MATH 601 (DUE 11/6)

HIDENORI SHINOHARA

Contents

1.	Galois Theory II (P.2)	1
2.	Galois Theory II (P.8)	2
3.	Factoring Polynomials with Coefficients in Finite Fields	3

1. Galois Theory II (P.2)

Exercise. (Problem 1) Let $f(x) \in F[x]$ be an irreducible polynomial of degree d. Let $F \subset K$ be a field extension such that f(x) factors as a product of linear polynomials in K[x]. Show that f(x) is separable if and only if there exist d distinct F-algebra homomorphisms, $F[x]/(f(x)) \to K$.

Proof. Without loss of generality, assume f(x) is monic and $f(x) = \prod_{i=1}^{d} (x - a_i)$ for some $a_i \in K$.

Suppose f(x) is separable. Then $a_i \neq a_j$ for all $i \neq j$. For each i, let $\phi_i : F[x]/(f(x)) \to K$ be an F-algebra homomorphism such that $x \mapsto a_i$ and $a \mapsto a$ for all $a \in F$. Then each ϕ_i is distinct because $\phi_i(x) \neq \phi_j(x)$ whenever $i \neq j$. Thus we showed the existence of d distinct F-algebra homomorphisms.

Suppose there exist d distinct homomorphisms ϕ_i for $i = 1, \dots, d$. For any j, $\prod_{i=1}^d (\phi_j(x) - a_i) = \phi_j(\prod_{i=1}^d (x - a_i)) = \phi_j(f(x)) = 0$, so $\phi_j(x) \in K$ is a root of f(x). Thus $x - \phi_i(x)$ divides f(x) for each i. Since ϕ_i is uniquely determined by the value $\phi_i(x)$, $\phi_i(x) \neq \phi_j(x)$ whenever $i \neq j$. Thus $f(x) = \prod_{i=1}^d (x - \phi_i(x))$, and f(x) is separable.

Lemma 1.1. Let $\phi: F \to F'$ be an isomorphism. Let $K = F[v_1, \dots, v_n]$. Suppose that for each v_i , there exists a separable $f_i \in F[x]$ such that $f_i(v_i) = 0$. (f_i 's need not be irreducible.) Let L be the splitting field of $f = \prod f_i$. Then there exist [K:F] homomorphisms $\Phi: K \to L$ such that $\Phi = \phi$ on F.

Proof. We will use induction on n. Suppose n = 1. The minimal polynomial for v_1 divides f_1 , and f_1 is a separable function, so the minimal polynomial has [K:F] distinct roots. Therefore, there exist [K:F] homomorphisms from K to L.

Suppose that we have shown this proposition for $n \leq k$ for some $k \in \mathbb{N}$. Let n = k + 1. By the inductive hypothesis (n = 1), we have $[F[v_1] : F]$ homomorphisms ψ from $F[v_1]$ to L. In other words, we have $[F[v_1] : F]$ isomorphisms ψ from $F[v_1]$ to $F[\psi(v_1)]$.

Now, by applying the inductive hypothesis on the "upper" half of the diagram, we get $[K:F[v_1]]$ lifts of each ψ . Therefore, in total, we get $[K:F]=[K:F[v_1]][F[v_1]:F]$ homomorphisms Φ that agree with ϕ on F.

Exercise. (Problem 2) Let $F \subset F[v_1, \dots, v_r] = K$ be an algebraic field extension such that the irreducible monic polynomial, $f_i(x) \in F[x]$, for v_i is separable for each i. Let $F \subset L$ be a splitting field of $f(x) := \prod_{i=1}^r f_i(x) \in F[x]$. Let $w \in K$ and let $g(x) \in F[x]$ be the minimal manic polynomial of w. Set $d = \deg(g(x))$. Show that there are exactly d distinct F-algebra homomorphisms, $F[w] \to L$.

Proof. By applying Lemma 1.1 to the whole diagram, we know that there exist [K:F] F-algebra homomorphisms Φ . Moreover, by applying Lemma 1.1 to the "upper" half of the diagram, each $\psi: F[w] \to F[\psi(w)]$ can be lifted to exactly [K:F[w]] distinct homomorphisms.

