Analysis of Variance

Overview

One-way analysis of variance (ANOVA)

Planned comparisons/post hoc tests

Factorial ANOVA

2-way ANOVA and interactions

Comments on the final project

The final project template is a guide, you do not need to strictly follow the sections

 E.g., it could be useful to intermix visualizations and analyses

Focus on being convincing!

- E.g., don't just blindly get a p-value and report effects as being true because p < 0.05
- Instead examine the robustness of the results
 - Do you see similar results in related conditions, or across different splits of your data?
 - Can you visualize the findings along with modeling results?
 - Are the assumptions underlying your model being met?
 - Etc.
- Try to address limitations and in the discussion section be honest about any limitations that remain

Questions about the final project?

One-way analysis of variance (ANOVA)

One-way ANOVA

A **one-way analysis of variance (ANOVA)** is a parametric hypothesis test that can be used to examine if a set of means are all the same.

$$H_0$$
: $\mu_1 = \mu_2 = ... = \mu_k$

 H_A : $\mu_i \neq \mu_i$ for some i, j

	5	3	2		7			8
6		1	5					2
2			ø	1	3		5	
7	1	4	6	9	2			
	2						6	
			4	5	1	2	တ	7
	6		3	2	5			9
1					6	3		4
8			1		9	6	7	

One-way ANOVA

A **one-way analysis of variance (ANOVA)** is a parametric hypothesis test that can be used to examine if a set of means are all the same.

$$H_0$$
: $\mu_1 = \mu_2 = ... = \mu_k$

$$H_A$$
: $\mu_i \neq \mu_j$ for some i, j

The statistic we use for a one-way ANOVA is the F-statistic

$$F = \frac{\text{between-group variability}}{\text{within-group variability}} = \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{x}_i - \bar{x}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2}$$

One-way ANOVA – the central idea

If H₀ is true, the F-statistic will come from an F distribution with parameters

- $df_1 = K 1$
- $df_2 = N K$

The F-distribution is valid if these conditions are met:

- The data in each group should follow a normal distribution
- The variances in each group should be approximately equal

Testing ANOVA conditions

We can check normally distributed residuals using:

- QQ plot of residuals, histogram of residuals
- Residuals vs. fitting values, etc.

Can check equality of variance using:

• Seeing if the ratio of $s_{max}/s_{min} < 2$

We could also run hypothesis tests to test for equal variances:

- H_0 : $\sigma_1^2 = \sigma_2^2 = ... = \sigma_k^2$
- H_A : $\sigma_i^2 \neq \sigma_j^2$ for some i, j
- E.g., Levene's test and Bartlet's test (Bartlet's test is sensitive to departures from normality)

Problem with the logic: if fail to reject H_0 it does not mean the σ^2 's are equal, it just means we don't have enough evidence to show they are different.

Non-parametric tests

There are also **non-parametric** tests which don't make assumptions about normality

The **Kruskal-Wallis** test compares several groups to see if one of the groups 'stochastically dominates' another

- Does not assume normality
- Tests if one group stochastically dominates another group
- Also tests whether the median for all the groups are the same
 - (if you assume groups have the same shaped and scale)
- The test is based on ranks so it is not influenced by outliers

The F-statistic

$$F = \frac{\text{between-group variability}}{\text{within-group variability}} = \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{x}_i - \bar{x}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2}$$

The F statistic measures a fraction of:

variability between group means variability within each group

ANOVA table

$$F = \frac{\text{between-group variability}}{\text{within-group variability}} = \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{x}_i - \bar{x}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2}$$

Source	df	Sum of Sq.	Mean Square	F-statistic	p-value
Groups	k – 1	SSG	$MSG = rac{SSG}{k-1}$	$F=rac{MSG}{MSE}$	Upper tail $F_{k-1,n-k}$
Error	n – k	SSE	$MSE = rac{SSE}{n-k}$		
Total	n – 1	SSTotal			

Where:
$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_{tot})^2$$

$$SSG = \sum_{i=1}^{k} n_i (\bar{x}_i - \bar{x}_{tot})^2$$

$$SST = SSG + SSE$$

$$SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2$$

Why use the F-Statistic?

