

# TEST REPORT

Issued: October 16, 2015

Name and Address Fuji Machine Mfg. Co., Ltd.

of the Customer: 19 Chausuyama, Yamamachi, Chiryu, Aichi, 472-8686

Japan

Test Item: Reader Writer Module

Identification: Smart-Reader

Serial No.: E150610, E150803-3

FCC ID: 2ABSPSMART-RW-UNIT

Sample No.:

Sample Receipt Date: June 10, 2015

Test Specification: 47 CFR Part 15 Subpart C

Period of Testing: July 14, 2015 - September 4, 2015

Test Result: PASS

Representative

Test Personnel: K. Miyaji (EMC Dept.)

iNARTE : EMC-003627-NE

Reviewed by: H. Onishi (EMC Dept.)

(2015-10-16) iNARTE : EMC-003318-NT

Other Aspects:

Abbreviations: PASS = passed

FAIL = failed

N/A = not applicable

Note:

This Test Report should not be reproduced except in full, without the written approval of Cosmos Corporation. The test result of this Test Report is based on the tests made for sample provided, and it is not applicable to individual product identical to the sample or similar product.

The judgment of this test report validates the test item only specified in "4. Summary of Test Results".





| Contents                                                                         | Page   |
|----------------------------------------------------------------------------------|--------|
| 1. General Information.                                                          | 3      |
| 1.1 Test Methodology                                                             |        |
| 1.2 Test Facility                                                                | 3      |
| 1.3 Traceability                                                                 |        |
| 2. Description of the Tested Sample                                              |        |
| 2.1 Product Description                                                          | 4      |
| 2.2 Antenna Description                                                          | 4<br>1 |
| 3. Test Condition (Manufacturer's Specification)                                 | 5      |
| 3.1 Mode of Operation                                                            | 5      |
| 3.1 Mode of Operation                                                            | 6      |
| 3.3 Configuration                                                                | 7      |
| 3.4 EUT Ångle                                                                    |        |
| 4. Summary of Test Results                                                       | 11     |
| <b>5. Test Result</b>                                                            | 12     |
|                                                                                  |        |
| 5.1.1 Setting Remarks                                                            |        |
| 5.1.2 Limit                                                                      |        |
| 5.1.3 Test Detail                                                                | 13     |
| 5.2 Transmitter Spurious Emission (Radiated) (15.209, 15.225(d), RSS-Gen 8.9)    |        |
| 5.2.1 Setting Remarks                                                            |        |
| 5.2.2 Limit                                                                      |        |
| 5.2.3 Test Detail                                                                | 16     |
|                                                                                  |        |
| 5.3.1 Setting Remarks                                                            | 19     |
| 5.3.2 Limit                                                                      | 19     |
| 5.3.3 Test Detail                                                                | 19     |
| 5.4 Field Strength of Fundamental Emission (15.225(a) (b) (c) (d), RSS-210 A2.6) | 21     |
| 5.4.1 Setting Remarks                                                            | 21     |
| 5.4.2 Limit                                                                      | 21     |
| 5.4.3 Test Detail                                                                | 21     |
| 5.5 Frequency Stability (15.225(e), RSS-210 A2.6)                                | 25     |
| 5.5.1 Setting Remarks                                                            |        |
| 5.5.2 Limit                                                                      | 25     |
| 5.5.3 Test Detail                                                                |        |
| 6. List of Test and Measurement Instruments                                      |        |

7. Appendix......31



#### 1. General Information

### 1.1 Test Methodology

All measurement subject to the present test report is carried out according to the procedures in ANSI C63.10:2013.

### 1.2 Test Facility

The measurement was carried out at the following facility.

Cosmos Corporation EMC Lab. Oonoki 3571-2 Oonoki, Watarai-cho, Watarai-gun, Mie-ken 516-2102, Japan

- Semi anechoic Chamber 3 m (COAC3M-01)
- Shielded Room (COSR-01)
- Measurement Room

Cosmos Corporation EMC Lab. Oonoki is accredited in accordance with the International Standard ISO/IEC 17025 by the following accreditation bodies and the test facility is registered by the following bodies.

Accreditation: A2LA Accredited Laboratory No. 2900.01

VLAC Accredited Laboratory No. VLAC-039-2

FCC Designation No. JP5182

Registration: Industry Canada Registration No. 3958B

Nemko Laboratory Authorisation. No. ELA 621

### 1.3 Traceability

The calibration of measurement equipment used in the test subject to the present report is designed and operated to ensure that the measurement is traceable to national standards of measurement or equivalent abroad.



# 2. Description of the Tested Sample

## 2.1 Product Description

| Manufacturer                    | Fuji Machine Mfg. Co., Ltd.                                 |
|---------------------------------|-------------------------------------------------------------|
| Model (referred to as the EUT)  | Smart-Reader                                                |
| Type of the Equipment           | ☐ Stand-alone ☐ Combined Equipment                          |
|                                 | □ Plug-in Radio Device □ Other ( )                          |
| Transmitter Type                | ☐ WLAN ☐ Bluetooth ( )                                      |
|                                 | ☐ Zigbee ☐ RFID ☐ Other ( )                                 |
| Nominal Voltage                 | DC 5 V                                                      |
| Type of Modulation              | ASK                                                         |
| Antenna Type                    | ☐ Integral Antenna                                          |
|                                 | 🛛 Dedicated External Antenna                                |
| Operating Frequency             | 13.56 MHz                                                   |
| Type of Power Source            | ☐ AC Mains ☐ Dedicated AC Adaptor                           |
|                                 | □ DC Voltage □ Battery                                      |
| Type of Battery (if applicable) | N/A                                                         |
| Thermal Limitation              | $0^{\circ}\!\!\!\mathrm{C}$ to $55^{\circ}\!\!\!\mathrm{C}$ |

