## Introdução ao Raciocínio Lógico para ALP

Rafael Alceste Berri – rafaelberri@usp.br Claudio Cesar de Sá – claudio.sa@udesc.br

> Universidade do Estado de Santa Catarina Departamento de Ciência da Computação

> > 6 de março de 2018

### Atenção ...

Este texto reflete as dificuldades básicas que alunos tiveram na disciplina de ALP em semestre anterioes.

Todo conteúdo encontra-se sob revisão constante e está distante de um formato final!

## Aquecendo no desequilíbrio, ou desigualdades:



## Refletindo sobre as inequações serão úteis:

## Seja $x \in \{0, 1...99\}$ , avalie a **verdade** das expressões:

- **1** x > 100
- $\mathbf{2}$  x é impar ou x é par
- $\forall x(12x + x^2 \le 12)$
- $\forall x(128 14x \le 12x + 4)$

## As inequações serão úteis:

## Seja $x \in \{0, 1...99\}$ , avalie a **verdade** das expressões:

- **1** x > 100R: 0
- $\mathbf{2}$   $x \in \text{impar ou } x \in \text{par}$ R: 1
- **3**  $\forall x (12x + x^2 \le 12)$  R: 0 ou falsa
- **●**  $\forall x (144 \ge 12x + 7)$  R: 0 ou falsa
- $\forall x(128 14x \le 12x + 4)$ R: 0 ou falsa

## Questões de concurso público, tais como:

### A negação de "hoje é domingo" é:

- hoje é domingo
- a hoje não é domingo
- 3 hoje não, não é domingo
- o hoje é sábado

# Questões de concurso público, tais como:

## A negação de "hoje é domingo" é:

- hoje é domingo
- 2 hoje não é domingo
- o hoje não, não é domingo
- hoje é sábado

## A negação de "hoje é domingo e amanhã não choverá" é:

- 1 hoje não é domingo e amanhã não choverá
- 2 hoje não é domingo ou amanhã choverá
- 3 hoje não é domingo então amanhã choverá
- o hoje não é domingo nem amanhã choverá

# Questões de concurso público, tais como:

## A negação de "hoje é domingo" é:

- hoje é domingo
- a hoje não é domingo
- 3 hoje não, não é domingo
- o hoje é sábado

## A negação de "hoje é domingo e amanhã não choverá" é:

- hoje não é domingo e amanhã não choverá
- hoje não é domingo ou amanhã choverá
- hoje não é domingo então amanhã choverá
- hoje não é domingo nem amanhã choverá

#### Assim ...

precisamos de algo mais forte!

## Este mais forte é ...

- Transformar as frases do tipo "hoje é domingo" em afirmações (assertivas ou proposições)
- **2** Estas serão **Verdadeiras** ou **Falsas**, como nas inequações, exemplo: 2+3>6
- 3 Construir fórmulas a partir destas proposições, exemplo: x+3>6 e  $12+x\leq 6$
- ${\bf 0}\,$  Ao final, calcular o valor desta fórmula composta, indicando se é  ${\bf V}$  ou  ${\bf F}\,$
- Troque este V e F por 1 e 0, respectivamente, e bem vindo ao mundo binário do computador!

## Este mais forte é ...

- Transformar as frases do tipo "hoje é domingo" em afirmações (assertivas ou proposições)
- Estas serão Verdadeiras ou Falsas, como nas inequações, exemplo: 2 + 3 > 6
- **3** Construir fórmulas a partir destas proposições, exemplo: x + 3 > 6**e** 12 + x < 6
- Ao final, calcular o valor desta fórmula composta, indicando se é  $\mathbf{V}$  on  $\mathbf{F}$
- 5 Troque este V e F por 1 e 0, respectivamente, e bem vindo ao mundo binário do computador!

#### Assim ...

vamos usar uma lógica com circuitos elétricos conhecidos do colegial, para resolver estas fórmulas!

