I.

Is it true that this is an atom? atom ¹	Yes, because atom is a string of characters beginning with the letter a.
1 L, S: (quote atom) or 'atom "L:" and "S:" are described in the preface.	
Is it true that this is an atom? turkey	Yes, because turkey is a string of characters beginning with a letter.
Is it true that this is an atom? 1492	Yes, because 1492 is a string of digits.
Is it true that this is an atom?	Yes, because u is a string of one character, which is a letter.
Is it true that this is an atom? *abc\$	Yes, because *abc\$ is a string of characters beginning with a letter or special character other than a left "(" or right ")" parenthesis.
Is it true that this is a list? (atom) ¹	Yes, because (atom) is an atom enclosed by parentheses.
1 L, S: (quote (atom)) or '(atom)	
Is it true that this is a list? (atom turkey or)	Yes, because it is a collection of atoms enclosed by parentheses.

Is it true that this is a list? (atom turkey) or	No, because these are actually two S-expressions not enclosed by parentheses. The first one is a list containing two atoms, and the second one is an atom.			
Is it true that this is a list? ((atom turkey) or)	Yes, because the two S-expressions are now enclosed by parentheses.			
Is it true that this is an S-expression?	Yes, because all atoms are S-expressions.			
Is it true that this is an S-expression? (x y z)	Yes, because it is a list.			
Is it true that this is an S-expression? ((x y) z)	Yes, because all lists are S-expressions.			
Is it true that this is a list? (how are you doing so far)	Yes, because it is a collection of S-expressions enclosed by parentheses.			
How many S-expressions are in the list (how are you doing so far) and what are they?	Six, how, are, you, doing, so, and far.			
Is it true that this is a list? (((how) are) ((you) (doing so)) far)	Yes, because it is a collection of S-expressions enclosed by parentheses.			
How many S-expressions are in the list (((how) are) ((you) (doing so)) far) and what are they?	Three, ((how) are), ((you) (doing so)), and far.			

Chapter 1

Is it true that this is a list?	Yes, because it contains zero S-expressions enclosed by parentheses. This special S-expression is called the null (or empty) list.
Is it true that this is an atom?	No, because () is just a list.
Is it true that this is a list? (() () () ())	Yes, because it is a collection of S-expressions enclosed by parentheses.
What is the car of l where l is the argument (a b c)	a, because a is the first atom of this list.
What is the car of l where l is $((a b c) \times y z)$	(a b c), because (a b c) is the first S-expression of this non-empty list.
What is the car of l where l is hotdog	No answer. You cannot ask for the car of an atom.
What is the car of l where l is ()	No answer. ¹ You cannot ask for the <i>car</i> of the empty list.
	1 L: nil

The Law of Car

The primitive car is defined only for non-empty lists.

What is the car of l where l is (((hotdogs)) (and) (pickle) relish)	<pre>((hotdogs)), read as: "The list of the list of hotdogs." ((hotdogs)) is the first S-expression of l.</pre>			
What is (car l) where l is (((hotdogs)) (and) (pickle) relish)	((hotdogs)), because (car l) is another way to ask for "the car of the list l."			
What is $(car\ (car\ l))$ where l is $(((hotdogs))\ (and))$	(hotdogs).			
What is the cdr of l where l is (a b c) Note: "cdr" is pronounced "could-er."	(b c), because (b c) is the list l without (car l).			
What is the cdr of l where l is $((a b c) \times y z)$	(x y z).			
What is the cdr of l where l is (hamburger)	().			
What is $(cdr \ l)$ where l is $((x) \ t \ r)$	(t r), because $(cdr \ l)$ is just another way to ask for "the cdr of the list l ."			
What is $(cdr \ a)$ where a is hotdogs	No answer. You cannot ask for the cdr of an atom.			

6

What	is	(cdr	l)
where	l	is	()	

No answer.1

You cannot ask for the cdr of the null list.

1 L: nil

The Law of Cdr

The primitive cdr is defined only for non-empty lists. The cdr of any non-empty list is always another list.

What is $(car (cdr l))$ where l is $((b) (x y) ((c)))$	(x y), because $((x y) ((c)))$ is $(cdr l)$, and $(x y)$ is the car of $(cdr l)$.			
What is $(cdr \ (cdr \ l))$ where l is $((b) \ (x \ y) \ ((c)))$	(((c))), because $((x y) ((c)))$ is $(cdr l)$, and $(((c)))$ is the cdr of $(cdr l)$.			
What is $(cdr (car l))$ where l is $(a (b (c)) d)$	No answer, since $(car\ l)$ is an atom, and cdr does not take an atom as an argument; see The Law of Cdr.			
What does car take as an argument?	It takes any non-empty list.			
What does cdr take as an argument?	It takes any non-empty list.			
What is the cons of the atom a and the list l where a is peanut and l is (butter and jelly) This can also be written "(cons a l)". Read: "cons the atom a onto the list l."	(peanut butter and jelly), because cons adds an atom to the front of a list.			

