element which separately acts on $\{1, \ldots, p\}$ and $\{p+2, \ldots, n\}$ as required, we have that w'u=w.

As an example, suppose that p=q=3, and let u be the signed permutation $\overline{3}1625\overline{4}$. To unscramble the $\overline{3}12$, we must multiply on the left by $1\mapsto 2$, $2\mapsto 3$, $3\mapsto \overline{1}$, and to unscramble the 65 we must multiply on the left by $5\mapsto 6$, $6\mapsto 5$. Thus we multiply u on the left by $w'=23\overline{14}65$ to get w'u=w=125364.

Note that a permutation w having the properties above is completely determined by the positions (in the one-line notation) of $1, \ldots, p$ among the first n-1 spots, which can be chosen freely. Thus there are $\binom{n-1}{p}$ such w, and hence $\binom{n-1}{p}$ closed \widetilde{K} -orbits, as claimed. \square

Definition 5.3.2. Let $Q \in \widetilde{K} \setminus X$ be a closed orbit. Call the flag $wB \in Q$, where w has the properties listed in the proof of Proposition 5.3.1, the **standard representative** of Q.

For $w \in W$ such that wB is the standard representative of some closed orbit Q, define

$$I_w := \{i \in \{1, \dots, n-1\} \mid w(i) > p+1\}.$$

For each $i \in I_w$, define

$$C(i) := \#\{j \mid i < j \le n - 1, w(j) \le p\}.$$

Finally, define

$$f(w) := \sum_{i \in I_w} C(i).$$

Then we have the following formula for the S-equivariant class of the closed orbit Q:

Proposition 5.3.3. Let $Q = \widetilde{K} \cdot wB$ be any closed orbit, with wB the standard representative.