

TỐI ƯU LẬP KẾ HOẠCH

Phương pháp Heuristics

Nội dung

- Tổng quan phương pháp tìm kiếm heuristics
- Bài toán N-queen
- Bài toán TSP
- Bài toán MultiKnapsack
- Bài toán tô màu đồ thị

Tổng quan tìm kiếm heuristic

- Phương pháp giải bài toán tối ưu khó trong đó nhắm tới tìm lời giải chất lượng tốt trong thời gian hữu hạn cho phép
- Phụ thuộc vào cấu trúc từng bài toán cụ thể

Tổng quan tìm kiếm heuristic

- Phương pháp giải bài toán tối ưu khó trong đó nhắm tới tìm lời giải chất lượng tốt trong thời gian hữu hạn cho phép
- Phụ thuộc vào cấu trúc từng bài toán cụ thể
- Ví dụ heuristics:
 - Xây dựng lời giải bằng việc bổ sung lần lượt các thành phần
 - Cập nhật lời giải hiện tại để sinh ra lời giải mới tốt hơn

Bài toán N-queen

- Cấu trúc dữ liệu cần duy trì để cung cấp thông tin ra quyết định:
 - Mức độ vi phạm ràng buộc: tổng số cặp 2 quân hậu nằm trên cùng 1 hàng, hoặc cùng 1 cột, hoặc cùng 1 đường chéo
- Xây dựng lời giải:
 - Mỗi bước, chọn 1 quân hậu và chọn đặt vào 1 vị trí nào đó trên bàn cờ sao cho mức độ vi phạm ràng buộc nhỏ nhất
- Cải tiến lời giải:
 - Mỗi bước, chọn 1 quân hậu và 1 vị trí mới sao cho khi di chuyển quân hậu này đến vị trí mới thì mức độ vi phạm ràng buộc giảm nhiều nhất

Bài toán N-queen

Bài toán N-queen

Bài toán TSP

- Cấu trúc dữ liệu cần duy trì:
 - Tổng độ dài quãng đường di chuyển
- Xây dựng lời giải
 - Xuất phát từ một điểm bất kỳ, gọi là điểm hiện tại
 - Tại mỗi bước, chọn đi đến 1 điểm mới sao cho tổng quãng đường di chuyển là ngắn nhất, điểm mới này lại là điểm hiện tại cho bước lặp sau
- Cải thiện lời giải
 - Mỗi bước, tiến hành đảo cạnh hoặc điểm trên chu trình hiện tại sao cho tổng độ dài quãng đường giảm đi nhiều nhất

Bài toán MultiKnapsack

- Có N đồ vật (Item) 1,2,..., N cần được xếp vào M cái túi (Bin)
 - Đồ vật j có trọng lượng là a_i
 - Cái túi i có tải trọng là c_i
- Cần lập phương án xếp N đồ vật này vào M cái túi sao cho tổng trọng lượng các đồ vật xếp vào mỗi cái túi không vượt quá tải trọng của cái túi đó

Bài toán MultiKnapsack

- Cấu trúc dữ liệu duy trì để cung cấp thông tin ra quyết định lựa chọn:
 - Mức độ vi phạm ràng buộc: tổng trọng lượng vượt trội so với tải trọng của mỗi cái túi
- · Xây dựng lời giải
 - Mỗi bước lựa chọn 1 đồ vật và 1 cái túi sao cho khi đặt đồ vật này vào cái túi đó sao cho mức độ vi phạm ràng buộc nhỏ nhất
- Cải thiện lời giải
 - Mỗi bước chọn 1 đồ vật và 1 cái túi mới sao cho khi di chuyển đồ vật sang cái túi mới thì mức độ vi phạm ràng buộc giảm nhiều nhất

Bài toán tô màu đồ thị

Cho một đồ thị vô hướng G = (V,E) và K màu 1,2,...,K (K là số nguyên dương). Hãy tìm cách tô mỗi đỉnh của đồ thị bằng 1 màu sao cho 2 đỉnh kề nhau thì phải được tô bởi 2 màu khác nhau

Bài toán tô màu đồ thị

- Cấu trúc dữ liệu duy trì
 - Mức độ vi phạm ràng buộc: tổng số cặp 2 đỉnh kề nhau nhưng được tô bởi cùng 1 màu
- Xây dựng lời giải
 - Mỗi bước chọn 1 đỉnh v và 1 màu c sao cho khi tô đỉnh v bởi màu c thì mức độ vi phạm ràng buộc là ít nhất
- · Cải thiện lời giải
 - Mỗi bước, chọn 1 đỉnh v và 1 màu mới c sao cho khi tô lại đỉnh v bởi màu c thì mức độ vi phạm ràng buộc giảm nhiều nhất

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

