Seminar 10 Transformarea Fourier

Definiții

Începem studiul *transformărilor integrale*, folosind analiza complexă, cu transformările Fourier, utile, ca și seriile Fourier, pentru studiul funcțiilor periodice, de tipul semnalelor electrice.

Facem următoarea notație a unei mulțimi de funcții pe care o vom folosi în continuare:

$$L^1(\mathbb{R}) = \Big\{ f: \mathbb{R} \to \mathbb{C} | \, \int_{-\infty}^{\infty} |f(t)| dt < \infty \Big\}.$$

Cu aceasta, avem:

Definiție 1: Se numește *transformarea Fourier* a funcției $f \in L^1(\mathbb{R})$ o funcție complexă, notată cu $\mathcal{F}[f] : \mathbb{R} \to \mathbb{C}$, definită prin:

$$\mathcal{F}[f](\omega) = \int_{-\infty}^{\infty} f(t)e^{i\omega t}dt. \tag{1}$$

Funcția $\mathcal{F}[f](\omega)$ se mai numește *funcția spectrală* sau *spectrul (în frecvență)* asociat(ă) funcției f. Dacă privim f ca un semnal, dependent de timp, transformarea Fourier îi asociază spectrul acestuia.

O notație alternativă pentru $\mathcal{F}[f](\omega)$ este $\widehat{f}(\omega)$.

Ideea de bază a unei transformări Fourier este următoarea. Dacă se dă o funcție periodică (sau convertită la una periodică printr-un artificiu de repetiție, practic), ei i se asociază *seria Fourier*. Aceasta o aproximează cu o serie de sinusuri și cosinusuri, funcțiile periodice cel mai des întîlnite. Practic, are loc o superpoziție de termeni cu sinusuri și cosinusuri, un fel de interferență a undelor electromagnetice. La pasul următor, *transformata Fourier* preia minimele și maximele acestor "interferențe", iar rezultatul este un semnal (aproape) discret ("digitalizat"), care reprezintă valorile cele mai importante din semnal.¹

Conform teoriei seriilor Fourier, dacă funcția dată este pară, definiția se reduce la cazul mai simplu al cosinusurilor:

$$\widehat{f}(\omega) = 2 \int_0^\infty f(t) \cos \omega t dt, \quad \omega \in \mathbb{R}.$$
 (2)

Similar, dacă funcția este impară, dezvoltarea conține doar funcții sinus:

$$\widehat{f}(\omega) = -2i \int_0^\infty f(t) \sin \omega t dt, \quad \omega \in \mathbb{R}.$$
 (3)

Putem recupera funcția dată din transformata Fourier printr-o formulă de inversare:

Teoremă 1 (Formula Fourier de inversare): Fie $f : \mathbb{R} \to \mathbb{R}$ o funcție din $L^1(\mathbb{R})$. Dacă $\widehat{f}(\omega)$ este transformata ei Fourier și presupunînd că $\widehat{f}(\omega) \in L^1(\mathbb{C})$, atunci funcția inițială se obține din:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{f}(\omega) e^{it\omega} d\omega, \quad \forall t \in \mathbb{R}$$
 (4)

¹O explicație animată este dată aici.

Proprietăți

Următoarele proprietăți sînt esențiale pentru transformarea Fourier. Dacă nu se precizează altfel, vom nota prin $\widehat{f}(\omega)$ transformata Fourier a funcției f (și similar pentru orice altă funcție), iar relația dintre cele două se va nota cu $f(t)\leftrightarrow \widehat{f}(\omega)$ (și similar pentru orice altă funcție):

• Liniaritatea: Dacă α , $\beta \in \mathbb{C}$, iar f, $g \in L^1(\mathbb{R})$, atunci:

$$\alpha f(t) + \beta g(t) \leftrightarrow \alpha \widehat{f}(\omega) + \beta \widehat{g}(\omega);$$

