Anna Marciniec

Podstawy Uczenia Maszynowego lab 2 - **Condensed Nearest Neighbours Raport**

Na potrzeby zadania stworzyłam trzy zbiory danych korzystając z metody 'PAINT'. Stworzyłam obrazki o wymiarach 100px na 100px.

Następnie nałożyłam na nie szum, dodałam randomową liczbę z rozkładu normalnego. Podzieliłam te zbiory na testowy i treningowy (70%, 30% wybrane randomowo).

Dla zbioru 1:

zwykły k-NN z k=1 i metryką Euklidesa

CNN z k=1 i metryką Euklidesa (losowo wybierając próbki w procedurze kondensacji);

zwykły k-NN z k=3 i metryką Euklidesa;

CNN z k=3 i metryką Euklidesa

Dla zbioru 2: zwykły k-NN z k=1 i metryką Euklidesa;

CNN z k=1 i metryką Euklidesa (losowo wybierając próbki w procedurze kondensacji);

zwykły k-NN z k=3 i metryką Euklidesa;

CNN z k=3 i metryką Euklidesa

Dla zbioru 3: zwykły k-NN z k=1 i metryką Euklidesa;

CNN z k=1 i metryką Euklidesa (losowo wybierając próbki w procedurze kondensacji);

zwykły k-NN z k=3 i metryką Euklidesa;

CNN z k=3 i metryką Euklidesa

Wnioski:

• CNN kompletnie zepsuł moje zbiory, klasyfikator nie ma sensu zupełnego, zwykłe knn radzi sobie o wiele lepiej. Dla pierwszego zbioru całkowicie zignorowało, ze ma inna klase.