Evolutionary Software Improvement for Instruction Set Meta-evolution

Michael Orlov and Moshe Sipper

Department of Computer Science Ben-Gurion University Israel

August 19, 2008

Evolutionary Software Improvement

- In Evolutionary Computation, only relatively small-scale solutions are viable
- Our goal: evolving large-scale solutions
- Method: evolutionary software improvement
- First step: Instruction set (meta-)evolution in the genetic-programming system Megavac
- Result: ESI process is feasible for evolutionary improvement of large software systems

Megavac

- Spatially structured, steady-state evolutionary platform
- Individuals are represented as cyclic linear programs (stack-based)
- Similar in concept to Avida (with emphasis is on EC and not ALife)
- Main components:
 - Genomes container (each in wait or active state)
 - Instruction scheduler (runs instructions of active genomes)
 - Connection topology (e.g., toroidal)
 - Selection method (e.g., tournament)
 - Mutator (variable-length mutations)
 - Reproducer (e.g., best-neighbor into worst-self)
 - Environment that provides inputs to genomes in wait state, and rewards genomes that send back correct outputs

Evolutionary Software Improvement: Requirements

- There must be some aspect of the system that can be changed to improve some of the system's characteristics
 - not necessarily a specific component can be some behavioral aspect
- 2 The chosen sub-system's function is representable as an evolvable program
 - requires definition of sufficiently expressive primitives
- **3** The chosen component or aspect has to be *amenable* to evolutionary improvement
 - the functionality should be sufficiently algorithmic in nature
 - comparison of evolved functionalities should be reasonably fast (this
 does not restrict the size of the system as a whole!)

Evolutionary Software Improvement: Process

- Analyze the software system, and locate the aspect / component that can be expressed algorithmically
 - has to be sufficiently independent to be expressible with a reasonable-size program
 - must possess sufficient behavioral freedom to justify the evolutionary approach
 - substitution and evaluation of an altered component must be sufficiently brief
- 2 Define a fitness measure quantifying the performance of the component
 - must express objective software improvement goals: efficiency, quality, parsimony pressure, . . .
- 3 Analyze the chosen component, and define the language for expressing evolving individuals
 - primitives must allow the necessary freedom of expressed individuals
 - the existing component must be naturally expressible in the language
 may be used to seed the initial population

Evolutionary Software Improvement: Process (contd.)

If the software improvement process evolves a better aspect or component, the system as a whole is improved using evolutionary computation.

If such a system is a state of the art software, the result may be human-competitive!

Megavac Evolutionary Improvement

Let's go over the ESI requirements and apply the ESI process.

- Key aspect to improve: instruction set (it's a first step for ESI...)
- Representable as evolvable program: simple bit-vector will do
- Amenability to evolutionary improvement: due to linear GP, Megavac is very fast
- Fitness measure: the area below the maximal fitness curve
 - nice property independent from problems on which Megavac is run

We develop problem-fitting instruction sets in meta-circular fashion.

Experimental Setup

- ECJ framework (by Luke and Panait) is used to evolve bit vectors
- Simple genetic algorithm is used
- Each bit vector of size 33 represents a subset of the complete Megavac instruction set
- ECJ:
 - population size 40
 - 40 generations
 - single-point crossover $p_{cross} = 0.8$, single bit mutation $p_{mut} = 0.05$
 - tournament selection of size 2
- Megavac:
 - 1000 generations
 - 32 instruction execution rounds in each generation
 - population size 128, torus 4-neighbor topology
 - tournament selection includes all neighbors
 - variable-length mutation, data / control stack sizes of 4, 3 general-purpose registers

Experimental Setup Comments

ECJ setup is actually quite simple, this is a diagram straight from ECJ Tutorial:

Experimental Setup Comments

- Fitness of a bit vector is the area below max-fitness curve of one Megavac execution
 - this is the sum of per-generational maximal fitnesses
 - other possibilities: area below average-fitness curve, sum of fitness exponents (to emphasize higher Megavac fitness), . . .
- Meta-evolution proceeds reasonably fast due to linear GP in Megavac
 - single run: 22 minutes on 2.6 GHz dual-core AMD Opteron
 - this is for evaluating 40 Megavac instances for 40 generations!
- ECJ easily supports parallelization
 - the architecture is scalable