$$F = \frac{\text{between-group variability}}{\text{within-group variability}} = \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{x}_i - \bar{x}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2}$$

ANOVA decoposition

$$F = \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{y}_i - \bar{y}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2}$$

The ANOVA decomposes the variance as:

SSTotal = SSGroup + SSTesidual

$$y_{ij} - \bar{y}_{tot} = (\hat{y}_{ij} - \bar{y}_{tot}) + (y_{ij} - \hat{y}_{ij})$$

$$(y_{ij} - \bar{y}_{tot})^2 = (\hat{y}_{ij} - \bar{y}_{tot})^2 + (y_{ij} - \hat{y}_{ij})^2$$

$$(y_{ij} - \bar{y}_{tot})^2 = (\bar{y}_i - \bar{y}_{tot})^2 + (y_{ij} - \bar{y}_i)^2$$

$$\hat{y}_{ji} = \overline{y}_i$$

(the model's prediction for each class is the group mean)

ANOVA as regression with only categorical predictors

ANOVA as regression with only categorical predictors

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if Assistant Professor} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if Associate Professor} \\ \beta_0 + \epsilon_i & \text{if Full Professor} \end{cases}$$

Least squares prediction for \hat{y}_i is \overline{y}_k

$$y_i = \mu_k + \epsilon_i = \begin{cases} \mu_1 + \epsilon_i & \text{if Assistant Professor} \\ \mu_2 + \epsilon_i & \text{if Associate Professor} \\ \mu_3 + \epsilon_i & \text{if Full Professor} \end{cases}$$

Planned comparisons and post hoc tests

Suppose we run a one-way ANOVA and we are able to reject the null hypothesis.

H₀: $\mu_1 = \mu_2 = ... = \mu_k$ H_A: $\mu_i \neq \mu_i$ for some i, j

Q: What else would we like to know?

A: We would like to know which groups actually differed!

Q: What would be a problem if we ran two sample tests on all pairs?

A: The problem of multiplicity

Pairwise comparisons

There are several tests that can be used to examine which pairs of means differed; i.e., to test:

- H_0 : $\mu_i = \mu_j$
- H_A : $\mu_i \neq \mu_j$

These tests include:

- Fisher's Least Significant Difference
- Bonferroni procedure/correction
- Tukeys Honest significantly different

Fisher's Least Significant Difference (LSD)

- 1. Perform the ANOVA
- 2. If the ANOVA F-test is not significant, stop
- 3. If the ANOVA F-test is significant, then you can test H_0 for a pairwise comparisons using:

$$t = \frac{\bar{x}_i - \bar{x}_j}{\sqrt{MSE \cdot (\frac{1}{n_i} + \frac{1}{n_j})}}$$
 Uses the MSE as a pooled estimate of the σ^2 Use a t-distribution with n-k degrees of freedom

Very 'liberal' tests

- Likely to make Type I errors (lots of false rejections of H₀)
- Less likely to make Type II errors (highest chance of detecting effects)

Bonferroni correction

Controls for the *family-wise error rate*

- i.e., $\alpha = 0.05$ for making *any* Type I error *over all pairs of comparisons*
- 1. Choose an α -level for the family-wise error rate α
- 2. Decide how many comparisons you will make. Call this m.
- 3. Reject any hypothesis tests that have p-values less than α/m
 - Pairwise tests typically done using a t-statistic, where the MSE is used in the estimate of the SE

$$t = \frac{\bar{x}_i - \bar{x}_j}{\sqrt{MSE \cdot (\frac{1}{n_i} + \frac{1}{n_j})}} \qquad \text{Use a t-distribution with n-k degrees of freedom}$$

Very 'conservative' tests

- Unlikely to make Type I errors (few false rejections of H₀)
- Likely to make Type II errors (insensitive at detecting real effects)

Tukey's Honest Significantly Different Test

Controls for the family-wise error rate

$$q = \frac{\sqrt{2}(\bar{x}_{max} - \bar{x}_{min})}{\sqrt{MSE \cdot (\frac{1}{n_{max}} + \frac{1}{n_{min}})}}$$

Where q comes from a studentized range distribution

The test is based on the distribution of $|\overline{x}_{max} - \overline{x}_{min}|$ that would be expected under the null hypothesis that none of the pairs of means are different

- Controls for the familywise error rate but less conservative than the Bonferroni correction
- Still based on assumptions that the data in each group is normal with equal variance

Let's try the KW test and pairwise comparisons in R...

