Koszul Duality for E_n Algebras

Yuchen Fu

September 24, 2018

This is the note for a talk given at Joint Northeastern–MIT Graduate Research Seminar "The Yangian and Four-dimensional Gauge Theory" during Fall 2018.

Assumptions We work over a field k of characteristic 0 and implicitly work in the $(\infty, 1)$ -setting; so by the word "category" we always mean an $(\infty, 1)$ -category. The background "category of categories" is the category of stable presentable $(\infty, 1)$ -categories with only colimit-preserving morphisms between them. This category is equipped with a symmetric monoidal structure given by the Lurie tensor product. The category Vect is the $(\infty, 1)$ -category of chain complexes over k.

1 Operads, Algebras and Modules

1.1 Operads

We shall use the following version of definition from [FG12]. Let \mathcal{X} be a symmetric monoidal category. Let $\mathcal{X}^{\Sigma} := \prod_{n\geq 1} \operatorname{Rep}(\Sigma_n)$ be the category of symmetric sequences in \mathcal{X} ; its objects are collections $\{O(n) \in \mathcal{X}, n \geq 1\}$

1) such that Σ_n acts on O(n). This category admits a monoidal structure \star such that the following functor is monoidal:

$$\mathcal{X}^{\Sigma} \to \operatorname{Funct}(\mathcal{X}, \mathcal{X})$$
$$\{O(n)\} \mapsto \left(x \mapsto \bigoplus_{n \ge 1} (O(n) \otimes x^{\otimes n})_{\Sigma_n}\right)$$

Namely it's given by

$$P \star Q = \bigoplus_{n>1} (P(n) \otimes Q^{\odot n})_{\Sigma_n}$$

where \odot is the Day convolution:

$$(P \odot Q)(n) = \bigoplus_{i+j=n} \operatorname{Ind}_{S_i \times S_j}^{S_n} (P(i) \otimes Q(j))$$

The unit object of $(\mathcal{X}^{\Sigma}, \star)$ is $\mathbf{1}_{\star}$, given by $\mathbf{1}_{\star}(1) = \mathbf{1}_{\mathcal{X}}$ and $\mathbf{1}_{\star}(n) = \mathbf{0}_{\mathcal{X}} \ \forall n > 1$.

We define $\mathrm{Oprd}(\mathcal{X})$, the category of reduced, augmented operads over \mathcal{X} , to be that of augmented associative algebras in $(\mathcal{X}^{\Sigma}, \star)$ for which $\mathbf{1}_{\mathcal{X}} \to \mathcal{O}(1)$ is an isomorphism. The dual notion $\mathrm{coOprd}(\mathcal{X})$ of co-augmented cooperads is defined dually. This means that we have the composition maps

$$O(k) \otimes O(n_1) \otimes \ldots \otimes O(n_k) \to O(n_1 + \ldots + n_k)$$

as well as a unit element in O(1), such that the unital, associative and equivariance laws are satisfied up to coherent homotopy.

Example 1. The associative operad Ass is given by that $Ass(n) = k[\Sigma_n]$, the regular representation of Σ_n ; the operad maps come from substitution. Similarly, the commutative operad Comm is given by Comm(n) = k, the trivial representation of Σ_n .

Linear Dual of Operads Given an operad O such that O(n) has finite dimensional cohomologies, we can define O^* to be $O^*(n) = O(n)^*$, which will be a cooperad.

Shifting Operads For an operad $O \in \text{Oprd}(\text{Vect})$, we use O[1] to denote the operad given on the component level by

$$O[1](n) = O(n)[n-1]$$

(where the tilde indicates that the Σ_n action needs to be twisted accordingly), such that $c \mapsto c[1]$ gives an equivalence O[1]-alg(Vect) $\to O$ -alg(Vect) (see below). The dual notion of suspension of operads is defined analogously; namely, we also require O[1]-coalg(Vect) $\to O$ -coalg(Vect) is given by $c \mapsto c[1]$.

1.2 Algebras over Operads

Let \mathcal{X} be as before, and let \mathcal{C} be a commutative algebra object in the category of \mathcal{X} -modules. The action

$$(O,c)\mapsto \bigoplus_n (O(n)\otimes c^{\otimes n})_{\Sigma_n}$$

defines the \star -action of \mathcal{X}^{Σ} on \mathcal{C} . For any operad O and any cooperad O° , define

$$O$$
-alg(\mathcal{C}) := O -mod(\mathcal{C} , \star)

to be the category of O-algebras in C and

$$O^{\circ}$$
-coalg^{nil}_{d.p.} $(\mathcal{C}) := O^{\circ}$ -comod (\mathcal{C}, \star) .

to be the category of O° -coalgebras in \mathcal{C} .

