Previous Doc Next Doc Go to Doc# First Hit

Generate Collection

L8: Entry 4 of 10

File: JPAB

Oct 27, 1995

PUB-NO: JP407280054A

DOCUMENT-IDENTIFIER: JP 07280054 A

TITLE: CONTINUOUSLY VARIABLE TRANSMISSION FOR DRIVING AUXILIARY MACHINE

PUBN-DATE: October 27, 1995

INVENTOR-INFORMATION:

NAME COUNTRY

SAYAMA, MASAYUKI

ASSIGNEE-INFORMATION:

NAME

TOCHIGI FUJI IND CO LTD

APPL-NO: JP06074707

APPL-DATE: April 13, 1994

INT-CL (IPC): $\underline{F16} \ \underline{H} \ \underline{9/00}; \ \underline{F16} \ \underline{H} \ \underline{61/02}$

ABSTRACT:

PURPOSE: To improve the climbing/descending performance of a vehicle on a slope while the driving of an auxiliary machine is set within the allowable range by providing a first control device to control the transmission ratio within the prescribed range and a second control device to control the transmission ratio to be the maximum deceleration ratio or the maximum acceleration ratio.

CONSTITUTION: When an accelerator is closed, and a vehicle is on the down-hill, the maximum acceleration ratio H 1 is realized in the CVT control range, the number of revolution of the compressors 4, 5 which are the auxiliary machines is set to R on the control speed line of the allowable maximum acceleration ratio corresponding to that the engine speed from the point P in the control speed range C is moved to realize the drive, which is made use of like a retarder to improve the effectiveness of the brake. When the accelerator is open and the vehicle is on the up-hill, the minimum acceleration ratio Hz is realized, and the revolution on the compressors 4, 5 side is moved from the point P in the control speed range C to the point Q on the control speed line to realize the drive, and the output of the engine 1 is increased. This constitution improves the climbing/descending ability.

COPYRIGHT: (C) 1995, JPO

Previous Doc Next Doc Go to Doc#

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出膜公開番号

特開平7-280054

(43)公開日 平成7年(1995)10月27日

(51) Int.CL* F 1 6 H		識別記号	庁内整理書号	ΓI	技術表示箇所
	61/02				
/ F16H	59: 24				Q6
	59: 66	•			

審査請求 未請求 請求項の数6 OL (全 6 頁)

(21)出願番号

特數平6-74707

(22)出顧日

平成6年(1994)4月13日

(71)出頭人 000225050

栃木富士産業株式会社

栃木県栃木市大宮町2388番地

(72)発明者 佐山 正幸

栃木県栃木市大宮町2388番地 栃木富士産

菜株式会社内

(74)代理人 弁理士 三好 秀和 (外8名)

(54) 【発明の名称】 補機駆動用無段変速装置

(57)【要約】

(修正有)

【目的】 車両エンジン出力により冷凍用コンプレッサ 等の補機を駆動するCVT (無段変速機)を設けたもの において、補機の駆動を許容範囲内におさめつつ、車両 の坂道での登降坂性能を向上させる。

【構成】 CVTを所定の変速比範囲内に入るように制御する第1の制御装置と、坂道走行状態検出手段10により変速比を最減速比又は最増速比に制御する第2の制御装置とを備える。

【特許請求の範囲】

【請求項1】 車両駆動用のエンジンと、該エンジンの 入力により補機を駆動する無段変速機と、該無段変速機 の変速比を補機駆動状態により所定の変速比の範囲内に はいるように制御する第1の制御装置と、前記車両の走 行状態を検出する検出手段と、該検出手段の出力により 前記変速比を最減速比又は最増速比となるように制御す る第2の制御装置とを備える補機駆動無段変速装置。

【請求項2】 検出手段が上り坂道を検出したとき第2 の制御装置が変速比を最減速比に制御することを特徴と 10 する請求項1記載の補機駆動用無段変速装置。

【請求項3】 検出手段が下り坂道を検出したとき第2 少期御装置が変速比を最増進出に制度することを特徴と する請求項1記載の補機駆動用無段変速装置。

【請求項4】 検出手段が車両に備えられ乗員の操作に より当該走行状態の検出信号を出力するマニュアル式坂 モードスイッチであることを特徴とする請求項1~3記 載の補機駆動用無段変速装置。

