Report No.: TRE1810023701 Page: 57 of 103 Issued: 2018-11-19

5.7. Band Edge and Spurious Emissions (Conducted)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Establish a reference level by using the following procedure Center frequency=DTS channel center frequency

The span = 1.5 times the DTS bandwidth.

RBW = 100 kHz, VBW ≥ 3 x RBW

Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum PSD level

Note: the channel found to contain the maximum PSD level can be used to establish the reference level.

3. Emission level measurement

Set the center frequency and span to encompass frequency range to be measured

RBW = 100 kHz, VBW ≥ 3 x RBW

Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum amplitude level.

- 4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 5. Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

 Report No.: TRE1810023701 Page: 58 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 59 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 60 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 61 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 62 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 63 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 64 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 65 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 66 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 67 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 68 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 69 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 70 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 71 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 72 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 73 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 74 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 75 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 76 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 77 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 78 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 79 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 80 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 81 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 82 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 83 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 84 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 85 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 86 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 87 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 88 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 89 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 90 of 103 Issued: 2018-11-19

5.8. Spurious Emissions (Radiated)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Limit (dBuV/m @3m)	Value
30MHz-88MHz	40.00	Quasi-peak
88MHz-216MHz	43.50	Quasi-peak
216MHz-960MHz	46.00	Quasi-peak
960MHz-1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
ABOVE TOTIZ	74.00	Peak

TEST CONFIGURATION

➤ 9kHz ~30MHz

> 30MHz ~ 1GHz

Above 1GHz

Report No.: TRE1810023701 Page: 91 of 103 Issued: 2018-11-19

TEST PROCEDURE

1. The EUT was tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.

- 2. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna.
- 5. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1GHz, RBW=120kHz, VBW=300kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
 - (3) Above 1GHz, RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

Please refer to the clause 3.3

<u>T</u>	<u>ES</u>	T	<u>R</u>	<u>ES</u>	U	Γ.	T	<u>S</u>

⊠ Passed	☐ Not Applicable
∠ rasseu	☐ Not Applicable

Note:

- 1) Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.

➢ 9kHz ~ 30MHz

The EUT was pre-scanned the frequency band (9kHz~30MHz), found the radiated level lower than the limit, so don't show on the report.

> 30MHz ~1000MHz

Have pre-scan all modulation mode, found the 802.11b mode CH01 which it was worst case, so only the worst case's data on the test report.

Report No.: TRE1810023701 Page: 92 of 103 Issued: 2018-11-19

30MHz ~ 1GHz

ation:				Vert	ical			
Level [dBµV/m]								
80								
				- 1				
70+	-++	++		+		+	++	-+
60				+				
50				- !		l I		
50				-			T	
40							ii	
30						X	<u>.</u> X .	Name of the last o
	i i i	i _i i	~~~	~h	~~~~	I www	much when	All I
20			·/			₩~÷15	ii	
				- 1		i	i i	
10	_	! ! !						
10 i 30M 40M	50M 60M 70	M 100		200		300M 40	00M 500M 6	00M 800M 1G
		M 100		200 Frequency [Hz		300M 40	00M 500M 6	00M 800M 1G
0 30M 40M × × × MES GM1811 MEASUREMENT	166026_red		F	Frequency [Hz				00M 800M 1G
0 30M 40M X X X MES GM1811 MEASUREMENT 11/16/2018 1 Frequency MHz	ned red "RESULT 1:59AM Level dBµV/m	: "GM18 Transd dB	1116602 Limit dBµV/m	Prequency [H: 26_red" Margin dB	Det.	Height cm	Azimuth deg	Polarization
0 30M 40M * * * MES GM1811 **MEASUREMENT* 11/16/2018 1 Frequency MHz 156.100000	166026_red " RESULT 1:59AM Level dBµV/m 30.80	: "GM18 Transd dB -13.4	Limit dBµV/m	Prequency [H: 26_red" Margin dB 12.7	Det.	Height cm	Azimuth deg	Polarization VERTICAL
0 30M 40M × × × MES GM1811 MEASUREMENT 11/16/2018 1 Frequency MHz 156.100000 198.780000	7 RESULT 1:59AM Level dBµV/m 30.80 28.40	: "GM18 Transd dB -13.4 -9.5	Limit dBµV/m 43.5 43.5	26_red" Margin dB 12.7 15.1	Det. QP QP	Height cm	Azimuth deg 349.00 314.00	Polarization VERTICAL VERTICAL
0 30M 40M × × × MES GM1811 MEASUREMENT 11/16/2018 1 Frequency MHz 156.100000 198.780000 311.300000	7 RESULT 1:59AM Level dBµV/m 30.80 28.40 33.90	: "GM18 Transd dB -13.4 -9.5 -6.7	Limit dBµV/m 43.5 43.5 46.0	26_red" Margin dB 12.7 15.1 12.1	Det. QP QP QP QP	Height cm 100.0 100.0 100.0	Azimuth deg 349.00 314.00 276.00	Polarization VERTICAL VERTICAL VERTICAL
0 30M 40M × × × MES GM1811 MEASUREMENT 11/16/2018 1 Frequency MHz 156.100000 198.780000	7 RESULT 1:59AM Level dBµV/m 30.80 28.40	: "GM18 Transd dB -13.4 -9.5	Limit dBµV/m 43.5 43.5	26_red" Margin dB 12.7 15.1	Det. QP QP	Height cm	Azimuth deg 349.00 314.00	Polarization VERTICAL VERTICAL

