Tutorial o8 - Randomized algorithms

Exercise 1. ZPP

Definition (Randomized Polynomial Time). The class RP is defined as the set of languages L such that there exists a polynomial p and a polynomial-time TM M with two halting states q_{accept} and q_{reject} , such that on every input $x \in \Sigma^*$ we have:

- $\Pr_{r \in \{0,1\}^{p(|x|)}}[M(x,r) \rightarrow q_{accept}|x \in L] \geqslant 1/2$
- $\Pr_{r \in \{0,1\}^{p(|x|)}}[M(x,r) \to q_{accept}|x \notin L] = 0$

In other words, if $x \notin L$, M will never accept, but it may reject when $x \in L$.

Definition (Zero-error Probabilistic Polynomial time). The class ZPP is defined as the set of languages L such that there exists a polynomial p and a polynomial-time TM M with three halting states q_{accept} , q_{reject} and q_{meh} , such that on every input $x \in \Sigma^*$ we have:

- $\Pr_{r \in \{0,1\}^{p(|x|)}}[M(x,r) \to q_{reject}|x \in L] = 0$ and $\Pr_{r \in \{0,1\}^{p(|x|)}}[M(x,r) \to q_{meh}|x \in L] \leqslant 1/2$
- $\bullet \ \Pr_{r \in \{0,1\}^{p(|x|)}}[M(x,r) \to q_{accept}|x \not\in L] = 0 \ \text{and} \ \Pr_{r \in \{0,1\}^{p(|x|)}}[M(x,r) \to q_{meh}|x \not\in L] \leqslant 1/2$

In other words, M will never answer incorrectly, but can return « I don't know » (state q_{meh}) with probability $\leq \frac{1}{2}$.

- 1. Recall how to reduce the error to recognize a language in BPP, deduce a similar procedure for RP.
- **2.** Show that $ZPP = RP \cap coRP$.
- 3. Prove that $L \in \mathsf{ZPP}$ iff there exists a probabilistic Turing machine M that recognizes L with probability 1, and whose expected running time is polynomial.

Exercise 2. Miller–Rabin test

In this exercice we want to show that testing if a number is prime belongs to RP. To do so, suppose that p is an odd number and denote $p - 1 = 2^s d$, where d is odd. We consider the following two sets:

$$W_1 = \left\{ a \in \mathbb{Z}_p \setminus \{0\} \colon a^d = 1 \text{ or } -1 \in \{a^d, a^{2d}, \dots, a^{2^{s-1}d}\} \right\},$$

$$W_2 = \left\{ a \in \mathbb{Z}_p \setminus \{0\} \colon a^{2^s d} \neq 1 \text{ or } \left(a^d \neq 1 \text{ and } -1 \notin \{a^d, a^{2d}, \dots, a^{2^{s-1}d}\}\right) \right\}.$$

(All operations in this exercice are in \mathbb{Z}_p , unless stated otherwise.)

- **1.** Prove that if $a \in W_1$, then $a^{2^sd} = 1$. What can you say about the sequence $(a^d, a^{2d}, \dots, a^{2^{s-1}d}, a^{2^sd})$?
- **2.** Prove that $W_1 \cap W_2 = \emptyset$ and $W_1 \cup W_2 = \mathbb{Z}_p \setminus \{0\}$.
- **3.** Prove that if p is prime, then $W_2 = \emptyset$. Hint: Use Fermat's little theorem and the fact that \mathbb{Z}_p is a field.

- **4.** Suppose that p is a power of a prime number, $p=q^k$ for some $k \geq 2$. Let $a=1+q^{k-1}$. Prove that $a^p=1$ and $a^{p-1} \neq 1$. In particular, $a \in W_2$.
- **5.** Suppose that p is a power of a prime number as above. Show that $|W_2| \ge |W_1|$. *Hint: Consider the set aW*₁ = { $ab: b \in W_1$ }, where $a = 1 + q^{k-1}$.
- **6.** The Chinese Reminder Theorem states that if $n_1, n_2 \in \mathbb{N}$ are relatively prime and $p = n_1 n_2$, then the map $\mathbb{Z}_p \ni x \to (x \mod n_1, x \mod n_2) \in \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$ is a bijection. Prove this theorem.
- 7. Suppose that $p = n_1 n_2 \in \mathbb{N}$, where $n_1, n_2 > 1$ are relatively prime odd numbers. Prove that there exists $c \in \mathbb{Z}_p$ such that $c \neq \pm 1$ but $c^2 = 1$.
- **8.** Let p be as above. Prove that if the equation $x^k = -1$ has a solution in \mathbb{Z}_p , then the equation $x^k = c$ also has a solution.
- **9.** Let p be as above. Show that $|W_2| \ge |W_1|$. Hint: let $0 \le t \le s$ be the highest number such that $x^{2^t d} = -1$ has a solution. Let r be a solution of $x^{2^t d} = c$. Consider the set rW_1 .
- **10.** Construct a probabilistic TM M whose expected running time is polynomial that, given $n \ge 0$ written in binary, outputs a random number in the interval $\{0, 1, ..., n-1\}$ (with uniform distribution).
- 11. Prove that testing if a number is prime belongs to RP.

Exercise 3. Polynomial Hierarchy

You have seen during the course the quantifier definition of the polynomial hierarchy: $L \in \Sigma_i^p$ if there exists a polytime TM M and a polynomial q such that:

$$x \in L \iff \exists u_1 \in \{0,1\}^{q(|x|)} \forall u_2 \in \{0,1\}^{q(|x|)} \dots Q_i u_i \in \{0,1\}^{q(|x|)} M(x,u_1,u_2,\dots,u_i) = 1.$$

You have also seen an alternative definition using oracles:

$$\begin{cases} \Sigma_0^p &= \mathsf{P} \\ \Sigma_{i+1}^p &= \mathsf{NP}^{\Sigma_i^p} \end{cases}$$

With PH being defined as $\bigcup_{i\geqslant 0} \Sigma_i^p$.

- 1. Prove the equivalence between the quantifier-based definition and the oracle-based definition.
- **2.** Give an oracle-based definition for Π_i^p .
- 3. Show that Σ_i^p is closed under polynomial-time many-one reduction.
- 4. Show that if there exist a PH-complete problem, then the polynomial hierarchy collapses.

2

- **5.** Show that if $\Sigma_i^p = \Sigma_{i+1}^p$, then $PH = \Sigma_i^p$.
- **6.** Propose a family of problems (S_i) such that S_i is Σ_i^p -complete.