IC220: HW 4

Due: 13 Feb 2019

Full Name:	Alr	pha:	

Circle Your Section: Aviv/1001 Aviv/2001 Aviv/4001 Choi/5001 Missler/5002

Preliminary: Carefully do the assigned reading for Chapter 2 (2.1-2.3,2.5-2.10,2.12)

1. [5 points] Complete the truth table for the NAND and NOR gates

	>	

\mathbf{A}	В	x
0	0	
0	1	
1	0	
1	1	

2. For the following logic circuit

(a) [3 points] Complete the truth table for all 3 bit inputs for a, b, c and output y

(b) [2 points] Write the boolean equation for this circuit.

3. [5 points] Draw a circuit for the following formula

$$f = \overline{(A+B)\cdot C) + D}$$

4. [5 points] Show the sum of products for the following truth table

a	$\mid b \mid$	c	$\mid f \mid$
0	0	0	1
0	1	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	1	1	1
1	1	0	0
1	1	1	0

- 5. Simplify the following equations (use Boolean laws)
 - (a) [1 point] B(A+0)
 - (b) [1 point] $B(A\overline{A})$
 - (c) [1 point] $(A + \overline{B})(\overline{A} + B)$
 - (d) [2 points] $\overline{(A+B)} \cdot (A+B+C)$
- 6. [5 points] Use bubble pushing to simplify this circuit

IC220

HW 4

7. Using the following truth table

a	$\mid b \mid$	c	$\parallel f$
0	0	0	0
0	1	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	1	1	1
1	1	0	1
1	1	1	$\parallel 1$

(a) [5 points] Show the sum of products.

(b) [5 points] Simplify the above equation.

- 8. Simplify the following equations
 - (a) [2 points] C(A+1)
 - (b) [2 points] AB(A+C)
 - (c) [2 points] $(A + \overline{B})(\overline{A} + c)$
 - (d) [2 points] (B+0)(C+D+1)

9. Using the following truth table

a	$\mid b \mid$	c	\int
0	0	0	1
0	1	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	1	1	0
1	1	0	1
1	1	1	0

(a) [3 points] Fill in the following K-Map

	$\overline{b}\overline{c}$	$\bar{b}c$	bc	$b\overline{c}$
\overline{a}				
\overline{a}				

(b) [2 points] Minimize the function using the K-map

(c) [5 points] Draw the two-level circuit for this function

IC220 HW 4

10. [5 points] Suppose we already have this k-Map.

	\overline{CD}	$\overline{C}D$	CD	$C\overline{D}$
\overline{AB}	1	0	0	1
$\overline{A}B$	1	1	1	1
AB	1	1	0	0
$A\overline{B}$	0	0	0	1

Minimize the function

- 11. Consider your answer to question 9.c, the particular two-level, minimal circuit.
 - (a) [1 point] Is your answer unique? In other words, is there only one possible two-level circuit for that K-Map that is minimal, or is there another one that is logically different but still correct and just as small? (Answer either UNIQUE or NOT UNIQUE)
 - (b) [3 points] Will this always be the case, or could a different K-map change your answer?

12. [10 points] Suppose we already have this K-map. Minimize the function.

	\overline{CD}	$\overline{C}D$	CD	$C\overline{D}$
\overline{AB}	1	0	1	1
$\overline{A}B$	0	1	1	1
AB	1	1	1	0
$A\overline{B}$	1	0	1	1

13. [10 points] Suppose we already have this K-map. Minimize the function.

	\overline{CD}	$\overline{C}D$	CD	$C\overline{D}$
\overline{AB}	0	X	0	0
$\overline{A}B$	1	1	1	1
AB	0	1	0	X
$A\overline{B}$	0	X	0	0