Package 'vanquish'

October 12, 2022

Version 1.0.0
Description Imports Variant Calling Format file into R. It can detec
whether a sample contains contaminant from the same species
In the first stage of the approach, a change-point detection
method is used to identify copy number variations for filtering
Next, features are extracted from the data for a support vector

machine model. For log-likelihood calculation, the deviation parameter is estimated by maximum likelihood method. Using a radial basis function kernel support vector machine, the contamination of a sample can be detected.

contamination of a sample can be detected.

Title Variant Quality Investigation Helper

Depends R (>= 3.4.0)

Imports changepoint, e1071, ggplot2, stats, VGAM

License GPL-2 **Encoding** UTF-8

LazyData true

RoxygenNote 6.0.1

NeedsCompilation no

Author Tao Jiang [aut, cre]

Maintainer Tao Jiang <tjiang8@ncsu.edu>

Repository CRAN

Date/Publication 2018-09-05 14:50:04 UTC

R topics documented:

config_df	2
defcon	3
generate_feature	4
getAlt2	4
getAnnoRate	5
getAvgLL	5

2	config_df
---	-----------

getLowDe	oth	 	. 6						
getRatio .		 	. 6						
getSkewne	ss	 	. 7						
getSNVRa	te	 	. 7						
getVar		 	. 8						
locateFile		 	. 8						
negll		 	. 9						
readGATK		 	. 9						
	ı								
	t								
	OWL								
_	Point								
	/CF								
•	vcf								
	_model								
	ssion_model								
-									
vci_examp	le	 	. 1/						
									18

 ${\tt config_df}$

Default parameters of config.

Description

A dataframe containing default parameters.

Usage

Index

config_df

Format

A data frame with 12 variables:

threshold Threshold for allele frequency
skew Skewness for allele frequency
lower Lower bound for allele frequency region
upper Upper bound for allele frequency region
ldpthred Threshold to determine low depth
hom_mle Hom MLE of p in Beta-Binomial model
het_mle Het MLE of p in Beta-Binomial model

defcon 3

```
Hom_thred Threshold between hom and high
High_thred Threshold between high and het
Het_thred Threshold between het and low
hom_rho Hom MLE of rho in Beta-Binomial model
het_rho Het MLE of rho in Beta-Binomial model
```

Source

Created by Tao Jiang

defcon

DEtection of Frequency CONtamination

Description

Detects whether a sample is contaminated another sample of its same species. The input file should be in vcf format.

Usage

```
defcon(file, rmCNV = FALSE, cnvobj = NULL, config = NULL,
  class_model = NULL, regression_model = NULL)
```

Arguments

file	VCF input object
rmCNV	Remove CNV regions, default is FALSE
cnvobj	CNV object, default is NULL
config	config information of parameters. A default set is generated as part of the model and is included in a model object, which contains
class_model	An SVM classification model
regression_mod	el
	An SVM regression model

Value

A list containing (1) stat: a data frame with all statistics for contamination estimation; (2) result: contamination estimation (Class = 0, pure; Class = 1, contaminated)

Examples

```
data(vcf_example)
result <- defcon(file = vcf_example)</pre>
```

getAlt2

generate	fastura
generate_	_i eature

Feature Generation for Contamination Detection Model

Description

Generates features from each pair of input VCF objects for training contamination detection model.

Usage

```
generate_feature(file, hom_p = 0.999, het_p = 0.5, hom_rho = 0.005, het_rho = 0.1, mixture, homcut = 0.99, highcut = 0.7, hetcut = 0.3)
```

Arguments

file	VCF input object
hom_p	The initial value for p in Homozygous Beta-Binomial model, default is 0.999
het_p	The initial value for p in Heterozygous Beta-Binomial model, default is 0.5
hom_rho	The initial value for rho in Homozygous Beta-Binomial model, default is 0.005
het_rho	The initial value for rho in Heterozygous Beta-Binomial model, default is 0.1
mixture	A vector of whether the sample is contaminated: 0 for pure; 1 for contaminated
homcut	Cutoff allele frequency value between hom and high, default is 0.99
highcut	Cutoff allele frequency value between high and het, default is 0.7
hetcut	Cutoff allele frequency value between het and low, default is 0.3

