PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2006083134 A

(43) Date of publication of application: 30.03.06

(51) Int. Cl .	A61K	31/202	20060101
	A23L	1/30	20060101

A61K 31/232 20060101 A61K 31/661 20060101 A61K 31/7024 20060101

A61K 35/74 20060101 A61P 25/00 20060101

(21) Application number: 2004271927

(71) Applicant:

SUNTORY LTD

(22) Date of filing: 17.09.04

(72) Inventor:

ISHIKURA YOSHIYUKI SAKAKIBARA MANABU

(54) COMPOSITION HAVING PROPHYLACTIC OR AMELIORATING ACTION OF SYMPTOM OR DISEASE INVOLVING BEHAVIORAL ANOMALY **CAUSED BY STRESS**

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a new composition having prophylactic or ameliorative action of symptom or disease involving behavioral anomaly caused by stress.

SOLUTION: The composition comprises arachidonic acid and/or a compound containing arachidonic acid as a constituent fatty acid and has prophylactic or ameliorative action of symptom or disease involving behavioral anomaly caused by stress.

COPYRIGHT: (C)2006, JPO&NCIPI

ストレス負荷ラットの警戒行動に与える影響

[Mean±SD, **: p(0.01, v++: p(0.001(vs. 约束-封职会等)]

(19) 日本国特許厅(JP)

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2006-83134 (P2006-83134A)

(43) 公開日 平成18年3月30日 (2006.3.30)

(51) Int.C1.	F I			テーマコー	ド(参考)
A 6 1 K 31/202 (2006.01)	A61K	31/202		48018	. (2)
A 2 3 L 1/30 (2006.01)	A23L	1/30	2	4C086	
A 6 1 K 31/232 (2006.01)	A 6 1 K	31/232		4C087	
A 6 1 K 31/661 (2006, 01)	A61K	•		4C206	
A 6 1 K 31/7024 (2006.01)	A61K	•			
		•	iの数 21 O L	(全 16 頁)	最終質に続く
(21) 出願番号 特願2004-27192	7 (P2004-271927)	(71) 出願人	000001904		
(22) 出願日 平成16年9月17日	3 (2004. 9. 17)		サントリー株式	式会社	
			大阪府大阪市:	化区堂島浜2丁	目1番40号
特許法第30条第1項適用申請有り	平成16年(20	(74) 代理人	100099759		
O4年) 3月22日 東海大学開発工	学部生物工学科神		弁理士 青木	篤	
経生物工学研究室ホームページアドレ	ス (http://	(74) 代理人	100077517		
/nerve. fb. u-tokai.	. ac. jp) (င		弁理士 石田	敬	
掲載の「2003年度卒業論文要旨」	に発表	(74)代理人	100087871		
			弁理士 福本	穳	
		(74) 代理人	100082898		
			弁理士 西山	雅也	
		(72) 発明者	石倉 義之		
			大阪府茨木市	奈良町 5 - 2 0	5
		(72) 発明者	榊原 学		
			静岡県沼津市領	所宿町19-3	2-803
					終頁に続く

(54) 【発明の名称】ストレスに起因する行動異常を伴う症状あるいは疾患の予防又は改善作用を有する組成物

(57)【要約】

【課題】 ストレスに起因する行動異常を伴う症状あるいは疾患の予防又は改善作用を有する新規組成物の提供

【解決手段】 アラキドン酸及び/又はアラキドン酸を 構成脂肪酸とする化合物を含んで成る、ストレスに起因 する行動異常を伴う症状あるいは疾患の予防又は改善作 用を有する組成物。

【選択図】 図1

' ストレス負荷ラットの警戒行動に与える影響

【Mean±SD. **:p<0.01, ***:p<0.001(vs. 拘束-対照食群)】

【特許請求の範囲】

【請求項1】

アラキドン酸及び/又はアラキドン酸を構成脂肪酸とする化合物を含んで成る、ストレスに起因する行動異常を伴う症状あるいは疾患の予防又は改善作用を有する組成物。

【請求項2】

前記アラキドン酸を構成脂肪酸とする化合物が、アラキドン酸のアルコールエステル、構成脂肪酸の一部もしくは全部がアラキドン酸であるトリグリセリド、リン脂質又は糖脂質である請求項1に記載の組成物。

【請求項3】

前記構成脂肪酸の一部もしくは全部がアラキド酸であるトリグリセリドが、1,3-位に中鎖脂肪酸が結合し、2-位にアラキドン酸が結合したトリグリセリドである請求項2に記載の組成物。

【請求項4】

前記中鎖脂肪酸が、炭素数 6 ~ 12個を有する脂肪酸から選ばれたものである請求項 3 に記載の組成物。

【請求項5】

構成脂肪酸の一部又は全部がアラキドン酸であるトリグリセリドを含有するトリグリセリドを含んで成る、ストレスに起因する行動異常を伴う症状あるいは疾患の予防又は改善作用を有する組成物。

【請求項6】

前記構成脂肪酸の一部又は全部がアラキドン酸であるトリグリセリドを含有するトリグリセリドの、アラキドン酸の割合が、トリグリセリドを構成する全脂肪酸に対して10重量%以上であることを特徴とする請求項5に記載の組成物。

【請求項7】

前記構成脂肪酸の一部又は全部がアラキドン酸であるトリグリセリドを含有するトリグリセリドが、モルティエレラ(Mortierella)属、コニディオボラス(Conidiobolus)属、フィチウム(Pythium)属、フィトフトラ(Phytophthora)属、ペニシリューム(Penicillium)属、クラドスポリューム(Cladosporium)属、ムコール(Mucor)属、フザリューム(Fusarium)属、アスペルギルス(Aspergillus)属、ロードトルラ(Rhodotorula)属、エントモフトラ(Entomophthora)属、エキノスポランジウム(Echinosporangium)属、サプロレグニア(Saprolegnia)属に属する微生物から抽出したものでる請求項5又は6に記載の組成物。

【請求項8】

前記構成脂肪酸の一部又は全部がアラキドン酸であるトリグリセリドを含有するトリグリセリドが、エイコサペンタエン酸をほとんど含まないトリグリセリドである請求項5~7のいずれか1項に記載の組成物。

【請求項9】

1,3-位に中鎖脂肪酸が結合し、2-位にアラキドン酸が結合したトリグリセリドを5モル%以上含有するトリグリセリドを含んで成る、ストレスに起因する行動異常を伴う症状あるいは疾患の予防又は改善作用を有する組成物。

