MFx – Macroeconomic Forecasting

This training material is the property of the International Monetary Fund (IMF) and is intended for use in IMF Institute for Capacity Development (ICD) courses. Any reuse requires the permission of the ICD.

EViews® is a trademark of IHS Global Inc.

Cointegration and Vector Error Correction Models

Introduction

Main Objectives of the Module

Introduce the concept of cointegration

Study the dynamics of cointegrated variables

Explain the different methods used to test for cointegration

Main Objectives of the Module

 Illustrate how to properly estimate a system of cointegrated variables

Perform tests on the cointegration relationship

Money, Prices and GDP in Austria

- In the data file you are given quarterly series of M2, CPI and real GDP of Austria between 1997Q3 and 2014Q4
- All series are seasonally adjusted
- Our goal is to forecast these variables over a period of 8 quarters based on a VAR

Let Us Look at the Data

Let Us Look at the Data More Closely

Linear Combinations of I(1) series

- In general a linear combination of I(1) series is also I(1).
- However, in some special cases there could be a linear combination which is I(0).
- So something very special has to happen for a linear combination to become stationary.

Intuition based on Theory

- Economic theories could give the intuition as to why some linear combinations of I(1) series could be I(0).
- For example: Uncovered Interest Parity,
 Permanent Income Hypothesis, Unbiased
 Forward Rate Hypothesis, Commodity Markey
 Arbitrage and Purchasing Power Parity.
- Theory guides us but we can also test it.

What is Cointegration?

- I(1) series are cointegrated if there exists at least one linear combination of these variables that is stationary
- In our case it means that there exist b_1 , b_2 and b_3 such that:

```
b_1m+b_2p+b_3y is stationary or I(0) Wot I(1)
```

What Kind of VAR?

- We could estimate a VAR in levels...
- ...but as it contains I(1) variables this could be
- problematic less lay VAR in Marences

 How about a VAR in first differences? Levels

 As we will see, this too could be highly problematic without proper testing

What's Next?

- Why does it matter if M, P and RGDP are cointegrated?
- If it makes the VAR in differences
 "inappropriate," what should we do instead?
- How do we test for cointegration in the first place?

MFx – Macroeconomic Forecasting

This training material is the property of the International Monetary Fund (IMF) and is intended for use in IMF Institute for Capacity Development (ICD) courses. Any reuse requires the permission of the ICD.

EViews® is a trademark of IHS Global Inc.

Cointegration and Vector Error Correction Models

Error Correction

From Session 1: What is Cointegration?

- A number of I(1) series are cointegrated if there exists a linear combination that would be stationary
- In our case it means that there exist b_1 , b_2 and b_3 such that:

```
b_1m+b_2p+b_3y is I(0)
```

Does Theory Indicate Cointegration?

The money market equilibrium could be:

$$m^{s}_{t} \neq m^{d}_{t} \neq \beta_{0} + \beta_{1}(p_{t}) + \beta_{2}(y_{t}) + \beta_{3}(r_{t}) + C$$

- However, what we observe includes an error...
- ...which should not be very persistent and its variance should not rise over time

Long-Run Relationships

- If (b₁m+b₂p+b₃y) is stationary...
- ...although each series is non-stationary...
- ...there must be some adjustment made by m,
 p and y such that they move together
- such that deviations from b₁m+b₂p+b₃y=0 remains bounded

Money and Price

- Suppose that in the long run: m_{ϵ}
- $m_t = \beta p_t + e_t, \text{ where } \beta > 0$ That is, m and p are cointegrated. Note that Money Neutrality would imply $\beta=1$
- Suppose m↑ such that m₊-βp₊>0
- What would be the dynamics?

Deviation and Now What?

m_t is doing all the adjustment

• m_t^* is unchanged and $m_t^* \downarrow$

$$\Delta m_t = \alpha_m (m_{t-1} - m_{t-1}^*)$$
, where $\alpha_m < 0$

• Short run change in m_t is a linear function of the deviation from the long run equilibrium

m_t is doing all the adjustment

m_t* is doing all the adjustment

• m_t is unchanged, and p_t and m_t * \uparrow

$$\Delta p_t = \alpha_p (m_{t-1} - m_{t-1}^*)$$
, where $\alpha_p > 0$

• Short run change in p_t is a linear function of the deviation from money neutrality

m_t* is doing all the adjustment

Both m_t and p_t are Adjusting

m_t and p_t are adjusting simultaneously:

$$\Delta m_t = \alpha_m (m_{t-1} - m_{t-1}^*)$$
, where $\alpha_m < 0$

$$\Delta p_t = \alpha_p(m_{t-1} - m_{t-1}^*)$$
, where $\alpha_p > 0$

which is a basic error correction model

Simultaneous Adjustment

Taking Stock and What's Next?

