MATH 110 –Spring 2016 — Homework 1 Solutions

Utsav Baral, SID 25694452

1.2 #1, 2, 7, 8, 10, 13, 17 **1.3** #1, 3, 8, 12, 19, 25, 29

1.2

- 1. Problem: Label the following statements as True or False
 - (a) Every vector space contains a zero vector.

TRUE. By the definition of the properties of vector sets, there must be a zero vector or else the set is not a vector set.

(b) A vector space may have more than one zero vector.

FALSE. By contradiction, Suppose there are multiple values for zero, u and u'. u+u'=u and u'+u=u' therefore u=u' and our assumption that there are more than one zero is false.

(c) In any vector space, ax = bx implies that a = b.

FALSE. When $x = \vec{0}$ then $ax = bx \ \forall a, b \in \mathbb{F}$

(d) In any vector space, ax = ay implies that x = y.

 \overline{FALSE} . If a = 0, then $ax = ay \ \forall x, y \in V$

(e) A vector in \mathbb{F}^n may be regarded as a matrix in $M_{n\times 1}(\mathbb{F})$.

[TRUE.] The single column of the matrix can be interpreted as a vector and vise versa because there is a one to one correspondence and both are members of a vector space.

(f) $An \ m \times n \ matrix \ has \ m \ columns \ and \ n \ rows.$

|FALSE|. It has m rows and n columns

(g) In $P(\mathbb{F})$ only polynomials of the same degree may be added.

FALSE. Any degree polynomial may be added.

(h) If f and g are polynomials of degree n, then f + g is a polynomial of degree n.

 \overline{FALSE} . Counter example: $f = -2x^n$ and $g = 2x^n$

(i) If f is a polynomial of degree n and c is a nonzero scalar, then cf is a polynomial of degree n.

TRUE. f has term ax^n , where $a \neq 0$ so cf will have term $(c \cdot a)x^n$ where $ca \neq 0$

- (j) A nonzero scalar of \mathbb{F} may be considered to be a polynomial in $P(\mathbb{F})$ having degree zero. \boxed{TRUE} . Any polynomial, $f \in P(\mathbb{F})$, with degree 0 is written as $f = a_0$, where $a_0 \in \mathbb{F}$. Thus, any non-zero scalar $k \in \mathbb{F}$ maps to the zero-degree polynomial f = k and any zero-degree polynomial $f = k' : k' \in \mathbb{F}$ maps to the non-zero scalar k' Establishing a bijective correspondence
- (k) Two functions in $F(S, \mathbb{F})$ are equal if and only if they have the same value at each element of S.

 \overline{TRUE} . That is the definition of equals.

2. <u>Problem:</u> Write the zero vector of $M_{3\times 4}(\mathbb{F})$

$$\begin{bmatrix} \mathbf{O}_{\mathbb{F}} & \mathbf{O}_{\mathbb{F}} & \mathbf{O}_{\mathbb{F}} & \mathbf{O}_{\mathbb{F}} \\ \mathbf{O}_{\mathbb{F}} & \mathbf{O}_{\mathbb{F}} & \mathbf{O}_{\mathbb{F}} & \mathbf{O}_{\mathbb{F}} \\ \mathbf{O}_{\mathbb{F}} & \mathbf{O}_{\mathbb{F}} & \mathbf{O}_{\mathbb{F}} & \mathbf{O}_{\mathbb{F}} \end{bmatrix}$$

7. <u>Problem:</u> Let $S = \{0,1\}$ and $\mathbb{F} = \mathbb{R}$. In $F(S,\mathbb{R})$, show that f = g and f + g = h, where f(t) = 2t + 1, $g(t) = 1 + 4t - 2t^2$, and $h(t) = 5^t + 1$.

Solution:

F is the set of all functions that map the set $\{0,1\}$ to the set \mathbb{R} So the functions $f,g,h\in F(S,\mathbb{R})$ given to us can be thought of as any function that is defined for the input values of 0 and 1 To show that f=g we show that f and g map the values 0 and 1 to the same values in \mathbb{R} , respectively:

$$f(0) = 2 \cdot (0) + 1 = \mathbf{1}, \qquad f(1) = 2 \cdot (1) + 1 = \mathbf{3}$$

$$g(0) = 1 + 4 \cdot (0) - 2 \cdot (0)^2 = \mathbf{1}, \qquad g(1) = 1 + 4 \cdot (1) - 2 \cdot (1)^2 = \mathbf{3}$$

$$f(0) = g(0) \wedge f(1) = g(1) \qquad \qquad \therefore \boxed{f(t) = g(t) \text{ in } F(S, \mathbb{R})}$$

