Ηλεκτρονικοί Υπολογίστες ΙΙ Αριφμητική Αναλύση

ΕΞΕΤΑΣΗ ΑΠΡΙΛΙΟΥ 2018

Θεωρία

1. Να προσδιορίσετε με 3 σημαντικά ψηφία μία ιδιοτιμή του πίνακα

$$\left[\begin{array}{ccc} 3 & 2 & -1 \\ 0 & 2 & 5 \\ 1 & 7 & 2 \end{array}\right].$$

- 2. Εξηγήστε πώς μπορείτε να βρείτε τις καρτεσιανές συντεταγμένες (x,y,z) ενός σημείου που απέχει απόσταση 10 από τα σημεία $A(1,1,1),\ B(2,-1,4)$ και C(-1,5,0). Γράψτε τις σχετικές εξισώσεις και εξηγήστε τη μέθοδο. Μην κάνετε αριθμητικούς υπολογισμούς.
- 3. Δίνεται η συνάρτηση

$$\alpha(\theta) = \sin^{-1}(n\sin\theta) + \sin^{-1}(n\sin(\Phi - \theta)) - \Phi ,$$

με n = 1.52 και $\Phi = 15^{\circ}$, και πεδίο ορισμού το $[\Phi - \sin^{-1}(1/n), \sin^{-1}(1/n)]$.

Απλοποιήστε τη συνάρτηση ως εξής: επιλέξτε τέσσερα ισαπέχοντα σημεία στο πεδίο ορισμού της και υπολογίστε το πολυώνυμο παρεμβολής. Κατόπιν, χρησιμοποιήστε το πολυώνυμο για να υπολογίσετε το σημείο που παρουσιάζει ελάχιστο η $\alpha(\theta)$. Γράψτε τις σχετικές εξισώσεις και εξηγήστε τη μέθοδο. Μην κάνετε αριθμητικούς υπολογισμούς.

Διάρκεια: 90 λεπτά Καλή επιτυχία!

Εργαστήριο

2/10

1. Η περίοδος T ενός εκκρεμούς σε βαρυτικό πεδίο με επιτάχυνση g σχετίζεται με το μήκος του ℓ με τη σχέση $T=2\pi\sqrt{\ell/g}$. Υπολογίστε την επιτάχυνση της βαρύτητας από τις ακόλουθες πειραματικές μετρήσεις

$\ell(\mathrm{cm})$	T(s)	$\ell(\mathrm{cm})$	T(s)
15	0.77721	20	0.89696
16	0.80166	21	0.91841
17	0.82882	22	0.94140
18	0.84958	23	0.96343
19	0.87525	24	0.98530

2. Μια συνεχής συνάρτηση τριών μεταβλητών, f(x,y,z), παρουσιάζει ακρότατο σε ένα σημείο (x_0,y_0,z_0) που ικανοποιεί τις σχέσεις

$$\frac{\partial f}{\partial x} = 0$$
, $\frac{\partial f}{\partial y} = 0$, $\frac{\partial f}{\partial z} = 0$.

Οι παράγωγοι υπολογίζονται στο σημείο (x_0, y_0, z_0) .

Ένα ακρότατο της f(x,y,z) είναι μέγιστο, ελάχιστο ή σημείο καμπής (σαγματικό σημείο) ανάλογα με τις ιδιοτιμές του πίνακα («Εσσιανός πίνακας»)

$$\begin{vmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial x \partial z} \\ \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} & \frac{\partial^2 f}{\partial y \partial z} \\ \\ \frac{\partial^2 f}{\partial z \partial x} & \frac{\partial^2 f}{\partial z \partial y} & \frac{\partial^2 f}{\partial z^2} \end{vmatrix} .$$

Όλες οι παράγωγοι που εμφανίζονται, υπολογίζονται στο σημείο (x_0,y_0,z_0) . Αν οι ιδιοτιμές αυτού του πίνακα είναι όλες αρνητικές στο συγκεκριμένο σημείο, η f παρουσιάζει μέγιστο. Αν είναι όλες θετικές, η f παρουσιάζει ελάχιστο. Αν είναι και θετικές και αρνητικές, η f παρουσιάζει σάγμα.

Έστω η συνάρτηση

$$f(x, y, z) = (xy + x^2z + y^2z)e^{-x^2-y^2-z}$$
.

4/10 4/10

- Βρείτε ένα ακρότατό της (πού και πόσο είναι).
- Χαρακτηρίστε το ως μέγιστο, ελάχιστο ή σαγματικό σημείο.

Να στείλετε τους κώδικες που θα γράψετε συνημμένους σε email στο ety213@materials.uoc.gr.

Διάρκεια: 90 λεπτά

Καλή επιτυχία!