北京航空航天大学国际学院

线性代数

第三章 向量组的线性相关性

本章介绍n维向量及向量组,重要内容是向量组的线性相关与线性无关,它对第四章的学习有很大的帮助.

§ 3.1 向量的概念与运算

- 3.1.1 向量的概念
- 3.1.2 向量的运算

3.1.1 向量的概念

若要描述某一质点在空中的运行速度,则至少要用到四个量,即该质点在空中的位置及速度.

在下列线性方程组

中,每一个方程与n+1个数组成的有序数组

$$(a_{i1}, a_{i2}, ..., a_{in}, b_i)$$
 $i=1, 2, ..., m$

成对应关系.

定义3. 1. 1 由数域P上的n个数组成的有序数组 ($a_1, a_2, ..., a_n$),称为P上的一个n维行向量(n dimensional vector),记为 α ,即

$$\alpha = (a_1, a_2, ..., a_n)$$

其中 a_i 称为向量 α 的第 i 个分量(坐标 coordinate).

说明: (1) 经常用小写希腊字母 α , β , γ 等来表示向量.

$$\beta = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

称为n维列向量.

例3.1.1 一个 m×n 矩阵

$$egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

的每一行 $a_{i1}, a_{i2}, \dots, a_{in} (i = 1, 2, \dots, m)$

可以看作一个n维行向量,即

$$\alpha_{i} = (a_{i1}, a_{i2}, \dots, a_{in}), (i = 1, 2, \dots, m).$$

矩阵A可看作由m个n维行向量组成的行向量组(Vector group).

同理, $m \times n$ 矩阵也可看作由 $n \cap m$ 维列向量

组成的列向量组.

则A可写为

$$A = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{pmatrix},$$

或

$$A = (\beta_1, \beta_2 \cdots, \beta_n).$$

3.1.2 向量的运算

定义3.1.2 设

$$\alpha = (a_1, a_2, \dots, a_n) \quad \beta = (b_1, b_2, \dots, b_n)$$

为数域 P 上的两个n维行向量,若 $a_i = b_i$, (i=1, 2, ..., n),则称向量 α 与 β 相等,记作 $\alpha = \beta$.

分量全为零的向量称为零向量, 记作0.

向量($-a_1$, $-a_2$, ..., $-a_n$)称为向量 $\alpha = (a_1, a_2, ..., a_n)$ 的负向量,记为 $-\alpha$.

设向量
$$\alpha = (a_1, a_2, \dots, a_n), \beta = (b_1, b_2, \dots, b_n)$$

向量 $(a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$

称为向量 α 与 β 的和, 记为 $\alpha + \beta$

即
$$\alpha + \beta = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n).$$

又设k为一个数,则向量 (ka_1,ka_2,\cdots,ka_n)

称为向量 α 与数k的数乘积,简称<mark>数乘</mark>. 记为 $k\alpha$,

$$k\alpha = (ka_1, ka_2, \dots, ka_n).$$

向量 α 与 β 的差可以看作 α 与 $(-\beta)$ 的和, 记为 α - β ,即

$$\alpha - \beta = \alpha + (-\beta) = (a_1 - b_1, a_2 - b_2, \dots, a_n - b_n).$$

向量的加法、减法与数乘统称为向量的线性运算.(Linear operation)

说明: 利用向量的加法、数乘和相等,线性方程组可写成向量形式

$$x_1\alpha_1 + x_2\alpha_2 + \cdots + x_n\alpha_n = \beta$$

其中
$$\alpha_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix}$$
 $j = 1, 2, \dots, n$ $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$

(2) 向量的线性运算满足以下基本运算规律:

设 α 、 β 、 γ 为数域P上的数,则有 $\alpha + \beta = \beta + \alpha$ $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$ $\alpha + 0 = 0 + \alpha = \alpha$ $\alpha + (-\alpha) = 0$ $k(\alpha+\beta)=k\alpha+k\beta$

$$(k+l)\alpha = k\alpha + l\alpha$$
$$(kl)\alpha = k(l\alpha) = l(k\alpha)$$
$$1 \cdot \alpha = \alpha$$

根据定义还可以看出

$$0 \cdot \alpha = 0 \quad (-1) \cdot \alpha = -\alpha \quad k \cdot 0 = 0$$

若 $k \neq 0$, $\alpha \neq 0$, 则 $k\alpha \neq 0$.

 π

例3. 1. 2 设向量 α_1 = (1, -2, 0, 4), α_2 = (-2, 5, 1, 3), α_3 = (5, 7, 9, -3),求向量 β ,使其满足条件 $3\beta - \alpha_1 + 2\alpha_2 + \alpha_3 = 0$

解

$$\beta = \frac{1}{3}(\alpha_1 - 2\alpha_2 - \alpha_3)$$

$$= \frac{1}{3} [(1 -2 0 4) -2(-2 5 1 3) + (5 7 9 -3)]$$

 π

$$= \frac{1}{3}[(1, -2, 0, 4) + (4 -10 -2 -6) + (5 7 9 -3)]$$

$$=\frac{1}{3}(10, -5, 7, -5)$$

$$=\left(\frac{10}{3}, -\frac{5}{3}, \frac{7}{3}, -\frac{5}{3}\right)$$