- Simetria: $\widehat{f}(t) \leftrightarrow 2\pi f(-\omega)$;
- Schimbarea de scală: Dacă $\alpha \in \mathbb{C}$, atunci

$$f(\alpha t) \leftrightarrow \frac{1}{|\alpha|} \widehat{f}(\frac{\omega}{\alpha});$$

• Translația timpului: Dacă $t_0 \in \mathbb{R}$, atunci avem:

$$f(t-t_0) \leftrightarrow \widehat{f}(\omega)e^{-it_0\omega}$$
;

• Translația frecvenței: Dacă $\omega_0 \in \mathbb{R}$, atunci:

$$e^{i\omega_0 t} f(t) \leftrightarrow \widehat{f}(\omega - \omega_0);$$

• **Derivarea în raport cu timpul**: Dacă f este de n ori derivabilă, atunci:

$$\frac{d^nf}{dt^n} \leftrightarrow (i\omega)^m \widehat{f}(\omega);$$

• **Derivarea în raport cu frecvența**: Dacă funcțiile f(t), tf(t), ..., tⁿf(t) sînt integrabile pe \mathbb{R} , atunci:

$$(-it)^n f(t) \leftrightarrow \frac{d^n \widehat{f}(\omega)}{d\omega^n};$$

• **Transformarea conjugatei complexe**: Fie f*(t) conjugata complexă a funcției f. Atunci are loc:

$$f^*(t) \leftrightarrow \widehat{f}^*(-\omega);$$

• **Teorema de convoluție în timp**: Definim *produsul de convoluție* al funcțiilor f și g prin:

$$h(t) = (f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau.$$

Atunci are loc:

$$(f*g)(t) \leftrightarrow \widehat{f}(\omega) \cdot \widehat{g}(\omega).$$

• Teorema de convoluție în frecvență: În condițiile proprietății precedente, are loc:

$$f(t)g(t) \leftrightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{f}(y)\widehat{g}(\omega - y)dy;$$

• \hat{f} este uniform continuă pe \mathbb{R} și în plus, are loc:

$$\lim_{|\omega|\to\infty}|\widehat{f}(\omega)|=0;$$

• Dacă $f_n : \mathbb{R} \to \mathbb{R}, n \in \mathbb{N}^*$ este un șir de funcții convergent către funcția $f : \mathbb{R} \to \mathbb{R}$ în spațiul $L^1(\mathbb{R})$, adică:

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}|f_n(t)-f(t)|dt=0,$$

atunci șirul \hat{f}_n converge uniform către \hat{f} , adică:

$$\lim_{n\to\infty}\sup_{\omega\in\mathbb{R}}|\widehat{f}_n(\omega)-\widehat{f}(\omega)|=0.$$

Exemple rezolvate

1. Să se calculeze transformata Fourier a funcției $f(t)=e^{-\alpha|t|}$, $\alpha>0$.

Soluție: Conform definiției, avem succesiv:

$$\begin{split} \widehat{f}(\omega) &= \int_{-\infty}^{\infty} e^{-|t|} e^{-i\omega t} dt \\ &= \int_{-\infty}^{\infty} e^{-|t|} (\cos \omega t - i \sin \omega t) dt \\ &= 2 \int_{0}^{\infty} e^{-t} \cos \omega t dt \\ &= \int_{0}^{\infty} e^{-t} (e^{i\omega t} + e^{-i\omega t} dt) \\ &= -\frac{1}{i\omega - 1} + \frac{1}{i\omega + 1} \\ &= \frac{2}{\omega^2 + 1}. \end{split}$$

Folosind formula de schimbare de scală, obținem:

$$\widehat{f}(\omega) = \frac{1}{\alpha} \widehat{f} \Big(\frac{\omega}{\alpha} \Big) = \frac{2}{\alpha \cdot \left(\frac{\omega^2}{\alpha^2} + 1 \right)} = \frac{2\alpha}{\omega^2 + \alpha^2}.$$

