FILTRO RLC

No problema abaixo admitiremos que o filtro está submetido a uma força eletromotriz harmônica na forma $\varepsilon = \varepsilon_0 \mathrm{sen}(\omega t)$. Introduziremos as grandezas $H(\mathrm{i}\omega) = \frac{Z_{\mathrm{out}}(\omega)}{Z_{\mathrm{in}}(\omega)}$ (i é o número complexo $\sqrt{-1}$), $G(\omega) = |H(\mathrm{i}\omega)|$ (valor absoluto de $H(\mathrm{i}\omega)$) onde $Z_{\mathrm{in}}(\omega)$ e $Z_{\mathrm{out}}(\omega)$ são as impedâncias complexas vistas a partir dos terminais de entrada e de saída, respectivamente. $H(\mathrm{i}\omega)$ é denominada função de transferência e $G(\omega)$ é denominado ganho.

<u>Filtro RLC Passa–Banda</u>. Considere uma associação em série com elementos resistivo (R), indutivo (L) e capacitivo (C).

RLC series band-pass (2010-SpinningSpark) (en.wikipedia.org)

- a) Escreva uma expressão para as impedâncias complexas $Z_{\rm in}(\omega)$ e $Z_{\rm out}(\omega)$, em função da frequência angular ω e de R, L e C.
- b) Você deve compreender que as amplitudes complexas, $V_{\rm in}(\omega)$ e $V_{\rm out}(\omega)$, dos sinais de entrada e de saída obedecerão à relação $\frac{V_{\rm out}(\omega)}{V_{\rm in}(\omega)} = \frac{Z_{\rm out}(\omega)}{Z_{\rm in}(\omega)}$. Encontre uma expressão para a grandeza complexa $H({\rm i}\omega) = \frac{Z_{\rm out}(\omega)}{Z_{\rm in}(\omega)}$.
- c) Reescreva $H(i\omega)$ em termos dos parâmetros $\omega_0 = \frac{1}{\sqrt{LC}}$ e $\alpha = \frac{R}{2L}$. O que eles representam, fisicamente?
- d) Obtenha uma expressão para o módulo $G(\omega) = |H(i\omega)|$, em termos da grandeza $\frac{\omega}{\omega_0}$ (frequência reduzida) e do parâmetro $\gamma = \frac{\alpha}{\omega_0}$.
- e) Vamos definir como frequências de corte os dois valores de ω para os quais $G(\omega) = \varepsilon$ (onde ε é uma fração superior à metade do ganho máximo, a unidade). Obtenha as frequências de corte.

- f) Obtenha uma expressão para a largura da banda de passagem, $\omega_{c2}-\omega_{c1}$, para γ suficientemente pequeno.
- g) Com a ajuda de um software construa um gráfico G versus $\frac{\omega}{\omega_0}$ para $\gamma=0,1$.
- h) Considere a resposta obtida no item c) e encontre uma expressão para a diferença de fase ϕ entre a voltagem de saída e a voltagem de entrada em termos das grandezas $\frac{\omega}{\omega_0}$ e $\gamma = \frac{\alpha}{\omega_0}$.
- i) Com a ajuda de um software construa um gráfico ϕ versus $\frac{\omega}{\omega_0}$ para $\gamma=$ 0,1.