[Sylvix)

ANALYSIS QUALIFYING EXAM AUGUST 2015

Instructions: Write your name legibly on each sheet of paper. Write only on one side of each sheet of paper. The points for each question part are indicated. $L_1(\mathbb{R}^n)$ denotes the class of integrable functions with respect to n-dimensional Lebesgue measure and 'dx' denotes integration with respect to one-dimensional Lebesgue measure.

[6] Suppose that $A \subseteq \mathbb{R}$ is closed and that $B \subseteq \mathbb{R}$ is compact with $0 \notin B$. Prove that $AB := \{ab : a \in A, b \in B\}$ is closed.

[4] Give an example of a closed set A and a compact set B such that AB is not closed.

[10] Let (X, \mathfrak{M}, μ) be a measure space and let $f: X \to Y$ be any mapping from X to a nonempty set Y. Show that $\mathfrak{N} := \{A \subseteq Y : f^{-1}(A) \in \mathfrak{M}\}$ is a σ -algebra of subsets of Y and that $\nu(A) := \mu(f^{-1}(A))$ is a measure on the measurable space (Y, \mathfrak{N}) .

3 (a) [3] State the Bounded Convergence Theorem.

(b) [5] Prove that there does not exist any increasing sequence of integers $0 < n_1 < n_2 < \dots$ such that $\lim_{k\to\infty} \sin(n_k x) = 0$ a.e. in $[0, 2\pi]$. (Hint: Evaluate $\int_0^{2\pi} \sin^2(nx) dx$.)

Prove that there exists a set $A \subset [0, 2\pi]$ which is dense in $[0, 2\pi]$ such that $\lim_{n\to\infty} \sin(2^n x) = 0$ for all $x \in A$.

(a) [3] State Hölder's inequality.

(b) [7] Suppose that $1 and <math>\int_0^1 f(x)^p dx = 1$, where f is a non-negative measurable function on [0,1]. Prove that

$$\int_0^1 x^2 f(x) \, dx \le \left(\frac{p-1}{3p-1}\right)^{1-1/p}$$

and find an f for which equality is attained.

5. (a) [3] Define 'f is absolutely continuous on [a, b]'.

(b) [7] Suppose that f is absolutely continuous on [a,b] and $f(x) \neq 0$ for all $a \leq x \leq b$. Prove that 1/f is absolutely continuous on [a,b] and deduce that

$$\int_{a}^{b} \frac{f'(x)}{f(x)^{2}} dx = \frac{f(b) - f(a)}{f(a)f(b)}.$$

Alk Port

1

AMI

[3] State Fubini's theorem.

Suppose that $f,g \in L_1(\mathbb{R})$. Prove that $f(x-y)g(y) \in L_1(\mathbb{R}^2)$ and

 $h(x) := \int_{-\infty}^{\infty} f(x - y)g(y) dy$ exists a.e. and is finite a.e.

(You may assume without proof that $(x,y)\mapsto f(x-y)g(y)$ is Lebesgue-measurable on \mathbb{R}^2 .)

7. (a) [4] Evaluate $\int_{[3\sqrt{2},-3+3i]} \frac{1}{z} dz$, where $[3\sqrt{2},-3+3i]$ denotes the directed line segment joining $3\sqrt{2}$ to -3+3i.

[6] Suppose that f(z) is analytic on a domain U and that $f(z) \notin (-\infty, 0]$ $(z \in U)$. Let γ be any piecewise-smooth oriented curve contained in U with initial point a and terminal point b. Prove a simple necessary and sufficient condition for $\int_{\gamma} \frac{f'(z)}{f(z)} dz$ to be purely imaginary.

8. [3] State the Casorati-Weierstrass theorem about essential singularities.

(b) I Suppose that f(z) is an entire function satisfying $|f(z)| \ge |z|^n$ if |z| > 1 (for some integer $n \ge 0$). Prove that f(z) is a polynomial of degree at least n. (Hint: Consider the behavior of $w^n g(w)$ near w = 0, where g(w) = f(1/w).)

9. True or False? Prove or give a counterexample in each case.

[0, 1] If f is continuous on [0, 1], f'(x) exists a.e., and f' is integrable on [0, 1] then $\int_0^1 f'(x) dx = f(1) - f(0)$.

(b) [4] If f is continuous on [0,1] and f([0,1]) has Lebesgue measure zero then f is constant.

(c) [4] If each f_n is a non-negative measurable function on [0,1] satisfying $f_n(x) \le 1/x$ $(n \ge 1, 0 < x \le 1)$, and $f(x) := \lim_{n \to \infty} f_n(x)$ exists a.e., then $\lim_{n \to \infty} \int_0^1 \sqrt{f_n(x)} \, dx = \int_0^1 \sqrt{f(x)} \, dx$.

(d) 4] If f(z) is a non-constant entire function then f(z) = a has a solution for every $a \in \mathbb{C}$.

(4) If f(z) is analytic on the unit disk D(0,1) and satisfies $|f(1/n)| \le 2^{-n}$ for all $n \ge 2$, then f(z) is identically zero on D(0,1).