

Chapter 10 인터넷 연결

- AWS의 인터넷 연결 소개
 - AWS에서 인터넷 연결 정의

1. AWS의 인터넷 연결

■ AWS의 인터넷 연결 소개

- 인터넷 연결을 위한 4가지 조건
 - 인터넷 게이트웨이
 - 외부 인터넷과 연결을 해주는 장비로 통신 트래픽들이 최종적으로 인터넷 게이트웨이를 통하여 통신하게 된다.
 - 네트워크 라우팅 테이블 정보 (외부와 네트워크 통신을 위한)
 - 일종의 목적지를 가기 위한 지도 정보로, 모든 네트워크 대역 (0.0.0.0/0) 통신은 인터넷 게이트웨이로 전달하기 위해 경로를 지정한다.
 - 공인 IP
 - AWS에 사용 가능한 공인 IP는 퍼블릭 IP나 탄력적 IP(Elastic IP)가 있다.
 - 현재 IPv4 주소 개수가 부족하기 때문에 프라이빗 IP를 가진 대상이 인터넷 사용을 위해서 공인 IP로 변환(NAT: Network Address Translation)이 필요하다.
 - 보안 그룹과 네트원크 ACL
 - 보안 그룹과 네트워크 ACL 에 의해서 외부 네트워크와 통신이 허용되어야 한다.

■ AWS의 인터넷 연결 소개

- NAT 동작
 - IP 를 변환하는 것을 NAT(Network Address Translation)라고 부르며, IP와 포트 번호를 동시에 변화하는 것을 PAT (Port Address Translation)라고 부른다.

■ AWS의 인터넷 연결 소개

■ 인터넷 연결을 위한 3가지 방안 비교

특징	인터넷 게이트웨이	NAT 다바이스	Proxy 인스턴스
동작	Layer3 계층 동작	Layer4 계층 동작	Layer7 계층 동작
주소변환	프라이빗 IP를 퍼블릭 IP 혹은 탄력적 IP로 1:1 주소 변환	IP 주소와 포트 번호 변환	IP 주소와 포트 번호 변 환(TCP 신규 연결)
특징	1개의 프라이빗 IP 마다 1개 의 공인 IP 매칭	여러 개의 프라이빗 IP가 1개의 공인 IP 사용 가능	어플리케이션 수준 제 어(통제) 가능

1. AWS의 인터넷 연결

■ 인터넷 게이트게이

- 인터넷 게이트웨이(Internet Gateway) 소개
 - 인터넷 게이트웨이는 확장성과 가용성이 있는 VPC 구성 요소로 VPC와 인터넷 간에 통신할 수 있게 해준다.
 - 인터넷 게이트웨이는 퍼블릭 IPv4 주소가 할당된 인스턴스에 대해 1:1 IPv4 주소 변환을 수행한다.
 - 참고로 인터넷 게이트웨이는 IPv4 및 IPv6 트래픽을 지원한다.

■ 인터넷 게이트게이

- 인터넷 게이트웨이를 통한 외부 접속
 - 인터넷 게이트웨이는 퍼블릭 IP 혹은 탄력적 IP에 대해서 1:1 IP NAT를 수행한다.
 - 예를 들면 내부 인스턴스에 퍼블릭 IP 혹은 탄력적 IP가 연결되어 있으면, 외부 접속 시 프라이빗 IP를 퍼블릭 IP 혹은 탄력적 IP로 변화을 하게 된다.
 - 요청 이후 되돌이오는 트래픽에서도 목적지 IP를 퍼블릭 IP 혹은 탄력적 IP에서 프리이빗 IP로 NAT를 수행한다.

1. AWS의 인터넷 연결

■ 인터넷 게이트게이

- 인터넷 게이트웨이 제약 사항
 - 하나의 VPC 에는 한 개의 인터넷 게이트웨이만 사용할 수 있다.
 - VPC와 인터넷 게이트웨이의 최대 할당량은 동일하게 적용된다.
 - 리전 당 VPC(인터넷 게이트웨이도 동일)의 기본 할당량은 5개이며, 그 이상 필요 시 AWS 케이스 오픈을 통해 요청하여 리전 당 최대 100개까지 증가할 수 있다.