Example Algebras over Ass and Comm in a category \mathcal{C} correspond respectively to augmented associative and augmented commutative algebras in \mathcal{C} ; Similarly, coalgebras over Ass* and Comm* in \mathcal{C} correspond to coaugmented coassociative coalgebras and coaugmented cocommutative coalgebras in \mathcal{C} .

Remark 1. Strictly speaking, the augmentation does not come from being a module of the operad, but rather the obvious equivalence of categories $Assoc^{non-aug}(\mathcal{C}) \simeq Assoc^{aug}(\mathcal{C})$, given by direct sum with 1 / taking the augmentation ideal. To simplify discussion, we'll consider the corresponding algebras as augmented for the rest of this talk.

1.2.1 Four Types of Comodules

Notice that what we wrote was O° -coalg^{nil}_{d.p.}(\mathcal{C}) and not O° -coalg; indeed the former doesn't in general specialize to what we usual call comodules of cooperads (TODO: example). Instead, define the following *-action:

$$(O,c)\mapsto \prod_n (O(n)\otimes c^{\otimes n})^{\Sigma_n}$$

and write

$$O^{\circ}\text{-coalg}(\mathcal{C}) := O^{\circ}\text{-comod}(\mathcal{C}, *)$$

Then this is the one that specializes to our usual notion.

In addition, define the category O-coalg^{nil} to be the one equipped with the action

$$(O,c)\mapsto \bigoplus_n (O(n)\otimes c^{\otimes n})^{\Sigma_n}$$

and O-coalg_{d.p.} the one equipped with the action

$$(O,c)\mapsto \prod_n (O(n)\otimes c^{\otimes n})_{\Sigma_n}.$$

We have the averaging functor

$$\operatorname{avg}: O^{\circ}\operatorname{-coalg}^{\operatorname{nil}}_{\operatorname{d.p.}} \to O^{\circ}\operatorname{-coalg}^{\operatorname{nil}}$$

which is an isomorphism since we are in characteristic 0. We also have the obvious functor

$$O^{\circ}$$
-coalg^{nil} $\to O^{\circ}$ -coalg

We compose those two to get a map

res :
$$O^{\circ}$$
-coalg $_{d,p}^{nil} \to O^{\circ}$ -coalg.

This functor commutes with colimits so admit a right adjoint, giving a pair

$$\operatorname{res}: O^{\circ}\operatorname{-coalg}_{\operatorname{d}_{\mathbf{D}}}^{\operatorname{nil}} \rightleftarrows O^{\circ}\operatorname{-coalg}: \operatorname{res}^{R}$$

Proposition 1 ([FG12]). When C is pro-nilpotent (as defined in [FG12, Section 4.1]), res is an isomorphism.

Conjecture 1. res is always fully faithful.

1.3 Modules

Let $A \in \mathcal{C}$ be an O-algebra, and let \mathcal{M} be a module category over \mathcal{C} in the category of \mathcal{X} -modules. Note that there is a symmetric monoidal category $\operatorname{Sqz}(\mathcal{C},\mathcal{M})$, the "square zero extension" of \mathcal{C} by \mathcal{M} , obtained from $\mathcal{C} \times \mathcal{M}$ by collapsing the $\mathcal{M} \times \mathcal{M} \to \mathcal{M}$ morphisms. We then define the category of A-modules in \mathcal{M} , denoted $\operatorname{Mod}_A(\mathcal{M})$, to be the fiber of A under $\pi_1 : O$ -alg $(\operatorname{Sqz}(\mathcal{C},\mathcal{M})) \to O$ -alg (\mathcal{C}) , which is induced by the projection $\pi_1 : \mathcal{C} \times \mathcal{M} \to \mathcal{C}$. The dually defined comodule category is denoted $\operatorname{Comod}_{A^{\vee}}^{\operatorname{nil}}(\mathcal{M})$.

Concretely speaking, an A-module structure amounts to an object $M \in \mathcal{M}$ and operation maps

$$O(n) \otimes A^{k-1} \otimes M \otimes A^{n-k} \to M$$

for each $1 \le k \le n$, such that all necessary conditions hold.

Left/Right Module For the operad Ass, the notion above recovers the notion of *bimodules* over an associative algebra A. Using colored operads it is also possible to recover the notion of left/right modules, as is detailed in [Lur]. We shall not define those concepts, but for the sake of stating results let us introduce the notation $\mathrm{LMod}_A(\mathcal{M})$ and $\mathrm{RMod}_A(\mathcal{M})$ to denote those two categories.

