2018-01-02

- The eigenvalues of A^k are $\lambda_1^k, \dots, \lambda_n^k$. If $S^{-1}AS = \Lambda$, then $S^{-1}A^kS = \Lambda^k$.
- If A is invertible, then the eigenvalues of A^{-1} are $\lambda_1^{-1}, \ldots, \lambda_n^{-1}$.
- The eigenvectors of A, A^k , and A^{-1} are identical.
- If A and B are diagonalizable, they have the same eigenvector matrix S if and only if AB = BA.
 - \Rightarrow : Suppose there exists S such that $S^{-1}AS = \Lambda_A$ and $S^{-1}BS = \Lambda_B$. $AB = S\Lambda_A S^{-1} S\Lambda_B S^{-1} = S\Lambda_A \Lambda_B S^{-1} = S\Lambda_B \Lambda_A S^{-1} = S\Lambda_B S^{-1} S\Lambda_A S^{-1} = BA$.
 - \Leftarrow : Suppose AB = BA. Let x be an eigenvector of A, i.e., $Ax = \lambda x$. Case 1: Bx = 0. Then, x is an eigenvector of B. Case 2: $Bx \neq 0$. $ABx = BAx = \lambda Bx$. A has distinct eigenvalues, each eigenspace of A is one-dimensional. Hence, $Bx = \mu x$ for some scalar μ , i.e., Bx is a multiple of x. In other words, x is an eigenvector of B as well.
- **Theorem**: AB and BA have the same eigenvalues.
- Theorem: Let A be an $n \times n$ matrix over F. Assume that the characteristic polynomial of A has solutions in F. Then, for each eigenvalue of A, geometric multiplicity \leq algebraic multiplicity.
- **Recurrence relation (Difference equation)**: Using Fibonacci sequence as an example: $a_{k+2} = a_{k+1} + a_k$, where $a_0 = 0$, $a_1 = 1$.
 - Let $u_k = (a_{k+1}, a_k)$. We have $u_0 = (1, 0)$ and $u_k = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} u_{k-1}$.
 - Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. We have $u_k = A^k u_0 = S\Lambda^k S^{-1} u_0 = S\Lambda^k c$ where $c = S^{-1} u_0$.
- Markov chain:
 - Transition matrix (Markov matrix): a square matrix used to describe the transitions of a Markov chain.
 - Essential assumptions:
 - The total # of instances stays fixed, i.e., columns sum to 1.
 - The number of instances is never negative, i.e., all entries are non-negative.
 - Current state depends only on the last state, i.e., u_k depends only on u_{k-1} (no history).
 - Let u_k be the distribution of instances at time k. We have $u_k = Au_{k-1}$ and $u_k = A^k u_0 = S\Lambda^k S^{-1} u_0$ = $S\Lambda^k C$ where $C = S^{-1} u_0$.
 - Eigenvectors of a transition matrix A are $\lambda_1 = 1, \lambda_2, \dots, \lambda_n$ which satisfies $1 > \lambda_2 \ge \dots \ge \lambda_n > 0$.
 - No matter what the initial distribution may have been, the steady state u_{∞} satisfies $u_{\infty} = Au_{\infty}$, i.e., u_{∞} is the eigenvector corresponding to $\lambda = 1$.
- The conjugate transpose of a matrix A is denoted by $A^{H} (= \overline{A^{T}})$. Note: $(AB)^{H} = B^{H}A^{H}$.
- For $x \in \mathbb{C}^n$, the length of x, i.e., ||x||, is defined as $||x||^2 = |x_1|^2 + \ldots + |x_n|^2 = x^H x = \overline{x}^T x$.
- The inner product of complex vector $\langle x, y \rangle = x^{H}y = \overline{x}^{T}y = y^{T}\overline{x}$. **Note**: (1) $\langle x, y \rangle = \overline{\langle y, x \rangle}$; (2) $\langle cx, y \rangle = c \langle x, y \rangle$; (3) $\langle x, cy \rangle = \overline{c} \langle x, y \rangle$.
- x is orthogonal to y if $x^H y = 0$.
- An $n \times n$ matrix A is called a **Hermitian matrix** if and only if $A^H = A$.

• If $A^{H} = A$, then $x^{H}Ax$ is real for all $x \in \mathbb{C}^{n}$.

$$(x^{\mathrm{H}}Ax)^{\mathrm{H}} = x^{\mathrm{H}}A^{\mathrm{H}}x = x^{\mathrm{H}}Ax.$$

- Every eigenvalue of a Hermitian matrix is real.
 - Let λ be an eigenvalue of A and $A^{H} = A$.
 - There exists $x \neq 0$ such that $Ax = \lambda x$.
 - $x^{H}Ax = \lambda x^{H}x \Rightarrow \lambda = x^{H}Ax/x^{H}x$, which is a real number.
- The eigenvectors corresponding to distinct eigenvalues of a Hermitian matrix are orthogonal to each other.
 - Suppose $A^{H} = A$ and $Ax_1 = \lambda_1 x_1$, $Ax_2 = \lambda_2 x_2$, where $\lambda_1 \neq \lambda_2$, $x \neq 0$, $y \neq 0$.

 - $(\lambda_1 \lambda_2)x_1^H x_2 = 0$ and $\lambda_1 \neq \lambda_2$. Hence, $x_1^H x_2 = 0$, i.e., eigenvectors are orthogonal.