част	ф. номер	група	поток	курс	специалност
2					
Име:		•	•		

Писмен изпит по "Логическо програмиране" спец. "Компютърни науки" $05.02.2012~\mathrm{r}.$

 ${f 3}$ адача ${f 3}.$ С метода на резолюцията да се докаже, че следната формула е предикатна тавтология:

$$\forall x \neg \forall y (p(x, y) \iff \neg \exists z (p(z, y) \& p(y, z))).$$

Задача 4. Нека \mathcal{A} е структурата $\langle \mathbb{N}, s^{\mathcal{A}} \rangle$ за предикатния език без формално равенство \mathcal{L} , имащ един триместен предикатен символ s, където

$$\langle n, k, \ell \rangle \in s^{\mathcal{A}}$$
 точно тогава, когато $n + k = \ell$.

Да се докаже, че:

а) всяко едно от множествата

$$\{0\},\ \{1\},\ \{3\},\ \{\langle n,k\rangle\mid 5$$
 дели $n-k\}$

е определимо в \mathcal{A} с формула от \mathcal{L} ;

б) идентитетът е единственият автоморфизъм в A.

Задача 5. Да се докаже изпълнимостта на множеството от следните формули:

част	ф. номер	група	поток	курс	специалност
2					
Име:					

Писмен изпит по "Логическо програмиране" спец. "Компютърни науки" 05.02.2012 г.

Задача 3. С метода на резолюцията да се докаже, че следната формула е предикатна тавтология:

$$\forall x \neg \forall y (p(x, y) \iff \neg \exists z (p(z, y) \& p(y, z))).$$

Задача 4. Нека $\mathcal A$ е структурата $\langle \mathbb N, s^{\mathcal A} \rangle$ за предикатния език без формално равенство $\mathcal L$, имащ един триместен предикатен символ s, където

$$\langle n, k, \ell \rangle \in s^{\mathcal{A}}$$
 точно тогава, когато $n + k = \ell$.

Да се докаже, че:

а) всяко едно от множествата

$$\{0\},\ \{1\},\ \{3\},\ \{\langle n,k\rangle\mid 5$$
 дели $n-k\}$

е определимо в \mathcal{A} с формула от \mathcal{L} ;

б) идентитетът е единственият автоморфизъм в \mathcal{A} .

Задача 5. Да се докаже изпълнимостта на множеството от следните формули:

част	ф. номер	група	поток	курс	специалност
2					
Име:					

Писмен изпит по "Логическо програмиране" спец. "Компютърни науки" 05.02.2012 г.

Задача 3. С метода на резолюцията да се докаже, че следната формула е предикатна тавтология:

$$\forall x \neg \forall y (p(x, y) \iff \neg \exists z (p(z, y) \& p(y, z))).$$

Задача 4. Нека \mathcal{A} е структурата $\langle \mathbb{N}, s^{\mathcal{A}} \rangle$ за предикатния език без формално равенство \mathcal{L} , имащ един триместен предикатен символ s, където

$$\langle n, k, \ell \rangle \in s^{\mathcal{A}}$$
 точно тогава, когато $n + k = \ell$.

Да се докаже, че:

а) всяко едно от множествата

$$\{0\},\ \{1\},\ \{3\},\ \{\langle n,k\rangle\mid 5$$
 дели $n-k\}$

е определимо в \mathcal{A} с формула от \mathcal{L} ;

б) идентитетът е единственият автоморфизъм в \mathcal{A} .

Задача 5. Да се докаже изпълнимостта на множеството от следните формули:

```
 \neg \exists x p(x,x)  \forall x \exists y (p(x,y) \& \neg \exists z (p(x,z) \& p(z,y)))  \exists x \neg \exists y p(y,x)  \exists x (\exists y p(y,x) \& \neg \exists y (p(y,x) \& \neg \exists z (p(x,z) \& p(z,y))))
```

част	ф. номер	група	поток	курс	специалност
2					
Име:					

Писмен изпит по "Логическо програмиране" спец. "Компютърни науки" 05.02.2012 г.

Задача 3. С метода на резолюцията да се докаже, че следната формула е предикатна тавтология:

$$\forall x \neg \forall y (p(x,y) \Longleftrightarrow \neg \exists z (p(z,y) \,\&\, p(y,z))).$$

Задача 4. Нека \mathcal{A} е структурата $\langle \mathbb{N}, s^{\mathcal{A}} \rangle$ за предикатния език без формално равенство \mathcal{L} , имащ един триместен предикатен символ s, където

$$\langle n, k, \ell \rangle \in s^{\mathcal{A}}$$
 точно тогава, когато $n + k = \ell$.

Да се докаже, че:

а) всяко едно от множествата

$$\{0\},\ \{1\},\ \{3\},\ \{\langle n,k\rangle\mid 5$$
 дели $n-k\}$

е определимо в \mathcal{A} с формула от \mathcal{L} ;

б) идентитетът е единственият автоморфизъм в \mathcal{A} .

Задача 5. Да се докаже изпълнимостта на множеството от следните формули:

```
    \neg \exists x p(x,x)      \forall x \exists y (p(x,y) \& \neg \exists z (p(x,z) \& p(z,y)))      \exists x \neg \exists y p(y,x)      \exists x (\exists y p(y,x) \& \neg \exists y (p(y,x) \& \neg \exists z (p(x,z) \& p(z,y))))
```