JULIUS LURIE

HANDBOOK OF ANALYTICAL CHEMISTRY

JULIUS LURIE

HANDBOOK OF ANALYTICAL CHEMISTRY

Contents

Preface	9
Preliminary Remarks	11
Table 1. Atomic Weights of the Elements	17
Table 2. Radioactive Elements	21
Table 3. Ion Radii	22
Table 4. Ionization Potentials of Atoms and Ions	27
Table 5. Structures of Outer Electron Layers, Ion Potentials and Analytical Groups of Cations	30
Table 6. Atomic Weights, Molecular Weights, Weights of Atomic Groups, and Their Logarithms	31
Table 7. Analytical and Stoichiometric Multipliers (Factors)	70
Table 8. Solubilities of Inorganic and Some Organic Compounds in Water	76
Table 9. Solubilities of Some Inorganic Compounds in Organic Solvents at 18-25 °C	100
Table 10. Solubility Products of the Chief Sparingly Soluble Substances	105
Table 11. Activity Coefficients of Various Ions	117
Table 12. Activity Coefficients of Various Ions at High Values of the Ionic Strength of a Solution	120
Table 13. Calibration of Glassware	121
Table 14. Calculation of the Results of Volumetric-Analytical Determinations A. Acid-Base Titrations B. Oxidation-Reduction Methods C. Methods of Precipitation and Complexing D. Methods of Titration with Complexone III	123 123 125 129 130
Table 15. Masking Reagents in Titration with Complexone III	132
Table 16. Calculation of the Results of Gas and Gasometric Ana-	4.5
lyses	136 138
tions	155 156

D. Gasometric (Volumetric) Determination of Gas-Forming Substances	
Table 17. Conversion Formulas for Solution Concentrations	
Table 18. Densities and Concentrations of Solutions	
A. Densities and Concentrations of Nitric Acid Solutions	
B. Densities and Concentrations of Sulphuric Acid Solu-	
tions	
Solutions	
Solutions	
tions	
E. Densities and Concentrations of Perchloric Acid Solu-	
tions	
F. Densities and Concentrations of Acetic Acid Solutions G. Densities and Concentrations of Potassium Hydroxide	
Solutions	
Solutions	
I. Densities and Concentrations of Ammonia Solutions	
J. Densities and Concentrations of Sodium Carbonate Solu-	
tions	
K. Densities and Concentrations of Sclected Commercial	
Reagents	
Table 19. Chief Acid-Base Indicators	
Table 20. Ionic Product of Water at Temperatures Ranging from 0 °C to 100 °C	
Table 21. Colorimetric Determination of the pH of Solutions	
Table 22. Ionization Constants of Indicators	
A. Monochromatic Indicators	
B. Dichromatic Indicators	
Table 23. Some Mixed Indicators	
Table 24. Universal Indicators	
Table 25. Chief Fluorescent Indicators	
Table 26. Selected Chemiluminescent Indicators	
Table 27. Principal Adsorption Indicators	
Table 28. Indicators Commonly Used in Complexonometry	
Table 29. Hydrogen Ion Exponent (pH) Evaluated in Terms of	
the Activity of Hydrogen Ions (a_{H+}) and Vice Versa	
Table 30. Preparation of Buffer Solutions	
A. Buller Solutions with pH 1.10-3.50	
B. Buller Solutions with nH 440.496	
C. Buffer Solutions with pH 2.20-3.80 D. Buffer Solutions with pH 4.00-6.20 E. Buffer Solutions with pH 4.00-6.20	
E. Buffer Solutions with pH 4.00-6.20	
E. Buffer Solutions with pH 4.96-6.69	
F. Buffer Solutions with pH 4.80-8.00	

II. Buffer Solutions with pH 9.23-11.02	259 260
Table 31. Acetic-Acetate Buffer Solutions	262
Table 32. Universal Buffer Mixture	263
Table 33. Buffer Solutions from Individual Substances	264
Table 34. Determination of Electrode Potentials	265
O'C to 50 °C. B. Composition and Potential of Selected Reference	267
Electrodes Relative to the Standard Hydrogen Electrode	268 260
Table 35. Electrometric Determination of pH	2 69
A. Standard Quinhydrone Electrode Potential (Equin./hydr.)	270
at Temperatures Ranging from 0 °C to 50 °C B. Potentials of Calomel Electrodes at Temperatures	-
Ranging from 0 °C to 50 °C	271
Ranging from 0 °C to 50 °C	272
Table 36. Change of pH in Precipitation of Metal Hydroxides	273
Table 37. Ionization Constants of Chief Acids and Bases	274
Table 38. Dissociation Constants of Complex Ions	283
Table 39. Mobility of Selected Ions at 25 °C and Infinite Dilution	299
Table 40. Standard Oxidizing Potentials (E0) Relative to the Potential of a Standard Hydrogen Electrode at 25 °C	300
Table 41. Chief Oxidation-Reduction Indicators	314
A. Indicators not Sensitive to Changes in the pH and the Ionic Strength of a Solution	314
Ionic Strength of a Solution	316
Table 42. Spectral Wavelengths and Colours Corresponding to Them	320
Table 43. Photometric Methods of Determining Various Ions	321
Table 44. Properties of Selected Solvents	332
Table 45. Extraction with Organic Solvents	336
B. Extraction of Various Elements in the Form of Diethyl	336
Dithiocarbamates	340
rongtos	343
D. Extraction of Various Elements in the Form of Hydro-	344

Hydrobromic, Hydroiodic and Nitric Acids by an Equal Volume of Diethyl Ether	
A. Classification of Individual Compounds According to Their Behaviour under the Action of Some Reagents B. Composition of Groups	
D. Widespread Compounds Whose Belonging to a Group Is Difficult to Foresee	
Table 47. Substances Used for Drying	
Table 48. Preparation of Hygrostats	
Table 49. Principal Organic Reagents	
Table 50. USSR Standard Sieves	
Table 51. Half-Wave Potentials in Polarographic Analysis with a Dropping Mercury Electrode	
Table 52. Amperometric Titration of Selected Substances	
Table 52. Amperometric Titration of Selected Substances	
Table 52. Amperometric Titration of Selected Substances Table 53. Conditions of Amperometric Titration with Two Polarized Indicator Electrodes Table 54. Overvoltage of Hydrogen and Oxygen at Various Electrodes	
Table 52. Amperometric Titration of Selected Substances Table 53. Conditions of Amperometric Titration with Two Polarized Indicator Electrodes	
Table 52. Amperometric Titration of Selected Substances Table 53. Conditions of Amperometric Titration with Two Polarized Indicator Electrodes Table 54. Overvoltage of Hydrogen and Oxygen at Various Electrodes	
Table 52. Amperometric Titration of Selected Substances. Table 53. Conditions of Amperometric Titration with Two Polarized Indicator Electrodes	
Table 52. Amperometric Titration of Selected Substances. Table 53. Conditions of Amperometric Titration with Two Polarized Indicator Electrodes	
Table 52. Amperometric Titration of Selected Substances. Table 53. Conditions of Amperometric Titration with Two Polarized Indicator Electrodes	
Table 52. Amperometric Titration of Selected Substances. Table 53. Conditions of Amperometric Titration with Two Polarized Indicator Electrodes Table 54. Overvoltage of Hydrogen and Oxygen at Various Electrodes Table 55. Potentials of Electrode Decomposition of 1N Solutions of Selected Compounds Table 56. Flame Photometry Table 57. British and American Weights and Measures in Comparison with the Metric System of Measurement Table 58. Simplified Table of Five-Place Logarithms A. Logarithms A. Logarithms A. Logarithms Antilogarithms Appendices. Examples of Using Some Tables	
Table 52. Amperometric Titration of Selected Substances. Table 53. Conditions of Amperometric Titration with Two Polarized Indicator Electrodes Table 54. Overvoltage of Hydrogen and Oxygen at Various Electrodes Table 55. Potentials of Electrode Decomposition of 1N Solutions of Selected Compounds Table 56. Flame Photometry Table 57. British and American Weights and Measures in Comparison with the Metric System of Measurement Table 58. Simplified Table of Five-Place Logarithms A. Logarithms A. Logarithms A. Logarithms Antilogarithms Appendices. Examples of Using Some Tables Table 7	
Table 52. Amperometric Titration of Selected Substances. Table 53. Conditions of Amperometric Titration with Two Polarized Indicator Electrodes. Table 54. Overvoltage of Hydrogen and Oxygen at Various Electrodes. Table 55. Potentials of Electrode Decomposition of 1N Solutions of Selected Compounds. Table 56. Flame Photometry. Table 57. British and American Weights and Measures in Comparison with the Metric System of Measurement. Table 58. Simplified Table of Five-Place Logarithms. A. Logarithms. A. Logarithms. B. Antilogarithms. Antilogarithms. Table 7 Table 14	
Table 52. Amperometric Titration of Selected Substances Table 53. Conditions of Amperometric Titration with Two Polarized Indicator Electrodes Table 54. Overvoltage of Hydrogen and Oxygen at Various Electrodes Table 55. Potentials of Electrode Decomposition of 1N Solutions of Selected Compounds Table 56. Flame Photometry Table 57. British and American Weights and Measures in Comparison with the Netric System of Measurement Table 58. Simplified Table of Five-Place Logarithms A. Logarithms B. Antilogarithms Appendices. Examples of Using Some Tables Table 14 Table 16 Table 18	
Table 52. Amperometric Titration of Selected Substances Table 53. Conditions of Amperometric Titration with Two Polarized Indicator Electrodes	
Table 52. Amperometric Titration of Selected Substances Table 53. Conditions of Amperometric Titration with Two Polarized Indicator Electrodes	
Table 52. Amperometric Titration of Selected Substances Table 53. Conditions of Amperometric Titration with Two Polarized Indicator Electrodes	

Handbook of Analytical Chemistry is intended for scientific workers, and chemistry students in universities, polytechnics, and technical colleges. It can be used in solving various problems (both calculating and experimental) concerning general chemistry, analytical chemistry, chemical technology, and so forth.

The tables of solubility products, of ionization constants of weak acids and bases, and of oxidation-reduction potentials have been drawn up according to recent data. When those tables were being drawn up, the following works were used: J. Bjerrum, G. Schwarzenbach, L. G. Sillén, Stability Constants of Metal-ion Complexes, with Solubility Products of Inorganic Substances, London, 1958; W. M. Latimer, The Oxidation States of the Elements and Their Potentials in Aqueous Solutions, N.Y., 1952; N. V. Axelrud and Ya. A. Fialkov, Ukrainskii khimicheskii zhurnal, 16, 75, 283, 296 (1950), and other articles from Soviet and foreign journals.

As we know, the results published by various authors concerning the determination of given quantities greatly differ from one another. It is therefore extremely difficult to select the "most probable" value of every constant. There is no international body to annually publish such "most probable" values of the given constants, as is done, for instance, by the International Commission concerning atomic weights. The selection I have made from numerous literary data is therefore inevitably subjective. I will be very grateful for information pointing out cases when this selection was made incorrectly, and will take account of such comments in the subsequent publications of the book.

The tables of the densities and concentrations of various acids and bases are drawn up for 20 °C.

The temperature values in all tables are given in degrees Celsius (°C). Tables 22, 32, 33, 34B, 35, 39, 47, 48, 51-55 have been compiled by P. K. Agasyan, docent of the analytical chemistry department of the Moscow State University.

Instead of the ordinary table of five-place logarithms, a "simplified" table of five-place logarithms and antilogarithms is given at the end of the book. It takes up the same space as the tables of four-place logarithms, because instead of the real values of the differences between mantissas, their mean values are given for every line of the table. Errors that arise when using this table are not over 0.00002. The other tables in the handbook give exact values of the five-place mantissas of logarithms.

Ju.Ju. Luric

Preliminary Remarks

The numerical expression of the results of weighings and other measurements, and the subsequent calculations with these numbers necessitate a strict observance of several rules.

Rule 1. All numerical values, whether they are obtained directly by measurements or whether they are the derivatives of these measurements, must have a certain number of significant digits so that the last figure

alone is questionable; the second-last figure must be accurate.

For instance, the number 20.24 (ml), which expresses the reading of an ordinary burette, contains a proper number of figures, since figure 4 was obtained by an approximate (visual) estimate of the distance between the edge of the meniscus and the nearest scale division. Consequently, this figure is dubious: another observer could read the measurement of the burette as 20.23 or 20.25 ml. If upon measuring the solution by a burette, the lower boundary of the meniscus exactly touches the scale division showing 15 ml, the measurement result must be expressed by the number 15.00 (ml), since the observation error is not over 0.01-0.02 ml. Both zeroes in the number 15.00 (ml) will be significant digits. The zeroes standing at the beginning of the number before the first figure which is not a zero are not regarded as significant digits. Hence, the number expressing the mass of the filter ash 0.00004 (g) contains only one significant digit: 4.

If the mass is determined in grams and expressed by the number 23.4 (g) in which the last figure is inaccurate, in order to represent this mass in milligrams one must write not 23 400 mg, which would give a wrong idea about the accuracy of the weighing, but 234.102 mg,

or $2.34 \cdot 10^4$ mg.

Rule 2. When discarding the last figure if it is equal to or more than 5, the preceding figure must be increased by unity.

Thus, in discarding the last figure in the number 16.236, we

obtain 16.24.

Rule 3. Upon addition (and subtraction) of several numbers, there will remain, as a result of calculation, a certain number of figures after the point that are in the addend with the least number of decimals.

Rule 4. Upon multiplication or division, the maximum relative error of the product or quotient cannot be less than the relative error in the least accurate number from the numbers taken.

Relative errors are usually expressed in per cent: it is the ratio

Relative errors are usually expressed in per cent: it is the ratio of the maximum possible error of the number to the number itself multiplied by 100.

If, for instance, it is necessary to multiply 0.0123.24.62.1.07461 and if it is taken that the maximum absolute error in each of these numbers is not over unity in the last figure, then the corresponding relative errors will be:

$$\frac{1}{123}100 = 0.8\%$$

$$\frac{1}{2462}100 = 0.04\%$$

$$\frac{1}{107461}100 = 0.001\%$$

The first number has the greatest relative error (0.8%). It follows that the maximum relative error is not less than 0.8 per cent in the product as well. If the first three significant digits 0.325 are kept in the product, the last digit will already be inaccurate, since 0.8 per cent from 0.325 comes to about 0.003.

In cases when rule 1 is observed, i.e., when all numbers used in the calculation contain not more than one inaccurate figure, it is possible to apply the more simple (although less accurate) rule 4,a.

Rule 4,a. Upon multiplication and division, as a result of calculation, it is necessary to keep a certain number of significant digits which are in the number having these digits least of all among the numbers used in the calculation.

In the example given above, the first cofactor has three, the second has four, and the third has six significant digits. Consequently, we must leave in the product three significant digits and discard the rest; the result will be 0.325.

Rule 5. In all the intermediate results, it is necessary to keep one figure more than is required by the preceding rules. In the final result, this "reserve figure" is discarded.

Rule 6. If some data have more decimals (upon addition and subtraction) or more significant digits (upon multiplication and division) than others, they must first be rounded, keeping one extra figure (see rule 5).

Rule 7. Upon multiplication and division with the aid of logarithms, it is sufficient to have as many figures in the mantissas as there are significant digits in the least accurate multiplier.

Therefore, for most calculations, we can confine ourselves to the logarithmic table on page 448 of this book.

Together with an excessive as well as an unsubstantiated accuracy of calculations (a long series of figures after the decimal point, when already the first one of them is dubious, the use of multi-place logarithmic tables, and so forth), another error is very common: the unnecessary accuracy of individual measurements that leads to the finding of figures which in any case will be discarded upon subsequent calculations (if these calculations are made correctly).

Analytical chemists, for instance, have grown accustomed to making all weighings on an analytical balance with an accuracy of up to 0.0001 g, and they spent much time sitting by the balance, determining the correct figure in the fourth decimal. At the same time, this accuracy is often pointless. Here are a few examples:

1. Antimony is determined in red copper in which the Sb content is not more than 0.003%. For analysis, a portion of copper weighing 10 g is taken. With what accuracy must the copper shaving be weighed?

The result obtained must have not more than two significant digits, since copper containing even 0.0031% Sb must be discarded. Great accuracy is not needed, and in essence it is unattainable by the analytical methods used. Hence, the maximum absolute error in the final result is $\pm 0.0001\%$, which makes up $\pm 3.3\%$ of the maximum permissible Sb content in the metal. The calculation is made by the formula

$$x = \frac{a \cdot 100}{g} \%$$

where a = antimony content found;

g = weighed portion.

If a weighed portion of copper is taken with an accuracy of up to one-tenth of a gram $(\pm 0.1 \text{ g})$, then with respect to the entire portion weighing 10 g, the relative error will be $\pm 1\%$, which is far less than $\pm 3.3\%$. In other words, if instead of 10 g of copper, 9.9 g or 10.1 g are weighed, then with a Sb content of 0.30 mg, this will give, in the first case, 0.00303% and, in the second case, 0.00297%, which in both cases will be rounded off to 0.0030%. It follows that a weighing can be made on technical scales with an accuracy of up to 0.1 g.

can be made on technical scales with an accuracy of up to 0.1 g.

2. The accuracy of the colorimetric methods of analysis (if the optical density of solutions is measured visually and not photocolorimetrically or spectrophotometrically) is usually not over ±5% of the relative errors, while by some other methods, the relative error comes to ±10% and more. According to rule 4, the accuracy of the result cannot be higher than the accuracy of the least accurate measurement, and therefore, no matter how accurately a test is weighed for analysis, if this analysis ends with a colorimetric determination, the accuracy of the results will not be higher than the aforementioned ±5%. It follows that if 1 g of a test is weighed with an accuracy of ±0.01 g, i.e., with a maximum relative error of ±1%, this accuracy is high enough.

Visual colorimetric methods are used only to determine the components contained in very small amounts in the substance being analysed, when a great relative error is permissible in the result obtained. The determination of iron in iron ore by the visual colorimetric method

leads to impermissible errors.

Note. It must not be assumed that, in determining small amounts, the colorimetric methods of analysis are less accurate than other methods. On the contrary, if in the preceding example Sb is determined not by the colorimetric method (as is usually done), but by the gravimetric method, we would have to weigh about 0.0003 g of $\mathrm{Sb_2O_4}$, which on an ordinary analytical balance can scarcely be made with a maximum error less than $\pm 30\%$ of the relative errors. In addition, no account is taken of the inevitable significant error due to impurities present in the calcined precipitate, an error which cannot be eliminated even when a microbalance is used.

3. In the calculation of the results of volumetric-analytical determinations, the least accurate figure is the number of millilitres of a titrating solution used for titration. Since the hundredth parts of a millilitre are marked approximately, it can be accepted that the maximum measurement error is not less than ± 0.02 ml. The error due to the remaining residue is also ± 0.02 ml. Therefore, the overall error can be as much as 0.04 ml*. With the total expenditure of 20 ml of the titrating solution, this will come to 0.2% of the relative errors. It follows that, taking 1 g for analysis, the weighing can be performed with an accuracy of up to 1 mg. This gives a relative error of ± 0.5 mg, or 0.05%. If less than 20 ml of the titrating solution are used for titration, less accuracy is needed in taking a weighed portion.

On the other hand, the weighing of a starting substance for establishing the titre must be performed with an accuracy of up to unity in the fourth decimal, since in this case a portion weighing only about 0.2 g is taken and about 40 ml of the titrating solution are used for

titration.

If one wishes to increase the accuracy of the volumetric-analytical methods, one must use gravimetric burettes instead of ordinary ones,** which completely precludes errors due to inaccurate measurement, remaining residue and a difference in temperature. The weighing of a sample now becomes a less accurate operation, and it should be performed with a relative error which is determined by the accuracy required in the final result ($\pm 0.01\%$ and less).

The foregoing should not lead to the conclusion that the weighed portion can always be taken with an accuracy of ± 1 mg or less. On the contrary, there are some analytical operations when the entire accuracy of an analytical balance must be used, and when even the accuracy of a microbalance is not high enough. Here are two examples.

4. Red electrolytic copper must contain 99.95% of Cu. The analytical determination of Cu in this case is made by electrolysis. What

accuracy must the weighing be made with?

The error in the final result, expressed in per cent, must not be more than $\pm 0.004\%$. It is apparently necessary to have no lesser accuracy in weighing a test of red copper as in weighing a platinum electrode before and after Cu is deposited on it. If one gram of a test is taken for an analysis, then, with the maximum accuracy of the weighing on an analytical balance being ± 0.2 mg, the relative error will be $\pm 0.02\%$, which is far more than is permissible. Therefore, in the given case, it is necessary to use a balance that is more accurate than the ordinary analytical one, or (as is usually done) to take not less than 5 g of the substance being analysed.

Suppose that for determining Zn in a copper-zinc alloy containing about 20% of Zn, a portion weighing 0.02 g is taken, whether owing to the small amount of shavings which an analyst has or with due regard to some advantages in the techniques of working with small amounts of a substance. The analysis is concluded by weighing

^{*}See I. M. Koltgof and E. B. Sendel, Kolichestvennyi analiz (Quantitative Analysis), Moscow, 1948, p. 459.

**See, for instance, I. M. Koltgof and E. B. Sendel, Kolichestvennyi analiz (Quantitative Analysis), Moscow, 1948, p. 561; I. M. Koltgof and V. A. Stenger, Ob'emnyi analiz (Volumetric Analysis), Vol. II, Moscow, 1952, p. 25.

the precipitate in the form of Zn₂P₂O₇. What accuracy must the

weighing be made with?

The result of the analysis must be expressed with an accuracy of up to a hundredth part of a per cent (for instance, 19.84%), i.e., with a permissible error of $\pm 0.01\%$ of the absolute errors; since the Zn content is 20%, this will come to $\pm 0.05\%$ of the relative errors. The same accuracy must be obtained when weighing the portion of shavings and the calcined precipitate $Zn_2P_2O_7$. When a portion weighs 20 mg, the value $\pm 0.05\%$ comes to ± 0.01 mg; the same percentage of the mass of the calcined precipitate (~ 8 mg) is still less, being about ± 0.004 mg. A microchemical balance gives an error of about ± 0.01 mg. It follows that, in the given case, the weighing performed even with a microchemical balance does not ensure the required accuracy.

Atomic Weights of the Elements

The atomic weights of various elements are determined with different accuracy which is expressed by a different number of figures after the decimal point. When the number expressing atomic weight ends with one or several zeroes, the latter are significant digits showing the accuracy with which the atomic weight of the corresponding element is determined (see rule 1, p. 11).

The results of chemical analyses must not be expressed with a precision greater than that of the atomic weight. This limitation must be especially reckoned with when determining some platinum and

rare-earth elements, and also rhenium.

The table contains relative atomic weights published by the Commission on Atomic Weights of the International Union of Pure and

Applied Chemistry (IUPAC) in 1965.

The Commission adopted a resolution whereby the old "oxygen chemical unit" of atomic weights (1/16 of the average atomic weight of the natural isotopic mixture of oxygen atoms) is replaced by the "carbon physical unit" (1/12 of the atomic mass of the carbon iso-

tope ¹²C).

For all the elements, besides those given below, the number expressing the atomic weight is given with an error not exceeding ± 0.5 in the last digit after the decimal point. The deviations of the atomic weight values for the given six elements are as follows: boron ± 0.003 ; hydrogen ± 0.00001 ; oxygen ± 0.0001 ; silicon ± 0.001 ; sulphur ± 0.003 ; carbon ± 0.00005 . These deviations are due to variations in the natural isotopic composition of the elements.

Owing to the experimental inaccuracies in the determination of the atomic weights of the six elements listed below, their values deviate within the following limits: bromine ± 0.001 ; iron ± 0.003 ; copper ± 0.001 ; silver ± 0.001 ; chlorine ± 0.001 ; chromium ± 0.001 .

The atomic weights of radioactive elements are given only for thorium and uranium; for other radioactive elements, the mass number of the isotope with the longest half-life is given in square brackets.

Element	Symbol	Atomic number	Atomic weight, α	log a
Actinium Silver Aluminium Americium Argon	Ac	89	[227]	35 603
	Ag	47	107.868	03 289
	Al	13	26.9815	43 106
	Am	95	[243]	38 561
	Ar	18	39.948	60 150
Arsenic	As	33	74.9216	87 461
Astatine	At	85	[210]	32 222
Gold	Au	79	196.967	29 440
Boron	B	5	10.811	03 387
Barium	Ba	56	137.34	13 780

Table 1 (continued)

Element	Symbol	Atomic number	Atomic weight, a	log a
Beryllium	Be	4	9.0122	95 483
Bismuth	Bi	83	208.980	32 010
Berkelium	Bk	97	[247]	39 620
Bromine	Br	35	79.904	90 257
Carbon	C	6	12.01115	07 958
Calcium	Ca	20	40.08	60 293
Cadmium	Cd	48	112.40	05 077
Cerium	Ce	58	140.12	14 650
Californium	Cf	98	[252]	41 040
Chlorine	Cl	17	35.453	54 965
Curium	Cm	96	[247]	39 270
Cobalt	Co	27	58.9332	77 036
Chromium	Cr	24	51.996	71 597
Caesium	Cs	55	132.905	12 354
Copper	Cu	29	63.546	80 309
Dysprosium	Dy	66	162.50	21 085
Erbium	Er	68	167.26	22 340
Einsteinium	Es	99	[254]	40 483
Europium	Eu	63	151.96	18 173
Fluorine	F	9	18.9984	27 872
Iron	Fe	26	55.847	74 700
Fermium	Fm	100	[257]	40 993
Francium	Fr	87	[223]	34 830
Gallium	Ga	31	69.72	84 336
Gadolinium	Gd	64	157.25	19 659
Germanium	Ge	32	72.59	86 088
Hydrogen	H	1	1.00797	00 345
Helium	He	2	4.0026	60 235
Hafnium	Hf	72	178.49	25 162
Mercury	Hf	80	200.59	30 231
Holmium	Ho	67	164.930	21 730
Iodine	I	53	126.9044	10 348
Indium	In	49	114.82	06 002
Iridium	Ir	77	192.2	28 375
Potassium	K	19	39.102	59 220
Krypton	Kr	36	83.80	92 324
Kurchatovium	Ku	104	[264]	42 160

Table 1 (continued)

Element	Symbol	Atomic number	Atomic weight, a	log a
Lanthanum	La	57	138.91	14 273
Lithium	Li	3	6.939	84 130
Lawrencium	Lr	403	[256]	40 824
Lutetium	Lu	71	174.97	24 297
Mendelevium	Md	101	[257]	40 993
Magnesium	Mg	12	24.305	38 570
Manganese	Mn	25	54.9380	73 987
Molybdenum	Mo	42	95.94	98 200
Nitrogen	N	7	14.0067	14 634
Sodium	Na	11	22.9898	36 154
Niobium	Nb	41	92.906	96 804
Neodymium	Nd	60	144.24	15 909
Neon	Ne	10	20.179	30 490
Nickel	Ni	28	58.71	76 871
Nobelium	No	102	[255]	40 654
Neptunium	Np	93	[237]	37 475
Oxygen	O	8	15.9994	20 410
Osmium	Os	76	190.2	27 921
Phosphorus	P	15	30.9738	49 099
Protactinium	Pa	91	[231]	36 361
Lead	Pb	82	207 . 19	31 637
Palladium	Pd	46	106 . 4	02 694
Promethium	Pm	61	[145]	16 137
Polonium	Po	84	[210]	32 222
Praseodymium	Pr	59	140.907	14 893
Platinum	Pt	78	195.09	29 024
Plutonium	Pu	94	[244]	38 739
Radium	Ra	88	[226]	35 411
Rubidium	Rb	37	85.47	93 181
Rhenium	Re	75	186.2	26 998
Rhodium	Rh	45	102.905	01 244
Radon	Rn	86	[222]	34 635
Ruthenium	Ru	44	101.07	00 462
Sulphur	S	16	32.064	50 602
Antimony	Sb	51	121.75	08 547
Scandium	Sc	21	44.956	65 279

Table 1 (continued)

Element	Symbol	Atomic number	Atomic weight, a	log a
Selenium	Se	34	78.96	89 741
Silicon	Si	14	28.086	44 849
Samarium	Sm	62	150.35	17 711
Tin	Sn	50	118.69	07 441
Strontium	Sr	38	87.62	94 260
Tantalum	Ta	73	180.948	25 755
Terbium	Tb	65	158.924	20 119
Technetium	Tc	43	[99]	99 564
Tellurium	Te	52	127.60	10 585
Thorium	Th	90	232.038	36 556
Titanium	Ti	22	47.90	68 034
Thallium	Tl	81	204.37	31 042
Thulium	Tm	69	168.934	22 772
Uranium	U	92	238.03	37 663
Vanadium	V	23	50.942	70 708
Tungsten	W	74	183.85	26 446
Xenon	Xe	54	131.30	11 826
Yttrium	Y	39	88.905	94 893
Ytterbium	Yb	70	173.04	23 815
Zinc	Zn	30	65.37	81 538
Zirconium	Zr	40	91.22	96 009

Table 2
Radioactive Elements

Element	Sym- bol	Ato- mic num- her	Mass number of the lon- gest living isotope	Half-life*	Decay mode
Actinium Americium Astatine Berkelium Californium Curium Einsteinium Fermium	Ac Am At Bk Cf Cm Es Fm	89 95 85 97 98 96 99 100	227 243 210 247 252 247 254 257	$ \begin{array}{c} 22 \text{ y} \\ 7.8 \times 10^3 \text{ y} \\ 8.3 \text{ h} \end{array} $ $ \begin{array}{c} 1.4 \times 10^3 \text{ y} \\ 360 \text{ y} \\ 1.6 \times 10^7 \text{ y} \\ 2.7 \times 10^2 \text{ d} \\ 3 \text{ d} \end{array} $	α, β- α Electron capture α α α α α Electron capture,
Francium Lawrencium Mendelevium	Fr Lr Md	87 103 101	223 256 257	22 min 8 s 1 .5 h	α α, β- α Electron capture
Neptunium Nobelium Plutonium Polonium Promethium Protactinium Radium Radon Technetium Uranium	Np No Pu Po Pm Pa Ra Rn Tc Th U	93 102 94 84 61 91 88 86 43 90 92	237 255 244 210 145 231 226 222 99 232 238	$\begin{array}{c} 2.1 \times 10^{6} \text{ y} \\ \sim 8 \text{ s} \\ 3.8 \times 10^{5} \text{ y} \\ 138.4 \text{ d} \\ 18 \text{ y} \\ 3.2 \times 10^{4} \text{ y} \\ 1,622 \text{ y} \\ 3.83 \text{ d} \\ 2.1 \times 10^{5} \text{ y} \\ 1.4 \times 10^{10} \text{ y} \\ 4.5 \times 10^{9} \text{ y} \end{array}$	α α α α α α α α α α α α α α α α α α α

^{*} s, second; min, minute; h, hour; d, day; y, year.

Ion Radii

The values of ion radii are given in angstroms (Å) with a coordination number of 6. When the coordination number is 4, the correction comes to -6%, with the coordination number of 8, it is +3%, and with the coordination number of 12, it comes to +12%.

		Si	ize of radiu	s, Å, according	to
Substance	Ionic charge	Goldschmidt	Pauling	Belov and Boky	other sources
Ac Ag Al Am As Au B BF4 Ba Be Bi C CN-Ca Cd Ce Cl ClO4 Co Cr	++++++++++++++++++++++++++++++++++++++	1.13 0.57 — — 0.69 — — 1.43 0.34 — — 1.96 0.2 — 1.06 1.03 1.02 1.18 — 1.81 — 0.82 0.35	1.26 0.50 0.47 2.22 1.37 0.20 1.35 0.31 0.74 0.39 1.95 0.15 2.60 0.99 0.97 1.01 0.26 1.81 0.72 0.72	1.11 1.13 0.57 0.85 1.00 0.47 0.69 1.91 0.85 1.37 0.21 1.38 0.34 0.74 1.20 2.13 0.39 1.96 0.20 2.60 1.04 0.99 0.88 1.02 0.26 1.02 0.26 1.02 0.26 1.03 0.26 0.20 2.60 1.02 0.26 0.20 2.60 0.20 2.60 0.20 2.60 0.20 2.60 0.20 2.60 0.20 2.60 0.20 0.2	1.19 0.99 0.58 0.89 0.90 2.28 1.16 1.16 0.47 1.92 0.92 0.93; 0.87 1.00; 1.02 0.34 2.36 0.72 0.78; 0.80

Table 3 (continued)

		Si	ze of radiu	s, Å, according	to
Substance	Ionic charge	Goldschmidt	Pauling	Belov and Boky	other sources
CrO2-Cs Cu Dy Er Eu F Ga GG Ge H Hf Hg Ho I In Ir K La	+3 $+2$ $+1$ $+3$ $+2$ $+1$ $+3$ $+4$ $+4$ $+4$ $+4$ $+4$ $+4$ $+4$ $+4$	- 0.83 - 1.65 0.70 - 1.07 1.04 1.13 - 1.33 0.67 0.83 0.62 1.11 0.44 - 1.54 - 1.54 - 1.12 1.05 - 0.94 - 2.20 0.92 - 0.66 - 1.33 - 1.33	1.69 0.96 0.07 1.36 0.75 0.62 0.53 2.72 2.08 1.10 0.50 2.16 0.81 0.64 1.33	0.64 0.83 - 1.65 0.80 0.98 0.88 0.85 0.97 - 0.07 1.33 0.67 0.80 0.62 0.94 0.44 0.65 - 1.36 0.82 1.12 0.86 0.50 - - 2.20 0.92 1.33 0.65 - - 1.33 0.99	0.62 3.00
Li Lu Mg	$\begin{vmatrix} +3\\ +1\\ +3\\ +2 \end{vmatrix}$	1.22 0.78 0.99 0.78	1.15 0.60 — 0.65	1.04 0.68 0.80 0.74	 0.84
Mo	+7 +4 +3 +2 +6 4	0.52 0.70 0.91 0.68	0.46 0.50 — 0.80 0.62 0.66	0.46 0.52 0.70 0.91 0.65 0.68	0.67 — — — —

Table 3 (continued)

		S	ize of radiu	ıs, Å, according	; to
Substance	Ionic charge	Goldschmidt	Pauling	Belov and Boky	other sources
$ \begin{array}{c c} MoO_{4}^{2} \\ N \\ NH_{4}^{+} \\ NO_{3}^{-} \end{array} $	$ \begin{array}{c c} -2 \\ +5 \\ +3 \\ -3 \\ +1 \\ -1 \end{array} $		0.11 1.71 —	0.15 - 1.48 	3.45 0.13 0.16 1.30 1.59 1.89; 2.57
Na Nb Nd Ni	+1 +5 +4 +3 +3	0.98 0.69 0.69 1.15 0.35	0.95 0.70 0.67 —	0.98 0.66 0.67 0.99	 0.74 0.99
Np	+2 +6 +5 +4 +3 +6	0.78 — — — — —	0.69 0.09	0.74 — — 0.88 1.02 0.09	0.68; 0.79 0.82 0.88 0.92 1.01
O OH; Os	$ \begin{array}{c c} +6 \\ -2 \\ -1 \\ +1 \\ +4 \\ +3 \end{array} $	1.32 — 0.67	1.40 — — 0.65	1.36 — — 0.65	1.45 1.53; 1.33 1.35 0.75 0.81
Р РО 3	+2 +5 +3 -3 -3	0.35 — — —	0.34 2.12	0.35 - 1.86	0.89 0.44 3.00
Pa Pb	+4 +3 +4 +2 +4	 0.84 1.32 	 0.84 1.21 	0.91 1.06 0.76 1.26 0.64	0.96 1.05 — 1.17 0.73; 0.65
Pm Pr Pt	+2 +3 +4 +3 +4	1.00 1.16	 0.92 	0.98 1.00 0.64	0.72; 0.88 0.98 0.92 1.00 0.76
Pu	+2 +6 +5 +4 +3	_ _ _ _	 		0.90; 0.87 0.81 0.87 0.90 1.00
Ra Rb	+2 +1	1.52 1.49	1.48	1 .44 1 .49	_

Table 3 (continued)

		Size of radius, A, according to				
Substance	Ionic charge	Goldschmidt	Pauling	Belov and Boky	other sources	
Re	+7 +6	<u> </u>	<u>-</u>	 0.52 0.72	0.56 0.55 0.71	
Rh	$\begin{array}{c c} +4 \\ +4 \\ +3 \end{array}$	-	_	0.65 0.75	0.62 0.62	
Ru	+4 +3	0.65 —	0.63 —	0.62 —	0.71 0.74	
s	$^{+2}_{+6}$	0.34	0.29	0.30	0.85 — 0.37	
SH- SO ₂ -	$\begin{array}{c} +4 \\ -2 \\ -1 \\ -2 \\ -1 \end{array}$	1.74 — —	1.84 — —	1.86 — — —	1.90 2.00 2.95 2.06	
IISO ₄ Sb	+5 +3 -3	0.90 —	0.62 2.45	0.62 0.90 2.08	_ _ _	
Sc Se	$+3 \\ +6 \\ +4 \\ -2$	0.83 — — 1.91	0.81 — — 1.98	0.83 0.35 0.69 1.93	0.42 0.56 1.91	
Si	-2 +4 -4	0.39	0.41 2.71	0.39 —	_	
SiO4- Sm	·-4 +3	1.13	_	0.97	2.90 0.97 1.11	
Sn	$^{+2}_{+4}$	0.74 —	0.71	0.67 1.02	_	
Sr Ta Tb Te	-4 +5 +3 +6 +4	1.27 1.09 0.89	2.94 1.13 — 0.56 0.81	1.20 0.66 0.89 0.56 0.89	1.10 0.73 0.92 0.61	
Th	-2 +4 +3	2.11 1.10	2.21 1.02	2.22 0.95 1.08	0.99 1.08	
Ti	$+4 \\ +3$	0.64 0.69	0.68 —	0.64 0.69	_	
Tl	$^{+2}_{+3}$	0.80 1.05	0.95 1.44	0.78 1.05 1.36	0.76 —	
Tm	+1 +3	1.49 1.04	1.44	0.85	0.86	

Table 3 (continued)

		S	s, Å, according	to	
Substance	Ionic charge	Ionic charge Goldschmidt Pauling		Belov and Boky	other sources
U	$\begin{array}{c} +6 \\ +5 \end{array}$		_	_	0.83 0.87
V	$\begin{array}{c c} +4 \\ +3 \\ +5 \\ +4 \end{array}$	1.05 0.4 0.61 0.65	0.97 0.59 0.59	0.95 1.04 — 0.61 0.67	0.93; 0.89 1.03 0.59 0.64
w Y	+3 +2 +6 +4	0.72 — 0.68	 0.66 0.93	$egin{array}{c} 0.72 \ 0.65 \ 0.68 \ 0.97 \end{array}$	
Yb Zn Zr	+4 +3 +3 +2 +4	1.06 1.00 0.83 0.87	0.93 0.74 0.80	0.81 0.83 0.82	0.85 0.70 —

Ionization Potentials of Atoms and Ions

The ionization potential is the minimum voltage of the electric field needed for tearing away one electron from an atom or ion.

The table gives the potentials of the ionization of atoms and ions,

i.e., the potentials required for separating one electron from a neutral unexcited atom $(X - e \rightarrow X^+)$ and the potentials required for tearing away one electron from a single-charge (positive) unexcited ion $(X^+ - e \rightarrow X^{2+})$, from a two-charge unexcited ion $(X^{2+} - e \rightarrow X^{3+})$ and so forth.

Insufficiently reliable data are given in parentheses.

Element	$X - e \rightarrow X +$	$X^+-e \to X^{2+}$	$X^{2+-e} \rightarrow X^{3+}$	X3+—e → X4+	X4+-e → X5+	X5+−e → X8+
Ac Ag Al As As Ba Ba Ba Ba CCa CCa CCs CCB Ba Ga Ga He	6.89 7.57 5.98 15.76 9.81 9.22 8.30 5.81 9.32 7.29 11.84 11.26 6.11 8.99 13.01 7.86 6.76 3.89 7.72 6.82 7.90 6.16 7.88 13.60 24.58	11.5 21.48 18.82 27.62 18.7 20.5 25.15 10.00 18.21 19.3 21.6 24.38 11.87 16.90 12.3 23.80 17.05 16.49 25.1 20.29 11.24 34.98 16.18 20.51 12.5 15.93 54.40	- 6.10 28.44 40.90 28.3 30.5 37.92 37.92 37.86 35.9 47.86 51.21 44.5 19.5 39.9 33.5 34.6 36.83 - 62.65 30.70 - 34.21 	 (52) 119.96 59.79 50.1 (44) 259.30 (49) 217.7 45.3 47.3 64.48 67.3 (55) 36.7 53.3 (51) (46) (59) 87.23 (56) 64.2 45.7 	70) 153.8 75.0 62.9 (58) 340.13 (62) 56.0 59.7 392.0 84 (73) (70) 67.8 (82) 73 (62) (83) — 114.2 (79) (90) — 93.4 —	(89) 190.4 91.3 127.5 (73) (80) 94.4 88.6 489.8 109 (94) (85) 96.6 (109) 90.6 (74) (109) — 157.1 103 (118) — (123) —

Table 4 (continued)

Element	$X - e \rightarrow X^+$	$X^{+-e} \rightarrow X^{2+}$	X2+-e - X3+	X3+−e → X4+	V4+-e X5+	X5+-e → X6+
Hfg In Kalugno MNNNNNOOPPDOrtabehnu BSSSSSSSSSTT	5.5 10.43 10.44 5.79 4.34 14.50 5.39 6.15 7.43 7.43 14.54 6.31 14.54 6.31 7.42 8.33 13.61 7.42 8.33 8.25 7.36 10.36 8.75 7.36 10.36 8.75 7.36 10.36 8.75 7.36 10.36 8.75 7.36 10.36 8.75 7.36 7.36 7.36 7.36 7.36 7.36 7.36 7.36	14.9 18.75 19.0 18.86 31.8 24.56 11.43 75.62 14.7 15.03 15.64 15.72 29.60 47.29 13.90 41.07 18.15 15.03 19.42 19.4 18.54 10.65 15.92 21.4 16.60 23.4 16.7 12.89 21.5 16.34 11.03 16.2 16.2	(21) 34.2 33 28.0 45.9 36.9 19.17 122.4 (19) 78.2 33.69 47.43 71.65 28.1 63.5 63.5 36.16 54.93 25.30 31.93 (29) (34) (20) 32.8 24.75 32.0 (34) 40 (26) 32.4 33.46 30.7 43.6 (22) (32) (33) (34) (35) (36) (37) (37) (38)	(31) (46) (42) 58 61.1 52.5 (52) 	(61) 71 (77) 82.6 64.7 (66) — 141.2 (76) 61.2 97.86 138.6 50 126.4 79 113.9 54 65.01 69.7 (66) (61) (55) (59) 71.0 (55) (53) 72.5 63.8 91.8 68.3 166.7 91 71.6 (45) —	(77) 83 (98) 99.4 78.5 (80) 186.8 100 67 552 172.4 110.4 157.9 113 138.1 68 220.4 84 (90) (73) (75) (76) 84.4 (65) (85) (67) (81) 88.0 119 111 82.1 205.1 (103) 90.8 (103)

Table 4 (continued)

Element	$X-e o X^+$	X+-e - X2+	X2+-e - X3+	X3+-e - X4+	X4+-e - X6+	X6+-e - X6+
Tc Te Th Ti V W Xe Y Yb Zn Zr	7.23 9.01 — 6.83 6.11 6.74 7.98 12.13 6.38 6.2 9.39 6.84	14.87 18.8 11.5 13.57 20.42 14.2 17.7 21.2 12.23 12.10 17.96 12.92	31.9 31 20.0 28.14 29.8 29.7 (24) 32.1 20.5 — 39.70 24.8	(43) 38 28.7 43.24 50 48.0 (35) (45) 61.8 — (62) 33.97	(59) 66 (65) 99.8 (64) 65.2 (48) (57) 77.0 — (86) 82.3	(76) 83 (80) 119 (81) 128.9 (61) 89 93.0 — (114) 99.4

Table 5

Structures of Outer Electron Layers, Ion Potentials and Analytical Groups of Cations (according to N. I. Blok)

(Under the cation symbols, we give the values of ionic potentials Z/R: the ratio of the charge of an ion to its radius)

Incomplete 18-electron external layer M_{n}^{2} + F_{θ}^{2} + C_{0}^{2} + N_{1}^{2} + F_{θ}^{3} + C_{1}^{3} + $C_{$
- 11
2nd subgroup of III group
bgroup of III group Complete 18-electron external la + Hg²+ Cd²+ Zn²+ In³+ Ga³+ 0 1.8 1.9 2.4 3.3 4.9
IV and V groups Complete 18-electron external layer Cu+ Hg²+ Cd²+ Zn²+ In³+ Ga³+ SnIV (GeIV SbV 1.0 1.8 1.9 2.4 3.3 4.9 5.4 7.5 8.1 IV group V group
Complete 18-electron external layer Complete 18-electron external layer Cu+ Hg²+ Cd²+ Zn²+ In³+ Ga³+ SnIV (3eIV SbV 1.0 1.8 1.9 2.4 3.3 4.9 5.4 7.5 8.1

Atomic Weights, Molecular Weights*, Weights of Atomic Groups, and Their Logarithms

In compiling this table, all additions of atomic weights have been made in conformity with rules 2 and 3 (p. 11), the needless decimals having been discarded.

The atomic weights of all elements (apart from the 12 elements given below) are expressed in numbers in which errors are within the

limits of ± 0.5 in the last figure.

When a fractional part of an atomic weight is being found, the error in its magnitude apparently passes over to the next decimal, which now becomes the first of dubious figures. The total number of figures after the decimal point thus increases by unity. If, for instance, the atomic weight of titanium (Ti) is 47.90, then one-half of this atomic weight (1/2 Ti) will be not 23.95, but 23.950; Sn = 118.69, 1/2 Sn = 59.345.

When a multiple of an atomic weight is being found, the error increases. If, for instance, it is necessary to increase the atomic weight 10 times, its value must be rounded off by reducing the number of figures after the decimal point by one figure. For example, the atomic weight of nitrogen (N) is 14.0067; while 10 N is not 140.067, but

140.07.

The multiplication of the atomic weight of iron only by 2 gives an error within the limits of ± 0.006 and, consequently, an error can be made in the preceding figure; therefore, if Fe = 55.847, then 2 Fe will be not 111.694, but 111.69. When dividing the atomic weight of iron by 3, we have the maximum error within the limits of ± 0.0001 and, consequently, the number of figures after the decimal point will not increase: 1/3 Fe = 18.615.

One must be guided by such considerations also when adding the atomic weights of various elements: if the sum of the maximum possible errors is either equal to or more than ± 5 in the last figure, a rounding must be made by reducing the number of figures after the decimal

point by unity.

	Formula	Weight, a	log a
Ag		107.868 215.736 323.604 446.524 462.523 187.772	03 289 33 392 51 001 64 984 66 513 27 363

The molecular weights of solvents and organic reagents not included in this table are given in tables 44 and 49, respectively.

Table 6 (continued)

		
Formula	Weight, a	log a
AgC ₂ H ₃ O ₂	166.913	22 249
AgC ₇ H ₄ NS ₂	274.11	43 792
AgCN	133.886 275.741	12 674 44 050
AgCl	143.321	15 631
$\begin{bmatrix} Ag_2CrO_4 & . & . & . & . & . & . & . & . & . & $	331 .730 431 .730	52 078 63 521
AgF	126.866 535.56	10 335 72 881
$ Ag_4Fe(CN)_6 \dots \dots $	643.43	80 850
$egin{array}{cccccccccccccccccccccccccccccccccccc$	234.772 153.874	37 065 18 717
$egin{array}{cccccccccccccccccccccccccccccccccccc$	169.873 231.735	23 012 36 499
AgOCN	149.885	17 576
$egin{array}{cccccccccccccccccccccccccccccccccccc$	418.575 247.80	62 177 39 410
AgSCN	165.950 311.80	21 998 49 388
$AgVO_3$	206.808 438.544	31 555 64 201
	00.0045	43 106
Al	26.9815 8.99383	95 394
2Ål	53.9630 80.9445	73 210 90 819
4Al	107.9260 134.9075	03 313 13 003
6Al	161.8890	20 922
$AlBr_3$	266.694 204.117	42 601 30 988
(acetate) $Al(C_9H_6ON)_3$	459.444	66 223
(hydroxyquinolate) AlCl ₃	133.341	12 496
AlCl ₃	241 .433 83 .9767	38 280 92 416
AlF ₆	140.9719	14 913 O ₄) ₂ ·12H ₂ O
$[AIN\Pi_4(5U_4)_3 \cdot IZ\Pi_2U \cdot \cdot \cdot \cdot \cdot \cdot]$	See NH ₄ A	$1(SO_4)_2 \cdot 12H_2O$
$\begin{array}{c} Al(NO_3)_3 \dots \dots \\ Al(NO_3)_3 \cdot 9H_2O \dots \dots \end{array}$	212.996 375.134	32 837 57 419
Al_2O_3	101.9612	00 843

Table 6 (continued)

Formula	Weight, a	log a
$^{1/_{6}}Al_{2}O_{3}$		23 028 89 211 08 619 53 422 82 375
Λs 1/ ₂ As 1/ ₃ As 1/ ₅ As 2As 2As AsBr ₃ AsCl ₃ AsCl ₅ AsH ₃ AsO ₃ AsO ₄ As ₂ O ₃ 1/ ₄ Λs ₂ O ₃ As ₂ O ₅ As ₂ O ₇ AsS ₄ As ₂ S ₃ As ₂ S ₅	24.97387 14.98432 149.8432 314.634 181.281 252.187 77.9455 122.9198 138.9192 197.8414 49.4603 229.8402 261.8390 203.18 246.04 310.16	87 461 57 358 39 748 17 564 17 564 49 781 25 835 40 172 89 179 08 962 14 276 29 632 69 426 36 143 41 803 30 788 39 101 49 159
Au	196.967 65.6557 393.934 222.985 249.003 301.038 303.326 339.357 338.779 	29 439 81 727 59 542 34 828 39 620 47 862 48 191 53 066 52 992

Table 6 (continued)

Formula	Weight, a	log a
BBr ₃ BCl ₃ BF ₃ BF ₄ BO ₂ BO ₃ B ₂ O ₃ B ₄ O ₇	58.809 69.62 155.24	39 884 06 882 83 127 93 854 63 155 76 944 84 273 19 100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	137.34 68.670 274.68 412.02 297.15 333.18 197.35 273.45	13 780 83 677 43 883 61 492 47 298 52 268 29 524 43 688 35 288
(oxalate) BaCl ₂ BaCl ₂ ·2H ₂ O Ba(ClO ₃) ₂ ·H ₂ O BaClO ₄ BaClO ₄ ·3H ₂ O BaCrO ₄ BaF ₂ Ba(NO ₃) ₂ BaO 1/ ₂ BaO BaO ₂ Ba(OH) ₂ ·8H ₂ O 1/ ₂ Ba(OH) ₂ ·8H ₂ O BaSO ₃ BaSO ₄ BaSeO ₄ BaSeO ₄ BaSeO ₄ BaSiF ₆	208.25 244.28 322.26 236.79 290.84 253.33 175.34 261.35 153.34 76.67 169.34 171.35 315.48 157.74 217.40 233.40 280.30 279.42	31 859 38 789 50 821 37 436 46 365 40 369 24 388 41 722 18 566 88 463 22 876 23 388 49 899 19 794 35 679 36 810 44 762 44 626
Be	9.0122 4.50610	95 483 65 380
2Be	18.0244	25 586

Table 6 (continued)

Formula	Weight, a	log a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	151.980 47.0090 85.0058 187.068 25.0116 43.0269 191.968 105.074 177.135	83 898 14 947 90 264 18 179 67 218 92 945 27 200 39 814 63 374 28 323 02 149 24 830
Bi	208.980 69.6600 417.960 332.069 641.443	32 010 84 298 62 113 52 123 80 716
(pyrogallate) $Bi(C_9H_6ON)_3 \cdot \cdot$	659.458	81 919
$Bi(C_{12}H_{10}ONS)_3 \cdot H_2O \cdot \cdot \cdot \cdot \cdot$	875.85	94 243
(thionalide) BiCl ₃	315.339 609.47 589.693 716.598 862.768	49 878 78 495 77 063 85 528 93 589
$(BiI_4H)(C_9H_7ON)$ (hydroxyquinoline) $(BiI_4H)(C_{10}H_9N)$ (quinaldine)	860.796	93 490
(quinaidine) Bi(NO ₃) ₃	394.995 485.071 465.958 518.976 304.883 260.432 665.947 305.000 303.951 514.15	59 659 68 580 66 834 71 515 48 413 41 569 82 344 48 430 48 280 71 109

Table 6 (continued)

Formula	Weight, a	log a
Br	79.904 159.808 239.712 319.616 399.52 479.42 95.903 127.902 21.3170	90 257 20 360 37 969 50 463 60 154 68 072 98 183 10 688 32 873
C	12 04445	07 958
2C . 3C . 4C . 5C . 6C . 7C . 8C . CCl ₄ . CH ₂ . 2CH ₂ . 3CH ₂ . 4CH ₂ . 5CH ₂ . 6CH ₂ . 6CH ₃ . 3CH ₃ . 4CH ₃ . 5CH ₃ . 6CH ₃ . 6CH ₃ . CH ₄ . C ₂ H ₂ . C ₂ H ₅ . 3C ₂ H ₅ . 2C ₆ H ₅ . 3C ₆ H ₅ . C ₁₀ H ₆ . C ₁₀ H ₆ . C ₁₀ H ₇ . C ₁₀ H ₈ . (naphthalene) . CH-Br	12.01115 24.0223 36.0335 48.0446 60.0558 72.0669 84.0781 96.0892 153.823 14.0271 28.0542 42.0813 56.1084 70.1355 84.1625 15.0351 30.0701 45.1052 60.1402 75.1753 90.2104 16.0430 26.0382 29.0622 58.1243 87.1865 77.1068 154.2135 231.3203 126.1593 127.1673 128.1753	38 061 55 671 68 164 77 855 85 774 92 468 98 267 18 702 14 697 44 800 62 409 74 903 84 594 92 512 17 711 47 814 65 423 77 916 87 608 95 526 20 529 41 561 46 333 76 436 94 045 88 709 18 812 36 421 10 092 10 437 10 780
C ₁₀ R ₈	94.939	97 744
CH_3Br	1 94.959	1 31 144

Tuble 6 (continued)

		
Formula	Weight, a	log a
CHCl ₃ CH ₃ Cl CH ₃ F CH ₃ I CH ₂ N ₂ 2CH ₂ N ₂ C ₂ H ₈ N ₂ (ethylenediamine) C ₅ H ₅ N (pyridine)	119.378 50.488 34.0335	07 892 70 319 53 191
CH ₃ F	141 .9395 42 .0405	15 210 62 367
2ĈH ₂ N ₂	84.0810 60.0995	92 470 77 887
C ₅ H ₅ N	79.1023	89 819
2C ₅ H ₅ N	158.2046 312.3773	19 922 49 468
(nitron) C ₂₀ H ₁₆ N ₄ ·HClO ₄ C ₂₀ H ₁₆ N ₄ ·HNO ₃ CH ₂ O CH ₂ O CH ₃ O CH ₄ O C ₂ CH ₃ O C ₂ H ₃ O C ₂ H ₆ O C ₂ H ₆ O C ₄ H ₆ O C ₄ H ₄ O ₆ (tartrate-ion) C ₆ H ₆ O (phenol)	412.836 375.3902	61 578 57 448
CH ₂ O	30.0265 31.0345 62.0689	47 750 49 184 79 287
2CH ₃ O	32.0424 43.0456	50 573 63 393
C ₂ H ₆ O	46.0695 148.0729	66 341 17 048
(tartrate-ion) C ₀ H ₀ O	94.1141	97 365
$C_7H_8O_2N$	136.1314 144.1543	13 3 96 15 883
\hat{C}_0H_0ON	144.1543	16 185
C_0H_7ON	26.0179	41 527
(phenol) C ₇ H ₈ O ₂ N (anthranilate-ion) C ₀ H ₈ ON (hydroxyquinolate-ion) C ₀ H ₇ ON (hydroxyquinoline) CN 2CN 3CN	52.0357 78.0536	71 630 89 239
5CN	104.0714 130.0893 156.1071	01 733 11 424 19 342
6CN		44 700
COONT	28.0106 60.0558 44.0100	44 732 77 855 64 355
1/ ₂ CO ₂	22.0050 88.0199	34 252 94 458
1 300-	132.0299 60.0094	12 067 77 822
CO ₃ 1/ ₂ CO ₃	30.0047	47 719

Table 6 (continued)

 		
Formula	Weight, a	log a
2CO ₃ 3CO ₃ C ₂ O ₄ CO ₂ H CS ₂ CS(NH ₂) ₂	120.0187 180.0281 88.0199 45.0179 76.139 76.120	07 986 25 534 94 458 65 339 88 161 88 150
Ca $^{1/2}Ca$ 2Ca 3Ca CaBr_2 $^{CaBr_2 \cdot 6H_2O}$ CaC_2 $^{Ca(CHO_2)_2}$ $^{(formate)}$	40.08 20.040 80.16 120.24 199.89 307.98 64.10 130.12	60 293 30 190 90 396 08 005 30 079 48 852 80 686 11 434
$Ca(C_2H_3O_2)_2$	158.17 218.22 308.30	19 912 33 889 48 897
$Ca_3(C_6H_5O_7)_2$	498.45 570.51 710.58 80.10	69 762 75 626 85 161 90 363
$\begin{array}{c} \text{(cyanamide)} \\ \text{CaCO}_3 \\ & ^{1/2}\text{CaCO}_3 \\ & \text{CaC}_2\text{O}_4 \\ & ^{1/2}\text{CaC}_2\text{O}_4 \\ & \text{CaC}_2\text{O}_4 \cdot \text{H}_2\text{O} \\ & \text{CaCl}_2 \\ & \text{CaCl}_2 \cdot \text{6H}_2\text{O} \\ & \text{Ca(ClO)}_2 \cdot \text{2H}_2\text{O} \\ & \text{Ca(ClO)}_2 \cdot \text{4H}_2\text{O} \\ & \text{CaCrO}_4 \cdot \text{2H}_2\text{O} \\ & \text{CaF}_2 \\ & \text{Ca}_2\text{Fe}(\text{CN})_6 \cdot \text{12H}_2\text{O} \\ & \text{CaH}_2 \\ & \text{Ca}(\text{HCO}_3)_2 \\ & ^{1/2}\text{Ca}(\text{HCO}_3)_3 \\ & ^{1/2}\text{Ca}(\text{HCO}_3)_3 \\ \end{array}$	100.09 50.045 128.10 64.050 146.12 110.99 219.08 142.98 215.05 156.07 192.10 78.08 508.30 42.10 162.11 81.057	00 039 69 936 10 755 80 652 16 471 04 528 34 060 15 528 33 254 19 332 28 353 89 254 70 612 62 428 20 981 90 879

Table 6 (continued)

Formula	Weight, a	log a
CaHPO ₄ ·2H ₂ O Ca(H ₂ PO ₄) ₂ ·H ₂ O Ca(H ₂ PO ₄) ₂ ·H ₂ O Ca(HS) ₂ ·6H ₂ O Ca(HSO ₃) ₂ CaI ₂ CaMoO ₄ Ca(NO ₃) ₂ ·4H ₂ O CaO 1/ ₂ CaO 2CaO Ca(OH) ₂ 1/ ₂ Ca(OH) ₂ Ca(PO ₃) ₂ Ca ₃ (PO ₄) ₂ CaS CaSO ₃ CaSO ₄ ·1/ ₂ H ₂ O CaSO ₄ ·1/ ₂ H ₃ O CaSO ₄ ·1/ ₂ H ₃ O CaSiF ₆ CaSiO ₃ CaWO ₄	172.09 234.05 252.07 214.32 202.22 293.89 200.02 164.09 236.15 56.08 28.040 112.16 74.09 37.047 198.02 310.18 72.14 120.14 156.17 136.14 145.15 172.17 152.21 260.30	23 576 36 931 40 152 33 106 30 582 46 818 30 107 21 508 37 319 74 881 44 778 04 984 86 976 56 875 29 671 49 161 85 818 07 969 19 360 13 399 16 182 23 596 18 244 41 547
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	182.16 116.16 287.93	26 045 06 506 45 929
Cd 1/2Cd 2Cd CdBr2 4H2O Cd(C2H3O2)2	112.40 56.200 224.80 272.21 344.27 230.49	05 077 74 974 35 180 43 490 53 690 36 265
$Cd(C_2H_3O_3)_2 \cdot 2H_2O \cdot \cdot$	266.52 386.77	42 573 58 745
$\begin{bmatrix} Cd(C_{1}H_{5}N)_{4}(SCN)_{2} & \cdots & \cdots \\ Cd(C_{1}H_{5}N)_{4}(SCN)_{2} & \cdots & \cdots \end{bmatrix}$	544.97 444.89	73 637 64 825
_ \	384.66	58 508
$\begin{array}{c} Cd(C_7H_6O_2N)_2 & \cdot & \cdot & \cdot & \cdot \\ Cd(C_9H_6O_2N)_2 & \cdot & \cdot & \cdot & \cdot \\ Cd(C_9H_6O_N)_2 & \cdot & \cdot & \cdot & \cdot \\ (hydroxyquinolate) & \end{array}$	400.71	60 283

Table 6 (continued)

		
Formula	Weight, a	log a
$\begin{array}{c} Cd(C_0H_0ON)_2 \cdot 2H_2O & . & . & . \\ Cd(C_{10}H_0O_2N)_2 & . & . & . & . \\ (quinaldinate) & . & . & . & . \\ \end{array}$	436.74 456.73	64 022 65 966
Cd(CN) ₂	201.32 228.34 545.32 366.21 243.43 236.40 308.47 128.40 146.41	21 601 23 656 26 319 30 389 35 858 73 665 56 373 38 637 37 365 48 921 10 857 16 557 60 069
CdSO ₄ ·8/ ₃ H ₂ O	144.46 208.46 256.50	15 975 31 902 40 909
Ce	140.42 35.030 46.707 280.24 774.70 572.58	14 650 54 444 66 938 44 753 88 913
Ce(C ₀ H ₆ ON) ₃ (hydroxyquinolate) Ce ₂ (C ₂ O ₄) ₃ Ce ₂ (C ₂ O ₁) ₃ ·9H ₂ O CeCl ₃ CeCl ₃ ·7F ₂ O Ce(NH ₄) ₄ (NO ₃) ₆ Ce(NH ₄) ₂ (NO ₃) ₆ ·2H ₂ O Ce(NH ₄) ₄ (SO ₄) ₄ ·2H ₂ O Ce(NO ₃) ₃ Ce(NO ₃) ₃ ·6H ₂ O Ce(NO ₃) ₃ ·6H ₂ O CeO ₂ Ce ₂ O ₃ Ce ₃ O ₄ CePO ₄ Ce(SO ₄) ₂ ·4H ₂ O	544.30 706.44 246.48 372.59 548.23 584.26 632.55 326.13 434.23 172.12 328.24 484.36 235.09 332.24 404.30	73 584 84 908 39 178 57 123 73 896 76 661 80 109 51 339 63 772 23 583 51 619 68 517 37 123 52 145

Table 6 (continued)

Formula	Weight, a	log a
$Ce_2(SO_4)_3$	568.42 712.55	75 467 85 282
Cl	35.453 70.906 106.359 141.812 177.27 212.72 51.452 67.452 83.451 99.451	54 965 85 068 02 677 15 171 24 864 32 781 71 140 82 899 92 143 99 761
Co	58.9332 19.64440 29.46660 117.8664 176.7996 218.741 326.833 249.085	77 036 29 324 46 933 07 139 24 748 33 993 51 433 39 635
(pyridine) $Co_3(C_6H_5O_7)_2\cdot 4H_2O \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ (citrate)	627.066	79 731 52 009
$Co(C_7H_6O_2N)_2$	331 . 196 383 . 272	58 351
$\begin{array}{c} \text{Co}(\mathring{\text{C}}_{10}\mathring{\text{H}}_{6}\mathring{\text{O}}_{2}\text{N})_{3}\cdot2\mathring{\text{H}}_{2}\text{O} \\ \text{(α-nitroso-β-naphtholate)} \\ \text{CoC}_{2}O_{4}\cdot2\mathring{\text{H}}_{2}\text{O} \\ \text{CoCl}_{2}\cdot6\mathring{\text{H}}_{2}\text{O} \\ \text{CoCl}_{2}\cdot6\mathring{\text{H}}_{2}\text{O} \\ \text{CoCrO}_{4}\cdot \cdot $	611.458 182.984 129.839 237.931 174.927 491.85 182.943 291.035 74.9326	78 637 26 241 11 341 37 645 24 286 69 183 26 232 46 395 87 467
Co_2O_3	165.8646 240.797	21 975 38 165

Table 6 (continued)

Formula	Weight, a	log a
$Co_{2}P_{2}O_{7}$	291 .810 90 .997 154 .995 281 .102	46 510 95 904 19 032 44 886
Cr		71 597 23 885 01 700 19 309 08 956 19 963 42 561 04)2·12H2O 37 660 60 222 83 248 99 997 06 444 58 731 18 182 88 079 33 443 55 628 01 291 16 722 59 349 85 519
Cs	132.905 265.810 568.19 325.819 168.358 232.356 381.804 481.798 259.809 194.910 281.809 149.912	12 354 42 457 75 449 51 298 22 623 36 615 58 184 68 287 41 465 28 983 44 995 17 584

Table 6 (continued)

		1
Formula	Weight, a	log a
Cs_2PtCl_6	673.62 361.872	82 842 55 856
Cu	63.546 31.7730 127.092 190.638	80 309 50 206 10 412 28 021
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	223.354 199.651	34 899 30 027
$Cu(C_bH_5N)_a(SCN)_a$	337.91	52 880
(pyridine) Cu(C ₇ H ₆ O ₂ N) ₂	335.809	52 609
$Cu(C_9H_6ON)_2$	351.855 425.891	54 636 62 930
$Cu(C_{10}H_6O_2N)_2 \cdot H_2O \cdot \cdot$	514.13	71 107
$Cu(C_{12}H_{10}ONS)_2 \cdot H_2O$ (thionalide) $CuC_{14}H_{11}O_2N_2 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	288.796	46 059
Cupron) CuCN CuCl CuCl CuCl CuCl CuCl CuHg(SCN) CuI Cu(NO ₃) CuC Cu ₂ CuC Cu ₂ CuC Cu ₂ CuC CuC CuC CuSO ₄ CuSO ₄ CuSO ₄ CuSO ₄ CuSO ₄ CuSO ₄		95 213 99 563 12 857 23 168 69 588 27 978 27 313 38 310 47 077 90 061 59 959 98 928 15 561 34 462 98 050 20 183 08 503 20 305 39 739

Table 6 (continued)

Formula	Weight, a	log a
F	18.9984 37.9968 56.9952 75.9936 94.9920 113.9904	27 872 57 974 75 584 88 078 97 769 05 687
Fe	55.847 18.616 27.924 111.69 167.54 295.559 403.651 179.55 488.310 211.954 115.856 126.75 198.81 162.21 270.30 177.881 482.19 392.14 241.862 349.95 71.846	74 700 26 989 44 598 04 801 22 412 47 064 60 601 25 419 68 870 32 624 06 392 10 295 29 844 21 008 43 185 25 013 68 322 59 344 38 357 54 401 85 640

Table 6 (continued)

Formula	Weight, a	log a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69.72 139.44 502.18	84 336 14 439 70 086
(hydroxyquinotate) Ga(C ₉ H ₄ Br ₂ ON) ₃	975.55	98 925
Ga_2O_3		24 571 27 286
<u> </u>		
Ge	72.59 145.18 214.40 104.59 136.72	86 088 16 191 33 122 01 949 13 583
H	1.00797 2.01594 3.02391 4.03188 5.0399 6.0478 7.0558 8.0638 141.9431 411.848 43.818 61.833 80.912 96.911 128.910 46.0259 60.0530	00 345 30 448 48 057 60 551 70 242 78 160 84 855 90 654 15 211 61 474 64 165 79 122 90 801 98 637 11 029 66 300 77 853
$HC_3H_5O_3$	90.0795	95 463
$ HC_4H_4O_6 \dots $	149.081	17 342
$ \begin{array}{c cccc} (hydrotartrate-ion) \\ H_2C_4H_4O_4 & \dots & \dots \\ \end{array} $	118.090	07 221
$\begin{array}{cccc} & \text{(succinic)} \\ & H_2C_4H_4O_5 & \dots & \dots & \dots \\ \end{array}$	134.089	12 739
(mallc) $H_2C_4H_4O_6$	150.089	17 635

Table 6 (continued)

 		
Formuta	Weight, a	log a
H ₃ C ₆ ll ₅ O ₇		28 358
H ₀ C ₀ H ₀ O ₀ ·U ₀ ()	210.142	32 251
$H_3C_6H_5O_7 \cdot H_2() \dots \dots$	173.192	23 853
(sulphanilic)	900 999	32 061
$HC_6H_6O_3NS \cdot 211_2O \cdot \cdot$	209.222 122.125	08 680
$\begin{bmatrix} 11 G_7 \Pi_5 G_2 & . & . & . & . & . & . & . & . \end{bmatrix}$	1 <i>44</i> ,140	
(benzoic) $HC_7H_5O_3$ (salicylic)	138.124	14 027
(salicylic) HC ₇ H ₆ O ₂ N	137 . 139	13 716
(anthranilic)	_	
(anthranilic) $HC_8H_4O_4$	165.127	21 782
(hydrophthalate-ion)	166.135	22 046
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$H_2C_7H_4O_6S$	218.186	33 882
(sulphosalicylic)	254.217	40 520
(phthalic) $H_2C_7H_4O_6S$ (sulphosalicylic) $H_2C_7H_4O_6S \cdot \cdot$	173.173	23 848
(quinaldinic)	900 902	32 057
$HC_{10}H_{0}O_{2}N \cdot 2II_{2}O$	209.203 292.248	46 575
$HC_{10}H_6O_2N \cdot 2H_2O \cdot \cdot$		10 010
(ethylenediaminetetraacetic, complexone II) HCN HCO ₂ 2HCO ₂ 3HCO ₂ HCO ₃ H ₂ CO ₃ H ₂ CO ₄ (oxalic) H ₂ CO ₄ (oxalic)	27.0258	43 178
HCN	45.0179	65 339
HCO_2	90.036	95 442
$2HCO_2$	135.054	13 051
HCO.	61.0173	78 545
H ₂ CO ₂	62.0253	79 257
H ₂ C ₂ O ₄	90.036	95 442
(oxalic)	126.067	10 060
$H_2C_2O_4 \cdot 2H_2O \cdot \cdot$	63.0333	79 957
HCI	00.101	56 183
HCIO	52.460	71 983
HClO	84.459 100.459	92 665 00 199
$HClO_{\blacktriangle}$	118.010	07 192
H_2CrO_4	218.004	33 846
$ H_2Cr_2O_7 $ $ HF $	20.0064	30 117
Hi	127.9124	10 691
ню	143.9118	15 810
$\mid \text{HIO}_3 \mid$	175.9106	24 529
$\mid \text{HIO}_{\blacktriangle} \mid . \mid$	191.9100	28 310 35 782
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	227 . 941 179 . 97	25 520
HNO ₂	47.0135	67 222
, <u> </u>		<u> </u>

Table 6 (continued)

		
Formula	Weight, a	log a
HNO ₃ HO see OH H ₂ O 2H ₂ O 3H ₂ O 4H ₂ O 5H ₂ O 6H ₂ O 7H ₂ O 8H ₂ O 1/ ₂ H ₂ O ₂ 2H ₂ O ₂ HPO ₃ HPO ₄ H ₂ PO ₄ H ₃ PO ₃ H ₃ PO ₃ H ₃ PO ₃ H ₃ PO ₄ H ₄ P ₂ O ₇ HReO ₄ HS see SH	63.0129	79 943
H.O	18.0153	25 564
211 0	36.0307	55 667
3H2O	54.0460	73 276
4H ₂ O	72.0614	85 770
5H ₂ O	90.077	95 461
6H ₂ O	108.092	03 379
7H ₀ O	126.107	10 074
8H ₀ O	144.123	15 873
H_2O_2	34.0147	53 167
$I_{2}H_{2}O_{2}$	17.0074	23 064 83 270
$2\tilde{\mathrm{H}}_{2}\tilde{\mathrm{O}}_{2}$	68.0295 79.9800	90 298
HPO_{3}	95.9794	98 218
HPO_4	96.9873	98 671
H_2PO_4	65.9965	81 952
H_3PO_3	81.9959	91 379
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	97.9953	99 121
H_3PO_4	177.975	25 036
$\begin{bmatrix} \Pi_4 \Gamma_2 O_7 & \dots & \dots & \ddots & \ddots & \ddots \\ \Pi D_2 O_7 & \dots & \dots & \dots & \dots & \ddots & \ddots \end{bmatrix}$	251.2	40 002
HS see SH		
H S	34.080	53 250
1/ 11 9	17.040	23 147
HSCN	59.090	77 151
HSO.	81.070	90 886
2HSO-	162.14	20 989
H _o SO _o	82.078	91 423
HŠO ₄	97.070	98 709
H_2SO_4	98.078	99 157 69 054
HS see SH H ₂ S 1/ ₂ H ₂ S HSCN HSO ₃ 2HSO ₃ H ₂ SO ₄ H ₂ SO ₄ 1/ ₂ H ₂ SO ₄ 2H ₂ SO ₄	49.039 196.16	29 261
	196.16	05 744
$[11_2S_2O_3 $, , , , , , , , , , , $[$	114.077	05 720
H_2SO_5	80.98	90 838
H ₂ Se	128.97	11 049
H_2SeO_3	144.97	16 128
H_2T_{Θ}	129.62	11 267
$H_2^2 T_{\Theta O_4}$	193.63	28 697
H_6 TeO $_6$	229.64	36 105
H_2^{00}	249.86	39 770
		[
<u></u>		<u>'</u>

Table 6 (continued)

Formula	Weight, a	log a
Hg	200.59 100.295 401.18 360.40	30 231 00 128 60 334 55 678
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	310.00	50 335
$Hg(C_5H_5N)_2Cr_2O_7$	574.78	75 950
$Hg(C_7H_6O_2N)_2$	472.85	67 472
$Hg(C_{12}H_{10}ONS)_2$	633.16	80 151
HgC ₂ O ₄	288.61	46 031
HgC ₂ O ₄	252.63 271.50 472.09 316.58 454.40 324.60 342.62 525.19 561.22 216.59 417.18 232.65 433.24 316.75 517.34 296.65 497.24	40 248 43 377 67 402 50 048 65 744 51 135 53 481 72 032 74 913 33 564 62 032 36 670 63 673 50 072 71 378 47 224 69 657
	<i></i> .	
I	126.9044 253.8088 380.7132 507.6176 634.5220 761.4264 162.357 233.263 142.9038 174.9026 29.1504 190.9020	10 348 40 451 58 060 70 554 80 245 88 163 21 047 36 785 15 504 24 280 46 464 28 081

Table 6 (continued)

		
Formula	Weight, a	log a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	114.82 38.273 229.64 547.28	06 002 58 289 36 105 73 821
(hydroxyquinolate) InCl ₃	221.18 277.64 209.79	34 475 44 348 32 178
Ir	192.2 48.05 96.10 298.6 334.0 404.9 224.2 243.2 260.2 224.3	28 375 68 169 98 272 47 509 52 375 60 735 35 064 38 596 41 531 35 083
K 2K	39.102 78.204 117.306 156.408 195.510 234.612 474.39 278.337 125.907 119.006 167.004 27.834 98.147	59 220 89 323 06 932 19 426 29 117 37 035 67 614 44 457 10 005 07 557 22 273 44 458 99 187 37 159
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	358.340 324.424 65.120 138.213 184.239 74.555	55 430 51 111 81 371 14 055 26 538 87 248

Table 6 (continued)

Formula	Weight, a	log a
$\begin{array}{c} KClO_{3} \\ {}^{1}/_{6}KClO_{3} \\ KClO_{4} \\ K_{3}Co(NO_{2})_{6} \\ K_{2}Co(SO_{4})_{2} \cdot 6H_{2}O \\ K_{2}CrO_{4} \\ {}^{1}/_{3}K_{2}CrO_{4} \\ K_{2}Cr_{2}O_{7} \\ {}^{1}/_{6}K_{2}Cr_{2}O_{7} \\ {}^{1}/_{2}K_{2}Cr_{2}O_{7} \\ KCr(SO_{4})_{2} \cdot 12H_{2}O \\ KF \\ K_{3}Fe(CN)_{6} \end{array}$	122.553	08 832
¹/ _e KClO _e	20.426	31 018
KClO	138.553	14 162
K _o Co(NO _o) _o	452.272	65 540
K ₀ Co(SO ₄) ₀ ·6H ₀ O	437.35	64 083
K _o CrO.	194.198	28 824
1/2K cro.	64.733	81 113
K _o Cr _o O _o	294.192	46 863
1/2K oCroO-	49.032	69 048
1/ ₀ K ₀ Cr ₀ O ₂	147.096	16 760
KCr(SO ₄) ₀ ·12H ₀ O	499.41	69 846
KF	58.100	76 418
K ₈ Fe(CN) ₆	329.26	51 754
K Fe(CN)	368.36	56 627
K_4 Fe(CN) ₆	200,30 29,24	62 573
$KFe(SO_4)_2 \cdot 12H_2O$ KH_2AsO_4 K_2HAsO_4 $KHC_4H_4O_6$ $(hydrotartrate)$	422.41 503.26	70 179
$ \mathbf{KH}_{\bullet} \mathbf{AgO} $	303.20 490.037	
K-HAsO	180.037	25 536
KHC.H.Ö	218.131	33 872
(hydrotartrate)	188.183	27 458
$[K_{11}C_{8}\Gamma_{4}C_{4}, \ldots, \ldots]$	204 229	31 012
(hydrophthalate)		0. 0.1
$ \text{KHCO}_3 \dots $	100.119	00 052
$\mid \text{KHC}_2\text{O}_4\cdot\text{H}_2\text{O}$	146.145	16 478
$ KH_3(C_2O_4)_2 \cdot 2H_2O $	254.196	40 517
KHF ₂	78.107	89 269
$KH(IO_3)_2$	389.915	59 097
$I_{12}KH(JO_3)_2$	32.4929	51 179
$\begin{array}{c} \text{(hydrophthalate)} \\ \text{KHCO}_3 \\ \text{KHC}_2\text{O}_4 \cdot \text{H}_2\text{O} \\ \text{KH}_3(\text{C}_2\text{O}_4)_2 \cdot 2\text{H}_2\text{O} \\ \text{KHF}_2 \\ \text{KH(IO}_3)_2 \\ \\ {}^{1/12}\text{KH(JO}_3)_2 \\ \text{KH}_2\text{PO}_2 \\ \text{KH}_2\text{PO}_4 \\ \text{K}_2\text{HPO}_4 \\ \text{KHSO}_3 \\ \text{KHSO}_4 \\ \end{array}$	104.091	01 741
$ KH_2PO_4 \cdot . \cdot . \cdot . \cdot . \cdot . $	136.089	13 382
$ K_2HPO_4 \cdot . \cdot . \cdot . \cdot . \cdot . $	174.183	24 101
$ \text{KHSO}_3 \dots $	120.172	07 980
KHSO ₄		13 409
KI	166.006	22 012
	419.815	62 306
KIU3	214.005	33 042
** 103	35.6674	55 227
$\begin{bmatrix} N_1 \cup_4 & \dots & \dots & \dots & \end{bmatrix}$	230.004	36 174
	158.038	19 876
KI ₃	31.6075	49 979
$^{1/3}KMnO_4$	52.6792	72 164
ZKMnU ₄	316.075	49 979
$KN(C_6H_2)_2(NO_2)_6 \qquad . \qquad . \qquad .$	477.307	67 880
$^{1/3}KMnO_{4}$ $2KMnO_{4}$ $KN(C_{6}H_{2})_{2}(NO_{2})_{6}$ $(dipicrylaminate)$ KNO_{2} KNO_{3}	85.108	92 997
KNO.	101.107	92 997 00 478
	101.101	00 410

Table 6 (continued)

Formula	Weight, a	log a
K NaC ₄ H ₄ O ₆ ·4H ₂ O K ₂ O 1/ ₂ K ₂ O K OCN K OH K ₃ PO ₄ K ₂ PtCl ₆ K ReO ₄ K ₂ S K ₂ S·5H ₂ O KSCN K ₂ SO ₃ K ₂ SO ₃ ·2H ₂ O K ₂ SO ₄ K ₂ S ₂ O ₅ K ₂ S ₃ O ₆ K ₃ S ₃ O ₆ K ₄ S ₃ S ₃ O ₆ K ₅ S ₅ O	282.226 94.203 47.102 81.119 56.109 212.277 486.01 289.3 110.268 200.345 97.184 158.266 194.297 174.266 222.33 254.33 270.33	45 060 97 406 67 304 90 913 74 903 32 690 68 665 46 135 04 245 30 178 98 759 19 939 28 847 24 121 34 700 40 540 43 189
K ₂ T1F ₆ K ₂ WO ₄	326.05	52 366 34 298 38 037 51 328
$\begin{array}{c} La \\ ^{1/3}La \\ 2La \\ \\ La(C_2H_3O_2)_3 \cdot 1^{1/2}H_2O \\ \\ LaCl_3 \cdot 7H_2O \\ \\ LaF_3 \\ \\ La(NO_3)_3 \cdot 6H_2O \\ \\ La_2O_3 \\ \\ La_2(SO_4)_3 \\ \\ \end{array}$	138.91 46.303 277.82 343.07 371.38 195.91 433.02 325.82 566.00	14 273 66 561 44 376 53 538 56 982 29 206 63 651 51 298 75 282
Li 2Li 3Li 3Li LiBr Li ₃ C ₆ H ₅ O ₇ ·4H ₂ O (citrate) Li ₂ CO ₃ LiCl LiF	6.939 13.878 20.817 86.843 281.981 73.887 42.392 25.937	84 130 14 233 31 842 93 873 45 022 86 857 62 728 41 392

Table 6 (continued)

Formula	Weight, a	log a
LiH LiI LiI · 3H ₂ O LiNO ₃ ·	7.947 133.843 187.889 68.944 122.990 29.877 23.946 115.788 109.940 127.955	90 020 12 660 27 390 83 850 08 987 47 534 37 923 06 366 04 116 10 706
Mg		38 570 08 466 68 673 86 282 49 199 26 508 46 569 49 501 54 238 92 590 97 869 30 814 34 871 52 022 79 450 16 536 46 143 38 988 17 119 40 893 60 535 30 432 76 582 34 743
MgSO ₄ ·7H ₂ O	120.367 246.474 100.389 140.694	08 051 39 177 00 169 14 828

Table 6 (continued)

	-	
Formula	Weight, a	log a
	F/ 0204	72.007
Mn	54.9381	73 987
1/2Mn	27.46905	43 884
Mn	109.8762	04 090
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	164.8143	21 699
$Mn(C_0H_0O_0)_0.4H_0O$	245.089	38 932
[
$Mn(C_5H_5N)_4(SCN)_2$	487.51	68 798
MnCO	114.9475	06 050
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	125.844	09 983
	197.905	29 646
	185.956	26 941
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	178.948	25 273
$Mn(NO_3)_2$	287.040	45 794
$ Mn(NO_3)_2 \cdot 6H_2O \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	201.040 70.0275	85 088
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70.9375	
MnO。	86.9369	93 920
MnO_A^{σ}	118.9357	07 531
Mn _o O _o	157.87 44	19 831
Mn-O	228.8119	35 948
Mn(OU)	88.9528	94 916
$\begin{bmatrix} \mathbf{M}\mathbf{\Pi}(\mathbf{O}\mathbf{\Pi})_2 & \dots & \dots & \ddots & \ddots & \ddots \end{bmatrix}$	283.820	45 304
$M_{1}^{2}P_{2}U_{7}$	87.002	93 953
	151.000	17 898
$MnSO_4$	223.061	34 842
$[MnSO_4\cdot 4H_2O \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot]$		38 215
$MnSO_4 \cdot 5H_9O$	241.076	44 265
MnSO.7H.O	277.107	44 200
MnSO ₄ ·4H ₂ O		
	95.94	98 200
Mo	191.88	28 303
ZMO	287.82	45 912
Mo		15 818
111.000	143.94	
MoO_{4}	159.94	20 396
$MoO_2(C_9H_6ON)_2$ (hydroxyquinolate)	416.25	61 935
MoS ₂	160.07	20 431
MoS_3	192.13	28 360
mund		
	· · · · · · ·	
N	14.0067	14 634
N		
2N	28.0134	44 737
3N	42.0201	62 346
4N	56.0268	74 840
5N	70.0335	84 531

Table 6 (continued)

	·	
Formula	Weight, a	log a
6N	84.0402	92 449
E FERT ("l-1:?")		
o.oon (gelatin')	77.7372	89 063
6N	87.5419	94 222
b.3/N ("casein")	89.2227	95 048
NH	15.0147	17 652
NH ₂	16.0226	20 473
$2NH_2$	32.0453	50 576
$3NH_2$	48.0679	68 186
NH ₃	17.0306	23 123
$2NH_3$	34.0612	53 226
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51.0918	70 835
4NH2	68.1224	83 329
5NH ₃	85.1531	93 020
6NH ₃	102,1837	00 938
NH ₄	18.0386	25 620
2NH ₄	36.0772	55 723
2NII4	54.1157	73 332
3NH ₄	32.0453	50 576
$N_2\Pi_4$	68.506	83 573
N_2H_4	104.967	02 105
N ₂ H ₄ ·2HCl	50.0606	69 950
$N_2H_4\cdot H_2O$	130.123	11 435
$N_2H_4\cdot H_2SO_4$		51 886
NH_2OH	33.0262	84 190
NH_2OH^2	69.487	
$(NH_2OH)_2 \cdot H_2SO_4$	164.138	21 521
$NH_{2}SO_{3}H$	97.093	98 719
$NH_4Al(SO_4)_2 \cdot 12H_2O$	453.33	65 642
NH ₄ Br	97.948	99 100
NH_4Br	77.0836	88 696
(acetate)	00 000	00 000
(acetate) $(NH_4)_2CO_3 \cdot . \cdot $	96.0865	98 266 05 720
$(NH_4)_2CO_3 \cdot H_2O$	114.102	05 72 9
$(NH_4)_{\mathfrak{o}}C_{\mathfrak{o}}O_{\mathfrak{o}}\cdot H_{\mathfrak{o}}O$	142:112	15 263
$(NH_4)_2^2Ce(NO_3)_6$	548.23	73 896
$(NH_4)_4Ce(SO_4)_4 \cdot 2H_2O$	632.55	80 109
NH ₄ Cl	53.492	72 829
NH_4ClO_4	117.489	07 000
NH ₄ Cl	152.071	18 205
$(NH_4)_2$ Cr ₂ O ₇	252.065	40 151
$NH_{4}\tilde{F}$	37.0370	56 864
NH ₄ Fe(SO ₄) ₀ ·12H ₀ O	482.19	68 322
$(NH_{\bullet})_{\circ}Fe(SO_{\bullet})_{\circ}\cdot 6H_{\circ}O$	392.11	59 341
NH, HCO.	79.0559	89 793
NH.HF.	57.0434	75 621
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	115.026	06 080
(NHL) HPO	132.057	12 076
14/24		

Table 6 (continued)

Formula	Weight, a	log a
NH ₄ HS	51.111 115.108 468.99 144.9430 1235.9 64.0441 80.0435 209.069	70 851 06 111 67 116 16 120 09 197 80 648 90 333 32 029 54 464 27 330 55 047 64 728 83 341 88 150 06 498 12 103 35 832 25 080
NH ₄ OH (NH ₄) ₃ PO ₄ ·12MoO ₃ (NH ₄) ₂ PtCl ₆ (NH ₄) ₂ S O ₃ (NH ₄) ₂ SO ₃ (NH ₄) ₂ SO ₄ (NH ₄) ₂ So ₃ (NH ₄) ₂ SiF ₆ (NH ₄) ₂ SirCl ₆ (NH ₄) ₂ SnCl ₆ NH ₄ VO ₃ NO 2NO ₂ 3NO ₂ 4NO ₂ 5NO ₂ 6NO ₂ 6NO ₂ NO ₃ 3NO ₃ 4NO ₃ 3NO ₃ 4NO ₃ N ₂ O ₄ N ₂ O ₄ N ₂ O ₄ N ₂ O ₄ N ₂ O ₄	367.49 116.979 30.0061 46.0055 92.011 138.017 184.022 230.028 276.033 62.0049	56 525 06 311 47 721 66 281 96 384 13 993 26 487 36 178 44 096 79 243
2NO ₃		09 346 26 955 39 449 64 358 88 088 96 384 03 346
Na	22.9898 45.9796 68.9694 91.9592 114.9490 137.9398 209.9413 262.225	36 154 66 257 83 866 96 360 06 051 13 969 32 210 41 867

Table 6 (continued)

Formula	Weight, a	log a
romura	Weight, a	Tog u
NaAsO ₂	129.9102 424.073 342.229 37.833	11 364 62 744 53 432 57 787
NaBH ₄ NaBO ₂ ·4H ₂ O NaBO ₃ ·4H ₂ O Na ₂ B ₄ O ₇ 1/ ₂ Na ₂ B ₄ O ₇ Na ₂ B ₄ O ₇ ·10H ₂ O Na ₂ B ₁ O ₇ ·10H ₂ O Na ₂ B ₁ O ₇ ·10H ₂ O	137 .861 153 .860 201 .22 100 .61	13 944 18 713 30 367 00 264
$ Na_2B_4O_7 \cdot 10H_2O $	381.37 190.69 279.968 102.894 138.925	58 135 28 033 44 711 01 239 14 278
$NaBiO_3$	150.925 150.892 25.1487 82.0348	17 867 40 052 91 400
$NaC_{2}H_{3}O_{2}\cdot 3H_{2}O$	136.081 230.083	13 380 36 188
$Na_3C_6H_5O_7 \cdot 5^{1/2}H_2O$		55 286
Na ₂ C ₈ H ₄ O ₄		32 242
NaCN	49.0077 105.9890 52.9945 286.142 143.071 134.000	69 026 02 526 72 423 45 658 15 555 12 710
NaCl	58.443 74.442 106.441 122.440 403.936	82 607 76 673 87 182 02 711 08 792 60 631
$Na_{2}CrO_{4}$	161.973 234.035 261.967 297.998 41.9882 484.07	20 944 36 928 41 825 47 421 62 313 68 491
$Na_4Fe(CN)_6\cdot 10H_2O$	297.953 169.9074	47 415 23 021

Table 6 (continued)

Formula	Weight, a	log a
Na_2HAsO_4	185.907	26 930
Na.HAsO.7H.O	312.014	49 417
NacHAsO. 12HoO	402.091	60 432
$Na_2HAsO_4 \cdot \cdot$	172.071	23 571
(hydrotartrate)		
NaHC H O	188.116	27 443
(hydrotartrate) NaHC ₈ H ₄ O ₄	333,122	
(hydrophthalate) Na ₂ H ₂ C ₁₀ H ₁₂ O ₈ N ₂	336.211	52 661
(ethylenediaminetetraacetate, com-		
plexone 111, trilon B) Na ₂ H ₂ C ₁₀ H ₁₂ O ₈ N ₂ ·2H ₂ O (ethylenediaminetetraacetate, dihyd-	070 070	E7 000
$Na_2H_2C_{10}H_{12}O_8N_2\cdot 2H_2O$	372.242	57 083
(ethylenediaminetetraacetate, dihyd-		
		92 432
NaHCO ₃	112.018	04 929
$NaHC_2O_4$	130.033	11 405
$ NaHC_2O_4 \cdot H_2O \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	130.033	94 438
NaH ₂ PO ₂	87.9783	
NaH ₂ PO ₄	119.977	07 910
NaHaPO 2HaO	156.008	19 315
Na-HPO.	141.959	15 216
Na HPO 2H-O	177.990	25 040
Na ₂ HPO ₄	358.143	55 406
NaHS	56.062	74 867
Nauco	104.060	01 728
NaHSO ₃	120.059	07 939
Nansu ₄	150.96	17 886
NamseU ₃	149.8942	17 578
1 N91		29 643
$ $ NaIO $_3$ \cdot	213.892	33 019
NaIO ₃	213.054	
$NaKC_4H_4O_6.4H_9O$	282.226	45 060
	1496.88	17 518
NaMg(UO2)3(C2H3O2)9·6H2O		
$Na_2M_0O_4$	205.92	31 370
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	241.95	38 373
1 114110	•••	81 298
NaNH ₂	39.0124	59 120
NaNHaHPOa	137.008	13 675
NaNH, HPO, 4H.O	209.069	32 029
	68.9953	83 882
NaNO.	84.9947	92 939
NaNO ₃ Na ₂ O	61.9790	79 224
1/ No. O	30.9895	49 121
No O'211a2 · · · · · · · ·	77.9784	89 197
	39.9972	60 203
N-DO		
$ NarO_3 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	101.9618	00 844
Na ₃ PO ₄	163.941	21 469
Na ₂ O ₂	380.125	57 993
		·

Table 6 (continued)

		<u> </u>
Formula	Weight, a	log a
$\begin{array}{c} Na_4P_2O_7 \\ Na_4P_2O_7 \cdot 10H_2O \\ Na_2S \\ Na_2S \cdot 9H_2O \\ NaSCN \\ Na_2SO_3 \\ Na_2SO_3 \cdot 7H_2O \\ Na_2SO_4 \\ Na_2SO_4 \cdot 10H_2O \\ Na_2S_2O_3 \\ 1/_2Na_2S_2O_3 \cdot 5H_2O \\ 1/_2Na_2S_2O_3 \cdot 5H_2O \\ 1/_2Na_2S_2O_3 \cdot 5H_2O \\ Na_2S_2O_4 \cdot 2H_2O \\ Na_2S_2O_4 \cdot 2H_2O \\ Na_2S_2O_5 \\ Na_2S_2O_8 \\ Na_3SbS_4 \cdot 9H_2O \\ Na_2S_6O_3 \\ Na_2SiF_6 \\ Na_2SiO_3 \\ Na_2O_7 \cdot 6H_2O \\ Na_2U_2O_7 \cdot 6H_2O \\ Na_2VO_3 \cdot 4H_2O \\ Na_2VO_4 \cdot 2H_2O \\ Na_2VO_4 \cdot 2H_2O \\ Na_2WO_4 \cdot 2H_2O $	265.903 446.056 78.044 240.182 81.072 126.042 252.149 142.041 322.195 158.11 79.053 248.18 124.091 174.11 210.14 190.10 238.10 481.11 172.94 188.056 122.064 266.71 634.04 742.13 193.991 293.81 329.84 1537.94	42 472 64 939 89 234 38 054 90 887 10 051 40 166 15 241 50 812 19 896 89 792 39 477 09 374 24 082 32 251 27 898 37 676 68 224 23 790 27 429 08 659 42 604 80 212 87 048 28 778 46 807 51 830 18 694
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	92.906 185.812 270.17 265.809	96 804 26 907 43 164 42 457
Ni	58.71 29.355 117.42 248.86	76 871 46 768 06 974 39 596
$Ni(C_4H_7O_2N_2)_g$	288.94	46 081

Table 6 (continued)

Formula	Weight, a	log a
$Ni(C_5H_5N)_4(SCN)_2$	491.28	69 133
(pyriaine) Ni(C-H-O-N)	330.97	51 979
(anthranilate) Ni(C ₀ H ₆ ON) ₂ (hydroxyquinolate)	347.02	54 035
$\begin{array}{c} (\text{hydrox yquinolate}) \\ \text{Ni}(C_0H_6ON)_2 \cdot 2H_2O \\ \text{NiCO}_3 \\ \text{Ni(CO)}_4 \\ \text{NiCl}_2 \cdot 6H_2O \\ \text{NiCl}_2 \\ \text{Ni}(\text{NO}_3)_2 \\ \text{Ni}(\text{NO}_3)_2 \cdot 6H_2O \\ \text{Ni}(\text{NH}_4)_2(\text{SO}_4)_2 \cdot 6H_2O \\ \text{NiO} \\ \text{NiSO}_4 \cdot 7H_2O \\ \\ \\ \text{NiSO}_4 \cdot 7H_2O \\ \\ \end{array}$	118.72 170.75 237.71 129.62 182.72 290.81 395.00 74.71 165.42 291.36 90.77 154.77 280.88	58 326 07 452 23 236 37 605 11 267 26 179 46 361 59 660 87 338 21 859 46 443 95 794 18 969 44 852
O	15.9994 7.9997 31.9988 47.9982 63.9976 79.997 95.996 111.996 127.995 31.0345 45.0616 42.0173 17.0074 34.0147 51.0221 68.0295 85.037 102.044	20 410 90 307 50 513 68 122 80 616 90 307 98 225 04 920 10 719 49 184 65 381 62 343 23 064 53 167 70 776 83 270 92 961 00 879
Os	190.2	27 921
20s	380.4	58 024

Table 6 (continued)

Formula	Weight, a	log a
OsCl ₄	332.0 222.2 254.2	52 114 34 674 40 518
P 1/ ₅ P 1/ ₃ P 2P 3P PBr ₃ PCl ₃ PCl ₅ PH ₃ PO ₂ PO ₃ PO ₄ 2PO ₄ P ₂ O ₃ P ₂ O ₅ P ₂ O ₇ POCl ₈ P ₂ O ₅ ·24MoO ₃	30.9738 6.19476 10.32460 61.9476 92.9214 270.686 137.333 208.24 33.9977 62.9726 78.9720 94.9714 189.943 109.9458 141.945 173.943 153.332 3596.5	49 099 79 202 01 387 79 202 96 812 43 247 13 777 31 856 53 145 79 915 89 747 97 759 27 862 04 118 15 212 24 041 18 563 55 588
Pb	207.19 103.595 414.38 621.57 367.00 325.28 379.33 323.44 390.44 479.45 760.60 639.75 267.20 278.10	31 637 01 534 61 740 79 349 56 467 51 226 57 902 50 979 59 155 68 074 88 116 80 602 42 684 44 420

Table 6 (continued)

		
Formula	Weight, a	log a
PbCl ₄ PbClF PbCrO ₄ PbF ₂ PbI ₂ PbMoO ₄ Pb(NO ₃) ₂ PbO PbO ₂ Pb ₃ O ₄ Pb(OH) ₂ PbS PbSO ₃ PbSO ₄ PbWO ₄	349.00 261.64 323.18 245.19 461.00 367.13 331.20 223.19 239.19 685.57 241.20 239.25 287.25 303.25 455.04	54 283 41 770 50 944 38 950 66 370 56 482 52 009 34 867 37 874 83 605 38 238 37 885 45 826 48 180 65 805
		<u> </u>
Pd	106.4 212.8 336.6 378.7 394.7 158.4 177.3 213.3 248.2 319.1 360.2 230.4 122.4 138.5 202.5 238.5	02 694 32 797 52 711 57 830 59 627 19 976 24 871 32 899 39 480 50 393 55 654 36 248 08 778 14 145 30 643 37 749
		<u> </u>
Pt	195.09 48.773 97.545 390.18 336.90 407.81 227.15	29 024 68 818 98 921 59 127 52 750 61 046 35 631

Table 6 (continued)

Formula	Weight, a	log a
Rb	85.47 170.94 520.76 230.95 120.92 184.92 212.37 147.47 186.94 578.75 267.00	93 181 23 284 71 664 36 352 08 250 26 698 32 709 16 870 27 170 76 249 42 651
Re 2Re	186.2 372.4 292.6 363.5 218.2 234.2 250.2 484.4	26 998 57 101 46 627 56 050 33 885 36 959 39 829 68 520
Rh	102.905 205.810 209.264 134.904 253.808	01 244 31 347 32 069 13 002 40 451
Ru	101.07 202.14 165.07 	00 462 30 565 21 767
5S	160.32 192.38 58.082 116.16	20 499 28 416 76 404 06 506

Table 6 (continued)

SCN	· · · · · · · · · · · · · · · · · · ·		
4SCN 232.33 36 611 5SCN 290.41 46 301 6SCN 348.49 54 219 SH	Formula	Weight, a	log a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4SCN 5SCN 6SCN SH 2SH 3SH 3SH SO ₂ SO ₃ SO ₃ H 2SO ₃ H SO ₃ Na 2SO ₃ Na	232.33 290.41 348.49 33.072 66.14 99.22 64.063 80.062 81.070 162.14 103.052 206.10	36 611 46 301 54 219 51 946 82 046 99 660 80 661 90 343 90 885 20 989 01 306 31 408
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SO ₄	192.12 288.18 112.13 128.13 176.12 192.12	28 357 45 966 04 972 10 765 24 581 28 357
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/ ₅ Sb	24.350 40.583 60.875 243.50	38 650 60 834 78 444 38 650
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$[Sb(C_0H_nON)_3$	554.21	74 367
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(nyaroxyquinotate)	770.60	88 683
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	228.11 299.02 502.46 173.20 291.50 323.50 250.01 339.69	47 570 70 110 23 855 46 464 50 987 39 796 53 108

Table 6 (continued)

Formula	Weight, a	log a
Sc	44.956 89.912 137.910	65 279 95 382 13 960
Se	78.96 157.92 110.96 126.96 142.96	89 741 19 844 04 517 10 367 15 521
Si	28.086 56.172 84.258 112.344 140.43 168.52 40.097 169.90 104.080 142.076 32.118 60.085 76.084 152.168 228.253 304.34 92.084 184.167 168.168 212.253	44 849 74 952 92 561 05 055 14 746 22 665 60 311 23 019 01 737 15 252 50 675 77 877 88 129 18 232 35 842 48 336 96 418 26 521 22 574 32 685
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	118.69 29.673 59.345 237.38 189.60 225.63 260.50 134.69 150.69	07 441 47 236 77 338 37 544 27 784 35 340 41 581 12 934 17 808

Table 5 (continued)

<u> </u>		
Formula	Weight, a	log a
SnS	150.75 182.82 214.88	17 826 26 202 33 220
Sr	87.62 43.810 175.24 214.72	94 260 64 157 24 363 33 187
(acetate) SrC ₂ O ₄ SrC ₂ O ₄ SrC ₂ O ₄ SrCO ₃ SrCO ₂ SrCl ₂ SrCl ₂ SrCl ₂ SrCl ₂ SrCrO ₄ Sr(NO ₃) ₂ Sr(NO ₃) ₂ Sr(NO ₃) ₂ Sr(OH) ₂ Sr(OH) ₂ SrSO ₃ SrSO ₄ SrS ₂ O ₃	175.64 193.66 147.63 158.53 266.62 203.61 211.63 283.69 103.62 121.63 265.76 167.68 183.68 199.75	24 462 28 704 16 917 20 011 42 589 30 880 32 558 45 284 01 544 08 504 42 449 22 448 26 406 30 049
Ta	180.948 361.896 358.21 441.893	25 755 55 858 55 414 64 532
Te	127.60 255.20 159.60 175.60 191.60	10 585 40 688 20 303 24 452 28 240
Th	232.038 464.076 808.655	36 556 66 659 90 776

Table 6 (continued)

Formula	Weight, a	log a
$\frac{Th(C_{\theta}H_{\theta}ON)_{4}\cdot(C_{\theta}H_{7}ON)}{(hydroxyquino-late)} \cdot \dots \cdot$	953.817	97 947
Th($C_{10}H_7O_5N_4$) ₄ · H_2O (picrolonate)	1302.818	11 488
$\mid \operatorname{Th}(C_2O_4)_2 \cdot 6H_2O \mid$	516.170	71 279
$\begin{array}{c} \text{(oxalate)} \\ \text{ThCl}_{4} \\ \text{Th(NO}_{3})_{4} \\ \text{Th(NO}_{3})_{4} \cdot 4\text{H}_{2}\text{O} \\ \text{Th(NO}_{3})_{4} \cdot 12\text{H}_{2}\text{O} \\ \text{ThO}_{2} \\ \text{Th(SO}_{4})_{2} \\ \text{Th(SO}_{4})_{2} \cdot 9\text{H}_{2}\text{O} \\ \\ \vdots \\ \vdots \\ \end{array}$	424.16 586.30	57 270 68 129 74 203 84 276 42 166 62 753 76 812
Ti	47.90 11.975 15.967 95.80 154.26 189.71 352.21	68 034 07 828 20 322 98 137 18 825 27 809 54 681
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		90 255 47 963 20 401
Tl	204.37 408.74 284.27 370.61	31 042 61 145 45 373 56 892
$TlC_{12}H_{10}ONS$	420.65	62 392
TlCl	239.82 524.73 331.27 266.37 424.74 456.74 221.38 816.55 440.80	37 989 71 994 52 018 42 549 62 812 65 967 34 514 91 198 64 424

Table 6 (continued)

		
Formula	Weight, a	log a
Tl ₂ SO ₄	504.80	70 312
	1	
U	238.03	37 663
¹/₀U	39.672	59 848
1/ ₆ U	59.508	77 458
$2\dot{ extstyle U}$	476.06	67 766
3Ū	1	85 375
UCl_{4}	379.84	57 960
ITR.	314.02	49 696
$\begin{array}{c} UF_6 \\ UO_2 \\ 2UO_2 \\ \end{array}$	352.02	54 657
UO,	270.03	43 141
"2UO。	540.06	73 244
UO ₀	286.03	45 641
00^3	302.03	48 005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	842.09	92 536
	<u> </u>	• • • • • •
$UO_2(C_2H_3O_2)_2 \dots \dots$	388.12	58 897
(nantata)	424.15	62 752
$UO_2(C_2H_3O_2)_2 \cdot 2H_2O \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot UO_2(C_9H_6ON)_2 \cdot (C_9H_7ON) \cdot \cdot$	703.50	84 726
$UU_2(C_9H_6UN)_2 \cdot (C_9H_7UN) \cdot \cdot \cdot \cdot$	100.00	
IIO (NO)	394.04	59 554
$100^{\circ}(110^{\circ})^{\circ}$	502.13	70 082
(IIO) NoMa(C H O.), $(6H_0O)$	1496.88	17 518
$(UO_2)_3$ $(Val)_3$ $(UO_2)_3$ $(Val)_3$ $(UO_2)_3$	1537.94	18 694
$\begin{array}{c} \text{UO}_{2}(\text{NO}_{3})_{2} \cdot . & . & . & . & . \\ \text{UO}_{2}(\text{NO}_{3})_{2} \cdot 6H_{2}O & . & . & . & . \\ \text{(UO}_{2})_{3}\text{NaMg}(\text{C}_{2}\text{H}_{3}\text{O}_{2})_{9} \cdot 6\text{H}_{2}O & . & . \\ \text{(UO}_{2})_{3}\text{NaZn}(\text{C}_{2}\text{H}_{3}\text{O}_{2})_{9} \cdot 6\text{H}_{2}O & . \\ \\ (UO$		85 370
$(UO_2)_2P_2O_7$	366.09	56 359
	420.14	62 339
$00_250_4.5H_2O$		
v	50.942	70 708
1/37	10.1884	00 810
-/ ₅ V	12.7355	10 502
1/ ₅ V	101.884	00 810
VCl ₄	192.754	28 500
VO	66.941	82 569
VO	137.847	13 940
	82.941	91 877
$egin{pmatrix} Y U_2 & \ldots & \ldots & \ldots & \ldots & \ldots \\ Y O & & & & & & & & & & & & & & & & & & &$	98.940	99 537
γ U ₈	114.940	06 047
VO ₂		17 575
$V_2 \cup_3$	149.882	11 919
	<u> </u>	<u> </u>

Table 6 (continued)

Formula	Weight, a	log a
$V_2O_3(C_9H_6ON)_4$	726.499	86 124
$[V_2O_5 \ldots \ldots]$	181.881	25 979
W		20.440
2W	183.85 367.70	26 446 56 549
WC	195.86	29 195
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	361.12 504.16	55 765 70 257
(hydroxyquinolate) WO3	231.85	36 521
WO_3	247.85	39 419
Y	88.905	94 893 24 996
$egin{array}{cccccccccccccccccccccccccccccccccccc$	177.810 225.819	24 996 35 374
Zn	65.37	81 538
¹ / ₂ Zn	32.685 130.74	51 435 11 641
3Zn	196.11	29 250
$\operatorname{Zn}(C_2H_3O_2)_2 \ldots \ldots$	183.46	26 354
(acetate) $Zn(C_2H_3O_2)_2 \cdot 2H_2O $	219.49	34 141
$Zn(C_5H_5N)_2(SCN)_2$	339.74	53 115
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	337.63	52 844
(anthranilate) $Zn(C_9H_6ON)_2 \dots \dots$	353.68	54 861
	427.71	63 115
(hydroxyquinolate) $Zn(C_{10}H_6O_2N)_2 \cdot H_2O \cdot \cdot$	117.41	06 971
Zn(CN) ₂	125.38	09 823
ZnCl ₂	136.28	13 443
ZnHg(SCN) ₄	498.29 178.38	69 748 25 135
$ZnNH_4PO_4$ $Zn(NO_8)_2$ $Zn(NO_8)_2 \cdot 6H_2O$	189.38	27 733
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	297.47	47 344
ZnO	81.37	91 046
Zn(UH) ₂	99.38	99 730

Table 6 (continued)

Formula	Weight, a	log a
	201.04	66 097 48 384 98 869 20 798 45 870
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91.22 182.44 667.84 233.03 339.24 429.32 123.22 322.25 265.16	96 009 26 112 82 467 36 741 53 051 63 278 09 068 50 819 42 351 45 231 55 072 26 316

Table 7

Analytical and Stoichiometric Multipliers (Factors)*

If g is the weighed portion of a substance taken for an analysis, a is the mass of a dried or calcined precipitate (gravimetric form) and f is the multiplier found in the given table, then the percentage of the unknown substance can be found according to the formula:

$$x = \frac{a \cdot f \cdot 100}{g} \%, \qquad \log x = \log a + \log f + 2 - \log g$$

where a and g are expressed in the same units.