Value

A data frame with all features for training model of contamination detection

getAlt2

Second alternative allele percentage

Description

Second alternative allele percentage

Usage

```
getAlt2(f)
```

Arguments

f Input raw file

Value

Percent of the second alternative allele

getAnnoRate 5

|--|--|--|

Description

Annotation rate

Usage

getAnnoRate(f)

Arguments

f Input raw file

Value

Percentage of annotation locus

getAvgLL	Calculate average log-likelihood

Description

Calculate average log-likelihood

Usage

```
getAvgLL(df, hom_mle, het_mle, hom_rho, het_rho)
```

Arguments

df	Input modified file
hom_mle	Hom MLE of p in Beta-Binomial model, default is 0.9981416 from NA12878_1_L5
het_mle	Het MLE of p in Beta-Binomial model, default is 0.4737897 from NA12878_1_L5
hom_rho	Hom MLE of rho in Beta-Binomial model, default is 0.04570275 from NA12878_1_L5
het_rho	Het MLE of rho in Beta-Binomial model, default is 0.02224098 from NA12878_1_L5

Value

meanLL

6 getRatio

get	LowDepth

Low depth percentage

Description

Low depth percentage

Usage

```
getLowDepth(f, ldpthred)
```

Arguments

f Input raw file

1dpthred Threshold to determine low depth, default is 20

Value

Percentage of low depth

getRatio

Get the ratio of allele frequencies with a region

Description

Get the ratio of allele frequencies with a region

Usage

```
getRatio(subdf, lower, upper)
```

Arguments

subdf Dataframe with calculated statistics

lower Lower bound for allele frequency region

upper Upper bound for allele frequency region

Value

Ratio of allele frequencies with a region

getSkewness 7

getSkewness

Get absolute value of skewness

Description

Get absolute value of skewness

Usage

getSkewness(subdf)

Arguments

 ${\sf subdf}$

Input dataframe

Value

Absolute value of skewness

 ${\tt getSNVRate}$

SNV percentage

Description

SNV percentage

Usage

getSNVRate(df)

Arguments

df

Input raw file

Value

Percentage of SNV

8 locateFile

getVar

Calculate zygosity variable

Description

Calculate zygosity variable

Usage

```
getVar(df, state, hom_mle, het_mle)
```

Arguments

df Input modified file state Zygosity state hom_mle MLE in hom model

het_mle MLE in het model

Value

Zygosity variable

locateFile

Check input filename

Description

Check input filename

Usage

```
locateFile(fn, extension)
```

Arguments

fn Exact full file name of input file, including directory

extension Expected input file extension: vcf & txt

Value

Valid directory

negll 9

negll Negative Log Likelihood	
-------------------------------	--

Description

Calculates negative log likelihood for beta binomial distribution.

Usage

```
negll(x, size, prob, rho)
```

Arguments

x	Depth of alternative allele	
size	Total depth	
prob	Theoretical probability for heterozygous is 0.5, for homozygous is 0.999	
rho	Rho parameter of Beta-Binomial distribution of alternative allele	
readGATK	Read in input vcf data in GATK format for Contamination detection	

Description

Read in input vcf data in GATK format for Contamination detection

Usage

```
readGATK(dr, dbOnly, depCut, thred, content, extnum, keepall)
```

Arguments

dr	A valid input object
dbOnly	Use dbSNP as filter, default is FALSE, passed from read_vcf
depCut	Use a threshold for min depth, default is False
thred	Threshold for min depth, default is 20
content	Column names in VCF files
extnum	The column number or numbers to be extracted from vcf, default is 10; 0 for not extracting any columns
keepall	Keep unextracted column in output, default is TRUE, passed from read_vcf

Value

Dataframe from VCF file

10 readVarDict

readStrelka	Read in input vcf data in strelka2 format for Contamination detection

