

Republic of the Philippines

Laguna State Polytechnic University

Province of Laguna

Machine Problem No. 2			
Topic:	Topic 1.2: Image Processing Techniques	Week No.	3-5
Course Code:	CSST106	Term:	1st Semester
Course Title:	Perception and Computer Vision	Academic Year:	2024-2025
Student Name	Simon B. Sancon	Section	
Due date	September 21, 2024	Points	

Machine Problem No. 2: Applying Image Processing Techniques

Report

This Report include the steps taken and the result of the first exercise image processing techniques

Step 1: Installing OpencV

Step 2: Import Libraries

```
2. Import Libraries
[2] import cv2
     import numpy as np
    import matplotlib.pyplot as plt
    def display_image(img, title="Image"):
      plt.imshow(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
       plt.title(title)
      plt.axis("off")
      plt.show()
    def display_images(img1, img2, title1="Image 1", title2="Image 2"):
      plt.subplot(1,2,1)
       plt.imshow(cv2.cvtColor(img1,cv2.COLOR_BGR2RGB))
       plt.title(title1)
      plt.axis("off")
       plt.subplot(1,2,2)
       plt.imshow(cv2.cvtColor(img2,cv2.COLOR_BGR2RGB))
       plt.title(title2)
      plt.axis("off")
       plt.show()
```


Republic of the Philippines **Laguna State Polytechnic University**

Province of Laguna

Step 3: Load Image

```
from google.colab import files
from io import BytesIO
from PIL import Image

uploaded = files.upload()
image_path = next(iter(uploaded))
image = Image.open(BytesIO(uploaded[image_path]))
image = cv2.cvtclor(np.array(image), cv2.coLoR_RGB2BGR)

display_image(image, "Original Image")

Choose Files image1 (1).jpg
• image1 (1).jpg to image1 (1).jpg

Original Image

Original Image
```

4. Exercise 1: Scaling and Orientation

```
def scale_image(image, scale_factor):
    height, width = image.shape[:2]
    scale_img = cv2.resize(image,(int(width * scale_factor), int(height * scale_factor)), interpolation = cv2.INTER_LIMEAR)
    return scale_img

def rotate_image(image, angle):
    height, width = image.shape[:2]
    center = (width//2,height//2)
    matrix = cv2.getRotationWatrix2D(center,angle,1)
    rotated_image = cv2.warpAffine(image,matrix,(width,height))
    return rotated_image

scaled_image = scale_image(image, 0.5)
    display_image(scaled_image, "scaled_image")

rotated_image = rotate_image(image, 45)
    display_image(rotated_image, "Rotated_image")
```

5. Blurring Image

```
guassian_blur = cv2.GaussianBlur(image,(61,61),0)
display_image(guassian_blur,"Guassian Blur")

median_blur = cv2.medianBlur(image,11)
display_image(median_blur,"Median Blur")

bilateral_blur = cv2.bilateralFilter(image,99,75,75)
display_image(bilateral_blur,"Bilateral_Blur")
```


Republic of the Philippines Laguna State Polytechnic University Province of Laguna

Step 6: Edge Detection Using Canny

Problem-Solving Session

Common Challenges

There are 2 common challenges that was experienced during the Problem-Solving Session

1. Syntax error

The figure above is one common issue that will be tackled whenever an implementation was conducted, this includes spelling, misused variables, and unfamiliarity of syntax or library

Republic of the Philippines **Laguna State Polytechnic University**Province of Laguna

2. Finding the right value

The figure above shows that finding the right value of the applied image processing techniques requires some trial and error to produce the desired result.

Scenario-Based Problems:

The figure above shows that we can apply Blurring to enhance a photo to reduce noise from the photo