2. Să se calculeze transformata Fourier a funcției $f(t) = e^{-7|t+4|}$.

Soluție: Observăm că putem folosi exemplul anterior, cu $\mathfrak{a}=7$. De asemenea, conform teoremei de translație a timpului, cu $\mathfrak{t}_0=4$ și teoremei de schimbare de scală obținem în final:

$$\widehat{f} = \frac{14e^{4i\omega}}{\omega^2 + 49}.$$

3. Să se calculeze transformata Fourier a funcției $f(t)=te^{-\alpha t^2}$, $\alpha>0$.

Soluție: Pornim cu funcția mai simplă $f_1(t) = e^{-t^2}$ și calculăm:

$$\begin{split} \widehat{f_1}(\omega) &= \int_{-\infty}^{\infty} e^{-t^2} e^{-i\omega t} dt \\ &= \int_{-\infty}^{\infty} e^{-t^2} \cos \omega t dt - i \int_{-\infty}^{\infty} e^{-t^2} \sin \omega t dt \\ &= 2 \int_{0}^{\infty} e^{-t^2} \cos \omega t dt. \end{split}$$

Atunci, prin derivare în interiorul integralei (după ω), găsim:

$$\widehat{f}'_1(\omega) = -2\int_0^\infty e^{-t^2}t\sin\omega tdt = -\frac{1}{2}\omega\widehat{f}_1(\omega),$$

ultima egalitate rezultînd după integrare prin părți.

Așadar, am ajuns la o ecuație diferențială cu variabile separabile:

$$\frac{\mathrm{d}\widehat{\mathsf{f}}_1}{\mathrm{d}\omega} = -\frac{1}{2}\omega\widehat{\mathsf{f}}_1,$$

pe care o rezolvăm și obținem $\hat{f}_1(\omega) = ce^{\frac{-\omega^2}{4}}$.

Constanta se poate calcula ținînd cont de egalitatea:

$$c = \widehat{f}_1(0) = \int_{-\infty}^{\infty} e^{-t^2} dt = \sqrt{\pi} \Rightarrow \widehat{f}_1(\omega) = \sqrt{\pi} e^{-\omega^2} 4.$$

Deoarece $e^{-\alpha t^2}=e^{-(t\sqrt{\alpha})^2}$, putem folosi formula de schimbare de scală și obținem:

$$\mathfrak{F}[e^{-\alpha t^2}](\omega) = \frac{1}{\sqrt{\alpha}}\widehat{f}_1\Big(\frac{\omega}{\sqrt{\alpha}}\Big) = \frac{1}{\sqrt{\alpha}}\sqrt{\pi}e^{-\frac{\omega^2}{4\alpha}}.$$

Acum, cu teorema de derivare în raport cu frecvența, avem:

$$\widehat{f}(\omega)=i\sqrt{\frac{\pi}{\alpha}}\Big(-\frac{\omega}{2\,\alpha}\Big)e^{-\omega^2}4\alpha=-\frac{i}{2}\sqrt{\pi}\alpha^3\omega e^{-\omega^2}4\alpha.$$

4. Să se calculeze transformata Fourier a impulsului triunghiular de lungime 2T:

$$\mathfrak{q}_T(t) = \begin{cases} 1 - \frac{|t|}{T}, & |t| \leqslant T \\ 0, & |t| > T \end{cases}.$$

Soluție: Deoarece q_T este funcție pară, putem calcula direct folosind formula cu cosinusuri ((2)) și obținem:

$$\begin{split} \widehat{f}(\omega) &= 2 \int_0^T \left(1 - \frac{t}{T}\right) \cos \omega t dt \\ &= 2 \int_0^T \frac{\sin \omega t}{T \omega} dt \\ &= 2 \frac{1}{T \omega} \int_0^T \sin \omega t dt \\ &= \frac{2(1 - \cos \omega T)}{T \omega^2} \\ &= \frac{4 \sin^2 \frac{T \omega}{2}}{T \omega^2}. \end{split}$$

