Chapter 8: Main Memory

Background

- Program must be brought (from disk) into memory and placed within a process for it to be run
- Main memory and registers are only storage CPU can access directly

Base and Limit Registers

• A pair of base and limit registers define the logical address space

Hardware Address Protection with Base and Limit Registers

Address Binding

- Addresses represented in different ways at different stages of a program's life
 - Source code addresses usually symbolic
 - Compiled code addresses bind to relocatable addresses
 - 4 i.e. "14 bytes from beginning of this module"
 - Linker or loader will bind relocatable addresses to absolute addresses
 - 4 i.e. 74014
 - Each binding maps one address space to another

Binding of Instructions and Data to Memory

- Address binding of instructions and data to memory addresses can happen at three different stages
 - Compile time: If memory location known a priori, absolute code can be generated; must recompile code if starting location changes
 - Load time: Must generate relocatable code if memory location is not known at compile time
 - Execution time: Binding delayed until run time if the process can be moved during its execution from one memory segment to another
 - 4 Need hardware support for address maps (e.g., base and limit registers)

Logical vs. Physical Address Space

- The concept of a logical address space that is bound to a separate physical address space is central to proper memory management
 - Logical address generated by the CPU; also referred to as virtual address
 - Physical address address seen by the memory unit
- Logical and physical addresses are the same in compile-time and load-time address-binding schemes; logical (virtual) and physical addresses differ in execution-time address-binding scheme
- Logical address space is the set of all logical addresses generated by a program
- Physical address space is the set of all physical addresses generated by a program
- Memory management Unit (MMU) is a hardware device that at run time maps virtual to physical address

Swapping

- A process can be swapped temporarily out of memory to a backing store, and then brought back into memory for continued execution
 - Total physical memory space of processes can exceed physical memory
- Backing store fast disk large enough to accommodate copies of all memory images for all users; must provide direct access to these memory images

Swapping

- Does the swapped out process need to swap back in to same physical addresses?
- Depends on address binding method
 - Yes, if static or load time binding
 - No if execution time binding

Schematic View of Swapping

- If next processes to be put on CPU is not in memory, need to swap out a process and swap in target process
- Context switch time can then be very high
- 100MB process swapping to hard disk with transfer rate of 50MB/sec
 - Plus disk latency of 8 ms
 - Swap out time of 2008 ms
 - Plus swap in of same sized process
 - Total context switch swapping component time of 4016ms (> 4 seconds)

Contiguous Allocation

- Main memory usually into two partitions:
 - Resident operating system, usually held in low memory
 - User processes then held in high memory
 - Each process contained in single contiguous section of memory
- **Relocation registers** used to protect user processes from each other, and from changing operating-system code and data
 - Base register contains value of smallest physical address
 - **Limit register** contains range of logical addresses each logical address must be less than the limit register
 - MMU maps logical address dynamically

Hardware Support for Relocation and Limit Registers

Contiguous Allocation (Cont.)

- Multiple-partition allocation
 - Degree of multiprogramming limited by number of partitions
 - Hole block of available memory; holes of various size are scattered throughout memory
 - When a process arrives, it is allocated memory from a hole large enough to accommodate it
 - Process exiting frees its partition, adjacent free partitions combined
 - Operating system maintains information about:
 a) allocated partitions
 b) free partitions (hole)

How to satisfy a request of size *n* from a list of free holes?

- First-fit: Allocate the *first* hole that is big enough
- Best-fit: Allocate the *smallest* hole that is big enough; must search entire list, unless ordered by size
 - Produces the smallest leftover hole
- Worst-fit: Allocate the *largest* hole; must also search entire list
 - Produces the largest leftover hole

First-fit and best-fit better than worst-fit in terms of speed and storage utilization

Fragmentation

- External Fragmentation total memory space exists to satisfy a request,
 but it is not contiguous
- Internal Fragmentation allocated memory may be slightly larger than requested memory; this size difference is memory internal to a partition, but not being used
- First fit analysis reveals that given N blocks allocated, 0.5 N blocks lost to fragmentation
 - 1/3 may be unusable -> 50-percent rule

Fragmentation (Cont.)