【請求項10】

前記中鎖脂肪酸が、炭素数6~12個を有する脂肪酸から選ばれたものである請求項9に記載の組成物。

【請求項11】

前記ストレスに起因する行動異常を伴う症状が、指しゃぶり又は爪かみなどの習癖である、請求項1~10のいずれか1項に記載の組成物。

【請求項12】

前期ストレスに起因する行動異常を伴う疾患が、適応障害又は注意欠陥多動性障害である、請求項1~10のいずれか1項に記載の組成物。

【請求項13】

50

10

20

30

前記ストレスに起因する行動異常を伴う疾患が、急性ストレス障害又は心的外傷後ストレス障害である、請求項1~10のいずれか1項に記載の組成物。

【請求項14】

前記組成物が、食品組成物又は医薬品組成物である請求項1~13のいずれか1項に記載の組成物。

【請求項15】

前記食品組成物が、一般食品(飲食物)、機能性食品、栄養補助食品、特定保健用食品、未熟児用調製乳、乳児用調製乳、乳児用食品、妊産婦食品又は老人用食品、であることを特徴とする請求項14に記載の組成物。

【請求項16】

さらにドコサヘキサエン酸及び/又はドコサヘキサエン酸を構成脂肪酸とする化合物を含んでなる、請求項1~15のいずれか1項に記載の組成物。

【請求項17】

前記ドコサヘキサエン酸を構成脂肪酸とする化合物が、ドコサヘキサエン酸のアルコールエステル、構成脂肪酸の一部もしくは全部がドコサヘキサエン酸であるトリグリセリド、リン脂質又は糖脂質である請求項16に記載の組成物。

【請求項18】

前記アラキドン酸とドコサヘキサエン酸の組み合わせにおいて、アラキドン酸/ドコサヘキサエン酸比(重量)が0.1~15の範囲にあることを特徴とする請求項16又は17に記載の組成物。

【請求項19】

組成物中のアラキドン酸に対して、組成物中のエイコサペンタエン酸が、5分の1を超えない量であることを特徴とする請求項1~18のいずれか1項に記載の組成物。

【請求項20】

ストレスに起因する行動異常を伴う症状あるいは疾患の予防又は改善作用を有する飲食品の製造法であって、アラキドン酸及び/又はアラキドン酸を構成脂肪酸とする化合物を単独で、あるいはアラキドン酸が実質的に含有しない、あるいは含有していても僅かな飲食品原料とともに配合することを特徴とする食品組成物の製造方法。

【請求項21】

アラキドン酸及び/又はアラキドン酸を構成脂肪酸とする化合物を、その投与が必要な対象に投与することを含んで成る、ストレスに起因する行動異常を伴う症状あるいは疾患の予防又は治療方法。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、アラキドン酸及び/又はアラキドン酸を構成脂肪酸とする化合物を有効成分とする、ストレスに起因する行動異常を伴う症状あるいは疾患の予防又は改善剤、並びにストレスに起因する行動異常を伴う症状あるいは疾患の予防又は改善作用を有する組成物及びその製造方法に関するものである。より詳細には、アラキドン酸、アラキドン酸のアルコールエステル、構成脂肪酸の一部もしくは全部がアラキドン酸であるトリグリセリド、リン脂質又は糖脂質の群から選ばれた少なくともひとつを有効成分とするストレスに起因する指しゃぶりや爪かみなどの習癖、適応障害、注意欠陥多動性障害、急性ストレス障害や心的外傷後ストレス障害などの予防又は改善剤、さらには予防又は改善作用を有する飲食物及びその製造方法に関するものである。

【背景技術】

[00002]

行動異常を引き起こす反応という観点からストレスを見た場合、ストレスに起因する行動異常を伴う症状をストレス関連性障害と呼び、ストレス因子の性質とその受け手である個人の素質という二つの要素によっていくつかの症状に分けられる。ストレス因子が軽く主に乳幼児期にみられる指しゃぶりや爪かみのような単なる習癖とされているものから、

10

20

30

40

個人の素質の影響が大きいと考えられる適応障害や注意欠陥多動性障害、個人の素質以上にストレス因子が非常に重いと考えられる急性ストレス障害や心的外傷後ストレス障害などの疾患とされているものまでその症状は幅広い(診断と治療 91, 1333, 2003)。

[0003]

最近、心的外傷後ストレス障害患者の血中 $IL-1\beta$ の上昇が報告され(Biol Psychiatry 42, 345, 1997)、 $IL-1\beta$ と神経細胞障害との関係が注目されている。

一方で、ストレス関連性障害に対して用いられる薬剤としては、不眠や不安に対して用いられるベンゾジアゼピン系薬剤、再体験症状の軽減に用いられるセロトニン再取り込み阻害薬や三環系の抗うつ薬、過覚醒症状に用いられるアドレナリン拮抗薬や抗けいれん薬、過剰警戒心や攻撃性亢進に対して用いられる抗精神病薬などが知られている。しかし、いずれの薬剤も抑うつ、不眠、興奮などの表面的な症状を改善する対症療法であり、残念ながら今日でも根本的な治療薬がないのが現状である。

[0004]

こうしたストレス関連性障害の治療は、本来ストレスの原因を取り除くことによって、 進行を押さえることができると考えられる。しかし、ストレスの原因を取り除くことが難 しいのが現状である。

このように、ストレスに起因する行動異常を伴う症状あるいは疾患を予防し、さらに改善効果を有する成分は、医薬品においても有効な薬剤が見いだされていないのが現状である。しかも、食品への適応を考えた場合、副作用がない成分に限定されるという困難さを有していた。

[0005]

脳は脂質の塊のような組織であって、例えば、白質においては1/3が、灰白質においては1/4がリン脂質で占められている。脳の各種細胞膜を構成しているリン脂質中の高度不飽和脂肪酸は、アラキドン酸とドコサヘキサエン酸が主である。しかし、これらアラキドン酸とドコサヘキサエン酸(DHA)は動物体内ではde novo合成できず、直接あるいは間接(アラキドン酸、ドコサヘキサエン酸の前駆体となるリノール酸、α-リノレン酸)的に食事から摂取する必要がある。

[0006]

Burgessらは、心的外傷後ストレス障害患者の血漿リン脂質中におけるアラキドン酸およびDHAの含有率が有意に減少することを明らかにしている(Am J Clin Nutr 71, 327S, 2000)。また個別飼いのストレスモデルラットにおいて、肝ミクロゾームの $\Delta5$ -デサチュラーゼ(desaturase)および $\Delta6$ -デサチュラーゼ(desaturase)活性が低下しているとの報告(Proc Soc Exp Biol Med. 205, 56, 1994)もあり、これらの不飽和化酵素活性の低下により、不飽和度の高い高度不飽和脂肪酸であるアラキドン酸やDHAが脳内で不足していると考えられる。

[0007]

一方でアラキドン酸をストレスモデル動物に投与した実験がいくつか示されている。Songらは、 $IL-1\beta$ 投与によるストレス不安行動モデルに対して、遊離のアラキドン酸投与は効果がなかったと報告している(J Lipid Res. $\underline{44}$, 1984, 2003)。また、Clementsらは、自然発症高血圧ラット(SHR)を用いた注意欠損多動性障害(ADHD)モデルに0.5% アラキドン酸と0.9% DHAを配合した飼料を8 週間摂取させると、脳リン脂質中のDHAは増加するが、効果は認められなかったと報告している(Dev Psychobiol. $\underline{43}$, 57, 2003)。この他にアラキドン酸投与によってストレスに起因する行動異常が改善されたとする報告はない。

