ЛАБОРАТОРНА РОБОТА №4

Тема: Цифрові мікросхеми комбінаційного типу.

Мета: Вивчити призначення, конструктивне виконання та характеристики інтегральних цифрових мікросхем комбінаційного типу. Набути навички роботи з логічними елементи та цифровими мікросхемами комбінаційного типу. Набути навички аналізу та синтезу схем з цифровими мікросхемами.

Виконав студент групи КН-22

Стовба П.В.

Варіант даних:

Варіант	Рівняння
3	Y = X1 * X2 + X3 * X4

Призначення цифрових мікросхем комбінаційного типу:

Комбінаційні мікросхеми виконують складніші функції, ніж прості логічні елементи. Їх входи з'єднані у функціональні групи і не є повністю взаємозамінними. Наприклад, будь-які два входи логічного елемента І-НІ абсолютно спокійно можна поміняти місцями, від цього вихідний сигнал ніяк не зміниться, а для комбінаційних мікросхем це неможливо, оскільки у кожного входу своя особлива функція.

Об'єднує комбінаційні мікросхеми з логічними елементами те, що і ті і інші не мають внутрішньої пам'яті. Тобто рівні їх вихідних сигналів завжди однозначно визначаються поточними рівнями вхідних сигналів і ніяк не пов'язані з попередніми значеннями вхідних сигналів. Будь-яка зміна вхідних сигналів обов'язково змінює стан вихідних сигналів. Саме тому логічні елементи іноді також називають комбінаційними мікросхемами на відміну від послідовних мікросхем, які мають внутрішню пам'ять і управляються не рівнями вхідних сигналів, а їх послідовностями.

Таблиця істиності:

X_1	X_2	X_3	X_4	$X_1 \wedge X_2$	$X_3 \wedge X_4$	$X_1 \land X_2 \lor X_3 \land X_4$
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	0	1	1	0	1	1
0	1	0	0	0	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	1	1	0	1	1
1	0	0	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	0	0	0
1	0	1	1	0	1	1
1	1	0	0	1	0	1
1	1	0	1	1	0	1
1	1	1	0	1	0	1
1	1	1	1	1	1	1

Збираємо схему

І тепер перевіряємо отримані комбінації, чи вірно працює наша схема за усіма комбінаціями таблиці істиності

Отже, схема відповідає таблиці істинності, значить склали її вірно!

Висновок: в даній лабораторній роботі ми визначили, якими мікросхемами можна виразити логічні операції, і реалізували вираз цими мікросхемами в середовищі Multisim. Протестували побудовану схему завдяки таблиці істинності і перевірили відповідність вихідних даних, отриманих за побудованою схемою. Виконавши цю роботу, ми ознайомилися з цифровими мікросхемами комбінаційного типу і навчилися будувати з них схеми, що реалізують вирази, складніші за звичайні логічні операції.