Description

Read in input vcf data in strelka2 format for Contamination detection

Usage

```
readStrelka(dr, dbOnly, depCut, thred, content, extnum, keepall)
```

Arguments

dr	A valid input object
dbOnly	Use dbSNP as filter, default is FALSE, passed from read_vcf
depCut	Use a threshold for min depth , default is False
thred	Threshold for min depth, default is 20
content	Column names in VCF files
extnum	The column number or numbers to be extracted from vcf, default is $10;0$ for not extracting any columns
keepall	Keep unextracted column in output, default is TRUE, passed from read_vcf

Value

Dataframe from VCF file

readVarDict	Read in input vcf data in VarDict format for Contamination detection

Description

Read in input vcf data in VarDict format for Contamination detection

Usage

```
readVarDict(dr, dbOnly, depCut, thred, content, extnum, keepall)
```

readVarPROWL 11

Arguments

dr A valid input object

dbOnly Use dbSNP as filter, default is FALSE, passed from read_vcf

depCut Use a threshold for min depth, default is False

thred Threshold for min depth, default is 20

content Column names in VCF files

extnum The column number to be extracted from vcf, default is 10; 0 for not extracting

any column

keepall Keep unextracted column in output, default is TRUE, passed from read_vcf

Value

Dataframe from VCF file

readVarPROWL Read in input vcf data in VarPROWL format

Description

Read in input vcf data in VarPROWL format

Usage

readVarPROWL(dr, dbOnly, depCut, thred, content, extnum, keepall)

Arguments

dr A valid input object

dbOnly Use dbSNP as filter, default is FALSE, passed from read_vcf

depCut Use a threshold for min depth, default is False

thred Threshold for min depth, default is 20

content Column names in VCF files

extrum The column number or numbers to be extracted from vcf, default is 10; 0 for not

extracting any columns

keepall Keep unextracted column in output, default is TRUE, passed from read_vcf

Value

vcf Dataframe from VCF file

12 read_vcf

read_vcf	VCF Data Input		
----------	----------------	--	--

Description

Reads a file in vcf or vcf.gz file and creates a list containing Content, Meta, VCF and file_sample_name

Usage

```
read_vcf(fn, vcffor, dbOnly = FALSE, depCut = FALSE, thred = 20,
  metaline = 200, extnum = 10, keepall = TRUE, filter = FALSE)
```

Arguments

fn	Input vcf file name
vcffor	Input vcf data format: 1) GATK; 2) VarPROWL; 3) VarDict; 4) strelka2
db0nly	Use dbSNP as filter, default is FALSE
depCut	Use a threshold for min depth, default is False
thred	Threshold for min depth, default is 20
metaline	Number of head lines to read in (better to be large enough), the lines will be checked if they contain meta information, default is 200
extnum	The column number to be extracted from vcf, default is 10; 0 for not extracting any column; extnum should be between 10 and total column number
keepall	Keep unextracted column in output, default is TRUE
filter	Whether to select "PASS" variants for analyses if they contain unfiltered variants, default is FALSE

Value

A list containing (1) Content: a vector showing what is contained; (2) Meta: a data frame containing meta-information of the file; (3) VCF: a data frame, the main part of VCF file; (4) file_sample_name: the file name and sample name, in case when multiple samples exist in one file, file and sample names might be different

Examples

```
file.name <- system.file("extdata", "example.vcf.gz", package = "vanquish")
example <- read_vcf(fn=file.name, vcffor="VarPROWL")</pre>
```

rho_est 13

rho_est

Estimate Rho for Alternative Allele Frequency

Description

Estimates Rho parameter in beta binomial distribution for alternative allele frequency

Usage

```
rho_est(vl)
```

Arguments

v1

A list of vcf objects from read_vcf function.

