Large Language Models

Generative Pre-trained Transformer

GPT

Developed by OpenAI (participated by Microsoft)

ChatGPT is the last of this family

 Pre-trained with Language Modeling then fine-tuned with supervision

GPT

The original GPT model is a stack of 12 *transformer decoder* blocks

- Variant of the transformer without the encoder part
- As in BERT, the FFN at the end of each block uses GeLU activation

GeLU activation function

Gaussian Error Linear Unit is a variant of ReLU where the standard Gaussian cumulative distribution is used to modulate the linear activation

$$\operatorname{GELU}(x) = xP(X \leq x)$$

$$X \sim \mathcal{N}(0,1)$$

$$\mathrm{GELU}(x) \sim x \sigma(1.702x)$$

https://bit.ly/3sNBObx

GPT unsupervised pre-training

Given $\mathcal{U} = \{u_1, ..., u_n\}$ a set of tokens:

Token embedding
$$h_0 = U W_e + W_p \quad \textit{position embedding} \\ h_l = \texttt{transformer_block}(h_{l-1}) \forall i \in [1,n] \\ P(u) = \texttt{softmax}(h_n W_e^T)$$

where $U = (u_{-k}, ..., u_{-1})$ is the context

Output Softmax

LayerNorm

Fransformer Block

Dropout

Embedding

GPT unsupervised pre-training

$$h_0 = UW_e + W_p$$

$$h_l = \texttt{transformer_block}(h_{l-1}) \forall i \in [1, n]$$

$$P(u) = \texttt{softmax}(h_n W_e^T)$$

Language Modeling objective function:

$$L_1(\mathcal{U}) = \sum_i \log P(u_i|u_{i-k}, \dots, u_{i-1}; \Theta)$$

Transformer Block Ouptut

GPT supervised fine-tuning

A linear layer is added on top to predict a label y from a set of tokens $\{x_1, ..., x_n\}$:

$$P(y|x^1,\ldots,x^m) = \mathtt{softmax}(h_l^m W_y).$$

with a composite objective function:

$$L_3(\mathcal{C}) = L_2(\mathcal{C}) + \lambda * L_1(\mathcal{C})$$

$$L_2(\mathcal{C}) = \sum_{(x,y)} \log P(y|x^1, \dots, x^m)$$

GPT fine-tuning tasks

GPT families

Model	Architecture	Parameter count	Training data	Release date	Training cost
GPT-1	12-level, 12-headed Transformer decoder (no encoder), followed by linear-softmax.	117 million	BookCorpus: ^[27] 4.5 GB of text, from 7000 unpublished books of various genres.	June 11, 2018 ^[8]	30 days on 8 P600 GPUs, or 1 petaFLOP/s- day. ^[8]
GPT-2	GPT-1, but with modified normalization	1.5 billion	WebText: 40 GB of text, 8 million documents, from 45 million webpages upvoted on Reddit.	February 14, 2019 (initial/limited version) and November 5, 2019 (full version) ^[28]	"tens of petaflop/s-day", ^[29] or 1.5e21 FLOP. ^[30]
GPT-3	GPT-2, but with modification to allow larger scaling	175 billion ^[31]	499 billion tokens consisting of CommonCrawl (570 GB), WebText, English Wikipedia, and two books corpora (Books1 and Books2).	May 28, 2020 ^[29]	3640 petaflop/s- day (Table D.1 [29]), or 3.1e23 FLOP.[30]
GPT-3.5	Undisclosed	175 billion ^[31]	Undisclosed	March 15, 2022	Undisclosed
GPT-4	Also trained with both text prediction and RLHF; accepts both text and images as input. Further details are not public. ^[26]	Undisclosed. Estimated 1.7 trillion ^[32]	Undisclosed	March 14, 2023	Undisclosed. Estimated 2.1e25 FLOP. ^[30]

Wikipedia

ChatGPT

Based on GPT-3.5 and GPT-4

- Fine-tuned to target conversational usage
- Uses the so called Reinforcement Learning With Human Feedback (RLHF)

RLHF

Makes use of human trainers to improve model performance

 Human trainers rank the response provided by the model in a previous conversation

 Ranks are then used to create a reward model used in the iterations of the *Proximal Policy Optimization* (PPO) reinforcement learning algorithm

LLaMA

Large Language Model Meta AI was released by Meta in February 2023

- o 7, 16, 33, and 65B parameters versions
- 13B parameters was reported to outperform GPT-3
- LLaMA-2 released in July 2023 with 7, 13, and 70B versions

LLaMA-2

Based on transformer decoder stack

Minor architectural differences with GPT-3:

- SwiGLU activation function instead of ReLU
- Rotary positional embeddings
- Root-mean-squared layer-normalization instead of standard layer normalization
- Increases context length to 4K tokens

