

planetmath.org

Math for the people, by the people.

truth-value semantics for intuitionistic propositional logic

Canonical name TruthvalueSemanticsForIntuitionisticPropositionalLogic

Date of creation 2013-03-22 19:31:04 Last modified on 2013-03-22 19:31:04

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 21

Author CWoo (3771) Entry type Definition Classification msc 03B20

Related topic AxiomSystemForIntuitionisticLogic

A truth-value semantic system for intuitionistic propositional logic consists of the set $V_n := \{0, 1, ..., n\}$, where $n \ge 1$, and a function v from the set of wff's (well-formed formulas) to V_n satisfying the following properties:

- 1. $v(A \wedge B) = \min\{v(A), v(B)\}$
- 2. $v(A \lor B) = \max\{v(A), v(B)\}\$
- 3. $v(A \to B) = n$ if $v(A) \le v(B)$, and v(B) otherwise
- 4. $v(\neg A) = n$ if v(A) = 0, and 0 otherwise.

This function v is called an *interpretation* for the propositional logic. A wff A is said to be *true* for (V_n, v) if v(A) = n, and a *tautology* for V_n if A is true for (V_n, v) for all interpretations v. When A is a tautology for V_n , we write $\models_n A$. It is not hard see that any truth-value semantic system is sound, in the sense that $\vdash_i A$ (A is a theorem) implies $\models_n A$, for any n. A proof of this fact can be found http://planetmath.org/truthvaluesemanticsforintuitionisticpropositionallogics

 (V_n, v) is a generalization of the truth-value semantics for classical propositional logic. Indeed, when n = 1, we have the truth-value system for classical propositional logic.

However, unlike the truth-value semantic system for classical propositional logic, no truth-value semantic systems for intuitionistic propositional logic are complete: there are tautologies that are not theorems for each n. For example, for each n, the wff

$$\bigvee_{j=1}^{n+2} \bigvee_{i=j}^{n+1} (p_j \leftrightarrow p_{i+1})$$

is a tautology for V_n that is not a theorem, where each p_i is a propositional letter. The formula $\bigvee_{k=1}^m A_i$ is the abbreviation for $(\cdots (A_1 \vee A_2) \vee \cdots) \vee A_m$, where each A_i is a formula. The following is a proof of this fact:

Proof. Let A be the $\bigvee_{j=1}^{n+2}\bigvee_{i=j}^{n+1}(p_j\leftrightarrow p_{i+1})$. Note that p_1,\ldots,p_{n+2} are all the proposition letters in A. However, there are only n+1 elements in V_n , so for every interpretation v, there are some p_i and p_j such that $v(p_i)=v(p_j)$ by the pigeonhole principle. Then $v(p_i\leftrightarrow p_j)=n$, and hence v(A)=n, implying that A is a tautology for V_n . However, A is not a tautology for V_{n+1} : let v be the interpretation that maps p_i to i-1. Then $v(p_i\leftrightarrow p_j)=\min\{i,j\}-1$, so that $v(A)=n\neq n+1$. Therefore, A is not a theorem.

Nevertheless, the truth-value semantic systems are useful in showing that certain theorems of the classical propositional logic are not theorems of the intuitionistic propositional logic. For example, the wff $p \vee \neg p$ (law of the excluded middle) is not a theorem, because it is not a tautology for V_2 , for if v(p) = 1, then $v(p \vee \neg p) = 1 \neq 2$. Similarly, neither $\neg \neg p \rightarrow p$ (law of double negation) nor $((p \rightarrow q) \rightarrow p) \rightarrow p$ (Peirce's law) are theorems of the intuitionistic propositional logic.

Remark. The linearly ordered set $V_n := \{0, 1, ..., n\}$ turns into a Heyting algebra if we define the relative pseudocomplementation operation \to by $x \to y := n$ if $x \le y$ and $x \to y := y$ otherwise. Then the pseudocomplement x^* of x is just $x \to 0$. This points to the connection of the intuitionistic propositional logic and Heyting algebra.