- NAT 디바이스 소개
 - NAT 인스턴스와 NAT 게이트웨이를 통칭하여 NAT 디바이스라고 말한다.
 - 프라이빗 서브넷의 배치된 인스턴스는 공인 IP(퍼블릭 IP 혹은 탄력적 IP)를 연결할 수 없어서 직접 인터넷 연결이 불가능하며, 이때 NAT 디바이스를 사용하여 프라이빗 서브넷에 배치된 인스턴스가 인터넷 또는 기타 AWS 퍼블릭 서비스(S3 등)에 연결할 수 있다.
 - 기본적으로는 내부(AWS 인스턴스)에서 외부 인터넷으로 통신만 가능하며, 인터넷 게이트웨이와는 다르게 외부 인터넷에서 내부 AWS 구간으로 직접 통신은 불가능하다.

NAT 게이트웨이

NAT 인스턴스

- NAT 게이트웨이와 NAT 인스턴스의 비교
 - 소규모의 트래픽만 발생하고 서비스 중요도가 낮은 경우 저렴한 비용의 NAT 인스턴스로 구성을 권장한다.
 - 그 이외의 경우에는 더 나은 가용성과 향상된 대역폭을 제공하면서도 관리 작업은 간소화하는 관리형 NAT 서비스인 NAT 게이트웨이 사용을 권장한다.

속성	NAT 게이트웨이	NAT 인스턴스
유지 관리	AWS에서 관리한다. 유지 관리 작업을 수행할 필요가 없다.	사용자가 직접 관리한다. (예: 인스턴스에 소프트웨어 업데이트 또는 운영체제 패치 설치)
가용성	가용 영역에 각기 NAT 게이트웨이를 만들어 고가용성 제공한다.	직접 별도의 스크립트를 사용하여 인스턴 스 간의 장애 조치를 관리한다.
네트워크 대역폭	최대 45Gbps까지 확장할 수 있다.	인스턴스 유형의 대역폭에 따라 다르다.
비용	사용하는 NAT 게이트웨이 수, 사용 기간, NAT 게이트웨이를 통해 보내 는 데이터의 양에 따라 요금이 청구 된다.	사용하는 NAT 인스턴스 수, 사용 기간, 인스턴스 유형과 크기에 따라 요금이 청 구된다.
유형 및 크기	균일하게 제공되므로 유형 또는 크 기를 결정할 필요가 없다.	예상 워크로드에 따라 적합한 인스턴스 유형과 크기를 선택한다.

- NAT 게이트웨이와 NAT 인스턴스의 비교
 - 소규모의 트래픽만 발생하고 서비스 중요도가 낮은 경우 저렴한 비용의 NAT 인스턴스로 구성을 권장한다.
 - 그 이외의 경우에는 더 나은 가용성과 향상된 대역폭을 제공하면서도 관리 작업은 간소화하는 관리형 NAT 서비스인 NAT 게이트웨이 사용을 권장한다.

속성	NAT 게이트웨이	NAT 인스턴스
퍼블릭 IP 주소	생성할 때 NAT 게이트웨이와 연결할 탄력적 IP 주소를 선택한다. 할당된 탄력적 IP 주소는 변경이 불가능하다.	탄력적 IP 주소 또는 퍼블릭 IP 주소를 NAT 인스턴스와 함께 사용한다. 새 탄력 적 IP 주소를 인스턴스와 연결하여 언제 든지 퍼블릭 IP 주소를 변경할 수 있다.
프라이빗 IP 주소	게이트웨이를 만들 때 서브넷 IP 주소 범위에서 자동으로 선택된다.	인스턴스를 시작할 때 서브넷의 IP 주소 범위에서 특정 프라이빗 IP 주소를 할당 한다.
보안 그룹	보안그룹을 NAT 게이트웨이와 연결 할 수 없다.	보안그룹을 NAT 인스턴스와 연결하여 인 바운드 및 아웃바운드 트래픽을 제어한다.
플로우 로그	플로우 로그를 사용하여 트래픽을 캡쳐한다.	플로우 로그를 사용하여 트래픽을 캡쳐한 다.
접속 서버	NAT 게이트웨이로 접속(예: SSH)을 지원하지 않는다.	NAT 게이트웨이로 접속(예: SSH)하여 SSH 접속 서버로 사용 가능하다.