## A **negação** em um circuito elétrico:



| Onde a   | tabela       |  |  |
|----------|--------------|--|--|
| valente  | é dada       |  |  |
| A        | $\sim {f A}$ |  |  |
| V (ou 1) | F (ou 0)     |  |  |
| F (ou 0) | V (ou 1)     |  |  |

onde:

V (ou 1): lâmpada acesa

F (ou 0): lâmpada apagada

Conserte o circuito

equipor:

## A conjunção ou conectivo E em um circuito elétrico:



Onde a tabela equivalente é dada por:

| A | В | $\mathbf{A} \wedge \mathbf{B}$ |
|---|---|--------------------------------|
| V | V | V                              |
| V | F | F                              |
| F | V | F                              |
| F | F | F                              |

V (ou 1): lâmpada acesa F (ou 0): lâmpada apagada

## A disjunção ou conectivo OU em um circuito elétrico:



Onde a tabela equivalente é dada por:

| A | В | $\mathbf{A} \lor \mathbf{B}$ |
|---|---|------------------------------|
| V | V | V                            |
| V | F | V                            |
| F | V | V                            |
| F | F | F                            |

V (ou 1): lâmpada acesa acesa F (ou 0): lâmpada apagada

# Construa a Tabelas Verdades (TVs) das fórmulas abaixo:

#### Resolva: $\sim A \vee B$

| A | В | $\sim {f A}$ | $\sim {f A} ee {f B}$ |
|---|---|--------------|-----------------------|
| F | F | V            |                       |
| F | V | V            |                       |
| V | F | F            |                       |
| V | V | F            |                       |

- Para fins de concurso público é algo como: se A for verdadeiro então B também deverá ser!
- Contudo, se A não for verdade, qualquer coisa serve para B
- Esta fórmula é conhecida como  $\sim A \vee B \equiv A \to B$ , leia-se: se A então B

# Construa a Tabelas Verdades (TVs) das fórmulas abaixo:

## Resolva: $(\sim A \vee B) \wedge (\sim B \vee A)$

| A | В | $\sim {f A}$ | $X : \sim \mathbf{A} \vee \mathbf{B}$ | $\sim {f B}$ | $Y : \sim \mathbf{B} \vee \mathbf{A}$ | $X \wedge Y$ |
|---|---|--------------|---------------------------------------|--------------|---------------------------------------|--------------|
| F | F | V            |                                       |              |                                       |              |
| F | V | V            |                                       |              |                                       |              |
| V | F | F            |                                       |              |                                       |              |
| V | V | F            |                                       |              |                                       |              |

- Para fins de concurso público é algo como: se A e B forem iguais então esta fórmula é verdadeira!
- Se A e B forem diferentes, então a expressão é falsa
- Esta fórmula é conhecida como  $A \leftrightarrow B$ , leia-se: A bi-implica em В

#### Onde tudo isto será usado?

## Sejam as fórmulas A: X = 3 e B: Y = 4, resolva via TV:

- $X = 3 \lor Y = 4$
- $X = 3 \lor Y \neq 4$
- $X = 3 \land Y \neq 4$
- $X < 3 \lor Y = 4$
- $X > 3 \land Y \neq 4$

#### Isto tudo se relaciona em seguir passos lógicos:

• Como o computador trabalha com  $\mathbf{0}$ 's e  $\mathbf{1}$ 's, estas operações de  $\mathbf{V}$ erdade e  $\mathbf{F}$ also são análogas

- Como o computador trabalha com 0's e 1's, estas operações de Verdade e Falso são análogas
- $\bullet$ O tempo inteiro voce deverá começar a pensar deste modo: 0=F e 1=V

- Como o computador trabalha com 0's e 1's, estas operações de Verdade e Falso são análogas
- $\bullet$ O tempo inteiro voce deverá começar a pensar deste modo: 0=F e 1=V
- Claro este princípio não serve para vida!

- Como o computador trabalha com 0's e 1's, estas operações de Verdade e Falso são análogas
- $\bullet$ O tempo inteiro voce deverá começar a pensar deste modo: 0=F e 1=V
- Claro este princípio não serve para vida!
- Mas, aqui para o curso sim!

- Como o computador trabalha com 0's e 1's, estas operações de Verdade e Falso são análogas
- $\bullet$ O tempo inteiro voce deverá começar a pensar deste modo: 0=F e 1=V
- Claro este princípio não serve para vida!
- Mas, aqui para o curso sim!
- Boa sorte!