【請求項5】 検出手段が車両に備えられ自動的に当該 走行状態の検出信号を出力する傾斜センサであることを 20 特徴とする請求項1~3記載の補機駆動用無段変速装 置。

【請求項6】 検出手段が坂モードスイッチ又は傾斜セ ンサにアクセル閉度を検知するスロットルスイッチを加 えてなることを特徴とする請求項1~3記載の補機駆動 用無段変速装置。

【発明の詳細な説明】

- [000<u>1]</u>

【産業上の利用分野】この発明は補機駆動用無段変速装 置に係わり、例えば冷凍車等の車両において、車両駆動 30 用エンジンの出力により冷凍装置のコンプレッサ等の補 機をベルト式無段変速機 (以下CVTと略称する) によ り駆動する装置に係わる。

[0002]

【従来の技術】従来の補機駆動用CVTとして例えば特 開平5-164232号公報記載のものがある。これ は、エンジン側からの入力軸(駆動軸)とこれに平行配 置の補機関への出力軸(被動軸)とに夫々V清形成用固 定プーリ片と可動プーリ片とを取付け、V溝にベルトを 圧を入出力軸の回転数及び負荷装置又はエンジン回転数 の各信号により制御し、プーリ有効径を変え、変速比を 段差なく連続的に変えて適正にして、補機の回転数を所 定の範囲に調整するものである。このものは、主エンジ ンからの直動形式であるため、車両に多くの荷物を積み こめる利点があるほか、負荷装置であるコンプレッサ側 からの指令によりエンジン回転が急変しても負荷装置の 回転を正常値に制御でき、冷凍室の温度制御の精度を高 めることができるという効果を奏するものである。

[0003]

【発明が解決しようとする課題】しかしながら、この従 来の補機駆動用CVTは、補機側の負荷装置からの指令 はあるが、走行条件の考慮による車両側からの指令を行 なわない構成であるため、車両に多くの荷物を積んで坂 道を上る場合はCVT側に駆動力を食われて登坂力が不 十分になり、登坂速度を維持できなくなるとか、又、下 り坂ではブレーキの効きが悪いとかいう問題点があっ た。この発明は、補機の駆動を許容範囲内に収め、しか も坂道においても前述の不具合を生じない補機駆動用C VTを提供することにより前記問題点を解決することを 目的としている。

2

[0004]

【課題を解決するための手段】この発明は、植機駆動用。 無段変速機の変速比を所定の範囲内にはいるように制御 する第1の制御装置と、車両の走行状態を検出する検出 手段の出力により変速比を最減速比又は最増速比となる ように制御する第2の制御装置とを備えるものである。 [0005]

【作用】通常走行時には、最減速比又は最増速比の間、 即ち所定変速比範囲の適当に決められた変速比で補機が 駆動され、例えば冷凍車では、適宜な冷凍室温度を保持 する。車両が坂道にかかり、そこで、坂モードスイッチ を入れると、上り坂のときは最減速比に制御され、補機 傾への駆動力配分を減らし、エンジン出力を増やすの で、登坂力がアップする。又、下り坂のときは最増速比 に制御され補機側への駆動力が増加するので、補機がリ ターダとして作用しブレーキ力をアップする。しかも、 これらいずれの場合も、相思は許容される最速速止死び一 最増速比での制御により駆動されるので、補機の機能が ある程度維持されることになる。

[0006]

【実施例】以下この発明の一実施例を図1~図3により 説明する。まず、構成をCVT電子制御系ブロック図で ある図1により説明する。

【0007】図1において、エンジン1はその出力をト ランスミッション2を経て車両8の車輪21に伝え車両 8を走行駆動するものである。CVT本体3はクランク ギャ12からアイドラギャ13を介して伝動される駆動 ギヤ22と、これに連結される駆動側プーリ14と、ベ 掛けると共に、可動プーリ片に油圧を作動させ、この油 40 ルト23により伝動される被動側プーリ15と被動側プ ーリ片の背部になり、ベルト23に常時推力を与えてい るスプリング15aと、プーリ14の可動側プーリ片の 背部にありポンプリリーフ機能具備の油圧室24への油 圧を制御するデューティ弁(オンオフのデューティ信号 により開閉制御される弁でデューティ100%で全開と なった時にCVTを減速状態に移行させる弁) 18とを 有す。4及び5は共に補機としての冷凍装置のコンプレ ッサ、19及び20はそれらの動力連結連断用電磁クラ ッチである。 コンプレッサ4及び5はブーリ15に連結 50 されるプーリ25及び26、プーリ27及び28により

