Rozwiązywanie równań i układów równań nieliniowych

18 maja 2022

1 Problem 1

1.1 Opis problemu

Główną ideą zadanie jest wyznaczenie pierwiastków równania f(x)=0 w zadanym przedziałe metodą Newtona oraz metodą siecznych. Dla metody Newtona punkty startowe wybierane będą rozpoczynając od wartości końców przedziału, zmniejszając je o 0.1 w kolejnych eksperymentach numerycznych. Odpowiednio dla metody siecznej jeden z końców przedziału stanowić powinna wartość punktu startowego dla metody Newtona, a drugi - początek, a następnie koniec przedziału [a, b].

Badana funkcja:

$$f(x) = x^{n} + x^{m}$$
$$f'(x) = nx^{(n-1)} + mx^{(m-1)}$$

Gdzie n = 15, m = 10 oraz $x \in [-1.5, 0.3]$.

Liczba iteracji dla obu tych metod (dla różnych dokładności ρ) zostanie porównana, stosując kryteria stopu:

1.
$$|x_{(i+1)} - x_{(i)}| < \rho$$

2.
$$|f(x_i)| < \rho$$

1.2 Opracowanie

Wykres badanej funkcji wygląda następująco:

Rysunek 1: Funkcja f

1.2.1 Metoda Newtona

Żeby zastosować metodę Newtona muszą być spełnione warunki:

- 1. funkcja jest ciągła,
- 2. w przedziale znajduje się dokładnie jeden pierwiastek,
- 3. funkcja ma różne znaki na krańcach przedziału,
- $4.\,$ pierwsza i druga pochodna funkcji mają stały znak w tym przedziale.

1.2.2 Metoda Siecznych

Żeby zastosować metodę siecznych muszą być spełnione warunki:

- 1. funkcja jest ciągła,
- 2. funkcja ma różne znaki na krańcach przedziału,

Poniżej znajdują się tabele z wynikami oraz liczbami iteracji dla różnych punktów startowych, dokładności i kryteriów stopu (kolumny - dokładność warunku stopu, wiersze - przedział startowy, pierwsza wartość to liczba iteracji, druga to wyliczona wartość):

	0.01	0.0001
[-1.5, 0.3]	1,0.2999999719783287	1, 0.2999999719783287
[-1.5, 0.2]	1, 0.1999999954202397	1, 0.1999999954202397
[-1.5, 0.1]	1,0.09999999995792	1,0.09999999995792
[-1.5, 0.0]	1,0.0	1,0.0
[-1.5, -0.1]	1,-0.100000000003682	1,-0.100000000003682
[-1.5, -0.2]	1,-0.200000003499929	1,-0.2000000003499929
[-1.5, -0.3]	1,-0.30000001859054404	1,-0.30000001859054404
[-1.5, -0.4]	1,-0.4000003002460556	1,-0.4000003002460556
[-1.5, -0.5]	1,-0.5000024880872789	1,-0.5000024880872789
[-1.5, -0.6]	1,-0.6000131991976202	1,-0.6000131991976202
[-1.5, -0.7]	1,-0.7000494407743927	1,-0.7000494407743927
[-1.5, -0.8]	1,-0.8001328759633891	88, -0.0012792299168158175
[-1.5, -0.9]	1,-0.9002252333668005	86, -0.0012872915386244574
[-1.5, -1.0]	1 , -1.0	1,-1.0
[-1.5, -1.1]	- , -	- , -
[-1.5, -1.2]	- , -	- , -
[-1.5, -1.3]	- , -	- , -
[-1.5, -1.4]	- , -	- , -

