Social Networks and Social Media

Why do statistics

- To understand the networks
 - Understand their topology and measure their properties
 - Study their evolution and dynamics
 - Create realistic models
 - Create algorithms that make use of the network structure

Networks and Representation

Social Network: A social structure made of nodes (individuals or organizations) and edges that connect nodes in various relationships like friendship, kinship etc.

Graph Representation

Matrix Representation

Node	1	2	3	4	5	6	7	8	9
1	-	1	1	1	0	0	0	0	0
2	1	-	1	0	0	0	0	0	0
3	1	1	-	1	0	0	0	0	0
4	1	0	1	-	1	1	0	0	0
5	0	0	0	1	-	1	1	1	0
6	0	0	0	1	1	-	1	1	0
7	0	0	0	0	1	1	-	1	1
8	0	0	0	0	1	1	1	-	0
9	0	0	0	0	0	0	1	0	-

Basic Concepts

- A: the adjacency matrix
- V: the set of nodes
- E: the set of edges
- v_i: a node v_i
- $e(v_i, v_j)$: an edge between node v_i and v_j
- N_i: the neighborhood of node v_i
- d_i: the degree of node v_i
- geodesic: a shortest path between two nodes
 - geodesic distance

Statistical Properties

- Static analysis
 - Static snapshots of graphs
- Dynamic analysis
 - A series of snapshots of graphs

Statistical Properties

- Static analysis
 - Static snapshots of graphs
- Dynamic analysis
 - A series of snapshots of graphs

Why do statistics

- □ To understand the networks
 - Understand their topology and measure their properties
 - Study their evolution and dynamics
 - Create realistic models
 - Create algorithms that make use of the network structure

Networks and Representation

Social Network: A social structure made of nodes (individuals or organizations) and edges that connect nodes in various relationships like friendship, kinship etc.

- Graph Representation

 Matrix Representation

Node	1	2	3	4	5	6	7	8	9
1	-	1	1	1	0	0	0	0	0
2	1	-	1	0	0	0	0	0	0
3	1	1	-	1	0	0	0	0	0
4	1	0	1	-	1	1	0	0	0
5	0	0	0	1	-	1	1	1	0
6	0	0	0	1	1	-	1	1	0
7	0	0	0	0	1	1	-	1	1
8	0	0	0	0	1	1	1	-	0
9	0	0	0	0	0	0	1	0	-

Quality Estimation

- How to measure the discovering results?

Normalized Cut
$$\frac{\sum_{i \in S, j \in \overline{S}} A(i, j)}{\sum_{i \in S} \deg ree(i)} + \frac{\sum_{i \in S, j \in \overline{S}} A(i, j)}{\sum_{i \in \overline{S}} \deg ree(i)}$$

Conductance

$$\frac{\sum_{i \in S, j \in \overline{S}} A(i, j)}{\min(\sum_{i \in S} \deg ree(i), \sum_{i \in \overline{S}} \deg ree(i))}$$

Kernighan-Lin (KL) objective

$$\sum_{i \neq j} A(V_i, V_j) \text{ with } |V_1| \equiv |V_2| \equiv \dots \equiv |V_k|$$

Quality Estimation: Modularity

Q(division) = #(internal edges) - E(#(internal edges) in a RANDOM graph with same node degrees)

Trivial division: all vertices in one group ==> Q(trivial division) = 0

$$Q = \frac{1}{2m} \sum_{\ell=1}^{k} \sum_{i \in C_{\ell}, j \in C_{\ell}} (A_{ij} - d_i d_j / 2m)$$

m is the number of edges in the network

- - -

The Kernighan-Lin (KL) algorithm

The Kernighan-Lin (KL) algorithm con't

The Kernighan-Lin (KL) algorithm con't

Edge Betweenness Method

- ☐ The strength of a tie can be measured by *edge betweenness*
- ☐ *Edge betweenness*: the number of shortest paths that pass along with the edge

The *edge betweenness* of e(1, 2) is 4 (=6/2 + 1), as all the shortest paths from 2 to {4, 5, 6, 7, 8, 9} have to either pass e(1, 2) or e(2, 3), and e(1,2) is the shortest path between 1 and 2

Edge Betweenness Method

□ Basic idea

- 1. Calculate betweenness score for all edges
- 2. Find the edge with the highest score and remove it from the network
- Recalculate betweenness for all remaining edges
- 4. Repeat from step 2

Edge Betweenness Method con't

1, 2, 3, 4, 5 6,7, 8, 9}

Remove e(4,5), e(4,6)

Initial betweenness value

Table 3.3: Edge Betweenness									
	1	2	3	4	5	6	7	8	9
1	0	4	1	9	0	0	0	0	0
2	4	0	4	0	0	0	0	0	0
3	1	4	0	9	0	0	0	0	0
4	9	0	9	0	10	10	0	0	0
5	0	0	0	10	0	1	6	3	0
6	0	0	0	10	1	0	6	3	0
7	0	0	0	0	6	6	0	2	8
8	0	0	0	0	3	3	2	0	0
9	0	0	0	0	0	0	8	0	0

After remove e(4,5), the betweenness of e(4, 6) becomes 20, which is the largest;

After remove e(4,6), the edge e(7,9)

{5, 6, 7, 8, 9} {1, 2, 3, 4} has the largest betweenness value 4, remove e(7,9) and should be removed.

