

COMPLEX ANASYSIS

作者: 荒与叶

时间: 2025年7月5日

目录

1	全纯	全纯函数 1			
	1.1	全纯函数的导数	1		
	1.2	Cauchy-Riemann 方程	1		
	1.3	导数的几何意义	4		
	1.4	初等函数	4		
		1.4.1 指数函数	4		
2	Cau	ichy 定理与推论	5		
	2.1	复变函数的积分	5		
	2.2	Cauchy 积分定理	6		
	2.3	原函数	9		
	2.4	Cauchy 积分公式	9		
	2.5	Cauchy 积分公式的应用	10		
	2.6	非齐次 Cauchy 积分公式	10		
	2.7	一维 $ar{\partial}$ 问题的解	11		
3	全纯函数的 Taylor 展开				
	3.1	Weierstrass 定理	12		
	3.2	幂级数	14		
	3.3	全纯函数的 Tarlor 展开	15		
	3.4	辅角原理	17		

全纯函数

—— § 1.1

全纯函数的导数

【定义 1.1】 设 $F: D \to \mathbb{C}$ 是定义在域 D 上的函数, $z_0 \in D$. 如果极限

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

存在,就说 f 在 z_0 处复可微或可微,这个极限称为 f 在 z_0 处的导数或微商,记作 $f'(z_0)$ 。如果 f 在 D 中每点都可微,就称 f 是域 D 中的全纯函数或解析函数。如果 f 在 z_0 的一个邻域中全纯,就称 f 在 z_0 处全纯.

【命题 1.2】 若 f 在 z_0 处可微,则必在 z_0 处连续.

证明. 设 f 在 z_0 处可微. 若记 $\Delta z = z - z_0$,则

$$\lim_{\Delta z \to 0} \frac{f\left(z_0 + \Delta z\right) - f\left(z_0\right)}{\Delta z} = f'\left(z_0\right),$$

或者

$$f(z_0 + \Delta z) - f(z_0) = f'(z_0) \Delta z + o(|\Delta z|).$$

由此即得 $\lim_{\Delta z \to 0} f(z_0 + \Delta z) = f(z_0)$, 这说明 f 在 z_0 处连续.

【命题 1.3】 即若 $f,g \in \mathcal{H}(D)$,则 $f \pm g, fg \in \mathcal{H}(D)$,而且

$$(f(z) \pm g(z))' = f'(z) \pm g'(z)$$

 $(f(z)g(z))' = f'(z)g(z) + f(z)g'(z)$

如果 $\forall z \in D, g(z) \neq 0$,则 $\frac{f}{g} \in \mathcal{H}(D)$,而且

$$\left(\frac{f(z)}{g(z)}\right)' = \frac{f'(z)g(z) - g'(z)f(z)}{(g(z))^2}$$

§ 1.2 -

Cauchy-Riemann 方程

【定义 1.4】 设 f(z) = u(x,y) + iv(x,y) 是定义在域 D 上的函数, $z_0 = x_0 + iy_0 \in D$. 我们说 f 在 z_0 处实可微, 是指 u 和 v 作为 x,y 的二元函数在 (x_0,y_0) 处可微.

【命题 1.5】 设 $f: D \to \mathbb{C}$ 是定义在域 D 上的函数, $z_0 \in D$, 那么 f 在 z_0 处实可微的充分必要条件是

$$f(z_0 + \Delta z) - f(z_0) = \frac{\partial f}{\partial z}(z_0) \Delta z + \frac{\partial f}{\partial \bar{z}}(z_0) \overline{\Delta z} + o(|\Delta z|)$$

证明. 设f在z0 处实可微,

$$u\left(x_{0} + \Delta x, y_{0} + \Delta y\right) - u\left(x_{0}, y_{0}\right) = \frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right) \Delta x + \frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right) \Delta y + o(|\Delta z|)$$
$$v\left(x_{0} + \Delta x, y_{0} + \Delta y\right) - v\left(x_{0}, y_{0}\right) = \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right) \Delta x + \frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right) \Delta y + o(|\Delta z|)$$

这里,
$$|\Delta z| = \sqrt{(\Delta x)^2 + (\Delta y)^2}$$
. 于是

$$f(z_{0} + \Delta z) - f(z_{0}) = u(x_{0} + \Delta x, y_{0} + \Delta y) - u(x_{0}, y_{0}) + i(v(x_{0} + \Delta x, y_{0} + \Delta y) - v(x_{0}, y_{0}))$$

$$= \frac{\partial u}{\partial x}(x_{0}, y_{0}) \Delta x + \frac{\partial u}{\partial y}(x_{0}, y_{0}) \Delta y + o(|\Delta z|) + i\left(\frac{\partial v}{\partial x}(x_{0}, y_{0}) \Delta x + \frac{\partial v}{\partial y}(x_{0}, y_{0}) \Delta y + o(|\Delta z|)\right)$$

$$= \left(\frac{\partial u}{\partial x}(x_{0}, y_{0}) + i\frac{\partial v}{\partial x}(x_{0}, y_{0})\right) \Delta x + \left(\frac{\partial u}{\partial y}(x_{0}, y_{0}) + i\frac{\partial v}{\partial y}(x_{0}, y_{0})\right) \Delta y + o(|\Delta z|)$$

$$= \frac{\partial f}{\partial x}(x_{0}, y_{0}) \Delta x + \frac{\partial f}{\partial y}(x_{0}, y_{0}) \Delta y + o(|\Delta z|).$$

$$\text{ \ensuremath{\rlap/}{!}} \Delta x = \frac{1}{2} (\Delta z + \overline{\Delta z}), \Delta y = \frac{1}{2\mathrm{i}} (\Delta z - \overline{\Delta z})$$

$$f(z_0 + \Delta z) - f(z_0) = \frac{1}{2} \frac{\partial f}{\partial x} (x_0, y_0) (\Delta z + \overline{\Delta z}) - \frac{i}{2} \frac{\partial f}{\partial y} (x_0, y_0) (\Delta z - \overline{\Delta z}) + o(|\Delta z|)$$

$$= \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) f(x_0, y_0) \Delta z + \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) f(x_0, y_0) \overline{\Delta z} + o(|\Delta z|)$$

引进算子

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - \mathrm{i} \frac{\partial}{\partial y} \right) \quad \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + \mathrm{i} \frac{\partial}{\partial y} \right)$$

得到

$$f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)=\frac{\partial f}{\partial z}\left(z_{0}\right)\Delta z+\frac{\partial f}{\partial \overline{z}}\left(z_{0}\right)\overline{\Delta z}+o(|\Delta z|)$$

【定理 1.6】 设 f 是定义在域 D 上的函数, $z_0\in D$,那么 f 在 z_0 处可微的充要条件是 f 在 z_0 处实可微且 $\frac{\partial f}{\partial \bar{z}}\left(z_0\right)=0$. 在可微的情况下, $f'\left(z_0\right)=\frac{\partial f}{\partial z}\left(z_0\right)$.

证明. 如果 f 在 z_0 处可微,则

$$f(z_0 + \Delta z) - f(z_0) = f'(z_0) \Delta z + o(|\Delta z|)$$

故 f 在 z_0 处是实可微的, 而且 $\frac{\partial f}{\partial \bar{z}}\left(z_0\right) = 0, f'\left(z_0\right) = \frac{\partial f}{\partial z}\left(z_0\right)$.

