Regular contours on regular backgrounds
- As α is increases images become more regulars (smooth & without high-frequency variations)
- Known optimal denoiser

Figure: Kadkhodaie et al. 2024

Aligned inductive bias and optimality

DNN Denoiser trained on $10^5 C_a$ images

Figure: Kadkhodaie et al. 2024

Aligned inductive bias and optimality

- Optimal denoiser has slope $\frac{a}{a+1}$ Korostelev & Tsybacov, 1993
- The optimal slope is obtained by denoising with bandlet basis
- Larger $\alpha \to \text{more regular} \to$ $\to \text{sparser representation} \to \text{larger slope}$

Figure: PSNR curves for various regularity levels [Kadkhodaie et al. 2024]

(Mis)-Aligned inductive bias

- If DNN denoisers are inductively biased towards GAHBs then we expect these bases to emerge even in cases where they are suboptimal
- Dataset of disk images with varying positions, sizes, and foreground/background intensities.
- 5-dimentional manifold (5 degrees of freedom)
- Known optimal basis

Figure: Examples from disk dataset [Kadkhodaie et al. 2024]

(Mis)-Aligned inductive bias

Figure: Kadkhodaie et al. 2024

Thank You !!!