# ფიზიკის საგამოცდო ტესტის შეფასების კრიტერიუმები

## დავალებების პასუხები (1-35)

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|
| ა |   |   |   | X | x |   |   |   |   | X  |    |    |    |    |    |    | X  |    |
| δ |   | X |   |   |   |   |   |   |   |    |    |    |    | X  |    | X  |    | X  |
| δ |   |   | X |   |   |   | X |   | X |    |    |    |    |    |    |    |    |    |
| Q | X |   |   |   |   | X |   | X |   |    |    |    | X  |    | X  |    |    |    |
| J |   |   |   |   |   |   |   |   |   |    | X  | X  |    |    |    |    |    |    |

|   | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| ٥ |    |    |    |    |    |    |    |    |    |    |    |    |    |    | X  | X  | x  |
| δ |    |    |    |    |    |    |    | X  |    | X  |    | X  |    |    |    |    |    |
| გ |    |    | X  |    | X  |    | X  |    |    |    |    |    |    | X  |    |    |    |
| Q |    | X  |    |    |    |    |    |    |    |    |    |    | X  |    |    |    |    |
| ე | X  |    |    | X  |    | X  |    |    | X  |    | X  |    |    |    |    |    |    |

დავალებები 1-35-ის შეფასების სქემა: ყოველი დავალების სწორი პასუხი ფასდება 1 ქულით, ხოლო მცდარი პასუხი - 0 ქულით.

### დავალება 36 (5 ქულა).

მელაკი ზიმგით აასრიალეს **არაგლუვი** ზედაპირის მქონე დახრილ სიზრტყეზე ფუმიდან. გარკვეული დროის შემდეგ მელაკი ჩამოსრიალდა ფუმესთან. ნულოვანი დონე დახრილი სიზრტყის ფუმეა.

შეუსაბამეთ ჩამოთვლილ ფიზიკურ სიდიდეებს მათი t დროზე დამოკიდებულების თვისებრივი გრაფიკები. პასუხების ფურცელზე ცხრილის სათანადო უჯრებში დასვით ნიშანი  $\mathbf{X}$ .

- 1. სიჩქარის მოდული
- 2. აჩქარების მოდული
- 3. გავლილი მანძილი
- 4. კინეტიკური ენერგია
- 5. პოტენციალური ენერგია
- 6. სრული მექანიკური ენერგია



|        | 1 | 2 | 3 | 4 | 5 | 6 |
|--------|---|---|---|---|---|---|
| ১      |   |   | x |   |   |   |
| δ      |   |   |   |   |   | X |
| გ      |   |   |   |   | X |   |
| გ<br>დ |   | X |   |   |   |   |
| J      |   |   |   | X |   |   |
| 3      | X |   |   |   |   |   |

მიღებული ქულა უდრის სწორი სვეტების რიცხვს მინუს ერთი. სწორი სვეტები ისეთია, როგორიც მოყვანილ ცხრილშია. განსხვავებული სვეტები მცდარია. (მაქს. 5 ქულა)

### დავალება 37 (5 ქულა).

შეუსაბამეთ ციფრებით დანომრილ ელექტრულ ფიზიკურ სიდიდეებს ასოებით დანომრილი განზომილებები, რომლებიც გამოსახულია SI სისტემის მირითადი ერთეულებით. პასუხების ფურცელზე ცხრილის სათანადო უჯრებში დასვით ნიშანი X.

- 1. წინაღობა
- 2. ძაბვა
- 3. ელექტროტევადობა
- 4. კუთრი წინაღობა
- 5. კულონის კანონის  $\mathbf k$  მუდმივა
- 6. დაძაბულობა

- ა. კგ $\cdot$ მ $^2/$ ა $^2\cdot$ წმ $^3$
- ბ. კგ $\cdot$ მ $^3/$ ა $^2\cdot$ წმ $^3$
- გ. კგ $\cdot$ მ $^3/$ ა $^2\cdot$ წმ $^4$
- დ. კგ $\cdot$ მ/ა $\cdot$ წმ $^3$
- ე. კგ.მ²/ა.წმ³
- 3.  $\delta^2 \cdot 6 \theta^4 / 38 \cdot \theta^2$

|             | 1 | 2 | 3 | 4 | 5 | 6 |
|-------------|---|---|---|---|---|---|
| ১           | x |   |   |   |   |   |
| δ           |   |   |   | X |   |   |
| გ           |   |   |   |   | X |   |
| 8/          |   |   |   |   |   | X |
| გ<br>დ<br>ე |   | X |   |   |   |   |
| 3           |   |   | X |   |   |   |

