Logika in Množice

Vid Drobnič

Kazalo

1	Množice Preslikava ali Funkcija Aritmetika Množic		2 2 5	
2				
3				
	3.1	Kartezični produkt ali zmnožek	5	
	3.2	Eksponentna množica	6	
	3.3	Vsota množic	6	
	3.4	Izomorfni množici	6	

1 Množice

A - množica $x \in A$ - x je element A

Načelo ekstenzionalnosti:

Če imata množici iste elemte, sta enaki.

Končna množica: $\{a, b, c, ... z\}$, primer:

$$A = \{1, 2, 5\}$$

$$B = \{2, 1, 1, 5\}$$

$$A = B$$

Prazna množica: {} oznaka \varnothing

Enojec: $\{a\}$

<u>Dvojec ali neurejeni par:</u> $\{a,b\}$ za katerikoli a in $b \Rightarrow$ lahko sta enaka \Rightarrow enojec je posebni primer dvojca.

$$\{c,c\} = \{c\}$$

Standardni enojec: $1 = \{()\}$

2 Preslikava ali Funkcija

- (1) **domena**: množica A
- (2) kodomena: množica B
- (3) **prirejanje**: pove kako elementom iz A priredimo elemnte iz B
 - Celovitost: vsakemu elementu iz ${\cal A}$ priredi vsaj1 element iz ${\cal B}$
 - **Enoličnost:** če sta elementu x prirejena y_1 in y_2 , potem velja $y_1 = y_2$

 $A \to B$ (brezimna)preslikava iz $A \vee B$

A - domena

B - kodomena

 $f:A\to B$ funkcija (preslikava) poimenovana f $A\stackrel{f}{\to} B$

Funkcijski predpis

$$x \mapsto 1 + x^2$$

x se slika v $1 + x^2$

$$f: x \mapsto 1 + x^2$$

$$f(x) = 1 + x^2$$

Opomba: funkciji manjka še domena in kodomena.

$$\{1, 2, 5\} \rightarrow \{1, 2, 3, 4, \dots 10\}$$

 $x \mapsto 1 + x^2$

 $g(2)\colon g$ uporabimo ali apliciramo na argumentu 2

 $g: \mathbb{R} \to \mathbb{R}$: predpis

g: preslikava

g(3): število

g(x): število

- (1) $x \mapsto ax + b$ (x je vezana spremenljivka, a in b sta parametra)
- (2) $a \mapsto ax + b$
- (3) $y \mapsto ay + b$
- (1) in (2) sta isti preslikavi.

$$q: \mathbb{R} \to \mathbb{R}$$

$$g(x) = 1 + x^3$$
$$g(7) = 1 + 7^3$$

Opomba: ni treba izračunati.

$$\mathbb{R} \to \mathbb{R}$$

$$x \mapsto 1 + x^3$$

$$(x \mapsto 1 + x^3)(7) = 1 + 7^3$$

$$(x \mapsto ax + b)(7) = 7x + b$$

Uporaba funkcije - aplikacija.

Preslikave $\varnothing \to A$?

$$\varnothing \to \{1,2,3\}$$

Prirejanje "vsi elemtni domene se presliakjo v 1".

$$x \mapsto 1$$
$$x \mapsto 2$$

Preslikavi sta enaki.

Sklep: iz $\varnothing \to A$ imamo natanko eno preslikavo.

Opomba: Za vse elemte prazne množice velja karkoli.

$$\mathbb{R} \to \mathbb{R}$$

$$x \mapsto x \cdot x$$

$$x \mapsto x \cdot x + x - x$$

Preslikavi sta enaki.

Načelo ekstenzionalnosti preslikav:

Če imata preslkavi enaki domeni in enaki kodomeni, ter prirejata elementom domene enake vrednosti, potem sta enaki.

$$f:A\to B$$

$$g:C\to D$$

Če A = C in B = D in za vsak $x \in A$ velja f(x) = g(x), potem f = g.

Drugače povedano (se izpelje):

Če A = C in B = D in za vsak $x_1, x_2 \in A$ velja, da iz $x_1 = x_2$ sledi: $f(x_1) = g(x_2)$, potem f = g.

3 Aritmetika Množic

3.1 Kartezični produkt ali zmnožek

 ${\cal A}$ in ${\cal B}$ množici

 $A \times B$ zmnožek

Elementi $A \times B$ so urejeni pari (a, b), kjer sta $a \in A$ in $b \in B$.

Projekciji:

$$\pi_1: A \times B \to A$$

$$\pi_2: A \times B \to B$$

Enačbe:

Za vse $a \in A$ in $b \in B$ velja:

$$\pi_1(a, b) = a$$

$$\pi_2(a,b) = b$$

Ekstanzionalnost za zmnožke:

Za vse $p, q \in A \times B$, če $\pi_1(p) = \pi_1(q)$ in $\pi_2(p) = \pi_2(q)$, potem p = q

$$f: A \times B \to C$$

$$f: p \mapsto \dots$$

$$f:(x,y)\mapsto ...x..y...$$

$$g:A\to B\times C$$

$$g: a \mapsto (\dots a \dots, \dots a \dots)$$

Kaj je $\emptyset \times A$? $\emptyset \times A = \emptyset$

3.2 Eksponentna množica

Če sta A in B množici, je B^A množica vseh preslikav z domeno A in kodomeno B.

3.3 Vsota množic

Če sta A in B množici je vsota A+B množica.

Za vsak $a \in A$ je $\iota_1(a) \in A + B$

Za vsak $b \in B$ je $\iota_2(b) \in A + B$

Elementa u in v iz A + B sta enaka, če bodisi obstaja $a \in A$ da je $u = \iota_1(a)$ in $v = \iota_1(a)$, bodisi obstaja $b \in B$ da je $u = \iota_2(b)$ in $v = \iota_2(b)$.

$$\{1,2\} + \{1,2\} = \{\iota_1(1), \iota_1(2), \iota_2(1), \iota_2(2)\}$$

3.4 Izomorfni množici

<u>Def.:</u> Izomorfizem je preslikava $f:A\to B$, za katero obstaja preslikava $g:B\to A$, da je:

- \bullet za vsak $x \in A$ je g(f(x)) = x in
- za vsak $y \in B$ je f(g(y)) = y

Pravimo da je g inverz f.

Če obstaja izomorfizem $X \to Y$, pravimo, da sta X in Y **izomorfni**, pišemo $X \cong Y$