ANALISI FUNZIONALE PROF. ALESSIO MARTINI A.A. 2023-2024

ESERCITAZIONE 3

1. Per ciascuno dei seguenti spazi vettoriali V e mappe $G:V\times V\to \mathbb{F},$ determinare se G è un prodotto scalare su V.

(i)
$$\mathbb{F}=\mathbb{R},\,V=\mathbb{R},\,G:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$$
data da

$$G(x,y) = x^2 + y^2 \qquad \forall x, y \in \mathbb{R}.$$

(ii)
$$\mathbb{F} = \mathbb{R}, V = \mathbb{R}^2, G : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$
 data da

$$G(x,y) = x_1y_2 - x_2y_1$$
 $\forall x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2.$

(iii)
$$\mathbb{F} = \mathbb{C}$$
, $V = \mathbb{C}^2$, $G : \mathbb{C}^2 \times \mathbb{C}^2 \to \mathbb{C}$ data da

$$G(x,y) = x_1y_1 + x_2y_2$$
 $\forall x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{C}^2.$

(iv)
$$\mathbb{F} = \mathbb{R}$$
, $V = \mathbb{R}^3$, $G : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ data da

$$G(x,y) = x_1y_1 + x_2y_2$$
 $\forall x = (x_1, x_2, x_3), y = (y_1, y_2, y_3) \in \mathbb{R}^3.$

(v)
$$\mathbb{F}=\mathbb{C},\,V=C[-1,1],\,G:C[-1,1]\times C[-1,1]\to\mathbb{C}$$
data da

$$G(f,g) = \int_0^1 f(t) \, \overline{g(t)} \, dt \qquad \forall f,g \in C[-1,1].$$

2. Sia V uno spazio vettoriale complesso non banale (cioè dim V>0). Sia $g:V\times V\to \mathbb{C}$ una forma bilineare simmetrica, cioè tale che

$$\begin{split} g(\alpha x + \beta y, z) &= \alpha g(x, z) + \beta g(y, z) & \forall x, y, z \in V, \ \forall \alpha, \beta \in \mathbb{C}, \\ g(x, \alpha y + \beta z) &= \alpha g(x, y) + \beta g(x, z) & \forall x, y, z \in V, \ \forall \alpha, \beta \in \mathbb{C}, \\ g(x, y) &= g(y, x) & \forall x, y \in V. \end{split}$$

Dimostrare che g non può essere definita positiva, cioè non è vero che

$$q(x,x) > 0 \quad \forall x \in V \setminus \{0\}.$$

- 3. Sia ${\cal H}$ uno spazio di Hilbert.
 - (a) Siano $(x_n)_{n\in\mathbb{N}}$ una successione a valori in H e $z\in H$ tali che:
 - (i) $\lim_{n\to\infty} \langle x_n, y \rangle = \langle z, y \rangle$ per ogni $y \in H$;
 - (ii) $\lim_{n\to\infty} ||x_n|| = ||z||$.

Dimostrare che $x_n \to z$ in H.

[Suggerimento: sviluppare il quadrato di $||x_n - z||$.]

- (b) Vale il risultato del punto (a) se si assume solo (i) e non (ii)?
- 4. Sia $\underline{w} \in \mathbb{R}^{\mathbb{N}}$ tale che $w_k > 0$ per ogni $k \in \mathbb{N}$. Poniamo

$$\ell^{2}(\underline{w}) = \left\{ \underline{x} \in \mathbb{F}^{\mathbb{N}} : \sum_{k=0}^{\infty} |x_{k}|^{2} w_{k} < \infty \right\}$$

- e $\langle \underline{x}, \underline{y} \rangle_{\underline{w}} = \sum_{k=0}^{\infty} x_k \overline{y_k} w_k$ per ogni $\underline{x}, \underline{y} \in \ell^2(\underline{w}).$
- (a) Dimostrare che $\langle \cdot, \cdot \rangle_{\underline{w}}$ è un prodotto scalare su $\ell^2(\underline{w})$.

- (b) Dimostrare che $(\ell^2(\underline{w}), \langle \cdot, \cdot \rangle_{\underline{w}})$ è uno spazio di Hilbert. (c) Esibire \underline{w} tale che $(1, 2^{-2}, 3^{-3}, \dots) \notin \ell^2(\underline{w})$. (d) Esibire \underline{w} tale che $\{\underline{x} \in \mathbb{F}^{\mathbb{N}} : |x_k| \leq (1+k)^{1+k} \ \forall k \in \mathbb{N}\} \subseteq \ell^2(\underline{w})$.