## 2.2 Antenna Description

| Model         | Gain      | Antenna Type | Remarks |
|---------------|-----------|--------------|---------|
| TR3-CA038(16) | -79.9 dBi | Loop Antenna | *       |

### Note:

## 2.3 EUT Description

Equipment under test is as follow:

| Instrument                     | Model        | Serial No. | Rating         |
|--------------------------------|--------------|------------|----------------|
| Reader Writer Module<br>(EUT1) | Smart-Reader | E150610    | DC 5 V, 165 mA |
| Reader Writer Module<br>(EUT2) | Smart-Reader | E150803-3  | DC 5 V, 165 mA |

QAF1466 Issued: 13/03/01 Revised: 14/02/12

<sup>\*:</sup> This is the circuit board that displayed 16 lines identical the TR3-CA038 antenna circuit.



## 3. Test Condition (Manufacturer's Specification)

## 3.1 Mode of Operation

Mode of operation: RFID Operating

#### Note:

The EUT makes communication emission with the maximum RF power by normal operation.

The measurements were carried out using a part of the host equipment because the host equipment is too large for the measurement.

The test of Field Strength of Fundamental Emission was performed under the following condition:

Voltage: DC 5 V  $\pm 15\%$ 



## 3.2 Additional Equipment

The equipment was tested together with additional peripherals.

The following peripherals were used during the tests:

| Instrument                   | Model          | Serial No.                   | Manufacturer      |
|------------------------------|----------------|------------------------------|-------------------|
| RFID MODULE-64               | RFID MODULE-64 |                              | Fuji Machine Mfg. |
| Antenna                      | TR3-CA038(16)  | 12001329 *1                  | TAKAYA            |
| Antenna                      | TR3-CA038(16)  | 12003041 *1                  | TAKAYA            |
| Antenna                      | TR3-CA038(16)  | 12003009 *1                  | TAKAYA            |
| Antenna                      | TR3-CA038(16)  | 12003681 *1                  | TAKAYA            |
| RFID MODULE-64               |                | 002                          | Fuji Machine Mfg. |
| Antenna                      | TR3-CA038(16)  | 12003505 <b>*</b> 2          | TAKAYA            |
| Antenna                      | TR3-CA038(16)  | 12003761 *2                  | TAKAYA            |
| Antenna                      | TR3-CA038(16)  | 12003713 *2                  | TAKAYA            |
| Antenna                      | TR3-CA038(16)  | 12003745 <b>*</b> 2          | TAKAYA            |
| Personal Computer            | PP17L          | CN-0N8719-48643<br>-57F-1500 | DELL              |
| AC Adapter                   | HP-OQ065B83    | CN-0N2765-47890<br>-47D-8266 | DELL              |
| USB Mouse                    | AMU1402JP      | 0605000678                   | Targus            |
| Access Point                 | FXA2000-G      | CJRKL77000593                | CONTEC            |
| AC Adapter                   | SA115B-05U     | 0613C                        | SINO-AMERICAN     |
| Regulated DC Power<br>Supply | PAN60-10A      | HC000143                     | KIKUSUI           |

### Note:

<sup>\*1:</sup> These were used to the test of AC Power Line Conducted Emission and Transmitter Spurious Emission.

<sup>\*2:</sup> These were used to the test of 20 dB Bandwidth, Field Strength of Fundamental Emission and Frequency Stability.



# 3.3 Configuration

|   | Instrument                   | Model            |              | Cable                        | Length | Shield |
|---|------------------------------|------------------|--------------|------------------------------|--------|--------|
| Α | EUT 1                        | Smart-Reader     | a            | AC Power Cord                | 0.9 m  | ×      |
| A | (Reader Writer Module)       | (S/N: E150610)   | b            | AC Power Cord                | 1.8 m  | ×      |
| В | RFID MODULE-64               |                  | С            | AC Power Cord                | 3.0 m  | ×      |
| ь | KFID MODULE 04               | (S/N: E150610)   | d            | DC Power Cord                | 1.9 m  | 0      |
| C | Antenna                      | TR3-CA038(16)    | е            | DC Power Cord                | 1.9 m  | ×      |
| D | EUT 2                        | Smart-Reader     | $\mathbf{f}$ | DC Power Cord                | 0.4 m  | ×      |
| ע | (Reader Writer Module)       | (S/N: E150803-3) | g            | DC Power Cord                | 1.8 m  | ×      |
| E | RFID MODULE-64               |                  | h            | USB Cable                    | 3.0 m  | 0      |
| E | KTID MODULE-64               | (S/N: 002)       |              | USB Cable                    | 3.0 m  | 0      |
| F | Antenna                      | TR3-CA038(16)    | j            | USB Mouse Cable              | 1.5 m  | ×      |
| G | Personal Computer            | PP17L            | k            | LAN Cable                    | 2.0 m  | ×      |
| Н | AC Adapter                   | HP-OQ065B83      | 1            | Antenna Cable ( $\times$ 64) | 0.1 m  | ×      |
| Ι | USB Mouse                    | AMU1402JP        | m            | Antenna Cable ( $\times$ 64) | 0.1 m  | ×      |
| J | Access Point                 | FXA2000-G        | n            | Earth Cable                  | 2.9 m  | ×      |
| K | AC Adapter                   | SA115B-05U       | 0            | Earth Cable                  | 2.9 m  | ×      |
| L | Regulated DC Power<br>Supply | PAN60-10A        |              |                              |        |        |



