Computer Networks Fall 2016 Problem Sheet #3

Tom Wiesing

October 12, 2016

1 Problem 1

1.1 1a)

We assign **R1** IP address 198.51.100.1 on interface en1.1 and 203.0.113.1 on en1.2. Furthermore we configure the following forwarding table:

Prefix	Next Hop	Interface
198.51.100.3/32	198.51.100.3	en1.1
203.0.113.4/32	203.0.113.4	en1.2

We assign **R2** IP address 198.51.100.2 on interface en2.1 and 203.0.113.2 on en2.2. Furthermore we configure the following forwarding table:

Prefix	Next Hop	Interface
198.51.100.3/32	198.51.100.3	en2.1
203.0.113.4/32	203.0.113.4	en2.2

1.2 1b)

In this scenario the following messages will be sent:

- 1. A sends a TCP SYN from A to B.
 - A makes an ARP query for the R1 ip adresss on en1.1 (198.51.100.1)
 - R1 responds with an ARP response mac(en2.1)
 - R1 makes an ARP request to the B ip address on enB.0 (203.0.113.4)
 - B responds with an ARP response mac(enB.0)
- 2. B sends a TCP SYN-ACK from B to A.
 - B makes an ARP request for the R2 ip adresss on en2.2 (203.0.113.2)
 - R2 responds with an ARP response mac(en2.2)
 - R2 makes an ARP request to the A ip adress on enA.0 (198.51.100.3)
 - A responds with an ARP response mac(enA.0)
- 3. A now sends a TCP ACK from A to B.
- 4. This procedure can then repeat.

no	segments	eth-src	eth-dst	ip-src	ip-dest	description
1	A, B,	mac(ena.0)	mac()	ip(ena.0)	ip(en1.1)	ARP request $ip(en1.1)$
2	В, А,	mac(en1.1)	mac(ena.0)	ip(en1.1)	ip(ena.0)	ARP response $ip(en1.1)$
3	A, B	mac(ena.0)	mac(enb.0)	ip(ena.0)	ip(en1.1)	TCP SYN A \rightarrow B (step 1)
4	D, F,	mac(en1.2)	mac()	ip(en1.1)	ip(enb.0)	ARP request $ip(enb.0)$
5	F, D,	mac(enb.0)	mac(en1.2)	ip(enb.0)	ip(en1.1)	ARP response $ip(enb.0)$
6	D, F	mac(en1.2)	mac(enb.0)	ip(ena.0)	ip(enb.0)	TCP SYN A \rightarrow B (step 2)
7	F, E,	mac(enb.0)	mac()	ip(enb.0)	ip(en2.2)	ARP request $ip(en2.2)$
8	E, F,	mac(en2.2)	mac(enb.0)	ip(en2.2)	ip(enb.0)	ARP response $ip(en2.2)$
9	E, F	mac(enb.0)	mac(en2.2)	ip(enb.0)	ip(ena.0)	TCP SYN-ACK $B \to A \text{ (step 1)}$
10	C, A,	mac(en2.1)	mac()	ip(en2.1)	ip(ena.0)	ARP request $ip(ena.0)$
11	A, C,	mac(ena.0)	mac(en2.1)	ip(ena.0)	ip(en2.1)	ARP response $ip(ena.0)$
12	C, A	mac(en2.1)	mac(ena.0)	ip(enb.0)	ip(ena.0)	TCP SYN-ACK B \rightarrow A (step 2)
13	A, B	mac(ena.0)	mac(en1.1)	ip(ena.0)	ip(enb.0)	TCP ACK $A \rightarrow B \text{ (step 1)}$
14	D, F	mac(en1.2)	mac(enb.0)	ip(ena.0)	ip(enb.0)	TCP ACK A \rightarrow B (step 2)

1.3 1c)

Benefits:

- it is easy to configure
- \bullet traffic between A and B and B and A goes via different routes \rightarrow each segment has to handle less traffic

Problems:

• The routes can **only** reach A and B. If more nodes are connected, the network has to be reconfigured.

2 Problem 2

2.1 2a)

The longest prefix length in the tables is 2, so it is sufficient to check all prefixes of length 2 to check equivalence of F_1 and F_2 . In F_1 , we have

- $00* \rightarrow R_2$
- $01* \rightarrow R_1$
- $10* \rightarrow R_2$
- $11* \rightarrow R_3$

and in F_2 we have

- $00* \rightarrow R_2$
- $01* \rightarrow R_1$
- $10* \rightarrow R_2$
- $11* \rightarrow R_3$

Thus they are equivalent.

2.2 2b)

There is no equivalent forwarding forwarding table with less than four entries. As there are three different hosts involved in the routes, at least 3 entries are needed. Thus if there is a table with exactly 3 entires. But it is not possible to combine the two entries for R_2 .