HW2: Asymptotics

Gabriel ROMON

Problem 1

Let a_1, \ldots, a_q and b_1, \ldots, b_q be vectors in \mathbb{R}^d $(d, q \ge 1)$. Suppose that $\sum_{i=1}^q b_i b_i^T$ is invertible. We want to prove that

$$\sum_{i=1}^{q} a_i b_i^T \left(\sum_{i=1}^{q} b_i b_i^T \right)^{-1} \sum_{i=1}^{q} b_i a_i^T \preceq \sum_{i=1}^{q} a_i a_i^T$$

- 1. Show that $q \geq d$.
- 2. Let $C \in \mathbb{R}^{q \times q}$ defined by $C_{ij} = b_i^T \left(\sum_{i=1}^q b_i b_i^T\right)^{-1} b_j$. Show that C is a projection matrix.
- 3. Let $x \in \mathbb{R}^d$. Show that $x^T \left[\sum_{i=1}^q a_i b_i^T \left(\sum_{i=1}^q b_i b_i^T \right)^{-1} \sum_{i=1}^q b_i a_i^T \right] x$ rewrites as $y^T C y$ for some $y \in \mathbb{R}^q$.
- 4. Conclude.
- 1. Since $\sum_{i=1}^q b_i b_i^T \in \mathbb{R}^{d \times d}$ is invertible, $d = \operatorname{rk}\left(\sum_{i=1}^q b_i b_i^T\right) \leq \sum_{i=1}^q \operatorname{rk}(b_i b_i^T) \leq \sum_{i=1}^q 1 \leq q$.
- 2. Let us show that $C^2 = C$. Let $B = \sum_{i=1}^q b_i b_i^T$.

$$(C^{2})_{ij} = \sum_{k=1}^{q} C_{ik} C_{kj} = \sum_{k=1}^{q} b_{i}^{T} B^{-1} b_{k} b_{k}^{T} B^{-1} b_{j}$$

$$= b_{i}^{T} B^{-1} \left(\sum_{k=1}^{q} b_{k} b_{k}^{T} \right) B^{-1} b_{j}$$

$$= b_{i}^{T} B^{-1} B B^{-1} b_{j}$$

$$= C_{ij}$$

3.

$$x^{T} \left[\sum_{i=1}^{q} a_{i} b_{i}^{T} B^{-1} \sum_{k=1}^{q} b_{k} a_{k}^{T} \right] x = \sum_{i=1}^{q} \sum_{k=1}^{q} x^{T} a_{i} C_{ik} a_{k}^{T} x$$

$$= \sum_{i=1}^{q} \sum_{k=1}^{q} y_{i} C_{ik} y_{k}$$

$$= y^{T} C y \quad \text{where } y = \begin{pmatrix} a_{1}^{T} x \\ \vdots \\ a_{q}^{T} x \end{pmatrix}$$

4. Note that $x^T \sum_{i=1}^q a_i a_i^T x = y^T I_d y$, hence

$$x^{T} \sum_{i=1}^{q} a_{i} a_{i}^{T} x - x^{T} \left[\sum_{i=1}^{q} a_{i} b_{i}^{T} B^{-1} \sum_{k=1}^{q} b_{k} a_{k}^{T} \right] x = y^{T} (I_{d} - C) y$$

Since C satisfies $C^2 = C$ its eigenvalues are either 0 or 1. The eigenvalues of the symmetric matrix $I_d - C$ are thus also 0 or 1, hence $I_d - C \succeq 0$, so $y^T (I_d - C) y \geq 0$. This holds for all x, hence $\sum_{i=1}^q a_i a_i^T \succeq \sum_{i=1}^q a_i b_i^T \left(\sum_{i=1}^q b_i b_i^T\right)^{-1} \sum_{i=1}^q b_i a_i^T$.

Problem 2

Let a, b be random vectors in \mathbb{R}^d such that $E(\|a\|^2 + \|b\|^2) < \infty$.