2 E_n operads

For this talk we shall focus on the case of E_n operads. Namely, for each $n \geq 1$, there is an element $\mathcal{E}_n \in \operatorname{Oprd}(\operatorname{Spc})$ that is realized by the little n-disk or little n-cube operads. The operad in $\operatorname{Oprd}(\operatorname{Vect})$ induced by the singular chain functor $C_* : \operatorname{Spc} \to \operatorname{Vect}$ is then called the E_n operad in chain complexes; we will refer to it simply by E_n .

By definition we have $E_1 \simeq \text{Ass}$, so an E_1 -algebra is nothing more than an augmented associative algebra. The other extreme is when $n = \infty$, for which we'll write $E_{\infty} := \text{Comm}$, i.e. E_{∞} -algebras are augmented commutative algebras. The other E_n cases are interpolations between those two, so can be seen as describing algebras that are "partially commutative". More precisely, there is a sequence of maps between operads

$$E_1 \to E_2 \to \ldots \to E_n \to E_{n+1} \to \ldots \to E_{\infty}$$

induced from the topological counterpart

$$\mathcal{E}_1 \to \mathcal{E}_2 \to \ldots \to \mathcal{E}_n \to \mathcal{E}_{n+1} \to \ldots \to \mathcal{E}_{\infty}$$

(where $\mathcal{E}_{\infty}(n) = *$ for each n) by the standard embedding $\mathbb{R}^n \to \mathbb{R}^{n+1}$.

From now on, Vect will denote the homotopy category of chain complexes. When the category \mathcal{C} is not specified, by E_n -algebras we mean elements of E_n -alg(Vect).

3 Koszul Duality

3.1 Bar Construction for Associative Algebras

Let \mathcal{A} be a monoidal category with limits and colimits, then we have a standard construction of a pair of adjoint functors

$$\operatorname{Bar}: \operatorname{AssocAlg}^{\operatorname{aug}}(\mathcal{A}) \rightleftarrows \operatorname{CoassocCoalg}^{\operatorname{coaug}}(\mathcal{A}): \operatorname{coBar}$$

where Bar maps R to $\mathbf{1} \otimes_R \mathbf{1}$ (1 is considered as both a left and a right R-module, by means of the augmentation), and coBar defined dually. The comultiplication on Bar(R) is given by the following:

$$\mathbf{1} \otimes_R \mathbf{1} \simeq \mathbf{1} \otimes_R R \otimes_R \mathbf{1} \to \mathbf{1} \otimes_R \mathbf{1} \otimes_R \mathbf{1} \simeq \mathbf{1} \otimes_R \mathbf{1} \otimes_1 \mathbf{1} \otimes_R \mathbf{1} \to (\mathbf{1} \otimes_R \mathbf{1}) \otimes (\mathbf{1} \otimes_R \mathbf{1})$$

The coaugmentation is given by

$$\mathbf{1} \simeq \mathbf{1} \otimes \mathbf{1}
ightarrow \mathbf{1} \otimes_R \mathbf{1}$$

It is checked in e.g. [Lur, Theorem 5.2.2.17] that this indeed lands in coassociative algebras.

Now let \mathcal{A} be as above and let \mathcal{C} be an \mathcal{A} -module category. Fix some augmented associative algebra $A \in \mathcal{A}$. By general construction we have an adjoint pair

$$Bar_A: A\text{-mod}(\mathcal{C}) \rightleftarrows \mathcal{C}: triv_A$$

Namely we have $\operatorname{Bar}_A(M) = M \otimes_A \mathbf{1}$ where $A \to \mathbf{1}$ is the augmentation; by this notation we mean the colimit of the following diagram:

$$\cdots A \otimes M \rightrightarrows M$$

Similarly if A° is an coaugmented coassociative coalgebra and C° an A° -comodule, then we have an adjoint pair

$$\operatorname{triv}_{A^{\circ}}: \mathcal{C}^{\circ} \rightleftarrows A^{\circ}\operatorname{-mod}(\mathcal{C}^{\circ}): \operatorname{coBar}_{A^{\circ}}$$

3.2 Koszul Duality for Operads

When \mathcal{A} is \mathcal{X}^{Σ} as above, these functors trivially lift to another adjoint pair

$$\operatorname{Bar}:\operatorname{Oprd}(\mathcal{X})\rightleftarrows\operatorname{coOprd}(\mathcal{X}):\operatorname{coBar}$$

that are compatible with the obvious forgetful functors. This pair we call the operadic Koszul duality.

Proposition 2 ([FG12, Prop 4.1.2]). These are mutual equivalences.

We shall refer to Bar(x) as the Koszul dual of x and write it as x^{\vee} .

Example 2. The fundamental example in representation theory is $Lie^{\vee} = Comm^*[1]$, corresponding to the relationship between an Lie algebra and its Chevalley complex.

