la rappresentazione dell'informazione

Cristiana Bolchini

```
+123 10110

-24.345

gi0c4r3

3Ma09!2£

0.3429 13294021

acquario -1864
```

problema ____

base 10

trovare un modo opportuno per rappresentare all'interno di un sistema di calcolo le informazioni (dati e programmi) in modo efficiente rispetto a:

- realtà fisica del sistema
- loro manipolazione

rappresentazione

- alfabeto: insieme di simboli utilizzabili (distinguibili tra di loro)
- codice: sequenze di simboli o insieme di regole per definire le combinazioni ammissibili (o "parole di codice")
 - ogni "parola di codice" è una sequenza di simboli dell'alfabeto di lunghezza finita

	Alfabeto	Sequenze ammissibili
Romano	{I, V, X, L, C, M, D}	{I, II, IV,}
Morse	{·, -}	{ • - , • ,}
Arabo	{0, 1, 2, 3,, 9}	{12, 321,}

dati:

- l'insieme degli elementi da rappresentare
- l'insieme delle configurazioni ammissibili il **codice** definisce l'associazione biunivoca

 configurazioni ammissibili: tutte di ugual dimensione

• dimensione: dipende dall'alfabeto dei simboli e dalla quantità di elementi da rappresentare

```
S = {...} alfabeto dei simboli
|S| cardinalità dell'alfabeto
```

dimensione della codifica

- alfabeto dei simboli: S = {...}
- cardinalità dell'alfabeto: |S|
- numero di elementi da rappresentare: n

dimensione delle configurazioni: k

$$k = \left\lceil \log_{|S|} n \right\rceil$$

numero di configurazioni

- alfabeto dei simboli: S = {...}
- cardinalità dell'alfabeto: |S|
- dimensione delle configurazioni: k

• numero di configurazioni diverse di lunghezza k:

$$n = |S|^k$$

- alfabeto: S = {}
- elementi: n

- •alfabeto: S = {}
- dimensione codifica: k
- ▶elementi: n

$$k = \lceil \log_{|S|} n \rceil$$

$$= |S|^{k}$$
elementi da rappresentare
$$= \text{ammissibili}$$

$$\Rightarrow ???$$

$$\Rightarrow ???$$

$$\Rightarrow ???$$

rappresentazione

sistema binario

- i componenti elettronici che costituiscono il sistema di calcolo sono caratterizzati da una realtà costituita da due stati
 - condensatore carico/scarico
 - linea con tensione alta/bassa
 - ...
- mappatura diretta con un sistema costituito da due simboli ▶ sistema binario ▶ alfabeto: {0,1}
- per qualsiasi cosa (valori numerici, simboli, immagini, ...)

codice (sistema) binario

specifiche

```
alfabeto: {0,1}
cifra della codifica: binary digit ▶ bit
byte (B): 8 bit
```

- kilobyte (KB): 2^{10} byte = 1024 byte
- megabyte (MB): 2²⁰ byte
- gigabyte (GB): 2³⁰ byte
- terabyte (TB): 2^{40} byte

fa differenza byte o bit ... fa differenza 2^{10} o 10^{3}

dati:

- l'insieme degli elementi da rappresentare: i semi delle carte da gioco: ♠ ♣ ♥ ♦
- l'insieme delle configurazioni ammissibili il **codice** definisce l'associazione biunivoca

scelta del codice: binario

- $S = \{0,1\}$
- |S| = 2
- dimensione delle configurazioni: $\lceil \log_{|S|} n \rceil = \lceil \log_2 4 \rceil = 2$

dati:

- l'insieme degli elementi da rappresentare: i semi delle carte da gioco: ♠ ♣ ♥ ♦
- l'insieme delle configurazioni ammissibili: 00 01 10 11 il **codice** definisce l'associazione biunivoca

dati:

- l'insieme degli elementi da rappresentare: i giorni della settimana Lu Ma Me Gi Ve Sa Do
- l'insieme delle configurazioni ammissibili: 000 001 010 011 111 110 101
- il **codice** definisce l'associazione biunivoca

scelta della codifica

- aspetti da considerare:
 - insieme degli elementi da rappresentare
 - adozione di una codifica che semplifichi le operazioni che si svolgono più di frequente
 - adozione di una codifica che "conservi" ove utile le proprietà dell'insieme degli elementi da rappresentare (ad esempio il fatto che elementi adiacenti abbiano codifiche adiacenti ...)

significato

- aver scelto un alfabeto per rappresentare le informazioni non è sufficiente
- è necessario scegliere anche un codice
- se conosciamo l'alfabeto utilizzato (ad esempio quello binario, S = {0, 1}) non siamo ancora in grado di comprendere quale sia l'informazione rappresentata

10010101: non possiamo dire che informazione rappresenti, ciò dipende dalla codifica adottata

informazione da rappresentare

informazione dati e istruzioni

numerica

non numerica

24 6 11 naturali -24₊₁+315 interi relativi +2.409 -14.25 razionali

casa n0-0ne! testi

numerica non m

informazione da rappresentare

informazione dati e istruzioni

numerica

non numerica

24 naturali

-24₊₁+315 interi relativi

+2.409 -14.25razionali

casa n0-0ne! testi

suoni

informazione da rappresentare

informazione dati e istruzioni

numerica

non numerica

24 6 11 naturali -24₊₁+315 interi relativi +2.409 -14.25 razionali

casa n0-0ne! testi

testi suoni 10100 101010 100100010 informazione dati e istruzio numerica non n

1010100101<mark>0100101010100</mark>100010010 10<mark>1010100 101010 10010001010</mark>1010100010100