Application Serial No. 10/738,399
Reply to Office Action of February 18, 2005

PATENT Docket: CU-3495

Amendments To The Claims

The listing of claims presented below will replace all prior versions, and listings, of claims in the application.

Listing of claims:

 (currently amended) A method for fabricating an isolation layer in a semiconductor device, the method comprising the steps of:

forming a trench on a semiconductor substrate;

forming a flowing insulating layer within the trench, wherein the flowing insulating layer comprises an SHO (SiO_xH_y; the value of x falls in the range of $0 \sim 3$, and that of y falls in the range of $0 \sim 1$) insulating layer;

making the insulating layer precise; and

forming a precise insulating layer over an upper surface of the whole structure on which the flowing insulating layer is formed.

- 2. (original) The method as claimed in claim 1, further comprising a step of carrying out a pretreatment by an in-situ prior to forming the flowing insulating layer, wherein the pretreatment step is carried out by a cleaning treatment or a plasma treatment.
- 3. (original) The method as claimed in claim 2, wherein the plasma treatment is carried out for at least 5 seconds at a pressure below 100 Torr with a plasma using SiH_4 , $SiH_8(CH_3)_b$ (the value of a falls in the range of 0 ~ 4, and that of b falls in the range of 0 ~ 4), N_2 , N_2O , NH_3 , O_2 , O_3 , Ar or He gas.
- 4. (original) The method as claimed in claim 1, further comprising a step of oxidizing sidewalls of the trench prior to forming the flowing insulating layer.

PATENT

Docket: CU-3495

Application Serial No. 10/738,399
Reply to Office Action of February 18, 2005

- 5. (original) The method as claims in claim 4, the oxidizing step is carried out at a furnace maintained at more than 600°C to form an oxide film ranging from 20 to 200Å.
- 6. (original) The method as claimed in claim 4, further comprising a step of forming a nitride film within the trench according to an LPCVD or an ALD manner after oxidizing the sidewalls of the trench.
- 7. (original) The method as claimed in claim 1, further comprising a step of sequentially forming a nitride film and an oxide film at an inner surface of the trench prior to forming the flowing insulating layer.
- 8. (cancelled)
- 9. (currently amended) The method as claimed in claim 1 claim 8, wherein the flowing insulating layer using SHO is formed to a thickness ranging from 50 to 5000Å.
- 10. (currently amended) The method as claimed in <u>claim 1</u> claim 8, wherein the SHO insulating layer used as a flowing insulating layer is formed by using a reaction source of SiH₄ and H₂O₂ by way of an in-situ according to an LPCVD process.
- 11. (original) The method as claimed in claim 10, wherein the SHO insulating layer is formed at a temperature ranging from -10 to 150° C and at a low pressure below 100 Torr using a reaction gas of SiH₄, SiH_a(CH₃)_b (the value of a falls in the range of 0 ~ 4, and that of b falls in the range of 0 ~ 4), H₂O₂, O₂, H₂O and N₂O gas.
- 12. The method as claimed in claim 1, further comprising a step of post-cleaning the flowing insulating layer, wherein the post-cleaning step is carried out sequentially and simultaneously according to one or more methods selected from the following cleaning manners: 1) cleaning at a temperature ranging from room temperature to 150°C with using a BOE (buffered oxide etchant) solution, which comprises an etching solution and

Application Serial No. 10/738,399 Reply to Office Action of February 18, 2005 PATENT Docket: CU-3495

a buffer solution in a ratio ranging from 3:1 to 500:1, or with using a mixed solution made of H_2SO_4 and H_2O_2 solution in a volume ratio ranging from 1:1 to 500:1, 2) cleaning by means of wet-etching with using SC-1 (standard cleaning-1), SC-2 (standard cleaning-2) cleaning solution after diluting with 5:1 ~ 500:1 HF.