5. Să se calculeze transformata Fourier a funcției sinus cardinal:

$$\sin c(t) = \frac{\sin t}{t}.$$

Soluție: Funcția este pară, deci putem folosi din nou formula cu seria de cosinusuri ((2)):

$$\begin{split} \widehat{f}(\omega) &= 2 \int_0^\infty \frac{\sin t}{t} \cos \omega t dt \\ &= \int_0^\infty \frac{\sin t (1+\omega) + \sin t (1-\omega)}{t} dt \\ &= \frac{\pi}{2} \big[sgn(1+\omega) + sgn(1-\omega) \big], \end{split}$$

folosind relația:

$$\int_{0}^{\infty} \frac{\sin at}{t} dt = \frac{\pi}{2} sgna.$$

Tabel de transformate Fourier

Definim următoarele funcții ce vor fi de folos:

(a) Funcția lui Heaviside: $h : \mathbb{R} \to \mathbb{R}$:

$$h(t) = \begin{cases} 0, & t < 0 \\ 1, & t \geqslant 0 \end{cases};$$

(b) Funcția sinus atenuat: $S_a : \mathbb{R} \to \mathbb{R}$:

$$S_{\alpha}(t) = \begin{cases} \frac{\sin t}{t}, & t \neq 0 \\ 1, & t = 0 \end{cases};$$

(c) **Funcția semn**: $\operatorname{sgn}: \mathbb{R} \to \mathbb{R}$:

$$sgnt = \begin{cases} -1, & t < 0 \\ 0, & t = 0 \\ 1, & t > 0 \end{cases}$$

Cu acestea, transformatele Fourier ale funcțiilor des întîlnite sînt redate în tabelul din figura 1.

f(t)	$\widehat{f}(\omega)$
$h(t+t_0)-h(t-t_0), t_0>0$	$2t_0S_{\mathfrak{a}}(\omegat_0)$
$\frac{\omega_0}{\pi}S_{\mathfrak{a}}(\omega_0t), \omega_0>0$	$h(\omega + \omega_0) - h(\omega - \omega_0)$
$h(t) - h(t_0), t_0 > 0$	$\left t_0 S_{\mathfrak{a}}(\omega t_0) + \frac{1}{2\mathfrak{i}} \omega t_0^2 S_{\mathfrak{a}}^2 \left(\frac{\omega t_0}{2} \right) \right $
$e^{-\omega_0 t}$, $\omega_0 > 0$	$\frac{2 \omega_0}{\omega_0^2 + \omega^2}$
$-h(t+t_0) + 2h(t) - h(t-t_0), t_0 > 0$	$\frac{1}{i}\omega t_0^2 S_a^2 \left(\frac{\omega t_0}{2}\right)$
$e^{-\omega_0 t}h(t), \omega_0 > 0$	$\frac{\omega_0}{\omega_0^2 + \omega^2} + \frac{1}{\mathfrak{i}} \frac{\omega}{\omega_0^2 + \omega^2}$
$e^{-\omega_0 t }$ sgnt, $\omega_0 > 0$	$\frac{2}{i}\frac{\omega}{\omega_0^2 + \omega^2}$
$\left \left(1 - \frac{ t }{t_0} (h(t + t_0) - h(t - t_0)), t_0 > 0 \right. \right $	$t_0 S_a^2 \left(\frac{\omega t_0}{2} \right)$
$e^{-\omega_0^2 t^2}$, $\omega_0 > 0$	$\frac{\sqrt{\pi}\omega_0}{e}^{\frac{-\omega^2}{4\omega_0^2}}$

Figura 1: Transformatele Fourier ale unor funcții uzuale

Distribuții

Similar cu funcțiile de distribuție din studiul probabilităților, introducem cîteva dintre cele mai importante funcții de distribuție, pe care le vom trata apoi cu ajutorul transformatelor Fourier.

Definiție 2: Se numește *funcție test* o funcție $\varphi : \mathbb{R} \to \mathbb{R}$, care este indefinit derivabilă și nulă în afara unui interval compact.

Fie \mathcal{D} mulțimea tuturor funcțiilor test.

De exemplu:

$$\phi_\epsilon(x) = \begin{cases} exp\left(-\frac{\epsilon^2}{\epsilon^2 - x^2}\right), & |x| < \epsilon \\ 0, & |x| \geqslant \epsilon \end{cases},$$

care se poate defini pentru orice $\varepsilon > 0$ este o funcție test.

