FUNDAÇÃO GETÚLIO VARGAS ESCOLA DE MATEMÁTICA APLICADA MESTRADO 2015.1

ESTRUTURA DE DADOS E SEUS ALGORITMOS

Prof Alexandre Rademaker

Resolução dos Exercícios Selecionandos do Capítulo $0\,$

GRUPO:

KIZZY TERRA
GUSTAVO AVILA
CAROLINE FIALHO

RIO DE JANEIRO MARÇO DE 2015

1 Exercício 0.1

Obs: Os gráficos aqui apresentados foram desenhados utilizando-se o WolframAlpha disponível em: http://www.wolframalpha.com.

a)
$$f(n) = n-100$$
, $g(n) = n-200$

Figure 1: f(n) = n-100, g(n) = n-200

A partir do gráfico podemos observar que o crescimento das funções é o mesmo, diferenciando-se apenas por um deslocamento vertical. Dessa forma, $f = \Theta(g)$.

b)
$$f(n) = n^{1/2}$$
, $g(n) = n^{2/3}$

Da regra 2 apresentada na seção 0.3 do capítulo 0, sabemos que n^a domina n^b se a > b. Logo f = O(g)

c)
$$f(n) = 100n + \log n$$
, $g(n) = n + (\log n)^2$

Da regra 4 apresentada na seção 0.3 do capítulo 0, sabemos que qualquer polinômio domina qualquer logaritmo. Assim, f(n) = O(n) e g(n) = O(n) e portanto $f = \Theta(g)$.

d)
$$f(n) = n \log n, g(n) = 10n \log n$$

Da regra 1 apresentada na seção 0.3 do capítulo 0, sabemos que constantes multiplicativas podem ser omitidas. Assim, $f(n) = n \log n$ e $g(n) = O(n \log n)$ e portanto $f = \Theta(g)$.

e)
$$f(n) = \log 2n, g(n) = \log 3n$$

Analogamente ao item anterior, pela regra 1, as constantes multiplicativas podem ser omitidas. Assim, $f(n) = O(\log n)$ e $g(n) = O(\log n)$ e portanto $f = \Theta(g)$.

f)
$$f(n) = 10 \log n$$
, $g(n) = \log(n^2)$

Analisando o gráfico abaixo, podemos perceber que f(n) cresce mais rápido do que g(n) portanto $f = \Omega(g)$.

Figure 2: $f(n) = 10 \log n, g(n) = \log(n^2)$

g)
$$f(n) = n^{1.01}$$
, $g(n) = n \log^2 n$

Analisando o gráfico abaixo, podemos perceber que f(n) cresce mais rápido do que g(n) portanto $f=\Omega(g).$

Figure 3: $f(n) = n^{1.01}$, $g(n) = n \log^2 n$

h)
$$f(n) = n^2/\log n$$
, $g(n) = n(\log n)^2$

Utilizando a regra 4 apresentada na seção 0.3 do capítulo 0, podemos afirmar que $f(n) = O(n^2)$ e g(n) = O(n). Decorre disso que f domina g e portanto $f = \Omega(g)$.

No gráfico abaixo pode se observar facilmente que f domina g.

Figure 4: $f(n) = n^2 / \log n$, $g(n) = n(\log n)^2$

i)
$$f(n) = n^{0.1}$$
, $g(n) = (\log n)^{10}$

Figure 5: $f(n) = n^{0.1}, g(n) = (\log n)^{10}$

O gráfico acima evidencia que g domina f, logo f = O(g).

j)
$$f(n) = (\log n)^{\log n}$$
 , $g(n) = n/\log n$

Figure 6: f(n) (em vermelho) , g(n) (em azul)

O gráfico acima evidencia que f
 domina g, logo f = $\Omega(g)$.

k)
$$f(n) = \sqrt{n}, g(n) = (\log n)^3$$

Figure 7: f(n) (em vermelho) , g(n) (em azul)

O gráfico acima evidencia que g domina f, logo f = O(g).

l)
$$f(n) = n^{1/2}$$
, $g(n) = 5^{\log_2 n}$

Figure 8: f(n) (em vermelho) , g(n) (em azul)

O gráfico acima evidencia que g domina f, logo f = O(g).

m)
$$f(n) = n2^n, g(n) = 3^n$$

Figure 9: $f(n) = n2^n, g(n) = 3^n$

O gráfico acima evidencia que as duas funções crescem a mesma taxa e portanto, $f = \Theta(g)$.

n)
$$f(n)=2^n$$
, $g(n)=2^{n+1}$

Figure 10: $f(n) = 2^n$, $g(n) = 2^{n+1}$

O gráfico acima evidencia que as duas funções crescem a mesma taxa e portanto, $f = \Theta(g)$.

o) $f(n) = n!, g(n) = 2^n$

Figure 11: $f(n) = n!, g(n) = 2^n$

O gráfico acima evidencia que f
 domina g, logo f = $\Omega(g)$.

p)
$$f(n) = (\log n)^{\log n}, g(n) = 2^{(\log_2 n)^2}$$

Figure 12: $f(n) = (\log n)^{\log n}, g(n) = 2^{(\log_2 n)^2}$

O gráfico acima evidencia que g domina f, logo f = O(g).

q)
$$f(n) = \sum_{i=1}^{n} i^{k}$$
, $g(n) = n^{k+1}$

Temos que $f(n) = 1^k + 2^k + ... + n^k$ e $g(n) = n^{k+1}$.