Calculations must be made by discarding the characteristics of logarithms and leaving only the mantissas. Then, every calculation is reduced to the addition of three numbers

$$\log a + \log f + (1 - \log g)$$

In this table, the multipliers and their logarithms occasionally do not exactly conform to one another because the multipliers are rounded, while the logarithms of the multipliers—the intermediate stage of calculations—are given in more accurate numbers.

Substance being deter- mined	Weighed portion	Multiplier, f	log f
Ag	AgBr	0.5745 0.7526 0.4595	75 926 87 658 66 224
Al	$\begin{array}{cccc} Al(C_0H_6ON)_3 & . & . & . & . \\ & (hydroxyquinolate) & & & . & . \\ Al_2O_3 & . & . & . & . & . \\ AlPO_4 & . & . & . & . & . \\ & . & . & . & . &$	0.05873 0.5293 0.2212	76 883 72 367 34 487
Ва	BaCrO ₄	0.5421 0.5884	73 411 76 970
BaCl ₂ BaCl ₂ ·2H ₂ O	BaSO ₄	0.8923 1.0466	95 049 01 979
Ве	BeO	0.3603	55 66 9

^{*} For the use of the table, see p. 460.

Table 7 (continued)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Substance being deter- mined	Weighed portion	Multiplier, f	log f
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bi	BiC ₆ H ₃ O ₃	0:6293	79 887
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ Bi(C_0H_6ON)_3 \dots \dots \dots$	0.3258	51 294
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Bi(C ₁₂ H ₁₀ ONS) ₃ ·H ₂ O	0.2386	37 767
BiPO₄ 0.6875 83 730 Br AgBr 0.4255 62 894 C CO₂ 0.2729 43 603 BaCO₃ 0.06086 78 434 CN AgCN 0.1943 28 853 CO₂ BaCO₃ 0.2230 34 831 CO₂ BaCO₃ 0.4397 64 316 CO₃ BaCO₃ 0.3041 48 298 Ca CaCO₃ 0.4004 60 254 CaC₂O₄⋅H₂O 0.2743 43 822 (oxalate) 0.7147 85 412 CaO₃ 0.7147 85 412 CaSO₄ 0.2944 46 894 CaCo₃ 2.274 35 684 CaO⋅CaFH₄NS₂)₂ 0.2924 46 569 (anthrantlate) 0.2922 46 569 (d(C₂H₄ON)₂ 0.2805 44 794 (hydroxyquinolate) 0.2461 39 111 (quinaldinate) 0.8754 94 220		$\begin{array}{c} \text{(thionalide)} \\ \text{Bi}_2\text{O}_3 & \dots & \dots & \dots \\ \text{Dio}_3\text{O}_4 & \dots & \dots & \dots \end{array}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Br	AgBr		'
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	С	CO_2 Ba CO_3	0.06086	78 434
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CN	A. CN		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CIV	AgGN		· · · · · ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CO ₂			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CO	P ₀ CO	0.3041	48 298
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Daco ₃ · · · · · · · · · · · ·		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ca	$[C_8C_0O_4\cdot H_0O_4, \dots, \dots]$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(oxalate) CaO		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		•	0.2944	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CaCO ₃	•		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3	OVCH NC	0.2527	40.252
$\begin{array}{c} \text{(anthranilate)} \\ \text{Cd}(\text{C}_{0}\text{H}_{6}\text{ON})_{2} & . & . & . & . & 0.2805 \\ \text{(hydroxyquinolate)} \\ \text{Cd}(\text{C}_{10}\text{H}_{6}\text{O}_{2}\text{N})_{2} & . & . & . & . & 0.2461 \\ \text{(quinaldinate)} \\ \text{CdO} & . & . & . & . & . & . & . & . & . & $	Ca	(mercaptobenzothiazolide)		
$\begin{array}{c} \text{(hydroxyquinolate)} \\ \text{Cd}(\text{C}_{10}\text{H}_6\text{O}_2\text{N})_2 \dots \dots \\ \text{(quinaldinate)} \\ \text{CdO} \dots \dots \dots \dots \\ \end{array} \begin{array}{c} 0.2461 \\ 0.8754 \\ 94 \ 220 \\ \end{array}$		(anthranilate)		
(quinaldinate) CdO 0.8754 94 220		(hydroxyquinolate)		
		(quinaldinate)		
			- '	

Table 7 (continued)

Substance being deter- mined	Weighed portion	Multiplier, f	log f
Cl	AgCl	0.2474	39 334
ClO ₃	AgCl	0.5823	76 512
ClO ₄	AgCl	0.6939	84 130
Со	Co ₂ P ₂ O ₇	0.4039	50 629
Cr	BaCrO ₄	0.2053	31 228
CrO ₄	BaCrO ₄	0.4579	66 075
Cr_2O_7	BaCrO ₄	0.4263	62 971
Cu	$\begin{array}{c} Cu(C_5H_5N)_2(SCN)_2 & \dots \\ (pyridine) \\ Cu(C_9H_6ON)_2 & \dots \\ (hydroxyquinolate) \\ CuC_{14}H_{11}O_2N & \dots \\ (cupron) \\ CuO & \dots \end{array}$	0.1881 0.1806 0.2200 0.7989	27 429 25 673 34 250 90 248
F	CaF ₂	0.4866 0.07261	68 721 86 102
Fe	Fe ₂ O ₃	0.6994	84 473
Н	H ₂ O	0.1119	04 884
HBr	AgBr	0.4309	63 438
HCN	AgCN	0.2019	30 504
HI	AgI	0.5448	73 626
HNO ₈	C ₂₀ H ₁₆ N ₄ ·HNO ₃ (nitron)	0.1679	22 495

Table 7 (continued)

Substance being deter- mined	Weighed portion	Multiplier, f	$\log f$
H ₃ PO ₄	Mg ₂ P ₂ O ₇	0.8806	94 478
H ₂ SO ₄	BaSO ₄	0.4202	62 347
К	$K(C_6H_5)_4B$	0.2822 0.08192	03 790 71 972 45 058 91 340
	K ₂ PtCl ₆	0.1609 0.4489 	20 658 65 212
Li	Li ₃ PO ₄	0.1798	25 476
Mg	$Mg(C_9H_6ON)_2$	0.07775 0.2184 	89 069 33 930
Mn	Mn ₂ P ₂ O ₇	0.3871	58 786
Мо	MoO ₃	0.6665 0.2613	82 382 41 718
MoO ₄	PbMoO ₄	0.4357	63 914
N	Pt	0.1436	15 713
NH ₄	Pt	0.1849	26 699
Na	$\begin{array}{c} \operatorname{Na_2SO_4} & \dots & \dots & \dots \\ \operatorname{NaZn}(\operatorname{UO_2})_3 \cdot (\operatorname{C_2H_3O_2})_9 \times \\ \times \operatorname{6H_2O} & \dots & \dots & \dots \end{array}$	0.3237 0.01495	51 016 17 460
Ni	NiC ₈ H ₁₄ N ₄ O ₄	0.2032 0.7858	30 790 89 533

Table 7 (continued)

Substance being deter- mined	Weighed portion	Multiplier, f	log f
Ni	NiSO ₄		57 902
P	$Mg_2P_2O_7$	0.2783 0.01651 (theoretic)	44 456 21 769 21 464
	$P_2O_5 \cdot 24M \circ O_3$	0.01639 (empiric) 0.01722	23 614
Pb	PbCrO ₄	0.6411 0.5644 0.6832	80 693 75 155 83 457
S	BaSO ₄	0.1374	13 792
SCN	AgSCN	0.3500 0.4397	34 831 64 316
SO ₄	BaSO ₄	0.4116	61 445
Si	SiO ₂	0.4674	66 972
Sn	SnO ₂	0.7876	89 633
Sr	$SrC_2O_4 \cdot H_2O$	0.4524 0.8456 0.4770	65 556 92 716 67 854
Ti	TiO ₂	0.5995	77 779
Tl	Tl ₂ CrO ₄	0.7790 0.6169	89 151 79 024
U	U ₃ O ₈	0.8480	92 839
W	WO ₃	0.7930	89 925

Table 7 (continued)

Substance being deter- mined	Weighed portion	Multiplier, f	log f
Zn	$Zn(C_5H_5N)_2(SCN)_2$	0.1924 0.1936	28 423 28 694
	$\begin{array}{c} Zn(C_7H_6O_2N)_2 & \dots & \dots \\ \text{(anthranilate)} \\ Zn(C_9H_6ON)_2 & \dots & \dots \\ \text{(hydroxyquinolate)} \end{array}$	0.1848	26 677
	ZnHg(SCN) ₄	0.1312 0.8034 0.4291	11 790 90 492 63 257
	Zn ₂ P ₂ O ₇	0.4291	
Zr	ZrO ₂	0.7403	86 941

Table 8

Solubilities of Inorganic and Some Organic Compounds

The table shows the number of grams (P) of an anhydrous substance, given in the second column, which is dissolved in 100 g of water at a temperature indicated in the upper line of the table. When expressing these data in weight percentage $(P_1\%)$, i.e., in grams of an anhydrous substance contained in 100 g of a saturated solution, the calculation is made by the formula $P_1 = \frac{P \cdot 100}{100 + P}$.

S.Ph. stands for solid phase, i.e., a crystallohydrate which is in an equilibrium with a saturated solution. The third column gives the number of water molecules in a crystallohydrate (S.Ph.) which is in an equilibrium with a saturated solution. If the solubilities of two or more crystallohydrates of the same substance are given for the same temperature (for instance, at 0 °C the solubility of Na₂SO₄ ·10H₂O

		1	ĺ			Tempera
	Formula	S. Ph.	0	10	20	30
No.			Solubi	lity of an	anhydrous 8	ubstance in
1 2 3 4 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2H ₂ O — — —	0.72 0.155 122 0.57	0.88 119.8 0.220 170 0.69	1.04 172.0 0.340 222 0.79	1.21 190.1 0.510 300 0.88
6 7 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6H ₂ O 9H ₂ O 18H ₂ O	43.8 61 31.2	44.9 67 33.5	45.9 75.4 36.4	46.6 81 40.4
	As ₂ O ₃	_	1.21	_	2.04 (25 °C)	_
10	As_2O_5		59.5	62.1	65.9	69.5
11	B ₂ O ₃		1.1	1.5	2.2	-
12 13 14 15 16 17 18 19 20	$Ba(BrO_3)_2$ $Ba(C_2H_3O_2)_2$ $Ba(C_2H_3O_2)_2$ $BaCl_2$ $Ba(ClO_3)_2$ $Ba(ClO_4)_2$ BaI_2	H ₂ O 3H ₂ O H ₂ O 2H ₂ O H ₂ O 3H ₂ O 7 ¹ / ₂ H ₂ O	98 0.287 59 31.6 20.33 205.8 166.6	101 0.441 63 33.3 26.95 184.1	104 2.656 71 — 35.7 33.80 289.2 203.1	109 0.96 75 38.2 41.70 219.6

in Water

is 5.0 g per 100 g, and the solubility of Na₂SO₄·7H₂O is 19.5 g per 100 g), then the crystallohydrate having the poorest solubility will be in a stable equilibrium with the saturated solution, and the other crystallohydrates in a metastable equilibrium.

The solubility values of sparingly soluble salts are estimated by

their solubility products (see Table 10).

In the table, the substances are arranged in the alphabetical order of the elements included in the formula which is written in the most common way. This must be taken into account when looking in the table for acid, base, double and complex salts whose formulas are occasionally written differently.

The solubilities of gases are given at a pressure of 760 mm Hg.

 ture, °C							
 40	50	60	70	80	90	100	
 <u> </u>	ater at a gi	ven tempe	rature, g	<u> </u>			So.
1.41 222.0 0.715 376 0.98	1.64 0.995 455 1.08	1.89 - 1.363 525 1.15	2.18 - - 1.23	2.52 — — 669 1.30		952 1 .41	1 2 3 4 5
47.3 89 45.7	96 52.2	48.1 108 59.2	 120 66.2	48.6 132.5 73.1	153 86.8	49.0 159 89.0	6 7 8
2.93 71.2	3.43	4.44 73.0	5.62 (75 °C)	_ 75.2	_	8.17 75.7	9
4.0		6.2	<u> </u>	9.5		15.7	11
114 1.33 79 40.7 49.61 358.7	118 1.75 — 77 43.6 —	123 2.32 - 74 46.4 66.80 426.3	128 3.01 — 74 49.4 —	135 3.65 — 52.4 84.84 495.2	4.45 	149 5.7 75 58.8 104.9 562.2	12 13 14 15 16 17 18 19
223.7	234.3	241.3	246.6	257.1	270.4	284.5	20

		<u> </u>	[Tempera
	Formula	S. Ph.	0	10	20	30
Š.			Solubi	lity of an o	nhydrous s	ubstance in
21 22 23 24 25 26 27	$Ba(OH)_2$ BaSO ₄ BaSiF ₆ Be(NO ₃) ₂	H ₂ O 8H ₂ O 4H ₂ O 4H ₂ O	5.0 1.67 — 49.4 37.0	7.0 2.48 2×10-4 — —	67.5 9.2 3.89 2.4×10-4 2.1×10-2 - 39.9	
28	Br ₂	<u> </u>	4.22	3.4	3.20	3.13
29	co	_	4.4×10 ⁻³	3.5× ×10 ⁻³	2.8×10 ⁻³	2.4×10^{-3}
30	CO ₂	_	0.3346		0.1688	0.1257
31 32 33 34 35	$\begin{array}{cccc} CaBr_2 & . & . & . \\ CaBr_2 & . & . & . \\ Ca(C_2H_3O_2)_2 & . & . \\ Ca(C_2H_3O_2)_2 & . & . \\ CaCO_3 & . & . & . \end{array}$	6H ₂ O 4H ₂ O 2H ₂ O H ₂ O	125 37.4 8.1×10 ⁻³	132 36.0 - 7.0×	143 34.7 	33.8 - 5.2×10 ⁻³
36 37 38 39	$CaCl_2$ $CaCl_2$ $Ca(HCO_3)_2$ $Ca(H_2PO_2)_2$	6H ₂ O 2H ₂ O —	59.5 — 0.1615 —	×10 ⁻³ 65.0 — — —	74.5 — 0.1660 15.4 (25°C)	102 — — —
40 41 42 43 44 45 46 47 48 49	$Ca(NO_2)_2$		182.5 0.10 — 62.1 — 102.1 — 0.185 —	194.1 · 0.17 — — 115.3 — 0.176	208.6 76.7 129.3 0.165 4.3×10-3	222.5 0.42 — — 152.6 — 0.153 —
50	CaSO ₄	2H ₂ O	0.1759	0.1928	0.2036	0.209
51 52 53 54		$^{4\mathrm{H}_{2}\mathrm{O}}_{^{2^{1}\!/_{2}\mathrm{H}_{2}\mathrm{O}}}$ $^{\mathrm{H}_{2}\mathrm{O}}_{-}$	56.2 90.01 — 79.8	75.4 122.8 135.1 83.2	98.8 — 134.5 86.2	128.8 — — 89.7

Table 8 (continued)

 ture, °C							
40	50	60	70	80	90	100	ا . ا
 100 g of wa	iter at a giv	en temper	ature, g				No.
101.2 14.2 8.22 - 3×10 ⁻² - 46.7	17.1 13.12 — 3.3×10-2 58.6 —	141.9 20.3 20.94 — 64.0 55.5	23.6 35.6 — — — 62	205.8 27.0 101.4 4×10-4 — —	30.6 — — — — — 83	300 34.2 — 9×10 ⁻² 100	21 22 23 24 25 26 27
	_		_			_	28
2.1×10 ⁻³ 0.0973	1.8×10 ⁻³ 0.0761	1.5× ×10 ⁻³ 0.0576	1.3× ×10 ⁻³	1.0× ×10 ⁻³	6×10-4 —	_	29 30
 68.1 33.2 4.4×10 ⁻³		73.5 32.7 —	33.0	74.7 33.5 —	31.1	29.7 —	31 32 33 34 35
 0.1705 	— — —	 136.8 0.1750 —	141.7 —		152.7 — —	 159.0 0.1840 12.5	36 37 38 39
$ \begin{array}{c} 242.4 \\ 0.61 \\ 0.52 \\ - \\ 196.0 \\ 237.5 \\ - \\ 0.141 \\ 6.3 \times 10^{-3} \\ 0.2097 \end{array} $	0.90 0.59 - - 281.5 - 0.128 -	284.5 1.38 0.65 — 132.5 — — 0.116 — 0.2047	 151.9 0.106 4.5× ×10 ⁻³ 0.1974	354.6 0.80 358.7 0.094 3.1× ×10 ⁻³ 0.1966		426.3 	40 41 42 43 44 45 46 47 48 49
151.9 135.3 93.8	 97.4	152.9 — 136.5 100.4	_ _ _ 110.0	155.1 — 140.5 —	_ _ _ _	160.8 147.0 124.9	51 52 53 54

		1	1			Tempera	
ا ن	Formula	S. Ph.	0	10	20	30	
No.		<u> </u>	Solubi	lity of an	anhydrous s	substance in	
55 56 57 58 59	$\begin{array}{cccc} \operatorname{Cd}(\operatorname{NO_3})_2 & \cdot & \cdot \\ \operatorname{Cd}(\operatorname{NO_3})_2 & \cdot & \cdot \\ \operatorname{CdSO_4} & \cdot & \cdot & \cdot \end{array}$	9H ₂ O 4H ₂ O — 8/ ₃ H ₂ O H ₂ O	106 — — 75.4 —	76.1	153 — — — • —	- - - 77.7 -	
60 61 62 63 64 65	$Ce_2(SO_4)_3$		20.98 16.96 —	 	129.3 5.33 10.08 9.52 —	153.8 — 6.79 — — —	
66	Cl ₂	-	1.46	0.980	0.716	0.562	
67 68 69 70 71 72 73 74 75 76	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6H ₂ O 2H ₂ O 6H ₂ O 2H ₂ O 6H ₂ O 3H ₂ O 7H ₂ O 6H ₂ O H ₂ O	43.5 — 138.1 — 84.05 — 0.076 25.5 —	47.7 — 159.7 — — 0.24 — —	52.9 187.4 0.45 100.0 0.40 36.3 	59.7 233.3 0.52 111.4 0.60 	
77	CrO ₃	_	164.8	166.0	167.4	169.5	
78 79 80 81 82 83	CsClO ₃ CsClO ₄	12H ₂ O — — — 1 ¹ / ₂ H ₂ O	0.34 161.4 2.46 0.8 —	174.7 3.8 1.0	0.46 186.5 6.2 1.6 366.6 (18 °C) 2.6	197.3 9.5 2.6 —	
84	•			2.15	(24 °C)		
85 86	CsNO ₃	<u> </u>	9.33 —	(15 °C) 14.9 79.41 (15 °C)	23.0	33.9 75.18	

Table 8 (continued)

ture, °C							
40	50	60	70	80	90	100	
100 g of w	ater at a gi	ven tempe	rature, g		,	,	No
199 78.6	- - - 77.1	619 — —	70.3	646 67.6	 64.5	682 58.4	55 56 57 58 59
183.0 3.29 — 5.95 — 6.05	- 4.67 - 3.42	196.5 3.88 4.04 3.25 2.35	- - - - - -	219.6 — — 1.20 1.01	1.05 	- - - 0.46 0.41	60 61 62 63 64 65
0.451	0.386	0.324	0.274	0.219	0.125	0	66
69.5 300.0 126.8 0.84 49.9 	88.7 376.1 0.67 — — — — —	93.8 — — 167.4 — 55.0	95.3 — — — 184.8 — — —	97.6 400.0 — 220.5 — — 73.8	101.2 — — 334.8 — —	106.2 - 1.33 - - - - - - 83.9	67 68 69 70 71 72 73 74 75 76
174.0	182.5	186.5		194.1	198.6	206.7	77
0.89 208.0 13.8 4.0	218.3 19.4 5.4 —	2.00 229.7 26.2 7.3 160	239.5 34.7 9.8 —	5.49 250.0 45.0 14.4	260.1 58.0 20.5	. 42.54 270.5 79.0 30.0	78 79 80 81 82
_	-	_	_	_		_	83
_	_	_	_	_	_	_	84
47.2	64.4	83.8	107.0	134.0 —	163 <u>.0</u>	197.0	85 86

						Tempera	
	Formula	S. Ph.	0	10	20	30	
No.			Solubi	lity of an	anhydrous 5	ubstance in	
87	Cs ₂ PtCl ₆		4.7×10^{-3}	6.4× ×10 ⁻³	8.6×10 ⁻³	11.9× ×10 ⁻³	
88	Cs₂SO₄	_	167.1	173.1	178.7	184.1	
89 90 91 92 93 94 95 96 97	$CuCl_2$ $CuCl_2$ CuI_2 $Cu(IO_3)_2$ $Cu(NH_4)_2Cl_4$ $Cu(NO_9)_2$	I ZH ₀ U	107.5 68.6 — — 28.24 81.8 — 14.3	116.0 70.9 — — — 100.0 — 17.4	126.8 72.7 1.107 0.153 35.05 124.8 20.7	127.7 77.3 154.4 25.0	
98 99 100 101 102 103 104 105 106	$FeCl_2$ FeCl ₃ FeCl ₃ FeCl ₃ Fe(NO ₈) ₃	6H ₂ O 4H ₂ O 2H ₂ O 6H ₂ O 	102.1 — 74.4 — 78.03 15.65 —	64.5 	115.0 — 91.9 — 83.03 26.5 —	122.3 73.0 — 106.8 — — — 32.9 —	
107	H ₂	_	1.982× ×10-4	1.740× ×10 ⁻⁴	1.603× ×10-4	1.474× ×10 ⁻⁴	
	H_3BO_3 HBr $H_2C_2O_4$ $H_2C_4H_4O_4$ (Succinic)	 2H ₂ O 	2.66 221.2 3.54 2.80	3.57 210.3 6.08 4.50	5.04 198.2 9.52 6.91	6.72 — 14.3 10.62	
112	H ₂ C ₄ H ₄ O ₆ (tartaric)	_	115.0	126.3	139.2	156.4	
113	H ₃ C ₆ H ₅ O ₇ (citric)	H ₂ O	96	118	146	183	
114 115	$H_3C_6H_5O_7$ $HC_7H_5O_2$	_ _	 0.17	0.21	 0.29	0.41	
116	(benzolc) HC ₇ H ₅ O ₃	_	0.090	0.14	0.22	0.30	
117 118	(Salycylic) HCl HIO ₃		82.3 236.7	_	 257.1	67.3	

Table 8 (continued)

ture	e, °C							
	40	50	60	70	80	90	100	
100	g of w	ater at a gi	ven temper	ature, g				No.
×	5.8× 10 ⁻³ 9.9	21.2× ×10 ⁻³ 194.9	29.0× ×10 ⁻³ 199.9	38.9× ×10 ⁻³ 205.0	52.5× ×10 ⁻³ 210.3	67.5× ×10 ⁻³ 214.9	91.5× ×10 ⁻³ 220.3	87 88
4	- 80.8 - 83.82 - 83.1 88.5	131.4 — 84.2 — — — — — 171.8 33.3	 87.6 56.57 181.8 40.0	92.3 ————————————————————————————————————	96.1 ————————————————————————————————————	103.6 — — — — — 222.5 64.2	110.0 	89 90 91 92 93 94 95 96 97
7	8.3 7.3 — — — — — — 0.2	82.5 — 315.2 — 48.6	143.9 88.7 — — — — 166.6 —	 50.9	159.7 100.0 — — 525.0 — 43.6	105.3 37.3	177.8 105.8 536.9 	98 99 100 101 102 103 104 105 106
	384× 10-4	1.287× ×10-4	1.178× ×10 ⁻⁴	1.021× ×10 ⁻⁴	0.790× ×10 ⁻⁴	0.461× ×10-4	0	107
2	8.72 	11.54 171.3 31.4 24.4	14.81 44.3 35.9	18.62 65.0 51.1	23.62 — 84.5 70.9	30.38 119.8 	40.3 130.0 — 121.3	108 109 110 111
17	6.2	195.0	218.5	244.8	273.2	_	344.4	112
	_	_	_			_	-	113
21	6 0.56	244 0.78	278 1.16	-	371 2.71	_	526 5.88	114 115
	0.42	0.64	0.90	1.39	2.26	3.89	8.12	116
	3.3 0.2	59.6 —	56.1 314.9	_	 360.8		 420.8	117 118

	1	1				Tempera
	Formula	S. Ph.	0	10	20	30
Š.		<u> </u>	Solubi	lity of an	anhydrous 8	ubstance in
119 120 121 122 123 124	$ H_{2}^{2}SeO_{3} $ $ H_{2}^{2}SeO_{4} $ $ H_{2}^{2}SeO_{4} $ $ H_{2}^{2}TeO_{4} $	$ H_2O$ $ 6H_2O$ $2H_2O$	0.699 90.1 426.3 — 16.17	0.502 122.3 — 35.52 33.85	0.378 166.6 566.6 — —	0.294 235.6 — 132.5 — 50.05
125 126		_	0.3	0.4 9.3 (13.5 °C)	0. 5 5 —	0.65
127 128		<u> </u>	4.3 1.4×10-4	5.6	6.6 2×10 ⁻⁴	8.3 7×10-4
129	I ₂	_	1.62× ×10 ⁻²	1.9× ×10 ⁻²	2.9×10 ⁻²	4.0×10 ⁻²
131 132 133 134 135 136 137 138 139 140 141 142 143 144	KAuCl ₄ KBeF ₃	12H ₂ O 2H ₂ O 2H ₂ O 2H ₂ O — 1 ¹ / ₂ H ₂ O — 1 ¹ / ₂ H ₂ O — — — — — — — — — — 11/ ₂ H ₂ O — — — — — — — — — — — 11/ ₂ H ₂ O — — — — — — — — — — — — — — — — — — —	3.0 — 53.5 3.1 216.7 — 63 105.3 20.3 27.6 3.3 0.75 58.2 5.0 —	4.0 18.3 (15°C) 38.3 — 59.5 4.8 233.9 — 108.3 23.7 31.0 5.0 1.05 60.0 8.5	5.9 61.3 2.0 65.5 6.9 255.6 71.6 (25°C) 110.5 26.4 34.0 7.4 1.80 61.7 13.1 12.51 (25°C)	8.4 — 94.9 — 70.6 9.5 283.8 — — 113.7 28.6 37.0 10.5 2.6 63.4 18.2 —
147 148 149 150 151 152	KF	4H ₂ O 2H ₂ O — 3H ₂ O	44.72 — — ~30 14.9 22.6	53.55 — 36.6 21.2 27.7	94.93 42.9 28.9 33.3	108.1 — 36.8 39.1

Table 8 (continued)

ture, °C	-						
40	50	60	70	80	90	100	ا ن
100 g of w	ater at a gi	ven tempe	rature, g				· S
0.232 344.4	0.186 380.7	0.146 383.0 —	0.109 383.0 —	0.076 383.0 —	0.041 385.4 —	0.000	119 120 121
1718	2753 —	∞ —	_	 106.4	_ 	 155.3	122 123 124
57.19		77.54	<u> </u>	100.4		100.0	! -
0.91	1.27 —	1.68 —	_ _	2.8	_	4.9 53.85	125 126
9.9	11.1 —	14.9 —	17.2 —	24.2	37.2	63.6	127 128
5.6×10-2	7.8×10 ⁻²	10.6× ×10 ⁻²	_	_		_	129
11.7	17.0	24.8 —	40.0	71.0 —	109.0 —	154 192	130 131
145 75.5 13.2 323.3 	80.2 17.5	405 85.1 22.7 — 350.0	90.0 — — 364.8	95.0 34.0 — 380.1 95	99.2 — — 396.3	5.2 104.0 50.0 — 122	132 133 134 135 136 137 138
116.9 30.8 40.0 14.0 4.4 65.2 29.2	121.3 33.0 42.6 19.3 6.5 66.8 37.0	126.8 35.1 45.5 25.9 9.0 68.6 50.5	133.5 37.2 48.1 32.5 11.8 70.4 61.5	139.8 39.5 51.1 39.7 14.8 72.1 73.0	147.5 41.3 54.0 47.7 18.0 73.9 96.2	155.7 44.0 56.7 56.2 21.8 75.6 102.0	139 140 141 142 143 144 145 146
 61.3 42.7 45.3	 52.0	 142.2 71.0 55.9 60.0	- - - 57.5 -	 150.1 81.8 68.6 	- - - 74.8 -	91.6 77.8	147 148 149 150 151 152

			1			Tempera	
ٔ ا	Formula	S. Ph.	0	10	20	30	
No.		<u> </u>	Solub	ility of an	anhydrous 9	ubstance in	
153 154 155	KHC ₄ H ₄ O ₆ KHC ₈ H ₄ O ₄ (hydrophtha-	2H ₂ O — —	1.27 0.32 —		0.53 10	4.29 0.90 —	
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174	KH ₂ PO ₄	 4H ₂ O 2H ₂ O H ₂ O 	24.53 14.8 36.3 127.5 4.73 0.17 2.83 278.8 13.3 28.4 97 0.74 177 106.2 7.35 28.4 1.8	30.10 18.4 — 136 — 4.4 — 20.9 40.6 103 — 0.90 196 106.6 9.22 36.2 2.7 5.3	39.18 22.6 51.4 144 8.13 0.42 6.4 298.4 31.6 54.8 112 1.12 217.5 106.0 11.11 44.7 4.7 8.0		
175	K ₂ SiF ₆	_	-	_	0.12	_	
176	La ₂ (SO ₄) ₈	9H ₂ O	3.0	_	_	1.9	
177 178 179 180 181 182 183 184 185 186 187 188	LiBr	2H ₂ O H ₂ O H ₂ O 3H ₂ O H ₂ O 3H ₂ O H ₂ O H ₂ O H ₂ O	143 1.54 67 — 151 — 53.4 — 12.7 35.3	166 1.43 72 — 157 — 61.0 — 12.7 35.0	177 1.33 78.5 0.26 (18°C) 165 — 74.5 — 12.8 34.2	191 1.25 84.5 — 171 132.5 — 12.9 33.5	

Table 8 (continued)

ture, °C							
40	50	60	70	80	90	100	
100 g of w	ater at a gi	ven temper	rature, g	•			, %
1.3	1.8 —	12.0 2.5 —	_ 	4.6	_ _ _	66.7 7.0 33	153 154 155
56.37 33.5 67.3 160 12.8 0.93 12.56 334.8 63.9 — 136 1.76 290 108.7 14.76 64.0 11.0 —	168 16.89 85.5 140 2.17 325 16.56	78.83 50.1 — 176 18.5 2.16 22.2 350 110.0 — 147 2.64 372 — 18.17 83.2 — — — — —	184 	114.0 70.4 — 192 24.8 4.44 — 376 169 — 160 3.79 488 111.4 21.4 106.6 — 0.46	83.5 	 121.6 208 32.2 7.87 412.9 240 178 5.18 674 24.1 35.9 0.954	156 157 158 159 160 161 162 163 164 165 166 167 168 170 171 172 173 174
 -	1.5	_	_		_	0.69	176
205 1.17 90.5 — 179 — 145.1 — 13	214 1.08 97 — 187 — 156.4 — 13.3	224 1.01 103 — 202 — 174.8 — 13.8	230 ————————————————————————————————————	245 0.85 115 — 435 — 45.3 30.7	 	226 0.72 127.5 — 481 — 47.5 29.9	177 178 179 180 181 182 183 184 185 186 187 188
	40 100 g of war 1.3	40 50 100 g of water at a git	40 50 60 100 g of water at a given temper - 1.8 2.5 - - - 56.37 - 78.83 33.5 - 50.1 67.3 - - 160 168 176 12.8 - 18.5 0.93 - 2.16 12.56 16.89 22.2 334.8 - 350 63.9 85.5 110.0 - - - 136 140 147 14.76 2.17 2.64 325 372 108.7 - - 14.76 64.0 - 11.0 - - - 1.5 - - 1.5 - - 1.5 - - 1.0 - - 1.0 - - 1.0 - - - - 13 13.8 13.8	100 g of water at a given temperature, g 12.0	100 g of water at a given temperature, g	100 g of water at a given temperature, g	100 g of water at a given temperature, g

						Tempera
	Formula	S. Ph.	0	10	20	30
No.			Solubi	lity of an o	inhydrous Si	ubstance in
189 190 191 192 193 194 195 196	MgCl ₂	6H ₂ O 6H ₂ O 8H ₂ O 6H ₂ O 6H ₂ O 7H ₂ O 6H ₂ O H ₂ O	91.0 52.8 120.8 — 2.3×10 ⁻² 62.6 — 40.8 —	94.5 53.5 — — — 30.9 42.3 —	96.5 54.5 139.8 3.8×10^{-2} 5.2×10^{-2} 70.1 35.5 44.5	99.2 74.8 40.8 45.4
198 199 200 201 202 203 204 205 206 207 208	MnBr ₂	2H ₂ O H ₂ O 6H ₂ O	127.3 63.4 102.0 53.23 	135.8 — 68.1 — 0.19 (14°C) 117.9 — 60.01 59.5 —	146.9 73.9 142.8 62.9 64.5 	157.0 80.7 206.5 67.76 66.4
209	MoO ₈	_		_	0.138	0.264
210	NH ₃		89.7	68.3	52.9	40.9
211 212 213 214 215 216 217 218 219	NH ₄ Al(SO ₄) ₂ NH ₄ Br (NH ₄) ₂ C ₂ O ₄ NH ₄ Cl NH ₄ ClO ₄ ** . (NH ₄) ₂ Co(SO ₄) ₂ (NH ₄) ₂ CrO ₄ (NH ₄) ₂ Cr ₂ O ₇ NH ₄ Cr(SO ₄) ₂ (violet)	12H ₂ O H ₂ O — 6H ₂ O — 12H ₂ O	2.72 60.6 2.4 29.4 11.56 6.0 25.01 18.26 3.9	4.81 68 3.2 33.3 — 9.5 —	7.17 75.5 4.5 37.2 20.85 13.0 32.96	10.10 83.2 6.0 41.4 — 17.0 40.4 46.5 11.9

^{*}S. Ph. with 6H₂O. ** For NH₄ClO₄, solubility is expressed in g of anhydrous NH₄ClO₄ contained

Table 8 (continued)

ture, °C	<u> </u>						ī
40	50	60	70	80 .	90	100	1
100 g of w	ater at a gi	ven temper	ature, g	·	! <u>-</u>	·	No.
101.6 57.5 173.2 — 4×10 ⁻² 78.9 45.6 —	104.1 — — — 84.5 — 50.4	107.5 61.0 — 4×10 ⁻² 91.2 — 55.0	 59.5 	113.7 66.0 185.7* 2.4×10 ⁻² 1.9×10 ⁻² 106.2 	138.1 68.9	120.2 73.0 — — — — 73.9 68.3	189 190 191 192 193 194 195 196 197
168.9 88.6 68.8	181.8 98.2 0.69 72.6 58.2	196.7 — 108.6 — — — — — 55.0	212.5 — 110.6 — — — — — 52.0	224.7 	225.7 	227.9 115.3 — — — — — — — — 34.0	198 199 200 201 202 203 204 205 206 207 208
0.476	0.687	1.206	2.055	2.106	<u> </u>		209
31.6	23.5	16.8	11.1	6.5	3.0	0.0	210
14.29 91.1 8.2 45.8 30.58 22.0 — 58.5 18.3	19.1 99.2 10.7 50.4 — 27.0 51.87	26.8 107.8 55.2 39.05 33.5 86.0	37.7 116.8 ————————————————————————————————————	53.9 126.0 — 65.6 48.19 49.0 — 115.0	98.2 135.6 — 71.3 — — — —	120.7 145.6 — 77.3 57.01 — — 155.6	211 212 213 214 215 216 217 218 219

in 100 ml of a saturated solution.

						Tempera	
	Formula	S. Ph.	0	10	20	30	
No.		<u></u>	Solubi	lity of an	anhydrous s	ubstance in	
220	$NH_4Cr(SO_4)_2$ (green)	12H ₂ O	3.9	_		19.0	
221 222 223	$\begin{array}{c} \mathrm{NH_4F} & . & . \\ \mathrm{(NH_4)_2Fe(SO_4)_2^2} \\ \mathrm{NH_4Fe(SO_4)_2} \end{array}$	$_{6\mathrm{H}_{2}\mathrm{O}}^{-}$ 12 $_{2}\mathrm{O}$	50 17.8 —	74 —	26.9 124	_ _ _	
224 225	NH ₄ HCO ₃ NH ₄ H ₂ PO ₃	_	11.9 171	15.8 190 (14.5 °C)	21	27 260	
226 227 228 229 230	$(NH_4)_2HPO_4$ NH_4I	1111	22.7 42.9 154.2 — 118.3	57.5 163.2 55.24	36.8 68.6 172.3 — 192.0	 181.4 55.94 241.8	
231 232 233 234 235 236	$(NH_4)_2$ \dot{P} t Cl_6 NH_4 \dot{S} \dot{C} NH_4 \dot{P} \dot{C}		119.8 70.6 58.2 71.2	0.7 143.9 73.0 — — 1.22	170.2 75.4 — 91.2	207.7 78.0 — 119.8	
237 238	(NH ₄) ₂ SiF ₆ NH ₄ VO ₃	_	<u> </u>	(12 °C) — —	18.6 4.8	8.4	
239 240	NO	_ _	9.84 × × 10 ⁻³	$ \begin{array}{c c} 7.57 \times \\ \times 10^{-3} \\ 0.171 \end{array} $	$6.18 \times 10^{-3} \times 10^{-3} = 0.121$	5.17 × × 10 ⁻³	
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256	$Na_{2}CO_{3}$	10H ₂ O 5H ₂ O 2H ₂ O — 3H ₂ O — 10H ₂ O — — — — — — — —	1.3 — 79.5 — 27.5 36.3 — 7 — 35.7 29.4 79 167	1.6 40.8 12.5 35.8 36.4 89 	2.7 1.4 90.5 — 34.5 46.5 — 21.5 — 3.7 36.0 53.4 101 181	3.9 97.6 54.5 126 38.8 50.5 36.3 100.0 113 	

Table 8 (continued)

ture, °C								
	40	50	60	70	80	90	100] .
	100 g of w	ater at a gi	ven tempe	rature, g				- 8 2
	32.8	_	_	-	-	–	_	220
	38.5	_	111 53.4 —	_ _ _	73.0	_ 	— — 400	221 222 223
	36.6 —	_ _	=	_	_		=	224 225
	56.7 81.8 190.5 — 297.0 — 81.0 —	 199.6 56.24 344.0 235 	82.9 97.6 208.9 — 421.0 — 88.0 — —	106.0 218.7 56.70 499.0 — 347 — — —	120.7 228.8 580.0 95.3 	740.0	174 250.3 871.0 1.25 103.3 	226 227 228 229 230 231 232 233 234 235 236
	13.2	 17.8	_	30.5	_		55.5	237 238
	4.40× × 10 ⁻³	3.76× × 10 ⁻³	3.24× × 10 ⁻³	2.67 × × 10 ⁻³	1.99 × × 10 ⁻³	1.14× × 10 ⁻³	0 —	239 240
	6.7 105.8 50.2 65.5 129.5 48.5 36.6 110.5 126 243 	10.5 — — 116.0 — 83 134 — — 37.0 129.9 140 —	20.3 ————————————————————————————————————	24.4 ———————————————————————————————————	31.5 118.8 75.7 153 45.8 38.4 189 304	41.0 161 45.7 39.0 	52.5 2.8 ———————————————————————————————————	241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

			1			Tempera
	Formula	S. Ph.	0	10	20	30
ž		<u> </u>	Solubi	lity of an	anhydrous s	ubstance in
257 258 259 260 261 262 263 264 265 266 267 268 270 271 272 273 274 275 276 277 278 279	Na ₂ CrO ₄	2H ₂ O 10H ₂ O 12H ₂ O 2H ₂ O H ₂ O 7H ₂ O 7H ₂ O 2H ₂ O 2H ₂ O 2H ₂ O 12H ₂ O 12H ₂ O 12H ₂ O 12H ₂ O 14+0	Solubi 31.70 163.0 3.53 5.9 6.9 57.9 1.67 158.7 2.5 44.3 72.1	50.17	180.1 	<u> </u>
280 281 282 283	NaNO ₃ NaOH NaOH NaOH		73 42 — —	80 51 — —	88 — 109 —	96 119
284 285 286 287 288 289	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12H ₂ O 10H ₂ O 9H ₂ O 6H ₂ O 7H ₂ O	1.5 3.16 — — 13.9	4.1 3.95 15.42 — 20	11 6.23 18.8 — 26.9	20 9.95 22.6 — 36 —
290 291 292 293 294	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10H ₂ O 7H ₂ O 5H ₂ O 2H ₂ O	5.0 19.5 — 52.5	9.0 30 — 61.0	19.4 44 — 70.0	40.8 50.4 84.7
295 296 297 298	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7H ₂ O 10H ₂ O	45.5 — 13.30	— — —	 65.3 	- - 78.74

Table 8 (continued)

ture, °C		<u>,. </u>	 -				-
40	50	60	70	80	90	100	_
100 g of w	ater at a g	iven tempe	erature, g				<u>- ;</u>
95.94 220.5 4.40	104.1 248.4 4.55	114.6 283.1 4.68	123.1 323.8 —	 124.8 385.4 4.89	- - - -	126.2 431.9 5.08	2 2 2 2 2 2 2
30 69.5 12.7 138.2 51.8 205.0 13.3 - 98.4 104 129 31 13.50 28.5 - 37.0 - 48.8 102.6	99.4 14.45 158.6 — 80.2 227.8 — 16.3 — 70.7 104.1 114 — 145 — 43 17.45 — 36.4 — 46.7 —	144 16.4 — 179.3 — 82.9 256.8 19.8 — — 124 — 174 — 55 21.83 39.1 33.2 — 45.3 206.6	184 190.3 190.3 88.1 294 23.5 299 43.31 44.1	59 186 Decom 207.3 92.4 296 28.5 132.5 148 313.7 81 30.04 49.15 29.0 43.7 	189 1poses 225.3	63 198 246.6 ———————————————————————————————————	20 20 20 20 20 20 20 20 20 20 20 20 20 2
71.1		79.9	_ _ _ _	245 — 88.7 —	_ _ _ _	266 — 100 —	29 29 29 29

<u> </u>		<u> </u>]	····		Tempera	
١.	Formula	S. Ph.	0	10	20	30	
Š			Solubi	lity of an	anhydrous S	ubstance in	_
299 300 301 302 303	Na_2SiF_6 $NaVO_3$ Na_2WO_4		0.43 57.58 71.61	 			
304	Nd ₂ (SO ₄) ₃	8H ₂ O	9.6		7.1	5.3	_
305 306 307 308 309 310 311 312 313 314 315	NiCl ₂ NiCl ₂ NiCl ₂ NiI ₂ Ni(NH ₄) ₂ (SO ₄) ₂ Ni(NO ₃) ₂ Ni(NO ₃) ₂ Ni(NO ₃) ₂ Ni(NO ₃) ₂	4H ₂ O 2H ₂ O —	112.8 51.7 — 124.3 — 79.58 — 27.22 —	122.3 — — 135.3 3.2 — — — 32 —	130.9 55.3 — 148.1 5.9 96.32 — — —	138.1 — — 161.1 7.8 — — 42.46 —	
316 317	O ₂	-	6.948 × × 10 ⁻⁸ 3.9 × × 10 ⁻⁹	5.370× × 10 ⁻³ 2.9× × 10 ⁻³		3.508 × × 10 ⁻³ 7 × 10 ⁻⁴	
318 319 320 321 322 323 324	$Pb(C_{2}H_{3}O_{2})_{2}$ $PbCl_{2} \dots \dots$ $PbCrO_{4} \dots \dots$ $PbI_{2} \dots \dots$ $Pb(NO_{3})_{2} \dots$	3H ₂ O — — — — —	0.4554 0.6728 4.42 × × 10 ⁻² 38.8 2.8 × × 10 ⁻³	45.6 (15°C) — — — 48.3 3.5× × 10 ⁻³	0.85 55.0 (25 °C) 0.99 4.3 × × 10 ⁻⁶ 6.8 × × 10 ⁻² 56.5 4.1 × × 10 ⁻³	1.15 - 1.20 - 9.0× × 10 ⁻² 66 4.9× × 10 ⁻³	
325 326 327 328 329	RbClO ₃ RbClO ₄	12H ₂ O — — — — —	0.72 77.0 2.14 0.5 19.5	84.4 - 0.6 33.0	2.59 91.1 5.4 1.0 53.3	97.6 8.0 1.5 81.3	

Table 8 (continued)

tı	ure, °C					 		Ī
	40	50	60	70	80	90	100	
1	00 g of w	ater at a giv	ven temper	ature, g				, Š
	1.03 26.23 77.9	80.15 — — — —	2.97 ————————————————————————————————————	36.9 —	1.86 — — 91.2	 	72.83 2.46 — — 97.2	299 300 301 302 303
	4.1	3.3	2.8	2.5	_	1.2	1.2	304
	144.5 	150.0 183.2 14.4 50.15	152.5 80.5 184.1 17.0 163.1 54.80		153.8 — 86.9 187.4 25.5 — — — 63.17	188.2 — —————————————————————————————————	155.1 88.0 76.7	305 306 307 308 309 310 311 312 313 314 315
Į.	$3.081 \times 10^{-3} \times 10^{-4}$	2.657 × × 10 ⁻³ 1 × 10 ⁻⁴	2.274× × 10 ⁻³	1.857× × 10 ⁻³	1.381 × × 10 ⁻³	7.87× × 10 ⁻⁴	0 —	316 317
	1.53	1.94	2.36	_	3.34		4.75 200	318 319
	1.45	1.70	1.98	<u>-</u>	2.62 —	-	3.34	320 321
	$12.5 \times 10^{-2} \times 10^{-2} 75 \times 10^{-3}$	16.4× × 10 ⁻² 85	19.7× × 10 ⁻² 95	_ _ _	30.2× × 10 ⁻² 115 —	_ _	43.6× × 10 ⁻² 138.8 —	322 323 324
	3.52 103.5 — 2.3 116.7	15.98 3.5	7.39 115.5 — 4.85 200	121.4 6.72 251	43.25 127.2 — 9.2 309	133.1 	69 138.9 62.8 18 452	325 326 327 328 329

						Tempera	
	Formula	S. Ph.	0	10	20	30	
No.			Solubi	lity of an	anhydrous s	ubstance in	
330 331	Rb_2PtCl_6 Rb_2SO_4	_ _	13.7× × 10 ⁻³ 36.4	$20.0 \times 10^{-3} \times 10^{-3} 42.6$	28.2× × 10 ⁻³ 48.2	39.7 × × 10 ⁻³ 53.5	
332	SO ₂	_	22.83	16.21	11.29	7.81	_
333 334	SbCl ₃ SbF ₃	-	601.6 384.7	_ _	931.5 444.7	1068.0 563.6	
335 336 337		2H ₂ O _	83.9 — —	— —	269.8 (15 °C) 1.0 19	1.2	
338 339 340 341 342 343 344 345 346 347 348	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2H_2O$	85.2 36.9 43.5 165.3 52.7 40.1 0.35	93.0 43.61 42.95 47.7 — — — — — — 0.48	102.4 41.6 52.9 177.8 63.95 70.5 0.69	111.9 39.5 58.7 88.6 1.01	
349 350 351 352 353	$Th(SO_4)_2$ $Th(SO_4)_2$ $Th(SO_4)_2$ $Th(SO_4)_2$ $Th(SO_4)_2$ $Th(SeO_4)_2$	9H ₂ O 8H ₂ O 6H ₂ O 4H ₂ O	0.74 1.0 1.50 — 0.498	0.98 1.25 — — —	1.38 1.62 1.90 —	1.995 — 2.45 — —	
354 355 356 357 358 359	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- - - - -	0.21 2.0 6.0 3.91	- 0.25 - 8.04 - 6.22	$3.46 \times 10^{-3} \times 10^{-3}$ 0.33 3.92 $ 0.058$ 9.55	0.42 19.72 14.3	

Table 8 (continued)

	ture, °C							T
	40	50	60	70	80	90	100	
	100 g of w	ater at a gi	ven temper	ature, g		·		No.
	56.5 × × 10 ⁻³ 58.5	63.1	99.7× × 10 ⁻³ 67.4	- 71.4	182 × × 10 ⁻³ 75.0		334 × × 10 ⁻³ 81.8	330 331
-	5.41	4.5	3.2	2.6	2.1	1.8	_	332
	1368.0	1917.0	4531.0		∞ –		_	333 334
		_	_	_	_		_	335
	1.4	1.7	2.1	2.5 —	3.0	3.4	4.0 18	336 337
	123.2 — 65.3 — 191.5 — 90.1 1.50	135.8 37.35 72.4 83.5 2.18	150.0 81.8 217.5 97.2 93.8 3.13	36.24 85.9 ————————————————————————————————————	181.8 	36.24 — — 365.2 130.4 — 100 13.6	222.5 36.4 	338 339 340 341 342 343 344 345 346 347 348
	2.998 4.04 	5.22 2.54 	- 6.64 1.63	1.09	 	 	- - - -	349 350 351 352 353
	$\begin{array}{c} 7.36 \times \\ \times 10^{-2} \\ 0.52 \\ -\\ -\\ -\\ 20.9 \end{array}$	0.63 12.67 39.62 — 30.4	 0.8 46.2	- 65.32 69.5	1.2 36.65 81.49 — 111.0		1.8 57.31 166.6 — 414.0	354 355 356 357 358 359

						Tempera
.	Formula	S. Ph.	0	10	20	30
No.		· 	Solubi	lity of an a	inhydrous s	ubstance in
360 361 362	Tl_2SO_4	 	25.44 2.70 —	- 3.70 2.13	4.87 2.8	39.9 6.16 —
363	$UO_2(NO_3)_2$	6H ₂ O	98.0	108.3	125.7	-
364	Yb ₂ (SO ₄) ₃	811 ₂ O	44.2	_	38.4	_
365 366 367 368 369 371 372 373 374 375 376 377	$ZnBr_2$ $ZnCl_2$ $ZnCl_2$ $ZnCl_2$ $ZnCl_2$ $Zn(ClO_3)_2$ $Zn(ClO_3)_2$	2H ₂ O 	389.0 	271.7 	446.4 — 367.3 — 200.3 484.9 — 118.4 — 54.4 —	528.1 209.2

99

Table 8 (continued)

ture, °C							
40	50	60	70	80	90	100	
100 g of w	ater at a gi	ven temper	ature, g				ι δ
49.5 — —	9.21 —	73.8 10.92	12.74 —	106.0 14.61 8.5	126.1 16.53 —	148.3 18.45 10.86	360 361 362
_	203.1	365.2		_	426	476	363
21.0	_	10.4	7.22	6.92	5.83	4.67	364
592.6 452.5 223.1 445.2 206.9 70.1	 273.2 77.0	618.4 — 488.3 — 467.3 — —		644.6 — 541.1 — 490.0 — — 86.6	 83.5	672.0 — 614.4 — 510.5 — 80.8	365 366 367 368 369 370 371 372 373 374 375 376 377

Table 9

Solubilities of Some Inorganic Compounds in Organic Solvents at 18-25 °C

Solubilities are expressed in grams of an anhydrous substance (if there are no other indications) per 100 g of a pure anhydrous solvent

			Š	Solubility in	
Formula	ethanol (absolute)	methanol	acetono	pyridine	other solvents
AgBr AgI AgI AgNo ₃ AlBr ₃ AlCl ₃ AlCl ₃ Al ₂ (SO ₄) ₃ BaBr ₂ BaCl ₂ BaCl ₂ BaCl ₂ BaCl ₂ BaCl ₃ BaCl ₃	$ \begin{array}{c} 1.6 \times 10^{-8} \\ 1.5 \times 10^{-6} \\ 6 \times 10^{-9} \\ 2.1 \\ - \\ - \\ - \\ 3.6 \\ - \\ 77 \\ 1.8 \times 10^{-3} \\ 3.5 \\ 3.5 \\ - \\ - \\ - \\ 3.6 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	7 × 10-7 6 × 10-6 2 × 10-7 3.8 0.06 56.2	1.3×10^{-6} 0.44 $ 0.026$ 0.026 $ 18.0$ 41.7 2.73	1.95 4.0 4.0 	Benzene: 0.02; phenol: 30 Benzene: 125; carbon disulphide: 150 Benzene: 0.02; carbon tetrachloride: 0.01; chloroform: 0.05 Ethylene glycol: 16.8 Isoamyl alcohol: 0.02 Glycerin: 9.8 Ethyl acetate: 1.8 Isoamyl alcohol: 25.6

Table 9 (continued)

			ø	Solubility in	
Formula	ethanol (absolute)	methanol	acetone	pyridine	other solvents
CaCls Ca(NOs)s CaSO4 CaSO4 CdBrs CdCls CdCls CoCls CoCls CoCls CoCls CuCls CuCls FeBrs FeBrs FeBrs FeCls HsBO3 HsBO4 HgBVs HgBCN)s	25.8 51 30 1.5 113 0.03 77 54 55.5 12.7 145 11 69.5 9.5	29.2 127 138 138 16.1 22.7 223 43 40 0.40 57.5 150 150 60 44.1	0.04 89 16.9 18.1 42.8 64 3.0 	1.69 0.70 0.45 0.34 1.74 1.74 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.70 0.6 0.70	Isoamyl alcohol: 7.0 Amyl alcohol: 7.5 Glycerin: 5.2 Diethyl ether: 0.2 Ethylene glycol: 400 Diethyl ether: 0.11; isoamyl alcohol: 12 Ethylene glycol: 6.0 Glycerin: 22; dioxane: 1.3 Diethyl ether: 33.2; benzene: 1.9 Diethyl ether: 525 Benzene: 0.7

Formula ethanol (absolute) methanol methanol acetone HgCl ₃ 47 67 144 HgI ₃ 2.2 3.8 3.4 I ₂ 2.2 3.8 3.4 I ₂ 2.2 0.3 0.03 KCI 0.08 4.91 0.03 KCI 0.03 0.5 9.0 × 10 ⁻⁶ KCI 0.03 0.19 2.2 KCI 0.03 0.5 9.0 × 10 ⁻⁶ KCI 0.03 0.5 9.0 × 10 ⁻⁶ KCI 0.03 0.5 9.0 × 10 ⁻⁶ KNO 1.75 16.4 2.3 KNO 39 55 - KSCN 70 - - KSCN 70 - - LiSt 25 43.4 43 List 25 343 43 Lin 25 343 - MgSO ₄ - - -		Š	Solubility in	
ethanol (absolute) methanol (absolute) methanol (absolute) 3.8 3.8 3.8 4.91 0.46 2.1 0.48 4.91 0.19 1.75 16.4 16.4 3.9 3.9 3.9 3.43 3.43 3.43 3.43 3.43				
2.2 67 2.2 3.8 2.6 — — — — — — — — — — — — — — — — — — —		acetone	pyridine	other solvent8
26	$\begin{array}{c c} 47 & 67 \\ 2.2 & 3.8 \end{array}$	141	25 31	Diethyl ether: 7 Chloroform: 0.07: diethyl ether:
1. 2. 1 0. 46 0. 0.88 4. 91 0. 13 0. 14 1. 75 16. 4 1. 75 16. 4 1. 70 25 25 25 25 343 25 343 25 343 25 343 36 37 38 39 30 31 31 32 32 34 34 32 33 34 34 34 34 35 36 37 37 37 37 37 37 37 37 37 37	26	1	I	0.7 Chloroform: 2.7; carbon tetrachlo-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.03	1	ride: 2.5; carbon disulphide: 16 Isoamyl alcohol: 0.002
1.75 16.4 1.75 16.4 1.75 16.4 1.75 16.4 1.70 25 25 43.4 25 343 25 343 25 343 25 343 27.9 27		0 0 < 10-5		Glycerin: 32
$\begin{bmatrix} 1.75 & 16.4 \\ 39 & 55 \\ N & & & & \\ & & & $		2.2		Glycerin: 3.1; propyl alcohol: 0.006 Propyl alcohol: 0.34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.75 16.4	2.35	0.3	Glycerin: 40; ethylene glycol: 50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39 55	1		TITCHIOLOGUAJIGHE: 0.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	20.8	6.15	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		18.1	١٤	Ethylene glycol: 60
5. 15.1 27.9 3 5.6 16.0 0.025 0.3 0.025 0.3 0.3 0.013 0.01		43.2	7 I	Glycerin: 11 Ethylene glycol: 39
12 15.1 27.3 5.6 16.0 5.4 16.0 5.4.7H ₂ O 43 6.001 0.13	1 20	31	33 7	Isoamyl alcohol: 10
7.7H ₂ O 0.025 0.3 - 43	5.6	0.1	د. ا	Dietnyl alcohol: 2.5
04.7H ₂ 0 43	0.025 0.3	ı	!	Glycerin: 26
0.13	- 43	1	1.	ı
	ح ر		1.3	1
12.8				
NH ₄ Br 3.4 12.5 -	7	!	1	1

3 × 10-5 1 × 10-4 2.2 	3 × 10-5 1 × 10-4 26 0.80 0.80	Table 9 (continued)	Ly III	dine other solvents	Diethyl ether: 0.08; amyl alcohol: 0.12 Glycerin: 98 Ethylene glycol: 46.5 Ethylene glycol: 18 Ethylene glycol: 18 Ethylene glycol: 18 Ethylene glycol: 10 Carbon disulphide: 900; benzene: 3.2; carbon tetrachloride:
3 × 10-6 1 × 10-4 2.2 0.008 3 × 10-6 1 × 10-4 26 0.80 0.80	3.3 6.8 6.8 17.1 59 4.4 16.7 0.008 0.42 1.5 0.42 1.4 0.42 1.5 0.43 3.1 0.43 3.1 0.02 0.80 0.08 0.08		y in		
	3.3 6.8 17.1 59 4.4 16.7 72.7 4.4 0.43 35 0.02 35	Solubilit	liliumioo .	tone pyridine	
			-		

Table 9 (continued)		other solvents	Carbon disulphide: 43; carbon tetrachloride: 0.85; chloroform: 1.2; benzene: 1.7; glycerin: 0.14 Benzene: 5 × 10-4 Benzene: 4.2 Ethyl acetate: 4.4 Isoamyl alcohol: 31 Isopropyl alcohol: 0.002 Diethyl ether: 0.96 Glycerin: 50 Glycerin: 35
Solmbiliter 12	Solubility in	pyridine	0.6 0.5 0.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
		acetone	0.02 0.02 538 56 0.6 1.5 1.5 43.3
		methanol	1.4 0.03 160 17 117 0.73 0.6
	10000440	(absolute)	0.04 0.05 0.009 3.3 0.03
	Formula		PbBr ₂ PbCl ₂ PbL ₂ PbL ₂ SbCl ₃ SbCl ₃ SrGl ₂ SrBr ₂ SrI ₂ Sr NO ₃) ₂ UO ₂ (NO ₃) ₂ UO ₂ SO ₄ ZnBr ₂ ZnCl ₂ ZnCl ₂ ZnCl ₂ ZnCl ₂ ZnCl ₂

Table 10

Solubility Products of the Chief Sparingly Soluble Substances

The solubility product (SP) of substance Ct_mAn_n , which breaks up into ions according to the equation

$$Ct_mAn_n \neq mCt + nAn$$

is $SP = a_{Ct}^m \cdot a_{An}^n$, where a_{Ct} is the activity of cation Ct, and a_{An} is the activity of anion An. The indicator of the solubility product pSP is the logarithm of the solubility product taken with an inverse sign.

When calculating the solubility of a sparingly soluble salt in water or in a solution of other salts by the value of the solubility product, account must be taken of: (1) the reaction of cations being formed with the hydroxyl ions of water; (2) the reaction of anions being formed with hydrogen ions; (3) the ionic strength of a solution on which the activity coefficients depend, and in some cases also (4) the potentialities of complex-ion formation. The ways of making such calculations are described in the textbooks of analytical chemistry.

In addition, account must be taken of the presence, in the solution, of non-dissociated molecules of a dissolved salt whose concentrations are found by dividing the SP by the corresponding value of K (Table 38; figures marked with an asterisk).

Table 10 (continued)

Formula of substance	SP	pSP ==—log SP
Ag ₄ Fe(CN) ₆ Ag ₂ HVO ₄ (2Ag ⁺ , HVO ² ⁻ ₄) AgI AgIO ₃ AgMnO ₄ Ag ₂ MoO ₄ Ag ₂ MoO ₂ Ag ₂ O(Ag ⁺ , OH ⁻) AgOCN Ag ₂ PO ₃ F(2Ag ⁺ , PO ₃ F ² ⁻) Ag3PO ₄ AgReO ₄ Ag ₂ S AgSCN Ag ₂ SO ₃ AgSO ₃ NH ₂ (Ag ⁺ , SO ₃ NH ₂) Ag ₂ SO ₄ AgSeCN Ag ₂ SeO ₄ AgSeO ₄ AgSeO ₄ AgSeO ₄ AgVO ₃ Ag ₂ SeO ₄ AgVO ₃ Ag ₂ SeO ₄ AlASO ₄ Al(OH) ₃ (Al ³⁺ , 3OH ⁻) (AlOH ²⁺ , 2OH ⁻) (H ⁺ , AlO ²) AlPO ₄ Am(OH) ₃ Am(OH) ₄ AuBr AuBr AuBr AuBr AuBr AuBr AuCl AuCl AuCl AuCl AuCl AuCl AuCl AuCl	8.3×10^{-17} 3.0×10^{-8} 1.6×10^{-3} 2.8×10^{-13} 2.9×10^{-9} 1.6×10^{-3} 1.6×10^{-4} 1.6×10^{-4} 1.3×10^{-20} 7.95×10^{-5} 6.3×10^{-50} 1.1×10^{-12} 1.50×10^{-14} 1×10^{-1}	40.82 13.7 16.08 7.52 2.79 11.55 8.54 3.80 7.80 6.64 3.05 19.89 4.10 49.20 11.97 13.82 1 4.80 15.40 15.40 15.40 15.01 7.25 6.3 11.26 15.80 32.0 12.80 18.24 19.57 56.3 11.57 56.3 12.7 24.5 46.5 19.57 56.3 50.11 50.26 80.64 50.11 50.26 80.64 50.11 50.26 80.64 50.11 50.26 80.64 50.11 50.26 80.64 50.11 50.26 80.64 50.11 50.26 80.64 50.11 50.26 80.64 50.11 50.26 80.64 50.11 50.26 80.64 50.11 50.26 80.64 50.64
BaCrO ₄	1.2×10^{-10} 1.1×10^{-6}	9.93 5.98
$Ba_2\tilde{F}e(CN)_6$	3×10^{-8} 1.50×10^{-9}	7.5 8.82

Table 10 (continued)

Formula of substance	SP	pSP=-log SP
BaMnO ₄ BaMoO ₄ Ba(NO ₃) ₂ Ba(OH) ₂ BaPO ₃ F(Ba ²⁺ , PO ₃ F ²⁻) Ba ₃ (PO ₄) ₂ Ba ₂ P ₂ O ₇ BaPt(CN) ₄ Ba(ReO ₄) ₂ BaSO ₃ BaSO ₄ BaS ₂ O ₃ BaSeO ₄ BaS ₂ O ₃ BaSeO ₄ Be(OH) ₂ (Be ²⁺ , 2OH ⁻) (BeOH ⁺ , OH ⁻) BiAsO ₄ BiI ₃ BiOCl(BiO ⁺ , Cl ⁻)	$\begin{array}{c} 4 \times 10^{-3} \\ 4.5 \times 10^{-3} \\ 5.0 \times 10^{-3} \\ 4 \times 10^{-7} \\ 6.03 \times 10^{-39} \\ 3 \times 10^{-11} \\ 4 \times 10^{-3} \\ 5.25 \times 10^{-2} \\ 8.0 \times 10^{-7} \\ 1.1 \times 10^{-10} \\ 1.6 \times 10^{-5} \\ 2.8 \times 10^{-11} \\ 1 \times 10^{-3} \\ 3.2 \times 10^{-2} \\ 6.3 \times 10^{-22} \\ 2 \times 10^{-14} \\ 2.8 \times 10^{-19} \\ 8.1 \times 10^{-19} \end{array}$	9.60 7.40 2.35 2.3 6.4 38.22 10.5 2.4 1.28 6.1 9.97 4.79 10.55 3 1.50 21.2 13.7 9.36 18.09 8.85
$\begin{array}{c} (\text{BiOCl} + \text{H}_2\text{O} = \text{Bi}^{3+} + \\ + 2\text{OH}^- + \text{Cl}^-) & . & . & . \\ \text{BiOOH}(\text{BiO}^+ \cdot \text{OH}^-) & . & . & . \\ \text{Bi}(\text{OH})_3 & . & . & . & . \\ \text{BiPO}_4 & . & . & . & . \\ \text{Bi}_2\text{S}_3 & . & . & . & . \\ \text{Ca}_3(\text{AsO}_4)_2 & . & . & . & . \\ \text{CaC}_4\text{H}_4\text{O}_6 & . & . & . & . \end{array}$	$ \begin{array}{c} 3.2 \times 10^{-23} \\ 1.3 \times 10^{-23} \\ 1 \times 10^{-97} \\ 6.8 \times 10^{-19} \\ 7.7 \times 10^{-7} \end{array} $	30.75 9.4 31.5 22.90 97 18.17 6.11
(tartrate) CaCO ₃ CaC ₂ O ₄ CaCrO ₄ CaF ₂ CaHPO ₄ (Ca ²⁺ , HPO ₄ ²⁻) Ca(H ₂ PO ₄) ₂ (Ca ²⁺ , 2H ₂ PO ₄) Ca(NH ₄) ₂ Fe(CN) ₆ Ca(IO ₃) ₂ Ca(OH) ₂ (Ca ²⁺ , 2OH ⁻) (CaOH ⁺ , OH ⁻) Ca ₃ (PO ₄) ₂ CaPO ₃ F(Ca ²⁺ , PO ₃ F ²⁻) Ca ₅ (PO ₄) ₃ OH CaSO ₃ CaSO ₄ CaSeO ₃	4.8×10^{-9} 2.3×10^{-9} 7.1×10^{-4} 4.0×10^{-11} 2.7×10^{-7} 1×10^{-8} 7.0×10^{-7} 5.5×10^{-6} 1.4×10^{-4} 2.0×10^{-29} 4×10^{-8} 1.6×10^{-58} 1.3×10^{-8} 9.1×10^{-6} 4.7×10^{-6}	8.32 8.64 3.15 10.40 6.57 3 7.4 6.15 5.26 3.86 28.70 2.4 57.8 7.89 5.04 5.53

Table 10 (continued)

Formula of substance	SP	pSP=-log SP
CaSiF ₆ CaWO ₄ Cd ₃ (AsO ₄) ₂ Cd(CN) ₂ CdCO ₃ CdC ₂ O ₄ Cd ₂ Fe(CN) ₆ Cd(NH ₃) ₆ (BF ₄) ₂ Cd(OH) ₂ (freshly-precipitated) Cd(OH) ₂ (after ageing) CdS CdSeO ₃ CdWO ₄ Ce ₂ (C ₂ O ₄) ₃ Ce(IO ₃) ₃ Ce(IO ₃) ₄ Ce(OH) ₃ Ce ₂ (SeO ₃) ₃ Co ₃ (AsO ₄) ₂ CoCO ₃ CoCO ₄ Co ₂ Fe(CN) ₆ CoCO ₅ CoCO ₆ CoC ₂ Fe(CN) ₆ CoC ₁ CoCO ₁ CoC ₂ Fe(CN) ₆ CoC ₂ Fe(CN) ₆ CoC ₃ CoC ₄ Co ₂ Fe(CN) ₆ CoC ₄ CoC ₅ CoC ₆ CoC	8.1×10^{-4} 9.0×10^{-9} 2.2×10^{-33} 1.0×10^{-8} 5.2×10^{-12} 1.5×10^{-8} 3.2×10^{-17} 2×10^{-6} 2.2×10^{-14} 5.9×10^{-27} 1.30×10^{-9} 2×10^{-6} 2.5×10^{-29} 3.2×10^{-10} 5×10^{-17} 1.5×10^{-20} 1×10^{-24} 2.5×10^{-51} 2×10^{-2} 3.75×10^{-2}	3.09 8.06 32.66 8.0 11.3 7.8 16.49 5.7 13.66 14.23 26.10 8.89 5.7 28.60 9.50 16.3 19.82 24.0 50.6 1.7 24.43 28.12 12.84 7.2 14.74 5.82 4.0 5.4 11.77 14.20 14.80 15.70 44.4 20.40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2.0 \times 10^{-25} \\ 2.0 \times 10^{-25} \\ 1.6 \times 10^{-7} \\ 7.8 \times 10^{-21} \\ 6.2 \times 10^{-5} \\ 4.0 \times 10^{-8} \\ 4.3 \times 10^{-4} \\ 7.7 \times 10^{-12} \end{array}$	24.70 6.8 20.11 4.21 7.40 3.9 11.11

Table 10 (continued)

Formula of substance	SP	pSP=—log SP
$Cr(OH)_3$	1.0×10^{-17}	17.0
$ \operatorname{Cr}(OH)_{8}(\operatorname{Cr}^{3+}, 3OH^{-}) $	6.3×10^{-31}	30.20
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.3×10^{-21}	20.20
	1.0×10^{-17}	17.00
CrPO ₄	2.4×10^{-23}	22.62
(green)	1×10^{-3}	3
Copp (Co+ pp-)	2×10^{-5}	4.7
Capu (Cat Dua)	2.5×10^{-7}	6.6
$C_{2}D_{2}C_{3}$	2×10^{-2}	1.7
	4×10^{-2}	1.4
	$\overset{4}{4} \times \overset{10}{10}$	$2.\overline{4}$
(green) CsAuCl ₄ (Cs+, AuCl ₄) CsBF ₄ (Cs+, BF ₄) CsBH ₄ (Cs+, BH ₄) CsBrO ₃ CsClO ₃ CsClO ₄ Cs ₃ Co(NO ₂) ₈ [3Cs+, Co(NO ₂) ₈ -] CsHqCl ₂ (Cs+ HqCl ₂)	5.8×10^{-16}	15.24
$Cs_3Co(NO_2)_6[3Cs^+, Co(NO_2)_8^-]$	$\overset{3.8}{2} \times \overset{10}{10} \overset{3}{\sim}$	2.7
$CsHgCl_3(Cs^+, HgCl_3^-)$	1.0×10^{-2}	2.0
CsHgCl ₃ (Cs ⁺ , HgCl ₃) CsIO ₃ CsIO ₄ CsMnO ₄ Cs ₂ PtCl ₆ Cs ₂ PtF ₆ CsReO ₄ Cs ₅ SiF	1.0 × 10 - 3	2.36
CsIO ₄	4.4×10^{-3}	4.08
$\begin{bmatrix} CsMnO_4 & . & . & . & . & . & . & . \end{bmatrix}$	9.1×10^{-5}	7.44
$[Cs_2PtCl_6 \ldots \ldots]$	3×10^{-8}	
Cs_2PtF_6	2.39×10^{-6}	5.62
CsReO	4.0×10^{-4}	3.40
Cs ₂ SiF ₆ Cs ₂ SnCl ₆ (2Cs+, SnCl ₆ -)	1.26×10^{-5}	4.90
$Cs_2SnCl_2(2Cs^+, SnCl_2^{2-})$	3.6×10^{-8}	7.44
$Cu_3(AsO_4)_2$	7.6×10^{-36}	35.12
CuBr	5.25×10^{-9}	8.28
l CuCN	3.2×10^{-20}	19.49
CuCo CuCo	2.5×10^{-10}	9.6
CuC _o O.	3×10^{-8}	7.5
CuCi	1.2×10^{-6}	5.92
l CuCrO.	3.6×10^{-6}	5.44
Cu-Fe(CN)	1.3×10^{-16}	15.89
Cul	1.1×10^{-12}	11.96
$Cu_2Fe(CN)_6$	7.4×10^{-8}	7.13
CuN ₈	0.0 /\ 20	8.3
Cu ₂ O (2Cu+, OH-)	1×10^{-14}	14.0
Cu(OH) ₂ (Cu ²⁺ , 2OH-)	$2.2 imes 10^{-20}$	19.66
(CuOH+, OH-)	2.2×10^{-13}	12.66
Cu ₂ (OH) ₂ CO ₃	1.7×10^{-34}	33.78
$Cu_{\underline{a}}P_{\underline{a}}O_{7}$	8.3×10^{-16}	15.08
CuŚ	6.3×10^{-36}	35.20
Cu ^S	2.5×10^{-48}	47.60
CuSCN	4.8×10^{-15}	14.32
CuSe	1×10^{-49}	49
CuSeO	2.1×10^{-8}	7.68
CuSeO ₃	1×10^{-5}	5
FeAsO ₄	5.8×10^{-21}	20.24
ronsu ₄	0.0 \ 10	40,44

Formula of Substance	SP	pSP=—log SP
FeCO ₃ FeC ₂ O ₄ Fe ₄ [Fe(CN) ₆] ₃ Fe(OH) ₂ (Fe ²⁺ , 2OH ⁻⁾ (FeOH ⁺ , OH ⁻⁾ Fe(OH) ₃ (Fe ³⁺ , 3OH ⁻⁾ (FeOH ²⁺ , 2OH ⁻⁾ [Fe(OH) ¹ / ₂ , OH ⁻] FePO ₄ FeS FeS ₂ (Fe ²⁺ , S ²⁻⁾ FeSe Fe ₂ (SeO ₃) ₃ Ga ₄ [Fe(CN) ₆] ₃ Ga(OH) ₃ GeO ₂ (Ge ⁴⁺ , 4OH ⁻⁾ GeS HfO(OH) ₂ (HfO ²⁺ , 2OH ⁻⁾ Hg ₂ Br ₂ (Hg ²⁺ ₂ , CO ²⁻⁾ Hg ₂ Co ₃ (Hg ²⁺ ₂ , CO ³⁻⁾ Hg ₂ Cl ₂ (Hg ²⁺ ₂ , CO ³⁻⁾ Hg ₂ CrO ₄ (Hg ²⁺ ₂ , CrO ³⁻⁾ Hg ₂ L ₂ (Hg ²⁺ ₂ , 2I ⁻⁾ Hg ₂ (IO ₃) ₂ (Hg ²⁺ ₂ , 2I ⁻⁾ Hg ₂ (IO ₃) ₂ (Hg ²⁺ ₂ , 2I ⁻⁾ Hg ₂ (Hg ₀ (Hg ²⁺ ₂ , 2I ⁻⁾ Hg ₂ (Hg ₀ (Hg ²⁺ ₂ , 2OH ⁻⁾ HgO(Hg ²⁺ , 2OH ⁻⁾ HgO(Hg ²⁺ , 2OH ⁻⁾ HgO(Hg ²⁺ , 2OH ⁻⁾ Hg ₂ SO ₄ (Hg ²⁺ ₂ , SO ³⁻) Hg ₂ SO ₃ (Hg ²⁺ ₂ , SO ³⁻) Hg ₂ SO ₃ (Hg ²⁺ ₂ , SO ³⁻) Hg ₂ SO ₃ (Hg ²⁺ ₂ , SO ³⁻) Hg ₂ SO ₄ (Hg ²⁺ ₂ , SO ³⁻)	$\begin{array}{c} 3.47 \times 10^{-11} \\ 2 \times 10^{-7} \\ 3.0 \times 10^{-41} \\ 1 \times 10^{-15} \\ 5 \times 10^{-10} \\ 3.2 \times 10^{-28} \\ 4 \times 10^{-17} \\ 1.30 \times 10^{-22} \\ 5 \times 10^{-18} \\ 6.3 \times 10^{-31} \\ 1 \times 10^{-26} \\ 2 \times 10^{-31} \\ 1.5 \times 10^{-34} \\ 7.1 \times 10^{-36} \\ 1 \times 10^{-57} \\ 3 \times 10^{-35} \\ 4 \times 10^{-26} \\ 5.8 \times 10^{-23} \\ 8.9 \times 10^{-17} \\ 1 \times 10^{-13} \\ 1.3 \times 10^{-18} \\ 5.0 \times 10^{-9} \\ 4.5 \times 10^{-29} \\ 2.45 \times 10^{-14} \\ 4.0 \times 10^{-13} \\ 3.0 \times 10^{-29} \\ 2.45 \times 10^{-14} \\ 4.0 \times 10^{-53} \\ 1.6 \times 10^{-52} \\ 4.0 \times 10^{-53} \\ 1 \times 10^{-27} \\ 6.8 \times 10^{-7} \\ \end{array}$	10.46 6.7 40.52 15.0 9.3 37.50 25.70 16.40 21.89 17.3 30.2 26 30.7 33.82 35.15 57.0 34.5 22.24 16.05 13 17.88 8.70 28.35 13.71 12.40 25.52 22.8 51 8 52.40 47.0 19.52 27.0 6.17

^{*}The solubility products of mercuric salts (with the exception of HgS and HgSe) are not given here, since their very small values can give rise to incorrect ideas about the correspondingly sparing solubilities of these salts. In fact, upon a transition of mercuric salts to a solution, a very small amount of free ions (the product of whose concentrations gives the value of SP) but a relatively great amount of non-dissociated molecules — Hg(CN)₂, HgCl₂, etc. — are formed.

The degree of dissociation of mercuric salts must be determined according to the constants given in Table 38.

Table 10 (continued)

Formula of substance	SP	pSP=-log SP
$\begin{array}{c} \text{HgSe} \\ \text{Hg}_2\text{SeO}_3(\text{Hg}_2^{2+},\ \text{SeO}_3^{2-}) \\ \text{Hg}_2\text{WO}_4(\text{Hg}_3^{2+},\ \text{WO}_4^{2-}) \\ \text{In}_4[\text{Fe}(\text{CN})_6]_3 \\ \text{In}(\text{IO}_3)_8 \\ \text{In}(\text{OH})_3 \\ \text{In}_2\text{S}_8 \\ \text{IrO}_2(\text{Ir}^{4+},\ 4\text{OH}^-) \\ \text{Ir}_2\text{O}_3(2\text{Ir}^{3+},\ 3\text{OH}^-) \\ \text{IrS}_2 \\ \text{K}_3\text{AlF}_6(3\text{K}^+,\ \text{AlF}_6^{3-}) \\ \text{KBF}_4(\text{K}^+,\ \text{BF}_4^-) \\ \text{KBH}_4(\text{K}^+,\ \text{BH}_4^-) \\ \text{K}(\text{C}_6\text{H}_5)_4\text{B}[\text{K}^+,\ (\text{C}_6\text{H}_5)_4\text{B}^-] \\ \text{K}(\text{ClO}_4 \\ \text{K}_3\text{Co}(\text{NO}_2)_6[3\text{K}^+,\ \text{Co}(\text{NO}_2)_6^-] \\ \text{K}_2\text{NaCo}(\text{NO}_2)_6[2\text{K}^+,\ \text{Na}^+,\ \text{Co}(\text{NO}_2)_6^{3-}] \\ \text{K}_2\text{GeF}_6(2\text{K}^+,\ \text{GeF}_6^{2-}) \\ \text{K}_2\text{HfF}_6(2\text{K}^+,\ \text{HfF}_6^{2-}) \\ \text{K}_2\text{IrCl}_6(2\text{K}^+,\ \text{IrCl}_6^{2-}) \\ \text{K}_1\text{IrCl}_6(2\text{K}^+,\ \text{IrCl}_6^{2-}) \\ \end{array}$	$ \begin{array}{c} 1 \times 10^{-36} \\ 1.6 \times 10^{-72} \\ 2 \times 10^{-48} \\ 1 \times 10^{-75} \\ 1.6 \times 10^{-9} \\ 2 \times 10^{-3} \\ 1.3 \times 10^{-3} \\ 2.25 \times 10^{-8} \\ 1.1 \times 10^{-2} \\ 4.3 \times 10^{-10} \\ 2.2 \times 10^{-11} \\ 3.0 \times 10^{-5} \end{array} $	59.0 14.2 16.96 43.72 2.5 33.3 88 71.8 47.7 75 8.80 2.7 2.9 7.65 1.97 9.37 10.66 4.52 2.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 4 \times 10^{-21} \\ 2.0 \times 10^{-19} \\ 2.0 \times 10^{-13} \\ 3 \times 10^{-5} \\ 3.98 \times 10^{-3} \end{array} $	4.17 3.08 4.9 5.2 2.1 4.96 4.54 2.72 6.06 3.3 3.3 2.5 26.60 11.21 20.4 18.7 12.70 4.5 2.40
Li ₂ CO ₃ LiF LiOH Li ₃ PO ₄ Mg ₃ (AsO ₄) ₂ MgCO ₃ MgC ₂ O ₄	3.8×10^{-3} 4×10^{-2} 3.2×10^{-9} 2.1×10^{-20} 2.1×10^{-5} 8.6×10^{-5}	2.42 1.4 8.5 19.68 4.67 4.1

Formula of substance	SP	pSP=-log SP
MgF_2 $Mg(IO_8)_2$ $MgK_2Fe(CN)_6$ $Mg(NH_4)_2Fe(CN)_6$ $MgNH_4PO_4$ $Mg(OH)_2$	$\begin{array}{c} 3 \times 10^{-3} \\ 5 \times 10^{-9} \end{array}$	8.19 2.5 8.3 7.4 12.6 9.22
(freshly-precipitated) Mg(OH) ₂ (Mg ²⁺ , 2OH ⁻)	1.8×10^{-11} 2.3×10^{-7}	10.74 6.64
(after ageing) Mg ₃ (PO ₄) ₂ MgSO ₃ MgSeO ₃ Mn ₃ (AsO ₄) ₂ MnCO ₃ MnC ₂ O ₄ Mn ₂ Fe(CN) ₆ MnNH ₄ PO ₄ Mn(OH) ₂ (Mn ²⁺ , 2OH ⁻) (MnOH ⁺ , OH ⁻) Mn(OH) ₃ MnS [*] (flesh-coloured) MnS [*]	$ \begin{array}{c} 1 \times 10^{-13} \\ 3 \times 10^{-3} \\ 1.30 \times 10^{-5} \\ 1.9 \times 10^{-29} \\ 1.8 \times 10^{-11} \\ 5 \times 10^{-6} \\ 7.9 \times 10^{-13} \\ 1 \times 10^{-12} \\ 1.9 \times 10^{-13} \\ 1.5 \times 10^{-9} \\ 1 \times 10^{-36} \\ 2.5 \times 10^{-10} \\ 2.5 \times 10^{-13} \end{array} $	13 2.5 4.89 28.72 10.74 5.3 12.10 12 12.72 8.82 36 9.60
(green) MnSeO ₃ Mo(OH) ₄ (NH ₄) ₃ AlF ₆ (3NH [†] , AlF ³⁻) (NH ₄) ₃ Co(NO ₂) ₆ [3NH [†] , Co(NO ₂) ³⁻] (NH ₄) ₂ IrCl ₆ (NH ₄) ₂ PtCl ₆ Na ₃ AlF ₆ Na ₂ BeF ₄ NaIO ₄ NaSb(OH) ₆ [Na ⁺ , Sb(OH) ₆] Na ₂ SiF ₆ Ni ₃ (AsO ₄) ₂ Ni(CN) ₂ NiCO ₃ NiC ₂ O ₄	3 X 10 °	6.9 50.0 2.80 5.12 4.5 5.05 9.39 2.15 2.5 7.4 3.56 25.51 22.5 6.87 9.4

^{*}The values of SP_{MnS} are given according to A. Ringbom, "Solubilities of Sulfides" (Report to Analytical Section IUPAC, July, 1953); they considerably differ from many of those found earlier, for example for the modification of flesh-coloured: 7×10-16 (Bruner, Zawadski), 1.1×10-15 (Kapustinsky); for the modification of green colour: 6.2×10-22 (Bruner, Zawadski).

Table 10 (continued)

<u> </u>	·	
Formula of substance	SP	pSP=-log SP
$Ni(ClO_3)_2$	$ \begin{array}{c} 1 \times 10^{-4} \\ 1.3 \times 10^{-15} \\ 1.40 \times 10^{-8} \\ 1 \times 10^{-6} \\ 5.1 \times 10^{-4} \\ 2.0 \times 10^{-15} \end{array} $	4 14.89 7.85 6 3.29 14.70
Ni(NH ₃) ₆ (BF ₄) ₂ Ni(NH ₃) ₆ (ReO ₄) ₂ Ni(OH) ₂ (freshly-precipitated) Ni(OH) ₂ (after ageing) Ni ₂ P ₂ O ₇ NiS α NiS β NiS γ NiSeO ₃ NpO ₂ (OH) ₂ (NpO ₂ ²⁺ , 2OH ⁻) Pb ₃ (AsO ₄) ₂ PbBr ₂ Pb(BrO ₃) ₂ PbCO ₃ PbCO ₃ PbCO ₄ PbCl ₂ PbCl ₇ PbCl ₂ PbCl ₇ PbCl ₂ PbCl ₇ PbCl ₂ PbCl ₇ PbCl ₂ PbCl ₂ PbCl ₃ PbCl ₂ PbCl ₄ PbF ₃ Pb ₂ Fe(CN) ₆ PbI ₃ Pb(IO ₃) ₂ PbMoO ₄ Pb(N ₃) ₂ PbMoO ₄ Pb(N ₃) ₂ PbOOH+, OH ⁻)	2.0×10^{-15} 6.3×10^{-18} 1.7×10^{-13} 3.2×10^{-19} 1×10^{-24} 2.0×10^{-26} 1.0×10^{-5} 2.5×10^{-22} 4.1×10^{-36} 9.1×10^{-6} 7.49×10^{-14} 4.8×10^{-10} 1.6×10^{-5} 2.8×10^{-9} 1.8×10^{-14} 2.7×10^{-8} 3.5×10^{-15} 1.1×10^{-9} 2.6×10^{-9} 1.1×10^{-9} 1.1×10^{-9}	17.20 12.77 18.50 24.0 25.70 5.0 21.6 35.39 5.04 5.10 13.13 9.32 4.79 8.55 13.75 7.57 14.46 8.98 12.58 5.4 8.59 19.96
(PbOH+, OH-) PbOHBr PbOHCl PbO ₂ (Pb ⁴⁺ , 4OH-) Pb ₃ O ₄ (2Pb ²⁺ , PbO ₄ -) Pb ₅ (PO ₄) ₂ Pb ₆ (PO ₄) ₈ Cl PbPO ₃ F PbS Pb(SCN) ₂ PbSO ₄ PbS ₂ O ₃ PbSe PbSeO ₄ PbSeO ₄ PbSeO ₄ PbSeO ₄ PbSO ₄	8.7×10^{-14} 2×10^{-15} 2×10^{-14} 3.0×10^{-66} 5.3×10^{-51} 7.9×10^{-43} 7.5×10^{-80} 1×10^{-7} 2.5×10^{-27} 2.0×10^{-5} 1.6×10^{-8} 4.0×10^{-7} 1×10^{-38} 3×10^{-12} 1.45×10^{-7} 4.5×10^{-7}	13.06 14.7 13.7 65.5 50.28 42.10 79.12 7.0 26.60 4.70 7.80 6.40 38 11.5 6.84 6.35

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Formula of Substance	SP	pSP=-log SP
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pb(OH) ₄ PoS Po(SO ₄) ₂ PtBr ₄ PtCl ₄ Pt(OH) ₂ PtO ₂ (Pt ⁴⁺ , 4OH ⁻) PtS Pu(OH) ₃ Pu(OH) ₄ PuO ₂ OH(PuO½, OH ⁻) PuO ₂ (OH) ₂ (PuO½ ⁺ , 2OH ⁻) Pu(IO ₃) ₄ Ra(IO ₃) ₂ Ra(NO ₃) ₂ RaSO ₄ RbBF ₄ RbBH ₄ RbBrO ₃ RbClO ₄ Rb ₃ Co(NO ₂) ₆ [3Rb ⁺ , Co(NO ₂) ₆ ³ -] RbIO ₄ Rb ₂ PtCl ₂ (2Rb ⁺ , PtCl ₆ ² -) RbReO ₄ Rb ₂ SiF ₆ Rb ₂ PtF ₆ (2Rb ⁺ , PtF ₆ ² -) RbReO ₄ Rb ₂ SiF ₆ Rb ₂ Ci ₃ (Rh ³⁺ , 3OH ⁻) Ru ₂ O ₃ (Rh ³⁺ , 3OH ⁻) Sb ₂ O ₃ (Sb ³⁺ , 3OH ⁻) Sb ₂ O ₃ (Sb ³⁺ , 3OH ⁻) Sb ₂ O ₃ (Sb ³⁺ , 3OH ⁻) Sb ₂ C ₃ (Sb ³⁺ , 3OH ⁻) Sb ₂ C ₃ (Sb ³⁺ , 3OH ⁻) Sb ₂ C ₃ (Sb ³⁺ , 3OH ⁻) Sb ₂ C ₃ (Sb ³⁺ , 3OH ⁻) Sh ₂ C ₃ (Sb ³⁺ , 3OH ⁻)	$\begin{array}{c} 6.5 \times 10^{-71} \\ 5 \times 10^{-20} \\ 2.6 \times 10^{-7} \\ 3 \times 10^{-41} \\ 8.0 \times 10^{-29} \\ 1 \times 10^{-35} \\ 1.6 \times 10^{-72} \\ 8 \times 10^{-73} \\ 2 \times 10^{-20} \\ 1 \times 10^{-52} \\ 1 \times 10^{-3} \\ 3.2 \times 10^{-21} \\ 5 \times 10^{-13} \\ 8.8 \times 10^{-10} \\ 6.2 \times 10^{-3} \\ 4.3 \times 10^{-11} \\ 1 \times 10^{-3} \\ 2.5 \times 10^{-4} \\ 2 \times 10^{-2} \\ 2.5 \times 10^{-3} \\ 1.48 \times 10^{-15} \\ 5.5 \times 10^{-4} \\ 2.9 \times 10^{-3} \\ 9 \times 10^{-8} \\ 7.63 \times 10^{-7} \\ 9.6 \times 10^{-4} \\ 2.9 \times 10^{-3} \\ 9 \times 10^{-8} \\ 7.63 \times 10^{-7} \\ 9.6 \times 10^{-4} \\ 5 \times 10^{-7} \\ 9.6 \times 10^{-4} \\ 5 \times 10^{-7} \\ 9.6 \times 10^{-4} \\ 1.0^{-36} \\ 4 \times 10^{-42} \\ 7.9 \times 10^{-18} \\ 1.0 \times 10^{-27} \\ 4.6 \times 10^{-15} \\ 1.0 \times 10^{-25} \\ 1.3 \times 10^{-18} \\ 1.1 \times 10^{-10} \\ \end{array}$	70.2 28.3 6.58 40.5 28.1 5.8 71.8 72.1 73.0 2.21 10.37 3.6 1.7 2.60 14.83 3.26 7.2 6.3 47.7 36.4 17.1 92.8 47.7 36.4 17.1 92.8 47.7 41.4 17.1 92.8 47.7 41.4 17.1 92.8 47.7 41.7 92.8 17.7 92.8 92.9 93.9 94.9 94.9 95.9 96.
$Sr(IO_3)_2$	SrC_2O_4	3.6×10^{-5} 2.5×10^{-9}	4.44 8.61

Table 10 (continued)

Formula of substance	SP	pSP=-log SP
SrMoO ₃ Sr(OH) ₂ Sr ₃ (PO ₄) ₂ SrPO ₃ F SrSO ₃ SrSO ₄ SrSeO ₃ SrSiF ₆ SrWO ₄ Te(OH) ₄ Th(C ₂ O ₄) ₂ Th(1O ₃) ₄ Th(OH) ₄ Th(SO ₄) ₂ TiO(OH) ₂ (TiO ²⁺ , 2OH ⁻) TlBr TlBrO ₃ Tl ₂ CO ₃ TlCl TlClO ₄ Tl ₃ Co(NO ₂) ₆ [3Tl ⁺ , Co(NO ₃) ³⁻] Tl ₂ CrO ₄ Tl ₄ Fe(CN) ₆ TlI TlO ₃ Tl ₄ Po ₄ Tl ₂ PtCl ₆ TlReO ₄ Tl ₂ S TlSCN Tl ₂ SO ₃ TlCSO ₃ Tl ² SO ₃ Tl ² SO ₄ Tl ₂ SO ₄ Tl ₂ SO ₃ Tl ² SO ₃ Tl	$\begin{array}{c} 2 \times 10^{-7} \\ 3.2 \times 10^{-4} \\ 1 \times 10^{-31} \\ 3 \times 10^{-3} \\ 4 \times 10^{-8} \\ 3.2 \times 10^{-7} \\ 8.5 \times 10^{-7} \\ 1.5 \times 10^{-2} \\ 2.2 \times 10^{-10} \\ 3.0 \times 10^{-54} \\ 2.0 \times 10^{-5} \\ 2.5 \times 10^{-15} \\ 3.2 \times 10^{-45} \\ 2.57 \times 10^{-79} \\ 4 \times 10^{-3} \\ 1 \times 10^{-29} \\ 3.89 \times 10^{-6} \\ 3.89 \times 10^{-6} \\ 3.89 \times 10^{-4} \\ 4 \times 10^{-3} \\ 1.7 \times 10^{-4} \\ 4 \times 10^{-2} \\ 1.0 \times 10^{-16} \\ 9.8 \times 10^{-13} \\ 5 \times 10^{-10} \\ 6.5 \times 10^{-8} \\ 3.1 \times 10^{-6} \\ 6.3 \times 10^{-46} \\ 6.7 \times 10^{-8} \\ 3.1 \times 10^{-12} \\ 1.2 \times 10^{-5} \\ 5.0 \times 10^{-21} \\ 1.7 \times 10^{-4} \\ 6.3 \times 10^{-4} \\ 4 \times 10^{-3} \\ 2.0 \times 10^{-7} \\ 1 \times 10^{-5} \\ 1 \times 10^{-14} \\ 3.2 \times 10^{-11} \\ 3.2 \times 10^{-11} \\ 3.2 \times 10^{-11} \end{array}$	6.7 3.50 31 2.5 7.4 6.49 6.07 1.82 9.77 53.52 4.70 14.6 44.5 78.59 2.4 29 5.41 3.41 2.4 3.76 1.4 16.00 12.01 9.3 7.19 5.51 45.20 7.18 11.4 4.92 20.30 3.77 3.2 2.4 6.70 5.51 4.92 20.30 3.77 3.12 2.4 4.92 20.30 3.77 3.12 2.4 4.92 20.30 3.77 3.12 2.4 4.92 20.30 3.77 3.12 2.4 6.70 5.50 7.18 11.4 4.92 20.30 3.77 3.12 20.4 4.5 7.70 5.50 7.18 11.4 4.92 20.30 3.77 3.12 20.30 3.77 3.12 20.4 4.5 7.18 4.92 20.30 3.77 3.19 5.50 5.50 5.50 6.70 5.70
$\dot{U}O_{2}\dot{H}\dot{A}s\dot{O}_{4}(\dot{U}\ddot{O}_{2}^{2}+, \dot{H}\dot{A}s\dot{O}_{4}^{2}-)$ $\dot{U}O_{2}\dot{H}PO_{4}(\dot{U}O_{2}^{2}+, \dot{H}\dot{P}O_{4}^{2}-)$ $\dot{U}O_{2}(\dot{I}O_{3})_{2}$ $\dot{U}O_{2}\dot{K}\dot{A}s\dot{O}_{4}$ $\dot{U}O_{2}\dot{K}\dot{P}O_{4}$ $\dot{U}O_{2}\dot{M}\dot{A}s\dot{O}_{4}$	$ \begin{array}{c} 2.14 \times 10^{-11} \\ 3 \times 10^{-8} \\ 2.5 \times 10^{-23} \\ 7.8 \times 10^{-24} \\ 1.7 \times 10^{-24} \end{array} $	10.67 7.5 22.60 23.11 23.77

Table 10 (continued)

,,,,		_
Formula of substance	SP	pSP==-log SP
$\begin{array}{c} UO_2NH_4PO_4\\ UO_2NaAsO_4\\ U(OH)_3\\ U(OH)_4\\ UO_2(OH)_2(UO_2^{2+},\ 2OH^{-})\\ VO(OH)_2\\ V_2O_5(VO_2^{4+},\ OH^{-})\\ (VO)_3(PO_4)_2\\ W(OH)_4\\ Y(OH)_3\\ Zn_3(AsO_4)_2\\ Zn(CN)_2\\ Zn(CN)_2\\ ZnCO_3\\ ZnCO_3\\ ZnCO_4\\ Zn_2Fe(CN)_6\\ ZnHg(SCN)_4[Zn^{2+},\ Hg(SCN)_4^{2-}]\\ Zn(IO_3)_2\\ Zn(OH)_2(Zn^{2+},\ 2OH^{-})\\ (ZnOH^{+},\ OH^{-})\\ Zn_3(PO_4)_2\\ ZnS \alpha\\ (sphalerite)\\ ZnS \beta\\ (vurcite)\\ ZnS e\\ ZnSeO_2\\ \end{array}$	4.4×10^{-27} 1.3×10^{-22} 1×10^{-19} 1×10^{-45} 1×10^{-22} 7.4×10^{-23}	26.36 21.87 19.0 45.0 22.0 22.13 14.8 24.1 50.0 24.2 26.97 12.59 10.84 8.8 15.39 6.66 7.7 17.15 12.75 32.04 23.80 21.60 31 6.59 23.7 53.96
$ZrO(OH)_{2}$	$ \begin{array}{c c} 1.1 \times 10^{-26} \\ 3.2 \times 10^{-26} \\ 1 \times 10^{-132} \end{array} $	25.50 132

Table 11

Activity Coefficients of Various Ions

		Values of	of activity c	activity coefficients	at the given ionic strength	i fonic strer	ոբth μ*	
Ions	0.0005	0.001	0.0025	0.005	0.01	0.025	0.05	0.1
		Ions of	inorganic	spunoduoo	ds.			
H+ Li+ Rb+, Cs+, NH‡, Ag+, Tl+ V+ Cl-	0.975 0.975 0.975	0.967 0.965 0.964	0.950 0.948 0.945	0.933 0.929 0.924	0.914 0.907 0.898	0.88 0.87 0.85	0.86 0.835 0.80	0.83 0.80 0.75
NO_2^{-} , NO_3^{-} , NO_3	0.975	0.964	0.945	0.925	0.899	0.85	0.805	0.755
ClO ₄ , BrO ₃ , IO ₄ , MnO ₄ , OCN-, SCN- Na+, CdCl+, ClO ₂ , IO ₃ ,	0.975	0.964	976.0	0.926	0.900	0.855	0.81	92.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.975	0.964	0.947	0.928	0.902	98.0	0.82	0.775
S ₂ O ² -, SeO ² -, CrO ² -, HPO ² -	0.903	0.867	0.803	0.740	099.0	0.545	0.445	0.355
* Ionic strength $\mu=$ sent in the solution, and Z_1 , Z_2 ,	$(Z_2^2 + C_3 Z_3^2)$ $Z_3, \dots,$		- 🖺	where C ₁ , C ₂ , C ₃ ,,	C_n are t the charges	he concentrol of these 1	C_n are the concentrations of all ions precharges of these ions.	l tons pre-

0.775 0.405 0.45 0.095 $\begin{array}{c} 0.18 \\ 0.021 \\ 0.065 \end{array}$ 0.1 0.38 0.76 0.37 0.77 0.4550.485 0.52 0.160.815 0.4650.05 0.82 Values of activity coefficients at the given ionic strength $\boldsymbol{\mu}$ 0.81 0.025 $0.325 \\ 0.10 \\ 0.155$ 0.8550.8550.555 $\begin{array}{c} 0.57 \\ 0.595 \\ 0.25 \end{array}$ 0.860.550.675 0.69 0.395 $0.445 \\ 0.20 \\ 0.255$ 0.6650.900 0.9020.901 0.01 0.67Ions of inorganic compounds compounds 0.749 0.755 0.5050.9280.005 0.7420.744 0.9260.927 organic 0.809 0.813 0.612 0.632 0.425 0.4550.00250.8050.805 0.9460.947 0.947fo suoI $0.738 \\ 0.57 \\ 0.588$ 0.868 $\begin{array}{c} 0.870 \\ 0.872 \\ 0.725 \end{array}$ 0.964 0.964 0.001 0.868 0.964 0.9750.0005 0.905 0.906 0.796 0.802 0.668 0.678 0.975 0.975 0.9030.903 MoO²-Cd²+, WO²-Sn⁴⁺ Ce4+. $[Fe(CN)_6]^{3-}$ Fe^{3+} , Cr^{3+} , La^{3+} , In^{3+} , Ions CH₃NH₃, (Ch₂-00CCH₂NH₃, Ch₃NH₃, Ch₃COO-, CH₃COO-, CH₂CICOO-, Hg²⁺, S²⁻, S, Ca³⁺, Cu²⁺, Z Mn²⁺, Fe²⁺, $NH_2^*CH_2^*COO$ [Fe(CN)]-000H Y^{3+} , Pr^{3+} Mg²⁺, PO³⁻,

Table 11 (continued)

Table II (continued)

	0.1		0.79	08.0	0.81 0.36	0.38	0.405	
μh	0.05	-	0.83	0.835	0.845 0.45	0.465	0.485	
onic strengt	0.025		0.865	0.87	0.875 0.55	0.555	0.57	
the given i	0.01 0		0.904 (0.907	0.909	0.67	0.675 0.405	
Values of activity coefficients at the given ionic strength μ	0.005	spunc	0.928 0	0.929	0.930	0.744	0.749 0.51	
activity co	0.0025 0	Ions of organic compounds	0.947 0	0.948	0.948	0.805	0.809	
Values of	0.001 0	ins of org	0.964 0	0.965	0.965	898.0	0.870	
	0.0005 0.	I_{G}	0.975 0.	0.975 0	$\begin{array}{c c} 0.975 & 0\\ 0.903 & 0 \end{array}$	0.903 0	0.905 0.796 0	
	0.0			 	0 0	0		
Tons	-		CCI3COO- CGH,NH H,OHCOO- O-,	CHCOO-,	* ', ', ', ', ', ', ', ', ', ', ', ', ',	0)2-200	00)22-, 00)22-, 	
2	; 		CHCI,COO-, (C,H,),NH+ C,H,COO-, C, C,H,CICOO C,H,CH,CO		(112/17) (114,)3NH (0)2-, HC	-{(CHOHCO); -(CHOHCO); 	H, O, 7-1	
_		!				T T T T T T T	C _g H ₅ C	· · · · · · · · · · · · · · · · · · ·

Activity Coefficients of Various Ions at High Values of the Ionic Strength of a Solution

(Approximate Values)

The table has been compiled by L. Meites* according to the Davis formula:

$$-\frac{\log f_i}{Z_i^2} = \frac{0.511 \sqrt{\mu}}{1 + 1.5 \sqrt{\mu}} - 0.2\mu$$

where μ is the ionic strength of a solution, f_i is the activity coefficient of an ion, Z_i is an ion charge (from 1 to 6). A mean value of ion radii was taken as an effective ion radius.

	log f _i		f_i at Z_i equal to					
μ	$-\frac{1}{Z_i^2}$	1	2	3	4	5	6	
0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	0.076 0.090 0.097 0.094 0.086 0.075 0.063 0.050 0.035 0.020 0.0044	0.84 0.81 0.80 0.81 0.82 0.84 0.87 0.89 0.92 0.96 0.99	0.50 0.44 0.41 0.42 0.45 0.50 0.56 0.63 0.72 0.83 0.96	0.21 0.16 0.14 0.17 0.21 0.27 0.36 0.48 0.66 0.91	0.062 0.037 0.028 0.032 0.042 0.062 0.098 0.16 0.27 0.48 0.85	0.013 0.0058 0.0038 0.0046 0.0072 0.013 0.027 0.058 0.13 0.31 0.78	0.0019 0.00060 0.00033 0.00043 0.00082 0.0020 0.0054 0.016 0.054 0.19 0.69	

^{*} L. Meites, Handbook of Analytical Chemistry, London, 1963.