What is the $cons$ of s and l where s is (banana and) and l is (peanut butter and jelly)	((banana and) peanut butter and jelly), because <i>cons</i> adds any S-expression to the front of a list.			
What is (cons s l) where s is ((help) this) and l is (is very ((hard) to learn))	(((help) this) is very ((hard) to learn)).			
What does cons take as its arguments?	cons takes two arguments: the first one is any S-expression; the second one is any list.			
What is (cons s l) where s is (a b (c)) and l is ()	((a b (c))), because () is a list.			
What is $(cons \ s \ l)$ where s is a and l is $($)	(a).			
What is (cons s l) where s is ((a b c)) and l is b	No answer, l since the second argument l must be a list. In practice, $(\cos \alpha \beta)$ works for all values α and β , and $(\cot (\cos \alpha \beta)) = \alpha$ $(\cot (\cos \alpha \beta)) = \beta$.			
What is $(cons \ s \ l)$ where s is a and l is b	No answer. Why?			

The Law of Cons

The primitive cons takes two arguments. The second argument to cons must be a list. The result is a list.

What is (cons s (car l)) where s is a and l is ((b) c d)	(a b). Why?
What is (cons s (cdr l)) where s is a and l is ((b) c d)	(a c d). Why?
Is it true that the list l is the null list where l is ()	Yes, because it is the list composed of zero S-expressions. This question can also be written: (null? l).
What is (null? (quote ()))	True, because $(\mathbf{quote}\ ())^1$ is a notation for the null list.
1 L: null	1 L: Also () and '(). S: Also '().
Is (null? l) true or false where l is (a b c)	False, because l is a non-empty list.

Is (null? a) true or false where
a is spaghetti

No answer,¹

because you cannot ask null? of an atom.

The Law of Null?

The primitive *null?* is defined only for lists.

Is it true or false that s is an atom where s is Harry

True,

because Harry is a string of characters beginning with a letter.

Is (atom?¹ s) true or false where
s is Harry

True,

because (atom? s) is just another way to ask "Is s is an atom?"

Is (atom? s) true or false where

s is (Harry had a heap of apples)

False.

since s is a list.

How many arguments does atom? take and what are they?

It takes one argument. The argument can be any S-expression.

 $^{^{1}}$ In practice, (null? $\alpha)$ is false for everything, except the empty list.

Is $(atom? (car \ l))$ true or false where l is (Harry had a heap of apples)	True, because $(car \ l)$ is Harry, and Harry is an atom.			
Is $(atom? (cdr \ l))$ true or false where l is (Harry had a heap of apples)	False.			
Is $(atom? (cdr \ l))$ true or false where l is $(Harry)$	False, because the list () is not an atom.			
Is $(atom? (car \ (cdr \ l)))$ true or false where l is (swing low sweet cherry oat)	True, because $(cdr \ l)$ is (low sweet cherry oat), and $(car \ (cdr \ l))$ is low, which is an atom.			
Is (atom? (car (cdr l))) true or false where l is (swing (low sweet) cherry oat)	False, since $(cdr \ l)$ is ((low sweet) cherry oat), and $(car \ (cdr \ l))$ is (low sweet), which is a list.			
True or false: a1 and a2 are the same atom where a1 is Harry and a2 is Harry	True, because $a1$ is the atom Harry and $a2$ is the atom Harry.			
Is $(eq?^1 \ a1 \ a2)$ true or false where $a1$ is Harry and $a2$ is Harry	True, because (eq? a1 a2) is just another way to ask, "Are a1 and a2 the same non-numeric atom?"			
1 L: eq				
Is (eq? a1 a2) true or false where a1 is margarine and a2 is butter	False, since $a1$ and $a2$ are different atoms.			

How many arguments	does	eq?	\mathbf{take}	and
what are they?				

It takes two arguments. Both of them must be non-numeric atoms.

Is (eq? l1 l2) true or false where l1 is () and l2 is (strawberry) No answer,¹

() and (strawberry) are lists.

Is (eq? n1 n2) true or false where n1 is 6 and n2 is 7

No answer,¹

6 and 7 are numbers.

The Law of Eq?

The primitive eq? takes two arguments. Each must be a non-numeric atom.

Is (eq? (car l) a) true or false
where
 l is (Mary had a little lamb chop)
and
 a is Mary

True,

because $(car \ l)$ is the atom Mary, and the argument a is also the atom Mary.

Is (eq? (cdr l) a) true or false
where
 l is (soured milk)
and
 a is milk

No answer.

See The Laws of Eq? and Cdr.

 $^{^{1}\,}$ In practice, lists may be arguments of eq?. Two lists are eq? if they are the same list.

¹ In practice, some numbers may be arguments of eq?.

Is $(eq? (car \ l) \ (car \ (cdr \ l)))$ true or false where l is (beans beans we need jelly beans)

True,

because it compares the first and second atoms in the list.

 \Rightarrow Now go make yourself a peanut butter and jelly sandwich. \Leftarrow

This space reserved for

JELLY STAINS!