MECH105: Homework 21

Fick's first diffusion law states that

$$MassFlux = -D\frac{dc}{dx}$$

where mass flux is the quantity of mass that passess across a unit area per unit time $g/cm^2/s$. D is a diffusion coefficient (cm^2/s) , c is the concentration (g/cm^3) , and x is the distance (cm).

An engineerg measures the following concentration of a pollutant in the pore waters of sediments underlying a lake (x = 0 at the defiment-water interface and increases downward).

x,cm	c, $10^{-6} \ g/cm^3$
0	0.06
1	0.32
3	0.6

Use the best numerical differentiation technique to estimate the derivative at x=0. Employ this estimate in conjunction with the equation above to compute the mass flux of pollutant out of the sediments and into the overlying waters $(D=1.52*10^{-6}cm^2/s)$. For a lake with $3.6*10^6m^2$ of sediments, how much pollutant would be transported into the lake over a year's time?