To lay we'll look at rep's of S5 and A5, for extra practice with characters + to notivate dicusion of restriction & induction of reproductions between G& subgroups. One can start building the character table of S5 the would way: start with known rep's.

First we have U (finich) and U' (altereding), and V (standard rep., dim 4). $U_K: V \oplus U \cong \text{ permutation rep. } \Phi^5$, so $K_{V \oplus U}(G) = \#\{i/G(i)=i\}$, $K_V = X_{U \oplus V} - 1$.

	1 e	10 (12)	૨૦ (123)	<i>3</i> 0 (1234)	24 (12345)	15 (12)(34)	20 (123)(45)
U	1	1	1	1	1	1	1
U U' V V'= V@U'	1	-1	1	-1	1	1	-1
	4	2	1	O	-1	0	-1
V'= V@U'	4	-2	1	Ō	-1	0	1

Then we need more. Since $|S_5|=120=\Xi \dim^2$, we're still missing 3 irreducibles with $\Xi \dim^2=86$; the most effective way to find them is to teep building tensor products - namely look of $V \otimes V$ ($\dim (6)$, or rather its two pieces $Sym^2 V$ ($\dim (0)$) and $\Lambda^2 V$ ($\dim (6)$).

* Observe: if $g: V \rightarrow V$ has eigenvalues λ_i ($gv_i = \lambda_i v_i$, $1 \le i \le r$) Then the corresponding map on $Sym^2 V$ has eigenvalues $\lambda_i \lambda_j$, $1 \le i \le j \le r$ (recall $i(v_i)$ basis of $V \Rightarrow (v_i v_j)$ basis of $Sym^2 V$) $\lambda_i \lambda_j$, $1 \le i \le j \le r$ ($v_i \wedge v_j \wedge v_j$

Now,
$$\sum_{i \neq j} \lambda_i \lambda_j = \frac{1}{2} \left(\left(\sum_{i \neq j}^2 - \sum_{i \neq j}^2 \right) \right)$$

$$\sum_{i \neq j} \lambda_i \lambda_j = \frac{1}{2} \left(\left(\sum_{i \neq j}^2 - \sum_{i \neq j}^2 \right) \right)$$

$$\sum_{i \neq j} \lambda_i \lambda_j = \frac{1}{2} \left(\left(\sum_{i \neq j}^2 + \sum_{i \neq j}^2 \right) \right)$$

$$\chi_{sym^2 V}(g) = \frac{1}{2} \left(\chi_V(g)^2 + \chi_V(g^2) \right).$$
(Miss is the for any π_V^2).

This Firmla lets no calculate XAZV and XsynZV for the standard rg. of S5.

Observe: $H(\chi_{\Lambda^2 V}, \chi_{\Lambda^2 V}) = \frac{4}{120} (6^2 + 24 + 15 \cdot 2^2) = 1$, so $\Lambda^2 V$ is irreducible! whereas $H(\chi_{Sym^2 V}, \chi_{Sym^2 V}) = \frac{1}{120} (10^2 + 10 \cdot 4^2 + 20 + 15 \cdot 2^2 + 20) = 3$

so Sym²V splits into 3 irreducible summando. $H(\chi_{U_1}\chi_{Syn^2V}) = \frac{1}{120} (10 + 10.4 + 20 + 15.2 + 20) = 1 = 0$ are copy of U similar calculations =) Sym² V also contains V with mult 1; not U'az V'. Hence Sym V = U D V DW for some irred. 5. din! reproduction W. Subtracting we find XW - and one more, W'- WOU', which complete the list.

	1 e	10 (12)	ટ0 (123)	<i>3</i> 0 (1234)	24 (12345)	15 (12)(34)	20 (123)(45)
U	1	1		1	1	1	1
υ′	1	-1	1	-1	1	1	-1
V	4	2	1	0	-1	0	-1
V'= V@U'	4	-2	1	0	-1	0	1
^² V	6	0	0	0	1	-2	0
(U@V@W=Sym2V	10	4	1	0	0	2	1)
W	5	1	-1	-1	O	1	1
W'=W@U'	5	-1	-1	1	0	1	-1

Renark: the Handard rep? V and its exterior powers 12V, 15V=V', and 14V=U' are all ireducible! This is in fact a general property - VOEKEN-1, the exterior privers NKV of the standard rep of Sn are all irreducible (see Filton-Haris § 3.2)

. Next, move on to A5. Starting point = restrict irreducible representations of S5 to A5 and see which ones romain irreducible or decompose. Of course different irredings of Ss can become isomorphic after rediction - namely elements of Az act by id on U' so U' becomes hiral l and the restrictions of V and $V'=V \otimes U'$ become isomorphic, similarly l . The character table for S_5 gives, after restriction:

	1	20	12 (12345)	12	15
	e	(123)	(12345)	(12354)	(12)(34)
C	1	1	1	1	1
V	4	1	-1	-1	Ō
W	5	-1	1 -1 0 1	0	1
1 ² V	6	0	1	1	-2

Calculating $H(\chi_{\chi})$ we find that U, V, W are irreducible, while $H(\chi_{\Lambda^2 V}, \chi_{\Lambda^2 V}) = 2$ so 12V breaks into the direct sum of 2 distinct irreducibles. Also 12V deen't contain U, V n W, so 12V = YOZ he last two irreducible rep's of A5.