[0008]

このようにストレスにより、体内のアラキドン酸組成が低下することは報告されているが、本発明のストレスに起因する行動異常を伴う症状あるいは疾患の予防又は改善にアラキドン酸およびアラキドン酸を構成脂肪酸とする化合物が有効かどうかは明らかではなく、これまでの投与実験からは明らかに否定的であった。

[0009]

50

40

10

20

【非特許文献1】診断と治療 91, 1333, 2003

【非特許文献 2】 Biol Psychiatry 42, 345, 1997

【非特許文献 3 】 Am J Clin Nutr 71, 327S, 2000

【非特許文献 4 】 Proc Soc Exp Biol Med. 205, 56, 1994

【非特許文献 5 】 J Lipid Res. 44, 1984, 2003

【非特許文献 6 】 Dev Psychobiol. 43, 57, 2003

【発明の開示】

【発明が解決しようとする課題】

[0010]

したがって、ストレスに起因する行動異常を伴う症状あるいは疾患を予防し、さらに改善効果を示し、医薬、さらには食品への適応に優れた副作用の少ない化合物の開発が強く望まれている。

【課題を解決するための手段】

[0011]

本発明者等は、アラキドン酸及び/又はアラキドン酸を構成脂肪酸とする化合物を有効成分とする、ストレスに起因する行動異常を伴う症状あるいは疾患の予防又は改善効果を明らかにする目的でよりヒトの情動ストレスに近いと考えられる拘束ストレス負荷マウスモデルを用いて行動観察試験を実施し、本発明の有効成分の効果を行動薬理で明らかにした。

さらに、微生物の産生するアラキドン酸を10%以上含有するトリグリセリドの工業生産に成功し、本発明の効果試験に供することが可能となり、効果を明らかにした。

[0012]

従って本発明により、アラキドン酸及び/又はアラキドン酸を構成脂肪酸とする化合物を有効成分とする、ストレスに起因する行動異常を伴う症状あるいは疾患の予防又は改善作用を有する組成物及びその製造方法を提供する。より詳細には、アラキドン酸、アラキドン酸のアルコールエステル、構成脂肪酸の一部もしくは全部がアラキドン酸であるトリグリセリド、リン脂質又は糖脂質の群から選ばれた少なくともひとつを有効成分とするストレスに起因する指しゃぶりや爪かみなどの習癖、適応障害、注意欠陥多動性障害、急性ストレス障害や心的外傷後ストレス障害などの予防又は改善剤、さらには予防又は改善作用を有する組成物及びその製造方法を提供する。

【発明を実施するための最良の形態】

[0013]

本発明は、アラキドン酸及び/又はアラキドン酸を構成脂肪酸とする化合物を有効成分とする、ストレスに起因する行動異常を伴う症状あるいは疾患の予防又は改善剤、並びにストレスに起因する行動異常を伴う症状あるいは疾患の予防又は改善作用を有する組成物及びその製造方法に関するものである。

ストレスに起因する行動異常を伴う症状あるいは疾患とは、指しゃぶりや爪かみなどの習癖、適応障害、注意欠陥多動性障害、急性ストレス障害や心的外傷後ストレス障害などを挙げることができるが、これら症状あるいは疾患に限定しているわけではなく、ストレスに起因する行動異常を伴う症状あるいは疾患はすべて含まれる。

[0014]

本発明の有効成分はアラキドン酸であって、アラキドン酸を構成脂肪酸とするすべての化合物を利用することができる。アラキドン酸を構成脂肪酸とする化合物には、アラキドン酸塩、例えばカルシウム塩、ナトリウム塩などを挙げることができる、また、アラキドン酸の低級アルコールエステル、例えばアラキドン酸メチルエステル、アラキドン酸エチルエステルなどを挙げることができる。また、構成脂肪酸の一部又は全部がアラキドン酸であるトリグリセリド、リン脂質、さらには糖脂質などを利用することができる。なお、本発明は上記に挙げたものに限定しているわけではなく、アラキドン酸を構成脂肪酸とするすべての化合物を利用することができる。

20

10

30

20

30

40

50

[0015]

食品への適応を考えた場合には、アラキドン酸はトリグリセリドやリン脂質の形態、特にトリグリセリドの形態にすることが望ましい。アラキドン酸を含有するトリグリセリド(構成脂肪酸の一部又は全部がアラキドン酸であるトリグリセリドを含有するトリグリセリドを含有するトリグリセリドを含有するトリグリセリトを含有するトリグリセリドを大変を構成脂肪酸として含有するトリグリセリドを工業的に利用することが可能となり、拘束ストレスを負荷したマウスを行動観察試験に供し、本発明の有効成分の効果を行動薬理で初めて明らかにし、ストレスに起因する行動異常を伴う症状あるいは疾患の予防又は改善効果を有すること、そして、その効果がアラキドン酸によることを明確に明らかにした。

[0016]

従って本発明においては、本発明の有効成分である構成脂肪酸の一部又は全部がアラキドン酸であるトリグリセリドを含有するトリグリセリド(アラキドン酸を含有するトリグリセリド)を使用することができる。アラキドン酸を含有するトリグリセリド(アラキドン酸含有トリグリセリド)としては、トリグリセリドを構成する全脂肪酸のうちアラキドン酸の割合が10重量(W/W)%以上、好ましくは20重量%以上、より好ましくは30重量%以上、最も好ましくは40重量%以上である油脂(トリグリセリド)が食品を適用する場合には望ましい形態となる。したがって、本発明において、アラキドン酸を含有する油脂(トリグリセリド)を生産する能力を有する微生物を培養して得られたものであればすべて使用することができる。

[0017]

アラキドン酸を含有する油脂(トリグリセリド)の生産能を有する微生物としては、モルティエレラ(Mortierella)属、コニディオボラス(Conidiobolus)属、フィチウム(Pythium)属、フィトフトラ(Phytophthora)属、ペニシリューム(Penicillium)属、クラドスポリューム(Cladosporium)属、ムコール(Mucor)属、フザリューム(Fusarium)属、アスペルギルス(Aspergillus)属、ロードトルラ(Rhodotorula)属、エントモフトラ(Entomophthora)属、エキノスポランジウム(Echinosporangium)属、サプロレグニア(Saprolegnia)属に属する微生物を挙げることができる。

[0018]

