SOLUZIONI

Esercizio 1

Base di partenza: $[A_5 \ A_2 \ A_4]$, entra A_3 esce A_4 , alla successiva iterazione entra A_1 e il problema risulta illimitato.

$$\min x_1 - 2x_3$$

$$\begin{cases} x_1 - x_3 \le 2 \\ -x_1 + x_2 - x_3 = 1 \\ -2x_1 + x_3 + x_4 = 8 \\ x \ge 0 \end{cases}$$

Esercizio 2

$$\min \quad x_1 + 2x_2 \\ \begin{cases} x_1 - x_2 \ge -5 \\ x_1 + 2x_2 \le 18 \\ 2x_1 - x_2 \le 8 \\ x_2 \ge 2 \end{cases}$$

Esercizio 3

- 1. si porta il sistema in forma standard
- 2. si imposta il problema artificiale (bastano 2 variabili)
- 3. si risolve il problema artificiale.

 Base iniziale = [A₇ A₆ A₈], entra A₁ esce A₈, entra A₃ esce A₇. La sol. ottima vale 0. Una soluzione ammissibile è (5/11 0 7/11 0).

$$\min y_7 + y_8$$

$$\begin{cases} 3x_1 - x_2 + x_3 + x_4 - x_5 + y_7 = 2\\ 4x_1 + 2x_2 - 2x_3 - 4x_4 + x_6 = 7\\ 5x_1 - 2x_3 - 3x_4 + y_8 = 1\\ x \ge 0 \quad , \quad y \ge 0 \end{cases}$$

Esercizio 4

Impostando primale e duale e calcolando le cond. di comp. si dimostra che il flusso 5 uscente dalla sorgente NON è massimo, come evidenziato in figura dal taglio minimo che ha capacità uscente 6.

Esercizio 5

In figura è data una base ottima, con il flusso su ogni arco.

Primo Modulo di Ricerca Operativa - Prova in corso d'anno

SOLUZIONI

Esercizio 1

Base di partenza: $[A_4 \ A_2 \ A_3]$, entra A_1 esce A_3 , si ottiene la soluzione ottima (8 9 0 10 0).

$$\min -x_2 + x_3 + x_4 + x_5
-x_1 + x_4 - x_5 = 2
-x_1 + x_2 + x_5 = 1
x_1 + x_3 + 2x_5 = 8
x \ge 0$$

Esercizio 2

In figura è evidenziata una direzione di discesa appartenente al cono del poliedro, pertanto il problema è illimitato inferiormente.

$$\min -x_1 + x_2 \le 2$$

$$\begin{cases}
-x_1 + x_2 \le 2 \\
2x_1 + x_2 \ge 6 \\
x_1 - 2x_2 \le 0 \\
x_1 \ge -2
\end{cases}$$

Esercizio 3

- 1. si porta il sistema in forma standard
- 2. si imposta il problema artificiale (bastano 2 variabili)
- si risolve il problema artificiale.
 Base iniziale = [A₇ A₆ A₈]. La sol. ottima ha valore diverso da 0. Il sistema iniziale è incompatibile.

$$\min y_7 + y_8$$

$$\begin{cases}
-x_1 + x_2 - 3x_3 + x_4 - x_5 + y_7 = 6 \\
x_2 + x_3 + 2x_4 + x_6 = 4 \\
2x_1 - x_2 + 4x_3 + y_8 = 1 \\
x \ge 0 , y \ge 0
\end{cases}$$

Esercizio 4

La soluzione data NON è ottima.

$$x^T = \begin{pmatrix} 1 & 0 & 2 & 0 \end{pmatrix}$$

$$\min -9x_1 + x_2 + 3x_4$$

$$\begin{cases} 3x_1 + x_2 + x_3 - x_4 \ge 2\\ 2x_1 - 3x_2 + 2x_3 + 2x_4 \le 6\\ 7x_1 + x_2 - 2x_3 - x_4 = 3\\ x_2 \ge 0, \quad x_4 \ge 0 \end{cases}$$

Esercizio 5

Il problema non ammette soluzione ammissibile. Il problema artificiale termina evidenziando nella soluzione ottima il taglio in figura, di capacità uscente minore di 10.