É possível encontrar um polinômio de grau k+1 em n que equivale a f(n). Basta resolver um sistema de k+1 equações para encontrar os k+1 coeficientes correspondentes do polinômio, este sistema tem solução e ela é única. Assim, se $f(n) = O(n^{k+1})$ e $g(n) = n^{k+1}$ temos que $f = \Theta(g)$.

2 Exercício 0.2

a) $\Theta(1)$ se c < 1

Tendo em vista que c < 1 e considerando a função $g(n)=1+c+c^2+...+c^n$ como uma progressão geométrica de razão c (para c real positivo, diferente de 1) cuja soma é dada por:

$$\frac{c^{n+1}-1}{c-1}$$

Se fizermos o limite da função g(n) quando n tende a infinito teremos:

$$\lim\inf(\frac{c^{n+1}-1}{c-1}) = \frac{0-1}{c-1} = \frac{1}{1-c}$$

Isto é, o valor da série será igual a uma constante que iremos chamar de p. Assim g(n) = p, iremos provar que $g(n) = \Theta(1)$.

Seja a função f(n)= 1e seja p+1 > p, teremos:

1)
$$g = O(f)$$

$$g(n) \le (p+1)f(n) \Rightarrow \frac{g(n)}{f(n)} \le (p+1) \Rightarrow g = O(f)$$

2)
$$f = O(g)$$

$$f(n) \le g(n) \Rightarrow \frac{f(n)}{g(n)} \le 1 \Rightarrow f = O(g)$$

Portanto,

$$g = \Theta(f) \Rightarrow g = \Theta(1)$$

b) $\Theta(n)$ se c = 1

Se c = 1, temos:

$$g(n) = 1 + c + c^2 + \dots + c^n = 1 + 1 + 1^2 + \dots + 1^n = n + 1$$

Iremos provar que $g(n) = \Theta(n)$:

Considere a função f(n)=n, queremos:

1)
$$g = O(f)$$

$$g(n) \le 2 * f(n) \Rightarrow \frac{g(n)}{f(n)} \le 2 \Rightarrow g = O(f)$$

2)
$$f = O(g)$$

$$f(n) \leq g(n) \Rightarrow \stackrel{f(n)}{g(n)} \leq 1 \Rightarrow f = O(g)$$

Portanto,

$$g = \Theta(f) \Rightarrow g = \Theta(n)$$

c) $\Theta(c^n)$ se c < 1

Se c > 1, teremos que $g(n) = 1 + c + c^2 + \ldots + c^n$ é uma progressão geométrica de razão c cuja soma é dada por:

$$\frac{c^{n+1}-1}{c-1}$$

Iremos provar que $g(n) = \Theta(c^n)$:

Considere a função $f(n) = c^n$, queremos:

1)
$$g = O(f)$$

$$\frac{c^{n+1}-1}{c-1} \le c * c^n = c^{n+1}, \Rightarrow g(n) \le c * f(n) \Rightarrow \frac{g(n)}{f(n)} \le c \Rightarrow g = O(f)$$

2)
$$f = O(g)$$

$$c^n \le (c-1) * \frac{c^{n+1}-1}{c-1} \Rightarrow f(n) \le c * g(n) \Rightarrow \frac{f(n)}{g(n)} \le 1 \Rightarrow f = O(g)$$

Portanto,

$$g = \Theta(f) \Rightarrow g = \Theta(c^n)$$

Exercício 0.3 3

- a) Prova por indução:
 - 1) Para n = 6, $F_6 = F_5 + F_4 = 8$

 - 2) Para n = 7, $F_7=F_6+F_5=13$ 3) Supondo que $F_n\geq 2^{0.5n}$ para $n\geq 8$, devemos mostrar que também é válido para n+1:

$$F_n + F_{n-1} \ge 2^{0.5n} + 2^{0.5(n-1)} = 2^{n/2} + 2^{(n-1)/2} = 2^{(n-1)/2} \cdot (2^{1/2} + 1) \ge 2^{(n-1)/2} \cdot 2 = 2^{(n+1)/2}$$

$$\Rightarrow F_{n+1} \ge 2^{0.5(n+1)}$$

b) Para resolver este item utilizamos como ferramenta auxiliar o Microsoft Excel, calculando valores para F_n e 2^{cn} e traçando seus gráficos para analisar a tendência das curvas e verificar para que valores $F_n \leq 2^{cn}$.

Primeiramente escolhemos c= 0.9 e verificamos o crescimento das curvas. O gráfico abaixo evidencia que a curva 2^{cn} cresce muito mais rápido do que a curva F_n para c=0.9.

Figure 13: F_n e 2^{cn}

c) Para resolver este item utilizamos o mesmo método do item anterior (análise de gráfico) e fomos escolhendo valores para c, de forma que as curvas se aproximassem suficientemente e mantivessem a relação $F_n \leq 2^{cn}$.

O valor limite encontrado para c foi aproximadamente 0,665 cujo gráfico correspondente apresentase a seguir:

Figure 14: F_n e 2^{cn}