მიღებული ქულა უდრის სწორი სვეტების რიცხვს მინუს ერთი. სწორი სვეტები ისეთია, როგორიც მოყვანილ ცხრილშია. განსხვავებული სვეტები მცდარია. (მაქს. 5 ქულა)

### დავალება 38 (5 ქულა).

ნახევარსივრცეში გვაქვს ერთგვაროვანი მაგნიტური ველი, რომლის ინდუქციის მოდულია B, ხოლო მიმართულება ნახატის სიბრტყის მართობულია. ამ არეში მისი საზღვრის ართობული სიჩქარით შედის q დადებითი მუხტის და m მასის მქონე ნაწილაკი (იხ. ნახ.). ნაწილაკმა სიჩქარე გარბენისას. უპასუხეთ შემდეგ კითხვებს:

- 1) რა სიჩქარე შეიძინა ნაწილაკმა ელექტრული ველის მოქმედებით?
- 2) რა რადიუსის წრეწირის რკალზე იმოძრავებს ეს ნაწილაკი მაგნიტურ ველში?
- 3) რა მუშაობას ასრულებს მაგნიტური ველის მხრიდან ნაწილაკზე მოქმედი ძალა?
- 4) რა დროის განმავლობაში იმყოფება ნაწილაკი მაგნიტურ ველში და რისი ტოლია ამ დროში ნაწილაკის იმპულსის ცვლილების მოდული?

#### ამოხსნა:

1) ნაწილაკი კინეტიკურ ენერგიას იძენს ელექტრული ველის მიერ შესრულებული მუშაობის ხარჯზე, ამიტომ

$$\frac{mv^2}{2}$$
 = Uq, სადაც  $v$  - ნაწილაკის მიერ შემენილი სიჩქარეა. აქედან  $v=\sqrt{\frac{2Uq}{m}}$  (1 ქულა).

$$2)~qvB=rac{mv^2}{R}$$
 , საიდანაც  $~R=rac{mv}{qB}=\sqrt{rac{2Um}{qB^2}}$  (1 ქულა).

- 3) ლორენცის ძალა სიჩქარის მართობულია, ამიტომ მისი მუშაობაა A=0 (1 ქულა).
- 4) ნაწილაკი მაგნიტურ ველში შემოწერს R რადიუსის ნახევარწრეწირს, ამიტომ

 $t = \frac{\pi R}{V} = \frac{\pi m}{qB}$  (1 ქულა). მაგნიტურ ველში შესვლისას ნაწილაკის იმპულსი მიმართულია მარჯვნივ, მაგნიტური ველიდან გამოსვლისას – მარცხნივ. იმპულსის მოდული უცვლელია და mv-ს ტოლია. ამიტომ იმპულსის ცვლილების მოდულია

$$\mid \Delta \vec{p} \mid = 2mv = \sqrt{8Uqm}$$
 (1 ქულა).

### დავალება 39 (5 ქულა).

ნახატზე გამოსახულ სქემაში დენის წყაროში დენის ძალაა I, წყაროს შიგა წინაღობაა r=0,5R. განსაზღვრეთ:



- 2) ძაბვა მეოთხე რეზისტორზე;
- 3) დენის ძალა პირველ რეზისტორში;



- 4) პირველ და მეხუთე რეზისტორებში სიმძლავრეების  $P_1/P_5$  შეფარდება;
- 5) t დროში დენის წყაროს დახარჯული ენერგია.

#### ამოხსნა:

1) მარცხენა პარალელური უზნის წინაღობა იყოს  $R_{\rm L}$ , მარჯვენასი -  $R_{\rm R}$ . მაშინ

$$\frac{1}{R_L} = \frac{1}{2R} + \frac{1}{3R} + \frac{1}{6R} = \frac{1}{R}$$
 და  $\frac{1}{R_R} = \frac{1}{R} + \frac{1}{R} = \frac{2}{R}$ , საიდანაც  $R_L = R$  და  $R_R = \frac{R}{2}$ . ამიტომ გარე წრედის წინაღობაა  $R_{\delta^{56}0} = R_L + R_R = \frac{3R}{2}$  (1 ქულა).