1. Show that $E(aa^T)$, $E(bb^T)$ and $E(ab^T)$ are well-defined. Show that the transpose of $E(ab^T)$ is $E(ba^T)$.

In the rest of the problem we assume that $E(bb^T)$ is invertible and we want to show that

$$E(ab^T)E(bb^T)^{-1}E(ba^T) \le E(aa^T)$$

- 2. Show that the inequality of Problem 1 is a special case of this inequality.
- 3. Let $M \in \mathbb{R}^{p \times p}$ a block matrix defined by $M = \begin{pmatrix} A & B \\ B^T & C \end{pmatrix}$ where $A \in \mathbb{R}^{k \times k}$, $B \in \mathbb{R}^{k \times l}$, $C \in \mathbb{R}^{l \times l}$ with k + l = p and A and C symmetric. We assume that C is invertible. The Schur complement of C in M is defined as $A BC^{-1}B^T$. Show that $M \succeq 0$ if and only if C and its Schur complement are $\succeq 0$.
- 4. Let $M \in \mathbb{R}^{2d \times 2d}$ the block matrix defined by $M = \begin{pmatrix} E(aa^T) & E(ab^T) \\ E(ba^T) & E(bb^T) \end{pmatrix}$
 - (a) Show that $M \succeq 0$.
 - (b) Conclude.
- 1. Since $E(a_i^2) \leq E(\sum_{i=1}^d a_i^2) = E(\|a\|_2^2) < \infty$, the coordinates of a are in L^2 . Thus for each $1 \leq i, j \leq d$, $E(|a_i a_j|) < \infty$. Therefore

$$E(\|aa^T\|_1) \le E\left(\sum_{i=1}^d \sum_{j=1}^d |a_i a_j|\right) = \sum_{i=1}^d \sum_{j=1}^d E(|a_i a_j|) < \infty$$

Similarly one proves that $E(\|bb^T\|_1)$, $E(\|ab^T\|_1)$ and $E(\|ba^T\|_1)$ are finite. Note that $(E(ab^T))_{ji} = E(a_jb_i) = E(b_ia_j) = (E(ba^T))_{ij}$, hence $E(ab^T)$ is the transpose of $E(ba^T)$.

2. To avoid confusions, let c_1, \ldots, c_q and d_1, \ldots, d_q denote the vectors in the inequality of Problem 1. Let $\phi: \mathbb{R}^d \to \mathbb{R}^d$, $c_i \mapsto d_i$. Let a be a random vector with distribution $\frac{1}{q} \sum_{i=1}^q \delta_{c_i}$ and $b = \phi(a)$. a and b are bounded, and $E(ab^T) = E\left(\sum_{i=1}^q c_i d_i^T 1_{a=c_i}\right) = \frac{1}{q} \sum_{i=1}^q c_i d_i^T$. Hence $E(ab^T)E(bb^T)^{-1}E(ba^T) \leq E(aa^T)$ rewrites as

$$\sum_{i=1}^{q} c_i d_i^T \left(\sum_{i=1}^{q} d_i d_i^T \right)^{-1} \sum_{i=1}^{q} d_i c_i^T \preceq \sum_{i=1}^{q} c_i c_i^T$$

3. Let $f: \mathbb{R}^k \times \mathbb{R}^l \to \mathbb{R}, (u, v) \mapsto \begin{pmatrix} u^T & v^T \end{pmatrix} \begin{pmatrix} A & B \\ B^T & C \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = v^T C v + 2 v^T B^T u + u^T A u$

If $M \succeq 0$, then for all $v \in \mathbb{R}^l$, $f(0,v) \geq 0$ i.e. $v^T C v \geq 0$, thus $C \succeq 0$. Hence $v \mapsto v^T C v$ is convex, thus f is convex as a function of v.

Let u be fixed. Since $\nabla_v f(u,v) = 2Cv + 2B^T u$, $v = -C^{-1}B^T u$ is a critical point, hence $f(u,\cdot)$ is minimized at $-C^{-1}B^T u$ with $0 \le f(u,-C^{-1}B^T u) = u^T (A-BC^{-1}B^T)u$. This holds for all $u \in \mathbb{R}^k$, so the Schur complement of C is $\succeq 0$.