This implies that there has to be exactly [K : F]/[K : F[w]] = [F[w] : F] homomorphisms. In other words, there are exactly d homomorphisms.

Exercise. (Problem 3) Let $F \subset F[v_1, \dots, v_r] = K$ be as in the previous problem. Let $w \in K$. Show that the monic irreducible polynomial of w is separable.

Proof. By Problem 1 and 2, this is trivial because F[w] is isomorphic to F[x]/(f(x)) by Lemma 2.1 (Field Extension handout).

2. Galois Theory II (P.8)

Exercise. (Problem 1) Recall that p is prime and q is a power of p. Define $F_q : \mathbb{F}_{q^r} \to \mathbb{F}_{q^r}$ by $F_q(a) = a^q$. Show that $F_q \in \operatorname{Aut}(\mathbb{F}_{q^r}/\mathbb{F}_q)$.

Proof. $F_q(a+b) = (a+b)^q = a^q + b^q$ since $p \mid {q \choose i}$ for $1 \le i \le q-1$. Thus F_q preserves addition, and it is clear that F_q preserves multiplication, so F_q is a homomorphism. Moreover, any element in \mathbb{F}_q satisfies $x^q - x = 0$, so $F_q(a) = a^q = a$ for any $a \in \mathbb{F}_q$.

Finally, in order to show that F_q is bijective, it suffices to check if it is injective since \mathbb{F}_{q^r} is finite. $F_q(a) = 0 \implies a^q = 0 \implies a = 0$, so F_q is indeed injective.

Exercise. (Problem 2) Show that $F_p : \mathbb{F}_{q^r} \to \mathbb{F}_{q^r}$, $F_p(a) = a^p$ is not an element of $\operatorname{Aut}(\mathbb{F}_{q^r}/\mathbb{F}_q)$ unless q = p.

Proof. If q = p, we are done. Suppose q > p. Let $\langle \alpha \rangle = (\mathbb{F}_q)^*$. Then the order of α is q - 1, so $F_p(\alpha) = \alpha^p \neq \alpha$.

Exercise. (Problem 3) Let $f(x) \in \mathbb{F}_q[x]$ be a monic irreducible polynomial of degree r. Explain why f(x) has a root $\alpha \in \mathbb{F}_{q^r}$.

Proof. Let $f(x) = \sum_{i=0}^r a_i x^i$. Since $\langle f(x) \rangle$ is a maximal ideal, $\mathbb{F}_q[x]/\langle f(x) \rangle$ is a field with an \mathbb{F}_q -basis $\{1, x, \cdots, x^{d-1}\}$. Thus the field contains q^r elements. By the uniqueness of a finite field, there exists an isomorphism $\phi : \mathbb{F}_{q^r} \to \mathbb{F}_q[x]/\langle f(x) \rangle$. Let $\alpha = \phi^{-1}(x)$. Then $\phi(\sum_{i=0}^r a_i \alpha^i) = \sum_{i=0}^r a_i x^i = 0$. Thus \mathbb{F}_{q^r} contains a root of f(x).

Exercise. (Problem 4) With f(x) as in the previous problem, show that $f(x) = \prod_{i=0}^{r-1} (x - \alpha^{q^i}) \in \mathbb{F}_{q^r}[x]$. Conclude that \mathbb{F}_{q^r} is a splitting field for f(x) over \mathbb{F}_q .

Proof. Let $G = \langle F_q \rangle \leq \operatorname{Aut}(\mathbb{F}_{q^r})$. Then G is a finite subgroup because $(F_q)^r = F_{q^r} = \operatorname{Id}$. Moreover, $\mathbb{F}_{q^r}^G = \mathbb{F}_q$ because \mathbb{F}_q is exactly the set of all the roots of $x^q - x$. By Theorem 11 (iv) from Galois Theory II, f must factor as a product of linear polynomials in $\mathbb{F}_{q^r}[x]$. \square

Exercise. (Problem 5) Prove $\operatorname{Aut}(\mathbb{F}_{q^r}/\mathbb{F}_q) \simeq \mathbb{Z}/(r)$. Prove $|\operatorname{Aut}(\mathbb{F}_{q^r}/\mathbb{F}_q)| = [\mathbb{F}_{q^r} : \mathbb{F}_q]$.