Tabela 1: Wyniki dla kryterium 1

	0.000001	0.00000001
[-1.5, 0.3]	1, 0.2999999719783287	202 , 1.2347184284733514e-07
[-1.5, 0.2]	1, 0.1999999954202397	1, 0.1999999954202397
[-1.5, 0.1]	1, 0.09999999995792	1,0.09999999995792
[-1.5, 0.0]	1,0.0	1,0.0
[-1.5, -0.1]	1,-0.100000000003682	1,-0.100000000003682
[-1.5, -0.2]	1,-0.2000000003499929	1,-0.200000003499929
[-1.5, -0.3]	1,-0.30000001859054404	202, -1.2339064682943556e-07
[-1.5, -0.4]	1, -0.4000003002460556	206, -1.2271185187385738e-07
[-1.5, -0.5]	145, -1.3161745867565867e-05	209, -1.228490181943292e-07
[-1.5, -0.6]	148 , -1.2600322423135904e-05	211, -1.2651956438673627e-07
[-1.5, -0.7]	150 , -1.2515478045913677e-05	213 , -1.2566764383372642e-07
[-1.5, -0.8]	151, -1.2844719872314041e-05	214, -1.2897355387755059e-07
[-1.5, -0.9]	149 , -1.2925666442189665e-05	212 , -1.2978633663146324e-07
[-1.5, -1.0]	1,-1.0	1,-1.0
[-1.5, -1.1]	- , -	- , -
[-1.5, -1.2]	- , -	- , -
[-1.5, -1.3]	- , -	- , -
[-1.5, -1.4]	- , -	- , -

Tabela 2: Wyniki dla kryterium 1

	T	I
	0.01	0.0001
[-1.5, 0.3]	1, 0.2999999719783287	1, 0.2999999719783287
[-1.4, 0.3]	1, 0.2999999205423745	1, 0.2999999205423745
[-1.3, 0.3]	1, 0.29999974677043706	1, 0.29999974677043706
[-1.2, 0.3]	1, 0.2999990365064661	1, 0.2999990365064661
[-1.1, 0.3]	1, 0.2999947667271144	1, 0.2999947667271144
[-1.0, 0.3]	2,-1.0	2,-1.0
[-0.9, 0.3]	- , -	- , -
[-0.8, 0.3]	- , -	- , -
[-0.7, 0.3]	- , -	- , -
[-0.6, 0.3]	- , -	- , -
[-0.5, 0.3]	- , -	- , -
[-0.4, 0.3]	- , -	- , -
[-0.3, 0.3]	- , -	- , -
[-0.2, 0.3]	- , -	- , -
[-0.1, 0.3]	- , -	- , -
[0.0, 0.3]	2,0.0	2,0.0
[0.1, 0.3]	- , -	- , -
[0.2, 0.3]	- , -	- , -

Tabela 3: Wyniki dla kryterium 1

	0.000001	0.00000001
[-1.5, 0.3]	1, 0.2999999719783287	202, 1.2347184284733514e-07
[-1.4, 0.3]	1, 0.2999999205423745	202, 1.2347182971148565e-07
[-1.3, 0.3]	1, 0.29999974677043706	202, 1.234717853290779e-07
[-1.2, 0.3]	1, 0.2999990365064661	202, 1.2347160392290603e-07
[-1.1, 0.3]	139 , 1.229666167208727e-05	202, 1.234705133661465e-07
[-1.0, 0.3]	2 , -1.0	2,-1.0
[-0.9, 0.3]	- , -	- , -
[-0.8, 0.3]	- , -	- , -
[-0.7, 0.3]	- , -	- , -
[-0.6, 0.3]	- , -	- , -
[-0.5, 0.3]	- , -	- , -
[-0.4, 0.3]	- , -	- , -
[-0.3, 0.3]	- , -	- , -
[-0.2, 0.3]	- , -	- , -
[-0.1, 0.3]	- , -	- , -
[0.0, 0.3]	2,0.0	2, 0.0
[0.1, 0.3]	- , -	- , -
[0.2, 0.3]	- , -	- , -

Tabela 4: Wyniki dla kryterium 1

Obliczenia dla warunku 2.

	0.01	0.0001
[-1.5, 0.3]	0,0.3	0,0.3
[-1.5, 0.2]	0,0.2	0,0.2
[-1.5, 0.1]	0,0.1	0,0.1
[-1.5, 0.0]	0,0.0	0,0.0
[-1.5, -0.1]	0,-0.1	0,-0.1
[-1.5, -0.2]	0,-0.2	0,-0.2
[-1.5, -0.3]	0,-0.3	0,-0.3
[-1.5, -0.4]	0,-0.4	2,-0.35979213983546243
[-1.5, -0.5]	0,-0.5	4,-0.39040130801355694
[-1.5, -0.6]	0,-0.6	7,-0.37416450906711657
[-1.5, -0.7]	2,-0.6221547686232306	9,-0.3716091577181563
[-1.5, -0.8]	4,-0.5960998703447792	10, -0.3814304816183517
[-1.5, -0.9]	2, -0.5762442355591834	8,-0.3837915650717631
[-1.5, -1.0]	0,-1.0	0,-1.0
[-1.5, -1.1]	- , -	- , -
[-1.5, -1.2]	- , -	- , -
[-1.5, -1.3]	- , -	- , -
[-1.5, -1.4]	- , -	- , -