Archi	(1,2)	(1,3)	(3,4)	(3,5)	(3,6)	(4,2)	(5,2)	(5,6)	(6,4)
Capacità	2.	10	2.	5	8	2.	1	6	4

SOLUZIONI

Esercizio 1

Base di partenza: $[A_3 \ A_1 \ A_6]$, entra A_2 esce A_6 , alla successiva iterazione entra A_5 esce A_1 , alla successiva iterazione entra A_4 e il problema risulta illimitato.

$$\min \quad 20x_1 + x_2 - x_4 + 2x_5$$

$$\begin{cases}
-x_2 + x_3 + x_5 = 2 \\
x_1 + 2x_2 - x_4 + x_5 = 6 \\
x_2 - 2x_5 + x_6 = 0 \\
x \ge 0
\end{cases}$$

Esercizio 2

$$\min \quad x_2 \\ \begin{cases} x_1 - x_2 \ge -2 \\ x_1 + x_2 \ge -1 \\ x_1 - 2x_2 \le 8 \\ x_1 \ge 0 \end{cases}$$

Esercizio 3

- 1. si porta il sistema in forma standard
- 2. si imposta il problema artificiale (bastano 2 variabili)
- 3. si risolve il problema artificiale. Base iniziale = $[A_7 A_6 A_8]$. La sol. ottima ha valore uguale a 0. Il sistema iniziale ammette almeno la soluzione (17/3 12 2/3).

$$\min \quad y_7 + y_8$$

$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 - x_5 + y_7 = 3 \\ x_1 - 2x_3 + 2x_4 + x_6 = 8 \end{cases}$$

$$5x_1 - x_3 - 2x_4 + y_8 = 1$$

$$x \ge 0 \quad , \quad y \ge 0$$

Esercizio 4

NON esiste una coppia di soluzioni ottime per il primale e il duale x^* , u^* tali che $x_2^* = 3$, $u_3^* = 0$ Si ottengono infatti le condizioni incompatibili:

$$\begin{cases} -6 - 4u_1 + 2u_2 = 0 \\ u_1 \ge 0 \quad , \quad u_2 \le 0 \end{cases}$$

$$\min \quad -2x_1 - 6x_2 + x_3 + x_4$$

$$\begin{cases} 3x_1 + 4x_2 + x_3 - 3x_4 \ge 6 \\ 2x_1 - 2x_2 + x_3 + 4x_4 \le 3 \\ -x_1 + x_2 + 2x_3 + x_4 = 5 \\ x_3 \ge 0, \quad x_4 \ge 0 \end{cases}$$

Esercizio 5

In figura è data una base ottima (degenere), con il flusso su ogni arco.

SOLUZIONI

Esercizio 1

Base di partenza: $[A_5 \ A_3 \ A_1]$, entra A_4 esce A_5 , si ottiene la soluzione ottima (16 0 17 3 0).

min
$$3x_2 + x_5$$

$$\begin{cases} x_2 + x_4 + x_5 = 3\\ 2x_2 + x_3 - x_4 = 14\\ x_1 - x_2 - 2x_4 = 10\\ x \ge 0 \end{cases}$$

Esercizio 2

Il poliedro delle soluzioni è vuoto. Il problema è impossibile.

$$\min \quad x_1 + 3x_2 \\ 3x_1 - x_2 \le 0 \\ x_1 + x_2 \le 6 \\ x_1 - x_2 \ge 1 \\ x_1 \ge 0$$

Esercizio 3

- 1. si porta il sistema in forma standard
- 2. si imposta il problema artificiale (bastano 2 variabili)
- 3. si risolve il problema artificiale.

 Base iniziale = $[A_7 A_6 A_8]$. La sol. ottima ha valore diverso da 0. Il sistema iniziale è incompatibile.

$$\min y_7 + y_8$$

$$\begin{cases} x_1 - 2x_2 + x_4 - x_5 + y_7 = 5\\ 2x_1 + x_3 + 3x_4 + x_6 = 4\\ 5x_1 + x_2 - 4x_4 + y_8 = 2\\ x \ge 0 \end{cases}$$

Esercizio 4

Impostando primale e duale e calcolando le cond. di comp. si dimostra che il flusso dato NON è di costo minimo.

Esercizio 5

- 1. Si aggiungono una sorgente fittizia s, connessa ai nodi 1 e 5, e un terminale fittizio t, connesso ai nodi 2 e 4, come in figura.
- 2. Si applica l'algoritmo di Ford e Fulkerson a partire dal flusso dato. Il flusso massimo è pari a 14.

In figura è evidenziato il taglio di capacità uscente minima.