反之, 若f在 z_0 处实可微, 且 $\frac{\partial f}{\partial \bar{z}}(z_0) = 0$, 则

$$f(z_0 + \Delta z) - f(z_0) = f'(z_0) \Delta z + o(|\Delta z|)$$

由此即知 f 在 z_0 处可微, 而且 $f'(z_0) = \frac{\partial f}{\partial z}(z_0)$.

【定义 1.7】 $\frac{\partial f}{\partial \bar{z}} = 0$ 称为 Cauchy-Riemann 方程, 或等价地

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$

【定义 1.8】 设 $u \in D$ 上的实值函数,如果 $u \in C^2(D)$,且对任意 $z \in D$,有

$$\Delta u(z) = \frac{\partial^2 u(z)}{\partial x^2} + \frac{\partial^2 u(z)}{\partial y^2} = 0$$

就称 u 是 D 中的调和函数. $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ 称为 Laplace 算子.

【命题 1.9】 设 $u \in C^2(D)$, 那么 $\Delta u = 4 \frac{\partial^2 u}{\partial z \partial \bar{z}}$.

证明. 直接计算得

$$\frac{\partial u}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial u}{\partial x} - \mathrm{i} \frac{\partial u}{\partial y} \right),\,$$

所以

$$\frac{\partial^2 u}{\partial z \partial \bar{z}} = \frac{\partial}{\partial z} \left(\frac{\partial u}{\partial \bar{z}} \right) = \frac{1}{4} \left[\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} - \mathrm{i} \frac{\partial u}{\partial y} \right) + \mathrm{i} \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} - \mathrm{i} \frac{\partial u}{\partial y} \right) \right] = \frac{1}{4} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = \frac{1}{4} \Delta u$$

【定理 1.10】 设 $f = u + iv \in H(D)$, 那么 $u \rightarrow v$ 都是 D 上的调和函数.

证明. 因为 $f \in H(D)$, 由 Cauchy-Riemann 方程, 有

$$\frac{\partial f}{\partial \bar{z}} = 0, \quad \frac{\partial \bar{f}}{\partial z} = 0$$

所以

$$\frac{\partial^2 f}{\partial z \partial \bar{z}} = \frac{\partial^2 \bar{f}}{\partial z \partial \bar{z}} = 0.$$

于是,由 $u = \frac{1}{2}(f + \bar{f})$ 即得

$$\Delta u = 4 \frac{\partial^2 u}{\partial z \partial \bar{z}} = 0$$

同理可证 $\Delta v = 0$.

【定义 1.11】 设u 和v 是一对调和函数,如果他们还满足 Cauchy-Riemann 方程

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}. \end{cases}$$

就称v为u的共轭调和函数.

【定理 1.12】 设 u 是单连通域 D 上的调和函数,则必存在 u 的共轭调和函数 v ,使得 u+iv 是 D 上的全纯函数.

证明. 因为u满足 Laplace 方程

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

若令 $P = -\frac{\partial u}{\partial y}, Q = \frac{\partial u}{\partial x}$, 则

$$\frac{\partial Q}{\partial x} = \frac{\partial^2 u}{\partial x^2} = -\frac{\partial^2 u}{\partial y^2} = \frac{\partial P}{\partial y}$$

所以

$$P dx + Q dy = -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy$$

是一个全微分, 因而积分

$$\int_{(x_0, y_0)}^{(x, y)} -\frac{\partial u}{\partial y} \, \mathrm{d}x + \frac{\partial u}{\partial x} \, \mathrm{d}y$$

与路径无关. 令

$$v(x,y) = \int_{(x_0,y_0)}^{(x,y)} -\frac{\partial u}{\partial y} \, \mathrm{d}x + \frac{\partial u}{\partial x} \, \mathrm{d}y$$

易验证v满足条件.

【命题 1.13】 设 $z=r(\cos\theta+\mathrm{i}\sin\theta), f(z)=u(r,\theta)+\mathrm{i}v(r,\theta)$,则 Cauchy-Riemann 方程为

$$\left\{ \begin{array}{l} \frac{\partial u}{\partial r} = \frac{1}{r}\frac{\partial v}{\partial \theta}, \\ \frac{\partial v}{\partial r} = -\frac{1}{r}\frac{\partial u}{\partial \theta}. \end{array} \right.$$

证明.

【命题 1.14】 设 $z = r(\cos \theta + i \sin \theta)$. 证明:

$$\begin{split} \frac{\partial f}{\partial \bar{z}} &= \frac{1}{2} \mathrm{e}^{\mathrm{i}\theta} \left(\frac{\partial f}{\partial r} + \frac{\mathrm{i}}{r} \frac{\partial f}{\partial \theta} \right) \\ \frac{\partial f}{\partial z} &= \frac{1}{2} \mathrm{e}^{-\mathrm{i}\theta} \left(\frac{\partial f}{\partial r} - \frac{\mathrm{i}}{r} \frac{\partial f}{\partial \theta} \right) \end{split}$$

1.4.1 指数函数

Cauchy 定理与推论

—— §2.1 —— 复变函数的积分

【定义 2.1】 设 $z=\gamma(t)(a\leqslant t\leqslant b)$ 是一条可求长曲线,f 是定义在 γ 上的函数,沿 γ 的正方向取分点 $\gamma(a)=z_0,z_1,z_2,\cdots,z_n=\gamma(b)$,在 γ 中从 z_{k-1} 到 z_k 的弧段上任取点 $\zeta_k,k=1,\cdots,n$,记 Riemann 和

$$S(f,\zeta,k) := \sum_{k=1}^{n} f(\zeta_k) (z_k - z_{k-1})$$

用 s_k 记弧段 $\widehat{z_{k-1}z_k}$ 的长度,如果对任意的 $\varepsilon>0$,当 $\lambda=\max\{s_k:1\leqslant k\leqslant n\}\to 0$ 时,不论 ζ_k 的取法如何,存在 $I\in\mathbb{C}$ 使得

$$|I - S(f, \zeta, k)| < \varepsilon$$

就称 I 为 f 沿 γ 的积分, 记为 $\int_{a}^{b} f(z) dz$ 。

【注 2.2】 形式上可以计算极限 $\int_{\gamma} f(z) \mathrm{d}z = \lim_{\lambda \to 0} \sum_{k=1}^{n} f\left(\zeta_{k}\right) (z_{k} - z_{k-1}).$

【命题 2.3】 设 f = u + iv 在可求长曲线 γ 上连续,则有

$$\int_{\gamma} f(z) dz = \int_{\gamma} u dx - v dy + i \int_{\gamma} v dx + u dy.$$

【命题 2.4】 如果 $z=\gamma(t)(a\leqslant t\leqslant b)$ 是光滑曲线,f 在 γ 上连续,那么

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$

【例题 2.5】 计算积分 $\int_{\gamma} \frac{\mathrm{d}z}{(z-a)^n}$, 这里, n 是任意整数, γ 是以 a 维中心、以 r 为半径的圆周.

