STA 243 Assignment 2

Chen Zihao 915490404

1.

Let input the distance matrix into R first by pasted from the pdf.

1.1 First, we need to define the path in a vector form. label the city with numbers instead of alphabet, e.g. 1 for A, 2 for B, etc. then we can get the path which is also the candidate in this problem:

$$\theta = (i_1, ..., i_{15})$$
 where $i_j \neq i_k$ and $i_j \in \{1, 2, ..., 15\}$

the candidate space contains all the probable θ .

To solve the travel problem, we should also compute the total distance. Here is the function to calculate the total distances for each candidate path.

$$Distance(\theta) = d(i_{15}, i_1) + \sum_{j=1}^{14} d(i_j, i_{j+1})$$

where $d(i_j, i_k)$ is the distance from i_j city to the i_k city which is given in the matrix mentioned in the beginning $d(i_j, i_k) = D_{jk}$

1.2 Second, the Simulated Anealing algorithm part.

1.2.0 Initialization

initialize $\tau_1 = 400$ and other things mentioned in the question.

1.2.1 step 1: sample a candidate

From the first part, we have define what is the candidate space. To use a uniform distribution for the proposal density. Get the random number j and k uniformly without replacement and then switch i_j and i_k and I did it twice to get the neighbour which means in this step I will exchange at least 2 at most 4 variables.

- 1.2.2 step 2: calculate the distance and compare them.
 - a) if the new candidate is better than the previous best one, take the candidate as the best.

 $\Delta = Distance(\theta^*) - Distance(\theta_k) < 0$ where θ_k is the recent best solution and θ^* is the new candidate drawn by the step 1, then take θ^* as θ_{k+1}

- b) Otherwise, $\theta_{k+1} = \theta^*$ with a probability $\exp(-\frac{\Delta}{\tau_j})$, keep $\theta_{k+1} = \theta_k$ o.w.
- 1.2.3 step 3: repeat step 1 and 2 $m_j = 100$ times
- 1.2.4 step 4: update $\tau_{j+1} = \alpha(\tau_j), m_{j+1} = \beta(m_j)$ and move to stage j+1.
- 1.2.5 step 5: reheat.

run the algorithm again with the initial point as the previous result.

here is the result for different parameters:

1.
$$p = 0.999, tau = 400$$

the result path is of length:

[1] 55

the result is bad because $exp(-30/(400*0.999^{1000})) = 0.815$, the chance to accept the worse case is still high even in the final stage. The temperature is still high in the end.

2.
$$p = 0.99, tau = 400$$

[1] 18

I run it several times, it is stable around 17 to less than 20, I think it is good enough.

The best path (with distance 17) i found is (3,9,1,2,8,12,10,15,11,13,6,14,4,7,5)