Suppose that $C \succeq 0$ and $A - BC^{-1}B^T \succeq 0$. For any $u \in \mathbb{R}^k$ and $v \in \mathbb{R}^l$, the previous reasoning shows that $f(u,v) \geq f(u,-C^{-1}B^Tu) = u^T(A-BC^{-1}B^T)u \geq 0$. Hence $M \succeq 0$.

4. (a) We have

$$\begin{pmatrix} u^T & v^T \end{pmatrix} M \begin{pmatrix} u \\ v \end{pmatrix} = u^T E(aa^T) u + 2u^T E(ab^T) v + v^T E(bb^T) v$$

$$= E \left((u^T a)^2 + 2(u^T a)(b^T v) + (b^T v)^2 \right)$$

$$= E \left((u^T a + b^T v)^2 \right)$$

$$\geq 0$$

(b) Remember that $E(bb^T)$ is invertible by assumption. By Question 3, the Schur complement of $E(bb^T)$ in M is $\succeq 0$, that is

$$E(aa^T) - E(ab^T)E(bb^T)^{-1}E(ba^T) \succeq 0$$

Problem 3

Let $(X_n)_{n\geq 1}$ a sequence of i.i.d. random variables having distribution $\mathcal{N}(\mu, 1)$ where $\mu \in \mathbb{R}$. Let $\alpha \in (0, 1)$. For $n \geq 1$, let $\hat{\mu}_n = \begin{cases} \bar{X}_n & \text{if } |\bar{X}_n| > n^{-1/4} \\ \alpha \bar{X}_n & \text{otherwise} \end{cases}$

We want to show that $\hat{\mu}_n$ is asymptotically normal around μ , with asymptotic variance strictly smaller than to the reciprocal of Fisher's information, for some values of μ .

- 1. Compute Fisher's information $I(\mu)$.
- 2. Suppose that $\mu = 0$.
 - (a) Show that $P_0(|\bar{X}_n| > n^{-1/4}) \xrightarrow[n \to \infty]{} 0$
 - (b) Deduce that $\forall t \in \mathbb{R}, P_0(\sqrt{n}\hat{\mu}_n \leq t) P_0(\sqrt{n}\bar{X}_n \leq \frac{t}{\alpha}) \xrightarrow[n \to \infty]{} 0.$
 - (c) Conclude about $\hat{\mu}_n$ and compute its asymptotic variance.
- 3. Suppose that $\mu > 0$ (the case $\mu < 0$ is similar).
 - (a) Show that for n sufficiently large, $P_{\mu}(|\bar{X}_n| \leq n^{-1/4}) \leq \frac{1}{n(\mu n^{-1/4})^2}$.
 - (b) Deduce that $\forall t \in \mathbb{R}, \ P_{\mu}(\sqrt{n}(\hat{\mu}_n \mu) \leq t) P_{\mu}(\sqrt{n}(\bar{X}_n \mu) \leq \frac{t}{\alpha}) \xrightarrow[n \to \infty]{} 0.$
 - (c) Conclude about $\hat{\mu}_n$ and compute its asymptotic variance.
- 4. Conclude about Fisher's programme validity.
- 1. The likelihood for a single sample is $L(\mu) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x-\mu)^2\right)$, thus $(\log L)'' = -1$ and $I(\mu) = 1$.
- 2. (a) The CLT yields $n^{1/4}n^{1/4}\bar{X}_n \xrightarrow[n\to\infty]{(d)} \mathcal{N}(0,1)$, hence $n^{1/4}\bar{X}_n \xrightarrow[n\to\infty]{P} 0$, hence

$$P_0(n^{1/4}|\bar{X}_n| > 1) \xrightarrow[n \to \infty]{} 0$$

(b) Let $t \in \mathbb{R}$. Note that

$$P_0(\sqrt{n}\hat{\mu}_n \le t) = P_0(\sqrt{n}\bar{X}_n \le t \cap |\bar{X}_n| > n^{-1/4}) + P_0(\sqrt{n}\alpha\bar{X}_n \le t \cap |\bar{X}_n| \le n^{-1/4})$$

$$= P_0(\sqrt{n}\bar{X}_n \le t \cap |\bar{X}_n| > n^{-1/4}) + P_0(\sqrt{n}\alpha\bar{X}_n \le t) - P(\sqrt{n}\alpha\bar{X}_n \le t \cap |\bar{X}_n| > n^{-1/4})$$

