GRAD-CAM

Fooling CNN is easy

- □ Known as adversarial attack
- Such as this one

https://miro.medium.com/max/1127/1*i52xqXAc4qUn5qh7m47iKA.png

Fooling CNN is easy

- We can add noisy training samples to cope with this type of attack
 - We do not have time to discuss more about this issue (attack)
- Another problem is that CNN choosing wrong features (usually not detected by humans)
 - High test accuracy
 - But practically useless

Extracting wrong features

 Task: To classify characters from Pokemon or from Digimon

Task

Pokémon images: https://www.Kaggle.com/kvpratama/pokemon-

images-dataset/data

Digimon images:

https://github.com/DeathReaper0965/Digimon-Generator-GAN

Digimon

Testing Images:

nerator-GAN

Extracting wrong features

- Results: Test accuracy 98.4 % (much better than human classification)
- □ Too good to be true
 - Pokemon figures are in PNG format
 - Digimon in JPEG format
- Using background color is enough for high accuracy

http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/XAI%20(v7).pdf

Avoid extracting wrong features

- Need to know the attention of the network
 - Based on which part is the decision made by
- How to do it
 - Randomly alter a small portion of input image and observe the change of class probability
 - Such as multiply pixel values by 1.2 or 0.8
 - Large probability change means more important
 - Visualization (Grad-CAM)

Motivation

- □ Ref: https://arxiv.org/abs/1610.02391, where photos are from
- This one is the input image (from ref)

- Human knows the location of the cat
- Want to know how CNN recognizes cat or dog

Motivation

Check which part the network is focused on (for cat)

- □ Left one is good, right one is not so good
- Red (or black) color means higher weights

Motivation

□ For dog, left is good, right is no good

CAM & global average pooling

- Grad-CAM is a generalization of CAM (Class activation mapping)
- CAM model is a CNN with global average pooling (GAP) layer

http://cnnlocalization.csail.mit.edu/

GAP layer

- One value per feature map
- □ Taking average, without activation function

http://spytensor.com/index.php/archives/19/?palujc=xgmsb1

CAM activation map

- As given previously, activation map is a weighted sum of all feature maps (from the last layer)
- Usually activation map is smaller than input image
 - Need to do up-sampling to rescale the map size
 - Will discuss how to do it later (in DCGAN)

CNN receptive fields

 If target cell is assigned, we know its corresponding pixels in the input image (spatial info is preserved)

https://thea is ummer.com/assets/img/posts/receptive-field/receptive-field-in-convolutional-networks.png

Problems with CAM model

- Need to train CNN with GAP layer
 - Not working with other types of layers (such as fullyconnected layer, called dense in keras)
- We don't want to re-train CNN models just for visualization
- Need a way to indirectly compute necessary weights for same visual effects

□ Want to compute w_1 to w_4 in terms of z_1, z_2 and x_1, \cdots, x_4

- □ Recall $y_1 = \text{softmax}(z_1, \text{given } z_1 \text{ and } z_2)$ where $z_1 = \frac{1}{2}(x_1 + x_2) \cdot w_1 + \frac{1}{2}(x_3 + x_4) \cdot w_3$
- With a little bit of math, we have
- $\square w_1 = \frac{1}{2} \left(\frac{\partial z_1}{\partial x_1} + \frac{\partial z_1}{\partial x_2} \right)$
- □ That means, if we can find $\frac{1}{2} \left(\frac{\partial z_1}{\partial x_1} + \frac{\partial z_1}{\partial x_2} \right)$, we can compute GAP layer weights
- All other weights can be computed in a similar way

If we have the following fully connected layer, then how to convert it

- □ Want to find $w_1 = \frac{1}{2} \left(\frac{\partial z_1}{\partial x_1} + \frac{\partial z_1}{\partial x_2} \right)$
- □ But, we know (from the figure)

$$\frac{\partial z_1}{\partial x_1} = \frac{\partial z_1}{\partial h_1} \frac{\partial h_1}{\partial q_1} \frac{\partial q_1}{\partial x_1} + \frac{\partial z_1}{\partial h_2} \frac{\partial h_2}{\partial q_2} \frac{\partial q_2}{\partial x_1}$$
$$= \frac{\partial h_1}{\partial q_1} s_1 + \cdots$$

where $\frac{\partial h_1}{\partial q_1} = 1$ or 0 if ReLU is used

- What did we do?
 - Let both have same gradients only (not same equations)
 - That is why it is called Grad-CAM
- In actual applications, we do not need derivatives
 - Just use existing network weights to compute (equivalent)
 weights in a CAM network
- With the basic math given previously, you should have no problem to read the original paper

ReLU backpropagation

There are three possible backprop operations

https://pythonzeal.files.wordpress.com/2018/06/screen-shot-2018-06-24-at-11-40-11-am.png?w=433&h=468

Using Grad-CAM

- You can find lots of resources for Grad-CAM implementation over Internet
 - Number of feature maps to average
- Need to be careful about the orientation of maps
 - Check horizontal and vertical directions
 - Use some well-known pictures to confirm you correctly use it