

CONTRACT REPORT CR-NAVFAC-EXWC-1601 JUNE 2016

FINAL REPORT IN SITU WETLAND RESTORATION DEMONSTRATION

Nancy E. Ruiz, Ph.D., NAVFAC EXWC John Bleiler, AECOM Dr. Kevin Gardner, P.E., University of New Hampshire

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OME COME TO THE ADDRESS.

valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.	
1. REPORT DATE (DD-MM-YYYY) 07-28-2014 2. REPORT TYPE Contract Report	3. DATES COVERED (From - To) January 2008 - December 2012
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER N62583-08-C-0053/0054
Final Report In Situ Wetland Restoration Demonstration	5b. GRANT NUMBER
	5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)	5d. PROJECT NUMBER ESTCP ER-200825
NAVFAC EXWC - Nancy Ruiz, Ph.D. AECOM - John Bleiler	5e. TASK NUMBER
University of New Hampshire - Kevin Gardner, Ph.D.	5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER
Naval Facilities Engineering and Expeditionary Warfare Center (NAVFAC EXWC) 1000 23rd Avenue EV 31	CR-NAVFAC-EXWC-EV-1601
Port Hueneme, CA 93043	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
Environmental Security Technology Certification Program (ESTCP)	ESTCP
4800 Mark Center Drive, Suite 17D08 Alexandria, VA 22350-3605	11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

reactive treatment, composite particle system, agglomerated amendment pellets, engineered blended amendments

14. ABSTRACT

This Final Report describes the details of Environmental Security Technology Certification Program Project ER-200825 In Stu Wetland Restoration Demonstration. The overall objective was to field demonstrate and validate activated carbon (AC) in situ wetland remediation technologies which have been designed to sequester contaminants in wetlands without adversely impacting system ecology. The Field Demonstration was performed at Canal Creek, Aberdeen Proving Ground (APG), Aberdeen, Maryland. This report includes discussion of quantitative and qualitative performance objectives, information about the study area, pre-demonstration testing, and the implementation and monitoring of the demonstration. Performance assessment criteria and methods, evaluation of the demonstration results, cost, potential implementation issues, and uncertainties associated with these findings are also discussed. The field demonstration was designed to evaluate three potential ACremediation technologies: two pelletized ACproducts, a powder ACslurry, and an engineered manufactured soil cover system. The efficacy to treat hydric soils impacted by polychlorinated biphenyls (PCBs) was assessed via analyses of PCBpore water and tissue residue concentrations. The partitioning of PCBs from soil-to-pore water and from soil-to-benthic tissue was also evaluated. The uptake of nutrients by plants was measured for each of the treatment types.

15. SUBJECT TERMS

sediment, wetlands, hydric soils, activated carbon, organoclays, pore water, PCBs, sequestration, bioavailability, toxicity testing

16. SECURITY CLAS	SIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Nancy E. Ruiz
a. REPORT U	b. ABSTRACT U	c. THIS PAGE U	UU	819	19b. TELEPHONE NUMBER (include area code) (805) 982-1155

Naval Facilities Engineering and Expeditionary Warfare Center Port Hueneme, California

FINAL REPORT In Situ Wetland Restoration Demonstration ESTCP Project Number ER-200825

AECOM

July 2014

Document No.: 60133180-802

Contents

1.0		Introduction	1
	1.1	Background	1
	1.2	Objectives of the Demonstration	3
	1.3	Regulatory Drivers	3
2.0		Technology	5
	2.1	Technology Description	
		2.1.1 Sequestration Agent Descriptions	
	2.2	Technology Development	9
	2.3	Advantages and Limitations of the Technology	11
3.0		Performance Objectives	13
	3.1	Quantitative Objectives	13
		3.1.1 Determine Remediation Effectiveness	
		3.1.2 Evaluate Resident Plant Community Health	19
		3.1.3 Evaluate Benthic Invertebrate Population Health	
		3.1.4 Hydrological Conditions Following Treatment	
		3.1.5 Nutrient Uptake	
		3.1.6 Cost Effectiveness	
	3.2	Qualitative Objectives	
		3.2.1 Evaluate Material Deployment Methods	
		3.2.2 Evaluate Safety Related Issues	
		3.2.3 Assess Technology Acceptance	
4.0		Site Description	23
4.0	11	-	
		Test Site Location and History	
	4.2		
	4.3	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		4.3.1 Potential for Canal Creek PCBs to be Bioavailable	25
5.0		Test Design	30
	5.1	Treatability Study	30
	5.2	Conceptual Experimental Design.	31

	5.3	Permitting						
	5.4	Baseli	ne Characterization	33				
	5.5	Design	n and Layout of Technology Components	36				
		5.5.1	Mass Calculations	37				
		5.5.2	Test Plots	37				
	5.6	Field 7	Testing	41				
		5.6.1	Demonstration Set-Up, Mobilization and Start-Up					
		5.6.2	Material Placement	42				
		5.6.3	Demobilization	46				
		5.6.4	Field Demonstration Schedule	46				
	5.7	Sampl	ing Methods	48				
		5.7.1	Hydric Soil Sample Collection	48				
		5.7.2	Physical and Chemical Sampling and Analysis	50				
		5.7.3	Ecological Monitoring	52				
	5.8	Sampl	ing Results	55				
		5.8.1	Hydric Soil General Characterization	55				
		5.8.2	Black Carbon Assessment	58				
		5.8.3	PCB Chemical Assessment	61				
		5.8.4	Ecological Assessment	73				
6.0		Perfor	rmance Assessment	80				
	6.1	Remed	liation Effectiveness	80				
		6.1.1	Organic Carbon Normalization	80				
		6.1.2	Evaluation of Pre- and Post-Treatment Pore Water Concentrations	81				
		6.1.3	Reduction in Bioavailability of PCBs	82				
		6.1.4	K _{bulk/pw} Evaluation of PCB Reduction in Bioavailability	84				
		6.1.5	Evaluation of Pre- and Post-Treatment Lumbriculus Concentrations	86				
		6.1.6	K _{bulk/Lv} Evaluation of PCB Reduction in Bioavailability	87				
		6.1.7	Treatment Efficacy Discussion.	89				
	6.2	Ecolog	gical Effects	90				
		6.2.1	Vegetation Evaluation	91				
		6.2.2	Plant Nutrient Evaluation	91				
		6.2.3	Macroinvertebrate Evaluation	92				
	6.3	Perfor	mance Evaluation	94				
		6.3.1	Cost	94				
		6.3.2	Implementability	94				
		6.3.3	Constructability	96				
	6 1	Tachn	ology Acceptance	06				

		6.4.1 Permits	97
		6.4.2 Work Plan Review	97
		6.4.3 Industry	97
	6.5	Safety	98
	6.6	Technology Transfer	98
7.0		Cost Assessment	99
	7.1	Cost Model	100
		7.1.1 Treatability Study and Remedial Design	100
		7.1.2 Permitting	101
		7.1.3 Mobilization and Site Preparation	103
		7.1.4 Material Cost	
		7.1.5 Implementation	104
		7.1.6 Demobilization	
		7.1.7 Long-Term Monitoring and Reporting	
	7.2	Cost Drivers	106
	7.3	Cost Analysis	107
8.0		Implementation Issues	108
	8.1	Regulatory Considerations	108
	8.2	Lessons Learned and Recommendations	110
9.0		References	112
A 10	mar	ndians	
_	_	ndices ix A Photographic Log	
		ix B PCB Laboratory Data	
		ix C Biological Laboratory Reports	
		ix D Statistical Outputs	
		ix E Plant Community Report	
		ix F Benthic Macroinvertebrate Report	
		ix G Nutrient Study Report	
		ix H Soil Density and Activated Carbon Application Rate Calculations	
App	endi	ix I Points of Contact	

List of Tables

Table 2-1	Summary of Completed and Ongoing AC and Biochar Pilot Projects in Wetland Hydrosoil Settings	
Table 3-1	Total Number and Types of Samples Collected	.14
Table 3-2	Performance Objectives	.16
Table 5-1	Ecological Evaluation Metrics and Definitions	.36
Table 5-2	Baseline (Time 0) Monitoring Observations	.36
Table 5-3	AC Treatment Design Mass Loading and Thickness	.37
Table 5-4	Number of Replicate Plots by Treatment for Wetland Value Types	.38
Table 5-5	Test Plot IDs by Wetland Area and Amendment Evaluated	.39
Table 5-6	Application Homogeneity	.43
Table 5-7	AquaBlok® Deployment Summary	.44
Table 5-8	Sand Deployment Time Summary	.45
Table 5-9	Analytical Methods for Sample Analysis	.49
Table 5-10	0 Ecological Monitoring Field Measurements	.52
Table 5-1	1 Hydric Soil Characterization	.58
Table 5-12	2 Black Carbon Percentages	.60
Table 5-13	3 ANOVA Analysis Between Pre-and Post-Treatment Within Each Treatment	.60
Table 5-1	4 Bulk Hydric Soil Total PCB Concentrations	.63
Table 5-1:	5 Pore Water Total PCBs	.65
Table 5-1	6 In Situ Pore Water Total PCBs	. 69
Table 5-1	7 Lumbriculus Tissue Total PCBs Results	.71
Table 6-1	Soil Organic Carbon Normalized PCBs	.80
Table 6-2	ANOVA Analysis of Pre- and Post-Treatment Pore Water Concentrations Within Eac Treatment Type	ch .82
Table 6-3	Average Pore Water and Organic Carbon Normalized Pore Water Partitioning Coefficients	.84
Table 6-4	ANOVA Analysis of Time 0, Time 1, Time 2 $K_{bulk/pw}$ Within Each Treatment	.86
Table 6-5	ANOVA Analysis of Pre- and Post-Treatment <i>Lumbriculus</i> Receptor Tissue Concentrations Within Treatment Types	.87
Table 6-6	ANOVA Analysis of Time 0, Time 1, and Time 2 $K_{bulk/Lv}$ Partitioning Coefficients within Each Treatment	.88
Table 6-7	Summary of Statistical Significance of Plant Uptake Factors Relative to Site and Laboratory Controls	.93

Table 7-1 Tracked Demonstration Project Elements and Costs	99
Table 7-2 Cost Estimate for <i>In Situ</i> Contaminant Sequestration in Wetland Hydric Soils	.102
List of Figures	
Figure 1-1 Native Hibiscus in Canal Creek Study Area	1
Figure 1-2 Freshwater Tidal Wetland	4
Figure 2-1 Conceptual Model of <i>In Situ</i> Wetland Remediation	6
Figure 2-2 In Situ Wetland Remediation Process Flow Diagram	7
Figure 2-3 Split Soil Core Shows Minimal Natural Mixing of AC into BAZ has Occurred at Time 0	10
Figure 4-1 Canal Creek Study Area	26
Figure 4-2 July 2009 PCB Sampling Results	27
Figure 4-3 July 2009 DDx Sampling Results	28
Figure 4-4 Wetland Vegetation Cover Types.	29
Figure 5-1 Average Percent Reduction in Dissolved PCB Pore Water Concentrations	31
Figure 5-2 Cleared Test Plots, Staked Sediment Control Products, and Temporary Walkways	34
Figure 5-3 Clearing of Senesced Vegetation for Test Plot	34
Figure 5-4 Treatment Plots and Laydown Areas	40
Figure 5-5 Pelletized Carbon as AquaBlok®	42
Figure 5-6 Field Demonstration Schedule	47
Figure 5-7 Soil Core Collected from APG-08 at Time 0	48
Figure 5-8 Daubenmire Cover Class System	54
Figure 5-9 Representative Soil Cores Collected at Time 2	56
Figure 5-10 Black Carbon Concentrations	59
Figure 5-11 Bulk Hydric Soil PCB Concentrations	62
Figure 5-12 Pore Water Total PCB Concentrations	65
Figure 5-13 In Situ Pore Water PCB Concentration Comparison	68
Figure 5-14 Lumbriculus Tissue Total PCB Concentrations	71
Figure 5-15 Species Richness Results	74
Figure 5-16 Relative Cover Results	75
Figure 5-17 Shannon-Weiner Diversity Index	75
Figure 5-18 Percent Change in Measured Plant Metrics from Pre-treatment to Post-treatment	77

Figure 5-19 Plant Nutrient Uptake	78
Figure 5-20 Macroinvertebrate Population Count by Treatment Type	78
Figure 6-1 PCB Sediment: Pore Water Partitioning (K _{bulk/pw}) by Treatment	85
Figure 6-2 PCB K _{bulk/Lv} by Treatment	88
Figure 7-1 Pelletized Carbon as SediMite TM	104

List of Acronyms

AC Activated Carbon AFB Air Force Base

AFCEE Air Force Center for Environmental Excellence

ANOVA Analysis of Variance
APG Aberdeen Proving Ground
ASE Accelerated Solvent Extraction

ASTM American Society for Testing and Materials

BAZ Biologically Active Zone

BC Black Carbon

BSAF Biota Sediment Accumulation Factor CAS Columbia Analytical Services, Inc.

CCSA Canal Creek Study Area

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

COC Contaminant of Concern
COPC Chemical of Potential Concern

CWA Clean Water Act

CWMDP Chemical Warfare Material Degradation Product

DDD Dichloro-Diphenyl-Dichloroethane
DDE Dichloro-Diphenyl-Dichloroethylene
DDT Dichloro-Diphenyl-Trichloroethane

DDx Total DDT, i.e. the sum of DDT, DDE, and DDD

DI Deionized

DoD Department of Defense DON Department of Navy

ENR Enhanced Natural Recovery

EMNR Enhanced Monitored Natural Recovery

ERDC WES Engineer Research and Development Center Waterways Experiment Station

ESTCP Environmental Security Technology Certification Program

FAA Federal Aviation Administration

GC/ECD Gas Chromatogaphy/Electron Capture Detection GC/MS Gas Chromatography /Mass Spectrometry

GPS Global Positioning Systems

HA Hectare

HASP Health and Safety Plan

HOCs Hydrophobic Organic Contaminants

HVW High Value Wetland

IDW Investigation Derived Waste

ITRC Interstate Technology and Regulatory Council

lbcph Pounds Carbon Per Hour

1ft Linear Feet

LVW Low Value Wetland

MDE Maryland Department of Environment

ml Milliliter

μL Microliter

MNR Monitored Natural Recovery MRP Munitions Response Program

MWMA Maryland Wildlife Management Area

NA Not Applicable

NAS National Academy of Sciences

NAVFAC ESC Naval Facilities Engineering Command Engineering Service Center NAVFAC EXWC Naval Facilities Engineering and Expeditionary Warfare Center

NAVFAC LANT
NOAA
Naval Facilities Engineering Command Atlantic Division
NOAA
National Oceanographic and Atmospheric Administration

NOC Natural Organic Carbon

NRCS National Resources Conservation Service NWCA National Wetland Condition Assessment

OC Organoclay

OSWER Office of Solid Waste and Emergency Response

PAC Powdered Activated Carbon

PBT Persistent, Bioaccumulative, and Toxic

PCB Polychlorinated Biphenyl

PE Polyethylene

PED Polyethylene Device POM Polyoxymethylene

PPE Personal Protection Equipment

psi Pounds per Square Inch QA Quality Assurance QC Quality Control

RBP Rapid Bioassessment Protocol

RO Reverse Osmosis

SETAC Society of Environmental Toxicology And Chemistry

SPME Solid Phase Microextraction

TBC To Be Considered
TLC Thin Layer Cap
TOC Total Organic Carbon

UNH University of New Hampshire

USACE United States Army Corps of Engineers

U.S. Army Center for Health Promotion and Preventive Medicine

USEPA United States Environmental Protection Agency

USFWS United States Fish and Wildlife Service

USGS United States Geological Survey

UXO Unexploded Ordinance VOA Volatile Organic Analysis

WAA Watershed Assessment Associates

WQS Water Quality Standard

ZVI Zero-Valent Iron

Acknowledgments

The Department of Defense (DoD) Environmental Security Technology Certification Program (ESTCP) has funded the Naval Facilities Engineering and Expeditionary Warfare Center (NAVFAC EXWC) and its DoD partners: U.S. Army Public Health Command, Naval Facilities Engineering Command Atlantic Division (NAVFAC LANT), U.S. Air Force (USAF), and Engineer Research and Development Center Waterways Experiment Station (ERDC WES) to conduct work under ESTPC Project No. ER-2000825. AECOM and the University of New Hampshire (UNH) were also funded by ESTCP to perform this demonstration project. The work would not have been possible without the cooperation and support from many individuals at the U.S. Army's Aberdeen Proving Ground.

Executive Summary

This Final Report has been prepared to describe the details of Environmental Security Technology Certification Program Project ER-200825: *In Situ* Wetland Restoration Demonstration. The overall objective of ESTCP Project ER-200825 was to field demonstrate and validate activated carbon (AC) *in situ* wetland remediation technologies which have been designed to sequester contaminants in wetlands without adversely impacting the ecology of these systems. The Field Demonstration was performed at Canal Creek, Aberdeen Proving Ground (APG), Aberdeen, Maryland. The Final Report includes discussion of quantitative and qualitative performance objectives, information about the Canal Creek Study Area, pre-demonstration testing, and activities associated with the implementation and monitoring of the demonstration. Performance assessment criteria and methods, evaluation of the demonstration results, cost, potential implementation issues, and uncertainties associated with these findings are also discussed.

Remediation of wetlands soils impacted by contamination present unique challenges due to the desire to preserve hydric soil structure and the presence of sensitive ecological receptors. Traditional active remediation technologies of removal and off-site disposal can destroy habitat and create challenging restoration conditions, the costs of which may equal the cost of remediation. This project demonstrates a less aggressive, more sustainable, and cost-effective remediation approach than physical removal and off-site disposal.

To this end, the field demonstration was designed to monitor the performance of three potential activated carbon remediation technologies: two pelletized AC products (AquaBlok® and SediMiteTM), a powder AC slurry (referred to as the Slurry Spray), and an engineered manufactured soil cover system (referred to as the Sand control) were tested. Untreated control plots (Control) were also used in the demonstration for comparative purposes. The efficacy of the technologies to treat hydric soils impacted by polychlorinated biphenyls (PCBs) was assessed via evaluations of PCB pore water and tissue residue concentrations (pre- and post-treatment, and relative to control plots). In addition, due in large part to small sample sizes and a high degree of heterogeneity in PCB concentrations in the treatment plots, the partitioning of PCBs from soil-topore water and from soil-to-benthic tissue was also evaluated. Concentrations of PCBs were measured in bulk hydric soil¹, pore water, and benthic receptor tissue in the laboratory, from collected soil samples, for the partitioning (bioavailability/bioaccumulation) assessment. Ecological monitoring was conducted in the laboratory and the field to assess whether the treatment technologies created deleterious effects or if treatment caused conditions to remain unchanged or improved for wetlands vegetation and benthos. The uptake of nutrients by plants was also measured for each of the treatment types. Depending on the metric, either statistical differences or relative differences between baseline monitoring and post-treatment monitoring were determined.

The outcomes of the demonstration project indicate that additional monitoring may be necessary to demonstrate that *in situ* active remediation by activated carbon can be effective in sequestering hydrophobic organic compounds in contaminated wetland sediments. While the findings of the

1

¹ The term "hydric soils" is principally used throughout this document. In cases where the term "sediment" is used in this report, or in the final report for ER-200835, the terms are considered here as synonymous.

overall program suggest that additions of activated carbon can sequester PCBs, the field demonstration findings were not conclusive in demonstrating effective reductions in bioavailability. The reader is cautioned that field conditions in this demonstration project were not controlled as in a laboratory setting. Confounding issues associated with the field monitoring program included the wide PCB heterogeneity in the field, small sample sizes, the short period of post-application monitoring, the unexpectedly slow mixing of the placed carbon with the underlying contaminated sediments, as well as the overall-design of the sampling and monitoring program to measure PCB sequestration *in situ*. An additional potential confounding factor is that black carbon was present in the system prior to treatment application and that migration of placed carbon into or out of the treatment area may have occurred; these factors also potentially impacted the demonstration of treatment efficacy.

The overall program results do suggest that the active *in situ* remediation technologies tested in this project could be effective for the remediation of contaminated wetland sediments. Bench-scale testing of the activated carbon treatments during the treatability study confirmed PCB sequestration. Equipment to deploy the amendment products was readily available, and was demonstrated to be easily adapted to the task, resulting in effective placement of all activated carbon products over the treatment plots. However, an important finding is that cold weather may limit the degree to which high moisture products may be deployed successfully.

The findings of this project are not sufficient to warrant a general recommendation that this technology is readily applicable as a remedial technology for PCBs in wetland sediments. While the overall results are encouraging, additional field monitoring would be necessary to demonstrate the efficacy of using activated carbon. If sequestration can be demonstrated, application of amendments as a remedial technology may be well suited to applications in beneficial habitats such as wetlands where habitat disruption should be minimized; where desirable wildlife might be harmed by traditional remedial methods such as dredging; where hydric soils pose a remediable risk and the cost of excavation or dredging and disposal exceed the level of risk but risk reduction is desired; access the wetland system (e.g., infrastructure improvements) to deliver sequestration agents are not cost-prohibitive; and long-term monitoring requirements are not cost-prohibitive.

A general summary of the project's technical outcomes follows.

Treatability and Application Studies

- Bench-scale laboratory studies demonstrated that all activated carbon products were
 effective in sequestering PCBs; rendering those biologically unavailable to uptake by
 benthic organisms.
- The methods developed for field application of activated carbon were highly effective, resulting in relatively uniform distribution of the placed amendment at the targeted levels.

Site Characterization

• Bulk hydric soil concentrations were heterogeneous within the study area, both prior to and following treatment. Concentrations ranged over two orders of magnitude and were typically higher post treatment.

- Applied activated carbon was not mixed into the underlying contaminated sediments to the degree expected in the field applications. Post-application core samples showed that the bulk of applied amendment was generally found in the upper 2 to 5 cm of the sediment column. This meant that in taking 6-inch depth (i.e., 15 cm) samples for laboratory analyses most, if not all of the applied black carbon, was in the tested samples. This likely affected the pore water and *Lumbriculus variegatus* tissue uptake measures, and the subsequent partitioning calculations.
- Pore water concentrations were similarly heterogeneous and ranged over several orders of magnitude prior to and following treatment. Pore water concentrations generally increased with depth. With the exception of AquaBlok®, pore water concentrations were generally not statistically significantly different following treatment.
- Benthic tissue concentrations measured in L. variegatus were also heterogeneous and ranged over several orders of magnitude. Concentrations, while typically lower following treatment, were generally not statistically different when post-treatment data were compared to pre-treatment concentrations. However, the AquaBlok® posttreatment tissue concentrations were statistically significantly lower than the pretreatment concentrations.

Black carbon was present in the wetlands hydric soil prior to treatment in variable percentages across the study area. Percent black carbon was highly variable after treatment, with standard deviations upward of 2 percent on average in some cases.

Pore Water and Tissue Residue Evaluation

A general decrease in average total PCB pore water concentration was observed following treatment within the Slurry Spray and AquaBlok® treatment plots. Pore water concentrations, except for AquaBlok®, were not statistically significantly different between pre- and post-treatment. However, AquaBlok® and Slurry Spray post-treatment pore water concentrations were statistically significantly lower than the post-treatment Control plots. The temporal and spatial heterogeneity of PCBs measured in bulk sediment and a sample depth that exceeded designed treatment depth may explain why reductions in pore water concentrations were not more clearly definitive as to the effectiveness of treatment as interpreted by reductions in pore water concentrations in this study.

Lumbriculus receptor tissue concentrations were statistically significantly lower in AquaBlok® post-treatment compared to pre-treatment concentrations. Lumbriculus receptor tissue concentrations in the Slurry Spray and Sand control were arithmetically lower, but not statistically different when post-treatment data were compared to pre-treatment data. However, AquaBlok® and Slurry Spray post-treatment Lumbriculus receptor tissue concentrations were statistically significantly lower than the post-treatment Control plots. Post-treatment tissue concentrations in the SediMiteTM and Sand Control treatments were also arithmetically lower than the post-treatment Control.

3

Partitioning Evaluation

Measurements of bulk hydric soil, pore water, and tissue concentrations are the metrics required to demonstrate reductions of environmental risk of exposure to PCBs. Ideally, reductions in pore water concentrations would be a preferred metric for evaluation of treatment efficacy. Given that those metrics did not provide a clear demonstration of effectiveness, an alternative line-of-evidence was to assess the partitioning of PCBs between soil and pore water and relative uptake in benthic macroinvertebrate tissue. The pore water to solid bulk phase partitioning coefficient (K_{bulk/pw}), referred to within this report simply as the pore water partitioning coefficient, is defined as the ratio of the bulk phase concentration divided by the pore water phase concentration. An increase in partitioning represents a shift from the pore water phase to the bulk phase and a reduction in bioavailability (i.e., enhanced treatment). The *Lumbriculus* tissue to solid phase partitioning coefficient (K_{bulk/Lv}), or the *Lumbriculus* partitioning coefficient, is the ratio of the bulk phase concentration to the *L. variegatus* tissue concentration. Both of these partitioning coefficient metrics are discussed in detail in the main body of the report. Both K_{bulk/pw} and K_{bulk/Lv} were normalized to pre-treatment portioning coefficients to evaluate the data relative to baseline conditions and to evaluate treatment effectiveness.

Enhanced treatment is indicated for both the pelletized (AquaBlok® and SediMiteTM) and slurry (Slurry Spray) sequestration agents because partitioning to the bulk phase from the pore water phase increased between the pre-treatment and post-treatment sampling events (within population pre- and post-treatment comparison), as evidenced by an increase in the mean pore water partitioning coefficient. An increase between the pre- and post-treatment mean $K_{bulk/pw}$ was also observed within the Control and a statistically insignificant decrease was observed in the Sand control. A statistical comparison of treatment $K_{bulk/pw}$ against the Control $K_{bulk/pw}$ (pooled post-treatment populations comparison to the Control pooled post-treatment population) showed statistically significant increases in $K_{bulk/pw}$ for one pelletized AC product (AquaBlok®). A second pelletized AC product (SediMiteTM), the Slurry Spray, and the Sand control were not determined to be statistically different from the Control.

Partitioning to the bulk phase between the pre-treatment and post-treatment was observed for all treatments and control plots, as evidenced by an increase in the mean Lumbriculus partitioning coefficient, $K_{bulk/Lv}$. A statistical evaluation between the baseline and post-treatment periods determined a statistically significant increase in $K_{bulk/Lv}$ for AquaBlok[®], Slurry Spray, Sand control, and the Control. SediMiteTM was excluded from this evaluation because baseline sampling was not conducted (although the Time 1 and Time 2 measurements indicate a non-statistically significant increase in the $K_{bulk/Lv}$ over time). A second statistical evaluation compared the post-treatment Control to the treatment plots post-treatment. Statistically increased $K_{bulk/Lv}$ values were observed for the AquaBlok[®] and Slurry Spray relative to the Control. No significant variance was observed for SediMiteTM or the Sand control.

Vegetation Survey

Vegetation survey, plant biological, toxicological, and nutrient uptake metrics, and benthic macroinvertebrate survey were used to evaluate the ecological effects of AC treatment. Ecological results are as follows:

- 49 species recorded in wetland / 32 total species recorded in plots
- Up to 19 species within a single plot
- Common reed >90% in some plots
- No gross effects due to treatment application (early senescence, yellowing, stunting observed)
- No statistically significant differences between treatment and control plots in relative vegetation cover.
- No statistically significant differences between treatment and control plots in species richness or diversity.

Plant Biological, Toxicological and Nutrient Metrics

• No adverse effects in survival, shoot weight (wet and dry), or shoot length due to treatment.

Nutrient uptake measured as the ratio of nutrient concentration in plant to concentration in soil was typically not statistically significantly different from the untreated site Control (Table 1).

Table 1 Nutrient Uptake

Treatment	В	Ca	Cu	Fe	Mg	Mn	P	K	Na	S	Zn	N
Slurry Spray (APG-02)	\uparrow	↑	↑	- 1	1	1	↑	↑			\uparrow	↑
AquaBlok® (APG-06)	↑		↑		1		↑	↑			↑	↑
SediMite TM (APG-16)		↑			1					\downarrow		

Note: ("—") to increased nutrient uptake on average (\uparrow or \downarrow).

Benthic Macroinvertebrate Survey

A paucity of organisms in the wetland prevent drawing conclusions as to the effects of treatment based on the benthic macroinvertebrate population.

1.0 INTRODUCTION

The Department of Defense (DoD) Environmental Security Technology Certification Program (ESTCP) has funded the Naval Facilities Engineering and Expeditionary Warfare Center (NAVFAC EXWC, formerly Naval Facilities Engineering Command Engineering Service Center [NAVFAC ESC]) and its DoD partners U.S. Army Public Health Command (formerly the U.S Army Center for Health Promotion and Preventive Medicine [USACHPPM]), Naval Facilities Engineering Command Atlantic Division (NAVFAC LANT), Air Force Center for Engineering and the Environment (AFCEE), and Engineer Research and Development Center Waterways Experiment Station (ERDC WES) as well as their contractors AECOM Corporation and the University of New Hampshire (UNH), to demonstrate and validate an innovative technology for the *in situ* sequestration of contaminants present in hydric soils of palustrine wetlands (ESTCP Project ER-200825: *In Situ* Wetland Restoration Demonstration).

This Final Report has been prepared to describe the detailed field demonstration including performance objectives, site information, pre-demonstration testing, and activities associated with the actual demonstration. Performance assessment criteria and methods, evaluation of the demonstration results, cost, and potential implementation issues are also discussed.

The Field Demonstration was performed at Canal Creek, U.S. Army Aberdeen Proving Ground (APG), Aberdeen, Maryland (Figure 1-1). Canal Creek site is also being used by another ESTCP-funded project team (ER-200835: Evaluating the Efficacy of a Low-Impact Delivery System for In Situ Treatment of Sediments Contaminated with Methylmercury and Other Hydrophobic Chemicals). Per ESTCP request, the project teams have been in routine communication, have conducted joint strategy sessions, and have staffed field work to date with representatives from both project teams.

Figure 1-1 Native Hibiscus in Canal Creek Study Area

1.1 BACKGROUND

Wetlands owned by the DoD often act as sinks for contaminants including persistent, bioaccumulative, and toxic (PBT) compounds (e.g., Polychlorinated Biphenyls [PCBs], Dichloro-Diphenyl-Trichloroethane [DDT] and its breakdown products, Dichloro-Diphenyl-Dichloroethane [DDD] and Dichloro-Diphenyl-Dichloroethylene [DDE]; here-in-after referred to as "DDx" for all three compounds combined), as well as inorganic constituents (e.g., copper and lead) and energetics from firing range operations. Federal and state agencies routinely mandate that the DoD and other responsible parties conduct remedial actions to address contamination in wetlands. As a result, the Army, Navy, and Air Force have millions of dollars of potential cleanup liabilities associated with contaminated wetlands (Pound, 2012). In addition, treatment wetlands designed to serve as polishing mechanisms for stormwater runoff are also increasingly being utilized and may require remediation if overloaded. The Navy has more than 200 contaminated sediment sites with projected remediation cost of \$1.3 billion; Munitions Response Program (MRP) sites add another

\$1 billion of potential liability. The United States Environmental Protection Agency (USEPA) is currently conducting a National Wetland Condition Assessment (NWCA), which will provide the first-ever regional and national estimates of wetland ecological integrity and rank the stressors most commonly associated with impaired conditions. The final report is anticipated for release at the end of 2013. In addition to efforts by DoD and USEPA to catalog and understand the impacts of contamination on wetlands quality, the Federal Aviation Administration (FAA) is interested because airports are also recognized as having significant contaminated wetlands liabilities (National Academy of Sciences [NAS], 2011). The liabilities faced by the FAA result from the development of wetland habitats in stormwater ponds and ditches on airport properties that receive fuel-impacted runoff. These wetlands are sometimes home to threatened and endangered species. Thus, a concerted effort by multiple agencies is currently underway to estimate the liabilities associated with the degradation of wetlands.

Wetlands provide critical ecosystem functions and are typically sensitive to disturbances related to environmental contamination (e.g., Figure 1-1; Lewis et al., 1999), and hydric soils within wetlands are often the ultimate contaminant sink due to their high sorption capacity associated with high organic content relative to other soil types (hydric soils can be defined as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part [National Resource Conservation Service [NRCS] http://soils.usda.gov/use/hydric/intro.html; Federal Register July 13, 1994]). Remediation of contaminated wetlands has often involved either monitored natural recovery or no further action (von Stakelberg et al, 2008). However, where risks have necessitated remedial action, excavation of hydric soils and off-site transport of excavated materials for treatment and disposal have been selected. This type of remediation is both expensive and destructive to hydric soil structure and valuable habitat. The majority of contaminated wetland areas where excavation is the primary response action will require post-excavation mitigation to restore wetland function and ecosystem services. Wetland restoration efforts following excavation can be expensive and successful restoration is challenging at best (Kusler, 2006a, 2006b). Because of the risk reduction and restoration challenges posed by aggressive remedies, lower impact alternatives that take advantage of, or enhance, natural recovery processes (ENR) are actively being tested and demonstrated, as presented by Patmont et al. (2013), Ghosh et al. (2011), and briefly described in Section 2 of this report.

Alternative remedial approaches that allow targeted *in situ* remediation of wetlands would result in tremendous cost savings with the added benefit of minimizing impacts on ecosystem components. However, *in situ* wetland remediation technologies present logistical deployment challenges equal to the challenges presented by removal technologies, due to the need to preserve the hydric soil structure and the presence of sensitive ecological receptors. The soil structure must also be preserved so as not to alter the hydrology of the wetland. Validated *in situ* technologies for addressing and mitigating hydric soil contamination would be applicable to many wetland areas requiring active remedial responses, reserving excavation, dredging, and other more extreme response actions for only the most highly contaminated areas where actionable risks are readily apparent.

1.2 OBJECTIVES OF THE DEMONSTRATION

The overall objective of ESTCP Project ER-200825 was to demonstrate and validate *in situ* wetland remediation technologies designed to sequester contaminants in wetlands without adversely impacting the ecology of these systems. The Canal Creek hydric soil field demonstration included an evaluation of a sequestration agent identified through bench scale testing (activated carbon [AC]). The work included the application and evaluation of two distinct sequestration agent delivery methods (slurry and pelletized systems were tested) within two distinct types of wetland systems (high value and low value) to determine which combination(s) provide the most cost-effective and environmentally protective solution(s). Monitoring was conducted following the demonstration to validate project success. Specific objectives of the demonstration included:

- Evaluate the ability of AC to reduce the bioavailability of (and risks associated with exposure to) PCBs in wetland habitats at the Canal Creek site using a variety of AC delivery systems;
- Provide cost performance data relative to selected sequestration agents and delivery methods;
- Obtain regulatory agency and trustee acceptance of *in situ* technologies to remediate contaminated hydric soils [e.g., USEPA, National Oceanographic and Atmospheric Administration (NOAA), United States Fish and Wildlife Service (USFWS)]; and
- Transfer the technology to other DoD and professional organizations.

1.3 REGULATORY DRIVERS

Federal and state agencies routinely mandate that the DoD and other responsible parties conduct remedial actions to address contamination in wetlands. Relevant regulatory drivers include the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Clean Water Act (CWA), as well a variety of state wetland protection statutes. The Canal Creek study area has been subject to considerable remedial investigation under the CERLCA program. As a result of the CERCLA regulatory drivers, a determination has been made that unacceptable risks to human health or the environment may be present in portions of the Canal Creek system.

Wetland alteration concerns are not trivial: long-term harm to mature ecological communities may result from overly aggressive remedial strategies. Whenever remedial response actions in sensitive ecological systems are contemplated, it is important to balance the potential risks associated with chemical stressor exposure and the potential risks associated with wetland habitat alteration. As described in USEPA's 2005 Contaminated Sediments Guidance for Remediation of Hazardous Waste Sites, Executive Order 11990 promotes the avoidance by federal agencies, to the extent possible, of the adverse impacts associated with the destruction or loss of wetlands if a practical alternative exists. This concern has been explicitly recognized by USEPA since the mid to late 1990's. The Office of Solid Waste and Emergency Response (OSWER) Directive 9280.0-03, Considering Wetlands at CERCLA Sites (USEPA, 1994), contains further guidance on addressing this Executive Order. USEPA Ecological Risk Assessment Guidance (1999) states that "even though an ecological risk assessment may demonstrate that adverse ecological effects have

occurred or are expected to occur, it may not be in the best interest of the overall environment to actively remediate the site". A review of remedial decisions indicate that remedial goals at DoD sites historically have been based on conservative default screening values rather than actual risk-derived cleanup standards that incorporate bioavailability and remedy risk management considerations (von Stackelberg et al., 2008).

An EPA Science Advisory Board (USEPA, 1990) review of relative ecological risks indicates that environmental protection strategies should prioritize remedial options for the greatest overall risk reduction. USEPA (1990) recommends that the relative risks of remedial strategies be considered, particularly as they relate to natural ecosystem destruction. Habitat alteration may result in greater relative risk than environmental contamination. The terms "acceptable risk" and "remediable risk" are used here for the purposes of risk communication. Risks of an intermediate category are not always so compelling as to require remediation, but may, depending on the balancing of a number of site-specific factors, including costs, health risks, and the risks associated with remediation (e.g., habitat destruction; see Figure 1-2). Based on the lack of human health risk from hydric soil exposure at many wetland sites, and the uncertainties associated with ecological risk analyses at these sites, it is likely that many DoD wetland sites fall into an intermediate category (Suter, 1993).

The use of innovative technologies such as the current demonstration that result in in situ remediation without destroying or functionally altering wetland ecosystems has the potential to result in remediation cost savings with minimal loss of ecological function; these technologies could serve as viable alternatives for the management of wetland sites with intermediate risk levels. In situ remediation technologies applied to wetlands and as discussed in this report may be considered an ENR remedy, that ideally includes a long term monitoring component, or may be classified as Enhanced Monitored Natural Recovery (EMNR). Use of in situ technologies aligns with a wide variety of federal and state-led green and sustainable remedial approaches (Ghosh et al.,

Figure 1-2 Freshwater Tidal Wetland

2011). For instance, the federal government is actively pursuing a sustainable approach to all its activities in accordance with Executive Orders 13423 (2007) and 13514 (2009), and recent guidance documents (Department of Navy [DON] 2012a, 2012b; DoD, 2009; USEPA, 2008a). Less invasive *in situ* technologies may be deemed more often viable when sustainability metrics are included in remedial decisions. The selection of monitored natural recovery (MNR) or ENR remedies may be driven by short term risk (Stern et al., 2004), depending on burial rates, predicted residual concentrations and other considerations. The application of amendment materials for ENR remedies may raise important habitat alteration considerations that also need to be considered during the technology selection process (Chadwick, 2008).

2.0 TECHNOLOGY

In situ wetland remediation as applied in this project is considered the application of an amendment to the biologically active zone (BAZ) of a wetland in an effort to chemically isolate identified contaminants of concern (COCs) from potential ecological and human receptors (Luthy et al., 1997; NRC, 2003; Ghosh et al., 2011). This section describes the in-situ sequestration technology, its development, and advantages and limitations.

2.1 TECHNOLOGY DESCRIPTION

In situ wetland remediation using sequestration agents is a remedial treatment process involving the selection of appropriate agents for sequestration of recalcitrant contaminants present, application of those agents to the wetland soils, and monitoring to ensure effective performance. In situ wetland remediation is intended for surface applications within the BAZ to limit contaminant uptake by the local benthos (Ghosh et al, 2011). The in situ remediation technology evaluated in this study used engineered sequestration agents containing AC to reduce the bioavailability and toxicity of PCBs in hydric soils. Sequestration agents were mechanically deployed over the surface of a wetland and allowed to naturally integrate into the surface layer of the hydric soil through natural mixing processes (i.e., bioturbation, tidal cycles, root mixing, etc.), though the relative importance of each mixing process has not been characterized at this site, nor has the degree of mixing. Given the lack of a benthic macro-infaunal community at the site evaluated in this study, the role of bioturbation is uncertain. Incorporation of sequestration agents into the biologically active zone increases the partitioning of PCBs to the bulk phase and limits PCB bioavailability to benthos (Figure 2-1). It is important to note that the goal of this approach is risk reduction, not mass removal; therefore, performance is gauged through the reduction in contaminant bioavailability following addition of the sequestration agents.

The appropriate use of this technology begins with identifying the proper sequestration agent to meet required remediation goals of a wetland site. Factors to consider in sequestration agent selection include chemical, physical, biological, geographic, social, and climatic conditions at the site. Agent selection will generally begin with a literature review or relevant engineering experience; however, treatment performance will likely need to be demonstrated in the laboratory and/or field prior the final deployment in order to demonstrate adequate risk reduction and to select an appropriate application method (Ghosh et al., 2011). At the point the agent and delivery methods are established and any required regulatory approvals obtained, the full scale application can be conducted. Performance metrics must be established and monitored to verify that risk reduction is accomplished in a manner and within a timeline consistent with the site-specific remediation goals. The generalized treatment process flow is summarized in Figure 2-2. Table 2-1, adapted from Patmont et al., (2013), presents a summary of completed and ongoing AC and biochar pilot projects that have been conducted in wetland settings.

Figure 2-1 Conceptual Model of *In Situ* Wetland Remediation

- (a) Wetland Immediately Following the Application of Sequestration Treatment
- (b) Wetland with Dispersed Treatment Limiting Bioavailability of COCs

Figure 2-2 In Situ Wetland Remediation Process Flow Diagram

Table 2-1 Summary of Completed and Ongoing AC and Biochar Pilot Projects in Wetland Hydric Soil Settings

	Completed AC and Biochar Field Pilots						
Site	Contaminant	Year initiated	Treatment Applied in Intertidal Zone?	Key Findings			
Grasse River, Massena, NY	PCBs	2006	No	Bioaccumulation reduction with AC mixed into or placed on sediment			
Bailey Creek, VA	PCBs	2009	Yes	Bioaccumulation reduction with AC placed in freshwater wetland			
Canal Creek, MD	PCBs & mercury	2010	Yes	Additional evaluation required Reduction with AC placed in freshwater wetland			
	AC and B	iochar Field Studies	Underway				
Site	Contaminant	Year initiated	Treatment Applied in Intertidal Zone?	Key Findings			
Berry's Creek, NJ	Mercury & PCBs	2012	Partial	Evaluate bioavailability control in vegetated wetland			

Note: The information in this table was adapted from Patmont et al.., 2013 with permission.

2.1.1 Sequestration Agent Descriptions

Sequestration agents are selected based on the properties of the contaminants present, the relative affinity of the agents for these contaminants, the strength/permanence of the bond formed, and other considerations including the potential for adverse impacts attributable to the sequestration agent itself. In general, sequestration agents consist of a reactive amendment and a delivery material/matrix; however, agent designs may vary significantly. Three AC sequestration agents were evaluated in this study. Agents were selected from currently available technologies based upon a literature review and a laboratory treatability study. Descriptions of these products are included below.

• Activated Carbon Slurry – An activated carbon slurry was prepared on-site by slurrying AC with off-site water trucked in from a local pool supply company. The slurry was prepared within a hopper attached to a hydro-seeder used for agricultural field applications. The agitator within the hopper was used to mix the slurry; sufficient AC was added to produce a 35-40% slurry carbon concentration, by mass. The powdered AC (PAC) used in the slurry was distributed by Calgon Corporation

(WPH®) and is a virgin bituminous based material (90% passing through #325 mesh sieve).

- AquaBlok® AquaGate+PAC, referred to as AquaBlok® in this report, is a proprietary composite sequestration agent. AquaBlok® is a manufactured aggregate core, coated with reactive material. The size of the aggregate (nominal American Association of State Highway and Transportation Officials System (AASHTO) #8 (1/4-3/8")) and the overall size of the reactive material-coated granule can be adjusted to address project-specific needs. In a subaqueous application, the size is adjusted for the required settling characteristics. For a hydric soil-based application such as in this demonstration, the sizing is based on site-specific considerations including the reactivity of the coating, carbon dosing requirements, and *in situ* soil permeability requirements. The final formulation developed for the field project was the AquaBlok®+PAC 5% (No. 8), which consists of 5% bituminous coal based activated carbon, 10% bentonite clay, and 85% aggregate by weight.
- **SediMite**TM SediMiteTM is a proprietary composite sequestration agent. It is categorized as a dry broadcast pelletized amendment. SediMiteTM was supplied for this demonstration by Dr. Upal Ghosh of the University of Maryland, Baltimore County. The material is an agglomerate consisting of a proprietary blend of powdered activated carbon; weighting agent and inert binder. In dry broadcast as well as subaqueous applications, the weighting agent is designed to provide ballast during application and prevent resuspension *in situ*. As the agent weathers, the binder is designed to structurally deteriorate and release PAC within the biologically active zone. The SediMiteTM provided to this demonstration was 50% coconut- and coal- based activated carbon by weight.

2.2 TECHNOLOGY DEVELOPMENT

In situ wetland remediation through sequestration has potential application for reducing bioavailability of many contaminants (Bridges et al., 2008). Several amendments have been well characterized in both the laboratory and the field, including: apatite, organoclays, coal by-products, charcoal, zero-valent iron, sulfur-infused AC, and/or zeolite (USEPA, 1994; USEPA, 1997; Renholds, 1998; Reible, 2004; Barth and Reible, 2008; Knox et al., 2008; and Ghosh et al., 2010 and 2011). These amendments have been demonstrated to adsorb, de-chlorinate or otherwise remediate specific contaminants through various physio-chemical processes.

The science and engineering of PCB adsorption to AC is well understood and has been successfully applied to the remediation of soils, and most recently, to sub-aqueous sediments (Ghosh et al., 2011; Patmont et al., 2013). Environmental investigations have determined that AC is an appropriate amendment for the *in situ* treatment of similar compounds including hydrophobic organic contaminants (HOCs) and metals (Zimmerman, 2004; Walters, 1984; Hale et al., 2009). Effectiveness of AC in reducing contaminant bioavailability has been shown to improve with decreasing particle size, is dose dependent, and varies with the degree of mixing and contact time (Ghosh et al., 2011). Chemical stabilization and sequestration technologies have been most successfully applied at sites characterized by moderate or intermediate levels of risk to human health or the environment (Bridges et al., 2008). While these sorts of sites do not typically pose an imminent hazard or readily apparent harm which would require more active remedial risk

management, the potential for exposure and effects is not trivial, and some level of active risk management is clearly appropriate.

Similarly, non-reactive containment measures (e.g., thin layer caps [TLC] and isolation caps) have also been investigated as remedial treatment in contaminated wetlands. This remedial strategy differs from *in situ* active remediation in that, depending on thickness, it limits exposure of the BAZ to contaminated hydric soils (TLC) or it isolates the BAZ (isolation cap) using sand as an isolation barrier. Examples of non-reactive treatments applied to wetland hydric soils were demonstrated at Soda Lake, Wyoming (Thompson et al., 2004) and Pine Street Canal, Vermont (USEPA, 2011). *In situ* wetland remediation draws upon the established science and engineering experience of these practices, and attempts to create a permeable barrier within the existing

biologically active zone of the wetland through the application of loose sequestration amendments. The innovative aspect of the technology is primarily associated with delivery of sequestration agents to wetland soils in such a way as to ensure effective distribution and permanent incorporation into the soil matrix, while minimizing disturbances to wetland ecology. mixing forces (bioturbation, vegetative root/rhizome, and hydrodynamic forces) are the primary vector for delivery of the amendment into the BAZ, limiting the bioavailability of the COCs to the local benthos. Studies similar to this demonstration have demonstrated that these natural mixing processes do operate to varying degrees (e.g. Clarke et al., 2001). Figure 2-3 shows a vertical soil profile collected at Time 0, immediately after amendment deployment. Note, some AC appears to have already inwashed into soil void spaces between 2-inches to 3-inches below the top of soil. The degree to which natural mixing forces operate is expected to vary by site and potentially have seasonal variations. Similarly, the depth of the

Figure 2-3 Split Soil Core Shows Minimal Natural Mixing of AC into BAZ has Occurred at Time 0

apparent BAZ will vary by site. The potential effects of these factors on treatment efficacy evaluation are discussed in Section 6 of the report.

The reduction in contaminant bioavailability within a wetland BAZ is the primary objective of low impact *in situ* active remediation approaches (Figure 2-1; see for example NRC, 2003; Semple, 2003; Interstate Technology and Regulatory Council [ITRC], 2011 for discussions on bioavailability). The referenced literature on bioavailability and *in situ* active remediation is largely based on COCs in sub-aqueous sediments (e.g. ITRC, 2011; Thompson et al., 2012; Patmont et al., 2013); however, the concepts and principles are generally transferrable to hydric soils, with the acknowledgement that specific wetland environmental conditions may differ from subaqueous sediment beds (e.g., moisture content, oxidation-reduction potential, temperature, dissolved oxygen) and as such, have the potential to effect bioaccumulation mechanisms relevant to specific COCs.

Although the *in situ* application of these sequestration agents has not been extensively evaluated in palustrine wetland systems, recognized terrestrial remedial principles apply: if materials such as apatite, activated carbon, zeolites, or other sequestration agents can be effectively delivered to the hydric soils, then toxicity, mobility, and bioavailability of inorganic and organic constituents can be reduced. Relatively low-tech delivery methods are well established for upland soils and are readily available technologies in other related fields (e.g., soil stabilization, dust control, wetlands and stream restoration, landscaping, agriculture, and irrigation). Sequestration agent delivery techniques established for other applications, such as landscape mulch distribution and agricultural fertilizer injection, were modified and adapted for use in this demonstration. Refinement of these technologies in the context of wetland systems (e.g., presence of standing water, fluctuating water tables, and type and density of vegetation) and amendment characteristics was an objective of this demonstration. See Appendix A for photographic log of site preparation, amendment deployment, Time 0 (soon after treatment application) and Time 2 (10 months post application) soil core photographs.

2.3 ADVANTAGES AND LIMITATIONS OF THE TECHNOLOGY

The following advantages and limitations should be considered by project managers making remedial decisions for wetland sites. As will be discussed further in this report, the efficacy of this treatment for reducing bioavailability of PCBs in wetland sediments was not conclusively demonstrated in this project. While the sequestration agents described in this report potentially allow targeted *in situ* remediation of hydrophobic organic contaminants in wetland hydric soils, the data from this demonstration and validation study were not conclusive. Although the AquaBlok® post-treatment benthic invertebrate tissue concentrations were statistically significantly lower than the pre-treatment concentrations, the other treatments did not show statistically significant reductions in the bioavailability of PCBs over the time frame evaluated within the project. Although statistically not significant, several other amendments resulted in arithmetically lower pore water and tissue concentrations post-application. Sufficient information was generated to show that activated carbon potentially could provide that sequestration without destroying or functionally altering wetland ecosystems, thus minimizing associated adverse impacts. Additional monitoring is necessary to determine whether this technology is applicable for further use at DoD contaminated wetland sites.

Amendments for the reduction of bioavailability of PCBs would be applicable to wetland areas with remediable risk requiring some type of non-time critical remedial response. More aggressive remedial alternatives such as excavation are typically very costly; the proposed low impact technology offers the potential for significant cost savings by avoiding costs of excavation and disposal of contaminated materials, and costs to restore the functional ecosystem of the site. The economic and ecological advantages offered by this approach, if demonstrated, could facilitate regulatory and stakeholder consensus more readily than more costly and invasive remedial alternatives.

Although a primary goal of this approach is to avoid harming mature wetland communities, it is possible that short-term impacts to the herbaceous community and forbs may occur. Measures that can be taken during implementation to avoid these short-term impacts are described in Section 5 and should be followed whenever possible; vegetation impacts should also be evaluated as part of the post-application monitoring program. Other potential challenges facing this technology include

the long term physical stability of the treatment under a wide variety of climatic and hydrodynamic conditions, differences in sorption behavior due to wetting/drying cycles, implementation related factors such as homogeneous amendment application in uneven terrain, application of sequestration agents in substrates that have limited vehicular access, and other logistical challenges.

Balancing trade-offs between removal and in-situ treatment, where contamination is left in place, is potentially a contentious subject. Cost consideration of remedial alternatives should include the potential ecological costs of both contaminant and non-contaminant (i.e., remediation) related effects.

Finally, technology evaluations should be developed with the understanding that the sequestration agent method of remediating wetland systems is still relatively immature. As a result, it is likely that full scale remedial efforts will require a larger investment in pilot scale evaluations and post treatment monitoring than conventional remediation practices.

3.0 PERFORMANCE OBJECTIVES

Quantitative and qualitative performance objectives were identified for the demonstration. The types and numbers of samples, analyses, and results are summarized in Table 3-1 and presented in detail in Section 5 where the results are summarized. Quantitative objects include remediation effectiveness, risk reduction and ecological community health, hydrological effects, and technology cost. Qualitative objectives include implementability/constructability, safety, stakeholder acceptance, and technology transfer to potential end-users. Table 3-2 summarizes the performance objectives, the evaluation metric, the criteria against which success was evaluated, and whether the objective was met. Each objective is discussed in the following sections.

3.1 QUANTITATIVE OBJECTIVES

3.1.1 Determine Remediation Effectiveness

The remediation technology will be considered effective when the pre-treatment bioavailability of the identified contaminant is reduced below specified risk thresholds, and this reduction is greater than that observed in the control plots.

Pre- and post-treatment PCB concentrations in the bulk hydric soil, pore water, and benthic receptor tissue were collected immediately prior to the treatment applications, and approximately 6 and 10 months following application. The sampling scheme is summarized on Table 3-1 and analytical and biological laboratory results are summarized in Section 5. Analytical data are presented in Appendix B and biological data are presented in Appendix C. Pore water concentrations were compared to established water quality standards, both pre- and post-treatment. Bulk soil/pore water partitioning coefficients were calculated and compared between treatments and the controls as well as pre- and post-treatment. Pre- and post-treatment PCB concentrations in benthic receptor tissues were also compared.

Standard statistical analysis (e.g., Analysis of Variance [ANOVA], t-test) were used to evaluate the significance of changes in dissolved pore water PCB concentrations and receptor tissue PCB concentrations, from 28-day bioaccumulation studies. Statistical significance was determined at the alpha = 0.05 level. The outcomes of the statistical outcomes are presented in Section 6 and the statistical results are included in Appendix D.

There is observational evidence that reduction in the bioavailability of PCBs occurred, on average, due to treatment by AC sequestration agents. The small sample size and heterogeneous PCB results within treatment plots and between pre- and post- application periods make a one-to-one comparison of pore water trends as a metric of treatment success challenging; therefore, results were averaged by treatment type and period for a first tier evaluation. Average pore water concentrations were observed to decrease within the treatment plots from the pre- to post-treatment monitoring events (13 of 17) and pore water concentrations on average were reduced from above to below the Maryland Acute Water Quality Standard (WQS) following treatment (6 of 8 averaged treatment evaluations). Pore water concentrations, except for AquaBlok®, were not statistically significantly different between pre- and post-treatment. AquaBlok® and Slurry Spray post-treatment pore water concentrations were statistically significantly lower than the post-treatment Control.

Table 3-1 Total Number and Types of Samples Collected

Component	Matrix	Number of Samples	Analyte	Location
	Pore water	30	PCBs	1 grab sample per test plot, 10 composite samples from replicate plots ^{1,2} prior to treatment
Time 0 Baseline characterization	Hydric soil	30	PCBs	1 grab sample per test plot, 10 composite samples from replicate plots ^{1,2} prior to treatment
December, 2010	Hydric soil	20	Grain size, organic content, black carbon, % moisture	1 composite per test plot ¹
	L. variegatus	30	PCBs	10 composite samples from replicate plots ^{1,2} prior to treatment
In situ samplers Deployed: April, 2010 Recovered: October, 2011	Pore water	20	PCBs	1 per test plot ¹
	Pore water	36	PCBs	1 grab sample per test plot, 12 composite samples from replicate plots ²
Time 1 Post-treatment monitoring	Hydric soil	36	PCBs	1 grab sample per test plot, 12 composite samples from replicate plots ²
June, 2011	Hydric soil	24	Organic content, black carbon, % moisture	1 composite per test plot
	L. variegatus	24	PCBs	12 composite samples from replicate plots ²
	Pore water	36	PCBs	1 grab sample per test plot, 12 composite samples from replicate plots ²
Time 2 Post-treatment monitoring	Hydric soil	36	PCBs	1 grab sample per test plot, 12 composite samples from replicate treatments ²
October, 2011	Hydric soil	24	Organic content, black carbon, % moisture	1 composite per test plot
La con TM	L. variegatus	36	PCBs	12 composite samples from replicate treatments ²

¹SediMiteTM treatment plots not sampled ²Composite samples were collected from two plots receiving the same treatment

Receptor tissue concentrations generally decreased within the treatment plots in the post-application monitoring. *Lumbriculus* receptor tissue concentrations were statistically significantly lower in AquaBlok® post-treatment compared to pre-treatment concentrations. *Lumbriculus* receptor tissue concentrations in Slurry Spray and Sand control were not statistically different when post-treatment data were compared to pre-treatment concentrations. However, AquaBlok® and Slurry Spray post-treatment *Lumbriculus* receptor tissue concentrations were statistically significantly lower than the post-treatment Control.

Because the pore water and tissue trends were not definitive, partitioning of PCBs was also evaluated as a general line-of-evidence. Pore water partitioning coefficients ($K_{bulk/pw}$) increased for all AC treatments as well as the untreated Control; however, only the relative increase in $K_{bulk/pw}$ for the AquaBlok® treatments was found to be statistically significantly greater than the Control. Statistically significant increases in $K_{bulk/Lv}$ relative to the Control were observed for the AquaBlok® and Slurry Spray plots. PCB pore water to bulk phase partitioning ($K_{bulk/Lv}$) and tissue to bulk phase partitioning ($K_{bulk/Lv}$) was observed to increase within the AC treated plots relative to the Control.

Table 3-2 Performance Objectives

Performance Objective	Evaluation Metric	Success Criteria	Objective Met?
Quantitative Performance	Objectives		
Determine remediation effectiveness in terms of PCB stability and bioavailability	Pre- and post- treatment PCB concentrations in pore water, <i>in situ</i> pore water, and tissue measured over time	PCB pore water and tissue concentrations significantly reduced in treated plots compared to control plots.	Pore water – Pore water concentrations, except for AquaBlok®, were not statistically significantly different between pre- and post-treatment. AquaBlok® and Slurry Spray post-treatment pore water concentrations were statistically significantly lower than the post-treatment Control.
			While not statistically significant, other amendments showed arithmetically encouraging trends (i.e., slight reductions were observed for the Slurry Spray and SediMite TM pore water concentrations over time and post-treatment pore water concentrations in the SediMite TM and Sand control were also lower than the post-treatment Control.).
			Tissue - <i>Lumbriculus</i> receptor tissue concentrations were only statistically significantly lower for AquaBlok® post-treatment compared to pre-treatment concentrations. AquaBlok® and Slurry Spray post-treatment <i>Lumbriculus</i> receptor tissue concentrations were statistically significantly lower than the post-treatment Control.
			While not statistically significant, other amendments showed arithmetically encouraging trends (i.e., some reductions were also observed for the Slurry Spray, SediMite TM , and Sand control tissue concentrations over time and post-treatment tissue concentrations in the SediMite TM and Sand control were also lower than the post-treatment Control).

Table 3-2 Performance Objectives (con't)

Performance Objective	Evaluation Metric	Success Criteria	Objective Met?			
Quantitative Performance Objectives						
Evaluate resident plant community survival and health after treatment	Pre- and post-treatment plant community composition /diversity surveys	No substantial change to resident plant community	Yes			
Evaluate benthic invertebrate population survival and health post treatment	Pre- and post-treatment invertebrate community composition /diversity surveys	No substantial changes in resident benthic invertebrate community	No - a paucity of benthic invertebrates in wetland environment limited robust evaluation of success criteria			
Evaluate hydrological conditions after treatment	Hydrological conditions such as water stage, turbidity, and pH of the wetland prior to and after treatment	Application of amendment does not substantially alter wetland hydrology	Yes			
Evaluate whether adding the amendment impacts nutrient uptake into plants	Plant growth and tissue nutrient concentrations from plants grown in treated and untreated soil.	No substantial reductions in plant nutrient uptake or growth	Yes - generally no deleterious effects observed			
Estimate costs	Detailed cost performance analysis of the implemented technologies	More effective in cost to alternative technologies	Yes			

Table 3-2 Performance Objectives (con't)

Performance Objective	Evaluation Metric	Success Criteria	Objective Met?			
Qualitative Performance Objectives						
Evaluate the implementability /constructability of material deployment methods	Visual observations of application homogeneity and measurements of sequestration agent thickness and areal coverage Observations on site-specific constraints that might affect scalability of technology	Homogeneity of application – homogeneous/consistent sequestration agent coverage over area (both vertical and horizontal) Scalability – scalable to full scale	Homogeneity of application - Yes Scalability - Dry broadcast application method likely limited for large treatment areas.			
Evaluate safety related issues	Documentation of safety related incidents and observations during field implementation	No safety hazard associated with technology implementation	Yes			
Assess agency and industry acceptance of the technology	Develop understanding of state and federal regulatory agency and industry acceptance of technology Work plan review by agencies and/or trustees	Technology considered acceptable by state or federal regulatory agency as a remedial alternative Technology considered acceptable by industry as a remedial alternative	Uncertain. While environmental permitting authorities approved this project, no regulatory oversight was conducted. A recently issued EPA OSWER directive for use of amendments at sediment Superfund sites (USEPA, 2013) suggests general regulatory acceptance.			
Transfer technology to potential end-users	Conference presentations and/or journal articles	Presentation at conference or in journal; presentations to DoD end users	Yes			

3.1.2 Evaluate Resident Plant Community Health

The effect of amendment application on the health of the resident plant community was measured to assess whether the technology improved or had no effect on plant community health. Multiple wetland cover types were identified across the site, as described in Section 5 and detailed in Appendix E.

Resident plant community abundance and diversity was observed pre- and post-application to assess plant community health. The presence and abundance of invasive exotics was observed, and the percent aerial cover for trees, saplings, shrubs, vines, and forbs pre- and post-amendment application was measured. In addition, any post-application observations of early senescence, yellowing or stunting of vegetation, was documented.

Standard statistical analysis was used to evaluate the significance of changes to plant abundance, diversity and cover and comparisons were made between treatment plots at different times and between treatment plots and control plots to account for seasonal differences. The results of the statistical evaluation are presented in Section 6 and the statistical evaluation can be found in Appendix E. The performance objective for each of these parameters was assessed at the alpha = 0.05 level, with the objective being no significant difference in these parameters among the treatments. The remediation technology was considered successful if the post treatment plant community metric condition was within 25% of the pre-treatment conditions and/or concurrent controls. A 25% change in conditions has been previously used by USEPA and other agencies as a quantifiable measurement of ecological significance (e.g., USEPA, 1994).

Changes in diversity, richness, and relative cover between pre- and post-treatment time periods were observed that were greater than the 25% of plant community metric condition. These changes were generally in a positive direction within and among treatment and control plots between monitoring periods. These trends are likely attributable to seasonal growing season effects such as air temperature and fluctuating surface water and water table levels rather than impact from the treatments.

3.1.3 Evaluate Benthic Invertebrate Population Health

The effect of the remedial technology on the resident benthic invertebrate community was measured to assess whether treatment had a significant effect on the health of the invertebrate community.

Observations of benthic invertebrate community health were made between the treatment and control plots to evaluate the effect of the amendment application. Invertebrates were obtained by sieving a sediment core collected from within a plot, sorting, identifying benthic invertebrates to the lowest practical taxonomy in the field, and counting.

It was anticipated that significant change to resident benthic invertebrate community abundance and diversity metrics would be calculated using standard statistical analysis; however due to the extremely low recoveries in both the 6 and 10 month sampling events (71 total organisms and 19 total organisms, respectively) in treated and control plots, a semi-quantitative analysis was instead applied to the pooled number of macroinvertebrates within similar treatment and wetland cover

types. The benthic macroinvertebrate report is presented in Appendix F. The remediation technology will be considered successful if benthic community total count in the treatment plots is within 25% of the control plots. A 25% change in conditions has been previously used by USEPA and other agencies as a quantifiable measurement of ecological significance (e.g., USEPA, 1994).

Macroinvertebrate evaluations were inconclusive due to low recoveries, likely due to habitat limitations (the marsh system at this site does not support a traditional benthic community), as described in Section 5. Semi-quantitative analysis determined a difference in total populations between the control and treatment plots in high value wetlands at the 6 month sampling event (lower), but not the 10 month sampling event, likely due to life stage. No difference was observed in the low value wetland at either post-treatment sampling event. The evaluation is presented in Section 6.

3.1.4 Hydrological Conditions Following Treatment

Assessment of the hydrological conditions of the wetland was initially planned to evaluate whether conditions were altered by amendment application. This metric was anticipated to have potential significance during the planning stages, depending on which demonstration site was selected (freshwater versus brackish). During field deployment at the Canal Creek study area, a freshwater environment, it was determined that the application of thin treatment veneers to the small test plots was not materially altering the permeability of the wetland soil, nor were visual turbidity impacts observed to water quality. Thus, this metric was not quantitatively assessed.

3.1.5 Nutrient Uptake

The effect of amendment application on nutrient uptake in plants was measured to assess whether the technology adversely impacted the ability for resident plants to grow and acquire nutrients from treated soils.

A laboratory test was conducted by exposing plant seedlings to treated and untreated soils and a laboratory control soil. Plant survival, growth, tissue concentrations, and uptake factors were evaluated to assess the impact of the treatments on the plants. Performance was assessed at the alpha = 0.05 level, with the objective being no significant reduction in plant health or nutrient uptake in treated soils relative to the untreated soil. The results of the study are presented in Section 5 and the detailed report is contained in Appendix G.

No statistically significant reductions in plant survival, weight, or shoot length were noted for the treated soils relative to the untreated soil after 77 days. Uptake factors for most nutrients in the treated soils were either not different from or were statistically greater than in the untreated soil. Statistics are presented in Section 6. Only nitrogen and sulfur showed a statistically significant reduction in uptake factors for a treatment (i.e., the Slurry Spray for nitrogen and SediMiteTM for sulfur) relative to the untreated soil. It is unknown how this reduction in uptake may affect plant health in the long term, but adverse impacts on plant survival, growth, and shoot length were not observed in SediMiteTM treated soils (relative to untreated soil) during the 77 day duration of the test.

20

July 2014

3.1.6 Cost Effectiveness

The remedial technology cost basis was assessed as compared to established remedial technologies that achieve the same performance objectives.

A detailed cost performance analysis was conducted to determine if the amendment application is cost effective. Section 7 presents the cost assessment.

The cost evaluation metric used for analysis was whether costs were within +/- 25% of alternative remedial technologies (e.g., excavation and wetland mitigation) that achieve the same risk reduction result.

The results of the cost model suggest cost savings of 20% to 60% may be possible as compared to traditional remediation by removal, but additional monitoring is needed to demonstrate effectiveness.

3.2 QUALITATIVE OBJECTIVES

3.2.1 Evaluate Material Deployment Methods

The implementability and constructability of different amendment deployment methods were evaluated. The even application of the amendment material, manpower or equipment requirements, and scalability for dry broadcast and slurry deployment methods were assessed.

Amendment homogeneity was observed during and after deployment and amendment thickness and area coverage were measured after deployment. Site-specific constraints affecting scalability of the remedial technology were noted.

Laterally and vertically homogeneity of distribution throughout the test plot and scalability to the largest test plots were analyzed.

Deployed carbon slurry yielded a thin veneer in treatment plots; the deployed granular amendment materials (AquaBlok[®], SediMiteTM, and the manufactured soil amendments) had greater thicknesses and more variability. Among the granular treatments, the lateral and vertical distribution was more uniform with SediMiteTM (0.5 inch \pm 0) than either AquaBlok[®] (2.1 inch \pm 0.5) or the manufactured soil (1.9 inch \pm 0.5).

3.2.2 Evaluate Safety Related Issues

The safety of the remedial technology was evaluated based on the ability of the field team to apply the amendments without generating un-safe conditions for workers. Work was conducted under a site-specific Health and Safety Plan (HASP). Safety related issues were evaluated by documenting any safety related incidents and observations of any possible safety issues associated with field implementation. Clearance for unexploded ordnance (UXO) was required and conducted prior to implementation of any demonstration sampling, or monitoring activities.

A successful implementation of the remedial technology will have no safety incidents during implementation, and any observed potential safety issues for future implementation documented.

Approximately 600 hours were spent in the field injury free and more than 1,000 hours were spent in the laboratory injury free. Safety observation reports during the field activities noted the presence of deer ticks in the wetlands, potential cold weather exposure, and stop work conditions related to high water and inclement weather. No activities were modified or stopped due to technology-related hazards.

3.2.3 Assess Technology Acceptance

The acceptance of the technology by regulatory agencies and the environmental industry was evaluated during the permitting process. This plan was reviewed by the US Army Corps of Engineers (USACE), the Maryland Department of Environment (MDE), and USEPA prior to field implementation.

Although no regulatory oversight of this project occurred, from an environmental permitting perspective the use of surface-applied AC as a remedy for impacted wetlands on a small scale was accepted by MDE and the USACE. The USACE specifically determined that the permitted activity did not constitute discharge of a fill material to waters of the U.S. due to the nature of how the AC amendment gets incorporated into the soil. Issuance of permits by USACE and MDE, as well as implementation of full or partial remedy technology, illustrates the acceptance of the technology by the regulatory permitting authorities at the demonstration scale, however does not speak to overall stakeholder or regulatory acceptance. The technology has received industry support at technical conferences with published, peer-reviewed abstracts, and the recent publication of an EPA OSWER directive for use of amendments at sediment superfund sites (USEPA, 2013) suggests a trend towards regulatory acceptance.

3.2.4 Technology Transfer

The results of the technology demonstration were transferred (and continue to be transferred) to potential end-users via professional conference presentations and posters (e.g. Battelle International Conference on Contaminated Sediments, Society of Environmental Toxicology And Chemistry (SETAC), American Society for Testing and Materials (ASTM) Sediments Conference), internal AECOM and Navy webinar presentations, stakeholder meetings, permitting agency meetings, and multiple presentations to the Army Aberdeen Proving Grounds team. Technology transfer was also conducted as part of the permitting process, with team presentations at several MDE and USACE meetings.

4.0 SITE DESCRIPTION

The criteria, the selection process, and the rationale for the selection of APG as the demonstration site, as well as site background information, were presented in detail in the January 2009 *Site Selection Memorandum for ESTCP Project ER-200825 In Situ Wetland Restoration Demonstration*, approved by ESTCP on March 16, 2009, and are summarized below.

4.1 TEST SITE LOCATION AND HISTORY

The APG is an approximately 72,000-acre military installation located in portions of the southeastern Baltimore County and southern Hartford County, Maryland and is bounded by the Susquehanna and Gunpowder Rivers, the Chesapeake Bay, and the AMTRAK Railroad. APG comprises two principal areas, separated by the Bush River: the northern area known as the Aberdeen Area; and the southern area, formerly the Edgewood Arsenal, known as the Edgewood Area. The APG provides large areas of natural wetland habitats. Excluding wetlands within the open water areas, the wetlands at APG total about 13,600 acres or about 35 percent of the land surface area. Non-tidal wetlands total over 6,000 acres with approximately 1,770 acres of emergent wetlands, 4,350 acres of forested wetlands and 134 acres of scrub/shrub wetlands.

Canal Creek is located on the Edgewood peninsula, which is situated between the Gunpowder River to the west and the Bush River to the east. The Canal Creek Marsh and Landfill area is located within the Canal Creek Study Area (CCSA), which is a 1,600-acre study area in the northern region of the Edgewood Area. The CCSA has been an important chemical warfare research and development center for the United States since 1917. Past activities in the CCSA included laboratory research, field-testing, and pilot scale and full scale chemical materials manufacturing. Other activities included operation of machine and maintenance shops and garages, fabrication of metal parts, degreasing, and metal plating. Prior to the late 1960s/early 1970s, almost all municipal and industrial wastewater generated by CCSA facilities were discharged to Canal Creek and its associated marsh. Portions of the marsh associated with Canal Creek were used for landfilling of sanitary wastes and production waste disposal. Chemicals of potential concern (COPCs) included chemical warfare material degradation products (CWMDPs), PCBs, metals (e.g., mercury, arsenic, lead), explosives, solvents, and petroleum products and lubricants. The demonstration site is located along the West Branch of Canal Creek (Figure 4-1).

4.2 SITE GEOLOGY/HYDROGEOLOGY

Canal Creek is a non-tidal to tidal oligohaline to freshwater creek that discharges into the Gunpowder River (Figure 4-1); the demonstration site is freshwater. The CCSA boundaries extend from the mouth of the creek in the south to a small wetland area north of Magnolia Road in the north, and from the western bank of the marsh in the west to Wise Road in the east. The portion of the creek within the CCSA consists of approximately 2 miles of creek with approximately 110 acres of associated tidal and non-tidal marsh. The salinity of the creek ranges from freshwater to approximately 5 parts per thousand (ppt) depending on season and rainfall.

The portion of Canal Creek subject to this ESTCP demonstration project is freshwater. The headwaters of Canal Creek are drainages and small streams north of Magnolia Road fed by

23 July 2014

overland runoff and seeps. The creek begins as two separate branches – the East Branch and the West Branch - which merge at the Canal Creek Main Stem confluence approximately 0.6 miles upstream of the creek mouth on the Gunpowder River. While the Canal Creek marsh provides a continuous wetland habitat for fish and wildlife, the morphology of the West Branch, East Branch, and Main Stem are different.

The demonstration site is located along the West Branch of Canal Creek, just above Hanlon Rd (Figure 4-1). The West Branch originates as a non-tidal stream, which becomes a meandering tidal creek downstream of Magnolia Road. The creek is bordered by 45 acres of tidal marsh emergent vegetation with small areas of scrub-shrub and forested wetlands. The marsh forms several infrequently flooded side arms. The West Branch has been the site of extensive historic discharge of wastes and also receives inputs from contaminated groundwater via seeps.

4.3 CONTAMINANT DISTRIBUTION

Based upon previously conducted site investigations (US Army, 2008), PCBs, DDx, mercury and other metals were identified as the primary COPCs at the CCSA. Historic data indicated that elevated concentrations of PCBs, and to some extent DDx, were present in surficial hydric soil samples collected in the channel and wetland areas above Hanlon Road. The presence of PCBs and DDx in surficial hydric soils at concentration levels similar to those observed historically was confirmed during a 2008 field sampling event conducted at historic sampling locations in the area above Hanlon Road. Results of this sampling event are discussed in detail in the *Site Selection Memorandum* (NAVFAC ESC, 2009a).

Subsequent to completion of the *Site Selection Memorandum*, a field program was conducted in July 2009 to better delineate the extent of PCB and DDx contamination in hydric soils on the eastern side of Canal Creek. This program included collection of 46 surficial hydric soil grab samples for DDx, PCBs (as Aroclors), and Total Organic Carbon (TOC) analysis. PCB Aroclor analysis was selected over PCB congener analysis for use during this phase of the investigation as a cost-effective methodology to evaluate total PCB distribution within the wetlands; however, in later phases of work, PCB congener analysis was incorporated into the performance metrics for the project.

The pre-demonstration soil sampling results indicate extensive occurrence of elevated PCBs along the eastern side of Canal Creek, as shown on Figure 4-2, and sporadic occurrence of DDx in the study area, as shown on Figure 4-3. The PCB concentrations ranged four orders of magnitude, demonstrating a high degree of heterogeneity in the magnitude and spatial distribution of PCBs across the site. Although such a large variability creates the potential to confound analysis and interpretation in demonstration project outcomes, PCBs were retained for further evaluation for this demonstration project and the portion of the creek system with extensive PCB contamination was selected as the study area. Analytical results of the 2009 sampling event were previously summarized in tables presented in the *Field Demonstration Plan* (NAVFAC ESC, 2009b).

As depicted in Figure 4-4, the PCB-impacted area contains four different vegetative cover types:

1. **Low Value Community** Portions of the study area are dominated by a relatively "low value" wetland community containing a virtual monoculture of *Phragmites australis*

24 July 2014

(common reed). Common reed is a tall perennial grass which occurs in wetlands throughout much of the Northern Hemisphere. In North America, native forms of common reed are considerably less vigorous than European forms and the species is considered an invasive species in most of the eastern states along the Atlantic Coast (http://plants.usda.gov). This portion of the site is seasonally saturated, but is rarely saturated by tidal conditions.

2. **High Value Community**. Much of the Canal Creek study area is covered with a diverse riverine tidal "high value" freshwater marsh system dominated by a variety of forbes and graminoid species, including cattail (*Typha latifolia*), arrowhead (*Sagittaria latifolia*), rushes (*Juncus* spp.), sedges (*Carex* spp.), wool grass (*Scirpus cyperinus*), pickerelweed (*Pontedaria cordata*), and swamp rose mallow (*Hibiscus palustris*). This portion of the study area is subject to the ebb and flow of the tide, with an observed tidal fluctuation of approximately 1 foot. In Figure 4-4, the high value wetland includes deep emergent marsh, shallow emergent marsh, and cattail communities.

The demonstration project was designed to evaluate differences, if any, between these ecological community types relative to the potential for PCB bioavailability reductions following sequestration agent application.

4.3.1 Potential for Canal Creek PCBs to be Bioavailable

Many wetland environments contain natural levels of total organic carbon (TOC) that may themselves sequester hydrophobic organics. TOC levels observed in the July 2009 Canal Creek sampling event ranged from 1.1% to 4%, and averaged 2.2% (NAVFAC ESC, 2009b). Despite this fact, several lines of evidence suggest that PCBs in the Canal Creek system are bioavailable and are potentially present in pore water at concentrations which may pose a bioaccumulation risk:

- The data presented in the *Canal Creek Baseline Ecological Risk Assessment* (US Army, 2008) indicate that PCBs are present in fish tissue at elevated levels, suggesting that these constituents are bioavailable.
- The July 2009 hydric soil data were used to estimate pore water concentrations of PCBs (see *Field Demonstration Plan*). The estimated pore water concentrations were compared against USEPA Region 3 surface water screening values based on food chain modeling. All estimated pore water concentrations of Aroclor 1242, Aroclor 1254, Aroclor 1248, and Aroclor 1016 exceeded the surface water screening values.

25

These earlier results indicate that even low levels of PCBs in the pore water may result in food chain impacts to wildlife receptors feeding within the wetland, and that addition of sequestration agents that could limit the bioavailability of these constituents may be potentially beneficial to inhibit bioaccumulation.

Figure 4-1 Canal Creek Study Area Aberdeen Proving Ground Edgewood, MD

1,500

750

0

3,000 Feet

July 2009 PCB Sampling Results Aberdeen Proving Ground Edgewood, MD

Notes:

1) All data in mg/kg (ppm).

2) Duplicate samples are averaged.3) PCB Aroclor method 8082

0 75 150 300 Feet

July 2009 DDx Sampling Results Aberdeen Proving Ground Edgewood, MD

1) All data in mg/kg (ppm).

2) Duplicate samples are averaged. 3) Pesticide method 8081

75 150 300 Feet

Wetland Vegetation Cover Types
Aberdeen Proving Ground
Edgewood, MD

0 62.5 125 250 Feet

5.0 TEST DESIGN

This section provides a detailed description of the demonstration design and the pre- and post-treatment testing conducted to address the performance objectives.

5.1 TREATABILITY STUDY

To support the Field Demonstration, focused laboratory treatability testing was performed with Canal Creek hydric soils, to screen several engineered sequestration agents and one dechlorination agent. The treatability testing results are described in the *Treatability Study Results* (NAVFAC ESC, 2009d). Amendments evaluated in the Treatability Study included PAC and organoclay (OC) for sequestration, and zero-valent iron (ZVI) for reductive dechlorination (biological and abiotic). Although the treatability studies initially focused on DDx and PCBs, due to the relative lack of DDx contamination in much of the CCSA, the PCB treatability study data were the relevant data for this demonstration project.

The primary objective of the Treatability Study was to determine the most effective amendment to be used in the Field Demonstration. Effectiveness was determined based upon an evaluation of reductions of PCB concentrations in hydric soil pore water following introduction of amendments and was confirmed by demonstrating reduced contaminant bioavailability in post-treatment laboratory bioaccumulation studies. The Treatability Study estimated the ultimate potential effectiveness of the *in situ* treatment under ideal laboratory conditions; site conditions and low-impact delivery methods are expected to achieve less thorough mixing and thus a less effective treatment.

The treatability tests were conducted by adding PAC, OC, or ZVI amendments to Canal Creek hydric soil. PAC and OC were added at 3% and 6%, respectively (dry weight), and ZVI was added at 5% and 10% (also dry weight). Figure 5-1 depicts reductions in pore water concentrations of five PCB congeners following amendment addition. These congeners were the sole quantifiable congeners (congener peaks that were consistent and in high enough concentrations to quantify) identified following a scan for all 209 congeners. The 29 congeners that were quantified by a modified USEPA method 8082A (gas chromatography/mass spectrometer [GC/MS] was used in place of Gas Chromatography/Electron Capture Detection [GC/ECD]) are outlined, along with their homolog groups and reporting limits, in Appendix B. The 29 congeners accounted for >99% of the total PCBs within all the samples evaluated. The identified individual congeners' standards (AccuStandard) were then combined to formulate a quantification standard.

The Treatability Study results indicated that organoclays had marginal effectiveness for reducing PCB pore water concentrations, addition of ZVI resulted in increases in PCB availability, and the PAC amendment significantly reduced dissolved PCB pore water concentrations as sampled by solid phase microextraction (SPME) methods. Relative to the PAC amendment, there was no significant reduction in PCB bioavailability when the PAC concentration was increased from 3% to 6%.

The results of the Treatability Study indicated that amendment with 3% activated carbon by weight was the most appropriate amendment choice for the demonstration (NAVFAC, 2009d).

30 July 2014

Figure 5-1 Average Percent Reduction in Dissolved PCB Pore Water Concentrations

Note: * Replicate 2 5% ZVI PCB Reduction = -270%

5.2 CONCEPTUAL EXPERIMENTAL DESIGN

Based on the results of Treatability Study, the AC amendments were deployed in the field using two methods: a sprayed slurry and dry broadcasting of pelletized AC.

- A sprayed slurry of PAC and water was used in areas that are not regularly flooded (e.g., in the lower value *Phragmites* wetland). The PAC slurry was delivered to the wetlands using a high solids sprayer. The design depth for the slurry was 0.5 centimeter (cm)
- Dry broadcasting of pelletized AC was used to distribute two different pelletized AC products in the intermittently flooded high value emergent marsh, as well as the lower value *Phragmites* dominated system. The dry broadcasting method was chosen for deployment of the pellets based on the nature of the wetland environment, the limited availability of support facilities (electrical power, water, etc.), access to the wetland,

and availability of the application equipment. The two products distributed via dry broadcast were AquaBlok® (Project ER-200825) and SediMiteTM (Project ER-200835).

- AquaBlok® is composed of an aggregate core coated with reactive material. The size of the aggregate and, therefore, the overall size of the reactive material-coated granule can be adjusted to address project-specific needs. In a subaqueous application, the size is adjusted for the required settling characteristics. For a hydric soil-based application such as in this demonstration, the sizing is based on site-specific considerations including the reactivity of the coating, estimated treatment requirements, and permeability requirements. The formulation selected for the field project was the AquaBlok®+PAC 5% (No. 8), which consists of 5% activated carbon by weight, 10% bentonite clay, and 85% aggregate by weight. To achieve the required activated carbon application rate of 1.9 kg/m², the pelletized carbon was applied to a depth of 0.055 m (5.5 cm) over the test plot (see Appendix H for mass calculation). 26 tons of AquaBlok® was required for the demonstration project and was delivered to the test site in tarped, 1 ton super sacks on standard plywood pallets.
- A second ESTCP-funded project team (ER-200835: Evaluating the Efficacy of a Low-Impact Delivery System for *In Situ* Treatment of Sediments Contaminated with Methylmercury and Other Hydrophobic Chemicals) delivered a second type of pelletized activated carbon, SediMiteTM, as described in the *Field Documentation Work Plan* ESTCP Project No. ER-200835, July 2009. The designed mass loading was 4.5 kg SediMiteTM/m² with an application rate of 10 kg/minute. The designed application thickness was 0.3 cm.

These two delivery systems depend upon naturally occurring mechanisms (e.g., bioturbation and herbaceous root growth) to vertically distribute the sequestration agent.

Two types of control plots were included in the demonstration experimental design.

- 1. Control plots receiving no material application and representing an un-remediated system; and,
- 2. Sand/soil control plots receiving an application of a sand cover system consisting of a manufactured soil that was engineered by mixing a loam soil and organic matter. The cover system was designed to mimic native soil permeability and TOC content. The manufactured soil cover system (referred to as Sand control) represents a treatment method commonly employed to manage residuals in remediated systems.

Thus, the bioavailability of PCBs in the amendment treated plots was evaluated against the bioavailability of PCBs in untreated and Sand control scenarios.

The demonstration comprises the following operational phases: Time Zero (Time 0) baseline characterization, demonstration study design and layout, field testing, and post-demonstration monitoring events at Time One (Time 1), six months post-construction, and Time Two (Time 2), 10 months post-construction.

5.3 PERMITTING

The CCSA is a CERCLA site, however, since this demonstration project was conducted outside the auspices of CERCLA, the regulatory authorities determined that state and federal permits were necessary to conduct the demonstration activities. USACE assumed the role of lead agency in cooperation with MDOE. The following permits were issued or exempted:

- Maryland State Programmatic General Permit, Category 3-- USACE Baltimore District
- Water Quality Certification- MDE
- Wetlands License- Maryland Board of Public Works Wetland Administration
- Soil Erosion and Sediment Control Plan Harford County Soil Conservation District (exempted)

The USACE Baltimore District stated in the General Permit, "It is anticipated the material applied to the test plots will break down and be incorporated into the existing sediments. Therefore, the work is not expected to entail a permanent placement of fill material."

The permit application process was initiated during remediation design and baseline characterization activities, which are described in the next two sections.

5.4 BASELINE CHARACTERIZATION

Prior to the application of the amendments, both the Canal Creek wetland demonstration site and the amendment were characterized. The July 2009 pre-demonstration investigation characterized the distribution of PCBs, DDx, and TOC in hydric soils throughout the wetland. The dominant vegetation and wetland hydrology were also characterized; two predominant wetland types were identified, as described in Section 4.0 and summarized in Appendix E. In addition to the pre-demonstration investigation, pre-treatment monitoring was conducted to establish baseline conditions within the wetlands, which included chemical analyses, laboratory bioaccumulation testing, and ecological evaluations. Sampling and analysis methods used for baseline characterization activities are the same as those used for the post-amendment application evaluations that are described in detail in Section 5.7.

Time 0 monitoring was conducted during two events, November 2009 and December 2010 while permit applications were in process. Monitoring and plot set-up consisted of the following tasks, which are described in Sections 5.4 and 5.6 and shown in Appendix B:

- a. UXO clearance was conducted prior to baseline characterization, field deployment, and each sampling event using magnetometers and visual-manual methods.
- b. Decontamination and lay-down areas were established.

Twenty-four test plots measuring 8 meters (m) by 8 meters (64 square meters) were c. staked out (Figure 5-2). Plots were identified by numbers 1 through 24 and given a prefix of "APG" (for Aberdeen Proving Grounds). Temporary sediment control products (e.g., 15 cm diameter straw wattles) were placed around the perimeter of each plot, temporary plywood walkways were established between plots and at access points for amendment application activities. Plot ecology was characterized.

Figure 5-2 Cleared Test Plots, Staked Sediment Control Products, and Temporary Walkways

- Plots were delineated by locating one corner of the plot using pre-defined global i. positioning systems (GPS) co-ordinates. An eight foot wooden stake was placed at the located corner, and then the remaining corners were delineated using a compass and tape measure to obtain eight meter square plots. Sediment control products made of certified weed-free straw fibers that are encapsulated in UV stabilized netting were transported to each plot so as to minimize disturbance to the wetland system; these
 - were placed around the perimeter of each plot Figure 5-3 Clearing of Senesced to isolate the treatment, and staked in place by wooden survey stakes. Temporary walkways constructed of plywood were placed between plots and at access points to reduce foot pressure on the hydric soils, as shown on Figure 5-2.
- Within plots, plant species were identified ii. and abundance, diversity, and total percent cover determined for the layers present (i.e., herbs, shrubs/saplings, vines and/or trees).
- Documentation of invasive plant species (in iii. terms of square footage, per occurrence, by species). Once baseline vegetation surveys were completed, senesced vegetation was trimmed to allow treatment products to be applied to the soil (see Figure 5-3).
- The benthic community was sampled for iv. abundance, taxa richness, Biotic Index, functional feeding groups, and other metrics.

Vegetation for Test Plot

- d. December 2010 hydric soil grab samples (0-6 inches) were obtained and characterized both chemically and physically.
 - i. Total PCB pore water concentrations.
 - ii. Total PCB bulk hydric soil concentrations.
 - iii. Physical soil characteristics including grain size, soil pH, OC, black carbon, and percent moisture.
- e. Bioaccumulation testing with oligochaete worm (*Lumbriculus variegatus*) to determine baseline conditions.

Table 5-1 presents definitions of ecological metrics and Table 5-2 presents a summary of the baseline monitoring observations:

- Plant species observations are included in Appendix E.
 - One-third of the test plots were predominately narrow leaved cattail
 - One quarter of the test plots were predominately common reed
 - Approximately one-third of the test plots were predominately emergent marsh
 - The remaining plots were a mixture of vegetation types.
- Tables summarizing the analytical results of bulk hydric soil, pore water, and *L. variegatus* PCB concentrations are provided in Appendix B.
 - Twenty-nine PCB congeners were identified within the hydric soil, pore water and *L.variegatus* in a qualitative (presence/absence) analysis. Different homologs were detected in the two media: pore water detections were for tri- and tetra- congeners while biota contained higher chlorinated congeners (up to hexa).
 - Pore water concentrations prior to the application of reactive treatments ranged over 5 orders of magnitude, ranging from 10⁻² to 10⁻⁷ ug/l.
 - Macroinvertebrate tissue concentrations prior to the application of reactive treatments ranged over 4 orders of magnitude, ranging from 10⁺¹ to 10⁻² mg/kg.
 - Soil black carbon content ranged from 2.12% to 4.78% and typically had less than 1% black carbon content.
 - Grain size was predominantly silt and clay with most samples having less than 30% sand. Gravel content varied from 0 to less than 0.5%.

Appendix C contains the biological laboratory reports. No baseline observations were obtained due to a paucity of benthic organisms.

Table 5-1 Ecological Evaluation Metrics and Definitions

Plant Species Richness	The total number of species or taxa found in a 64 m ² test plot.
Percent Cover	The percentage of vegetation, by taxa, that covers a 64 m ² test plot.
Benthic Macroinvertebrate	The number of benthic macroinvertebrate organisms found in replicate soil samples collected from a 64 m ² test plot. The number of organisms may be identified by taxa to genus or species.

Table 5-2 Baseline (Time 0) Monitoring Observations

Metric	Minimum Observation	Test Plot No.	Maximum Observation	Test Plot No.
Plant species richness	1	APG-21, APG-22, and APG-23	11	APG-3
Percent cover by area			>76% common reed	APG-21,APG-22, APG-23, APG-24
			>76% narrow leaved cattail	APG-03,APG-05, AGP-07, APG-08
Benthic Macroinvertabrate ¹	NR	NA	NR	NA
Bulk Hydric Soil PCB (mg/kg)	0.0169	APG-23	105	APG-06
Pore Water PCB(mg/L)	5.69x10 ⁻⁰⁷	APG-23	3.73x10 ⁻⁰²	APG-07, APG-03, APG-06
L. variegatus (mg/kg dw)	0.0243	APG-22/23	5.32E ⁺⁰²	APG-06/24b
Natural carbon (%)	4.86	APG-07	31.12	APG-11
Black carbon (%)	0.2	APG-06	2.56	APG-12

¹Very few macroinvertebrates were encountered during this survey and no samples were preserved.

NR = not recorded

NA = not applicable

ng/L = nanograms per liter

mg/L = milligrams per liter

5.5 DESIGN AND LAYOUT OF TECHNOLOGY COMPONENTS

The design and layout of the demonstration required determining the mass of amendment required to attain the optimal dosage as determined during the Treatability Study. The calculated mass of amendment was applied to select test plots following the layout described in this section.

5.5.1 Mass Calculations

The Treatability Study determined that the most effective treatment agent for PCBs was an amendment of 3% AC by mass of the hydric soils to be treated. Average wetland soils density and porosity were estimated and used to calculate the required AC application rate. Appendix H contains the soil mass calculations. Based on these calculations, 1.9 kilogram of AC per square meter (kg/m², equivalent to 0.4 pounds per square foot [lb/ft²]) of wetland soil was needed to amend the top 15 cm (6 inches) of the wetland soils with 3% AC by weight. Table 5-3 summarizes the AC treatment design for the test plots:

- The AquaBlok® pelletized carbon has a density of approximately 1,400 kilograms per cubic meter (kg/m³), equivalent to 89 pounds per cubic foot (lb/ft³), of which 5% by weight is AC. This is equivalent to pure activated carbon with a density of 70 kg/m³. The pelletized carbon was applied to a minimum thickness of 0.055 m (5.5 cm) over the test plots to reach the desired mass application rate of 1.9 kg/m² to dose a 15 cm layer of soil.
- SediMiteTM pelletized carbon is 50% by weight AC. SediMiteTM was applied to a minimum thickness of 0.003 m (0.3 cm) to dose a 10 cm layer of hydric soil with an application rate of 4.5 kg/m² (including a 25% safety factor).
- The design mass loading for PAC was 300 pounds AC to 875 pounds slurry per plot; this value was based on bench scale tests that indicated that the PAC slurry could be prepared to contain 30 to 50% AC by weight. This corresponds to a ratio of 0.3 to 0.5 kg PAC / liter of water or about 2.1 kg PAC/m².

Table 5-3 AC Treatment Design Mass Loading and Thickness

Treatment Type	Percent AC (by weight)	Design Mass Loading	Design Application Thickness
AquaBlok®	5%	1.9 kg/m^2	0.055 m (5.5 cm)
SediMite TM	50%	4.5 kg/m^2	0.003 m (0.3 cm)
PAC Slurry	30-50%	2.1 kg PAC/m^2	submillimeter
Spray	(300 pounds AC to 875 pounds slurry)	0.3-0.5 kg PAC / liter of water	
Sand control	0%	1.9 kg/m^2	0.05 m (5.0 cm)

SediMiteTM design includes a 25% safety factor

Additional details regarding equipment and field methods for material placement are provided in Section 5.6.2.

5.5.2 Test Plots

As depicted in Figure 5-4 and summarized on Table 5-4, a series of 8 m by 8 m plots were established in the PCB-contaminated region that includes high value, low value and mixed high/low value wetland cover types. A subset of 20 plots was randomly selected for the Field

Demonstration. The 20 plots were field-demarcated using survey stakes and tape, with a minimum buffer of 8 m between plots. Sediment control products 15 cm in diameter were staked to separate individual plots to ensure that the amendments were isolated to their respective plots. The test plots were situated randomly within the wetland cover types identified in Table 5-4 and the dominant vegetation type for each test plot presented in Table 5-5.

- **Five replicate plots**: high value wetland, pelletized PAC delivery system (AquaBlok[®]);
- Three replicate plots: low value wetland, pelletized PAC system(AquaBlok®);
- One replicate plot: mixed high and low value wetland, pelletized PAC system(AquaBlok®);
- **Two replicate plots**: low value wetland, slurry PAC delivery system;
- Two replicate plots: high value wetland, slurry PAC delivery system;
- Four replicate plots: high value wetland sand control application control;
- Four replicate plots: high value wetland control.

Table 5-4 Number of Replicate Plots by Treatment for Wetland Value Types

Wetland			N 1 6D 11 1				
Value Type	Pelletized PAC (AquaBlok®)	Slurry PAC	Sand Control	Control	Pelletized PAC (SediMite TM)	Number of Replicate Plots	
High	X					5	
Low	X					2	
Mixed	X					1	
High		X				2	
Low		X				2	
High			X			4	
High				X		4	
Tota	Total for Project ER-200825 20						
High					X	3	
Mixed					X	1	
Total	Total for Project ER-200835 4						

The slurry PAC delivery system was not applied in inundated areas since the tidal influence within the freshwater marsh had the potential to dilute and wash away the slurry. In addition to the 20 plots described above, four plots were assigned to a second ESTCP-funded project team (ER-200835: Evaluating the Efficacy of a Low-Impact Delivery System for *In Situ* Treatment of Sediments Contaminated with Methylmercury and Other Hydrophobic Chemicals). These plots in the high value wetland were treated with SediMiteTM, a treatment material that contains AC and inert materials (e.g., clays), as described in the *Field Documentation Work Plan* ESTCP Project No. ER-200835, July 2009. The SediMiteTM pelletized carbon is about 50% by weight AC. Due

to the much higher AC content, the pelletized carbon was applied to a thickness of just over 0.003 m $(0.3 \, \text{cm})$ over the test plots.

Table 5-5 Test Plot IDs by Wetland Area and Amendment Evaluated

Amendment	Plot ID, "APG-"	Dominant Vegetation Type	Wetland Type
Control			High Value
	7	Narrow-leaved cattail	High Value
	12	Shallow emergent marsh	High Value
	15	Shallow to Deep emergent marsh	High Value
Sand	1	Narrow-leaved cattail	High Value
Control ¹	3	Narrow-leaved cattail	High Value
	10	Shallow emergent marsh	High Value
	14	Narrow-leaved cattail and Shallow emergent marsh	High Value
AquaBlok®	5	Narrow-leaved cattail	High Value
	6	Narrow-leaved cattail	High Value
	9	Shallow emergent marsh	High Value
	11	Shallow emergent marsh and Common reed	Mixed High and Low Value
	13	Shallow emergent marsh	High Value
	20	Shallow emergent marsh and Narrow-leaved cattail	High Value
	21	Common reed	Low Value
	24	Common reed	Low Value
SediMite TM	16	Deep emergent marsh and Common reed	Mixed High and Low Value
	17	Shallow to Deep emergent marsh	High Value
	18	Deep emergent marsh	High Value
	19	Shallow emergent marsh	High Value
Slurry Spray	2	Narrow-leaved cattail	High Value
	8	Narrow-leaved cattail	High Value
	22	Common reed	Low Value
	23	Common reed	Low Value

¹ Sand control = manufactured soil cover system

Edgewood, MD 0 50 100 200 Feet

\text{\tint{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te}\text{\texi}\tint{\text{\text{\texitin}\text{\text{\text{\text{\texitit{\text{\texi}\text{\texititint{\text{\text{\text{\text{\text{\texitilext{\texitilext{\texitilext{

5.6 FIELD TESTING

The field implementation was performed from November 29 through December 10, 2010. The initial phase of field work included set-up and mobilization. During the second phase of field work, the amendments were applied to the test plots. All equipment was removed from the site following placement of the amendments. Post-demonstration monitoring occurred six months and 12 months after amendment application. Monitoring methods are described in Section 5.7.

5.6.1 Demonstration Set-Up, Mobilization and Start-Up

Field equipment and supplies were mobilized to the demonstration site during the week of November 29, 2010. Field personnel were oriented to the site and were made aware of their specific duties and potential health and safety concerns. Site preparation activities included UXO clearance, decontamination and laydown area setup, delineation and set-up of treatment plots, receipt of materials and equipment used for placement of the amendment, and Time 0 sampling.

UXO clearance was performed by EA Engineering, Science, and Technology, Inc. (EA) during the week of November 29, 2010. UXO clearance was conducted using magnetometers and visual-manual methods. EA cleared the upland equipment laydown areas, marked off access paths (into the wetlands and within the wetlands), and cleared the plots themselves. Suspicious materials were investigated by EA personnel and removed from the work areas as necessary. Each team was accompanied by an EA representative for UXO clearance during plot installation and baseline characterization sampling. No suspected UXO were found.

As described in Section 5.4, test plots were installed, sediment control products placed and staked, temporary walkways deployed, and Time 0 sampling occurred after UXO clearance was complete. The 24 plots were established by the end of the day on November 30, 2010. Plot clearing and installation activities were photographed by an APG photographer (see Appendix A). One test plot (#15) had to be relocated from its planned position due to the presence of a United States Geological Survey (USGS) monitoring well inside the proposed plot area. The plot was relocated approximately 50 feet to the north, so that the monitoring well was no longer inside the plot, and the coordinates of the new plot corners were recorded.

Sediment control products (straw wattles) were delivered to the upland laydown area on pallets and moved to the wetland as needed. The wattles were transported to the wetlands by teams of two people, via a process designed to minimize impact to the wetland system while efficiently moving the wattles to the plots. Six to nine wattles were hauled by foot from the pallets and dragged on tarps to the plots per trip. Two people were able to move several wattles at one time, greatly reducing the number of trips into the wetland. The vegetation along the paths experienced minor, temporary flattening; however, the wetland soils were not compacted as the loaded tarps floated on the water once they entered the flooded wetland. Thus, the wetland system experienced significantly less disturbance than if heavy equipment was used. The southwest portions of the study area were inundated at times during plot layout. A photographic log of construction-related activities and post-construction marsh recovery is provided in Appendix A.

In order to prepare for placement of wattles, the vegetation along the plot perimeters was cut to grade using machetes and 30 inch, double-sided weed cutters. Wattles were placed around the boundary of each plot area and secured using wooden stakes. Senesced vegetation inside the plots was manually trimmed to approximately one foot above grade to facilitate amendment placement. All wattles were successfully installed by the end of day on December 2, 2010.

Time 0 sampling was conducted in general accordance with the approved field deployment plan. Samples were collected from (0-15 cm) in all plots on December 2 and 3, 2010.

5.6.2 Material Placement

Material placement activities occurred during the week of December 6, 2010. Material placement methods differed by sequestration agent, sequestration agent form, whether the material was placed subaqueous or on hydric soil, the desired layer thickness and precision, and field considerations (e.g., access). Material placement methods were selected to be scalable, non-or minimally invasive, and deployable to relatively remote areas. Further, the methods were selected to address the variable hydrologic conditions of the tidally-influenced wetland system. The equipment used for each amendment and wetland type is described below. The following amendment volumes were placed during the demonstration project:

- 26 tons of pelletized carbon as AquaBlok[®];
- 2,560 pounds of SediMiteTM;
- 1,250 pounds of powdered activated carbon (PAC) via slurry system; and
- 12.5 tons of soil cover.

The thicknesses of amendment applications for each material are presented on Table 5-6.

Figure 5-5 Pelletized Carbon as AquaBlok®

Pelletized Activated Carbon Placement

Twenty-six tons of AquaBlok® (see Figure 5-5) was deployed to eight plots (APG-5, APG-6, APG-9, APG-11, APG-13, APG-20, APG-21, and APG-24) using a Finn Corporation model BB705 bark blower. AquaBlok® was delivered in 1.25 ton super-sacks on pallets and a forklift was used to lift the super-sacks above the receiving hopper of the bark-blower, where they were subsequently emptied. Each of the eight plots received approximately 3.3 tons of AquaBlok® (approximately 6,550 pounds). Each plot received 2.5 super-sacks of AquaBlok® deployed with the bark-blower, with an additional 300 pounds of AquaBlok® deployed manually via five gallon buckets to APG-21, APG -9, APG -20, APG -7, APG -11, and APG -24 to achieve desired mass loading of AC. Deployment of the AguaBlok® agent is summarized in Table 5-7.

SediMiteTM was similarly broadcast as described in the Field Documentation Work Plan ESTCP Project No. ER-200835, July 2009. The details of deployment will be reported in the Final Report for Project No. ER-200835.

Table 5-6 Application Homogeneity

Plot ID,	Treat	ment thick			
"APG-"	NW	NE	SE	SW	Treatment
1	2	2.5	2	1	Sand control
2	NM	NM	NM	NM	Slurry Spray
3	2	1.5	2	2	Sand control
4	NA	NA	NA	NA	Control
5	2.5	3	2	3	AquaBlok [®]
6	1.5	1.5	2	3	AquaBlok [®]
7	NA	NA	NA	NA	Control
8	NM	NM	NM	NM	Slurry Spray
9	2	2	2	2.5	AquaBlok [®]
10	1.5	2.5	2	1.5	Sand control
11	3	1.5	1.5	2	AquaBlok [®]
12	NA	NA	NA	NA	Control Plot
13	2.5	1.5	1.5	2.5	AquaBlok [®]
14	ice	1.5	2.5	3	Sand control
15	NA	NA	NA	NA	Control
16	ice	ice	0.5	ice	SediMite TM
17	0.5	0.5	0.5	0.5	SediMite TM
18	ice	ice	ice	ice	SediMite TM
19	0.5	0.5	ice	ice	SediMite TM
20	2	1.5	2.5	2	AquaBlok [®]
21	2.5	2		1.5	AquaBlok [®]
22	NM	NM	NM	NM	Slurry Spray
23	NM	NM	NM	NM	Slurry Spray
24	2.5	3	2	2	AquaBlok [®]

NA = not applicable

NM = not measured/thin veneer

Ice = amendment thickness could not be measured due to the presence of ice

Table 5-7 AquaBlok® Deployment Summary

		Test Plot ID							
		APG-21	APG -05	APG -20	APG -09	APG -11	APG -24	APG -13	APG -06
letric	Pounds of AquaBlok® Deployed per Test Plot				6,2	225			
I W	Pounds per Hour	3,248	2,767	2,988	3,395	2,075	4,669	2,394	4,980
тте	Tons per Hour	1.62	1.38	1.49	1.70	1.04	2.33	1.20	2.49
Deployment Metric	Effective Carbon Deployment Rate (pounds AC per hour)	162.4	138.3	149.4	169.8	103.8	233.4	119.7	249.0
		Leng	gth of Hose ((LFT)					
		100	150	200					
ent	Avg Tons per Hour	2.15	1.70	1.24					
Deployment Metric	Avg Effective Carbon Deployment Rate (pounds activated carbon per hour)	214.94	169.77	124.29					

PAC Slurry Placement

The PAC was deployed to four plots (APG-2, APG-8, APG-22, and APG-23) using a FINN model T75 hydro-seeder with a 750 gallon tank capacity. Hydro-seeders are designed to rapidly apply slurries to large areas. They have an attached tank with mechanical agitators and/or re-circulating pumps that function to mix and keep the solids in suspension. Hydro-seeders range in size from small trailer mounted units to large truck mounted units. Hydro-seeders can reach significant distances from the pump, with typical hose lengths of 300 – 500 feet. They are generally limited to a solids percentage of less than 10%. The application rate of the slurry is limited by the amount of water that can be applied to the wetland soils before the slurry is no longer absorbed and begins to flow off the test plot. Depending on the saturation and hydraulic conductivity of the soil, multiple applications may be necessary to achieve the desired mass application rate.

Six hundred pounds of AC and approximately 180 to 200 gallons of water (total weight of approximately 1,500 to 1,700 pounds) were loaded into the tank of the hydro-seeder to form a 35-40% slurry by mass. The hydro-seeder agitator was then used to mix the slurry, and approximately half of the mixture was pumped to each plot. The application process was conducted in approximately 15 minutes for each plot, during which time an even coating of the slurry was applied over the entire plot.

Sand Mixture Placement

A sand mixture consisting of 90% sand and 10% organic rich topsoil was combined to create a manufactured soil cover amendment (referred to as the Sand control). The manufactured soil was deployed to four plots (APG-1, APG-3, APG-10, and APG-14) that served as control plots for

comparison to a natural soil cover application. Approximately 12.5 tons of the sand/top soil mixture was delivered to the staging area in bulk via a dump truck, stockpiled, and covered with polysheeting. The sand/top soil mixture was loaded into super-sacks on-site for measurement and to allow loading into the bark-blower hopper. The sand/top soil mixture moisture content was high, due to the rainy conditions during delivery, even though all possible efforts were taken to keep the mixture dry (i.e. covered with poly-sheeting). Each of the plots received approximately 3.1 tons of the sand mixture.

Sand was deployed successfully on APG-3 using the bark blower following the same application procedures as was used to place the AquaBlok[®]. However, the moisture content in the sand posed significant challenges. Due to the low air temperatures and high moisture content of the sand, the bark-blower clogged frequently and significantly. Approximately 2.15 tons was deployed to APG-10 using the bark blower before cold air temperatures rendered the bark blower inoperable. The remaining sand mixture (approximately 7.25 tons) was manually deployed via five gallon buckets. Table 5-8 summarizes the sand deployment rates. Implementability issues are summarized in Section 6.3.2.

Table 5-8 Sand Deployment Time Summary

			Test I	Plot ID	
		APG-3	APG-14*	APG-10*	APG-1*
etric	Pounds of Sand Deployed per Plot		6,2	250	
t Me	Pounds per Hour	3,261	NA	NA	NA
nen	Tons per Hour	1.63	NA	NA	NA
Deployment Metric	Effective Carbon Deployment Rate (Pounds activated carbon per hour)	32.6	NA	NA	NA
		Le	ength of Hose (Ll	FT)	
		100	150	200	
nt	Avg Tons per Hour	1.63	NA	NA	
Deployment Metric	Avg Effective Carbon Deployment Rate (Pounds activated carbon per hour)	32.61	NA	NA	

^{*} Sand mixture freezing and clogging hose and bark-blower.

NA= Not applicable

Field Modifications

Field modifications from the Demonstration Plan were discussed prior to implementation and documented in daily field logs. The following changes were noted:

 APG-15 was relocated as described above from the location proposed in the Demonstration Plan due to the presence of a USGS groundwater monitoring well within the plot. • APG-15 was proposed to receive the AquaBlok[®] treatment; however, it was changed to a control plot and APG-20 was switched from a control to an AquaBlok[®] plot due to the distance of APG-15 exceeding 250 feet from the equipment.

The method of sand deployment was modified December 10th due to freezing of the wet sand/top soil mixture in the bark blower and broken shear pins in the conveyor belt track, rendering the equipment unusable. As a result, the manufactured soil mixture was delivered and spread in control plots APG-14, APG-10, and APG-1 by hand using 5-gallon buckets.

5.6.3 Demobilization

After completing material placement, the deployment equipment was demobilized. The unused straw wattles were cut up and placed over disturbed areas to provide erosion protection. All trash was properly disposed of in an on-site dumpster.

A series of cores (one foot or 30 cm) was collected from eight plots on December 10 via a hand driven push core. This subset of the deployment plots (APG-2, APG-8, APG-10, APG-13, APG-14, APG-17, APG-19, and APG-20) was selected to provide a cross-sectional representation of post-deployment wetland substrates. Cores were photographed and then archived at the UNH laboratory.

Five drums of properly labeled decontamination waste (four drums contained decontamination water and one contained PPE) were stored on-site for waste characterization sampling. The drums were sampled on January 28, 2011. A water sample and a personal protective equipment (PPE) sample were submitted to Katahdin Analytical Services (Portland, Maine) for PCBs (SW 8082) and Pesticides (SW8081). Upon receipt of the data, the APG waste contractor was able to properly remove the drums from the site for appropriate off-site disposal.

5.6.4 Field Demonstration Schedule

Figure 5-6 presents the schedule of activities related to the field implementation of the technology. Post-treatment monitoring activities and scheduling are described in Section 5.7.

Figure 5-6 Field Demonstration Schedule

47 July 2014

5.7 SAMPLING METHODS

Treatment effectiveness of the *in situ* wetland remediation technology was evaluated through the monitoring program described in this section. Time 0 baseline characterization sampling programs were performed in November 2009 and December 2010 prior to field deployment of the amendments. Post-treatment monitoring was performed 6 months (Time 1) and 10 months (Time 2) after amendment application.

The Time 1 post-treatment monitoring was performed in June 2011 and Time 2 monitoring was performed in October 2011 to allow for monitoring during peak growing season foliage conditions (i.e., between approximately March and October of the year). Monitoring tasks included field sample collection, chemical analyses, laboratory bioaccumulation testing, and ecological evaluations to assess the efficacy of the sequestration agent application, and the wetland community response to implementation of the *in situ* treatment. The number and types of samples collected and the analytical methods that were used are presented in Tables 5-9 and 5-10, respectively. Identical sampling techniques, field observations, and laboratory analysis methods were used during each sampling event, and within each sampling plot. Field sample collection is described in Section 5.7.1, methods for analysis of the chemical data are discussed in Section 5.7.2, and ecological methods are described in Section 5.7.3.

5.7.1 Hydric Soil Sample Collection

Hydric soil samples were collected for chemical and physical characterization purposes from within each test plot for each sampling event. One representative sample was collected per test plot; the representative sample was a composite of eight sub-samples collected from the upper 0-6 inches (0 to 15 cm) of the soil profile using a hand soil auger. Figure 5-7 depicts a typical Time 0 soil profile observed by splitting a soil core. The eight sub-composite soil samples were placed in a stainless steel bowl, homogenized, and composited following standard USEPA sediment sampling methods (USEPA, 2001). Composited hydric soil samples were shipped to UNH where they were split for *ex situ* pore water and bulk soil analysis.

Hydric soil samples were collected from two replicate treatment plots for bioaccumulation analysis. Samples were collected and composited as described above, all but two composite samples were combined from two different plots that contained the same amendment treatment. Composite sampling was conducted in order to acquire enough soil mass from each treatment type to support the 28-day bioaccumulation study with laboratory-supplied polychaetes. Composited samples were shipped to biological laboratories for testing (either Aquatic Biological

Figure 5-7 Soil Core Collected from APG-08 at Time 0. Photographic scale is in inches.

Sciences [Burlington, Vermont] or AECOM Fort Collins Environmental Toxicology Laboratory [Fort Collins, Colorado]) where 28-day bioaccumulation tests were conducted with *L. variegatus* (USEPA, 2000) Following bioaccumulation testing, the collected receptor tissue samples were subsequently shipped to UNH for chemical analysis. A sub-sample of the composite hydric soils was also shipped to UNH for pore water and bulk soil analysis.

In addition to the composite soil samples, a second set of soil cores was collected. One representative 0 to 30 cm intact core sample was collected per plot and archived from the Time 1 and Time 2 sampling events for potential future PCB analysis should funding become available for analysis of multiple sampling horizons within the core.

Twenty *in situ* passive pore water samplers were deployed in April 2011 to provide a second method to evaluated PCB pore water concentrations following amendment application. The samplers were deployed through October 2011.

Table 5-9 Analytical Methods for Sample Analysis

Matrix/ Parameter	Test Description	Sampling Method	Analytical Method	
Pore Water				
PCBs	Ex situ POM passive sampling	Hawthorne et al., 2009	Modified EPA 8072 ¹	
PCBs	In situ PED passive sampling	Adams et al., 2007	Modified EPA 8072 ¹	
Hydric Soil				
Grain size	Grain size analysis	ASTM D 422	NA	
Moisture content	Thermal volatilization	Gustafsson et al., 1997	NA	
NOM	Thermal oxidation	Gustafsson et al., 1997	NA	
Black Carbon	CTO organic carbon analysis	Grossman & Ghosh, 2009	NA	
PCBs	Accelerated solvent extraction	EPA 8082A	Modified EPA 8072 ¹	
Tissue				
PCBs	28 day bioaccumulation testing; Accelerated solvent extraction	EPA 600/R-99/064; EPA 8082A	Modified EPA 8072 ¹	

¹ Congener specific analysis representing 99% of total PCBs

CTO = Chemical Thermal Oxidation

NA = Not Applicable

5.7.2 Physical and Chemical Sampling and Analysis

Wetland soil samples were collected and submitted for physical and chemical laboratory testing. Physical parameters evaluated include soil texture analysis (i.e., grain size), soil organic content, black carbon content and percent moisture. Chemical analysis of PCBs in bulk soil, pore water, and macroinvertebrate tissue was conducted to assess the bioavailable fraction of PCBs and the resultant efficacy of the applied treatments.

Hydric Soil General Characterization Methods

Bulk hydric soil moisture contents were established by drying the hydric soil at 60°C for 48 hours (Gustafsson et al., 1997). Concentrations are reported as mass water per total bulk hydric soil. Natural organic carbon was also measured thermogravimetrically (Gustafsson et al., 1997). Dry samples were combusted at 375°C for 24 hours in the presence of oxygen. Black carbon was measured through a chemical thermal oxidation procedure (Grossman and Ghosh, 2009). Grain size analysis was conducted by GeoTesting Express in accordance with ASTM D422-63. All hydric soils samples were homogenized prior to analysis.

Bulk Hydric Soil PCB Extraction and Sample Preparation

Hydric soil samples were evaluated for bulk PCB concentrations following a modified EPA 8082A using GC/MS. Approximately 10 grams of composite samples was chemically dried with sodium sulfate. The samples were extracted within stainless steel accelerated solvent extraction (ASE) cells on a Dionex ASE 200 Accelerated Solvent Extractor with a 1:1 Hexane/Acetone mixture at 100°C and 1,500 psi (pounds per square inch). Following extraction, the solvent extract was concentrated to 5 milliliters (ml) under nitrogen. Excess water was removed during this process chemically with sodium sulfate. A size partitioning exclusion clean up method using Thermo Scientific HyperSep Si Packs was then applied to the samples to remove interfering compounds (EPA 3630C). The solvent extract was then again reduced under nitrogen and concentrated to 10 ml in hexane. The final extracts were transferred to 16 ml amber vials until GC/MS analysis was conducted.

Pore Water PCB Extraction and Sample Preparation

Collected sediment grab samples were evaluated for their PCB concentration in the pore water phase using Polyoxymethylene (POM) passive samplers (Hawthorne et al., 2009). The strips of POM were cut into 4x6 cm pieces and sonicated for three hours in methylene chloride followed by immersion for three hours in methanol. The POM strips were then rinsed in reverse osmosis (RO) water and air dried in a fume hood on clean tinfoil for less than 1 hour. POM strips that were not immediately used were stored in RO water. Twenty grams of homogenized sediment was added to a muffled 60 ml amber vial along with one strip of POM and 40 ml of a 50 mg/ml sodium azide solution. POM strips were weighed prior to insertion into the vials. The sample vials were then capped and shaken for five seconds. Samples were placed on a rotator wheel for a 28 day equilibrium period. At the conclusion of this equilibrium time, the POM strip was removed from the sample vials and rinsed for 15 seconds using RO water and extracted in 40 ml of a 1:1 hexane/acetone solution. The extract was concentrated under nitrogen to 10 ml and transferred to 16 ml amber vials until analysis (Modified EPA 8082A). Pore water concentrations were determined from the POM according to published POM-pore water partitioning coefficients (Hawthorne et al., 2009).

50 July 2014

In Situ Pore Water PCB Extraction and Sample Preparation

Pore water concentrations were also sampled *in situ* with Polyethylene Devices (PEDs) consistent with the methodology described in Adams et al. (2009). Twenty 15 inch by 12 inch PED frames, with approximately a 6 inch by 12 inch exposed section of PE in the center, were deployed in December 2010 and left to equilibrate with the *in situ* pore water for 10 months in 20 of the treatment plots. Samplers were installed so that the PE (polyethylene) was exposed to the top six inches of sediment, to evaluate the pore water concentrations with vertical depth (profile). In October, 2011 the samplers were recovered from the field. The polyethylene sheeting was immediately rinsed with RO water by field personnel to remove any soil/debris. The top two inches of PE (exposed to the top 2 inches of soil) was cut from the frame, followed by the next 2 inches (exposed to the -2 to -4 inch layer of soil) and lastly the bottom two inches of exposed PE (exposed to the -4 inch to -6 inch layer of soil). As each section was removed, it was placed in a 40 ml volatile organic analysis (VOA) vial. A 1:1 Hexane/Acetone mixture was later added to extract the PE. Samples were then shipped to UNH laboratories for analysis.

Upon arrival, each sample vial was inspected and sonicated for 2 hours (Adams et al., 2009). The solvent extracts were then removed from each vial, exchanged to hexane and concentrated to 10 ml. Samples were transferred to 16 ml amber vials and stored at 4°C until analysis.

Macroinvertebrate Tissue PCB Extraction and Sample Preparation

Bioaccumulation studies were conducted in the laboratory with composite hydric soil samples from multiple plots containing the same treatment. Soils were shipped directly to biological laboratories for the 28 day bioaccumulation testing using *L. variegatus* following EPA/600/R-99/064. After the conclusion of the exposure period, the guts of the organisms were purged, the organisms were blotted dry, weighed and frozen in a 20 ml vial. Vials were shipped overnight on ice to UNH laboratories for chemical analysis.

Upon receipt, samples were masticated in sodium sulfate and Ottawa sand, then extracted on a Dionex ASE 200 Accelerated Solvent Extractor (EPA 8082A) with a 1:1 Hexane/Acetone mixture at 100°C and 1,500 psi. Following extraction, the solvent extract was concentrated to 5 ml under nitrogen. Excess water was removed during this process chemically with sodium sulfate. A size partitioning exclusion clean up method using Thermo Scientific HyperSep Si Packs was then applied to the samples to remove interfering compounds (EPA 3630C). The solvent extract was then again reduced under nitrogen and concentrated to 10 ml in hexane. The final extracts were transferred to 16 ml amber vials until PCB analysis via GC/MS was conducted.

Due to tissue mass limitations, only PCB analysis was conducted on tissue samples; no sampling for lipids was possible.

PCB Analysis by Gas Chromatography/Mass Spectroscopy

Two PCB analyses were conducted within this study following a congener specific modified EPA 8072 method. Preliminary qualitative analyses were conducted to determine the major contributing congeners present at the site; a second analysis was conducted to quantify the concentration of the major congeners within the bulk hydric soil, pore water, and macroinvertebrate tissue. A 209 Congener PCB standard manufactured by AccuStandard (New Haven, CT) was used for the qualitative analysis. A 30 congener PCB standard, custom fabricated

51 July 2014

at UNH from individual congener standards distributed by AccuStandard was used in dilution for the quantitative study. The standard accounted for 29 of the congeners found in the qualitative study in addition to a surrogate standard. The quantitative standard accounts for >99% of the total PCB mass observed in the qualitative study. Both analyses were conducted on a Varian CP3800 GC/Saturn 2200 MS. One microliter (μ L) of sample was injected onto a DB-5 type capillary column (Varian Factor Four VF-5ms), ionized via electromagnetic ionization and detected with selective monitoring ion trap technology.

PCB Data Handling and Statistical Methods

PCB concentrations in this study are reported as total PCBs (cumulative sum of the 30 congener standard). Total PCBs were measured following a modification of EPA's method 8082A: Polychlorinated Biphenyls (PCBs) by GC/MS (in place of GC/ECD). Under this methodology, the concentration of PCBs measured as Aroclors or as individual PCB congeners may be determined in extracts from solid, tissue, and aqueous matrices. The holding time depends on what matrix it comes from; congener-specific PCBs from a pore water matrix are held 7 days to extraction and 40 days from extraction to analysis, whereas total PCBs in a tissue matrix are held for twice the length of time to extraction. Standard statistical evaluations of the concentrations including ANOVA and t-tests were also applied when appropriate. ANOVA was used to determine significant variance relative to the control and t-tests were used for comparison evaluations to identify which components were statistically significantly different between pre- and post- treatment. Statistical significance was determined at the alpha = 0.05 level and evaluations were performed using JMP Pro 10.0 Statistical software.

5.7.3 Ecological Monitoring

Ecological monitoring included the quantitative assessment of the physical characteristics, plant communities, and benthic invertebrate communities within each plot. Identical parameters (Table 5-10) were measured in both the lower quality *Phragmites* dominated system (low value wetland) and the more diverse high value freshwater marsh system (high value wetland). Ecological observations were compared to data collected prior to the application of amendments and to concurrently monitored control plots. Control plots with the same vegetation, soils, and hydrological conditions were incorporated and monitored in parallel.

Table 5-10 Ecological Monitoring Field Measurements

Field Activity	Subject of Monitoring	ct of Monitoring Measurement	
Time 0 Baseline Characterization	Soil characteristics	Texture, TOC	
		Abundance/Density	Number of individual emergent plants per square meter
	Resident plants	Species diversity	Plants identified to lowest practical taxon (typically species)
		Percent areal coverage	Measured for separate strata

Table 5-10 Ecological Monitoring Field Measurements (con't)

Field Activity	Subject of Monitoring	Measurement	Comments
Time 0 Baseline Characterization	Invasive exotic plants	Presence and number	Plants identified to lowest practical taxon (typically species) Estimate of distribution and square footage per occurrence
	Same as Time 0		Same as Time 0
Time 1 Post-treatment monitoring	Benthic invertebrates	Abundance and diversity of benthic invertebrates	Invertebrates identified to lowest practical taxon in the field
Time 2 Post-treatment monitoring	Same as Time 1	Same as Time 1	Same as Time 1

Vegetation Monitoring

Vegetation monitoring included an evaluation of survivorship and health of resident plants measured as total percent cover, species richness, and diversity (i.e., Shannon-Wiener Diversity Index) for the layers present (i.e., herbs, shrubs/saplings, vines and/or trees). Diversity indices are useful because they take into account both species richness and the relative abundance of each species to quantify how well species are represented within a community. Invasive plant species were also documented, in terms of percent cover within each sample plot, and dense mono-culture stands were mapped throughout the field demonstration wetland on aerial photographs with lateral extents confirmed in the field. Monitoring was conducted both pre- and post-application to assess plant community health including documentation of early senescence, yellowing or stunting of vegetation during post-treatment sampling events. Plants were identified to species level, and percent cover was estimated using a modified Daubenmire cover class system (Daubenmire, 1959).

To accomplish this task efficiently, sub-plots (one rectangular and one circular) were placed within each of the 8 meter by 8 meter treatment plots. Rectangular plots were used because when placed parallel to the stream channel, encompass more heterogeneity and recover greater species richness than round or square plots, and because vegetation cover alone is the important metric, plot size is not a factor (Barbour et al., 1999). Therefore, relatively small 10 m² (2 x 5 m) plots that can be easily sampled by one plant biologist were placed in the southeastern corner of each 8 meter by 8 meter treatment plot (Figure 5-8). Circular (4-meter diameter) plots were placed at the center of each treatment plot to ensure good representation of conditions within each treatment plot. Additional vegetation survey information is available in Appendix E.

Figure 5-8 Daubenmire Cover Class System

Plant Nutrient Study

A plant nutrient study was conducted by exposing Japanese millet (*Echinochloa crusgalli*) plant seedlings to soil samples (one foot / 30 cm cores) collected from three treatment plots (APG-02 Slurry Spray, APG-06 AquaBlok[®], APG-16 SediMiteTM), an un-treated plot (APG-15 Site Control), and a laboratory control soil. Testing was conducted by the AECOM Fort Collins Environmental Toxicology Laboratory in Fort Collins, Colorado. Seedlings were planted in containers containing homogenized hydric soil collected at Time 1 (approximately 6 months post-application), hydrated with deionized (DI) water, and incubated at standardized temperature, lighting and humidity conditions. A nutrient solution was added to each test chamber to ensure adequate growth during the study. The duration of the study (77 days) was designed to ensure adequate plant material for nutrient / mineral analyses by the analytical laboratory.

At test termination, the number of surviving plants was recorded in all the test chambers. Surviving plants were gently removed from the hydric soil without damaging the plant. Shoot biomass was separated from root biomass by cutting the plant in two at the hypocotyl-radicle junction. All shoot biomass (plant) was rinsed to remove extraneous sediment on the plant. The length of each shoot was measured from the base to the extent of the longest leaf. All shoots from a replicate were combined into a tared aluminum pan and measured for wet weight (± 0.1 mg) and then dry weight after shoots were dried at approximately 85°C for a minimum of 24 hours. Hydric soils from all replicates within a treatment were pooled to produce a single analytical sample for each treatment. Soil samples were analyzed by Columbia Analytical Service (CAS) labs for boron,

calcium, copper, iron, magnesium, manganese, phosphorous, potassium, sodium, sulfur and zinc. Dried plants (after biomass and length determination) for individual replicates were submitted to CAS labs for nutrient / mineral analyses for the same inorganic analytes. Uptake factors were calculated by dividing the plant tissue concentrations by the soil analytical results.

Statistics were conducted on the results of the plant health metrics (e.g. shoot length, root weight, biomass), plant tissue concentrations, and uptake factors relative to the laboratory control and the untreated plot (APG-15 Site Control) results. The laboratory report including details of the test and statistical methods is included as Appendix G.

Macroinvertebrate Sampling

The benthic community monitoring was conducted according to EPA Rapid Bioassessment Protocols for Use in Wadeable Streams and Rivers (Barbour, et al. 1999). Rapid Bioassessment Protocol (RBP) II which generates limited data, is useful for screening potentially impacted areas and was used to evaluate changes between controls and test plots and between test plots. The RBP II was performed by a biologist in the field to assess changes in the richness of the benthic macroinvertebrate community using field taxonomy.

Soil core samples were collected and shipped to Watershed Assessment Associates [WAA] (Schenectady, NY). Both the high and low value wetlands within the treatment area were evaluated to determine the benthic macroinvertebrate community structure within 8' x 8' reference and treatment plots (APG-01 to APG-24). Replicate benthic macroinvertebrate samples were collected from each plot using a 3 inch diameter sediment coring device with 5 to7 inches of substrate penetration. The two post-treatment replicate samples were sent to WAA for benthic macroinvertebrate sample processing including identification and enumeration. The laboratory report including methods is included as Appendix F.

5.8 SAMPLING RESULTS

Analytical, field measurements and laboratory results are summarized below. Because the objective of this ESTCP demonstration data is not to make enforcement decisions under a regulated program, but is to assess performance of a technology, the following data analysis decisions were made: (a) the results of non-detect data were reported as 0; (b) detectable concentrations that were below the reporting limit were reported as measured; and (c) concentrations above the reporting limit were reported as measured. The statistical evaluation approach presented in Section 6 is consistent with Helsel (2012) and USEPA's ProUCL User's Guide (2010), which presents the uncertainty with use of 1/2 the reporting limit substitution.

5.8.1 Hydric Soil General Characterization

Soil cores were qualitatively evaluated for evidence of AC mixing in the vertical soil profile. Photographs of soils cores collected at Time 0 and Time 2 are shown in Appendix A. Time 2 cores were not fully split for soil characterization; thus, the description of AC mixing is not rigorous. The following general observations were made:

• The depth of PAC slurry mixing, when apparent, was limited to the top 2 inches of soil. PAC slurry was not readily observed in all cores suggesting potential migration prior to vertical mixing.

- AC desorbed from AquaBlok® aggregates and downward migration of AC in the soil profile and along roots is evident in several cores. The depth of vertical mixing varied but in several cores appears to have reached a depth of 3 or more inches.
- Evidence of AC was not readily visible in all SediMiteTM cores but it was observed to be present and vertical mixing was apparent in some cores. The pellet delivery system was not apparent in photographs so the degree to which AC may have been desorbed from the pellet delivery system could not be estimated.
- Sand control cover exhibited little to no mixing and forms an apparent thin layer cap on the soil surface, which in a couple of instances was buried by fresh deposition.
- Iron oxide coatings were prevalent in the Time 2 cores, including the Control, but absent in Time 0 cores, suggesting a change in soil hydrologic conditions, possibly seasonal. The degree to which seasonal or event hydrologic changes may influence AC mixing or partitioning processes (such as residence time) is a data gap.

Figure 5-9 shows one representative core from each treatment type. Appendix A includes photos for all cores that were photographed.

Figure 5-9 Representative Soil Cores Collected at Time 2

Core 1 AC Slurry at APG-23. AC vertically well mixed in top 2 inches.

1 inch

Core 2 AquaBlok(R) at APG-13. AC appears well mixed to 2 to 3 inches depth with infiltration to bottom of core along rhizome macropores.

Figure 5-9 continued Representative Soil Cores Collected at Time 2

Core 3 SediMiteTM at APG-17. AC appears to have migrated along macropores to 3 to 4 inches depth.

Core 5 Control at APG-07.

Core 4 Sand/soil Control at APG-01. Fresh deposition above the sand.

Several general laboratory tests were conducted on selected hydric soil samples collected from depths of 0 to 15 cm (0 to 6 inches) to provide a characterization of the field site. General tests included moisture content, natural organic carbon (NOC), black carbon (BC), TOC, and grain size analysis. A summary of the results is included below; more detailed results are provided in Appendix B and Appendix D. The moisture content was determined for sediment samples from each test plot (APG-01 through APG-24) within the field site for all three monitoring events (n=72; Time 0, Time 1, and Time 2). The average moisture content was 61.9% with a standard deviation of 9.4%. The maximum moisture content observed was 76.9% and minimum was 36.2% (moisture content is reported per total (wet) weight).

Natural organic carbon (NOC) testing was conducted for each test plot within the field site during each monitoring event (n=72). NOC was measured by a thermogravimetric method according Gustafsson et al., 1997. This method isolates natural organic carbon from the black carbon in the samples; therefore activated carbon is not represented in these results. The average NOC observed on the site was 17.3% with a standard deviation of 0.56%. The maximum NOC observed was 31.2% and minimum was 4.2% (NOC is reported mass per unit dry soil mass).

A grain size analysis was conducted by GeoTesting (Acton, MA) in accordance with ASTM method D422-63. Ten composite samples from the Time 0 (12/2010) sampling event were evaluated. All samples were classified as a silty soil with the majority of mass within the silt/clay grain size fraction. No cobble sized grains were observed and the gravel fractions of the samples were below 0.5%. The remainder of the mass was within the sand fraction. Results of the hydric soil classifications are included in Table 5-12.

Table 5-11 Hydric Soil Characterization

Metric	Metric N Average Standard Deviation		Maximum	Minimum	
Percent Moisture Content	72	61.9%	9.4%	76.9%	36.2%
Percent Natural Organic Carbon	72	17.3%	0.56%	31.2%	4.2%
Soil Grain Size Fraction					
% Gravel	10	0.08%	0.11%	0.30%	0.00%
% Sand	10	22.3%	8.71%	40.0%	11.6%
% Silt/Clay		77.6%	8.70%	88.4%	60.0%

5.8.2 Black Carbon Assessment

Black carbon (BC) testing was conducted on surface soil samples for each test plot during each monitoring event (n=72) to evaluate the application of activated carbon in the treatment cells. BC results are shown as the average percent carbon by treatment (plus one standard deviation) on Figure 5-10. BC was measured by a chemical thermal oxidation method following Grossman and Ghosh (2009). This method removes the NOC fraction with chemical oxidation and measures the

remaining black carbon via CHN analysis. Average BC concentrations at the testing site prior to treatment application were 1.13% with a fairly large standard deviation (0.62%). On average, BC concentrations increased from the pre-treatment values at the 6 and 10 month monitoring periods within the plots containing treatment. BC concentrations in the control plots post-treatment remained relatively stable (Figure 5-10). Table 5-12 outlines the individual replicate measures, mean used and standard deviation in further detail and Table 5-13 summarizes the ANOVA analysis results between pre- and post-treatment within each treatment type.

Within the treatment plots, AquaBlok® was observed to have the highest BC concentration at the 6 month sampling event (avg=3.26% (SD=0.78%)), followed closely by SediMite TM (avg. = 3.24% (1.21%)), and then Slurry Spray (avg. = 2.59% (SD = 1.81%)). At the 10 month sampling, the trend was reversed, Slurry Spray plots were observed to have the highest carbon content (avg. = 2.03% (SD = 0.25%)), followed by AquaBlok® (avg. = 1.86% (SD = 0.75%)) and then SediMite TM (avg. = 1.36% (SD = 0.27%)). Although the overall carbon concentration increased as a result of treatment application, the similar concentrations among treatments and between post-treatment monitoring events do not indicate a significant difference in treatment technology permanence or performance. Additional sampling and evaluation would be required to adequately address the natural mixing and transport of treatment products in the environment. Slurry Spray and AquaBlok® were the only treatments whose percent-black carbon concentrations between pre- and post-treatment were significantly different; SediMite TM and the Sand control were determined to not be significantly different.

Table 5-12 Black Carbon Percentages

Treatment	Sample	Time 0	Time 1	Time 2		
		December 2010	June 2011	October 2011		
Slurry Spray	APG-02	0.67%	1.18%	2.16%		
	APG-08	0.37%	0.88%	2.28%		
	APG-22	1.18%	3.88%	1.72%		
	APG-23	0.37%	4.40%	1.97%		
	Mean	0.65%	2.59%	2.03%		
	Std. Dev	0.38%	1.81%	0.24%		
AquaBlok [®]	APG-05	0.51%	2.57%	2.43%		
	APG-09	1.25%	2.56%	2.82%		
	APG-11	1.10%	4.87%	2.20%		
	APG-13	1.23%	3.43%	2.05%		
	APG-06	0.20%	2.66%	0.32%		
	APG-24	0.72%	3.14%	1.86%		
	APG-20	1.33%	3.76%	1.79%		
	APG-21	1.37%	3.07%	1.44%		
	Mean	0.96%	3.26%	1.86%		
	Std. Dev	0.43%	0.78%	0.75%		
SediMite TM	APG-16	1.32%	3.83%	1.47%		
	APG-17	2.45%	2.94%	1.44%		
	APG-18	2.10%	4.50%	1.58%		
	APG-19	1.27%	1.69%	0.96%		
	Mean	1.79%	3.24%	1.36%		
	Std. Dev	0.58%	1.21%	0.28%		
Sand Control	APG-01	1.22%	0.43%	1.38%		
	APG-03	0.37%	0.47%	0.38%		
	APG-10	1.40%	0.37%	1.89%		
	APG-14	0.74%	0.79%	Not Measured		
	Mean	0.93%	0.52%	1.22%		
	Std. Dev	0.47%	0.19%	0.77%		
Control	APG-04	1.20%	1.51%	1.07%		
	APG-07	0.73%	0.76%	0.66%		
	APG-12	2.56%	2.69%	Not Measured		
	APG-15	1.39%	0.82%	1.15%		
	Mean	1.47%	1.45%	0.96%		
	Std. Dev	0.78%	0.90%	0.26%		

Black carbon percentages are dry weight-based relative to the total sediment sample mass.

 Table 5-13 ANOVA Analysis Between Pre-and Post-Treatment Within Each Treatment

Treatment	F Ratio	Probability (>p)	Significant Variance
Slurry Spray	6.6420	0.0275	Yes
AquaBlok [®]	17.4045	0.0004	Yes
SediMite TM	0.5595	0.4717	No
Sand Control	0.1137	0.7437	No

5.8.3 PCB Chemical Assessment

Composite hydric soil samples were collected for PCB characterization within the bulk phase, pore water phase, and tissue of benthic organisms exposed to the sediment. Samples were collected from 24 treatment plots within the treatment area over 3 sampling events in 2010 and 2011 to evaluate the effects of the treatments over time.

Bulk Hydric Soil PCB Concentrations

Bulk hydric soil samples had a wide range in PCB concentration (over 4 orders of magnitude) from a maximum of 266 mg/kg to a minimum 0.013 mg/kg. The average concentration over the site was 27.8 mg/kg with a standard deviation of 49.6 mg/kg. A large majority of samples measured were above both the NOAA Probable Effects Level for fresh water bulk sediment (>90%) as well as the USEPA Region 3 Freshwater Sediment Screening Benchmarks (>95%) (Buchman, 2008 and USEPA, 2006).

Figure 5-11 provides average bulk soil PCB concentrations for the three sampling events on a log scale (dry weight basis). The sample concentrations plotted are averaged by similar treatment types within the treatment area. Error bars denote the standard error between the replicate samples. Individual sample concentrations are provided in Appendix B. It should be noted that treatment effects of the different amendments are not observable from this plot, as treatments do not reduce the bulk sediment concentration of PCBs (Ghosh et al., 2011). This plot demonstrates the wide heterogeneity of bulk soil concentrations over the treatment area observed over a ten month period. Furthermore, a weakly statistically significant increase in total PCBs is observed between pretreatment and post-treatment soil samples (population of all treatments pooled). This suggests the potential introduction of a sampling / analysis artifact (e.g. slightly greater sampling recovery depth with each sampling event) or some other unaccounted for variable. Although the difference between pre-treatment and post-treatment is not statistically significant within each plot type, this artifact of increasing trends suggests that temporal trends of pore water and tissue concentrations may equally be affected by the increasing concentration artifact. Table 5-14 outlines in greater detail the individual replicate measures, mean and standard deviation.

Table 5-14 Bulk Hydric Soil Total PCB Concentrations

Treatment	Sample	Time 0 (mg/kg)	Time 1 (mg/kg)	Time 2 (mg/kg)	
	APG-02	8.70E+00	1.17E+01	2.48E+01	
Slurry Spray	APG-08	4.08E-01	1.51E+00	6.42E+00	
	APG-02/08	1.94E+00	3.48E+00	1.84E+00	
	APG-22	1.72E-02	Not Reported	2.07E-01	
	APG-23	1.69E-02	2.70E-01	5.10E-01	
	APG-22/23	5.29E-02	1.25E-02	2.95E-01	
	Mean	1.86E+00	3.39E+00	5.68E+00	
	Std. Dev	3.43E+00	4.84E+00	9.66E+00	
AquaBlok®	APG-05	1.57E+00	6.29E+00	9.42E+00	
1	APG-09	1.65E+01	Not Reported	3.47E+01	
	APG-05/09	9.09E+00	1.50E+01	3.35E+01	
	APG-11	1.58E-01	6.93E-01	5.63E-01	
	APG-13	1.79E+01	1.36E+01	1.32E+02	
	APG-11/13	Not Sampled	1.39E+01	1.23E+01	
	APG-06	1.05E+02	1.51E+02	9.64E-01	
	APG-24	3.03E-02	Not Reported	8.50E-01	
	APG-06/24	8.21E+01	5.39E+01	2.32E+02	
	APG-20	1.35E+01	1.04E+01	3.14E+01	
	APG-21	6.31E-01	4.53E-01	2.47E+00	
	APG-20/21	Not Sampled	2.67E-01	8.71E+00	
	Mean	2.47E+01	2.66E+01	4.16E+01	
	Std. Dev	4.64E+01	7.02E+01	1.31E+01	
SediMite TM	APG-16	4.88E+00	7.35E+00	Not Reported	
	APG-17	4.56E+00	5.93E+00	1.12E+01	
	APG-16/17	Not Sampled	5.58E+00	1.52E+01	
	APG-18	1.09E+01	8.54E+00	2.63E+01	
	APG-19	3.24E+01	1.54E+02	1.19E+02	
	APG-18/19	Not Sampled	7.28E+00	5.63E+01	
		1.32E+01	3.15E+01	4.56E+01	
		1.31E+01	6.01E+01	4.47E+01	
Sand Control	APG-01	7.69E+00	5.14E-01	2.66E+02	
	APG-03	2.91E+01	7.82E+01	1.71E+02	
	Apg-01/03	1.09E+01	1.22E+02	7.92E+01	
	APG-10	2.72E-01	8.16E-02	3.35E+00	
	APG-14	7.66E+00	1.50E+01	1.42E+01	
	Apg-10/14	7.10E+00	6.65E+00	5.34E+00	
	Mean	1.05E+01	3.71E+01	8.99E+01	
	Std. Dev	9.78E+00	5.10E+01	1.08E+02	
Control	APG-04	4.23E+00	1.45E+01	2.48E+01	
	APG-07	5.90E+01	8.21E+01	Not Reported	
	Apg-04/07	2.89E+01	2.16E+01	9.21E+01	
	APG-12	1.81E-01	1.76E+00	4.77E+00	
	APG-15	1.25E+00	4.33E+00	1.40E+01	
	Apg-12/15	Not Sampled	5.00E+00	3.24E+00	
	Mean	1.87E+01	2.16E+01	2.78E+01	
I	Std. Dev	2.54E+01	3.06E+01	3.70E+01	

July 2014

Pore Water PCB Concentrations

Pore water PCB concentrations were determined from the same composite hydric soil samples collected from the treatment area in the bulk sediment evaluation. Pore water sampling was conducted with POM passive samplers as described previously in Section 5.7. Pore water concentrations within the testing area were also found to be highly variable. Concentrations prior to the application of reactive treatments ranged over 5 orders of magnitude (maximum 3.73×10^{-02} mg/L; minimum 5.69×10^{-07} mg/L) with an average concentration of 2.25×10^{-03} mg/L and a large standard deviation (7.07×10^{-03}). The majority of samples were determined to be above the Maryland ambient water quality standard for Human Health and Consumption (>75%) and a large majority were above the Maryland fresh water chronic ambient water quality standard (>95%) (MDE, 2012).

Following the application of the reactive amendment products, reductions in pore water concentrations were observed for greater than 80% of the plots containing treatments (not controls) during at least one post treatment sampling event (Figure 5-12). Sixty-seven percent of the PCB concentrations in pore water samples from treatment plots above the Aquatic Life Chronic WQS (at Time 0) were reduced to concentrations below this threshold after the reactive treatments were applied (Time 1 and/or Time 2). Pore water concentrations were not reduced to levels below the Maryland Human Health and Consumption WQS, with the exception of one sample.

Figure 5-12 presents the total pore water PCB concentrations for the three sampling events on a log scale. Table 5-15 presents the individual replicate measures, mean and standard deviation between the treatment types. The sample concentrations are organized in the same manner as the bulk hydric soil concentrations were previously presented. The sample concentrations plotted are averaged by all similar treatment types within the treatment area. Error bars denote the standard error between the replicate samples. Individual sample concentrations are provided in Appendix B. The average pore water concentrations by treatment type per event are shown and compared to published water quality standards.

A general decrease in average total PCB pore water concentration was observed within the Slurry Spray and AquaBlok® treatment plots; however, the several orders of magnitude range of concentrations at Time 0 confounds the interpretation of treatment effectiveness based on pore water concentrations alone. Pore water PCB concentrations were relatively unchanged on average in the SediMiteTM plots. Differences in pore water PCB concentrations in the SediMiteTM plots could be due to the shallower sampling depths achieved in ESTCP project No. ER-200835. Analyses of the SediMiteTM plot results will be presented in Dr. Menzie's final report (ER-200835). Mixed results were observed for the average PCB pore water concentrations in the Control and Sand control plots. The period of equilibration for the different treatment types may be different, which may explain the variability of concentration changes within and among treatments. A statistical evaluation is presented in Section 6 and Appendix D.

64

Table 5-15 Pore Water Total PCBs

Treatment	Sample	Time 0	Time 1	Time 2
		Dec-10	Jun-11	Oct-11
			(mg/L)	
Slurry Spray ¹	APG-02	7.11E-05	2.71E-05	3.25E-05
	APG-08	3.30E-05	8.14E-06	2.45E-05
	APG-02/08	3.90E-05	1.15E-05	4.49E-06
	APG-22	5.96E-07	1.62E-06	4.18E-06
	APG-23	7.17E-07	2.87E-07	3.33E-06
	APG-22/23	3.49E-06	2.58E-06	1.53E-06
	Mean	2.47E-05	8.54E-06	1.18E-05
	Std. Dev	2.84E-05	1.00E-05	1.33E-05

Table 5-15 Pore Water Total PCBs (con't)

Treatment	Sample	Time 0	Time 1	Time 2
		Dec-10	Jun-11	Oct-11
			(mg/L)	
AquaBlok® ^{1,2}	APG-05	4.70E-05	2.07E-06	8.74E-06
	APG-09	4.35E-04	7.38E-05	9.37E-06
	APG-05/09	3.40E-04	2.87E-06	5.59E-06
	APG-11	7.19E-07	1.46E-06	2.07E-05
	APG-13	2.81E-04	6.10E-06	9.14E-05
	APG-11/13	6.47E-05	6.91E-06	3.17E-06
	APG-06	3.73E-02	3.24E-04	7.22E-06
	APG-24	1.23E-06	2.23E-06	5.10E-06
	APG-06/24	1.58E-02	1.05E-04	4.35E-03
	APG-20	3.88E-04	1.09E-05	5.39E-05
	APG-21	8.72E-06	1.72E-06	1.25E-05
	APG-20/21	Not Sampled	1.87E-06	1.51E-05
	Mean	4.97E-03	4.49E-05	3.82E-04
	Std. Dev	1.17E-02	9.41E-05	1.25E-03
SediMite TM	APG-16	7.69E-05	3.37E-05	1.95E-05
	APG-17	3.35E-05	1.65E-05	6.54E-05
	APG-16/17	Not Sampled	2.53E-05	4.65E-05
	APG-18	1.59E-04	3.38E-05	2.11E-04
	APG-19	1.57E-03	4.19E-03	1.84E-03
	APG-18/19	Not Sampled	1.17E-05	2.14E-04
	Mean	4.60E-04	7.19E-04	3.99E-04
	Std. Dev	7.42E-04	1.70E-03	7.11E-04
Sand Control	APG-01	5.95E-06	6.73E-06	1.76E-03
	APG-03	4.29E-03	2.07E-02	1.19E-02
	APG-01/03	1.67E-03	1.18E-02	6.11E-03
	APG-10	2.43E-06	9.30E-06	7.26E-06
	APG-14	1.72E-04	2.15E-04	1.09E-04
	APG-10/14	8.37E-05	1.30E-04	4.25E-05
	Mean	1.04E-03	5.48E-03	3.32E-03
	Std. Dev	1.72E-03	8.81E-03	4.81E-03

Table 5-15 Pore Water Total PCBs (con't)

Treatment	Sample	Time 0	Time 1	Time 2
		Dec-10	Jun-11	Oct-11
			(mg/L)	
Control	APG-04	1.67E-04	1.56E-04	2.46E-04
	APG-07	6.19E-03	5.41E-03	3.62E-02
	APG-04/07	2.62E-03	2.20E-04	4.87E-03
	APG-12	3.99E-06	9.63E-06	2.48E-05
	APG-15	3.87E-05	7.43E-05	1.00E-04
	APG-12/15	Not Sampled	3.52E-05	1.27E-05
	Mean	1.80E-03	9.84E-04	6.91E-03
	Std. Dev	2.69E-03	2.17E-03	1.45E-02

¹Post-treatment concentrations are statistically significantly lower than the Control (see Section 6 and Appendix D)

Pore water concentrations were also measured *in situ* with polyethylene device (PED) passive samplers to evaluate the PCB concentration profile with depth within 20 of the treatment plots. (Figure 5-13). *In situ* measurements of SediMiteTM plots were not sampled because the passive samplers were deployed prior to the decision to include this treatment method. Pore water concentrations are presented by treatment plot and grouped by similar treatment on a log-scale (Time 2). The highest pore water concentrations were observed in the Sand control and Control plots. On average, pore water concentrations increased with depth. Results were mixed for the treatment plots amended with activated carbon. Pore water concentrations within the top two inches of the Slurry Spray and AquaBlok[®] treatment plots were lower than concentrations observed within the bottom 4 inches for half of the samples recovered.

Soil cores show AC distribution into void spaces in the top 2 to 3 inches of the sediment core shortly after placement. Additional analysis needs to be conducted to determine the extent of mixing into the underlying sediments, the mechanisms of mixing, and the timeframe over which it occurs. Mixing should be evaluated either visually or chemically with the collected cores from Time 1 and Time 2, due to the large vertical and spatial heterogeneity observed. Table 5-16 presents the results, calculated mean, and standard deviation for each treatment.

² Post-treatment concentrations are statistically significantly lower than pre-treatment (see Section 6 and Appendix D)

Figure 5-13 In Situ Pore Water PCB Concentration Comparison

Table 5-16 In Situ Pore Water Total PCBs

		Тор	Middle	Bottom		
Treatment	Sample	(0in to 2in)	(2in to 4in)	(4in to 6in)		
			(mg/L)			
	APG-02	9.29E-07	1.07E-06	1.84E-05		
	APG-08	7.54E-06	4.31E-06	7.32E-06		
Classes Conserv	APG-22	1.40E-06	1.89E-06	Not Reported		
Slurry Spray	APG-23	4.02E-05	1.95E-06	Not Reported		
	Mean	1.25E-05	2.31E-06	1.29E-05		
	Std. Dev	1.87E-05	1.40E-06	7.83E-06		
	APG-05	3.06E-06	3.90E-06	2.58E-05		
	APG-09	5.32E-06	9.30E-06	Not Reported		
	APG-11	3.65E-05	3.23E-05	1.43E-05		
	APG-13	2.57E-06	2.48E-06	Not Reported		
A D1 - 1-®	APG-06	4.05E-06	6.31E-05	Not Reported		
AquaBlok [®]	APG-24	1.74E-06	Not Reported	1.68E-06		
	APG-20	6.47E-06	1.44E-06	1.39E-06		
	APG-21	2.24E-06	3.07E-06	6.99E-06		
	Mean	7.74E-06	1.65E-05	1.00E-05		
	Std. Dev	1.17E-05	2.32E-05	1.03E-05		
	APG-01	8.90E-07	1.81E-06	3.18E-06		
	APG-03	1.52E-03	2.37E-02	1.87E-02		
C1 C1	APG-10	Not Reported	Not Reported	2.27E-06		
Sand Control	APG-14	3.34E-04	6.00E-05	Not Reported		
	Mean	6.18E-04	7.92E-03	6.24E-03		
	Std. Dev	7.98E-04	1.37E-02	1.08E-02		
	APG-04	3.16E-05	Not Reported	9.22E-05		
	APG-07	1.46E-03	6.89E-03	2.70E-02		
Control	APG-12	8.65E-06	1.16E-05	2.65E-05		
Control	APG-15	2.30E-05	7.25E-05	1.43E-04		
	Mean	3.81E-04	2.32E-03	6.82E-03		
	Std. Dev	7.20E-04	3.95E-03	1.35E-02		

Although comparisons between the concentration profiles among the *in situ* samples can be made with confidence, direct comparisons between *in situ* measured concentrations and laboratory evaluations should be made with caution. Laboratory pore water measurements on grab samples reach equilibrium, and the methodology is well established. However, equilibrium is assumed for

in situ pore water measurements. Equilibrium for *in situ* passive samples is generally established via performance reference standards. Performance reference standards were not conducted at this location; however, samplers were deployed for a 10 month period such that equilibrium was likely attained.

Lumbriculus Tissue PCB Results

Bioaccumulation studies were conducted on composite hydric soil samples collected during the same three sampling events as the bulk hydric soil and pore water evaluations. Sediment sampling procedures, benthic sampling procedures and analytical procedures are described in Section 5.7.

Tissue concentrations from benthic organisms (*L. variegatus*) exposed to sediments within the testing area were found to be highly variable. Concentrations prior to the application of reactive treatments ranged over 4 orders of magnitude (maximum 3.57x10⁺⁰² mg/kg; minimum 4.33x10⁻⁰² mg/kg) with an average concentration of 2.25 mg/kg and a large standard deviation (1.21x10⁺⁰²). Following the application of the reactive amendment products, reductions in tissue concentration were observed for all of the treatments in which Time 0 data was available (Slurry Spray and AquaBlok®). Time 0 concentrations for the SediMiteTM treatment plots were not available. Tissue concentrations were observed to fluctuate in the Sand control and untreated Control plots in the post-treatment sampling events. Benthic tissue PCB concentrations are provided in Figure 5-14.

The AquaBlok® *Lumbriculus* receptor tissue concentrations were statistically significantly different between pre- and post-treatment (but were lower post-treatment, in this case). Slurry Spray and Sand control *Lumbriculus* receptor tissue concentrations were not statistically significant different when post-treatment data were compared to pre-treatment concentrations. However, AquaBlok® and Slurry Spray post-treatment *Lumbriculus* receptor tissue concentrations were statistically significantly lower than the post-treatment Control. As discussed previously with the pore water results, evaluating the tissue concentrations of exposed invertebrate is a good metric to evaluate the environmental risk of PCBs within the treatment area but not necessarily a good indicator of treatment performance due to heterogeneity across the bulk phase.

Figure 5-14 Lumbriculus Tissue Total PCB Concentrations

Table 5-17 presents the individual replicate measurements, mean, and standard deviation of the data.