## 3.3 Configuration (Continued)

### AC Power Line Conducted Emission



- Ferrite Core: 2 turn (E04SR241336A, SEIWA ELECTRIC MFG.)
- Integrated Ferrite Core

## Excess cable arrangement

ERF140212

AC Power Line Conducted Emission

|   | Symbol Length |       | Symbol Length Position |                 |  |  |
|---|---------------|-------|------------------------|-----------------|--|--|
|   | b, n          | 0.3 m | Center                 | Bundle          |  |  |
| Ī | d, h, k       | 0.3 m | Center                 | Bundle and Hung |  |  |
|   | e             | 0.4 m | Center                 | Bundle and Hung |  |  |

Cosmos Corporation QAF1466 Issued: 13/03/01 Revised: 14/02/12



## 3.3 Configuration (Continued)

## Transmitter Spurious Emission (Radiated)



- 8
- Ferrite Core: 2 turn (E04SR241336A, SEIWA ELECTRIC MFG.)
- Integrated Ferrite Core



# 3.3 Configuration (Continued)

## Field Strength of Fundamental Emission



- ☐ Terminal Block
- Ferrite Core: 2 turn (E04SR241336A, SEIWA ELECTRIC MFG.)
- Integrated Ferrite Core



# 3.4 EUT Angle



# 4. Summary of Test Results

These test results are the test results of the condition specified with "3. Test Condition".

| FCC Section               | IC Section         | Test Item                                | FCC<br>Result |
|---------------------------|--------------------|------------------------------------------|---------------|
| 15.207                    | RSS-Gen 8.8        | AC Power Line Conducted Emission         | PASS          |
| 15.209,<br>15.225(d)      | RSS-Gen 8.9        | Transmitter Spurious Emission (Radiated) | PASS          |
| 15.215(c)                 |                    | 20 dB Bandwidth                          | PASS          |
| 15.225<br>(a) (b) (c) (d) | RSS-210 A2.6       | Field Strength of Fundamental Emission   | PASS          |
| 15.225(e)                 | RSS-210 A2.6       | Frequency Stability                      | PASS          |
|                           | RSS-Gen<br>Annex A | Occupied Bandwidth                       |               |
|                           | RSS-Gen 7.1        | Receiver Spurious Emission (Radiated)    |               |



#### 5. Test Result

### 5.1 AC Power Line Conducted Emission (15.207, RSS-Gen 8.8)

Result: PASS

#### 5.1.1 Setting Remarks

The conducted disturbance voltage of AC power line in the frequency range from 150 kHz to 30 MHz was measured in accordance with ANSI C63.10:2013.

The test setup was made in accordance with ANSI C63.10:2013 on the table installed in a shielded room. The non-conductive table, 0.8 m high, was placed on the reference ground plane, and the EUT was put on the non-conductive table. The used Line Impedance Stabilizing Network (LISN) has a rated impedance of 50  $\Omega$ /50  $\mu$ H as specified in CISPR16-1-2. The test receiver with Quasi Peak and Average detector is in accordance with CISPR 16-1-1.

The conducted emission level is calculated by adding Cable Attenuation Factor and Insertion Loss of LISN.

Activate the EUT System and run the software prepared for the test.

Setting Condition of Test receiver

| Frequency range   | Detector   | RBW   |
|-------------------|------------|-------|
| 150 kHz to 30 MHz | Quasi Peak | 9 kHz |
|                   | Average    | 9 kHz |

#### 5.1.2 Limit

| Frequency range    | Conducted Limit<br>[dBµV] |            |  |  |  |
|--------------------|---------------------------|------------|--|--|--|
|                    | Quasi Peak                | Average    |  |  |  |
| 150 kHz to 500 kHz | 66 to 56 *                | 56 to 46 * |  |  |  |
| 500 kHz to 5 MHz   | 56                        | 46         |  |  |  |
| 5 MHz to 30 MHz    | 60                        | 50         |  |  |  |

#### Note:

<sup>\*:</sup> Decrease with the logarithm of the frequency.



### 5.1.3 Test Detail

Uncertainty of measurement result : ±3.45 dB

Date of testing : September 4, 2015

Room temperature :  $22^{\circ}$ C Relative humidity : 50%

### Calculation

Result = Reading + c.f  
= 
$$39.5 + 10.4$$
  
=  $49.9$ 

$$\begin{array}{ll} \text{Margin} &=& \text{Limit - Result} \\ &=& 64.9 \cdot 49.9 \\ &=& 15.0 \end{array}$$