 \mathbf{M} . γ 的参数方程为 $z=a+r\mathrm{e}^{\mathrm{i}t}, 0\leqslant t\leqslant 2\pi$. 得

$$\int_{\gamma} \frac{\mathrm{d}z}{(z-a)^n} = \int_{0}^{2\pi} \frac{r \mathrm{i} \mathrm{e}^{\mathrm{i}t}}{r^n \mathrm{e}^{\mathrm{i}nt}} \; \mathrm{d}t = r^{1-n} \mathrm{i} \int_{0}^{2\pi} \mathrm{e}^{\mathrm{i}(1-n)t} \; \mathrm{d}t.$$

所以

$$\int_{\gamma} \frac{\mathrm{d}z}{(z-a)^n} = \begin{cases} 0, & n \neq 1\\ 2\pi \mathbf{i}, & n = 1 \end{cases}$$

【命题 2.6】 如果 f, g 在可求长曲线 γ 上连续, 那么

2.
$$\int_{\gamma} (\alpha f(z) + \beta g(z)) dz = \alpha \int_{\gamma} f(z) dz + \beta \int_{\gamma} g(z) dz$$
, $\sharp \ \phi \ \alpha, \beta \in \mathbb{C}$

3.
$$\int_{\gamma} f(z) \mathrm{d}z = \int_{\gamma_1} f(z) \mathrm{d}z + \int_{\gamma_2} f(z) \mathrm{d}z \; , \; 其中 \; \gamma = \gamma_1 \cup \gamma_2$$

【命题 2.7】 如果 γ 的长度为 $L, M = \sup_{z \in \gamma} |f(z)|$, 那么

$$\left| \int_{\gamma} f(z) \mathrm{d}z \right| \leqslant ML$$

证明. $f \in \gamma$ 上的 Riemann 和有不等式

$$\left| \sum_{k=1}^{n} f(\zeta_k) (z_k - z_{k-1}) \right| \leq \sum_{k=1}^{n} |f(\zeta_k)| |z_k - z_{k-1}| \leq M \sum_{k=1}^{n} |z_k - z_{k-1}| \leq ML$$

令 $\lambda = \max_{1 \leqslant k \leqslant n} s_k \to 0$, 即得所要的表达式.

【例题 2.8】 设 γ 是正向可求长简单闭曲线,证明: γ 内部的面积为

$$\frac{1}{2i} \int_{\gamma} \bar{z} \, dz.$$

证明. 记 $\partial D = \gamma$, 利用 Green 公式直接计算得到

$$\int_{\gamma} z dz = \int_{D} \left(-\frac{\partial \overline{z}}{\partial \overline{z}} \right) dz \wedge dz = -\int_{D} dz \wedge dz = -\int_{D} (dx + i dy) \wedge (dx - i dy) = \int_{D} 2i dx \wedge dy = \int_{D} 2i dA = 2i A dz$$

— § 2.2

Cauchy 积分定理

【定理 2.9】 设 $D \in \mathbb{C}$ 中的单连通域, $f \in H(D) \cap C^1(D)$, 则对 D 中任意的可求长闭曲线 γ , 均有

$$\int_{\gamma} f(z) \mathrm{d}z = 0.$$

证明. 由 γ 围成的域记为 G , 因为 f' 连续,即 $\frac{\partial u}{\partial x}$, $\frac{\partial v}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial y}$ 连续,故可用 Green 公式. 又因 f 在 D 中全纯,故 Cauchy-Riemann 方程成立. 于是

$$\int_{V} u \, dx - v \, dy = \iint_{G} \left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dx \, dy = 0$$

$$\int_{V} v \, dx + u \, dy = \iint_{V} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dx \, dy = 0$$

即得

$$\int_{\gamma} f(z) \mathrm{d}z = 0$$

【引理 2.10】 设 f 是域 D 中的连续函数, γ 是 D 内的可求长曲线. 对于任给的 $\varepsilon>0$,一定存在一条 D 中的折线 P ,使得

1. P 和 γ 有相同的起点和终点, P 中其他的顶点都在 γ 上;

2.
$$\left| \int_{\gamma} f(z) dz - \int_{P} f(z) dz \right| < \varepsilon$$
.

<u>证明</u>. 因为 ∂D 是一个闭集, γ 是一个紧集, 且两者不相交, 故可以定义距离, 设 $d(\gamma,\partial D) = \rho > 0$ 。作域 G , 使得 $\gamma \subset \bar{G} \subset D$ 。因为 f 在 \bar{G} 上连续, 故必一致连续。于是, $\forall \varepsilon > 0, \exists \delta > 0$ 使得,

$$z', z'' \in \bar{G}, |z' - z''| < \delta \implies |f(z') - f(z'')| < \frac{\varepsilon}{2L}$$

这里,L 是 γ 的长度。现取 $\eta = \min\{\rho, \delta\}$ 。在 γ 上取分点 z_0, z_1, \cdots, z_n ,使得每一个弧段 $\widehat{z_{k-1}}z_k$ 的长度都小于 η ,这里, z_0, z_n 分别记为 γ 的起点和终点。连接 z_{k-1} 和 $z_k(k=1,\cdots,n)$,就得到一条折线 P ,它与 γ 有相同的起点和终点,且其他顶点都在 γ 上。由于 $|z_{k-1}-z_k|<\eta\leqslant\rho$,所以线段 $\overline{z_{k-1}z_k}$ 都在 D 内,即折线 P 都在 D 内。

记 $\gamma_k = \widehat{z_{k-1}z_k}, P_k = \overline{z_{k-1}z_k}$,则有

$$\begin{split} \left| \int_{\gamma_{k}} f(z) \mathrm{d}z - \int_{P_{k}} f(z) \mathrm{d}z \right| & \leq \left| \int_{\gamma_{k}} f(z) \mathrm{d}z - f\left(z_{k-1}\right) \left(z_{k} - z_{k-1}\right) \right| + \left| \int_{P_{k}} f(z) \mathrm{d}z - f\left(z_{k-1}\right) \left(z_{k} - z_{k-1}\right) \right| \\ & = \left| \int_{\gamma_{k}} f(z) \mathrm{d}z - \int_{\gamma_{k}} f\left(z_{k-1}\right) \mathrm{d}z \right| + \left| \int_{P_{k}} f(z) \mathrm{d}z - \int_{P_{k}} f\left(z_{k-1}\right) \mathrm{d}z \right| \\ & = \left| \int_{\gamma_{k}} \left(f(z) - f\left(z_{k-1}\right) \right) \mathrm{d}z \right| + \left| \int_{P_{k}} \left(f(z) - f\left(z_{k-1}\right) \right) \mathrm{d}z \right|. \end{split}$$

当 $z \in \gamma_k$ 或 P_k 时, $|z-z_{k-1}| < \eta \le \delta$,因而 $|f(z)-f(z_{k-1})| < \frac{\varepsilon}{2L}$ 。对上面两个积分用长大不等式,它们都不超过 $\frac{\varepsilon}{2L}$ $|\gamma_k|$,因而

$$\left| \int_{\gamma} f(z) dz - \int_{P} f(z) dz \right| \leqslant \sum_{k=1}^{n} \left| \int_{\gamma_{k}} f(z) dz - \int_{P_{k}} f(z) dz \right| < \frac{\varepsilon}{L} \sum_{k=1}^{n} |\gamma_{k}| = \varepsilon$$

故折线 P 完全符合定理的要求.