モルティエレラ(Mortierella)属モルティエレラ(Mortierella) 亜属に属する微生物では、例えばモルティエレラ・エロンガタ(Mortierella elongata)、モルティエレラ・エキシグア(Mortierella exigua)、モルティエレラ・フィグロフィラ(Mortierella hygrophila)、モルティエレラ・アルピナ(Mortierella alpina)等を挙げることができる。具体的にはモルティエレラ・エロンガタ(Mortierella elongata)IF08570、モルティエレラ・エキシグア(Mortierella exigua)IF08571、モルティエレラ・フィグロフィラ(Mortierella hygrophila)IF05941、モルティエレラ・アルピナ(Mortierella alpina)IF08568、ATCC16266、ATCC32221、ATCC42430、CBS219.35、CBS224.37、CBS250.53、CBS343.66、CBS527.72、CBS529.72、CBS608.70、CBS754.68等の菌株を挙げることができる。【0019】

これらの菌株はいずれも、大阪市の財団法人醗酵研究所(IFO)、及び米国のアメリカン・タイプ・カルチャー・コレクション(American Type Culture Collection, ATCC)及び、Centrralbureau voor Schimmelcultures (CBS) からなんら制限なく入手することが

できる。また本発明の研究グループが土壌から分離した菌株モルティエレラ・エロンガタ SAMO219(微工研菌寄第8703号)(微工研条寄第1239号)を使用することもできる。

[0020]

本発明に使用される菌株を培養する為には、その菌株の胞子、菌糸、又は予め培養して得られた前培養液を、液体培地又は固体培地に接種し培養する。液体培地の場合に、炭素源としてはグルコース、フラクトース、キシロース、サッカロース、マルトース、可溶性デンプン、糖蜜、グリセロール、マンニトール等の一般的に使用されているものが、いずれも使用できるが、これらに限られるものではない。

20

[0021]

窒素源としてはペプトン、酵母エキス、麦芽エキス、肉エキス、カザミノ酸、コーンス ティープリカー、 大 豆 タ ン パ ク 、 脱 脂 ダ イ ズ 、 綿 実 カ ス 等 の 天 然 窒 素 源 の 他 に 、 尿 素 等 の 有機窒素源、ならびに硝酸ナトリウム、硝酸アンモニウム、硫酸アンモニウム等の無機窒 素源を用いることができる。この他必要に応じリン酸塩、硫酸マグネシウム、硫酸鉄、硫 酸銅等の無機塩及びビタミン等も微量栄養源として使用できる。これらの培地成分は微生 物 の 生 育 を 害 し な い 濃 度 で あ れ ば 特 に 制 限 は な い 。 実 用 上 一 般 に 、 炭 素 源 は 0.1~ 40重 量 % 、好ましくは1~25重量%の濃度するのが良い。初発の窒素源添加量は0.1~10重量%、好ま しくは0.1~6重量%として、培養途中に窒素源を流加しても構わない。

[0022]

さらに、培地炭素源濃度を制御することでアラキドン酸を45重量(W/W)%以上含有する 油脂(トリグリセリド)を本発明の有効成分とすることもできる。培養は、培養2~4日目 までが菌体増殖期、培養2-4日目以降が油脂蓄積期となる。初発の炭素源濃度は1~8重量% 、好ましくは1~4重量%の濃度とし、菌体増殖期および油脂蓄積期の初期の間のみ炭素源 を 逐 次 添 加 し 、 逐 次 添 加 し た 炭 素 源 の 総 和 は 2-20重 量 % 、 好 ま し く は 5~ 15重 量 %と す る 。 なお、菌体増殖期および油脂蓄積期初期の間での炭素源の逐次添加量は、初発の窒素源濃 度に応じて添加し、培養7日目以降、好ましくは培養6日目以降、より好ましくは培養4日 目以降の培地中の炭素源濃度を0となるようにすることで、アラキドン酸を45重量%以上含 有する油脂(トリグリセリド)を得ることができ本発明の有効成分とすることができる。

[0023]

アラキドン酸生産菌の培養温度は使用する微生物によりことなるが、5~40℃、好まし くは20~30℃とし、また20~30℃にて培養して菌体を増殖せしめた後5~20℃にて培養を 続けて不飽和脂肪酸を生産せしめることもできる。このような温度管理によっても、生成 脂肪酸中の高度不飽和脂肪酸の割合を上昇せしめることができる。培地のpHは4~10、好 ましくは5~9として通気攪拌培養、振盪培養、又は静置培養を行う。培養は通常2~30日 間、好ましくは5~20日間、より好ましくは5~15日間行う。

[0024]

さらに、アラキドン酸を含有する油脂(トリグリセリド)中のアラキドン酸の割合を高 める手だてとして、培地炭素源濃度を制御する以外に、アラキドン酸含有油脂に選択的加 水分解を行ってアラキドン酸高含有油脂を得ることもできる。この選択的加水分解に用い られるリパーゼはトリグリセリドの位置特異性はなく、加水分解活性は二重結合の数に比 例して低下するため、高度不飽和脂肪酸以外の脂肪酸のエステル結合が加水分解される。 そして、生じたPUFA部分グリセリド間でエステル交換反応が起こるなどして、高度不飽和 脂肪酸が高められたトリグリセリドとなる (「Enhancement of Archidonic: Selective H ydrolysis of a Single-Cell Oil from Mortierella with Candida cylindracea Lipase J: J. Am. Oil Chem. Soc., 72, 1323-1327 (1998)) .

[0025]

このように、アラキドン酸含有油脂に選択的加水分解を行って得たアラキドン酸を高含 有する油脂(トリグリセリド)を本発明の有効成分とすることができる。本発明のアラキ ドン酸を含有する油脂(トリグリセリド)の全脂肪酸に対するアラキドン酸の割合は、他 の脂肪酸の影響を排除する目的で高いほうが望ましいが、高い割合に限定しているわけで なく、実際には、食品に適応する場合にはアラキドン酸の絶対量が問題になる場合もあり 、10重量%以上のアラキドン酸を含有する油脂(トリグリセリド)であっても実質的には 使用することができる。

[0026]

さらに、本発明では構成脂肪酸の一部又は全部がアラキドン酸であるトリグリセリドと して、 1, 3-位 に 中 鎖 脂 肪 酸 が 、 2-位 に ア ラ キ ド ン 酸 が 結 合 し た ト リ グ リ セ リ ド を 使 用 す る ことができる。また、1,3-位に中鎖脂肪酸が、2-位にアラキドン酸が結合したトリグリセ リドを5モル%以上、好ましくは10モル%以上、さらに好ましくは20モル%以上、最も好まし くは30モル%以上含む油脂(トリグリセリド)を使用することができる。上記トリグリセ

20

30

40

50

リドの1,3-位に結合する中鎖脂肪酸は、炭素数6~12個を有する脂肪酸から選ばれたものを利用できる。炭素数6~12個を有する脂肪酸として、例えば、カブリル酸又はカブリン酸等を挙げられ、特に1,3-カプリロイル-2-アラキドノイル-グリセロール(以後「8A8」とも称す)が好ましい。