- NAT 인스턴스를 통한 외부 접속
 - 프리이빗 서브넷에 연결된 내부 인스턴스에서 외부 인터넷과 통신 시 퍼블릭 서브넷의 NAT 인스턴스로 트래픽을 전송한다.
 - NAT 인스턴스는 IP masquerading 기능을 통하여 내부 인스턴스의 IP와 포트를 NAT 인스턴스의 IP와 포트로 변환된다.
 - 변환된 후 NAT 인스턴스는 인터넷 게이트웨이로 트래픽을 전송한다.
 - 인터넷 게이트웨이는 NAT 인스턴스의 프라이빗 IP를 미리 맵핑된 탄력적 IP로 1:1 IP NAT하여 외부 인터넷으로 전송한다.
 - 결과적으로 IP 변환이 두 번 이루어지게 된다.

- NAT 디바이스 (NAT 인스턴스 & NAT 게이트웨이)
 - NAT 인스턴스를 통한 외부 접속
 - 다수의 인스턴스가 외부 인터넷으로 접속 시 NAT 인스턴스에 연결된 탄력적 IP를 사용한다.
 - 결과적으로 다수의 인스턴스의 출발지 IP가 1개의 탄력적 IP를 공유하여 사용하기 때문에 포트 번호 정보를 기준으로 하여 내부 인스턴스의 트래픽을 구별할 수 있다.
 - 이러한 동작을 PAT(Port Address Translation)라고 한다.

1. AWS의 인터넷 연결

- NAT 디바이스 (NAT 인스턴스 & NAT 게이트웨이)
 - NAT 게이트웨이 제약 사항
 - NAT 게이트웨이는 5Gbps의 대역폭을 지원하며, 최대 45Gbps까지 자동 확장한다.
 - NAT 게이트웨이는 단일 대상(예: 외부 웹서버 1대의 IP)에 대해 분당 최대 55,000개의 동시 연결을 지원할 수 있다.
 - NAT 게이트웨이 가용 영역당 기본 할당량은 5개이며, 그 이상 필요할 경우 AWS 케이스 오픈을 통해 증가 요청이 가능하다.

■ Proxy 인스턴스

■ Proxy 인스턴스 소개

- Proxy는 일종의 대리자로 클라이언트와 서버 중간에 통신을 대신 처리해주는 역할을 한다.
- Proxy가 클라이언트의 통신을 대신 처리하기 때문에 서버의 입장에서는 마치 Proxy와 통신을 하는 것으로 보인다.
- 클라이언트는 기존 애플리케이션 통신을 Proxy로 보내기 위한 설정이 필요하다.
 - 예) HTTP 통신을 Proxy로 보내는 설정

■ Proxy 인스턴스를 통한 외부 접속

- 프라이빗 서브넷 내부의 인스턴스는 HTTP 통신을 위해서 목적지 IP는 Proxy 인스턴스로 향하게 된다.
- 이후 Proxy 인스턴스는 대신 외부 구간과 통신을 하고 결과를 다시 내부 인스턴스로 보낸다.

- CloudFormation 적용
 - 본 실습을 위한 기본 실습 환경을 CloudFormation을 통해 자동으로 구성한다.
 - 서비스 > CloudFormation > 스택 > 스택 생성
 - 다운로드 링크 : https://github.com/jjin300/cloud
 - CloudFormation 적용을 위해 상단의 링크를 통해 lab10-1.yaml을 다운로드하고 스택 생성을 한다.

