

# MECÂNICA DOS FLUIDOS I Engenharia Aeroespacial

#### 1º Teste

## 31/Outubro/2014

#### Duração total (partes teórica e prática): 2 horas

Esta parte realiza-se com consulta de 1 ou 2 livros de texto, as folhas da disciplina e transparências das aulas teóricas. Apresente um nível adequado de justificação e a fonte bibliográfica das expressões que utilizou se diferentes das utilizadas nas aulas teóricas.

# PARTE PRÁTICA

I

(7 valores)

Considere o escoamento no interior de um misturador (figura 1), no qual um fluido de massa volúmica  $\rho$  e viscosidade cinemática  $\nu$ , escoando-se numa conduta secundária de diâmetro  $D_1$  com velocidade constante igual a  $U_1$ , é adicionado a uma corrente do mesmo fluido escoando-se com velocidade aproximadamente constante e igual a  $U_2$  num tubo de diâmetro  $D_2$ . O escoamento é incompressível, estacionário e adiabático, e a uma distancia L da junção das duas correntes encontra-se completamente misturado, com um perfil de velocidade aproximadamente constante igual a  $U_3$ . Despreze as forças mássicas.

- a) Calcule a velocidade média na secção B,  $U_3 = ?$  (1,5 val.)
- b) Calcule a diferença de pressão entre as secções A e B,  $\Delta p = P_B P_A$ , sabendo que a tensão de corte média na parede, entre estas secções é igual a  $\overline{\tau_w}$  . (2,0 val.)
- c) Sabendo que o perfil de energia interna por unidade de massa de fluido na secção A é aproximadamente constante e igual e  $u_A$ , calcule a energia interna por unidade de massa na secção B,  $u_B$ , e a perda de carga entre as duas secções. (2,0 val.)
- d) Suponha que uma determinada substância  $\Gamma$ , é adicionada na conduta secundária com um perfil de concentração  $\gamma$  (substância por unidade de massa de fluido) que é constante nessa secção  $\gamma_A$ . Qual o valor médio do perfil de concentração da substância na secção B,  $\gamma_B$ ? (1,5 val.)



Figura 1: Esquema do escoamento no interior do misturador.

### (8 valores)

Um cilindro de raio a roda com velocidade angular constante  $\Omega$  tal como representado na figura 2, enquanto um fluido Newtoniano de viscosidade dinâmica  $\mu_o$  e massa volúmica  $\rho_o$  se desloca na sua superfície sob a ação da gravidade, até um raio igual a b, ao qual o fluido está em contacto com o fluido do ambiente com viscosidade dinâmica  $\mu_a$  e massa volúmica  $\rho_a$  e que se encontra a uma pressão constante igual a  $p_a$ . O escoamento é laminar, estacionário, incompressível, axissimétrico e completamente desenvolvido na direção axial (z).

- a) Calcule a velocidade radial  $v_r$  em todo o campo do escoamento. (1,0 val.)
- b) Simplifique e integre a equação de transporte de quantidade de movimento segundo a direção tangencial, para os dois fluidos. (1,5 val.)
- c) Escreva quatro (4) condições de fronteira para a velocidade tangencial nos dois fluidos (duas para cada fluido), e esboce o perfil de velocidade tangencial para os dois fluidos de forma qualitativamente correta. (2,5 val.)
- d) Simplifique a equação de transporte de quantidade de movimento segundo a direção axial, para os dois fluidos. (1,0 val.)
- e) Como varia o campo de pressão neste escoamento? Justifique. (1,0 val.)
- f) Calcule o momento que é necessário aplicar ao cilindro para este manter o seu estado de movimento, por unidade de comprimento na direção axial. (1,0 val.)



Figura 2: Esquema do disco em rotação sobre o qual escorre um liquido por ação da gravidade.