- Error correction is a mechanism ensuring cointegration between m and p
- How about m, p and y...or more variables?
- ...and we still don't know why it is important to take into account cointegration (and how!)

MFx – Macroeconomic Forecasting

This training material is the property of the International Monetary Fund (IMF) and is intended for use in IMF Institute for Capacity Development (ICD) courses. Any reuse requires the permission of the ICD.

EViews® is a trademark of IHS Global Inc.

Cointegration and Vector Error Correction Models

VECM Specification

From Session 2: Simple ECM

m_t and p_t are cointegrated/follow the ECM:

$$\Delta m_{t} = \alpha_{m}(m_{t-1} - \beta p_{t-1}) + v_{t}$$

$$\Delta p_{t} = \alpha_{p}(m_{t-1} - \beta p_{t-1}) + u_{t}$$

A VAR in differences would be misspecified

ECM as a Special VAR

The previous ECM could be rewritten:

$$m_{t} = (1+\alpha_{m})m_{t-1}-\alpha_{m}\beta p_{t-1}+v_{t}$$

$$p_{t} = \alpha_{p}m_{t-1}+(1-\alpha_{p}\beta)p_{t-1}+u_{t}$$

 This is clearly a VAR in levels with non-linear constraints on its coefficients

Back to Our Problem

We believe that m_t, p_t and y_t are cointegrated

• In the long run: $E[b_1m_{t-1}+b_2p_{t-1}+b_3y_{t-1}+b_4]=0$

Let us write a VECM and estimate it at the same time

VECM of Lag Order 0

• VECM of m, p and y with no lags of Δm_t , Δp_t , Δy_t

$$\Delta m_{t} = \alpha_{m} (b_{1} m_{t-1} + b_{2} p_{t-1} + b_{3} y_{t-1} + b_{4}) + v_{t}$$

$$\Delta p_{t} = \alpha_{p} (b_{1} m_{t-1} + b_{2} p_{t-1} + b_{3} y_{t-1} + b_{4}) + u_{t}$$

$$\Delta y_{t} = \alpha_{y} (b_{1} m_{t-1} + b_{2} p_{t-1} + b_{3} y_{t-1} + b_{4}) + \eta_{t}$$

No lags of Δm , Δp and Δy which could be changed into 1 1 or 1 2

Endogenous variables: m,p and y

VECM of Order 1

$$\Delta m_{t} = \alpha_{M}(b_{1}m_{t-1} + b_{2}p_{t-1} + b_{3}y_{t-1} + b_{4}) + \lambda_{MM}\Delta m_{t-1} + \lambda_{MP}\Delta p_{t-1} + \lambda_{MY}\Delta y_{t-1} + v_{t}$$

$$\Delta p_{t} = \alpha_{P}(b_{1}m_{t-1} + b_{2}p_{t-1} + b_{3}y_{t-1} + b_{4}) + \lambda_{PM}\Delta m_{t-1} + \lambda_{PP}\Delta p_{t-1} + \lambda_{PY}\Delta y_{t-1} + u_{t}$$

$$\Delta y_{t} = \alpha_{Y}(b_{1}m_{t-1} + b_{2}p_{t-1} + b_{3}y_{t-1} + b_{4}) + \lambda_{YM}\Delta m_{t-1} + \lambda_{YP}\Delta p_{t-1} + \lambda_{YY}\Delta y_{t-1} + \eta_{t}$$

How to decide the number of lags?

Specification of deterministic components

The default is one cointegration relationship but there could be more...