### Note:

c.f (Correction Factor) = Cable Attenuation Factor + LISN Factor





## 5.1.3 Test Detail (Continued)

### **Test Data**



| Final | Result |
|-------|--------|

|     | L1 Phase  | _             |               |      |               |               |               |               |        |        |
|-----|-----------|---------------|---------------|------|---------------|---------------|---------------|---------------|--------|--------|
| No. | Frequency | Reading       | Reading       | c.f  | Result        | Result        | Limit         | Limit         | Margin | Margin |
|     |           | QP            | AV            |      | QP            | AV            | QP            | AV            | _QP_   | _AV_   |
|     | [MHz]     | $[dB(\mu V)]$ | $[dB(\mu V)]$ | [dB] | $[dB(\mu V)]$ | $[dB(\mu V)]$ | $[dB(\mu V)]$ | $[dB(\mu V)]$ | [dB]   | [dB]   |
| 1   | 0.1706    | 39.5          | 35. 4         | 10.4 | 49. 9         | 45.8          | 64. 9         | 54. 9         | 15.0   | 9. 1   |
| 2   | 0.5114    | 31.1          | 28. 7         | 10.2 | 41.3          | 38.9          | 56.0          | 46.0          | 14.7   | 7.1    |
| 3   | 2, 385    | 26.7          | 20.6          | 10.3 | 37.0          | 30.9          | 56.0          | 46.0          | 19.0   | 15. 1  |
| 4   | 4.847     | 21.8          | 11. 9         | 10.5 | 32. 3         | 22.4          | 56.0          | 46.0          | 23.7   | 23.6   |
| 5   | 13.560    | 31.4          | 24. 6         | 10.9 | 42. 3         | 35. 5         | 60. 0         | 50. 0         | 17.7   | 14. 5  |
| 6   | 27.120    | 18.6          | 12.0          | 11.4 | 30.0          | 23.4          | 60.0          | 50.0          | 30.0   | 26.6   |
|     |           |               |               |      |               |               |               |               |        |        |
|     | L2 Phase  | -             |               |      |               |               |               |               |        |        |
| No. | Frequency | Reading       | Reading       | c.f  | Result        | Result        | Limit         | Limit         | Margin | Margin |
|     |           | QP            | AV            |      | QP            | AV            | QP            | AV            | QP     | AV     |
|     | [MHz]     | $[dB(\mu V)]$ | $[dB(\mu V)]$ | [dB] | $[dB(\mu V)]$ | $[dB(\mu V)]$ | $[dB(\mu V)]$ | $[dB(\mu V)]$ | [dB]   | [dB]   |
| 1   | 0. 1698   | 39. 3         | 35. 9         | 10.4 | 49. 7         | 46.3          | 65. 0         | 55. 0         | 15.3   | 8.7    |
| 2   | 0.5105    | 33. 1         | 30. 7         | 10.2 | 43. 3         | 40.9          | 56.0          | 46.0          | 12.7   | 5. 1   |
| 3   | 2.384     | 26.6          | 20.6          | 10.3 | 36. 9         | 30.9          | 56.0          | 46.0          | 19.1   | 15. 1  |
| 4   | 4.918     | 24.3          | 17.6          | 10.5 | 34.8          | 28. 1         | 56.0          | 46.0          | 21.2   | 17.9   |
| 5   | 13.560    | 31.3          | 24. 5         | 10.8 | 42. 1         | 35.3          | 60.0          | 50.0          | 17.9   | 14.7   |
| 6   | 27.120    | 19.3          | 12.8          | 11.5 | 30.8          | 24.3          | 60.0          | 50.0          | 29.2   | 25. 7  |

Cosmos Corporation QAF1466 Issued: 13/03/01 Revised: 14/02/12



### 5.2 Transmitter Spurious Emission (Radiated) (15.209, 15.225(d), RSS-Gen 8.9)

Result: PASS

### 5.2.1 Setting Remarks

In the frequency range from 9 kHz to 1 GHz (over 10th harmonics), the electric field strength was measured in accordance with ANSI C63.10:2013.

The test setup was made in accordance with ANSI C63.10:2013 on the table installed in a semi-anechoic chamber. The non-conductive table, 0.8 m high, was placed on the turntable, and the EUT was put on the non-conductive table. The EUT was measured at 1 m to 4 m height of the antenna above 30 MHz. The turntable was fully rotated. The highest radiation from the equipment was recorded. The measurement above 30 MHz was carried out with both horizontal and vertical antenna polarization. The test receiver with Quasi Peak detector is in accordance with CISPR 16-1-1. The measurement was carried out with the measuring distance of 3 m. Then the limit of 30 m distance below 30 MHz was converted to the limit of 3 m distance with the  $40\log(30 \text{ m/3 m})$ .

Setting Condition of Test receiver

| Frequency range      | Detector   | RBW                |
|----------------------|------------|--------------------|
| 0 kHa to 00 kHa      | Peak       | 200 Hz             |
| 9 kHz to 90 kHz      | Average    | 200 Hz             |
| 90 kHz to 110 kHz    | Quasi Peak | $200~\mathrm{Hz}$  |
| 110111 / 150111      | Peak       | 200 Hz             |
| 110 kHz to 150 kHz   | Average    | 200 Hz             |
| 150 -11- 4- 400 -11- | Peak       | 9 kHz              |
| 150 kHz to 490 kHz   | Average    | 9 kHz              |
| 490 kHz to 30 MHz    | Quasi Peak | 9 kHz              |
| 30 MHz to 1 GHz      | Quasi Peak | $120~\mathrm{kHz}$ |



#### 5.2.2 Limit

The emission limits shown in the following table are based on measurements employing a CISPR Quasi Peak detector except for the frequency bands 9 kHz to 90 kHz, 110 kHz to 490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an Average detector. The limit on Peak radio frequency emissions is 20 dB above the maximum permitted Average emission limit applicable to the equipment under test.

