Suppose that A is a list of n numbers $\{A_1, A_2, A_3, \ldots, A_n\}$ and $B = \{B_1, B_2, B_3, \ldots, B_n\}$ is a permutation of these numbers, we say B is K-Manipulative if and only if:

 $M(B) = minimum(B_1 \oplus B_2, B_2 \oplus B_3, B_3 \oplus B_4, \dots, B_{n-1} \oplus B_n, B_n \oplus B_1)$ is not less than 2^K , where \oplus represents the *XOR* operator.

You are given \boldsymbol{A} . Find the largest \boldsymbol{K} such that there exists a K-manipulative permutation \boldsymbol{B} .

Input:

The first line is an integer N. The second line contains N space separated integers - A_1 A_2 ... A_n .

Output

The largest possible K, or -1 if there is no solution.

Constraints:

- 1 < n <= 100
- $0 \le A_i \le 10^9, where \ i \in [1, n]$

Sample Input 0

```
3
13 3 10
```

Sample Output 0

2

Explanation 0

```
Here the list A is \{13,3,10\}. One possible permutation B=\{10,3,13\}. Here M(B)=minimum\{B_1\oplus B_2,B_2\oplus B_3,B_3\oplus B_1\}=minimum\{10\oplus 3,3\oplus 13,13\oplus 10\}=minimum\{9,14,7\}=7.
```

So there exists a permutation B of A such that M(B) is not less than $A = 2^2$. However there does not exist any permutation B of A such that M(B) is not less than $B = 2^3$. So the maximum possible value of B is B.

Sample Input 1

```
4
1 2 3 4
```

Sample Output 1

1

Explanation 1

```
Here the list A is \{1,2,3,4\}. One possible permutation B=\{1,2,4,3\}. Here M(B)=minimum\{B_1\oplus B_2,B_2\oplus B_3,B_3\oplus B_4\ B_4\oplus B_1\}=minimum\{1\oplus 2,2\oplus 4,4\oplus 3\ 3\oplus 1\}=minimum\{3,6,7,2\}=2.
```

So there exists a permutation B of A such that M(B) is not less than $2=2^1$. However there does not exist any permutation B of A such that M(B) is not less than $4=2^2$. So the maximum possible value of K is 1.