Lecture 5. Set Theory

Ref.: K H Rosen Section 1.6 & 1.7

What is a set?

- Sets are used to group Objects together.
- Any real world object can be a member of a Set.
 - E.g., Students in a Class.
- Sets are not limited to physical objects!

Definition 1: The *objects* in a set are also called *elements* or *members* of the set. A set is said to *contain* its elements.

Examples

A Set of Vowels:

$$V = \{a, e, i, o, u\}$$

 The Set of Odd Positive numbers less than 10

$$O = \{1,3,5,7,9\}$$

S={fred, a, 76, New Jersey}

Equality of Sets

Definition 2:

Two sets are equal if and only if they have the same elements.

Special Cases

Sets are usually denoted with Uppercase Letters. There are 3 Reserved Letters:

$$N = \{0,1,2,3, ...\} = \{x \mid x \text{ is a natural number}\}$$
 $Z = \{...,-2,-1,0,1,2,...\} = \{x \mid x \text{ is an integer}\}$
 $R = \{...,1.1,...,1.2,...\} = \{x \mid x \text{ is a real number}\}$

Set builder notation

Graphical Representation

Venn diagram for the set of vowels 'V'

Membership in Sets

Example set: $A = \{v, w, x, y, z\}$

The letter 'w' is a member of this set

The letter 'p' is not a member of this set

The empty set

The set that contains no element is called the *empty set* or *null set*.

The empty set is denoted by \emptyset or by $\{\}$.

Subsets

Definition 3: A set A is said to be a subset of B if and only if every element of A is also an element of B.

We use the notation A⊆B to indicate that A is a subset of B.

If A⊆B and A≠B, A is called a *proper subset* of B, denoted by A⊂B.

The empty set is a subset of every set.

Subsets

$$S = \{1,2,3,4,5\}$$
 $T = \{1,2\}, U = \{2,3,5\}$
 $T \subseteq S$
 $U \subseteq S$
 $\emptyset \subseteq S$

 $T \subseteq S$ if and only if the quantification is true:

$$\forall x (x \in T \rightarrow x \in S)$$

The Venn Diagram

The Venn diagram is useful for showing subsets.

$$T \subseteq S$$
 $V \subseteq S$

Venn diagrams showing T and V as subsets of S, in universe of discourse U.

Remember!

Every set is a subset of itself!

Let P be a set then:

$$\varnothing \subseteq P$$
 and $P \subseteq P$

Equality and Cardinality

Two sets A and B are equal iff

 $A \subseteq B$ and $B \subseteq A$

Definition 4:

Let S be a set. If there are exactly *n distinct elements* in S where n is a nonnegative integer, we say that S is a *finite* set. S is called *infinite* otherwise.

The cardinality of S is denoted by |S| (= n).

Examples

Finite:

```
V,W,X,V,Z}
The set A has cardinality: |A| = 26.
Odd positive integers less then 10:
       P=\{1,3,5,7,9\}, |P|=5.
Empty set: |\emptyset| = 0;
Infinite: positive integers, real numbers, odd
```

integers.

A Set as an Element

$$S=\{a,b\}$$

$$P(S)=\{\emptyset, \{a\}, \{b\}, \{a,b\}\}$$

In set builder notation:

$$P(S)=\{x \mid x \text{ is a subset of } S\}$$

The Power Set

Definition 5:

Given a set S, the power set of S is the set of all subsets of S.

The power set of S is denoted by P(S).

Examples:

```
P(\{1,2,3\})
=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}\}
P(\emptyset) = \{\emptyset\}; |P(\emptyset)|=1
P(\{\emptyset\}) = \{\emptyset,\{\emptyset\}\}; |P(\{\emptyset\})|=2
```

Order in Sets

Now consider the order of elements in a set... Example: First name, last name, street address, city, ... in a database.

Definition 6:

The *ordered n-tuple* $(a_1, a_2..., a_n)$ is the ordered collection that has a_1 as its first element, a_2 as its second element, ... and a_n as its nth element.

2-tuples are called ordered pairs.

Equality of ordered n-tuples

Equality:
$$(a_1, a_2..., a_n) = (b_1, b_2..., b_n)$$
 if and only if $a_i = b_i$ for $i=1, ..., n$.

E.g.
$$(a,b,c,d) \neq (a,c,b,d)$$

$$(a,b)=(b,a) \leftrightarrow a=b$$

Cartesian Products

Definition 7:

Let A and B be sets. The *Cartesian product* of A and B, denoted by $A \times B$, is the set of all ordered pairs (a,b) where $a \in A$ and $b \in B$. Hence $A \times B = \{(a,b) \mid a \in A \land b \in B\}$.

E.g.
$$A = \{1,2\}, B = \{x,y,z\}$$

 $A \times B = \{(1,x), (1,y), (1,z), (2,x), (2,y), (2,z)\}$
 $B \times A = \{(x,1), (x,2), (y,1), (y,2), (z,1), (z,2)\}$

Cartesian Products

Definition 8:

The *Cartesian product* of the sets A_1 , A_2 , ..., A_n , denoted by $A_1 \times A_2 \times ... \times A_n$, is the set of all ordered n-tuples $(a_1, a_2, ..., a_n)$, where $a_i \in A_i$ for i=1,2, ..., n.