Idea: progressively removing edges with the highest betweenness

Modularity Matrix $Q = \sum (Aij - ki*kj/M \mid i,j \text{ in the same group})$

17

Modularity matrix:

$$B = A - \mathbf{dd}^{T}/2m \qquad (B_{ij} = A_{ij} - d_i d_j/2m)$$

Modularity maximization can be reformulated as

$$\max Q = \frac{1}{2m} Tr(S^T B S) \quad s.t. \ S^T S = I_k$$

- Optimal solution: top eigenvectors of the modularity matrix
- Apply k-means to S as a post-processing step to obtain community partition

$$Q = \frac{1}{2m} \sum_{\ell=1}^{k} \sum_{i \in C_{\ell}, i \in C_{\ell}} (A_{ij} - d_i d_j / 2m)$$

Modularity Maximization Example

Two Communities:

{1, 2, 3, 4} and {5, 6, 7, 8, 9}

$$B = \begin{bmatrix} -0.32 & 0.79 & 0.68 & 0.57 & -0.43 & -0.43 & -0.43 & -0.32 & -0.11 \\ 0.79 & -0.14 & 0.79 & -0.29 & -0.29 & -0.29 & -0.29 & -0.21 & -0.07 \\ 0.68 & 0.79 & -0.32 & 0.57 & -0.43 & -0.43 & -0.43 & -0.32 & -0.11 \\ 0.57 & -0.29 & 0.57 & -0.57 & 0.43 & 0.43 & -0.57 & -0.43 & -0.14 \\ -0.43 & -0.29 & -0.43 & 0.43 & -0.57 & 0.43 & 0.43 & 0.57 & -0.14 \\ -0.43 & -0.29 & -0.43 & 0.43 & 0.43 & -0.57 & 0.43 & 0.57 & -0.14 \\ -0.43 & -0.29 & -0.43 & 0.43 & 0.43 & -0.57 & 0.43 & 0.57 & -0.14 \\ -0.32 & -0.21 & -0.32 & -0.43 & 0.57 & 0.57 & 0.57 & 0.57 & 0.86 \\ -0.32 & -0.21 & -0.32 & -0.43 & 0.57 & 0.57 & 0.57 & -0.32 & -0.11 \\ -0.11 & -0.07 & -0.11 & -0.14 & -0.14 & -0.14 & 0.86 & -0.11 & -0.04 \end{bmatrix}$$

/ \	
0.4384	-0.2709
0.3809	0.2671
0.4384	-0.2709
0.1716	0.6063
-0.2861	-0.3487
-0.2861	-0.3487
-0.3754	0.3355
-0.3421	0.1855
0.1396	-0.1552
\ /	

Modularity Matrix

Spectral Clustering

Both ratio cut and normalized cut can be reformulated as

$$\min_{S \in \{0,1\}^{n \times k}} Tr(S^T \widetilde{L}S)$$

$$D = diag(d_1, d_2, \cdots, d_n)$$
 A diagonal matrix of degrees

Spectral relaxation:

$$\min_{S} Tr(S^T \widetilde{L}S) \quad s.t. \ S^T S = I_k$$

Optimal solution: top eigenvectors with the smallest eigenvalues

Spectral Clustering Example

Two communities:

{1, 2, 3, 4} and {5, 6, 7, 8, 9}

0.33

The 1st eigenvector means all nodes belong to the same cluster, no use

-0.38

$$D = diag(3, 2, 3, 4, 4, 4, 4, 5,$$

$$\widetilde{L} = D - A = \begin{bmatrix} 3 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & 4 & -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 4 & -1 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 & -1 & 4 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & -1 & 4 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & -1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 \end{bmatrix}$$

Multi-level Graph Partitioning

Logic flow

- 1. Produce a smaller graph that is similar to the original graph
- 2. A partitioning of the coarsest graph is performed.
- 3. the partitioning of the coarser graph is projected back to the original graph. The partition is further refined.