- 생성 자원 확인
 - 기본 환경 구성 자원 정보

자원	태그 이름	정보
VPC	NATInstance-VPC1	IP CIDR: 10.40.0.0/16
인터넷 게이트웨이	NATInstance-IGW1	연결: NATInstance-VPC1
퍼블릭 서브넷	NATInstance-VPC1-Subnet1	IP CIDR: 10.40.1.0/24, AZ: ap-northeast-2a
퍼블릭 라우팅 테이블	NATInstance- PublicRouteTable1	연결: NATInstance-VPC1-Subnet1 라우팅 정보: 대상 0.0.0.0/0, 타겟: NATInstance-IGW1
프라이빗 서브넷	NATInstance-VPC1-Subnet2	IP CIDR: 10.40.2.0/24, AZ: ap-northeast-2a
프라이빗 라우팅 테이블	NATInstance- PrivateRouteTable1	연결: NATInstance-VPC1-Subnet2
	NAT-Instance	연결: NATInstance-VPC1-Subnet1 프라이빗 IP: 10.40.1.100 – 탄력적 IP 연결 AMI: 'amzn-ami-vpc-nat' 포함된 AMI 사용
EC2 인스턴스	Private-EC2-1	연결: NATInstance-VPC1-Subnet2 프라이빗 IP: 10.40.2.101 – SSH: Password 로그인 방 식 활성화, root 로그인 활성화
	Private-EC2-2	연결: NATInstance-VPC1-Subnet2 프라이빗 IP: 10.40.2.102 – SSH: Password 로그인 방 식 활성화, root 로그인 활성화

- 생성 자원 확인
 - 기본 환경 구성 자원 정보

자원	태그 이름	정보
보안 그룹	VPC1-NATInstance- SecurityGroup	인바운드 규칙: SSH/ICMP - 0.0.0.0/0, HTTP(S) - 10.40.0.0/16
보인 그룹	VPC1-PrivateEC2- SecurityGroup	인바운드 규칙: SSH/ICMP - 10.40.0.0/16, ICMP - 0.0.0.0/0

- 기본 환경 적용
 - 생성 자원 확인
 - 기본 환경 구성 도식화

- 기본 환경 검증
 - 프라이빗 서브넷에 위치한 인스턴스는 현재 외부에서 직접 SSH 접속이 불가능하다.
 - 퍼블릭 서브넷에 위치한 NAT 인스턴스를 먼저 SSH로 접속 후 다시 프라이빗 서브넷에 있는 인스턴스로 접속을 해야 한다.
 - 최종적으로 프라이빗 서브넷에 있는 인스턴스에 SSH 접속을 하였다면 외부 인터넷과 통신이 되는지 확인한다.
 - NAT 인스턴스의 프라이빗 IP를 확인
 - ifconifg eth0

- 기본 환경 적용
 - 기본 환경 검증
 - NAT 인스턴스의 탄력적 IP를 확인
 - curl http://checkip.amazonaws.com/

```
[ec2-user@NAT-Instance ~]$ curl http://checkip.amazonaws.com/
3.37.78.100
[ec2-user@NAT-Instance ~]$
```

- 프라이빗 서브넷의 Private-EC2-1 인스턴스에 SSH 접속 (암호: qwe123)
 - ssh root@10.40.2.101

■ 기본 환경 적용

- 기본 환경 검증
 - Private-EC2-1 인스턴스가 외부 인터넷 통신이 되는지 확인
 - curl http://checkip.amazonaws.com/ --connect-timeout 3

• 프라이빗 서브넷의 Private-EC2-2 인스턴스에 SSH 접촉 (암호 gwe123)

- 기본 환경 적용
 - 기본 환경 검증
 - Private-EC2-2 인스턴스가 외부 인터넷 통신이 되는지 확인
 - curl http://checkip.amazonaws.com/ --connect-timeout 3

```
https://aws.amazon.com/amazon-linux-2/
[root@Private-EC2-2 ~]  curl http://checkip.amazonaws.com/ --connect-timeout 3
curl: (28) Failed to connect to checkip.amazonaws.com port 80 after 2989 ms: Connection timed out
[root@Private-EC2-2 ~] #
```

- NAT 인스턴스 실습
 - NAT 인스턴스 동작을 위한 스크립트 확인
 - NAT 인스턴스 동작을 위해서 IPv4 라우팅 처리를 확인한다.
 - cat /proc/sys/net/ipv4/ip_forward