Report No.: TRE1810023701 Page: 93 of 103 Issued: 2018-11-19

> 1 GHz~25GHz

802.11b					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2995.538	51.15	28.60	7.48	37.58	49.65	74.00	-24.35	Vertical	Peak
3681.469	32.41	29.30	8.36	37.00	33.07	74.00	-40.93	Vertical	Peak
4983.987	41.38	31.48	9.66	35.41	47.11	74.00	-26.89	Vertical	Peak
6628.177	30.27	34.20	11.39	33.69	42.17	74.00	-31.83	Vertical	Peak
2987.923	44.21	28.59	7.47	37.58	42.69	74.00	-31.31	Horizontal	Peak
4332.852	31.78	30.30	9.07	36.44	34.71	74.00	-39.29	Horizontal	Peak
4821.757	39.95	31.56	9.55	35.69	45.37	74.00	-28.63	Horizontal	Peak
6851.185	30.17	34.36	11.66	33.80	42.39	74.00	-31.61	Horizontal	Peak

802.11b					CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
3003.17	50.32	28.61	7.48	37.58	48.83	74.00	-25.17	Vertical	Peak
3993.90	33.85	29.70	8.77	36.76	35.56	74.00	-38.44	Vertical	Peak
4996.69	38.71	31.50	9.67	35.39	44.49	74.00	-29.51	Vertical	Peak
5325.01	35.62	31.35	10.02	34.75	42.24	74.00	-31.76	Vertical	Peak
2987.92	43.14	28.59	7.47	37.58	41.62	74.00	-32.38	Horizontal	Peak
3883.62	32.61	29.68	8.62	36.84	34.07	74.00	-39.93	Horizontal	Peak
4871.10	36.42	31.46	9.59	35.61	41.86	74.00	-32.14	Horizontal	Peak
8002.06	30.73	37.10	12.30	33.07	47.06	74.00	-26.94	Horizontal	Peak

802.11b					CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2995.54	49.26	28.60	7.48	37.58	47.76	74.00	-26.24	Vertical	Peak
4310.85	31.82	30.23	9.05	36.46	34.64	74.00	-39.36	Vertical	Peak
4996.69	43.44	31.50	9.67	35.39	49.22	74.00	-24.78	Vertical	Peak
7190.69	30.01	36.14	11.86	33.54	44.47	74.00	-29.53	Vertical	Peak
2995.54	44.31	28.60	7.48	37.58	42.81	74.00	-31.19	Horizontal	Peak
4065.71	32.65	29.83	8.83	36.69	34.62	74.00	-39.38	Horizontal	Peak
4996.69	35.98	31.50	9.67	35.39	41.76	74.00	-32.24	Horizontal	Peak
7820.82	29.64	36.23	13.16	33.05	45.98	74.00	-28.02	Horizontal	Peak

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No.: TRE1810023701 Page: 94 of 103 Issued: 2018-11-19