Proof. Let $G = \langle F_q \rangle \leq \operatorname{Aut}(\mathbb{F}_{q^r})$ as in the previous problem. We claim that $\operatorname{Aut}(\mathbb{F}_{q^r}/\mathbb{F}_q) = G$. By Problem 1, $G \leq \operatorname{Aut}(\mathbb{F}_{q^r}/\mathbb{F}_q)$. By Proposition 12 from Galois Theory II, $[\mathbb{F}_{q^r} : \mathbb{F}_q] \leq |G|$, so $r \leq |G|$. On the other hand, by Theorem 8 from Galois Theory II, $|\operatorname{Aut}(\mathbb{F}_{q^r}/\mathbb{F}_q)| \leq |\mathbb{F}_{q^r} : \mathbb{F}_q| = r$.

3. Factoring Polynomials with Coefficients in Finite Fields

Exercise. (Problem 9) Let \mathbb{F}_q be a field with $q = p^m$ elements. Let $f(x) \in \mathbb{F}_q[x]$ be square free. Describe $\gcd(x^q - x, f(x))$ in terms of the linear factors of f(x).

Proof. Since $(x^q - x)' = -1$, $\gcd(x^q - x, (x^q - x)') = 1$. Thus $x^q - x$ is square free by Problem 7 from last week. Thus $x^q - x = \prod_{i=1}^q (x - a_i)$ where $\mathbb{F}_q = \{a_1, \dots, a_q\}$. Each linear factor (if any) of f(x) is associate to $x - a_i$ for some i. Since f(x) is square free, $\gcd(x^q - x, f(x))$ is the product of all the linear factors of f(x).

Exercise. (Problem 10) Let $f(x) \in \mathbb{F}_q[x]$ be square free. Describe, $h(x) = \gcd(x^{q^2} - x, f(x))$, in terms of the irreducible quadratic polynomials which divide f(x) and whatever other information is necessary.

Proof. Since every element in \mathbb{F}_q is a root of $x^{q^2} - x$, h(x) is divisible by all the linear polynomials that divide f(x).

Let $g(x) \in \mathbb{F}_q[x]$ be an irreducible monic quadratic polynomial. Then $\mathbb{F}_q[x]/(g(x)) \cong \mathbb{F}_{q^2}$ with an isomorphism ϕ . Then $\phi(x)$ is a root of g(x). Thus $g = (x - \alpha)(x - \beta)$ in $\mathbb{F}_{q^2}[x]$.

Moreover, every element in \mathbb{F}_{q^2} is a root of $x^{q^2} - x$. Thus $g = (x - \alpha)(x - \beta) \mid x^{q^2} - x$. Therefore, h(x) is divisible by all the irreducible monic quadratic polynomials that divide f(x).

Finally, the set of roots of $x^{q^2} - x$ is exactly \mathbb{F}_{q^2} . Since $[\mathbb{F}_{q^2} : \mathbb{F}_q] = 2$, the degree of the minimal polynomial of each element must be either 1 or 2. In other words, $x^{q^2} - x$ is a product of some linear and quadratic polynomials in $\mathbb{F}_q[x]$.

Therefore, h(x) is exactly the product of all the irreducible monic polynomials of degree 1 or 2 that divide f(x). $(x^{q^2} - x)$ may or may not be square free, but f(x) is square free, so h(x) must be square free.)

Lemma 3.1. Suppose $f \in \mathbb{F}_q[x]$ is irreducible. Let $d \in \mathbb{N}$. Then $f \mid (x^{q^d} - x)$ if and only if $\deg(f) \mid d$.