Now to show that f + g = h in $F(S, \mathbb{R})$, we repeat the same process as above for (f + g)(t) and h(t):

$$(f+g)(0) = 2, h(0) = 2$$

 $(f+g)(1) = 6, h(1) = 6$
 $(f+g)(0) = h(0) \land (f+g)(1) = h(1) \therefore \boxed{(f+g)(t) = h(t) \text{ in } F(S,\mathbb{R})}$

8. <u>Problem:</u> In any vector space \mathbf{V} , show that, (a+b)(x+y) = ax + ay + bx + by for any $x, y \in V$ and any $a, b \in \mathbb{F}$.

Solution:

Starting with (a + b)(x + y), we first let z = x + y; we know that $z \in \mathbf{V}$ by the 1st property of vector spaces. We can rewrite our equation as (a + b)(z). But by **Axiom 8**, we can rewrite this as az + bz. Replacing z with our original relation, we transform our expression to a(x + y) + b(x + y). And by **Axiom 7** this is the same as ax + ay + bx + by. Thus completing our proof.

10. <u>Problem:</u> Let **V** denote the set of all differentiable real-valued functions defined on the real line. Prove that **V** is a vector space with the operations of addition and scalar multiplication defined in Example 3.

Solution:

We know that the addition and scalar multiplication operations defined in Example 3 satisfy the 8 Axioms for Vector Spaces. So we just have to show that applying either operation on the vectors results in another vector also in \mathbf{V} .

For the addition property, we have that (f+g)(x) = f(x)+g(x) and we know that f(x) and g(x) are both differntiable $\forall x \in \mathbb{R}$. For (f+g)(x) to be in \mathbf{V} , it must also be differentiable on the real line and map $\mathbb{R} \mapsto \mathbb{R}$. But this is definitely the case because (f+g)'(x) = f'(x)+g'(x) and we are guaranteed f' and g' exist and are in \mathbb{R} .

For multiplication, we have that $(cf)(x) = c \cdot f(x)$. And again, we have that $(cf)'(x) = c \cdot f'(x)$ which means, by the same justification as above, that $(cf)(x) \in \mathbf{V}$ as well.

13. <u>Problem:</u> Let **V** denote the set of ordered pairs of real numbers. If (a1, a2) and (b1, b2) are elements of **V** and $c \in \mathbb{R}$, define (a1, a2) + (b1, b2) = (a1 + b1, a2b2) and c(a1, a2) = (ca1, a2). Is **V** a vector space over \mathbb{R} with these operations? Justify your answer.

Solution:

No, it is not a vector space because **Axiom 3** and **Axiom 4** contradict each other. **Axiom 3** states that: $\exists \ \vec{0} \in \mathbf{V} : \forall \ \vec{v} \in \mathbf{V} \ (\vec{v} + \vec{0} = \vec{v})$ which implies that the $\vec{0} = (0,1)$. **Axiom 4** states that: $\forall \vec{x} \in \mathbf{V}, \exists \vec{y} \in \mathbf{V} : (\vec{x} + \vec{y} = \vec{0})$. However, with the vector $\vec{u} = (0,0)$, there is no other vector $\vec{u}' \in \mathbf{V}$ such that $\vec{u} + \vec{u}' = \vec{0}$, because such a vector would have to satisfy the equation $u'_2 \cdot 0 = 1$ where $u'_2 \in \mathbb{R}$

17. <u>Problem:</u> Let $V = \{(a_1, a_2) : a_1, a_2 \in \mathbb{F}\}$, where \mathbb{F} is a field. Define addition of elements of \mathbf{V} coordinatewise, and for $c \in \mathbb{F}$ and $(a_1, a_2) \in \mathbf{V}$, define $c(a_1, a_2) = (a_1, 0)$. Is \mathbf{V} a vector space over \mathbb{F} with these operations? Justify your answer.

Solution:

[NO]. Because the multiplication operation violates **Axiom 5**. Which is that $1 \cdot x = x$, $\forall x \in \mathbf{V}$. Which would mean that $1 \cdot (a1, a2) = (a1, a2)$, $\forall a_1, a_2 \in \mathbb{F}$ But in fact $1 \cdot (a1, a2) \neq (a1, a2) \forall a_2 \neq 0$

1.3

1.

3.

8.

12.

19.

25.

29.