3.2.1 Koszul Dual for the E_n Operads

Proposition 3. $E_1^{\vee} = E_1^*[1]$. More generally, we have $E_n^{\vee} \simeq E_n^*[n]$, and the map is compatible with $E_n \to E_{n+1}$.

The n = 1 case is classical and can be found in e.g. [GK94]. (OPTIONAL: do this computation.) For our setting (characteristic 0) the general n case would follow from a corresponding computation in homology operad in [GJ94] plus the formality theorem (see section 5); over \mathbb{Z} this is proven in [Fre11].

3.3 Koszul Duality for Algebras

Now let \mathcal{C} be the same as in section 1.2. For any Koszul pair (O, O^{\vee}) , bar construction for modules gives an adjoint pair:

$$\mathsf{Bar}_O^{\mathsf{naive}}:O\text{-}\mathsf{alg}(\mathcal{C}) \,{\rightleftarrows}\, O^\vee\text{-}\mathsf{coalg}^{\mathsf{nil}}_{\mathsf{d.p.}}(\mathcal{C}):\mathsf{coBar}^{\mathsf{naive}}_{O^\vee}$$

Again compatible with the forgetful functors. Now combine with the restriction adjoint pair to get

$$\operatorname{Bar}_O = \operatorname{res} \circ \operatorname{Bar}_O^{\operatorname{naive}} : O\operatorname{-alg}(\mathcal{C}) \rightleftarrows O^{\vee}\operatorname{-coalg}(\mathcal{C}) : \operatorname{coBar}_O^{\operatorname{naive}} \circ \operatorname{res}^R = \operatorname{cobar}_{O^{\vee}}$$

This is what we call the algebraic Koszul duality, and we'll write A^{\vee} for $Bar_O(A)$ as well. We shall say A is Koszul if $A \to (A^{\vee})^{\vee}$ is an isomorphism.

The Two Bar Constructions Agree In the case O = Ass, the Koszul duality above gives a pair of adjunction

$$[1] \circ \operatorname{Bar}_{\operatorname{Ass}} : \operatorname{Assoc}^{\operatorname{aug}}(\mathcal{C}) \rightleftarrows \operatorname{Coassoc}^{\operatorname{coaug}}(\mathcal{C}) : \operatorname{coBar}_{\operatorname{Ass}^*[1]} \circ [-1]$$

This agrees with the bar construction given at the beginning of section 3.

Example 3. Taking Koszul dual along $Ass^{\vee} = Ass^*[1]$ gives Hochschild complex; along $Lie^{\vee} = Comm^*[1]$ gives Chevalley complex; and along $Comm^{\vee} = Lie^*[1]$ gives Harrison complex.

3.3.1 Building an Equivalence

Unlike the operadic case, in general we have no reason to expect algebraic Koszul duality to be an equivalence.

Example 4. Let us consider the pair $Comm^{\vee} = Lie^*[1]$ over Vect. To show the naive adjunction won't work (namely, the left hand side is "too big"), it suffices to exhibit an object A such that $(A^{\vee})^{\vee} \neq A$. Namely, consider k[t] placed in degree 0. TODO: Finish this.

Nevertheless, [FG12] proposes a conjecture about how to make this an equivalence. We say an O-algebra A is nilpotent if there exists an N such that n > N implies $O(n) \otimes A^n \to A$ is zero (nulhomotopic), and we define O-alg^{nil}(\mathcal{C}) to be the subcategory spanned by objects that are limits of nilpotent algebras (we call such objects pro-nilpotent).

Observe that the coBar functor lands in this subcategory: write $O^{\vee} = \lim_{k} O^{\vee, \leq k}$, where $O^{\vee, \leq k}$ is obtained by erasing $O^{\vee}(s)$ terms for all s > k. For $B \in O^{\vee}$ -coalg^{nil}_{d.p.}(\mathcal{C}) and $A = \operatorname{coBar}_{O^{\vee}}(B)$, define $A^{\leq k} := \operatorname{coBar}_{O^{\vee}, \leq k}(B)$, then one can check that $A = \lim_{O \text{-alg}(\mathcal{C})} (A^{\leq k})$ and O(s) acts on $A^{\leq k}$ by zero for s > k.

So by adjunction, the functor $\operatorname{Bar}_O^{\operatorname{naive}}$ factors as $\overline{\operatorname{Bar}_O^{\operatorname{naive}}} \circ \operatorname{compl}_{\mathcal{O}}$, where the completion functor $\operatorname{compl}_{\mathcal{O}}$ is the left adjoint to the limit-preserving embedding $O\operatorname{-alg}^{\operatorname{nil}}(\mathcal{C}) \to O\operatorname{-alg}(\mathcal{C})$ and $\overline{\operatorname{Bar}_O^{\operatorname{naive}}} : O\operatorname{-alg}^{\operatorname{nil}}(\mathcal{C}) \to O^{\vee}\operatorname{-coalg}_{\operatorname{d.p.}}^{\operatorname{nil}}(\mathcal{C})$.

