

Description

The HSM0204 is the high cell density trenched N-ch MOSFETs, which provides excellent RDSON and efficiency for most of the small power switching and load switch applications.

The HSM0204 meets the RoHS and Green Product requirement with full function reliability approved.

- Super Low Gate Charge
- Green Device Available
- Excellent Cdv/dt effect decline
- Advanced high cell density Trench technology

Product Summary

V _{DS}	100	V
R _{DS(ON),max}	112	mΩ
I _D	2.5	Α

SOP8 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter Rating		Units
V _{DS}	Drain-Source Voltage	100	V
V _{GS}	Gate-Source Voltage	±20	V
I _D @T _A =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	2.5	А
I _D @T _A =70°C	Continuous Drain Current, V _{GS} @ 10V ¹	2	А
I _{DM}	Pulsed Drain Current ²	10	А
EAS	Single Pulse Avalanche Energy ³	6.1	mJ
I _{AS}	Avalanche Current	11	А
P _D @T _A =25°C	Total Power Dissipation ³ 1.5		W
T _{STG}	Storage Temperature Range -55 to 150		°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter Typ. Max.		Unit	
$R_{\theta JA}$	Thermal Resistance Junction-ambient ¹		85	°C/W
R _{0JC}	Thermal Resistance Junction-Case ¹		36	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	100			V
△BV _{DSS} /△T _J	BVDSS Temperature Coefficient	Reference to 25°C , I _D =1mA		0.098		V/°C
В	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =2A		90	112	mΩ
R _{DS(ON)}		V _{GS} =4.5V , I _D =1A		95	120	mΩ
$V_{GS(th)}$	Gate Threshold Voltage)/ -\/ -250A	1.0	1.5	2.5	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_D=250uA$		-4.57		mV/°C
	Duain Course Leakage Current	V _{DS} =80V , V _{GS} =0V , T _J =25°C			10	uA
I _{DSS}	Drain-Source Leakage Current	V _{DS} =80V , V _{GS} =0V , T _J =55°C			100	
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =2A		12		S
R_g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2	4	Ω
Q_g	Total Gate Charge (10V)			19.5		
Q _{gs}	Gate-Source Charge	V _{DS} =60V , V _{GS} =10V , I _D =2A		3.2		nC
Q_gd	Gate-Drain Charge			3.6		
$T_{d(on)}$	Turn-On Delay Time			16.2		
T _r	Rise Time	V_{DD} =50V , V_{GS} =10V , R_{G} =3.3 Ω		3		
$T_{d(off)}$	Turn-Off Delay Time	I _D =1A		44		ns
T _f	Fall Time			2.6		
C _{iss}	Input Capacitance			1535		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		60		pF
C _{rss}	Reverse Transfer Capacitance			37.4		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _S	Continuous Source Current ^{1,5}	V =V =0V Force Current			4	Α
I _{SM}	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			8	Α
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1.2	V

Note:

^{1.}The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

^{2.}The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

^{3.} The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS} =11A

^{4.}The power dissipation is limited by 175°C junction temperature

^{5.} The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Forward Characteristics Of Reverse

Fig.5 Normalized $V_{\text{GS(th)}}$ vs. T_{J}

Fig.2 On-Resistance vs. Gate-Source

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized R_{DSON} vs. T_J

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Switching

Ordering Information

Part Number	Package code	Packaging
HSM0204	SOP-8	2500/Tape&Reel

Symbol	Dimensions In	n Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.007	0.010
D	4.800	5.000	0.189	0.197
е	1.270 (BSC)		0.050 (BSC)	
E	5.800	6.200	0.228	0.244
E1	3.800	4.000	0.150	0.157
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°