- Reduce external fragmentation by compaction
 - Shuffle memory contents to place all free memory together in one large block
 - Compaction is possible *only* if relocation is dynamic, and is done at execution time
- Use Swapping to move processes out of memory.

Paging

- Physical address space of a process can be noncontiguous;
- Divide physical memory into fixed-sized blocks called frames
 - Size is power of 2, between 512 bytes and 16 Mbytes
 - 4KB is typical
- Divide logical memory into blocks of same size called pages
- Keep track of all free frames
- To run a program of size N pages, need to find N free frames and load program
- Set up a page table to translate logical to physical addresses
- Backing store likewise split into pages
- Internal fragmentation may be there

Address Translation Scheme

- Address generated by CPU is divided into:
 - Page number (p) used as an index into a page table which contains base address of each page in physical memory
 - Page offset (d) combined with base address to define the physical memory address that is sent to the memory unit

• For given logical address space 2^m and page size 2^n

Paging Hardware

page 0

page 1

page 2

page 3

logical memory

n=2 and m=432-bytememory and4-byte pages

0	a
1	b
2	С
3	d
4 5	е
5	f
6	g
7	g h i
8	12.0
9	j k
10	k
_11	1
12	m
13	n
14	0
15	р

logical memory

0	5	
1	6	
2	1	
3	2	
age	ta	ble

i j k
m n o
a b c d
e f g h

Paging (Cont.)

- Calculating internal fragmentation
 - Page size = 2,048 bytes
 - Process size = 72,766 bytes
 - 35 pages + 1,086 bytes
 - Internal fragmentation of 2,048 1,086 = 962 bytes
 - Worst case fragmentation = 1 frame 1 byte
 - On average fragmentation = 1 / 2 frame size
 - So small frame sizes desirable?
 - But each page table entry takes memory to track

Free Frames

Implementation of Page Table

- Page table is kept in main memory
- Page-table base register (PTBR) points to the page table
- Page-table length register (PTLR) indicates size of the page table
- In this scheme every data/instruction access requires two memory accesses
 - One for the page table and one for the data / instruction

- The two memory access problem can be solved by the use of a special fast-lookup hardware cache called associative memory or translation look-aside buffers (TLBs)
- TLBs typically small (64 to 1,024 entries)
- On a TLB miss, value is loaded into the TLB for faster access next time
 - Replacement policies must be considered
 - Some entries can be wired down for permanent fast access

Associative Memory

• Associative memory – parallel search

Page #	Frame #

- Address translation (p, d)
 - If p is in associative register, get frame # out
 - Otherwise get frame # from page table in memory

Paging Hardware With TLB

Effective Access Time

- Associative Lookup = ε time unit
 - Can be < 10% of memory access time
- Hit ratio = α
 - Hit ratio percentage of times that a page number is found in the associative registers; ratio related to number of associative registers
- Consider $\alpha = 80\%$, $\epsilon = 20$ ns for TLB search, M = memory access TIme

• Effective Access Time (EAT)

$$EAT = (M + \varepsilon) \alpha + (2M + \varepsilon)(1 - \alpha)$$

- Consider $\alpha = 80\%$, $\varepsilon = 20$ ns for TLB search, 100ns for memory access
 - EAT = (100+20)*.80 + (200+20)*.20 = 140ns
- Consider slower memory but better hit ratio -> $\alpha = 98\%$, $\epsilon = 20$ ns for TLB search, M = 140ns for memory access
 - EAT = $0.98 \times 160 + 0.02 \times 300 = 162.8 \text{ns}$

Memory Protection

- Memory protection implemented by associating protection bit with each frame to indicate if read-only or read-write access is allowed
 - Can also add more bits to indicate page execute-only, and so on
- Valid-invalid bit attached to each entry in the page table:
 - "valid" indicates that the associated page is in the process' logical address space, and is thus a legal page
 - "invalid" indicates that the page is not in the process' logical address space
- Any violations result in a trap to the kernel

Valid (v) or Invalid (i) Bit In A Page Table

Shared Pages

Shared code

- One copy of read-only (reentrant) code shared among processes (i.e., text editors, compilers, window systems)
- Similar to multiple threads sharing the same process space
- Also useful for interprocess communication if sharing of read-write pages is allowed

Private code and data

- Each process keeps a separate copy of the code and data
- The pages for the private code and data can appear anywhere in the logical address space

