

Equipo docente:

Profesor: Alejandro Clocchiatti

Ayudantes:

Francisco Aros (TM6)

Nicolás Castro (TL4)

TM6: Tutoría del martes en módulo 6

TL4: Tutoría del lunes en módulo 4

Nuestro Semestre 2016-1

			AST0212		C0 ✓		
Sunday 6 Mer 2016	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday 12	
Semana 1					C1 ✓	-	
Semana 2	TL1	15 TM1	16	17	¹⁸ C2 ✓	← Control :	1
Semana 3	TL2	²² TM2	23	24	^{2⁵} Feriado	20	
Semana 4	TL3	²⁹ TM3	30	31	¹ Apr C3	2	
Semana 5	TL4	⁵ TM4	6	7	° C4	9	
Semana 6	TL5	¹² TM5	13	14	15 C5	<mark>← ¿Control</mark>	12
Semana 7	TL6	TM6	¿Entrega	Tarea 1?	²² C6 – SM1	25	
Semana 8	TL7	* TM7	27		²⁹ C7 – SM2	30	
Šemana 9	TL8	³ TM8	4	5	⁶ C8 – SM3	7	
Semana 10	TL9	[™] TM9	11	12	¹³ C9 – SM4	14	
Semana 11	TL10	TM10	18	19	²⁰ C10	21	
Semana 12	* TL11	* TM11	25	26	C11	28	
Semana 13	TL12	TM12	1 Jun	2	Feriado	4	
Semana 14	TL13	TM13	8	a	¹⁰ C12	11	
Semana 15	TL14	¹⁴ TM14	15	16	¹⁷ C13	18	
torías día lune	S		Tutorías día	martes	24	Zh	
ódulo 4:		28	Módulo 6:	301.011.000	1 Jul	2	
colás Castro		ь	Francisco A	ros	Notas	9 OF Calendar by www.pdfcalendar.com	

El control

AST 0212 - Introducción al análisis de datos - 2016-1

AST 0212 - Introducción al análisis de datos - 2016-1

Control 1 - 18/M

Valor medio, dispe

Control 1 - 18/Marzo/2016 - 15 minutos

Valor medio, dispersión, cifras significativas

Pregunta: Medidas repetidas y ci

Usted recibió un set de 9 medicione de un péndulo.

1. Calcule el valor medio y la disp significativas que tengan sentido. la tabla provista para que los co hubiera er

Set de datos número:

Pregunta: Medidas repetidas y cifras significativas

Usted recibió un set de 9 mediciones del intervalo de tiempo, en segundos, que dura la oscilación de un péndulo.

 Calcule el valor medio y la dispersión del set de datos y repórtelo con el número de cifras significativas que tengan sentido. Justifique el número de cifras significativas usado. Utilice la tabla provista para que los correctores puedan chequear sus cálculos intermedios (por si hubiera errores de arrastre). Por seguridad, en las columnas 3 y 4 anote cinco dígitos decimales.

rores de arrastre). Por s	5/

THE RESERVE THE PROPERTY.	
i	
1	
2	
3	
4	31
5	1
6	
7	
8	
9	3
Σ	

11
1
- 3

El Dones	Set de datos número:					
C NUMERO LIFTAS	i	x_i	$(x_i - \bar{x}_{est})$	$(x_i - \bar{x}_{est})^2$		
E MIFTCATIONS	1	19.74 /	- 029777/	0.08866 /		
16 052 05	2	19.89	- 0.14+77/	0.02183 /		
PADO QUE	3	20.00/	- 0 - 03 777/	0.00142/		
65tE UASD	4	20.28 /	0 24223	0.05867/		
LA DENERTH	5	20.18	0.14223/	0.02022/		
E (05 PATO)	6	20.09/	0.05223/	0.00272/		
RIAN MUCIP	7	20.03 /	-0.00777/	0.00006/		
NO SERINO		20.17	0.13223/	0.01748		
MAYOR	9	19,961	-0.07777/	0.00604/		
	Σ	20.03 = Kent	N/A	0.16 = JEST		

Clase previa (Clase 2):

- 1. Temas pendientes de la Clase 1
 - 1. Datos para Tarea 1
 - 1. ¿Status de toma de datos?

¿Datos listos?

¿Tablas listas?

2. "Fake" data y ejemplo de uso de herramientas Linux

Sistemas Linux: Seguir practicando. ¡Es el futuro!

- 2. Vueltas de tuerca sobre la Tarea 1
 - 1. ¿Cómo visualizar fácilmente cientos de datos?
 - 2. ¿Cuál es la mejor balanza?

Temas del día: Histogramas, errores aleatorios y sistemáticos.