Table 5-17 Lumbriculus Tissue Total PCBs Results

□ 10 Months After Application

Treatment	Sampla	Time 0	Time 1	Time 2					
Heatment	Sample		(mg/kg)						
	APG-02/08a	3.10E+00	7.47E-01	3.99E-02					
	APG-02/08b	3.66E+00	3.72E-01	1.89E-02					
	APG-02/08c	3.01E+00	Not Sampled	1.51E-02					
Slurry Spray ¹	APG-22/23a	2.43E-02	1.95E-02	0.00E+00					
Starry Spray	APG-22/23b	4.10E-02	0.00E+00	0.00E+00					
	APG-22/23c	6.45E-02	Not Sampled	0.00E+00					
	Mean	1.65E+00	2.85E-01	1.23E-02					
	Std. Dev	1.77E+00	3.52E-01	1.59E-02					

71

T 1 stdev

Table 5-17 Lumbriculus Tissue Total PCBs Results (con't)

Tuestreent	Commis	Time 0	Time 1	Time 2
Treatment	Sample		(mg/kg)	
	APG-05/09a	2.11E+01	7.59E-01	1.72E-02
	APG-05/09b	2.71E+01	1.13E-01	3.37E-02
	APG-05/09c	2.80E+01	Not Sampled	3.61E-02
	APG-11/13a	1.42E+01	2.76E-02	3.77E-01
	APG-11/13b	1.42E+01	3.56E-02	3.33E+00
	APG-11/13c	1.46E+01	Not Sampled	7.85E-01
AquaBlok ^{®1,2}	APG-06/24a	2.37E+02	4.52E-01	4.99E+00
rquablok	APG-06/24b	5.32E+02	1.12E+00	6.64E+00
	APG-06/24c	3.02E+02	Not Sampled	5.14E+00
	APG-20/21a	Not Sampled	1.77E-01	1.42E+00
	APG-20/21b	Not Sampled	2.15E-02	1.28E+00
	APG-20/21c	Not Sampled	Not Sampled	1.08E+00
	Mean	1.32E+02	3.38E-01	2.09E+00
	Std. Dev	1.86E+02	4.08E-01	2.32E+00
	APG-16/17a	Not Sampled	1.41E+00	6.26E-01
	APG-16/17b	Not Sampled	4.19E+00	7.29E-01
	APG-16/17c	Not Sampled	Not Sampled	5.25E-01
SediMite TM	APG-18/19a	Not Sampled	6.43E+00	8.04E+00
	APG-18/19b	Not Sampled	1.59E+01	1.16E+01
	APG-18/19c	Not Sampled	Not Sampled	1.05E+01
	Mean	Not Sampled	6.98E+00	5.34E+00
	Std. Dev	Not Sampled	6.29E+00	5.29E+00
	APG-01/03a	1.73E+01	2.66E+01	3.19E+01
	APG-01/03b	2.27E+01	5.06E+01	2.23E+01
	APG-01/03c	2.43E+01	Not Sampled	1.91E+01
Sand Control	APG-10/14a	1.00E+01	1.21E+01	3.08E-01
	APG-10/14b	0.00E+00	Not Sampled	3.41E-01
	APG-10/14c	1.27E+01	Not Sampled	1.11E-01
	Mean	1.45E+01	2.98E+01	1.23E+01
	Std. Dev	9.00E+00	1.94E+01	1.39E+01

Table 5-17 Lumbriculus Tissue Total PCBs Results (con't)

Treatment	Sampla	Time 0	Time 1	Time 2				
Treatment	Sample		(mg/kg)					
	APG-04/07a	8.53E+01	5.03E+01	4.12E+01				
	APG-04/07b	7.42E+01	4.06E+01	4.09E+01				
	APG-04/07c	5.23E+01	Not Sampled	4.35E+01				
Control	APG-12/15a	Not Sampled	3.09E+00	1.41E+00				
Control	APG-12/15b	Not Sampled	1.83E+00	9.96E-01				
	APG-12/15c	Not Sampled	Not Sampled	1.11E+00				
	Mean	7.06E+01	2.40E+01	2.15E+01				
	Std. Dev	1.68E+01	2.51E+01	2.23E+01				

¹ Post-treatment concentrations are statistically significantly lower than the Control (see Section 6 and Appendix D)

5.8.4 Ecological Assessment

Ecological response to treatment was assessed by vegetation survey metrics, plant nutrient uptake, and benthic community survey metrics.

Vegetation Survey

The Field Demonstration wetland is approximately 2 acres in size and borders approximately 680 linear feet (lft) of Canal Creek. The Time 0 survey was conducted 13 months prior to the treatment application (November 2009). Appendix E includes a comprehensive survey of the vegetation community, which is briefly summarized here. Approximately 32% (0.64 acres) of the total demonstration area consists of a dense mono-culture stand of common reed (*Phragmites australis*), an invasive plant species in Maryland. Another 33% (0.65 acres) of the demonstration area is dominated by narrow-leaved cattail (*Typha angustifolia*), which is not considered "invasive", however it is often considered an aggressive colonizer and tends to form dense mono-culture stands. The remaining portions of the field demonstration area were characterized as shallow emergent marsh (19%; 0.38 acres) and deep emergent marsh (16%; 0.34 acres). A total of 49 plant species were observed within the field demonstration wetland, the majority of which were herbaceous perennials, sedges, rushes and aquatic emergent plants (n=32). Shrubs (6), grasses (4), vines (4), trees (2) and 1 sub-aquatic vascular plant were identified. Surveys of the 24 plots were conducted at Time 0, Time 1, and Time 2.

Common reed persists as a dense mono-culture stand (>90% cover) in only four of the plots. One plot had >60% but < 90% cover. Common reed was observed in lower densities (3-20% cover) in nine plots. Narrow-leaved cattails were present in seven plots with >60% cover, and 10 plots with

² Post-treatment concentrations are statistically significantly lower than pre-treatment (see Section 6 and Appendix D)

3-20% cover. One other invasive species observed within the field demonstration wetland was bladderwort (*Utricularia sp.*). This plant was observed in only two plots and within the river itself.

Species richness ranged from one to a maximum of 19 species within a treatment plot. Species richness in plots dominated by common reed tended to be low ranging from only 1 to 5 (mean = 4.5) species. As expected, species richness was higher in plots dominated by shallow marsh or with a mixture of shallow and deep marsh habitats (6-13 species, mean = 9.0). Deep marsh habitats dominated by Arrow arum (*Peltandra virginica*) had only 4 to 5 (mean 4.7) species present. The narrow-leaved cattail dominated plots tended to exhibit the highest species richness ranging from 10 to 19 (mean = 12.9) species. No statistically significant variation was found between plots containing treatments and control plots in the post application sampling events. A statistically significant variation in species richness was observed across all plots between sampling events so any change over time due to treatment effect was not observable (F = 8.351, p = 0.001, d.f. = 2), perhaps because assessments were not conducted at the same time of the year. Figure 5-15 presents the average species richness and standard error for each treatment type over the three sampling periods.

Figure 5-15 Species Richness Results

Within each sampling event, vegetation cover tended to be high in each plot with overlapping vegetation layers often resulting in percent cover ranging to well over 100% (Figure 5-16). At Time 0, Time 1 and Time 2, only nine, two, and six plots had <90% cover, respectively. There was no difference in relative cover between sampling events (F = 0.537, p = 0.466, d.f. = 2). Diversity at Time 0 was not different from Time 1 or Time 2 (F = 0.713, p = 0.494, d.f. = 2) (Figure 5-17).

Figure 5-16 Relative Cover Results

Figure 5-17 Shannon-Weiner Diversity Index

Vegetation characteristics within each of the 24 survey plots were statistically significantly correlated between pre- and post-treatment periods. Correlations for species richness were particularly high for Time 0 versus Time 1 (r = 0.69; p < 0.05) and Time 0 versus Time 2 (r = 0.81; p < 0.05). Similarly, Time 1 versus Time 2 were also highly correlated (r = 0.90; p < 0.05). Relative cover and Diversity were not statistically significantly correlated for Time 0 versus Time 1, but they were for Time 0 versus Time 2 (Cover: $r_s = 0.67$; p < 0.05; Diversity: r = 0.51; p < 0.05).

No differences among treatments were observed post-application for relative cover (F = 0.646, p = 0.633, d.f. = 4), or species richness (F = 2.063, p = 0.102, d.f. = 4). Species diversity among treatments was marginally statistically significant (F = 2.515, p = 0.055, d.f. = 4), and some differences between treatments and controls were also observed. The SediMiteTM treatment plots (mean = 0.718 ± 0.16) exhibited statistically significantly lower diversity when compared to the Control (mean = 1.23 ± 0.16, t = 2.017, p = 0.029) and the Sand control (mean = 1.37 ± 0.16, t = 2.017, p = 0.006).

Changes in diversity, richness and relative cover between pre- and post-treatment time periods were observed that were greater than the 25% of plant community metric condition used by the USEPA. However, with the exception of 5 plots (APG-20 and APG-9 treated with AquaBlok[®], APG-10 in the Sand control, APG-18 treated with SediMiteTM, and APG-2 treated with the Slurry Spray; see Appendix E), these changes were generally in a positive direction on a plot-by-plot basis, and on average within treatments were in a positive direction (see Figure 5-18). As described above, these variations are likely attributable to high spatial and temporal variability observed within these data. The scattered nature of these reductions in species diversity or relative cover does not indicate a clear trend of adverse impacts due to the application of the treatments themselves.

Figure 5-18 Percent Change in Measured Plant Metrics from Pre-treatment to Posttreatment

Plant Nutrient Study Results

Laboratory testing was conducted by the AECOM Fort Collins Environmental Toxicology Laboratory in Fort Collins, Colorado in order to assess the potential for adverse impacts of the treatments on plant health and the ability of plants to uptake nutrients. Japanese millet (*E. crusgalli*) seedlings were exposed to soil samples collected from three treatment plots (APG-02 Slurry Spray, APG-06 AquaBlok®, APG-16 SediMiteTM), an un-treated Control plot (APG-15 Site Control), and a laboratory control soil for a test duration of 77 days.

Survival at test termination ranged from 97.5% in the laboratory control to 100% in APG-02, APG-06, and APG-16 indicating that the treatments showed no adverse effects on plant survival. Similarly, no statistically significant adverse sub-lethal affects were observed for the plant growth endpoints (plant shoot wet weight, plant shoot dry weight, or plant shoot length) relative to the laboratory control or APG-15 (Site Control) results. All three growth metrics in the APG-16 (SediMiteTM) sample were statistically higher than in the APG-15 (Site Control) sample.

The following metals and nutrients were measured in the soils and the plant tissue: boron, calcium, copper, iron, magnesium, manganese, phosphorus, potassium, sodium, sulfur, zinc, nitrogen. The uptake measured as the ratio of nutrient concentration in plant to concentration in soil was typically not statistically significantly different from Site Control ("—") to increased nutrient uptake on average (\uparrow or \downarrow), as shown in Figure 5-19.

Figure 5-19 Plant Nutrient Uptake

Treatment	В	Ca	Cu	Fe	Mg	Mn	P	K	Na	S	Zn	N
Slurry Spray (APG-02)	\uparrow	↑	1		1	1	↑	↑			↑	1
AquaBlok® (APG-06)	↑		1		1		↑	↑			↑	↑
SediMite TM (APG-16)		↑			↑					\downarrow	-	

Macroinvertebrate Survey Results

Benthic core samples were analyzed by WAA for macroinvertebrate composition to determine the impacts to the benthic macroinvertebrate community structure due to the application of the treatments. Samples from eight plots within each treatment were collected at Time 1 and Time 2 following the application of the treatments.

The macroinvertebrate populations were small for each sampling event and considerable uncertainty is associated with analysis of these data. A total of 71 organisms representing 13 different taxa were recovered in the Time 1 sampling event and 19 organisms representing 5 different taxa were collected at Time 2. Results are shown in Figure 5-20.

Figure 5-20 Macroinvertebrate Population Count by Treatment Type

At the Time 1 sampling event, Stations APG-07 (Control), APG-13 (AquaBlok®), APG-15 (Control), and APG-16 (SediMiteTM) were the only stations containing organisms in all three replicate samples within a test plot. Other sampled plots (APG-02, APG-03, APG-06, APG-14)

either lacked organisms or had organisms in only one of the three replicate samples. At the Time 1 sampling event, only stations APG-15 and APG-14 (Sand control) had organisms in more than one replicate sample. The laboratory report is provided in Appendix F.

6.0 PERFORMANCE ASSESSMENT

Data were statistically analyzed to identify significant differences between treatments and controls. Data were evaluated based on the success criteria described in Section 3 to determine if the performance objectives of the demonstration were met.

6.1 REMEDIATION EFFECTIVENESS

Remediation effectiveness was assessed by measuring the reduction in the bioavailability of PCBs as indicated by organic carbon normalization of soil concentrations, changes in pore water concentrations and the reduction in bioaccumulation as indicated by macroinvertebrate tissue concentrations in 28-day bioaccumulation studies. Changes in the partitioning of PCBs from pore water to the bulk solid phase and from macroinvertebrate tissue to the bulk solid phase were also assessed to account for the large heterogeneity in concentrations observed across the treatment site.

6.1.1 Organic Carbon Normalization

As a first order evaluation of the potential reduction in the bioavailability of PCBs, bulk soil concentrations were normalized to organic carbon content, shown on Table 6-1. On average, normalized concentrations are on the order of 8 to 14 percent greater than the measured bulk soil concentration, indicating PCBs are strongly sorbed to organic carbon in this system. An evaluation of bioavailability based on organic carbon normalization alone is likely to underestimate bioavailability due to the addition of black carbon during treatment, which more strongly sorbs HOCs than natural organic carbon.

Table 6-1 Soil Organic Carbon Normalized PCBs

		Time 0	Time 1	Time 2		
Treatment	Sample	Dec-10	Jun-11	Oct-11		
			(mg/kg oc)			
	APG-02	4.64E-01	4.90E-01	1.02E+00		
	APG-08	4.28E-02	1.20E-01	4.78E-01		
Clumy Comor	APG-22	1.05E-03		7.56E-03		
Slurry Spray	APG-23	6.52E-04	1.49E-02	2.32E-02		
	Mean	1.27E-01	2.08E-01	3.81E-01		
	Std. Dev	2.25E-01	2.50E-01	4.76E-01		
	APG-05	1.55E-01	4.46E-01	6.65E-01		
	APG-09	1.09E+00		2.03E+00		
	APG-11	5.08E-03				
	APG-13	7.91E-01	5.46E-01	7.91E+00		
AquaBlok®	APG-06	1.67E+01	9.75E+00	6.72E-02		
	APG-24					
	APG-20	6.98E-01	3.89E-01	2.29E+00		
	APG-21					
	Mean	3.24E+00	2.78E+00	2.59E+00		
	Std. Dev	6.61E+00	4.65E+00	3.12E+00		

Table 6-1 Soil Organic Carbon Normalized PCBs (con't)

	Sample	Time 0	Time 1	Time 2
Treatment		Dec-10	Jun-11	Oct-11
			(mg/kg oc)	
	APG-16	2.63E-01	3.32E-01	
	APG-17	2.86E-01	2.95E-01	5.90E-01
SediMite TM	APG-18	5.53E-01	5.15E-01	1.41E+00
Sedivite	APG-19	1.65E+00	1.22E+01	7.21E+00
	Mean	6.89E-01	3.33E+00	3.07E+00
	Std. Dev	6.56E-01	5.90E+00	3.61E+00
	APG-01	3.45E-01	3.64E-02	3.63E+01
	APG-03	4.32E+00	1.20E+01	1.96E+01
Sand Control	APG-10	1.19E-02	5.93E-03	
Sand Condoi	APG-14	4.07E-01	1.73E+00	6.34E-01
	Mean	1.27E+00	3.43E+00	1.88E+01
	Std. Dev	2.04E+00	5.74E+00	1.78E+01
Control	APG-04	3.14E-01	7.56E-01	1.83E+00
	APG-07	1.21E+01	8.05E+00	
	APG-12	6.84E-03	8.02E-02	2.86E-01
	APG-15	7.85E-02	3.50E-01	5.78E-01
	Mean	3.13E+00	2.31E+00	8.97E-01
	Std. Dev	6.00E+00	3.84E+00	8.19E-01

6.1.2 Evaluation of Pre- and Post-Treatment Pore Water Concentrations

An ANOVA statistical analysis and Student's T means statistical comparison was conducted on all post-treatment pore water concentration data by treatment type (AquaBlok®, Control, Sand control, SediMiteTM and Slurry Spray). ANOVA determined that treatment type was a statistically significant variable for pore water concentration. Student's T means statistical comparison determined that the AquaBlok® and Slurry Spray were statistically separate from the Control. Dunnet's mean statistical comparison (with Control set as the control) confirmed that AquaBlok® and Slurry Spray were both statistically different from the Control.

Table 6-2 summarizes the statistical analyses results between pre- and post-treatment pore water concentrations within each plot. Pore water concentrations, except for AquaBlok®, were not statistically significantly different between pre- and post-treatment. However, AquaBlok® and Slurry Spray post-treatment pore water concentrations were statistically significantly lower than the post-treatment Control.

Table 6-2 ANOVA Analysis of Pre- and Post-Treatment Pore Water Concentrations Within Each Treatment Type

Treatment	F Ratio	Probability (>p)	Significant Variance
Slurry Spray	0.1993	0.6612	No
AquaBlok®	6.8005	0.0136	Yes
SediMite TM	0.3791	0.5480	No
Sand Control	0.5685	0.4618	No
Control	0.0001	0.9908	No

Although decreasing trends in the pore water direct measurement is likely to be of most interest to regulatory agencies, an additional line-of-evidence was the evaluation using another metric of bioavailability, partitioning. The aforementioned magnitude of variability and spatial heterogeneity in PCBs, small sample sizes, and the noted potential sampling artifact, required this alternative approach.

6.1.3 Reduction in Bioavailability of PCBs

The reduction in bioavailability of PCBs were evaluated through two metrics measured within this study that are demonstrative of bioavailability within the natural system; pore water samples and L. variegatus) receptor tissue from 28-day bioaccumulation studies. Following initial comparisons, it was determined that the large spatial heterogeneity in bulk PCB concentrations did not lend to direct comparisons of the data between the treatment plots and multiple sampling events. To normalize the data, the partitioning between hydric soil concentrations and bioavailable demonstrative concentrations (pore water and L. variegatus) were calculated (Equations 6-1, 6-2 and 6-3). The pore water to solid bulk phase partitioning coefficient (K_{bulk/PW}), referred to as the pore water partitioning coefficient, is the concentration of the bulk phase (in this case hydric soil plus amendment) divided by the pore water concentration. The organic carbon normalized solid bulk phase divided by the pore water concentration can also be calculated, which is a more commonly conducted bioavailability assessment (Di Toro et al., 1991) and is referred to here as the carbon normalized pore water partitioning coefficient. Similarly, Lumbriculus to bulk soil partitioning (K_{Bulk/Lv}), the Lumbriculus partitioning coefficient, is the solid bulk phase concentration divided by the L. variegatus tissue concentration. Increase in the partitioning coefficient is a result of lower concentrations within the bioavailable phases while the bulk solid phase concentration remains constant; therefore, increased partitioning values represent a greater treatment effect due to the amendment application. While pore water to soil partitioning describes a direct physical interaction between two phases, Lumbriculus partitioning simplifies a complex relationship between living organism and the bulk phase (e.g. digestion, dermal exposure, etc.). Notwithstanding this simplification, the intent of this metric is to derive a value which describes the bioavailable fraction of PCB while normalizing for the large spatial heterogeneity across the treatment site so that effective comparisons might be made between each treatment type (i.e., assess effectiveness using BSAFs).

Equation 6-1 Pore Water Partitioning Coefficient

$$K_{bulk/pw} = \frac{C_{bulk}}{C_{pw}}$$

Where:

K_{bulk/pw} = Pore Water Partitioning Coefficient (L/kg) C_{bulk} = Bulk Solid Phase Concentration (mg/kg)

 C_{pw} = Pore Water Concentration (dissolved) (mg/L)

Equation 6-2 Organic Carbon Normalized Pore Water Partitioning Coefficient

$$K_{bulk-oc/pw} = \frac{C_{bulk-oc}}{C_{pw}}$$

Where:

 $K_{bulk-oc/pw}$ = Organic Carbon Normalized Pore Water Partitioning Coefficient (L/kg) $C_{bulk-oc}$ = Organic Carbon Normalized Bulk Solid Phase Concentration (mg/kg) C_{pw} = Pore Water Concentration (dissolved) (mg/L)

Equation 6-3 Lumbriculus Partitioning Coefficient

$$K_{bulk/_{Lv}} = \frac{C_{bulk}}{C_{Lv}}$$

Where:

 $K_{bulk/Lv} = Lumbriculus$ Partitioning Coefficient $C_{bulk} = Bulk$ Solid Phase Concentration (mg/kg) $C_{Lv} = Lumbriculus$ Receptor Tissue Concentration (mg/kg)

Treatments were further evaluated to determine the level of treatment provided between sequestration agents by evaluating the relative change in partitioning between the pre- and post-treatment sampling events. Pore water partitioning factors and *L. variegatus* partitioning factors (BSAFs) were calculated by dividing the post-treatment partitioning coefficient by the pre-treatment partitioning coefficient (Equations 6-4 and 6-5). Larger partitioning factors represent enhanced treatment over the untreated condition. Temporal effects are not a factor although results from different sampling events may be considered with respect to time.

Equation 6-4 Pore Water Partitioning Factor

$$K_{pw}^{Tx} = \frac{K_{bulk/pw}^{Tx}}{K_{bulk/pw}^{To}}$$

Where:

 $\begin{array}{l} \Delta K_{PW}^{Tx} = \text{Pore Water Partitioning Factor} \\ K_{bulk/PW}^{Tx} = \text{Post-Treatment Pore Water Partitioning Coefficient} \quad T = x(L/kg) \\ K_{bulk/PW}^{To} = \text{Pre-Treatment Pore Water Partitioning Coefficient } T = 0 \text{ (L/kg)} \end{array}$

Equation 6-5 *Lumbriculus* **Partitioning Factor**

$$K_{Lv}^{Tx} = \frac{K_{bulk/_{Lv}}^{Tx}}{K_{bulk/_{Lv}}^{To}}$$

Where:

 $\begin{array}{l} \Delta K_{Lv}^{Tx} = \text{Macroinvertebrate Partitioning Factor} \\ K_{bulk/Lv}^{Tx} = \text{Post-Treatment Macroinvertebrate Partitioning Coefficient T=x} \\ K_{bulk/Lv}^{To} = \text{Pre-Treatment Macroinvertebrate Partitioning Coefficient T=0} \end{array}$

K_{bulk/pw} Evaluation of PCB Reduction in Bioavailability 6.1.4

PCB pore water partitioning coefficients (K_{bulk/pw} and K_{bulk-oc/pw}) were calculated to normalize the data due to high spatial heterogeneity within the bulk phase across the treatment area. K_{bulk/pw} calculations were observed to normalize data across the treatment area in the pre-treatment sampling event as well as between the three sampling events in the Control plots. Time 0 K_{bulk/pw} values were normalized to within one order of magnitude as opposed to the pore water concentrations discussed previously, which ranged over five orders of magnitude in variation. The effects of organic carbon normalization were also considered. A comparison between the partitioning coefficients is presented in Table 6-3. The percent increase between Time 0 and Time 2 partitioning coefficients (i.e., reduced bioavailability) suggests that for evaluating treatment effectiveness, there is little difference between the traditional equilibrium partitioning approach that uses organic carbon normalization and the approach presented in this report except when considering that organic carbon normalization potentially underestimates the reduction in bioavailability because not all carbon sorbs HOCs equally effectively.

Table 6-3 Average Pore Water and Organic Carbon Normalized Pore Water Partitioning Coefficients

	Pore Water	.		
	Time 0	Time 1	Time 2	% Increase between Time 0
Treatment	K as	and Time 2		
Slurry Spray	4.20E+04	3.74E+05	3.05E+05	626%
AquaBlok®	5.21E+04	1.53E+06	1.49E+06	2754%
SediMite TM	7.22E+04	2.85E+05	1.90E+05	163%
Sand Control	2.58E+05	3.67E+04	1.49E+05	-42%
Control	2.47E+04	9.82E+04	1.41E+05	472%

Table 6-3 Average Pore Water and Organic Carbon Normalized Pore Water Partitioning Coefficients (con't)

	Pore Water	0/ 1		
	Time 0	Time 1	Time 2	% Increase between Time
Treatment	K as	0 and Time 2		
Slurry Spray	2.62E+05	2.82E+06	1.49E+06	467%
AquaBlok®	2.99E+05	9.26E+06	8.61E+06	2782%
SediMite TM	4.12E+05	1.15E+06	6.55E+05	59%
Sand Control	1.65E+06	3.66E+05	9.36E+05	-43%
Control	1.89E+05	4.84E+05	8.25E+05	335%

K= partitioning coefficient

Figure 6-1 presents the results of the $K_{bulk/pw}$ evaluation. AquaBlok treatments exhibited the highest average post-treatment partitioning $(1.5 \times 10^{+06})$, followed by the Slurry Spray $(3.4 \times 10^{+05})$, SediMite TM $(2.4 \times 10^{+05})$, Control $(1.2 \times 10^{+05})$ and Sand control $(9.3 \times 10^{+04})$. ANOVA testing determined that the addition of AC was a statistically significant variable in $K_{bulk/pw}$ (F = 4.250, p = 0.0033, d.f. = 4). A Student's T-test determined that AquaBlok provided statistically significant greater partitioning than the Control (p = 0.0034). The Slurry Spray and SediMite treatments and the Control also indicate a non-statistically significant increase in $K_{bulk/pw}$ over time. Logarithmic transformations were conducted to normalize the data. Statistical evaluation outputs are presented in Appendix D.

Figure 6-1 PCB Sediment: Pore Water Partitioning (K_{bulk/pw}) by Treatment

Changes in partitioning (partitioning factors) were also compared within the same treatments for pre- and post-treatment application. An average increase in ΔK_{PW}^{Tx} was observed for all applied treatments between the pre-treatment and post-treatment sampling events. A slight average increase in the partitioning factor was observed within the Control plots while slight decreases were observed in the Sand control plots. The largest average positive change in the $K_{bulk/pw}$ was observed for the AquaBlok® treatment, with an averaged ΔK_{pw}^{Tx} of 41.6. The next largest partitioning factor was within the Slurry Spray treatment (9.9), followed by the Control plots (4.8) and SediMiteTM (3.8). An average decrease in the pore water partitioning coefficient was observed in Sand control between the pre- and post-treatments (ΔK_{pw}^{Tx} =0.9).

Individual ANOVAs were conducted within each treatment between pre- and post-treatment applications. Analysis determined that Time 0 $K_{bulk/pw}$ was statistically significantly different from both Time 1 and Time 2 sampling for the AquaBlok®, Slurry Spray treatments and Control (no treatment). Pore water partitioning coefficients in the Sand control and SediMiteTM plots were not found to be statistically different between Time 0 and Times 1 and 2, although the SediMiteTM plots did show a slight increase in $K_{bulk/pw}$ between Time 0 and Time 2. A logarithmic transformation of the data was required to provide a normal distribution prior to analysis. Results of the statistical analysis are provided in Table 6-4 and evaluations are shown in Appendix D.

Table 6-4 ANOVA Analysis of Time 0, Time 1, Time 2 K_{bulk/pw} Within Each Treatment

Treatment	F Ratio	Probability (>p)	Degrees of Freedom	Significant Variance
Slurry Spray	3.81	0.048	2	Yes
AquaBlok [®]	16.59	< 0.001	2	Yes
SediMite	3.19	0.078	2	No
Sand Control	1.06	0.371	2	No
Control	4.92	0.026	2	Yes

Because the Control exhibited a statistically significant increase in $K_{\text{bulk/pw}}$, a second statistical analysis was conducted to evaluate the significance of $K_{\text{bulk/pw}}$ observed in the treatment plots versus that observed in the Control. Dunnett's method was used to evaluate the partitioning factors of the treatments to the Control. The analysis determined that the AquaBlok® provided statistically significant greater solid phase partitioning than the Control. The reasons for increased solid phase partitioning in the Control are not understood at this time.

6.1.5 Evaluation of Pre- and Post-Treatment *Lumbriculus* Concentrations

An ANOVA analysis on post-treatment *Lumbriculus* receptor tissue concentration data collected from 28-day bioaccumulation studies by treatment type (AquaBlok[®], Control, Sand control, and Slurry Spray) determined that treatment type was a statistically significant variable for tissue concentration. Student's T means statistical comparison determined that the AquaBlok[®] and Slurry Spray were statistically different from the Control. Dunnet's mean statistical comparison (with Control set as the control) confirmed that AquaBlok[®] and the Slurry Spray were both

statistically different than the Control. ANOVA analysis on pre- and post-treatment tissue concentrations just within the Control showed that they were weakly statistically different. Table 6-5 summarizes the results of significance in tissue concentrations between pre- and post-treatment for the treatment types. Statistical evaluation outputs are presented in Appendix D.

Table 6-5 ANOVA Analysis of Pre- and Post-Treatment *Lumbriculus* Receptor Tissue Concentrations Within Treatment Types

Treatment	F Ratio	Probability (>p)	Significant Variance
Slurry Spray	4.3115	0.0583	Weakly
AquaBlok®	43.3589	< 0.0001	Yes
SediMite TM	Not measured	Not measured	NA
Sand Control	1.1268	0.3094	No
Control	4.0309	0.0699	Weakly

6.1.6 K_{bulk/Lv} Evaluation of PCB Reduction in Bioavailability

Large variations were observed in the pre-treatment macroinvertebrate receptor tissue concentrations over the treatment area ($>10^4$). Therefore, *L. variegatus* partitioning ($K_{bulk/Lv}$) was also employed to evaluate the efficacy of sequestration agents in reducing PCB bioavailability as measured from laboratory bioaccumulation testing. The application of *L. variegatus* partitioning normalized the pre-treatment data to a range less than one order of magnitude.

The results of the *L. variegatus* partitioning evaluation were similar to the pore water results for the treatment plots (Figure 6-2). Although not statistically significant, an increase in the post-treatment mean $K_{bulk/Lv}$ was observed for all treatments and control plots. The largest average $K_{bulk/Lv}$ was observed in the AquaBlok® treatments (312 kg/kg), followed by Slurry Spray (121 kg/kg), Sand control (9.87 kg/kg), SediMiteTM (8.76 kg/kg) and lastly, the Control (2.51 kg/kg). ANOVA testing determined that treatment was a statistically significant variable in *L. variegatus* partitioning (F = 12.59, $p \le 0.0001$, d.f. = 4). Additionally a Student's T-test determined that the AquaBlok® and Slurry Spray treatment provided statistically significant greater partitioning than the Control ($p \le 0.0001$ for both). Logarithmic transformations were conducted to normalize the data. Results of the statistical evaluation are presented in Appendix D.

Figure 6-2 PCB K_{bulk/Lv} by Treatment

Individual ANOVAs were conducted within each treatment between pre- and post-treatment applications. Analysis determined that all pre-treatment *L. variegatus* partitioning was statistically significantly different from both Time 1 and Time 2 post-applications sampling. No Time 0 SediMiteTM results were available so SediMiteTM was excluded from the analysis (although the Time 1 and Time 2 measurements indicate a non-statistically significant increase in the K_{bulk/Lv} over time). A logarithmic transformation of the data was required to provide a normal distribution prior to analysis. Results of the statistical analysis are provided in Table 6-6.

Table 6-6 ANOVA Analysis of Time 0, Time 1, and Time 2 K_{bulk/Lv} Partitioning Coefficients within Each Treatment

Treatment	F Ratio	Probability (>p)	Degrees of Freedom	Significant Variance
Slurry Spray	85.27	< 0.0001	2	Yes
AquaBlok [®]	22.12	0.0008	2	Yes
Sand Control	11.99	0.0047	2	Yes
Control	9.512	0.0104	2	Yes

Because a treatment effect was measured within the Control, a second statistical analysis was conducted to evaluate the degree of treatment provided between the different treatments. Dunnett's method was also applied to statistically compare the partitioning factors of the

treatments to the Control. The analysis determined that the AquaBlok $^{\text{®}}$ and the Slurry Spray provided a statistically significant $K_{\text{bulk/Lv}}$ greater than the Control.

6.1.7 Treatment Efficacy Discussion

Increases in bulk soil PBCs were measured between pre-treatment and post-treatment events and the measured concentrations ranged orders of magnitude. This is likely due to heterogeneity in PCB distributions across the entire site. Post-treatment black carbon content was statistically significantly different from baseline conditions in only the Slurry Spray and Aquablok® plots and only Aquablok® had statistically significantly different pore water concentrations from baseline conditions. Slurry Spray, AquaBlok®, and the Control plots had weakly statistically significant or statistically significant decreases in *Lumbriculus* tissue concentrations. Because of the heterogeneity in the soil and black carbon results and the lack of clear trends in pore water and tissue concentrations, the overall program did not conclusively demonstrate treatment efficacy (PCB bioavailability). However, the overall program results suggest that additions of activated carbon can sequester PCBs and the active *in situ* remediation technologies tested in this project could be effective for the remediation of contaminated wetland sediments. Additional long term monitoring would be necessary to complete the efficacy evaluation.

While general trends were observed in PCB bioavailability, changes observed in the Control and uncertainty in the mixing zone confound interpretation of treatment efficacy. General decreases were observed in PCB bioavailability as evidenced by the partitioning between pore water to bulk soil and tissue to bulk soil as a result of AC addition via the treatment technologies. Additionally, statistical evaluations determined that AquaBlok® and the Slurry Spray treatments provided significantly enhanced treatment in comparison with the Control. While these initial findings are promising and provide evidence that PCB bioavailability is reduced as a result of the application of these AC treatments, partitioning fluctuations within the Control plots raise questions about the degree of treatment efficacy observed in this study as well as the fate of AC in the natural system.

Treatment results demonstrated that AquaBlok® and the Slurry Spray performed statistically significantly with respect to the Control; however, uncertainties about mixing mechanisms at the site means that more evaluation is needed to demonstrate effective incorporation of treatment into the soil and long term efficacy. Qualitative observations from cores suggest that benthic mixing may not dominate at the site; rather, root mixing may be the primary mechanism. Therefore, treatment design depths and monitoring depths may not have been congruent for optimal evaluation of treatment efficacy. Longer term monitoring may be advantageous to understanding the rates and depths of mixing in this system. Additionally, differences between amendment design thickness and deployed thicknesses should be further investigated. Overall, AC technology has been demonstrated to be working, but the mechanisms affecting the outcomes of the different treatment methods are not fully understood. Mixing zone analysis, further exploration of field variables, and long term monitoring is necessary before further conclusions can be drawn.

An increase in both $K_{bulk/pw}$ and $K_{bulk/Lv}$ was observed within the Control plots between pre- and post-treatment applications although no treatment was applied to these plots. Black carbon measurements did not show an increase in AC between the sampling events (e.g., from potential migration of AC between plots or atmospheric inputs) that could explain this trend. Similar observations were made in the Sand control plots. A potential explanation of this variance may be

attributed to the sampling protocol followed in this study. Composite samples were collected by combining spatially distributed grab samples from the top 15 cm (6 in.) of soil that were homogenized in the field prior to all analytical analyses in an attempt to account for geospatial heterogeneity across the treatment plot. However, the vertical heterogeneity of PCB concentrations with depth in the BAZ, with or without treatment, is not well understood and the heterogeneity is not understood through time (i.e., effects of mixing, sampling error). Therefore, the sampling approach may have introduced unintended artifacts that are currently not fully understood. In addition, homogenization likely artificially increased the distribution of amendments within the sample. The natural integration of amendments is important to the exposure of benthos and long term stability of the amendments, particularly at this site where there is a large concentration gradient with depth (concentrations increase over an order of magnitude from the surface to 15 cm (6 in) depth). As a result, an understanding of the natural mixing processes (e.g., hydrologic, biologic) that integrate the different AC treatment products into the surficial soils and the rates of mixing is a data gap and will require further evaluation to fully characterize the efficacy of the different AC products.

In addition to the aforementioned challenges in efficacy evaluation, the depth of the apparent BAZ is a data gap at this site but can be estimated based on field observations of rhizome depth. Common reed rhizome depths of 4 to 8 inches were reported in Delaware (Gallagher et al., 1979) but depths can vary greatly with site conditions (USDA Forest Service, 2013 accessed at http://www.fs.fed.us/database/feis/plants/graminoid/phraus/all.html). The assumed BAZ thickness and subsequent soil sample interval was 15 cm (6 inches) in this study. However, the potential effects of such a data gap can be estimated. If the apparent BAZ was over-estimated in this study by sampling deeper, then proportionally less AC would be sampled with depth, PCB concentrations in pore water presumably would be higher, since less binding capacity of AC exists. Conversely, if the sampled interval was shallower than the apparent BAZ, higher proportional concentrations of AC would be present and the opposite condition (K_{bulk/pw} is artificially higher) would result. High resolution soil and vertical pore water profiling and a thorough pre-treatment characterization of the BAZ may be advantageous to resolve this potential question.

Ghosh et al. (2011) identify several challenges in evaluating efficacy due to transient changes that take place in the environment, which differ from controlled laboratory settings. Potential confounding factors include: contaminated water above the treatment zone, inwash and deposition of contaminated sediment into the treatment area, mixing conditions, and small-scale heterogeneity of sorbent distribution. Thus, longer term evaluations that use multiple lines of evidence are desirable.

6.2 ECOLOGICAL EFFECTS

Ecological monitoring metrics were evaluated against the performance criteria described in Section 3. Resident plant community survival, health, and plant nutrient uptake, and benthic invertebrate survival and health were assessed.

6.2.1 Vegetation Evaluation

In general, the results of statistical analyses suggest that there was no effect of treatment on plant species composition within the field demonstration wetland. However, longer term monitoring would elucidate treatment effects and perhaps clarify natural temporal and spatial variations.

Strong correlations were observed between pre and post-treatment plant metrics. No differences were observed among treatments and controls for relative cover and species richness within Time 0, Time 1 and Time 2 sampling events. Lower diversity (marginally statistically significant) was observed within post-treatment SediMiteTM plots when compared to the Control plots. However, this may be attributed to natural variation as diversity, and species richness also tended to be lower within SediMiteTM plots prior to any treatments (i.e., at Time 0) than the in Control plots. It may also be a physical effect due to thicker than designed deployment in the SediMiteTM plots but that is seemingly unlikely given that SediMiteTM thickness was thinner than other treatments (AquBlok® and Sand control). Although mean relative cover and species richness within treatment plots appeared to be lower at Time 0 when compared to Time 1 and Time 2, these observed differences may be temporal in nature. Aboveground portions of most soft, fleshy herbaceous and aquatic emergent species completely disappear following the first frost, which can result in a substantial decrease in plant community structure in a short time period (e.g., between October when the Time 2 sampling event took place and November when the Time 0 sampling event took place).

Visual inspections of vegetation during each of the post-treatment sampling events did not identify any early senescence, yellowing or stunting of vegetation. However, in June 2011, dark staining was observed on newly emerged vegetation (sensitive fern [Onoclea sensibilis]) in plots treated with AquaBlok® at Time 1. Because Canal Creek is tidally influenced, it was presumed that the dark colored, fine-textured component of the AquaBlok® was transported with the rising tide, staining portions of the plants that were submerged. The dark staining on the leaf surfaces could potentially temporarily impact the photosynthesis process and gas exchange between the leaf surface and atmosphere via stomata.

6.2.2 Plant Nutrient Evaluation

Several statistical comparisons were conducted on the plant tissue concentrations and are presented in Appendix F; however, due to the variability in the concentrations of the metals and nutrients in the soils an evaluation of plant uptake factors may be more relevant to the objectives of this demonstration project.

Uptake factors for each replicate and metal or nutrient were calculated on a dry weight basis by dividing the plant tissue concentration by the soil concentration. Plant tissue data were available for each replicate of each treatment and soil concentrations were available for each treatment (the soil from all replicates of a treatment were combined at test termination and submitted for chemical analysis). Hypothesis testing was conducted to determine statistical differences, either higher or lower, relative to the APG-15 (Site Control) sample and the lab control. Table 6-7 and Figure 5-19 summarize the findings of this evaluation.

The majority of the treatments showed statistically significantly lower uptake factors relative to the lab control uptake factors. However, this is not necessarily unexpected since the lab control material was a test soil mixed in the laboratory from sphagnum peat, clay, sand, and calcium carbonate. This material has relatively low TOC (2.8%) and is unlikely to significantly bind the materials in the nutrient solution; therefore, the nutrients are expected to be incorporated into the plant tissues in the lab control. Only sodium uptake factors were higher in the treated soil. Treated soils had higher sodium levels (99 to 327 mg/kg) than the lab control (Not detected at a reporting limit of 61.1 mg/kg), but that does not explain the higher accumulation in the tissues from the treated soil.

An evaluation of uptake factors relative to the APG-15 (Site Control) sample are likely more relevant to the objectives of this project since all of the samples were obtained from the wetland and represent natural soils with higher TOC levels (ranging from 6.4% to 15.5%). Table 6-3 shows that many of the uptake factors in the three treated soils were not statistically different from the APG-15 sample. This indicates that uptake of nutrients and metals was not changed by the addition of the treatments in these locations. Only nitrogen uptake in the APG-02 Slurry Spray treatment and sulfur uptake in the APG-16 SediMiteTM treatment were statistically less than uptake in the APG-15 sample. For the remaining evaluations, the uptake factors were statistically higher in the treated soils than in the APG-15 sample.

These findings indicate that the treatments are generally not likely to impair the uptake of nutrients and metals into plants in treated wetlands. It is possible that higher than normal uptake of nutrients or metals could eventually adversely impact plants. However, the addition of a nutrient solution during the test represents an additional highly bioavailable source of metals and nutrients beyond what is naturally present in the soils and may over-estimate plant uptake under field conditions.

6.2.3 Macroinvertebrate Evaluation

Simple statistics comparing differences in diversity scores of replicate means between control and treatment plots were attempted and yielded little information due to a paucity of organisms. The lack of a significant benthic community at the Site, including in control plots, is likely due to habitat limitations in the marsh environment sampled for this demonstration project.

Table 6-7 Summary of Statistical Significance of Plant Uptake Factors Relative to Site and Laboratory Controls

Treatments vs Lab Control					Treatments vs APG -15 Site Control			
	APG-02 Slurry Spray	APG-06 AquaBlok [®]	APG-15 Site Control	APG-16 SediMite		APG-02 Slurry Spray	APG-06 AquaBlok [®]	APG-16 SediMite
Boron	NS	-	-	-	Boron	+	+	NS
Calcium	NS	NS	-	NS	Calcium	+	NS	+
Copper	-	-	-	-	Copper	+	+	NS
Iron	-	-	-	-	Iron	NS	NS	NS
Magnesium	-	-	-	-	Magnesium	+	+	+
Manganese	-	-	-	-	Manganese	+	NS	NS
Phosphorus	-	-	-	-	Phosphorus	+	+	NS
Potassium	-	-	-	-	Potassium	+	+	NS
Sodium	+	+	+	+	Sodium	NS	NS	NS
Sulfur	-	-	-	-	Sulfur	NS	NS	-
Zinc	-	-	-	-	Zinc	+	+	NS
Nitrogen	-	-	-	-	Nitrogen	-	+	NS

NS Not significant

 $^{+ \} Treatment \ is \ statistically \ significantly \ greater \ than \ Control$

⁻ Treatment is statistically significantly less than Control

6.3 PERFORMANCE EVALUATION

The performance of each treatment was assessed by comparing treatment cost, implementability, and constructability metrics. A more detailed evaluation of cost performance is provided in Section 7.

6.3.1 Cost

Treatment costs were compared to costs for a more traditional remedial approach (removal and wetland restoration) to evaluate the success of the demonstration. Specifically, a present value cost-savings of greater than 30-50% compared to removal and wetland restoration would represent a successful demonstration. Results of the cost analysis are presented in Section 7.3. The cost analysis shows a projected potential cost savings of 20 to 60% on a per acre basis depending on several variables including, but not limited to the size of the site, type of wetland, depth and type of impacts, type of amendment and site accessibility.

6.3.2 Implementability

The implementability of the treatment technologies was evaluated based on material application rates, equipment limitations, reliability and scalability.

Pelletized Activated Carbon

The field demonstration confirmed that AquaBlok® could be deployed effectively utilizing a bark-blower, with some limitations. The deployment rate of the AquaBlok® for each plot was highly dependent on the distance the plot was located from the bark-blower. Deployment duration of the AquaBlok® at various distances are summarized in Table 5-2, with rates ranging from 1.24 tons per hour (tph) with 200 linear feet (lft) of hose to 2.15 tph with 100 lft of hose. It should be noted that these deployment rates included a considerable amount of manual labor to address clogging issues which occurred in the deployment hose. Because of uneven terrain, the hoses would tend to clog at low spots requiring manual labor to restore production. The AquaBlok® pellets were 5% activated carbon by mass, so the effective activated carbon rate ranged from 124 pounds activated carbon per hour (lbcph) with 200 lft of hose to 215 lbcph with 100 lft of hose. These deployment rates included the time to load the bark-blower with AquaBlok® from super-sacks, which was minimal since the bark-blower hopper could hold approximately two tons of AquaBlok®.

A two inch and a four inch hose were provided by the vendor for use with the bark blower; however the two inch hose regularly clogged at the cam lock connection between each hose section making the four inch hose the preferred diameter. The effective range of the bark blower with the four inch hose was approximately 100 to 200 lft. At greater distances, the deployment rate of the AquaBlok® was significantly reduced and clogging became more problematic. Due to this distance restriction, a proposed Control plot (APG-20) and a proposed AquaBlok® plot (APG-15) were switched. An additional 300 pounds (approximately 1/8 of a super-sack) were deployed by hand evenly to each of the plots to achieve the final desired AC mass per plot. This relatively small quantity was delivered by hand as it was determined to be impractical to deploy 300 pounds of material via the bark blower.

Based on the results of the field demonstration, the deployment of pelletized activated carbon utilizing a bark-blower is feasible for scalability; however consideration with regard to site access and deployment distances is required. The bark-blower is much more effective when being utilized at close distances (within 100 lft from the piece of equipment), with optimal deployment distances of up to 50 lft.

Alternative delivery mechanisms which may be more efficient in deploying material include a Stoneslinger or Putzmeister Telebelt which would improve production rates, but may require additional consideration with regard to site access and site preparation, including the installation of stabilized construction access roads and staging areas as required. Also, the mobilization cost for this equipment is more significant than for a bark-blower; however, this cost will be off-set by increased production rates, so the scale of the project will be a consideration in equipment selection.

Similar results were obtained for SediMiteTM deployment. The SediMiteTM was deployed using a turf spreader for the coarse application and a Vortex for touch-up. The application rate, using a Vortex spreader, was 10 lbs/minute, and the turf spreader was 150 lbs/min.

Powdered Activated Carbon Slurry

The field demonstration confirmed that the powdered activated carbon could be effectively deployed utilizing standard hydro-seeding equipment. The PAC slurry application via hydro-seeder took approximately 15 minutes per plot, as compared to two hours per plot for the AquaBlok[®]. The effective carbon deployment rate was 1,200 lbcph, six to ten times higher than for AquaBlok[®]. This deployment method proved effective at delivering the carbon slurry to distances up to 150 lft without compromising production rates and/or the quality of the slurry. As such, it is anticipated that the deployment distance could increase substantially (i.e. up to 500 lft), if required with minimal impacts to cost and deployment rates.

Based on the results of the field demonstration, the hydro-seeding equipment utilized was very effective in deploying the powdered activated carbon slurry at significant distances from the staging area. This type of deployment equipment is readily available and can be utilized in several ways to minimize disturbance to resource areas (truck mounted equipment or delivery hose extending from the equipment). As such, this delivery technique is considered to be scalable for larger applications.

Sand Mixture

The field demonstration identified limitations with regard to the use of the bark-blower for deploying the sand mixture. Deployment activities were suspended during the application of the sand mixture to APG-10 when air temperatures dropped below freezing, causing the sand mixture to freeze and clog the bark-blower's air-lock and hoses. On the final day of deployment, frozen sand in the bark-blower's hopper/air lock chamber resulted in damaged shear pins in the conveyor belt, rendering the piece of equipment inoperable. As a result, the remaining sand was deployed by hand.

Approximately 15 trips over a 50 minute period were required to deploy the remaining sand mixture (approximately one ton) to Plot #14. There was a relatively straight and frozen wetland

path from the sand mixture loaded super-sack to the plot. The remaining sand plots (#1 and #10) required 55 trips per plot, over a period of approximately 100 and 105 minutes. The plots were approximately 100 and 200 lft from where the super-sacks were positioned. Plot #10 required a 120 lft traverse through the wetlands, and with the frozen conditions present, allowed for wooden planks to be utilized as walkways during deployment activities. However, as the tide came in and the water level in the wetlands rose, the frozen surface gave way to softer/unstable conditions and the water made the wooden planks slippery. Although the application duration/rate for Plot #1 (located approximately 100 lft from where the super-sack was positioned), was similar to Plot #10, the deployment/application rate would not be sustainable over multiple days of deployment due to the physical strain experienced by the deployment crew.

The sand application rate using the bark blower with hose lengths similar to those used during AquaBlok® deployment was 25% less than the application rate of the AquaBlok® (based on deployment activities in APG-3 prior to equipment malfunction). Refer to Table 5-3 for a summary of sand deployment operations using a 100 lft hose. Deployment rates for the sand mixture were approximately 1.63 tph. The effective carbon content of the sand mixture was approximately one percent and the effective carbon deployment rate for sand was 32.6 lbcph.

Based on the results of the field demonstration, the deployment of the sand mixture utilizing a bark-blower may be feasible depending on the moisture content of the sand mixture and ambient temperatures at the time of deployment. However, should this be determined to be practical under desirable conditions, consideration with regard to site access and deployment distances is required. Alternative delivery mechanisms may include the use of a Stoneslinger or Putzmeister Telebelt which would improve production rates, but may require additional consideration with regard to site access and site preparation, including the installation of stabilized construction access roads and staging areas as required. Also, the mobilization cost for this equipment is more significant than for a bark-blower, although this cost will be off-set by increased production rates, so the scale of the project will be a consideration in equipment selection.

6.3.3 Constructability

The constructability of the treatment technologies was evaluated based on visual observations of application homogeneity and measurements of sequestration agent thickness. Measurements were made in each of four quadrants of a plot. Table 5-3 presents the homogeneity of application thickness.

AquaBlok[®] amendment was placed 2.14 inches thick on average, varying by 0.2 inch, whereas sand amendment was 1.99 inches thick on average, varying by 0.2 inch. Slurry thickness was not measured because the application was a thin veneer. The SediMiteTM amendment was placed with an average thickness of about 1.25 cm (0.5 inches).

6.4 TECHNOLOGY ACCEPTANCE

The acceptance of the technology was assessed via the permitting process, work plan review, and peer-reviewed publications/conference presentations.

6.4.1 Permits

The USACE issued a Water Quality Certification permit authorizing the demonstration construction activities in a floodway. The USACE determined that the activities undertaken for the demonstration project did not constitute permanent placement of fill however, site-specific permit evaluations that consider state and local laws, land or waterway use (e.g. recreation), or timing of construction activities (e.g. seasonal wildlife restrictions) should be completed early in the planning process. These factors that may cause restrictive conditions or schedules can usually be planned for and mitigated against, as with any remediation construction. Thus, the technology is acceptable to regulators.

It was also determined for this project that a local county soil conservation district permit was not required due to the demonstration project's location on Federal Lands. Other projects may have additional permitting requirements.

6.4.2 Work Plan Review

The Demonstration Plan was reviewed and approved by state Maryland Wildlife Management Area (MWMA) and federal (USACE) agencies prior to implementation. Regulators routinely review remediation construction work plans. The approval by regulators for construction work plans and their implementation of remedy technologies provides the technology and the Demonstration Plan's design a level of acceptance that validates the technology.

6.4.3 Industry

The majority of relevant peer reviewed studies have focused on sediments, soils, and groundwater, rather than hydric soils. Organoclays, zeolites, and activated carbon have been used extensively for the treatment of water and soil contamination (McDonald et al., 2004). DoD's Strategic Environmental Research and Development Program (SERDP) and ESTCP have funded and are currently funding a number of projects that focus on the use of amendments to sediment or to sediment caps to manage contaminated sediments *in situ* (visit http://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Sediments/ for additional information). These include ER-0510 "Field Testing of Activated Carbon Mixing and *In Situ* Stabilization of PCBs in Sediment," ER-0433, "An Innovative Capping Material for Contaminated Sediments," ER-1207 "In-situ Stabilization of Persistent Organic Contaminants in Marine Sediments," ER-1491 "Rational Selection of Tailored Amendment Mixtures and Composites for In-Situ Remediation of Contaminated Sediments for Simultaneous Control of Contamination and Erosion," and ER-1493 "Reactive Capping Mat Development and Evaluation for Sequestering Contaminants in Sediments".

Although *in situ* subaqueous sediment and wetland remedial technologies have been successfully field demonstrated at a number of sites in the past decade (e.g., see Patmont et al., 2013), longer-term (i.e., longer than 10 years) studies relative to remedial efficacy are currently lacking. Thompson et al. (2012) identified the greatest needs to promote active *in situ* treatment acceptance by stakeholders as a viable remedy are long-term proof of effectiveness and permanence. Patmont et al. (2013), presents a summary of completed and ongoing AC and biochar pilot projects, many of which have been conducted in wetland settings. Although not yet widely applied, *in situ*

remediation of contaminated hydric soils is likely to be viewed positively by industry as less invasive technologies continue to be developed.

6.5 SAFETY

Approximately 600 hours were spent in the field injury free and more than 1000 hours were spent in the laboratory injury free. Safety observations were reported during the field activities and investigation derived waste (IDW) was managed in accordance with the HASP. Observations noted the presence of deer ticks in the wetlands, potential cold weather exposure, and stop work conditions related to high water and inclement weather. No activities were modified or stopped due to technology-related hazards.

6.6 TECHNOLOGY TRANSFER

Technology transfers were completed on the following dates and in the forums indicated in addition to several internal NAVY technology transfers:

- February 2009- Navy and Marine Corps Cleanup Conference
- January 2010- AECOM webinar to waterway restoration practitioners
- November 2010- Briefing presentation to ESTCP Program
- February 2011- Battelle International Conference on Contaminated Sediments presentation to professionals
- November 2011- SETAC poster presentation to professionals
- December 2011- AECOM webinar to waterway restoration practitioners
- May 2012- AECOM webinar to waterway restoration practitioners
- October 2012-Installation Briefing presentation to Aberdeen Proving Ground
- February 2013- Battelle International Conference on Contaminated Sediments presentation to professionals
- April 2013- Presentation to the Navy NAVFAC Sediment Workgroup

Future opportunities for technology transfer are being sought and may include published technical guidance documents, peer-reviewed professional journal articles and presentations, or similar venues in collaboration with the ITRC.

7.0 COST ASSESSMENT

A cost assessment was performed to summarize cost tracking and to provide order-of-magnitude costs for full scale application of the technologies described in this report. Costs that were tracked for the demonstration project are not directly scalable to an implementation project due to the research nature of the demonstration. For example, labor costs for implementation and monitoring were much more intensive than would be expected for a full scale project. The material and labor requirements to lay out the 24 test plots and the high frequency of sample collection, data evaluation, and reporting are above the costs that would be encountered to treat a 5 acre plot. Therefore, costs reported in the literature are provided as the basis for the cost model for full scale application. Tracked costs are presented in Table 7-1. The cost estimates presented herein can be used to compare in situ wetland remediation to more conventional remedial technologies such as source removal and restoration. Ghosh et al. (2011) and Patmont et al. (2013) have presented cost estimates for the application of in situ remediation by AC, which compare favorably to cost estimates of dredging and disposal. For example, costs of dredging the Hudson River have been reported to be \$15M per ha (\$6.1M per acre) for phase I of the clean up (Hill, 2010 as cited by Ghosh et al., 2011) but costs for active in situ treatment by AC are an order of magnitude or more lower, ranging from \$150,000/ha to \$0.5M/ha [\$60,000 to \$200,000 per acre (Patmont et al., 2013)].

Table 7-1 Tracked Demonstration Project Elements and Costs

Cost Element	Element Components	Demonstration Cost, \$K
	Labor	
Treatability Study	Materials	\$42
	Analytical laboratory costs	
Permitting	Applications and Plans Meetings	\$15
Mobilization	\$28.5	
Material Cost (Amendment)	Material cost (including manufacturing) Shipment of material	\$27.3
Implementation	Equipment Rentals Labor (amendment deployment and application thickness confirmation measurements)	\$119.1
Demobilization	\$10	
Long-term Monitoring	\$215	
Professional Services	Work Plans, Reporting, Management and Technical Transfers	\$306.6

Wetland site variables such as the size and type of wetland requiring remediation, access, vegetation conditions, topography, water level conditions, and other site conditions may necessitate a broad variety of approaches in the method and types of deployment equipment for *in situ* remediation. Several factors require consideration for the full scale application of this technology, one of the most limiting of which is potential site access. Site access may significantly affect cost as follows:

Scenario 1: Equipment can deploy amendments to wetland from adjacent upland areas such that access roads or swamp mats will not be required within the wetland.

Scenario 2: Equipment will require access roads or swamp mats within wetland areas in order to deploy amendments.

Therefore, a significant portion of the construction cost can be associated with equipment mobilization and site preparation. The cost per acre for mobilization and site preparation decreases as the treatment area increases. As such, example costs are presented for three different size wetland areas (1, 5 and 10 acres).

Lastly, existing equipment available in the marketplace can readily be adapted to deploy treatment products to wetland hydric soils. Examples of four different deployment options include those discussed previously in Section 5: a bark blower, stone slinger, telebelt and hydro-seeder. Several other options exist for deployment equipment for sites with challenging access issues, including the use of barges and/or helicopters or other equipment; however, these installation methods were considered to be atypical situations for wetlands access, and as such, cost estimates presented herein do not include those process options.

7.1 COST MODEL

Table 7-2 presents a cost summary for the full-scale implementation of this technology assuming the typical scenarios described above. Major cost elements related to the technology and the data that were tracked to estimate costs associated with these elements are listed in the table. The assumptions associated with these elements are described in the following sections. It should be noted that design and permitting costs were not included as these costs are assumed to be consistent regardless of the selected remedy (traditional removal vs. in-situ sequestration).

7.1.1 Treatability Study and Remedial Design

A Treatability Study will often be required to determine the type(s) of amendments to be used for full scale application as well as the optimal application rate(s) needed to effectively sequester contaminants. Costs for this study will typically vary by contaminant, monitoring metrics, surface area of a site, number of different soil types at site, and other site-specific variables. Costs for certain organic compounds (e.g., high resolution PCB congener analysis) are expected to be of a higher magnitude than typical costs to assess the bioavailability of inorganics (e.g. metals and acid-volatile sulfides/simultaneously extracted metals analyses). The Treatability Study will typically be comprised of laboratory testing using site specific materials and available amendments. The results from the Treatability Study will be used as a basis for full scale design and implementation.

Components of a typical Treatability Study include:

- 1. Preparation of a site specific work plan to be approved by relevant stakeholders to reach consensus on performance criteria,
- 2. Phased laboratory work which may include an evaluation of amendment effectiveness, amendment dose optimization, and bioassays such as toxicity testing or bioaccumulation studies, and
- 3. Preparation of a report detailing the findings of the study, as well as recommended paths forward for implementation.

The potential costs for the treatability study may also vary depending on the density or frequency of sampling, the suite of analytes and the number and type(s) of amendments tested but typical costs for a wetlands site are expected to be \$20,000 to \$50,000. For example, treatability study costs presented in Table 7-1 for this project included laboratory costs for analyzing pore water, hydric soil, and macroinvertebrate tissue samples for soil treated with three different amendment types. Costs may be higher with larger sized sites if densely sampled but the laboratory costs are expected not to vary much from the estimate presented here.

7.1.2 Permitting

Because the technologies described in this Final Report include the introduction of fill to a resource area (albeit a minimal quantity of fill), federal permitting (e.g., USACE, Section 404 of the Clean Water Act) and possibly State/local permitting may be required. Because this permitting may also be required for more conventional remedial approaches (such as source removal), and because these costs are fairly well documented and do not vary significantly based on the technology employed, permitting costs were not included in this cost model, but should be planned for when evaluating this technology. Cost elements may include application and review fees, generation of maps and site information, and stakeholder meetings. Costs tracked for permitting related activities are presented in Table 7-1.

Table 7-2 Cost Estimate for In Situ Contaminant Sequestration in Wetland Hydric Soils

C (F)		Cost per Treatment Area (acres) ¹				
Cost Element	Element Components	1 Acre	5 Acre	10 Acre		
	- Labor					
Treatability Study	- Materials	\$20 - \$25	\$25 - \$50	\$25 - \$50		
	- Analytical laboratory costs					
Mobilization	- Access Road, Dry/Wet Deployment Roads	\$15 - \$70	\$50 - \$350	\$100 - \$600		
	- Shipment of equipment and supplies					
Material Cost ² (Amendment)	- Material cost (including manufacturing)	\$20 - \$40 (PAC) \$50-\$70 (Pellet with weighting agent)	\$100 - \$200 (PAC) \$250-\$350 (Pellet with weighting agent)	\$200 - \$400 (PAC) \$500-\$700 (Pellet with weighting agent)		
	- Equipment Rentals		\$10 - \$40	\$15 - \$75		
Implementation	- Labor (amendment deployment and application thickness confirmation measurements)	\$5 - \$15				
Demobilization	- Access Road, Dry/Wet Deployment Roads Restoration	\$15 - \$30	\$40 - \$130	\$70 - \$275		
	- Shipment of equipment and supplies					
	- Travel and labor (sampling and field surveys)		\$100 - \$150	\$200 - \$250		
Long-term Monitoring	- Shipment of equipment and supplies	\$25 - \$50				
	- Laboratory costs					
Reporting	- Annual and 5 year reporting	\$75 - \$100	\$75 - \$100	\$75 - \$100		

¹All costs are in \$1,000s and based on a cost model presented in Final Report: *In Situ* Wetland Restoration Demonstration ESTCP Project No. ER-200825 nd material costs presented in Patmont et al. (2013).

²Cost of shipping not included because it will vary with quantity and distance from manufacturer/supplier.

7.1.3 Mobilization and Site Preparation

Typical mobilization costs include the cost for mobilizing construction equipment and temporary facilities and supplies to the site in support of the proposed work activities. In addition, temporary staging areas and access roads may be necessary in the cost estimate in order to mobilize and stage equipment and materials proximal to the proposed treatment areas to facilitate deployment. Unless suitable site features already exist (access roads, cleared lots, etc.), these laydown areas may need to be installed as part of site preparation activities. In order to install these features, limited clearing and grubbing activities may be required. Depending on the condition of the subgrade and potential permit requirements, geosynthetics (geotextiles and/or geogrids) and a 12 to 18 inch deep layer of structural fill (e.g., processed gravel) may be required to provide adequate bearing capacity to support the anticipated construction equipment. Where possible, access roads and staging areas should be constructed in upland areas; however, depending on the wetland configuration and extent of proposed amendment application, temporary access roads may need to be constructed in wetland areas (within the proposed treatment area). Swamp mats may be used if equipment access to the wetland areas is required. Access roads typically need to be a minimum of 15 feet wide, but may need to be wider for specialized equipment such as a Tele-belt (30 feet wide minimum).

For the purpose of the cost analysis presented in this Final Report, mobilization costs may include the following components:

- **Site Access Road and Staging Area** If necessary, minimal clearing/grubbing and grading may be required to allow for installation of a site access road and staging area. If no access roads need to be constructed, then the cost of materials for the assumed road dimensions could be avoided.
- Amendment Deployment Road Construction If necessary (e.g. Scenario 1), limited clearing/grubbing, and grading may be required to allow for installation of the deployment road.
- Wetland Access Road Construction If necessary (e.g. Scenario 2), swamp mats may be used to establish access in such a way as to optimize efficiency, and ideally clearing/grubbing and grading would be avoided or minimized.

The cost estimate for mobilization using typical conditions ranges from \$37,000/ha to \$175,000/ha (\$15,000/acre to \$70,000/acre) and decreases per unit area as the size of the area being treated increases.

7.1.4 Material Cost

A variety of treatment products and dosing rates are possible but an application treatment of pelletized AC to an average dose of 3% by mass in the top 10 to 15 cm of the BAZ is anticipated to be typical for most wetland hydric soils. A variety of commercially available pelletized AC and PAC slurry products should be considered to provide a range of potential costs for a design goal of 3% AC in the top 15 cm of the BAZ (e.g., Figure 7-1). Cost estimates for a soil cover system consisting of a natural organic carbon containing topsoil and sand mixture may also need to be included for a baseline comparison.

Other amendment products are available and can be customized to site-specific needs but are expected to fall within the range of treatment costs provided here. Using a bulk AC cost of about \$2.20 US Dollars (USD) per kilogram, Ghosh et al. (2013) provide a cost estimate of about \$75,000 per ha (\$30,400 per acre). This is consistent with material cost estimates presented by Patmont et al. (2013), who estimated material costs at \$49,400/ha (\$20,000/acre) to \$98,800/ha (\$40,000/acre).

7.1.5 Implementation

The size, location and access to the treatment area will often dictate the type of equipment and labor effort required for

Figure 7-1 Pelletized Carbon as $SediMite^{TM}$

deployment of the preferred amendment, which thereby influences cost and schedule considerations. Typical equipment described in Section 5 can be used to deploy particulate amendment, and/or a soil cover system. For the application of PAC slurry, a hydroseeder is a viable and cost effective option. The following equipment limitations and production rates may be used as a basis for costing:

- Bark Blower Assume a maximum extent of deployment from the unit is 50 feet and that the unit can deploy material at a rate of two tons per hour, which will vary in the field if the equipment needs to be moved frequently. To account for repositioning of the equipment, it may be assumed up to 12 tons can be deployed per day utilizing this piece of equipment. Because of potential issues with equipment reach and deployment rates utilizing longer hoses, this method may not be cost effective for larger applications and/or applications that require long reach from access roads.
- **Stoneslinger** Assume a recommend extent of deployment (i.e. reach) is up to 80 feet from the truck at rate of 40 tons per hour; therefore, when factoring in loading and repositioning up to 240 tons can be deployed per day.
- **Tele-belt** Assume an extent of deployment up to approximately 150 feet from the truck. The operator needs to keep tight control of the boom position and conveyor belt rate since this piece of equipment has the capacity to deployed material at a rate of 250 tons per hour. In order to allow for even placement of the material, the deployment rate should be managed at a rate of approximately 150 tons per hour; therefore, when factoring in loading and repositioning, assume that up to 900 tons per day can be deployed using this piece of equipment.
- **Hydroseeder** Assume that a mixture of water and PAC (at a mixing ratio of 35-40% carbon by weight), can be applied at a rate of approximately 5 acres per day up to 500 feet from the unit. Hydroseeders with capacities of 600, 1,000, and 4,000 gallons are readily available in most regions of the country.

Even with the potential array of deployment methods that are possible, production rates, and site logistical challenges, the cost of implementation is not likely to be a cost driver compared to other

factors (e.g. material costs, mobilization/demobilization). Typical implementation costs presented in Table 7-1 suggest that the cost of this element may be ½ to ¼ the cost per unit area of other project elements. In fact, the costs of implementation also may decrease significantly as the size of the treatment area increases. Cost estimates reported by Patmont et al. (2013) for placing AC treatment products are similar in magnitude when mobilization/demobilization are considered and ranges from \$74,000/ha (\$30,000/acre) to \$173,000/ha (\$70,000/acre). Patmont et al. (2013) note that mechanical mixing of a treatment technology into soil or sediment may cost upwards of \$100,000/ha (about \$40,000/acre).

7.1.6 Demobilization

Typical costs encountered during demobilization related activities involve shipment of equipment and excess supplies from the site, as well as the removal/restoration of the areas impacted during the deployment process, including the site access roads, deployment roads, and the equipment storage/staging areas. Demobilization costs may include the following assumptions:

- Access roads and staging areas are removed and shipped off-site as "clean fill".
 Therefore, the cost estimated includes the removal and shipping of the process gravel only (i.e. no disposal costs).
- The removal/disposal of the geosynthetics (geotextiles and/or geogrids) can be disposed as general debris in an appropriately sized roll-off dumpster with cover and associated delivery/pickup and disposal fees.
- Removal and decontamination of the swamp mats, the decontamination pad, the waste profile laboratory, and disposal costs at a properly licensed facility are costs typically encountered.
- Restoration costs (seeding and plantings) for a limited area of wetlands that may be disturbed to provide access for amendment deployment should be anticipated, as appropriate.

7.1.7 Long-Term Monitoring and Reporting

Because this technology involves the *in situ* sequestration of COCs, long-term monitoring activities are likely to be necessary to demonstrate remedial success. Also, because this technology has a limited case study history, specific long-term monitoring requirements have the potential to vary significantly from site to site and may depend on regulatory oversight conditions. Lastly, because of the anticipated potential duration of long-term monitoring and reporting requirements (10 to 20 years), this is a significant component of the overall cost of this technology.

Long-term monitoring activities can typically be assumed to include periodic sampling and evaluation tasks performed during the growing season following amendment deployment, and will often involve sampling of hydric soil, pore water, and possibly tissue samples in the treated area. Monitoring events may potentially consist of activities such as collecting:

- 1. Pore water concentrations from hydric soil grab samples or passive samplers;
- 2. Bulk hydric soil concentrations from grab samples;

- 3. Benthic receptor tissue concentrations from organisms exposed to hydric soils under laboratory conditions (e.g., bioaccumulation assays),
- 4. Field collection of organisms for tissue residue analysis,
- 5. Laboratory toxicity testing, and/or
- 6. Ecological sampling.

For the purposes of preparing a cost estimate, the following typical elements may be considered for a monitoring program:

- Monitoring includes sampling at routine intervals over a 10 to 20 year period. This duration is provided as an example of potential long term monitoring durations.
- A pre-treatment baseline "Time 0" sampling event is included.
- Analyses may be tailored to reflect the data quality objectives so that routine sampling events may vary by frequency. For example, the 10 and 20 year post application events (if applicable) may include the full suite of analysis (bulk soil, pore water, and tissue) in order to gauge the long term effectiveness in reducing the bioavailability of the contaminants. Annual sampling may consist only of ecological field surveys as the treatment products described in this report do not decrease total concentration of contaminants in bulk soil (Ghosh et al., 2013), but monitoring programs will vary, depending on what the regulatory agencies deem appropriate.

As the size of the candidate site is scaled up (e.g., 5 acres, 10 acres, etc.), the costs for long term monitoring may increase, depending upon the degree of characterization desired. Cost estimates for long term monitoring reportedly range from \$25,000/ha (\$10,000/acre) to ~\$125,000/ha (\$50,000/acre), depending upon whether sampling for treatability studies and baseline characterization activities are included (Patmont et al., 2013).

Reporting costs are assumed to include a typical brief summary report for each monitoring effort; a comprehensive report is required at the conclusion of the long term monitoring period. Thus, reporting costs may be assumed to be the same regardless of treatment area.

7.2 COST DRIVERS

As depicted in Tables 7-1 and 7-2, the primary cost drivers are mobilization/site preparation, amendment materials, demobilization/site restoration and long-term monitoring costs.

- Mobilization and demobilization costs become less significant to the overall project costs as the application area increases.
- Site preparation/site restoration costs are dictated by providing sufficient access for the
 construction equipment to effectively deploy amendment. The typical deployment
 equipment (telebelt, hydroseeder and stoneslinger) require stable access roads to
 maximize their effective reach for deployment. Depending on the configuration/layout
 of the wetland and other site specific conditions (type of vegetation, depth of water,

bearing capacity of wetland soils, etc.), access road construction, decommissioning and restoration can make up over half or more of the overall cost.

The type and quantity of amendment required can be a cost driver. For the deployment scenarios identified in the example cost model above, the amendment cost was ~5 to 12% (1 acre vs. 10 acres) of the total construction cost.

Monitoring costs can be substantial. For the immediately foreseeable future, it is likely that extensive monitoring will be required by regulatory stakeholders, given the evolving nature of these technologies. The long-term efficacy of activated carbon treatments is not known. Therefore, monitoring for the sorption capacity of the amendment will be necessary; if the sequestration rate decreases, then reapplication of the amendment may be required. It is anticipated that, over time, less extensive monitoring will be required, once *in situ* technologies become more mainstream components of wetland remedial planning.

7.3 COST ANALYSIS

As previously stated, conventional wetland remedial technologies typically include source removal and restoration. The cost for this traditional approach can range anywhere from an estimated \$1.5 million to \$2 million per acre depending on the size and type of wetland and depth and type of impacts. Factors which complicate this traditional approach include site access, unstable soil/sediment management, water management and the efficacy of restoration activities. Irrespective of cost, the success of restoration activities can be challenging at best, despite prudent efforts.

Life-cycle costs for the deployment methodologies described herein were calculated using Net Present Value (NPV) of future costs assuming a 20 year remediation timeframe. Long-term monitoring costs are discounted at a rate of 1.7% based on the real discount rate provided by the U.S. Executive Office of the President Office of Management and Budget (Office of Management and Budget, 2012). The total NPV cost for the deployment methodologies described above is projected to range from 200K to 1.2 million (1 acre vs. 10 acres). As such, the projected savings employing these methodologies versus traditional methodologies ranges from 20 to 60%.

8.0 IMPLEMENTATION ISSUES

8.1 REGULATORY CONSIDERATIONS

This section addresses federal requirements for working in and around wetland systems. Regulations that may apply to or permits required for using this *in situ* technology in floodplains and wetlands may vary by state and local authority; thus, the review of regulations and permits provided below is limited to the federal level, but the technology end-user should be aware of local and state requirements. The site-specific contaminants of concern and the regulatory auspice(s) under which the remediation is being conducted may also have specific programmatic requirements not addressed by this regulatory review.

Relevant federal regulatory drivers include the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), which authorizes USEPA to clean up contaminated sites and to compel responsible parties to perform cleanups or reimburse the government for USEPA-lead cleanups, as well as others described herein.

Other pertinent federal regulations include:

- **CWA Sections 404 and 401** establish performance standards and water quality standards for the discharge of dredged or fill material into U.S. waters that may impact habitat and adversely affect the biological productivity of wetlands/aquatic ecosystems by smothering, by dewatering, by permanently flooding, or by altering substrate elevation or periodicity of water movement.
- Endangered Species Act (16 United States Code [USC] Chapter 35) requires determination as to whether such species and its habitat reside within an area where an activity under review by a governmental authority may take place. The technology should be evaluated in this context if such species or habitats are present, as with any technology.
- The Migratory Bird Treaty Act (Title 16 USC Sections 703-712) protects migratory birds, their eggs, and nests from actions that may kill or disturb them. Use of *in situ* remedial technologies may have the potential for accidental death or injury of migratory birds during construction activities, depending on seasonality, site-specific habitat, construction approach (schedule aggressiveness, extent of laydown areas, clearing and grubbing activities, ingestion, etc). The presence of migratory birds should be determined prior to construction and mitigated against.
- Floodplain development under Executive Order 11988 and the protection of wetlands under Executive Order 11990 require actions to avoid or minimize long- and short-term adverse impacts associated with the occupancy and modification of floodplains and the destruction or modification of wetlands, respectively. Manual and automated methods of material deployment are typically used to minimize impact to wetland soils and vegetation. A well thought out construction approach and one that incorporates project scale-appropriate contingency plans for unforeseen conditions will reduce the potential for causing adverse impacts. These Executive Orders are typically "to be considered," (TBC) rather than ARARs.

- Fish and Wildlife Coordination Act (16 USC Chapter 5A) requires that any modification of any stream affected by an authorized action provide adequate protection of fish and wildlife resources.
- Coastal Zone Management Act (16 USC Section 145) requires that activities affecting the coastal zone and adjacent shoreline are conducted in manner that is consistent with approved State management programs.
- Federal or state water quality standards or relevant and appropriate requirements (ARARs) may be applicable for determining cleanup levels. Water quality standards may be relevant and appropriate depending on the uses designated by the state, which are based on existing and attainable uses. As described in *Water Quality Standards for Wetlands National Guidance* (USEPA, 1990b), state water quality criteria may contain narrative criteria that prohibit certain actions or conditions or statements about what is expected (e.g., "aquatic life shall be as it naturally occurs").
- In addition, the federal government is actively pursuing a sustainable approach to all its activities in accordance with Executive Orders 13423 (2007) and 13514 (2009), and the recent DON (2012a, b) and DoD (2008) guidances. Less invasive *in situ* technologies may be more often considered when sustainability metrics are included in remedial decisions.

Numerous additional TBC regulations are summarized in *CERCLA Compliance With Other Laws Manual* (USEPA, 1988). Depending on site specific needs, some TBC regulations may be ARARs (e.g. NPDES discharge, RCRA solid waste management).

Several guidance documents provide overarching wetlands and sediment remediation guidance and information on topics closely related to *in situ* active remediation technologies. These include but are not limited to:

- Considering Wetlands at CERCLA Sites (USEPA 1994c),
- Water Quality Standards for Wetlands National Guidance (USEPA, 1990b),
- Contaminated Sediment Remediation Guidance for Hazardous Waste Sites (USEPA, 2005),
- Green Remediation: Incorporating Sustainable Environmental Practices into Remediation of Contaminated Sites (USEPA, 2008b),
- Incorporating Bioavailability Considerations into the Evaluation of Contaminated Sediment Sites (ITRC, 2011),
- Guidance on Green and Sustainable Remediation (DON, 2012),
- Consideration of GSR practices in the Defense Environmental Restoration Program (DoD 2009),
- Sediment Capping Resource for Manufactured Gas Plant Sites (Palermo et al., 2008), and
- User's Guide for Assessing Sediment Transport at Navy Facilities (DON, 2007).

8.2 LESSONS LEARNED AND RECOMMENDATIONS

The PCB bioavailability analysis determined that the solid phase partitioning was enhanced and bioavailability was reduced by addition of carbon amendments to the Canal Creek wetland system. This result was more apparent in the partitioning evaluations than in the direct measurements of pore water concentration reductions, due to a large heterogeneity in PCB distribution, small sample size, and sampling/analysis artifacts. A treatment design of 5% AC is consistent with the results reported in the Treatability Study (NAVFAC ESC, 2009d). However, the results of the demonstration due highlight the challenges of moving a treatment from a controlled environment to uncontrolled environmental conditions. In addition to uncontrolled environmental conditions, the performance monitoring schema may require adaptive modification if ambiguous results are obtained within the first monitoring event or two. Longer term monitoring periods are needed to address such issues and to evaluate the long term permanence of the treatment. The results of the ecological monitoring suggest that there was no effect of treatment on plant species composition, diversity, or abundance within the field demonstration wetland. However, longer term monitoring is recommended to provide a more rigorous assessment. Furthermore, none of the demonstration treatments are likely to impair the uptake of nutrients and metals into plants in treated wetlands. The limited number of benthic organisms in the wetlands prohibited a robust evaluation of treatment effects on this community.

Some hypotheses as to why AquaBlok® showed statistically significant increases in partitioning relative to the other amendment delivery systems are:

- Perhaps significant to the apparent lack of reduction in pore water bioavailability is a general increase in bulk soil PCBs with each sampling event;
- The PAC Slurry Spray treatment is expected to have released AC to the soil immediately but until mixing processes can incorporate AC into the soil, the AC is susceptible to migration in the environment (e.g. wind or water induced migration) as opposed to the slower release from the pelletized delivery systems. Slurry PAC may have migrated prior to being fully mixed into the soil at some locations;
- Based on visual observations of Time 2 cores, the presence of AC was apparent in cores collected from AquaBlok® treatment plots, suggesting that the rate of AC release from the delivery agent may be an important variable to explain the demonstration results. AC had clearly desorbed from the AquaBlok® aggregate and visible migration downward through the soil profile in pore spaces (primary and secondary) and along roots was noticeable in most cores;
- The timing and mechanisms of AC release from the other pelletized delivery system, SediMiteTM, is similar to that of the PAC slurry in that the binding agent is expected to break down rapidly, releasing the AC soon after application. Conditions more conducive to breakdown or mixing than those encountered in the study area test plots (e.g. degree saturation or greater interaction with benthos) may have been lacking to effectively mix the SediMiteTM. Root mixing, which may be the primary mixing mechanism at the site, may not be an effective means of incorporating SediMiteTM into the soil;

- The source of organic carbon in the Sand control cover was natural organic carbon and not black carbon, which is more effective at sorbing HOCs. Also, there is visual observation evidence that the Sand control may form a physical barrier that inhibits mixing processes in the BAZ;
- The observed average increase in partitioning for Control plots raises questions about monitoring design because it is not readily apparent what may be the root cause of this result. Migration of black carbon is one potential cause but an evaluation of black carbon is unable to fully account for this result;
- Composite sampling and field homogenization of sediment samples may have artificially over-incorporated PCBs relative to the achieved treatment depth for the given treatment period. Incremental sampling with depth and longer term monitoring could have potentially elucidated this effect; and
- Lastly, pooling Time 1 and Time 2 populations for the statistical comparison to Time 0 results may also underestimate the role that time has on the efficacy of the different treatment types.

Use of the technologies evaluated in this demonstration project is cost-effective but challenges in technology delivery were noted during cold weather. The technology is best suited for application to:

- Contaminated hydric soils located in beneficial habitats such as wetlands, where habitat disruption should be minimized;
- Contaminated hydric soils located where desirable wildlife might be harmed by traditional remedial methods, such as dredging;
- Contaminated hydric soils pose an unacceptable risk, but the level of risk is not sufficient to justify the cost of excavation or dredging, disposal, and restoration;
- Sites where access to the wetland system (e.g., infrastructure improvements) to deliver sequestration agents is not cost-prohibitive; and
- Sites where long-term monitoring requirements are not cost-prohibitive (such that removal might merit consideration).

Points of contact for additional information regarding the *In Situ* Wetland Restoration Demonstration (ESTCP Project Number ER-200825) are provided in Appendix I.

9.0 REFERENCES

Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.

Barth, E. and D. Reible, 2008, Design Consideration Involving Active Sediment Caps, 1st International Conference In Hazardous Waste Management, Chania-Crete, Greece, October.

Bridges, T., S. Geiger, M. Greenburg, S. Griffin, R. Lanno, A. Leeson, Y. Lowney, R. Luthy, C. Menzie, D. Reible, S. Roberts, M. Ruby, J. Speicher, H. Stroo, T. Thompson, M. Unger, and K. van Stackleberg, 2008. *SERDP and ESTCP Expert Panel Workshop on Research and Development Needs for Understanding and Assessing the Bioavailability of Contaminants in Soils and Sediments*. Washington, D.C.: Strategic Environmental Research and Development Program and the Environmental Security Technology Certification Program, November.

Calgon Carbon Corporation, 2007. WPH® Powdered Activated Carbon. Pittsburgh, PA.

Chadwick, D. B., 2008. Project Summary: Demonstration and Validation of Enhanced Monitored Natural Recovery at DoD Sites. ESTCP Project No. ER-200827. ESTCP, Alexandria, VA. http://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Sediments/

Clarke, D.G., Palermo, M.R., and Sturgis, T.C. (2001) Subaqueous Cap Design: Selection of Bioturbation Profiles, Depths, and Process Rates. DOER Technical Notes Collection. ERDC TNDOER-C21. US Army Engineer Research and Development Center, Vicksburg, MS.

Department of Defense (DoD). 2009. Consideration of GSR practices in the Defense Environmental Restoration Program. August.

Department of Navy (DON). 2012a. Guidance on Green and Sustainable Remediation. April.

Department of Navy (DON). 2012b. Policy for Optimizing Remedial and Removal Actions at All DON Environmental Restoration Sites. April 2.

Di Toro, D. M. 2008. "Bioavailability of Chemicals in Sediments and Soils: Toxicological and Chemical Interactions," pp. B-73–B-103 in SERDP and ESTCP Expert Panel Workshop on Research and Development Needs for Understanding and Assessing the Bioavailability of Contaminants in Soils and Sediments. Washington, D.C.: Strategic Environmental Research and Development Program and the Environmental Security Technology Certification Program, November.

Di Toro, D. M., Zarba, C. S., Hansen, D. J., Berry, W. J., Swartz, R. C., Cowan, C. E., Pavlou, S. P., Allen, H. E., Thomas, N. A. and Paquin, P. R. 1991. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. *Environmental Toxicology and Chemistry.* 10:1541-1583.

Executive Order 11988, Floodplain Management, May 24, 1977.

Executive Order 11990, Protection of Wetlands, May 24, 1977.

Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, January 24, 2007.

Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, October 5, 2009.

Ghosh, U., R.G. Luthy, G. Cornelissen, D. Werner, C. A. Menzie, 2011, In-situ sorbent amendments: A new direction in contaminated sediment management.. Environ. Sci. Technol. Feature Article, 45, 1163–1168. 2011.

Ghosh, U., 2010. In-Situ Remediation with Activated Carbon: Pilot scale demonstrations at Superfund Sites. USEPA/U.S. ACE/SMWG Joint Sediment Conference April 13-14, 2010.

Goldwater Associates, 2003. Limnofix *In Situ* Sediment Treatment Technology, White Paper. April, 2003. http://www.golder.ca/en/modules.php?name=Publication&page_id=&page_num=12 Gustafsson, O., F. Haghseta, C. Chan, J. MacFarlane, and P. M. Gschwend, 1997, Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailability, Environmental Science & Technology, 31(1), 203-209.

Hale, S.E., J.E. Tomaszewski, R.G. Luthy, D. Werner, 2009. "Sorption of dichlorodiphenltrichloroethane (DDT) and its metabolites by activated carbon in clean water and sediment slurries." *Water Research*, 43(17): 3446-4346.

Hawthorne, S. B., et al. 2009. Measuring low picogram per liter concentrations of freely dissolved polychlorinated biphenyls in sediment pore water using passive sampling with polyoxymethylene, *Analytical Chemistry* 81(22): 9472-9480.

Helsel, D. R. 2012. Statistics for Censored Environmental Data Using Minitab and R, Second Edition. John Wiley & Sons, Hoboken, NJ, 324 pp.

Hong, A., 2008. *In Situ* Sediment Ozonator for Remediation of PCB, PAH, DDT and Other Recalcitrant Chemicals, A Final Report Submitted to The NOAA/UNH Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET).

ITRC, 2011. Incorporating Bioavailability Considerations into the Evaluation of Contaminated Sediment Sites, The Interstate Technology & Regulatory Council, Washington D.C., February, 2011.

Knox, A.S., M.H. Paller, D.D. Reible, X. Ma, I.G. Petrisor, 2008. Sequestering Agents for Active Caps – Remediation of Metals and Organics, *Soil and Sediment Contamination: An International Journal*, 17(5): 516-532.

Kusler, J., 2006a. Common Questions: Wetland Restoration, Creation, and Enhancement. Association of State Wetland Managers on-line publication — http://www.aswm.org/propub/20_restoration_6_26_06.pdf

Kusler, J., 2006b. Developing Performance Standards for the Mitigation and Restoration of Northern Forested Wetlands. Discussion paper, Association of State Wetland Managers, Inc.

Lage Fihlo, B. et al., 2011, Ozonation of sediments from an urban lake: an exploratory investigation. Brazilian Journal of Chemical Engineering vol.28, no.3, July/Sept 2001.

Luthy, R.G., G.R. Aiken, M.L. Brusseau, S.D. Cunningham, P.M. Gschwend, J.J. Pgnatello, M. Reinhard, S.J. Traina, W.J. Weber Jr., J.C. Westall, Sequestration of hydrophobic organic contaminants by geosorbents, Environmental Science and Technology, 1997, 31, 3341-3347.

Office of Management and Budget. 2012. 2012 Discount Rates for OMB Circular No. A-94 "Guidelines and Discount Rates for Benefit-Cost Analysis of Federal Programs". http://www.whitehouse.gov/sites/default/files/omb/.../2012/m-12-06.pdf.

National Academy of Sciences (NAS). 2011. Guidebook of Practices for Improving Environmental Performance at Small Airports. Airport Cooperative Research Program, Project 02-13.

NAVFAC ESC, 2009a. Site Selection Memorandum for ESTCP Project ER-200825 *In Situ* Wetland Restoration Demonstration. February.

http://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Sediments/

NAVFAC ESC, 2009b. Field Demonstration Plan for ESTCP Project ER-200825 *In Situ* Wetland Restoration Demonstration. August.

http://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Sediments/

NAVFAC ESC, 2009c. Treatability Study Work Plan for ESTCP Project ER-200825 *In Situ* Wetland Restoration Demonstration. July.

http://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Sediments/

NAVFAC ESC, 2009d. Treatability Study Results for ESTCP Project ER-200825 *In Situ* Wetland Restoration Demonstration. October.

http://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Sediments/

National Research Council (NRC), 2003. Bioavailability of Contaminants in Soils and Sediments: Processes, Tools, and Applications, Washington DC: The National Academies Press.

Patmont, C., U. Ghosh, C. Menzie, P. LaRosa, J. Quadrini, and G. Cornelissen, 2013. Bioavailability Reduction by Direct Amendment of Activated Carbon: A Demonstrated *In Situ* Sediment Immobilization Treatment Technology, Seventh Battelle Sediment Management Conference, February 4-7, 2013. Dallas, TX.

Patmont, C., Ghosh, U., Menzie, C., LaRosa, P., Quadrini, J., Cornelissen, G., Collins, J., and Hjartland, T. 2013, *In Situ* Sediment Immobilization Treatment: A Demonstrated Sediment Cleanup Technology, 7th Battelle Sediment Management Conference, February 7, 2013, Dallas, TX.

Pound, M., 2012, Department of the Navy Sediments Program Policy, Guidance, R&D Efforts, and Challenges, *in* Thompson, T., S. Ells, M. Greenburg, A. Leeson, V. Magar, C. Menzie, C. Patton, M. Pound, D. Reible, D. Rider, J. Speicher, and J. Wakeman, 2012, SERDP and ESTCP Workshop on Research and Development Needs for Long-Term Management of Contaminated Sediments: Seattle, Washington, July 25-26, 2012.

Reible, D., 2004, *In Situ* Sediment Remediation Through Capping: Status and Research Needs, Invited Paper/Presentation for SERDP Workshop on Research Needs in Contaminated Sediments, 20 pp.

Renholds, J., 1998. In-Situ Treatment of Contaminated Sediments. Accessed at https://www.clu-in.org/products/intern/renhold.htm.

Semple, K.T., A.W.J. Morriss, G.I. Paton, 2003. Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis, *European Journal of Soil Science*, 54(4): 809-818.

Sergey, G., Guenette, C., Owens E., Prince, R., and K. Lee, 2003. In–situ Treatment of Oiled Sediment Shorelines. *Spill Science & Technology Bulletin*, Vol. 8, No. 3, pp. 237-244, 2003.

Stern, J., J. Colton, and D. Williston, 2004. Comparison of Monitored Natural Recovery (MNR) and Enhanced Natural Recovery (ENR) Effectiveness. King County Department of Natural Resources and Parks.

Suter, G., 1993. Ecological Risk Assessment, Lewis Publishers, Chelsea, Michigan.

Thompson, T.A., C.E. Houck, R. Paulson, and A. Fitzpatrick, 2004. Evaluating the Environmental Costs and Benefits of Capping in a Wildlife Habitat: The Soda Lake, Wyoming Case Study. In *Proceedings: In Situ Contaminated Sediment Capping Workshop: Cincinnati, Ohio, May 12–14, 2003*, EPRI, Palo Alto, CA; 2004. 1009358.

Thompson, T., S. Ells, M. Greenburg, A. Leeson, V. Magar, C. Menzie, C. Patton, M. Pound, D. Reible, D. Rider, J. Speicher, and J. Wakeman, 2012. SERDP and ESTCP Workshop on Research and Development Needs for Long-Term Management of Contaminated Sediments: Seattle, Washington, July 25-26, 2012.

US Army, 2008. Canal Creek Study Area, Baseline Ecological Risk Assessment for Site EACC1K: Canal Creek Marsh and Landfill, final report, May 2008, U.S. Army Garrison, Aberdeen Proving Ground, Maryland.

USEPA, 1990. Reducing Risk: Setting Priorities and Strategies for Environmental Protection, Science Advisory Board, September.

USEPA, 1994a. "ARCS Assessment Guidance Document". *EPA 905-B94-003*. U.S. Environmental Protection Agency, Great Lakes National Program. Chicago, IL.

USEPA, 1994b. Briefing Report to the Science Advisory Board on the Equilibrium Partitioning Approach for Predicting Metal Bioavailability in Sediments and the Derivation of Sediment Quality Criteria for Metals. December 1994. USEPA. Office of Water and Office of Research and Development, EPA-822-D-94-002.

USEPA, 1997. Capsule Report: Aqueous Mercury Treatment, Office of Research and Development; United States Environmental Protection Agency Washington, D.C, USEPA/625/R-97/004.

USEPA, 1999. Issuance of Final Guidance: Ecological Risk Assessment and Risk Management Principles for Superfund Sites. OSWER Directive 9285.7-28P, October 7, 1999.

USEPA, 2001. "Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual. "EPA 823-B-01-002. U.S. Environmental Protection Agency, Office of Water, Washington, D.C.

USEPA, 2010. ProUCL Version 4.00.05, EPA/600/R-07/038, May 2010.

USEPA, 2011. Second Five-Year Review Report for Pine Street Barge Canal Superfund Site Burlington, Chittenden County, Vermont. US Environmental Protection Agency, Region 1. Report: VTD980523062. Boston, MA.

USEPA, 2013. Use of Amendments for In Situ Remediation at Sediment Superfund Sites. OSWER Directive 9200.2-128FS, April 2013

Walters, R.W., R.G. Luthy, 1984. Equilibrium Adsorption of Polycyclic Aromatic Hydrocarbons from Water onto Activated Carbon, *Environmental Science and Technology*, 18(6): 395-403.

Zimmerman, J.R., U. Ghosh, R.N. Millward, T.S. Bridges, R.G. Luthy, 2004. Addition of Carbon Sorbents to Reduce PCB and PAH Bioavailability in Marine Sediments: Physicochemical Tests, Environmental Science & Technology, 38(20): 5458-5464.

Appendix A: Photographic Log

A-1 July 2014

Project Name:

In Situ Wetland Restoration Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No. ESTCP Project Number ER-0825

Photo No.

Date: 12/08/10

Description:West Branch Canal
Creek wetlands study
area during low tide.

Photo No. 2

Date: 12/08/10

Description:

Foot path access to test plots.

Project Name:

In Situ Wetland Restoration Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.
ESTCP Project
Number ER-0825

Photo No.

Date: 12/03/10

Description:

Flagging and staking UXO cleared test plots.

Photo No.

Date: 12/03/10

Description:

Flagging and staking UXO cleared test plots.

Project Name:

In Situ Wetland Restoration **Demonstration**

Site Location: Canal Creek, Aberdeen Proving Ground Project No. ESTCP Project Number ER-0825

Photo No. 5

Date: 12/03/10

Description:

Straw wattles stacked in project staging area.

Photo No. 6

Date: 12/03/10

Description: Test plot preparation.

Project Name:

In Situ Wetland Restoration **Demonstration**

Site Location: Canal Creek, Aberdeen Proving Ground Project No. ESTCP Project Number ER-0825

Photo No. 7

Date: 12/03/10

Description:Bulk sediment samples were collected with a stainless steel soil auger, homogenized, and composited.

Photo No. 8 12/03/10

Date:

Description: Field processing of baseline characterization hydric soil samples.

Project Name:

In Situ Wetland Restoration Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.
ESTCP Project
Number ER-0825

Photo No.

Date: 12/08/10

Description:

Loading AC into Vortex Spreader.

Photo No.

Date: 12/08/10

Description:

AquaBlok was delivered in 1.25 ton super-sacks on pallets and a forklift was used to lift the super-sacks above the receiving hopper of the bark-blower.

Project Name:

In Situ Wetland Restoration **Demonstration**

Site Location: Canal Creek, Aberdeen Proving Ground Project No. ESTCP Project Number ER-0825

Photo No. 11

Date: 12/08/10

Description:

Cleared test plot rimmed by straw wattles secured by stakes.

Photo No. 12

Date: 12/08/10

Description: Delivery of pelletized activated carbon to a test plot.

Project Name:

In Situ Wetland Restoration **Demonstration**

Site Location: Canal Creek, Aberdeen Proving Ground Project No. ESTCP Project Number ER-0825

Photo No.

Date:

13 12/08/10

Description: Delivery of activated carbon slurry to a test plot.

Photo No. 14

Date: 12/08/10

Description: Close-up view of hose and nozzle used to deliver activated carbon slurry.

Project Name:

In Situ Wetland Restoration Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.
ESTCP Project
Number ER-0825

Photo No. 15

Date: 12/08/10

Description:

Test plot covered with activated carbon slurry.

Photo No. 16

Date: 12/08/10

Description:

Test plots adjacent to Canal Creek at high tide. Plots are separated by straw wattles to isolate treatment areas.

Project Name:

In Situ Wetland Restoration **Demonstration**

Site Location: Canal Creek, Aberdeen Proving Ground Project No. ESTCP Project Number ER-0825

Photo No.

Date:

17 12/08/10

Description:

Foot paths to test plots. Thin ice covers portions of the wetlands.

Photo No. 18

Date: 12/08/10

Description: Test plot after treatment deployment.

Project Name:

In Situ Wetland Restoration **Demonstration**

Site Location: Canal Creek, Aberdeen Proving Ground Project No. **ESTCP Project** Number ER-0825

Photo No. 19

Date: 12/08/10

Description:

Areas receiving UXO clearance were delineated by high visibility flagging tape as part of the project's health and safety plan.

Photo No. 20

Date: 12/08/10

Description: Hydroseeder equipment used to deploy activated carbon slurry.

Project Name:

In Situ Wetland Restoration **Demonstration**

Site Location: Canal Creek, Aberdeen Proving Ground Project No. ESTCP Project Number ER-0825

Photo No. 21

Date: 12/08/10

Description:

Decontamination station in upland laydown area.

Photo No. 22

Date: 12/08/10

Description:Manual sand application methods were used when low air temperatures froze the wet sand mixture.

Project Name:

In Situ Wetland Restoration **Demonstration**

Site Location: Canal Creek, Aberdeen Proving Ground Project No. ESTCP Project Number ER-0825

Photo No. 23

Date: 12/08/10

Description:

Sand delivery via a bark blower and a 4-inch hose.

Photo No. 24

Date: 12/08/10

Description: Sand delivery via a bark blower and a 4-inch hose.

Project Name:

In Situ Wetland Restoration **Demonstration**

Site Location: Canal Creek, Aberdeen Proving Ground Project No. ESTCP Project Number ER-0825

Photo No. 25

Date: 12/08/10

Description: Pelletized activated carbon.

Photo No. 26

Date: 12/08/10

Description:Sand mixture application using bark blower and 2inch hose.

Project Name:

ESTP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.

60133180

Photo No. 27

Date: 12/10/10

Description:

To core with AC Slurry treatment at APG-08. Activated carbon appears to have reached about 3 inches depth.

Activated carbon with loose bark mulch/organic mix; soft, gray mottled with light brown silt mixed with overlying mulch; soft, brown silt, roots and organics; gray silt.

Project Name:

ESTP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.

60133180

Photo No. 28

Date: 12/10/10

Description:

To core with SediMiteTM treatment at APG-17. Activated carbon appears to have reached about 4 inches depth.

Activated carbon and trace organics; root fragments transition to reddish brown silt; soft, gray to dark gray silt with roots throughout.

Project Name:

ESTP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.

60133180

Photo No. 29

Date: 12/10/10

Description:

T0 core with AquaBlok® treatment at APG-20. Activated carbon appears to have reached 3 to 4 inches depth along roots. A delivery system pellet appears to have settled to 8 to 9 inches depth.

Black carbon and light reddish brown silt mixed with organics and AquaBlok® aggregate. Soft, grayish brown silt with roots; root mass to depth with organics.

Project Name:

ESTP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.

60133180

Photo No.

Date: 12/10/10

Description:

T0 core with Sand/soil cover at APG-10. Sand/soil cover to 2 inches depth.

Gray, fine-medium sand; very dark grayish brown soft silt; gray clay; soft very dark grayish brown silt with root material.

Project Name:

ESTCP Canal Creek Field Demonstration

Site Location: Canal Creek, Aberdeen Proving Ground Project No. 60133181

Photo No. 31

Date: 12/10/10

Description: To core with SediMiteTM treatment at APG-19. Activated carbon appears to have reached 2 to 3 inches depth.

Black carbon and trace organics; transition zone carbon/soft grayish brown silt; Soft grayish brown silt root material/organics.

Project Name:

ESTCP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.

60133181

Photo No. Date: 12/10/10

Description:

T0 core with AquaBlok® treatment at APG-13. Activated carbon appears to have reached 2 to 3 inches depth.

Small aggregate and black carbon mixed with black silt; soft brown silt with roots material and organics.

Project Name:

ESTCP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No. 60133181

Photo No.

Date: 12/10/10

Description:

T0 core with Sand/soil cover at APG-14.

Light gray fine-medium sand; transition zone, sand/roots; soft, grayish brown silt; roots at depth.

Project Name:

ESTCP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.

60133181

Photo No. 34

Date: 12/10/10

Description:

To core with AC Slurry treatment at APG-02. Activated carbon appears to have reached 2 inches depth.

Soft, black carbon with organics; transition to very dark brown silt; roots at depth.

Project Name:

ESTCP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.

60133181

Photo No. 35 1

Date: 12/10/10

Description:

T2 core with Sand/soil cover at APG-01. Fresh deposition above the sand.

Dark brown, organic silt over 2 inches of grayish brown sand/soil cover, dark brown sandy silt with roots.

Project Name:

ESTCP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.

60133181

Photo No.

Date: 12/10/10

Description:

T2 core with AquaBlok® treatment at APG-06. Fresh deposition appears to have buried AquaBlok®, which appears at 2 to 3 inches depth, with AC mixed to about 4 inches depth.

Fresh deposit of pale brown clay over 1 inch AquaBlok® aggregate and silt, black carbon and silt, yellowish brown silt and roots with some black carbon.

Project Name:

ESTCP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.

60133181

Photo No. 37

Date: 12/10/10

Description:

T2 core at APG-07, a Control plot.

Grayish brown silt with root material and organics, red staining of very pale brown silt with and roots.

Project Name:

ESTCP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No. 60133181

Photo No. 38

Date: 12/10/10

Description:

T2 core with AC Slurry treatment at APG-08. AC appears mixed to approximately 1 inch depth.

Dark brown organic silt over 1 inch thick reddish iron oxide coating; soft brown silt with roots and very dark brown mottles.

Project Name:

ESTCP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.

60133181

Photo No. 39

Date: 12/10/10

Description:

T2 core with AquaBlok® treatment at APG-09. AC appears to have mixed to 3 to 4 inches depth.

Dark brown silt and organics, 1 inch thick reddish iron oxide coating, dark brown, organic silt with roots, yellowish brown, some roots.

Project Name:

ESTCP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.

60133181

Photo No.

Date: 12/10/10

Description:

T2 core with Sand/soil cover at APG-10.

Grayish brown to dark grayish brown fine sand and silt with roots.

Project Name:

ESTCP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.

60133181

Photo No. 41

Date: 12/10/10

Description: T2 core at APG-12, a control plot.

Yellowish brown organic silt with red iron oxide staining over grayish brown silt with roots. Sheen observed throughout.

Project Name:

ESTCP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.

60133181

Photo No. 42

Date: 12/10/10

Description:

T2 core with AquaBlok® treatment at APG-13. AC appears well mixed to 2 to 3 inches depth with infiltration to bottom of core along rhizome macropores.

Black silt with aggregate, grayish brown fine sand to silt with black carbon and roots, grayish brown fine sand with carbon staining along roots and red iron oxide coating, gray mottled with yellowish brown fine sand and silt.

Project Name:

ESTCP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.

60133181

Photo No. 43

Date: 12/10/10

Description:

T2 core with Sand/soil cover at APG-14.

Very dark grayish brown, fine to medium sand with organics; very pale brown clay with red iron oxide coating; dark brown, organic silt and roots.

Project Name:

ESTCP Canal Creek Field Demonstration

Site Location: Canal Creek, Aberdeen Proving Ground Project No. 60133181

Photo No. 44

Date: 12/10/10

Description: T2 core at APG-15, a Control plot.

Brown organic silt with red iron oxide coating and roots throughout.

Photo No. Date: 12/10/10

Description:

T2 core with SediMiteTM treatment at APG-16. AC appears to occur down to 3 to 4 inches depth

Gray to dark gray fine sand and silt with black organic staining along roots; yellow clay with reddish brown iron oxide coating; gray to dark gray fine sand, roots, reddish brown iron oxide coating.

Project Name:

ESTCP Canal Creek Field Demonstration

Date:

Site Location: Canal Creek, Aberdeen Proving Ground Project No.

60133181

Photo No. 46 12/10/10

Description:

T2 core with SediMiteTM treatment at APG-17. AC appears to have migrated along macropores to 3 to 4 inches depth.

Very dark grayish brown sandy silt with roots and reddish brown iron oxide coating.

Project Name:

ESTCP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.

60133181

Photo No. 47

Date: 12/10/10

Description:

T2 core with SediMite[™] treatment at APG-18.

Very dark grayish brown mottled with yellowish brown, sandy silt with roots and reddish brown iron oxide coatings around secondary porosity features, roots and organics.

Project Name:

ESTCP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.

60133181

Photo No. 48

Date: 12/10/10

Description:

T2 core with SediMiteTM treatment at APG-19. AC is readily apparent in macropores throughout the core.

Dark yellowish brown, organic material, dark gray to black; yellow clay with black root penetration and reddish brown iron oxide coating; dark gray silt.

Photo No. Date: 12/10/10

Description:

T2 core with AquaBlok® treatment at APG-20. Aggregate mixed to 3 inches depth and AC vertically well mixed to 4 inches depth. AC is visible in macro pores to end of core.

Black silt with AquaBlok® aggregate; Black to light gray silt with roots; dark gray silt with roots and organics.

Project Name:

ESTCP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.

60133181

Photo No. 50

Date: 12/10/10

Description:

T2 core with AquaBlok® treatment at APG-21. Aggregate visible at 2 inches depth with evidence of AC. AC in macropore at 4 to 5 inches depth.

Very dark brown to black silt with AquaBlok® aggregate; gray to grown silt with roots and reddish brown iron oxide coating in bottom 2 inches of core.

Project Name:

ESTCP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.

60133181

Photo No. 51

Date: 12/10/10

Description:

T2 core with AC Slurry treatment at APG-22. AC visible along macropores at approximately 3 inches depth.

Gray with brownish yellow organic silt and roots, some oxidation apparent along roots/secondary porosity features; reddish brown iron oxide coating of dark brown silt.

Project Name:

ESTCP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.

60133181

Photo No. 52

Date: 12/10/10

Description:

T2 core with AC Slurry treatment at APG-23. AC vertically well mixed in top 2 inches.

Black organic silt, grayish brown silt with roots and organics with yellow and reddish coating.

Project Name:

ESTCP Canal Creek Field Demonstration

Site Location:Canal Creek, Aberdeen Proving Ground

Project No.

60133181

Photo No. 53

Date: 12/10/10

Description:

T2 core with AquaBlok® treatment at APG-24. AC appears to be vertically mixed throughout length of core.

Black organic silt with AquaBlok® aggregate (top 2 inches); Black silt with organics.

Appendix B: PCB Laboratory Data

B-1 *July 2014*

UNH Technical Laboratory Report

Analytical Analysis for "In Situ Wetland Remediation" ESCTCP Project: ER-0825

Prepared for:

AECOM Technology Corp 250 Apollo Dr. Chelmsford, MA 01824

January 15, 2013

Prepared by:

University of New Hampshire 338 Gregg Hall 35 Colovos Rd Durham, NH 03824

1.0 Introduction

Bulk hydric soil, macroinvertebrate receptor tissue and PED passive pore water samples were evaluated by the University of New Hampshire for general environmental characteristics and PCB concentrations as part of an *in situ* wetland remediation field evaluation (ESTCP Project ER-0825: *In Situ* Wetland Restoration Demonstration). General environmental characterizations included determining the moisture content, natural organic carbon content and black carbon content within the hydric soil over three sampling events (1 pre-treatment, 2 post-treatment). PCB concentrations were evaluated within the bulk soil, pore water and receptor tissue phases. This report describes the samples detail, analytical methods and results of these evaluations.

2.0 Sample Details

Bulk hydric soil samples, macroinvertebrate receptor tissue samples and PED pore water samplers collected from the Canal Creek *In Situ* Wetland Remediation Testing Site were evaluated by the University of New Hampshire. Sampling details are provided in the sections below.

2.1 Hydric Soil Samples

Hydric soil samples were collected from APG and shipped to UNH laboratories for three sampling events in December 2010 (Time-0); June 2011 (Time-1) and October 2011 (Time-2). Samples collected for the Time-0 sampling event were received at UNH laboratories on December 7, 2010. All grab samples were provided in 1L, 8oz and 4oz jars from 20 of the 24 treatment plots and 10 dual composite samples. Time-0 samples for plots APG-16, APG-17, APG-18 and APG-19 were collected by ExPonent in November of 2009 and shipped to UNH in 2011. Time-1 samples, included grab samples in 8oz and 1 L jars as well as 6 in cores. Grab samples were collected from all 24 treatment plots and 12 dual plot composite sample. Cores were collected from all 24 treatment plots. Time-1 samples were received at UNH laboratories on June 9, 2011. Time-2 samples also included grab samples in 8oz and 1 L jars as well as 6 in cores. Grab samples were collected from all 24 treatment plots and 12 dual plot composite sample. Cores were collected from all 24 treatment plots and 12 dual plot composite sample. Cores were collected from all 24 treatment plots. Time 2 samples were all received at UNH labs on October 11, 2011. Sample details are summarized in Table 2.1.

2.2 Macroinvertebrate Tissue Samples

Benthic tissue samples were collected from APG site in gallon hydric soil samples and sent to bioaccumulation labs for 28 day exposure period using Lumbriculus variegatus. The T0 and T1 samples were sent to the AECOM Toxicology Laboratory for analysis and T2 samples were sent to Aquatec Biological Sciences. Time 0 tissue samples were received at UNH laboratories in two shipments on August 23, 2011 and August 30, 2011 in 20 ml vials in triplicates. Time 1 samples were received on October 11, 2011 and October 19, 2011. All Time 2 Samples were recieved on February 8, 2012. T1 samples were sent in 20 ml vials in duplicates. Samples from Time 2 were sent in triplicates in 40 ml vials. A summary of the samples is show in Table 1.2. Samples are listed by their sampling dates.

Table 2.1: Hydric Soil Sample Details

Sample Location	Sample Dates		
	December 2010	June 2011	October 2011
	(Time 0)	(Time 1)	(Time 2)
APG-01	1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	2x6"core, 8 oz, 1 L
APG-02	1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	6", 1 L
APG-03	1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	2x6"core, 8 oz, 1 L
APG-04	1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	2x6"core, 8 oz, 1 L
APG-04 MS	1L , 4 oz, 8 oz	Not Sampled	Not Sampled
APG-04 MSD	1L , 4 oz, 8 oz	Not Sampled	Not Sampled
APG-05	1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	2x6"core, 8 oz, 1 L
APG-05 Dup	1L , 4 oz, 8 oz	Not Sampled	Not Sampled
APG-06	1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	2x6"core, 8 oz, 1 L
APG-07	1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	2x6"core, 8 oz, 1 L
APG-08	1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	6", 1 L
APG-09	1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	2x6"core, 8 oz, 1 L
APG-10	1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	2x6"core, 8 oz, 1 L
APG-11	1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	2x6"core, 8 oz, 1 L
APG-12	1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	2x6"core, 8 oz, 1 L
APG-13	1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	2x6"core, 8 oz, 1 L
APG-14	1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	2x6"core, 8 oz, 1 L
APG-15	1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	2x6"core, 8 oz, 1 L
APG-16	*1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	2x6"core, 8 oz, 1 L
APG-17	*1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	2x6"core, 8 oz, 1 L
APG-18	*1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	2x6"core, 8 oz, 1 L
APG-19	*1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	8 oz, 1 L
APG-20	1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	2x6"core, 8 oz, 1 L
APG-21	1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	2x6"core, 8 oz, 1 L
APG-22	1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	2x6"core, 8 oz, 1 L
APG-23	1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	2x6"core, 8 oz, 1 L
APG-24	1L , 4 oz, 8 oz	8 oz, 1 LG, 6" core	2x6"core, 8 oz, 1 L
APG-11/13	1L,8 oz	8 oz	8 oz
APG-14/10	1L,8 oz	8 oz	8 oz
APG-12/20	1L,8 oz	8 oz	8 oz
APG-15/21	1L,8 oz	8 oz	8 oz
APG-06/24	1L,8 oz	8 oz	8 oz
APG-02/08	1L,8 oz	8 oz	8 oz
APG-05/09	1L,8 oz	8 oz	8 oz
APG-04/07	1L,8 oz	8 oz	8 oz
APG-22/23	1L,8 oz	8 oz	8 oz
APG-01/03	1L,8 oz	8 oz	8 oz
APG-MS/MSD	Not Sampled	1 L	1 L
Blank	1 L	1 L	1 L

^{*}These samples collected by ExPonent in November of 2009

Table 2.2: Macroinvertebrate Tissue Sample Details

December 2010 (Time 1) (Time 1) (Time 2) (Time 2) (Time 1) (Time 2) (Tim	Sample Location	Sample Dates			
Form Sed A 20 ml vial 20 ml vial 40 ml vial Form Sed B 20 ml vial 20 ml vial 40 ml vial 40 ml vial Form Sed C 20 ml vial 20 ml vial 40					
Form Sed A 20 ml vial 20 ml vial 40 ml vial Form Sed B 20 ml vial 20 ml vial 40 ml vial 40 ml vial APG-05/09 A 20 ml vial 20 ml vial 40 ml vial APG-05/09 B 20 ml vial 20 ml vial 40 ml vial APG-05/09 B 20 ml vial 20 ml vial 40 ml vial APG-05/09 B 20 ml vial 20 ml vial 40 ml vial APG-05/09 C 20 ml vial 70 ml					
Form Sed C 20 ml vial 20 ml vial 40 ml vial APG-05/09 A 20 ml vial 20 ml vial 40 ml vial APG-05/09 B 20 ml vial 20 ml vial 40 ml vial APG-05/09 C 20 ml vial 20 ml vial 40 ml vial APG-05/09 C 20 ml vial 20 ml vial 40 ml vial APG-04/07 A 20 ml vial 20 ml vial 40 ml vial APG-04/07 B 20 ml vial 20 ml vial 40 ml vial APG-04/07 C 20 ml vial 20 ml vial 40 ml vial APG-04/07 C 20 ml vial 20 ml vial 40 ml vial APG-02/23 B 20 ml vial 20 ml vial 40 ml vial APG-22/23 B 20 ml vial 20 ml vial 40 ml vial APG-22/23 C 20 ml vial 20 ml vial 40 ml vial APG-22/23 C 20 ml vial 20 ml vial 40 ml vial APG-15/12 A 20 ml vial 20 ml vial 40 ml vial APG-15/12 B 20 ml vial 20 ml vial 40 ml vial APG-15/12 C 20 ml vial 20 ml vial 40 ml vial APG-15/12 C 20 ml vial 20 ml vial 40 ml vial APG-06/24 A 20 ml vial 20 ml vial 40 ml vial APG-06/24 A 20 ml vial 20 ml vial 40 ml vial APG-06/24 C 20 ml vial 20 ml vial 40 ml vial APG-06/24 C 20 ml vial 20 ml vial 40 ml vial APG-06/24 C 20 ml vial 30 ml vial 40 ml vial APG-06/24 B 20 ml vial 30 ml vial 40 ml vial APG-06/24 C 20 ml vial 30 ml vial 40 ml vial APG-06/24 C 20 ml vial 30 ml vial 30 ml vial 30 ml vial 40 ml	Form Sed A				
Form Sed C 20 ml vial 20 ml vial 40 ml vial APG-05/09 A 20 ml vial 20 ml vial 40 ml vial APG-05/09 B 20 ml vial 20 ml vial 40 ml vial APG-05/09 C 20 ml vial 20 ml vial 40 ml vial APG-05/09 C 20 ml vial 20 ml vial 40 ml vial APG-04/07 A 20 ml vial 20 ml vial 40 ml vial APG-04/07 B 20 ml vial 20 ml vial 40 ml vial APG-04/07 C 20 ml vial 20 ml vial 40 ml vial APG-04/07 C 20 ml vial 20 ml vial 40 ml vial APG-02/23 B 20 ml vial 20 ml vial 40 ml vial APG-22/23 B 20 ml vial 20 ml vial 40 ml vial APG-22/23 C 20 ml vial 20 ml vial 40 ml vial APG-22/23 C 20 ml vial 20 ml vial 40 ml vial APG-15/12 A 20 ml vial 20 ml vial 40 ml vial APG-15/12 B 20 ml vial 20 ml vial 40 ml vial APG-15/12 C 20 ml vial 20 ml vial 40 ml vial APG-15/12 C 20 ml vial 20 ml vial 40 ml vial APG-06/24 A 20 ml vial 20 ml vial 40 ml vial APG-06/24 A 20 ml vial 20 ml vial 40 ml vial APG-06/24 C 20 ml vial 20 ml vial 40 ml vial APG-06/24 C 20 ml vial 20 ml vial 40 ml vial APG-06/24 C 20 ml vial 30 ml vial 40 ml vial APG-06/24 B 20 ml vial 30 ml vial 40 ml vial APG-06/24 C 20 ml vial 30 ml vial 40 ml vial APG-06/24 C 20 ml vial 30 ml vial 30 ml vial 30 ml vial 40 ml					
APG-05/09 A 20 ml vial 20 ml vial 40 ml vial APG-05/09 B 20 ml vial 20 ml vial 40 ml vial APG-05/09 C 20 ml vial 20 ml vial 40 ml vial APG-05/09 C 20 ml vial 20 ml vial 40 ml vial APG-04/07 A 20 ml vial 20 ml vial 40 ml vial APG-04/07 B 20 ml vial 20 ml vial 40 ml vial APG-04/07 C 20 ml vial 20 ml vial 40 ml vial APG-04/07 C 20 ml vial 20 ml vial 40 ml vial APG-04/07 C 20 ml vial 20 ml vial 40 ml vial APG-22/23 A 20 ml vial 20 ml vial 40 ml vial APG-22/23 B 20 ml vial 20 ml vial 40 ml vial APG-22/23 B 20 ml vial 20 ml vial 40 ml vial APG-22/23 B 20 ml vial 20 ml vial 40 ml vial APG-15/12 A 20 ml vial 20 ml vial 40 ml vial APG-15/12 A 20 ml vial 20 ml vial 40 ml vial APG-15/12 B 20 ml vial 20 ml vial 40 ml vial APG-06/24 A 20 ml vial 20 ml vial 40 ml vial APG-06/24 A 20 ml vial 20 ml vial 40 ml vial APG-06/24 B 20 ml vial 20 ml vial 40 ml vial APG-06/24 C 20 ml vial 70					
APG-05/09 B 20 ml vial 20 ml vial 40 ml vial APG-05/09 C 20 ml vial Not Sampled 40 ml vial APG-05/09 C 20 ml vial 20 ml vial 40 ml vial APG-04/07 A 20 ml vial 20 ml vial 40 ml vial APG-04/07 B 20 ml vial 20 ml vial 40 ml vial APG-04/07 C 20 ml vial 20 ml vial 40 ml vial APG-04/07 C 20 ml vial 20 ml vial 40 ml vial APG-04/07 C 20 ml vial 20 ml vial 40 ml vial APG-22/23 A 20 ml vial 20 ml vial 40 ml vial APG-22/23 B 20 ml vial 20 ml vial 40 ml vial APG-22/23 B 20 ml vial 20 ml vial 40 ml vial APG-22/23 B 20 ml vial 20 ml vial 40 ml vial APG-15/12 A 20 ml vial 20 ml vial 40 ml vial APG-15/12 B 20 ml vial 20 ml vial 40 ml vial APG-15/12 B 20 ml vial 20 ml vial 40 ml vial APG-15/12 C 20 ml vial 20 ml vial 40 ml vial APG-06/24 A 20 ml vial 20 ml vial 40 ml vial APG-06/24 B 20 ml vial 20 ml vial 40 ml vial APG-06/24 C 20 ml vial Not Sampled 40 ml vial APG-06/24 C 20 ml vial Not Sampled 40 ml vial APG-06/24 C 20 ml vial Not Sampled Not Sampled Not Sampled APG-06/24 C 20 ml vial Not Sampled Not Sampled APG-06/24 C 20 ml vial Not Sampled Not Sampled APG-06/24 C 20 ml vial Not Sampled Not Sampled APG-06/26 C 20 ml vial Not Sampled Not Sampled Not Sampled APG-06/26 C 20 ml vial Not Sampled Not Sampled Not Sampled APG-02/08 B 20 ml vial 20 ml vial 40 ml vial APG-02/08 B 20 ml vial 20 ml vial 40 ml vial APG-01/13 A 20 ml vial 20 ml vial 40 ml vial APG-01/13 B 20 ml vial 20 ml vial 40 ml vial APG-01/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-11/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 40 ml vial 40 ml vial APG-11/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 B 20 ml vial 40 ml vial 40 ml vial APG-11/13 B 20 ml vial 40 ml vial 40 ml vial APG-11/13 B 20 ml vial 40 ml					
APG-05/09 C 20 ml vial 20 ml vial 40 ml vial APG-04/07 A 20 ml vial 20 ml vial 40 ml vial APG-04/07 B 20 ml vial 20 ml vial 40 ml vial APG-04/07 C 20 ml vial 70 ml vial 40 ml vial APG-04/07 C 20 ml vial 70 ml	·				
APG-04/07 A 20 ml vial 20 ml vial 40 ml vial APG-04/07 B 20 ml vial 20 ml vial 40 ml vial APG-04/07 C 20 ml vial 20 ml vial 40 ml vial APG-04/07 C 20 ml vial 20 ml vial 40 ml vial APG-02/23 A 20 ml vial 20 ml vial 40 ml vial APG-22/23 B 20 ml vial 20 ml vial 40 ml vial APG-22/23 C 20 ml vial 20 ml vial 40 ml vial APG-15/12 A 20 ml vial 20 ml vial 40 ml vial APG-15/12 B 20 ml vial 20 ml vial 40 ml vial APG-15/12 B 20 ml vial 20 ml vial 40 ml vial APG-15/12 B 20 ml vial 20 ml vial 40 ml vial APG-15/12 B 20 ml vial 20 ml vial 40 ml vial APG-06/24 A 20 ml vial 20 ml vial 40 ml vial APG-06/24 B 20 ml vial 20 ml vial 40 ml vial APG-06/24 B 20 ml vial 20 ml vial 40 ml vial APG-06/24 C 20 ml vial Not Sampled 40 ml vial APG-06/24 C 20 ml vial Not Sampled Not Sampled Lot #11-017 (Test Initiation) 20 ml vial Not Sampled Not Sampled Lot #11-017 (Upon Receipt) 20 ml vial 20 ml vial Not Sampled Not Sampled APG-02/08 A 20 ml vial 20 ml vial 40 ml vial APG-02/08 B 20 ml vial 20 ml vial 40 ml vial APG-02/08 B 20 ml vial 20 ml vial 40 ml vial APG-02/08 C 20 ml vial 20 ml vial 40 ml vial APG-01/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-11/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-11/10 C 20 ml vial 20 ml vial 40 ml vial APG-11/10 C 20 ml vial 20 ml vial 40 ml vial APG-11/10 C 20 ml vial 20 ml vial 40 ml vial APG-11/10 C 20 ml vial 20 ml vial 40 ml vial APG-11/10 C 20 ml vial 20 ml vial 40 ml vial APG-11/10 C 20 ml vial 20 ml vial 40 ml vial APG-11/10 C 20 ml vial 20 ml vial 40 ml vial APG-11/10 C 20 ml vial 20 ml vial 40 ml vial APG-11/10 C 20 ml vial 40 ml vial 40 ml vial APG-11/10 C 20 ml vial 40 ml v	•	20 ml vial	Not Sampled	40 ml vial	
APG-04/07 C 20 ml vial	•	20 ml vial			
APG-22/23 A 20 ml vial 20 ml vial 40 ml vial APG-22/23 B 20 ml vial 20 ml vial 40 ml vial APG-22/23 C 20 ml vial 20 ml vial 40 ml vial APG-15/12 A 20 ml vial 20 ml vial 40 ml vial APG-15/12 B 20 ml vial 20 ml vial 40 ml vial APG-15/12 C 20 ml vial 20 ml vial 40 ml vial APG-15/12 C 20 ml vial 20 ml vial 40 ml vial APG-15/12 C 20 ml vial 20 ml vial 40 ml vial APG-06/24 A 20 ml vial 20 ml vial 40 ml vial APG-06/24 B 20 ml vial 20 ml vial 40 ml vial APG-06/24 C 20 ml vial 20 ml vial 40 ml vial APG-06/24 C 20 ml vial Not Sampled 40 ml vial APG-06/24 C 20 ml vial Not Sampled Not Sampled Not Sampled 10 ml vial Not \$1 ml vial 10 ml vial 1	APG-04/07 B	20 ml vial	20 ml vial	40 ml vial	
APG-22/23 A 20 ml vial 20 ml vial 40 ml vial APG-22/23 B 20 ml vial 20 ml vial 40 ml vial APG-22/23 C 20 ml vial 20 ml vial 40 ml vial APG-15/12 A 20 ml vial 20 ml vial 40 ml vial APG-15/12 B 20 ml vial 20 ml vial 40 ml vial APG-15/12 B 20 ml vial 20 ml vial 40 ml vial APG-15/12 C 20 ml vial 20 ml vial 40 ml vial APG-06/24 A 20 ml vial 20 ml vial 40 ml vial APG-06/24 B 20 ml vial 20 ml vial 40 ml vial APG-06/24 C 20 ml vial APG-06/24 C 20 ml vial Not Sampled 40 ml vial APG-06/24 C 20 ml vial Not Sampled 40 ml vial APG-06/24 C 20 ml vial Not Sampled Not Sampled 10 ml vial Not \$1 ml via	APG-04/07 C	20 ml vial	Not Sampled	40 ml vial	
APG-22/23 C 20 ml vial Not Sampled 40 ml vial APG-15/12 A 20 ml vial 20 ml vial 40 ml vial APG-15/12 B 20 ml vial 20 ml vial 40 ml vial APG-15/12 C 20 ml vial 20 ml vial 40 ml vial APG-06/24 A 20 ml vial 20 ml vial 40 ml vial APG-06/24 B 20 ml vial 20 ml vial 40 ml vial APG-06/24 C 20 ml vial Not Sampled 40 ml vial APG-06/24 C 20 ml vial Not Sampled 40 ml vial Lot #11-017 (Test Initiation) 20 ml vial Not Sampled Not Sampled Lot #11-018 20 ml vial Not Sampled Not Sampled Lot #11-018 20 ml vial 20 ml vial Not Sampled APG-02/08 A 20 ml vial 20 ml vial 40 ml vial APG-02/08 B 20 ml vial 20 ml vial 40 ml vial APG-02/08 C 20 ml vial Not Sampled 40 ml vial APG-11/13 A 20 ml vial Not Sampled 40 ml vial APG-11/13 B <td>APG-22/23 A</td> <td>20 ml vial</td> <td>•</td> <td>40 ml vial</td>	APG-22/23 A	20 ml vial	•	40 ml vial	
APG-15/12 A 20 ml vial 20 ml vial 40 ml vial APG-15/12 B 20 ml vial 20 ml vial 40 ml vial APG-15/12 C 20 ml vial 20 ml vial 40 ml vial APG-06/24 A 20 ml vial 20 ml vial 40 ml vial APG-06/24 B 20 ml vial 20 ml vial 40 ml vial APG-06/24 C 20 ml vial Not Sampled 40 ml vial APG-06/24 C 20 ml vial Not Sampled 40 ml vial APG-06/24 C 20 ml vial Not Sampled Not Sampled Lot #11-017 (Test Initiation) 20 ml vial Not Sampled Not Sampled Lot #11-017 (Upon Receipt) 20 ml vial Not Sampled Not Sampled Lot #11-018 20 ml vial 20 ml vial Not Sampled APG-02/08 A 20 ml vial 20 ml vial 40 ml vial APG-02/08 B 20 ml vial 20 ml vial 40 ml vial APG-02/08 C 20 ml vial Not Sampled 40 ml vial APG-01/13 A 20 ml vial 20 ml vial 40 ml vial APG-11/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-11/10 A 20 ml vial 20 ml vial 40 ml vial APG-14/10 B 20 ml vial 20 ml vial 40 ml vial APG-14/10 B 20 ml vial 20 ml vial 40 ml vial APG-14/10 B 20 ml vial 20 ml vial 40 ml vial APG-14/10 C 20 ml vial 20 ml vial 40 ml vial APG-12/20 A 20 ml vial 20 ml vial 40 ml vial APG-21/20 B 20 ml vial 20 ml vial 40 ml vial APG-21/20 C 20 ml vial 20 ml vial 40 ml vial APG-01/03 A 20 ml vial 20 ml vial 40 ml vial APG-01/03 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial 40 ml vial 40 ml vial APG-01/03 C 20 ml vial 40 ml vial 40 ml vial APG-01/03 C 20 ml vial 40 ml vial	APG-22/23 B	20 ml vial	20 ml vial	40 ml vial	
APG-15/12 B 20 ml vial 20 ml vial 40 ml vial APG-15/12 C 20 ml vial Not Sampled 40 ml vial APG-06/24 A 20 ml vial 20 ml vial 40 ml vial APG-06/24 B 20 ml vial 20 ml vial 40 ml vial APG-06/24 C 20 ml vial Not Sampled 40 ml vial APG-06/24 C 20 ml vial Not Sampled 40 ml vial Not \$40 ml vial APG-06/24 C 20 ml vial Not Sampled Not Sampled Not Sampled Lot #11-017 (Test Initiation) 20 ml vial Not Sampled Not Sampled Not Sampled Lot #11-017 (Upon Receipt) 20 ml vial Not Sampled Not Sampled APG-02/08 A 20 ml vial 20 ml vial Not Sampled APG-02/08 B 20 ml vial 20 ml vial 40 ml vial APG-02/08 C 20 ml vial 20 ml vial 40 ml vial APG-01/13 A 20 ml vial 20 ml vial 40 ml vial APG-01/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-14/10 A 20 ml vial 20 ml vial 40 ml vial APG-14/10 B 20 ml vial 20 ml vial 40 ml vial APG-14/10 C 20 ml vial 20 ml vial 40 ml vial APG-14/10 C 20 ml vial 20 ml vial 40 ml vial APG-21/20 A 20 ml vial 20 ml vial 40 ml vial APG-21/20 B 20 ml vial 20 ml vial 40 ml vial APG-21/20 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 A 20 ml vial 20 ml vial 40 ml vial APG-01/03 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial 40 ml vial 40 ml vial APG-01/03 C 20 ml vial 40 ml v	APG-22/23 C	20 ml vial	Not Sampled	40 ml vial	
APG-15/12 C 20 ml vial 20 ml vial 40 ml vial 40 ml vial APG-06/24 A 20 ml vial 20 ml vial 40 ml vial 40 ml vial APG-06/24 B 20 ml vial 20 ml vial 40 ml vial 40 ml vial APG-06/24 C 20 ml vial Not Sampled 40 ml vial APG-06/24 C 20 ml vial Not Sampled Not Sampled Not Sampled Lot #11-017 (Test Initiation) 20 ml vial Not Sampled Not Sampled Not Sampled Lot #11-018 20 ml vial 20 ml vial Not Sampled Not Sampled APG-02/08 A 20 ml vial 20 ml vial 40 ml vial APG-02/08 B 20 ml vial 20 ml vial 40 ml vial APG-02/08 C 20 ml vial Not Sampled 40 ml vial APG-01/13 A 20 ml vial 20 ml vial 40 ml vial APG-11/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-11/10 A 20 ml vial 20 ml vial 40 ml vial APG-14/10 B 20 ml vial 20 ml vial 40 ml vial APG-14/10 B 20 ml vial 20 ml vial 40 ml vial APG-14/10 C 20 ml vial 20 ml vial 40 ml vial APG-14/10 C 20 ml vial 20 ml vial 40 ml vial APG-21/20 A 20 ml vial 20 ml vial 40 ml vial APG-21/20 A 20 ml vial 20 ml vial 40 ml vial APG-21/20 B 20 ml vial 20 ml vial 40 ml vial APG-21/20 B 20 ml vial 20 ml vial 40 ml vial APG-21/20 C 20 ml vial 20 ml vial 40 ml vial APG-01/03 A 20 ml vial 20 ml vial 40 ml vial APG-01/03 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial 20 ml vial 40 ml vial APG-01/03 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial 40 ml vial 40 ml vial APG-01/03 B 20 ml vial 40 ml vial 40 ml vial APG-01/03 B 20 ml vial 40 ml vial 40 ml vial APG-01/03 B 20 ml vial 40 ml vial 40 ml vial APG-01/03 C 20 ml vial 40	APG-15/12 A	20 ml vial	20 ml vial	40 ml vial	
APG-06/24 A 20 ml vial 20 ml vial 40 ml vial APG-06/24 B 20 ml vial 20 ml vial 40 ml vial APG-06/24 C 20 ml vial Not Sampled 40 ml vial Lot #11-017 (Test Initiation) 20 ml vial Not Sampled Not Sampled Lot #11-017 (Upon Receipt) 20 ml vial Not Sampled Not Sampled Lot #11-018 20 ml vial 20 ml vial Not Sampled APG-02/08 A 20 ml vial 20 ml vial 40 ml vial APG-02/08 B 20 ml vial 20 ml vial 40 ml vial APG-02/08 C 20 ml vial Not Sampled 40 ml vial APG-02/08 C 20 ml vial Not Sampled 40 ml vial APG-11/13 A 20 ml vial 20 ml vial 40 ml vial APG-11/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial Not Sampled 40 ml vial APG-14/10 A 20 ml vial 20 ml vial 40 ml vial APG-14/10 B 20 ml vial 20 ml vial 40 ml vial A	APG-15/12 B	20 ml vial	20 ml vial	40 ml vial	
APG-06/24 B 20 ml vial 20 ml vial 40 ml vial APG-06/24 C 20 ml vial Not Sampled 40 ml vial Lot #11-017 (Test Initiation) 20 ml vial Not Sampled Not Sampled Lot #11-017 (Upon Receipt) 20 ml vial Not Sampled Not Sampled Lot #11-018 20 ml vial 20 ml vial Not Sampled APG-02/08 A 20 ml vial 20 ml vial 40 ml vial APG-02/08 B 20 ml vial 20 ml vial 40 ml vial APG-02/08 C 20 ml vial Not Sampled 40 ml vial APG-11/13 A 20 ml vial 20 ml vial 40 ml vial APG-11/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial Not Sampled 40 ml vial APG-14/10 A 20 ml vial 20 ml vial 40 ml vial APG-14/10 B 20 ml vial 20 ml vial 40 ml vial APG-14/10 C 20 ml vial 20 ml vial 40 ml vial APG-12/20 A 20 ml vial 20 ml vial 40 ml vial AP	APG-15/12 C	20 ml vial	Not Sampled	40 ml vial	
APG-06/24 C 20 ml vial Not Sampled 40 ml vial Lot #11-017 (Test Initiation) 20 ml vial Not Sampled Not Sampled Lot #11-017 (Upon Receipt) 20 ml vial Not Sampled Not Sampled Lot #11-018 20 ml vial 20 ml vial Not Sampled APG-02/08 A 20 ml vial 20 ml vial 40 ml vial APG-02/08 B 20 ml vial 20 ml vial 40 ml vial APG-02/08 C 20 ml vial Not Sampled 40 ml vial APG-01/13 A 20 ml vial 20 ml vial 40 ml vial APG-11/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial Not Sampled 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-14/10 B 20 ml vial 20 ml vial 40 ml vial AP	APG-06/24 A	20 ml vial	20 ml vial	40 ml vial	
Lot #11-017 (Test Initiation) 20 ml vial Not Sampled Not Sampled Lot #11-017 (Upon Receipt) 20 ml vial Not Sampled Not Sampled Lot #11-018 20 ml vial 20 ml vial Not Sampled APG-02/08 A 20 ml vial 20 ml vial 40 ml vial APG-02/08 B 20 ml vial 20 ml vial 40 ml vial APG-02/08 C 20 ml vial Not Sampled 40 ml vial APG-02/08 C 20 ml vial 20 ml vial 40 ml vial APG-02/08 C 20 ml vial 20 ml vial 40 ml vial APG-02/08 C 20 ml vial 20 ml vial 40 ml vial APG-01/13 A 20 ml vial 20 ml vial 40 ml vial APG-11/13 A 20 ml vial 20 ml vial 40 ml vial APG-11/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-14/10 A 20 ml vial 20 ml vial 40 ml vial APG-14/10 B 20 ml vial 20 ml vial 40 ml vial APG-	APG-06/24 B	20 ml vial	20 ml vial	40 ml vial	
Lot #11-017 (Upon Receipt) 20 ml vial Not Sampled Not Sampled Lot #11-018 20 ml vial 20 ml vial Not Sampled APG-02/08 A 20 ml vial 20 ml vial 40 ml vial APG-02/08 B 20 ml vial 20 ml vial 40 ml vial APG-02/08 C 20 ml vial Not Sampled 40 ml vial APG-02/08 C 20 ml vial 20 ml vial 40 ml vial APG-02/08 C 20 ml vial 20 ml vial 40 ml vial APG-02/08 C 20 ml vial 20 ml vial 40 ml vial APG-02/08 C 20 ml vial 20 ml vial 40 ml vial APG-11/13 A 20 ml vial 20 ml vial 40 ml vial APG-11/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial Not Sampled 40 ml vial APG-14/10 A 20 ml vial 20 ml vial 40 ml vial APG-14/10 B 20 ml vial 20 ml vial 40 ml vial APG-14/10 C	APG-06/24 C	20 ml vial	Not Sampled	40 ml vial	
Lot #11-018 20 ml vial 20 ml vial Not Sampled APG-02/08 A 20 ml vial 20 ml vial 40 ml vial APG-02/08 B 20 ml vial 20 ml vial 40 ml vial APG-02/08 C 20 ml vial Not Sampled 40 ml vial APG-11/13 A 20 ml vial 20 ml vial 40 ml vial APG-11/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial Not Sampled 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-14/10 A 20 ml vial 20 ml vial 40 ml vial APG-14/10 B 20 ml vial 20 ml vial 40 ml vial APG-14/10 B 20 ml vial Not Sampled 40 ml vial APG-14/10 C 20 ml vial Not Sampled 40 ml vial APG-14/10 C 20 ml vial 20 ml vial 40 ml vial APG-12/20 A 20 ml vial 20 ml vial 40 ml vial APG-21/20 B 20 ml vial 20 ml vial 40 ml vial APG-10/03 A 20 ml via	Lot #11-017 (Test Initiation)	20 ml vial	Not Sampled	Not Sampled	
APG-02/08 A 20 ml vial 20 ml vial 40 ml vial APG-02/08 B 20 ml vial 20 ml vial 40 ml vial APG-02/08 C 20 ml vial Not Sampled 40 ml vial APG-11/13 A 20 ml vial 20 ml vial 40 ml vial APG-11/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial Not Sampled 40 ml vial APG-14/10 A 20 ml vial 20 ml vial 40 ml vial APG-14/10 B 20 ml vial 20 ml vial 40 ml vial APG-14/10 C 20 ml vial Not Sampled 40 ml vial APG-14/10 C 20 ml vial 20 ml vial 40 ml vial APG-12/20 A 20 ml vial 20 ml vial 40 ml vial APG-21/20 B 20 ml vial 20 ml vial 40 ml vial APG-21/20 B 20 ml vial Not Sampled 40 ml vial APG-01/03 A 20 ml vial 20 ml vial 40 ml vial APG-01/03 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial	Lot #11-017 (Upon Receipt)	20 ml vial	Not Sampled	Not Sampled	
APG-02/08 B 20 ml vial 20 ml vial 40 ml vial APG-02/08 C 20 ml vial Not Sampled 40 ml vial APG-11/13 A 20 ml vial 20 ml vial 40 ml vial APG-11/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial Not Sampled 40 ml vial APG-14/10 A 20 ml vial 20 ml vial 40 ml vial APG-14/10 B 20 ml vial 20 ml vial 40 ml vial APG-14/10 C 20 ml vial Not Sampled 40 ml vial APG-14/10 C 20 ml vial 20 ml vial 40 ml vial APG-14/10 C 20 ml vial 20 ml vial 40 ml vial APG-12/20 A 20 ml vial 20 ml vial 40 ml vial APG-21/20 B 20 ml vial 20 ml vial 40 ml vial APG-21/20 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 A 20 ml vial 20 ml vial 40 ml vial APG-01/03 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial<	Lot #11-018	20 ml vial	20 ml vial	Not Sampled	
APG-02/08 C 20 ml vial Not Sampled 40 ml vial APG-11/13 A 20 ml vial 20 ml vial 40 ml vial APG-11/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial Not Sampled 40 ml vial APG-14/10 A 20 ml vial 20 ml vial 40 ml vial APG-14/10 B 20 ml vial 20 ml vial 40 ml vial APG-14/10 C 20 ml vial Not Sampled 40 ml vial APG-14/10 C 20 ml vial 20 ml vial 40 ml vial APG-14/10 C 20 ml vial 20 ml vial 40 ml vial APG-12/20 A 20 ml vial 20 ml vial 40 ml vial APG-21/20 B 20 ml vial Not Sampled 40 ml vial APG-21/20 C 20 ml vial Not Sampled 40 ml vial APG-01/03 A 20 ml vial 20 ml vial 40 ml vial APG-01/03 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial Not Sampled 40 ml vial APG-16/17 A Not Samp	APG-02/08 A	20 ml vial	20 ml vial	40 ml vial	
APG-11/13 A 20 ml vial 20 ml vial 40 ml vial APG-11/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial Not Sampled 40 ml vial APG-14/10 A 20 ml vial 20 ml vial 40 ml vial APG-14/10 B 20 ml vial 20 ml vial 40 ml vial APG-14/10 C 20 ml vial Not Sampled 40 ml vial APG-14/10 C 20 ml vial 20 ml vial 40 ml vial APG-14/10 C 20 ml vial 20 ml vial 40 ml vial APG-12/20 A 20 ml vial 20 ml vial 40 ml vial APG-21/20 B 20 ml vial 20 ml vial 40 ml vial APG-21/20 C 20 ml vial Not Sampled 40 ml vial APG-01/03 A 20 ml vial 20 ml vial 40 ml vial APG-01/03 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial Not Sampled 40 ml vial APG-16/17 A Not Sampled 20 ml vial 40 ml vial APG-16/17 C Not Sampl	APG-02/08 B	20 ml vial	20 ml vial	40 ml vial	
APG-11/13 B 20 ml vial 20 ml vial 40 ml vial APG-11/13 C 20 ml vial 20 ml vial 40 ml vial APG-14/10 A 20 ml vial 20 ml vial 40 ml vial APG-14/10 B 20 ml vial 20 ml vial 40 ml vial APG-14/10 C 20 ml vial 20 ml vial 40 ml vial APG-21/20 A 20 ml vial 20 ml vial 40 ml vial APG-21/20 B 20 ml vial 20 ml vial 40 ml vial APG-21/20 C 20 ml vial 20 ml vial 40 ml vial APG-01/03 A 20 ml vial 20 ml vial 40 ml vial APG-01/03 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial 20 ml vial 40 ml vial 40 ml vial APG-16/17 A Not Sampled 40 ml vial 40 ml vial APG-16/17 B Not Sampled 20 ml vial 40 ml vial APG-16/17 B Not Sampled 20 ml vial 40 ml vial APG-16/17 C Not Sampled 40 ml vial 40 ml vial 40 ml vial APG-16/17 C Not Sampled 40 ml vial 4	APG-02/08 C	20 ml vial	Not Sampled	40 ml vial	
APG-11/13 C 20 ml vial Not Sampled 40 ml vial APG-14/10 A 20 ml vial 20 ml vial 40 ml vial APG-14/10 B 20 ml vial 20 ml vial 40 ml vial APG-14/10 C 20 ml vial Not Sampled 40 ml vial APG-21/20 A 20 ml vial 20 ml vial 40 ml vial APG-21/20 B 20 ml vial 20 ml vial 40 ml vial APG-21/20 C 20 ml vial Not Sampled 40 ml vial APG-01/03 A 20 ml vial 20 ml vial 40 ml vial APG-01/03 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial Not Sampled 40 ml vial APG-16/17 A Not Sampled 20 ml vial 40 ml vial APG-16/17 B Not Sampled 20 ml vial 40 ml vial APG-16/17 C Not Sampled Not Sampled 40 ml vial	APG-11/13 A	20 ml vial	20 ml vial	40 ml vial	
APG-14/10 A 20 ml vial 20 ml vial 40 ml vial APG-14/10 B 20 ml vial 20 ml vial 40 ml vial APG-14/10 C 20 ml vial Not Sampled 40 ml vial APG-21/20 A 20 ml vial 20 ml vial 40 ml vial APG-21/20 B 20 ml vial 20 ml vial 40 ml vial APG-21/20 C 20 ml vial Not Sampled 40 ml vial APG-01/03 A 20 ml vial 20 ml vial 40 ml vial APG-01/03 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial Not Sampled 40 ml vial APG-16/17 A Not Sampled 20 ml vial 40 ml vial APG-16/17 B Not Sampled 20 ml vial 40 ml vial APG-16/17 C Not Sampled Not Sampled 40 ml vial	APG-11/13 B	20 ml vial	20 ml vial	40 ml vial	
APG-14/10 B 20 ml vial 20 ml vial 40 ml vial APG-14/10 C 20 ml vial Not Sampled 40 ml vial APG-21/20 A 20 ml vial 20 ml vial 40 ml vial APG-21/20 B 20 ml vial 20 ml vial 40 ml vial APG-21/20 C 20 ml vial Not Sampled 40 ml vial APG-01/03 A 20 ml vial 20 ml vial 40 ml vial APG-01/03 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial Not Sampled 40 ml vial APG-16/17 A Not Sampled 20 ml vial 40 ml vial APG-16/17 B Not Sampled 20 ml vial 40 ml vial APG-16/17 C Not Sampled Not Sampled 40 ml vial	APG-11/13 C	20 ml vial	Not Sampled	40 ml vial	
APG-14/10 C 20 ml vial Not Sampled 40 ml vial APG-21/20 A 20 ml vial 20 ml vial 40 ml vial APG-21/20 B 20 ml vial 20 ml vial 40 ml vial APG-21/20 C 20 ml vial Not Sampled 40 ml vial APG-01/03 A 20 ml vial 20 ml vial 40 ml vial APG-01/03 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial Not Sampled 40 ml vial APG-16/17 A Not Sampled 20 ml vial 40 ml vial APG-16/17 B Not Sampled 20 ml vial 40 ml vial APG-16/17 C Not Sampled Not Sampled 40 ml vial	APG-14/10 A	20 ml vial	20 ml vial	40 ml vial	
APG-21/20 A 20 ml vial 20 ml vial 40 ml vial APG-21/20 B 20 ml vial 20 ml vial 40 ml vial APG-21/20 C 20 ml vial Not Sampled 40 ml vial APG-01/03 A 20 ml vial 20 ml vial 40 ml vial APG-01/03 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial Not Sampled 40 ml vial APG-16/17 A Not Sampled 20 ml vial 40 ml vial APG-16/17 B Not Sampled 20 ml vial 40 ml vial APG-16/17 C Not Sampled Not Sampled 40 ml vial	APG-14/10 B	20 ml vial	20 ml vial	40 ml vial	
APG-21/20 B 20 ml vial 20 ml vial 40 ml vial APG-21/20 C 20 ml vial Not Sampled 40 ml vial APG-01/03 A 20 ml vial 20 ml vial 40 ml vial APG-01/03 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial Not Sampled 40 ml vial APG-16/17 A Not Sampled 20 ml vial 40 ml vial APG-16/17 B Not Sampled 20 ml vial 40 ml vial APG-16/17 C Not Sampled Not Sampled 40 ml vial	APG-14/10 C	20 ml vial	Not Sampled	40 ml vial	
APG-21/20 C 20 ml vial Not Sampled 40 ml vial APG-01/03 A 20 ml vial 20 ml vial 40 ml vial APG-01/03 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial Not Sampled 40 ml vial APG-16/17 A Not Sampled 20 ml vial 40 ml vial APG-16/17 B Not Sampled 20 ml vial 40 ml vial APG-16/17 C Not Sampled Not Sampled 40 ml vial	APG-21/20 A	20 ml vial	20 ml vial	40 ml vial	
APG-01/03 A 20 ml vial 20 ml vial 40 ml vial APG-01/03 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial Not Sampled 40 ml vial APG-16/17 A Not Sampled 20 ml vial 40 ml vial APG-16/17 B Not Sampled 20 ml vial 40 ml vial APG-16/17 C Not Sampled Not Sampled 40 ml vial	APG-21/20 B	20 ml vial	20 ml vial	40 ml vial	
APG-01/03 B 20 ml vial 20 ml vial 40 ml vial APG-01/03 C 20 ml vial Not Sampled 40 ml vial APG-16/17 A Not Sampled 20 ml vial 40 ml vial APG-16/17 B Not Sampled 20 ml vial 40 ml vial APG-16/17 C Not Sampled Not Sampled 40 ml vial	APG-21/20 C	20 ml vial	Not Sampled	40 ml vial	
APG-01/03 C 20 ml vial Not Sampled 40 ml vial APG-16/17 A Not Sampled 20 ml vial 40 ml vial APG-16/17 B Not Sampled 20 ml vial 40 ml vial APG-16/17 C Not Sampled Not Sampled 40 ml vial	APG-01/03 A	20 ml vial	20 ml vial	40 ml vial	
APG-16/17 A Not Sampled 20 ml vial 40 ml vial APG-16/17 B Not Sampled 20 ml vial 40 ml vial APG-16/17 C Not Sampled Not Sampled 40 ml vial	APG-01/03 B	20 ml vial	20 ml vial	40 ml vial	
APG-16/17 B Not Sampled 20 ml vial 40 ml vial APG-16/17 C Not Sampled Not Sampled 40 ml vial	APG-01/03 C	20 ml vial	Not Sampled	40 ml vial	
APG-16/17 C Not Sampled Not Sampled 40 ml vial	APG-16/17 A	Not Sampled	20 ml vial	40 ml vial	
	APG-16/17 B	Not Sampled	20 ml vial	40 ml vial	
	APG-16/17 C	Not Sampled	Not Sampled	40 ml vial	
APG-18/19 A Not Sampled 20 ml vial 40 ml vial	APG-18/19 A	Not Sampled	20 ml vial	40 ml vial	
APG-18/19 B Not Sampled 20 ml vial 40 ml vial		Not Sampled	20 ml vial	40 ml vial	
APG-18/19 C Not Sampled Not Sampled 40 ml vial	APG-18/19 C	Not Sampled	Not Sampled	40 ml vial	

2.3 In Situ PED Samplers

Polyethylene Device samplers (PEDs) were deployed in December, 2010 for 10 months and recovered from the field in October, 2011. Sample extracts were prepared in the field and shipped to UNH laboratories. Samples were received on October 17, 2011. Upon receipt, it was determined that several samples were damaged in transit.

Sample Location	Sample Dates			
	December 2010	June 2011	October 2011	
	(Time 0)	(Time 1)	(Time 2)	
APG-02	60 ml Vial	60 ml Vial	60 ml Vial	
APG-08	60 ml Vial	60 ml Vial	60 ml Vial	
APG-22	60 ml Vial	60 ml Vial	Sample Damaged	
APG-23	60 ml Vial	60 ml Vial	Sample Damaged	
APG-05	60 ml Vial	60 ml Vial	60 ml Vial	
APG-09	60 ml Vial	60 ml Vial	Sample Damaged	
APG-11	60 ml Vial	60 ml Vial	60 ml Vial	
APG-13	60 ml Vial	60 ml Vial	Sample Damaged	
APG-06	60 ml Vial	60 ml Vial	Sample Damaged	
APG-24	60 ml Vial	Sample Damaged	60 ml Vial	
APG-20	60 ml Vial	60 ml Vial	60 ml Vial	
APG-21	60 ml Vial	60 ml Vial	60 ml Vial	
APG-01	60 ml Vial	60 ml Vial	60 ml Vial	
APG-03	60 ml Vial	60 ml Vial	60 ml Vial	
APG-10	Sample Damaged	Sample Damaged	60 ml Vial	
APG-14	60 ml Vial	60 ml Vial	Sample Damaged	
APG-04	60 ml Vial	Sample Damaged	60 ml Vial	
APG-07	60 ml Vial	60 ml Vial	60 ml Vial	
APG-12	60 ml Vial	60 ml Vial	60 ml Vial	
APG-15	60 ml Vial	60 ml Vial	60 ml Vial	

3.0 Methods

Samples collected from the three sampling events were prepared and analyzed for general environmental characteristics and PCB concentrations. General envornmental characterization included evaluating the moisture content, natural organic carbon and black carbon concentrations within the bulk hydric soil. PCB presence and concentration was deterimined in the bulk phase, pore water and macroinvertebrate receptor ti

3.1 Moisture Content

The moisture content of the hydric soil samples were measured following homogenization procedures in accordance with Gustafsson, 1997. Approximately 5g to 10g of soil was massed on an analytical scale (Sartorius BP121S) and dried at 60°C for 24 hours in a laboratory oven (Fisher Scientific). At the conclusion on the 24 hours, samples were massed a second time to determine the moisture content. Percentages are reported per bulk mass (Eq. 2.1)

Equation 3.1: Percent Moisture Content

 $%Moisture\ Content = (Mass_{Bulk} - Mass_{Drv})/Mass_{Bulk}$

3.2 Natural Organic Carbon

The natural organic carbon was measured in accordance with Gustafsson, 1997. Previously dried samples (Section 3.1) were cooled and stored in a desiccant chamber (Nalge/Sybron) prior to analysis. The sample particle size was reduced with a mortar and pestle to below 500 µm in diameter. Approximately 1.5 g of the dried/crushed sample was transferred to a small 13 g crucible and placed in a muffle furnace (Fisher Scientific) set at 375°C for 24 hours. Samples were cooled in a desicator for a half hour and massed to determine the mass loss. Natural organic cabon was calculated as the mass of natural organic carbon (non-soot) per dry soil mass (Equation 3.2).

Equation 3.1: Percent Moisture Content

 $%Natrual\ Organic\ Carbon = (Mass_{Dry} - Mass_{375C})/Mass_{Dry}$

3.3 Black Carbon

The black carbon (activated carbon) content within the hydric soil was determined following a method described in Grossman and Ghosh, 2009. Samples were dried at 60°C, crushed and sieved to below xx µm. Samples were then pretreated with a 0.1 M acid-dichromate solution to remove any natural organic matter at 60°C for 30 minutes. The acid-dichromate solution was then quenched with methanol and decanted. The pre-treatment step was then repeated a second time. Black carbon content was then determined with a CHN analyzer (Perkin Elmer 2400 Series II). Samples are reported as % carbon.

3.4 Bulk Hydric Soil Extraction and Sample Preparation

Bulk hydric soils were extracted for analytical analysis following a modified EPA 8082A method. Prior to extraction, approximately 5 to 10g of wet sediment was chemically dried with the addition of sodium sulfate in a desiccant chamber. The samples were then placed in stainless steel ASE Cells and extracted with a Dionex ASE 200 Accelerated Solvent Extractor in a 1:1 Hexane/Acetone mixture at 100°C and 1,500 psi for extraction. After extraction, the samples were exchanged to hexane and concentrated to 5 ml under ultra-high purity nitrogen. Excess water was removed during the solvent exchange with sodium sulfate. Following extraction, it was determined that the extracts required an additional "clean up" step prior to analysis. Size partitioning exclusion was conducted following EPA 3630C, using Thermo Scientific HyperSep Si Packs. Collected eluate was then concentrated to 10 ml (as hexane). Samples were transferred to 16 ml amber vials and stored at 4°C until analysis.

3.5 Pore Water Extraction and Sample Preparation

PCB concentrations in the pore water phase were determined with a Polyoxymethylene (POM) passive sampling extraction method described by Hawthorne et al., 2009. POM strips (4cm by 6cm) were prepared and cleaned prior to analysis. Strips were cleaned in first via sonication in hexane, then in methanol, each for 2 hours. POM strips were then rinsed and stored in reverse osmosis (RO) water until sampling.