[0027]

これら、1,3-位に中鎖脂肪酸が、2-位にアラキドン酸が結合したトリグリセリドは、高齢者を対象とした場合には、最適な油脂(トリグリセリド)となる。一般に油脂(トリグリセリド)を摂取し、小腸の中に入ると膵リパーゼで加水分解されるが、この膵リパーゼが1,3-位特異的であり、トリグリセリドの1,3-位が切れて2分子の遊離脂肪酸ができ、同時に1分子の2-モノアシルグリセロール(MG)が生成する。この2-MGは非常に胆汁酸溶解性が高く吸収性が良いため、一般に2-位脂肪酸の方が、吸収性が良いと言われる。また、2-MGは胆汁酸に溶けると界面活性剤的な働きをして、遊離脂肪酸の吸収性を高める働きをする。

[0028]

次に遊離脂肪酸と2-MGはコレステロールやリン脂質等と一緒に胆汁酸複合ミセルを生合成して小腸上皮細胞に取り込まれ、トリアシルグリセロールの再合成が起こり、最終的にはカイロミクロンとしてリンパに放出されていく。ところが、この膵リパーゼの脂肪酸特性は飽和脂肪酸に高く、アラキドン酸は切れにくい特徴を持っている。さらに問題なのは、膵リパーゼ活性が加齢により低下することから高齢者には、1,3-位に中鎖脂肪酸が、2-位にアラキドン酸が結合したトリグリセリドは最適な油脂(トリグリセリド)となる。

[0029]

1,3-位に中鎖脂肪酸が、2-位にアラキドン酸が結合したトリグリセリドの具体的な製造法のひとつとして、アラキドン酸を含有する油脂(トリグリセリド)及び中鎖脂肪酸の存在下で、トリグリセリドの1,3-位のエステル結合にのみ作用するリバーゼを作用させることで製造することができる。

原料となる油脂(トリグリセリド)はアラキドン酸を構成脂肪酸とするトリグリセリドであり、トリグリセリドを構成する全脂肪酸に対するアラキドン酸の割合が高い場合には、未反応油脂(原料トリグリセリド並びに1,3-位の脂肪酸のうち一方のみが中鎖脂肪酸となったトリグリセリド)の増加による反応収率の低下を防ぐため、通常の酵素反応温度20-30℃より、高く30-50℃、好ましくは40-50℃とする。

[0030]

トリグリセリドの1,3-位のエステル結合に特異的に作用するリパーゼとして、例えば、リゾプス(Rhizopus)属、リゾムコール(Rhizomucor)属、アスペルギルス(Aspergillus)属などの微生物が産生するもの、ブタ膵臓リパーゼなどを挙げることができる。かかるリパーゼについは、市販のものを用いることができる。例えば、リゾプス・デレマー(Rhizopus delemar)のリパーゼ(田辺製薬(株)製、タリパーゼ)、リゾムコール・ミーハイ(Rhizomucor miehei)のリパーゼ(ノボ・ノルディスク(株)社製、リボザイム IM)、アセペルギルス・ニガー(Apergillus niger)のリパーゼ(天野製薬(株)、リパーゼA)等が挙げられるが、これら酵素に限定しているわけではなく、1,3-位特異的リパーゼであればすべて使用することができる。

[0031]

上記リパーゼの使用形態は、反応効率を高める目的で反応温度を30℃以上、好ましくは40℃以上とするため、酵素の耐熱性を付加する目的で固定化担体に固定化したリパーゼを使用することが望ましい。固定化担体として多孔室(ハイポーラス)樹脂であって、約100オングストローム以上の孔径を有するイオン交換樹脂担体、例えばDowex MARATHON WBA等が挙げられる。しかし、これら固定化担体に限定しているわけではなく、耐熱性を付加できる固定化担体であればすべて使用することができる。

[0032]

固定化担体 1 に対して、1,3-位特異的リパーゼの水溶液 0.5~20倍重量に懸濁し、懸濁液に対して2-5倍量の冷アセトン(例えば-80℃)を攪拌しながら徐々に加えて沈殿を形成

20

30

50

させる。この沈殿物を減圧下で乾燥させて固定化酵素を調製することができる。さらに簡便な方法では、固定化担体1に対して、0.05~0.4倍量の1,3-位特異的リバーゼを最小限の水に溶解し、撹拌しながら固定化担体を混ぜ合わせ、減圧下で乾燥させて固定化酵素を調製することができる。この操作により約90%のリバーゼが担体に固定化されるが、このままではエステル交換活性は全く示さず、水1~10重量(w/v)%を加えた基質中で、好ましくは水1~3重量%を加えた基質中で前処理することで固定化酵素は最も効率よく活性化することができ製造に供することができる。

[0033]

酵素の種類によっては、本反応系に加える水分量は極めて重要で、水を含まない場合はエステル交換が進行しにくくなり、また、水分量が多い場合には加水分解が起こり、グリセリドの回収率が低下する(加水分解が起こればジグリセリド、モノグリセリドが生成される)。しかし、この場合、前処理により活性した固定化酵素を使用することで、本反応系に加える水分量は重要ではなくなり、全く水を含まない系でも効率よくエステル交換反応を起こすことができる。さらに酵素剤の種類を選択することで前処理を省略することも可能である。

[0034]

このように、耐熱性を有する固定化酵素を使用し、酵素反応温度を上げることで、1,3-位特異的リパーゼに反応性の低いアラキドン酸を含有する油脂(トリグリセリド)においても、反応効率を低下させることなく、1,3-位に中鎖脂肪酸が、2-位にアラキドン酸が結合したトリグリセリド(8A8)を効率的に製造することができる。

[0035]

ストレスに起因する行動異常を伴う症状あるいは疾患の予防又は改善作用を有する飲食品の製造法であっては、アラキドン酸及び/又はアラキドン酸を構成脂肪酸とする化合物を単独で、あるいはアラキドン酸が実質的に含有しない、あるいは含有していても僅かな飲食品原料とともに配合することができる。ここで、僅かな量とは、飲食物原料にアラキドン酸が含まれていたとしても、それを配合した食品組成物を人が摂取しても、後述する本発明の1日当たりのアラキドン酸摂取量に達していない量を意味する。

[0036]

特に構成脂肪酸の一部又は全部がアラキドン酸であるトリグリセリドの場合に、油脂(トリグリセリド)の用途に関しては無限の可能性があり、食品、飲料、化粧品、医薬品の原料並びに添加物として使用することがでる。そして、その使用目的、使用量に関して何ら制限を受けるものではない。

[0037]