Deterministic Components

Case 1:

$$\Delta m_{t} = \alpha_{M}(b_{1}m_{t-1} + b_{2}p_{t-1} + b_{3}y_{t-1}) + \lambda_{MM}\Delta m_{t-1} + \lambda_{MP}\Delta p_{t-1} + \lambda_{MY}\Delta y_{t-1} + v_{t}$$

Case 2:

$$\Delta m_{t} = \alpha_{M}(b_{1}m_{t-1} + b_{2}p_{t-1} + b_{3}y_{t-1} + b_{4}) + \lambda_{MM}\Delta m_{t-1} + \lambda_{MP}\Delta p_{t-1} + \lambda_{MY}\Delta y_{t-1} + v_{t}$$

Case 3:

$$\Delta m_{t} = \mu_{M} + \alpha_{M} (b_{1} m_{t-1} + b_{2} p_{t-1} + b_{3} y_{t-1} + b_{4}) + \lambda_{MM} \Delta m_{t-1} + \lambda_{MP} \Delta p_{t-1} + \lambda_{MY} \Delta y_{t-1} + v_{t}$$

VECM of Order 1 with Constants

$$\begin{split} \Delta m_t &= \mu_M + \alpha_M (b_1 m_{t-1} + b_2 p_{t-1} + b_3 y_{t-1} + b_4) + \lambda_{MM} \Delta m_{t-1} + \lambda_{MP} \Delta p_{t-1} + \lambda_{MY} \Delta y_{t-1} + v_t \\ \Delta p_t &= \mu_P + \alpha_P (b_1 m_{t-1} + b_2 p_{t-1} + b_3 y_{t-1} + b_4) + \lambda_{PM} \Delta m_{t-1} + \lambda_{PP} \Delta p_{t-1} + \lambda_{PY} \Delta y_{t-1} + u_t \\ \Delta y_t &= \mu_Y + \alpha_Y (b_1 n_{t-1} + b_2 p_{t-1} + b_3 y_{t-1} + b_4) + \lambda_{YM} \Delta m_{t-1} + \lambda_{YP} \Delta p_{t-1} + \lambda_{YY} \Delta y_{t-1} + \eta_t \end{split}$$

• Under option 3

Once the specification is set EViews will use Maximum Likelihood to estimate the parameters and produce the output:

Vector Error Correction Estimates
Date: 03/14/15 Time: 15:15

Sample (adjusted): 1998Q1 2014Q4

Included observations: 68 after adjustments

Standard errors in () & t-statistics in []

Cointegrating Eq:	CointEq1		
LOG(M(-1))	1.000000		
LOG(P(-1))	1.422433 (0.65845) [2.16027]		
LOG(RGDP(-1)) C	-5.586962 (0.76354) [-7.31718] 5.122412		
Error Correction:	D(LOG(M))	D(LOG(P))	D(LOG(RGD
CointEq1	-0.062230 (0.02113) [-2.94539]	-0.011734 (0.00397) [-2.95576]	0.022170 (0.01208) [1.83515]
D(LOG(M(-1)))	0.208293	-0.026039	0.067627
	(0.11837) [1.75971]	(0.02224) [-1.17075]	(0.06768) [0.99917]

Taking Stock and What's Next?

- We now know why it is important to take into account cointegration if it is there...
- ...but is there cointegration?
- ...and if so how many cointegrating vectors are there?
- ...and what are those cointegrating vectors?

MFx – Macroeconomic Forecasting

This training material is the property of the International Monetary Fund (IMF) and is intended for use in IMF Institute for Capacity Development (ICD) courses. Any reuse requires the permission of the ICD.

EViews® is a trademark of IHS Global Inc.

Cointegration and Vector Error Correction Models

Cointegration Test

From Session 3: VECM

$$\Delta m_{t} = \mu_{m} + \alpha_{m} (b_{1} m_{t-1} + b_{2} p_{t-1} + b_{3} y_{t-1} + b_{3}) + \lambda_{mm} \Delta m_{t-1} + \lambda_{mp} \Delta p_{t-1} + \lambda_{my} \Delta y_{t-1} + v_{t}$$

$$\Delta p_{t} = \mu_{p} + \alpha_{p} (b_{1} m_{t-1} + b_{2} p_{t-1} + b_{3} y_{t-1} + b_{3}) + \lambda_{pm} \Delta m_{t-1} + \lambda_{pp} \Delta p_{t-1} + \lambda_{py} \Delta y_{t-1} + u_{t}$$

$$\Delta y_{t} = \mu_{y} + \alpha_{y}(b_{1}m_{t-1} + b_{2}p_{t-1} + b_{3}y_{t-1} + b_{3}) + \lambda_{ym}\Delta m_{t-1} + \lambda_{yp}\Delta p_{t-1} + \lambda_{yy}\Delta y_{t-1} + \eta_{t}$$