The pore water was passively sampled from the bulk hydric soil samples. Twenty grams of wet soil was mixed with 40 ml of sodium azide solution (50 mg/ml) in a muffled 60 ml amber vial for each sample evaluated. A single strip of POM was also placed in the reaction vial which was immediately capped and placed on a vertical rotary wheel mixer. Reactors were rotated for 28 days, to achieve equilibrium between the POM and PW phases. At the conclusion of the equilibration period, POM strips were recovered from each reaction vial and rinsed for 15 seconds under RO water, then physically dried with a kimwipe. The strips were then immediately placed 40 ml of 1:1 hexane/acetone solution and sonicated for 1 hour. Solvent extract were concentrated and exchanged to hexane under UHP nitrogen to 10 ml. Samples were then transferred to 16 ml amber vials and stored at 4°C until analysis.

3.5 In Situ Pore Water Sampling, Extraction and Preparation

Pore water concentrations were also sampled *in situ* with Polyethylene Devices (PEDs) consistent with the methodology described in Adams et. al., 2009. Twenty 15in by 12in PED frames, with approximately a 6in x 12in exposed section of PE in the center, were deployed in December 2010 and left to equilibrate with the in situ pore water for 10 months in 20 of the treatment plots. Samplers were installed so that the PE was exposed to top six in of sediment to evaluate the pore water concentrations with vertical depth (profile). In October the samplers were recovered from the field. The polyethylene sheeting was immediately rinsed with RO water to remove any soil/debris material by field personnel. The top two inches of PE (exposed to the top 2 in. of soil) was cut from the frame, followed by the next 2 in. (exposed to the -2 to -4 in. layer of soil) and lastly the bottom two inches of exposed PE (exposed to the -4 in. to -6 in. layer of soil). As each section was removed, it was placed in a 40 ml VOA vial. A 1:1 Hexane/Acetone mixture was later added to extract the PE. Samples were then shipped to UNH laboratories for analysis.

Upon arrival, each sample vial was inspected and sonicated for 2 hours. The solvent extracts were then removed from each vial, exchanged to hexane and concentrated to 10 ml. Samples were transferred to 16 ml amber vials and stored at 4°C until analysis.

3.6 Macroinvertebrate Tissue Extraction and Sample Preparation

Bioaccumulation studies were conducted with composite hydric soil samples from multiple plots containing the same treatment. Soils were shipped directly to biological laboratories from the field site for the 28 day exposure period using Lumbriculus variegatus. At the conclusion of the exposure period, the lumbriculus were recovered, depurated and frozen. Frozen tissue samples were then shipped to UNH laboratories for chemical analysis.

Upon receipt, samples were masticated in sodium sulfate and Ottawa sand and extracted with an Accelerated Solvent Extractor (Dionex ASE 200) in a 1:1 Hexane/Acetone mixture at 100°C and 1,500 psi. Following extraction, the solvent extract was concentrated to 5 ml under nitrogen. Excess water was removed during this process chemically with sodium sulfate. A size partitioning exclusion clean up method using Thermo Scientific HyperSep Si Packs was then applied to the samples to remove interfering compounds (EPA, 3630C). The collected eluant was then again reduced under nitrogen and concentrated to 10 ml in hexane. Final extracts were transferred to 16 ml amber vials until GC/MS analysis was conducted.

3.7 PCB Analytical Analysis

Two PCB analyses were conducted within this study following a modified EPA 8082A method (GC/MS was used in place of GC/ECD). The first preliminary qualitative analysis was conducted to determine the major contributing congeners present at the treatment site. The second analysis was conducted to quantify the concentration of those major congeners within the bulk hydric soil, pore water and macroinvertebrate receptor tissue.

A 209 Congener Mix PCB standard, manufactured by AccuStandard (New Haven, CT) was used for the qualitative analysis to characterize the primary congeners present within the bulk soil and pore water matrices. Selective ion monitoring was used to compare chromatographs between the standard and samples. Presence/absence was determined based upon the similarity between retention time and ion mass/spin (m/z) between the standards and samples. Twenty-nine congeners were identified from the 209-congener mix within the bulk soil, pore water and receptor tissue matrices using GC/MS; it was determined that those 29 congeners accounted for >99% of the signal within all the samples evaluated. The identified individual congeners' standards (AccuStandard) were then combined to formulate a quantification standard.

A modified EPA 8082 method using GC/MS was used to identify all congeners present in the bulk soil, pore water and receptor tissue. Those congeners were then quantified using a composite standard of the identified individual congener mixes. While EPA 1668 using high resolution GC/MS may have been able to achieve lower detection for the congeners observed and possibly identify the presence of others, it is the congeners that were present above detection limit that drove this analysis. Therefore, a separate analysis would not have likely yielded different results. No shifts were observed between preand post-treatment monitoring events. A slight concentration shift in low molecular weight homologs was observed between the bulk soil and pore water.

Total PCBs were measured following EPA's method 8082A: Polychlorinated Biphenyls (PCBs) by Gas Chromatography. Under this methodology, the concentration of PCBs as Aroclors or as individual PCB congeners may be determined in extracts from solid, tissue, and aqueous matrices. The holding time of samples depends on what matrix it comes from; congener-specific PCBs from a pore water matrix are held 7 days to extraction and 40 days from extraction to analysis, whereas total PCBs in a tissue matrix are held for twice the length of time to extraction.

A 30 congener PCB standard (29 congeners + a surrogate standard) was custom fabricated at UNH from individual congener standards distributed by AccuStandard. The custom standard was then prepared in dilution to establish a calibration curve for the quantitative study. Both analyses were conducted on a Varian CP3800 Gas Chromatographer/Saturn 2200 Mass Spectrometer. One microliter (μ L) of sample was injected onto a DB-5 type capillary column (Varian Factor Four VF-5ms), ionized via electromagnetic ionization and detected with selective monitoring ion trap technology.

PCB concentrations presented in the results section of this document are the total cumulative PCB concentrations (99% of total PCBs composed of the 29 primary congeners). Congener concentrations

below the reporting limit were included in the cumulative total. The 29 congeners quantified are shown in Table 3.1below, along with their associated homolog group and reporting limits.

Table 3.1: PCB Congener Quantification

Congener	Associated Homolog	Solvent Concentration	POM Concentration
	Group	Reporting Limit (ng/mL)	Reporting Limit (ng/g)
1	H1	25	37153.52291
3	H1	25	37153.52291
4	H2	25	37153.52291
9	H2	25	48977.88194
6	H2	12.5	54954.08739
5	H2	25	54954.08739
19	H3	12.5	131825.6739
12+13+17	H2/H3	50	158489.3192
15	H2	25	134896.2883
27	H3	12.5	257039.5783
32	H3	12.5	323593.6569
26	H3	12.5	257039.5783
28	H3	20	478630.0923
53+33	H3/H4	35	446683.5922
51	H4		
22+45	H3/H4	25	295120.9227
52	H4	10	446683.5922
49	H4	20	676082.9754
38+75	H3/H4	45	1348962.883
44	H4	25	446683.5922
42	H4	25	436515.8322
64	H4	20	630957.3445
121+66	H4/H5	40	2089296.131

4.0 Results

4.1 Moisture Content Results

Moisture contents were measured for each individual sampling plot. The average moisture content of the hydric soil samples from all three sampling events was 61.9%, with a standard deviation of 9.4%. The maximum observed moisture was 76.9% and the minimum was 36.2%. All measurements are provided in Table 4.1.

4.2 Natural Organic Carbon Results

Natural Organic Carbon was measured for each individual treatment plot location within each sampling event (multiple plot composite sample were not measured). The average natural organic carbon observed on the site was 17.3% with a standard deviation of 0.56%. The maximum NOC observed was 31.2% and minimum was 4.2% (NOC is reported per dry soil mass). Analytical procedural errors occurred

while evaluating samples APG-11(T1), APG-10(T2) and APG-11(T2), therefore concentrations are not reported.

Table 4.1: Bulk Hydric Soil Moisture Content

Sample	T0- December 2010	T1- June 2011	T2- October 2011
APG-01	51.73%	59.80%	42.47%
APG-02	51.67%	56.69%	70.21%
APG-03	46.15%	40.55%	48.83%
APG-04	62.01%	67.09%	68.23%
APG-05	45.56%	53.44%	62.64%
APG-06	36.20%	62.88%	63.57%
APG-07	40.32%	52.18%	45.90%
APG-08	50.15%	59.38%	60.95%
APG-09	61.37%	71.26%	69.95%
APG-10	68.46%	59.70%	68.50%
APG-11	72.86%	72.81%	56.57%
APG-12	72.35%	74.19%	65.93%
APG-13	60.39%	69.01%	52.73%
APG-14	65.47%	54.48%	75.27%
APG-15	63.47%	62.04%	68.69%
APG-16	65.71%	67.85%	73.62%
APG-17	60.46%	65.99%	67.39%
APG-18	67.67%	63.35%	66.54%
APG-19	56.85%	62.33%	66.37%
APG-20	69.60%	76.93%	58.17%
APG-21	70.61%	72.47%	71.84%
APG-22	58.77%	65.50%	76.03%
APG-23	49.45%	61.38%	68.84%
APG-24	54.82%	66.71%	64.97%

4.3 Black Carbon Results

The Black Carbon (BC) concentration was measured for each individual treatment plot location within each sampling event (multiple plot composite sample were not measured). The average BC observed on the site prior to the treatment application was 1.13% with a standard deviation of 0.62%. Following treatment application, BC concentrations increased within the sampling plots which contained treatment (AC Slurry, AquaBlok or SediMite). Average BC concentrations at the 6 month sampling event were 3.08% (SD = 1.15%) and 1.78% (SD = 0.60%) at the 10 month sampling event. Black carbon concentrations remained relatively stable in the non-treated test plots (Control and Sand Control). Average 6 month concentrations were 0.98% (SD = 0.78%) and 1.09% (SD = 0.53%) at 10 months. Analytical procedural errors occurred while evaluating samples APG-12(T2) and APG-14(T2), therefore concentrations are not reported.

Table 4.2: Natural Organic Carbon

Sample	T0- December 2010	T1- June 2011	T2- October 2011
APG-01	22.31%	14.14%	7.33%
APG-02	18.75%	23.87%	24.41%
APG-03	6.73%	6.54%	8.73%
APG-04	13.49%	19.18%	13.57%
APG-05	10.13%	14.11%	14.16%
APG-06	6.28%	15.48%	14.35%
APG-07	4.86%	10.20%	4.62%
APG-08	9.53%	12.63%	13.42%
APG-09	15.13%	19.36%	17.13%
APG-10	22.92%	13.76%	Not Measured
APG-11	31.12%	Not Measured	Not Measured
APG-12	26.48%	21.95%	16.67%
APG-13	22.62%	24.92%	16.68%
APG-14	18.83%	8.68%	22.38%
APG-15	15.93%	12.36%	24.22%
APG-16	18.55%	22.16%	25.30%
APG-17	15.94%	20.13%	18.98%
APG-18	19.70%	16.59%	18.61%
APG-19	19.60%	12.65%	16.50%
APG-20	19.33%	26.76%	13.71%
APG-21	22.28%	26.89%	24.70%
APG-22	16.36%	18.01%	27.39%
APG-23	25.94%	18.11%	22.02%
APG-24	11.32%	17.14%	21.10%

Table 4.3: Black Carbon Concentrations

Sample	T0- December 2010	T1- June 2011	T2- October 2011
APG-01	1.22%	0.43%	1.38%
APG-02	0.67%	1.18%	2.16%
APG-03	0.37%	0.47%	0.38%
APG-04	1.20%	1.51%	1.07%
APG-05	0.51%	2.57%	2.43%
APG-06	0.20%	2.66%	0.32%
APG-07	0.73%	0.76%	0.66%
APG-08	0.37%	0.88%	2.28%
APG-09	1.25%	2.56%	2.82%
APG-10	1.40%	0.37%	1.89%
APG-11	1.10%	4.87%	2.20%
APG-12	2.56%	2.69%	Not Measured
APG-13	1.23%	3.43%	2.05%
APG-14	0.74%	0.79%	Not Measured
APG-15	1.39%	0.82%	1.15%
APG-16	1.32%	3.83%	1.47%
APG-17	2.45%	2.94%	1.44%
APG-18	2.10%	4.50%	1.58%
APG-19	1.27%	1.69%	0.96%
APG-20	1.33%	3.76%	1.79%
APG-21	1.37%	3.07%	1.44%
APG-22	1.18%	3.88%	1.72%
APG-23	0.37%	4.40%	1.97%
APG-24	0.72%	3.14%	1.86%

4.4 Bulk Hydric Soil PCB Results

Bulk hydric soil samples evaluated by UNH had a wide range in concentration (over 4 orders of magnitude) from a maximum of 266 mg/kg to a minimum 0.013 mg/kg. The average concentration over the site was 27.8 mg/kg with a standard deviation of 49.6 mg/kg. PCB concentrations are presented for each treatment plot in Table 4.4 and graphically in Figure 4.1. Data is organized by similar treatment type. Concentrations are reported as milligram PCB per kilogram hydric soil. Analytical procedural errors occurred while evaluating samples APG-22(T1), APG-09(T1), APG-24(T1), APG-16(T2) and APG-07(T2); therefore concentrations are not reported.

Table 4.4: Bulk Hydric Soil PCB Concentrations

Treatment	Sample	(T0) December 2010	(T1) June 2011	(T2) October 2011
			(mg/kg)	
	APG-02	8.70E+00	1.17E+01	2.48E+01
	APG-08	4.08E-01	1.51E+00	6.42E+00
Churry Coroy	APG-02/08	1.94E+00	3.48E+00	1.84E+00
Slurry Spray	APG-22	1.72E-02	Not Reported	2.07E-01
	APG-23	1.69E-02	2.70E-01	5.10E-01
	APG-22/23	5.29E-02	1.25E-02	2.95E-01
	APG-05	1.57E+00	6.29E+00	9.42E+00
	APG-09	1.65E+01	Not Reported	3.47E+01
	APG-05/09	9.09E+00	1.50E+01	3.35E+01
	APG-11	1.58E-01	6.93E-01	5.63E-01
	APG-13	1.79E+01	1.36E+01	1.32E+02
AmusDlak	APG-11/13	Not Sampled	1.39E+01	1.23E+01
AquaBlok	APG-06	1.05E+02	1.51E+02	9.64E-01
	APG-24	3.03E-02	Not Reported	8.50E-01
	APG-06/24	8.21E+01	5.39E+01	2.32E+02
	APG-20	1.35E+01	1.04E+01	3.14E+01
	APG-21	6.31E-01	4.53E-01	2.47E+00
	APG-20/21	Not Sampled	2.67E-01	8.71E+00
	APG-16	4.88E+00	7.35E+00	Not Reported
	APG-17	4.56E+00	5.93E+00	1.12E+01
SediMite -	APG-16/17	Not Sampled	5.58E+00	1.52E+01
	APG-18	1.09E+01	8.54E+00	2.63E+01
	APG-19	3.24E+01	1.54E+02	1.19E+02
	APG-18/19	Not Sampled	7.28E+00	5.63E+01
	APG-01	7.69E+00	5.14E-01	2.66E+02
	APG-03	2.91E+01	7.82E+01	1.71E+02
Sand Control	APG-01/03	1.09E+01	1.22E+02	7.92E+01
Sand Control	APG-10	2.72E-01	8.16E-02	3.35E+00
-	APG-14	7.66E+00	1.50E+01	1.42E+01
	APG-10/14	7.10E+00	6.65E+00	5.34E+00
	APG-04	4.23E+00	1.45E+01	2.48E+01
	APG-07	5.90E+01	8.21E+01	Not Reported
Control	APG-04/07	2.89E+01	2.16E+01	9.21E+01
Control	APG-12	1.81E-01	1.76E+00	4.77E+00
	APG-15	1.25E+00	4.33E+00	1.40E+01
	APG-12/15	Not Sampled	5.00E+00	3.24E+00

Total PCB Bulk Hydric Soil Concentration

Figure 4.1: Bulk Hydric Soil Concentrations measured In Situ

4.4 Pore Water PCB Results

Pore water PCB concentrations were determined from the same composite hydric soil samples collected from the treatment area in the bulk sediment evaluation. Pore water sampling was conducted with POM passive samplers as described previously in Section 3.4. Pore water concentrations within the testing area were also found to be highly variable. Concentrations prior to the application of reactive treatments ranged over 5 orders of magnitude (maximum 3.73x10⁻⁰² mg/L; minimum 5.69x10⁻⁰⁷ mg/L) with an average concentration of 2.25x10⁻⁰³ mg/L and a large standard deviation (7.07x10⁻⁰³). Following the application of the reactive amendment products, reductions in pore water concentrations were observed for greater than 80% of the treatment plots containing treatments (not controls) during at least one post treatment sampling event. PCB concentrations are presented for each treatment plot in Table 4.5 and graphically in Figure 4.2. Data is presented by treatment plot and organized by similar treatment type. Concentrations are reported as milligram PCB per liter pore water.

4.4 In Situ Pore Water PCB Results

Pore water concentrations were also measured *in situ* with polyethylene device (PED) passive samplers to evaluate the PCB concentration profile with depth. Data is presented in Table 4.6 by treatment plot and depth. Treatment plots are organized into similar treatment types. The average concentration measured was 1.61×10^{-03} mg/L (SD = 5.65×10^{-03} mg/L). The maximum concentration measured was 2.70×10^{-02} mg/L and the minimum was 8.90×10^{-07} . Results are also reported graphically in Figure 4.3. All results are reported as mg PCB per L of pore water. Several samples (10) were damaged in transit between the field and laboratory including APG-10(Top), APG-24(Mid), APG-10(Mid), APG-04(Mid), APG-22(Bottom), APG-23(Bottom), APG-09(Bottom), APG-13(Bottom), APG-06(Bottom) and APG-14(Bottom); therefore these results are not reported.

4.4 Macroinvertebrate Receptor Tissue PCB Results

Tissue concentrations from benthic organisms exposed to sediments within the testing area were found to be highly variable. Concentrations prior to the application of reactive treatments ranged over 4 orders of magnitude (maximum 3.57x10⁺⁰² mg/L; minimum 4.33x10⁻⁰² mg/L) with an average concentration of 2.25x10⁺⁰¹ mg/L and a large standard deviation (1.21x10⁺⁰²). Following the application of the reactive amendment products, reductions in tissue concentration were observed for all of the treatments in which Time-0 data was available (AC Slurry and AquaBlok). Time-0 concentrations for the SediMite treatment plots are not available. Tissue concentrations were observed to fluctuate in the "Sand" and "No Treatment" Control plots in the post treatment sampling events. Results are presented in Table 4.7 and Figure 4.4. Results are present by treatment plot and organized by similar treatment type. All results are reported as mg PCB per kg wet tissue mass.

Table 4.5: PCB Total Pore Water Concentrations

_		(T0)	(T1)	(T2)
Treatment	Sample	December 2010	June 2011	October 2011
	APG-02	7.11E-05	(mg/L) 2.71E-05	3.25E-05
	APG-08	3.30E-05	8.14E-06	2.45E-05
Churni Coron	APG-02/08	3.90E-05	1.15E-05	4.49E-06
Slurry Spray	APG-22	5.96E-07	1.62E-06	4.18E-06
	APG-23	7.17E-07	2.87E-07	3.33E-06
	APG-22/23	3.49E-06	2.58E-06	1.53E-06
	APG-05	4.70E-05	2.07E-06	8.74E-06
	APG-09	4.35E-04	7.38E-05	9.37E-06
	APG-05/09	3.40E-04	2.87E-06	5.59E-06
	APG-11	7.19E-07	1.46E-06	2.07E-05
	APG-13	2.81E-04	6.10E-06	9.14E-05
AquaBlok	APG-11/13	6.47E-05	6.91E-06	3.17E-06
Aquablok	APG-06	3.73E-02	3.24E-04	7.22E-06
	APG-24	1.23E-06	2.23E-06	5.10E-06
	APG-06/24	1.58E-02	1.05E-04	4.35E-03
	APG-20	3.88E-04	1.09E-05	5.39E-05
	APG-21	8.72E-06	1.72E-06	1.25E-05
	APG-20/21	Not Sampled	1.87E-06	1.51E-05
	APG-16	7.69E-05	3.37E-05	1.95E-05
	APG-17	3.35E-05	1.65E-05	6.54E-05
SediMite	APG-16/17	Not Sampled	2.53E-05	4.65E-05
Sealiville	APG-18	1.59E-04	3.38E-05	2.11E-04
	APG-19	1.57E-03	4.19E-03	1.84E-03
	APG-18/19	Not Sampled	1.17E-05	2.14E-04
	APG-01	5.95E-06	6.73E-06	1.76E-03
	APG-03	4.29E-03	2.07E-02	1.19E-02
Sand Control	APG-01/03	1.67E-03	1.18E-02	6.11E-03
Sand Sontion	APG-10	2.43E-06	9.30E-06	7.26E-06
	APG-14	1.72E-04	2.15E-04	1.09E-04
	APG-10/14	8.37E-05	1.30E-04	4.25E-05
	APG-04	1.67E-04	1.56E-04	2.46E-04
	APG-07	6.19E-03	5.41E-03	3.62E-02
Control	APG-04/07	2.62E-03	2.20E-04	4.87E-03
Control	APG-12	3.99E-06	9.63E-06	2.48E-05
	APG-15	3.87E-05	7.43E-05	1.00E-04
	APG-12/15	Not Sampled	3.52E-05	1.27E-05

Total PCB Pore Water Concentrations

Figure 4.2: Pore Water Concentrations

Table 4.6: PCB Pore Water Concentrations Measured In Situ

Treatment	Sample	Top (0in to 2in)	Middle (2in to 4in)	Bottom (4in to 6in)
	450.00	0.005.07	(mg/L)	4.045.05
	APG-02	9.29E-07	1.07E-06	1.84E-05
Shurry Spray	APG-08	7.54E-06	4.31E-06	7.32E-06
Slurry Spray	APG-22	1.40E-06	1.89E-06	Not Reported
	APG-23	4.02E-05	1.95E-06	Not Reported
	APG-05	3.06E-06	3.90E-06	2.58E-05
	APG-09	5.32E-06	9.30E-06	Not Reported
	APG-11	3.65E-05	3.23E-05	1.43E-05
AgusPlak	APG-13	2.57E-06	2.48E-06	Not Reported
AquaBlok	APG-06	4.05E-06	6.31E-05	Not Reported
	APG-24	1.74E-06	Not Reported	1.68E-06
	APG-20	6.47E-06	1.44E-06	1.39E-06
	APG-21	2.24E-06	3.07E-06	6.99E-06
	APG-01	8.90E-07	1.81E-06	3.18E-06
Cond Control	APG-03	1.52E-03	2.37E-02	1.87E-02
Sand Control	APG-10	Not Reported	Not Reported	2.27E-06
	APG-14	3.34E-04	6.00E-05	Not Reported
	APG-04	3.16E-05	Not Reported	9.22E-05
Control	APG-07	1.46E-03	6.89E-03	2.70E-02
Control	APG-12	8.65E-06	1.16E-05	2.65E-05
	APG-15	2.30E-05	7.25E-05	1.43E-04

Pore Water Concentrations - Measured In Situ

Figure 4.3: Pore Water Concentrations measured In Situ

Table 4.7: PCB Receptor Tissue Concentrations

Treatment	Sample	(T0) December 2010	(T1) June 2011	(T2) October 2011
			(mg/kg)	
	APG-02/08a	3.10E+00	7.47E-01	3.99E-02
	APG-02/08b	3.66E+00	3.72E-01	1.89E-02
Slurry Spray	APG-02/08c	3.01E+00	Not Sampled	1.51E-02
Siurry Spray	APG-22/23a	2.43E-02	1.95E-02	0.00E+00
	APG-22/23b	4.10E-02	0.00E+00	0.00E+00
	APG-22/23c	6.45E-02	Not Sampled	0.00E+00
	APG-05/09a	2.11E+01	7.59E-01	1.72E-02
	APG-05/09b	2.71E+01	1.13E-01	3.37E-02
	APG-05/09c	2.80E+01	Not Sampled	3.61E-02
	APG-11/13a	1.42E+01	2.76E-02	3.77E-01
	APG-11/13b	1.42E+01	3.56E-02	3.33E+00
AnnaDlak	APG-11/13c	1.46E+01	Not Sampled	7.85E-01
AquaBlok	APG-06/24a	2.37E+02	4.52E-01	4.99E+00
	APG-06/24b	5.32E+02	1.12E+00	6.64E+00
	APG-06/24c	3.02E+02	Not Sampled	5.14E+00
	APG-20/21a	Not Sampled	1.77E-01	1.42E+00
	APG-20/21b	Not Sampled	2.15E-02	1.28E+00
	APG-20/21c	Not Sampled	Not Sampled	1.08E+00
	APG-16/17a	Not Sampled	1.41E+00	6.26E-01
	APG-16/17b	Not Sampled	4.19E+00	7.29E-01
SediMite	APG-16/17c	Not Sampled	Not Sampled	5.25E-01
Sealivite	APG-18/19a	Not Sampled	6.43E+00	8.04E+00
	APG-18/19b	Not Sampled	1.59E+01	1.16E+01
	APG-18/19c	Not Sampled	Not Sampled	1.05E+01
	APG-01/03a	1.73E+01	2.66E+01	3.19E+01
	APG-01/03b	2.27E+01	5.06E+01	2.23E+01
Sand Control	APG-01/03c	2.43E+01	Not Sampled	1.91E+01
Sand Control	APG-10/14a	1.00E+01	1.21E+01	3.08E-01
	APG-10/14b	0.00E+00	Not Sampled	3.41E-01
	APG-10/14c	1.27E+01	Not Sampled	1.11E-01
	APG-04/07a	8.53E+01	5.03E+01	4.12E+01
	APG-04/07b	7.42E+01	4.06E+01	4.09E+01
Control	APG-04/07c	5.23E+01	Not Sampled	4.35E+01
Control	APG-12/15a	Not Sampled	3.09E+00	1.41E+00
	APG-12/15b	Not Sampled	1.83E+00	9.96E-01
	APG-12/15c	Not Sampled	Not Sampled	1.11E+00

Total Lumbriculus Tissue PCB Concentrations

Figure 4.4: Macroinvertebrate Receptor Tissue PCB Concentrations

Appendix C: Biological Laboratory Reports

C-1 July 2014

Aquatec Biological Sciences

February 14, 2012

Ryan S. McCarthy
Project Manager, Environment
AECOM
2 Technology Park Drive
Westford, MA 01886-3140
E-mail address: ryan.mccarthy@aecom.com

Dear Mr. McCarthy:

Attached please find an electronic copy (PDF) of the report on oligochaete, *Lumbriculus variegatus*, 28-day sediment bioaccumulation tests conducted on sediments collected from the APG site (tests completed during January-February 2012).

If you have any questions regarding the reported results, please contact Dr. Phil Downey or me.

Sincerely,

John Williams

Manager, Environmental Toxicology

This report consists of the following numbered pages:

SDG: 12957

Pages 1 - 44

Aquatec Biological Sciences, Inc.

Tel: (802) 860 - 1638 Fax: (802) 658 - 3189

273 Commerce Street Williston, VT 05495

SDG: **Project:**

12957

12008

Tel: (978) 905-2312 Fax: (603) 622-8480

E-Mail: ryan.mcCarthy@aecom.com

AECOM 1000 Elm Street 8th Floor Manchester, NH 03101

Toxicity Detail Report

Project: APG Lumbriculus

Oligochaete, L. variegatus, Bioaccumulation Test for sediments 100.3

Species: Lumbriculus variegatus Reference: EPA/600/R-99/064 SOP: TOX3-006

Sample ID: 41930 : Control Species: Lumbriculus variegatus

Rep.	Initial Jar Weight (g)	Final tissue and Jar Weight (g)	Total Replicate Weight (g)
Α	30.26	35.71	5.4
В	30.22	35.00	4.8
С	30.8	36.09	5.3

Sample ID: 41931 : APG-05/09-100411 Species: Lumbriculus variegatus

Rep.	Initial Jar Weight (g)	Final tissue and Jar Weight (g)	Total Replicate Weight (g)
Α	31.18	35.51	4.3
В	30.71	35.18	4.5
С	30.16	34.67	4.5

Sample ID: 41932 : APG-01-03-100411 Species: Lumbriculus variegatus

Rep.	Initial Jar Weight (g)	Final tissue and Jar Weight (g)	Total Replicate Weight (g)
Α	30.07	33.54	3.5
В	30.27	34.37	4.1
С	30.34	33.99	3.7

Sample ID: 41933 : APG-06/24-100411 Species: Lumbriculus variegatus

Rep.	Initial Jar Weight (g)	Final tissue and Jar Weight (g)	Total Replicate Weight (g)
Α	30.38	34.59	4.2
В	30.93	34.79	3.9
С	30.45	34.23	3.8

Project: APG Lumbriculus		Toxici	ty Detail F	Report	
100.3 Oligochae	te. L.	variegatu	s, Bioaccumu	lation Test fo	or sediments
Species: Lumbriculus variegatus		Reference:			SOP: TOX3-006
Sample ID: 41934 : AP	G-10/1	4-100411		Species:	Lumbriculus variegatus
	Rep.	Initial Jar Weight (g)	Final tissue and Jar Weight (g)	Total Replicate Weight (g)	
	Α	30.6	35.58	5.0	_
	В	30.66	35.55	4.9	
	С	30.85	37.41	6.6	
Sample ID: 41935 : AP	G-11/1	3-100411		Species:	Lumbriculus variegatus
	Rep.	Initial Jar Weight (g)	Final tissue and Jar Weight (g)	Total Replicate Weight (g)	
	Α	29.99	34.07	4.1	_
	В	30.28	34.79	4.5	
	C	30.54	35.07	4.5	_
Sample ID: 41936 : AP	G-16/1	7-100411		Species:	Lumbriculus variegatus
	Rep.	Initial Jar Weight (g)	Final tissue and Jar Weight (g)	Total Replicate Weight (g)	
	Α	30.1	38.28	8.2	_
	В	30.01	37.11	7.1	•
	С	30.28	37.95	7.7	_
Sample ID: 41937 : AP	G-20/2	1-100411		Species:	Lumbriculus variegatus
	Rep.	Initial Jar Weight (g)	Final tissue and Jar Weight (g)	Total Replicate Weight (g)	
	A	30.66	37.66	7.0	-
	В	31	38.63	7.6	

			-
	Initial Jar	Final tissue and	Total Replicate
Rep.	Weight (g)	Jar Weight (g)	Weight (g)
Α	30.66	37.66	7.0
В	31	38.63	7.6
С	30.67	37 10	6.4

Sample ID: 41938	: APG-18/19-100411	Species:	Lumbriculus variegatus

Rep.	Initial Jar Weight (g)	Final tissue and Jar Weight (g)	Total Replicate Weight (g)
Α	30.52	38.88	8.4
В	31.26	36.77	5.5
С	30.23	35.90	5.7

Sample ID: 41939 : APG-04/07-100411 Species: Lumbriculus variegatus

Rep.	Initial Jar Weight (g)	Final tissue and Jar Weight (g)	Total Replicate Weight (g)
<u>тюр.</u> А	30.35	37.39	
			7.0
В	30.32	35.74	5.4
C	31.15	38.15	7.0

Toxicity Detail Report

Project: APG Lumbriculus

100.3 Oligochaete, L. variegatus, Bioaccumulation Test for sediments

30.44

C

Species: Lumbriculus variegatus Reference: EPA/600/R-99/064 SOP: TOX3-006

Sample ID: 41940 : APG-12/15-100511 Species: Lumbriculus variegatus

 Rep.
 Initial Jar Weight (g)
 Final tissue and Jar Weight (g)
 Total Replicate Weight (g)

 A
 30.04
 40.94
 10.9

 B
 30.54
 38.98
 8.4

38.92

8.5

Sample ID: 41941 : APG-22/23-100511 Species: Lumbriculus variegatus

Initial Jar Final tissue and **Total Replicate** Rep. Weight (g) Jar Weight (g) Weight (g) Α 30.6 35.36 4.8 В 30.56 34.17 3.6 С 31.11 35.56 4.5

Sample ID: 41942 : APG-02/08-100511 Species: Lumbriculus variegatus

Initial Jar Final tissue and **Total Replicate** Weight (g) Rep Jar Weight (g) Weight (g) Α 30.7 35.68 5.0 В 31.07 35.28 4.2 С 30.16 34.08 3.9

AECOM

8th Floor

Aquatec Biological Sciences, Inc.

273 Commerce Street
Williston, VT 05495
Tel: (802) 860 - 1638 Fax: (802) 658 - 3189

SDG: Project: 12957 12008

Tel: (978) 905-2312 Fax: (603) 622-8480

with (000) 022 0100

E-Mail: ryan.mcCarthy@aecom.com

Samples Received

Manchester, NH 03101

1000 Elm Street

Number	Sample Name	Date Time and Collected	Туре
41930	Control	12/20/2011	Sediment
41931	APG-05/09-100411	10/4/2011 9:20:00 AM	Sediment
41932	APG-01-03-100411	10/4/2011 10:25:00 AM	Sediment
41933	APG-06/24-100411	10/4/2011 10:30:00 AM	Sediment
41934	APG-10/14-100411	10/4/2011 12:40:00 PM	Sediment
41935	APG-11/13-100411	10/4/2011 2:35:00 PM	Sediment
41936	APG-16/17-100411	10/4/2011 2:50:00 PM	Sediment
41937	APG-20/21-100411	10/4/2011 3:40:00 PM	Sediment
41938	APG-18/19-100411	10/4/2011 4:10:00 PM	Sediment
41939	APG-04/07-100411	10/4/2011 4:45:00 PM	Sediment
41940	APG-12/15 - 100511	10/5/2011 9:15:00 AM	Sediment
41941	APG-22/23-100511	10/5/2011 9:20:00 AM	Sediment
41942	APG-02/08-100511	10/5/2011 10:30:00 AM	Sediment

Submitted By:

Page 1 of 1

Monday, February 06, 2012

Aquatec Biological Sciences, Inc.

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 1638 Fax: (802) 658 - 3189

Quality Assurance Report

SDG:

12957

Project:

12008

AECOM 1000 Elm Street

ooo Eiii Street

8th Floor

Manchester, NH 03101

Tel: (978) 905-2312

Fax: (603) 622-8480

E-Mail: ryan.mcCarthy@aecom.com

Project:

APG Lumbriculus

Narrative

Thirteen coolers containing sediments for the Aberdeen Proving Ground (APG) were shipped by AECOM on Monday December 19, 2011 for delivery to Aquatec Biological Sciences, Inc. (Aquatec). One set of five coolers was delivered to Aquatec on December 20, 2011. A sixth cooler from this shipment was mis-delivered by FedEx to TestAmerica and was retrieved by Aquatec also on December 20th. The second FEDEX shipment of the remaining seven coolers was received on December 21, 2011.

Control sediment, Sample 41930, consisting of natural sediment collected from the Lamoille River and Lake Arrowhead, Vermont) was included in the test array.

All sediments were prepared by press-sieving through a 0.5-mm mesh screen test to remove vegetative material and indigenous organisms. Three replicates of homogenized sediment from each sample were loaded into test containers on January 4, 2012 (Samples 41930, 41931, 41932, 41933, 41934, 41935, and 41936) and January 5, 2012 (Samples 41930, 41937, 41938, 41939, 41940, 41941, and 41942). For the control sediment (Sample 41930) two replicates were set up on January 4 while the third replicate was set up on January 5, 2012. According to a December 15, 2011 AECOM e-mail, the 13th sample, APG-DUP-100511, was not to be tested.

On January 5, 2012 Lumbriculus variegatus were added to each test chamber for the first six samples and on January 6, 2012 organisms were added to the second six samples. Three replicate subsamples of unexposed organisms (Time 0, pre-exposure), laboratory number 42054, were archived frozen on January 6, 2012.

The bioaccumulation tests ended on Day 28 (February 2, 2012 for the first group and February 3, 2012 for the second group). Organisms were removed from sediments using a combination of 0.5-mm and 0.25 mm stainless steel sieves. Organisms were depurated for a nominal 6-to-8 hour period in water and transferred to pre-weighed glass vials.

Organisms were stored frozen until they were shipped via Federal Express on February 7, 2012 to University of New Hampshire (UNH), Durham, New Hampshire. On February 8, Scott Greenwood confirmed all samples were received intact.

When hardness measurements of overlying water were made on Day 0, overlying water form samples 41937 (APG-20/21-100411) and 41941 (APG-22/23-100511) were unreadable due to

SDG:

12957

Project:

12008

AECOM

1000 Elm Street

8th Floor

Manchester, NH 03101

Tel: (978) 905-2312 **Fax:** (603) 622-8480

E-Mail: ryan.mcCarthy@aecom.com

Project: APG Lumbriculus

immediate color change during the titration. Overlying hardness measurements for these samples were repeated on Day 1 however the interference was still present. On Day 13, hardness was again measured on these samples. Sample 41937 still had interference, however sample 41941 had a normal hardness reading. Near the end of the test (Day 26) the overlying water hardness for these samples was within the normal range.

SDG:

12957

Project:

12008

AECOM

1000 Elm Street

8th Floor

Manchester, NH 03101

Tel: (978) 905-2312

Fax: (603) 622-8480

E-Mail: ryan.mcCarthy@aecom.com

Project:

APG Lumbriculus

TOXICITY TEST REPORT CERTIFICATION

The results reported relate only to the the samples submitted as received.

I certify under penalty of law that this document and all ATTACHMENTs were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on: $\frac{2/14/12}{(Date)}$

(Authorized signature)

John Williams
Toxicity Laboratory Manager
Aquatec Biological Sciences, Inc.

Supportive Documentation

Chain-Of-Custody

Toxicity Test Methods

100.3 - Oligochaete, L. variegatus, Bioaccumulation Test for sediments

Standard Reference Toxicant Control Charts

Chain-Of-Custody

Client/Project Name:					CHAIL	OFC	CHAIN OF CUSTODY RECORD	RECOF	ē							-	
_			Proje	Project Location:						1 5	1			-	Page	ge of	
AECOM/ESTCP- Canal Creek	Creek		Aber	Aberdeen Proving Ground - Edgewood, MD	und - Edge	wood, ∧	Ð		-	1	Alidiysis Kequired	adnire ednire		Container Type:		į	
Project Number:			Field	Field Logbook No.:										A - Amber Glass	V - VOA Glass O - Other	OA 1ther	
00133180			_							(tu				G - Clear Glass	lass		
Sampler/Affiliation: M. Russell, D. Smith, N. Pinsker / AECOM	Pinsker / AEC	Ď.	Chair	Chain of Custody Tape Nos.:	Nos.:				(+				səte.		[65:		
Signature:			Send	Send Results/Report to:			TAT.		tuar			ətno	ıdəi				
Mense	N.		John.B	John.Bleiler@aecom.com			per terms		mtsa			re Co	nəvn	SD-Sediment	=		
Field Sample No./Identification	Date	Time	COMP	Sample Container (Size/Mat'l)	· (Size/Mat'l)	Matrix	Preserv.	Field Filtered	PCB (tr	PCB (be	oinegaC	utsioN Ho	iorseN	sioaccu Lab ID.	D.	Remarks	ks
APG-05/09-100411	10/4/2011	0920	×	2 gallon/P		SD	4°C	no	╁	-	+	╁	+	1 ×			
APG-01/03-100411	10/4/2011	1025	×	2 gallon/P		gs	4°C	ou	-	-		-		×			
APG-06/24-100411	10/4/2011	1030	×	2 gallon/P		SD	4°C	no				-		×			
APG-10/14-100411	10/4/2011	1240	×	2 gallon/P		SD	4°C	no				_		×			
APG-11/13-100411	10/4/2011	1435	×	2 gallon/P		SS	4°C	no						×			
APG-16/17-100411	10/4/2011	1450	×	2 gallon/P		S	4°C	010				_		×	_		
APG-20/21-100411	10/4/2011	1540	×	2 gallon/P		SD	4°C	ou				-		×			
APG-18/19-100411	10/4/2011	1610	×	2 gallon/P		SD	4°C	ou			_			×			
APG-04/07-100411	10/4/2011	1645	×	2 gallon/P	1	SD	4°C	ou						×	_		
APG-12/15-100511	10/5/2011	0915	×	2 gallon/P		SD	4°C	no				_		×			
APG-22/23-100511	10/5/2011	0920	×	2 gallon/P		SD	4°C	ou						×			
APG-02/08-100511	10/5/2011	1030	×	2 gallon/P		SD	4°C	no			-	_		×			
APG-DUP-100511	10/5/2011	1030	×	2 gallon/P		SD	4°C	ou			-	_		×			
Relinquished by: (Print Name)/(Affiliation)	Vame)/(Affiliation)		Date:	Date: ('0/6/1'	Received	by: (Print	Received by: (Print Name)/(Affiliation)	11/079 (1)	11/60	Anal	ytical L	aborat	ory (De	Analytical Laboratory (Destination):			
Naviet.			j		£	₽-			, ,	Y PEC	T MO:	echni	cal Se	AECOM Technical Services			,
Solinguiched hum	make 1		ime:	3	Signature:	3	Larenth	Distinct 10-30 c/o David A. Pillard, Ph.D., CSE	<u>نځ</u>	- - - - - - - - - - - - - - - - - - -	David,	A. Piii	ard, Ph	.D., CSE			
Netitiquistied by: (Print Name,	/(Affiliation)		Date:	17/06/21	Received	by: (Print	Received by: (Print Name)/(Affiliation)	-		430	3 W. L	aporte	4303 W. Laporte Avenue	e e			
Signature:			Time:	10,30	Signature:	äi				(970	. 416-	s, CO	Fort Collins, CO 80521 (970) 416-0916 Ext 310	c			
Relinquished by: (Print Name)/(Affillation)	(Affiliation)		Date:		Received	by: (Print	Received by: (Print Name)/(Affiliation)	le le			2						•
Signature:			Time:		Signature:	äi		į			S UPS	ample FedE	Sample Shipped Via: UPS (FedEx) Courier	d Via: rier Othe	Tem	Temp Blank Yes	(C)
Samp	le Af	(0)	Ā	Sample APG-DUP-100	11/5	3.	1511 was not 100 cooler #1	40	, ~ ~	9	000	2 3	600 for #1-	66-	000		
-					ن با ر	<u> </u>	3	7 4	7/	, ≤.		. Y	# W	5	ر ا ا		
Sam	ole AF	· -9	0 (1)	Sample APG-DUP-100511	511 was 1	2 - L	was received	يمراع	D) e) e	2012 # 4 2015	# 3	74	, (موجود ما	8,8°C of 7	
	_			J	1 1/0	1	<u> </u>			¹ ²	100	76	一つ井るつの	0	9.00		

CHANN OF CLUSTOPY RECORD CHANN OF CLUSTOPY RECORD																
STCP-Canal Creek	A⊒COM				C	HAIN OF	: CUSTOD	Y RECO	æ							
The Canal Creak	Client/Project Name:		<u>a.</u>	roject	Location:			Ė	_		Inalys	s Regu	ired		Container Type:	
Time Tried Logbook No.:	AECOM/ESTCP- Canal (Creek	٨	berdee	en Proving Ground - I	Edgewoo	J, MD				-		F	-	P - Plastic	V - V
Fig. 2011 10/4/2011 1309 X 2 pallon/P 10/4/2011 1309	Project Number:		IL.	ield Log	gbook No.:				T						A - Amber Glass	O Other
Comparison Chain of Custody Tape Nos: TAT: TAT: End Results/Report to: TAT: TAT: End Results/Report to: TAT: TAT: End Results/Report to: TAT: TAT	60133180										(10				G - Clear Glass	
1. O Smith, N. Pinsker / AECOM	Sampler/Affiliation:		0	hain of	f Custody Tape Nos.:				1		ıəw	. 1		sər	Matrix Codes:	
Send Results/Report to: TAT: TA	M. Russell, D. Smith, N. I	Pinsker / AECOM														
Per Term Part Per Term Pe	Signature:	1	Š	end Re	sults/Report to:		TAT:		1							
1004/2011 1004/2011 1005 X 2 gallon/P SD 4°C no No No No No No No No	Meller	hill	š	ohn.Bleite	ег@аесот.сот		per terms									
10/4/2011 10/5 × 2 gallon/P SD 4°C no	Field Sample No./Identification	/-			Sample Container (Size/Ma			Field Filtered							L	Remarks
1-100411 10/4/2011 1025 X 2gallon/P SD 4°C no	APG-05/09-100411	_		×	2 gallon/P	SD	4°C	ou			H			×		
1-100411 10/4/2011 1340 X 2 gallon/P SD 4°C no no los los los los los los los los los lo	APG-01/03-100411			×	2 gallon/P	SD	4°C	ou			-		-	×		
100411 10/4/2011 1240 X 2 gallon/P SD 4°C no N X X X X X X X X X	APG-06/24-100411	_		×	2 gallon/P	SD	4°C	ou		-	-			×		
10/4/2011 1435 X 2gallon/P SD 4°C no	APG-10/14-100411	_		×	2 gallon/P	SD	4°C	ou			-			×		
10/4/2011 1450 X 2 gallon/P SD 4°C no N X -100411 10/4/2011 1540 X 2 gallon/P SD 4°C no N X -100411 10/4/2011 1610 X 2 gallon/P SD 4°C no N X -100411 10/4/2011 1615 X 2 gallon/P SD 4°C no N X -100411 10/5/2011 10930 X 2 gallon/P SD 4°C no N X -100511 10/5/2011 10930 X 2 gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2 gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2 gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2 gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2 gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2 gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2 gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2 gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2 gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2 gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2 gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2 gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2 gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2 gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2 gallon/P N N N N N N N N N	APG-11/13-100411	_		×	2 gallon/P	SD	4°C	ou		-			-	×		
10/4/2011 1540 X 2gallon/P SD 4°C no N X N N -100411 10/4/2011 1610 X 2gallon/P SD 4°C no N X -100411 10/4/2011 1610 X 2gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2gallon/P SD 4°C no N X -100511 10/5/2011 1030 X 2gallon/P SD 4°C no N X -100511 10/5/2011 10/5/2	APG-16/17-100411			×	2 gallon/P	SD	4°C	잍			_			×		
10/4/2011 1610 X 2 gallon/P SD 4°C no	APG-20/21-100411			×	2 gailon/P	SD	4°C	ou			-			×		
10/4/2011 1645 X 2 gallon/P SD 4°C no N X	APG-18/19-100411			×	2 gallon/P	SD	4°C	ou			-		\vdash	×		
2-100511 10/5/2011 0915 X 2 gallon/P SD 4°C no	APG-04/07-100411	_	\dashv	×	2 gallon/P	SD	4°C	2						×		
3-100511 10/5/2011 1030 X 2 gallon/P 5D 4°C no X X 10/5/2011 1030 X 2 gallon/P 5D 4°C no X	APG-12/15-100511	_		×	2 gallon/P	SD	4°C	ou		-			_	×		
10/5/2011 1030 X 2 gallon/P SD 4°C no No X Sgallon/P Signature: 10/5/2011 1030 X Signature: 10/6 No No No No No No No N	APG-22/23-100511			×	2 gallon/P	SD	4°C	OL.	_	 	_		-	×		
100511 10/5/2011 1030 X 2 gallon/P SD 4°C no Analytical Laboratory (Destination) Received by: (Print Name)/Affiliation) 12/20 11 AECOM Technical Services Itime: 6 @ 0° Signature: 12/20 11 AECOM Technical Services Itime: 12/20 11 AECOM Technical Services Itime: 12/20 11 AECOM Technical Services Itime: Iti	APG-02/08-100511			×	2 gallon/P	SD	4°C	ou			<u> </u>			×		
ed by: (Print Name)/(Affiliation) Bate: 10/6/11 Received by: (Print Name)/(Affiliation) To bate: 16/6/11 Bate: 16/6/11 Received by: (Print Name)/(Affiliation) To bate: 12/2/11 Bate: 16/6/11 Received by: (Print Name)/(Affiliation) To bate: 12/2/11 Received by: (Print Name)/(Affiliation) Sample Shipped Via: Temp Blank Time: Signature: Signature: Time: Signature: Time: Signature: Signature: Time: Signature: Signature	APG-DUP-100511	011		×	2 gallon/P	SD	4°C	ou			_	_		×		
Time: 16 00 Signature: 11 0 Date: Received by: (Print Name)/Affiliation) Sample Shipped Via: Time: Signature: Signature: Dignature: Signature: Signatu	Relinquished by: (Print Name))/(Affiliation)	Δ			eived by:	Print Name]/(Affili		100	ĺ	nalytic	al Labo	ratory	(Dest	ination):	
Ed by: (Print Name)/(Affiliation) Date: Received by: (Print Name)/(Affiliation) Ed by: (Print Name)/(Affiliation) Signature: Sign	mensie kussen/te	10/01				190F(世紀	- دلہ	- c		ECO	M Tec	nnical	Serv	ices	
For Collins, CO 80521 Signature: Philipped by: (Print Name)/(Affiliation) Signature: S	Signature:	1		me:		ature:		_\	50 5	3	o Da	id A. I	Pillard	Ph.	o, CSE	
ed by: (Pinnt Name)/(Affiliation) Date: Received by: (Pinnt Name)/(Affiliation) Sample Shipped Via: Time: Signature: Signature: Signature: A Signature:	<u> </u>	/(Affiliation)		ate:	Red	eived by:		,	킃	4 // /	303 V	V. Lap	orte A	enne/		
ed by (Print Name)/(Affiliation) Sample Shipped Via: Temp Blank UPS (FedEx) Courier Other Yes			r—	me:	V V	ature:		(S	14.	50(8	970) 4 970) 4	16-09) (EXT)	310		
Time: Signature: Signature: Temp Blank Yes	Relinquished by: (Print Name),	/(Affiliation)	<u> </u>	ate:	Rece	eived by:	Print Name]/(Affilia									
	Signature:		<u>=</u>	me:	Sign	ature:				<u> </u>	⁵	Sam	al Sh	pped	Via:	S
								-		٩	-	/ 			1	
								,								

7 (b)

A≣COM					Į Ž	2 2 2	THAIN OF OTHER VACABLE	10010	ا ا			ļ						
		-					USIODI	HECO	S							Dago	-	
Client/Project Name:		Pro	ject L	Project Location:						Ā	alvsis	Analysis Required	Pa	-	Container Lines	רמצת	10	
AECOM/ES I CP- Canal Creek	reek	Å	erdeel	Aberdeen Proving Ground - Edgewood, MD	and - Edge	wood, N	1D			\vdash	_		\vdash		P. Distric	3		
Project Number:		<u>F</u>	ld Log	Field Logbook No.:										· - '	· coatte	AUV - V		
60133180		4												4 (A - Amber Glass	O · Other		
Sampler/Affiliation:		ç	in of	Chain of Custody Tape Nos.:	Nos.:					uəu			62	<u> </u>	G - Clear Glass			
M. Russell, D. Smith, N. Pinsker / AECOM	insker / AECOM	_										tuə	ten		San Cones			
Signature:	The state of the s	Sen	d Res Beiler	Send Results/Report to: John.Bleiler@aecom.com			TAT:					tnoD e	verteb		w-water SD-Sediment			
Field Sample No./Identification	Date	сомь	8ARD	Sample Container (Size/Mat'l)	Size/Mat't)	Matrix		Field Filtered	CB	CB (tre CB (bel	oinsg1	nutsio	H niorosin	iuooso 81	so-solid Lab ID.	-	Samon	
APG-05/09-100411	10/4/2011 0920	×		2 gallon/P	-	SD	4°C	00	+-		-		Iq M	!B >			Neiligi No	
APG-01/03-100411	10/4/2011 1025	×		2 gallon/P		S	4°C	2 2	+	+		+	+	× ;				
APG-06/24-100411		×		2 gallon/P		SD	4°C	2 2	+	+		\dagger	-	< >				
APG-10/14-100411	_	×		2 gallon/P		SD	4°C	on On	H	\vdash		╁	-	< ×				
APG-11/13-100411	\rightarrow	\dashv		2 gallon/P		SD	4°C	on On	\vdash	-		-		< ×				
APG-16/17-100411		┪		2 gallon/P		SD	4°C	2	-	-		-	igg	- ×		-		
APG-20/21-100411	4	×		2 gallon/P		SD	4°C	no	_	<u> </u>		-	\perp	- ×				
APG-18/19-100411	4	×		2 gallon/P		SD	4°C	ou		_		-		×				
APG-04/0/-100411	4	× :		2 gallon/P	1	SD	4°C	no					-	×				
	10/5/2011 0915	× ;		2 gallon/P		as	4°C	ou l	-					×				
	4-	< >	Ï	2 gallon/P	+	os l	4°C	ou ou		-		\dashv		×				
T	\bot	< ×	Ì	2 gallon/P		3 8	4°C	DE	+	+		+		×				
West Manual	-	٠ <u>}</u>	7	z gailOil/ r			4.0	의	-			\dashv		×				
Michele Russett / 4600M	Amiliation)	Date:		11/9/01	Received (by: (Print P	Received by: (Print Name)/(Affiliation)		12/20/21		lytical	Labor	Analytical Laboratory (Destination):	estinat	ou):			
Signature:		Time:	äi	000	Signature:	are: \$5	12 25 25 25 25 25 25 25 25 25 25 25 25 25	Section 1	6,10			Techr A Pil	AECOM Technical Services	ervice	u u			
Relinquished by: (Print Name)/(Affiliation)	Affiliation)	Date:	<u></u>	11/118/11	Received	by: (Print N	Received by: (Print Name)/(Affiliation)	(u	-	430	3 W.	Lapor	4303 W. Laporte Avenue	Tue	J J			
Signature:		Time:	-	8	Signature.					For	t Colli	ns, CC	Fort Collins, CO 80521					
Relinquished by: (Print Name)/(Affiliation)	Affiliation)	Date:			Received	by: (Print N	Received by: (Print Name)/(Affiliation)	- E		<u>}</u>	J) 410	9 50-1	(970) 416-0916 EXt. 310	2				
Signature:		Time:	. :		Signature							Sampl	=	ed Via:		Temp Blank	nk	
					alguarnia alguarnia				100	S - S	S >	(X) (X) (X) (X)	1 -	Courier Other	other of		Yes	(N)
										3	>	#			ار ارد			
									Ð,	ر مي مي	* -	· +	- `) ;) (, 0			
									(ord for	5	<u>۔</u> ک	+ ₩	~) ()	J			
									} [<u> </u>	`\	47	,	Ť.	J	,		
								<i>-</i> (<u> </u>	, , \	ケーサ	<u>о</u>	05	ن ۱۔	<u>~</u>		
) ·	<u> </u>	7 -	中、	1/0	6	00		-		
									で で こ こ こ こ こ こ こ に こ に こ に こ に こ に こ に	ত ন	} ¶ ≽	j 6	, ×	4.	ري			
				•				_	いっちゃ	$\frac{\circ}{\mathfrak{D}}$	7							

							Page 1 of 3
			Agu	Aquatec E	Siolo of Cus	Biological Sciences In-of-Custody Record	273 Commerce Street Williston, VT 05495 TEL. (802) 860-1638 FAX. (802),658-3189
COMPANY INFORMATION		COMPA	NY'S PRO.	COMPANY'S PROJECT INFORMATION	AATION	SHIPPING INFORMATION	VOLUME/CONTAINER TYPE/ PRESERVATIVE
Name: Aquatec Biological Sciences, Inc.	1	Project Name:	ame: AEC	AECOM APG		Carrier: <u>Fed Ex Ground</u>	Frozen
Address: 2/3 Commerce Street			- 1				
1 .==		Project Number: Sampler Name(s	<i>∴</i>	12008 PCD, JW, KD, KI	J, KK, SR, JG	Shipping Number: <u>258892815004077</u>	Amber Glass
Telephone: (802) 860 - 1638 Facsimile:						Date Shipped: 2/7/12	
Contact Name: Mr. John Williams		Client Code:		AECOM/McCarthy		Hand Delivered:Yes _X_No	40 mL
SAMPLE IDENTIFICATION	COLLI	COLLECTION DATE TIME	GRAB	COMPOSITE	MATRIX	ANALYSIS/REMARKS	NUMBER OF CONTAINERS
42041 Control REP A	2/2/12			×	Tissue	Per Ryan McCarthy (AECOM)	
42041 Control REP B	2/2/12	16:10		X	Tissue	Per Ryan McCarthy (AECOM)	
42041 Control REP C	2/3/12			×	Tissue	Per Ryan McCarthy (AECOM)	7-
42042 APG-05/09-100411 REP A	2/2/12	17:00		×	Tissue	Per Ryan McCarthy (AECOM)	
42 孙 2 APG-05/09-100411 REP B	2/2/12	17:50		×	Tissue	Per Ryan McCarthy (AECOM)	
42042 APG-05/09-100411 REP C	2/2/12	17:35		×	Tissue	Per Ryan McCarthy (AECOM)	
42043 APG-01-03-100411 REP A	2/2/12	17:10		×	Tissue	Per Ryan McCarthy (AECOM)	
42043 APG-01-03-100411 REP B	2/2/12	17:25		×	Tissue	Per Ryan McCarthy (AECOM)	7
42043 APG-01-03-100411 REP C	2/2/12	17:30		×	Tissue	Per Ryan McCarthy (AECOM)	_
42044 APG-06/24-100411 REP A	2/2/12	17:20		×	Tissue	Per Ryan McCarthy (AECOM)	
42044 APG-06/24-100411 REP B	2/2/12	18:00		×	Tissue	Per Ryan McCarthy (AECOM)	_
42044 APG-06/24-100411 REP C	2/2/12	18:10		×	Tissue	Per Ryan McCarthy (AECOM)	
42045 APG-10/14-100411 REP A	2/2/12	18:10		×	Tissue	Per Ryan McCarthy (AECOM)	_
42045 APG-10/14-100411 REP B	2/2/12	18:15		×	Tissue	Per Ryan McCarthy (AECOM)	
42045 APG-10/14-100411 REP C	2/2/12	18:10		×	Tissue	Per Ryan McCarthy (AECOM)	
Kelinquished by: (signature)	DATE 2/1/2	TIME	Received by: (signatu	yy: (signature)		NOTES TO Analytical Laboratory: Each or that specific replicate. Collection time is the templated	Laboratory: Each composite consists of recovered organisms from Collection time is the time organism cleaning & depuration was
Relinquished by: (Signature)			Received by: (signat	y: (signature)		Temperature (°C) on delivery:	
Relinquished by: (signature)	DATE	TIME	Received b	Received by: (signature)			
	!	!		January Sin 1			

273 Commerce Street	Williston, VT 05495 TEL: (802) 860-1638 FAX: (802) 658:3189	VOLUME/CONTAINER TYPE/ PRESERVATIVE	Frozen		Amber Glass				NUMBER OF CONTAINERS		-	_	_				-	7-		_			-		NOTES TO Analytical Laboratory: Each composite consists of recovered organisms from that specific replicate. Collection time is the time organism cleaning & depuration was completed.		
	ec biological Sciences hain-of-Custody Record	SHIPPING INFORMATION	Carrier: <u>Fed Ex Ground</u>	Shinning Number: 258802845004077	7 10 10 10 10 10 10 10 10 10 10 10 10 10	Date Shipped: <u>2/7/12</u>		Hand Delivered: Yes X No	ANALYSIS/REMARKS	Per Ryan McCarthy (AECOM)	Per Ryan McCarthy (AECOM)	Per Ryan McCarthy (AECOM)	Per Ryan McCarthy (AECOM)	Per Ryan McCarthy (AECOM)	Per Ryan McCarthy (AECOM)	Per Ryan McCarthy (AECOM)	Per Ryan McCarthy (AECOM)	Per Ryan McCarthy (AECOM)	Per Ryan McCarthy (AECOM)	Per Ryan McCarthy (AECOM)	NOTES TO Analytical Laboratory: Each that specific replicate. Collection time is the completed	Temperature (°C) on delivery:					
	of-Cust	ATION			1 1			1	MATRIX	Tissue	Tissue	Tissue	Tissue	Tissue	Tissue	Tissue	Tissue	Tissue	Tissue	Tissue	Tissue	Tissue	Tissue	Tissue			
	Chain-	ECT INFORMATION	OM APG	12008	Sampler Name(s): PCD, JW, KD, KK, SR, JG		:	/McCarthy	COMPOSITE	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	Received by: (signature)	Received by: (signature)	Received by: (signature)
	Aquau	COMPANY'S PROJECT	me: <u>AECOM AI</u>	-	ame(s): <u>PC</u>		1	Cilent Code: AECOM/McCarthy	GRAB																Received b	Received b	Received b
		COMPAI	Project Name:	Project Number	ampler Na			Client Cod	COLLECTION DATE TIME	18:20	18:25	18:25	18:20	18:30	18:40	14:15	14:40	15:25	14:30	14:50	15:10	15:00	15:30	16:00	TIME	TIME	TIME
			i		. s			<u>-</u>	COLLI	2/2/12	2/2/12	2/2/12	2/2/12	2/2/12	2/2/12	2/3/12	2/3/12	2/3/12	2/3/12	2/3/12	2/3/12	2/3/12	2/3/12	2/3/12	DATE	DATE	DATE
である。 ・ 対象のでは、 ・ は、 ・ は、 、 ま、 、 ま、 、 ま、 、 ま、 、 ま、 、 ま、 、 ま 、 、 ま 、 ま 、 、 ま 、 、 ま 、 、 ま 、 、 ま 、		COMPANY INFORMATION	Name: Aquatec Biological Sciences, Inc.	Address: 2/3 Commerce Street	City/State/Zip: Williston, VT 05495	Telephone: (802) 860 - 1638	- 1	Contact Name: Ivir. John Williams	SAMPLE IDENTIFICATION	42046 APG-11/13-100411 REP A	42046 APG-11/13-100411 REP B	42046 APG-11/13-100411 REP C	42047 APG-16/17-100411 REP A	4.2047 APG-16/17-100411 REP B	42047 APG-16/17-100411 REP C	42048 APG-20/21-100411 REP A	42048 APG-20/21-100411 REP B	42048 APG-20/21-100411 REP C	42049 APG-18/19-100411 REP A	42049 APG-18/19-100411 REP B	42049 APG-18/19-100411 REP C	42050 APG-04/07-100411 REP A	42050 APG-04/07-100411 REP B	42050 APG-04/07-100411 REP C	Relinguished by: (signature)	Relinquished by (signature)	Relinquished by: (signature)

273.Commerce Street Williston, VT 05495 TEL: (802) 860-1638 FAX: (802) 658-3189	VOLUME/CONTAINER TYPE/ PRESERVATIVE		<u> </u> 			<u> </u> 		NUMBER OF CONTAINERS															sts of recovered organisms from steaning & depuration was		
	NOLI	Frozen	<u> </u> -	Amber Glass		 	40 mL	NOM	_	-	_	1	1	_	_		-						oosite consis e organism c		
		正	<i>I</i> .	<u>6</u> 9			40												_	_			Each comp e is the time		
Aquatec Biological Sciences Chain-of-Custody Record	SHIPPING INFORMATION	Carrier: <u>Fed Ex Ground</u>	Shipping Number: 258892815004077	Totological and	Date Shipped: <u>2/7/12</u>	Hand Delivered:Yes _X_No	Yes	ANALYSIS/REMARKS	Per Ryan McCarthy (AECOM)	Per Ryan McCarthy (AECOM)	Per Ryan McCarthy (AECOM)	Per Ryan McCarthy (AECOM)		THE STATE OF COUNTY OF	NOTES TO Analytical Laboratory: Each composite consists of recovered organisms from that specific replicate. Collection time is the time organism cleaning & depuration was completed.	Temperature (°C) on delivery:									
i olo g of-Cust	ATION			1 1				MATRIX	Tissue	Tissue	Tissue	Tissue													
atec E Chain-	ECT INFORMATION	AECOM APG	908	Sampler Name(s): PCD, JW, KD, KK, SR, JG			Client Code: AECOM/McCarthy	COMPOSITE	×	×	×	×	×	×	×	×	×	×	×	×		(cm. tousie)	neceived by: (<i>signature</i>)	Received by: (signature)	Received by: (signature)
Aqu	COMPANY'S PROJECT		nber: 12008	ame(s): PC			ode: <u>AECC</u>	GRAB															neceived	Received by	Received by
	COMPAI	Project Name:	Project Number:	sampler Na			Client C	COLLECTION DATE TIME	15:40	16:05	16:20	16:30	17:08	17:14	16:12	16:25	16:45	12:20	12:20	12:20		TIME	16:00	TIME	TIME
								COLLI	2/3/12	2/3/12	2/3/12	2/3/12	2/3/12	2/3/12	2/3/12	2/3/12	2/3/12	1/6/12	1/6/12	1/6/12		חארת	2/1/2	DÀTE	DATE
	COMPANY INFORMATION	Name: Aquatec Biological Sciences, Inc.		City/State/Zip: Williston, VT 05495	Telephone: (802) 860 - 1638	Facsimile:	Contact Name: Mr. John Williams	SAMPLE IDENTIFICATION	42051 APG-12/15-100511 REP A	42051 APG-12/15-100511 REP B	42051 APG-12/15-100511 REP C	42062 APG-22/23-100511 REP A	42फेट APG-22/23-100511 REP B	42052 APG-22/23-100511 REP C	42053 APG-02/08-100511 REP A	42053 APG-02/08-100511 REP B	42053 APG-02/08-100511 REP C	42054 Time 0 REP A	42054 Time 0 REP B	42054 Time 0 REP C		Relinguished hw. (signatura)	Complete Oy. (aguarda)	Relipquished by: (signature)	Relinquished by: (signature)

Shipment Receipt Address Information

Ship to:

Ship from:

Scott Greenwood

Mr. John Williams

Hampshire

University of New Aquatec Biological Sciences

35 COLOVOS RD 338 GREGG HALL

273 Commerce Street

DURHAM, NH 03824-3521

Williston, VT 05495

US 603 862-4334 US 8028601638

Shipping Information

Tracking number: 258892815004077

Ship date: 02/07/2012

Estimated shipping charges: 10.73

Package Information

Service type: FedEx Ground Package type: Your Packaging Number of packages: 1

Total weight: 40LBS Declared value: 0.00USD

Special Services:

Pickup/Drop-off: Drop off package at FedEx location

Billing Information

Bill transportation to: MyAccount-917

Your reference: P.O. no.: Invoice no.: Department no.:

Thank you for shipping online with Fedex ShipManager at fedex.com.

Please Note

FIGEX will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEX Service Guide apply, Your right to recover from FedEX for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or speciagia is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss, Maximum for large large of the second of the

Toxicity Test Methods

Method: 100.3

Oligochaete, L. variegatus, Bioaccumulation Test for sediments

Lumbriculus variegatus Associated Protocol: EPA/600/R-99/064

APG Lumbriculus Project: 12008

1 Test type: Whole-sediment toxicity test with renewal of overlying water

2 Temperature: 23 +/- 1C

3 Light quality: Wide-spectrum fluorescent lights

4 Illuminance: About 100 to 1000lux

5 Photoperiod: 16L:8D

6 Test chamber: 9L (2.5 gal) aquaria with water overflow port resulting in nominal 5.5

L volume

7 Sediment volume: 1L or more depending on total organic carbon (TOC)

8 Overlying water volume: Approximately 4L

Renewal of overlying water: 2 volume additions/day; intermittent (e.g. 1 volume addition every

12h)

10 Age of organisms: Adults

11 No. of organisms/chamber: Ratio of TOC in sediment to organism dry weight should be no less

than 50:1 Minimum of 1g/replicate. Preferably 5g/replicate.

SOP: TOX3-006

12 No. of replicates/treatment: 3

13 Feeding: None

14 Aeration: Continuous light aeration

15 Overlying water: Reconstituted Water

16 Test chamber cleaning: Clean water delivery ports as needed

17 Overlying water quality: Hardness, alkalinity, conductivity, pH, and ammonia at the beginning

and end of a test. Temperature and dissolved oxygen daily.

18 Test duration: 28 days

19 Endpoints: Bioaccumulation

20 Test acceptability: Performance-based criteria (Table 13.4 EPA/600/R-99/064)

100.3 - Oligochaete, L. variegatus, Bioaccumulation Test for sediments

Project: 12008, AECOM APG Calculation of *Lumbriculus variegatus* loading

						:1	6,,,,,				
				Replicate	Replicate	Maximum			Theoretical	Actual	
	Sample #	Ol tagilo	10C	Sediment	g TOC	Lv loading	Lv loading	Water	Maximum	Wet Loading (g)	
	Sample #	Cileir	Portion	Loading (g)	Available	(g ary wt.)	(g wet wt.)	ractor	Loading (g)	per Kep.	
Note:	Note: TOC portion is based on	based on average	of the two st	average of the two stations (historic data)	c data)				Control	1.3-1.75	
	41931	APG-05/09	0.126	1284	162.17	3.24	24.95	1.33	33.18	7.1-7.6	
	41932	APG-01-03	0.145	1425	206.91	4.14	31.83	1.33	42.34	7.3-7.7	
	41933	APG-06/24	0.088	1195	105.16	2.10	16.18	1.33	21.52	7.1-7.6	
	41934	APG-10/14	0.209	1093	228.16	4.56	35.10	1.33	46.69	7.0-7.2	
	41935	APG-11/13	0.269	1256	337.49	6.75	51.92	1.33	90.69	7.1-7.4	
	41936	APG-16/17	No data	1229	no data	no data	no data	no data	no data	7.2-7.5	Extra g
	41937	APG-20/21	0.158	1390	219.69	4.39	33.80	1.33	44.95	7.2-7.7	Rep A 2.0-2.5
	41938	APG-18/19	no data	1460	no data	no data	no data	no data	no data	7.1-7.7	2.0-2.5
	41939	APG-04/07	0.092	1300	119.28	2.39	18.35	1.33	24.41	7.3-7.3	2.0-2.5
	41940	APG-12/15	0.21	1320	279.91	5.60	43.06	1.33	57.27	7.4-7.8	2.0-2.5
_	41941	APG-22/23	0.21	1370	289.76	5.80	44.58	1.33	59.29	7.5-7.8	2.0-2.5
	41942	APG-02/08	0.14	1300	183.82	3.68	28.28	1.33	37.61	7.3-7.6	2.0-2.5

Organic content, data from the 12/10 sampling event. Samples are a homogenate of two locations, for instance APG-05/09 would be APG-05 and APG-9 below.

Sample
APG-5
APG-1
APG-6
APG-10
APG-11
APG-16
APG-20
APG18
APG-4
APG-12rep
APG-22
APG-2

Aquatec Biological Sciences, Inc. 273 Commerce Street Williston, VT 05495

APG Lumbriculus Project:

100.3

Oligochaete, L. variegatus, Bioaccumulation Test for sediments

Species: Lumbriculus variegatus Reference: EPA/600/R-99/064 SOP: TOX3-006

Lumbriculus variegatus Initial Biomass (g)

Sample		1		1	1	I
Number	Sample Identification	Rep A	Rep B	Rep C	Initials / Date	
41930	Control	7.38	7.75	7.34	J 1/5/12	
41931	APG-05/09-100411	7.1	7.31	7.55	16:2	5
41932	APG-01-03-100411	7.26	7.72	7.51		
41933	APG-06/24-100411	7.20	7.65	7./0		
41934	APG-10/14-100411	7.15	7.03	7.18	-	
41935	APG-11/13-100411	7.20	7.13.70	7.42	K-00	
41936	APG-16/17-100411	7.25	7.25	7.54		
41937	APG-20/21-100411	7.39*		7.18	J1/6/12	
41938	APG-18/19-100411	7.68*		7.14		11:58
41939	APG-04/07-100411	7.34*	7.260	7.32		
41940	APG-12/15-100511	7.82*	7.63	7.40		
41941	APG-22/23-100511	7.77*	7.52	7.6		
41942	APG-02/08-100511	7.62*	7.37	7.32		

41930 Rep C will be szerred ON 1/6/12 1

+ 1.889 = 7.249 IN Over 12:10 * Added 2-2,5 g additional worms to A Reps due to organisms being available. (Nominal 2-10 g 7072)

Aquatec Biological Sciences, Inc. Reviewed by: _____Date: ____2/6

SDG:

12957

12008 Project:

Aquatec Biological Sciences, Inc.

273 Commerce Street Williston, VT 05495

Tel: (802) 860 - 1638 Fax: (802) 658 - 3189

AECOM

1000 Elm Street 8th Floor Manchester, NH 03101

Tel: (978) 905-2312 Fax: (603) 622-8480 E-Mail: ryan.mcCarthy@aecom.com

BIOACCUMULATION TEST END

100.3 Oligochaete, L. variegatus, Bioaccumulation Test for sediments

Depuration Start Date: 2/2/12, End Date: 2/2/12.

			⋖	٥		ပ	∢	: a	a	ပ	Į⊲	:	മ	C) 	⋖	m	اد	۱ د	⋖	۵	ן נ	ပ
•		sample # / ID: Rep	42041 / Control - T	42041 / Control - T	42044 / Control T	420417 CONITOI - 1	42042 / APG-05/09-100411 - T	42042 / APG-05/09-100411 T	42042 (450 05120 - 1111111111111111111111111111111111	42042 / APG-05/09-100411 - T	42043 / APG-01-03-100411 - T	10040 / 450 62 62 62 62	42043 / APG-01-03-100411 - T	42043 / APG-01-03-100411 - T	1 111001 00 00 W 1 NOON	42044 / APG-06/24-100411 - T	42044 / APG-06/24-100411 - T	42044 / APG-06/24-100411 - T	1 - 11+001-+3/00 0 3/11/2000	42045 / APG-10/14-100411 - T	42045 / APG-10/14-100411 T	7007 1 100 000	42045 / APG-10/14-100411 - T
Ğ	Jar + Cap + Organisms (g)	2011	2 th	2500	2000	56.07	35.5			34.61	33.54	27.00	15.70	33.99	07,00	34.57	34.79	2473		35,58	3555		37.41
	Jar + Cap Weight (g)		30.66	30.22	20.00	0000	31.18	J 30.7 %	20100	9 - 00	30.07	20,07	30.47	30.34	0000	0000	50.93	30.45	2,70	50.60	JB0,67		30.85
.i	Post Depuration Rinse		7	7	\	1	7	\	7		/	,	>	/			7	7		>	/	2	,
(Time/leit)	(Tille/Itill.) End	10,00	13:63	16:10	14.00	17.00	00.7	17:50	17:35		01:11	17.75		17:30	17:20		18:00	01:81	2:2	9/10/2	18:15	01:81	7
Deputation (Time (Int)	Start	77.64.60	700:0	07:300	06:45	000 0000	0 100	0800 62	0830		0830 SN	260		0950 SK	508:50		07:50	0-06.50	10.60 ¢		08:50	10.63	
	Rep	A	C	Ω .	O,	⋖	<u>'</u>	m	O	⊲		<u>ക</u>	C	7	<u>V</u>	В		2	4	+-	-	<u> </u>	
Sediment	Sample # / ID:	41930 / Control	41930 / Control	-	Q 41930 / Control 2/3/22	41931 / APG-05/09-100411	41031 / ABG 05/00 100444	1.1501. Ar G-03/08-100411	41931 / APG-05/09-100411	41932 / APG-01-03-100411	44090 / APA CO LO CO LA LA COLONIA	41932 / APG-01-03-100411	41932 / APG-01-03-100411	44000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	41933 / APG-06/24-100411	41933 / APG-06/24-100411	41933 / APG-06/24-100444	114001-47000	41934 / APG-10/14-100411	41934 / APG-10/14-100411		41934 / APG-10/14-100411	

@ 41930 A CURRECTED WT. WITH GO MOledon

Aquatec Biological Sciences, Inc.

Page 1 of 2

Project:

12008

12957

BIOACCUMULATION TEST END

100.3 Oligochaete, L. variegatus, Bioaccumulation Test for sediments Depuration Start Date: 2 / 12, End Date: 2 / 22 / 12.

				٥		മ	C	ر	<	<	a	ב	ار	כ	l
		Tissue	Sample # / ID: Rep	42046 / APG-11/13-100411 - T	70046 144 004 34004	44040 / AFG-11/13-100411 -	42046 / APG-11/13-100414 T	1 - 11+001-01/11-0 N//01-0-1	42047 / APG-16/17-100414 T	- 11+001-21/01-0 B// H 02:	42047 / APG-16/17-100411 _ T		42047 / APG-16/17-100411 T		i
		Jar + Cap + Organisms (g)		3401	24.70	27.17	7507	İ	2000	000	37/1	1 7	3705	5):, 6	
		yar + Cap Weight (g)	200	64.47	2000	00,00	T-30.54	H /	30.1 D		30.08	. 5	T30.288 3791		
	Post Dentiration	Rinse	\	7	1	>	_	1	<i>`</i>	,	<u> </u>		7		
	(Time/Init.)	End	EC. 01	3 :01	19:95	3	18:25	,	18:20	0.01	ري اي اي	,	12:45		
) 	Depuration (Time/Init.)	Start	1	1045 52	1135011		1285 SR	(10:45 0	1) "0" ::	70001		17017	•	
		Rep	⋖	:	മ	(ی	<	<	æ		C	7		
1 C	sediment	Sample # / ID:	41935 / APG-11/13-100411		41935 / APG-11/13-100411	41035 / ADC 41/42 400444	119901-01/119-100411	41936 / APG-16/17-100411		41936 / APG-16/17-100411		41936 / APG-16/17-100411			

42/12 18:555 Tissuesterin 40 al viels TRANSFERRED TO FREEZER

<u>|</u>

⋖

Time 0 (Lv)
Time 0 (Lv)
Time 0 (Lv)

 C^2 25

Aquatec Biological Sciences, Inc.
Reviewed by:

12957 12008

SDG: Project:

Page 2 of 2

Aquatec Biological Sciences, Inc.

273 Commerce Street Williston, VT 05495

Tel: (802) 860 - 1638 Fax: (802) 658 - 3189

AECOM

1000 Elm Street 8th Floor

Manchester, NH 03101

Tel: (978) 905-2312 Fax: (603) 622-8480 E-Mail: ryan.mcCarthy@aecom.com

BIOACCUMULATION TEST END

100.3 Oligochaete, L. variegatus, Bioaccumulation Test for sediments

ation (Time/Init.) Post Depuration Jar + Cap $\frac{2}{3}$ Jar + Cap 2	s, broaccumulation e	Depuration Start Date: 2 / 3 / 12, End Date: 2 / 3 / 12. Sediment Sediment Depuration (Time/Init.) Post Depuration Jar + Cap Jar	Ø		Ë
ation (Time/Init.) Post Depuration Jar + Cap	/3 //2, End Date: 2 / 3 //2. Depuration (Time/Init.) Post Depuration Jar + Cap	on Start Date: 2 /3	est tor sediment	- ' ' '	- 'ar + Car + -
nd Date: $\frac{2}{3}$ /12. stion (Time/Init.) Post Depuration	/3 //2, End Date: 2 / 3 //2. Depuration (Time/Init.) Post Depuration	on Start Date: 2 /3	umulation 16		Jar + Can
nd Date: 2 / 3 //. ation (Time/Init.)	/3 //2, End Date: 2 / 3 //2 Depuration (Time/Init.)	on Start Date: 2 /3	regatus, bioacc 2	l acitoriud	_
	/3 //2, Er	on Start Date: 2 /3	nd Date: 2 / 3 //	ation (Time/Init.)	`-

		⋖	ď		ا د	∢	മ	0		<	Å	اد	٠	∢	മ	ار	1	⋖	m	اد	د
	Sample # / ID: Rep	42048 / APG-20/21-100411 - T	42048 / APG-20/21-100411 - T	42048 / ABG-20/21-100411 T	42040 / ABC 49/40 400444 ±	12049 / Ar G-10/19-100411 - 1	42049 / APG-18/19-100411 - T	42049 / APG-18/19-100411 - T	420597 APG-04/07 100414 T	- +00 - 0 +0 0 0 0 0 0 0 0	42050 / APG-04/07-100411 - T	42050 / APG-04/07-100411 - T	42054 / ABC 42/45 400544 +	-	42051 / APG-12/15-100511 - T	42051 / APG-12/15-100511 - T	70000 0000 0000 0000	42032 / APG-22/23-100511 - T	42052 / APG-22/23-100511 - T	42052 / APG-22/23-100511 T	1 - 1 1 0001 -04/44) : / / 1001:
Jar + Cap + Organisms (a)		31.66	28.63	27/0	2000	000	36.7.1	35,90	27.20	J.C. 1 &	35.74	38.15	1004	- 0.01	38.48	39.92	1:00	35.CG	24.17	25.56) ; ; ;
Jar + Cap Weight (q)	0180	00.00	31.00	30.67	80 60	0000	51.70	30.23	30.35	0	30.32	31.15	20.04		50.57	30.44	27 65	0.00	80.56	31.11	- 1
Post Depuration Rinse		>	7	7	\		7	7	\		7	7)		7	7	\	>	7	_	
(Time/Init.) End	7.74	4-1-15	(4:40	15:25	14:30	14:00	000	01:51	15:00	16:00	10,00	16:00	15:40	10.0/	3	16:20	02.7/		17:08	17:14	
Depuration (Time/Init. Start End	01050	700	0770 SR	0745 SR	0655 44	6770 00		30 Sht.0	07:35 K	300	200.00	06:30 d	0820 sn	00 0580		0 0425 SK	A P 10:00		F (0:55	10:52 a	
Rep	Α	٥	٥	ပ	Α	В	C		A	В	C)	A	B	ر)	<u> </u>	B. C.	3 (3	
Sediment Sample # / ID:	41937 / APG-20/21-100411	41937 / APG-20/21-100411	71037 / ADO 000 1 200 1 1	A 1937 / APG-20/21-100411	# 41938 / APG-18/19-100411	41938 / APG-18/19-100411	41938 / APG-18/19-100411	41939 / ADG 04/07 400444	1,333 / 6-04/07-100411	41939 / APG-04/07-100411	41939 / APG-04/07-100411		41940 / APG-12/15-100511	41940 / APG-12/15-100511	41940 / APG-12/15-100511	777	41941 / APG-22/23-100511	41941 / APG-22/23-100511	41941 / APG 22/23 100E11	116001-62/22-0 12 (1161)	

Aquatec Biological Sciences, Inç. _ Date: _

Page 1 of 2

Project: SDG:

12008

12957

BIOACCUMULATION TEST END

100.3 Oligochaete, L. variegatus, Bioaccumulation Test for sediments

Depuration Start Date: 2/3//2, End Date: 2/3//2

		lissue		Ø 42053 / АРG-02/08-100511 - Т А	3 42053 / APG-02/08-100511 - T B	T	3 42053 / APG-02/08-100511 - T C	Time 0 (Lv) 1/2/ 2 629 A	9	Time 0 (Lv) F F B	7 Time 0 (Lv)		5	
		Organisms (g)		25.60	25 28	000	34.08	5.369		5.449	5.640		Cire of the Sare	Š
	10 t rc	-	30.70	100 A 44 150	31.0/20-51	7 7 2 6	30.16	J 30.689		30.51	130.27	0,1	C 5% C	
.].	Post Deniration	Rinse		۷	7		1	John Co	50.1	W311		\ - - ,	/3/2	Ĩ
	Time/Init.)	End	61. 11	16.16	16:25	24:11	(110)		7/15/15	(((())	1	; - ر	<i>(</i>)	•
	Depuration (Time/Init.)		01.60		09:50d	C 10:05 CT 1/2		0.6	くのすってある。	102 gay or	,	•		
:	Sediment	Sample # / ID: Rep	41942 / APG-02/08-100511 A		41842/APG-02/08-100511 B	41942 / APG-02/08-100511 C		ALL TISSUE SO. D. C.		Then Sterred to the zon				

Aquatec Biological Sciences, Inc. Reviewed by: $\frac{1}{\sqrt{16/\nu}}$

12957 12008

SDG: Project:

Page 2 of 2

C2**5**7

		Lumbriculus vari	12008 , AECOM APG legatus wet to dry weight	ratio	
Wet:dry weight	t ratio <i>Lumbriculus variega</i>	tus 01/06/12			
	Pan (g)	Pan + wet Lv	Pan + dry Lv	Org dry wt. (g)	Org wet wt. (g)
	2.27	3.27	2.40	0.13	11
Date:	1/6/2012	1/6/2012	1/7/2012		
Time:	12:10	12:10 (in oven)	12:05 (out of oven)		
Oven temperat Initials:	ure: JW Wet weight to dry we i	JW ight ratio.	JG 0.13		

Aquatic Research Organisms

DATA SHEET

1.	Organism History		
	Species	culos VARIEGATOS	-
	Source: Lab reared Hatchery reared_	Field collected	_
	Hatch date	Receipt date	
	Lot number 1000//LV	Strain	
	Brood origination 72	ochestor NY	
II.	Water Quality		
	Temperature <u> </u>	ppt D.O	_ppm
	pH 7.2 su Hardness	ppm Alkalinity	ppm
***			Received:
ш.	Culture Conditions		1-5-2012
	Freshwater Saltwater	OtherTerr	P= 10,5°C
	Freshwater Saltwater Recirculating Flow through	Static renewal	t= 6.9 20 = 14.2
	DIET: Flake food Phytoplan	kton Trout chow	Cond = 714
	Artemia Rotifers	YCT Other	Added
	Prophylactic treatments:		Sed Recon
	Comments:		water.
			JG
IV.	Shipping Information		1-6-1250
	Client: Apur TEch VT	# of Organisms ユロウナ タ	RAMS TEMP.=21.5°C
	Shipping Information Client: Aport Ech VI Carrier: FEX Biologist: Make Vi	Date shipped	pH = 7.9
	Biologist: Mark J	(xengral	

APG Lumbriculus Project:

Oligochaete, L. variegatus, Bioaccumulation Test for sediments 100.3 Species: Lumbriculus variegatus Reference: EPA/600/R-99/064 SOP: TOX3-006 CHEMISTRY DATA: Chemical analysis Date/Initials are noted on last page of Days 0 - 15 chemistry data sheets Sample Analysis 0 5 6 7 8 10 11 12 13 14 15 41930 7.9 pН 7.8 7.3 DO 7.9 8.8 8,0 8.1 8.9 8.0 Control 8,0 8.8 3.6 8.3 9.3 9.2 8.2 8,2 8,3 8.6 Cond. 346 367 3.4 36 374 41931 pΗ 7.8 7.9 7.6 8.1 9.1 8.2 DO 7.8 8.1 8.0 8.9 9.6 9.2 APG-05/09-8.4 9.3 8,6 9.5 8.5 8.5 90 100411 Cond. 397 407 8.6 398 41932 pН 7.5 7.8 7.7DO 7.7 7.8 APG-01-03-8.0 8,1 8.7 92 9.0 9.3 918284 8.3 9.2 79 8.6 2.0 904 8.5 100411 Cond. 384 39Z 41933 7.5 pΗ 7.9 79 8.1 9.5 8.3 DO 7.4 8.0 9.0 9.4 APG-06/24-8.1 96 8.5 8.Ce 9.7 9.5 8.4 8.5 8.8 100411 1389 Cond. 390 | 8.91 409 41934 pН 7.8 7.6 7.8 DO 7.8 8,2 8.1 8.60 APG-10/14-4.3 9-08.08.4 8.4 8.9 7.7 8.4 7-9 7.0 8.3 8,2 100411 Cond. 398 8.7 389 363 41935 pН 7.7 7.7 7.9 DO 8,1 8.0 8.9 9.4 APG-11/13-9.2 8-0 9-3 8.3 8.5 8.6 8.7 8.4 9.5 8.1 100411 396 9.14 Cond. 392 380 41936 Ha 7.7 7.7 7.6 DO 9.0 APG-16/17-8,0 7.9 8.3 7-6 8.4 7.8 3.4 8.3 8.0 8.5 8.7 7.2 7.8 7.8 100411 Cond. 393 2012 Date 1/12 1/13 1/14 1/15 1/10 1/10 1/18 1/19 1/20 Initials JG KK KK DRecalibrary D.D. NETER. Valves in condition are

> Aquatec Biological Sciences, Inc. Reviewed by: _ Date:

1/12/12

atter recelibration

SDG: Project:

re-meriored

12957

1200ዖ

Project: APG Lumbriculus

100.3 Oligochaete, L. variegatus, Bioaccumulation Test for sediments

Species: Lumbriculus variegatus Reference: EPA/600/R-99/064 SOP: TOX3-006

CHEMISTRY [DATA:		Chem	ical ar	alysis	Date/Ir	nitials a	re note	d on la	ast pag	e of Da	ys 16	- 31 ch	emistry	data s	neets	
Sample	Analysis	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
41930 Control	pH DO Cond.	8.1	8.7	8.8	8.5	8.6	7.5 8.2 367	8.1	8.4	8.8	8.9	8.5	7.9 8.4 370	9,2	9,3		
41931 APG-05/09- 100411	pH DO Cond.	7.8	9.1	8,9	8,5	8.4	7.8 8.3 411	8,2	8,4	8.9	9-0	୫.5	8,0 8,3 3 92	9.4			
41932 APG-01-03- 100411	pH DO Cond.	8.0	8.8	8.9	8.0	8,2	7.8 8.1 380	7.9	8,2	8,9	9.0	8,3	7.9 8.2 381	9,3			
41933 APG-06/24- 100411	pH DO Cond.	8.0	9.3	9.3	8.4	8.5	7.8 8.4 385	813	8.3	9,1	9.1	8.5	8.2 393	9:6			
41934 APG-10/14- 100411	pH DO Cond.	7.5	7.8	8.6	7.9	8.1	7.9 8.0 358	79	8.1	8,5	9.0	8.3	7.9 8.0 366	9.2			
41935 APG-11/13- 100411	pH DO Cond.	7.8	8.8	8.9	8.2	85	7.8 8.2 371	8,2	8.3	8.9	8.9	8, 4	7.9 8.2 373	9.6			
41936 APG-16/17- 100411	pH DO Cond.	7.4	6.8	7.9	7,5	7.7	7.7 7.6 377	7.5	7.8	8,4	3.6	8,2	7.8 7.7 374	٩١			
2012	Date Initials	1/21 7G	1/22 KR	1/23	1/24 JG	1/25 JG	1/26 JG	1/27 JG	1/28 IG	1/29 Ke	1/30 J	1/31 JG	aļi JG	2/2 KR	2/3 rec		

SDG:

Project: APG Lumbriculus

100.3 Oligochaete, L. variegatus, Bioaccumulation Test for sediments

Species: Lumbriculus variegatus Reference: EPA/600/R-99/064 SOP: TOX3-006

							·									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 0
HEMISTRY D	ATA:		Cher	nical a	nalysis	Date/i	nitials a	are note	ed on la	ast pag	e of Da	ays 0 -	15 che	mistry	data sl	heets	
Sample	Analysis	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
41937 APG-20/21- 100411	DO	7.8 7.9 456	8.1	8.5	9.2	8.9 418-	7.7 7.9 ->	8.9 8.5	8,4	8.3	8.8	<i>१.</i> 9	8.8	7.6 7.6 411	7.9	B.I	7.7
41938 APG-18/19- 100411	pH DO Cond.	7,9 8,0 421	8.1	8.6	9.2	8.9 400	7.8 7.8 ->	9-l 8.6	8.2	V.5	8.9	9,7	9.0	7.7 7.7 391	8,1	8.7	7.5
41939 APG-04/07- 100411		7.7 7.6 400	7,9	8.4	9.0	8.6 397	7-7 7-6	8.8 8.4	7.8	8,0	8,4	8.6	8.5	7.7 7.2 384	78	7.9	7,4
41940 APG-12/15- 100511	DO	7.7 7.5 427	7.7	8.6	8.4	7.9 418-	7.6 6.9	8.0 1.7	7.6	7,5	8.7	7.9	7.8	7.6e 6e.8 408	7.6	7.5	7,2
41941 APG-22/23- 100511	DO	7.6 7.6 381	7.9	8:4	8.9	8.7 377	7.7 7.8	9.3 8.9	8.2	8,4	8.3	9,1	9.4	7.7 7.9 374	8.4	B.6	7.8
41942 APG-02/08- 100511	DO	7.6 7.5 403	7.9	8.7	9.3	8.8 391	7.7 8.0 -> T	9.5 9.2	8,3	8,5	8,9	9.2	9.3	7.7 7.8 383	8.5	ئ،8	ଟ୍ଡି, ଠ
2012		1/6 JG	1/7 JG	1/8 KK	1/9 V	1/10 J	1/11	1/12 T	1/13 5G	1/14 3G	ilis Kr	ilice	1/17 J	ilis KK	1/19 JG	1/20	1/21 TG

1.0.s after recolibration. J 1/12/12

Project: **APG Lumbriculus**

Oligochaete, L. variegatus, Bioaccumulation Test for sediments 100.3

Species: Lumbriculus variegatus Reference: EPA/600/R-99/064 SOP: TOX3-006

		<u></u>															
IEMISTRY D	ATA:		Chen	nical ar	alysis	Date/Ir	itials a	re note	ed on la	st pag	e of Da	ays 16 -	- 31 ch	emistry	data s	sheets	
Sample	Analysis	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
41937	pН					7.7						7.8					
APG-20/21-	DO	8.3	8.2	7.5	8,0		75	8.0	8.4	8.7	8,2		8.9	8.8			
100411	Cond.					382					0,1	395	0.1	0.0			
41938	рН																
APG-18/19-	DO DO	8.4	Q A	71	70	7.7	1	77	0.7	0.0	0.4	7.8	0.0				
100411	Cond.	8.7	0-7	7.6	7.0	7. + 374	7.6	7.7	8.2	8.9	8.3	7.7 382	8.9	9.0			
								<u></u>			L	200		<u> </u>			<u> </u>
41939	рН					7.7						7.7					
APG-04/07- 100411	DO	8.0	8.2	7.4	79		7.6	7.8	8,4	8.6	8,3		9.0	9.1			
100411	Cond.			<u></u> _		371				<u> </u>		377					L
41940	рН					7.6						7.7					
APG-12/15-	DO	7.0	7.5	7.4	7.6		7.10	7.5	8,0	8.6	7.9	7.5	8.8	8.4			
100511	Cond.					394						390					
41941	рН											m 0					
APG-22/23-	DO	7.8	8.7	8,1	8.4	7.7 78.3	-1-	0 1	8.9	8,9	05	7.9	0.5	0 11			
100511	Cond.	7.0	0.1	2,1	0.1	367	7.7	8,1	0.7	0, 1	0.3	79 368	9.5	9.4			
						00 1					L	200					
41942	pН					7.7						7.8					
APG-02/08- 100511	DO Cond.	જે.9	8.6	78	8.2		7.9	8.1	8.8	9-1	8,4		9,3	9.3			
100011	CONG.					369						373					
2012	Date	1/22	1/23	1/24	1/25	1/26	1/27	1/28	1/29	1/30	1/31	2/1	2/2	2/3			
	Initials	RR	KI	JG	JG	JG	JG.	JG	icu			16	Kie	W.			•

Aquatec Biological Sciences, Inc.

Manchester, NH 03101

Aquatec Biological Sciences, Inc.

273 Commerce Street
Williston, VT 05495
Tel: (802) 860 - 1638 Fax: (802) 658 - 3189

SDG: Project:

12957 12008

AECOM Tel: (978) 905-2312 1000 Elm Street Fax: (603) 622-8480

1000 Elm Street **Fax:** (603) 622-8480 8th Floor

E-Mail: ryan.mcCarthy@aec

ALKALINITY AND HARDNESS

Samp	ole ID:	S	Sample Date:		Hardness: (mg/L)	
41930	Control	Lv Day 0	1/5/2012	52.0	86.0	_
41931	APG-05/09-100411	Lv Day 0	1/5/2012	64.0	98.0	
41932	APG-01-03-100411	Lv Day 0	1/5/2012	60.0	92.0	
41933	APG-06/24-100411	Lv Day 0	1/5/2012	56.0	86.0	
41934	APG-10/14-100411	Lv Day 0	1/5/2012	52.0	82.0	
41935	APG-11/13-100411	Lv Day 0	1/5/2012	52.0	84.0	
41936	APG-16/17-100411	Lv Day 0	1/5/2012	60.0	92.0	
41937	APG-20/21-100411	Lv Day 0	1/6/2012	76.0	INF	
41938	APG-18/19-100411	Lv Day 0	1/6/2012	68.0	100.0	
41939	APG-04/07-100411	Lv Day 0	1/6/2012	64.0	96.0	
41940	APG-12/15-100511	Lv Day 0	1/6/2012	72.0	100.0	
41941	APG-22/23-100511	Lv Day 0	1/6/2012	56.0	INF	
41942	APG-02/08-100511	Lv Day 0	1/6/2012	64.0	98.0	
41937	APG-20/21-100411	Lv Day 26	2/1/2012	52.0	104.0	
41938	APG-18/19-100411	Lv Day 26	2/1/2012	48.0	96.0	
41939	APG-04/07-100411	Lv Day 26	2/1/2012	52.0	94.0	
41940	APG-12/15-100511	Lv Day 26	2/1/2012	56.0	100.0	
41941	APG-22/23-100511	Lv Day 26	2/1/2012	48.0	88.0	
41942	APG-02/08-100511	Lv Day 26	2/1/2012	56.0	96.0	
41930	Control	Lv Day 27	2/1/2012	56.0	94.0	
41931	APG-05/09-100411	Lv Day 27	2/1/2012	56.0	100.0	
41932	APG-01-03-100411	Lv Day 27	2/1/2012	56.0	94.0	
41933	APG-06/24-100411	Lv Day 27	2/1/2012	64.0	102.0	
41934	APG-10/14-100411	Lv Day 27	2/1/2012	40.0	84.0	
41935	APG-11/13-100411	Lv Day 27	2/1/2012	56.0	92.0	
41936	APG-16/17-100411	Lv Day 27	2/1/2012	44.0	92.0	

.INF: Interference. The color endpoint was reached immediately.

Reviewed by: Date: 2/14/12

Aquatec Biological Sciences, Inc.

SDG:

12957

Project:

12008

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 1638 Fax: (802) 658 - 3189

AMMONIA ANALYSIS REPORT

Project:

APG Lumbriculus

100.3

Oligochaete, L. variegatus, Bioaccumulation Test for sediments

Species: Lumbriculus variegatus

Reference: EPA/600/R-99/064

SOP: TOX3-006

Sample	Pore Water (mg/L) 1/4/2012	Overlying Water (mg/L) 1/5/2012 2/1/2012
41930 - Control	1.7	0.1 0.2
41931 - APG-05/09-100411	2.5	0.3 0.1 BD
41932 - APG-01-03-100411	2.6	0.4 0.1 BD
41933 - APG-06/24-100411	1.9	0.2 0.1 BD
41934 - APG-10/14-100411	3.7	0.5 0.1 BD
41935 - APG-11/13-100411	2.2	0.3 0.1 BD
41936 - APG-16/17-100411	1.4	0.3 0.1 BD

BD- Indicates a concentration value below the reporting limit (<0.1).

Reviewed by: _____Date: _2/8

Aquatec Biological Sciences, Inc.

SDG:

12957 12008

Project:

273 Commerce Street Williston, VT 05495 Tel: (802) 860 - 1638 Fax: (802) 658 - 3189

AMMONIA ANALYSIS REPORT

Project:

APG Lumbriculus

100.3

Oligochaete, L. variegatus, Bioaccumulation Test for sediments

Species: Lumbriculus variegatus

Reference: EPA/600/R-99/064

SOP: TOX3-006

Sample	Pore Water (mg/L) 1/4/2012	Overly 1/6/2012	ing Water (mg/L) 2/1/2012
41937 - APG-20/21-100411	1.1	0.2	0.1 BD
41938 - APG-18/19-100411	2.2	0.3	0.1 BD
41939 - APG-04/07-100411	2.8	0.5	0.1 BD
41940 - APG-12/15-100511	2.7	0.6	0.2
41941 - APG-22/23-100511	2.2	0.5	0.1 BD
41942 - APG-02/08-100511	2.4	0.4	0.1 BD

BD- Indicates a concentration value below the reporting limit (<0.1).

Reviewed by: _____ Date:_

Wednesday, February 08, 2012

_		Cart 1	Cart 2	Cart 3	Cart 1	Cart 2	Cart 3
Group 1		Beg	ginning of	Day		End of Day	
Day 0	1/5/2012				23	22.8	23.9
Day 1	1/6/2012	23.6	23	23.4	23.2	22.9	22.9
Day 2	1/7/2012	23.5	23.3	23.5	23.1	22.8	23
Day 3	1/8/2012	23.5	23.3	23.5	23.4	23.3	23.4
Day 4	1/9/2012	23.6	23.3	23.7	23.4	23.2	23.7
Day 5	1/10/2012	23.8	23.2	23.6	23.6	23.3	23.8
Day 6	1/11/2012	23.8	23.3	23.9	23.3	23.1	23.6
Day 7	1/12/2012	23.7	23.1	23.8	23.7	23.4	23.9
Day 8	1/13/2012	23.6	23.3	23.7	23.7	23.3	23.8
Day 9	1/14/2012	23.6	23.2	23.8	23.5	23.1	23.6
Day 10	1/15/2012	22.9	22.9	23.3	23.2	23.1	23.6
Day 11	1/16/2012	23.1	23	23.5	23.3	23.1	23.6
Day 12	1/17/2012	23.8	23.2	24	23.7	23.3	23.8
Day 13	1/18/2012	23.3	23.1	23.4	23.4	23.1	23.3
Day 14	1/19/2012	23.4	22.8	23.1	23.5	23.1	23.3
Day 15	1/20/2012	23.9	23.3	23.5	23.3	23	23
Day 16	1/21/2012	23.4	23	23.2	23.3	22.9	23
Day 17	1/22/2012	23.4	23	23	23.4	23.1	23.1
Day 18	1/23/2012	23.8	23.3	23.4	23.6	23.2	23.2
Day 19	1/24/2012	23.6	23.4	23.3	23.6	23.3	23.2
Day 20	1/25/2012	23.6	23.2	23.1	23.6	23.4	23.2
Day 21	1/26/2012	23.6	23	23.2	23.2	22.8	22.9
Day 22	1/27/2012	23.6	23.2	23.3	24.1	23.3	23.5
Day 23	1/28/2012	23.1	23.1	23.2	22.8	22.7	23.3
Day 24	1/29/2012	22.9	23.1	23.1	22.8	23.1	23.1
Day 25	1/30/2012	23.1	23.2	23.3	23.1	23.2	23.1
Day 26	1/31/2012	23	23.1	23.1	23	23.1	23.3 23.1
Day 27	2/1/2012	23.1	23.1	23.3	23	23.1	23.1
Day 28	2/2/2012	22.8	23.1	23.1		20.1	4 3.4
Г	Minima (00)						

.0						
Minimum (°C):	22.8	22.8	23	22.8	22.7	22.9
Maximum (°C):	23.9	23.4	24	24.1	23.4	23.9
Average (°C):	23.4	23.1	23.4	23.4	23.1	22.4

_		Cart 4	Cart 5	Cart 6	Cart 4	Cart 5	Cart 6
Group 2		Beg	inning of I	Day		End of Day	
Day 0	1/6/2012				22.4	22.4	22.7
Day 1	1/7/2012	23	22.7	23.2	22.4	22.5	22.9
Day 2	1/8/2012	23.3	23	23.4	23	22.8	23.1
Day 3	1/9/2012	23	22.8	23	23	22.9	23.5
Day 4	1/10/2012	23	22.9	23.4	23	22.8	23.2
Day 5	1/11/2012	22.9	23.1	23.1	22.9	22.8	23.1
Day 6	1/12/2012	23	22.9	23.2	23.1	23	23.3
Day 7	1/13/2012	23.1	23	23.4	23.1	23.1	23.3
Day 8	1/14/2012	22.9	22.9	23.3	22.9	23	23.3
Day 9	1/15/2012	22.6	22.5	22.9	22.9	22.6	23.1
Day 10	1/16/2012	22.6	22.6	22.9	22.9	22.8	23.2
Day 11	1/17/2012	23	22.8	23.1	23	23	23.2
Day 12	1/18/2012	22.8	22.9	23.1	22.7	22.8	23.1
Day 13	1/19/2012	22.7	22.8	23.2	22.9	23.1	23.3
Day 14	1/20/2012	22.8	23	23	22.5	22.6	22.5
Day 15	1/21/2012	22.8	23	23.4	22.7	23	23.3
Day 16	1/22/2012	22.5	22.8	22.9	22.7	22.9	23
Day 17	1/23/2012	23	23.1	23.2	22.9	22.9	23
Day 18	1/24/2012	23.1	23.2	23.3	23	23.2	23.4
Day 19	1/25/2012	23	22.9	23.3	23	23.3	23.4
Day 20	1/26/2012	23	23.2	23.3	22.7	22.9	23.2
Day 21	1/27/2012	23	23.1	23.4	23	23.2	23.2
Day 22	1/28/2012	23.1	23.2	23.4	22.7	23	23.1
Day 23	1/29/2012	22.7	22.9	23.1	22.7	23	23.1
Day 24	1/30/2012	22.9	23	23.2	22.7	23	23.1
Day 25	1/31/2012	22.8	23.1	23.3	23	23.3	23.4
Day 26	2/1/2012	23.1	23.3	23.5	22.7	22.9	23.3
Day 27	2/2/2012	22.7	22.9	23.1	22.3	22.5	22.6
Day 28	2/3/2012	22.9	22.9	22.9			
	Minimum (°C):	22.5	22.5	22.9	22.3	22.4	22.5
	Maximum (°C):	23.3	23.3	23.5	23.1	23.3	23.5

Average (°C):

22.9

22.9

23.2

22.8

22.9

23.1

Aquatec Biological Sciences, Inc.

273 Commerce Street
Williston, VT 05495
Tel: (802) 860 - 1638 Fax: (802) 658 - 3189

AECOM 1000 Elm Street

Tel: (978) 905-2312 **Fax:** (603) 622-8480

8th Floor Manchester, NH 03101

E-Mail: ryan.mcCarthy@ae

10

Sample Number	Client Sample	SEDIMENT CHARACTERIZATION: ID Sediment Characteristics	Pore Water pH	Organisms Present	Initial /Date⊋ა
41930 Sieved 0/ N	Control N <u>0.5</u> Mesh size	wet, sandy sediment w/silt	6.1	None Seen	1/4
41931 Sieved:(Y)/ N	APG-05/09-100411	Cohesive fine sediment, heavy w/wegetation, some stones, and	6.4	Nune Seen	1/3
41932 Sieved: (7)/ N	APG-01-03-100411 NO.5 Mesh size	cohesive fine sediment, heavy w/vegetation, root mass, some		None	1/3 KK
41933 Sieved (Y)/ N	APG-06/24-100411 I <u>O.5</u> Mesh size	Cohesive, fine mud, he any. W/vegetation, voot mask	63	None Seen	1/3 JG
41934 Sieved: N	APG-10/14-100411	Soft sediment, heavy w/ Fibrous vegetative material	6.1	None Seen.	1/3
41935 Sievedi ()/ N	APG-11/13-100411 1_ <u>0.5</u> Mesh size	Soft cohesive Sediment repay injugetative material stories raise	6.4	None Seen	1/3 KK
41936 Sieved: (🗘 / N	APG-16/17-100411 I <u>0,5</u> Mesh size	soft, cohesive sediment, heavy w/vegetative material	7.1	None Seen	1/4
41937 Sieved ⊘ / N	APG-20/21-100411 I <u>0,5</u> Mesh size	fine; cohesive sediment, heavy ungestative material; some clay and stones	6.8	None Seen	1/4
41938 Sieved: () N	APG-18/19-100411 υ <u>0.5</u> Mesh size	Soft cohesive sediment, heavy vegetastive masterial, some alay	6.7	None Seen	1/4 JG
41939 Sieved (V) N	APG-04/07-100411 <u>0 ,</u>	Soft, cohesive sediment ul Vegetative material Some clay	6.5	Mare Seen,	1/4
41940 Sieved(Ŷ) N	APG-12/15-100511 <u>のら</u> Mesh size	regerative neveral, some clay	6.5	Tipulid (arva	14
41941 Sieved: (Ý) N	APG-22/23-100511 0.5 Mesh size	soft cohesive sediment us vegetative material.	6.3	None Seen	1/4 KK
41942 Sieved y/ N	APG-02/08-100511	soft, Cohesive sediment w/ regetative material	6.5	None Seen	1/4 1/4

SDG: Project: 12957

12008

Project:

APG Lumbriculus

Test ID:

63332

WEEK OF: 1/1/12

100.3

Oligochaete, L. variegatus, Bioaccumulation Test for sediments

Species: Lumbriculus variegatus Reference: EPA/600/R-99/064 SOP: TOX3-006

Species: Lumbriculus	vaneyatus 	Reference	. LFA/000/10				
ACTIVITY / DAY		DAILY S	EDIMENT	MONITOR	ING - CHE	CKLIST	
AM	SUNDAY	MONDAY	TUESDAY	WEDNESDAY		FRIDAY	SATURDAY
Temperature(s): Probe #(s): C2 & 1 - 8 \$LZ	Cart 4-3 Cart 5-2 ; Cart 6-1				TEST STATS 41930 1512 372 10:25	2310 20 E	23,5 23,0 23,3 22,7 23,5 23,2
Fill Reservoirs					36 /	/	✓
Delivery tubes in place					/	/	//
Check water Supply							
Empty Waste Buckets						•	
Aeration					·/	/	
Chems Collected / ok?						/	
NOON							
Splitter box(s) filling?				V	/		
Syringes filling?					/	<u> </u>	<i>'</i>
Flowing?							/
Drainage to Waste - ok?					✓	V	
PM							
SLZ Temperature(s): CRAT 4 - PASE 3 CRAT 5 - PASE 2 CRAT 6 - PROSE 1 Probe #(s): See Above					23.0 22.8 23.9	122,4	23.1 22.4 22.8 22.5 23.0 22.9
Fill Reservoirs				V		V	
Delivery tubes in place				1	V	1/2	/
Waste tubes in place				V	/	<i>y</i>	//
Check water Supply				/	1		1
Empty Waste Buckets					~		
Aeration				V	V		
Date:		<u>. </u>	<u></u>	1/4/12	1/5/12	1-6-12	1-7-12
Initials:					7/3G	JG/J	-JG
	SUNDAY	MONDAY	TUESDAY	WEDNESDA	Y THURSDAY	FRIDAY	SATURDAY
Corrective Actions / Comments (Initial/Time)				Sedments lozded (ALS Semples 123 41930 32 33 34 36 0LW +AIR 2000	38 (M) 39 K,51 40 41 42	Cort 4 turned up AM. JG TURNED down CORT I VERY Strybol 16:50	

Aquatec Biological Sciences, Inc.,
Reviewed by: ______ Date: ______ 26/2.

SDG: 12957

Project: 12008

Project: APG Lumbriculus

Test ID:

63332

WEEK OF: 1/8/17

100.3 Oligochaete, L. variegatus, Bioaccumulation Test for sediments

Species: Lumbriculus variegatus Reference: EPA/600/R-99/064 SOP: TOX3-006

	variegatus 	Reference	: EPA/600/R-	·99/064 ·		SOP: 10	X3-006
DAY		DAILY S	EDIMENT	MONITOR	ING - CHE	CKLIST	
	SUNDAY	MONDAY		WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
erature(s):	23.5 23.3 23.3 23.0 23.5 23.4	23.6 23.0 23.3 22.8 23.7 23.0	2/3 22.9	23.3 23.1	23.1 22.9	23,3 23,0	23.6 22.9 23.2 22.9 23.8 43.3
leservoirs	/	/	V	V	~		
s in place	/	/	/	\	/	✓	
er Supply			✓	✓	\	V	\checkmark
e Buckets	/	V	V	✓	/		
Aeration	✓	V	~				
cted / ok?			V	۷			
(s) filling?	1	/		/	1/		1/
es filling?			1/81	~			V
Flowing?			1/			V	1
aste - ok?	✓						V
, ,						¥	
erature(s):	723 700	127 229	23.3 22.8	23.1 22.8	23.7 23.1 23.4 23.0 23.9 23.3	23.7 23.1 23.3 23.1 23.8 23.3	23.5 22.9 23.1 23.0 23.6 23.3
bove	23,4 23.1	23.7 23.5	23.6 05.2				2.0
Reservoirs		V		V		✓	/
•		/		V		V	V
s in place		✓	/	V		V	✓
							V
e Buckets		V		✓			
Aeration		_		i		l /	ı /
Aeration	✓			<i>i</i> /			✓
Date:		1/9/12	1/10/12	1/11/12	1-12-12	1-13-12	1-14-12
	118112	1/9/12	1/10/12	1/11/12	1-12-12 56.65	1-13-12 JG	1-14-12 JG
Date:	118112	1/9/ ₍₂ MONDAY	1/10/12 TUESDAY	6			
	Reservoirs in place ter Supply the Buckets Aeration cted / ok? (s) filling? (s) filling? (s) filling? Flowing? Flowing? erature(s): bove Reservoirs tes in place tes in place ter Supply	erature(s): 23.5 23.3 23.3 23.0 23.5 23.4 Reservoirs s in place er Supply e Buckets Aeration cted / ok? (s) filling? pes filling? Flowing? aste - ok? Prature(s): 23.4 23.0 23.3 23.9 23.4 23.0	erature(s): 23.5 23.3 23.6 23.0 23.3 22.8 23.7 23.0 23.5 23.4 23.0 23.7 23.0 23.5 23.4 23.0 23.7 23.0 23.4 23.0 23.3 22.8 23.3 22.8 23.3 22.8 23.3 22.8 23.3 22.8 23.3 22.8 23.3 22.8 23.3 22.8 23.3 22.8 23.3 22.8 23.3 22.8 23.3 22.8 23.3 22.9 23.3 22.8 23.1 23.5 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1	erature(s): 23.5 23.3 23.6 23.0 23.4 23.0 23.8 23.4 23.0 23.5 23.9 23.7 23.0 23.6 23.6 23.8 23.4 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6	erature(s): 23.5 23.3 23.6 23.0 23.4 23.0 23.8 22.9 23.3 22.8 23.1 23.6 23.0 23.5 23.4 23.0 23.6 23.6 23.1 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6	erature(s): 23.5 23.3 23.6 23.0 23.4 23.0 23.8 22.9 23.1 23.0 23.3 23.0 23.3 23.1 23.0 23.3 23.1 23.0 23.5 23.4 23.0 23.5 23.4 23.0 23.6 23.2 23.4 23.0 23.6 23.1 23.8 23.1 23.9 23.1 23.8 23.2 23.6 23.6 23.6 23.6 23.6 23.6 23.6	prature(s): 23.5 23.3 23.6 23.0 23.4 23.0 23.8 22.9 23.1 23.0 23.6 23.1 23.0 23.6 23.1 23.0 23.5 23.4 23.0 23.7 23.0 23.8 23.4 23.9 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1

SDG:

Project:

12957 12008

Project: APG Lumbriculus Test ID: 63332 WEEK OF: 1/15/17 Oligochaete, L. variegatus, Bioaccumulation Test for sediments 100.3 Species: Lumbriculus variegatus Reference: EPA/600/R-99/064 SOP: TOX3-006 **DAILY SEDIMENT MONITORING - CHECKLIST** ACTIVITY / DAY **AM** SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY **FRIDAY SATURDAY** Temperature(s): 23.8 23.0 27.9 22,6 23.1 22,6 23.3 22.8 23.4 23,4 22,8 22,7 23.9 22.8 23.2 22.8 Probe #(s): 23.0 22,6 22.9 22.5 23,1 22.8 229 23.3 23.0 12.8 13,0 23,0 24.0 23.1 23.5 23.0 23.1 23,223,4 23.3 22.9 23.5 27.9 23.2 23,4 23,1 Fill Reservoirs Delivery tubes in place Check water Supply **Empty Waste Buckets** Aeration Chems Collected / ok? NOON Splitter box(s) filling? Syringes filling? Flowing? Drainage to Waste - ok? PM Temperature(s): 23.2 22.9 23.3 27.9 23.7 23.0 23.4 22.7 23,5 22,9 23.3 22.5 23,3 22,7 23.3 23.0 23.1 22.8 23.1 23.1 22.6 23.1 22.8 23.1 23.0 226 229 23,0 23.8 23,2 23.3 23.123,3 23,3 73.0 22.5 23,0 23,3 23.6 23.1 23.6 23.2 Probe #(s): See Above Fill Reservoirs Delivery tubes in place Waste tubes in place Check water Supply **Empty Waste Buckets** Aeration Date: 1/15/17 1/16/12 1/18/12 1-19-12 Initials: KK_ JG SUNDAY MONDAY **TUESDAY** WEDNESDAY THURSDAY **FRIDAY SATURDAY** Turned **Corrective Actions /** Cleared grow much Comments clogges serring to (Initial/Time) delivery Ly Caret 3 port to (Ch 6) 41936 B

Aquatec Biological Sciences, Inc. /
Reviewed by: Date: 2/6/12

SDG:

12957

Project: 12008

Project: APG Lumbriculus Test ID: WEEK OF: 1 /22/12 63332 Oligochaete, L. variegatus, Bioaccumulation Test for sediments 100.3 Species: Lumbriculus variegatus Reference: EPA/600/R-99/064 SOP: TOX3-006 **DAILY SEDIMENT MONITORING - CHECKLIST ACTIVITY / DAY AM** SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY **FRIDAY** SATURDAY Temperature(s): 23.4 225 23.8 23.0 23.6 23.1 23.6

23.0 23.6 23.0 23.6 23.0 23.1 23.1 Probe #(s): 23.0 22.8 23.3 23.1 23,4 23,2 22.9 23.0 23.2 23.2 23.1 23.1 23,2 23.2 23.4 23.2 23.3 23.3 23.1 23,3 23,2 23,3 23,3 23,4 23,2 23,4 23,0 22,9 Fill Reservoirs Delivery tubes in place Check water Supply **Empty Waste Buckets** Aeration Chems Collected / ok? NOON Splitter box(s) filling? Syringes filling? Flowing? Drainage to Waste - ok? PM 23.6 22.9 23.6 23.0 23.6 23.0 23.2 22.7 Temperature(s): 23.4 22.7 24:1 23.0 22.8 22.7 23.7 22.9 23.3 23.2 23.4 23,3 22.8 23.1 22.9 22.9 23.3 23.2 22.7 23,0 23.2 23.0 23.2 23,4 23.3 23,4 22.9 23.2 23.5 23.2 23.0 23.1 23.1 23.0 Probe #(s): See Above Fill Reservoirs Delivery tubes in place Waste tubes in place Check water Supply **Empty Waste Buckets** Aeration Date: 1/22/12 -24-12 -25-12 1-26-12 1-27-12 -28-12 Initials: Ru J0 JG TG SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY **FRIDAY** SATURDAY Corrective Actions / 41931 Turned Comments Seem to be down (Initial/Time) teur Temp scang organisms tor cert Epperent. J

SDG:

12957

Project: 12008

Project: APG

APG Lumbriculus

Test ID:

63332

WEEK OF: 1 /29/12

100.3 Oligochaete, L. variegatus, Bioaccumulation Test for sediments

Species: Lumbriculus variegatus Reference: •EPA/600/R-99/064

SOP: TOX3-006

ACTIVITY / DAY		DAILY S	SEDIMENT	MONITOR	RING - CH	ECKLIST	
AM	SUNDAY	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY
Temperature(s):	22.9 22.7	23.1 22.9	23,0 22,8	23.1 23.1	22.8 22.7	22.9	
Probe #(s):	23.1 22.9	23.2 25.0	23.1 23.1	23,1 23,3	23.1 22.9	22.9	
	23.1 23.1	23.3 23.2	23,1 23,3	23,3 23,5	23.1 23.1	22.9	
Fill Reservoirs	/		1				
Delivery tubes in place	· /		V		1		
Check water Supply					/		
Empty Waste Buckets	/	/			/	~	
Aeration	/ ,	V		✓.	_	/	
Chems Collected / ok?	/				√	V	
NOON						<u> </u>	
Splitter box(s) filling?	/		V	./	1/		
Syringes filling?	✓	V	V	V	/		
Flowing?	✓			/	V		
Drainage to Waste - ok?	\			/	V		
PM							<u> </u>
Temperature(s):	22.8 22.7	23.1 22.7	23.0 23.0	23,0 22.7	22.3		
	23.1 230		23.1 23.3		22,5		
Probe #(s): See Above	23.1 23.1	23.3 23.1	23.1 23.4	23.2 23.3	27.6		
Fill Reservoirs			- V				
Delivery tubes in place	1						
Waste tubes in place	/	V	1				
Check water Supply		/	V.				
Empty Waste Buckets		<i>J</i> ,	V				
Aeration	/			1/			
Date:	1/29/12	1/30/12	1-31-12	2-1-12	2/2/12	2/3/12	
Initials:	KK		JG	JG/T	KK JG	70112	
	SUNDAY	MONDAY	TUESDAY	WEDNESDAY		FRIDAY	SATURDAY
Corrective Actions /					41930 ->	Samples	
Comments					41936	41937-9	
(Initial/Time)					TEST END	41942	
					0630 > 1215	+ 41930	
					follower by	Rop C	
					i \ "	enbed ~	
					המוצונקאם	10:30 Roller	m
		!			J	of bepure	hw

SDG: Project: 12957 12008

Standard Reference Toxicant Control Charts

Reference Toxicant Control Chart Lumbriculus variegatus in Potassium chloride (mg/L)

		Organism	1	-			
Test Number	Test Date	Age (Days)	96-Hr. LC50	Mean LC50	Lower Limit	Upper Limit	Organism Source
1	08/11/00	Adult	707.107	707.11			
2	08/14/00	Adult	707.107	707.11	707 44	707.44	Aquatic Research Organisn
3	08/14/00				707.11	707.11	Aquatic Research Organism
		Adult	707.107	707.11	707.11	707.11	Aquatic Research Organism
4	08/15/00	Adult	707.107	707.11	707.11	707.11	Aquatic Research Organism
5	08/15/00	Adult	707.107	707.11	707.11	707.11	Aquatic Research Organism
6	10/19/01	Adult	890.899	737.74	587.67	887.80	Aquatic Research Organism
7	10/30/01	Adult	1000.000	775.20	534.23	1016.18	Aquatic Research Organism
8	11/01/01	Adult	890.899	789.67	552.04	1027.29	Aquatic Research Organism
9	08/24/02	Adult	1122.460	826.64	512.59	1140.70	Aquatic Research Organism
10	01/01/03	Adult	820.335	826.01	529.89	1122.13	Aquatic Research Organism
11	05/02/03	Adult	734.867	817.73	531.47	1103.98	Aquatic Research Organism
12	10/21/04	Adult	574.349	797.45	490.47	1104.42	
13	10/23/04	Adult	720.123	791.50	494.48	1088.52	Aquatic Research Organism
14	11/22/06	Adult	707.107	785.47	496.56		Aquatic Research Organism
15	11/07/09	Adult	812.250			1074.38	Aquatic Research Organism
16				787.25	508.51	1066.00	Aquatic Research Organism
	12/03/09	Adult	707.107	782.25	509.99	1054.51	Aquatic Research Organism
17	10/06/10	Adult	758.000	780.82	516.94	1044.70	Aquatic Research Organism
18	01/05/12	Adult	707.000	776.72	518.37	1035.07	Aquatic Research Organism
19							
20							

AECOM Environment

4303 West LaPorte Avenue, Fort Collins, Colorado, 80521 T 970.416.0916 F 970.490.2963 www.aecom.com

December 5, 2011

Ryan McCarthy AECOM Environment 250 Apollo Drive Chelmsford, MA 01824

Subject: Report of Whole-Sediment Bioaccumulation Test

Dear Mr. McCarthy:

Attached is a copy of the report for the whole-sediment bioaccumulation tests using *Lumbriculus variegatus* conducted from July 19 to August 17, 2011 and July 26 to August 23, 2011. These tests were conducted with sediment samples collected on December 2 and 3, 2010. Please do not hesitate to contact one of us if you have any questions.

Sincerely,

Christina Needham

Data Analyst

christina.needham@aecom.com

Rami B. Naddy, Ph.D.

Study Director / Environmental Toxicologist

rami.naddy@aecom.com

Attachment:

60147216-445-(002-007, 008-012)

Report of a Whole Sediment Bioaccumulation Test using Lumbriculus variegatus

For

AECOM Environment Chelmsford, MA, USA

Prepared by
AECOM Technical Services, Inc.
Fort Collins Environmental Toxicology Lab
December 2011

60147216-445-(002-012)

Report of a Whole-Sediment Bioaccumulation Test using Lumbriculus variegatus

Project IDs: 60147216-445-(002-007, 008-012)

July – August 2011

Sponsor and Laboratory Information

	AECOM Environment
Sponsor	250 Apollo Drive
	Chelmsford, MA 01824
Project Officer	Ryan McCarthy (603) 263-2147
	AECOM Environment
	Fort Collins Environmental Toxicology Laboratory
Tooting Equility	4303 West LaPorte Ave.
Testing Facility	Fort Collins, CO 80521
	Fax: (970) 490-2963
	State of Florida NELAP Laboratory ID: E87972
Study Director	Rami B. Naddy, Ph.D. (970) 416-0916 email: rami.naddy@aecom.com
Report Author	Christina Needham (970) 416-0916 email: christina.needham@aecom.com

Test Information

Test	Bioaccumulation from whole sediment					
Basis	USEPA (2000) and ASTM (2009)					
Test Dates and Time	July 19, 2011 - August 16 and 17, 201					
	July 26, 2011 - August 23 and 24, 201	<u> </u>				
Test Length	~28 days					
Species	Lumbriculus variegatus					
Test Material	Whole sediments					
•	Sample ID	AECOM Laboratory ID				
	APG-05/09	24809				
	APG-04/07	24815				
	APG-22/23	24808				
Sediment ID	APG-15/21	24813				
	APG-06/24	24812				
	APG-02/08	24816				
	APG-11/13	24810				
	APG-14/10	24814				
	APG-12/20	24811				
	APG-01/03	24817				
Control Sediment	3% Organic Laboratory Formulated S	3% Organic Laboratory Formulated Sediment				
Overlying water	Filtered Horsetooth Reservoir water					
Test Concentrations	0 (control) and 100% of each test sediment					

Sediment Collection and Receipt

Sample ID	Collection Date and Time	AEGOM No:	Date of Receipt	Cooler: Temp, at Arrival (°C)
APG-05/09	December 3, 2010 @ 0730	24809	May 26, 2011	6.9, 7.5 ^a
APG-04/07	December 3, 2010 @ 0820	24815	May 26, 2011	7.5ª
APG-22/23	December 2, 2010 @ 1455	24808	May 26, 2011	6.1, 6.9
APG-15/21	December 2, 2010 @ 1055	24813	May 26, 2011	6.1
APG-06/24	December 2, 2010 @ 1210	24812	May 26, 2011	6.9ª
APG-02/08	December 2, 2010 @ 1550	24816	May 26, 2011	7.5
APG-11/13	December 2, 2010 @ 0825	24810	May 26, 2011	6.9
APG-14/10	December 2, 2010 @ 0925	24814	May 26, 2011	6.1ª
APG-12/20	December 2, 2010 @ 1009	24811	May 26, 2011	6.1, 6.9
APG-01/03	December 2, 2010 @ 1430	24817	May 26, 2011	7.5

One sample bottle broken upon arrival at the FCETL

Note: See Appendix A for copies of chain of custody records

Laboratory Control Sediment

The control sediment used for all tests was laboratory formulated sediment with an estimated organic content of 3% (by weight). The formulated sediment was prepared by combining the following materials:

Material	Quantity (g) (Percent)
Rinsed Medium Grit Silica Sand	8500 (83.1)
Clay/Silt Mixture (ASP 400)	1500 (14.7)
Dolomite	5 (0.049)
Humic Acid (Sodium Salt)	1 (0.0098)
Sieved Sphagnum Moss	220 (2.15)

Prior to mixing, the sphagnum moss was sieved using a 2 mm sieve. The medium grit silica sand was rinsed with deionized water until the water ran clear and then the sand was baked overnight at 105°C. All ingredients were combined and mixed together for at least 15 minutes. Calcium carbonate was added at approximately 1% (by dry weight) to raise the soil pH from 3.4 to 6.8. At least 24 hours prior to homogenization, a small amount of filtered Horsetooth reservoir water was added to the necessary amount of formulated sediment and the wetted sediment was held at 4°C in the dark.

Test Dates and Times

Sample ID			Test Termination Date and Time
APG-05/09, APG-04/07, APG- 22/23, APG-15/21, and APG-06/24	1	July 19, 2011 @ 1400-1430	August 16, 2011 @ 0800-1830, August 17, 2011 @ 0800-1830
APG-02/08, APG-11/13, APG- 14/10, APG-12/20, and APG-01/03	2	July 26, 2011 @ 1430-1500	August 23, 2011 @ 0730-1800, August 24, 2011 @ 0745-1930

Test Sediment Preparation

Sample ID	Date Homogenized	Time Homogenized
**************************************	Test Round 1	
Control		1325-1330
APG-05/09		1424-1427
APG-04/07	luly 19, 2014	1341-1344
APG-22/23	July 18, 2011	1441-1444
APG-15/21		1415-1418
APG-06/24	<u> </u>	1350-1353
	Test/Round/2	
Control		0933-0936
APG-02/08		1023-1026
APG-11/13	luly 25, 2011	1008-1011
APG-14/10	July 25, 2011	0941-0944
APG-12/20		1058-1101
APG-01/03	·	1043-1045

Test Conditions

Туре	Bioaccumulation Test with Continuous Renewal of Overlying Water
Overlying Water Delivery System	Continuous renewal (flow-through) ^a
Test Endpoints	Body residue of chemicals of potential concern ^b
Test Chambers	2.5 gallon glass aquaria
Test Sediment Volume	1000 ml
Overlying Water Volume	2000 ml
Replicates per Treatment	3
Organisms per Replicate	Added by weight (see page 5)
Feeding	None
Test Temperature	23 ± 1°C (≤ 3°C differential) ^c
Lighting	Fluorescent, 16 hours light:8 hours dark
Chamber Placement	Non-Randomized
Test Sediment Renewal	Nóne
Test Overlying Water Renewal	Approximately two to three volume additions per test chamber per day

^a Continuous replacement via a drip system
^b Results of chemical analysis of worm tissue not reported here
^c The test temperature during Test Round 1 fell below the recommended lower limit of 22°C but did not exceed the 3°C differential. It is the study director's best professional judgment that this did not affect the outcome of the test.

Test Organism

	Test Round 1
Species and Lot Number	Lumbriculus variegatus, Lot 11-017
Age	Adult
Source	Bayou Aquatics, Ontario, CA
	Test Round 2
Species	Lumbriculus variegatus, Lot 11-018
Age	Adult
Source	Bayou Aquatics, Ontario, CA

Estimated Sediment Organic Content

In accordance with EPA guidance, the weight of worms added to each test chamber is dependent on the total organic carbon (TOC) content of the sediment. Worms are added at a minimum target ratio of 1 g dry weight of worms to 50 g sediment TOC (USEPA, 2000). This ratio was achieved for test sediments, but not for the controls, as TOC values were not known in advance of study initiation. The moisture content and estimated TOC of each test sediment are presented in the following table:

Sámple ID	% Moisture (per mass wet)	Vol. of Sødiment in each Test Chamber (ml)	Approx. Wet Wt. (g) of Sediment In each Test Chamber	Approx. Dry Wt. (g) of Sediment in each Test Chamber	Approx. %TOC (by dry wt:) ^{ac}	Estimated TOC (g) in each Test Chambers
APG-05/09	58.4	1000	1100	458	12.6	57.7
APG-04/07	53.4	1000	1100	513	9.2	47.2
APG-22/23	56.4	1000	1100	480	21.2	101.8
APG-15/21	68.2	1000	1100	350	19.1	66.8
APG-06/24	45.2	1000	1100	603	8.8	53.1
APG-02/08	54.5	1000	1100	500	14.1	70.5
APG-11/13	67.9	1000	1100	353	26.9	95.0
APG-14/10	68.9	1000	1100	342	20.9	71.5
APG-12/20	72.7	1000	1100	300	22.9	68.7
APG-01/03	53.0	1000	1100	517	14.5	75.0

^a Measured by the Environmental Research Group at The University of New Hampshire (Durham, NH)

^b Calculated by multiplying volume of sediment in each test chamber by 1.1g/ml (average density of sediment determined for sediment samples received June 9, 2011)

^cCalculated by multiplying Approx. Wet Wt. by [(100-% Moisture)/100]

d Calculated by averaging the % TOC values of the two sites composited for each sample

^e Calculated using the dry weight per test chamber and approximate % TOC

Note: Values are rounded to one digit; some slight differences may be found when applying conversion factors to rounded values

TEST RESULTS

Weight of Worms Added and Removed From Test Chambers – Test Round 1

Sample ID	Rep	Wet Wt (unblotted) of Worms Added (g)	Est: Dry Wt. of Worms Added:(g) ^{alb}	Approx. Tocipry Worm Wi Ratio	Wet: Wt. (unblotted) of Worms Recovered (g)	Percent Recovery
	Α	2.6	0.23	22:1°	1.5	58%
Control	В	2.6	0.23	22:1°	1.7	65%
	С	2.5	0.22	23:1 ^c	1.3	52%
	Α	6.7	0.59	98:1	2.9	43%
APG-05/09	В	6.7	0.59	98:1	2.1	31%
	С	6.7	0.59	98:1	3.1	46%
	Α	6.7	0.59	80:1	3.0	45%
APG-04/07	В	6.7	0.59	80:1	3.2	48%
	С	6.7	0.59	80:1	2.4	36%
	Α	6.7	0.59	172:1	2.3	34%
APG-22/23	B	6.7	0.59	172:1	2.8	42%
	C	6.7	0.59	172:1	1.8	27%
	Α	6.7	0.59	113:1	2.8	42%
APG-15/21	В	6.7	0.59	113:1	3.1	46%
	С	6.7	0.59	113:1	3.0	45%
	Α	6.7	0.59	90:1	1.2	18%
APG-06/24	В	6.7	0.59	90:1	0.8	12%
	С	6.7	0.59	90:1	1.8	27%

^a Calculated by dividing unblotted wet weight by 1.33 (USEPA, 2000) to obtain blotted wet weight and then multiplying estimated blotted wet weight by 0.117 (wet weight to dry weight conversion calculated by AECOM during previous studies)

during previous studies)
^b Values are rounded to two digits; some slight differences may be found when applying conversion factors to rounded values

^o Calculated based on 5 g TOC/1000 ml wet volume determined by AECOM during previous studies. Note: See Appendix B for Test Data

Weight of Worms Added and Removed From Test Chambers - Test Round 2

Sample ID	Rep	Wet Wt. (unblotted) of Worms Added (g)	Bat: Dry Wti of Worms Added (g) ⁸⁸	Approx, TGC IDry Worm Wt Ratio	Wet Wt. (unblotted) of Worms Regovered (g)	Percent Recovery
- " "	Α	2.6	0.23	22:1°	1.5	58%
Control	В	2.5	0.22	23:1°	0.4	16%
	С	2.6	0.23	22:1°	1.5	58%
	Α	6.7	0.59	119:1	1.4	21%
APG-02/08	В	6.7	0.59	1.19:1	1.9	28%
	С	6.7	0.59	119:1	2.3	34%
	Α	6.7	0.59	161:1	4.5	67%
APG-11/13	В	6.7	0.59	161:1	3.9	58%
	С	6.7	0.59	161:1	1.5	22%
-	Α .	6.7	0.59	121:1	2.9	43%
APG-14/10	В	6.7	0.59	121:1	3.7	55%
	С	6.7	0.59	121:1	3.9	58%
	Α	6.7	0.59	116:1	2.8	42%
APG-12/20 .	В	6.7	0.59	116:1	4.6	69%
	С	6.7	0.59	116:1	1.6	24%
	Α	6.7	0.59	127:1	2.0	30%
APG-01/03	В	6.7	0.59	127:1	2.6	39%
a Calandata d bo	С	6.7	0.59	127:1	1.5	22%

^a Calculated by dividing unblotted wet weight by 1.33 (USEPA, 2000) to obtain blotted wet weight and then multiplying estimated blotted wet weight by 0.117 (wet weight to dry weight conversion calculated by AECOM

during previous studies)
^b Values are rounded to two digits; some slight differences may be found when applying conversion factors to rounded values Calculated based on 5 g TOC/1000 ml wet volume determined by AECOM during previous studies.

Note: See Appendix C for Test Data

Physical and Chemical Data of Overlying water

рН	DO (mg/L)	Spec Cond.		\$ 1 PEX 2000 CONTROL OF BUILDING SERVICE	Hardness (mg/L as	Alkalinity (mg/L as
					CáGOs)	CacO _i)
7.8-8.2	5.7-6.8	125-270	21-23	<1.0	54-124	52-116
7.3-8.0	4.5-6.2	155-501	20-23	<1.0-2.4	54-140	45-148
7.5-8.0	4.5-7.1	137-453	20-23	<1.0-1.1	54-168	38-100
5.6-7.4	4.3-6.4	125-393	20-23	<1.0-2.8	36-80	3-100
6.5-7.8	4.0-6.1	168-472	20-23	<1.0-2.1	48-120	48-88
6.6-7.6	4.2-6.7	153-386	20-23	<1.0-2.2	48-110	21-31
		Test Rou	ınd 2			
7.9-8.3	5.6-6.8	160-187	21-23	<1.0-1.1	64-86	66-85
7.3-8.0	4.5-6.8	123-244	21-23	<1.0-1.4	40-74	39-73
7.0-7.7	4.2-6.8	91-150	21-23	<1.0-1.7	26-44	18-30
7.2-7.7	3.8-6.8	131-237	21-23	<1.0-1.6	44-68	28-61
7.3-7.9	4.0-6.8	132-320	21-23	<1.0-2.2	44-86	39-81
7.3-7.8	4.6-6.7	150-247	21-23	<1.0-1.6	50-78	40-63
	7.8-8.2 7.3-8.0 7.5-8.0 5.6-7.4 6.5-7.8 6.6-7.6 7.9-8.3 7.3-8.0 7.0-7.7 7.2-7.7 7.3-7.9 7.3-7.8	7.8-8.2 5.7-6.8 7.3-8.0 4.5-6.2 7.5-8.0 4.5-7.1 5.6-7.4 4.3-6.4 6.5-7.8 4.0-6.1 6.6-7.6 4.2-6.7 7.9-8.3 5.6-6.8 7.3-8.0 4.5-6.8 7.0-7.7 4.2-6.8 7.2-7.7 3.8-6.8 7.3-7.9 4.0-6.8	7.8-8.2 5.7-6.8 125-270 7.3-8.0 4.5-6.2 155-501 7.5-8.0 4.5-7.1 137-453 5.6-7.4 4.3-6.4 125-393 6.5-7.8 4.0-6.1 168-472 6.6-7.6 4.2-6.7 153-386 Test Rou 7.9-8.3 5.6-6.8 160-187 7.3-8.0 4.5-6.8 123-244 7.0-7.7 4.2-6.8 91-150 7.2-7.7 3.8-6.8 131-237 7.3-7.9 4.0-6.8 132-320 7.3-7.8 4.6-6.7 150-247	Test Round 1 7.8-8.2 5.7-6.8 125-270 21-23 7.3-8.0 4.5-6.2 155-501 20-23 7.5-8.0 4.5-7.1 137-453 20-23 5.6-7.4 4.3-6.4 125-393 20-23 6.5-7.8 4.0-6.1 168-472 20-23 6.6-7.6 4.2-6.7 153-386 20-23 Test Round 2 7.9-8.3 5.6-6.8 160-187 21-23 7.3-8.0 4.5-6.8 123-244 21-23 7.0-7.7 4.2-6.8 91-150 21-23 7.2-7.7 3.8-6.8 131-237 21-23 7.3-7.9 4.0-6.8 132-320 21-23 7.3-7.8 4.6-6.7 150-247 21-23	Test Round 1 7.8-8.2 5.7-6.8 125-270 21-23 <1.0 7.3-8.0 4.5-6.2 155-501 20-23 <1.0-2.4 7.5-8.0 4.5-7.1 137-453 20-23 <1.0-1.1 5.6-7.4 4.3-6.4 125-393 20-23 <1.0-2.8 6.5-7.8 4.0-6.1 168-472 20-23 <1.0-2.1 6.6-7.6 4.2-6.7 153-386 20-23 <1.0-2.2 Test Round 2 7.9-8.3 5.6-6.8 160-187 21-23 <1.0-1.1 7.3-8.0 4.5-6.8 123-244 21-23 <1.0-1.4 7.0-7.7 4.2-6.8 91-150 21-23 <1.0-1.7 7.2-7.7 3.8-6.8 131-237 21-23 <1.0-1.6 7.3-7.9 4.0-6.8 132-320 21-23 <1.0-2.2 7.3-7.8 4.6-6.7 150-247 21-23 <1.0-1.6	PH PO (mg/L) (µS/6m) (RC) (mg/L) (mg/L) (mg/L) ae (agOs) Test Round 1 7.8-8.2 5.7-6.8 125-270 21-23 <1.0 54-124 7.3-8.0 4.5-6.2 155-501 20-23 <1.0-2.4 54-140 7.5-8.0 4.5-7.1 137-453 20-23 <1.0-1.1 54-168 5.6-7.4 4.3-6.4 125-393 20-23 <1.0-2.8 36-80 6.5-7.8 4.0-6.1 168-472 20-23 <1.0-2.1 48-120 6.6-7.6 4.2-6.7 153-386 20-23 <1.0-2.2 48-110 Test Round 2 7.9-8.3 5.6-6.8 160-187 21-23 <1.0-1.1 64-86 7.3-8.0 4.5-6.8 123-244 21-23 <1.0-1.4 40-74 7.0-7.7 4.2-6.8 91-150 21-23 <1.0-1.7 26-44 7.2-7.7 3.8-6.8 131-237 21-23 <1.0-1.6 44-68 7.3-7.9 4.0-6.8 132-320 21-23 <1.0-2.2 44-86 7.3-7.8 4.6-6.7 150-247 21-23 <1.0-1.6 50-78

Temperature in overlying water

Note: Continuous temperature in the water bath ranged from 20.4-23.2°C (Test Round1) and 20.2-22.4 (Test Round 2).

Depuration Period

At the end of the exposure period (~28 days), all worms were removed from each replicate and were held in separate 500-ml beakers containing Horsetooth Reservoir water overnight to allow clearance of gut contents. The following morning, organisms were cleaned, weighed, and frozen. The samples were shipped (on ice) to the Environmental Research Group at The University of New Hampshire, an independent laboratory located in Durham, New Hampshire, USA for tissue analysis.

References

ASTM. 2009. Standard Test Methods for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates. Method E 1688-00a in 2009 Annual Book of ASTM Standards, Section 11, Water and Environmental Technology, Volume 11.06, Biological Effects and Environmental Fate; Biotechnology. American Society of Testing and Materials.

USEPA. 2000. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. EPA/600/R-99/064. United States Environmental Protection Agency, Washington, DC.

Statement of Procedural Compliance

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge, accurate and complete.

Rami B. Naddy, Ph.D.

Study Director

Date

Statement of Quality Assurance

The test data were reviewed by the Quality Assurance Unit to assure that the study was performed in accordance with the protocol and standard operating procedures. This report is an accurate reflection of the raw data.