Tabela 5: Wyniki dla kryterium 2

	0.000001	0.00000001
[-1.5, 0.3]	4, 0.23501985880182222	10, 0.1518402028750265
[-1.5, 0.2]	0,0.2	4, 0.1566484373406491
[-1.5, 0.1]	0,0.1	0,0.1
[-1.5, 0.0]	0,0.0	0,0.0
[-1.5, -0.1]	0,-0.1	0,-0.1
[-1.5, -0.2]	0,-0.2	4,-0.15663886236268393
[-1.5, -0.3]	4,-0.23491080994718538	10, -0.15174366116087418
[-1.5, -0.4]	8,-0.23390946353709313	14, -0.15090947305716007
[-1.5, -0.5]	11, -0.23417810827818566	17, -0.15107818251905067
[-1.5, -0.6]	13, -0.2411783165995013	19, -0.15559243636836842
[-1.5, -0.7]	15, -0.23955341019879936	21, -0.15454468991624457
[-1.5, -0.8]	16, -0.24585891973154145	23, -0.1474389924878853
[-1.5, -0.9]	14, -0.247409148038453	21, -0.14836818794539236
[-1.5, -1.0]	0,-1.0	0,-1.0
[-1.5, -1.1]	- , -	- , -
[-1.5, -1.2]	- , -	- , -
[-1.5, -1.3]	- , -	- , -
[-1.5, -1.4]	- , -	- , -

Tabela 6: Wyniki dla kryterium 2

	0.01	0.0001
[-1.5, 0.3]	0,0.3	0, 0.3
[-1.4, 0.3]	0,0.3	0, 0.3
[-1.3, 0.3]	0,0.3	0, 0.3
[-1.2, 0.3]	0,0.3	0, 0.3
[-1.1, 0.3]	0, 0.3	0, 0.3
[-1.0, 0.3]	0, 0.3	0, 0.3
[-0.9, 0.3]	- , -	- , -
[-0.8, 0.3]	- , -	- , -
[-0.7, 0.3]	- , -	- , -
[-0.6, 0.3]	- , -	- , -
[-0.5, 0.3]	- , -	- , -
[-0.4, 0.3]	- , -	- , -
[-0.3, 0.3]	- , -	- , -
[-0.2, 0.3]	- , -	- , -
[-0.1, 0.3]	- , -	- , -
[0.0, 0.3]	0,0.3	0, 0.3
[0.1, 0.3]	- , -	- , -
[0.2, 0.3]	- , -	- , -

Tabela 7: Wyniki dla kryterium 2

	0.000001	0.00000001
[-1.5, 0.3]	4, 0.23501985880182222	10, 0.1518402028750265
[-1.4, 0.3]	4, 0.23501983456326772	10, 0.15184018672364935
[-1.3, 0.3]	4, 0.23501975266727598	10, 0.1518401321526053
[-1.2, 0.3]	4, 0.23501941793015638	10, 0.15183990910197134
[-1.1, 0.3]	4, 0.23501740559353826	10, 0.1518385681918165
[-1.0, 0.3]	1,-1.0	1,-1.0
[-0.9, 0.3]	- , -	- , -
[-0.8, 0.3]	- , -	- , -
[-0.7, 0.3]	- , -	- , -
[-0.6, 0.3]	- , -	- , -
[-0.5, 0.3]	- , -	- , -
[-0.4, 0.3]	- , -	- , -
[-0.3, 0.3]	- , -	- , -
[-0.2, 0.3]	- , -	- , -
[-0.1, 0.3]	- , -	- , -
[0.0, 0.3]	1,0.0	1,0.0
[0.1, 0.3]	- , -	- , -
[0.2, 0.3]	-,-	- , -

