Introduction to High Performance Scientific Computing

Autumn, 2016

Lecture 1

Instructor

Prasun Ray
Teaching Fellow
Department of Mathematics
p.ray@imperial.ac.uk
Huxley 6M20
Office hours: Mondays 4-5pm, MLC
Thursdays 5-6pm, MLC
(First office hour on Monday, 10/10)

Weekly schedule

Lectures:

Monday, 11-12, Huxley 139 Thursday, 9-10, Huxley 139

Labs:

Tuesday, 5-6pm, MLC (Huxley 414) or Wednesday, 10-11am, Huxley 139

- Only need to attend one lab session
- Wednesday lab requires laptop with necessary software installed (more on this later)

Syllabus

Week 1: Unix basics, version control with git/bitbucket

Weeks 2-3: Programming and scientific computing with Python

Week 4: Modular programming with Fortran

Week 5: Libraries, makefiles, coupling Fortran+Python

Syllabus

Weeks 6-7: Introduction to parallel computing and OpenMP

Weeks 8-9: Distributed memory computing with MPI, parallel libraries

Weeks 9-10: Basic computer architecture, cloud computing, cluster computing with Python and Spark

Assessment

4 Programming assignments

HW1: Assigned 19/10, due 26/10 (5%)

HW2: Assigned 27/10, due 7/11 (15%)

HW3: Assigned 10/11, due 21/11 (20%)

HW4: Assigned 24/11, due 1/12 (20%)

1 Programming Project (40%)

Assigned 2/12, due 15/12

Submitting HW2 commits you to the course

Online material

Main resource is course webpage:

http://imperialhpsc.bitbucket.org/

Slides will be available before every lecture

On blackboard 1st two weeks only

Afterwards only on course bitbucket page (more on this later):

https://bitbucket.org/ImperialHPSC/m3c2016

Moore's law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

"Transistor Count and Moore's Law - 2011" by Wgsimon - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg#/media/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg

Algorithms and hardware

High-end HPC

RANK	SITE	SYSTEM	CORES	RMAX (TFLOP/S)	RPEAK (TFLOP/S)	POWER (KW)
1	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
4	RIKEN Advanced Institute for Computational Science (AICS) Japan	•	705,024	10,510.0	11,280.4	12,660

Historically: cluster computing limited to national labs, research universities

But now...

Cluster computing is mainstream

Big data means big computers!

Cluster computing is mainstream

Course objective

- Cluster computing is not free!
- Important to:
 - choose right tools
 - use them effectively

This course provides foundation for "intelligent, informed" computing.

Useful to classify tools as scientific or general purpose

Useful to classify tools as scientific or general purpose

Examples:

Scientific	General purpose
Matlab	Python
Fortran	C++
R	Java

Languages are compiled or interpreted

Languages are compiled or interpreted

Compiled	Interpreted
Fortran	Python
C++	Matlab
Java	Java

This course:

Python: interpreted, general purpose

Fortran: compiled, scientific

Operating systems

Most HPC and scientific computing requires Unix (or Unix-like terminals)

Linux and Mac OS are built on Unix (and have terminal apps)

Fairly straightforward to install course software

Windows:

- Not well-suited for HPC
- Can get Unix terminal with cygwin
- For this course: Should install Linux virtual machine (VM) and install software within the VM
- MLC computers have Linux VMs installed (go try them out!)

Instructions for installing course software available online: http://imperialhpsc.bitbucket.org/

Unix terminal

Terminal on a mac:

Navigation:

```
pwd: print working directory (where am I?)ls: list of directory contents (what is here?)cd: change directory (let's go somewhere else)
```

```
$ pwd
/Users/prasun/Documents/repos/m3c2016
$
$ ls
Readme.md lectures
$
$ cd lectures
$
$ ls
lecture1
```

Manipulate files and directories:

cp: Make copy of a file

mv: Move or rename a file

rm: Remove a file

rm –*r* : Remove directory and all of its contents (dangerous!)

```
$ ls
Readme.md lectures
  cp Readme.md Readme.md_copy
$
 ls
Readme.md Readme.md_copy
   lectures
 mv Readme md copy
Readme.md_copy2
$
 ls
Readme.md Readme.md_copy2
   lectures
$
 rm Readme<sub>md_copy2</sub>
$
  ls
Readme.md lectures
```

