

Algorithmen und Datenstrukturen

Greedy-Algorithmen:

Münzproblem ♦ Kürzeste Pfade

Einführendes Beispiel: Münzproblem

Problemstellung

Name: Münzproblem

Eingabe: eine ganze Zahl W, die einen Geldwert

repräsentiert (in Cent)

Ausgabe: Möglichst kleine Menge von Münzen,

deren Wert Wist.

Universitate Paragram

Strategie

- Beginne mit der leeren Menge M.
 Sei s die Summe der Werte der in M enthaltenen Münzen.
- Wähle immer eine Münze mit möglichst großem Wert v.
 - Falls $s + v \le W$, dann füge die Münze M hinzu und aktualisiere s.
 - Sonst versuche die Münze mit nächst kleinerem Wert.
- Stoppe, falls s + v = W.
- Probiere die Münzen also in der Reihenfolge
 2 Euro, 1 Euro, 50 Cent, 20 Cent, 10 Cent, 5 Cent, 2 Cent, 1 Cent

W = **392** (für 3,92 Euro)

	5
2 Euro + 2 Euro	200
1 Euro + 1 Euro	300
50 Cent + 50 Cent	350
20 Cent + 20 Cent + 20 Cent	390
10 Cent	
5 Cent	
2 Cent	392

Formulierung als Optimierungsproblem

Eingabe: (endliche) Menge von Münzen, ganze Zahl W

Ausgabe: kleinste Teilmenge der Münzen,

so dass folgende Kriterien erfüllt sind:

1. Gültigkeitskriterium:

Summe der Münzwerte $\leq W$

2. Optimalitätskriterium:

Summe der Münzwerte maximal.

Kanonischer Greedy-Algorithmus

Verallgemeinerung

Probleme, auf die sich Greedy-Algorithmen anwenden lassen:

- Bestimmung einer (kleinsten) Menge von Elementen aus einer gegebenen Menge (hier: Vorrat an Münzen)
- so dass eine Gültigkeitsbedingung erfüllt wird und
- eine Zielfunktion optimiert (hier: maximiert) wird.

Universitate Por Sedami

Allgemeine Greedy-Strategie

- Ordne die Elemente der gegebenen Menge geeignet an (hier: absteigende Münzwerte). $e_1, e_2, ..., e_n$
- Beginne mit der leeren Menge.
- Für $1 \le k \le n$: Teste, ob e_k zusammen mit den bisher ausgewählten Elementen eine Lösung ergeben kann (die Gültigkeitsbedingung erfüllt, hier: $s + v \le W$)
 - Dann füge e_k zur Menge hinzu.
 - Sonst wird e_k verworfen.

Universitation of the state of

Konkretisierung

- Es ist aus einer endlichen Menge E auszuwählen.
- Die Elemente von E besitzen Werte (Gewichte).
- Es ist eine minimale Teilmenge von E zu finden,
 - die ein Gültigkeitskriterium erfüllt und
 - deren Gesamtgewicht maximal (minimal) ist.

University,

Formalisierung: Teilmengensysteme

- Sei E eine endliche Menge und U ein System von Teilmengen von E.
 - E: enthält Werte, die ausgewählt werden können
 - \mathcal{U} : enthält zulässige Lösungsmengen (Gültigkeitskriterium)
- Das Paar (E, U) heißt **Teilmengensystem.**
- Sei $w: E \longrightarrow \mathbb{R}$ eine Gewichtsfunktion.

Für
$$M \subseteq E$$
: $w(M) = \sum_{e \in M} w(e)$

- Aufgabe: Ermittlung einer minimalen Teilmenge von E,
 - ullet die in ${\mathcal U}$ enthalten ist und
 - deren Gewichtsfunktion maximal (oder minimal) ist.