We have only one lag for illustration

VECM in Matrix Form

 We can stack the equations and variables into a vector X_t to obtain:

$$\Delta X_{t} = C + \Pi X_{t-1} + \Lambda \Delta X_{t-1} + e_{t}$$

• ΠX_{t-1} represents the error correction terms

Johansen's Methodology

- Johansen's methodology rests on estimating the rank of Π
- The rank of Π is the maximum number of independent vectors it contains
- It cannot exceed n, the number of variables we have in the system (in our case 3)

The Rank Informs Us about Cointegration

• If $rank(\Pi)=0$: no cointegration

If rank(Π)=n (full rank): all variables are I(0)

 If 0<rank(Π)=r<n (less than full rank): there are r independent cointegration relationships

Cointegration Test

Johansen's Statistics

• Trace statistic for r: the null hypothesis is that the rank is at most r vs. the rank is strictly greater

 Maximum eigenvalue statistic for r: the null hypothesis is that the rank is r vs. the rank is r+1 Sample: 2000Q1 2012Q4 Included observations: 52

Trend assumption: Linear deterministic trend

Series: LOG(M) LOG(P) LOG(RGDP) Lags interval (in first differences): 1 to 2

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None * At most 1 At most 2	0.443819	35.02620	29.79707	0.0114
	0.067420	4.519818	15.49471	0.8575
	0.016974	0.890212	3.841466	0.3454

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None * At most 1 At most 2	0.443819	30.50639	21.13162	0.0018
	0.067420	3.629605	14.26460	0.8962
	0.016974	0.890212	3.841466	0.3454

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

Taking Stock and What's Next?

- We now know how to test for cointegration...
-we determined that there exists a single cointegrating relationship between m, p and y
- So we can go back and estimate our VECM.
 But how do we test whether y adjusts to long-run relationship?

MFx – Macroeconomic Forecasting

This training material is the property of the International Monetary Fund (IMF) and is intended for use in IMF Institute for Capacity Development (ICD) courses. Any reuse requires the permission of the ICD.

EViews® is a trademark of IHS Global Inc.

Cointegration and Vector Error Correction Models

Restricted VECM

From Session 4

- We established that there is one cointegration relationship...
- ...we can estimate the VECM specified in Session 3
- But we would like to know whether y adjusts to deviations from the long-run relationship

From Session 3: VECM

$$\begin{split} \Delta m_t &= \mu_m + \alpha_m (b_1 m_{t-1} + b_2 p_{t-1} + b_3 y_{t-1} + b_4) + \lambda_{mm} \Delta m_{t-1} + \lambda_{mp} \Delta p_{t-1} + \lambda_{my} \Delta y_{t-1} + v_t \\ \Delta p_t &= \mu_p + \alpha_p (b_1 m_{t-1} + b_2 p_{t-1} + b_3 y_{t-1} + b_4) + \lambda_{pm} \Delta m_{t-1} + \lambda_{pp} \Delta p_{t-1} + \lambda_{py} \Delta y_{t-1} + u_t \\ \Delta y_t &= \mu_y + \alpha_y (b_1 m_{t-1} + b_2 p_{t-1} + b_3 y_{t-1} + b_4) + \lambda_{ym} \Delta m_{t-1} + \lambda_{yp} \Delta p_{t-1} + \lambda_{yy} \Delta y_{t-1} + \eta_t \end{split}$$

• We would like to test whether $\alpha_y = 0$. This is a test of weak exogeneity of RGDP

Let's First Look at the Output of Our Unrestricted VECM More Closely

Estimation proc:

EC(C,1) 1 2 LOG(M) LOG(p) LOG(RGDp) @ C

VAR Model:

D(LOG(M)) = A(1,1)*(B(1,1)*LOG(M(-1)) + B(1,2)*LOG(p(-1)) + B(1,3)*LOG(RGDp(-1)) + B(1,4)) + C(1,1)*D(LOG(M(-1))) + C(1,2)*D(LOG(M(-2))) + C(1,3)*D(LOG(p(-1))) + C(1,4)*D(LOG(p(-2))) + C(1,5)*D(LOG(RGDp(-1))) + C(1,6)*D(LOG(RGDp(-2))) + C(1,7)

D(LOG(p)) = A(2,1)*(B(1,1)*LOG(M(-1)) + B(1,2)*LOG(p(-1)) + B(1,3)*LOG(RGDp(-1)) + B(1,4)) + C(2,1)*D(LOG(M(-1))) + C(2,2)*D(LOG(M(-2))) + C(2,3)*D(LOG(p(-1))) + C(2,4)*D(LOG(p(-2))) + C(2,5)*D(LOG(RGDp(-1))) + C(2,6)*D(LOG(RGDp(-2))) + C(2,7)