Tabela 8: Wyniki dla kryterium 2

2 Problem 2

2.1 Opis problemu

Główną ideą problemu jest rozwiązanie układu równań metodą Newtona.

$$\begin{cases} x_1^2 + x_2^2 + x_3 = 1\\ 2x_1^2 + x_2^2 + x_3^3 = 2\\ 3x_1 - 2x_2^3 - 2x_3^2 = 3 \end{cases}$$

Wektory spełniające układ równań:

$$\left[1, -1, -1\right], \left[1, 0, 0\right], \left[0.953156, -0.428689, -0.0922802\right]$$

Eksperymenty zostaną przeprowadzone dla różnych wektorów początkowych.

1.
$$||X_{(i+1)} - X_{(i)}|| < \rho$$

2.
$$||F(X_i)|| < \rho$$

2.2 Opracowanie

Niech

$$F(X) = \begin{bmatrix} f_1(X) \\ f_2(X) \\ f_3(X) \end{bmatrix} = \begin{bmatrix} x_1^2 + x_2^2 + x_3 = 1 \\ 2x_1^2 + x_2^2 + x_3^3 = 2 \\ 3x_1 - 2x_2^3 - 2x_3^2 = 3 \end{bmatrix}$$

Metoda Newtona dla układów równań jest analogiczna jak dla równania nieliniowego z tą różnicą, że zamiast pochodnej używany jest jakobian macierzy, w tym przypadku:

$$J(X) = \begin{bmatrix} 2x_1 & 2x_2 & 1\\ 4x_1 & 2x_2 & 3x_3^2\\ 3 & -6x_2^2 & -4x_3 \end{bmatrix}$$

Wówczas

$$X_{k+1} = X_k - \frac{F(X_k)}{J(X_k)}$$

Czyli

$$X_{k+1} = X_k - J(X_k)^{-1}F(X_k)$$

Gdzie $J(X_k)^{-1}F(X_k)$ jest rozwiązaniem układu równań $J(X_k)S=F(X_k)$, więc

$$X_{k+1} = X_k - S$$

Wektor początkowy	L. iteracji, Wynik
[-1.0, -1.0, -1.0]	106 , [111.]
[-1.0, -1.0, -0.3]	254 , [111.]
[-1.0, -1.0, 0.3]	215 , [111.]
[-1.0, -1.0, 1.0]	24 , [111.]
[-1.0, -0.3, -1.0]	8 , [111.]
[-1.0, -0.3, -0.3]	342 , [111.]
[-1.0, -0.3, 0.3]	9 , [111.]
[-1.0, -0.3, 1.0]	353 , [111.]
[-1.0, 0.3, -1.0]	31 , [111.]
[-1.0, 0.3, -0.3]	129 , [111.]
[-1.0, 0.3, 0.3]	80 , [111.]
[-1.0, 0.3, 1.0]	176 , [111.]
[-1.0, 1.0, -1.0]	15 , [111.]
[-1.0, 1.0, -0.3]	29 , [1.00000000e+00 8.73838008e-07 2.38725030e-16]
[-1.0, 1.0, 0.3]	58 , [111.]
[-1.0, 1.0, 1.0]	126 , [111.]
[-0.3, -1.0, -1.0]	71 , [111.]
[-0.3, -1.0, -0.3]	358 , [111.]
[-0.3, -1.0, 0.3]	118 , [111.]
[-0.3, -1.0, 1.0]	38 , [1.00000000e+00 8.48959093e-07 -1.02803848e-17]
[-0.3, -0.3, -1.0]	93 , [111.]
[-0.3, -0.3, -0.3]	32 , [111.]
[-0.3, -0.3, 0.3]	9 , [111.]
[-0.3, -0.3, 1.0]	37 , [111.]
[-0.3, 0.3, -1.0]	148 , [111.]
[-0.3, 0.3, -0.3]	20 , [111.]
[-0.3, 0.3, 0.3]	69 , [111.]
[-0.3, 0.3, 1.0]	81 , [111.]
[-0.3, 1.0, -1.0]	24 , [1.00000000e+00 8.52286434e-07 2.22404201e-16]
[-0.3, 1.0, -0.3]	165, [$1.000000000e+00$ $5.36569338e-07$ $-1.99809146e-16$]
[-0.3, 1.0, 0.3]	101 , [111.]
[-0.3, 1.0, 1.0]	165 , [111.]