Experiment: A multi-input problem

- Megavac facilitates concurrent layered learning via composite environments
- We define a composite environment with the following problems:
 - Echo reward of 3.0 for returning the same input
 - SubTwo reward of 15.0 for returning the difference of *two* inputs
 - SubTwo is impossible to evolve without Echo
 - evolving SubTwo requires > 10000 generations with the complete instruction set
- Five ECJ runs (meta-runs) in total
- Typical best-of-run result:
 - only 16 out of 33 instructions are enabled
 - optimal Echo individual: generation 52, wait-read-send
 - optimal SubTwo individual: generation 257, wait-read-push-rswap(2)-sub-send
 - multi-input, but one read per each send surprising result!

Experiment: A multi-input problem (Results)

Table: Best-of-run instruction sets are shown. Average Megavac fitness is derived from dividing the meta-fitness by the number of Megavac generations, 1000. Average fitness of over 40.0 guarantees (a very good) ability to solve SubTwo.

Meta-fitness	Average	Instruction set
79104	79.1	brge, brlez, brnz, call, dup, fitness, nop, pop, push, read, rswap, send, sub, swap, wait, zero (16 instructions)
74278	74.3	c2d, dup, erc, fitness, pop, push, read, rnd, rswap, send, store, sub, swap, wait, zero (15 instructions)
82820	82.8	add, brge, brlez, drop, dup, erc, jump, pop, read, send, sendn, sub, swap, wait (14 instructions)
82742	82.7	add, brge, call, drop, jump, load, nop, push, read, rswap, send, sendn, store, sub, wait, waitn (16 instructions)
79348	79.3	brge, brgez, brnz, c2d, d2c, erc, fitness, neg, nop, push, read, ret, rswap, send, store, sub, wait, waitn (18 instructions)

Experiment: A multi-input problem (Results)

Figure: Fitness statistics after a typical run of the Megavac framework with the instruction set evolved to solve the Echo+SubTwo problem. Maximum and average fitness values per generation are shown in the plot.

Reduced Instruction Set Validation

- We extend the composite environment with another problem:
 - SubSq reward of 75.0 for returning $x^2 y$ for two inputs x and y
- As expected, Megavac does not evolve a solution to SubSq with the complete instruction set
 - $lue{}$ not surprising, since even SubTwo needs > 10000 generations
- When the instructions set is restricted (the first best-of-run discussed previously), SubSq does evolve:
 - optimal individual wait-read-swap-dup-push-mul-sub-send appears at generation 2066
 - again, one read per each send

Typical Results for Both Environments

- filness max — filness avg — length avg.sd — prob.meta.mutate avg — prob.reprod.attempt avg — prob.reprod.insert avg — prob.reprod.delete avg — prob.reprod.copy avg — prob.reprod.insert avg — prob.reprod.delete avg — active.genomes avg a reproductions avg

prob.reprod.attempt avg — renign avgasd — prob.neta.mutare avg
— prob.reprod.attempt avg — prob.reprod.mutation avg
— prob.reprod.copy avg — prob.reprod.insert avg — prob.reprod.delete avg

active.genomes avg a reproductions avg

Conclusions

- The evolutionary software improvement process can be seen to weed out unnecessary, or at least less contributing, instructions, and improving the software system as a whole by reducing its complexity and tightening its code.
- We have shown the feasibility of evolutionary software improvement. Representing Megavac as a genetic program, and evolving it using traditional methods would not be possible. Instead, we located a critical component affecting Megavac's evolutionary performance—its instruction set, and evolved instruction subsets that drastically improved the performance.
- We view evolutionary software improvement primarily as a general technique for applying evolution to complex systems.

Discussion and Future Work

- Represent Megavac's reproduction process as an algorithm
 - GA is no more suitable, use genetic programming?
 - Requires careful definition of primitives, such as reproductive variation operators
 - Will an automatically evolved evolutionary algorithm find an interesting exploration / exploitation policy?
- Take an unrelated (non-evolutionary) system, and apply ESI
 - We want to show viability of evolutionary software improvement as a general technique

Thank You

Questions?