| T                    | F                             | Field Strength (Distance) |               |       |  |  |  |
|----------------------|-------------------------------|---------------------------|---------------|-------|--|--|--|
| Frequency range      | [µV/m]                        |                           | [dBµV/r       | n]    |  |  |  |
| 9 kHz to 490 kHz     | 2400/F (kHz)<br>266.6 to 4.89 | (300 m)                   | 128.5 to 93.8 | (3 m) |  |  |  |
| 490 kHz to 1.705 MHz | 24000/F (kHz)<br>48.9 to 14.0 | (30 m)                    | 73.8 to 62.9  | (3 m) |  |  |  |
| 1.705 MHz to 30 MHz  | 30                            | (30  m)                   | 69.5          | (3 m) |  |  |  |
| 30 MHz to 88 MHz     | 100                           | (3 m)                     | 40.0          | (3 m) |  |  |  |
| 88 MHz to 216 MHz    | 150                           | (3 m)                     | 43.5          | (3 m) |  |  |  |
| 216 MHz to 960 MHz   | 200                           | (3 m)                     | 46.0          | (3 m) |  |  |  |
| Above 960 MHz        | 500                           | (3 m)                     | 53.9          | (3 m) |  |  |  |

#### 5.2.3 Test Detail

Uncertainty of measurement result : ±5.08 dB

Date of testing : July 14, 2015 July 16, 2015

Room temperature :  $21^{\circ}$ C Relative humidity : 51% 51%

Date of testing : July 17, 2015 August 25, 2015



### 5.2.3 Test Detail (Continued)

#### Calculation

Result = Reading + c.f = 18.3 + 22.8= 41.1

Margin = Limit · Result = 69.5 · 41.1 = 28.4

#### Note:

[Below 30 MHz]

c.f (Correction Factor) = Cable Attenuation Factor + Antenna Factor

### [Above 30 MHz]

c.f (Correction Factor) = Cable Attenuation Factor + Antenna Factor + Amplifier Gain

<Below 30 MHz>
Worst Test Data (Antenna: 90°, Y axis)





## 5.2.3 Test Detail (Continued)

## <Below 30 MHz> Worst Test Data (X axis)



#### Final Result

| <br>No.<br>1<br>2<br>3 | Horizontal<br>Frequency<br>[MHz]<br>166.514<br>723.867<br>796.256 | Reading | c.f  | Result<br>[dB(µV/m)]<br>29.7<br>36.9<br>36.5 | Limit<br>[dB(µV/m)]<br>43.5<br>46.0<br>46.0 | Margin<br>[dB]<br>13.8<br>9.1<br>9.5 | Height [cm] 194.0 117.0 191.0 | Angle<br>[°]<br>342.0<br>237.0<br>247.0 |
|------------------------|-------------------------------------------------------------------|---------|------|----------------------------------------------|---------------------------------------------|--------------------------------------|-------------------------------|-----------------------------------------|
| No.                    | Vertical Po<br>Frequency<br>[MHz]<br>45.000                       | Reading | c. f |                                              | Limit<br>[dB(μV/m)]<br>40.0                 | Margin<br>[dB]<br>20.3               | Height [cm] 100.0             | Angle<br>[°]<br>91.0                    |

ERF140212 Cosmos Corporation QAF1466 Issued: 13/03/01 Revised: 14/02/12



### 5.3 20 dB Bandwidth (15.215(c))

Result: PASS

## 5.3.1 Setting Remarks

The both side of 20 dB down value from peak power were measured by using 20 dB bandwidth measurement function.

The spectrum analyzer is set as following:

·Resolution Bandwidth : 1% to 5% of the OBW (not less than 1 kHz)

·Video Bandwidth : greater than RBW

 $\cdot$  Detector Mode : Peak

·Trace Mode : Max Hold

#### 5.3.2 Limit

Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emission is contained within the frequency band designated in the rule section under which the equipment is operated.

### 5.3.3 Test Detail

Uncertainty of measurement result : ±0.011%

Date of testing : September 4, 2015

Room temperature :  $25^{\circ}$ C Relative humidity : 47%

| Measured<br>Bandwidth<br>[kHz] |
|--------------------------------|
| 5.3                            |

|        | Edge of<br>Bandwidth<br>[MHz] | Limit<br>[MHz] | Margin<br>[kHz] |
|--------|-------------------------------|----------------|-----------------|
| Lower  | 13.5574                       | 13.01          | 547             |
| Higher | 13.5627                       | 14.01          | 447             |



## 5.3.3 Test Detail (Continued)

### **Test Data**





### 5.4 Field Strength of Fundamental Emission (15.225(a) (b) (c) (d), RSS-210 A2.6)

Result: PASS

### 5.4.1 Setting Remarks

The test setup was made in accordance with ANSI C63.10:2013 on the table installed in a semi-anechoic chamber. The non-conductive table, 0.8 m high, was placed on the turntable, and the EUT was put on the non-conductive table. The turntable was fully rotated. The highest radiation from the equipment was recorded. The measurement was carried out with the measuring distance of 3 m. The test receiver with Quasi Peak detector is in accordance with CISPR 16-1-1. Then the limit of 30 m distance was converted to the limit of 3 m distance with the  $40\log(30 \text{ m/3 m})$ .