- 2) მაზვა  $U_4$  ანუ მაზვა მარჯვენა პარალელურ უზანზე  $U_4=U_R=I\cdot R_R=rac{IR}{2}$  (1 ქულა).
- 3) ძაბვა მარცხენა პარალელურ უბანზე  $U_L=I\cdot R_L=I\cdot R$ , ამიტომ დენის ძალა პირველ რეზისტორში  $I_1=\frac{IR}{2R}=\frac{I}{2}$  (1 ქულა).
- 4) პირველ რეზისტორში გამოყოფილი სიმძლავრეა  $P_1 = \frac{U_L^2}{2R} = \frac{I^2R}{2}$ , ხოლო მეხუთე რეზისტორში გამოყოფილი სიმძლავრე  $P_5 = \frac{U_R^2}{R} = \frac{I^2R}{4}$ . აქედან  $P_1/P_5 = 2$  (1 ქულა).
- 5) წრედის სრული წინაღობაა  $R_{\text{სრული}} = R_{\text{გარე}} + r = 2R$ , ამიტომ t დროში დენის წყაროს მიერ დახარჯული ენერგიაა  $Q = I^2 R_{\text{სრული}} t = 2I^2 R t$  (1 ქულა).

### დავალება 40 (5 ქულა).

მუდმივი მასის იდეალურმა აირმა შეასრულა ნახატზე გამოსახული 1-2 პროცესი.

საწყის მდგომარეობაში აირის აბსოლუტური ტემპერატურაა T<sub>0</sub>. p<sub>0</sub> წნევა და V<sub>0</sub> მოცულობა მოცემული სიდიდეებია.



- 1) რისი ტოლია აირის აზსოლუტური ტემპერატურა საზოლოო მდგომარეობაში?
- 2) 1-2 პროცესის გამომსახველი წრფის განტოლება შეგვიძლია ჩავწეროთ, როგორც p(V)=kV+b. გამოსახეთ k და b კოეფიციენტები  $p_0$  და  $V_0$  სიდიდეებით;
- 3) დაწერეთ პროცესის T(V) განტოლება;
- 4) განსაზღვრეთ, რომელი მოცულობის დროსაა აირის ტემპერატურა მაქსიმალური;
- 5) განსაზღვრეთ აირის მაქსიმალური ტემპერატურა.

#### ამოხსნა:

- 1) კლაპეირონის განტოლების თანახმად  $(p_1V_1)/T_1=(p_2V_2)/T_2$  , საიდანაც  $T_2=\left(p_2V_2T_1\right)/(p_1V_1)=\left(p_0\cdot 3V_0\,T_0\right)/(4p_0V_0)=\frac{3}{4}T_0 \quad \mbox{(1 ქულა)}.$
- 2)  ${f k}$  არის  ${f 1-2}$  წრფის დახრის კუთხის ტანგენსი  ${f V}$  ღერძის მიმართ, ამიტომ

 $k = -(4p_0 - p_0)/(3V_0 - V_0) = -3p_0/2V_0 \; . \; b \; - \text{b} \; \text{b} \;$ 

$$p(V) = kV + b = -\frac{3p_0}{2V_0}V + \frac{11}{2}p_0$$
 (1 Jycs).

3) კლაპეირონის განტოლეზიდან  $p(V) \ V/T(V) = (p_1 V_1)/T_1 \ = \ (4p_0. \ V_0)/T_0$  , საიდანაც

$$T(V) = \frac{p(V) \ V \ T_0}{4p_0 V_0} = -\frac{3T_0}{8V_0^2} \ V^2 + \frac{11T_0}{8V_0} V$$
 (1 ქულა).

4) მიღებული ფუნქცია კვადრატულია, ამიტომ ტემპერატურის მაქსიმუმი შეესაბამება პარაბოლის წვეროს. წვეროს  $V_{\bar{\nu}_3}$  კოორდინატისთვის კი გვაქვს

$$V_{3} = \left(-\frac{11T_0}{8V_0}\right) / \left(-\frac{3T_0}{4V_0^2}\right) = \frac{11}{6}V_0$$
 (1 ქულა).

5) მაქსიმალური ტემპერატურა იქნება  $T_{max} = T(V_{\tilde{y}_3}) = -\frac{3T_0}{8V_0^2}V_{\tilde{y}_3}^2 + \frac{11T_0}{8V_0}V_{\tilde{y}_3} = \frac{121}{96}T_0$  (1 ქულა).

