Session-11

Time Series

datetime Library

```
root@6879840ae648:/datascience/sessions/eleven# more 1.py
#!/usr/bin/python3
from datetime import datetime
now = datetime.now()
print('The dateformat: {}'.format(now))
print ('The year is = {}'.format(now.year))
print ('The month is = {}'.format(now.month))
print ('The day is = {} '.format(now.day))
            datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])
                       Y M d h m s
that_day = datetime(2017, 3, 1, 17, 9, 21, 832092)
print('The dateformat: {}'.format(that day))
print ('The year is = {}'.format(that_day.year))
print ('The month is = {}'.format( that_day.month))
print ('The day is = {} '.format(that day.day))
root@6879840ae648:/datascience/sessions/eleven# ./1.py
The dateformat: 2017-03-31 14:52:04.730385
The year is = 2017
The month is = 3
The day is = 31
The dateformat: 2017-03-01 17:09:21.832092
The year is = 2017
The month is = 3
The day is = 1
root@6879840ae648:/datascience/sessions/eleven#
```

Difference - datetime

```
root@6879840ae648:/datascience/sessions/eleven# more delta.py
#!/usr/bin/python3
from datetime import datetime
           datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])
                  Y M d h m s ms
delta = datetime(2017, 3, 25, 18, 21, 1, 123000) - datetime (2016, 1, 1, 18, 51, 51, 123000)
print(delta)
print (delta.days)
print (delta.seconds)
root@6879840ae648:/datascience/sessions/eleven# ./delta.py
448 days, 23:29:10
448
84550
```

timedelta

```
root@6879840ae648:/datascience/sessions/eleven# more timedelta.py
#!/usr/bin/python3
from datetime import datetime, timedelta
start = datetime(2017, 4, 1)
print (start)
new s = start + timedelta (12)
print (new_s)
prev s = start - 2 * timedelta(12)
print (prev_s)
root@6879840ae648:/datascience/sessions/eleven# ./timedelta.py
2017-04-01 00:00:00
2017-04-13 00:00:00
2017-03-08 00:00:00
```

strings and datetime

```
root@6879840ae648:/datascience/sessions/eleven# more str_1.py
#!/usr/bin/python3
from datetime import datetime
d_{stamp} = datetime(2017, 3, 31)
print(d stamp)
print (str(d_stamp))
print ("----\n")
# Use of strftime - datetime to string
print (d_stamp.strftime('%Y/%m/%d'))
print (d_stamp.strftime('%Y-%m-%d'))
print (d_stamp.strftime('%Y, %d %m'))
print ("----\n")
# Use of strptime - strings to datetime
d = '2017-03-31'
print (datetime.strptime(d, '%Y-%m-%d'))
print ("----\n")
datestrs = ['01/Jan/2017', '01/Feb/2017', '01/Mar/2017', '01/Apr/2017']
print ([datetime.strptime(x, '%d/%b/%Y') for x in datestrs])
print ("----\n")
```

strings and datetime (cont...)

dateutil

```
root@6879840ae648:/datascience/sessions/eleven# more pars_util.py
#!/usr/bin/python3
from dateutil.parser import parse
d1 = parse('2017-01-25')
print (type(d1))
print (d1)
print ("----\n")
d2 = parse('Jan 01, 2017 10:30 AM')
print (type(d2))
print (d2)
print ("----\n")
d3 = parse('01/01/2017', dayfirst=True)
print (type(d3))
print (d3)
print ("----\n")
root@6879840ae648:/datascience/sessions/eleven# ./pars_util.py
<class 'datetime.datetime'>
2017-01-25 00:00:00
<class 'datetime.datetime'>
2017-01-01 10:30:00
<class 'datetime.datetime'>
2017-01-01 00:00:00
```

pandas & datetime

```
root@6879840ae648:/datascience/sessions/eleven# python3
Python 3.5.2 (default, Nov 17 2016, 17:05:23)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import pandas as pd
>>> datestrs = ['01/01/2017', '02/01/2017']
>>> pd.to_datetime(datestrs)
DatetimeIndex(['2017-01-01', '2017-02-01'], dtype='datetime64[ns]', freq=None)
>>> idx = pd.to_datetime(datestrs + [None, ''])
>>> idx
DatetimeIndex(['2017-01-01', '2017-02-01', 'NaT', 'NaT'], dtype='datetime64[ns]', freq=None)
>>> idx[2]
NaT
>>> idx[3]
NaT
>>> pd.isnull(idx)
array([False, False, True, True], dtype=bool)
>>>
```