Shared Pages Example

| Galvin and Gagne ©2009

process P_3

Structure of the Page Table

- Memory structures for paging can get huge using straight-forward methods
 - Consider a 32-bit logical address space as on modern computers
 - Page size of 4 KB (2¹²)
 - Page table would have 1 million entries $(2^{32} / 2^{12})$
 - If each entry is 4 bytes -> 4 MB of physical address space / memory for page table alone
 - 4 That amount of memory used to cost a lot
 - 4 Don't want to allocate that contiguously in main memory
- Hierarchical Paging
- Hashed Page Tables
- Inverted Page Tables

Hierarchical Page Tables

- Break up the logical address space into multiple page tables
- A simple technique is a two-level page table
- We then page the page table

Two-Level Page-Table Scheme

Two-Level Paging Example

- A logical address (on 32-bit machine with 1K page size) is divided into:
 - a page number consisting of 22 bits
 - a page offset consisting of 10 bits
- Since the page table is paged, the page number is further divided into:
 - a 12-bit page number
 - a 10-bit page offset
- Thus, a logical address is as follows:

page number		page offset	
p_1	p_2	d	
12	10	10	

- where p_1 is an index into the outer page table, and p_2 is the displacement within the page of the inner page table
- Known as forward-mapped page table

Address-Translation Scheme

64-bit Logical Address Space

- Even two-level paging scheme not sufficient
- If page size is $4 \text{ KB} (2^{12})$
 - Then page table has 2⁵² entries
 - If two level scheme, inner page tables could be 2^{10} 4-byte entries
 - Address would look like

outer page	inner page	page offset
p_1	p_2	d
42	10	12

- Outer page table has 2^{42} entries or 2^{44} bytes
- One solution is to add a 2nd outer page table
- But in the following example the 2^{nd} outer page table is still 2^{34} bytes in size
 - 4 And possibly 4 memory access to get to one physical memory location

Three-level Paging Scheme

outer page	inner page	offset d	
p_1	p_2		
42	10	12	

2nd outer page	outer page	inner page	offset
p_1	p_2	p_3	d
32	10	10	12

Hashed Page Tables

- Common in address spaces > 32 bits
- The virtual page number is hashed into a page table
 - This page table contains a chain of elements hashing to the same location
- Each element contains (1) the virtual page number (2) the value of the mapped page frame (3) a pointer to the next element
- Virtual page numbers are compared in this chain searching for a match
 - If a match is found, the corresponding physical frame is extracted

Hashed Page Table

Inverted Page Table

- Rather than each process having a page table and keeping track of all possible logical pages, track all physical pages
- One entry for each real page of memory
- Entry consists of the virtual address of the page stored in that real memory location, with information about the process that owns that page
- Decreases memory needed to store each page table, but increases time needed to search the table when a page reference occurs
- Use hash table to limit the search to one or at most a few page-table entries
 - TLB can accelerate access
- But how to implement shared memory?
 - One mapping of a virtual address to the shared physical address

Inverted Page Table Architecture

Segmentation

- Memory-management scheme that supports user view of memory
- A program is a collection of segments
 - A segment is a logical unit such as:

```
main program
procedure
function
method
```

object

local variables, global variables

common block

stack

symbol table

arrays

User's View of a Program

Logical View of Segmentation

4 2 3

physical memory space

Segmentation Architecture

- Logical address consists of a two tuple:
 - <segment-number, offset>,
- **Segment table** maps two-dimensional physical addresses; each table entry has:
 - base contains the starting physical address where the segments reside in memory
 - **limit** specifies the length of the segment
- Segment-table base register (STBR) points to the segment table's location in memory
- Segment-table length register (STLR) indicates number of segments used by a program; segment number s is legal if s < STLR

Segmentation Architecture (Cont.)

- Protection
 - With each entry in segment table associate:
 - 4 validation bit = $0 \Rightarrow$ illegal segment
 - 4 read/write/execute privileges
- Protection bits associated with segments; code sharing occurs at segment level
- Since segments vary in length, memory allocation is a dynamic storage-allocation problem
- A segmentation example is shown in the following diagram

Segmentation Hardware

trap: addressing error

physical memory

Example of Segmentation

End of Chapter 8