Conjecture 2 (FG, 0-connective case by Ching-Harper).

$$\overline{Bar_O^{naive}}: O\text{-}alg^{nil}(\mathcal{C}) \rightleftarrows O^{\vee}\text{-}coalg^{nil}_{d.p.}(\mathcal{C}): coBar_{O^{\vee}}$$

is an equivalence of categories.

As we'll see momentarily, this is a generalization of the classical results in [BGS96] of the auto-equivalence of left finite Koszul algebras.

3.3.2 Koszul Duality for E_1 Algebras

Let us look at E_1 -algebras, i.e. the case of associative algebras in Vect.

Theorem 3.1 ([Lur11, Corollary 3.1.15]). Let A be an E_1 -algebra. If A is coconnective and locally finite, then A is Koszul.

Note that coconnective means $\pi_0(A) = k$, $\pi_i(A) = 0$ for i > 0, and locally finite means $\dim \pi_i(A) < \infty$ for each i.

Sample Computation Let's do a concrete example with chain complexes. Consider k[x] for x in degree -1, so it is the complex $0 \to k \to k \to 0$ concentrated in degree 0 and -1. Let's compute what the (associative) Koszul dual $k \otimes_{k[x]}^L k$ is. The complex k (concentrated on degree 0) admits the following resolution

$$\ldots \to k[x][2] \to k[x][1] \to k[x] \to k$$

where the maps between complexes are given by

Thus we can compute the derived tensor product as

$$\operatorname{Tot}(\ldots \to k[2] \to k[1] \to k)$$

which is given by

$$\dots \to 0 \to k \to 0 \to k$$

i.e. k[y] for y placed in degree -2. Now we compute $\operatorname{coBar}(k[y]) = \operatorname{Hom}_{k[y]-\operatorname{comod}}(k,k) = \operatorname{Hom}_{k[y^*]-\operatorname{mod}}(k,k)$ where y^* is on degree 2. We use the following resolution:

$$0 \to k[y^*][-2] \to k[y^*] \to k \to 0$$

So the derived hom is given by

$$\operatorname{Tot}(k \to k[2] \to 0)$$

which is k[x] again. More generally, if we place a vector space V on degree -1, then the algebra Sym(V[1]) admits the following resolution:

$$\dots \bigwedge^{2} V \otimes (\operatorname{Sym}(V[1])[2]) \to V \otimes (\operatorname{Sym}(V[1])[1]) \to \operatorname{Sym}(V[1]) \to k \to 0$$

From which we can derive that $\operatorname{Sym}(V[1])^{\vee} = \operatorname{Sym}(V[2])$, considered as a coalgebra.

3.4 Koszul Duality for Modules

Now let \mathcal{M} be the same as in section 1.3. By taking left adjoint to the trivial module functor $\mathcal{M} \to \operatorname{Mod}_A(\mathcal{M})$ we obtain another Bar functor, and similarly a cobar functor. One can check they again lift to an adjoint pair:

$$\operatorname{Bar}_A:\operatorname{Mod}_A(\mathcal{M})\rightleftarrows\operatorname{Comod}_{A^{\vee}}^{\operatorname{nil}}(\mathcal{M}):\operatorname{coBar}_{A^{\vee}}$$

which we call the *modular Koszul duality*. (Warning: this is slightly different from the one in [FG12, Section 7], where they used what we write as $\operatorname{Bar}_O^{\operatorname{naive}}$. When $\mathcal C$ is pro-nilpotent, however, those two notions will agree.)

Even if A is Koszul, there is no guarantee that its modular Koszul duality is an equivalence.

Proposition 4. When \mathcal{M} is pro-unipotent, these are equivalences.

3.4.1 The E_1 Case Again

The module/comodule categories for the Koszul pair $\operatorname{Sym}(V[1])^{\vee} = \operatorname{Sym}(V[2])$ are not equivalent under the Bar/coBar adjunction; what does match up in this case are *finitely generated* $\operatorname{Sym}(V[-1])$ modules and *perfect* $\operatorname{Sym}(V[-2])$ comodules or, in a more recognizable language,

$$\operatorname{IndCoh}(\operatorname{SpecSym}(V[1])) \simeq \operatorname{QCoh}(\operatorname{SpecSym}(V^*[-2]))$$

More generally, we have:

Theorem 3.2 ([Lur11, 3.5.2]). For A a small E_1 -algebra (defined in [Lur11, 1.1.11]), there is an equivalence between the category of ind-coherent left/right modules (ind-object over small modules, i.e. those whose homotopy groups are finite dimensional) over A and that of left/right comodules over A^{\vee} .