Kanonischer Greedy-Algorithmus

Fall: Teilmenge mit maximalem Gesamtgewicht

Ordne die Elemente in E nach absteigendem Gewicht:

$$w(e_1) \ge w(e_2) \ge \dots \ge w(e_n)$$

$$M \leftarrow \emptyset$$

Für k von 1 bis n

Falls
$$M \cup \{e_k\} \in \mathcal{U}$$

$$M \leftarrow M \cup \{e_k\}$$

Gib M aus

Fall: Teilmenge mit minimalem Gesamtgewicht

analog mit
$$w(e_1) \le w(e_2) \le ... \le w(e_n)$$

Universitate Polistani

... am Beispiel Münzproblem

• Man hat von jedem Münzwert zwei Münzen im Portemonnaie, aber sogar drei 20 Cent-Münzen; geordnet:

$$E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}, ..., e_{14}, ..., e_{17}\}$$

w(e_i): 200, 200, 100, 100, 50, 50, 20, 20, 20, 10, 10, 5, 5, 2, 2, 1, 1

• \mathcal{U} enthält alle Teilmengen von E, deren Elemente eine Summe kleiner oder gleich 392 bilden:

$$M \in \mathcal{U}$$
 gdw. $w(M) \leq 392$ (M ist gültig)

Kanonischer Greedy-Algorithmus:

$$\varnothing \longrightarrow \{e_1\} \longrightarrow \{e_1,e_2\} \longrightarrow \{e_1$$
, $e_3\}$ optimale Lösung? ... $\longrightarrow \{e_1$, e_3 , e_5 , e_7 , e_8 , $e_{14}\}$

• Jede weitere Vereinigung führt zu einer Menge nicht in \mathcal{U} .

Universita,

Optimalität

Nicht immer führt der kanonische Greedy-Algorithmus zu einer optimalen Lösung:

$$E = \{e_1, e_2, e_3\}, \mathcal{U} = \{\emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_2, e_3\}\}, w(e_1) = 3, w(e_2) = w(e_3) = 2$$

 $M \in \mathcal{U} \text{ gdw. } w(M) \leq 4$

Algorithmus liefert $M = \{e_1\}$ mit w(M) = 3. Optimal (maximal) wäre aber $M' = \{e_2, e_3\}$ mit w(M') = 4.

- Die optimale Lösung wird genau dann erreicht, wenn (E, \mathcal{U}) ein sogenanntes **Matroid** ist.
- Sonst muss die Optimalität in jedem Fall einzeln bewiesen werden.

Matroide

- Ein Matroid ist ein Teilmengensystem (E, U) mit
 - 1. $\varnothing \in \mathcal{U}$;
 - 2. Falls $B \in \mathcal{U}$ und $A \subseteq B$, dann gilt $A \in \mathcal{U}$;
 - 3. (Austauscheigenschaft) Für alle $A, B \in \mathcal{U}$ gilt: Falls |A| < |B|, dann gibt es ein $x \in B \setminus A$ so dass $A \cup \{x\} \in \mathcal{U}$.
- Satz: Sei (E, \mathcal{U}) ein Teilmengensystem und $w: E \to \mathbb{R}^+$ eine beliebige Gewichtsfunktion. Der kanonische Greedy-Algorithmus liefert eine optimale Lösung, falls (E, \mathcal{U}) ein Matroid ist.

Beweis (Matroid ⇒ Optimalität)

Seien: (E, \mathcal{U}) Matroid, $w: E \to \mathbb{R}^+$ (beliebig), $B = \{b_1, b_2, ..., b_r\}$ eine optimale Lösung, wobei $w(b_1) \ge w(b_2) \ge ... \ge w(b_r)$ und $B_i = \{b_1, b_2, ..., b_i\}$.

Sei a; das i-te vom Greedy-Algorithmus hinzugefügte Element,

$$A_0 = \emptyset$$
, $A_i = \{a_1, a_2, ..., a_i\}$ $(1 \le i \le r)$.

Vollst. Induktion über i: $A_i \in \mathcal{U}$ $(0 \le i \le r)$ und $w(a_i) \ge w(b_i)$ $(1 \le i \le r)$.

i = 0: $\emptyset \in \mathcal{U}$. (Zweite Aussage ist trivial.)

i-1 \longrightarrow i (1 \leq i \leq r):

Da $|A_{i-1}| < |B_i|$, gibt es ein $x \in B_i \setminus A_{i-1}$ mit $A_{i-1} \cup \{x\} \in \mathcal{U}$.

