Lecture 7: RNNs and Time Series Analysis

Yanbin Liu

Auckland University of Technology

April 18, 2024

Table of Contents

1 Time Series Analysis

2 RNNs (LSTM, GRU)

3 Transformer Networks

Time Series Regression

- Time series regression is a statistical method for predicting a **future response** based on the **response history** (known as <u>autoregressive</u> dynamics) and the transfer of dynamics from relevant predictors.
- Time series regression can help us understand and predict the behavior of dynamic systems from experimental or observational data.
- Time series regression is employed for modeling and forecasting *economic*, *traffic*, and *weather* systems.

https://au.mathworks.com/discovery/time-series-regression.html

Linear Regression Model

$$\mathbf{y}_t = \mathbf{x}_t \beta + e_t$$

 \mathbf{x}_t : includes *current* and *past* observations by time \mathbf{t}

 \mathbf{y}_t : an estimate of a linear relationship of the response

 β : linear parameter estimates

 e_t : innovation terms, difference between observed and predicted

Non-Linear Regression Model

$$\mathbf{y}_t = f(\mathbf{x}_t, e_t)$$

f can be:

- CNN
- RNN such as LSTM and GRU
- Transformer

Deep Learning for Time Series Analysis

(a) The convolutional layer of a CNN with three groups (filters). (b) An artificial neural network (c) An LSTM block.

J. Gamboa. (2017) Deep Learning for Time-Series Analysis.

MATLAB LSTM for Time Series Forecast

https://au.mathworks.com/help/nnet/examples/time-series-forecasting-using-deep-learning.html

MATLAB LSTM for Time Series Forecast

 $\label{lem:https://au.mathworks.com/help/nnet/examples/time-series-forecasting-using-deep-learning.html$

MATLAB LSTM for Time Series Forecast with Updates

 $\label{lem:https://au.mathworks.com/help/nnet/examples/time-series-forecasting-using-deep-learning.html$

Questions?

Recurrent Neural Networks

Recurrent Neural Networks

RNNs are a family of neural networks for processing *sequential* data, which is a dynamical system. It uses the **same** transition function with the **same** parameters at every time step.

I. Goodfellow (2016) Deep Learning. MIT Press.

Recurrent Neural Networks

Unfolded RNNs

- RNNs produce an output at each time step and have recurrent connections between hidden units.
- RNNs read an entire sequence for processing and finally produce a single output.

I. Goodfellow (2016) Deep Learning. MIT Press.

Recurrent Neural Networks

Unfolded RNNs

The notations are: Input x, state h, output o, loss function L, training target y, weights U, V, and W.

I. Goodfellow (2016) Deep Learning. MIT Press.

LSTM: Long Short-Term Memory

S. Hochreiter, et al. (1997) Long short-term memory, Neural computation, 9(8):1735-1780.

LSTM: Long Short-Term Memory

LSTM: Long Short-Term Memory

Page 411. I. Goodfellow (2016) Deep Learning. MIT Press.

LSTM: Long Short-Term Memory

https://en.wikipedia.org/wiki/Long_short-term_memory.

LSTM: Long Short-Term Memory

 $https://en.wikipedia.org/wiki/Long_short-term_memory.$

LSTM: Long Short-Term Memory

- Cell state c_t represents **long-term** memory Hidden state h_t represents **short-term** memory
- Three gates: input gate, forget gate, and output gate.
- LSTM gates compute an activation, often using the logistic function.
- LSTM is well-suited to *classify*, *process* and *predict* time series given time lags of unknown size and duration between important events.
- LSTM was developed to deal with the *exploding* and *vanishing* gradient problems.

Web: https://en.wikipedia.org/wiki/Long_short-term_memory.

GRU: Gated Recurrent Unit

Only two gates: reset and update z_t and $1 - z_t$ updates.

Web: https://en.wikipedia.org/wiki/Gated_recurrent_unit

GRU: Gated Recurrent Unit

Compare LSTM and GRU

- 3 gates vs. 2 gates
- More parameters vs. Fewer parameters
- Higher computation vs. lower computation
- Complex problems (intricate) vs. Smaller datasets (efficient)

Questions?

MATLAB LSTM Architecture

https://au.mathworks.com/help/deeplearning/ug/long-short-term-memory-networks.html

MATLAB LSTM in Time Series Analysis

ConvLSTM: Convolutional LSTM

Recurrent Neural Network

https://people.cs.pitt.edu/ kovashka/cs2770_sp17/vision_14_rnns.pdf

Rise of Transformer Model

- First designed for Natural Language Processing (NLP).
- Then extended to diverse fields: computer vision, audio, video, etc.
- Now the most powerful network architecture.
- Suitable for efficient and effective **time-series** prediction.

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

> Llion Jones* Google Research llion@google.com

Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Aidan N. Gomez* † Łukasz Kaiser*
University of Toronto Google Brain
aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* †
illia.polosukhin@gmail.com

Transformer Architecture

Multi-head Attention

Scaled Dot-Product Attention

Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

Multi-head Attention

Scaled Dot-Product Attention

Position Encoding

Positional Encoding Matrix for the sequence 'I am a robot'

Position Encoding

Positional Encoding Matrix for the sequence 'I am a robot'

Mask Attention Mechanism

- Predicting y_t can only use x_1, \ldots, x_{t-1} .
- The model can only use past rather than future information.
- For example, you cannot use tomorrow's weather/stock to predict today or yesterday.

Transformer Networks in MATLAB

Questions?

