Лабораторная работа №7

Дисциплина: Имитационное моделирование

Пронякова Ольга Максимовна

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Выводы	13
Сг	Список литературы	

Список иллюстраций

2.1	Суперблок, моделирующий поступление заявок	7
2.2	Задаю переменные окружения	8
2.3	Суперблок, моделирующий обработку заявок	9
2.4	Готовая модель	10
2.5	Поступление и обработка заявок	11
2.6	Линамика размера очерели	12

Список таблиц

1 Цель работы

Рассмотреть пример моделирования в хсо
s системы массового обслуживания типа M|M|oo.

2 Выполнение лабораторной работы

Зафиксируем данные. В меню Моделирование, Установить контекст зададим значение коэффициентов. пресступим к первому суперблоку, моделирующему поступление заявок. Заявки поступают в систему по пуассоновскому закону. Поступает заявка в суперблок, идет в синхранизатор входных и выходных сигналов, происходит равномерное распределение на интервале 0;1(также заявка идет в обработчик событий), далее идет преобразование в экспоненциальное распределение с параметром лямбда, далее заявка опять попадает в обработчик событий и выходит из суперблока.(рис.2.1), (рис.2.2).

Рис. 2.1: Суперблок, моделирующий поступление заявок

Рис. 2.2: Задаю переменные окружения

приступаем ко второму суперблоку. Суперблок, моделирующий процесс обработки заявок. Тут происходит обработка заявок в очереди по экспоненциальному закону(рис.2.3).

Рис. 2.3: Суперблок, моделирующий обработку заявок

Готовая модель. Тут есть селектор, два суперблока, построенных ранее, первоначальное событие на вход в суперблок, суммирование. оператор задержки(имитация очереди), также есть регистрирующие блоки: регистратор размера очереди и регистратор событий.(рис.2.4).

Рис. 2.4: Готовая модель

Результат моделирования - график динамики очереди начинается со значения 6(рис.2.5). (рис.2.6).

Рис. 2.5: Поступление и обработка заявок

Рис. 2.6: Динамика размера очереди

3 Выводы

Я рассмотрела пример моделирования в хсо
s системы массового обслуживания типа M|M|oo

Список литературы