MAE 5871

Lista 5 – data de entregue: 11/11/2019

- 1. Considere a função Doppler do exemplo 4.6. Usando a ondaleta s16:
 - (a) adicione ruído branco gaussiano, de média zero e variância $\sigma=0,25$ a n=512 valores da função;
 - (b) para a função resultante, obtenha os coeficientes de ondaletas;
 - (c) use limiar suave e o parâmetro λ dado por (8.62)-(8.63) do Capítulo 8;
 - (d) obtenha os coeficientes de ondaletas para a função limiarizada;
 - (e) reconstrua a função após a limiarização.
 - 2. simule n = 1024 dados de um AR(2) com phi1 = 0.5 e phi2 = 0.3 e erro normal (0, 1). Considere o modelo (5.11) com ti = i/n. Estimar a função f(ti) usando limiar dura universal e a ondaleta S8.
 - 6. Reproduza as figuras 7.2 e 7.3.
 - 7. Use o programa WaveThresh para reproduzir as figuras 7.4 e 7.5. Note as diferenças.
 - 8. Com os dados da série m-cimento, obtenha o escalograma da Figura 7.8, com o limiar 100.
 - 3. (Dette et al., 2011) Considere o processo localmente estacionário $X_{t,T} = a_1(t/T)Z_t a_2(t/T)Z_{t-1}$, com $\sigma^2 = 1$, $a_1(u) = \cos(2\pi u)$ e $a_2(u) = u^2$. Obtenha $f(u, \lambda)$, definido em (9.13).