

VS-LITE

Jan Tumajer

Charles University, Prague Czech Republic tumajerj@natur.cuni.cz

VS-LITE

Low-complexity non-linear sink-oriented process-based model of wood formation

Tolwinski-Ward, S.E., Evans, M.N., Hughes, M.K., Anchukaitis, K.J., 2011. An efficient forward model of the climate controls on interannual variation in tree-ring width. Clim. Dyn. 36, 2419–2439. https://doi.org/10.1007/s00382-010-0945-5

HOW TO QUANTIFY CLIMATE-GROWTH RESPONSES?

1. Statistical approaches

- Statistical function (e.g., linear regression) \rightarrow statistical parameter(s) (e.g., correlation)
 - + Easy to implement (mathematical definitions)
 - Statistical assumptions (≠ ecological reality)

2. (Climate-driven) process-based models of tree-ring formation

- Set of equations implementing current state of knowledge about climatic effects on kinetics and phenology
 - Complexity, input requirements
 - + Realistic implementation of ecological principles

HOW TO QUANTIFY CLIMATE-GROWTH RESPONSES?

WHAT ARE KEY LIMITATIONS OF CLIMATE-GROWTH CORRELATIONS?

Linearity assumption

Interpretability ("black box")

LINEAR OR NON-LINEAR RESPONSE IN ECOLOGY?

INTERPRETATION OF CORRELATIONS

(Tumajer and Treml 2017: Trees-Structure and Function)

- ... but climate-growth correlations <u>cannot</u> answer following questions:
- How trees grew during 1976 extreme year?
- What shapes the growth in May?
- Was the climatic response stable over the calibration period?

• • •

PROCESS-BASED MODELS OF WOOD **FORMATION**

- = sets of numerical equations that implement current state of knowledge about mechanisms of environmental control of tree-ring formation, QWA, photosynthesis, isotopic composition of lignin, hormonal dynamics, ...
- Sink X Source models

Eckes-Shephard et al. (2022): Frontiers in Plant Science

Guiot et al. (2014): Frontiers in Ecology and Evolution

Table 1 | Rough classification of the models cited according to the main processes included.

Model	Water cycle	Carbon cycle	Tree compartments	Wood structure	Isotopes
Biome3 (Rathgeber et al.,	х	х			
VS-light (Tolwinski-Ward et al., 2011)	х				
- (LeBlanc and Terrell, 2001)	Х				
StandLEAP (Girardin et al., 2008)		×	х		
SIMFORG+SICA (Berninger and Nikinmaa, 1997)	×	х	х		
MAIDEN (Misson, 2004)	х	х	×		
CASTANEA (Dufrene et al.,	Х	х	x		
2005) VS (Fritts et al., 1991)	х	х	х	×	
ECOPHYS		×	×		
(Rauscher et al., 1990)					
-(Ogee et al., 2009)	Х	×	X		×
- (Hölttä et al., 2010)			X	Х	
CAMBIUM (Drew et al., 2010)	х	Х	x	x	
MAIDENiso (Danis et al., 2012)	х	Х	×		х
ISOCASTANEA (Eglin et al., 2010)	×	х	×		×

VS-LITE

Low-complexity climate-driven ...

- Considers climatic limitation of the growth (temperature, soil moisture)
- Works with monthly resolution
- + Can be applied almost everywhere (you only need monthly temperature, precipitation and site chronology)
- Less detailed outputs of simulations compared to other models

... non-linear ...

Climate-growth response functions are non-linear

... sink-oriented ...

Considers direct effects of climate on cambium, ignores everything related to photosynthesis

... process-based model of wood formation

TRACH, VAGANOV-SHASHKIN, VS-LITE

TRACH (Fritts et al. 1991)

Original ancestor

Vaganov-Shashkin model (Vaganov et al. 2006)

- Daily resolution
- Three serialy-linked modules
 - Environmental module calculation of dimensionless relative daily growth rates GrINT (VS-Oscilloscope Shishov et al. 2016: Dendrochronologia)
 - Xylogenesis module conversion of GrINT into daily cell numbers inside cambial zone and kinetics of their radial growth and division (Anchukaitis et al. 2021: Dendrochronologia; Tumajer et al. 2021: Frontiers in Plant Science)
 - QWA module calculating LA and CWT for each developing tracheid each day (Popkova et al. 2023: Dendrochronologia)