Wektor początkowy	L. iteracji, Wynik
[0.3, -1.0, -1.0]	21 , [111.]
[0.3, -1.0, -0.3]	147 , [111.]
[0.3, -1.0, 0.3]	63 , [111.]
[0.3, -1.0, 1.0]	396 , [1.00000000e+00 6.40652918e-07 2.04896485e-16]
[0.3, -0.3, -1.0]	220 , [1.00000000e+00 6.03236699e-07 1.06891993e-17]
[0.3, -0.3, -0.3]	11 , [111.]
[0.3, -0.3, 0.3]	34 , [111.]
[0.3, -0.3, 1.0]	14 , [111.]
[0.3, 0.3, -1.0]	130 , [111.]
[0.3, 0.3, -0.3]	24 , [1.00000000e+00 5.42508179e-07 2.41224404e-16]
[0.3, 0.3, 0.3]	123 , [111.]
[0.3, 0.3, 1.0]	177 , [111.]
[0.3, 1.0, -1.0]	134 , [111.]
[0.3, 1.0, -0.3]	23 , [1.00000000e+00 5.74285178e-07 1.94318265e-16]
[0.3, 1.0, 0.3]	23 , [1.00000000e+00 7.46004508e-07 -1.00047675e-16]
[0.3, 1.0, 1.0]	736 , [1.00000000e+00 7.73411964e-07 -4.55281571e-18]
[1.0, -1.0, -1.0]	1 , [111.]
[1.0, -1.0, -0.3]	7, [0.9531556 -0.42868942 -0.09228022]
[1.0, -1.0, 0.3]	7, [0.9531556 -0.42868942 -0.09228022]
[1.0, -1.0, 1.0]	24 , [1.00000000e+00 5.85365451e-07 -3.00940094e-16]
[1.0, -0.3, -1.0]	186 , [111.]
[1.0, -0.3, -0.3]	7, [0.9531556 -0.42868942 -0.09228022]
[1.0, -0.3, 0.3]	21, [1.000000000e+00.07994622e-07.9.44864089e-17]
[1.0, -0.3, 1.0]	113 , [111.]
[1.0, 0.3, -1.0]	34 , [111.]
[1.0, 0.3, -0.3]	20 , [1.00000000e+00 9.66979817e-07 -1.27336830e-16]
[1.0, 0.3, 0.3]	22 , [1.00000000e+00 8.95178294e-07 -2.26539514e-19]
[1.0, 0.3, 1.0]	49 , [111.]
[1.0, 1.0, -1.0]	243 , [111.]
[1.0, 1.0, -0.3]	22 , [1.00000000e+00 7.15529230e-07 -2.92212534e-19]
[1.0, 1.0, 0.3]	22 , [1.00000000e+00 8.92027679e-07 2.76139201e-16]
[1.0, 1.0, 1.0]	41 , [111.]

