Задание 10-1. «Калейдоскоп»

1.1 «Масленица» Мальчик медленно втаскивает небольшие санки массой

m = 5,0кг на горки 1,2 и 3 (рис. 1) одинаковой высоты h = 10 м, но различных профилей. В каком из случаев сила тяжести совершит максимальную работу A_{max} ? Чему она равна?

Ускорение свободного падения $g = 9.8 \frac{M}{c^2}$

1.2 «**Паровой клапан**» Для вывода «избыточного» пара из скороварки применяется клапан в виде шарика радиуса $R=1,0\,\mathrm{cm}$, перекрывающего отверстие радиуса $r=7,0\,\mathrm{mm}$ (рис. 2). Давление пара в скороварке постоянно и равно $p=2,5\,p_0$, где $p_0=1,0\cdot 10^5\,\mathrm{\Pi a}$ — нормальное атмосферное давление. Найдите минимальную силу \vec{F}_{min} , с помощью которой можно открыть (вдавить) клапан для выхода

избыточного пара из скороварки. Изменится ли ответ, если клапан будет иметь форму, отличную от сферической?

1.3 «Дождевое сопротивление»

Оцените силу сопротивления, которую оказывает дождь на движущийся автомобиль, показанный на фотографии рядом с водителем. Считайте, что капли дождя падают вертикально, интенсивность дождя $30\frac{MM}{vac}$,

скорость автомобиля $60 \frac{\kappa M}{uac}$, рост водителя — 180 см.

1.4 «Магнитный ограничитель тока» Для размыкания электрической цепи

увеличении применяется при силы тока подвижное тонкое полукольцо ОА (рис. 12) массы m = 3.0г радиуса R = 1.0см, которое может свободно (без трения) вращаться в вертикальной плоскости относительно точки О. Система горизонтальном находится однородном магнитном поле индукции B = 1,5 мТл,

перпендикулярном плоскости рисунка. Найдите максимальную силу тока

 I_{max} , при которой ограничитель разомкнет цепь. Ускорение свободного падения $g=9.8\frac{M}{c^2}$.

1.5 «**Магнитный толкатель**» На горизонтальной плоскости лежит тонкий однородный диск массы m=3,0г радиуса R=3,5см, коэффициент трения которого о плоскость — $\mu=0,20$. К боковой поверхности диска припаяны гибкие легкие контакты A (+) и B (-), так, что угол $A\widehat{O}B=\alpha=90^\circ$ (рис. 5). Система находится в однородном вертикальном магнитном поле индукции B=1,5мТл. При какой

минимальной силе тока I_{\min} через контакты диск сдвинется с места? В каком направлении это произойдет? Ускорение свободного падения $g = 9.8 \frac{M}{c^2}$.

Задача 10-2 «Смещение и затухание»

Небольшой шарик массой m, прикрепленный с помощью пружины жесткостью k к упору, может скользить без трения по горизонтальной направляющей.

Собственная частота колебаний незаряженного шарика равна $v_0 = 10 \, \Gamma u$.

2.1. Выразите частоту ν_0 колебаний шарика через массу шарика и жесткость пружины.

На расстоянии $z_{\scriptscriptstyle 0}$ от положения равновесия шарика размещают проводящий

диск, радиус которого r $(r << z_0)$, а толщина h (h << r). Ось диска совпадает с направляющей. Затем шарику сообщают электрический заряд q. Удельное электрическое

сопротивление материала диска равно $\rho = 10 \ O_{M} \cdot M$.

Для описания движения шарика вдоль направляющей введем ось OX, начало отсчета которой совместим с положением равновесия незаряженного шарика.

- **2.2.** Получите выражение для силы $F_e(z)$, действующей на неподвижный шарик со стороны диска, как функцию его расстояния до центра диска z (для z >> r).
- 2.3. Получите формулу для определения максимального заряда шарика, при котором он может совершать колебательное движение.

Для дальнейшего описания поведения системы введем безразмерный параметр γ , равный отношению силы электрического взаимодействия