【引理 2.11】 设 $D \in \mathbb{C}$ 中的单连通域,如果 $f \in H(D)$,那么对 D 中的三角形曲线 Δ ,有

$$\int_{\Delta} f(z) \mathrm{d}z = 0$$

证明. 记 $M=\left|\int_{\Delta}f(z)\mathrm{d}z=0\right|$,下证 M=0. 连接 Δ 的中线,得到四个小三角形曲线,记为 $\Delta^{(i)},i=1,2,3,4$ 则

$$\int_{\Delta} f(z)\mathrm{d}z = \int_{\Delta^{(1)}} f(z)\mathrm{d}z + \int_{\Delta^{(2)}} f(z)\mathrm{d}z + \int_{\Delta^{(3)}} f(z)\mathrm{d}z + \int_{\Delta^{(4)}} f(z)\mathrm{d}z,$$

$$M = \left| \int_{\Delta} f(z) \mathrm{d}z \right| \leqslant \left| \int_{\Delta^{(1)}} f(z) \mathrm{d}z \right| + \left| \int_{\Delta^{(2)}} f(z) \mathrm{d}z \right| + \left| \int_{\Delta^{(3)}} f(z) \mathrm{d}z \right| + \left| \int_{\Delta^{(4)}} f(z) \mathrm{d}z \right|.$$

因此必有一个小三角形 Δ_1 ,它的边界记为 γ_1 ,f 在其上的积分满足 $\left|\int_{\gamma_1} f(z) \mathrm{d}z\right| \geqslant \frac{M}{4}$. 把 Δ_1 再分成四个全等的小三角形,按照同样的推理,其中又有一个小三角形 Δ_2 ,它的边界记为 γ_2 ,f 在其上的积分满足 $\left|\int_{\gamma_2} f(z) \mathrm{d}z\right| \geqslant \frac{M}{4^2}$. 这个过程可以一直进行下去,我们得到一串三角形 Δ_n ,记它们的边界为 γ_n ,这串三角形具有下列性质:(1) $\Delta \supset \Delta_1 \cdots \supset \Delta_n \cdots$; (2) $\operatorname{diam} \Delta_n \to 0 (n \to \infty)$; (3) $|\gamma_n| = \frac{L}{2^n}$, $n = 1, 2, \cdots$,这里,L 为 γ 的长度;(4) $\left|\int_{\gamma_n} f(z) \mathrm{d}z\right| \geqslant \frac{M}{4^n}$, $n = 1, 2, \cdots$ 由 (1) 和 (2),根据第 1 章 1. 5 节中的 Cantor 定理(定理 1. 5. 3),存在

唯一的 $z_0 \in \Delta_n$ $(n=1,2,\cdots)$. 因为 D 是单连通的,所以 $z_0 \in D$. 由于 f 在 z_0 处全纯,故对任意 $\varepsilon > 0$,存在 $\delta > 0$,当 $0 < |z-z_0| < \delta$ 时,成立

$$\left| \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right| < \varepsilon$$

即

$$|f(z) - f(z_0) - f'(z_0)(z - z_0)| < \varepsilon |z - z_0|.$$

取 n 充分大,使得 $\Delta_n \subset B(z_0, \delta)$,故当 $z \in \gamma_n$ 时,(3. 2. 1) 式成立. 显然, $z \in \gamma_n$ 时, $|z - z_0| < |\gamma_n| = \frac{L}{2^n}$. 因而,当 $z \in \gamma_n$ 时,有

$$|f(z) - f(z_0) - f'(z_0)(z - z_0)| < \frac{\varepsilon L}{2^n}$$

【定理 2.12】(Cauchy-Goursat) 设 D 是 $\mathbb C$ 中的单连通域,如果 $f\in H(D)$,那么对 D 中任意的可求长闭曲线 γ ,均有

$$\int_{\gamma} f(z) \mathrm{d}z = 0.$$

证明.

- 1. 引理2.11 ⇒ 三角形区域成立,进而任意多边形区域也成立。
- 2. 引理2.10 ⇒ 利用多边形曲线一致逼近可求长曲线,这就完成了定理的证明

【定理 2.13】 设 D 是可求长简单闭曲线 γ 的内部, 若 $f \in H(D) \cap C(\overline{D})$, 则

$$\int_{\gamma} f(z) \mathrm{d}z = 0.$$

【定理 2.14】 设 $\gamma_0,\gamma_1,\cdots,\gamma_n$ 是 n+1 条可求长简单闭曲线, γ_1,\cdots,γ_n 都在 γ_0 的内部, γ_1,\cdots,γ_n 中的每一条都在其他 n-1 条的外部,D 是由这 n+1 条曲线围成的域,用 γ 记 D 的边界。如果 $f\in H(D)\cap C(\bar{D})$,那么

$$\int_{\gamma} f(z) \mathrm{d}z = 0,$$

【推论 2.15】 设 γ_0 和 γ_1 是两条可求长的简单闭曲线, γ_1 在 γ_0 的内部, D 是由 γ_0 和 γ_1 围成的域. 如果 $f \in H(D) \cap C(\bar{D})$, 那么

$$\int_{\gamma_0} f(z) dz = \int_{\gamma_1} f(z) dz$$

【例题 2.16】 设n为正整数,试通过计算积分

$$\int_{|z|=1} \left(z + \frac{1}{z}\right)^n \frac{\mathrm{d}z}{z}$$

证明

$$\int_{0}^{2\pi} \cos^{2n} \theta \ d\theta = 2\pi \frac{(2n-1)!!}{(2n)!!}$$

证明.

- §2.3 -原函数

【定义 2.17】 设 $f: D \to \mathbb{C}$ 是定义在域 D 上的一个函数,如果存在 $F \in H(D)$,使得 F'(z) = f(z) 在 D 上成立,就称 F 是 f 的一个原函数.

【引理 2.18】 设 f 在域 D 中连续,且对 D 中任意可求长闭曲线 γ ,均有 $\int_{\gamma} f(z) \mathrm{d}z = 0$,那么

$$F(z) = \int_{z_0}^{z} f(\zeta) d\zeta$$

是 D 中的全纯函数,且在 D 中有 F'(z) = f(z),这里, z_0 是 D 中一固定点.

证明. 由于 f 沿任意可求长闭曲线的积分为零,f 的积分与路径无关,因而 F 是一单值函数. 任取 $a \in D$,我们证明 F'(a) = f(a). 因为 f 在 a 点连续,故对任意 $\varepsilon > 0$,存在 $\delta > 0$,当 $|z-a| < \delta$ 时,有 $|f(z)-f(a)| < \varepsilon$ 。今取 $z \in B(a,\delta)$

$$F(z) - F(a) = \int_{z_0}^{z} f(\zeta) d\zeta - \int_{z_0}^{a} f(\zeta) d\zeta = \int_{a}^{z} f(\zeta) d\zeta$$

积分在线段 [a,z] 上进行, 于是

$$\left| \frac{F(z) - F(a)}{z - a} - f(a) \right| = \frac{1}{|z - a|} |F(z) - F(a) - f(a)(z - a)| = \frac{1}{|z - a|} \left| \int_a^z f(\zeta) d\zeta - \int_a^z f(a) d\zeta \right|$$
$$= \frac{1}{|z - a|} \left| \int_a^z (f(\zeta) - f(a)) d\zeta \right| \leqslant |f(\zeta) - f(a)| < \varepsilon$$

这就证明了 F'(a) = f(a).