- NAT 인스턴스 동작을 위해서 IP masquerade 동작을 확인한다.
 - sudo iptables –nL POSTROUTING –t nat –v

```
[ec2-user@NAT-Instance ~]$ sudo iptables -nL POSTROUTING -t nat -v
Chain POSTROUTING (policy ACCEPT 1 packets, 60 bytes)
pkts bytes target prot opt in out source destination
259 19093 MASQUERADE all -- * eth0 0.0.0.0/0
[ec2-user@NAT-Instance ~]$
```

- NAT 인스턴스 동작을 위한 설정
 - 프라이빗 서브넷에 라우팅 정보 추가
 - 현재 프라이빗 서브넷에 외부 인터넷과 통신하기 위한 라우팅 정보가 없기 때문에 해당 정보를 추가해야 한다.
 - 서비스 > VPC > Virtual Private Cloud > 라우팅 테이블 > NATInstance-PrivateRouteTable 1 선택 > 라우팅 탭 선택 > 라우 팅 편집

- NAT 인스턴스 동작을 위한 설정
 - 프라이빗 서브넷에 라우팅 정보 추가
 - 외부 통신을 위한 라우팅 정보를 추가
 - 대상: 0.0.0.0/0, 대상 타깃: Network 인터페이스 선택 > NAT 인스턴스의 eth0 선택

- NAT 인스턴스 동작을 위한 설정
 - 프라이빗 서브넷에 라우팅 정보 추가
 - 외부 통신을 위한 라우팅 정보를 추가
 - 대상: 0.0.0.0/0, 대상 타깃: Network 인터페이스 선택 > NAT 인스턴스의 eth0 선택

- NAT 인스턴스 동작을 위한 설정
 - 소스/대상 확인 비활성화 (중지)
 - 기본적으로 인스턴스로 인입되는 트래픽이 자신이 목적지가 아닌 IP 트래픽이 들어올 경우 폐기한다.
 - 또한 인스턴스에서 나가는 트래픽의 출발지 IP가 자신이 아닐 경우 역시 폐기한다.
 - 이 기능은 소스/대상 확인 (Source/Destination Check)이며 기본적으로 VPC 의 네트워크 인터페이스(ENI)는 활성화 상태이다.
 - 그런데 NAT 인스턴스 경우에는 소스/대상 확인을 비활성화(중지)해야 한다.
 - 이유는 자신이 목적지가 아닌 트래픽이 NAT 인스턴스를 경유해서 외부로 나가기 때문이다.

- NAT 인스턴스 실습
 - NAT 인스턴스 동작을 위한 설정
 - 소스/대상 확인 비활성화 (중지)
 - 서비스 > EC2 > 인스턴스 > 인스턴스 > NAT -Instance 선택 > 작업 > 네트워킹 > 소스/대상 확인 변경 선택

- NAT 인스턴스 동작을 위한 설정
 - 소스/대상 확인 비활성화 (중지)
 - 서비스 > EC2 > 인스턴스 > 인스턴스 > NAT -Instance 선택 > 작업 > 네트워킹 > 소스/대상 확인 변경 선택

- NAT 인스턴스 실습
 - NAT 인스턴스 동작을 위한 설정
 - 소스/대상 확인 비활성화 (중지)
 - NAT 인스턴스 실정 완료 후 토폴로지

- 프라이빗 서브넷에 위치한 인스턴스에서 외부로 통신 확인
 - 우선 NAT 인스턴스의 퍼블릭 IP를 확인하고 SSH 접근을 하고 프라이빗 서브넷의 Private-EC2-1 인스턴스에 SSH 접속 (암호 qwe123)
 - ssh root@10.40.2.101

- NAT 인스턴스 실습
 - 프라이빗 서브넷에 위치한 인스턴스에서 외부로 통신 확인
 - Private-EC2-1 인스턴스가 외부 인터넷 통신이 되는지 확인
 - curl http://checkip.amazonaws.com/ --connect-timeout 3