From $\sum din^2 = |A_5| = 60$ we find $\dim Y = \dim Z = 3$. How do we find χ_y and χ_Z ? (3) Using orthogonality and $\chi_y + \chi_z = \chi_{\Lambda^2 V}$, so $\chi_y - \chi_z \in \text{span}(\chi_{U}, \chi_{V}, \chi_{U}, \chi_{\Lambda^2 V})^{\perp}$ Here $\chi_y - \chi_z = (0,0,a,-a,0)$, where $H(\chi_y - \chi_z, \chi_y - \chi_z) = 2 \Rightarrow 24a^2 - 120$, $a = \pm \sqrt{5}$.

	1	20	12	12	15
	e	(123)	(1234 5)	(12354)	(12)(34)
C	1	1	1	1	1
V	4	1	-1	-1	O
W	5	1 -1	O	0	1
Y	3	0	1+1/5	<u>1-V5</u> 2	-1
Z	3	0	1-15	1 <u>+15</u> 2	-1

Thus:

What are Y and Z?? Recall: $A_5 = \text{ortalianch symmetries of an icosahedron in }\mathbb{R}^3$. So: $A_5 \longrightarrow SO(3) \subset GL(3,\mathbb{R}) \subset GL(3,\mathbb{C})$. (Y and Z differ by an order automorphism of A_5 : carrystian by transposition inside S_5)

(The fact that the character takes irrational values implies that there does not exist a regular icosah ednam (or dode cakedram) in \mathbb{R}^3 whose vehices all have rational coordinates!)

Otherwise we'd get that the representation factors through $GL(3,\mathbb{Q})$, and $tr(g)\in\mathbb{Q}$ by

More systematic approach: if G is a finite group and $H \subset G$ a subgroup, then we have a redniction expectation Res_H : rep^{n_S} of $G \longrightarrow rep^{n_S}$ of HThis is actually a functor $Rep(G) \longrightarrow Rep(H)$ [objects = ref of G, of H then about the opposite direction?

Suppose V is a rep. of G, and $W \subset V$ is invariant under H (but not all of G). Now for $g \in G$, the subspace $g W \subset V$ depends only on the caset gH, and each gW is a rep^G of gHg^{G^G} , with $H \xrightarrow{G} GL(W)$

If his happens, then the rep. of G is completely determined by that of H.

Indeed, chook reprosertatives $\sigma_n ..., \sigma_k \in G$ of the cosets of H (each coset \ni one σ_i)

Given $g \in G$, $g \sigma_i \in \sigma_i H$ for some j, so there exists $h \in H$ if $g = \sigma_i h \sigma_i^{r'}$.

Then g acts by mapping $\sigma_i W$ to $\sigma_i W$, with $g(\sigma_i w) = \sigma_j h(w)$.

Defi A representation V of G, with a subspace $W \subset V$ which is invariant under G the subgroup $H \subset G$ (i.e. a subseq. of $\operatorname{Res}_{H}^{G} V$), is said to be induced by $W \in \operatorname{Rep}(H)$ if, as a vector space, $V = \bigoplus \sigma W$. Write $V = \operatorname{Ind}_{H}^{G} W$. i.e. fixing one element in each coset, $\sigma_{1,\dots, G} \in G$, we can write each $v \in V$ uniquely as $v = \sigma_{1} W_{1} + \dots + \sigma_{k} W_{k}$ for $W_{1,\dots, V_{k}} \in W$.

Thm: Given a reproseration W of H, the induced reproseration $V = \operatorname{Ind}_{W}^{G} W$ exists and is unique up to isomorphism of G-rep.

Pf: Uniqueness: given $V \in Rep(G)$ and $W \subset V$ invariant under H less $h V = \bigoplus_{i=1}^m \sigma_i W_i$, necessarily $g \in G$ acts by majoring $\sigma_i W$ to $\sigma_j W_i$, where $g \in G$ is such that $g \in G$ in G i.e. $g \in G$ is $g \in G$ and necessarily $g \in G$ is $g \in G$. This determines the G-action uniquely.

• Existence: build $V = \bigoplus_{i=1}^{k} G_i W$ where the G_i are now formal symbols lie. The direct sum of k = |G/H| opins of W), and make $g \in G$ act as above.

Examples: 1) The permutation rep. associated to the left action of G on G/H is induced by the trivial representation of H. Include V has a Gasis $\{e_{6}\}_{6\in G/H}$; the basis element e_{H} (for the coset H) is fixed by H, so $W = span(e_{H})$ is invariant unde H, and $gW = span(e_{gH})$, with $V = \bigoplus_{gH \in G/H} span(e_{gH}) = \bigoplus_{gH \in G/H} gW$.

2) The regular rep. of G is induced by the regular rep. of H: here $W = \text{span} \{e_h, LEH\} \subset V = \text{span} \{e_g, g \in G\}$.

• Fact: $\operatorname{Ind}_{H}^{G}(W \oplus W') = \operatorname{Ind}_{H}^{G}(W) \oplus \operatorname{Ind}_{H}^{G}(W')$, but $\operatorname{Ind}(W \otimes W') \not= \operatorname{Ind}(W) \otimes \operatorname{Ind}(W')$.

On the other hand, if U is a report G and W a report H, then $\left| \operatorname{Ind}(\operatorname{Res}(U) \otimes W) = U \otimes \operatorname{Ind}(W) \right|.$

(indeed: Ind(W) = \bigoplus GW, so $U \otimes Ind(W) = \bigoplus (U \otimes GW) = \bigoplus G(U \otimes W)$, $G \in G/H$ where $U \otimes W \subset U \otimes Ind(W)$ is invariant under H and $= Res(U) \otimes W$ as $H \cdot rep^{2}$).

Ind(Res(U)) = $U \otimes Ind(H)$ is invariant under H and $G \in Res(U) \otimes W$ as $H \cdot rep^{2}$.