Rubin, Jean E. (1967). Set Theory for the Mathematician. San Francisco: Holden-Day. $\verb|https://github.com/kmi-ne/Math-MyNotes||$

Chapter 1

Class algebra

1.1 Class

Definition 1.1 — x is a set/proper class

 $\mathsf{M}(x) : \leftrightarrow \exists u \ (x \in u)$ 2. $Pr(x) : \leftarrow \neg M(x)$

> - label: dfn_M dfn_Pr

Axiom 1.2 — Axiom of Extensionality

$$\forall u\ (u \in x \leftrightarrow u \in y) \to x = y$$

label: axm_ext

Definition 1.3 — x is a subclass/proper subclass of y

 $x \subseteq y : \leftrightarrow \forall u \ (u \in x \to u \in y)$

2. $x \subset y : \leftrightarrow x \subseteq y \neq x$

> — label: dfn_sbc dfn_psbc

Proposition 1.4

1.

2. $x \subseteq y \subseteq z \to x \subseteq z$

 $x \subseteq y \subseteq x \rightarrow x = y$

label: thm_sbc_tr

Proof:

- 1. By $\forall u \ (u \in x \to u \in x)$ and Definition 1.3.1.
- 2. Assume (A1) $x \subseteq y \subseteq z$.

By Definition 1.3.1 and (A1), $\forall u \ (u \in x \to u \in y)$ and $\forall u \ (u \in y \to u \in z)$. Thus, $\forall u \ (u \in x \to u \in z)$.

Thus, by Definition 1.3.1, $x \subseteq z$. Release (A1)

3. Assume (A1) $x \subseteq y \subseteq x$. By Definition 1.3.1 and (A1), $\forall u \ (u \in x \to u \in y)$ and $\forall u \ (u \in y \to u \in x)$. Thus, $\forall u \ (u \in x \leftrightarrow u \in y)$. Thus, by Axiom of Extensionality, x = y. Release (A1)

Proposition 1.5

1. $x \subset y \leftrightarrow \begin{cases} x \subseteq y \\ \exists u \ (u \in y \land u \notin x) \end{cases}$ 2. 3. $x \subset y \subseteq z \to x \subset z$ $x \subset y \subset z \to x \subset z$ 4. 5. $x\subset y\subset z\to x\subset z$ 6. $x \subseteq y \leftrightarrow (x \subset y \lor x = y)$ label: thm_psbc_nin

Proof:

- 1. By x = x and Definition 1.3.2.
- 2. (\leftarrow) Assume (A1) $x \subseteq y$ and (A2) $\exists u \ (u \in y \land u \notin x)$.

By (A2), $x \neq y$. Thus, by (A1) and Definition 1.3.2, $x \subset y$. Release (A1, A2)

 (\rightarrow) Assume (A1) $x \subset y$.

By (A1) and Definition 1.3.2, $x \subseteq y$ and $x \neq y$.

Thus, by Proposition 1.4.2, $\neg(y \subseteq x)$. Thus, by Definition 1.3.1, $\exists u \ (u \in y \land u \notin x)$. Release (A1)

- 3. Assume (A1) $x \subset y \subseteq z$.
 - (1) By (A1) and Definition 1.3.2, $x \subseteq y \subseteq z$. Thus, by Proposition 1.4.2, $x \subseteq z$.
 - (2) By (A1) and Proposition 1.5.2, $\exists u \ (u \in y \land u \notin x)$. Take such u.

By (A1) and Definition 1.3.1, $u \in y \to u \in z$. Thus, $u \in z \land u \notin x$. Thus, $\exists u \ (u \in z \land u \notin x)$.

Thus, by Proposition 1.5.2, $x \subset z$. Release (A1)

- 4. Assume (A1) $x \subseteq y \subset z$.
 - (1) By (A1) and Definition 1.3.2, $x \subseteq y \subseteq z$. Thus, by Proposition 1.4.2, $x \subseteq z$.
 - (2) By (A1) and Proposition 1.5.2, $\exists u \ (u \in z \land u \notin y)$. Take such u.

By (A1) and Definition 1.3.1, $u \in x \to u \in y$. Thus, $u \in z \land u \notin x$. Thus, $\exists u \ (u \in z \land u \notin x)$.

Thus, by Proposition 1.5.2, $x \subset z$. Release (A1)

5. By Definition 1.3.2, $x \subset y \subset z \to x \subseteq y \subset z$. Thus, by Proposition 1.5.3, $x \subset z$.

Axiom 1.6 — Axiom of Comprehension

 $(x \text{ is not free in NBG-formula } \phi)$

 $\exists x \ \forall u \ (u \in x \leftrightarrow \phi \land \mathsf{M}(u))$

label: axm_comp

Theorem 1.7

 $(x \text{ is not free in NBG-formula } \phi)$

 $\exists ! x \ \forall u \ (u \in x \leftrightarrow \phi \land \mathsf{M}(u))$

Proof:

Existence By Axiom of Comprehension.

Uniqueness Assume (A1) $\forall u \ (u \in x_1 \leftrightarrow \phi \land M(u)) \text{ and } \forall u \ (u \in x_2 \leftrightarrow \phi \land M(u)).$

By (A1), $\forall u \ (u \in x_1 \leftrightarrow u \in x_2)$. Thus, by Axiom of Extensionality, $x_1 = x_2$. Release (A1)

本来はここに $\{u \mid \phi\}$ の定義と定理が入るが省略.

Definition 1.8

3.

 $\varnothing := \{u \mid u \neq u\}$

2.

 $\mathbf{U} \coloneqq \{u \mid u = u\}$ $\mathbf{Ru} := \{u \mid u \notin u\}$

> - label: dfn_emp dfn_univ dfn_russ

$$u \in \varnothing \leftrightarrow u \neq u \land \mathsf{M}(u)$$

$$u \in \mathbf{U} \leftrightarrow u = u \wedge \mathsf{M}(u)$$

 $u \in \mathbf{Ru} \leftrightarrow u \notin u \wedge \mathsf{M}(u)$

Proposition 1.9

- 1. $u \notin \emptyset$
- 2. $M(u) \rightarrow u \in \mathbf{U}$
- $\varnothing \subseteq x$ 3. 4.
 - $x \subseteq \mathbf{U}$
- 5. $Pr(\mathbf{Ru})$

label: thm_emp_nin

Proof:

- 1. By $u \in \emptyset \leftrightarrow u \neq u \land \mathsf{M}(u)$.
- 2. By $u \in \mathbf{U} \leftrightarrow u = u \wedge \mathsf{M}(u)$.
- 3. By Proposition 1.9.1, $\forall u \ (u \in \emptyset \to u \in x)$. Thus, by Definition 1.3.1, $\emptyset \subseteq x$.
- 4. By Definition 1.1.1, $u \in x \to \mathsf{M}(u)$. Thus, by Proposition 1.9.2, $u \in x \to u \in \mathbf{U}$. Thus, $\forall u \ (u \in x \to u \in \mathbf{U})$. Thus, by Definition 1.3.1, $x \subseteq \mathbf{U}$.
- 5. By $\mathbf{Ru} \in \mathbf{Ru} \leftrightarrow \mathbf{Ru} \notin \mathbf{Ru} \wedge \mathsf{M}(\mathbf{Ru})$, $\mathbf{Ru} \notin \mathbf{Ru} \leftrightarrow \neg (\mathbf{Ru} \notin \mathbf{Ru} \wedge \mathsf{M}(\mathbf{Ru}))$. Thus, $\neg \mathsf{M}(\mathbf{Ru})$. Thus, by Definition 1.1.2, $\mathsf{Pr}(\mathbf{Ru})$.