Multi-level Graph Partitioning

• 3 Phases

- Coarsen

- Partition

- Uncoarse

Other works

- Community Discovery in Dynamic Networks
 - How should community discovery algorithms be modified to dynamic networks?
 - How do communities get formed?
 - How persistent and stable are communities and their members?
 - How do they evolve over time?
- Community discovery in Heterogeneous Networks
- Coupling Content Relationship Information for Community Discovery

Link Prediction in Social Networks

Outline

- Link Prediction Problems
 - Social Network
 - Recommender system
- Algorithms of Link Prediction
 - Supervised Methods
 - Collaborative Filtering
- Recommender System and The Netflixprize
- References

Link Prediction using Collaborative Filtering

 Find the background model that can generate the link data

Challenges in Link Prediction

Data!!!

Cold Start Problem

Sparsity Problem

Link Prediction using Collaborative Filtering

- Memory-based Approach
 - User-base approach [Twitter]
 - item-base approach [Amazon & Youtube]
- Model-based Approach
 - Latent Factor Model [Google News]

Hybrid Approach

Memory-based Approach

- Few modeling assumptions
- Few tuning parameters to learn
- Easy to explain to users
 - Dear Amazon.com Customer, We've noticed that customers who have purchased or rated <u>How Does</u> <u>the Show Go On: An Introduction to the Theater</u> by Thomas Schumacher have also purchased <u>Princess Protection Program #1: A Royal Makeover (Disney Early Readers)</u>.

Algorithms: User-Based Algorithms (Breese et al, UAI98)

- $v_{i,j}$ = vote of user i on item j
- I_i = items for which user i has voted
- Mean vote for i is

$$\overline{v}_i = \frac{1}{|I_i|} \sum_{j \in I_i} v_{i,j}$$

Predicted vote for "active user" a is weighted sum

$$p_{a,j} = \overline{v}_a + \kappa \sum_{i=1}^n \underline{w}(a,i)(v_{i,j} - \overline{v}_i)$$
 normalizer weights of n similar users

Algorithms: User-Based Algorithms (Breese et al, UAI98)

K-nearest neighbor

$$w(a,i) = \begin{cases} 1 & \text{if } i \in \text{neighbors}(a) \\ 0 & \text{else} \end{cases}$$

 Pearson correlation coefficient (Resnick '94, Grouplens):

$$w(a,i) = \frac{\sum_{j} (v_{a,j} - \overline{v}_a)(v_{i,j} - \overline{v}_i)}{\sqrt{\sum_{j} (v_{a,j} - \overline{v}_a)^2 \sum_{j} (v_{i,j} - \overline{v}_i)^2}}$$

Cosine distance (from IR)

$$w(a,i) = \sum_{j} \frac{v_{a,j}}{\sqrt{\sum_{k \in I_a} v_{a,k}^2}} \frac{v_{i,j}}{\sqrt{\sum_{k \in I_i} v_{i,k}^2}}$$

Algorithm: Amazon's Method

- Item-based Approach
 - Similar with user-based approach but is on the item side

Item-based CF Example: infer (user 1, item 3)

	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	8	1	?	2	7
User 2	2	?	5	7	5
User 3	5	4	7	4	7
User 4	7	1	7	3	8
User 5	1	7	4	6	?
User 6	8	3	8	3	7

How to Calculate Similarity (Item 3 and Item 5)?

	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	8	1	?	2	7
User 2	2	?	5	7	5
User 3	5	4	7	4	7
User 4	7	1	7	3	8
User 5	1	7	4	6	?
User 6	8	3	8	3	7

Similarity between Items

	Item 3	Item 4	Item 5
	?	2	7
•	5	7	5
•	7	4	7
•	7	3	8
	4	6	?
	8	3	7

How similar are items

3 and 5?

 How to calculate their similarity?

Similarity between items

	Item 3	Item 5	
	?	7	
	5	5	
	7	7	
L			
	7	8	
	4	?	
	8	7	

- Only consider users who have rated both items
- For each user:
 Calculate difference in ratings for the two items
- Take the average of this difference over the users

```
sim(item 3, item 5) = cosine((5, 7, 7), (5, 7, 8))
```

=
$$(5*5 + 7*7 + 7*8)/(sqrt(5^2+7^2+7^2)* sqrt(5^2+7^2+8^2))$$

• Can also use Pearson Correlation Coefficients as in user-based approaches

Prediction: Calculating ranking r(user1,item3)

Major Challenges

1. Size of data

- Places premium on efficient algorithms
- Stretched memory limits of standard PCs
- 2. 99% of data are missing
 - Eliminates many standard prediction methods
 - Certainly not missing at random
- 3. Training and test data differ systematically
 - Test ratings are later
 - Test cases are spread uniformly across users

Major Challenges (cont.)

4. Countless factors may affect ratings

- Genre, movie/TV series/other
- Style of action, dialogue, plot, music et al.
- Director, actors
- Rater's mood

5. Large imbalance in training data

- Number of ratings per user or movie varies by several orders of magnitude
- Information to estimate individual parameters varies widely

Ratings per Movie in Training Data

40

Ratings per User in Training Data

Avg #ratings/user: 208