D(LOG(RGDp)) = A(3,1)*(B(1,1)*LOG(M(-1)) + B(1,2)*LOG(p(-1)) + B(1,3)*LOG(RGDp(-1)) + B(1,4)) + C(3,1)*D(LOG(M(-1))) + C(3,2)*D(LOG(M(-2))) + C(3,3)*D(LOG(p(-1))) + C(3,4)*D(LOG(p(-2))) + C(3,5)*D(LOG(RGDp(-1))) + C(3,7) C(3,6)*D(LOG(RGDp(-2))) + C(3,7)

Restricted VECM Estimation

Why also impose B(1,1)=1?

Weak Exogeneity Test of RGDP

Sample: 2000Q1 2012Q4 Included observations: 52

Standard errors in () & t-statistics in []

Cointegration Restrictions:

B(1,1)=1,A(3,1)=0

Convergence achieved after 11 iterations.
Restrictions identify all cointegrating vectors

LR test for binding restrictions (rank = 1):

Chi-square(1) 3.503393
Probability 0.061243

Cointegrating Eq:	CointEq1	
LOG(M(-1))	1.000000	
LOG(P(-1))	1.489042 (0.66084) [2.25326]	
LOG(RGDP(-1))	-5.591641 (0.75494) [-7.40675]	
С	4.873434	

Multiple Restrictions

One could test instead B(1,1)=1,B(1,2)=-1,B(1,3)=0 which means in the LR: $b_1m_{t-1}+b_4=p_{t-1}$

Sample: 2000Q1 2012Q4 Included observations: 52

Standard errors in () & t-statistics in []

Cointegration Restrictions:

B(1,1)=1,B(1,2)=-1,B(1,3)=0

Convergence achieved after 1 iterations.
Restrictions identify all cointegrating vectors

LR test for binding restrictions (rank = 1):

Chi-square(2) 26.87158
Probability 0.000001

Restricted VECM Then What?

- If the test of weak exogeneity indicates that we can't reject it...
- ...then we can estimate the restricted VECM (it is already done as a byproduct of the test!)
- The restricted model will produce different forecasts, tests and impulse responses

Taking Stock and What's Next?

- We now know how to test restrictions...
- ...we determined that RGDP is weakly exogenous
- Is the restricted VECM the best for forecasting? How does it compare to VAR in differences?

MFx – Macroeconomic Forecasting

This training material is the property of the International Monetary Fund (IMF) and is intended for use in IMF Institute for Capacity Development (ICD) courses. Any reuse requires the permission of the ICD.

EViews® is a trademark of IHS Global Inc.

Cointegration and Vector Error Correction Models

Forecasting with VECM

From Session 5

- We determined that RGDP was weakly exogenous and we estimated the model...
- ...but we were not sure which model is best for forecasting
- We will build different forecasts and compare them

Forecasting with Three Models

VECM

Constrained VECM where RGDP is weakly exogenous

VAR in differences

Forecasting: Steps for Each Model

Estimate over 2000Q1-2012Q4

Dynamic forecast over 2013Q1-2014Q4

 Compare to outcomes over the forecasting period and calculate RMSE's

Specification of the VECM: Summary

- Lags: 2
- Deterministic components: Option 3
- Number of cointegration relationships: 1
- Sample: 2000Q1-2012Q4
- Once estimated: Proc/Make Model

Solve the Model: Dynamic Forecast

Proc/Make Graph

Or select
"Endogenous
variables" which is
the same in our
case.

Forecasting Performance

Summary: Comparison of RMSEs

	VECM	Constrained VECM	VAR in Differences
Р	0.6	0.3	0.5
M	2851.4	5446.8	8609.8
RGDP	0.8	0.7	0.5

Taking Stock and What's Next?

- Taking into account the long term relationship yielded superior forecasts of M and P.
- ...imposing restrictions (pre-tested!) does not necessarily improve the forecast
- What should we do if there are more than one cointegration relationships?

MFx – Macroeconomic Forecasting

This training material is the property of the International Monetary Fund (IMF) and is intended for use in IMF Institute for Capacity Development (ICD) courses. Any reuse requires the permission of the ICD.

EViews® is a trademark of IHS Global Inc.