【定理 2.19】 设 D 是 $\mathbb C$ 中的单连通域, $f \in H(D)$,那么 $F(z) = \int_{z_0}^z f(\zeta) \mathrm{d}\zeta$ 是 f 在 D 中的一个原函数.

【定理 2.20】 设 $D \in \mathbb{C}$ 中的单连通域, $f \in H(D)$, $\Phi \in \mathcal{D}$ 的任一原函数, 那么

$$\int_{z_0}^{z} f(\zeta) d\zeta = \Phi(z) - \Phi(z_0)$$

【定理 2.21】 设 D 是由可求长简单闭曲线 γ 围成的域,如果 $f \in H(D) \cap C(\bar{D})$,那么对任意 $z \in D$,均有

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} \, d\zeta$$

【定义 2.22】(Cauchy 型积分) 设 γ 是 $\mathbb C$ 中一条可求长曲线(不一定是闭的),g 是 γ 上的连续函数,如果 $z\in\mathbb C\setminus\gamma$,那么积分

$$\frac{1}{2\pi i} \int_{\gamma} \frac{g(\zeta)}{\zeta - z} d\zeta$$

是存在的,它定义了 $\mathbb{C}\setminus\gamma$ 上的一个函数 G(z),即

$$G(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{g(\zeta)}{\zeta - z} \, d\zeta$$

称它为 Cauchy 型积分.

【定理 2.23】 设 γ 是 $\mathbb C$ 中的可求长曲线,g是 γ 上的连续函数,那么由 Cauchy 型积分确定的函数

$$G(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{g(\zeta)}{\zeta - z} d\zeta$$

在 $\mathbb{C}\setminus\gamma$ 上有任意阶导数, 而且

$$G^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{g(\zeta)}{(\zeta - z)^{n+1}} d\zeta, n = 1, 2, \cdots$$

【定理 2.24】 设 D 是由可求长简单闭曲线 γ 围成的域,如果 $f \in H(D) \cap C(\bar{D})$,那么 f 在 D 上有任意阶导数,而且对任意 $z \in D$,有

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta, n = 1, 2, \cdots$$

§ 2.5

Cauchy 积分公式的应用

【定理 2.25】 设 f 在 B(a,R) 中全纯,且对任意 $z \in B(a,R)$,有 $|f(z)| \leqslant M$,那么

$$\left| f^{(n)}(a) \right| \leqslant \frac{n!M}{R^n}, n = 1, 2, \cdots$$

<u>证明</u>. 取 0 < r < R , 则 f 在闭圆盘 $\overline{B(a,r)}$ 中全纯,由 Cauchy 积分公式

$$f^{(n)}(a) = \frac{n!}{2\pi i} \int_{|\zeta - a| = r} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta, n = 1, 2, \cdots$$

于是, 由长大不等式得

$$\left|f^{(n)}(a)\right| \leqslant \frac{n!}{2\pi} \cdot \frac{M}{r^{n+1}} \cdot 2\pi r = \frac{n!M}{r^n}$$

让 $r \to R$. 即可完成定理的证明.

【定理 2.26】(Liouville) 有界整函数必为常数.

<u>证明</u>. 设 f 为一有界整函数,对任意 $z \in \mathbb{C}$,有 $|f(z)| \leq M$ 。任取 $a \in \mathbb{C}$,以 a 为中心、R 为半径作圆,因 为 f 为整函数,故由 Cauchy 不等式可得

$$|f'(a)| \leqslant \frac{M}{R}$$

这个不等式对任意 R>0 都成立,让 $R\to\infty$,即得 f'(a)=0 。因为 a 是任意的,所以在全平面上有 $f'(z)\equiv0$,因而 f 是常数.

【定理 2.27】

§ 2.6

非齐次 Cauchy 积分公式

【定义 2.28】 把 z, \bar{z} 看成独立变量,定义微分 dz, $d\bar{z}$ 的外积为

$$dz \wedge dz = 0$$

$$d\bar{z} \wedge d\bar{z} = 0$$

$$dz \wedge d\bar{z} = -d\bar{z} \wedge dz$$

由于 $dz = dx + idy, d\bar{z} = dx - idy$, 所以

$$dz \wedge d\bar{z} = (dx + idy) \wedge (dx - idy)$$
$$= idy \wedge dx - idx \wedge dy$$
$$= -2idx \wedge dy = -2idA$$

【定理 2.29】(pompeiu) 设 D 和 ∂D 如定理 3. 2. 5 中所述,如果 $f \in C^1(\bar{D})$,那么对任意 $z \in D$,有

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} \, d\zeta + \frac{1}{2\pi i} \int_{D} \frac{\partial f(\zeta)}{\partial \bar{\zeta}} \frac{1}{\zeta - z} \, d\zeta \wedge \, d\bar{\zeta}$$

——§2.7 —— 一维∂问题的解

【定义 2.30】 设 φ 是 \mathbb{C} 上的函数,使 φ 不取零值的点集的闭包称为 φ 的支集,记为 $\mathrm{supp}\,\varphi$,即

$$\operatorname{supp}\varphi=\overline{\{z\in\mathbb{C}:\varphi(z)\neq 0\}}.$$

【引理 2.31】(单位分解) 设 a 是 $\mathbb C$ 中任意一点,0 < r < R ,则必存在 φ ,满足下列条件:

- 1. $\varphi \in C^{\infty}(\mathbb{C})$;
- 2. supp $\varphi \subset B(a,R)$;
- 3. 当 $z \in \overline{B(a,r)}$ 时, $\varphi(z) \equiv 1$;
- 4. 对于任意 $z \in \mathbb{C}, 0 \leq \varphi(z) \leq 1$.

证明. 令 $r < R_1 < R$ 和

$$h_1(z) = \begin{cases} e^{\frac{1}{|z-a|^2 - R_1^2}}, & z \in B (a, R_1) \\ 0, & z \notin B (a, R_1) \end{cases}$$
$$h_2(z) = \begin{cases} 0, & z \in \overline{B(a, r)} \\ e^{\frac{1}{r^2 - |z-a|^2}}, & z \notin \overline{B(a, r)} \end{cases}$$

那么 $h_1, h_2 \in C^{\infty}(\mathbb{C})$ 。又令

$$\varphi(z) = \frac{h_1(z)}{h_1(z) + h_2(z)}$$

则 $\varphi \in C^{\infty}(\mathbb{C})$ 。而且当 $z \in \overline{B(a,r)}$ 时, $\varphi(z) \equiv 1$; 当 $z \notin B(a,R_1)$ 时, $\varphi(z) \equiv 0$,即 $\operatorname{supp} \varphi \subset B(a,R)$. 对于任意 $z \in \mathbb{C}, 0 \leqslant \varphi(z) \leqslant 1$ 显然成立. φ 即为所求的函数.

【定理 2.32】 设 $D \in \mathbb{C}$ 中的域, $f \in C^1(D)$. 令

$$u(z) = \frac{1}{2\pi \mathrm{i}} \int_D \frac{f(\zeta)}{\zeta - z} \; \mathrm{d}\zeta \wedge \; \mathrm{d}\bar{\zeta}, z \in D$$

则 $u \in C^1(D)$,且对任意 $z \in D$,有 $\frac{\partial u(z)}{\partial \bar{z}} = f(z)$.