GenaRMNemer / anita Reliner

Date

APPENDIX A

Chain of Custody Records

		CHAIN OF CUSTODY RECORD	ORD			Page 7 of Y
Client/Project Name: AECBM /UNH Project Location: Aberdeen Proving Con	ect Location: Aberd	ear Pering Count			Preservation 1 - HCl, 4°	
ESTEP Canal Coast Jedd Dans	Edgamed,	AD	Analysis Requested	Q .	3 - HNO3, 4° 4 - NAOH, 4°	
Project Number: (N=(C>x)	Field Logbook No.:				5 - NaOH/ZnAc, 4°	
C	\\2		-		6 - Na2S203, 4° 7 - 4°	
	in of Custody Tape Nos.				Container Type P – Plastic	
····-	マンス				A – Amber Glass G – Clear Glass O – Other	
Signature:	Send Results/Report to:	TAT				
2/2	Mon. macer thy P 2200 ton				· · ·	
RETEN TO 12/02/12010 COL	COL FLE SURINE	201 m			· .	
1P/TION						
Field Sample No./Identification Date Time	ne COMP GRAB	Matrix Field X			Since #	Remarks 1000
Apo-05/04(A)	χ-				2,4009	750 (vally ba
- 05/09/					24609	690
- 02/04					SURRA	0.90
8 76 - 05/09 (b)					24900	0.4.0
Apc-es/er				-		
					24615	150
APE-04(07(B)		``			2501S	いらう
APG04/07 (C)					なるで	ないっ
					24615	450 (Jallah
APG-22 23(A)	:				以表別 (1) (1)	0,1.0
APC-22 23 (B)					9.200 200	(9.1.5)
APG-22(23(C)	>	}			24606	0.90
Z Z	Date: 5/2+///	Received by: (Print Name)(Affiliation)	Date: 5/20/11	ĕ		
Signature Control of the Control of	Time: 10:002	Signature: Man Sign	Time: (0/5	ACCOM 164	IECHNICAL XII	K V - AC ()
Relinquished-by. (Print Name)/(Affiliation)	Date:	Received by: (Print Name)/(Affiliation)	Date:	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Leporte Aug	d
Signature:	Time:	Signature:	Time:	Collers	, CO 805,	T.
Relinquished by: (Print Name)/(Affiliation)	Date:	Received by: (Print Name)/(Affiliation)	Date:	Sample Shipped Via:		Temp blank
Signature:	Time	Signature:	Time:	UPS (FedEx)	Co Other	(2)
				Padonice 610	1	*,3,0

1666610 coler#1 450 coler#2 690 coler#3

		CHAIN OF CUSTODY RECORD	ECORD			Page Col
Client/Project Name: NECSA /UNI Project Location: Aberdan Project	ect Location: Aberok	201 Proving Grand			Preservation 1 – HGI, 4°	
ESTEP Cand Cook Field Dans	Folgowersh,	J.	Analysis Requested		2 - H2SO4, 45 3 - HNO3, 4° 4 - NaOH 4°	
Project Number: (A:COX) Field	d Logbook No.:		-	Ž	5 - NaOH/ZnAc, 4°	
d	1 2	-		6 – Naz 7 – 4°	azszo3, 4°	
	Chain of Custody Tape Nos.:	•		Oouts	iner Type lastic	
2 32	27	70		A-A 0-0	A – Amber Glass G – Clear Glass O – Other	
Signature: Scot	Scott Greenwood Eurhand	TAT OS				
REFER TO 12/02/2010 COC	COC FOL SUPPLY	1d m				
DESCRIPTION		~S				
Field Sample No./Identification Date Time	ne COMP GRAB	Matrix Filtered X		7	CANNOL # COOLS FOND	0
Apre- 15/21 (A)	Ж			8	.	
١.				7	1813 GIO	
- 152i				70	1818 6.10	
9 +6 - 15/21 (b)				で	80 20 20	
APG-06 24 (A)				र्		(Date of the
APC-C6(24 (B)				\display \text{\tin}\text{\tinit}\\ \text{\texi}\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\texi}}\\ \text{\text{\text{\texi}\text{\text{\texititt{\text{\texit{\texi}\text{\texi}\text{\texititt{\text{\ti}\tint{\texi}\text{\texi}\text{\texittt{\texititt{\texi}\tint{\texittt{\texititt{\ti}\t		
At 6 - 06/24(C)				(8)		
Apc - de(24)D				8		
APC -02 05 (A)				4	るある。土むり	~
APG-02/08(B)				₹(850 to	
~				700	る。 より り	
Apco-02/08 (b)	>	>		*	0	_
Relinquished by: (Print Name)((Affiliation)	Date: 5,2-//	Received by: (Print Name)((Affiliation)) ロバルンスプレイモの	Date: 5/2/0/11	Analytical Laboratory (Destination):	nation):	
1000	Time://b:cocy	_	Time:	LOOK CONTRACTOR		
Relinquished by (Print Name)/(Affiliation)	Date:	Received by: (Print Name)/(Affiliation)	Date:		ics Are	
Signature.	Time:	Signature	Time:	The Collins, CO 8	80524	
Relinquished by: (Print Name)/(Affiliation)	Date:	Received by: (Print Name)/(Affiliation)	Date:			
	Ė		į.	eg.	lemp pianx	(
Signature:	<u>.</u>	Signature:	ט ==	UPS (FedEx) Co	Other Yes (No
				00/12/00	# 1 mm	- (thank)

Decides 100 6.10 coden#1
750 coden#2

		CHAIN OF CU	OF CUSTODY RECORD	RD		1	Page 3 of CL
Client/Project Name: AECEM /UNIT Project Location: Aberdeen Proving	ect Location: Aberda	on Maring Grand				1 – HCl, 4°	
ESRP Cond Coast Jedd Dans	5 Edgeweed	JO		Analysis Requested		3 - HNO3, 4° 4 - NaOH, 4°	
Project Number: / Number:	Logbook No.:	h				5 - NaOH/ZnAc, 4°	
(202, 0812,777)	1 1 2					5 - Nazazoa, 4- 7 - 4°	
	Chain of Custody Tape Nos.:					P - Plastic	
	ZZ		707			G - Clear Glass 0 - Other	
Signature: Send	Send Results/Report to: TAT	TAT	γ°γ' ' γ°γ'				
4/2	Men. macestely & leaved con	المنادة	לילבט האיט				,
REFER TO 12/02/10010 COL FOR SUMPLINE	For SUPPLY	. 1)	100 Per				
DESCRIPTION			"S 7			Seison of the state of	coin temp
Field Sample No./Identification Date Time	ne COMP GRAB	Matrix Filtered	X			·	Remarks
19-1143/11	Х					24610	10.9.6
495-11/18/18)					-	2007	0.9.0
D. 20- 11 /40 (C)						2000	0.5
905-11/13/0)						37.60	0.7.5
140c-14/10(A)						22/014	٥
APC - 14/10 (B)						1250 200 200 200 200 200 200 200 200 200	6.1.9 (120 He 100)
Apr - 14/10 (C)						25.0 7.0 7.05.0 7.05.0 7.05.0 7.05.0 7.05.0 7.05.0 7.05.0 7.05.0 7.05.0	
Aple - 14/10(D)						大 <u>で</u> です	250
APC - 12 20 (A)						12 j	2:-
400 - 12 (50 (B)						1 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ر <u>د</u> ق
120 (C)						250	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
426-12 (D)	>		>		Analytical Jahomatony (Destination)	Destination):	6:10
Relinquished by: (Print Name)/(Affiliation)	Date: 5/24/	Date: Say Kecewed by, Print Name) (Afficially)	(AEES)	Date: 5 (26 (1)	Arianyural Laboratury		SENTICES
Simature Simulative	Time: (0:062	Time: 10:002 Signature: 50,00500	Soll	Time: 1015	اسر		
Relinquished by: (Print Name) (Affiliation)	Date:	Received by: (Print Name	f/(Affiliation)	Date:	3	Leporce Aug	J.R.
Signature	Time:	Signature:		Time:	Fore Collins	ර දි දු	470
Refinquished by: (Print Name)/(Affiliation)	Date:	Received by: (Print Name	(Print Name)/(Affiliation)	Date:	Sample Shipped Via:		Temp blank
Signature	Time:	Signature:		Time:	UPS (FedEx)	Co Other	Yes
					Decid on ice of ice	30	Cooler#1 pg

Red or 10 Gold of 24 200 034 2

		CHAIN OF CUSTODY RECORD	CORD			Page L of
Client/Project Name: ACCOM /UNIT Project Location: Aberdan Project Carred	Project Location: Aberok	san Maring Card			Preservation 1 – HCl, 4°	
ESTEP Cond Cook Feld Dans Edgassed	Edsoniegh,	, OF	Analysis Requested	. 5	2 - H2SO4, 4° 3 - HNO3, 4°	
Project Number: / NECCE	Field Logbook No.:				5 - NaOH/ZnAc, 4°	
C0133180,502	\ /2				6 - Na2S203, 4°	
	Chain of Custody Tape Nos				Container Type P - Plastic	
くべ	ベス	70,			A - Amber Glass G - Clear Glass O - Other	
Signature:	Send Results/Report to: TAT	TAT				
₹/Z	ryen, meterthy Peconton	ري ما ري م			-	
REFER TO 12/02/2010	COC FOL SUPPLYE	moz c	-			
DESCRIPTION		~& ~7				
Field Sample No /Identification Date	Time COMP GRAB	Matrix Filtered X			Sumple #	Remarks King
Ap 6-22 (23 (5)	X				24km6	0.1.0
Hor- (31102/4)					2,78/F	750
Que - 01 103 (3)					226/4	75°C
٠				-	20017	450
APG-01 (03 (D)					28T	45.0
	>	>				-
by: (Print Name)/(A	Date: 5/24/ \	Received by: (Print Name)/(Arritation)	Date: 5/26/1	Analytical Laboratory (Destination):		
Signature:	Time:f0:002	Signature: Mile Control	Time: [0]	ACON TOWN		,));; o x
Relinquished by: (Print Name)/(Affiliation)	Date:	Date: Received by: (Print Name/(Affiliation)	Date:	4363 (2).	J. Leporte Aug	8
Signature	Time:	Signature:	Time:	The Collins,	(S) (S) (1	
Refinquished by: (Print Name)/(Affiliation)	Date:	Received by: (Print Name)/(Affiliation)	Date:	Sample Shipped Via:		Temp blank
o in the contract of the contr	Time:	Signature:	Time:	UPS	Co Other Yes	(oN
				Rect anial	l	6.10 colo#1

APPENDIX B

Test Round 1 Laboratory Data Sheets

Revision 4
Effective 1/96

TOXICITY DATA PACKAGE COVER SHEET

	w 10/12/11
Test Type: Chronic	QA: Gymu[α][] Project Number: 60147216-445-002-007
Test Substance: <u>Sediment</u>	Species: Lumbriculus variegatus
Overlying Water Type: Filtered Horsetooth water	Organism of or Batch Number: 11-01-1
Concurrent Control Sediment Type: Formulated Sediment	Age: actul- (adult) Supplier: Bayou Aquatics
Date and Time Test Began: 국녀에 @ 년00-1년30	Date and Time Test Ended: 8 16-8 17- @ 0800-1830
Protocol Number: <u>USEPA (2000)</u>	Investigator(s): 47 ACU IN UT KS JAB AB AB
Background Information	
Type of Test: Continuous Drip Renewal	pH Control?: Yes No If Yes, give % CO ₂ : N/A
Test Temperature: 23 ± 1 °C	Env. Chmbr/Bath # 4 Test Chambers: 2.5 gal glass aquaria
Test Sediment Vol.: 1000 ml Overlying Water Volume: ~2	
Length of Test: 28 days Number of Organisms per R	deplicate: to maintain > 5:1 sediment organic carbon;org. dry weight
Type of Food and Quantity per Chamber: None	Feeding Frequency: NA
Photoperiod: 16h Light : 8h Dark	Light Intensity: 9.3-93 ft-c.
Overlying Water Characterization Parameters and Frequency:	the contract of the contract o
NH ₃ : <u>Day 0,7,14,21,17</u> pH: <u>Day 0,7,14,21,17</u>	Conductivity: Day 0,7,14, TRC: NA
Test Concentrations: Formulated Sediment, APG-05/09, AP	2G-04/07, APG-22/23, APG-15/21, and APG-06/24
Reference Toxicant Data: Test Dates: NA to	LC ₅₀ or IC ₂₅ (Circle):
Hist. 95% Control Limits: NA to Method	d for Determining Ref. Tox. Value:
Special Procedures and Considerations:	
Sediments will be homogenized before use in testing.	
Hard/alk, pH, cond, and NH ₃ of the overlying water will be mea	asured on days 0, 7, 14, 21, and 27
DO will be measured daily and is to be maintained at ≥2.5 mg/	
Overlying water renewal rate at approximately 2 volume addition	ons (4000 ml) per day, or 23 ml/min
	6
Study Director Initials: 122) Date: 7	110/11
Study Director Initials: 122) Date: 7 Date: 7 Date: 7	
A complete of	
(a) on wheth the	

SEDIMENT/SOIL PREPARATION

Project Number: 60147216-445-(002-007) Artificial soil	2010/12/11 214:64m 119/11
Constituent/source	Amount added (g)
Rinsed Medium Grit Silica Sand	8500
Clay/Silt Mixture (ASP 400)	1500
Dolomite	5
Humic Acid (Sodium Salt) (Lot #C10-034)	1
Sieved Sphagnum Moss	220
Calcium Carbonate (Lot #C02-064)	109
lotes: Medium grit silica sand was rinsed with deionized water and baked overnight in 10	5°C oven prior to sediment mixing
sphagnum Moss was sieved using a 2 mm sieve prior to mixing. Calcium carbonate added	to raise soil pH from 3.4 to final pH of 6.8

Soil/sediment	FCETL#		Homo	genization	
		Date	From	То	Analyst
Form. Sed	N/A	7/18/11	1325	1330	
APG-05/09	24809	7 18 11	1484	1427	<u> cu</u>
APG-04/07	24815	7 18 11	134)	1344	Ann
APG-22/23	24808	7(18)	1441	1444	Am
APG-15/21	24813	7/18/11	1415	1418	NUT
APG-06/24	24812	7(18)11	1350	1353	VUT
			1000	100.5	70
	•				
		,			
	<u> </u>		-		*
	•				· · · · · · · · · · · · · · · · · · ·
			 		<u> </u>

SUBJECT: DAILY LOG	11/30
ALL ENTRIES MUST BE INITIALLED WITH DATE AND TIME:	
Preparation of 3% organic Laboratory Formulated Sediment 5/27/11 @1530	<u>) </u>
-Binsed ~101 Medium grit silica sond with delenized water until	
hinse water was clear. Placed hinsed sand in baking dishes and baked	
evernight in 105°C oven. Sand was removed from oven and allowed	
to coal prior to mixing.	
Nelwork Assembly Could declare and the Second	
Mixed together the following materials in a oxygal chan burnet:	·
* Rinsed 4 baked Medium grit silica sand - 8500 g * Clay silt mixture (ASP 400) = 1500 g	
e Dolomite - 5	
· Dolomite - 5g. · Humic Acid (Lot#C10-034) - 1g	
· Sieved (using 2 mm sieve) sphagnum mass - 220g	-
Mixture was shaken for ~15 min to thoroughly promptine muterials.	
The state of the s	
Soil pit - 3.4	
6/29/11 00	
Added 108.99 CaCO3 (Lot*co2-0164) to ~24105 formulated Sediment to paise the soil ptt.	
Sediment to mise the soil ptt.	
	· · · ·
Soi) pt - 6.8	
	: -
	•

Ocu 5/27/11 E

BIOLOGICAL DATA

Test Species (Circle): H, azteca C. tentans E. foetida Project Number: 60147216-445 (002-007) Other (Specify): QA: oum 11/30/11

			lni	tial		Final
Treatment / Sediment	Rep.	Wet Weight Unblotted worms (g) ^a	Calculated Wet Weight Blotted Worms ^b	Calculated Dry Weight Worms ^c	Sediment Organic:Dry Worm Weight Ratio ^d	Wet Weight Unblotted Worms (g) ^{a,e}
	. A	2.6				01.415
Form. Sed	В	2.6				17
	С	2.5				1,3
	Α	6.7				25+0.4
APG-05/09	В	6.4				1,6+0,5
	С	6.4				21+1.0
	Α	6.7				3.0
APG-04/07	В	6.7				1.7+1.5
<u></u>	С	6.7				8.4
	Α	6.7		·	·	2.3
APG-22/23	В	6.7			-	2.1 +0.7
	С	6.7				1.2+0.6
	Α	6.7				2.6+0.3
APG-15/21	В	6.7				2.3+0.8
	·C	ن ، ب				1.7 +1.3
	Α	6.7				11 +0.1
APG-06/24	В	6,7			 -	0.7 +0.1
	С	67				1.6+0.2
Date	•	7119111				8117111
ime		1400-1430				0930 -1530
\nalyst		al NLT		·		cup ton

O TE SITA E

Ow which E

Bas 1115/11 CF

Measured Using Balance Number AND Top London
Unblotted wet weight of worms divided by 1.33
Ratio applied to inflore wet weight of worms: 0.117
Sediment organic content calculated NA
Organisms depurated from 8110 48111 2 1100 to 8 hisms depurated from 8114 +811+ @ 1400 to 8114.4 81181 11 @ 0800 (date/time) in bocse+0047 Water 500 m. bockers (water/holding vessel)

Project Number: 60147216-445-(0.02-007)

BIOLOGICAL DATA

Test Species: Lumbriculus variegatu

Initial Final Wet Weight of Wet Weight of Est. Blot Dry Wt. of Est. Dry Wt. of Worms Unblotted Worms (g) Unblotted Worms (g) Treatment/Sediment Rep Worms Added (g)^a Added (g)^a % Recovery 2.6 1.95 0.23 58% Form Sed В 2.6 1.95 0.23 1.7 65% C 2.5 1.88 0.22 1.3 52% Α 6.7 5.04 0.59 2.9 43% APG-05/09 В 6.7 5.04 0.59 2.1 31% C 6.7 5.04 0.59 3.1 46% Α 6.7 5.04 0.59 3.0 45% APG-04/07 В 6.7 5.04 0.59 3.2 48% 6.7 С 5.04 0.59 2.4 36% Α 6.7 5.04 0.59 2.3 34% В APG-22/23 6.7 5.04 0.59 2.8 42% С 6.7 5.04 0.59 1.8 27% 6.7 Α 5.04 0.59 2.8 42% APG-15/21 В 6.7 5.04 0.59 3.1 46% С 6.7 5.04 0.59 45% 3.0 Α 6.7 5.04 0.59 1.2 18% APG-06/24 В 6.7 5.04 0.59 0.8 12% 6.7 5.04 0.59 1.8 27%

a Calculated by dividing unblotted wet weight by 1.33 (USEPA, 2000) to obtain blotted wet weight and then multiplying estimated blotted wet weight by 0.117 (wet weight to dry weight conversion calculated by FCETL during previous studies) Note: Values are rounded to two digits; some slight differences may be found when applying conversion factors to rounded values

CHEMICAL DATA

01 W >			¥	9	NR	al N	圣	当	关	A S						20	13	J.J.	ಸಿವ	22	22	23	23	B	4111	3115	Ç.¥	
J. Grm			j	Š	33	33	33	233	33	દ્ધ	五	"Incel	001	Ŋ		¥	12		23	93	22	23	23			1815	A. 8	
ଷ		ıre	18		W	N	भ	23	23	gg	(HQ	2	138	S)	<u>2</u>	Ò	11	2	8	22		_	22	一方		itz		
ecify):		nperati	e <u>s</u> t da)	, 3	7/2	ଧ୍ୟ	NR	NR	NR	N.A.	SH Ka	l lbd.	/,		nperatu	e £ day	10	23	هي	3	23	23	22	140	1/33/1			
her (Spe		Ter	ل	2	J.	H	22	R	H	R	FA		(45)	ऋ	Ten	A T	6	22	22					_	(1/82/1	1045		
i II			Ø	-	23	23	33	_			Ē					J	80	R	A						االح	Sho	8	
variega			∢	0	23	B	33			33		ilain	aquio	B		Œ,	7	-		-/					CALIC		8	
L— II			4	မ	ž	· 3	ر 2		_	7, R						ß	13	Ť	-		Ы	\neg		5		7	48,	
ui				ص(. C.	0	17	9		و	S	120	1/00	RS	(A	72			-	ه.	W						
		(mg/L	Ø	ı		9	8				Ŋ	23/117	B	 T	(mg/L	Ó	=			N		$\overline{}$	17.5		- 1			
l il		Oxyger		3			લુ	38.4	\dashv	_	/B				Oxygen	R day	9		~	8			8 7		29/11/1			
H.		olved	ا	- 1	5	<u> </u>		-		\dashv	7	I WINE	2000) 	olved (A Te			٦	<u>-</u> ر		7	Q	n	220 W 71			
D. magn		Diss	0	_		ņ	0	Ś				T R	\dashv		Diss		ı		+	シレン	0		_	10				
			∢	0	5	O,	3	5		ر ا	10	19111	ş			ŀ	7	0	3	0	0	=	Ä		-=	9		الم
ecies ((-		∡	9	工	15. 0	O C	6	9	E. 1	<u>.</u>	1311 =	\neg			ئ	13		\Box		•	\neg	L.	u/	-			MANA PACAS
Test Sp				2	3 00	9 B C.	ц <u>с</u>	2 2		 <u>6</u>	ر ا	10 M	300	- 1			+		-		\neg		۲	۲ 2	21 II 88	- 1		なてい
			7	_	\exists		<u>_</u> و	~		હ ં	9	1	\rightarrow				\dashv		7	17	0	4	3			+		NA
(±∞-		됩	st day		艺士		1					1			핆	_	T		8	0			4	-2	9/11/2s			
445/002			Ë	- 1			N Q			o,	تـــُ		1				<u> </u>	_				7	1,7		8/C 7/8	ある	<u>'</u>	,
47216-			9	┪		-	5 L	<u>ب</u>	6		7					٩	-			,	:5	7	3 7		11/2	β ,	S 31	
ber: <u>60</u> 1				\dashv	<u> </u>	•	• 1	ار ا	<u>ئ</u> ر	à	. <u>-</u> /	E 1-191	3:10			ŀ	-	60		<u> </u>	اد	디		2	CL TIS			
ect Num		 ;;	nent	+			- 1					17	ŏ				T		60/9			_	_	,	2	8		
Proj		Ě	sedin		Form	APGC	APG-C	APG-2	APG-1	APG-C	Meter	Date	Time	_ 1	_	sedin		Form	APG-0	APG-0	APG-2	APG-1	APG-0	Meter	Date	Time	Initials	
	azteca C. tentans	Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify):	Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify): Dissolved Oxygen (mg/L) Temperature	Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify): Dissolved Oxygen (mg/L) Temperature	Number: 60147216-445(602 -00-1) Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify): A B C Test day & A B C T	Location (Color) Dissolved Oxygen (mg/L) A B C Test day & C B C Test	Iumber: 60147216-445(002-007-1) Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify):	Language (a) Dissolved Oxygen (mg/L) A B C Test day B C A B C Test day B C D D D D D D D D D D D </td <td> Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify): Temperature PH</td> <td> Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify): Part Par</td> <td> Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify): </td> <td> Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify): Phase /td> <td> Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify): Ph</td> <td> Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify): </td> <td> Project Number_60147216-445602 - 0074 Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify): Test</td> <td>ct Number 60147216-445/002 -003 Test Species (Circle): D. magna H azteca C. tentans E. foetida L. variegatus Other (Specify): ent</td> <td> Project Number: 60147216.4466002-004 Test Species (Circle): D. magna H. azteca C. tentians E. foetida L. variegatus Other (Specify): Sediment</td> <td> Project Number. 60147216.445\(</td> <td> Project Number, 60147216-445 (002 - 004) Test Species (Circle): D. megne H. azteca C. tentans E. foetida L. variegatus Other (Specify): Sediment A</td> <td> Project Number 60147216.446/002 -004 Test Species (Circle): D. megna H. azteca C. tentina E. tentina E. variegatus Other (Specify): Project Number 60147216.446/002 -004 Test day G. Control Contr</td> <td> Project Number 60147216.446 (022 - 0.074) Test Species (Circle): 0. megne H. azfoca C. tentans E. foetide E. variegatus Other (Specify): Project Number 60147216.446 (022 - 0.074) Test Species (Circle): 0. megne H. azfoca C. tentans E. foetide E. variegatus Other (Specify): Project Number 60147216.446 (022 - 0.074) Test Cape C. /td> <td> Project Number 60147216-445602-003-1 Test Species (Circle): D magna H azteca C tentans E foetda L variegatus Other (Specify): Sediment A</td> <td> Project Number 60147216.445(002 - 004) Test Species (Circle): D. magna H. azteca C. tentans E. tentda L. variagatus Other (Specify): Form Seed Road 1.6</td> <td> Project Number 60147216.445602 - CO+) Test Species (Circle): D megna H, azteca C, tentans E footida L, variegatus Other (Specify): Test</td> <td> Project Number 60147216-446/02 - Co-74 Test Species (Circle): D magna H, aztoca C, tentans E, foetida L, variogatus Gther (Specify): Test</td> <td> Project Number 60147216-446/02 - 0.04 Test Species (Circle): D magna H azteca C tentans E foetide L variagatus Check Species (Circle): D magna H azteca C tentans E foetide L variagatus Check Species (Circle): D magna H azteca C tentans E foetide L variagatus Check Species Circle Ch</td> <td> Project Number <u>60147216 4466022 - Co. 1</u> Test Species (Circle): D megna H articas C fertans E feeting /td> <td> Project Number 60142718-448602 -004 Test Species (Circle): D magna H articos C tentans E footing L variagenia Other (Speciety): PH</td>	Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify): Temperature PH	Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify): Part Par	Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify):	Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify): Phase Phase	Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify): Ph	Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify):	Project Number_60147216-445602 - 0074 Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify): Test	ct Number 60147216-445/002 -003 Test Species (Circle): D. magna H azteca C. tentans E. foetida L. variegatus Other (Specify): ent	Project Number: 60147216.4466002-004 Test Species (Circle): D. magna H. azteca C. tentians E. foetida L. variegatus Other (Specify): Sediment	Project Number. 60147216.445\(Project Number, 60147216-445 (002 - 004) Test Species (Circle): D. megne H. azteca C. tentans E. foetida L. variegatus Other (Specify): Sediment A	Project Number 60147216.446/002 -004 Test Species (Circle): D. megna H. azteca C. tentina E. tentina E. variegatus Other (Specify): Project Number 60147216.446/002 -004 Test day G. Control Contr	Project Number 60147216.446 (022 - 0.074) Test Species (Circle): 0. megne H. azfoca C. tentans E. foetide E. variegatus Other (Specify): Project Number 60147216.446 (022 - 0.074) Test Species (Circle): 0. megne H. azfoca C. tentans E. foetide E. variegatus Other (Specify): Project Number 60147216.446 (022 - 0.074) Test Cape C.	Project Number 60147216-445602-003-1 Test Species (Circle): D magna H azteca C tentans E foetda L variegatus Other (Specify): Sediment A	Project Number 60147216.445(002 - 004) Test Species (Circle): D. magna H. azteca C. tentans E. tentda L. variagatus Other (Specify): Form Seed Road 1.6	Project Number 60147216.445602 - CO+) Test Species (Circle): D megna H, azteca C, tentans E footida L, variegatus Other (Specify): Test	Project Number 60147216-446/02 - Co-74 Test Species (Circle): D magna H, aztoca C, tentans E, foetida L, variogatus Gther (Specify): Test	Project Number 60147216-446/02 - 0.04 Test Species (Circle): D magna H azteca C tentans E foetide L variagatus Check Species (Circle): D magna H azteca C tentans E foetide L variagatus Check Species (Circle): D magna H azteca C tentans E foetide L variagatus Check Species Circle Ch	Project Number <u>60147216 4466022 - Co. 1</u> Test Species (Circle): D megna H articas C fertans E feeting	Project Number 60142718-448602 -004 Test Species (Circle): D magna H articos C tentans E footing L variagenia Other (Speciety): PH

MR=NOT Recorded

0 127/38/11 E 0 NVT 7/18/11 E 0 000 FET KE 10 | 12/11 WP

CHEMICAL DATA

	ultdil			V	20	<u>ر</u>	သို	ટ્સ	od	2	20	17 C	8 8 8	0	8		K	27	14	7	78	7	7	8	170	100 101 101 101	8	1	
[1]21	. I			ත	19	22	2	27	27	22	22	쿮	8/1/11	<u>2</u>	2			56	2	8	1	2		2	124	- E			
1)21101 00	(3)		ıre	4	18	2	22	40	3	27	7	<u> </u>	11/9/8	1505	2] 2	X	25	2	3	G	n	7	$\bar{\sigma}$	E	81311	1735 Pal	N.	
	ΙI		Temperature	Test day	11	22	77	30	S	R	30	え	=	8	 	Temperature	Test day	12	2)	27	12	0	7	2	=	112/11	0)0	N. A.	
	Other (Specify):		√ Ten	BT	16	23	22	23				DHI	8/4/11	1020		Ten	S T	23	77	76		21	2	તેં જ	Ĭ'n	a lille		€¥	
	اأسرا	/		4	15	23	-	1		23	2.3	120	813111	_	27		α	22	8	<u> </u>	cλ	३ ह्ल	23 C	0		2	<u>و</u> 23	Amr.	
	L. variegatus			บ	14	20	ดีต		 			1 120	8 in al	1 5050				21 🏂	19			,		1	Ol ha	0	0900	3	
	foetida L.	ļ		ر	20	63	5.5	5	100	ح	5-	ک 4	8kju 8	noc lo	र्ड		Æ	27	Q	7	(6)	S	6 3	So.72	L	815/11/819	ं ऽध्ध	MEN	_
	Ē			ත	19	6.4 G	_	1	7	4.8 4.	, Z 4.	5 6	8/11/1/8	1405 140	*		9	_	0	S	ъ 5	.4 S	<u>ه</u> .	SS	9	Į	<i>[</i> 2	A A	,
	C. tentans	.	(mg/L)	4	<u>∞</u>	6.3 6.	5,4		<u> </u>	-0	٦ ري		_=			mg/L)	B,		8 6	12	8	0 4	9 4	5	9	11 <i>8</i> 11	rioni	<i>ر</i> اگ	
	l l		Dissolved Oxygen (mg/L	day	17	<u>(3</u>	3	6.7.9	3 48	D 7	بة: ا	(J	111 8/6/	55 1510	7 ₩	Dissolved Oxygen (mg/L)	þlay	1	6.2 5.		7	8 50	7.28	8 4	_	11 8(3			
· 4	H. azteca		ved O	٠ ١		ئ رض		S				<u>ගු</u>	1118/8/11		Am-	ved Ox	- Testplay			500	200	4	4	4	7	12/2/1	Q (A)	S NH	•
	magna		Disso	الد	ᅥ	5 6.3	, 6 S, 3			1 5.9	6,0	S	11/4/18	201	DW	Dissol	J	23	S 62	5.6	بر ا	r, L	05.7	5 5	5	1 m/8 V	01600	\$,
- 13	Circle): D.		-		13	53	7	4.5	4.5	4,4	2,6	ħ	1 કાંગા	1545	NC		${\mathfrak D}$	22	<u>.</u>	<u>က</u>	ග්	Ś	7	က	ഗ	(N) (O)	7020	\$	
- 11	\sim 1	-		ا ل	4	6,2	5.2	5.3	5.	3.	2,0	10	- ca	88	3			2	6.3	3	55	2.	S S	м Б	S	ह्योब ॥	0000	3	-
:	Test Species			ال	2	گري	7.8	7.8	5,8	27	<u>.</u>	7	8/8/2	1400 MOG	B		A	27	(A)		Σ. Σ.	<u>ي</u> ف		7.2	<u>9</u>	200	6	A STAN	
	Le Le		,	20	9	9.	7.7	7.8	9, 2'	13	7.3	٥	8/1/11	\rightarrow	4	•	٥	56	Š	ائم.	2	اَ	59	ارم:	2	2	2	3	
-	£		1	day A	18	30	7.8	2.8	7.7	7.	12	ھ	8/6/11	503	₹)	N Co	25	6,0	5	こ	၃ ခ်	a N	10.7	و	महास्र	9년	*	SISI I
	005-℃		된	lest o	-	X	7.7	80	19864	9	9	9	8/4/W SP/X	S	4	핍	Test day &	24	60	12	•	20,3	6,9	ر ص	و	<u>चि</u>	16 10	N.	D.
	16 445		,	7	16	~ %	3.8	1.8		1.8	97	- 1		1030	NO.	.	J	23	رخو	28	1,8	20,00	7.5	ى1	16	<u>.</u> =	0,10	\$	2 XX
	601472		1	4	12	<u>ි</u>	7	8	7.7	7	٩	<u>9</u> .	<u>8</u>	0905 1545	R	ļ	B	22	ന് യ	_		() (() ()	_	100	9	Zisjinglii	\mathfrak{A}	PATA.	٠
-	umper) :	4	ā	<u>т.</u> 2б	4,8	بر ف	77	0 t	૭	n eje	0902	3			2,1	00	4	00	e n	4	1.0	ڡؚ	Sla 1 9	050 MB30	3	
	Project Number: 60147216 445 002-007		Test	sediment		Form Sed	APG-05/09	APG-04/07	APG-22/23	APG-15/21	APG-06/24 17,0	Meter	Date	Time	Initials	Test	sediment		Form Sed	APG-05/09		APG-22/23	APG-15/21	APG-06/24	Meter			Initials	
Ľ		L		Ű		<u>ш</u>	₹│	₹	₹│	₹	₹∥	Ž	_تم	<u> </u>	C	-69			ፎ	4	4		4	AP	ĕ	Date	Time	Ē	

Adjusted temperature of both up.

OS IIISII E

Page An of D

CHEMICAL DATA

Ces 10/12/11 Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify): Project Number: 60147216-445-602-60-7

		Hd		Dissolved Oxygen (mg/L)	Temperature	
Test		Test day		Test day	Test day	
	28		28		28	
Form Sed \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$.Q		843		18	
APG-05/09 8.0	0	-	h'S		র	
APG-04/07 3 O	CX		5,5		ā	
APG-22/23 6.	<u>િં</u>		5.0		Ta	
APG-15/21 7	12		84		ā	
APG-06/24	n, u		5.6		74	
Meter	و				04	
Date	Shin		Kliuli		8/16/11	
Time	300		9000		0189	
Initials	18 2		168		3	

Page 200 12

OVERLYING WATER CHARACTERIZATION

att: 62m2 11/10/11

٤	lardness	Hardness (mg/L CaCO ₃)	aCO ₃)			Alkalinity	/ (mg/L CaCO ₃)	;aCO ₃)			Condu	Conductivity (µS/cm)	S/cm)			Z	NH ₃ (mg/L)		
0	. 7	14	21	27	0	7	4	21	27	0	7	14	21	27	0	7	14	21	27
Form Sed Sy 1	124	10.08 10.04	±2	75	52	116	950	35	qi	125	27.0	228 18.10	انماز	90.	<1.0	<1.0	<1.0 ++TØ		5j,0
APG-05/09 54 1	041		98	130	ΐτ	148	127	٦	1	155	120,0	11	292	328	<i.0< td=""><td>61.0</td><td>2.4</td><td></td><td><1·0</td></i.0<>	61.0	2.4		<1·0
APG-04/07 54 10	801	128	96	1.12	38	100	92	71	16	137	453	354	242 286		<1.0	21.0			Q11>
APG-22/23 36 (80	4	56	ಡಿ	الد	001	5	cO.	3				256 276 <1.0	3 1 6		<1.0			2,8
APG-15/21 48 1/	07	84	و	8 ¹ 4	48	88	43	09	78	168	472 5640 295		198	233 <1.0		4.0 2.1		971>	01×
APG-06/24 48 [011	83		12 C	25	22	31	a U	78	153	386 3930 305		চ ন চ	0.1> 948		<1.0 <1.0	~	21.0	V.1.0
								-											
	_											. •							
						,											,		
							1												
Meter# Titr Ti	14-	<u> </u>	上上	<u>+</u> 11	7,47	411	北	1	井口	Ñ	7	15	15	15	[#dH	HA #1 HA*1	il	1441	(*
Date: 4 19 11 7 120 11 8 12 11 8 15 11 8 15 11 1 120 11	1 zio 11 E	312/11 8	319/11/2	3151	मंत्रोत		ह्यां प	899	Rish	मोखोत	7/200 [1]	Bízin	899	8115111	81244 81944 81544 7/20/11 81214 81314 81514 7/20/11 81214 81214 81314	1/26/1	812411	Sigh	Sinsla
Time: NOO 12	1420	0400	0840 0900		9	1430	83	0840 04B0	0060	2017	1430 0900	000	0846 0900 1100	0900	811	1430	1420	0881	90£1
Initials: NOT N	NG	ofter of	Offer o	88 858	ら ら	NCT	2 tg	35 k	3.8 3.0	NG NUT	NLT		क्य स्टर ने र्	ය. දැන්			25.fc		3 3 3

ONLT 71276/11 Oct 10/12/11 F Oct 115/11 E

Page Agof 13

DAILY TOXICITY TEST LOG

ce 10/12/11		Feeding Date & Initials		None 7/19/11	None KB	None Ke	None Starz	None K	None (185)	None Theli	None 1/2	None \$3	None Name	None D M	None 7 30 11	None 2 (45)	None 9/1/11	None 8 2 11	
DAILY TOXICITY TEST LOG	Project Number: 60147216-445(002-004) Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify):		Chambers filled with sediments and overlying water placed in test bath @ 1330 - i445 -1 Water drip started @1500 approx. drip rate = 2.8 m 5 inin	1 Test Organisms added @1430 1430 CT = 33 U to 22.8 C		ORang@Ost. to 33-t	3 CT = 31.9 Range 31.4 to 33.2 'C	4 CT = 31.8 Range Bart & 108 H. & 32.6°C	5 CT 931-4 Range 32.8'C	Range 33.3 to	7 CT = 21.6 Range 21.8 to 22 16.C	8 CT = 32.0 Range 31.3 to 32.4 3	9 CT = 21, 4 to 21, 8 'C	10 CT = 21, 6 Range 20, 8 to 22, 2° C	11 CT = 2415 Range 21-24 22-0 @	Range 2	13 CT=32.4 Range 21.8 to 23.8°C	14 CT=72,2 Range 21.9 to 22.6 °C	QX 1 21 1 E B num for 1/8 1/30/11 to Brum for 2 1/30/11 to Boundary 2 1/30/11 to

C-72

باعراف نم

DAILY TOXICITY TEST LOG

CAS Gam 1/30/11	Date &	2 00	D.M. 11	\$ 100 mg	#B 8/6/11	AP 8/1/1/8	Berwer sigh	رب 8 ع ن	18 8 E	cu far AB	ट्या हिन्द्र होत्या । स्रोप्ति ।	\$ 00 mg	अस्मिता	SATE STATES	3/00/18	
	Feeding (None)	None	None	None	None	None	None	None	None	None	None	None	None	None	None	
Project Number: 60147216-445 (02 - 007) Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify):	Test Comments	15 CT = 22.4 Range 21.9 to 22.6°C	16 CT = 12,4℃ Range 31,4 to 23,2℃	17 CT = つみで Grange コレム to コスコトC	18 CT = 21.14 · 6. Range 31.3 to 32.2.6 € 21.8°C 21.14 to 22.2.0	19 CT = 21,4 °c. Range 21,2 to 22,2 °c.		CT=שו.סיכ Range عב,ין to אינים במו.סיכ Range בב,ין to אינים במו.סיכ במו.סיכ	CT = 別, 各, C. Range コ, ス to コスス・C	23 CT = 21. & C Range 'Al' A to Al. B · C	24 CT = 21. 4 C Range 21. 3 to 32. 3 · C	25 CT = 21.4 CRange 21.2 to 21.8°C	26 CT = A1, 8, C. Range 21, 3 to 22. W .C.	27 CT = 28.6 Range 28.1 to 28.3	Composites of waters collected for characterization @ 0900 on 8\15\1\1 Adults collected from sediment chambers and transferred to clean water @ 8\1\1\1\1\2\1\1\1\2\1\1\1\1\2\1\1\1\1\2\1\1\1\1\2\1\1\1\2\1\1\1\2\1\1\2\1\1\2\1\1\2\1\1\2\1\2\1\1\2\1\2\1\2\1\2\1\2\1\2\1\2\1\2\1\2\1\2\1\2\1\2\1\2\1\2\1\2\1\2\1\2\1\2\2\1\2\1\2\2\1\2	ONLT 8/4/11 E 3 cs osjoq'n wP 3cs wisin E @ AP 8/7/11 WP 4 cs osjoq'n wP 3cs wisin E
لثا	L	<u> </u>	<u> </u>	<u> </u>		. ,	<u> </u>	.73		<u> </u>		<u> </u>	<u></u>	L <u></u>		

C-73

Page: 1606 FCETL QA Form No. 15 Effective: 5/90

		wiolizhi
	SUBJECT: DAILY LOG	ox: bunulial
ALL ENTRIES MUST BE INIT	ALLED WITH DATE AND TIME:	
Project Number: 6	0147216-445-602-007) 8/16/11 @ or	IK CU for RBN
formulated	A few lumbralus crading on se B few L.V. Crawling on sed suf C few L.V. Crawling on sed surface	d sustace face
APG-05/09	f few ly visible B few ly visible c few L.v. visible	3 wood plant present
APG-04/07	A few lumbrachus virible B faw L.V. visible C few L.V. visible	7 woody/plant paterial present in
APG 22/23	A Med th of L.v. Visible B med th of L.v. visible C med to of L.v. visible	
APG 15/21	A lots of L.V. Visible B lots of Combridge Visible in C lots of L.V. Visible	ti bes
NPG 06/24	A few L.v. visible B few L.v. visible C few L.v. visible	2 woody /phot material prese in sediment
	•	

Page: 1200f 1 FCETL QA Form No. 15 Effective: 5/90

Study # 6014:	1211/2 445	(002 001) SUB.	JECT: DAILY LOG	·	w.r.vu	12/11 mußoli
ALL ENTRIES MUST	BE INITIALLED V	VITH DATE AND TIME: 8	3/16/11	•		
	1				g.·	21.
Sediment	Replicate	Start Time	EndTime	Initials	invials	+hitsals
formulated	Α	0825/1530	1130 /1425	F/A		
Sediment	13	1135;1305	1200;1730	AS		
	C	1350/1500	237453 /1610	JM/DO		
NDC OF A	A	00935	1435	1.	<u> </u>	
ARG-05/09	В	1035-1310,133	1755 6-1410	Ane.		<u> </u>
	C	1415	1800	AR		
					b	
APG-04/07	A	0825/1616	1135/1815	w/the		
	3	1430	1845	N317		
<u></u>	C	1142/12	1245 1836	Drills	18300	KEND.
Apg-22/23	Α	1010/1630	1860 /1835	NCT/AP		
usr Cr (All Jes.)	3 #		1245/1830	as 🗽		
	Č	1145/1315	1845	NY		
	ļ. <u>.</u>			71		
APG-15/21	A	1455	1700	JA 88		
· · · · · · · · · · · · · · · · · · ·	B	0825	1130	DM		
		1 100	1013			
APG-06/24	A	0825	1125	1 1 1 6		
	В	1130;1305	1200 1830	下		
	Ċ.	1015	1325	1.3N		
		· 1.			1 miles 4 M	
					ETK.	
					3	
	<u> </u>		or p			1.

				<u> </u>		
	<u> </u>			<u> </u>	!	ļ
	 	· · · · · · · · · · · · · · · · · · ·		<u> </u>	<u> </u>	
		1		7	1	. !!

1 8/16/11 E

Baston E C-75

APPENDIX C

Test Round 2 Laboratory Data Sheets

Page 1 of 12 FCETL QA Form No. 051 Revision 4 Effective 1/96

TOXICITY DATA P	ACKAGE COVER SHEET
	eu jojiziji
Test Type: Chronic	Project Number: 60147216-445-093 (008-012)
Test Substance: Sediment	Species: <u>Lumbriculus variegatus</u>
Overlying Water Type: Filtered Horsetooth water	Organism Lot or Batch Number: 11 - 018
Concurrent Control Sediment Type: Formulated Sediment	Age: Adult (adult) Supplier: Bayou Aquatics
Date and Time Test Began: 7/24/11 @ 1430-1500	Date and Time Test Ended: 8 23 11 8 24 0 0730-1800 0745-1930
Protocol Number: USEPA (2000)	Investigator(s): AN AS NIX WHO AS AP 16 DM
Background Information	
Type of Test: Continuous Drip Renewal	pH Control?: Yes (No) If Yes, give % CO ₂ : N/A
Test Temperature: 23 ± 1 °C	Env. Chmb/Bath #: 43 Test Chambers: 2.5 gal glass aquaria
Test Sediment Vol.: 1000 ml Overlying Water Volume: ~2	Number of Replicates per Treatment: 3
Length of Test: 28 days Number of Organisms per R	eplicate: to maintain > 5:1 sediment organic carbon:org. dry weight
Type of Food and Quantity per Chamber: None	Feeding Frequency: NA
Photoperiod: 16h Light: 8h Dark	Light Intensity: 9.3-93 ft-c.
Overlying Water Characterization Parameters and Frequency:	Hardness: <u>Day 0,7,14,21,27</u> Alkalinity: <u>Day 0,7,14,21,27</u>
NH ₃ : <u>Day 0,7,14,21,17</u> pH: <u>Day 0,7,14,21,17</u>	Conductivity: <u>Day 0,7,14,</u> TRC: <u>NA</u> 21,27
Test Concentrations: Formulated Sediment, APG-02/08, AP	PG-11/13 APG-14/10 APG-12/20 and APG-01/02
7	O 11/10, 71 O-19/10, 71 O-12/20, and 77 O-01/03
Reference Toxicant Data: Test Dates: NA to	LC ₅₀ or IC ₂₅ (Circle):
Hist. 95% Control Limits: NA to Metho	d for Determining Ref. Tox. Value: —
Special Procedures and Considerations:	
Sediments will be homogenized before use in testing.	
Hard/alk, pH, cond, and NH ₃ of the overlying water will be me	asured on days 0, 7, 14, 21, and 27
DO will be measured daily and is to be maintained at ≥2.5 mg	9/L
Overlying water renewal rate at approximately 2 volume addit	~2.8 * ions (4000 ml) per day, or 2.3 ml/min
	6
Study Director Initials: F20 Date:	1/25/11

Owotlashie ow iolizhie ow ilishi ce

SEDIMENT/SOIL PREPARATION

Project Number: 60047216-445-(008-012)	11/21/01 us
Artificial soil	QA: Sum 11/10/1
Constituent/source	Amount added (g)
Rinsed Medium Grit Silica Sand	8500
Clay/Silt Mixture (ASP 400)	1500
Dolomite	5
Humic Acid (Sodium Salt) (Lot #C10-034)	1
Sieved Sphagnum Moss	220
Calcium Carbonate (Lot #C02-064)	109
Notes: Medium grit silica sand was rinsed with deionized water and baked overnight in 105°C	oven prior to sediment mixing.
Sphagnum Moss was sieved using a 2 mm sieve prior to mixing. Calcium carbonate added to	

Soil/sediment	FCETL#		, Homog	enization	
Compediment	FCETE#	Date	From	То	Analyst
Form. Sed	N/A	7/25/11	0933	0936	ധ
APG-02/08	24816	7/25/II	1023	1026	pr
APG-11/13	24810	7/25/11	1008	(01)	ယ
APG-14/10	24814	7/25/11	0941	0944	Am
APG-12/20	24811	7/25/11	1058	HOI	Am
APG-01/03	24817	7/25/11	1043	1045	cu cu
	-				
	• • • •				

Page: 3 of 12 FCETL QA Form No. 15 Effective: 5/90

SUBJECT: DAILY LOG
ALL ENTRIES MUST BE INITIALLED WITH DATE AND TIME:
Preparation of 3% organic Laboratory Formulated Sediment 5/27/11 @1530
-Rinsed ~101 Medium grit silica sond with delenized water until
hinse water was clear. Placed rinsed sond in baking dishes and baked Overnight in 105°C overno Sand was removed from oven and allowed
to cool prior to mixing.
Mixed together the following materials in a oxogal clean burket: Binsed t baked Medium grit silica sand - 8500 g Clay silt mixture (ASP 400) - 1500 g
· Humic Acid (Lot#C10-034) - 19
Sieved (using 2 mm sieve) Sobogoum mose = 2200
Sieved (using 2 mm sieve) sphagnum mass - 220 g - Mixture was shaken for ~15 min to thoroughly prompine multiplicate.
Soil pit-3.4
-Added 108.99 CaCO3 (Lot*co2-064) to ~ 241bs formulated Sediment to mise the soil ptt.
Soil pH - 6.8
Ocu sizzhi E

BIOLOGICAL DATA

Test Species (Circle): H. azteca C. tentans E. foetida Project Number: 60147216-445-093(008-012) Other (Specify):

			lni	tial		Final
Treatment / Sediment	Rep.	Wet Weight Unblotted worms (g) ^a	Calculated Wet Weight Blotted Worms ^b	Calculated Dry Weight Worms°	Sediment Organic:Dry Worm Weight Ratio ^d	Wet Weight Unblotted Worms (g) ^{a,e}
	Α	2.6				1.5
Form. Sed	В	2,5				0.4
	С	2.6				1,5
• .	Α	6.7				1,4
APG-02/08	В	6,7				1.9
	С	6.7				2.3
	Α	(0.7				4.5
APG-11/13	В	6.7				2,5+1.4
	С	6.7				1.5
	Α	(0.7				1.7+1.2
APG-14/10	В	(, 7				3.7
· 	С	10.7				3.9
	Α	Ψ. J				2.8
APG-12/20	В	6.7				4.6
	С	r.øl				1.6
	Α	[.0]				2.0
APG-01/03	В	6.7				2.6
	С	[] V				1.5
Date		7/26/11				8/24/11-8/23/2
Time		1430 -1500				0825-1620 + 0800-1
Analyst		A81 NG	·			CU

a Measured Using Balance Number AND Top Loader

b Unblotted wet weight of worms divided by 1.33

c Ratio applied to unblotted wet weight of worms:

6 Sediment organic content calculated NA 18001130

c Organisms depurated from 12311 + 124110000 to 11400 124111 125110000 (water/holding vessel)

a

Project Number: 60147216-445-(002-007, 008-012)

Fage of 12 Au 1012/11 (AA: HAM (1/10/11 Test Species: Lumbriculus Variegatus

	<u>.</u>		Initial		Final	
Sample Name	Rep	Wet Weight of Unblotted Worms (g)	Est. Blot Dry Wt. of Worms Added (g) ^a	Est. Dry Wt. of Worms Added (g) ^a	Wet Weight of Unblotted Worms (g)	% Recovery
	Α	2.6	1.95	0.23	1.5	58%
Form Sed	В	2.5	1.88	0.22	0.4	16%
·	C ·	2.6	1.95	0.23	1.5	58%
	Α	6.7	5.04	0.59	1.4	21%
APG-02/08	В	6.7	5.04	0.59	1.9	28%
	С	6.7	5.04	0.59	2.3	34%
	Α	6.7	5.04	0.59	4,5	67%
APG-11/13	В	6.7	5.04	0.59	3.9	58%
	C	6.7	5.04	0.59	1.5	22%
	A	6.7	5.04	0.59	2.9	43%
APG-14/10	В	6.7.	5.04	0.59	3.7	55%
	С	6.7	5.04	0.59	3.9	58%
	A	6.7	5.04	0.59	2.8	42%
APG-12/20	В	6.7	5.04	0.59	4.6	69%
· · · · ·	С	6.7	5.04	0.59	1.6	24%
	Α	6.7	5.04	0.59	2.0	30%
APG-01/03	В	6.7	5.04	0.59	2.6	39%
	С	6.7	5.04	0.59	1.5	22%

^a Calculated by dividing unblotted wet weight by 1.33 (USEPA, 2000) to obtain blotted wet weight and then multiplying estimated blotted wet weight by 0.117 (wet weight to dry weight conversion calculated by FCETL during previous studies)

Note: Values are rounded to two digits; some slight differences may be found when applying conversion factors to rounded values

Obrueons 11/10/11 at

CHEMICAL DATA

Proje	ict Nu	Project Number: 60147216-445,003 (008-012)	14721	5-445 _{.0}	<u>as</u> 608	(210-8	$\vdash \vdash$	Test Species (Circle):	s (Circle): D. magna		H. azteca	C. tentans	l II	E. foetida L. variegatus	. variega		Other (Specify):	ecify):	O.	OA; 64m 11/10/11	
					7					ے ا	Seolver	Dissolved Oxygen (mg/l	/bw/ us				:	ie.	Temperature	<u>ə</u>		
Test	*	¥	8	7	Test day	≥ 27	7	Ø	⋖	σ	J	TesAday	22	Ŋ	4	k.	\bar{x}	J	Test day	B	J	Œ
sediment	Jent 	0	-	2	3	4	2	9	0	1	2	က	4	5	9	0	1	2	3	4	\$	9
Form Sed	1	۱۳۲	77	S O	0.8	7,9	0. 0	50	90 -9	043	 -29	6.3	5:8	59	5.8	22	73	22	22	22	23	g
APG-02/08	Τ'	1	7	7.17	2.6	17	7.0	ر.	1. 0.	5	6	0.3	ñ	グチ	5.8	22	23	22	22	22	23	48
APG-11/13	_	1.5	70	 	7.3	7.7	2	7.3		Ø 5	2.4	5.4	L.	5.3	5,0	22	A	22	23	23	23	3 3
APG-14/10		7	7~	1.3	7.5	13	7	7.7	೨	3	5.7	88	ナス	4.9	4.8	22	23	22	22	22	23	60
APG-12/20	2/20	9	3.3	-1.	7.4	2,5	7	7:5		6.5	ž,	5.0	45	4,6	4.6	22	रर	22	22	22	\$3	23
APG-01/03	17/03	+	ļ	4.	7,4	7.3	20	ہک	5	0 3	8.9	Ьξ	りか	5.3	4,9	77	K	22	22	22	33	33
Replicate	ate	4	ď	J	¥	22	9	4	6.	B	J	4	20.	J	4	A	B	ป	A	T	J	4
Meter			٤	Ñ	9)	1.2	<u>e</u>	و.	ιζ	 	12	5	2	N	7	141	FA	1291	1hd	170	F	D41
Date				1/20/17/1/2017		11%2	73	8/1/4	12/2	ACS L	1/88/	2914	Į,	1/3/11	8/1/11	122	Mrdi	7/20/1 V	7/28/ 47/29/ III	7/30/11	1/31/II	8/1/6
Time) 55		1045 1505		る	520	1115	36	1050	050/040	5051	120	1530	1115	1100	Sho	1045	1505	至	1530	1165
	,			7		28		2	N	82	J- IV	D.M	1	S.	Æ	NG/		NTZ.	MC	ð	Ž,	Æ
		-	1	1	占						۲		Oxygen (mg/L	L)			•	Ter	emperature	Ire		
Test	, t	Œ	ك	\ \	Tes Rday C	\ 	×	3	ćτ	J	7	TestSday				ß	U	Аī	Te st day			
sediment	nent.) -	8	ا	9	1	12	13	<u> </u>	8	6	9	11	12	13	7	8	اها	9	11	12	13
Form Sed	Sed	00.	- ô		<i>O</i>	~- ~~	1.8	8.9	9	2'8	8.9	60	0.0	6.0	6 .l	8	23	23	33	77	22	3
APG-02/08	i i	1	2	28	-	7	1:1	ب او	77	5.8	2.9	$S_{i}(n)$	2,0	5.7	5.5	33	23	23	20	22	22	<u>ع</u> ز
APG-11/13				7.4	7.3	3.	L J	2,	'n	5,5	H'5		5.4	5,4	5.5	23	23	23	CC	22	22	7
APG-14/10		7.5	12	7.5	75	7	7.4	2,5	5,2	5.5	9.5	4.8	5,3	2,5	رغ ج	C C C	23	23	23	22	22	΢
APG-12/20		┝	جَ	7.7	75	7.5	7.4	7.5	الزيا	5.5	8.5	5 5	5:3	53	<u>ئ</u>	E	23	23	3	22	22	31
APG-01/03		ι,	2	7.6	7.5	7.5	7.5	٦,٢	<u>10.</u>	5,1	ۍ چ	Ś	5.7	27	5,6	88	23	23	22	22	2	-
Replicate	cate	ය	ں	¥	Q	ပ	A	ଫ	23	Ú	7	\mathcal{Z}	J	⊲ t	Z.	5	J	A	B	၁	4	Ø
Meter		- 2	5	91	2	ھ	ھِ:	ج:	B	5	S	り	2	5	Ω,	ווּים	04)	04/	Dul	041	ਨ	4
Date		Blalu 8 311	t .	13/6 11/H38	-	18/6/H	8/7/11	\$\s\n	કાંત્રો	813 11	<u></u>	" <i>19</i> 8	11/9/8	11/1/8	1/8/8	8[z] u	11 818	8/4/11	8/s/n	8/6/11	8/1/11	<u>K</u> SI
Time		34.6 1545		5511		1455	1355	SQI	0910	1545	(155	550	1500	1355	165.	0160	及	1040	888 888	1500	1350	183
Initials		3	\vdash	DM &	Jus J	₽	#	8	3	NUT	'nΩ	Amo	94	P _P	\$	3	NCT TJV	DMO	A SE	£	SE	D
i				3/0	7	31/16		Ac Griss	Talester Ta	u												

ONE MATHIE GOVERNUT MANNE CHE SMIN E COUNTRINE

cas 10/12/11

CHEMICAL DATA

Project N	Vumbe	Project Number: 60147216-445-983 9 (508-012)	216-445	900	08-012	H	Test Species (Circle):	es (Circ	l1	D. magna 1	H. azteca	C. tentans	шi	foetida [L. variegatus	ll	Other (Specify):	ecify):	O.A. Gran	انا کسکر	1101
									-												
				Hd						Dissolv	Dissolved Oxygen (mg/L)	gen (mg	/L)				Tel	Temperature	nre		
sediment				Test day	ay			_			Test day							Test day	À		
	14		16	17		_	\neg	14	15	16	17	18	19	20	14 🏲	15	. 16.	17	18	19	20
Form Sed	ò	100	280	99 O	83	833	∞	ē	و	6.0	0,0	N S	56	6,3	ğ	9	21	2	21	4	<u>a</u>)
APG-02/08	3 7.6	, 7.5	7.7	1,8	7.4	-17.5	3.7.6	5,5	S	5 5 6	6.4	5.0	5.7	S. ?	21	22	21	57	121	17	7)
APG-11/13	3 7,4	1/24	ነ.ተ	٦,٦	1.3	りつい	C7	53	7.4	15.7	4.8	5.1	5,1	S.1	21	23	12	23	21	10	, C
APG-14/10	4.5	5 7.5	1.4	7.5	7.6	3 7.4	7.0		र्	7 6.7	47	3.8	13.8	48	_	32	be	2i	21	93	જો
APG-12/20	3.60	6 75	5/5	1,6	ゴフィ	6	376	15,0	4.0	24,8	4.9	14.2	4,0	14.6		22	91	21	21	1/1	ब्रे
APG-01/03	4.5		1.5	٦	7.	7	7 7 7	53	J	09 0	5,4	4.8	<u>.</u>	<i>S</i> 99	ë	23	lo	2	12	1)	3)
Replicate	J	U	8	ථ	4	Œ	<u>ا</u>	ပ —	U	8	ل	A	8	Ð	ပ	Ø	છ	ل	J	2	B
Meter	بو	160	یر	્ર	<u>_</u>	اد	160	R	b	૭	4	S	(ور	S	541	I 장	Dell	X	(hd	541	Diji [
Date	814	Stalm From Stutu	Stulv.	Slizili	18[13[11	S(III)	II Blidii	11 8 4 11	Ø	1 Shilt	1/21/8	11 /2/19/11	<i>14/18</i>	11/5//8	849		8/14/1 Spull	1/2/18	યોદ્યાં ફ	初州	81311
O Time	8	080/00po	one !	01911	1740	ol Mab		Ö		0410] 01,31	아	1,210	8	0900	ුදුනු	010	ପ୍ୟା	рни	ા ૃા	જાાઇ
S Initials	3	\$ \$ \$	50¥ -	1,101	B	MG	188 B	ASAN CO	4m	4	NG	X	MA	1 #B	3	YWWY	€ ₩	J.W	X	M	#S
¥00E				ρĤ						Jissolv	Dissolved Oxygen (mg/L	en (mg	/L)				Ter	Temperature	ure		
sediment				Test day	ay						Test day	ıy					1	Test day			
	21		23	24	. 25	56	27	21	22	23	24	22	56	27	21	22	23	24	22	26	27
Form Sed	Ö	O. 8.0	Θ	7.9	0.8	8.1	S. O.	(C)	0.9	(9)	せら	ふし	6.3	5.9	کدر	H	S	12	17	23	21
APG-02/08	ſ	67.S	7.5	<u>5.1.5</u>	≫ 	7.6	13	85. 3	5.3	- 04	3 5.c	H.S	9'5	5.0	33	99	٦	ઝા	ارد	23	3)
APG-11/13		ب ٦.	7.3	£,5	7.5		ر و	7.8	0		5.5	43	5.4	4.>	ረ	K	Ö	ઝા	ملا	22	2)
APG-14/10	<u>'</u>	51.3	٢	7,3	7,3	7.3	<u>ئ</u>	<u>17</u>	1.4	ひ <u>プ</u>	5.3	HH	ŝ	4.7	23	A	<u>0</u>	ã	ন		3
APG-12/20	디	57.3	73	ر ک	コピ	7.3	<u>ت</u>	% 5	7	0,7	נע	0	2	વ.વ	22	23	0	ત્ર	3	20	5
APG-01/03	亡	57.3	7.3	7.3	7	17.4	75	ر ج ک	4.9	J	15.2	५४	ر اي	£.3	22	g	The state of the	21	الگ	23	2)
Replicate	4	Œ.	U	A	W	C	4	J	8	J	¥	B	C	A	A JA	8	\circ	4 2	æ	V	Þ
Meter	ابا	عار	1,0	ودٍ	ڃ	و	ور	S	S	ហ	Ŋ	N	Ŋ	بى	建设	Ind	lh()	DH)	(hQ	120	ااءد
Date	(n ()	A L	19/18/11	118/118/14	KE	8ायो।	क्षेत्र १	18/16/11	III CIPI	ज/खांग	ा है। विभा	र्रह	812/11	शका	8/10/1x	11/12/8	8/18/10	Sinli	(R	श्या	wirek
Time	SSS	5 1450	NIR	3	15.50	irk	9503	ည်	-	S NR	2291	1583	. ož	1650	9(8)		NY	loto	38		16.7c
Initials	SS	2 (8	Karey	& 7	À	3% \$	£	ZA.	ss2	Pmy/	₹ 8	Ŋ	3¢	\$	B	ક્ર	₹ {	Are	Z	30 20	\$
A Adi	usica	A Adjusical temperaturic of bath up	zicit.	of bosh	t Go		0 2m 8/14	अं।या	35, 40 H	100	9	Sheln	<u>ن</u>	@ &		8/19/11/E Wiedadne) res	345			
							(2)(0) 0)(S)	االكااد	- سا	ı								•			
)	:	J												

CHEMICAL DATA

Off: Som ulidy an colizin Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify): Project Number: 60147216-445-968 (008-012)

Temperature Test day 28 ã d \mathfrak{C} ल \overline{a} ત 7 Dissolved Oxygen (mg/L) Test day *6*.⊗ ∞ ق ئ ئ 100 () () <u>i.</u> 88 Test day Hd 8.2 APG-11/13 7.6 APG-02/08 7.9 APG-14/10 7.7 APG-01/03 7. 8 4 APG-12/20 Replicate Form Sed sediment Test Meter

8/23/M

更多

至00

Initials

emi⊥ 84 Date

8/23/11

Š.

3

Oco 1012111E

Page 9 of 12

OVERLYING WATER CHARACTERIZATION

Qys. 65mm 11/10/11

Project Number: 60147216-445-063(08-012)

Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify):

				*																.
								- 11												
0000		Hardne	Hardness (mg/L CaCO ₃)	CaCO ₃)			Alkalinity	/ (mg/L CaCO ₃)	;aCO3)		ŀ	Condu	Conductivity (µS/cm)	S/cm)			Z	NH3 (mg/L)		
<u>i</u>	0	7	41	21	27	0	7	14	21	27	0	7	14	21	27	0	7	4	21	27
Form Sed	ار. 4	80	وو	4.4	ગુક	=	83	ĠĠ.	70	85	8 229 रुग	184	091	981 siai		Z1.0	ب. شر	2h0	21.6	<i,0< td=""></i,0<>
APG-02/08	5	<u>ц</u> .	£		50	29	43	ગુ	7,00	52	#100 27-1-1 #100 27-1-1	244	123	126	132	4.0	ۍ. د.	S4.0	٠. د	<),O
APG-11/13	4	e	8	33	7.7	22	36	2,	ĝ	ŝ	125	150	901	104	<u>0,</u>	41.0	<u>;</u> +	ت:	1.5 5	4.0
APG-14/10	116	ر و	Ŧ	χ 2	-3	26	<u>.</u>	Ω Ω	ī	ي.	164 16368 237	237	143	ગેમાં	12	21.012		دا.0	۵۲,0	240
APG-12/20	48	98	, J	Ę.	Ç	39	81	<u>v</u>	43	54	313	320	649	133	ĵĝ	4.1.0 2.2		î.	51.0 61.6	24.6
APG-01/03	21	48	ં લુ	ಭ	J.	4	63	59	î Ö	52 20	172 17160 247	24.7	i82	150	159	41.0	٠ <u>.</u> د	1,0	21.0	21.0
-85						·	-		·)			1				1		
	<u>.</u>																	٠		
	<u> </u>	. !																		
Meter#	17.4	井	71.1	11/1-	<u>بر</u> 1	T. H- Tim		1,14	4,4	4,4	15	15	15	15	15	1#4	HA*1	1**	HP#(HP#1
Date:	A R	1/2% 1/20/14 8/2/11		Siliain	Sizdu	819 11 8161, 8122 11 72 11	ह्ययम	संयोग हाद्रीम	સાંહોત	Szzin	- 12% - 12%	Sizin Righ		8 16 11 8 12 1 1 2 4 11	॥ व्यव		3 1218	કાવા	8/9/11 8/16/11	
Time:	0930	0300	OBHO	, 0001	0250	0%0	0960		- 1	0520	1972 6900 ARYO 1000	5900	084D	. 000	0420		1.420 20.24		, 000 1	زدو
Initials:	NU	Ster 4k	45 ta	ध्य सेव चुल	3 3 3 3 3 3	NCT	es fer Trk	28 fg			NCT DVCT	\$ fg.	टास्ट टास्ट		377	25. Fct 12. LTJ	WEEDIN WA	52. E		ofer solar

Der fernit ioheln up Bestor nit ioheln E Bestornit ioheln E Bestornit ii)ishn ct

CT = 22.0°C Range 21.6 CT = 21.0°C Range 21.6 CT = 21.8°C Range 21.6 CT = 21.8°C Range 21.6 CT = 21.4°C Range 21.7 TO = 21.4°C Range 21.7	21.0% Range 21.6 to 22.4% 21.10% 21.8% Range 21.6 to 22.0% 21.8% Range 21.6 to 22.0% 21.4% Range 21.2 to 21.6% 21.2% Range 21.2 to 21.6% 21.2% Range 21.0 to 21.6% 21.2% Range 20.0 to 21.2%	None None None None None	8/2/2 8/2/2 8/2/2 8/2/2 8/2/2 8/3/2
14 CT = 30, 8 C Rai	と Range ユュューロ コ・ユン	None	8 व्

() ou oal an 1,1 E (2) ou 10/12/11 E

a rolizhi

DAILY TOXICITY TEST LOG

CA. Frankill E. foetida L. variegatus Other (Specify): C. tentans Test Species (Circle): D. magna H. azteca Project Number: 60147216-445-099,(CO8 -O(2.)

8 30 11 8 17 Li 8/19/11 STARB Sie Color からなら & for Pank 8 F F B Date & Initials 11/21/8 いるよう Shair Shair 2 2 2 अध्या 8 Str B 8/14/11 0182/B 912 <u>8</u> 8 S Ş 3 Feeding (None) None Organisms weighed (unblotted wet weight), Composites of waters collected for characterization @ t000 x 8/22/11
Adults collected from sediment chambers and transferred to clean water @ t400 Organisms weighed (unblotted wet wei transferred to clean sample bottles, and placed in freezer @ 4 24/11 from 0800 to 1400 and 1425/11 @ 0800 to 1136 CT = 21.0°C Range 20.6 to 21.2°C Comments 21.20 2,016 10 21.2 °C 31.0% Ĵ 21.2 (Range 21.0 to 21.6°C to 21.2°C Ĵ 2.76 2.76 0.76 to 21.6 °C 21.2 to 21.6 to 21,2 2 ಧ CT = 20, 8 CRange 20, 2 to \$ 2 2 4 3 4 3 21.0 = 26. V (Range 20. 2 2. 0. CT = 21,0% Range 21,0 N CT = 21.2 °C Range 20.6 CT = 21.0 °CRange 21.0 CT = 🔥 🖒 °C Ranged 1. 🔾 CT = 20. 9 (Range 24.8) CT = 20.8 % Range 20. 9 20. CT = Z(. 40 C Range CT = 21, 2 °C Range CT = 20, 84 Range CT = 21.4°C Range CT = 10占 Test Day 5 16 1 23 24 25 26 28 8 5 20 21 22 27

Form sed-most oras buried; some on top of soil ozlo8-oras jarvied Ocu volizlin E light or oras buried water muray out of sed in the first of stripping the transfer of sed in the oras seventy distripping beads out of sed in the oras of seconds Oct is listing

C-87

Test Termination

Sample	Replicate	Start Time	End Time	Initials	
Formulated	A	0730	1255	48	8123/11
	В	08 V	11 14	(a)	8123/11
•	С	1425/1500	1600/1625	de/AP	8123111
APG-02/08	A	O 800 120 1225	1220/1625	AG>	8/24/11
	В	1625	1945	culadas	1
	C	0815 / 1124	1210/1205	9/10	8123/11
APG-11/13	A	0810	1740	M3	8123/11
	В	1045 0800	1900/1220	DMIRS	8123/11/8
	С	0430	1700	NSN	8/23/11
APG-14/10	A	1440 0755,1420 1700	17380 1200; 1730	ARIAR (AR	8123/11/8129
	В	0740	1745	R'	81281 H
	С	0900 1235, 1345 -1645 0	1235/1645	ARYJM	8128\11 8124 11
APG-12/20	A	1950	1930	de /RON	8/24/11
	В	0740	1725	w	8/23/11
	C ·	0860/1300	1330/1110	AM.	કાટના 11
APG-01/03	A	0130	1850	wkg	8/24/11
	В	0125/105/1030	1700 /1805/1805		4 *
	С	1115/1315	1215/1630		8/24/115

Omoslaulie Dhecalaile Wp

APPENDIX D

Chain of Custody Records for Tissue Samples sent to Analytical Laboratory

~
<
O
ز
P

CHAIN OF JSTODY RECORD

Page ___ of __

•		V – VOA Vial 4 – NAOH, 4° O – Other 5 – NaOH/ZnAc, E – Encore 4°			Wastewater SL - Sludge Sroundwater SD - Sediment	SW – Surface Water SO – Solid ST – Storm Water A – Air W – Water L – Liquid P – Product	Remarks		·						_						u):	AECOM Toxicology Lab UNIVERSITY	to 80521 Hymnychiff		Temp blank	·	3
	Analysis Requested P - Pra	O - O - O - O - O - O - O - O - O - O -		Matrix Codes: DW - Drinkin	N- MW	S-WS S-TR SW-W	Lab LD														Analytical Laboratory (Destination):	AECOM Toxic	4303 W. Laporte Avenue Fort Collins, CO 80521	(970) 416-0916 (970) 490-2963 (FAX)	Sample Shipped Via:	UPS FedEx Courier Other	STEED VIII
	Analys	:		Si	sk	bont	Bod	×													Date:	Time:	Date:	Time:	Date:	Time:	
	on: FCETL AECOM		Chain of Custody Tape Nos.:		Report to: TAT:	·	e Matrix P	Dom viet Tissie 106												·	Received by: (Print Name)/(Affiliation)	·	Signature: Received by: (Print Name)/(Affiliation)	signature:	Received by: (Print Name)/(Affiliation)	Signature:	
	Project Location:	Field Logbook No.:	Chain of Cust	76939	Send Results/Report to:	Rami Naddw	Time C C G P A C C G G G G G G G G G G G G G G G G G	1000 X	0930	1000	1350	01	1435	1330	9111	1336	ins	1050	8	\ \ \ @	Date: 8[23] 11			Time:	Date:	Time:	
	Client/Project Name:	Project Number: (002-007)	Sampler (Print Name)/(Affiliation):	Christina Needhan I AECOM	Signature:	Christina Needham	·	Form Sed A 8/17/11 10	8 13	(S)	1 til 3	ABS-05/09B 8/17/11/11	Rittin	APG-04107A 81711 12	शामा	8/17/W	8117	8/17/1	·	APG-15 21.A 1515	Relinquished by: (Print Name)/(Affiliation)	Christina Needham inecon	Signature: (MALAMMA) LLL STALL Relinquished by: (Print Name)(Affiliation)	Signature:	Relinquished by: (Pint Name)(Affiliation)	Signature:	

Serial No. Mg

()O.D. 1.2 |O.] | 1. C.C. CRORAPHICSEORNSCOMM OLDSODY (COCT)COMM-4-CUSTODY, St. CORTINS_10_07.000

3
O
1
III
d

CHAIN OF STODY RECORD

Page ____ of ____

										_
Client/Project Name:	Project Location:	ation:				botoon Door	100	Container Type P ~ Plastic		
445	Y	FCETLI AECOM		•		niaiysis naq	nesten	A – Amber Glas G – Clear Glass		
Project Number: (602-007)	Field Logbook No.:							V – VOA Vial O – Other E – Encore		
Sampler (Print Name)/(Affiliation):	Chain of C	Chain of Custody Tape Nos.:							6 – Na2S2O3, 4° 7 ~ 4°	
Christina Needham [AECOM	40939	0			S			Matrix Codes: DW. – Drinking Water		
Signature:		Send Results/Report to:	TAT:		ish			WW - Wastewa GW - Groundwa SW - Surface W	tter SL – Sludge ater SD – Sediment SO – Solid	
Chustring Rechair	Rami Noddy	ddy	Std		land	•		ST – Storm Water W – Water		
Field Sample No //dentification Date Tin	Time P M O C B A R B	Sample Container (Size/Mat¹)	ix Preserv.	Field	804			Lab I.D.	Remarks	·
APG-15/21 B 817/11 1340	×	semunial i Tissise	કું કેલ્લ							,,
APG-15/21 C. 8/17/11 1205	- J	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
A Slit-lii	88									 -
APG-06/24 B 8/17/11/11/30						-				
शिमा	5					· · · · · · · · · · · · · · · · · · ·		.		
est oka	\ \ \ \	个个个	>							
	→	^	->	-9						
		-								
						· · · · · ·		-	-	
					-					
Relinquished by. (Print Name)/(Affiliation)	Date: 8 22 11	Received by: (Print Name)/(Affiliation)	Name)/(Affiliation)		Date:	/	Analytical Laboratory (Destination):	ory (Destination):		
Christina Needham (RECOM Signature: Chuichtenn Meschun	Time: 1,200	Signature:			Time:			AECOM Toxicology Lab	4	
Relinquished by: (Print Name)/(Affiliation)	Date:	Received by: (Print Name)/(Affiliation)	Name)/(Affiliation)		Date:			Fort Collins, CO 80521	SZ1 CF NEW HEUMDSTAIR	
Signature:	Time:	Signature:			Time:		1	(970) 490-2963 (FAX)		
Relinquished by: (Print Name)/(Affiliation)	Date:	Received by: (Print Name)/(Affiliation)	Name)/(Affiliation)		Date:	107	Sample Shipped Via:	<u>:a:</u>	Temp blank	
Signature:	Time:	Signature:			Time:		UPS FedEx	Courier Other	Yes	
Oco valeniu ce					-	-				_

Oco izloilii cf

Q:(GRAPHICS/FORMS/Chain of Custody (COC)/Chain-of-Custody_Ft. Colins_10_07.doc

Serial No. Nº 51542

	5
	6
,	ز
	प

CHAIN OF LUSTODY RECORD

Chiefur-roject Name: 445 Project Number: 60147816 - 4456003 (008 -012) Sampler (Print Name)/(Affiliation): Chn'stina. Needham RECOM	Project Location: 光氏									Container i ype	<u>.</u>	servation
445 Project Number. (C)47816-445003(008-012) Sampler (Print Name)/(Affiliation): Chnistina. Needham RECOPT Signature:	-				- <u>-</u> -	4		J. Park		P - Plastic		HCI 4°
Project Number: 60147816-4456093(008-012) Sampler (Print Name)(Affiliation): Chnisting. Needhorn RECON		なられて、一体のので	Z.O.			Ana	Anarysis Requested	Sted		A – Amber Glass		H2SO4, 4°
60147316-4456003(008-012) Sampler (Print Name)/(Affiliation): Chnistina Needham RECOM	Field Logbook No.	book No.:			<u>.</u>					V - VOA Vial		3 - HNO3, 4° 4 - NaOH, 4°
Sampler (Print Name)/(Affiliation): Chn'stinc. Needham RECOM				`						E - Encore		NaOH/ZnAc,
Christina Needham AECOM	Chain of (Chain of Custody Tape Nos.:									. 6-	6 – Na2S2O3, 4° 7 – 4°
Signature:	4,2505	D.			- \$	-				Matrix Codes: DW - Drinking Water		Soil
	Send Res	Send Results/Report to:	TAT		<u></u> ;s/					WW - Wastewate GW - Groundwate		SL - Sludge SD - Sediment
Christma Realham	Pami Naddy	laddicy	(V)	PHS	hout					SW - Surface Water ST - Storm Water W - Water		SO - Solid A - Air L - Liquid Descript
Field Sample No./Identification Date Time	002F	b €	Matrix Preserv.	Field Filtered) වාර			~	······································	LD.	Remarks	S S
10+ 11-018 + 130 11 120k	×	30mLvial	Tissic ice		×							-
Form Sed A Really orace		30 in via										
Form Scd B Riaylin 0850		,										
Form Scot Starl 11 0935	Ď											
Agg-caloga Slasin oqus	Į.			· ·			-					
मिर्ट-एट्राव्हाड हिन्डांग व्यात	0											
APG-03/08 C 8/24/11 1010	0											
APG-11 13 A 8 124 11 1056	Ŷ										. ;	
13 B 8 8 1130	0											
APG-1113C 8/24/11 1200	0											
APCE-14 10 A A DIA 1.1 1445	5						-					
APG-14 10 B Sizy 1,1 1515	5		-									
	^ Ox	→ →	<u></u> >		>							
(Print Name)/(Affiliation)	Date: 8 [34] 11	Received by: (Print Name)/(Affiliation)	int Name)/(Affiliati	(ma)		Date:	Anal	Analytical Laboratory (Destination):	ratory (Des	fination):		
1810	Time: 1900	Signature:		-		Time:		·	AECOM	AECOM Toxicology Lab University	ab Chives	27.5
ation)	Date:	Received by: (Print Name)/(Affiliation)	int Name)/(Affiliati	(uo,		Date:			Fort Col	Fort Collips, CO 80521	~	Hampshire
	Time:	Signature:				Time:			4(0)4	(870) 490-2963 (FAX)		
Relinquished by: (Print Name)(Affiliation)	Date:	Received by: (Print Name)/(Affiliation)	int Name)/(Affiliati	(uo		Date:	Sam	Sample Shipped Via:	1 Via:		Temp blank	ank
Signature:	Time:	Signature				Time:	- VGI	Fed T	reinio)	- Logge	>	2

Ocu izion/11cf

Q:IGRAPHICSIFORMSIChain of Custody (COC)IChain-of-Custody_Ft. Collins_10_07.doc

Serial No. No. 5153

•	<u></u>
)
	j
<	Ţ

CHAIN OF LUSTODY RECORD

Page 2 of 2

Client/Project Name:	Project I	Project Location:				•			Container Type	Preservation 1 LICI 48
2 <u>7</u> 2		FCETLIA	RECOM			E .	Analysis Kequested	_	A – Amber Glass	2 – H2SO4, 4°
Project Number: (008-012)	Field Log	r							V - VOA Vial 0 - Other E - Encore	3 – HNO3, 4° 4 – NaOH, 4° 5 – NaOH/ZnAc,
Sampler (Print Name)/(Affiliation):	Chain of	Chain of Custody Tape Nos.	os.:			· · · · · · · · · · · · · · · · · · ·				6 - Na2S2O3, 4° 7 - 4°
Omistina Needham AECON	M 43505	ਲ			<u>. </u>				Matrix Codes: DW - Drinking Wat	
Signature:	Send Re	Send Results/Report to:		TAT:	(45)			·	WW – Wastewater GW – Groundwater	
Chuldtune New Machian	ζ	Raini Naddy		Std	Knour				SW - Surface Water ST - Storm Water W - Water	sr SO – Solid A – Air L – Liquid
Field Sample No./Identification Date	Time CO ≥ G	Sample Container (Size/Mat1)	Matrix	Preserv.	Field Filtered				Lab I.D.	P - Product Remarks
APG-13 20A 8 25 11	Х оеп	20 mryjaj 1	T18538	35	×					
APG-12/30 B 8/84/11		i	<u> </u>							
APG-12/20C Si25/11	3050									
APG-01/03A 8135/11										
ARG -01/03B 8124/11	0291									
	1030	>	→	>	→				-	
	>									
		-			-					
Relinquished by: (Print Name)/(Affiliation)	Date: 8 34 11	Received by: (Print Name)/(Affiliation)	(Print Name)/(/	Afflication)		Date:	Analytic	Analytical Laboratory (Destination):	estination):	-
Signature (Mustrus 27)						Time:	 .	AECOL	AECOM Toxicology Zab	_
Relinquished by: (Print Name) (Affiliation)	十	Received by Print Name ((Affiliation)	(Print Name)///	Miliotion)			-	4303 V	4303 W. Laporte-Avenue	~
) for my new 1	(Ilonamus		Date:		Fort C (9	Fort Collins, CO 80521 (920) 416-0916	Hampsoile
Signature:	Time:	Signature:				Time:		(Open)	(970) 490-2963 (FAX)	
Relinquished by: (Print Name)/(Affiliation)	Date:	Received by:	(Print Name)/(/	Vffiliation)		Date:	Sample	Sample Shipped Via:		Temp blank
Signature:	Time:	Signature:				Time:	. <u>va</u>	reinio, values		
Gas 12101111 CF									1	Tes No

CHGRAPHICSIFORMSIChain of Custody (COC)IChain-of-Custody_FL Collins_10_07.doc

Serial No. Ng 51547

AECOM Environment

4303 West LaPorte Avenue, Fort Collins, Colorado, 80521 T 970.416.0916 F 970.490.2963 www.aecom.com

February 10, 2012

Ryan McCarthy AECOM Environment 250 Apollo Drive Chelmsford, MA 01824

Subject: Report of Whole-Sediment Bioaccumulation Tests

Dear Mr. McCarthy:

Attached is a copy of the report for the whole-sediment bioaccumulation tests using *Lumbriculus variegatus* conducted from September 7 to October 6, 2011 and September 13 to October 11, 2011. These tests were conducted with sediment samples collected on June 1, 2, and 3, 2011. Please do not hesitate to contact one of us if you have any questions.

Sincerely,

anita Rehner For anistina Needham

Christina Needham
Data Analyst
christina needham@aecom.com

Rami B. Naddy, Ph.D.

Study Director / Environmental Toxicologist

rami.naddy@aecom.com

Attachment:

60147216-445-(013-020, 021-025)

Report of a Whole Sediment Bioaccumulation Test using Lumbriculus variegatus

For

AECOM Environment Chelmsford, MA, USA

Prepared by
AECOM Technical Services, Inc.
Fort Collins Environmental Toxicology Lab
December 2011

60147216-445-(013-025)

Report of a Whole-Sediment Bioaccumulation Test using Lumbriculus variegatus

Project IDs: 60147216-445-(013-020, 021-025) September - October 2011

Sponsor and Laboratory Information

	AECOM Environment
Sponsor	250 Apollo Drive
	Chelmsford, MA 01824
Project Officer	Ryan McCarthy (978) 905-2312
	AECOM Environment
	Fort Collins Environmental Toxicology Laboratory
Testing Facility	4303 West LaPorte Ave.
resuling Facility	Fort Collins, CO 80521
	Fax: (970) 490-2963
	State of Florida NELAP Laboratory ID: E87972
Study Director	Rami B. Naddy, Ph.D. (970) 416-0916 email: rami.naddy@aecom.com
Report Author	Christina Needham (970) 416-0916 email: christina.needham@aecom.com

Test Information

Test	Bioaccumulation from whole sediment					
Basis	USEPA (2000) and ASTM (2009)					
Test Dates and Time	September 7, 2011 – October 4, 5, and 6 September 13, 2011 – October 10 and 1					
Test Length	~28 days					
Species	Lumbriculus variegatus					
Test Material	Whole sediments					
	Sample ID	AECOM Laboratory ID				
	APG-02/08	24849				
	APG-04/07	24854				
	APG-05/09	24852				
	APG-10/14	24853				
Sediment ID	APG-16/17	24847				
	APG-18/19	24851				
	APG-20/21	24844				
	APG-22/23	24845				
	APG-01/03	24843				
	APG-06/24	24848				
	APG-11/13	24850				
	APG-12/15	24846				
Control Sediment	3% Organic Laboratory Formulated Sedi	iment				
Overlying water	Filtered Horsetooth Reservoir water					
Test Concentrations	0 (control) and 100% of each test sedime	ent				

Sediment Collection and Receipt

Sample ID	Collection Date and Time	AECOM No.	Date of Receipt	Cooler Temp. at Arrival (°C)
APG-02/08	June 1, 2011 @ 1045	24849		14.5
APG-04/07	June 2, 2011 @ 1320	24854		9.6
APG-05/09	June 2, 2011 @ 1130	24852		13.9
APG-10/14	June 3, 2011 @ 0915	24853		14.8
APG-16/17	June 2, 2011 @ 1815	24847		15.1
APG-18/19	June 2, 2011 @ 1700	24851	luna 0, 2011	13.5
APG-20/21	June 3, 2011 @ 1245	24844	June 9, 2011	13.9
APG-22/23	June 1, 2011 @ 1700	24845		13.4
APG-01/03	June 2, 2011 @ 0930	24843		13.0
APG-06/24	June 1, 2011 @ 1700	24848		14.0
APG-11/13	June 3, 2011 @ 1135	24850		13.7
APG-12/15	June 3, 2011 @ 1030	24846		12.7

Note: See Appendix A for copies of chain of custody records

Laboratory Control Sediment

The control sediment used for all tests was laboratory formulated sediment with an estimated organic content of 3% (by weight). The formulated sediment was prepared by combining the following materials:

Material	Quantity (g) (Percent)
Rinsed Medium Grit Silica Sand	8500 (83.1)
Clay/Silt Mixture (ASP 400)	1500 (14.7)
Dolomite	5 (0.049)
Humic Acid (Sodium Salt)	1 (0.0098)
Sieved Sphagnum Moss	220 (2.15)

Prior to mixing, the sphagnum moss was sieved using a 2 mm sieve. The medium grit silica sand was rinsed with deionized water until the water ran clear and then the sand was baked overnight at 105°C. All ingredients were combined and mixed together for at least 15 minutes. Calcium carbonate was added at approximately 1% (by dry weight) to raise the soil pH from ~3.4 to 6.7. At least 24 hours prior to homogenization, a small amount of filtered Horsetooth reservoir water was added to the necessary amount of formulated sediment and the wetted sediment was held at 4°C in the dark.

Test Dates and Times

Sample ID	Test Round	Test Initiation Date and Time	Test Termination Date and Time
APG-02/08, APG-04/07, APG-05/09, APG-10/14, APG-16/17, APG-18/19, APG-20/21, and APG-22/23	1	September 7, 2011 @ 1030-1120	October 4, 2011 @ 0815-1900, October 5, 2011 @ 0745-1835, October 6, 2011 @ 0745-1830
APG-01/03, APG-06/24, APG-11/13, and APG-12/15	2	September 13, 2011 @ 1000-1030	October 10, 2011 @ 0800-1745, October 11, 2011 @ 0800-1720

Test Sediment Preparation

Sample ID	Date Homogenized	Time Homogenized
	Test Round 1	
Control		0948-0951
APG-02/08 A		1010-1035
APG-02/08 B		1030-1040
APG-04/07 A		1130-1200
APG-04/07 B		1155-1202
APG-05/09 A		1040-1110
APG-05/09 B	September 6, 2011	1045-1105
APG-10/14 A		1130-1134
APG-10/14 B		1130-1145
APG-16/17 A		1100-1130
APG-16/17 B		1125-1150
APG-18/19 A		1015-1018
APG-18/19 B		1056-1100
APG-20/21 A		1310-1335
APG-20/21 B		1315-1330
APG-22/23 A		1200-1210
APG-22/23 B		1212-1218
	Test Round 2	
Control		1015-1018
APG-01/03 A		1010-1040
APG-01/03 B		1045-1105
APG-06/24 A		1045-1049
APG-06/24 B	September 12, 2011	1103-1107
APG-11/13 A		1132-1136
APG-11/13 B		1148-1152
APG-12/15 A		1115-1120
APG-12/15 B		1135-1150

Note: Per client request, replicates were homogenized and tested separately.

Test Conditions

Туре	Bioaccumulation Test with Continuous Renewal of Overlying Water
Overlying Water Delivery System	Continuous renewal (flow-through) ^a
Test Endpoints	Body residue of chemicals of potential concern ^b
Test Chambers	2.5 gallon glass aquaria
Test Sediment Volume	1000 ml
Overlying Water Volume	2000 ml
Replicates per Treatment	2
Organisms per Replicate	Added by weight (see pages 6 and 7)
Feeding	None
Test Temperature	23 ± 1°C (≤ 3°C differential) ^c
Lighting	Fluorescent, 16 hours light:8 hours dark
Chamber Placement	Non-Randomized
Test Sediment Renewal	None
Test Overlying Water Renewal	Approximately two to three volume additions per test chamber per day

Test Organism

	Test Rounds 1 and 2
Species and Lot Number	Lumbriculus variegatus, Lot 11-018
Age	Adult
Source	Bayou Aquatics, Ontario, CA

Continuous replacement via a drip system

Brown Results of chemical analysis of worm tissue not reported here

^c The test temperature during Test Rounds 1 and 2 (measured in the overlying water) fell below the recommended lower limit of 22°C on various days during the studies due to malfunctioning heating/cooling units. In addition, the instantaneous temperature was more than 3°C lower than the target temperature in all or several treatments on day 1, 2, and 23 of the first round and days 26 and 27 of the second round. It is the study director's best professional judgment that these excursions did not affect the outcome of the test.

Estimated Sediment Organic Content

In accordance with EPA guidance, the weight of worms added to each test chamber is dependent on the total organic carbon (TOC) content of the sediment. Worms are added at a minimum target ratio of 1 g dry weight of worms to 50 g sediment TOC (USEPA 2000). This ratio was achieved for test sediments, but not for the controls, as TOC values were not known in advance of study initiation. The moisture content and estimated TOC of each test sediment are presented in the following table:

Sample ID	% Moisture (per mass wet) ^a	Vol. of Sediment in each Test Chamber (ml)	Approx. Sediment Density (g/ml wet) ^b	Approx. Wet Wt. (g) of Sediment in each Test Chamber ^c	Approx. Dry Wt. (g) of Sediment in each Test Chamber ^d	Approx. %TOC (by dry wt.) ^{a,e}	Estimated TOC (g) in each Test Chamber ^f
APG-02/08	63.22	1000	1.07	1070	394	18.2	71.7
APG-04/07	72.84	1000	1.05	1050	285	14.7	41.9
APG-05/09	62.98	1000	1.24	1240	459	16.7	76.6
APG-10/14	48.53	1000	1.15	1150	592	11.2	66.3
APG-16/17	70.52	1000	1.10	1100	324	21.1	68.4
APG-18/19	67.85	1000	1.01	1010	325	14.6	47.4
APG-20/21	56.95	1000	1.09	1090	469	26.8	126
APG-22/23	62.79	1000	1.09	1090	406	18.1	73.5
APG-01/03	46.62	1000	1.11	1110	592	10.3	61.0
APG-06/24	64.38	1000	1.08	1080	385	16.3	62.8
APG-11/13	71.37	1000	1.10	1100	315	Unk ^g	Unk ^g
APG-12/15	75.25	1000	0.99	990	245	17.2	42.1

^a Measured by the Environmental Research Group at The University of New Hampshire (Durham, NH)

Note: Values are rounded to one digit; some slight differences may be found when applying conversion factors to rounded values

^b Measured at the FCETL on November 29, 2011 on each test sediment

^c Calculated by multiplying volume of sediment in each test chamber by sediment density

^d Calculated by multiplying Approx. Wet Wt. by [(100-% Moisture)/100]

^e Calculated by averaging the % TOC values of the two sites composited for each sample

f Calculated using the dry weight per test chamber and approximate % TOC

⁹ Unknown. TOC was not measured for site APG-11, so approximate % TOC and Estimated TOC could not be determined

TEST RESULTS

Weight of Worms Added and Removed From Test Chambers – Test Round 1

Sample ID	Rep.	Wet Wt. (unblotted) of Worms Added (g)	Est. Dry Wt. of Worms Added (g) ^{a,b}	Approx. TOC:Dry Worm Wt. Ratio	Wet. Wt. (unblotted) of Worms Recovered (g)	Percent Recovery
Control	Α	2.7	0.24	21:1°	1.4	52%
Control	В	2.7	0.24	21:1°	1.5	56%
APG-02/08	Α	9.0	0.79	91:1	3.0	33%
AI G-02/00	В	9.0	0.79	91:1	3.0	33%
APG-04/07	Α	9.0	0.79	53:1	4.6	51%
APG-04/07	В	9.0	0.79	53:1	4.2	47%
APG-05/09	Α	9.0	0.79	97:1	3.0	33%
APG-05/09	В	9.0	0.79	97:1	3.6	40%
APG-10/14	Α	9.0	0.79	84:1	4.9	54%
APG-10/14	В	9.0	0.79	84:1	2.2	24%
APG-16/17	Α	9.0	0.79	86:1	3.7	41%
APG-10/17	В	9.0	0.79	86:1	4.0	44%
APG-18/19	Α	9.0	0.79	60:1	2.5	28%
APG-10/19	В	9.0	0.79	60:1	3.8	42%
APG-20/21	Α	9.0	0.79	159:1	3.0	33%
APG-20/21	В	9.0	0.79	159:1	3.1	34%
ADC 22/22	Α	9.0	0.79	93:1	3.6	40%
APG-22/23	В	9.0	0.79	93:1	2.9	32%

^a Calculated by dividing unblotted wet weight by 1.33 (USEPA 2000) to obtain blotted wet weight and then multiplying estimated blotted wet weight by 0.117 (wet weight to dry weight conversion calculated by AECOM during previous studies)

during previous studies)

b Values are rounded to two digits; some slight differences may be found when applying conversion factors to rounded values

 $^{^{\}rm c}$ Calculated based on 5 g TOC/1000 ml wet volume determined by AECOM during previous studies. Note: See Appendix B for Test Data

Weight of Worms Added and Removed From Test Chambers - Test Round 2

Sample ID	Rep	Wet Wt. (unblotted) of Worms Added (g)	Est. Dry Wt. of Worms Added (g) ^{a,b}	Approx. TOC:Dry Worm Wt. Ratio	Wet. Wt. (unblotted) of Worms Recovered (g)	Percent Recovery
Control	Α	2.7	0.24	21:1 ^c	1.7	63%
Control	В	2.7	0.24	21:1 ^c	1.6	59%
APG-01/03	Α	9.0	0.79	77:1	6.4	71%
APG-01/03	В	9.0	0.79	77:1	4.5	50%
APG-06/24	Α	9.0	0.79	79:1	3.9	43%
APG-00/24	В	9.0	0.79	79:1	3.5	39%
APG-11/13	Α	9.0	0.79	Unk ^d	3.6	40%
AFG-11/13	В	9.0	0.79	Unk ^d	3.3	37%
APG-12/15	Α	9.0	0.79	53:1	6.1	68%
AFG-12/15	В	9.0	0.79	53:1	5.1	57%

^a Calculated by dividing unblotted wet weight by 1.33 (USEPA 2000) to obtain blotted wet weight and then multiplying estimated blotted wet weight by 0.117 (wet weight to dry weight conversion calculated by AECOM during previous studies)

b Values are rounded to two digits; some slight differences may be found when applying conversion factors to

Note: See Appendix C for Test Data

^c Calculated based on 5 g TOC/1000 ml wet volume determined by AECOM during previous studies. ^d Unknown. Approximate TOC: Dry Worm Wt. Ratio could not be calculated for this treatment since TOC was not measured at site APG-11.

Physical and Chemical Data of Overlying Water

Sample ID	рН	DO (mg/L)	Spec. Cond. (μS/cm)	Temperature (°C) ^a	NH ₃ -N (mg/L)	Hardness (mg/L as CaCO ₃)	Alkalinity (mg/L as CaCO₃)			
Test Round 1										
Control	8.0-8.3	5.7-7.5	144-192	19-23	<1.0	58-106	60-96			
APG-02/08	7.3-8.1	4.7-7.0	110-132	19-22	<1.0-1.4	36-50	35-45			
APG-04/07	7.2-8.0	3.5-7.0	162-234	19-22	<1.0-2.6	52-64	46-80			
APG-05/09	7.3-8.0	3.7-7.0	165-259	19-22	<1.0-1.4	56-86	59-97			
APG-10/14	7.1-8.2	3.2-6.9	123-181	19-22	<1.0-2.7	30-38	28-48			
APG-16/17	7.1-7.8	3.6-6.9	143-193	19-22	<1.0-2.2	40-54	39-54			
APG-18/19	7.1-7.8	3.9-6.9	146-193	19-22	<1.0-1.8	44-56	39-56			
APG-20/21	7.3-7.9	4.2-6.9	161-288	19-22	<1.0-1.8	50-88	50-105			
APG-22/23	7.1-8.1	4.5-6.9	139-180	19-22	<1.0-2.0	36-44	39-55			
			Test Rou	ınd 2						
Control	7.3-8.4	4.9-7.3	134-294	19-24	<1.0	60-130	57-127			
APG-01/03	7.2-7.9	3.4-7.4	101-162	18-24	<1.0-2.8	32-50	35-57			
APG-06/24	7.1-8.0	4.3-7.4	111-148	18-23	<1.0-1.1	36-46	35-49			
APG-11/13	7.2-8.3	4.4-7.4	112-329	18-24	<1.0	36-88	37-94			
APG-12/15	7.2-8.0	3.3-7.3	118-247	18-23	<1.0-3.4	38-62	37-55			

^a Temperature in overlying water

Note: Continuous temperature in the water baths ranged from 19.4-24.6°C (Test Round1) and 19.8-24.4°C (Test Round 2).

Depuration Period

At the end of the exposure period (~28 days), all worms were removed from each replicate and were held in separate 500-ml beakers containing Horsetooth Reservoir water overnight to allow clearance of gut contents. The following morning, organisms were cleaned, weighed, and frozen. The samples were shipped (on ice) to the Environmental Research Group at The University of New Hampshire, an independent laboratory located in Durham, New Hampshire, USA for tissue analysis (see Appendix D for chain of custody records for these shipments).

References

ASTM. 2009. Standard Test Methods for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates. Method E 1688-00a in 2009 Annual Book of ASTM Standards, Section 11, Water and Environmental Technology, Volume 11.06, Biological Effects and Environmental Fate; Biotechnology. American Society of Testing and Materials.

USEPA. 2000. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. EPA/600/R-99/064. United States Environmental Protection Agency, Washington, DC.

Statement of Procedural Compliance

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge, accurate and complete.

Rami B. Naddy, Ph.D.

Study Director

Statement of Quality Assurance

The test data were reviewed by the Quality Assurance Unit to assure that the study was performed in accordance with the protocol (if applicable) and standard operating procedures. This report is an accurate reflection of the raw data.

Gunaf Me Verner Quality Assurance Unit

February 9,2012 Date

APPENDIX A

Chain of Custody Records

Q:\GRAPH(CS\FORMS\Chain of Custody (COC)\Chain-of-Custody_AECOM_06_3NCR.doc

CHAIN OF CUSTODY RECORD

	ì	~
Page		of <u>S</u>

1			•								Page of _<
Client/Project Name: AECOM - ESTCP	Project Loc	ation: Aberdeen P	savena (Enmore				Analysis F	Requested	Container Type P – Plastic	Preservation 1 HCl, 4°
CONAL CIECK Field Demonstratio	- Golgeno	od no-can	1 cree	K	ļ			7 Widiyolo 1		A – Amber Glass G – Clear Glass	2 H2SO4, 4° 3 HNO3, 4°
	Field Logbo	ook No.:			_					V – VOA Vial O – Other	4 – NaOH, 4° 5 – NaOH/ZnAc, 4°
60133180 ·	Chain of Cu	retaring Topic Nice			\	1				E – Encore	6 Na2S2O3, 4° 7 4°
Sampler (Print Name)/(Affiliation): M. Russell, D. Smith / Accor	(1) Chain of Cu	istody Tape Nos.:			latio_]				Matrix Codes:	
) (() () () () () () () () ()	Not us	ed			<u>~</u>	7 0				DW – Drinking Water	S – Soil
Signature:	Send Resul	Its/Report to:	TAT:		٤	\ <u>`</u> S				WW – Wastewater GW – Groundwater	SL - Sludge SD - Sediment
M/I M	, ·	1 carthy			CCUM	F-				SW – Surface Water ST – Storm Water W – Water	SO – Solid A – Air L – Liquid
Moun sur	Ryan.Mcc	carthy eaccom cor	\		Ø C	_				44 - 440101	P - Product
Field Sample No./Identification Date Time	Ĉ G O R	Sample Container Matrix	Preserv.	Field	là l	کم				Lab	Remarks
· I I	M A P B	(Size/Mat'l)		Filtered	8					1.D. (cool	ertamp D-53)
APG-02/08-6440- 6/1/11 1045		agallon SD	400	NA	X		<u> </u>				.S·C
APG-06/24-060111 6/1/11 170	o X	SD	4°C	NA_	X	Z	M			24848 , 14.	00
APG-22/23-060111 6/1/11 1700	o X	SD	4.0	MA	X					24845, 13	40
APG-01/03-060211 612111 0930	D X	50	4.0	AN	X					24843, 13	.0°C
APG-05/09-060211 6/2/11 1130	x	SD	400	NA	Χ					24852,13	3.9.0
APG -04/07-060211 6/2/11 1320	1 1 1	SD	400	NA	X					24854 9	1.6'C
APG-18/19-060211 6/2/11 1700	» X	SD	400	NA	χ					24851,1	3,50
APG-16/17-060211 6/2/11 1815	5 X	SD	40	NA	χ					24847 19	5.1 c
APG'10/14-060311 6/3/11 0915	1 1 1	SD	400	NA	χ					24853,11	4.8.0
APG13/15-06 0311 6/3/11 1030		SD	400	NA	χ					24846 , 13	2.70
APG-11/13/-060311 6/3/11 1135	. X	SD	4ºC	NA	χ					24850 1	3.7'0
APG -20/21-060311 6/3/11 1244	1 / 1	VSD	400	NA	λ					24844 1	3.9'0
									·		
Relinquished by: (Print Name) ((Affiliation) M. Chele Russell Attach	Date: 6/8/1/	Received by: (Print National Schools)	me)/(Affiliation)	}			Date	e: 6/9/11	Analytical Laboratory (D	•	
	Time: 1509	Signature: En L	25.6				Tim	e: 1015	AECOM - FT	•	7.0
Polinguiched by (Print Name)/(Affiliation)	Date:	Received by: (Print Nar	me) (Affiliation)		•		Date		Rec'd from Fed Cooler temp		
Time:		Qi					Time:		cover temp	'S IPULCY I	
Signature: Relinquished by: (Print Name)/(Affiliation)	Date:	Signature: Received by: (Print Nat	me)/(Affiliation)			Date:					
									Sample Shipped Via:	Te	mp blank
Signature:	Гіте: —————	Signature:					Tim	e: 	UPS FedEx Couri	er Other Ye	es No

Pink: Sampler

APPENDIX B

Test Round 1 Laboratory Data Sheets

Page 1 of 15 FCETL QA Form No. 051 Revision 4 Effective 1/96 W 1/4/2

TOXICITY DATA PACKAGE COVER SHEET QA: 64m0126 12 Project Number: 60147216-445-(013-020) Test Type: Chronic Species: Lumbriculus variegatus Test Substance: Sediment Organism (Lot) or Batch Number: 11-018 Overlying Water Type: Filtered Horsetooth water Concurrent Control Sediment Type: Formulated Sediment Date and Time Test Began: 9/7/11 Investigator(s): いけん Protocol Number: USEPA(2000) + ASTM (2007) **Background Information** If Yes, give % CO2: N/A pH Control?: Yes Type of Test: Continuous Drip Renewal est Chambers: 2.5 gal glass aquaria Env. Chmbr/Bath #: Test Temperature: 23 ± 1 °C Number of Replicates per Treatment: 2 Overlying Water Volume: ~2 L Test Sediment Vol.: 1000 ml Number of Organisms per Replicate: to maintain > 5:1 sediment organic carbon:org. dry weight Length of Test: 28 days Feeding Frequency: NA Type of Food and Quantity per Chamber: None Light Intensity: 9.3-93 ft-c. Photoperiod: 16h Light: 8h Dark Overlying Water Characterization Parameters and Frequency: Hardness: Day 0,7,14,21,27 Alkalinity: Day 0,7,14,21,27 pH: Day 0,7,14,21,27 Conductivity: Day 0,7,14, TRC: NA NH₃: Day 0,7,14,21,27 21,27 Test Concentrations: Formulated Sediment, APG-02/08, APG-04/07, APG-05/09, APG-10/14, APG-16/17, APG-18/19, APG-20/21, and APG-22/23 Test Dates: NA LC₅₀ or IC₂₅ (Circle): Reference Toxicant Data: Method for Determining Ref. Tox. Value: Hist, 95% Control Limits: NA Special Procedures and Considerations: Sediments will be homogenized before use in testing. Hard/alk, pH, cond, and NH₃ of the overlying water will be measured on days 0, 7, 14, 21, and 27 DO will be measured daily and is to be maintained at ≥2.5 mg/L ~2,8 Overlying water renewal rate at approximately 2 volume additions (4000 ml) per day, or 28 ml/min

000 12/12/11 E

Study Director Initials:

Date:

SEDIMENT/SOIL PREPARATION

•		
QA:	6Um 01	20/12

Artificial soil					
Amount added (g)					
8500					
1500					
5					
1					
220					
15 1080					
١					

Notes: Medium grit silica sand was rinsed with deionized water and baked overnight in 105°C oven prior to sediment mixing.

Sphagnum Moss was sieved using a 2 mm sieve prior to mixing. Calcium carbonate added to raise soil pH from 3.4 to final pH of 6.7.

Soil/sediment	FOETI #	Homogenization						
John Seulment	FCETL#	Date	From	То	Analyst			
Form. Sed	N/A	09/06/11	0948	095	CLI			
APG-02/08 A	24849	09/06/11	1016	1035	TK CY			
APG-02/08 B	24849	09/06/11	1030	1040	AB			
APG-04/07 A	24854	09/06/11	1130	1200	43			
APG-04/07 B	24854	09/06/11	1155	1902	cu			
APG-05/09 A	24852	09/06/11	1040	1110	T T			
APG-05/09 B	24852	09/06/11	1045	1105	DM			
APG-10/14 A	24853	09/06/11	1130	1134	ഗ			
APG-10/14 B	24853	09/06/11	1130	1145	F			
APG-16/17 A	24847	09/06/11	1100	1130	AB			
APG-16/17 B	24847	09/06/11	1125	1150	DM			
APG-18/19 A	24851	09/06/11	1015	1018	(U)			
APG-18/19 B	24851	09/06/11	1056	1100	(U)			
APG-20/21 A	24844	09/06/11	1310	1335	DM			
APG-20/21 B	24844	09/06/11	1315	1330	F			
APG-22/23 A	24845	09/06/11	1900	1210	AB			
APG-22/23 B	24845	09/06/11	1212	12/8	လ			

Note: per client request, replicates were homogenized deparately as well as lesked each replicate deparately.

Page: 3 of 15
FCETL QA Form No. 15
Effective: 5/90

w 1/9/12.
QA: orm 0/26/12

SUBJECT: DAILY LOG	QA: 61mol
ALL ENTRIES MUST BE INITIALLED WITH DATE AND TIME:	
Preparation of 3 % arganic Laboratory Formulated Sediment	e 31 11 C1530
For tests: 60147216-445- (013-020) and (021-025)	
-Binsed ~ 10L Medium grit silica sand with deimized water rinse water ran Hour. Placed rinsed sand in pyrex baking and bared overnight in 105°C oven sand was removed forced and allowed to cool prior to mixing.	a dishes
- Mixed together the Collowing matrials in a 5 gal buxker Binsed + paxed medium grit silica sound ~8500 = Clay firt mixture (ASP 1/00) ~1500g "Dolomite & 50g "Humic acid (Lot Clu-034) & 1 g "Sieved (using 2 mm sieve) sphognum moss ~220g "Calcium carbonale (Lot Co2-064) & 115g to raise (
Sail pH - (e, it	
	*

WISH COTHE 183 10/10/11 @ 0745-182

BIOLOGICAL DATA

Test Species (Circle): H. azteca C. tentans E. foetida L. variegatus Project Number: 60147216-445-(013-020) Other (Specify):

			lni	tial		Final
Treatment / Sediment	I MAN	Wet Weight Unblotted worms (g) ^a	Calculated Wet Weight Blotted Worms ^b	Calculated Dry Weight Worms ^c	Sediment Organic:Dry Worm Weight Ratio ^d	Wet Weight Unblotted Worms (g) ^{8,9}
	Α	04.02.7	(2)			1,4
Form. Sed	В	2.7				0.5 +1.0
(Control)	С					
	A	9.0				3,0
APG-02/08	В	9.0				3.0
	С					
	Α	9.0				4.6
APG-04/07	В	9.0			-	4.2
	С					
	Α	9.0				3,0
APG-05/09	В	9.0				3.6
	С	·,	·			
	Α	9.0				4.9
APG-10/14	В	9.0				2,2
	С		<u>.</u>	·		-
	Α	9.0				3.7
APG-16/17	В	9.0				4.0
	С					
Date		9/7/11				1015-1017/11
Time		1030-1120		·		~0800 - 1736 VC
Analyst		AS NUT				ധ

horsetooth water 500 ml beauters (water/holding vessel)

> Qu 02/08/12 NA 36m ozpolizazing 3 MILL SAO

10/6/11 @0745-1830

BIOLOGICAL DATA

Test Species (Circle): H. azteca C. tentans E. foetida L. variegatus Project Number: 60147216-445-(013-020) Other (Specify):

			lni	tial		Final
Treatment / Sediment	Rep.	Wet Weight Unblotted worms (g) ^a	Calculated Wet Weight Blotted Worms ^b	Calculated Dry Weight Worms ^c	Sediment Organic:Dry Worm Weight Ratio ^d	Wet Weight Unblotted Worms (g) ^{a,e}
	Α	9.0				2.5
APG-18/19	В	9.0				3.8
	С					مسته
	Α	9.0				3,0
APG-20/21	В	9.0				3.]
	С					036 -
	. A	9.0				3.9-3.6
APG-22/23	В	9.0				2.9
	С					
	Α					
	В			_		
	C				②	
	A					
	В					
	С					
	Α					
	В					
	С					
Date		9/7/11				1015-1017/11
Time		1030-1120			~	- 70 (2)
Analyst		ABINUT				ಎ

а	Measured	Using	Balance	Number AND	Toploader
h					4 66

Unblotted wet weight of worms divided by 1.33
Ratio applied to unblotted wet weight of worms: _O.IFSediment organic content calculated _NA
Organisms depurated from to hose work water | 500 ml beakers 10 5, 10 6, 10 7 @ ~08.06 (date/time) in

(water/holding vessel)

3 6mm ozfogliz CF, WP

Page 6 of 15 cu 12/12/11 Que: 6 mm of 20/12
Test Species: Lumbriculus variegatus

Project Number: 60147216-445-(013-020)

			Initial		Final	
Treatment/Sediment	Rep	Wet Weight of Unblotted Worms (g)	Est. Blot Dry Wt. of Worms Added (g) ^a	Est. Dry Wt. of Worms Added (g) ^a	Wet Weight of Unblotted Worms (g)	% Recovery
Form Sed	Α	2.7	2.03	0.24	1.4	52%
(control)	В	2.7	2.03	0.24	1.5	56%
APG-02/08	Α	9.0	6.77	0.79	3.0	33%
APG-02/08	В	9.0	6.77	0.79	3.0	33%
APG-04/07	Α	9.0	6.77	0.79	4.6	51%
APG-04/07	В	9.0	6.77	0.79	4.2	47%
APG-05/09	Α	9.0	6.77	0.79	3.0	33%
APG-03/09	В	9.0	6.77	0.79	3.6	40%
APG-10/14	Α	9.0	6.77	0.79	4.9	54%
AFG-10/14	В	9.0	6.77	0.79	2.2	24%
APG-16/17	Α	9.0	6.77	0.79	3.7	41%
AFG-10/17	В	9.0	6.77	0.79	4.0	44%
APG-18/19	Α	9.0	6.77	0.79	2.5	28%
Ar 0-10/13	В	9.0	6.77	0.79	3.8	42%
APG-20/21	Α	9.0	6.77	0.79	. 3.0	33%
AFG-20/21	В	9.0	6.77	0.79	3.1	34%
APG-22/23	Α	9.0	6.77	0.79	3.6	40%
AFG-22/23	В	9.0	6.77	0.79	2.9	32%

a Calculated by dividing unblotted wet weight by 1.33 (USEPA, 2000) to obtain blotted wet weight and then multiplying estimated blotted wet weight by 0.117 (wet weight to dry weight conversion calculated by FCETL during previous studies) Note: Values are rounded to two digits; some slight differences may be found when applying conversion factors to rounded values

Project Number: 60147216-445-(013-020) Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify):

Test				рН					Di	ssolve			/L)					mperat		င)	
sediment	A			Test da	ıy			A			est da	<u>y</u>			Α.	-		Test da	у	<u>, </u>	
	0	1	2	3	4	5	6	0	1	2	3	4	5	6	0	1	2	3	4	5	6
Form Sed	8.3	8.1	8.1	1.8	8.1	8.0	8.1	6.9	6.2	6.9	6.3	6.2	6.4	6.3	20	19	19	3)	21	21	21
APG-02/08	7.3	7.4	7.4	7.6	7.6	7.3	7.3	6.0	6.2	6.7	5.7	5.8	5.4	5.6	20	19	19	2)	21	21	2
APG-04/07	7.3	7.3	8.0	7.2	7.2	7.3	7.7	5.1	5.1	7.0	42	5.2	4.2	5.3	20	19	19	21	21	21	2
APG-05/09	7.3	7.3	7,8	7.4	7.6	7.4	7.4	5.2	4.9	6.9	4.7	5,4	5.9	4.9	20	19	19	21	21	21	2
APG-10/14	7,3	7.3	7.5	7.3	7.6	٦.١	7,2	5.9	5,9	6.5	42	4.8	4.5	4.2	20	19	19	21	21	27	2
APG-16/17	74	7.4	7.4	7.2	74	7.3	7.2	6.0	5.8	6.3	4.0	4.6	4.6	4,2	20	19	19	31	21	a	21
Replicate	A	B	H	R	A	B	A	A	B	Α	В	A	B	A	A	В	A	B	A	B	A
Meter	16	16	16	ila	16	16	16	5	5	5	5	5	5	5	D41	D41	D41	NHI	D41	D41	DHI
Date	9/7/11		9/9/11	glidi	alulu	9/12/11	11/21/19	9/7/11	9/8/4	9/9/11	ulallo	alile	9/2/11	9/13/11	9/7/11	1-/11 9/8/11 9/9/11 9/10/11 2/11 /11 9/12/11					9/13/11
Time	0845	1120	0940	1450	1345	1015	0900	0845	1120	0940	1450	1345	1015	0700	0845	0845 1120 0940 1450 1345 1015				0900	
Initials	88	K	F	KB	NLT	88	Ħ	AS	TK	4	RS	NLT	84	Te						nt	
T4				рН					Di	ssolve	l Oxyg	en (mg.	/L)		<u> </u>		Te	mperat	ure (°	(C)	
Test sediment				Test da							est da							Test da	4		
	7	8	9	10_	11	12	13	7	8	9	10	11	12	13	7	8	9	10	11	12	13
Form Sed	8.1	8.1	8.2	8.2	8.2	8.0	8.2	6.4	6.5	(0. <u>(0</u>	6.4	10.4	65	6.8	21	20	ত্য	21	21	入 0	22
APG-02/08	7.6	7.3	7.5	7.5	7.4	7.5	7.5	6.1	5.3	5,8	5.7	5.5	6.2	6:7	21	20	21	21	2	ર્રે૦	2
APG-04/07	7.3	7.7	7.4	7.7	7.4	7.7	7.4	5.0	5.4	47	5.5	4.1	5.6	5.5	21	20	30	21	21	20	21
APG-05/09	7.4	7.5	7.4	7.6	1.5	7.0	7.4	5.2	5.3	47	5.6	4.4	5,4	5.7	20	20	20	20	al	<u> </u>	21
APG-10/14	7.2	7.3	7.3	7.4	7,4	1.3	7.4	4.5	4.9	43	5.2	3.3*	4.4	5,]	21	20	පැර	21	21	J9	20
APG-16/17	7.3	7.3	7.4	7.4	7.4	7.4	7.5	4.7	4.8	4,4	4.5	4.5	5.3	5,7	21	20	20	21	31	20	20
Replicate	B	A	13 '	A	B	A	B	B	A	B	A	B	A	B	B	<u> </u>	B	<u> </u>	B	<u> </u>	B
Meter	16	16	16	16	16	VG	16	5	5	S	5	5	5	S	140	D41	DYI	041	D41	DLI	D-41
Date	9/14/11	9/15/11	Victo	9/17/1	9/18/11	alay	9/20/11	9/14/1	9/15/11	3/10/1	9/17/11	9/18/1	9/19/1	9/20/11	9/14/11	9/15/11	7/146	9/17/1)	9/18/11	વ્યાગા	9/20/11
Time	0900	7090	Capi	1150	1310	wis	10	0900	0907	COI	1150	1310	1145	1110	0900	०१७७	1000	1	1310	1145	1088
Initials	K	FE	DM	OM	ACL	AB	DM	F	k	Am	DM	88	An	DM	Te	R	Dr~	DM	₽8	AB	DM

AC. Needhourn northed M. J.A.

Project Number: 60147216-445-(013-020) Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify):

	T .			pН					Di	ssolve	d Oxyge	en (mg/	/L)				Tei	mperat	ure (6	c)	
Test sediment	Α			Test da	ıy				- :		est da							Test da		- ,	
30dillione	0	1	2	3	4	5	6	0	1	2	3	4	5	6	0	1	2	3	4	5	6
APG-18/19	7.4	7.8	7.8	7.7	7,4_	7.5	72	5.8	6.7	0.9	42	4,4	4.9	4.3	20	19	19	So	21	a1	21
APG-20-21	7,4	7.5	7.6	7.3	44	7.4	7.4	5.6	6.2	6.7	4.8	6.0	4.9	6.3	20	19	19	31	21	20	21
APG-22/23	7.1	7.3	7,6	7.3	7.4	7.3	7.2	5.4	5.9	6.2	<u>27</u>	5.4	4.9	5.2	20	19	19	3)	2)	20	21
																•					
Replicate	A	β	A	B	Α	В	Α	A	В	A	B	Α	В	A	A	B	A	B	A	B	Α
Meter	16	16	16	10	16	16	16	5	5	5	IJ	5	B	5	D41	DHI	D41	1241	D41	D41	D41
Date	9/1/11	9/8/11	9/9/11	9/2	9/18/11	9/12/11	9/13/11	9/7/11	9/8/11	9/9/11	9191	9111	9/12/11	9/13/11	9/2/11	9/8/11	9/9/11	2 holy	9111	9/12/1	9/13/11
Time	0845	1120	0940	1450	1345		0900	0845	1/20	0940	1450	1345	1015	0900	0845	1/50	0940	1460	1345	105	0900
Initials	Do	K	R	ks	NÚ	A-65	12	ASS	TK	R	B	NIT	#8	K	A8-	K	Ţ	R	NUT	A5	k
Test				рΗ					Di	ssolve			/L)					mperat		(00)	
sediment	<u> </u>			Test da							est day							Test da		· · · ·	
ADO 40/40	7	8	9	10	11	12 7.3	13	<i>5</i> .3	4,9	9 4.5	10 47	4.5	12	5. 9	7	8	20	10	11	<u>12</u> ධූ එ	13
APG-18/19	7.4	7.3	74	7.4	7.5		7.6			7 50	- 1		15, l	-	21	20		21	21	 	
APG-20-21	7.5	7,4	7.6		7,7	7,5	7.8	5,5	4.7		63 / /	49	5.4	6.6	21	20	3)	21	21	20	21
APG-22/23	ገ.ዛ	7.4	7.5	7.5	7.5	7.5	7.7	5.5	6.0	5.3	5,5	4.8	5.5	6.4	21	20	20	21	21_	(عول	30
												,									
D :: 1		Λ.	<u>. 12</u>	 	В	 	n	B	Λ	 100		0		0	B	Λ	B	1	B	. A	0
Replicate	B	14	B	1/1		A	B	<u> </u>	<u> </u>	13	<u> </u>	B	<u> </u>	В		<u> </u>		211		A .	B
Meter	16	16	16	16	10	10	16	465	<u>.b</u>	5	5	\(\sigma_1\)	5	9	DHI	DYI	140	D41	041	DHI	DHI
Date	9/14/11	9(15)11	1774W	9/17/11	9/18/11	a/Mar		9 14 11	9/15/11	9/16/14		9/18/11	9/19/11	9/20/1	9114111	9/15/11		9/17/1	1 1	9/19/1	9/20/1
Time	७५००		1000	1150		W45	1110	0900	0907	1000	1150	1310	1145	1110	0000	0407	1020		1310	llus	1085
Initials	TZ	R	Am	DM	15%	AB	DM	F	F	47	DM	122	Ms	DM	F	F	12v-	DM	18	A9,	DM

088 for NT 9/12/11 2

Project Number: 60147216-445-(013-020) Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify):

	r						<u> </u>			<u> </u>											
Test	ļ			pH					D	issolve			<u>/L)</u>					mperat		(C)	
sediment	14	15	16	Test da	18 18	19	20	14	15	16	est da	y 18	19	20	14	15	16	Test da	y 18	 I 19	20
Form Sed	8.1	4 1	8.2	8.1	81	82	81	10.0	6.8	6.8	6.5	6.0	e <u>_</u>	6.2	20	21	20	22	22	23	22
APG-02/08	9.1	7.6		7.4	7.4	7.5	74	- C - C - C	6.2	r 13	5,3	5.	7	5.6	20	20	20	21	2.1	32	21
	0.1	7.4	7.6	7.3	7.5	7.3	(,)	5.0		 2/ - - 	3.7	44		49	20	20	20	21	22	21	21
APG-04/07	7,4		7.6			7.6	7.5		5,4	5.6	4.1	4.6	3.5			20			21	21	21
APG-05/09	7.3	7.4	7.6	7.3	7,6	, , , , , , , , , , , , , , , , , , ,	7.6	4.0	5.9	 		3.9	3,7		20	20	20	21		- `	
APG-10/14	1.3	7.4	7.4	7.2	7.2	7.2	7.2	39	5.3	5,1	3,8		3.2	4.2	20	20			22	3/	21
APG-16/17	7.3	7.5	7.4	7.4	7.2	7,4	7.1	4.5	5.2	5.0	3.8	3, 8	3.6	3.7	20		20	21_		<u> Ql</u>	21
Replicate	A	B	A	<u>B</u> _	<u> </u>	B	Α	A	B	A	B	<u> A</u>	B	<u> </u>	<u>/\</u>	B	<u>A</u>	B	A	B	<u> </u>
Meter	16	16	16	16	16	16_	16	5	S	5_	5	5	5	5	1741	DHI	DHL	110	DYI	D41	041
Date	9/28/11	9/22/11	9/23/11	9/24/11	9/25/11	9/2/11	9/27/11	9/21/11	9/22/11	9/23/11	9/24/11	9/25/11	9126/11	9/27/1	9/20/1	9/22/11	9/23/11	912411	9[25]11	9121011	7/27/4
Time	0915	1105	0435	0910	0900	1055	0920	0920)105	0935	0910	୦୯୦୦	1000	0920	0910	1055 0925 0910 0900 105					0920
Initials	20	DM	DМ	Te	E	88	TK	200	DM	DM	TK	R	856	F	\$	DM DM R P AS					12
		1513	1_ / * 	рН	l.	1 '	l		D	issolve	d Oxyg	en (mg	/L)				Te	mperat	ure (00	
Test sediment				Test da	ıy						est da	f						Test da			<u> </u>
	21	22	23	24	25	26	27	21	22	23	24	25	26	27	21	22	23	24	25	26	27
Form Sed	8.2	8.ブ	8.2	8.1	8,2	8.1	82	(0'8	C2 3	6.7_	(0.Q	لو، عا	6.4	7.5	23	अ	20		23		
APG-02/08	75	1.5	7.6	7,6	170	7.7	7.4	6.3	5.7	6.3	5.3	5.3	5.5	6.9	න්නි	00	20	00	99	21	21.
APG-04/07	7.3	15	7,4	170	7.3	J . J	7.4	5.4	2.5	47	4.4	4.1	5.0	6.0	<u>ବ୍ର</u>	Je	20	33	99	121	31
APG-05/09	7.5	7.7	7.4	7.7	7.3	8,0	76	2.4	5.3	7.9	5.1	43	5.4	5.6	ವಿವ	O ₀	19	22	<u> </u>	21	અ
APG-10/14	7.3	7.4	7.4	7.2	<u>7</u> ව	7.6	7.3	5.1	3,1	4.7	4,6	4,0	5.3	5.4	<i>a</i> a	වර	19	32	33		34
APG-16/17	74	7.4	7.4	17.3	7.3	7.5	7.5	17.7	4.5	4.6	<u>20</u>	4.6	4.7	5.5	ನವ	90	19	තුර	22	21	67
Replicate	B	B	B	A	13	A	B	B	, A	13_	H	B	₩	B	В	አ	13	10	B	A	B
Meter	120	16	16	No	76	14.	16	5	5	5	5	5	5	5	2041	DW	D41	1041	041	04	10 41
Date	9080	9/29/11	9/30/1	HOLLM	1921	ווללט	10/4/11	7/28/U	9/29/11	9/30/1	10/1/1	Malu	10/3/1	1014/11	7/28/h	11 PGVP	9/30/1	10/1/11	Mahn	10/2/11	DIUN
Time	0925	1 1	0925	ICAZ	1015	0858	08.5.5	09.25	1	0925	1647	1015		1	0925		0910	1645	1015	1	0855
			DM	Am	11×	Arry.	K	\$W~		DM	\$	A~	Am	K	om		DM	41/2	Ar.	AM	K
minais	Byr	_ <u>~~</u> _	UM	1211	0~	1 4.	<u> </u>	12111	<u> </u>	1 // //	14, 5	1 7 -		<u> </u>	1 ~ 1 1 V		V + 1	IADIAA		<u>. </u>	

0209/21/11E

QA: 64m02/08/12

Project Nu	umber:	601472	16-445-	(013-020	<u>))</u>	Test	Species	s (Circle)	: D. me	igna H.	azteca	C. tenta	ns E.f	oetida L	varieg	atus C	ther (Sp	ecify):						
Test	-			pH Test da			<u> </u>		D	issolve	d Oxyg Fest da		/L)					mperat Test da		<u>(</u> 2				
sediment	14	15	16	17	18	19	20	14	15	16	17	18	19	20	14	15	16	17	18	19	20			
APG-18/19	1.2	7.7	7.3	7.4	7.2	7.5	7.1	3.9	6.0	5,3	4.5	3,9	4.2	3.9	20	20	20	21	21	22	21			
APG-20-21	7.3	7.6	7.4	7.4	7.1	7.7	7.7	4.9	6,2	5,7	4,8		42	4.4	20	20	20	21	22	21	021			
APG-22/23	7.4	7.6	7.5	7.5	7.4	7.5	7.4	4.9	6.2	5,9	4,7	5.1	4.5	4.6	20	26	20	21	22	22	21			
											· · · · · · · · · · · · · · · · · · ·													
Replicate	A	13	A	B	Α										A									
Meter	16	16	16	16	16	16	16	5	5	5	5	5	5	5	041	D41	DHI							
Date	9/21/11		9/23/11	9(24/1)	9[25]1	9/24/11	9[27]1	9/21/11	9/22/11	9/23/11	9/24/11	9/25/11	9/26/1	9(27/11	7/2/									
Time	0016	1100-111	0935	0910	0900	1055	0920	0920		0935	0910	0900		0920	0910 1055 0925 0910 0900 1055 0									
Initials	20	DM	DM	Te	R	B=6	R	945	DM	DM	E	F	BS	E	₩	DM	PM	F	K	88	TZ			
Tan4			, ,,	рН	· · · · · · · · · · · · · · · · · · ·				V '	issolve	d Oxyg	en (mg	/L)				Те	mperat	ure (°	(C)	<u> </u>			
Test sediment		·		Test da			r				est da		· - 22					Test da		,	Т			
APG-18/19	75	22	23	24	25 7 U	26 7.4	7.6	5.4	4.4 4.4	23 5,3	4.5	25 4.8	26	²⁷ 5. 7	21	22	19	$\frac{24}{2}$	25 (OQ	26	27 21			
APG-10/19 APG-20-21	79	7.5	7.5 7.7	78	78		7.9	60	4.7	5.6			5, Q	6.6	<u>න</u> න	20 20	20	2 2	22		21			
APG-22/23	7.6		7.7	48	7.8		7.7	20	5.0	5.7		2'3 5'3	5.4	6.5	32	21	30	22	\$5 \$5	3/	2,			
711 0-22/20	7.00	1.3	f. f	7,0	7.0	110	!.	0.1	,,,,	317	0.0	0,0	3.7	0.5	90	- A1	20		ΦΦ	-al				
					0		0			.5			٨	5 6	2		1 57							
Replicate	B	A	ß	1	<u>B</u>	Ar	В	<u>B</u>	*	B	A	B	A	B	340		B	D.	8	4	B			
Meter	16	No.	16	16	16	No.	16	5	160 5	5	S	<u>S</u>	5	5	PD41	1041 01/ 011 DUN								
Date	Post	4/37/11	9/30/11	144	195/11	10/3/11	1014/11		वित्रीप	9/30/11	MIN	192/4	4/2/01	10(4/1)	9/28/4	9/24/1	9/30/11	"FOZIM	10/2/1	10/5/10	10/4/			
Time		0406	0925	1642		0458		065?	0900	0925	1675	lac		0855	2 0000 0400 1010 1000 1010 08EE 08									
Initials	An	467	DM	~	B~	λ €)	F	\$	407	DM .	\$~~	gu-	yes	F	An-	AB	121	the	An	BB	14			
OR 9/27/11 E DM for AB 9/30/11 E Box 1/27/12, CF NM=Not Measured																								

OR 9/27/11 E @ DM for AB 9/30/11 E

Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify): Project Number: 60147216-445-(013-020)

		рН		Di	ssolved Oxy				Temperat		
Test		Test day			Test da	ıy			Test da	<u>Y</u>	
sediment	28			28			28				
Form Sed	NM			IMA			NM	3.			
APG-02/08	7.1			.O°			اح ا	·			
APG-04/07	7.7		-	1.0			21				
APG-05/09	80			1.0			20				
APG-10/14	82			2.9			20				
APG-16/17	7.8			09			2-1				
Replicate	A/B			AB			A	3	·		
Meter	16			5			118				
Date	1015/11			ોઇીં			volel i	- 1			
Time	1100		i	100			1100				
Initials	X			R			*				

		pH_		C	issolved Ox	ygen (mg/L)	<u></u>		mperat		(C)	
Test sediment		Test day	·		Test	day			Test da	у	<i>,</i>	·
Secument	28			28	<u> </u>			28				
APG-18/19	200			69				20	Ì.			
APG-20-21	7.0			109				21		٠.		
APG-22/23	Q-1			109				20°				
		<u> </u>		W 7		,						
Replicate	AB			ALB				AB	,			
Meter	16			5				PHOD				
Date	wg n			1016ln				10/5/11				
Time	1100			100				1100				
Initials	B			A				20				

* Chem Rep taken From B rep \$015/11 == @ R 10/5/11 WP @ GLM OF ANK 02/08/1200

ANM = Not measured

OR WISH WE

C-118

OVERLYING WATER CHARACTERIZATION

Project Number: 60147216-445-(013-020) Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify):

		Hardnes	s (mg/L	CaCO ₃)		 	Alkalinit	y (mg/L (CaCO ₃)			Condu	ıctivity (µ	S/cm)			N	H₃ (mg/L	.)	
Conc.	0	7	14	21	27	0	7	14	21	27	0	7	14	21	27	0	7	14	21	27
Form Sed	106	72	58	62	64	96	75	60	62	68	192	178	144	145	Peter	21.0	۵.اک	240	۷).0	41.0
APG-02/08	50	86*	38	36	40	43	45	36	35	37	132	132_	110	110	127	2h0	L, 27	21.0	∠1.0	41.0
APG-04/07	56	64	52	54	ሬኔ	58	४८	54	46	55	169	234	166	162	206	۷١،٥	2.6	91,2	21.0	zhe
APG-05/09	56	64	56	66	86	61	80	59	71	97	169	321	165	185	,251	21.0	1.4	21.0	21.0	aho
APG-10/14	30	38	34	30	32	35	48	42	33	28	123	181	165	171	157	<u> ۱، ٥</u>	2,6	7.5	3,3	L
APG-16/17	52	44	46	40	54	52	54	54	39	47	176	185	180	143	R>	21.0	1.8	2.2	TrillO	240
APG-18/19	56	46	46	44	50	55	56	53	391	40	193	191	188	146	175	21.0	1.8	1.8	21.0	27.0
APG-20/21	50	60	52	82	48	50	78	54	98	105	161	259	171	279	288	٥.اك	1.8	2 LO	26.05	21.0
APG-22/23	44	42	36	36	40	45	55	40	39	41	148	1865	139	151	דרו	۵۱.0	2,0	۷۱.۵	41.0	Who
Meter#	Tity	TiH	Titr	Tite	Titr	Titr	Titr	TiH-	Titr	Tim	15	15	15	15	15	1-1/# \	HA#1	14十十	144	HA-#1
Date:	9/7/11	alulu	ની ગાં	વ[28]ષ	10/4/11	ahly	9/4/11	વ[2,]ય	વિશ્વીષ	10/4/4	9/7/11	aliyly	વાચાય	વશ્ક્રિયા	10 4 11	9/7/4	વાના	alulu	9/28/11	10/W/X
Time:	1310	<i>0</i> 930	urs	1000	เรรเ	1310	0930	1115	1000	1530	v310	O\$30	1115	1000	1530	1219	0970	1115	1000	15-30
Initials:	NU	WfaAm	z KB	outer Amp	R	NV	outor Ame	103	evterana	H	る区	ess for A MR	18	wordme	AR	NA	out or Am	e K&	cu farapole	AY

* Note: This value is suspect and will not be reported.

(1) 10 12/8/11 C (2) CU FOT AB 01/27/12 CF

DAILY TOXICITY TEST LOG

Project Number: 60147216-445-(013-020) Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify):

Test Day	Comments Temps (°C)	Feeding (None)	Date & Initials
-1	Chambers filled with sediments and overlying water placed in test bath @ 0950 -1335 Water drip started @ 1430 approx. drip rate = 2、8~ m/m/n	None	40/CN 09/06/11
0	Test Organisms added @ 1030-1120 CT = 20,4°C Range 20.0°C to 20.8°C	None	AS/NOT
1	CT = 19. 8 Range 19.4 to 20.4	None	9/8/11
2	CT = 20.2 Range 4.4 to 20.8	None	019111 . L
3	CT = 30.2 Range 19.6 to 30.8	None	delan
4	CT = 20.2 Range 19,6 to 20.8	None	9/11/11
. 5	CT = 20,49 Range 19,60 to 20,80	None	9/12/1)
6	CT=3 .8°C Range 20 4 to 22.8°C	None	9113111
7	CT = 23,2 Range 22.6 to 23.6	None	FE 9/14/11
8	CT = 22,4 Range 21.4 to 22.8	None	7 9/15/11
9	CT = Q 1, C Range Q 1, Q to Q 2, Q	None	Am. 9/16/11
10	CT = 22, 4 Range 21.2 to 22.8	None	9/17/11
11	CT = 22,4Bange 21,240 22,8°C	None	9/18/11
12	CT = 20.6 Range 20.0	None	48
13	CT = 22.0 Range 20.0 to 22.8	None	9/20/11
. 14	CT = 22.00 Range 21.4 to 22.0	None	9/21/11

DYB9)10/11 € @w for AB 12/12/11 E Bow for AND 12/12/11 E

DAILY TOXICITY TEST LOG

Project Number: 60147216-445-(013-020) Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify):

		Facility	Date &
Test Day	Temps (°C) Comments	Feeding (None)	Initials
15	CT = 2 . G ℃ Range 2 . 2 to 22. 6 ℃	None	Oext PM 9/22/11 07/06/110
16	CT = 22.2 Range 21.2 to 22.3°C	None	DM 9/33/11
17	CT = 23.2 Range 22. Z to 23.6	None	P 9124/11
18	CT = 23.6 Range 22. 8 to 24.0	None	9/25/11
19	CT = 23, Q Range 23, 2 to 24, O	None	9/21/11
20	CT = 23.6 Range 23, 2 to 23,6	None	P 9/27/11
· 21	CT = 23、4 Range 23, 2 to 23.6	None	Am 9/28/11
22	CT = มุร.4 Rangeมีวิ.ว to มินุ. ८	None	9/29/11
23	CT = 23, 2 Range 22, 6 to 23, 6	None	9/30/1
24	CT = 23 % Range 22. Loto 24.6	None	An
25	CT = 33 3 @ Range 33 4 % 0 24.6	None	10/2/11
26	CT = มหุว Range มหุง to มหุง	None	AG 10/3/11
27	CT = วน.น Range วน. 0 to วน. Ç Composites of waters collected for characterization @ 10/น/แ @ 0750 cu	None	10/4/11
28	Adults collected from sediment chambers and transferred to clean water @ +els=16 146 Organisms weighed (unblotted wet weight), transferred to clean sample bottles, and placed in freezer @ 16 5 - 16 14	None	1015 "

Ow of looking Ow for Amir izlizhi E Ow izhizhi wp Ow oilizhirz cf C-121

Page 15 of 15 CN 1912 OA: GLM01/26/12

Sample Replicat		Date	Start Time	End Time	Initials
*					
Formulated	Α	10/4/11	1000	03 1535	OM
(control)	В	10/5/11	10890/1330 ·	1020 11030	ग्रह.
APG-02/08	Α	1014/11	0820/1545	1830/1900	w/k
	В	10/6/11	0320	1830	4B'
APG-22/23	A	10/4/11	1000 Ocode	1830	D.D.MKB,
	В	10/4/11	0845	1830	DB/PG
APG-05/09	A	1015/11	0745/1545	1810/1820	FIAP
<u> </u>	В	10/5/11	0815/1530/1300	1200 1835 1835	4/18/mg
APG-04/07	Α	10/6/11	0745/1540	1800/1980	K/#
	В	10/4/11	0812	1820	Arg
APG-18/19	Α	10/4/11	0815/154518)	1730	NUT/AR
	В	10/6/11	0810	1830	ap.
APG-16/17	A	10/5/11	0.745	1630	AB.
	В	10/6/11	0815 /1100	1830 1830	8/13
APG-10/14	A	19511	0830	1800	Den
:	В	10/4/11	\$ 0820 (D)	1800	WIR
APG-20/21	A	10/5/11	0800/1506	1830	CP/A
•	В	lokalu	1030 /1046/1630	1830	mt/w/AR/a

O PM 10/4/115

@ fram for 8 1/20/12 CF/NA

APG 20/21 B - Worms lethargic, not much movement (AR)

APPENDIX C

Test Round 2 Laboratory Data Sheets

Page 1 of 1/FCETL QA Form No. 051
Revision 4
Effective 1/96

W 1/9/12

OLA: GLM 0/26[12

TOXICITY DATA PACKAGE COVER SHEET

Test Type: Chronic	Project Number: 60147216-445-(021-025)
Test Substance: <u>Sediment</u>	Species: <u>Lumbriculus variegatus</u>
Overlying Water Type: Filtered Horsetooth water	Organism Cotor Batch Number: 11-018
Concurrent Control Sediment Type: Formulated Sediment	Age: adv1+ (adult) Supplier: Bayou Aquatics 10\10\1\10\1\10\000-17\15, 10\1\1\10\000-17\20
Date and Time Test Began: 4 13 11 @ 1000 = 1030	Date and Time Test Ended: 1010 1011111 0 0750 1700 (cost day)
Protocol Number: USBPA (2000) + ASTM (2009)	Investigator(s): AB CUT Am DM AND MET
	JM/MX/AP/C/OU for RAN/AG
Background Information	
Type of Test: Continuous Drip Renewal	pH Control?: Yes No If Yes, give % CO ₂ : N/A
Test Temperature: 23 ± 1 °C	Env. Chmbr/Bath #: 43 Test Chambers: 2.5 gal glass aquaria
Test Sediment Vol.: 1000 ml Overlying Water Volume: ~	2 L Number of Replicates per Treatment:2
Length of Test: 28 days Number of Organisms per F	Replicate: to maintain > 5:1 sediment organic carbon:org. dry weight
Type of Food and Quantity per Chamber: None	Feeding Frequency: NA
Photoperiod: 16h Light : 8h Dark	Light Intensity: 9.3-93 ft-c.
Overlying Water Characterization Parameters and Frequency	: Hardness: <u>Day 0,7,14,21,27</u> Alkalinity: <u>Day 0,7,14,21,27</u>
NH ₃ : Day 0,7,14,21,27 pH: Day 0,7,14,21,27	Conductivity: <u>Day 0,7,14,</u> TRC: <u>NA</u> 21,27
Test Concentrations: Formulated Sediment, APG-01/03, A	PG-06/24, APG-11/13, and APG-12/15
Reference Toxicant Data: Test Dates: 1412 to	LC ₅₀ or IC ₂₅ (Circle):
Hist. 95% Control Limits: NA to Metho	od for Determining Ref. Tox. Value:
Special Procedures and Considerations:	
Sediments will be homogenized before use in testing.	
Hard/alk, pH, cond, and NH₃ of the overlying water will be me	easured on days 0, 7, 14, 2 1, and 27
DO will be measured daily and is to be maintained at ≥2.5 m	
Overlying water renewal rate at approximately 2 volume addi	^2.8 itions (4000 ml) per day, or 2.8 ml/min
	Ø
Study Director Initials: ILZD Date:	9/12/11
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

SEDIMENT/SOIL PREPARATION

Artificial soil					
Constituent/source	Amount added (g)				
Rinsed Medium Grit Silica Sand	8500				
Clay/Silt Mixture (ASP 400)	1500				
Dolomite	5				
Humic Acid (Sodium Salt) (Lot #C10-034)	1				
Sieved Sphagnum Moss	220				
Calcium Carbonate (Lot #C02-064)	115 1050				
Notes: Medium grit silica sand was rinsed with deionized water and baked overnight in 108	5°C oven prior to sediment mixing.				
Sphagnum Moss was sieved using a 2 mm sieve prior to mixing. Calcium carbonate added	to raise soil pH from 3.4 to final pH of 6.7.				
See page 3 of Bound 1 data sheets for propouration of formula (#60225262-445-(013-020))	ued sediment notes. cu				

C = 11/- = alima = m4	FOFTI #	Homogenization					
Soil/sediment	FCETL#	Date	From	То	Analyst		
Form. Sed	N/A	09/12/11	1015	1018	au		
APG-01/03 A	24843	09/12/11	1010	1040	AB		
APG-01/03 B	24843	09/12/11	1045	1105	AB		
APG-06/24 A	24848	09/12/11	1045	1049	w		
APG-06/24 B	24848	09/12/11	1103	1107	au		
APG-11/13 A	24850	09/12/11	1132	1136	ω		
APG-11/13 B	24850	09/12/11	1148	1150	ယ		
APG-12/15 A	24846	09/12/11	1115	1120	AB		
APG-12/15 B	24846	09/12/11	1135	1150	A93		
				-			
	·						

Note: Replicates homogenized and tested separately per citent's request.

BIOLOGICAL DATA

Test Species (Circle): H. azteca C. tentans E. foetida L. variegatus Project Number: 60147216-445-(021-025) Other (Specify):

Treatment / Sediment	Rep.		Final			
		Wet Weight Unblotted worms (g) ^a	Calculated Wet Weight Blotted Worms ^b	Calculated Dry Weight Worms ^c	Sediment Organic:Dry Worm Weight Ratio ^d	Wet Weight Unblotted Worms (g) ^{a,e}
	Α	2.7			-	1.7
Form. Sed	B	2.7				1.4
(CONTYOI)	С					MO-
	Α	9.0				6.4
APG-01/03	В	9.0				4.5
	С			·	•	
	Α	9.0		(2)		3.9
APG-06/24	В	9.0				3.5
	С					
	Α	9.0				3.6
APG-11/13	В	9,0				3.3
	С					
	Α	9.0				6.1
APG-12/15	В	9.0				5.1
	С	/				
	Α					
•	В					
	С					
Date ·		9/13/11			7	reliation pure infinite
Time		1000 - 1030				0800 - 1700
Analyst		W AB				CULAD

Measured Using Balance Number <u>AND Top Loader</u>
 Unblotted wet weight of worms divided by 1.33

OAB 10/10/11 WP

0 6mm 02/09/12 NA, seepage 4

Ratio applied to unblotted wet weight of worms: 0.114

⁽date/time) in horsetoom water | 500 my beakers

Page 4 of 11
CU 12/12/11
CU 1-51/10 1/26/12
Test Species: Lumbriculus variegatus

Project Number: 60147216-445-(021-025)

		Initial			Final		
Sample Name	Rep	Wet Weight of Unblotted Worms (g)	Est. Blot Dry Wt. of Worms Added (g) ^a	Est. Dry Wt. of Worms Added (g) ^a	Wet Weight of Unblotted Worms (g)	% Recovery	
Form Sed 、	A	2.7	2.03	0.24	1.7	63%	
(COVITION)	В	2.7	2.03	0.24	1.6	59%	
APG-01/03	Α	9.0	6.77	0.79	6.4	71%	
Ard-01/05	В	9.0	6.77	0.79	4,5	50%	
APG-06/24	Α	9.0	6.77	0.79	3.9	43%	
APG-06/24	В	9.0	6.77	0.79	3.5	39%	
ADC 11/12	Α	9.0	6.77	0.79	3.6	40%	
APG-11/13	В	9.0	6.77	0.79	3.3	37%	
ADC 12/15	Α	9.0	6.77	0.79	6.1	68%	
APG-12/15	В	9.0	6.77	0.79	5.1	57%	

^a Calculated by dividing unblotted wet weight by 1.33 (USEPA, 2000) to obtain blotted wet weight and then multiplying estimated blotted wet weight by 0.117 (wet weight to dry weight conversion calculated by FCETL during previous studies)

Note: Values are rounded to two digits; some slight differences may be found when applying conversion factors to rounded values

CHEMICAL DATA

Project Number: 60147216-445-(021-025)

Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus

Other (Specify):

Test				рН					Di		d Oxyg		/L)				Te	mperat	ure /	2C)	
sediment				Test da	зу						Test da							Γest da	y t		
	0	1	2	3	4	5	6	0	1	2	3	6.43	5	6	0	1	2	3	4	5	6
Form Sed	8.3	8,2	8,1	8.1	8.1	8.1	8.0	OAO.CO	6.2	6.5	6,2	490	6.0	62	23	22	22	ବ୍ୟ	21		21
APG-01/03	7.6	7.2	7.3	74		1.3	72	6.3	4.9	4.9	4.9	4.9	3,8*	4.7	23	22	22	ධිබ	21		20
APG-06/24	7.3	7.1	7.2	7.4	7.4	7.4	7.4	5.8	4.8	4.9	5.1	4.9	4.6	5.5	22	22	21	93	22	22	್ರಿಲ
APG-11/13	7.6	7.2	7.4	7.5	7.4	7.5	1.5	6.2	4.9	4.9	5.4	5.3	4.7	57	23	22	22	<i>Qa</i>	22	22	20
APG-12/15	7.6	7,2	1.3	7.4	7.4	1.3	7.4	6.3	4.7	4.7	<u> ५,८</u>	4.9	4.0	4.5	22	22	22	ସା	22	21	20
Replicate	A	В	A	B	4	В	A	A	B	Ą	R	A	B	A	A	ß	A	3	٨	B	A
Meter	110	16	16	160	16	16	16	5	5	5	5	ς _	5	E	D41	P41	041	041	DHI	041	DYI
Date	91311		9/15/11		9/17/11	- 1 h	aliala	_			911911	- transfer	α[.l		91311	•		9/16/1	40	alleli	Week_
Time	1000		0907	1015	1150	1310	แนร	1000	0,900	0907	105	1150	1310	1145	1000		0107	1(105	_	, , , , , , , , , , , , , , , , , , ,	V145
Initials	w	K	R	Am	OM	158	AB	ىن	R	12	AM	DM	18	113	ري ل	R	Te	sm	DM	A8	AG
				. рН					Di	ssolve	d Oxyg	en (mg/	/L)	,			Te	mperat	ure (°	(C)	
Test sediment				Test da	ıy					7	est da	у				-		Test da		V	
	7	8	9	10	11	12	13	7	8	9	10	11	12	13	7	8	9	10	11	12	13
Form Sed	2200	7.3	8.1	8.1	8.0	8.0	8,1	6.7	49		6.6	6.5	6.1	54	22	コ	22	22	23		23
APG-01/03		7.3	7.4	7.5	7.3	7.4	7.4	6.0	4.5	5.7	5.5	4.3	40	34	22	スし	22	22	23	23	23
APG-06/24 ⁹			7.5	7.5	7.3	7.4	7.4	6.2	4.5	5.8	5,6	5.0	4.5	4.3	22	21	22	22	22	23	33
APG-11/13 [©]	عبرهد	7.4	7.6	7.5	7.4	7.4	7.4	6.1	4.7	6.0	5.8	5.2	4,5	4.4	az	コ	22	22	22	23	23
APG-12/15	22%	7.4	7.5	7.5	7.3	7.4	7,4	5.7	3.7	5.6	5.5	44	4.0	3.3	22	N	22	22	22	2.3	22
															223	数					
Replicate	B	A	B	A	В	Α	B	В	A	В	A	B	A	B	BBB	Α	B	A	\$	A	B
Meter 👩	P4416	110	16	16	16	16	16	ر ر	IJ	S	S	5	5	5	D41	1741	D41	DHI	P41	DHI	1041
			9/22/11	9/23/11	9/24/11	9/25/11	118610	9/20/11	9/21/11	9/22/11	4/23/11	9(24)11	9(25)11	11 226/19	9/20/1	akılı	9122/11	9/23/1	વાયા	9/25/11	9/24/1
	1055	' -			<u>જ્યા ૦</u>	ଅସ୍ତ	1056	1110	0915		0439	0910	०१००	1066	1055	0905	1055	0925	0910	୭୯୯୭	1055
Initials	DM	æ	DM	DM	F	F	866	DM	\$	PM	DM	K	K	856	DW _	K	DM	DW	R	F	Des

Ocu 09/13/11 E @ DM 9/17/11 E @ DM 9/20/11 WP 9/22/11 E

* C. Needham norified

CHEMICAL DATA

Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify): Project Number: 60147216-445-(021-025)

_ :	ľ			pН			_		Di	ssolve	d Oxyg	en (mg/	<u>'L)</u>				Te	mperat	ure /	°C)		1
Test sediment				Test da	ay -						Test da			,				Test da)	:. <u></u>	1
Scannone	14	15	16	17	18	19	20	14	15	16	17	18	19	20	14	15	16	17	18	19	20	1
Form Sed	8.0	8.1	8,1	8.1	1.87	8.1	8.2	6.0	(0.)	(,)	6.1	2,9	60	んコ	23	24	გ ን	21	24	24	27	
APG-01/03	ໆ,3	7.4	74	7.5	7,2	7.4	٦.८	H. 0	4.8	4.4	5.2	4.1	<u>५,३</u>	4.8	23	274	23	21	33	133	ठा	
APG-06/24	7.2	7.3	1. <i>5</i>	7.5	7. S	7.4	7.6	4.3	5.1	5.1	5.3	50	7.5	5,1	23	ඉ3	22	21	23	23	m	
APG-11/13	7.4	75	7.6	7.6	75	75	7.7	4.6	තු	6, _Q	5,7	ଞ୍ଜ,ଉ	5,4	5.7	23	रूप	27	21	23	23	ໝ	1
APG-12/15	7.3	7.5	7.5	7.6	7.3	74	7.5	3.8	4.7	4.4	5.1	7.0	4.1	4.6	23	23	32	20		3 3	3r]
Replicate	Α	ß	A	B	A	B	A	Α	B	A	B	A	B	4	Δ	B	A	B	FI	B	A	4
Meter	16	16	١٥	16	16	(6)	ان	5	5	5	5	S	5	5	DHI	D41	DAI	DHI	<u> </u>	DUI	DH	
Date	1/27/11	C3 / .	9129/11	9/20/11	19/1/	19911	ાવેગ્રહ	9(27/11	7/28/1	9/29/11	9/30/11	10) Tu	192/1		9127/11	9/28/11		9/30/11	10/1/11	10/2 M	10/3/u	1
Time	७१२७	0730	0900	0925	1648	JOSO	0855	0920	०भेड०	<i>0</i> 900	0925	Novo	401	0455		0920		0910	Kuo	1000	, , , , , , , , , , , , , , , , , , ,	1
Initials	P	Am	An	PM	A	S	yes	P	Am	æ	DM	An	8	Jes,	Ti	Am	400	DM	om	Am	Ass	1
Test	<u> </u>			рН		<u>. ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '</u>			Di		d Oxyg		<u>'L)</u>			•		mperat		<u>ر (</u>		
sediment				Test da					1		Test da	*,				1		Test da		/	\ .	1
Form Sed	91 9187	22 9.1	B ₁ 2	8.1	25	26 % 2	27 St 3	7.3	6.9	6.7	24 6. 6	25 0. Ls	106	7. 0	22	23	23 22	24 22	25	26 20	27 ₽ 93	ļ
APG-01/03	207.5			7.6	710	7,0		6.3	6.5	5.8	5.1	13 LX	48	71	22	22	21	22	90 91		20	19
APG-06/24	2271	7 7	7.6	7.5	7.6	7.6	7.7	6.8	10.6	5.7	5.6	4.8	5,0	7.2	22	22	21	97	20	 \ 1 \) 	14
APG-11/13	221	F	7.8	7.5	7.8	7.6	7.9	6.7		5,39		6.1		6.9	22	22	21	22	20		920	И
APG-12/15	127			7.6	7.6	7.4	7.6	5.9	10.4	4.9	77.7	43	4.8	6.5	22	22	21	12	21		92.D	V
711 0 12710	1-1	6 {€U	4,0	".0	***	7,01	1.6	- J	10.7	11.1	1 . 1	1.3	418	O pair	20		01	<u> کی </u>	<u>α</u> (<u> </u>		ľ
Replicate	B	A	B	A	B	A	В	B	A	B	A	8	A	B	B	A	В	A	B	A	943	
Meter	16	10	16	5m20	ELV-30	FM20	FMZD	5	5	এ	5	5	5	5	D41	D41	241	141	カイノ	DAI	DIL	
Date	n]P[01	olelu	10/6/11	19/11	192/11		notion	10[4]11	10/6/11	10/6/11	Idoli	10811	10/9/11	tolldu	10/4/11	101dn	10/6/11	19-11"	198/11	whly	B id u	
Time	0855	1050	1135	0/3-6		V 1 'C	1025	0855	1055	IISS	0730	11600	1505	1025	0855	0300		COSO	ooy!	TOUS	075	
Initials	K	2	DM	VB	\B	NUT	K	TE.	<i>&</i>	DM	Yes	YB	NU	FL	K	X	DM	IB	168	M	MS	

Dan Plily Wp 3 DM 10/4/11 C1 B R 2014/11 Fewr 9 MT 10/2/11 C C-129

CHEMICAL DATA

Project Number: 60147216-445-(021-025)

Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify):

Tool		рН	Di	ssolved Oxygen (mg/L)		Temperature (°C)
Test sediment		Test day		Test day		Test day
Soumen	28		28		28	
Form Sed	3.4		7.3		2.0	
APG-01/03	7.9		7.4		20	
APG-06/24	8,0		7.4		20	
APG-11/13	4.3		7.4		3 0	
APG-12/15	8.0		7.3		30	
Replicate	A		A		A	
Meter	Fnao		5		DHI	
Date	idulu .		re[n]II		w[n]	
Time	1715		1715		0800	
Initials	An		AR		AO	

OVERLYING WATER CHARACTERIZATION

Project Number: 60147216-445-(021-025)

Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify):

		Hardnes	ss (mg/L	CaCO ₃)	·		Alkalinit	y (mg/L (CaCO ₃)			Condu	ıctivity (µ	S/cm)		.:	<u></u> N	IH₃ (mg/L	_)	
Conc.	0	7	14	21	27	0	7	14	21	27	0	7	14	21	27	0	7	14	21	27
Form Sed	60	60	64	40	130	57	108	しら	90	127	134	145	153	207	294	<1.0	41.0	41.0	41.0	<1.0
APG-01/03	36	32	50	42	44	38	36	57	38	35	१०१	101	162	145	156	41.0	1.3	2.8	41.0	41.0
APG-06/24	38	36	38	40	46	41	40	35	41	49	133	121	311	128	148	101	41.0	41.0	41.0	4.0
APG-11/13	36	40	52	74	88	37	44	52	79	વપ	112	130	174	258	729	<1.0	<1.6	41.0	41.0	41.0
APG-12/15	38	42	46	52	42	37	47	55	51	49	118	149	169	198	247	41.0	1.8	73.0	3.44	1.5
		,																		
												-								
								-									-			
					-															
Meter#	Titr	Tilt	714	Tite	Titt	Titr	Titt	Titr	TΉ	714	15	15	15	15	15	HA# 1	14A#1	HA# I	HQ#1	49#1
Date:	9113111					9/13/11		912710	2014/0	roholu	9/13/11	नीज्या	•		roliola	91311	9120/11	9127411	idutor	roholn
Time:	1040	7030	1515	1055	1035	1040	1620	1515	1055	1035	1040	1620	1615	_	1035	سر	1600	1630	unk	1730
Initials:	K	OK	AP	下	P	R	CUFORDIM	AP	R	F	F	outer DM	AP	T	F	K/M8	NIS	8 Ara	W	K

DAP 1/10/11 WY

@ Sample not preceived due to technicion error.

Ameneured voludin on a preserved Sample (meter#3).

DAILY TOXICITY TEST LOG

Project Number: 60147216-445-(021-025) Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify):

Test Day	Comments (Temps. °C)	Feeding (None)	Date & Initials
-1	Chambers filled with sediments and overlying water placed in test bath @ 0920 - 1200 Water drip started @ 1330 approx. drip rate = 22 m-\min	None	on 1 AB
0	Test Organisms added @1000 -1030 CT = 21.6' C Range 19.8 to 22.6 C	None	9/13/11
1	CT = 23,4 Range 22.6 to 23.8	None	9/14/11
2	CT = 23_2 Range 22. 30 to 23.4	None	9/15/11
3	CT = 22.2 Range 21.10 to 22.6	None	9/16/11
4	CT = 22.6 Range 21.6 to 23.0	None	9/17/11
5	CT = みえられange 22,0 to 23,0 °C	None	9/18/11
6	CT = 21.2 Range 30.6 to 22.0	None	वीविध
7	CT = 22.2 Range 20.6 to 23.0	None	DM 9/20/11
8	CT = 29.8 Range 22.4 to 23.0	None	9/21/11
9	CT = 22.8 Range 22.4 to 23.0	None	9/22/11
10	CT = 22.8 Range 22.4 to 23.4	None	0M 9/23/11
11	CT = 23,4 Range 27.6 to 23.8	None	9124/11
12	CT = 240 Range 23.9 to 24,4	None	9/25/11
13	CT = 24.7 Range 24.7 to 24.4	None	912611
14	CT = 24, 2 Range 24, 2 to 24,4	None	F 9/27/11

Ow for the 12/12/11 E

@woilztliz cf

DAILY TOXICITY TEST LOG

Test Species (Circle): D. magna H. azteca C. tentans E. foetida L. variegatus Other (Specify): Project Number: 60147216-445-(021-025)

Test Day	Temps (°C) Comments CT = 24.2 Range 24.2 to 24.4	Feeding (None)	Date & Initials
15		None	419811
16	CT = 34,ฉ Range มน,ฉ to มนเป	None	43 9/29/11
. 17	CT = % 3.8 Range 22.6 to % 4. %	None	DM 9/30/11
18	CT = 23.76® Range 22.6 to 34.75® 23.8	None	10/1/11
19	CT = 23,8 Range 22.4 23.4	None	10/2/11
20	CT = 21, 2 Range 27, 4 to 24,4	None	10/3/11
21	CT = 24.2 Range 24.2 to 24.4	None	TK 10/4/11
22	CT = วูนุ, ว Range ฉน.ว to ถูน,นี	None	(0/5/11
23	CT = ม _{4,0} Range ฎ _{3,4} to ฏ _{4,} H	None	DM 10/6/11
24	CT = 33.0 Range 21. U to 23.8	None	107
25	CT = 22.0 Range 21. 1 to 23.4	None	10/8/11
26	CT = 21.0 Range 14.00 to 22.00 21.0 21.2	None	Kadin
27	CT = to. t Pange \9,8 to 20.6 20.4 Composites of waters collected for characterization @ 0730	None	Rlololn
28	Adults collected from sediment chambers and transferred to clean water @ Idio-	None	20/11/11

Sample	Replicate	Date	Start Time	End Time	Initials	Notes
Formulated	A	10/11/11	0815	1515	Jung	some worms and op of soil
	В	. l. l	0810	1500	A8/mt	WORMS MOT
APG-01/03	A	10/u/u	0815/0925/1530	1710 /1700/1700	TO A	worms every distributed no worms visible
	В	totalii	0815/0910		Dryme.	40 worms visible
APG-06/24	A	10/11/11	0800)0800	1,000 1101		
Ar u-00/24				1000 1600	K/B	No worms visible
	В	Poliolia	0816	1725	15/ JM	No worms visi pic
APG-11/13	A	10/10/4	0800	1720	1300//	No worms visible
	В	lolwl11	0825 / 1550	1720/1700	R/W AR	nowine visible plants granty
				17 88°	1	
APG-12/15	A -	10/11/11	0815	1700	au mt.	di stabuted worms evening
	В	1910/11	0400 / 1700 AR	1745	cy nt.	Worms evenly distrib
					1	
1	<u> </u>)	1	
· <u></u>					<u> </u>	·
				20.		
	,					

DOW FOR NET IOITH E

APPENDIX D
Chain of Custody Records for Tissue Samples sent to Analytical Laboratory

CHAIN OF C STODY RECORD

Page I of 2

Client/Project Name:			1	Proje	oct L	ocatio					•		Ţ	-		Ana	lysis f	Reque	sted		····		Containe P Plast A Amb	C	-,	Preservation 1 HCl, 4° 2 H2SO4, 4°
445			- 		15.00	Fook	UETL!	AE	COS	<u>M</u> _		· · · · · · · · · · · · · · · · · · ·	ļ	<u> </u>	1	T	-			<u> </u>	T	1	G - Clea V - VOA	Glass		3 – HNO3, 4° 4 – NaOH, 4°
Project Number:		رم	'	rieiu	LOE	DOOK	NO.:							ľ				4.					O - Othe E - Enco			5 – NaOH/ZnAc,
90147216 - 445 (0) Sampler (Print Name)/(Affiliation	i): (2 _ () (2)	Ω,		Chai	n of	Custo	dy Tape	Nos.	 -			··	1		·											6 - Na2S2O3, 4° 7 - 4°
•				-										<u> </u>	1.								Matrix Co	des:		
Christina Needhan	nlaecc	M	ļ	42	62	31							1	1									DW - Dri	nking Wat	91	S – Soil SL – Sludge
Signature:				Send	Re	suitș/l	Report to):		T	AT:			-							!		GW - Gr	oundwater	r	SD – Sediment SO – Solid
Christina Neidhe	an		,	Ba	₹ ^1	Na	ddy				Std	.	AprilVSic						-				ST - Sto			A – Air L – Liquid P – Product
Field Sample No./Identification	Date	Tim	9 (C O M	G R A B	S	ample ontainer ze/Mat'i)	. M	atrix	Р	reserv.	Field Filtered	200						, ,				Lab I.D.	-	Ren	narks
Form Sed A	10 5 11	1030				20 ML	Vial	Tie	<u>ક્</u> રાહ્	ي ا	e_	-	X		-					· .						_ <u></u>
Form Sed B	1015 11	1940									<u> </u>		Ĺ		<u> </u>											
APG-02 08A	icisi ii	1630	.			٠			1																-	
APG - 02/08 B	ici7-lu	1325											1									,		-		
AFO O4/07 A	10/4/11	1210																								
APG-04/07B	101511	1445				- :												····								
APG - 05/09 A	1010111	1630												-												
APG - 05109 B	10/16/11	1005		-														-	. ,							
	1 ''																									
APG-10/14A	المامان	1940		\neg		·····		1				1														
APG-1014B		· ·	_	-	_		1	1			l	<u> </u>														
APG-16/17 A	1	1540		+	\dashv		<u> </u>				 	 			1							1		•		
	10 711	1235	-				/		/ -	+-	 	 	V		-			_								
L(가 # II -01용 Relinquished by: (Print Name)/(Affiliat	اللقالة	1100		<u>.</u>			Received	hv: #	rint Ms	meV//	Affiliation)		4	L	-		!	An	alvtica	al Lat	orato	rv (De	stination):	· · · · · · · · · · · · · · · · · · ·	
		ł	Date:	1011	0 1) '	.0001700	ω γ. (ι			· illianori,				Date) :			,				•		<u>/</u>	والأمسون الم
Christina Needham / At Signature: Chustua ne	when	.	Time:	•			ignature			-					Time	9:].			. 4	1303 V	V. Laport	e-Avenu	e (niversity of
Relinquished by: (Print Name)/(Affillat	lon)		Date:			F	leceived	by: (P	rint Na	me)/(#	Affiliation)				Date) :					!	Fort C	oilina, Co	8052	No	טאל
Signature:	•		Time:	÷		s	ignature	:					-		Time	9:			•			(970) (970)	70) 416-4 490-296	วยาช 3 (FAX)	H	ampani ve
Relinquished by: (Print Name)/(Affiliat	lon)		Date:				leceived		rint Na	me)/(/	Affiliation				Date) :		Sa	mple	Shipp	ed V	a:			Ten	np blank
Signature:	••		Time:			s	ignature	:		• •					Time	9:						Courie	er Oth	er	Yes	

CHAIN OF CUSTODY RECORD

Page 2 of 2

Client/Project Name:	· · · · · · · · · · · · · · · · · · ·		Pi	rojec		cation:							An	alysis	Reau	ested				Contain P – Plas	tic	Preservation 1 – HCl, 4°.
445			 -			FCETL	AECOK	l		 		·	-	···, -···	1	1	· ·	-, -		_ G - Clea		2 H2SO4, 4° 3 HNO3, 4°
Project Number:			FI	eid L	.ogb	ook No.:				1							ļ		•	0 - Oth	Br	4 NaOH, 4° 5 NaOH/ZnAc,
60144216 - 445 - (013 - Sampler (Print Name)/(Affiliation	.030)	 		hain i	of C	ustody Tape	Noe :		·	-									-	E - Enc	bre .	4° 6 - Na2S2O3, 4°
, ,	•			ialii (UI Ç	ustouy rape	NUS			10	4					ŀ				Matrix C	odes.	7 – 4°
Christina Needham	A=C044		L	lau	, A	l				1	1		1.	1							inking Water	S – Soll
Signature:	MECOM	· · · · · · · · · · · · · · · · · · ·				ilts/Report to		TAT:		≥	+									WW W	astewater roundwater	SL Sludge SD Sediment
Signature: Chuistina Nesdl	, 1 <i>m</i> 1 .	_	1.		-	laddes		Sid		Analysis										. SW - Su	rface Water	SO – Solid A – Air L – Liquid
Field Sample No./identification	Date	Time	C O M	G R A		Sample Container (Size/Mat'l)	Matrix	Preserv.	Field Filtered	939										Lab		P – Product
APG-18/19A	10 5 11	2015	P	В	20	int Vlad	Tiese	110		X	-	-	-						-			
•	1 ' '	1		1	-	1	1153.452	1	1	1	 	 					†		 			
APG-18/19B	10 7 11	1300	+	-	╁		1	 	 	+I-	ļ	-	╁	-		-	 					
APG-aolaiA	10 10 11	1500	 	\vdash	┼-		 		 	-		 		ļ			<u> </u>	ļ	ļ		ļ	
APG-2021B	1013/11	1150_	 	1.	_		 	 		Ш.	<u> </u>	<u> </u>	ļ	<u> </u>		<u> </u>	<u> </u>					
APG - 22 23A	10 5 11	1000																				
APG-22/2313	10 3 11	1515				4		1		$ \Psi $		-										
	1		1				 					 		ļ	····		 	 			<u> </u>	
			 	 	+-	· - · · · · · · · · · · · · · · · · · ·	 					ļ —	-		· .		 					
			 -	 	+		· · · · · · · · · · · · · · · · · · ·	· ·									 					· · · · · · · · · · · · · · · · · · ·
			┼─	-	┢											<u> </u>						
		<u> </u>	 		\vdash																	
			-		 	·					·····											· · · · · · · · · · · · · · · · · · ·
Relinquished by: (Print Name)/(Affiliati			<u> </u>	101	<u>L</u> .					<u> </u>	,						ليا			:		
Plant I and I and I	on) www	. Da	le: (<i>C</i>)		11	Received b	y: (Print Nan	ne)/(Affiliation)				Date) :		. An	alytic	al Lab	orato	ry (De	stination): /1	
Christina Needham Signature: Chulluta Y Relinquished by: (Print Name)/(Affiliati	HECOM Lacher	Tin	ne:			Signature:						Time	9:					A 4	ECON	A Toxico	logy Lab	University of New
Relinquished by: (Print Name)/(Affillation	on)	Dat	te:			Received b	y: (Print Nan	ne)/(Affiliation)				Date):					Ī	0,10	ollins, CC 0) 416-0	OUGEI	Hampshire of Mero
Signature:	•	Tin	ie:			Signature:						·Time	9 :	9.4					(9/0)	490-2963	(FAX)	
Relinquished by: (Print Name)/(Affiliation	on)	Dat	e.	-		Received b	y: (Print Nan	ne)/(Affiliation)		*		Date).).		Sa	mple	Shipp	éd Vi	a:		<u> </u>	Temp blank
Signature:		Tim	e:			Signature:	.5 °		<i>‡</i>			Time) :		UP				ourie	r Othe	1	
- I I						Signature.		D:							1 01	<u>. </u>	Feuc	<u>م ر</u>	June	UITE	<u> </u>	Yes No

CHAIN OF LISTODY RECORD

Page of

Client/Project Name:						CETLLE	ት ድር	OM	1				···			Ana	lysis f	Reque	sted			T	Contains P - Plas A - Amb G - Cles V - VOA	itic er Glass ar Glass	3 HN	CI, 4° 2804, 4° NO3, 4°
Project Number: 60147216 - 445- (02) Sampler (Print Name)/(Affillation	u-025.)		·		ok No.:					· 												O Othe E Enco	ег	5 – Na 4°	aOH, 4° aOH/ZnAc, a2S2O3, 4°
,			CI	nain c	of Cus	stody Tape	Nos.:					l i	٨										Matrix C	odes:	7 – 4°	
Christina Needhan	n laecc	M	4	96	<i>3</i> ()		-					Don'the 's	Ó				·						DW - Dr	rinking Wat	er S – So SL – S	
Signature:			Se	nd R	esult	s/Report to	;		TA	AT:		3	3										GW Gr	/astewater roundwater irface Wate	· SD-S sr SO-S	Sediment Solid
Christina Need	hen		F	am	N	addy				Stc	l	à	Ę										ST – Sto W – Wat	orm Water ter	A – Alı L – Liq P – Pro	quid
Field Sample No./Identification	Date	Time	С О М Р	G R A B		Sample Container Size/Mat'l)	Ma	atrix	Pr	eserv.	Field Filtered	200	9] 					Lab I.D.		Remarks	
Form Sed A	wahi	1445			20:	ntvial.	Tis	SUC	ic	e		X			1							<u> </u>	ļ	<u> </u>		
Form Sed B	iomin	1150		_	<u> </u>		<u> </u>		<u> </u>				ļ	╧		· 		· · · · · · · · · · · · · · · · · · ·						<u> </u>		
APG-01/03A	10/12/11	1620			ļ		$oldsymbol{ol}}}}}}}}}}}}}}}}}}$			<u> </u>		ľ	1_										<u> </u>	<u> </u>	<u> </u>	
APG-01/03B	iojulu	1450	<u> </u>	ļ	ļ		<u> </u>	_	<u> </u>					\perp		٠.								<u> </u>		
APG-06/24A	iohahi	1540			<u> </u>																					
APG-06/24 B	iololu	20F/					<u> </u>						<u> </u>											<u> </u>	<u> </u>	
APG-11/13A	iolialii	1410		ļ	ļ. <u>.</u> .		٠.	_					ļ		_											
APG-11/13 B	10)11 11	1545	<u> </u>	ļ	ļ		<u> </u>		<u> </u>					_										<u> </u>		·
APG-12/15A	10 12 11	1710		ļ	<u> </u>		ļ						ļ			·									<u> </u>	
APG-12/15B	10/11/11	1045	<u> </u>	ļ	<u> </u>	4		/	``					┸	\perp											
APG - 12/15B LOT#11 018 (1) TEST	9/13/11	1100					<u></u> ,		\			V														
.d. H tent							<u> </u>		ļ															ļ	······································	
Relinquished by: (Print Name)/(Affillat	lon) Serger	,	Date: i (Time:	,		Received	by: (Pr	int Na	me)/(A	ffiliation)			1	E	Date:			An	alytic	al Lat		• •	estination	•		
Signature: WWW													-	╧	ime:			_			-	1000 4	r. Lapon	ICA WOILD	b Unive	rsity
Relinquished by: (Print Name)/(Affiliat	nquished by: (Print Name)/(Affiliation)						Ͻ y: (Pr	int Na	me)/(A	ffiliation))ate:		e e		-		. 1	Fort C	ollins (C	6 8052	1 Hoump	shire
Signature:	equished by: (Print Name)/(Affiliation)							٠.		-				1	lme:					•			490-296		100(1)	
Relinquished by: (Print Name)/(Affiliat	ilon)		Date:			Signature: Received		int Na	me)/(A	ffiliation)				C	ate:			Sa	mple	Shipp	ed Vi	a:		—	Temp bla	ank
Signature:			Time:			Signature:							**		ime:	:		UF		FedE		Courie	er Oth	ier	Yes	No

Appendix D: Statistical Outputs

Bulk Soil Concentration Statistical Evaluations

(all concentrations required logarithmic transformations)

<u>Demonstration of Relative Normal Distribution for Log Bulk Soil</u> <u>Concentration Data</u>

Log Bulk Soil Conc.