### 5.4.2 Limit

| E                                   | Field Strength (Distance) |        |       |       |
|-------------------------------------|---------------------------|--------|-------|-------|
| Frequency range                     | [µV/m]                    |        | [dBµV | V/m]  |
| 13.553 MHz to 13.567 MHz            | 15848                     | (30 m) | 123.9 | (3 m) |
| 13.410 MHz to 13.553 MHz            | 334                       | (30 m) | 90.4  | (3 m) |
| and 13.567 MHz to 13.710 MHz        | 554                       | (30 m) | 90.4  | (3 m) |
| 13.110 MHz to 13.410 MHz            | 100                       | (30 m) | 90 F  | (3 m) |
| and 13.710 MHz to 14.010 MHz        | 106                       | (50 m) | 80.5  | (5 m) |
| Outside of 13.110 MHz to 14.010 MHz | 30                        | (30 m) | 69.5  | (3 m) |

### 5.4.3 Test Detail

Uncertainty of measurement result : ±4.64 dB

Date of testing : August 27, 2015

Room temperature :  $22^{\circ}$ C Relative humidity : 36%



### 5.4.3 Test Detail (Continued)

### Calculation

Result = Reading + c.f = 15.5 + 22.7

= 38.2

Margin = Limit - Result

= 69.5 - 38.2

= 31.3

## Note:

c.f (Correction Factor) = Cable Attenuation Factor + Antenna Factor

### Test Data (Power Supply: DC 4.25 V)



| Final                 | Result                                                       |                                                       |                                                   |                                            |                                                     |                                              |                                         |        |
|-----------------------|--------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|--------------------------------------------|-----------------------------------------------------|----------------------------------------------|-----------------------------------------|--------|
| No.                   | Frequency                                                    | Reading                                               | c.f                                               | Result                                     | Limit                                               | Margin                                       | Angle                                   | Remark |
| 1<br>2<br>3<br>4<br>5 | [MHz]<br>13. 110<br>13. 410<br>13. 553<br>13. 560<br>13. 567 | [dB(μV)]<br>15. 5<br>15. 5<br>16. 9<br>26. 9<br>17. 0 | [dB(1/m)]<br>22.7<br>22.9<br>23.0<br>23.0<br>23.0 | [dB(µV/m)]<br>38.2<br>38.4<br>39.9<br>49.9 | [dB(µV/m)]<br>69.5<br>80.5<br>90.4<br>123.9<br>90.4 | [dB]<br>31.3<br>42.1<br>50.5<br>74.0<br>50.4 | [°]<br>81. 0<br>81. 0<br>81. 0<br>81. 0 |        |
| 6<br>7                | 13. 710<br>14. 010                                           | 15. 2<br>15. 2                                        | 23. 0<br>23. 2                                    | 38. 2<br>38. 4                             | 80. 5<br>69. 5                                      | 42. 3<br>31. 1                               | 81. 0<br>81. 0                          |        |





## 5.4.3 Test Detail (Continued)

## Test Data (Power Supply: DC 5 V)



| Final                      | Result                                                            |                                                                      |                                                           |                                                                                                               |                                                                                                                     |                                                      |                                             |        |
|----------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------|--------|
| No.                        | Frequency                                                         | Reading                                                              | c. f                                                      | Result                                                                                                        | Limit                                                                                                               | Margin                                               | Angle                                       | Remark |
| 1<br>2<br>3<br>4<br>5<br>6 | [MHz]<br>13.110<br>13.410<br>13.553<br>13.560<br>13.710<br>14.010 | [dB( $\mu$ V)]<br>15. 5<br>15. 9<br>16. 9<br>26. 9<br>15. 1<br>15. 2 | [dB(1/m)]<br>22.7<br>22.9<br>23.0<br>23.0<br>23.0<br>23.2 | $\begin{bmatrix} \mathrm{dB}(\mu\mathrm{V/m})] \\ 38.2 \\ 38.8 \\ 39.9 \\ 49.9 \\ 38.1 \\ 38.4 \end{bmatrix}$ | $ \begin{bmatrix} \mathrm{dB}(\mu\mathrm{V/m})] \\ 69.5 \\ 80.5 \\ 90.4 \\ 123.9 \\ 80.5 \\ 69.5 \\ \end{bmatrix} $ | [dB]<br>31.3<br>41.7<br>50.5<br>74.0<br>42.4<br>31.1 | [°]<br>81.0<br>81.0<br>81.0<br>81.0<br>81.0 |        |

ERF140212 Cosmos Corporation QAF1466 Issued: 13/03/01 Revised: 14/02/12



## 5.4.3 Test Detail (Continued)

## Test Data (Power Supply: DC 5.75 V)



| Final  | Result             |                |                |                |                 |                |                |        |
|--------|--------------------|----------------|----------------|----------------|-----------------|----------------|----------------|--------|
| No.    | Frequency          | Reading        | c.f            | Result         | Limit           | Margin         | Angle          | Remark |
| 1      | [MHz]              | [dB(µV)]       | [dB(1/m)]      |                | $[dB(\mu V/m)]$ | [dB]           | [°]            |        |
| 2      | 13. 110<br>13. 410 | 15. 6<br>15. 9 | 22. 7<br>22. 9 | 38. 3<br>38. 8 | 69. 5<br>80. 5  | 31. 2<br>41. 7 | 81. 0<br>81. 0 |        |
| 3<br>4 | 13. 553<br>13. 560 | 17. 0<br>26. 8 | 23. 0<br>23. 0 | 40. 0<br>49. 8 | 90. 4<br>123. 9 | 50. 4<br>74. 1 | 81. 0<br>81. 0 |        |
| 5<br>6 | 13. 567<br>13. 710 | 16. 9<br>15. 2 | 23. 0<br>23. 0 | 39. 9<br>38. 2 | 90. 4<br>80. 5  | 50. 5<br>42. 3 | 81. 0<br>81. 0 |        |
| 7      | 14, 010            | 15.1           | 23. 2          | 38. 3          | 69. 5           | 31. 2          | 81.0           |        |

ERF140212 Cosmos Corporation QAF1466 Issued: 13/03/01 Revised: 14/02/12



## 5.5 Frequency Stability (15.225(e), RSS-210 A2.6)

Result: PASS

### 5.5.1 Setting Remarks

The EUT was placed in an environmental test chamber, exposed in extreme temperatures until its temperature is stabilized. The measurement was carried out at every  $10^{\circ}\text{C}$  from  $-20^{\circ}\text{C}$  to  $+50^{\circ}\text{C}$  in the most common nominal supply voltage and the measurement was carried out at  $\pm 15\%$  of rated voltage at  $20^{\circ}\text{C}$ .