VS-Lite (Tolwinski-Ward et al. 2011)

 Adopting <u>environmental module</u> of the Vaganov-Shashkin model for monthly resolution

VS-LITE — WORKFLOW (1)

Calculating environmental variables that (according to the model) affect tree growth

- Mean monthly air temperature T[°C]
 - Provided by the user as an input
- Mean monthly volumetric soil moisture M[v/v]
 - Provided by the user as an input OR ...
 - ... calculated from temperature and precipitation (input) by inbuild soil moisture model (Huang et al. 1996: Journal of Climate)
- Mean monthly daylength E[h]
 - Calculated automatically from site latitude

VS-LITE — WORKFLOW (2)

Converting environmental variables into monthly partial growth rates

- = <u>relative</u> variable describing the capacity of a tree to produce wood under given temperature OR soil moisture OR daylength
- = how fast would a tree grow in case its growth would be fully controlled by temperature OR soil moisture OR daylength
- 0 = no growth, dormancy; 1 = optimum, full growth capacity
- Partial growth rate to temperature (GrT) and partial growth rate to soil moisture (GrM)
 - Determined from climatic variables by means of non-linear response functions

VS-LITE — WORKFLOW (3)

Converting environmental variables into monthly partial growth rates

- = relative variable describing the capacity of a tree to form wood under given temperature OR soil moisture OR daylength
- 0 = no growth, dormancy; 1 = optimum, fullcapacity to growth
- \bullet T₁, T₂, M₁ and M₂ are usually calibrated inside "reasonable ranges"
 - Subjectivity

$$GrT = \begin{cases} 0 & if \ T \le T_1 \\ (T - T_1)/(T_2 - T_1) & if \ T_1 < T < T_2 \\ 1 & if \ T_2 \le T \end{cases}$$

$$\operatorname{GrM} = \begin{cases} 0 & \text{ if } M \leq M_1 \\ (M - M_1) / (M_2 - M_1) & \text{ if } M_1 < M < M_2 \\ 1 & \text{ if } M_2 \leq M \end{cases}$$

$$if T \le T_1$$

$$if T_1 < T < T_2$$

$$if T_2 \le T$$

$$if M \leq M_1$$

$$if M_1 < M < M_2$$

$$if M_2 \leq M$$

VS-LITE — WORKFLOW (4)

Converting environmental variables into monthly partial growth rates

- Partial growth rate to daylength (GrE)
 - GrE(d) = daylength of day d / daylength of summer solstice
 - Calculated automatically

VS-LITE — WORKFLOW (5)

Integration of partial growth rates into integral growth rates (GrINT)

- Dimensionless proxy of monthly growth rate
- Liebig's law of minimum the more limiting climatic variable (temperature, soil moisture matters) determines GrINT

$$GrINT(m, y) = GrE(m) * min(GrT(m, y) ; GrM(m, y))$$

VS-LITE — WORKFLOW (6)

Identification of dominant climatic limiting factor of growth for each month

GrINT follows the lower of GrT and GrM

- 0 < GrT < GrM ... temperature-limited
- 0 < GrM < GrT ... moisture-limited
- GrT = GrM = 1 ... optimal growth
- GrINT = 0 ... dormancy

VS-LITE — WORKFLOW (7)

Calculating simulated annual tree-ring width chronology

≈ sum of GrINT during the given year + (optionally) part of GrINT from the previous year * (optionally) weight

GLOBAL APPLICATION OF THE VS-LITE

MODEL DEVELOPMENT

Dendrochronologia 49 (2018) 77-88

Contents lists available at ScienceDirect

Dendrochronologia

journal homepage: www.elsevier.com/locate/dendro

Original Article

The facultative bimodal growth pattern in *Quercus ilex* – A simple model to predict sub-seasonal and inter-annual growth

Filipe Campelo^{1,0}, Emilia Gutiérrez^b, Montserrat Ribas^b, Raúl Sánchez-Salguero^{c,d}, Cristina Nabais^c, J. Julio Camarero^c