Series

```
root@6879840ae648:/datascience/sessions/eleven# more time_basics_pandas.py
#!/usr/bin/python3
import pandas as pd
import numpy as np
from pandas import Series, DataFrame
from datetime import datetime
dates = [
         datetime(2017, 1, 1),
         datetime(2017, 1, 2),
         datetime(2017, 1, 3),
         datetime(2017, 1, 4),
         datetime(2017, 1, 5),
ts = Series(np.random.randn(5), index=dates)
print(type(ts))
print(ts)
print ("----\n")
print(type(ts.index))
print(ts.index)
print ("----\n")
print (ts.index[0])
print (type(ts.index[0]))
print (ts.index.dtype)
print ("----\n")
```

Series (Cont...)

```
root@6879840ae648:/datascience/sessions/eleven# ./time_basics_pandas.py
<class 'pandas.core.series.Series'>
2017-01-01 0.949770
2017-01-02 -0.165319
2017-01-03 -1.112256
2017-01-04 -0.393262
2017-01-05 -0.828009
dtype: float64
<class 'pandas.tseries.index.DatetimeIndex'>
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04',
               '2017-01-05'].
             dtype='datetime64[ns]', freq=None)
2017-01-01 00:00:00
<class 'pandas.tslib.Timestamp'>
datetime64[ns]
```

Handling Missing Values

Data Sets Missing - Why?

So many Reasons -

- Data could not get recorded Manual, Automation (both can fail its magical)
- Data got corrupted world is not perfect

What do we do then?

We need to handle it sensibly - off course, knowledge about data plays important
 Role

Example - Pima Indians Diabetes Dataset

- Info on Pima Indians https://en.wikipedia.org/wiki/Pima_people
- Data Source https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

Pima Indians Diabetes Dataset (Cont...)

The number of observations for each class is not balanced. There are 768 observations with 8 input variables. The variable names are as follows:

0	Number of times pregnant.
1	Plasma glucose concentration a 2 hours in an oral glucose tolerance test.
2	Diastolic blood pressure (mm Hg).
3	Triceps skinfold thickness (mm).
4	2-Hour serum insulin (mu U/ml).
5	Body mass index (weight in kg/(height in m)^2).
6	Diabetes pedigree function.
7	Age (years).
8	Class variable (0 or 1).

Pima Indians Diabetes Dataset (50 ont...)

Pregnancies	Glucose	Bloodpress	SkinThich	Insulin	BMI	Diabeteso	Age Tedigree	outcome
6	148	72	35	0	33.6	0.627	50	1
1	85	66	29	0	26.6	0.351	31	0
8	183	64	0	0	23.3	0.672	32	1
1	89	66	23	94	28.1	0.167	21	0
0	137	40	35	168	43.1	2.288	33	1
0 5	116	74	0	0	25.6	0.201	30	0
3	78	50	32	88	31	0.248	26	1
10	115	0	0	0	35.3	0.134	29	0
2	197	70	45	543	30.5	0.158	53	1

zero for body mass index or blood pressure is invalid.

Pima Indians Diabetes Dataset (Cont...)

You can not have "Zero" to a few columns

1, 2, 3, 4, 5

```
Plasma glucose concentration a 2 hours in an oral glucose tolerance test.

Diastolic blood pressure (mm Hg).

Triceps skinfold thickness (mm).

2-Hour serum insulin (mu U/ml).

Body mass index (weight in kg/(height in m)^2).
```

```
In [15]: import pandas as pd
dataset = pd.read_csv('pima_diab.csv', header=None)
dataset.describe()
Zero is affecting here
```

Out[15]:

0	1	2	3	4	5	6	7	8		
768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000		
3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958		
3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951		
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000		
1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000		
3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000		
6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000		
17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000		
	3.845052 3.369578 0.000000 1.000000 3.000000 6.000000	3.845052 120.894531 3.369578 31.972618 0.000000 0.000000 1.000000 99.000000 3.000000 117.000000 6.000000 140.250000	3.845052 120.894531 69.105469 3.369578 31.972618 19.355807 0.000000 0.000000 0.000000 1.000000 99.000000 62.000000 3.000000 117.000000 72.000000 6.000000 140.250000 80.000000	3.845052 120.894531 69.105469 20.536458 3.369578 31.972618 19.355807 15.952218 0.000000 0.000000 0.000000 0.000000 1.000000 99.000000 62.000000 0.000000 3.000000 117.000000 72.000000 23.000000 6.000000 140.250000 80.000000 32.000000	3.845052 120.894531 69.105469 20.536458 79.799479 3.369578 31.972618 19.355807 15.952218 115.244002 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 99.000000 62.000000 0.000000 0.000000 3.000000 117.000000 72.000000 23.000000 30.500000 6.000000 140.250000 80.000000 32.000000 127.250000	3.845052 120.894531 69.105469 20.536458 79.799479 31.992578 3.369578 31.972618 19.355807 15.952218 115.244002 7.884160 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 99.000000 62.000000 0.000000 0.000000 27.300000 3.000000 117.000000 72.000000 32.000000 30.500000 32.000000 6.000000 140.250000 80.000000 32.000000 127.250000 36.600000	768.000000 768.0000000 768.0000000 768.0000000 768.	768.000000 768.000		

