

종합설계제안서

학번: 2017202027 이름: 이강석 지도교수: 최종필 학번: 2017150042 이름: 황규한 지도교수: 최종필

학번: 2017316025 이름: 엄기호 지도교수: 최종필

차 례

합 요 종 계 개 설 관 련 사 례 연 구 및 시 나 리 오 시 스 템 수 행 시 템 성 도 스 개 발 및 개 발 환 경 방 법 업 담 무 분 종 합 설 계 수 행 일 정 필요기술 및 참 고 문 헌

00

00

종합설계 개요

❖ 연구 개발 배경

산업현장, 안전 장비를 착용하지 아니하여 발생하는 인명사고는 단순히 안전 장비의 착용만으로도 그 부상위험을 크게 줄일 수 있는 것으로 보고되고 있다. 건설 현장의 경우 다른 곳보다도 빈번하게 위험에 노출되므로 항상 안전이 중요시 되는 장소이다.

종합설계 개요

❖ 연구 개발 배경

산업 현장 작업장에서 사고 유형 중 가장 많은 부분을 차지하는 사고는 추락이나 낙하 등으로 인한 사망사고이다. 이러한 상황에서 안전 장비는 큰보호 역할을 하게 된다. 특히 안전모의 경우에는 사람의 신체 중 중요한 부위인머리를 보호 함으로서 위험에서 사람을 보호하게 된다.

종합설계 개요

❖ 연구 개발 목표

안전 장비 미착용으로 인한 인명사고를 방지하기 위하여 카메라 감시구역내의 안전 장비 미착용자를 인식하고, 관리자에게 경고 메시지를 전송함으로써 안전사고를 예방할 수 있는 프로그램의 개발

❖ 연구 개발 효과

프로그램을 안전 장비 착용 여부 식별에 이용하여 안전 장비 착용을 권장함으로써 건설 현장의 사고 예방

관련 연구 및 사례

이름	내용	PEDS가 나은 점
무사고	안전모 등에 트래커를 부착하여 근로자의 앱과 안전장비가 일정 반경 이상 떨어지게 되면 경보	안전모에 따로 장치를 해야하는 불편함 없음
Autonics 세이프티 라이트 커튼	투/수광기로 이루어진 전기 감응 방호 장치로 펜스, 장비 등에 설치하여 검출 영역 내물체를 감지하면 기계 작동을 즉각 정지	장치 추가 설치가 없음
대신피아이씨 스마트 안전관리 솔루션	건축물에 센서를 설치하고 데이터를 수집, 분석하여 물리적 변화를 실시간 감지,예측. 응급 상황 발생시 센서를 통해 감지. 현장에 인원이 몇 명이 배치되어 있는지도 파악 가능.	사람들의 유무 등은 파악 할 수 있지만 실제로 안전장구를 제대로 착용하고 있는지는 파악 할 수 없음

개발 방법

1. Program

- Python을 활용한 프로그램 개발
- YOLO v3, Tensorflow를 위한 라이브러리 사용을 위해 anaconda 사용。
- YOLO v3를 이용해 사물인식
- Tensorflow를 이용해 학습 모델 구현
- 안전모와 형광 조끼는 표준화가 되어있으므로 Dataset을 Google의 Open Images Dataset V6+를 이용
- Dataset이 부족할 경우 직접 사진을 구해 라벨링 후 각각의 사진을 화소 값, 스케일, 좌우 플립 등의 옵션을 넣고 표본의 크기를 키움
- GUI 구현을 위한 파이썬 라이브러리 TKinter 사용
- 사건 발생 시 텍스트 파일 형태로 로그 기록
- TensorFlow의 연산 속도 향상을 위해 NVIDIA 그래픽카드 위에서 동작하는 CuDNN, CUDA를 사용
- 영상처리를 위한 OpenCV 라이브러리 이용

개발 환경

영상처리와 학습 모델을 쉽게 구현하기 위해 Python을 사용

TensorFlow 연산속도 향상을 위해 NVIDIA 그래픽카드를 이용해 Cuda, CuDNN를 사용

> GUI 구현을 위한 Python 라이브러리 Tkinter 사용

H/W	CPU	AMD Ryzen 5 3600					
	SDRAM	Samsung SDRAM 16G					
	STORAGE	Samsung SSD 512GB					
	GPU	NVIDIA GeForce RTX 3060 TI					
S/W	O/S	Windows 10					
	TOOL	Anaconda3					
		Jupyter Notebook					
		TensorFlow(Keras)					
		openCV					
		Cuda					
		CuDNN					
		Tkinter					

업무 분담

		엄기호	이강석	황규한			
자료수집		❖영상처리 알고리즘	❖보호구 데이터셋	❖산업재해 통계			
설):	#	❖모델로 영상의 입력	❖데이터셋을 통한 학습	❖프로그램 GUI ❖사건 로그 기록			
구현	H	❖실시간 영상의 입력처리 구현	❖학습 모델 구현	❖프로그램 GUI 구현 ❖사건 로그 기록			
테스트		❖통합테스트 / 유지보수					

종합설계 수행일정

12

❖ 시스템 개발 일정을 월별로 기술

							3.3	20 20 20 20				
항목	추진사항	12 월	1 월	2월	3월	4 월	5월	6월	7 월	8월	9월	10 월
요구사항 분석 및 설계	- 요구사항 정의 및 분석											
	- 요구사항 명세											
시스템 설계 및 상 세 설계	- 시스템 설계	_										
	- 상세 설계			•								
구현	- 코딩		_									
	- 데이터 수집		_									
시험 및 데모	- 프로그램 시험						→					
	- 프로그램 보강								-			
문서화 및 발표	- 졸업작품 중간보고서 작성 - 발표							•		→		
선업기술대전	- 산업기술대전 참가											
졸업작품 최종 보 고서 작성 및 패키 징	- 졸업작품 최종보고서 작성											\rightarrow
	- CD 패키징											

GitHub

https://github.com/lks2795/sds.git

필요기술 및 참고 문헌

- YOLO v3

YOLO stands for You Only Look Once. It's an object detector that uses features learned by a deep convolutional neural network to detect an object.

- Tensorflow

텐서플로(TensorFlow)는 구글(Google)에서 만든, 딥러닝 프로그램을 쉽게 구현할 수 있도록 다양한 기능을 제공해주는 라이브러리다.

- 통계자료

https://www.moel.go.kr/news/enews/report/enewsView.do?news_s eq=12149

https://kosha.or.kr/kosha/data/industrialAccidentCause.do?mode=view&articleNo=347626&article.offset=0&articleLimit=10