4 More on E_n Operads

The following, known as Dunn Additivity, is the key fact that makes things work:

Theorem 4.1 ([Dun88], [Lur, 5.1.2.2]). For any n, m, we have E_{n+m} -alg(\mathcal{C}) = E_n -alg(E_m -alg(\mathcal{C})).

We will not try to prove this theorem, but let us mention that this has a generalization to factorization algebras. Namely it would follow from Lurie's result (locally constant factorization algebras on \mathbb{R}^n are the same as E_n algebras) and the following statement:

Theorem 4.2 (Nick T-5?). For any manifolds M, N, the factorization algebras on M valued in factorization algebras on N are the same as factorization algebras on $M \times N$.

In terms of left-right modules, E_k algebra also behave well (everything below would also hold for RMod):

Corollary 1 ([Lur, 4.8.5.20]). For A an E_n -algebra and \mathcal{M} as in section 1.3, $LMod_A(\mathcal{M})$ (where A is viewed as an E_1 -algebra) are E_{n-1} -categories.

In fact something stronger is true:

Corollary 2. If \mathcal{M} is such that for every $A \in E_n$ -alg(\mathcal{C}), there exists $M_A \in LMod_A(\mathcal{M})$ such that $A \simeq End_A(M_A)$, then the functor $LMod_{\bullet}(\mathcal{M})$ (and $RMod_{\bullet}(\mathcal{M})$) is a fully faithful functor from E_n -alg(\mathcal{C}) to E_{n-1} -alg(\mathcal{C} -ModCat).

In particular this is satisfied by $\mathcal{M} = \mathcal{C}$ by taking $M_A = A$. In other words, specifying an E_n -algebra structure on A is equivalent to specifying an E_1 -structure on A and an E_{n-1} structure on the representation category $\operatorname{LMod}_{\mathcal{C}}(A)$.

Example 5. If A is an E_3 algebra, i.e. quasi-triangular Hopf algebra, then its module category is a braided monoidal (E_2) category.

Now if we have a E_1 -algebra A, its left module category would have no monoidal structure; however, its bimodule category would again have an E_1 structure. The general statement is the following:

Theorem 4.3 ([Lur, 3.4.4.6]). For $\mathcal{M} = \mathcal{C}$ and $A \in E_n$ -alg(\mathcal{C}), we have $Mod_A(\mathcal{C}) \in E_n$ -alg(A-ModCat).

Remark 2. The theorem is true more generally for O a coherent operad, as defined in [Lur, 3.3.1]. Also it should be straightforward to separate the exact condition on M for this to hold.

4.1 (Co)Hochschild (Co)homology

Notice that when we take $\mathcal{M} = \mathcal{C}$, we have in particular $A \in \operatorname{Mod}_A(\mathcal{C})$, so it makes sense to discuss

$$HH_O^*(A) := \operatorname{End}_{A\text{-bimod}}(A)$$

(where the superscript indicates considering A as an O-algebra) and

$$HH_*^O(A) := A \otimes_{A\text{-bimod}} A.$$

We shall refer to them as the O-Hochschild cohomology/homology of A respectively. The following statement is usually referred to as (higher) $Deligne\ Conjecture$:

Proposition 5 ([Lur09, 2.5.13], [KS00], [Tam03]). E_n -Hochschild cohomology of an E_n -algebra is an E_{n+1} -algebra.

Example 6. For C a monoidal category, its E_1 -Hochschild cohomology would be E_2 ; this is the Drinfeld center.

5 Koszul Duality for E_2 Algebras and Modules

5.1 Hopf Algebras

Define $Bialg(\mathcal{C})$, the category of bialgebras in \mathcal{C} , to be

$$E_1$$
-alg $(E_1^*$ -coalg $(C)) \simeq (E_1^*$ -coalg $(E_1$ -alg $(C))$

(That these two definitions are equivalent is not obvious and is checked in [GR, IV.2 Appendix C].) Let Hopf(C) denote the full subcategory where the monoidal (E_1) structure on the outside is in fact a group structure. This is the category of Hopf algebras that we'll consider.

Let us unpack this definition a bit. The E_1 -algebra and the E_1^* -coalgebra structures give us the multiplication and comultiplication maps, and their corresponding augmentation/coaugmentation give the unit/counit maps. Finally, the existence of group structure gives the antipodal map.