Normal(0.74909,0.97903)

Quantiles

100.0%	maximum	2.42
99.5%		2.42
97.5%		2.29825
90.0%		1.966
75.0%	quartile	1.405
50.0%	median	0.9085
25.0%	quartile	0.19175
10.0%	•	-0.585
2.5%		-1.77
0.5%		-1.9
0.0%	minimum	-1.9

Summary Statistics

0.7490908
0.9790328
0.0988972
0.9453745
0.5528072
98

Fitted Normal

Parameter Estimates

Type	Parameter	Estimate	Lower 95%	Upper 95%
Location	μ	0.7490908	0.5528072	0.9453745
Dispersion	σ	0.9790328	0.8585275	1.139202

⁻²log(Likelihood) = 272.958685157523

ANOVA: Bulk Soil Concentration Evaluation between Sampling Events

This ANOVA statistical analysis compared the bulk soil concentrations between the three sampling events across the greater treatment area. Analysis determined that bulk soil concentrations between T0 and T2 was **weakly significantly** depending upon the sampling event.

Oneway Anova Summary of Fit

Rsquare	0.060507
Adj Rsquare	0.040728
Root Mean Square Error	0.958889
Mean of Response	0.749091
Observations (or Sum Wgts)	98

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Sampling Time	2	5.625608	2.81280	3.0592	0.0516
Error	95	87.349398	0.91947		
C. Total	97	92,975006			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
T0	31	0.44653	0.17222	0.10463	0.7884
T1	33	0.73848	0.16692	0.40710	1.0699
T2	34	1.03525	0.16445	0.70878	1.3617

Std Error uses a pooled estimate of error variance

Means Comparisons

Comparisons for each pair using Student's t Confidence Quantile

t Alpha 1.98525 0.05

LSD Threshold Matrix

Abs(Dif)-LSD	T2	T 1	T0
T2	-0.46170	-0.16842	0.11598
T1	-0.16842	-0.46864	-0.18419
T0	0.11598	-0.18419	-0.48352

Positive values show pairs of means that are significantly different.

Connecting Letters Report

Level			Mean
T2	Α		1.0352471
T1	Α	В	0.7384848
T0		В	0.4465323

Levels not connected by same letter are significantly different.

Ordered Differences Report

Level	- Level	Difference	Std Err Dif	Lower CL	Upper CL	p-Value	
T2	T0	0.5887148	0.2381247	0.115977	1.061452	0.0152* 🗆	
T2	T1	0.2967622	0.2343199	-0.168422	0.761946	0.2084	
T1	T0	0.2919526	0.2398393	-0.184189	0.768094	0.2265	

ANOVA: Bulk Soil Concentration Evaluation between Preand Post-Treatment for AC Slurry Spray Plots

This ANOVA statistical analysis compared just the bulk soil concentrations data between preand post-treatment sampling periods within the Slurry Spray (AC Slurry) Plots. Analysis determined that the pre- and post-treatment bulk soil concentrations were <u>not</u> significantly different.

Excluded Rows

Oneway Anova Summary of Fit

Rsquare	0.107863
Adj Rsquare	0.048387
Root Mean Square Error	1.008628
Mean of Response	-0.21794
Observations (or Sum Wgts)	17

t Test

Pre-Treatment-Post-Treatment

Assuming equal variances

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Pre- vs. Post Treatment	1	1.844980	1.84498	1.8136	0.1981
Error	15	15.259947	1.01733		
C. Total	16	17.104927			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
Post-Treatment	11	0.02536	0.30411	-0.623	0.67356
Pre-Treatment	6	-0.66400	0.41177	-1.542	0.21367

Std Error uses a pooled estimate of error variance

Means Comparisons Comparisons for each pair using Student's t Confidence Quantile

t Alpha 2.13145 0.05

LSD Threshold Matrix

Abs(Dif)-LSD	Post-Treatment	Pre-Treatment
Post-Treatment	-0.9167	-0.4017
Pre-Treatment	-0.4017	-1.2412

Positive values show pairs of means that are significantly different.

ANOVA: Bulk Soil Concentration Evaluation between Preand Post-Treatment for AquaBlok

This ANOVA statistical analysis compared just the bulk soil concentrations data between preand post-treatment sampling periods within the AquaBlok Plots. Analysis determined that the pre- and post-treatment bulk soil concentrations were <u>not</u> significantly different.

Excluded Rows

Oneway Anova Summary of Fit

Rsquare	0.02216
Adj Rsquare	-0.01043
Root Mean Square Error	0.962255
Mean of Response	0.824138
Observations (or Sum Wgts)	32

t Test

Pre-Treatment-Post-Treatment

Assuming equal variances

-0.3026 t Ratio	-0.82455
0.3670 DF	30
0.4469 Prob > t	0.4161
-1.0521 Prob > t	0.7919
0.95 Prob < t	0.2081
	0.3670 DF 0.4469 Prob > t -1.0521 Prob > t

Analysis of Variance

Pre-Treatment

Source		DF S	Sum of Squares	Mean Square	F Ratio	Prob > F
Pre- vs. Post Treatmen	t	1	0.629521	0.629521	0.6799	0.4161
Error		30	27.778069	0.925936		
C. Total		31	28.407590			
Means for Oneway	y Anova					
Level	Number	Mea	an Std Error	Lower 95%	Upper 95%	
Post-Treatment	22	0.9187	00 0.20515	0.4997	1.3377	

0.30429

-0.0053

1.2375

Std Error uses a pooled estimate of error variance

Means Comparisons Comparisons for each pair using Student's t Confidence Quantile

10

0.616100

t Alpha 2.04227 0.05

LSD Threshold Matrix

Abs(Dif)-LSD	Post-Treatment	Pre-Treatment
Post-Treatment	-0.59253	-0.44689
Pre-Treatment	-0.44689	-0.87886

Positive values show pairs of means that are significantly different.

ANOVA: Bulk Soil Concentration Evaluation between Preand Post-Treatment for SediMite

This ANOVA statistical analysis compared just the bulk soil concentrations data between preand post-treatment sampling periods within the SediMite Plots. Analysis determined that the pre- and post-treatment bulk soil concentrations were <u>not</u> significantly different.

Excluded Rows

83

Oneway Anova Summary of Fit

Rsquare	0.068123
Adj Rsquare	-0.00356
Root Mean Square Error	0.499831
Mean of Response	1.183133
Observations (or Sum Wgts)	15

t Test

Pre-Treatment-Post-Treatment

Assuming equal variances

Difference -0.28450 t Ratio -0.97485 Std Err Dif 0.29184 DF 13

Analysis of Variance

Allaly 515 Of Variati	00					
Source		DF St	ım of Squares	Mean Square	F Ratio	Prob > F
Pre- vs. Post Treatment		1	0.2374247	0.237425	0.9503	0.3474
Error		13	3.2478090	0.249831		
C. Total		14	3.4852337			
Means for Oneway	Anova					
Level	Number	Mear	n Std Error	Lower 95%	Upper 95%	
Post-Treatment	11	1.25900	0.15070	0.93342	1.5846	
Pre-Treatment	4	0.97450	0.24992	0.43459	1.5144	

Std Error uses a pooled estimate of error variance

Means Comparisons Comparisons for each pair using Student's t Confidence Quantile

t Alpha 2.16037 0.05

LSD Threshold Matrix

Abs(Dif)-LSD	Post-Treatment	Pre-Treatment
Post-Treatment	-0.46044	-0.34598
Pre-Treatment	-0.34598	-0.76355

Positive values show pairs of means that are significantly different.

ANOVA: Bulk Soil Concentration Evaluation between Preand Post-Treatment for Sand Control

This ANOVA statistical analysis compared just the bulk soil concentrations data between preand post-treatment sampling periods within the Sand Control Plots. Analysis determined that the pre- and post-treatment bulk soil concentrations were <u>not</u> significantly different.

Excluded Rows

80

Oneway Anova Summary of Fit

Rsquare	0.0354
Adj Rsquare	-0.02489
Root Mean Square Error	0.964831
Mean of Response	1.005778
Observations (or Sum Wgts)	18

t Test

Pre-Treatment-Post-Treatment

Assuming equal variances

Difference	-0.3697 t Ratio	-0.76628
Std Err Dif	0.4824 DF	16
Upper CL Dif	0.6530 Prob > t	0.4547
Lower CL Dif	-1 3923 Prob > t	0 7727

Analysis of Variance

Post-Treatment

Pre-Treatment

Source Pre- vs. Post Treatment Error C. Total	DF 9 1 16 17	Sum of Squares 0.546614 14.894373 15.440987	Mean Square 0.546614 0.930898	F Ratio 0.5872	Prob > F 0.4547
Means for Oneway Anova Level Number	Me	an Std Error	Lower 95%	Upper 95%	

0.27852

0.39389

0.5386

-0.0757

1.7194

1.5943

Std Error uses a pooled estimate of error variance

Means Comparisons Comparisons for each pair using Student's t Confidence Quantile

12

6

1.12900

0.75933

t Alpha 2.11991 0.05

LSD Threshold Matrix

Abs(Dif)-LSD	Post-Treatment	Pre-Treatment
Post-Treatment	-0.8350	-0.6530
Pre-Treatment	-0.6530	-1.1809

Positive values show pairs of means that are significantly different.

ANOVA: Bulk Soil Concentration Evaluation between Preand Post-Treatment for *Control*

This ANOVA statistical analysis compared just the bulk soil concentrations data between preand post-treatment sampling periods within the Control Plots. Analysis determined that the preand post-treatment bulk soil concentrations were **not** significantly different.

Excluded Rows

Oneway Anova Summary of Fit

Rsquare	0.076435
Adj Rsquare	0.010466
Root Mean Square Error	0.722751
Mean of Response	0.930781
Observations (or Sum Wgts)	16

t Test

Pre-Treatment-Post-Treatment

Assuming equal variances

Difference -0.4196 t Ratio -1.07641

Analysis of Variance

Post-Treatment

Pre-Treatment

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Pre- vs. Post Treatment	1	0.6052468	0.605247	1.1587	0.2999
Error	14	7.3131677	0.522369		
C. Total	15	7.9184145			
Means for Oneway Anova		a =			
Level Number	Me	an Std Error	Lower 95%	Upper 95%	

0.21792

0.32322

0.5945

-0.0509

1.5293

1.3355

1.06191

0.64230

Std Error uses a pooled estimate of error variance

Means Comparisons Comparisons for each pair using Student's t Confidence Quantile

11

5

t Alpha 2.14479 0.05

LSD Threshold Matrix

Abs(Dif)-LSD	Post-Treatment	Pre-Treatment
Post-Treatment	-0.66098	-0.41648
Pre-Treatment	-0.41648	-0.98040

Positive values show pairs of means that are significantly different.

Black Carbon Statistical Evaluations

Demonstration of Relative Normal Distribution for %BC Data

Distributions BC %

Normal(1.70367,1.10768)

Quantiles

mavimum	4.86748
maximum	4.86748
	4.58062
	3.39877
quartile	2.43649
median	1.397
quartile	0.81254
	0.38913
	0.29552
	0.202
minimum	0.202
	median quartile

Summary Statistics

Mean	1.7036713
Std Dev	1.1076825
Std Err Mean	0.1323934
Upper 95% Mean	1.9677889
Lower 95% Mean	1.4395537
N	70

Fitted Normal

Parameter Estimates

Type Parameter Estimate Lower 95% Upper 95%

Туре	Parameter	Estimate	Lower 95%	Upper 95%
Location	μ	1.7036713	1.4395537	1.9677889
Dispersion	σ	1.1076825	0.9497465	1.329115

⁻²log(Likelihood) = 211.969188742444

ANOVA: %BC Evaluation between Pre- and Post-Treatment for AC Slurry Spray

This ANOVA statistical analysis compared just the Percent Black Carbon data between pre- and post-treatment sampling periods within the Slurry Spray (AC Slurry) Plots. Analysis determined that the pre- and post-treatment %BC values were significantly different.

Oneway Analysis of BC % By Pre- vs. Post-treatment

Excluded Rows

Oneway Anova Summary of Fit

Rsquare	0.39911
Adj Rsquare	0.339021
Root Mean Square Error	1.053379
Mean of Response	1.754081
Observations (or Sum Wgts)	12

t Test

Pre-Treatment-Post-Treatment

Assuming equal variances

Difference	-1.6625 t Ratio	-2.5772
Std Err Dif	0.6451 DF	10
Upper CL Dif	-0.2252 Prob > t	0.0275*
Lower CL Dif	-3.0997 Prob > t	0.9862
Confidence	0.95 Prob < t	0.0138*

Analysis of Variance

Alialysis of Varialic	<i>,</i> E					
Source		DF Sum	of Squares	Mean Square	F Ratio	Prob > F
Pre- vs. Post-treatment		1	7.369989	7.36999	6.6420	0.0275*
Error		10	11.096068	1.10961		
C. Total		11	18.466057			
Maana fan Onaway	Anava					
Means for Oneway	Anova					
Level	Number	Mean	Std Error	Lower 95%	Upper 95%	
Post-Treatment	8	2.30823	0.37243	1.478	3.1380	
			0.50000	0.500		
Pre-Treatment	4	0.64578	0.52669	-0.528	1.8193	

Std Error uses a pooled estimate of error variance

ANOVA: %BC Evaluation between Pre- and Post-Treatment for AquaBlok

This ANOVA statistical analysis compared just the Percent Black Carbon data between pre- and post-treatment sampling periods within the AquaBlok Plots. Analysis determined that the pre- and post-treatment %BC values were significantly different.

Oneway Analysis of BC % By Pre- vs. Post-treatment

Excluded Rows

46

Oneway Anova Summary of Fit

Rsquare	0.441689
Adj Rsquare	0.416311
Root Mean Square Error	0.885353
Mean of Response	2.027863
Observations (or Sum Wgts)	24

t Test

Pre-Treatment-Post-Treatment

Assuming equal variances

 Difference
 -1.5994 t Ratio
 -4.17187

 Std Err Dif
 0.3834 DF
 22

 Upper CL Dif
 -0.8043 Prob > |t|
 0.0004*

 Lower CL Dif
 -2.3944 Prob > t
 0.9998

 Confidence
 0.95 Prob < t</td>
 0.0002*

Analysis of Variance					
Source	DF S	Sum of Squares	Mean Square	F Ratio	Prob > F
Pre- vs. Post-treatment	1	13.642559	13.6426	17.4045	0.0004*
Error	22	17.244714	0.7839		
C. Total	23	30.887273			
Means for Oneway Anova					
Level Number	Me	ean Std Error	Lower 95%	Upper 95%	
Post-Treatment 16	2.560	0.22134	2.1020	3.0200	
Pre-Treatment 8	0.961	162 0.31302	0.3125	1.6108	

Std Error uses a pooled estimate of error variance

ANOVA: %BC Evaluation between Pre- and Post-Treatment for SediMite

This ANOVA statistical analysis compared just the Percent Black Carbon data between pre- and post-treatment sampling periods within the SediMite Plots. Analysis determined that the pre- and post-treatment %BC values were **not** significantly different.

Oneway Analysis of BC % By Pre- vs. Post-treatment

Excluded Rows

Oneway Anova Summary of Fit

Rsquare	0.052989
Adj Rsquare	-0.04171
Root Mean Square Error	1.126175
Mean of Response	2.128919
Observations (or Sum Wgts)	12

t Test

Pre-Treatment-Post-Treatment

Assuming equal variances

Difference	-0.5159 t Ratio	-0.74802
Std Err Dif	0.6896 DF	10
Upper CL Dif	1.0207 Prob > t	0.4717
Lower CL Dif	-2.0525 Prob > t	0.7642
Confidence	0.95 Prob < t	0.2358

Analysis of Variance

Analysis of varianc	е					
Source		DF Sum	of Squares	Mean Square	F Ratio	Prob > F
Pre- vs. Post-treatment		1	0.709641	0.70964	0.5595	0.4717
Error		10	12.682708	1.26827		
C. Total		11	13.392349			
Means for Oneway	Anova					
Level	Number	Mean	Std Error	Lower 95%	Upper 95%	
	•	2.30087	0.39816	1.4137	3.1880	
Post-Treatment	8	2.30001	0.53010	1.4131	3.1000	
Post-Treatment Pre-Treatment	8 4	1.78501	0.56309	0.5304	3.0396	

Std Error uses a pooled estimate of error variance

ANOVA: %BC Evaluation between Pre- and Post-Treatment for Sand Control

This ANOVA statistical analysis compared just the Percent Black Carbon data between pre- and post-treatment sampling periods within the Sand Control Plots. Analysis determined that the pre- and post-treatment %BC values were <u>not</u> significantly different.

Oneway Analysis of BC % By Pre- vs. Post-treatment

Excluded Rows

59

Oneway Anova Summary of Fit

Rsquare	0.012479
Adj Rsquare	-0.09725
Root Mean Square Error	0.555812
Mean of Response	0.858601
Observations (or Sum Wgts)	11

t Test

Pre-Treatment-Post-Treatment

Assuming equal variances

1.0

Analysis of Variance

-0.5

0.0

0.5

-1.0

Source DF Sum of Squares Mean Square F Ratio Prob > F

Source		DF S	Sum of Squares	Mean Square	F Ratio	Prob > F
Pre- vs. Post-treatment		1	0.0351344	0.035134	0.1137	0.7437
Error		9	2.7803432	0.308927		
C. Total		10	2.8154776			
Means for Oneway A	nova					
Level	Number	Me	ean Std Error	Lower 95%	Upper 95%	
Post-Treatment	7	0.8158	379 0.21008	0.34065	1.2911	
Pre-Treatment	4	0.9333	364 0.27791	0.30470	1.5620	

ANOVA: %BC Evaluation between Pre- and Post-Treatment within Control Plots

This ANOVA statistical analysis compared just the Percent Black Carbon data between pre- and post-treatment sampling periods within the Control Plots. Analysis determined that the pre- and post-treatment %BC values were **not** significantly different.

Oneway Analysis of BC % By Pre- vs. Post-treatment

Excluded Rows

59

Oneway Anova Summary of Fit

Rsquare	0.028278
Adj Rsquare	-0.07969
Root Mean Square Error	0.729026
Mean of Response	1.322515
Observations (or Sum Wgts)	11

t Test

Pre-Treatment-Post-Treatment

Assuming equal variances

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio Prob > F

Source		DF St	ım of Squares	Mean Square	F Ratio	Prob > F
Pre- vs. Post-treatment		1	0.1392011	0.139201	0.2619	0.6211
Error		9	4.7833143	0.531479		
C. Total		10	4.9225154			
Means for Oneway	Anova					
Level	Number	Mea	an Std Error	Lower 95%	Upper 95%	
Post-Treatment	7	1.237	48 0.27555	0.61415	1.8608	
Pre-Treatment	4	1.471	33 0.36451	0.64674	2.2959	

ANOVA: Post Treatment %BC evaluation of Various Treatments; Student's T Test: Determine Significance between Treatment Types; Control Dunnett's: Determine Significance between Control and All other Treatments

An ANOVA statistical analysis and Student's T means statistical comparison was conducted on all post-treatment %BC data by "Treatment Type" (AquaBlok, Control, Sand Control, SediMite and Slurry Spray (AC)). ANOVA determined that Treatment Type was a significant variable within the data set (for %BC). Student's T means statistical comparison determined that the AquaBlok was statistically separate from the Control. Dunnett's mean statistical comparison (with control set as the control) confirmed that AquaBlok was the only Treatment different than the control.

Oneway Analysis of BC % By Treatment

Excluded Rows

Oneway Anova Summary of Fit

Rsquare	0.320085
Adj Rsquare	0.253751
Root Mean Square Error	1.028148
Mean of Response	2.004829
Observations (or Sum Wgts)	46

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Treatment	4	20.403541	5.10089	4.8254	0.0028*
Error	41	43.340653	1.05709		
C. Total	45	63.744194			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
AquaBlok	16	2.56099	0.25704	2.0419	3.0801
Control	7	1.23748	0.38860	0.4527	2.0223
Sand Control	7	0.81588	0.38860	0.0311	1.6007
SediMite	8	2.30087	0.36351	1.5668	3.0350
Slurry Spray	8	2.30823	0.36351	1.5741	3.0423

Std Error uses a pooled estimate of error variance

Means Comparisons

Comparisons for each pair using Student's t Confidence Quantile

t Alpha 2.01954 0.05

LSD Threshold Matrix

Abs(Dif)-LSD	AquaBlok	Slurry Spray	SediMite	Control	Sand Control
AquaBlok	-0.7341	-0.6463	-0.6390	0.3826	0.8042
Slurry Spray	-0.6463	-1.0382	-1.0308	-0.0039	0.4177
SediMite	-0.6390	-1.0308	-1.0382	-0.0112	0.4104
Control	0.3826	-0.0039	-0.0112	-1.1099	-0.6883
Sand Control	0.8042	0.4177	0.4104	-0.6883	-1.1099

Positive values show pairs of means that are significantly different.

Connecting Letters Report

Level				Mean
AquaBlok	Α			2.5609859
Slurry Spray	Α	В		2.3082319
SediMite	Α	В		2.3008737
Control		В	С	1.2374785
Sand Control			С	0.8158787

Levels not connected by same letter are significantly different.

Ordered Differences Report

Ordered Differences Report - Level Difference Std Err Dif Lower CL Upper CL p-Value Level AquaBlok Sand Control 1.745107 0.4659193 0.80416 2.686050 0.0006* Slurry Spray Sand Control 1.492353 0.5321173 0.41772 2.566986 0.0077* SediMite Sand Control 1.484995 0.5321173 0.41036 2.559628 0.0079* AquaBlok Control 1.323507 0.4659193 0.38256 2.264450 0.0070* Slurry Spray Control 1.070753 0.5321173 -0.00388 2.145386 0.0508 SediMite Control 1.063395 0.5321173 -0.01124 2.138028 0.0523 Control Sand Control 0.421600 0.5495684 -0.68828 1.531476 0.4474 AquaBlok SediMite 0.260112 0.4452013 -0.63899 1.159214 0.5622 AquaBlok Slurry Spray 0.252754 0.4452013 -0.64635 1.151856 0.5733 0.007358 0.5140742 -1.03084 1.045552 0.9886 Slurry Spray SediMite

Comparisons with a control using Dunnett's Method Control Group = Control

Confidence Quantile

|d| 2.52104 Alpha 0.05

LSD Threshold Matrix

Level	Abs(Dif)-LSD	p-Value
AquaBlok	0.149	0.0232*
Slurry Spray	-0.27	0.1480
SediMite	-0.28	0.1521
Control	-1.39	1.0000
Sand Control	-0.96	0.8422

Positive values show pairs of means that are significantly different.

Pore Water Concentration Statistical Evaluations

(all concentrations required logarithmic transformations)

<u>Demonstration of Relative Normal Distribution for Log Pore Water</u> <u>Concentration Data</u>

Distributions - Log Pore Water Conc.

Normal(-4.2968,1.1955)

Quantiles

100.0%	maximum	-1.43
99.5%		-1.43
97.5%		-1.59
90.0%		-2.335
75.0%	quartile	-3.67
50.0%	median	-4.47
25.0%	quartile	-5.1675
10.0%		-5.705
2.5%		-6.17
0.5%		-6.54
0.0%	minimum	-6.54

Summary Statistics

Mean -4.296827

 Std Dev
 1.1955047

 Std Err Mean
 0.1172289

 Upper 95% Mean
 -4.064331

 Lower 95% Mean
 -4.529323

 N
 104

Fitted Normal

Parameter Estimates

Туре	Parameter	Estimate	Lower 95%	Upper 95%
Location	μ	-4.296827	-4.529323	-4.064331
Dispersion	σ	1.1955047	1.0521688	1.3844108

⁻²log(Likelihood) = 331.281457101605

ANOVA: Pore Water Concentration Evaluation between Preand Post-Treatment for AC Slurry Spray

This ANOVA statistical analysis compared just the pore water concentrations data between preand post-treatment sampling periods within the Slurry Spray (AC Slurry) Plots. Analysis determined that the pre- and post-treatment pore water concentrations were <u>not</u> significantly different.

Oneway Analysis of Log Pore Water Conc. By Pre- vs. Post-Treatment

Excluded Rows 86

Oneway Anova Summary of Fit

Rsquare	0.012305
Adj Rsquare	-0.04943
Root Mean Square Error	0.716729
Mean of Response	-5.25
Observations (or Sum Wgts)	18

t Test

Pre-Treatment-Post-Treatment

Difference	0.16000 t Ratio	0.446473
Std Err Dif	0.35836 DF	16
Upper CL Dif	0.91970 Prob > t	0.6612
Lower CL Dif	-0.59970 Prob > t	0.3306
Confidence	0.95 Prob < t	0.6694

Analysis of Varia	ance
-------------------	------

/ illuly old ol lalla						
Source		DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Pre- vs. Post-Treatme	nt	1	0.1024000	0.102400	0.1993	0.6612
Error		16	8.2192000	0.513700		
C. Total		17	8.3216000			
Means for Onewa	y Anova					
Level	Number	Me	ean Std Error	Lower 95%	Upper 95%	
Post-Treatment	12	-5.30	0.20690	-5.742	-4.865	
Pre-Treatment	6	-5.14	133 0.29260	-5.764	-4.523	

ANOVA: Pore Water Concentration Evaluation between Preand Post-Treatment for AquaBlok

This ANOVA statistical analysis compared just the pore water concentrations data between preand post-treatment sampling periods within the AquaBlok Plots. Analysis determined that the pre- and post-treatment pore water concentrations were significantly different.

Oneway Analysis of Log Pore Water Conc. By Pre- vs. Post-Treatment

Excluded Rows 69

Oneway Anova Summary of Fit

Rsquare	0.170864
Adj Rsquare	0.145738
Root Mean Square Error	1.071403
Mean of Response	-4.57486
Observations (or Sum Wgts)	35

t Test

Pre-Treatment-Post-Treatment

Analysis of Variance

/ illuly old of Turlul	.00					
Source		DF S	um of Squares	Mean Square	F Ratio	Prob > F
Pre- vs. Post-Treatmer	it	1	7.806260	7.80626	6.8005	0.0136*
Error		33	37.880814	1.14790		
C. Total		34	45.687074			
Means for Onewa	y Anova					
Level	Number	Mear	n Std Error	Lower 95%	Upper 95%	
Post-Treatment	24	-4.8946	0.21870	-5.340	-4.450	
Pre-Treatment	11	-3.8773	3 0.32304	-4.535	-3.220	

ANOVA: Pore Water Concentration Evaluation between Preand Post-Treatment for SediMite

This ANOVA statistical analysis compared just the pore water concentrations data between preand post-treatment sampling periods within the SediMite Plots. Analysis determined that the pre- and post-treatment pore water concentrations were <u>not</u> significantly different.

Oneway Analysis of Log Pore Water Conc. By Pre- vs. Post-Treatment

Excluded Rows

Oneway Anova Summary of Fit

Rsquare	0.026364
Adj Rsquare	-0.04318
Root Mean Square Error	0.794711
Mean of Response	-4.00687
Observations (or Sum Wgts)	16

t Test

Pre-Treatment-Post-Treatment

Difference	0.2825 t Ratio	0.615701
Std Err Dif	0.4588 DF	14
Upper CL Dif	1.2666 Prob > t	0.5480
Lower CL Dif	-0.7016 Prob > t	0.2740
Confidence	0.95 Prob < t	0.7260

Allalysis of Valla	1100					
Source		DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Pre- vs. Post-Treatme	nt	1	0.2394187	0.239419	0.3791	0.5480
Error		14	8.8419250	0.631566		
C. Total		15	9.0813438			
Means for Onewa	ay Anova					
Level	Number	Me	ean Std Error	Lower 95%	Upper 95%	
Post-Treatment	12	-4.0	775 0.22941	-4.570	-3.585	
Pre-Treatment	4	-3.7	950 0.39736	-4 647	-2 943	

ANOVA: Pore Water Concentration Evaluation between Preand Post-Treatment for Sand Control

This ANOVA statistical analysis compared just the pore water concentrations data between preand post-treatment sampling periods within the Sand Control Plots. Analysis determined that the pre- and post-treatment pore water concentrations were <u>not</u> significantly different.

Oneway Analysis of Log Pore Water Conc. By Pre- vs. Post-Treatment

Excluded Rows

Oneway Anova Summary of Fit

Rsquare	0.034315
Adj Rsquare	-0.02604
Root Mean Square Error	1.317384
Mean of Response	-3.64222
Observations (or Sum Wgts)	18

t Test

Pre-Treatment-Post-Treatment

Difference	-0.4967 t Ratio	-0.75402
Std Err Dif	0.6587 DF	16
Upper CL Dif	0.8997 Prob > t	0.4618
Lower CL Dif	-1.8930 Prob > t	0.7691

Analysis of Variance

Source	DF S	Sum of Squares	Mean Square	F Ratio	Prob > F
Pre- vs. Post-Treatment	1	0.986711	0.98671	0.5685	0.4618
Error	16	27.768000	1.73550		
C. Total	17	28.754711			
Means for Oneway Anova					
Level Number	Mea	n Std Error	Lower 95%	Upper 95%	
Post-Treatment 12	-3.476	0.38030	-4.283	-2.670	
Pre-Treatment 6	-3.973	33 0.53782	-5.113	-2.833	

ANOVA: Pore Water Concentration Evaluation between Preand Post-Treatment for *Control*

This ANOVA statistical analysis compared just the pore water concentrations data between preand post-treatment sampling periods within the Control Plots. Analysis determined that the preand post-treatment pore water concentrations were <u>not</u> significantly different.

Oneway Analysis of Log Pore Water Conc. By Pre- vs. Post-Treatment

Excluded Rows

87

Oneway Anova Summary of Fit

 Rsquare
 9.123e-6

 Adj Rsquare
 -0.06666

 Root Mean Square Error
 1.177709

 Mean of Response
 -3.68118

 Observations (or Sum Wgts)
 17

t Test

Pre-Treatment-Post-Treatment

Difference	0.0073 t Ratio	0.011698
Std Err Dif	0.6269 DF	15
Upper CL Dif	1.3435 Prob > t	0.9908
Lower CL Dif	-1.3288 Prob > t	0.4954

Analysis of Vari

/ illuly old ol lalla						
Source		DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Pre- vs. Post-Treatme	nt	1	0.000190	0.00019	0.0001	0.9908
Error		15	20.804987	1.38700		
C. Total		16	20.805176			
Means for Onewa	ay Anova					
Level	Number	Me	an Std Error	Lower 95%	Upper 95%	
Post-Treatment	12	-3.68	333 0.33998	-4.408	-2.959	
Pre-Treatment	5	-3 67	760 0.52669	-4 799	-2 553	

ANOVA: Post Treatment Pore Water Concentration evaluation of Various Treatments;

Student's T Test: Determine Significance between Treatment Types; Control Dunnett's: Determine Significance between Control and All other Treatments

An ANOVA statistical analysis and Student's T means statistical comparison was conducted on all post-treatment pore water concentration data by "Treatment Type" (AquaBlok, Control, Sand Control, SediMite and Slurry Spray (AC)). ANOVA determined that Treatment Type was a significant variable within the data set (for PW conc). Student's T means statistical comparison determined that the AquaBlok and slurry spray were statistically separate from the Control. Dunnett's mean statistical comparison (with control set as the control) confirmed that AquaBlok and the AC slurry spray were both the different than the control.

Oneway Analysis of Log Pore Water Conc. By Treatment

Excluded Rows

32

Oneway Anova Summary of Fit

Rsquare	0.354754
Adj Rsquare	0.316232
Root Mean Square Error	0.950716
Mean of Response	-4.38833
Observations (or Sum Wgts)	72

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Treatment	4	33.294979	8.32374	9.2091	<.0001*
Error	67	60.558621	0.90386		
C. Total	71	93 853600			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
AquaBlok	24	-4.8946	0.19406	-5.282	-4.507
Control	12	-3.6833	0.27445	-4.231	-3.136
Sand Control	12	-3.4767	0.27445	-4.024	-2.929
SediMite	12	-4.0775	0.27445	-4.625	-3.530
Slurry Spray	12	-5.3033	0.27445	-5.851	-4.756

Std Error uses a pooled estimate of error variance

Means Comparisons

Comparisons for each pair using Student's t

Confidence Quantile

t Alpha 1.99601 0.05

LSD Threshold Matrix

Abs(Dif)-LSD	Sand Control	Control	SediMite	AquaBlok	Slurry Spray
Sand Control	-0.7747	-0.5680	-0.1739	0.7470	1.0520
Control	-0.5680	-0.7747	-0.3805	0.5403	0.8453
SediMite	-0.1739	-0.3805	-0.7747	0.1462	0.4511
AquaBlok	0.7470	0.5403	0.1462	-0.5478	-0.2622
Slurry Spray	1.0520	0.8453	0.4511	-0.2622	-0.7747

Positive values show pairs of means that are significantly different.

Connecting Letters Report

Level		Mean
Sand Control	Α	-3.476667
Control	Α	-3.683333
SediMite	Α	-4.077500
AquaBlok	В	-4.894583
Slurry Spray	В	-5.303333

Levels not connected by same letter are significantly different.

Ordered Differences Report Level - Level Difference Std Err Dif Lower CL Upper CL p-Value Sand Control Slurry Spray 1.826667 0.3881280 1.05196 2.601373 <.0001* Slurry Spray 1.620000 0.3881280 0.84529 2.394707 <.0001* Control 0.74700 2.088832 <.0001* Sand Control AquaBlok 1.417917 0.3361287 SediMite Slurry Spray 1.225833 0.3881280 0.45113 2.000540 0.0024* Control AquaBlok 1.211250 0.3361287 0.54033 1.882166 0.0006* SediMite AquaBlok 0.817083 0.3361287 0.14617 1.487999 0.0177* Sand Control SediMite Slurry Spray 0.408750 0.3361287 -0.26217 1.079666 0.2282 AquaBlok Control SediMite 0.394167 0.3881280 -0.38054 1.168873 0.3135 Sand Control Control

Comparisons with a control using Dunnett's Method

Control Group = Control

Confidence Quantile

|**d**| **Alpha** 2.49015 0.05

LSD Threshold Matrix

Level	Abs(Dif)-LSD	p-Value
Sand Control	-0.76	0.9518
Control	-0.97	1.0000
SediMite	-0.57	0.6878
AquaBlok	0.374	0.0022*
Slurry Spray	0.654	0.0003*

Positive values show pairs of means that are significantly different.

Lumbriculus Receptor Tissue Concentration Statistical Evaluations

(all concentrations required logarithmic transformations)

<u>Demonstration of Relative Normal Distribution for Log- Lumbriculus</u> <u>Receptor Tissue Concentration Data</u>

The data is only weakly linearly distributed.

Distributions- Log - Lumbriculus Conc.

Normal(0.2951,1.20683)

Quantiles

100.0%	maximum	2.73
99.5%	maximam	2.73
97.5%		2.475
90.0%		1.688
75.0%	quartile	1.3
50.0%	median	0.49
25.0%	quartile	-0.489
10.0%	•	-1.6
2.5%		-1.758
0.5%		-1.82
0.0%	minimum	-1.82

Summary Statistics

Mean	0.2950952
Std Dev	1.206832
Std Err Mean	0.1340924
Upper 95% Mean	0.5619477
Lower 95% Mean	0.0282427
N	81

Fitted Normal

Parameter Estimates

Туре	Parameter	Estimate	Lower 95%	Upper 95%
Location	μ	0.2950952	0.0282427	0.5619477
Dispersion	σ	1.206832	1.0453339	1.427814

⁻²log(Likelihood) = 259.323838228505

ANOVA: Lumbriculus Receptor Tissue Concentration Evaluation between Pre- and Post-Treatment for AC Slurry Spray

This ANOVA statistical analysis compared Lumbriculus receptor tissue concentrations data from 28 day bioaccumulation studies between pre- and post-treatment sampling periods just within the Slurry Spray (AC Slurry) Plots. All data was logarithmically transformed for statistical analysis. Analysis determined that the pre- and post-treatment Lumbriculus tissue concentrations were <u>not</u> significantly different.

Oneway Analysis of Log - Lumbriculus Conc. By Pre- vs. Post-Treatment

Excluded Rows

Oneway Anova Summary of Fit

Rsquare	0.249053
Adj Rsquare	0.191288
Root Mean Square Error	0.813054
Mean of Response	-0.9782
Observations (or Sum Wgts)	15

t Test

Pre-Treatment-Post-Treatment

Difference	0.8898 t Ratio	2.076411
Std Err Dif	0.4285 DF	13
Upper CL Dif	1.8155 Prob > t	0.0583
Lower CL Dif	-0.0360 Prob > t	0.0291*
Confidence	0.95 Prob < t	0.9709

Alialysis ol Valla	IICE					
Source		DF S	Sum of Squares	Mean Square	F Ratio	Prob > F
Pre- vs. Post-Treatme	nt	1	2.850136	2.85014	4.3115	0.0583
Error		13	8.593738	0.66106		
C. Total		14	11.443874			
Means for Onewa	ay Anova					
Level	Number	Mea	an Std Error	Lower 95%	Upper 95%	
Post-Treatment	9	-1.334	11 0.27102	-1.920	-0.7486	
Pre-Treatment	6	-0.444	43 0.33193	-1.161	0.2728	

ANOVA: Lumbriculus Receptor Tissue Concentration Evaluation between Pre- and Post-Treatment for AquaBlok

This ANOVA statistical analysis compared Lumbriculus receptor tissue concentrations data from 28 day bioaccumulation studies between pre- and post-treatment sampling periods just within the AquaBlok Plots. All data was logarithmically transformed for statistical analysis. Analysis determined that the pre- and post-treatment Lumbriculus tissue concentrations were significantly different.

Oneway Analysis of Log - Lumbriculus Conc. By Pre- vs. Post-Treatment

Excluded Rows

52

Oneway Anova Summary of Fit

Rsquare 0.6	
Adj Rsquare 0	.60204
Root Mean Square Error 0.8	310354
Mean of Response 0.3	217348
Observations (or Sum Wgts)	29

t Test

Pre-Treatment-Post-Treatment

Difference	2.14179 t Ratio	6.584746
Std Err Dif	0.32527 DF	27
Upper CL Dif	2.80918 Prob > t	<.0001*
Lower CL Dif	1.47440 Prob > t	<.0001*
Confidence	0.95 Prob < t	1.0000

Analysis of Variance

Allalysis of Valla						
Source		DF S	um of Squares	Mean Square	F Ratio	Prob > F
Pre- vs. Post-Treatmer	nt	1	28.472661	28.4727	43.3589	<.0001*
Error		27	17.730205	0.6567		
C. Total		28	46.202866			
Means for Onewa	y Anova					
Level	Number	Mea	n Std Error	Lower 95%	Upper 95%	
Post-Treatment	20	-0.447	3 0.18120	-0.819	-0.076	
Pre-Treatment	9	1 694	4 0 27012	1 140	2 249	

ANOVA: Lumbriculus Receptor Tissue Concentration Evaluation between Pre- and Post-Treatment for SediMite

Hydric soil samples were not collected from SediMite plots for Lumbriculus receptor 28-day bioaccumulation studies. Therefore, statistical analysis was not conducted for this treatment type and no data are available.

ANOVA: Lumbriculus Receptor Tissue Concentration Evaluation between Pre- and Post-Treatment for Sand Control

This ANOVA statistical analysis compared Lumbriculus receptor tissue concentrations data from 28 day bioaccumulation studies between pre- and post-treatment sampling periods just within the Sand Control Plots. All data was logarithmically transformed for statistical analysis. Analysis determined that the pre- and post-treatment Lumbriculus tissue concentrations were **not** significantly different.

Oneway Analysis of Log - Lumbriculus Conc. By Pre- vs. Post-Treatment

Excluded Rows

67

Oneway Anova Summary of Fit

Rsquare	0.08584
Adj Rsquare	0.00966
Root Mean Square Error	0.852924
Mean of Response	0.891357
Observations (or Sum Wgts)	14

t Test

Pre-Treatment-Post-Treatment

Difference	0.5050 t Ratio	1.061508
Std Err Dif	0.4757 DF	12
Upper CL Dif	1.5415 Prob > t	0.3094
Lower CL Dif	-0.5315 Prob > t	0.1547
Confidence	0.95 Prob < t	0.8453

many old of Turiumo	Analysis	of \	Vari	iance
---------------------	-----------------	------	------	-------

Allalysis of Valla	1100					
Source		DF S	Sum of Squares	Mean Square	F Ratio	Prob > F
Pre- vs. Post-Treatmer	nt	1	0.8197232	0.819723	1.1268	0.3094
Error		12	8.7297500	0.727479		
C. Total		13	9.5494732			
Means for Onewa	ay Anova					
Level	Number	Mea	n Std Error	Lower 95%	Upper 95%	
Post-Treatment	9	0.7110	0.28431	0.09155	1.3305	
Pre-Treatment	5	1 2160	0 38144	0.38492	2 0471	

ANOVA: Lumbriculus Receptor Tissue Concentration Evaluation between Pre- and Post-Treatment for Control

This ANOVA statistical analysis compared Lumbriculus receptor tissue concentrations data from 28 day bioaccumulation studies between pre- and post-treatment sampling periods just within the Control Plots. All data was logarithmically transformed for statistical analysis. Analysis determined that the pre- and post-treatment Lumbriculus tissue concentrations were <u>not</u> significantly different.

Excluded Rows

Oneway Anova Summary of Fit

Rsquare	0.268174
Adj Rsquare	0.201645
Root Mean Square Error	0.701584
Mean of Response	1.126739
Observations (or Sum Wats)	13

t Test

Pre-Treatment-Post-Treatment

Analysis of Variance

-1.5 -1.0 -0.5 0.0 0.5 1.0

/ illuly old of Tallalle	,					
Source		DF Su	m of Squares	Mean Square	F Ratio	Prob > F
Pre- vs. Post-Treatment		1	1.9840896	1.98409	4.0309	0.0699
Error		11	5.4144174	0.49222		
C. Total		12	7.3985070			
Means for Oneway	Anova					
Level	Number	Mean	Std Error	Lower 95%	Upper 95%	
Post-Treatment	10	0.91276	0.22186	0.42445	1.4011	
Pre-Treatment	3	1.84000	0.40506	0.94847	2.7315	

ANOVA: Post Treatment Lumbriculus Receptor Tissue Concentration evaluation of Various Treatments;

Student's T Test: Determine Significance between Treatment Types; Control Dunnett's: Determine Significance between Control and All other Treatments

An ANOVA statistical analysis and Student's T means statistical comparison was conducted on all post-treatment Lumbriculus receptor tissue concentration data collected from 28-day bioaccumulation studies by "Treatment Type" (AquaBlok, Control, Sand Control, SediMite and Slurry Spray (AC)). ANOVA determined that Treatment Type was a significant variable within the data set (for PW conc). Student's T means statistical comparison determined that the AquaBlok and slurry spray were statistically separate from the Control. Dunnett's mean statistical comparison (with control set as the control) confirmed that AquaBlok and the AC slurry spray were both different than the control.

Oneway Analysis of Log - Lumbriculus Conc. By Treatment

Excluded Rows

Oneway Anova Summary of Fit

Rsquare	0.508009
Adj Rsquare	0.470878
Root Mean Square Error	0.805967
Mean of Response	-0.00485
Observations (or Sum Wgts)	58

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Treatment	4	35.548806	8.88720	13.6814	<.0001*
Error	53	34.427908	0.64958		
C. Total	57	69.976713			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
AquaBlok	20	-0.4473	0.18022	-0.809	-0.086
Control	10	0.9128	0.25487	0.402	1.424
Sand Control	9	0.7110	0.26866	0.172	1.250
SediMite	10	0.5146	0.25487	0.0034	1.026
Slurry Spray	9	-1.3341	0.26866	-1.873	-0.795

Std Error uses a pooled estimate of error variance

Means Comparisons

Comparisons for each pair using Student's t Confidence Quantile

t Alpha 2.00575 0.05

LSD Threshold Matrix

Abs(Dif)-LSD	Control	Sand Control	SediMite	AquaBlok	Slurry Spray
Control	-0.7230	-0.5410	-0.3248	0.7340	1.5041
Sand Control	-0.5410	-0.7621	-0.5464	0.5095	1.2831
SediMite	-0.3248	-0.5464	-0.7230	0.3359	1.1060
AquaBlok	0.7340	0.5095	0.3359	-0.5112	0.2379
Slurry Spray	1.5041	1.2831	1.1060	0.2379	-0.7621

Positive values show pairs of means that are significantly different.

Connecting Letters Report

Level				Mean
Control	Α			0.912761
Sand Control	Α			0.711000
SediMite	Α			0.514600
AquaBlok		В		-0.447345
Slurry Spray			С	-1.334111

Levels not connected by same letter are significantly different.

Ordered Differences Report Level - Level Difference Std Err Dif Lower CL Upper CL p-Value Slurry Spray 2.246872 0.3703164 1.50411 2.989633 <.0001* Control 2.045111 0.3799366 1.28305 2.807167 <.0001* Sand Control Slurry Spray SediMite Slurry Spray 1.848711 0.3703164 1.10595 2.591472 <.0001* Control AquaBlok 1.360106 0.3121498 0.73401 1.986199 <.0001* 1.158345 0.3235044 0.50948 1.807213 0.0007* Sand Control AquaBlok AquaBlok 0.961945 0.3121498 0.33585 1.588038 0.0033* SediMite AguaBlok Slurry Spray 0.886766 0.3235044 0.23790 1.535634 0.0083* Control SediMite 0.398161 0.3604395 -0.32479 1.121111 0.2743 Control Sand Control 0.201761 0.3703164 -0.54100 0.944522 0.5882 Sand Control SediMite

Comparisons with a control using Dunnett's Method

Control Group =

Control

Confidence Quantile

|**d**| **Alpha** 2.50986 0.05

LSD Threshold Matrix

Level	Abs(Dif)-LSD	p-Value
Control	-0.9	1.0000
Sand Control	-0.73	0.9491
SediMite	-0.51	0.6302
AquaBlok	0.577	0.0002*
Slurry Spray	1.317	<.0001*

Positive values show pairs of means that are significantly different.

Pore Water to Bulk Solid Phase Partitioning Coefficient Statistical Evaluations

<u>Demonstration of Relative Normal Distribution for Log K_{bulk/PW} Data</u>

Distributions Log-K(bulk/pw)

Quantiles

100.0%	maximum	6.78
99.5%		6.78
97.5%		6.65825
90.0%		6.038
75.0%	quartile	5.4875
50.0%	median	5.1
25.0%	quartile	4.5175
10.0%		4.037
2.5%		3.6275
0.5%		3.45
0.0%	minimum	3.45

Summary Statistics

5.0452041
0.7416355
0.0749165
5.1938926
4.8965156
98

Post-Treatment K_{bulk/pw} evaluation of Treated vs. Non-Treated Test Plots

This ANOVA statistical analysis compared all post-treatment K_{bulk/pw} data by whether the treatment plots contained an Activated Carbon Amendment (AC Slurry, AquaBlok or SediMite) or were control plots. Analysis determined that the two data sets were significantly different.

Oneway Anova Summary of Fit

Rsquare	0.26426
Adj Rsquare	0.252941
Root Mean Square Error	0.611827
Mean of Response	5.281343
Observations (or Sum Wgts)	67

t Test

Non-Treatment-AC Treatment

Difference	-0.7532 t Ratio	-4.83182
Std Err Dif	0.1559 DF	65
Upper CL Dif	-0.4419 Prob > t	<.0001*
Lower CL Dif	-1.0646 Prob > t	1.0000

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Treatment	1	8.739341	8.73934	23.3464	<.0001*
Error	65	24.331638	0.37433		
C. Total	66	33.070979			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
AC Treatment	43	5.55116	0.09330	5.3648	5.7375
Non-Treatment	24	4.79792	0.12489	4.5485	5.0473

ANOVA: K_{bulk/pw} Evaluation between Pre- and Post-Treatment for AC Slurry Spray

This ANOVA statistical analysis compared just AC Slurry (Slurry Spray) $K_{\text{bulk/pw}}$ data between pre- and post-treatment sampling periods. Analysis determined that the pre- and post-treatment $K_{\text{bulk/pw}}$ values were significantly different.

Oneway Analysis of Log-K(bulk/pw) By Pre/post Treatment

Excluded Rows

Oneway Anova Summary of Fit

Rsquare	0.345208
Adj Rsquare	0.301555
Root Mean Square Error	0.561278
Mean of Response	5
Observations (or Sum Wgts)	17

t Test

Pre-Treatment-Post-Treatment

Difference	-0.8011 t Ratio	-2.81212
Std Err Dif	0.2849 DF	15
Upper CL Dif	-0.1939 Prob > t	0.0131*
Lower CL Dif	-1.4082 Prob > t	0.9934
Confidence	0.95 Prob < t	0.0066*

7 that you of Tariano					
Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Pre/post Treatment	1	2.4912985	2.49130	7.9080	0.0131*
Error	15	4.7255015	0.31503		
C. Total	16	7.2168000			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
Post-Treatment	11	5.28273	0.16923	4.9220	5.6434
Pre-Treatment	6	4.48167	0.22914	3.9933	4.9701

ANOVA: K_{bulk/pw} Evaluation between Pre- and Post-Treatment for AquaBlok

This ANOVA statistical analysis compared just AquaBlok $K_{\text{bulk/pw}}$ data between pre- and post-treatment sampling periods. Analysis determined that the pre- and post-treatment $K_{\text{bulk/pw}}$ values were significantly different.

Excluded Rows

Oneway Anova Summary of Fit

Rsquare	0.180533
Adj Rsquare	0.153217
Root Mean Square Error	1484602
Mean of Response	1052775
Observations (or Sum Wgts)	32

t Test

Pre-Treatment-Post-Treatment

Difference	-1455615 t Ratio	-2.57083
Std Err Dif	566205 DF	30
Upper CL Dif	-299270 Prob > t	0.0153*
Lower CL Dif	-2611959 Prob > t	0.9923

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Pre/post Treatment	1	1.4567e+13	1.457e+13	6.6091	0.0153*
Error	30	6.6121e+13	2.204e+12		
C. Total	31	8.0688e+13			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
Post-Treatment	22	1507655	316518	861238	2154070.8
Pre-Treatment	10	52040	469472	-906750	1010830.3

ANOVA: K_{bulk/pw} Evaluation between Pre- and Post-Treatment for SediMite

This ANOVA statistical analysis compared just SediMite $K_{\text{bulk/pw}}$ data between pre- and post-treatment sampling periods. Analysis determined that the pre- and post-treatment $K_{\text{bulk/pw}}$ values were significantly different.

Excluded Rows

83

Oneway Anova Summary of Fit

0.330807
0.279331
0.344562
5.144
15

t Test

Pre-Treatment-Post-Treatment

Difference	-0.51000 t Ratio	-2.53503
Std Err Dif	0.20118 DF	13
Upper CL Dif	-0.07537 Prob > t	0.0249*
Lower CL Dif	-0.94463 Prob > t	0.9876

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Pre/post Treatment	1	0.7629600	0.762960	6.4264	0.0249*
Error	13	1.5434000	0.118723		
C. Total	14	2.3063600			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
Post-Treatment	11	5.28000	0.10389	5.0556	5.5044
Pre-Treatment	4	4.77000	0.17228	4.3978	5.1422

ANOVA: K_{bulk/pw} Evaluation between Pre- and Post-Treatment for Sand Control

This ANOVA statistical analysis compared just Sand Control $K_{\text{bulk/pw}}$ data between pre- and post-treatment sampling periods. Analysis determined that the pre- and post-treatment $K_{\text{bulk/pw}}$ values were <u>not</u> significantly different.

Oneway Analysis of Log-K(bulk/pw) By Pre/post Treatment

Excluded Rows

Oneway Anova Summary of Fit

Rsquare	0.007577
Adj Rsquare	-0.05445
Root Mean Square Error	0.710498
Mean of Response	4.648889
Observations (or Sum Wgts)	18

t Test

Pre-Treatment-Post-Treatment

Difference	0.12417 t Ratio	0.34952
Std Err Dif	0.35525 DF	16
Upper CL Dif	0.87726 Prob > t	0.7313
Lower CL Dif	-0.62893 Prob > t	0.3656
Confidence	0.95 Prob < t	0.6344

7 that you of Tariano					
Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Pre/post Treatment	1	0.0616694	0.061669	0.1222	0.7313
Error	16	8.0769083	0.504807		
C. Total	17	8.1385778			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
Post-Treatment	12	4.60750	0.20510	4.1727	5.0423
Pre-Treatment	6	4.73167	0.29006	4.1168	5.3466

ANOVA: K_{bulk/pw} Evaluation between Pre- and Post-Treatment for *Control*

This ANOVA statistical analysis compared just Control (no treatment) $K_{\text{bulk/pw}}$ data between preand post-treatment sampling periods. Analysis determined that the pre- and post-treatment $K_{\text{bulk/pw}}$ values were significantly different.

Excluded Rows

Oneway Anova Summary of Fit

Rsquare	0.415318
Adj Rsquare	0.373555
Root Mean Square Error	0.371038
Mean of Response	4.751875
Observations (or Sum Wgts)	16

t Test

Pre-Treatment-Post-Treatment

Difference	-0.6311 t Ratio	-3.15351
Std Err Dif	0.2001 DF	14
Upper CL Dif	-0.2019 Prob > Itl	0.0070*

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Jource	<i>D</i> 1	ouili oi oquales	Mean oquare	i italio	1100 / 1
Pre/post Treatment	1	1.3690728	1.36907	9.9446	0.0070*
Error	14	1.9273709	0.13767		
C. Total	15	3.2964438			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
Post-Treatment	11	4.94909	0.11187	4.7091	5.1890
Pre-Treatment	5	4.31800	0.16593	3.9621	4.6739

ANOVA: Post Treatment K_{bulk/pw} evaluation of Different Treatments; Student's T Test: Determine Significance between Treatment Types; Control Dunnett's: Determine Significance between Control and All other Treatments

An ANOVA statistical analysis and Student's T means statistical comparison was conducted on all post-treatment $K_{\text{bulk/pw}}$ data by "Treatment Type" (AquaBlok, Control, Sand Control, SediMite and Slurry Spray (AC)). ANOVA determined that Treatment Type was a significant variable within the data set (for $K_{\text{bulk/pw}}$). Student's T means statistical comparison determined that the AquaBlok was statistically separate from the Control. Dunnett's mean statistical comparison (with control set as the control) confirmed that AquaBlok was the only Treatment different than the control.

Oneway Analysis of Kbulk/pw By Treatment Type

Oneway Anova Summary of Fit

Rsquare	0.390932
Adj Rsquare	0.351637
Root Mean Square Error	0.569981
Mean of Response	5.281343
Observations (or Sum Wgts)	67

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Treatment Type	4	12.928495	3.23212	9.9487	<.0001*
Error	62	20.142484	0.32488		
C. Total	66	33.070979			

Means for Oneway Anova

Level Number Mean Std Error Lower 95% Upper 95%

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
AquaBlok	22	5.81500	0.12152	5.5721	6.0579
Control	11	4.94909	0.17186	4.6056	5.2926
Sand Control	12	4.60750	0.16454	4.2786	4.9364
SediMite	11	5.28000	0.17186	4.9365	5.6235
Slurry Spray	11	5.28273	0.17186	4.9392	5.6263

Std Error uses a pooled estimate of error variance

Means Comparisons

Comparisons for each pair using Student's t **Confidence Quantile**

Alpha t 1.99897 0.05

LSD Threshold Matrix

Abs(Dif)-LSD	AquaBlok	Slurry Spray	SediMite	Control	Sand Control
AquaBlok	-0.34353	0.11153	0.11426	0.44517	0.79861
Slurry Spray	0.11153	-0.48583	-0.48310	-0.15220	0.19962
SediMite	0.11426	-0.48310	-0.48583	-0.15492	0.19690
Control	0.44517	-0.15220	-0.15492	-0.48583	-0.13401
Sand Control	0.79861	0.19962	0.19690	-0.13401	-0.46515

Positive values show pairs of means that are significantly different.

Connecting Letters Report

Level				Mean
AquaBlok	Α			5.8150000
Slurry Spray		В		5.2827273
SediMite		В		5.2800000
Control		В	С	4.9490909
Sand Control			С	4.6075000

Levels not connected by same letter are significantly different.

Comparisons with a control using Dunnett's Method Control Group =

Control

Confidence Quantile

|**d**| **Alpha** 2.49338 0.05

Ordered Differences Report Level - Level Difference Std Err Dif Lower CL Upper CL p-Value AquaBlok Sand Control 1.207500 0.2045494 0.798612 1.616388 <.0001* AquaBlok Control Slurry Spray Sand Control 0.675227 0.2379237 0.199625 1.150830 0.0061* SediMite Sand Control 0.672500 0.2379237 0.196897 1.148103 0.0063* AquaBlok 0.535000 0.2104796 0.114257 0.955743 0.0135* SediMite AquaBlok Slurry Spray 0.532273 0.2104796 0.111530 0.953015 0.0140* Control Sand Control 0.341591 0.2379237 -0.134012 0.817194 0.1561 $0.333636 \quad 0.2430409 \quad \text{-}0.152195 \quad 0.819468 \quad 0.1748$ Slurry Spray Control Control SediMite $0.330909 \quad 0.2430409 \quad \text{-}0.154923 \quad 0.816741 \quad 0.1783$ Slurry Spray SediMite 0.002727 0.2430409 -0.483105 0.488559 0.9911

LSD Threshold Matrix

Level	Abs(Dif)-LSD	p-Value
<mark>AquaBlok</mark>	<mark>0.341</mark>	<u>.</u>
Slurry Spray	-0.27	0.4408
SediMite	-0.28	0.4479
Control	-0.61	1.0000
Sand Control	-0.25	0.4018

Positive values show pairs of means that are significantly different.

Lumbriculus Receptor Tissue to Bulk Solid Phase Partitioning Coefficient Statistical Evaluations

Demonstration of Relative Normal Fit for Log K_{bulk/Lv} **Data**

Distributions Log-Kbulk/Lv

Quantiles

100.0%	maximum	3.17775
99.5%		3.17775
97.5%		2.89256
90.0%		2.42378
75.0%	quartile	1.3213
50.0%	median	0.78511
25.0%	quartile	-0.1169
10.0%		-0.385
2.5%		-0.6917
0.5%		-0.9316
0.0%	minimum	-0.9316

Summary Statistics

Mean	0.7733408
Std Dev	1.0098838
Std Err Mean	0.1143468
Upper 95% Mean	1.0010344
Lower 95% Mean	0.5456472
N	78

Post-Treatment K_{bulk/Lv} evaluation of Treated vs. Non-Treated Test Plots

This ANOVA statistical analysis compared all post-treatment K_{bulk/Lv} data by whether the treatment plots contained an Activated Carbon Amendment (AC Slurry, AquaBlok or SediMite) or were Control plots with no Activated Carbon (Control, Sand Control). Analysis determined that the two data sets were significantly different.

Excluded Rows

23

Oneway Anova Summary of Fit

Rsquare	0.31111
Adj Rsquare	0.298112
Root Mean Square Error	0.726826
Mean of Response	1.215516
Observations (or Sum Wats)	55

t Test

Non Treated-AC Treated

Difference	-1.0083 t Ratio	-4.89237
Std Err Dif	0.2061 DF	53
Upper CL Dif	-0.5949 Prob > t	<.0001*
Lower CL Dif	-1.4217 Prob > t	1.0000
Confidence	0.95 Prob < t	<.0001*

DF	Sum of Squares	Mean Square	F Ratio	Prob > F
1	12.644469	12.6445	23.9353	<.0001*
53	27.998647	0.5283		
54	40.643116			
	1 53	DF Sum of Squares 1 12.644469 53 27.998647	DF Sum of Squares Mean Square 1 12.644469 12.6445 53 27.998647 0.5283	DF Sum of Squares Mean Square F Ratio 1 12.644469 12.6445 23.9353 53 27.998647 0.5283

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
AC Treated	36	1.56385	0.12114	1.3209	1.8068
Non Treated	19	0.55552	0.16675	0.2211	0.8900

ANOVA: K_{bulk/Lv} Evaluation between Pre- and Post-Treatment for *AC Slurry Spray*

This ANOVA statistical analysis compared just AC Slurry (Slurry Spray) $K_{\text{bulk/Lv}}$ data between pre- and post-treatment sampling periods. Analysis determined that the pre- and post-treatment $K_{\text{bulk/Lv}}$ values were significantly different.

Oneway Analysis of Log-Kbulk/Lv By Pre/Post Treatment

Excluded Rows

Oneway Anova Summary of Fit

Rsquare	0.68867
Adj Rsquare	0.657537
Root Mean Square Error	0.689477
Mean of Response	0.893408
Observations (or Sum Wgts)	12

t Test

Pre-Treatment-Post-Treatment

Difference	-1.8722 t Ratio	-4.70322
Std Err Dif	0.3981 DF	10
Upper CL Dif	-0.9853 Prob > t	0.0008*
Lower CL Dif	-2.7592 Prob > t	0.9996
Confidence	0.95 Prob < t	0.0004*

/ tilaly old of Tail	a				
Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Pre-/Post-	1	10.515497	10.5155	22.1203	0.0008*
Error	10	4.753787	0.4754		
C. Total	11	15.269284			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
Post-Treatment	6	1.8295	0.28148	1.202	2.4567
Pre-Treatment	6	-0.0427	0.28148	-0.670	0.5845

ANOVA: K_{bulk/pw} Evaluation between Pre- and Post-Treatment for AquaBlok

This ANOVA statistical analysis compared just AquaBlok $K_{bulk/Lv}$ data between pre- and post-treatment sampling periods. Analysis determined that the pre- and post-treatment $K_{bulk/Lv}$ values were significantly different.

Excluded Rows 49

Oneway Anova Summary of Fit

Rsquare	0.759515
Adj Rsquare	0.750609
Root Mean Square Error	0.616816
Mean of Response	1.116842
Observations (or Sum Wgts)	29

t Test

Pre-Treatment-Post-Treatment

Assuming equal variances

Difference -2.2863 t Ratio -9.23436

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Pre/Post Treatment	1	32.443281	32.4433	85.2733	<.0001*
Error	27	10.272480	0.3805		
C. Total	28	42.715762			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
Post-Treatment	20	1.8264	0.13792	1.543	2.109
Pre-Treatment	9	-0.4599	0.20561	-0.882	-0.038

ANOVA: K_{bulk/Lv} Evaluation between Pre- and Post-Treatment for Sand Control

This ANOVA statistical analysis compared just Sand Control $K_{\text{bulk/Lv}}$ data between pre- and post-treatment sampling periods. Analysis determined that the pre- and post-treatment $K_{\text{bulk/Lv}}$ values were significantly different.

Excluded Rows

64

Oneway Anova Summary of Fit

Rsquare	0.499851
Adj Rsquare	0.458172
Root Mean Square Error	0.540501
Mean of Response	0.455092
Observations (or Sum Wgts)	14

t Test

Pre-Treatment-Post-Treatment

Difference	-1.0440 t Ratio	-3.46307
Std Err Dif	0.3015 DF	12
Upper CL Dif	-0.3872 Prob > t	0.0047*
Lower CL Dif	-1.7009 Prob > t	0.9977
Confidence	0.95 Prob < t	0.0023*

7 that you of variation					
Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Pre/Post Treatment	1	3.5036114	3.50361	11.9928	0.0047*
Error	12	3.5057013	0.29214		
C. Total	13	7.0093127			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
Post-Treatment	9	0.82796	0.18017	0.4354	1.2205
Pre-Treatment	5	-0.21607	0.24172	-0.7427	0.3106

ANOVA: K_{bulk/Lv} Evaluation between Pre- and Post-Treatment for Control

This ANOVA statistical analysis compared just Control (no treatment) $K_{\text{bulk/Lv}}$ data between preand post-treatment sampling periods. Analysis determined that the pre- and post-treatment $K_{\text{bulk/Lv}}$ values were significantly different.

Excluded Rows

65

Oneway Anova Summary of Fit

Rsquare	0.463742
Adj Rsquare	0.414991
Root Mean Square Error	0.326425
Mean of Response	0.157377
Observations (or Sum Wats)	13

t Test

Pre-Treatment-Post-Treatment

Assuming equal variances

Difference -0.6627 t Ratio -3.08424

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Pre/Post Treatment	1	1.0135892	1.01359	9.5125	0.0104*
Error	11	1.1720850	0.10655		
C. Total	12	2.1856742			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
Post-Treatment	10	0.31032	0.10322	0.0831	0.53751
Pre-Treatment	3	-0.35242	0.18846	-0.7672	0.06238

ANOVA: Post Treatment K_{bulk/Lv} evaluation of Different Treatments; Student's T Test: Determine Significance between Treatment Types; Control Dunnett's: Determine Significance between Control and All other Treatments

An ANOVA statistical analysis and Student's T means statistical comparison was conducted on all post-treatment $K_{\text{bulk/Lv}}$ data by "Treatment Type" (AquaBlok, Control, Sand Control, and Slurry Spray (AC)). ANOVA determined that Treatment Type was a significant variable within the data set (for $K_{\text{bulk/Lv}}$). Student's T means statistical comparison determined that the AquaBlok and Slurry Spray (AC) were statistically separate from the Control and Sand Control. Dunnett's mean statistical comparison (with control set as the control) confirmed that AquaBlok and Slurry Spray were the only Treatment different than the control.

Excluded Rows

Oneway Anova Summary of Fit

Rsquare	0.501933
Adj Rsquare	0.462088
Root Mean Square Error	0.636286
Mean of Response	1.215516
Observations (or Sum Wgts)	55

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Treatment Type	4	20.400139	5.10003	12.5970	<.0001*
Frror	50	20 242977	0 40486		

Source C. Total	DF 54	Sum of Squa 40.643		Square	F Ratio	Prob > F
Means for Oneway	Anova					
Level	Number	Mean	Std Error	Lower 95%	Upper 95	5%
AquaBlok	20	1.82637	0.14228	1.541	2.11	21
Control	10	0.31032	0.20121	-0.094	0.71	45
Sand Control	9	0.82796	0.21210	0.402	1.25	40
SediMite	10	0.87941	0.20121	0.475	1.28	36
Slurry Spray	6	1.82951	0.25976	1.308	2.35	13

Std Error uses a pooled estimate of error variance

Means Comparisons Comparisons for each pair using Student's t Confidence Quantile

t Alpha 2.00856 0.05

LSD Threshold Matrix

Abs(Dif)-LSD	Slurry Spray	AquaBlok	SediMite	Sand Control	Control
Slurry Spray	-0.7379	-0.5917	0.2901	0.3280	0.8592
AquaBlok	-0.5917	-0.4041	0.4520	0.4854	1.0211
SediMite	0.2901	0.4520	-0.5715	-0.5358	-0.0025
Sand Control	0.3280	0.4854	-0.5358	-0.6025	-0.0696
Control	0.8592	1.0211	-0.0025	-0.0696	-0.5715

Positive values show pairs of means that are significantly different.

Connecting Letters Report

Level		Mean
Slurry Spray	Α	1.8295125
AquaBlok	Α	1.8263703
SediMite	В	0.8794083
Sand Control	В	0.8279619
Control	В	0.3103165

Levels not connected by same letter are significantly different.

Ordered D	ifferences F	Report					
Level	- Level	Difference	Std Err Dif	Lower CL	Upper CL	p-Value	
Slurry Spray	Control	1.519196	0.3285765	0.85923	2.179161	<.0001*	
AquaBlok	Control	1.516054	0.2464324	1.02108	2.011028	<.0001*	
Slurry Spray	Sand Control	1.001551	0.3353520	0.32798	1.675125	0.0044*	
AquaBlok	Sand Control	0.998408	0.2553965	0.48543	1.511387	0.0003*	
Slurry Spray	SediMite	0.950104	0.3285765	0.29014	1.610070	0.0057*	
AquaBlok	SediMite	0.946962	0.2464324	0.45199	1.441936	0.0003*	
SediMite	Control	0.569092	0.2845556	-0.00245	1.140639	0.0510	
Sand Control	Control	0.517645	0.2923531	-0.06956	1.104854	0.0827	
SediMite	Sand Control	0.051446	0.2923531	-0.53576	0.638655	0.8610	
Slurry Spray	AquaBlok	0.003142	0.2961749	-0.59174	0.598027	0.9916	

Comparisons with a control using Dunnett's Method

Control Group = Control

Confidence Quantile

|**d|** Alpha 2.52130 0.05

LSD Threshold Matrix

Level	Abs(Dif)-LSD	p-Value
Slurry Spray	0.691	0.0001*
AquaBlok	0.895	<.0001*
SediMite	-0.15	0.1561
Sand Control	-0.22	0.2406
Control	-0.72	1.0000

Positive values show pairs of means that are significantly different.

Appendix E: Plant Community Report

E-1 July 2014

AECOM 2

Introduction

The overall objective of ESTCP Project ER-0825 was to demonstrate and validate in situ wetland remediation technologies designed to sequester contaminants in wetlands. As described in the Draft Final Report (NAVFAC ESC, 2013), this was accomplished through establishment of a stratified-random plot study design that included treatment applications of Activated Carbon (AC), SediMite, AquaBlok®, Sand Control, and Blank Controls (i.e., no treatments), followed by chemical analyses, and laboratory bioaccumulation testing. To fully understand the effectiveness of various treatments, ecological evaluations were also necessary to assess the efficacy of the sequestration agent application, and to ensure that the wetland community at each treatment plot was not substantially altered (or recovers from any short-term impacts) due to implementation of the in situ treatment. This was accomplished through quantitative assessments and qualitative observations of plant community structure (this Appendix), resident benthic macroinvertebrate community structure (Appendix B), and an evaluation of plant nutrient uptake (Appendix C).

The Field Demonstration was performed at Canal Creek, Aberdeen Proving Ground (APG), Aberdeen, Maryland. Canal Creek is located on the Edgewood peninsula, which is situated between the Gunpowder River to the west and the Bush River to the east. The Canal Creek Marsh and Landfill area is located within the Canal Creek Study Area (CCSA), which is a 1,600-acre study area in the northern region of the Edgewood Area. The demonstration site is located along the West Branch of Canal Creek, just above Hanlon Rd (Figure 1). The West Branch originates as a non-tidal stream, which becomes a meandering tidal creek downstream of Magnolia Road. The creek is bordered by 45 acres of tidal marsh emergent vegetation with small areas of scrub-shrub and forested wetlands.

Methods

Vegetation monitoring included an evaluation of survivorship and health of resident plants measured as total percent cover, species richness, and diversity (i.e., Shannon-Wiener Diversity Index) for the layers present (i.e., herbs, shrubs/saplings, vines and/or trees). Diversity indices are useful because they take into account both species richness and the relative abundance of each species to quantify how well species are represented within a community. Invasive plant species were also documented, in terms of percent cover within each sample plot, and dense mono-culture stands were mapped throughout the field demonstration wetland on aerial photographs with lateral extents confirmed in the field. Monitoring was conducted both pre- and post-application to assess plant community health including documentation of early senescence, yellowing or stunting of vegetation during post-treatment sampling events. Plants were identified to species level, and percent cover was estimated using a modified Daubenmire cover class system (Figure 2).

To accomplish this task efficiently, sub-plots (one rectangular and one circular) were placed within each of the 8 X 8 meter (m) treatment plots. Rectangular plots were used because, when placed parallel to the major environmental gradient, they encompass more heterogeneity and recover greater species richness than round or square plots, and because vegetation cover alone is the important metric, plot size is not a factor (Barbour et al., 1999). Therefore, relatively small 10 m² (2 X 5 m) plots that can be easily sampled by one plant biologist were placed in the southeastern corner of each 8 X 8 m treatment plot (Figure 2). Circular (4-m diameter) plots were placed at the center of each treatment plot to ensure we obtained a good representation of conditions within each treatment plot.

Standard statistical analyses were used to evaluate differences among treatment plots and between treatment plots and control plots within each sampling event. Vegetation metrics were also tested

AECOM 3

in plots pre- versus post-application; however, interpretation of these data should be assessed with caution given the natural temporal variations encountered.

STATA 11.0 and JMP tutorials (SAS, 2013) were used to complete the statistical analyses. Treatment groups were analyzed with One Way Analysis of Variation (ANOVA), and Student's T-test individual pairwise comparison of each group mean for normally distributed data, and Pearson's test (r) for correlations. Non-parametric tests included Kruskal-Wallis rank test and Spearman Rank test (r_s) for correlations. Statistical differences were assumed at the alpha = 0.05 level. The remediation technology was considered successful if the post-treatment plant community metric condition was within 25% of the pre-treatment conditions and/or concurrent controls. A 25% change in conditions has been previously used by USEPA and other agencies as a quantifiable measurement of ecological significance (e.g., USEPA, 1994).

Results

The Field Demonstration wetland is approximately 2 acres in size and borders approximately 680 linear feet of Canal Creek (Figure 3). Approximately 32% (0.64 acres) of the total demonstration area consists of a dense mono-culture stand of common reed (*Phragmites australis*), an invasive plant species in Maryland. Another 33% (0.65 acres) of the demonstration area is dominated by narrow-leaved cattail (*Typha angustifolia*), which is not considered "invasive"; however, it is often considered an aggressive colonizer and tends to form dense mono-culture stands. The remaining portions of the field demonstration area were characterized as shallow emergent marsh (19%; 0.38 acres) and deep emergent marsh (16%; 0.34 acres).

A total of 49 plant species were observed within the field demonstration wetland (Table 1), the majority of which were herbaceous perennials, sedges, rushes and aquatic emergent plants (n=32). Also identified were shrubs (6), grasses (4), vines (4), trees (2) and one (1) sub-aquatic vascular plant.

Twenty-four (24) treatment plots were placed within the demonstration wetland and the vegetation was surveyed at three (3) separate times: November 2009 (T0), June 2011 (T1), and October 2011 (T2). Photographs of each plot are included in Attachment A and raw data from the surveys are presented in Attachment B. Common reed persists as a dense mono-culture stand (>90% cover) in only four (4) of the plots, plus one (1) additional plot with >60% cover. Common reed was observed in lower densities (3-20% cover) within an additional nine (9) plots. Narrow-leaved cattails were present in seven (7) plots with >60% cover, and ten (10) plots with 3-20% cover. One other invasive species observed within the field demonstration wetland was bladderwort (*Utricularia sp.*). This plant was observed in only two (2) plots and within the river itself.

Species richness ranged from only one (1) to nineteen (19) species in a treatment plot and on average, significantly increased between sampling events (i.e., from T0 to T2) (F = 8.351, p = 0.001, d.f. = 2; Figure 4). Species richness in plots dominated by common reed tended to be low ranging from only one (1) to five (5) (mean = 4.5) species. As expected, species richness was higher in plots dominated by shallow marsh or with a mixture of shallow and deep marsh habitats (6-13 species, mean = 9.0). Deep marsh habitats dominated by Arrow arum ($Peltandra\ virginica$) had only four (4) to five (5)(mean 4.7) species present. Interestingly, the narrow-leaved cattail dominated plots tended to exhibit the highest species richness ranging from ten (10) to nineteen (19) (mean = 12.9) species.

Within each sampling event, vegetation cover tended to be high in each plot with overlapping vegetation layers often resulting in percent cover ranging to well over 100% (Figure 4). At T0, T1

AECOM 4

and T2, only nine (9), two (2) and six (6) plots had <90% cover, respectively. There was no difference in relative cover between sampling events (F = 0.537, p = 0.466, d.f. = 2). Diversity at T0 was not different from T1 or T2 (F = 0.713, p = 0.494, d.f. = 2).

Vegetation characteristics within each of the 24 survey plots were significantly correlated between pre- and post-treatment periods. Correlations for species richness were particularly high for T0 versus T1 (r = 0.69; p < 0.05) and T0 versus T2 (r = 0.81; p < 0.05). Similarly, T1 versus T2 were also highly correlated (r = 0.90; p < 0.05). Relative cover and diversity were not significantly correlated for T0 versus T1, but they were for T0 versus T2 (Cover: $r_s = 0.67$; p < 0.05; Diversity: r = 0.51; p < 0.05).

The 24 plots were placed into one of five treatments: AquaBlok® (n=8), SediMite (n=4), Slurry Spray (i.e., a slurry of powdered activated carbon; n=4), Sand Control (n=4) and a Blank Control (i.e., no treatment; n=4). Because post-treatment sample results (T1 and T2) were not different, these data were pooled for analyses (Figure 4 and 5). As with the plot-by-plot analysis above, mean relative cover and species richness within treatment groups generally increased over time (i.e., comparing T0 to T1 and T2 data; Figure 5).

No differences among treatments were observed post-application for relative cover (F = 0.646, p = 0.633, d.f. = 4), or species richness (F = 2.063, p = 0.102, d.f. = 4; Figure 5). Species diversity among treatments was marginally significant (F = 2.515, p = 0.055, d.f. = 4), and some differences between treatments and controls were also observed (Figure 6). The SediMite treatment plots (mean = 0.718 ± 0.16) exhibited significantly lower diversity when compared to the control (mean = 1.23 ± 0.16, t = 2.017, p = 0.029) and the Sand Control (mean = 1.37 ± 0.16, t = 2.017, p = 0.006).

The percent change in species richness, diversity, and relative cover from T0 to post-treatment (average of T1 and T2 combined) was highly variable among plots and within treatments (Figure 7). On a plot-by-plot basis, we observed both increases and decreases in plant metrics from pre- to post-treatment time frames that were greater than 25% and these changes occurred within both treatment plots and control plots. However, the average percent change in diversity, richness and relative cover within treatments and controls was in a positive direction, ranging from 8-58% (mean = 20.7%) for diversity, 22-59% (mean = 34.0%) for richness and 0.8-51% (mean = 25.5%) for relative cover.

Discussion

In general, the results of the statistical analyses suggest that the treatments did not have a significant adverse impact on plant species composition within the field demonstration wetland. And when changes did occur, they were often in a positive direction. However, interpreting and drawing conclusions on these analyses should be met with caution given the natural temporal variation encountered within this wetland system. And despite efforts to control for spatial variation by breaking the demonstration wetland into "high quality" and "low quality" wetlands areas, a significant amount of variation was still encountered within a particular sampling event (i.e., at T0, T1 or T2). These types of variability are typical of natural systems, which is why monitoring vegetation composition is only one approach used in this program to assess ecological impacts of different treatment regimes.

High correlations were observed between pre- and post-treatment plant metrics indicate that these metrics did not significantly change over time. In addition, no differences between treatments and controls for relative cover and species richness were observed within T0, T1 and T2 sampling events. Lower diversity (marginally significant) was observed within post-treatment SediMite plots

AECOM 5

(using pooled T1 and T2 data for post-treatment timeframe) when compared to the controls. However, this may be attributed to natural variation as diversity, and species richness within SediMite plots prior to any treatments (i.e., at T0) also tended to be lower than in the control plots (Figure 5).

Although mean relative cover and species richness within treatment plots appeared to be lower at T0 when compared to T1 and T2, these observed differences are likely temporal in nature. Aboveground portions of most soft, fleshy herbaceous and aquatic emergent species completely disappear following the first frost, which can result in a significant decrease in plant community structure over a short time period. For example, the T0 sampling event conducted in November 2009 may have represented a post-frost sampling event while the T2 sampling event in October 2011 may have taken place prior to any significant frost, resulting in greater species richness and relative cover.

Changes in diversity, richness and relative cover between pre- and post-treatment time periods were observed that were greater than the 25% of plant community metric condition used by the USEPA. However, with the exception of 5 plots (APG-20 and APG-9 treated with Aquablok, APG-10 in the Sand Control, APG-18 treated with SediMite, and APG-2 treated with the Slurry Spray; Figure 7), these changes were generally in a positive direction on a plot-by-plot basis, and on average within treatments were in a positive direction (see Figure 8). As described above, these variations are likely attributable to high spatial and temporal variability observed within these data. The scattered nature of these reductions in species diversity or relative cover does not indicate a clear trend of adverse impacts due to the application of the treatments themselves.

Visual inspections of vegetation during each of the post-treatment sampling events did not identify any early senescence, yellowing or stunting of vegetation. However, in June 2011 (T1), dark staining was observed on newly emerged sensitive fern (*Onoclea sensibilis*) in plots treated with AquaBlok® (Figure 9). Because Canal Creek is tidally influenced, it was presumed that the dark colored, fine-textured component of the AquaBlok® was carried upward in elevation with the rising tide, and stained all portions of the plants that were submerged. It is unknown what impact this physical disturbance might have on the plants, but it is possible that dark staining on the leaf surfaces could temporarily impact the photosynthesis process and gas exchange between the leaf surface and atmosphere via stomata.

References

Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.

Naval Facilities Engineering Command Engineering Service Center (NAVFAC ESC). 2013. Draft Final Report (Version 0). In Situ Wetland Restoration Demonstration. ESTCP Project Number ER-0825. February.

USEPA. 1994. Briefing Report to the Science Advisory Board on the Equilibrium Partitioning Approach for Predicting Metal Bioavailability in Sediments and the Derivation of Sediment Quality Criteria for Metals. December 1994. USEPA. Office of Water and Office of Research and Development, EPA-822-D-94-002.

Table 1. Plant species observed in the Canal Creek Field Demonstration wetland.

Table 1. Plant species observ	ed in the Canal Creek Field Demor	nstration wetland.
Common Name	Latin Name	Group
Small water plantain	Alisma subcordatum	Herbaceous Perennials
Swamp milkweed	Asclepias incarnata	Herbaceous Perennials
Aster	Aster sp.	Herbaceous Perennials
Nodding Bur-Marigold	Bidens cernua	Herbaceous Perennials
False nettle	Boehmeria cylindrica	Herbaceous Perennials
Hairy sedge	Carex lacustris	Sedges and Rushes
Lurid sedge	Carex lurida	Sedges and Rushes
Carex	Carex scoparia	Sedges and Rushes
Fox sedge	Carex stipata/vulpinoidea	Sedges and Rushes
Tussock sedge	Carex stricta	Sedges and Rushes
Buttonbush	Cephalanthus occidentalis	Shrubs
Water hemlock	Cicuta maculata	Herbaceous Perennials
Whorled coreopsis	Coreopsis verticillata	Herbaceous Perennials
Silky dogwood	Cornus amomum	Shrubs
Deer-tongue grass	Dichanthelium clandestinum	Grass
Spike rush	Eleocharis sp.	Sedges and Rushes
Marsh bedstraw	Galium palustre	Herbaceous Perennials
Rose mallow	Hibiscus palustris	Shrubs
Jewelweed	Impatiens capensis	Herbaceous Perennials
Blue flag iris	Iris versicolor	Herbaceous Perennials
Canada rush	Juncus canadensis	Sedges and Rushes
Soft rush	Juncus effusus	Sedges and Rushes
Rice cutgrass	Leersia oryzoides	Grass
Water horehound	Lycopus americanus	Herbaceous Perennials
Swamp candles	Lysimachia terrestris	Herbaceous Perennials
Sweetgum	Liquidambar styraciflua	Tree
Climbing boneset	Mikania scandens	Vine
Black gum	Nyssa sylvatica	Tree
Sensitive fern	Onoclea sensibilis	Herbaceous Perennials
Virginia creeper	Parthenoisus quinquefolia	Vine
Arrow arum	Peltandra virginica	Aquatic Emergent
Common reed	Phragmites australis	Grass
Halberd-leaved tearthumb	Polygonum arifolium	Herbaceous Perennials
Water Smartweed	Polygonum punctatum	Herbaceous Perennials
Arrow-leaved tearthumb	Polygonum sagittatum	Herbaceous Perennials
Pickerelweed	Pontederia cordata	Aquatic Emergent
Swamprose	Rosa palustris	Shrubs
Elderberry	Sambucus canadensis	Shrubs
Woolgrass	Scirpus cyperinus	Sedges and Rushes
Soft-stem bulrush	Scirpus validus	Sedges and Rushes
Water parsnip	Sium suave	Herbaceous Perennials
Bur reed	Sparganium sp.	Aquatic Emergent
Marsh fern	Thelypteris Thelypteroides	Herbaceous Perennials
Poison ivy	Toxiciodendron radicans	Vine

Table 1. (Cont.)		
Common Name	Latin Name	Group
Narrow-leaved cattail	Typha angustifolia	Aquatic Emergent
Bladderwort	Utricularia sp.	Sub-Aquatic
Arrowwood	Viburnum dentatum	Shrubs
Fox grape	Vitis labrusca	Vine
Wild rice	Zizania aquatica	Grass

Figure 2. 8X8m treatment plot and vegetation sampling sub-plot layout (left), and modified Daubenmire cover class system (right).

Figure 4. Mean relative cover, species richness and diversity $\pm SE$ among all plots within each sampling event. Range of values recorded are presented above each bar.

Figure 5. Mean relative cover, species richness and diversity by treatment \pm SE, for each of the three sampling events.

Figure 6. Graphical representations of One-Way ANOVA on treatment: diversity index. T1 and T2 data are pooled. Treatments with different letters are significantly different from one-another at p < 0.05. Each diamond displays statistical information about the grouped data. The horizontal line at the center of the diamond displays the group mean and the smaller horizontal lines above and below represent an overlap marks which display statistical significance for groups with the same sample size. The 95% confidence interval for each group is represented by top and bottom of the diamond corners of the diamond, or height of the diamond which is calculated as (1-alpha) x 100 confidence interval for each group. The horizontal size of the diamond is representative of the sample size of the group.

Figure 7. Percent change in measured plant metrics from pre-treatment (T0) to post-treatment (mean of T1 and T2) sampling events on a plot-by-plot basis.

Figure 8. Average percent change (±SE) in measured plant metrics from pre-treatment (T0) to post-treatment (mean of T1 and T2) sampling events.

Figure 9. APG-5, Aquablok plot. Vegetation (or portions thereof) that become inundated each day during tidal fluctuations are stained gray/black. "A" and "B" are partially submerged during high tide, "C" is completely submerged, and "D" was tall enough to be above high tide waters.

APG-01

APG-02

E-17

APG-03

APG-04

APG-05

APG-07

APG-08 E-20

APG-09

APG-10 E-21

APG-11

APG-12

APG-13

APG-14 E-23

APG-15

APG-16 E-24

APG-17

APG-18 E-25

APG-19

APG-20 E-26

APG-21

₽G-22

APG-23

APG-24

Time Zero - November 2009

			Cover Class 4m		
Common Name	Latin Name	Date	Circle Plot	Plot ID	Treatment
Arrow Arum	Peltandra virginica	11/1/2009	3.0	APG-1	Sand Control
Arrow-leaved Tearthumb	Polygonum sagittatum	11/1/2009	3.0	APG-1	Sand Control
Climbing boneset	Mikania scandens	11/1/2009	10.5	APG-1	Sand Control
Narrow-leaved Cattail	Typha angustifolia	11/1/2009	63.0	APG-1	Sand Control
Rice cutgrass	Leersia oryzoides	11/1/2009	10.5	APG-1	Sand Control
Rose Mallow	Hibiscus palustris	11/1/2009	10.5	APG-1	Sand Control
Sphagnum Moss	Sphagnum sp.	11/1/2009	10.5	APG-1	Sand Control
Arrow Arum	Peltandra virginica	11/1/2009	10.5	APG-10	Sand Control
Canada Rush	Juncus canadensis	11/1/2009	10.5	APG-10	Sand Control
Common Reed	Phragmites australis	11/1/2009	10.5	APG-10	Sand Control
Marsh Bedstraw	Galium palustre	11/1/2009	10.5	APG-10	Sand Control
Rice cutgrass	Leersia oryzoides	11/1/2009	10.5	APG-10	Sand Control
Water Smartweed	Polygonum punctatum	11/1/2009	10.5	APG-10	Sand Control
Wild Rice	Zizania aquatica	11/1/2009	10.5	APG-10	Sand Control
Arrow Arum	Peltandra virginica	11/1/2009	38.0	APG-11	Aquablok
Canada Rush	Juncus canadensis	11/1/2009	3.0	APG-11	Aquablok
Common Reed	Phragmites australis	11/1/2009	20.5	APG-11	Aquablok
Marsh Bedstraw	Galium palustre	11/1/2009	10.5	APG-11	Aquablok
Rice cutgrass	Leersia oryzoides	11/1/2009	3.0	APG-11	Aquablok
Water Smartweed	Polygonum punctatum	11/1/2009	20.5	APG-11	Aquablok
Arrow Arum	Peltandra virginica	11/1/2009	10.5	APG-12	Control
Canada rush	Juncus canadensis	11/1/2009	10.5	APG-12	Control
Common Reed	Phragmites australis	11/1/2009	10.5	APG-12	Control
Marsh Bedstraw	Galium palustre	11/1/2009	3.0	APG-12	Control
Rice cutgrass	Leersia oryzoides	11/1/2009	20.5	APG-12	Control
Water Smartweed	Polygonum punctatum	11/1/2009	3.0	APG-12	Control
Arrow Arum	Peltandra virginica	11/1/2009	10.5	APG-13	Aquablok
Canada rush	Juncus canadensis	11/1/2009	10.5	APG-13	Aquablok
Narrow-leaved Cattail	Typha angustifolia	11/1/2009	10.5	APG-13	Aquablok
Rice cutgrass	Leersia oryzoides	11/1/2009	3.0	APG-13	Aquablok
Water Smartweed	Polygonum punctatum	11/1/2009	10.5	APG-13	Aquablok
Wild Rice	Zizania aquatica	11/1/2009	38.0	APG-13	Aquablok
Arrow Arum	Peltandra virginica	11/1/2009	10.5	APG-14	Sand Control
Wild Rice	Zizania aquatica	11/1/2009	63.0	APG-14	Sand Control
Deer-tongue Grass	Dichanthelium clandestinum	11/1/2009	38.0	APG-15	Control
Marsh Bedstraw	Galium palustre	11/1/2009	10.5	APG-15	Control
Soft Rush	Juncus effusus	11/1/2009	63.0	APG-15	Control
Swamp Rose	Rosa palustris	11/1/2009	10.5	APG-15	Control
Wool Grass	Scirpus cyperinus	11/1/2009	3.0	APG-15	Control
Arrow Arum	Peltandra virginica	11/1/2009	3.0	APG-16	SediMite
Common Reed	Phragmites australis	11/1/2009	3.0	APG-16	SediMite
Wild Rice	Zizania aquatica	11/1/2009	85.5	APG-16	SediMite
Arrow Arum	Peltandra virginica	11/1/2009	10.5	APG-17	SediMite
Canada rush	Juncus canadensis	11/1/2009	10.5	APG-17	SediMite
Wild Rice	Zizania aquatica	11/1/2009	63.0	APG-17	SediMite
Arrow Arum	Peltandra virginica	11/1/2009	38.0	APG-18	SediMite
Common Reed	Phragmites australis	11/1/2009	10.5	APG-18	SediMite
Wild Rice	Zizania aquatica	11/1/2009	20.5	APG-18	SediMite
Arrow Arum	Peltandra virginica	11/1/2009	38.0	APG-19	SediMite
Canada rush	Juncus canadensis	11/1/2009	38.0	APG-19	SediMite
Common Reed	Phragmites australis	11/1/2009	3.0	APG-19	SediMite
Narrow-leaved Cattail	Typha angustifolia	11/1/2009	10.5	APG-19	SediMite
Wild Rice	Zizania aquatica	11/1/2009	3.0	APG-19	SediMite
Canada rush	Juncus canadensis	11/1/2009	10.5	APG-2	Slurry Spray

E-29 Page 1 of 12

Time Zero - November 2009

			Cover Class 4m		
Common Name	Latin Name	Date	Circle Plot	Plot ID	Treatment
Climbing boneset	Mikania scandens	11/1/2009	38.0	APG-2	Slurry Spray
Marsh Bedstraw	Galium palustre	11/1/2009	85.5	APG-2	Slurry Spray
Narrow-leaved Cattail	Typha angustifolia	11/1/2009	63.0	APG-2	Slurry Spray
Rice cutgrass	Leersia oryzoides	11/1/2009	10.5	APG-2	Slurry Spray
Arrow Arum	Peltandra virginica	11/1/2009	10.5	APG-20	Aquablok
Arrow-leaved Tearthumb	Polygonum sagittatum	11/1/2009	3.0	APG-20	Aquablok
Canada rush	Juncus canadensis	11/1/2009	63.0	APG-20	Aquablok
Clayton's Bedstraw	Galium tinctorium	11/1/2009	3.0	APG-20	Aquablok
Climbing boneset	Mikania scandens	11/1/2009	10.5	APG-20	Aquablok
Narrow-leaved Cattail	Typha angustifolia	11/1/2009	38.0	APG-20	Aquablok
Rice cutgrass	Leersia oryzoides	11/1/2009	3.0	APG-20	Aquablok
Rose Mallow	Hibiscus palustris	11/1/2009	10.5	APG-20	Aquablok
Water Smartweed	Polygonum punctatum	11/1/2009	3.0	APG-20	Aquablok
Common Reed	Phragmites australis	11/1/2009	100.0	APG-21	Aquablok
Common Reed	Phragmites australis	11/1/2009	100.0	APG-22	Slurry Spray
Common Reed	Phragmites australis	11/1/2009	100.0	APG-23	Slurry Spray
Common Reed	Phragmites australis	11/1/2009	85.5	APG-24	Aquablok
Wild Rice	Zizania aquatica	11/1/2009	3.0	APG-24	Aquablok
Arrow Arum	Peltandra virginica	11/1/2009	3.0	APG-3	Sand Control
Clayton's Bedstraw	Galium tinctorium	11/1/2009	3.0	APG-3	Sand Control
Climbing boneset	Mikania scandens	11/1/2009	10.5	APG-3	Sand Control
Marsh Fern	Thelypteris Thelypteroides	11/1/2009	3.0	APG-3	Sand Control
Narrow-leaved Cattail	Typha angustifolia	11/1/2009	85.5	APG-3	Sand Control
Rice cutgrass	Leersia oryzoides	11/1/2009	10.5	APG-3	Sand Control
Rose Mallow	Hibiscus palustris	11/1/2009	10.5	APG-3	Sand Control
Small Bedstraw	Galium trifidum	11/1/2009	3.0	APG-3	Sand Control
Sphagnum Moss	Sphagnum sp.	11/1/2009	3.0	APG-3	Sand Control
Water Smartweed	Polygonum punctatum	11/1/2009	3.0	APG-3	Sand Control
Ditch Stonecrop	Penthorum sedoides	11/1/2009	3.0	APG-4	Control
Narrow-leaved Cattail	Typha angustifolia	11/1/2009	3.0	APG-4	Control
Wild Rice	Zizania aquatica	11/1/2009	10.5	APG-4	Control
Climbing boneset	Mikania scandens	11/1/2009	3.0	APG-5	Aquablok
Fox grape	Vitis labrusca	11/1/2009	10.5	APG-5	Aquablok
Narrow-leaved Cattail	Typha angustifolia	11/1/2009	85.5	APG-5	Aquablok
Rose Mallow	Hibiscus palustris	11/1/2009	10.5	APG-5	Aquablok
Sensitive Fern	Onoclea sensibilis	11/1/2009	63.0	APG-5	Aquablok
Arrow Arum	Peltandra virginica	11/1/2009	3.0	APG-6	Aquablok
Canada rush	Juncus canadensis	11/1/2009	63.0	APG-6	Aquablok
Climbing boneset	Mikania scandens	11/1/2009	20.5	APG-6	Aquablok
Marsh Bedstraw	Galium palustre	11/1/2009	3.0	APG-6	Aquablok
Narrow-leaved Cattail	Typha angustifolia	11/1/2009	63.0	APG-6	Aquablok
Rice cutgrass	Leersia oryzoides	11/1/2009	10.5	APG-6	Aquablok
Rose Mallow	Hibiscus palustris	11/1/2009	10.5	APG-6	Aquablok
Climbing boneset	Mikania scandens	11/1/2009	10.5	APG-7	Control
Marsh Fern	Thelypteris Thelypteroides	11/1/2009	3.0	APG-7	Control
Narrow-leaved Cattail	Typha angustifolia	11/1/2009	85.5	APG-7	Control
Rose Mallow	Hibiscus palustris	11/1/2009	3.0	APG-7	Control
Water Parsnip	Sium suave	11/1/2009	3.0	APG-7	Control
Water Smartweed	Polygonum punctatum	11/1/2009	3.0	APG-7	Control
Narrow-leaved Cattail	Typha angustifolia	11/1/2009	85.5	APG-8	Slurry Spray
Rose Mallow	Hibiscus palustris	11/1/2009	38.0	APG-8	Slurry Spray
Sensitive Fern	Onoclea sensibilis	11/1/2009	38.0	APG-8	Slurry Spray
Arrow Arum	Peltandra virginica	11/1/2009	10.5	APG-9	Aquablok
Canada Rush	Juncus canadensis	11/1/2009	10.5	APG-9	Aquablok

E-30 Page 2 of 12

Time Zero - November 2009

Common Name	Cover Class 4m								
	Latin Name	Date	Circle Plot	Plot ID	Treatment				
Climbing boneset	Mikania scandens	11/1/2009	3.0	APG-9	Aquablok				
Narrow-leaved Cattail	Typha angustifolia	11/1/2009	3.0	APG-9	Aquablok				
Rice cutgrass	Leersia oryzoides	11/1/2009	20.5	APG-9	Aquablok				
Rose Mallow	Hibiscus palustris	11/1/2009	3.0	APG-9	Aquablok				
Small Bedstraw	Galium trifidum	11/1/2009	3.0	APG-9	Aquablok				
Water Smartweed	Polygonum punctatum	11/1/2009	3.0	APG-9	Aquablok				

Modified Daubenmire cover class system

Cover Classes

Cover Classes					
<1	0.5				
1-5	3.0				
6-15	10.5				
16-25	20.5				
26-50	38.0				
51-75	63.0				
76-95	85.5				
96-100	98.0				

E-31 Page 3 of 12

Time One - June 2011

			Cover Class 4m	Cover Class 2X5	5m		
Common Name	Latin Name	Date	Circle Plot	Plot	Plot ID	Treatment	Wetland Quality
Arrow Arum	Peltandra virginica	06/01/11	38	38	APG-1	Sand Control	Low Value
Arrow-leaved Tearthumb	Polygonum sagittatum	06/01/11	0.5	0.5	APG-1	Sand Control	Low Value
Canada rush	Juncus canadensis	06/01/11	0	3	APG-1	Sand Control	Low Value
Common reed	Phragmites australis	06/01/11	20.5	20.5	APG-1	Sand Control	Low Value
Jewelweed	Impatiens capensis	06/01/11	0	0.5	APG-1	Sand Control	Low Value
Marsh Bedstraw	Galium palustre	06/01/11	0	0.5	APG-1	Sand Control	Low Value
Narrow-leaved cattail	Typha angustifolia	06/01/11 06/01/11	63 0	85.5 10.5	APG-1 APG-1	Sand Control Sand Control	Low Value Low Value
Rice cutgrass Rose mallow	Leersia oryzoides Hibiscus palustris	06/01/11	10.5	10.5	APG-1 APG-1	Sand Control	Low Value
Arrow arum	Peltandra virginica	06/01/11	38	85.5	APG-10	Sand Control	High Value
Canada rush	Juncus canadensis	06/01/11	20.5	3	APG-10	Sand Control	High Value
Common reed	Phragmites australis	06/01/11	63	0	APG-10	Sand Control	High Value
Rice cutgrass	Leersia oryzoides	06/01/11	0.5	10.5	APG-10	Sand Control	High Value
Swamp candles	Lysimachia terrestris	06/01/11	3	3	APG-10	Sand Control	High Value
Wild rice	Zizania aquatica	06/01/11	3	3	APG-10	Sand Control	High Value
Arrow arum	Peltandra virginica	06/01/11	63	38	APG-11	Aquablok	High Value
Canada rush	Juncus canadensis	06/01/11	10.5	0	APG-11	Aquablok	High Value
Common reed	Phragmites australis	06/01/11	10.5	3	APG-11	Aquablok	High Value
Narrow-leaved cattail	Typha angustifolia	06/01/11	3	63	APG-11	Aquablok	High Value
Rice cutgrass	Leersia oryzoides	06/01/11	20.5	3	APG-11	Aquablok	High Value
Rose mallow	Hibiscus palustris	06/01/11 06/01/11	3 0.5	3 0	APG-11 APG-11	Aquablok	High Value
Water parsnip Wild rice	Sium suave Zizania aquatica	06/01/11	10.5	0.5	APG-11 APG-11	Aquablok Aquablok	High Value High Value
Arrow arum	Peltandra virginica	06/01/11	38	85.5	APG-11 APG-12	Control	High Value
Canada rush	Juncus canadensis	06/01/11	38	20.5	APG-12	Control	High Value
Common reed	Phragmites australis	06/01/11	0.5	0	APG-12	Control	High Value
Narrow-leaved cattail	Typha angustifolia	06/01/11	0.5	0.5	APG-12	Control	High Value
Soft-stem bulrush	Scirpus validus	06/01/11	0	0.5	APG-12	Control	High Value
Wild rice	Zizania aquatica	06/01/11	10.5	10.5	APG-12	Control	High Value
Arrow arum	Peltandra virginica	06/01/11	63	38	APG-13	Aquablok	High Value
Canada rush	Juncus canadensis	06/01/11	63	10.5	APG-13	Aquablok	High Value
Rice cutgrass	Leersia oryzoides	06/01/11	10.5	0	APG-13	Aquablok	High Value
Swamp candles	Lysimachia terrestris	06/01/11	3	0	APG-13	Aquablok	High Value
Wild rice	Zizania aquatica	06/01/11	20.5	20.5	APG-13	Aquablok	High Value
Arrow arum	Peltandra virginica	06/01/11	38	38 3	APG-14 APG-14	Sand Control	High Value
Bladderwort Canada rush	Utricularia sp. Juncus canadensis	06/01/11 06/01/11	3 0.5	20.5	APG-14 APG-14	Sand Control Sand Control	High Value High Value
Narrow-leaved cattail	Typha angustifolia	06/01/11	3	3	APG-14	Sand Control	High Value
Wild rice	Zizania aquatica	06/01/11	63	38	APG-14	Sand Control	High Value
Arrow arum	Peltandra virginica	06/01/11	63	63	APG-15	Control	High Value
Canada rush	Juncus canadensis	06/01/11	63	20.5	APG-15	Control	High Value
Common reed	Phragmites australis	06/01/11	0.5	0	APG-15	Control	High Value
Rice cutgrass	Leersia oryzoides	06/01/11	3	10.5	APG-15	Control	High Value
Soft-stem bulrush	Scirpus validus	06/01/11	0.5	0	APG-15	Control	High Value
Swamp candles	Lysimachia terrestris	06/01/11	10.5	0	APG-15	Control	High Value
Wild rice	Zizania aquatica	06/01/11	20.5	10.5	APG-15	Control	High Value
Arrow arum	Peltandra virginica	06/01/11	98	98	APG-16	SediMite	High Value
Canada rush	Juncus canadensis	06/01/11	0.5	3	APG-16	SediMite	High Value
Common reed Soft-stem bulrush	Phragmites australis Scirpus validus	06/01/11 06/01/11	3 0.5	0 0	APG-16 APG-16	SediMite SediMite	High Value High Value
Wild rice	Zizania aquatica	06/01/11	10.5	0.5	APG-16	SediMite	High Value
Arrow arum	Peltandra virginica	06/01/11	63	98	APG-17	SediMite	High Value
Canada rush	Juncus canadensis	06/01/11	63	10.5	APG-17	SediMite	High Value
Narrow-leaved cattail	Typha angustifolia	06/01/11	0.5	0	APG-17	SediMite	High Value
Soft-stem bulrush	Scirpus validus	06/01/11	0	0	APG-17	SediMite	High Value
Wild rice	Zizania aquatica	06/01/11	10.5	10.5	APG-17	SediMite	High Value
Arrow arum	Peltandra virginica	06/01/11	98	98	APG-18	SediMite	High Value
Common reed	Phragmites australis	06/01/11	0.5	0.5	APG-18	SediMite	High Value
Soft rush	Juncus effusus	06/01/11	0	0.5	APG-18	SediMite	High Value
Wild rice	Zizania aquatica	06/01/11	20.5	10.5	APG-18	SediMite	High Value
Arrow arum	Peltandra virginica	06/01/11	38	63	APG-19	SediMite	High Value
Bur reed	Sparganium sp.	06/01/11	3	0	APG-19	SediMite	High Value
Canada rush	Juncus canadensis	06/01/11	63	63	APG-19	SediMite	High Value
Common reed	Phragmites australis	06/01/11	0.5 10.5	0 0	APG-19 APG-19	SediMite SediMite	High Value
Narrow-leaved cattail Pickerelweed	Typha angustifolia Pontederia cordata	06/01/11 06/01/11	10.5 20.5	10.5	APG-19 APG-19	SediMite SediMite	High Value High Value
Soft-stem bulrush	Scirpus validus	06/01/11	0.5	0.5	APG-19 APG-19	SediMite	High Value
	,,	00,01,11	0.0	0.5	5 25		

E-32 Page 4 of 12

Time One - June 2011

			Cover Class 4m	Cover Class 2X5	im		
Common Name	Latin Name	Date	Circle Plot	Plot	Plot ID	Treatment	Wetland Quality
Wild rice	Zizania aquatica	06/01/11	3	63	APG-19	SediMite	High Value
Arrow arum	Peltandra virginica	06/01/11	38	10.5	APG-2	Slurry Spray	Low Value
Canada rush	Juncus canadensis	06/01/11	10.5	38	APG-2	Slurry Spray	Low Value
Carex	Carex lacustris	06/01/11	0	0.5	APG-2	Slurry Spray	Low Value
False nettle	Boehmeria cylindrica	06/01/11	10.5	10.5	APG-2	Slurry Spray	Low Value
Jewelweed	Impatiens capensis	06/01/11	0	0.5	APG-2 APG-2	Slurry Spray	Low Value
Marsh Bedstraw Narrow-leaved cattail	Galium palustre Typha angustifolia	06/01/11 06/01/11	20.5 85.5	63 85.5	APG-2 APG-2	Slurry Spray Slurry Spray	Low Value Low Value
Rose Mallow	Hibiscus palustris	06/01/11	3	3	APG-2	Slurry Spray	Low Value
Arrow arum	Peltandra virginica	06/01/11	20.5	38	APG-20	Aquablok	High Value
Canada rush	Juncus canadensis	06/01/11	98	3	APG-20	Aquablok	High Value
Carex	Carex scoparia	06/01/11	0.5	0	APG-20	Aquablok	High Value
False nettle	Boehmeria cylindrica	06/01/11	3	0	APG-20	Aquablok	High Value
Lurid Sedge	Carex lurida	06/01/11	0.5	0	APG-20	Aquablok	High Value
Narrow-leaved cattail	Typha angustifolia	06/01/11	3	38	APG-20	Aquablok	High Value
Rice cutgrass	Leersia oryzoides	06/01/11	3	20.5	APG-20	Aquablok	High Value
Rose mallow	Hibiscus palustris	06/01/11	3	0	APG-20	Aquablok	High Value
Water horehound	Lycopus americanus	06/01/11	3	0	APG-20	Aquablok	High Value
Wild rice	Zizania aquatica	06/01/11	0	10.5	APG-20	Aquablok	High Value
Arrow arum Arrow-leaved tearthumb	Peltandra virginica	06/01/11 06/01/11	3 0.5	0.5 0	APG-21 APG-21	Aquablok	High Value
Common reed	Polygonum sagittatum Phragmites australis	06/01/11	98	98	APG-21 APG-21	Aquablok Aquablok	High Value High Value
Swamp candles	Lysimachia terrestris	06/01/11	0.5	0	APG-21	Aquablok	High Value
Arrow arum	Peltandra virginica	06/01/11	20.5	10.5	APG-22	Slurry Spray	Low Value
Common reed	Phragmites australis	06/01/11	85.5	63	APG-22	Slurry Spray	Low Value
Rice cutgrass	Leersia oryzoides	06/01/11	10.5	3	APG-22	Slurry Spray	Low Value
Rose mallow	Hibiscus palustris	06/01/11	3	0	APG-22	Slurry Spray	Low Value
Swamp candles	Lysimachia terrestris	06/01/11	3	3	APG-22	Slurry Spray	Low Value
Water parsnip	Sium suave	06/01/11	0	0.5	APG-22	Slurry Spray	Low Value
Arrow arum	Peltandra virginica	06/01/11	3	10.5	APG-23	Slurry Spray	Low Value
Common reed	Phragmites australis	06/01/11	98	85.5	APG-23	Slurry Spray	Low Value
Arrow arum	Peltandra virginica	06/01/11	10.5	38	APG-24	Aquablok	Low Value
Black gum	Nyssa sylvatica	06/01/11	3	0	APG-24	Aquablok	Low Value
Common reed	Phragmites australis	06/01/11	63	63	APG-24	Aquablok	Low Value
Rice cutgrass Arrow arum	Leersia oryzoides Peltandra virginica	06/01/11 06/01/11	10.5 3	3	APG-24 APG-3	Aquablok Sand Control	Low Value Low Value
Blue flag iris	Iris versicolor	06/01/11	3	0	APG-3	Sand Control	Low Value
Canada rush	Juncus canadensis	06/01/11	10.5	10.5	APG-3	Sand Control	Low Value
Fox sedge	Carex stipata/vulpinoidea	06/01/11	10.5	0	APG-3	Sand Control	Low Value
Lurid sedge	Carex Iurida	06/01/11	3	0	APG-3	Sand Control	Low Value
Marsh bedstraw	Galium palustre	06/01/11	3	3	APG-3	Sand Control	Low Value
Marsh fern	Thelypteris Thelypteroides	06/01/11	0	3	APG-3	Sand Control	Low Value
Narrow-leaved cattail	Typha angustifolia	06/01/11	63	63	APG-3	Sand Control	Low Value
Poison ivy	Toxiciodendron radicans	06/01/11	0	3	APG-3	Sand Control	Low Value
Rice cutgrass	Leersia oryzoides	06/01/11	3	0	APG-3	Sand Control	Low Value
Rose mallow	Hibiscus palustris	06/01/11	10.5	10.5	APG-3	Sand Control	Low Value
Soft rush	Juincus effusus	06/01/11	10.5	0	APG-3	Sand Control	Low Value
Swamp rose	Rosa palustris	06/01/11	38 0	20.5 0.5	APG-3	Sand Control Sand Control	Low Value
Virginia creeper Water parsnip	Parthenoisus quinquefolia Sium suave	06/01/11 06/01/11	0.5	0.5	APG-3 APG-3	Sand Control	Low Value Low Value
Woolgrass	Scirpus cyperinus	06/01/11	3	0	APG-3	Sand Control	Low Value
Arrow arum	Peltandra virginica	06/01/11	85.5	63	APG-4	Control	Low Value
Canada rush	Juncus canadensis	06/01/11	63	38	APG-4	Control	Low Value
Narrow-leaved cattail	Typha angustifolia	06/01/11	0.5	0.5	APG-4	Control	Low Value
Water parsnip	Sium suave	06/01/11	0.5	0.5	APG-4	Control	Low Value
Wild rice	Zizania aquatica	06/01/11	38	38	APG-4	Control	Low Value
Arrow arum	Peltandra virginica	06/01/11	3	3	APG-5	Aquablok	Low Value
False nettle	Boehmeria cylindrica	06/01/11	3	0.5	APG-5	Aquablok	Low Value
Marsh fern	Thelypteris Thelypteroides	06/01/11	3	3	APG-5	Aquablok	Low Value
Narrow-leaved cattail	Typha angustifolia	06/01/11	85.5	98	APG-5	Aquablok	Low Value
Poison ivy	Toxiciodendron radicans	06/01/11	0.5	3	APG-5	Aquablok	Low Value
Rice cutgrass	Leersia oryzoides	06/01/11	0	3	APG-5	Aquablok	Low Value
Rose mallow	Hibiscus palustris	06/01/11	10.5 38	10.5	APG-5	Aquablok	Low Value
Sensitive fern Water hemlock	Onoclea sensibilis Cicuta maculata	06/01/11 06/01/11	38 20.5	10.5 0.5	APG-5 APG-5	Aquablok Aquablok	Low Value Low Value
Arrow arum	Peltandra virginica	06/01/11	38	38	APG-5 APG-6	Aquablok	Low Value
Canada rush	Juncus canadensis	06/01/11	38	20.5	APG-6	Aquablok	Low Value
		,,	- -		- -	4	

E-33 Page 5 of 12

Time One - June 2011

			Cover Class 4m	Cover Class 2X	5m		
Common Name	Latin Name	Date	Circle Plot	Plot	Plot ID	Treatment	Wetland Quality
Narrow-leaved cattail	Typha angustifolia	06/01/11	63	63	APG-6	Aquablok	Low Value
Rice cutgrass	Leersia oryzoides	06/01/11	10.5	10.5	APG-6	Aquablok	Low Value
Rose mallow	Hibiscus palustris	06/01/11	0.5	0	APG-6	Aquablok	Low Value
Water parsnip	Sium suave	06/01/11	0	3	APG-6	Aquablok	Low Value
Arrow arum	Peltandra virginica	06/01/11	10.5	38	APG-7	Control	Low Value
Canada rush	Juncus canadensis	06/01/11	0	0.5	APG-7	Control	Low Value
Elderberry	Sambucus canadensis	06/01/11	3	0	APG-7	Control	Low Value
False nettle	Boehmeria cylindrica	06/01/11	10.5	0.5	APG-7	Control	Low Value
Halberd-leaved tearthumb	Polygonum arifolium	06/01/11	10.5	0.5	APG-7	Control	Low Value
Jewelweed	Impatiens capensis	06/01/11	0.5	3	APG-7	Control	Low Value
Marsh fern	Thelypteris Thelypteroides	06/01/11	0.5	0.5	APG-7	Control	Low Value
Narrow-leaved cattail	Typha angustifolia	06/01/11	85.5	63	APG-7	Control	Low Value
Poison ivy	Toxiciodendron radicans	06/01/11	3	0	APG-7	Control	Low Value
Rice cutgrass	Leersia oryzoides	06/01/11	3	3	APG-7	Control	Low Value
Rose mallow	Hibiscus palustris	06/01/11	20.5	10.5	APG-7	Control	Low Value
Virginia creeper	Parthenoisus quinquefolia	06/01/11	3	0	APG-7	Control	Low Value
Water hemlock	Cicuta maculata	06/01/11	3	3	APG-7	Control	Low Value
Arrow arum	Peltandra virginica	06/01/11	38	63	APG-8	Slurry Spray	Low Value
Canada rush	Juncus canadensis	06/01/11	0.5	20.5	APG-8	Slurry Spray	Low Value
Fox sedge	Carex stipata/vulpinoidea	06/01/11	0.5	0.5	APG-8	Slurry Spray	Low Value
Marsh fern	Thelypteris Thelypteroides	06/01/11	20.5	0.5	APG-8	Slurry Spray	Low Value
Narrow-leaved cattail	Typha angustifolia	06/01/11	85.5	38	APG-8	Slurry Spray	Low Value
Rice cutgrass	Leersia oryzoides	06/01/11	20.5	38	APG-8	Slurry Spray	Low Value
Rose mallow	Hibiscus palustris	06/01/11	10.5	10.5	APG-8	Slurry Spray	Low Value
Silky dogwood	Cornus amomum	06/01/11	0.5	0	APG-8	Slurry Spray	Low Value
Soft rush	Juncus effusus	06/01/11	3	0	APG-8	Slurry Spray	Low Value
Soft-stem bulrush	Scirpus validus	06/01/11	0	10.5	APG-8	Slurry Spray	Low Value
Water hemlock	Cicuta maculata	06/01/11	3	0	APG-8	Slurry Spray	Low Value
Arrow arum	Peltandra virginica	06/01/11	20.5	98	APG-9	Aquablok	Low Value
Bladderwort	Utricularia sp.	06/01/11	0.5	0	APG-9	Aquablok	Low Value
Canada rush	Juncus canadensis	06/01/11	63	10.5	APG-9	Aquablok	Low Value
Narrow-leaved cattail	Typha angustifolia	06/01/11	3	3	APG-9	Aquablok	Low Value
Rice cutgrass	Leersia oryzoides	06/01/11	10.5	0	APG-9	Aquablok	Low Value
Water parsnip	Sium suave	06/01/11	0.5	0	APG-9	Aquablok	Low Value
Wild rice	Zizania aquatica	06/01/11	20.5	38	APG-9	Aquablok	Low Value

Modified Daubenmire cover class system

Cover Classes

Cover Classes					
<1	0.5				
1-5	3.0				
6-15	10.5				
16-25	20.5				
26-50	38.0				
51-75	63.0				
76-95	85.5				
96-100	98.0				

E-34 Page 6 of 12

Time Two - October 2011

			Cover Class 4m	Cover Class 2X5	m		
Common Name	Latin Name	Date	Circle Plot	Plot	Plot ID	Treatment	Wetland Quality
Arrow Arum	Peltandra virginica	10/02/11	3	3	APG-1	Sand Control	Low Value
Arrow-leaved Tearthumb	Polygonum sagittatum	10/02/11	0.5	3	APG-1	Sand Control	Low Value
Buttonbush	Cephalanthus occidentalis	10/02/11	0.5	0	APG-1	Sand Control	Low Value
Canada rush	Juncus canadensis	10/02/11	0	3	APG-1	Sand Control Sand Control	Low Value
Common reed Marsh Bedstraw	Phragmites australis Galium palustre	10/02/11 10/02/11	20.5 0	20.5 3	APG-1 APG-1	Sand Control	Low Value Low Value
Narrow-Leaved Cattail	Typha angustifolia	10/02/11	63	85.5	APG-1 APG-1	Sand Control	Low Value
Nodding Bur-Marigold	Bidens cernua	10/02/11	0	0.5	APG-1	Sand Control	Low Value
Rice cutgrass	Leersia oryzoides	10/02/11	3	20.5	APG-1	Sand Control	Low Value
Rose mallow	Hibiscus palustris	10/02/11	10.5	10.5	APG-1	Sand Control	Low Value
Water Smartweed	Polygonum punctatum	10/02/11	3	3	APG-1	Sand Control	Low Value
Woolgrass	Scirpus cyperinus	10/02/11	3	0	APG-1	Sand Control	Low Value
Arrow arum	Peltandra virginica	10/02/11	10.5	38	APG-10	Sand Control	High Value
Canada rush	Juncus canadensis	10/02/11	20.5	3	APG-10	Sand Control	High Value
Common reed	Phragmites australis	10/02/11	63	0	APG-10	Sand Control	High Value
Halberd-leaved tearthumb	Polygonum arifolium	10/02/11	3 0	0 3	APG-10	Sand Control	High Value
Marsh bedstraw Rice cutgrass	Galium palustre Leersia oryzoides	10/02/11 10/02/11	3	3 10.5	APG-10 APG-10	Sand Control Sand Control	High Value High Value
Water Smartweed	Polygonum punctatum	10/02/11	10.5	20.5	APG-10 APG-10	Sand Control	High Value
Wild rice	Zizania aquatica	10/02/11	10.5	63	APG-10	Sand Control	High Value
Arrow arum	Peltandra virginica	10/02/11	38	20.5	APG-11	Aquablok	High Value
Aster	Aster sp.	10/02/11	3	3	APG-11	Aquablok	High Value
Canada rush	Juncus canadensis	10/02/11	10.5	0.5	APG-11	Aquablok	High Value
Common reed	Phragmites australis	10/02/11	20.5	10.5	APG-11	Aquablok	High Value
Fox grape	Vitis labrusca	10/02/11	0	10.5	APG-11	Aquablok	High Value
Narrow-leaved cattail	Typha angustifolia	10/02/11	3	63	APG-11	Aquablok	High Value
Rice cutgrass	Leersia oryzoides	10/02/11	38	3	APG-11	Aquablok	High Value
Rose mallow	Hibiscus palustris	10/02/11	3	3	APG-11	Aquablok	High Value
Water parsnip	Sium suave	10/02/11	0.5	3 0	APG-11	Aquablok	High Value
Water Smartweed Whorled coreopsis	Polygonum punctatum Coreopsis verticillata	10/02/11 10/02/11	20.5 10.5	0.5	APG-11 APG-11	Aquablok Aquablok	High Value High Value
Wild rice	Zizania aquatica	10/02/11	38	3	APG-11 APG-11	Aquablok	High Value
Arrow arum	Peltandra virginica	10/02/11	20.5	10.5	APG-12	Control	High Value
Canada rush	Juncus canadensis	10/02/11	38	38	APG-12	Control	High Value
Common reed	Phragmites australis	10/02/11	0.5	0	APG-12	Control	High Value
Narrow-leaved cattail	Typha angustifolia	10/02/11	0.5	0.5	APG-12	Control	High Value
Rose mallow	Hibiscus palustris	10/02/11	20.5	3	APG-12	Control	High Value
Water Smartweed	Polygonum punctatum	10/02/11	10.5	3	APG-12	Control	High Value
Wild rice	Zizania aquatica	10/02/11	38	38	APG-12	Control	High Value
Arrow arum	Peltandra virginica	10/02/11	20.5	20.5	APG-13	Aquablok	High Value
Canada rush	Juncus canadensis	10/02/11	38	10.5	APG-13	Aquablok	High Value
Narrow-leaved cattail	Typha angustifolia	10/02/11	3	0	APG-13	Aquablok	High Value
Rice cutgrass Water Smartweed	Leersia oryzoides Polygonum punctatum	10/02/11 10/02/11	10.5 20.5	20.5	APG-13 APG-13	Aquablok Aquablok	High Value High Value
Wild rice	Zizania aquatica	10/02/11	63	63	APG-13	Aquablok	High Value
Arrow arum	Peltandra virginica	10/02/11	38	10.5	APG-14	Sand Control	High Value
Bladderwort	Utricularia sp.	10/02/11	3	3	APG-14	Sand Control	High Value
Canada rush	Juncus canadensis	10/02/11	0.5	20.5	APG-14	Sand Control	High Value
Narrow-leaved cattail	Typha angustifolia	10/02/11	3	10.5	APG-14	Sand Control	High Value
Rice cutgrass	Leersia oryzoides	10/02/11	0	3	APG-14	Sand Control	High Value
Water Smartweed	Polygonum punctatum	10/02/11	10.5	3	APG-14	Sand Control	High Value
Wild rice	Zizania aquatica	10/02/11	85.5	38	APG-14	Sand Control	High Value
Arrow arum	Peltandra virginica	10/02/11	38	38	APG-15	Control	High Value
Canada rush	Juncus canadensis	10/02/11	63	20.5 3	APG-15	Control	High Value
Climbing boneset Common reed	Mikania scandens Phragmites australis	10/02/11 10/02/11	3 0.5	0	APG-15 APG-15	Control Control	High Value High Value
Narrow-leaved cattail	Typha angustifolia	10/02/11	0.5	0	APG-15 APG-15	Control	High Value
Pickerelweed	Pontederia cordata	10/02/11	10.5	0.5	APG-15 APG-15	Control	High Value
Rice cutgrass	Leersia oryzoides	10/02/11	3	20.5	APG-15	Control	High Value
Swamp candles	Lysimachia terrestris	10/02/11	0.5	0	APG-15	Control	High Value
Water Smartweed	Polygonum punctatum	10/02/11	10.5	3	APG-15	Control	High Value
Wild rice	Zizania aquatica	10/02/11	85.5	85.5	APG-15	Control	High Value
Arrow arum	Peltandra virginica	10/02/11	85.5	85.5	APG-16	SediMite	High Value
Canada rush	Juncus canadensis	10/02/11	0.5	3	APG-16	SediMite	High Value
Common reed	Phragmites australis	10/02/11	10.5	0	APG-16	SediMite	High Value
Wild rice	Zizania aquatica	10/02/11	38	20.5	APG-16	SediMite	High Value
Arrow arum	Peltandra virginica	10/02/11	38	63	APG-17	SediMite	High Value

E-35 Page 7 of 12

Time Two - October 2011

			Cover Class 4m	Cover Class 2X5m	1		
Common Name	Latin Name	Date	Circle Plot	Plot	Plot ID	Treatment	Wetland Quality
Canada rush	Juncus canadensis	10/02/11	85.5	10.5	APG-17	SediMite	High Value
Narrow-leaved cattail	Typha angustifolia	10/02/11	0.5	0	APG-17	SediMite	High Value
Rice cutgrass	Leersia oryzoides	10/02/11	3	0	APG-17	SediMite	High Value
Wild rice Arrow arum	Zizania aquatica Peltandra virginica	10/02/11 10/02/11	38 63	38 38	APG-17 APG-18	SediMite SediMite	High Value
Common reed	Phragmites australis	10/02/11	3	0.5	APG-18	SediMite	High Value High Value
Pickerelweed	Pontederia cordata	10/02/11	3	0.5	APG-18	SediMite	High Value
Wild rice	Zizania aquatica	10/02/11	20.5	10.5	APG-18	SediMite	High Value
Arrow arum	Peltandra virginica	10/02/11	20.5	38	APG-19	SediMite	High Value
Bur reed	Sparganium sp.	10/02/11	3	0	APG-19	SediMite	High Value
Canada rush	Juncus canadensis	10/02/11	63	38	APG-19	SediMite	High Value
Common reed	Phragmites australis	10/02/11	0.5	0	APG-19	SediMite	High Value
Narrow-leaved cattail	Typha angustifolia	10/02/11	20.5	0	APG-19	SediMite	High Value
Pickerelweed	Pontederia cordata	10/02/11	10.5	10.5	APG-19	SediMite	High Value
Soft-stem bulrush Wild rice	Scirpus validus	10/02/11	0.5 20.5	0.5 63	APG-19 APG-19	SediMite	High Value
Arrow Arum	Zizania aquatica Peltandra virginica	10/02/11 10/02/11	3	0.5	APG-19 APG-2	SediMite Slurry Spray	High Value Low Value
Arrow-leaved tearthumb	Polygonum sagittatum	10/02/11	0	3	APG-2	Slurry Spray	Low Value
Canada rush	Juncus canadensis	10/02/11	20.5	38	APG-2	Slurry Spray	Low Value
Climbing boneset	Mikania scandens	10/02/11	0	10.5	APG-2	Slurry Spray	Low Value
False nettle	Boehmeria cylindrica	10/02/11	3	10.5	APG-2	Slurry Spray	Low Value
Halberd-leaved tearthumb	Polygonum arifolium	10/02/11	0.5	0	APG-2	Slurry Spray	Low Value
Marsh Bedstraw	Galium palustre	10/02/11	20.5	63	APG-2	Slurry Spray	Low Value
Narrow-Leaved Cattail	Typha angustifolia	10/02/11	85.5	85.5	APG-2	Slurry Spray	Low Value
Rice cutgrass	Leersia oryzoides	10/02/11	20.5	20.5	APG-2	Slurry Spray	Low Value
Rose Mallow	Hibiscus palustris	10/02/11	3	3	APG-2	Slurry Spray	Low Value
Arrow arum	Peltandra virginica	10/02/11	10.5	3	APG-20	Aquablok	High Value
Arrow-leaved tearthumb	Polygonum sagittatum	10/02/11	0.5	0	APG-20	Aquablok	High Value
Canada rush	Juncus canadensis Mikania scandens	10/02/11	98 0	3 10.5	APG-20 APG-20	Aquablok Aquablok	High Value
Climbing boneset Common reed	Phragmites australis	10/02/11 10/02/11	0	10.5	APG-20 APG-20	Aquablok	High Value High Value
False nettle	Boehmeria cylindrica	10/02/11	3	3	APG-20	Aquablok	High Value
Lurid Sedge	Carex lurida	10/02/11	0.5	0	APG-20	Aquablok	High Value
Narrow-leaved cattail	Typha angustifolia	10/02/11	3	38	APG-20	Aquablok	High Value
Rice cutgrass	Leersia oryzoides	10/02/11	20.5	38	APG-20	Aquablok	High Value
Rose mallow	Hibiscus palustris	10/02/11	3	0	APG-20	Aquablok	High Value
Water horehound	Lycopus americanus	10/02/11	3	0	APG-20	Aquablok	High Value
Whorled coreopsis	Coreopsis verticillata	10/02/11	0	3	APG-20	Aquablok	High Value
Wild rice	Zizania aquatica	10/02/11	0	10.5	APG-20	Aquablok	High Value
Climbing boneset	Mikania scandens	10/02/11	0.5	0.5	APG-21	Aquablok	High Value
Common reed	Phragmites australis	10/02/11	98	98	APG-21	Aquablok	High Value
Water Smartweed Arrow arum	Polygonum punctatum Peltandra virginica	10/02/11 10/02/11	0.5 3	0.5 0.5	APG-21 APG-22	Aquablok Slurry Spray	High Value Low Value
Common reed	Phragmites australis	10/02/11	85.5	63	APG-22 APG-22	Slurry Spray	Low Value
Rice cutgrass	Leersia oryzoides	10/02/11	10.5	3	APG-22	Slurry Spray	Low Value
Rose mallow	Hibiscus palustris	10/02/11	3	0	APG-22	Slurry Spray	Low Value
Water parsnip	Sium suave	10/02/11	0	0.5	APG-22	Slurry Spray	Low Value
Arrow arum	Peltandra virginica	10/02/11	3	0.5	APG-23	Slurry Spray	Low Value
Climbing boneset	Mikania scandens	10/02/11	3	3	APG-23	Slurry Spray	Low Value
Common reed	Phragmites australis	10/02/11	98	85.5	APG-23	Slurry Spray	Low Value
Swamp milkweed	Asclepias incarnata	10/02/11	0	0.5	APG-23	Slurry Spray	Low Value
Arrow arum	Peltandra virginica	10/02/11	0.5	3	APG-24	Aquablok	Low Value
Black gum	Nyssa sylvatica	10/02/11	3	0	APG-24	Aquablok	Low Value
Common reed Rice cutgrass	Phragmites australis Leersia oryzoides	10/02/11 10/02/11	63 0.5	63 0	APG-24 APG-24	Aquablok Aquablok	Low Value Low Value
Rose mallow	Hibiscus palustris	10/02/11	0.5	3	APG-24 APG-24	Aquablok	Low Value
Wild rice	Zizania aquatica	10/02/11	3	3	APG-24	Aquablok	Low Value
Arrow arum	Peltandra virginica	10/02/11	3	0.5	APG-3	Sand Control	Low Value
Blue flag iris	Iris versicolor	10/02/11	3	0	APG-3	Sand Control	Low Value
Canada rush	Juncus canadensis	10/02/11	10.5	10.5	APG-3	Sand Control	Low Value
False nettle	Boehmeria cylindrica	10/02/11	3	10.5	APG-3	Sand Control	Low Value
Fox grape	Vitis labrusca	10/02/11	10.5	0	APG-3	Sand Control	Low Value
Halberd-leaved tearthumb	Polygonum arifolium	10/02/11	10.5	0	APG-3	Sand Control	Low Value
Marsh bedstraw	Galium palustre	10/02/11	3	3	APG-3	Sand Control	Low Value
Marsh fern	Thelypteris Thelypteroides	10/02/11	0	10.5	APG-3	Sand Control	Low Value
Narrow-leaved cattail	Typha angustifolia Bidens cernua	10/02/11	63 3	63 0	APG-3 APG-3	Sand Control	Low Value
Nodding Bur-Marigold	שועבווא נפווועע	10/02/11	э	U	Aru-3	Sand Control	Low Value

E-36 Page 8 of 12

Time Two - October 2011

			Cover Class 4m	Cover Class 2X5m			
Common Name	Latin Name	Date	Circle Plot	Plot	Plot ID	Treatment	Wetland Quality
Poison ivy	Toxiciodendron radicans	10/02/11	0	3	APG-3	Sand Control	Low Value
Rice cutgrass	Leersia oryzoides	10/02/11	10.5	3	APG-3	Sand Control	Low Value
Rose mallow	Hibiscus palustris	10/02/11	10.5	10.5	APG-3	Sand Control	Low Value
Soft rush	Juincus effusus	10/02/11	10.5	0	APG-3	Sand Control	Low Value
Swamp candles	Lysimachia terrestris	10/02/11	3	0	APG-3	Sand Control	Low Value
Swamp rose	Rosa palustris	10/02/11	38 0	20.5 0.5	APG-3 APG-3	Sand Control	Low Value
Virginia creeper Water parsnip	Parthenoisus quinquefolia Sium suave	10/02/11 10/02/11	0.5	0.5	APG-3 APG-3	Sand Control Sand Control	Low Value Low Value
Woolgrass	Scirpus cyperinus	10/02/11	3	0	APG-3	Sand Control	Low Value
Arrow arum	Peltandra virginica	10/02/11	38	20.5	APG-4	Control	Low Value
Canada rush	Juncus canadensis	10/02/11	63	38	APG-4	Control	Low Value
Common reed	Phragmites australis	10/02/11	0	0.5	APG-4	Control	Low Value
Halberd-leaved tearthumb	Polygonum arifolium	10/02/11	0.5	0.5	APG-4	Control	Low Value
Narrow-leaved cattail	Typha angustifolia	10/02/11	0.5	0.5	APG-4	Control	Low Value
Rice cutgrass	Leersia oryzoides	10/02/11	3	0	APG-4	Control	Low Value
Water Smartweed	Polygonum punctatum	10/02/11	0.5	0.5	APG-4	Control	Low Value
Wild rice	Zizania aquatica	10/02/11	63	20.5	APG-4	Control	Low Value
Arrow arum	Peltandra virginica	10/02/11	0.5	3	APG-5	Aquablok	Low Value
Canada rush	Juncus canadensis	10/02/11	0	3 3	APG-5	Aquablok	Low Value
False nettle Halberd-leaved tearthumb	Boehmeria cylindrica	10/02/11	3 0.5	0	APG-5 APG-5	Aquablok	Low Value Low Value
Marsh fern	Polygonum arifolium Thelypteris Thelypteroides	10/02/11 10/02/11	10.5	10.5	APG-5 APG-5	Aquablok Aquablok	Low Value
Narrow-leaved cattail	Typha angustifolia	10/02/11	85.5	98	APG-5	Aquablok	Low Value
Poison ivy	Toxiciodendron radicans	10/02/11	0.5	3	APG-5	Aquablok	Low Value
Rice cutgrass	Leersia oryzoides	10/02/11	0	10.5	APG-5	Aguablok	Low Value
Rose mallow	Hibiscus palustris	10/02/11	10.5	10.5	APG-5	Aquablok	Low Value
Sensitive fern	Onoclea sensibilis	10/02/11	20.5	3	APG-5	Aquablok	Low Value
Water hemlock	Cicuta maculata	10/02/11	3	0	APG-5	Aquablok	Low Value
Water Smartweed	Polygonum punctatum	10/02/11	0	0.5	APG-5	Aquablok	Low Value
Arrow arum	Peltandra virginica	10/02/11	10.5	10.5	APG-6	Aquablok	Low Value
Canada rush	Juncus canadensis	10/02/11	38	20.5	APG-6	Aquablok	Low Value
Climbing boneset	Mikania scandens	10/02/11	0	3	APG-6	Aquablok	Low Value
False nettle	Boehmeria cylindrica	10/02/11	3	0	APG-6	Aquablok	Low Value
Marsh bedstraw	Galium palustre	10/02/11	0.5	3	APG-6	Aquablok	Low Value
Narrow-leaved cattail Rice cutgrass	Typha angustifolia Leersia oryzoides	10/02/11 10/02/11	63 20.5	63 10.5	APG-6 APG-6	Aquablok Aquablok	Low Value Low Value
Rose mallow	Hibiscus palustris	10/02/11	10.5	0	APG-6	Aquablok	Low Value
Water parsnip	Sium suave	10/02/11	0	3	APG-6	Aquablok	Low Value
Water Smartweed	Polygonum punctatum	10/02/11	0	0.5	APG-6	Aquablok	Low Value
Whorled coreopsis	Coreopsis verticillata	10/02/11	0.5	0	APG-6	Aquablok	Low Value
Wild rice	Zizania aquatica	10/02/11	10.5	10.5	APG-6	Aquablok	Low Value
Arrow arum	Peltandra virginica	10/02/11	0.5	10.5	APG-7	Control	Low Value
Climbing boneset	Mikania scandens	10/02/11	3	3	APG-7	Control	Low Value
Elderberry	Sambucus canadensis	10/02/11	3	0	APG-7	Control	Low Value
False nettle	Boehmeria cylindrica	10/02/11	20.5	10.5	APG-7	Control	Low Value
Halberd-leaved tearthumb	Polygonum arifolium	10/02/11	10.5	0.5	APG-7	Control	Low Value
Marsh fern	Thelypteris Thelypteroides	10/02/11	10.5	10.5	APG-7	Control	Low Value
Narrow-leaved cattail Poison ivy	Typha angustifolia	10/02/11	85.5 3	63 0	APG-7	Control	Low Value
Rice cutgrass	Toxiciodendron radicans Leersia oryzoides	10/02/11 10/02/11	20.5	20.5	APG-7 APG-7	Control Control	Low Value Low Value
Rose mallow	Hibiscus palustris	10/02/11	20.5	10.5	APG-7	Control	Low Value
Virginia creeper	Parthenoisus quinquefolia	10/02/11	3	0	APG-7	Control	Low Value
Water hemlock	Cicuta maculata	10/02/11	0	3	APG-7	Control	Low Value
Whorled coreopsis	Coreopsis verticillata	10/02/11	0.5	10.5	APG-7	Control	Low Value
Arrow arum	Peltandra virginica	10/02/11	3	10.5	APG-8	Slurry Spray	Low Value
Arrow-leaved tearthumb	Polygonum sagittatum	10/02/11	3	0	APG-8	Slurry Spray	Low Value
Canada rush	Juncus canadensis	10/02/11	0	20.5	APG-8	Slurry Spray	Low Value
Climbing boneset	Mikania scandens	10/02/11	3	0	APG-8	Slurry Spray	Low Value
Marsh fern	Thelypteris Thelypteroides	10/02/11	38	3	APG-8	Slurry Spray	Low Value
Narrow-leaved cattail	Typha angustifolia	10/02/11	85.5	38	APG-8	Slurry Spray	Low Value
Rice cutgrass	Leersia oryzoides	10/02/11	63	63 30 F	APG-8	Slurry Spray	Low Value
Rose mallow	Hibiscus palustris Juncus effusus	10/02/11 10/02/11	10.5 3	20.5 0	APG-8 APG-8	Slurry Spray	Low Value
Soft rush Soft-stem bulrush	Juncus effusus Scirpus validus	10/02/11	3 0	3	APG-8 APG-8	Slurry Spray Slurry Spray	Low Value Low Value
Water hemlock	Cicuta maculata	10/02/11	0.5	o.5	APG-8	Slurry Spray	Low Value
Whorled coreopsis	Coreopsis verticillata	10/02/11	0.5	0.5	APG-8	Slurry Spray	Low Value
Arrow arum	Peltandra virginica	10/02/11	3	3	APG-9	Aquablok	Low Value
	-					•	

E-37 Page 9 of 12

Time Two - October 2011

			Cover Class 4m	Cover Class 2X5m	1		
Common Name	Latin Name	Date	Circle Plot	Plot	Plot ID	Treatment	Wetland Quality
Bladderwort	Utricularia sp.	10/02/11	0.5	0	APG-9	Aquablok	Low Value
Bur reed	Sparganium sp.	10/02/11	0	3	APG-9	Aquablok	Low Value
Canada rush	Juncus canadensis	10/02/11	63	10.5	APG-9	Aquablok	Low Value
Narrow-leaved cattail	Typha angustifolia	10/02/11	10.5	10.5	APG-9	Aquablok	Low Value
Pickerelweed	Pontederia cordata	10/02/11	10.5	0.5	APG-9	Aquablok	Low Value
Rice cutgrass	Leersia oryzoides	10/02/11	38	10.5	APG-9	Aquablok	Low Value
Water parsnip	Sium suave	10/02/11	0.5	0	APG-9	Aquablok	Low Value
Water Smartweed	Polygonum punctatum	10/02/11	3	3	APG-9	Aquablok	Low Value
Wild rice	Zizania aquatica	10/02/11	63	85.5	APG-9	Aquablok	Low Value

Modified Daubenmire cover class system

Cover Classes

Cover Classes				
<1	0.5			
1-5	3.0			
6-15	10.5			
16-25	20.5			
26-50	38.0			
51-75	63.0			
76-95	85.5			
96-100	98.0			

E-38 Page 10 of 12

		Time Zero -	November 2009 4n	n Circle Plot	Time On	e - June 2011 4m C	rcle Plot		Time Two	- October 2011 4m	Circle Plot
		Shannon-Wiener			Shannon-Wiener				Shannon-Wiener		
Plot ID	Treatment	Diversity Index	Species Richness	Relative Cover (%)	Diversity Index	Species Richness	Relative Cover (%)	Diversity Index	Species Richness	Relative Cover (%)
APG-1	Sand Control	1.408927298	7	111	1.222376316	5	132.	5	1.307260251	9	107
APG-10	Sand Control	1.945910149	7	73.5	1.200392982	6	12	3	1.460284824	7	121
APG-11	Aquablok	1.487431919	6	95.5	1.48098736	8	121.	5	2.002342969	11	185.5
APG-12	Control	1.602189485	6	58	1.037892037	5	87.	5	1.554059165	7	128.5
APG-13	Aquablok	1.523878298	6	83	1.250555298	5	16)	1.502797119	6	155.5
APG-14	Sand Control	0.410116318	2	73.5	0.905482829	5	107.	5	1.034097421	6	140.5
APG-15	Control	1.473205703	5	125	1.284846504	7	16	1	1.489127585	10	215
APG-16	SediMite	0.287488438	3	91.5	0.486340397	5	112.	5	0.864989546	4	134.5
APG-17	SediMite	0.73562194	3	84	0.931821494	4	13	7	1.107436616	5	165
APG-18	SediMite	0.9756076	3	69	0.48585501	3	11	9	0.812362964	4	89.5
APG-19	SediMite	1.200315001	5	92.5	1.396686604	8	13	9	1.523928982	8	139
APG-2	Slurry Spray	1.340081738	5	207.5	1.355095815	6	16	3	1.374811808	8	156.5
APG-20	Aquablok	1.606515287	9	144.5	0.983113937	9	134.	5	1.093678018	9	142
APG-21	Aquablok	0	1	100	0.194291415	4	10	2	0.063466661	3	99
APG-22	Slurry Spray	0	1	100	0.942413281	5	122.	5	0.589391793	4	102
APG-23	Slurry Spray	0	1	100	0.133708143	2	10	1	0.260559297	3	104
APG-24	Aquablok	0.148042247	2	88.5	0.86025059	4	8	7	0.435409323	5	70
APG-3	Sand Control	1.409109344	10	135	1.880592014	13	161.	5	2.149703467	16	185.5
APG-4	Control	0.907535294	3	16.5	1.079641433	5	187.	5	1.195070078	7	168.5
APG-5	Aquablok	1.126974888	5	172.5	1.351540138	8	16	4	1.204927071	9	134.5
APG-6	Aquablok	1.467853451	7	173.5	1.265189277	5	15)	1.630542097	9	157
APG-7	Control	0.809715136	6	108	1.567112827	12	153.	5	1.729030947	12	181
APG-8	Slurry Spray	1.017602986	3	161.5	1.520968049	10	182.	5	1.457709662	10	210
APG-9	Aquablok	1.772704799	8	56.5	1.296878885	7	118.	5	1.530721119	9	192

E-39 Page 11 of 12

		Time O	ne - June 2011 2x5	m Plots	Time Two - October 2011 2x5m Plots					
		Shannon-Wiener			Shannon-Wiener					
Plot ID	Treatment	Diversity Index	Species Richness	Relative Cover (%)	Diversity Index	Species Richness	Relative Cover (%)			
APG-1	Sand Control	1.403471624	9	169.5	1.453344128	12	152.5			
APG-10	Sand Control	0.702292722	6	105	1.35880741	8	138			
APG-11	Aquablok	1.005588382	8	110.5	1.570893608	12	120.5			
APG-12	Control	0.798241284	6	117.5	1.227318972	7	93			
APG-13	Aquablok	0.9756076	5	69	1.163768288	6	114.5			
APG-14	Sand Control	1.264331754	5	102.5	1.551777973	7	88.5			
APG-15	Control	1.086363355	7	104.5	1.348336395	10	171			
APG-16	SediMite	0.164136866	5	101.5	0.603616715	5	109			
APG-17	SediMite	0.588319348	5	119	0.911915156	5	111.5			
APG-18	SediMite	0.373339107	4	109.5	0.574041917	4	49			
APG-19	SediMite	1.261340717	8	200	1.265189277	8	150			
APG-2	Slurry Spray	1.422426029	8	211.5	1.631713146	10	234.5			
APG-20	Aquablok	1.369930044	10	110	1.739732972	13	119.5			
APG-21	Aquablok	0.03188153	4	98.5	0.063466661	3	99			
APG-22	Slurry Spray	0.732626283	6	80	0.22777712	5	67			
APG-23	Slurry Spray	0.345206625	2	96	0.215458292	4	89.5			
APG-24	Aquablok	0.773798604	4	104	0.514096697	6	72			
APG-3	Sand Control	1.470277762	16	117	1.728984023	19	135.5			
APG-4	Control	1.107493217	5	140	1.176184957	8	81			
APG-5	Aquablok	1.010105759	9	132	1.255852748	12	145			
APG-6	Aquablok	1.281943304	6	135	1.116172076	12	124.5			
APG-7	Control	1.27801782	13	122.5	1.783001655	13	142.5			
APG-8	Slurry Spray	1.630575327	11	181.5	1.58451601	12	159			
APG-9	Aquablok	0.889969543	7	149.5	1.172594816	10	126.5			

E-40 Page 12 of 12

Appendix F: Benthic Macroinvertebrate Report

F-1 July 2014

28 Yates Street Schenectady, NY 12305 Telephone 518 346-0225 Fax 518 346-0225

www.rwaa.us

To: John A. Bleiler
AECOM
250 Apollo Drive

Chelmsford, MA 01824

Project: AECOM Project # 60133180.603

February 2012

From: J. Kelly Nolan, Aquatic Biologist

Director, Environmental Services

Re: Aberdeen wetland benthic

macroinvertebrates

OVERVIEW

As part of ESTCP Project ER-0825, 48 benthic core samples (24 collected 6/3/11 and 24 collected 10/5/11) from 2 distinct wetlands were analyzed by Watershed Assessment Associates (WAA) for macroinvertebrate composition. The objective of the study was to evaluate *in situ* wetland remediation technologies designed to sequester contaminants in wetlands without significantly impacting benthic macroinvertebrate community structure.

The study areas were a low quality *Phragmites* dominated system (low value wetland, or LVW) and a diverse high value freshwater marsh (high value wetland, or HVW). Each wetland type was evaluated for benthic macroinvertebrate community structure within 8' x 8' reference and treatment plots. Two distinct sequestering agent delivery methods (slurry and pelletized systems) were applied to each treatment plot. Replicate benthic macroinvertebrate samples were collected from each plot using a 3 inch diameter sediment coring device with 5-7 inches of substrate penetration. Three sets of samples were collected: one pretreatment and two post-treatment. Pre-treatment samples were lost due to inadequate preservation; the 2 post-treatment sample sets were sent to WAA for benthic macroinvertebrate sample processing including identification and enumeration. This report is based on the samples received and analyzed by WAA.

The four LVW station plots are:

- > APG 02 Slurry Spray
- APG 03 Sand Control
- ➤ APG_06 Aquablok®
- APG_07 Control (untreated)

The four HVW station plots are:

- ➤ APG_13 Aquablok®
- ➤ APG_14 Sand Control
- APG_15 Control (untreated)
- ➤ APG_16 SediMite™

RESULTS

The twelve LVW replicate samples collected on 6/3/11 comprised a total of 8 individuals. Station APG_07, the control plot, was the only station with an organism in all three replicate samples, and each replicate contained only 2 individuals. There were no organisms in replicate samples from the other LVW stations, except for an individual macroinvertebrate present in replicate A of both stations APG_03 and APG_06 (Table I).

The twelve HVW replicate samples from 6/3/11 contained a total of 63 individuals. Only two replicates, from station APG_14, the sand control, were devoid of organisms. The majority of organisms (37 individuals) were present at the control station APG_15 (Table I).

The twelve LVW replicate samples from 10/5/11 comprised a total of 7 individuals. Three of these individuals were from replicate C of the control plot at station APG 07. There were no organisms in replicates A and B of station APG_07. All the other stations within the LVW had at least one individual in at least one replicate (Table II).

The twelve HVW replicate samples from 10/5/11 comprised a total of 12 individuals: stations APG_13, 14, & 15 each contained four organisms and station APG_16, the SediMite plot, contained no organisms (Table II).