In [9]: da	dataset.head(20)								
Out[9]:	0	1	2	3	4	5	6	7	8
	0	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
	1	6	148	72	35	0	33.6	0.627	50	1
	2	1	85	66	29	0	26.6	0.351	31	0
	3	8	183	64	0	0	23.3	0.672	32	1
The columns	4	1	89	66	23	94	28.1	0.167	21	0
	5	0	137	40	35	168	43.1	2.288	33	1
2, 3, 4, 5 - clearly has	6	5	116	74	0	0	25.6	0.201	30	0
_, _, _,	7	3	78	50	32	88	31	0.248	26	1
"0" as values.	8	10	115	0	0	0	35.3	0.134	29	0
o as values.	9	2	197	70	45	543	30.5	0.158	53	1
	10	8	125	96	0	0	0	0.232	54	1
	11	4	110	92	0	0	37.6	0.191	30	0
		10	168	74	0	0	38	0.537	34	1
That's confirmation:)	13	10	139	80	0	0	27.1	1.441	57	0
	14	1	189	60	23	846	30.1	0.398	59	1
	15	5	166	72	19	175	25.8	0.587	51	1
	16	7	100	0	0	0	30	0.484	32	1
	17	0	118	84	47	230	45.8	0.551	31	1
	18	7	107	74	0	0	29.6	0.254	31	1
	19	1	103	30	38	83	43.3	0.183	33	0

How many invalid records?

```
In [16]: print((dataset[[1,2,3,4,5]] == 0).sum())

1      5
2      35
3      227
4      374
5      11
dtype: int64
```

Replace invalid with meaningful values

148.0 72.0 35.0 NaN 33.6 0.627 50 1 85.0 66.0 29.0 NaN 26.6 0.351 31 0 183.0 64.0 NaN NaN 23.3 0.672 32 1 89.0 66.0 23.0 94.0 28.1 0.167 21 0 137.0 40.0 35.0 168.0 43.1 2.288 33 116.0 74.0 NaN NaN 25.6 0.201 50.0 32.0 88.0 31.0 0.248 26 78.0 10 115.0 NaN NaN NaN 35.3 0.134 29 0 197.0 70.0 45.0 543.0 30.5 0.158 53 125.0 96.0 NaN NaN NaN 0.232 54 110.0 92.0 NaN NaN 37.6 0.191 168.0 74.0 NaN NaN 38.0 0.537 34 10 139.0 80.0 NaN NaN 27.1 1.441 57 0

Let us mark them with "NaN" using pandas "replace" method

```
In [20]: print(dataset.isnull().sum())

0 0
1 5
2 35
3 227
4 374
5 11
6 0
7 0
8 0
dtype: int64
```

Missing Values are trouble

Missing Values can be troublesome to some of the Machine Learning Algorithms

Let us evaluate Linear Discriminant Analysis (LDA) here.

Missing Values are trouble (Cont...)

```
In [13]: from pandas import read csv
         import numpy
         from sklearn.discriminant analysis import LinearDiscriminantAnalysis
         from sklearn.model selection import KFold
         from sklearn.model selection import cross val score
         dataset = read csv('pima diab.csv', header=None)
         # mark zero values as missing or NaN
         dataset[[1,2,3,4,5]] = dataset[[1,2,3,4,5]].replace(0, numpy.NaN)
         # split dataset into inputs and outputs
         values = dataset.values
         X = values[:,0:8]
         y = values[:,8]
         # evaluate an LDA model on the dataset using k-fold cross validation
         model = LinearDiscriminantAnalysis()
         kfold = KFold(n splits=3, random state=7)
         result = cross val score(model, X, y, cv=kfold, scoring='accuracy')
         print(result.mean())
```

Missing Values are trouble (Cont...)

