컴퓨터 구조 중간고사 (총 53점) 2020년 10월 20일 오전 10시-11시

A4 답안지를 준비하시고 매 페이지 상단에 학번, 이름, 페이지 적으세요.

1. 다음 부울 함수에 대해서 문제를 푸시오. 입력은 w, w', x, x', y, y', z, z'을 자유롭게 쓸 수 있다. 회로도에 직접 드모르간의 법칙을 적용하면 쉽다. (6점)

F(w, x, y, z)=xy'z+x'yz+w

- (a) AND와 OR 게이트로 구성된 회로를 그리시오.
- (b) NAND 게이트만으로 구성된 회로를 그리시오.
- (c) NOR와 OR 게이트로 구성된 회로를 그리시오.
- 2. 2비트 Gray counter를 JK 플립플롭을 이용하여 만들려고 한다. 카운터는 00→01→11→10→00을 반복한다. 표 1-3을 참고하여 아래 물음에 답하시오. (8점)
 - (a) 아래의 여기표를 완성하시오.

Present State		Next state		Flip-flop inputs			
А	В	A	В	J _A	K _A	J _B	K _B
0	0						
0	1						
1	1						
1	0						

- (b) 상태도를 그리시오.
- (c) J_A 에 대한 입력 회로를 그리시오. K_{A} , J_{B} , K_{B} 는 생략.

3. 다음의 4비트 양방향 시프트 레지스터에 대한 타이밍 다이어그램을 보고 (a), (b), (c), (d)를 16진수 형식으로채우시오. (4점)

4. 교재에서 소개된 Basic computer에 아래와 같이 레지스터와 메모리 일부에 초기값이 저장되어 있다. 네 번의 제어 입력이 순서대로 수행되었다. 각각의 경우에 대해 다음 클럭 변이에서 수행될 레지스터 전송의 내용을 구하고, 마지막 제어 입력이 수행된 수의 레지스터 값들과 메모리 값들을 기록하시오. (15점)

레지스터	데이터	레지스터	데이터
AR	0x021	AC	0x0124
PC	0x022	TR	0x0025
DR	0x0123	IR	0x0126

Address	Memory
0x021	0x0123
0x022	0x0124
0x023	0x0125
0x024	0x0126
0x025	0x0127

네 번의 제어 입력이 아래 순서대로 수행되었다. 레지스터 전송 내용을 적으시오.

S2	S1	S0	LD of	Memory	레지스터 전송 내용
			register		
1	1	0	PC	Write	(1)
0	1	0	AR	-	(2)
1	1	1	IR	Read	(3)
1	0	0	DR	Write	(4)

네 번의 제어 입력 수행 후, 각 레지스터와 메모리의 데이터를 16진수로 기록하시오. 데이터의 자리수에 주의하시오.

레지스터	데이터	레지스터	데이터
AR	(5)	AC	(8)
PC	(6)	TR	(9)
DR	(7)	IR	(10)

Address	Memory
0x021	(11)
0x022	(12)
0x023	(13)
0x024	(14)
0x025	(15)

5. 8비트 레지스터 AR, BR, CR, DR이 각각 다음과 같은 초기값을 가지고 있다.

AR=11110010

BR=00001111

CR=10111001

DR=11101010

다음과 같은 순서로 마이크로 연산이 수행된 후에 결과로 남아 있을 각 레지스터의 값을 구하여라. ashl은 arithmetic shift left (산술 시프트)를 의미한다. (4점)

 $AR \leftarrow AR + \overline{CR} + 1$

 $CR \leftarrow CR \oplus DR$, $BR \leftarrow BR + 1$

AR←ashl AR

DR←DR ∧ BR

- 6. Basic computer의 명령어 중 아래 명령어의 의미를 구체적으로 (그러나 책을 그대로 옮기지는 말고) 설명하시오. (4점)
 - (a) ISZ
 - (b) SNA
 - (c) BSA
 - (d) CME
- 7. 10진수 50과 10진수 20이 있다. (5점)
 - (a) 두 수를 이진수로 변환하라.
 - (b) 두 수를 16진수로 변환하라.
 - (c) 두 수를 8 bit의 BCD(binary coded decimal, 이진화 십진수) 코드로 변환하라.
 - (d) 50-20을 7 bit의 이진수로 변환 후 계산하라. 단, 2의 보수를 음수로 사용하여 계산하라.
 - (e) (d)의 결과값을 홀수 패리티(odd parity)를 적용한 8비트로 나타내시오.

8. 교재에 나온 기본 컴퓨터(Basic computer)에 대한 마이크로 연산(표 5-6)을 참고하여 (a) TR의 LD 에 대한 입력 부울식을 적고, (b) 대응하는 회로도를 완성하시오. (2점)

9. (a) 다음의 어셈블리 프로그램은 어떤 일을 하는 프로그램인지 구체적으로 설명하시오. (b) 실행 후에 SUM의 값을 16진수로 쓰시오. (5점)

	M	(0 1)
LOP,	ORG 100 LDA ADS STA PTR LDA NBR STA CTR CLA ADD PTR I ISZ PTR ISZ CTR BUN LOP STA SUM HLT HEX 150	/ Origin of program is HEX 100 / Load first address of operand / Store in pointer / Load -100 / Store in counter / Clear AC / Add an operand to AC / Increment pointer / Increment counter / Repeat loop again / Store sum / Halt / First address of operands
PTR, NBR, CTR, SUM,	HEX 0 DEC -3 HEX 0 HEX 0 ORG 150 DEC 75 DEC 50 DEC 23 END	/ Reserved for a pointer / Initial value for a counter / Reserved for a counter / Sum is stored here / Origin of operands is HEX 150 / First operand / Last operand / End of symbolic program

10. 강의에서 좋았던 점과 개선했으면 하는 점을 적어주세요. (보너스 1점)