全纯函数的 Taylor 展开

§ 3.1

Weierstrass 定理

【定义 3.1】 设 z_1, z_2, \cdots 是 \mathbb{C} 中的一列复数, 称

$$\sum_{n=1}^{\infty} z_n = z_1 + z_2 + \dots + z_n + \dots$$
 (3.1)

为一个复数项级数. 级数(3.1)称为是收敛的,如果它的部分和数列 $S_n=\sum_{k=1}^n z_k$ 收敛. 如果 $\{S_n\}$ 的极限为 S ,就说级数(3.1)的和为 S ,记为 $\sum_{n=1}^\infty z_n=S$.

【定理 3.2】(Cauchy 判据) 级数 $\sum_{n=1}^{\infty} z_n$ 收敛的充要条件是对任意 $\varepsilon>0$,存在正整数 N ,使得当 n>N 时,不等式

$$|z_{n+1} + z_{n+2} + \dots + z_{n+p}| < \varepsilon$$

对任意自然数p成立.

【注 3.3】 1. $\sum_{n \to \infty}^{\infty} z_n$ 收敛的必要条件是 $\lim_{n \to \infty} z_n = 0$.

2. 如果级数 $\sum_{n=1}^{\infty}|z_n|$ 收敛,就说级数 $\sum_{n=1}^{\infty}z_n$ 绝对收敛。从 Cauchy 收敛准则立刻知道,绝对收敛的级数一定收敛. 反过来当然不成立.

【定理 3.4】(M 判据) 设 $f_n: E \to \mathbb{C}$ 是定义在 E 上的函数列,且在 E 上 $|f_n(z)| \leqslant a_n, n=1,2,\cdots$ 如果 $\sum_{n=1}^\infty a_n$ 收敛,那么 $\sum_{n=1}^\infty f_n(z)$ 在 E 上一致收敛.

证明. 因为 $\sum_{n=1}^{\infty} a_n$ 收敛, 故对任意 $\varepsilon > 0$, 存在正整数 N , 使得当 n > N 时, 不等式

$$a_{n+1} + \dots + a_{n+p} < \varepsilon \quad \forall p \in \mathbb{N}$$

于是, 当n > N时, 不等式

$$|f_{n+1}(z) + \dots + f_{n+p}(z)| \leq a_{n+1} + \dots + a_{n+p} < \varepsilon \quad \forall z \in E, \forall p \in \mathbb{N}$$

故由函数项级数的 Cauchy 判据得,级数 $\sum_{n=1}^{\infty} f_n(z)$ 在 E 上一致收玫.

【定理 3.5】 设级数 $\sum_{n=1}^{\infty} f_n(z)$ 在点集 E 上一致收敛到 f(z) ,如果 f_n $\forall n \in \mathbb{N}$ 都是 E 上的连续函数,那么 f 也是 E 上的连续函数.

【定理 3.6】 设级数 $\sum_{n=1}^\infty f_n(z)$ 在可求长曲线 γ 上一致收敛到 f(z) ,如果 f_n $\forall n \in \mathbb{N}$ 都在 γ 上连续,那么

$$\int_{\gamma} f(z) dz = \sum_{n=1}^{\infty} \int_{\gamma} f_n(z) dz$$

【定义 3.7】 如果级数 $\sum_{n=1}^{\infty} f_n(z)$ 在域 D 的任意紧子集上一致收敛, 就称 $\sum_{n=1}^{\infty} f_n(z)$ 在 D 中内闭一致收敛.

【定义 3.8】 如果 D 的子集 G 满足 $\bar{G} \subset D$ 且 \bar{G} 是紧的,就说 G 相对于 D 是紧的,记为 $G \subset D$.

【引理 3.9】 设 D 是 \mathbb{C} 中的域,K 是 D 中的紧子集,且包含在相对于 D 是紧的开集 G 中,即 K \subset G \subset C D ,那么对任意 f \in H(D) ,均有

$$\sup\left\{\left|f^{(k)}(z)\right|,z\in K\right\}\leqslant C\sup\{|f(z)|:z\in G\},$$

这里, k是任意自然数, C是与 k, K, G 有关的常数.

证明. 设 $\rho = d(K, \partial G) > 0$. 则 $B(a, \rho) \subset G \quad \forall a \in K$. 由 Cauchy 不等式, 得

$$\left|f^{(k)}(a)\right|\leqslant \frac{k!}{\rho^k}\sup\{|f(z)|:z\in B(a,\rho)\}\leqslant \frac{k!}{\rho^k}\sup\{|f(z)|:z\in G\}$$

对K中的a取上确界,即得上述不等式.

【定理 3.10】(Weierstrass) 设 D 是 $\mathbb C$ 中的域,如果 $f_n \in H(D), n = 1, 2, \cdots$ 并且 $\sum_{n=1}^\infty f_n(z)$ 在 D 中内闭一致收敛到 f(z),那么 $f \in H(D)$ 并且对任意自然数 $k, \sum_{n=1}^\infty f_n^{(k)}(z)$ 在 D 中内闭一致收敛到 $f^{(k)}(z)$.

证明. 任取 $z_0 \in D$,只要证明 f 在 z_0 的一个邻域中全纯就行了. 选取 r>0 ,使得 $\overline{B(z_0,r)} \subset D$,由定理3.5,f 在 $B(z_0,r)$ 中连续. 在 $B(z_0,r)$ 中任取一可求长闭曲线 γ ,由定理3.6和 Cauchy 积分定理,得

$$\int_{\gamma} f(z)dz = \sum_{n=1}^{\infty} \int_{\gamma} f_n(z)dz = 0$$

由 Morera 定理, 即知 $f \in \mathcal{H}(B(z_0,r))$, 所以 $f \in \mathcal{H}(D)$.

任取 D 中的紧子集 K, 记 $\rho = d(K, \partial D) > 0$ 。令

$$G = \bigcup \left\{ B\left(z, \frac{\rho}{2}\right), z \in K \right\},$$

则 $K\subset G\subset\subset D$ 。由于 \overline{G} 是紧集,所以 $\sum_{n=1}^\infty f_n(z)$ 在 \overline{G} 上一致收敛到 f(z)。 因而对任意 $\varepsilon>0$, 存在正整数 N , 当 n>N 时,不等式 $|S_n(z)-f(z)|<\varepsilon$ 对 \overline{G} 上所有的 z 成立,这里, $S_n(z)=\sum_{j=1}^n f_j(z)$. 于是由引理3.9,对有

$$\sup\left\{\left|S_n^{(k)}(z)-f^{(k)}(z)\right|:z\in K\right\}\leqslant C\sup\left\{\left|S_n(z)-f(z)\right|:z\in G\right\}\leqslant C\varepsilon\quad\forall k\in\mathbb{N}$$

故 $\sum_{n=1}^{\infty} f_n^{(k)}(z)$ 在 K 上一致收敛到 $f^{(k)}(z)$. 由于 K 是 D 的任意紧子集,所以 $\sum_{n=1}^{\infty} f_n^{(k)}(z)$ 在 D 上内闭一致收敛到 $f^{(k)}(z)$.

