

IN THE CLAIMS:

1 1. (Previously presented) A method for preventing passive release of interrupts
2 within a computer system, the computer system having at least one processor for servicing
3 the interrupts, one or more input/output (I/O) devices configured to issue interrupts,
4 and an I/O bridge having a plurality of ports to which I/O devices are coupled and con-
5 figured to interface between the I/O devices and the processor, the method comprising the
6 steps of:

7 asserting an interrupt signal by a subject I/O device coupled to a given port of the
8 I/O bridge;

9 forwarding an interrupt message corresponding to the interrupt signal to the pro-
10 cessor for servicing;

11 setting an interrupt pending flag in response to assertion of the interrupt signal;

12 in response to the interrupt being serviced, generating a first ordered message, the
13 first ordered message notifying the subject I/O device that the interrupt has been serviced;

14 generating a second ordered message for clearing the interrupt pending flag;

15 sending the first ordered message to the given port of the I/O bridge;

16 sending the second ordered message to the given port of the I/O bridge after the
17 first message has been sent;

18 deasserting the interrupt signal in response to the first message; and

19 clearing the interrupt pending flag in response to the second ordered message.

1 2. (Original) The method of claim 1 further comprising the step of forwarding the
2 first ordered message from the given I/O bridge port to the subject I/O device.

1 3. (Original) The method of claim 2 wherein the step of deasserting the interrupt
2 signal is performed by the subject I/O device following its receipt of the first ordered
3 message.

1 4. (Previously presented) The method of claim 3 wherein one of the ports of the
2 I/O bridge is an interrupt port and the interrupt pending flag is disposed at the interrupt
3 port, the method further comprising the step of forwarding the second ordered message
4 from the given I/O bridge port to the interrupt port.

1 5. (Original) The method of claim 4 wherein
2 the interrupt pending flag is implemented through a register of the interrupt port;
3 and
4 the second ordered message is a write transaction to the register for clearing the
5 interrupt pending flag.

1 6. (Original) The method of claim 5 further comprising the steps of:
2 periodically collecting a set of information regarding the assertion of interrupt
3 signals by I/O devices; and
4 after the step of clearing the interrupt pending flag, waiting a predetermined time
5 before collecting a next set of information regarding the assertion of interrupt signals.

1 7. (Original) The method of claim 6 wherein the step of periodically collecting is
2 performed through one or more serial data transfer operations.

1 8. (Original) The method of claim 1 wherein the steps of generating the first and
2 second ordered messages are performed by the processor.

1 9. (Original) The method of claim 8 wherein the computer system includes (1) a
2 plurality of processors at least one of which is designated to service interrupts from the

3 subject I/O device, and (2) a plurality of I/O bridges each I/O bridge coupled to a plural-
4 ity of I/O devices configured to assert respective interrupt signals.

1 10. (Not entered)

1 11. (Original) The method of claim 1 wherein the interrupt signals are level sensi-
2 tive interrupts (LSIs).

1 12. (Previously presented) A computer system comprising:
2 a plurality of input/output (I/O) devices configured to assert and deassert respec-
3 tive interrupt signals;

4 at least one processor for servicing interrupts from the I/O devices; and
5 an I/O bridge configured to interface between the I/O devices and the at least one
6 processor, the I/O bridge having a plurality of ports to which the I/O devices are coupled
7 and an interrupt controller configured to detect the assertion and deassertion of the inter-
8 rupt signals, wherein

9 the interrupt controller, in response to assertion of an interrupt signal by a subject
10 I/O device coupled to a given port of the I/O bridge, issues an interrupt message to the at
11 least one processor and sets an interrupt pending flag;

12 the at least one processor, upon servicing the interrupt, sends first and second or-
13 dered messages to the given port of the I/O bridge, the first ordered message notifying the
14 subject I/O device that the interrupt has been serviced, and the second ordered message
15 clearing the interrupt pending flag;

16 the subject I/O device deasserts the interrupt signal in response to the first mes-
17 sage; and

18 the interrupt pending flag is cleared in response to the second ordered message.

1 13. (Previously presented) The computer system of claim 12 wherein

2 one of the ports of the I/O bridge is an interrupt port at which the interrupt con-
3 troller is disposed, and

4 the given port of the I/O bridge forwards the second ordered message to the inter-
5 rupt port after forwarding the first ordered message to the subject I/O device.

1 14. (Original) The computer system of claim 13 wherein the interrupt port of the
2 I/O bridge includes at least one register at which the interrupt pending flag is imple-
3 mented.

1 15. (Original) The computer system of claim 12 wherein
2 the I/O bridge port includes a read cache for buffering messages received from the
3 at least one processor, and an ordering engine operatively coupled to a read cache, and
4 the ordering engine is configured to release ordered messages buffered in the read
5 cache in the same order as which they were received.

1 16. (Previously presented) The computer system of claim 12 further comprising
2 an interrupt collector having a parallel-load shift register for receiving the interrupt sig-
3 nals from the I/O devices, the parallel-load shift register configured to transfer informa-
4 tion indicating the assertion or deassertion of interrupt signals to the interrupt controller
5 through one or more serial shift operations.

1 17. (Original) The computer system of claim 16 wherein
2 the interrupt collector transfers the information in response to a request from the
3 interrupt controller, and
4 the interrupt controller is configured to limit the number of serial shift operations
5 performed by the interrupt collector so as to receive only information associated with in-
6 terrupt signals that have been enabled.

PATENTS
15311-2292
200301894-1

- 1 18. (Original) The computer system of claim 12 wherein the interrupt signals are
- 2 level sensitive interrupts (LSIs).