#### 5.5.2 Limit

The frequency stability of the carrier signal shall be maintained within  $\pm 0.01\%$  of the operating frequency.

### 5.5.3 Test Detail

Uncertainty of measurement result : ±0.0021 Hz

Date of testing : August 28, 2015

Room temperature : Refer to Test Data

Calculation

Deviation [Hz] = Measured Frequency - Center Frequency

= 13559990 - 1356000

= -10

Deviation [ppm] = Deviation [Hz] ÷ Center Frequency × 1000000

 $= |-10| \div 13560000 \times 1000000$ 

**⇒** 0.7

Margin = Limit - Deviation [ppm]

= 100 - 0.7= 99.3



## 5.5.3 Test Detail (Continued)

## **Test Data**

Center Frequency: 13.56 MHz

|            | 1              |           |           |           |       |        |
|------------|----------------|-----------|-----------|-----------|-------|--------|
|            |                | Measured  |           |           |       |        |
| Temp       |                | Frequency | Deviation | Deviation | Limit | Margin |
| $[\infty]$ | Operation Time | [Hz]      | [Hz]      | [ppm]     | [ppm] | [ppm]  |
|            | Startup        | 13559990  | -10       | 0.7       | 100   | 99.3   |
| 50         | 2 min          | 13559989  | -11       | 0.8       | 100   | 99.2   |
|            | 5 min          | 13559989  | -11       | 0.8       | 100   | 99.2   |
|            | 10 min         | 13559989  | -11       | 0.8       | 100   | 99.2   |
|            | Startup        | 13560002  | 2         | 0.1       | 100   | 99.9   |
| 40         | 2 min          | 13560000  | 0         | 0.0       | 100   | 100.0  |
| 40         | 5 min          | 13560000  | 0         | 0.0       | 100   | 100.0  |
|            | 10 min         | 13560000  | 0         | 0.0       | 100   | 100.0  |
|            | Startup        | 13560014  | 14        | 1.0       | 100   | 99.0   |
| 00         | 2 min          | 13560012  | 12        | 0.9       | 100   | 99.1   |
| 30         | 5 min          | 13560012  | 12        | 0.9       | 100   | 99.1   |
|            | 10 min         | 13560011  | 11        | 0.8       | 100   | 99.2   |
|            | Startup        | 13560031  | 31        | 2.3       | 100   | 97.7   |
| 20         | 2 min          | 13560028  | 28        | 2.1       | 100   | 97.9   |
|            | 5 min          | 13560029  | 29        | 2.1       | 100   | 97.9   |
|            | 10 min         | 13560029  | 29        | 2.1       | 100   | 97.9   |
|            | Startup        | 13560042  | 42        | 3.1       | 100   | 96.9   |
| 10         | 2 min          | 13560041  | 41        | 3.0       | 100   | 97.0   |
| 10         | 5 min          | 13560041  | 41        | 3.0       | 100   | 97.0   |
|            | 10 min         | 13560041  | 41        | 3.0       | 100   | 97.0   |
|            | Startup        | 13560036  | 36        | 2.7       | 100   | 97.3   |
| 0          | 2 min          | 13560038  | 38        | 2.8       | 100   | 97.2   |
| U          | 5 min          | 13560039  | 39        | 2.9       | 100   | 97.1   |
|            | 10 min         | 13560039  | 39        | 2.9       | 100   | 97.1   |
|            | Startup        | 13560010  | 10        | 0.7       | 100   | 99.3   |
| -10        | 2 min          | 13560015  | 15        | 1.1       | 100   | 98.9   |
| 10         | 5 min          | 13560015  | 15        | 1.1       | 100   | 98.9   |
|            | 10 min         | 13560016  | 16        | 1.2       | 100   | 98.8   |
|            | Startup        | 13559956  | -44       | 3.2       | 100   | 96.8   |
| -20        | 2 min          | 13559963  | -37       | 2.7       | 100   | 97.3   |
| -20        | 5 min          | 13559963  | -37       | 2.7       | 100   | 97.3   |
|            | 10 min         | 13559964  | -36       | 2.7       | 100   | 97.3   |



# 5.5.3 Test Detail (Continued)

## **Test Data**

| Temp<br>[°C] | Supply<br>Voltage<br>[V] | Measured<br>Frequency<br>[Hz] | Deviation<br>[Hz] | Deviation<br>[ppm] | Limit<br>[ppm] | Margin<br>[ppm] |
|--------------|--------------------------|-------------------------------|-------------------|--------------------|----------------|-----------------|
|              | 4.25                     | 13560020                      | 20                | 1.5                | 100            | 98.5            |
| 20           | 5.00                     | 13560029                      | 29                | 2.1                | 100            | 97.9            |
|              | 5.75                     | 13560034                      | 34                | 2.5                | 100            | 97.5            |