例えば、食品組成物としては、一般食品の他、機能性食品、栄養補助食品、特定保健用食品、未熟児用調製乳、乳児用食品、好産婦食品又は老人用食品等を含む天然食品、スープ等の調理時に油脂を加える食品、ドーナッツ等の熱媒体として油脂を用いる食品、バター等の油脂食品、クッキー等の加工時に油脂を加える加工食品、あるいはハードビスケット等の加工仕上げ時に油脂を噴霧または塗布する食品等が挙げられる。さらに、油脂を含まない、農産食品、醗酵食品、畜産食品、水産食品、または飲料に添加することができる。さらに、機能性食品・医薬品の形態であっても構わなく、例えば、経腸栄養剤、粉末、顆粒、トローチ、内服液、懸濁液、乳濁液、シロップ等の加工形態であってもよい。

[0038]

また本発明の組成物は、本発明の有効成分以外に、一般に飲食品、医薬品または医薬部外品に用いられる各種担体や添加物を含んでよい。特に本発明の有効成分の酸化防止を防ぐ目的で抗酸化剤を含むことが望ましい。抗酸化剤として、例えば、トコフェロール類、フラボン誘導体、フィロズルシン類、コウジ酸、没食子酸誘導体、カテキン類、フキ酸、ゴシボール、ピラジン誘導体、セサモール、グァヤオール、グァヤク酸、p-クマリン酸、ノールジヒドログァヤテッチク酸、ステロール類、テルペン類、核酸塩基類、カロチノイ

ド類、リグナン類などのような天然抗酸化剤およびアスコルビン酸パリミチン酸エステル、アスコルビン酸ステアリン酸エステル、プチルヒドロキシアニソール(BHA)、プチルヒドロキシトルエン(BHT)、モノ-t-ブチルヒドロキノン(TBHQ)、4-ヒドロキシメチル-2,6-ジ-t-ブチルフェノール(HMBP)に代表されるような合成抗酸化剤を挙げることができる。

[0039]

トコフェロール類では、 α -トコフェロール、 β -トコフェロール、 γ -トコフェロール、 δ -トコフェロール、 ϵ -トコフェロール、 ϵ -トコフェロール、 δ -トコフェロール、 δ -トコフェロール、 δ -トコフェロールを類様化合物として挙げることができる。また、カロチノイド類では、例えば、 δ -カロチン、カンタキサンチン、アスタキサンチン等を挙げることができる。

[0040]

本発明の組成物は、本発明の有効成分以外に、担体として、各種キャリアー担体、イクステンダー剤、希釈剤、増量剤、分散剤、賦形剤、結合剤溶剤(例、水、エタノール、植物油)、溶解補助剤、緩衝剤、溶解促進剤、ゲル化剤、懸濁化剤、小麦粉、米粉、でん粉、コーンスターチ、ポリサッカライド、ミルクタンパク質、コラーゲン、米油、レシチンなどが挙げられる。添加剤としては、例えば、ビタミン類、甘味料、有機酸、着色剤、香料、湿化防止剤、ファイバー、電解質、ミネラル、栄養素、抗酸化剤、保存剤、芳香剤、湿潤剤、天然の食物抽出物、野菜抽出物などを挙げることができるが、これらに限定しているわけではない。

[0041]

アラキドン酸およびアラキドン酸を構成脂肪酸とする化合物の主薬効成分はアラキドン酸にある。アラキドン酸の一日あたり食事からの摂取量は関東地区で0.14g、関西地区で0.19-0.20gとの報告があり(脂質栄養学4, 73, 1995)、高齢者の場合には油脂の摂取量が低下する点、膵リバーゼ活性が低下する点などから相当量、さらにはそれ以上、アラキドン酸を摂取する必要がある。したがって、本発明のアラキドン酸およびアラキドン酸を構成脂肪酸とする化合物の成人(例えば、体重60kgとして)一日当たりの摂取量は、アラキドン酸量換算として、 $0.001g\sim20g$ 、好ましくは $0.01g\sim10g$ 、より好ましくは $0.05\sim5g$ 、最も好ましくは $0.1g\sim2g$ とする。

[0042]

本発明の有効成分を実際に飲食品に適用する場合には、食品に配合するアラキドン酸の絶対量も重要となる。ただし、飲食品に配合する絶対量も、配合する飲食品の摂取量によって変化することから、構成脂肪酸の一部又は全部がアラキドン酸であるトリグリセリドを含有するトリグリセリドを食品に配合する場合には、アラキドン酸として0.001重量%以上、好ましくは0.01重量%以上、より好ましくは0.1重量%以上となるように配合する。さらに、1,3-位に中鎖脂肪酸が、2-位にアラキドン酸が結合したトリグリセイドを飲食品に配合する場合には、0.0003重量%以上、好ましくは0.003重量%以上、より好ましくは0.03重量%以上とする。

[0043]

本発明の組成物を医薬品として使用する場合、製剤技術分野において慣用の方法、例えば、日本薬局方に記載の方法あるいはそれに準じる方法に従って製造することができる。 本発明の組成物を医薬品として使用する場合、組成物中の有効成分の配分量は、本発明の目的が達成される限り特に限定されず、適宜適当な配合割合で使用可能である。

[0044]

本発明の組成物を医薬品として使用する場合、投与単位形態で投与するのが望ましく、特に、経口投与が好ましい。本発明の組成物の投与量は、年齢、体重、症状、投与回数などにより異なるが、例えば、成人(約60kgとして)一日当たり本発明のアラキドン酸及び/又はアラキドン酸を構成脂肪酸とする化合物を、アラキドン酸量換算として、通常約0.001g-20g、好ましくは0.01g~10g、より好ましくは0.05~5g、最も好ましくは0.1g~2gを一日1回、場合によっては複数回、例えば3回に分割して投与してもよい。

20

10

30

[0045]

脳のリン脂質膜の主要な脂肪酸はアラキドン酸並びにドコサヘキサエン酸であり、バランスを考えた場合、ドコサヘキサエン酸との組み合わせが望ましい。また、脳のリン脂質膜にはエイコサベンタエン酸の割合が非常に低いことから、ほとんどエイコサベンタエン酸を含まないアラキドン酸とドコサヘキサエン酸を組み合わせがより望ましい。そして、アラキドン酸とドコサヘキサエン酸の組み合わせにおいて、アラキドン酸/ドコサヘキサエン酸比が 0.1-15 の範囲、好ましくは 0.25-10 の範囲にあることが望ましい。また、アラキドン酸の 5 分の 1 (重量比)を超えない量のエイコサベンタエン酸の配合した飲食物が望ましい。

【実施例】

[0046]

次に、実施例により、本発明をさらに具体的に説明する。しかし、本発明は、実施例に 限定されない。

実施例1. アラキドン酸を含有するトリグリセリドの製造方法

アラキドン酸生産菌としてモルティエレラ・アルピナ(<u>Mortierella alpina</u>)CBS754.68を用いた。グルコース1.8%、脱脂大豆粉3.1%、大豆油0.1%、KH₂PO₄ 0.3%、Na₂SO₄ 0.1%、CaCl₂・2H₂O 0.05%及びMgCl₂・6H₂O 0.05%を含む培地6kLを、10kL培養槽に調製し、初発pHを6.0に調整した。