Proof. Let $d \in \mathbb{N}$ be given. Let $n = \deg(f)$. Then $\mathbb{F}_q[x]/(f(x)) = \mathbb{F}_{q^n}$ contains a root α of f(x).

Suppose $n \mid d$. $\alpha^{q^n} - \alpha = 0$ implies $0 = (\alpha^{q^n} - \alpha)^{q^n} = \alpha^{q^{2n}} - \alpha^{q^n} = \alpha^{q^{2n}} - \alpha$. By repeating this process, we get $\alpha^{q^d} - \alpha = 0$ since $n \mid d$. Thus α satisfies f(x) and $x^{q^d} - x$, and f(x) is irreducible. Thus $f \mid x^{q^d} - x$.

Suppose $f(x) \mid (x^{q^d} - x)$. Since f(x) is an irreducible polynomial with a root α , it must be the minimal polynomial of α . Thus $[\mathbb{F}_q(\alpha) : \mathbb{F}_q] = n$. $f(x) \mid (x^{q^d} - x)$ implies that α satisfies $x^{q^d} - x$. Thus $\alpha \in \mathbb{F}_{q^d}$. Then $d = [\mathbb{F}_{q^d} : \mathbb{F}_q(\alpha)][\mathbb{F}_q(\alpha) : \mathbb{F}_q]$, so $n \mid d$.

Exercise. (Problem 11) Given a square free polynomial $f(x) \in \mathbb{F}_q[x]$, describe how to use repeated gcd calculations to factor f(x) as $f = f_1 f_2 \cdots f_r$, where each f_i is a product of distinct irreducible factors of degree i.

Proof. We will use Lemma 3.1 above. We will start with n = 1.

- If f(x) is a unit, terminate.
- Calculate $h(x) = \gcd(x^{q^n} x, f(x))$. This is the product of all irreducible polynomials of f(x) of degree n by Lemma 3.1.
- Record h(x). Set f(x) = f(x)/h(x) and n = n + 1. Repeat.

Then the h's that we record are the products of distinct irreducible of factors of degree i for each i.

Exercise. (Problem 12) Prove the following criterion for a degree n polynomial $f(x) \in \mathbb{F}_q[x]$ to be irreducible: f(x) is irreducible if and only if

- $gcd(f(x), x^{q^n} x) = f(x)$, and
- For each proper divisor d of n, $gcd(f(x), x^{q^d} x) = 1$.

Proof. Suppose f(x) is irreducible. By Lemma 3.1, $gcd(f(x), x^{q^n} - x) = f(x)$. Since the same lemma implies that $x^{q^d} - x$ cannot be divided by any irreducible polynomial of degree > d, $gcd(f(x), x^{q^d} - x) = 1$.

Suppose the two conditions are met. We will show that f(x) is irreducible. Let g(x) be an irreducible polynomial that divides f(x). Since $\gcd(f(x), x^{q^d} - x) = 1$ for each proper divisor d of n, $\gcd(g(x), x^{q^d} - x) = 1$ as well. By the lemma, $\deg(g(x)) \nmid d$. Since $\gcd(f, x^{q^n} - x) = f$, $\gcd(g, x^{q^n} - x) = g$. By the lemma, $\deg(g) \mid n$. Therefore, $\deg(g)$ is a divisor of n that is not a proper divisor of n. In other words, $\deg(g) = n$, so f is irreducible. \square

Exercise. (Problem 13) Suppose $f(x) \in \mathbb{F}_q[x]$ is a product of m distinct monic irreducible polynomials of degree r. To what ring is $\mathbb{F}_q[x]/(f(x))$ isomorphic?

Proof. By the Chinese remainder theorem, $\mathbb{F}_q[x]/(f(x)) = \mathbb{F}_q[x]/(f_1) \times \cdots \times \mathbb{F}_q[x]/(f_m)$. Thus $\mathbb{F}_q[x]/(f(x)) = \mathbb{F}_{q^r} \times \cdots \times \mathbb{F}_{q^r}$ (*m* times)