3 Axis Robot following a Laserpointer by using Stereovision and Templatematching

Johannes Wüstner, Nicolai Schwartze

February 6, 2020

jwu, nsc jeff_junior February 6, 2020 1/21

- Introduction
- 2 Design
- Calculation
- Camera Calibration
- 6 Laser Point Detection
- 6 Conclusion, Further Work

jwu, nsc jeff_junior February 6, 2020 2 / 21

Project Description

- construct a 3-axis robot with camera/laser tool
- calculate the backwards kinematic
- program robot functions in C-DLL
- calibrate 3D camera system
 - camera projection matrix
 - hand-eye calibration
- detect laser point on white flip-chart
- computer vision using OpenCV and Python
- drive with red robot laser to green user laser

jwu, nsc jeff_junior February 6, 2020 3 / 21

- Introduction
- 2 Design
- Calculation
- Camera Calibration
- Laser Point Detection
- 6 Conclusion, Further Work

jwu, nsc jeff_junior February 6, 2020 4 / 21

Task

- design a 3-axis robot in SolidWorks
- assemble the parts
- using Dynamixel MX-64AT motors
- attach camera/laser tool

jwu, nsc jeff_junior February 6, 2020 5/21

Result

wu, nsc jeff_junior February 6, 2020 6 / 21

- Introduction
- 2 Design
- Calculation
- Camera Calibration
- Laser Point Detection
- 6 Conclusion, Further Work

 jwu, nsc
 jeff_junior
 February 6, 2020
 7 / 21

Task

- generate robot-backwards kinematic
- develop equation for setting angle of motor
- establish transformation matrix for hand-eye coordination

jwu, nsc jeff_junior February 6, 2020 8/21

Problem

- backwards kinematic
 - \bullet establish DH parameter \to transformation matrix TCP to robot base
- setting motor angle
 - ullet only need two DOF o overdetermined
- hand-eye coordination
 - estimate the right distance camera to TCP

jwu, nsc jeff_junior February 6, 2020 9 / 21

Solution I

i	α_{i-1}	a_{i-1}	d_i	$ heta_i$
1	0	0	100	$ heta_0$
2	-90	50	0	$\theta_1 - 90$
3	0	100	0	$\theta_2 + 180$
F	90	0	68	0

jeff_junior

Solution II

$$\theta_0 = \arctan(\frac{Y_0}{X_0}) \tag{1}$$

$$\theta_1 = 0.0 \tag{2}$$

$$\theta_2 = -1 \cdot \arctan\left(\frac{Z_0 - 100 - 100cos(\theta_1)}{\sqrt{X_0^2 + Y_0^2} - 50 - 100sin(\theta_1)}\right) \tag{3}$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

- Introduction
- 2 Design
- Calculation
- Camera Calibration
- 5 Laser Point Detection
- 6 Conclusion, Further Work

jwu, nsc jeff_junior February 6, 2020 12 / 21

Task

- calculate camera matrix for both single cameras
- estimate translation and rotation between cameras

jwu, nsc jeff_junior February 6, 2020 13 / 21

Problem

- unstable against repetition
- chessboard must not have the same hight and width
- three quality control measures:
 - plausibility: translation vector between cameras
 - measure actual 3D points
 - comparison with matlab

Solution

- Introduction
- Design
- Calculation
- 4 Camera Calibration
- 6 Laser Point Detection
- 6 Conclusion, Further Work

jwu, nsc jeff_junior February 6, 2020 16 / 21

Task

- detect green laser point
- detect red laser point (not used; would be helpful for controller)

jwu, nsc jeff_junior February 6, 2020 17 / 21

Problem

- first idea: use threshold for colour of laser
- detect contour
- calculate centre of mass
- problem: unstable against other lighting conditions
- red laser point too small
- use laser with adjustable focal length

jwu, nsc jeff_junior February 6, 2020 18 / 21

Solution

- use template matching
- created template calibration app before every run
- more stable against lighting conditions
- but can only work on specified background (like a flip-chart)

using the CV_TM_CCOEFF_NORMED

$$R(x,y) = \frac{\sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))}{\sqrt{\sum_{x',y'} T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2}}$$
(4)

also works for coloured images, this equation is applied for every channel

- ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

jwu, nsc jeff.junior February 6, 2020 19 / 21

- Introduction
- 2 Design
- Calculation
- Camera Calibration
- Laser Point Detection
- 6 Conclusion, Further Work

jwu, nsc jeff.junior February 6, 2020 20 / 21

Summary, Further Work

- works (sort of) but slow convergence
- overshooting
- resting offset
- not using θ_1
- 3 USB ports needed opency does not find camera on hub
- red laser uses loads of batteries $\frac{220 mAh}{45 mA} = 4.8 h$
- implement controller
- ullet correct laser offset to align with axis $heta_2$
- use undistort before calculateing 3D point
- power supply for laser