- 13. (original) The method as claimed in claim 1, wherein the step of making the flowing insulating layer precise is carried out in an atmosphere of O₂, N₂, O₃, N₂O, and H₂+O₂ mixed gas at a temperature ranging from 300 to 850°C for more than 1 minute or carried out in an atmosphere of O₂, N₂, O₃, N₂O, and H₂+O₂ mixed gas at a temperature ranging from 300 to 12000°C for more than 5 minutes or carried out by performing an RTP (Rapid Thermal Process) at a temperature more than 600°C for more than one second.
- 14. (original) The method as claimed in claim 1, wherein the step of making the flowing insulating layer precise is carried out at a pressure ranging from 0 mTorr to 10 Torr and for more than $5 \sim 300$ seconds by means of a plasma using SiH₄, SiH_a(CH₃)_b (the value of a falls in the range of $0 \sim 4$, and that of b falls in the range of $0 \sim 4$), N₂, NH₃, O₂, O₃, N₂O₁ Ar or He gas.
- 15. (original) The method as claimed in claim 1, wherein the precise insulating layer comprises a HDP or a USG film.
- 16. (original) The method as claimed in claim 1, further comprising a step of heat treatment of the resultant substrate after the formation of the precise insulating layer, wherein the heat treatment is carried out in an atmosphere of O_2 , N_2 , O_3 , N_2O_4 , and H_2+O_2 mixed gas at a temperature ranging from 300 to 12000°C for more than 5 minutes or by performing an RTP (Rapid Thermal Process) at a temperature more than

Application Serial No. 10/738,399 Reply to Office Action of February 18, 2005

PATENT Docket: CU-3495

600°C for more than one second.

17. (currently amended) A method for fabricating an isolation layer in a semiconductor device, the method comprising the steps of:

providing a semiconductor substrate on which a trench is formed; carrying out a pretreatment of the trench; forming a flowing insulating layer below the pretreated trench; post-cleaning the flowing insulating layer; making the insulating layer precise;

forming an insulating layer on an upper surface of whole structure on which the precise flowing insulating layer so formed; and

forming a thermal-insulating layer above the insulating layer.

- 18. (original) The method as claimed in claim 17, further comprising a step of a plasma treatment or an annealing treatment prior to the post-cleaning treatment of the flowing insulating layer.
- 19. (original) The method as claimed in claim 17, wherein the post-cleaning step is carried out sequentially and simultaneously according to one or more methods selected from the following cleaning manners: 1) cleaning at a temperature ranging from room temperature to 150°C with using a BOE (buffered oxide etchant) solution, which comprises an etching solution and a buffer solution in a ratio ranging from 3:1 to 500:1, or with using a mixed solution made of H₂SO₄ and H₂O₂ solution in a volume ratio ranging from 1:1 to 500:1, 2) cleaning by means of wet-etching with using SC-1 (standard cleaning-1), SC-2 (standard cleaning-2) cleaning solution after diluting with 5:1 ~ 500:1 HF.

PATENT

Docket: CU-3495

Application Serial No. 10/738,399 Reply to Office Action of February 18, 2005

comprises a cleaning or a plasma treatment.

- 20. (original) The method as claimed in claim 17, wherein the pretreatment step
- 21. (original) The method as claimed in claim 17, wherein the precise insulating layer is deposited by way of an HDP-CVD manner using a SiH₄, reaction gas or an AP-CVD manner using a TEOS reaction gas.
- 22. (original) The method as claimed in claim 17, wherein the insulating layer is formed by carrying out in an atmosphere of O₂, N₂, O₃, N₂O, and H₂+O₂ mixed gas at a temperature ranging from 300 to 12000°C for more than 5 minutes or by performing an RTP (Rapid Thermal Process) at a temperature more than 600°C for more than one second.
- 23. (original) The method as claimed in claim 17, the thermal insulating layer is deposited by way of an HDP-CVD manner using a SiH₄ reaction gas or an AP-CVD, an SA_CVD manner using a TEOS reaction gas.