Info about contents of file:

cat: List contents of file
head -n: List first n lines
tail -n: list last n lines
grep: search within file for a
string

```
$ cat example.txt
This is an example text file.
This is line 2.
This is line 3.
This is the last line.
$
$ head -1 example.txt
This is an example text file.
$ tail −2 example.txt
This is line 3.
This is the last line.
$ grep last example.txt
This is the last line.
```

Getting help:

man: manual page for a command

Try man Is. What does Is -I do? Is -a?

What if you don't know name of command?

https://en.wikipedia.org/wiki/List_of_Unix_commands

or google.

The 12 commands:

- 1. pwd
- 2. Is
- 3. cd
- 4. cp
- 5. mv
- 6. rm
- 7. rm –r
- 8. cat
- 9. head -n
- 10. tail -n
- **11.** grep
- **12.** man

This is "basic" Unix. Can do much more!

A little more Unix

Instead of outputting to screen, can output to file using ">"

```
$ ls
example.txt lecture1

$ grep last example.txt > output.txt

$ ls
example.txt lecture1 output.txt

$ cat output.txt
This is the last line.

Lines in example.txt containing "last"
are written to output.txt
```

A little more Unix

Command can be executed sequentially (they can be "piped") using "|"

```
$ head -2 example.txt | grep line > output.txt
$ cat output.txt
This is line 2.
```

First two lines in example.txt are searched for the string "line" with results being written to output.txt

You run optimization software that gives output that looks like:

INPUT:endgeom

INPUT:azimuthal 9 0.1

INPUT:polar 5 INPUT:begin

k-cactus is 1.402458

TIMING: Module: cpu 10.03 wall 10.04 Overall: cpu 29.00 wall 29.29

INPUT:EDIT 4

CALLING EDIT(INTERFACE NO= 4)

INPUT:begin

INTERFACE 4 EIGENVALUE 1.402458 OVERALL MWd/t 0.0000E+00 BURNUP TIME 0.0000E+00 DAYS

RUN SET 1 Imperial College London

We only care about the "k-cactus" values which appear several times. How do we extract them?

INPUT:endgeom

INPUT:azimuthal 9 0.1

INPUT:polar 5 INPUT:begin

k-cactus is 1.402458

TIMING: Module: cpu 10.03 wall 10.04 Overall: cpu 29.00 wall 29.29

==============

INPUT:EDIT 4

CALLING EDIT(INTERFACE_NO= 4)

INPUT:begin

INTERFACE 4 EIGENVALUE 1.402458 OVERALL MWd/t 0.0000E+00 BURNUP TIME 0.0000E+00 DAYS

RUN SET 1 Imperial College London

Using grep:

```
$ grep cactus datafile.out
k-cactus is    1.402458
k-cactus is    1.386050
k-cactus is    1.377296
k-cactus is    1.352324
k-cactus is    1.328779
```

But what if we only want the numbers?

Using grep:

```
$ grep cactus datafile.out
k-cactus is    1.402458
k-cactus is    1.386050
k-cactus is    1.377296
k-cactus is    1.352324
k-cactus is    1.328779
```

But what if we only want the numbers?

```
Use "cut": $ grep cactus datafile.out | cut -d s -f 3
1.402458
1.386050
1.377296
1.352324
1.328779
```

Questions: How do we store these numbers in a file? How do we find out what the flags after "cut" are doing?

Overview of Lab 1

- Practice with these Unix commands
- Learn a bit more: path, top, which, setenv
- Tuesday: Familiarize yourselves with VMs in MLC
- Wednesday: If you have a Macbook or Linux laptop, you don't need to install anything (yet)
 - Windows: Need to install VirtualBox software and Linux virtual machine within VirtualBox
 - Instructions on course webpage
- Unix notes will be provided after lecture: make sure you are comfortable with these commands!