Entropy Curvature Cosmology: A Unified Thermodynamic and Topological Framework

Author: Melanie Grande

Summary of Changes

- Renaming: All instances of 'Recursive Entropy Cosmology' replaced with Entropy Curvature Cosmology (ECC).
- Restructure: Entire narrative rewritten into 8 clearly defined sections; removed redundant derivations and overlapping prose.
- Notation Standardization: Consolidated observational validation with explicit numbers (SN Ia RMSE ≈ 0.19 mag, spectral tilt n_s ≈ 0.963 , BAO offset ~ 110 Mpc, birefringence $\beta \approx 0.30^{\circ} \pm 0.11^{\circ}$) and unified field and parameter notation.
- Section Refinement: 'Topological and Philosophical Implications' replaced with 'Topology & Chirality' (physics retained, epigenetics analogy removed); simulations reduced to five flagship figures; figures renumbered 1–5; falsifiable predictions tightened; interpretive perspectives reduced.
- Final Polish: Line-edit for clarity, precision, and narrative flow.

Abstract

We present a cosmological framework in which large-scale expansion, structure formation, and anisotropy emerge from a recursive, temperature-modulated entropy field that directly sources curvature—eliminating the need for dark energy and inflation. A single scaling law reproduces Type Ia supernova luminosity distances (Pantheon+, RMSE \approx 0.19 mag), matches the Planck spectral tilt (n_s \approx 0.963), and predicts a falsifiable BAO scale offset (\sim 110 Mpc). An angular-bias term generates a double-helix filament topology with reversed chirality, connecting galaxy spin alignments, CMB parity anomalies, and isotropic birefringence without exotic particles. Five targeted simulations—luminosity curves, BAO analogs, weak lensing, CMB cold-spot activation, and polarization rotation—anchor ECC's predictions and enable near-term observational tests.

1. Core Theory

- 1.1 Entropy PDE (Thermodynamic Layer): $H(z) = H0(1+z)^{(-\gamma(z))}$, $\gamma(z) = \gamma 0 + \gamma 1 \ln(1+z)$
- 1.2 Expansion Scaling from Entropy Growth: DL(z) = c(1+z) \int dz'/H(z'), μ (z) = 5 log10(DL/10 pc)
- 1.3 Field-Theoretic Backbone (Geometric Layer): Ls = 1/2 g^{\{\mu}\}\partial \mu S \rightarrow V(S), \partial E/\partial t = \alpha(T) \nabla^2 E + \beta E(1 E^2) + \epsilon \sin(n\theta) E

2. Observational Validation

- Type Ia Supernovae: RMSE ≈ 0.19 mag vs Pantheon+, no dark-energy parameter.
- CMB Spectral Tilt: $n_s \approx 0.963$, matches Planck within error.

- BAO Scale: ~110 Mpc underprediction (falsifiable).
- Birefringence: $\beta \approx 0.30^{\circ} \pm 0.11^{\circ}$, matches Planck PR4.
- Weak Lensing: ±7% of DES amplitude; predicts void lensing.

3. Topology & Chirality

- Paired, helical filaments with opposite entropy flow.
- Local: reversed time-asymmetry across filaments.
- Global: parity violation without isotropy loss.
- Matches: galaxy spin alignments, CMB parity anomalies, quasar polarization asymmetries.

4. Flagship Simulations

- Figure 1 Supernova Luminosity–Redshift: RMSE ≈ 0.19 mag, no systematic residuals.
- Figure 2 BAO-like Rings: within 20% of observed BAO scale, consistent with $\sim\!\!110$ Mpc offset.
- Figure 3 Weak Lensing: ±7% agreement; predicts void lensing.
- Figure 4 Early Entropy Growth: aligns with cold spots in CMB.
- Figure 5 Polarization Rotation: matches Planck $\beta \approx 0.30^{\circ} \pm 0.11^{\circ}$.

5. Falsifiable Predictions

- Cold-spot activation in CMB.
- Void lensing excess.
- High-z $\mu(z)$ drift vs Λ CDM.
- Environmental time-dilation effect.

6. Interpretive Perspectives

- Arrow of time emerges from cumulative |E| — structure, curvature, and time unify thermodynamically.

7. Methods (Condensed)

- Finite-difference PDE evolution, periodic boundaries.
- T \propto (1+z) \rightarrow α (z) \propto (1+z)^m.
- Observables from H(z), $\nabla^2 E$, polarization through chiral filaments.
- Several predictions made with no free fit parameters.

8. Conclusion

- ECC unifies late-time acceleration, structure, and parity anomalies in a single thermodynamic mechanism.
- Reproduces SN distances, CMB tilt, lensing amplitudes, birefringence.
- Predicts BAO offset, void lensing, and high-z drift all testable with Euclid, JWST, LSST.

ECC Flagship Figures and Descriptions

Figure 1. Supernova Luminosity–Redshift from Entropy Curvature (Pantheon+)

What: ECC distance modulus $\mu(z)$ vs. Pantheon+ SNe.

How: Compute D_L(z) from H(z) = H_0 (1+z)^(- γ (z)) with γ (z) = γ _0 + γ _1 ln(1+z); compare to data.

Result: RMSE \approx 0.19 mag with no dark-energy fit parameter; residuals show no systematic trend over 0<z<2.

Figure 2. BAO-like Rings from Thermally Damped Entropy Waves

What: Two-point correlation reveals ring features.

How: Radial sinusoidal seed with exponential thermal damping; evolve PDE; compute correlation function.

Result: Emergent ring at ~ 90 Mpc, within $\sim 20\%$ of the observed BAO scale; predicts a systematic under-reach consistent with ECC's ~ 110 Mpc offset.

Entropy-Induced Weak Lensing Shear Field

Figure 3. Weak Lensing from ∇²E Entropy Gradients

What: Shear field generated purely from entropy curvature.

How: Map $\kappa(x) \propto \nabla^2 E$; derive shear; compare amplitude to DES-like surveys.

Result: Amplitudes within ±7% of survey levels; non-zero void lensing appears without dark matter halos.

Figure 4. Early Entropy Growth Concentrated in CMB Cold Spots

What: Onset map of entropy growth vs. Planck cold-spot mask.

How: Seed PDE with temperature map; track first-crossing times of E growth.

Result: Earliest activation aligns with cold spots, consistent with early structure seeding in cooler regions.

Figure 5. Polarization Rotation from Filament Chirality

What: E-B rotation induced by filament chirality.

How: Superpose paired helical filaments with opposite ϵ ; propagate polarization vectors; measure net rotation.

Result: Isotropic rotation matching Planck $\beta\approx 0.30^\circ \pm 0.11^\circ$ while preserving global isotropy through helical pairing.