# Sentiment Analysis: using NLP for E-commerce data of Apparel reviews

Data Science Diploma Program Capstone - Sprint3

Presented By:Chandana Chaudhry

#### Introduction

**Problem at hand :** Understanding customer sentiments is of paramount importance in marketing strategies and product improvement and figuring out a way to use qualitative data quantitatively.

**Sentiment Analysis**: is the process of analyzing digital text to determine if the emotional tone of the message is positive, negative, or neutral.

Our Approach/Objective: Sentiment Analysis using NLP with the help of using e-commerce data of apparel reviews.



#### Exploratory Data Analysis and Insights

- Shape of the Data Set is 23486 rows and 11 columns
- 5 Object type columns and 6 int types
- The data set contains 'Title: 3810' and 'Review\_text: 845' null values
- Classification problem with 'Rating' as the target variable
- After plotting a heat map, there is high correlation between 'Rating' and 'Recommendation\_IND'.
- The data at hand had to be processed into three classification: 'Positive', 'Neutral' and 'Negative'. Initially it had 5 classes
- Also, the data at hand was imbalanced.

#### Exploratory Data Analysis and Insights



The rating distribution before processing



The rating distribution after processing



Null value distribution

#### Data Preprocessing:

- Dropping the Title column, as it is not relevant to the task of predicting the rating of a review given the text of the review.
- · Removing any rows that are missing the rating label.
- Binarizing the rating column into three categories: Negative, Neutral, and Positive. Dropping the original rating column, as it is no longer needed.
- · Removing any rows that are missing any values after the previous steps.
- · Tokenizing data using NLP BagofWords technique and Tokenizer in Keras for LSTM
- · Concatenating 'Tokens' to our data frame before model fit step.

## Baseline Model or Model 1: Logistic Regression

Logistic regression is one of the most basic (yet effective) tools we have for classifying categorical data.

We plotted the top 20 tokens with highest Log.coefficients

**Logistic regression Accuracy Score : 82%** 



#### Model 2: Decision Trees

- Performed using pipeline and with PCA (n\_components = 0.90) preserving 90% of variance
- $Max_depth = 10$
- Min\_sample leaf = 1
- Model Accuracy = 70%

Concluding that Logistic Regression performed better



#### Model 3: LSTM Neural Network

- Tokenization: Review\_Text is tokenized using the Tokenizer class from Keras. Text corpus into sequences of integers
- Padding Sequences: The sequences are padded to ensure that they all have the same length using
- One-Hot Encoding: The target variable 'Sentiment' is one-hot encoded using
- Train\_Test\_Split: The dataset is split into training and testing sets using. Test data: 20%
- Defining the LSTM Model
- Compiling the Model: The model is compiled with Adam optimizer and categorical crossentropy loss function. The
  metric for evaluation is accuracy.
- Training the Model: The model is trained on the training data for 10 epochs with a batch size of 32.
- Early Stopping: to prevent overfitting by monitoring the validation loss
- Evaluation: The model is evaluated on the testing data, and the test accuracy is printed.
- Testing on review string

#### Tokens



## LSTM: Training and Validation loss and accuracy



Training loss vs Validation Loss



## Testing Model: Unseen Sample

new\_review1 = "I had such high hopes for this dress, but it disapointed"

# Preprocess the new review text

Testing negative sentiment correctly

Testing positive sentiment correctly

#### Incorrect Classification

Testing neutral sentiment incorrectly

## Model Comparison: Accuracy Score



- Logistic\_reg =82%
- Decision Tree = 71%
- LSTM\_model = 81.25%

Conclusive of Logistic regression and LSTM having similar accuracy

### Confusion Matrix





**Logistic Regression** 

#### Next Iterations

- Fine Tune LSTM model
- · Saving logistic regression model and creating a web app to display the model for sentiment prediction
- · Compile all work and organize Jupyter notebooks

## Thank you and References

- https://www.kaggle.com/datasets/nicapotato/womens-ecommerce-clothing-reviews
- Sentiment Classification: <a href="https://www.researchgate.net/publication/323545316">https://www.researchgate.net/publication/323545316</a> Statistical Analysis on E-Commerce Reviews with Sentiment Classification using Bidirectional Recurrent Neural Network, paper pdf link: <a href="https://arxiv.org/pdf/1805.03687.pdf">https://arxiv.org/pdf/1805.03687.pdf</a>
- https://aws.amazon.com/what-is/sentiment-analysis/
- https://medium.com/@zaiinn440/attention-is-all-you-need-the-core-idea-of-the-transformer-bbfa9a749937
- Attention is all you need: <a href="https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf">https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf</a>
- Case Analysis Twitter: <a href="https://www.academia.edu/31874952/Twitter\_Sentiment\_Analysis\_">https://www.academia.edu/31874952/Twitter\_Sentiment\_Analysis\_</a>
- Sentiment Analysis using CNN: <a href="https://computingonline.net/files/journals/1/archieve/IJC\_2022\_21\_2\_10.pdf">https://computingonline.net/files/journals/1/archieve/IJC\_2022\_21\_2\_10.pdf</a>
- <a href="https://towardsdatascience.com/multiclass-text-classification-using-lstm-in-pytorch-eac56baed8df">https://towardsdatascience.com/multiclass-text-classification-using-lstm-in-pytorch-eac56baed8df</a>