DISCUSSION

Simple statistics comparing differences in diversity scores of replicate means between control and treatment plots were attempted and yielded little information for two reasons:

- 1. Given the objectives of the study it was imperative to evaluate benthic macroinvertebrate community structure of pretreatment sample plots to post treatment study plots. Statistical analyses such as basic significance tests or other analyses of variance could have been performed to identify differences in mean biological community metric scores and estimate the extent of those differences (i.e. before and after treatment) (Elliott 1971, Lyman Ott and Longnecker 2010). However, without pretreatment sample data there are no baseline conditions for comparison and therefore what change may or may not have occurred cannot be determined with certainty. While the post treatment control plot samples provide some information about untreated conditions, specifically when compared to reference plots, without pretreatment monitoring data from all test plots, the variability within the control and treatment plots cannot be accurately characterized.
- 2. The benthic macroinvertebrate community identified from each replicate sample plot is extremely small, making data analysis difficult. This is especially true when trying to compute multivariate statistical techniques using macroinvertebrate community data. The natural condition of the wetland sampled may be a barrier to growth and development of an abundance of benthic taxa. Chemical and physical factors such as anoxic sediments and reduced flows may be affecting community structure well beyond any effect from both site contaminants and remedial treatment applications. However, without pretreatment data limited characterization of the effects of natural environmental variation on community structure can be made.

We did investigate the use of other multivariate techniques however, but determined that methods such as Principal Components Analysis (PCA) will not provide any additional information on community response to application in this case. PCA is a method of factor analysis which, in the case of benthic science, serves as a method of data reduction when large sets of variables may be acting in a system to affect the distribution of a population of organisms. PCA then allows for the removal of redundant variables. PCA is primarily used when the objective of the investigation is to understand the underlying factors influencing the distribution of a population in space (Kachigan 1991); the underlying factors typically are water or sediment chemistry or physical habitat information.

Because of the inability to apply basic diversity and statistical methods, the results of the replicate samples were composited, creating a single sample representing each station for both the June and October sampling events. This increased the total number of taxa at each station (Tables III and IV). Bray Curtis similarity analysis and a similarity profile test (SIMPROF) were applied to the data, to define relationships of the faunal composition between the samples, using PRIMER-E software version 6. SIMPROF provides a series of similarity profile permutation tests run on biotic data which looks for statistically significant evidence of genuine clusters of samples which are *a priori* unstructured (e.g., single samples from each of a number of sites) (Clarke and Warwick 2001).

Bray-Curtis similarity was calculated on 4th-root transformed species abundance data to define relationships of the benthic macroinvertebrate composition among all plots (Clarke & Warwick 2001). The purpose of this transformation is to accentuate the effect of rare, in our case few, species. The intra-location resemblance was subjected to group-average linkage cluster analysis. The SIMPROF test was performed on a null hypothesis that a specific sub-cluster can be recreated by permuting the entry species and samples. The significant branch (SIMPROF, p < 0.05) was used as a prerequisite for defining the plots.

No significant difference of the benthic macroinvertebrate community structure of plot clusters was identified in either wetland type for the June or October samplings (Figure I). The difference in community structure of the control plots and other plots at each wetland in June was not significant, as determined by SIMPROF despite each control plot containing the majority of taxa.

Additionally, the total taxa richness and density of organisms was reduced in the October sampling at all stations. The loss of the family Chironomidae is likely related to seasonal changes and life history; the organisms had likely emerged as adults and their presence was probably in egg stage.

Additional sampling events during the summer months, when benthic macroinvertebrate larvae productivity is highest, may provide data to help differentiate any changes in the macroinvertebrate population due to treatment of the wetland plots.

References

Clarke, K.R. and Warwick, R.M. (2001). Changes in marine communities: an approach to statistical analysis and interpretation, 2nd edition, PRIMER-E: Plymouth.

Elliott, J.M. 1971. Some methods for the statistical analysis of samples of benthic invertebrates. Freshwater Biological Association, Scientific Publication No. 25.

Kachigan, S.K. 1991. Multivariate Statistical Analysis. Second Edition. Radius Press, NY. 303 pages.

Ott, R.L., and Longnecker, M. 2010. An introduction to statistical methods and data analysis. Sixth Edition. Brooks/Cole, Cengage Learning, Belmont CA. 1273 pages.

Table I June 3, 2011 replicate samples total taxa list.

Station	APG_02		APG_03		A	APG_06		APG_07		APG_13		APG_14		14	APG_15		15	APG_16		16				
Taxa Replicate	A	В	C	A	В	C	A	В	C	A	В	C	A	В	C	A	В	C	A	В	C	A	В	C
Ceratopogoninae														-4	J-2-				1	10		1		
Cladopelma sp.																			1					
Cladotanytarsus sp.													4		-							3		
Curculionidae												4											1	
Desmopachria sp.											4						-		1					
Dicrotendipes sp.											4								1					
Gastropoda											1		1				-)						
Gyraulus sp.																	-		1					
Hyalella sp.												-4	1											
Limoniinae							1		14	1		-	3						3	2	1			6
Pisidiidae				1					4	1	1	2	4		1			4	7	6	1			
Tanytarsus sp.											-4		-						2					
tubificoid Naididae w/o capilliform setae														2										
Total individuals	0	0	0	1	0	0	1	0	0	2	2	2	8	2	1	0	0	4	17	18	2	4	1	6

Table II October 5, 2011 replicate samples total taxa list.

Station	APG_02		APG_03		A	APG_06		APG_07		APG_13		A	PG_1	14	A	PG_ 1	15 APG_16							
Taxa Replicate	A	В	C	A	В	C	A	В	C	A	В	C	A	В	C	A	В	C	A	В	C	A	В	C
Brachycera												3												
Chrysops sp.			4											1										
Limoniinae			1	1					1					1		3	1			3	1			
Pisidiidae														2										
Syrphidae	1				4																			
Total individuals	1	0	1	1	0	0	0	0	1	0	0	3	0	4	0	3	1	0	0	3	1	0	0	0

Table III June 3, 2011 composited sample taxa list.

Wetland Type	LVW	LVW	LVW	LVW	HVW	HVW	HVW	HVW
Plot application	Slurry Spray	y Sand Control	Aquablok	Control	Aquablok	Sand Control	Control	SediMite
Taxa Statio	on APG_02	APG_03	APG_06	APG_07	APG_13	APG_14	APG_15	APG_16
Ceratopogoninae							11	1
Cladopelma sp.				\			1	
Cladotanytarsus sp.								3
Curculionidae								1
Desmopachria sp.							1	
Dicrotendipes sp.					A	4	1	
Gastropoda				1				
Gyraulus sp.				441			1	
Hyalella sp.					1			
Limoniinae			1	1	3		6	6
Pisidiidae		1		4	5	4	14	
Tanytarsus sp.			4		4		2	
tubificoid Naididae w/capilliform setae	o				2			
Total # Individuals	0	1	1	6	11	4	37	11

Table IV October 5, 2011 composited sample taxa list.

Wetland Type	LVW	LVW	LVW	LVW	HVW	HVW	HVW	HVW
Plot application	Slurry Spray	Sand Control	Aquablok	Control	Aquablok	Sand Control	Control	SediMite
Taxa Station	APG_02	APG_03	APG_06	APG_07	APG_13	APG_14	APG_15	APG_16
Brachycera				3				
Chrysops sp.					1			
Limoniinae	1	1	1		1	4	4	
Pisidiidae					2			
Syrphidae	1							
Total # Individuals	2	1	1	3	4	4	4	0

Figures 1 Cluster analysis of benthic macroinvertebrate samples using the Bray-Curtis resemblance matrix-generated dendograms with significant relationships identified (dashed red lines) using the SIMPROF test.

Appendix G: Nutrient Study Report

G-1 July 2014

Effects of Nutrient Uptake in Sediment on Survival, Growth, and Nutrient Uptake of *Echinochloa crusgalli* Seedlings

For

AECOM Environment Chelmsford, MA, USA

Prepared by
AECOM Technical Services, Inc.
Fort Collins Environmental Toxicology Lab
January 2013
60147216-445-(035-038)

TABLE OF CONTENTS

INTRODUCTION	2
MATERIALS AND METHODS	2
Laboratory Control Sediment	2
Test Sediment Preparation	3
Test Organism	3
Test Chambers	4
Test Conditions	4
Test Initiation	4
Test Monitoring	5
Nutrient Solution	5
Test Termination	6
Analytical	6
Statistical Analysis	6
Reference Toxicant	7
RESULTS	8
Test Conditions	8
Analytical Results	9
Survival and Growth	12
Plant Nutrient Concentrations - Comparison to Laboratory Control and Site Control	15
Comparison to Laboratory Control	15
Comparison to Site Control	15
Plant Nutrient Concentrations – Comparison among Sites	19
Plant Nutrient Concentrations – Influence of Sediment Parameters	23
Plant Nutrient Uptake Factors – Comparison to Laboratory Control and Site Control	24
Comparison to Laboratory Control	24
Comparison to Site Control	24
SUMMARY	27
REFERENCES	28

APPENDIX A	Chains of Custody	A-′
APPENDIX B	Photo Log	B-1
APPENDIX C	Analytical Data	C-′
APPENDIX D	Biological Data	D-′
APPENDIX E	Statistical Analysis	E-′

LIST OF TABLES

Table 1.	Sediment Collection and Receipt	2
Table 2.	Composition of Laboratory Formulated Sediment (Control)	2
Table 3.	Test Organism Information	3
Table 4.	Test Conditions and Design	4
Table 5.	Composition of the Nutrient Solution Added in the Definitive Plant Study	5
Table 6.	Reference Toxicant Test Results for E. crusgalli	8
Table 7.	Physical Data Measured During the Definitive Study	8
Table 8.	Light Intensity Measured for the Water Bath During the Definitive Study	8
Table 9.	Analytical Results of Modified Gorsuch Nutrient Solution	9
Table 10.	Characteristics of Sediments in Definitive Study	10
Table 11.	Plant Tissue Characterization - Laboratory Control	10
Table 12.	Plant Tissue Characterization - APG-02-MA060311	11
Table 13.	Plant Tissue Characterization - APG-06-MA060311	11
Table 14.	Plant Tissue Characterization - APG-15-MA060311 (Site Control)	12
Table 15.	Plant Tissue Characterization - APG-16-MA060311	12
Table 16.	Biological Data - Survival	13
Table 17.	Biological Data - Growth (Wet/Dry Weight and Length)	14
Table 18.	Statistical Significance of Plant Nutrient Concentrations (B, Ca, Cu) among Sites Compared to Laboratory and Site Controls	16
Table 19.	Statistical Significance of Plant Nutrient Concentrations (Fe, Mg, Mn) among Sites Compared to Laboratory and Site Controls	17
Table 20.	Statistical Significance of Plant Nutrient Concentrations (P, K, Na) among Sites Compared to Laboratory and Site Controls	18
Table 21.	Statistical Significance of Plant Nutrient Concentrations (S, Zn, N) among Sites Compared to Laboratory and Site Controls	18
Table 22.	Statistical Similarities of Plant Nutrient Concentrations Among Sites	20
Table 23.	Summary of the Sediment Parameters Significantly Impacting the Plant Endpoint – Results of the Stepwise Linear Regression Analyses	23
Table 24.	Statistical Significance of Plant Nutrient Uptake Factors (B, Ca, Cu) among Sites Compared to Laboratory and Site Controls	24

LIST OF TABLES (cont.)

Table 25.	Statistical Significance of Plant Nutrient Uptake Factors (Fe, Mg, Mn) among Sites Compared to Laboratory and Site Controls	25
Table 26.	Statistical Significance of Plant Nutrient Uptake Factors (P, K, Na) among Sites Compared to Laboratory and Site Controls	26
Table 27.	Statistical Significance of Plant Nutrient Uptake Factors (S, Zn, N) among Sites Compared to Laboratory and Site Controls	26
Table 28.	Summary of How Nutrient Uptake Factors Changed Compared to the Site Control (APG-015)	27

LIST OF FIGURES

Figure 1a.	Similarities in Plant Nutrient Concentrations among Sites (Ca, Mg, K, S, N)	. 21
Figure 1b.	Similarities in Plant Nutrient Concentrations among Sites (P, Na)	. 21
Figure 1c.	Similarities in Plant Nutrient Concentrations among Sites (B, Cu)	. 22
Figure 1d.	Similarities in Plant Nutrient Concentrations among Sites (Fe, Mn, Zn)	. 22

Report of Short-Term Toxicity of Whole Sediment to Echinochloa crusgalli

Project IDs: 60147216-445-(035-038) September – December 2011

Sponsor and Laboratory Information

	AECOM Environment
Sponsor	250 Apollo Drive
	Chelmsford, MA 01824
Project Officer	Ryan McCarthy (603) 263-2147
	AECOM Environment
	Fort Collins Environmental Toxicology Laboratory
Tooting Engility	4303 West LaPorte Ave.
Testing Facility	Fort Collins, CO 80521
	Fax: (970) 490-2963
	State of Florida NELAP Laboratory ID: E87972
Study Director	Rami B. Naddy, Ph.D. (970) 416-0916 email: rami.naddy@aecom.com
Report Author	Amber Potts (970) 416-0916 email: amber.potts@aecom.com

Test Information

Test	Short-term chronic screening toxicity test of sediment					
Basis	Walsh (1991)					
	Control: October 14, 2011 @ 1300-1600 to December 30, 2011 @					
Test Period	1345 (see text for additional infor	mation)				
163t Fellou	•	@ 1330-1600 to December 16, 2011				
	@ 0900					
Test Length	77 days					
Species	Echinochloa crusgalli (Japanese	millet)				
Test Material	Whole sediment					
	Sample ID	FCETL Laboratory ID				
	APG-06-MA-060311	25060				
Sediment ID	APG-15-MA-060311	25061				
	APG-02-MA-060311	25062				
	APG-16-MA-060311 25063					
Control Sediment	Artificial sediment					
Laboratory deionized water (Milli-Q®) on all test days						
Hydration water	Modified Gorsuch nutrient solution (Gorsuch et al. 2008) on specified					
	test days.					
Test Concentrations	0 (control) and 100% of each test	sediment				

- Results described in this report apply only to the samples submitted to the laboratory and analyzed, as listed in the report
- Test results comply with NELAC standards. Reports are intended to be considered in their entirety; AECOM is not responsible for consequences arising from use of a partial report
- This report contains 28 pages plus 5 appendices

INTRODUCTION

This report presents results for a study conducted to determine the differences in nutrient uptake in *Echinochloa crusgalli* seedlings grown in various sediment samples having undergone different treatments. This study included a control (laboratory sediment) and four sediment cores collected from different locations one core represents a site (reference) control, APG-15.

E. crusgalli seedlings were exposed to sediment samples provided by the client (Table 1). Seedlings were planted in containers containing homogenized sediment, hydrated with deionized (DI) water, and incubated at standardized temperature, lighting and humidity conditions. A nutrient solution was added to each test chamber to ensure adequate growth during the study. The duration of the study was extended beyond the original termination date to ensure adequate plant material required by the analytical laboratory for nutrient / mineral analyses.

Chemical analysis for confirmation of the concentrations of desired nutrients / minerals was conducted at Columbia Analytical Services, Inc. (CAS) in Kelso, Washington, USA.

Table 1. Sediment Collection and Receipt

Sample ID	Collection Date and Time	FCETL No.	Date of Receipt	Cooler Temp. at Arrival (°C)
APG-06-MA-060311 (Aquablok)	06/03/11 @ 1515	25060	June 9, 2011	14.1
APG-15-MA-060311 (Site Control, No Treatment)	06/03/11 @ 1605	25061	June 9, 2011	14.1
APG-02-MA-060311 (Slurry Spray)	06/03/11 @ 1620	25062	June 9, 2011	14.1
APG-16-MA-060311 (SediMite)	06/03/11 @ 1636	25063	June 9, 2011	14.1

Note: See Appendix A for copies of chains of custody records

MATERIALS AND METHODS

Laboratory Control Sediment

The laboratory control sediment was artificial sediment produced in the laboratory, based on Walsh (1991). The composition of the artificial sediment is given (Table 2).

Table 2. Composition of Laboratory Formulated Sediment (Control)

Material	Weight (g) (percent)
2-3 mm sieved sphagnum peat	210 (7)
Colloidal kaolinite clay	240 (8)
Fine silica sand	2,160 (72)
Medium silica sand	300 (10)
Coarse silica sand	90 (3)

Prior to mixing, the sphagnum moss was sieved using a 2 mm sieve, rinsed with deionized water and baked overnight at 105° C. Each grain size of silica sand was rinsed with deionized water until the water ran clear and then baked overnight at 105° C. All ingredients were combined and mixed together for at least 15 minutes. Calcium carbonate was added at approximately 1% (by dry weight) to raise the sediment pH from 3.8 to 6.5. An additional 30 grams of calcium carbonate was added to the formulated sediment in an effort to raise the pH to $\sim 7.0 \text{ s.u.}$; however, the additional calcium carbonate did not alter the sediment pH. Therefore, the laboratory control sediment was tested without further attempts to adjust the sediment pH.

Test Sediment Preparation

The day prior to test initiation, sediment from four sample sites each consisting of four sediment cores was individually homogenized (in a stainless steel mixing bowl using a stainless steel spoon) for a minimum of three minutes. Each homogenized sediment replicate was distributed to a labeled test chamber (each core was considered one replicate for that treatment). The average weight of sediment per test chamber was 497 g (range of 216 - 566 g), depending on the volume of sediment received for each replicate / core.

Laboratory control sediment was also homogenized for a minimum of three minutes and then distributed to appropriately labeled test chambers.

Test Organism

Test species was *Echinochloa crusgalli*, FCETL lot #95-59, obtained from Wildlife Industries. Seeds were stored in a freezer (target temperature of ≤ -10°C) when not in use. Prior to test initiation, approximately 100 seeds were placed into moist sand and monitored to verify viability. Since there was sufficient seed germination, seeds were determined to be adequately viable.

On September 20, 2011, 10 days prior to test initiation, *E. crusgalli* seeds were allowed to warm to room temperature. Seeds were then planted in glass trays containing clean medium grain silica sand wetted with laboratory deionized water and covered with clear plastic wrap. Trays were placed in the same environmental bath used for testing, with the same temperature and lighting regime. Seedlings were removed from the trays, rinsed with Milli-Q water, and planted in the sediment in the test chambers on September 30, 2011 (day 0). Information on the source age, and other relevant details on the seeds used in this study are below (Table 3).

Species and Lot Number	Echinochloa crusgalli seedlings, FCETL Lot 95-59
Age	10 days old (planted September 20, 2011)
Source	Wildlife Industries (Bloomfield Hills, MI)
Germination Conditions	Germinated on clean medium silica sand
Reference Toxicant Testing	Initiated January 20, 2012 using potassium chloride (KCI)

Table 3. Test Organism Information

Test Chambers

Test chambers were ~710 ml tapered rectangular plastic containers. Several small holes were drilled in the bottom of each container to allow for water drainage. Test chambers were placed within a pattern according to a computer-generated random design. Each test chamber was labeled with the sediment site, the random location, and replicate letter (i.e. A, B, C, and D).

Test Conditions

Test chambers were held in an experimental room in a water bath. Water in the bath was kept at a constant level and the experimental chambers were placed on a plexiglas sheet that was held above the water level. Bath water was maintained at room temperature. The entire water bath was enclosed (including the top) with plastic sheeting to help maintain a constant environment (i.e., humidity). Target air temperature and humidity were $24 \pm 10^{\circ}$ C and $70 \pm 25\%$, respectively. The photoperiod was continuous illumination. Light intensity was a target of 400 ± 20 ft-c. Other relevant test design and conditions are reported below (Table 4).

Test Type Static chronic test Survival and shoot growth (dry weight), shoot length, and tissue concentrations of nutrients and **Test Endpoints** metals Plastic container, ~710 ml (24 oz) **Test Chambers** Test Sediment Volume ~ 500 grams (range 216 – 566 g) 20 ml modified Gorsuch nutrient solution on **Hvdration Water Volume** specified test days; Milli-Q water as needed Replicates per Treatment 4 20 Organisms per Replicate Test Temperature $24 \pm 1^{\circ}C$ Lighting Fluorescent, continuous illumination **Chamber Placement** Randomized (Random Chart "JJ") Test Sediment Renewal None

Table 4. Test Conditions and Design

Test Initiation

On the day of test initiation, *E. crusgalli* seedlings (10 days old) were transplanted from silica sand to laboratory control or field sediment, as appropriate. Each plant root was rinsed with Milli-Q water to remove any residual sand. Using a clean glass probe to make 20 small holes in the wet sediment, one seedling was placed into each hole, taking care not to damage the root. Sediment was gently pushed around the root to secure it. Once planted, 20 ml nutrient solution was added to each test chamber which was then placed in the environmental bath. The study was initiated on September 30, 2011 between 1330 and 1600 hours.

Two weeks after being transplanted, laboratory control organisms appeared to be in poor condition (browning, yellowing, wilting) when compared to both plants in test treatments (field sediments) and excess organisms still growing in sand. Plants grown in formulated sediment during preliminary growth experiments did not exhibit this response. There was one difference

between the preparations of formulated sediment used in preliminary experiments compared to the preparation used to initiate the definitive test: moss in the definitive test was soaked and rinsed with Milli-Q water in an attempt to reduce the acidity of the laboratory control sediment. Sphagnum peat moss that had not been "washed" was used in the preparation of preliminary sediment, while "washed" moss was used in the laboratory control sediment. Given the response of the laboratory controls, we initiated a new set of laboratory controls using a new batch of formulated sediment that was made with unwashed sphagnum peat moss. Seedlings remaining (unused in testing) from the initial transplant (September 30, 2011) were used to initiate these additional (n=4) laboratory control chambers on October 14, 2011.

Test Monitoring

Test temperature (air temperature) was monitored and recorded daily using a minimum / maximum thermometer in the test enclosure. Humidity was also monitored and recorded daily throughout the test with a minimum/maximum meter, but only the real-time reading was recorded on a daily basis. Light intensity was measured at approximately 5 different locations throughout the test area on a given day.

Sediment hydration was visually monitored daily for all test chambers. If hydration was determined necessary, Milli-Q water was added to each test chamber. Modified Gorsuch nutrient solution was added to all test chambers on select days throughout the study at a rate of 20 ml per test chamber (see below).

The number of surviving seedlings was recorded daily. Observations of plant appearance were made throughout the test.

Nutrient Solution

The nutrient solution was modified from a formula provided by Gorsuch et al. (2008) (Table 5). The formula for the nutrient solution used in the study is shown in the table below.

Table 5. Composition of the Nutrient Solution Added in the Definitive Plant Study

Salts Added to Nutrient Solution	Target Concentration (mg/L)	Quantity per 2 Liters (g)
Ca(NO ₃) ₂ · 4H ₂ O	200	0.400
KNO ₃	50	0.100
KH₂PO₄	50	0.100
MgSO ₄ · 7H ₂ O	50	0.100
Fe NH ₄ (SO ₄) ₂ · 12H ₂ O	5	0.010

Note: This is the solution prior to dilution with deionized water.

Nutrient solution was initially added twice per week to ensure adequate nutrient for proper growth while trying not to artificially influence nutrient uptake. As plants grew, the supplementation with nutrient solution was increased to 3-4 times per week. Nutrient solution was added using the same regime for all treatments so the amount added was the same among treatments.

Test Termination

This study had two termination dates. The first termination date involved plants in the field sediment samples being tested. The second termination date was for the laboratory control plants. On December 16, 2011 (day 77), the number of surviving plants was recorded in all the test/site sediment plant chambers. Surviving plants were gently removed from test sediment not to damage the plant. Shoot biomass was separated from root biomass by cutting the plant in two at the hypocotyl-radicle junction. All shoot biomass (plant) was rinsed with Mill-Q water to remove extraneous sediment or dirt on the plant. The length of each shoot was measured from the base to the extent of the longest leaf. All shoots from a replicate were combined into a tared aluminum pan and measured for wet weight (± 0.1 mg) and then dry weight after shoots were dried at approximately 85°C for a minimum of 24 hours.

On December 30, 2011 (day 77 for controls initiated on October 14) the control plants were terminated in the same manner described above. The control plants were terminated two weeks after the field sediment plants because they were initiated two weeks later. Therefore, the test duration was 77 days for all plants. Pictures taken during the study are included in Appendix B.

Analytical

Sediment from all replicates within a treatment was pooled to produce a single analytical sample for each treatment. Sediment was mixed thoroughly prior to collection. The sample was placed in a 6 oz. glass container and stored on ice (~4°C) until analysis at CAS. Sediment samples (collected at test end due to limited volume, minus root material) were analyzed for boron, calcium, copper, iron, magnesium, manganese, phosphorus, potassium, sodium, sulfur, and zinc (EPA method 200.7), nitrogen (%, EPA method 440.0), total solids (method 160.3M), total organic carbon (ASTM D419-82M), pH (9045D, CAS; SM4500-H⁺B, FCETL).

Dried plants (after biomass and length determination) for individual replicates were placed in individual Ziploc® bags and stored frozen until analysis. Plant samples were analyzed for boron, calcium, copper, iron, magnesium, manganese, phosphorus, potassium, sodium, sulfur, and zinc (EPA method 200.7) and nitrogen (%, EPA method 440.0).

An aliquot of modified Gorsuch nutrient solution was also sub-sampled and sent for analysis. The nutrient solution was analyzed for boron, calcium, copper, iron, magnesium, manganese, phosphorus, potassium, sodium, sulfur, and zinc (EPA method 200.7), nitrate/nitrite (EPA method 353.2), and total Kjeldahl nitrogen (ASTM D1426-93B).

All the samples were shipped (on ice) to Columbia Analytical Services, Inc. (CAS), an independent laboratory, located in Kelso, Washington, USA.

Statistical Analysis

Statistical analyses were conducted using four different methods. Statistics were completed comparing treatments to the laboratory control; second, statistics were completed comparing to the site control, excluding the laboratory control; third, statistics were performed using stepwise linear regression analysis to determine if soil parameter concentrations impacted plant nutrient uptake. The final statistical analysis was performed on plant nutrient uptake factors (i.e., plant

nutrient concentration divided by the soil nutrient concentration). Each approach is described in more detail below.

All hypothesis testing was performed using Toxstat Version 3.5 (WEST, Inc. and Gulley 1996). Data were first tested for normality and homogeneity assumptions using Shapiro-Wilk's Test and Bartlett's Test, respectively ($p \le 0.01$). Data that did not meet assumptions of normality and homogeneity were transformed using Log Base 10 (y) or Square Root (y) and then tested by analysis of variance, followed by a two-tailed multiple comparison test. Growth (length, wet weight, and dry weight) and plant nutrient concentrations differences were compared using an appropriate multiple comparison test ($p \le 0.05$). Experimental treatments were first compared to the laboratory control and then secondly compared to the site control (APG-15), excluding the laboratory control. Plant nutrient concentrations were subsequently compared among all treatments (and not just against the control or field control) using Tukey's Method of Multiple Comparisons (parametric data) or Dunn's Multiple Comparison / Kruskal-Wallis (non-parametric data) ($p \le 0.05$).

Stepwise linear regressions were performed using Statistix 8 (Analytical Software 2003) on plant nutrient concentrations, as well. These linear regressions evaluated if any of 14 sediment parameters (12 nutrients as measured in the sediment, average sediment pH, and/or total organic carbon [% TOC]) affected nutrient update in the plants. Nitrogen was converted from a percent basis to weight: weight basis (mg/kg) for these analyses. Control data were excluded from this analysis so as not to bias the results of the response and evaluate the effect of the field sediment samples.

Finally, uptake factors were determined by dividing the plant tissue concentration for each nutrient by its respective soil nutrient. Statistics were then carried out comparing uptake factors in the treated samples compared to either the laboratory control or the site control. When the site control was used, the laboratory control was excluded. The data was then tested by analysis of variance, followed by a two-tailed Dunnett's procedure ($p \le 0.05$) comparing the organism performance and plant nutrient uptake factors in the experimental treatments with that observed in the laboratory control and then in the site control (APG-15).

Reference Toxicant

A 14-day reference toxicant test was conducted from January 20, 2012 to February 3, 2012 using potassium chloride (KCI) in medium sand. The *E. crusgalli* seedlings used were from the same lot of seeds used in the nutrient uptake test. Nominal concentrations tested (expressed as mg KCI/L) were 4,000, 8,000, 12,000, 16,000, and 32,000 mg/L, plus a control (no added KCI). Solutions were prepared by adding and/or diluting (using Milli-Q) a solution of the highest test concentration into 100 g of dry medium sand. Four test chambers with twelve *E. crusgalli* seedlings were tested for each treatment. Testing was conducted in a 24 \pm 2°C environmental chamber. The 14-day IC25 was determined for survival and a 14-day IC₂₅ was determined for shoot dry weight and expressed as measured mg CI⁻/L (Table 6).

Table 6. Reference Toxicant Test Results for E. crusgalli

14-Day IC ₂₅		FCETL Historical 95	5 % Confidence Limits
Endpoint Value		Low	High
Survival	4,085	2,644	12,110
Shoot dry weight	2,924	1,550	11,738

Note: Values are expressed as mg/L chloride

RESULTS

Test Conditions

The temperature measured in the test chambers and water bath along with the humidity measured in the water bath area are reported in Table 7. Data are presented separately for the controls since the controls were re-started ~ 2 weeks after the treatments.

Table 7. Physical Data Measured During the Definitive Study

Sample ID	Mean Sediment Temperature (°C) ^a	Water Bath Temperature (°C) ^b	Mean Humidity (%)
Laboratory Control	18.2	20.8	36.2
APG-06-MA-060311	18.7		
APG-15-MA-060311	15-MA-060311 18.6		40.7
APG-02-MA-060311	18.9	20.9	40.7
APG-16-MA-060311	18.5		

^a Overall mean of daily temperature measurements

The light intensity measured in the water bath during the definitive study is reported in Table 8. Light intensity averaged 374 ft-c during the study.

Table 8. Light Intensity Measured for the Water Bath During the Definitive Study

Day	Light intensity (ftc)
0	388
28	371
35	365
45	310
46	401
52	380
56	382
63	381
77	384

^b Mean of all daily average temperatures

Analytical Results

This section summarizes all the analytical results from the definitive study. Metal and nutrient concentrations measured in the modified Gorsuch nutrient solution added to test chambers during the study are reported in Table 9.

Table 9. Analytical Results of Modified Gorsuch Nutrient Solution

Parameters ^a	Stock Solution
Boron (µg/L)	< 50
Calcium (µg/L)	33,900
Copper (µg/L)	< 10
Iron (μg/L)	954
Magnesium (µg/L)	4,590
Manganese (µg/L)	< 5.0
Phosphorus (µg/L)	11,800
Potassium (µg/L)	35,000
Sodium (µg/L)	< 200
Sulfur (µg/L)	7,250
Zinc (µg/L)	< 10
Nitrate + Nitrite as N (mg/L)	28.5
TKN (mg/L)	1.64

^a All parameters determined by CAS, Kelso, WA.

The metals / element concentrations measured in the sediment samples are provided below (Table 10). Concentrations for some metals (e.g., B) were similar among treatments, however, most metals / element concentrations varied among treatments. No single sediment had the highest analyte concentration for all parameters. In addition, analytical summaries are provided in Appendix C.

Total organic carbon (%)

Parameters (mg/kg) ^a	Laboratory Control	APG-02- MA060311	APG-06- MA060311	APG-15- MA060311	APG-16- MA060311
Boron	3.1 U	3.8	4.5	5.5	6.0
Calcium	7,600	2,170	6,600	29,600	5,140
Copper	1.3	245	70.9	869	389
Iron	629	14,800	12,600	19,100	21,500
Magnesium	95.5	1,360	3,890	5,440	2,680
Manganese	10.2	253	259	338	303
Phosphorus	149	809	518	1,050	800
Potassium	127	294	304	542	610
Sodium	62.1 U	121	99	246	327
Sulfur	113	5,050	5,180	10,400	14,200
Zinc	3.1	895	931	5,330	5,360
Nitrogen (%)	0.06 J	1.27	0.35	0.80	0.72
pH (s.u.; initial / final)	6.5 / 7.63	6.1 / 5.03	6.7 / 6.58	7.0 / 7.15	6.5 / 6.21
% Solids	62.5	25.5	44.5	33.3	33.6

Table 10. Characteristics of Sediments in Definitive Study

2.79

Metal / element concentrations measured in replicate plant samples are presented in the following five tables (Tables 11-15). Variation in the plant measurements may be more of a function of variability in the sediment cores as each replicate sample represented one sediment core. Since analytical for sediments was measured on a composite of the four core samples, we did not have individual analyte concentrations for each core / replicate sample.

14.4

6.43

Table 11. Plant Tissue Characterization – Laboratory Control

Parameters (mg/kg) ^a	Rep A	Rep B	Rep C	Rep D	Average	Standard Deviation
Boron	6.6	6.0	5.8	6.3	6.18	0.35
Calcium	19,400	19,800	23,200	16,600	19,750	2,705
Copper	2.9	2.4	2.0	1.8	2.28	0.49
Iron	64.7	51.0	49.9	41.8 J	51.85	9.50
Magnesium	12,500	10,200	10,700	10,400	10,950	1,054
Manganese	263	203	189	167	205.5	41.10
Phosphorus	3,160	2,760	3,140	2,440	2,875	343.5
Potassium	18,800	14,400	15,100	14,700	15,750	2,053
Sodium	124	88.6	99.5	84.4	99.13	17.76
Sulfur	5,070	4,600	3,880	3,440	4,248	727.5
Zinc	38.7	34.6	33.7	25.0	33.00	5.76
Nitrogen (%)	0.92	0.93	1.05	0.83	0.93	0.09

^a All parameters determined by CAS, Kelso, WA.

All parameters determined by CAS, Kelso, WA; except initial pH which was determined at the FCETL.

U = The analyte was analyzed for but not detected ("non-detect") at or above the MDL.

J = The result is an estimated value (result was between the MDL and MRL).

J = Value was estimated because it was less than 20 times the amount found in the method blank.

Table 12. Plant Tissue Characterization - APG-02-MA060311

Parameters (mg/kg) ^a	Rep A	Rep B	Rep C	Rep D	Average	Standard Deviation
Boron	17.2	15.3	17.0	28.5	19.50	6.06
Calcium	7,200	6,770	7,280	22,400	10,912	7,662
Copper	16.4	13.2	26.9	26.2	20.68	6.91
Iron	146	348	415	91.3	250.1	155.8
Magnesium	12,900	10,700	11,300	12,700	11,900	1,071
Manganese	2,060	1,160	1,380	2,370	1,742	567.2
Phosphorus	2,660	2,310	2,320	1,920	2,302	302.5
Potassium	14,900	16,100	18,300	17,300	16,650	1,473
Sodium	1,870	1,240	946	6,260	2,579	2,484
Sulfur	14,000	13,200	16,400	32,400	19,000	9,036
Zinc	434	345	436	1,870	771.2	733.7
Nitrogen (%)	0.9	0.97	0.83	0.81	0.88	0.07

^a All parameters determined by CAS, Kelso, WA.

Table 13. Plant Tissue Characterization - APG-06-MA060311

Parameters (mg/kg) ^a	Rep A	Rep B	Rep C	Rep D	Average	Standard Deviation
Boron	13.0	11.3	12.5	11.3	12.02	0.86
Calcium	24,500	9,410	11,900	9,170	13,745	7,275
Copper	7.3	5.3	6.5	9.1	7.05	1.59
Iron	122	281	121	169	173.2	75.24
Magnesium	14,900	11,300	14,800	14,800	13,950	1,767
Manganese	181	427	275	880	440.8	309.9
Phosphorus	1,930	2,040	2,030	2,360	2,090	186.7
Potassium	16,500	19,900	19,000	16,500	17,975	1,742
Sodium	4,000	727	2,800	1,690	2,304	1,413
Sulfur	28,900	15,600	19,600	19,400	20,875	5,658
Zinc	323	162	392	326	300.8	97.83
Nitrogen (%)	0.75	0.82	0.79	0.78	0.78	0.03

^a All parameters determined by CAS, Kelso, WA.

Table 14. Plant Tissue Characterization - APG-15-MA060311 (Site Control)

Parameters (mg/kg) ^a	Rep A	Rep B	Rep C	Rep D	Average	Standard Deviation
Boron	8.8	6.9	10.7	9.6	9.00	1.60
Calcium	21,400	23,600	44,200	39,600	32,200	11,392
Copper	24.4	11.4	12.4	14.0	15.55	6.00
Iron	105	61.7	196	97.0	114.9	57.2
Magnesium	10,400	9,340	10,100	10,500	10,085	524.9
Manganese	496	342	421	437	424.0	63.47
Phosphorus	2,060	2,090	1,730	1,780	1,915	186.3
Potassium	18,000	18,300	14,300	16,300	16,725	1,841
Sodium	5,640	3,490	11,200	4,370	6,175	3,464
Sulfur	25,200	23,600	42,900	36,800	32,125	9,284
Zinc	775	287	809	530	600.2	243.0
Nitrogen (%)	0.74	0.77	0.67	0.74	0.73	0.04

^a All parameters determined by CAS, Kelso, WA.

Table 15. Plant Tissue Characterization - APG-16-MA060311

Parameters (mg/kg) ^a	Rep A	Rep B	Rep C	Rep D	Average	Standard Deviation
Boron	7.3	9.7	11.6	11.9	10.13	2.12
Calcium	17,300	17,000	16,200	15,800	16,575	694.6
Copper	8.5	10.5	9.0	10.3	9.58	0.98
Iron	76.5	185	120	53.5	108.8	57.8
Magnesium	7,870	8,040	9,380	8,380	8,418	675.8
Manganese	245	666	520	618	512.2	188.2
Phosphorus	1,440	1,730	2,070	1,790	1,758	258.4
Potassium	12,700	18,700	18,900	14,600	16,225	3,074
Sodium	5,810	5,520	5,170	3,700	5,050	937.3
Sulfur	18,700	18,200	19,400	19,800	19,025	713.6
Zinc	448	979	864	1,200	872.8	315.6
Nitrogen (%)	0.81	0.69	0.79	0.77	0.76	0.05

^a All parameters determined by CAS, Kelso, WA.

Survival and Growth

Overall, plant survival in the laboratory control was 97.5% and 98.7% for the site control at test termination. Mean plant percent survival in all field sites ranged from 98.7 to 100% (Table 16) and was not statistically different from either control. A copy of the data package from the study is included in Appendix D, while copies of the statistical analyses are included in Appendix E.

Table 16. Biological Data – Survival

Treatment	Survival (%)	Significant Reduction Relative to Laboratory Control?	Significant Reduction Relative to Site Control?
Laboratory Control	97.5	N/A	N/A
Site Control - APG-15	98.7 ^{a,b}	No	N/A
APG-02	100 ^a	No	No
APG-06	100 ^a	No	No
APG-16	100 ^a	No	No

a One organism was sacrificed on Day 66 from replicate A for weight analysis At test takedown, 24 organisms were observed in replicate D and were included in analysis of survival, length and weight

AECOM Environment 60147216-445-(035-038)

Table 17. Biological Data – Growth (Wet/Dry Weight and Length)

Treatment	Mean Wet Weight (g) ^a	Significant Difference Relative to Laboratory Control?	Significant Difference Relative to Site Control?	Mean Dry Weight (g) ^a	Significant Difference Relative to Laboratory Control?	Significant Difference Relative to Site Control?	Mean Length (mm) ^b	Significant Difference Relative to Laboratory Control?	Significant Difference Relative to Site Control?
Laboratory Control	0.223	N/A	N/A	0.065	N/A	N/A	250.8	N/A	N/A
APG-02	0.199	No	No	0.052	No	No	224.4	No	No
APG-06	0.199	No	No	0.054	No	No	224.7	No	No
APG-15 (Site Control)	0.214	No		0.061	No		223.5	No	
APG-16	0.306	YES	YES	0.088	YES	YES	266.1	No	YES

^a Both wet and dry weight are based on the original number of plants ^b Length was measured for individual plants within each replicate and then averaged among replicates

At test termination, wet weight of surviving shoots from each treatment replicate was measured. An average wet weight was determined for each treatment and ranged from 0.199 g (sites APG-02-MA-060311 and APG-06-MA060311) to 0.306 g (site APG-16-MA-060311). Mean wet weight was 0.223 g for the laboratory control and 0.214 g for the site control. Plants from the APG-16-MA-060311 site were statistically higher in wet weight compared to the laboratory control and the site control (Table 17). No other sites showed differences to the controls.

Average dry weight for each treatment ranged from 0.052 g (site APG-02-MA-060311) to 0.088 g (site APG-16-MA-060311). Mean dry weight was 0.065 g for the laboratory control and 0.061 g for the site control (Table 17). One site was determined to be statistically different (i.e., greater) compared to the laboratory control and compared to the site control based on the dry shoot weight (APG-16-MA-060311).

Shoot length of each of the surviving plants was measured to the nearest millimeter and recorded at test termination. Average shoot lengths (from individual replicates) ranged from 115 mm (site APG-15-MA-060311 replicate D) to 360 mm (site APG-16-MA-060311 replicate A). The mean length was 250.8 mm for the laboratory control and 223.5 mm for the site control, while those in the other treatments ranged from 224.4 to 266.1 mm (Table 17). Shoot length of the field treatments was not statistically different compared to the laboratory control; however, the shoot length of one site (APG-16-MA-060311) was statistically different (greater) compared to the site control.

From these results, it appears that the treatment for the APG-16 site significantly increased plant growth (length and weight) compared to the unamended soil sample (APG-15).

Plant Nutrient Concentrations – Comparison to Laboratory Control and Site Control

Comparison to Laboratory Control

Evaluations were made for nutrient / element concentrations among field treatments compared to the laboratory control (Table 18). In evaluating the data, statistical significances observed reflect either a significance that is lower or higher relative to the laboratory control. Significances are indicated by an asterisk in Tables 18 -21.

Comparison to Site Control

Evaluations were also made for nutrient / element concentrations among field treatments compared to the site control (APG-15). For these analyses, the laboratory control was excluded. In evaluating the data, statistical significances observed reflect either a significance that was lower or higher relative to the site control. These significances are designated in Tables 18-21 by the use of an asterisk.

Table 18. Statistical Significance of Plant Nutrient Concentrations (B, Ca, Cu) among Sites Compared to Laboratory and Site Controls

		BORON			CALCIUM		COPPER			
		Statis Signifi			Statistical S	ignificance		Statistical Significance		
Site	Avg. Nutrient (mg/kg)	Versus Lab Control	Versus Site Control	Avg. Nutrient (mg/kg)	Versus Lab Control	Versus Site Control	Avg. Nutrient (mg/kg)	Versus Lab Control	Versus Site Control	
Laboratory Control	6.18			19,750			2.28			
APG-15 (Site Control)	9.00	*		32,200	NS		15.6	*		
APG-02	19.5	*	*	10,912	NS	*	20.7	*	NS	
APG-06	12.0	*	NS	13,745	NS	*	7.05	*	NS	
APG-16	10.1	*	NS	16,575	NS	*	9.58	*	NS	

NS = no significance

Plant boron concentrations were lowest in the laboratory control (6.18 mg/kg) and highest in APG-02 (19.5 mg/kg). Boron concentrations were found statistically significant in all treatments when compared to the laboratory control (Table 18). This trend was also seen in plant copper, phosphorus, sodium, sulfur, and zinc concentrations (Tables 18-21). When comparing the treatments to the site control for plant boron, APG-02 was significant (statistically high), while all other treatments were not significant. This trend was also observed with manganese and nitrogen for the site control.

Plant calcium concentrations were lowest in APG-02 (10,912 mg/kg) and highest in APG-15 (32,200 mg/kg). None of the field treatments had statistically significant differences in calcium relative to the laboratory control (Table 18). This lack of statistically significant differences was also observed with plant potassium concentrations (Table 20). In comparing plant calcium concentrations for the treatments to the site control, all treatments were statistically lower than the site control.

Plant copper concentrations were lowest in the laboratory control (2.28 mg/kg) and highest in APG-02 (20.7 mg/kg). Copper concentrations were found to be significantly elevated in all treatments when compared to the laboratory control (Table 18). Plant copper concentrations for the field treatments compared to the site control did not indicate any statistical significance. This lack of significance compared to the site control was also observed for iron, phosphorus, potassium, sodium, sulfur, and zinc (Tables 19-21).

Table 19. Statistical Significance of Plant Nutrient Concentrations (Fe, Mg, Mn) among Sites Compared to Laboratory and Site Controls

		IRON			MAGNESIUM		MANGANESE			
			stical icance			stical icance		Statistical Significance		
Site	Avg. Nutrient (mg/kg)	Versus Lab Control	Versus Site Control	Avg. Nutrient (mg/kg)	Versus Lab Control	Versus Site Control	Avg. Nutrient (mg/kg)	Versus Lab Control	Versus Site Control	
Laboratory Control	51.8			10,950			206			
APG-15 (Site Control)	115	NS		10,085	NS		424	NS		
APG-02	250	*	NS	11,900	NS	NS	1,742	*	*	
APG-06	173	*	NS	13,950	*	*	441	NS	NS	
APG-16	109	NS	NS	8,418	*	NS	512	*	NS	

NS = no significance

Plant iron concentrations were lowest in the laboratory control and highest in APG-02. Not only was plant iron for APG-02 significantly higher than the laboratory control but APG-06 was also significantly higher (Table 19). Plant iron concentrations when compared to the site control did not illicit any statistical differences.

Plant magnesium concentrations were lowest in APG-16 and highest in APG-06. Both of these treatments were significant relative to the laboratory control (Table 19). APG-06 was statistically high while APG-16 was statically low. In comparison to the site control, plant magnesium was statically significant (high) for APG-06. All other treatments were not statistically different compared to the site control (Table 19).

Plant manganese concentrations were lowest in the laboratory control and highest in APG-02. APG-02 and APG-16 were both found to have statistically elevated manganese concentrations relative to the laboratory control (Table 19). Plant manganese concentrations were significantly higher at APG-02 when comparing to the site control. However, no other treatments were found to be significantly different from the site control (Table 19).

Table 20. Statistical Significance of Plant Nutrient Concentrations (P, K, Na) among Sites Compared to Laboratory and Site Controls

	F	PHOSPHORU	IS		POTASSIUM		SODIUM			
			stical icance			stical icance		Statistical Significance		
Site	Avg. Nutrient (mg/kg)	Versus Versus Lab Site Control Control		Avg. Nutrient (mg/kg)	Versus Lab Control	Versus Site Control	Avg. Nutrient (mg/kg)	Versus Lab Control	Versus Site Control	
Laboratory Control	2,875			15,750			99.1			
APG-15 (Site Control)	1,915	*		16,725	NS		6,175	*		
APG-02	2,302	*	NS	16,650	NS	NS	2,579	*	NS	
APG-06	2,090	*	NS	17,975	NS	NS	2,304	*	NS	
APG-16	1,758	*	NS	16,225	NS	NS	5,050	*	NS	

NS = no significance

Plant phosphorus concentrations were lowest in APG-16 (1,758 mg/kg) and highest in the laboratory control (2,875 mg/kg). All treatments had statistically lower phosphorus concentrations compared to the laboratory control (Table 20). No treatments were statistically significant compared to the site control for plant phosphorus concentrations (Table 20).

Plant potassium concentrations were fairly similar among all treatments; but were lowest in the laboratory control (15,750 mg/kg) and highest in APG-06 (17,975 mg/kg). None of the treatments were statistically different relative to the laboratory or site controls (Table 20).

Plant sodium concentrations were lowest in the laboratory control (99.1 mg/kg) and highest in APG-15 (6,175 mg/kg). All treatment concentrations were statistically higher than the laboratory control. However, none of the field treatments had statistical different sodium concentrations from the site control.

Table 21. Statistical Significance of Plant Nutrient Concentrations (S, Zn, N) among Sites Compared to Laboratory and Site Controls

		SULFUR			ZINC		NITROGEN			
			stical icance			stical icance		Statistical Significance		
Site	Avg. Nutrient (mg/kg)	Versus Lab Control	Versus Site Control	Avg. Nutrient (mg/kg)	Versus Lab Control	Versus Site Control	Avg. Nutrient (mg/kg)	Versus Lab Control	Versus Site Control	
Laboratory Control	4,248			33.0			9,325			
APG-15 (Site Control)	32,125	*		600	*		7,300	*		
APG-02	19,000	*	NS	771	*	NS	8,775	NS	*	
APG-06	20,875	*	NS	301	*	NS	7,850	*	NS	
APG-16	19,025	* NS		873	*	NS	7,650	*	NS	

NS = no significance

Plant sulfur concentrations were lowest in the laboratory control (4,248 mg/kg) and highest in APG-15 (32,125 mg/kg). All treatments were statistically higher than the laboratory control in sulfur (Table 21). Conversely, when comparing sulfur concentrations among treatments to the site control, no statistical differences were observed (Table 21).

Plant zinc concentrations were lowest in the laboratory control (33.0 mg/kg) and highest in APG-16 (873 mg/kg). All treatments were statistically significant when compared to the laboratory control (Table 21). Once again, when comparing treatments to the site control no statistical differences were indicated.

Plant nitrogen concentrations were lowest in APG-15 (7,300 mg/kg) and highest in the laboratory control (9,325 mg/kg). All treatments, except APG-02, were statistically lower to the laboratory control in nitrogen (Table 21). In comparing the field treatments to the site control, APG-02 was the only site that was statistically different (elevated).

Plant Nutrient Concentrations - Comparison among Sites

Comparisons were also made for nutrient / element concentrations among treatments including the laboratory control (Table 22; Figures 1a-d). In comparing these results, treatments with the same letter were not statistically different from each other, while treatments with different letters were determined to be statistically different from one another using a multiple comparison method.

Plant boron concentrations were lowest in the laboratory control and highest in AGP-02, with the difference being statistically significant (Figure 1c). Boron concentrations in the other three treatments did not exhibit a statistically significant difference from the laboratory control and APG-02 site (Table 22). The same pattern was observed with iron and manganese (Table 22; Figure 1d).

Plant calcium concentrations were lowest in APG-02, and highest in APG-15 (Figure 1a). These treatments were statistically different from each other but not from the other sites or the laboratory control (Table 22).

Table 22. Statistical Similarities of Plant Nutrient Concentrations Among Sites

					m	g/kg	dry weig	ht					
	Boron Calcium Copper Iron Magnes										ium Manganes		
Treatment	Mean	Similarities	Mean	Similarities	Mean	Similarities	Mean	Similarities	Mean	Similarities	Mean	Similarities	
Laboratory Control	6.18	В	19,750	AB	2.28	В	51.8	В	10,950	В	206	В	
APG-02	19.5	Α	10,912	В	20.7	Α	250	Α	11,900	AB	1,742	Α	
APG-06	12.0	AB	13,745	AB	7.05	AB	173	AB	13,950	Α	441	AB	
APG-15 (Site Control)	9.00	AB	32,200	Α	15.6	Α	115	AB	10,085	ВС	424	AB	
APG-16	10.1	AB	16,575	AB	9.58	AB	109	AB	8,418	С	512	AB	

						ng/kg	dry weig	jht					
	Phosph	orus	Potassi	ium	Sodium Sulfur			Zin	С	Nitrogen			
Treatment	Mean	Similarities	Mean	Similarities	Mean	Similarities	Mean	Similarities	Mean	Similarities	Mean (%)	Similarities	Mean ^a
Laboratory Control	2,875	Α	15,750	Α	99.1	В	4,248	В	33.0	В	0.93	Α	9,325
APG-02	2,302	AB	16,650	Α	2,579	AB	19,000	AB	771	AB	0.88	AB	8,775
APG-06	2,090	В	17,975	Α	2,304	AB	20,875	AB	301	AB	0.78	ВС	7,850
APG-15 (Site Control)	1,915	В	16,725	Α	6,175	Α	32,125	Α	600	AB	0.73	С	7,300
APG-16	1,758	В	16,225	Α	5,050	Α	19,025	AB	873	Α	0.76	ВС	7,650

^a mg/kg nitrogen results, calculated from % data (10,000 x %N).

Plant copper concentrations were lowest in the laboratory control and highest in APG-02 and APG-15 (Figure 1c). The two highest copper treatments were statistically different from the laboratory control but were not statistically different from the other two sites (Table 22). Plant copper concentrations for APG-06 and APG-16 did not show a statistically significant difference from the laboratory control.

Plant magnesium concentrations were lowest for APG-16 and highest in APG-06 (Table 22; Figure 1a). The APG-16 site was statistically different from all sites except APG-15, while the APG-06 site was statistically higher than all treatments except the APG-02 site. The laboratory control was only different from the APG-06 and APG-16 sites.

Plant phosphorus concentrations were highest in the laboratory control (2,875 mg/kg) and lowest at APG-16 (1,758 mg/kg). The laboratory control concentration was similar to that measured in the APG-02 site (Table 22; Figure 1b), but it was statistically higher than concentrations measured in plants grown in sediment from the other three sites.

Plant potassium concentrations were not statistically different among the treatments and laboratory control. The concentrations ranged from 15,750 to 17,975 mg/kg (Table 22, Figure 1a).

Plant sodium concentrations were highest in APG-15 (6,175 mg/kg) and lowest in the laboratory control (99.1 mg/kg) (Table 22, Figure 1b). Sodium concentrations for plants grown in APG-15 and APG-16 were statistically greater than the laboratory control. Plant sodium concentrations for APG-02 and AP-06 were not statistically different from each other, from the laboratory control, or from AGP-15 and APG-16 sodium concentrations.

Figure 1. Similarities in Plant Nutrient Concentrations among Sites

Plant sulfur concentrations were highest at APG-15 and lowest in the laboratory control; these two treatments were statistically different from one another (Table 22, Figure 1a). Sulfur concentrations in the remaining three sites were not statistically different from each other or from APG-15 or the laboratory control.

Plant zinc concentrations were highest at APG-16 and lowest in the laboratory control (Table 22, Figure 1d) and these sites were statistically different from each other. The remaining sites were not statistically different from either the high or low sites.

Plant nitrogen concentrations were highest in the laboratory control and lowest in APG-15 (Table 18, Figure 1a). Nitrogen concentration in the laboratory control was only similar to that measured in APG-02; all other treatments had a statistically significant reduction in nitrogen relative to the laboratory control. Nitrogen concentration measured in APG-02 was not statistically different from APG-06 or APG-16 (or the laboratory control). The nitrogen concentration in the APG-15 site was not statistically different than the APG-06 or APG-16 sites.

Plant Nutrient Concentrations - Influence of Sediment Parameters

Stepwise linear regressions were performed evaluating 14 endpoints (dry weight, length, and 12 nutrients as measured in the plant), with the 14 sediment parameters (12 nutrients as measured in the sediment, average sediment pH, and total organic carbon [% TOC]). The majority of the sediment parameters were excluded from the stepwise analyses due to co-linearity. The following table lists the parameters that were not excluded based on co-linearity, and the parameters determined to significantly impact the stepwise linear regression analysis for each plant endpoint (Table 23).

Table 23. Summary of the Sediment Parameters Significantly Impacting the Plant Endpoint

- Results of the Stepwise Linear Regression Analyses

Endpoint:	Sediment Parameters not excluded due to co-linearity	Sediment factor(s) significantly affecting the plant endpoint
Dry weight	Ca, Cu, Fe	Cu, Fe
Length	Ca, Cu, Fe	Cu, Fe
B (Plant)	Ca, Cu, Fe	Ca, Cu, Fe
Ca (Plant)	Ca, Cu, Fe	Ca
Cu (Plant)	Ca, Cu, Fe	Ca, Cu, Fe
Fe (Plant)	Ca, Cu, Fe, B	В
K (Plant)	Ca, Cu, Fe	None
Mg (Plant)	Ca, Cu, Fe	Fe
Mn (Plant)	Ca, Cu, Fe	Ca, Cu, Fe
N (Plant, mg/kg)	Ca, Cu, Fe	Ca, Cu, Fe
Na (Plant)	Ca, Cu, Fe	Fe
P (Plant)	Ca, Cu, Fe	Fe
S (Plant)	Ca, Cu, Fe	Ca
Zn (Plant)	Ca, Cu, Fe	None

In all cases, ten to eleven of the sediment parameters were excluded from the stepwise linear regression analysis due to co-linearity with the other variables. Calcium, copper, and iron were the three sediment parameters included in every stepwise linear regression analysis. In one case boron was an additional parameter along with these three.

Copper and iron sediment concentrations were parameters that significantly affected plant dry weight and length (Table 23). Some of the sediment parameters that were determined to be

statistically significant in impacting plant nutrient concentrations were straightforward while others were not quite as straightforward. For example, sediment calcium was determined to be significant in affecting plant calcium concentration, which is very straightforward. However, in other instances sediment iron concentrations alone were found to significantly affect the following plant nutrient concentrations: magnesium, sodium, and phosphorus. In other cases, no sediment parameter was found to explain plant nutrient concentrations (potassium and zinc). The specific results of this analysis may have been influenced since we could not pair individual sediment nutrient concentrations with individual plant results on a replicate basis since all four sediment replicates were composited prior to analysis.

Plant Nutrient Uptake Factors – Comparison to Laboratory Control and Site Control

Comparison to Laboratory Control

Evaluations were also made for nutrient uptake factors among field treatments compared to the laboratory control (Tables 24-27). Nutrient uptake factors were determined by dividing the plant nutrient tissue concentration by the soil nutrient concentration. In evaluating the data, statistical significances observed reflect either a significance that is lower or higher relative to the laboratory control. Statistical differences were indicated by an asterisk in the tables below.

Comparison to Site Control

In addition, assessments were also made for nutrient uptake factors among field treatments compared to the site control (APG-15) (Tables 24-27). Nutrient uptake factors were determined by dividing the plant nutrient tissue concentration by the soil nutrient concentration. These analyses include the field treatments and exclude the laboratory control. In evaluating the data, statistical significances observed reflect either a statistical difference that was either lower or higher relative to the site control.

Table 24. Statistical Significance of Plant Nutrient Uptake Factors (B, Ca, Cu) among Sites Compared to Laboratory and Site Controls

		BORON			CALCIUM		COPPER			
	Avg.	Statis Signifi	stical icance	Avg.	Statistical S	ignificance	Statistical Avg. Significance			
Site	Nutrient Uptake Factor	Versus Lab Control	Versus Site Control	Nutrient Uptake Factor	Versus Lab Control	Versus Site Control	Nutrient Uptake Factor	Versus Lab Control	Versus Site Control	
Laboratory Control	3.98			2.60			1.75			
APG-15 (Site Control)	1.64	*		1.09	*		0.018	*		
APG-02	5.13	NS	*	5.02	NS	*	0.084	*	*	
APG-06	2.67	*	*	2.08	NS	NS	0.100	*	*	
APG-16	1.69	*	NS	3.22	NS	*	0.024	*	NS	

NS= Not significant

Nutrient uptake factor for boron showed the lowest uptake in APG-15 and the highest in APG-02. All field treatments except APG-02 were statistically significant (low) when compared to the laboratory control. However, when comparing the treatments to the site control, APG-02 and APG-06 were statistically higher relative to the site control while APG-16 was not statistically different (Table 24). In comparing the uptake factor for calcium, APG-15 was statistically significant (low) compared to the laboratory control while treatments APG-02 and APG-16 were statistically higher than the site control. Copper exhibited statistically lower uptake for all treatments compared to the laboratory control, although only APG-02 and APG-06 were lower statistically lower than the site control in copper uptake (Table 24).

Table 25. Statistical Significance of Plant Nutrient Uptake Factors (Fe, Mg, Mn) among Sites Compared to Laboratory and Site Controls

		IRON			MAGNESIUN	И	MANGANESE			
	Avg.	Statis Signif	stical icance	Statistical Avg. Significance			Avg.	Statistical Significance		
Site	Nutrient Uptake Factor	Versus Lab Control	Versus Site Control	Nutrient Uptake Factor	Versus Lab Control	Versus Site Control	Nutrient Uptake Factor	Versus Lab Control	Versus Site Control	
Laboratory Control	0.082			115			20.2			
APG-15 (Site Control)	0.006	*		1.86	*		1.26	*		
APG-02	0.017	*	NS	8.75	*	*	6.88	*	*	
APG-06	0.014	*	NS	3.58	*	*	1.70	*	NS	
APG-16	0.005	*	NS	3.14	*	*	1.69	*	NS	

NS= Not significant

The uptake factor for iron revealed an opposite effect between the two controls. All treatments were statistically lower relative to the laboratory control while the treatments were similar to the iron uptake in the site control (Table 25). For magnesium uptake factor, all treatments were statistically different when compared to either the laboratory control or the site control (Table 25). The treatments were statistically low compared to the laboratory control; but, all field treatments were statistically higher than the site control. Again, all treatments were statistically lower for manganese uptake factor compared to the laboratory control. However, when comparing the treatments to the site control, APG-02 was statistically higher for iron uptake (Table 25).

Table 26. Statistical Significance of Plant Nutrient Uptake Factors (P, K, Na) among Sites Compared to Laboratory and Site Controls

	F	PHOSPHORU	IS		POTASSIUM	1	SODIUM			
	Avg.		Statistical Significance			stical icance	Avg.	Statistical Significance		
Site	Nutrient Uptake Factor	Versus Lab Control	Versus Site Control	Nutrient Uptake Factor	Versus Lab Control	Versus Site Control	Nutrient Uptake Factor	Versus Lab Control	Versus Site Control	
Laboratory Control	19.3			124			3.19			
APG-15 (Site Control)	1.82	*		30.9	*		25.1	*		
APG-02	2.85	*	*	56.6	*	*	21.3	*	NS	
APG-06	4.04	*	*	59.2	*	*	23.3	*	NS	
APG-16	2.20	*	NS	26.6	*	NS	15.4	*	NS	

NS= Not significant

When looking at the uptake factors for phosphorus and potassium (which had similar responses), all uptake factors for the treatments were statistically lower relative to the laboratory control (Table 26). However, when comparing treatments to the site control, APG-02 and APG-06 were statistically different (higher). The sodium uptake factors followed a similar trend as iron in that all treatments were statistically high in contrast to the laboratory control, but were similar to the site control.

Table 27. Statistical Significance of Plant Nutrient Uptake Factors (S, Zn, N) among Sites Compared to Laboratory and Site Controls

		SULFUR			ZINC		NITROGEN			
	Avg.	Statistical S	Statistical Significance		Statistical S	Significance	Avg.	Statistical Significance		
Site	Nutrient Uptake Factor	Versus Lab Control	Versus Site Control	Nutrient Uptake Factor	Versus Lab Control	Versus Site Control	Nutrient Uptake Factor	Versus Lab Control	Versus Site Control	
Laboratory Control	37.6			10.7			15.5			
APG-15 (Site Control)	3.09	*		0.112	*		0.913	*		
APG-02	3.76	*	NS	0.862	*	*	0.691	*	*	
APG-06	4.03	*	NS	0.323	*	*	2.24	*	*	
APG-16	1.34	*	*	0.163	*	NS	1.06	*	NS	

NS= Not significant

For sulfur uptake factors, all treatments were statistically significant (low) compared to the laboratory control (Table 27). In comparing the site control to treatments, APG-16 was the only statistically significant (low) treatment for plant sulfur uptake factor. All treatments for both uptake factors for zinc and nitrogen were statistically significant (low) compared to the laboratory control. For zinc uptake factor, treatments APG-02 and APG-06 were statistically significant (high) compared to the site control. For nitrogen uptake, APG-02 was significantly lower than the site control while APG-06 was higher (Table 27).

SUMMARY

Japanese millet (*E. crusgalli*) seedlings were grown in sediment samples (from cores) to determine if the sediment treatment would impact survival and growth (length or weight) as well as nutrient uptake in the plants. Plant survival was not impacted in any treatments, although plant wet and dry weight was statistically higher in plants grown in soil from APG-16 compared to either the laboratory or site control plants. Plant length was not impacted compared to laboratory control plants however, plants from APG-16 were statistically longer than the site controls.

Nutrient uptake varied among sediment sites and nutrients. A multiple comparison analysis was performed to determine statistical differences and similarities among all sites and the laboratory control. This analysis allowed for nutrient uptake comparisons to the laboratory control as well as the other sites. Given the complexity of these results, they are not summarized here (see Table 22, Figures 1a-d).

A stepwise linear regression analysis was also performed to determine which 14 sediment parameters (12 nutrients measured in the sediment, sediment pH, and TOC) influenced specific plant nutrient uptake. Sediment copper and iron concentrations were found to significantly affect plant dry weight and length. For the plant nutrients, some of the results were straightforward in what sediment parameter significantly affected the plant nutrient uptake (e.g., Ca), whereas others were not as straightforward (e.g., sediment Fe affecting plant Mg, Na, and P). No sediment parameter was found to significantly explain plant uptake of K and Zn (by default this may be in part due to the contribution from the nutrient solution, especially for K).

Nutrient uptake factors were also determined using plant tissue nutrient values and soil nutrient values. Hypothesis testing was performed to determine statistical differences, either higher or lower to both the laboratory and site controls. While the interpretation of these results was not straightforward nor consistent among nutrients, the table below summarizes the statistical differences observed between the treatments (excluding the control) and the site control (Table 28).

Table 28. Summary of How Nutrient Uptake Factors Changed Compared to the Site Control (APG-015).

		Uptake Factors (plant / soil concentration)											
Site	В	Ca	Cu	Fe	Mg	Mn	Р	K	Na	S	Zn	N	
APG-02	↑	1	1		1	1	↑	1			↑	\downarrow	
APG-06	↑		1		1		↑	↑			↑	↑	
APG-16		1		1	1		-	1		\	-		

Note: arrow indicates a statistical difference in uptake factor compared to the site control, while a dash (--) indicates no statistical change.

REFERENCES

Gorsuch, J.W., C.A. Staples, D. Brown, and R. Enste-Diefenbach. 2008. Vapor-phase toxicity of butylbenzyl phthalate to three plant species: white mustard, Chinese cabbage, and white clover. Bull. Environ. Contam. Toxicol. 81:220-224.

STATISTIX® 8. 2003. User's Manual. Analytical Software. Tallahassee, FL.

Walsh, G.E. 1991. Plant toxicity testing with sediment and marsh soils. Technical Report, NPS/NRWRD/NRTR-91/03. National Park Service, Water Resources Division.

WEST, Inc. and D.D. Gulley. 1996. Toxstat Version 3.5. Western EcoSystems Technology, Inc., Cheyenne, WY.

Statement of Procedural Compliance

I certify that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge, accurate and completed

Rami B. Naddy, Ph.D.

Study Director

Statement of Quality Assurance

The test data were reviewed by the Quality Assurance Unit to assure that the study was performed in accordance with the protocol and standard operating procedures. This report is an accurate reflection of the raw data.

Reliner, anita B. Rehner for Christina Needham January 9, 2013

Quality Assurance Officer

APPENDIX A

Chains of Custody

ENSR AECOM					CHAI	N OF CL	JSTODY	/ REC	ORD							ļ	Page 2 of 2
Client/Project Name: AECOM CANA CIRE K Field Project Number:	1-ESTO	andale	Projec	t Location: Abo	D-C	Ploving	Grand	1		Analys	sis Re	quested			Container P – Plasti A – Ambe G – Clear	t 1 rGlass 2	eservation - HCI, 4° - H2SO4, 4°
60133180			Field L	ogbook No.:											V - VOA V O - Other E - Encor	Vial 4.	- HNO3, 4° - NaOH, 4° - NaOH/ZnAc, 4° - Na2S2O3, 4°
Sampler (Print Name)/(Affiliation M. Rysscll, D. Sm.): th/A	ECOM	642	of Custody Tape み ひトいむころ				55.6								des: nking Water S	- 4°
Signature:	2	, <u>, 1,, ,, , , , , , , , , , , , , , , ,</u>	Send I	Results/Report to: McCar				ドナ							GW – Gro	W - Wastewater SL - Studge W - Groundwater SD - Sedim N - Surface Water SO - Solid I - Storm Water A - Air - Water L - Liquid P - Product	
Field Sample No./Identification	Date	Time	C G O R M A P B	Sample Container	Matrix	Preserv.	Field Filtered	Plan							Lab I.D.	Re	marks
APG-06-MA-06031	1 6/3/11	1515	<u> </u>	< 12" core	50		NN	X							2506),14.1°C	
APG-15-MA-000311	613111	1605	,)	12"cole	1		NA	X								14.1°C	······································
APG-02-MA-060311	6/3/11	1629		12'coe	42		NA	<u> </u>					<u> </u>		25062	14.1°C	
APG-16-MA-060311	61311	1630		A Ducore	- 30		NA	<u> </u>	 -						25063	, 14.1°C	
			 		†												
										+++							
																	·····
		,															
								-									
				· .	1												
															<u> </u>		
Relinquished by (Print Name)/(Affiliation Michael Russel Act Signature Signature	Ĉo A		te:6/8/ 1e: 150	Christina	iNeedr	me)/(Affiliation) NAM Gor 1	Emily So	dler/A	copal	ate: 6 9 me: 1015					Colline		
Relinquished by: (Print Name)/(Affiliation) Date: Received by: (Print Name)/(Affiliation)			ne)/(Affiliation)	LLACALIN			ate:		Rece	ived	Grom	FedE	x on ice	,			
Signature: Time: Relinquished by: (Print Name)/(Affiliation)		ne: 	Signature:		MARCE P.			Time:			cooler lemps taken						
Relinquished by: (Print Name)/(Affiliation) Date: Received by: (Print Name)/(Affiliation)			uy. (Print Nai	ney(Amiliation)			Da	ate:		Sample	Shippe	ed Via:		Temp	blank		
gnature: Signature:					Time: UPS (FedEx) Courier Other Yes			No									

Note: Received 4 12" cores from each site, containers only 1/2 follow: Lab Pink: Sal

Pink: Sampler

Serial No. 03029

Cooler #10-APG 06MA-060311 @1515 06 MA AP6 02 MA APG @1620 16 MA AP6 @ 1430 @ 1430 AP6 16 MA @ 1620 02 MA APG @ 1650 16 MA AP6 12 MA @ 1620 AP6 @1605 APG 15 MA C 1605 AP6 15 ma @ 1430 AP6 (6 MA @ (620 AP6 02 MA APG @ 1605 15 MA AP6 06 MA @ 1515 06 MA C 1515 APG 15 MA @ 1605 AP6

APPENDIX B

Photo Log

APPENDIX C

Analytical Data

COLUMBIA ANALYTICAL SERVICES, INC. Now part of the ALS Group

Analytical Report

Client:

Matrix:

AECOM

Project Name:

Project No.:

60225262-445

Service Request: K1200992 Date Collected: 02/01/12 Date Received: 02/02/12 Date Extracted: 02/02/12

Water

Total Metals

Sample Name:

Nutrients

Lab Code:

K1200992-001

Units: ug/L (ppb)

Basis: NA

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Boron	200.7	50	02/03/12	ND	
Calcium	200.7	50	02/03/12	33900	
Copper	200.7	10	02/03/12	ND	
Iron	200.7	20	02/03/12	954	
Magnesium	200.7	20	02/03/12	4590	
Manganese	200.7	5.0	02/03/12	ND	
Phosphorus	200.7	200	02/03/12	11800	
Potassium	200.7	400	02/03/12	35000	
Sodium	200.7	200	02/03/12	ND	
Sulfur	200.7	100	02/03/12	7250	
Zinc	200.7	10	02/03/12	ND	

Comments:

COLUMBIA ANALYTICAL SERVICES, INC.

Now part of the ALS Group

Analytical Report

Client:

AECOM

Project:

Nutrients/60147216-445

Sample Matrix:

Analysis Method:

Water

353.2

Service Request: K1201143

Date Collected: 02/6/12

Date Received: 02/7/12

Units: mg/L

Basis: NA

Nitrate+Nitrite as Nitrogen

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
Nutrients	K1201143-001	28.5	1.0	20	02/15/12 10:23	
Method Blank	K1201143-MB1	ND U	0,050	1	02/15/12 10:23	
Method Blank	K1201143-MB2	ND U	0.050	1	02/15/12 10:23	
Method Blank	K1201143-MB3	ND U	0.050	1	02/15/12 10:23	t

COLUMBIA ANALYTICAL SERVICES, INC.

Now part of the ALS Group

Analytical Report

Client:

AECOM

Project:

Nutrients/60147216-445

Sample Matrix:

Analysis Method:

Water

Prep Method:

ASTM D1426-93B

ASTM D 3590-89B-21.1

Service Request: K1201143

Date Collected: 02/6/12

Date Received: 02/7/12

Units: mg/L

Basis: NA

Nitrogen, Total Kjeldahl (TKN)

•					Date	Date	
Sample Name	Lab Code	Result	MRL	Dil.	Analyzed	Extracted	Q
Nutrients	K1201143-001	1.64	0.40	2	02/10/12 02:10	2/9/12	
Method Blank	K1201143-MB1	ND U	0.20	2	02/10/12 02:10	2/9/12	

60225262-445

ESTCP Plant study-Soil Samples

MN 6/26/12 OA: AR: 06/26/12

filename: analytical summary_445.xlxs

·						n	ng/kg dry w	elght basi:	s					Dry Weight Basis	Initial	Final	Dry Weight Basis
Sample ID	Site	% Solids	В	Ca	Cu	Fe	Mg	Mn	Р	К	Na	8	Zn	N %	рН	рН	TOC %
APG-02-MA060311	APG-02	25.5	.3.8	2,170	245	14,800	1,360	253	809	294	121	5,050	895	1.27	6.1	5.03	14.4
APG-06-MA060311	APG-06	44.5	4.5	6,600	70.9	12,600	3,890	259	518	304	. 99	5,180	931	0.35	6.7	6.58	6.43
APG-15-MA060311	APG-15	33.3	5.5	29,600	869	19,100	5,440	338	1,050	542	246	10,400	5,330	0.80	7.0	7.15	15.5
APG-16-MA060311	APG-16	33.6	6.0	5,140	389	21,500	2,680	303	800	610	327	14,200	5,360	0.72	6.5	6.21	10.6
Control	Control	62.5	3.1 U	7,600	1.3	629	95.5	10.2	149	127	62.1. U	113	3.1	0.06 J	6.5	7.63	2.79

U = The analyte was analyzed for but not detected ("non-detect") at or above the MDL.

1 Gum 07/19/12 C, late entry

J = The result is an estimated value (result was between the MDL and MRL).

filename: analytical summary_445.xlxs

WET "as received" basis (DRY), mg/kg Basis Κ S Zn N % Na Site В Ca Cu t Fe Mg Mn Þ Sample ID 146 12,900 2,660 14,900 1.870 14.000 434 0.9 APG-02-MA060311 A APG-02 17.2 7,200 16.4 2,060 0.97 345 APG-02 6,770 13.2 348 10.700 1,160 2,310 16,100 1,240 13,200 APG-02-MA060311 B 15.3 415 2,320 18,300 946 16,400 436 0.83 APG-02 17.0 7,280 26.9 11.300 1.380 APG-02-MA060311 C 1.870 0.81 APG-02 22,400 26.2 91.3 12,700 2,370 1,920 17,300 6.260 32,400 APG-02-MA060311 D 28.5 19.000.00 771.25 0.88 19.50 10,912.50 20.68 250.08 11,900.00 1.742.50 2.302.50 6.650.00 2,579.00 Average 733.73 0.07 Standard Deviation 7,661.61 6.91 155.81 1,070.83 567.24 302.48 1,473.09 2,484.09 9,038.22 6.06 33.4% 62,3% 9.0% 32.6% 13.1% 8.8% 96.3% 47.6% 95.1% 8.3% CV 31.1% 70,2% Mg Mn Р ĸ Na S Zη N % Site В Ça Cu Fø Sample ID 16,500 4,000 28,900 323 0.76 APG-06 13.0 24.500 7.3 122 14,900 181 1,930 APG-06-MA060311 A 427 2.040 19,900 727 16.600 162 0.82 APG-06 11.3 9,410 5.3 281 11,300 APG-06-MA060311 B 392 0.79 APG-06 12.5 11,900 6.5 121 14,800 275 2,030 19,000 2,800 19,600 APG-06-MA060311 C 326 9.170 9.1 169 14.800 880 2,360 16,500 1,690 19,400 0.78 APG-06 11.3 APG-06-MA060311 D 173,25 2.304.25 20,875.00 300.76 0.785 12.025 13.745.00 7 05 13,950.00 440.75 2,090.00 7.975.00 Average Standard Deviation 7,275.46 1 69 75.24 1,767.30 309,88 166.73 1,742 36 1.412.60 5,657.66 97.83 0.03 0.86 27.1% 32.5% CV 7.2% 52.9% 22.6% 43,4% 12.7% 70.3% 8.9% 9.7% 61.3% 3,7% Р κ Na S Zn N % Cu Fe Mg Mn Sample ID Site В Ca 25,200 776 0.74 21,400 24.4 105 10,400 496 2,060 18,000 5,640 APG-15-MA060311 A APG-15 8.8 18,300 3,490 23,600 287 0.77 9,340 342 2,090 APG-15-MA060311 B APG-15 6.9 23,600 11.4 61.7 10,100 421 1,730 14,300 11,200 42,900 809 0.67 APG-15 10.7 44.200 12.4 196 APG-15-MA060311 C 1.780 16,300 4,370 36,800 530 0.74 APG-15-MA060311 D APG-15 9.6 39,600 14.0 97.0 10,500 437 424.00 16,725.00 6,175.00 0,73 32,200,00 114.93 10,085.00 1,915.00 32,125.00 600.25 Average 9.00 16.86 0.04 57,23 524.94 63.47 186.28 1,840,97 3,464.30 9.284.17 243.02 Standard Deviation 1.60 11,392,40 Ø.00 15.0% 40.5% CV. 17.8% 35.4% 38.6% 49.8% 5.2% 9.7% 11.0% 56.1% 28.9% 5,8% Р к Na 5 Zn N % Çu Fe Mg Mn Sample ID Site В Ca 12,700 18,700 448 0.81 8.5 76.5 245 1,440 5,810 APG-16-MA060311 A APG-16 7.3 17,300 7,870 10.5 185 8,040 666 1,730 18,700 5,520 18,200 979 0.69 APG-16-MA060311 B APG-16 9.7 17,000 620 2,070 18,900 6,170 19,400 864 0.79 APG-16-MA060311 C APG-16 11.6 16,200 9.0 120 9,380 8.380 14,600 3,700 19,800 1,200 0.77 **APG-16** 15,800 10.3 53.5 618 1,790 APG-16-MA060311 D 11.9 872.75 16.225.00 6.050.00 19.025.00 0.765 16.575.00 9.68 108.75 8,417,50 612.25 1 757.50 Average 10.13 0,05 258.38 713.56 316.63 Standard Deviation 2.12 694.62 0.98 57,83 675.79 188.24 3,073.95 937.27 36.7% 14,7% 18.9% 18.6% 3.8% 36.2% 6.9% CV 20.9% 4.2% 10.2% 63.2% 8.0% K N % Mn Р Na S Zη В Ca Cu Fe Mg Sample ID Site 263 3.160 18.800 124 5.070 38.7 0.92 19,400 2.9 64.7 12,500 CA 6.6 Control A 0.93 51.0 10,200 203 2,760 14,400 88.6 4,600 34.6 ÇВ 19,800 2.4 Control B 6.0 3,140 10,700 189 15,100 99.5 3,880 33.7 1.05 49.9 CC 5.8 23,200 2.0 Control C 10,400 2,440 14,700 84.4 3,440 25.0 0.83 CD 1.8 41.8 X 167 Control D 6.3 16,600 15,750.00 99.13 4,247.60 33,00 0,93 2.28 51,85 10,950.00 205.50 2.875.00 6.18 19,760.00 Average 5.78 0.09 1,053.57 41.10 343.46 2,053.45 17.76 727.52 Standard Deviation 2,704.93 0.49 9.50 0.35 11.9% 21.3% 20.0% 13.0% 17.8% 17.1% 17.5% 9.7% CV 5.7% 18.3% 9.6% 13.7%

CAT: AR 07/19/12

G-49

APPENDIX D

Biological Data

Page _ of 1
FCETL QA Form No. 115
Revision 0
Effective 8/99

SEDIMENT TOXICITY DATA PACK	Project Number: 60147216-445- (035-038) Species: Echinochloa crusgalli
Test Type: Chronic	Project Number: 60147216-445-(035-038) 614407 123 12
Test Substance: Sediment/soil	Species: Echinochloa crusgalli
modified Govsuch's solution Hydration Water Type: Milli-Q® and Hoagland's Solution— O	Organism Lot or Satch Number: 092011 (Lot#95-096)
Concurrent Control Overlying Water Type: <u>NA</u>	Age: 10 days (seedlings) Supplier: Wildlife industries
Date and Time Test Began 9 30 11 @1330 -1600	12/16/17 @ 09/00 Date and Time Test Ended: 12/30/11 @ 13/15
Protocol Number:	Investigator(s): to Am KR R AS M M MT
Background Information	
Type of Test: Non-renewal	Renewal Frequency: <u>NA</u>
· · · · · · · · · · · · · · · · · · ·	Fest Chambers: plastic container 710 mL (24 oz)
Photoperiod: 16 triight: 8 hdark Overlying Water Vol: NA	Light Intensity: 400 ±20 ftc
Sediment Vol.: 100 ml	Number of Replicates per Treatment: 4
Length of Test: Sweeks modified my trient to the standards of Food and Quantity per Chamber: 20 ml Heaglands () solution	Number of Organisms per Replicate: 20 Feeding Frequency: test days 0, 7, 14, 21, 28, & 35
Test Substance Characterization Parameters and Frequency: Hardness	: <u>NA</u> Alkalinity: <u>NA</u>
Conductivity: NA NH ₃ : NA Temp: da	ily DO: <u>NA</u> pH: <u>Initial & final in</u> soils
Test Concentrations (Volume: Volume): 0 (laboratory control sediment) and	100% of each test soil
Test Sediment(s) Sample Description: <u>APG-06-MA-060311 (#25060), APG (#25062), and APG-16-MA-060311 (#25063)</u>	-15-MA-060311 (#25061), APG-02-MA-060311
FCETL Sample #(s): <u>25060, 25061, 25062, and 25063</u>	
Agency Summary Sheet(s)?: NA	
Reference Toxicant Data: Test Dates: 1/20/12 to 2/3/12 LC	50 OT (C25) Circle): 4085 mg/L 01-
Hist. 95% Control Limits: 2644 to 1210 Method for Determin	ing Ref. Tox. Value: Linear Interpolation
Special Procedures and Considerations:	

Special Procedures and Considerations:

Control soil preparation listed on QA form 015. All soils hydrated to point roughly equivalent to test soils (by technician estimate).

Modifical for such netwight

All containers maintained at hydration levels close to that at test initiation using Hoaglands solution on days 0, 7, 14, 21, & 28

and MQ on all other test days. All additions recorded on daily log.

Light Intensity: 397,403,361,371,404 X = 398 (Day 0)

Study Director Initials:

Date: 9 30 | 1

SEDIMENT/SOIL PREPARATION

60147214-445-(035-038)	\$2 20 112 GUMU7/23/11
Artificial soil	·
Constituent/source	Amount added (g)
See Form: POETL On Form No. 15 with this data	
pkg for preparation of artificial soil.	
Notes:	

Soil/sediment	Bon	FCETL#			Homogenization	1 ,	
Somsediment	Rep	FCEIL#	Date	From	То	Notes / Approx.	Analyst
Form. Sed	NA	N/A	09/29/11	1045 1045	GA460 1050	Added Milli-Q ~500	AB
APG-06-MA-060311	Α	25060	09/29/11	0943	0946	added willia v5430	Aβ
APG-06-MA-060311	В	25060	09/29/11	12950	0953	added willia 2348	
APG-06-MA-060311	С	25060	09/29/11	1000	1003	added milling remarals	iek AR
APG-06-MA-060311	D	25060	09/29/11	1007	1010	added million ~560 a	AB.
APG-15-MA-060311	Α	25061	09/29/11	1015	1020	~489424848	X
APG-15-MA-060311	В	25061	09/29/11	1043	1046	~529a	
APG-15-MA-060311	C	25061	09/29/11	1027	1030	addad n.11.0 ~555	AB
APG-15-MA-060311	D	25061	09/29/11	1052	105 C	~484~566	100
APG-02-MA-060311	Α	25062	09/29/11	0940	0943	removed noot/~2169	A
APG-02-MA-060311	В	25062	09/29/11	0947	0952	~3439	Skr
APG-02-MA-060311	С	25062	09/29/11	0955	1000	~345q	%
APG-02-MA-060311	D	25062	09/29/11	1005	1010	^3336€	Q.
APG-16-MA-060311	Α	25063	09/29/11	0936	0939	~556a	ر. ده
APG-16-MA-060311	В	25063	09/29/11	0950	0953	~541~	رن ا
APG-16-MA-060311	С	25063	09/29/11	0957	1001	^566 a	eN
APG-16-MA-060311	D	25063	09/29/11	1007	1011	~5348	w

(1) 43 9/24/11 Up

Page <u>3</u> of ↑ FCETL QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

20/120/12 5mm 01/23/12

Project Number: 60147216-445- (035-038)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

		,					
Conc.	Test Replicate	Initial Number of Seedlings	Number of Surviving Seedlings Day 1	Number of Surviving Seedlings Day 2	Number of Surviving Seedlings Day 3	Number of Surviving Seedlings Day 4	Number of Surviving Seedlings Day 5
0	A	20	-20	Qo_	Q D	20	ર્ચ
	В	20	20	\rightarrow	\$0	20	20
	С	20	ವಿರ	වර	30	20	20
	D	20	20	20	S	20	20_
APG-06-MA- 060311	Α	<i>2</i> 0	<i>\$</i> 0	Q0	ි ට	20	20
	В	<i>2</i> 0	OD D	ಎಂ	0	20	20
	С	20	30	20	S 0	20	20
	D	20	9 0	20	0	20	20
APG-15-MA- 060311	Α	20	Ø0	20	00	20	20
	В	20	0	رئ ر	Q	20	20
	С	20	QD	20	Q D	20	20
	D	20	90	90	90	20	20
APG-02-MA- 060311	Α	20	0	3 0	Q	20	20
	В	<i>2</i> 0	ಎ ೦	30	00	20_	20 20
	С	20	90	90	Q O	20	<u> 20</u>
	D	20	<u> </u>	Qo	90	20	20
APG-16-MA- 060311	Α	20	90	20	20	20	:20
	В	30	90	ಎ ೦	0	20	20
	С	20	20	50	a D	20	20
	D	20	90	20	90	20	20
	Date:	9/30/11	10/1/11	18/2/h	10/8/11	wy	wsl u
	Time:	1330-160	0 0985	1005	1510	1515	0830
	Initials:	₩	Am	An	Am	X	₩

Odo7/23/12, cf -new control plants were initiated on day 14, with original seedlings (supg 5)

Page 4 of FCETL QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

7/20/12 Sumon/23/12

60147216-445- (035-038) Project Number:__

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings Day 6	Number of Surviving Seedlings Day 7	Number of Surviving Seedlings Day 8	Number of Surviving Seedlings Day 9	Number of Surviving Seedlings Day 10	Number of Surviving Seedlings Day 11
0	, A	20 #	20 *		20	20×	20 ¥
	В	20 ×	20 €	30 %	Q_{20}	20 ×_	20*
	C	20 ¥	00 ×	20 *	20	20*	20 *
	D	20 +	70 *	20 4	20	204	70 ×
APG-06-MA- 060311	А	20	90	၂၀	ට්ට	20	70
	В	20	20	<u>ರಿ</u>	2 0	20	20
	С	20	20	20	90	20	20
	D	20	<i>2</i> 0	90	90	20	<i>3</i> 0_
APG-15-MA- 060311	Α	20	20	Do	Do	7 0	20
	В	20	20	Jo	20	20	20
	С	20	∂ 0	90	90	20	20
	D	20	70	20	20	20	20
APG-02-MA- 060311	Α	<i>></i> 0	Z0	дъ	<u></u>	70	20
	B	20	20	70	20	20	20
	c	20	20	90	90	20	20
	D	20	20	<u> 30</u>	20	30	20
APG-16-MA- 060311	A	20	20	20	30	20	20
	В	20	20	90	20	3 0	20
	С	20	80	<i>0.</i> 6	20	20	20
	D	20	20	20	90	20	20
-	Date:	10/6/11	10/7/11	198/11	129/11	10/10/11	willy
	Time:	1040	0030	OPUD	1005	1730	1500
	Initials:	₩	極	V3	KS	SK .	*

@ plants yellowing / browning

(D. 207 | 23 | 12), NA - new control plants were initiated on Day in math original seedings. (see page 5)

Page 5 of 1\
FCETL QA Form No. 069
Revision 1
Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

Gum 07/23/12

Project Number: 60147216-445- (035-038)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings Day 12	Number of Surviving Seedlings Day 13	Number of Surviving Seedlings Day 14	Number of Surviving Seedlings Day 15	Number of Surviving Seedlings Day 16	Number of Surviving Seedlings Day 17
0	Α			20	20	ఎల	20
:	В			20	20	20	20
	С	Ø\	0	20	20	20	20
	D			20	<i>2</i> 0	20	2_0
	Date:			10/14/11	10 15 124	10 16 11	10/17/12
	Time:	0	σ\	1630	1000	OPIO	1545
	Initials:			₩	de for BP	AB	F

0 % 7/12, NA @ R 7/23/12, NA Note: New control replicates (n=4) were initiated in Day 14 with original seedlings.

Page of 1 FCETL QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

20 1/20 1/2

Project Number: 60147216-445-(035-038)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

	T	T		1 " 		T	
Conc.	Test Replicate	Number of Surviving Seedlings Day 12	Number of Surviving Seedlings Day 13	Number of Surviving Seedlings Day 14	Number of Surviving Seedlings Day 15	Number of Surviving Seedlings Day 16	Number of Surviving Seedlings Day 17
0	Α	Ø/20 ¥	0)~20 ×	20 *	20*	204	20
	В	<i>3</i> 0 *	36 4	80 x	20*	20 ×3	20
	С	30/*	20 1	28 *	20*	308	20
	D	20 *	20 *	201	20*	J⇔ ¹⁸	20
APG-06-MA- 060311	А	20	20	20	20	200	20
	В	20_	20	20	20	20	20
	С	20	20	20	20	20	20
	D	20	20	20	20	20	20
APG-15-MA- 060311	Α	رح ح	20	20	20	20	20
	В	20	20	20	20	20	20
	C	36	20	20	20	20	20
	D	<i>∂</i> c	Q	20	20	J0	20
APG-02-MA- 060311	Α	20	20	20	20	90	20
	В	20	20	20	20	20	20
	С	90	20	20	20	20	20
	D	90	20	20	20	20	20
APG-16-MA- 060311	Α	20	20	20	20	20	20
	В	90	20	20	20	රුර	20
	C	90	20	20	20	න	20
	<u>D</u>	90	20	20	20	Qe	20
	Date:	10 mln	10/13/11	10/4/11	10/15/11	10/16/11	10/17/19
	Time:	DBNO	1630	1000	1000	0910	1545
	Initials:	VB	\$0	To	6 P	AC7	F

plants Yellowing | browning

Odo7/23/12, N/A - new control plants were initiated on Day 14.

@ 20/123/12, New control plants were initiated in PM on day 14.

B 20/123/12, Cf - see previous page for control biological data.

9-47/28/12,E

Page 7 of 1 FCETL QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

0xm07/23/12

Project Number: 60147216-445- (035-038)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings Day 18	Number of Surviving Seedlings Day 19	Number of Surviving Seedlings Day 20	Number of Surviving Seedlings Day 21	Number of Surviving Seedlings Day 22	Number of Surviving Seedlings Day 23
0	A	20	<i>∂</i> 0	20	20	20	20
	В	20	ಎಂ	20	20	20	20
	С	20	do	20	20	20	20
	D	20	20	20	20	20	20
	Date:	10/18/11	10/19/11	10/20/11	10/21/11	westu	16/23/11
	Time:	0900	0845	1600	1000	1540	1520
	Initials:	AB	KB	¥	*	F	K

Page of 1 FCETL QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

64m 07/23/12

Project Number: 60147216-445- (03/5-638)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings Day 18	Number of Surviving Seedlings Day 19	Number of Surviving Seedlings Day 20	Number of Surviving Seedlings Day 21	Number of Surviving Seedlings Day 22	Number of Surviving Seedlings Day 23
0	А	20*	aa x	20 *	201	20 *	26
	В	20≯	20 *	20*	200	20 *	20
	С	Je>*	20 ¥	20 *	20	20 ×	20
	D	20*	20 ¥	204	20	20*	20
APG-06-MA- 060311	А	20	20	20	20	20	20
	В	20	20	20	20	20	20
	С	9Ø	90	20	20	50	20
	D	20	90	20	20	20	20
APG-15-MA- 060311	Α	30	90	26	20	20	20
	В	20	90	20	20	20	20
	С	20	<u> </u>	20	20 20	20	20
	D	20	90	20	20	20	20
APG-02-MA- 060311	Α	20	25	20	20	20	20
	В	20	20	20	20	20	20
	СС	9¢	$\mathcal{S}_{\mathcal{O}}$	20	20	20	20
	D	90	<u> 20</u>	20	20	20	20
APG-16-MA- 060311	• А	20	90	20	_20	20	26
	В	<i>30</i>	<u></u>	20	<i>7</i> 0	20	20
	С	20	20	20	20	20	20
	D	Del	<u>a6</u>	20	20	20	59
	Date:	10/18/14	uplal	10120111	10/21/11	10/22/11	(01231 1)
	Time:	0900	0845	1600	0000	1540	520
	Initials:	M	186	F	A	P	·18

Doplants yellowing Dop 1/23/12, E Eplants yellowing Dop 1/23/12, Cf-see previous page for control Biological data.

Page of M FCETL QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

de 7/23/12

Project Number: 60147216-445- (035-038)

6umo /23/12

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings Day 24	Number of Surviving Seedlings Day 25	Number of Surviving Seedlings Day 26	Number of Surviving Seedlings Day 27	Number of Surviving Seedlings Day 28	Number of Surviving Seedlings Day 29
0	A	20	20	20	20	20	Do
	В	20	a0	20	20	20	_ည
	С	20	20	20	20	20	ည
	D	20	20	20	20	20	<u>ک</u>
	Date:	10/24/11	10/85/11	10/210/12	10/27/11	10/28/11	10lanl11
	Time:	1125	1435	unk	1600	1105	0935
	Initials:	AB	DM	com my	K	DM	ks

FCETL QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

Project Number: 60147216-445- (63/5-638)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings Day 24	Number of Surviving Seedlings Day 25	Number of Surviving Seedlings Day 26	Number of Surviving Seedlings Day 27	Number of Surviving Seedlings Day 28	Number of Surviving Seedlings Day 29
0	Α	20≯	20*	20	20	20	ఎం
	В	20 *	20 ×	20	2 20	20	20
·	С	20 *	20*	20	20	20	20
	D	20 *	20*	20	20	20	2
APG-06-MA- 060311	Α	20	20	20	20	20	30
	В	20	20	20	20	20	90
	С	DO	80	20	20	20	20
	D	20	20	20	20	20	30
APG-15-MA- 060311	Α	Zes	20	ನಿ	70	20	20
	В	20	20	20	20	20	20
	С	20	20	20	20	20	90
	D	90	λO	50	20	20	90
APG-02-MA- 060311	Α	<u> </u>	20	20	20	20	90
	В	20	LO.	20	20	20	30
	С	90	20	20	20	20	90
	D	20	20	20	20	20	90
APG-16-MA- 060311	Α	De	20	20	20	20	30
	В	90	20	20	20	20	90
	С	20	20	20	20	20	90
	D .	20	20	20	20	20	90
	Date:	10/24/4	10/25/11	10/26/12	10/27/11	10/28/11	11/26/11
	Time:	1172	1435	unk	1600	1105	0930
	Initials:	MS	DM	cuntur mar	TE	PM	KB

Aplents yellow browning

Odo7/23/12, E
Odo7/23/12, Cf-See previous page for control
biological data.

Page 11 of 71 FCETL QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

Ax 7/23/12

Project Number: 60147216-445- (035-038)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings Day 30	Number of Surviving Seedlings Day 31	Number of Surviving Seedlings Day 32	Number of Surviving Seedlings Day 33	Number of Surviving Seedlings Day 34	Number of Surviving Seedlings Day 35
0	Α	Do	20	20	20	ಎ	20
	В	20	20	20	20	ည	20
	С	дo	20	20	20	20	20
	D	<i>ಎ</i> ಂ	20	Qo	20	90	20_
	Date:	10/3411	10/31/12/1	while	11/2/11	11/3/11	गमाश्च
	Time:	1045	0846	0850	1100	1600	1100
	Initials:	MS	AR FOURP	A3	× ×	KR	₩

Ode 7/23/12/E

Page of 7)
FCETL QA Form No. 069
Revision 1
Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

de 7/20/12

Project Number: 60147216-445- (036-038)

6xm 07/23/

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings Day 30	Number of Surviving Seedlings Day 31	Number of Surviving Seedlings Day 32	Number of Surviving Seedlings Day 33	Number of Surviving Seedlings Day 34	Number of Surviving Seedlings Day 35
0	Α	20	20	20	<u> </u>	20	20
	В	ಎ ಂ	20	2 00 €	20	<u>ට</u> ූත	20
	C	<i>3</i> 0	20	నిఠ	20	20	70
	Ď	90	10	્ર્	20		70_
APG-06-MA- 060311	Α	ည်ဝ	20	90	20	20	7.0
	В	20	20	300 ·	20	90	70
	С	90	20	Jø	20	90	70
	D	90	20	20	00	90	30
APG-15-MA- 060311	Α	20	20	30	20	20	20
	В	્રે	20	J_Ø	3 0	90	70
	С	20	20	20	<u>></u> 0	OG	20
	D	<u> 20</u>	20	Ð0	90	_06	20
APG-02-MA- 060311	A	<u> 20</u>	20	20	<i>D</i> 6	20	20
	В	<i>∂</i> 0	20	20	70	90	70
	С	20	2,0	20	20	90	CB
	D	<u> 20</u>	20	50	20	<i>ચે</i> ૦	20
APG-16-MA- 060311	Α	20	20	20	20	20_	70
	В	20	20	20	20	20	70
	С	20_	20	<u>00</u>	<i>7</i> 0	20	20
	D	<u> 20</u>	20	39	70	90	70
	Date:	193911	10/31/11	Wille	11/2/4	1/3/11	ulcela
	Time:	1046	0845	0 850	1100	1000	102
	Initials:	KB	BP	Br?	\$	KB	\$

Odr/123/12, E Odr/123/12, Cf-see previous page for control Biological data

Page 13 of 71 FCETL QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

SUM U7/23/12

Project Number: 60147216-445-(035-038)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings Day 36	Number of Surviving Seedlings Day 37	Number of Surviving Seedlings Day 38	Number of Surviving Seedlings Day 39	Number of Surviving Seedlings Day 40	Number of Surviving Seedlings Day 41
0	A	20	20	20	20	20	20
	В	20	20	20	20	20	20
	С	20	20	20	20	20	20
	D	20	20	20	*Z0	20	20
	Date:	11/5/11	11/6/11	11/2/11	11 08 11	11/9/11	मिल्ना
	Time:	0940	030	1125	10945	1535	06100
	Initials:	AFOYBP	# for BP	mt	stor BP	K	40 for BP

QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

Project Number: 60147216-445- (035-036)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings Day 36	Number of Surviving Seedlings Day 37	Number of Surviving Seedlings Day 38	Number of Surviving Seedlings Day 39	Number of Surviving Seedlings Day 40	Number of Surviving Seedlings Day 41
0	A	20 20	20	20	20	20	20
	В	20	20	20	20	20	20
	С	10	20	20	20	20	20
	D	10	20	20	20	20	20_
APG-06-MA- 060311	, A	20	20	20	20	20	20
	В	20	20	20	20	ر م	20
	С	20	20	20	20	20	20
	D	20	20	20	20	20	20
APG-15-MA- 060311	Α .	20	20	20	20	20	20
	В	20	20	20	20	20	20
	С	20	20	20	20	20	20
	D	20	20	20	20	20	20
APG-02-MA- 060311	A	20	20	20	20	20	20
	В	40	20	20	20	20	20
	С	20	20	10	20	50	20
	D	20	20	20	20	20	20
APG-16-MA- 060311	Α	20	20	20	20	20	20
	В	20	20	20	20	50	20
	С	2.0	20	20	20	20	20
	D	20	20	20	20	20	20
	Date:	ulela	11/6/11	11/7/11	11/8/11	11/9/11	ultolu
	Time:	0940	1030	1125	0946	1535	0900
	Initials:	BP	BP	nd	BP	F	ØP

0+123/12, E 0+123/12, Cf-sce previous page for control biological data

Page 16 of 1 FCETL QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

627/23/12 64m 07/23/12

Conc.	Test Replicate	Number of Surviving Seedlings Day 42	Number of Surviving Seedlings Day 43	Number of Surviving Seedlings Day 44	Number of Surviving Seedlings Day 45	Number of Surviving Seedlings Day 46	Number of Surviving Seedlings Day 47
0	ΑΑ	کو ک	20	20	20	20	70
	В	ာဝ	20	20	20	20	20
	С	ည	20	- 20	20	20	20
	D	<i>3</i> 0	20	20	20	20	20
	Date:	Mah	11/12/11	nlø]n	mah	11/15/11	Holi
	Time:	0910	1000	1000	1015	1430	0830
	Initials:	KB	te for Ame	defor AMP	₩	K	OR60BP

Project Number: 60147216-445- (035-038)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Page Doof 71 FCETL QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

621/2012

Project Number: 60147216-445- (035-036)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings Day 42	Number of Surviving Seedlings Day 43	Number of Surviving Seedlings Day 44	Number of Surviving Seedlings Day 45	Number of Surviving Seedlings Day 46	Number of Surviving Seedlings Day 47
0	А	20	9	30	20	20	20
	В	20	00/	3 72	20	20	20
	C	<u></u> 20	30	90	20	20	20
	D	<u></u> 25	90	<u> </u>	20	50	720
APG-06-MA- 060311	А	20	20	30	20	20	20
	В	20	20	20	<i>a</i> o -	20	20
	C	20	20	30 30	20	59	20
	D	90.	SD	26	20	20	20
APG-15-MA- 060311	Α	9	9	රි	20	20	20
	В	20	&\O	30	<i>a</i> 0	ر 0	20
	С	90	2,D	AO	20	20	20
	D	90	<u> </u>	90	20	20	20
APG-02-MA- 060311	Α	90	20	20	20	20	20
	В	<i>S</i> 0	QD.	20	20	20	20
	С	<u> 20</u>	20	20	20	20	20
	D	<u> 20</u>	90	36	20	20	20
APG-16-MA- 060311	А	20	20	30	20	20	20
	В	20	20	<u>20</u>	20	20	2.0
	С	90	QQ	90	20	20	20
	. D	20	30	à√	20	20	20
	Date:	11/11/11	11/12/1	MIBA	1/4/120	11/15/11	1/16/11
	Time:	61.90	1000	1000	1015	1430	0830
	Initials:	VB	An	An	\$8 .	F	esp.

@407/23/12, E

Oxn Jula, E

3-67/23/12, Cf-see previous page for control bibliogical data.

Page 17 of 7 FCETL QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

20712112

Project Number: 60147216-445- (035-038)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings Day 48	Number of Surviving Seedlings Day 49	Number of Surviving Seedlings Day 50	Number of Surviving Seedlings Day 51	Number of Surviving Seedlings Day 52	Number of Surviving Seedlings Day 53
0	А	20	20	20	20	20	20
	В	26	20	20	20	20	20
	С	20	20	20	20	20	20
	D	20	20	20	20	20	20
	Date:	11/17/11	11/18/11	11/19/11	11/20/4	11/21/11	11/22/12
	Time:	0845	0900	1345	0900	0830	0900
	Initials:	E	de Gress	E	k	K	defer An

Page Nof 11 FCETL QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

Project Number: 60147216-445- (03)5-0333 (Num 07/23)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings Day 48	Number of Surviving Seedlings Day 49	Number of Surviving Seedlings Day 50	Number of Surviving Seedlings Day 51	Number of Surviving Seedlings Day 52	Number of Surviving Seedlings Day 53
0,	A	20	20	20	20	20	\$ 0
	В	20	20	50	220	05	20
	С	20	20	20	20	20	20
	D	20	20	20	2.0	20	20
APG-06-MA- 060311	Α	20	20	50	20	20	20
	В	20	20	20	50	20	80
	C	20	20	20*	20 4	20	201
	. D	20	20	20	20	2.0	20
APG-15-MA- 060311	Α	20	20	20	20	20	ಎಂ
	В	20	20	20	21*	· 21*	*JČ*
	С	20	20	20	20	26	90
	D	20	20	20	20	20	30
APG-02-MA- 060311	Α	20.	20 0	20	20 4	20 4	20 🛦
	В	20	20 *	20 💆	20 2	20 🔼	20 *
	С	20	20	20 4	20 *	20 🕯	20 4
	D	20	20	20	50	20	20
APG-16-MA- 060311	A	20	20	20	20	20	20
	В	20	20	20	20	20	00
	С	20	20	70	20	20	QO
	D	20	20	20	20	20	20
	Date:	11/17/11	11/18/11	WIGH	11/20/11	11 21/11	Vaa/n
	Time:	0845	0900	1345	0900	0830	0905
	Initials:	不	Bi	R	下	F	And

A green growth on top layer of soil

• additional plant is thought to be an indigenous species.

0107/23/12,E

Bok 7/83/12, (f-see previous page for confish biological duta.

^{*} new shoot coming through

Page 19 of 1 FCETL QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

187/23/12 640067/23/12

Project Number: 60147216-445- (035-038)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings Day 54	Number of Surviving Seedlings Day 55	Number of Surviving Seedlings Day 56	Number of Surviving Seedlings Day 57	Number of Surviving Seedlings Day 58	Number of Surviving Seedlings Day 59
0	А	ఏం	20	26	20	20	20
	В	a	20	20	20	20	ဝင
	С	<u> </u>	20	20	20	20	ථා
	D	90	20	20	20	20	90
	Date:	11/23/11	11/24/150	11/25/11	11/26/11	11/27/11	11/28/11
	Time:	1000	1000	1430	0936	0930	0930
	Initials:	KS :	ACTOVED -	AforBP	F	K	Kes

047/28/2,E

Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

Project Number: 60147216-445- (635-636)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings (i Day 66 53		Number of Surviving Seedlings Day 68	Number of Surviving Seedlings Day 69	Number of Surviving Seedlings Day 70-57	Number of Surviving Seedlings Day 745
0	Α	70	20	20	20	26	20
	В	30	20	3	20	20	S
	С	2 0	20	10	20	20	20
	D	96	20	20	20	20	- Be-
APG-06-MA- 060311	Α	90	20	20	20	20	20
	В	20	20	20	20	20	90
	С	90	20	20	20	20	90
	D	96	20	20	20	20	90
APG-15-MA- 060311	Α	20	20	20	26	20	20
	В	20	20	20	20	20	_0C
	С	90	20	20	26	20	20
	D	<u> 20</u>	20	20	20	20	90
APG-02-MA- 060311	A	90	2()	. 20	20	20	∞
	В	90	20_	20	20	20	á
	С	90	<i>1</i> 0	20	20	20	90
	D	20	W	20	20	20	20
APG-16-MA- 060311	А	90	20	2Ô	20	20	<i>30</i>
	В	<u>a6</u>	20	20	20	20	20_
	C	90	LO	2.0	20	20	<i>a</i> 6_
	D	90	20	20	20	20	<i>a</i> 6
	Date:	11/28/11	11/24/11	11/25/4	11/26/11	11/27/11	113811
	Time:	1000	1000	1430	0930	0930	ONBO
	Initials:	KR	BP	BP	下	F	KB

<sup>0\$\(12\)5\(11\) \(\)
\(\</sup>text{0}\) \(\text{7}\) \(\text{23}\) \(\text{12}\) \(\text{F}\)
\(\text{0}\) \(\text{7}\) \(\text{23}\) \(\text{12}\) \(\text{C}\) \(\text{See previous page for control biological data.} \)

Page 21 of 71 FCETL QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

de7/23/12

Project Number: 60147216-445- (035-038)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings Day 60	Number of Surviving Seedlings Day 61	Number of Surviving Seedlings Day 62	Number of Surviving Seedlings Day 63	Number of Surviving Seedlings Day 64	Number of Surviving Seedlings Day 65
0	Α	20	20	70	20	70	20
	В	70	20	20	20	20	20
	С	20	20	20	20	20	20
	D	20	20	20	20	20	20
	Date:	11/29/11	11/30/11	12/11/11	12211	12/3/11	12/4/11
	Time:	0900	0915	0940	0900	1130	1100
	Initials:	ale for 187	SOFORBP	defor BP	\$≈	de Grame	* for AMP

Page 122 of 11 FCETL QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

JR 7/2012

Project Number: 60147216-445-(036-038)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings (1 Day 72 54	Number of Surviving Seedlings Day 73/0	Number of Surviving Seedlings Day 74	Number of Surviving Seedlings Day 75	Number of Surviving Seedlings Day-76	Number of Surviving Seedlings Day 77	5 66
0	Α	20	20	20	20	30	20	
	В	20	20		20	20	do]
	С	20	20_	20	30	2	80]
	D	20	20	20	30	90	30_	
APG-06-MA- 060311	Α .	20	20	20	20	80	20	
	В	20	20	20	20	30	20	
	С	20	20	20	20	20	30	
	D	20	20	20	Q,D	20	20	
APG-15-MA- 060311	Α	20	20	20	20	30	30	
	В	20	20	20	20	20	20	
	С	20	20	20	20	20	20	
	D	20	20	20	20	90	20	
APG-02-MA- 060311	Α	20	20	20	20	20	20	
	В	20	20	20	20	30	20	
·	С	20	20	20	20	20	30	ļ
	D	20	20	20	20	20	90	
APG-16-MA- 060311	Α	20	20	20	20	20	Q0	
	В ,	20	20	20	20	90	20	
	С	20	20	20	20	90	30] .
	D	20	210	20	20	<u>26</u>	20	
	Date:	11/29/11	11/30/11	12/1/11	12/2/2	12/3/n	12/4/11	
	Time:	0900	0915	0940	0900	1130	1100	
	Initials:	86	98	BP	Ø	An	An	

0 to 1215/4E 0 to 7/23/12, 5

³ de 7/23/12, Cf-see previous page for control biological data.

Page <u>23</u> of 7/1 FCETL QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

A 7 23 12

Project Number: 60147216-445-(035-038)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings Day 66	Number of Surviving Seedlings Day 67	Number of Surviving Seedlings Day 68	Number of Surviving Seedlings Day 69	Number of Surviving Seedlings Day 70	Number of Surviving Seedlings Day 71
0_	А	20	20	20	20	20	30
	В	20	20	20	20	20	20
	C	20	20	70	20	20	Do
	D	20	20	20	Jo	20	20
	Date:	12/5/11	12/6/11	12/7/11	12/8/11	12/9/11	12/1911
	Time:	1700	0830	0930	0900	1155	1156
•	Initials:	*	F	AFORAMIZ	AB	F	KB

Page of of TI FCETL QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

1/20/10

Project Number: 60147216-445- (035-636)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings Day 66	Number of Surviving Seedlings Day 67	Number of Surviving Seedlings Day 68	Number of Surviving Seedlings Day 69	Number of Surviving Seedlings Day 70	Number of Surviving Seedlings Day 71
0	А	20	20	90	20	20	20
	В	20	20	306	26	20	30
	С	20	20	20	20	20	30
	D	20	20_	20	20	20)	-Sec_
APG-06-MA- 060311	А	19 *	19	19	(q	19	19
	В	20	20	2D	Zo	20	<u> 20</u>
	С	20	೭೦	20	20	20	<i>30</i>
	D	20	20	90	De	20	90
APG-15-MA- 060311	Α	19 x	19	19	19	19	19
	В	20	<u>ک</u> و	20	20	20	26
	С	<i>2</i> 0	20	<u> </u>	<u>Jo</u>	20	Ó
	D	20	20	20	20	20	- 90
APG-02-MA- 060311	Α	19 X	[9	19	19	19	19
	В	20	20	99	20	20	20
	С	20	20	20 20	90	20	So
	D	20	20	90	30	20	90
APG-16-MA- 060311	Α	19*	19	19	19	19	19
	В	20	20	20	<i>J</i> 0	20	20
	С	20	20	30	20	ટ૭	90
	D	20	20	विष	20	20	_ 26
	Date:	12/5/11	12/6/11	19/7/1	plalu	29/11	Wille
	Time:	1700	<u> </u>	0930	6960	155	1155
!	Initials:	oje .	K	An	Any	R	VB.

× one plant sacrificed for weight it length measurement 0+07/23/12,E

@spilesliz, C+- see previous page for control bidogizal data

Page 25 of 71 FCETL QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

de 1/23/12 Gum 07/23/12

Project Number: 60147216-445- (035-038)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings Day 72	Number of Surviving Seedlings Day 73	Number of Surviving Seedlings Day 74	Number of Surviving Seedlings Day 75	Number of Surviving Seedlings Day 76	Number of Surviving Seedlings Day 77
0	Α	20	20	20	20	20	20
	В.	2	20	20	10	20	20
	С	A	20	ට	20	20	20
	D	<i>></i> 0	20	20	10	20	20
	Date:	19/11/11	12/12/11	12/13/1	12/14/11	12/15/11	12/16/11
	Time:	0930	0936	0930	0900	1600	0900
	Initials:	B	Ŧ	KB	deforbe	ARFOYBP	K

FCETL QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

AR 7/26/12 AM: ARCO1/24/12

60147216-445- (0315-036)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings Day 72	Number of Surviving Seedlings Day 73	Number of Surviving Seedlings Day 74	Number of Surviving Seedlings Day 75	Number of Surviving Seedlings Day 76	Number of Surviving Seedlings Day 77
0	А	20	20	20	20	20	20
	В	20	20		20	10	20
	С	30	20	<i></i>	/2	7	20
	D	30	20	Dio .	20	20	80
APG-06-MA- 060311	А	19	19	19	19	19	19
	В	20	20	20	12	10	20
	С	30	20	90	20	1 Ô	20
	D	Эo	20	90	20	20	20
APG-15-MA- 060311	Α	19	19	19	19	19	19 ⁰ 18
	В	20	20	20	20.	20	20
	С	20	20	as	20	20	20
	D	<u> 20</u>	20	90	വ	20	20 024
APG-02-MA- 060311	Α	19	19	19	19	- 19	19
	В	<i>Ъ</i>	20	90	20	20_	20
	С	90	20	90	20	20	20
	D	<u> </u>	20	30	20	20	20
APG-16-MA- 060311	Α .	79	19	10	19	19	19
	В	50	20	30	20	20	20
	С	90	20	<i>So</i>	20	10	20
	D	<i>∂</i> 0	20	90	2.0	20	20
	Date:	nlular	12/12/11	12/13/1	12/14/11	12/15/11	12/16/11
	Time:	0930	09 30	09.30	0900	1660	0900
	Initials:	B	R	Ke	Actores	BP	7

1 DM 1/13/12 E

@#1/23/12/E

³ to 7/23/12, Cf - see previous page for control bio logical data.

Page 10 of 11 FCETL QA Form No. 069 Revision 1 Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

2012

Project Number: 60147216-445- (035-636)

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

inm 07/3/12

Conc.	Test Replicate	Number of Surviving Seedlings Day 78	Number of Surviving Seedlings Day 79	Number of Surviving Seedlings Day 80	Number of Surviving Seedlings Day 81	Number of Surviving Seedlings Day 82	Number of Surviving Seedlings Day 83	Number of Surviving Seedlings Day 84
0	А	19	19	19	19	19	02-019	19
	В	19	19	19	19	19	02019	19
	С	20	20	20	0 M 20	20	20	20
	D	20	20	20	0 19,20	20	20	19-20
APG-06-MA- 060311	А							3
	В							
	С							
	D							
APG-15-MA- 060311	Α							
	В							
	С						·	
	D							
APG-02-MA- 060311	Α						·	
	В				·	··· · · · · · · · · · · · · · · · · ·		
	. <u>C</u>							
	D							
APG-16-MA- 060311	A							
	В							
	С	<u> </u>		·				
	D							
	Date:	12/17/11	12 18 11	12/19/11	12/2011	12/2MM	12 22 11	12 73 N
	Time:	0900	0930	1338	1530	0820	0835	0900
	Initials:	F	K _	PM	8	c4.	10 TE	DM

0 0 2 20 12 8

g himfor DM 07/23/12C:20 plants surrived at test-term.

0407/23/12, E

Page For No. 069
FCETL QA Form No. 069
Revision 1
Effective 06/93

SEED GERMINATION BIOLOGICAL DATA

2012

Project Number: 60147216-445- (035-036)

NW 87/2/8/1

Test Species (Circle): Lactuca sativa Other (Specify): E. crusgalli

Conc.	Test Replicate	Number of Surviving Seedlings Day 85	Number of Surviving Seedlings Day 86	Number of Surviving Seedlings Day 87	Number of Surviving Seedlings Day 88	Number of Surviving Seedlings Day 89	Number of Surviving Seedlings Day 90	Number of Surviving Seedlings Day 91
0	Α	19	iq	19	19	19	19	19
	В	Щ	ાલ	ાવ	19	19	19	19
	C	Jo	26	20	De	20	20	20
	D	3)49 20	3) JY 20	334 26	(3)24-20_	31920	3/4/20	019-20
APG-06-MA- 060311	Α							
	В							
	С							
	D							
APG-15-MA- 060311	Α							
	В							
	С							
	D							
APG-02-MA- 060311	Α							,
	В							
	С							
	D							
APG-16-MA- 060311	Α							·
	В							
	С					·		
	D							
	Date:	12 24 11	12/25/11	12/26/11	12/27/11	12/28/11	12/29/11	12 30 11
	Time:	000	1445	0830	0947	0436	0845	1345
,	Initials:	m	dos	, do	Ars	R	TE 30 alouts	K

1) DM 1/13/12 E

@de7/23/12, E 3 Granfor ABETIC 07/23/12 0: 20 plant ration

Page O of 7/ FCETL QA Form No 089 Revision 0 Effective 3/95

CHEMICAL DATA - Up to 14-Day Test

de 7/20/12

Project Number: 60147216-445- (025036)

Test Species (Circle): D. magna H. azteca C. tentans E. foetida
L. variegatus Other (Specify): E. crusgalli (MM47)23 (17)

-,			1210 11	<u> (00</u>	<u> </u>			vanega	us Otti		,,. =				Osomo	
	T i						 -	Tompo	rature (°	<u>~\</u>						
Conc.	Rep.	0	1 1	2	3	4	5	6 T	7	8	9 1	10	11	12	13	14
Conc.	itep.	New	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old
0	А	21				22				20				ချ		
	В		30			,	23				19				21	
	С			23				2				21				20
<u></u>	D			\$ (0)	23				20				21		1	_
APG-06- MA-060311	Α	21				23				<u> </u>				ූූූ		
	В	····	30				23				20				24	
	Ç			23				22				2			l	21
	D		1		<i>ର</i>				19			20	21			<u></u>
APG-15- MA-060311	А	21				23				20				ವಿష		_
	В		31				22				19				21	
	С		\	23			•	22				21				21
<u> </u>	D			·	21				19	<u> </u>			21			
APG-02- MA- <u>060311</u>	А	21				21				20				ವಿ ವ		
	В		め り				24				2 0				21	`
	С		ļ	33				21				22				2
	D				S				20				22	1		
APG-16- MA-060311	A	21				23	,			21				၌ခ		
<u>.</u>	В		ම ට				23				19				21	
	c	ļ	ļ`	23				21				2	<u> </u>	<u> </u>		NE
<u> </u>	D		<u> </u>		31			13.1	19			2/2	120) 		
	A	<u> </u>	<u> </u>			<u>-</u>		<u> </u>					<u> </u>	<u> </u>		
<u></u>	В		-		-			 						-		
	 c	<u> </u>	<u> </u>								<u> </u>					<u> </u>
	D	1	<u> </u>		<u> </u>			l	 	<u> </u>	<u>. </u>	<u> </u>	<u> </u>			<u> </u>
Meter	#	D41	DI	D1)	DAI	1041	1041	124	Duff	MI	PA)	Dell	124	1771	DLA	DU
Date		1/30/1	ت مما.	10)	178/1	10/4/11	10/5/11		10/7/4		101911	· ·	Т,	Jarshi	10/13/11	
Time Initial		168F	S ONG	As Jan	8m	 	1890 AP	00/00	₩ ₩	OGUS KB	1000 KB	1730	1515	N. A.	1640	100°

Page _ Revision 0 Effective 3/95

CHEMICAL DATA - Up to 14-Day Test

Test Species (Circle): D. magna H. azteca C. tentans E. foetida Project Number: 60147216-445- 63 5-636 L. variegatus Other (Specify): E. crusgalli (rum 07/23/12

	F 1				 			Tompo	erature (°	C)						
Conc.	Rep.	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
001101		Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old
0	А		عد				19				16				17	
	В			20				17				18				1/4
	С				16	-			18				13			
	D	21				14				18				17		
APG-06- MA-060311	А		22				18				اد				17	
	В		92 P	20				19				19	No.			16
	С				1.7			·····	18	_			14			
	D	22			• •	17				18				15		
APG-15- MA-060311	Α		22			,	18				17				17	
	В		O _Y	20				10				18				15
	С				17				18				13			
	D	22	į			17	·			18				16	,	
APG-02- MA-060311	Α		22				19				16				16	
	В			20				19				19				16
	С				17				19				14			
	D	21				16				9				16		
APG-16- MA-060311	Α		3 2				18				17				17_	
	В		l.,	δ				[9				18_			<u> </u>	U
	С				17				18				14	14		
	D	22				17				17		<u></u>		15	<u> </u>	
	A															
	В			ļ			<u>.</u>	ļ. <u>.</u>			ļ <u> </u>					
	С									-	<u> </u>					
	D										<u> </u>					
Meter	‡	041	D ⁴ I	140	pul	IHA	D41	141	P41	D41	О Ч	D41	QΥI	D41	1241	<u>541</u>
Date:		10/15/11	willy	णानाण	rollall	10/19/11	10/20/11	10/21/11	10/22/11							
Time		1600	69,00	1545	9900	ONO	1400	Mb	1540	1520	T -			1600	1	
Initials	:	88	Any	E	<i>A</i> 57	ks	K	W	F		AS	DM '	<u>~</u>	<u> </u>	DM	¥B_
(O to	10/16/1	(alp	O F	1 lol 3	aln e	4 Ø :	√ 10/ 6-80	36/1,6	r (I	He 7/23	3 12, €				

Page 200 of y FCETL QA Form No 089 Revision 0 Effective 3/95

CHEMICAL DATA - Up to 14-Day Test

					СН	EMICA	L DAT	A - Up -	to 14-	Day Te	est			de	7/201	N2_
Project N	lumb	er: <u>6014</u>	7216-44	15 <u>-</u> (0	35-0	36)	Test S	pecies (<i>varieg</i>	Circle): atus Ot	<i>D. magn</i> her (Spe	a <i>H.</i> az ecify): <i>E.</i>	teca C crusga l	. tentar Ili	s E fo	etida um 07	
								Temp	erature (°C)						
Conc.	Rep.	30	31	32	33	- 34	35	36	37	38	39	. 40	41	42	43	. 44
		Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old
0	Α			17				19				18				19
	В				20				20				19		ĺ	
	С	16				20				17				18		
	D		17				21				21				ବଠ	
APG-06- MA-060311	Α			17			,	19				18				19
1417-000011				 ' 	20	·		- '	19			10	19	-	<u> </u>	1
	B C	16	·	<u> </u>		19			14	19			17	19		
	ם		17				20				19			 	19	
APG-15-	Α			\.												
MA-060311			_	ાવ	LON.	<u> </u>		19	19			20	Ac			19
	В	16			101	19			<u> </u>	18			19	18		
	D	10	18	· · · · · · · ·		1-1-1	19			' 0	20			10	19	
APG-02-	A		10					4.	<u> </u>			101	<u> </u>	<u> </u>		
MA-060311				ly_	-70			20	la la			18				19
	В	١١٥			20	19			19	19			20	10		<u> </u>
	C D	100	18			1.7	20			1-1	19		40	18	19	
APG-16-	A		10	<u> </u>		<u> </u> 	20	<u> </u>		<u> </u>	111	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
MA-060311	_			n	10			19				19			· .	20
	В			<u> </u>	10	100		·-··	19	্ধ			19	10		
	С	1/0	14		-	19				18	10			18		
	D		17	<u> </u>	<u> </u>	<u> </u>	19				19	<u> </u>	<u> </u>	<u> </u>	19	
	A				· ·									 -	<u> </u>	
<u> </u>	С					 		<u> </u>				<u> </u>				-
	D										 					
Meter#		140	D41	041	bull	MI	1141	DAI	D41	DYI	241	041	DH	541	Dri	D41
Date:		10/30/11	10/31/11		11/2/11	11311	ululy		41.1.	11/2/11	11/8/11			Mala	(In)	7/3/1
Time:		1045	0845	0460	0910	Door	1130	0940	1030	1125	0948		0900	0910	E .	' 11
Initials:		Ks	BP	M	de	188	₩	199	KP	Kn Kn	89	R	BP	KB	Am	An

Odo7/23/12,E

Page $\frac{32}{2}$ of π FCETL QA Form No 089 Revision 0 Effective 3/95

CHEMICAL DATA - Up to 14-Day Test

Je7/20/12/12 Test Species (Circle): D. magna H. azteca C. tentans E. foetida Project Number: 60147216-445- (035-038) L. variegatus Other (Specify): E. crusgalli Temperature (°C) 55 56 Rep. 45 46 47 48 49 50 51 53 54 59 Conc. Old 19 19 21 Α 0 Q 20 193 20 В S 20 C 19 19 18 20 D APG-06-19 20 19 MA-060311 29 20 19 <u>බ</u> 2 17 18 ¢ 19 19 19 20 D APG-15-50 19 20 MA-060311 22 20 21 В 18 18 21 2 С <u>20</u> 19 21 19 D APG-02-21 19 20 MA-060311 21 19 20 В 18 18 21 21 С 19 19 0 21 D APG-16-19 19 MA-060311 20 18 20 В 20 18 7 21 С 19 19 19 21 D Α В D D41 241 D41 140 2041 140 DUI DUI 1741 Meter# 11/18/11 1/16/11 11/17/11 11/23/11 11/25/11 11/25/11 11/25/11 11/26/11 मिलीम विद्विप 1119111 11/20/11 W21/11/20/11 Date: 0900 1430 0930 0845 0900 1630 1430 1345 0830 0915 0880 1000 0930 OPRO Time: BP BP æ Initials:

020123112,E

Page Sof 7(FCETL QA Form No 089 Revision 0 Effective 3/95

CHEMICAL DATA - Up to 14-Day Test

					СН	EMICA	L DAT	A - Up	to 14-[Day Te	st 			A.	2/20	12
Project N	lumbe	er: <u>6014</u>	7216-44	5: (63	5-039	<i>(a</i>)		variega	Circle): <i>L</i> atus Oth	ner (Spe				s E. foe		
					-		Temperature (°C)									
Conc.	Rep.	60 `	61	62	63	64	65	66	67	68	69	70	71	72	73	74
		Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old
0	Α	19	··········			18				17			<u> </u>	16		
<u>.</u>	В		惕				17				17		<u> </u>		16	
	С	· · · · · · · · · · · · · · · · · · ·		18				16	- 1			16				16
	D			··	18				16				1			
APG-06-	A	19				19				18				14	:	
IA-060311	В		18			1 1	18			10	17		<u></u>	101	15	
	С		_10	19			1.0	16		:		14				15
	D				17				16		-, "		15			
APG-15-	А	10		·		•			·	/سلام						
A-060311	<u>:</u>	19	1110			18	10			15%				Ju	15	 ,
	B :		17	101			18	18	<u>,</u>	<u> </u>	10	15	٠.		ا دا	ـ دا
	C			19	\ \.			١٨	سوا	-	:	()	11.			16
	D				NO				15				16			
APG-02- 1A-060311	Α	19				19				15				ોમ		
	В		18				17				ľΊ				16	
·	С			19				17				16				16
	D				[7]				16				16	<u> </u>		
APG-16-	А	19				18				17				14		
1A-060311	В		18			10	177				15			101	15	
<u>.</u>	C		,,,	19]]	17				16	<u> </u>			16
	D			, .	W				16				1/0			
	A		,		V		<u> </u>							<u> </u>		
	В			•												
	С															
	D															
Meter#		DM	D41	1041	oul	041	D41	D41	D41	Dul	Dul	D41	MI	241	041	041
Date:		Wall	11/20/0	11/1/11	13/11/	10/3/1	12/4/1	12/5/11	12/6/11	19/7/11	12/8/1	12/9/11	197	while	 	
Time:		0000	0415	0940	00/00	1130	1080			0900		1155	T	0935		093
Initials	 :	38	19	的	X	An	An	R	K	Am	AB	F	B	Ks	12	KR

FCETL QA Form No 089 Revision 0 Effective 3/95

CHÉMICAL DATA - Up to 14-Day Test

					CHE	MICA				Day Te				-18	7/20	5/10
Project N	lumbe	er: <u>60147</u>	7216-44	5 <u>-</u> (03 ₀	5-038	<u>a</u>	Test Sp	variega	tus Otl	D. <i>magne</i> ner (Spe	a H. az cify): E.	teca C. crusgal	. tentan II	s E. foo	etida ∧∪ oʻ	1/23/1
									erature (
Conc.	Rep.	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89
		Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old	Old
0	Α		18				17				19				17	
	В			17				18			<u> </u>	re				18
	c			'	17		1		77				101			
	D.	18				17				19				rg.		
APG-06- 1A-060311	A		16													
17-000311			-Ψ	17									† <u> </u>			
	В			1									 			<u> </u>
	С	€											 		<u> </u>	<u> </u>
	D	17								<u> - </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>
APG-15- //A-060311	Α		16													
	В			[7]		.										
	С				·											
	D	16										,				
APG-02- //A-060311	А		17													
//A-000311	В		11	17		-							1			
	С														ļ	
	D	17											٠.			
APG-16- //A-060311	А		17	·												
MA-00031	В		<u> </u>	lb												
	С			. 0				-								
	D	16														
	А															
	В				ļ				,	<u>.</u>			<u></u>			
	С								•		<u> </u>		<u> </u>		<u> </u>	
<u> </u>	D		<u> </u>	ļ	<u> </u>				 				<u> </u>			
Meter	#	041	941,	-	D41	DHI		D41	Decl	D41	1741		DAL	IPG	Ori	DHI
Date		12/14/11		12/16/1	12/7/1	12 8 1	12/19/1	12/20/1	धाराष	12/22/1		ppola		nopely	phy	15/58
Time	<u>. </u>	1600	1600		,	0870	1338	15 30	04.82		0905	1200	MIS	0820	0915	
Initials	i:	tw	BP	F	te	R	DM	BP 167 23	An	F	DM	AC7	₩	<i>P</i> 7	Ab	R

© 35 Page 20 of 7\ FCETL QA Form No 089 Revision 0 Effective 3/95

CHEMICAL DATA - Up to 14-Day Test

Test Species (Circle): D. magna H. azteca C. tentans E. foetida Project Number: 60147216-445-(035-03%) L. variegatus Other (Specify): E. crusgalli Gum or |23/12 Temperature (°C) 90 91 95 96 97 98 99 100 101 103 92 93 102 104 Conc. Rep. Old 22 0 Α 22 19 21 С 2 APG-06-MA-060311 С D APG-15-Α MA-060311 В ¢ D APG-02-Α MA-060311 В С D APG-16-MA-060311 В С D Α В С 140 Meter# 12/24/11 12/50/11 Date: 0845 1345 Time: Initials:

Page 200 of 7 FCETL QA Form No. 055 Revision 2 Effective 1/94

DAILY TOXICITY TEST LOG

Project Number: 60147216-445- (635-638) Test Species (Circle): C. dubia D. magna D. pulex P. promelas O. mykiss Other (Specify): E. crusgalli

General Comments		Hydration: 20 ml Hoaglands [©] Selution	Initials/Date
Test Day 0	Test Solution Mixed at: 1330-1600 Light Intensity Test Organisms Added at: 1330-1600 388 ft-c		9/30/11
	TEMPO 200 C		140-1-4
Test Day 1	humidaty = 531. (meter 071) Temp. 22.3 (avg) Min/max 23.6-20.8-22.6	l Vone/MG	10/1/11
	Hamilton 590/0 (Maker# D71)	7 1000	1,011111
Test Day 2	Homility = 59% (Meter# D71) Temp. 23,2°C min/max 21,6-23,6°C (X) Homility = 56% (meter# D71)	None/no	10/2/11
lest Day 3	Humidity = 56% (muter # D71) Temp 22.8°C min/max 22.0-24:1' Humidity = 50% (muter # D71)	@ 1000	1013/11
1 est Day 4	Humidity = 50°/6 (meter # D71) Tonp 23:3°C min/max: 225-24.3°C	Hore/MQ	1014/11
	thimidity = 50% (mester#D71)		'
Test Day 5	Hymidity = 50% (nester #D71) temp - 23,3°C min/max 22.7-24,2°C	None/ma	10/5/11
	Humidity 56 (meter # D71)		
l est Day 6	Humidity 53% (meter # D71) temp.: 21.9°C min/max: 238-21.9°C		10/6/11
	thmulity: 48% (meter #071)		
	throughty: 48% (meter #071) Temp: 196°C min/max: 13.5-20.6°C	1 ' 1 '	10/11
	HVMI dity: 424 (meter # D71)	·	
Air Test Day 8	HVMidity: 42x (meter # D71) Temp = 20.3°C minimax: 19.3-20.5 (x)	suar mo	KB 10/8/11
	Humiduty: 47% (meter # D71)		
		I On and water	> 1 o 1 1 1

Om Milil wp

347/23/12; cf: modified forsuch mutriont solution

941/23/12,E

DAILY TOXICITY TEST LOG

	e 7/20/12
Project Number: 60147216-445- (035 -036)	6×m v7/23/12
Test Species (Circle): C. dubia D. magna D. pulex P. promelas O. mykiss Other (Specify): E. crusgalli	

General Comments		Hydration: 20 ml Hoagland's ② Selution	Initials/Date
1	Temp = 19.6°C 19.5°C-20,3°C (x) (meter D71)	nore ma	10/9/11
1 CSL Day 10	Humidity: 5000 (meter 071) Temp = 22.0°C 21.8-22.1°C (R) Humidity: 5000 (meter 071)	None/Ma	* 10/10/1 u
	Humdity = 5th (meter 071) Temp= 23.6°C 21.8-23.4°C (x) (meter 071)	20 ml i loagland's @ 1500 /MQ	10 11 11
	Humidity = 549. (meter 171) Temp = 22-7°C 22.2-23.4°C (x) = 40% (meter 171)	nare/ma	
l identification	10mp=226°C 23.3-21.3°C	Nonema	10/13/11
Test Day 14	Humidity = 527. (meter D71) Temp = 22.4 °C 22.4.24.6 °C Humidity 50°l controls (meter #071) Jemp: 22.9 °C 22.3 - 24.6 °C	20 ml Hoagland's @ 1005 / MQ	10/14/11
Air Test Day 15	Jamp: 22.9°C 22.3-24.6°C (N) Humidity 57% (meter D71)	nove/Ma	BP 10/15/11
Test Day 16	Temp= 23.3°C 23.2-24.8°C (meter D71) Temp= 23.3°C 23.2-24.8°C	None ma	10/16/4
Aiv Test Day 17	Temp= 23.3°C 23.2-24.8°C (X) Humidity 50% (meter 071)	DI/Ma	17/10/10/10

OAR FORTKOTIONZE

@#7/23/12; Cf:modified Gorsuch nutrient solution
@#7/23/12, E

Page of 11
FCETL QA Form No. 055
Revision 2
Effective 1/94

DAILY TOXICITY TEST LOG

Project Number: 60147216-445- (035-036)

Test Species (Circle): C. dubia D. magna D. pulex P. promelas O. mykiss Other (Specify): E. crusgalli

		1	
General Comments		Hydration: 20 ml H eagland o Solution	Initials/Date
Test Day 18	Det: 20.0°C 20.0°C - 21.3°C Fenp (x) Humrdirly: 44°6 (Meter DII) Temp: 19.2°C 19.2°C (x)	20 ml Heagland's @09.00	10/18/4
l ' '		hard DI	KB 10/19/11
Test Day 20	Humiduty: 3990 (meter D71) Temp: 22.4 °C 20.6-22.4 °C (X) Humidity: 41% (meter D71)	NOW DI	10/2014
Air Test Day 21	Humidity: 41% (meter D71) Temp. 22.21.6°C 229-21.6°C (x) (meter D71) Humidity: 44% (meter D71)	20 ml Heagland's @ (OOO)	10/2/11 3
Test Day 22	Temp: 23.2°C 21.8-23.5°C (meter D71)	None/MQ	R 10/22/11
Test Day 23		none/ ma	10/23/11
Test Day 24	Tenp: 22.1-24.6°C	wore ma	AB 10/34/4
Test Day 25	(x̄)	20 ml H oagland's @ 16 40 /	OM 10/25/11
Test Day 26	Humidity-44% (meter D71) Temp: 17.9°C 17.77 -22.1°C (X) Humidity: NR (meter D71)	Nonelos	10/26/11

OAB 10/16/11 2 NR = NOT RECORDED

@\$10/21/11C

3 ARFOR AMP 07/10/12E

@1/23/12; cf: modified Gorsuchmutnent solution

0-123/12, E

Effective 1/94

DAILY TOXICITY TEST LOG

de 7/20/12

Project Number: 60147216-44	5- (1035-038)			cum or 12112
Test Species (Circle): C. dubia	D. magna D. pulex	P. promelas	O. mykiss Ot	ther (Specify): <i>E. crusgalli</i>

General Comments		Hydration: 20 ml Heagland's solution	Initials/Date
Test Day 27	Temp: 19.8°C 17.8-19.8°C (Temp: 19.8°C (meter D71)	none DI	10/27/11
Test Day 28	Humidity: 42% (meter D71) Temp: 19.3°C 18.9-20.3°C (X) (360,378,384,365,38) Humidity 4890 Ught Intensity ~ 3	1 137	10/28/11
Test Day 29	Tem p: 19. 200 0 19.9 20 181 0 C	LOS DI	10/28/11
Test Day 30	Temp: 26,0°C 19.9 - 20.9°C (Meter D71)	La Jack	10/30/11
Mir Test Day 31	Tens: 20-60 20-5-30-602 (R) Hourdily 4606 (meter D71)	None/DI	88 0131/11
Mir Test Day 32	(x)'	20 ml Hoagland's @ 0850	A8 (1/1/(
fhir t	tomp. 21.6°C 20.8-21.9°C Homilaty = 46% (meter 0719 Temp: 21.10°C 21.5-22.2°C	DE AM	* 2 11
Test Day 34	Temp: 21.6°C 21.5-22.0°C (x) 4 (meter D71)	rone	11/3/11
Hir Test Day 35 (Meter D71)	Temp-21.7°C 215-22.0°C (385,362,390,373,35) Humdidibs=441/ Want intensity	DI & Hostands	114111
	01/2 10/29/11 E ~365 F.1. @ 40 11/11 Wp @407/23/112, E	.C @407 23	2,cf ~ modified oursuch's sol

3007/23/12, E

@ 40 Page 29 of 71 FCETL QA Form No. 055 Revision 2 Effective 1/94

DAILY TOXICITY TEST LOG

hum 07/23/12 60147216-445- (135-036) Test Species (Circle): C. dubia D. magna D. pulex P. promelas O. mykiss Other (Specify): E. crusgalli

General Comments		Hydration: 20 ml H oagland S solution	Initials/Date
Test Day 36	Temp: 21.6°C 21.4-22.1°C	DI AM	BP .
· rest Day 36	4 unidity: 46% (Na ofex D71)		ulolu
Air Tool Doy 27	Humidity: 46% (Meter D71) Temp: 23.0°C 22.8.24.6°C	20 ml Heagland S	BP
Test Day 37		@ 10 <i>3</i> 0	11/6/11
Air Tool Day 39	Humidity: 42% (Moter D71) Temp: 21.8°C 21.6 - 23.8°C	none/DI	ntxo
Test Day 38		J DI	Wolu
Ar Test Day 39	Humi.dit; 40%. (Meter D7) Jewp: 21.3°C 21.1-22.1°C	DI/none	ВР
Test Day 39		/11010-	11/8/11
Test Day 40	Humidity: 39% (meter D71) Temp: 21.6°C 216 - 21.6°C	Var	ĸ
	Humidity: 38% (meter D71)		11/9/11
Test Day 41	T 100 000 000 1.00	20 ml Hoagland 's @ ე ৭00	BP
	4 unidity: 39% (meter 071)	0,400	11/10/11
Avv Test Day 42	1 cm 20.4. 20.7-21.6. (meter D71) Temp. 20.4. (meter D71) Temp. 20.4. (meter D71)	none	KB
(Meter 271)	Humidita: 35% Light Intensi	ty:	nhh
Test Day 43	Temp: 209°C 2016-21,3°C	NovelOI	\$w.
	Humovay: 440/0 (Meter D71)		"//อกา
Test Day 44	Temp? 20,900 20,3-21,400	Marel DI	\$m~
<u>\</u>	Humany: 43% (meser D71)		1113/11
	0 kg 23/12,E		

on 11-97-11, the lab clocks were set back one hour to 6800 to adjust time to Mountain Standard Time. All times recorded for data on this day are Mountain G-90 Standard times. Initials:

(Ddo7/23/12, Cf-modified Gorsuch motivent solution

OBP WAR &

Päge

Effective 1/94

DAILY TOXICITY TEST LOG

207	20	12	
nem	07	23/12	

Project Number: 60147216-445-(035-038)					num	07/23/12	
Test Species (Circle): C. dubia	D. magna	D. pulex	P. promelas	O. mykiss	Other (Specify): E. crusga	alli
General						Hydration () Initials/Date

		· · · · · · · · · · · · · · · · · · ·	
General Comments		Hydration () 20 ml Hoagland's solution	Initials/Date
ASI	Temp: 19.3°C 19.3-21.1°C		10/mt
Test Day 45	(X)		110°s
1	' '	nahaha	la trasta
(meter DII)	Homoth 38%. Mant Intensity 310ft Temo: 20.3°C 20.2 - 20.3°C	none DI	11/14/11
Avr			下
Test Day 46	(x) 2 bulbs changed out Af	@ IU 2 O	
(meter D71)	Humidity' 42%, & foil reflectiveshield added	@ 1430, Light intensity	11/15/11
Air	200.00460	DI HÓIF	to
Test Day 47	Temp: 21.6°C 20.22 22.10		1, 8b
	Humidty 34% (meter D71)		11/16/11
Air		· · · · · · · · · · · · · · · · · · ·	
Test Day 48	Temp: 22.0°C 21.7 - 22.3°C	1.00	K
1000 200 10	1 1 1 2011	none/DI	u117/h
	Humidity: 30% (meter 071)		
Air	Jemp: 21.8°C 21.7-22.6°C	מנו	BP
Test Day 49	(x)	DI/nne	4111
	Humiday: 34% (meter D71) Temp? 23.2°C 23.1-23.2°C		11/18/11
Air	Temp 23.2°C 23.1-23.2°C	20 ml Heagland's	
Test Day 50	(\$)	l a	K
	11 . 1. 1. 41 / (male - 171)	1345	11/19/14
Av	Humidity: 41% (meter D71) Temp: 22.2°C 219-22.3°C		_
II	180 55.50 21.4- 52.7 C	now/PI	T
Test Day 51	1	<i> </i> PI	1 1/2 1
	(Meter DII)	<u> </u>	11/20/11
Air	Temp: 22.100 219-22.8°C	HOAGIANAS(C)303	F 1E
Test Day 52	(X)	Nove/DT	; ',
meter 071)	Humidity: 43% Light in tensity =~380 A-	e (NL	11/21/11
Air	Temp: 228C 21.3-22.8°C		
Test Day 53	(\$\vec{x}\$)	NoveDI	Am
100.20,00		1100	। । । ।
	Humidity: 38% (neter D71)		
	المناسبة والمناطق المناطق المن	colution	

Ode 7/23/12, Cf-modified Gorsuch nutrient solution

128/12, E

FCETL QA Form No. 055 Revision 2 Effective 1/94

DAILY TOXICITY TEST LOG

64m 07/23/12 Project Number: 60147216-445- (635-036) Test Species (Circle): C. dubia D. magna D. pulex P. promelas O. mykiss Other (Specify): E. crusgalli

		i	
General Comments		Hydration: (3) 20 ml H oagland's solution	Initials/Date
Test Day 54	Temp-21.0°C 21.0-21.1°C (X) Aumidity-3490 (meter D71) Temp: 21.2°C 20.9-21.7°C	none	॥/भ्य।। १४३
Test Day 55	Temp: 21.2°C 20.9-21.7°C H unistry: 32% Light (meter D7) Emp: 22.5°C 21.2-22.7°C	20 ml Hoagland 's @ 100()	BP 11/24/11
Test Day 56	(4)	MudDI	8P
meter Dil) H	truidity: 32% Kight intensity: 382 ff-C		11/25/11
meter DII) Air Te Test Day 57	emp: 21.7°C 21.6 -22.7°C	20 ml Hoagland 's @ i	F
H	tunidity: 24% (moter D71)	[®] 1330	11/26/11
Test Day 58	tumidity: 24 % (Meter D71) emp: 20.1 °C 19.8 - 21.5 °C (x)	NOW DI	F. 11(271)
Test Day 59	Humidity 30:1. (Meter D71) TEMP: 20.3°C 20.1-20.7°C	hone	11/28/11 KB 11/52/11
Test Day 60	Humidity = 2790 (Meter D71) eup: 19.9°C 19.9. 20.8°C (x) (meter D71)	20 ml Heagland's @ \$900	BP 11/29/11
Air - Test Day 61	Temp: 20.5°C 20.3-21.0°C	33 10-	BD
	Humidaty: 39% (meter D71)	Nove DI	11/30/11
Hir y	Humidity: 39% (meter D71) temp: 20.9°C 20.7-21.5°C	20 ml H oagland's	BP
#	twidity: 40% (meter 271)	1520	12/1/11

OBP 11/25/11 WP

@do7/28/12, Et-modified Forsuch nutrient solution

Page of 71 FCETL QA Form No. 055 Revision 2 Effective 1/94

DAILY TOXICITY TEST LOG

Project Number: 60147216-445- (035-036)

Test Species (Circle): C. dubia D. magna D. pulex P. promelas O. mykiss Other (Specify): E. crusgalli

			· · · · · · · · · · · · · · · · · · ·
General Comments		Hydration: 20 ml Hoagland 8 solution	Initials/Date
Aw	temp. 13.9°C 184-19.0°C	AMODE	×
Test Day 63	(F)	PMIDE	12/2/4
(meter (M)	Humidity = 3311. Light Intensity = Temp. 20.5°C 18.9-20.9°C	38 ft-c	1 2 1 - 10 1
Aw	Temp. 205°C 189-20.9°C	20 ml Hoadland's	4
Test Day 64	(x)	20 ml H oagland's @ \YS	12/3/11
	Humility = 30°10 (meter 071) Temp. 17.8°C 16.8-19.8°C (x)	AM: OI PM:DI	[1-7071]
Air	Temp. 17.8°C 16.8-19.8°C		
Test Day 65		DIONLY	12/4/1
	Humidity = 3200 (Meter D71)		1 4/4/17
Air	Humidity = 3200 (neter D71) Themp: 19.6 °C 18.1-19.6 °C (X)	20 ml Hoagland's	K
Test Day 66	(x)	@ 1110	15151.
	Humidity: 30% (Meter 071) Temp: 20.0% 19.5-21.1°C	1025/DE	12/5/ IJ
			K
Test Day 67	(¾)	DI	1 . 1
	Humidity: 30% (Meter 1071)		12/6/11
Hir	Humidity: 30% (meter 171) Top Temp: 19.8°C 18.2-19.9°C		son !
Test Day 68		DI	13/7/11
	Homolty: 30% (meter D71)	anly ®	
Air	Temps 16,300 14,6-27,500	20 ml Haadland'a	AB
Test Day 69	(x) Dala 350/0 (mala 157)	@0850 /DI	12/8/11
1	Flowral by , 55 to (Meter DII)	100	
Air	Temp: 16,10e 14.6-27.300		E
Test Day 70	(X)	DI	12/0/
(meter D71)	Humidity: 35% Light Intensity = Temp - 18.8°C 16.9-25.7°C	(4)	12/9/11
I Am	temp - 18.8°C 16.9-25.7°C	20 ml Hoagland's	K3
Test Day 71	(₹)	@ 1/45/DI	Polioli
	Humidish : 3495 (Meter D71)	1 1 2	18/110/1/

0 7 1215/11 E 000 1217/11 E 000 1217/11 E

Oto 123/12, Cf-modified Gorsuch nutrent solution.

Page 7 of 1 FCETL QA Form No. 055 Revision 2 Effective 1/94

DAILY TOXICITY TEST LOG

Project Number: 60147216-445- / 635-036 Test Species (Circle): C. dubia D. magna D. pulex P. promelas O. mykiss Other (Specify): E. crusgalli

General Comments			Hydration: (5) 20 ml Heagland's solution	Initials/Date
Test Day 72	(ヌ)	15.9 - 20.7°C	DI LOS	KB
	Humidity: 35	2 16 (Meter DII)	(D)	
∤√₩ Test Day 73	Temp: 18.7 °C	5% (meter 071) 15.9-20.7 °C	20 ml H oagland's @ 0930	\mathbb{X}_{I}
	Humidity: 31/	(meter D71)	DI	12/12/11
Test Day 74	temp: KE.10C	(meter D71) 15.9-20.70C	DITIONS	12/13/11
	Humidiky 36°	no (meter D71)	,)	1210111
Hìr Test Day 75	Temp: 19.4°C	no (meter D71)	20 ml Hoagland's @ \ 60 ⁰	mt
	Him ha		DI	12/14/11
Air Test Day 76	(x)	(meter D71) 16-8-21-7°C (meter D71)	EX/None	8P 12/15/11
Test Day 76 Moter 070	17 tomp: 199'C	168-21.7°C (394,382,304,371,30) Light Intensity = 3		12/16/11
Test Day 79	Humidity: 30%. Temp: 18.6°C (x)	16.8-21.7°C	01	F
	Humidity: 30%	(Meter D71)		12/17/11
79 AV	Temp: 18.8°C	(meter D71)	i) T	TY.
②	Humidity 33%	(nuter D71)	OI	12/18/11
90 A Test Day 81	V-Temp: 18.0°C	(noter D71) 16.6-21.7°C	20 ml H oagland' s @	PM.
(E)	(x) Hamidily 35%	(Meter D71)	1340/DI	12/19/11

34 315115 E

8 207/23 N2,E

Odor 12312 Cf - modified consuch nutrien 94 solution

FCETL QA Form No. 055 Revision 2 Effective 1/94

DAILY TOXICITY TEST LOG

Project Number: 60147216-445- (635-636) Test Species (Circle): C. dubia D. magna D. pulex P. promelas O. mykis's Other (Specify): E. crusgalli

General Comments	Air	Hydration: 20 ml Hoagland \$ solution	Initials/Date
Test Day 18	Ferp 18.6° L 16.8-21.7° C (metar D71)	None (DI	8P 12/20/11
782 Test Day 78	Temp! NR	20 ml H oagland's @ <i>0%</i> 35	A05 12/21/11
Test Day 74 840	Humidity. NR Temp: 19.7°C 16.4-21.7°C (x) Humidity: 271. (meter D71)	DI	下 12 22 11
Test Day 75	Humidity: 271. (Meter D71) Hy Temp: 22.5°C 20.4 - 24.2°C (R) Humidity: 24% (meter D71) Migenp: 25.8°C 22.5°C (R)	20 ml Hoagland's @ 0915	DM 12/23/11
	1 HUNDON W AV 10 (MAD +Pr 1) (1)	OT	12/24/11
Test Day 78.	Mreno: 23.3°C 23.2-23.4°C (X) Homodity 20°C (Meter D71) Wreno: 23.0°C 21.8-23.4°C	30 ml Hoagland's @ いいいて	An 12pslf
Test Day 79.	WTenp: 23.0°C 21.8 - 25.4°C (Meter DTI) WTenp: 2240C 22.2 - 24.2°C (X)	ΦI	ralaelh
II (A)	1 Mountain 2007	DI	12/27/11
Test Day 8	Honodohy: 2206 (Meter D71) Temp: 19,806 (Meter D71) Humidity: 20% (Meter D71)	20 ml Hoagland's @ 0 930	E 12/28/11

^{0 \$ 315/12} E

^{3 \$ 7/23/12,} cf - modified forcuch nutrient solution

DAILY TOXICITY TEST LOG

Project Number: 60147216-445- (035-036)

Test Species (Circle): C. dubia D. magna D. pulex P. promelas O. mykiss Other (Specify): E. crusgalli

General Comments		Hydration: 2 20 ml floagland's solution	Initials/Date
Test Day 82 0	Temp! 235 °C 164-23.8 °C (\$\overline{x}\$) Humidity? 24% (meter \$\overline{x}\$) Temp: 24.6 °C (\$\overline{x}\$) Humidity: 2000 (mader \$\overline{x}\$)	DI	K 12/29/11
Test Day 800	Humidity: 24% (meter D71) Temp: 24.6°C (b.4-25,0°C) Humidity: 20% (meter D71)	O 20 ml Heagland's @ DI in Am	F 12/30/11
Test Day 6392	(10 C 10)		
Test Day 84		20 ml Hoagland's @	
Test Day 85			
Test Day 86		20 ml Heagland's @	
Test Day 87			
Test Day 88			
Test Day 89		20 ml Heagland's @	
0 \$ 3	15/12E @+7/23/12, Cf	-modified consu	ch morrient solution

445 Plant

FIVE TREATMENTS (INCLUDING CONTROL) FOUR REPLICATES RANDOM CHAMBER LOCATION "JJ"

	ľ	TO WAS SIN SIN WIDEN ESSAUTION OF						
		2	3	4	5			
A \$	5B	1C	1A	3B	5D			
BE	4A	5C	2D	1B	3D			
C 8	3C	4C	4B	2B	3A			
D	2C	1D	5A	4D	2A			

Proj. # 60225-(035-038)

() cum 07/23/12 C

FCETL QA Form No. 15

Effective: 5/90

ALL ENTRIES MUST BE INITIALLED WITH DATE AND TIME: 9/27/12 C WNK P Preparation of Control formulated Sediment: Rinsed fine, medium and coarse grit silica sand with delonized until water ran through dear. Cleaned sand was placed into pyrex baking dishes, covered with aluminum foil and labeled according to grit size. Dished were placed in a 104°C oven overnight. Sphagnum peat moss was sieved using a 2mm sieve and rinsed with deionized water until water ran through clear. Rinsed moss was placed in a pyrex dish and covere Baked in a 104°C oven overnight.
Rinsed fine, medium and coarse grit-silica sand with delonized until water ran through dear. Cleaned sand was placed into pyrex baking dishes, covered with aluminum foil and labeled according to grit-size. Dished were placed in a 104% oven overnight. Sphagnum peat moss was sieved using a 2mm sieve and rinsed with deionized water until water ran through clear. Binsed moss was placed in a pyrex dish and covere
deionized until water van through deur Cleaned sand was placed into pyrex baking dishes, covered with aluminum foil and labeled according to gritsize. Dishes were placed in a 104% oven overnight. Sphagnum peat moss was sieved using a 2mm sieve and rinsed with deionized water until water ran through clear. Rinsed moss was placed in a pyrex dish and covere
deionized until water van through deur Cleaned sand was placed into pyrex baking dishes, covered with aluminum foil and labeled according to gritsize. Dishes were placed in a 104°C oven overnight. Sphagnum peat moss was sieved using a 2mm sieve and rinsed with deionized water until water ran through clear. Binsed moss was placed in a pyrex dish and covere
clear. Rinsed moss was placed in a pyrex dish and covere
Note: Binsing is thought to reduce acidity.
After baking all trays were removed from oven and allowed to cool completely.
Once cooled, ingredients were mixed togethor in the following quantities: 9/28/11 @ 1430 \$8
1. Fine sand: 2160g 2. Medium sand: 300g 3. Coarse Sand: 90g 4. Colloidal Kaolinite Clay: 240g 5. Sphagnum Peat moss: 210g
Ingredients were mixed/momogenized until well blended
Soil pH = 3.8 O 14 (~30g) To adjust soil pH +0+(~300g) calcium carbonate was added to mixture and homogenized
Post calcium carbonate soil pt = 6.5
Added 30g more calcium carbonate to try to bump ptt up as close to 7.0 as possible. Oreformposit

post 2nd caco addition soil pH = 105

who more a Hempts to adjust pH were made. Did not want to over power scaliment with cacoo b/c affect may I may not have on plant nutrients.

