Kabinet výuky obecné fyziky, UK MFF

# Fyzikální praktikum ...



| Úloha č       |         |        |     |     |       |
|---------------|---------|--------|-----|-----|-------|
| Název úlohy:  |         |        |     |     |       |
| Jméno:        |         | Obor:  | FOF | FAF | FMUZV |
| Datum měření: | Datum o | devzdá | ní: |     |       |

Připomínky opravujícího:

|                           | Možný počet<br>bodů | Udělený počet bodů |
|---------------------------|---------------------|--------------------|
| Práce při měření          | 0 - 5               |                    |
| Teoretická část           | 0 - 1               |                    |
| Výsledky měření           | 0 - 8               |                    |
| Diskuse výsledků          | 0 - 4               |                    |
| Závěr                     | 0 - 1               |                    |
| Seznam použité literatury | 0 - 1               |                    |
| Celkem                    | max. 20             |                    |

| Posuzoval: | dne: |
|------------|------|
|            |      |

# Pracovní úkoly

- 1. Zpracujte přibližně 50 událostí z detektoru ATLAS programem Hypatia.
- 2. Pomocí programu ROOT zobrazte histogram invariantních hmotností pro různě velké statistické soubory.
- 3. Identifikujte výrazné píky a přiřaď te je očekávaným částicím.
- 4. Zjistěte chybu střední hodnoty invariantní hmotnosti pro nalezené částice pro různě velké statistické soubory.
- 5. Vyneste zjištěné chyby do grafu jako funkci počtu událostí a srovnejte je s Poissonovým rozdělením.

#### Teoretická část

ATLAS je částicový detektor v LHC v CERN. Budeme pozorovat vysokoenergetické srážky protonů a identifikovat jejich vzniklé částice. Částice, které hledáme, mají velmi krátkou dobu života, takže se zaměříme na produkty jejich rozpadu, pomocí kterých určíme jejich invariantní hmotnost a tedy druh částice.

Boson Z má hmotnost  $91\,\mathrm{GeV}/c^2$  a budeme detekovat jeho rozpad buď na elektron a pozitron, nebo mion a antimion [1].

Higgsův boson (H) má hmotnost  $125 \,\text{GeV}/c^2$  a budeme detekovat jeho rozpad buď na dva bosony Z (následovaný rozpadem každého z nich), nebo na dva fotony [1].

# Výsledky měření

Zpracovali jsme 106 událostí, výsledné histogramy jsou označené klíčovým slovem *mydata*, viz grafy 1, 2, 3, 4. Soubor jsme poté rozšířili na 1370 událostí z archivu událostí zpracovaných jinými studenty. Histogramy jsou označené klíčovým slovem *alldata*, viz grafy 5, 6, 7, 8.

Jasný peak okolo  $91\,\mathrm{GeV}/c^2$  odpovídá bosonu Z. Nasvědčuje tomu i to, že tento peak zmizí, pokud si zobrazíme pouze fotonové události.

Naopak peak okolo  $125\,\mathrm{GeV}/c^2$ , který je zřetelný pouze u fotonových událostí, odpovídá bosonu H.

Ve velmi nízkých energiích pozorujeme u dileptonových událostí další peak, který podle [1] odpovídá částicím  $J/\psi$  a  $\Upsilon$ .

Další dva peaky jsou při energiích cca  $1000\,{\rm GeV}/c^2$  a  $1500\,{\rm GeV}/c^2$ , což by odpovídalo hypotetickým čísticím W', respektive g (graviton). Skutečně, do našeho soubory byly přimíchány simulované události právě s těmito částicemi.

V grafu 9 jsou histogramy všech událostí pro různě velké statistické soubory v okolí bosonu Z. Porovnáním parametrů fitovaných Gaussových funkcí zjišťujeme, že střední hodnota se téměř nemění, pouze se s rozšiřujícím souborem snižuje její nejistota. Se  $\sigma$  je to podobné, pouze hodnota kolísá více. Do grafu 10 jsme zanesli závislost nejistoty střední hodnoty na velikosti souboru.

### Diskuze

Grafy jsme pozorovali v logaritmické škále na ose y, bohužel jsme je ale uložili v lineární škále.

Kvalitativně jsou všechny grafy mydata shodné s alldata. Pouze graviton jsme na grafu 4 nezaregistrovali ani jeden, což je pochopitelné vzhledem k velikosti souboru.

V grafu 10 je vidět, že nejistota skutečně podle očekávání ([1]) poměrně přesně klesá úměrně  $1/\sqrt{N}$ .

#### Závěr

Zpracovali isme 106 událostí.

Na histogramech jsme rozpoznali boson Z a H, dále simulované Z' a g, a pravděpodobně také  $J/\psi$  a  $\Upsilon$ , viz grafy 1 až 8.

Zobrazili jsme si histogramy pro různě velké statistické soubory. Podle očekávání se parametry fitované Gaussovy funkce příliš neměnili, pouze se snižovala nejistota jejich určení a to úměrně  $1/\sqrt{N}$ , jak vyplývá z Poissonova rozdělení.



Graf 1: mydata — všechny události



Graf 2: mydata — elektron-pozitronové události



Graf 3: mydata — mion-antimionové události



 $\operatorname{Graf}$ 4: mydata — dvou-fotonové události



Graf 5: alldata — všechny události



Graf 6: alldata — elektron-pozitronové události



Graf 7: alldata — mion-antimionové události



Graf 8: alldata — dvou-fotonové události



Graf 9: Porovnání histogramů pro různě velké statistické soubory.



Graf 10: Závislost nejistoty určení střední hodnoty hmotnosti bosonu Z na počtu zpracovaných událostí.

# Seznam použité literatury

1. Objevování částic v detektoru ATLAS v CERN—Základní fyzikální praktikum [online]. [cit. 2017-10-23]. Dostupný z WWW: (http://physics.mff.cuni.cz/vyuka/zfp/\_media/zadani/texty/txt\_401.pdf).