图 3.1: 非切向极限

- §3.2 -幂级数

【定义3.11】 幂级数是指形如

$$\sum_{n=0}^{\infty} a_n \left(z - z_0 \right)^n \quad a_i \in \mathbb{C}$$

的级数,它的通项是幂函数,为讨论简便起见,做变换 $w=z-z_0$ 得到

$$\sum_{n=0}^{\infty} a_n z^n \quad a_i \in \mathbb{C}$$

【定理 3.12】 级数
$$\sum_{n=0}^{\infty}a_n\left(z-z_0\right)^n$$
 存在收敛半径 $R=\frac{1}{\varlimsup\limits_{n\to\infty}\sqrt[n]{|a_n|}}$ 并且

1. 当
$$R = 0$$
 时, $\sum_{n=0}^{\infty} a_n z^n$ 只在 $z = 0$ 处收敛;

2. 当
$$R = \infty$$
 时, $\sum_{n=0}^{\infty} a_n z^n$ 在 \mathbb{C} 中处处收敛;

3. 当
$$0 < R < \infty$$
 时, $\sum_{n=0}^{\infty} a_n z^n$ 在 $\{z : |z| < R\}$ 中收敛,在 $\{z : |z| > R\}$ 中发散.

【定理 3.13】(Abel) 如果 $\sum_{n=0}^{\infty} a_n z^n$ 在 $z=z_0 \neq 0$ 处收敛,则必在 $\{z:|z|<|z_0|\}$ 中内闭绝对一致收敛.

【定理3.14】 幂级数在其收敛圆内确定一个全纯函数.

证明. 由 Abel 定理知,幂级数在其收敛圆内是内闭一致收敛的. 根据 Weierstrass 定理,它的和函数是收敛圆内的全纯函数 □

【注3.15】 幂级数再在收敛圆上的情况不确定.

【定义 3.16】 设 g 是定义在单位圆中的函数, $e^{i\theta_0}$ 是单位圆周上一点, $S_{\alpha}\left(e^{i\theta_0}\right)$,其中 $\alpha<\frac{\pi}{2}$.如果当 z 在 $S_{\alpha}\left(e^{i\theta_0}\right)$ 中趋于 $e^{i\theta_0}$ 时,g(z) 有极限 l ,就称 g 在 $e^{i\theta_0}$ 处有非切向极限 l ,记为

$$\lim_{\substack{z \to \mathrm{e}^{\mathrm{i}\theta_0} \\ z \in S_\alpha\left(\mathrm{e}^{\mathrm{i}\theta_0}\right)}} g(z) = l.$$

【定理 3.17】(Abel 第二定理) 设 $f(z)=\sum_{n=0}^{\infty}a_nz^n$ 的收敛半径 R=1 ,且级数在 z=1 处收玫于 S ,那么 f 在 z=1 处有非切向极限 S ,即

$$\lim_{\substack{z \to 1 \\ z \in S_{\alpha}(1)}} f(z) = f(1) = S$$

证明. 如图3.1所示,只要能证明级数 $\sum_{n=0}^{\infty} a_n z^n$ 在 $S_{\alpha}(1) \cap B(1,\delta)(\delta = \cos \alpha)$ 的闭包上一致收敛,那么 f(z) 便在 z=1 处连续,上式成立。记

$$\sigma_{n,p} = a_{n+1} + \dots + a_{n+p}$$

因为 $\sum_{n=0}^\infty a_n z^n$ 在 z=1 处收敛,即 $\sum_{n=0}^\infty a_n$ 收敛,故对任给的 $\varepsilon>0$,存在正整数 N ,当 n>N 时, $|\sigma_{n,p}|<\varepsilon$ 对任意自然数 p 成立.注意

$$a_{n+1}z^{n+1} + \dots + a_{n+p}z^{n+p}$$

$$= \sigma_{n,1}z^{n+1} + (\sigma_{n,2} - \sigma_{n,1}) z^{n+2} + \dots + (\sigma_{n,p} - \sigma_{n,p-1}) z^{n+p}$$

$$= \sigma_{n,1}z^{n+1}(1-z) + \sigma_{n,2}z^{n+2}(1-z) + \dots + \sigma_{n,p-1}z^{n+p-1}(1-z) + \sigma_{n,p}z^{n+p}$$

$$= z^{n+1}(1-z) \left(\sigma_{n,1} + \sigma_{n,2}z + \dots + \sigma_{n,p-1}z^{p-2}\right) + \sigma_{n,p}z^{n+p}$$

因而当 $|z| < 1, p = 1, 2, \dots, n > N$ 时, 便有

$$|a_{n+1}z^{n+1} + \dots + a_{n+p}z^{n+p}| < \varepsilon|1 - z|(1 + |z| + \dots) + \varepsilon = \varepsilon \left(\frac{|1 - z|}{1 - |z|} + 1\right)$$

现在任取 $z \in S_{\alpha}(1) \cap B(1,\delta)$, 记 $|z| = r, |1-z| = \rho$, 那么

$$r^2 = 1 + \rho^2 - 2\rho\cos\theta$$

故有

$$\frac{|1-z|}{1-|z|} = \frac{\rho}{1-r} = \frac{\rho(1+r)}{1-r^2} \leqslant \frac{2\rho}{2\rho\cos\theta - \rho^2} = \frac{2}{2\cos\theta - \rho}.$$

因为 $z \in B(1,\delta)$, 所以 $\rho = |1-z| < \delta = \cos \alpha$. 又因 $\theta < \alpha$, 所以

$$\frac{|1-z|}{1-|z|} \leqslant \frac{2}{2\cos\alpha - \rho} < \frac{2}{\cos\alpha}$$

故

$$\left|a_{n+1}z^{n+1} + \dots + a_{n+p}z^{n+p}\right| < \varepsilon \left(\frac{2}{\cos\alpha} + 1\right)$$

又当z=1时,有

$$|a_{n+1}z^{n+1} + \dots + a_{n+p}z^{n+p}| = |\sigma_{n,p}| < \varepsilon$$

这样, 我们就证明了级数 $\sum_{n=0}^{\infty} a_n z^n$ 在 $S_{\alpha}(1) \cap B(1,\delta)$ 的闭包上一致收敛, 定理得证。

_____ § 3.3 _____ 全纯函数的 **Tarlor** 展开

【定理 3.18】 若 $f \in H(B(z_0, R))$, 则 f 可以在 $B(z_0, R)$ 中展开成幂级数:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n, z \in B(z_0, R)$$

右端的级数称为f的 Taylor 级数.