## 6. List of Test and Measurement Instruments

AC Power Line Conducted Emission

| Instruments                                                          | Manufacturer                       | Model                                  | Serial No.                  | Calibrated<br>Date/Until |
|----------------------------------------------------------------------|------------------------------------|----------------------------------------|-----------------------------|--------------------------|
| EMI Test Receiver                                                    | ROHDE&<br>SCHWARZ                  | ESCI                                   | 100413                      | 2014/11/27<br>2015/11/26 |
| Artificial-Mains<br>Network<br>/Highpass Filter<br>/Attenuator 10 dB | Kyoritsu<br>/Kyoritsu<br>/TAMAGAWA | KNW-341C (F)<br>/KFL-007<br>/CFA-03    | 8-1659-1<br>/8-1708-10<br>/ | 2015/06/18<br>2016/06/17 |
| Artificial-Mains<br>Network<br>/Highpass Filter<br>/Attenuator 10 dB | Kyoritsu<br>/Kyoritsu<br>/ JFW     | KNW-341 F<br>/KFL-007<br>/ 50FP-010-H2 | 8S-2996-1<br>/8-1741-2<br>/ | 2015/06/25<br>2016/06/24 |
| Shielded Room                                                        | JSE                                | COSR-01                                |                             |                          |
|                                                                      | Fujikura                           | 3D-2W                                  | OC01                        |                          |
| RF Cable<br>RF Selector                                              | SUHNER                             | RG223/U                                | OC02<br>OC04                | 2015/04/06<br>2016/04/05 |
|                                                                      | TSJ                                | RFM-E221                               | 3148                        |                          |
| 50 Ω Terminator                                                      | RES-NET<br>MICROWAVE               | RCX6BM                                 |                             | 2015/05/28<br>2016/05/27 |
| Software                                                             | ТОҮО                               | EP5/CE<br>(ver5.3.20)                  |                             |                          |

Transmitter Spurious Emission (Radiated) (Below 30 MHz) /

Field Strength of Fundamental Emission

| Instruments                                  | Manufacturer         | Model                  | Serial No.           | Calibrated<br>Date/Until |
|----------------------------------------------|----------------------|------------------------|----------------------|--------------------------|
| EMI Test Receiver                            | Agilent Technologies | N9038A                 | MY54130015           | 2015/06/29<br>2016/06/28 |
| Loop Antenna<br>(9 kHz to 30 MHz)            | SCHAFFNER            | HLA6120                | 1137                 | 2014/10/05<br>2015/10/04 |
| Anechoic Chamber 3 m                         | JSE                  | COAC3M-01              |                      | 2015/05/07<br>2016/05/06 |
|                                              | Fujikura             | 5D-2W                  | OC09                 |                          |
| RF Cable<br>RF Selector<br>(9 kHz to 30 MHz) | SUHNER               | RG223/U                | OC10<br>OC11<br>OC12 | 2015/05/11<br>2016/05/10 |
|                                              | TSJ                  | RFM-E121               | 03149                |                          |
| Software                                     | ТОҮО                 | EP5/ME<br>(ver 5.1.40) |                      |                          |



## 6. List of Test and Measurement Instruments (Continued)

Transmitter Spurious Emission (Radiated) (Above 30 MHz)

| Instruments                                  | Manufacturer         | Model                 | Serial No. | Calibrated<br>Date/Until |
|----------------------------------------------|----------------------|-----------------------|------------|--------------------------|
| EMI Test Receiver                            | Agilent Technologies | N9038A                | MY54130015 | 2015/06/29<br>2016/06/28 |
| Pre-Amplifier<br>(30 MHz to 1 GHz)           | HEWLETT<br>PACKARD   | 8447D OPT 010         | 2944A07891 | 2015/03/13<br>2016/03/12 |
| Biconical Antenna<br>(30 MHz to 300 MHz)     | SCHWARZBECK          | VHBB9124<br>/ BBA9106 | 9124-311   | 2014/08/30<br>2015/08/29 |
| Log-Periodic Antenna<br>(300 MHz to 1 GHz)   | SCHWARZBECK          | UHALP9108-A           | 0645       | 2014/08/30<br>2015/08/29 |
| Anechoic Chamber 3 m                         | JSE                  | COAC3M-01             |            | 2015/05/07<br>2016/05/06 |
| Attenuator 3 dB                              | JFW                  | 50FP-003-H2           |            | 2015/03/13<br>2016/03/12 |
| RF Cable<br>RF Selector<br>(30 MHz to 1 GHz) | Fujikura             | 8D-2W                 | OC14       |                          |
|                                              | SUHNER               | RG223/U               | OC11       |                          |
|                                              |                      | RG214/U               | OC15       | 2015/05/11               |
|                                              |                      |                       | OC16       | 2016/05/10               |
|                                              |                      | RG400/U               | OC17       |                          |
|                                              | TSJ                  | RFM-E121              | 03149      |                          |
| Software                                     | ТОҮО                 | EP5/RE<br>(ver 5.7.1) |            |                          |

20 dB Bandwidth / Frequency Stability

| Instruments             | Manufacturer         | Model  | Serial No. | Calibrated<br>Date/Until |
|-------------------------|----------------------|--------|------------|--------------------------|
| EMI Test Receiver       | Agilent Technologies | N9038A | MY54130015 | 2015/06/29<br>2016/06/28 |
| Thermostatic<br>Chamber | ESPEC                | PU-2KP | 14010409   | 2015/08/07<br>2016/08/06 |



# 7. Appendix

Refer to separated files for the following appendixes.

Appendix 1: Front view of EUT

Appendix 2: Photographs of the Test Setup