Factorial ANOVA

In a **factorial ANOVA**, we model the response variable y as a function of **more than one** categorical predictor

Example: A student at Queensland University of Technology conducted an experiment to determine what types of sandwiches ants prefer.

- Factors he looked at were:
 - Bread: rye, whole wheat multigrain, white
 - Filling: peanut better, ham and pickle, and vegemite
 - 4 x 3 design

The student creating 4 sandwiches of all combinations of bread and filling (48 sandwiches total) and randomly left pieces in front of ant nests.

He then measured how many ants were on the sandwiches 5 minutes later.

Two-way ANOVA hypotheses

Main effect for A (bread type doesn't matter)

 H_0 : $\alpha_1 = \alpha_2 = ... = \alpha_1 = 0$

 H_A : $\alpha_i \neq 0$ for some j

Main effect for B (filling doesn't' matter)

 H_0 : $\beta_1 = \beta_2 = ... = \beta_K = 0$

 H_A : $\beta_k \neq 0$ for some k

Interaction effect:

 H_0 : All $\gamma_{ik} = 0$

 H_A : $\gamma_{ik} \neq 0$ for some j, k

Where:

 α_j : is the "effect" for factor A at level j

 β_k : is the "effect" for factor B at level k

 γ_{jk} : is the interaction between level j of factor A, and level k of factor B.

Two-way ANOVA in R with interaction

Source	df	Sum of Sq.	Mean Square	F-stat	p-value
Factor A Factor B A x B Error Total	K - 1 J - 1 (K-1)(J-1) KJ(c - 1) N - 1	SSA SSB SSAB SSE SSTotal	$\begin{aligned} MSA &= SSA/(K-1) \\ MSB &= SSB/(J-1) \\ MSAB &= SSAB/(K-1)(J-1) \\ MSE &= SSE/(K-1)(J-1) \end{aligned}$	MSA/MSE MSB/MSE MSAB/MSE	$F_{K-1,KJ(c-1)}$. $F_{J-1,KJ(c-1)}$ $F_{(K-1)(J-1),KJ(c-1)}$

For balanced design: SSTotal = SSA + SSB + SSAB + SSE

Interaction plots

Interaction plots can help us visualize main effects and interactions

- Plot the levels of one of the factors on the x-axis
- Plot the levels of the other factor as separate lines

Either factor can be on the x-axis although sometimes there is a natural choice

Interpreting interaction plots

Complete and balanced designs

Complete factorial design: at least one measurement for each possible combination of factor levels

 E.g., in a two-way ANOVA for factors A and B, if there are K levels for factor A, and J levels for factor B, then there needs to be at least one measurement for each of the KJ levels

Balanced design: the sample size is the same for all combination of factor levels

- E.g., there are the same number of samples in each of the KJ level combinations.
- The computations and interpretations for non-balanced designs are a bit harder.

Unbalanced designs

For unbalanced designs, there are different ways to computer the sum of squares, and hence one can get different p-values

 The problem is analogous to multicollinearity. If two explanatory variables are correlated either can account for the variability in the response data.

Type I sum of squares, (also called sequential sum of squares) the order that terms are entered in the model matters.

- anova(lm(y ~ A + B)) gives different results than using anova(lm(y ~ B + A))
- SS(A) is taken into account before SS(B) is considered etc.

Type III sum of squares, the order that that terms are entered into the model does not matter.

- Car::Anova(lm(y ~ A + B), type = "III") is the same as car::Anova(lm(y ~ B + A), type = "III")
- For each factor, SS(A), SS(B), SS(AB) is taken into account after all other factors are added

Let's examine two-way ANOVAs in R...