Calibration of Glassware

Correction A is equal to the difference between 1000 g (mass of one litre of water in a vacuum at 4 °C) and the mass of one litre of water in a vacuum at a temperature indicated in the first column.

Correction B for weighing in air with the aid of brass weights (the density of brass is 8.4 g/cm³) is calculated with an allowance that barometric pressure differs little from the standard one (760 mm Hg) and that the relative humidity of air is about 50%. Since with a change in barometric pressure by 10 mm Hg the value of B changes on average by 14 mg, it is necessary, if pressure deviates greatly from 760 mm, to use a more accurate value B' = B + (P - 760) 1.4 mg, where P is the barometric pressure.

the barometric pressure.

Correction C for the expansion (or compression) of a vessel depending on whether the temperature is above or below the standard one (20°C) is calculated according to the mean expansion coefficient of

glass, equal to 25×10^{-6} .

The last column gives the mass of water in air at experiment temperature occupying at 20 °C a volume of one litre. When calibrating vessels with a smaller capacity, one should take the corresponding part of this mass.

Tem- pera- ture, °C	Mass of 1000 ml of water in a vacuum, g (d·1000)	Cor- rec- tion A, g	Cor- rec- tion B, g	Cor- rec- tion C, g	A+B+C,	1000 - - (A+B+C), g
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	999.81 999.73 999.63 999.52 999.40 999.27 999.13 998.97 998.80 998.62 998.43 998.23 998.02 997.80 997.57 997.33 997.08 996.82	0.19 0.27 0.37 0.48 0.60 0.73 0.87 1.03 1.20 1.38 1.57 1.77 1.98 2.20 2.43 2.67 2.92 3.18	1.10 1.09 1.09 1.09 1.08 1.08 1.07 1.07 1.07 1.06 1.05 1.05 1.05 1.05 1.04 1.04 1.03	+0.28 +0.25 +0.23 +0.20 +0.18 +0.15 +0.13 +0.10 +0.08 +0.05 +0.03 -0.05 -0.08 -0.10 -0.13 -0.15	1.57 1.61 1.69 1.77 1.86 1.96 2.07 2.35 2.49 2.66 2.82 3.00 3.20 3.39 3.61 3.82 4.06	998.43 998.39 998.31 998.23 998.14 998.04 997.93 997.65 997.51 997.51 997.34 997.18 997.00 996.80 996.61 996.39 996.18 995.94

Table 13 (continued)

Tem- peřa- ture, °C	Mass of 1000 ml of water in a vacuum, g (d·1000)	Cor- rec- tion A, g	Cor- rec- tion B, g	Cor- rec- tion C, g	A+B+C,	1000 - - (A+B+C), g
27	996.55	3.45	1.03	$\begin{array}{c} -0.18 \\ -0.20 \\ -0.23 \\ -0.25 \\ -0.30 \\ -0.33 \\ -0.35 \\ -0.38 \end{array}$	4.30	995.70
28	996.27	3.73	1.02		4.55	995.45
29	995.98	4.02	1.02		4.81	995.19
30	995.68	4.32	1.01		5.08	994.92
31	995.37	4.63	1.01		5.36	994.64
32	995.06	4.94	1.01		5.65	994.35
33	994.73	5.27	1.00		5.94	994.06
34	994.40	5.60	1.00		6.25	993.75
35	994.06	5.94	0.99		6.55	993.45

Calculation of the Results of Volumetric-Analytical Determinations*

One millilitre of a titrating solution titrates $N_g E_x$ mg of a substance being determined (N_s is the normality of the titrating solution**, E_x is the equivalent weight of the substance being determined that is given in the table). If g is the weighed portion of the material being analysed in mg and V is the amount of the titrating solution used in titration, then the percentage of substance x being determined is:

$$x = \frac{VN_s E_x \cdot 100}{g}$$

A. Acid-Base Titrations (Acidimetry and Alkalimetry)

Substances used for titration and the concentrations of their normal solutions:

(a) Acids

(4)				
Formula	HCl	II_2SO_4	$IINO_3$	$H_2C_2O_4 \cdot 2H_2O$
Concentration of 1N solutions (g/l)	36.461	49.039	63.0129	63.0333
(b) Alkalies				
Formula		NaOH	KOH	$Ba(OH)_2 \cdot 8H_2O$
Concentration of $1N$ tions (g/l)		39.9972	56.109	157.74

Substance being determined	<u>E</u> <u>M</u> ∗	Equivalent weight, E	log E
Al	1/3	8.99383	95 394
nolphthalein in the presence of mannitol or glycerin) Ba(OH) ₂	1 1/2 1/2 1/2 1/2 1/2	10.811 85.675 157.74 22.0050 30.0047 59.0450	03 387 93 285 19 794 34 252 47 719 77 118

^{*}For the use of the table, see p. 462.

**In the notation N_s , E_x , etc., given here and in the following tables, symbol s, written as a subscript, applies to the titrating solutions, and symbol x applies to the titrates of a substance being determined.

Table 14 (continued)

	r	Equivalent	
Substance being determined	$\frac{E}{M}$	Equivalent weight, <i>E</i>	log E
CaCO ₃	1/2 1/2 1/2 1/2	50.045 81.057 28.040 37.047	69 936 90 879 44 778 56 875
cerin) HBr HCHO ₂ (formic acid)	1 1 1	61.833 80.912 46.0259	79 122 90 801 66 300
HC ₂ H ₃ O ₂	1	60.0530	77 853
$H_2C_4H_4O_4$	1/2	59.045	77 118
(succinic) H ₂ C ₄ H ₄ O ₆	1/2	75.0445	87 532
$H_{\bullet}C_{\bullet}H_{\bullet}O_{\circ}$	1/3	64.0420	80 646
(citric) $H_3C_6H_5O_7 \cdot H_2O$	1/3 1	70.0473 122.125	84 539 08 680
(benzoic) $H_2C_2O_4$	1/2	45.0179	65 339
$\begin{array}{c} \text{(oxalic)} \\ \text{H}_2\text{C}_2\text{O}_4 \cdot 2\text{H}_2\text{O} \\ \text{HCl} \\ \text{HClO}_4 \\ \text{HF} \\ \text{HI} \end{array}$	1/2 1 1 1 1 1	63.0333 36.461 100.459 20.0064 127.9124 175.9106 63.0129	79 957 56 183 00 199 30 117 10 691 24 529 79 943
HIO3 HNO3 H ₃ PO ₄ (with methyl orange, or methyl yellow, or bromocresol blue) H ₃ PO ₄ (with thymolphthalein, or	1	97.9953	99 121
phenolphthalein, or thymol blue in the presence of NaCl)	1/2	48.9977	69 018
H ₃ PO ₄ (with phenolphthalein in the presence of CaCl ₂)	1/3	32.6651	51 408
H ₃ PO ₄ (titration of phosphoromolybdate precipitate)	1/23 1/2	4.2607 49.039	62 948 69 054
$K_2^{\circ}CO_3^{\circ}$ (with thymol blue or phenolphthalein)	1	138.213	14 055
methyl orange, or bromophenol blue, or bromocresol blue) KHCO ₈	1/2 1	69.107 100.119	83 952 00 052

Table 14 (continued)

Substance being determined	E M	Equivalent weight, E	$\log E$
KHC ₄ H ₄ O ₆	1	188.183	27 458
(hydrotartrate) KHC ₈ H ₄ O ₄	i	204.229	31 012
$1 \text{ KH}(10\text{a})_{\text{a}}$	1	389.915 54.109	59 097 74 903
KOH Li ₂ CO ₃ (with thymol blue or phe-	•	-	
nolphthalein)	1	73.887	86 857
methyl orange, or bromophenol	1/2	36.944	56 754
blue, or bromocresol blue) MgCO ₃	1/2	42.157	62 487
MgO	1/2 1	20.152 14.0067	30 432 14 634
6.25 N ("albumen")	_	87.5419	94 222
6.37 N ("casein")	_	89.2227 77.7372	95 048 89 063
NH ₃	1	17.0306 18.0386	23 123 25 620
NH [†]	Ĩ	53.492	72 829
(NH ₄) ₂ SO ₄	1/2	66.070	82 000
nolphthalein of precipitate	4/40	2.29898	36 154
$\begin{bmatrix} \operatorname{Na\dot{Z}n}(\operatorname{UO_2})_3(\operatorname{C_2H_3\dot{O_2}})_9 \cdot 6\operatorname{H_2O} \end{bmatrix} \\ \operatorname{Na_2B_4O_7} \cdot 10\operatorname{H_2O}$	1/10 1/2	190.69	28 033
Na ₂ CO ₃ (with thymol blue or phe- nolphthalein)	1	105.9890	02 526
Na ₂ CO ₃ (with methyl yellow, or	_	200,000	
methyl orange, or bromophenol blue, or bromocresol blue)	1/2	52.9945	72 423
$Na_2CO_3 \cdot 10H_2O$	1/2	143.071 84.0071	15 555 92 432
NaHCO ₃	1 1	39.9972	60 203
NaOH	1/23	1.3467	12 927
PO3- (titration of phosphoromolyb-			
date precipitate)	1/23	4.1292	61 587

B. Oxidation-Reduction Methods (Manganatometry, Chromatometry, Iodometry, Bromatometry, Ceriometry, etc.)

Substances used for titration and the concentrations of their normal solutions:

(a) Oxidizing Agents
Formula
Concentration of 1N
solution (g/l)
So

Table	14	(continued)
I WULE	<i>1</i> T	(CC)(Colourum

			*
Formula	I ₂	$KBrO_3$	$K_2Cr_2O_7$
solution (g/l)	126.9044	27.835	49.032
Formula	KIO3	$Ca(ClO)_2$	NH_4VO_3
solution (g/l)	35.6674	35.745	116.979
(b) Reducing Agents			
Formula Na Concentration of 1N solution	$_{2}\mathrm{S}_{2}\mathrm{O}_{3}\!\cdot\!5\mathrm{H}_{2}\mathrm{O}$	$Fe(NH_4)_2(SO_4)_2 \cdot 6$	H ₂ O FeSO ₄ ·7H ₂ O
	48.18	392.14	278.02
Formula C _{el}	H _g O _g corbic acid)	$Hg_2(NO_3)_2 \cdot 2H_2O$	
Concentration of 1N solution (g/l) 88	·	280.61	
(g/1)	.004	200.01	

Substance being determined	E M	Equivalent weight, E	log E
Al (after precipitation with hydro-		f	
xyquinoline)	1/12	2.24846	35 189
$As (As^{3+} \stackrel{\rightarrow}{\rightleftharpoons} As^{5+}) \dots \dots \dots$	1/2	37.46080	57 358
Ba (after precipitation in the form	1/0	/E 700	
of BaCrO ₄)	1/3	45.780	66 068
xyquinoline)	1/12	17.4150	24 092
n xyquinoiine)		79.904	90 257
BrO=	1/6	21.3170	32 873
Br	1/6	15.6857	19 550
l (phenol)			
CN- (iodometrically and according	1/2	42 00005	11 424
to Schulek)	1/2	13.00895	11 424
of CaC. O.)	1/2	20.040	30 190
of CaC ₂ O ₄)	1, 2	20.040	
xyquinoline)	1/8	14.050	14 768
Ce (after precipitation with hydro-			
xyquinoline)	1/12	11.677	06 733
Cl (active)	1	35.453	54 965
Cl ₂	1/2	35.453	54 965
C10	1/2	25.726	41 037
$\mid \stackrel{ ext{ClO}_{\overline{s}}}{\circ}$, $\mid \stackrel{ ext{}}{\circ}$, $\mid \stackrel{ ext{}}{\circ}$	1/6	13.9035	14 31 2
Co lafter precipitation in the form	4/44	E 2570	70 007
of $K_3Co(NO_2)_6$]	1/11	5.3576	72 89 7

Table 14 (continued)

Substance being determined	E M	Equivalent weight, E	log E
Co (after precipitation with hydro-			
ryquinoline)	1/8	7.3667	86 727
xyquinoline)	1/3	17.3320	23 885
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/3	38.6647	58 731
CrO_2^{2-}	1/6	35.9980	55 628
Cu (indemotrically)	1	63.546	80 309
Cu (titration of precipitate CuSCN	-	33.323	
with normanganate)	1/6	10.5910	02 494
with permanganate) Cu (after precipitation with hydro-	2, 0		
xyquinoline)	1/8	7.9433	90 000
Fe (Fe ³⁺ \rightleftharpoons Fe ²⁺)	1	55.847	74 700
Fe (after precipitation with hydro-	_	-	
ryanipolina)	1/12	4.6539	66 782
xyquinoline) $$ Fe(CN) ₆ [Fe(CN) ₆ \rightarrow Fe(CN) ₆ \rightarrow	1	211.954	32 624
$Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O \qquad \qquad$	1	392.14	59 344
FeO	i	71.846	85 640
Fe_2O_3	1/2	79.846	90 225
	1	151.91	18 159
$FeSO_4$	1	278.02	44 408
Ga (after precipitation with hydro-	_		
xyquinoline)	1/12	5.810	76 418
HCN (iodometrically and according			
to Schulol:	1/2	13.5129	13 075
to Schulek) $H_2C_2O_4$	1/2	45.0180	65 339
I (Ovalie)	4.40	40 0000	70.057
H ₂ C ₂ O ₄ ,2H ₂ O ₄	1/2	63.0333	79 957
HĪ ´	1	127.9124	10 691
HI	1/2	23.5068	37 119
H ₂ O ₀	1/2	17.0074	23 064
H_0S (iodometrically) H_0S	1/2	17.040	23 147
H _o S (bromatometrically and man-			00.044
ganatometrically)	1/8	4.2600	62 941
HSCN (manganatometrically)	1/6	9.8483	99 336
HSCN (iodometrically according to	4.0	# 0000	00 049
Rupp and Schied)	1/8	7.3863	86 843
$\mid \mathrm{H_{2}SO_{3}}$	1/2	41.039	61 320
H ₂ SO ₃	1/3	32.693	51 445 10 348
	1	126.9044	10 340
I- (after oxidation to iodine with	ا ہا	496 0044	10 348
a nitrite)	1	126.9044	10 949
I^- (after oxidation to IO_3^- with	410	04 4507	20 522
bromine)	1/6	21.1507	32 533
$\mid \mathrm{IO}_{\overline{3}} \mid \ldots \mid$	1/6	29.1504	46 464
In (after precipitation with hydro-	4/46	0.5000	00 000
xyquinoline)	1/12	9.5682	98 083
		<u> </u>	

Substance being determined	E M	Equivalent weight, E	log E
KBrO ₃	1/6	27.834	44 458
KClO ₃	1/6	20.426	31 018
K ₂ CrÖ ₄	1/3	64.733	81 113
K ₂ Cr ₂ O ₇	1/6	49.032	69 048
Kare(CIV) _R	1	329.26	51 754
K ₄ Fe(CN) ₆	1	368.36	56 627
K_4 Fe(CN) ₆ ·3H ₂ O	1	422.41	62 573
KH(IO ₃) ₂	1/12	32.4929	51 179
KIO ₃	1/6	35.6674	55 227
KMnO ₄	1/5	31.6075	49 979
KNO ₂ Mg (after precipitation with hydro-	1/2	42.554	62 894
xyquinoline)	4/0		000
Mn (by the bismuthate method).	1/8	3.0381	48 260
Mn (by Volhard's method)	1/5	10.9876	04 090
Mn (by Ford-William's or Hampe's	3/10	16.4814	24 699
method)	1/2	0	10.00%
Mn (after precipitation with hydro-	1/2	27.4690	43 884
xyquinoline)	1/8	0. 7700	81 811
MnO ₂ (treatment with FeSO ₂	1/0	6.5782	81 811
KMnO ₄)	1/2	10 100	63 817
Mo (iodometrically)	1,2	43.4685	98 200
Mo (after reduction with zinc)	1/3	95.94	50 488
Mo (after precipitation with hydro-	-,,0	31.980	30 400
xyquinoline)	1/8	44 002	07 893
INHOH	1/2	11.993 16.5131	21 783
$ NO_{\overline{2}}^{\overline{2}} \cdots \cdots \cdots $	$\tilde{1}/\tilde{2}$	23.0028	36 178
NO ₂ Na [dissolution of precipitate	-	43.0026	30 1,0
$ NaZn(UU_0)_3 \cdot (U_0H_3U_0)_0 \cdot 6H_0() r_0 $			
duction with zinc and titration!	1/6	3.8316	58 338
$ \mathrm{Na_2C_2O_4} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	1/2	67.000	82 607
$Na_2C_2O_4$	1/2	37.221	57 079
NaNOa	1/2	34.4977	53 779
Na_2S $(S^2- \rightarrow S^0)$	1/2	39.022	59 131
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2	63.021	79 949
$ \text{Na}_2 \text{S}_2 \text{U}_3 \dots \dots \dots \text{Na}_2 \text{S}_2 \text{U}_3 \dots \dots \text{Na}_2 \text{S}_2 \text{U}_3 \dots $	1	158.11	19 896
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	248.18	39 477
Nb	1/2	46.453	66 701
Nb (empirically)		49.9	69 810
Ni (after precipitation with hydro-	4/0	# 000	00 504
xyquinoline)	1/8	7.339	86 564
O ("activated oxygen")	1/2	7.9997	90 307
O ₃	1/2	23.9991	38 019
P (titration of phosphoromolybdate			
precipitate with permanganate after reduction with zinc)	1/36	0.8638	93 469
arter reduction with zinc)	1/30	0.0030	33 403

Table 14 (continued)

Substance being determined	E M	Equivalent weight, E	log E
Pb (after precipitation of PbC ₂ O ₄) Pb (after precipitation of PbCrO ₄) Pb (after precipitation with hydro-	1/2	103.595	01 534
	1/3	69.063	83 925
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/8	25.899	41 328
	1/2	16.032	20 499
$S(S^2-\rightarrow SO_4^2)$	1/8	4.008	60 293
	1/6	9.6803	98 589
SCN- (iodometrically according to Rupp and Schied)	1/8	7.2603	86 095
	1/2	32.032	50 558
SO ² -	1/2	40.031	60 240
	1/3	32.021	50 543
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1/8 1/2	112.13 14.016	04 972 14 662
SO ₂ ²⁻ (through barrium chromate)	1/12	60.875	78 444
$S_2O_3^{2-}(2S_2O_3^{2-} \rightarrow S_4O_6^{2-})$		10.146	00 6 29
xyquinoline)	1/2	59.345	77 338
xyquinoline) Ti Ti (after precipitation with hydro-	1/16	14.502	16 143
	1	47.90	68 034
Ti (after precipitation with hydro-	1/8	5.988	77 728
xyquinoline)	1/2	119.015	07 560
U (after precipitation with hydro- xyquinoline)	1/12	19.836	29 745
$V (VO^{2+} \rightarrow VO_{3}^{-}) \dots V$ (after precipitation with hydro-	1 1/8	50.942 6.368	70 708
xyquinoline) Zn (after precipitation with hydro-	1/8	8.171	80 400 91 228
xyquinoline)	1/16	5.701	75 595

C. Methods of Precipitation and Complexing*

Substances used for titration and the concentrations of their normal solutions:

Formula	. AgNO ₃	$Hg(NO_3)_2 \cdot H_2O$	KSCN	NaCl
solution (g/l) Formula	169.873	171.31 Hg ₂ (NO ₃) ₂ ·2H ₂ O	97.184	58.443 K ₂ CrO ₄
solution (g/l)	. 76.120	280.61		97.099

^{*} For methods of titration with complexone III, see section D, p. 130.

Table 14 (continued)

			·
Substance being determined	E M	Equivalent weight, E	log E
Ag	1	107.868	03 289
AgNO.	Ιi	169.873	23 012
AgNO ₃	1/2	68.670	83 677
Br-`	1	79.904	90 257
Br	_ 		
Fajans)	1	26.0179	41 527
Fajans)	2	52.0357	71 630
<u>Cl-</u>	1	35.453	54 965
F- (after precipitation in the form			i
OI PDCIF)	1	18.9984	27 872
IIBr	1	80.912	90 801
HCN (according to Mohr, Volhard,	,	07 0950	/2.470
Fajans)	1 2	27.0258	43 178
I HCN (according to Liebig, Deniges)	1 1	54.0516 36.461	73 281 56 183
HCl	1 1	127.9124	10 691
	1	59.090	77 151
HSCN (according to Volhard) Hg (with rhodanide)	1/2	100.295	00 128
I I	1 1	126.9044	10 348
KBr	li	119,006	07 557
KCN (according to Mohr, Volhard,			" " " "
	1	65.120	81 371
KCN (according to Liebig, Deniges)	2	130.240	11 474
KCl	1	74.555	87 248
KI	1	166.006	22 012
NH₄Cl	1	53.492	72 829
NaBr	1	102.894	01 239
NaCl	1	58.443	76 673
NaI	1	149.8942	17 578
SCN- (according to Volhard)	1	58.082	76 404

D. Methods of Titration with Complexone III

(with sodium ethylenediaminetetraacetate, EDTA, trilon B)

Substances used for titration and the concentrations of their normal (molar) solutions:

Formula $Na_2H_2C_{10}H_{12}O_8N_2$ $Na_2H_2C_{10}II_{12}O_8N_2 \cdot 2H_2O$ Concentration of 1N (1M) solution

Substance being determined	$\frac{E}{M}$	Equivalent weight, E	$\log E$
Ag [after adding K ₂ Ni(CN) ₄] Al	2	215.736	33 392
	1	26.9815	43 106

Table 14 (continued)

Substance being determined	$\frac{E}{M}$	Equivalent weight, E	log E
As (in the form of MaNII As())	1	74.9216	87 461
As (in the form of MgNH ₄ AsO ₄)	1	138.9192	14 276
AsO_4^{3-} (in the form of MgNH ₄ AsO ₄)	L		
Ba	1 1	137.34	13 780
Bi	1	208.980	32 010
Br (through AgBr)	2	159.808	20 360
CN- (after adding Ni2+ salt)	4	104.0714	01 733
Ca	1	40.08	60 293
Cd	1	112.40	05 077
Ce	1	140.12	14 650
Ce	2	70.906	85 068
Co	1	58.9332	77 036
Cr	1	51.996	71 597
Cu	ī	63.546	80 309
F (after adding Ca ²⁺ salt)	$\hat{f 2}$	37.9968	57 974
F (after adding Ca - Sait)	ī	18.9984	27 872
F (through PbClF)	î	55.847	74 700
Fe	1	69.72	84 336
Ga	1	200.59	30 231
llg			
I (through Agl)	2 1	253.8088	40 451
In		114.82	06 002
1 12	1	192.2	28 375
K [in the form of NaK2Co(NO2)6]	2	78.204	89 323
La	1	138.91	14 273
La Mg	1	24.305	38 570
Mn	1	54.9381	73 987
Mn	1	95.94	98 200
I Na lin the form of			
$NaZn(UO2) \cdot (C2H3O2)9 \cdot 6H2O]$	1	22.9898	36 154
1 Ni	1	58.71	76 871
P (in the form of MgNH ₄ PO ₄)	1	30.9738	49 099
PO3- (in the form of MgNH ₄ PO ₄)	1	94.9714	97 759
1 DK	1	207.19	31 637
Pd [after adding K ₂ Ni(CN) ₄]	1	106.4	02 694
Pt lefter adding K Ni(CN).	1	195.09	29 024
Pt [after adding K ₂ Ni(CN) ₄] S (in the form of BaSO ₄)	î	32.064	50 602
SCN= (through AgSCN)	$\hat{2}$	116.16	06 506
SCN- (through AgSCN)	1 I	96.062	98 255
SO2- (in the form of BaSO4)	1	118.69	07 441
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	i	87.62	94 260
Sr	î l	232.038	36 556
Th	1	47.90	68 034
Ti	1	204.37	31 042
Tl	2	476.06	67 766
[U			
V(IV)	1	50.942	70 708
W (in the form of CaWO ₄)	1	183.85	26 446
Zn	1	65.37	81 538
Zr	1	91.22	96 009

Table 15

Masking Reagents in Titration with Complexone III

Masking reagent	Hd	Indicator (or method)	Ions being masked	Ions being titrated
Ascorbic acid	2.5	Pyrocatechol violet	Cu ²⁺ , Hg ²⁺ , Fe ³⁺	Bi ³⁺ , Th ^{IV}
Ascorbic acid + + KCN	10	Eriochrome Black T	Fe ³⁺ and all ions being Mn ²⁺ masked by KCN	Mn ²⁺ , Pb ²⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺
Ascorbic acid + KI or ascorbic acid + KSCN	5-6	PAN*	Cu ²⁺ , Hg ²⁺	$\mathrm{Zn^{2+}}$
Citrate-ion	2-6	PAN*	UO2+, ThIV, ZrIV, Sn2+	Zn ²⁺
Citrate-ion	2	Potentiometric- ally	UO2+, Th ^{1V} , Zr ^{1V} , Sb ³⁺ , Ti ^{1V} , Nb ^V , Ta ^V , Mo ^{VI} , W ^{VI} , Be ²⁺ , Fe ³⁺ , Cr ³⁺	Cd ²⁺ , Cu ²⁺ , Hg ²⁺ , Pb ²⁺ , Zn ²⁺ , Y ³⁺
Cyanide-ion	10	Eriochrome Black T	Cu ²⁺ , Co ²⁺ , Hg ²⁺ , Ni ²⁺ , Zn ²⁺ , Cd ²⁺ , Pt ²⁺ , Pd ²⁺ , Ag ⁺ , Tl ³⁺ . The addition of formaldehyde or chloral hydrate demasks Cd ²⁺ and Zn ²⁺	Ca ²⁺ , Mg ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺ , Mn̄ ²⁺ , In ³⁺ (RE ³⁺ , **, Ga ³⁺
* PAN: 1-(2-pyridy ** RE: rare-earth el	yl-azo)-? lements	* PAN: 1-(2-pyridyl-azo)-2-naphthol.	Sc).	

Table 15 (continued)

Masking reagent	рH	Indicator (or method)	Ions being masked	Ions being titrated
Diethyl dithiocar- bamate	10	Eriochrome Black T	Hg ²⁺ , Pb ²⁺ , Cu ²⁺ , Pd ²⁺ , Bi ³⁺	Zn ²⁺ , Mn ²⁺ , Co ²⁺ , Ni ²⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺
2,3-Dimercaptopro- panol (dimercap- rol, dicaptol, BAL)	10	Eriochrome Black T	Hg ²⁺ , Cd ²⁺ , Zn ²⁺ , Pb ²⁺ , Bi ³⁺ , Ag ⁺ , As ³⁺ , Sb ³⁺ , Sn ^{IV} (Cu ²⁺ , Co ²⁺ , Ni ²⁺ , Mn ³⁺ and Fe ³⁺ only in small quantities, since their complexes with the masking reagent are strongly coloured)	Ca ³⁺ , Mg ²⁺ , Sr ²⁺ , Ba ²⁺ (and Mn ²⁺ , in the presence of hydroxylamine and triethanolamine)
Fluoride-ion	9	PAN*	Be2+, NbV, TaV, TiIV	Cu ²⁺ , Zn ²⁺
Fluoride-ion	9	Pyrocatechol violet	Al3+, Ti ^{IV}	Cu ²⁺ (Fe ³⁺ by back titra- tion)
Fluoride-ion	10	Eriochrome Black T	Al ³⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ (RE ³⁺)**	Sr ²⁺ , Zn ²⁺ , Cd ²⁺ , Mn ²⁺ (Ni ²⁺ and Co ²⁺ by back titration)
Formic acid or formaldehyde	2.5	Pyrocatechol violet	Hg ² +	Bi3+, ThIV
** PAN: 1-(2-pyridyl-azo)-		2-naphthol. (lanthanoids, Y and Sc).	c).	

Table 15 (continued)

				a dote so (continued)
Masking reagent	рН	Indicator (or method)	Ions being masked	Ions being titrated
Hydrogen peroxide	10	Eriochrome Black T	Ti ^{IV} , UO ₂ +	Zn ²⁺ , Mg ²⁺
Iodide-ion	2-6	PAN*	Hg ²⁺ , Cu ²⁺ , Tl ³⁺	Zn ²⁺
Oxalate-ion	23	Pyrocatechol violet	Sn ²⁺ , (RE ³⁺)**	Bi ³⁺
Pentandion-2,4	7	Potentiometric- ally	Al³+, UO½+	La ³⁺ , (RE ³⁺)**, Zn ²⁺
Pentandion-2,4+ + citrate-ion	7	Potentiometric- ally	Al3+, ThIV	Zn ²⁺
Sulphosalicylic acid	4.5	Potentiometric- ally	U02+, Al3+	(RE3+)**, Y3+, ThIV
Tartrate-ion	5-6	PAN*	U0½+, Sb³+	Zn ²⁺ , Cd ²⁺ , Co ²⁺ , Ni ²⁺ , Cu ²⁺ , (RE ³⁺)**
* PAN: 1-(2-pyridyl-azo)-	l-azo)-; ements	2-naphthol. (lanthanoids, Y and Sc).	c).	

Table 15 (continued)

				laote 10 (continuea)
Masking reagent	pH	Indicator (or method)	Ions being masked	lons being titrated
Tartrate-ion	7	Potentiometric- ally	Mo ^{IV} , Nb ^V , Sb ³⁺ , W ^{VI} , UO ₂ +	Zn ²⁺ , Cd ²⁺ , Cu ²⁺ , Hg ²⁺ , Pb ²⁺
Thiomalate	က	Pyrocatechol violet	Fe ³⁺ , Bi ³⁺	Th ^{IV}
Thiourea	2-6	PAN*	Cu ²⁺ , Hg ²⁺	Zn ²⁺
Thiosemicarbazide	5	PAN*	Cu ²⁺ , Hg ²⁺	Zn ²⁺ , Cd ²⁺ , Pb ²⁺
Thiosulphate-ion	9	PAN*	Cu²+	Zn ²⁺ , Cd ²⁺ , Ni ²⁺
Triethanolamine	01	Eriochrome Black T	Al ³⁺ , Fe ³⁺ , Sn ^{IV}	Mg ²⁺ , Zn ²⁺ , Cd ²⁺ [Mn ²⁺ in the presence of
	11-12	Murexide	Al ³⁺ , Fe ³⁺ , (Mn ^{III})	ascorbic acid, Pb^{2+} and $(RE^{2+})^{**}$ Ca ²⁺ , Ni ²⁺
Unithiol (sodium 2,3-dimercapto-propansulphona-te)	10-11	Eriochrome Black T	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ca ²⁺ , Mg ²⁺ , Sr ²⁺ , Ba ²⁺
* PAN: 1-(2-pyridy ** RE: rare-earth el	/l-azo)-2 ements	* PAN: 1-(2-pyridyl-azo)-2-naphthol. ** RE: rare-earth elements (lanthanoids, Y and Sc).	36).	

Calculation of the Results of Gas and Gasometric Analyses*

If an analysis of a substance is reduced to the preparation of a certain gas whose volume is measured, then, for further estimates, this volume must be brought to standard conditions, i.e., to a temperature of 0°C and a pressure of 760 mm Hg.

Here, three cases are possible:

1. Gas collected dry over mercury

In this case the gas volume under standard conditions (V_0) is found by the approximate but sufficiently accurate formula:

$$V_0 = V \frac{P_0}{(1 + \alpha t)760} = V$$

where V = measured gas volume;

t = gas temperature; $\alpha = 0.003670$;

 P_0 = barometer reading brought to 0°C.

$$F = \frac{P_0}{(1+\alpha t)\ 760}$$

Value P_0 is found by the formula:

$$P_0 = \left(P_t - \frac{1}{8}t'\right) \,\mathrm{mm}\,\mathrm{Hg}$$

where P_t = barometer reading; t' = temperature of mercury in the barometer (the temperature of the air around the barometer is measured).

$$\log V_0 = \log V + \log F$$

The values of $\log F$ for various values of t and P_0 are given in Table 16,A.

2. Gas collected over water

In this case a correction for mercury temperature must be made in the barometer reading and water vapour pressure at temperature t must be deducted:

$$P_0 = P_t - \frac{1}{8} t' - P_B$$

where P_B is the water vapour pressure at the corresponding temperature of gas over water; it is given in section B of this table.

^{*} For the use of the table, see p. 468.

3. Gas collected over KOH solution or over a saturated NaCl solution

In this case the value of water vapour pressure over the corresponding absorbing aqueous solution must be deducted from the value of P_i :

$$P_0 = P_t - \frac{1}{8}t' - P_B$$

The values of P_B for aqueous solutions are given in Table 16,B. If the collected gas is the component whose content is determined in the substance being analysed, then, to find the mass of this gas, the found volume V_0 must obviously be multiplied by the density ρ of this gas under standard conditions; hence, the percentage (x) of the unknown component is:

$$x = \frac{V_0 \times \rho \times 100}{g}$$

where g is the weighed portion of the substance being analysed.

The corresponding values of the mass of one litre of gas in grams or of one millilitre of gas in milligrams and their logarithms are given in Table 16,B.

But if, according to the mass of collected gas, a calculation is made of the percentage of a certain component of a substance which is being analysed and from which this gas is separated, then the mass found must be multiplied by the value of f'. Table 16,D gives the values of f', which are the product of the conversion factor and gas density.

The conversion factor is estimated on the basis of the reaction as a result of which the gas being measured is obtained. Thus, in determining Al according to the amount of liberated H2, we find that three H atoms are formed per Al atom:

$$f' = \frac{a_{\text{Al}}}{(3a_{\text{H}})(\rho_{\text{H}})} + \frac{a_{\text{Al}}\rho_{\text{H}}}{3a_{\text{H}}} = \frac{26.982 \times 0.08988}{3 \times 1.0080} = 0.8020$$

where a_{A1} = atomic weight of Al; a_{H} = atomic weight of H; ρ_{H} = density of H₂ according to Table 16,C. Thus, the percentage of the unknown compound (x) is found by the formula:

$$x = \frac{V_0 f' \times 100}{g}$$

or

$$x = \frac{VFf' \times 100}{g}$$

Table 16 (continued)

A. Bringing the Gas Volume to Standard Conditions

Tem- pera-		Correc	ted baro	meter re	ading P_0	mm Hg		Propor-
ture, °C	660	661	662	663	664	665	666	tional parts
]	Logarit	hm of n	nultipli	er F		
5 6 7 8 9	93 083 92 927 92 771 92 616 92 462	92 993 92 837 92 682	93 058 92 903 92 748	93 280 93 134 92 969 92 814 92 659	93 345 93 189 93 034 92 879 92 724	93 410 93 254 93 099 92 944 92 789	93 476 93 320 93 164 93 009 92 855	66 1 6.6 2 13.2 3 19.8 4 26.4 5 33.0 6 39.6
10 11 12 13 14	92 308 92 154 92 001 91 849 91 697	92 220 92 067	92 439 92 286 92 133 91 980 91 828	92 505 92 352 92 199 92 046 91 894	92 570 92 417 92 264 92 111 91 959	92 635 92 482 92 329 92 176 92 024	92 701 92 547 92 394 92 242 92 090	7 46.2 8 52.8 9 59.4 1 15.4 2 30.8 3 46.2
15 16 17 18 19	91 546 91 395 91 245 91 095 90 946	91 461 91 311 91 161	91 526 91 376 91 226	91 743 91 592 91 442 91 292 91 143	91 808 91 657 91 507 91 357 91 208	91 873 91 722 91 572 91 422 91 273	91 939 91 788 91 638 91 488 91 339	61.6 77.0 92.4 7 107.8 8 123.2 9 138.6
20 21 22 23 24	90 797 90 649 90 501 90 354 90 207	90 714 90 567		90 994 90 846 90 698 90 551 90 404	91 059 90 911 90 763 90 616 90 469	91 124 90 976 90 828 90 681 90 534	91 190 91 042 90 894 90 747 90 600	148 1 14.8 29.6 3 44.4 59.2 74.0 88.8 7 103.6 118.4
25 26 27 28 29		89 980 89 836 89 690	90 046 89 901	90 258 90 112 89 967 89 822 89 678	90 323 90 177 90 032 89 887 89 743	90 388 90 242 90 097 89 952 89 808	90 454 90 308 90 163 90 018 89 874	142 1 14.2 2 28.4 3 42.6
30 31 32 33 34	89 337 89 194 89 051 88 909 88 767	89 260 89 117 88 975	89 326 89 183 88 041	89 534 89 391 89 248 89 106 88 964	89 600 89 457 89 314 89 172 89 030	89 665 89 522 89 379 89 237 89 095	89 730 89 587 89 444 89 302 89 160	56.8 71.0 6 85.2 7 99.4 8 113.6 9 127.8

Table 16 (continued)

Tem- pera-		Corrèc	ted bar	ometer r	eading P	, mm H	g	Propor-
ture, °C	667	668	669	670	671	672	673	tional parts
		L	ogarith	m of m	ultiplie	r F		
5 6 7 8 9	93 229	93 450 93 294 93 139	93 359 93 205	93 580 93 425 93 270	93 801 93 645 93 490 93 339 93 180	93 866 93 710 93 554 93 399 93 244	93 931 93 775 93 619 93 464 93 309	65 1 6.5 2 13.0 3 19.5
10 11 12 13 14	92 766 92 612 92 459 92 307 92 155	92 524 92 372	92 742 92 589 92 437	92 807	93 026 92 872 92 719 92 567 92 415	93 090 92 937 92 784 92 631 92 479	93 155 93 062 92 849 92 696 92 544	26.0 32.5 39.0 7 45.5 8 52.0 9 58.5
15 16 17 18 19	91 854 91 703	92 069 91 918 91 768 91 618 91 469	91 983 91 833 91 683		92 264 92 113 91 963 91 813 91 664	92 328 92 174 92 027 91 877 91 728	92 393 92 242 92 092 91 942 91 793	151 1 15.1 2 30.2 3 45.3 4 60.4
20 21 22 23 24	91 107 90 959 90 812	91 320 91 172 91 024 90 877 90 730	91 237 91 089 90 942	91 302 91 154	91 515 91 367 91 219 91 072 90 925	91 579 91 431 91 283 91 136 90 989	91 644 91 496 91 348 91 201 91 054	5 75.5 6 90.6 7 105.7 8 120.8 9 135.9
25 26 27 28 29	90 373 90 228	90 438 90 293 90 148	90 503 90 358 90 213	90 278	90 779 90 633 90 488 90 343 90 199	90 843 90 697 90 552 90 407 90 263	90 908 90 762 90 617 90 472 90 328	145 1 14.5 2 29.0 3 43.5 4 58.0 5 72.5
30 31 32 33 34	89 653 89 510 89 368	89 861 89 718 89 575 89 433 89 291	89 783 89 640 89 498	89 990 89 847 89 704 89 562 89 420	90 055 89 912 89 769 89 627 89 485	90 120 89 977 89 834 89 692 89 550	90 185 90 042 89 899 89 757 89 615	58.0 72.5 6 87.0 7 101.5 8 116.0 9 130.5

Table 16 (continued)

Tem-		Corre	cted bar	ometer r	eading Po	, mm Hg	5	Propor-
ture, °C	674	675	876	677	678	679	680	tional parts
]	Logarit	hm of n	nultipli	er F		
5 6 7 8 9	93 995 93 839 93 683 93 528 93 373	93 904 93 748 93 593	93 968 93 812 93 657	94 188 94 032 93 876 93 721 93 566	94 252 94 096 93 940 93 785 93 630	94 316 94 160 94 004 93 849 93 694	94 380 94 224 94 068 93 913 93 758	64 1 2 6.4 1 12.8 3 19.2 4 25.6 5 32.0 6 38.4 7 44.8
10 11 12 13 14	93 219 93 066 92 913 92 761 92 609	93 131 92 978 92 826	93 195 93 042	93 412 93 259 93 106 92 954 92 802	93 476 93 323 93 170 93 018 92 866	93 540 93 387 93 234 93 082 92 930	93 604 93 451 93 298 93 145 92 993	154 1 15.4 2 30.8
15 16 17 18 19	92 458 92 307 92 156 92 006 91 857	92 371 92 221	92 586 92 435 92 285 92 135 91 986	92 651 92 500 92 349 92 199 92 050	92 715 92 564 92 413 92 263 92 114	92 779 92 628 92 478 92 327 92 178	92 842 92 691 92 541 92 391 92 242	3 46.2 4 61.6 5 77.0 6 92.4 7 107.8 8 123.2 9 138.6
20 21 22 23 24	91 708 91 560 91 412 91 265 91 118	91 773 91 625 91 477 91 330 91 183	91 837 91 689 91 541 91 394 91 247	91 901 91 753 91 605 91 458 91 311	91 965 91 817 91 669 91 522 91 375	92 029 91 881 91 733 91 586 91 439	92 093 91 945 91 797 91 650 91 503	148 1 14.8 2 29.9 3 44.4 4 59.2 5 74.0 6 88.8 7 103.6
25 26 27 28 29		91 037 90 891 90 746 90 601 90 457	90 955 90 810	91 165 91 019 90 874 90 729 90 585	91 229 91 083 90 938 90 793 90 649	91 293 91 147 91 002 90 857 90 713	91 357 91 211 91 066 90 911 90 777	142 1 14.2 2 28.4 3 42.6 4 56.8
30 31 32 33 34		89 885	90 235 90 092 89 950	90 442 90 299 90 156 90 014 89 872	90 506 90 363 90 220 90 078 89 936	90 570 90 427 90 284 90 142 90 000	90 634 90 491 90 348 90 206 90 064	56.8 5 71.0 6 85.2 7 99.4 8 113.2 9 127.8

Table 16 (continued)

Tem- pera-		Corre	cted bar	rometer r	eading P	o, mm He	3	Propor-
ture, °C	681	682	683	684	685	686	687	tional parts
]	Logarit	hm of r	nultipli	er F		
5 6 7 8 9	94 444 94 288 94 132 93 977 93 822	94 351 94 195 94 040	94 415	94 323 94 168	94 698 94 544 94 387 94 232 94 077	94 761 94 605 94 449 94 294 94 140	94 825 94 669 94 513 94 358 94 203	63 1 6.3 2 12.6 3 18.9 4 25.2
10 11 12 13 14	93 668 93 515 93 362 93 209 93 057	93 425	93 644 93 489	93 705 93 552 93 400	93 923 93 769 93 616 93 464 93 312	93 986 93 832 93 679 93 527 93 375	94 049 93 896 93 743 93 590 93 438	25.2 31.5 6 37.8 7 44.1 8 50.4 9 56.7
15 16 17 18 19	92 906 92 755 92 605 92 455 92 306		92 883	92 946 92 796 92 646	93 161 93 010 92 860 92 710 92 561	93 224 93 073 92 923 92 773 92 624	93 287 93 136 92 986 92 836 92 687	151 1 15.1 2 30.2 3 45.3 4 60.4
20 21 22 23 24	92 157 92 009 91 861 91 714 91 567	92 221 92 073 91 925 91 778 91 631	92 285 92 137 91 989 91 842 91 695	92 348 92 200 92 052 91 905 91 758	92 412 92 264 91 116 91 969 91 822	92 475 92 327 92 179 92 032 91 885	92 538 92 390 92 242 92 095 91 948	5 75.5 6 90.6 7 105.7 8 120.8 9 135.9
25 26 27 28 29		91 194	91 549 91 403 91 258 91 113 90 969	91 466 91 321	91 676 91 530 91 385 91 240 91 096	91 739 91 593 91 448 91 303 91 159	91 802 91 656 91 511 91 366 91 222	145 1 14.5 2 29.0 3 43.5 4 58.0 5 72.5
30 31 32 33 34	90 698 90 555 90 412 90 270 90 128	90 761 90 618 90 475 90 333 90 191	90 825 90 682 90 539 90 397 90 255	90 889 90 746 90 603 90 461 90 319	90 952 90 809 90 666 90 524 90 382	91 015 90 872 90 729 90 587 90 445	91 079 90 936 90 793 90 651 90 509	6 87.0 7 101.5 8 116.0 9 130.5

Table 16 (continued)

Tem- pera-		Corre	cted bar	ometer r	eading P_0	o, mm He	3	Propor-
ture, °C	688	689	690	691	692	693	694	tional parts
	İ]	Logarit	hm of n	nultipli	er F		
5 6 7 8 9	94 888 94 732 94 576 94 421 94 266	94 639 94 484	94 858 94 702 94 547	94 921 94 765 94 610	95 139 94 983 94 828 94 673 94 518	95 202 95 046 94 891 94 736 94 581	95 265 95 109 94 953 94 798 94 643	63 1 6.3 12.6 3 12.6 3 18.9 4 25.9 5 31.5 6 37.8 7 44.1
10 11 12 13 14	94 112 93 959 93 806 93 653 93 501	94 022 93 869	94 085 93 932 93 779	94 148 93 995	94 364 94 210 94 057 93 905 93 753	94 427 94 273 94 120 93 968 93 816	94 489 94 336 94 183 94 030 93 878	154 1 15.4 2 30.8 3 46.2
15 16 17 18 19	93 350 93 199 93 049 92 899 92 750		93 325 93 175		93 602 93 451 93 301 93 151 93 002	93 665 93 514 93 364 93 214 93 065	93 727 93 576 93 426 93 276 93 127	3 46.2 4 61.6 5 77.0 6 92.4 7 107.6 8 123.2 9 138.6
20 21 22 23 24	92 601 92 453 92 305 92 158 92 011	92 664 92 516 92 368 92 221 92 074	92 727 92 579 92 431 92 284 92 137	92 790 92 642 92 494 92 347 92 200	92 853 92 705 92 557 92 410 92 263	92 916 92 768 92 620 92 473 92 326	92 979 92 830 92 682 92 535 92 388	148 1 14.8 2 29.6 3 44.4 59.2 74.0 6 88.8 7 101.6 8 118.5
25 26 27 28 29	91 719	91 782 91 637	91 845 91 700 91 555		92 117 91 971 91 826 91 681 91 537	92 180 92 034 91 889 91 744 91 600	92 242 92 096 91 951 91 806 91 662	9 133.2
30 31 32 33 34	91 142 90 999 90 856 90 714 90 572	91 205 91 061 90 919 90 777 90 635	91 268 91 125 90 982 90 840 90 698	91 331 91 188 91 045 90 903 90 761	91 394 91 251 91 108 90 966 90 824	91 456 91 313 91 170 91 028 90 886	91 519 91 376 91 233 91 091 90 949	28.4 28.6 42.6 56.8 571.0 85.2 799.4 8113.6 9 127.8

Table 16 (continued)

Tem- pera-		Согге	cted bar	ometer r	eading P	n, mm He	g	Propor-
ture, °C	695	696	697	698	699	700	701	tional parts
		I	Logarit	hm of n	nultipli	er F		
5 6 7 8 9	95 328 95 172 95 015 94 861 94 706	94 923	95 296 95 140 94 986	95 358 95 203	95 577 95 421 95 265 95 110 94 955	95 639 95 483 95 327 95 172 95 017	95 701 95 545 95 389 95 234 95 079	62 1 6.2 2 12.4 3 18.6 4 24.8
10 11 12 13 14	94 552 94 399 94 246 94 093 93 941	94 461 94 308 94 155	94 524 94 370 94 218	94 585	94 801 94 648 94 495 94 342 94 190	94 863 94 710 94 557 94 404 94 252	94 925 94 772 94 619 94 466 94 314	4 24.8 5 31.0 6 37.2 7 43.4 8 49.6 9 55.8
15 16 17 18 19	93 790 93 639 93 489 93 339 93 190	93 701 93 551 93 401		93 826 93 676	94 039 93 888 93 738 93 588 93 439	94 101 93 950 93 800 93 650 93 501	94 163 94 012 93 862 93 712 93 563	151 1 15.1 2 30.2 3 45.3 4 60.4
20 21 22 23 24	93 041 92 893 92 745 92 598 92 451	92 955 92 807	93 018 92 870 92 723	93 080 92 932 92 785	93 290 93 142 92 994 92 847 92 700	93 352 93 204 93 056 92 909 92 762	93 414 93 266 93 118 92 975 92 824	5 75.5 6 90.6 7 105.4 8 120.8 9 135.9
25 26 27 28 29	92 159 92 014 91 869	92 367 92 221 92 076 91 931 91 787	92 284	92 492 92 346 92 201 92 056 91 912	92 554 92 408 92 263 92 118 91 974	92 616 92 470 92 325 92 180 92 036	92 678 92 532 92 387 92 242 92 098	145 1 14.5 2 29.0 3 43.5 4 58.0 7 72.5 6 87.0 7 101.0
30 31 32 33 34	91 295	91 501	91 563 91 420 91 278		91 831 91 688 91 545 91 403 91 261	91 893 91 750 91 607 91 465 91 323	91 955 91 812 91 669 91 527 91 385	6 87.0 7 101.0 8 116.0 9 130.5

Table 16 (continued)

Tem- pera-		Corre	cted bar	ometer r	eading P_0	o, mm He	5	Propor-
ture,	702	703	704	705	706	707	708	tional parts
		1	Logarit	hm of r	nultipli	er F		
5 6 7 8 9		95 668 95 513	95 730 95 574	95 636	96 009 95 859 95 698 95 543 95 388	96 071 95 915 95 759 95 604 95 450	96 132 95 976 95 820 95 665 95 511	62 1 8.2 12.4 3 18.6 4 24.8 5 31.0 6 37.2 7 43.4
10 11 12 13 14	94 987 94 834 94 681 94 528 94 376	94 896 94 743 94 590	95 111 94 957 94 804 94 652 94 500		95 234 95 080 94 927 94 775 94 623	95 296 95 142 94 989 94 837 94 685	95 357 95 203 95 050 94 898 94 746	154 1 15.4 2 30.8
15 16 17 18 19	94 225 94 074 93 924 93 774 93 625	94 287 94 136 93 986 93 836 93 687	94 349 94 198 94 048 93 898 93 749	94 260	94 472 94 321 94 171 94 021 93 872	94 534 94 383 94 233 94 083 93 934	94 595 94 444 94 294 94 144 93 995	3 46.2 4 61.6 5 77.0 6 92.4 7 107.8 8 123.2 9 138.6
20 21 22 23 24	93 476 93 328 93 180 93 033 92 886	93 538 93 390 93 242 93 095 92 948	93 600 93 452 93 304 93 157 93 010	93 662 93 514 93 366 93 219 93 072	93 723 93 575 93 427 93 280 93 133	93 785 93 637 93 489 93 342 93 195	93 846 93 698 93 550 93 403 93 256	148 1
25 26 27 28 29	92 594 92 449	92 656 92 511 92 366	92 718 92 573	92 635	92 987 92 841 92 696 92 551 92 407	93 049 92 903 92 759 92 613 92 469	93 110 92 964 92 819 92 674 92 530	142 142 1 14.2 2 28.4 3 42.6
30 31 32 33 34	92 017 91 874 91 731 91 589 91 447	91 936 91 793 91 651	92 140 91 997 91 854 91 712 91 570	92 059 91 916 91 774	92 263 92 120 91 977 91 835 91 693	92 325 92 182 92 039 91 897 91 755	92 386 92 243 92 100 91 958 91 816	3 42.6 4 56.8 5 71.0 85.2 7 99.4 8 113.6 9 127.8

Table 16 (continued)

Tem-											
pera-	Corrected barometer reading Po, mm Hg							Propor- tional			
ture, °C	709	710	711	712	713	714	715	parts			
		Logarithm of multiplier F									
5 6 7 8 9	96 194 96 038 95 882 95 727 95 572	95 788	96 160 96 004 95 849	96 221 96 065 95 910	96 438 96 282 96 126 95 971 95 816	96 499 96 343 96 187 96 032 95 877	96 560 96 404 96 248 96 093 95 938	61 1 6.1 2 12.2 3 18.3			
10 11 12 13 14	95 418 95 265 95 112 94 959 94 807	95 326 95 173	95 387 95 234 95 082	95 601 95 448 95 295 95 143 94 991	95 662 95 509 95 356 95 204 95 052	95 723 95 570 95 417 95 264 95 112	95 784 95 631 95 478 95 325 95 173	24.4 5 30.5 6 36.6 7 42.7 8 48.8 9 54.9			
15 16 17 18 19	94 505 94 355	94 416 94 266	94 627 94 478	94 839 94 688 94 538 94 388 94 239	94 900 94 749 94 599 94 449 94 300	94 961 94 810 94 660 94 510 94 361	95 022 94 871 94 721 94 571 94 422	151 1 15.1 2 30.2 3 45.3 4 60.4			
20 21 22 23 24	93 907 93 759 93 611 93 464 93 317	93 672	93 881 93 734 93 586	94 090 93 942 93 795 93 648 93 501	94 151 94 003 93 856 93 709 93 562	94 212 94 064 93 916 93 769 93 622	94 273 94 125 93 977 93 830 93 683	5 75.5 6 90.6 7 105.7 8 120.8 9 135.9			
25 26 27 28 29	93 025 92 880	93 086 92 941 92 796	93 148 93 003 92 858	93 064	93 416 93 270 93 125 92 980 92 835	93 476 93 330 93 185 93 040 92 896	93 537 93 391 93 246 93 101 92 957	145 1 14.5 2 29.0 3 43.5 4 58.0 5 72.5 6 87.0			
30 31 32 33 34	92 448 92 305 92 162 92 020 91 878	92 366 92 223 92 081	92 427 92 284 92 142	92 631 92 488 92 345 92 203 92 061	92 692 92 549 92 406 92 264 92 122	92 753 92 610 92 467 92 325 92 183	92 814 92 671 92 528 92 386 92 244	6 87.0 7 101.5 8 116.0 9 130.5			

Table 16 (continued)

Tem- pera-		Propor-									
ture, °C	716	717	718	719	720	721	722	tional parts			
		Logarithm of multiplier F									
5 6 7 8 9	96 464 96 308	96 680 96 525 96 369 96 214 96 060	96 585 96 429 96 274	96 646 96 490 96 335	96 862 96 706 96 500 96 395 96 241	96 922 96 767 96 611 96 456 96 301	96 983 96 827 96 671 96 516 96 361	61 1 6.1 12.2 3 18.3 4 24.4 5 30.5 6 36.6 7 42.7			
10 11 12 13 14	95 845 95 691 95 538 95 386 95 234	95 752 95 599 95 447	95 966 95 812 95 659 95 507 95 355	95 873 95 720 95 568	96 087 95 933 95 780 95 628 95 476	96 147 95 994 95 841 95 688 95 536	96 207 96 054 95 901 95 748 95 596	154 1 15.4 2 30.8			
15 16 17 18 19	95 083 94 932 94 782 94 632 94 483	94 993 94 843 94 693	95 204 95 053 94 903 94 753 94 604	95 114 94 964 94 814	95 325 95 174 95 024 94 874 94 725	95 385 95 234 95 084 94 934 94 785	95 445 95 394 95 144 94 994 94 845	3 46.2 4 61.6 5 77.0 92.4 7 107.8 8 123.2 9 138.6			
20 21 22 23 24	94 334 94 186 94 038 93 891 93 744	94 247	94 455 94 307 94 159 94 012 93 865	94 368	94 576 94 428 94 280 94 133 93 986	94 636 94 488 94 340 94 193 94 046	94 696 94 548 94 400 94 253 94 106	148 1 14.8 29.6 3 44.4 59.2 74.0 88.8 70 103.6			
25 26 27 28 29	93 598 93 452 93 307 93 162 93 018	93 659 93 513 93 368 93 223 93 079	93 573	93 489 93 344	93 840 93 694 93 549 93 404 93 259	93 900 93 754 93 609 93 464 93 320	93 960 93 814 93 669 93 524 93 380	142 1 14.2 2 28.4 3 42.6			
30 31 32 33 34	92 874 92 731 92 588 92 446 92 304	92 935 92 792 92 649 92 507 92 365	92 995 92 852 92 709 92 567 92 425	93 056 92 913 92 770 92 628 92 486	93 116 92 973 92 830 92 688 92 546	93 177 93 034 92 891 92 749 92 607	93 237 93 094 92 951 92 809 92 667	4 56.8 5 71.0 6 85.2 7 99.4 8 113.6 9 127.8			

Table 16 (continued)

Tem- pera-		Corre	ted bar	ometer re	ading P ₀	, mm Hg		Propor-
ture, °C	723	724	725	726	727	728	729	tional parts
		L	ogarith	m of m	ultiplie	r F		
5 6 7 8 9	96 887 96 731	96 947	97 007 96 851 96 696	96 911	97 283 97 127 96 971 96 816 96 661	97 342 97 186 97 030 96 875 96 721	97 402 97 246 97 090 96 935 96 781	60 1 6.0 2 12.0 3 18.0
10 11 12 13 14	95 961	96 174 96 021 95 868	96 234 96 081 95 928	96 141	96 507 96 354 96 201 96 048 95 896	96 567 96 413 96 260 96 108 95 956	96 637 96 473 96 320 96 168 96 016	24.0 5 30.0 6 36.0 7 42.0 8 48.0 9 54.0
15 16 17. 18 19	95 204	95 414 95 264 95 114	95 474 95 324 95 174	95 534 95 384	95 475 95 594 95 444 95 294 95 145	95 805 95 654 95 514 95 354 95 205	95 865 95 714 95 564 95 414 95 265	151 1 15.1 2 30.2 3 45.3 4 60.4
20 21 22 23 24	94 608	94 816 94 668 94 520 94 373 94 226	94 728 94 580 94 433	94 788 94 640	94 996 94 848 94 700 94 553 94 406	95 056 94 908 94 760 94 613 94 466	95 116 94 968 94 820 94 673 94 526	5 75.5 6 90.6 7 105.7 8 120.8 9 135.9
25 26 27 28 29	93 874 93 729	94 080 93 934 93 789 93 644 93 500	93 994 93 849 93 704	94 054 93 909	94 260 94 114 93 969 93 824 93 680	94 320 94 174 94 029 93 885 93 740	94 380 94 234 94 089 93 944 93 800	145 1 29.0 3 43.5 4 58.0 5 72.5 6 87.0
30 31 32 33 34	93 297 93 154 93 011 92 869 92 727	93 357 93 214 93 071 92 929 92 787			93 536 93 393 93 250 93 108 92 966	93 596 93 453 93 310 93 168 93 026	93 656 93 513 93 370 93 228 93 086	6 87.0 7 101.5 8 116.0 9 130.5

Tem- pera-		Corre	cted ba	rometer i	eading	P_0 , mm F	Ig	Propor-
ture, °C	730	731	732	733	734	735	736	tional parts
		L	ogarith	ım of m	ultipli	er <i>F</i>		
5 6 7 8 9	97 461 97 305 97 149 96 994 96 840	97 209 97 054	97 424 97 268	97 328 97 173	97 699 97 543 97 387 97 232 97 077	97 602 97 446 97 291	97 817 97 661 97 505 97 350 97 195	59 1 5.9 2 11.8 3 17.7 4 23.6 5 29.5 6 35.4 7 41.3
10 11 12 13 14	96 686 96 532 96 379 96 227 96 075	96 287	96 804 96 651 96 498 96 346 96 194	96 711 96 558 96 406	96 923 96 770 96 617 96 465 96 312	96 829 96 676	97 041 96 888 96 735 96 583 96 430	8 47.2 9 53.1 154 1 15.4 2 30.8
15 16 17 18 19	95 924 95 773 95 623 95 473 95 324	95 833 95 683 95 533	96 043 95 892 95 742 95 592 95 443		96 161 96 010 95 860 95 710 95 561	96 220 96 069 95 919 95 769 95 620	96 279 96 128 95 978 95 828 95 679	3 46.2 4 61.6 5 77.0 6 92.4 7 107.8 8 123.2 9 138.6
20 21 22 23 24	95 027 94 879 94 732	95 086 94 939 94 791 9	95 145 94 998 94 850	95 205 95 057 94 910	95 412 95 264 95 116 94 969 94 822		95 530 95 382 95 234 95 087 94 940	3 44.4 59.2 74.0 88.8 103.6
25 26 27 28 29	94 293 94 148 94 003	94 208 9 94 063 9	94 412 94 267 94 122 9	94 471 94 336 94 181 9	94 676 94 530 94 385 94 240 94 096	94 589 94 444 94 299	94 794 94 648 94 503 94 358 94 214 1 2 3	142 142 14.2 28.4 42.6
30 31 32 33 34	93 572 93 429 93 287 9	93 48 9 9 93 347 9)3 691 9)3 548 9)3 406 9	93 750 9 93 607 9 93 465 9	93 810 93 667 93 525	93 869 9 93 726 9 93 584 9	94 071 5 93 928 7 93 785 8 93 643 9	56.8 71.0 85.2 99.4 113.6 127.8

Table 16 (continued)

Tem- pera-		Corre	cted bar	ometer re	eading P_0	, mm Hg		Propor-
ture, °C	737	738	739	740	741	742	743	tional parts
		L						
5 6 7 8 9	97 720 97 564 97 409		97 838 97 682 97 527	97 896 97 740	98 111 97 955 97 799 97 644 97 490	98 170 98 013 97 857 97 702 97 548	98 222 98 078 97 916 97 761 97 607	59 1 5.9 2 11.8 3 17.7
10 11 12 13 14	96 947 96 794	96 853 96 701	97 065 96 912 96 760	97 123 96 970	97 336 97 182 97 029 96 877 96 725	97 394 97 240 97 087 96 935 96 783	97 453 97 299 97 146 96 994 96 842	23.6 5 29.5 6 35.4 7 41.3 8 47.2 9 53.1
15 16 17 18 19	96 338 96 187 96 037 95 887 95 738	96 246 96 096 95 946	96 305 96 155	96 515 96 364 96 214 96 064 95 915	96 574 96 423 96 273 96 123 95 974	96 632 96 481 96 331 96 181 96 032	96 691 96 540 96 390 96 240 96 091	151 1 15.1 2 30.2 3 45.3 4 60.4
20 21 22 23 24	95 589 95 441 95 293 95 146 94 999	95 500	95 264	95 766 95 618 95 470 95 323 95 176	95 825 95 677 95 529 95 382 95 235	95 883 95 735 95 587 95 440 95 293	95 942 95 794 95 646 95 499 95 352	5 75.5 8 90.6 7 105.7 8 120.8 9 135.9
25 26 27 28 29	94 753 94 707 94 562 94 417 94 273	94 912 94 766 94 621 94 476 94 332	94 825 94 680	95 030 94 884 94 739 94 594 94 449	95 089 94 943 94 798 94 653 94 508	95 147 95 001 94 856 94 711 94 567	95 206 95 060 94 915 94 770 94 626	145 1 14.5 2 29.0 3 43.5 4 58.0 5 72.5
30 31 32 33 34	94 130 93 987 93 844 93 702 93 560	93 903	94 104 93 961 93 819	94 306 94 163 94 020 93 878 93 736	94 365 94 222 94 079 93 937 93 795	94 423 94 280 94 137 93 995 93 853	94 482 94 339 94 196 94 054 93 912	5 58.0 72.5 6 87.0 7 101.5 8 116.0 9 130.5

Table 16 (continued)

Tem- pera-		Corre	cted bar	rometer r	cading P	o, mm He	3	Propor-
ture, °C	744	745	746	747	748	749	750	tional parts
		L	ogarith	ım of m	ultiplie	r F		
5 6 7 8 9	98 130 97 974	98 189 98 033 97 878	98 247 98 091 97 936	98 149	98 519 98 363 98 207 98 052 97 898	98 577 98 421 98 265 98 110 97 956	98 635 98 479 98 323 98 168 98 013	58 1 5.8 2 11.6 3 17.4 4 23.2 5 29.8 7 40.6
10 11 12 13 14	97 511 97 357 97 204 97 052 96 900	97 263 97 110	97 474 97 321	97 532 97 379	97 744 97 590 97 437 97 285 97 133	97 802 97 648 97 495 97 343 97 191	97 859 97 706 97 553 97 401 97 249	154 152.5 154 1 15.4 2 30.8
15 16 17 18 19	96 749 96 598 96 448 96 298 96 149	96 807 96 656 96 506 96 356 96 207	96 865 96 714 96 564 96 414 96 265		96 982 96 831 96 680 96 530 96 381	97 040 96 889 96 738 96 588 96 439	97 098 96 947 96 796 96 646 96 497	3 46.2 61.6 77.0 92.7 7 107.0 8 128.2 9 138.6
20 21 22 23 24	96 000 95 852 95 705 95 558 95 411	96 058 95 910 95 763 95 616 95 469	96 116 95 968 95 821 95 674 95 527	96 174 96 026 95 879 95 732 95 585	96 232 96 034 95 937 95 790 95 643	96 290 96 142 95 995 95 848 95 701	96 348 96 200 96 053 95 906 95 759	148 1 14.8 29.6 44.4 59.0 81.0 81.0 81.0 81.0 81.0 81.0 81.0 81
25 26 27 28 29	95 118 94 973		95 380 95 234 95 089 94 944 94 800	95 439 95 293 95 148 95 003 94 858	95 497 95 351 95 206 95 061 94 916	95 555 95 409 95 264 95 119 94 974	95 613 95 467 95 322 95 177 95 032	9 133.2
30 31 32 33 34	94 397 94 254 94 112	94 456	94 657 94 514 94 371 94 229 94 087	94 715 94 572 94 429 94 287 94 145	94 773 94 630 94 487 94 345 94 203	94 831 94 688 94 545 94 403 94 261	94 889 94 746 94 603 94 461 94 319	28.4 42.8 56.8 71.2 85.4 99.4 113.8 91.27

Table 16 (continued)

Tem- pera-		Corre	cted bar	ometer re	eading Po	, mm Hg	;	Propor-
ture, °C	751	752	753	754	755	756	757	tional parts
		Lo	ogarith	m of m	ultiplie	r F		
5 6 7 8 9	98 693 98 537 98 381 98 226 98 071	98 439	98 653 98 497	98 866 98 710 98 554 98 399 98 244	98 924 98 768 98 612 98 457 98 302	98 981 98 825 98 669 98 514 98 360	99 039 98 883 98 727 98 572 98 417	58 1 5.8 2 11.6 3 17.4
10 11 12 13 14	97 917 97 764 97 611 97 459 97 307	97 822 97 669 97 516	97 880 97 727 97 574		98 148 97 995 97 842 97 690 97 538	98 206 98 052 97 899 97 747 97 595	98 263 98 110 97 957 97 805 97 653	23.2 29.0 6 34.8 7 40.6 8 46.4 9 52.2
15 16 17 18 19	97 156 97 005 96 854 96 704 96 555	97 062 96 912 96 762	97 120 96 970 96 820	97 329 97 178 97 028 96 878 96 729	97 387 97 236 97 086 96 936 96 787	97 444 97 293 97 143 96 993 96 844	97 501 97 350 97 200 97 050 96 901	151 1 15.1 2 30.2 3 45.3 4 60.4
20 21 22 23 24	96 406 96 258 96 111 95 964 95 817	96 316 96 168	96 374	96 580 96 432 96 284 96 137 95 990	96 638 96 490 96 342 96 195 96 048	96 695 96 547 96 399 96 252 96 105	96 752 96 604 96 456 96 309 96 162	5 75.5 6 90.6 7 105.7 8 120.8 9 135.9
25 26 27 28 29	95 380 95 235	95 728 95 582 95 437 95 292 95 148	95 495 95 350	95 698 95 553	95 902 95 756 95 611 95 466 95 321	95 959 95 813 95 668 95 523 95 378	96 016 95 870 95 725 95 580 95 436	145 1 14.5 2 29.0 3 43.5 4 58.0 72.5 6 87.0 101.5
30 31 32 33 34	94 947 94 804 94 661 94 519 94 377	94 862 94 719 94 577	94 776 94 634	95 120 94 977 94 834 94 692 94 550	95 178 95 035 94 892 94 750 94 608	95 235 95 092 94 949 94 807 94 665	95 293 95 150 95 007 94 865 94 723	6 87.0 7 101.5 8 116.0 9 130.5

Table 16 (continued)

Tem- pera-		Corre	cted bar	ometer r	eading Po	, mm H	3	Propor-
ture, °C	758	759	760	761	762	763	764	tional parts
		L	ogarith	m of m	ultiplie	r F		
5 6 7 8 9	99 096 98 940 98 784 98 629 98 474	98 997 98 841	99 054 98 898		99 324 99 168 99 013 98 858 98 703	99 381 99 225 99 070 98 915 98 760	99 438 99 282 99 126 98 971 98 817	57 1 5.7 2 11.4 3 17.1 4 22.5 6 34.2 7 39.9
10 11 12 13 14	98 320 98 167 98 014 97 862 97 710	98 224 98 071 97 919		98 338 98 185 98 033	98 549 98 395 98 242 98 090 97 938	98 606 98 452 98 299 98 147 97 995	98 663 98 509 98 356 98 204 98 052	154 15.4 2 30.8
15 16 17 18 19	97 558 97 407 97 257 97 107 96 958	97 464 97 315 97 165	97 522 97 372 97 222	97 579 97 429 97 279	97 787 97 636 97 486 97 336 97 187	97 844 97 693 97 543 97 393 97 244	97 901 97 750 97 600 97 450 97 301	3 46.2 4 61.6 5 77.0 8 92.4 7 107.8 8 123.2 9 138.6
20 21 22 23 24	96 809 96 661 96 513 96 366 96 219	96 867 96 719 96 571 96 424 96 277	96 924 96 776 96 628 96 481 96 334	96 981 96 833 96 685 96 538 96 391	97 038 96 890 96 742 96 595 96 448	97 095 96 947 96 799 96 652 96 505	97 152 97 004 96 856 96 709 96 562	148 1 14.8 2 29.6 3 44.4 4 59.2 5 74.0 6 88.8 7 103.6
25 26 27 28 29	96 073 95 927 95 782 95 637 95 493	96 131 95 985 95 840 95 695 95 551	96 188 96 042 95 897 95 752 95 608	96 245 96 099 95 954 95 809 95 665	96 302 96 156 96 011 95 866 95 722	96 359 96 213 96 068 95 923 95 779	96 416 96 270 96 125 95 980 95 836	142 1 14.2 2 2 28.4 3 42.6
30 31 32 33 34	95 207 95 064 94 922	95 407 95 264 95 121 94 979 94 837	95 464 95 321 95 178 95 036 94 894	95 521 95 378 95 235 95 093 94 951	95 578 95 435 95 292 95 150 95 008	95 635 95 492 95 349 95 207 95 065	95 692 95 549 95 406 95 264 95 122	3 42.6 4 56.8 5 71.0 6 85.2 7 99.4 8 113.6 9 127.8

Table 16 (continued)

Tem- pera- ture, °C	765	Corre	cted bar	rometer 1	reading P	770	g 771	Proportional parts
-	103	<u> </u>	<u> </u>	<u> </u>	ultiplie		1	<u> </u>
5 6 7 8 9		99 552 99 396 99 240 99 085	99 609 99 453 99 297 99 142	99 665 99 509 99 353 99 198		99 778 99 622 99 466 99 311 99 156	99 834 99 678 99 523 99 368 99 213	56 1 5.6 2 11.2 3 16.8
10 11 12 13 14	98 720 98 566 98 413 98 261 98 109	98 623 98 470 98 317	98 680 98 527 98 374	98 736 98 583 98 431	98 946 98 793 98 640 98 488 98 336	99 002 98 849 98 696 98 544 98 392	99 059 98 906 98 753 98 600 98 448	4 22.4 5 28.0 6 33.6 7 39.2 8 44.8 9 50.4
15 16 17 18 19	97 958 97 807 97 657 97 507 97 358	97 863 97 713 97 563	97 920 97 770	97 827	98 185 98 034 97 884 97 734 97 585	98 241 98 090 97 940 97 790 97 641	98 297 98 146 97 996 97 846 97 697	151 1
20 21 22 23 24	97 209 97 061 96 913 96 766 96 619	97 117 97 969 96 822	97 322 97 174 97 026 96 879 96 732	97 379 97 231 97 083 96 936 96 789	97 436 97 287 97 139 96 992 96 845	97 492 97 343 97 195 97 048 96 901	97 548 97 406 97 252 97 105 96 958	5 75.5 6 90.6 7 105.7 8 120.8 9 135.9
25 26 27 28 29	96 327 96 182 96 037	96 238 96 093	96 440 96 295 96 150	96 497 96 352 96 207	96 553 96 408 96 263	96 609 96 464 96 319	96 232	145 1 14.5 2 29.0 3 43.5 4 58.0 5 72.5
30 31 32 33 34	95 606 95 463 95 321	95 663 95 520 95 378	95 720 95 577 95 435	95 776 95 633 95 491	95 833 95 690 95 548	95 889 95 746 95 604 9	96 088	87.0 7 101.5 8 116.0 9 130.5

Table 16 (continued)

Tem- pera-		Corre	cted bar	ometer r	eading P_0	, mm Hg		Propor-
ture, °C	772	773	774	775	776	777	778	tional parts
		L	ogarith	m of m	ultiplie	r F		
5 6 7 8 9	99 890 99 734 99 579 99 424 99 269	99 790 99 635 99 480	99 846 99 691	99 747	00 114 99 958 99 803 99 648 99 493	00 170 00 014 99 859 99 704 99 549	00 226 00 070 99 914 99 759 99 605	56 1 5.6 2 11.2 3 16.8 4 22.4 5 28.0 6 33.6 7 39.2
10 11 12 13 14	99 115 98 962 98 809 98 656 98 504	99 018 98 865	99 227 99 073 98 920 98 768 98 616	98 976	99 339 99 185 99 032 98 880 98 728	99 395 99 241 99 089 98 937 98 784	99 451 99 297 99 144 98 992 98 840	154 1 15.4 2 30.8
15 16 17 18 19	98 353 98 202 98 052 97 902 97 753	98 409 98 258 98 108 97 958 97 800	98 465 98 314 98 164 98 014 97 865	98 521 98 370 98 220 98 070 97 921	98 577 98 426 98 276 98 126 97 977	98 633 98 482 98 332 98 182 98 033	98 689 98 538 98 388 98 238 98 089	3 46.2 4 61.6 5 77.0 6 92.4 7 107.8 8 123.2 9 138.6
20 21 22 23 24	97 604 97 456 97 308 97 161 97 014	97 660 97 512 97 364 97 217 97 070	97 716 97 568 97 420 97 273 97 126	97 772 97 624 97 476 97 329 97 182	97 828 97 680 97 532 97 385 97 238	97 904 97 736 97 588 97 441 97 294	97 940 97 792 97 644 97 497 97 350	148 1 14.8 2 29.6 3 44.4 4 59.2 5 74.0 6 88.8 7 103.6 8 118.4
25 26 27 28 29	96 868 96 722 96 577 96 432 96 288	96 924 96 778 96 633 96 488 96 344		97 036 96 890 96 745 96 600 96 456	97 092 96 946 96 801 96 656 96 512	97 148 97 002 96 858 96 712 96 568	97 204 97 058 96 913 96 768 96 624	9 133.2
30 31 32 33 34		96 201 96 058 95 915 95 773 95 631	96 257 96 114 95 971 95 829 95 687	96 313 96 170 96 027 95 885 95 743	96 369 96 226 96 083 95 941 95 799	96 425 96 282 96 139 95 997 95 855	96 481 96 338 96 195 96 053 95 911	2 28.4 42.6 4 56.8 5 71.0 6 85.2 7 99.4 8 113.6 9 127.8

Table 16 (continued)
B. Vapour Pressure over Water and over Absorbing Solutions

Tempera- ture, °C	Water	KOH of	KOH in	g per 1 water	tration 00 g	Saturated NaCl Solution	Tempera- ture, °C
		<u> </u>	<u>. </u>	<u> </u>	(P _B), n	nm Hg	
5	6.5	6.1	5.7	5.2	4.6	4.9	5
6	7.0	6.5	6.1	5.6	4.9	5.3	6
7	7.5	7.0	6.5	6.0	5.3	5.7	7
8	8.0	7.5	7.0	6.4	5.7	6.1	8
9	8.6	8.0	7.5	6.8	6.1	6.5	9
10	9.2	8.6	8.0	7.3	6.5	6.9	10
11	9.8	9.2	8.6	7.8	6.9	7.4	11
12	10.5	9.8	9.2	8.3	7.4	7.9	12
13	11.2	10.5	9.8	8.9	7.9	8.5	13
14	12.0	11.2	10.4	9.5	8.4	9.1	14
15	12.8	11.9	11.1	10.1	9.0	9.7	15
16	13.6	12.7	11.8	10.8	9.6	10.3	16
17	14.5	13.6	12.6	11.5	10.2	11.0	17
18	15.5	14.5	13.4	12.3	10.9	11.7	18
19	16.5	15.4	14.3	13.1	11.6	12.4	19
20	17.5	16.4	15.2	13.9	12.4	13.2	20
21	18.7	17.4	16.2	14.8	13.2	14.1	21
22	19.8	18.5	17.2	15.8	14.0	15.0	22
23	21.1	19.7	18.3	16.8	14.9	15.9	23
24	22.4	20.9	19.5	17.8	15.8	16.9	24
25	23.8	22.2	20.7	18.9	16.8	17.9	25
26	25.2	23.6	22.0	20.1	17.9	19.0	26
27	26.7	25.1	23.3	21.3	19.0	20.2	27
28	28.3	26.6	24.7	22.6	20.2	21.4	28
29	30.0	28.1	26.2	23.9	21.4	22.7	29
30	31.8	29.7	27.7	25.3	22.4	24.0	30
31	33.7	31.4	29.3	26.8	23.7	25.3	31
32	35.7	33.3	31.0	28.4	25.2	26.8	32
33	37.7	35.2	32.8	30.0	26.7	28.4	33
34	39.9	37.2	34.7	31.7	28.2	30.0	34

Table 16 (continued)

C. Densities of Gases and Vapours (ρ)

(Mass of one litre of gas or vapour in grams or one millilitre in milligrams under standard conditions)

Formula	Name	ρ, g/l (mg/ml)	log p
Ar	Argon	1.7837	25 132
AsF_{δ} AsH_{3}	Arsenic pentalluoride	7.71	88 705
	sine	3.740 3.21	57 287 50 650
BF ₃ CF ₂ Cl ₂	Dichlorodifluoromethane, fre-	3.21	90 6 90
CH₄	on 12	5.510 0.7168	74 115 85 540
C_2H_2	Acetylene, ethyne		06 930
C_2H_4	Ethylene, olefiant gas, ethene	1.2604 1.3566	10 051 13 245
C ₂ H ₆ C ₃ H ₆	Ethane	1.937	28 713
C_3H_8	Propane	2.0096 2.5190	30 311 40 123
C ₄ H ₁₀ C ₄ H ₁₀	Isobutane, methylpropane	2.6726	42 693
C ₅ H ₁₂ C ₇ H ₁₆	Pentane	3.457 4.459	53 870 64 924
C_8H_{18}	Octane	5.030	70 157
CH ₃ Čl CH ₃ F	Methyl chloride	2.3073 1.5452	36 310 18 898
CHCl ₃	Chloroform	5.283	72 288
$\begin{array}{c} CH_3NH_2 \\ (CH_3)_2NH \end{array}$	Methylamine	1.396 2.089	14 489 31 994
$(CH_3)_3N$	Trimethylamine	2.619	41 814
C ₂ H ₅ NH ₂ CH ₃ OH	Ethylamine	2.0141 1.426	30 408 15 412
C ₂ H ₅ OH	Ethanol, ethyl alcohol	2.043	31 027
(C_4H_9OH)	Ethanol, ethyl alcohol Butanol, butyl alcohol Cyan, dicyan Dimethyl ether	3.244 2.335	51 108 36 829
$(CH_3)_2O$	Dimethyl ether	2.1098	32 424 09 705
	Carbon dioxide	1.9769	29 598
COĈI, COS	Carbon oxychloride, phosgene Carbon oxysulphide	3.89 2.721	58 995 43 473
Cl ₂	Chlorine dioxide	3.214	50 705
$oxed{ egin{array}{c} { m ClO_2} \\ { m F_2} \end{array} }$	Chlorine dioxide	3.21 1.696	50 651 22 943
GeH₄	Fluorine	3.42	53 403
$G_{\mathbf{e_2}}H_{6}$ H_{2}	Digermane	7.23 0.08988	85 914 95 366
HBr	Hydrogen	3.6445	56 164

Table 16 (continued)

Formula	Name	ρ, g/l (mg/ml)	log ρ
HCOH HCI HF HI H ₂ O H ₂ S H ₂ Se H ₂ Te H6 Kr N ₂ NH ₃ ClCH ₃ ClCH ₃ SiH ₃ ClCH ₃ SiH ₅ ClCH ₅ ClCH ₃ SiH ₅ ClCH ₅ C	Formaldehyde	1.34 1.6392 0.8940 5.7891 0.768 1.539 3.670 5.81 0.17847 3.708 1.25055 1.2929 0.7710 1.9778 1.3402 2.055 2.9919 2.231 0.90035 1.42895 2.144 2.421 1.5294 5.805 3.907 4.8 9.73 6.98 2.9269 3.99 5.59	12 716 21 463 95 134 76 261 88 536 18 724 56 467 76 418 25 157 56 914 09 710 11 156 88 705 29 618 12 717 31 281 47 595 34 850 95 441 15 502 33 399 18 452 76 380 46 641 60 097 74 741 67 062 15 836 48 144 60 097 74 741 67 062 15 836 48 144 56 110 72 428 58 659 11 059 76 723

Table 16 (continued)

D. Gasometric (Volumetric) Determination of Gas-Forming Substances

τ	Jnknown substance		i ml of measured gas under stan-	
formula	name	Mea- sured gas	dard condi- tions corres- ponds to f' mg of the unknown substance	log f'
Al C CO3- CO(NH ₂) ₂ CaC ₂ CaCO ₃ CaF ₂ F Fe HNO ₃ H ₂ O ₂ KMnO ₄ KNO ₃ Mg MgCO ₃ N NH ₄ NO ₃ NO ₈ N ₂ O ₃ N ₂ O ₅ NaNO ₃ Ni Na ₂ O ₂ Zn	Aluminium Carbon Carbonate-ion Urea Calcium carbide Calcium fluoride Calcium fluoride Fluorine Iron Nitric acid Hydrogen peroxide (treated with KMnO ₄) Hydrogen peroxide (catalytic decomposition) Potassium permanganate (treated with H ₂ O ₂) Potassium nitrate Magnesium Magnesium Magnesium Nitrogen Ammonium nitrate Nitrate-ion Nitrous anhydride Nitric anhydride Sodium nitrate Nickel Sodium peroxide Zinc	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.8019 0.53954 2.6956 2.6809 2.8877 4.4960 7.0278 3.4200 2.4899 2.8144 1.5191 3.0382 2.8231 4.5159 1.0839 3.7877 0.62560 3.5751 2.7694 1.6975 2.4121 3.7962 2.6175 6.965 2.9145	90 416 73 202 43 066 42 828 46 055 65 283 84 682 53 403 39 618 44 939 18 158 48 261 45 073 65 474 03 500 57 838 79 630 55 329 44 239 22 981 38 239 57 935 41 789 84 291 46 456

Table 17

Conversion Formulas for Solution Concentrations

Notation: d = density of a solution, g/ml; $M_w =$ molecular weight of a solute; E = equivalent weight of a solute

Т	$\frac{100LM_w}{1000+LM_w}$	$\frac{LM_w}{10}$	$\frac{1000LM_{wd}}{1000+LM_{w}}$	$\frac{1000 LM_{w}}{(1000 + LM_{w})E}$	$\frac{1000Ld}{1000+M_wL}$	T
M	$rac{MM_{w}}{10d}$	$\frac{100MM_w}{1000d-MM_w}$	MM_w	$\frac{MM_{w}}{E}$	M	$\frac{1000M}{1000d - MM_{w}}$
N	$\frac{NE}{10d}$	$\frac{100NE}{1000d-NE}$	NE	N	$\frac{NE}{M_w}$	$\frac{1000NE}{(1000d-NE)M_w} \frac{1000M}{1000d-MM_w}$
2	$\frac{c}{10d}$	$\frac{100C}{1000d - C}$	\mathcal{C}	$\frac{C}{E}$	$\frac{C}{M_w}$	$\frac{1000C}{(1000d-C)M_{w}}$
В	$\boxed{\frac{100B}{100+B}}$	В	$\frac{1000Bd}{100+B}$	$\left \frac{1000Bd}{(100+B)E}\right $	$\left \frac{1000Bd}{(100+B)M_w}\right $	$\frac{10B}{M_w}$
A	A	100A 100 — A	10.44	$\frac{10Ad}{E}$	$\frac{10Ad}{M_w}$	$\frac{1000A}{(100-A)M_{w}}$
Concentration	In per cent (g per 100 g of a solution, wt. %), A=	In grams of a solute per 100 g of a solvent, $B=$	In grams per litre of a solution (g/l), $C =$	Normal, $N=$	Molar, $M =$	Molal (number of moles of a solute per 1000 g of a solvent), $L =$

Table 18

Densities and Concentrations of Solutions

A. Densities and Concentrations of Nitric Acid Solutions*

	HNO3 conc	entration		HNO3 cond	entration
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l
1.000 1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.050 1.055 1.060 1.075 1.080 1.075 1.080 1.095 1.100 1.105 1.100 1.105 1.110 1.115 1.120 1.125 1.130 1.135 1.140 1.145 1.150 1.155	0.3333 1.255 2.164 3.073 3.982 4.883 5.784 6.661 7.530 8.398 9.259 10.12 10.97 11.81 12.65 13.48 14.31 15.13 15.76 17.58 18.39 19.19 20.00 20.79 21.59 22.38 23.16 23.94 24.71 25.48 26.24	0.05231 0.2001 0.3468 0.4950 0.6445 0.7943 0.9454 1.094 1.243 1.393 1.543 1.694 1.845 1.997 2.148 2.301 2.453 2.605 2.759 2.913 3.068 3.224 3.381 3.539 3.696 3.854 4.012 4.171 4.330 4.489 4.649 4.810	1.175 1.180 1.185 1.190 1.195 1.200 1.205 1.210 1.215 1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.255 1.260 1.265 1.270 1.275 1.280 1.285 1.290 1.295 1.300 1.305 1.310 1.315 1.320 1.325 1.330	29.25 30.00 30.74 31.47 32.21 32.94 33.68 34.41 35.16 35.93 36.70 37.48 38.25 39.02 39.80 40.58 41.36 42.14 42.92 43.70 44.48 45.27 46.85 47.63 48.42 49.21 50.85 51.71 52.56 53.41	5.455 5.618 5.780 5.943 6.107 6.273 6.440 6.607 6.778 6.956 7.135 7.497 7.679 7.863 8.049 8.237 8.426 8.808 9.001 9.195 9.394 9.590 9.789 9.789 9.789 10.19 10.39 10.61 10.83 11.05 11.27
1.160 1.165 1.170	27.00 27.76 28.51	4.970 5.132 5.293	1.335 1.340 1.345	54.27 55.13 56.04	11.49 11.72 11.96

^{*} For the use of the table, see p. 470.

Table 18 (continued)

	HNO ₈ conc	entration		HNO ₈ conc	entration
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l
1.350 1.355 1.360 1.365 1.370 1.375 1.380 1.385 1.390 1.395 1.400 1.405 1.405 1.415 1.420 1.425 1.420 1.425 1.430 1.445 1.445 1.445	56.95 57.87 58.78 59.69 60.67 61.69 62.70 63.72 64.74 65.84 66.97 68.10 69.23 70.39 71.63 72.86 74.09 75.35 76.71 78.07 79.43 80.88	12.20 12.44 12.68 12.93 13.19 13.46 13.73 14.01 14.29 14.57 14.88 15.18 15.49 15.81 16.14 16.47 16.81 17.16 17.53 17.90 18.28 18.68	1.460 1.465 1.470 1.475 1.480 1.485 1.490 1.495 1.500 1.501 1.502 1.503 1.504 1.505 1.506 1.507 1.508 1.508 1.509 1.510 1.511	82.39 83.91 85.50 87.29 89.07 91.13 93.49 95.46 96.73 96.98 97.23 97.49 97.74 97.99 98.25 98.50 98.76 99.01 99.26 99.52 99.77 100.00	19.09 19.51 19.95 20.43 20.92 21.48 22.11 22.65 23.02 23.10 23.18 23.25 23.33 23.40 23.48 23.56 23.63 23.71 23.79 23.86 23.94 24.01

B. Densities and Concentrations of Sulphuric Acid Solutions*

	H ₂ SO ₄ conc	entration		H ₂ SO ₄ concentration	
Density at 20°C, g/cm³	g per 100 g of solu- tion (wt.%)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l
1.000 1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.040	0.2609 0.9855 1.731 2.485 3.242 4.000 4.746 5.493 6.237	0.02660 0.1010 0.1783 0.2595 0.3372 0.4180 0.4983 0.5796 0.6613	1.045 1.050 1.055 1.060 1.065 1.070 1.075 1.080 1.085	6.956 7.704 8.415 9.129 9.843 10.56 11.26 11.96 12.66	0.7411 0.8250 0.9054 0.9865 1.066 1.152 1.235 1.317 1.401

^{*} For the use of the table, see p. 470.

Table 18 (continued)

	H ₂ SO ₄ cond	centration		H ₂ SO ₄ conc	entration
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l
1.090 1.095 1.100 1.105 1.110 1.115 1.120 1.125 1.130 1.135 1.140 1.145 1.150 1.155 1.160 1.165 1.170 1.175 1.180 1.185 1.190 1.205 1.200 1.205 1.210 1.225 1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.255 1.260 1.265 1.270 1.280 1.285 1.290 1.295	13.36 14.04 14.73 15.41 16.08 16.76 17.43 18.09 18.76 19.42 20.08 20.73 21.38 22.03 22.67 23.31 23.95 24.58 25.21 25.84 26.47 27.10 27.72 28.33 28.95 29.57 30.18 30.79 31.40 32.01 32.61 33.22 33.82 34.42 35.01 36.78 37.95 38.53 39.10	1.484 1.567 1.652 1.735 1.820 1.905 1.990 2.075 2.161 2.247 2.334 2.420 2.507 2.594 2.681 2.768 2.857 2.945 3.033 3.122 3.211 3.302 3.391 3.481 3.572 3.663 3.754 3.846 3.938 4.031 4.123 4.216 4.310 4.404 4.498 4.592 4.686 4.781 4.972 5.068 5.163	1.300 1.305 1.310 1.315 1.320 1.325 1.330 1.335 1.340 1.345 1.350 1.365 1.360 1.365 1.370 1.380 1.385 1.390 1.395 1.400 1.405 1.410 1.425 1.420 1.425 1.430 1.425 1.430 1.445 1.450 1.455 1.460 1.465 1.470 1.475 1.480 1.485 1.490 1.495 1.505	39.68 40.25 40.82 41.39 41.95 42.51 43.07 43.62 44.72 45.26 45.80 46.86 47.39 47.92 48.45 49.48 49.99 50.50 51.01 53.50 54.97 55.45 55.93 56.41 56.89 57.84 59.70 60.62	5.259 5.356 5.452 5.549 5.646 5.743 5.840 5.938 6.035 6.229 6.327 6.424 6.522 6.620 6.718 6.915 7.012 7.110 7.208 7.307 7.406 7.505 7.603 7.702 7.801 7.901 8.099 8.198 8.297 8.397 8.497 8.598 8.799 8.899 9.000 9.100 9.202 9.303

Table 18 (continued)

	H ₂ SO ₄ conc	entration		H ₂ SO ₄ cond	entration
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l
1.510 1.515 1.520 1.525 1.530 1.535 1.540 1.545 1.550 1.555 1.560 1.575 1.585 1.585 1.590 1.585 1.600 1.615 1.620 1.625 1.630 1.635 1.640 1.645 1.655 1.650 1.655 1.660 1.655 1.660 1.655 1.670 1.675 1.680 1.685 1.690 1.695 1.695 1.695 1.695	61.08 61.54 62.00 62.45 62.91 63.36 63.81 64.26 64.71 65.15 65.59 66.91 67.35 67.79 68.23 68.66 69.09 69.53 69.96 70.39 70.82 71.25 71.67 72.09 72.52 72.95 73.37 73.80 74.22 74.64 75.92 76.34 77.63	9.404 9.506 9.608 9.711 9.813 9.916 10.02 10.12 10.23 10.33 10.43 10.54 10.64 10.74 10.85 10.96 11.06 11.16 11.27 11.38 11.48 11.59 11.70 11.80 11.91 12.02 12.13 12.24 12.34 12.45 12.67 12.78 12.89 13.00 13.12 13.34 13.46	1.705 1.710 1.715 1.725 1.725 1.730 1.735 1.740 1.745 1.750 1.755 1.760 1.765 1.770 1.775 1.780 1.785 1.790 1.795 1.800 1.805 1.810 1.821 1.822 1.823 1.824 1.825 1.826 1.827 1.828 1.828 1.829 1.830 1.831 1.832 1.833 1.834 1.835	78.06 78.49 78.93 79.37 79.81 80.25 80.70 81.16 81.62 82.09 82.57 83.06 83.57 84.08 84.61 85.16 85.74 86.35 86.99 87.69 88.43 89.23 90.12 91.11 91.33 91.56 91.78 92.00 92.25 92.51 92.77 93.03 93.33 93.64 94.32 94.72 95.12 95.72	13.57 13.69 13.80 13.92 14.04 14.16 14.28 14.65 14.65 14.65 14.78 14.90 15.04 15.17 15.31 15.46 15.61 15.92 16.09 16.27 16.68 16.91 17.06 17.11 17.17 17.22 17.28 17.34 17.40 17.47 17.54 17.79 17.79 17.91

Table 18 (continued)

C. Densities and Concentrations of Hydrochloric Acid Solutions*

	HCl conce	entration		HCl conce	ntration
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l
1.000 1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.050 1.055 1.060 1.065 1.070 1.075 1.080 1.085 1.090 1.095 1.100	0.3600 1.360 2.364 3.374 4.388 5.408 6.433 7.464 8.490 9.510 10.52 11.52 12.51 13.50 14.49 ₅ 15.48 ₅ 16.47 17.45 18.43 19.41 20.39	0.09872 0.3748 0.6547 0.9391 1.227 1.520 1.817 2.118 2.421 2.725 3.029 3.333 3.638 3.944 4.253 4.565 4.878 5.192 5.509 ₅ 5.829 6.150	1.105 1.110 1.115 1.120 1.125 1.130 1.135 1.140 1.145 1.150 1.155 1.160 1.165 1.170 1.175 1.180 1.185 1.190 1.195 1.198	21.36 22.33 23.29 24.25 25.22 26.20 27.18 28.18 29.17 30.14 31.14 32.14 33.16 34.18 35.20 36.23 37.27 38.32 39.37 40.00	6.472 6.796 7.122 7.449 7.782 8.118 8.459 8.809 9.159 9.505 9.863 10.22 ₅ 10.59 ₅ 10.97 11.34 11.73 12.11 12.50 13.14

Concentrations of Hydrochloric Acid Having Constant Boiling Point

Atmospheric pressure during distillation, mm Hg Hydrochloric acid concentration	780	77 0	7 60	75 0	740	7 30
(reduced to a vacuum), g of HCl per 100 g of solution Mass of distillate containing exac-	20.173	20.197	20.221	20.245	20.269	20.293
tly 1 mole of HCl (weighing per- formed in air), g	180.621	180.407	180.193	179.979	179.766	179.551

^{*} For the use of the table, see p. 470.