We are prevented from evaluating an LDA algorithm (and other algorithms) on the dataset with missing values.

```
if multi output:
    522
                y = check array(y, 'csr', force all finite=True, ensure 2d=False,
    523
/usr/local/lib/python3.5/dist-packages/sklearn/utils/validation.py in check array(array, accept sparse, dtype, order,
 copy, force all finite, ensure 2d, allow nd, ensure min samples, ensure min features, warn on dtype, estimator)
    405
                                     % (array.ndim, estimator name))
    406
                if force all finite:
--> 407
                    assert all finite(array)
    408
    409
            shape repr = shape repr(array.shape)
/usr/local/lib/python3.5/dist-packages/sklearn/utils/validation.py in _assert_all_finite(X)
     56
                    and not np.isfinite(X).all()):
     57
                raise ValueError("Input contains NaN, infinity"
---> 58
                                 " or a value too large for %r." % X.dtvpe)
     59
     60
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
```

Drop the Rows with Missing Values

Pandas provides the "dropna()" function that can be used to drop either columns or rows with missing data

```
In [14]: from pandas import read csv
         import numpy
         from sklearn.discriminant analysis import LinearDiscriminantAnalysis
         from sklearn.model selection import KFold
         from sklearn.model selection import cross val score
         dataset = read csv('pima diab.csv', header=None)
         # mark zero values as missing or NaN
         dataset[[1,2,3,4,5]] = dataset[[1,2,3,4,5]].replace(0, numpy.NaN)
         # drop rows with missing values
         dataset.dropna(inplace=True)
         # summarize the number of rows and columns in the dataset
         print(dataset.shape)
         (392, 9)
```

Finally

```
In [15]: from pandas import read csv
         import numpy
         from sklearn.discriminant analysis import LinearDiscriminantAnalysis
         from sklearn.model selection import KFold
         from sklearn.model selection import cross val score
         dataset = read csv('pima diab.csv', header=None)
         # mark zero values as missing or NaN
         dataset[[1,2,3,4,5]] = dataset[[1,2,3,4,5]].replace(0, numpy.NaN)
         # drop rows with missing values
         dataset.dropna(inplace=True)
         # summarize the number of rows and columns in the dataset
         print(dataset.shape)
         # split dataset into inputs and outputs
         values = dataset.values
         X = values[:,0:8]
         y = values[:,8]
         # evaluate an LDA model on the dataset using k-fold cross validation
         model = LinearDiscriminantAnalysis()
         kfold = KFold(n splits=3, random state=7)
         result = cross val score(model, X, y, cv=kfold, scoring='accuracy')
         print(result.mean())
```

(392, 9) 0.78582892934

Impute those Values

Removing rows with missing values can be too limiting on some predictive modeling problems, an alternative is to impute missing values.

A few Options to replace a missing value

- A constant value that has meaning within the domain, such as 0, distinct from all other values.
- A value from another randomly selected record.
- A mean, median or mode value for the column.
- A value estimated by another predictive model.

So new Data Derived - and new models applied on the data

These mean column values will need to be stored to file for later use.

Pandas provides the "fillna()" function for replacing missing values with a specific

Let us go with mean column values.

value.

Replace with Mean

dtype: int64

```
In [16]: from pandas import read csv
         import numpy
         from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
         from sklearn.model selection import KFold
         from sklearn.model selection import cross val score
         dataset = read csv('pima diab.csv', header=None)
         # mark zero values as missing or NaN
         dataset[[1,2,3,4,5]] = dataset[[1,2,3,4,5]].replace(0, numpy.NaN)
         # fill missing values with mean column values
         dataset.fillna(dataset.mean(), inplace=True)
         # count the number of NaN values in each column
         print(dataset.isnull().sum())
```

Finally

```
In [17]: from pandas import read csv
         import numpy
         from sklearn.discriminant analysis import LinearDiscriminantAnalysis
         from sklearn.model selection import KFold
         from sklearn.model selection import cross val score
         dataset = read_csv('pima_diab.csv', header=None)
         # mark zero values as missing or NaN
         dataset[[1,2,3,4,5]] = dataset[[1,2,3,4,5]].replace(0, numpy.NaN)
         # fill missing values with mean column values
         dataset.fillna(dataset.mean(), inplace=True)
         # count the number of NaN values in each column
         #print(dataset.isnull().sum())
         values = dataset.values
         X = values[:,0:8]
         y = values[:,8]
         # evaluate an LDA model on the dataset using k-fold cross validation
         model = LinearDiscriminantAnalysis()
         kfold = KFold(n splits=3, random state=7)
         result = cross val score(model, X, y, cv=kfold, scoring='accuracy')
         print(result.mean())
```

0.766927083333

Thank you