Page: 49 of 14 FCETL QA Form No. 15 Effective: 5/90

(0)147216-445-(085-035) SUBJECT: DAILY LOG 6NM 07/22/12	
ALL ENTRIES MUST BE INITIALLED WITH DATE AND TIME:	
9/29/11 - Day (-) of	
Sediment samples were individually homogenized for a	
Minimum of 3 minutes. Once homogenization was complete	
plastic container. Individual neights were recorded for	
each After all replicates were weighted containers were	
placed into the environmental both where test was	
to be performed.	
9/30/11 - DAY O &	
test chambers containing sediment were removed from	
emmonmental buth and MQ(20mls) and (20mls) that and is	oogland's
solution voice hadred to each chamber and stived in.	
a MO ringed (nots) echinochloa plant/seedling was placed into	• .
a hole and sediment gently pushed against to hold in place.	
	•
Echinochloa seedlings were from Lot 95-59 and were 10 days old. Batch # 09201t.	
the environmental bath when the test was to be conducted.	÷
Soil ptt's	
APG-02 3 W. I	
APG-00 " 10.7	
A76-15 ; 1.0	
9/30/11 @ 14000	
	٠
	•

Oska|2a|11 E.

@HOTIZBliz, Cf-modified Gorsuch's.

60147216-445-(085-036) SUBJECT: DAILY LOG	orm 07/23/12
'	
2nd batch w/ unwashed peatmoss	0 / 40
2nd batch w/ unvashed peatmoss Preparation of control formulated sediment: 10/14/13	S E 16205
Sieved enough peat moss to weigh out 140a. Used	a
Sieved enough peat moss to weigh out 140g. Used 2mm Sieve and did not rinsec	
Weighed out: (and homogenized)	
1 time cand clubble (wheel and below)	
1. Fine sand: 1440g (rinsed and baked)	
2. medium Sand: 200g (rinsed and barked)	<u> </u>
3. Coarse sand: (obg (rinsed and baked.) 4. Colloidas Kaolinik days: 1100g	
5 Soboanan real more a little sieved	
5. Sphagnum peatmoss: 140g sieved Le Calcium carbonate was added at vate of 1%	122
adjust ptt.	
Soil ptt 3 6.5 C 1640	
Encor di la 1 codi : I novo placad più ta leat placad	. h. /
Formulated Sediment was placed into test chambers	, 04
weighing out 500g and putting into test chamber. Sediment was moistened with Mo and 20ml	
Harden de solution and homographical to noniction on	otiva
Hoagland's Solution and homogenized to moisten en contents.	nwe
	·
Seedlings from September 20,2011 (same batch fro	m
initial initiation) were used to initiate new com	401
Sediment test chambers. 20 organisms were add each chamber. Roots were rinsed with milli-0	ed to
each chamber. Koots were rinsed with milli-a	and
carefully placed into pre-made hotes in sediment covered with surrounding sediment	t and
covered with surrounding sealment	
	 -
	•

Temperature and humidity readings for definitive plant study - 60147216-445-(035-038)

Temp of Bath Humidiv

			np of Treatme			Nutrient
		APG-D6-MA	APG-15-	APG-02-	APG-16-	Solution
Day	Control	MA-060311	MA-060311	MA-060311	MA-060311	added
0		21	21	21	21	
1		22	21	22	22	
2						ı
		23	23	23	23	l .
3		22	21	22	21	1 .
4		23	23	21	23	ŀ
5		23	22	24	23	į.
6		22	22	21	21	l
7		19	18	50	18	•
8		20	20	20	21	
						- 1
9		20	19	20	19	
10		21	21	22	21	1
11		21	21	. 22	20	
12		22	22	22	22	i
13		21	21	21	21	
14	20	21	21	21		1 .
15	21	22	22	21	22	
16	22		22		22	1
		22		22		
17	20	20	20	20	20	
18	16	17	17	17	17	1 '
19	16	17	17	16	17	
20	19	18	18	19	18	1
21	17	19	. 19	19	16	
22	18	1.8	18	19	18	h
23	18	18	18	19	17	ļ
25		16	17		17	ŀ
	16			16		1.
25	18	19	18	19	18	1 '
26	13	14	13	14	14	1
27	17	15	16	16	15	ļ
28	17	17	17	16	17	•_
29	16	16	15	16	16	[
30	16	16	16	16	16	
31	17	17		18	17	ı
			18			
32	17	17	18	17	17	1 '
33	20	20	19	20	19	J
34	20	. 19		19	19	1
35	21	20	19	20	19	
36	19	19	19	20	19	
37	20	19	19	19	19	1 .
38	17	19	18	19	18	1
39	21	19	20	19	19	l
40	_					1
	18	18	20	18	19	
41	19	19	19	20	19	'
42	18	19	18	18	18	<u></u>
43	20	19	19	19	19	
44	19	19	19	19	20	l
45	18	18	17	18	18	l
46	17	17	18	18	17	Ι.
						1
47	19	19	19	19	. 19	ľ
4B	19	19	20	19	19	i
- 49	20	20	22	21	20	
50	20	21	21	21	20	· ·
51	19	19	19	19	19	
52	19	19	19	20	19	•
53	21	20	21	20	21	ı
54	20	20	20	21	21	l
55	20					
		20	21	21	21	l [*]
56	21	20	20	21		ļ <u>. </u>
57	20	20	20	20	20	
58	17	18	18	18	18	j
59	18	19	20	20	19	l
60	19	19	19	19	19	l •
61	18	18	17	4.0	40	1
	18	19		18	18	1.
62			19	19		1
63	. 18	17	16	17	16	
64	18	19	18	19	-16	•
65	17	18	18	17	17	
66	16	16	18	17	17	•
67	16	16	15			ı
68	17	18	16	15	17	l •
69	17	17	16	17		
70	16	14	15			
71	17	15				
			16			
72	16	14	14			' I .
73	16	15	15			. I •
74	16	15				l
75	18	17	16	17	16	•
76	18	16	16			i i
77	17	17				
78	17	T	· "	 	 	
	17	 		 	 	
		 	 	 	1	l .
79	17			-	ļ	
80		l	<u> </u>			
80 81	18		. –			•
80	17					
80 81						
80 81 82	17					.
80 81 82 83 84	17 19 19					•
80 81 82 83 84 85	17 19 19					
80 81 82 83 84 85 86	17 19 19 19					
80 81 82 83 84 85 86	17 19 19 19 19					
80 81 82 83 84 85 86 87	17 19 19 19 19 19 19					
80 81 82 83 84 85 86 87 88	17 19 19 19 19 19 19 17					
80 81 82 83 84 85 86 87 88 89	17 19 19 19 19 19 19 17 18					•
80 81 82 83 84 85 86 87 88	17 19 19 19 19 19 19 17					•

			. 1
•		Temp of Bat	
Day	Avg	Min	Max
	22.3	20.8	22.6
2	23,2	21.6	23.6
3	22.8	22.0	24.1
5	23.3 23.3	22.5 22.7	24.3
6	21.9	21.9	23.8
7	19.6	18.5	20.6
- 8	20,3	19.3	20,5
10	19.6 22.0	19.5 21.8	20.3 22.1
11	22.6	21.8	23.4
12	22.7	22.2	23,4
13	22.6	21.3	23.3
15	22.4 22.9	22.3	24.6 24.6
16	24.1	23.3	25.0
17	23.3	23.2	24.8
18	20.0 19.2	20.0 19.2	21.3 21.2
20	22.4	20.6	22.4
21	21.6	21.6	22.9
22	23,2	21.8	23.5
23	23.5 22.3	21.7 22.1	23.5 24.6
25	22.8	22.7	24.6
26	17.9	17.7	22.1
27	19.8	17.8	19.8
28	19.3 19.3	18.9 19.1	20.3
30	20.0	19.9	20.9
31			
32 33	20.8 21.6	20.8	21.6 21.9
34	21.6	21.5	22.2
35	21.7	21.5	22.0
36	21.5	21.4	22.1
37 38	23.0 21.8	22.8 21.6	24.6 23.8
39	21.3	21.1	22.1
40	21.6	21.6	21.6
41	20.9	20.7	21.6
42	20.6 20.9	20,5	21.4 21.3
44	20.9	20.3	21.4
45	19.3	19.3	21.1
46 47	20.3	20.2	20.3
48	22.0	21.7	22,1
49	21.8	21,7	22,6
50	23.2	23.1	23.2
51 52	22.2 22.1	21.9 21.9	22.3 22.8
53	22.0	21.3	22.8
54	21.0	21.0	21.1
55 56	21.2	20.9	21.7
57	22,5	21.2	22.7
58	20.1	19.8	21.5
59	20.3	20,1	20.7
60	19.9 20.5	19.9	20.8
62	20.9	20.3	21.5
63	18.9	18.4	19.0
64	20.5	18.9	20.9
65 66	17.8 19.6	16.8 18.1	19.8 19.6
67	20.0	19.5	21.1
68	19.8	18.2	19.9
69 70	16.2	14.6	27.3
71	16.1 18.8	14.6 16.9	27.3 25.7
72	16.8	15.9	20.7
73	18.7	15.9	20.7
74 75	18.1	15.9 16.1	20.7
76	18.5	16.8	21.7
77	19.9	16.8	21.7
78	18.6	16.8	21,7
79 80	18.8	16.8 16.6	21.7 21.7
81	18.6	16.8	21.7
82			
83	19,7	16.4	21.7
84 85	22.5 23.8	20.4 22.5	24.2 23.5
86	23.3	23.2	23.4
87	23.0	21.8	23.4
88 89	22,4 19.8	22.2 16.4	24.2 23.2
90	23.5	16.4	23.8
91	24.6	16.4	25.0
Contro	20.2960526	14.6	27.3

-	Humidiy	
Day	of Baths	
- 0	53 59	
2	56	
3	50	
4	50	
5	53	
7	48 42	
. 8	47	
9	50	
10	56	
11	54 40	
13	52	
14	50	
15	57	
16	50	
17 18	50 44	
19	39	
20	41	
21	44	
22	40	
24	43	
25	44	
26		
27 28	42 48	ĺ
29	42	
30	47	l
31		
32	46 46	l
34	42	
35	44	
36	46	l
37 38	42	l
39	39	
40	38	
41	39	l
42	35	
43	44	
45	38	
46	42	ĺ
47	34	١.
48 49	30 34	
50	41	1
51	37	1
52	43	ľ
53 54	38 · 34	•
55	32	ı
56	32	1
57	24	1
58	30	ı
59 60	33	1
61	39	1
62	40	
63	33	ı
65	32 32	1
66	30	1
67	30	1
68	30	
69 70	35 35	ı
70	35	
72	35]
73	31	1
74 75	35 31	1
76	31	1
77	30	1
78	30	1
79	33	
80 81	35	1
82		1
83	27	
84	24	-
85 86	21	
87	23	
88	22	
89	20	
90 91	24	
	Contro	
Min Humidity		

ontrol	20.7960526	14.6	27.3	Min Humidity:
tmnts	20.9223684	14.6	27.3	Max Humidity:
				Avg Humidity:

^{11 | 14 |} count - C | 28 | 23 | count - T | 26 |

Min Temp: Max Temp: Avg. Temp:

TEST ORGANISM DRY WEIGHT AND ASH-FREE DRY WEIGHT (AFDW)

014: ARO1/24/12 de 1/13/12

Specie: Lot/Bat	s: Echinochlo ch No.: 95	a cru	1	WET GROS	SS: Date/t	me: 12/30/11 ime: 12/20/11 e:1/4/12 @ 1	මු (520 An	alyst: BP			Ashed in Furn	Oried in Oven # 3 from Date: 12/30/11 Tin Oven °C: <u>8 3 to Date: 11/3/12</u> Tin Ashed in Furnace from Date: Tin Furnace °C: to Date: Tin			
Analytic	cal Balance I	D: 24	4C1 3/1			ime: 1/3/1		alyst:	· · · · · · · · · · · · · · · · · · ·	. •	LH#95-	_ot # 95-159			
Boat	Treatment	Ren	-		Indicate mean weight is					n weight is	Dry Weight	or AFD	W (Circle on	e)	
No.	1104311611		Tare Weight (g)	(12)	Weight (g)	Dry Gross Weight (g)	Dry Net Weight (g) (B-A)	Adjusted Dry Net Weight	Ashed Gross	AFDW (g) (B-D)	Dry Wt./Wet Wt. Ratio	AED!A//	AFDW/Dry Wt. Ratio	;	
	Control	Δε	3.69416 3.70768	8.20916	4.51500	4,92604	1. 23188								
		B	3.66320	1.83636	417216	4,89508	1.23188								
		6	3.70550	8.09905	4.3935	4,99509	1.28959								
		D	3.70768	8.46645	4.75677	5.16900	1410132	· 							
									·						
							_								
-											:				
							-								
<u> </u>															
							-								
Blank			8-10454			3.70445									

3.70442

Add in weight loss of blank boat, if appropriate.

OBP 12/30/11 © F 1/4/12 WP

G-102

Page <u>63</u> of FCETL QA Form No.141
Revision 1
Effective 09/10

TEST ORGANISM DRY WEIGHT AND ASH-FREE DRY WEIGHT (AFDW)

(A): ACO1/24/12

Project	No: 601472	16-44	5- <i>(135-0</i> 33)	TARE:	Date/ti	me: 12/16/11	@ 1435Ana	alyst: Ad			Dried in Oven Oven °C: %	#fror	n Datei <u>2 ໄຟໄມ</u> T o Date: <u>ໄ2[ມ]ໄ</u> ປັ	me:1605
Species Lot/Bat	s: Echinochic ch No.:	oa cru	sgalli	WET GROS	SS: Date/t	ime: 12/16/11 @	An: 1500 (STI	alyst:	· · · · · · · · · · · · · · · · · · ·		Ashed in Furn	ace from	n Date:T	ime:
Analytic	cal Balance I	D: 🗛	ND#2	DRY GROS	S: Date/time	9:12 19/11	Q ∖ 640 Analy	st: 😾			Furnace °C: _	t	o Date:	ime:
				ASHED GR	OSS: Date/	lime:	An	alyst:			Lot #: 95	-51		
Boat	Treatment	Rep							Indicate mea	n weight is	Dry Weight	or AFI	W (Circle on	e)
No.			Tare Weight (g)	Wet Gross Weight (g)	Wet Net Weight (g)	Dry Gross Weight (g)	Dry Net Weight (g)	Adjusted Dry Net Weight	Ashed Gross Weight (g)	AFDW (g)	Dry Wt./Wet Wt. Ratio	AFDW/ Wet Wt. Ratio	AFDW/Dry Wt. Ratio	·
			(A)	(E)	(E-A)	(B)	(B-A)	(g) ¹	(D)	(B-D)		Natio		· · · · · · · · · · · · · · · · · · ·
	APG-06- MA-060311	Δ	3.7401	6.9813	32412	4.7395	0.9994							`.
		B	3.7142	7.1230	3.4088	4.6100	08958							
		U	3.7677	7.4465	3.6788	4.7812	1.0135							
-		Δ	3.7377	9.1669	5.4292	51372	1,3995							
	APG-15- MA-066311				4.3777		1.2147							
		包	3.7635	7.8215	4.0500	4.8745	1.1111							·
		0	3.7458	8.7113	4.9655	5.1066	1.3608							
		U	37330	7.9147	4.1817	5.0577	1.3247							
	APG-02- MA-060311	Δ	3.7172	83776	4.6604	4.9888	1.1716							
				7.8771	4.1615	4.7019	0.9863	·						
		Ù	3.7440	7.2769	3.5329	4.6671	0.9231			······································				
				7.0824		I	1.0278	·						
Blank			3.7040	3.7045		3:7045				·				

¹ Add in weight loss of blank boat, if appropriate.

04-120/2E G-103

OAD 12/16/11 E 8/1234

@AD 12/16/11 (F. 4.0580

Page <u>54</u> of FCETL QA Form No.141
Revision 1
Effective 09/10

TEST ORGANISM DRY WEIGHT AND ASH-FREE DRY WEIGHT (AFDW)

AA: Meon/24/12

Specie Lot/Ba	s: Echinochle	oa cru	5- (035- 638) sgalli	WET GROS		me: \2/16/11 & time: \2/16/11 (STA		alyst: AD			Oven °C: <u>05</u> Ashed in Furn	ried in Oven # from Date:\\(\frac{12\left \left \left \text{Time: } \text{V}}{\text{to Date:}\(\frac{1}{2\left \text{17}\left \text{Time: } \text{V}}{\text{shed in Furnace}}\) shed in Furnace from Date: Time: urnace \(^{\text{C}}\): to Date: Time:		
				ASHED GR	OSS: Date/	time:	An	alyst:			Lot # 95	-159		
Boat	Treatment	Rep					<u> </u>		Indicate mea	n weight is	Dry Weight	or AFE	W (Circle on	e)
No.			Tare Weight (g)	Wet Gross Weight (g)	Weight (g)	Dry Gross Weight (g)	Dry Net Weight (g)	Adjusted Dry Net Weight		AFDW (g)	Dry Wt./Wet Wt. Ratio	AFDW/ Wet Wt. Ratio	AFDW/Dry Wt. Ratio	
			(A)	(E)	(F-A)	(B)	(B-A)	(g) ¹	(D)	(B-D)		·		1
	APG-16" MA-060311	A	3.6445	9.4690	5.8245	5,4061		·			·			
	'	13	3.6559	10.4727	6.8168	5,5035	-						·	,
	ŷ	C	3.6821	9.2480	5.5659	5.1908								
		D	3.7095	9.6372	5,9277	5.5/13								
									,	-,, , , , , , , , , , , , , , , , , , ,			*** * **,**, ** , ** *	. ,
											·			·
		·									. •			
					· · · · · · · · · · · · · · · · · · ·								F	
										-				
							-			. •				
	· ·				<u> </u>									
Blank			<u> </u>											

¹ Add in weight loss of blank boat, if appropriate.

TEST ORGANISM LENGTHS, WEIGHTS, AND LOADING

Project Number: 60147216-445-(035-038)

Species:

Echinochloa crusgalli

QB:	AROSI	06	12

						Mean	Mean		Mean	Mean
			Wet			WET Wt./	WET Wt./		WET Wt./	WET Wt./
		Tare	Gross	Wet Net		Original	Treatment	Number of	Surviving	Treatment
		Weight	Weight	Weight	No of Orig.	Organism	(g)	Surv.	Organism	(g)
Treatment	Rep		(g)	(g)	Organisms	(g)	(Original)	Organisms		(Surviving)
	Α	3.69416	8.20916	4.51500	20	0.2258	0.2230	19	0.2376	
	В	3.66320	7.83536	4.17216	20	0.2086		19	0.2196	
Control	C	3.70550	8.09905	4.39355	20	0.2197		20	0.2197	
	D	3.70768	8.46645	4.75877	20	0.2379		20	0.2379	

Project Number: 60147216-445-(035-038)

Species:

Echinochloa crusgalli

Summary Statistics for Survival Data

N Min Max SD Mean C.V. 4 0.950 1.0 0.0289 0.9750 2.961%

Summary Statistics for WET weight per Original Data

N Min Max SD Mean C.V. 4 0.2086 0.2379 0.0122 0.2230 5.486%

Summary Statistics for WET weight per Surviving Data

N Min Max SD Mean C.V. 4 0.2196 0.2379 0.0105 0.2287 4.583%

TEST ORGANISM LENGTHS, WEIGHTS, AND LOADING

Project Number: 60147216-445-(035-038)

Species:

Echinochloa crusgalli

on: ARO3/06/12

						Mean	Mean		Mean	Mean
			Wet			WET Wt./	WET Wt./		WET Wt./	WET Wt./
		Tare	Gross	Wet Net		Original	Treatment	l i	Surviving	Treatmen
	ļ	Weight	Weight	Weight	No of Orig.	Organism	(g)	Surv.	Organism	(g)
Treatment	Rep	(g)	(g)	(g)	Organisms	(g)	(Original)	Organisms	(g)	(Surviving
								-		
APG-06-	Α	3.7401	6.9813	3.2412	19	0.1706	0.1991	19	0.1706	0.199
	В	3.7142	7.1230	3.4088	20	0.1704		20	0.1704	
MA- 060311	С	3.7677	7.4465	3.6788	20	0.1839		20	0.1839	
000311	D	3.7377	9.1669	5.4292	20	0.2715		20	0.2715	
APG-15-	Α	3.7457	8.1234	4.3777	19	0.2304	0.2140		0.2432	
MA-	В	3.7635	7.8215	4.0580	20	0.2029		20	0.2029	
060311	C	3.7458	8.7113	4.9655		0.2483		20	0.2483	
000311	D	3.7330	7.9147	4.1817	24	0.1742		24	0.1742	
		0 = 4 = 0	0.0770	4.0004		0.0450	0.4000	19	0.2453	0.1989
APG-02-	A	3.7172	8.3776	4.6604	19	0.2453	0.1989			0.1908
MA-	В	3.7156	7.8771	4.1615	20	0.2081	·	20	0.2081	
060311	C	3.7440	7.2769	3.5329	20	0.1766		20	0.1766	
	D	3.7702	7.0824	3.3122	20	0.1656		20	0.1656	
	Α	3.6445	9.4690	5.8245	19	0.3066	0.3055	19	0.3066	0.305
APG-16-	В	3.6559	10.4727	6.8168	20	0.3408		20	0.3408	
MA-	Č	3.6821	9.2480	5.5659	20	0.2783		20	0.2783	
060311	Ď	3.7095	9.6372	5.9277	20	0.2964		20	0.2964	
									·	

Project Number: 60147216-445-(035-038)

Species:

Echinochloa crusgalli

Treatment	<u>N</u>	Min	Max.	<u>Mean</u>	<u>SD</u>	<u>C.V.</u>
APG-06-MA-060311	4	1.0	1.0	1.0000	0.0000	0.000%
APG-15-MA-060311	4	0.947	1.0	0.9868	0.0263	2.667%
APG-02-MA-060311	4	1.0	1.0	1.0000	0.0000	0.000%
APG-16-MA-060311	4	1.0	1.0	1.0000	0.0000	0.000%

Summary Statistics for Growth Data (wet wt per original)

Treatment	<u>N</u>	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>SD</u>	<u>C.V.</u>
APG-06-MA-060311	4	0.1704	0.2715	0.1991	0.0486	24.433%
APG-15-MA-060311	4	0.1742	0.2483	0.2140	0.0324	15.141%
APG-02-MA-060311	4	0.1656	0.2453	0.1989	0.0358	17.985%
APG-16-MA-060311	4	0.2783	0.3408	0.3055	0.0263	8.604%

Summary Statistics for Growth Data (wet wt per surviving organism)

<u>Treatment</u>	<u>N</u>	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>SD</u>	<u>C.V.</u>
APG-06-MA-060311	4	0.1704	0.2715	0.1991	0.0486	24.433%
APG-15-MA-060311	4	0.1742	0.2483	0.2172	0.0351	16.155%
APG-02-MA-060311	4	0.1656	0.2453	0.1989	0.0358	17.985%
APG-16-MA-060311	4	0.2783	0.3408	0.3055	0.0263	8.604%

an: 203/06/12

TEST ORGANISM LENGTHS, WEIGHTS, AND LOADING

Project Number:

60147216-445-(035-038)

Species:

Echinochloa crusgalli

QA:00 04/30/12

, , , , , , , , , , , , , , , , , , ,			 :				Mean DRY	Mean	,	Mean	Mean DRY
<u> </u>	*				٠.,		Wt./	DRY Wt./		DRY Wt./	Wt./
					Adjusted		Original	Treatment	Number of	Surviving	Treatment
		Tare	Dry Gross	Dry Net	Net	No of Orig.	Organism	(g)	Surv.	Organism	(g) [.]
Treatment	Rep	Weight (g)	Weight (g)	Weight (g)	Weight (g)	Organisms	(g)	(Original)	Organisms	(g)	(Surviving)
	Α	3.69416	4.92604	1.23188	1.23188	20	0.0616	0.0652	19	0.0648	0.0668
	В	3.66320	4.89508	1.23188	1.23188	20	0.0616		19	0.0648	
Control	С	3.70550	4.99509	1.28959	1.28959	20	0.0645		20	0.0645	
	D	3.70768	5.16900	1.46132	1.46132	20	0.0731		20	0.0731	
· [·					
Blank		3.70442	3.70445	0.00003				<u> </u>	<u> </u>		<u> </u>

Summary	Statistics for Survival Data	
---------	------------------------------	--

<u>N</u>	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>SD</u>	<u>C.V.</u>
4	0.950	1.0	0.9750	0.0289	2.961%

Summary Statistics for DRY weight per Original Data

N	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>SD</u>	<u>C.V.</u>
4	0.0616	0.0731	0.0652	0.0054	8.328%

Summary Statistics for DRY weight per Surviving Data

N	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>SD</u>	<u>C.V.</u>
4	0.0645	0.0731	0.0668	0.0042	6.254%

TEST ORGANISM LENGTHS, WEIGHTS, AND LOADING

Project Number:

60147216-445-(035-038)

Species: Echinochloa crusgalli

an:w 04/30/12

								:			
		Tare	Dry Gross	Dry Net	Adjusted Net Weight	No of Orig	Mean DRY Wt./ Original Organism	Mean DRY Wt./ Treatment (g)	Number of Surv.	Mean DRY Wt./ Surviving Organism	Mean DR' Wt./ Treatmen (g)
Treatment	Rep	Weight (g)		Weight (g)		Organisms	(g)	(Original)	Organisms	(g)	(Surviving
<u></u>											
	Α	3.7401	4.7395	0.9994	0.9994	19	0.0526	0.0545	19	0.0526	0.05
APG-06-MA-	В	3.7142	4.6100	0.8958	0.8958	20	0.0448		20	0.0448	
060311	С	3.7677	4.7812	1.0135	1.0135		0.0507	,	20	0.0507	
	D	3.7377	5.1372	1.3995	1.3995	20	0.0700		20	0.0700	
	Λ	0.7457	4.9604	1.2147	1.2147	19	0.0639	0.0607	18	0.0675	0.06
ADC 15 MA	A B	3.7457 3.7635					0.0556	0.0007	20	0.0556	
APG-15-MA-	C	3.7458	5,1066	1.3608	1.3608		0.0680		20	0.0680	
060311	D	3.7330		1.3247	1.3247	24	0.0552		24	0.0552	
	D .	3./330	5.0077	1.3241	1.02.47	<u> </u>	0.0002		27	0.0002	
	A	3.7172	4.8888	1.1716	1.1716	19	0.0617	0.0521	19	0.0617	0.05
APG-02-MA-	В	3.7156	4.7019	0.9863	0.9863	20	0.0493	•	20	0.0493	
060311	С	3.7440	4.6671	0.9231	0.9231	20	0.0462		20	0.0462	
	D	3.7702	4.7980	1.0278	1.0278	20	0.0514		20	0.0514	
	Α	3.6445	5.4061	1.7616	1.7616	19	0.0927	0.0880	19	0.0927	0.088
ADC 46 MA	<u>А</u> В	3.6559	5.5035	1.8476			0.0924	.0.0000	20	0.0924	0.000
APG-16-MA- 060311	C	3.6821	5.1908		1.5087	20	0.0324		20	0.0754	
000311	D	3.7095	5.5413	1.8318		20	0.0754		20	0.0916	
		3,,,,,,,,					,				
Blank		3.70400	3.70450	0.00050							

Page 60 of 11
FCETL QA Form No. 010a
Revision 0
Effective 10/06

AR03/06/12 OA:CWO4/27/12

Echinochioa	crusgalli

60147216-445-(035-038)

Project Number:

Summary	Statistics	for	Surv	vival	Data

<u>Treatment</u>	. <u>N</u>	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>SD</u>	<u>C.V.</u>
APG-06-MA-060311	4	1.0	1.0	1.0000	0.0000	0.000%
APG-15-MA-060311	4	0.947	1.0	0.9868	0.0263	2.667%
APG-02-MA-060311	4	1.0	1.0	1.0000	0.0000	0.000%
APG-16-MA-060311	4	1.0	1.0	1.0000	0.0000	0.000%

Species:

Summary Statistics for Growth Data (dry wt per original)

<u>Treatment</u>	<u>N</u>	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>SD</u>	<u>C.V.</u>
APG-06-MA-060311	4	0.0448	0.0700	0.0545	0.0108	19.872%
APG-15-MA-060311	4	0.0552	0.0680	0.0607	0.0064	10.472%
APG-02-MA-060311	4	0.0462	0.0617	0.0521	0.0067	12.871%
APG-16-MA-060311	4	0.0754	0.0927	0.0880	0.0084	9.554%

Summary Statistics for Growth Data (dry wt per surviving organism)

<u>Treatment</u>	<u>N</u>	<u>Min</u>	<u>Max</u>	<u>Mean</u>	<u>SD</u>	<u>C.V.</u>
APG-06-MA-060311	4	0.0448	0.0700	0.0545	0.0108	19.872%
APG-15-MA-060311	4	0.0552	0.0680	0.0616	0.0072	11.626%
APG-02-MA-060311	4	0.0462	0.0617	0.0521	0.0067	12.871%
APG-16-MA-060311	4	0.0754	0.0927	0.0880	0.0084	9.554%

Project No.: 60147216-445-(035-038)

Species: Echinochloa crusgalli

Plant Length

42/20/12 617: AROI/24/12

· .		Length (cm or mm)circle one)						
Treatment	Plant No.	Replicate						
		A	В	С	D			
	1	27.0	226	239	188			
	2	252	202	225	204			
	3	266	270	224	231			
	4	246	260	283	251			
	5	230	279	246.	262			
	6	276	209	277	240			
·	7	<i>2</i> 53 25,3 0	238	270	247			
ļ	8	253 25.30	207	242	274			
·	9	279	302	249	205			
	10	274	245	270	27.15			
	11	246	281	285	246			
<u>\$</u>	12	258	248	230	706			
Control	. 13	245	275	274	277			
	14	188	268	291	260			
	15	255	259	140	237			
	16	307	211	290	290			
	17	ลาเ	266	245	237			
	18	285	190	271	286			
	19	249	275	227	231			
·	20		<u> </u>	290 Hzgy	ini			
	Date	12/30/11	12/30/11	12/30/11	12/30/11			
	Time	15700	1400	1500	1405			
· ·	Initials		F	0	0			

0/1 12/30/11 E

3 mm for wwo 1/23/120

Project No.: 60147216-445-(035-038)

Species: Echinochloa crusgalli

Data for replicate A transcribed from the original data sheet

B

Plant Length

AA: ARUI/24/12 de 2 2012

· · · · · · · · · · · · · · · · · · ·		7					
		Length (cm or mm circle one) Replicate					
Treatment	Plant No.						
		Α	В	C	D		
APG -06- MA	1	156	231	193	215		
-060311	2	219	220	218	195		
	3	208	232	234	278		
	4	222	206	218	221		
	5	243	254	198	304		
	6	145	236	247	219		
	7	197	191	263	253		
	8	179	189	270	289		
	9	177	153	227	305		
	10	275	237	288	304		
	11	193	247	229	209		
	12	178	283	241	259		
	13	254	202	233	285		
	14	209	184	200	311		
	15	221	188	175	257		
	16	225	192	271	255		
	17	224	144	157	260		
	18	197	238	202	265		
	19	156	213	239	152		
. [20		183	217	255		
	Date	12/16/11	12/16/11	12/16/11	12/16/11		
	Time	1430	1440	1440	1510		
	Initials	AP	AP	8P	AP		

Project No.: 60147216-445-

Species: Echinochloa crusgalli

Data for replicate A, plants #1 to 7, transcribed from the original data sheet ARO7/19/12

B (all plants) Plant Length & 2/20/12

	v (an pi	wi.i.3)					
		l	_ength (cm or	mm circle one	e)		
Treatment	Plant No.	Replicate					
		Α	В	С	D		
	1	200	215	235	255		
	2	205	245	274	246		
	3	218	190	266	234		
	4	254	208	268	234 260 227		
	5	213	247	179	227		
	6	202	223	192	204		
	7	225	7,50	218	210		
	8	227	195	267	186		
211	9	197	180	241	225		
APG-15-MA-000311	10	245	282	242	202		
)-+	11	215	335	209	215		
<u>N</u>	12	220	214	226	239		
15-	13	1915	252	201	175		
1 0	14	250	192	258	224		
AP	15	206	278	162	203		
	16	205	279	220	225		
	17	248	20Ce	176	115		
	18	>10	294	226	199		
	19		253	249	190		
	20		237	188	237		
	Date	12/16/12	12/14/11	12/16/11	12/16/11		
	Time	1550	1600	1535	1600		
	Initials	sk		M/8P			
				. •	215		

257 192

206

G-113

Project No.: 60147216-445-

Species: Echinochloa crusgalli

Data for replicated, were transcribed from the original data sheet

\$2/20/12 (1A: ARO 1/24/12)

			Length (cm o	or mm circle one)			
Treatment	Plant No.		Replicate					
		Α	В	С	D			
106 00	1	247	159	200	169			
APG-02-	2	242	235	242	2/0			
1,1, 00 00 11	3	280	179	221	186			
	4	287	213	269	164			
	5	234	167	206	196			
	6	308	199	209	232			
	7	256	260	294	188			
	8	238	267	229	147			
	9	260	189	236	119			
. [10	247	198	241	184			
	11	290	235	210	205			
	12	205	260	256	12.0			
	13	236	274	192	223			
	14	269	226	196*	206			
	15	270	251	197	214			
	16	239	201	211	225			
	17	212	240	219	170			
	18	241	236	195	230			
·	19	257	252	201	258			
	20		241	248	202			
	Date	12/16/11	12/16/11	12/16/11	12/16/11			
	Time	1435	1600	1525	1520			
	Initials	BP	BP	BP	AP			

Project No.: 60147216-445-

Species: Echinochloa crusgalli

Data for replicate B were transcribed from the original duta sheet

Plant Length

ar: Aco1/24/12

	· · · · · · · · · · · · · · · · · · ·	L	Length (cm or mm circle one)					
Treatment	Plant No.		Replicate					
		Α	В	С	D D			
	1	25	212	312	219			
	2	248	285	213	2.61			
	3	360	245	216	304			
	4	22	265	272	293			
·	5	286	304	276	319			
	6	275	291	248	323			
	7	241	263	233	256			
AP6-16-MA-060311	8	272	249	238	236			
90	9	286	252	277	272			
4	. 10	265	198	247	187			
\$	11	266	297	28	280			
9	12	296	275	284	302			
9	13	242	315	212	271			
A.	14	246	258	257	262			
	15	257	301	241	260			
	16	287	241	294	245			
	17	264	200	269	289			
	18	27)	285	240	266			
	19	284	305	256	242			
	20		300	221	216			
	Date	12/16/11	12/16/11	12/16/11	12/16/11			
	Time	1425	1430	1445	1510			
	Initials	Cu		an an	w .			

Project No.: 60147216-445-(035-038)

Species: Echinochloa crusgalli

Plant No.	Length in mm of (Controls) Replicate							
	Α	В	С	D				
1	270	226	239	188				
2	252	202	225	204				
3	266	270	224	231				
4	246	260	283	251				
5	230	279	246	262				
6	276	209	277	260				
7.	253	238	270	247				
. 8	253	207	242	276				
9	279	. 302	249	215				
10	274	245	270	275				
11	246	281	285	246				
12	258	248	230	206				
13	245	275	274	277				
14	188	268	291	260				
15	255	259	- 140	237				
16	307	211	290	290				
17	271	266	265	237				
18	285	190	271	286				
19	249	275	227	231				
20			294	177				

Sum:	4903	4711	5092	4856
Min:	188	190	140	177
Мах:	307	302	294	290
Average:	258.0526	247.9474	254.6	242.8
STD:	24.54582	32.09443	35.84381	32.25654

250.85

Project No.: 60147216-445-(035-038)

Species: Echinochloa crusgalli

Plant No.	Length in mm (APG - 02-MA-060311)								
	Replicate								
	Α	В	C .	D					
1	247	159	206	169					
2	242	235	242	210					
3 .	280	179	221	180					
4	287	213	269	164					
5	234	167	206	196					
6	308	199	209	232					
7	256	260	294	188					
8	238	267	229	147					
9	260	189	236	119					
10	247	198	241	184					
11	290	235	210	205					
12	205	260	256	220					
13	236	274	192	223					
14	269	226	196	206					
15	270	251	197	214					
16	239	201	211	225					
17	212	240	219	170					
18	241	236	195	230					
19	257	252	201	238					
20		241	248	202					

Sum:	4818	4482	4478	3922
Min:	205	159	192	119
Max:	308	274	294	238
Average:	253.5789	224.1	223.9	196.1
STD:	26.12431	34.07716	27.61178	31.05326

224.4197

Project No.: 60147216-445-(035-038) Species: Echinochloa crusgalli

Plant No.	Length in n	nm (APG - 0	6 - MA -060)311)
		Replicate		
	Α	В	С	D
1.	156	231	193	275
2	219	220	218	195
3	208	232	234	278
4	222	206	218	221
5	243	254	198	304
6 ·	145	236	247	219
7	197	191	263	253
8	179	189	270	289
9	177	153	227	305
10	275	237	- 288	304
11	193	247	229	209
12	178	283	241	259
13	254	202	233	285
14	209	184	200	311
15	221	188	175	257
16	225	192	271	255
17	224	144	157	260
18	197	238	202	265
19	156	213	239	152
20		183	217	255

Sum:	3878	4223	4520	5151
Min:	145	144	157	152
Max:	275	283	288	311
Average:	204.1053	211.15	226	257.55
STD:	34.25378	34.43571	33.10907	41.17929

224.7013

241127/12 QA:00 04130/12

Project No.: 60147216-445-(035-038)

Species: Echinochloa crusgalli

Plant No.	Length in mm (APG - 15 - MA - 060311)			
		Replicate		
	Α	В	С	D ·
11	200	215	235	255
2	205	245	274	246
3	218	190	266	234
4	254	208	268	260
5	213	247	179	227
6	202	223	192	- 204
7	225	250	218	210
8	227	195	267	186
9	187	180	241	225
10	245	282	242	202
11	215	335	209	215
12	220	216	226	239
13	195	252	201	175
14	250	1,92	258	224
15	206	278	162	203
16	205	279	220	225
17	248	206	170	115
18	210	294	226	199
19		253	219	190
20		237	188	237
21				. 215
22				257
23				192
24		<u> </u>		206

Sum:	3925	4777	4461	5141
Min:	187	180	162	115
Max:	254	335	274	260
Average:	218.0556	238.85	223.05	214.2083
STD:	19.90114	40.54792	33.92325	31.32714

223.541

44/27/12 CANOU 04/30/12 Project No.: 60147216-445-(035-038)

Species: Echinochloa crusgalli

Plant No.	D. Length in mm (APG - 16 - MA - 060311)					
		Replicate				
	A	В	С	D		
1	251	212	312	219		
2	248	285	213	261		
3	360	. 245	216	304		
4	221	265	272	293		
5	286	304	276	319		
6	275	. 291	248	323		
7	241	263	233	256		
8	272	249	238	236		
9	286	252	277	272		
10	265	288	247	187		
11	266	297	281	280		
12	296	275	284	302		
13	242	315	212	271		
14	246	258	257	262		
15	257	301	241	260		
16	287	241	294	245		
17	264	280	269	289		
18	271	285	240	266		
19	284	305	256	242		
20		300	221	216		

Sum:	5118	5511	5087	5303
Min:	221	212	212	187
Max:	360	315	312	323
Average:	269.3684	275.55	254.35	265.15
STD:	29.33373	26.68821	28.36839	35.05075

266.1046

Species: Echinochloa crusgalli

Number of plants at intitiation and termination

page 71 of TI

on: mm 07/23/

			<u> </u>	
Conc.	Test Replicate	Beginning	End	Percent Survival
	Α	20	19	·
Control	В	20	19	97.5
Control	С	20	20	97.5
	D	20	20	
	Α	20	19ª	
APG-06-MA-	В	20	20	100
. 060311	C	20	20	100
	D	20	20	
	Α	20	18ª	
APG-15-MA-	В	20	20	98.7
060311	С	20	20	90.7
	D	24	24 ^b	
	Α	20	19ª	
APG-02-MA-	В	20	20	100
060311	С	20	20	100
_	D	20	20	
	Α	20	19ª	
APG-16-MA-	В	20	20	100
060311	C	20	20	100
	D	20	20	

^a One plant was sacrificed on day 66 from replicate "A" for analysis of weight and length and was excluded from analysis of survival, length, and weight analyses.

^b On the day of test takedown, 24 *Echinochloa crusgalli* plants were recorded and measured for length and weight analysis.

APPENDIX E

Statistical Analysis

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Summary Statistics for Plant Length (mm) (Compared to Site Control)

\$12/13/12 OA: ARD/29/12

Title: 60147216-445-(035-038)

445lengt.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

Page___

GRP	IDENTIFICATION	.N	MIN	MAX	MEAN
1	APG-15	4	214.2000	238.8500	223.5375
2	APG-02	4	196.1000	253.5700	224.4175
3	APG-06	4	204.1100	257.5500	224.7025
4	APG-16	4	254.3500	275.5500	266.1025

Title: 60147216-445-(035-038)
File: 445lengt.dat Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	APG-15	117.3373	10.8322	5.4161	4.8458
2	APG-02	550.7059	23.4671	11.7336	10.4569
3	APG-06	562,7877	23.7231	11.8616	10.5576
4	APG-16	79.6317	8.9237	4.4618	3.3535

```
Toxstat Version 3.5
                                                        Page___of_
Study # 60147216-445-(035-038)
                                                                 of 12/13/12
Echinochloa crusgalli
Determination of NOEC and LOEC for Plant Length (mm) (Compared to Site Control)
                                                                  an: AR12/29/12
 Title: 60147216-445-(035-038)
          445lengt.dat Transform: NO TRANSFORMATION
                  Shapiro - Wilk's Test for Normality
      D = 3931.3877
      W = 0.9534
      Critical W = 0.8440 (alpha = 0.01 , N = 16)
             W = 0.8870 \text{ (alpha} = 0.05 , N = 16)
 Data PASS normality test (alpha = 0.01). Continue analysis.
 Title: 60147216-445-(035-038)
          4451engt.dat
                                  Transform:
                                                        NO TRANSFORMATION
               Bartlett's Test for Homogeneity of Variance
 Calculated B1 statistic = 3.6372
                                             (p-value = 0.3034)
 Data PASS B1 homogeneity test at 0.01 level. Continue analysis.
 Critical B = 11.3449 (alpha = 0.01, df = 3)
            = 7.8147 (alpha = 0.05, df = 3)
```

Study # 60147216-445-(035-038)

ESTCP

28/8/13

Echinochloa crusgalli

an wo 1108/13

Determination of NOEC, LOEC and PMSD for Length (mm) (Compared to Site Control)

Title: 60147216-445-(035-038)

File:

445lengt.dat

Transform:

NO TRANSFORMATION

Page___of__

ANOVA Table

SOURCE	DF	SS	MS	F
Between	3	5265.5913	1755.1971	5.3575
Within (Error)	12	3931.3877	327.6156	
Total	15	9196.9790		

(p-value = 0.0142)

Critical F = 5.9525 (alpha = 0.01, df = 3,12)

= 3.4903 (alpha = 0.05, df = 3,12)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File: 445lengt.dat

Transform:

NO TRANSFORMATION

. I	Dunnett's Test - TABLE 1 OF 2		Ho:Contro1=T	reatment	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	т стат	SIG 0.05
1	APG-15	223.5375	223.5375		
2	APG-02	224.4175	224.4175	0.0688	
3	APG-06	224.7025	224.7025	0.0910	
4	APG-16	266.1025	266.1025	3.3257	*

Dunnett critical value = 2.6800 (2 Tailed, Alpha = 0.05, df = 3.12)

Title: 60147216-445-(035-038)

File:

445lengt.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE 2 C	F 2 Ho	:Control=Treatment	
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF DIFFERENCE CONTROL FROM CONTROL	,
1 2	APG-15 APG-02 APG-06	4 4 4	34.3006 34.3006	15.3 0.8800 15.3 1.1650	
4	APG-16	4	34.3006	15.3 42.5650	

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

an:worlooks

Summary Statistics for Length (mm) per Original Organism (Using Lab Control)

Title: 60147216-445-(035-038)

File: length.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N 	MIN	MAX	MEAN	•
1	Control	4	242.8000	258.0500	250.8500	
2	APG-02	4	196.1000	253.5800	224.4200	
3	APG-06	4	204.1000	257.5500	224.7000	
4	APG-15	4	214.2100	238.8500	223.5425	
5	APG-16	4	254.3500	275.5500	266.1050	

Title: 60147216-445-(035-038)

length.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	46.3717	6.8097	3.4048	2.7146
2	APG-02	550.9003	23.4713	11.7356	10.4586
3	APG-06	562.9250	23.7260	11.8630	10.5590
4	APG-15	117.2385	10,8277	5.4138	4.8437
5	APG-16	79.6534	8.9249	4.4624	3.3539

```
Toxstat Version 3.5
                                                    Page___of_
Study # 60147216-445-(035-038)
                                                       QA: 00 01/08/13
ESTCP
Echinochloa crusgalli
Determination of NOEC, LOEC Length (mm) per Original Organism (Using Lab Control)
 Title: 60147216-445-(035-038)
 File:
            length.dat
                                Transform:
                                              NO TRANSFORMATION
                 Shapiro - Wilk's Test for Normality
      D = 4071.2666
     W = 0.9543
      Critical W = 0.8680 (alpha = 0.01 , N = 20)
             W = 0.9050 (alpha = 0.05 , N = 20)
 Data PASS normality test (alpha = 0.01). Continue analysis.
 Title: 60147216-445-(035-038)
 File:
            length.dat
                                Transform: NO TRANSFORMATION
             Bartlett's Test for Homogeneity of Variance
 Calculated B1 statistic = 6.3397
                                           (p-value = 0.1752)
 Data PASS B1 homogeneity test at 0.01 level. Continue analysis.
 Critical B = 13.2767 (alpha = 0.01, df = 4)
           = 9.4877 (alpha = 0.05, df = 4)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

_of

Determination of NOEC, LOEC and PMSD for Length (mm) per Original Organism (Using Lab Control) @n: cu a1 08/13

Title: 60147216-445-(035-038)

length.dat

Transform:

NO TRANSFORMATION

Page_

ANOVA Table

SOURCE '	DF	ss	MS	Ė
 Between	4	6101.2399	1525.3100	5.6198
Within (Error)	15	4071.2666	271.4178	
 Tota1	19	10172.5065		
,			·	- 0 0057)

(p-value = 0.0057)

Critical F = 4.8932 (alpha = 0.01, df = 4.15) = 3.0556 (alpha = 0.05, df = 4.15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File:

length.dat

Transform:

NO TRANSFORMATION

. I	Dunnett's Test -	TABLE 1 OF 2	Ho:Control=Treatment			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG 0.05	
-1	Control	250.8500	250.8500			
2	APG-02	224.4200	224.4200	2.2688		
3	APG-06	224.7000	224.7000	2.2447		
4	APG-15	223.5425	223.5425	2.3441		
5	APG-16	266.1050	266.1050	1.3095		
Dunnet	t critical value = 2.	7300 (2 Tailed	alpha = 0.05, df =	4,15)		

Title: 60147216-445-(035-038)

File:

length.dat

Transform:

NO TRANSFORMATION

•	Dunnett's Test -	TABLE 2	OF 2 Ho	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	Control	4			
2	APG-02	4	31.8029	12.7	26.4300
3	APG-06	4	31.8029	12.7	26.1500
4	APG-15	4	31.8029	12.7	27.3075
5	APG-16	4	31.8029	12.7	15.2550

Study # 60147216-445-(035-038)

ESTCP

de 12/12/12

Page___of___

Echinochloa crusgalli

QA:00 12/13/12

Summary Statistics for WET Weight per Original Organism (Compared to Site Control)

Title: 60147216-445-(035-038)

File: 445wetpt.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N 	MIN	MAX	MEAN
1	APG-15	4	0.1742	0.2483	0.2140
2	APG-02	4	0.1656	0.2453	0.1989
3.	APG-06	4	0.1704	0.2715	0.1991
4	APG-16	4	0.2783	0.3408	0.3055

Title: 60147216-445-(035-038)
File: 445wetpt.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

•	•				
GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	APG-15	0.0011	0.0324	0.0162	15.1519
2	APG-02	0,0013	0.0358	0.0179	17.9963
3	APG-06	0.0024	0.0487	0.0243	24.4492
4	APG-16	0.0007	0.0263	0.0131	8.5975

```
Toxstat Version 3.5
                                                                   Page___of___
Study # 60147216-445-(035-038)
                                                                         01:00 12/13/12
ESTCP
                                                                         de 12/12/12
Echinochloa crusgalli
Determination of NOEC and LOEC for WET Weight per Original Organism (Compared to Site
 Title: 60147216-445-(035-038)
                                     Transform:
                                                           NO TRANSFORMATION
 File: 445wetpt.dat
                  Shapiro - Wilk's Test for Normality
       D = 0.0162
       W = 0.9161
       Critical W = 0.8440 (alpha = 0.01 , N = 16)
                W = 0.8870 \text{ (alpha = 0.05 , } N = 16)
  Data PASS normality test (alpha = 0.01). Continue analysis.
  Title: 60147216-445-(035-038)
                                     Transform:
                                                            NO TRANSFORMATION
           445wetpt.dat
                 Bartlett's Test for Homogeneity of Variance
                                                  (p-value = 0.7850)
  Calculated B1 statistic = 1.0673
  Data PASS B1 homogeneity test at 0.01 level. Continue analysis.
  Critical B = 11.3449 (alpha = 0.01, df = 3)
= 7.8147 (alpha = 0.05, df = 3)
```

Study # 60147216-445-(035-038)

Echinochloa crusgalli

E1/80/10 wind

1813

Page___of__

Determination of NOEC, LOEC and PMSD for WET Weight per Original Organism (Compared to Site Control)

Title: 60147216-445-(035-038)

File:

445wetpt.dat

Transform:

NO TRANSFORMATION

ANOVA Table

•			
DF	SS	MS	F
3	0.0315	0.0105	7.7967
12	0.0162	0.0013	
15	0.0477		
	3	3 0.0315 12 0.0162	3 0.0315 0.0105 12 0.0162 0.0013

(p-value = 0.0038)

Critical F = 5.9525 (alpha = 0.01, df = 3.12) = 3.4903 (alpha = 0.05, df = 3.12)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File:

445wetpt.dat

Transform:

NO TRANSFORMATION

Dunnett's Test - TABLE 1 OF 2

Ho:Control=Treatment

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG 0.05
1	APG-15	0.2140	0.2140		
2	APG-02	0.1989	0.1989	0.5797	
3	APG-06	0.1991	0.1991	0.5720	
4	APG-16	0.3055	0.3055	3.5274	*

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60147216-445-(035-038)

File:

445wetpt.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE 2 C	OF 2 Ho	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	APG-15	4			
2	APG-02	4	0.0696	32.5	0.0150
3	APG-06	4	0.0696	32.5	0.0149
. 4	APG-16	. 4	0.0696	32.5	0.0916

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Summary Statistics for WET Weight per Original Organism (Using Lab Control)

Title: 60147216-44-(035-038)

plantcon.dat Transform:

NO TRANSFORMATION

Page____of_

an:0001108/13

Summary Statistics on Data

TABLE 1 of 2

	•				
GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Control	4	0.2086	0.2379	0.2230
2	APG-15	4	0.1742	0.2483	0.2140
3	APG-06	4	0.1704	0.2715	0.1991
4	APG-02	4	0.1656	0.2453	0.1989
5	APG-16	4	0.2783	0.3408	0.3055

Title: 60147216-44-(035-038)

File:

plantcon.dat Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP I	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	0,0001	0:0122	0.0061	5.4805
2	APG-15	0.0011	0.0324	0.0162	15.1519
3	APG-06	0.0024	0.0487	0.0243	24.4492
4	APG-02	0.0013	0.0358	0.0179	17.9963
5	APG-16	0.0007	0.0263	0.0131	8.5975

Toxstat Version 3.5 Page___of_ Study # 60147216-445-(035-038) OA: W ONLOSH 3 Echinochloa crusgalli Determination of NOEC and LOEC for WET Weight per Original Organism (Using Lab Control) Title: 60147216-44-(035-038) NO TRANSFORMATION File: plantcon.dat Transform: Shapiro - Wilk's Test for Normality D = 0.0166W = 0.9371Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05 , N = 20)Data (ASS) normality test (alpha = 0.01). Continue analysis. Title: 60147216-44-(035-038) plantcon.dat Transform: NO TRANSFORMATION Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 4.3041 (p-value = 0.3664)Data PASS B1 homogeneity test at 0.01 level. Continue analysis. Critical B = 13.2767 (alpha = 0.01, df = 4) = 9.4877 (alpha = 0.05, df = 4)

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Determination of NOEC, LOEC and PMSD for WET Weight per Original Organism (Using Lab Control)

Title: 60147216-44-(035-038)

File: plantcon.dat

Transform:

NO TRANSFORMATION

Page___

ANOVA Table

•				
SOURCE	DF	SS	MS	. /F
Between	4	0.0317	0.0079	7.1417
Within (Error)	15	0.0166	0.0011	
Total	19	0.0483		

(p-value = 0.0020)

Critical F = 4.8932 (alpha = 0.01, df = 4.15) = 3.0556 (alpha = 0.05, df = 4.15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-44-(035-038)

File: plantcon.dat Transform:

NO TRANSFORMATION

Dunnett's Test - TABLE 1 OF 2 Ho:Control=Treatment _______ TRANSFORMED MEAN CALCULATED IN SIG MEAN ORIGINAL UNITS T STAT 0.05 GROUP IDENTIFICATION _____ ------0.2230 Control 0.2230 2 APG-15 0.2140 0.2140 0.3845 3 APG-06 0.1991 0.1991 1.0153 0.1989 0.1989 1.0238 APG-02 4 3.5058 * APG-16 0.3055 0.3055

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60147216-44-(035-038)

File: plantcon.dat

Transform:

NO TRANSFORMATION

Dunnett's Test -		TABLE 2	OF 2 Ho	Ho:Control=Treatment		
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL	
1	Control	4				
2	APG-15	4	0.0643	28.8	0.0091	
3	APG-06	4	0.0643	28.8	0.0239	
4	APG-02	4	0.0643	28.8	0.0241	
5	APG-16	4	0.0643	28.8	0.0825	

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

0A:00 12/13/12

de 12/12/12

Summary Statistics for DRY Weight per Original Organism (Compared to Site Control)

Title: 60147216-445-(035-038)

File:

445drypt.dat

Transform:

NO TRANSFORMATION

Page___of_

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N .	MIN	MAX	MEAN	
1.	APG-15	4	0.0552	0.0680	0.0607	
2	APG-02	4	0.0462	0.0617	0.0522	
3	APG-06	4	0.0448	0.0700	0.0545	
4	APG-16	4	0.0754	0.0927	0.0880	

Title: 60147216-445-(035-038)

File:

445drypt.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	APG-15	0.0000	0.0063	0.0032	10.4144
2	APG-02	0.0000	0.0067	0.0034	12.8771
3 ·	APG-06	0:0001	0.0108	0.0054	19.8771
4	APG-16	0.0001	0.0084	0.0042	9.5762

Toxstat Version 3.5 Page___of__ Study # 60147216-445-(035-038) QA:0012/13/12 ESTCP 12/12/12 Echinochloa crusgalli Determination of NOEC and LOEC for DRY Weight per Original Organism (Compared to Site Title: 60147216-445-(035-038) File: 445drypt.dat NO TRANSFORMATION Transform: Shapiro - Wilk's Test for Normality D = 0.0008W = 0.9799Critical W = 0.8440 (alpha = 0.01 , N = 16) W = 0.8870 (alpha = 0.05 , N = 16)Data PASS normality test (alpha = 0.01). Continue analysis. Title: 60147216-445-(035-038) NO TRANSFORMATION File: 445drypt.dat Transform: Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 0.9883 (p-value = 0.8041)Data PASS B1 homogeneity test at 0.01 level. Continue analysis. Critical B = 11.3449 (alpha = 0.01, df = 3) = 7.8147 (alpha = 0.05, df = 3)

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Determination of NOEC, LOEC and PMSD for DRY Weight per Original Organism (Compared to Site Control)

Title: 60147216-445-(035-038)

File: 445drypt.dat

Transform:

NO TRANSFORMATION

Page___of_

ANOVA Table

				_	
SOURCE	DF	SS	MS	F	
Between	3	0.0033	0.0011	15.9556	
Within (Error)	12	0.0008	0.0001		
Total	15	0.0041			

(p-value = 0.0002)

Critical F = 5.9525 (alpha = 0.01, df = 3.12) = 3.4903 (alpha = 0.05, df = 3.12)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File:

445drypt.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE 1 OF 2	Ho:Control=Treatment						
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	т стат	sig 0.05				
1	APG-15	0.0607	0.0607						
2	APG-02	0.0522	0.0522	1.4579					
3	APG-06	0.0545	0.0545	1.0517					
4	APG-16	0.0880	0.0880	4.6772	*				
Dunne	tt critical value = 2	6800 (2 Tailed		3 121					

Title: 60147216-445-(035-038)

File:

445drypt.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE 2 O	F 2 Ho	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
			~~~~~~~~~		
1	APG-15	4			
2	APG-02	4	0.0157	25.8	0.0085
3	APG-06	4	0.0157	25.8	0.0061
4	APG-16	4	0.0157	25.8	0.0274
	· ·				

Study # 60147216-445-(035-038)

ESTCP

@A:00 01/08/13

Page___of_

Echinochloa crusgalli

Summary Statistics for DRY Weight per Original Organism (Using Lab Control)

Title: 60147216-445-(035-038)

File:

dry.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	 И	MIN	MAX	MEAN
1	Control	4	0.0616	0.0731	0.0652
2	APG-02	4	0.0462	0.0617	0.0522 (0. ちみら)
3	APG-06	4	0.0448	0.0700	0.0545
4	APG-15	4	0.0552	0.0680	0.0607
5	APG-16	4	0.0754	0.0927	0.0880

Title: 60147216-445-(035-038)
File: dry.dat Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	VARIANCE SD		C.V. %	
1	Control	0.0000	0.0054	0.0027	8.3454	
2	APG-02	0.0000	0.0067	0.0034	12.8771	
3	APG-06	0.0001	0.0108	0.0054	19.8771	
4	APG-15	0.0000	0.0063	0.0032	10.4144	
5	APG-16	0.0001	0.0084	0.0042	9.5762	

Page____of_ Toxstat Version 3.5 Study # 60147216-445-(035-038) QA: CN 01/08/13 ESTCP Echinochloa crusgalli Determination of NOEC and LOEC for DRY Weight per Original Organism (Using Lab Control) Title: 60147216-445-(035-038) File: dry.dat Transform: NO TRANSFORMATION Shapiro - Wilk's Test for Normality D = 0.0009 W = 0.9745Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05, N = 20)Data PASS normality test (alpha = 0.01). Continue analysis. Title: 60147216-445-(035-038) dry.dat Transform: NO TRANSFORMATION File: Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 1.6159 (p-value = 0.8059)Data PASS B1 homogeneity test at 0.01 level. Continue analysis. Critical B = 13.2767 (alpha = 0.01, df = 4) = 9.4877 (alpha = 0.05, df = 4)

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli Determination of NOEC, LOEC and PMSD for Well Weight per Original Organism (Using Lab Control)

Title: 60147216-445-(035-038)

File: plantdry.doc

Transform:

NO TRANSFORMATION

ANOVA Table

SOURCE	DF	SS	MS	F
Between	4	0.0033	0.0008	13.5218
Within (Error)	15	0.0009	0.0001	
Tota1	19	0.0042		

(p-value = 0.0001)

Critical F = 4.8932 (alpha = 0.01, df = 4.15) = 3.0556 (alpha = 0.05, df = 4.15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

plantdry.doc

Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE 1 OF 2	Ho:Control=Treatment				
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	т ѕтат	SIG 0.05		
1	Control	0.0652	0,0652				
2	APG-15	0.0607	0.0607	0.8218			
3	APG-06	0.0545	0.0545	1.9388			
4	APG-02	0.0522	0.0522	2.3702			
5	APG-16	0.0880	0.0880	4.1455	*		

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60147216-445-(035-038)

plantdry.doc

Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE Z	OF 2 Ho	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	Control				
2	APG-15	4.	0.0150	23.1	0.0045
3	APG-06	4	0.0150	23.1	0.0107
4	APG-02	4	0.0150	23.1	0.0130
5	APG-16	4.	0.0150	23.1	0.0228

0-18/18/13,E

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

(mylen)

Summary Statistics for Plant Nutrient: BORON using Lab Control

OR 12/14/12 OA: W 12/14/12

Title: 60147216-445-(035-038)

File:

boron2.dat

Transform:

NO TRANSFORMATION

Page___of_

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N 	MIN	MAX	MEAN
1	Control	4	5.8000	6.6000	6.1750
2	APG-02	4	15.3000	28.5000	19.5000
3	APG-06	4	11.3000	13.0000	12.0250
4	APG-16	4	7.3000	11.9000	10.1250
5	APG-15	4	6.9000	10.7000	9.0000

Title: 60147216-445-(035-038)

boron2.dat Transform:

NO TRANSFORMATION

Summary Statistics on Data TABLE 2 of 2

GRP	IDENTIFICATION	ENTIFICATION VARIANCE		SEM	C.V. %		
1	Control	0.1225	0.3500	0.1750	5.6680		
2	APG-02	36.7267	6.0603	3.0301	31.0782		
3	APG-06	0.7425	0.8617	0.4308	7.1658		
4	APG-16	4.4958	2.1203	1.0602	20.9416		
5	APG-15	2.5667	1.6021	0.8010	17.8009		

Toxstat Version 3.5 Page___of_ Study # 60147216-445-(035-038) ESTCP Echinochloa crusgalli QA: CL 12/14/12 Analysis of Plant Nutrient: BORON using Lab Control AR12/14/12 Title: 60147216-445-(035-038) boron2.dat Transform: LOG BASE 10(Y) Shapiro - Wilk's Test for Normality D = 0.0971W = 0.9687Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05 , N = 20)Data PASS normality test (alpha = 0.01). Continue analysis. Title: 60147216-445-(035-038) boron2.dat LOG BASE 10(Y) Transform: Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 8.0980 (p-value = 0.0881)Data/PASS B1 homogeneity test at 0.01 level. Continue analysis. Critical B = 13.2767 (alpha = 0.01, df = 4) = 9.4877 (alpha = 0.05, df = 4)

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: BORON using Lab Control

an:01/12/14/12

Title: 60147216-445-(035-038)

File:

boron2.dat

Transform:

LOG BASE 10(Y)

Page___of___

#### ANOVA Table

s	OURCE	DF	SS	MS	F .
Ве	etween .	4	0.5106	0.1277 1	9.7119
W	ithin (Error)	15	0.0971	0.0065	
Т	otal	19	0.6078		

(p-value = 0.0000)

Critical F = 4.8932 (alpha = 0.01, df = 4.15) = 3.0556 (alpha = 0.05, df = 4.15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File:

boron2.dat

Transform:

LOG BASE 10(Y)

Dunnett	: 'ຮ	Test	 -	TABLE	1	OF	2		H	o:C	ontro	ol=T	reatmer	ıt
				m		ano	*****	3451337	CORT	~~~				

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05
1	Control	0.7901	6.1750		
2	APG-02	1.2764	19.5000	8.5453	*
3	APG-06	1.0793	12.0250	5.0811	*
4	APG-16	0.9975	10.1250	3.6449	*
5	APG-15	0.9487	9.0000	2.7877	*
	· ·		_		

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60147216-445-(035-038)

File:

boron2.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	TABLE 2	OF 2 Ho	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	Control	4			
2	APG-02	4	1.8547	30.1	13.3250
3	APG-06	4	1,8547	30.1	5.8500
4	APG-16	4	1.8547	30.1	3.9500
5	APG-15	4	1.8547	30.1	2.8250

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

(molky)

0A:0012114/12

Summary Statistics for Plant Nutrient: CALCIUM using Lab Control

de 12/14/12

Title: 60147216-445-(035-038)

calcium2.dat

Transform:

NO TRANSFORMATION

Page___of_

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1.	Control	4	16600.0000	23200.0000	19750.0000
2	APG-02	4	6770.0000	22400.0000	10912.5000
3	APG-06	4	9170.0000	24500.0000	13745.0000
4	APG-16	4	15800.0000	17300.0000	16575.0000
5	APG-15	4	21400.0000	44200.0000	32200.0000

Title: 60147216-445-(035-038)

calcium2.dat

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %	•
1	Control	7316666.6667	2704.9338	1352.4669	13.6959	
2	APG-02	58700225.0000	7661.6072	3830.8036	70.2095	
. 3	APG-06	52932300.0000	7275.4587	3637.7294	52.9317	
4	APG-16	482500.0000	694.6222	347.3111	4.1908	
5	APG-15	129786666.6666	11392.3951	5696.1976	35.3801	

Toxstat Version 3.5 Page___of_ Study # 60147216-445-(035-038) ESTCP Echinochloa crusgalli Analysis of Plant Nutrient: CALCIUM using Lab Control A 12/14/12 QA: 012/114/12 Title: 60147216-445-(035-038) Transform: File: calcium2.dat SQUARE ROOT (Y) Shapiro - Wilk's Test for Normality D = 9053.8925W = 0.9114Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05 , N = 20) Data PASS normality test (alpha = 0.01). Continue analysis. Title: 60147216-445-(035-038) SQUARE ROOT(Y) File: calcium2.dat Transform: Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 12.9265 (p-value = 0.0116)Data PASS B1 homogeneity test at 0.01 level. Continue analysis. Critical B = 13.2767 (alpha = 0.01, df = 4) = 9.4877 (alpha = 0.05, df = 4)

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: CALCIUM using Lab Control

Title: 60147216-445-(035-038)

File: calcium2.dat

Transform:

412/14/12 an: cu 12/14/12 SQUARE ROOT(Y)

Page___of_

ANOVA Table

SOURCE	DF .	SS	MS	F
Between	4	13692.7186	3423.1797	5.6713
Within (Error)	15	9053.8925	603.5928	
Total	19	22746.6111		

(p-value = 0.0055)

Critical F = 4.8932 (alpha = 0.01, df = 4,15)

= 3.0556 (alpha = 0.05, df = 4,15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

calcium2.dat

Transform:

SQUARE ROOT(Y)

Dunnett's Test -		TABLE 1 OF 2	Ho:Control=Treatment			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05	
1	Control	140.2882	19750.0000			
2	APG-02	100.5305	10912.5000	2.2886		
3	APG-06	114.5943	13745.0000	1.4790		
4	APG-16	128.7227	16575.0000	0.6657		
5 ·	APG-15	177.2864	32200.0000	2.1297		

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60147216-445-(035-038)

File:

calcium2.dat

Transform:

SQUARE ROOT(Y)

	Dunnett's	Test -	TABLE 2	OF 2 Ho	:Control=	Treatment
GROUP	IDENTIF	ICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1		Control	4			
2		APG-02	4	999.9999	5.1	8837.5000
3		APG-06	4	999.9999	5.1	6005.0000
4		APG-16	4	999.9999	5.1	3175.0000
. 5		APG-15	4	999.9999	5.1	12450.0000

NOTE: MSD = 999.9999 means actual MSD estimate > 999.

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

(molkg)

Summary Statistics for Plant Nutrient: COPPER using Lab Control

de 12/14/12 0A:00 12/14/12

File:

Title: 60147216-445-(035-038)

coppe.dat

Transform:

NO TRANSFORMATION

Page___of__

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Control	4	1.8000	2.9000	2.2750
2	. APG-02	4	13.2000	26.9000	20.6750
3	APG-06	4	5.3000	9.1000	7.0500
4	APG-16	4	8.5000	10.5000	9.5750
5	APG~15	4	11.4000	24.4000	15.5500

Title: 60147216-445-(035-038)

coppe.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	0.2358	0.4856	0.2428	21.3462
2	APG-02	47.8092	6.9144	3.4572	33.4434
3	APG-06	2.5433	1.5948	0.7974	22.6210
4	APG-16	0.9558	0.9777	0.4888	10,2106
5	APG-15	35.9567	5.9964	2.9982	38.5620

Toxstat Version 3.5 Page___of_ Study # 60147216-445-(035-038) ESTCP Echinochloa crusgalli Analysis of Plant Nutrient: COPPER using Lab Control d12/14/12 aniw 12/14/12 Title: 60147216-445-(035-038) coppe.dat Transform: LOG BASE 10(Y) Shapiro - Wilk's Test for Normality D = 0.1964 W = 0.9656Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05, N = 20)Data (PASS) normality test (alpha = 0.01). Continue analysis. Title: 60147216-445-(035-038) coppe.dat LOG BASE 10(Y) Transform: Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 4.0710 (p-value = 0.3965)Data (ASS)B1 homogeneity test at 0.01 level. Continue analysis. Critical B = 13.2767 (alpha = 0.01, df = 4) = 9.4877 (alpha = 0.05, df = 4)

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: COPPER using Lab Control

QA:00 12/14/12

*12/14/12

Title: 60147216-445-(035-038)

File: coppe.dat

Transform:

LOG BASE 10(Y)

Page___of__

# ANOVA Table

SOURCE	DF	ss	MS	F
Between	4	2.1566	0.5392	41.1698
Within (Error)	15	0.1964	0.0131	
Total	19	2.3531		

(p-value = 0.0000)

Critical F = 4.8932 (alpha = 0.01, df = 4.15) = 3.0556 (alpha = 0.05, df = 4.15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

' File:

coppe.dat

Transform:

LOG BASE 10(Y)

Dunnett's Test -		Dunnett's Test -	TABLE 1 OF 2	Ho:Control=Treatment			
	GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05	
	1	Control	0.3497	2.2750			
	2	APG-02	1.2959	20.6750	11.6923	*	
	3	APG-06	0.8399	7.0500	6.0574	*	
	4	APG-16	0.9794	9.5750	7.7817	*	
	5	APG-15	1.1710	15.5500	10.1487	*	

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60147216-445-(035-038)

File:

coppe.dat

Transform:

LOG BASE 10(Y)

. Dui	nnett's Test -	TABLE 2	OF 2 Ho	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	Control	4			•
2	APG-02	4	0.8920	39.9	18.4000
3	APG-06	4	0.8920	39.9	4.7750
4	APG-16	4	0.8920	39.9	7.3000
5	APG-15	4	0.8920	39.9	13.2750

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

(ma/ka)

Summary Statistics for Plant Nutrient: IRON using Lab Control

de 12/14/12

Title: 60147216-445-(035-038) iron2.dat

QA:00 12/14/12

File:

Transform:

NO TRANSFORMATION

Summary Statistics on Data TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Control	4	41,8000	64.7000	51.8500
2	APG-02	4	91.3000	415.0000	250.0750
3	APG-06	4	121.0000	281.0000	173.2500
4	APG-16	4	53.5000	185.0000	108.7500
5	APG-15	4	61.7000	196.0000	114.9250

Title: 60147216-445-(035-038)

iron2.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	90.2167	9.4982	4.7491	18.3187
2	APG-02	24276.8892	155.8104	77.9052	62.3055
3	APG-06	5661.5833	75.2435	37.6217	43.4306
4	APG-16	3344.4167	57.8309	28.9155	53.1779
5	APG-15	3275.2892	57.2301	28.6151	49.7978

```
Toxstat Version 3.5
                                                       Page___
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
                                                                an:0012/14/12
Analysis of Plant Nutrient: IRON using Lab Control
                                                               2 12/14/12
 Title: 60147216-445-(035-038)
                                                          LOG BASE 10(Y)
 File:
              iron2.dat
                                  Transform:
                  Shapiro - Wilk's Test for Normality
      D = 0.6909
      W = 0.9570
      Critical W = 0.8680 (alpha = 0.01 , N = 20)
             W = 0.9050 \text{ (alpha = 0.05, N = 20)}
 Data PASS normality test (alpha = 0.01). Continue analysis.
  Title: 60147216-445-(035-038)
  File:
             iron2.dat
                                 Transform:
                                                          LOG BASE 10(Y)
               Bartlett's Test for Homogeneity of Variance
  Calculated B1 statistic = 4.3009
                                              (p-value = 0.3668)
  Data PASS B1 homogeneity test at 0.01 level. Continue analysis.
 Critical B = 13.2767 (alpha = 0.01, df = 4)
= 9.4877 (alpha = 0.05, df = 4)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: IRON using Lab Control

Title: 60147216-445-(035-038)

iron2.dat File:

Transform:

*12/14/12 QA: 01 12/14/12 LOG BASE 10(Y)

Page___of___

ANOVA Table

SOURCE	DF	ss	MS	F
Between	4	0.8798	0.2199	4.7750
Within (Error)	15	0.6909	0.0461	
Total	19	1.5707		

(p-value = 0.0110)

Critical F = 4.8932 (alpha = 0.01, df = 4.15) = 3.0556 (alpha = 0.05, df = 4,15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File:

iron2.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	TABLE 1 OF 2	Ho:Control=T	reatment	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05
1	Control	1.7094	51.8500		
2	APG-02	2.3211	250.0750	4.0306	*
3	APG-06	2.2114	173.2500	3.3079	*
4	APG-16	1.9896	108.7500	1.8461	
5	APG-15	2.0226	114.9250	2.0637	

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60147216-445-(035-038)

File: iron2.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	TABLE 2	OF 2 Ho	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	Control	4			
2	APG-02	4	31.4892	61.5	198.2250
3	APG-06	4	31.4892	61.5	121.4000
4	APG-16	4	31.4892	61.5	56.9000
5	APG-15	4	31.4892	61.5	63.0750

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

(molky)

@A:0012)14/12_

Summary Statistics for Plant Nutrient: MAGNESIUM using Lab Control

A12/14/12

Title: 60147216-445-(035-038)3

File:

magnesi.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

Page___of___

GRP	IDENTIFICATION	N	MIN	MAX		MEAN
1	Control	4	10200.0000	12500.0000	10950	0.0000
2	APG-02	4	10700.0000	12900.0000	11900	0.0000
3	APG-06	4	11300.0000	14900.0000	13950	0.0000
4	APG-16	4	7870.0000	9380.0000	841	7.5000
5	APG-15	4	9340.0000	10500.0000	10089	5.0000

Title: 60147216-445-(035-038)3

File:

magnesi.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Contro1	1110000.0000	1053.5654	526.7827	9.6216
2	APG-02	1146666.6667	1070.8252	535.4126	8.9985
3	APG-06	3123333.3333	1767.2955	883.6477	12.6688
4	APG-16	456691.6667	675.7897	337.8948	8.0284
5	APG-15	275566.6667	524.9444	262.4722	5.2052

```
Toxstat Version 3.5
                                                  Page___of_
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
                                                                   OA: W 12/14/12
Analysis of Plant Nutrient: MAGNESIUM using Lab Control
                                                                   de 12/14/12
 Title: 60147216-445-(035-038)3
 File:
                                  Transform:
           magnesi.dat
                                                         NO TRANSFORMATION
                  Shapiro - Wilk's Test for Normality
      D = 18336775.0000
      W = 0.9329
      Critical W = 0.8680 (alpha = 0.01 , N = 20)
              W = 0.9050 \text{ (alpha = 0.05, } N = 20)
     _____
 Data(PASS)normality test (alpha = 0.01). Continue analysis.
 Title: 60147216-445-(035-038)3
 File:
                                   Transform:
                                                        NO TRANSFORMATION
           magnesi.dat
               Bartlett's Test for Homogeneity of Variance
 Calculated B1 statistic = 4.4916
                                               (p-value = 0.3435)
 Data (PASS /B1 homogeneity test at 0.01 level. Continue analysis.
 Critical B = 13.2767 (alpha = 0.01, df = 4)
= 9.4877 (alpha = 0.05, df = 4)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: MAGNESIUM using Lab Control

0A:00 12/14/12

de 12/14/12

Title: 60147216-445-(035-038)3

File:

magnesi.dat

Transform:

NO TRANSFORMATION

Page___of_

ANOVA Table

SOURCE	DF	ss	MS	F
Between	4	68012920.0000	17003230.0000	13.9091
Within (Error)	15	18336775.0000	1222451.6667	
Total	19	86349695.0000	·	

(p-value = 0.0001)

Critical F = 4.8932 (alpha = 0.01, df = 4.15) = 3.0556 (alpha = 0.05, df = 4.15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)3

File:

magnesi.dat

Transform:

NO TRANSFORMATION

•	Dunnett's Test -	TABLE 1 OF 2	Ho:Control=T	reatment	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	т стат	SIG 0.05
1	Control	10950.0000	10950.0000		
2	APG-02	11900.0000	11900.0000	1.2151	
3	APG-06	13950.0000	13950.0000	3.8373	*
4	APG-16	8417.5000	8417.5000	3.2393	*
5	APG-15	10085.0000	10085.0000	1.1064	

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60147216-445-(035-038)3

File: magnesi.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE 2	OF 2 Ho	Ho:Control=Treatment			
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL		
1	Control	4	•				
2	APG-02	4	999.9999	9.1	950.0000		
3	APG-06	4	999.9999	9.1	3000.0000		
4	APG-16	4	999.9999	9.1	2532.5000		
5	APG-15	4	999.9999	9.1	865.0000		

NOTE: MSD = 999.9999 means actual MSD estimate > 999.

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

(molky)

Summary Statistics for Plant Nutrient: MANGANESE using Lab Control

de 12/14/12

Title: 60147216-445-(035-038)

QA:0012/14/12

File: mangane.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

Page___of__

	•				
GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Control	4	167.0000	263.0000	205.5000
2	APG-02	4	1160.0000	2370.0000	1742.5000
3	APG-06	4	181.0000	880.0000	440.7500
4	APG-16	4	245.0000	666.0000	512.2500
5	APG-15	4	342.0000	496.0000	424.0000

Title: 60147216-445-(035-038)
File: mangane.dat Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	1689.0000	41.0974	20.5487	19.9988
2	APG-02	321758.3333	567.2375	283.6187	32.5531
3	APG-06	96024.2500	309.8778	154.9389	70.3069
4	APG-16	35434.9167	188.2416	94.1208	36.7480
5	APG-15	4028.6667	63.4718	31.7359	14.9698

```
Toxstat Version 3.5
                                                    Page___of_
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
Analysis of Plant Nutrient: MANGANESE using Lab Control
                                                                  de 12/14/12
                                                                  an: 00 12/14/12
 Title: 60147216-445-(035-038)
                                                               LOG BASE 10(Y)
 File: mangane.dat Transform:
                  Shapiro - Wilk's Test for Normality
    D = 0.4749
      W = 0.9631
      Critical W = 0.8680 (alpha = 0.01 , N = 20)
               W = 0.9050 (alpha = 0.05 , N = 20)
  Data PASS normality test (alpha = 0.01). Continue analysis.
  Title: 60147216-445-(035-038)

Transform:
                                                              LOG BASE 10(Y)
                 Bartlett's Test for Homogeneity of Variance
                                          (p-value = 0.1348)
  Calculated B1 statistic = 7.0198
  Data/PASS Bi homogeneity test at 0.01 level. Continue analysis.
  Critical B = 13.2767 (alpha = 0.01, df = 4)
= 9.4877 (alpha = 0.05, df = 4)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: MANGANESE using Lab Control

QA:0012/14/12

de12114/12

Page__of__

Title: 60147216-445-(035-038)

File:

mangane.dat

Transform:

LOG BASE 10(Y)

#### ANOVA Table

SOURCE	DF	SS	MS	F
Between	4	1.8009	0.4502	14.2214
Within (Error)	15	0.4749	0.0317	
Total	19	2.2758		

(p-value = 0.0001)

Critical F = 4.8932 (alpha = 0.01, df = 4.15)

= 3.0556 (alpha = 0.05, df = 4,15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File:

mangane.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	TABLE 1 OF 2	Ho:Control=Treatment			
GROUP	DENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05	
1	Control	2.3067	205.5000			
2	APG-02	3.2232	1742.5000	7.2852	*	
3	APG-06	2.5680	440.7500	2.0771		
4	APG-16	2.6799	512.2500	2.9667	*	
5	APG-15	2.6236	424.0000	2:5189		

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60147216-445-(035-038)

File: mangane.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	TABLE 2	OF 2 Ho	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	Control	4			
2	APG-02	4	110.7360	54.7	1537.0000
3	APG-06	4	110.7360	54.7	235.2500
4	APG-16	4	110.7360	54.7	306.7500
. 5	APG-15	4	110.7360	54.7	218.5000

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

(mglug)

Summary Statistics for Plant Nutrient: PHOSPHORUS using Lab Control

QA:0012114/12

de 12/14/12

Title: 60147216-445-(035-038)

File:

phosph.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data TABLE 1 of 2

Page___of_

GRP	IDENTIFICATION	N 	MIN	MAX	MEAN	
1	Control	4	2440.0000	3160.0000	2875.0000	
2	APG-02	4	1920.0000	2660.0000	2302.5000	
- 3	APG-06	4	1930.0000	2360.0000	2090.0000	
4.	APG-16	4	1440.0000	2070.0000	1757.5000	
5	APG-15	4	1730.0000	2090.0000	1915.0000	

Title: 60147216-445-(035-038)

phosph.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	117966.6667	343.4628	171.7314	11.9465
2	APG-02	91491.6667	302.4759	151.2379	13.1368
3	APG-06	34866.6667	186.7262	93.3631	8.9343
4	APG-16	66758.3333	258.3763	129.1882	14.7014
5	APG-15	34700.0000	186.2794	93.1397	9.7274

```
Toxstat Version 3.5
                                                      Page__of_
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
Analysis of Plant Nutrient: PHOSPHORUS using Lab Control
 Title: 60147216-445-(035-038)
 File: phosph.dat
                                    Transform:
                                                             NO TRANSFORMATION
                  Shapiro - Wilk's Test for Normality
      D = 1037350.0000
      W = 0.9582
       Critical W = 0.8680 (alpha = 0.01 , N = 20)
                W = 0.9050 \text{ (alpha = 0.05, } N = 20)
 Data/PASS normality test (alpha = 0.01). Continue analysis.
 Title: 60147216-445-(035-038)
  File:
           phosph.dat
                                                            NO TRANSFORMATION
                                     Transform:
                 Bartlett's Test for Homogeneity of Variance
  Calculated B1 statistic = 1.5773
                                                 (p-value = 0.8129)
  Data PASS 1 homogeneity test at 0.01 level. Continue analysis.
  Critical B = 13.2767 (alpha = 0.01, df = 4)
= 9.4877 (alpha = 0.05, df = 4)
```

Study # 60147216-445-(035-038)

ESTCP

File:

Echinochloa crusgalli

Analysis of Plant Nutrient: PHOSPHORUS using Lab Control

Title: 60147216-445-(035-038)

phosph.dat

Transform:

04/2/14/12 04:00/2/14/12

NO TRANSFORMATION

Page___of__

ANOVA Table

SOURCE	DF	ss	MS	F
Between	4	3018170.0000	754542.5000	10.9106
Within (Error)	15	1037350.0000	69156.6667	
Total	19	4055520.0000		

(p-value = 0.0002)

Critical F = 4.8932 (alpha = 0.01, df = 4.15) = 3.0556 (alpha = 0.05, df = 4.15)

Since F > Critical F (REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File:

phosph.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE 1 OF 2	Ho:Control=T	reatment	
GROUP	DENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	т стат	SIG 0.05
1	Control	2875.0000	2875.0000		
2	APG-02	2302.5000	2302.5000	3.0787	*
3	APG-06	2090.0000	2090.0000	4.2215	*
4	APG-16	1757.5000	1757.5000	6.0096	*
5	APG-15	1915.0000	1915.0000	5.1626	*

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60147216-445-(035-038)

File:

phosph.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE 2	OF 2	Ho:Control=Treatment		
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL	
1	Control	4				
2	APG-02	4	507.6503	17.7	572.5000	
3	APG-06	4 ·	507.6503	17.7	785.0000	
4	APG-16	4	507.6503	17.7	1117.5000	
, 5	APG-15	4	507.6503	17.7	960.0000	

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Summary Statistics for Plant Nutrient: POTASSIUM using Lab Control

da wishilis

Title: 60147216-445-(035-038)

potasiu.dat Transform:

NO TRANSFORMATION

Page___of

Summary Statistics on Data

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Control	4	14400.0000	18800.0000	15750.0000
2	APG-02	4	14900.0000	18300.0000	16650.0000
3	APG-06	4	16500.0000	19900.0000	17975.0000
4	APG-16	4	12700.0000	18900.0000	16225.0000
5	APG-15	4	14300.0000	18300.0000	16725.0000

Title: 60147216-445-(035-038)
File: potasiu.dat Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	4216666.6667	2053.4524	1026.7262	13.0378
2	APG-02	2170000.0000	1473.0920	736.5460	8.8474
3	APG-06	3035833.3333	1742.3643	871.1821	9.6933
4	APG-16	9449166,6667	3073.9497	1536.9748	18.9458
5	APG-15	3389166.6667	1840.9689	920.4845	11.0073

```
Toxstat Version 3.5
                                                             Page___of_
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
                                                                   On:00 12/14/12
Analysis of Plant Nutrient: POTASSIUM using Lab Control
                                                                   de12/14/12
 Title: 60147216-445-(035-038)
                               Transform:
                                                      NO TRANSFORMATION
 File: potasiu.dat
                  Shapiro - Wilk's Test for Normality
      D = 66782500.0000
      W = 0.9530
      Critical W = 0.8680 (alpha = 0.01 , N = 20)
              W = 0.9050 \text{ (alpha = 0.05, } N = 20)
               Data (PASS) normality test (alpha = 0.01). Continue analysis.
 Title: 60147216-445-(035-038)
         potasiu.dat
                                                       NO TRANSFORMATION
                                 Transform:
 File:
              Bartlett's Test for Homogeneity of Variance
 Calculated B1 statistic = 1.7899
                                             (p-value = 0.7743)
 Data (PASS) B1 homogeneity test at 0.01 level. Continue analysis.
 Critical B = 13.2767 (alpha = 0.01, df = 4)
= 9.4877 (alpha = 0.05, df = 4)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: POTASSIUM using Lab Control

on: auraly 12

A812/14/12

Title: 60147216-445-(035-038)

File: potasiu.dat

Transform:

NO TRANSFORMATION

Page___of_

#### ANOVA Table

SOURCE	DF	SS	MS	F
Between	4	11003000.0000	2750750.0000	0.6178
Within (Error)	15	66782500.0000	4452166.6667	
Total	19	77785500.0000		

(p-value = 0.6566)

Critical F = 4.8932 (alpha = 0.01, df = 4.15)

= 3.0556 (alpha = 0.05, df = 4,15)

Since F < Critical F FAIL TO REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File:

potasiu.dat

Transform:

NO TRANSFORMATION

Dunnett's Test - TABLE 1 OF 2			Ho:Control=Treatment			
GROUP IDEN	TIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG 0.05	
1	Control	15750.0000	15750.0000			
2	APG-02	16650.0000	16650.0000	0.6032		
3	APG-06	17975.0000	17975.0000	1.4913		
4 .	APG-16	16225.0000	16225.0000	0.3184		
5	APG-15	16725.0000	16725.0000	0.6535		

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60147216-445-(035-038)

potasiu.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE 2	OF 2 Ho	:Control=	Preatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	Control	4			
2	APG-02	4	999.9999	6.3	900.0000
3	APG-06	4	999.9999	6.3	2225.0000
4	APG-16	4	999.9999	6.3	475.0000
5	APG-15	4	999.9999	6.3	975.0000

NOTE: MSD = 999.9999 means actual MSD estimate > 999.

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Summary Statistics for Plant Nutrient: SODIUM using Lab Control

on: 00 12/14/12

File:

Title: 60147216-445-(035-038)

sodium.dat

Transform:

NO TRANSFORMATION

Page___of__

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Control	4	84.4000	124.0000	99.1250
2	APG-02	4	946.0000	6260.0000	2579.0000
3	APG_06	4	727.0000	4000.0000	2304.2500
4	APG-16	4	3700.0000	5810.0000	5050.0000
5	APG-15	4	3490.0000	11200.0000	6175.0000

Title: 60147216-445-(035-038)

File:

sodium.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	315.5025	17.7624	8.8812	17.9192
2	APG-02	6170684.0000	2484.0861	1242.0431	96.3197
3	APG_06	1995452.2500	1412.6048	706.3024	61.3043
4	APG-16	878466.6667	937.2655	468.6328	18.5597
5	APG-15	12001366.6667	3464.2989	1732.1494	56.1020

Toxstat Version 3.5 Page___of__ Study # 60147216-445-(035-038) ESTCP Echinochloa crusgalli Analysis of Plant Nutrient: SODIUM using Lab Control Title: 60147216-445-(035-038) LOG BASE 10(Y) File: sodium.dat Transform: Shapiro - Wilk's Test for Normality D = 0.8879W = 0.9700Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05, N = 20)_____ Data PASS normality test (alpha = 0.01). Continue analysis. Title: 60147216-445-(035-038) File: LOG BASE 10(Y) sodium.dat Transform: Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 8.6048 (p-value = 0.0718)Data (PASS) B1 homogeneity test at 0.01 level. Continue analysis. Critical B = 13.2767 (alpha = 0.01, df = 4) = 9.4877 (alpha = 0.05, df = 4)

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: SODIUM using Lab Control

Title: 60147216-445-(035-038)

File: sodium.dat

Transform:

on:0012/11/12

LOG BASE 10(Y)

Page___of

#### ANOVA Table

SOURCE	DF	SS	MS	F
Between	4	8.0815	2.0204	34.1308
Within (Error)	15	0.8879	0.0592	
 Tota1	19	8.9695		

(p-value = 0.0000)

Critical F = 4.8932 (alpha = 0.01, df = 4.15)

= 3.0556 (alpha = 0.05, df = 4,15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File:

sodium.dat

Transform:

LOG BASE 10(Y)

D	unnett's Test -	ABLE 1 OF 2 Ho:Control=Treatme			t	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05	
1	Control	1.9913	99.1250			
2	APG-02	3.2844	2579.0000	7.5167	*	
3	APG_06	3.2847	2304.2500	7.5181	*	
4	APG-16	3.6970	5050.0000	9.9146	*	
5	APG-15	3.7460	6175.0000	10.1994	*	
the second second						

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60147216-445-(035-038)

sodium.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	TABLE 2	OF 2	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	Control	4			
2	APG-02	4	64.7722	66.1	2479.8750
.3	APG_06	4	64.7722	66.1	2205.1250
4	APG-16	4	64.7722	66.1	4950.8750
- 5	APG-15	4	64.7722	66.1	6075.8750

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

(molus) Summary Statistics for Plant Nutrient: SULFUR using Lab Control

0A:00 12/14/12

AR12/14/12

Title: 60147216-445-(035-038)

sulfu.dat Transform:

NO TRANSFORMATION

Page___of_

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N 	MIN	MAX	MEAN
1	Control	4	3440.0000	5070.0000	4247.5000
2	APG-02	4	13200.0000	32400.0000	19000.0000
3	APG-06	4	15600.0000	28900.0000	20875.0000
4	APG-16	4	18200.0000	19800.0000	19025.0000
5	APG-15	4	23600.0000	42900.0000	32125.0000

Title: 60147216-445-(035-038)

File:

sulfu.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1.	Control	529291.6667	727.5243	363.7622	17.1283
2	APG-02	81653333.3334	9036.2234	4518.1117	47.5591
3	APG-06	32009166.6667	5657.6644	2828.8322	27.1026
4	APG-16	509166.6667	713.5592	356.7796	3.7506
5	APG-15	86195833.3334	9284.1711	4642.0856	28.9001

Toxstat Version 3.5 Page___of_ Study # 60147216-445-(035-038) ESTCP Echinochloa crusgalli Analysis of Plant Nutrient: SULFUR using Lab Control an: cu 12/14/12 ck12/14/12 Title: 60147216-445-(035-038) sulfu.dat Transform: LOG BASE 10(Y) Shapiro - Wilk's Test for Normality D = 0.1992W = 0.9248Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05 , N = 20)Data (PASS) normality test (alpha = 0.01). Continue analysis. Title: 60147216-445-(035-038) sulfu.dat Transform: LOG BASE 10(Y) Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 9.9743 (p-value = 0.0409)Data PASS B1 homogeneity test at 0.01 level. Continue analysis. Critical B = 13.2767 (alpha = 0.01, df = 4)

= 9.4877 (alpha = 0.05, df = 4)

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: SULFUR using Lab Control

an:0012/14/12

SKIZIMIR

Title: 60147216-445-(035-038)

File:

sulfu.dat

Transform:

LOG BASE 10(Y)

Page___of_

## ANOVA Table

SOURCE	DF	SS	MS	F
Between	4	1.7537	0.4384	33.0158
Within (Error)	15	0.1992	0.0133	
Total	19	1.9528		

(p-value = 0.0000)

Critical F = 4.8932 (alpha = 0.01, df = 4.15)

= 3.0556 (alpha = 0.05, df = 4,15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File:

sulfu.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	TABLE 1 OF 2	Ho:Control=	Preatment	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05
 i	Control	3.6233	4247.5000		
2	APG-02	4.2480	19000.0000	7.6670	*
3	APG-06	4.3085	20875.0000	8.4095	*
. 4	APG-16	4.2791	19025.0000	8.0484	*
5	APG-15	4.4932	32125.0000	10.6754	* .

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4.15)

Title: 60147216-445-(035-038)

File:

sulfu.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	TABLE 2 C	OF 2 Ho	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
			415 Med Str. 200 State was was was free and date was face for the State		
1	Control	4			
2	APG-02	4	999.9999	23.8	14752.5000
3	APG-06	4	999.9999	23.8	16627.5000
4	APG-16	4	999.9999	23.8	14777.5000
5	APG-15	4	999.9999	23.8	27877.5000

NOTE: MSD = 999.9999 means actual MSD estimate > 999.

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

(molug)

Summary Statistics for Plant Nutrient: ZINC using Lab Control

વર્ષામાં છાત્રાત્ર

*12/14/12

Title: 60147216-445-(035-038)

File:

zinc2.dat

Transform: NO TRANSFORMATION

Page_

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N 	MIN	MAX	MEAN
1	Control	4	25.0000	38.7000	33.0000
2	APG-02	4	345.0000	1870.0000	771.2500
3	APG-06	4	162,0000	392.0000	300.7500
4	APG-16	4	448.0000	1200.0000	872.7500
5	APG-15	4	287.0000	809.0000	600.2500

Title: 60147216-445-(035-038)
File: zinc2.dat Transform:

NO TRANSFORMATION

Summary Statistics on Data TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	33.1800	5.7602	2.8801	17.4552
2	APG-02	538356.9167	733.7281	366.8640	95.1349
3	APG-06	9570.2500	97.8277	48.9138	32.5279
4	APG-16	99623.5833	315.6320	157.8160	36.1652
5	APG-15	59058.2500	243,0190	121.5095	40.4863

Toxstat Version 3.5 Page___of__ Study # 60147216-445-(035-038) ESTCP Echinochloa crusgalli Analysis of Plant Nutrient: ZINC using Lab Control *12114/12 on: wialinha Title: 60147216-445-(035-038) zinc2.dat Transform: LOG BASE 10(Y) Shapiro - Wilk's Test for Normality D = 0.6787W = 0.9288Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05, N = 20)Data PASS normality test (alpha = 0.01). Continue analysis. Title: 60147216-445-(035-038) zinc2.dat Transform: LOG BASE 10(Y) Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 4.7389 (p-value = 0.3152)Data (PASS) B1 homogeneity test at 0.01 level. Continue analysis.

Critical B = 13.2767 (alpha = 0.01, df = 4)

= 9.4877 (alpha = 0.05, df = 4)

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: ZINC using Lab Control

21111112 A121111212

Title: 60147216-445-(035-038)

File:

zinc2.dat

Transform:

LOG BASE 10(Y)

Page___of__

# ANOVA Table

SOURCE	DF	SS	MS	F
Between	4	5.1177	1.2794	28.2764
Within (Error)	15	0.6787	0.0452	
Total	19	5.7964		

(p-value = 0.0000)

Critical F = 4.8932 (alpha = 0.01, df = 4,15) = 3.0556 (alpha = 0.05, df = 4,15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File:

zinc2.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	TABLE 1 OF 2	ABLE 1 OF 2 Ho:Control=		
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05
1	Control	1.5131	33.0000		
2	APG-02	2.7717	771.2500	8.3675	*
3	APG-06	2.4563	300.7500	6.2709	*
4	APG-16	2.9144	872.7500	9.3168	*
·5	APG-15	2.7449	600.2500	8.1893	*

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60147216-445-(035-038)

File:

zinc2.dat

Transform:

LOG BASE 10(Y)

Dunnett's Test - TABLE 2 OF 2			OF 2 Ho	Ho:Control=Treatment		
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL	
1	Control	4				
2	APG-02	4	19.9294	61.2	738.2500	
3	APG-06	4	19.9294	61.2	267.7500	
4	APG-16	4	19.9294	61.2	839.7500	
. 5	APG-15	4	19.9294	61.2	567.2500	

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli
Summary Statistics for Plant Nutrient: NITROGEN using Lab Control

an:00 12/14/12

de12/14/12

Title: 60147216-445-(035-038)

File:

nitrog.dat

Transform:

NO TRANSFORMATION

Page___of_

Summary Statistics on Data TABLE 1 of 2

GRP	IDENTIFICATION	. N	MIN	MAX	MEAN
1	Control	4	0.8300	1.0500	0.9325
2	APG-02	4	0.8100	0.9700	0.8775
3 .	APG-06	4	0.7500	0.8200	0.7850
4	APG-16	4	0.6900	0.8100	0.7650
5	APG-15	4	0.6700	0.7700	0.7300

Title: 60147216-445-(035-038)
File: nitrog.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %	
1	Control	0.0082	0.0903	0.0452	9.6862	
2	APG-02	0.0053	0.0727	0.0364	8.2899	
3	APG-06	0.0008	0.0289	0.0144	3.6774	
4	APG-16	0.0028	0.0526	0.0263	6.8757	
5	APG-15	0.0018	0.0424	0.0212	5.8118	

Toxstat Version 3.5 Page___of_ Study # 60147216-445-(035-038) ESTCP Echinochloa crusgalli an: a 12/14/12 Analysis of Plant Nutrient: NITROGEN using Lab Control c/2114/12 Title: 60147216-445-(035-038) File: nitrog.dat Transform: NO TRANSFORMATION Shapiro - Wilk's Test for Normality D = 0.0566W = 0.9740Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05, N = 20)Data PASS normality test (alpha = 0.01). Continue analysis. Title: 60147216-445-(035-038) nitrog.dat Transform: NO TRANSFORMATION Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 3.8305 (p-value = 0.4294)Data (ASS)B1 homogeneity test at 0.01 level. Continue analysis. Critical B = 13.2767 (alpha = 0.01, df = 4) = 9.4877 (alpha = 0.05, df = 4)

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: NITROGEN using Lab Control

OA:00 12/14/12

A12114/12

Title: 60147216-445-(035-038)

File:

nitrog.dat

Transform:

NO TRANSFORMATION

Page___of_

## ANOVA Table

SOURCE	DF	SS	MS	F
 Between	4	0.1132	0.0283	7.5046
Within (Error)	15	0.0566	0.0038	
 Total	19	0.1697		

(p-value = 0.0016)

Critical F = 4.8932 (alpha = 0.01, df = 4.15)

= 3.0556 (alpha = 0.05, df = 4,15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File:

nitrog.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE 1 OF 2	Ho:Control=Treatment			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	т стат	SIG 0.05	
1	Control	0.9325	0.9325			
2	APG-02	0.8775	0.8775	1.2668		
3	APG-06	0.7850	0.7850	3.3973	*	
4	APG-16	0.7650	0.7650	3.8580	*	
5	APG-15	0.7300	0.7300	4.6641	*	

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60147216-445-(035-038)

File:

nitrog.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test - TABLE 2 OF 2			Ho:Control=Treatment		
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL	
1	Control	4				
2	APG-02	4	0.1185	12.7	0.0550	
3	APG-06	4	0.1185	12.7	0.1475	
4	APG-16	4 .	0.1185	12.7	0.1675	
5	APG-15	4	0.1185	12.7	0.2025	

Study # 60147216-445-(035-038)

Echinochloa crusgalli

QA:WIZHULIZ

of 12/14/12

Page___of___

Summary Statistics for Plant Nutrient: BORON (mg/kg) using Site Control

Title: 60147216-445-(035-038)

boron1.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N 	MIN	MAX	MEÁN
1	APG-15	4	6.9000	10.7000	9.0000
2	APG~02	4	15.3000	28.5000	19.5000
3	APG-06	4	11.3000	13.0000	12.0250
4	APG-16	4	7.3000	11.9000	10.1250

Title: 60147216-445-(035-038)

boron1.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	APG-15	2.5667	1.6021	0.8010	17.8009
2	APG-02	36.7267	6.0603	3.0301	31.0782
3	APG-06	0.7425	0.8617	0.4308	7.1658
4	APG-16	4.4958	2.1203	1.0602	20.9416

```
Toxstat Version 3.5
                                                           Page___of___
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
                                                             12/14/12
Analysis of Plant Nutrient: BORON (mg/kg) using Site Control
                                                             04: CU 12/14/12
 Title: 60147216-445-(035-038)
                                                   NO TRANSFORMATION
 File:
            boron1.dat
                                 Transform:
                 Shapiro - Wilk's Test for Normality
      D = 133.5950
      W = 0.8461
      Critical W = 0.8440 (alpha = 0.01 , N = 16)
             W = 0.8870 (alpha = 0.05, N = 16)
  _____
 Data PASS normality test (alpha = 0.01). Continue analysis.
 Title: 60147216-445-(035-038)
                                 Transform:
                                                     NO TRANSFORMATION
            boron1.dat
              Bartlett's Test for Homogeneity of Variance
 Calculated B1 statistic = 10.2418
                                            (p-value = 0.0166)
 Data PASS 81 homogeneity test at 0.01 level. Continue analysis.
 Critical B = 11.3449 (alpha = 0.01, df = 3)
           = 7.8147 (alpha = 0.05, df = 3)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: BORON (mg/kg) using Site Control

de12/14/12 an: wiz114/12

Title: 60147216-445-(035-038)

File:

boron1.dat

Transform:

NO TRANSFORMATION

ANOVA Table

SOURCE	DF	ss	MS	Ė
Between	3	268.0425	89.3475	8.0255
Within (Error)	12	133.5950	11.1329	
Total	15	401.6375		

(p-value = 0.0034)

Critical F = 5.9525 (alpha = 0.01, df = 3.12) = 3.4903 (alpha = 0.05, df = 3.12)

Since F > Critical F

REJECT. Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File:

boron1.dat

Transform:

NO TRANSFORMATION

Dunnett's Test - TABLE 1 OF 2			Ho:Control=Treatment			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG 0.05	
1	APG-15	9.0000	9.0000			
2	APG-02	19.5000	19.5000	4.4504	*	
3	APG-06	12.0250	12.0250	1.2821		
. 4	APG-16	10.1250	10.1250	0.4768		

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60147216-445-(035-038)

File:

boron1.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE 2 O	F 2 Ho		Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
. 1	APG-15	4			
2	APG-02	4	6.3230	70.3	10.5000
3	APG-06	. 4	6.3230	70.3	3.0250
4	APG-16	4	6.3230	70.3	1.1250

Toxstat Version 3.5 Page___of_ Study # 60147216-445-(035-038) ESTCP de 12/14/12 Echinochloa crusgalli (malkg) Summary Statistics for Plant Nutrient: CALCIUM using Site Control Title: 60147216-445-(035-038) File: calcium.dat Transform: NO TRANSFORMATION Summary Statistics on Data TABLE 1 of 2 GRP IDENTIFICATION N MIN MAX MEAN 1 APG-15 4 21400.0000 44200.0000 32200.0000 2 APG-02 4 6770.0000 22400.0000 10912.5000 3 APG-06 4 9170.0000 24500.0000 13745.0000 4 APG-16 4 15800.0000 17300.0000 16575.0000 Title: 60147216-445-(035-038) File: calcium.dat Transform: NO TRANSFORMATION Summary Statistics on Data TABLE 2 of 2

					<del> </del>
				. :	
GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	APG-15	129786666.6666	11392.3951	5696.1976	35.3801
2	APG-02	58700225.0000	7661.6072	3830.8036	70.2095
3	APG-06	52932300.0000	7275.4587	3637.7294	52.9317
4	APG-16	482500.0000	694.6222	347.3111	4.1908

```
Toxstat Version 3.5
                                                        Page___of__
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
Analysis of Plant Nutrient: CALCIUM using Site Control
                                                         de 12/14/12
                                                          QA:W12/14/12
 Title: 60147216-445-(035-038)
        calcium.dat
 File:
                               Transform:
                                                   NO TRANSFORMATION
                Shapiro - Wilk's Test for Normality
     D = 725705075.0000
     W = 0.9038
     Critical W = 0.8440 (alpha = 0.01 , N = 16)
             W = 0.8870 \text{ (alpha = 0.05, } N = 16)
     ______
 Data/PASS hormality test (alpha = 0.01). Continue analysis.
 Title: 60147216-445-(035-038)
 File:
         calcium.dat
                               Transform:
                                                  NO TRANSFORMATION
              Bartlett's Test for Homogeneity of Variance
 Calculated B1 statistic = 11.1434
                                         (p-value = 0.0110)
 Data PASS B1 homogeneity test at 0.01 level. Continue analysis.
 Critical B = 11.3449 (alpha = 0.01, df = 3)
= 7.8147 (alpha = 0.05, df = 3)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: CALCIUM using Site Control

de 12/14/12

QA:0012114/12

Page___of___

Title: 60147216-445-(035-038)

File:

calcium.dat

Transform:

NO TRANSFORMATION

### ANOVA Table

SOURCE	DF	SS	MS	F
Between	3	1085981168.7500	361993722.9165	5.9858
Within (Error)	12	725705075.0000	60475422.9167	
Total	15	1811686243.7500		
	·····			

(p-value = 0.0098)

Critical F = 5.9525 (alpha = 0.01, df = 3,12) = 3.4903 (alpha = 0.05, df = 3,12)

Since F > Critical F REJECT No: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File:

calcium.dat

Transform:

NO TRANSFORMATION

Dunnett's Test - TAP		TABLE 1 OF 2	reatment:		
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG 0.05
1	APG-15	32200.0000	32200.0000		
2	APG-02	10912.5000	10912.5000	3.8712	*
3	APG-06	13745.0000	13745.0000	3.3561	*
4	APG-16	16575.0000	16575.0000	2.8415	*

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60147216-445-(035-038)

File:

calcium.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE 2 O	F 2 Ho	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	APG-15	4			
2	APG-02	4	999.9999	3.1	21287.5000
3	APG-06	4	999.9999	3.1	18455.0000
4	APG-16	4	999.9999	3.1	15625.0000

NOTE: MSD = 999.9999 means actual MSD estimate > 999.

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

(mg/kg)

de 12/14/12

Page___of_

Summary Statistics for Plant Nutrient: COPPER using Site Control

QH: W12/14/12

Title: 60147216-445-(035-038)

File: copper.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	APG~15	4	11.4000	24.4000	15.5500
2	APG-02	4	13.2000	26.9000	20.6750
3	APG-06	4	5.3000	9.1000	7.0500
4	APG-16	4	8.5000	10.5000	9.5750

Title: 60147216-445-(035-038)

File:

copper.dat Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
. 1	APG-15	35.9567	5.9964	2.9982	38.5620
2	APG-02	47.8092	6.9144	3.4572	33.4434
3	APG-06	2.5433	1.5948	0.7974	22.6210
4	APG-16	0.9558	0.9777	0.4888	10.2106

```
Toxstat Version 3.5
                                                                   Page
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
Analysis of Plant Nutrient: COPPER using Site Control
                                                                     08/12/14/12
                                                                    QA: W12/14/12
 Title: 60147216-445-(035-038)
                                    Transform:
 File:
              copper.dat
                                                             NO TRANSFORMATION
                    Shapiro - Wilk's Test for Normality
      D = 261.7950
      W = 0.9597
      Critical W = 0.8440 (alpha = 0.01 , N = 16)
               W = 0.8870 \text{ (alpha = 0.05, } N = 16)
 Data PASS normality test (alpha = 0.01). Continue analysis.
 Title: 60147216-445-(035-038)
                                     Transform:
 File:
             copper.dat
                                                            NO TRANSFORMATION
                 Bartlett's Test for Homogeneity of Variance
 Calculated B1 statistic = 10.5176
                                                 (p-value = 0.0146)
  Data PASS B1 homogeneity test at 0.01 level. Continue analysis.
 Critical B = 11.3449 (alpha = 0.01, df = 3)
= 7.8147 (alpha = 0.05, df = 3)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: COPPER using Site Control

\$12114/12 an'w ialiuliz

Title: 60147216-445-(035-038)

File:

copper.dat

Transform:

NO TRANSFORMATION

Page___of_

#### ANOVA Table

SOURCE	DF	SS	MS	F
Between	3	449.4425	149.8142	6.8671
Within (Error)	12	261.7950	21.8162	
Total	15	711.2375		

(p-value = 0.0060)

Critical F = 5.9525 (alpha = 0.01, df = 3,12) = 3.4903 (alpha = 0.05, df = 3,12)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File:

copper.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test - T	ABLE 1 OF 2	Ho:Control=T		
GROUP		TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG 0.05
1	APG-15	15.5500	15.5500		
2	APG-02	20.6750	20.6750	1.5517	

7.0500 APG-06 7.0500 APG-16 9.5750 . 3 2.5736 9.5750 1.8091

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60147216-445-(035-038)

File:

copper.dat

Transform:

NO TRANSFORMATION

Dunnett's Test -		TABLE 2 O	F 2 Ho	Ho:Control=Treatment		
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL	
1	APG-15	4				
2	APG-02	4	8.8514	56.9	5.1250	
- 3	APG-06	4	8.8514	56.9	8.5000	
4	APG-16	4	8.8514	56.9	5.9750	

Study # 60147216-445-(035-038)

Echinochloa crusgalli

(molkg)

U sumamry Statistics for Plant Nutrient: IRON using Site Control Summary
Title: 60147216-445-(035-038)
File: iron.dat Transform: NC

×12/14/12 an:0012/14/12

_of_

NO TRANSFORMATION

Page__

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	APG-15	4	61.7000	196.0000	114.9250
2	APG-02	4	91.3000	415.0000	250.0750
3	APG-06	4	121.0000	281.0000	173.2500
4	APG-16	4	53.5000	185.0000	108.7500

Title: 60147216-445-(035-038)

File:

iron.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	APG-15	3275.2892	57.2301	28.6151	49.7978
2	APG-02	24276.8892	155.8104	77.9052	62.3055
3	APG-06	5661.5833	75.2435	37.6217	43.4306
4	APG-16	3344,4167	57.8309	28,9155	53,1779

```
Toxstat Version 3.5
                                                               Page___of__
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
Analysis of Plant Nutrient: IRON using Site Control
                                                                  水12/14/12
                                                                  CA: W12/14/12
  Title: 60147216-445-(035-038)
 File:
               iron.dat
                                  Transform:
                                                         NO TRANSFORMATION
                  Shapiro - Wilk's Test for Normality
      D = 109674.5350
      W = 0.9613
      Critical W = 0.8440 (alpha = 0.01 , N = 16)
               W = 0.8870 \text{ (alpha = 0.05 , } N = 16)
                 Data PASS hormality test (alpha = 0.01). Continue analysis.
  Title: 60147216-445-(035-038)
  File:
               iron.dat
                                   Transform:
                                                        NO TRANSFORMATION
                Bartlett's Test for Homogeneity of Variance
  Calculated B1 statistic = 4.0395
                                              (p-value = 0.2572)
      PASS BA homogeneity test at 0.01 level. Continue analysis.
 Critical B = 11.3449 (alpha = 0.01, df = 3)
= 7.8147 (alpha = 0.05, df = 3)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: IRON using Site Control

Title: 60147216-445-(035-038)

File:

iron.dat

Transform:

NO TRANSFORMATION

Page___of___

### ANOVA Table

SOURCE	DF	SS	MS	F
Between	3	51740.5450	17246.8483	1.8871
Within (Error)	12	109674.5350	9139.5446	
Total	15	161415.0800		,
		<b>_</b>		

(p-value = 0.1856)

Critical F = 5.9525 (alpha = 0.01, df = 3,12)

= 3.4903 (alpha = 0.05, df = 3,12)

Since F < Critical F FAIL TO REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File:

iron.dat

Transform:

NO TRANSFORMATION

Dunnett's Test - TABLE 1 OF 2 Ho:Control=Treatment

	,	TRANSFORMED	MEAN CALCULATED IN		SIG
GROUP	IDENTIFICATION	MEAN	ORIGINAL UNITS	T STAT	0.05
1	APG-15	114.9250	114.9250		
2	APG-02	250.0750	250.0750	1.9993	
3	APG-06	173.2500	173.2500	0.8628	
4	APG-16	108.7500	108.7500	0.0913	

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60147216-445-(035-038)

File:

iron.dat

Transform:

NO TRANSFORMATION

Σ	Ounnett's Test -	TABLE 2 C	F 2 Ho	Ho:Control=Treatment		
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL	
1	APG-15	4				
2	APG-02	4	181.1682	157.6	135.1500	
3	APG-06	4	181.1682	157.6	58.3250	
4	APG-16	4	181,1682	157.6	6.1750	

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

(molng)

\$12/14/12

Summary Statistics for Plant Nutrient: MAGNESIUM using Site Control QA: W 12/11/12

Title: 60147216-445-(035-038)

File: magnes.dat

Transform:

NO TRANSFORMATION

Page___of_

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN:
1	APG-15	4	9340.0000	10500.0000	10085.0000
2	APG-02	4	10700.0000	12900.0000	11900.0000
3	APG-06	4	11300.0000	14900.0000	13950.0000
4	APG-16	4	7870.0000	9380.0000	8417.5000

Title: 60147216-445-(035-038)

File:

magnes.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP I	DENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	APG-15	275566.6667	524.9444	262.4722	5.2052
2	APG-02	1146666.6667	1070.8252	535.4126	8.9985
3	APG-06	3123333.3333	1767.2955	883.6477	12.6688
4	APG-16	456691.6667	675.7897	337.8948	8.0284

Toxstat Version 3.5 Page___of_ Study # 60147216-445-(035-038) ESTCP Echinochloa crusgalli de 12/14/12 Analysis of Plant Nutrient: MAGNESIUM using Site Control 0A: W 12/14/12 Title: 60147216-445-(035-038) File: magnes.dat NO TRANSFORMATION Transform: Shapiro - Wilk's Test for Normality D = 15006775.0000W = 0.8726Critical W = 0.8440 (alpha = 0.01 , N = 16) W = 0.8870 (alpha = 0.05 , N = 16)Data PASS normality test (alpha = 0.01). Continue analysis. Title: 60147216-445-(035-038) File: magnes.dat Transform: NO TRANSFORMATION Bartlett's Test for Homogeneity of Variance Calculațed\B1 statistic = 4.4551 (p-value = 0.2163)Data PASS B homogeneity test at 0.01 level. Continue analysis.

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: MAGNESIUM using Site Control

X12114/12 0A:0012/14/12

Page___of__

Title: 60147216-445-(035-038)

File:

magnes.dat

Transform:

NO TRANSFORMATION

ANOVA Table

SOURCE	DF	SS	MS	F
Between	3	67951868.7500	22650622.9167	18.1123
Within (Error)	12	15006775.0000	1250564.5833	
Total	15	82958643.7500		

(p-value = 0.0001)

Critical F = 5.9525 (alpha = 0.01, df = 3.12) = 3.4903 (alpha = 0.05, df = 3,12)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File:

magnes.dat

Transform:

NO TRANSFORMATION

Dunnett's Test - TABLE 1 OF 2 Ho:Control=Treatment

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG 0.05
1	APG-15	10085.0000	10085.0000		
2	APG-02	11900.0000	11900.0000	2.2953	
3	APG-06	13950.0000	13950.0000	4.8878	*
` 4	APG-16	8417.5000	8417.5000	2.1088	

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60147216-445-(035-038)

File: magnes.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE 2	OF 2 Ho	Ho:Control=Treatment		
GROUP	DENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL	
1	APG-15	4		•		
2	APG-02	4	999.9999	9.9	1815.0000	
3	APG-06	4	999.9999	9.9	3865.0000	
4	APG-16	4	999.9999	9.9	1667.5000	

NOTE: MSD = 999.9999 means actual MSD estimate > 999.

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

(malika)

*12/14/12

Summary Statistics for Plant Nutrient: MANGANSESE using Site Control On world

Title: 60147216-445-(035-038)

File:

mangan.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data TABLE 1 of 2

GRP	IDENTIFICATION	N 	MIN	MAX	MEAN
1	APG-15	4	342.0000	496.0000	424.0000
2	APG-02	4	1160.0000	2370.0000	1742.5000
3	APG-06	4	181.0000	880.0000	440.7500
4	APG-16	4	245.0000	666.0000	512.2500

Title: 60147216-445-(035-038)

File:

mangan.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	APG-15	4028.6667	63.4718	31.7359	14.9698
2	APG-02	321758.3333	567.2375	283.6187	32.5531
3	APG-06	96024.2500	309.8778	154.9389	70.3069
4	APG-16	35434.9167	188,2416	94.1208	36,7480

```
Toxstat Version 3.5
                                                                   Page___
                                                                           of
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
Analysis of Plant Nutrient: MANGANSESE using Site Control
                                                                           XIZIU112
                                                                           GAYOU 12/14/12
  Title: 60147216-445-(035-038)
 File:
              mangan.dat
                                     Transform:
                                                             NO TRANSFORMATION
                    Shapiro - Wilk's Test for Normality
       D = 1371738.5000
      W = 0.9804
     Critical W = 0.8440 (alpha = 0.01 , N = 16)
                W = 0.8870 \text{ (alpha = 0.05 , } N = 16)
  Data/PASS mormality test (alpha = 0.01). Continue analysis.
  Title: 60147216-445-(035-038)
  File:
             mangan.dat
                                     Transform:
                                                             NO TRANSFORMATION
                 Bartlett's Test for Homogeneity of Variance
  Calculated B1 statistic = 9.6309
                                                  (p-value = 0.0220)
  Data/PASS $1 homogeneity test at 0.01 level. Continue analysis.
  Critical B = 11.3449 (alpha = 0.01, df = 3)
= 7.8147 (alpha = 0.05, df = 3)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: MANGANSESE using Site Control

de12/14/12

OA: 0012/14/12

File:

Title: 60147216-445-(035-038)

mangan.dat

Transform:

NO TRANSFORMATION

Page___of_

### ANOVA Table

SOURCE	DF	ss	MS	F '
Between	3	4959691.2500	1653230.4167	14.4625
Within (Error)	12	1371738.5000	114311.5417	
Total	15	6331429.7500		

(p-value = 0.0003)

Critical F = 5.9525 (alpha = 0.01, df = 3.12) = 3.4903 (alpha = 0.05, df = 3.12)

Since F > Critical F

REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File:

mangan.dat

Transform:

NO TRANSFORMATION

	unnett's Test		TABLE 1 OF 2	Ho:Control=Treatment		
			TRANSFORMED	MEAN CALCULATED IN		SIG
GROTTE	TIDENTTETCATT	NT.	MFAN	ORTGINAL INTEG	መ ይመአመ	0.05

4	
1 APG-15 424.0000 424.0000	
2 APG-02 1742.5000 1742.5000 5.5151	*
3 APG-06 440.7500 440.7500 0.0701	
4 APG-16 512.2500 512.2500 0.3691	

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60147216-445-(035-038)

File:

mangan.dat

Transform:

NO TRANSFORMATION

Dunnett's Test - TABLE 2 OF 2 Ho:Control=Treatment

GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	APG-15	4			
2	APG-02	4	640.7149	151.1	1318.5000
3	APG-06	4	640.7149	151.1	16.7500
4	APG-16	4	640.7149	151.1	88.2500

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

(mg/kg)

Summary Statistics for Plant Nutrient: PHOSPHORUS using Site Control

CHPILCI W'AD

Title: 60147216-445-(035-038)

File:

phosp.dat

Transform:

NO TRANSFORMATION

Page of

Summary Statistics on Data TABLE 1 of 2

GRP	IDENTIFICATION	N 	MIN	MAX	MEAN
1	APG-15	4	1730.0000	2090.0000	1915.0000
2	APG-02	4	1920.0000	2660.0000	2302.5000
3	APG-06	4	1930.0000	2360.0000	2090.0000
4	APG-16	4	1440.0000	2070.0000	1757.5000

Title: 60147216-445-(035-038)

File:

phosp.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %	
1	APG-15	34700.0000	186.2794	93.1397	9.7274	
2	APG-02	91491.6667	302.4759	151.2379	13.1368	
3	APG-06	34866.6667	186.7262	93.3631	8.9343	
4	APG-16	66758.3333	258.3763	129.1882	14.7014	

```
Toxstat Version 3.5
                                                                Page_
Study # 60147216-445-(035-038)
Echinochloa crusgalli
Analysis of Plant Nutrient: PHOSPHORUS using Site Control
                                                                        de12/14/12
                                                                        0A: 00 12/14/12
 Title: 60147216-445-(035-038)
                                Transform:
 File:
               phosp.dat
                                                          NO TRANSFORMATION
                   Shapiro - Wilk's Test for Normality
    D = 683450.0000
      W = 0.9732
      Critical W = 0.8440 (alpha = 0.01 , N = 16)
               W = 0.8870 \text{ (alpha = 0.05 , N = 16)}
                   ______
 Data PASS normality test (alpha = 0.01). Continue analysis.
 Title: 60147216-445-(035-038)
 File:
              phosp.dat
                                   Transform:
                                                         NO TRANSFORMATION
               Bartlett's Test for Homogeneity of Variance
 Calculated B1 statistic = 0.9309
                                              (p-value = 0.8180)
 Data PASS 11 homogeneity test at 0.01 level. Continue analysis.
 Critical B = 11.3449 (alpha = 0.01, df = 3)
= 7.8147 (alpha = 0.05, df = 3)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: PHOSPHORUS using Site Control

QA: 00 12/14/12

Title: 60147216-445-(035-038)

File:

phosp.dat

Transform:

NO TRANSFORMATION

Page__

### ANOVA Table

SOURCE	DF	ss	MS	F
Between	3	658325.0000	219441.6667	3.8530
Within (Error)	12	683450.0000	56954.1667	•
Total	15	1341775.0000		
				0.00041

(p-value = 0.0384)

Critical F = 5.9525 (alpha = 0.01, df = 3,12) = 3.4903 (alpha = 0.05, df = 3,12)

Since F > Critical F ( REJECT )Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File:

phosp.dat

Transform:

NO TRANSFORMATION

Dunnett's Test - TABLE 1 OF 2

Ho:Control=Treatment

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	т ѕтат	SIG 0.05
1	APG-15	1915.0000	1915.0000		
2	APG-02	2302.5000	2302.5000	2.2963	
3	APG-06	2090.0000	2090.0000	1.0370	
4	APG-16	1757.5000	1757.5000	0.9333	

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60147216-445-(035-038)

File:

phosp.dat

Transform:

NO TRANSFORMATION

Dunnett's Test - TABLE 2 OF			F 2 Ho:Control=Treatment		
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
	3 DG 15				
7	APG-15	4			
2	APG-02	4	452.2541	23.6	387.5000
. 3	APG-06	4	452.2541	23.6	175.0000
. 4	APG-16	4	452.2541	23.6	157.5000

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

(molky)

Summary Statistics for Plant Nutrient: POTASSIUM using Site Control

de12/14/12

Title: 60147216-445-(035-038)

0A:0012/14/12

File: potasi.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

Page___

1 APG-15 4 14300.0000 18300.0000 16725.000
2 APG-02 4 14900.0000 18300.0000 16650.000
3 APG-06 4 16500.0000 19900.0000 17975.000
4 APG-16 4 12700.0000 18900.0000 16225.000

Title: 60147216-445-(035-038)

File: potasi.dat Transform:

NO TRANSFORMATION

Summary Statistics on Data

GR.	P IDENTIFICATION	VARIANCE	SD	SEM	C.V. %	
1	APG-15	3389166.6667	1840.9689	920.4845	11.0073	
2	APG-02	2170000.0000	1473.0920	736.5460	8.8474	
3	APG-06	3035833.3333	1742.3643	871.1821	9.6933	
4	APG-16	9449166.6667	3073.9497	1536.9748	18.9458	

```
Toxstat Version 3.5
                                                        Page___of__
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
                                                                    an: wishulis
Analysis of Plant Nutrient: POTASSIUM using Site Control
                                                                   $12/14/17.
 Title: 60147216-445-(035-038)
 File:
         potasi.dat
                                   Transform:
                                                         NO TRANSFORMATION
                  Shapiro - Wilk's Test for Normality
      D = 54132500.0000
      W = 0.9419
      Critical W = 0.8440 (alpha = 0.01 , N = 16)
              W = 0.8870 \text{ (alpha = 0.05 , N = 16)}
  ______
 Data PASS normality test (alpha = 0.01). Continue analysis.
 Title: 60147216-445-(035-038)
 File:
            potasi.dat
                                  Transform:
                                                       NO TRANSFORMATION
               Bartlett's Test for Homogeneity of Variance
 Calculated B1 statistic = 1.7764
                                              (p-value = 0.6201)
 Data PASS B1 homogeneity test at 0.01 level. Continue analysis.
 Critical B = 11.3449 (alpha = 0.01, df = 3)
= 7.8147 (alpha = 0.05, df = 3)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: POTASSIUM using Site Control

Page___of__

QH:00 12/14/12 de 12/14/12

Title: 60147216-445-(035-038)

File: potasi.dat

Transform:

NO TRANSFORMATION

ANOVA Table

SOURCE	DF	SS.	MS	F
Between	3	6816875.0000	2272291.6667	0.5037
Within (Error)	12	54132500.0000	4511041.6667	
Total	15	60949375.0000		

(p-value = 0.6869)

Critical F = 5.9525 (alpha = 0.01, df = 3,12)

= 3.4903 (alpha = 0.05, df = 3,12).

Since F < Critical F

FAIL TO REJECT) Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

potasi.dat

Transform:

NO TRANSFORMATION

D	Dunnett's Test -	TABLE 1 OF 2	Ho:Control=T	Control=Treatment		
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG 0.05	
1	APG-15	16725.0000	16725.0000			
2	APG-02	16650.0000	16650.0000	0.0499		
3	APG-06	17975.0000	17975.0000	0.8323		
4	APG-16	16225.0000	16225.0000	0.3329		

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60147216-445-(035-038)

File:

potasi.dat

Transform:

NO TRANSFORMATION

Dunnett's Test - TABLE 2 OF 2			F 2 Ho	Ho:Control=Treatment		
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL	
1	APG-15	4				
2	APG-02	4	999.9999	6.0	75.0000	
3	APG-06	4	999.9999	6.0	1250.0000	
4	APG-16	4	999.9999	6.0	500.0000	

NOTE: MSD = 999.9999 means actual MSD estimate > 999.

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

(malky)

Summary Statistics for Plant Nutrient: SODIUM using Site Control

0A1,0012/14/12

\$12/14/12

Title: 60147216-445-(035-038)

File: sodiu.dat

Transform:

NO TRANSFORMATION

Page___of__

Summary Statistics on Data TABLE 1 of 2

1 APG-15 4 3490.0000 11200.0000 6175.0000 2 APG-02 4 946.0000 6260.0000 2579.0000 3 APG_06 4 727.0000 4000.0000 2304.2500 4 APG-16 4 3700.0000 5810.0000 5050.0000	GRP	IDENTIFICATION	Ņ	MIN	MAX	MEAN
3 APG_06 4 727.0000 4000.0000 2304.2500	1	APG-15	4	3490.0000	11200.0000	6175.0000
	2	APG-02	4	946.0000	6260.0000	2579.0000
4 APG-16 4 3700.0000 5810.0000 5050.0000	3	APG_06	4	727.0000	4000.0000	2304.2500
	4	APG-16	4	3700.0000	5810.0000	5050.0000

Title: 60147216-445-(035-038)

File: sodiu.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %	
1 2 3	APG-15 APG-02 APG_06	12001366.6667 6170684.0000 1995452.2500	3464.2989 2484.0861 1412.6048	1732.1494 1242.0431 706.3024	56.1020 96.3197 61.3043	
4	APG-16	878466.6667	937.2655	468.6328	18.5597	

```
Toxstat Version 3.5
                                                            Page
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
Analysis of Plant Nutrient: SODIUM using Site Control
                                                                ×12/14/12
 Title: 60147216-445-(035-038)
                                    Transform:
 File: sodiu.dat
                                                            NO TRANSFORMATION
                   Shapiro - Wilk's Test for Normality
      D = 63137908.7500
      W = 0.8897
      Critical W = 0.8440 (alpha = 0.01 , N = 16)
               W = 0.8870 (alpha = 0.05 , N = 16)
 Data PASS hormality test (alpha = 0.01). Continue analysis.
 Title: 60147216-445-(035-038)
              sodiu.dat
 File:
                                     Transform:
                                                           NO TRANSFORMATION
               Bartlett's Test for Homogeneity of Variance
Calculated B1 statistic = 4.6770
                                                 (p-value = 0.1970)
 Data/PASS)B1 homogeneity test at 0.01 level. Continue analysis.
 Critical B = 11.3449 (alpha = 0.01, df = 3)
= 7.8147 (alpha = 0.05, df = 3)
```

Study # 60147216-445-(035-038)

ESTCP

File:

Echinochloa crusgalli

Analysis of Plant Nutrient: SODIUM using Site Control

Title: 60147216-445-(035-038)

sodiu.dat

Transform:

CRI2/14/12

QA:0012/14/12

NO TRANSFORMATION

Page_

### ANOVA Table

SOURCE	DF	SS	MS	F
Between	3	42900018.1875	14300006.0625	2.7179
Within (Error)	12	63137908.7500	5261492.3958	
Total	15	106037926.9375		

(p-value = 0.0912)

Critical F = 5.9525 (alpha = 0.01, df = 3.12) = 3.4903 (alpha = 0.05, df = 3.12)

Since F < Critical F FAIL TO REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File:

sodiu.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test -	Ho:Control=Treatment			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	т стат	SIG 0.05
1	APG-15	6175.0000	6175.0000		
2	APG-02	2579.0000	2579.0000	2.2171	
3	APG_06	2304.2500	2304.2500	2.3865	
4	APG-16	5050.0000	5050.0000	0.6936	

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3.12)

Title: 60147216-445-(035-038)

File:

sodiu.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE 2	OF 2	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	APG-15	4			
2	APG-02	4	999.9999	16.2	3596.0000
3	APG_06	4	999.9999	16.2	3870.7500
4	APG-16	4	999.9999	16.2	1125.0000

NOTE: MSD = 999.9999 means actual MSD estimate > 999.

Toxstat Version 3.5 Page of Study # 60147216-445-(035-038) (BA/BI) ESTCP Echinochloa crusgalli Summary Statistics for Plant Nutrient: SULFUR using Site Control | 12114172 Title: 60147216-445-(035-038) sulf.dat Transform: File: NO TRANSFORMATION Summary Statistics on Data TABLE 1 of 2 ______ GRP IDENTIFICATION N MIN MAX 1 APG-15 4 23600.0000 42900.0000 32125.0000 2 APG-02 4 13200.0000 32400.0000 19000.0000 3 APG-06 4 15600.0000 28900.0000 20875.0000 4 APG-16 4 18200.0000 19800.0000 19025.0000 Title: 60147216-445-(035-038) sulf.dat Transform: NO TRANSFORMATION Summary Statistics on Data TABLE 2 of 2 ______ GRP IDENTIFICATION VARIANCE SD SEM C.V. % APG-15 86195833.3334 9284.1711 4642.0856 28.9001 APG-02 81653333.3334 9036.2234 4518.1117 47.5591 APG-06 32009166.6667 5657.6644 2828.8322 27.1026 APG-16 509166.6667 713.5592 356.7796 3.7506

2 3 4

```
Toxstat Version 3.5
                                                              Page___of__
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
Analysis of Plant Nutrient: SULFUR using Site Control
                                                                        de 12/14/12
                                                                        QA: (U)2/14/12
  Title: 60147216-445-(035-038)
                                                               NO TRANSFORMATION
  File:
                 sulf.dat
                                      Transform;
                    Shapiro - Wilk's Test for Normality
       D = 601102500.0000
       W = 0.9215
       Critical W = 0.8440 (alpha = 0.01 , N = 16)
                W = 0.8870 \text{ (alpha = 0.05 , } N = 16)
  Data PASS pormality test (alpha = 0.01). Continue analysis.
  Title: 60147216-445-(035-038)
  File:
                 sulf.dat
                                       Transform:
                                                              NO TRANSFORMATION
                 Bartlett's Test for Homogeneity of Variance
  Calculated B1 statistic = 10.5505
                                                    (p-value = 0.0144)
  Data/PASS/B1 homogeneity test at 0.01 level. Continue analysis.
  Critical B = 11.3449 (alpha = 0.01, df = 3)
= 7.8147 (alpha = 0.05, df = 3)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: SULFUR using Site Control

de12/14/12

File:

Title: 60147216-445-(035-038)

sulf.dat

Transform:

NO TRANSFORMATION

Page___of__

### ANOVA Table

SOURCE	DF	ss	MS	F
Between	3	477376875.0000	159125625.0000	3.1767
Within (Error)	12	601102500.0000	50091875.0000	
Total	15	1078479375.0000		

(p-value = 0.0634)

Critical F = 5.9525 (alpha = 0.01, df = 3.12) = 3.4903 (alpha = 0.05, df = 3.12)

Since F < Critical F FAIL TO REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File:

sulf.dat

Transform:

NO TRANSFORMATION

1	Dunnett's Test -	TABLE 1 OF 2	Ho:Control=T	reatment	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG 0.05
1	APG-15	32125.0000	32125.0000		
2	APG-02	19000.0000	19000.0000	2.6226	
3	APG-06	20875.0000	20875.0000	2.2479	
4	APG-16	19025.0000	19025.0000	2.6176	

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3.12)

Title: 60147216-445-(035-038)

File:

sulf.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE 2 C	OF 2 Ho	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	APG-15	4			
2	APG-02	4	999.9999	3.1	13125.0000
3	APG-06	4	999.9999	3.1	11250,0000
4	APG-16	4	999.9999	3.1	13100.0000

NOTE: MSD = 999.9999 means actual MSD estimate > 999.

Study # 60147216-445-(035-038)

ESTCP

(mylug)

Echinochloa crusgalli

Summary Statistics for Plant Nutrient: ZINC using Site Control

animizionia

Title: 60147216-445-(035-038)

File:

zinc.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data TABLE 1 of 2

Page___

GRP	IDENTI	FICATION	N	MIN	MAX	MEAN
-1		APG-15	4	287.0000	809.0000	600.2500
2		APG-02	4	345.0000	1870.0000	771.2500
3	•	APG-06	4	162.0000	392.0000	300.7500
4		APG-16	4	448.0000	1200.0000	872.7500

Title: 60147216-445-(035-038)

File: zinc.dat Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1 .	APG-15	59058.2500	243.0190	121.5095	40.4863
2	APG-02	538356.9167	733.7281	366.8640	95.1349
3	APG-06	9570.2500	97.8277	48.9138	32.5279
4	APG-16	99623.5833	315.6320	157.8160	36.1652

```
Toxstat Version 3.5
                                                            Page___of_
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
                                                                      *12/14/12
Analysis of Plant Nutrient: ZINC using Site Control
                                                                      QALOU IZHULIZ
 Title: 60147216-445-(035-038)
                             Transform:
 File:
                zinc.dat
                                                           NO TRANSFORMATION
                   Shapiro - Wilk's Test for Normality
      D = 2119827.0000
      W = 0.8535
       Critical W = 0.8440 (alpha = 0.01 , N = 16)
              W = 0.8870 \text{ (alpha = 0.05 , N = 16)}
 Data/PASS normality test (alpha = 0.01). Continue analysis.
  Title: 60147216-445-(035-038)
                            Transform:
          zinc.dat
                                                           NO TRANSFORMATION
                Bartlett's Test for Homogeneity of Variance
 Calculated B1 statistic = 9.1395
                                                (p-value = 0.0275)
 Data (PASS $1 homogeneity test at 0.01 level. Continue analysis.
 Critical B = 11.3449 (alpha = 0.01, df = 3)
= 7.8147 (alpha = 0.05, df = 3)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: ZINC using Site Control

4/2/14/12

Page of

CITYINGI WIAD

File:

Title: 60147216-445-(035-038)

zinc.dat

Transform:

NO TRANSFORMATION

#### ANOVA Table

SOURCE	DF	SS	MS	F
Between	3	752054.0000	250684.6667	1.4191
Within (Error)	12	2119827.0000	176652.2500	
Total	15	2871881.0000		

(p-value = 0.2855)

Critical F = 5.9525 (alpha = 0.01, df = 3,12)

= 3.4903 (alpha = 0.05, df = 3.12)

Since F < Critical F FAIL TO REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

zinc.dat

Transform:

NO TRANSFORMATION

Ho:Control=Treatment

Dunnett's Test - TABLE 1 OF 2

TRANSFORMED MEAN CALCULATED IN GROUP IDENTIFICATION MEAN ORIGINAL UNITS

1 APG-15 600.2500 600.2500 ORIGINAL UNITS T STAT 0.05 600.2500

2 771.2500 APG-02 771.2500 0.5754 300.7500 872.7500 APG-06 300.7500 APG-16 872.7500 3 1.0077 0.9169 ______

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60147216-445~(035-038)

File:

zinc.dat

Transform:

NO TRANSFORMATION

Dunnett's Test - TABLE 2 OF 2

Ho:Control=Treatment

		·				
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL	
1	APG-15	4	,			
2	APG-02	4	796.4883	132.7	171.0000	
3	APG-06	4	796.4883	132.7	299.5000	
. 4	APG-16	. 4	796.4883	132.7	272.5000	

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli
Summary Statistics for Plant Nutrient: NITROGEN using Site Control

\$12/W112

QA: W12/14/12

File:

Title: 60147216-445-(035-038) nitro.dat

Transform:

NO TRANSFORMATION

Page___of__

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	APG-15	4	0.6700	0.7700	0.7300
2	APG-02	4	0.8100	0.9700	0.8775
3	APG-06	4	0.7500	0.8200	0.7850
4	APG-16	4	0.6900	0.8100	0.7650

Title: 60147216-445-(035-038)

File:

nitro.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	APG-15	0.0018	0.0424	0.0212	5.8118
2	APG-02	0.0053	0.0727	0.0364	8.2899
3	APG-06	0.0008	0.0289	0.0144	3.6774
4	APG-16	0.0028	0.0526	0.0263	6.8757

```
Toxstat Version 3.5
                                                        Page___of___
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
                                                                    04:0012114/12
Analysis of Plant Nutrient: NITROGEN using Site Control
                                                                   1812/14/12
 Title: 60147216-445-(035-038)
                                                        NO TRANSFORMATION
 File:
             nitro.dat
                                  Transform:
                  Shapiro - Wilk's Test for Normality
      D = 0.0321
      W = 0.9520
      Critical W = 0.8440 (alpha = 0.01 , N = 16)
             W = 0.8870 \text{ (alpha = 0.05 , N = 16)}
        _____
 Data PASS normality test (alpha = 0.01). Continue analysis.
  Title: 60147216-445-(035-038)
                               Transform:
             nitro.dat
                                                       NO TRANSFORMATION
               Bartlett's Test for Homogeneity of Variance
 Calculated B1 statistic = 2.2217
                                              (p-value = 0.5277)
  Data PASS B) homogeneity test at 0.01 level. Continue analysis.
 Critical B = 11.3449 (alpha = 0.01, df = 3)
= 7.8147 (alpha = 0.05, df = 3)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient: NITROGEN using Site Control

#11/1/12

QA: W12/14/12

File:

Title: 60147216-445-(035-038)

nitro.dat

Transform:

NO TRANSFORMATION

Page__

ANOVA Table

SOURCE	DF	ss	MS	F
Between	3	0.0476	0.0159	5.9384
Within (Error)	12	0.0321	0.0027	
Total	15	0.0797		

(p-value = 0.0101)

Critical F = 5.9525 (alpha = 0.01, df = 3.12) = 3.4903 (alpha = 0.05, df = 3,12)

Since F > Critical F REJECT No: All equal (alpha = 0.05)

Title: 60147216-445-(035-038)

File: nitro.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE 1 OF 2	Ho:Control=Treatment			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	Т STAT	SIG 0.05	
1	APG-15	0.7300	0.7300			
2	APG-02	0.8775	0.8775	4.0347	*	
3	APG-06	0.7850	0.7850	1.5045		
4	APG-16	0.7650	0.7650	0.9574		

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60147216-445-(035-038)

nitro.dat

Transform:

NO TRANSFORMATION

Dunnett's Test - TABLE 2 OF 2 Ho:Control=Treatment NUM OF MIN SIG DIFF % OF DIFFERENCE GROUP IDENTIFICATION REPS (IN ORIG. UNITS) CONTROL FROM CONTROL APG-15 4 APG-02 4 1 2 0.1475 0.0980 13.4 APG-06 4 APG-16 4 3 0.0980 13.4 0.0550 0.0980 0.0350 13.4

Page 13 of 65

Toxstat Version 3.5

Study # 60147216-445-(035-038)

ESTCP crusquii
Echinochloa crusquii ()
Summary Statistics for Plant Nutrient: Boron (mg/kg)

Title: 60147216-445-(035-038)

File:

445nuts.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N 	MIN	MAX	MEAN
1	Control	4	5.8000	6.6000	6.1750
2	APG-02	4	15.3000	28.5000	19.5000
3	APG-06	. 4	11.3000	13.0000	12.0250
4	APG-15	4	6.9000	10.7000	9.0000
5	APG-16	4	7.3000	11.9000	10.1250

Title: 60147216-445-(035-038)

445nuts.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

GRP	TDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	0.1225	0.3500	0.1750	5.6680
2	APG-02	36.7267	6.0603	3.0301	31.0782
3	APG-06	0.7425	0.8617	0.4308	7.1658
4	APG-15	2.5667	1.6021	0.8010	17.8009
5	APG-16	4.4958	2.1203	1.0602	20.9416

1 6cm 07/18/12C

Page 14 of U5

Toxstat Version 3.5 Study # .60225262-445-(035-038)
ESTCP (bol 47216
Crusqulli
Echinochloa crusgalli) Determination of NOEC and LOEC for Plant Nutrient: Boron (mg/kg) Title: 60147216-445-(035-038) NO TRANSFORMATION File: 445nuts.dat Transform: Shapiro - Wilk's Test for Normality D = 133.9625W = 0.8213Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05 , N = 20) Data FAIL hormality test (alpha = 0.01). Try another transformation. Warning - The first three homogeneity tests are sensitive to non-normality and should not be performed with this data as is. Title: 60147216-445-(035-038) Transform: NO TRANSFORMATION 445nuts.dat Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 19.3120 (p-value = 0.0007)Data FAIL B1 homogeneity test at 0.01 level. Try another transformation. Critical B = 13.2767 (alpha = 0.01, df = 4) = 9.4877 (alpha = 0.05, df = 4)

Ocum for AND 07/23/12 C

Study # 60225262-445-(035-038)
ESTCP () COUNTY 210

Echinochloa crusgalii()

Kruskal-Wallis Comparison for Plant Nutrient: Boron (mg/kg)

QA:00 04/30/12

Title: 60147216-445-(035-038)

File:

445nuts.dat

Transform:

NO TRANSFORMATION

Kruskal - Wallis' ANOVA by Ranks - TABLE 1 OF 2

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	RANK SUM
1	Control	6.1750	6.1750	10.0000
2	APG-02	19.5000	19.5000	74.0000
3	APG-06	12.0250	12.0250	54.0000
4	APG-15	9.0000	9.0000	30.0000
5	APG-16	10.1250	10.1250	42.0000

H Value = 16.6983 Critical H = 9.4877 (alpha = 0.05 , df = 4)

(p-value 0.0022)

Since Calc H > Crit H REJECT Ho:All groups are equal at alpha = 0.05

Title: 60147216-445-(035-038)

445nuts.dat

Transform:

NO TRANSFORMATION

Dunn's Multiple Comparison - Kruskal - Wallis - TABLE 2 OF 2

	•		•	GROUP
		TRANSFORMED	ORIGINAL	0 0 0 0 0
GROUP	IDENTIFICATION	MEAN `	MEAN	1 4 5 3 2
1	Control	6.1750	6.1750	1
4	APG-15	9.0000	9.0000	. \
5	APG-16	10.1250	10.1250	\
3	APG-06	12.0250	12.0250	\
2	APG-02	19.5000	19.5000	* \

* = significant difference (alpha = 0.05) . = no significant difference Table q value = 2.8070 (0.05, 5) SE = 4.1817

Ooum for ANP 07/23/126

Page 10 of 05

Toxstat Version 3.5

Study # 60147216-445-(035-038)

ESTCP (nuigable C)

Echinochloa erusgalii ()

Summary Statistics for Plant Nutrient: Calcium (mg/kg)

Title: 60225262-445-calcium

File:

445nutca.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

1 Control 4 16600.0000 23200.0000 19750.0000 2 APG-02 4 6770.0000 22400.0000 10912.5000 3 APG-06 4 9170.0000 24500.0000 13745.0000 4 APG-15 4 21400.0000 44200.0000 32200.0000 5 APG-16 4 15800.0000 17300.0000 16575.0000	GRP	IDENTIFICATION	N	MIN	MAX	MEAN
3 APG-06 4 9170.0000 24500.0000 13745.0000 4 APG-15 4 21400.0000 44200.0000 32200.0000	1	Control	4	16600.0000	23200.0000	19750.0000
4 APG-15 4 21400.0000 44200.0000 32200.0000	2	APG-02	4	6770.0000	22400.0000	10912.5000
	3	APG-06	4	9170.0000	24500.0000	13745.0000
5 APG-16 4 15800,0000 17300,0000 16575,0000	4	APG-15	4	21400.0000	44200.0000	32200.0000
	5	APG-16	4	15800.0000	17300.0000	16575.0000

Title: 60225262-445-calcium

445nutca.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	7316666.6667	2704.9338	1352.4669	13.6959
2	APG-02	58700225.0000	7661.6072	3830.8036	70.2095
3	APG-06	52932300.0000	7275.4587	3637.7294	52,9317
4	APG-15	129786666.6666	11392.3951	5696.1976	35.3801
5	APG-16	482500.0000	694.6222	347.3111	4.1908

OGUM for AND 07 |22/12 C

Page 17 of 15 Toxstat Version 3.5 Study # 60225262-445-(035-038) ESTCP () 60147216 Echinochloa crusgalii () Determination of NOEC and LOEC for Plant Nutrient: Calcium (mg/kg)

QA: 00 04130112 184/27/12 Title: 60225262-445-calcium Transform: File: 445nutca.dat NO TRANSFORMATION Shapiro - Wilk's Test for Normality D = 747655075.0000W = 0.9183Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05 , N = 20)Data PASS normality test (alpha = 0.01). Continue analysis. Title: 60225262-445-calcium 445nutca.dat Transform: NO TRANSFORMATION Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 14.2299 (p-value = 0.0066)Data FAIL B1 homogeneity test at 0.01 level. Try another transformation. Critical B = 13.2767 (alpha = 0.01, df = 4)

= 9.4877 (alpha = 0.05, df = 4)

() Chim 02/23/12 C

Study # 60225262-445-(035-038)

ESTCP () 60147216 Echinochloa crusgalii

Kruskal-Wallis Comparison for Plant Nutrient: Calcium (mg/kg)

Title: 60225262-445-calcium

445nutca.dat File:

Transform:

NO TRANSFORMATION

Kruskal - Wallis' ANOVA by Ranks - TABLE 1 OF 2

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	RANK SUM
1	Control	19750.0000	19750.0000	50.0000
2	APG-02	10912.5000	10912.5000	21.0000
3	APG-06	13745.0000	13745.0000	33.0000
4	APG-15	32200.0000	32200.0000	70.0000
5	APG-16	16575.0000	16575.0000	36.0000

H Value = 10.0429 Critical H = 9.4877 (alpha = 0.05 , df = 4)

(p-value 0.0397)

Since Calc H > Crit H REJECT Ho: All groups are equal at alpha = 0.05

Title: 60225262-445-calcium

File:

445nutca.dat

Transform:

NO TRANSFORMATION

Dunn's Multiple Comparison - Kruskal - Wallis - TABLE 2 OF 2

GROUP	IDENTIFICATION	TRANSFORMED MEAN	ORIGINAL MEAN	-	0	ROT 0 5	0	-
2	APG-02	10912.5000	10912.5000	\	_	_	_	_
3	APG-06	13745.0000	13745.0000	٠.	À,			
5	APG-16	16575.0000	16575.0000			$\Delta$		
1	Control	19750.0000	19750.0000				\	
4	APG-15	32200.0000	32200.0000	*		٠	•	١

^{* =} significant difference (alpha = 0.05) . = no significant difference Table q value = 2.8070 (0.05, 5) SE = 4.1833

0 6mm for AMP 07/23/12

Page 0 of 05

Toxstat Version 3.5

Study # 60147216-445-(035-038)

ESTCP consgalli o

Summary Statistics for Plant Nutrient Copper (mg/kg)

an:00 04/30/12

Title: 60225262-445-copper

File:

445nutCu.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	Ŋ	MIN	MAX	MEAN
1	Control	4	1.8000	2.9000	2.2750
2	APG-02	4	13.2000	26.9000	20.6750
3	APG-06	4	5.3000	9.1000	7.0500
4	APG-15	4	11.4000	24.4000	15.5500
5	APG-16	4	8.5000	10.5000	9.5750

Title: 60225262-445-copper

File: 445nutCu.dat

Transform: NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

GRP ID	ENTIFICATION	VARIANCE	SD.	SEM	C.V. %
1	Control	0.2358	0.4856	0.2428	21,3462
2	APG-02	47.8092	6.9144	3.4572	33.4434
3	APG-06	2.5433	1.5948	0.7974	22.6210
4	APG-15	35.9567	5.9964	2.9982	38.5620
5	APG-16	0.9558	0.9777	0.4888	10.2106

00m 07/23/12C

Page 20 of 05

Toxstat Version 3.5 Study # 60225262-445-(035-038)
ESTCP (060)47216
Echinochloa erusgalii (0 Determination of NOEC and LOEC for Plant Nutrient: Copper (mg/kg) Title: 60225262-445-copper File: 445nutcu.dat

OA:0004130112

de 4/27/12

Transform:

NO TRANSFORMATION

Shapiro - Wilk's Test for Normality

D = 262.5025W = 0.9369

Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05 , N = 20)

Data PASS normality test (alpha = 0.01). Continue analysis.

Title: 60225262-445-copper

File:

445nutcu.dat

Transform:

NO TRANSFORMATION

Bartlett's Test for Homogeneity of Variance

Calculated B1 statistic = 19.6355

(p-value = 0.0006)

Data (FAIL) B1 homogeneity test at 0.01 level. Try another transformation.

_______

Critical B = 13.2767 (alpha = 0.01, df = 4) = 9.4877 (alpha = 0.05, df = 4)

1) 64m for ANP 07/23/12C

Study # 60225262-445-(035-038)
ESTCP (0 60147216

Echinochloa crusgalli

Kruskal-Wallis Comparison for Plant Nutrient: Copper (mg/kg)

Title: 60225262-445-copper

File: 445nutcu.dat

Transform:

NO TRANSFORMATION

Kruskal - Wallis' ANOVA by Ranks - TABLE 1 OF 2

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	RANK SUM
1	Control	2.2750	2.2750	10.0000
2	APG-02	20.6750	20.6750	71.0000
3	APG-06	7.0500	7.0500	28.0000
.4	APG-15	15.5500	15.5500	61.0000
. 5	APG-16	9.5750	9.5750	40.0000

H Value = 17.3286 Critical H = 9.4877 (alpha = 0.05, df = 4)

(p-value 0.0017)

Since Calc H > Crit H REJECT Ho: All groups are equal at alpha = 0.05

Title: 60225262-445-copper

File: 445nutcu.dat

Transform:

NO TRANSFORMATION

Dunn's Multiple Comparison - Kruskal - Wallis - TABLE 2 OF 2

GROUP TRANSFORMED ORIGINAL 0 0 0 0 0 GROUP IDENTIFICATION MEAN MEAN 1 3 5 4 2 Control 2.2750 2.2750 \
APG-06 7.0500 7.0500 ./\
APG-16 9.5750 9.5750 ...\
APG-15 15.5500 15.5500 * ...\
APG-02 20.6750 20.6750 * ....\ 1 3

* = significant difference (alpha = 0.05) . = no significant difference Table q value = 2.8070 (0.05, 5) SE = 4.1833

> Ogrum 07/23/12 C for AND

Study # 60147216-445-(035-038)

ESTCP

ESTCP consgallic

Summary Statistics for Plant Nutrient: Iron (mg/kg)

Page 22 of 65

QA:0004/30/12

de4 26 12

Title: 60225262-445-Iron

File:

445nutFe.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Control	4	41.8000	64.7000	51.8500
2	APG-02	4	91.3000	415.0000	250.0750
3	APG-06	4	121.0000	281.0000	173.2500
4	APG-15	4	61.7000	196.0000	114.9250
5	APG-16	4	53.5000	185.0000	108.7500

Title: 60225262-445-Iron

File: 445nutFe.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	90.2167	9.4982	4.7491	18.3187
2	APG-02	24276.8892	155.8104	77.9052	62.3055
3	APG-06	5661.5833	75.2435	37.6217	43.4306
4	APG-15	3275,2892	57.2301	28.6151	49.7978
5	APG-16	3344.4167	57.8309	28.9155	53.1779

1) number AND 07/23/12 C

Page 23 of 15

Toxstat Version 3.5

Study # 60225262-445-(035-038) ESTCP (000-17216

ESTCP O CONTING

Determination of NOEC and LOEC for Plant Nutrient: Iron (mg/kg)

@A:0004130/12

127/12

Title: 60225262-445-Iron

File: 445nutFe.dat Transform:

NO TRANSFORMATION

Shapiro - Wilk's Test for Normality

D = 109945.1850

W = 0.9596

Critical W = 0.8680 (alpha = 0.01 , N = 20)

W = 0.9050 (alpha = 0.05, N = 20)

Data PASS normality test (alpha = 0.01). Continue analysis.

Title: 60225262-445-Iron

File:

445nutFe.dat

Transform:

NO TRANSFORMATION

Bartlett's Test for Homogeneity of Variance

Calculated B1 statistic = 13.3631

(p-value = 0.0096)

Data (AII) B1 homogeneity test at 0.01 level. Try another transformation.