ベルト伝動される。6は第1の制御装置及び第2の制御 装置を構成するCVTコントロールユニットで、坂モー ドスイッチ10の信号、エンジン (駆動側) 回転数セン サ(入力軸回転数センサ)16の信号、補機(被動側) 回転数センサ(出力軸回転数センサ)17の信号、デュ ーティ弁18の信号、アクセル (スロットル) スイッチ 29の信号及びニュートラルスイッチ30の信号を入力 し所定の演算をしてデューティ弁18に制御信号を送る ものである。ここで坂モードスイッチ10は、車両に備 えられ乗員が坂道にさしかかった際に手動で操作できる 10 マニュアル形のスイッチである。 アラームランプ 9 はC VTコントロールユニット6の指令で制御範囲を越えて 、いる場合に警告するものである。メインコントローラ7 はCVTコントロールユニット6からのアラーム信号を 受け、これにより制御される各種の他の制御装置との関 連から適正かどうかを判断し、指令信号を送り返すもの である。

【0008】次に前記実施例の作用を図1に加えて図2 のフローチャート及び図3の変速比性能線図を用いて説 明する。図2において、NENGはエンジン回転数、C VTD Rは入力軸回転数(回転数センサ16によるも の)、CVTDNは出力軸回転数(回転数センサ17に よるもの)、Sは指令信号(制御速度範囲内にて認識さ れるものであり、補機側から必要となる回転数になるよ うに指令を行なう信号)、SMDは坂モードスイッチ1 Oの信号、Hは増速比 (変速比) で、CVTDR/Sで 表わされるものである。

----【0009】S1(ステップ1の意味であり以下同じ) でCVT制御をスタートする。尚、以下の文章中に記載 NG, CVTDN, CVTDR, S及びSMDを読み込 む。S3で領域A(図3参照)にあるか否かを判断し、 NOのときはS4に進む。YESのときは制御速度範囲 外としてS11に進んでアラーム出力(アラーム9点 灯) し、S12でデューティ100%出力 (デューティ 弁18を全開制御)する。S4にて領域B (図3参照) にあるか否かを判断し、NOのときS5に進む。YES のときはS13にて変速しているかどうかを確認するた め、一定時間 t1 (例えば10) 秒離鏡判断し、やはり し、S12でデューティ100%出力をする。S5で、 SMDがオンか否かを判断しNOのときはS6に進む。 YESのときはS8に進みスロットルスイッチ29がオ ンか否かを判断しNOのときS9に進む。S9でH=H 1 (例えば0.66)とする。即ち、この場合はアクセ ル閉で、下り坂道に差しかかっている為、CVT制御範 囲での最大増速比(最増速比) H1 (図3H1参照)と し、補機であるコンプレッサ4、5側の回転数をこのと きのエンジン回転数に対応するを許容最増速比の制御速 度ライン上の点Rに制御速度範囲C内の点P(後述す

る)が移行して駆動し、これをリターダ的に利用してブ レーキの効きをアップすることができ、車両ブレーキの 負担を減らすことができるものである。

【0010】又、S8でYESのときS10に進み、こ こではH=H2 (例えば1.98)とする。即ち、この 場合は、アクセル全開で、上り坂に差しかかっている 為、最小増速比(最減速比) H2 (図3H2参照)と し、コンプレッサ4、5側の回転をこのときのエンジン 回転数に対応する許容最増速比の制御速度ライン上の点 Qに制御速度範囲C内の点P(後述する)から移行して 駆動し、その分、エンジン1の出力をアップし、登板を スピーディに行ない登板能力を向上することができるも のである。ここでごう及びS10は第2の制金裁遣に相 当する。

【0011】S5でNOのときはS6に進み、CVTD NがNi (5000rpm, 図3Ni 参照)以上か否か を判断し、YESのときはS14にてH=1.00とし てコンプレッサ4,5の許容回転数以上の過回転を防止 する。S6でNOのときはS7に進み、H=CVTDR 20 /Sにより変速点 (図3のP点) を求める。 前述した各 増速比H1 , H2 , H=1.00の関係はH1 <H= 1.00 < H2 として設定してある。

【0012】この場合は、通常(平地)走行状態である ため、変速比がH1 とH2 の間のC領域 (範囲) にある P点となるものである。ここでS7は第1の制御装置に 相当する。