Der Greedy-Alg. kann also A_{i-1} um ein $a_i \in E$ mit $w(a_i) \ge w(x)$ erweitern.

Da $x \in B_i$ ist, gilt $w(x) \ge w(b_i)$. Also $w(A_r) \ge w(B)$ und A_r ist optimal.

Algorithmen auf Graphen: Kürzeste Pfade

Universitation of the state of

Routenplanung

- Ziel: Berechnung der Kosten
 - Wegstrecke oder
 - Fahrzeit oder
 - Fahrpreis

auf einer Route von Ort u nach Ort v

Modell:

Gerichteter Graph mit positiven Kantengewichten G = (V, E, w), (V, E) gerichteter Graph, $w : E \longrightarrow \mathbb{R}^+$

Universitate Paragram

Beispiel

Länge eines Pfades – gewichtet

- Sei $p = v_0, v_1, ..., v_n$ ein Pfad in G = (V, E, w).
- Das Pfadgewicht w(p) ist

$$\sum_{i=0}^{n-1} w(v_i, v_{i+1})$$

Beispiel:
w(a,b,d,f) = 72

Kürzeste Pfade - gewichtet

Eingabe: Gerichteter Graph G = (V, E, w) mit positiven Kantengewichten, ein Knoten *u* ∈ *V*.

Ausgabe: Menge der Pfade mit minimalem Pfadgewicht von \boldsymbol{u} nach \boldsymbol{v} für alle $\boldsymbol{v} \in \boldsymbol{V}$.

- **Greedy:** Sortieren alle *kreisfreien* Pfade von *u* nach aufsteigender Pfadlänge
 - Gültigkeitsbedingung: für jeden Knoten v wird nur ein kürzester Pfad von u nach v gefunden
 - Starten mit leerer Menge
 - Fügen nächsten Pfad hinzu, falls noch kein Pfad mit demselben Endknoten in der Menge ist

Anordnung aller kreisfreien Pfade:

a	0
a,b	10
a,c	20
a,b,e	22
a,b,e,f	25
a,c,e	39
a,c,d	40
a,c,d,f	42
•••	

Universitate Para Contraction of the Contraction of

Optimalität

- Betrachten folgendes Teilmengensystem (E, U):
 - E: Menge aller kreisfreien Pfade von u
 - \mathcal{U} : System mit \varnothing und allen Pfadmengen, deren Pfade in u beginnen und paarweise verschiedene Endknoten haben
- Wenn $M \in \mathcal{U}$, dann ist jede Teilmenge von M in \mathcal{U} .
- Falls A und B aus \mathcal{U} mit |A| < |B|,
 - dann gibt es in A genau |A| verschiedene Endknoten,
 - in B befindet sich mindestens ein Pfad p mit einem Endknoten, der nicht in A vorkommt und
 - $A \cup \{p\} \in \mathcal{U}$
- \triangleright (*E*, \mathcal{U}) ist Matroid.

Dijkstra-Algorithmus

Effizienzverbesserung:

- Nicht alle kreisfreien Pfade von *u* werden erzeugt
- Bilden der Pfade ähnlich dem Prinzip der Breitensuche
- Protokollieren dabei in jedem Knoten:
 - bisher gefundene kürzeste Pfadlänge zu diesem Knoten
 - Kante, über die der Knoten auf dem bisher kürzestem Pfad erreicht wird

Universitate Paragram

Dijkstra – Idee

- Bilde Menge M bereits aufgesuchter Knoten, die noch "neue" Nachbarn haben können (solange, bis diese leer ist)
- Initialisiere
 - die Menge M mit u,
 - die kürzeste Pfadlänge von u mit 0,
 - aller anderer Knoten mit ∞ (noch nicht aufgesucht)
- Entnehmen aus M Knoten v mit bislang kürzester Pfadlänge und behandeln alle seine Nachbarn y wie folgt:
 - Falls kürzeste Pfadlänge ∞ , dann in Menge M eintragen
 - Falls durch Pfad über Kante (v,y) neuer kürzester Pfad zu y gefunden: kürzeste Pfadlänge in y aktualisieren