<u>证明</u>. 任意取定 $z \in B(z_0, R)$,再取 $\rho < R$,使得 $|z - z_0| < \rho$ 。记 $\gamma_\rho = \{\zeta : |\zeta - z_0| = \rho\}$,根据 Cauchy 积分公式,得

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_0} \frac{f(\zeta)}{\zeta - z} \, d\zeta$$

把 $\frac{1}{C-z}$ 展开成级数,为

$$\frac{1}{\zeta - z} = \frac{1}{(\zeta - z_0) - (z - z_0)} = \frac{1}{\zeta - z_0} \left(1 - \frac{z - z_0}{\zeta - z_0} \right)^{-1} = \frac{1}{\zeta - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0} \right)^n$$

因为 f 在 γ_{ρ} 上连续, 记 $M = \sup\{|f(\zeta)|: \zeta \in \gamma_{\rho}\}$, 于是当 $\zeta \in \gamma_{\rho}$ 时, 有

$$\left| \frac{f(\zeta) (z - z_0)^n}{(\zeta - z_0)^{n+1}} \right| \le \frac{M}{\rho} \left(\frac{|z - z_0|}{\rho} \right)^n$$

右端是一收敛级数,故由 Weierstrass 判别法,左端级数在 γ_{ρ} 上一致收敛,故可逐项积分:

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_{\rho}} \sum_{n=0}^{\infty} f(\zeta) \frac{(z-z_0)^n}{\left(\zeta-z_0\right)^{n+1}} d\zeta = \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\gamma_{\rho}} \frac{f(\zeta)}{\left(\zeta-z_0\right)^{n+1}} d\zeta \right) (z-z_0)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n.$$

由于z是 $B(z_0,R)$ 中的任意点,所以上式在 $B(z_0,R)$ 中成立.

容易验证 Taylor 展开是唯一的.

【定理 3.19】 f 在点 z_0 处全纯的充分必要条件是 f 在 z_0 的邻域内可以展开成幂级数:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

【定义 3.20】 设 f 在 z_0 点全纯且不恒为零,如果

$$f(z_0) = 0, f'(z_0) = 0, \dots, f^{(m-1)}(z_0) = 0, f^{(m)}(z_0) \neq 0$$

则称 z_0 是 f 的 m 阶零点.

【命题 3.21】 z_0 为 f 的 m 阶零点的充分必要条件是 f 在 z_0 的邻域内可以表示为

$$f(z) = (z - z_0)^m q(z),$$

这里, g 在 z_0 点全纯, 且 $g(z_0) \neq 0$.

证明. 充分性显然,下证必要性. 如果 z_0 是 f 的 m 阶零点,则从 f 的 Taylor 展开可得

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n = \sum_{n=m}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$
$$= (z - z_0)^m \left\{ \frac{f^{(m)}(z_0)}{m!} + \frac{f^{(m+1)}(z_0)}{(m+1)!} (z - z_0) + \cdots \right\}$$
$$= (z - z_0)^m g(z)$$

g(z) 就是花括弧中的幂级数,它当然在 z_0 处全纯,而且

$$g(z_0) = \frac{f^{(m)}(z_0)}{m!} \neq 0$$

【命题 3.22】 设 D 是 \mathbb{C} 中的域, $f \in H(D)$,如果 f 在 D 中的小圆盘 $B(z_0,\varepsilon)$ 上恒等于零,那么 f 在 D 上恒等于零.

【命题 3.23】 设 $D \in \mathbb{C}$ 中的域, $f \in H(D)$, $f(z) \neq 0$,那么 f 在 D 中的零点是孤立的。即若 z_0 为 f 的零点,则必存在 z_0 的邻域 $B(z_0, \varepsilon)$,使得 f 在 $B(z_0, \varepsilon)$ 中除了 z_0 外不再有其他的零点.

— §3.4 — 辅角原理

【定理 3.24】 设 $f \in H(D)$, γ 是 D 中一条可求长的简单闭曲线, γ 的内部位于 D 中. 如果 f 在 γ 上没有零点, 在 γ 内部有零点

$$a_1, a_2, \cdots, a_n$$

它们的阶数分别为

$$\alpha_1, \alpha_2, \cdots, \alpha_n$$

那么

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{n} \alpha_k$$

证明. 取充分小的 $\varepsilon > 0$,作圆盘 $B(a_k, \varepsilon)$, $k = 1, \cdots, n$,使得这 n 个圆盘都在 γ 内部,且两两不相交.于是, $\frac{f'(z)}{f(z)}$ 在 $D \setminus_{k=1}^{n} B(a_k, \varepsilon)$ 中全纯. 应用多连通域的 Cauchy 积分定理,得

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{\gamma_1} \frac{f'(z)}{f(z)} dz + \dots + \frac{1}{2\pi i} \int_{\gamma_n} \frac{f'(z)}{f(z)} dz,$$

其中, $\gamma_k = \partial B(a_k, \varepsilon), k = 1, \dots, n$. 因为 a_k 是 f 的 α_k 阶零点, f 在 a_k 的邻域中可以写成

$$f(z) = (z - a_k)^{\alpha_k} g_k(z)$$

这里, g_k 在 a_k 的邻域中全纯, 且 $g_k(a_k) \neq 0$. 于是

$$f'(z) = \alpha_k (z - a_k)^{\alpha_k - 1} g_k(z) + (z - a_k)^{\alpha_k} g'_k(z)$$
$$\frac{f'(z)}{f(z)} = \frac{\alpha_k}{z - a_k} + \frac{g'_k(z)}{g_k(z)}$$

因为 $\frac{g'_k}{g_k}$ 在 $\overline{B(a_k,\varepsilon)}$ 中全纯,于是由 Cauchy 积分定理得

$$\frac{1}{2\pi \mathrm{i}} \int_{\gamma_k} \frac{f'(z)}{f(z)} \mathrm{d}z = \alpha_k, k = 1, \cdots, n.$$

【定理 3.25】(Rouché) 设 $f,g \in H(D), \gamma$ 是 D 中可求长的简单闭曲线, γ 的内部位于 D 中. 如果当 $z \in \gamma$ 时,有不等式

$$|f(z) - g(z)| < |f(z)|$$

那么f和g在 γ 内部的零点个数相同.

证明. 设 N_g, N_f 分别为 g, f 在 $Int \gamma$ 的零点个数 (记重数), 考虑

$$N_g - N_f = \frac{1}{2\pi i} \int_{\gamma} \left(\frac{g'(z)}{g(z)} - \frac{f'(z)}{f(z)} \right) dz$$

令 $F = \frac{g}{f}$ 由条件容易验证 F(z) 良定义,并且

$$|f-g|<|f| \implies |\frac{g}{f}-1|<1 \iff |F-1|<1 \implies \frac{1}{2\pi \mathrm{i}}\int_{\gamma'}\frac{1}{\omega}\mathrm{d}\omega=0$$

这就证明了定理

【推论 3.26】 设 f 是域 D 中的全纯函数, $z_0 \in D$,记 $w_0 = f(z_0)$,如果 z_0 是 $f(z) - w_0$ 的 m 阶零点,那么对于充分小的 $\rho > 0$,必存在 $\delta > 0$,使得对于任意 $a \in B(w_0, \delta)$,f(z) - a 在 $B(z_0, \rho)$ 中恰有 m 个零点.

证明.

【注 3.27】 设 $f \in H(D), z_0 \in D, w_0 = f(z_0)$,则对充分小的 $\rho > 0$,一定存在 $\delta > 0$,使得

$$f(B(z_0,\rho)) \supset B(w_0,\delta)$$
.

【定理 3.28】(开映射) 设 f 是域 D 上非常数的全纯函数,那么 f(D) 也是 $\mathbb C$ 中的域.

证明.

【定理 3.29】(反函数定理) 设 f 是域 D 上的单叶全纯函数,那么它的反函数 f^{-1} 是 G=f(D) 上的全纯函数,而且

$$(f^{-1})'(w) = \frac{1}{f'(z)}, w \in G$$

其中, w = f(z).