Hence $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_i \in A_i \text{ for } i=1,2, ..., n\}.$

Cartesian Products

E.g.:
$$A=\{1,2\}, B=\{5\}, C=\{2,3\}$$

 $A \times B \times C = \{(1,5,2),(1,5,3),(2,5,2),(2,5,3)\}$

$$| A_1 \times A_2 \times ... \times A_n | = | A_1 | | A_2 | ... | A_n |$$

If
$$A = \emptyset$$
 then $A \times B = B \times A = \emptyset$

Union

Venn diagram representing the Union of *A* and *B*

 $A \cup B$ is shown by the blue area

Union

Definition 1: The union of the sets A and B is the set of those elements that are either in A or in B or in both.

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

Example 1

CS Students UEE Students

= CS and/or EE Students

Intersection

Venn diagram representing the Intersection of *A* and *B*

Intersection

Definition 2: The intersection of the sets A and B is the set of all elements that are in both A and B.

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

Example 2

CS Students ∩ EE Students

= CS and EE Students

Disjoint Sets

Venn diagram representing the disjoint sets *A* and *B*

Disjoint Sets

Definition 3: When $A \cap B = \emptyset$ the two sets A and B are called disjoint

Therefore,

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Since,

$$A \cap B = \emptyset$$

Example 3

Females \cap Males = \emptyset

Difference Between Two Sets

Venn diagram representing the Difference of *A* and *B*

The A - B is shown by the blue area

Difference Between Two Sets

Definition 4: The difference of A and B is the set containing those elements that are in A but not in B.

The difference of A and B is also called the complement of B with respect to A

$$A - B = \{x \mid x \in A \land x \notin B\}$$

Example 4

CS Students – EE Students

= CS Students who are not EE Students

Complement of a Set

Venn diagram representing the complement of the set A

A is shown by the blue area

Complement of a Set

Definition 5: The complement of A is the complement of A with respect to U.

$$\overline{A} = U - A$$
.

$$\overline{A} = \{x \mid x \notin A\}$$

Example 5

Let A = {February, June, August, May} $\overline{A} = \{January, March, July, October, November, April, September, December\}$

Set Identities

Identity	Name		
$A \cup \emptyset = A$ $A \cap U = A$	Identity laws		
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws		
$A \cup A = A$ $A \cap A = A$	Idempotent laws		
$\overline{(\overline{A})} = A$	Complementation laws		

Set Identities

Identity	Name	
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws	
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws	
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive laws	
$\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgan's laws	

Set Identities - De Morgan's Laws Proof

Show that: $\overline{A \cap B} = \overline{A \cup B}$ by showing that each set is a subset of the other

```
x \in \overline{A \cap B} \xrightarrow{\leftarrow} x \notin A \cap B (definition of complement)

\Rightarrow \neg (x \in A \land x \in B) (definition of intersection)

\Rightarrow \neg (x \in A) \lor \neg (x \in B) (De Morgan's law)

\Rightarrow x \notin A \lor x \notin B (definition of \notin)

\Rightarrow x \in \overline{A} \lor x \in \overline{B} (definition of complement)

\Rightarrow x \in \overline{A} \cup \overline{B} (definition of union of sets)
```

Set Identities - De Morgan's Laws Proof

Show that: $\overline{A \cap B} = \overline{A} \cup \overline{B}$ using the definition of set

$$A \cap B = \{x \mid x \notin A \cap B \}$$

$$= \{x \mid \neg (x \in (A \cap B)) \}$$

$$= \{x \mid \neg (x \in A \land x \in B)\}$$

$$= \{x \mid \neg x \in A \lor \neg x \in B\}$$

$$= \{x \mid x \notin A \lor x \notin B\}$$

$$= \{x \mid x \in \overline{A} \lor x \in \overline{B}\}$$

$$= \{x \mid x \in \overline{A} \cup \overline{B}\}$$

Membership Table

ABC	$B \cup C$	A ∩ (B∪C)	A∩B	A ∩C	(A∩B) ∪ (A∩C)
111	1	1	1	1	1
110	1	1	1	0	1
101	1	1	0	1	1
100	0	0	0	0	0
011	1	0	0	0	0
010	1	0	0	0	0
001	1	0	0	0	0
000	0	0	0	0	0

Generalised Unions

 $A \cup B \cup C$ is shown by the blue area

Definition 6:

The *union* of a collection of sets is the set that contains those elements that are members of at least one set in the collection.

Generalised Intersections

 $A \cap B \cap C$ is shown by the red area

Definition 7:

The *intersection* of a collection of sets is the set that contains those elements that are members of all sets in the collection.

Example 7

$$A = \{0, 2, 4, 6, 8\}$$
 $B = \{0, 1, 2, 3, 4\}$ $C = \{0, 3, 6, 9\}$

Therefore:

$$A \cup B \cup C = \{0, 1, 2, 3, 4, 6, 8, 9\}$$

And:

$$A \cap B \cap C = \{0\}$$

Computer Representation of Sets

Let:

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

Bit string representing the set of odd integers in U = 1010101010

Bit string representing the set of even integers in U= 0101010101

Bit string representing the set of all integers less than 6 in U

= 1111100000

Summary

- What is a set?
- Equality of sets
- Membership in sets
- Cardinality of sets
- Cartesian products

Summary: Set operations