Table 18 (continued)
D. Densities and Concentrations of Phosphoric Acid Solutions*

	H ₃ PO ₄ conc	entration		H ₈ PO ₄ con	centration
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l
1.000 1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.045 1.050 1.055 1.060 1.065 1.070 1.085 1.090 1.095 1.100 1.105 1.110 1.115 1.120 1.125 1.130 1.135 1.140 1.155 1.160 1.155 1.160 1.155 1.160 1.175 1.180 1.185 1.190	0.296 1.222 2.148 3.074 4.000 4.926 5.836 6.745 7.643 8.536 9.429 10.32 11.19 12.06 12.92 13.76 14.60 15.43 16.26 17.07 17.87 18.68 19.46 20.25 21.80 22.56 23.32 24.07 24.82 25.57 26.31 27.05 27.78 28.51 29.23 29.94 30.65 31.35	0.030 0.1253 0.2214 0.3184 0.4164 0.5152 0.6134 0.7124 0.8110 0.911 1.010 1.111 1.210 1.311 1.411 1.510 1.609 1.708 1.906 2.005 2.105 2.204 2.304 2.403 2.502 2.502 2.502 2.702 2.800 2.900 3.101 3.203 3.304 3.404 3.505 3.606 3.707 3.806	1.195 1.200 1.205 1.210 1.215 1.220 1.225 1.230 1.245 1.245 1.255 1.260 1.275 1.280 1.275 1.280 1.295 1.300 1.305 1.310 1.315 1.320 1.325 1.330 1.345 1.340 1.345 1.355 1.360 1.365 1.370 1.375 1.380 1.385	32.05 32.75 33.44 34.13 34.82 35.50 36.17 36.84 37.51 38.83 39.49 40.14 40.79 41.44 42.09 42.73 43.37 44.00 47.70 48.30 48.89 49.48 50.07 51.25 51.84 52.42 53.57 54.14 55.85	3.908 4.010 4.112 4.215 4.317 4.420 4.522 4.624 4.727 4.829 4.932 5.140 5.245 5.350 5.454 5.559 5.655 5.771 5.875 5.981 6.191 6.296 6.400 6.506 6.400 6.506 6.716 6.928 7.034 7.141 7.247 7.355 7.570

^{*} For the use of the table, see p. 470.

Table 18 (continued)

	H ₃ PO ₄ con	centration		H ₃ PO ₄ con	centration
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l
1.390 1.395 1.400 1.405 1.415 1.420 1.425 1.430 1.425 1.435 1.445 1.450 1.455 1.460 1.465 1.470 1.475 1.480 1.485 1.490 1.495 1.500 1.515 1.520 1.515 1.520 1.535 1.540 1.555 1.550 1.555 1.560 1.555 1.580 1.585 1.580 1.585 1.580 1.585 1.580 1.585 1.580 1.585 1.580 1.585 1.580 1.585 1.580 1.585	56.42 56.98 57.54 58.69 59.74 60.29 60.84 61.92 62.45 63.51 64.55 65.07 65.58 66.60 67.60 68.60 69.09 69.58 70.56 71.52 72.48 72.95 73.42 73.42 74.36 75.76 76.22 76.68 77.14	8.004 8.112 8.221 8.328 8.437 8.547 8.658 8.766 8.878 8.989 9.208 9.322 9.541 9.651 9.761 9.982 10.09 10.21 10.31 10.42 10.53 10.64 10.98 11.09 11.20 11.32 11.42 11.53 11.65 11.76 11.88 11.99 11.22 12.33 12.45 12.56	1.600 1.605 1.610 1.615 1.620 1.625 1.630 1.635 1.640 1.645 1.650 1.655 1.660 1.675 1.680 1.695 1.695 1.700 1.715 1.720 1.735 1.730 1.735 1.740 1.745 1.750 1.755 1.760 1.775 1.770 1.775 1.770 1.775 1.770 1.775 1.770 1.775 1.780 1.795 1.795 1.790 1.795 1.790 1.795 1.790 1.795 1.790 1.795 1.790 1.795 1.790 1.795 1.790 1.795 1.790 1.795 1.790 1.795 1.790 1.795 1.790 1.795 1.790 1.795 1.800	77.60 78.05 78.05 78.95 79.40 79.85 80.75 80.30 81.64 82.52 83.39 83.82 84.68 85.11 85.54 86.38 87.64 88.90 87.64 88.90 89.31 90.54 90.95 91.36 91.77 92.57 92.57 93.37 94.17 94.57 94.97	12.67 12.78 12.90 13.12 13.24 13.36 13.48 13.59 13.49 14.52 14.63 14.77 14.88 15.12 14.63 14.75 14.88 15.22 15.33 16.41 16.53 16.41 16.53 16.41 16.53 17.37 17.50

Table 18 (continued)

	H ₃ PO ₄ concentration			H ₃ PO ₄ cond	centration
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l
1.810 1.815 1.820 1.825 1.830 1.835 1.840	95.37 95.76 96.15 96.54 96.93 97.32 97.71	17.62 17.74 17.85 17.98 18.10 18.23 18.34	1.845 1.850 1.855 1.860 1.865 1.870	98.10 98.48 98.86 99.24 99.62 100.00	18.47 18.60 18.72 18.84 18.96 19.08

E. Densities and Concentrations of Perchloric Acid Solutions*

	HClO4 cond			HClO4 cond	entration
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion '(wt.%)	mole/l
1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.050 1.055 1.060 1.065 1.070 1.075 1.080 1.085 1.090 1.095 1.100 1.105 1.110 1.115	1.00 1.90 2.77 3.61 4.43 5.25 6.07 6.88 7.68 8.48 9.28 10.06 10.83 11.58 12.33 13.08 13.83 14.56 15.28 16.00 16.72 17.45 18.16	0.1004 0.1910 0.2799 0.3665 0.4520 0.5383 0.6253 0.7122 0.7989 0.8863 0.9745 1.061 1.148 1.233 1.319 1.406 1.494 1.580 1.665 1.752 1.839 1.928 2.015	1.120 1.125 1.130 1.135 1:140 1.145 1.150 1.155 1.160 1.165 1.170 1.175 1.180 1.185 1.190 1.195 1.200 1.205 1.210 1.215 1.220	18.88 19.57 20.26 20.95 21.64 22.32 22.99 23.65 24.30 24.94 25.57 26.20 26.82 27.44 28.05 28.66 29.26 29.86 30.45 31.61 32.18 32.74	2.105 2.191 2.279 2.367 2.456 2.544 2.632 2.719 2.806 2.892 2.978 3.064 3.150 3.237 3.323 3.409 3.495 3.582 3.582 3.667 3.754 3.839 3.924 4.008

^{*} For the use of the table, see p. 470.

Table 18 (continued)

J	TICIO, con	ontrotion	 _	I II CIO como	ontrotion
	HClO4 cond	entration		HClO4 cond	entration
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt.%)	mole/l
1.235 1.240 1.245 1.250 1.255 1.260 1.265 1.270 1.275 1.280 1.295 1.300 1.305 1.310 1.315 1.320 1.325 1.330 1.325 1.330 1.345 1.350 1.355 1.360 1.355 1.360 1.375 1.380 1.385 1.390 1.385 1.390 1.395 1.400 1.415 1.420 1.425 1.430 1.425 1.430 1.435 1.440	33.29 33.85 34.40 34.95 35.49 36.56 37.60 38.60 39.60 40.59 41.56 42.49 42.49 42.49 43.43 43.89 44.81 45.26 46.61 47.05 47.49 47.49 47.93 48.80 49.23 49.68 50.51 50.90 51.51 52.51	4.092 4.178 4.263 4.349 4.433 4.519 4.687 4.687 4.772 4.854 4.937 5.105 5.189 5.273 5.357 5.440 5.689 5.771 5.604 5.689 5.771 6.104 6.188 6.272 6.356 6.439 6.523 6.692 6.766 6.948 7.114 7.196 7.278 7.360 7.443 7.527	1.445 1.450 1.455 1.460 1.465 1.470 1.475 1.480 1.485 1.500 1.505 1.505 1.510 1.520 1.525 1.520 1.525 1.530 1.545 1.550 1.555 1.550 1.555 1.560 1.555 1.580 1.585 1.580 1.585 1.580 1.585 1.600 1.615 1.625 1.630 1.635 1.640 1.645 1.650	52.89 53.27 53.65 54.03 54.41 55.17 55.55 56.69 57.44 57.81 58.54 58.91 58.91 58.91 59.28 60.41 60.78 61.52 61.89 62.26 63.37 64.12 64.88 65.63 66.39 66.39 67.51 67.51 67.51 67.89 68.26	7.607 7.689 7.770 7.852 7.934 8.017 8.100 8.183 8.267 8.352 8.436 8.519 8.605 8.689 8.772 8.928 9.116 9.203 9.290 9.377 9.465 9.290 9.377 9.553 9.730 9.998 10.03 10.55 10.64 10.74 10.83 10.93 11.02 11.12 11.21

Table 18 (continued)

	HClO4 concentration			HClO ₄ concentration	
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l
1.655 1.660 1.665	68.64 69.02 69.40	11.31 11.40 11.50	1.670 1.675	69.77 70.15	11.60 11.70

F. Densities and Concentrations of Acetic Acid Solutions*

	CH3COOH concentration			CH ₃ COOH concentration	
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l
1.000 1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.040 1.045	1.20 4.64 8.14 11.7 15.4 19.2 23.1 27.2 31.6 36.2	0.200 0.777 1.37 1.98 2.61 3.27 3.96 4.68 5.46 6.30	1.050 1.055 1.060 1.065 1.070 1.065 1.060 1.055 1.050	40.2 46.9 53.4 61.4 77-79** 91.2 95.4 98.0 99.9	7.03 8.24 9.43 10.9 13.7-14.1 16.2 16.8 17.2 17.5

** Acetic acid, in the given limits of concentration, has a density of 1.0700 g/cm³ with deviations of less than 0.0001. Since density decreases with a further increase in concentration, then in order to determine the concentration from two possible ones that meets the density found (for example, the density of the solution is 1.060 g/cm³; will its concentration be 53.4% or 95.4%?), a little water is added to the acetic acid test. If the density decreases, a lower concentration is taken (in the given case, 53.4%), and if it increases, a higher concentration is taken (in the given case, 95.4%).

G. Densities and Concentrations of Potassium Hydroxide Solutions*

	KOH conce	ntration	KOH concen		entration
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l	Density at 20°C, g/cm³	g per 100 g of solu- tion (wt. %)	mole/l
1.000 1.005 1.010	0.197 0.743 1.29 ₅	0.0351 0.133 0.233	1.015 1.020 1.025	1.84 2.38 2.93	0.333 0.433 ₅ 0.536

^{*} For the use of the table, see p. 470.

Table 18 (continued)

	KOH conce	entration		KOH conce	entration
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l
1.030 1.035 1.040 1.045 1.050 1.055 1.060 1.065 1.070 1.085 1.090 1.095 1.100 1.105 1.110 1.125 1.130 1.135 1.140 1.145 1.150 1.155 1.160 1.165 1.170 1.175 1.180 1.185 1.190 1.195 1.190 1.195 1.190 1.195 1.190 1.195 1.190 1.195 1.190 1.195 1.190 1.195 1.190 1.195 1.190 1.195 1.190 1.195 1.190 1.195 1.190 1.195 1.190 1.195	3.48 4.03 4.58 5.12 5.66 6.74 7.82 8.89 9.43 9.49 11.08 12.61 13.14 13.69 14.70 15.22 15.74 16.26 16.78 17.81 18.84 19.86 19.86 19.86 20.37 20.88 21.88 21.88 21.88 22.88 23.87 24.86	0.639_5 0.744 0.848 0.954 1.06 1.17 1.38 1.49 1.60 1.71 1.82 1.94 2.05 2.39 2.51 2.62 2.86 2.97 3.21 3.45 3.94 4.95 3.95 3.94 4.95 3.95 3.94 4.95 3.95 3.94 4.95 3.95	1.240 1.245 1.250 1.255 1.260 1.265 1.275 1.280 1.285 1.290 1.295 1.300 1.305 1.315 1.325 1.325 1.330 1.345 1.340 1.345 1.365 1.375 1.380 1.375 1.380 1.385 1.380 1.385 1.380 1.385 1.380 1.385 1.380 1.385 1.380 1.385 1.380 1.385 1.380 1.385 1.380 1.345 1.340 1.345 1.380 1.385 1.380 1.340 1.405 1.405 1.405 1.425 1.425 1.430 1.445 1.445 1.445 1.445 1.445 1.445 1.445 1.445 1.445 1.445 1.445 1.445 1.445 1.445 1.445	25.36 25.85 26.34 26.83 27.32 27.80 28.77 29.25 29.73 30.68 31.15 32.56 33.50 33.50 33.50 33.50 33.50 33.50 35.36 35.36 35.36 35.36 37.19 37.65 38.10 ₅ 38.56 39.92 40.37 40.82 41.71 42.60 43.48 43.92 44.36	5.60 5.74 5.87 6.00 6.13 ₅ 6.54 6.54 6.67 6.81 6.95 7.08 7.36 7.77 7.91 8.05 8.19 8.33 ₅ 8.48 8.76 8.90 ₅ 9.19 9.34 9.48 9.63 9.78 9.7

Table 18 (continued)

	KOH concentration			KOH conc	entration
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l
1.450 1.455 1.460 1.465 1.470 1.475 1.480 1.485 1.490	44.79 45.23 45.66 46.09 ₆ 46.53 46.96 47.39 47.82 48.25	11.58 11.73 11.88 12.04 12.19 12.35 12.50 12.66 .12.82	1.495 1.500 1.505 1.510 1.515 1.520 1.525 1.530 1.535	48.67_{5} 49.10 49.53 49.95 50.38 50.80 51.22 51.64 52.05	12.97 13.13 13.29 13.45 13.60 13.76 13.92 14.08 14.24

H. Densities and Concentrations of Caustic Soda Solutions*

	NaOH cond	centration		NaOH cond	entration
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l
1.000 1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.050 1.055 1.060 1.065 1.070 1.075 1.080 1.085 1.090 1.095 1.095	0.159 0.602 1.04_{5} 1.49 1.94 2.39 2.84 3.29 3.74_{5} 4.20 4.65_{5} 5.11 5.56 6.02 6.47 6.93 7.38 7.83 8.28 8.74 9.19	0.0398 0.151 0.264 0.378 0.494 0.611 0.731 0.851 0.971 1.097 1.222 1.347 1.474 1.602 1.731 1.862 1.992 2.123 2.257 2.391 2.527	1.105 1.110 1.115 1.120 1.125 1.130 1.135 1.140 1.145 1.150 1.155 1.160 1.165 1.170 1.165 1.170 1.175 1.180 1.185 1.190 1.195 1.200 1.205	9.64 ₅ 10.10 10.55 ₅ 11.01 11.46 11.92 12.37 12.83 13.28 13.73 14.18 14.64 15.09 15.54 15.99 16.44 16.89 17.34 ₅ 17.80 18.25 ₅ 18.71	2.664 2.802 2.942 3.082 3.224 3.367 3.510 3.655 3.801 3.947 4.095 4.244 4.395 4.545 4.697 4.850 5.004 5.160 5.317 5.476 5.636

[•] For the use of the table, see p. 470.

Table 18 (continued)

	NaOH cond	centration		NaOH cond	entration
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l
1.210 1.215 1.220 1.225 1.230 1.235 1.240 1.245 1.250 1.255 1.260 1.265 1.270 1.275 1.280 1.285 1.290 1.295 1.300 1.305 1.310 1.315 1.320 1.325 1.330 1.335 1.340 1.345	19.16 19.62 20.07 20.53 20.98 21.44 21.90 22.36 22.82 23.27 ₅ 23.73 24.19 24.64 ₅ 25.10 25.56 26.02 26.48 26.94 27.41 27.87 28.33 28.80 29.26 29.73 30.20 30.67 31.14 31.62	5.796 5.958 6.122 6.286 6.451 6.619 6.788 6.958 7.129 7.302 7.475 7.650 7.824 8.000 8.178 8.357 8.539 8.722 8.906 9.092 9.278 9.466 9.656 9.847 10.04 10.23 10.43 10.63	1.375 1.380 1.385 1.390 1.395 1.400 1.405 1.415 1.420 1.425 1.425 1.430 1.435 1.440 1.445 1.450 1.455 1.460 1.465 1.470 1.475 1.480 1.485 1.490 1.495 1.500 1.505 1.510	34.52 35.01 35.50 ₅ 36.00 36.49 ₅ 36.99 37.49 37.99 38.49 39.49 ₅ 40.00 40.51 ₅ 41.03 41.55 42.59 43.12 43.64 44.17 44.69 ₅ 45.22 45.75 46.80 47.85 48.38	11.86 12.08 12.29 12.51 12.73 12.95 13.17 13.39 13.61 13.84 14.07 14.30 14.53 14.77 15.01 15.25 15.49 15.74 15.98 16.23 16.48 16.73 16.98 17.75 18.00 18.26
1.350 1.355 1.360 1.365 1.370	32.10 32.58 33.06 33.54 34.03	10.83 11.03 11.24 11.45 11.65	1.515 .520 1.525 1.530	48.90₅ 49.44 49.97 50.50	18.52 18.78 19.05 19.31

I. Densities and Concentrations of Ammonia Solutions*

	NH ₃ concentration			NH ₃ concentration	
Density at 20°C, g/cm ⁸	g per 100 g of solu- tion (wt. %)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l
0.998 0.996	0.0465 0.512	0.0273 0.299	0.994 0.992	0.977 1.43	0.570 0.834

^{*}For the use of the table, see p. 470.

Table 18 (continued)

	NH3 conce	entration		NH ₃ conc	entration
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l
0.990 0.988 0.986 0.984 0.982 0.980 0.978 0.976 0.974 0.972 0.970 0.968 0.966 0.966 0.964 0.962 0.960 0.958 0.956	1.89 2.35 2.82 3.30. 3.78 4.27 4.76 5.25 5.75 6.25 6.75 7.26 7.77 8.29 8.82 9.34 9.87 10.40 ₅	1.10 1.36_5 1.63_5 1.91 2.18 2.46 2.73 3.01 3.29 3.57 3.84 4.12 4.41 4.69 4.98 5.27 5.55 5.84 6.13	0.934 0.932 0.930 0.928 0.926 0.924 0.922 0.920 0.918 0.916 0.914 0.912 0.910 0.908 0.908 0.906 0.904 0.902 0.900 0.898	16.65 17.24 17.85 18.45 19.06 19.67 20.27 20.88 21.50 22.12 ₅ 22.75 23.39 24.03 24.68 25.33 26.00 26.67 27.33 28.00	9.13 9.44 9.75 10.06 10.37 10.67 10.97 11.28 11.59 11.90 12.21 12.52 12.84 13.16 13.48 13.48 13.48 13.48 14.44 14.76
0.952 0.950 0.948 0.946	11.49 12.03 12.58 13.14	6.42 6.71 7.00 7.29	0.896 0.894 0.892 0.890	28.67 29.33 30.00 30.68 ₅	15.08 15.40 15.71 16.04 16.36
0.944 0.942 0.940 0.938 0.936	13.71 14.29 14.88 15.47 16.06	7.60 7.91 8.21 8.52 8.83	0.888 0.886 0.884 0.882 0.880	31.37 32.09 32.84 33.59 ₅ 34.35	16.69 17.05 17.40 17.75

J. Densities and Concentrations of Sodium Carbonate Solutions

	Na ₂ CO ₃ (anhydrous) concentration			Na ₂ CO ₃ (anhydrous) concentration	
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l
1.000 1.005 1.010 1.015 1.020	0.19 0.67 1.14 1.62 2.10	0.018 0.063_{5} 0.109 0.155 0.202	1.025 1.030 1.035 1.040 1.045	2.57 3.05 3.54 4.03 4.50	0.248 0.296 0.346 0.395 0.444

Table 18 (continued)

	Na ₂ CO ₃ (an concenti			Na ₂ CO ₃ (and concentr	
Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l	Density at 20°C, g/cm ³	g per 100 g of solu- tion (wt. %)	mole/l
1.050 1.055 1.060 1.065 1.070 1.075 1.080 1.085 1.090 1.095 1.100 1.105 1.110	4.98 5.47 5.95 6.43 6.90 7.38 7.85 8.33 8.80 9.27 9.75 10.22 10.68 11.14 11.60	0.493 0.544 0.595 0.646 0.696 0.748 0.800 0.853 0.905 0.958 1.012 1.065 1.118 1.172 1.226	1.125 1.130 1.135 1.140 1.145 1.150 1.155 1.160 1.165 1.170 1.175 1.180 1.185 1.180	12.05 12.52 13.00 13.45 13.90 14.35 14.75 15.20 15.60 16.03 16.45 16.87 17.30 17.70	1.279 1.335 1.392 1.446 1.501 1.557 1.607 1.663 1.714 1.769 1.823 1.878 1.934 1.987

 $\boldsymbol{K.}$ Densities and Concentrations of Selected Commercial Reagents

	Density at	Concentration	
Reagent	20°C, g/cm ³	wt. %	mole/l
Acetic acid, analytical grade and pure	1.174-1.185 ≥1.128 ≥1.116 1.50-1.55	$\geqslant 98$ $\geqslant 99.8$ $25.0-27.0$ 46.85 $35.0-38.0$ $\geqslant 40$ $\geqslant 35$ $45.3\cdot 45.8$ $60.7-68.0$ $54.0-60.0$	\geqslant 17.21 \geqslant 17.45 13.32-14.28 8.6 11.27-12.38 \geqslant 22.55 \geqslant 19.52 5.31-5.55 13.28-15.16 11.41-13.02

Table 18 (continued)

	Density at	Concentration	
Reagent	Density at 20°C, g/cm ³	wt. %	mole/l
Perchloric acid	1.206-1.220 ≥1.719 ≥1.713 1.83-1.835	30.0-31.61 ≥88 ≥87.5 93.56-95.60	$3.60-3.84$ $\geqslant 15.43$ $\geqslant 15.29$ $17.46-17.88$

Table 19
Chief Acid-Base Indicators*
(in the order of the growth in the pH range)

1 Methyl violet; (H ₃ C) ₂ N	.oN	Indicator	Formula	Con- cent- ration,	Solvent	pH range and the indicator colour
α-Naphtholben- zoin; first change (see No. 57) HO———————————————————————————————————	₹	Methyl violet; first change (see Nos. 7 and 15)	3C)2N \	0.1 and 0.05	Water	0.13-0.5 yellow green
α-Naphtholben- zoin; first change (see No. 57) HO———————————————————————————————————			-(=)-			
a-Naphtholben- zoin; first change (see No. 57) $HO - \left(\begin{array}{c} - O\dot{H} \\ C - OH \end{array}\right)$			NHCH ₃ (predominantly)			
	23	α-Naphtholben- zoin; first chan- ge (see No. 57)	но-2	0.05	70% alcohol	0.0-1.0 green—yellow

0.1 Water OH NO2 (H ₃ C) ₂ N (H ₃ C) ₃ H (H ₃ C) ₃ H (O ₂ N (H ₃ C) ₂ N (H ₃ C) ₃ H (O ₃ N	0.0-1.3 colourless—yellow	0.1-2.0 yellow — green- blue	0.2-1.8 red — yellow
(H ₃ C) ₂ N			
OH (H ₃ C) ₂ N (H	0.1	0.05	0.0
ic acid (2,4,6- initrophenol) hyl green sol red (0-cre- olsulphoph- halein); first	HO		H ₃ C. C
A Met S Cree s C	Picric acid (2,4,6- trinitrophenol)	Methyl green	Cresol red (o-cresolsulphoph-thalein); first change

For the use of the table, see p. 472.

Table 19 (continued)

Table 19 (continued)	pH range and the indicator colour	0.13-2.0 yellow — bluish green	1.0-1.5 green — blue	1.2-2.3 red — yellow	1.1-2.8 purple—yellow
Table	Solvent	Water	Water	Water	50% alcohol with an ad- dition of
	Con- cent- ration,	0.1	0.1	0.1	0.01
	Formula	(H ₃ C) ₂ N	See No. 1	$\begin{array}{c c} & & & \\ & & &$	
	Indicator	Malachite green; first change (see No. 69)	Methyl violet (see Nos. 1 and 15; second change)	Metanil yellow (victoria yel- low, tropeo- lin G)	Benzene azodi- phenylamine
-	·øN	9	7	∞	6

	1.2-2.8 red — yellow	1.2-2.8 red — yellow λ _{max} 544-430 nm
1 ml of 1N HCl per 100 ml of solution	20% alcohol	(a) 20% alcohol; (b) water with an addition of 4.3 ml of 0.05N NaOH per 100 mg of the indicator
	0.04	0.1
	$\begin{array}{c c} HO \\ \\ H_3C \\ \\ CH_3 \\ \\ CH_3 \\ \\ CH_3 \\ \end{array}$	H ₃ C CH ₃ H ₃ C CH ₃ HO CH CH HO CH H ₃ C CH
	m-Cresol purple (m-cresolsul-phophthalein); first change, (see No. 50)	Thymol blue (thymolsulphophthalein); first change (see No. 53)
	10	11

ued,
õ
Ħ
5
~~
2
con
. ~
_
_
6
) <i>61</i>
19 (
e 19 (
je
je
Table 19 (

pH range and the indicator colour	1.2-2.8 red — brown- yellow	1.2-3.2 red-violet— colourless
Solvent	(a) 20% alcohol; (b) water with an addition of 5.3 ml of 0.05N NaOH per 100 mg of the indicator	70% alcohol
Con- cent- ration,	0.05	0.1
Formula	HO CH ₃ CH	$\begin{array}{c c} \text{OCH}_3 \\ \text{H}_3\text{CO} & \text{C}_{-\text{OH}} \\ \text{C}_{-\text{OH}} \\ \text{OCH}_3 \\ \text{OCH}_3 \end{array}$
Indicator	Xylenol blue (p-xylenolsul-phophthalein); first change (see No. 54)	Pentamethoxy red
No.	12	13

1.4-3.2 red — yellow	2.0-3.0 blue — violet	1.9-3.3 red — yellow	1.9-3.3 red — yellow	1.3-4.0 bluish violet— orange
Water	Water	Water	Water	Water 90% alcohol
1.0, 0.1 and 0.01	0.1	0.1	0.05	0.1
$\begin{pmatrix} H \\ - \end{pmatrix} - N = N - \begin{pmatrix} H \\ - \end{pmatrix} - SO_3Na$	See No. 1	$0_2N-\langle -\rangle -N=N-\langle -\rangle -OH \langle -\rangle -OH \langle -\rangle \rangle$	$\begin{pmatrix} H & H \\ - & & \\ - & & \\ - & & \\ H \end{pmatrix} - N = N - \begin{pmatrix} - & & & \\ - & & & \\ - & & & \\ H \end{pmatrix} - SO_3K$	NH2 H ₃ C CH ₃ NH ₂ NH2 NH2
Tropeolin 00 (orange IV; di- phenyl orange)	Methyl violet; third change (see Nos. 1 and 7)	Alizarin Yellow R; first change	Benzyl orange	Benzopurpurin 4B; first change (see No. 74)
14	15	16	17	18

Table 19 (continued)	pH range and the indicator colour	2.4-4.0 colourless— yellow	2.8-4.4 colourless—yellow	ohol 2.9-4.0 red — yellow	3.1-4.4 red—orange- yellow \(\lambda \text{max} \) 522-464 nm
	Solvent	Water	Water Mater Alcohol	90% alcohol	Water
	Con- cent- ration,	0.1; 0.05 and 0.04	Saturated and 0.04	0.1 and 0.01	0.1
	Formula	OH O ₂ N NO ₂		$\langle CH_3 \rangle_2 N - \langle - \rangle - N = N - \langle - \rangle$	$ \left (CH_3)_2 N - \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - N = N - \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - SO_3 Na $
	Indicator	β-Dinitrophenol (2,6-dinitro- phenol)	α-Dinitrophenol (2,4-dinitro- phenol)	Methyl yellow (butter yellow)	Methyl orange (Helianthine B; orange III)
	.ov	19	20	21	22

3.0-4.6 yellow — blue \lambda max 436-592 nm	3.0-4.8 yellow — purple	3.0-5•2 bluish violet— red
(a) 20% alcohol; (b) water with an addition of 3.0 ml of 0.05N NaOH per 100 mg of the indicator	(a) 20% alcohol hol (b) water with an addition of 3.2 ml of 0.05N NaOH per 100 mg of the indicator	Water
0.1	0.04	0.1 and 1.0
HO Br Br Br SO ₃ H	$\begin{array}{c c} Br & Br \\ HO & & & \\ & C_1 & & \\ & & C_2 & \\ & & & \\ & $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Bromophenol blue (tetrabromo- phenolsulphoph- thalein)	Bromochlorophe- nol blue	Congo red
23	24	25

Table 19 (continued)	pH range and the indicator colour	3.7-5.2 yellow — violet	3.8-5.4 yellow — blue \lambda max 444-617 nm	3.7-5.7 violet — brow- nish yellow
Ta	Solvent	Water	(a) 20% alcohol; (b) water with an addition of 2.9 ml of 0.05N NaOH per 100 mg of the indicator	70% alcohol
	Con- cent- ration,	0.1	0.1	0.1
	Formula	$\begin{array}{c c} O & OH \\ \parallel & \downarrow & OH \\ \hline \parallel & \downarrow & SO_3Na \\ \hline & \downarrow & \\ \hline & \downarrow & \\ O & & \\ \end{array}$	$\begin{array}{c c} & Br \\ HO & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	
	Indicator	Alizarin Red S (Alizarin S, sodium alizarin sulphonate); first change (see No. 61)	Bromocresol blue (bromocresol green)	α-Naphthyl red
Ĺ	.0 <i>M</i>	26	27	887

 4.0-5.4 colourless — yellow	4.0-6.4 red — blue	4.2-6.2 red — yellow \lambdamax 530-427 nm	4.0-7.0 orange—yellow	4.5-6.5 colourless— red
Water	90% alcohol	60% аісоћоі	Water	Water (corresponding acid is dissolved in 70% alcohol)
0.1 and 0.025	0.2 and 0.5	0.1 and 0.2	0.1	0.1
OH O ₂ N 	$\mathrm{C_{12}H_{9}O_{3}N}$	$(H_3C)_2N - \langle - \rangle - N = N - \langle - \rangle$	$\left\langle \begin{array}{c} -N = N - \left\langle \begin{array}{c} -N + RI \\ -N + RI \end{array} \right\rangle - N + \frac{1}{2} \cdot HCI \right\rangle$	HO I O O O O O O O O O O O O O O O O O O
29 γ-Dinitrophenol (2,5-dinitro- phenol)	30 Lacmoid	31 Methyl red	32 Chrysoidine	Jodeosin (tetraiodofluorescein)

Table 19 (continued)	pH range and the indicator colour	5.0-6.0 yellow— violet	5.0-6.6 yellow — red
Tal	Solvent	90% alcohol	(a) 20% alcohol; (b) water with an addition of 4.7 ml of 0.05N NaOH per 100 mg of the indicator
	Con- cent- ration,	0.5	0.1
	Formula	$ \begin{array}{c c} & OH \\ & OH \\ & CH_2 \\ & CH_2 \\ & CH_2 \end{array} $ $ \begin{array}{c c} & OH \\ & CH_2 \\ & CH_2 \end{array} $ $ \begin{array}{c c} & OH \\ & OH \\ & HO \\ & OH \end{array} $	HOS CI
	Indicator	Hematoxylin	Chlorophenol red (dichlorophe- nolsulphophtha- lein)
_	.oN	34	35

5.0-6.8 yellow—red	5.0-7.0 colourless— yellow	5.2-6.8 yellow — purple ^{Amax} 433-591 nm
(a) 20% alcohol; (b) water with an addition of 3.9 ml of 0.05N NaOH per 100 mg of the indicator	50% alcohol	(a) 20% alcohol; (b) water with an addition of 3.7 ml of 0.05N NaOH per 100 mg of the indicator
0.1 and 0.04	0.1	0.1
HO C Br SO ₃ H		$\begin{array}{c c} CH_3 & CH_3 \\ HO & & O \\ \hline & Br & CH_3 \\ \hline & & CH_3 \\ \hline & & & CH_3 \\ \hline & & & & CH_3 \\ \hline & & & & & CH_3 \\ \hline & & & & & & CH_3 \\ \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$
Bromophenol red (dibromophe- nolsulphophtha- lein)	o-Nitrophenol	Bromocresol purple (dibro- mine-o-cresolsul- phophthalein)
38	37	38

~
continued)
conti
19 (1
Table

₹	1 6			-			
Table 19 (continued)	pH range and the Indicator colour	6.0-7.0	yenow — blue- violet	5.6-7.6 colourless—		6.0-7.6 yellow — blue Amax 433-617 nm	
Tat	Solvent	Water		Water		(a) 20% alcohol; (b) water with	tion of 3.2 ml of 0.05N NaOH per 100 mg of the indicator
	Con- cent- ration,	0.1		0.1		0.05 and 0.1	
	Formula	OH NO ₂	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	HO	SON -	HO CH ₃ H ₃ C C	(CH ₃) ₂ HC/CH ₃) ₂ CH(CH ₃)CH(CH ₃) ₂ CH(CH ₃)CH(CH
	Indicator	Nitrazine yellow		p-Nitrophenol		Bromothymol blue (dibro- mothymolsul- phophtha-	(111)
L	No.	39		40		41	

6.2-8.0 yellow—red	6.8-8.4 red—yellow- brown	6.8-8.4 yellow—red Amax 433-558 nm
50% alcohol	60% alcohol	(a) 20% alcohol; (b) water with an addition of 5.7 ml of 0.05N NaOH per 100 mg of the indicator
0.5 and 0.1	0.1	0.1 and 0.05
HO OH C C C C C C C C C C C C C C C C C C	$(H_3C)_2N$ $(H_3C)_2N$ $(H_3C)_2N$	H _S O ₃ H
p-Rosolic acid (corallinoph-thalein; aurin; methylaurin; yellow coralline)	Neutral red	Phenol red (phe- nolsulphoph- thalein)
42	43	777

Table 19 (continued)	pH range and the indicator colour	7.0-8.0 colourless— violet	6.8-8.4 colourless— yellow	amber yellow—purple red Amax 434-572 nm	
T	Solvent	90% alcohol	Water	(a) 50% alcohol; (b) water with an addition of 5.3 ml of 0.05N NaOH per 100 mg of the indicator	•
	Con- cent- ration,	1.0	0.3	0.1	
	Formula	$\begin{bmatrix} H_{11}C_5 - N \begin{pmatrix} - \\ - \\ - \end{pmatrix} + \begin{pmatrix} - \\ - \\ - \end{pmatrix} - \begin{pmatrix} - \\ - \\ - \end{pmatrix} I^-$		H ₃ C CH ₃	
	Indicator	Quinoline blue (cyanine)	m-Nitrophenol	Cresol red (o-cresolsulphoph-thalein)	
<u></u>	No.	45	46	47	

7.4-8.6 yellow-pink— blue-green	7.4-9.0 colourless— blue	7.4-9.0 yellow—purple	y low-green pink
70% alcohol	Alcohol		Water
0.1 and 1.0	0.1		0.1 and 1.0
HO — O O O O O O O O O O O O O O O O O O	I	See No. 10	$HO - \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle - N = N - \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - SO_3 Na$
α-Naphtholph- thalein	Ethyl-bis-(2,4- dinitrophenyl)- acetate	m-Cresol purple; second change (see No. 10)	Tropeolin 000
87	49	50	51

Table 19 (continued)	pH range and the indicator colour	7.4-9.2 yellow — brown-red	8.0-9.6 yellow — blue ^{Amax} 430-596 nm	8.0-9.6 yellow—blue	8.2-9.8 colourless — red
Ta	Solvent	90% alcohol			90% alcohol
	Con- cent- ration,	0.1			0.2 and 0.02
	Formula	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	See	See No. 12	СН ₃ СН ₃ НО С С СООН
	Indicator	Curcumin; first change	Thymol blue; second change (see No. 11)	Xylenol blue; second change (see No. 12)	o-Cresolphthalein
1_	.oN	52	53	54	55

8.2-10.0 colourless— purple \$\lambda_max \sigma 553 nm	8.4-10.0 yellow — blue	9.3-10.5 colourless — blue
60% alcohol		40% alcohol
0.1 and 1.0		0.1
НООУ ДО	See No. 2	HO CH ₃ H ₃ C O H
56 Phenolphthalein	57 α-Naphtholhen- zoin; second change (see No. 2)	58 p-Xylenolphtha- lein

Table 19 (continued)	pH range and the indicator colour	9.3-10.5 colourless— blue \lambda_max 598 nm	10.1-11.1 blue — red	10.0-12.0 violet—pale yellow
Tab	Solvent	90% alcohol 50% alcohol	Water	
ĺ	Con- cent- ration,	0.04	0.1	
	Formula	H ₃ C CH ₃ H ₃ C CH ₃ HO	$\begin{bmatrix} (C_2H_5)_2^{\frac{1}{N}} & O & NH_2 \\ & & & \\ $	See No. 26
	Indicator	Thymolphthalein	Nile blue	Alizarin Red S; second change (see No. 26)
	.oN	29	09	61

10.2-11.8 brown-red— orange-yellow	10.0-12.1 orange-yel- low — violet	10.0-12.1 light yellow— dark orange	10.1-12.1 yellow — lilac	10.1-12.1 light yellow— brown-red
	Water	Water	Water.	Water
	0.04	0.1	0.1	0.1
See No. 52	NaO_3S	$HO - \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle - N = N - \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$ $GOONa$	$HO - \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle - N = N - \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - NO_2$ $COONa$	$HO - \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle - N = N - \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - NO_2$ $COONa$ SO_3Na
Curcumin; second change (see No. 52)	β-Naphthol violet	Alizarin Yellow GG (salicyl yellow; mor- dant yellow)	Alizarin Yellow R	Alizarin Yellow RS
Curc cb No		Aliz G A		1
 62	63	75	65	99

Table 19 (continued)	pH range and the indicator colour	11.0-13.0 orange-yel- low — green- blue	11.0-13.0 yellow—orange- brown	11.5-13.2 bluish green— colourless	11.5-13.2 colourless — orange	
Tab	Solvent	Water	Water		90% alcohol	
	Con- cent- ration,	0.05	0.1		0.1 and 0.5	
	Formula	O OH	$HO - \left\langle \begin{array}{c} -N = N - \left\langle \begin{array}{c} -SO_3Na \\ -SO_4 \end{array} \right\rangle$	See No. 6	O ₂ N CH ₃ NO ₂ NO ₂ NO ₂	
	Indicator	Alizarin Blue BS	Tropeolin 0 (gold yellow; chrysoine; resorcinol yellow)	Malachite green; second change (see No. 6)	70 2,4,6-Trinitroto- luene	-
	.oN	67	89	69	20	

11.5-14.0 yellow — red	11.6-14.0 blue — yellow	12.2-14.0 colourless— orange	13.0-14.0 orange — red
Water	50% alcohol	90% alcohol	
0.1	0.25	0.1 and 0.5	
HO $= N - N = N - $ $= NaO_3S - $ SO_3Na	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		See No. 18
Orange G	72 Indigo carmine (sodium indigo disulphonate)	1,3,5-Trinitro- benzene	Benzopurpurin 4B; second change (see No. 18)
71	12	73	74

Ionic Product of Water at Temperatures Ranging from 0 °C to 100 °C

 $K_{\rm W} = a_{\rm H^+} \times a_{\rm OH^-} \quad \sqrt{K_{\rm W}} = a_{\rm H^+} = a_{\rm OH^-}$

ı	1	
t, °C	K _w	$\sqrt{\kappa_{\mathbf{w}}}$
0 5 10 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 90 100 100 100 100 100 100 100 100 100	$10^{-14.96} = 0.11 \times 10^{-14}$ $10^{-14.76} = 0.17 \times 10^{-14}$ $10^{-14.53} = 0.30 \times 10^{-14}$ $10^{-14.34} = 0.46 \times 10^{-14}$ $10^{-14.30} = 0.50 \times 10^{-14}$ $10^{-14.26} = 0.55 \times 10^{-14}$ $10^{-14.22} = 0.60 \times 10^{-14}$ $10^{-14.19} = 0.65 \times 10^{-14}$ $10^{-14.19} = 0.65 \times 10^{-14}$ $10^{-14.16} = 0.69 \times 10^{-14}$ $10^{-14.09} = 0.81 \times 10^{-14}$ $10^{-14.09} = 0.81 \times 10^{-14}$ $10^{-14.06} = 0.87 \times 10^{-14}$ $10^{-13.96} = 1.10 \times 10^{-14}$ $10^{-13.96} = 1.10 \times 10^{-14}$ $10^{-13.88} = 1.29 \times 10^{-14}$ $10^{-13.88} = 1.29 \times 10^{-14}$ $10^{-13.88} = 1.38 \times 10^{-14}$ $10^{-13.88} = 1.38 \times 10^{-14}$ $10^{-13.86} = 1.58 \times 10^{-14}$ $10^{-13.68} = 2.99 \times 10^{-14}$ $10^{-13.77} = 1.70 \times 10^{-14}$ $10^{-13.68} = 2.09 \times 10^{-14}$ $10^{-13.68} = 2.09 \times 10^{-14}$ $10^{-13.68} = 2.24 \times 10^{-14}$ $10^{-13.69} = 2.57 \times 10^{-14}$ $10^{-13.69} = 2.57 \times 10^{-14}$ $10^{-13.59} = 2.57 \times 10^{-14}$ $10^{-13.59} = 2.57 \times 10^{-14}$ $10^{-13.69} = 2.57 \times 10^{-14}$ $10^{-13.69} = 5.50 \times 10^{-14}$ $10^{-13.90} = 9.55 \times 10^{-14}$ $10^{-12.80} = 15.8 \times 10^{-14}$ $10^{-12.80} = 5.50 \times 10^{-14}$ $10^{-12.42} = 38.0 \times 10^{-14}$ $10^{-12.42} = 38.0 \times 10^{-14}$ $10^{-12.42} = 38.0 \times 10^{-14}$ $10^{-12.26} = 55.0 \times 10^{-14}$	$\begin{array}{c} 10^{-7,48} = 0.33 \times 10^{-7} \\ 10^{-7,38} = 0.42 \times 10^{-7} \\ 10^{-7,27} = 0.54 \times 10^{-7} \\ 10^{-7,17} = 0.68 \times 10^{-7} \\ 10^{-7,18} = 0.71 \times 10^{-7} \\ 10^{-7,18} = 0.74 \times 10^{-7} \\ 10^{-7,19} = 0.80 \times 10^{-7} \\ 10^{-7,10} = 0.80 \times 10^{-7} \\ 10^{-7,08} = 0.83 \times 10^{-7} \\ 10^{-7,08} = 0.87 \times 10^{-7} \\ 10^{-7,08} = 0.89 \times 10^{-7} \\ 10^{-7,08} = 0.93 \times 10^{-7} \\ 10^{-7,09} = 0.96 \times 10^{-7} \\ 10^{-7,09} = 0.96 \times 10^{-7} \\ 10^{-6,98} = 1.05 \times 10^{-7} \\ 10^{-6,98} = 1.07 \times 10^{-7} \\ 10^{-6,98} = 1.12 \times 10^{-7} \\ 10^{-6,99} = 1.12 \times 10^{-7} \\ 10^{-6,99} = 1.20 \times 10^{-7} \\ 10^{-6,99} = 1.26 \times 10^{-7} \\ 10^{-6,99} = 1.26 \times 10^{-7} \\ 10^{-6,89} = 1.29 \times 10^{-7} \\ 10^{-6,89} = 1.35 \times 10^{-7} \\ 10^{-6,89} = 1.35 \times 10^{-7} \\ 10^{-6,89} = 1.38 \times 10^{-7} \\ 10^{-6,84} = 1.48 \times 10^{-7} \\ 10^{-6,84} = 1.55 \times 10^{-7} \\ 10^{-6,81} = 1.55 \times 10^{-7} \\ 10^{-6,80} = 1.58 \times 10^{-7} \\ 10^{-6,81} = 1.58 \times 10^{-7} \\ 10^{-6,99} = 1.29 \times 10^{-7} \\ 10^{-6,99} = 1.38 \times 10^{-7} \\$

Table 21

Colorimetric Determination of the pH of Solutions*

Salt corrections for the most important indicators at different ionic strength of a solution (Ionic strength of the reference buffer solutions used is equal to 0.1)

				Ionic s	Ionic strength			
Indicator	0.0025	0.005	0.01	0.02	0.05	0.1	0.5 (KCI)	0.5 (NaCl)
				Salt correction	ction			
Bromocresol blue (bromocresol green) Bromophenol blue Bromothymol blue Chlorophenol red Methyl orange Methyl red Phenol red Phenol phthalein Thymol blue; first change Thymol blue; second change	+0.21 +0.15 +0.14 -0.00 +0.00 -14	++0.14 +0.15 +0.15 +0.04 +0.12 +0.16 +0.16	+++0.14 +0.02 ++0.03 +0.03 +0.12 +0.12 +0.12	++++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++	0.0000000000000000000000000000000000000	-0.12 -0.20 -0.20 -0.00 -0.00 -0.16 -0.12	-0.16 -0.18 -0.28 -0.00 -0.29 -0.29 -0.19

* For the use of the table, see p. 473.

Ionization Constants of Indicators (pK1; at different ionic strength)

(t = temperature of experiment)

A. Monochromatic Indicators

Indicator	pK ₁ (at a zero ionic strength and different			C ₁ (t=2)	
	temperatures) A=t-20°C	0.01	0.05	0.1	0.5
Pentamethoxy red Quinaldine red α-Dinitrophenol β-Dinitrophenol γ-Dinitrophenol p-Nitrophenol m-Nitrophenol	1.86 + 0.008 A 2.63 - 0.007 A 4.10 - 0.006 A 3.70 - 0.006 A 5.20 - 0.0045A 7.00 - 0.011 A 8.35 - 0.01 A	2.80 —	3.95 5.12 —	1.86 2.90 3.90 3.90 5.10 - 8.25	3.80 (KCl) 5.00 (NaCl) —

B. Dichromatic Indicators

			pl	$K_1 (t=2)$	0°C)
Indicator	$ \begin{array}{c} pK_1 \\ \text{(ionic strength} = \end{array} $	Ionic strength, μ			
	=0)	0.01	0.05	0.1	0.5
Thymol blue (acid region)* Methyl orange*	1.65 (15-30 °C) 3.46 — 0.014 (t = 20 °C)	 3.46	3.46	1	3.46
Bromophenol blue Bromocresol blue (bromocresol	4.10 (15-20°C)	4.06			` ,
green)	4.90 (15-30 °C)	4.80	4.70	4.66	4.50 (KCl) 4.42 (NaCl)
Methyl red*	5.00 - 0.006 ($t = 20$ °C)	5.00	5.00	5.00	
Chlorophenol red	6.25 - 0.005 ($t = 20$ °C)	6.15	6.05	6.00	5.9 (KCl) 5.85 (NaCl)
Bromocresol purple	6.40 - 0.005 ($t = 20$ °C)	6.28	6.21	6.12	5.9 (KCl) 5.8 (NaCl)
Bromothymol blue	7.30 (15-30 °C)	7.19	7.13	7.10	6.9 (KCl) 6.8 (NaCl)
Phenol red	8.00 - 0.007 ($t = 20$ °C)	7.92	7.84	7.81	
Thymol blue	9.20 (15-30 °C)	9.01	8.95	8.90	_

^{*} Methyl orange. methyl red and thymol blue (acid region) have an advantageous feature, i.e., their constants are scarcely affected by the electrolytes present, up to an ionic strength of 0.5.

Some Mixed Indicators*

Titration index pT is the pH value whereby the observer clearly sees the change in the inducator's colour and recognizes titration as complete. This is a somewhat conditional quantity which differs from person who performs titration.

			Tudestar Totalber	Timlo C
Titra- tion index (pT)	Components	Ratio of volumes	in actidic medium	in alkaline medium
3.25	Methyl yellow, 0.1% solution in alcohol Methylene blue, 0.1% solution in alcohol	1:1	Blue-violet.	Green
4.1	Methyl orange, 0.1% solution in water Indigo carmine, 0.25% solution in water	1:1	Violet	Green
4.3	Bromocresol blue, sodium salt, 0.1% solution in water Methyl orange, 0.2% solution in water	1:1	Yellow	Blue-green
5.1	Bromocresol blue, 0.1% solution in alcohol Methyl red, 0.2% solution in alcohol	3:1	Wine red	Greem
5.4	Methyl red, 0.2% solution in alcohol Methylene blue, 0.1% solution in alcohol	1:1	Red-violet	Greem
6.1	Bromocresol blue, sodium salt, 0.1% solution in water Chlorophenol red, sodium salt, 0.1% solution in water	1:1	Yelkow- green	Blue-violet

* Indicators are kept in flasks of dark glass.

100			1 able	Iable 23 (continued)
tion fuder	Communication	1004:0	Indicator colour	r colour
(pT)	STIBILITY	vatio of volumes	in acidic medium	in alkaline medium
6.7	Bromocresol purple, sodium salt, 0.1% solution in wa-	1:1	Yellow	Blue-violet
	Bromothymol blue, sodium salt, 0.1% solution in water			
7.0	Neutral red, 0.1% solution in alcohol Methylene blue, 0.1% solution in alcohol	1:1	Violet-blue	Green
7.2	Neutral red, 0.1% solution in alcohol Bromothymol blue, 0.1% solution in alcohol	1:1	Pink	Green
7.5	Bromothymol blue, sodium salt, 0.1% solution in water Phenol red, sodium salt, 0.1% solution in water	1:1	Yellow	Violet
8.3	Cresol red, sodium salt, 0.1% solution in water Thymol blue, sodium salt, 0.1% solution in water	1:3	Yellow	Violet
8.9	α -Naphtholphthalein, 0.1% solution in alcohol Phenolphthalein, 0.1% solution in alcohol	1:3	Pale pink	Violet
9.0	Thymol blue, 0.1% solution in 50% alcohol Phenolphthalein, 0.1% solution in 50% alcohol	1:3	Yellow	Violet
9.9	Phenolphthalein, 0.1% solution in alcohol Thymolphthalein, 0.1% solution in alcohol	1:1	Colourless	Violet
10.2	Thymolphthalein, 0.1% solution in alcohol Alizarin yellow, 0.1% solution in alcohol	2:1	Yellow	Violet

Universal Indicators

1. 100 mg of phenolphthalein, 200 mg of methyl red, 300 mg of methyl yellow, 400 mg of bromothymol blue and 500 mg of thymol blue are dissolved in 500 ml of 96% alcohol, then 0.1 N solution of caustic soda is added until the appearance of a pure yellow colour (pH 6).

Colour .		\mathbf{Red}	Orange	Yellow	Green	Blue
pH	•	2.0	4.0	6.0	8.0	10.0

2. 15 ml of 0.1% solution of methyl yellow, 5 ml of 0.1% solution of methyl red, 20 ml of 0.1% solution of bromothymol blue, 20 ml of 0.1% solution of phenolphthalein and 20 ml of 0.1% solution of thymolphthalein are mixed.

Colour PH	Pink	Red-orange	Orange
	1.0	3.0	4.0
Colour	Yellow-orange 5.0	Lemon yellow 6.0	Yellow-green 7.0
Colour	Green	Blue-green	Violet
	8.0	9.0	10.0

3. 70 mg of tropeolin 00, 100 mg of methyl orange, 80 mg of methyl red, 400 mg of bromothymol blue, 500 mg of phenolphthalein and 100 mg of alizarin yellow R are dissolved in 100 ml of 50% alcohol.

Colour pH	Orange-red 2.0	Red-orange 3.0	Orange 4.0
Colour pH	Yellow-orange 5.0	Oran ge-ye llow 6.0	Yellow 6.5
Colour pH	Green-yellow	Green	Green-blue
	7.0	8.0	9.0
Colour pH	Blue-violet	Violet	Red-violet
	9.5	10.0	12.0

4. 100 mg of methyl red, 100 mg of bromothymol blue, 100 mg of α -naphtholphthalein, 100 mg of phenolphthalein and 100 mg of thymolphthalein are dissolved in 500 ml of 96% alcohol.

Colour pH	Red 4.0	Orange 5.0	Yellow 6.0	Green-yellow 7.0
Colour pH	Green 8.0	Blue-green 9.0	Blue-violet 10.0	Red-violet 11.0

Table 25

Chief Fluorescent Indicators

(in the order of the growth of the pH of fluorescence change)

Green—blue	Absence—blue	Intensification of yellow-orange fluores- cence
1.4-3.2	1.5-2.0	2.0-4.0
	C ₆ H ₁₁ O ₅ - O HO O	NH ₂ NH ₂ H ₂ NO ₂ S
4-Ethoxyacridone	Esculin	1,5-Naphthylaminesulphami- de; first change
က	7	ເດ

			Table 25 (continued)
 Indicator	Formula	pH range	Change in fluorescence
Phloxine (3', 6'-dichloro-2, 4, 5, 7-tetrabromofluorescein)	С1 ССООН	2.0-4.0	Absence—yellow-orange
Salicylic acid	он 	2.5-3.5	Intensification of blue fluorescence

Intensification of yel- low-green fluorescence	Intensification of violet fluorescence	Intensification of blue- green fluorescence
2.5-4.5	2.8-4.4	3.0-4.2
Br COOH	NH ₂	HOOD I I O
Eosine (tetrabromofluorescein)	β-Naphthylamine (2-naphthylamine)	Erythrosine (tetraiodofluores-cein)
∞	6	10

Table 25 (continued)	Change in fluorescence	Lilac—orange		Intensification of blue fluorescence	Intensification of blue fluorescence	
	pH range	3.2-3.8		3.4-4.8	3.5-6.0	
	Formula	2	(CH ₃) ₂ N	NH ₂	но он 	
	Indicator	Dimethylnaphtheirhodine		α-Naphthylamine (1-naphthy- lamine); first change (see No. 32)	Chromotropic acid	
	oz	11		12	13	

14 Fluorescein 15 Quinic acid C ₆ H ₇ (OH) ₄ COOH C ₇ OH C ₆ H ₇ (OH) ₄ COOH C ₇ OH C ₆ H ₇ (OH) ₄ COOH C ₇ OH C ₇ OH C ₆ H ₇ (OH) ₄ COOH C ₇ OH C ₇ OH C ₇ OH C ₆ H ₇ (OH) ₄ COOH C ₇ OH C ₆ H ₇ (OH) ₄ COOH C ₇ OH C ₆ H ₇ (OH) ₄ COOH C ₇ OH C					
Quinic acid Quinine; first change (see C ₂₀ H ₂₄ O ₂ N ₂ No. 28) Acridine β-Methylumbelliferone; second change (see No. 1) β-Naphthoquinoline		Fluorescein	H000	4.0-5.0	Intensification of green fluorescence
Quinic acid Quinine; first change (see Quinine; first change (see Quinine; first change (see Acridine Acridine \$\beta\$-Methylumbelliferone; second \$\beta\$-No. 1 \$\beta\$-Naphthoquinoline			5		
Quinine; first change (see No. 28) Acridine β-Methylumbelliferone; second change (see No. 1) β-Naphthoquinoline	١, ١	Quinic acid	C ₆ H ₇ (OH) ₄ COOH	4.0-5.0	Yellow—blue
Acridine β-Methylumbelliferone; second change (see No. 1) β-Naphthoquinoline	9	Quinine; first change (see No. 28)	$\mathrm{C_{20}H_{24}O_{2}N_{2}}$	3.8-6.1	Blue—violet
β-Methylumbelliferone; second change (see No. 1) β-Naphthoquinoline	4	Acridine	N	4.8-6.6	Green—violet-blue
β-Naphthoquinoline	6 0	β-Methylumbelliferone; second change (see No. 1)	See No. 1	5.0-7.6	Intensification of blue fluorescence
	G.	β-Naphthoquinoline	Z	5.0-8.0	Brilliant blue—pale violet

Table 25 (continued)	Change in fluorescence	Green—yellow-green	Absence—blue	Pale blue—blue-violet	_
	pH range	6.0-8.0	6.5-7.6	7.0-8.5	
	Formula	0 HO 0 HO 0 HO	НО	но	
	Indicator	3,6-Dioxyphthalimide	Umbelliferone	β-Naphthol (2-naphthol)	
	No.	20	21	22	

Blue—green	Intensification of blue fluorescence	Green—yellow	Intensification of blue fluorescence
6.8-8.8	7.4-9.0	7.0-10.0	8.0-10.6
OH CN HO	KO ₃ S KO ₃ S	он о он о он	NaO ₃ S/SO ₃ Na
2,3-Dicyanhydroquinone	G-Salt	Morin (3, 5, 7, 2', 4'-pentao- xyflavone)	R-Salt
23	77	25	26
			14*

Table 25 (continued)	Change in fluorescence	Orange—green	Violet—absence	Yellow-orange—green	Dark green—light yellow	
	pH range	8.4-10.4	9.5-10.5	9.5-13.0	9.8-12.0	
	Formula	(CH ₃) ₂ N N(CH ₃) ₂	See No. 16	See No. 5	0 = 0	
	Indicator	Euchrysine 3R (base of acridine orange)	Quinine; second change (see No. 16)	1,5-Naphthylaminesulpha- mide; second change (see No. 5)	Coumarin	
	Zo.	27	28	29	30	

Violet—green	Weakening of blue fluorescence	Violet-blue—bluish green
10.0-12.0	12.0-13.0	11.5-14.0
H ₂ N OH HO ₃ S	See No. 12	NH ₂
SS-Acid	α-Naphthylamine; second change (see No. 12)	Naphthionic acid
33	32	33

Table 26

Selected Chemiluminescent Indicators

Indicator	Formula	pH at which luminescence occurs
N, N'-Dimethylbiacridene	H_3C-N $=$ $N-CH_3$	6~
Lophine (2, 4, 5-Triphenylimidazole; 2, 4, 5-triphenylglyoxaline	$\begin{pmatrix} -c - N \\ -c - C \\ -c - C \\ -c - C \end{pmatrix}$	8.9-9.4

8.0-8.5	9.0-10.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$10^{3} H_{3}C - \frac{1}{N}$ $10^{3} H_{3}C - \frac{1}{N}$ $10^{3} H_{3}C - \frac{1}{N}$
Luminol	Lucigenin

Table 27
Principal Adsorption Indicators

	Timothal radiomit		1		
No.	Indicator	Formula	Ion of titrat- ing rea- gent	Ion being determi- ned	Change in colour
-	Alizarin Red S (0.4% aqueous solution)	See Table 19, No. 26 (p. 184)	Pb2+	Fe(CN)_6-	Yellow— pink-red
8	Bengali pink (3', 6'- dichloro-2, 4, 5, 7- tetraiodofluoresce- in, potash salt) (0.5% aqueous so- lution)	HO O O O O O O O O O O O O O O O O O O	Ag+	- I	Pink—violet
င	Bromocresol blue (bromocresol green) (1% solution in 20% alcohol)	See Table 19, No. 27 (p. 184)	Ag ⁺	Cl-	Violet— greenish blue
4	Bromophenol blue (0.1% alcohol solution or 0.1% aqueous solution of sodium salt)	See Table 19, No. 23 (p. 183)	Ag+	Cl-, Br-, SCN- I-	Yellow— blue Yellow- green— blue-green

Cl-, Br-, Red-blue	Red-violet— blue-violet Pink—red- violet Yellow- green— orange	Cl-, Br- Colourless—violet	Light red— violet Yellow— green Pink—blue
Cl ⁻ , Br ⁻	Cl-, Br- SCN- I-		Cl- Br-, I- SCN-
Ag+	Ag+	Hg ₂ ² +	Ag+
See Table 19, No. 25 (p. 183)	О О О О О О О О О О О О О О О О О О О	H H H H H H H	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Congo red (0.1% aqueous solution)	3,6-Dichlorofluores- cein (0.1% solution in 60-70% alcohol, or 0.1% solution of sodium salt in water)	Diphenylcar- bazide	Diphenylcarbazone (0.2% alcohol solution)
ري 1	9	7	∞

Table 27 (continued)	Change in colour	Orange—in- tense red	Orange— dark red	Yellow- green— pink Yellow- green—	Red-violet— pink Orange— pink Bluish— pink
Table	Ion being determi- ned	Br-, I-, SCN-	MoO ₄ -	Cl-, Br-, SCN- I-	Cl- Br-, I- SCN-
	Ion of titra- ting rea-	Ag+	Pb2+	Ag+	Ag +
	Formula	See Table 25, No. 8 (p. 207)	See Table 25, No. 10 (p. 207)	See Table 25, No. 14 (p. 209)	H_2N H_3C C H_3C H_3C H_2N H_2N
	Indicator	Eosine (0.5% solution of sodium salt in water or 0.1% solution of eosine in 60-70% alcohol)	Erythrosine (0.5% aqueous solution)	Fluorescein (0.1% alcohol solution)	Fuchsin (0.1% alcohol solution)
	No.	6	10	11	12

Table 28
Indicators Commonly Used in Complexonometry

No.	Indicator	Formula	
1	Acid Chrome Black Special (Chrome Black Special ET 00; Eriochrome Black T)	$\begin{array}{c} OH \\ NaO_3S \\ \hline \\ O_2N \end{array}$	

* RE stands for rare-earth elements, lanthanoids.

Concentration	Ions being determined *	Conditions of determination	Change in colour
Mixture of indicator (1 wt. %) and solid	A13+	pH 7-8; back titra- tion with a zinc salt solution in the presence of pyridine	Wine red—blue
sodium chloride	Ba ²⁺	pĤ 10; titration in the presence of magnesium comp- lexonate	
	Bi ³⁺	pH 9-10; back titra- tion with a zinc salt solution	
	Ca ²⁺	pH 10; addition of magnesium complexonate	
	Cd ²⁺ , Co ³⁺ , Mg ²⁺ , Zn ²⁺	pH 10	
	Cr ³⁺	Alkaline medium; back titration with a manganese salt solution	
	Fe ³⁺ , Ti ^{IV}	Back titration with a zinc salt solu- tion in the pre- sence of pyridine	
	Ga ³⁺	pH 6.5-9.5; back tit- ration with a zinc salt solution	
	Hg ²⁺	pH 9-10; addition of magnesium complexonate	
	In ³⁺	pH 8-10; in the pre- sence of potas- sium-sodium tar- trate	
	Mn ²⁺	pH 10; addition of hydroxylamine	
1	l	l	

No.	Indicator	Formula
1	Acid Chrome Black Spe- cial (Chro- me Black Special ET 00; Erioch- rome Black T)	$NaO_3S \longrightarrow N=N$ O_2N O_2N
2	Acid Chrome Blue K	HO HO OH N=N NaO ₃ S SO ₃ Na
3	Acid Chrome Dark Green G (palatine chrome green)	$OH \qquad OH NH_2$ $N := N$ $NaO_3S \qquad SO_3Na$ NO_2
4	Alizarin Red S	See Table 19, No. 26 (p. 184)

Table 28 (continued)

Concentration	Jons being determined	Conditions of determination	Change in colour
Mixture of indicator (1 wt. %) and solid sodium chloride	Ni ²⁺ , Pb ²⁺ Tl ³⁺ V ^{IV}	pH 10; back titration with a magnesium salt or a zinc salt solution pH 10; back titration with a magnesium salt solution or an addition of magnesium complexonate pH 10; back titration with a manganese salt solution	Wine red—blue
Aqueous solu- tion	Ca ²⁺ Mg ²⁺ Cd ²⁺ , Zn ²⁺ Mn ²⁺ Pb ²⁺	pH 12 pH 10-11; ammonia buffer pH 9-10; ammonia buffer pH 10; ammonia buffer pH 10; in the pre- sence of tartrate	Pink—gray-blue
0.5% aqueous solution	Ca ²⁺ Ga ³⁺	pH > 12. Used in mixture with 0.25% aqueous solution of naphthol yellow in the ratio of 1:2 (hydrone II) pH 3	Brownish oran- ge—green Blue—pink
0.05% aqueous solution	Th ^{IV} , RE Sc ³⁺ Al ³⁺	pH 2.2-3.4 pH 2 pH 3.5-3.6; back tit- ration with a tho- rium nitrate solu- tion	Pink—yellow Yellow—pink

No.	Indicator	Formula
5	Arsenazo I	See Table 49, No. 7 (p. 362)
6	Benzidine	H_2N — $\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$ — $\left\langle \begin{array}{c} \\ \\ \end{array}$ — $\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$ — $\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$ — $\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$ — $\left\langle \begin{array}{c} \\ \\ \end{array}$ — $\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$ — $\left\langle \begin{array}{c} \\ \\ \end{array}$ — $\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$ — $\left\langle \begin{array}{c} \\ \\ \end{array}$ — $\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$ — $\left\langle \begin{array}{c} \\ \\ \end{array}$ — $\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$ — $\left\langle \begin{array}{c} \\ \\ \end{array}$ — $\left\langle \begin{array}{c}$
7	Beryllon II	NaO ₃ S SO ₃ Na SO ₃ Na NaO ₃ S SO ₃ Na
8	Bromopyro- gallol red, BPR	O Br SO ₃ H

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
_	Pu ^{IV} Th ^{IV} U ^{IV} RE Ca ²⁺ , Mg ²⁺	0.1-0.2M HCl pH 1.6-3 pH 1.7 pH 7 pH 10	Violet—pink
1% solution in glacial ace- tic acid	Al ³⁺ , Bi ³⁺ , Fe ³⁺ , Ga ³⁺ , Sn ^{IV} , Ti ^{IV}	Buffer solution: 500 g of ammonium ace- tate and 20 ml of glacial acetic acid in one litre. Addi- tion of Fe(CN) ₆ - and Fe(CN) ₆ -, and back titration with a zinc acetate so- lution	Colourless—blue
0.02% aqueous solution	Be ²⁺ Mg ²⁺	pH 12-13.2 pH 10	Blue—violet Blue-violet— violet-red
0.5% solution in 50% al- cohol	Bi ³⁺ Pb ²⁺ Ni ²⁺ , Co ²⁺ , Cd ²⁺ Mg ²⁺ , Mn ²⁺ Pd ²⁺ , Tl ³⁺ , Fe ³⁺ , In ³⁺ , Ga ³⁺	buffer Back titration with a lead salt or a bis-	Red—orange- yellow Blue-violet— red Blue—wine red Blue—violet- red

No.	Indicator	Formula			
9	Calcein: see	Fluorexone, No. 24 (p. 232)			
10	Calces (Pat- ton-Reeder Dye; HHSNN)	OH HO NaO ₃ S — — — — COOH			
11	Calcion	HO N N NaO3S SO3Na NaO3S SO3Na NaO3S SO3Na NaO3S SO3Na			
12	Calcon (Acid Alizarin Red V; Eriochro- me Red RE)	COOH HO SO ₃ Na SO ₃ Na SO ₃ Na			
13	Chalcone (Eriochro- me Blue- Black R; Erio R)	$HO HO$ $N = N - H_3OS$			

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
Mixture of indicator (1 wt. %) and solid sodium chloride	Ca ²⁺	pH 12-14	Wine red—blue
	Ca ² +	pH > 12	Crimson—bril- liant blue
0.35% aqueous solution (10 ml) with the addition of 0.02% aqueous solution of methylene blue (10 ml), 0.4% solution of potassium salt (calculated on the basis of Ca ²⁺) (5 ml) and water (25 ml)	Ca ²⁺	pH 13	Yellow—oran- ge-red
-	Ca ²⁺ Cd ²⁺ Mg ²⁺ , Mn ²⁺ , Zn ²⁺	pH 14.5; NH ₃ ; pH 12.5-13; NaOH pH 11.5; NH ₃ pH 10; ammonia buffer	Pink—blue

No.	Indicator	Formula
14	Chromasurol S (Eriochromasurol S; alberrone)	H ₃ C CH ₃ HOOC C COOH Cl SO ₃ H
15	Chromogen I	Black Special ET 00: See Acid Chrome Black Spe-
16	Chromoxane Green GG	HOOC CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 $COOH$

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
0.4% aqueous solution	Al ³⁺	pH 4; acetate buffer, 80 °C	Violet—yellow- orange
3.32.33	Ca ²⁺	pH 11; NH ₃	Pale red-oran- ge—yellow
	Cu ²⁺	pH 6-6.5; acetate buffer	Blue or blue- violet—green
		pH 8-10; NH ₃	Violet—yellow or yellow-
	Fe ³⁺	pH 2-3; chloroacetic- acetate buffer, 60 °C	green Greenish blue— yellow-orange
	Mg ²⁺	pH 11; NH ₃	Dirty red—yel- low
	Ni ²⁺	pH 11; NH ₃	Blue-violet— yellow
	RE3+	pH 8; pyridine+ +NH3	Violet—yellow
	Th ^{IV}	pH 1-3; HNO ₃	Red-violet— orange
	VO2+	pH 4; acetate buffer	Blue-violet— red-orange

cial, No. 1 (p. 220)

Mg ²⁺ , Ca ²⁺ Cu ²⁺ Ni ²⁺ Th ^{IV} VO ²⁺	pH 11 pH 8 pH 11 pH 4.8 pH 4	Red—green Red—orange Red—green Violet—red

No.	Indicator	Formula
17	3, 3'-Dime- thylnaph- thidine (DMN)	H_2N $ NH_2$ CH_3
18	Diphenyl carbazone	See Table 27, No. 8 (p. 217)
19	Dithizone	See Table 49, No. 43 (p. 376)
20	Eriochrome	Black T: See Acid Chrome Black Special, No. 1
21	Eriochrome Blue- Black B	OH OH NaO ₃ S — N = N —

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
1% solution in glacial acetic acid	Zn ²⁺ Al ³⁺ , Cd ²⁺ , Cu ²⁺ , Ni ²⁺ , Pd ²⁺	pH 5; in the presence of Fe(CN) ₆ ³ - pH 5; back titration in the presence of Fe(CN) ₆ ³ -	Violet—colour- less
0.2% alcohol solution	Hg ²⁺ Pb ²⁺	pH 1; HCl-KCl pH 4.5-6.5; acetic- acetate buffer	Blue-violet— colourless Red—colourless
0.075% solu- tion in ethyl alcohol	Cd ²⁺ Zn ²⁺	pH 4.5; 50% alcohol pH 4-6; 50% alcohol or dimethyl ketone	Pink—yellow Pink—blue, green or yel- low, depen-
	Ni ²⁺ Pb ²⁺	pH 4.5; 60% alcohol pH 4.7-5.4; 50% al- cohol in the pre- sence of urotropi- ne buffer	ding on pH Pink—yellow Pink—yellow
	Al ³⁺	pH 4-5; 50% alcohol; back titration with a zinc salt solu- tion	

(p. 220)

0.4% solution in methanol	Ca ²⁺ , Cd ²⁺ Mg ²⁺ , Zn ²⁺ U ^{IV} Zr ^{IV}	pH 11.5; NH ₃ pH 10; ammonia buffer 0.01-0.2M HCl, hot solution 0.01-0.5M HCl; 50% methanol, hot so- lution	Red—blue Red—blue Blue—red Blue—red

No.	Indicator	Formula
22	Eriochrome Red B	$ \begin{array}{c c} & H_3C - C = N \\ & N = N - C = C \end{array} $ $ \begin{array}{c c} & N = N - C = C \end{array} $ $ \begin{array}{c c} & OH \end{array} $
23	Eriochrome Cyanine R	H ₃ C CH ₃ HO COOH SO ₃ H
24	Fluorexone (calcein, fluorescein complexo- ne)	HO O O CH2COOH HOOCH2C CH2COOH COOH CH2COOH

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
_	Ca ²⁺	pH 10; ammonia buffer	Red—yellow
	Cu ²⁺	pH 2; chloroacetic	Purple—yellow
	Mn²+	acid pH 4; acetate buffer pH 8-10; ammonia buffer; ascorbic	Purple—green Red—yellow
	Ni ²⁺	acid pH 4-6; acetate	Purple—pale
	Pb2+	buffer pH 10; ammonia	yellow Orange red—
	Zn ²⁺	buffer; tartrate pH 6.5; urotropine buffer	yellow Red—yellow
0.4% aqueous solution	Al ³⁺ Zr ^{IV} Fe ³⁺ Th ^{IV}	pH 5-6.3; acetate buffer, back titra- tion with a zinc salt solution, 70-80°C pH 1.4; hot solution pH 2-3; cloroacetic acid-acetate, 60°C pH 2-2.5	Yellow—violet Pink—colour- less Violet—yellow or green Purple—pink
2% aqueous solution or solid mixture with KNO3 in the ratio of 1:100	Ca ²⁺ Ba ²⁺ , Sr ²⁺ Cu ²⁺ Mn ²⁺	pH > 12; KOH or NaOH pH 11.5; NH ₃ or pH 12.5; KOH pH 10-11; ammonia buffer pH 8-11; ammonia buffer + NH ₂ OH	Fluorescence— blue or green Fluorescence— pink, almost colourless

No.	Indicator	Formula
25	Glycinthy- mol blue (GTB)	H ₃ C CH ₃ H ₃ C CH ₃ CH CH HO HO CH ₂ CHNH ₂ C CH ₃ CH ₂ NHCH ₂ COOH SO ₃ H
26	Glyoxal-bis- (2-hydro- xyanil) (GBHA)	$OH \qquad HO$ $N = CH - CH = N$
27	Hematoxy- lin	See Table 19, No. 34 (p. 186)
28	Hydroxyhy- droquinone pink (hy- droxyhy- droquinone sulphoph- thalein)	HO O O O O O O O O O O O O O O O O O O
29	Magneson	$\begin{array}{c} \text{NaO}_{3}S \\ \text{OH} \\ \text{HO} \\ \text{OH} \\ \text{N=N} \end{array}$

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
0.1% aqueous solution	Cu ²⁺ Zn ²⁺	pH 5-6; urotropine buffer pH 7.5; pyridine buffer	Blue—yellow
	Ca ² +	pH 13 (in the presence of KCN, the end point is more distinct)	Pink—yellow
0.5% solution in 90% al- cohol	Al ³⁺ Bi ³⁺ Th ^{IV} Zr ^{IV}	pH 6; back titration with an alumi- nium salt solution pH 1-2; HNO ₃ pH 2 pH 1-1.5	Yellow-green— pink Pink—pale yel- low Orange—yellow Pink—yellow
0.1% aqueous solution	Th ^{TV} , Bi ³⁺	pH 2.4-3; acetate buffer	Pink—yellow
0.01% solution in water or acetone	Mg ²⁺ Ca ²⁺ , Cd ²⁺ Ba ²⁺ , Sr ²⁺ Ni ²⁺	pH 9.8-11.2 pH 11.5; NH ₃ pH 12.5; (C ₂ H ₅₎₂ NH acetate buffer pH 4; hot solution	Red—blue Red—orange

No.	Indicator	Formula		
30	Metallphtha	Metallphthalein: See Phthalein complexone, No. 39 (p. 242)		
31	Methylthy- mol blue (MTB)	H ₃ C CH ₃ H ₃ C CH ₃ CH CH HOOCH ₂ C N-CH ₂ CH ₃ C CH ₂ COOH SO ₃ H SO ₃ H		

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
Solid mixture of the indicator with	Ba ²⁺ , Sr ²⁺	pH 10-11; ammonia buffer pH 12; NH ₃ or NaOH	Blue—gray
KNO ₃ in the ratio of 1:100	Mg ²⁺ Bi ³⁺ Cd ²⁺ , Co ²⁺	pH 10-11.5; ammonia buffer pH 1-3; HNO ₃ pH 5-6; urotropine	Blue—yellow
		buffer pH 12; NH ₃	Blue—gray or colourless
	Cu ²⁺	pH 11.5; NH ₃	Blu —colour- less or gray- green
	Fe ²⁺	pH 4.5-6.5; urotro- pine buffer	Blue—yellow
	Hg ²⁺	pH 6; urotropine	
	In ³⁺ Mn ²⁺	pH 3-4; acetate buffer pH 6-6.5; urotropine buffer	Blue—yellow
	Pb ²⁺	pH 11.5; NH ₃ pH 6; urotropine	Blue—gray Blue—yellow
		buffer pH 12; NH ₃ in the presence of tart-	Blue—gray
	RE	rate pH 6; urotropine buffer	Blue-yellow
	Sn ²⁺	pH 2.2; HNO ₃ pH 5.5-6; pyridine+ +acetate+F-	Blue—yellow
	Zn ²⁺	pH 6-6.5; urotropine buffer	Blue—yellow
	Zr ^{IV}	pH 12; NH ₃ pH 1-2; chloroacetic acid, 90 °C	Blue—gray Blue—red
[Ga ³⁺ , In ³⁺	pH 4.5-6; acetate buffer	Disappearance of fluores- cence
]		

No.	Indicator	Formula	
32	Morin: See Table 25, No. 25 (p. 211)		
33	Murexide	$ \begin{array}{c cccc} HN - CO & OC - NH \\ & & & & & & & \\ OC & C - N = C & CO \\ & & & & & & & \\ HN - C & OC - NH \\ & & & & & \\ ONH_4 \cdot H_2O \end{array} $	
34	Naphthol yellow	NaO — NO ₂ NaO ₃ S	
35	Naphthyla- zoxine	$ \begin{array}{c} $	
36	PAN[1-(2-py-ridylazo)-naph-thol-2]	N = N - HO	

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour	
	Ga ³⁺ , In ³⁺	pH 4.5-6; acetate buffer	Disappearance of fluores- cence	
Mixture of the indicator (0.2 wt. %) and solid sodium chloride	Ca ²⁺ Co ²⁺ Cu ²⁺ Ni ²⁺ Ag ⁺ Pd ²⁺	$ \begin{array}{c} \text{pH} \geqslant 12 \\ \text{pH 8; NH}_3 \\ \text{pH 7-8; NH}_3 \\ \text{pH 8.5-9.5; NH}_3 \\ \text{pH 10-11.5; NH}_3 \\ \text{Addition of} \\ \text{K}_2 \text{Ni} (\text{CN})_4 + \\ + \text{NH}_4 \text{OH} \\ \end{array} $	Red—violet Orange—violet Red—violet Yellow—violet	
Used in mix	Used in mixture with Acid Chrome Dark Green G (No. 3)			
	Cu ²⁺ Mn ²⁺ Ni ²⁺ Pb ²⁺	pH 3.5-6.5; acetate buffer pH 9.3; ammonia buffer pH 6.7-7.0; acetate buffer pH 5.5-6.5; acetate or pyridine buffer pH 6-6.5; acetate or pyridine buffer	Yellow—red Yellow-green— pink Yellow—red	
0.1% solution in ethanol or methanol	Bi ³⁺	рН 1-3; HNO ₃	Red—yellow- green	

No.	Indicator	Formula
36	PAN [1-(2-pyridyla-zo)-naph-thol-2]	N = N - HO
37	PAR [4-(2- pyridyla- zo)-resor- cinol]	N = N - OH

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
0.1% solution in ethanol or methanol	Cd ²⁺ Cu ²⁺ In ³⁺ Ni ²⁺ Th ^{IV} Tl ³⁺ Zn ²⁺ Al ³⁺ , Ca ²⁺ , Co ²⁺ , Fe ³⁺ , Hg ²⁺ , Ga ³⁺ , Mg ²⁺ , Mn ²⁺ , Mo ^V , Ni ²⁺ , Pb ²⁺ , RE, UO ²⁺ , VO ²⁺	pH 5-6; acetate buffer pH 3-5; acetate buffer, 70-80 °C pH 9-10; ammonia buffer, 50 °C pH 2.3-2.5; acetate buffer, hot solution pH 4; 25% methanol, 50-70 °C pH 2-3.5; HNO3 pH > 1.8; chloroacetic acid, hot solution pH 4-6; acetate buffer Back titration with a cupric salt solution	Pink—yellow-green Violet—yellow Red—yellow Violet-red— yellow Red—yellow
0.1% aqueous solution	Bi ³⁺ Tl ³⁺ In ³⁺ Hg ²⁺ Cd ²⁺	pH 1-2; HNO ₃ pH 1.7; hot solution pH 2.3-2.5; 60-70 °C pH 3-6 pH 6-11.5; ammonia or urotropine buffer pH 5; acetate buffer pH 6; urotropine buffer pH 11.5; ammonia	Red—yellow Red—yellow- orange Red—yellow Wine red—yel- low or green

No.	Indicator	Formula
37	PAR [4-(2- pyridyl- azo)-resor- cinol]	OH OH
38	Patton-Reed	ler Dye: See Calces, No. 10 (p. 226)
39	Phthalein complexo- ne (metall- phthalein; phthalein purple; cresolph- thalexone)	HOOCH ₂ C CH ₂ COOH HOOCH ₂ C CH ₂ COOH H ₂ C CH ₂ HO CH ₂ COOH CH ₂ COOH CH ₂ COOH
40	Pyrocate- chin violet (pyrocate- chin sul- phophtha- lein)	HO OH HO SO ₃ II

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
0.1% aqueous solution	Mn ²⁺ Ni ²⁺ Pb ²⁺ RE and Y ³⁺ Zn ²⁺	pH 9; ammonia buffer pH 5; acetate buffer, 90 °C pH 5-9.6; urotropine or ammonia buffer pH 6; acetate buffer pH 5-11.5; urotropine or ammonia buffer	Red—yellow Red—yellow Red—yellow Red—yellow Red—yellow
(a) 0.5% aqueous solution (b) mixture of 0.1 g of phthalein complexone, 0.005 g of methyl red and 0.005 g of diamine green in 100 ml of water	Ba ²⁺ , Sr ²⁺ Mg ²⁺ Ca ²⁺ Cd ²⁺	pH 10.5-11; addition of ethanol pH 10-11; NH ₃ ; ad- dition of ethanol pH 10-11 pH 10; ammonia buffer + 30% of ethanol	(a) Red-violet— pale pink or colourless (b) Red—pale gray
0.1% aqueous solution	Bi ³⁺ Cd ²⁺ Co ²⁺ Ni ²⁺ Cu ²⁺	pH 2-3; HNO ₃ pH 10; ammonia buffer pH 9.3; ammonia buffer pH 8-9.3; ammonia buffer pH 5-6.5; acetate buffer pH 6-7; pyridine buffer pH 9.3; ammonia buffer	Blue—yellow Greenish blue— red-violet Blue—yellow Blue—red-vio- let

No.	Indicator	Formula
40	Pyrocate- chin violet (pyrocate- chin sul- phophtha- lein)	HO OH HO SO ₃ H
41	Pyrogallol red	OH OH HO O O H ₃ OS

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
0.1% aqueous solution	Fe ³⁺ Ga ³⁺ In ³⁺ Mg ²⁺ , Zn ²⁺ Mn ²⁺ Th ^{IV} Pb ²⁺ Al ³⁺ , Fe ³⁺ , Ga ³⁺ , In ³⁺ , Pd ²⁺ , Th ^{IV} Tl ³⁺ Sn ^{IV}	pH 5-6; pyridine-acetate buffer pH 3-3.8; acetate buffer pH 5; acetate buffer, hot solution pH 10; ammonia buffer pH 9.3; ammonia buffer + NH ₂ OH pH 2.5-3.5; HNO ₃ , 40 °C pH 5.5; urotropine buffer Back titration with a cupric or bismuth salt solution pH 5; back titration with a cupric or bismuth salt solution	Blue—yellow Blue—yellow Blue—yellow Greenish blue— red-violet Red—yellow Blue—yellow
0.05% solution in 50% etha- nol	Bi ³⁺ Co ²⁺ , Ni ²⁺ Pb ²⁺ Cu ²⁺ , Fe ³⁺ , Ga ³⁺ , In ³⁺ , Pd ²⁺ , Th ^{IV}	pH 2-3; HNO ₃ pH 9.3; ammonia buffer pH 5-6; acetate buffer Back titration with a lead salt or a bismuth salt solution	Red—orange- yellow Blue—wine red Violet—red

No.	Indicator	Formula
42	SPADNS	OH OH $N = N - SO_3Na$ $NaO_3S - SO_3Na$
43	Sulpharsa- sene (plu- mbone)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
44	Sulphonazo	OH OH OH OH OH OH OH OH
45	Sulphosali- cylic acid	но ₃ ѕ соон
46	Thiourea	$H_2N-C-NH_2$ \parallel S

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
0.4% aqueous solution 0.02% aqueous solution	Zr ^{IV} Th ^{IV}	pH 1.5-2.5; HNO ₃ pH 2.5-3.5; HNO ₃	Red-pink— orange-red Violet-blue— purple-red
0.05% aqueous solution with an addition of 1-2 drops of 5% ammonia solution	Pb ²⁺ Zn ²⁺	pH 9.8-10 in the presence of tarta- ric acid and am- monia pH 9.3-9.6 in the presence of tarta- ric acid and am- monia	Orange-pink— lemon yellow ditto
0.02% aqueous solution	Sc ³⁺ In ³⁺	pH 5	Blue—violet- pink Blue-violet— violet-pink
5% aqueous solution	Fe ³⁺	pH 2-3; acetate buffer, hot solution	Red—yellow
Aqueous solu- tion	Bi ³⁺	pH 1.5-2.0; HNO ₃ or HClO ₄	Yellow—colour- less

No.	Indicator	Formula
47	Thoron (thorin, APANS)	See Table 49, No. 93 (p. 396)
48	Thymolph- thalexone	HOOCH ₂ C N CH ₂ COOH N CH ₂ COOH H ₂ C H ₃ C CH ₃ CH ₃ CH ₃ C
49	Thyron	OH OH SO ₃ H
50	Variamine Blue B	CH ₃ O — NH — NH ₂ ·HCl

Table 28 (continued)

Concentration	Ions being determined	Conditions of determination	Change in colour
Aqueous solu- tion	Bi ³⁺ Th ^{IV} U ^{IV}	pH 2-3; HNO ₃ pH 1-3; HNO ₃ pH 1-1.8; 30 °C	Red—yellow Violet—yellow Red-orange— orange-yellow
0.5% aqueous solution or solid mixture with KNO3 in the ratio of 1:100	Ba ²⁺ , Sr ²⁺ Ca ²⁺ Mn ²⁺	pH 10-11; NaOH or NH ₃ pH 10.5-12; NaOH or NH ₃ pH 10-11; NH ₃ , NaOH	Blue—gray or colourless Blue—colourless
2% aqueous solution	F ₆ 3+	pH 2-3; acetate buffer, hot solution	Blue—colour- less
1% aqueous solution	Fe ³⁺ Cd ²⁺ , Zn ²⁺ Al ³⁺ , Pb ²⁺ , Zr ^{IV}	pH 1.7-3 pH 5; in the presence of traces of Fe(CN) ⁴⁻ and Fe(CN) ⁸⁻ Back titration with a zinc salt solution	Blue violet— yellow Violet—colour- less

No	Indicator	Formula
51	Xylenol orange	HOOCH ₂ C N—CH ₂ H ₂ C—N CH ₂ COOH CH ₂ COOH HOOCH ₂ C CH ₃ SO ₃ H
52	Zincon	COOH HO N HN SO ₃ H N—C—N

Table 28 (continued)

 Concentration	Ions being determined	Conditions of determination	Change in colour
0.5% solution in ethanol	Bi ³⁺ Th ^{IV} Zr ^{IV} Sc ³⁺ In ³⁺ Hg ²⁺ , Tl ³⁺ Cd ²⁺ , Fe ²⁺ Co ²⁺ RE ³⁺ Pb ²⁺ Zn ²⁺ Fe ³⁺ Al ³⁺ , Fe ³⁺ , Ni ²⁺ , Pd ²⁺ , Ni ²⁺ , Pd ²⁺ , Sn ^{IV} , U ^{IV} , VO ²⁺	pH 1-3; HNO ₃ pH 1.7-3.5; HNO ₃ HNO ₃ ; 1M, 90°C pH 2.2-5 pH 3-3.5; acetate buffer, hot solution pH 4-5; acetate buffer pH 5-6; urotropine buffer, 80°C pH 5-6; urotropine buffer, hot solution pH 5; acetate buffer or pH 6; urotropine buffer pH 5-6; acetate buffer or pH 6; urotropine ph 5-6; acetate buffer pH 5-6; acetate buffer pH 5-6; acetate buffer pH 1.5; in the presence of Fe ²⁺ , CO ₂ atmosphere, 60°C Back titration with a thorium (IV) salt solution	Red-violet— yellow Red-yellow Blue-violet— yellow
0.130 g of the indicator and 2 ml of 1M NaOH solution in 100 ml of water	Ca ²⁺ , Ge ^{IV} , Co ²⁺ , Cu ²⁺ , Fe ³⁺ , In ³⁺ , Mn ²⁺ , Ph ²⁺ Zn ²⁺	pH 9-10; back titration with a zinc salt solution pH 9-10; ammonia buffer	Blue—yellow

Table 29

Hydrogen Ion Exponent (pH) Evaluated in Terms of the Activity of Hydrogen Ions $(a_{
m H^+})$ and Vice Versa (pH = $-\log a_{\rm H^+}$)

The table can be used to convert the indices of the solubility product pSP into the solubility product SP, the indices of constants pK into constants K, and in other similar cases.

.00 0.977 794 0.766	.02							
0.977		.03	70.	0.05	90.	10.	80.	60.
0.977			values	values of aH+				
0.766	0.	0.933	0.912	0.891	0.871	0.851	0.832	0.813
	_	0.741	0.725	0.708	0.692	0.676	0.661	979.0
0.617	<u>.</u>	0.589	0.575	0.562	0.550	0.537	0.525	0.513
0.490	0.479	0.468	0.457	0.447	0.437	0.427	0.417	0.407
0.389	<u>.</u>	0.372	0.363	0.355	0.347	0.339	0.331	0.324
0.309	0.302	0.295			0.275	0.269	0.263	0.257
0.245	0.240	0.234			0.219	0.214	0.209	0.204
0.195	0.191	0.186			0.174	0.170	0.166	0.162
0.155	0.151	0.148	0.145	0.141	0.138	0.135	0.132	0.129
0.123	0.120	0.117			0.110	0.107	0.105	0.102

To calculate $a_{\rm H}^+$ by a known pH, the first digit of the mantissa of the pH value is found in the first vertical column, and the second digit of this mantissa is found in the first horizontal line. The value of $a_{\rm H}^+$ is obtained at the intersection of the lines which start from the figures found. This value must be multiplied by 10 to the power equal to the characteristic of the pH taken with a negative sign. For example:

pH = 6.27; $a_{\rm H^+} = 0.537 \times 10^{-6}$. To calculate the pH by a known value of $a_{\rm H^+}$, the latter should be expressed by a number which starts with 0 and is multiplied by 10 to a certain negative power. Then, this number (or one close to it) is found in the table and, proceeding from it to the left and upward, two digits are obtained after the decimal in the pH value. The characteristic of the pH will be equal to the power to which 10 is raised in the number of $a_{\rm H^+}$, but with a positive sign. For example, $a_{\rm H^+} = 2.41 \times 10^{-7} = 0.241 \times 10^{-6}$; pH = 6.62.

Table 30

Preparation of Buffer Solutions

(pH ranging from 1.10 to 12.90; t = 20 °C)

Stock solutions

hydrochloric acid, 0.1N. Solution No. 1:

glycocoll NH2CH2COOH (aminoacetic acid, glycin), Solution No. 2: 0.1N (7.507 g of glycocoll + 5.85 g of NaCl in one litre).

potassium hydrophthalate, KHC₈H₄O₄ 0.2M Solution No. 3: (40.846 g in one litre).

sodium citrate, 0.1M (21.014 g of $H_3C_6H_5O_7 \cdot H_2O +$ Solution No. 4: + 200 ml of 1N NaOH solution in one litre).

caustic soda, 0.1N. Solution No. 5:

potassium dehydrophosphate, 1/15M (9.073 g of Solution No. 6: KH₂PO₄ in one litre). sodium hydrophosphate, 1/15M (11.866 g of Na₂HPO₄·2H₂O in one litre).

Solution No. 7:

sodium tetraborate, 0.05M (12.367 g of $H_3BO_3 + 100$ ml of 1N NaOH solution in one litre). Solution No. 8:

Chemically pure sodium chloride is recrystallized twice and dried at a temperature of 120 °C; chemically pure boric acid is recrystallized twice out of boiling water and dried at a temperature of not over 80°C; chemically pure boric acid is recrystallized 80°C; chemically pure potassium dehydrophosphate is recrystallized twice and dried at a temperature of 110-120 °C; chemically pure sodium hydrophosphate is recrystallized twice (during the last crystallization, the temperature of the solution must not be over 90 °C), then damped with water and dried for two days in a thermostat at a temperature of 36 °C; chemically pure citric acid is recrystallized twice (during the last crystallization, the temperature must not be higher than 60 °C); potassium hydrophthalate is recrystallized twice and dried at a temperature of 110-120 °C.