[0047]

前培養液30Lを接種し、温度26℃、通気量 360m³/h、槽内圧200kPaの条件で8日間の通気撹拌培養を行った。なお、攪拌数は溶存酸素濃度を10-15ppmを維持するように調整した。さらに、グルコース濃度を4日目までは流加法によって培地中のグルコース濃度が1-2.5%の範囲内となるように、それ以降は0.5-1%を維持した(上記の%は、重量(W/V)%を意味する)。

[0048]

培養終了後、ろ過、乾燥によりアラキドン酸を構成脂肪酸とするトリグリセリドを含有する菌体を回収し、得られた菌体からヘキサン抽出により油脂を抽出し、食用油脂の精製工程(脱ガム、脱酸、脱臭、脱色)を経て、アラキドン酸含有トリグリセリド(構成脂肪酸の一部又は全部がアラキドン酸であるトリグリセリドを含有するトリグリセリド)150kgを得た。得られた油脂(トリグリセリド)をメチルエステル化し、得られた脂肪酸メチルエステルをガスクロマトグラフィーで分析したところ、全脂肪酸に占めるアラキドン酸の割合は40.84重量%であった。

[0049]

なお、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、 γ -リノレン酸、ジホモ- γ -リノレン酸などが、それぞれ11.63%、7.45%、7.73%、9.14%、2.23%、3.27重量%であった。さらに、上記アラキドン酸含有油脂(トリグリセリド)(TGA40S)をエチルエステル化し、アラキドン酸エチルエステルを<math>40重量%含む脂肪酸エチルエステル混合物から、定法の高速液体クロマトグラフィーによって、99重量%アラキドン酸エチルエステルを分離・精製した。

[0050]

<u>実施例2.</u> <u>8A8を5モル%以上含有するトリグリセリ</u>ドの製造

イオン交換樹脂担体 (Dowex MARATHON WBA: ダウケミカル) 100gを、<u>Rhizopus delemar</u>リパーゼ水溶液 (タリパーゼ現末、12.5%: 田辺製薬 (株)) 80mlに懸濁し、240mlの冷アセトン (-80℃)を攪拌し、減圧下で乾燥させて固定化リパーゼを得た。

次に、実施例 1 で得たアラキドン酸を40重量 %含有するトリグリセリド(TGA40S) 80g、カプリル酸 160g、上記固定化リパーゼ 12g、水4.8 mlを30<math> で 48時間、撹拌(130 rpm) しながら反応させた。反応終了後、反応液を取り除き、活性化された固定化酵素を得た。

[0 0 5 1]

次に、固定化リパーゼ(<u>Rhizopus delemar</u>リパーゼ、担体:Dowex MARATHON WBA)10gをジャケット付きガラスカラム(1.8 x 12.5cm、容量31.8ml)に充填し、実施例1で得た

10

20

30

40

20

TGA40Sとカプリル酸を1:2に混合した反応油脂を一定の流速(4m1/h)でカラムに流し、連続反応を実施することで、反応油脂を400gを得た。なお、カラム温度は40-41℃とした。得られた反応油脂から未反応のカプリル酸及び遊離の脂肪酸を分子蒸留により取り除き、食用油脂の精製工程(脱ガム、脱酸、脱臭、脱色)を経て、8A8を含有する油脂(トリグリセリド)を得た。

[0052]

そして、ガスクロマトグラフィー及び高速液体クロマトグラフィーにより、得られた8A8含有油脂(トリグリセリド)中の8A8の割合を調べたところ、31.6モル%であった(なお、8P8、808、8L8、8G8、8D8の割合はそれぞれ0.6、7.9、15.1、5.2、4.8モル%であった。トリグリセリドの2-位結合する脂肪酸P、0、L、G、Dはそれぞれパルミチン酸、オレイン酸、リノール酸、 γ -リノレン酸、ジホモ- γ -リノレン酸を表し、8P8は1,3-カプリロイル-2-パルミトレイン-グリセロール、808は1,3-カプリロイル-2-オレオイル-グリセロール、8L8は1,3-カプリロイル-2-リノレオイル-グリセロール、8G8は1,3-カプリロイル-2- γ -リノレノイル-グリセロール、8D8は1,3-カプリロイル-2-ジホモ- γ -リノレノイル-グリセロールをいう)。なお、得られた8A8含有油脂(トリグリセリド)から定法の高速液体クロマトグラフィーによって、96モル%8A8を分離・精製した。

[0053]

実施例3. 行動観察試験によるTGA40Sの学習能評価

実験群として、2~3ヶ月齢雄性 ICR系マウス 5 1 匹を対照飼料群 (2 7 匹)とTGA40S配合飼料群 (24匹)の2 群に分け、それぞれの群に、表 1 に示した対照飼料およびTGA40S配合飼料を与えた。さらに各群を、拘束をかけない非拘束群 (非拘束-対照食群 (9 匹)、非拘束-ARA食群 (12匹))と拘束をかける拘束群(拘束-対照食群 (18匹)、拘束-ARA食群 (12匹))に分けた。ワイヤーメッシュ拘束チューブによる拘束は、摂取開始から 3 週間後に1回、6 時間だけ行った。その後も実験期間中は、それぞれの群に対して表 1 に示した対照飼料またはTGA40S配合飼料を与え続けた。なお、TGA40S配合飼料に使用したTGA40Sは実施例 1 で得たものを使用した。

[0054]

【表 1 】

表1. 実験食

	対照飼料	TGA40S配合飼料	
カゼイン(g/kg)	200	200	
DL-メチオニン	3	3	16
コーンスターチ	150	150	
シュクロース	500	500	
セルロースパウダー	50	50	
コーンオイル	50	45	
ミネラル類AIN-76	35	35	20
ビタミン類AIN-76	10	10	
重酒石酸コリン	2	2	
ビタミンE	0. 05	0. 05	
TGA40S	0	5	

[0055]

マウス一日あたりの摂餌量は約5gであるから、TGA40Sのマウス一匹あたりの一日摂取量は25mgとなる。実施例1で調製したアラキドン酸含有油脂(TGA40S)に結合する全脂肪酸の内、40重量%がアラキドン酸であることから、マウス一匹あたりの一日のアラキドン酸摂取量は10mgとなる。

[0056]

ワイヤーメッシュ拘束チューブによる6時間の拘束直後から行動観察試験を実施した。行動観察試験は、マウスを新しいケージに移してから30分間、Irwinの多元観察法における行動の指標(臭い嗅ぎ、周回行動、立ち上がり、ジャンプ、穴掘り)を観察し記録した。拘束ストレスを負荷していないマウスでは、対照食群とARA食群の間に違いは認められなかった。一方で、拘束ストレスを負荷した対照食群のマウスでは、拘束ストレスを負荷していないマウスと比較して、警戒反応を示す立ち上がりの回数が増え、自発運動量を示す臭い嗅ぎと周回行動が減少する傾向を示したが、TGA40Sつまりアラキドン酸を与えることで、いずれの行動も拘束ストレスを負荷していないマウスと同等レベルに回復した(図1、図2)。

