Угадай точку

- **1.** В прямоугольном треугольнике ABC с прямым углом C проведена высота CH. Пусть I, I_1 и I_2 центры вписанных окружностей треугольников ABC, ACH и BCH соответственно. Докажите, что $CI \perp I_1I_2$.
- **2.** Внутри параллелограмма ABCD выбрана точка E так, что AE = DE и $\angle ABE = 90^{\circ}$. Точка M середина отрезка BC. Найдите угол DME.
- **3.** Из центров вневписанных окружностей треугольника провели прямые, перпендикулярные соответствующим сторонам. Докажите, что эти прямые пересекаются в одной точке.
- 4. В прямоугольном треугольнике с прямым углом C проведены триссектрисы AA_1 , AA_2 , BB_1 , BB_2 , причем точки A_2 и B_2 лежат на отрезках CA_1 и CB_1 соответственно. Пусть P точка пересечения AA_2 и BB_2 , Q точка пересечения AA_1 и BB_1 . Докажите, что P центр описанной окружности треугольника QA_2B_2 .
- 5. В прямоугольнике ABCD точка M середина стороны CD. Через точку C проведён перпендикуляр к прямой BM, а через точку M перпендикуляр к диагонали BD. Докажите, что два проведённых перпендикуляра пересекаются на прямой AD.
- 6. Остроугольный треугольник ABC вписан в окружность ω с центром O. Касательная к ω в вершине B пересекает прямую, проходящую через O параллельно AB, в точке X. Касательная к ω в вершине C пересекает, прямую, проходящую через O параллельно AC, в точке Y. Докажите, что прямая XY касается ω .
- 7. Внутри выпуклого четырёхугольника ABCD нашлась точка P такая, что выполняются равенства

$$\angle PAD : \angle PBA : \angle DPA = 1 : 2 : 3 = \angle CBP : \angle BAP : \angle BPC.$$

Докажите, что внутренние биссектрисы углов $\angle ADP$ и $\angle PCB$ пересекаются на серединном перпендикуляре к отрезку AB.

- 8. Точка P лежит внутри равнобедренного треугольника ABC (AB = BC), причём $\angle ABC = 80^{\circ}$, $\angle PAC = 40^{\circ}$, $\angle ACP = 30^{\circ}$. Найдите угол BPC.
- 9. Дан неравнобедренный треугольник ABC. Выберем произвольную окружность ω , касающуюся окружности (ABC) внутренним образом в точке A и не пересекающую прямую BC. Отметим на ω точки P и Q так, чтобы прямые BP и CQ касались ω , а отрезки BP и CQ пересекались внутри треугольника ABC. Докажите, что все полученные таким образом прямые PQ проходят через фиксированную точку, не зависящую от выбора окружности ω .