802.11g					CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2995.54	51.55	28.60	7.48	37.58	50.05	74.00	-23.95	Vertical	Peak
3993.90	37.49	29.70	8.77	36.76	39.20	74.00	-34.80	Vertical	Peak
4996.69	37.41	31.50	9.67	35.39	43.19	74.00	-30.81	Vertical	Peak
7245.81	35.21	36.25	11.91	33.45	49.92	74.00	-24.08	Vertical	Peak
2995.54	42.97	28.60	7.48	37.58	41.47	74.00	-32.53	Horizontal	Peak
4245.51	32.69	30.09	8.98	36.52	35.24	74.00	-38.76	Horizontal	Peak
4821.76	39.25	31.56	9.55	35.69	44.67	74.00	-29.33	Horizontal	Peak
7338.62	31.00	36.30	12.01	33.29	46.02	74.00	-27.98	Horizontal	Peak

802.11g					CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2987.92	49.07	28.59	7.47	37.58	47.55	74.00	-26.45	Vertical	Peak
3883.62	33.23	29.68	8.62	36.84	34.69	74.00	-39.31	Vertical	Peak
4996.69	38.11	31.50	9.67	35.39	43.89	74.00	-30.11	Vertical	Peak
7394.88	31.87	36.30	12.06	33.20	47.03	74.00	-26.97	Vertical	Peak
2995.54	44.46	28.60	7.48	37.58	42.96	74.00	-31.04	Horizontal	Peak
4170.53	32.79	29.97	8.92	36.59	35.09	74.00	-38.91	Horizontal	Peak
4871.10	37.67	31.46	9.59	35.61	43.11	74.00	-30.89	Horizontal	Peak
7301.36	29.34	36.30	11.97	33.35	44.26	74.00	-29.74	Horizontal	Peak

802.11g					CH11				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2987.92	50.52	28.59	7.47	37.58	49.00	74.00	-25.00	Vertical	Peak
4343.90	32.23	30.33	9.08	36.43	35.21	74.00	-38.79	Vertical	Peak
4983.99	44.00	31.48	9.66	35.41	49.73	74.00	-24.27	Vertical	Peak
7282.79	29.07	36.28	11.95	33.39	43.91	74.00	-30.09	Vertical	Peak
2987.92	42.44	28.59	7.47	37.58	40.92	74.00	-33.08	Horizontal	Peak
4045.06	32.54	29.79	8.82	36.72	34.43	74.00	-39.57	Horizontal	Peak
4920.96	34.54	31.42	9.62	35.52	40.06	74.00	-33.94	Horizontal	Peak
7527.83	31.37	36.13	12.49	33.02	46.97	74.00	-27.03	Horizontal	Peak

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No.: TRE1810023701 Page: 95 of 103 Issued: 2018-11-19

802.11n(HT	20)				CH01				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2995.54	50.34	28.60	7.48	37.58	48.84	74.00	-25.16	Vertical	Peak
3672.11	34.47	29.30	8.35	37.00	35.12	74.00	-38.88	Vertical	Peak
4983.99	40.98	31.48	9.66	35.41	46.71	74.00	-27.29	Vertical	Peak
7432.62	30.78	36.23	12.18	33.13	46.06	74.00	-27.94	Vertical	Peak
2987.92	50.48	28.59	7.47	37.58	48.96	74.00	-25.04	Horizontal	Peak
4170.53	32.03	29.97	8.92	36.59	34.33	74.00	-39.67	Horizontal	Peak
4983.99	43.16	31.48	9.66	35.41	48.89	74.00	-25.11	Horizontal	Peak
7154.17	30.69	35.93	11.86	33.61	44.87	74.00	-29.13	Horizontal	Peak

802.11n(HT	20)				CH06				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2995.54	50.33	28.60	7.48	37.58	48.83	74.00	-25.17	Vertical	Peak
4138.80	32.53	29.94	8.89	36.62	34.74	74.00	-39.26	Vertical	Peak
4983.99	41.66	31.48	9.66	35.41	47.39	74.00	-26.61	Vertical	Peak
7566.25	29.86	36.17	12.61	33.03	45.61	74.00	-28.39	Vertical	Peak
2995.54	46.75	28.60	7.48	37.58	45.25	74.00	-28.75	Horizontal	Peak
4377.20	32.06	30.43	9.11	36.40	35.20	74.00	-38.80	Horizontal	Peak
4871.10	36.70	31.46	9.59	35.61	42.14	74.00	-31.86	Horizontal	Peak
7190.69	30.02	36.14	11.86	33.54	44.48	74.00	-29.52	Horizontal	Peak