[0057]

このように、TGA40Sを与えることで、ストレスにより変化した行動パターンが改善することを初めて明らかにし、アラキドン酸がストレスによる行動異常に対して改善効果があ

50

30

ることを初めて証明した。

[0058]

<u>実施例 4. アラキドン酸を含有する油脂(トリグリセリド)配合カブセルの調製例</u>ゼラチン100重量部及び食品添加物用グリセリン35重量部に水を加え50~60℃で溶解し、粘度2000cpのゼラチン被膜を調製した。次に実施例 1 で得たアラキドン酸含有油脂(トリグリセリド)にビタミンE油0.05重量%を混合し、内容物 1 を調製した。実施例 2 で得た8A8を32モル%含有する油脂(トリグリセリド)にビタミンE油0.05重量%を混合し、内容物 2 を調製した。実施例 1 で得たアラキドン酸含有油脂(トリグリセリド)50重量%と魚油(ツナ油:全脂肪酸に占めるエイコサベンタエン酸およびドコサヘキサエン酸の割合は、それぞれ5.1%および26.5%)50重量%で混合し、ビタミンE油0.05重量%を混合して内容物 3 を調製した。

[0059]

アラキドン酸含有油脂(トリグリセリド)80重量%と魚油(ツナ油:全脂肪酸に占めるエイコサペンタエン酸およびドコサヘキサエン酸の割合は、それぞれ5.1%および26.5%)20重量%で混合し、ビタミンE油0.05重量%を混合して内容物4を調製した。実施例1で得た99%アラキドン酸エチルエステルに、ビタミンE油0.05重量%を混合し内容物5を調製した。これら内容物1から5を用いて、常法によりカプセル成形及び乾燥を行い、一粒当たり180mgの内容物を含有するソフトカプセルを製造した。

[0060]

実施例 5. 脂肪輸液剤への使用

実施例 2 で得た8A8を96モル%含有する油脂(トリグリセリド)400g、精製卵黄レシチン48g、オレイン酸 20g、グリセリン100g及び0.1N 苛性ソーダ40mlを加え、ホモジナイザーで分散させたのち、注射用蒸留水を加えて4リットルとする。これを高圧噴霧式乳化機にて乳化し、脂質乳液を調製した。該脂質乳液を200mlずつプラスチック製バッグに分注したのち、121℃、20分間、高圧蒸気滅菌処理して脂肪輸液剤とする。

[0061]

実施例6. ジュースへの使用

β-シクロデキストリン2gを20%エタノール水溶液20mlに添加し、ここにスターラーで撹拌しながら、実施例1で得たアラキドン酸含有トリグリセリド(ビタミンEを0.05%配合)100mgを加え、50℃で2時間インキュベートした。室温冷却(約1時間)後、さらに撹拌を続けながら4℃で10時間インキュベートした。生成した沈殿を、遠心分離により回収し、n-ヘキサンで洗浄後、凍結乾燥を行い、アラキドン酸含有トリグリセリドを含有するシクロデキストリン包接化合物1.8gを得た。この粉末1gをジュース10Lに均一に混ぜ合わせ、アラキドン酸含有トリグリセリドを含有するジュースを調製した。

【図面の簡単な説明】

[0062]

【図1】図1は、ストレス負荷ラットの警戒行動に与えるアラキドン酸の効果を示す、実施例3の結果のグラフである。

【図2】図2は、ストレス負荷ラットの自発運動に与えるアラキドン酸の効果を示す、実施例3の結果のグラフである。

20

10

【図1】

The first of the Administration (All Control

ストレス負荷ラットの警戒行動に与える影響

[Mean±SD, **: p<0.01, ***: p<0.001(vs. 拘束-対照食群)]

【図2】

図2 ストレス負荷ラットの自発運動に与える影響

【Mean±SD, *:p<0.05, **:p<0.01(vs. 拘束-対照食群)】

フロントページの続き

(51) Int. Cl.

FΙ

energen en alle kommune promotiva en la commune de la c

テーマコード (参考)

A 6 1 K 35/74 (2006.01) A 6 1 K 35/74 A 6 1 P 25/00 (2006.01) A 6 1 P 25/00 A 6 1 P 25/00 (2006.01)

Fターム(参考) 4B018 MD10 MD11 ME14

4C086 AA01 AA02 EA03 GA17 MA01 MA04 MA52 ZA01

4C087 AA01 AA02 BC05 BC06 BC07 BC08 CAll MA52 NA09 NA14

ZA02

4C206 AA01 AA02 DA05 DB03 DB06 DB09 DB46 KA19 MA01 MA04

MA72 NA09 NA14 ZA02

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第3部門第2区分

【発行日】平成19年11月1日(2007.11.1)

【公開番号】特開2006-83134(P2006-83134A)

【公開日】 平成18年3月30日(2006.3.30)

【年通号数】公開·登録公報2006-013

【出願番号】特願2004-271927(P2004-271927)

【国際特許分類】

A 6	1	K	31/202	(2006.01)
A 2	3	L	1/30	(2006.01)
A 6	1	K	31/232	(2006.01)
A 6	1	K	31/661	(2006.01)
A 6	1	K	31/7024	(2006.01)
A 6	1	K	35/74	(2006.01)
A 6	1	P	25/00	(2006.01)
F I]			
A 6	1	K	31/202	
A 2	3	L	1/30	Z
A 6	1	K	31/232	
A 6	1	K	31/661	
A 6	1	K	31/7024	
A 6	1	K	35/74	G
A 6	1	P	25/00	

【手続補正書】

【提出日】平成19年9月12日(2007.9.12)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】 0 0 5 3

【補正方法】変更

【補正の内容】

[0053]

<u>実施例3.</u> 行動観察試験によるTGA40Sの行動異常に対する効果評価

実験群として、2~3ヶ月齢雄性ICR系マウス51匹を対照飼料群(27匹)とTGA40S配合飼料群(24匹)の2群に分け、それぞれの群に、表1に示した対照飼料およびTGA40S配合飼料を与えた。さらに各群を、拘束をかけない非拘束群(非拘束-対照食群(9匹)、非拘束-ARA食群(12匹))と拘束をかける拘束群(拘束-対照食群(18匹)、拘束-ARA食群(12匹))に分けた。ワイヤーメッシュ拘束チューブによる拘束は、摂取開始から3週間後に1回、6時間だけ行った。その後も実験期間中は、それぞれの群に対して表1に示した対照飼料またはTGA40S配合飼料を与え続けた。なお、TGA40S配合飼料に使用したTGA40S以実施例1で得たものを使用した。