În pregătirea introducerii noțiunii de distribuție, mai avem nevoie și de:

Definiție 3: Spunem că șirul de funcții test $(\varphi_n)_n$ converge către 0 dacă acest șir se anulează în afara unui compact (același pentru toate) și dacă el converge uniform către 0 împreună cu șirul derivatelor de orice ordin.

Acum, definiția principală:

Definiție 4: Se numește *distribuție* o aplicație liniară $f: \mathcal{D} \to \mathbb{R}$ cu proprietatea că dacă un șir de funcții test $(\phi_n)_n$ converge către zero, atunci $\lim_{n \to \infty} f(\phi_n) = 0$.

Mulțimea distribuțiilor definite pe \mathcal{D} se va nota cu \mathcal{D}' .

Observație 1: Un spațiu de distribuții cu valori reale devine spațiu vectorial real, cu operațiile:

- adunarea distribuțiilor: $(f+g)(\phi) = f(\phi) + g(\phi)$, pentru orice $f, g \in \mathcal{D}', \phi \in \mathcal{D}$;
- *înmulțirea distribuțiilor cu scalari*: Dată distribuția f și scalarul $\alpha \in \mathbb{R}$, se definește distribuția α f prin relația:

$$(\alpha f)(\phi) = f(\alpha \phi) = \alpha f(\phi), \quad \forall \phi \in \mathcal{D}.$$

Principalele distribuții pe care le vom folosi sînt distribuția Dirac și distribuția Heaviside, definite mai jos.

Definiție 5: Distribuția Dirac în punctul a este funcția

$$\delta_{\mathfrak{a}}: \mathfrak{D} \to \mathbb{R}, \quad \delta_{\mathfrak{a}}(\phi) = \phi(\mathfrak{a}).$$

Cazul particular a = 0 este des întîlnit, motiv pentru care vom scrie δ în loc de δ_0 .

Definiție 6: *Distribuția Heaviside* se definește prin:

$$H: \mathcal{D} \to \mathbb{R}$$
, $H(\varphi) = \int_0^\infty \varphi(x) dx$.

O altă distribuție care se va mai întîlni este:

Definiție 7: Distribuția $f = VP\frac{1}{t}$ se numește *valoarea principală* a lui $\frac{1}{t}$, definită prin:

$$\mathsf{f}(\phi) = \nu.\mathsf{p}. \int_{-\infty}^{\infty} \frac{1}{t} \phi(t) dt = \lim_{\epsilon \searrow 0} \Big(\int_{-\infty}^{-\epsilon} \frac{\phi(t)}{t} dt + \int_{\epsilon}^{\infty} \frac{\phi(t)}{t} dt \Big), \quad \forall \phi \in \mathfrak{D}.$$

O legătură importantă între distribuția lui Dirac și cea a lui Heaviside este următoarea:

Propoziție 1: Derivata distribuției lui Heaviside este distribuția lui Dirac.

Demonstrație. Trebuie demonstrat că $H'(\phi) = \delta(\phi)$. Conform proprietății de derivare a distribuțiilor, $f^{(n)}(\phi) = (-1)^n f(\phi^{(n)})$, aceasta este echivalent cu a demonstra că $-H(\phi') = \delta(\phi)$. Calculăm succesiv:

$$-H(\varphi') = -\int_{-\infty}^{\infty} \varphi'(x) dx$$
$$= -\int_{0}^{\infty} \varphi'(x) dx$$
$$= -\varphi(x) \Big|_{0}^{\infty}$$
$$= \varphi(0) = \delta(\varphi).$$

Oricărei funcții *local integrabile*² i se poate asocia o distribuție:

Definiție 8: Fie $\mathfrak{u}:\mathbb{R}\to\mathbb{R}$ o funcție local integrabilă. Pentru orice funcție test $\phi\in\mathfrak{D}$, definim:

 $\underline{u}(\varphi) = \int_{-\infty}^{\infty} u(x) \varphi(x) dx.$

Se arată simplu că $\underline{u}(\varphi)$ este o distribuție și se numește *distribuție regulată* sau *de tip funcție*.