Agricultural and Forest Meteorology 247 (2017) 56-64

Contents lists available at ScienceDirect

Agricultural and Forest Meteorology

journal homepage: www.elsevier.com/locate/agrformet

search paper

increasing moisture limitation of Norway spruce in Central Europe revealed by forward modelling of tree growth in tree-ring network

Jan Tumajer^{a,b,*}, Jan Altman^c, Petr Štěpánek^d, Václav Treml^b, Jiří Doležal^c, Emil Cienciala^a

Science of the Total Environment 905 (2023) 167153

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Linkage between growth phenology and climate-growth responses along landscape gradients in boreal forests

Jan Tumajer a,*, Jan Altman b,c, Jiří Lehejček d,e

Agricultural and Forest Meteorology 221 (2016) 13-33

Contents lists available at ScienceDirect

Agricultural and Forest Meteorology

journal homepage: www.elsevier.com/locate/agrformet

Forward modeling of tree-ring width improves simulation of forest growth responses to drought

Marco Mina*, Dario Martin-Benito, Harald Bugmann, Maxime Cailleret

RESEARCH PAPERS

WILEY

Global Ecology and Biogeography Attended Marriedge

The climatic drivers of normalized difference vegetation index and tree-ring-based estimates of forest productivity are spatially coherent but temporally decoupled in Northern Hemispheric forests

Kristina Seftigen^{1,2} | David C. Frank^{3,4} | Jesper Björklund^{3,5} | Flurin Babst^{3,6} | Benjamin Poulter⁷

Agricultural and Forest Meteorology 327 (2022) 109196

Contents lists available at ScienceDirect

Agricultural and Forest Meteorology

journal homepage: www.elsevier.com/locate/agrformet

Process representation of conifer tree-ring growth is improved by incorporation of climate memory effects

MODEL MODIFICATIONS (1)

More complexity in response functions

- Declining partial growth rates for too high temperatures and too high soil moisture
- New parameters T_3 , T_4 , M_3 , M_4
- New types of limitation
 - Low temperature High temperature
 - Drought Soil water oversaturation (wetlands!!!)

$$GrT = \begin{cases} 0 & \text{if } T \leq T_1 \\ (T - T_1)/(T_2 - T_1) & \text{if } T_1 < T \leq T_2 \\ 1 & \text{if } T_2 < T \leq T_3 \\ (T_4 - T)/(T_4 - T_3) & \text{if } T_3 < T \leq T_4 \\ 0 & \text{if } T_4 \leq T \end{cases}$$

MODEL MODIFICATIONS (2)

Integration based on interaction of temperature and soil moisture instead of Liebig's law

Original VS-Lite: GrINT(m, y) = GrE(m) * min(GrT(m, y) ; GrM(m, y))

Modified VS-Lite: GrINT(m, y) = GrE(m) * GrT(m, y) * GrM(m, y)

New type of limitation

Mixed

MODEL MODIFICATIONS (3)

Liebig's law (minimum)

Limitations:

Cold

Warm

Dry

Wet

Mixed

Optimal growth

MODEL MODIFICATIONS (4)

Weighting previous year integral growth rates in proxy of annual tree-ring width

Original:
$$TRW(y) \approx \sum_{Jan}^{Dec} GrINT(m, y) + 1 * \sum_{I=0}^{Dec} GrINT(m, y-1)$$

Modified:
$$TRW(y) \approx \sum_{Jan}^{Dec} GrINT(m, y) + Acor * \sum_{I=0}^{Dec} GrINT(m, y - 1)$$

MODEL PARAMETERS — HOW TO DETERMINE THEM?

Parameters of response fuctions

- T1, T2, (T3), (T4)
- M1, M2, (M3), (M4)

Parameters related to autocorrelation component

• I_0, Acor

Parameters of soil moisture model

- 1. Fixed value estimate
- 2. Calibration against site chronology and, if possible ...
 - Dendrometers, xylogenesis, (NDVI)
 - Soil moisture level
 - • •

RESULTS (1)

Simulated and observed chronologies

RESULTS (2)

Intra/inter-annual variation of partial and integral growth rates

RESULTS (3)

Temporal changes of partial and integral growth rates

RESULTS (4)

Phenology

Thank you for your attention

tumajerj@natur.cuni.cz

web.natur.cuni.cz/physgeo/dendro/

www.github.com/jantumajer

www.twitter.com/JTumajer