Konstruktion des kürzesten Pfades

- Bei jeder Aktualisierung der Pfadlänge:
 Speichern der Kante, die für die kürzeste Pfadlänge in den Knoten führt (Vorgängerkante)
- Nach dem Terminieren:
 Zurückverfolgen der Vorgängerkanten bis zum Startknoten u

Kürzeste Pfade am Beispiel

Dijkstra-Algorithmus - Implementierung

Anpassung der Datenstruktur

- Entnehmen aus M Knoten v mit bislang kürzester Pfadlänge ...
- Verwaltung der Elemente sortiert
 - Hinzufügen von Elementen: sortiertes Einfügen
 - Entnehmen immer das "kleinste" Element
 - Ändert sich die bislang ermittelte kürzeste Pfadlänge eines Knotens, so muss dieser entfernt und neu hinzugefügt werden.
- Prioritätswarteschlange / Priority Queue PQ
 - speichert die Elemente zusammen mit einem Schlüssel
 - die spezialisierten Operationen:
 - insert(y, PQ) sortiertes Einfügen von y in die PQ
 - extractMin(PQ) dequeue des Elements mit min. Schlüssel
 - delete(y,PQ)
 Entfernen von y aus der PQ

Universitate Paragram

Implementierungen des ADT PQ

- eine effiziente Implementierung: als AVL-Baum
- eine einfache Implementierung: als sortierte Liste
 - insert: Hinzufügen von Elementen: sortiertes Einfügen (wie insert bei insertionSort: O(n))
 - extractMin: Entnehmen das "kleinste" Element (wie dequeue bei einer Queue: O(1))
 - delete: Suchen des zu löschenden Elements (binSearch) und anschließend Löschen: O(log n)
 - einige weitere Operationen für Listen:
 - Erzeugen einer leeren PQ
 - Test, ob eine PQ leer ist

Dijkstra mit einer Priority Queue

- kürzeste Pfadlängen als Schlüssel (aufsteigend sortiert)
- extractMin entnimmt immer den Knoten mit bislang kürzester Pfadlänge
- Ändert sich der Schlüssel eines Knotens, der bereits in der PQ ist, muss ggf. umsortiert werden (delete, gefolgt von insert)

Kürzeste Pfade am Beispiel

Pseudocode

```
Für jedes v in V
         dist(v) \leftarrow \infty # minimale Pfadlänge von u nach v
         pre(v) \leftarrow null \# Vorgängerkante auf optimalem Pfad
dist(u) \leftarrow 0
PQ \leftarrow [u]
                             # Prioritätswarteschlange
solange PQ nicht leer
         v \leftarrow \mathbf{extractMin}(PQ)
         für alle y mit (v,y) in E
                   aktualisiere(v,y)
```


aktualisiere(v,y)

```
falls dist(y) = \infty

insert(y, PQ) # Einfügen in die PQ

falls dist(y) > dist(v) + w(v,y)

dist(y) \leftarrow dist(v) + w(v,y)

pre(y) \leftarrow (v,y)

falls (Schlüssel von y) < (Schlüssel des Vorgängers von y in PQ)

delete(y, PQ) /* Umsortieren von y in der

insert(y, PQ) Prioritätswarteschlange */
```


Abschließende Bemerkungen

- Sind alle Kantengewichte 1, so entspricht Dijkstra (im wesentlichen) BFS.
- Greedy kann als vereinfachte dynamische Programmierung betrachtet werden:
 - Wie DP: Berechnung von Folgewerten allein durch Rückgriff auf bereits berechnete Werte.
 - Anders als DP: Nicht die Werte für alle kleineren
 Teilprobleme berechnen und tabellieren, da die
 Berechnung auf lokal verfügbaren Informationen basiert