A. Buffer Solutions with pH 1.10-3.50 (HCl-NH₂CH₂COOH)

Every given amount of the solution (solution No. 2, see above) is brought up to 100 ml with solution No. 1 (see above)

						1	i			1
pH	0	1	2	3	4	5	6	7	8	9
1.1 2 3 4 5 6 7	5.7 14.6 22.6 28.9 33.8 38.0 41.7	6.6 15.4 23.2 29.4 34.2 38.4 42.1	7.5 16.2 23.9 30.0 34.6 38.7 42.4	8.4 17.0 24.5 30.5 35.0 39.1 42.8	9.3 17.8 25.2 31.1 35.4 39.4 43.1	10.2 18.6 25.8 31.6 35.8 39.8 43.5	11.1 19.4 26.4 32.0 36.2 40.2 43.9	12.0 20.2 27.0 32.5 36.7 40.6 44.2	12.8 21.0 27.7 32.9 37.1 40.9 44.6	13.7 21.8 28.3 33.4 37.6 41.3 44.9

Table 30 (continued)

pН	0	1	2	3	4	5	6	7	8	9
8 9	45.3	45.6	46.0	46.3	46.7	47.0	47.4	47.8	48.1	48.5
	48.9	49.2	49.5	49.8	50.1	50.4	50.7	51.0	51.3	51.6
2.0	51.9	52.2	52.5	52.8	53.1	53.4	53.7	54.0	54.3	54.6
1	54.9	55.2	55.4	55.7	55.9	56.2	56.5	56.7	57.0	57.3
2	57.6	57.9	58.2	58.4	58.7	59.0	59.3	59.5	59.8	60.0
3	60.3	60.6	61.0	61.3	61.7	62.0	62.3	62.6	63.0	63.3
4	63.6	63.9	64.2	64.5	64.8	65.1	65.4	65.7	66.0	66.3
5	66.6	66.9	67.2	67.5	67.8	68.1	68.4	68.7	69.0	69.3
6	69.6	69.9	70.2	70.5	70.8	71.1	71.4	71.8	72.1	72.5
7	72.8	73.1	73.4	73.8	74.1	74.4	74.7	75.0	75.4	75.7
8	76.0	76.3	76.6	77.0	77.3	77.6	77.9	78.2	78.6	78.9
9	79.2	79.5	79.8	80.1	80.4	80.7	81.0	81.3	81.5	81.8
3.0 1 2 3 4 5	82.1 84.8 87.1 89.2 91.0 92.5	82.4 85.0 87.3 89.4 91.2	82.7 85.3 87.5 89.6 91.3	82.9 85.5 87.8 89.7 91.5	83.2 85.8 88.0 89.9 91.6	83.5 86.0 88.2 90.1 91.8	83.8 86.2 88.4 90.3 91.9	84.0 86.4 88.6 90.5 92.1	84.3 86.7 88.8 90.6 92.2	84.5 86.9 89.0 90.8 92.4

B. Buffer Solutions with pH 1.10-4.96 (HCl-NaH₂C₆H₅O₇)

Every given amount of the solution (solution No. 4, see p. 253) is brought up to 100 ml with solution No. 1 (ibid)

pН	0	1	2	3	4	5	6	7	8	9
1.1 2 3 4 5 6 7 8	4.8 11.1 15.9 19.3 22.2 24.6 26.5 28.2 29.5	5.6 11.6 16.2 19.6 22.4 24.8 26.7 28.3 29.6	6.4 12.1 16.6 19.9 22.7 25.0 26.9 28.5 29.7	7.1 12.5 16.9 20.2 22.9 25.2 27.0 28.6 29.9	7.8 13.0 17.3 20.5 23.2 25.4 27.2 28.8 30.0	8.4 13.5 17.6 20.8 23.4 25.6 27.4 28.9 30.1	9.0 14.0 17.9 21.1 23.6 25.8 27.6 29.0 30.2	9.6 14.5 18.3 21.4 23.9 26.0 27.7 29.1 30.3	10.1 14.9 18.6 21.6 24.1 26.1 27.9 29.3 30.4	10.6 15.4 19.0 21.9 24.4 26.3 28.0 29.4 30.5
2.0 1 2 3 4	30.6 31.7 32.6 33.6 34.5	30.7 31.8 32.7 33.7 34.6	30.8 31.9 32.8 33.8 34.7	31.0 31.9 32.9 33.8 34.8	31.1 32.0 33.0 33.9 34.9	31.2 32.1 33.1 34.0 35.0	31.3 32.2 33.2 34.1 35.1	31.4 32.3 33.3 34.2 35.2	31.5 32.4 33.4 34.3 35.2	31.6 32.5 33.5 34.4 35.3

Table 30 (continued)

pН	0	i	2	3	4	5	6	7	8	9
5	35.4	35.5	35.6	35.7	35.8	35.9	36.0	36.1	36.2	36.3
6	36.4	36.5	36.6	36.7	36.8	36.9	37.0	37.1	37.1	37.2
7	37.3	37.4	37.5	37.6	37.7	37.8	37.9	38.0	38.1	38.2
8	38.3	38.4	38.5	38.6	38.7	38.8	38.9	39.0	39.1	39.2
9	39.3	39.4	39.5	39.6	39.7	39.8	39.9	40.0	40.1	40.2
3.0	40.3	40.4	40.5	40.7	40.8	40.9	41.0	41.1	41.3	41.4
1	41.5	41.6	41.7	41.8	41.9	42.0	42.1	42.3	42.4	42.6
2	42.7	42.8	42.9	43.1	43.2	43.3	43.4	43.6	43.7	43.9
3	44.0	44.1	44.3	44.4	44.6	44.7	44.8	45.0	45.1	45.3
4	45.4	45.5	45.7	45.8	46.0	46.1	46.2	46.4	46.5	46.7
5	46.8	47.0	47.1	47.3	47.4	47.6	47.8	47.9	48.1	48.2
6	48.4	48.6	48.8	48.9	49.1	49.3	49.5	49.6	49.8	49.9
7	50.1	50.3	50.5	50.6	50.8	51.0	51.2	51.4	51.5	51.7
8	51.9	52.1	52.3	52.5	52.7	52.9	53.1	53.3	53.4	53.6
9	53.8	54.0	54.2	54.5	54.7	54.9	55.1	55.3	55.6	55.8
4.0 1 2 3 4 5 6 7 8 9	56.0 58.5 61.1 64.3 67.9 71.9 76.9 82.2 88.0 95.6	56.3 58.7 61.4 64.7 68.3 72.4 77.4 82.8 88.7 96.3	56.5 59.0 61.7 65.1 68.7 72.9 78.0 83.3 89.4 97.1	56.8 59.2 62.0 65.4 69.0 73.4 78.5 83.9 90.0 97.8	57.0 59.5 62.3 65.7 69.4 73.9 79.1 84.4 90.7 98.5	57.3 59.7 62.6 66.0 69.8 •74.4 79.6 85.0 91.4 99.3	57.5 60.0 62.9 66.4 70.2 74.9 80.1 85.6 92.2 100.0	57.8 60.3 63.3 66.8 70.6 75.4 80.6 86.2 93.1	58.0 60.5 63.6 67.1 71.1 75.9 81.2 86.6 93.9	58.3 60.8 64.0 67.5 71.5 76.4 81.7 87.4 94.8

C. Buffer Solutions with pH 2.20-3.80 (HCI-KHC₈H₄O₄)

50.0 ml of solution No. 3 (see p. 253) is added to every given amount of the solution (solution No. 1, *ibid*), and the amount of the mixture is brought up to 200 ml with water

Hq	0	1	2	3	4	5	6	7	8	9
2.2 3 4 5 6 7	86.20 79.20 72.60 66.00	85.50 78.54 71.94 65.34	84.80 77.88 71.28 64.68	84.10 77.22 70.62 64.02	83.40 76.56 69.96 63.36	82.70 75.90 69.30 62.70	82.00 75.24 68.64 62.04	81.30 74.58 67.98 61.38	80.60 73.92 67.32 60.72	

Table 30 (continued)

pН	0	1	2	3	4	5	6	7	8	9
8 9							49.28 43.20			
3.0 1 2 3 4 5 6 7 8	35.00 29.60 24.60 19.90	29.08 24.12 19.46 15.30 11.66 8.26	33.88 28.56 23.64 19.02 14.90 11.32	33.32 28.04 23.16 18.58 14.52 10.98	32.78 27.54 22.68 18.16 14.16 10.64	32.24 27.04 22.20 17.74	31.70 26.54 21.72 17.32 13.44 9.96	31.16 26.04 21.26 16.90 13.08 9.62	30.64 25.56 20.80 16.50 12.72 9.28	8.94

D. Buffer Solutions with pH 4.00-6.20 (NaOH-KHC₈H₄O₄)

 $50.0 \, \mathrm{ml}$ of solution No. 3 (see p. 253) is added to every given amount of the solution (solution No. 5, ibid), and the amount of the mixture is brought up to $200 \, \mathrm{ml}$ with water

pH	0	í	2	3	4	5	6	7	8	9
4.0 1 2 3 4 5 6 7 8	0.80 4.10 7.40 11.00 15.00 19.30 24.30 29.70 35.40 41.40	4.44 7.74 11.38 15.42 19.76 24.84 30.26 35.98	4.76 8.08 11.76 15.84 20.24 25.38 30.82 36.56	5.10 8.42 12.14 16.26 20.72 25.92 31.38 37.14	5.42 8.78 12.54 16.68 21.22 26.46 31.94 37.74	5.76 9.14 12.94 17.10 21.72 27.00 32.50 38.34	6.08 9.50 13.34 17.54 22.22 27.54 33.08 38.94	6.42 9.86 13.74 17.98 22.74 28.08 33.66 39.54	6.74 10.24 14.16 18.42 23.26 28.62 34.24 40.16	29.16 34.82 40.78
5.0 1 2 3 4 5 6 7 8 9	47.70 53.90 59.90 65.70 70.90 75.60 79.70 83.10 86.00 88.60	48.32 54.50 60.50 66.24 71.38 76.04 80.08 83.40	48.94 55.10 61.10 66.78 71.86 76.46 80.44 83.70 86.56	49.56 55.70 61.70 67.32 72.34 76.88 80.80 84.00 86.84	77.30 81.14 84.30 87.10	50.80 56.90 62.86 68.36 73.30 77.72 81.48 84.60 87.36	51.42 57.50 63.44 68.88 73.76 78.12 81.82 84.88 87.62	52.04 58.10 64.02 69.40 74.22 78.52 82.14 85.16 87.88	52.66 58.70 64.58 69.90 74.68 78.92 82.46 85.44 88.12	53.28 59.30 65.14 70.40 75.14 79.32 82.78 85.72 88.36
6.0	90.90 92.80 94.00	92.96	91.30 93.10				92.08 93.60			

Table 30 (continued)

E. Buffer Solutions with pH 4.96-6.69 (NaOH-NaH₂C₆H₅O₇)

Every given amount of the solution (solution No. 5, p. 253) is brought up to 100 ml with solution No. 4 (ibid)

pН	0	1	2	3	4	5	6	7	8	9
4.9				_	_	_	0.0	0.9	1.8	2.7
5.0	3.6	4.3	5.0	5.6	6.3	7.0	7.5	8.1	8.6	9.2
1	9.7	10.2	10.8	11.3	11.9	12.4	12.9	13.4	13.9	14.4
2	14.9	15.4	15.9	16.5	17.0	17.5	17.9	18.3	18.8	19.2
3	19.6	20.0	20.4	20.8	21.2	21.6	22.0	22.4	22.9	23.3
4	23.7	24.1	24.5	24.9	25.3	25.7	26.1	26.5	26.9	27.3
5	27.7	28.0	28.4	28.7	29.1	29.4	29.7	30.0	30.4	30.7
6	31.0	31.3	31.6	31.9	32.2	32.5	32.8	33.1	33.4	33.7
7	34.0	34.3	34.5	34.8	35.0	35.3	35.5	35.8	36.0	36.2
8	36.4	36.6	36.8	37.1	37.3	37.5	37.7	37.9	38.1	38.3
9	38.5	38.7	38.9	39.1	39.3	39.5	39.7	39.9	40.0	40.2
6.0	40.4	40.6	40.3	41.0	41.2	41.4	41.5	41.6	41.7	41.9
1	42.0	42.1	42.3	42.4	42.6	42.7	42.8	43.0	43.1	43.3
2	43.4	43.5	43.6	43.8	44.0	44.1	44.2	44.3	44.4	44.5
3	44.6	44.7	44.8	44.9	45.0	45.1	45.2	45.3	45.3	45.4
4	45.5	45.6	45.7	45.7	45.8	45.9	45.0	46.1	46.1	46.2
5	46.3	46.4	46.5	46.5	46.6	46.7	46.8	46.8	46.9	46.9
6	47.0	47.1	47.1	47.2	47.2	47.3	47.3	47.4	47.4	47.5

F. Buffer Solutions with pH 4.80-8.00 (KH2PO4-Na2HPO4)

Every given amount of the solution (solution No. 7, p. 253) is brought up to 100 ml with solution No. 6 (ibid)

pН	0	í	2	3	4	5	6	7	8	S
4.8	0. 3 5 0.60	0.37 0.63	0.39 0.66	0.41 0.69	0.43 0.72	0.45 0.75	0.48 0.79	0.51 0.83	0.54 0.87	0.57 0.91
5.0 1 2 3 4 5 6 7 8 9	0.95 1.35 1.80 2.30 3.90 4.90 6.20 7.90 9.80	0.99 1.39 1.85 2.37 3.09 3.99 5.02 6.35 8.10	1.03 1.43 1.90 2.44 3.18 4.08 5.14 6.50 8.25	1.07 1.47 1.95 2.51 3.27 4.17 5.26 6.70 8.45 10.4	1.11 1.51 2.00 2.58 3.36 4.26 5.38 6.85 8.60 10.6	1.15 1.55 2.05 2.65 3.45 4.35 5.50 7.00 8.80 10.8	1.1° 1.60 2.10 2.72 3.54 4.46 5.62 7.20 9.00 11.1	1.23 1.65 2.15 2.79 3.63 4.57 5.75 7.35 9.20 11.3	1.27 1.70 2.20 2.86 3.72 4.68 5.90 7.55 9.40 11.6	1.31 1.75 2.25 2.93 3.81 4.79 6.05 7.70 9.60 11.8

Table 30 (continued)

рH	0	1	2	3	4	5	6	7	8	9
6.0	12.1	12.4	12.7	12.9	13.2	13.5	13.8	14.1	14.4	14.7
1	15.0	15.3	15.7	16.0	16.4	16.7	17.0	17.4	17.7	18.1
2	18.4	18.7	19.1	19.4	19.8	20.1	20.5	20.9	21.3	21.7
3	22.1	22.5	22.9	23.4	23.8	24.2	24.6	25.1	25.5	26.0
4	26.4	26.9	27.3	27.8	28.2	28.7	29.2	29.7	30.3	30.8
5	31.3	31.9	32.4	33.0	33.5	34.1	34.7	35.3	35.9	36.5
6	37.1	37.7	38.3	38.9	39.4	40.0	40.6	41.2	41.8	42.4
7	43.0	43.6	44.2	44.8	45.4	46.0	46.6	47.3	47.9	48.6
8	49.2	49.8	50.4	51.0	51.6	52.2	52.8	53.4	54.0	54.6
9	55.2	55.8	56.4	57.0	57.6	58.2	58.8	59.4	60.0	60.6
7.0	61.2	61.8	62.4	63.0	63.6	64.2	64.8	65.4	65.9	66.5
1	67.0	67.6	68.1	68.7	69.2	69.8	70.4	70.9	71.5	72.0
2	72.6	73.2	73.7	74.3	74.8	75.4	75.9	76.3	76.8	77.2
3	77.7	78.1	78.6	79.0	79.5	79.9	80.3	80.7	81.0	81.4
4	81.8	82.1	82.5	82.8	83.2	83.5	83.8	84.2	84.5	84.9
5	85.2	85.5	85.9	86.2	86.6	86.9	87.2	87.5	87.9	88.2
6	88.5	88.8	89.1	89.3	89.6	89.9	90.2	90.4	90.7	90.9
7	91.2	91.4	91.7	91.9	92.2	92.4	92.6	92.9	93.1	93.4
8	93.6	93.8	94.0	94.2	94.4	94.6	94.8	95.0	95.1	95.3
9	95.5	95.6	95.8	95.9	96.1	96.2	96.3	96.5	96.6	96.8
8.0	96.9									

G. Buffer Solutions with pH 7.71-9.23 (Na₂B₄O₇-HCl)

Every given amount of the solution (solution No. 8, p. 253) is brought up to 100 ml with solution No. 1 (ibid)

pН	0	1	2	3	4	5	6	7	8	9
7.7	 53.4 54.65	52.5 53.5 54.75	52.6 53.6 54.85	52.7 53.7 55.0	52.8 53.85 55.1	52.9 53.95 55.25	53.0 54.1 55.35	53.1 54.25 55.5	53.2 54.4 55.6	53.3 54.55 55.75
8.0 1 2 3 4 5 6	55.85 57.15 58.65 60.7 62.95 65.25 68.0	57.25 58.8 60.95	56.1 57.4 59.0 61.15 63.45 65.75 68.55	63.65 66.05	56.35 57.65 59.4 61.6 63.9 66.3 69.1		56.6 57.95 59.8 62.05 64.35 66.9 69.7	60.0 62.3	58.3 60.2 62.5	57.0 58.45 60.45 62.7 65.0 67.75 70.8

Table 30 (continued)

рH	0	i	2	3	4	5	6	7	8	9
9.0 1 2	71.2 75.5 80.5 85.6 91.9 98.1	71.6 76.0 81.0 86.25 92.5 98.75	93.1	72.4 77.0 82.0 87.5 93.75 100.0		73.2 78.0 83.0 88.75 95.0	73.6 78.5 83.5 89.4 95.6	74.0 79.0 84.0 90.0 96.25	74.5 79.5 84.5 91.6 96.9	75.0 80.0 85.0 91.25 97.5

H. Buffer Solutions with pH 9.23-11.02 (Na₂B₄O₇-NaOH)

Every given amount of the solution (solution No. 5, p. 253) is brought up to 100 ml with solution No. 8 (ibid)

pH	0	i	2	3	4	5	6	7	8	9
9.2 34 5 6 7 8 9	8.90 15.40 21.0 26.8 32.3 36.3 39.0	9.60 16.0 21.6 27.4 32.8 36.6 39.3	10.3 16.6 22.2 28.0 33.3 36.9 39.6	0.72 11.0 17.2 22.8 28.6 33.7 37.2 39.8	2.16 11.7 17.7 23.4 29.2 34.1 37.5 40.0	3.60 12.4 18.2 23.9 29.8 34.5 37.7 40.2	4.90 13.0 18.8 24.5 30.3 34.9 38.0 40.4	6.05 13.6 19.4 25.1 30.8 35.3 38.3 40.6	7.10 14.2 20.0 25.7 31.3 35.7 38.6 40.8	8.05 14.8 20.5 26.3 31.8 36.0 38.8 40.9
10.0 1 2 3 4 5 6 7 8 9	41.0 42.7 44.0 45.2 46.3 47.2 48.0 48.6 49.1 49.5	41.2 42.9 44.2 45.4 46.4 47.3 48.05 48.65 49.15 49.55	48.7 49.2	41.6 43.2 44.4 45.6 46.6 47.45 48.2 48.75 49.6	41.8 43.3 44.5 45.7 46.7 47.5 48.25 48.8 49.65	41.9 43.4 44.6 45.8 46.8 47.6 48.3 48.85 49.3 49.7	42.1 43.6 44.8 45.9 46.9 47.7 48.35 48.9 49.35 49.75	42.3 43.7 44.9 46.0 46.95 47.75 48.4 48.95 49.4	47.85 48.5	42.6 43.9 45.1 46.2 47.1 47.9 48.55 49.45 49.85

Table 30 (continued)

I. Buffer Solutions with pH 8.53-12.90 (NH₂CH₂COOH-NaOH)

Every given amount of the solution (solution No. 5, p. 253) is brought up to 100 ml with solution No. 2 (ibid)

										
pН	0	i	2	3	4	5	6	7	8	9
8.5 6 7 8 9	5.80 7.10 8.60 10.4	7.24	 6.04 7.38 8.94 10.8		6.28 7.66	6.41 7.81	6.54 7.96	6.68 8.12	6.82 8.28	5.68 6.96 8.44 10.21 12.2
9.0 1 2 3 4 5 6 7 8 9	12.4 14.6 17.0 19.7 22.3 25.2 28.0 31.0 33.8 36.2	12.6 14.8 17.2 19.9 22.5 25.4 28.3 31.3 34.1 36.5	12.8 15.1 17.4 20.1 22.8 25.6 28.6 31.6 34.4 36.7	13.0 15.3 17.6 20.3 23.1 25.9 28.9 31.9 34.7 36.9	13.2 15.6 17.9 20.5 23.4 26.2 29.2 32.2 35.0 37.1	13.4 15.8 18.2 20.8 23.7 26.5 29.5 32.5 35.2 37.3	13.6 16.0 18.5 21.1 24.0 26.8 29.8 32.8 35.4 37.5	13.8 16.3 18.8 21.4 24.3 27.1 30.1 33.1 35.6 37.7	14.0 16.5 19.1 21.7 24.6 27.4 30.4 33.4 35.8 37.9	14.3 16.8 19.4 22.0 24.9 27.7 30.7 33.6 36.0 38.1
4 5	40.2 41.9 43.5 44.8 45.8 46.7	40.4 42.05 43.65 44.9 45.9	42.2 43.75 45.0 46.0 46.85 47.5 48.1	42.4 43.9 45.1 46.05 46.9	42.55 44.0 45.2 46.15 47.0	41.05 42.7 44.15 45.3 46.25 47.05 47.7 48.25	42.85 44.3 45.4 46.35 47.1 47.75	41.4 43.0 44.4 45.5 46.45 47.2 47.8 48.35	41.55 43.2 44.55 45.6 46.5 47.25 47.9	40.05 41.75 43.35 44.7 45.7 46.6 47.35 47.95 48.45 48.85
11.0 1 2 3 4 5 6 7 8 9	48.9 49.35 49.8 50.2 50.6 51.0 51.4 51.95 52.6 53.4	48.95 49.4 49.85 50.25 50.65 51.05 51.45 52.0 52.7 53.5	50.7 51.1	49.9 50.3 50.7 51.1 51.55 52.15	49.55 49.95 50.35 50.75 51.15 51.6	50.0 50.4 50.8	49.6 50.05 50.45 50.85 51.25 51.75	49.65 50.1 50.5 50.9 51.3	50.1 50.5 50.9 51.3 51.85 52.45	49.75 50.15 50.55 50.95 51.35 51.9 52.55

Table 30 (continued)

261

pН	0	1	2	3	4	5	6	7	8	9
12.0 1 2 3 4 5 6 7 8	54.45 55.8 57.4 59.4 61.8 65.4 70.0 75.0 81.0 90.0	54.6 55.95 57.6 59.65 62.2 65.9 70.5 75.6 81.6	54.75 56.1 57.8 59.9 62.5 66.3 71.0 76.2 82.3	54.85 56.3 58.0 60.1 62.9 66.8 71.5 76.8 83.1	55.0 56.45 58.2 60.35 63.2 67.2 72.0 77.4 84.0	58.4	55.25 56.75 58.6 60.85 64.0 68.2 73.0 78.6 85.8	56.9 58.8	55.55 57.1 59.0 61.3 64.7 69.1 74.0 79.8 87.7	55.65 57.25 59.2 61.55 65.0 69.5 74.5 80.4 88.8

Acetic-Acetate Buffer Solutions

To prepare a buffer solution of the required pH value, the given amount of 1N acetic acid solution is measured, 50 ml of 1N caustic soda solution is added to it, and the mixture is brought up to 500 ml with distilled water.

pH	Acetic acid, 1N, ml	pН	Acetic acid, 1N, ml	pH	Acetic acid, 1 <i>N</i> , ml
3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6	421.5 345.1 284.4 236.2 197.9 167.4 143.3 124.1 108.9	4.67 4.7 4.8 4.9 5.0 5.1 5.2 5.3	100.0 96.8 87.2 79.5 73.4 68.6 64.8 61.7 59.3	5.5 5.6 5.7 5.9 6.0 6.1 6.2 6.3	57.4 55.9 54.7 53.7 53.0 52.3 51.9 51.5 51.2

Universal Buffer Mixture

A mixture of phosphoric, acetic and boric acids (0.04M, respectively) is prepared. To obtain a buffer solution of the required pH value, the given amount of 0.2N NaOH solution is poured into 100 ml of the mixture.

NaOH, 0.2N, ml	Hd	NaOH, 0.2 <i>N</i> , ml	Hd	NaOH, 0.2N, ml	Hd	NaOH, 0.2 <i>N</i> , m1	рН
0	1.81	25.0	4.10	50.0	6.80	75.0	9.62
2.5	1.89	27.5	4.35	52.5	7.00	77.5	9.91
5.0	1.98	30.0	4.56	55.0	7.24	80.0	10.38
7.5	2.09	32.5	4.78	57.5	7.54	82.5	10.88
10.0	2.21	35.0	5.02	60.0	7.96	85.0	11.20
12.5	2.36	37.5	5.33	62.5	8.36	87.5	11.40
15.0	2.56	40.0	5.72	65.0	8.69	90.0	11.58
17.5	2.87	42.5	6.09	67.5	8.95	92.5	11.70
20.0	3.29	45.0	6.37	70.0	9.15	95.0	11.82
22.5	3.78	47.5	6.59	72.5	9.37	100.0	11.98

Table 33

Buffer Solutions from Individual Substances

Substance	рН
Saturated potassium hydrotartrate solution ($\sim 0.025M$) KHC ₄ H ₄ O ₆ (molecular weight: 188.183) Saturated piperazine phosphate* solution ($\sim 0.065M$) C ₄ H ₁₂ N ₂ HPO ₄ ·H ₂ O (molecular weight: 202.148) 0.05M sodium tetraborate solution Na ₂ B ₄ O ₇ × × 10H ₂ O (molecular weight: 381.37)	3.59 (16 °C) 6.36 (16 °C) 6.34 (18 °C) 9.18 (25 °C) 9.07 (38 °C)

^{*}Piperazine phosphate is prepared by mixing, at room temperature, equimolecular quantities of piperazine and phosphoric acid with the subsequent crystallization of separated white lamellar crystals.

Determination of Electrode Potentials

For the reaction

$$Me^{n+} + ne \rightleftharpoons Me^0$$
,

the mathematical expression of the potential value of the metallic electrode immersed into a solution containing its ions is determined by the formula:

$$E_{\text{Me}^{n+}/\text{Me}^0} = E_{\text{Me}^{n+}/\text{Me}^0}^0 + \frac{RT}{nF} \ln a_{\text{Me}^{n+}}$$

For an oxidation-reduction reaction with the participation of hydrogen ions

$$a \text{ Ox.} + m \text{ H}^+ + ne \Rightarrow b \text{ Red.} + \frac{m}{2} \text{ H}_2\text{O}$$

the potential value of an electrode from platinum or other noble metal immersed into a solution of a mixture of oxidized and reduced forms of a given compound is determined by the formula:

$$E_{\rm Ox./Red.} = E_{\rm Ox./Red.}^0 + \frac{RT}{nF} \ln \frac{a_{\rm Ox.}^a}{a_{\rm Red.}^b} a_{\rm H+}^m$$

If hydrogen ions do not participate in the given reaction, the expression assumes the following form:

$$E_{\text{Ox./Red.}} = E_{\text{Ox./Red.}}^0 + \frac{RT}{nF} \ln \frac{a_{\text{Ox.}}^a}{a_{\text{Red.}}^b}$$

In all these formulas

E = electrode potential $E^0 =$ constant value which is characteristic of the given reaction (standard electrode poten-

R = gas constant T = absolute temperature n = number of electrons participating in the

F =Faraday's constant (96 500 coulombs)

 $a_{\text{Me}^{n+}}$, $a_{\text{Ox.}}$, $a_{\text{Red.}}$, $a_{\text{H+}}$ = activities of the components participating in the reaction

a, b, m = stoichiometric coefficients of the compononts participating in the reaction.

In going over from natural to common logarithms, we obtain (when n=1)

$$E_{\text{Ox./Red.}} = E_{\text{Ox./Red.}}^0 + \vartheta \log \frac{a_{\text{Ox.}}^a}{a_{\text{Red.}}^b} a_{\text{H+}}^m$$

The values of ϑ , equal to 0.0591 + 0.0002 ($t - 25 ^{\circ}$ C), are given in Table 34,A, for temperatures ranging from $0 ^{\circ}$ C to $50 ^{\circ}$ C. When a_{Ox} ., a_{Red} . and $a_{H^{+}}$ or a_{Me}^{n+} are equal to unity

$$E = E^0$$

In accepted usage, E^0 is called the standard electrode potential. The oxidation-reduction system is represented as a reduction reaction:

Ox.
$$+ ne \rightarrow \text{Red.}$$
 or $Me^{n+} + ne \rightarrow Me \downarrow$

The potential of a single isolated electrode cannot be measured, and therefore the electromotive force (emf) of an electrochemical cell consisting of two half-cells is measured; the value of the emf is equal to the difference of the electrode potentials of the two half-cells. If electrochemical cells are always formed with the same electrode whose potential remains constant and with various other electrodes, then upon measuring the emf, the value of the electrode potentials of the oxidation-reduction systems can be found relative to the potential of the selected electrode, which in the given case serves as a reference electrode (E_{ref}) .

ence electrode $(E_{\rm ref})$.

The standard hydrogen electrode (SHE) is used as a reference electrode. It consists of a platinized platinum electrode immersed into an acid solution having $a_{\rm H^+}=1$ (1N $\rm H_2SO_4$ solution) at a pressure of purified hydrogen gas equal to 1 atm. The potential of the standard hydrogen electrode $(E_{\rm II^+/H_2}^0)$ is conventionally taken as zero at any temperature.

The standard potentials (E^0) of various oxidation-reduction (redox) systems relative to the potential of the standard hydrogen electrode are given in Table 40 (p. 300). The "+" and "-" signs of these potentials show the direction in which reaction occurs at the electrodes in question (provided that they are in the standard state) when they form a galvanic cell with a standard hydrogen electrode.

A minus (—) sign of the potential value indicates that the spontaneous reaction occurring at the electrode in question is the oxidation of the reduced form of the redox couple, and a plus (-|-) sign, the reduction of the oxidized form.

In practice, it is easier to work not with a hydrogen electrode, but with other reference electrodes whose potentials are constant and determined relative to $E_{\rm SHE}$. Table 34,B (p. 268) gives the compositions and potentials ($E_{\rm ref}$) of the most commonly used reference electrodes.

When calculating the electrode potential of a redox system (E_x) according to the result of the measurement of the emf of the galvanic cell in which the second electrode is one of the reference electrodes (see Table 34,B, p. 268), account must be taken of the sign of the electrode being examined. When the spontaneous reaction at the electrode in question is oxidation (i.e., when the electrode potential has a negative sign), then

$$emf = E_{ref} - E_{r}$$

Table 34 (continued)

or, conversely, when this reaction is reduction, then

$$emf = E_x - E_{ref}$$

Hence, in the first case,

$$E_x = E_{ref} - emf$$

and in the second,

$$E_x = E_{ref} + emf$$

For example, the measured emf of a galvanic cell consisting of a saturated reference calomel electrode ($E_{\rm Sat.CE.}=0.247~\rm V$, see Table 35,B, p. 271) and a zinc electrode immersed in a solution (in which $a_{\rm Zn^2+}=1$) has an absolute value of 1.007 V. Since, in such a galvanic cell, the spontaneous reaction is the oxidation of metallic zinc ("—" sign):

$$Zn\downarrow - 2e \rightarrow Zn^{2+}$$

consequently:

$$E_{Z_1^2+/Z_1}^0 = E_{ref}$$
 — emf = 0.247 — 1.007 = -0.760 V

If an electrochemical cell consists of a saturated reference calomel electrode and a platinum electrode immersed into an iron salt solution having $a_{\text{Fe}^{3+}} = a_{\text{Fe}^{2+}} = 1$, then the emf value of this cell is +0.524 V. Since the spontaneous reaction at the electrode being considered is reduction ("+" sign), iron (III) is reduced to iron (II):

$$Fe^{3+} + e = Fe^{2+}$$

then

$$E_{\text{Fe}^{3+/\text{Fe}^{2+}}}^{0} = E_{\text{ref}} + \text{emf} = 0.247 + 0.524 = 0.771 \text{ V}$$

A. Values of ϑ at n=1 and Temperatures Ranging from 0 °C to 50 °C $(\vartheta=0.0001983T=0.0591+0.0002(t-25$ °C)

Tem- pera- ture, °C	ð	log 🕈	Tem- pera- ture, °C	Ð	log 😙	Tem- pera- ture, °C	Ð	log 🕈
0 1 2 3 4 5 6 7	0.0541 0.0543 0.0545 0.0547 0.0549 0.0551 0.0553 0.0555	73 480 73 640 73 799 73 957 74 115 74 273	8 9 10 11 12 13 14 15	0.0557 0.0559 0.0561 0.0563 0.0565 0.0567 0.0569	74 586 74 741 74 896 75 051 75 205 75 358 75 511 75 664	16 17 18 19 20 21 22 23	0.0573 0.0575 0.0577 0.0579 0.0581 0.0583 0.0585	75 815 75 967 76 118 76 268 76 418 76 567 76 716 76 864

Tem- pera- ture, °C	Ð	log 🕈	Tem- pera- ture, °C	Ð	log v	Tem- pera- ture, °C	Û	log V
24 25 26 27 28 29 30 31 32	0.0589 0.0591 0.0593 0.0595 0.0597 0.0599 0.0601 0.0603 0.0605	77 012 77 159 77 305 77 452 77 597 77 743 77 887 78 032 78 176	33 34 35 36 37 38 39 40 41	0.0607 0.0609 0.0611 0.0613 0.0615 0.0617 0.0619 0.0621 0.0623	78 319 78 462 78 604 78 746 78 888 79 029 79 169 79 309 79 449	42 43 44 45 46 47 48 49 50	0.0625 0.0627 0.0629 0.0631 0.0633 0.0635 0.0637 0.0639 0.0641	79 727 79 865 80 003 80 140 80 277 80 414 80 550

B. Composition and Potential of Selected Reference Electrodes Relative to the Standard Hydrogen Electrode (at 20 °C)

Reference electrode	Composition of reference electrode	Potentia: E _{ref} , V
Standard hydrogen electrode (SHE) Pt, H ₂ H ⁺	Platinized platinum plate in 1M H ₂ SO ₄ solution, saturated with H ₂ under a pressure of 1 atm	0.000
Mercuriodide electrode (MIE) Hg HgI ₂ , KI, KCl	Metallic mercury, 4.2 g of KI and 1.3 g of HgI ₂ in 100 ml of saturated KCl solution	+0.02
Chlorosilver electrode (CSE) Ag AgCl, Cl-	Metallic silver, coated with a layer of AgCl, in an HCl or KCl solution having the following concentrations:	
Calomel electrodes (CE)	0.1 <i>N</i> 1.0 <i>N</i> Metallic mercury, paste of	$+0.290 \\ +0.237$
Hg Hg ₂ Cl ₂ , KCl	metallic mercury and Hg ₂ Cl ₂ in a KCl solution having the following concentrations:	
0.1 (0.1 SCE) 1.0 (SCE) 3.5 (3.5 SCE)	0.1 <i>N</i> 1.0 <i>N</i> 3.5 <i>N</i>	+0.337 $+0.284$ $+0.250$
Saturated electrode (Sat.CE)	Saturated	+0.247
Mercurosulphate elec- trode (MSE) Hg Hg ₂ SO ₄ , H ₂ SO ₄	Metallic mercury, paste of metallic mercury and Hg ₂ SO ₄ in 2N H ₂ SO ₄ solu- tion	+0.682

Electrometric Determination of pH

The hydrogen ion exponent $pH = -\log a_{H}$. In the electrometric determination of the pH, the emf of one of the following cells is measured.

(1) Indicator electrode: hydrogen electrode; reference electrode: SHE*. Then,

$$emf = E_{SHE} - E_{2H+/H_2}$$

Since $E_{SHE} = 0$ and

$$E_{2H^{+}/H_{2}} = \vartheta \log a_{H^{+}} = -\vartheta pH$$

then

$$pH = \frac{emf}{\vartheta}$$

(2) Indicator electrode: hydrogen electrode; reference electrode: one of the calomel electrodes (CE). Then,

$$emf = E_{CE} - E_{2H+/H_2}$$

hence,

$$emf = E_{CE} + \vartheta pH$$

and

$$pH = \frac{emf - E_{CE}}{\vartheta}$$

(3) Indicator electrode: quinhydrone electrode; reference electrode: SHE. Then,

$$emf = E_{quin./hydr.} - E_{SHE}$$

$$E_{\mathrm{quin./hydr.}} = E_{\mathrm{quin./hydr.}}^{0} + \vartheta \log a_{\mathrm{H+}} = E_{\mathrm{quin./hydr.}}^{0} - \vartheta \mathrm{pH}$$

hence,

$$emf = E_{quin./hydr.}^{0} - \vartheta pH - E_{SHE}$$

Since $E_{SHE} = 0$, then

$$pH = \frac{E_{\text{quin./hydr.}}^0 - \text{emf}}{\vartheta}$$

(4) Indicator electrode: quinhydrone; reference electrode: CE. Then,

$$emf = E_{quin./hydr.}^0 - E_{CE}$$

hence

$$emf = E_{quin./hydr.}^0 - \theta pH - E_{CE}$$

^{*} Standard hydrogen electrode.

and

$$pH = \frac{E_{\text{quin./hydr.}}^{0} - E_{\text{GE}} - \text{emf}}{\vartheta}$$

The values of $E_{\text{quin./hydr.}}^0$, E_{CE} and $E_{\text{quin./hydr.}}^0$ — E_{CE} at different temperatures are given in Table 35,A (p. 270), 35,B (p. 271)

and 35,C (p. 272).

When the pH is being found by methods (3) and (4), account must be taken of what was said on p. 266. As the pH value increases, the $E_{\rm quin./hydr.}$ potential decreases. The latter can decrease by so much that the spontaneous reaction at the quinhydrone electrode will be the oxidation of hydroquinone into quinone ("—" sign). Then, the calculating formulas change accordingly:

for method (3):

$$\begin{split} \operatorname{emf} &= E_{\mathrm{SHE}} - E_{\mathrm{quin./hydr.}} = - (E_{\mathrm{quin./hydr.}}^{0} - \vartheta \, \mathrm{pH}) = \\ &= \vartheta \, \mathrm{pH} - E_{\mathrm{quin./hydr.}}^{0} \\ \operatorname{pH} &= \frac{\operatorname{emf} + E_{\mathrm{quin./hydr.}}^{0}}{\vartheta} \end{split}$$

for method (4):

$$\begin{split} \mathrm{emf} = E_{\mathrm{CE}} - E_{\mathrm{quin./hydr.}} = E_{\mathrm{CE}} - (E_{\mathrm{quin./hydr.}}^{0} - \vartheta \ \mathrm{pH}) = \\ = E_{\mathrm{CE}} + \vartheta \ \mathrm{pH} - E_{\mathrm{quin./hydr.}}^{0} \\ \mathrm{pH} = \frac{\mathrm{emf} + E_{\mathrm{quin./hydr.}}^{0} - E_{\mathrm{CE}}^{\bullet}}{\vartheta} \end{split}$$

A. Standard Quinhydrone Electrode Potential ($E_{\rm quin./hydr.}^0$) at Temperatures Ranging from 0 °C to 50 °C, $E_{\rm quin./hydr.}^0$ = = 0.7175 - 0.00074t, V

Tem- pera- ture, °C	Equin./hydr., V	Tem- pera- ture, °C	Equin./hydr., V	Tem- pera- ture, °C	Equin./hydr., V
0	0.7175	9	0.7108	18	0.7042
1	0.7168	10	0.7101	19	0.7034
2	0.7160	11	0.7094	20	0.7027
3	0.7153	12	0.7086	21	0.7020
4	0.7145	13	0.7079	22	0.7012
5	0.7138	14	0.7071	23	0.7005
6	0.7131	15	0.7064	24	0.6997
7	0.7123	16	0.7057	25	0.6990
8	0.7116	17	0.7049	26	0.6983

Table 35 (continued)

Tem- pera- ture, °C	Equin./hydr., V	Tem- pera- ture, °C	E ⁰ quin./hydr.', V	Tem- pera- ture, °C	Equin./hydr., V
27	0.6975	35	0.6916	43	0.6857
28	0.6968	36	0.6909	44	0.6849
29	0.6960	37	0.6901	45	0.6842
30	0.6953	38	0.6894	46	0.6835
31	0.6946	39	0.6886	47	0.6827
32	0.6938	40	0.6879	48	0.6820
33	0.6931	41	0.6872	49	0.6812
34	0.6923	42	0.6864	50	0.6805

B. Potentials of Calomel Electrodes at Temperatures Ranging from 0 °C to 50 °C

$$\begin{split} E_{0.1\text{SCE}} &= 0.3365 - 0.00006 \ (25 - t) \ \text{V} \\ E_{\text{SCE}} &= 0.2828 - 0.00024 \ (25 - t) \ \text{V} \\ E_{\text{Sat.CE}} &= 0.2438 - 0.00065 \ (25 - t) \ \text{V} \end{split}$$

Tem- pera-	I	Potential,	v	Tem- pera-]	Potential,	v
ture,	E _{0.1SCE}	$E_{ m SCE}$	E _{Sat.CE}	ture, °C	E _{0.1SCE}	ESCE	E _{Sat.CE}
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.3380 0.3379 0.3379 0.3378 0.3378 0.3376 0.3376 0.3375 0.3375 0.3373 0.3373 0.3372 0.3372 0.3371 0.3370 0.3370 0.3370 0.3369	0.2888 0.2886 0.2883 0.2878 0.2876 0.2874 0.2871 0.2869 0.2866 0.2864 0.2862 0.2857 0.2854 0.2852 0.2850 0.2854	0.2601 0.2594 0.2588 0.2581 0.2575 0.2568 0.2562 0.2555 0.2549 0.2542 0.2536 0.2529 0.2523 0.2516 0.2510 0.2503 0.2497 0.2490 0.2483	19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	0.3369 0.3368 0.3367 0.3367 0.3366 0.3366 0.3364 0.3364 0.3363 0.3363 0.3363 0.3361 0.3361 0.3360 0.3360 0.3359 0.3358	0.2842 0.2840 0.2838 0.2835 0.2833 0.2828 0.2826 0.2823 0.2821 0.2818 0.2814 0.2814 0.2809 0.2806 0.2804 0.2802 0.2799	0.2477 0.2471 0.2464 0.2458 0.2451 0.2445 0.2438 0.2431 0.2425 0.2418 0.2112 0.2405 0.2399 0.2399 0.2379 0.2373 0.2366 0.2360

Table 35 (continued)

Tem-	I	Potential,	V	Tem-	I	Potential,	v
pera- ture, °C	E _{0.1SCE}	$E_{ m SCE}$	E _{Sat.CE} ture, °C	pera- ture, °C	E _{0.1SCE}	FSCE	E _{Sat.CE}
38 39 40 41 42 43 44	0.3357 0.3357 0.3356 0.3355 0.3355 0.3354 0.3354	0.2797 0.2794 0.2792 0.2790 0.2787 0.2785 0.2782	0.2353 0.2347 0.2340 0.2334 0.2327 0.2321 0.2314	45 46 47 48 49 50	0.3353 0.3352 0.3352 0.3351 0.3351 0.3350	0.2780 0.2778 0.2775 0.2773 0.2770 0.2768	0.2308 0.2301 0.2295 0.2288 0.2282 0.2275

C. Difference between the Standard Quinhydrone Electrode Potential ($E_{\mathrm{quin./hydr.}}^0$) and the Potentials of the Reference Calomel Electrodes (E_{CE}) at Temperatures Ranging from 0 °C to 50 °C ($E_{\mathrm{quin./hydr.}}^0$ – E_{CE})

	- quin./nyar CE/							
၁		!		ပိ		1		
Temperature,	E G	dr.	dr.	Temperature,	후편	dr.	dr	
at	hy SC	hy	hy	atu	hy SC	hy	CE by	
l je	, r.		n./	er.	n./	n./ CE	n./	
🛱		ES E	Sign of the second	l ü	E_0	lui ES	Ini Es	
1 2 L	$E_{\rm quin./hydr.}^0$ – $E_{0.1~{ m SCE}}$	Equin./hydr.: — ESCE	$rac{ ext{Equin./hydr.}}{-E_{ ext{Sat.CE}}}$	Te	$E_{\mathrm{quin./hydr.}}^0$ $-E_{0.1}$ SCE	$rac{E_{ m quin./hydr.}^0}{E_{ m SCE}}$	$E_{ m quin./hydr.}^0$ — $E_{ m Sat.CE}$	
0	0.3795	0.4287	0.4575	26	0.3618	0.4157	0.4551	
	0.3788	0.4287	0.4574	27	0.3611	0.4152	$\begin{bmatrix} 0.4551 \\ 0.4550 \end{bmatrix}$	
1 2	0.3781	0.4277	0.4573	28	0.3605	0.4147	0.4549	
1 2 3	0.3775	0.4272	0.4572	$\overline{29}$	0.3598	0.4142	0.4548	
	0.3768	0.4267	0.4571	30	0.3591	0.4137	0.4548	
4 5 6 7	0.3761	0.4262	0.4570	31	0.3584	0.4132	0.4547	
6	0.3754	0.4257	0.4569	32	0.3577	0.4127	0.4546	
7	0.3747	0.4252	0.4568	33	0.3571	0.4122	0.4545	
8	0.3741	0.4247	0.4567	34	0.3564	0.4117	0.4544	
9	0.3734	0.4242	0.4566	35	0.3557	0.4112	0.4543	
10	0.3727	0.4237	0.4566	36	0.3550	0.4107	0.4542	
11	0.3720	0.4232	0.4565	37	0.3543	0.4102	0.4541	
12	0.3713	0.4227	0.4564	38	0.3537	0.4097	0.4540	
13	0.3707	0.4222	0.4563	39	0.3530	0.4092	0.4539	
14	0.3700	0.4217	0.4562	40	0.3523	0.4087	0.4539	
15	0.3693	0.4212	0.4561	41	0.3516	0.4082	0.4538	
16	0.3686	0.4207	0.4560	42 43	$0.3509 \\ 0.3503$	$0.4077 \\ 0.4072$	0.4537 0.4536	
17	0.3679	0.4202	0.4559 0.4558	43	0.3496	0.4072	0.4535	
19	0.3673	0.4197 0.4192	0.4557	45	0.3489	0.4062	0.4534	
20	0.3666	0.4192	0.4557	46	0.3482	0.4057	0.4534 0.4533	
21	0.3659 0.3652	0.4182	0.4556	47	0.3402 0.3475	0.4057 0.4052	0.4533	
22	0.3645	0.4102	$0.4555 \\ 0.4555$	48	0.3469	0.4032	0.4531	
23	0.3639	0.4177	0.4554	49	0.3462	0.4047	0.4530	
24	0.3632	0.4172	0.4553	50	0.3455	0.4037	0.4530	
25	0.3625	0.4162	0.4552	"	0.0400	0.4007	0.4000	
	0.0020	0.1100	9.2002	I	l		L	

Change of pH in Precipitation of Metal Hydroxides (Approximate Values with Account Taken of the Formation of Hydroxocomplexes)*

			pH values		
Hydroxide	beginning of precipitation with the initial concentration of the ion being precipitated equal to		complete precipita- tion (resi- dual con- centration heing less than 10-5 M)	beginning of dissolution of the preci- pitate (preci- pitation cea- ses to be complete)	complete dissolu- tion of the pre- cipitate
	1 M	0.01M		<u> </u>	
Sn(OH) ₄ TiO(OH) ₂ Sn(OH) ₂ Sn(OH) ₂ ZrO(OH) ₂ HgO Fe(OH) ₃ Al(OH) ₃ Cr(OH) ₇ Be(OH) ₂ Zn(OH) ₂ Ag ₂ O Fe(OH) ₂ Co(OH) ₂ Ni(OH) ₂ Cd(OH) ₂ Mn(OH) ₂	0 0 0 9 1 3 1 . 3 1 . 5 3 . 4 2 5 . 4 2 5 6 . 6 6 . 7 7 . 8 9 . 4	0.5 0.5 2.1 2.25 2.4 2.3 4.9 6.4 2.5 6.4 7.6 7.7 8.8 10.4	1 2.0 4.7 3.75 5.0 4.1 5.8 8.0 11.2 9.7 9.5 9.7 10.4 12.4	13 — 10 — 11.5 14 7.8 12 — 10.5 12.7 13.5 14.1 — 14	15 13.5 10.8 15 12-13

^{*}It should be noted that when hydroxides are being precipitated by an addition of an alkaline solution to a corresponding salt solution, a local growth in the pH value and the precipitate amount occur in places where the precipitant drops fall. Upon stirring, a back dissolution of the precipitate formed does not often take place (see Table 10 for various values of the solubility products of hydroxides during precipitation and after some ageing).

Ionization Constants of Chief Acids and Bases

The table gives the thermodynamic ionization constants of acids and bases at 25 °C:

$$K_{a} = \frac{a_{H+}a_{A-}}{a_{HA}} = \frac{[H^{+}][A^{-}]}{[HA]} \times \frac{f_{H+}f_{A-}}{f_{HA}}$$

$$K_{b} = \frac{a_{Ct+}a_{OH-}}{a_{CtOH}} = \frac{[Ct^{+}][OH^{-}]}{[CtOH]} \times \frac{f_{Ct+}f_{OH-}}{f_{CtOH}}$$

where a_{H^+} , a_{A^-} , etc. = activities of ions or molecules $[H^+]$, $[A^-]$, etc. = concentrations of ions or molecules f_{H^+} , f_{A^-} , f_{Gt^+} , etc. = activity coefficients of ions or molecules.

Acids

Мате	Formula	K_{α}	pK_a
Acetic Acid Chrome Black Special K ₁	CH ₃ COOH See Table 28, No. 1 (p. 220)	1.74×10^{-5} 5.0×10^{-7}	4.76 6.3
$\begin{array}{c} K_2 \\ \text{Acrylic} \\ \text{Adipic} \\ K_1 \end{array}$	CH ₂ ==CHCOOH HOOC(CH ₂) ₄ COOH	5.5 × 10-5 3.9 × 10-5 10-6	2.26 3.26 3.36
Aminoacetic (Glycine) α-Aminopropionic (α-Alanine)	NH2CH2COOH CH3CH(NH2)COOH	1.7×10^{-10} 1.35×10^{-10}	9.78

Table 37 (continued) 4.4 2.22 6.98 11.53 9.29 4.04 4.04 4.34 4.86 ${}^{\mathrm{p}}K_{\mathfrak{A}}$ 4.0×10^{-5} 6.0×10^{-3} 1.05×10^{-7} 2.95×10^{-12} 5.1×10^{-10} 10-12 10-5 10-5 10-10 10-4 10-8 10-8 5.9×10^{-11} 10-11 10-3 10-2 κ_a $CH_2(OH)CH(OH)\dot{C}HC(OII) = C(OII)\dot{C}O$ Formula (CH₃)₂CHCOOH CH₃CH₂CH₂COOH CH₃(CH₂)₄COOH CH₃(CH₂)₆COOH CO₂ (aq.) + H₂O HOOC(CH₂),COOH $NH_2(CH_2)_2COOII$ CH₂ClCOOH HClO₂ $\begin{array}{l} H[\mathrm{Sb}(\mathrm{OH})_{\mathfrak{b}}] \\ H_{3}\mathrm{AsO}_{4} \end{array}$ C₆H₅COOH H₃BO₃ H₂B₄O₃ H_3AsO_3 HBro Boric (ortho-) K_1 Boric (tetra-) K_1 Name β-Aminopropionic (β-Alanine) Butyric (iso) Butyric (normal) $\chi_{\chi_{2}}^{\chi_{2}}$ Chloroacetic Caprylic Carbonic Antimonic Ascorbic Bromous Arsenous Chlorous Benzoic Caproic Azelaic Arsenic

		Table 37 ((continued)
Name	Formula	Ka	pKa
$\begin{array}{ccc} \operatorname{Chromic} & K_1 \\ & \end{array}$	H ₂ CrO ₄	1 4 < 40-1	9
$\overset{\mathbf{A.}_{3}}{Chromotropic}\ \ \overset{\mathbf{K.}_{1}}{K_{1}}$	$C_{10}H_6(OH)_2(SO_3H)_{\lambda}$	<×>	6.50 8.50
Cinnamic (cis-) Cinnamic (trans-)	C,H,CH=CHCOOH	نىنىن د××:	3.88 3.88
$\begin{array}{c} \text{Citric } K_1 \\ K_2 \end{array}$	ноосснастон)(соон)снасоон	٠ 4 a	3.13
MCresol	CH ₃ C ₆ H ₄ OH	<××	6.40
p-Cresol Crotonic (8-mothyrlogmylic)	CH ₃ C ₆ H ₄ OH		10.20
Cyanic	Cn3—Cn=ChCOOH HCNO	××	4.70
Dichromic K.	CHCl ₂ COOH H-Cr-O-	(×)	1.30
Dimolybdenic	H ₂ Mo ₂ O,	××	1.64 5.02
Ditaionic K_1	$H_2S_2O_6$		0.5
Dithionous (see Hyposulphurous)	תו /נת / הטיטות	()	•
diamine tetraacetic	HOOCCH ₂		4.89
K_2	N-CH3-CH3-N		2.67
	нооссн, сн,соон	1.4×10^{-6}	6.27 10.95
Ferrocyanide K_3 K_4	H4Fe(CN)6	2.7×10^{-3} 4.5×10^{-5}	2.57

Table 37 (continued)

Name	Formula	K_a	pKa
Fluorophosphoric K_1	H ₂ [PO ₃ F]	×>	0.55
Formic K_1	HCOOHC=CHCOOH	<	3.75 3.03
K_2 Gallic Germanic K_1	C ₆ H ₂ (OH) ₃ COOH H ₄ GeO ₄	4.2×10^{-5} 3.9×10^{-5} 1.7×10^{-9}	4.38 4.41 8.78
$egin{array}{c} K_2 \ \mathrm{Gluconic} \ \mathrm{Glutaminic} \ K_1 \end{array}$	CH ₂ OH(CHOH),COOH HOOC(CH ₂) ₂ CH(NH ₂)COOH	04'b' XXX	12.7 3.86 4.33
Glutaric K_1	HOOC(CH ₂) ₃ COOH	××:	9.92
Glyceric A2 Glycolic	CH ₂ (OH)CH(OH)COOH CH ₂ (OH)COOH	4.0 3	
Hydrazoic Hydrofluoric	HN ₃	× > ده: «	4.72
Hydrogen cyanide	HCN	<×>	9.24
Hydrogen superoxide	$\begin{array}{c} H_2O_3 \\ HO_2 \end{array}$	ن نن < ×	2.2
$ \begin{array}{c} \text{Hydroquinone} \\ \text{Hydroselenious} \ \ K_1 \end{array} $	$\begin{array}{c} C_{6}H_{4}(OH)_{2} \ (1,4) \\ H_{2}Se \end{array}$		96.6 9.89.
K_2 Hydrosulphuric K_1	$^{-}$	××	11.0
$\left \begin{array}{c} K_2 \\ \text{Hydrotellurous} K_1 \\ K_2 \end{array} \right $	H_2 Te	1.3×10^{-13} 2.3×10^{-3} 1×10^{-11}	12.89 12.64
2			;

Table 37 (continued)	pK_a		9.30	7.30	10.64	7.21	11.54	2.20	2.81	7.27	10.03	•	2.45	•	3.86	1.92	6.23	3.46	5.05	2.85	5.70	3.41	- - -	10.15	2.54	3.86	3.45	2.17	3.44
Table :	Ka		ين ×	× 0.	2.3×10^{-11}	۲. ۲	ۍ. ×	نن ×	1.6×10^{-3}	4. X	ر ۲	X) کارت	3.55×10^{-3}	× :	×:	X	ک	•	х Э:	1.4×10^{-3}	X :	ي. × َ	$\sim 10^{-1}$	×	× 6:	1.4×10^{-4}	3.5×10^{-4}	× ×	3.6×10^{-4}
	Formula	C.H.O.N	HCIO	HIO	H, N, O,	7) 7: -	H,P,0,	D) N F			H,PO,		F.22.2.	CH, CH / OH / CO OH			HOOD HOURING HOUSE		HOOCH COOM	lioocch2coon		Lensch (OH)COOH	H ₂ MnO ₄	1 1 1	$H_2\text{MoO}_4$		NO2CeH4COOH	NO2C6H4COOH	N0,C,H,C00H
	Name	8-Hydroxyquinoline	Hypochlorous	Hypoiodous	Hyponitrous X ₁	K_2^-	Hypophosphoric K_1	K	K_3^{ω}	K_4				Lactic		K.	Malic K		Malonic K	Marouric At 1	Mandalia	Menanie V	Manganic A1	, , , , , , , , , , , , , , , , , , ,	Molybdenic K_1	K_2	m-Nitrobenzoic	o-Nitrobenzoic	p-Nitrobenzoic

 $\begin{array}{c} 3.29 \\ 2.27 \\ 2.25 \\ 2.27 \\ 2.$ ${}^{
m p}K_{lpha}$ κ_a Formula $egin{array}{l} HOC_6H_2(NO_2)_3 \\ CH_3CH_2COOH \\ C_6H_4(OH)_2(1,2) \\ C_6H_4(OH)_2(1,3) \\ C_6H_4(OH)COOH \\ C_6H_4(OH)COOH \\ \hline \end{array}$ C₆H₄(COOH)₂ $C_6H_4(COOH)_2$ C6H4(COOH)2 HIO4; H5106 $\rm H_4P_2O_7$ H_3PO_3 HNO_2 $H_2C_2O_4$ K_1 K_2 K_3 K_4 Phenol Phosphoric (ortho) Name Phosphoric (pyro) Pyrocatechin K₁ Phosphorous m-Phthalic Resorcinol Salicylic p-Phthalic o-Phthalic Propionic Oxalic K. Periodic Nitrons Picric

Table 37 (continued)

		Table 37 ((continued)
Name	Formula	K_a	pKa
Sebacic K ₁	H00C(CH ₂),C00H	;	
Solonic N		××	4.40
Selenious K,	HaseO	Х	1.88
		×	29.2
Silicic (ortho-) K_1	H ₄ SiO ₄		8.6 8.6
		×	11.8
Succinic K ₁	HOOCCH,CH,COOH	2.0×10^{-14}	
Kulphemia Sulphemia		ن د ×	
Sulphanilic	Handon Handa	05 ×	
Sulphosalicylic K.	C.H. (OH)/COOH)SO H	×:	3.20
	_	1.4 × 10-3 1 × × 10-12	•
Sulphuric Ka	H.504	×	76.11
$Sulphurous K_1$	H_3SO_3	× :	1.76
		×	7.20
$Iartaric \Lambda_1$	HOOD(HO)CH(OH)COOH		3.04
Telluric K_{\perp}	Oat H	×>	4.37
	9 0 1 9 1		10.05
$K_{\mathbf{q}}$		<×	55.55
Tellurous K_1	$\mathrm{H_{3}TeO_{9}}$		2.57
		∞. ×	7.74
Thiocyanic	HSCN		0.85
Thiosulphuric K_1	$H_2S_2O_3$	v c	0.60
Λη		\times	1.72

Table 37 (continued)

Name	Formula	$K_{m{a}}$	pKa
Trichloroacetic Tungstic Valeric (iso-) Valeric (normal) Vanadic (ortho-) K_3	CCl ₃ COOH H ₂ WO ₄ (CH ₃) ₂ CHCH ₂ COOH CH ₃ (CH ₂) ₃ COOH H ₃ VO ₄	$\begin{array}{c} 2.0 \times 10^{-1} \\ 6.3 \times 10^{-5} \\ 1.7 \times 10^{-5} \\ 1.4 \times 10^{-5} \\ 1.1 \times 10^{-9} \\ 4.0 \times 10^{-15} \end{array}$	0.70 4.2 4.78 4.86 8.95 14.4
Bases			
Name	Formula	K _b	pKb
Ammonia solution Aniline Barium hydroxide K_2 Benzidine K_1 K_2 Calcium hydroxide K_2 Diethylamine Dimethylamine Ethanolamine Ethylamine Ethylamine Ethylamine	$\begin{array}{l} \mathrm{NH_3} + \mathrm{H_2O} \\ \mathrm{C_6H_5NH_2} + \mathrm{H_2O} \\ \mathrm{Ba(OH)_3} \\ \mathrm{H_2NC_6H_4C_6H_4NH_3} + \mathrm{H_2O} \\ \mathrm{H_2NC_6H_4C_6H_4NH_3} + \mathrm{H_2O} \\ \mathrm{Ca(OH)_2} \\ \mathrm{C(C_1H_5)_2NH} + \mathrm{H_2O} \\ \mathrm{C(C_1H_5)_2NH} + \mathrm{H_2O} \\ \mathrm{C(C_1H_5)_2NH} + \mathrm{H_2O} \\ \mathrm{C(C_1H_5)_2NH} + \mathrm{H_2O} \\ \mathrm{C(C_1H_2)_2NH} + \mathrm{H_2O} \\ \mathrm{C(C_1H_2)_2NH_2} + \mathrm{C(C_1H_2)_2NH_2} + \mathrm{C(C_1H_2)_2NH_2} + \mathrm{C(C_1H_2)_2NH_2} \\ \mathrm{C(C_1H_2)_2NH_2} + \mathrm{C(C_1H_2)_2NH_2} + \mathrm{C(C_1H_2)_2NH_2} + \mathrm{C(C_1H_2)_2NH_2} + \mathrm{C(C_1H_2)_2NH_2} \\ \mathrm{C(C_1H_2)_2NH_2} + C($	4.76×10^{-5} 4.2×10^{-10} 2.3×10^{-10} 9.3×10^{-10} 5.6×10^{-11} 4.0×10^{-2} 9.6×10^{-4} 1.1×10^{-3} 7.1×10^{-14} 1.8×10^{-5} 9.1×10^{-5} 1.5×10^{-5}	4.755 9.38 9.03 10.25 13.15 4.75 6.82

37 (continued)	$\mathtt{p} K_b$	11.64 0.52 0.53 6.01 8.02 3.02 3.02 10.08 8.82 9.89 9.20 11.87 11.87 8.82 8.82 8.82 8.83 11.87 8.83 8.83 8.83 8.83 8.83 8.83 8.83 8
<i>Table 37</i> (K_b	2.3 3.0 3.0 9.8 1.0 9.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
	Formula	HOOCCH ₂ NH ₂ (H ₂ N) ₂ CNH + H ₃ O N ₂ H ₄ + H ₂ O N ₂ H ₄ + H ₂ O N ₂ H ₄ + H ₂ O C ₉ H ₇ ON + H ₂ O C ₉ H ₇ ON + H ₂ O C ₁₀ H ₇ NH ₂ + H ₂ O C ₁₀ H ₇ NH ₂ + H ₂ O C ₁₀ H ₇ NH ₂ + H ₂ O C ₆ H ₅ NHNH ₂ + H ₂ O C ₆ H ₅ NHNH ₂ + H ₂ O C ₆ H ₅ N + H ₂ O C ₆ H ₅ N + H ₂ O C ₆ H ₅ N + H ₂ O C ₆ H ₅ N + H ₂ O C ₆ H ₅ N + H ₂ O C ₆ H ₅ N + H ₂ O C ₆ H ₅ N + H ₂ O C ₆ H ₅ N + H ₂ O C ₆ H ₅ N + H ₂ O C ₆ H ₅ N + H ₂ O C ₆ H ₅ N + H ₂ O C ₆ CO(NH ₂) ₂ + H ₂ O CCH ₂) ₃ N + H ₂ O CCH ₂) ₄ N + H ₂ O CCH ₂) ₆ N ₄ + H ₂ O
	Name	Glycine Guanidine Hydrazine Hydrazine Hydroxylamine S-Hydroxyquinoline Lead hydroxide K_1 K_2 Lithium hydroxide Methylamine α -Naphthylamine β -Naphthylamine Pyridine Pyridine Quinoline Semicarbazide Silver hydroxide Trimethylamine Urea Urotropine (hexamethylene tetramine)

Dissociation Constants of Complex Ions

The subscripts of K denote the number of groups of a ligand of a central atom of a complex which is dissociated by one step, for example, for Fe^{3+} complexes with chloride ions:

$$K_1 = \frac{[\text{FeCl}^2+] [\text{Cl}^-]}{[\text{FeCl}^2+]};$$
 $K_2 = \frac{[\text{FeCl}^2+] [\text{Cl}^-]}{[\text{FeCl}^1_2]};$ $K_3 = \frac{[\text{FeCl}^1_2] [\text{Cl}^-]}{[\text{FeCl}_3]};$ $K_4 = \frac{[\text{FeCl}_3] [\text{Cl}^-]}{[\text{FeCl}^4_4]}$

Two or more subscripts are written for complete dissociation constants of complexes with the corresponding number of groups of a ligand, for example:

$$K_{1, 2} = \frac{[\text{Fe}^{3+}] [\text{Cl}^{-}]^{2}}{[\text{FeCl}_{2}^{+}]};$$
 $K_{1, 2, 3} = \frac{[\text{Fe}^{3+}] [\text{Cl}^{-}]^{3}}{[\text{Fe}\text{Cl}_{3}]};$ $K_{1, 2, 3, 4} = \frac{[\text{Fe}^{3+}] [\text{Cl}^{-}]^{4}}{[\text{Fe}\text{Cl}_{4}^{-}]}$

Evidently, $K_{1,2} = K_1 \cdot K_2$; $K_{1,2,3} = K_1 \cdot K_2 \cdot K_3$, etc. The table gives their indices, and not the constants themselves, i.e., the logarithms of the constants taken with an inverse sign:

$$pK_1 = -\log K_1$$
; $pK_2 = -\log K_2$; $pK_{1,2} = -\log K_{1,2}$, etc.

The indices of only complete dissociation constants are given; however, it follows from the above that the indices of the constants of separate dissociation steps can easily be found by the differences:

$$pK_2 = pK_{1,2} - pK_1$$
; $pK_3 = pK_{1,2,3} - pK_{1,2}$, etc. All data are given at temperatures of 20-30 °C.

Central ion	pK1	pK _{1,2}	pK _{1,2,3}	pK _{1,2,3,4}	pK _{1,2,3,4,5}	PK1,2,3,4,5,6	Ionic strength
	A			Inorgan:	ic Ligand ı (NH ₃)	ls	
Ag ⁺ Au ⁺ Au ³⁺ Cd ²⁺ Co ²⁺ Co ³⁺	3.32 ? ? 2.51 1.99 7.3	7.24 27 ? 4.47 3.50 14.0	 ? 5.77 4.43 20.1	 30 6.56 5.07 25.7	 6.26 5.13 30.8	 4.56 4.39 35.21	0 ? ? 0 0 2

Table 38 (continued)

Central fon	pKı	pK _{1,2}	PK _{1,2,3}	pK _{1,2,3,4}	PK1,2,3,4,5	pK _{1,2,3,4,5,6}	Ionic strength
Cu ⁺ Cu ²⁺ Fe ²⁺ Hg ²⁺ Mg ²⁺ Mn ²⁺ Ni ²⁺ Tl ³⁺ Zn ²⁺	5.93 3.99 1.4 8.8 0.23 0.8 2.67 —0.9 ?	10.86 7.33 2.2 17.5 0.08 1.3 4.79 - ?	10.06 ? 18.5 -0.34 ? 6.40 ? 6.74	12.03 3.7 19.3 -1.04 ? 7.47 - 17 (?) 8.70	11.43 -1.99 ? 8.10 - -		2 0 0 2 2 2 0 2 ?
Ag + Au 3 + Bi 2 + Au 3	4.38* ? 263380 — 2.2380 — 0.55502223 — 0.55502223 — 0.5550223 — 0.555023 — 0.55502 —	12.46 2.46 2.45 4.45 4.40 5.28 1.78 1.70	000 000 000 000 000 000 000 000 000 00	8.73 31.5 7.84 2.93	9.42	9.52 	0??200?00001?000330000 101 1

Table 38 (continued)

Central ion	pKı	pK _{1,2}	pK _{1,2,3}	PK _{1,2,3,4}	PK1,2,3,4,5	pK _{1,2,3,4,5,6}	Ionic strength
		Hyd	roxocomp	lexes (OF	I-)		
Ag ⁺ Al ³⁺ As ²⁺ Be ²⁺ Be ²⁺ Bi ³⁺ Cd ²⁺ Ce ³⁺ Ce ⁴⁺ Ce ³⁺ Ce ²⁺ Fe ³⁺ Hg ²⁺ Hg	2.30* 9.04 14.33* 0.85 7.48 12.4 1.46 4.17 4.6 13.28 4.4 10.1 7.0 5.56 11.87 11.0 9.0 10.30 9.9 3.30 0.17* 2.58 3.90 4.97 6.9 11.86 13.3 9.8 11.1 8.6 14.32 eutral mole	4.0 ? 18.73 - 15.8 8.33* 27.06 4.6* 17.8 13.68* 9.77* 21.70* 19.8 ? ? ? 10.8* 24.3 20.64* ? 21.2 25.37 18.6* 21.6 25.2 11.3* 28.26	5.2 ? 20.60 15.21 ? 9.02 — 10.5 17.0 9.67 30.67* ? 21.20 ? — 8.3 11.33 13.3 36.7* 25.13 ? — ? — ? ? — ? ? — ? ? — ? ? — ? ? — ? ? ?	33.0 21.2		40.3 	00?000??200?0000?00001000000000.1 55.
1	Julius IIIUI		~- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 				

Central ion	pKı	pK _{1,2}	$^{ m p}K_{1,2,3}$	${}^{ m p}K_{1,2,3,4}$	${}^{ m p}K_{1,2,3,4,5}$	PK1,2,3,4,5,6	Ionic strength
		Hypoph	osphite C	omplexes	$(\Pi_2\mathrm{PO}_2^-)$		
Fe ³⁺	2.77	-				_	} }
		Ioda	ite comp	lexes (IC) ₃ -)		
Ag+ Ba ²⁺ Ca ²⁺ Cu ²⁺ Mg ²⁺ Sr ²⁺ Th ^{IV} Tl+	0.63* 1.1 0.89 0.82 0.72 0.98 2.88 0.50*	1.90 — — — — — — 4.79	7.15				0 0 0 0 0 0 0.5
	•	Io	dide comp		.)		
Ag ⁺ Bi ³⁺ Cd ²⁺ Cu ⁺ Fe ³⁺ Hg ²⁺ In ³⁺ Pb ²⁺ Tl ⁺ Tl ³⁺ Zn ²⁺	6.58* 2.89 2.28 ? 1.88 12.87 1.64 1.26 1.41* 11.41 —2.9	11.74 ? 3.92* 8.85 ? 23.82* 2.56 2.80* 1.82 20.88 —1.6*	13.68 ? 5.00 ? 27.60 2.48* 3.42 2.0 27.60* -1.7	13.10 14.95 6.10 — 29.83 .— 3.92 1.6 31.82 —2.3	16.80 	19.1	0 0 0 0 0.5 0.7 1 ?
		Carbon	ate compl	!exes** (C	$CO_3^{2-})$		
Ca^{2+} Cu^{2+} Mg^{2+} UO_2^{2+}	3.2* 6.0* 3.40* ?		- - 18.3	_ _ _		 	0 0 0 0
	O 00 * 1	Nitro	ate compi	lexes (NC) ,)	1	0
Ag ⁺ Ba ²⁺ Bi ³⁺ Ca ²⁺ Cd ²⁺ Ce ³⁺ Fe ³⁺	-0.29* 0.92 1.26 0.28 0.40 1.04 1.0	1.51	- - - - -		- - - - -	- - - - -	0 0.1 0 0 2 0
* N ** F pectivel	Neutral mo For Ca(HCC y.	lecules in 03)2 and M	solution. g(HCO ₃) ₂ ,	pK1 is equ	ial to 1.26	3 and 1.1	6, res-

Table 38 (continued)

		_					
Central fon	pKı	${ m p}K_{1,2}$	pK _{1,2,3}	pK _{1,2,3,4}	pK _{1,2,3,4,5}	pK _{1,2,3,4,5,6}	lonic strength
Hf ^{IV} Hg ²⁺ Hg ²⁺ La ³⁺ Pb ²⁺ Pu ^{IV} Sr ²⁺ Th ^{IV} Tl ⁺ Tl ³⁺ U ^{IV} UO ²⁺ Zr ^{IV}	0.92 0.08 0.35 - 0.26 1.18 0.54 0.82 0.78 0.33* 0.92 0.36 -1.4* 0.34	1.51 -0.24* -0* 1.11 0.47 -1.4* 0.11	1.89 1.00 0.42 -0.5 -0.26	2.08* 0.74* 0.18*0.82*	2.08 -	1.81 -	4 0.5 ? 1 0 1 0 2 0 0.6 4 1 4
Ag+ Cd ²⁺ Cu ²⁺ Hg ²⁺	1.88* 1.80 1.26	Nitr 2.83 3.01* 1.56*	ite compl — 3.81 1.16 ?	lexes (NO 3.1 — 13.54	(2) — — —	-	? 3 5 ?
Ce ³⁺ Fe ³⁺ Hg ₂ ²⁺	1.91 1.15 -0.05	Perchle	orate com — — —	plexes (C — 	BlO₄) — — —	<u>-</u>	3 0 0
		Pyrophos	phate col	mplexes ($P_2O_7^{4-}$		j
Ba ²⁺ Ca ²⁺ Cd ²⁺ Co ²⁺ Co ²⁺ Cu ⁺ Cu ²⁺ Fe ³⁺ K ⁺ Li ⁺ Mg ²⁺ Na ⁺ Ni ²⁺	4.64 5.00 5.6 17.15 4.0 ? 5.20 ? 2.3 2.39 5.70 2.22 5.82	4.18 - 26.72 10.30 5.55 - - 7.19					? 3.5 ? ? ? 0 1 0.02 0
* N	eutral mol	ecules in s	solution.				

Central ion	pK _{1,2}	pK _{1,2,3}	PK _{1,2,3,4}	PK1,2,3,4,5	PK1,2,3,4,5,6	Ionic strength	
Pb ²⁺ 11.24 Sn ²⁺ 14 Sr ²⁺ 4.66 Tl ⁺ 1.69 Zn ²⁺ 8.7	16.5 — 1.9 11.0	_ _ _ _		 - - - -	- - - -	0.1 ? ? 2 ?	
Pyrophosphate complexes (HP $_2\mathrm{O}_7^{3-}$)							
$\begin{array}{c cccc} Cu^{2+} & 6.4 \\ Li^{+} & 1.03 \\ Na^{+} & 1.52 \end{array}$	10.0	_ _ _			-	? 1 0	
	Pyrophosp	hate com	plexes (l	$H_2P_2O_7^{2-}$			
Sn ²⁺ 4.48* SnOH+ 5.48	6.08	<u> </u>	<u> </u>	_		2 2	
Rhodanide complexes (SCN-)							
Ag ⁺ Au ⁺ ? Au ³⁺ ? Bi ³⁺ Cd ²⁺ 1.15 Cd ²⁺ 1.74 Co ²⁺ 3.0 Cr ³⁺ 3.08 Cu ⁺ ? Cu ²⁺ 2.30 Fe ²⁺ 0.95 Fe ³⁺ 3.03 Hg ²⁺ ? In ³⁺ 2.58 Ni ²⁺ 1.18 Pb ²⁺ 1.09 Th ⁴⁺ 1.08 l'iOH ³⁺ 1.7 Tl ⁺ U ⁴⁺ UO ²⁺ 1.49 UO ²⁺ 2.01* * Neutral mo	8.23 25 ? 2.26 2.33* 3.0* 4.8 12.11 3.65* 0.07* 4.33 17.47* 3.60 1.64* 2.52* ? 0.65 1.95 0.91* 2.1* ?	9.45 ? ? ? 2.3 5.8* 9.90 5.19 4.63* 19.15 4.63* 1.78 0.2 2.18 1.35 2.2 2.66	9.67			0 ? 0 0 0.1 ? 0 0 0 ? 0 ? 2 1 ? 1 0 0 1.7	

Table 38 (continued)

Central ion	pKı	$pK_{1,2}$	pK _{1,2,3}	pK _{1,2,3,4}	pK1,2,3,4,5	pK1,2,3,4,5,6	Ionic strength
Selenate complexes (SeO2-)							
$\begin{bmatrix} \mathrm{Cd}^{2+} \\ \mathrm{Zn}^{2+} \end{bmatrix}$	2.27* 2.19*	_		_	_	_	0 0
ĺ		Selen	ite comp	lexes (Se	O ₃ -)		
Cd ²⁺ H g ²⁺	; ,	5.15 12.48	_	_ _	_	_	1 1
		Sulph	ate comp	olexes (S	O ₄ -)		
Al ³⁺ Ba ²⁺ Ca ²⁺ Ca ²⁺ Ce ³⁺ Ce ⁴⁺ Co ³⁺ Co ²⁺ Fe ³⁺ Hf ⁴⁺ Hg ²⁺ Hg	3.2 0.23 2.36* 2.31* 2.31* 2.31* 2.36* 2.37* 3.36* 2.36*	5.1 0.28 	3.00				03000020207 55 1000000212702
* Neutral molecules in solution.							

Central ion	pKı	pK _{1,2}	pK _{1,2,3}	pK _{1,2,3,4}	pK1,2,3,4,5	pK1,2,3,4,5,6	Ionic strength	
UO2+ VO2+ Zn2+ Zr4+	2.72* 2.48* 2.34* 3.79	4.20 — 6.64*	- - 7.77		1 1 1	-	0 0 0 2	
ı		Sulp	hite comp	olexes (SO	$\binom{2}{3}^{-}$			
Ag+ Cd ²⁺ Cu+ Hg ²⁺ Tl ³⁺	5.60 ? 7.85 ?	8.68 4.19 8.70 24.07	9.00 9.36 24.96 ?	 34			0 1 1 0 ?	
	Thiosulphate complexes $(S_2O_3^{2-})$							
Ag ⁺ Ba ²⁺ Ca ²⁺ Cd ²⁺ Cd ²⁺ Cu ²⁺ Fe ²⁺ Fe ³⁺ Hg ²⁺ K ⁺ Hg ²⁺ Na ⁺ Ni ²⁺ Na ⁺ Ni ²⁺ Pb ²⁺ Sr ²⁺ Tl ⁺ Tl ³⁺ Zn ²⁺	8.82 2.33* 1.91* 3.94* 2.05* 10.27 ? 2.0* 2.10 ? 1.00 0.8 1.79* 1.95* 0.58 2.06* 2.7* 2.04* 1.91 ?	13.46 — 6.48 — 12.22 12.29 ? — 29.86 — — — 5.13 — 24.59	14.15 8.2 13.84 32.26 6.35 ?				0 0 0 0 0 2 ? 0 0 0 0 0 0 0 0 0 0 0 0 0	
Tetrametaphosphate complexes $(P_4O_{12}^{4-})$								
Ba ²⁺ Ca ²⁺ La ³⁺ Mg ²⁺	4.99 5.42 6.66 5.17	_ 1		_ 1	_ _ _ _	1	0 0 0 0	
* Neutral molecules in solution.								

Table 38 (continued)

Central ion	pΚι	$^{ m pK_{1,2}}$	PK _{1,2,3}	pK1,2,3,4	PK1,2,3,4,5	PK1,2,3,4,5,6	Ionic strength	
Mn ²⁺ Ni ²⁺ Sr ²⁺	5.74 4.95 5.15		_ _ _	 	<u>-</u>	— — —	0 0 0	
	7	rimetaph	osphate d	complexes	$(P_3O_9^{3-})$			
Ba ²⁺ Ca ²⁺ La ³⁺ Mg ²⁺ Mn ²⁺ Na ⁺ Ni ²⁺ Sr ²⁺	3.35 3.45 5.70 3.31 3.57 1.17 3.22 3.35			— — — — — —		- - - - -	0 0 0 0 0 0	
	Phosphate complexes (PO3-)							
Ce ³⁺	18.53*	l —	I —	-	-	I —	1 0	
		Phosph	ate comp	lexes (HI	PO ₂ -)	. ,		
Ca ²⁺ Fe ³⁺ Mg ²⁺ Pu ^{IV}	2.70* 9.75 2.50* 12.9		- - - 33.4	- - 43.2	52.0	- - -	0 0 0 2	
		Phosph	ate comp	lexes (H2	PO-)		1	
Al^{3+} Ca^{2+} Cu^{2+} Fe^{3+} UO_2^{2+}	1.08 ? 3.5 3.00	~5.3 - 1.49* ? 5.43*	~7.6* - - ? 7.33	9.15 —	— — —	_ _ _ _	0.1 0 0 ? 0	
Phosphate complexes (H ₃ PO ₄)								
Pu ^{IV} Th ^{IV} UO ₂ ²⁺	2.3 1.89 <1.8					- - -	2 2 0	
1.	Fluoride complexes (F ⁻)							
Ag ⁺ Al ³⁺ Ba ²⁺	$0.36* \\ 7.10 \\ < 0.45$	11 <u>.98</u>	15.83* —	18.53 	20.20 —	20.67	0 0	
* N	eutral mol	ecules in s	olution.					

pK1	$pK_{1,2}$	PK1,2,3	pK _{1,2,3,4}	PK1,2,3,4,5	pK _{1,2,3,4,5,6}	Ionic strength	
5.89 <1.04 0.46 3.99 5.20 1.23 6.04 4.5 1.56 4.63 3.56 1.82 5.76 7.94 7.08 4.85 7.65 0.10* 5.4 4.4 3.3 4.81 1.26 1.20	10.83*	14.39*	16.38 15.74 12.5 20.81 17.5 11.7 7.5	16.10 12.8 ————————————————————————————————————	~ 16.10 ~ 16.10 ~ 25 ~ - ~ -	? 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
,			lexes (Cl)_)			
$0.7 \\ 0.22* \\ 0.26 \\ 0.47*$	_ _ _	- - - -	_ _ _	_ _ _	_ _ _	0 0 0.5 0	
Chloride complexes (Cl-)							
3.04* ? ? ? 2.43 2.05 0.22 0.60 ?	5.04 9.42 ? 4.7 2.60* -0.11 5.35	5.04 ? 5.0* 2.4 — 5.63	5.30 	6.1	 6.42 	0 0 1 0 0 ?	
	5.89 <1.04 0.46 3.99 5.20 1.23 6.04 4.5 1.56 4.63 3.56 1.82 5.76 7.08 4.85 7.010* 5.4 4.3 4.4 3.3 4.81 1.26 9.80 0.7 0.22* 0.47* 3.04* 3	5.89 10.83* - 0.46 0.53* 3.99 - 0.53* 5.20 8.54 - 1.23 - 0.74 6.04 10.74 8.3 1.56 - 7.41 3.56 - - 1.82 - - 5.76 - - 7.94 - - 7.08 12.88 - 4.85 ? ? 7.65 13.46 - 0.10* - 9.8* 4.4 7.7* - 3.3 5.5* - 4.81 8.54 - 1.26 - - 9.80 17.37 - Chlor 0.7 - - 0.22* - - 0.47* - - 0.42* ? 2.60* 0.22 - - 0.50 - - 10.60 - <td>5.89 10.83* 14.39* 1.04 — — 0.46 0.53* — 3.99 — — 5.20 8.54 11.02* 1.23 — — 6.04 10.74 13.74* 4.5 8.3 11.0* 1.56 — — 4.63 7.41 10.23* 3.56 — — 1.82 — — 7.94 — — 7.08 12.88 17.33* 4.85 ? ? ? 13.46 17.97 0.10* — — ? 13.46 17.97 0.10* — — ? 13.8 10.3 3.3 5.5* 7.2 4.81 8.54 12.14* 1.26 — — 9.80 17.37 23.45 Chlorate comp 0.7 — — 0.22* — —<td>5.89 10.83* 14.39* 16.38 0.46 0.53* — — 3.99 — — — 5.20 8.54 11.02* — 1.23 — — — 6.04 10.74 13.74* 15.74 4.5 8.3 11.0* 12.5 1.56 — — — 4.63 7.41 10.23* — 3.56 — — — 1.82 — — — 7.94 — — — 7.94 — — — 7.94 — — — 7.94 — — — 7.94 — — — 7.94 — — — 7.94 — — — 7.94 — — — 7.54 — — — 7.5 13.46 17.97 — 0.10* — — —</td><td>5.89</td><td>5.89</td></td>	5.89 10.83* 14.39* 1.04 — — 0.46 0.53* — 3.99 — — 5.20 8.54 11.02* 1.23 — — 6.04 10.74 13.74* 4.5 8.3 11.0* 1.56 — — 4.63 7.41 10.23* 3.56 — — 1.82 — — 7.94 — — 7.08 12.88 17.33* 4.85 ? ? ? 13.46 17.97 0.10* — — ? 13.46 17.97 0.10* — — ? 13.8 10.3 3.3 5.5* 7.2 4.81 8.54 12.14* 1.26 — — 9.80 17.37 23.45 Chlorate comp 0.7 — — 0.22* — — <td>5.89 10.83* 14.39* 16.38 0.46 0.53* — — 3.99 — — — 5.20 8.54 11.02* — 1.23 — — — 6.04 10.74 13.74* 15.74 4.5 8.3 11.0* 12.5 1.56 — — — 4.63 7.41 10.23* — 3.56 — — — 1.82 — — — 7.94 — — — 7.94 — — — 7.94 — — — 7.94 — — — 7.94 — — — 7.94 — — — 7.94 — — — 7.94 — — — 7.54 — — — 7.5 13.46 17.97 — 0.10* — — —</td> <td>5.89</td> <td>5.89</td>	5.89 10.83* 14.39* 16.38 0.46 0.53* — — 3.99 — — — 5.20 8.54 11.02* — 1.23 — — — 6.04 10.74 13.74* 15.74 4.5 8.3 11.0* 12.5 1.56 — — — 4.63 7.41 10.23* — 3.56 — — — 1.82 — — — 7.94 — — — 7.94 — — — 7.94 — — — 7.94 — — — 7.94 — — — 7.94 — — — 7.94 — — — 7.94 — — — 7.54 — — — 7.5 13.46 17.97 — 0.10* — — —	5.89	5.89	

Table 38 (continued)

Central fon	pKı	pK _{1,2}	PK1,2,3	pK1,2,3,4	PK1.2,3,4,5	PK1,2,3,4,5,6	Ionic strength
Cu ²⁺ Fe ²⁺ Fe ³⁺ Ga ³⁺ Hg ²⁺ In ³⁺ Ir ³⁺ La ³⁺ MoO ²⁺ Pb ²⁺ Pt ²⁺ Pu ⁴⁺ Pu ⁰²⁺ SnOH ⁺ Tl ³⁺ Tl ³⁺ UO ²⁺ VO ²⁺ Zn ²⁺ Zr ⁴⁺	0.07 0.36 1.45 -0.6 6.74 1.0 -0.15 0.95 -0.3 1.62 6.1 1.17 -0.25 0.10 1.51 1.04* 1.38 0.52* 8.14 0.85 -0.9 0.95	-0.57* 0.40* 2.10 -2.3 13.22* 1.50.8* 2.44* 10.5*0.35* 2.24* 0.38 0.09 13.60 -0.92* -1.0* 1.3	-2.1 -1.10* -4.5* 14.07 1.55*2.69 2.04 12.9 14.00 2.03 - 0.23 -0.8 15.78* -2.62 0.0 1.5		13.4	14.00 	0 2 0 0 0.5 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	,,,,			· · · · · ·	' \T∩-\		
	?	Cyana 5.00	te comp	rexes (OI	10-)	ı <u></u> 1	0
Ag+	, r	,			-	(Ĭ
				olexes (CI	N-)		
Ag ⁺ Au ⁺ Au ³⁺ Cd ²⁺ Co ²⁺ Co ³⁺ Cu ⁺ Fe ²⁺ Fe ³⁺	???? 5.18	19.85 38.3 9.60* — — 24.0	20.55 	19.42 56 17.11 ? 30.3 ?		 19.09 64 24 31	0 0 0 ? 5 ? 0 0
* No	eutral mol	ecules in s	olution.				

I management of the second of							
Central ion	pKı	pK _{1,2}	pK _{1,2,3}	pK _{1,2,3,4}	pK1,2,3,4,5	PK1,2,3,4,5,6	Ionic strength
Hg ²⁺ Ni ²⁺ Tl ³⁺ Zn ²⁺	18.0	34.70* ? ? ?	38.53 ? ? 17	41.51 31.0 35 19	30.3 —	 	0 0 0 ?
B. Con	nplexes v	with Orga	anic Liga	nds			
		Acetal	e complex	res (CII ₃ C	:UO-)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
1		Oxala	te comple	exes (CO	$O)_{2}^{2}$		
Al ³⁺ Ba ²⁺ Be ²⁺ Ca ²⁺ Cd ²⁺ Ce ³⁺ Co ²⁺ Fe ²⁺ Fe ²⁺ Fe ³⁺ Mg ²⁺ Mn ²⁺	7.3 2.3* ~4* ~3* 4.00* 6.52 4.7* 6.7* 9.4 2.55* 3.82*	13 	16.3 11.30 9.7 5.22 20.2 				0 0 0 0 0 0 0.3 0.5 0
* N	eutral mol	ecules in s	olution.				

Table 38 (continued)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Central fon	pKı	$pK_{1,2}$	pK _{1,2,3}	pK1,2,3,4	PK1,2,3,4,5	PK1,2,3,4,5,6	Ionic strength
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nd ³⁺ Ni ²⁺ Pb ²⁺ Sr ²⁺ Tl+ Yb ³⁺	7.21 >5.3* ? 2.54* 2.03 7.30 5.00*	11.51 6.51 6.54 11.89 7.36	>13.5 ~14 — — — >12.9 8.15		_		0 0 0 0 0
$ \begin{vmatrix} Ag^{+} & 1.97 & 4.35 & - & - & - & 0 \\ Cd^{2+} & 1.27 & 2.14 & 2.3 & 2.50 & - & - & 0.1 \\ Co^{2+} & 1.46 & 1.54 & - & - & - & 0.5 \end{vmatrix} $	Ca ²⁺ Cd ²⁺ Co ²⁺ Fe ²⁺ Fe ³⁺ Mg ²⁺ Mn ²⁺ Ni ²⁺ Pb ²⁺ Sr ²⁺ Th ⁴⁺ UO ₂ ²⁺	2.07 3.27 7.2 9.1 12.2 8.0 12.3 4.74 6.8 9.9 9.02 2.56 10.45 11.25		 33.9* 29.85 	 38.80* 		_	0 0.01 0.01 0.01 0.01 0.01 0.01 0 0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								

Central fon	pKı	pK _{1,2}	PK _{1,2,3}	pK _{1,2,3,4}	PK1,2,3,4,5	PK1,2,3,4,5,6	Ionic strength
Cu ²⁺ Fe ²⁺ Fe ³⁺ Ni ²⁺ Th ⁴⁺ UO ₂ ²⁺	10.6* 6.55* 16.18 6.95* 4.25 4.91*	18.45 11.25 28.16 11.75 7.60*	36.84 10.05	- - - 11.60	 		0.1 0.1 0.25 0.1 0.1 ?
	_	salicylate	complex	es [C ₆ H ₃	0(000)(8	$[O_3)]^{3-}$	
Al ³⁺ Be ²⁺ Cu ²⁺ Fe ²⁺ Fe ³⁺ Mn ²⁺ UO ²⁺	13.20* 11.71 9.52 5.90 15.02* 5.24 11.14	22.83 20.81 16.45 9.90 25.76 8.24 19.20	28.89 — — 32.60 —	- - - - -		 	0.1 0.1 0.1 0.1 0.1 0.1 0.1
	Ta	irtrate co	mplexes	(CHOII)	(COO)]2-		
Ba ²⁺ Ca ²⁺ Cu ²⁺ Fe ³⁺ Mg ²⁺ Pb ²⁺ Sr ²⁺ Zn ²⁺	2.54* 2.98* 3.00* 7.49 1.36* 3.78* 1.59* 2.68*	9.01 5.11 — — — —	5.76 — — — — — —	6.20			0 0 1 ? 0.2 ? 0.16 0.2
	Com	olexes wi	th phen	anthrolin	e (C ₁₂ H ₈	N ₂)	
Ag+ Ca ²⁺ Cd ²⁺ Co ²⁺ Cu ²⁺ Fe ²⁺ Fe ³⁺ Zn ²⁺	5.02 0.5 6.4 7.25 9.25 5.85 6.5 6.43	12.07 11.6 13.95 16.00 ? 11.4 12.15	15.8 19.90 21.35 21.3 23.5 17.0				0.1 0.5 0.1 0.1 0.1 0.1 0.1
Citrate complexes [(CH ₂) ₂ C(OH)(COO) ₃] ³⁻							
Ba ²⁺ Be ²⁺ Ca ²⁺	2.84 4.52 4.85	_ _ _	<u> </u>	-		_ _ _	0.08 0.15 0
* N	eutral mol	ecules in a	solution.				

Table 38 (continued)

Central ion	pKı	$^{ m p}K_{1,2}$	PK1,2,3	PK1,2,3,4	PK1,2,3,4,5	PK1,2,3,4,5,6	.Ionic strength
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Citrate complexes [(CII ₂) ₂ C(OII)(COOH)(COO) ₂] ²⁻							
Be ²⁺ Ca ²⁺ Fe ²⁺ Fe ³⁺ Pb ²⁺	2.22* 3.29* 2.12* 6.3 5.72*			- - - -	 	— — — —	0.15 0 0 1 0
* Ne	eutral mol	ecules in s	solution.				

Ethylenediaminetetraacetate complexes

(Ethylenediam inetetra acetic acid, H_4Y) (Ionic strength = 0.1)

Central ion	Central ion $pK_1HY^3 pK_1Y^4-$ Central ion $pK_1HY^3 pK_1Y^4-$								
Ag ⁺ 3.07 7.32 Ba ²⁺ 2.07 7.78 Al ³⁺ 8.4* 16.13 Ca ²⁺ 3.51 10.57									
* Neutral molecules in solution.									

Table 38 (continued)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Central ion	p K 1 HY3 -	p K 1 Y4 -	Central ion	pK ₁ HY3-	p K ₁ Y4-
·	Ce ³⁺ Co ²⁺ Co ³⁺ Cr ³⁺ Cu ²⁺ Fe ²⁺ Fe ³⁺ Ga ³⁺ Hg ²⁺ In ³⁺ La ³⁺ Mg ²⁺	9.15 ? ? 11.54 6.86 16.2* 11.39* 14.6 ? ?	16.01 16.21 36 24.0 18.80 14.33 25.10 20.27 21.80 24.95 15.19 8.69	Ni ²⁺ Pb ²⁺ Pd ³⁺ Sc ³⁺ Sr ²⁺ Th ⁴⁺ Ti ³⁺ TiO ²⁺ Tl ³⁺ V ²⁺ V ³⁺	10.61 ? ?	18.62 18.04 18.5 23.1 8.63 23.2* 21.3 17.3 5.8 12.70 25.9 18.77

Table 39

Mobility of Selected Ions at 25 °C and Infinite Dilution

Equivalent conductivity (ohm⁻¹·cm²) of the electrolyte λ_{BA} is numerically equal to the sum of the mobilities of both ions: $\lambda_{BA} = -\lambda_{B^+} \mid \lambda_{A^-}$

Cations	λ _{Β+}	Anions	λ _A -
II + K + NII † Tl+ 1/2 Pb ²⁺ 1/3 Fe ³⁺ 1/2 Ba ²⁺ Ag+ 1/2 Ca ²⁺ 1/2 Sr ²⁺ 1/2 Cu ²⁺ 1/2 Zn ²⁺ 1/2 Mg ²⁺ 1/2 Fe ²⁺ 1/2 Ni ²⁺ Na+ Li+	362 76 76 75 73 68 66 64 62 62 57 56 55 54 52 52 39	OH- 1/4 Fe(CN)4- 1/3 Fe(CN)3- 1/2 SO4- 1/2 CrO4- Br 1/3 PO4- I- Cl- NO3- 1/2 C ₂ O4- ClO4- 1/2 CO3- HCO5- CH ₃ CO3- IO3-	205 114 104 83 82 81 80 80 79 74 74 71 70 46 42 41

Table 40

Standard Oxidizing Potentials (E^0) Relative to the Potential of a Standard Hydrogen Electrode* at 25 °C

(\pmu = saturated solution in the presence of a solid or liquid substance;
\(\tau = solution saturated \) with gas under a pressure of 1 atm)

	 			
Symbol of ele- ment		+ne	Lowest degree of oxidation	E0, V
Ag	Ag ²⁺ Ag ⁺ Ag ⁺ AgBr \(\) AgBrO ₃ \\ \) AgC ₂ H ₃ O ₂ \\ \) Ag(CN) ² Ag(CN) ² Ag(CN) ³ Ag(CN) ³ AgCNO \(\) Ag ₂ CO ₃ \\ \) Ag ₂ CrO ₄ \\ \) Ag ₁ O ₃ \\ \) Ag ₂ MoO ₄ \\ \) Ag ₁ O ₃ \\ \) Ag ₂ MoO ₂ \\ \) Ag(NH ₃) ¹ AgNO ₂ \\ \) Ag ₂ O ₄ \\ \) Ag ₂ O ₅ \\ \) Ag ₂ O ₄ \\ \) Ag ₂ O ₅ \\ \) Ag ₂ O ₃ \\ \) Ag ₂ O ₄ \\ \) Ag ₂ O ₃ \\ \) Ag ₂ O ₄ \\ \) Ag ₂ SO ₄ \\ \)	++++++++++++++++++++++++++++++++++++++	Ag^{+} Ag^{+} Ag^{+} $+Br^{-}$ Ag^{+} $+Br^{-}$ Ag^{+} $+Br^{-}$ Ag^{+} $+C_{2}H_{3}O_{2}^{-}$ Ag^{+} $+CN^{-}$ Ag^{+} $+CN^{-}$ Ag^{+} $+CN^{-}$ Ag^{+} $+CN^{-}$ $-2Ag^{+}$ $+Cl^{-}$ $-2Ag^{+}$ $+Cl^{-}$ $-2Ag^{+}$ $+F_{\theta}(CN)_{\theta}^{4-}$ $-Ag^{+}$ $+I^{-}$ $-Ag^{-}$ $-Ag^{-}$ $+V^{-}$ $-Ag^{-}$ $-Ag^$	$+2.00 \\ +0.7994 \\ +0.071 \\ +0.55 \\ +0.64 \\ -0.04 \\ -0.29 \\ -0.51 \\ +0.41 \\ +0.46 \\ +0.472 \\ +0.424 \\ +0.152 \\ +0.35 \\ +0.35 \\ +0.373 \\ +0.373 \\ +0.59 \\ +0.373 \\ +0.59 \\ +0.374 \\ +0.74 \\ -0.71 \\ +0.09 \\ +0.43 \\ +0.01 \\ +0.653 \\ +0.53 \\ +0.53$
Al	Al^{8+} $AlO_2^- + 2H_2O$ $Al(OH)_3 \downarrow$ AlF_6^{8-}	+3e +3e +3e +3e	Al + 40H- Al + 30H- Al + 6F-	-1.66 -2.35 -2.31 -2.07

^{*}For the use of the table, see p. 476.