Transformarea Fourier a distribuțiilor

Definiție 9: Se numește *funcție rapid crescătoare* o funcție $f : \mathbb{R} \to \mathbb{C}$ de clasă \mathbb{C}^{∞} pentru care toate produsele $x^i f^{(k)}(x)$ de puteri naturale ale lui x și derivate ale lui f sînt funcții mărginite. Fie f mulțimea acestor funcții.

Definiție 10: Un șir $(\psi_n)_n$ de funcții din \mathcal{S} se numește *convergent către 0*, notat $\psi_n \to 0$ în \mathcal{S} dacă pentru orice întregi j, $k \ge 0$, șirul de funcții $(x^j \psi_n^{(k)})$ converge uniform către 0 pe \mathbb{R} .

Distribuțiile cărora le vom aplica transformata Fourier sînt de un tip special:

Definiție 11: Se numește *distribuție temperată* orice aplicație \mathbb{C} -liniară $f: \mathbb{S} \to \mathbb{C}$ astfel încît dacă $\psi_n \to 0$ în \mathbb{S} , are loc $\lim_{n \to \infty} f(\psi_n) = 0$.

Se notează cu S' spațiul tuturor distribuțiilor temperate.

În fine, transformata Fourier a unei distribuții temperate este definită mai jos:

Definiție 12: Fie $f \in S'$. Se numește *transformata Fourier a distribuției* f distribuția $\mathcal{F}_f : S \to \mathbb{C}$, definită prin:

$$\mathfrak{F}_{f}(\psi) = f(\mathfrak{F}(\psi)), \quad \forall \psi \in \mathfrak{S}.$$

De exemplu, să determinăm transformata Fourier a distribuției Dirac δ . Calculăm succesiv:

$$\begin{split} \mathfrak{F}_{\delta}(\psi) &= \delta(\mathfrak{F}(\psi)) \\ &= \mathfrak{F}(\omega)\mid_{\omega=0} \\ &= \int_{-\infty}^{\infty} \psi(t) e^{-i\omega t} dt\mid_{\omega=0} \\ &= \int_{-\infty}^{\infty} \psi(t) dt \\ &= 1(\psi). \end{split}$$

Cum relația are loc pentru orice $\psi \in S$, rezultă că $\mathcal{F}_{\delta} = \underline{1}$.

Transformatele Fourier ale unor distribuții des întîlnite sînt redate în tabelul din figura 2.

²mărginită și integrabilă pe orice compact

f(t)	\mathcal{F}_{f}
$e^{i\omega_0 t}$, $\omega_0 > 0$	$2\pi\delta(\omega-\omega_0)$
1	$2\pi\delta(\omega)$
$\cos \omega_0 t, \omega_0 > 0$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
$\sin \omega_0 t, \omega_0 > 0$	$\mathrm{i}\pi[\delta(\omega+\omega_0)-(\omega-\omega_0)]$
sgnt	$\frac{2}{i\omega}$
h(t)	$\pi\delta(\omega) + \frac{1}{\mathrm{i}\omega}$
$e^{-i\omega_0 t}h(t), \omega_0 > 0$	$\pi\delta(\omega-\omega_0)+rac{1}{\mathfrak{i}(\omega-\omega_0)}$
$h(t)\cos\omega_0 t, \omega_0 > 0$	$\frac{\pi}{2}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{\mathrm{i}\omega}{\omega_0^2-\omega^2}$
$h(t)\sin\omega_0t, \omega_0>0$	$\frac{\pi}{2i}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{\omega_0}{\omega_0^2-\omega^2}$
t ⁿ	$2\pi \mathfrak{i}^{\mathfrak{n}}rac{\mathrm{d}^{\mathfrak{n}}\delta(\omega)}{\mathrm{d}\omega^{\mathfrak{n}}}$

Figura 2: Transformatele Fourier ale unor distribuții uzuale