Value

A list containing (1) het_rho: Rho parameter of heterozygous location; (2) hom_rho: Rho parameter homozygous location;

Examples

```
data("vcf_example")
vcf_list <- list()
vcf_list[[1]] <- vcf_example$VCF
res <- rho_est(vl = vcf_list)
res$het_rho[[1]]$par
res$hom_rho[[1]]$par</pre>
```

rmChangePoint

Remove CNV regions within VCF files by change point method

Description

Remove CNV regions within VCF files by change point method

Usage

```
rmChangePoint(vcf, threshold, skew, lower, upper)
```

Arguments

Input VCF files

threshold Threshold for allele frequency skew Skewness for allele frequency

lower Lower bound for allele frequency region upper Upper bound for allele frequency region

14 summary_vcf

Value

VCF object without change point region

rmCNVinVCF

Remove CNV regions within VCF files given cnv file

Description

Remove CNV regions within VCF files given cnv file

Usage

```
rmCNVinVCF(vcf, cnvobj)
```

Arguments

vcf Input VCF files cnvobj cnv object

Value

VCF object without change point region

summary_vcf

VCF Data Summary

Description

Summarizes allele frequency information in scatter and density plots

Usage

```
summary_vcf(vcf, ZG = NULL, CHR = NULL)
```

Arguments

vcf VCF object from read_vcf function

ZG zygosity: (1) null, for both het and hom, default; (2) het; (3) hom

CHR chromosome number: (1) null, all chromosome, default; (2) any specific number

Value

A list containing (1) scatter: allele frequency scatter plot; (2) density: allele frequency density plot

svm_class_model 15

Examples

```
data("vcf_example")
tmp <- summary_vcf(vcf = vcf_example, ZG = 'het', CHR = c(1,2))</pre>
plot(tmp$scatter)
plot(tmp$density)
```

svm_class_model

Default svm classification model.

Description

An svm object containing default svm classification model.

Usage

```
svm_class_model
```

Format

An svm object:

Source

Created by Tao Jiang

svm_regression_model Default svm regression model.

Description

An svm object containing default svm regression model.

Usage

```
svm\_regression\_model
```

Format

An svm object:

Source

Created by Tao Jiang

16 update_vcf

+	rain	\sim \pm
L	гатп	·ι

Train Contamination Detection Model

Description

Trains two SVM models (classification and regression) to detects whether a sample is contaminated another sample of its same species.

Usage

```
train_ct(feature)
```

Arguments

feature

Feature list objects from generate_feature()

Value

A list contains two trained svm models: regression & classification

update_vcf

Remove CNV regions within VCF files

Description

Remove CNV regions within VCF files

Usage

```
update_vcf(rmCNV = FALSE, vcf, cnvobj = NULL, threshold = 0.1,
    skew = 0.5, lower = 0.45, upper = 0.55)
```

Arguments

rmCNV Remove CNV regions, default is FALSE

vcf Input VCF files

cnvobj cnv object, default is NULL

threshold Threshold for allele frequency, default is 0.1 skew Skewness for allele frequency, default is 0.5

Lower bound for allele frequency region, default is 0.45 upper

Upper bound for allele frequency region, default is 0.55

Value

VCF file without CNV region

vcf_example 17

vcf_example

VCF example file.

Description

An example containing a list of 4 data frames.

Usage

vcf_example

Format

A list of 4 data frames:

Source

Created by Tao Jiang

Index

```
* datasets
    config_df, 2
    {\tt svm\_class\_model}, {\color{red}15}
    svm_regression_model, 15
    vcf_example, 17
config_df, 2
defcon, 3
generate_feature, 4
getAlt2,4
getAnnoRate, 5
getAvgLL, 5
getLowDepth, 6
getRatio, 6
{\tt getSkewness}, {\tt 7}
getSNVRate, 7
getVar, 8
locateFile, 8
negll, 9
read_vcf, 12
readGATK, 9
readStrelka, 10
readVarDict, 10
readVarPROWL, 11
rho_est, 13
rmChangePoint, 13
rmCNVinVCF, 14
summary_vcf, 14
svm_class_model, 15
svm_regression_model, 15
train_ct, 16
update_vcf, 16
vcf_example, 17
```