Table 40 (continued)

<u></u>				
Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E0, V
As	$As \downarrow + 3H^{+}$ $As \downarrow + 3H_{2}O$ $HAsO_{2} + 3H^{+}$ $II_{3}AsO_{4} + 2H^{+}$ $AsO_{2}^{-} + 2H_{2}O$ $AsO_{4}^{3-} + 2H_{2}O$	+3e 3e +-3e +2e +3e +2e	$AsH_3 \uparrow AsH_3 \uparrow + 3OH^- As \downarrow + 2H_2O HAsO_2 + 2H_2O As \left\ + 4OH^- AsO_2^- + 4OH^-$	$\begin{array}{ c c c c }\hline -0.60 \\ -1.37 \\ +0.247 \\ +0.56 \\ -0.68 \\ -0.71 \\\hline\end{array}$
Au	Au^{3+} Au^{3+} Au^{4+} $AuBr_{2}^{-}$ $AuBr_{4}^{-}$ $AuBr_{4}^{-}$ $Au(CN)_{2}^{-}$ $AuCl_{2}^{-}$ $AuCl_{4}^{-}$ $AuCl_{4}^{-}$ $Au(SCN)_{2}^{-}$ $Au(SCN)_{4}^{-}$ $Au(SCN)_{4}^{-}$	+2e +3e +e +2e +3e +e +2e +3e +e +2e +3e	$ \begin{array}{c c} Au^{+} & \\ Au \downarrow \\ Au \downarrow \\ Au \downarrow \\ Au \downarrow + 2Br^{-} \\ AuBr_{2}^{-} + 2Br^{-} \\ Au \downarrow + 4Br^{-} \\ Au \downarrow + 2CN^{-} \\ Au \downarrow + 2Cl^{-} \\ AuCl_{2}^{-} + 2Cl^{-} \\ Au \downarrow + 4Cl^{-} \\ Au \downarrow + 4OH^{-} \\ Au \downarrow + 2SCN^{-} \\ Au \downarrow + 2SCN^{-} \\ Au \downarrow + 4SCN^{-} \\ Au \downarrow + 4SCN^{-} \end{array} $	+1.41 +1.50 +1.68 +0.96 +0.82 +0.87 -0.61 +1.11 +0.93 +0.7 +0.69 +0.64 +0.66
В	${ m H_{3}BO_{3} + 3H^{+}} \ { m H_{2}BO_{3}^{-} + H_{2}O} \ { m BF_{4}^{-}}$	+3e +3e +3e	$ B\downarrow + 3H_{2}O $ $ B\downarrow + 40H^{-} $ $ B\downarrow + 4F^{-} $	-0.87 -1.79 -1.04
Ba	Ba ²⁺	+2e	Ba↓	-2.90
Ве	$\frac{\mathrm{Be^{2+}}}{\mathrm{Be_2O_3^{2-}}} + 3\mathrm{H_2O}$	+2e +4e	Be↓ 2Be↓+6OH-	-1.85 -2.62
Bi	$BiO^{+} + 2H^{+}$ $Bi \downarrow + 3H^{+}$ $NaBiO_{3} \downarrow + 4H^{+}$ $Bi_{2}O_{4} \downarrow + 4H^{+}$ $Bi_{2}O_{4} \downarrow + 4H^{+}$ $Bi_{2}O_{3} \downarrow + 3H_{2}O$ $Bi_{2}O_{3} \downarrow + 3H_{2}O$ $BiOCl \downarrow + 2H^{+}$	+3e +3e +2e +3e +2e +2e +6e +3e	$\begin{array}{c} {\rm Bi} \downarrow + {\rm H_2O} \\ {\rm BiH_3} \uparrow \\ {\rm BiO^+} + {\rm Na^+} + 2{\rm H_2O} \\ {\rm Bi} \downarrow + 4{\rm Cl^-} \\ 2{\rm BiO^+} + 2{\rm H_2O} \\ {\rm Bi_2O_3} \downarrow + 2{\rm OH^-} \\ 2{\rm Bi} \downarrow + 6{\rm OH^-} \\ {\rm Bi} \downarrow + {\rm H_2O} + {\rm Cl^-} \end{array}$	$ \begin{array}{r} +0.32 \\ < -0.8 \\ > +1.8 \\ +0.16 \\ +1.59 \\ +0.56 \\ -0.46 \\ +0.16 \\ \end{array} $
Br	$ \begin{array}{c} \text{Br}_{2} \\ \text{Br}_{3}^{-} \\ 2\text{HBrO} + 2\text{H}^{+} \\ 2\text{BrO}^{-} + 2\text{H}_{2}\text{O} \end{array} $	+2e +2e +2e +2e	2Br- 3Br- Br ₂ + 2H ₂ O Br ₂ + 4OH-	+1.087 +1.05 +1.6 +0.45

Table 40 (continued)

Symbol of elc- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E°, V
Br	$\begin{array}{c} \mathrm{HBrO} + \mathrm{H^+} \\ \mathrm{BrO^-} + \mathrm{H_2O} \\ \mathrm{BrO_3^-} + 5\mathrm{H^+} \\ \mathrm{BrO_3^-} + 2\mathrm{H_2O} \\ 2\mathrm{BrO_3^-} + 12\mathrm{H^+} \\ 2\mathrm{BrO_3^-} + 6\mathrm{H_2O} \\ \mathrm{BrO_3^-} + 6\mathrm{H^+} \\ \mathrm{BrO_3^-} + 3\mathrm{H_2O} \end{array}$	+2e +2e +4e +4e +10e +10e +6e +6e		+1.34 $+0.76$ $+1.45$ $+0.54$ $+1.52$ $+0.50$ $+1.45$ $+0.61$
С	$\begin{array}{c} \text{CH}_{3}\text{OH} + 2\text{H}^{+} \\ \text{C}_{2}\text{H}_{5}\text{OH} + 2\text{H}^{+} \\ \text{C}_{6}\text{H}_{4}\text{O}_{2} + 2\text{H}^{+} \\ \text{(quinone)} \\ \text{(CN)}_{2} \uparrow + 2\text{H}^{+} \\ \text{2HCNO} + 2\text{H}^{+} \\ \text{HCNO} + 2\text{H}^{+} \\ \text{CNO}^{-} + \text{H}_{2}\text{O} \\ \text{HCHO} + 2\text{H}^{+} \\ \text{CH}_{3}\text{CHO} + 2\text{H}^{+} \\ \text{CH}_{3}\text{COOH} + 2\text{H}^{+} \\ \text{HCOO}^{-} + 2\text{H}^{+} \\ \text{CO}_{2} \uparrow + 2\text{H}^{+} \\ \text{2CO}_{2} \uparrow + 2\text{H}^{+} \\ \end{array}$	+2e +2e +2e +2e +2e +2e +2e +2e +2e +2e	$CH_4 \uparrow + H_2O$ $C_2H_6 \uparrow + H_2O$ $C_6H_4(OH)_2$ (hydroquinone) $2HCN$ $2H_2O + (CN)_2 \uparrow$ $HCN + H_2O$ $CN^- + 2OH^ CH_3OH$ C_2H_5OH $HCHO$ CH_3CHO $HCHO + 3OH^ CO \uparrow + H_2O$ $CO(NH_2)_2 + H_2O$ (urea) $HCOOH$ $H_2C_2O_4$	+0.59 $+0.46$ $+0.6994$ $+0.37$ $+0.33$ $+0.35$ -0.97 $+0.19$ -0.01 -0.12 -1.07 -0.12 $+0.1$ -0.4
Ca	Ca ²⁺ Ca(OH) ₂ ↓	$\begin{array}{c c} +2e \\ +2e \end{array}$	Ca↓ Ca↓+2OH-	$-2.87 \\ -3.03$
Cd	$\begin{array}{c} \operatorname{Cd}^{2+} \\ \operatorname{CdCO}_{3} \downarrow \\ \operatorname{Cd}(\operatorname{CN})_{2}^{2-} \\ \operatorname{Cd}(\operatorname{NH}_{3})_{4}^{2+} \\ \operatorname{Cd}(\operatorname{OH})_{2} \downarrow \\ \operatorname{CdS} \downarrow \end{array}$	+2e +2e +2e +2e +2e +2e	$Cd \downarrow + CO_3^{2-} \\ Cd \downarrow + 4CN^{-} \\ Cd \downarrow + 4NH_3 \\ Cd \downarrow + 2OH^{-} \\ Cd \downarrow + S^{2-} $	-0.402 -0.74 -1.09 -0.61 -0.81 -1.17
Се	Ce^{3+} $Ce(ClO_4)_6^{2-}$ $Ce(NO_3)_6^{2-}$ $Ce(SO_4)_3^{2-}$	+3e +e +e +e	$Ce \downarrow Ce^{3+} + 6ClO_{4}^{-} $ $Ce^{3+} + 6NO_{3}^{-} $ $Ce^{3+} + 3SO_{4}^{2-}$	$ \begin{array}{r} -2.33 \\ +1.70 \\ +1.60 \\ +1.44 \end{array} $
Cl	Cl₂ ↑ 2HOCl + 2H+	${+2e \atop +2e}$	$2Cl^-$ $Cl_2 \uparrow + H_2O$	+1.359 +1.63

Table 40 (continued)

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E0, V
Cl	$\begin{array}{c} 2\text{ClO}^- + 2\text{H}_2\text{O} \\ \text{HClO} + \text{H}^+ \\ \text{ClO}^- + \text{H}_2\text{O} \\ \text{HClO}_2 + 2\text{H}^+ \\ 2\text{HClO}_2 + 6\text{H}^+ \\ \text{HClO}_2 + 3\text{H}^+ \\ \text{ClO}_2^- + \text{H}_2\text{O} \\ \text{ClO}_3^- + 2\text{H}_2\text{O} \\ \text{ClO}_3^- + 2\text{H}^+ \\ \text{ClO}_3^- + 2\text{H}^+ \\ \text{ClO}_3^- + 2\text{H}^+ \\ \text{ClO}_3^- + 6\text{H}^+ \\ 2\text{ClO}_3^- + 6\text{H}^+ \\ 2\text{ClO}_3^- + 4\text{H}^+ \\ \text{ClO}_2^- + 4\text{H}^+ \\ \text{ClO}_2^- + 2\text{H}_2\text{O} \\ \text{ClO}_2^- + 2\text{H}_2\text{O} \\ \text{ClO}_2^- + 2\text{H}_2\text{O} \\ \text{ClO}_4^- + 2\text{H}_2\text{O} \\ \text{ClO}_4^- + 2\text{H}^+ \\ \text{ClO}_4^- + 8\text{H}^+ \\ \text{ClO}_4^- + 8\text{H}^+ \\ \text{ClO}_4^- + 4\text{H}_2\text{O} \\ \end{array}$	+2e +2e +2e +6e +4e +2c +4e +2e +2e +6e +6e +5e +2e +14e +8e +8e	$\begin{array}{c} \text{Cl}^{-} + 6\text{OH}^{-} \\ \text{Cl}^{-} + 2\text{H}_{2}\text{O} \\ \text{Cl}^{-} + 4\text{OH}^{-} \\ \text{ClO}_{3}^{-} + \text{H}_{2}\text{O} \\ \text{ClO}_{3}^{-} + 2\text{OH}^{-} \end{array}$	+0.40 +1.50 +0.88 +1.64 +1.63 +1.56 +0.66 +0.77 +1.21 +0.33 +1.15 +1.47 +0.63 +1.47 +0.63 +1.47 +0.36 +1.39 +1.39 +1.38 +0.56
Со	$ \begin{array}{c} Co^{3+} \\ Co^{3+} \\ Co^{2+} \\ CoCO_{3} \downarrow \\ Co(NH_{3})_{8}^{3+} \\ Co(NH_{3})_{2}^{4+} \\ Co(OH)_{2} \downarrow \\ Co(OH)_{3} \downarrow \\ CoS \alpha \downarrow \\ CoS \beta \downarrow $	+e +3e +2e +2e +e +2e +2e +2e +2e +2e	$\begin{array}{c} \text{Co}^{2+} \\ \text{Co} \downarrow \\ \text{Co} \downarrow \\ \text{Co} \downarrow + \text{CO}_3^{2-} \\ \text{Co}(\text{NH}_3)_6^{2+} \\ \text{Co} \downarrow + 6\text{NH}_3 \\ \text{Co} \downarrow + 2\text{OH}^- \\ \text{Co}(\text{OH})_2 \downarrow + \text{OH}^- \\ \text{Co} \downarrow + \text{S}^{2-} \\ \text{Co} \downarrow + \text{S}^{2-} \end{array}$	$\begin{array}{c} +1.84 \\ +0.33 \\ -0.28 \\ -0.64 \\ +0.1 \\ -0.42 \\ -0.73 \\ +0.17 \\ -0.88 \\ -1.01 \end{array}$
Cr	Cr^{3+} Cr^{3+} Cr^{2+} $Cr(OH)_3 \downarrow$ $Cr(OH)_2 \downarrow$ $CrO_7^2 + 2H_2O$ $Cr_2O_7^{2-} + 14H^+$ $CrO_4^2 + 4H_2O$	+e +3e +2e +3e +3e +6e +3e	Cr^{2+} $Cr\downarrow$ $Cr\downarrow$ $Cr\downarrow$ + 30H- $Cr\downarrow$ + 20H- $Cr\downarrow$ + 40H- $2Cr^{3+}$ + 7H ₂ O $Cr(OH)_3\downarrow$ + 50H-	$\begin{array}{c} -0.41 \\ -0.74 \\ -0.91 \\ -1.3 \\ -1.4 \\ -1.2 \\ +1.33 \\ -0.13 \end{array}$

Symbol of ele- ment		+ne	Lowest degree of oxidation	E0, V
Cs	Cs+	+e	Cs ↓	-2.914
Cu	$ \begin{array}{c c} Cu^{2+} \\ Cu^{+} \\ Cu^{2+} \\ Cu^{2+} + Br^{-} \\ Cu^{2+} + Cl^{-} \\ Cu^{2+} + I^{-} \\ CuBr \downarrow \\ Cu(CN)_{2}^{-} \\ CuCl \downarrow \\ Cu(NH_{3})_{2}^{2+} \\ Cu(NH_{3})_{2}^{2+} \\ Cu(NH_{3})_{2}^{2+} \\ Cu(NH_{3})_{2}^{2+} \\ Cu(OH)_{2} \downarrow \\ Cu_{2}O \downarrow + H_{2}O \\ Cu(OH)_{2} \downarrow \\ CuS \downarrow \\ Cu_{2}S \downarrow \\ \end{array} $	+2e +e +e +e +e +e +e +e +e +2e +2e +2e	$ \begin{array}{ c c c c } Cu \downarrow \\ Cu \downarrow \\ Cu \downarrow \\ CuBr \downarrow \\ CuCl \downarrow \\ CuI \downarrow \\ Cu \downarrow + Br^- \\ Cu \downarrow + 2CN^- \\ Cu \downarrow + Cl^- \\ Cu \downarrow + I^- \\ Cu \downarrow + I^- \\ Cu \downarrow + I^- \\ Cu \downarrow + 4NH_3 \\ Cu \downarrow + 4NH_3 \\ Cu \downarrow + 4NH_3 \\ Cu \downarrow + 2OH^- \\ + H_2O \\ 2Cu \downarrow + 2OH^- \\ Cu \downarrow + 2OH^- \\ Cu \downarrow + S^2^- \\ 2Cu \downarrow + S^$	$\begin{array}{c} +0.337\\ +0.521\\ +0.153\\ +0.64\\ +0.54\\ +0.86\\ +0.033\\ -0.43\\ +0.137\\ -0.185\\ -0.01\\ -0.12\\ -0.07\\ -0.08\\ -0.36\\ -0.22\\ -0.70\\ -0.88 \end{array}$
F	CuSCN↓ F ₂ ↑	+e $+2e$	Cu↓+ SCN-	-0.27 $+2.87$
Fe	Fe ³⁺ Fe ³⁺ Fe ²⁺ Fe(CN) ₆ ³⁻ Fe(CO ₃ \downarrow Fe(C ₁₂ H ₈ N ₂) ₈ ³⁺ (1,10-phenanthroline) Fe(OH) ₃ \downarrow Fe(OH) ₂ \downarrow Fe(OH) ₂ \downarrow FeO ₄ ²⁻ + 8H ⁺ Fe ₃ O ₄ \downarrow + 8H ⁺ FeS \downarrow	+e +3e +2e +e +2e +e	Fe ²⁺ Fe \downarrow Fe \downarrow Fe(CN) $_{6}^{4-}$ Fe(CN) $_{6}^{4-}$ Fe \downarrow + CO $_{3}^{2-}$ Fe(C ₁₂ H ₈ N ₂) $_{3}^{2+}$ Fe(OH) ₂ \downarrow + OH- Fe \downarrow + 2OH- Fe ³⁺ + 4H ₂ O 3Fe \downarrow + 4H ₂ O Fe \downarrow + S ²⁻	$\begin{array}{c} +0.771 \\ -0.036 \\ -0.440 \\ +0.356 \\ -0.756 \\ +1.06 \\ -0.56 \\ -0.877 \\ > +1.9 \\ -0.085 \\ -0.95 \\ \end{array}$
Ga	$\begin{array}{c} Ga^{3+} \\ H_2GaO_3^- + H_2O \end{array}$	+3e +3e	Ga↓ Ga↓+4OH-	-0.56 -1.22
Ge	$Ge \downarrow + 4H^+$ Ge^{2+} $GeO \downarrow + 2H^+$	+4e +2e +2e	GeH₄↑ Ge↓ Ge↓+H ₂ O	<-0.3 0.0 -0.29

Table 40 (continued)

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E0, V
Ge	$GeO_{2}\downarrow + 4H^{+}$ $H_{2}GeO_{3} + 4H^{+}$ $GeO_{2}\downarrow + 2H^{+}$ $HGeO_{3}^{-} + 2H_{2}O$	+4e +4e +2e +4e	$Ge \downarrow + 2H_2O$ $Ge \downarrow + 3H_2O$ $GeO \downarrow (brown) + H_2O$ $Ge \downarrow + 5OH^-$	-0.15 -0.13 -0.12 -1.0
Н	$2H^{+}$ $2H^{+}(10^{-7}M)$ H_{2}^{\uparrow} $2H_{2}O$ $H_{2}O_{2}^{2} + 2H^{+}$ $HO_{2}^{-} + H_{2}O$	+2e +2e +2e +2e +2e +2e +2e	$ \begin{array}{c} H_2 \uparrow \\ H_2 \uparrow \\ 2H \neg \\ H_2 \uparrow + 2OH \neg \\ 2H_2O \\ 3OH \neg \end{array} $	± 0.0000 -0.414 -2.25 -0.828 $+1.77$ $+0.88$
Hf	$HfO^{2+} + 2H^{+}$ $HfO_{2} \downarrow + 4H^{+}$ $HfO(OH)_{2} \downarrow +$ $+ H_{2}O$	+4e +4e +4e	$Hf\downarrow + H_2O$ $Hf\downarrow + 2H_2O$ $Hf\downarrow + 4OH^-$	-1.70 -1.57 -2.50
Hg	$\begin{array}{c} 2Hg^{2+} \\ Hg^{2+} \\ Hg^{2+} \\ Hg^{2}g^{2+} \\ Hg(CN)^{2-} \\ Hg(CN)^{2-} \\ Hg_{2}(CH_{3}COO)_{2} \downarrow \\ Hg_{2}C_{2}O_{4} \downarrow \\ Hg_{2}Cl_{2} \downarrow \\ Hg_{2}I_{2} \downarrow \\ Hg_{2}(IO_{3})_{2} \downarrow \\ HgO \downarrow (red) + H_{2}O \\ HgS \downarrow (black) \\ HgS \downarrow (red) \\ Hg_{2}SO_{4} \downarrow \end{array}$	+2e +2e +2e +2e +2e +2e +2e +2e +2e +2e	Hg ₃ ²⁺ Hg \ Hg \ Hg \ 2Hg \ + 2Br^- Hg \ + 4CN^- 2Hg \ + 2CH ₃ COO^- 2Hg \ + 2Cl^- 2Hg \ + 2Cl^- 2Hg \ + 2I^- 2Hg \ + 2IO ₃ Hg \ + 2OH^- Hg \ + S ² - Hg \ + SO ₄ ²	$\begin{array}{c} +0.907 \\ +0.850 \\ +0.792 \\ +0.1392 \\ -0.37 \\ +0.510 \\ +0.415 \\ +0.2680 \\ -0.040 \\ +0.394 \\ +0.098 \\ -0.67 \\ -0.70 \\ +0.614 \end{array}$
I	$egin{array}{c} I_2 \downarrow & & & & & & & & \\ I_2 & & & & & & & & \\ I_3^- & & & & & & & \\ 2 I B r_2^- & & & & & \\ 2 I B r_2^- & & & & & \\ I C N & & & & & \\ 2 I C N & & & & & \\ 2 I C N & & & & & \\ 2 I C I_2^- & & & & & \\ 2 I C I_2^- & & & & & \\ 2 I C I_3^- & & & & & \\ 2 I C I_3^- & & & & & \\ 2 I C I_3^- & & & & & \\ 2 I C I_3^- & & & & & \\ 2 I C I_3^- & & \\ 2 I C I_3^- & & \\ 2 I C I_3^- & & \\ 2 I C I_$	+2e +2e +2e +2e +2e +2e +2e +2e +2e +2e	$\begin{array}{c} 2I^{-} \\ 2I^{-} \\ 3I^{-} \\ I_{2} \downarrow + 2Br^{-} \\ I_{2} \downarrow + 4Br^{-} \\ I^{-} + CN^{-} \\ I_{2} \downarrow + 2HCN \\ I_{2} \downarrow + 2Cl^{-} \\ I_{2} \downarrow + 4Cl \\ I_{2} \downarrow + 6Cl^{-} \\ I_{2} \downarrow + 2H_{2}O \\ I_{2} \downarrow + 4OH^{-} \end{array}$	+0.536 $+0.621$ $+0.545$ $+1.02$ $+0.87$ $+0.30$ $+0.63$ $+1.19$ $+1.06$ $+1.28$ $+1.45$ $+0.45$

Table 40 (continued)

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	Eº, V
Ι	$\begin{array}{c} \text{HIO} + \text{H}^{+} \\ \text{IO}^{-} + \text{H}_{2}\text{O} \\ \text{IO}^{-}_{3} + 5\text{H}^{+} \\ \text{IO}^{-}_{3} + 2\text{H}_{2}\text{O} \\ 2\text{IO}^{-}_{3} + 12\text{H}^{+} \\ 2\text{IO}^{-}_{3} + 6\text{H}_{2}\text{O} \\ \text{IO}^{-}_{3} + 6\text{H}^{+} \\ \text{IO}^{-}_{3} + 3\text{H}_{2}\text{O} \\ \text{H}_{5}\text{IO}^{-}_{6} + \text{H}^{+} \\ \text{H}_{3}\text{IO}^{2}_{6} - \\ \text{H}_{5}\text{IO}^{-}_{6} + 7\text{H}^{+} \\ \text{H}_{3}\text{IO}^{2}_{6} - + 3\text{H}_{2}\text{O} \end{array}$	+2e +2e +4e +4e +10e +6e +6e +2e +8e +8e		$+0.99$ $+0.49$ $+1.14$ $+0.14$ $+1.19$ $+0.21$ $+1.08$ $+0.26$ $\sim+1.6$ $\sim+0.7$ $\sim+1.24$ $\sim+0.37$
In	In³+ In³+ In(OH)₃↓	+3e +2e +3e	In↓ In+ In↓+ 30H-	-0.33 -0.40 -1.0
Ir	Ir^{3+} $IrCl_{6}^{3-}$ $IrCl_{6}^{2-}$ $IrCl_{6}^{2-}$ $IrCl_{6}^{2-}$ $IrO_{2}\downarrow + 4H^{+}$ $IrO_{2}\downarrow + 2H_{2}O$ $Ir_{2}O_{3}\downarrow + 3H_{2}O$	+3e +3e +e +4e +4e +4e +6e	$\begin{array}{c} \text{Ir} \downarrow \\ \text{Ir} \downarrow + 6\text{Cl}^- \\ \text{IrCl}_{6}^{3-} \\ \text{Ir} \downarrow + 6\text{Cl}^- \\ \text{Ir} \downarrow + 2\text{H}_2\text{O} \\ \text{Ir} \downarrow + 4\text{OH}^- \\ 2\text{Ir} \downarrow + 6\text{OH}^- \end{array}$	$\sim +1.15 +0.77 +1.02 +0.83 +0.93 +0.1 +0.1$
K	K+	+e	к↓	-2.925
La	La ³⁺ La(OH) ₃ ↓	+3e +3e	La↓ La↓+ 3OH-	$-2.52 \\ -2.90$
Li	Li+	+e	Li↓	-3.03
Mg	Mg ²⁺ Mg(OH) ₂ ↓	+2e +2e	$Mg \downarrow + 2OH^-$	-2.37 -2.69
Mn	Mn^{3+} Mn^{2+} $Mn(CN)_{6}^{3-}$ $MnCO_{3} \downarrow$ $Mn(OH)_{2} \downarrow$ $Mn(OH)_{3} \downarrow$ $MnO_{2} + 4H^{+}$	+e +2e +e +2e +2e +e +2e	Mn^{2+} $Mn\downarrow$ $Mn(CN)_{6}^{4-}$ $Mn\downarrow + CO_{3}^{2-}$ $Mn\downarrow + 2OH^{-}$ $Mn(OH)_{2}\downarrow + OH^{-}$ $Mn^{2+} + 2H_{2}O$	+1.51 -1.19 -0.244 -1.48 -1.18 $+0.1$ $+1.23$

Table 40 (continued

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					±0 (continuaca
$\begin{array}{ c c c c c }\hline & Mn & MnO_4^7 & + 4II^+ \\ & MnO_4^7 & + 2IH_2O \\ & MnO_4^7 & + 4II^+ \\ & MoO_2^{12} & + 4II^+ \\ & H_2MOO_4 & + 6II^+ \\ & MoO_4^{12} & + 4II_2O \\ & N_2 & + 2II^+ \\ & 3N_2 & + 2II^+ \\ & N_2 & + 4II_2O \\ & N_1 & + 2II_2O \\ & N_1 & + 2II_2O \\ & N_2 & + 4II_2O \\ & N_2 & + 4II_$	of ele-	l mignest degree	+ne		E0, V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mn	$\begin{array}{c} MnO_{4}^{2-} + 2H_{2}O-\\ MnO_{4}^{-} + 4H+\\ MnO_{4}^{-} + 2H_{2}O \end{array}$	$\begin{vmatrix} +2e \\ +e \\ +3e \\ +3e \end{vmatrix}$	$ MnO_{4}^{2-} - MnO_{2}^{2-} + 2H_{2}O MnO_{2} + 4OH^{-}$	$^{+0.6}_{+0.56}$ $^{+1.69}_{+0.60}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Мо	$Mo(CN)_8^{3-}$ $MoO_2^{1} + 4H^{+}$ MoO_2^{2+} $H_2MoO_4 + 6H^{+}$	$egin{array}{c} +e \ +2c \ +e \ +6c \end{array}$	$M_0(CN)_8^{4-}$ $M_0^{3+} + 2H_2O$ $M_0O_2^{+}$ $M_0 \downarrow + 4H_2O$	$+0.73$ ~ 0.0 $+0.48$ 0.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$N_{3} + 7H_{2}O$ $3N_{2} \uparrow + 2H^{+}$ $3N_{2} \uparrow$ $N_{2} \uparrow + 2H_{3}O + + 4H^{+}$ $N_{2} \uparrow + 4H_{2}O$ $N_{2} \uparrow + 5H^{+}$ $N_{2} \uparrow + 8H_{2}O$ $N_{2} \uparrow + 8H^{+}$ $N_{2} \uparrow + 8H_{2}O$ $(N_{2}H_{4})H^{+} + 3H^{+}$ $N_{2}H_{4} + 4H_{2}O$ $(N_{2}H_{4})H^{+} + 2H_{2}O$ $(N_{2}H_{4})H^{+} + 2H_{2}O$ $H_{3}N_{2}O_{2} + 6H^{+}$ $2HNO_{2} + 6H^{+}$ $2HNO_{2} + 4H^{+}$ $HNO_{2} + H^{+}$ $NO_{2} + 4H^{+}$ $2HNO_{2} + 6H^{+}$ $2NO_{2} + 6H_{2}O$ $N_{2}O \uparrow + 2H^{+}$ $N_{2}O \uparrow + 2H^{+}$ $N_{2}O \uparrow + 4H^{+}$ $N_{2}O \uparrow + 4H^{+}$	+6e +2e +2e +2e +4e +6e +6e +2e +2e +2e +4e +6e +2e +4e +6e +6e +4e +6e +6e +4e +6e +4e +4e +6e +4e +4e +4e +4e +4e +4e +4e +4e +4e +4	$N_{2}H_{4} + NH_{3} + 70H^{-}$ $2HN_{3}$ $2N_{3}^{-}$ $(2NH_{2}OH)H^{+}$ $2NH_{2}OH + 2OH^{-}$ $(N_{2}H_{4})H^{+}$ $N_{2}H_{4} + 4OH^{-}$ $2NH_{2}^{+}$ $2NH_{4}OH + 6OH^{-}$ $2NH_{2}^{+}$ $2NH_{4}OH + 2OH^{-}$ $NH_{4}^{+} + H_{2}O$ $NH_{4}OH + 2OH^{-}$ $N_{2} \uparrow + 2H_{2}O$ $(2NH_{2}OH)H^{+}$ $H_{2}N_{2}O_{2} + 2H_{2}O$ $NO \uparrow + H_{2}O$ $NO \uparrow + 2OH^{-}$ $N_{2} \uparrow + 4H_{2}O$ $N_{2} \uparrow + 8OH^{-}$ $NH_{4}OH + 7OH^{-}$ $N_{2} \uparrow + H_{2}O$ $NH_{4}OH + 7OH^{-}$ $N_{2} \uparrow + 2OH^{-}$	$ \begin{array}{r} -0.62 \\ -3.1 \\ -3.4 \\ -1.87 \end{array} $ $ \begin{array}{r} -3.04 \\ -0.23 \\ -1.16 \\ +0.26 \\ -0.74 \\ +1.27 \\ +0.1 \\ +1.35 \end{array} $ $ \begin{array}{r} +0.42 \\ +2.65 \\ +0.50 \\ +0.83 \\ +0.99 \\ -0.46 \\ +1.29 \\ +1.44 \\ +0.41 \\ +0.86 \\ -0.15 \\ +1.77 \\ +0.94 \\ +1.68 \end{array} $

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E0, V
N	$\begin{array}{c} N_{2}O_{4} \uparrow + 2H^{+} \\ N_{2}O_{4} \uparrow \\ N_{2}O_{4} \uparrow + 8H^{+} \\ N_{2}O_{4} \uparrow + 4H_{2}O \\ NO_{3}^{-} + 3H^{+} \\ NO_{3}^{-} + 2H^{+} \\ NO_{3}^{-} + 2H^{+} \\ NO_{3}^{-} + 2H_{2}O \\ 2NO_{3}^{-} + 12H^{+} \\ NO_{3}^{-} + 8H^{+} \\ 2NO_{3}^{-} + 17H^{+} \\ NO_{3}^{-} + 10H^{+} \\ NO_{3}^{-} + 7H_{2}O \end{array}$	+2e +2e +8e +2e +2e +6e +3e +10e +14e +8e +8e	$(NH_2OH)H^+ + 2H_2O$	$egin{array}{c} +1.07 \\ +0.88 \\ +1.35 \\ +0.53 \\ +0.94 \\ +0.01 \\ +0.80 \\ -0.86 \\ +0.96 \\ -0.14 \\ +1.24 \\ +0.73 \\ +0.87 \\ -0.12 \\ \hline \end{array}$
Na	Na+	+e	Na↓	-2.713
Nb	$\begin{array}{c} {\rm Nb^{3+}} \\ {\rm Nb_2O_5} \downarrow + 10{\rm H^+} \\ {\rm NbO^{3+}} + 2{\rm H^+} \\ {\rm NbO(SO_4)_2^-} + \\ + 2{\rm H^+} \\ {\rm NbO(SO_4)_2^-} + \\ + 2{\rm H^+} \end{array}$	+3e +10e -+2e +2e +5e	$\begin{array}{c} \text{Nb} \downarrow \\ \text{Nb} \downarrow + 5 \text{II}_2 \text{O} \\ \text{Nb}^{3+} + \text{H}_2 \text{O} \\ \text{Nb}^{3+} + \text{H}_2 \text{O} + \\ + 2 \text{SO}_4^{2-} \\ \text{Nb} \downarrow + \text{H}_2 \text{O} + 2 \text{SO}_4^{2-} \end{array}$	$ \begin{array}{r} -1.1 \\ -0.65 \\ -0.34 \\ -0.1 \\ \end{array} $
Ni	Ni^{2+} $Ni(CN)_{4}^{2-}$ $Ni(OH)_{2}$ $Ni(OH)_{2}$ $Ni(NH_{3})_{5}^{2+}$ NiO_{2} $+$ $4H^{+}$ NiO_{2} $+$ $2H_{2}$ NiO_{4}^{2-} $+$ $8H^{+}$ $NiS \alpha \downarrow$ $NiS \gamma \downarrow$	$+2e \\ +e \\ +2e \\$	Ni↓ Ni(CN) $_{3}^{2-}$ + CN- Ni↓ + CO $_{3}^{2-}$ Ni↓ + 2OH- Ni↓ + 6NH ₃ Ni $_{2}^{2+}$ + 2H ₂ O Ni(OH) $_{2}$ ↓ + 2OH- Ni $_{2}^{2+}$ + 4H ₂ O Ni + S ²⁻ Ni↓ + S ²⁻	$\begin{array}{c} -0.23 \\ < -0.4 \\ -0.45 \\ -0.72 \\ -0.49 \\ +1.68 \\ +0.49 \\ > +1.8 \\ +0.76 \\ -0.99 \\ \end{array}$
0	$\begin{array}{c} 0_{2} \uparrow + 4H^{+} \\ 0_{2} \uparrow + 4H^{+} (10^{-7}M) \\ 0_{2} \uparrow + 2H_{2}O \\ 0_{2} \uparrow + 2H^{+} \\ 0_{2} \uparrow + H_{2}O \\ H_{2}O_{2} + 2H^{+} \\ HO_{2}^{-} + H_{2}O \\ 0_{3} \uparrow + 2H^{+} \\ 0_{3} \uparrow + H_{2}O \end{array}$	$+4e \\ +4e \\ +4e \\ +2e $	$\begin{array}{c} 2H_{2}O \\ 2H_{2}O \\ 4OH^{-} \\ H_{2}O_{2} \\ HO_{2}^{-} + OH^{-} \\ 2H_{2}O \\ 3OH^{-} \\ O_{2} \uparrow + H_{2}O \\ O_{2} \uparrow + 2OH^{-} \end{array}$	$egin{array}{c} +1.229 \\ +0.815 \\ +0.401 \\ +0.682 \\ -0.076 \\ +1.77 \\ +0.88 \\ +2.07 \\ +1.24 \end{array}$

Table 40 (continued)

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E0, V
Os	$0s^{2+}$ $0sCl_{6}^{2-}$ $0sCl_{6}^{3-}$ $0sCl_{6}^{3-}$ $0sO_{4} \downarrow + 6Cl^{-} + 8H^{+}$	+2e +e +3e +e +4e	$ \begin{array}{c} \text{Os} \downarrow \\ \text{OsCl}_{6}^{3-} \\ \text{Os} \downarrow + 6\text{Cl}^{-} \\ \text{Os}^{2+} + 6\text{Cl}^{-} \\ \text{OsCl}_{6}^{2-} + 4\text{H}_{2}\text{O} \end{array} $	+0.85 +0.85 +0.71 +0.4 +1.0
	$0sO_4\downarrow + 8H^+ HOsO_5^- + 4H_2O$	+8e +8e	$0s\downarrow + 4H_2O$ $0s\downarrow + 9OH^-$	$+0.85 \\ +0.02$
Р	$P \downarrow + 3H^{+}$ $P \downarrow + 3H_{2}O$ $H_{3}PO_{2} + H^{+}$ $H_{2}PO_{2}^{-}$ $H_{3}PO_{3} + 3H^{+}$ $H_{3}PO_{3} + 2H^{+}$ $HPO_{3}^{3-} + 2H_{2}O$ $H_{4}P_{2}O_{6} + 2H^{+}$ $H_{3}PO_{4} + 5H^{+}$ $H_{3}PO_{4} + 4H^{+}$ $2H_{3}PO_{4} + 2H^{+}$ $H_{3}PO_{4} + 2H^{+}$ $H_{3}PO_{4} + 2H^{+}$ $H_{3}PO_{4} + 2H^{+}$ $H_{3}PO_{4} + 2H^{+}$	+3e +3e +e +2e +2e +2e +2e +4e +2e +2e +2e	$\begin{array}{c} PH_{3} \uparrow \\ PH_{3} \uparrow + 3OH^{-} \\ P \downarrow + 2H_{2}O \\ P \downarrow + 2OH^{-} \\ P \downarrow + 3H_{2}O \\ H_{3}PO_{2} + H_{2}O \\ H_{2}PO_{2}^{-} + 3OH^{-} \\ 2H_{3}PO_{3} \\ P \downarrow + 4H_{2}O \\ H_{3}PO_{2} + 2H_{2}O \\ H_{4}P_{2}O_{6} + 2H_{2}O \\ H_{5}PO_{3} + H_{2}O \\ H_{7}PO_{3}^{-} + 3OH^{-} \end{array}$	$\begin{array}{c} +0.06 \\ -0.89 \\ -0.51 \\ -2.05 \\ -0.50 \\ -0.50 \\ -1.57 \\ +0.38 \\ -0.41 \\ -0.39 \\ -0.94 \\ -0.276 \\ -1.12 \end{array}$
Pb	$\begin{array}{c} Pb^{2+} \\ Pb^{4+} \\ Pb^{4+} \\ PbBr_{2} \downarrow \\ PbCO_{3} \downarrow \\ PbCl_{2} \downarrow \\ PbF_{2} \downarrow \\ PbI_{2} \downarrow \\ PbO_{2} \downarrow + H_{2}O \\ PbO_{2} \downarrow + H_{2}O \\ PbO_{2} \downarrow + 4H^{+} \\ PbO_{2} \downarrow + 4H^{+} + \\ + SO_{4}^{2-} \\ PbO_{3}^{2-} + H_{2}O \end{array}$	+2e +2e +4e +2e +2e +2e +2e +2e +2e +2e +2e +2e +2	$Pb \downarrow Pb^{2+}$ $Pb \downarrow + 2Br^{-}$ $Pb \downarrow + 2Cl^{-}$ $Pb \downarrow + 2Cl^{-}$ $Pb \downarrow + 2I^{-}$ $Pb \downarrow + 2I^{-}$ $Pb \downarrow + 3OH^{-}$ $Pb \downarrow + 3OH^{-}$ $PbO \downarrow + 2H_{2}O$ $PbSO_{4} \downarrow + 2H_{2}O$ $PbO_{2}^{2-} + 2OH^{-}$	$\begin{array}{c} -0.126 \\ +1.8 \\ +0.84 \\ -0.274 \\ -0.506 \\ -0.350 \\ -0.364 \\ -0.58 \\ -0.54 \\ +0.28 \\ +1.455 \\ +1.68 \\ +0.2 \end{array}$
	PbS↓ PbSO ₄ ↓	+2e +2e	$Pb\downarrow + S^{2-}$ $Pb\downarrow + SO_4^{2-}$	$-0.91 \\ -0.356$
Pd	$\begin{array}{c} Pd^{2+} \\ PdCl_{2}^{2-} \\ PdCl_{5}^{2-} \\ PdCl_{5}^{2-} \\ Pd(OH)_{2} \downarrow \end{array}$	+2e +2e +2e +4e +2e	$Pd\downarrow$ $Pd\downarrow$ + 4Cl- $PdCl_4^2$ + 2Cl- $Pd\downarrow$ + 6Cl- $Pd\downarrow$ + 2OH-	$+0.987 \\ +0.623 \\ +1.29 \\ +0.96 \\ +0.07$

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E0, V
Pd	Pd(OH)₄↓	+2c	Pd(OH) ₂ ↓ + 2OH-	~0.73
Pt	$\begin{array}{c} {\rm Pt^{2+}} \\ {\rm PtCl_{6}^{2-}} \\ {\rm PtCl_{6}^{2-}} \\ {\rm Pt(OH)_{2}} \downarrow \\ {\rm Pt(OH)_{2}} \downarrow + 2{\rm H^{+}} \end{array}$	$egin{array}{c} +2e \\ +2e \\ +2e \\ +2e \\ +2e \\ +2e \\ \end{array}$	$ \begin{array}{c c} \text{Pt} \downarrow & + 4\text{Cl}^- \\ \text{Pt} \downarrow & + 4\text{Cl}^- \\ \text{Pt} \text{Cl}_4^{2-} & + 2\text{Cl}^- \\ \text{Pt} \downarrow & + 2\text{OH}^- \\ \text{Pt} \downarrow & + 2\text{H}_2\text{O} \end{array} $	$ \begin{array}{r} $
Pu	Pu³+ Pu⁴+ PuO₂+ PuO₂+ + 4H+ Pu(OH)₃↓ Pu(OH)₄↓	+3e +e +e +2e +3e +e	$Pu \downarrow Pu^{3+}$ $Pu O_{2}^{4}$ $Pu O_{2}^{4}$ $Pu^{4+} + 2H_{2}O$ $Pu \downarrow + 3O11^{-}$ $Pu(OH)_{3} \downarrow + OH^{-}$	$\begin{array}{r} -2.03 \\ +0.970 \\ +0.916 \\ +1.04 \\ -2.42 \\ -0.95 \end{array}$
Ra	Ra ²⁺	+2e	Ra↓	-2.92
Rb	Rb+	+e	Rb↓	-2.93
Re	$\begin{array}{c} \text{Re} \downarrow \\ \text{Re}^+ \\ \text{Re}^3 + \\ \text{ReO}_2 \downarrow + 4 \text{H}^+ \\ \text{ReO}_3 \downarrow + 2 \text{H}^+ \\ \text{ReO}_4 + 8 \text{H}^+ \\ \text{ReO}_4 + 4 \text{H}^+ \\ \text{ReO}_4 + 2 \text{H}^+ \\ \text{ReO}_4 + 2 \text{H}_2 \text{O} \\ \text{ReO}_4 + 2 \text{H}_2 \text{O} \end{array}$	+e +2e +3e +4e +2e +7e +3e +7e +3e	Re-	$\begin{array}{c} -0.4 \\ -0.23 \\ -0.3 \\ +0.3 \\ +0.26 \\ +0.4 \\ +0.37 \\ +0.51 \\ +0.77 \\ -0.584 \\ -0.595 \end{array}$
Rh	$\begin{array}{c} {\rm Rh^{3+}} \\ {\rm RhCl_{3}^{3-}} \\ {\rm Rh_{2}O_{3}} \downarrow + 6{\rm H^{+}} \\ {\rm RhO_{2}} + 4{\rm H^{+}} + \\ + 6{\rm Cl^{-}} \\ {\rm RhO^{2+}} + 2{\rm H^{+}} \\ {\rm RhO_{4}^{2-}} + 6{\rm H^{+}} \end{array}$	+3e +3e +6e +e +e +2e	$Rh \downarrow + 6Cl^{-}$ $2Rh \downarrow + 3H_{2}O$ $RhCl_{6}^{3-} + 2H_{2}O$ $Rh^{3+} + H_{2}O$ $RhO^{2+} + 3H_{2}O$	$^{\sim+0.8}_{+0.44}_{+0.87}$ >+1.4 +1.40 +1.46
Ru	Ru ²⁺ RuCl ₃ RuCl ₅ RuCl ₅ OH ²⁻ -+ H ⁺ RuO ₄ RuO ₄ ↓	+2e +3e +2e +e +e +e	$Ru \downarrow + 3Cl^{-}$ $Ru \downarrow + 3Cl^{-}$ $Ru^{2+} + 5Cl^{-}$ $RuCl_{5}^{2-} + H_{2}O$ RuO_{4}^{2-} RuO_{4}^{-}	+0.45 $+0.68$ $+0.3$ $+1.3$ $+0.59$ $+1.00$

Table 40 (continued)

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E0, V
S	$\begin{array}{c} S \downarrow \\ S \downarrow + 2H^{+} \\ 5S \downarrow \\ (SCN)_{2} \uparrow \\ S_{2}O_{3}^{2-} + 6H^{+} \\ 2H_{2}SO_{3} + 2H^{+} \\ 2SO_{3}^{2-} + 3H_{2}O \\ 2H_{2}SO_{3} + H^{+} \\ 2SO_{2}^{2-} + 2H_{2}O \\ SO_{2}^{2-} + 4H^{+} \\ SO_{2}^{2-} + 4H^{+} \\ SO_{2}^{2-} + 10H^{+} \\ 2SO_{2}^{2-} + 5H_{2}O \\ SO_{2}^{2-} + 8H^{+} \\ SO_{2}^{2-} + 4H_{2}O \\ SO_{2}^{2-} + 10H^{+} \\ SO_{2}^{2-} + 4H_{2}O \\ SO_{3}^{2-} + 4H_{3}O \\ SO_$	+2e +2e +2e +2e +4e +4e +2e +2e +2e +8e +6e +8e +8e +2e	$\begin{array}{c} S^{2-} \\ H_{2}S \uparrow \\ S^{2-}_{3} \\ 2SCN^{-} \\ 2S_{2}O_{3}^{2-} \\ 2S \uparrow + 3H_{2}O \\ S_{2}O_{3}^{2-} + 6OH^{-} \\ HS_{2}O_{4}^{2-} + 2H_{2}O \\ S_{2}O_{4}^{2-} + 4OH^{-} \\ H_{2}SO_{3} + H_{2}O \\ SO_{3}^{2-} + 2OH^{-} \\ S_{2}O_{3}^{2-} + 5H_{2}O \\ S_{2}O_{3}^{2-} + 5H_{2}O \\ S_{2}O_{3}^{2-} + 10OH^{-} \\ S_{2}O_{3}^{2-} + 4H_{2}O \\ S\downarrow + 8OH^{-} \\ H_{2}S + 4H_{2}O \\ S^{2-} + 8OH^{-} \\ 2SO_{4}^{2-} \end{array}$	$\begin{array}{c} -0.48 \\ +0.14 \\ -0.34 \\ +0.77 \\ +0.09 \\ +0.5 \\ +0.40 \\ -0.58 \\ -0.08 \\ -1.12 \\ +0.17 \\ -0.93 \\ +0.29 \\ -0.76 \\ +0.36 \\ -0.75 \\ +0.31 \\ -0.68 \\ +2.0 \end{array}$
Sb	$\begin{array}{c} \text{Sb} \downarrow + 3\text{H}^{+} \\ \text{SbO}^{+} + 2\text{H}^{+} \\ \text{Sb}_{2}\text{O}_{3} \downarrow + 6\text{H}^{+} \\ \text{SbO}_{2}^{-} + 2\text{H}_{2}\text{O} \\ \text{Sb}_{2}\text{O}_{4} \downarrow + 4\text{H}^{+} \\ \text{Sb}_{2}\text{O}_{5} \downarrow + 4\text{H}^{+} \\ \text{Sb}_{2}\text{O}_{5} \downarrow + 6\text{H}^{+} \\ \text{SbO}_{3}^{-} + \text{H}_{2}\text{O} \end{array}$	+3e +3e +6e +3e +2e +4e +4e +2e	$\begin{array}{c} {\rm SbH_3} \\ {\rm Sb} \downarrow + {\rm H_2O} \\ {\rm 2Sb} \downarrow + {\rm 3H_2O} \\ {\rm Sb} \downarrow + {\rm 4OH^-} \\ {\rm 2SbO^+} + {\rm 2H_2O} \\ {\rm Sb_2O_3} \downarrow + {\rm 2H_2O} \\ {\rm 2SbO^+} + {\rm 3H_2O} \\ {\rm SbO_2^-} + {\rm 2OH^-} \end{array}$	$\begin{array}{c} -0.51 \\ +0.212 \\ +0.152 \\ -0.675 \\ +0.68 \\ +0.69 \\ +0.58 \\ -0.43 \end{array}$
Sc	Sc ³⁺	+3e	Sc↓	-2.08
Se	$Se \downarrow + 2H^{+}$ $H_{2}SeO_{3} + 4H^{+}$ $SeO_{3}^{2} - + 3H_{2}O$ $SeO_{4}^{2} - + 4H^{+}$ $SeO_{4}^{2} - + H_{2}O$	+2e +4e +4e +2e +2e	$H_2Se \uparrow Se \downarrow + 3H_2O Se \downarrow + 6OH^- H_2SeO_3 + H_2O SeO_3^2 + 2OH^-$	$-0.40 \\ +0.74 \\ -0.366 \\ +1.15 \\ +0.05$
Si	$Si \downarrow + 4H^+$ $Si \downarrow + 4H_2O$ SiF_6^{2-} $SiO_2 \downarrow + 4H^+$ H_2SiO_3 (hydrous) + $+4H^+$ $SiO_3^{2-} + 3H_2O$	+4e +4e +4e +4e +4e	$\begin{array}{c} \text{SiH}_{4} \uparrow \\ \text{SiH}_{4} \uparrow + 4\text{OH}^{-} \\ \text{Si} \downarrow + 6\text{F}^{-} \\ \text{Si} \downarrow + 2\text{H}_{2}\text{O} \\ \text{Si} \downarrow + 3\text{H}_{2}\text{O} \\ \\ \text{Si} \downarrow + 6\text{OH}^{-} \end{array}$	$egin{array}{c} +0.10 \\ -0.73 \\ -1.2 \\ -0.86 \\ -0.79 \\ -1.7 \end{array}$

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	Eº, V
Sn	Sn^{2+} Sn^{4+} Sn^{4+} $HSnO_{2}^{-} + H_{2}O$ $Sn(OH)_{6}^{2-}$	$+2e \\ +2e \\ +4e \\ +2c \\ +2c \\ +2e$	$Sn \downarrow Sn^{2+} Sn \downarrow Sn \downarrow + 3OH - HSnO_{7}^{-} + 3OH - + H_{2}^{-} OH = + H$	$ \begin{array}{r} -0.140 \\ +0.15 \\ +0.01 \\ -0.91 \\ -0.93 \end{array} $
Sr	Sr ²⁺	+2e	Sr↓	-2.89
Ta	$Ta_2O_5\downarrow + 10H+$	+10e	$2\text{Ta}\downarrow+5\text{H}_2\text{O}$	-0.81
Te	$ \begin{vmatrix} \text{Te} \downarrow + 2\text{H}^+ \\ \text{Te} \downarrow \\ \text{TeO}_2 \downarrow + 4\text{H}^+ \\ \text{TeO}_2 \text{H}^+ + 3\text{H}^+ \\ \text{TeO}_3^2 - + 3\text{H}_2 \text{O} \\ \text{H}_6 \text{TeO}_6 \downarrow + 2\text{H}^+ \\ \text{TeO}_4^2 - + \text{H}_2 \text{O} \end{vmatrix} $	+2e +2e +4e +4e +4e +2c +2e	$H_{2}Te \uparrow$ Te^{2-} $Te \downarrow + 2H_{2}O$ $Te \downarrow + 2H_{2}O$ $Te \downarrow + 6OH^{-}$ $TeO_{2} \downarrow + 4H_{2}O$ $TeO_{3}^{2-} + 2OH^{-}$	$ \begin{vmatrix} -0.72 \\ -1.14 \\ +0.53 \\ +0.56 \\ -0.57 \\ +1.02 \\ >+0.4 \end{vmatrix} $
Th	Th⁴- Th(OH) ₄ ↓	+4e +4e	Th ↓ Th ↓ + 40H-	-1.90 -2.48
Ti		+2e +4e +4e +e +e +e +4e	$Ti \downarrow + 2H_{2}O$ $Ti \downarrow + H_{2}O$ $Ti^{3+} + H_{2}O$ Ti^{2+} $Ti \downarrow + 6F^{-}$	$\begin{array}{c c} -1.63 \\ -0.86 \\ \sim -0.88 \\ \sim +0.1 \\ -0.37 \\ -1.19 \end{array}$
Tl	Tl^+ $TlBr \downarrow$ $TlCl \downarrow$ $TlOH$ Tl^{3+} $Tl_2O_3 \downarrow + 3H_2O$	+e +e +e +e +2e +4e	Tl \ + Br- Tl \ + Cl- Tl \ + OH- Tl+ 2Tl+ + 6OH-	$ \begin{array}{r} -0.336 \\ -0.656 \\ -0.557 \\ -0.344 \\ +1.28 \\ +0.02 \end{array} $
U	U^{3+} U^{4+} $U(OH)_3 \downarrow$ $UO_2 \downarrow + 2H_2O$ $UO_2 + 4H^+$ UO_2^{2+} $UO_2^{2+} + 4H^+$	+3e +e +3e +4e +e +2e +2e	$U\downarrow U^{3+} U^{3+} U\downarrow + 30H^- U\downarrow + 40H^- U^{4+} + 2H_2O UO_2\downarrow U^{4+} + 2H_2O$	-1.8 -0.64 -2.17 -2.39 $+0.55$ $+0.45$ $+0.33$

Table 40 (continued)

Symbol of ele- ment	Highest degree of oxidation	+ne	Lowest degree of oxidation	E0, V
V	V^{2+} V^{3+} $V^{0}^{2+} + 2H^{+}$ V^{0}^{2+} $V^{0}^{1} + 2H^{+}$ $V^{0}^{1} + 4H^{+}$ $V^{0}^{1} + 4H^{+}$ $V^{0}^{1} + 4H^{+}$ $V^{0}^{3} + 6H^{+}$ $H_{2}V^{0}^{1} + 4H^{+}$	+2e +e +e +e +2e +3e +5e +2e +e	$\begin{array}{c} V \downarrow \\ V^{2+} \\ V^{3+} + H_2O \\ VO^+ \\ VO^{2+} + H_2O \\ V^{3+} + 2H_2O \\ V^{2+} + 2H_2O \\ V \downarrow + 2H_2O \\ VO^+ + 3H_2O \\ VO^2 + 3H_2O \\ VO^2 + 3H_2O \end{array}$	$\begin{array}{c} -1.18 \\ -0.255 \\ +0.337 \\ -0.044 \\ +0.9994 \\ +0.668 \\ +0.360 \\ -0.25 \\ +1.26 \\ +1.31 \end{array}$
W	$WO_{2}\downarrow + 4H^{+}$ $W(CN)_{3}^{8-}$ $W_{2}O_{5}\downarrow + 2H^{+}$ $WO_{3}\downarrow + 6H^{+}$ $2WO_{3}\downarrow + 2H^{+}$ $WO_{4}^{2-} + 8H^{+}$ $WO_{4}^{2-} + 4H_{2}O$	+4e +e +2e +6e +6e +6e	$\begin{array}{c} W \downarrow + 2H_{2}O \\ W(CN)_{8}^{4-} \\ 2WO_{2} \downarrow + H_{2}O \\ W \downarrow + 3H_{2}O \\ W_{2}O_{5} \downarrow + H_{2}O \\ W \downarrow + 4H_{2}O \\ W \downarrow + 8OH^{-} \end{array}$	$ \begin{array}{r} -0.12 \\ +0.457 \\ -0.04 \\ -0.09 \\ -0.03 \\ +0.05 \\ -1.05 \end{array} $
Y	Y3+	+3e	Y↓	-2.37
Zn	Zn^{2+} $Zn(CN)_4^{2-}$ $Zn(NH_3)_4^{2+}$ $Zn(OH)_2 \downarrow$ $ZnO_2^{2-} + 2H_3O$ $ZnS \downarrow$ (wurtzite)	+2e +2e +2e +2e +2e +2e	$ \begin{array}{c} Zn \downarrow \\ Zn \downarrow + 4CN^{-} \\ Zn \downarrow + 4NH_{3} \\ Zn \downarrow + 2OH^{-} \\ Zn \downarrow + 4OH^{-} \\ Zn \downarrow + S^{2-} \end{array} $	-0.7628 -1.26 -1.04 -1.245 -1.216 -1.40
Zr	$ZrO_{2}^{2+} + 2H^{+} ZrO_{2}\downarrow + 4H^{+} H_{2}ZrO_{3}\downarrow + H_{2}O$	+4e +4e +4e	$Zr \downarrow + H_2O \ Zr \downarrow + 2H_2O \ Zr \downarrow + 4OH^-$	-1.57 -1.43 -2.36

Table 41

Chief Oxidation-Reduction Indicators

(in the order of their standard oxidation potentials)

A. Indicators not Sensitive to Changes in the pH and the Ionic Strength of a Solution

	r of	reduced form	Yellow	$\begin{array}{c} \text{Red} \\ \lambda_{\text{max}} = \\ = 510 \text{ nm} \end{array}$	Colourless	
	Colour of	oxidized form	Colourless	Pale blue	Violet-red	-
1 1	;	E3, V	+1.33	+1.25	+1.08	
	:	Solution	In diluted HCl	0.025M solution in water	(a) 0.2% solution in water (b) 0.1% solution in 0.2% Na ₂ CO ₃ solution	
	Ę	Formula		$F_{\theta^{2+}}\left(\left\langle \begin{array}{c} NO_2 \\ - N \end{array} \right\rangle_3$	COOH	,
	Todiocity	marcarot	2, 2'-Dipyridy] (complex with ruthe- nium)	Nitro-o-phe- nanthroline (nitrofer10- in), complex with Fe ²⁺	Phenyl-an- hranylic cid	
	a C+ CC Park	THEICALOI	2, 2'-Dipyridyl (complex with ruthe-	Nitro-o-phe- nanthroline (nitrofer10- in), complex with Fe ²⁺	N-Phenyl-an- thranylic acid	

$\begin{array}{c} \text{Red} \\ \lambda_{\text{max}} = \\ = 510 \text{nm} \end{array}$	Yellow	Red	Red	Colourless
Pale blue	Red	Pale blue	Yellow- green	Red
+1.06	+1.00	+0.97	+0.97	+0.85
0.025M solution; 1.624 g of phenanthroline hydrochloride and 0.695 g of FeSO ₄ in 100 ml of water	In water	In diluted HCl	0.025M solution in water	In diluted HCl
$Fe^{2+}\left(\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle \right)_3$	$C_2H_5O-\langle _ \rangle - N = N - \langle _ \rangle - NH_2 \cdot HC1$ H_2N	$Fe^{2+}\left(\left\langle \begin{array}{c} \\ \end{array} \right\rangle - \left\langle \begin{array}{c} \\ \end{array} \right\rangle \right)_3$	$Fe^{2+}\left(\begin{array}{c} H_3C & CH_3 \\ \\ \\ \\ \\ \\ \end{array}\right)_3$	H_3CO H_2N H_2N H_2 H_3
1,10-Phenan- throline (ferroin), complex with Fe ²⁺	<i>p</i> -Ethoxy chrysoidine	2, 2'-Dipyridyl (complex with Fe ²⁺ ;	5,6-Dimethyl- 1,10-phenan- throline (complex with Fe ²⁺)	o-Dianisidine

Table 41 (continued)

					Colour of	Jo
Indicator	Formula	Solution	Е°, V	oxidized form	form re	reduced form
Sodium or ba- rium diphe- nylamine sulphonate	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	0.05% solution in water	+0.84	Red-violet		Colourless
Diphenyl ben-		1% solution in concentrated H ₂ SO ₄	+0.76	Violet		Colourless
Diphenyla- mine		1% solution in concentra- ted H ₂ SO ₄	+0.76	Violet		Colourless
B. Indicators Sensitive to a	nsitive to a Change in the pH and the Ionic	Ionic Strength of	&	Solution		
			E° V w] pH is eq	V when the is equal to	CO	Colour of
Indicator	Formula	Solution	0	7	oxidi- zed form	reduced form
2,6-Dibromo- benzene indophenol (sodium salt)	$ \begin{array}{c} Br \\ 0 = \langle \rangle = N - \langle \rangle - ONa \\ Br \\ \end{array} $	0.02% solution in water	+0.64	+0.22	Blue	Colour- less
		_				

Colour- less	Colour- less	Colour- less	Colour- less
Blue	Blue	Violet	Blue
+0.22	+0.19	+0.06	+0.01
+0.64	+0.62	+0.56	+0.53
0,02% solution in water	0.02% solution in water	0.05% solution in 60% al- cohol	0.05% solution in water
$0 = \begin{cases} CI \\ O = \\ CI \end{cases} = N - \langle A - ONa \rangle$	$0 = \left\langle \begin{array}{c} \text{CH}_3 \\ \end{array} \right\rangle = \text{N} - \left\langle \begin{array}{c} \text{CH}_3 \\ \end{array} \right\rangle$	$\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	- - CH3)2N
2,6-Dichloro- phenol indo- phenol (so- dium salt)	o-Cresol indo- phenol (so- dium salt)	Thionine (dia- minopheno- thiazine; Lauth's vio- let)	Methylene blue

Table 41 (continued)

E° V, when the pH is equal to	Solution oxidi- reduced form form	0.05% solution +0.37 -0.05 Blue Colourin water	0.05% solution +0.330.08 Blue Colourin water	0.05% solution +0.29 -0.13 Blue Colourin water
	Formula	HO ₃ S O ₃ H O ₃ S O ₃ H O ₃ S O ₃ H O ₃ S O ₃ H	H03S C C C C C C C C C C C C C C C C C C C	HO ₃ S
	Indicator	Indigo tetra- sulphonic acid	Indigo trisul- phonic acid	Indigo carmine ne (indigo disulphonic acid)

Colour- less	Colour- less	Colour- less	Colour- less
Blue	Red	Vio- let- red	Red
-0.16	-0.25	-0.29	-0.33
+0.26	+0.28	+0.24	+0.24
0.05% solution in water	0.05% solution in water	0.05% solution in water	0.01% solution in 60% alco- hol
HO ₃ S 0 0	$\begin{bmatrix} H_2N & & \\ & &$	$\begin{bmatrix} H_3C & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & &$	See Table 19, No. 43 (p. 189)
Indigo mono- sulphonic acid	Phenosafra- nine	Safranine T	Neutral red

 $\begin{tabular}{lll} Table & 42 \\ \hline Spectral & Wavelengths & and & Colours & Corresponding & to & Them \\ \hline \end{tabular}$

Ranges of the wave- lengths of the light being absorbed, nm	Colour of the radiation being absorbed	Supplementary colour (observed colour of solution)
400-450 450-480 480-490 490-500 500-560 560-575 575-590 590-625 625-750	Violet Blue Green-blue Blue-green Green Yellow-green Yellow Orange Red	Yellow-green Yellow Orange Red Purple Violet Blue Green-blue Blue-green

 $\frac{1}{1}$ Table 43 $\frac{8}{1}$ Photometric Methods of Determining Various lons

Ion being deter- mined	Reagent	Solvent	pH or acidity	λmax' nm	Molar coefficient of light absorption e.10-3
Al³+	Aluminon Arsenazo Morin Hydroxyquinoline Stilbazo Eriochrome cyanine R	Water Water 95% alcohol Chloroform Water Water	4.5 4.35-4.5 5.4 4-6	525 600 415 405 260 500 530	24 13.0 18 4.9 80 19.5
Ag+	Dithizone Diethyl dithiocarbamate Rhodanine (p-dimethyl- aminobenzylidene rho- danine)	Carbon tetrachlorido Carbon tetrachloride Water + ethanol, 4% by volume	H ₂ SO ₄ , 0.5 <i>N</i> 2.6-5 1.3	462 340 595	30.5 5.4 23.2
As ³⁺ AsO ₄ -	Diethyl dithiocarbamate Ammonium molybdate + + hydrazine sulphate Sodium molybdate + sodium vanadate	Carbon tetrachloride Water Butanol Water	3-6 1-1.3 HCl, diluted (1:3) HCl, 1N	340 840 370 400	3.6 25 5.1 2.5

Table 43 (continued)	Molar coefficient of light absorption	4.8 97	115 20 2	180 40 14	31.6 2.2 4.0	80 6.5.3 44.9 8.8 35.8	
able 43	,max, nm	380 565	600	555 540 645 620	295 535 600 512	490 400 450 337 264 395 327 470 322	
I	pH or acidity	~	P -	~	7 7.6 12-13.2 9.8	6 7-10 H ₂ SO ₄ , 1N H ₂ SO ₄ , 1N 4.5 4-5.2 HNO ₃ , 0.4-1.2N	
	Solvent	Water Benzene Trichloroethylene	Benzene H ₂ SO ₄ , concentrated	Ethanol, methanol or acetone tone Ethanol Dichloroethane H ₂ SO ₄ , concentrated	Chloroform Water Water Water	Carbon tetrachloride Carbon tetrachloride Isoamyl alcohol Water Water Chloroform Water	
	Reagent	Hydrobromic acid Rhodamine B Methyl violet	Brilliant green + HF Carminic acid	Curcumin + oxalic acid Methylene blue + HF	Acetylacetone Aluminon Beryllon Eriochrome cyanine R	Dithizone Diethyl dithiocarbamate Potassium iodide Potassium iodide Complexone III Hydroxyquinoline Hydrochloric acid, 6N Thiourea	
	Ion being deter- mined	AuBra AuCla	B3+		Be ²⁺	Bi ³⁺	

68 0.2	69 62 124	20 10 30 11.3	88 0.21 13	47 2 5.6	9.5 26.5 59.2 0.5 30
585 415	520 450 584	485 655 575 506	520 440 490	665 480 320	520 438 600 542 650 317 416
$H_2SO_4, 18N \\ H_2SO_4, 2N$	111	NaOH, 1 <i>N</i> 6.5 10-11 11.3	4-12 9 9.4	3.0 10 H ₂ SO ₄ , 1 <i>N</i>	3.2 1.6 6-8 6.3 4-5.5
Benzyl alcohol Carbon tetrachloride	Water Water Water	Carbon tetrachloride Water Water Water	Carbon tetrachloride Carbon tetrachloride Water	Water Chloroform Water	Water Water Water Carbon tetrachloride Chloroform Chloroform Benzene
Rosaniline Hypochlorite + H ₂ SO ₄	Pyridine + benzidine Pyridine + sulphanilic acid Pyridine + barbituric acid	Azo-azoxy BN Arsenazo III Phthalein complexone Murexide	Dithizone Diethyl dithiocarbamate Cadion + acetone	Arsenazo III Hydroxyquinoline Colour of ions themselves	Hg ²⁺ + diphenyl carbazone o-Tolidine Arsenazo Dithizone Diethyl dithiocarbamate α-Nitroso-β-naphthol
Br-	CN-	Ca ² +	Cd2+	Ce ³⁺	CD. CO.2+ CO.2+

				rable 43	Table 43 (continued)
Ion being deter- mined	Reagent	Solvent	pH or acidity	λmax' nm	Molar coefficient of light absorption
Cr3+ Cr04- Cr04- Cr207-	β-Nitroso-α-naphthol Nitroso-R-salt Hydroxyquinoline PAN Ammonium rhodanide Hydroxyquinoline Colour of ions themselves Colour of ions themselves Diphenyl carbazide Chromotropic acid	Water Toluene Water Chloroform Chloroform Isoamyl alcohol Cyclohexane Chloroform Water Water Water	NH ₃ , 0.15 <i>N</i> 3.0 6.8 3.4 3.5.3 Alkaline solution H ₂ SO ₄ , 0.9 <i>N</i> 1.2-2.6 H ₂ SO ₄ , 0.5-5 <i>N</i>	550 530 420 420 530 530 620 620 620 455 540	25.10-3 25.23 25.8 25.8 6.8 4.9 34.6 34.6
Cu ²⁺	Ammonia	Water Chloroform Carbon tetrachloride Carbon tetrachloride Isoamyl alcohol Chloroform Toluene Chloroform Chloroform	NH ₄ , 3 <i>N</i> 11.3-12.3 HCl, 0.1 <i>N</i> 6 5-6 9-9.2 HCl, 2.5 <i>N</i> 2.7-14 Weak acid solution	620 440 545 445 540 440 410 415	0.12 22.8 22.7 22.7 5.5 12.5 1.6

FI .	Alizarin S + Th ^{IV} SPADNS + Zr ^{IV} Alizarin S + Zr ^{IV} Sulphosalicylic acid + + Fe ³⁺	Water Water Water Water	2 HCl, diluted (7:3) H ₂ SO ₄ , 0.6-1M	525 570 525 500	4.4
Fe 3+	Diethyl dithiocarbamate Dimethyl glyoxime α,α'-Dipyridyl α-Nitroso-β-naphthol	Chloroform Water Water Ethylacetate	0-10 Ammonia solution 3-9 Weak alkaline	515 550 522 700	2.7 10 8.65 6.3
Fe(CN)4- Fe ³⁺	1,10-Phenanthroline Ferrous salt Diethyl dithiocarbamate Cupferron α-Nitroso-β-naphthol Hydroxyquinoline Ammonium rhodanide Salicylic acid	Water Water Chloroform Chloroform Chloroform Water	solution 2-9 2-9 2-2.5 0-10 H ₂ SO ₄ (1:9) Weak acid solution 0.3-1.2 2.6-2.8	508 610 515 420 407 480 520	11.1.23.23.2.4.1.0.23.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
Fe(CN)3-	Sulphosalicylic acid Ferron (7-iodo-8-quinolin- ol-5-sulphonic acid) Hydrochloric acid Ferric salt	Water Water Water	8.2 2.7-3.1 HCl, 6.7 <i>N</i> 2-2.5	420 610 342 610	
ΛIH	Arsenazo III	Water	HCl, 9N	665	95
Hg ²⁺	Dithizone Diethyl dithiocarbamate	Chloroform Carbon tetrachloride	5-6	492 340	70

				Table 43	Table 43 (continued)
Reagent		Solvent	pH or acidity	^max'	Molar coefficient of light absorption
Colour of the substance itself		Chloroform		510	0.46
		Chloroform Benzene	11	360	14.2
Dithizone Hydroxyquinoline		Carbon tetrachloride Chloroform	3.5	510	119
Dipicrylamine		Acetone (1:1)	10-11	200	0.8
Thoron		Acetone (7:3)	13	486	9
Hydroxyquinoline Titanium yellow Acid Chrome Black Spo-	حز حز ن	Chloroform Water Water	11.2-11.3 >12 10	380 545 540	33.8 33.8
yl dithiocarbamate : of ions themselves		Carbon tetrachloride Water	6-9	505 525	3.7
Ammonium rhodanide		Diethyl ether Isoamyl alcohol	HCl, 0.8 <i>N</i> HCl, 1 <i>N</i>	470	19.5 15.3
Dithiol		Isoamyl acetate or pe- troleum ether	HCl, 4N	089	18
•				•	-

8-Mercaptoquinoline Hydroxyquinoline Chloroform Chloroform Sodium phenolate + hv-
2,4-Phenol disulphonic Water
Brucine Water
PAR + H ₂ O ₂ Hydrogen peroxide Sulphuric acid, concen-
Pyrogallol Water
Ammonium rhodanide + Water + acetone (1:1)
Diethyl ether
Dimethyl glyoxime Chloroform
ithiocarbamate
turyl dioxime Dichlorobenzene

Table 43 (continued)	Molar coefficient of light absorption e · 10-3	13 4.8 18.5 20 2.5	10 68.8 9.3 20	34.4 1.6 9.4 8.0 23.8	67 12 10
able 43 (λ _{max} , nm	470 360 735 315 400	655 520 340 515	450 383 408 485 380	525 495 405
I	pH or acidity	Ammonia solution HNO ₃ , 0.25 <i>N</i> HNO ₃ , 0.25 <i>N</i> HCl, 0.05 <i>N</i>	4.5 8.5 4-11 9.2	H ₂ SO ₄ , 0.5 <i>M</i> HCl, 0.2-0.3 <i>N</i> HCl, up to 2 <i>N</i> HCl, e <i>N</i> Strong acid solution	2-5 1.6 HCl, diluted (1:9)
	Solvent	Water Water Water Water	Water Carbon tetrachloride Carbon tetrachloride Water	Carbon tetrachloride Chloroform Water Water Chloroform	80% ethanol Water Water
•	Reagent	Dimethyl glyoxime +	Arsenazo III Dithizone Diethyl dithiocarbamate Sulpharsazene	Dithizone Dimethyl glyoxime Potassium iodide 8-Mercaptoquinoline \alpha-Furfuryl dioxime	p-Nitrosomethylaniline Potassium iodide Tin dichloride
	Ion being deter- mined	Ni ³⁺	Pb²+	Pd ²⁺	PtCl2-

								
	43	39.5 18 37	34 ined;	5.4	4 28 50 37	14.3 9.9	7.1	5.8 43 2.4
	530	600 400 432	670 determi	410 610	425 565 600 518	348 420	352 815	530 580 415
	HCl, 0.8 <i>N</i> HCl, 8-11 <i>N</i>	$^{3.5-5}_{ m H_2SO_4}, ^{4-7N}_{ m H_2SO_4}, ^{4-7N}$	HCl, 0.55N lose when CN- is being	2.5-4	H ₂ SO ₄ , 2.4-3.8 <i>N</i> HCl, 6 <i>N</i> HCl, 1.2 <i>N</i> HCl, 3.5 <i>N</i>	HCl, 0.1 <i>N</i> 6-7	1.6 HCl, 2 <i>N</i>	2.54 4-5.8
	Water + 25% acetone Chloroform	Toluene Water Diethyl ether	p-Aminodimethylaniline Water HCl, 0.55N 670 34 The same reagents under conditions identical to those when CN is being determined;	Chloroform	Water Benzene Toluene Benzene	Water Toluene	Water Water	Water Water Carbon tetrachloride
	α-Furfuryl dioxime + + SnCl ₂ 8-Mercaptoquinoline	Methyl violet Potassium rhodanide + + SnCl ₂	p-Aminodimethylaniline The same reagents un	Pyridine + copper sul- phate	Potassium iodide Rhodamine V Methyl violet Safranine T	3,3'-Diaminobenzidine	Ammonium molybdate Ammonium molybdate + + Cl ₂	Dithiol Hematoxylin Diethyl dithiocarbamate
-	ReCl.	ReO4	S2-		Sb ³⁺ SbCl _e -	S_{θ}^{IV}	Si03-	Sn ²⁺

continued)	Molar coefficient of light absorption	8.10-3 35.5 60	42 5 68 100	3.2 14.7 28 16	127 25 42 38.9 16.5	0.72 15 16 11.5
Table 43 (continued)	λ _{max} , nm	440	530 365 600 580	428 400 335 320	665 413 410 500 545	410 370 410 470
	pH or acidity	34 2.34.5	HCl, 6 <i>N</i> 0.6-2.0 2.3	4-8.8 6.5 6.5 H ₂ SO ₄ , 1.8 <i>N</i>	HCl, 8 <i>N</i> 4.5 2.0 6.4-6.7 0.8	H ₂ SO ₄ , 1.8 <i>N</i> 3.2-4.9 4.3-9.6 2.7-4.6
	Solvent	Water Water Water	Water Water Benzene Benzene	Carbon tetrachloride Water Chloroform Water	Water Water Water Water Water	Water Water Water Water
	Reagent	Quercetin Pyrocatechin violet Phenylfluorone	Dimethyl fluorone Pyrogallol + oxalate Brilliant green Methyl violet	Diethyl dithiocarbamate Bismuthol II Thiourea	Arsenazo III Carboxygallanilide Morin PAR Thoron	Hydrogen peroxide Sulphosalicylic acid Thyrone Chromotropic acid
	Ion being deter- mined	Sn²+	Ta ^V TaFe	Te ^{IV}	Th ^{IV}	T i 4 +

Tl3+	Dithizone Diethyl dithiocarbamate Methyl violet Hydroxyquinoline	Chloroform Carbon tetrachloride Benzene Chloroform	NaOH, 0.8N 4-11 HCl, 0.5N 4-8	505 426 560 401	33 1.3 56 6.8
UIV U03+	Arsenazo III Arsenazo I Arsenazo III Dibenzoyl methane (1,3-diphenyl-1,3-pro-	Water Water Water Water	HCl, 4 <i>N</i> 4.2 2.0 6.5-8.5	670 555 665 395	130 22.8 53 18
	Diethyl dithiocarbamate K ₄ Fe(CN) ₆ Quinalizarin	Chloroform Water Water	6.5-7.2 1-2 6.8-7.5	380 525 610	4.0 3.7 2.8
ΛΛ	Wolframite + H ₃ PO ₄ Diethyl dithiocarbamate Hydroxyquinoline Hydrogen peroxide	Isobutyl alcohol Carbon tetrachloride Chloroform Water	$4.5.9$ $4.5.9$ 4.80_4 , 1.5 N	400 400 550 460	2.2 3.8 3.3 0.27
WVI	Vanadicophosphoric acid	Water	H ₃ PO ₄ , diluted (1:100)	400	0.62
	Dithiol Rhodanide + SnCl ₂ Hydroxyquinoline	Amyl acetate Water Diethyl ether 60% acetone Chloroform	0.5-2.0 HCl, 9 <i>N</i> —	640 400 405 398	20 11.5 18.3 17.6
Zn ²⁺	Dithizone PAN	Carbon tetrachloride Carbon tetrachloride	8.3 5-6	535 560	94 28.7
ZrW	Alizarin S Arsenazo I Arsenazo III Quercetin Xylenol orange SPADNS Thoron	Water Water 30% ethanol Water Water	0.6-1.5 1.6 1.6 1.6 1.6 1.5 1.5 $0.9-1.1$	520 600 665 440 550 570	6.5 9.7 120 31.4 52 18.9

Table 44

Properties of Selected Solvents

No.	Solvent	Formul a	Molecular weight, M	Den- sity at 20 °C, g/cm ³	Refra- ctive index
1 2	Acetic acid Acetone	CH₃COOH CH₃COCH₃ CH₃	60.054 58.081	1.049	1.372
3	Amyl acetate (iso)	CH3COOCH2CH2CH CH3 H3C	130.190	0.856	1.400
4	Amyl alcohol (iso)	CH-CH ₂ -CH ₂ OH H ₃ C	88.151	0.806	1.406
5 6 7	Aniline Benzene Benzyl alcohol	$C_6H_5NH_2$ C_6H_6 $C_6H_5CH_2OH$	93.130 78.144 108.141	1.022 0.8790 1.045	1.586 1.5014 1.539
8 9 10	Butanol (iso) Butanol (normal) Butyl acetate	$(CH_3)_2CHCH_2OH \\ C_4H_9OH \\ CH_3COOC_4H_9$	74.124 74.124 116.162	0.803 0.810 0.882	1.396 1.399 1.395
11	(normal) Butylamine (normal)	$C_4H_9NH_2$	73.140	0.740	1.401
12	Butyl cellosolve (ethylene gly-col mono-n-butyl ether)	HO-CH ₂ -CH ₂ -O-C ₄ H ₉	118.178	0.902	1.417
13	Carbon disul- phide	CS ₂	76.143	1.263	1.627
14	Carbon tetrach- loride	CC14	153.839	1.595	1.461
15	Chlorobenzene (mono)	C_6H_5Cl	112.563	1.107	1.525
16	Chloroform	CHCl ₃	119.390	1.489	1.446
17 18 19	Cyclohexane Cyclohexanol Cyclohexanone	C ₆ H ₁₂ C ₆ H ₁₁ OH C ₆ H ₁₀ O	84.163 100.162 98.146	0.779 0.494 0.949	1.426 1.465 1.452
20	Decalin (deca- hydronaphtha- lene)	C ₁₀ H ₁₈	138.255	0.890	1.475

	Mel- ting point, °C	Boiling point, °C	Vapour pressure, cm Hg	Surface tension at 20 °C, dy- nes/cm	Solubility in water, g/100 ml	Dielect- ric constant, (~20 °C)	Flash point, °C	No.
	+16.6 -94.9	118.1 56.1	1.5 (25 °C) 22.9 (25 °C)	27.8 23.7	&0 &0	9.5 21.3	40 —16.7	i 2
	-7 5	135.5	15.7 (20°C)	-	0.25 (15 °C)	5.26	25	3
	-134	128	0.2 (20 °C)	23.7	2.67 (25 °C)	15.8	42	4
	-6.0 +5.5	184.25 80.8	0.24 (50 °C) 9.6 (25 °C)	28.9	3.66 (25 °C) 0.175 (20 °C)	7.2	−7 i −8	5 6
- 1	-15.3	206	0.1 (60 °C)	38.3	3.66 (20 °C)	13.1	34	7 8
	-108	108	1.8 (31 °C)	-	8.5 (20 °C)	18.8 17.8	42	9
	-79.9	117.7	0.64 (25 °C)	24.6	7.9 (20 °C)	5.0	22	10
	-77	125	18 (20 °C)		2.3(20°C)	3.0		10
	-50.6	77.8	_	21.6	œ	5.4	-	11
	-40	170.6	0.9(20°C)	-	50	-	60	12
	-112.8	46.25	29.8 (20 °C)	33.6	0.18 (20 °C)	2.7	-20	13
	-22.9	76.7	11.5 (25 °C)	26	0.08 (20 °C)	2.2	Does not ignite	14
	-45	132.0	0.88 (20 °C)	33.2	0.049 (30°C)	5.7	29	15
	-63.5	61.2	19.9 (25 °C)	27.1	0.82(20°C)	5.1	Does not ignite	16
	6.5		7.8 (25 °C)	_	0.01(20°C)	2.0	17	17
- 1	+24	81 161.5	1.0 (56 °C)	34.0	4.0 (20 °C)	10	68-72	18
1	1-44	155	0.85 (20 °C)	-	2.4(30°C)	_′	40	19
		189-192	0.08 (20 °C)	_	practically insoluble	-	57-58	20

1			1		
No.	Solvent	Formuia	Molecular	Den- sity at 20 °C.	Refra-
140.	Solvent	roimaia	weight,	20 °C, g/cm ³	ctive index
_			<u> </u>		<u> </u>
21	o-Dich loroben-	C ₆ H ₄ Cl ₂	147.012	1.305	1.552
22	zene	077 GL 077 GL	00.000		l
22	Dichloroethane (ethylene	CH ₂ Cl – CH ₂ Cl	98.968	1.257	1.444
23	dichloride)	C.H.OC.H.	74.124	0.714	1.354
23	Diethyl ether (ethyl ether)	$C_2H_5OC_2H_5$	14.124	0.714	1.334
24	Diisopropyl ether	II ₃ C CII ₃	102.178	0.715	1.368
	(isopropyl	CH-0-CH			
	ether)	H ₃ C CH ₃			
25	1,4-Dioxane	$(CH_2)_4O_2$	88.108		1.422
26	Ethanol	C_2H_5OH	46.070	0.789	1.362
27	Ethanolamine	H ₂ NCH ₂ CH ₂ OH	61.086	1.018	1.454
28 29	Ethyl acetate	CH ₈ COOC ₂ H ₅ HOCH ₂ CH ₂ OH	88.108 62.070	1.114	1.431
30	Ethylene glycol Furfurol	C ₄ H ₃ CHO ₂	96.087	1.160	1.526
31	Glycerin	CH ₂ OHCHOHCH ₂ OH	92.097	1.261	1.473
32	Hexane (normal)	C ₆ H ₁₄	86.178	0.6603	
33	Methanol	CH3OH	32.043	0.792	1.329
34	Methyl cellosol- ve (ethylene	HO-CH ₂ -CH ₂ -O-CH ₃	76.097	0.965	1.103
	glycol mono- methyl ether)				
35	Methyl ethyl	$CH_3COC_2H_5$	72.108	0.805	1.379
	ketone			0 000	
36	Methyl isobutyl ketone (hexone)	(CH ₃) ₂ CHCH ₂ COCH ₃	100.162	0.800	1.396
37	Nitrobenzene	C ₆ H ₅ NO ₂		1.203 0.708	1.552
38 39	Octane (iso)	C ₈ H ₁₈ C ₈ H ₁₈			1.398
40	Octane (normal) Propanol (iso)	C ₃ H ₇ OH	60.097	0.789	1.381
41	Propanol (nor- mal)	C ₈ H ₇ OH	60.097	0.804	1.385
42	Pyridine	C ₅ H ₅ N	79.103	0.982	1.509
43	Sulphuric acid	H ₂ SO ₄	98.082	1.834	1.429
44	Tetralin	C ₁₀ H ₁₂			1.543
45 46	Toluene	C ₆ H ₅ CH ₃	The state of the s	0 . 866 0.8 5-0.8 8	1.496
47	Turpentine Water	H ₂ O		0.85-0.88	1.333
	W 4001	20			
48	Xylene (mixture	C ₈ H ₁₀	106.169	0.88	1.506
\	of isomers)				

Table 44 (continued)

Mel- ting point, °C	Boiling point, °C	Vapour pressure, cm Hg	Surface tension at 20 °C, dy- nes/cm	Solubility in water, g/100 ml	Dielect- ric constant, (~20°C)	Flash point, °C	No.
—16.7	180.2	0.13(25°C)		0.014 (25 °C)	7.5	77	21
-35.3	83.5	7.7 (25 °C)	0.84	0.87 (20 °C)	10.5	12	22
-117.6	34.6	53.7 (25 °C)	16.5	6.95 (20 °C)	4.3	-40	23
<-60	68	15.8 (20 °C)	32	1.2 (25 °C)	_	-22	24
+11.7 -111.8	101.1 78.32	2.7 (20 °C) 5.9 (25 °C)	36.5 21.9	& &	3.0 25.0	5 11	25 26
+10.5 -83.6	172.2 77.15	- 7.3 (20 °C)	_ 23.75	∞ ·7.9 (20 °C)	6.2	4.4	27 28
$-17.4 \\ -39$	197.4 162.1	3.9 (120 °C) 2.5 (72 °C)	43.5	∞ 8.3 (20 °C)	41.2	94	29 30
+18.2 -94	290 68.8	0 · 1 (125 °C) 15 · 1 (25 °C)	64.5 18.4	∞ 0.014 (16 °C)	43 1.9	160 -31	31 32
-94.9 -	64.65 124.5	12.4 (25 °C) 6.2 (20 °C)	22.5	οο οο	32.3 17.2	6.5 36	34
8 6	79.6	 9.84 (25 °C)	27. 6	27.3 (20 °C)	18.4	_7.2	35
			24.0	·	10.4	15.6	36
-84	115.65	2.0 (25 °C)	_	2.3 (25 °C)	_	90	37
$+5.7\\ -60$	210 118	0.75 (80 °C) —	43.6	0.19(20°C) —	35.5 —	<-12	38
-57	125.0	1.1 (20 °C)	_	0.0015 (20 °C)		+17 18.8	39 40
-88.5 -127	82.3 97.2	10.0 (39 °C) 1.45	21.7 23.6	∞ ∞	18.6	25	41
-38.2		1.54	36.6	∞	12.5	20	42
+10.5	(330)	<0.001 (25 °C)	(55)	∞	>84	Does not ignite	43
-35	207.3	0.03(20°C)	_	~0.001 (20 °C)	_	78	44
-95	110.8	2.8(25°C)	28.4	0.047 (20 °C)	2.4	5	45
	153-180	0.45 (20 °C)	14.4	~0.2(15°C)	2.17 80	30-37 Does	46
0.00	100.0	2.38 (25 °C)	72.75	_	00	not	
0.5			0.0	0.040.05.00	,	ignite	
-25.3	136-145	1.0 (20 °C)	28	0.013 (25 °C)	2.4	20	48

Table 45

Extraction with Organic Solvents

A. Extraction of Various Elements in the Form of Dithizonates (Dr: dithizone ion)

Reagent—dithizone solution in obloroform or carbon tatrachloride; E—extracted by both organic solvents; N—cannot be extracted; N-E—weakly extracted

Remarks	Insignificantly soluble in	CHCl ₃ (red solution) Solutions are sensitive to light. Direct extraction	tometric method are used Dissolves weakly in CCl ₄ . Solutions are sensitive to light. Direct extraction		Reacts likewise in the	Stable when being shaken with 1N NaOH solution
pH of extraction solution	Diluted mineral- acid solution Alkaline solution	Diluted mineral- acid solution	Alkaline solution	>2 (CCl ₄)	Alkaline solution	Alkaline solution
Solubi- lity in CHCls or CCl4	E Z	妇	臼	臼	ម	臼
Maximum light ab- sorption λ, nm	460	450	l	490 and	505	520
Colour	Yellow Violet-red	Yellow	Red-brown	Orange	Orange-red	Red
Complex	AgHDz Ag ₃ Dz	Au(HDz) ₃	Au ₂ Dz ₃	Bi(HDz) ₃	$\mathrm{Bi_2Dz_3}$	Cd(HDz)2
Ele- ment	Ag+	Au ⁸⁺		Bi ³⁺		Cq ₂ +

The dithizonate solution in an organic solvent is quite stable relative	to diluted mineral acids Decomposition products may appear		Only insignificantly solu-	The determination according to mixed colour should be made when	λ = 510 nm or 625 nm Can form also in a weak acid solution when copner ions are in the pre-	sence of excessive di- thizone Fe ^{III} does not form a com- plex, but it oxidizes dithizone in an alkaline	the presence of cyanide	f	
7-9 (CCl ₄)	Strong alkaline so-	Diluted mineral- acid solution	$(\sim 0.1N)$ Alkaline solution	Diluted mineral- acid solution	Alkaline solution	7-9 (CC14)	Diluted mineral-	Alkaline solution	
ञ	臼	闰	凶	斑	闰	Œ	闰	N-E	
542	1	1	ı	545-550	420	520	ı	485	
Violet-red	Brown	Violet, the solution in CCl4	is brown Red-brown	Violet-red	Yellow-brown	Red	Orange	Purple	
Co(HDz) ₂	CoDz(?)	CuHDz	Cu2Dz	Cu(HDz) ₂	CuDz	Fe(HDz)2	Hg ₂ (HDz) ₃	Hg_2Dz	
Co2+		Cu+		Cu ²⁺		F 62+	Hg2+		

Remarks	weak alkali- with dithi- Sensitive	the determi- ding to mi- should be λ = 500 nm weak acid en there is	ise in the cyanide y unstable;	s precipita- l4 substitu- ised, nickel lissolved in nposed by s with dif-	of CN- does reaction
Remarks	Can form in a weak alkali- ne solution with dithi- zone excess. Sensitive	to light. The determination according to mixed colour should be made when λ = 500 nm or 610 nm Can form in a weak acid solution when there is a dithizone included.	Reacts likewise in the presence of cyanide Solution is very unstable;	te when CCl ₄ substitutes CHCl ₃ When CCl ₄ is used, nickel dithizonate dissolved in it is decomposed by mineral acids with dif-	ficulty The presence of CN- does not inhibit reaction
pH of extraction solution	Diluted mineral- acid solution	Alkaline solution	$5-6 \text{ (CCl}_4); \\ 8.3-9.6 \text{ (CHCl}_3) \\ \sim 10$	Weak alkaline so- lution	8.5-11 (optimal in CHCl ₃)
Solubi- lity in CHCl ₃ or CCl ₄	田	ъ	E CHCl ₃	ъ	ы ы
Maximum light absorption λ , nm	485	520	510	285, 480, 665	520
Colour	Orange-yellow	Red	Red Violet-brown	Brown-violet (when extracted from strong	tions, it is gray) Carmine red
Complex	$\mathrm{Hg(HDz)_2}$	HgDz	$In(HDz)_3$ $Mn(HDz)_2$	${ m Ni(HDz)_2}$	Pb(HDz) ₂
Ele- ment	Hg ²⁺	Hg ²⁺	In ³⁺ Mn ²⁺	Ni ² +	Pb2+

Can be obtained by adding dithizone to a PdDz solution. Stable in respect of 6N NaOH and 6N H ₂ SO ₄ . The determination according to mixed	$\lambda = 620 \text{ nm and } 280 \text{ nm}$ In organic solvents, it is soluble only partially, forming a dark-violet	curs slowly Reaction is effected in the presence of SnCl ₂ ; violet flakes occasionally appear. Platinous dithizonate is insoluble	in ChCl ₃ . Flatinum (1V) and other tetravalent and trivalent platinum metals do not react Unstable	Forms likewise in the presence of CN-With dithizone excess, complete reaction occurs	diso in a weak acid medium. The presence of thiosulphate does not inhibit reaction
l	Diluted mineral- acid solution	HCl, 1.5-3 <i>N</i>	>4 (optimal 6-9) (CCl ₄)	Neutral or weak alkaline solution	= 8.3 in a citrate buffer solution by the extraction with CHCl ₃)
ជ	Z-E	CCI	च	ਜ਼ ਸ਼	
280, 640	1	710, 490 and 260	520	535	
Brownish green; the solution in CHCl ₃ is pale green	Brownish red	Brown-yellow	Red	Urange-red Purple	
Pd(HDz) ₂	PdDz	${ m Pt}({ m HDz})_2$	$\mathrm{Sn}(\mathrm{HDz})_2$	$Z_{D}(HDz)_{2}$	
Pd2+		Pt2+	Sn ²⁺	7.I. ⁺	

Action of Masking Agents during Extraction in the Form of Dithizonates

Extraction conditions	Elements reacting with dithizone
Alkaline solution containing cyanide Weak acid solution containing rhodanide Diluted acid solution containing rhodanide and cyanide Diluted acid solution containing bromide or iodide Diluted acid solution containing bromide or iodide Diluted acid solution containing ethylenediaminetetraacetate Weak acid solution (pH = 5) containing thiosulphate (dithizone is dissolved in CCl ₄) Weak acid solution (pH = 4-5) containing thiosulphate and cyanide Citrate and tartrate in an alkaline medium	Pb ²⁺ , Sn ²⁺ , Tl ⁺ , Bi ³⁺ Pd ²⁺ , Ilg ²⁺ , Ag ⁺ , Cu ²⁺ Hg ²⁺ , Cu ²⁺ Hg ²⁺ , Cu ²⁺ Pb ²⁺ , Cu ²⁺ Pg ²⁺ , Cu ²⁺ Ag ⁺ Pd ²⁺ , Sn ²⁺ , Cu ²⁺ Ig ²⁺ Rg ²⁺ , Ag ⁺ Pd ²⁺ , Sn ²⁺ , Cu ²⁺ Ig ²⁺ Rg ²⁺ , Sn ²⁺ Rg ²⁺ Pd ²⁺ , Sn ²⁺ Inate extraction

B. Extraction of Various Elements in the Form of Diethyl Dithiocarbamates

	
Extractant and extraction conditions	Ethyl acetate Carbon tetrachloride ditto Chloroform, diethyl ether, ethyl acetate Carbon tetrachloride in the presence of ethylenediamine-tetraacetate and KCN
Optimal pH values in extraction	3 4-11 4-5.6 1-10 11-12
Element	Ag ⁺ As ^{III} Bi ³⁺

Ethyl acetate Carbon tetrachloride in the presence of KCN Chloroform ditto ditto Ethyl acetate in the presence of ethylenediaminetetra- acetate; the subsequent acid treatment allows separation from other elements being extracted under these condi-	Carbon tetrachloride Chloroform Ethyl acetate (a reagent excess is required) Ethyl acetate Carbon tetrachloride in the presence of ethylenediamine-	tetraacetate Ethyl acetate Carbon tetrachloride in the presence of KCN Ethyl acetate (a reagent excess is required) Chloroform in the presence of citrate Ethyl acetate Carbon tetrachloride Chloroform, ethyl acetate Chloroform Carbon tetrachloride	Diethyl ether, ethyl acetate Carbon tetrachloride in the presence of KCN Carbon tetrachloride in the presence of ethylenediamine- tetraacetate
3 11-12 6-8 0-6 1-3.5 Alkaline solution	4-11 0-10 3 3 11	3 6.5 7.5-8.0 3 4-5.5 0-10 2.2 7-9	(extraction is slow and incomplete) Strong acid solution 11 11
Cd ²⁺ Co ²⁺ Cu ³⁺	Fe ²⁺ Fe ³⁺ Ga ³⁺ Hg ²⁺	In ³⁺ Mn ²⁺ Mo ^{VI} Nb ^V Ni ²⁺ Os ^{VI}	Pb ²⁺ Pd ²⁺

Table 45 (continued)

Tomont	Outimal pH values in extraction	Extractant and extraction conditions
Element		
IV a	HCl concentrated	Ethyl acetate
Ke .	4-9.5	Carbon tetrachloride
VICO	5-6	ditto
NI S	5-6	ditto
N 1 1	, c.	Ethyl acetate
I.e.	5N H+-3.3	Chloroform, benzene
	8.5-8.8	Carbon tetrachloride in the presence of ethylenediamine-
		tetraacetate and KCN
	ന	Ethyl acetate (a reagent excess is required),
11.) -	Carbon tetrachloride in the presence of ethylenediamine-
1131	1	tetraacetate and KCN
	л ж п	Chloroform, amyl acetate, diethyl ether
: ;) ((Ethyl acetate
シー	4.5-5.0	Chloroform
	5:0-7:0	Amyl acetate in the presence of tartaric acid
7/7		Ethyl acetate
7		Carbon tetrachloride
-u7	Wesk alkaline solution	Diethyl ether, chloroform
	Weah winding	Software Programme Control of the Co

an of Diethul Dithingarbamates	king Agents during extraction in the Folm of Security Security	Elements reacting with diethyl dithiocar
r	Action of Masking Agents during Extraction in the Fo	distinct of the second

C. Extraction of Various Elements in the Form of Cupferronates

Element	Optimal conditions of extraction	Extractant
Al ³⁺ D:3+	pH 2-5	Chloroform
Cd2+	Neutral solution	Boiling diethyl ether
Ce4+	pH 2	Butyl acetate
Cu ²⁺	HCl, diluted (1:9)	Chloroform
Fe3+	H_2SO_4 or HCl, diluted (1:9)	Chloroform, diethyl ether, ethyl acetate
GeIV	Weak acid solution	Methyl isobutyl ketone
Hg ²⁺	Neutral solution	Benzene, chloroform
In3+	Diluted acid	ditto
Mn ²⁺	Neutral solution	Diethyl ether
MoVI	HCl, diluted (2:9)	Ethyl acetate, chloroform
NP	Acid solution	Chloroform
Ni ²⁺	Neutral solution	Various organic solvents
Pa	1-4N acid	Benzene, diethyl ether, chloroform
$ s_{b^{111}}$	H_2SO_4 , diluted $(1:9)$	Chloroform
Sn^{2+}	1.5N acid	Benzene, chloroform
147	جب	4-Heptanone
SnIV	HCl, diluted $(1:9)$	Ethyl acetate
$\mid { m Th^{IV}} \mid$	HCI, diluted (1:9)	Ethyl acetate, butyl acetate
147		Benzene + isoamyl alcohol
$ T_{i^{1}}$	\mid HCl, diluted $(1:9)$	Chloroform, ethyl acetate
Ĕ	Ammonium tartrate, pH 5	Isoamyl alcohol
UIV	$\mid \text{H}_2\text{SO}_4$, diluted $(1:9)$	Diethyl ether
ΛΛ	HCl or H_2SO_4 , diluted $(1:9)$	Ethyl acetate or ether
$ \mathbf{w}^{VI} $	HCl, diluted (1:9)	Ethyl acetate (incomplete extraction)
Zn^{2+}	Neutral solution	Diethyl ether (incomplete extraction)
Zr IV	H_2SO_4 , diluted $(1:9)$	Ethyl acetate
	рн 0.3-1.0	benzene + isoamyi alcohol

(1% hydroxyc	U. Extraction of Various Elements in the Form of Hydroxyquinolates (1% hydroxyquinoline solution in chloroform)	guinolates (communication)
Element	Optimal pH values in extraction	Extractant and extraction conditions
Alstantal	4.8-6.7; 8.2-11.5 4.0-5.2 13 11.5 8 9.9-10.5	Butyl cellosolve + chloroform Chloroform or, better, 0.2M butylamine solution in chloroform Incomplete extraction The presence of KCN is permissible
Court Fest Gast	>6.8 2.8-14 >8.5 1.9-12.5 3.0-6.2	At high pH values, tartrate is added At high pH values, tartrate is added
In ³⁺ Mg ²⁺ Mn ²⁺	>3.0 10-10.2 10.5-13.6 12.5	Butyl cellosolve + chloroform 0.2M butylamine solution in chloroform In the presence of tartrate and hexacyanoferrate (II)
Mo ^{VI}	1.6	Likewise in the presence of ethylenediaminatetraacetate
Nbv Nds+ Ni ²⁺ Pa+ Pb ² +	$NH_4OH, 1N$ >8.5 $4.5-9.5$ $(NH_4)_2CO_3, saturated solution$ $8.4-12.3$	Citrate medium ————————————————————————————————————

Pd ²⁺	HCl, diluted	1
Pulv	7-8	Amyl acetate
Rull	Acetate medium	
Sc ³⁺	9.7-10.5	Benzene
200	2.5-5.5	1
ThIV	11.3	1M hydroxyquinoline solution in chloroform
T_{i}^{IV}	3.8-5.0	In the presence of hydrogen peroxide
	8-9	In the presence of ethylenediaminetetraace-
T]3+	6.5-7.0	tate 85-89% is extracted
$\Gamma^{\mathbf{VI}}$	4.7-8.0	
	8.8	In the presence of ethylenediaminetetraace-
Λ.Λ	т. 7 с ст	tate
	5.0	In the presence of an ethylenediaminetetra-
WVI	7 6	acetate complex with calcium ions
:	L	acetate
Zn^{2+}	4.6-13.4	Incomplete extraction
	Acetate buffer	1

Action of Masking Agents during Extraction in the Form of Hydroxyquinolates

Extraction conditions	Elements reacting with 8-hydroxyquinoline
In the presence of ethylenediaminetetraacetate, at pH 8 and higher, masking of Al ³⁺ , Co ²⁺ , Fe ³⁺ , Mn ²⁺ and Ni ²⁺ occurs At pH 7.9-9.0	Ti Cu

E. Extraction of Various Elements from Hydrochloric, Hydrobromic, Hydroiodic and Nitric Acids by an Equal Volume of Diethyl Ether

Separation of Organic Compounds

A. Classification of Individual Compounds According to Their Behaviour under the Action of Some Reagents

A test of the examined compound is consecutively treated with the following reagents: (a) distilled water, (b) diethyl ether, (c) 1.2N hydrochloric acid, (d) 1.5N sodium bicarbonate solution, (e) 2.5N caustic soda solution, (f) concentrated sulphuric acid, and (g) 85% phosphoric acid.

These reagents are used to treat separate portions of the test in the given order. A test is considered to be soluble in one reagent or another if it dissolves upon shaking for two minutes at room temperature in a quantity which is 30 times greater in mass than the given reagent.

B. Composition of Groups (see Table 46,A)

(the chief compounds of every group are italicized)

Group P₁

Mainly monofunctional compounds with five or less carbon atoms in a molecule.

1. Presence of only C, H and O
Alcohols
Aldehydes and ketones
Carboxyl acids
Acetals
Anhydrides
Ethers and esters
Some glycols
Lactones

Phenols (partially)

2. Presence of N
A mides
A mines
Heterocyclic amines
Nitriles

Nitroparaffins Oximes

- 3. Presence of a halogen
 Halogen-substituted compounds of subgroup I
- 4. Presence of S
 Oxyheterocyclic S-compounds
 Mercapto acids
 Thioacids
- 5. Presence of N and halogens Halogenated amines, amides, nitriles
- 6. Presence of N and S Aminoheterocyclic compounds

Group P2

Substances having an average molecular weight, with two or more polar groups (except for sulphonic and sulphinic acids, which belong to the P_2 group, although they have only one polar group in a molecule).

1. Presence of only C, H and O
Dibasic and polybasic acids
Hydroxyacids
Polybasic alcohols
Polybasic phenols
Simple carbohydrates

2. Presence of metals

Acid and phenol salts

Various metal-containing compounds

3. Presence of N
Amine and organic-acid salts
Amino acids
Ammonium salts
Amides
Amines
Amines
Amino alcohols
Semicarbazides

Semicarbazones

Ureas

Presence of halogens
 Halogen acids Acyl halogenides (as a result
 of hydrolysis)
 Halogen alcohols, halogen al dehydes, etc.

5. Presence of S
Sulphonic acids
Alkyl sulphonic acids
Sulphinic acids

6. Presence of N and a halogen Amine and halogen-acid salts

7. Presence of N and S
Aminodisulphinic acids
Hydrosulphates of weak bases
Cyanosulphonic acids
Nitrosulphonic acids

Group O: Bases

Diaryl- and triaryl-amines, and also carbazols, belong to the M group. In addition to the listed below the O group includes a small number of oxygen-containing compounds which form oxonium salts when treated with HCl.

Amines (Amines with sufficiently strong negative components belong to the M group)

Amino acids

Amphoteric compounds (aminophenols, aminothiophenols, aminosulphoamides) Aryl-substituted hydrazines N-Dialkylamides

Group A: Strong Acids

1. Presence of only C, H and O Acids (usually, the number of carbon atoms in a molecule is less than 10)

2. Presence of N Amino acids Nitro acids Cyano acids Heterocyclic nitric and carboxylic acids Polynitrophenols

3. Presence of S Sulphonic acids Sulphinic acids

4. Presence of halogen Halogen acids Polyhalogenophenols

5. Presence of N and S Aminosulphonic acids Nitrothiophenols Sulphates of weak bases

6. Presence of S and halogens Sulphohalogenides

Group A2: Weak Acids

1. Presence of only C, H and O Acids (high-molecular) A nhydridesPhenols (including esters of phenol acids)

Enols 2. Presence of N Nitrophenols Amides (including N-monoalkylamides) Aminophenols Amphoteric compounds Cyanophenols Imides N-Monoalkyl aromatic unines N-Substituted hydroxylamin-Amino acids Oximes

Nitroparaffins, primary and secondary Trinitro aromatic hydrocarbons Ureides

3. Presence of halogens Halogenophenols

4. Presence of S Mercaptanes Thiophenols

5. Presence of N and halogens Polynitrohalogenated aromatic hydrocarbons Substituted phenols

6. Presence of N and S **Aminosulphonamides** Aminosulphonic acids Aminothiophenols Sulphamides Thioamides

Group M

Neutral compounds containing nitrogen or sulphur. Only a few of them are distilled with vapour.

(Only the most common classes are given) of N 2. Presence of S

1. Presence of N

Anilides and toluidides

A mides

Nitroarylamines Nitro hydrocarbons Aminophenols

Azo, hydrazo and azoxy com-

pounds

Di- and tri-arylamines Dinitrophenyl hydrazines

Nitrates Nitrites

Mercaptanes

N-Dialkyl sulphoamides Sulphates, sulphonates Sulphides, disulphides

Sulphones Thioethers

Thiourea derivatives

3. Presence of N and S

Sulphamides

4. Presence of N and halogen Halogenated amines, amides, nitriles

Group H

Neutral compounds not containing nitrogen and sulphur. Distilled off with vapour. The H₁ subgroup includes compounds containing not more than 7-8 carbon atoms in a molecule; the H₂ subgroup contains the remaining compounds of this group.

A lcohols

Aldehydes and ketones

Esters

Ethers

Unsaturated hydrocarbons

(Acyclic unsaturated hydrocarbons and the cyclic unsaturated

hydrocarbons which easily sulphurize)

Acetals

Anhydrides Lactones

Polysaccharides (they carbonize in concentrated H₂SO₄)

Group I: Inert Compounds

Hydrocarbons (including most cyclic hydrocarbons and all saturated acyclic hydrocarbons)

Halogen derivatives of hydrocar-Diaryl ethers

Table 46 (continued)

C. Various Organic Compounds Belonging to the Main Groups

Compound	Group	Compound	Group
A cids n-Butyric Chloroacetic α-Chloropropionic Crotonic Isovaleric Valeric Alcohols	P ₁ · P ₁ P ₁ P ₁ P ₁ K ₁	1,2,3,5-Tetrame- thyl benzene (Isodurene) 1,3,5-Trimethyl benzene (Mesi- tylene) m-X ylene o-X ylene p-X ylene	H_{2} H_{2} H_{2} -1 H_{2} -1 H_{2} -1
tert-Amyl Benzyl n-Butyl Cyclopentanol Isoamyl Isopropyl methyl carbinol Aldehydes n-Butyric Isobutyric Isobutyric Isovaleric Amides Acetamide Acetanilide Butyramide Formamide Formamide Formanilide Isobutyramide Propionamide Ethers n-Butyl Diethyl Diisopropyl Ethyl isopropyl	P ₁ H ₁ P ₁ H ₁ P ₁ -H ₁ P ₁ -H ₁ P ₁ -H ₁ P ₁ -H ₂ P ₁ -P ₂ P ₁ -M P ₁ -P ₂	Amines n-Amylamine Aniline Benzylamine Diethylamine Di-n-butylamine Di-n-propylamine Isoamylamine Piperidine Tri-n-propylamine Esters Benzyl acetate n-Butyl acetate n-Butyl acetate n-Butyl carbona te n-Butyl formate n-Butyl oxalate Ethyl acetate Ethyl acetate Ethyl acetate Ethyl caprylate Ethyl carbonate Ethyl malonate Ethyl malonate Ethyl phthalate	$H_1 \\ H_1 \\ H_1$
Ethyl methyl Aromatic hydrocarbons Cymene Diphenyl methane Naphthalene	$P_1 - \overline{H}_1$ P_1 I $H_2 - I$ I	Ethyl succinate Isopropyl acetate Methyl carbonate Methyl isobutyrs te Methyl isovalera Methyl malonate Methyl propiona	$\begin{array}{c cccc} P_1 & P_1-H_1 & & & \\ P_1-H_1 & & & & \\ P_1-H_1 & & & & \\ P_1-H_1 & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $

Table 46 (continued)

Compound	Group	Compound	Group
n-Propyl acetate n-Propyl formate Nitriles n-Butyronitrile Isobutyronitrile Propionitrile Ketones Acetophenone Benzophenone Benzyl ketone Cyclohexanone Cyclopentanone Di-n-butyl ketone Ethyl methyl ketone Isopropyl methyl ketone	P ₁ -H ₁ P ₁ M P ₁ -M P ₁ H ₂ H ₂ P ₁ -H ₁ I' ₁ I' ₁ I' ₁ I' ₁ -II ₂ P ₁	Methyl-n-propyl ketone Pinacoline Succinonitrile Trimethylene cyanide Nitro compounds Nitrobenzene Nitroethane Nitromethane Phenols Chlorohydroquinone Hydroquinone Phenol Phloroglucinol	P ₁ -H ₁ P ₁ -H ₁ P ₁ -H ₂ P ₁ -P ₂ -M M K ₂ P ₁ -K ₂

D. Widespread Compounds Whose Belonging to a Group Is Dificult to Foresee

Compound	Group	Compound	Group
Acetal Acetamide Acetophenone Acetoxime Acetyl piperidine Adipic acid Allyl acetate Allyl alcohol β-Aminoethyl alcohol α-Aminoisobutyric acid m-Aminophenol ρ-Aminophenol ρ-Aminophenol ρ-Amino-p-valeric acid n-Amyl alcohol sec-Amyl alcohol	P ₁ -H ₁ P ₁ -P ₂ H ₁ P ₁ P ₁ P ₁ R ₁ P ₁ R ₁ P ₁ -H ₁ P ₁ K ₂ R ₁ -P ₂ -K ₂ R ₁ -P ₂ -K ₂ K ₂ K ₂ (O) H ₁ P ₁ -H ₁	tert-Amyl alcohol n-Amylamine Aniline Anthranilic acid Azelaic acid Barbituric acid Benzene sulphinic acid Benzene sulphonic acid Benzidine Benzoyl acetone Benzoyl acetone Benzyl alcohol Benzyl malonic acid Benzyl salicylate Biuret	P ₁ P ₁ O K ₁ (O) K ₁ K ₁ P ₁ -K ₁ P ₂ O H ₂ P ₁ H ₁ P ₁

Table 46 (continued)

<u> </u>		1	<u> </u>
Compound	Group	Compound	Group
<u> </u>			
Bromal	$\mathbf{P_1}$	Diethylamine	P_1
α-Bromopropionic	•	β-Diethyl amino-	-
acid '	P_1 - K_1	ethyl ether	P_1
n-Butyl acetate	H_1	Diethyl barbitur-	
sec-Butyl acetate	H_1	ic acid	K_2
n-Butyl alcohol	P_1	Diethyl ether	P_1 - H_1
n-Butyl carbonate	H_1-H_2	Diethyl ketone	P_1-H_1
n-Butyl ether	$\mathbf{H_2}$	Dimethyl acetal	P_1-H_1
n-Butyl formate	P_1-H_1	2,4-Dinitroaniline	O-M
n-Butyl oxalate	H_{2}	Di-n-propylamine	P ₁ -O
n-Butyraldehyde	P_1-H_1	Diphenyl methane	II ₂ -I
n-Butyramide	$\mathbf{P_1}$	Dioxane	P_1
n-Butyric acid	$\mathbf{P_1}$	Durene (1,2,4,5-	
n-Butyronitrile	M	Tetramethyl	H ₂
n-Butyryl chloride	P_1-H_1	benzene) Ethyl acetate	$P_1 - H_1$
Camphor	H_2	Ethyl acetoacetate	P_1
Carbon disulphi-	3.6	Ethyl benzoate	II ₂
de	M	Ethyl carbonate	P_1-H_1
Chloral	$\mathbf{P_{i}}$	Ethyl lactate	$P_1^{1-H_1}$
β-Chloroethyl ace-	Π_1	Ethyl malonate	H_2
tate Chlorobydroguino-	111	Ethyl mercaptan	P_1 -M
Chlorohydroquino-	P ₁ -K ₂	Ethyl methyl	- 1
ne α-Chloropropionic	11.2	ether	P_1
acid	P_1	Ethyl methyl ke-	•
Citric acid	$\mathbf{P_2^1}$	tone	P_1
Cyanoacetic acid	P_1^2	Ethyl nitrate	P_1-M
Cyclohexanol	H_1	Ethyl-o-formate	P_1-H_1
Cyclohexanone	P_1 - \hat{H}_1	Ethyl oxalate	P_1 - H_1
Cyclohexyl aceta-		Ethyl phthalate	H_1
te	H_2	Ethyl salicylate	K ₂
Cyclohexylamine	P_1	Ethyl succinate	H_1
Cyclopentanol	H_1	Ethylal	$P_1 - H_1$
Cymene	I	Ethylene diamine	$\mathbf{P_2}$
Diacetone alcohol	$\mathbf{P_1}$	Ethylene glycol	$ \begin{array}{c} P_2 \\ P_1 - P_2 \end{array} $
Dibenzoyl metha-	**	Formamide	1'1-1'2
ne	H_2	Formanilide	P ₁ -M
α,β-Dibromopro-	D 1.	Fumaric acid	$ m ar{K}_1$
pionic acid	P_1-K_1	Furfuryl alcohol Glutaric acid	${\rm P_1} \atop {\rm P_2}$
2,5-Dichlorohydro-	_K	Glycerin	$\mathbf{p}^{\mathbf{r}_2}$
quinone	K ₂	Glycin	$\frac{\mathbf{p_2}}{\mathbf{p}}$
α,α-Dichlorome-	ם	Guanidine	$\mathbf{P_2}$
thyl ether	P_1	Hydroquinone	${ m P_2} \\ { m P_1}$
2,6-Dichloro-4-ni-	M	Trydrodamone	-1
troaniline	147		
		ų	<u> </u>

Table 46 (continued)

Table 46 (continued)

355

Compound	Group	Compound	Group
Propionitrile Propionyl chloride n-Propyl acetate n-Propyl formate Propylene glycol Protocatechuic aldehyde Pyridine Pyrocatechin Pyrrole Resorcinol Sebacic acid Succinimide Succinimide Succinitrile Sulphanilic acid Triacetin (glycerin triacetate) 2,4,6-Tribromoaniline	P_{1}	2,4,6-Tribromo- phenol 2,4,6-Trichloroani- line 2,4,6-Trichloro- phenol Trimethylene gly- col Trimethylene cya- nide Tri-n-propylamine α-Triphenyl gu- anidine Urea Vanillin n-Valeric acid n-Valeric aldehyde Xylenes	K ₁ O-M K ₁ P ₂ P ₂ -M O O-M P ₂ K ₁ K ₁ H ₁

Water solution

Ether solution

* This residue may contain: many dinitro-derivatives of aromatic hydrocarbons and their amino-, oxy- and acid derivatisellulosty trinitro compounds of the aforementioned types; some dihalogen derivatives of anthracene, some amino-substituted sulphonic acids, a few amides and imides; benzyl- and benzylureas, some derivatives of anthraquinone.