Now recall there is a map $E_1 \to E_2$ of operads, which put all segments on the line $\{x = 0\} \subset \mathbb{R}^2$. This induces a map obly: E_2 -alg(\mathcal{C}) $\to E_1$ -alg(\mathcal{C}). In this section we explain the following observation by Tamarkin:

Proposition 6. The shifted E_1 Koszul dual of an E_2 algebra is a Hopf algebra. In other words, we have a functor

$$F: E_2$$
-alg $(\mathcal{C}) \to Hopf(\mathcal{C})$

such that the following diagram commutes:

$$E_{2}\text{-}alg(\mathcal{C}) \simeq E_{1}\text{-}alg(E_{1}\text{-}alg(\mathcal{C})) \xrightarrow{F} Hopf(\mathcal{C})$$

$$\downarrow^{oblv} \qquad \qquad \downarrow^{oblv}$$

$$E_{1}\text{-}alg(\mathcal{C}) \xrightarrow{[1] \circ \vee} E_{1}^{*}\text{-}coalg(\mathcal{C})$$

where both obly maps forget about the outer E_1 structure.

Proof. Let $Grp(E_1-alg(\mathcal{C}))$ be group objects in the category of E_1 -algebras in \mathcal{C} . We first claim that the inclusion

$$\operatorname{Grp}(E_1\operatorname{-alg}(\mathcal{C})) \hookrightarrow \operatorname{Monoid}(E_1\operatorname{-alg}(\mathcal{C})) \simeq E_2\operatorname{-alg}(\mathcal{C})$$

is in fact an equivalence. This is true when we replace E_1 with any operad and is proven in [GR, IV.2, Lemma 1.6.2].

So, if the Koszul duality functor \vee is a strict monoidal functor, then [1] $\circ \vee$ would automatically land in Hopf(\mathcal{C}). By a similar argument as [GR, IV.2, 4.2.6], it boils down to check that for $V, W \in \mathcal{C}$, we have

$$\operatorname{Free}^{\operatorname{gr}}(V \oplus W) = \operatorname{Free}^{\operatorname{gr}}(V) * \operatorname{Free}^{\operatorname{gr}}(W)$$

where * is the free product (pushout) of associative algebras and Free^{gr} is the map

$$\mathcal{C} \xrightarrow{\mathrm{deg}=1} \mathcal{C}^{\mathrm{gr},\geq 0} \xrightarrow{\mathrm{Free}} \mathrm{Assoc}(\mathcal{C}^{\mathrm{gr},\geq 0})$$

of first giving an object a grading by placing it on degree 1, then take the free associative algebra. Now it suffices to observe that both sides have the same universal property. \Box

For completeness we attach two more proofs for the case C = Vect.

Proof by Tannakian Formalism. For any E_2 -algebra A, recall that A-mod(Vect) is an E_1 -algebra in DGCat, i.e. a monoidal DG category. Now apply modular Koszul to A-mod; in nice cases (TODO), this gives us A^{\vee} -comod for $A^{\vee} \in E_1^*[1]$ -coalg, and by our remark above, the E_1 (monoidal) structure on A-mod gives a monoidal structure on A^{\vee} -comod. Furthermore, by definition, shift by 1 gives an isomorphism A^{\vee} -comod $\simeq (A^{\vee}[1])$ -comod, equipped with an E_1 structure. Since it also comes with a monoidal forgetful map to the underlying Vect, by general Tannakian formalism we can reconstruct the Hopf algebra $A^{\vee}[1]$. \square

Original Proof by Tamarkin. For any given operad $O \in \text{Oprd}(\text{Vect})$, the homology of O (with trivial differential) is again an operad, which we call the homology operad of O and denote by HO. The key fact is the following, which is usually referred to as Kontsevich formality:

Theorem 5.1 ([Tam03], [Kon97]). $E_n \simeq HE_n$.

The operad HE_n is P_n , the operad of Poisson n-algebras, that is, Poisson algebras whose brackets has degree (1-n). Next, there is a combinatorially defined operad B_{∞} , that of the brace algebras.

Proposition 7 ([KS00]). $B_{\infty} \simeq HB_{\infty} \simeq P_2$.

This means that any E_2 -algebra is automatically equipped with a B_{∞} -algebra structure. Finally, an explicit check (e.g. [Foi17]) shows that Bar construction maps B_{∞} -algebras to Hopf algebras.

Let us mention in the passing that ideas here also give another proof of the Etingof-Kazhdan quantization theorem, as noted by [Tamarkin07]. Namely, if \mathfrak{g} is a Lie bialgebra, then $\operatorname{Sym}(\mathfrak{g}[-1])$ has, by definition, the structure of an P_2 -algebra; then the procedure here would yield a (dg) Hopf algebra. One then checks that the resulting Hopf algebra is concentrated on degree 0, and the degree 0 piece is the quantization $U_{\hbar}(\mathfrak{g})$ we are looking for.

6 The General Case for E_n

Finally we list some facts about general E_n algebras and modules; note that those are mostly bootstrapped from the E_1 case.

