Spectral Clustering of Signed Graphs via Matrix Power Means

Pedro Mercado, Francesco Tudisco and Matthias Hein

ICML 2019, Long Beach, USA

Poster #190

Our Goal: Extend Spectral Clustering to Graphs With Both Positive and Negative Edges

- Positive Edges: encode friendship, similarity, proximity, trust
- Negative Edges: encode enmity, dissimilarity, conflict, distrust

A signed graph is the pair
$$G^{\pm}=(G^+,G^-)$$
 where $G^+=(V,W^+)$ encodes **positive** relations, and $G^-=(V,W^-)$ encodes **negative** relations

Clustering of Signed Graphs

Given: an undirected signed graph $G^{\pm}=(G^+,G^-)$ Goal: partition the graph such that

- edges within the same group have positive weights
- edges between different groups have negative weights

Our Goal: define an operator that <u>blends</u> the information of (G^+, G^-) such that the smallest eigenvectors are informative.

Our Goal: define an operator that <u>blends</u> the information of (G^+, G^-) such that the smallest eigenvectors are informative.

State of the art approaches:

$$\begin{aligned} \mathbf{L_{SR}} &= \mathbf{D^{+}} - \mathbf{W^{+}} + \mathbf{D^{-}} + \mathbf{W^{-}} \\ &= \mathbf{L^{+}} + \mathbf{Q^{-}} \\ \mathbf{L_{BR}} &= \mathbf{D^{+}} - \mathbf{W^{+}} + \mathbf{W^{-}} \\ &= \mathbf{L^{+}} + \mathbf{W^{-}} \\ \mathbf{H} &= (\alpha - 1)\mathbf{I} - \sqrt{\alpha}(\mathbf{W^{+}} - \mathbf{W^{-}}) + \mathbf{D^{+}} + \mathbf{D^{-}} \text{ (Saade, 2015)} \end{aligned}$$

Current methods are arithmetic means of Laplacians

The **power mean** of non-negative scalars a, b, and $p \in \mathbb{R}$:

$$m_p(a,b) = \left(\frac{a^p + b^p}{2}\right)^{1/p}$$

Particular cases of the scalar power mean are:

$p o -\infty$	p=-1	ho o 0	ho=1	$p \to \infty$
$min\{a, b\}$	$2(\frac{1}{a}+\frac{1}{b})^{-1}$	\sqrt{ab}	(a + b)/2	$\max\{a,b\}$
minimum	harmonic mean	geometric mean	arithmetic mean	maximum

We introduce the **Signed Power Mean Laplacian** as an alternative to **blend the information** of the signed graph G^{\pm} :

$$\mathbf{L_p} = \left(\frac{\left(\mathbf{L_{sym}^+}\right)^p + \left(\mathbf{Q_{sym}^-}\right)^p}{2}\right)^{1/p}$$

Analysis in the Stochastic Block Model

Theorem: The Signed Power Mean Laplacian L_p with $p \le 0$ is better than arithmetic mean approaches in expectation.

Recovery of Clusters in Expectation

Spectral Clustering of Signed Graphs

Analysis in the Stochastic Block Model

Theorem: The Signed Power Mean Laplacian L_p with $p \le 0$ is better than arithmetic mean approaches in expectation.

Theorem: with high probability eigenvalues and eigenvectors of L_p concentrate around those of the expected Signed Power Mean Laplacian \mathcal{L}_p