** This solution may contain: some dibromo- and dinitrobenzole acids; a few other aromatic acids; some polyoxy- and polyaminoquinones and quinolines, a few aminophenols, amides and anilides; very few amines.

*** To.separate group I, use can be made of the inertness of the compounds which belong to this group, oxidizing the compounds of group H, binding aldehydes and ketones by the saturated NaHSO, solution, and other methods. The presence of group I can be determined with the aid of concentrated H2SO, using a part of the test.

Substances Used for Drying

A. Drying of Gases

Substance	Characte: istics	Amount of steam, mg, remaining in i litre of gas upon passing it at a rate of 1-5 1/h; t=30.5 °C
CuSO ₄	Anhydrous	2.8
CaCl ₂	Granulated; average com-	1.5
0.01	position: CaCl ₂ ·H ₂ O	
CaCl ₂	Technically anhydrous;	1.25
	average composition: CaCl ₂ ·1/4H ₂ O	
ZnCl ₂	Stick	0.98
$Ba(ClO_4)_2$	Anhydrous	0.82
NaOH	Stick	0.80
CaCl ₂	Anhydrous	0.36
$Mg(ClO_4)_2 \cdot 3H_2O$	_	0.031
KOH	Stick	0.014
Silica gel CaSO ₄		0.006
CaO CaO	Anhydrous	0.005
H ₂ SO ₄	100%	0.003 0.003
$Mg(ClO_4)_2$	Anhydrous	0.003
Al_2O_3	<u> </u>	0.001
BaO	_	0.0007
P_2O_5		0.00003

B. Drying of Liquids

Liquid	Drier		
Acids	Na ₂ SO ₄		
Alcohols	K_2CO_3 , $CuSO_4$, CaO , Na_2SO_4 (but not $CaCl_2$, CaC_2)		
Aldehydes	$CaCl_2$, $Mg(ClO_4)_2$		
Amines	NaOH, KOH, K ₂ CO ₃ (but not CaCl ₂)		
Bases	KOH, K ₂ CO ₃ , BaO		
Carbon disulphid c	$CaCl_2$, $Mg(ClO_4)_2$		
Esters	Na_2SO_4 , $CaCl_2$, $Mg(ClO_4)_2$		
Ethers	$CaCl_2$, Na, CaC_2 , K_2CO_3 , $Mg(ClO_4)_2$		
Hydrazines	K_2CO_3		
Hydrocarbons	$CaCl_2$, Na, CaC_2 , $Mg(ClO_4)_2$		
halogen-derivative	CaCl ₂ , Mg(ClO ₄) ₂ (but not Na)		
ones	V. CO. CoCl. Mg(ClO.), (for him)		
Ketones	K_2CO_3 , $CaCl_2$, $Mg(ClO_4)_2$ (for higher ketones)		
Nitriles	K_2CO_8		
Nitro compounds	$CaCl_2$, Na_2SO_4 , $Mg(ClO_4)_2$		
Phenols	Na ₂ SO ₄		

Preparation of Hygrostats

Relative pressure of water vapour over mixtures of solid salts with their saturated aqueous solutions, over mixtures of anhydrous salts with their hydrates and over mixtures of two differing hydrates; water vapour pressure at a given temperature is taken as unity.

	Temperature, °C				
Mixture	10	15	20	25	30
	re	elative v	vater vapou	ır pressu	ıre
P ₂ O ₅ KOH NaOH CaBr ₂ ·6H ₂ O CaCl ₂ ·6H ₂ O Ca(NO ₃) ₂ ·4H ₂ O Ca(NO ₃) ₂ ·4H ₂ O NaBr·2H ₂ O NH ₄ NO ₃ NaCl NaNO ₃ KCl Na ₂ SO ₄ ·10H ₂ O Na ₂ CO ₃ ·10H ₂ O KNO ₃ Na ₂ B ₄ O ₇ ·10H ₂ O KOH + KOH·H ₂ O CaCl ₂ + CaCl ₂ ·H ₂ O Na ₂ SO ₄ + Na ₂ SO ₄ ·10H ₂ O Na ₂ SO ₄ + Na ₂ SO ₄ ·10H ₂ O Na ₂ SO ₄ + Na ₂ SO ₄ ·10H ₂ O NaOH + NaOH·H ₂ O NaOH + NaOH·H ₂ O NaOH + NaI·2H ₂ O NaI + NaI·2H ₂ O Na ₂ CO ₃ + Na ₂ CO ₃ ·H ₂ O	0.23 0.38 0.65 0.63 0.69 0.75 0.77 — — — — — 0.69	0.21 0.35 - 0.60 0.61 0.66 0.75 0.76 - 0.95 - - 0.72 - 0.12	<pre></pre>		0.15 0.26
$egin{array}{l} Na_2B_4O_7 + Na_2B_4O_7 \cdot 5H_2O \\ Na_2HPO_4 + Na_2HPO_4 \cdot 2H_2O \\ NaBr + NaBr \cdot 2H_2O \\ CaCl_2 \cdot H_2O + CaCl_2 \cdot 2H_2O \\ CaCl_2 \cdot 2H_2O + CaCl_2 \cdot 6H_2O \\ \end{array}$	0.30 0.21	0.27 0.32 0.05 0.21	0.25 0.28 0.34 — 0.22	0.29 0.36 - 0.22	0.38 0.23
$ \text{Na}_2 \text{B}_4 \text{O}_7 \cdot 5 \text{H}_2 \text{O} + \text{Na}_2 \text{B}_4 \text{O}_7 \times \times 10 \text{H}_2 \text{O} + \times 10 \text{H}_2 \text{O}_3 \times 10 \text{H}_2 \text{O}_4 \times 10 \text{H}_2		_	0.39	_	_
$ \begin{array}{r} \text{Na}_{2}\text{HPO}_{4} \cdot 2\text{H}_{2}\text{O} + \text{Na}_{2}\text{HPO}_{4} \times \\ \times 7\text{H}_{2}\text{O} & & \\ \text{Na}_{2}\text{CO}_{3} \cdot \text{H}_{2}\text{O} + \text{Na}_{2}\text{CO}_{3} \cdot 10\text{H}_{2}\text{O} \\ \text{Na}_{2}\text{HPO}_{4} \cdot 7\text{H}_{2}\text{O} + \text{Na}_{2}\text{HPO}_{4} \times \end{array} $	0.50 0.66	0.53 0.69	0.56 0.72	0.59 0.76	0.62
$\begin{array}{c} \text{Na}_2\text{HPO}_4\text{-}/\text{H}_2\text{O} + \text{Na}_2\text{HPO}_4\text{-}\\ \times 12\text{H}_2\text{O} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \end{array}$	0.65	0.70	0.75	0.81	

Principal Organic Reagents

Abbreviations used: grav. for gravimetric analysis; vol. for volumetric and similar analyses. In cases of gravimetric and volumetric one atom of a metal is given in parentheses in the sixth column.

A. In the Alphabetical Order of the Reagents

No.	Reagent	Synonymous names
1	Alberon CH ₃ CH ₃ HO HOOC COOH Cl SO ₃ H	Dichlorosulphodi- methyloxyfuch- sone dicarboxylic acid; chromoxane pure blue dye BLD
2	Alizarin O OH OH OH	1,2-Dioxyanthra- quinone
3	Alizarin Red S O OH OH SO ₃ Na	Alizarin S; sodium alizarin sulpho- nate; 1,2-dihyd- roxyanthraquino- ne-3-sulphoni c acid, sodium salt

metric analysis; phot. for colorimetric, spectrophotometric, fluoro-determinations, the number of molecules of a reagent bounded with

 Molecular weight				
M	log M	Elements being determined	Method	
539.35	73 188	Be ²⁺ , Al ³⁺	Phot.	
240.22	38 061	Al ³⁺ , Zr ^{IV} , Th ^{IV} , F-	Phot.	
360.28	55 664	Al ³⁺ , Zr ^{IV} , Th ^{IV} , Ga ³⁺ , F ⁻ , Ti ^{IV} , UO ²⁺	Phot.	

No.	Reagent	Synonymous names
4	Aluminon HO OH H4NOOC C COONH4	Ammonium salt of aurine tricarbo- xylic acid
5	Anthranilic acid COOH NH2	o-Aminobenzoic acid
6	Arsasene $ \begin{array}{c} AsO_3H_2\\ \hline \end{array} $ $ \begin{array}{c} -N+N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-$	1", 4-Diazoamino- 1,1'-azobenzene- 4"-nitrobenzene arsonic acid-2"
7	Arsenazo I AsO(OH) ₂ OH OH N=N NaO ₃ S SO ₃ Na	Benzene-2'-arsonic acid-(1'-azo-2)- 1,8-dihydroxyna- phthalene-3,6-di- sulphonic acid, disodium salt; uranon
8	Arsenazo III (HO) ₂ OAs N HO OH N HO ₃ S SO ₃ H RE: rare-earth elements (lanthanoids, Y and S	Benzene-2'-arsonic acid-(1'-azo-2)- benzene-2"-arso- nic acid-(1"-azo- 7)-1,8-dihydroxy- naphthalene-3,6- disulphonic acid

Table 49 (continued)

N	folecula	r weight		1	
	M	log M	Elements being determined	Method	
47	73.45	67 528	Al ³⁺ , F ⁻ , Be ²⁺	Phot.	
13	37.14	13 716	Cd^{2+} , Co^{2+} , Cu^{2+} , Hg^{2+} , Mn^{2+} , Ni^{2+} , Pb^{2+} , Zn^{2+} (in the form of MeR_2)	Grav.	
47	70.28	_	Pb ²⁺ , Zn ²⁺	Phot.	
59	02.30	77 254	Al ³⁺ , Be ²⁺ , Ce ^{IV} , In ³⁺ , Nb ^V , RE*, Ta ^V , Th ^{IV} , Ti ^{IV} , UO ²⁺ , V ^{IV} , Zr ^{IV}	Phot.	
77	76.38	89 008	Ce ^{IV} , Hf ^{IV} , Np ^{IV} , Pa ^V , Pu ^{IV} , RE*, Th ^{IV} , U ^{IV} , UO ₂ ²⁺ , Zr ^{IV}	Phot.	

No.	Reagent	Synonymous names
9	Azo-azoxy BN $ \begin{array}{c} $	2-[2"-Hydroxynaph- thalene-(1"-azo- 2')-phenylazoxy]- 4-methylphenol
10	Bathophenanthroline $H_5C_6 = N$ $N = N$	4,7-Diphenyl-1-10- phenanthroline
11	α-Benzoin oxime C-CH HO-N OH	Cupron
12	α-Benzyl dioxime C-C-C-C- HON NOH	α-Diphenyl dioxime, nickelon
13	Beryllon II NaO ₃ S N OH ·4H ₂ O HO OH NaO ₃ S NaO ₃ S SO ₃ Na	3,6-Disulphonaph- thol-(8-azo-7')-1', 8'-dioxy-3', 6'- disulphonaphtha- lene, tetrasodium salt

Table 49 (continued)

] ;	Molecular weight			
	M	log M	Elements being determined	Method
3	398.43	60 035	Ca ²⁺	Phot.
3	50.44	54 461	Fe ²⁺	Phot.
2	27.27	35 654	Cu ²⁺ (in the form of MeR ₂)	Grav.
2	40.27	38 070	Ni ²⁺ (in the form of MeR ₂)	Grav.
8	10.58	90 882	Be ²⁺	Phot.

No.	Reagent	Synonymous names
14	Bis-salicylalethylenediamine HO $CH = N - CH_2 - CH_2 - N = HC$	_
15	Brilliant green $(C_2H_5)_2N = N$ C C C	
16	Bromobenzothiazo HO N N N N N N N N N N N N N	
17	Brucine C ₂₃ H ₂₆ O ₄ N ₂	_
18	Cadion $O_2N - \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - N = N - N - \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - N = N - \left\langle \begin{array}{c} \\ \end{array} \right\rangle$	<i>p</i> -Nitrophenyl- azoaminobenze- ne- <i>p</i> -azohenzene
19	Cadion S (water-soluble) SO_3Na $O_2N - \left\langle \begin{array}{c} \\ \\ \\ \\ \end{array} \right\rangle - N = N - \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle - N = N - \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - SO$	 3Na

Table 49 (continued)

_	Molecula	ar weight		1
	М	log M	Elements being determined	Method
	268.32	42 865	Mg ²⁺	Phot. (lumines- cence)
	482.65	68 363	Sb ^V , Tl ³⁺ , Zn ²⁺	Phot.
	372.25	57 083	Cd ²⁺	Phot.
	394.48	59 603	NO3	Phot.
	346.35	53 952	Cd ²⁺	Qualitative (phot.)
	550.46	74 073	Cd ²⁺	Phot.

No.	Reagent	Synonymous names
20	p-Carboxygallanilide HO HO O	3, 4, 5-Trioxyben- zoyl-para-amino- benzoic acid
21	Carboxyarsenazo COOH HO OH AsO(OH) ₂ N=N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	2-Phenylcarboxylic acid-(1-azo-2') 1',8'-dioxynapht-halene-3', 6'-disulphonic acid-(7'-azo-1") 2"-phenylarsonic acid, disodium salt
22	Carminic acid H ₃ C O OH CO - (CHOH) ₄ - CH ₃ HO OH HOOC O OH	
23	Chromotropic acid, disodium salt HO OH NaO ₃ S SO ₃ Na	1, 8-Dioxynaphtha- lene-3, 6-disulph- onic acid, diso- dium salt
24	Complexone III HOOC-CH ₂ N-CH ₂ -CH ₂ -N CH ₂ -COOH	EDTA (sodium ethylene-diaminetetraace-tate, trilon B, versene, chelaton 3)
	* RE: rare-earth elements (lanthanoids, Y and Sc).

Table 49 (continued)

Molecula	r weight		
M	log M	Elements being determined	Method
289.25	46 126	Ti ^{IV}	Phot.
740.30	86 941	Ba ²⁺ , SO ²⁻	Vol.
492.40	69 232	B _{III}	Phot.
364.27	56 142	Ti ^{IV} , Cr ^{VI}	Phot.
336.22	52 663	Ca ²⁺ , Mg ²⁺ , Ni ²⁺ , Cu ²⁺ , Ag ⁺ , Au ³⁺ , Pd ²⁺ , Co ²⁺ , V ^{IV} , Bi ³⁺ , Ga ³⁺ , In ³⁺ , Sn ²⁺ , RE*, Sc ³⁺ , Sr ²⁺ , Ti ^{IV} , Th ^{IV} , Cr ³⁺ , Zr ^{IV} , Mn ²⁺ , Ba ²⁺ , Zn ²⁺ , Cd ²⁺ , Pb ²⁺ , Hg ²⁺ , Tl ³⁺ , Fe ²⁺ , Al ³⁺ , Fe ³⁺ (in the form of MeR) Cr ³⁺ , Co ²⁺ , Mn ²⁺	Vol.

No.	Reagent	Synonymous names
25	Crystal viole [†] (CH ₃) ₂ N C · 9H ₂ O N(CH ₃) ₂	
26	Cupferron NO ONH4	N-Nitrosophenyl- hydroxylamine, ammonium salt
27	Curcumin $CO - CH = CH - \bigcirc OCH_3$ CH_2 $CO - CH = CH - \bigcirc OH$ OCH_3	Bis-(4-hydroxy-3- methoxycinna- moyl)-methane
28	Cyclohexane diondioxime-1,2 CH ₂ NOH H ₂ C C NOH CH ₂ NOH	Nioxime
29	Diallyldithiocarbamidohydrazine C ₃ H ₅ NHCSNHNHCSNHC ₃ H ₅	_

Table 49 (continued)

$\overline{\parallel}$	Molecular weight			
	M	log M	Elements being determined	Method
	570.14	75 598	Sb ^V , Zn ²⁺ , Tl ³⁺ , Cd ²⁺ , Hg ²⁺	Phot.
	155.16	12 078	Al ³⁺ , Bi ³⁺ , Cu ²⁺ , Fe ³⁺ , Ga ³⁺ , Nb ^V , Sn ^{IV} , Ta ^V , Ti ^{IV} , Th ^{IV} , V ^V , Zr ^{IV} , U ^{IV} (in the form of MeR _n , where n is the valency of metal; or the pre- cipitates are calcined to the oxides)	Grav.
	368.39	56 631	B ^{III} , Be ²⁺	Phot.
	142.16	15 278	Ni ²⁺ , Fe ²⁺ , Pd ²⁺	Phot.
	230.36	36 241	Cu ²⁺ , Pb ²⁺ , Zn ²⁺ , Ni ²⁺ , Ag ⁺	Grav.

No.	Reagent	Synonymous names
30	3, 3'-Diaminobenzidine H ₂ N — NH ₂ H ₂ N NH ₂	Tetraaminodiphe- nyl
31	Diantipyryl methane O O	
32	2, 7-Dichlorochromotropic acid HO OH Cl Cl Cl NaO ₃ S SO ₃ Na	1, 8-Dioxy-2, 7-di- chloronaphthale- ne-3, 6-disulpho- nic acid, diso- dium salt
33	p-Dimethylaminobenzylidene rhodanine $ HN - C = 0 $ $ C C $	
34	p-Dimethylaminophenylfluorone HO C CH3 N CH3	Dimethyl fluorone; 2, 6, 7-trioxy-9- (4"-dimethylami- nophenyl)-3-fluo- rone

Table 49 (continued)

Molecul	ar weight		1
M	log M	Elements being determined	Method
214.28	33 098	Se ^{IV}	Phot.
388.48	58 937	Cd ²⁺ , Ti ^{IV} , Fe ³⁺ , Bi ³⁺ , Co ²⁺	Grav.
469.18	67 134	Ti ^{IV}	Phot.
264.38	42 223	Ag ⁺ , Au ⁺ , Hg ²⁺ , Pd ²⁺ , Cu ⁺ Ag ⁺ , Pt ^{IV} , CN ⁻	Phot. Vol.
363.37	56 035	Ta ^V	Phot.

No.	Reagent	Synonymous names
35	Dimethylglyoxime CH ₃ —C—C—CH ₃ HO—N N—OH	Diacetyl dioxime, Chugaev's rea- gent
36	Diphenylcarbazide HN — NH — C — NH — NH O	1, 5-Diphenylcarbo- hydrazide
37	Diphenylcarbazone HN-NH-C-N=N O	_
38	Dipicrylamine $O_2N - \left(\begin{array}{c} NO_2 & O_2N \\ -NH & -\\ NO_2 & O_2N \end{array}\right) - NO_2$	Hexanitrodipheny- lamine
39	2, 2'-Dipyridyl	α, α'-Dipyridyl
40	2, 2'-Diquinolyl	2, 2'-Diquinoline; cuproin

Table 49 (continued)

Molec	ular weight		
M	log M	Elements being determined	Method
116.1	2 06 491	Ni ²⁺ , Pd ²⁺ (in the form of MeR ₂) Fe ²⁺ , Co ²⁺ , Cu ²⁺ (together with pyridine)	Grav., vol., phot. Phot.
242.29	98 433	Cr ^{VI} , Hg ²⁺ , Pb ²⁺ (indirect), (Cd ²⁺)	Phot.
240.2	7 38 070	Hg ²⁺ , Ag ⁺	Phot.
439.23	3 64 269	K+, Rb+, Cs+ (in the form of MeR)	Grav., phot.
156.19	19 365	k651	Phot.
256.30	40 875	Cu ⁺ , (Ti ³⁺)	Phot.

No.	Reagent	Synonymous names
41	8, 8'-Diquinolyldisulphide N S S S	
42	CH ₃ CH ₃ SH	1-Methyl-3,4-di- mercaptobenzene
43	Dithizone N=N-C-NH-NH S S	Diphenylthiocar- bazone
44	Eriochrome Cyanine R See Table 28, No.	23 (p. 232)
45	α-Furfuryl dioxime HC-CH HC-CH HC-CH HC-CH HC-CH HC-CH HC-CH O HO-N N-OH O HO-N N-OH O HO-N N-OH	Neoniclon
46	Gallion Cl OH OH NH ₂ $-N=N$ $+N_2O$ $+N_3S$ $+N_2O$ $+N_3S$ $+N_2O$	2-Hydroxy-3-chlo- ro-5-nitrobenze- ne-(1-azo-2')-1'- hydroxy-8'-naph- thylamine-3', 6'-disulphonic acid

Table 49 (continued)

 Molecula	ar weight		1
 M	log M	Elements being determined	Method
320.44	50 575	Cu+	Phot.
156.27	19 388	Sn ²⁺ , W ^{VI} , Mo ^{VI}	Phot.
256.34	40 882	Ag ⁺ , Bi ³⁺ , Cd ²⁺ , Co ²⁺ , Cu ²⁺ , Hg ²⁺ , Pb ²⁺ , Zn ²⁺ , Ni ²⁺ , In ³⁺ , Tl ⁺ , Sn ²⁺	Phot.
470.46	67 252	Al ³⁺ , Be ²⁺ , Zr ^{IV} , F ⁻	Phot.
238.21	37 696	Ni ²⁺ , Pd ²⁺ (in the form of MeR ₂), Pt ^{IV} , Re ^{VII}	Grav., phot.
536.88	72 989	Ga ³⁺	Phot.

No.	Reagent	Synonymous names
47	Gallocyanine COOH N O OH	
48	Hemp-like datisca (extract) OH HO O OH HO O OH OH OH OH	Substitute for morin. Parent substance: 3, 5, 7, 2'-tetraoxyflavone
49	8-Hydroxyquinoline N OH	o-Hydroxyquinoli- ne, oxine
50	Lumogallion HO ₃ S OH HO Cl HO Cl	2, 2', 4'-Trioxy-5- chloro-(1-azo-1')- benzene-3-sul- phonic acid

^{*} Thorium and uranium precipitate in the form of $ThR_4 \cdot HR$ and

Table 49 (continued)

Molecula	r weight		
 M	log M	Elements being determined	Method
300.27	47 751	Ga ³⁺ , Hg ²⁺ , Pb ²⁺	Vol. (comple- xonometry)
286.25	45 675	Al ³⁺ , Ga ³⁺ , Zr ^{IV} , Th ^{IV}	Phot. (lumi- nescence)
145.16	16 185	Al ³⁺ , Mg ²⁺ , Zn ²⁺ , Bi ³⁺ , Cd ²⁺ , Co ²⁺ , Cu ²⁺ , Ga ³⁺ , In ³⁺ , TiO ²⁺ , Zr ⁴⁺ , MoO ²⁺ , WO ²⁺ , Mn ²⁺ , Fe ³⁺ , Ni ²⁺ , V ₂ O ⁴⁺ , Pb ²⁺ , Pd ²⁺ , Sb ³⁺ , Cr ³⁺ (in the form of MeR _n , where n is the valency of metal)*	Grav., vol., phot.
344.74	53 749	Ga ³⁺	Phot. (lumi- nescence)

UO2R2. HR; niobium precipitate is of an unknown composition.

No.	Reagent	Synonymous names
51	Lumomagneson $NaO_{3}S \longrightarrow OH \longrightarrow HO \longrightarrow C-N \searrow C=O$ $C1 \longrightarrow OC-N \searrow C=O$	2-Hydroxy-3-sul- pho-5-chloroben- zene-1-azobarbi- turic acid
52	Magneson CS OH HO SO ₃ Na -N=N- Cl	2-Naphthol-(1-azo- 2')-4'-chlorophe- nol-6'-sodium sulphonate
53	Mercaptobenzothiazole N C-SH	Captax
54	Mercaptophenylthiothiodiazolone N - N - N C C S S SH	5-Mercapto-3-phe- nyl-2-thio-1, 3, 4-thiodiazolone; bismuthol II
55	8-Mercaptoquinoline, sodium salt 3H ₂ O N SNa	Thiooxine, thio- xine

Table 49 (continued)

_	Molecula	r weight	 	1
	M	log M	Elements being determined	Method
	384.69	58 511	Mg ²⁺	Phot. (lumi- nescence)
	418.79	62 201	Mg ²⁺ , Zn ²⁺	Phot.
	167.26	22 341	Ag ⁺ , Au ³⁺ , Bi ³⁺ , Cd ²⁺ , Cu ²⁺ , Pb ²⁺ , Tl ³⁺	Grav.
	226.35	35 478	Bi ³⁺	Phot.
	237.25	37 521	Pd ²⁺ , Cu ²⁺ , Mo ^{VI} , Re ^{VII} , In ³⁺ , Mn ²⁺ , V ^{IV} , Co ²⁺ , Ru ³⁺ , Os ³⁺ , Tl ⁺	Phot.

No.	Reagent	Synonymous names
56	Methyl violet	_
	$(CH_3)_2N$ N N N N N N N N N	
_		
57	Morin HO O O O O O O O O O O O O O O O O O O	3, 5, 7, 2', 4'-Pen- taoxyflavone
58	Murexide, See Table 28, No. 33, p. 238	
59	β-Naphthoquinoline	Naphthin, 5, 6-ben- zoquinoline

Table 49 (continued)

$\overline{}$	Molecula	r weight		
[-	M	log M	Elements being determined	Method
		-	Sb ^V , Zn ²⁺ , Cd ²⁺ , Ti ³⁺ , Hg ²⁺ , Re ^{VII} , Ta ^V	Phot.
	298.26	47 459	Al ³⁺ , Ca ³⁺ , Zr ^{IV} , Th ^{IV} , In ³⁺	Phot. (lumi- nescence)
	302.21	48 031	Ca ²⁺ , Sr ²⁺	Phot.
	179.22	25 339	Cd ²⁺ (the precipitate is calci- ned to the oxide)	Grav.

No.	Reagent	Synonymous names
60	No ₂ NO ₂ NO ₂ SO ₃ H HO ₃ S N HO [OH HO ₃ S N SO ₃ H	Bis-[2, 7-(4-nitro- 2-sulpho-1-azo- benzene)]-1, 8- dioxynaphthale- ne-3, 6,-disul- phonic acid
61	Nitron $ \begin{array}{c c} C_6H_5 - N - N \\ & C_6H_5 & N \\ & N \\ & N \\ & C_6H_5 \end{array} $	1,4-Diphenyl-(3,5- endoanyl)-dihy- dro-1, 2,4-tria- zole
62	α-Nitroso-β-naphthol NO OH	Ilyinsky's reagent; 1-nitroso-2-naph- thol
63	β-Nitroso-α-naphthol OH NO	2-Nitroso-1-naph- thol

Table 49 (continued)

Molecula	r weight		
M	log M	Elements being determined	Method
778.65	89 134	Ba ²⁺ , SO ²⁻	Vol.
312.38	49 468	ReO ₄ , NO ₅ , ClO ₃ , ClO ₄ (in the form of RAn, where An is an anion)	Grav.
173.17	23 848	Co ²⁺ , Fe ³⁺ , Pd ²⁺ , Cu ²⁺ (in the form of MeR _n , where n is the valency of metal; otherwise the precipitates are calcined to the oxides)	Grav., phot.
173.17	23 848	Co ²⁺	Phot.

No.	Reagent	Synonymous names
64	Nitroso-R-salt NO OH NaO3S SO3Na	1-Nitroso-2-naph- thol-3, 6-disul- phonic acid, diso- dium salt
65	1, 10-Phenanthroline N H ₂ O	
66	Phenazo $O_2N \longrightarrow N O_2$ $HO - \left(\longrightarrow -N = N - \left(\longrightarrow -N - N - \left(\longrightarrow -O H \right) \right) \right)$	3, 3'-Dinitro-4, 4'- bis-(4"-hydroxy- benzeneazo)-bi- phenyl
67	Phenylarsonic acid AsO(OH) ₂	_
68	Phenylfluorone C ₆ H ₅ OH OH	9-Phenyl-2, 3, 7-tri- oxyfluorone-6
69	Picrolonic acid $O_2N = \begin{array}{c} & CO - CH - NO_2 \\ & & \\ N = C - CH_3 \end{array}$	1-(p-Nitrophenyl)- 3-methyl-4-nit- ropyrazolone-5
70	2, 2'-Potassium bicinchonine KOOC COOK C C N N	_

Table 49 (continued)

Molecula	r weight		
M	log M	Elements being determined	Method
377.27	57 665	Co ²⁺ , K ⁺ (indirect)	Phot.
198.23	29 717	F _e ²⁺	Phot.
484.30	68 511	Mg ²⁺	Phot.
202.03	30 542	Nb ^V , Ta ^V , Zr ^{IV} , Bi ³⁺ , Hf ^{IV} , Sn ^{IV} , Th ^{IV} (precipitates are calcined to the oxides)	Grav.
320.31	50 557	Ge ^{IV} , Sn ^{IV} , Ta ^V , Zr ^{IV} , Sb ^{III}	Phot.
264.21	42 195	Ph ²⁺ , Ca ²⁺ , Sr ²⁺ , Mg ²⁺ , Th ^{IV} (in the form of MeR _n , where n is the valency of metal) Ca ²⁺	Grav.
420.52	62 379	Cu+	Phot.

No.	Reagent	Synonymous names
71	Purpurin O OH OH OH OOH	1, 2, 4-Trioxyanth- raquinone
72	Pyrogallol OH HO OH	1, 2, 3-Trioxyben- zene
73	Quinaldic acid 2H ₂ O COOH	α-Quinoline carbo- xylic acid
74	Quinalizarin HO O OH OH HO O	1, 2, 5, 8-Tetrao- xyanthraquinone
75	Rhodamine B $(C_2H_5)_2N. \qquad O \qquad \mathring{N}(C_2H_5)_2Cl^-$ $C \qquad COOH$	Rhodamine S: tet- raethyldiamino- o-carboxyphenyl- xanthenyl chlo- ride

Table 49 (continued)

_	Molecula	r weight		
	M	log M	Elements being determined	Method
	256.22	40 861	Zr ^{IV} , F-	Phot.
			,	
	126.11	10 075	Bi ³⁺ , Sb ³⁺ (in the form of MeR)	Grav.
			B ^{III} , Ta ^V , Nb ^V	Phot.
	210.21	32 265	Cu ²⁺ , Pb ²⁺ , Ag ⁺ , Mn ²⁺ , Ni ²⁺ , Co ²⁺ , Fe ²⁺ , Cd ²⁺ , Zn ²⁺ , UO ²⁺ , FeOH ²⁺ , AlOH ²⁺ , CrOH ²⁺ (in the form of MeR _n , where n is the valency of metal)	Grav.
	272.22	43 492	Be ²⁺ , B ^{III} , Mg ²⁺ , Al ³⁺ , Ga ³⁺	Phot.
	479.03	68 037	Sb ^V , Zn ² ⁺ , Ga ³ ⁺ , Tl ³ ⁺ , W ^{VI} , Cd ² ⁺	Phot. (lumi- nescence)

No.	Reagent	Synonymous names
76	Rhodamine 6G H ₅ C ₂ HN C C C COOC ₂ H ₅	Ethyl ether of di- ethylamino-o- carboxyphenyl- xanthenyl chlo- ride
77	Rubeanic acid HN=C-C=NH S S H H	Dithioxamide
78	Salicylaldoxime OH CH = N - OH	_
79	Salicylal-o-aminophenol OH HO CH = N	2, 2'-Dioxybenzyli- denaniline
80	Salicylic acid OH COOH	o-Hydroxybenzoic acid
81	Sodium diethyldithiocarbomate $(C_2H_5)_2N-C $	

Table 49 (continued)

Molecula	nr weight		35-44-4
M	log M	Elements being determined	Method
450.97	65 415	Re ^{VII} , In ³⁺ , Tl ⁺	Phot. (lumi- nescence)
120.20	07 990	Cu ²⁺ , Co ²⁺ , Ru ^{IV} , Pd ²⁺ , Ag ⁺	Phot.
137.14	13 716	Cu ²⁺ , Bi ³⁺ , Pb ²⁺ , Pd ²⁺ (in the form of MeR ₂) Fe ³⁺	Grav. Phot.
213.24	32 887	Al ³⁺ Mn ²⁺	Phot. (lumi- nescence) Phot.
138.13	14 029	Fe ³⁺ , Cu ²⁺	Phot.
225.34	35 284	Cu ²⁺ , UO ₂ ²⁺ , Ni ²⁺	Phot.

No.	Reagent	Synonymous names
82	Sodium sulphosalicylate HOOC HO — SO ₃ Na·2H ₂ O	_
83	Sodium tetraphenylborate	Kalignost
84	Stilbazo HO	Stilben-2-2'-disul- phonic acid-4, 4'- bis-(azo-1")-3"- 4"-dioxybenzene, diammonium salt
85	Stilbexone $ \begin{array}{cccccccccccccccccccccccccccccccccc$	4, 4'-Diaminostil- ben-(N, N, N', N'- tetracarboxyme- thyl)-2-2'-disul- phonic acid, diso- dium salt
86	Sulpharsasene $O_2N - $	Plumbone; 4"-nit- robenzene-(1", 4)-diazoamino- (1-azo-1')-benze- ne-2"-arsono-4'- sodium sulpho- nate

Table 49 (continued)

 Molecula	ar weight		
M	log M	Elements being determined	Method
254.22	40 521	Fe ³⁺ , Fe ²⁺	Phot.
342.24	53 433	K+, Rb+, Cs+, Tl+, NH;	Grav., vol., phot.
646.66	81 068	Al ³⁺	Phot.
646.51	81 058	Fe ³⁺	Phot. (lumi- nescence)
572.32	75 764	Pb ²⁺ , Zn ²⁺ , Cd ²⁺	Phot., vol.

No.	Reagent	Synonymous names
87	Sulphonazo HO ₃ S N = N OH OH NH ₂ SO ₂ OH OH NH ₂ N = N HO ₃ S SO ₃ H	Sulphon-bis-[4-hyd-roxyphenyl-(3-azo-2')]-1'-hydro-xy-8'-aminona-phthalene-3', 6'-disulphonic acid
88	Tannin C ₇₆ H ₅₂ O ₄₆	_
89	Thioacetamide ${ m CH_3-C-NH_2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	_
90	Thioglycolic acid HSCH ₂ COOH	_
91	Thionalide NH — CO — CH ₂ — SH	β-Aminonaphtha- lide of thiogly- colic acid
92	Thiourea H ₂ N — C — NH ₂ S	Thiocarbamide

Table 49 (continued)

 Molecula	ar weight		
М	log M	Elements being determined	Method
976.93	98 986	Sc ³⁺ , V ^V	Phot.
~1700	_	Be ²⁺ , Al ³⁺ , Ga ³⁺ , Ge ^{IV} , Mo ^{VI} , Nb ^V , Sn ^{IV} , Ta ^V , Ti ^{IV} , UO ²⁺ , W ^{VI} , Zr ^{IV} , Th ^{IV} (precipitates are calcined to the oxides)	Grav.
75.13	87 581	Bi ³⁺ , As ³⁺ , Sb ³⁺ , Cd ²⁺ , Pb ²⁺ , Sn ²⁺ , Hg ⁺ , MoO ²⁺ , Cu ²⁺ , Pb ²⁺ Cu ²⁺	Grav. Phot.
92.120	96 435	Fe ²⁺ , W ^{VI} , Sn ²⁺ (a reagent is added when tin is being determined by dithiol)	Phot.
217.29	33 704	Tl ⁺ , As ^{III} , Sb ^{III} , Sn ²⁺ , Ag ⁺ , Au ^{III} , Cu ²⁺ , Hg ²⁺ , Pd ²⁺ , Bi ³⁺ , Rh ^{III} , Ru ^{III} , Mn ²⁺ , Pb ²⁺ , Ni ²⁺ , Co ²⁺ (in the form of MeR _n , where n is the valency of metal)	Grav.
76.125	88 153	Bi ³⁺ , Os ^{VI} , Ru ^{IV} , Re ^{VII} , Te ^{IV}	Phot.

No.	Reagent	Synonymous names				
93	Thoron AsO(OH)(ONa) HO SO ₃ Na SO ₃ Na	Benzene-2'-arsonic acid-(1'-azo-1)-2- hydroxynaphtha- leno-3, 6-disul- phonic acid, tri- sodium salt; tho- rin, naphthar- son, APANS				
94	Titanium yellow $H_{3}C \longrightarrow N \qquad SO_{3}Na$ $S - C \longrightarrow N \qquad N$ $S - C \longrightarrow NH$ $H_{3}C \longrightarrow N \qquad SO_{3}Na$	Bis-4, 4'-[6-methyl- benzothiazol-(1, 3)]-diazoamino- benzene-(2, 2')-so- dium disulphona- te; mimosa; thi- azo yellow				
95	o-Tolidine H ₂ N — NH ₂ H ₂ C CH ₃					
96	8-Tosylaminoquinoline N NH $H_3C - \left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right) - \begin{array}{c} \\ \\ \\ \\ \end{array}$ $H_3C - \left(\begin{array}{c} \\ \\ \\ \end{array}\right)$	8-(<i>p</i> -Toluene sul- phamido)-quino- line				
97	Zirconon OH $ \begin{array}{c} OH \\ - N = N - \\ \hline CH_3 \end{array} $ OH SO ₃ H	2-Hydroxy-5-me- thylazobenzene- 4'-sulphonic acid				
	* RE: rare-earth elements (lanthanoids, Y and Sc).					

Table 49 (continued)

	Molecula	r weight		
	M	log M	Elements being determined	Method
	598.29	77 691	Th ^{IV} , F ⁻ , U ^{IV} , Zn ²⁺ , Zr ^{IV} , Ta ^V , Nb ^V , RE*, Bi ³⁺ , Li ⁺ , Be ²⁺	Phot.
	695.75	84 245	Mg ²⁺	Phot.
	212.30	32 695	OsO ₄ , RuO ₄ , Ag ^{III} , V ^V , halogens	Phot.
	298.35	47 473	Zn ²⁺ , Cd ²⁺	Phot. (lumi- nescence)
_	292.32	46 586	Zr ^{IV} (the precipitate is calcined to the oxide)	Grav.

Table 49 (continued)
B. In the Alphabetical Order of the Elements Being Determined

	1	1
Element being determined	Resgent (No. according to Table A)	Method
Aluminium	26, 49, 73, 88	Grav.
	24, 49	Vol.
	1, 2, 3, 4, 7, 44, 48, 49, 57, 74, 79, 84	Phot.
Ammonium	83	Grav., vol. Phot.
Antimony	49, 72, 89, 91	Grav.
····································	49	Vol.
	15, 25, 49, 56, 75	Phot.
Arsenic	89, 91	Grav.
Barium	21, 24, 60	Vol.
Beryllium	88	Grav.
D:	1, 4, 7, 13, 27, 44, 74, 93	Phot.
Bismuth	26, 31, 49, 53, 67, 72, 78, 89, 91	Grav.
	24, 49	Vol.
Boron	43, 49, 54, 92, 93	Phot. Phot.
Cadmium	22, 27, 72, 74 5, 31, 49, 53, 59, 73, 89	Grav.
Caumium	5, 51, 49, 55, 59, 75, 65 24 40 86	Vol.
	24, 49, 86 16, 18, 19, 25, 36, 43, 49, 56	Phot.
	75, 86, 96	
Calcium	69	Grav.
	24	Vol.
	9, 58, 69	Phot.
Cesium	38, 83	Grav., phot.
~ .	83	Vol.
Cerium	7, 8	Phot.
Chlorates and	61	Grav.
perchlorates	40 72	Grav.
Chromium (III)	49, 73 24, 49	Vol., phot.
Chromium (VI)	23, 36	Phot.
Cobalt	5, 31, 49, 62, 73, 91	Grav.
	24, 49	Vol.
	24, 35, 43, 49, 55, 62, 63, 64, 77	Phot.
Copper	5, 11, 24, 26, 29, 49, 53, 73,	Grav.
	78, 89, 91	
	24, 49	Vol.
	33, 35, 40, 41, 43, 49, 55, 62	Phot.
	70, 77, 80, 81, 89	••• 1
Cyanides	33	Vol.
Fluorine	2, 3, 4, 44, 71, 93	Phot.
Gallium	26, 49, 88	Grav.
	24, 49 3, 46, 48, 49, 50, 57, 74, 75	Vol. Phot.
	0, 30, 30, 40, 01, 14, 10	I IIUU.

Table 49 (continued)

·	i -	,
Element being determined	Reagent (No. according to Table A)	Method
Germanium	68, 88	Phot.
Gold	53, 91	Grav.
	24	Vol.
	$\frac{1}{33}$, 95	Phot.
Hafnium	67	Grav.
	8	Phot.
Indium	49	Grav.
	24, 49	Vol.
	43, 49, 55, 76	Phot.
Iron (II)	73	Grav.
(/	24	Vol.
	10, 28, 35, 39, 65, 82, 90	Phot.
Iron (III)	26, 31, 49, 62, 73	Grav.
' '	24. 49	Vol.
	49, 62, 78, 80, 82, 85	Phot.
Lead	5, 29, 49, 53, 69, 73, 77, 78, 89	Grav. Vol.
	24, 47, 49, 86, 91	Phot.
	6, 36, 43, 49, 86, 89	Phot.
Lithium	93	Grav.
Magnesium	49, 69	Vol.
	24, 49	Phot.
	14, 49, 51, 52, 66, 74, 94	Grav.
Manganese	5, 49, 73, 91	Vol.
	24, 49	Phot.
Monossum	24, 49, 55, 79	Grav.
Mercury	5, 89, 91	Vol.
	24, 47 25, 33, 36, 37, 43, 56	Phot.
Molyhdonum	1 40 88 80	Grav.
Molybdenum	49, 88, 89 49	Vol.
	42, 49, 55	Phot.
Neptunium	8	Phot.
Nickel	5, 12, 29, 35, 45, 49, 73, 91	Grav.
	24, 35, 49	Vol.
	35, 43, 45, 49, 81	Phot.
Niobium	26, 67, 88	Grav.
	7, 72, 93	Phot.
Nitrates	61	Grav.
	17	Phot.
Osmium	55, 92, 95	Phot.
Palladium	35, 45, 49, 78, 91	Grav.
	24, 35, 49	Vol.
77.	28, 33, 35, 45, 49, 55, 62, 77	Phot.
Platinum	45	Grav.
	33, 45	Phot.
		<u> </u>

Element being determined (No. according to Table A) Plutonium Potassium 8 8 8 83 83 83 84 85 84 85 85 864 864 87 88	Phot. Grav. Vol. Phot. Phot. Vol.
Potassium 38, 83 83 83 83 88 Protactinium 8	Grav. Vol. Phot. Phot. Vol.
Protactinium 8	Phot. Phot. Vol.
1 **	
Rhenium 7, 8, 93 61 55 50 70 62	Phot. Grav.
Rhodium 55, 56, 76, 92 91 38, 83	Phot. Grav. Grav.
Ruthenium 83 91	Vol. Grav.
Scandium 55, 91, 95	Phot. Vol.
Selenium 8, 87 30 29, 53, 73, 91	Phot. Phot. Grav.
Strontium 24, 33 33, 37, 43, 77 69 24	Vol. Phot. Grav. Vol.
Sulphates	Phot. Vol.
Tantalum 26, 67, 88 7, 34, 56, 68, 72, 93 53, 83, 91	Grav. Phot. Grav.
Thorium 24, 83 15, 25, 40, 43, 55, 56, 75, 76, 83 26, 67, 69, 88	Vol. Phot. Grav.
Tin 24 2, 3, 7, 8, 48, 57, 93 67, 88, 89, 91	Vol. Phot. Grav.
Titanium 24 42, 43, 68, 90 26, 31, 49, 88 24, 49	Vol. Phot. Grav. Vol.
Tungsten 3, 7, 20, 23, 32, 40, 49 49, 88 42, 49, 75, 90	Phot. Grav.,. vol. Phot.
Uranium 26, 73, 88 3, 7, 8, 81, 93	Grav. Phot.
Vanadium 26, 49	Grav.
* RE: rare-earth elements (lanthanoids, Y and Sc).	

Table 49 (continued)

Vanadium 24, 49 Vol. 7, 49, 55, 87, 95 Phot. Wolfram see Tungsten Grav. Zinc 5, 29, 49, 73 Vol. 24, 49, 86 Vol. Phot. 6, 15, 25, 43, 49, 56, 75, 86, 93, 96 Grav. Zirconium 26, 49, 67, 88, 97 Grav. 24, 49 Vol. Phot. 2, 3, 7, 8, 44, 48, 49, 57, 68, 93 Phot.	Element being determined	Reagent (No. according to Table A)	Method
	Wolfram Zinc	7, 49, 55, 87, 95 see Tungsten 5, 29, 49, 73 24, 49, 86 6, 15, 25, 43, 49, 56, 75, 86, 93, 96 26, 49, 67, 88, 97 24, 49	Phot. Grav. Vol. Phot. Grav. Vol.

Table 50

USSR Standard Sieves

Number of ope- nings per cm	Number of ope- nings per inch (mesh number)	Width of ope- ning, mm	Diameter of wire, mm
	nings per inch		
1.4 1.2 1	3.5 3 2.5	5.66 6.72 8.00	1 .45 1 .65 1 .85

Table 51

Half-Wave Potentials in Polarographic Analysis with a Dropping Mercury Electrode

Element being determined	Composition of the solution (background)	Valency change	Half-wave potential $E_{1/2}$, V
Al ^{III} As ^{III} Bi ^{III} Br ^V Ca ^{II} and other alkaline-earth	0.5.V BaCl ₂ (the evolution of H ₂ is possible) 1M H ₂ SO ₄ + 0.01% gelatin	$3 \rightarrow 0 (?)$ $3 \rightarrow 0$ $3 \rightarrow 5$ $3 \rightarrow 0$ $3 \rightarrow 0$ $3 \rightarrow 0$ $5 \rightarrow (-1)$ $2 \rightarrow 0$	-1.7 -0.7 -0.26 -0.04 -0.29 -0.70 -1.00 -0.43 -2.22
metals Cd ^{II} Ce ^{IV} Co ^{II} Cr ^{III} Cr ^{III} Cr ^{UI} Cu ^I	0.1N HCl	$2 \rightarrow 0$ $2 \rightarrow 0$ $2 \rightarrow 0$ $4 \rightarrow 3$ $2 \rightarrow 0$ $2 \rightarrow 3$ $2 \rightarrow 3$ $2 \rightarrow 3$ $2 \rightarrow 3$ $4 \rightarrow 3$ $2 \rightarrow 3$ $1 \rightarrow 2$ $2 \rightarrow 0$ $6 \rightarrow 3$ $1 \rightarrow 2$ $1 \rightarrow 0$	$\begin{array}{c} -0.60 \\ -0.79 \\ -0.81 \\ -0.71 \\ -1.2 \\ -1.03 \\ -0.456 \\ -0.58 \\ -0.81 \\ -1.50 \\ -1.03 \\ -0.25 \\ -0.54 \end{array}$

Element being determined	Composition of the solution (background)	Valency change	Half-wave potential $E_{1/2}$, V
Cu ^{II}	$\begin{array}{c} 0.5M \text{ H}_2\text{SO}_4 + 0.01\% \text{ gelation} \\ 1 \text{ at in} \end{array}$	$2 \rightarrow 0$	-0.00
Fe ^{II}	$0.5M \text{ Na}_2\text{C}_4\text{H}_4\text{O}_6, \text{ pH } 12$ $1M \text{ Na}_2\text{C}_2\text{O}_4 \dots \dots \dots$ $1M \text{ Na}_2\text{C}_2\text{O}_4 \dots \dots \dots$ $1M \text{ HClO}_4, \text{ pH } 0-2 \dots$	$ \begin{array}{c} 2 \rightarrow 0 \\ 3 \rightleftharpoons 2 \\ 2 \rightleftharpoons 3 \end{array} $	-0.38 -0.24 -0.24
Fe ^{III}	$0.5M \text{ (NH}_4)_2\text{C}_4\text{H}_4\text{O}_5 + + 1M \text{ NH}_4\text{OH} + 0.005\%$	$2 \to 0$ $3 \to 2$	—1.37 —0.98
Ga ^{III}	gelatin	$ \begin{cases} 3 \to 2 \\ 2 \to 0 \\ 3 \to 0 \\ 3 \to 0 \end{cases} $	-1.53 -0.85 -1.58
Ge ^{II}	0.5 <i>M</i> HCl	$\begin{array}{c} 2 \rightarrow 0 \\ 2 \rightarrow 4 \end{array}$	$ \begin{array}{c c} -0.42 \\ -0.10 \end{array} $
Ge ^{IV}	$\begin{array}{c} 0.1M \text{ NH}_4\text{OH} + 0.1M \\ \text{NH}_4\text{Cl} \end{array}$	4 → 2	-1.45
H_2O_2	0.2 <i>M</i> EDTA, pH 6.8 0.1 <i>M</i> KCl	$\begin{array}{c} 1 \rightarrow 0 \\ (-1) \rightarrow \end{array}$	$ \begin{array}{r r} -1.3 \\ -1.58 \\ -0.88 \end{array} $
I ^v	0.1 <i>M</i> NaOH	$ \begin{array}{c c} \rightarrow (-2) \\ (-1) \rightarrow 0 \\ 5 \rightarrow (-1) \end{array} $. 1
InIII	$\mid 0.05M \text{ KCl} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	1	$\begin{array}{c c} -1.28 \\ -1.0 \\ -0.68 \end{array}$
K ^I and other al- kaline	0.1M tetramethyl ammo- nium	1 → 0	2.13
metals Mn ^{II}	0.5M NH ₄ OH + $0.5NNH4Cl$	$\begin{cases} 2 \to 0 \\ 2 \to 3 \end{cases}$	-1.54 -0.4 -1.7
Mo ^{VI}	3 <i>M</i> HClO ₄	$\begin{cases} 2 \to 0 \\ 6 \to 5 \\ 5 \to 3 \\ 6 \to 5 \\ 5 \to 3 \\ 3 \to 2 \\ 2 \to 1 \\ 1 \to (-1) \end{cases}$	$ \begin{array}{c c} -0.14 \\ -0.79 \end{array} $
	0.1 <i>M</i> HCl	$\left \left\{ \begin{array}{c} 6 \to 5 \\ 5 \to 3 \end{array} \right. \right.$	$ \begin{array}{c c} -0.29 \\ -0.74 \end{array} $
N^{HI}	Buffer solution, pH 9	$\begin{cases} 3 \to 2 \\ 2 \to 1 \\ 1 \to (-1) \end{cases}$	$ \begin{array}{c c} & -0.45 \\ & -0.70 \\ & -1.00 \end{array} $
/	,		4,00

Table 51 (continued)

Element being determined	Composition of the solution (background)	Valency change	Half-wave potential $E_{1/2}$. V
NV	0.1 <i>M</i> LiCl	5 → (?)	-2.1 -1.2
$_{ m Nb}^{ m v}$	0.1M LaCl ₃ ; 0.1M CeCl ₃ 0.1M H ₂ C ₂ O ₄ , pH 1.2-5.5	$5 \rightarrow (?)$ $5 \rightarrow 4$	-1.5
N _i m	$0.06M \text{ HNO}_3$ HClO ₄ , pH 0-2, 1N KCl	$ \begin{array}{cccc} 5 \rightarrow 3 & (?) \\ 2 \rightarrow 0 \end{array} $	-0.84 -1.1
1,11	$ \begin{array}{c} 1M \text{ NH}_4\text{OH} + 0.2M \text{ NH}_4\text{Cl} \\ + 0.005\% \text{ gelatin} \end{array} $	$2 \rightarrow 0$	-1.06
		$\left \begin{array}{c} 0 \to (-1) \\ (-1) \to \end{array} \right $	$-0.05 \\ -0.04$
O ₂	Buffer solution, pH 1-10	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	—1. 4 1
Os ^{VI}	Ca(OH) ₂ saturated	$\left \left\{ 4 \rightarrow 3 \right. \right $	-1.16
PbII	1M KCl	$ \begin{array}{c} 2 \to 0 \\ 2 \to 0 \end{array} $	-0.431 -0.765
PdII	$\begin{array}{c} 1M \text{ NH}_4\text{OH} + 1M \text{ NH}_4\text{Cl} + \\ + 0.001\% \text{ methyl red} \end{array}$	$2 \rightarrow 0$	-0.72
PtII	2M NaOH or KOH 0.5M KSCN + 0.05M	$2 \rightarrow 0$	—1.41
	ethylene diamine	$2 \rightarrow 0$	-0.51
ReVII	2 <i>M</i> KCl	$\begin{array}{c c} 7 \rightarrow (-1) \\ 7 \rightarrow 4 \ (?) \end{array}$	—1.43 —0.45
RhIII	$1M \text{ NH}_4\text{OH} + 1M \text{ NH}_4\text{Cl}$	$\begin{array}{c} 3 \rightarrow 1 \\ 3 \rightarrow 0 \end{array}$	-0.93 -0.22
SbIII	2M HCl	$\left \left\{ 3 \rightarrow 5 \right. \right $	—0.45
$_{ m Sb}{ m v}$		$\begin{array}{c c} 3 \rightarrow 0 \\ 5 \rightarrow 0 \end{array} (?)$	-1.15 -0.24
SeIV	$2M \text{ HCl} \dots \dots \dots \dots \dots \\ 0.1M \text{ NH}_4\text{Cl} + 0.003\% \text{ ge-}$	` `	
$\mathbf{Sn^{II}}$	latin $1M H_2SO_4 \dots \dots \dots$	$\begin{array}{c c} 4 \rightarrow (-2) \\ 2 \rightarrow 0 \end{array}$	-1.50 -0.46
	1M HCl	$2 \rightarrow 4$	-0.1
	tin	$\left\{\begin{array}{c} 2 \to 4 \\ 2 \to 0 \end{array}\right.$	-0.73 -1.22
SnIV	$1M \text{ HCl} + 4M \text{ NH}_4\text{Cl} + $	$\int 4 \rightarrow 2$	0.25
	+ 0.005% gelatin	$\begin{array}{c} 1 & 2 \rightarrow 0 \end{array}$	-0.52
Tav	NaF	$4 \rightarrow 2$ $5 \rightarrow (?)$	-1.2 -1.16
			:
		1	

Element heing determined	Composition of the solution (background)	Valency change	Half-wave potential $E_{1/2}$, V	
Te ^{IV}	0.1M NaOH + 0.003% ge- latin	$4 \rightarrow (-2)$	-1.22	
Te ^{VI}	0.1M (NH ₄) ₂ C ₄ H ₄ O ₆ + + 0.003% gelatin, pH 9.0	$4 \rightarrow (0)?$ $6 \rightarrow (-2)$	-0.76	
Τί ^{ΠΙ} Τί ^{ΙV}	0.1M NH ₄ Cl + NH ₄ OH + + 0.0005% gelatin pH 6.2 pH 9.2 0.1M HCl	$6 \rightarrow (-2)$ $6 \rightarrow (-2)$ $6 \rightarrow (-2)$ $3 \rightarrow 4$ $4 \rightarrow 3$	-1.17	
	$0.2M \text{ H}_2\text{C}_4\text{H}_4\text{O}_6$ $0.4M \text{ Na}_2\text{C}_4\text{H}_4\text{O}_6$ + + 0.005% gelatin, pH 11.8	4 → 3	-0.38	
Ti ^I	1M KCl	$1 \rightarrow 0$	-1.65 -0.482	
$U_{\mathbf{x}}^{\mathbf{I}\mathbf{V}}$	0.1M NaClO ₄	$\begin{array}{c c} 1 \rightarrow 0 \\ 4 \rightarrow 3 \end{array}$	$-0.49 \\ -0.92$	
$\Pi_{\mathbf{A}}$	0.1N KCl $+$ HCl, pH 3	$5 \rightarrow 6$	-0.18	
$U_{\mathbf{\Lambda}\mathbf{I}}$	0.5N HCl	$\left \left\{ \begin{array}{c} 6 \to 5 \\ 5 \to 3 \end{array} \right. \right $	$-0.20 \\ -0.92$	
Λ_{11}	0.1M KCl Na ₂ B ₄ O ₇ saturated, pH 5.1	$ \begin{cases} 2 \to 3 \\ 2 \to 3 \\ 3 \to 4 \end{cases} $	$-0.50 \\ -0.55 \\ -0.03$	
V_{III}	$0.1M \text{ CO}_2^{3-} + \text{CO}_2 \text{ satura}$	(4 → 5	+0.13	
vIV	ted, pH 6.7 $0.1M \text{ H}_2\text{SO}_4 + 0.005\%$	$3 \rightarrow 5$	-0.06	
	gelatin . 1M NaOH + 0.08M	4 → 2	-0.85	
v	$Na_2SO_3 + 1M KCl$ $1M NH_4OH + 1M NH_4Cl +$	1	-0.39	
	+ 0.005% gelatin	$\left \left\{ \begin{array}{c} 5 \to 4 \\ 4 \to 2 \end{array} \right. \right $	$-0.97 \\ -1.26$	
WVI	12 <i>M</i> HCl	$ \begin{cases} 5 \to 4 \\ 4 \to 2 \end{cases} $ $ \begin{cases} 6 \to 5 \\ 5 \to 3 \end{cases} $	* 0.54	
* Reduced directly at the potential of mercury solution.				

Table 51 (continued)

Element being determined	Composition of the solution (background)	Valency change	Half-wave potential, $E_{1/2}$, V
WVI Zn ^{II}	4M HCl	$5 \rightarrow 3$ $2 \rightarrow 0$ $2 \rightarrow 0$	-0.66 -1.02 -1.33
Zr ^{IV}	1M NaOH	$\begin{array}{c} 2 \rightarrow 0 \\ 2 \rightarrow 0 \\ 4 \rightarrow 0 \end{array}$	—1.49 —1.65

Table 52

Amperometric Titration of Selected Substances (according

Abbreviations used: a-anodic (oxidizing) current; c-cathodic (re Forms of titration curves

Ion or molecule which pro- duces	Nature of elect- rode	Potential of the platinum indicator microelectrode relative to the reference electrode		Composition of background solution
diffusion current	reac- tion	microelect- rode, V	saturated calomel elec- trode, V	
Ag ^I	С	0	-0.25	HNO3, KNO3, CH3COONa
	С	0	-0.25	HNO ₃ , KNO ₃ , CH ₃ COONa
	c	+0.40	+0.15	H ₂ SO ₄
	c	+0.40	+0.15	H ₂ SO ₄
	С	from 0 to +0.40	from -0.25 to +0.15	NH₄OH + NH₄Cl
As ^{III}	a	+1.30	+1.05	HCl, H ₂ SO ₄

to O. A. Songina)
ducing) current

Form of titra- tion curve	Substance being titrated	Titrant	Remarks
I	Ag ^I	I-, Br-, Cl- and others which form sparingly soluble precipitates with Ag ^I	_
П	Cl-, Br-, I-, SCN- and others which form sparingly soluble preci- pitates with Ag ^I	Ag ^I	
Ι	Ag ^I	I and others which form sparingly solu- ble precipita- tes with Ag ^I	Titration can be con- ducted in the pre- sence of Cu ^{II}
II	Cl- and others which form sparingly solu- ble precipita- tes with Ag ^I	Ag ^I	ditto
II	PO4-	Ag ^I	_
I	As ^{III}	BrO3	_

Ion or molecule which pro- duces	Nature of elect- rode	indicator m	the platinum nicroelectrode the reference trode	Composition of background solution
diffusion current	reac- tion	microelect- rode, V	saturated calomel electrode, V	
Au ^{III}	c	from 0 to +0.40	from -0.25 to +0.15	IICl, H ₂ SO ₄ , KNO ₃ , NaNO ₃
	c	+0.40	+0.15	KNO ₃ , NH ₄ NO ₃ , H ₂ SO ₄
Bi ^{III}	С	+0.1	-0.15	HClO ₄ , pH 1.2 HNO ₃ , pH 1.5
Br ₂	c c	+0.45 +0.40	+0.20 +0.15	$NaHCO_3 + KBr$ $HCl, 2N$ $H_2SO_4, 4N + Cl^-$
Br-	a	+1.30	+1.05	H ₂ SO ₄ , 2N
Ce ^{IV}	c	+0.75	+0.50	H ₂ SO ₄
	c	+0.45	+0.20	HCl

Table 52 (continued)

Form of titra- tion curve	Substance being titrated	Titrant	Remarks
I	Aulli	S ₂ O ₃ ²⁻ and various organic compounds; for example, mercaptothiazole, hydroquinone, thiourea	Titration of Au ^{III} with reducing agents is conduct- ed more conve- niently according to the current of their oxidation; for example, thi- ourea at the micro- electrode potenti- al equal to +0.8 V (microelectrode). In this case, the titration curve is of the II shape
I	Au ^{III}	Fe(CN)4-	— —
II	PO ₄ 3-	Bi ^{III}	_
II II	As ^{III} , NH ₃ As ^{III} , Sb ^{III}	BrO-, ClO- BrO ₃	If the test solution contains Hg ^{II} , Cu ^{II} , Ag ^I and others, titration is conducted at the microelectrode potential equal to $+0.70$ V
II	TlIII	Br-	_
II	Oxalate, V ^{IV} , Fe ^{II} , Tl ^I	Ce ^{IV}	If, under these conditions, the reducing agent yields an anodic current, then the titration curve has the reversible III shape
II	Sn ^{II}	Ce ^{IV}	voisible iii shape

Ion or molecule which pro- duces	rode	indicator m	the platinum icroelectrode the reference trode	Composition of background solution
diffusion current	reac- tion	microelect- rode, V	saturated calomel electrode, V	
Ce ^{1V}	С	+1.00	+0.75	H ₂ SO ₄
Ce ^{III}	a	+1.60	+1.35	CH ₃ CO ₂ Na + ethanol
Cl ₂	c	+0.70	+0.45	HCI
Cl-	а	+1.50	+1.25	HCl
Cr ^{V1}	С	+0.40 +0.40 +0.70 +0.90	+0.15 +0.15 +0.45 +0.65	HCl, $\leq 6N$ H ₂ SO ₄ , 4-6N H ₂ SO ₄ , 8-12N H ₂ SO ₄ , $> 12N$
Cr ^{II}	а	+0.65	+0:40	H ₂ SO ₄
Cu ^{II}	С	<+0.30	<+0.05	Indifferent electroly- tes, diluted acids

Table 52 (continued)

Form of titra- tion curve	Substance being titrated	Titrant	Remarks
III	Various organic compounds; for example, hydroquinone, methol, pyrocatechin, p-amidophenol and others	Ce ^{IV}	Before the equivalence point—the organic-compound oxidation current; after the equivalence point—the Ce ^{IV} reduction current
II	PO3-	Ce ^{III}	_
_	_		The value of the Cl ₂ reduction current is used to deter- mine chlorine in water
-			In a hydrochloride medium, the chloride oxidation current may inhibit other anodic processes
	Various reducing agents, for example, Fe ^{II} , Sb ^{III} , As ^{III}	Cr ₂ O ₇ ²⁻	The form of the tit- ration curve de- pends on the re- ductant being tit- rated and the mi- croelectrode poten- tial
 II	Mo ^{VI} , W ^{VI}	Cr ^{II}	_
			In amperometric titration, the Cu ^{II} reduction current is not used, but it can hinder the determination of other substances

Ion or molecule which pro- duces	rode	indicator m relative to	the platinum icroelectrode the reference trode	Composition of background solution
diffusion current	reac- tion	microelect- rode, V	saturated calomel electrode, V	
Fe ^{III}	C C	-0.15 0 0	-0.40 -0.25 -0.25	H ₂ SO ₄ + (NH ₄) ₂ SO ₄ HCl, ~1.2N Depending on the substance being determined
Fe ^{II}	a	+1.25	+1.00	H ₂ SO ₄
	8.	+1.10	+0.85	H ₂ SO ₄ , HCl
Fe(CN)3-	c	+0.05	-0.20	NII4OH + NH4CI
	c	+0.20	-0.05	NaOH
Fe(CN)4-	a	from +0.70 to 1.00	from +0.45 to +0.75	

Table 52 (continued)

Form of titra- tion curve	Substance being titrated	Titrant	Remarks
II I V	Ti ^{III} Fe ^{III} Zr ^{IV} , Al ^{III} , Be ^{II}	Fe ^{III} Ascorbic acid F-	Titration is conduct- ed in the presence of Fe ^{III} (indicator method)
II	Mn ^{VII} , Cr ^{VI} , V ^V ,	Fe ^{II}	If, under these conditions, the oxidizing agent produces a cathodic current, then the titration curve has the III shape
I	Fe ^{II}	$MnO_{\overline{4}}^{-}$, $Cr_2O_{7}^{2-}$, $VO_{\overline{3}}^{-}$, Ce^{IV}	Ditto
П	Co ^{II}	Fe(CN) ₈ -	It is possible to tit- rate Fe(CN) ³⁻ with a standard Co ^{II} so- lution, then the titration curve has the I form
П	Tl ^I	Fe(CN)3-	Titration with hexa- cyanoferrate is con- ducted in the pre- sence of a catalyst: OsO ₄
	Zn ^{II} , Pb ^{II} , Cd ^{II} , Ca ^{II} , Cu ^{II} , Mn ^{II} , Zn ^{III} , Ag ^I and others which form sparingly solu- ble precipita- tes. Au ^{II} : by reduc- tion reaction	Fe(CN)	The microelectrode potential, the back-ground composition and, consequently, the form of the titration curve depend on the substance being determined

Ion or molecule which pro- duces	Nature of elect- rode	indicator m relative to	the platinum icroelectrode the reference trode	Composition of background solution
diffusion current	reac- tion	microelect- rode, V	st- saturated	
Hg ^{II}	С	+0.40	+0.15	$NaNO_3$, NH_4NO_3 , H_2SO_4
	С	+0.40	+0.15	$ \begin{array}{ccc} \text{NaNO}_3, & \text{NH}_4\text{NO}_3, \\ \text{H}_2\text{SO}_4 \end{array} $
Hg ^I	С	+0.40	+0.15	NaNO ₃ , NH ₄ NO ₃
		Beginning o	of reduction	
H ₂ O	С	$-0.70 \\ -0.40 \\ 0$	$ \begin{array}{r} -0.95 \\ -0.65 \\ -0.25 \end{array} $	Alkaline medium Neutral medium Acidic medium
	a	Beginning	of oxidation	
		$+0.80 \\ +1.20 \\ +1.50$	+0.55 +0.95 +1.25	Alkaline medium Neutral medium Acidic medium
I ₂	c c	+0.20	-0.05 -0.25	HCl, ≥9N CH ₃ CO ₂ Na
	c	+0.45	+0.20	Seignette salt + + NaHCO ₃
	С	+0.40	+0.15	$\begin{array}{c} \text{HCl, 2N; H}_2\text{SO}_4, 2N + \\ + \text{KCl} \end{array}$
I-	а	+1.00	+0.75	H ₂ SO ₄ , pH 1-2
	a a	+1.00 +1.00	+0.75 +0.75	KNO_3 , NH_4NO_3 $HCl \ge 6N$
Ir ^{IV}	С	+0.70	+0.45	HCl

Table 52 (continued)

Form of titration curve	Substance being titrated	Titrant	Remarks
I	Hg ^{II}	I-, Cl-	
II	Cl-	Hg ^{II}	_
II	Pyrophosphate, Mo ^{VI} , W ^{VI}	Hg ^I	_
_			Water-reduction cur- rent limits the ca- thodic region of electrode reaction
	_		Water-oxidation cur- rent limits the ano- dic region of elec- trode reaction
IV I	As ^V , Se ^{IV}	I - S ₂ O ₃ -	This reaction is used to determine Cu ^{II} , Fe ^{III} , As after adding an excess of I to the test solution
II	Sn ^{II} , As ^{III} , Sb ^{III}	I ₂	_
II	Sb ^{III} , Tl ^I	10 5	_
II II II	Ag ^I , Hg ^{II} , Pd ^{II} Tl ^I Se ^{IV}	I - I -	
I	Ir ^{IV}	Ascorbic acid, hydroquinone	_

Ion or molecule which pro- duces	Nature of elect- rode	indicator m relative to	the platinum icroelectrode the reference trode	Composition of background solution
diffusion current	reac- tion	microelect- rode, V	saturated calomel elect- rode, V	
MnVII	С	+0.80	+0.55	$H_2SO_4 \leqslant 8N$
	с с с	+0.75 $+0.40$ $+0.40$ $+0.40$	+0.50 +0.15 +0.15 +0.15	HCl, $1N$ CH ₃ CO ₂ Na + ZnO K ₄ P ₂ O ₇ , pH 6-7 NaOH, $1N$
Mn ^{III}	С	+0.90	+0.65	$H_2SO_4 \geqslant 9N$
	С	+0.90	+0.65	H ₃ PO ₄ ≥ 10N
Mn ^{II}	8.	+1.20	+0.95	Acid, neutral, CH ₃ CO ₂ Na

Table 52 (continued)

			
Form of titration curve	Substance being titrated	Titrant	Remarks
	agents, for example, oxalate, ferrocy-anide, V ^{IV} , Fe ^{II} , As ^{III} ,	MnO ₄	The form of the tit- ration curve de- pends on the sub- stance being tit- rated
II		_	_
H			_
H	M n ^{II}	MnO_{4}^{-}	_
H	$\mathrm{Te}^{\mathrm{IV}}$	MnO ₄	_
I	Mn ^{III} Mn I II	$II_2C_2O_4$ Fe^{II}	This reaction is used to determine PrO ₂ after adding an excess of Mn ^{II} to the test solution It is possible to titrate Mn ^{III} according to the Fe ^{II} oxidation current when the microelectrode potential is +1.3 V. In this case, the titration curve has the II form
			11 101111
			In amperometric titration, the Mn ^{II} oxidation current is not used, but it can hinder the determination of other substances
	of titration curve	of titration curve Various reducing agents, for example, oxalate, ferrocyanide, VIV, FeII, AsIII, SbIII, SnII II MnII II MnII II TeIV I MnIII	of titration curve Substance being titrated Titrant Titrant Various reducing agents, for example, oxalate, ferrocyanide, VIV, FeII, AsIII, SbIII, SnII II TlI MnII MnO4 II MnII MnO4 II TeIV II MnIII MnO4 II TeIV II MnIII MnO4 II TeIV

Ion or molecule which pro- duces	rode	relative to	the platinum licroelectrode the reference trode	Composition of background solution
diffusion current	reac- tion	microelect- rode, V	saturated calomel elect- rode, V	
NO ₂	c	$1 ext{ to } +1.00$	from +0.15 to +0.75 on HNO ₃ tration	
NO ₂	а	+1.30	+1.05	H ₂ SO ₄ , 0.05N
O ₂	c	Beginning 6 +0.10 +0.40 +0.80	of reduction -0.15 +0.15 +0.55	Alkaline medium Neutral medium Acid medium
PbII	c	-0.60	-0.85	CH ₃ CO ₂ Na, CH ₃ CO ₂ NH ₄

Table 52 (continued)

 			
Form of titra- tion curve	Substance being titrated	Titrant	Remarks
			In amperometric titration, the NO₂ reduction current is not used, but it can hinder the determination of other substances if the HNO₃ concentration used as a background is ≥5N
I	NO2	Strong oxidiz- ers, for examp- le, MnO4, Ce ^{IV} sulphanilic acid	For the amperometric titration of NO ₂ , against the background of ammonium citrate (pH 4-4.5) it is also possible to use chloroamine T as a titrant with its reduction current, at the microelectrode potential equal to +0.3 V
_		<u></u>	The O ₂ reduction current is used in the polarographic determination of dissolved oxygen. In amperometric titration, the O ₂ reduction current hinders the determination of other substances
I	РЫІ	$Cr_2O_7^{2-}$, MoO_4^{2-} , WO_4^{2-}	_

Ion or molecule which pro- duces	Nature of elect- rode	indicator m	the platinum icroelectrode the reference trode	Composition of background solution
diffusion current	reac- tion	microelect- rode, V	saturated calomel elect- rode, V	
Рыі	С	+1.80	+1.55	CH ₃ CO ₂ NH ₄ or CH ₃ CO ₂ Na, 0.5N
Sn ^{II}	а	-0.20	-0.45	Alkaline solution of complexone III
TeIV	c	+0.60	+0.35	H ₂ SO ₄ , 6.V
Ti ^{III}	a a a	+0.75 +1.00 +1.00	$+0.50 \\ +0.75 \\ +0.75$	$H_2SO_4 + (NH_4)_2SO_4$ H_2SO_4 , $10N$ H_2SO_4 , $1N + H_4P_2O$,
TlIII	С	+0.50	+0.25	KNO ₃ , CH ₃ CO ₂ Na and others

Table 52 (continued)

Form of titra- tion curve	Substance being titrated	Titrant	Remarks
11	SO ₄ 2-	1, P _{II}	The titrant is the solution of lead acetate salt containing 4-5% of acetic acid
111	Sn ^{II}	Hg ^{II}	The titrant is the solution of mercuric chloride salt. Beyond the equivalence point—the Hg ^{II} reduction current
		-	In amperometric tit- ration, the Te ^{IV} re- duction current is not measured, but it can hinder the determination of other substances
I	Ti ^{III} VV, CrVI UVI	Cr ₂ O ₇ - Ti ^{III} Ti ^{III}	
I	TlIII	Various reducing agents, for example, thiourea	Amperometric titration of TIIII with thiourea is more convenient to conduct according to the current of the oxidation of the latter at the microelectrode potential equal to +0.80 V. In this case, the titration curve has the II form

Ion or molecule which pro- duces	Nature of elect- rode	Potential of indicator m relative to elect	the platinum icroelectrode the reference rode	Composition of background solution
diffusion current	reac- tion	microelect- rode, V	saturated calomel elect- rode, V	
TlI	c a	-0.60 + 1.40	-0.85 +1.15	CH ₃ CO ₂ Na KNO ₃ , NH ₄ NO ₃ , H ₂ SO ₄
n ₁₁₁	a	+0.20	-0.05	H ₂ SO ₄
v ^v	С	+0.50	+0.25	H ₂ SO ₄ , 12-16 <i>N</i>
	С	+1.00	+0.75	H ₂ SO ₄ , 18-24 <i>N</i>
VIV	а	+0.85	+0.60	CH ₃ CO ₂ H + CH ₃ CO ₂ Na, pH 4
VII	a a	+0.85 +0.45	+0.60 +0.20	$H_2SO_4 + H_8PO_4$ H_2SO_4

Table 52 (continued)

1	Form of titra- tion curve	Substance being titrated	Titrant	Remarks
	I	Tl ^I	I- 	In amperometric titration, the Tlookidation current is not used, but it can hinder the determination of other substances
	111	Ω_{III}	Fe ^{III}	Beyond the equival- ence point—the Fe ^{III} reduction current
	II	Various reducing agents, for	VO ₃	
	III	example, Fe ^{II}	Fe ^{II}	Beyond the equival- ence point—the Fe ^{II} oxidation cur- rent
	II	Complexone III	VO ²⁺	This reaction is used to determine Al ^{III} , Zr ^{IV} , Th ^{IV} and other substances after adding an excess of complexone III to the test solution
	II	Mo ^{VI} , V ^{IV} Ti ^{IV} , V ^V	VII VII	<u>-</u> -

Table 53

Conditions of Amperometric Titration with Two Polarized Forms of titration curves

In amperometric titration with two polarized electrodes, the latter must be in the titrate simultaneously and must have a sufficiently large surface (this being the difference in respect of classical amperometric titration with a microelectrode). Voltage is applied to the electrodes with the aid of a voltage divider from an external source of direct current with a small output voltage (\sim 2-4 V). The amount of voltage applied to the electrodes is controlled (without trying to achieve great accuracy) by a d.c. voltmeter which is connected to the circuit parallel to the electrodes.

The fourth column of the table gives approximate voltages applied to the electrodes, at which the latter are depolarized before the equivalence point or after it, or in the entire process of titration.

The fifth column gives the oxidation-reduction systems whose components provide an indicator current, which arises due to the

Midney 1	Electrode	Voltage	Electrode reactions indicator
Titrant	material	mV	before the equiva- lence point
Cl-, Br-, I-	Hg	from 1 to 10	Ag ^I /IIg↓
F-	Pt	100	_
BrO ₃ Fe(CN) ₆ -	Pt Pt	50 200	_
	F- BrO ₃	Cl-, Br-, Hg F- Pt BrO ₃ Pt	Titrant material being applied, mV Cl-, Br-, Hg from 1 to 10 F- Pt 100 Br03 Pt 50

Indicator Electrodes (according to O. A. Songina)

depolarization of electrodes. The dashes in this column indicate the absence of the indicator current either before or after the equivalence point at a given voltage applied to the indicator electrodes. This occurs when, in the process of titration, the components of an oxidation-reduction system either being formed or present in the titrate cannot, at a given voltage, be oxidized and reduced at the electrodes, or when one of the conjugated forms of the redox pair is absent.

In some cases, depending on the composition and amount of voltage applied to the electrodes, an oxidized form of one and a reduced form of another redox system can participate in electrochemical reactions, thus providing an indicator current before and (or) after the equival-

ence point.

In the sixth column, Roman numerals indicate the forms of titration curves near the equivalence point.

which induce the current	Form of titration curves near the equiva-	Remarks
after the equivalence point	lence point	
_	I	As electrodes, ground mercury is used. Before the equivalence point is reached, the electrode material—Hg \(\) (anode)—is oxidized, and Ag \(\) is reduced at the cathode
	IV	Titration is conducted in the presence of the redox pair Fe ^{III} /Fe ^{II}
Br ₂ /Br- Fe(CN)%-/Fe(CN)%-	H	Titration is conducted in the presence of Br- Titration is conducted in the presence of an OsO4 catalyst

Substance	Titrant	Electrode	Voltage	Electrode reactions indicator
being de- termined		material	Voltage being applied, mV	before the equiva- lence point
Au ^{III}	Ascorbic acid	Pt	100	Au ^{III} /Cl-
Ba ^{II}	 F-	Pt	100	
Br-	Ag ^I	Ag	10	_
	Hg ^I	Hg	from 1 to 10	_
CaII	F-	Pt	100	
	Complex- one III	Cathode: Pt anode: amalga- mated Ag	130	
	Fe(CN) ₆ -	Pt	400	_
CdII	Fe(CN)4-	Pt	200	_
Ce ^{IV}	Ascorbic acid, oxalic	Pt	200	Ce ^{IV} /Ce ^{III}
	acid Fe ^{II}	Pt	200	Ce ^{IV} /Ce ^{III}

Table 53 (continued)

which induce the current after the equivalence point	Form of titration curves near the equivalence point	Remarks
	I	Titration is conducted in a hydro- chloric acid medium. Before the equivalence point is reached Au ^{III} is reduced at the cathode, and Cl- is oxidized at the anode
_	IV	Titration is conducted in the presence of the redox pair Fe ^{III} /Fe ^{II}
Ag ^I /Ag↓	П	Beyond the equivalence point, the electrode material—Ag \(\) (anode)— is oxidized
Hg ^I /Hg↓	II	As electrodes, ground mercury is used. Beyond the equivalence point, the electrode material—Hg \(\) (anode)—is oxidized
_	IV IV	Titration is conducted in the presence of the redox pair Fe ^{III} /Fe ^{II} Titration is conducted in an alkaline medium in the presence of Hg ^{II}
H+/Fe(CN)4-	П	As a titrant, (NH ₄) ₄ Fe(CN) ₆ is used. Beyond the equivalence point, H ⁺ is reduced at the cathode and Fe(CN) ₆ ⁴⁻ is oxidized at the anode
Fe(CN)3-/Fe(CN)4-	II	Titration is conducted in the presence of Fe(CN) ₈ -
	I	
Fe ^{III} /Fe ^{II}	III	

Substance	TI Amount	Electrode	Voltage	Electrode reactions indicator
being de- termined	Titrant	material	being applied, mV	before the equiva- lence point
CeIV	N-Benzoyl- phenyl- hydro- xylamine	Pt	800	Ce ^{IV} /H ₂ O or background
	Cupferron	Pt	1000	Ce ^{IV} /Ce ^{III}
C1-	Ag ^I	Ag	from 1 to 10	_
	IIg ^I	IIg	from 1 to 10	_
Colli	Ascorbic acid	Pt	100	The mechanism
Co ^{II}	$\begin{array}{c} \operatorname{Ce^{IV}}, \\ \operatorname{Cr_2O_7^{2-}}, \\ \operatorname{VO_3^{\overline{a}}} \end{array}$	Pt	100	The mechanism
	Fe _{III}	Pt	1000	The mechanism
Cr ^{IV}	Fe ^{II} Fe ^{II}	Pt Pt	100 150	_
Cu ^{II}	Complex- one III	Cu	20	Cu ^{II} /Cu↓

Table 53 (continued)

which induce the current	Form of titration curves near the equiva-	Remarks
after the equiva- lence point	lence point	
	I	Before the equivalence point is reached, Ce ^{IV} is reduced at the cathode and, at the anode, water or the background electrolyte is oxidized, for example Cl ⁻ , if titration is conducted in a sulphuric acid medium or in the presence of chloride
H+/cupferron	111	Before the equivalence point is reached, cupferron reduces Ce ^{IV} . Beyond the equivalence point, H ⁺ is reduced at the cathode, and cupferron is oxidized at the anode
Ag ^I /Ag↓	H	Beyond the equivalence point, the electrode material—Ag \(\) (anode)— is oxidized
lig ^I /lig↓	11	As electrodes, ground mercury is used. Beyond the equivalence point, the electrode material—IIg \(\) (anode)—is oxidized
is not established		The titrate is the cobaltic carbonate complex solution
is not established		Titration is conducted in the presence of complexone III
is not established		Titration is conducted in the presence of phenanthroline
Fe ^{III} /Fe ^{II} Fe ^{III} /Fe ^{II}	II II	Titration is conducted with a ferrous perchlorate solution in glacial acetic acid
_	I	Before the equivalence point is reached, the electrode material—Cu \(\) (anode)—is oxidized, and Cu \(\) is reduced at the cathode

Substance	Titrant	Electrode	Voltage	Electrode reactions indicator
being de- termined		material	being applied, mV	before the equiva- lence point
Cu ^{II}	Complex- one III	Pt, gra- phite	From 1000 to 1400	_
Fe ^{III}	Complex- one III	Pt, gra- phite	from 1000 to 1400	_
	Ascorbic acid	Pt	100	Fe ^{III} /Fe ^{II}
FeII	Ce^{IV} , $MnO_{\overline{4}}$, $Cr_2O_{7}^{\overline{2}}$	Pt	100	Fe ^{III} /Fe ^{II}
	CrO ₃	Pt	150	Fe ^{III} /Fe ^{II}
Fe(CN)3-	AsO ₂	Pt	150	Fe(CN)3-/Fe(CN)4-
Fe(CN) ₆ -	MnO ₄ Ce ^{IV} Zn ^{II}	Pt Pt Pt	150 150 150	Fe(CN)3-/Fe(CN)4- Fe(CN)3-/Fe(CN)4- Fe(CN)3-/Fe(CN)4-
Ga ^{III}	Fe(CN) ₆ -	Pt	200	_

Table 53 (continued)

which induce the current after the equivalence point	Form of titration curves near the equiva- lence point	Remarks
H++ cupric com- plexonate/com- plexone III	11	Beyond the equivalence point, H+ and cupric complexonate are reduc- ed simultaneously, and complex- one III is oxidized at the anode
H++ ferric com- plexonate/com- plexone III	II	Beyond the equivalence point, H ⁺ and ferric complexonate are reduced simultaneously, and complexone III is oxidized at the anode
	1	
_	I	_
_	I	Titration is conducted in glacial acetic acid with a ferrous per- chlorate solution
	I	Titration is conducted in the presence of an OsO ₄ catalyst. This reaction can be used to indirectly determine Hg ^I , Co ^{II} , Sn ^{II} , Sb ^{III} , As ^{III} , Se ^{IV} and others by the titration of the excess of Fe(CN) ₆ ³
Ce ^{IV} /Ce ^{III}	I III I	Titration is conducted in the presence of Fe(CN)3 As a titrant, use can also be made of other cations which form sparingly soluble precipitates with ferrocyanide, hexacyanoferrate (II); for example, Cd ^{II}
Fe(CN)3-/Fe(CN)4-	II	Titration is conducted in the presence of Fe(CN) ₆ ³⁻

Substance	Mitmant	Electrode	Voltage being applied, mV	Electrode reactions indicator
being de- termined	Titrant	material	mV	before the equiva- lence point
H ₂ O	Fisher's reagent	Pt	30	_
Hg ^{II}	Complex- one III	Hg	from 1 to·10	Hg ^{II} /Hg↓
	I-	Pt	30	_
Hg ^I	CN-, SCN-, Cl-, Br-, I-	Нg	from 1 to 10	Hg ^I /Hg↓
InIII	Fe(CN)4-	Pt	200	_
I ₂	$AsO_{\overline{2}}, \\ S_2O_3^{2-}, \\ N_2H_4 \times \\ \times HCl$	Hg	30	I ₂ /I-
I-	Ag ^I	Ag	10	-
	Ag ^I	Pt	30	I ₂ /I-
K+	Ag+	Ag	25	_
La ^{III}	Fe(CN)4-	Pt	400	_

Table 53 (continued)

which induce the current after the equivalence point	Form of titration curves near the equiva- lence point	Remarks
I ₂ /I-	11	This reaction is used to determine water in organic and inorganic materials
	I	As electrodes, ground mercury is used. Before the equivalence point is reached, the electrode material—Hg \(\) (anode)—is oxidized Titration is conducted in the presence of $Cr_2O_7^{2-}$ or I_2
_	I	As electrodes, ground mercury is used. Before the equivalence point is reached, the electrode material—Hg \(\) (anode)—is oxidized
Fe(CN)3-/Fe(CN)4-	II	Titration is conducted in the presence of Fe(CN) ₆ ³
	I	This reaction can be used to indirectly determine Cl_2 , $\operatorname{H}_2\operatorname{O}_2$, O_2 , Cu^{II} , Tl^{III} , Se^{IV} and others by the titration of I_2 , which separates after adding an excess of iodide
Ag ^I /Ag↓ —	I	Beyond the equivalence point, the electrode material—Ag↓ (anode)— is oxidized Titration is conducted in the presence of I₂
Ag ^I /Ag↓	I	Titration of potassium tetraphenyl- borate is conducted in acetone. Beyond the equivalence point, the electrode material—Ag↓ (ano- de)—is oxidized
H+/Fe(CN)4-	II	Beyond the equivalence point, H+ is reduced at the cathode

Substance	Substance Electron		Voltage being applied, mV	Electrode reactions indicator
being de- termined	Titrant	material	mV	hefore the equiva- lence point
Mg ^{II}	BrO3	Pt	50	_
	Complex- one III	Cathode: Pt, anode: amalga- mated Ag	210	
MnO4	Fe ^{II} Fe ^{II}	Pt Pt	100 150	_
Mn ^{II}	MnO	Cathode: Pt, anode: Ag	Without the ap- plication of volt- age	
Mo ^{VI}	Pbn	Pt	1300	_
NO ₃	Fe ^{II}	Pt	100	-
Ni ^{II}	Dimethyl- glyoxime	Cathode: amalgam- ated Ag, anode: Pt	1500	Ni ^{II} /OH-
	I ₂	Pt	30	_
SO3-	ICl	Pt	800	
S ₂ O ₃ -	I ₂ , IO ₃	Pt	from 30 to 100	-

Table 53 (continued)

which induce the current	Form of titration curves near the	Remarks
after the equiva- lence point	equiva- lence point	Homaras
Br ₂ /Br ⁻ Mercuric com-	II IV	The titration of magnesium hydroxy- quinolate is conducted in the presence of Br- Titration is conducted in an ammo-
plexonate/Hg↓		nia buffer solution in the presence of Hg ^{II}
Fe ^{III} /Fe ^{II}	II	_
Fe ^{III} /Fe ^{II}	II	Titration is conducted with ferrous perchlorate solution in glacial acetic acid
MnO ₄ /Ag↓	II	Beyond the equivalence point, the electrode material—Ag \(\) (anode)— is oxidized, and MnO \(\) is reduced at the cathode
H+/PbII	II	Beyond the equivalence point, H ⁺ is reduced at the cathode, and Pb ^{II} is oxidized at the anode
Fe ^{III} /Fe ^{II}	II	_
_	I	Before the equivalence point is reached, Ni ^{II} is reduced at the cathode, and OH- is oxidized at the anode (alkaline medium)
I ₂ /I-	II	Titration is conducted in the presence of dimethylglyoxime
I ₂ /I -	II	Titration is conducted in glacial acetic acid
I ₂ /I-	II	

Substance	Mitneyt	Electrode	Voltage	Electrode reactions indicator
being de- termined	Titrant	material	heing applied, mV	hefore the equiva- lence point
SCN-	Ce ^{IV}	Pt	200	_
SbIII	BrO ₃	Pt	from 50 to 100	-
SnII	I2	Pt	30	_
Th ^{IV}	Complex- one III	Pt	100	_
Ti ^{III}	Ce ^{TV}	Pt	100	_
Tl ^I	Complex- one III	Graphite, Pt	from 1000 to 1400	_
	Fe(CN)4-	Pt	400	_
	C ⁶ IA	Pt	100	
UIV	V03	Pt	from 200 to 300	_
	Fe ^{III} Complex- one III	Pt Pt	100 500	H+\U _{IA} —
v	Fe ^{II}	D4	400	
V	I G	Pt	100	_

Table 53 (continued)

which induce the current after the equivalence point	Form of titration curves near the equivalence point	Remarks
Ce ^{IV} /Ce ^{III}	II	Titration is conducted in the presence of pyridine and an ICl catalyst. This reaction can be used to indirectly determine Cu ^{II} , Co ^{II} , Cd ^{II} , Ni ^{II} by the titration of an excess of SCN-
Br ₂ /Br-	II	
I ₂ /I-	II	
_	IV	Titration is conducted in the presence of the Fe ^{III} /Fe ^{II} redox pair
Ce ^{IV} /Ce ^{III}	II	
H++ thallic com- plexonate/com- plexone III	II	Beyond the equivalence point, H+ and thallic complexonate are reduced simultaneously at the cathode, and complexone III is
H+/Fe(CN)4-	II	oxidized at the anode Beyond the equivalence point, H+ is reduced at the cathode, and Fe(CN) d- is oxidized at the anode
· Ce ^{IV} /Ce ^{III}	II	
VV/VIV	ΙΙ·	
Fe ^{III} /Fe ^{II}	II I	Before the equivalence point is reached, H+ is reduced at the cathode, and U ^{IV} is oxidized at the anode
Fe ^{III} /Fe ^{II}	II	

Substance	Electrode ha	Voltage	Electrode reactions indicator		
being de- termined	Titrant	material	being applied, mV	before the equiva- lence point	
wvi	PbII	Pt	1500	-	
	<u> </u>				
YIII	Cupferron	PtII	from 1000 to 1200		
Zn ^{II}	Fe(CN)4-	Pt	200	_	

Table 53 (continued)

which induce the current after the equiva- lence point	Form of titration curves near the equivalence point	Remarks
H+/PbII	II	Beyond the equivalence point, H+ is reduced at the cathode, and Pb ^{II} is oxidized at the anode
H+/cupferron	II	Beyond the equivalence point, H+ is reduced at the cathode, and cupferron is oxidized at the anode
Fe(CN) %-/Fe(CN) %-	II	Titration is conducted in the presence of Fe(CN) ₆ -

Overvoltage of Hydrogen and Oxygen at Various Electrodes

(at room temperature)

The dependence of the hydrogen overvoltage η_{H_2} on current density is expressed by the equation

$$\eta_{\rm H_2} = 0.116 \log i + k$$

where is a constant which depends on the nature of the electrode. With a rise in temperature, the value of overvoltage decreases by 3 mV/°C. In an alkaline medium, hydrogen overvoltage is as a rule somewhat greater (by 0.1-0.3 V) than in an acidic medium. The overvoltage of oxygen in an alkaline medium is approximately one volt greater than in an acidic medium. The overvoltage of electroseparation of metals is considerably less than that of gases.

		C	urrent	density,	A/cm ²	
Electrode	Composition of the solution	0.00005 and less	0.0001	0.001	0.01	0.1
			ovei	voltage	, v	
	I	lydrogen				
Palladium Platinum (pla-		$\begin{bmatrix} -0.26 \\ 0.000 \end{bmatrix}$	_	_	0.03	0.04
tinized) Platinum (smooth) Gold Cobalt Silver Vanadium Nickel Tungsten Molybdenum	$ \begin{cases} 2N & \text{H}_2\text{SO}_4 \\ 5N & \text{H}_2\text{SO}_4 \\ 5N & \text{H}_2\text{SO}_4 \\ 5N & \text{H}_2\text{SO}_4 \\ 2N & \text{H}_2\text{SO}_4 \\ 6N & \text{H}_2\text{SO}_4 \\ 2N & \text{H}_2\text{SO}_4 \\ 2N & \text{H}_2\text{SO}_4 \\ 2N & \text{H}_2\text{SO}_4 \\ 0.15N & \text{HCl} \\ 0.4N & \text{NaOH} \\ 2N & \text{H}_2\text{SO}_4 \end{cases} $	0.008 	0.04 0.33 - 0.45 - 0.18 0.18	0.10 	0.07 0.22 0.39 0.55 — 0.69 — — — —	0.29
Iron	$ \begin{cases} 2N \text{ H}_2\text{SO}_4 \\ 1N \text{ HCl} \\ 5N \text{ NaOH} \end{cases} $	0.175 —		0.33	0.56 0.46	0.82
Chromium Copper	$ \begin{array}{ccc} (SN & \text{N2O1} \\ 2N & \text{H}_2\text{SO}_4 \\ (SN & \text{H}_2\text{SO}_4 \\ (SN & \text{H}_2\text{SO}_4 \end{array} $	0.182 0.190	0.83 —	 0.94 	1.04 0.58	 0.85

Table 54 (continued)

	<u> </u>	1 4	Current	dengity	A /cm²	
		<u>`</u>	durent	density,	A/CIII	
Electrode	Composition of the solution	0.00005 and less	0.0001	0.001	0.01	0.1
			over	voltage	, v	
Antimony	2N H ₂ SO ₄	0.233		_	_	_
Titanium	$2N H_2SO_4$	0.236		_	_	-
Aluminium	$2N H_2SO_4$	0.296			1.0	-
Carbon	$2N H_2SO_4$	0.335		0.88	1.0	-
Arsenic	$2N H_2SO_4$	0.369		_		_
Bismuth	$2N H_2SO_4$	0.388	_	_	_	_
Code	∫ 1N H ₂ SO ₄	_	_	0.98	1.13	111111
Cadmium	1 2N H ₂ SO ₄	0.392		_	_	
Tin	2N H ₂ SO ₄	0.401		-	1.08	1.22
Lead	$2N H_2SO_4$	0.402		1.1	1.21	
Zinc	$2N H_2SO_4$	0.482	_	_	0.75	1.06
M.	{ 1N H₂SO₄	_	0.93	1.04	1.16	_
Mercury	$2N H_2SO_4$	0.570	—		1.04	1.07
	• •	Oxygen				
 Platinum	In acidic	_	-	_	~0.4*	-
(smooth)	$\begin{cases} & \text{medium} \\ 0.2N & \text{H}_2\text{SO}_4 \end{cases}$		0.67	0.78		
From lead	8N H ₂ SO ₄	_	0.97	1.08	1.19	
dioxide Iron	2N NaOH	_	0.44	0.48	0.52	
* 0.023 A/cm	1.					_

444

Potentials of Electrode Decomposition of 1N Solutions of Selected Compounds

Compound	Decomposition potential, V	Compound	Decomposition potential, V
Salts AgNO ₃ CuSO ₄ Pb(NO ₃) ₂ CoCl ₂ ZnBr ₂ NiCl ₂ CdCl ₂ CdSO ₄ Cd(NO ₃) ₂ CdSO ₄ NiSO ₄ ZnSO ₄ A cids HI	0.70 1.49 1.52 1.78 1.80 1.85 1.88 1.92 1.98 2.03 2.09 2.35	HBr	0.94 0.95 1.31 1.65 1.67 1.69 1.70 1.72

Flame Photometry

Recommended wavelengths of the spectral lines and the molecularband maxima for determining the elements with the aid of a spectrophotometer having glass optics and with the use of an air-acetylene flame

(the wavelengths of molecular-band maxima are italicized)

Element	Wavelength, nm	Element	Wavelength, nm
Barium Boron Calcium Calcium Cosium Chromium Chromium Indium Indium Indium Lanthanum Lanthanum	870.0 545.0-548.0 422.7 622.0 852.1 425.4 459.4 417.2 451.1 386.0 438.0 794.0	Lithium	670.8 384.0 403.1-403.4 548.0 766.5-769.9 794.8 589.0-589.6 460.7 535.1 398.8 613.0-616.6

British and American Weights and Measures in Comparison with the Metric System of Measurement

Name	Metric equivalent
Linear Measures	
1 mile = 1760 yards = 5280 feet = 63,360 inches 1 yard = 3 feet = 36 inches 1 foot = 12 inches 1 inch	1.6093 km 0.9144 m 0.3048 m 2.5400 cm
Liquid Measures	
1 gallon (Br.) = 4 quarts = 8 pints = 32 gills = = 160 fluid ounces	4.546 l 3.785 l 4.546 l 0.5683 l
= 128 fluid drachms = 7680 minims 1 fluid ounce (Br.) = 8 fluid drachms = 480 minims 1 fluid ounce (Am.) = 8 fluid drachms = 480 minims	0.4/32 l 28.41 ml
nims 1 fluid drachm (Br.) = 60 minims = 3 fluid scruples 1 fluid drachm (Am.) 1 fluid scruple (Br.) = 20 minims 1 minim (Br.) 1 minim (Am.)	29.57 ml 3.552 ml 3.697 ml 1.184 ml 0.05919 ml 0.06161 ml
A voirdupois Weight	
1 Br. pound (1b) = 16 ounces = 256 drachms = = 7000 grains	453.59 g 1016.05 kg 907.185 kg 28.35 g 1.772 g 0.0648 g
Units of Energy	1 1 250 T
1 Br. foot pound = 0.1383 kgf·m	1.356 J 4690 kJ

Table 57 (continued)

Name	Metric equivalent
1 British thermal unit (BTU) = quantity of heat that raises the temperature of 1 Br. pound of water by 1°F	0.252 kcal
1 Br. foot pound/second = 0.0018144 hp (metric system)	1.356 W 0.746 kW

Simplified Table of Five-Place Logarithms

Every line gives the proportional parts of the *mean* values of the of their real values). Such a simplification leads to errors in mantissas and convenient to use as the tables of four-place logarithms.