- 외부로 ping(ICMP)도 정상 통신이 되는지 확인
 - ping www.google.com

- 프라이빗 서브넷에 위치한 인스턴스에서 외부로 통신 확인
 - Private-EC2-2도 마찬가지로 외부 인터넷 구간과 정상적으로 통신된다.
 - 그러면 NAT 인스턴스에서 tcpdump 명령어로 트래픽이 경유하는지 확인한다.
 - tcpdump 실행한다.
 - sudo tcpdump –nni eth0 tcp port 80

- 프라이빗 서브넷에 위치한 인스턴스에서 외부로 통신 확인
 - Private-EC2-2도 마찬가지로 외부 인터넷 구간과 정상적으로 통신된다.
 - 그러면 NAT 인스턴스에서 tcpdump 명령어로 트래픽이 경유하는지 확인한다.
 - tcpdump 실행 후 Private-EC2에서 외부로 웹 접속을 시도한다.
 - ssh root@10.40.2.102
 - ping <u>www.google.com</u>

```
Last login: Thu Jul 28 07:17:32 2022 from ec2-13-209-1-59.ap-northeast-2.compute.amazonaws.com
                    Amazon Linux 2 AMI
https://aws.amazon.com/amazon-linux-2/
[ec2-user@NAT-Instance ~]$ ssh root@10.40.2.102
The authenticity of host '10.40.2.102 (10.40.2.102)' can't be established.
ECDSA key fingerprint is SHA256:IUL9HlZuBFcbTlcAO4DvHs+ZRFGmXfs+Gm7RexjHuUs.
ECDSA key fingerprint is MD5:93:fe:7b:cb:c0:b5:ed:c2:e3:d0:a2:b9:42:37:05:97.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '10.40.2.102' (ECDSA) to the list of known hosts.
root@10.40.2.102's password:
Last login: Thu Jul 28 06:42:30 2022 from ip-10-40-2-101.ap-northeast-2.compute.internal
             / Amazon Linux 2 AMI
https://aws.amazon.com/amazon-linux-2/
[root@Private-EC2-2 ~] ping www.google.com
PING www.google.com (142.250.207.36) 56(84) bytes of data.
64 bytes from nrt13s55-in-f4.1e100.net (142.250.207.36): icmp seq=1 ttl=104 time=32.6 ms
64 bytes from nrt13s55-in-f4.1e100.net (142.250.207.36): icmp seq=2 ttl=104 time=32.8 ms
64 bytes from nrt13s55-in-f4.1e100.net (142.250.207.36): icmp seq=3 ttl=104 time=32.9 ms
64 bytes from nrt13s55-in-f4.1e100.net (142.250.207.36): icmp_seq=4 ttl=104 time=32.7 ms
64 bytes from nrt13s55-in-f4.1e100.net (142.250.207.36): icmp_seq=5 ttl=104 time=32.7 ms
64 bytes from nrt13s55-in-f4.1e100.net (142.250.207.36): icmp seq=6 ttl=104 time=32.7 ms,
64 bytes from nrt13s55-in-f4.1e100.net (142.250.207.36): icmp seq=7 ttl=104 time=32.7 ms
64 bytes from nrt13s55-in-f4.1e100.net (142.250.207.36): icmp seq=8 ttl=104 time=32.8 ms
64 bytes from nrt13s55-in-f4.1e100.net (142.250.207.36): icmp_seq=9 ttl=104 time=32.8 ms
[1]+ Stopped
                             ping www.google.com
[root@Private-EC2-2 ~]#
```

- 프라이빗 서브넷에 위치한 인스턴스에서 외부로 통신 확인
 - Private-EC2-2도 마찬가지로 외부 인터넷 구간과 정상적으로 통신된다.
 - 그러면 NAT 인스턴스에서 tcpdump 명령어로 트래픽이 경유하는지 확인한다.
 - tcpdump 실행 후 Private-EC2에서 외부로 웹 접속을 시도한다.

■ 자원 삭제

- 모든 실습이 끝나면 자원 삭제를 반드시 수행해야 한다.
- 부득이하게 과금이 발생할 수 있으니, 아래 순서대로 진행해야 한다.
 - CloudFormation 스택 삭제 (CloudFormation > 스택 > 스택 삭제)
 - CloudFormation 스택 삭제까지 기다리고 생성 자원이 모두 삭제되었는지 확인한다.

Thank You