SwiGLU activation function

Swish Gated Linear Unit has an activation function that is the combination of Swish and Gated LUs

Swish LU are a generalization of the GELU approximation

$$Swish(x) = x \cdot \sigma(\beta x)$$

SwiGLU activation function

Gated LUs embed a linear activation inside the sigmoid function

$$GLU(x) = \sigma(Wx + b)$$

Gating mechanism: the neuron is activated based on the input it receives

SwiGLU activation function

SwiGLU embeds the previous activations

SwiGLU(x) =
$$x \cdot \sigma(\beta x) + (1 - \sigma(\beta x)) \cdot \sigma(W \cdot x + b)$$

https://bit.ly/40T9npg

Rotary Positional Embeddings (RoPE)

A particular type of *relative position embeddings*

We can represent \mathbf{q} , \mathbf{k} , and \mathbf{v} self-attention vectors in terms of their embeddings as $\mathbf{q}_m = f_q(\mathbf{x}_m, m)$ $\mathbf{k}_n = f_k(\mathbf{x}_n, n)$ $\mathbf{v}_n = f_v(\mathbf{x}_n, n)$.

The element (m, n) of the attention matrix $\mathbf{q}_m \mathbf{k}_n$ is formulated in terms of relative position m - m as a function $g(\mathbf{x}_m, \mathbf{x}_n, m - n)$

Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., & Liu, Y. (2021). Roformer: Enhanced transformer with rotary position embedding. *arXiv preprint arXiv:2104.09864*.

Rotary Positional Embeddings (RoPE)

A particular type of *relative position embeddings*

RoPE expresses g as

$$f_q(\boldsymbol{x}_m, m) = (\boldsymbol{W}_q \boldsymbol{x}_m) e^{im\theta}$$

$$f_k(\boldsymbol{x}_n, n) = (\boldsymbol{W}_k \boldsymbol{x}_n) e^{in\theta}$$

$$g(\boldsymbol{x}_m, \boldsymbol{x}_n, m - n) = \text{Re}[(\boldsymbol{W}_q \boldsymbol{x}_m) (\boldsymbol{W}_k \boldsymbol{x}_n)^* e^{i(m-n)\theta}]$$

So the **q** and **k** vectors, and their inner product are

$$egin{aligned} f_{\{q,k\}}(oldsymbol{x}_m,m) &= oldsymbol{R}_{\Theta,m}^d oldsymbol{W}_{\{q,k\}} oldsymbol{x}_m \ oldsymbol{q}_m^\intercal oldsymbol{k}_n &= (oldsymbol{R}_{\Theta,m}^d oldsymbol{W}_q oldsymbol{x}_m)^\intercal (oldsymbol{R}_{\Theta,n}^d oldsymbol{W}_k oldsymbol{x}_n) &= oldsymbol{x}_m^\intercal oldsymbol{W}_q oldsymbol{R}_{\Theta,n-m}^d oldsymbol{W}_k oldsymbol{x}_n \ oldsymbol{\Theta} &= \{oldsymbol{ heta}_i = 10000^{-2(i-1)/d}, i \in [1,2,...,d/2]\} \end{aligned}$$

Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., & Liu, Y. (2021). Roformer: Enhanced transformer with rotary position embedding. *arXiv preprint arXiv:2104.09864*.

LLaMA training

LLaMA-1 trained with 1.4 trillion tokens

- Webpages scraped by CommonCrawl
- Open source repositories of source code from GitHub
- Wikipedia in 20 different languages
- Public domain books from Project Gutenberg
- The LaTeX source code for scientific papers uploaded to ArXiv
- Questions and answers from Stack Exchange websites

LLaMA training

LLaMA-2 trained with 2 trillion tokens

LLaMA-2 chat was fine-tuned on 27,540 promptresponse pairs created for this project

RLHF was used with rejection sampling and PPO

Large Language Models

Conditioning LLMs for downstream applications

Conditioning techniques

GPT based LLMs do not own knowledge about too specific topics

- They have been trained
- with documents until the 2021/2022
- on corpora dealing with «general» topics
- Hallucinations

Conditioning techniques

There are two main contitioning techniques to contrast hallucination, and achieving precise answers

- Fine-tuning
- Retrieval Augmented Generation (RAG)

Fine-tuning

LLMs require too much GPU memory space

- Approximately a number of GB that is 2 times the number of parameters
 - Normally 16bit floats are used for inference
- O An example: LLaMA-2 7B → up to 16GB including embeddings

Fine-tuning

LLMs require too much GPU memory space

 When fine-tuning LLaMA-2 7B we have to take into account the following (with batch size = 1)

Model parameters (16bit floats):7B x 2 = 14GB

o Gradients (16bit floats): $7B \times 2 = 14GB$

Optimizer states (2 x parameter 32bit floats): 7B x 4 x 2 = 56GB

TOTAL: 84GB

Low Rank Adaptation (LoRA)

Agnostic with respect to both the model and the training objective

Assume to have

- o a set of trained parameters Φ_0 that have to be fine-tuned to Φ_0 + $\Delta\Phi$
- O A context-target pairs dataset $\mathcal{Z} = \{(x_i, y_i)\}_{i=1,...,N}$
- O We have to maximize: $\max_{\Phi} \sum_{(x,y) \in \mathcal{Z}} \sum_{t=1}^{|\mathcal{Y}|} \log \left(P_{\Phi}(y_t|x,y_{< t}) \right)$

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W. (2021). Lora: Low-rank adaptation of large language models. *arXiv preprint arXiv:2106.09685*.