【0013】87,9,10及び14でそれぞれ各ステ ・・・・ップ実行後はS-15に進み、ここで、補正値Krightersantalistics K2 , 及びK3 をCVTユニットタイプ毎に決められた する数値は本実施例で用いた数値を示す。S2で、NE 30 値として算出する。S16で、デューティ出力DU=K r×(NENG)の2乗+K2×NENG+K3によ り、DUを算出する。S17でNENGがN2 (700 rpm, 図3参照) であるか否かを判断し、NOのとき S18に進み、デューティ出力を前記算出したDUと し、デューティ弁18をデューティDUでの制御をす る。YESのときS20に進み、NENG上昇か否かを 判断し、NOのときはS18に進みデューティDUでの 制御をする。YESのときS21に進み、S21で回転 上昇率W(rpm/msec)があらかじめの設定値 YESであるというときはS11に進んでアラーム出力 40~W'(例えば70rpm/50msec)以上か否かを 判断する。NOのときはS18に進み、YESのときは S22に進み、デューティ100%出力をt2 秒(1 秒) 間継続する。S18及びS22実行後、S19に進 み、スタートへ戻る。

> 【0014】以上に述べたように、前記実施例では、坂 モードスイッチを乗員が操作することにより、コンプレ ッサ等の補機をその駆動が許容される最大増速比又は最 小増速比にて行なわれるように制御されるので、補機の 機能が或程度保持された上で車両駆動エンジンの出力ア 50 ップ又はリターダ利用により坂道での車両走行時のブレ

一キ負担軽減の作用を良好になしうるものである。しか も、それらの通常走行から坂道走行又は逆への制御切換 がデューティ制御(油圧)によるので、切換移行が非常 にスムーズに行われるものである。

【0015】前記実施例において、坂モードスイッチ1 0はマニュアル形のものであるが、これに代えて坂道の 傾斜を自動的に感じて出力する傾斜センサを用いれば自 動化が成り立つものである。

【0016】又、前記実施例において、アクセル(スロ ットル)スイッチ29を用いてあるので、上り坂で再増 10 速又は下り坂で再減速のためにアクセルを踏みこんだと き、このスイッチが有効に作用するものとなる。

【0017】なお、図1においては、ニュートラルスイ ッチ30を用い、ニュートラル以外の変速段にギヤが入 っていることを検知してその信号をCVTコントロール ユニット6に入力するものとしてあるが、このスイッチ 30はスロットルスイッチ29に代えて、又は、これ (スイッチ29) と併用してもよいものである。併用の 場合は更に精密に制御可能となる。

【0018】更に、図3において、制御速度範囲C(変 20 7 メインコントローラ 速比範囲C)、即ち、最大増速比H1、及び最小増速比 H2 を直線状のもので説明したが、この発明はこれに限 定されず、折れ線又は曲線であってもよいものである。

【0019】なお、この発明は、補機が冷凍庫用コンプ レッサに限定されず、自動車用エンジンのオルタネータ 等の補機は勿論、パワステ用ポンプ、エアコン用コンプ レッサ等にも適用できるものである。

【発明の効果】以上に説明してきたように、この発明に よれば補機の機能を所定の範囲内に維持しつつ、上り坂 30 29 アクセル (スロットル) スイッチ

では補機減速に基くエンジン負担の軽減により車両の登 板能力を向上することができると共に、下り坂では補機 増速に基くリターダとしての利用により車両のブレーキ への負担を減らすことができるという効果がある。

6

【図面の簡単な説明】

【図1】この発明の一実施例を示すCVT電子制御系ブ ロック図である。

【図2】図1のもののフローチャートである。

【図3】この発明よる変速比範囲を示す性能線図で機軸 にエンジン回転数をとり、縦軸に補機であるコンプレッ サの回転数をとった図である。

【符号の説明】

- 1 エンジン
- 2 トランスミッション
- 3 CVT本体
- 4 コンプレッサ (補機)
- 5 コンプレッサ(補機)
- 6 CVTコントロールユニット (第1の制御装置, 第 2の制御装置)
- - 8 車両
 - 9 アラームランプ
 - 10 坂モードスイッチ
 - 14 駆動側プーリ
 - 15 被動側プーリ
 - 16 エンジン (駆動側) 回転数センサ (入力軸回転数 センサ)
- - サ)

【図1】

【図2】

【図3】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.