Proposition 8. Applying Kozdul duality on E_n -algebra is the same thing as applying on it the E_1 Koszul duality n times.

Proposition 9. An E_n -module structure is equivalent to n separate E_1 -module structures.

Proof. TODO: Need to supply proof for both facts.

From both facts we can conclude:

Corollary 3. For A a small E_n -algebra, the category of ind-coherent left/right modules over A is equivalent to that of left/right comodules over A^{\vee} (the E_n dual).

Sketch. Apply E_1 Koszul duality on A n times, each time on a different E_1 -algebra structure, to obtain $A_0 = A, A_1, \ldots, A_n = A^{\vee}$, where $A_j \in E_{n-j}$ -alg $(E_j$ -coalg) is given as the 1-shifted E_1 Koszul dual of A_{j-1} . Define C_j to be the category of objects that have (n-j) ind-coherent module structures and j comodule structures over A_j , then repeated application of E_1 duality yields $C_0 \simeq \ldots \simeq C_n$.

Proposition 10 ([Lur11, 4.4.5]). Let A be an E_n -algebra that is n-coconnective (meaning $\pi_i = 0$ for $i \ge n$) and locally finite. Then A is Koszul.

Proposition 11 ([AF14]). Let \wedge denote the linear dual. Then $HH_*^{E_n}((A^{\vee}[n])^{\wedge}) \simeq HH_*^{E_n}(A)^{\wedge}$ for $A \in E_n$ -alg that is (-n)-coconnective.

References

- [AF14] David Ayala and John Francis. "Poincaré/Koszul duality". In: (2014).
- [BGS96] Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel. "Koszul Duality Patterns in Representation Theory". In: *Journal of the American Mathematical Society* 9.2 (1996), pp. 473–527. ISSN: 0894-0347. DOI: 10.1090/s0894-0347-96-00192-0. URL: http://dx.doi.org/10.1090/s0894-0347-96-00192-0.
- [Dun88] Gerald Dunn. "Tensor product of operads and iterated loop spaces". In: Journal of Pure and Applied Algebra 50.3 (1988), pp. 237–258. ISSN: 0022-4049. DOI: 10.1016/0022-4049(88)90103-x. URL: http://dx.doi.org/10.1016/0022-4049(88)90103-x.
- [FG12] John Francis and Dennis Gaitsgory. "Chiral Koszul duality". In: Sel Math 18.1 (2012), pp. 27–87. ISSN: 1022-1824. DOI: 10.1007/s00029-011-0065-z.
- [Foi17] Loïc Foissy. "Algebraic structures associated to operads". In: (2017).
- [Fre11] Benoit Fresse. "Koszul duality of En-operads". In: Sel Math 17.2 (2011), pp. 363–434. ISSN: 1022-1824. DOI: 10.1007/s00029-010-0047-6.
- [GJ94] Ezra Getzler and John DS Jones. "Operads, homotopy algebra and iterated integrals for double loop spaces". In: (1994).
- [GK94] Victor Ginzburg and Mikhail Kapranov. "Koszul duality for operads". In: *Duke Mathematical Journal* 76.1 (1994), pp. 203–272. ISSN: 0012-7094. DOI: 10.1215/s0012-7094-94-07608-4. URL: http://dx.doi.org/10.1215/s0012-7094-94-07608-4.
- [GR] Dennis Gaitsgory and Nick Rozenblyum. A Study in Derived Algebraic Geometry.
- [Kel99] Bernhard Keller. "Introduction to A-infinity algebras and modules". In: (1999).
- [Kon97] Maxim Kontsevich. "Deformation quantization of Poisson manifolds, I". In: (1997). DOI: 10. 1023/b:math.0000027508.00421.bf. URL: http://dx.doi.org/10.1023/b:math.0000027508.00421.bf.
- [KS00] Maxim Kontsevich and Yan Soibelman. "Deformations of algebras over operads and Deligne's conjecture". In: (2000).
- [LH03] Kenji Lefèvre-Hasegawa. "Sur les A-infini catégories". In: (Mar. 2003).
- [Lur] Jacob Lurie. Higher Algebra.
- [Lur09] Jacob Lurie. "Derived Algebraic Geometry VI: E[k]-Algebras". In: (Oct. 2009).
- [Lur11] Jacob Lurie. "Derived Algebraic Geometry X: Formal Moduli Problems". In: (Nov. 2011).
- [Tam03] Dmitry E. Tamarkin. "Formality of Chain Operad of Little Discs". In: Letters in Mathematical Physics 66.1/2 (Mar. 2003), pp. 65-72. ISSN: 0377-9017. DOI: 10.1023/b:math.0000017651. 12703.a1. URL: http://dx.doi.org/10.1023/b:math.0000017651.12703.a1.