Low Rank Adaptation (LoRA)

LoRa tries to maximize
$$\max_{\Theta} \sum_{(x,y) \in \mathcal{Z}} \sum_{t=1}^{|\mathcal{S}|} \log \left(p_{\Phi_0 + \Delta\Phi(\Theta)}(y_t|x,y_{< t}) \right)$$

$$\Delta \Phi = \Delta \Phi(\Theta) |\Theta| \ll |\Phi_0|$$

For a generic hidden layer:

$$h = W_0 x + \Delta W x = W_0 x + BAx$$

 $W_0 \in \mathbb{R}^{d \times k}, B \in \mathbb{R}^{d \times r}, A \in \mathbb{R}^{r \times k}$
 $r << \min(d, k)$

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W. (2021). Lora: Low-rank adaptation of large language models. *arXiv preprint arXiv:2106.09685*.

A technique to couple task-specific document retrieval with language generation to achieve precise answers

- Used mainly in QA with the chat versions of GPT LLMs
- Can be applied to whatever downstream application
- No (or at least very little) fine-tuning

A *parametric memory* (sequence-to-sequence LM) is complemented with a *non parametric memory* (a document retriever using vector embeddings)

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., ... & Kiela, D. (2020). Retrieval-augmented generation for knowledge-intensive nlp tasks. *Advances in Neural Information Processing Systems*, *33*, 9459-9474.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., ... & Kiela, D. (2020). Retrieval-augmented generation for knowledge-intensive nlp tasks. *Advances in Neural Information Processing Systems*, 33, 9459-9474.

$$p_{\text{RAG-Sequence}}(y|x) \approx \sum_{z \in \text{top-}k(p(\cdot|x))} p_{\theta}(y|x,z) = \sum_{z \in \text{top-}k(p(\cdot|x))} p_{\theta}(y_i|x,z,y_{1:i-1}) \\ \sum_{j} -\log p(y_j|x_j) \\ \text{Define "middle ear" (x)} \\ \text{End-to-End Backprop through } \mathbf{q} \text{ and } \mathbf{p}_{\theta} \\ \text{Question Answering:} \\ \text{Question Answering:} \\ \text{Question Query} \\ \text{Barack Obama was born in Hawaii. (x)} \\ \text{Fact Verification: Fact Query} \\ \text{The Divine Conedy (x)} \\ \text{Jeoparly Question Rate Query} \\ \text{Answer Query} \\ \text{Question Answering:} \\ \text{Answer Query} \\ \text{Question Fact Query} \\ \text{This 14th century work is divided into 3 generation} \\ \text{This 14th century work is divided into 3 generation} \\ \text{Question Answering:} \\ \text{Question Answering:} \\ \text{Question Answering:} \\ \text{Answer Query} \\ \text{Question Answering:} \\ \text{Question Answering:} \\ \text{Question Answering:} \\ \text{Answer Query} \\ \text{Question Answering:} \\ \text{Question Answering:} \\ \text{Answer Query} \\ \text{Question Answering:} \\ \text{Answer Query} \\ \text{Question Answering:} \\ \text{Question Answering:} \\ \text{Answer Query} \\ \text{Question Answering:} \\ \text{Question Answering:} \\ \text{Answer Query} \\ \text{Question Answering:} \\ \text{Question Answering:} \\ \text{Question Answering:} \\ \text{Answer Query} \\ \text{Question Answering:} \\ \text{Answer Query} \\ \text{Question Answering:} \\ \text{Answering:} \\ \text{Question Answering:} \\$$

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., ... & Kiela, D. (2020). Retrieval-augmented generation for knowledge-intensive nlp tasks. *Advances in Neural Information Processing Systems*, 33, 9459-9474.

Right now, GPT models are too large for being finetuned in a RAG framework

- Vector databases are used in place of ad hoc query encoding
 - Suitable dbs that take into account queries in terms of vector similarity
- In QA, ad hoc frameworks for keeping the history of conversation as a context for the next question

Right now, GPT models are too large for being finetuned in a RAG framework

https://ai.meta.com/MediaManagerVideos/videos/244800523626272/