AMENDMENTS TO THE CLAIMS

1.	fca	nce	·He	ൻ

2. ((currently amended)	The method of claim 1 A method for image reversal in		
semiconduc	tor processing, the me	lltod comprising:		
	forming a first impl	lant mask layer upon a semiconductor substrate,		
wherein said	d first implant mask la	yer comprises a silicon antireflective coating layer-;		
	forming a patterned	photoresist layer over said first implant mask layer;		
	removing portions	of said first implant mask layer not covered by said		
patterned photoresist layer so as to expose non-patterned portions of said substrate;				
	removing said photo	oresist layer;		
18u in	forming a second in	nplant mask layer over said non-patterned portions of		
said substrat	le, wherein said first in	oplant mask layer has an etch selectivity with respect to		
said second	i <u>mplant mask layer; an</u>	d		
	removing the remain	uing portions of said first implant mask layer to expose		
a reverse image of said substrate, comprising initially patterned portions of said substrate,				

- 3. (original) The method of claim 2, wherein said silicon antireflective coating layer is formed upon an etch stop layer initially formed upon said substrate.
- 4. (original) The method of claim 3, wherein said etch stop layer further comprises a first organic antireflective coating layer, and said second implant mask layer further comprises a second organic antireflective coating layer.
- 5. (original) The method of claim 4, wherein said second organic antireflective coating layer is applied in a spin-on fashion and thermally cross-linked.
 - 6. (original) The method of claim 5, further comprising removing a portion

of said second organic antireflective coating by chemical mechanical polishing so as to expose a top surface of silicon antireflective coating.

- 7. (original) The method of claim 2 wherein removal of said silicon antireflective coating is implemented with a fluorine plasma reactive ion etch.
- 8. (currently amended) A method for implementing image reversal for semiconductor device implantation, the method comprising:

forming a first implant mask layer upon a semiconductor substrate, wherein said first implant mask layer comprises a silicon antireflective coating layer;

forming a patterned photoresist layer over said first implant mask layer, removing portions of said first implant mask layer not covered by said patterned photoresist layer so as to expose non-patterned portions of said substrate; removing said photoresist layer;

subjecting said exposed non-patterned portions of said substrate to a first

forming a first-second implant mask implant-mask-layer over said nonpatterned portions of said substrate, wherein said first implant mask layer has an etch selectivity with respect to said second implant mask layer:

removing the remaining portions of said first implant mask layer to expose a reverse image of said substrate, comprising initially patterned portions of said substrate; and

subjecting said exposed initially patterned portions of said substrate to a second implantation.

9. (cancelled)

implantation;

10. (currently amended) The method of claim-98, wherein said silicon antireflective coating layer is formed upon an etch stop layer initially formed upon said

substrate.

- 11. (original) The method of claim 10, wherein said etch stop layer further comprises a first organic antireflective coating layer, and said second implant mask layer further comprises a second organic antireflective coating layer.
- 12. (original) The method of claim 11, wherein said second organic antireflective coating layer is applied in a spin-on fashion and thermally cross-linked.
- 13. (original) The method of claim 12, further comprising removing a portion of said second organic antireflective coating by chemical mechanical polishing so as to expose a top surface of silicon antireflective coating.
- 14. (currently amended) The method of claim 9-8 wherein removal of said silicon antireflective coating is implemented with a fluorine plasma reactive ion etch.
- 15. (withdrawn) A semiconductor device, comprising:

 a first implant region having a first conductivity type; and
 a second implant region having a second conductivity type;
 wherein said first and said second implant regions are self-aligned with respect to one another.
- 16. (withdrawn) The semiconductor device of claim 15, wherein said first implant region is formed following a lithographic patterning step and said second implant region is formed following a non-lithographic, image reversal step.