Hence
$$|P_0(\sqrt{n}\hat{\mu}_n \le t) - P_0(\sqrt{n}\alpha \bar{X}_n \le t)| \le 2P_0(|\bar{X}_n| > n^{-1/4}) \xrightarrow[n \to \infty]{} 0$$

- (c) The CLT combined with the continuous mapping theorem shows that $\sqrt{n}\alpha \bar{X}_n$ converges in distribution to $\mathcal{N}(0,\alpha^2)$, hence so does $\sqrt{n}\hat{\mu}_n$. $\hat{\mu}_n$ is thus asymptotically normal with asymptotic variance α^2 .
- 3. (a) Let $n \ge \frac{1}{\mu^4}$. Note that

$$\begin{split} P_{\mu}(|\bar{X}_n| \leq n^{-1/4}) &\leq P(\mu - \bar{X}_n \geq \mu - n^{-1/4}) \\ &= P_{\mu}(\bar{X}_n - \mu \geq \mu - n^{-1/4}) \qquad \bar{X}_n - \mu \text{ is symmetric} \\ &\leq \frac{V_{\mu}(\hat{X}_n)}{(\mu - n^{-1/4})^2} \\ &= \frac{1}{n} \frac{1}{(\mu - n^{-1/4})^2} \end{split}$$

(b) Let $t \in \mathbb{R}$. Note that

$$P_{\mu}(\sqrt{n}(\hat{\mu}_{n} - \mu) \leq t) = P_{\mu}(\sqrt{n}(\bar{X}_{n} - \mu) \leq t \cap |\bar{X}_{n}| > n^{-1/4}) + P_{\mu}(\sqrt{n}(\alpha \bar{X}_{n} - \mu) \leq t \cap |\bar{X}_{n}| \leq n^{-1/4})$$

$$= P_{\mu}(\sqrt{n}(\bar{X}_{n} - \mu) \leq t) - P_{\mu}(\sqrt{n}(\bar{X}_{n} - \mu) \leq t \cap |\bar{X}_{n}| \leq n^{-1/4}) + o(1)$$

$$= P_{\mu}(\sqrt{n}(\bar{X}_{n} - \mu) \leq t) + o(1)$$

- (c) By the CLT, $\sqrt{n}(\bar{X}_n \mu)$ converges in distribution to $\mathcal{N}(0,1)$, hence so does $\sqrt{n}(\hat{\mu}_n \mu)$. Therefore $\hat{\mu}_n$ is asymptotically normal with asymptotic variance 1.
- 4. Fisher's programme is not valid. There exists superefficient estimators: for some value of the parameter, the asymptotic variance is strictly smaller than the reciprocal of the information.

Problem 4

Let $(X_n)_{n\geq 1}$ a sequence of i.i.d. random variables and let F denote their cdf. Suppose that the median is unique and note it as m.

Suppose that $F(x) - \frac{1}{2} \sim L_2(x-m)^{\alpha}$ as $x \to m$ and $\frac{1}{2} - F(x) \sim L_1(m-x)^{\alpha}$ as $x \to m$ where $\alpha \in (0,1]$ and $L_1, L_2 > 0$. Let $\hat{m}_n = X_{(\lceil \frac{n}{2} \rceil)}$.

Show that $n^{\frac{1}{2\alpha}}(\hat{m}_n - m)$ converges in distribution. Interpret this result in terms of the rate of convergence of the empirical median to the median.