CSCE 4013 Applied Cryptography – Spring 2016

Lab 1: Secure Two-Party Communications

Due: 11:59 PM, March 31, 2016

NOTE: Up to two students can form a team to work on this lab.

1. Introduction

In this assignment, you will implement secure communications between two parties, Alice and Bob. This assignment is designed to practice key exchange, encryption/decryption, and integrity protection with secret key cryptography and public key cryptography.

2. Task Description

<u>Communication scenario</u>: Alice (as a Client) needs to send a message of 2000 bytes to Bob (as a Server), where each byte is 'a'; Bob needs to return a message of 1000 bytes back to Alice, where each byte is 'b'. Either TCP or UDP is fine for the transport protocol. Both messages must be encrypted and integrity-protected.

Step 1: Set up shared secret keys for encryption: For the communication from Alice to Bob, they agree on a shared secret key using RSA-based encryption. You can assume that they know each other's public key in advance. For the communication from Bob to Alice, they agree on a shared secret key using the Diffie-Hellman protocol. You can assume that Bob selects the public parameters of Diffie-Hellman protocol, and send them to Alice.

<u>Step 2: Set up shared secret key for integrity protection</u>: Generate two shared secret keys (one for each communication direction) using the same method as in the previous step.

<u>Step 3: Send secure messages</u>: Alice sends the 2000-byte message to Bob. This message is protected with an RSA digital signature signed over the hash (SHA-256) of the message, and encrypted using AES. Bob verifies the integrity and decrypts the message. Bob then returns the 1000-byte message to Bob. This message is protected with HMAC where the underlying hash algorithm is SHA-256, and encrypted using AES. Alice verifies the integrity and decrypts the message.

Programming language: C, C++, Java, or Python. Other languages need the instructor's approval.

You should follow the best practices of using the above cryptography algorithms. That is, use the algorithms in the correct ways.

4. Submission Instructions

Email your submission as a .zip file to the instructor AND the grader. The submission should include your well-commented source code and a report. The report should cover:

- A description of the structure of your program.
- A description of which part works and which part doesn't.

The email subject should include your name(s) and the assignment number like "Lab1_FirstnameLastname" or "Lab1_FirstnameLastname_FirstnameLastname" if you are a team. Your email attachment should also be named in the same way.