802.11n(HT	20)			CH11					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2995.54	50.83	28.60	7.48	37.58	49.33	74.00	-24.67	Vertical	Peak
4421.99	32.54	30.54	9.17	36.36	35.89	74.00	-38.11	Vertical	Peak
6461.58	30.36	33.73	11.10	33.66	41.53	74.00	-32.47	Vertical	Peak
8022.46	30.94	37.08	12.35	33.06	47.31	74.00	-26.69	Vertical	Peak
2995.54	44.88	28.60	7.48	37.58	43.38	74.00	-30.62	Horizontal	Peak
4138.80	32.17	29.94	8.89	36.62	34.38	74.00	-39.62	Horizontal	Peak
4996.69	35.26	31.50	9.67	35.39	41.04	74.00	-32.96	Horizontal	Peak
8022.46	31.28	37.08	12.35	33.06	47.65	74.00	-26.35	Horizontal	Peak

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No.: TRE1810023701 Page: 96 of 103 Issued: 2018-11-19

802.11n(HT	40)			CH03					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2995.54	47.11	28.60	7.48	37.58	45.61	74.00	-28.39	Vertical	Peak
3993.90	34.39	29.70	8.77	36.76	36.10	74.00	-37.90	Vertical	Peak
4983.99	40.35	31.48	9.66	35.41	46.08	74.00	-27.92	Vertical	Peak
6747.34	30.35	34.10	11.54	33.75	42.24	74.00	-31.76	Vertical	Peak
2995.54	44.15	28.60	7.48	37.58	42.65	74.00	-31.35	Horizontal	Peak
4086.46	32.26	29.87	8.85	36.67	34.31	74.00	-39.69	Horizontal	Peak
4871.10	35.66	31.46	9.59	35.61	41.10	74.00	-32.90	Horizontal	Peak
8063.40	31.41	37.04	12.45	33.05	47.85	74.00	-26.15	Horizontal	Peak

802.11n(HT			CH06						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2995.54	47.47	28.60	7.48	37.58	45.97	74.00	-28.03	Vertical	Peak
3662.78	33.58	29.30	8.34	37.01	34.21	74.00	-39.79	Vertical	Peak
4983.99	36.27	31.48	9.66	35.41	42.00	74.00	-32.00	Vertical	Peak
7135.98	32.20	35.82	11.86	33.64	46.24	74.00	-27.76	Vertical	Peak
2995.54	47.40	28.60	7.48	37.58	45.90	74.00	-28.10	Horizontal	Peak
3983.75	33.68	29.70	8.76	36.77	35.37	74.00	-38.63	Horizontal	Peak
4996.69	34.22	31.50	9.67	35.39	40.00	74.00	-34.00	Horizontal	Peak
7432.62	31.21	36.23	12.18	33.13	46.49	74.00	-27.51	Horizontal	Peak

802.11n(HT	40)			CH09					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	Test value
2995.54	48.07	28.60	7.48	37.58	46.57	74.00	-27.43	Vertical	Peak
4288.96	32.38	30.18	9.02	36.48	35.10	74.00	-38.90	Vertical	Peak
4996.69	42.61	31.50	9.67	35.39	48.39	74.00	-25.61	Vertical	Peak
7860.74	30.38	36.47	12.97	33.06	46.76	74.00	-27.24	Vertical	Peak
2987.92	43.88	28.59	7.47	37.58	42.36	74.00	-31.64	Horizontal	Peak
4983.99	34.65	31.48	9.66	35.41	40.38	74.00	-33.62	Horizontal	Peak
6172.20	30.92	32.79	10.96	33.96	40.71	74.00	-33.29	Horizontal	Peak
8571.38	31.51	37.19	12.88	32.93	48.65	74.00	-25.35	Horizontal	Peak

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No.: TRE1810023701 Page: 97 of 103 Issued: 2018-11-19

6. TEST SETUP PHOTOS

Conducted Emissions

Radiated Emissions

Report No.: TRE1810023701 Page: 98 of 103 Issued: 2018-11-19

7. EXTERNAL AND INTERNAL PHOTOS

External Photo

Report No.: TRE1810023701 Page: 99 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 100 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 101 of 103 Issued: 2018-11-19

Internal Photo

Report No.: TRE1810023701 Page: 102 of 103 Issued: 2018-11-19

Report No.: TRE1810023701 Page: 103 of 103 Issued: 2018-11-19

.....End of Report.....