Critical B = 13.2767 (alpha = 0.01, df = 4) = 9.4877 (alpha = 0.05, df = 4)

Down for ANP 17/23/12C

Page 24 of 65

Toxstat Version 3.5

Study # 60225262-445-(035-038)
ESTCP (100147216
Echinochloa erusgalli (1)

Kruskal-Wallis Comparison for Plant Nutrient: Iron (mg/kg)

QA:00 (4/30/12

Title: 60225262-445-Iron

File: 445nutFe.dat

Transform:

NO TRANSFORMATION

Kruskal - Wallis' ANOVA by Ranks - TABLE 1 OF 2

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	RANK SUM
1	Control	51.8500	51.8500	12.0000
-2	APG-02	250.0750	250.0750	61.0000
3	APG-06	173.2500	173.2500	58.0000
4	APG-15	114.9250	114.9250	41.0000
· 5	APG-16	108.7500	108.7500	38.0000
			ب بند چنر شد چنو چند <del>من بند چنر بند چنو بند چنو بند بند من بند بند پند</del> بند بند چ	

H Value = 10.9571 Critical H = 9.4877 (alpha = 0.05, df = 4)

(p-value 0.0270)

Since Calc H > Crit H REJECT Ho:All groups are equal at alpha = 0.05

Title: 60225262-445-Iron

445nutFe.dat

Transform:

NO TRANSFORMATION

Dunn's Multiple Comparison - Kruskal - Wallis - TABLE 2 OF 2

GROUP	IDENTIFICATION	TRANSFORMED MEAN	ORIGINAL MEAN	-	5	4	3	-	
				-	-	-	-	-	
1	Control	51.8500	51.8500	\					
5	APG-16	108.7500	108.7500		1				
4	APG-15	114.9250	114.9250			\			
- 3	APG-06	173,2500	173.2500				\		
2	APG-02	250.0750	250.0750	*				١	

^{* =} significant difference (alpha = 0.05) . = no significant difference Table q value =  $2.8070 \ (0.05, 5)$  SE = 4.1833

a muniforano o7/23/12 C

Study # 602147216-445-(035-038)
ESTCP Crusqulli
Echinochloa gursgalii

Summary Statistics for Plant Nutrient: Magnesium (mg/kg)

apiw 04/30/12

A4 (26/12

Page 25 of (15

Title: 60225262-445-Magnesium

File:

445nutmg.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N 	MIN	MAX	MEAN
. 1	Control			12500.0000	
2	APG-02			12900.0000	
3	APG-06	4	11300.0000	14900.0000	13950.0000
4	APG-15	4	9340.0000	10500.0000	10085.0000
5	APG-16	4	7870.0000	9380.0000	8417.5000

Title: 60225262-445-Magnesium

445nutmg.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	1110000.0000	1053.5654	526.7827	9.6216
2	APG-02	1146666.6667	1070.8252	535.4126	8.9985
3	APG-06	3123333.3333	1767.2955	883.6477	12.6688
4	APG-15	275566.6667	524.9444	262.4722	5.2052
5	APG-16	456691.6667	675.7897	337.8948	8.0284

1) bun av NP07/23/12 C

Page 24 of 105 Toxstat Version 3.5 Study # 60225262-445-(035-038)
ESTCP (060147216

enisqueli
Echinochloa erusgalii Determination of NOEC and LOEC for Plant Nutrient: Magnesium (mg/kg) Title: 60225262-445-Magnesium @112012 04/30/12 NO TRANSFORMATION File: 445nutmg.dat Transform: Shapiro - Wilk's Test for Normality D = 18336775.0000W = 0.9329Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05 , N = 20)Data PASS normality test (alpha = 0.01). Continue analysis. Title: 60225262-445-Magnesium Transform: NO TRANSFORMATION 445nutmg.dat Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 4.4916 (p-value = 0.3435)Data PASS B1 homogeneity test at 0.01 level. Continue analysis. Critical B = 13.2767 (alpha = 0.01, df = 4) = 9.4877 (alpha = 0.05, df = 4)

0 mm for ANP 07/23/12 C.

Page 27 of 15

Toxstat Version 3.5

Study # 602/147216-445-(035-038) ESTCP 0 (D10401)

ESTCP

Echinochloa cursgalii

Tukey Comparison for Plant Nutrient: Magnesium (mg/kg)

QA: CU 04/30/12 X4126/12

Title: 60225262-445-Magnesium

File:

445nutmg.dat

Transform:

NO TRANSFORMATION

### ANOVA Table

SOURCE	DF	SS	MS	F
Between	4	68012920.0000	17003230.0000	13.9091
Within (Error)	15	18336775.0000	1222451.6667	
Total	19	86349695.0000		

(p-value = 0.0001)

Critical F = 4.8932 (alpha = 0.01, df = 4,15) = 3.0556 (alpha = 0.05, df = 4,15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-445-Magnesium

445nutmg.dat

Transform:

NO TRANSFORMATION

## Tukey Method of Multiple Comparisons

GROUP	IDENTIFICATION	TRANSFORMED MEAN	ORIGINAL MEAN	GROUP 0 0 0 0 0 5 4 1 2 3
5	APG-16	8417.5000	8417.5000	$N^{\mathcal{F}}$
4	APG-15	10085.0000	10085.0000	. \
1	Control	10950.0000	10950.0000	* . \
2	APG-02	11900.0000	11900.0000	* \
3	APG-06	13950.0000	13950.0000	* * * \

^{* =} significant difference (alpha = 0.05) . = no significant difference

Tukey critical value = 4.3670 (df = 5.15)

s = 1222451.6667

0 mm 07/23/12C

Page 28 of 15

Toxstat Version 3.5

Study # 60147216-445-(035-038)

ESTCP (nusquii)
Echinochloa crusgalii ()
Summary Statistics for Plant Nutrient: Manganese (mg/kg)

de4/26/12

QA: W 04/30/12

Title: 60147216-445-Manganese

File:

445nutMn.dat Transform: NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Control	4	167.0000	263.0000	205.5000
2	APG-02	4	1160.0000	2370.0000	1742.5000
3	APG-06	4	181.0000	880.0000	440.7500
4	APG-15	4	342.0000	496.0000	424.0000
5	APG-16	4	245.0000	666.0000	512.2500

Title: 60147216-445-Manganese

445nutMn.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	1689.0000	41.0974	20.5487	19.9988
2	APG-02	321758.3333	567.2375	283.6187	32.5531
3	APG-06	96024.2500	309.8778	154.9389	70.3069
4	APG-15	4028.6667	63.4718	31.7359	14.9698
5	APG-16	35434.9167	188.2416	94.1208	36.7480

1 Amfor ANP 07/23/12 C

Page 29 of 105

Toxstat Version 3.5 Study # 60225262-445-(035-038)
ESTCP ( 6014716
Crusgalli
Echinochloa crusgalli () Determination of NOEC and LOEC for Plant Nutrient: Manganese (mg/kg) Title: 60147216-445-Manganese File: 445nutMn.dat Transform: NO TRANSFORMATION Shapiro - Wilk's Test for Normality D = 1376805.5000W = 0.9531Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05 , N = 20)Data PASS normality test (alpha = 0.01). Continue analysis. Title: 60147216-445-Manganese 445nutMn.dat Transform: NO TRANSFORMATION Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 17.9303 (p-value = 0.0013)Data PATD 81 homogeneity test at 0.01 level. Try another transformation.

1) our for ANP 07/23/12C

Critical B = 13.2767 (alpha = 0.01, df = 4) = 9.4877 (alpha = 0.05, df = 4)

Page 30 of 165

Toxstat Version 3.5

Study # 60225262-445-(035-038) ESTCP (06014734)

Echinochloa crusgalli ()

Kruskal-Wallis Comparison for Plant Nutrient: Manganese (mg/kg)

QA: W 04/30/12

de 4/27/12

Title: 60147216-445-Manganese

File: 445nutMn.dat

Transform:

NO TRANSFORMATION

Kruskal - Wallis' ANOVA by Ranks - TABLE 1 OF 2

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	RANK SUM
1	Control	205.5000	205.5000	14.0000
2	APG-02	1742.5000	1742.5000	74.0000
3	APG-06	440.7500	440.7500	35.0000
4	APG-15	424.0000	424.0000	40.0000
5	APG-16	512.2500	512.2500	47.0000

H Value = 13.4714 Critical H = 9.4877 (alpha = 0.05 , df = 4)

(p-value 0.0092)

Since Calc H > Crit H REJECT Ho:All groups are equal at alpha = 0.05

Title: 60147216-445-Manganese

File: 445nutMn.dat

Transform:

NO TRANSFORMATION

Dunn's Multiple Comparison - Kruskal - Wallis - TABLE 2 OF 2

GROUP -----Control 205.5000 205.5000 \
APG-15 424.0000 424.0000 . \
APG-06 440.7500 440.7500 . . \
APG-16 512.2500 512.2500 . . . \
APG-02 1742.5000 1742.5000 * . . . \ 4 3 5 2

* = significant difference (alpha = 0.05) . = no significant difference Table q value = 2.8070 (0.05, 5) SE = 4.1833

DannforAND 02/23/12C

Page 31 of 45

Toxstat Version 3.5

Study # 60147216-445-(035-038)

ESTCP unsquii O

Summary Statistics for Plant Nutrient: Phosphorus (mg/kg)

Je4/26/12 QA:00 04/30/12

Title: 60147216-445-Phosphorus

File:

445nutp.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
. 1	Control	4	2440.0000	3160.0000	2875.0000
2	APG-02	4	1920.0000	2660.0000	2302.5000
3	APG-06	4	1930.0000	2360.0000	2090.0000
4	APG-15	4	1730.0000	2090.0000	1915.0000
5	APG-16	4	1440.0000	2070.0000	1757.5000

Title: 60147216-445-Phosphorus

File:

445nutp.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	117966.6667	343.4628	171.7314	11.9465
2	APG-02	91491.6667	302.4759	151.2379	13.1368
3	APG-06	34866.6667	186.7262	93.3631	8.9343
4	APG-15	34700.0000	186.2794	93.1397	9.7274
5	APG-16	66758.3333	258.3763	129.1882	14.7014

1) from for ANP 07/23/12C

Page 32 of 45

```
Toxstat Version 3.5
Study # 60225262-445-(035-038)
ESTCP ( 601-17216 cnusqulli Echinochloa crusqulli ()
Determination of NOEC and LOEC for Plant Nutrient: Phosphorus (mg/kg) @A:00 04 30/12
                                                                         -K4 27 12
  Title: 60147216-445-Phosphorus
                                Transform:
  File:
              445nutp.dat
                                                                NO TRANSFORMATION
                     Shapiro - Wilk's Test for Normality
       D = 1037350.0000
       W = 0.9582
       Critical W = 0.8680/(alpha = 0.01, N = 20)
                 W = 0.9050 (alpha = 0.05 , N = 20)
  Data PASS normality test (alpha = 0.01). Continue analysis.
  Title: 60147216-445-Phosphorus
             445nutp.dat Transform:
                                                                NO TRANSFORMATION
                Bartlett's Test for Homogeneity of Variance
  Calculated B1 statistic = 1.5773
                                                     (p-value = 0.8129)
  Data PASS B1 homogeneity test at 0.01 level. Continue analysis.
  Critical B = 13.2767 (alpha = 0.01, df = 4)
= 9.4877 (alpha = 0.05, df = 4)
```

Down for ANP 07/23/12.C

Page 33 of 65

Toxstat Version 3.5

Study # 60147216-445-(035-038)

ESTCP cmsqalli Echinochloa crusgalii-() Tukey Comparison for Plant Nutrient: Phosphorus (mg/kg)

QA:0004130112

de4/26/12

Title: 60147216-445-Phosphorus

File:

445nutp.dat

Transform:

NO TRANSFORMATION

### ANOVA Table

SOURCE	DF	SS	MS	F
Between	4	3018170.0000	754542.5000	10.9106
Within (Error)	15	1037350.0000	69156.6667	
Total	19	4055520.0000	·	
				0.0000

(p-value = 0.0002)

Critical F = 4.8932 (alpha = 0.01, df = 4.15) = 3.0556 (alpha = 0.05, df = 4,15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-Phosphorus

445nutp.dat

Transform:

NO TRANSFORMATION

### Tukey Method of Multiple Comparisons

GROUP	IDENTIFICATION	TRANSFORMED MEAN	ORIGINAL MEAN	GROUP 0 0 0 0 0 5 4 3 2 1
- 5	APG-16	1757.5000	1757.5000	\
4	APG-15	1915.0000	1915.0000	. \
3	APG-06	2090.0000	2090.0000	\
2	APG-02	2302.5000	2302.5000	\
1	Control	2875.0000	2875.0000	* * * . \

^{*} = significant difference (alpha = 0.05) . = no significant difference

Tukey critical value = 4.3670 (df = 5,15)

s = 69156.6667

(1) oumfor AND 07/23/12C

Study # 60147216-445-(035-038)

ESTCP crusqalli ()
Echinochloa crusgalii ()
Summary Statistics for Plant Nutrient: Potassium (mg/kg)

Title: 60147216-445-Potassium

File: 445nutK.dat

Transform:

NO TRANSFORMATION

Summary	Statistics	on	Data
---------	------------	----	------

TABLE 1 of 2

1 Control 4 14400.0000 18800.0000 15750.0000 2 APG-02 4 14900.0000 18300.0000 16650.0000 3 APG-06 4 16500.0000 19900.0000 17975.0000 4 APG-15 4 14300.0000 18300.0000 16725.0000 5 APG-16 4 12700.0000 18900.0000 16225.0000	GRP	IDENTIFICATION	N	MIN	MAX	MEAN
3 APG-06 4 16500.0000 19900.0000 17975.0000 4 APG-15 4 14300.0000 18300.0000 16725.0000	1	Control	4	14400.0000	18800.0000	15750.0000
4 APG-15 4 14300.0000 18300.0000 16725.0000	2	APG-02	4	14900.0000	18300.0000	16650.0000
	3	APG-06	4	16500,0000	19900.0000	17975.0000
5 APG-16 4 12700.0000 18900.0000 16225.0000	4	APG-15	4	14300.0000	18300.0000	16725.0000
	5	APG-16	4	12700.0000	18900.0000	16225.0000

Title: 60147216-445-Potassium

445nutK.dat

Transform:

NO TRANSFORMATION

Summary	Statistics	on	Data

TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	4216666.6667	2053.4524	1026.7262	13.0378
2	APG-02	2170000.0000	1473.0920	736.5460	8.8474
3	APG-06	3035833.3333	1742.3643	871.1821	9.6933
4	APG-15	3389166.6667	1840.9689	920.4845	11.0073
5	APG-16	9449166.6667	3073.9497	1536.9748	18.9458

0 6mm for ANP 07/23/12 C

Page 35 of **U**5

Toxstat Version 3.5 Study # 60225262-445-(035-038)
ESTCP (60147216
crusqualit
Echinochloa crusqualit
() QA: W04/30/12 Determination of NOEC and LOEC for Plant Nutrient: Potassium (mg/kg) A4/27/12 Title: 60147216-445-Potassium File: 445nutk.dat Transform: NO TRANSFORMATION Shapiro - Wilk's Test for Normality D = 66782500.0000W = 0.9530Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05, N = 20)Data PASS normality test (alpha = 0.01). Continue analysis. Title: 60147216-445-Potassium 445nutk.dat Transform: NO TRANSFORMATION Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 1.7899 (p-value = 0.7743)Data PASS B1 homogeneity test at 0.01 level. Continue analysis.

Critical B = 13.2767 (alpha = 0.01, df = 4) = 9.4877 (alpha = 0.05, df = 4)

1 Gunu For ANP 07/23/12 C.

Page 36 of 15

Toxstat Version 3.5

Study # 60147216-445-(035-038)

las crusgalli

Echinochloa erusgalii

Tukey Comparison for Plant Nutrient: Potassium (mg/kg)

On: CU 04/130/12

de4/26/12

Title: 60147216-445-Potassium

445nutK.dat

Transform:

NO TRANSFORMATION

### ANOVA Table

		•		
SOURCE	DF	ss	MS	<b>F</b>
Between	4	11003000.0000	2750750.0000	0.6178
Within (Error)	15	66782500.0000	4452166.6667	
Total	19	77785500.0000		,

(p-value = 0.6566)

Critical F = 4.8932 (alpha = 0.01, df = 4,15) = 3.0556 (alpha = 0.05, df = 4,15)

Since F < Critical F FAIL TO REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-Potassium

File:

445nutK.dat

Transform:

NO TRANSFORMATION

# Tukey Method of Multiple Comparisons

GROUP	IDENTIFICATION	TRANSFORMED MEAN	ORIGINAL MEAN	GROUP 0 0 0 0 0 1 5 2 4 3
1	Control	15750.0000	15750.0000	\
- 5	APG-16	16225.0000	16225.0000	. \
2	APG-02	16650.0000	16650.0000	\
4	APG-15	16725.0000	16725.0000	\
3 ,	APG-06	17975.0000	17975.0000	\

* = significant difference (alpha = 0.05) . = no significant difference

Tukey critical value = 4.3670 (df = 5.15) s = 4452166.6667

1) frum for ANP 07/23/12 C

Page 37 of V5

Toxstat Version 3.5

Study # 60147216-445-(035-038)

ESTCP vyusqulli Echinochloa erusgalii

Summary Statistics for Plant Nutrient: Sodium (mg/kg)

Title: 60147216-445-Sodium

File:

445nutNa.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Control	4	84.4000	124.0000	99.1250
2	APG-02	4	946.0000	6260.0000	2579.0000
3	APG-06	4	727.0000	4000.0000	2304.2500
4	APG-15	4	3490.0000	11200.0000	6175.0000
5	APG-16	4	3700.0000	5810.0000	5050.0000

Title: 60147216-445-Sodium

445nutNa.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	315.5025	17.7624	8.8812	17.9192
2	APG-02	6170684.0000	2484.0861	1242.0431	96.3197
3	APG-06	1995452.2500	1412.6048	706.3024	61.3043
4	APG-15	12001366.6667	3464.2989	1732.1494	56.1020
5	APG-16	878466.6667	937.2655	468.6328	18.5597

DOMNGOV AND 07/23/12 C

Page 38 of U5

Toxstat Version 3.5

Study # 60225262-445-(035-038) ESTCP (00147216

Echinochloa crusgalii

Determination of NOEC and LOEC for Plant Nutrient: Sodium (mg/kg)

QA100 04/30/12

Title: 60147216-445-Sodium

File:

445nutna.dat Transform:

NO TRANSFORMATION

Shapiro - Wilk's Test for Normality

D = 63138855.2575

W = 0.8808

Critical W = 0.8680 (alpha = 0.01 , N = 20)

W = 0.9050 (alpha = 0.05, N = 20)

Data PASS normality test (alpha = 0.01). Continue analysis.

Title: 60147216-445-Sodium

File:

445nutna.dat

Transform:

NO TRANSFORMATION

Bartlett's Test for Homogeneity of Variance

Calculated B1 statistic = 27.4808

(p-value = 0.0000)

Data (FAII) B1 homogeneity test at 0.01 level. Try another transformation.

Critical B = 13.2767 (alpha = 0.01, df = 4) = 9.4877 (alpha = 0.05, df = 4)

(Down for AND 07/23/12 C

O4/4/27/12E

Study # 60225262-445-(035-038)
ESTCP 060147216
Echinochloa crusgalli

Kruskal-Wallis Comparison for Plant Nutrient: Sodium (mg/kg)

GA: CN 04/30/12

14/2/1/2

Title: 60147216-445-Sodium

File: 445nutna.dat

Transform:

NO TRANSFORMATION

Kruskal - Wallis' ANOVA by Ranks - TABLE 1 OF 2

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	RANK SUM
1	Control	99.1250	99.1250	10.0000
2	APG-02	2579.0000	2579.0000	41.0000
3	APG-06	2304.2500	2304.2500	36.0000
4	APG-15	6175.0000	6175.0000	62,0000
5	APG-16	5050.0000	5050.0000	61.0000

 $H \ Value = 13.0143 \ Critical \ H = 9.4877 \ (alpha = 0.05 , df = 4)$ 

(p-value 0.0112)

Since Calc H > Crit H REJECT Ho: All groups are equal at alpha = 0.05

Title: 60147216-445-Sodium

File: 445nutna.dat

Transform:

NO TRANSFORMATION

Dunn's Multiple Comparison - Kruskal - Wallis - TABLE 2 OF 2

GROUP	IDENTIFICATION	TRANSFORMED MEÄN	ORIGINAL MEAN	-	0	_	JP 0 5	-			
				-	-	-	-	_			
1	Control	99.1250	99.1250	\							
3	APG-06	2304.2500	2304.2500		X						
2	APG-02	2579.0000	2579.0000			Ą					
5	APG-16	5050.0000	5050.0000	*		·	١				
4	APG-15	6175.0000	4 1 1 1	*	•	•		١	•		

^{* =} significant difference (alpha = 0.05) . = no significant difference Table q value = 2.8070 (0.05, 5) SE = 4.1833

Ourmfor ANP 07/28/12C

Study # 60147216-445-(035-038)

ESTCP crusgalli Echinochloa <del>crusgalii</del>

Summary Statistics for Plant Nutrient: Sulfur (mg/kg)

Page 40 of 15

Title: 60147216-445-Sulfur

File:

445nutSu.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Control	4	3440.0000	5070.0000	4247.5000
2	APG-02	4	13200.0000	32400.0000	19000.0000
3	APG-06	4	15600.0000	28900.0000	20875.0000
4	APG-15	4	23600.0000	42900.0000	32125.0000
5	APG-16	4	18200.0000	19800.0000	19025.0000

Title: 60147216-445-Sulfur

File:

445nutSu.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	529291.6667	727.5243	363.7622	17.1283
2	APG-02	81653333.3334	9036.2234	4518.1117	47.5591
3	APG-06	32009166.6667	5657.6644	2828.8322	27.1026
4	APG-15	86195833.3334	9284.1711	4642.0856	28.9001
5	APG-16	509166.6667 .	713.5592	356.7796	3.7506

() 64M FOR ANP 07/23/12C

Page 41 of 65

Toxstat Version 3.5 Study # -60225262-445-(035-038)
ESTCP @ worl7216

Echinochloa exusgallian:woulsol12 Determination of NOEC and LOEC for Plant Nutrient: Sulfur(mg/kg) 484/27/12 Title: 60147216-445-Sulfur File: 445nutsu.dat Transform: NO TRANSFORMATION Shapiro - Wilk's Test for Normality D = 602690375.0000W = 0.9121Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05, N = 20)Data PASS normality test (alpha = 0.01). Continue analysis. Title: 60147216-445-Sulfur 445nutsu.dat Transform: NO TRANSFORMATION Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 19.7281 (p-value = 0.0006)Data FAID B1 homogeneity test at 0.01 level. Try another transformation. Critical B = 13.2767 (alpha = 0.01, df = 4) = 9.4877 (alpha = 0.05, df = 4)

1 6mm for ANP 07/23/12 C

Study # 60225262-445-(035-038)
ESTCP County Crusqalli
Echinochloa exusgalli

Kruskal-Wallis Comparison for Plant Nutrient: Sulfur(mg/kg)

X4/27/12

an: 00 04/30/12

Title: 60147216-445-Sulfur

File: 445nutsu.dat

Transform:

NO TRANSFORMATION

Kruskal - Wallis' ANOVA by Ranks - TABLE 1 OF 2

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	RANK SUM
1	Control	4247.5000	4247.5000	10.0000
2	APG-02	19000.0000	19000.0000	37.0000
3	APG-06	20875.0000	20875.0000	48.5000
4	APG-15	32125.0000	32125.0000	70.0000
5	APG-16	19025.0000	19025.0000	44.5000

H Value = 13.4494 Critical H = 9.4877 (alpha = 0.05, df = 4)

(p-value 0.0093)

Since Calc H > Crit H REJECT Ho: All groups are equal at alpha = 0.05

Title: 60147216-445-Sulfur

File:

445nutsu.dat

Transform:

NO TRANSFORMATION

Dunn's Multiple Comparison - Kruskal - Wallis - TABLE 2 OF 2

GROUP	IDENTIFICATION	TRANSFORMED MEAN	ORIGINAL MEAN	-	0	0	ΟΡ 0 3	-		
				-		-	-	-		
1	Control	4247.5000	4247.5000	\						
2	APG-02	19000.0000	19000.0000		\					
5	APG-16	19025.0000	19025.0000			1				
3	APG-06	20875.0000	20875.0000				١			
4	APG-15	32125.0000	32125.0000	*			•	١		

^{* =} significant difference (alpha = 0.05) . = no significant difference Table q value = 2.8070 (0.05, 5) SE = 4.1817

@ 6mm for ANP 07 [23]12C

Study # 60147216-445-(035-038)

ESTCP

ESTCP crusquli ()

Summary Statistics for Plant Nutrient: Zinc(mg/kg)

anici o4/30/12

de4/26/12

Page 43 of 15

File:

Title: 60147216-445-Zinc

445nutZn.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	.N	MIN	MAX	MEAN
1	Control	4	25.0000	38.7000	33.0000
2	APG-02	4	345.0000	1870.0000	771.2500
3	APG-06	4	162.0000	392.0000	300.7500
4	APG-15	4	287.0000	809.0000	600.2500
5	APG-16	4	448.0000	1200.0000	872.7500

Title: 60147216-445-Zinc

445nutZn.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	33.1800	5.7602	2.8801	17.4552
2	APG-02	538356.9167	733.7281	366.8640	95.1349
3	APG-06	9570.2500	97.8277	48.9138	32.5279
4	APG-15	59058.2500	243.0190	121.5095	40.4863
5	APG-16	99623.5833	315.6320	157.8160	36.1652

Jama for ANP 07/23/12 C

Page 44 of (15

Toxstat Version 3.5 Study # 60225262-445-(035-038)
ESTCP Collins of Collins

Determination of NOEC and LOEC for Plant Nutrient: Zinc (mg/kg)

aniwoy130/12

File:

Title: 60147216-445-Zinc

445nutzn.dat

Transform:

NO TRANSFORMATION

Shapiro - Wilk's Test for Normality

D = 2119926.5400W = 0.8265

Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05, N = 20)

Data (AII) normality test (alpha = 0.01). Try another transformation.

Warning - The first three homogeneity tests are sensitive to non-normality and should not be performed with this data as is.

Title: 60147216-445-Zinc

445nutzn.dat

Transform:

NO TRANSFORMATION

Bartlett's Test for Homogeneity of Variance

Calculated B1 statistic = 28.9433

(p-value = 0.0000)

Data FAR B1 homogeneity test at 0.01 level. Try another transformation.

Critical B = 13.2767 (alpha = 0.01, df = 4) = 9.4877 (alpha = 0.05, df = 4)

1 6mm for AND 67/23/12 C

Study # 60225262-445-(035-038)
ESTCP () CONTILID

crusgalli
Echinochloa crusgalli ()

Kruskal-Wallis Comparison for Plant Nutrient: Zinc (mg/kg)

QA: 00 04/30/12

*4/27/12

File:

Title: 60147216-445-Zinc

445nutzn.dat

Transform:

NO TRANSFORMATION

Kruskal - Wallis' ANOVA by Ranks - TABLE 1 OF 2

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	RANK SUM
1	Control	33.0000	33.0000	10.0000
. 2	APG-02	771.2500	771.2500	52.0000
3	APG-06	300.7500	300.7500	30.0000
4	APG-15	600.2500	600.2500	51.0000
5	APG-16	872.7500	872.7500	67.0000

H Value = 14.1000 Critical H = 9.4877 (alpha = 0.05, df = 4)

(p-value 0.0070)

Since Calc H > Crit H REJECT Ho: All groups are equal at alpha = 0.05

Title: 60147216-445-Zinc

File:

445nutzn.dat

Transform:

NO TRANSFORMATION

Dunn's Multiple Comparison - Kruskal - Wallis - TABLE 2 OF 2

GROUP	IDENTIFICATION	TRANSFORMED MEAN	ORIGINAL MEAN	0	0	_	UP 0 2	-			
				-	-	-	-	-			
1	Control	33.0000	33,0000	\							
3	APG-06	300.7500	300.7500		$\lambda$				·		
4	APG-15	600.2500	600.2500			٨					
2 ·	APG-02	771.2500	771.2500				\				
5	APG-16	872.7500	872.7500	*			٠	١			

^{* =} significant difference (alpha = 0.05) . = no significant difference Table q value = 2.8070 (0.05, 5) SE = 4.1833Table q value = 2.8070 (0.05, 5)

1 6mmfor ANP 07/23/12C

Page 40 of 65

Toxstat Version 3.5

Study # 60147216-445-(035-038)

ESTCP crusquli Co

Summary Statistics for Plant Nutrient: Nitrogen (%)

QA:00 04/30/12

de4/26/12

Title: 60147216-445-Nitrogen

File:

445nutN.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Control	4	0.8300	1.0500	0.9325
2	APG-02	4	0.8100	0.9700	0.8775
3	APG-06	4	0.7500	0.8200	0.7850
4	APG-15	4	0.6700	0.7700	0.7300
5	APG-16	4	0.6900	0.8100	0.7650

Title: 60147216-445-Nitrogen

445nutN.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD ,	SEM	C.V. %
1	Control	0.0082	0.0903	0.0452	9.6862
2	APG-02	0.0053	0.0727	0.0364	8.2899
3	APG-06	0.0008	0.0289	0.0144	3.6774
4	APG-15	0.0018	0.0424	0.0212	5.8118
5	APG-16	0.0028	0.0526	0.0263	6.8757

0 Gumfor AND 07/23/12 C

Page 47 of 15 Toxstat Version 3.5 Study # 60225262-445-(035-038)
ESTCP Och 7216
Echinochloa crusgalli
Echinochloa crusgalli Determination of NOEC and LOEC for Plant Nutrient: Nitrogen (mg/kg) QA:00 04/30/12 *4/27/12 Title: 60147216-445-Nitrogen 445nutn.dat NO TRANSFORMATION Transform: Shapiro - Wilk's Test for Normality D = 0.0566 W = 0.9740Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05 , N = 20) Data PASS normality test (alpha = 0.01). Continue analysis. Title: 60147216-445-Nitrogen 445nutn.dat Transform: NO TRANSFORMATION Bartlett's Test for Homogeneity of Variance ' Calculated B1 statistic = 3.8305 (p-value = 0.4294)Data PASS B1 homogeneity test at 0.01 level. Continue analysis. Critical B = 13.2767 (alpha = 0.01, df = 4) = 9.4877 (alpha = 0.05, df = 4)

Dann for Aup 07/23/12.C

Page 48 of 65

Toxstat Version 3.5

Study # 60147216-445-(035-038)

ESTCP consgalli Echinochloa crusgalii-O

Tukey Comparison for Plant Nutrient: Nitrogen (%)

QA:W04/30/12

A412612

Title: 60147216-445-Nitrogen

File:

445nutN.dat

Transform:

NO TRANSFORMATION

#### ANOVA Table

		• ,		
SOURCE	DF	SS	MS	F
Between	4	0.1132	0.0283	7.5046
Within (Error)	15	0.0566	0.0038	
Total	19	0.1697		
			ulev_n\	0 0016)

(p-value = 0.0016)

Critical F = 4.8932 (alpha = 0.01, df = 4.15) = 3.0556 (alpha = 0.05, df = 4.15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-Nitrogen

File:

445nutN.dat

Transform:

NO TRANSFORMATION

#### Tukey Method of Multiple Comparisons

GROUP	IDENTIFICATION	TRANSFORMED MEAN	ORIGINAL MEAN	GROUP 0 0 0 0 0 4 5 3 2 1
				`
4	APG-15	0.7300	0.7300	\
5	APG-16	0.7650	0.7650	. \
3 .	APG-06	0.7850	0.7850	
2	APG-02	0.8775	0.8775	* \
1	Control	0.9325	0.9325	* * * . \

^{* =} significant difference (alpha = 0.05) . = no significant difference

Tukey critical value = 4.3670 (df = 5,15)

s = 0.0038

DOWNER AND 07/23/12.C

Page 49 of 15

Toxstat Version 3.5

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Summary statistics for Plant Nutrient: Nitrogen (mg/Kg)

of 5/21/12 on gumo7/18/12

Title: 60147216-445-Nitrogen

File:

445nutN.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Control	4	8300.0000	10500.0000	9325.0000
2	APG-02	4	8100.0000	9700.0000	8775.0000
-3	APG-06	4	7500.0000	8200.0000	7850.0000
4	APG-15	4	6700.0000	7700.0000	7300.0000
5	APG-16	4	6900.0000	8100.0000	7650.0000

Title: 60147216-445-Nitrogen

445nutN.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD .	SEM	C.V. %
1	Control	815833.3333	903.2349	451.6175	9.6862
2	APG-02	529166.6667	727.4384	363.7192	8.2899
3	APG-06	83333.3333	288.6751	144.3376	3.6774
4	APG-15	180000.0000	424.2641	212.1320	5.8118
5	APG-16	276666.6667	525.9911	262.9956	6.8757

Page 50 of 15

Toxstat Version 3.5 Study # 60147216-445-(035-038) ESTCP QA:GLM 07/18/12 Echinochloa crusgalli de 5/21/12 Determination of NOEC and LOEC for Plant Nutrient: Nitrogen (mg/Kg) Title: 60147216-445-Nitrogen 445nutN.dat Transform: NO TRANSFORMATION Shapiro - Wilk's Test for Normality D = 5655000.0000W = 0.9740Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05, N = 20)Data PASS normality test (alpha = 0.01). Continue analysis. Title: 60147216-445-Nitrogen 445nutN.dat Transform: NO TRANSFORMATION Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 3.8305 (p-value = 0.4294)

= 9.4877 (alpha = 0.05, df = 4)

Critical B = 13.2767 (alpha = 0.01, df = 4)

Data PASS B1 homogeneity test at 0.01 level. Continue analysis.

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Tukeu Comparison Test for Plant Nutrient: Nitrogen (mg/Kg)

an: orm 07/18/12 DE 21/12

Title: 60147216-445-Nitrogen

445nutN.dat

Transform:

NO TRANSFORMATION

#### ANOVA Table

SOURCE	DF	ss	MS	F
Between	4	11317000.0000	2829250.0000	7.5046
Within (Error)	15	5655000.0000	377000.0000	
Total	19	16972000.0000		
·				~ - 0 0016\

(p-value = 0.0016)

Critical F = 4.8932 (alpha = 0.01, df = 4.15) = 3.0556 (alpha = 0.05, df = 4,15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60147216-445-Nitrogen

File:

445nutN.dat

Transform:

NO TRANSFORMATION

#### Tukey Method of Multiple Comparisons

					GI	ROI	JΡ	
		TRANSFORMED	ORIGINAL	0	0	0	0	0
GROUP	IDENTIFICATION	MEAN	MEAN	4	5	3	2	1
				_	_		-	-
4	APG-15	7300.0000	7300.0000	\				
5	APG-16	7650.0000	7650.0000		\			
3	APG-06	7850.0000	7850.0000			Λ		
2	APG-02	8775.0000	8775.0000	*			\	
1.	Control	9325.0000	9325,0000	*	*	*		١

^{* =} significant difference (alpha = 0.05) . = no significant difference

Tukey critical value = 4.3670 (df = 5,15)

s = 377000.0000

Page 52 of 45

QA 130 4/1/2

Statistix 8.0

Step

Echinochloa-minus co..., 5/3/2012, 3:51:33 PM

Stepwise Linear Regression of DryWt "Start indu. Juniables"

Unforced Variables: CaSoil CuSoil FeSoil KSoil MgSoil MnSoil NSoil NaSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

Variable(s) dropped from initial model because of collinearity: KSoil MgSoil MnSoil NSoil NSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

P to Enter 0.0500

P to Exit 0.0500

																T	
			C	C	F		М	M		N			Ż		P	0	
			A	U	E	K	G	N	N	À	P	S	N	В	н	С	
			S	S	S	S	S	S	S.	ន	S	S	S	S	S	ន	
			0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	•		ľ	Í	I	T	I	I	I	I	I	I	I	I	I	I	
R Sq	MSE	P	Ļ	L	L	·L	L	L	L	L	L	L	L	L	L	L	
0.7996	6.839E-05		Α	В	С			•									
0.7633	7.453E-05	0.1666 -		В	С												

Regulting	Stenwise	Model

Resulting Ste	Darse Moder	*			
Variable C	oefficient	Std Error	T	P	VIF
Constant	-0.01233	0.01198	-1.03	0.3221	
CuSoil	-3.140E-05	9.644E-06	-3.26	0.0063	1.8
FeSoil	5.207E-06	8.189E-07	6.36	0.0000	1.8
Cases Include	d 16	R Squared	0.7633	MSE 7.453	BE-05
Missing Cases	0	Adj R Sq	0.7269	SD 0.0	00.863

	CO22021			
Variable	Multiple	Partial	T	P
CaSoil	0.9541	0.3912	1.47	0.1666
KSoil	0.9677	0.3912	1.47	0.1666
MgSoil	0.7083	0.3912	1.47	0.1666
${ t MnSoil}$	0.9576	0.3912	1.47	0.1666
NSoil	0.1948	-0.3912	-1.47	0.1666
NaSoil	0.9909	0.3912	1.47	0.1666
PSoil	0.9348	-0.3912	-1.47	0.1666
SSoil	0.9747	0.3912	1.47	0.1666
ZnSoil	0.9705	0.3912	1.47	0.1666
BSoil	0.8684	0.3912	1.47	0.1666
pHSoil	0.5316	0.3912	1.47	0.1666
TOCSoil	0.7430	-0.3912	-1.47	0.1666

no central data pt

4

DA 1302/2/12

Statistix 8.0

Echinochloa-minus co..., 5/3/2012, 3:52:31 PM

Stepwise Linear Regression of Length "Study WWW Unforced Variables: CaSoil CuSoil FeSoil KSoil MgSoil MnSoil NSoil NaSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

Variable(s) dropped from initial model because of collinearity: KSoil MgSoil MnSoil NSoil NSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

P to Enter 0.0500 P to Exit 0.0500

													T
C	C	F		М	M		N			Z	•	P	0
A	U	E	K	G	N	N	A	P	S	N	В	Η	Ç
S	S	S	S	S	S	S	S	S	S	S	S	s	S
0	0	0	0	Ó	0	0	O	0	0	0	0	0	0
I	I	I	I	I	I	I	I	I	·I	I	I	I	I
L	L	L	L	Ľ	L	L	L	Ŀ.	L	L	L	L	L
Α	В	C											

Ste	qe	R Sq	mse	· P	L	L	L	L	L	L	L	L	L	Ŀ	L	L	L	L
	1	0.5725	327.662		Α	В	C.											
	2	0.5648	307.883	0.6510 -		В	С					٠	٠	•	• '			

Resulting St	epwise Model				.*
Variable (	Coefficient	Std Error	T	P	VIF
Constant	140.102	24.3439	5.76	0.0001	
CuSoil	-0.05482	0.01960	-2.80	0.0151	1.8
FeSoil	0.00683	0.00166	4.11	0.0012	1.8
Cases Includ	eđ 16	R Squared	0.5648	MSE	307.883
Missing Case	s 0	Adi R Sa	0.4979	SD	17.5466

Variable	Multiple	Partial	T	P
CaSoil	0.9541	0.1327	0.46	0.6510
KSoil	0.9677	0.1327	0.46	0.6510
MgSoil	0.7083	0.1327	0.46	0.6510
MnSoil	0.9576	0.1327	0.46	0.6510
NSoil	0.1948	-0.1327	-0.46	0.6510
NaSoil	0.9909	0.1327	0.46	0.6510
PSoil	0.9348	-0.1327	-0.46	0.6510
SSoil	0.9747	0.1327	0.46	0.6510
ZnSoil	0.9705	0.1327	0.46	0.6510
BSoil	0.8684	0.1327	0.46	0.6510
${ t pHSoil}$	0.5316	0.1327	0.46	0.6510
TOCSoil	0.7430	-0.1327	-0.46	0.6510

Pg pup, (w/w) y -

Page 54 of 45 QA uzu 48/12

Statistix 8.0

Echinochloa-minus co..., 5/3/2012, 3:52:49 PM

Stepwise Linear Regression of BPlant

"Start. Indep. variables" Unforced Variables: CaSoil CuSoil FeSoil KSoil MgSoil MnSoil NSoil NaSoil PSoil

SSoil ZnSoil BSoil pHSoil TOCSoil

Variable(s) dropped from initial model because of collinearity: KSoil MgSoil MnSoil NSoil NaSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

P to Enter 0.0500

P to Exit 0.0500

													T
C	С	F	-	M	М		N			Z		P	0
A	υ	E	K	G	Ŋ	N	A	P	S	N	В	H	C
S	S	S	S	S	S	S	Ş	S	S	S	S	S	S
0	0	0	0	0	0	0	0	0	0	0	0	0	0
I	I	I	I	I	I.	I	I	I	I	I	I	I.	I
L	L	L	L	L	Ļ	L	L	L	Ţ,	L	L	Ŀ	L

				-	-	-	-	-	-	_	_	_	_	_	4		_	
Step	R Sq	MSE	P	L	L	L	L	L	Ļ	Ŀ	L	L	L	L	L	Ŀ	L	
1	0.6674	11.1329		Α	В	C												

Kesulting	Stepwise Model			-	
Variable	Coefficient	Std Error	T	P	VIF
Constant	38.7015	6.36501	6.08	0.0001	
CaSoil	-0.00101	2.550E-04	-3.97	0.0019	11.2
CuSoil	0.04012	0.01172	3.42	0.0051	17.4
${ t FeSoil}$	-0.00181	4.726E-04	-3.84	0.0024	3.9

Cases Included	16	R Squared	0.6674	MSE	11.1329
Missing Cases	0	Adj R Sq	0.5842	SD	3.33660

### Variables Not in the Model

#### Correlations

Variable	Multiple	Partial	T	P
KSoil	1.0000	-0.0000	-0.00	1.0000
MgSoil	1.0000	M	M	M
MnSoil	1.0000	M	M	M
NSoil	1.0000	M	M	M
NaSoil	1.0000	0.0000	0.00	1.0000
PSoil	1.0000	-0.0000	-0.00	1.0000
SSoil	1.0000	0.0000	0.00	1.0000
ZnSoil	1.0000	-0.0000	-0.00	1.0000
BSoil	1.0000	M	M	M
pHSoil	1.0000	M	M	M
TOCSoil	1.0000	M	M	M

Page 55 of 45

Statistix 8.0

Echinochloa-minus co..., 5/3/2012, 3:53:00 PM

Stepwise Linear Regression of CaPlant

I "Start Indep. Variables"

Unforced Variables: CaSoil CuSoil FeSoil KSoil MgSoil MnSoil NSoil NaSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

Variable(s) dropped from initial model because of collinearity: KSoil MgSoil MnSoil NSoil NSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

P to Enter 0.0500

P to Exit 0.0500

																		T	
					C	C	F		M	M		N			Z		P	0	
-					A	υ	E	K	G	N	N	A	P	S	N	В	H	C	
					S	S	S	S	S	S	S	S	S	s	S	S	S	ន	
		•			0	0	0	0	0	0	0	0	0	0	О	0	0	O	
		,			I	I	I	I	I	I	I	I	I	I	I	I	I	I	
Step	R Sq	MSE	P		L	L	L	L	L	L	L	L	L	L	L	L	L	L	
1	0.5994	6.048E+07			А	В	C												
2	0.5987	5.592E+07	0.8865	- '	Α		C			. •									
3	0.5792	5.445E+07	0.4407	-	Α	•			•	•	•	•	•			•	٠		
Result	ing Step	vise Model																	
Variab	ole Coe	efficient	Std Error	r				T					P			7	ZI	F	
Consta	ant	10296.2	2603.12	2			3.5	96		1	0.0	00:	14						
	,										_							_	

Constant CaSoil	10296.2 0.74115	2603.12 0.16884	3.96 4.39	0.0014 0.0006	1.0
Cases Included	16	R Squared	0.5792	MSE 5.44	5E+07
Minging Conce	^	7 A - 7 C-	0 5.401	an 70	70 20

### Variables Not in the Model

#### Correlations

Variable	Multiple	Partial	T	P
CuSoil	0.8945	0.1598	0.58	0.5695
FeSoil	0.3370	0.2154	0.80	0.4407
KSoil	0.4535	0.2189	0.81	0.4332
MgSoil	0.8812	-0.0270	-0.10	0.9238
MnSoil	0.8455	0.2193	0.81	0.4323
NSoil	0.1194	-0.0016	-0.01	0.9954
NaSoil	0.3078	0.2192	0.81	0.4325
PSoil	0.7054	0.1056	0.38	0.7080
SSoil	0.2810	0.2186	0.81	0.4337
ZnSoil	0.5912	0.2193	0.81	0.4323
BSoil	0.4334	0.2049	0.75	0.4638
pHSoil	0.7535	0.0463	0.17	0.8697
TOCSoil	0.4915	0.0243	0.09	0.9316

Hy pup, (why)4-

Page 56 of 65

Statistix 8.0

Step

Echinochloa-minus co..., 5/3/2012, 3:53:12 PM

Stepwise Linear Regression of CuPlant (STOR). WWW. WWW."
Unforced Variables: CaSoil CuSoil FeSoil KSoil MgSoil MnSoil NSoil NaSoil PSoil
SSoil ZnSoil BSoil pHSoil TOCSoil

Variable(s) dropped from initial model because of collinearity: KSoil MgSoil MnSoil NSoil NSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

P to Enter 0.0500

P to Exit 0.0500

R Sq

													T
C	С	F		М	M,		N			Z		P	0
A	Ū	E	K	Ġ	N	N	A	P	S	N	В	H	C
S	S	S	S	S	S	S	S	S	S	S	ន	S	ន
0	0	0	0	0	0	0	0	0	0	Ö	0	0	0
I	I	I	I	I	I	I	I	I	I	I	I	I	I
L	L	L	L	L	Ŀ	L	L	L	L	L	L	Ļ	L
	-	~											

1 0.6319 21.8162 A

MSE

Resulting Ste	pwise Model		•		
Variable (	Coefficient	Std Error	T	P	VIF
Constant	44.1818	8.91014	4.96	0.0003	
CaSoi1	-0.00146	3.570E-04	-4.09	0.0015	11.2
CuSoil	0.07391	0.01641	4.50	0.0007	17.4
FeSoil	-0.00260	6.616E-04	-3.93 ^{\\}	0.0020	3.9
Cases Include	ed 16	R Squared	0.6319	MSE	21.8162
Missing Cases	. 0	Adj R Sq	0.5399	$_{ m SD}$	4.67079

	COLLET	actons		
Variable	Multiple	Partial	T	P
KSoil	1.0000	0.0000	0.00	1.0000
MgSoil	1.0000	M	M	M
${ t MnSoil}$	1.0000	M	M	M
NSoil	1.0000	M	M	. M
NaSoil	1.0000	0.0000	0.00	1.0000
PSoil	1.0000	-0.0000	-0.00	1.0000
SSoil	1.0000	0.0000	0.00	1.0000
ZnSoil	1.0000	-0.0000	-0.00	1.0000
BSoil	1.0000	M	M	M
pHSoil	1.0000	M	M	M
TOCSoil	1.0000	M	M	М

-4 (n/n), ond by

MSE

SD

8077.54

89.8751

Page 570+ 65

Statistix 8.0

Echinochloa-minus co..., 5/3/2012, 3:53:23 PM

Stepwise Linear Regression of FePlant

Start, indep. Variables"

Unforced Variables: CaSoil CuSoil FeSoil KSoil MgSoil MnSoil NSoil NaSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

Variable(s) dropped from initial model because of collinearity: KSoil MgSoil MnSoil NSoil NaSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

P to Enter 0.0500

P to Exit 0.0500

		:		2	U S S	F	s o	G S O	s o	и в 0	s o	s	s o	N S O	<b>s</b>	H S O	C s o
Step	R Sq	MSE	P	1	ı	L	L	L	Ŀ	L	L	L	L	L	L	L	Ļ
1	0.3205	9139.54		Į	Æ	C								٠			
2	0.2071	9845.39	0.1823 -	1	١.	C											
3	0.1716	9550.64	0.4596 -			C										÷	
4	0.0000	10761.0	0.1106 -														
5 -	0.2994	8077.54	0.0283 +		•	•			•			•			L	•	
Result	ing Step	wise Model															
Variab	le Co	efficient	Std Error				T					P			7	VII	e
Consta	nt	479.619	131.880			3.	64		(	).(	00:	27					
BSoil		-64.2159	26.2528		-	2.	45		(	).(	02	83			:	1.0	0

R Squared 0.2994

0.2494

Adj R Sq

## Variables Not in the Model

16

Cases Included

Missing Cases

Corret	•		
Multiple	Partial	T	P
0.4334	-0.1056	-0.38	0.7079
0.5638	-0.0252	-0.09	0.9291
0.8684	0.1466	0.53	0.6021
0.9633	0.1206	0.44	0.6687
0.4833	-0.1622	-0.59	0.5635
0.8149	-0.0535	-0.19	0.8497
0.3764	0.1321	0.48	0.6388
0.9254	0.1614	0.59	0.5654
0.3939	0.0371	0.13	0.8956
0.9513	0.1714	0.63	0.5413
0.9374	0.0491	0.18	0.8619
0.6497	-0.1727	-0.63	0.5382
0.0165	0.0595	0.21	0.8333
	Multiple 0.4334 0.5638 0.8684 0.9633 0.4833 0.8149 0.3764 0.9254 0.3939 0.9513 0.9374 0.6497	0.4334 -0.1056 0.5638 -0.0252 0.8684 0.1466 0.9633 0.1206 0.4833 -0.1622 0.8149 -0.0535 0.3764 0.1321 0.9254 0.1614 0.3939 0.0371 0.9513 0.1714 0.9374 0.0491 0.6497 -0.1727	Multiple         Partial         T           0.4334         -0.1056         -0.38           0.5638         -0.0252         -0.09           0.8684         0.1466         0.53           0.9633         0.1206         0.44           0.4833         -0.1622         -0.59           0.8149         -0.0535         -0.19           0.3764         0.1321         0.48           0.9254         0.1614         0.59           0.3939         0.0371         0.13           0.9513         0.1714         0.63           0.9374         0.0491         0.18           0.6497         -0.1727         -0.63

-u (m/m), ond off Page 50 of U5

Statistix 8.0

Echinochloa-minus co..., 5/3/2012, 3:53:37 PM

Stepwise Linear Regression of KPlant

ing Indep. Variables Unforced Variables: CaSoil CuSoil FeSoil KSoil MgSoil MnSoil NSoil NaSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

Variable(s) dropped from initial model because of collinearity: KSoil MgSoil

MnSoil NSoil NaSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

P to Enter 0.0500

P to Exit 0.0500

			,														T
	•		•	C	C	F		M	М		N			Z		P	0
				A	U	E	K	G	N	N	A	P	ន	N	В	H	С
				S	S	S	S	S	S	S	S	ន	S	S	S	S.	S
	•	•		0	O	0	O	0	0	0	Ó	0	O	0	0	0	0
				I	I	I	I	I	I	I	I	I	I	I	I	I	I
Step	R Sq	MSE	P	L	L	L	L	L	L	L	L	L	L	L	L	L	L
1	0.1118	4511042		Α	В	С								٠.			
2	0.1117	4164640	0.9675 -	Α	В												
3	0.0283	4230252	0.2893 -	•	В					٠	•						
4	$0.0000^{\circ}$	4063292	0.5333 -														

Resulting Stepv				_	
Variable Co	efficient	Std Error	T	P.	VIF
Constant	16893.8	503.940	33.52	0.0000	•
Cases Included	16	R Squared	0.0000	MSE	4063292
Missing Cases	0 -	Adi R Sa	0.0000	SD	2015.76

Variable	Multiple	Partial	T	P
CaSoil	0.0000	-0.0214	-0.08	0.9373
CuSoil	0.0000	-0.1683	-0.64	0.5333
FeSoil	0.0000	-0.2780	-1.08	0.2972
KSoil	0.0000	-0.2208	-0.85	0.4113
MgSoil	0.0000	0.0990	0.37	0.7151
${ t MnSoil}$	0.0000	-0.1528	-0.58	0.5720
NSoil	0.0000	-0.2142	-0.82	0.4256
NaSoil	0.0000	-0.2513	-0.97	0.3479
PSoil	0.0000	-0.2375	-0.91	0.3758
SSoil	0.0000	-0.2298	-0.88	0.3919
ZnSoil	0.0000	-0.2136	-0.82	0.4270
BSoil	0.0000	-0.1498	-0.57	0.5796
pHSoil	0.0000	0.0905	0.34	0.7388
TOCSoil	0.0000	-0.2253	-0.87	0.4015

rocentral data, - n/w/w), and & an usu oldin

Statistix 8.0

Echinochloa-minus co..., 5/3/2012, 3:53:49 PM

Stepwise Linear Regression of MgPlant
Unforced Variables: CaSoil CuSoil FeSoil KSoil MgSoil MnSoil NSoil NaSoil PSoil
SSoil ZnSoil BSoil pHSoil TOCSoil SSoil ZnSoil BSoil pHSoil TOCSoil

Variable(s) dropped from initial model because of collinearity: KSoil MgSoil MnSoil NSoil NaSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

P to Enter 0.0500

P to Exit 0.0500

																	T
		•		C	C	F		M	M		N			Z		P	0
				A	U	E	K	G	N	N	A	P	S	N	В	H	C
				S	S	S	S	S	S	S	S	S	S	S	S	S	S
				0	0	0	0	0	0	0	0	0	O	0	0	Ó	Ó
				I	I	I	I	I	I	I	I	I	I	I	I	I	I
Step	R Sq	MSE	P	L	L	L	L	Ŀ	L	L	Ŀ	L	L	L	L	L	L
1	0.8191	1250565		Α	В	C			•.		• .						
2	0.8077	1227058	0.4017 -	Α		C.						:					
3 .	0.8017	1174979	0.5352 -		٠.	С					•.		٠			٠.	

Resulting Ster	wise Model				
Variable Co	efficient	Std Error	T	P	VIF
Constant	21005.2	1345.69	15.61	0.0000	
FeSoil	-0.58336	0.07754	-7.52	0.0000	1.0
		_			
Cases Included	16	R Squared	0.8017	MSE	1174979
Missing Cases	0	Adj R Sq	0.7875	SD	1083.96

Variable	Multiple	Partial	T	P
CaSoil	0.3370	0.1740	0.64	0.5352
CuSoil	0.6567	0.0887	0.32	0.7531
KSoil	0.9659	0.2953	1.11	0.2852
MgSoil	0.1604	0.2641	0.99	0.3415
MnSoil	0.7794	0.2088	0.77	0.4553
NSoil	0.1280	-0.2663	-1.00	0.3374
NaSoil	0.9882	0.2055	0.76	0.4625
PSoil	0.6629	-0.0559	-0.20	0.8431
SSoil	0.9667	0.2032	0.75	0.4676
ZnSoil	0.9441	0.2671	1.00	0.3359
BSoil	0.8684	0.2810	1.06	0.3104
pHSoil	0.2691	0.2907	1.10	0.2931
TOCSoil	0.4074	-0.1467	-0.53	0.6018

Statistix 8.0

Echinochloa-minus co..., 5/3/2012, 3:54:04 PM

Stepwise Linear Regression of MnPlant

Unforced Variables: CaSoil CuSoil FeSoil KSoil MgSoil MnSoil NSoil NaSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

Variable(s) dropped from initial model because of collinearity: KSoil MgSoil MnSoil NSoil NaSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

P to Enter 0.0500

P to Exit 0.0500

													T
C	С	F		М	М		Ŋ			$\mathbf{z}$		P	0
A	U	E	K	G	N	N	A	P	S	N	В	н	C
s	S	S	S	S	S	S	S	S	S	S	S	S	S
0	0	0	0	0	0	Ó	0	0	0	0	0	0	0
I	I	I	I	I	I	I	I	I	I	I	I	I	I
L	L	L	L	L	L	L	L	L	L	L	L	L	L
Α	В	С											

		•
Dogs 1 to 1 no	~ Ctonuico	Model

R Sq

0.7833

Step

Kesurting :	scebarse moder		•		
Variable	Coefficient	Std Error	· T	P	VIF
Constant	4246.90	644.970	6.58	0.0000	
CaSoil	-0.15937	0.02584	-6.17	0.0000	11.2
CuSoil	6.65733	1.18778	5.60	0.0001	17.4
FeSoil	-0.25605	0.04789	-5.35	0.0002	3.9
Cases Incl	ıded 16	R Squared	0.7833	MSE	114312
Missing Cas	ses 0	Adj R Sq	0.7292	SD	338.100

### Variables Not in the Model

#### Correlations

	COLLET	2010119		
Variable	Multiple	Partial	T	P
KSoil	1.0000	-0.0000	-0.00	1.0000
MgSoil	1.0000	M	M	M
MnSoil	1.0000	M	M	M
NSoil	1.0000	M	M	М.
NaSoil	1.0000	0.0000	0.00	1.0000
PSoil	1.0000	-0.0000	-0.00	1.0000
SSoil	1.0000	0.0000	0.00	1.0000
ZnSoil	1.0000	-0.0000	-0.00	1.0000
BSoil	1.0000	M	M	M
pHSoil	1.0000	M	M	M
TOCSoil	1.0000	M	M	M

MSE

114312

-10 control data
-10 co

Statistix 8.0

Step

1

TOCSoil

Stepwise Linear Regression of NPlant

"Start. Mar. Variables" Unforced Variables: CaSoil CuSoil FeSoil KSoil MgSoil MnSoil NSoil NaSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

Variable(s) dropped from initial model because of collinearity: KSoil MgSoil MnSoil NSoil NaSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

P to Enter 0.0500

P to Exit 0.0500

														T
	C	C	$\mathbf{F}$		М	М		N			Z		P	0
	A	U	E	ĸ	G	Ŋ	N	A	P	S	N	В	Н	С
	S	S	S	S	S	S	S	S	S	S	ន	ន	S	ន
	0	0	0	0	0	0	0	0	0	0	0	0	0	O
	I	I	I	I	I	I	I	Ι	I	I	I	I	I	I
P	L	L	Ŀ	L	L	L	L	L,	L	L	L	L	L	L
	Α	В	Ċ											

Resulting Stepwise Model

R Sq 0.5975

Variable	Coefficient	Std Error	T	P	VIF
Constant	11043.5	986.250	11.20	0.0000	•
CaSoil	-0.12824	0.03951	-3.25	0.0070	11.2
CuSoil .	4.74097	1.81629	2.61	0.0228	17.4
FeSoil	-0.21296	0.07324	-2.91	0.0131	3.9
		•			

Cases Included 16 R Squared 0.5975 MSE 267292 Missing Cases Adj R Sq 0.4969 SD 517.003

### Variables Not in the Model

1.0000

#### Correlations Variable Multiple Partial KSoil 1.0000 0.0000 0.00 1.0000 MgSoil 1.0000 Μ Μ Μ MnSoil 1.0000 М Μ NSoil 1.0000 Μ Μ M NaSoi1 1.0000 0.0000 0.00 1.0000 PSoil 1.0000 -0.0000 -0.001.0000 SSoil 1.0000 0.0000 0.00 1.0000 ZnSoi1 1.0000 -0.0000 -0.00 1.0000 BSoil 1.0000 Μ Μ Μ 1.0000 Μ Μ Μ pHSoil

Μ

MSE

267292

Μ

М

-no control data - N(WW), Wy pH Page 62 of 45 DA 032 6/8/12

Statistix 8.0

Echinochloa-minus co..., 5/3/2012, 3:54:37 PM

Stepwise Linear Regression of NaPlant "STMAT. WMP. VW (WMC)"
Unforced Variables: Casoil Cusoil Fesoil Ksoil MgSoil MnSoil NSoil NaSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

Variable(s) dropped from initial model because of collinearity: KSoil MgSoil MnSoil NSoil NaSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

P to Enter 0.0500

P to Exit 0.0500

																	T.	
				C	C	F		M	М		N			Z		P	0	٠
				A	U	E	K	G	N	N	A	₽	ន	N	В	H	C	
				S	S	S	S	S	S	S	S	S	S	S	S	S	S	
				0	0	O	0	Q	0	0	0	0	0	0	0	0	0	
	•			I	I	I	I	I	I	I	I	I	I	I	I	I	I	
Step	R Sq	MSE	P	L	L	L	L	L	L	L	L	L	L	L	Ŀ	L	L	
1	0.4046	5261492		Α	В	C												
2	0.4044	4858101	0.9551 -	Α		C		٠.										
3	0.3051	5263077	0.1648 -			C	٠		•	٠				٠			٠	

vesarring areha	TRE MODEL				
Variable Coe	fficient	Std Error	<b>T</b> ,	P	VIF
Constant	-2889.84	2848.08	-1.01	0.3275	
FeSoil	0.40688	0.16410	2.48	0.0265	1.0
Cases Included	16	R Squared	0.3051	MSE	5263077
Migging Cages	Λ .	Adi R Sa	0 2555	SD	229/ 1/

Multiple	Partial	T	P
0.3370	0.3780	1.47	0.1648
0.6567	0.3535	1.36	0.1962
0.9659	0.2117	0.78	0.4489
0.1604	0.3435	1.32	0.2101
0.7794	0.3759	1.46	0.1674
0.1280	-0.0809	-0.29	0.7743
0.9882	-0.0511	-0.18	0.8565
0.6629	0.2473	0.92	0.3743
0.9667	-0.0551	-0.20	0.8454
0.9441	0.3398	1.30	0.2153
0.8684	0.1286	0.47	0.6478
0.2691	0.2868	1.08	0.3001
0.4074	0.1417	0.52	0.6144
	Multiple 0.3370 0.6567 0.9659 0.1604 0.7794 0.1280 0.9882 0.6629 0.9667 0.9441 0.8684 0.2691	0.3370 0.3780 0.6567 0.3535 0.9659 0.2117 0.1604 0.3435 0.7794 0.3759 0.1280 -0.0809 0.9882 -0.0511 0.6629 0.2473 0.9667 -0.0551 0.9441 0.3398 0.8684 0.1286 0.2691 0.2868	Multiple         Partial         T           0.3370         0.3780         1.47           0.6567         0.3535         1.36           0.9659         0.2117         0.78           0.1604         0.3435         1.32           0.7794         0.3759         1.46           0.1280         -0.0809         -0.29           0.9882         -0.0511         -0.18           0.6629         0.2473         0.92           0.9667         -0.0551         -0.20           0.9441         0.3398         1.30           0.8684         0.1286         0.47           0.2691         0.2868         1.08

- NO CONTROL OLATA
- NOWN, WA PHRAGE 630 F 15

Echinochloa-minus co..., 5/3/2012, 3:54:53 PM

Statistix 8.0

Stepwise Linear Regression of PPlant

Start. Indep. Variables"

Unforced Variables: CaSoil CuSoil FeSoil KSoil MgSoil MnSoil NSoil NaSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

Variable(s) dropped from initial model because of collinearity: KSoil MgSoil MnSoil NSoil NaSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

P to Enter 0.0500

P to Exit 0.0500

																		T	
					C	C	F		M	М		N			Z		P	0	
		•			A	U	E	K	G	N	Ŋ	A	P	S	N	В	H	C	
					S	S	S	S	S	S	S	S	S	S	S	S	S	S	
					0	0	0	0	0	0	0	0	0	0	0	Q	0	0	
					I	I	I	I	I	I.	I	I	I	I	I	I	I	I	
step	R Sq	MSE	P		Ŀ	L	L	L	L	L	Ŀ	L	L	L	L	L	L	L	
. 1	0.4906	56954.2			Α	В	C						• .			٠			
2	0.3357	68559.7	0.0803	-		В	C						• .	•	•	•			
3	0.3316	64060.9	0.7800	_			С												

Resulting Step Variable Co	wise Model efficient	Std Error	Ŧ	P	VIF
Constant	2827.37	314.216	9.00	0.0000	
FeSoil	-0.04771	0.01810	-2.64	0.0196	1.0
Cases Included	16	R Squared	0.3316	MSE	64060.9
Missing Cases	0	Adj R Sq	0.2838	SD	253.103

	COTTAT	TCTOHE		
Variable	Multiple	Partial	T	P
CaSoi1	0.3370	-0.0783	-0.28	0.7815
CuSoil	0.6567	0.0788	0.29	0.7800
KSoil	0.9659	-0.4508	-1.82	0.0917
MgSoil	0.1604	-0.2892	-1.09	0.2959
MnSoil	0.7794	-0.1514	-0.55	0.5901
NSoil	0.1280	0.4878	2.01	0.0651
NaSoil	0.9882	-0.4603	-1.87	0.0842
PSoil	0.6629	0.2978	1.12	0.2811
SSoil	0.9667	-0.4586	-1.86	0.0856
ZnSoil	0.9441	-0.2980	-1.13	0.2807
BSoil	0.8684	-0.4827	-1.99	0.0684
pHSoil	0.2691	-0.3858	~1.51	0.1555
TOCSoil	0.4074	0.4064	1.60	0.1327

Statistix 8.0

Echinochloa-minus co..., 5/3/2012, 3:55:04 PM

Stepwise Linear Regression of SPlant
Unforced Variables: CaSoil CuSoil FeSoil KSoil MgSoil MnSoil NSoil NaSoil PSoil
SSoil MgSoil MgSoil MgSoil NaSoil PSoil

SSoil ZnSoil BSoil pHSoil TOCSoil Variable(s) dropped from initial model because of collinearity: KSoil MgSoil

MnSoil NSoil NaSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

P to Enter 0.0500

P to Exit 0.0500

			•														T
		•		C	C	F		M	М		N			Z		P	0
				A	U	E	K	G	N	N	A	P	S	N	В	H	Ç
				S	S	S	S	S	S	S	S	S	S	S	S	S	ន
	-	* *		0	0	0	0	0	0	0	0	0	0	0	0	0	0
				I	I	I	I	I	I	I	I	I	I	I	I	I	I
Step	R Sq	MSE	P	L	L	L	L	L	L	Ĺ	L	L	Ŀ	Ļ	L	L	L
1	0.4426	5.009E+07	-	Α	В	С											
2	0.4416	4.633E+07	0.8832 -	Α		С			٠.	٠	•			٠		٠.	
3	0.4383	4.327E+07	0.7869 -	Α													

Resulting Step	wise Model				
Variable Co	oefficient	Std Error	T	P	VIF
Constant	17345.2	2320.41	7.48	0.0000	
CaSoil	0.49746	0.15050	3.31	0.0052	1.0
Cases Include	d 16	R Squared	0.4383	MSE 4.32	27E+07
Missing Cases	0 .	Adj R Sq	0.3982	SD 65	577.88

Variable	Multiple	Partial	T	P
CuSoil	0.8945	-0.0413	-0.15	0.8838
FeSoil	0.3370	-0.0763	-0.28	0.7869
KSoil	0.4535	-0.0846	-0.31	0.7643
MgSoil	0.8812	-0.0176	-0.06	0.9503
MnSoil	0.8455	-0.0829	-0.30	0.7691
NSoil	0.1194	0.0287	0.10	0.9191
NaSoil	0.3078	-0.0822	-0.30	0.7709
PSoil	0.7054	-0.0154	-0.06	0.9566
SSoil	0.2810	-0.0850	-0.31	0.7634
ZnSoil	0.5912	-0.0833	-0.30	0.7680
BSoil	0.4334	-0.0876	-0.32	0.7562
pHSoil	0.7535	-0.0450	-0.16	0.8735
TOCSoil	0.4915	0.0187	0.07	0.9472

-NO control data
-NCWW), Wa pt Page 45 of 65
-NCWW), Wa pt Page 45 of 65

Echinochloa-minus co..., 5/3/2012, 3:55:20 PM

Statistix 8.0

Stepwise Linear Regression of ZnPlant

STORY. INDEP. VOVINDLES" Unforced Variables: CaSoil CuSoil FeSoil KSoil MgSoil MnSoil NSoil NaSoil PSoil

SSoil ZnSoil BSoil pHSoil TOCSoil

Variable(s) dropped from initial model because of collinearity: KSoil MgSoil MnSoil NSoil NaSoil PSoil SSoil ZnSoil BSoil pHSoil TOCSoil

P to Enter 0.0500

P to Exit 0.0500

,																	T	
				C	С	F		M	М		N			Z		P	0	
	•			A	U	E	ĸ	G	N	N	A	P	S	N	В	H	C	
			•	S	S	ន	ន	ន	S	S	S	S	S	S	ន	ន	S	
•				0	0	0	0	0	0	0	0	0	0	0	0	0	0	
				I	I	I	I	I	I	I	Į	I	I	I	I	I	I	
Step	R Sq	MSE	P	L	L	L	L	L	L	L	L	L	L	L	L	L	L	
1	0.2619	176652		Α	В	С												
2	0.2619	163065	0.9924 -	Α	В							. •		٠,				
3	0.0194	201160	0.0593 -		В													
4	-0.0000	191459	0.6071 -												٠			
		and the second s																

Resulting Ster	pwise Model cefficient	Std Error	Ŧ	P	VIF
Constant	636.250	109.390	5.82	0.0000	
Cases Include	d 16	R Squared		MSE	191459 437 560

### Variables Not in the Model

0.0000

TOCSoil

Correlations										
Multiple	Partial	T	P							
0.0000	-0.0957	-0.36	0.7245							
0.0000	0.1392	0.53	0.6071							
0.0000	0.3660	1.47	0.1632							
0.0000	0.2621	1.02	0.3268							
0.0000	-0.2679	-1.04	0.3158							
0.0000	0.1151	0.43	0.6712							
0.0000	0.3523	1.41	0.1808							
0.0000	0.3270	1.29	0.2163							
0.0000	0.2720	1.06	0.3082							
0.0000	0.2966	1.16	0.2647							
0.0000	0.2355	0.91	0.3800							
0.0000	0.1546	0.59	0.5675							
0.0000	-0.2438	-0.94	0.3629							
	Multiple 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000       -0.0957         0.0000       0.1392         0.0000       0.3660         0.0000       0.2621         0.0000       -0.2679         0.0000       0.1151         0.0000       0.3523         0.0000       0.2720         0.0000       0.2966         0.0000       0.2355         0.0000       0.1546	Multiple         Partial         T           0.0000         -0.0957         -0.36           0.0000         0.1392         0.53           0.0000         0.3660         1.47           0.0000         0.2621         1.02           0.0000         -0.2679         -1.04           0.0000         0.1151         0.43           0.0000         0.3523         1.41           0.0000         0.3270         1.29           0.0000         0.2720         1.06           0.0000         0.2966         1.16           0.0000         0.2355         0.91           0.0000         0.1546         0.59							

0.2876

1.12

0.2800

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

de 12/13/12

Summary Statistics for Nutrient Uptake Factor: BORON USING Site Control UN:00 12/13/12

Title: 60225262-445-(035-038)

File:

445boron.dat

Transform:

NO TRANSFORMATION

Page____of_

Summary Statistics on Data TABLE 1 of 2

_____

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	APG-15	4	1.2500	1.9500	1.6375
2	APG-02	4	4.0300	7.5000	5.1325
3	APG-06	4	2.5100	2.8900	2.6725
4	APG-16	4	1.2200	1.9800	1.6875

Title: 60225262-445-(035-038)

445boron dat Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1 2	APG-15	0.0873	0.2955	0.1477	18.0428
	APG-02	2.5408	1.5940	0.7970	31.0569
4	APG-06	0.0372	0.1929	0.0965	7.2194
	APG-16	0.1225	0.3500	0.1750	20.7400

```
Toxstat Version 3.5
                                                     Page___of__
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
Analysis of Nutrient Uptake Factor: BORON USING Site Control
                                                            de 12/13/12.
                                                            QA:CUIZNB112
 Title: 60225262-445-(035-038)
 File: 445boron.dat
                                Transform:
                                                        LOG BASE 10(Y)
                 Shapiro - Wilk's Test for Normality
     D = 0.0954
     W = 0.9763
      Critical W = 0.8440 (alpha = 0.01 , N = 16)
            W = 0.8870 \text{ (alpha = 0.05 , } N = 16)
 Data PASS hormality test (alpha = 0.01). Continue analysis.
 Title: 60225262-445-(035-038)
         445boron.dat
                                             LOG BASE 10(Y)
                                Transform:
              Bartlett's Test for Homogeneity of Variance
 Calculated B1 statistic = 3.8940
                                            (p-value = 0.2731)
 Data ASS 1 homogeneity test at 0.01 level. Continue analysis.
                 _____
 Critical B = 11.3449 (alpha = 0.01, df = 3)
           = 7.8147 (alpha = 0.05, df = 3)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Nutrient Uptake Factor: BORON USING Site Control

QA:00 12/13/12

de12/13/12

Page___of__

Title: 60225262-445-(035-038)

File: 445boron.dat

Transform:

LOG BASE 10(Y)

#### ANOVA Table

SOURCE	DF	ss	MS	F
Between	3	0.6293	0.2098	26.4007
Within (Error)	12	0.0954	0.0079	
Total	15	0.7247		

(p-value = 0.0000)

Critical F = 5.9525 (alpha = 0.01, df = 3.12)

= 3.4903 (alpha = 0.05, df = 3,12)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-445-(035-038)

File:

445boron.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	TABLE 1 OF 2	Ho:Control=Treatment					
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05			
1	APG-15	0.2085	1.6375					
2	APG-02	0.6967	5.1325	7.7448	*			
3	APG-06	0.4261	2.6725	3.4514	*			
4	APG-16	0.2195	1.6875	0.1745				

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60225262-445-(035-038)

File:

445boron.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	OF 2 Ho	Ho:Control=Treatment					
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL			
1	APG-15	4						
2	APG-02	4	0.5208	32.2	3.4950			
3	APG-06	4	0.5208	32.2	1.0350			
4	APG-16	4	0.5208	32.2	0.0500			

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Summary Statistics for Nutrient Uptake Factor: CALCIUM using Site Control QA:0012/13/12

de 12/13/12

Title: 60225262-45-(035-038)

File: 445cal.dat Transform:

NO TRANSFORMATION

Page___of_

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N 	MIN	MAX	MEAN	
1	APG-15	4	0.7230	1.4900	1.0875	
2	APG-02	4	3.1200	10.3000	5.0225	
3	APG-06	4	1.3900	3.7100	2.0825	
4	APG-16	4	3.0700	3.3700	3.2250	

Title: 60225262-45-(035-038)

445cal.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	.C.V. %	
1	APG-15	0.1477	0.3843	0.1921	35.3361	
2	APG-02	12.3891	3.5198	1.7599	70.0809	
3	APG-06	1.2113	1.1006	0.5503	52.8493	
4	APG-16	0.0193	0.1389	0.0695	4.3077	

```
Page___of_
Toxstat Version 3.5
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
Analysis of for Nutrient Uptake Factor: CALCIUM using Site Control
                                                                         QA:00 12/13/12
                                                                         CR12/13/12
 Title: 60225262-45-(035-038)
                                   Transform: LOG BASE 10(Y)
 File:
             445cal.dat
                   Shapiro - Wilk's Test for Normality
      D = 0.3821
      W = 0.8497
      Critical W = 0.8440 (alpha = 0.01 , N = 16)
              W = 0.8870 \text{ (alpha = 0.05 , N = 16)}
  Data PASS normality test (alpha = 0.01). Continue analysis.
  Title: 60225262-45-(035-038)
             445cal.dat
                                   Transform:
                                                              LOG BASE 10(Y)
                Bartlett's Test for Homogeneity of Variance
  Calculated B1 statistic = 10.1670
                                                (p-value = 0.0172)
  Data PASS B1 homogeneity test at 0.01 level. Continue analysis.
 Critical B = 11.3449 (alpha = 0.01, df = 3)
= 7.8147 (alpha = 0.05, df = 3)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Nutrient Uptake Factor: CALCIUM using Site Control

de 12/13/12

Title: 60225262-45-(035-038)

File: 445cal.dat

Transform:

@A: cu \Z \|3\|Z LOG BASE 10(Y)

_of_

Page___

ANOVA Table

			·	
SOURCE	DF	SS	MS	${f F}$ .
Between	3	0.8983	0.2994	9.4038
Within (Error)	12	0.3821	0.0318	
Total	15	1.2804		

(p-value = 0.0018)

Critical F = 5.9525 (alpha = 0.01, df = 3.12) = 3.4903 (alpha = 0.05, df = 3.12)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-45-(035-038)

File:

445cal.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	TABLE 1 OF 2	Ho:Control=T	reatment	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05
1	APG-15	0.0152	1.0875		
2	APG-02	0.6383	5.0225	4.9381	*
3	APG-06	0.2807	2.0825	2.1044	
4	APG-16	0.5082	3.2250	3.9073	* .

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60225262-45-(035-038)

File:

445cal.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	TABLE 2 (	OF 2 Ho	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	APG-15	4			
2	APG-02	4	0.5603	54.1	3.9350
- 3	APG-06	4	0.5603	54.1	0.9950
4	APG-16	4	0.5603	54.1	2.1375

Toxstat Version 3.5

Study # \$6925262-445-(035-038)

Echinochloa crusgalli

Summary Statistics for Nutrient Uptake Factor for COPPER using Site Control

de 12/12/12

Title: 60225262-445-(035-038)

445copp.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N 	MIN	MAX	MEAN
1	APG-15	4	0.0130	0.0280	0.0178
2	APG-02	4	0.0540	0.1100	0.0845
3	APG-06	4	0.0750	0.1280	0.0995
4	APG-16	4	0.0220	0.0270	0.0245

Title: 60225262-445-(035-038)

File:

445copp.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %	
1	APG-15	0.0000	0.0069	0.0035	39.1336	
2	APG-02	0.0008	0.0282	0.0141	33.4237	
3	APG-06	0.0005	0.0222	0.0111	22.3303	
4	APG-16	0.0000	0.0024	0.0012	9.7162	

```
Toxstat Version 3.5
Study # 60225262 445-(035-038)
                                                              Page___of__
ESTCP
Echinochloa crusgalli
Analysis of Nutrient Uptake Factor for COPPER using Site Control
                                                                       Op: cu12/13/12
                                                                       de12/12/12
 Title: 60225262-445-(035-038)
                                                           LOG BASE 10(Y)
             445copp.dat
                                   Transform:
                  Shapiro - Wilk's Test for Normality
      D = 0.1719
      W = 0.9664
      Critical W = 0.8440 (alpha = 0.01 , N = 16)
              W = 0.8870 \text{ (alpha = 0.05 , N = 16)}
  Data PASS normality test (alpha = 0.01). Continue analysis.
  Title: 60225262-445-(035-038)
                                                            LOG BASE 10(Y)
  File:
             445copp.dat
                                   Transform:
                Bartlett's Test for Homogeneity of Variance
  _______
  Calculated B1 statistic = 4.0822
                                              (p-value = 0.2527)
  Data PASS B1 homogeneity test at 0.01 level. Continue analysis.
  Critical B = 11.3449 (alpha = 0.01, df = 3)
```

= 7.8147 (alpha = 0.05, df = 3)

Toxstat Version 3.5 Study # <del>60225262</del> 445-(035-038) เราการ

Echinochloa crusgalli

Analysis of Nutrient Uptake Factor for COPPER using Site Control

GA: WISISIZ

de 12/12/12

Page____of___

Title: 60225262-445-(035-038)

File:

445copp.dat

Transform:

LOG BASE 10(Y)

#### ANOVA Table

SOURCE	DF	SS	MS	F
Between	3	1.7071	0.5690	39.7182
Within (Error)	12	0.1719	0.0143	
Total	15	1.8790		

(p-value = 0.0000)

Critical F = 5.9525 (alpha = 0.01, df = 3.12) = 3.4903 (alpha = 0.05, df = 3,12)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-445-(035-038)

File:

445copp.dat

Transform:

LOG BASE 10(Y)

Dunnett's Test -		TABLE 1 OF 2	Ho:Control=Treatment			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05	
1	APG-15	-1.7722	0.0178			
2	APG-02	-1.0927	0.0845	8.0282	*	
3	APG-06	-1.0103	0.0995	9.0019	*	
4	APG-16	-1.6124	0.0245	1.8879		

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60225262-445-(035-038)

File:

445copp.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	TABLE 2	OF 2 Ho	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	APG-15	4			
2	APG-02	4	0.0069	40.7	0.0668
3	APG-06	4	0.0069	40.7	0.0818
4	APG-16	4	0.0069	40.7	0.0068

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Summary Statistics for Nutrient Factor: IRON using Site Control

de 12/12/12 QA:00 12/13/12

Page___of_

Title: 60225262-445-(035-038)

445TRON.DAT

Transform:

NO TRANSFORMATION

Summary Statistics on Data TABLE 1 of 2

GRP IDENTIFICATION N MIN	MAX	MEAN
1 APG-15 4 0.0030	0.0100	0.0058
2 APG-02 4 0.0060 (	0.0280	0.0170
3 APG-06 4 0.0100 (	0.0220	0.0138
4 APG-16 4 0.0020	0.0090	0.0053

Title: 60225262-445-(035-038)

File:

445IRON.DAT

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

•	GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
	1 2	APG-15 APG-02	0.0000	0.0030	0.0015	51.9318
	3	APG-02 APG-06	0.0001 0.0000	0.0106 0.0057	0.0053 0.0028	62.6224 41.3012
	4	APG-16	0.0000	0.0030	0.0015	56.8777

```
Toxstat Version 3.5
                                                          Page___of__
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
                                                              21/01/21/01/10
Analysis of Nutrient Factor: IRON using Site Control
                                                                de 12/12/12
 Title: 60225262-445-(035-038)
         445TRON.DAT
                          Transform:
                                                       LOG BASE 10(Y)
                 Shapiro - Wilk's Test for Normality
      D = 0.7513
      W = 0.9282
      Critical W = 0.8440 (alpha = 0.01 , N = 16)
        W = 0.8870 \text{ (alpha = 0.05 , N = 16)}
 Data PASS normality test (alpha = 0.01). Continue analysis.
 Title: 60225262-445-(035-038)
           445IRON.DAT
                              Transform:
                                                        LOG BASE 10(Y)
            Bartlett's Test for Homogeneity of Variance
          ______
  Calculated B1 statistic = 1.2989
                                         (p-value = 0.7294)
  Data(PASS 1 homogeneity test at 0.01 level. Continue analysis.
  Critical B = 11.3449 (alpha = 0.01, df = 3)
          = 7.8147 (alpha = 0.05, df = 3)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Nutrient Factor: IRON using Site Control

QA:00 12/13/12 ck 12/12/12

Title: 60225262-445-(035-038)

445IRON.DAT

Transform:

LOG BASE 10(Y)

Page___of_

#### ANOVA Table

SOURCE	DF	SS	MS	F
Between	. 3	0.7982	0.2661	4.2500
Within (Error)	12	0.7513	0.0626	
Total	15	1.5495		

(p-value = 0.0291)

Critical F = 5.9525 (alpha = 0.01, df = 3.12) = 3.4903 (alpha = 0.05, df = 3.12)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-445-(035-038)

File:

445 IRON.DAT

Transform:

LOG BASE 10(Y)

Dunnett's Test - TABLE 1 OF 2			Ho:Control=Treatment			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05	
 1	APG-15	-2.2812	0.0058		·	
2	APG-02	-1.8486	0.0170	2.4452		
3	APG-06	-1.8859	0.0138	2,2344		
4	APG-16	-2.3411	0.0053	0.3385		

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3.12)

Title: 60225262-445-(035-038)

File:

445IRON.DAT

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	TABLE 2 (	OF 2 Ho	Ho:Control=Treatment		
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL	
1	APG-15	4				
2	APG-13	_	0.0035	66.4	0.0112	
3	APG-06	4	0.0035	66.4	0.0080	
4	APG-16	4	0.0035	66.4	0.0005	

Study # 60147216-445-(035-038)

Echinochloa crusgalli

GA: WIZHB/12

de 12/12/12

Summary Statistics for Nutrient Uptake Factor: MAGNESIUM using Site Control

Title: 60225262-445-(035-038)

445mg.dat

Transform:

NO TRANSFORMATION

Page___of_

Summary Statistics on Data

GRP	IDENTIFICATION	N 	MIN	MAX	MEAN
1	APG-15	4	1.7200	1.9300	1.8550
2	APG-02	4	7.8700	9.4900	8.7525
3	APG-06	4	2.9000	3.8300	3.5825
4	APG-16	4	2.9400	3.5000	3.1425

Title: 60225262-445-(035-038)

445mg.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

	*				•	
GRP I	DENTIFICATION	VARIANCE	SD	SEM	C.V. %	
1	APG-15	0.0090	0.0947	0.0473	5.1047	
2	APG-02	0.6212	0.7882	0.3941	9.0052	
3	APG-06	0.2072	0.4552	0.2276	12.7068	
4	APG-16	0.0631	0.2512	0.1256	7.9930	
						_

```
Toxstat Version 3.5
                                                        Page___of_
Study # 60147216-445-(035-038)
                                                                    OA: au 12/13/12
                                                                   de 12/12/12
Echinochloa crusgalli
Summary Statistics for Nutrient Uptake Factor: MAGNESIUM using Site Control
 Title: 60225262-445-(035-038)
              445mg.dat
                                 Transform:
                                                       NO TRANSFORMATION
                  Shapiro - Wilk's Test for Normality
      D = 2.7015
      W = 0.9709
      Critical W = 0.8440 (alpha = 0.01 , N = 16)
             W = 0.8870 \text{ (alpha = 0.05 , N = 16)}
 Data (PASS/normality test (alpha = 0.01). Continue analysis.
 Title: 60225262-445-(035-038)
                                                        NO TRANSFORMATION
              445mg.dat
                                   Transform:
              Bartlett's Test for Homogeneity of Variance
           ______
                                              (p-value = 0.0246)
 Calculated B1 statistic = 9.3856
 Data PASS /B1 homogeneity test at 0.01 level. Continue analysis.
 Critical B = 11.3449 (alpha = 0.01, df = 3)
```

= 7.8147 (alpha = 0.05, df = 3)

Study # 60147216-445-(035-038)

Echinochloa crusgalli

QA:0012/13/12

de12/12/12

Summary Statistics for Nutrient Uptake Factor: MAGNESIUM using Site Control

Title: 60225262-445-(035-038)

File: 445mg.dat

Transform: NO TRANSFORMATION

Page of_

ANOVA Table

SOURCE DF SSMS 36.8707 163.7772 110.6120 2.7015 Within (Error) 12 0.2251 113.3135 15

(p-value = 0.0000)

Critical F = 5.9525 (alpha = 0.01, df = 3,12)

= 3.4903 (alpha = 0.05, df = 3,12)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-445-(035-038)

445mg.dat

Transform:

NO TRANSFORMATION

Dunnett's Test - TABLE 1 OF 2 Ho:Control=Treatment TRANSFORMED MEAN CALCULATED IN SIG GROUP IDENTIFICATION MEAN ORIGINAL UNITS T STAT 0.05 1 APG-15 1.8550 1.8550
2 APG-02 8.7525 8.7525 20.5586 *
3 APG-06 3.5825 3.5825 5.1490 *
4 APG-16 3.1425 3.1425 3.8375 *

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60225262-445-(035-038)

File: 445mg.dat

Transform: NO TRANSFORMATION

Ho:Control=Treatment Dunnett's Test - TABLE 2 OF 2 ______ GROUP IDENTIFICATION REPS (IN ORIG. UNITS) CONTROL FROM CONTROL APG-15 4
APG-02 4 0.8992 48.5 6.8975
APG-06 4 0.8992 48.5 1.7275
APG-16 4 0.8992 48.5 1.2875 3

Study # 60147216-445-(035-038)

ESTCP

QA: W 12/13/12 1/2/12/12

Echinochloa crusgalli

Summary Statistics for Nutrient Uptake Factor: Manganese using Site Control

Title: 60225262-445-(035-038)

445MN.DAT

Transform:

NO TRANSFORMATION

Page____of___

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N 	MIN	MAX	MEAN
1	APG-15	4	1.0100	1.4700	1.2550
2	APG-02	4	4.5800	9.3700	6.8850
3	APG-06	4	0.6990	3.4000	1.7023
4	APG-16	4	0.8090	2.2000	1.6923

Title: 60225262-445-(035-038)

File:

445MN.DAT

Transform:

NO TRANSFORMATION

Summary Statistics on Data

______

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	APG-15	0.0358	0.1893	0.0946	15.0834
2	APG-02	5.0408	2.2452	1.1226	32.6097
3	APG-06	1.4347	1.1978	0.5989	70.3649
4	APG-16	0.3865	0.6217	0.3109	36.7398

```
Toxstat Version 3.5
                                                      Page___of_
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
                                                               anienis/13/12
Analysis of Mutrient Uptake Factor: Manganese using Site Control
                                                               de 12/12/12
 Title: 60225262-445-(035-038)
              445MN.DAT
                                  Transform:
                                                          LOG BASE 10(Y)
                  Shapiro - Wilk's Test for Normality
      D = 0.4550
      W = 0.9625
      Critical W = 0.8440 (alpha = 0.01 , N = 16)
             W = 0.8870 \text{ (alpha = 0.05, } N = 16)
     Data (PASS normality test (alpha = 0.01). Continue analysis.
 Title: 60225262-445-(035-038)
              445MN.DAT
                                  Transform:
                                                         LOG BASE 10(Y)
               Bartlett's Test for Homogeneity of Variance
 Calculated B1 statistic = 4.8270
                                             (p-value = 0.1849)
 Data PASS B1 homogeneity test at 0.01 level. Continue analysis.
 Critical B = 11.3449 (alpha = 0.01, df = 3)
           = 7.8147 (alpha = 0.05, df = 3)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Nutrient Uptake Factor: Manganese using Site Control

+12/12/12

QA:WIZII3/12

File:

Title: 60225262-445-(035-038)

445MN.DAT

Transform:

LOG BASE 10(Y)

Page____of_

### ANOVA Table

DF	ss	MS	F
3	1.3704	0.4568	12.0475
12	0.4550	0.0379	
15	1.8254		
	3	3 1.3704 12 0.4550	3 1.3704 0.4568 12 0.4550 0.0379

(p-value = 0.0006)

Critical F = 5.9525 (alpha = 0.01, df = 3,12) = 3.4903 (alpha = 0.05, df = 3,12)

Since F > Critical F( REJECT )Ho: All equal (alpha = 0.05)

Title: 60225262-445-(035-038)

File:

445MN.DAT

Transform:

LOG BASE 10(Y)

Dunnett's Test - TABLE 1 OF 2			Ho:Control=Treatment			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05	
1 .	APG-15	0.0948	1.2550			
2	APG-02	0.8199	6.8850	5.2664	*	
3	APG-06	0.1547	1.7023	0.4351		
4	APG-16	0.1989	1.6923	0.7560		

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60225262-445-(035-038)

File: 445MN.DAT

Transform:

LOG BASE 10(Y)

	Dunnett's Test - TABLE 2 OF 2			Ho:Control=Treatment		
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL	
1	APG-15	4		•	•	
2	APG-02	4	0.7121	57.2	5.6300	
3	APG-06	4	0.7121	57.2	0.4472	
4	APG-16	4	0.7121	57.2	0.4372	

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Page___of_ QA:OU ISTIULIZ

of 12/13/12

Summary Statistics for Nutrient Uptake Factor: PHOSPHORUS using Site Control

Title: 60225262-445-(035-038)

File:

445p.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

	•				
GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	APG-15	4	1.6500	1.9900	1.8250
2	APG-02	4	2.3700	3.2900	2.8475
3	APG-06	4	3.7300	4.5600	4.0375
4	APG-16	4	1.8000	2.5900	2.1975

Title: 60225262-445-(035-038)

File:

445p.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

(	GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
•	1	APG-15	0.0306	0.1748	0.0874	9.5799
	2	APG-02	0.1415	0.3762	0.1881	13.2100
	3	APG-06	0.1303	0.3610	0.1805	8.9402
	4	APG-16	0.1051	0.3242	0.1621	14.7521

```
Toxstat Version 3.5
                                                                 Page___of__
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
Analysis of Nutrient Uptake Factor: PHOSPHORUS using Site Control
                                                                    de 12/13/12
                                                                    OA: W12/14/12
 Title: 60225262-445-(035-038)
 File:
                445p.dat
                                   Transform:
                                                  NO TRANSFORMATION
                Shapiro - Wilk's Test for Normality
      D = 1.2223
      W = 0.9652
      Critical W = 0.8440 (alpha = 0.01 , N = 16)
               W = 0.8870 \text{ (alpha = 0.05, N = 16)}
 Data ASS/normality test (alpha = 0.01). Continue analysis.
 Title: 60225262-445-(035-038)
                                    Transform:
                                                          NO TRANSFORMATION
 File:
                445p.dat
            Bartlett's Test for Homogeneity of Variance
 Calculated B1 statistic = 1.5743
                                                (p-value = 0.6652)
 Data PASS B1 homogeneity test at 0.01 level. Continue analysis.
 Critical B = 11.3449 (alpha = 0.01, df = 3)
= 7.8147 (alpha = 0.05, df = 3)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Nutrient Uptake Factor: PHOSPHORUS using Site Control

H12/13/12

Title: 60225262-445-(035-038)

QA: 00 12/14/12

File:

60225262-445-(035-038) 445p.dat

Transform:

NO TRANSFORMATION

Page___of___

ANOVA Table

			•	
SOURCE	DF	SS	MS	$\mathbf{F}^{'}$
Between	3	11.3036	3.7679	36.9906
Within (Error)	12	1.2223	0.1019	
Total	15	12.5259		

(p-value = 0.0000)

Critical F = 5.9525 (alpha = 0.01, df = 3.12)

= 3.4903 (alpha = 0.05, df = 3,12)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-445-(035-038)

File:

445p.dat

Transform:

NO TRANSFORMATION

L	Dunnett's Test - !	PABLE 1 OF 2	Ho:Control=T	reatment	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	т стат	SIG 0.05
1	APG-15	1.8250	1.8250		
2	APG-02	2.8475	2.8475	4.5308	*
3	APG-06	4.0375	4.0375	9.8038	*
4	APG-16	2.1975	2.1975	1.6506	

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60225262-445-(035-038)

File:

445p.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE 2 C	OF 2 Ho	Ho:Control=Treatment		
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL	
1	APG-15	4				
2	APG-02	$ar{4}$	0.6048	33.1	1.0225	
3 .	APG-06	4	0.6048	33.1	2.2125	
4	APG-16	4	0.6048	33.1	0.3725	

Study # 60147216-445-(035-038)

Echinochloa crusgalli

an:00 12/13/12 de 12/12/12

Page___of__

Summary Statistics for Nutrient Uptake Factor: POTASSIUM using Site Control

Title: 60225262-445-(035-038)

445k.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	APG-15	4	26.4000	33.8000	30.8750
2	APG-02	4	50.7000	62.2000	56.6250
. 3	APG-06	4	54.3000	65.5000	59.1500
4	APG-16	4	20.8000	31.0000	26.6000

Title: 60225262-445-(035-038)

445k.dat Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARÍANCE	SD	SEM	C.V. %
1	APG-15	11.5292	3.3955	1.6977	10.9974
2	APG-02	24.7492	4.9749	2.4874	8.7856
3	APG-06	32.8633	5.7327	2.8663	9.6917
4	APG-16	25.7000	5.0695	2.5348	19.0583

Toxstat Version 3.5 Page___of__ Study # 60147216-445-(035-038) ESTCP H12/12/12 Echinochloa crusgalli Analysis of Nutrient Uptake Factor: POTASSIUM using Site Control an: 012/13/12 Title: 60225262-445-(035-038) File: 445k.dat Transform: NO TRANSFORMATION Shapiro - Wilk's Test for Normality D = 284.5250W = 0.9017Critical W = 0.8440 (alpha = 0.01 , N = 16) W = 0.8870 (alpha = 0.05 , N = 16)Data (PASS normality test (alpha = 0.01). Continue analysis. Title: 60225262-445-(035-038) 445k.dat Transform: NO TRANSFORMATION Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 0.7142 (p-value = 0.8699)Data PASS B1 homogeneity test at 0.01 level. Continue analysis. Critical B = 11.3449 (alpha = 0.01, df = 3) = 7.8147 (alpha = 0.05, df = 3)

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Nutrient Uptake Factor: POTASSIUM using Site Control

Q11:00 12/13/12

Title: 60225262-445-(035-038)

445k.dat

Transform:

NO TRANSFORMATION

Page___of__

ANOVA Table

				•
SOURCE	DF	SS	MS	F
Between	3	3448.1925	1149.3975	48.4765
Within (Error)	12	284.5250	23.7104	
Total	15	3732.7175	in this time and find this time that they also day and day and	

(p-value = 0.0000)

Critical F = 5.9525 (alpha = 0.01, df = 3.12) = 3.4903 (alpha = 0.05, df = 3.12)

Since F > Critical F (REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-445-(035-038)

File:

445k.dat

Transform:

NO TRANSFORMATION

D	unnett's Test `-	Ho:Control=Treatment			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG 0.05
1	APG-15	30.8750	30.8750		
2	APG-02	56.6250	56.6250	7.4786	*
3	APG-06	59.1500	59.1500	8.2120	*
4	APG-16	26.6000	26.6000	1.2416	

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60225262-445-(035-038)

File:

445k.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test -	OF 2 Ho	2 Ho:Control=Treatment			
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL	
1	APG-15	4				
2	APG-02	4	9.2276	29.9	25.7500	
3	APG-06	4	9.2276	29.9	28.2750	
4	APG-16	4	9.2276	29.9	4.2750	

Study # 60147216-445-(035-038)

ESTCP

QA:0112/13/12

Page___of__

Echinochloa crusgalli

op 12/12/12

Summary Statistics for Plant Nutrient Uptake Factor: SODIUM using Site Control

Title: 60225262-445-(035*-038)

File:

445na.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N 	MIN	MAX	MEAN
1	APG-15	4	14.2000	45.5000	25.1000
2	APG-02	4	7.8200	51.7000	21.3050
3	APG-06	4	7.3400	40.4000	23.2850
4	APG-16	4	11.3000	17.8000	15.4500

Title: 60225262-445-(035*-038)

File: 445na.dat Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	APG-15	197.7000	14.0606	7.0303	56.0183
2	APG-02	420.9068	20.5160	10.2580	96.2967
3	APG-06	203.5236	14.2662	7.1331	61.2676
4	APG-16	8.3233	2.8850	1.4425	18.6733

```
Toxstat Version 3.5
                                                                   Page___of_
Study # 60147216-445-(035-038)
                                                                       OA: W12/13/12
ESTCP
Echinochloa crusgalli
Analysis of for Plant Nutrient Uptake Factor: SODIUM using Site Control
  Title: 60225262-445-(035*-038)
                             Transform:
              445na.dat
                                                      NO TRANSFORMATION
                   Shapiro - Wilk's Test for Normality
       D = 2491.3610
       W = 0.8997
       Critical W = 0.8440 (alpha = 0.01 , N = 16).
               W = 0.8870 \text{ (alpha = 0.05 , N = 16)}
  Date PASS normality test (alpha = 0.01). Continue analysis.
  Title: 60225262-445-(035*-038)
               445na.dat
                                     Transform:
                                                            NO TRANSFORMATION
                 Bartlett's Test for Homogeneity of Variance
  Calculated B1 statistic = 6.7927
                                                 (p-value = 0.0788)
  Data PASS #1 homogeneity test at 0.01 level. Continue analysis.
  Critical B = 11.3449 (alpha = 0.01, df = 3)
= 7.8147 (alpha = 0.05, df = 3)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Plant Nutrient Uptake Factor: SODIUM using Site Control

an: w 12/13/12

Page___of

de 12/12/12

Title: 60225262-445-(035*-038)

File:

445na.dat

Transform:

NO TRANSFORMATION

### ANOVA Table

		4		
SOURCE	DF	ss	MS .	F
Between	3	210.4074	70.1358	0.3378
Within (Error)	12	2491.3610	207.6134	
Total	15	2701.7684		
TOTAL	T2	2/U1./684 	· 	

(p-value = 0.7984)

Critical F = 5.9525 (alpha = 0.01, df = 3.12)

= 3.4903 (alpha = 0.05, df = 3,12)

Since F < Critical F FAIL TO REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-445-(035*-038)

File:

445na.dat

Transform:

NO TRANSFORMATION

Ē	unnett's Test -	Ho:Control=Treatment			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG 0.05
1	APG-15	25.1000	25.1000		
2	APG-02	21.3050	21.3050	0.3725	
3	APG-06	23.2850	23.2850	0.1781	
4	APG-16	15.4500	15.4500	0.9471	

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60225262-445-(035*-038)

File:

445na.dat

· Transform:

NO TRANSFORMATION

Di	unnett's Test -	TABLE 2 0	OF 2 Ho	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1 2 3	APG-15 APG-02 APG-06 APG-16	4 4 4	27.3053 27.3053 27.3053	108.8 108.8 108.8	3.7950 1.8150 9.6500

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

QA: W12/13/12

Page___of___

ok 12/12/12

Summary Statistics for Nutrient Uptake Factor: SULFUR using Site Control

Title: 60225262-445-(035-038)

File:

445s.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1.	APG-15	4	2.2700	4.1300	3.0900
2	APG-02	4	2.6100	6.4200	3.7625
3	APG-06	4	3.0100	5.5800	4.0300
4	APG-16	4	1.2800	1.3900	1.3400

Title: 60225262-445-(035-038)

File:

445s.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	APG-15	0.8018	0.8954	0.4477	28.9784
2	APG-02	3.2128	1.7924	0.8962	47.6390
3	APG-06	1.1946	1.0930	0.5465	27,1210
4	APG-16	0.0025	0.0497	0.0248	3.7064

```
Toxstat Version 3.5
                                                                    Page___of__
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
Analysis of for Nutrient Uptake Factor: SULFUR using Site Control
                                                                      09:0012/13/12
                                                                     X12/12/12
 Title: 60225262-445-(035-038)
 File:
                 445s.dat
                                      Transform:
                                                                 LOG BASE 10(Y)
                    Shapiro - Wilk's Test for Normality
       D = 0.1829
       W = 0.9035
       Critical W = 0.8440 (alpha = 0.01 , N = 16)
                W = 0.8870 \text{ (alpha} = 0.05 , N = 16)
  Data PASS normality test (alpha = 0.01). Continue analysis.
  Title: 60225262-445-(035-038)
                445s,dat
                                      Transform:
                                                                LOG BASE 10(Y)
                 Bartlett's Test for Homogeneity of Variance
  Calculated B1 statistic = 9.1488
                                                   (p-value = 0.0274)
  Data PASS B1) homogeneity test at 0.01 level. Continue analysis.
  Critical B = 11.3449 (alpha = 0.01, df = 3)
= 7.8147 (alpha = 0.05, df = 3)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Nutrient Uptake Factor: SULFUR using Site Control

OA: 012/13/12

de12/12/12

Page___of___

Title: 60225262-445-(035-038)

File:

445s.dat

Transform:

LOG BASE 10(Y)

### ANOVA Table

SOURCE	DF	ss	MS	F
Between	3	0.5360	0.1787	11.7222
Within (Error)	12	0.1829	0.0152	
Total	15	0.7189		

(p-value = 0.0007)

Critical F = 5.9525 (alpha = 0.01, df = 3.12) = 3.4903 (alpha = 0.05, df = 3.12)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-445-(035-038)

File:

445s.dat

Transform:

LOG BASE 10(Y)

1	Dunnett's <b>Te</b> st -	TABLE 1 OF 2	Ho:Control=Treatment			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05	
1	APG-15	0.4762	3.0900			
2	APG-02	0.5446	3.7625	0.7840		
3	APG-06	0.5942	4.0300	1.3515		
4	APG-16	0.1269	1.3400	4.0016	*	

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60225262-445-(035-038)

File:

445s.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test ~	TABLE 2	OF 2 Ho	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	APG-15	4			
2	APG-02	4	1.2468	41.6	0.6725
3	APG-06	4	1.2468	41.6	0.9400
4	APG-16	4	1.2468	41.6	1.7500

Study # 60147216-445-(035-038)

Echinochloa crusgalli

de 12/12/12

Page___of__

Summary Statistics for Nutrient Uptake Factor: ZINC using Site Control QA: 00/2/13/12.

Title: 60225262-445-(035-038)

445zinc.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP IDE	CNTIFICATION	Ŋ	MIN	MAX	MEAN
1	APG-15	4	0.0540	0.1520	0.1125
2	APG-02	4	0.3850	2.0900	0.8618
3	APG-06	4	0.1740	0.4210	0.3230
4	APG-16	4	0.0840	0.2240	0.1630

Title: 60225262-445-(035-038)
File: 445zinc.dat Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	APG-15	0.0021	0.0455	0.0228	40.4778
2	APG-02	0.6728	0.8202	0.4101	95.1804
3	APG-06	0.0110	0.1051	0.0525	32.5249
4	APG-16	0.0035	0.0588	0.0294	36.0626

Toxstat Version 3.5 Page___of__ Study # 60147216-445-(035-038) ESTCP Echinochloa crusgalli Analysis of Nutrient Uptake Factor: ZINC using Site Control de 12/12 Title: 60225262-445-(035-038) 445zinc.dat Transform: LOG BASE 10(Y) Shapiro - Wilk's Test for Normality D = 0.6576W = 0.9246Critical W = 0.8440 (alpha = 0.01 , N = 16) W = 0.8870 (alpha = 0.05 , N = 16)Data PASS pormality test (alpha = 0.01). Continue analysis. Title: 60225262-445-(035-038) Transform: 445zinc.dat LOG BASE 10(Y) Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 1.6903 (p-value = 0.6391)Data PASS 81 homogeneity test at 0.01 level. Continue analysis.

Critical B = 11.3449 (alpha = 0.01, df = 3)

= 7.8147 (alpha = 0.05, df = 3)

Ownishz E

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Nutrient Uptake Factor: ZINC using Site Control

X1212 12 QA. CU 12/13/12

Title: 60225262-445-(035-038)

445zinc.dat

Transform:

LOG BASE 10(Y)

Page___of_

### ANOVA Table

				•
SOURCE	DF	SS	MS	. <b>F</b>
 Between	3	1.4947	0.4982	9.0915
Within (Error)	12	0.6576	0.0548	
 Total	15	2.1524		100 Main Lain 1846 Ann Albi 1856 Main Lain gas Sant gay

(p-value = 0.0020)

Critical F = 5.9525 (alpha = 0.01, df = 3.12) = 3.4903 (alpha = 0.05, df = 3,12)

Since F > Critical F

REJECT | Ho: All equal (alpha = 0.05)

Title: 60225262-445-(035-038)

File:

445zinc.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	TABLE 1 OF 2	Ho:Control=T	reatment	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05
		<u>-</u>			
1	APG-15	-0.9822	0.1125		
2	APG-02	-0.1803	0.8618	4.8444	*
3	APG-06	-0.5127	0.3230	2.8363	*
4	APG-16	-0.8140	0.1630	1.0157	

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60225262-445-(035-038)

445zinc.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	TABLE 2	OF 2 Ho	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	APG-15	4			
2	. APG-02	4	0.0667	64.0	0.7493
3.	APG-06	4	0.0667	64.0	0.2105
4	APG-16	4	0.0667	64.0	0.0505

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

an: wizhaliz

X12/12/12

Summary Statistics for Nutrient Uptake Factor: NITROGEN using Site Control

Title: 60225262-445-(035-038)

File:

445nit.dat

Transform:

NO TRANSFORMATION

Page___of_

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N 	MIN	MAX	MEAN
1	APG-15	4	0.8380	0.9630	0.9128
2	APG-02	4	0.6380	0.7640	0.6912
3	APG-06	4	2.1400	2.3400	2.2425
4	APG-16	4	0.9600	1.1300	1.0650

Title: 60225262-445-(035-038)

File:

445nit.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	APG-15	0.0028	0.0530	0.0265	5.8017
2	APG-02	0.0033	0.0572	0.0286	8.2813
3	APG-06	0.0068	0.0826	0.0413	3.6840
4	APG-16	0.0055	0.0742	0.0371	6.9636

______

```
Toxstat Version 3.5
                                                             Page___of__
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
                                                                   QA: CU12/13/12
Analysis of Nutrient Uptake Factor: NITROGEN using Site Control
                                                                  X12/12/17
 Title: 60225262-445-(035-038)
             445nit.dat
                                  Transform:
                                                        NO TRANSFORMATION
                  Shapiro - Wilk's Test for Normality
      D = 0.0552
      W = 0.9545
      Critical W = 0.8440 (alpha = 0.01 , N = 16)
            W = 0.8870 \text{ (alpha = 0.05, N = 16)}
              ______
 Data (PASS pormality test (alpha = 0.01). Continue analysis.
 Title: 60225262-445-(035-038)
             445nit.dat
                                  Transform:
                                                       NO TRANSFORMATION
               Bartlett's Test for Homogeneity of Variance
 Calculated B1 statistic = 0.6906
                                             (p\text{-value} = 0.8754)
 Data PASS 31 homogeneity test at 0.01 level. Continue analysis.
 Critical B = 11.3449 (alpha = 0.01, df = 3)
           = 7.8147 (alpha = 0.05, df = 3)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Nutrient Uptake Factor: NITROGEN using Site Control

OA: cu 12/13/12

de 12/12/12

Title: 60225262-445-(035-038)

445nit.dat

Transform:

NO TRANSFORMATION

Page___of___

ANOVA Table

SOURCE	DF	SS	MS	F
Between	3	5.7730	1.9243	418,1967
Within (Error)	12	0.0552	0.0046	
Total	15	5.8283		

(p-value = 0.0000)

Critical F = 5.9525 (alpha = 0.01, df = 3,12)

= 3.4903 (alpha = 0.05, df = 3,12)

Since F > Critical F( REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-445-(035-038)

File:

445nit.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE 1 OF 2	Ho:Control=	Treatment	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	т stat	SIG 0.05
1	APG-15	0.9128	0.9128		
$\bar{2}$	APG-02	0.6912	0.6912	4.6178	*
3	APG-06	2.2425	2.2425	27.7226	*
4	APG-16	1.0650	1.0650	3.1741	*

Dunnett critical value = 2.6800 (2 Tailed, alpha = 0.05, df = 3,12)

Title: 60225262-445-(035-038)

File: 445nit.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test - TABLE 2 OF 2			Ho:Control=Treatment		
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL	
1	APG-15	4				
2	APG-02	4	0.1285	14.1	0.2215	
3	APG-06	4	0.1285	14.1	1.3297	
4	APG-16	4	0.1285	14.1	0.1523	

Study # 60147216-445-(035-038)

ESTCP

QA: CU IZIIBliz

Echinochloa crusgalli

Summary Statistics for Nutrient Uptake Factor: BORON using Lab Control

AP12/13/12

Title: 60225262-445-(035-038)

File:

445boro.dat

Transform:

NO TRANSFORMATION

Page___of_

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Control	4	3.7400	4.2600	3.9825
2	APG-02	4	4.0300	7.5000	5.1325
3	APG-06	4	2.5100	2.8900	2.6725
4	APG-16	4	1.2200	1.9800	1.6875
5	APG-15	4	1.2500	1.9500	1.6375

Title: 60225262-445-(035-038)

File:

445boro.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	0.0515	0.2269	0.1135	5.6979
2	APG-02	2.5408	1.5940	0.7970	31.0569
3	APG-06	0.0372	0.1929	0.0965	7.2194
4	APG-16	0.1225	0.3500	0.1750	20.7400
· 5	APG-15	0.0873	0.2955	0.1477	18.0428

```
Toxstat Version 3.5
                                                          Page___of_
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
                                                               de 12/13/12
Analysis of for Nutrient Uptake Factor: BORON using Lab Control
                                                                  an: 012/13/12
  Title: 60225262-445-(035-038)
                                   Transform:
  File:
             445boro.dat
                                                             LOG BASE 10(Y)
                   Shapiro - Wilk's Test for Normality
      D = 0.0972
      W = 0.9689
      Critical W = 0.8680 (alpha = 0.01 , N = 20)
              W = 0.9050  (alpha = 0.05 , N = 20)
 Data PASS hormality test (alpha = 0.01). Continue analysis.
 Title: 60225262-445-(035-038)
            445boro.dat
                                   Transform:
                                                            LOG BASE 10(Y)
                Bartlett's Test for Homogeneity of Variance
 Calculated B1 statistic = 8.0141
                                                (p-value = 0.0911)
 Data (PASS) B1 homogeneity test at 0.01 level. Continue analysis.
 Critical B = 13.2767 (alpha = 0.01, df = 4)
            = 9.4877 (alpha = 0.05, df = 4)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Nutrient Uptake Factor: BORON using Lab Control

@11:0012/13/12

de 12/13/12

Title: 60225262-445-(035-038)

File:

445boro.dat

Transform:

LOG BASE 10(Y)

Page___of_

# ANOVA Table

SOURCE	DF	ss	MS	F
Between	4	0.7731	0.1933	29.8322
Within (Error)	15	0.0972	0.0065	
Total	19	0.8702		

(p-value = 0.0000)

Critical F = 4.8932 (alpha = 0.01, df = 4,15)

= 3.0556 (alpha = 0.05, df = 4,15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-445-(035-038)

File:

445boro.dat

Transform:

LOG BASE 10(Y)

I	Dunnett's Test -	TABLE 1 OF 2	Ho:Control=T	reatment	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05
1	Control	0.5996	3.9825		
2	APG-02	0.6967	5.1325	1.7054	
3	APG-06	0.4261	2.6725	3.0495	*
4	APG-16	0.2195	1.6875	6.6786	*
5	APG-15	0.2085	1.6375	6.8718	*

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60225262-445-(035-038)

File:

445boro.dat

Transform:

LOG BASE 10(Y)

Dunr	nett's Test -	TABLE 2 C	DF 2 Ho	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	Control	4			
2	APG-02	· 4	1.1963	30.1	1.1500
3	APG-06	4	1.1963	30.1	1.3100
4	APG-16	4	1.1963	30.1	2.2950
5	APG-15	4	1.1963	30.1	2.3450

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

at:mislis/15

#12/13/12

Page___of__

Summary Statistics for Nutrient Uptake Factor: CALCIUM using Lab Control

Title: 60225262-45-(035-038)

File:

445calci.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N 	MIN	MAX	MEAN
1	Control	4	2.1800	3.0500	2.5975
2	APG-02	4	3.1200	10.3000	5.0225
3	APG-06	4	1.3900	3.7100	2.0825
4	APG-16	4	3.0700	3.3700	3.2250
5	APG-15	4	0.7230	1.4900	1.0875

Title: 60225262-45-(035-038)

445calci dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	0.1272	0.3566	0.1783	13.7283
2	APG-02	12.3891	3.5198	1.7599	70.0809
3	APG-06	1.2113	1.1006	0.5503	52.8493
4	APG-16	0.0193	0.1389	0.0695	4.3077
5	APG-15	0.1477	0.3843	0.1921	35.3361

```
Toxstat Version 3.5
                                                          Page___of__
Study # 60147216-445-(035-038)
                                                           QA: W 12/13/12
ESTCP
Echinochloa crusgalli
Analysis of Nutrient Uptake Factor: CALCIUM using Lab Control
                                                             de 12/13/12
 Title: 60225262-45-(035-038)
 File: 445calci.dat
                               Transform: 1/SQUARE ROOT(Y+0.5)
                 Shapiro - Wilk's Test for Normality
      D = 0.1036
      W = 0.9006
      Critical W = 0.8680 (alpha = 0.01 , N = 20)
             W = 0.9050 \text{ (alpha = 0.05 , } N = 20)
 Data PASS normality test (alpha = 0.01). Continue analysis.
 Title: 60225262-45-(035-038)
          445calci.dat
                                Transform: 1/SQUARE ROOT(Y+0.5)
              Bartlett's Test for Homogeneity of Variance
 Calculated B1 statistic = 12.5602
                                           (p-value = 0.0136)
 Data/PASS $1 homogeneity test at 0.01 level. Continue analysis.
  Critical B = 13.2767 (alpha = 0.01, df = 4)
           = 9.4877 (alpha = 0.05, df = 4).
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Nutrient Uptake Factor: CALCIUM using Lab Control

Q212/13/12 QA: QU 12/13/12

Title: 60225262-45-(035-038)

File:

445calci.dat

Transform:

1/SQUARE ROOT(Y+0.5)

Page_

ANOVA Table

SOURCE	DF	SS	MS	F
Between	4	0.2864	0.0716	10.3731
Within (Error)	15	0.1036	0.0069	
Total	19	0.3900		

(p-value = 0.0003)

Critical F = 4.8932 (alpha = 0.01, df = 4.15) = 3.0556 (alpha = 0.05, df = 4.15)

Since F > Critical F (REJECT) Ho: All equal (alpha = 0.05)

Title: 60225262-45-(035-038)

File:

445calci.dat

Transform:

1/SQUARE ROOT(Y+0.5)

	Dunnett's Test -	TABLE 1 OF 2	Ho:Control=T	reatment	
GROUP	DENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05
1	Control	0.5703	2.5975		
2	APG-02	0.4628	5.0225	1.8300	
3	APG-06	0.6485	2.0825	1.3307	
4	APG-16	0.5183	3.2250	0.8847	
5	APG-15	0.8071	1.0875	4.0304	*

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4.15)

Title: 60225262-45-(035-038)

File:

445calci.dat

Transform:

1/SQUARE ROOT(Y+0.5)

	Dunnett's Test -	TABLE 2	OF 2 HO	:Control=	Treatment
GROUP	DENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	Control	4			
2	APG-02	4	1.2016	33.6	2.4250
. 3	APG-06	4	1.2016	33.6	0.5150
4	APG-16	4	1.2016	33.6	0.6275
5	APG-15	4	1.2016	33.6	1.5100

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

AR 12/13/12

Summary Statistics for Nutrient Uptake Factor: COPPER using Lab Control On a 12/13/12

Title: 60225262-445-(035-038)

File: 445coppe.dat

Transform:

NO TRANSFORMATION

Page___of__

Summary Statistics on Data TABLE 1 of 2

				-		
٠.	GRP	IDENTIFICATION	N	MIN	MAX	MEAN
	1	Control	4	1.3800	2.2300	1.7500
	т	COLUETOI	4	1.3000	2.2300	1.7500
	2	APG-02	4	0.0540	0.1100	0.0845
	3	APG-06	4	0.0750	0.1280	0.0995
•	4	APG-16	4	0.0220	0.0270	0.0245
	5	APG-15	4	0.0130	0.0280	0.0178
						and the second s

Title: 60225262-445-(035-038)

File:

445coppe.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
. 1	Control	0.1405	0.3748	0.1874	21.4165
2	APG-02	0.0008	0.0282	0.0141	33.4237
3	APG-06	0.0005	0.0222	0.0111	22.3303
4	APG-16	0.0000	0.0024	0.0012	9.7162
5	APG-15	0.0000	0.0069	0.0035	39.1336

```
Toxstat Version 3.5
                                                            Page___of_
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
Analysis of Nutrient Uptake Factor: COPPER using Lab Control
                                                                          de12/13/12
                                                                          OA W12/13/12
  Title: 60225262-445-(035-038)
  File: 445coppe.dat
                                     Transform:
                                                        LOG BASE 10(Y)
                   Shapiro - Wilk's Test for Normality
      D = 0.1971

W = 0.9657
      Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05 , N = 20)
  Data PASS hormality test (alpha = 0.01). Continue analysis.
  Title: 60225262-445-(035-038)
          445coppe.dat
                                     Transform:
                                                                LOG BASE 10(Y)
               Bartlett's Test for Homogeneity of Variance
                                      (p-value = 0.3578)
  Calculated B1 statistic = 4.3735
  Data PASS/B1 homogeneity test at 0.01 level. Continue analysis.
  Critical B = 13.2767 (alpha = 0.01, df = 4)
```

= 9.4877 (alpha = 0.05, df = 4)

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Nutrient Uptake Factor: COPPER using Lab Control

de 12/13/12

OA: CUIZ-113/12

Title: 60225262-445-(035-038) File:

445coppe.dat

Transform:

LOG BASE 10(Y)

Page of

## ANOVA Table

Between 4 9.9770 2.4943 189.8289 Within (Error) 15 0.1971 0.0131	SOURCE		URCE	DF	នន	MS	<b>F</b>
Within (Error) 15 0.1971 0.0131	Between	:	tween	4	9.9770	2.4943	189.8289
WIGHT (BITO) 13	Within (Error)	1	thin (Error)	15	0.1971	0.0131	
Total 19 10.1741	Total		tal	19 	10.1741		

(p-value = 0.0000)

Critical F = 4.8932 (alpha = 0.01, df = 4.15) = 3.0556 (alpha = 0.05, df = 4.15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-445-(035-038)

File:

445coppe.dat

Transform:

LOG BASE 10(Y)

		Dunnett's Test -		TABLE 1 OF 2	Ho:Control=Treatment			
. '	GROUP	IDENTIF	CATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05	
	1	, .	Control	0.2357	1.7500			
	2		APG-02	-1.0927	0.0845	16.3892	*	
	3		APG-06	-1.0103	0.0995	15.3724	*	
	4		APG-16	-1.6124	0.0245	22.8008	*	
	5		APG-15	-1.7722 	0.0178	24.7721	*	

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4.15)

Title: 60225262-445-(035-038)

File: 445coppe.dat Transform:

LOG BASE 10(Y)

	Dunnett's Test -	TABLE 2	OF 2 Ho	o:Control=Treatment		
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL	
1	Control	4				
2	APG-02	4	0.6869	39.9	1.6655	
3	APG-06	4	0.6869	39.9	1.6505	
4	APG-16	4	0.6869	39.9	1.7255	
5	APG-15	4	0.6869	39.9	1.7322	

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

de 12/13/12

Summary Statistics for Nutrient Uptake Factor: IRON using Lab Control QA:0012113/12

Title: 60225262-445-(035-038)

File:

445iro.dat

Transform:

NO TRANSFORMATION

Page___of___

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N 	MIN	MAX	MEAN
1	Control	4	0.0660	0.1030	0.0823
2	APG-02	4	0.0060	0.0280	0.0170
3	APG-06	4	0.0100	0.0220	0.0138
4	APG-16	4	0.0020	0.0090	0.0053
5	APG-15	4	0.0030	0.0100	0.0058

Title: 60225262-445-(035-038)

File:

445iro.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	0.0002	0.0153	0.0077	18.6611
2	APG-02	0.0001	0.0106	0.0053	62,6224
3	APG-06	0.0000	0.0057	0.0028	41.3012
4	APG-16	0.0000	0.0030	0.0015	56.8777
5	APG-15	0.0000	0.0030	0.0015	51.9318

Toxstat Version 3.5 Page___of__ Study # 60147216-445-(035-038) ESTCP Echinochloa crusgalli Analysis of Nutrient Uptake Factor: IRON using Lab Control Title: 60225262-445-(035-038) File: 445iro.dat Transform: NO TRANSFORMATION Shapiro - Wilk's Test for Normality D = 0.0012 W = 0.9427Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05, N = 20)Data PASS/normality test (alpha = 0.01). Continue analysis. Title: 60225262-445-(035-038) File: 445iro.dat Transform: NO TRANSFORMATION Bartlett's Test for Homogeneity of Variance (p-value = 0.0371)Calculated B1 statistic = 10.2067 Data PASS/B1 homogeneity test at 0.01 level. Continue analysis. ______ Critical B = 13.2767 (alpha = 0.01, df = 4) = 9.4877 (alpha = 0.05, df = 4)

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Nutrient Uptake Factor: IRON using Lab Control

Title: 60225262-445-(035-038)

File:

445iro.dat

Transform:

NO TRANSFORMATION

Page___of_

# ANOVA Table

	SOURCE	D <b>F</b>	SS	MS	F
	Between	4	0.0169	0.0042	52.9893
	Within (Error)	15	0.0012	0.0001	
	Total	19	0.0181		
_				, ,	

(p-value = 0.0000)

Critical F = 4.8932 (alpha = 0.01, df = 4.15)

= 3.0556 (alpha = 0.05, df = 4,15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-445-(035-038)

File:

445iro.dat

Transform:

NO TRANSFORMATION

Dunnett's Test - TABLE 1 OF 2

Ho: Control=Treatment

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG 0.05
1	Control	0.0823	0.0823		
2	APG-02	0.0170	0.0170	10.3299	*
. 3	APG-06	0.0138	0.0138	10.8444	*
4	APG-16	0.0053	0.0053	12.1900	*
5	APG-15	0.0058	0.0058	12.1109	*

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60225262-445-(035-038)

File:

445iro.dat

Transform:

NO TRANSFORMATION

	Dunnett's Test -	TABLE 2	OF 2	Но	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG (IN ORIG.		% OF CONTROL	DIFFERENCE FROM CONTROL
1	Control	. 4				
2	APG-02	4	0.0	0172	21.0	0.0653
3	APG-06	4	0 (	0172	21.0	0.0685
4	APG-16	4	0.0	0172	21.0	0.0770
5	APG-15	<b>4</b> .	0.0	0172	21.0	0.0765

Study # 60147216-445-(035-038)

ESTCP

Q4:00 12/13/12 de 12/13/12

Echinochloa crusgalli

Summary Statistics for Nutrient Uptake Factor: MAGNESIUM using Lab Control

Title: 60225262-445-(035-038)

File:

445mag.dat

Transform:

NO TRANSFORMATION

Page___of__

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Control	4	107.0000	131.0000	114.7500
2	APG-02	4	7.8700	9.4900	8.7525
3	APG-06	4	2.9000	3.8300	3.5825
4	APG-16	4	2.9400	3.5000	3.1425
5	APG-15	4	1.7200	1.9300	1.8550

Title: 60225262-445-(035-038)

File:

445mag.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	121.5833	11.0265	5.5132	9.6091
. 2	APG-02	0.6212	0.7882	0.3941	9.0052
3	APG-06	0.2072	0.4552	0.2276	12.7068
4	APG-16	0.0631	0.2512	0.1256	7.9930
5	APG-15	0.0090	0.0947	0.0473	5.1047

```
Toxstat Version 3.5
                                                  Page___of_
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
                                                          de 12/13/12
Analysis of Nutrient Uptake Factor: MAGNESIUM using Lab Control
                                                           QK; W12/13/12
 Title: 60225262-445-(035-038)
        445mag.dat
 File:
                               Transform:
                                                    LOG BASE 10(Y)
                Shapiro - Wilk's Test for Normality
     D = 0.0250

W = 0.9607
     Critical W = 0.8680 (alpha = 0.01 , N = 20)
            W = 0.9050  (alpha = 0.05 , N = 20)
              _____
 Data PASS pormality test (alpha = 0.01). Continue analysis.
 Title: 60225262-445-(035-038)
                                                    LOG BASE 10(Y)
 File:
            445mag.dat
                              Transform:
              Bartlett's Test for Homogeneity of Variance
 Calculated B1 statistic = 2.4257
                                         (p-value = 0.6580)
 Data PASS B1 homogeneity test at 0.01 level. Continue analysis.
 _______
 Critical B = 13.2767 (alpha = 0.01, df = 4)
          = 9.4877 (alpha = 0.05, df = 4)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Nutrient Uptake Factor: MAGNESIUM using Lab Control

do12/13/12

0A:0012/13/12

Title: 60225262-445-(035-038)

File:

445mag.dat

Transform:

LOG BASE 10(Y)

Page_

# ANOVA Table

SOURCE	DF	SS	MS	F
Between	4	8.0826	2.0206	1212.2158
Within (Error)	15	0.0250	0.0017	
Total	19	8.1076		

(p-value = 0.0000)

Critical F = 4.8932 (alpha = 0.01, df = 4.15) = 3.0556 (alpha = 0.05, df = 4.15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-445-(035-038)

File:

445mag.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	Ho:Control=Treatment			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05
1	Control	2.0583	114.7500		
2	APG-02	0.9408		38.7096	*
3	APG-06	0.5513	3.5825	52.2015	*
4	APG-16	0.4963	3.1425	54.1074	*
5	APG-15	0.2679	1.8550	62.0175	*

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60225262-445-(035-038)

File:

445mag.dat

Transform:

	Dunnett's Test -	TABLE 2	OF 2 Ho	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	Control	4			
. 2	APG-02	4	18.9816	16.6	105.9975
3 .	APG-06	4	18.9816	16.6	111.1675
4	APG-16	4	18.9816	16.6	111.6075
5,	APG-15	4	18.9816	16.6	112.8950

Study # 60147216-445-(035-038)

ESTCP

S118112109D de 12/13/12

Echinochloa crusgalli

Summary Statistics for Nutrient Uptake Factor: Manganese using Lab Control

Title: 60225262-445-(035-038)

445man.dat

Transform:

NO TRANSFORMATION

Page___of_

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Control	4	16.4000	25.8000	20.1500
2	APG-02	4	4.5800	9.3700	6.8850
3	APG-06	4	0.6990	3.4000	1.7023
4	APG-16	4	0.8090	2.2000	1.6923
5	APG-15	4	1.0100	1.4700	1.2550

Title: 60225262-445-(035-038)

445man.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	16.2567	4.0320	2.0160	20.0097
2	APG-02	5.0408	2.2452	1.1226	32.6097
3	APG-06	1.4347	1.1978	0.5989	70.3649
4	APG-16	0.3865	0.6217	0.3109	36.7398
5	APG-15	0.0358	0.1893	0.0946	15.0834

```
Toxstat Version 3.5
                                                           Page___of_
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
                                                                     ak 12/18/12
Analysis of Nutrient Uptake Factor: Manganese using Lab Control
                                                                       an: 012/13/12
 Title: 60225262-445-(035-038)
                                   Transform:
 File:
              445man.dat
                                                             LOG BASE 10(Y)
                   Shapiro - Wilk's Test for Normality
      D = 0.4758
      W = 0.9633
      Critical W = 0.8680 (alpha = 0.01 , N = 20)
               W = 0.9050 \text{ (alpha = 0.05 , } N = 20)
 Data PASS normality test (alpha = 0.01). Continue analysis.
 Title: 60225262-445-(035-038)
              445man.dat
                                    Transform:
                                                               LOG BASE 10(Y)
                Bartlett's Test for Homogeneity of Variance
 Calculated B1 statistic = 6.9888
                                                 (p-value = 0.1365)
  Data PASS B1 homogeneity test at 0.01 level. Continue analysis.
  Critical B = 13.2767 (alpha = 0.01, df = 4)
            = 9.4877 (alpha = 0.05, df = 4)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

de 12/13/12

Page___of__

Analysis of Nutrient Uptake Factor: Manganese using Lab Control @A:cu 12/13/12

Title: 60225262-445-(035-038)

File:

445man.dat

Transform: LOG BASE 10(Y)

## ANOVA Table

SOURCE	DF	ss	MS	F
Between	4	4.4503	1.1126	35.0773
Within (Error)	15	0.4758	0.0317	
Total	19	4.9260		

(p-value = 0.0000)

Critical F = 4.8932 (alpha = 0.01, df = 4.15)

= 3.0556 (alpha = 0.05, df = 4,15)

Since F > Critical (F REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-445-(035-038)

File:

445man.dat

Transform:

LOG BASE 10(Y)

. I	Dunnett's Test - TABLE 1 OF 2		Ho:Control=Treatment			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	sig 0.05	
1	Control	1.2981	20.1500			
2	APG-02	0.8199	6.8850	3.7974	*	
3	APG-06	0.1547	1.7023	9.0798	*	
4	APG-16	0.1989	1.6923	8.7288	*	
5	APG-15	0.0948	1.2550	9.5555	*	
	•					

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60225262-445-(035-038)

File:

445man.dat

Transform:

	Dunnett's Test -	TABLE 2	OF 2 Ho	Ho:Control=Treatment		
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL	
1	Control	4				
2	APG-02	4	10.8648	54.7	13.2650	
3	APG-06	4.	10.8648	54.7	18.4478	
4	APG-16	4	10.8648	54.7	18.4578	
5	APG-15	4	10.8648	54.7	18.8950	

Study # 60147216-445-(035-038).

ESTCP

QA:00 12/14/12

Page - Page o (D)

Echinochloa crusgalli

de 12/13/12

Summary Statistics for Nutrient Uptake Factor: PHOSPHORUS using Lab Control

Title: 60225262-445-(035-038)

File:

445ph.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data . TABLE 1 of 2

MEAN
19.3000
2.8475
4.0375
2.1975
1.8250
2.

Title: 60225262-445-(035-038)
File: 445ph.dat Transform:

NO TRANSFORMATION

Summary Statistics on Data

			•			
GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %	
1	Control	5.3000	2.3022	1.1511	11.9284	
2	APG-02	0.1415	0.3762	0.1881	13.2100	
. 3	APG-06	0.1303	0.3610	0.1805	8.9402	
4	APG-16	0.1051	0.3242	0.1621	14.7521	
5 .	APG-15	0.0306	0.1748	0.0874	9.5799	

```
Page __ of __
Toxstat Version 3.5
Study # 60147216-445-(035-038)
ESTCP
                                                                        412 13 12
Echinochloa crusgalli
                                                                        an: WIZHULIZ
Analysis of Nutrient Uptake Factor: PHOSPHORUS using Lab Control
 Title: 60225262-445-(035-038)
 File:
                                                              LOG BASE 10(Y)
               445ph.dat
                   Shapiro - Wilk's Test for Normality
      D = 0.0409
      W = 0.9660
      Critical W = 0.8680 (alpha = 0.01 , N = 20)
               W = 0.9050 (alpha = 0.05 , N = 20)
 Data PASS normality test (alpha = 0.01). Continue analysis.
  Title: 60225262-445-(035-038)
                                     Transform:
               445ph.dat
                                                              LOG BASE 10(Y)
                Bartlett's Test for Homogeneity of Variance
  Calculated B1 statistic = 1.0626
                                                 (p-value = 0.9002)
  Data PASS B1 homogeneity test at 0.01 level. Continue analysis.
 Critical B = 13.2767 (alpha = 0.01, df = 4)
= 9.4877 (alpha = 0.05, df = 4)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Nutrient Uptake Factor: PHOSPHORUS using Lab Control

Page __of __

12/13/12 an:00 12114/12

Title: 60225262-445-(035-038)

File:

445ph.dat

Transform:

LOG BASE 10(Y)

# ANOVA Table

SOURCE	DF	SS	MS	F
Between	4	2.6889	0.6722	246.5160
Within (Error)	15	0.0409	0.0027	
Tota1	19	2.7298		
			/ 1	0 00001

(p-value = 0.0000)

Critical F = 4.8932 (alpha = 0.01, df = 4.15) = 3.0556 (alpha = 0.05, df = 4.15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-445-(035-038)

File: 445ph.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	Ho:Control=Treatment			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05
1	Control	1.2832	19.3000		
2	APG-02	0.4515	2.8475	22.5216	*
- 3	APG-06	0.6049	4.0375	18.3695	*
4	APG-16	0.3383	2.1975	25.5880	*
5	APG-15	0.2598	1.8250	27.7155	*

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60225262-445-(035-038)

File:

445ph.dat

Transform:

	Dunnett's Test -	TABLE 2 C	OF 2 Ho	:Control=	rol=Treatment		
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL		
1	Control	4					
2	APG-02	4	3.9758	20.7	16.4525		
3	APG-06	4	3.9758	20.7	15.2625		
4	APG-16	4	3.9758	20.7	17.1025		
5	APG-15	4	3.9758	20.7	17.4750		

Toxstat Version 3.5 Study # 60147216-445-(035-038) ESTCP

Page___of___

OA W12/13/12 2 12 13/12

Echinochloa crusgalli

Summary Statistics for Nutrient Uptake Factor: POTASSIUM using Lab Control

Title: 60225262-445-(035-038)

File:

445pota.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N 	MIN	MAX	MEAN
1	Control	4	113.0000	148.0000	124.0000
2	APG-02	4	50.7000	62.2000	56.6250
3	APG-06	4	54.3000	65.5000	59.1500
4	APG-16	4	20.8000	31.0000	26.6000
5	APG-15	4	26.4000	33.8000	30.8750

Title: 60225262-445-(035-038)

445pota.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	262.0000	16.1864	8.0932	13.0536
2	APG-02	24.7492	4.9749	2.4874	8.7856
3	APG-06	32.8633	5.7327	2.8663	9.6917
4	APG-16	25.7000	5.0695	2.5348	19.0583
5	APG-15	11.5292	3.3955	1.6977	10.9974

```
Toxstat Version 3.5
                                                       Page___of_
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
Analysis of Nutrient Uptake Factor: POTASSIUM using Lab Control
                                                              de 12/13/12
                                                                 GA:0012/13/12
 Title: 60225262-445-(035-038)
 File:
            445pota.dat
                                  Transform:
                                                           LOG BASE 10(Y)
                  Shapiro - Wilk's Test for Normality
      D = 0.0474
      W = 0.9589
      Critical W = 0.8680 (alpha = 0.01 , N = 20)
             W = 0.9050 (alpha = 0.05 , N = 20)
 Data (PASS normality test (alpha = 0.01). Continue analysis.
 Title: 60225262-445-(035-038)
            445pota.dat
                                 Transform:
                                                         LOG BASE 10(Y)
               Bartlett's Test for Homogeneity of Variance
 Calculated B1 statistic = 2.2972
                                              (p-value = 0.6813)
 Data PASS 11 homogeneity test at 0.01 level. Continue analysis.
                        Critical B = 13.2767 (alpha = 0.01, df = 4)
= 9.4877 (alpha = 0.05, df = 4)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Nutrient Uptake Factor: POTASSIUM using Lab Control

OU:00 12/13/15

X12/13/12

Title: 60225262-445-(035-038)

File:

445pota.dat

Transform:

LOG BASE 10(Y)

Page___of_

## ANOVA Table

				•
SOURCE	DF	SS	MS	F
Between	4	1.1382	0.2846	90.1163
Within (Error)	15	0.0474	0.0032	
Total	19	1.1856		
			(p-valu	e = 0.0000

Critical F = 4.8932 (alpha = 0.01, df = 4.15) = 3.0556 (alpha = 0.05, df = 4.15)

Since F > Critical F (REJECT)Ho: All equal (alpha = 0.05)

· Title: 60225262-445-(035-038)

File:

445pota.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	TABLE 1 OF 2	Ho:Control=	Freatment	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05
1	Control	2.0908	124.0000		
2	APG-02	1.7517	56.6250	8.5341	*
3	APG-06	1.7704	59.1500	8.0637	*
4	APG-16	1.4187	26.6000	16.9147	*
. 5	APG-15	1.4876	30.8750	15.1828	*

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60225262-445-(035-038)

File:

445pota.dat

Transform:

	Dunnett's Test -	TABLE 2	OF 2		H	o:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN (IN OR		DIFF UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	Control	4					
2.	APG-02	4		27.2	2441	22.1	67.3750
3	APG-06	4		27.2	2441	22.1	64.8500
4	APG-16	4		27.2	2441	22.1	97.4000
5.	APG-15	4		27.2	2441	22.1	93.1250

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

de 12/13/12

Summary Statistics for Nutrient Uptake Factor: SODIUM using Lab Control 44'00 12/13/12

Title: 60225262-445-(035*-038)

445sodi.dat

Transform:

NO TRANSFORMATION

Page___of

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MĖAN
1	Control	4	2.7200	3.9900	3.1900
2	APG-02	. 4	7.8200	51.7000	21.3050
3	APG-06	4	7.3400	40.4000	23.2850
4	APG-16	4	11.3000	17.8000	15.4500
5	APG-15	4	14.2000	45.5000	25.1000

Title: 60225262-445-(035*-038)

445sodi.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

	•					
GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %	
1	Control	0.3255	0.5706	0.2853	17.8857	
2	APG-02	420.9068	20.5160	10.2580	96.2967	
3	APG-06	203.5236	14.2662	7.1331	61.2676	
4	APG-16	8.3233	2.8850	1.4425	18.6733	
5	APG-15	197.7000	14.0606	7.0303	56.0183	
		The state of the s				

```
Toxstat Version 3.5
                                                                    Page___of_
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
Analysis of Nutrient Uptake Factor: SODIUM using Lab Control
                                                                           de 12/13/12
                                                                           QUIN ISTIBILIE
 Title: 60225262-445-(035*-038)
        445sodi.dat
                                     Transform:
                                                                 LOG BASE 10(Y)
                    Shapiro - Wilk's Test for Normality
       D = 0.8882
       W = 0.9700
       Critical W = 0.8680 (alpha = 0.01 , N = 20)
              W = 0.9050 \text{ (alpha = 0.05 , N = 20)}
  Data PASS hormality test (alpha = 0.01). Continue analysis.
  Title: 60225262-445-(035*-038)
             445sodi.dat
                                     Transform:
                                                                 LOG BASE 10(Y)
                 Bartlett's Test for Homogeneity of Variance
  Calculated B1 statistic = 8.5935
                                                   (p-value = 0.0721)
  Data PASS B1 homogeneity test at 0.01 level. Continue analysis.
 Critical B = 13.2767 (alpha = 0.01, df = 4)
= 9.4877 (alpha = 0.05, df = 4)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Nutrient Uptake Factor: SODIUM using Lab Control

de 12/13/12

GA: au 12/13/12

Title: 60225262-445-(035*-038)

File:

445sodi.dat

Transform:

LOG BASE 10(Y)

Page_

## ANOVA Table

SOURCE	DF	SS	MS	F
Between	4	1.9167	0.4792	8.0929
Within (Error)	15	0.8882	0.0592	
Total	 19	2.8049		

(p-value = 0.0011)

Critical F = 4.8932 (alpha = 0.01, df = 4.15) = 3.0556 (alpha = 0.05, df = 4.15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-445-(035*-038)

File:

445sodi.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test - '	PABLE 1 OF 2	Ho:Control=T	Ho:Control=Treatment		
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05	
1	Control	0.4989	3.1900			
2	APG-02	1.2014	21.3050	4.0830	*	
3	APG-06	1.2892	23.2850	4.5933	*	
4	APG-16	1.1825	15.4500	3.9731	*	
. 5	APG-15	1.3551	25.1000	4.9764	*	

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60225262-445-(035*-038)

File:

445sodi.dat

Transform:

	Dunnett's Test -	TABLE 2	OF 2 Ho	:Control=	1=Treatment	
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL	
1	Control	4				
2	APG-02	4	2.0847	66.1	18.1150	
3	APG-06	4	2.0847	66.1	20.0950	
4	APG-16	4	2.0847	66.1	12.2600	
5	APG-15	4	2.0847	66.1	21.9100	

Study # 60147216-445-(035-038)

ESTCP

GA:04 12/13/12

Echinochloa crusgalli

4/12/13/12

Summary Statistics for Nutrient Uptake Factor: SULFUR using Lab Control

Title: 60225262-445-(035-038)

File:

445sulf.dat

Transform:

NO TRANSFORMATION

Page___of__

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N 	MIN	MAX	MEAN
1	Control	4	30.4000	44.9000	37.5750
2	APG-02	4	2.6100	6.4200	3.7625
3	APG-06	4	3.0100	5.5800	4.0300
4	APG-16	4	1.2800	1.3900	1.3400
5	APG-15	4	2.2700	4.1300	3.0900

Title: 60225262-445-(035-038)

File:

445sulf.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP II	ENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	41.8758	6.4712	3.2356	17.2220
2	APG-02	3.2128	1.7924	0.8962	47.6390
3	APG-06	1.1946	1.0930	0.5465	27.1210
4	APG-16	0.0025	0.0497	0.0248	3.7064
5	APG-15	0.8018	0.8954	0.4477	28.9784

Toxstat Version 3.5 Page___of Study # 60147216-445-(035-038) ESTCP Echinochloa crusgalli Analysis of Nutrient Uptake Factor: SULFUR using Lab Control AP 12 13 12 SI/ Ellzin: 40 Title: 60225262-445-(035-038) File: 445sulf.dat Transform: LOG BASE 10(Y) Shapiro - Wilk's Test for Normality 0.2000 D = W = 0.9248Critical W = 0.8680 (alpha = 0.01 , N = 20) W = 0.9050 (alpha = 0.05 , N = 20)Data PASS hormality test (alpha = 0.01). Continue analysis. Title: 60225262-445-(035-038) 445sulf.dat Transform: File: LOG BASE 10(Y) Bartlett's Test for Homogeneity of Variance Calculated B1 statistic = 10.0243 (p-value = 0.0400)Data (PASS) B1 homogeneity test at 0.01 level. Continue analysis. Critical B = 13.2767 (alpha = 0.01, df = 4) = 9.4877 (alpha = 0.05, df = 4)

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Nutrient Uptake Factor: SULFUR using Lab Control

Q4:00 12/13/12

Title: 60225262-445-(035-038)

File:

445sulf.dat

Transform:

LOG BASE 10(Y)

Page___of_

# ANOVA Table

SOURCE	DF	SS	MS	F
Between	4	4.6549	1.1637	87.2704
Within (Error)	15	0.2000	0.0133	
Total	19	4.8549		
				- 0.0000

(p-value = 0.0000)

Critical F = 4.8932 (alpha = 0.01, df = 4.15) = 3.0556 (alpha = 0.05, df = 4.15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-445-(035-038)

File:

445sulf.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	TABLE 1 OF 2	Ho:Control=	Freatment	
GROUI	P IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05
1	Control	1.5700	37.5750	_,	
2	APG-02	0.5446	3.7625	12.5575	*
3	APG-06	0.5942	4.0300	11.9507	*
4	APG-16	0.1269	1.3400	17.6737	*
5	APG-15	0.4762	3.0900	13.3957	*

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60225262-445-(035-038)

File:

445sulf.dat

Transform:

	Dunnett's Test -	TABLE 2	OF 2 Ho	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	Control	4			
2	APG-02	4	14,9161	40.1	33.8125
3	APG-06	4	14.9161	40.1	33.5450
4	APG-16	4	14.9161	40.1	36.2350
5	APG-15	4	14.9161	40.1	34.4850

Study #60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Echinochloa crusgalli
Summary Statistics for Nutrient Uptake Factor: ZINC using Lab Control

@A:cu:zli3/12

Title: 60225262-445-(035-038)

File:

445zin.dat

Transform:

NO TRANSFORMATION

of

Summary Statistics on Data

TABLE 1 of 2

Page

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Control	4	8.0600	12.5000	10.6650
2	APG-02	4	0.3850	2.0900	0.8618
3	APG-06	4	0.1740	0.4210	0.3230
4	APG-16	4	0.0840	0.2240	0.1630
5	APG-15	4	0.0540	0.1520	0.1125

Title: 60225262-445-(035-038)
File: 445zin.dat Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	3.4982	1.8704	0.9352	17.5373
2	APG÷02	0.6728	0.8202	0.4101	95.1804
3	APG-06	0.0110	0.1051	0.0525	32.5249
. 4	APG-16	0.0035	0.0588	0.0294	36.0626
5	APG-15	0.0021	0.0455	0.0228	40.4778

Toxstat Version 3.5 Study #60147216-445-(035-038) ESTCP	. •	Pa	geof	<u> </u>
Echinochloa crusgalli Summary Statistics for Nutrient Upt	ake Factor: ZINC	using Lab	Control	\$12/18/12 an:00/12/18/12
Title: 60225262-445-(035-038) File: 445zin.dat	Transform:		LOG BASE	10(Y)
Shapiro - Wilk'	s Test for Norma	lity		
D = 0.6776 W = 0.9282				
Critical W = 0.8680 (alpha W = 0.9050 (alpha				
Data PASS normality test (alpha =	0.01). Continue	e analysis.		
Title: 60225262-445-(035-038) File: 445zin.dat	Transform:		LOG BASE	10(Y)
Bartlett's Test fo	-			
Calculated B1 statistic = 4.7217		p-value = 0	.3171)	
Data PASS B1 homogeneity test at	0.01 level. Cont	inue analys	is.	
Critical B = 13.2767 (alpha = 0. = 9.4877 (alpha = 0.				 

Study #60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Summary Statistics for Nutrient Uptake Factor: ZINC using Lab Control

to 12/13/12

@A:00 12/13/12

Title: 60225262-445-(035-038)

445zin.dat File:

Transform:

LOG BASE 10(Y)

Page of

## ANOVA Table

SOURCE	DF	ss	MS	F
Between	4	10.1516	2.5379	56.1813
Within (Error)	15	0.6776	0.0452	
Total	19	10.8293		

(p-value = 0.0000)

Critical F = 4.8932 (alpha = 0.01, df = 4.15) = 3.0556 (alpha = 0.05, df = 4.15)

Since F > Critical F

REJECT) Ho: All equal (alpha = 0.05)

Title: 60225262-445-(035-038)

File: 445zin.dat

Transform:

LOG BASE 10(Y)

· I	Ounnett's Test -	TABLE 1 OF 2	Ho:Control=1	reatment	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05
1	Control	1.0225	10.6650		
2	APG-02	-0.1803	0.8618	8.0029	*
3	APG-06	-0.5127	0.3230	10.2147	· *
4	APG-16	-0.8140	0.1630	12.2199	*
5	APG-15	-0.9822	0.1125	13.3387	*

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Dunnett's Test - TABLE 2 OF 2

Title: 60225262-445-(035-038)

File: 445zin.dat

Transform:

LOG BASE 10(Y)

Ho:Control=Treatment

GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	Control	4			
2	APG-02	4	6.4367	61.1	9.8033
3	APG-06	4	6.4367	61.1	10.3420
			6 40.68	:	40 5060

APG-16 6.4367 61.1 10.5020 APG~15 6.4367 61.110.5525

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

*12/13/12

Summary Statistics for Nutrient Uptake Factor: NITROGEN using Lab Control GA:00 12/13/12

Title: 60225262-445-(035-038)

File:

445nitr.dat

Transform:

NO TRANSFORMATION

Page___of__

Summary Statistics on Data

TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	Control	4	13.8000	17.5000	15.5250
2	APG-02	4	0.6380	0.7640	0.6912
3	APG-06	4	2.1400	2.3400	2.2425
4	APG-16	4	0.9600	1.1300	1.0650
5	APG-15	4	0.8380	0.9630	0.9128

Title: 60225262-445-(035-038)

File:

445nitr.dat

Transform:

NO TRANSFORMATION

Summary Statistics on Data

GRP	IDENTIFICATION	VARIANCE	SD	SEM	C.V. %
1	Control	2.3092	1.5196	0.7598	9.7880
2	APG-02	0.0033	0.0572	0.0286	8.2813
3	APG-06	0.0068	0.0826	0.0413	3.6840
4	APG-16	0.0055	0.0742	0.0371	6.9636
5	APG-15	0.0028	0.0530	0.0265	5.8017

```
Toxstat Version 3.5
                                                               Page___of_
Study # 60147216-445-(035-038)
ESTCP
Echinochloa crusgalli
                                                                    de 12/13/12
Analysis of Nutrient Uptake Factor: NITROGEN using Lab Control
                                                                     SIPSIPSI MIND
 Title: 60225262-445-(035-038)
 File:
          445nitr.dat
                                  Transform:
                                                           LOG BASE 10(Y)
                  Shapiro - Wilk's Test for Normality
      D = 0.0148
      W = 0.9698
      Critical W = 0.8680 (alpha = 0.01 , N = 20)
              W = 0.9050 \text{ (alpha = 0.05 , } N = 20)
 Data PASS normality test (alpha = 0.01). Continue analysis.
 Title: 60225262-445-(035-038)
 File: 445nitr.dat Transform: LOG BASE 10(Y)
              Bartlett's Test for Homogeneity of Variance
 Calculated B1 statistic = 2.4492
                                              (p-value = 0.6538)
 Data PASS )B1 homogeneity test at 0.01 level. Continue analysis.
 Critical B = 13.2767 (alpha = 0.01, df = 4)
           = 9.4877 (alpha = 0.05, df = 4)
```

Study # 60147216-445-(035-038)

ESTCP

Echinochloa crusgalli

Analysis of Nutrient Uptake Factor: NITROGEN using Lab Control

de12/13/12

OA:0012/13/12

Title: 60225262-445-(035-038)

File:

445nitr.dat

Transform:

LOG BASE 10(Y)

Page of

## ANOVA Table

SOURCE	DF	SS	MS	F
Between	4	4.7742	1.1936	1209.9408
Within (Error)	15	0.0148	0.0010	
Total	19	4.7890		

(p-value = 0.0000)

Critical F = 4.8932 (alpha = 0.01, df = 4.15) = 3.0556 (alpha = 0.05, df = 4.15)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: 60225262-445-(035-038)

File:

445nitr.dat

Transform:

LOG BASE 10(Y)

	Dunnett's Test -	TABLE 1 OF 2	Ho:Control=1	reatment	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	TRANS T STAT	SIG 0.05
1	Control	1.1895	15.5250		
2	APG-02	-0.1615	0.6912	60.8295	*
3	APG-06	0.3505	2.2425	37.7766	*
4	APG-16	0.0265	1.0650	52.3645	* .
5	APG-15	-0.0402	0.9128	55.3698	* -

Dunnett critical value = 2.7300 (2 Tailed, alpha = 0.05, df = 4,15)

Title: 60225262-445-(035-038)

File: 445nitr.dat

Transform:

	Dunnett's Test -	TABLE 2 C	F 2 Ho	:Control=	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	Control	4			
2	APG-02	4	2.0157	13.0	14.8338
. 3	APG-06	4	2.0157	13.0	13.2825
4	APG-16	4	2.0157	13.0	14.4600
5	APG-15	4	2.0157	13.0	14.6123



H-1 July 2014

# Soil Density and Activated Carbon Application Rate

The mass of soil in a unit volume is calculated using equation 1:

$$M = V * \rho_R \tag{1}$$

Where M is mass, V is volume, and  $\rho_B$  is the bulk density of the soil. For wetland applications, the density of the soil is not directly known. The volume is determined by the size of the plot, and by the desired depth of the amendment. Based on previous studies, the biota layer where the amendment will be mixed is restricted to the top six inches of the soil. The chosen unit volume is one square meter by 0.15 m, or 150,000 cm³.

For the field demonstration site, density and porosity was not measured directly. The only physical measurement conducted by the lab was the percent solids of the samples taken in July 2009. The average soil density on a weight basis was 33.8%. An effective density and porosity can be estimated from this information and average specific gravities. The soils at the site are described as mineral soils, with low total organic carbons. Mineral specific gravities range from 2.3 to 2.9 (Lambe 1969). Percent solids in a saturated sample can be expressed by the Equation 2.

$$S_{\%} = \frac{M_{solids}}{M_{solids} + M_{water}} = \frac{(1-n)V\rho_s}{V(1-n)\rho_s + Vn\rho_w} = \frac{(1-n)\rho_s}{(1-n)\rho_s + n\rho_w}$$
(2)

Where M is the mass of the solids and water in a sample, V is the volume of the sample,  $\rho_s$  and  $\rho_w$  are the specific gravity of the solids and the water, and n is the porosity of the sample. Equation 3 is the result of solving Equation 2 for porosity in terms of density and solids percentage.

$$n = \frac{(1 - S_{\%})\rho_{S}}{(1 - S_{\%})\rho_{S} + S_{\%}\rho_{W}}$$
(3)

The density of water is assumed to be 1 gram per cubic centimeter. The average percentage of solids in the samples taken from the site is equal to 33.8 %. Using an assumed  $\rho_s$ , the porosity, bulk density, and amount of activated carbon needed per square meter was calculated. Bulk density is calculated using Equation 4:

$$\rho_B = (1 - n)\rho_S \tag{4}$$

Table A shows the results of this analysis, where column 1 is assumed, column 2 is calculated using equation 2, column three is calculated using equation 4, and column 4 is calculated using equation 1. From the Treatability Study, the desired amendment ratio is 3% by weight, so column 5 is 3% of column 4.

**Table A: AC Calculations** 

$ ho_s$	n	$ ho_B$	$M_{solids}$	AC Needed (kg/m ² )	
2.9	0.9	0.4	65.1		2.0
2.8	0.8	0.4	64.8		1.9
2.7	0.8	0.4	64.4		1.9
2.6	0.8	0.4	64.0		1.9
2.5	0.8	0.4	63.6		1.9
2.4	0.8	0.4	63.2		1.9
2.3	0.8	0.4	62.7		1.9

It is unlikely that the mineral specific gravity is as high as  $2.9 \text{ g/cm}^3$ . As can be seen from Table A, for the likely range of mineral densities, the amount of activated carbon needed is  $1.9 \text{ kg/m}^2$ .

# **Appendix I: Points of Contact**

I-1 July 2014

<b>Point of Contact</b>	Organization	Phone/Fax/Email	Role in Project
Dr. Nancy Ruiz	NAVFAC EXWC 1100 23rd Avenue, Port Hueneme, CA 93043	(805) 982-1155 (805) 982-4304 (fax)	Principal Investigator, DoD project manager
John Bleiler	AECOM Environment 250 Apollo Drive, Chelmsford, MA 01886	(978) 589-3056 (978) 589-3100 (fax)	Contracted project manager and technical lead
Dr. Kevin Gardner, P.E.	University of New Hampshire 35 Colovos Rd, Durham, NH 03824	(606) 862-4334 (603) 862-3957 (fax)	Technical lead, amendment selection
Dr. Mark Johnson	USACHPPM 158 Blackhawk Rd. Aberdeen Proving Ground, MD 21010	(410) 436-5081	Technical lead
Dr. Trudy Estes	ERDC EP-E 3909 Halls Ferry Rd, Vicksburg, MS 39180	(601) 643-2125	Technical lead
Dr. Doris Anders	97 CES/CEAN 401 L Ave, Bldg 358 Altus AFB OK 73523-5138	(580) 481-7346	AFCEE technical lead
David Barclift	NAVFAC LANT c/o Navy PMO Northeast, 4911 South Broad Str., Bldg 679, PNBC, Philadelphia, PA 19112	(215) 814-3341	Technical lead