5. Sia H uno spazio pre-hilbertiano. Dimostrare che nella disuguaglianza di Cauchy-Schwarz

$$|\langle x, y \rangle| \le ||x|| ||y||$$

vale l'uguaglianza se e solo se i vettori $x,y\in H$ sono linearmente dipendenti. [Suggerimento: rivedere la dimostrazione della disuguaglianza di Cauchy–Schwarz.]

6. Se H è uno spazio pre-hilbertiano su \mathbb{R} , definiamo l'angolo fra due vettori $x, y \in H$ non nulli come il numero

$$\arccos \frac{\langle x, y \rangle}{\|x\| \|y\|}.$$

- (a) Dimostrare che l'angolo fra $x, y \in H \setminus \{0\}$ è un ben definito elemento di $[0, \pi]$, e che l'angolo tra x e y è lo stesso dell'angolo tra y e x.
- (b) Dimostrare che l'angolo tra $x,y\in H\setminus\{0\}$ è uguale a 0 oppure π se e solo se x e y sono linearmente dipendenti.

[Suggerimento: esercizio 5.]

Sia ora $H = L^2(-1, 1)$ con l'usuale prodotto scalare integrale.

(c) Calcolare gli angoli fra le funzioni $f_1, f_2, f_3 \in L^2(-1,1) \setminus \{0\}$ date da

$$f_1(t) = 1,$$
 $f_2(t) = t,$ $f_3(t) = t^2$ $\forall t \in (-1, 1).$

7. Ricordiamo che, se V è uno spazio vettoriale sul campo \mathbb{C} , possiamo anche considerare V come spazio vettoriale sul campo \mathbb{R} restringendo l'operazione di prodotto scalare-vettore.

Sia ora $(V, \langle \cdot, \cdot \rangle)$ uno spazio pre-hilbertiano su \mathbb{C} , e definiamo $(\cdot, \cdot) : V \times V \to \mathbb{R}$ ponendo

$$(x,y) = \Re e\langle x,y \rangle \qquad \forall x,y \in V.$$

- (a) Dimostrare che $(V, (\cdot, \cdot))$ è uno spazio pre-hilbertiano su \mathbb{R} .
- (b) Dimostrare che la norma indotta da (\cdot, \cdot) su V coincide con la norma indotta da (\cdot, \cdot) .
- (c) Dimostrare che $(V, (\cdot, \cdot))$ è uno spazio di Hilbert su \mathbb{R} se e solo se $(V, \langle \cdot, \cdot \rangle)$ è uno spazio di Hilbert su \mathbb{C} .
- 8. Dimostrare che la norma integrale $\|\cdot\|_1$ sullo spazio $L^1(\mathbb{R})$ non è indotta da un prodotto scalare.
- 9. Sia $(X, \|\cdot\|)$ uno spazio normato su \mathbb{R} . Assumiamo che la norma $\|\cdot\|$ soddisfi l'identità del parallelogramma:

$$||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$$
 per ogni $x, y \in X$.

Vogliamo dimostrare che $\|\cdot\|$ è indotta da un prodotto scalare.

(a) Dimostrare che, per ogni $x_1, x_2, y \in X$,

$$||x_1 + x_2 + y||^2 = 2||x_1 + y||^2 + 2||x_2||^2 - ||x_1 - x_2 + y||^2.$$

(b) Dimostrare che, per ogni $x_1, x_2, y \in X$,

$$||x_1 + x_2 + y||^2 = ||x_1 + y||^2 + ||x_1||^2 + ||x_2 + y||^2 + ||x_2||^2 - (||x_1 - x_2 + y||^2 + ||x_2 - x_1 + y||^2)/2.$$

(c) Definiamo la mappa $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}$ ponendo

$$\langle x, y \rangle = (\|x + y\|^2 - \|x - y\|^2)/4$$
 per ogni $x, y \in X$.

Dimostrare che, per ogni $x_1, x_2, y \in X$,

$$\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle.$$

(d) Dimostrare che, per ogni $x,y\in X$ e $n\in\mathbb{N},$

$$\langle nx, y \rangle = n \langle x, y \rangle.$$

(e) Dimostrare che, per ogni $x,y\in X$ e $\alpha\in\mathbb{R},$

$$\langle \alpha x,y\rangle = \alpha \langle x,y\rangle.$$

[Suggerimento: si consideri prima il caso $\alpha \in \mathbb{Q}$, e poi si usi la continuità per il caso generale.]

- (f) Dimostrare che $\langle \cdot, \cdot \rangle$ è un prodotto scalare su X e che $\| \cdot \|$ è la norma indotta.
- (g) Come si può modificare l'argomento precedente nel caso X sia uno spazio normato su \mathbb{C} anziché \mathbb{R} ?