- 9. 本当にすごいシステムができたの?
- 9.1 未知データに対する認識率の評価
 - パターン認識システムの評価
 - ・ 学習データに対して識別率 100% でも意味がない
 - 未知データに対してどれだけの識別率が期待できる かが評価のポイント
 - → どうやって未知データで評価する?

9.1.1 分割学習法

- 手順
 - 全学習データ χ を学習用データ集合 χ_T と評価用データ集合 χ_E に分割する
 - χ_T を用いて識別機を設計し、 χ_E を用いて誤識別率を推定する

9.1.1 分割学習法

- 問題点
 - 学習に用いるデータ数が減るので、識別性能が劣化する
 - 評価に用いるデータ数が少ない場合、識別率の推定 精度は良くない

9.1.2 交差確認法

9.1.2 交差確認法

- 手順
- $1. \chi$ を m 個のグループ $\chi_1,...,\chi_m$ に分割する
- 2. χ_i を除いた (m-1) 個のグループで学習し、 χ_i を用いて識別率を算出する
- 3. この手順をすべての i について行い、 m 個の識別率の平均を識別率の推定値とする

9.1.2 交差確認法

- 特徴
 - 分割学習法に比べ、識別率の推定精度は高い
 - 評価に時間がかかるのが欠点
- 要素数が1となるように分割する方法を一つ抜き法と呼ぶ

9.2 システムを調整する方法

システムの性能向上のために

• 前処理部、特徴抽出部、識別部のどこに性能低下の

9.2.1 前処理部の確認

- 情報劣化のチェック
 - サンプリング周波数や量子化ビット数が適切か
- 信号取り込み部のチェック
 - マイクの入力レベルやカメラのキャリブレーション

突発的な異常入力に対しては誤動作の防止が必要

- ノイズ除去のチェック
 - 原信号への影響を確認

- クラスが特徴空間上で完全に分離されているの に誤認識率が高い場合
 - → 識別部を再設計(識別関数の学習)

- クラスの分布間に重なりがある場合
 - → 特徴抽出部を再設計(特徴の評価)

- クラス内分散・クラス間分散比
 - 選択した特徴の評価法
 - クラス間分離度を評価する尺度
 - 同じクラスのパターンはなるべく接近し、異なるクラスのパターンはなるべく離れるようにする

• クラス内分散

$$\sigma_W^2 = rac{1}{n} \sum_{i=1}^c \sum_{m{x} \in \chi_i} (m{x} - m{m}_i)^T (m{x} - m{m}_i)$$
 $m{m}_i$: クラス i の平均

クラス間分散

$$\sigma_B^2 = rac{1}{n} \sum_{i=1}^c n_i (m{m}_i - m{m})^T (m{m}_i - m{m})$$
 m : 全データの平均 n_i : クラス i のデータ数

• クラス内分散・クラス間分散比(大きいほど良い)

$$J_{\sigma} = \frac{\sigma_B^2}{\sigma_W^2}$$

- 多クラスのクラス内分散・クラス間分散比
 - 分布の重なりを考慮していないので、あまりよい評価尺度とはいえない

(a) クラス間分散:小

(b) クラス間分散:大

- ベイズ誤り確率
 - 特徴空間上での分布の重なりの度合いを評価
- 例)身長による(成人)男女の判別
 - 一般に同一の特徴が男女両方にあてはまるので、性別を確実に決定することはできない。

- ベイズ決定則
 - 誤識別率を最小にするために、事後確率 $P(\omega_i|x)$ が 最大となるような ω_i を出力する判定方法
- 条件付きベイズ誤り確率 $e_B(x)$
 - なが与えられたときの誤り確率の最小値
 - ・ 2 クラス識別問題の場合

$$e_B(\boldsymbol{x}) = \min\{P(\omega_1|\boldsymbol{x}), P(\omega_2|\boldsymbol{x})\}$$

• ベイズ誤り確率 e_B

$$e_B = \int e_B(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$
$$= \int \min\{P(\omega_1|\mathbf{x}), P(\omega_2|\mathbf{x})\} p(\mathbf{x}) d\mathbf{x}$$

• e_B は誤り確率をこれより小さくはできないという 限界、すなわち分布の重なりを表す

- ベイズ誤り確率:特徴の評価基準
- 分布は一般に未知であるため、ベイズ誤り確率 を直接推定することは困難
 - → 学習パターンに基づいてベイズ誤り確率を 間接的に推定
- 近似的な計算

 $e_B < e_N < 2e_B$ $e_B : ベイズ誤り確率$

 e_N : 1-NN 法の誤り確率

- パラメータ ⇒ 学習可能
 - 識別関数の重み
 - ニューラルネットワークの結合の重み
 - SVM 𝒪 𝔞
- ハイパーパラメータ → 学習結果によって調整
 - 識別関数の次数
 - ニューラルネットワークの中間ユニット数
 - SVM 多項式カーネルの次数

- 学習過程に影響を与えるパラメータ
 - 例) ニューラルネットワークの学習係数、 FM アルゴリズムの収束判定に用いる値
 - 設定値が不適切な場合、学習に多くの時間がか かったり、学習が途中で終わったりする

画 適切な値の設定は機械学習の know-how

特徴を標準化することによって、 ある程度は経験的に設定可能

- 学習結果に影響を与えるパラメータ
 - モデルの複雑さに連続的に影響を与える
 - → 性能に直結する
 - 例) SVM のスラック変数の重み C ガウシアンカーネルの半径 γ

いくつかの異なる値で性能を 評価する必要がある

- ハイパーパラメータ λ の決定手順
 - 未知パターンに対する誤識別率 e_{λ} が低い λ が望ましい。
 - 実際は分布が未知なので、単純に e_λを計算することはできない。
 - 交差確認法などで e_λを求める。

• ハイパーパラメータの性質

- ハイパーパラメータが複数ある場合
 - グリッドサーチ:各格子点で e_{λ} を求める