A. Logarithms

	1	1	1	1	1		1	
N	0 .	1	2	3	4	5	6	
10	00 000	00 432	00 860	01 284	01 703	02 119	02 531	
11	04 139	04 532	04 922	05 308	05 690	06 070	06 646	
12	07 918	08 279	08 636	08 991	09 342	09 691	10 037	
13	11 394	11 727	12 057	12 385	12 710	13 033	13 354	
14	14 613	14 922	15 229	15 534	15 836	16 137	16 435	
15	17 609	17 898	18 184	18 469	18 752	19 033	19 312	
16	20 412	20 683	20 951	21 219	21 484	21 748	22 011	
17	23 045	23 300	23 553	23 805	24 055	24 304	24 551	
18	25 527	25 768	26 007	26 245	26 482	26 717	26 951	
19	27 875	28 103	28 330	28 556	28 780	29 003	29 226	
20 21 22	30 103 32 222 34 242	30 320 32 428 34 439	30 535 32 634 34 635	30 750 32 838 34 830	30 963 33 041 35 025	31 175 33 244 35 218	31 387 33 445 35 411	

differences between the numbers which stand on the given line (instead of logarithms, but they are not over 0.00002. This table is as easy

 <u> </u>	<u> </u>	1	Pro	port	ional	parts of	the	mean	values	of dif	ferences
7	8	9	1	2	3	4	5	6	7		9
02 938	03 342	03 743	42 40	85 81	127 121	170 162	212 202	254 242	297 283		381 364
06 819	07 188	07 555	37 37	77 74	116 111	154 148	193 185	232 222	270 259	309 296	348 333
10 380	10 721	11 059	36 34	71 68	106 102	142 136	177 170	213 204	248 238	284 272	319 307
13 672	13 988	14 301	33 32	66 63	98 95	131 126	164 158	197 190	229 221	262 253	295 284
16 732	17 026	17 319	30 29	61 59	91 88	122 118	152 147	183 177	213 206	244 236	274 265
19 590	19 866	20 140	28 28	57 55	85 83	114 110	142 138	171 165	199 193	228 221	256 248
22 272	22 531	22 789	27 26	53 52	80 78	107 104	134 130	160 156	187 182	214 208	240 233
24 797	25 042	25 285	26 25	50 49	76 73	101 58	126 122	151 147	176 171	201 196	227 220
27 184	27 416	27 646	24 23	48 46	71 69	95 93	119 116	143 139	167 162	190 185	214 208
29 447	29 667	29 885	23 22	45 44	68 66	90 88	113 110	135 132	158 154		203 198
31 597 33 646 35 603	31 806 33 846 35 793	32 015 34 044 35 984	21 20 20	43 41 39	64 61 58	85 81 77	106 101 97	127 121 116	148 141 135	162	190 182 174

Logarithms

N	0	1	2	3	4	5	6
23	36 173	36 361	36 549	36 736	36 922	37 107	37 291
24	38 021	38 202	38 382	38 561	38 739	38 917	39 094
25	39 794	39 967	40 140	40 312	40 483	40 654	40 824
26	41 497	41 664	41 830	41 996	42 160	42 325	42 488
27	43 136	43 297	43 457	43 616	43 775	43 933	44 091
28	44 716	44 871	45 025	45 179	45 332	45 484	45 637
29	46 240	46 389	46 538	46 687	46 835	46 982	47 129
30	47 712	47 857	48 001	48 144	48 2 87	48 430	48 572
31	49 136	49 276	49 415	49 554	49 693	49 831	49 969
32	50 515	50 650	50 786	50 920	51 054	51 188	51 322
33	51 851	51 983	52 114	52 244	52 375	52 504	52 634
34	53 148	53 275	53 403	53 529	53 656	53 782	53 908
35	54 407	54 531	54 654	54 777	54 900	55 023	55 145
36	55 630	55 751	55 871	55 991	56 110	56 229	56 348
37	56 820	56 937	57 054	57 171	57 287	57 403	57 519
38	57 978	58 092	58 206	58 320	58 433	58 546	58 659
39	59 106	59 218	59 329	59 439	59 550	59 660	59 770
40	60 206	60 314	60 423	60 531	60 638	60 746	60 853
41	61 278	61 384	61 490	61 595	61 700	61 805	61 909
42	62 325	62 428	62 531	62 634	62 737	62 839	62 941
43	63 347	63 448	63 548	63 649	63 749	63 849	63 949
44	64 345	64 444	64 542	64 640	64 738	64 836	64 933
45	65 321	65 418	65 514	66 610	65 706	65 801	65 896
46	66 276	66 370	66 464	66 558	66 652	66 745	66 839
47	67 210	67 302	67 394	67 486	67 578	67 669	67 761
48	68 124	68 215	68 305	68 395	68 485	68 574	68 664
49	69 020	69 108	69 197	69 285	69 373	69 461	69 548
50	69 897	69 984	7.0 070	70 157	70 243	70 329	70 415
51	70 757	70 842	70 927	71 012	71 096	71 181	71 265
52	71 600	71 684	71 767	71 850	71 933	72 016	72 099
53	72 428	72 509	72 591	72 673	72 754	72 835	72 916
54	73 239	73 320	73 400	73 480	73 560	73 640	73 719
55	74 036	74 115	74 194	74 273	74 351	74 429	74 507
56	74 819	74 896	74 974	75 051	75 128	75 205	75 282
57	75 587	75 664	75 740	75 815	75 891	75 967	76 042
58	76 343	76 418	76 492	76 567	76 641	76 716	76 790
59	77 085	77 159	77 232	77 305	77 379	77 452	77 525

Table 58 (continued)

_				Pro	porti	onal p	arts of	the	mean v	alues of	diffe	rences
	7	8	9	1	2	3	4	5	6	7	8	9
	37 475	37 658	37 S40	19	37	56	74	93	111	130	148	167
	39 270	39 445	39 620	18	35	53	71	89	106	124	142	159
	40 993	41 162	41 330	17	34	51	68	85	102	119	136	153
	42 651	42 813	42 975	16	33	49	66	82	98	115	131	148
	44 248	44 404	44 560	16	32	47	63	79	95	111	126	142
	45 788	45 939	46 090	15	30	46	61	76	91	107	122	137
	47 276	47 422	47 567	15	29	44	59	74	88	103	118	132
	48 714 50 106 51 455 52 763 54 033	48 855 50 243 51 587 52 892 54 158	48 996 50 379 51 720 53 020 54 283	14 14 13 13	29 28 27 26 25	43 41 40 39 38	57 55 54 52 50	72 69 67 65 63	86 83 80 78 76	100 97 94 91 88	114 110 107 104 101	129 124 121 117 113
	55 267	55 388	55 509	12	24	37	49	61	73	85	98	110
	56 467	56 585	56 703	12	24	36	48	60	71	83	95	104
	57 634	57 749	57 864	12	23	35	46	58	70	81	93	104
	58 771	58 883	58 995	11	23	34	45	57	68	79	90	102
	59 879	59 988	60 097	11	22	33	44	55	66	77	88	99
	60 959	61 066	61 172	11	21	32	43	54	64	75	86	97
	62 014	62 118	62 221	10	21	31	42	53	63	74	84	95
	63 043	63 144	63 246	10	20	31	41	51	61	71	82	92
	64 048	64 147	64 246	10	20	30	40	50	60	70	80	90
	65 031	65 128	65 225	10	20	29	39	49	59	68	78	88
	65 992 66 932 67 852 68 753 69 636	66 087 67 025 67 943 68 842 69 723	66 181 67 117 68 034 68 931 69 810	10 9 9 9	19 19 18 18 18	29 28 27 27 26	38 37 36 36 35	48 47 46 45 44	57 56 55 53 53	67 65 64 63 62	76 74 73 72 70	86 84 82 81 79
	70 501 71 349 72 181 72 997 73 799	70 586 71 433 72 263 73 078 73 878	70 672 71 517 72 346 73 159 73 957	9 8 8 8	17 17 17 16 16	26 25 25 24 24	34 34 33 32 32	43 42 42 41 40	52 50 50 49 48	60 59 58 57 56	69 67 66 65 64	77 76 75 73 72
	74 586	74 663	74 741	8	16	23	31	39	47	55	63	70
	75 358	75 435	75 511	8	15	23	31	39	46	54	62	69
	76 118	76 193	76 268	8	15	23	30	38	45	53	60	68
	76 864	76 938	77 012	7	15	22	30	37	44	52	59	67
	77 597	77 670	77 743	7	15	22	29	37	44	51	58	66

Logarithms

77 815 78 533 79 239 79 934 80 618	77 887 78 604 79 309	77 960 78 675	78 032			
	80 003 80 686	79 379 80 072 80 754	78 746 79 449 80 140 80 821	78 104 78 817 79 518 80 209 80 889	78 176 78 888 79 588 80 277 80 956	78 247 78 958 79 657 80 346 81 023
81 291	81 358	81 425	81 491	81 558	81 624	81 690
81 954	82 020	82 086	82 151	82 217	82 282	82 347
82 607	82 672	82 737	82 802	82 866	82 930	82 995
83 251	83 315	83 378	83 442	83 506	83 569	83 632
83 885	83 948	84 011	84 073	84 136	84 198	84 261
84 510	84 572	84 634	84 696	84 757	84 819	84 880
85 126	85 187	85 248	85 309	85 370	85 431	85 491
85 733	85 794	85 854	85 914	85 974	86 034	86 094
86 332	86 392	86 451	86 510	86 570	86 629	86 688
86 923	86 982	87 040	87 099	87 157	87 216	87 2 74
87 506	87 564	87 622	87 679	87 737	87 795	87 852
88 081	88 138	88 195	88 252	88 309	88 366	88 423
88 649	88 705	88 762	88 818	88 874	88 930	88 986
89 209	89 265	89 321	89 376	89 432	89 487	89 542
89 763	89 818	89 873	89 927	89 982	90 037	90 091
90 309	90 363	90 417	90 472	90 526	90 580	90 634
90 848	90 902	90 956	91 009	91 062	91 116	91 169
91 381	91 434	91 487	91 540	91 593	91 645	91 698
91 908	91 960	92 012	92 064	92 117	92 169	92 221
92 428	92 480	92 531	92 583	92 634	92 686	92 737
92 942	92 993	93 044	93 095	93 146	93 197	93 247
93 450	93 500	93 551	93 601	93 651	93 702	93 752
93 952	94 002	94 052	94 101	94 151	94 201	94 250
94 448	94 498	94 547	94 596	94 645	94 694	94 743
94 939	94 988	95 036	95 085	95 134	95 182	95 231
95 424	95 472	95 521	95 569	95 617	95 665	95 713
95 904	95 952	95 999	96 047	96 095	96 142	96 190
96 379	96 426	96 473	96 520	96 567	96 614	96 661
96 848	96 895	96 942	96 988	97 035	97 081	97 128
97 313	97 359	97 405	97 451	97 497	97 543	97 589
	82 607 83 251 83 885 84 510 85 126 85 733 86 332 86 923 87 506 88 081 88 649 89 209 89 763 90 309 90 848 91 381 91 908 92 428 92 942 93 450 93 952 94 448 94 939 95 904 96 379 96 848	82 607 83 251 83 315 83 885 84 510 84 572 85 126 85 187 85 733 86 392 86 332 86 392 86 923 87 506 88 081 88 649 89 209 89 265 89 209 89 265 89 763 89 818 90 309 90 363 90 848 90 902 91 381 91 434 91 960 92 428 92 942 92 943 93 450 93 952 94 448 94 498 94 988 95 424 95 904 96 848 96 895	82 607 82 672 82 737 83 251 83 315 83 378 83 885 83 948 84 011 84 510 84 572 84 634 85 126 85 187 85 248 85 733 85 794 85 85 4 86 332 86 392 86 451 86 923 86 982 87 040 87 506 87 564 87 622 88 081 88 138 88 195 88 649 88 705 88 762 89 209 89 265 89 321 89 763 89 818 89 873 90 309 90 363 90 417 90 848 90 902 90 956 91 381 91 434 91 487 91 908 91 960 92 012 92 428 92 480 92 531 92 942 92 993 93 044 93 450 93 500 93 551 93 450 93 500 93 551 94 488 94 052 94 052 94 488 94 547 95 952 95 904 95 952 95 999	82 607 82 672 82 737 82 802 83 251 83 315 83 378 83 442 83 885 83 948 84 011 84 073 84 510 84 572 84 634 84 696 85 126 85 187 85 248 85 309 85 733 85 794 85 854 85 914 86 332 86 392 86 451 86 510 86 923 86 982 87 040 87 099 87 506 87 564 87 622 87 679 88 081 88 138 88 195 88 252 88 649 88 705 88 762 88 818 89 209 89 265 89 321 89 376 89 763 89 818 89 873 89 927 90 309 90 363 90 417 90 472 90 848 90 902 90 956 91 009 91 381 91 434 91 487 91 540 92 942 92 93 93 044 93 095 93 450 93 500 93 551 93 601 93 952 94 002 94 052 94 101	82 607 82 672 82 737 82 802 82 866 83 251 83 315 83 378 83 442 83 506 83 885 83 948 84 011 84 073 84 136 84 510 84 572 84 634 84 696 84 757 85 126 85 187 85 248 85 309 85 370 85 733 85 794 85 854 85 914 86 970 86 332 86 392 86 451 86 510 86 570 86 923 86 982 87 040 87 099 87 157 87 506 87 564 87 622 87 679 87 737 88 081 88 138 88 195 88 252 88 309 88 649 88 705 88 762 88 818 88 874 89 209 89 265 89 321 89 376 89 432 89 763 89 818 89 873 89 927 89 982 90 349 90 363 90 417 90 472 90 526 91 381 91 434 91 487 91 540 91 593 91 90 90 92 93 93 601 93 601	82 607 82 672 82 737 82 802 82 866 82 930 83 251 83 315 83 378 83 442 83 506 83 569 83 885 83 948 84 011 84 073 84 136 84 198 84 510 84 572 84 634 84 696 84 757 84 819 85 126 85 187 85 248 85 309 85 370 85 431 85 733 85 794 85 854 85 914 85 974 86 034 86 332 86 392 86 451 86 510 86 570 86 629 87 506 87 564 87 622 87 679 87 737 87 795 88 081 88 138 88 195 88 252 88 309 88 366 88 649 88 705 88 762 88 818 88 874 88 930 89 763 89 818 89 873 89 927 89 982 90 037 90 348 90 902 90 956 91 009 91 062 91 116 91 93 91 960 92 012 92 064 92 117 92 169 92 422 92 93 93 551

Table 58 (continued)

_	<u> </u>	<u> </u>		Prop	orti	onal p	arts of	the 1	nean Vs	luec of	diffe	erences
	7	8	9	1	2	3	4	5	в	7	8	9
	78 319 79 029 79 727 80 414 81 090	78 390 79 099 79 796 80 482 81 158	78 462 79 169 79 865 80 550 81 224	7 7 7 7	14 14 14 14 13	22 21 21 20 20	29 28 28 27 27	36 36 35 34 34	43 43 41 41 40	50 50 48 48 48	58 57 55 54 54	65 64 62 61 60
	81 757 82 413 83 059 83 696 84 323	81 823 82 478 83 123 83 759 84 386	81 889 82 543 83 187 83 822 84 448	7 7 6 6 6	13 13 13 13 12	20 20 19 19	26 26 26 25 25	33 32 32 31	40 39 38 38 37	46 46 45 44 43	53 52 51 50 50	59 59 58 57 56
	84 942 85 552 86 153 86 747 87 332	85 003 85 612 86 213 86 806 87 390	85 065 85 673 86 273 86 864 87 448	6 6 6 6	12 12 12 12 12	19 18 18 18 17	25 24 24 24 23	31 31 30 30 29	37 37 36 35 35	43 43 42 41 41	50 49 48 47 46	56 55 54 53 52
	87 910 88 480 89 042 89 597 90 146	87 967 88 536 89 098 89 653 90 200	88 024 88 593 89 154 89 708 90 255	6 6 6 6	12 11 11 11 11	17 17 17 17	23 23 22 22 22 22	29 29 28 28 28	35 34 34 33 33	41 40 39 39 39	46 46 45 44 44	52 51 50 50 50
	90 687 91 222 91 751 92 273 92 788	90 741 91 275 91 803 92 324 92 840	90 795 91 328 91 855 92 376 92 891	5 5 5 5 5 5	11 11 11 10 10	16 16 16 16 15	22 21 21 21 21 20	27 27 27 26 26	32 32 32 31 31	38 37 37 36 36	43 42 42 42 41	49 48 48 47 46
	93 298 93 802 94 300 94 792 95 279	93 349 93 852 94 349 94 841 95 328	93 399 93 902 94 399 94 890 95 376	5 5 5 5 5 5	10 10 10 10 10	15 15 15 15 15	20 20 20 20 19	26 25 25 25 24	31 30 30 29 29		41 40 40 39 39	46 45 45 44 44
	95 761 96 237 96 708 97 174 97 635	95 809 96 284 96 755 97 220 97 681	95 856 96 332 96 802 97 267 97 727	5 5 5 5 5	10 9 9 9	14 14 14 14 14	19 19 19 18 18	24 24 24 23 23	29 28 28 28 28	34 33 33 32 32 32	38 38 38 38 37	43 42 42 42 42 42

Logarithms

N	0	1	2	3	4	5	6	
95	97 772	97 818	97 864	97 909	97 955	98 000	98 046	
96	98 227	98 272	98 318	98 363	98 408	98 453	98 498	
97	98 677	98 722	98 767	98 811	98 856	98 900	98 945	
98	99 123	99 167	99 211	99 255	99 300	99 344	99 388	
99	99 564	99 607	99 651	99 695	99 739	99 782	99 826	

B. Antilogarithms

							 	
log	0	1	2	3	4	5	6	
.00	10 000	10 023	10 046	10 069	10 093	10 116	10 139	
.01	10 233	10 257	10 280	10 304	10 328	10 351	10 375	
.02	10 471	10 495	10 520	10 544	10 568	10 593	10 617	
.03	10 715	10 740	10 765	10 789	10 814	10 839	10 864	
.04	10 965	10 990	11 015	11 041	11 066	11 092	11 117	
.05	11 220	11 246	11 272	11 298	11 324	11 350	11 376	
.06	11 482	11 508	11 535	11 561	11 588	11 614	11 641	
.07	11 749	11 776	11 803	11 830	11 858	11 885	11 912	
.08	12 023	12 050	12 078	12 106	12 134	12 162	12 190	
.09	12 303	12 331	12 359	12 388	12 417	12 445	12 474	
.10	12 589	12 618	12 647	12 677	12 706	12 735	12 764	
.11	12 882	12 912	12 942	12 972	13 002	13 032	13 062	
.12	13 183	13 213	13 243	13 274	13 305	13 335	13 366	
.13	13 490	13 521	13 552	13 583	13 614	13 646	13 677	
.14	13 804	13 836	13 868	13 900	13 932	13 964	13 996	
.15	14 125	14 158	14 191	14 223	14 256	14 289	14 322	
.16	14 454	14 488	14 521	14 555	14 588	14 622	14 655	
.17	14 791	14 825	14 859	14 894	14 928	14 962	14 997	
.18	15 136	15 171	15 205	15 241	15 276	15 311	15 346	
.19	15 488	15 524	15 560	15 596	15 631	15 668	15 704	
.20	15 849	15 885	15 922	15 959	15 996	16 032	16 069	
.21	16 218	16 255	16 293	16 331	16 368	16 406	16 444	
.22	16 596	16 634	16 672	16 711	16 749	16 788	16 827	
.23	16 982	17 022	17 061	17 100	17 140	17 179	17 219	
.24	17 378	17 418	17 458	17 498	17 539	17 579	17 620	

Table 58 (continued)

_			Prop	orti	onal r	erts of	the	mean	values of	din	erences
7	7 8	9	1	2	3	4	5	6	7	8	9
98 091 98 543 98 989 99 432 99 870	98 137 98 588 99 034 99 476 99 913	98 182 98 632 99 078 99 520 99 957	5 5 4 4 4	9 9 9 9	14 14 13 13	18 18 18 18 18	23 23 22 22 22 22	27 27 27 26 26	32 32 31 31 31	36 36 36 35 35	41 41 40 40 39

1 _			Prop	orti	onal I	parts of	the	mean va	ilues of		
7	8	9	í	2	3	4	5	6	7	8	9
10 162 10 399 10 641 10 889 11 143	10 186 10 423 10 666 10 914 11 169	10 209 10 447 10 691 10 940 11 194	2 2 2 3 3	5 5 5 5 5	7 7 7 8 8	9 10 10 10 10	12 12 12 13 13	14 14 15 15	16 17 17 18 18	19 19 20 20 20	21 21 22 23 23
11 402 11 668 11 940 12 218 12 503	11 967 12 246	11 455 11 722 11 995 12 274 12 560	3 3 3 3 3	5 5 6 6	8 8 8 9	11 11 11 11	13 13 14 14 14	16 16 16 17 17	18 19 19 20 20	21 21 22 22 23	24 24 25 25 26
12 794 13 092 13 397 13 709 14 028	12 823 13 122 13 428 13 740 14 060	12 853 13 152 13 459 13 772 14 093	3 3 3 3	6 6 6 6	9 9 9 9	12 12 12 13 13	15 15 15 16 16	18 18 18 19	21 21 21 22 22 22	24 24 25 25 26	26 27 28 28 29
14 355 14 689 15 031 15 382 15 740	14 388 14 723 15 066 15 417 15 776	14 421 14 757 15 101 15 453 15 812	3 3 4 4	7 7 7 7 7	10 10 10 11 11	13 13 14 14 14	16 17 17 18 18	20 20 21 21 22	23 24 24 25 25	26 27 28 28 29	30 30 31 32 32
16 106 16 482 16 866 17 258 17 660	16 520 16 904 17 298	16 181 16 558 16 943 17 338 17 742	44444	7 8 8 8 8	11 11 12 12 12	15 15 15 16 16	18 19 19 20 20	22 23 23 24 24	26 26 27 28 28	30 30 31 32 32	34 35 36

Antilogarithms

Antho	garitums							
log	0	1	2	3	4	5	в	
.25	17 783	17 824	17 865	17 906	17 947	17 989	18 030	
.26	18 197	18 239	18 281	18 323	18 365	18 408	18 450	
.27	18 621	18 664	18 707	18 750	18 793	18 836	18 880	
.28	19 055	19 099	19 143	19 187	19 231	19 275	19 320	
.29	19 498	19 543	19 588	19 634	19 679	19 724	19 770	
.30 .31 .32 .33	19 953 20 417 20 893 21 380 21 878	19 999 20 464 20 941 21 429 21 928	20 045 20 512 20 989 21 478 21 979	20 091 20 559 21 038 21 528 22 029	20 137 20 606 21 086 21 577 22 080	20 184 20 654 21 135 21 627 22 131	20 230 20 701 21 184 21 677 22 182	
.35	22 387	22 439	22 491	22 542	22 594	22 646	22 699	
.36	22 909	22 961	23 014	23 067	23 121	23 174	23 227	
.37	23 442	23 496	23 550	23 605	23 659	23 714	23 768	
.38	23 988	24 044	24 099	24 155	24 210	24 266	24 322	
.39	24 547	24 604	24 660	24 717	24 774	24 831	24 889	
.40	25 119	25 177	25 236	25 293	25 351	25 410	25 468	
.41	25 704	25 763	25 823	25 882	25 942	26 002	26 062	
.42	26 303	26 363	26 424	26 485	26 546	26 607	26 669	
.43	26 915	26 977	27 040	27 102	27 164	27 227	27 290	
.44	27 542	27 606	27 669	27 733	27 797	27 861	27 925	
.45	28 184	28 249	28 314	28 379	28 445	28 510	28 576	
.46	28 840	28 907	28 973	29 040	29 107	29 174	29 242	
.47	29 512	29 580	29 648	29 717	29 785	29 854	29 923	
.48	30 200	30 269	30 339	30 409	30 479	30 549	30 620	
.49	30 903	30 974	31 046	31 117	31 189	31 261	31 333	
.50	31 623	31 696	31 769	31 842	31 916	31 989	32 063	
.51	32 359	32 434	32 509	32 584	32 659	32 735	32 809	
.52	33 113	33 189	33 266	33 343	33 420	33 497	33 574	
.53	33 884	33 963	34 041	34 119	34 198	34 277	34 356	
.54	34 674	34 754	34 834	34 914	34 995	35 075	35 156	
.55	35 481	35 563	35 645	35 727	35 810	35 892	35 975	
.56	36 308	36 392	36 475	36 559	36 644	36 728	36 813	
.57	37 154	37 239	37 325	37 411	37 497	37 584	37 670	
.58	38 019	38 107	38 194	38 282	38 371	38 459	38 548	
.59	38 905	38 994	39 084	39 174	39 264	39 355	39 446	
]		

Table 58 (continued)

Proportional pa						the r	nean va	lues of	diffe	rences
7 8	8	9	1 2	3	4	Б	6	7	8	9
18 072	18 113	18 155	4 8	12	17	21	25	29	33	37
18 493	18 535	18 578	4 8	13	17	21	25	30	34	38
18 923	18 967	19 011	4 9	13	17	22	26	30	35	39
19 364	19 409	19 454	4 9	13	18	22	26	31	35	40
19 815	19 861	19 907	5 9	14	18	23	27	31	36	41
20 277 20 749 21 232 21 727 22 233	20 324 20 797 21 281 21 777 22 284	20 370 20 845 21 330 21 826 22 336	5 9 5 10 5 10 5 10 5 10	14 14 15 15	19 19 19 20 20	23 24 24 25 25	28 29 29 30 31	32 33 34 35 36	37 38 39 40 41	42 43 44 45 46
22 751	22 803	22 856	5 10	16	21	26	31	37	42	47
23 281	23 336	23 388	5 11	16	21	27	32	37	43	48
23 823	23 878	23 933	5 11	16	22	27	33	38	44	49
24 378	24 434	24 491	6 11	17	22	28	34	39	45	50
24 946	25 003	25 061	6 11	17	23	29	34	40	46	51
25 527 26 122 26 730 27 353 27 990	25 586 26 182 26 792 27 416 28 054	25 645 26 242 26 853 27 479 28 119	6 12 6 12 6 12 6 13 6 13	18 18 18 19	23 24 24 25 26		35 36 37 38 39	41 42 43 44 45	47 48 49 50 51	53 54 55 56 58
28 642	28 708	28 774	7 13	20	26	33	39	46	52	59
29 309	29 376	29 444	7 13	20	27	34	40	47	54	60
29 992	30 061	30 130	7 14	21	28	34	41	48	55	62
30 690	30 761	30 832	7 14	21	28	35	42	49	56	63
31 405	31 477	31 550	7 14	22	29	36	43	50	58	65
32 137	32 211	32 285	7 15	22	29	37	44	52	59	66
32 885	32 961	33 037	8 15	23	30	38	45	53	60	68
33 651	33 729	33 806	8 15	23	31	39	46	54	62	69
34 435	34 514	34 594	8 16	24	32	40	47	55	63	71
35 237	35 318	35 400	8 16	24	32	40	48	56	65	73
36 058	36 141	36 224	8 16	25	33	41	50	58	66	74
36 898	36 983	37 068	8 17	25	34	42	51	59	68	76
37 757	37 844	37 931	9 17	26	35	43	52	61	69	78
38 637	38 726	38 815	9 18	27	35	44	53	62	71	80
39 537	39 628	39 719	9 18	27	36	45	54	63	72	82

Antilogarithms

log	0	1	2	3	4	5	6				
.60	39 811	39 902	39 994	40 087	40 179	40 272	40 365				
.61	40 738	40 832	40 926	41 020	41 115	41 210	41 305				
.62	41 687	41 783	41 879	41 976	42 073	42 170	42 267				
.63	42 658	42 756	42 855	42 954	43 053	43 152	43 251				
.64	43 652	43 752	43 853	43 954	44 055	44 157	44 259				
.65	44 668	44 771	44 875	44 978	45 082	45 186	45 290				
.66	45 709	45 814	45 920	46 026	46 132	46 238	46 345				
.67	46 774	46 881	46 989	47 098	47 206	47 315	47 424				
.68	47 863	47 973	48 084	48 195	48 306	48 417	48 529				
.69	48 978	49 091	49 204	49 317	49 431	49 545	49 659				
.70	50 119	50 234	50 350	50 466	50 582	50 699	50 816				
.71	51 286	51 404	51 523	51 642	51 761	51 880	52 000				
.72	52 481	52 602	52 723	52 845	52 966	53 088	53 211				
.73	53 703	53 827	53 951	54 075	54 200	54 325	54 450				
.74	54 954	55 081	55 208	55 336	55 463	55 590	55 719				
.75	56 234	56 364	56 494	56 624	56 754	56 855	57 016				
.76	57 544	57 677	57 810	57 943	58 076	58 210	58 345				
.77	58 884	59 020	59 156	59 293	59 429	59 566	59 704				
.78	60 256	60 395	60 534	60 674	60 814	60 954	61 094				
.79	61 659	61 802	61 944	62 087	62 230	62 373	62 517				
.80	63 096	63 241	63 387	63 533	63 680	63 826	63 973				
.81	64 565	64 714	64 863	65 013	65 163	65 313	65 464				
.82	66 069	66 222	66 374	66 527	66 681	66 834	66 988				
.83	67 608	67 764	67 920	68 077	68 234	68 391	68 549				
.84	69 183	69 343	69 503	69 663	69 823	69 984	70 146				
.85 .86 .87 .88	70 795 72 444 74 131 75 858 77 625	70 958 72 611 74 302 76 033 77 804	71 121 72 778 74 473 76 208 77 983	71 285 72 946 74 645 76 384 78 163	71 450 73 114 74 817 76 560 78 343	71 614 73 282 74 989 76 736 78 5 24	71 779 73 451 75 162 76 913 78 705				
.90	79 433	79 616	79 799	79 983	80 168	80 353	80 538				
.91	81 283	81 470	81 658	81 846	82 035	82 224	82 414				
.92	83 176	83 368	83 560	83 753	83 946	84 140	84 333				
.93	85 114	85 310	85 507	85 704	85 901	86 099	86 298				
.94	87 096	87 297	87 498	87 700	87 902	88 105	88 308				
.95 .96 .97 .98	89 125 91 201 93 325 95 499 97 724	89 331 91 411 93 541 95 719 97 949	89 536 91 622 93 756 95 940 98 175	89 743 91 833 93 972 96 161 98 401	89 950 92 045 94 189 96 383 98 628	90 157 92 257 94 406 96 605 98 855	90 365 92 470 94 624 96 828 96 083				

Table 58 (continued)

_	l	Proportional parts of the mean values of differences										
	7	8	9	1	2	3	4		6	7	8	9
	40 458 41 400 42 364 43 351 44 361	40 551 41 495 42 462 43 451 44 463	40 644 41 591 42 560 43 551 44 566	9 9 10 10 10	19 19 19 20 20	28 28 29 30 30	37 38 39 40 41	47 49	57 58	65 66 68 70 71	74 76 78 80 81	83 85 87 89 91
	45 394 46 452 47 534 48 641 49 774	45 499 46 559 47 643 48 753 49 888	45 604 46 666 47 753 48 865 50 003	10 11 11 11	21 21 22 22 23	31 32 33 33 34	42 43 44 45 46	53 54	62 64 65 67 68	73 75 76 78 80	83 85 87 89 91	94 96 98 100 103
	50 933 52 119 53 333 54 576 55 847	51 050 52 240 53 456 54 702 55 976	51 168 52 360 53 580 54 828 56 105	12 12 12 13 13	23 24 24 25 26	35 36 37 38 38	47 48 49 50 51	58 60 61 63 64	70 72 73 75 77	82 84 85 88 90	93 96 98 100 102	105 108 110 113 115
	57 148 58 479 59 841 61 235 62 661	57 280 58 614 59 979 61 376 62 806	57 412 58 749 60 117 61 518 62 951	13 13 14 14 14	26 27 27 28 29	39 40 41 42 43	52 54 55 56 58	66 67 69 70 72	79 80 82 84 86	92 94 96 98 101	105 107 110 112 115	118 121 123 126 130
	64 121 65 615 67 143 68 707 70 307	64 269 65 766 67 298 68 865 70 469	64 417 65 917 67 453 69 024 70 632	15 16	29 30 31 32 32	44 45 46 47 48	59 60 62 63 64	74 75 77 79 81	88 90 92 95 97	103 105 108 110 113	118 120 123 126 129	132 135 139 142 145
	71 945 73 621 75 336 77 090 78 886	72 111 73 790 75 509 77 268 79 068	72 2 77 73 961 75 683 77 446 79 250	17 17 18	33 34 35 35 36	50 51 52 53 54	66 68 69 71 72	83 85 87 89 91	99 101 104 107 109	116 118 121 125 127	132 135 138 142 145	149 152 156 159 163
	80 724 82 604 84 528 86 497 88 512	80 910 82 794 84 723 86 696 88 716	81 096 82 985 84 918 86 896 88 920	19 19 20	37 38 39 40 41	56 57 58 60 61	74 76 78 79 81	93 95 97 99 102	111 113 116 119 122	130 132 136 139 142	148 151 155 158 162	167 170 175 178 183
	90 573 92 683 94 842 97 051 99 312	90 782 92 897 95 060 97 2 75 99 541	90 991 93 111 95 280 97 499 99 770	21 22 22	42 42 43 44 46	62 64 65 67 68	83 85 87 89 91	104 106 109 111 114	125 127 130 133 137	146 149 152 155 160	166 170 174 178 182	187 191 195 200 205

Appendices

Examples of Using Some Tables

Table 7

Analytical and Stoichiometric Multipliers (Factors)

The table is intended above all for calculations connected with analytical determinations by gravimetric methods.

When the content of a component is being determined in some

material, two cases are possible.

1. The unknown component is weighed in the form in which it is desirable to express its content in the substance being analysed; for example, in determining the Cu content in bronze, copper is separated by electrolysis and weighed as such, and in another case, SiO₂ from the mineral is weighed in the form of SiO₂, whose form usually expresses the Si content of minerals in rocks. In these cases, the percentage of the unknown component is calculated by the simple formula

$$x = \frac{a \times 100}{g} \%$$

where a = mass of the separated component;

g = weighed portion of a substance taken for analysis (a and

g are expressed in the same mass units).

For calculation, two logarithms must be found without using Table 7. 2. The unknown component is weighed in a form that is different from the one in which it is desirable to express the result of the analysis; for example, the determination of P is completed by weighing a calcined precipitate of $Mg_2P_3O_7$ or, in determining Si in steel, the analysis is completed likewise by weighing SiO_2 , as in the case of analysing the mineral, but the result must be expressed in the percentage of the element (Si). Sometimes, the weighed substance does not contain the element being determined. Thus, in determining N in ammonium salt, ammonium is occasionally precipitated in the form of $(NH_4)_2PtCl_6$ which is then calcined; Pt obtained is weighed. The content of Pt is used to calculate the percentage of N in the salt being analysed.

In all these cases it is obviously necessary to calculate the amount of the unknown component to which the found mass of the weighed substance (a) corresponds. Therefore, in determining Si, mass a must be divided by the molecular weight of SiO_2 and multiplied by the atomic weight of Si, i.e., $\frac{aSi}{SiO_2}$; in determining P, the found mass a must be divided by the molecular weight of $Mg_2P_2O_7$ and multiplied by the double atomic weight of P (since the $Mg_2P_2O_7$ molecule con-

tains 2P), i.e., $\frac{a2P}{Mg_2P_2O_7}$; in determining N, the found mass a must be divided by the atomic weight of Pt and multiplied by the double atomic weight of N, i.e., $\frac{a2N}{Pt}$, since in the $(NH_4)_2PtCl_6$ compound, two atoms of N combine with one atom of Pt. All the values of these fractions, i.e., $\frac{\text{Si}}{\text{SiO}_2}$, $\frac{2P}{\text{Mg}_2P_2O_7}$, $\frac{2N}{\text{Pt}}$, etc., and their logarithms, are given in Table 7, where they are called multipliers and designated by the letter (they are also called factors conversion factors chamical by the letter f (they are also called factors, conversion factors, chemical multipliers). Thus, the content of the component being determined in the weighed substance will be af, and its percentage in the material being analysed will be:

 $x = \frac{af \times 100}{\rho} \%$

Thus, the calculation is performed by finding three logarithms (one from Table 7, and two from the common logarithm table), adding

two of them and subtracting the third one.

Since the operation of addition and subtraction cannot be performed in one column, it is necessary to learn how to quickly find its complement to unity by logarithm. Then, the entire operation consists in adding three mantissas: $\log x = \log a + \log f + (1 - \log g)$. The characteristics and the whole number $2 (\log 100 = 2)$ are not taken into into account. When the operation is completed and the number x is found by its logarithm, it is easy to find the proper place of the decimal point in it, since it is always known whether the material being analysed contains, say, 8.3 or 83 or 0.83 per cent of the compo-

nent being determined.

To find the complement of log g to unity, the last figure of the mantissa is subtracted from 10, and the remaining figures are subtracted from 9; for example, if the mantissa of log g is 34 906, its

complement to unity is 65 094.

Examples of Calculating the Results of Gravimetric, Analytical Determinations

Example 1. To determine Cu in brass, a portion of a shaving g weighing 1.1238 g is taken. The mass of a pure platinum electrode is 12.4826 g; the mass of the same electrode coated with deposited Cu

is 13.2965 g after drying. Find the percentage of Cu in the alloy. The mass of deposited Cu a=13.2965 g -12.4826 g =0.8139 g. The unknown percentage of Cu is $x=\frac{0.8139\times100}{1.1238}$ %. We find the logarithms in Table 58 (p. 448) and write down the mantissas without the characteristics:

$$-\frac{91\ 057}{05\ 069}$$

$$\log x = 85\ 988;\ x = 72.42\%$$

It is easy to see from the calculating formula that the final result will have two digits before the decimal point. In working out this example, we did not have to use the multipliers of Table 7, since the component of brass (Cu) being determined was weighed in the form of metal.

Example 2. To determine Mg in limestone, a portion weighing 1.2456 g is taken. After SiO_2 , Fe, Al and Ca are separated, Mg is precipitated in the form of MgNH₄PO₄ which by calcination is converted to Mg₂P₂O₇; the mass of the calcined precipitate a=0.0551 g. Find the percentage of magnesium in the limestone.

We find in the common logarithm table: $\log g = \log 1.2456 = 09540$; $\log a = \log 0.0551 = 74115$. As in the preceding example,

we find only the mantissas.

In Table 7 we find Mg in the first column, $Mg_2P_2O_7$ in the next column, and then on the same line the value of multiplier f equal to 0.2184, and log f equal to 33 930. Now we add:

The Mg content is 0.966 or 0.97%.

Since in the mass of the calcined precipitate weighing 0.0551 g, the maximum absolute error is ± 0.0002 g (an inaccuracy of ordinary weighings on an analytical balance), which is 0.4% of the relative error, the same maximum relative error will be also in the final result (rule 4, p. 11), i.e., the answer will be 0.966 \pm 0.004%. We see that the answer must not have more than three figures after the decimal point, since the third figure is already dubious. However, considering that during the analysis there may be other sources of errors besides the inaccuracy in weighing, it is expedient to round the result obtained to 0.97%.

Table 14

Calculation of the Results of Volumetric-Analytical Determinations

In finding the results of volumetric-analytical determinations, unnecessary and intricate calculations are often performed. For example, in calculating the amount of Fe titrated with the KMnO₄ solution, the amount of KMnO₄ that has reacted is calculated at first, and then the stoichiometric ratio (1 mole of KMnO₄: 5 moles of Fe²⁺) is used to determine the Fe content. This is an intricate way of calculation, and therefore it is unacceptable. To simplify similar calculations the concentrations of solutions are expressed in normalities.

The normality or the normal concentration of a solution is the number of gram-equivalents of a solute in one litre of the solution or the number of milligram equivalents in one millilitre of the solution.

Chemical equivalent is a term applied to the active part of an atom or a molecule which:

(a) in neutralization reactions corresponds to one hydrogen ion H+

or one hydroxyl ion OH⁻ that forms water.

For example, in the reaction $H_3PO_4 + 2NaOH = Na_2HPO_4 + 2H_2O$, two ions of H⁺ and two ions of OH⁻ form two molecules of H_2O . It follows that there are 1/2 molecule of H_3PO_4 and one molecule $\left(\frac{2\text{NaOH}}{2}\right)$ of caustic soda per one ion of H+ or OH-. These values are their equivalents;

(b) in oxidation-reduction reactions corresponds to one electron that a molecule or an ion of a substance accepts or gives off in a given

For example, KMnO₄ reacts as an oxidizing agent in an acid medium according to the equation:

$$MnO_4^- + 8H^+ + 5e \rightarrow Mn^{2+} + 4H_2O$$

It follows that there is 1/5MnO₄ or 1/5KMnO₄ per electron, which are equivalents. Oxalic acid H₂C₂O₄ reacts as a reducing agent according to the equation

$$C_2O_4^{2-} - 2e \rightarrow 2CO_2$$

it follows that there is $1/2C_2O_4^{2-}$, or $1/2H_2C_2O_4$, or $1/2H_2C_2O_4 \cdot 2H_2O_4$ per one electron; these values are the equivalents;

(c) in precipitation and complexing reactions corresponds to one ion of a univalent metal, 1/2 ion of a bivalent metal, and so forth, that form a precipitate or a complex compound. Thus, in titrating cyanide with silver salt according to Mohr:

$$Ag^+ + CN^- = AgCN$$
 or $AgNO_3 + KCN = AgCN + KNO_3$

the equivalent of KCN is equal to one molecule, and in titrating the same cyanide according to Deniges:

$$Ag^+ + 2CN^- = Ag(CN)_2^-$$
 or $AgNO_3 + 2KCN = KAg(CN)_2 + KNO_3$

the equivalent of KCN is equal to two molecules.

From the above examples, we see that the chemical equivalent of a substance is not a constant number, but depends on the reaction in which the substance participates.

Gram-equivalent (or milligram-equivalent) weight of an element or compound is its equivalent weight expressed in grams (or milli-

grams).

If the concentration (titre) of a titrating solution (sometimes called a standard solution) is expressed by its normality N_s , and E_s is its equivalent weight, every millilitre of the solution will contain $N_s E_s$ mg of the titrating substance. Having used V ml of the solution in the titration, we introduced VN_sE_s mg of the titrating substance into the reaction. Since a reaction occurs always between the quantities of the substances proportional to their equivalents, the quantity of the titrated substance (being determined) will be VN_sE_x mg, where E_x is the equivalent weight of the substance being determined. It follows that for calculations, it is necessary to know only the normality of the titrating solution N_s and the equivalent weight E_x of the substance being determined. The latter can be found in Table 14. The percentage (x) of the substance being determined in the weighed portion (g) is calculated by the formula:

$$x = \frac{VN_sE_x \times 100}{g} \% \text{ or } \frac{VN_sE_x}{g' \cdot 10} \%$$

where g is expressed in mg, and g' in grams.

A. Determination of the Normality of a Titrant (Finding of the Titre)

In establishing the normality of a solution, a certain amount of a starting substance g_s is weighed. The weighed portion is dissolved and the solution obtained is titrated with the solution whose normality (N_x) is to be determined. Suppose V ml is used in titration. Then $VN_xE_s=g_s$ and

$$N_x = \frac{g_s}{VE_s}$$

where E_s is the equivalent weight of the starting substance which can be found in Table 14; the value of g_s is expressed in mg.

The weighed portion of the substance is dissolved in a suitable

The weighed portion of the substance is dissolved in a suitable solvent (usually water) in a volumetric flask, diluted with it to volume $(V_1 \text{ ml})$, and a certain volume $(V_2 \text{ ml})$ is taken for the titration with a pipette. In this case

$$N_x = \frac{g_s V_2}{V_1 V E_s}$$

Example 1. A portion of pure sodium oxalate $Na_2C_2O_4$ dried at 105-110 °C weighing 0.2712 g is dissolved in water. On adding H_2SO_4 , the solution is titrated with 39.88 ml of the KMnO₄ solution. Calculate the normality of the latter.

In Table 14, we find:

$$E_{\text{Na}_2\text{C}_2\text{O}_4} = 67\ 000;\ \log E_s = 82\ 607$$
 $\log g_s = \log 271.2 = 43\ 329$
 $1 - \log V = 1 - \log 39.88 = 39\ 924$
 $1 - \log E_s = 1 - \log 67\ 000 = 17\ 393$
 $\log N_x = 00\ 646;\ N_x = 0.1015$

If the normality of a solution (N_1) is determined according to another solution of known normality (N_2) , then V_1 ml of the former is titrated with the latter. Suppose V_2 ml of the latter solution is used in the titration. Then

$$V_1 N_1 = V_2 N_2 N_1 = N_2 \frac{V_2}{V_1}$$

Example 2. The normality of the NaOH solution (N_1) is established according to 0.09854N HCl solution. For the titration of 20.00 ml of the former, 21.12 ml of the latter are used. Calculate the normality

of the NaOH solution

$$N_1 = \frac{0.09854 \times 21.12}{20.00}$$

$$\log 0.09854 = 99 362$$

$$\log 21.12 = 32 469$$

$$1 - \log 20.00 = 69 897$$

$$\log N_1 = 01 728; N_1 = 0.1041$$

In practice, the concentration of the titrant $(T_{s/x})$, titre of the solution according to the substance being determined) is very often expressed in the amount (in mg or g) of the substance being determined that titrates 1 ml of the T_x solution. Knowing the normality of the solution, it is easy to find its titre by the following formula relative to any substance being determined: $T_{s/x} = N_s E_x$ (E_x can be found in Table 14). For example, the titre of 0.1023N KMnO₄ solution relative to iron is $T_{\text{MnO}_4^-/\text{Fe}} = N_s E_{\text{Fe}} = 0.1023 \times 55.847$ mg/ml; its titre relative to iron oxide is $T_{\text{MnO}_4^-/\text{Fe}_2\text{O}_3} = N_s E_{\text{Fe}_2\text{O}_3} = 0.1023 \times 79.846$, etc. The percentage of the substance being determined is

$$x = \frac{VN_sE_x \times 100}{g} = \frac{VT_{s/x} \times 100}{g}$$
 %

where g and $T_{s/x}$ are expressed in the same units.

If a titre of a solution relative to a substance is known and if it is necessary to find its normality or titre relative to another substance, the following formulas can be used:

$$N = \frac{T_a}{E_0} = \frac{T_b}{E_b} = \dots = \frac{T_n}{E_n}$$

hence

$$T_b = T \frac{T_a}{E_a} E_b = NE_b = \dots; T_n = \frac{T_a}{E_a} E_n = NE_n$$

Example 3. The titre of the KMnO₄ solution relative to Fe is 0.005483 g/ml. Find the normality of this solution and its titre relative to Cr.

$$N = \frac{T_{\text{MnO}_{4}^{-}/\text{Fe}}}{E_{\text{Fe}}}; \quad \log T_{\text{MnO}_{4}^{-}/\text{Fe}} = \log 0.005483 = 73\,902$$

$$\frac{1 - \log E_{\text{Fe}} = 1 - \log 55.847 = 25\,300}{\log N = 99\,202}$$

$$N = 0.09818$$

$$T_{\mathrm{MnO}_{\overline{4}}/\mathrm{Cr}} = \frac{T_{\mathrm{MnO}_{\overline{4}}/\mathrm{Fe}} E_{\mathrm{Cr}}}{E_{\mathrm{Fe}}};$$

$$\log T_{\rm MnO_4/Fe} = 1 - \log 55.847 = 73\,902$$

$$1 - \log E_{\rm Fe} = 1 - \log 55.85 = 25\,300$$

$$\frac{\log E_{\rm Cr} = \log 17.332 = 23\,885}{\log T_{\rm MnO_4/Cr} = 23\,087}$$

$$T_{\rm MnO_4/Cr} = 0.001702\,\rm g$$

B. Determination of the Percentage of the Unknown Component in a Test

Example 1. To determine the Na₂CO₃ content in a soda melt, a portion of it weighing 1.100 g is dissolved in water and the solution obtained is titrated with 0.5012N H₂SO₄ solution in the presence of a bromophenol blue indicator. What is the percentage of Na₂CO₃ if 35.00 ml of the acid are used in the titration?

Using Table 14 (see A, Acid-Base Titration), we find that $E_{\text{Na}_2\text{CO}_3}$, with a bromophenol blue indicator, is 52.995, $\log E = 72.423$.

$$\log V = \log 35.00 = 54 407$$

$$\log N_s = \log 0.5012 = 70 001$$

$$\log E_x = \log 52.995 = 72 423$$

$$1 - \log g = 1 - \log 1.100 = 95 861$$

$$\log x = 92 692; x = 84.51\%$$

Example 2. Using the same data as in Example 1, find the percentage of CO_2 in the soda melt.

The solution remains the same, but instead of $E_{\text{Na_2CO_3}}$, we find $E_{\text{CO_2}} = 22.005$; log E = 34.252 in Table 14.

Summing up:

$$\log V = 54 \, 407$$

$$\log N_s = 69 \, 897$$

$$\log E_x = 34 \, 252$$

$$1 - \log g = 95 \, 861$$

$$\log x = 54 \, 417; \ x = 35.01\%$$

Example 3. Calculate the percentage of Fe in a sample of iron ore if on dissolving a portion of the ore weighing 0.7872 g and reducing Fe by metallic Zn, 47.24 ml of 0.1105N KMnO₄ solution were used in titration.

From Table 14 (see B, Oxidation-Reduction Methods) we have: $E_{\text{Fe}} = 55.85$; $\log E = 74.702$. Addition gives

$$\log V = \log 47.24 = 67 431$$

$$\log N_s = \log 0.1105 = 04 336$$

$$\log E_x = \log 55.847 = 74 700$$

$$1 - \log g = 1 - \log 0.7872 = 10 391$$

$$\log x = 56 858; x = 37.03\%$$

Example 4. To determine Mn in steel by the bismuthate method, a portion weighing 1.1452 g is dissolved in HNO₃. In the solution obtained, Mn is oxidized with sodium bismuthate NaBiO₃ to HMnO₄. The latter is determined by the addition of 40.00 ml of 0.02842N solution of Mohr's salt and a back titration with 13.50 ml of 0.03012N KMnO₄ solution. Find the percentage of Mn in the solution.

Since the product VN gives the number of mg-equiv of any substance, it is expedient to perform the calculation by the following

formula:

$$x = \frac{(V_a N_a - V_b N_b) E_x \cdot 100}{g} \%$$

where V_a and N_a = volume and normality of the solution of Mohr's

salt, respectively and V_b and N_b = volume and normality of the KMnO₄ solution. In Table 14 we find that in determining manganess by the bismuthate method, $E_x = E_{\rm Mn} = 10.9876$; $\log E_x = 04090$.

We have:

$$V_a N_a = 40.00 \times 0.02842 = 1.1368$$
 mg-equiv $V_b N_b = 13.50 \times 0.03012 = 0.4066$ mg-equiv $V_a N_a - V_b N_b = 1.1368 - 0.4066 = 0.7302$ mg-equiv $\log 0.7302 = 86344$ $\log E_{\rm Mn} = 04090$ $1 - \log 1.1452 = 94110$ $\log x = 84544; x = 0.70\%$

Example 5. How much of the KMnO₄ solution of the same concentration would be used in the titration of a portion weighing 1.1452 g of the same steel (see Example 4) if Mn was determined not by the bismuthate method, but by Volhard's method?

$$x = \frac{VN_sE_x \cdot 100}{g} \%$$

Here g is the weighed portion expressed in milligrams. In Table 14, we find that, when Mn is determined by Volhard's method, $E_{\rm Mn}$ is 16.4814, $\log E=21$ 699.

$$0.70 = \frac{V \times 0.03012 \times 16.4814 \times 100}{1145.2}; \quad V = \frac{0.70 \times 1145.2}{0.03012 \times 16.4814 \times 100}$$

$$\log 0.70 = 84510$$

$$\log 1145.2 = 05889$$

$$1 - \log 0.03012 = 52115$$

$$1 - \log 16.4814 = 78301$$

$$\log V = 20815; \quad V = 16.15 \text{ ml}$$

Calculation of the Results of Gas and Gasometric Analyses

Here are examples of calculations made according to the formulas

given on p. 136.

Example 1. The volume of gas (V), measured over water, is 25.6 ml. The temperature of gas t = 22.8 °C. Barometer reading $P_t =$ = 720.4 mm Hg. The temperature of air, measured near the barometer, " = 22.4 °C. Bring the volume of gas to standard conditions. First of all, the barometer reading is corrected.

To bring it to 0 °C, we should subtract t'/8 mm from it. Then, since the gas is collected over water, its pressure in the vessel is less than the pressure of the surrounding air by the value of P_B which is the water vapour pressure at $t=22.8\,^{\circ}\text{C}$. This value must also be sub-

tracted from the barometer reading.

In Table 16, in the "Water" column with t = 22 °C we have $P_B = 19.8$ mm Hg, and with t = 23 °C, $P_B = 21.1$ mm Hg. The difference between them is 1.3 mm Hg. We find 0.8 of this difference: $0.8 \times 1.3 = 1.0$ mm and add it to 19.8 mm Hg. It follows that P_B at 22.8 °C is 19.8 + 1.0 = 20.8 mm Hg.

Hence,

$$P_0 = 720.4 - \frac{22.4}{8} - 20.8 = 696.8 \text{ mm Hg}$$

The unknown volume of gas $V_0 = VF$. To find $\log F$, we use section A.

We have:

t, °C
$$P_0 = 696$$
 mm Hg $P_0 = 696.8$ mm Hg $P_0 = 697$ mm Hg $\frac{22}{92.807}$ $\frac{92.857}{92.739}$ $\frac{92.870}{-}$ $\frac{22.8}{92.660}$

Η

The difference between 92 807 and 92 870 is 63. In the table of differences, we find 0.8 of this number and add it to 92 807, we obtain 92 857. The difference between 92 807 and 92 660 is 147. In the table of differences, we find 148, which is the nearest number to it and of which 0.8 is 118.5, subtracting this number from 92 857 we get approximately 92 739.

$$\log V = 40 824$$

$$\log F = 92 739$$

$$\log V_0 = 33 563; V_0 = 21.66 \approx 21.7 \text{ ml}$$

It should be noted that in most analytical cases there is no need to make a correction for decimal fractions of a millimetre of pressure and decimal fractions of a degree of temperature: rounding the respective figures, we obtain results of sufficient accuracy. Thus, if we take $P_B=21.1$ mm Hg, the value corresponding to 23 °C, we would obtain $P_0=696.5\approx 697$ mm Hg. From Table 16,A, for t=23 °C and

 $P_0=697$ mm Hg we would have $\log F=92723$, and finally $V_0=21.65$ ml, which differs little from the preceding result. Example 2. What is the weight of 43.7 ml of NO, measured over 28.6% KOH solution at 17 °C and a barometer reading of 757 mm Hg? Suppose the temperature of mercury in the barometer is also 17 °C:

$$P_0 = 757 - \frac{17}{8} - 10.2 \approx 745 \text{ mm Hg}$$

The value of 10.2 mm Hg is found in Table 16,B (17 °C, KOH

The unknown mass is equal to $VF\rho$; we find log F in Table 16,A,

and $\log \rho$ in Table 16,C:

$$\log V = \log 43.7 = 64 048$$

$$\log F = 96 506$$

$$\log \rho = \log 1.3402 = 12 717$$

$$\log x = 73 271; x = 54.0 \text{ mg}$$

Example 3. From 1.200 g of commercial calcium carbide, 395 ml of acetylene (C_2H_2) is obtained at 17.5 °C and $P_t=755.3$ mm Hg (the pressure is measured at 16 °C). The gas is collected over a saturated NaCl solution. Calculate the percentage of CaC_2 in commercial carbide.

$$P_0 = 755.3 - \frac{16}{8} - 11.4 = 741.9 \text{ mm Hg}$$

The value of 11.4 is found in Table 16,B, interpolating between the numbers 11.0 and 11.7.

The unknown percentage is

$$x = \frac{VFf' \times 100}{g} \%$$

The value of F is found in Table 16,A, and f' in Table 16,D.

$$\log V = \log 395 = 59 660$$

$$\log F = 96 256$$

$$\log f' = \log 2.8877 = 46 055$$

$$1 - \log g = 1 - \log 1200 = 92 082$$

$$\log x = 94 053; x = 87.20\%$$

Example 4. In the reaction of an acid with 0.250 g of zinc dust, 79.6 ml of H_2 is evolved, the latter being measured over water at 20 °C and a pressure of 742 mm Hg (the temperature of mercury in the barometer is also 20 °C). Calculate the Zn content in the zinc dust.

$$P_0 = 742 - \frac{20}{8} - 17.5 = 722 \text{ mm Hg}$$

$$x = \frac{VFf' \cdot 100}{g} \%$$

$$\log V = \log 79.6 = 90 \ 091$$

$$\log F = 94 \ 696$$

$$\log f' = \log 2.9145 = 46 \ 456$$

$$1 - \log g = 1 - \log 250 = 60 \ 206$$

$$\log x = 91 \ 449; \ x = 82.13 \approx 82.1\%$$

The final result must not have more than three significant figures, since only three significant figures contain the results of weighing and volumetric measurement.

In some instruments, gas burettes are calibrated in a way that they directly read the percentage of the substance being determined if the weighed portion is constant (usually 1 g or 0.5 g) and if the gas in the burette is at a definite temperature and pressure. But when the temperature and gas pressure do not coincide with those indicated on the burette, a corresponding recalculation must be made.

Example 5. In determining C in steel by the combustion method in the O₂ current, the volume of CO₂ formed is measured with a gas burette of the Wirtz-Strölein instrument showing the percentage of C when the weighed portion of steel is 1000 g and when the temperature and gas pressure in the burette are 16 °C and 760 mm Hg. A portion of steel weighing 1000 g is taken; the temperature and gas pressure are 20 °C and 740 mm Hg. The burette reading is 0.52% C.

pressure are 20 °C and 740 mm Hg. The burette reading is 0.52% C. What is the real content of C in steel? In Table 16A, we find $\log F_{760,16}$ °C = 97 522; $\log F_{740,20}$ °C = 95 766. The first logarithm must be subtracted from the logarithm of the percentage of C found, and the second logarithm must be added to it:

The difference in the values of vapour pressure over the concentrated alkaline solution at different temperatures is neglected here. If the temperature of the measured gas deviates from 16 °C only by several degrees, the error arising from this is not over 0.01%.

Table 18

Densities and Concentrations of Solutions

In literature dealing with analytical chemistry, concentrations of acids and bases are expressed in different ways: (1) in terms of density (for example: "5 ml of hydrochloric acid with a density of 1.19 is added"); (2) in terms of the dilution of concentrated commercial acids [for example: "10 ml of diluted (1:9) sulphuric acid is added to the solution", which means that one volume of concentrated commercial sulphuric acid is diluted with nine volumes of water]; (3) in terms of the percentage of the reagent (for example: "2 ml of 25% ammonia solution") and, finally, (4) in terms of the normality of the solution.

An analyst has therefore to convert the concentrations in calculating reagents used in the reaction on the basis of the solutions whose concentrations are expressed in different ways, and so forth. The conversion tables serve the purpose. It is the easiest to perform stoichiometric calculations if the concentrations of reagents are expressed in their normalities. Therefore, the tables give the normal concentrations of acid and base solutions.

Here are a few examples concerning calculations with these tables. Example 1. In analysing tin bronze, nitric acid with a density of 1.2 g/cm3 is used to dissolve it. How can the acid be prepared from concentrated commercial nitric acid with a density of 1.4 g/cm³ without the aid of an areometer? The normality of nitric acid with a density of 1.200 is 6.273N (Table 18,A); it follows that one litre of it must contain 6.273 g-equiv. The normality of concentrated nitric acid with a density of 1.400 is 14.88N; one litre of it contains 14.88 g-equiv. The required quantity (6.273) of gram-equivalents of HNO₃ is contained in $\frac{6.273}{14.88} \times 1000 = 421.6$ ml of concentrated

nitric acid. Measuring out this volume and diluting it with water to one litre, we obtain nitric acid whose density is 1.2.

Example 2. In the course of an analysis, 5 ml of diluted (1:4) HNO3 are added to a neutral solution and then neutralized with ammonia. How many millilitres of concentrated (25%) ammonia

solution will be used in the neutralization reaction?

The expression "diluted (1: 4) nitric acid" implies that one volume of concentrated nitric acid with a density of 1.400 is diluted with four four volumes of water. The normality of concentrated acid with a density of 1.400 is 14.88N, and that of the diluted acid will apparantly by the second are added ently be 14.88:5=2.98N. Five millilitres of this acid are added to the solution being analysed; to neutralize it, 5 ml of ammonia solution of the same normality (2.98N) are apparently necessary. The normality of concentrated 25% ammonia solution is 13.32N

(Table 18,I). It follows that, to neutralize nitric acid, $\frac{5 \times 2.98}{43.32}$

= 1.12 ml of concentrated ammonia solution will be used. Example 3. A portion of rock weighing 1 g is melted in a platinum crucible with six times as much anhydrous Na₂CO₃. The melt is leached with water and oxidized with diluted (1:1) hydrochloric acid. How many millilitres of this acid must be added to completely neutralize Na₂CO₃ without the acid being too excessive?

6g of Na₂CO₃ contain
$$\frac{6}{1/2\text{Na}_2\text{CO}_3} = \frac{6}{52.9945}$$
 g-equiv

or

$$\frac{6000}{52.9945}$$
 = 113.23 mg-equiv

For neutralization, it is necessary to add the same quantity of milligram-equivalents of HCl. The normality of concentrated hydrochloric acid with a density of 1.190 is 12.50N, and that of diluted (1:1) acid is consequently 6.25N, i.e., 1 ml of the latter contains 6.25 mg-equiv of HCl. It follows that Na₂CO₃ is neutralized by $\frac{113.23}{6.25}$ =

= 18.12 ml of diluted (1:1) hydrochloric acid. If 20 ml of the acid

are added, it would not be too excessive.

These examples show how much easier it is to perform calculations when concentrations of acids and bases are expressed in their normalities. Table 18 helps convert differently expressed concentrations. The reliability of the table is so great that its data can be used when preparing titrants of acids and alkalies according to density. The titre of the prepared solution must nevertheless be checked by a weighed portion of a parent substance. Here is an example of calculation when a titrating solution is being prepared.

Example 4. To prepare 1N HCl titrant, an acid available in the laboratory is taken, its density determined with an areometer is

equal to 1.082 g/cm^3 .

From Table 18,C we have: the acid with a density of 1.080 g/cm³ has a concentration of 4.878N and that with a density of 1.085 g/cm³, 5.192N. By interpolation, we obtain the following normality for a density of 1.082:

$$4.878 + \frac{2}{5}$$
 (5.192 - 4.878) = $4.878 + \frac{2}{5} \times 0.314 = 5.004$

It follows that one volume of the available acid must be diluted to 5.004 of the volume. For this purpose, we can measure out, for example, 200 ml of the acid with a density of 1.082, pour it into a one-litre volumetric flask, dilute it with water up to the volume and add another 0.8 ml of water (1:5.004 = 200:1000.8).

Table 19

Chief Acid-Base Indicators

For volumetric-analytical titrations (acidimetry-alkalimetry me thods), it is necessary to select indicators that change colour in the pH range as little as possible. Such indicators as azolitmin, which changes colour at pH values from 5.0 to 8.0, are not suitable at all for titration. Of little use are also indicators whose colours of both forms lie in a spectrum too close to one another, for example, indicators which change their colour from red to orange, from orange or orangered to yellow, from blue-violet to blue, and so forth. In recent years, indicators which sharply change their colours to spectrally opposite ones in very narrow pH limits have been synthesized; for example, nitrazine yellow, which changes its colour from yellow to blue-violet within pH 6.0-7.0, or quinoline blue, which is colourless at pH 7.0 and violet at pH 8.0.

The main rule in selecting an indicator for volumetric-analytical determinations is that the titration index pT of an indicator must be as close as possible to the pH of the solution at the end of titration, i.e., when the equivalence point is reached. The titration index pT is the pH at which the observer can clearly see the colour change and recognize titration as complete. This is a conditional value which differs for

different persons who perform titration. If the eye could easily detect the slightest change in colour, the pT would obviously coincide with the equivalence point. But since titration is usually completed at visible colour change, it can be assumed that, with dichromatic indicators, the pT is approximately at one-quarter of an interval from its corresponding limit.* With monochromatic indicators (phenolphthalein, nitrophenols), the pT almost coincides with the beginning of the appearance of colour, provided that the indicator is used in the dilution at which its colour change was determined.

For analyses of great accuracy, it is always necessary to separately prepare a buffer solution with a pH which coincides with the pH of the equivalence point and add the indicator to it, and then titrate the solution being analysed until its colour coincides with the colour

of the prepared reference solution.

When a weak acid is titrated with caustic soda, at the end of the titration a solution of sodium salt of the acid is formed which, as a result of the hydrolysis of the salt, has an alkaline reaction. Knowing the ionization constant of the acid, the pH of the solution formed can be determined and, in accordance with this pH, a suitable indicator can be selected. This is also true of acid titration of a weak base solution, when a salt is formed which has an acid reaction in the solution as a result of hydrolysis.

In hydrochloric acid titration of a salt solution of an alkali metal and weak acid (for example, Na₂CO₃), the solution will contain, at the end of the titration, neutral chloride of the alkali metal and free weak acid, consequently having an acid reaction. Knowing the ionization constant of this acid, we can calculate the pH of its diluted solution obtained at the end of titration and select a suitable indicator.

When a strong acid is titrated with a strong alkali solution (or vice versa), a solution of neutral non-hydrolyzing salt with the pH of about 7 is obtained. But there is no need to use an indicator which changes its colour at pH close to 7, since the smallest drop of the titrant sharply displaces the pH to an acid (in acid titration) or an alkaline region (in alkali titration). In such titrations, any indicator can be used; nevertheless, when titration is performed with a greatly diluted solution of acid or alkali (for example, 0.01N) whose drop contains a very small amount of the titrant, the indicators showing colour change in the pH range of 5 to 9 should be used.

Table 21

Colorimetric Determination of the pH of Solutions

For the colorimetric determination of the pH of solutions, indicators which change colour within a small pH range are of little use. Most useful are dichromatic indicators which, within a sufficiently large pH range, show noticeable changes in shades when the pH changes by 0.1-0.2. Use is also made of monochromatic indicators whose colour becomes, as the pH changes, more or less intense while retaining

^{*} Some analysts believe that the pT is in the middle of the interval of the indicator colour change.

shade. In both cases, the colour is determined that the indicator assumes in the test solution and in a set of standard buffer solutions having different pH values preliminarily found by the electrometric method. The pH of the test solution is equal to the pH of the buffer solution whose colour is the closest to that of the test solution.

In the colorimetric determination of the pH, account must be taken of the following possible sources of errors which should also be

considered when selecting an indicator.

(a) Influence of foreign salts. Let us denote the ionization constant of an indicator as K_{ind} . Then, $K_{\text{ind}} = \frac{a_{\text{H}} + a_{\text{I}}}{a_{\text{III}}}$, where a_{I} is the activity of the indicator anions formed as a result of dissociation, a_{HI} is the activity of its undissociated part. In the example, the indicator is a weak acid, and if the indicator is a weak acid.

 $a_{\rm HI}$ is the activity of its undissociated part. In the example, the indicator is a weak acid, and if the indicator is a base, further reasonings do not change in the main. Having replaced the activities by the products of concentrations and activity coefficients, we obtain:

$$\frac{[HI] f_0}{[I^-] f_1} = \frac{a_{H^+}}{K_{\text{ind}}}$$

where f_0 is the activity coefficient of the coloured or colourless undissociated part of the indicator; f_1 is the activity coefficient of the coloured anion; the corresponding concentrations are in square brackets.

The colour of the solution depends on the ratio $\frac{[HI]}{[I^-]}$, and therefore the solutions having the same ratio will have the same colour. But will the solutions having the same ratio $\frac{[HI]}{]I^-]}$ have the same pH? Let us present the above expression in the following form:

$$\frac{[HI]}{[I^-]} = \frac{a_{H+}f_1}{K_{\text{ind}}f_0}$$

If the solutions have different ionic strength, the values of f_1 will also differ (and, to a very small extent, those of f_0 , which can be neglected). With increasing ionic strength of a solution, the activity coefficients of ions decrease and, consequently, so does f_1 . When the colour of the solution does not change, i.e., it has the same ratio [HI], the value of a_{H^+} must accordingly be greater: the solution will yield the same colour with the indicator, being more acidic. Conversely, with decreasing ionic strength, f_1 increases, and a_{H^+} must accordingly be less when the solution has the same colour. The pH value of buffer solutions is determined electrometrically usually at the ionic strength of 0.1. If the ionic strength of a solution being analysed is greater than 0.1 (owing to the presence of a large amount of salts), the solution will have the colour which corresponds to that of the buffer solution with higher hydrogen-ion concentration (lower pH). Consequently, it is necessary to make a correction which has a negative value in this case. If the ionic strength of a solution being

analysed is less than 0.1 (the solution contains a small amount of salts), then with the same colour that the indicator has in the buffer solution, the solution will be less acidic (higher pH) and the correction will have a positive sign. This correction is called salt correction. It should be noted that this correction depends not only on the ionic strength of a solution, but also on individual properties of the indicator and the nature of ions that are present. If use is made of the indicators whose acidic form is a single-charge anion and whose alkaline form is a double-charge anion (phenolphthalein, sulphophthaleins), the correction will be greater than when use is made of the indicators whose acidic form is an undissociated molecule and its alkaline form is a single-charge anion (mononitrophenols). Dimethylaminoazobenzene-sulphonic acid (methyl orange) and dimethylaminoazobenzene-ocarboxylic acid (methyl red) cause a very small salt error owing to their amphoteric nature, and therefore they are mainly used in determining the pH of solutions having a variable content of salts. If the ionic strength of a solution is greater than 0.1, the correction value is considerably influenced by the nature of salt ions (the size of ion radii) in a solution.

(b) Influence of the buffer capacity of a solution. Indicators used to determine the pH of solutions are themselves acids or bases, and if the solution being analysed has low buffer capacity (distilled water, solutions of neutral salts in distilled water, solutions of very weak acids or bases, etc.), the indicator can sharply change its pH. If, for example, 0.1 ml of 0.04% methyl red solution is added to 10 ml of distilled water (pH 7), then even this small quantity of the indicator $(K_{1nd} = 1 \times 10^{-5})$ will change the pH of the water from 7.0 to 5.0.

In determining the pH of such low buffer capacity solutions, their pH will not change if we add to the solution being analysed the indicator solution having the same pH. According to Fausette and Acri,* such solutions of indicators are called isohydric. It has been proved that the pH of a solution of low buffer capacity does not change even if any amount of an isohydric solution of an indicator is added to it. This underlies the method of determining the pH of such solutions. A set of solutions of an indicator having different pH values is prepared and the solution being analysed is added to every one of them. The indicator solution that does not change its colour is isohydric relative to the solution being analysed.

relative to the solution being analysed.

(c) Protein error. A number of proteins greatly affect indicators, making the determination of the pH in their presence impossible. The influence of proteins is specific and depends on the nature of the protein and of the indicator. Therefore, in the presence of proteins, the results of the colorimetric determination of the pH cannot be relied on, having to be verified by the electrometric method.

(d) Other sources of errors. In the presence of colloids and sometimes of coarser dispersed particles, an indicator can change colour as a result of one of its forms ("acidic" or "alkaline") being sorbed on the surface of particles. The ionization constant of an indicator changes also at the air-liquid interface. This explains the frequently observed phenomenon when, in shaking a solution of an indicator, the colour

^{*} Ind. Eng. Chem., An. Ed., 2,78 (1930).

of the foam being formed sharply differs from the colour of the solution. When the solution contains finely-dispersed particles of another phase, the result of the determination of the pH must be verified by using two different indicators (acidic and basic) or comparing them with the results of the electrometric determination.

Indicators sharply change colour at pH constant if a non-aqueous solvent—alcohol, acetone, etc.—is added to a solution, and also when

the temperature changes.

Table 40

Standard Oxidizing Potentials Relative to the Potential of a Standard Hydrogen Electrode at 25 $^{\circ}\text{C}$

If a plate of noble metal is immersed in a solution which contains an oxidizing agent and the product of its reduction, there will be a difference of potentials between the plate and the solution, which is called the oxidizing potential of a given system.

1. For the system

oxidizing agent + ne ≠ reducing agent

the oxidizing potential relative to the standard hydrogen potential is expressed by the formula

$$E := E^0 + \frac{RT}{nF} \ln \frac{a_{\text{Ox}}}{a_{\text{Red}}}$$

(where R= gas constant, T= absolute temperature of a solution, n= number of electrons which in the given system make the transition from a reducing agent to an oxidizing agent, F= faraday constant =96,500 coulombs, $a_{\rm Ox}$ and $a_{\rm Red}=$ ion activities of exidizing and reducing agents in a solution). Having replaced natural logarithms with common logarithms and having substituted all values of constants in the equation, we obtain for $t=25\,^{\circ}\mathrm{C}$:

$$E = E^0 + \frac{0.0591}{n} \log \frac{a_{\text{Ox}}}{a_{\text{Red}}}$$

If $a_{Ox} = a_{Red}$, then $E = E^0$. The standard potential is the potential of the electrode immersed in a solution which contains both forms (oxidized and reduced) having equal activities.

2. If an oxidizing agent is reduced with the participation of hydrogen ions

$$Ox + mH^+ + ne = Red + qH_2O$$

then

$$E = E^0 + \frac{RT}{nF} \ln \frac{a_{\text{Ox}} a_{\text{H}^+}^m}{a_{\text{Red}}}$$

In this case, the standard potential is the potential of the electrode immersed in a solution containing both forms (oxidized and reduced) having equal activities, and also, hydrogen ions whose activity is equal

to unity. This applies, for example, to such systems as

$$MnO_4^- + 8H^+ + 5e \Rightarrow Mn^{2+} + 4H_2O$$

OL

$$VO_3^- + 4H^+ + e \Rightarrow VO^{2+} + 2H_2O$$

3. When the potential between the metal and the solution of its salt is being determined, i.e., of the systems $Me^{n+} + ne \rightleftharpoons Me$ (for example, $Zn^{2+} + 2e \rightleftharpoons Zn$), and the activity of the solid phase is taken as unity, then

$$E = E^0 + \frac{RT}{nF} \ln a_{\mathbf{Me}^{n+}}$$

In this case, $E = E^0$, when $a_{Me^{n+}} = 1$. Here, the standard potential is the potential between the metal and the solution of its salt,

when the activity of the metal ions equals unity.

4. When one or the two forms (oxidized and reduced) are sparingly soluble solids or complex compounds, the number of ions formed in the solution will be very insignificant. Let us take, for example, the system

$$AgCl + e \Rightarrow Ag + Cl$$

For it

$$E_{Ag^+, Ag} = E_{Ag^+, Ag}^0 + \frac{RT}{F} \ln a_{Ag^+}$$

The value of a_{Ag+} , the activity of silver ions in the solution, is very small and depends on the solubility product of silver chloride SP_{AgCl} and on the activity of chloride-ions in the solution:

$$a_{Ag^+} = SP_{AgCl/a_{Cl}}$$

If the activity of chloride ions equals unity, the right-hand part of the equation for the potential will assume the form:

$$E_{\text{Ag+, Ag}}^{0} + \frac{RT}{F} \ln \text{SP}_{\text{AgCl, Ag}} = E_{\text{AgCl, Ag}}^{0'}$$

The quantity $E_{\rm AgCl,\ Ag}^{0'}$ is called the *standard* ("observed") potential of AgCl/Ag system. It can be defined as the potential which is formed in the system containing solids or complex compounds in which all ions participating in the process, except elementary ions that are separated by precipitates or complexes, have an activity equal to unity.

The aforementioned equation can be used to calculate the solubility products of sparingly soluble substances by the measured values of the oxidizing potentials.

Here is another example of the formation of a complex compound. For the system

$$Ag(CN)_{2}^{-} + e \rightleftharpoons Ag + 2CN^{-}$$

we also have

$$E_{Ag^+, Ag} = E_{Ag^+, Ag}^0 + \frac{RT}{F} \ln a_{Ag^+}$$

The value of a_{Ag} + depends on the stability of the complex $Ag(CN)_2$ and is determined by the dissociation constant $K_{Ag(CN)_2}$ =

 $= \frac{a_{\text{Ag}} + a_{\text{CN}}^2}{a_{\text{Ag}(\text{CN})_2}}$. If the solution being examined contains free ions CNand complex ions Ag(CN) in concentrations whereby their activities

equal unity, then

$$K_{Ag(CN)_2^-} = a_{Ag^+}$$

and

$$E_{\text{Ag+, Ag}}^{0} + \frac{RT}{F} \ln K_{\text{Ag(CN)}_{2}} = E_{\text{Ag(CN)}_{2}}^{0'}, \text{Ag}$$

Similar formulas are used to find the dissociation constants of complexes by the data of potentiometric determinations. The table gives several such standard ("observed") potentials of the systems containing precipitates and soluble complex compounds.

5. If, in the aforementioned oxidation-reduction system, one of the forms is a gaseous substance, the activity of this substance will be determined by gas pressure, and the standard potential of the gas electrode can be defined as the potential of the electrode in which this gas is under a pressure of 1 atm; the ions which are formed when this gas is reduced (or oxidized) have an activity of unity in the solu-

The equation of the potential $E = E^0 + \frac{RT}{nF} \ln \frac{a_{Ox}}{a_{Red}}$ includes ion activities of oxidized and reduced forms, and not concentrations. It follows that, when the concentrations of ions of both forms are the same, the values of potentials in two solutions can nevertheless differ if the salt composition of these solutions and the ionic strength related to it are different. The potential of, say, the system $Ce^{4+} + e \rightleftharpoons Ce^{3+}$ is

$$E_{\text{Ce4+, Ce3+}} = E_{\text{Ce4+, Ce3+}}^0 + \frac{RT}{F} \ln \frac{a_{\text{Ce4+}}}{a_{\text{Ce3+}}} =$$

$$= E_{\text{Ce4+, Ce3+}}^0 + \frac{RT}{F} \ln \frac{|\text{Ce4+}|}{|\text{Ce3+}|} \frac{f_4}{f_2}$$

where f_4 and f_3 are the activity coefficients of four- and three-charge Ce ions. As the ionic strength of a solution increases, f_4 will decrease considerably faster than f_3 and, consequently, the value of E will drop. This must always be borne in mind when using oxidation potential collections and reasoning connected with the context of the context tials in calculations and reasonings connected with various problems of analytical chemistry, where solutions with a high ionic strength are usually used.

The table gives the potentials of various elements having different valence; the potentials of the direct transition from the highest valence to the lowest one (for example, V^V-V^{II}), and several potentials of the stage-by-stage transition (for example, V^V-V^{IV}; V^{IV}-V^{III}; V^{III}-V^{II}). These potentials are interconnected by the so-called Luther rule

which states that if an element exists in three degrees of valence m, n and p, and m > n > p, then:

$$(m-p) E_{m,p}^0 = (m-n) E_{m,n}^0 + (n-p) E_{n,p}^0$$

where $E_{m,p}^0$, $E_{m,n}^0$ and $E_{n,p}^0$ are the standard potentials of transitions from valence m to valence p, from m to n and from n to p. For example, Fe exists in the form of ions Fe³⁺ (valence of 3) and Fe²⁺ (valence of 2), and in the form of metal (valence of 0). According to Luther's rule

$$3E_{\rm Fe3+, Fe}^{0} = E_{\rm Fe3+, Fe2+}^{0} + 2E_{\rm Fe2+, Fe}^{0}$$

A number of potentials which are very difficult or even impossible to determine experimentally were calculated by Luther's formula.

Acetic acid 332 density and concentration of solutions 169, 174 Acetone 332	β-Aminonaphthalide of thiogly- colic acid 394 Ammonia density and concentration of
Acetylacetone 322	solutions 172, 174
Acid Alizarin Red V 226	use as a reagent 324, 327
Acid Chrome Black Special 222,	Ammonium (sodium) molybdate
228, 230, 326	321, 328, 329
Acid Chrome Blue K 222	Ammonium rhodanide 324, 327
	Amparametric titration 408
Acid Chrome Dark Green G 222,	Amperometric titration 408
239	with two indicator electro-
Acid-base titration, calculation	des 426
of results 123	Amyl acetate 332
Acidimetry	Amyl alcohol 332
calculation of results 123	Analytical cation groups 30
indicators 472	Analytical multipliers 70, 460
Acids	Aniline 332
density and concentration	Anthranilic acid 362
of solutions 160, 174	Antilogarithms 456
ionization constants 274	APANŠ 248, 396
Acridine 209	Arsasene 362
Acridine orange base 212	Arsenazo 321
Activity	Arsenazo I 224, 331, 362
hydrogen ions, recalculated	Arsenazo III 323, 325 .328, 331,
for the pH 252	362
ion coefficients 117	
upon a high ionic strength	Atomic weights 17, 31 Aurin 189
of a solution 120	
Alberone 223, 360	Aurine tricarboxylic acid,
Alizarin 360	ammonia salt 362
Alizarin Blue BS 196	Avoirdupois weight 446
Alizarin Red S 184, 194, 216,	Azo-azoxy BN 323, 364
222, 360	Darbitania anti non
Alizarin S 184, 325, 331, 360	Barbituric acid 323
Alizarin Yellow GG 195	Bases, ionization constants 274,
Alizarin Yellow R 181, 195, 203	281 Rathophere (I. I. 20)
Alizarin Yellow RS 195	Bathophenanthroline 364
Alkalimetry	Bengali pink 216
calculation of results 123	Benzene 332
	Benzene azodiphenylamine 178
indicators 472	Benzene-2'-arsonic acid-(1'-azo-
Aluminon 321, 362	2)-benzene-2"-arsonic acid-(1"-
o-Aminobenzoic acid 362	azo-7)-1,8-dioxynaphthalene-
p-Aminodimethylamine 329	3,6-disulphonic acid 362

Benzene-2'-arsonic acid-(1'-	Butanol 332
azo-2)-1,8-dioxynaphthalene-	Butter yellow 182
3,6-disulphonic acid, disodium	Butyl acetate 332
salt 362	Butyl cellosolve 332
Benzene-2'-arsonic acid-(1'-azo-	Butylamine 332
1)-2-hydroxynaphthalene-3,6-	·
disulphonic acid, trisodium	Cadion 323, 366
salt 396	Cadion C 366
Benzidine 224, 323	Calcein 226, 232
Benzoflavin 204	Calces 226, 242
α-Benzoin oxime 324, 364	Calcion 226
Benzopurpurine 4B 181, 197	Calcon 226
5,6-Benzoquinoline 382	Calculation
Benzyl alcohol 332	results of gas and gaso-
α-Benzyl dioxime 364	metric analyses 468
Benzyl orange 181	results of volumetric-analy-
Beryllon II 224, 322, 364	tical determination 462
Bis-4,4'-[6-methylbenzothiazol-	rules of performance \11
(1,3)]-diazoaminobenzene-	Calibration of glassware 121
2,2'-sodium disulphonate 396	Calomel electrodes, potentials 272
Bismuthol II 330, 380	Captax 380
Bis-[2,7-(4-nitro-2-sulpho-1-azo-	Carbon disulphide 332
benzene)]-1,8-dioxynaphthale-	Carbon tetrachloride 332
ne-3,6-disulphonic acid 384	Carboxyarsenazo 368
Bis-(4-hydroxy-3-methoxyci n n a-	p-Carboxygallanilide 330, 368
moyl)-methane 370	Carminic acid 322, 368
Bis-salicylalethylenediamine 366	Caustic potash, density and con-
BPR 224	centration of solutions 169
Brilliant green 322, 330, 366	Caustic soda, density and con-
Bromatometry, calculation of re-	centration of solutions 171
sults 125	Ceriometry, calculation of results
Bromobenzothiazo 366	125
Bromochlorophenol blue 183	Chalcone 226
Bromocresol blue 184, 201, 216	Chelaton 3, 368
Bromocresol green 184, 216	Chlorobenzene 332
Bromocresol purple 187, 202	Chloroform 332
ionization constant 224	Chlorophenol red 186, 199, 201
Bromophenol blue 183, 216	ionization constant 200
ionization constant 200	Chromatometry, calculation of re-
salt correction 199	sults 125
Bromophenol red 187	Chrome Black Special ET 00
Bromopyrogallol red 224	228, 230
Bromothymol blue 188, 203	Chromoazurol C 228
ionization constant 200	Chromogen Black Special ET 00
salt correction 199	228
Brucine 327, 366	Chromotropic acid 208, 324, 330,
Buffer capacity of solutions 475	368
Buffer solutions 253	Chromoxane Green GG 228
acetic-acetate ones 262	Chromoxane pure blue BLD 360
from individual substances	Chrysoidine 185
264	Chrysoin 196
universal ones 263	Chugaev's reagent 374
fill toront Arion 200	Back p rogRette 014

Coefficients of ion activity 117,	Diaminophenothiazine 317
120	4.4'-Diaminostilben-(N,N,N',N'
Colours corresponding to the spec-	tetracarboxymethyl)-2,2'-disul-
tral wavelengths 320	phonic acid 392
Complexes, instability constants	o-Dianisidine 315
283	Diantipyryl methane 372
	1",4-Diazoamino-1,1'-azobenzene-
	4"-nitrobenzene arsonic
tion of results 129	
Complexing reactions 463	acid-2" 362
Complexone III 130, 132, 322,	Dibenzoyl methane 331
368	Dibromine-o-cresol sulphophtha-
Concentration of solutions 159,	lein 187
470	2,6-Dibromobenzene indophenol
Congo red 183, 217	316
Constants	Dibromophenolsulphophthalein
instability of complexes 283	187
ionization of acids and bases	Dibromothymolsulphophthalein
274	188
ionization of indicators 200	
• • • • • • • • • • • • • • • • • • • •	3',6'-Dichloro-2,4,5,7-tetrabro-
Conversion factors for gravi-	mofluorescein 206
metric analysis 70	3',6'-Dichloro-2,4,5,7-tetraio-
Corallinophthalein 189	dofluorescein 206, 216
Coraline yellow 189	o-Dichlorobenzene 334
Coumarin 212	2,7-Dichlorochromotropic acid
o-Cresol indophenol 317	372
m-Cresol purple 179, 191	Dichloroethane 334
Cresol red 177, 190, 202	3,6-Dichlorofluorescein 217
o-Cresolphthalein 192	2,6-Dichlorophenol indophenol
Cresolphthalexone 242	317
m-Cresolsulphophthalein 179	Dichlorophenolsulphophthalein
o-Cresolsulphophthalein 177, 190	186
Cupferron 325, 370	
use in extraction 343	Dichlorosulphodimethyloxyfuch-
	sone dicarboxylic acid 360
Cuproin 374	2,3-Dicyanhydroquinone 211
Cupron 364	Diethyl ether 334, 347
Curcumin 192, 195, 322, 370	Diisopropyl ether 334
Cyanine 190	Dimethyl fluorone 330 372
Cyclohexane diondioxime-1,2 370	Dimethyl glyoxime 325, 327, 374
Cyclohexanol 332	p-Dimethylaminobenzylidene rho-
Cyclohexanone 332	danine 321, 372
	p-Dimethylaminophenyl fluorone
Davies' formula 120	372
Decahydronaphthalene 332	N,N'-Dimethylbiacridine 214
Decalin 332	Dimethylpenhabishedine 208
Density	Dimethylnaphtheirhodine 208 3,3'-Dimethylnaphthidine 230
gases and vapours 156	
	5,6-Dimethyl-1,10-phenanthro-
solutions 160, 470	line 315
Diacetyl dioxime 374	3,3'-Dinitro-4,4'-bis-(4"-hydro-
Diallyldithiocarbamidohydrazi-	xybenzene-azo)-biphenyl 386
ne 370	α-Dinitrophenol (2,4-dinitrophe-
Diamine green 243	nol) 182
3,3'-Diaminobenzidine 329, 372	ionization constant 200
•	

β-Dinitrophenol (2,6-dinitrophenol) 182			
	calomel 272		
ionization constant 200	mercury, drop 403		
γ-Dinitrophenol (2,5-dinitrophe-	overvoltage of hydrogen and		
nol) 185	oxygen 442		
ionization constant 200	quinhydrone 270, 272		
1,4-Dioxane 334	reference 268		
1,2-Dioxyanthraquinone 360	standard, hydrogen 266		
1,2-Dioxyanthraquinone-3-sul-	Electron layers of cations 30		
phonic acid, sodium salt 360	Eosin 207, 218		
2,2-Dioxybenzylidene aniline 390	Equivalent 462		
1,8-Dioxy-2,7-dichloronaphthale-	Equivalence point 473		
ne-3,6-disulphonic acid 372	Erio R 226		
1,8-Dioxynaphthalene-3,6-disul-	Eriochrome Black T 222, 230		
phonic acid, disodium salt 368	Eriochrome Blue-Black B 230		
3,6-Dioxyphthalimide 210	Eriochrome Blue-Black R		
Diphenyl benzidine 316	226		
Diphenyl carbazide 323, 324,	Eriochrome Cyanine R 232, 321,		
374	322, 376		
2-Diphenyl dioxime 364	Eriochrome Red B 232		
Diphenyl orange 181	Eriochrome Red RE 226		
	Eriochromazurol S 228		
Diphenylamine 316 Diphenylamine sulphonate 316	Errors, relative 11		
	Erythrosine 207, 218		
Diphenylcarbazone 217, 230,	Esculin 205		
374	Ethanol 334		
1,5-Diphenylcarbohydrazide 374			
Diphenylthiocarbazone 376	Ethanolamine 334		
1,4-Diphenyl-(3,5-endoanyl)-di-	4-Ethoxyacridone 205		
hydro-1,2,4-triazol 384	p-Ethoxychrysoidine 315		
4,7-Diphenyl-1,10-phenanthroli-	Ethyl acetate 334		
ne 364	Ethyl-bis-(2,4-dinitrophenyl)-ace-		
1,3-Diphenyl-1,3-propanedione	tate 191		
331	Ethyl ether 334		
Dipicrylamine 326, 374	Ethyl ether, diethylamino-o-car-		
2,2'-Dipyridyl (\alpha,\alpha'-dipyridyl)	boxyphenylxanthenyl chloride		
315, 325, 374	390		
2,2'-Diquinoline 324, 374	Ethylene dichloride 334		
8,8'-Diquinolyldisulphide 376	Ethylene glycol 334		
3,6-Disulphonaphthol-(8-azo-	Ethylene glycol mono-n-butyl		
7')-1',8'-dioxy-3',6'-disulpho-	cther 332		
naphthalene, tetrasodium salt	Ethylene glycol monomethyl		
364	ether 334		
	Ethylenediaminetetraacetic acid		
Dithiol 326, 329, 331, 376	297		
Dithioxamide 390	Euchrysine 3R 212		
Dithizone 230, 321-328, 331, 376	Extraction 336		
use for extraction 336	2		
DMN 230	Ferroin 315		
Drying 358	Ferron 325		
EDTA 130, 368	Flame photometry 445		
Electrode potentials, determina-	Fluorescein 209, 218		
tion 265	Fluorescein complexone 232		
			

Fluorexone 226, 232 Fuchsin 218 Furfurol 334	Hydrogen peroxide 327, 330 Hydroiodic acid density and concentration of solutions 174
Gallion 376 Gallocyanine 378 Gas analysis, calculation of results 136, 468 Gases bringing the volume to standard conditions 138 density 156 drying 358 Gasometric analysis 158 calculation of results 136, 468 GBHA 234	use for extraction 346 Hydrone II 223 Hydroxocomplexes 273 o-Hydroxybenzoic acid 390 2-Hydroxy-3-chloro-5-nitrobenzene-(1-azo-2')-1'-hydroxy-8'-naphthylamine-3',6'-disulphonic acid 376 Hydroxyhydroquinone pink 234 Hydroxyhydroquinone sulphophthalein 234 2-Hydroxy-5-methylazobenzene-4'-sulphonic acid 396
Glycerin 334 Glycinthymol blue 234 Glyoxal-bis-(2-oxyanil) 234 Gold yellow 196 Gram-equivalent 463 Gravimetric analysis, conversion factors 70, 461 Gravimetric form 70 G-salt 211 GTB 234	7-Hydroxy-4-methylcoumarin 204 2-[2'-Hydroxynaphthalene-(1"- azo-2)-phenylazoxy]-4-methyl- phenol 364 Hydroxyquinoline (o-Hydroxy- quinoline) 321, 325-327, 378 use in extraction 344 2-Hydroxy-3-sulpho-5-chloroben- zene-1-azobarbituric acid 380 Hygrostats, preparation 359
Helianthine B 182 Hematoxylin 186, 234, 329 Hemp-like datisca (extract) 378 Hexane 334 Hexanitrodiphenylamine 374 Hexone 334 HHSNN 226 Hydrobromic acid density and concentration of solutions 174 use for extraction 346 use as a reagent 322 Hydrochloric acid density and concentration of solutions 164, 174 use as a reagent 322, 325 use for extraction 346 Hydrofluoric acid density and concentration of solutions 174 Hydrogen exponent, see pH Hydrogen, overvoltage on the electrode 442	Ilyinsky's reagent 384 Indicators acid-base 176, 472 adsorption 216 chemiluminescent 214 complexonometric 221 dichromatic 200, 473 fluorescent 204 ionization constants 200 isohydric solutions 475 mixed 201 monochromatic 200 oxidation-reduction 314 salt correction 199 universal 203 Indigo carmine 197, 201, 318 Indigosulphonic acids 318 lodeosine 185 Iodometry, calculation of results 125 7-Iodo-8-quinolinol-5-sulphonic acid 325

Ion mobility 299
Ion radii 22
Ionic product of water 198
Ionic strength 117, 120, 199, 200, 314, 316, 474, 475
Isoamyl acetate 332
Isoamyl alcohol 332
Isopropanol 334
Isopropyl ether 334

Lacmoid 185
Lauth's violet 317
Linear measures 446
Liquid measures 446
Liquids, drying 330
Logarithms 448
Lophine 214
Lucigenin 215
Luminol 215
Lumogallion 378
Lumomagneson 380
Luther's rule 478

Magneson CS 234, 380 Malachite green 178, 196 Measures, comparison with metric measures 446 Mercaptobenzothiazole 380 5-Mercapto-3-phenyl-2-thio-1,3-4-thiodiazolone (mercaptophenylthiothiodiazolone) 380 8-Mercaptoquinoline 324, 327, 328, 380 Metallphthalein 236, 242 Methanol 334 Methanyl yellow 178 Methyl cellosolve 334 1-Methyl-3,4-dimercaptobenzene 376 Methyl ethyl ketone 334 Methyl green 177 Methyl isobutyl ketone 334 Methyl orange 182 ionization constant 200 salt correction 199 Methyl red 185, 200, 201 ionization constant 200 salt correction 199 Methyl violet 176, 178, 181, 322, Methyl yellow 178, 201 329, 382

Methylaurin 189
Methylene blue 201, 202, 317, 322
Methylthymol blue 236
β-Methylumbelliferone (4-methylumbelliferone) 204, 209
Milligram-equivalent 463
Mimosa 396
Molecular weights 31
Monochlorobenzene 332
Morin 211, 238, 321, 330, 382
Mordant yellow 195
MTB 236
Murexide 238, 323, 382

Naphtharsone 396 Naphthin 382 Naphthionic acid 213 β-Naphthol (2-naphthol) 210 β-Naphthol violet 195 Naphthol yellow 238 2-Naphthol-(1-azo-2')-4'-chlorophenol-6.'-sodium sulphonate 380 α-Naphtholbenzoin 176, 193 α-Naphtholphthalein 191, 202 β-Naphthoquinoline 209, 382 α-Naphthyl red 184 α-Naphthylamine (1-naphthylamine) 208, 213 β-Naphthylamine (2-naphthylamine) 207 1,5-Naphthylaminosulphamide 205, 212 Naphthylazoxine 238 Nessler's reagent 327 Neutralization reactions 463 Neutral red 189, 202, 319 Nickelon 364 Nile blue 194 Nioxime 370 Nitrazine yellow 188 Nitric acid density and concentration of solutions 160, 174 use for extraction 346 Nitrobenzene 334 4"-Nitrobenzene-(1",4)-diazoamino-(1-azo-1')-benzene-2"-arsone-4'-sodium sulphate 392 Nitrochromoazo 384 Nitroferroin 314 Nitron 384

m-Nitrophenol 190	pH
ionization constant 200	colorimetric determination
o-Nitrophenol 187	199
n-Nitrophenol 188	electrometric determination
ionization constant 200	269
Nitro-o-phenanthroline 314	evaluated in terms of the
p-Nitrophenyl-azoaminobenzene-	activity of hydrogen ions
p-azobenzene 366	252
1-(p-Nitrophenyl)-3-methyl-4-	precipitation of metal hyd-
nitropyrazolone-5 386	roxides 273
α-Nitroso-β-naphthol 323, 384	1,10-Phenanthroline 315, 325, 386
β-Nitroso-α-naphthol 324, 384	Phenazo 386
1-Nitroso-2-naphthol-3,6-disul-	2,4-Phenol disulphonic acid 327
phonic acid, disodium salt 386	Phenol red 189, 202
N-Nitrosophenylhydroxylamine,	ionization constant 200
ammonium salt 370	salt correction 199
Nitroso-R-salt 324, 386	Phenolphthalein 193, 202, 203
Normality of solutions 462	salt correction 199
Troimality of Boltinons 402	Phenolsulphophthalein 189
Octane 334	Phenosafranine 219, 319
Orange G 197	N-Phenyl-anthranilic acid 314
Orange III 182	Phenylarsonic acid 384
Orange IV 181	2-Phenylcarboxylic acid-(1-azo-
Organic compounds, separation	2')-1',8'-dioxynaphthalene-
347	3',6'-disulphonic acid-(7'-azo-
Organic reagents 360	1")-2"-phenylarsonic acid 368
Overvoltage of hydrogen and oxy-	Phenylfluorone 330, 384
gen 442	9-Phenyl-2,3,7-trioxyfluorone-6
Oxidation-reduction	386
methods, calculations of re-	Phloxine 206
sults 125	Phosphoric acid density and
reactions 463	concentration of solutions 165,
Oxidizing agents 125	175
Oxine 378	Photometric methods of determi-
Oxygen, overvoltage on the elec-	ning ions 321
trode 442	Phthalein complexone 236, 242,
	323
	Phthalein purple 242
Palatine chrome green 222	Picric acid 177
PAN 238, 324, 331	Picrolonic acid 386
PAN 238, 324, 331 PAR 240, 327, 330	Plumbona 246 302
Paton-Reeder Dye 226, 242	2,2'-Potassium bicinchonine 386
Pentamethoxy red 180	Potassium iodide 322, 328
ionization constant 200	Potentiale
Pentaoxy red 180	calomel electrode 271, 272
3,5,7,2',4'-Pentaoxyflavon 211,	decomposition 445
382	electrode, determination 265
Perchloric acid, density and con-	ionic, cations 30
centration of solutions 167,	ionization 27
175	nolar ographic half-waves 400
Permanganatometry, calculation	quinhydrone electrode 270
of results 125	272
	- -

Potentials	Salicylal-o-aminophenol 390
reference electrodes 268	Salicylaldoxime 327, 390
standard oxidizing 300, 476	Salicylic acid 206, 325, 390
Precipitation	Separation of organic compo
methods, calculation of re-	unds 347
sults 129	Sodium alizarin sulphonate 184
Protein error 334	360
Propanol 334	Sodium carbonate, density and
Purpurin 388	concentration of solutions 173
Pyridine 323, 324, 329, 334	Sodium diethyldithiocarbamate
1-(2-Pyridylazo)-naphthol-2 240	321, 390
4-(2-Pyridylazo)-resorcinol 240	use in extraction 327
Pyrocatechin sulphophthalein	Sodium ethylenediaminetetraa-
242	cetate 130, 368
Pyrocatechin violet 242, 330	Sodium indigo disulphonate 197
Pyrogallol 327, 330, 388	Sodium sulphosalicylate 392
Pyrogallol red 244	Sodium tetraphenylborate 392
	Solubility
Quercetin 330, 331	in organic solvents 100
Quinaldic acid 388	in water 77
Quinaldine red, ionization con-	Solubility product 105
stant 200	conversion of the pH 252
Quinalizarin 322, 331, 388	Solutions
Quinhydrone electrode, standard	absorbing, vapour pressure
potential 270, 272	155
Quinic acid 209	buffer capacity 475
Quinine 209, 212	concentration 470
α-Quinoline carboxylic acid 388	density 470
D 1: 4: 1 4 04	ionic strength 120
Radioactive elements 21	normality 462
Reagents	titre 463
density and concentration	Solvents 332
174	SPADNS 246, 325, 331
masking 132, 345	Spectrum wavelengths 320
organic 360	SS-acid 213
Resorcin yellow 196	Standard oxidizing potentials 300
Rhodamine B 322, 388	Standard sieves 402
Rhodamine S 388 Rhodamine 6G 219, 390	Stilbazo 321, 392
Rhodanine 321	Stilben-2-2'-disulphonic acid-4,
Rosaniline 323	4'-bis-(azo-1")-3",4"-dioxyben-
Rosolic acid 189	zene, diammonium salt 392
R-salt 211	Stilbexone 392
Rubeanic acid 390	Stoichiometric multipliers 70,
Rules	460
calculation 11	Sulphanilic acid 323
Luther's 478	Sulpharsasene 246, 328, 392
	Sulphonazo 246, 394
Safranine T 318, 329	Sulphon-bis-4-hydroxyphenyl-(3-
Salt correction	azo-2')-1'-hydroxy-8'-amino-
of indicators 199	naphthalene-3',6'-disulphonic
Salicyl yellow 195	acid 246
Dancyl yollow 100	uoiu 210

Sulphosalicylic acid 246, 325, 330 1,3,5-Trinitrobenzene 197 Sulphuric acid 334 2,4,6-Trinitrophenol 177 2,4,6-Trinitrotoluene 196 density and concentration of solutions 161, 174 1,2,4-Trioxyanthraquinone 388 1,2,3-Trioxybenzene 388 3,4,5-Trioxybenzoylpara-amino-Tannin 394 benzoic acid 368 Tartrazine 219 2,2',4'-Trioxy-5-chloro-(1-azo-Tetraaminodiphenyl 372 1')-benzene-3-sulphonic acid Tetrabromolluorescein 207 Tetrabromophenolsulphophtha-2,6,7-Trioxy-9-(4"-dimethylamilein 183 nophenyl)-3-fluorone 372 Tetrachloride, carbon 332 2,4,5-Triphenylglyoxaline 214 Tetraethyldiamino-o-carboxy-2,4,5-Triphenylimidazol 214 phenylxanthenyl chloride 388 Tropeolin G 178 Tetraiodofluorescein 185, 207 Tropeolin 0 196 Tetralin 334 Tropeolin 00 181, 203, 219 1,2,5,8-Tetraoxyanthraquinone Tropeolin 000 191 388 Turpentine 334 3,5,7,2'-Tetraoxyflavon 378Tyron 248, 330 Thiazo yellow 396 Thioacetamide 394 Umbelliferone 210 Thiocarbamide 394 Units of energy 446 Thioglucolic acid 394 Units of power 447 Thionalide 394 Uranol 362 Thionine 317 Thiooxine 380 Vanadicophosphoric acid 331 Thiourea 246, Vapour pressure over water and 322, 330, 394 over absorbing solutions 155 Thioxine 380 Thorin 248, 396 Thoron 248, 326, 330, 396 Vapours, density 156 Variamine Blue B 248 Thymol blue 179, 192, 202, 203 Versene 368 ionization constant 200 Victoria yellow 178 Volumetric determination 158 salt correction 199 determi-Thymolphthalein 194, 202, 203 Volumetric-analytical salt correction 199 nations calculation of results 13, 123 Thymolphthalexone 248 indicators, selection 472 Thymolsulphophthalein 179 Tin dichloride 328 Titanium yellow 326, 396 Water 334 Titration ionic product 198 amperometric 408, 426 vapour pressure 155 calculation of results 123 Wolframite 331 index 201 indicators 472 Xylene 334, 355 Titre, establishment Xylenol blue 180, 192 o-Tolidine 323, 396 Xylenol orange 250, 331 Toluene 334 p-Xylenol phthalein 193 p-Xylenol sulphophthalein 180 8-(p-Toluene sulphamido)-quinoline 396 8-Tosylaminoquinoline 396 Zincon 250 WZfreenon 396 Trilon B 130, 368 Library