Cointegration and Vector Error Correction Models

Multiple Cointegrations

From Session 6

- We saw from the forecasts that cointegration should be taken into account...
- ...but we found that there was only one cointegration relationship
- How to deal with multiple relationships?

Let Us Study a Similar Problem

We use Germany instead of Austria

We have M, P, RGDP and i (interest rate)

Data are over the same period

Sample: 2000Q1 2012Q4 Included observations: 52

Trend assumption: Linear deterministic trend

Series: LOG(M) LOG(P) LOG(RGDP) I Lags interval (in first differences): No lags

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.1 Critical Value	Prob.**
None * At most 1 * At most 2 At most 3	0.466975	67.17082	44.49359	0.0003
	0.380054	34.45313	27.06695	0.0135
	0.167375	9.590746	13.42878	0.3135
	0.001265	0.065822	2.705545	0.7975

Trace test indicates 2 cointegrating eqn(s) at the 0.1 level

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized		Max-Eigen	0.1	
No. of CE(s)	Eigenvalue	Statistic	Critical Value	Prob.**
None *	0.466975	32.71769	25.12408	0.0100
At most 1 *	0.380054	24.86239	18.89282	0.0142
At most 2	0.167375	9.524925	12.29652	0.2450
At most 3	0.001265	0.065822	2.705545	0.7975

Max-eigenvalue test indicates 2 cointegrating eqn(s) at the 0.1 level

Tests show that there are two cointegration relationships at 0.05 level too.

^{*} denotes rejection of the hypothesis at the 0.1 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

^{*} denotes rejection of the hypothesis at the 0.1 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

Estimate the VECM

Make sure you change the number of cointegrating vectors to 2

EViews Default Restrictions

Date: 03/15/15 Time: 17:21 Sample: 2000Q1 2012Q4 Included observations: 52

Standard errors in () & t-statistics in []

Now we have two cointegrating equations.

Notice the default restrictions imposed by EViews to achieve identification.

Cointegrating Eq:	CointEq1	CointEq2	
LOG(M(-1))	1.000000	0.000000	
LOG(P(-1))	0.000000	1.000000	
LOG(RGDP(-1))	-4.742465 (0.36276) [-13.0732]	-1.239572 (0.06852) [-18.0907]	
I(-1)	0.011253 (0.01241) [0.90689]	0.012565 (0.00234) [5.36103]	
С	23.11359	3.406518	

Alternative Restrictions

 It may not be natural to exclude money or prices from the cointegrating vectors

How about excluding RGDP or interest rate?

 To do so run the VECM with the correct restrictions (check View/Representations) Note the restrictions we used.

Note that in this case
P has a negative
coefficient in the first
cointegrating
equation where only
nominal variables
appear.

Vector Error Correction Estimates

Date: 03/15/15 Time: 17:31 Sample: 2000Q1 2012Q4 Included observations: 52

Standard errors in () & t-statistics in []

Cointegration Restrictions:

→ B(1,1)=1,B(1,3)=0,B(2,2)=1,B(2,4)=0 Convergence achieved after 1 iterations. Restrictions identify all cointegrating vectors Restrictions are not binding (LR test not available)

Cointegrating Eq:	CointEq1	CointEq2	
LOG(M(-1))	1.000000	5.935724 (1.19487) [4.96766]	
LOG(P(-1))	-3.721503 (0.23347) [-15.9399]	1.000000	
LOG(RGDP(-1))	0.000000	-29.97341 (4.70017) [-6.37709]	
I(-1)	-0.033515 (0.00825) [-4.06160]	0.000000	
С	9.600450	144.5020	

Weak Exogeneity of RGDP

- Let us add one additional restriction in each version, that is EViews default restrictions and the alternative ones
- Recall that we found that weak exogeneity of RGDP was important in Session 6
- Now we compare the RMSEs of each model

Comparing RMSEs

EViews default restrictions

	VECM	Constrained VECM	VAR in Differences
Р	0.55	0.60	9.70
M	31.08	36.83	580.39
RGDP	3.48	1.87	43.45
i	0.20	0.30	1.85

Alternative restrictions

	VECM	Constrained VECM	VAR in Differences
Р	0.55	0.59	9.70
M	31.08	37.20	580.39
RGDP	3.48	2.30	43.45
i	0.20	0.27	1.85

Taking Stock and What's Next?

- When there are multiple cointegrating vectors
- ...one should be careful in interpreting the results of over-identifying tests and associated forecasts...
- Use theory or intuition if possible to impose alternative restrictions