Tabela 9: Wyniki dla kryterium 1

Wektor początkowy	L. iteracji, Wynik
[-1.0, -1.0, -1.0]	105 , [111.]
[-1.0, -1.0, -0.3]	253 , [111.]
[-1.0, -1.0, 0.3]	214 , [111.]
[-1.0, -1.0, 1.0]	23 , [111.]
[-1.0, -0.3, -1.0]	7 , [111.]
[-1.0, -0.3, -0.3]	341 , [111.]
[-1.0, -0.3, 0.3]	8 , [111.]
[-1.0, -0.3, 1.0]	352 , [111.]
[-1.0, 0.3, -1.0]	30 , [111.]
[-1.0, 0.3, -0.3]	128 , [111.]
[-1.0, 0.3, 0.3]	79 , [111.]
[-1.0, 0.3, 1.0]	175 , [111.]
[-1.0, 1.0, -1.0]	14 , [111.]
[-1.0, 1.0, -0.3]	20 , [1.00000000e+00 8.73838008e-07 2.38725030e-16]
[-1.0, 1.0, 0.3]	57 , [111.]
[-1.0, 1.0, 1.0]	125 , [111.]
[-0.3, -1.0, -1.0]	70 , [111.]
[-0.3, -1.0, -0.3]	357 , [111.]
[-0.3, -1.0, 0.3]	117 , [111.]
[-0.3, -1.0, 1.0]	29 , [1.00000000e+00 8.48959093e-07 -1.02803848e-17]
[-0.3, -0.3, -1.0]	92 , [111.]
[-0.3, -0.3, -0.3]	31 , [111.]
[-0.3, -0.3, 0.3]	8 , [111.]
[-0.3, -0.3, 1.0]	36 , [111.]
[-0.3, 0.3, -1.0]	147 , [111.]
[-0.3, 0.3, -0.3]	19 , [111.]
[-0.3, 0.3, 0.3]	69 , [111.]
[-0.3, 0.3, 1.0]	80 , [111.]
[-0.3, 1.0, -1.0]	15, [1.00000000e+00 8.52286434e-07 2.22404201e-16]
[-0.3, 1.0, -0.3]	155 , [1.00000000e+00 5.36569338e-07 -1.99809146e-16]
[-0.3, 1.0, 0.3]	100 , [111.]
[-0.3, 1.0, 1.0]	164 , [111.]

[0.3, -1.0, -1.0]	20 , [111.]
[0.3, -1.0, -0.3]	146 , [111.]
[0.3, -1.0, 0.3]	62 , [111.]
[0.3, -1.0, 1.0]	386 , [1.00000000e+00 6.40652918e-07 2.04896485e-16]
[0.3, -0.3, -1.0]	210 , [1.00000000e+00 6.03236699e-07 1.06891993e-17]
[0.3, -0.3, -0.3]	11 , [111.]
[0.3, -0.3, 0.3]	33 , [111.]
[0.3, -0.3, 1.0]	13 , [111.]
[0.3, 0.3, -1.0]	129 , [111.]
[0.3, 0.3, -0.3]	14 , [1.00000000e+00 5.42508179e-07 2.41224404e-16]
[0.3, 0.3, 0.3]	123 , [111.]
[0.3, 0.3, 1.0]	176 , [111.]
[0.3, 1.0, -1.0]	133 , [111.]
[0.3, 1.0, -0.3]	13, [1.00000000e+00 5.74285178e-07 1.94318265e-16]
[0.3, 1.0, 0.3]	13 , [1.00000000e+00 7.46004508e-07 -1.00047675e-16]
[0.3, 1.0, 1.0]	726 , [1.00000000e+00 7.73411964e-07 -4.55281571e-18]
[1.0, -1.0, -1.0]	1 , [111.]
[1.0, -1.0, -0.3]	6 , [0.9531556 -0.42868942 -0.09228022]
[1.0, -1.0, 0.3]	6 , [0.9531556 -0.42868942 -0.09228022]
[1.0, -1.0, 1.0]	14 , [1.00000000e+00 5.85365451e-07 -3.00940094e-16]
[1.0, -0.3, -1.0]	185 , [111.]
[1.0, -0.3, -0.3]	6, [0.9531556 -0.42868942 -0.09228022]
[1.0, -0.3, 0.3]	11, [1.00000000e+00 6.07994622e-07 9.44864089e-17]
[1.0, -0.3, 1.0]	112 , [111.]
[1.0, 0.3, -1.0]	33 , [111.]
[1.0, 0.3, -0.3]	11 , [1.00000000e+00 9.66979817e-07 -1.27336830e-16]
[1.0, 0.3, 0.3]	13 , [1.00000000e+00 8.95178294e-07 -2.26539514e-19]
[1.0, 0.3, 1.0]	48 , [111.]
[1.0, 1.0, -1.0]	242 , [111.]
[1.0, 1.0, -0.3]	12 , [1.00000000e+00 7.15529230e-07 -2.92212534e-19]
[1.0, 1.0, 0.3]	13 , [1.00000000e+00 8.92027679e-07 2.76139201e-16]
[1.0, 1.0, 1.0]	40 , [111.]

Tabela 10: Wyniki dla kryterium 2

2.3 Wnioski

Zostały znalezione wszystkie rozwiązania układu równań. Niedokładność = 0.000001 jest w pełni wystarczający dla w.w wektorów początkowych niezależnie od kryterium stopu.