## Prova de Física 1 Llicenciatura de Químiques 5 de Desembre, 2007

## Exercici 1

Considereu el muntatge de la figura, amb el bloc de 2 kg inicialment en repòs a dalt del pla inclinat de 30° i la molla (amb una contant  $k = 100 \text{ N m}^{-1}$ ) fixada al final del mateix. Al deixar anar el bloc, aquest caurà pel pla inclinat i provocarà una compressió x de la molla respecte a la seva posició d'equilibri.



Figura 1

1<sup>r</sup> cas: No hi ha fregament del bloc amb la superfície del pla inclinat:

- 1. Al final del seu recorregut...
  - a) El bloc es quedarà parat amb la molla comprimida.
  - b) La molla rellançarà cap a dalt el bloc fins ocupar la seva posició inicial de repòs (\*)
  - c) La molla es descomprimirà i el bloc ocuparà seguidament la posició d'equilibri d'aquesta
  - d) Cap de les anteriors
- 2. Si x representa la compressió de la molla, l'energia potencial d'aquesta val...
  - a)  $\frac{1}{2}k x^2$  (\*)
  - b)  $2 k x^2$
  - c)  $\frac{1}{2}kx$
  - d) 2kx
- 3. Abans de xocar amb la molla, l'energia mecànica del bloc és la suma de...
  - a) L'energia cinètica del bloc i la seva energia potencial gravitatòria (\*)
  - b) L'energia cinètica del bloc i l'energia potencial de la molla
  - c) Les energies potencials del seu pes i de la molla
  - d) Cap de les anteriors

- 4. Al xocar amb la molla, l'energia mecànica del bloc és la suma de...
  - a) L'energia cinètica del bloc i la seva energia potencial gravitatòria
  - b) L'energia cinètica del bloc i l'energia potencial de la molla (\*)
  - c) Les energies potencials del seu pes i de la molla
  - d) Cap de les anteriors
- 5. En el mateix instant de xocar amb la molla, l'energia cinètica del bloc val ...
  - a) 78.4 J
  - b) 39.2 J(\*)
  - c) 67.9 J
  - d) 45.3 J
- 6. Desprès del xoc, la compressió de la molla és ...
  - a) 1.25 m
  - b) 0.89 m (\*)
  - c) 1.17 m
  - d) 0.95 m

**2<sup>n</sup> cas:** Suposem que hi ha un coeficient de fregament cinètic entre el bloc i la superfície del pla inclinat de 0.2:

- 7. ...
  - a) El bloc és quedarà parat amb la molla comprimida.
  - b) La molla rellançarà cap a dalt el bloc fins ocupar la seva posició inicial de repòs
  - c) La molla és descomprimirà i el bloc ocuparà seguidament la posició d'equilibri d'aquesta
  - d) Cap de les anteriors (\*)
- 8. En aquest cas, el treball fet per la força de fregament al llarg del pla inclinat és...
  - a) igual a la variació d'energia cinètica del bloc
  - b) igual a la variació d'energia potencial del bloc
  - c) igual a la variació d'energia mecànica del bloc(\*)
  - d) nul.
- 9. Abans de xocar amb la molla, l'energia mecànica del bloc és la suma de...
  - a) L'energia cinètica del bloc i la seva energia potencial gravitatòria (\*)
  - b) L'energia cinètica del bloc i l'energia potencial de la molla
  - c) Les energies potencials del seu pes i de la molla
  - d) Cap de les anteriors
- 10. Al xocar amb la molla, l'energia mecànica del bloc és la suma de...
  - a) L'energia cinètica del bloc i la seva energia potencial gravitatòria
  - b) L'energia cinètica del bloc i l'energia potencial de la molla (\*)
  - c) Les energies potencials del seu pes i de la molla
  - d) Cap de les anteriors

11. El treball fet pel la força de fregament en la caiguda del bloc és ...

- a) -15.7 J
- b) -7.8 J
- c) -13.6 J(\*)
- d) -9.1 J

12. En el mateix instant de xocar amb la molla, l'energia cinètica del bloc és ...

- a) 25.6 J (\*)
- b) 62.7 J
- c) 36.2 J
- d) Nul·la

## Exercici 2

La sonda Huygens ha "aterrat" sobre la superfície de Tità, el satèl·lit més gran de Saturn. Tità gira al voltant de Saturn a una distància de 1.2 10<sup>6</sup> km. Rea és un altre satèl·lit de Saturn, la seva distància mitja al planeta és de 527000 km i triga 4,5 dies en donar-li tota una volta.

**Dades:**  $G = 6.67 \cdot 10^{-11} \text{ N m}^2/\text{kg}^2$ ,

13. El període de translació de *Tità* és...

- a) 8 dies
- b) 10.5 dies
- c) 15.5 dies (\*)
- d) 4.5 dies

14. La massa de Saturn val aproximadament...

- a) 6 10<sup>26</sup> kg (\*) b) 5 10<sup>25</sup> kg

- c) 2 10<sup>30</sup> kg d) 2 10<sup>-30</sup> kg

15. El camp gravitatori sobre la superfície de Saturn, val...

- a)  $G M_S/R_S$ , on  $M_S$  és la seva massa i  $R_S$  el seu radi
- b)  $G M_S/R_S^2$ , on  $M_S$  és la seva massa i  $R_S$  el seu radi (\*)
- c)  $G M_S R_S$ , on  $M_S$  és la seva massa i  $R_S$  el seu radi
- d)  $G M_S R_S^2$ , on  $M_S$  és la seva massa i  $R_S$  el seu radi

16. La velocitat d'escapament de qualsevol objecte de la gravetat de Saturn és proporcional a ...

- a)  $\sqrt{GM_S/R_S}$  (\*)
- b)  $\sqrt{GM_S/R_S^2}$
- c)  $\sqrt{GM_SR_S}$
- d)  $\sqrt{GM_s R_s^2}$

## Exercici 3

Considereu la corba d'energia potencial de la figura 2.



Figura 2

- 17. Si la partícula es troba en el punt D, experimenta una força...
  - a) Nul·la
  - b) Dirigida cap als valors negatius de y (\*)
  - c) Dirigida cap als valors positius de y
  - d) Impossible de determinar
- 18. Podem considerar que...
  - a) Els punts A i D són punts d'equilibri inestable
  - b) Els punts B i C són punts d'equilibri estable
  - c) En aquesta corba hi ha només un punt d'equilibri i és estable (\*)
  - d) No hi ha punts d'equilibri en aquesta corba

Suposem que la partícula es troba a la posició y = 1 m i la seva energia mecànica val 4 J.

- 19. Llavors....
  - a) L'energia cinètica es nul·la (\*)
  - b) L'energia potencial és nul·la
  - c) L'energia cinètica es igual a l'energia potencial
  - d) La força que experimenta la partícula es nul·la
- 20. Quan la partícula passa per la posició y = 2 m...
  - a) La seva energia potencial val 3 J
  - b) La seva energia mecànica val 5 J
  - c) La seva energia cinètica val 2 J (\*)
  - d) Cap de les anteriors