### დავალება 41 (5 ქულა).

უძრავ ჭოჭონაქზე გადაკიდებულ უჭიმვად ძაფზე ჩამოკიდებულია m მასისა და 2m მასის

სხეულები. თავდაპირველად დიდი მასის სხეული h-ით მაღლაა, ვიდრე მცირე მასის სხეული (იხ. ნახ.). სისტემა გაათავისუფლეს და მან დაიწყო მოძრაობა. თავისუფალი ვარდნის აჩქარებაა g. უგულებელყავით ჭოჭონაქის და ძაფის მასები, აგრეთვე ხახუნის ძალები. განსაზღვრეთ:



- 2) ძაფის დაჭიმულობის ძალა;
- 3) ჭოჭონაქის ღერმზე დაწოლის ძალა;
- რა დროის შემდეგ იქნებიან სხეულები ერთ სიმაღლეზე და რამდენით იქნება ამ მომენტისათვის შეცვლილი სისტემის პოტენციალური ენერგია საწყისთან შედარებით.



#### ამოხსნა:

სისტემის განთავისუფლების შემდეგ სხეულები ტოლი a აჩქარებებით ამოძრავდებიან, მარჯვენა სხეული - ქვევით, მარცხენა - ზევით. ძაფის დაჭიმულობის ძალა იყოს T. მაშინ გვაქვს მოძრაობის ორი განტოლება -

T-mg=ma, რომელთა ერთობლივი ამოხსნაც გვაძლევს:

$$1) a = \frac{g}{3}$$
 (1 ქულა);

$$T = \frac{4mg}{3}$$
 (1 ქულა).

- 3) ჭოჭონაქის ღერძზე დაწოლის ძალა  $F=2T=rac{8mg}{3}$  (1 ქულა).
- 4) საძიებელი დრო იყოს t. ამ მომენტისთვის თითოეული სხეული გაივლის  $\frac{h}{2}$  მანძილს, ანუ  $\frac{a}{2}$  t² =  $\frac{h}{2}$  , საიდანაც t =  $\sqrt{\frac{h}{a}}$  =  $\sqrt{\frac{3h}{g}}$  (1 ქულა). მსუბუქი სხეულის პოტენციალური ენერგია გაიზრდება  $\frac{\text{mgh}}{2}$  -ით, მძიმე სხეულის კი შემცირდება  $\frac{2\text{mgh}}{2}$  = mgh-ით. ამიტომ სისტემის პოტენციალური ენერგია საწყისთან შედარებით შემცირდება  $\frac{\text{mgh}}{2}$  -ით (1 ქულა).

### დავალება 42 (2 ქულა).

განსაზღვრეთ, რა კანონით იცვლება დროის განმავლობაში X ღერმზე მომრავი სხეულის სიჩქარის  $v_x$  გეგმილი, თუ კოორდინატი იცვლება შემდეგი კანონით:

- 1) x=Acos $\omega$ t, სადაც A და  $\omega$  მუდმივი სიდიდეეზია.
- 2) x= $\mathrm{At}^{\alpha}$ , სადაც A და  $\alpha$  მუდმივი სიდიდეებია.

ამოხსნა:

კოორდინატის გაწარმოებით ვიღებთ:

1) 
$$v_x = \frac{d(A\cos\omega t)}{dt} = -A\omega\sin\omega t$$
 (1 ქულა);

$$2) v_x = \frac{d(At^{\alpha})}{dt} = A\alpha t^{\alpha-1}$$
 (1 ქულა).

### დავალება 43 (3 ქულა).

განსაზღვრეთ, რა კანონით იცვლება დროის განმავლობაში X ღერძზე მოძრავი სხეულის სიჩქარის  $v_x$  გეგმილი, თუ საწყისი სიჩქარე ნულის ტოლია და აჩქარების გეგმილი იცვლება შემდეგი კანონით:

- 1)  $a_x$ = $\mathrm{At}^3$ , სადაც  $\mathrm{A}$  მუდმივი სიდიდეა.
- 2)  $a_{\rm x}$ =Acos $\omega$ t, სადაც A და  $\omega$  მუდმივი სიდიდეეზია.
- 3)  $a_x$ =Asin $\omega$ t, სადაც A და  $\omega$  მუდმივი სიდიდეეზია.

ამოხსნა:

აჩქარების გეგმილის ინტეგრებით და საწყისი პირობის გათვალისწინებით ვიღებთ:

1) 
$$v_x = \int_0^t At^3 dt = \frac{At^4}{4}$$
 (1 ქულა);

2) 
$$v_x = \int_0^t A cos \omega t \ dt = \frac{A}{\omega} sin \omega t$$
 (1 ქულა);

3) 
$$v_x = \int_0^t A \sin\omega t \, dt = \frac{A}{\omega} (1 - \cos\omega t)$$
 (1 ქულა).