Esta clase (Clase 3):

- 1. Temas pendientes
 - 1. Datos para Tarea 1 ¡Grupos 1, 6 y 8 no enviaron sus datos!
 - 2. Una vuelta de análisis sobre el Control 1
- 2. Vueltas de tuerca sobre la Tarea 1
 - 1. Herramientas Linux de selección de datos en archivos de texto simple organizados en columnas: *awk*

Temas del día: Visualización cualitativa de histogramas. Histogramas y funciones de distribución de probabilidad. Uso de la FDP para calcular parámetros de la distribución.

Histogramas

El objetivo de los histogramas es proporcionar una visión rápida y compacta de una gran cantidad de datos <u>directamente comparables</u> y ver como se organizan de acuerdo a su valor. Hay algo de arte en esto de construir un histograma:

Histogramas: Media, mediana y mediana

Histogramas: Media, mediana y mediana

Las distribuciones, y sus histogramas, pueden ser simétricas o estar sesgados hacia un lado u otro. Ésto se define arbitrariamente como sesgo positivo (a la derecha) o negativo (a la izquierda).

Histogramas

Calcular la mediana y la moda requiere contar valores. Calcular la media requiere aplicar fórmulas:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

"i" recorre todos los datos, del primero al último (1 a N).

$$\overline{x_g} = \frac{1}{N} \sum_{j=1}^{M} n_j \overline{x_j}$$

"j" recorre el número de bins, del primero al último (1 a M). $\overline{x_j}$ es el valor medio del j-ésimo bin.

Pregunta para pensar en casa: ¿Son consistentes estas definiciones? ¿Dan el mismo valor medio?

Histogramas: ¿Tamaño óptimo del bin?

periods; $N_{\pi} = 100000$; Bin = 0.0001

Histogramas: ¿Tamaño óptimo del bin?

Regla de "Excel":
$$N_{bin} \cong \sqrt{N_{total}}$$
 $\Rightarrow \Delta_{x} = \frac{0.91}{316,228} = 0,00288$

Regla de Shimazaki & Shinomoto (2007): El Δ_{χ} que minimiza $C(\Delta_{\chi})$

$$C(\Delta_{x}) = \frac{\left(2\overline{h} - v_{h}\right)}{{\Delta_{x}}^{2}}$$

Histogramas de datos reales

Histogramas de datos reales

¿Qué pasa si agrupamos todos los datos que imaginaron ustedes?

Histogramas de datos observados

¿Qué pasa si agrupamos todos los datos que tomaron ustedes?

Histogramas imaginados vs. observados

Observado

Histogramas imaginados vs. observados

Observado

Funciones de distribución de probabilidad

Funciones de distribución de probabilidad

Funciones de distribución de probabilidad

La FDP para el resultado del experimento de rotar un disco y tomar nota del ángulo en el que se detiene es la forma más simple de una FDP continua.

Puedo usar la forma de la FDP para calcular los valores que tienen los parámetros teóricos de la distribución, por ejemplo valor medio y varianza.

Para entender esto un poco mejor, miremos de nuevo un histograma y tratemos de verlo como una aproximación a una FDP.

Histogramas como FDP discretas

Un histograma puede ser entendido como una FDP unidimensional discreta que asigna una cierta probabilidad a que el valor de la variable (x) en consideración esté comprendido en el intervalo Δx en torno al centro del j-ésimo bin. Para ilustrar esto sólo tenemos que dividir el histograma completo por el número total de casos:

Histogramas como FDP discretas

Para calcular el valor medio de la variable x cuando la teníamos clasificada dentro de los intervalos de un histograma (lo llamamos antes "caso de datos agrupados"), teníamos:

$$\overline{x_g} = \frac{1}{N} \sum_{j=1}^{M} n_j \overline{x_j}$$
 De ésta $\rightarrow \overline{x_g} = \sum_{j=1}^{M} \frac{n_j}{N} \overline{x_j} = \sum_{j=1}^{M} P_j \overline{x_j}$

donde $P_j = \frac{n_j}{N}$ es la probabilidad de que la variable x esté en el *bin j*. Para el caso de una variable continua, la sumatoria tiende a una integral, exactamente igual que para la definición de integral como límite de una sumatoria (notar que $M \to \infty$, $\Delta x = (x_j - x_{j-1}) \to 0$):

$$\overline{x_g} = \sum_{j=1}^{M} P_j \overline{x_j} \to \int_{x_1}^{x_N} x P_x dx$$
 $x_1 y x_N \text{ son los limites entre los cuales la variable x está definida.}$

Fin de ppt de Clase 3