CONCURSO DE ADMISSÃO 2018/2019

PROVA DE MATEMÁTICA

1º ANO DO ENSINO MÉDIO

CONFERÊNCIA:						
Membro da CEOCP (Mat / 1º EM)	Presidente da CEI	Dir Ens CPOR / CM-BH				

RESPONDA ÀS QUESTÕES DE 1 A 20 E TRANSCREVA AS RESPOSTAS CORRETAS PARA A FOLHA DE RESPOSTAS

QUESTÃO 1 – Analisando os valores encontrados para **A** e **B**, é correto afirmar que:

$$A = 1 - \frac{1}{1 + \frac{1}{1 - \frac{1}{1 - \frac{1}{1 - \frac{1}{2}}}}}$$

$$B = 1 + \frac{1}{1 - \frac{1}{1 + \frac{1}{1 - \frac{1}{1 + \frac{1}{2}}}}}$$

- \bigcirc A < 0 e B < 0
- (B) A.B<0
- \bigcirc A B > B A
- $\bigcirc \frac{B}{A} > \frac{A}{B}$
- (E) 0 < B < 1 e A > 1

 $\underbrace{\text{QUESTÃO 2}}_{-\text{ Se }} - \text{Se } \mathbf{A} = \frac{1}{1 - \sqrt{2}} + 2\sqrt{2} \text{ e } \mathbf{B} = \frac{1}{2 + \frac{1}{2 + \frac{1}{1 + \sqrt{2}}}}, \text{ então é correto afirmar que:}$

- \triangle $A = \frac{1}{R}$
- \bigcirc A > B
- (C) B > A
- \bigcirc A = B
- $(\widehat{\mathbf{E}}) \mathbf{A} + \mathbf{B} = \mathbf{0}$

PÁGINA 2

CONFERIDO POR:

<u>QUESTÃO 3</u> – Determine como verdadeiro (V) ou falso (F) as proposições a seguir. Depois assinale a opção que corresponde a sequência correta:

[I] Se
$$\mathbf{x} = \sqrt{3 - 2\sqrt{2}} - \sqrt{3 + 2\sqrt{2}}$$
, então x é um número irracional

[II] Se
$$\sqrt{7} - \sqrt{2} = \sqrt{A - \sqrt{B}}$$
, então $\frac{B-2}{A} = 6$

[III] Se
$$\mathbf{a} \in \mathbf{R}^*$$
 e $\mathbf{y} = \left(\mathbf{a}\sqrt{\mathbf{a}\sqrt{\mathbf{a}}}\right)^{-\frac{1}{2}}$, então $\mathbf{y} = \frac{\sqrt[8]{\mathbf{a}^7}}{\mathbf{a}}$

$$\bigcirc$$
 $V - F - V$

QUESTÃO 4 – Sendo a um número real entre 0 e 1, é CORRETO afirmar que:

$$(A) \sqrt[3]{a^5} > \sqrt{a}$$

$$\widehat{\mathbb{E}} \ \sqrt[3]{a^5} < \sqrt[3]{a^2}$$

PÁGINA 3

CONFERIDO POR:

<u>QUESTÃO 5</u> – O retângulo de ouro, ou áureo, teve suas proporções estabelecidas pelo matemático grego Eudoxus de Cnidus (**410** ou **408 a. C.** – **355** ou **347 a. C.**). Ao estudar a Teoria das Proporções, Eudoxus mostrou que o retângulo de ouro é um retângulo especial em que valem as relações entre comprimento (**c**) e largura (*l*); conhecidas como proporção áurea: $\frac{c}{l} = \frac{l}{c-l}$.

Se considerarmos $\mathbf{c} = \mathbf{1}$, a proporção áurea será uma equação do 2° grau. Sendo $\sqrt{\mathbf{5}} = \mathbf{2,236}$, o valor aproximado do inverso da raiz positiva dessa equação é:

- ® 0,681
- © 1,618
- (D) 1,681
- E) 1,861

<u>QUESTÃO 6</u> – O autor persa Al-Khowarizmi (780 – 850 d. C.) foi um notável matemático, astrônomo e geógrafo. Em seu livro *Al-Jabr Wa'l Murãbalah*, publicado antes de **850 d. C.,** apresentou a primeira solução sistemática das equações lineares e quadráticas. No quinto capítulo desse livro, o autor propõe o seguinte problema:

"Divida 10 unidades em duas partes, de modo que a soma dos produtos obtidos multiplicando cada parte por si mesma seja igual a 58."

A diferença entre a maior parte e a menor parte, obtidas na resolução desse problema, é:

- \triangle 3
- B 4
- © 5
- D 6
- E 7

PÁGINA 4

CONFERIDO POR:

<u>QUESTÃO 7</u> – O conjunto que representa os valores de **m** para os quais a equação do 2° grau: $(m^2 - 4)x^2 - (m + 2)x - 1 = 0$ possui raízes reais é:

- ① $\{m \in R \mid m \leq -2 \text{ ou } m \geq \frac{6}{5}\}$
- $\stackrel{\textcircled{E}}{=} \{ m \in R \mid m < -2 \text{ ou } m > \frac{6}{5} \text{ } e \text{ } m \neq 2 \}$

QUESTÃO 8 – A média aritmética de **n** números é o resultado da divisão por **n** da soma dos **n** números considerados. Sabe-se que a média aritmética dos quadrados de dois números inteiros é **73** e que a média aritmética entre o menor desses inteiros e seu inverso é $\frac{13}{5}$. Portanto, a diferença entre esses dois númerosw é igual a:

- \triangle -5
- B 6
- © 6
- ① 11
- **E** 16

PÁGINA 5

CONFERIDO POR:

<u>QUESTÃO 9</u> – Se um conjunto de pontos de um plano constitui um Lugar Geométrico (**LG**), então todos os pontos desse conjunto satisfazem uma dada condição e nenhum outro ponto desse plano que esteja fora desse conjunto satisfaz a mesma condição. Dessa forma, a mediatriz é um **LG** dos pontos do plano que estão situados à mesma distância de dois pontos distintos dados.

No Plano Cartesiano abaixo, está representada a mediatriz $\bf r$ relativa aos pontos $\bf A$ e $\bf B$. A soma das coordenadas do ponto de interseção dessa mediatriz com o segmento de reta $\overline{\bf AB}$ é:

- B 2
- \bigcirc $-\frac{1}{2}$
- $\bigcirc \frac{1}{2}$
- $\mathbb{E} \frac{5}{2}$

<u>QUESTÃO 10</u> – O gráfico abaixo representa a quantidade de indivíduos presentes em uma colônia de bactérias. De acordo com o grau de temperatura do ambiente em que se encontra, baseando-se no gráfico da função afim, podemos concluir que:

- (a) A 0° C, existem mais de 7 mil indivíduos na colônia.
- © Para que haja 6 mil indivíduos na colônia, é necessário que a temperatura esteja a 1° C.
- D Quanto maior a temperatura, maior a quantidade de indivíduos na colônia.
- E A − 3° C há 9 mil indivíduos na colônia.

PÁGINA 6

CONFERIDO POR:

<u>QUESTÃO 11</u> – Uma fábrica produz aparelhos para a correção de defeitos da audição que são de alta qualidade tecnológica. O lucro obtido pela fábrica na venda desses aparelhos é dado pela relação $\mathbf{L}(\mathbf{x}) = \mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c}$, com \mathbf{a} , \mathbf{b} e \mathbf{c} constantes reais não nulas. $\mathbf{L}(\mathbf{x})$ indica o lucro em **mil reais** e \mathbf{x} , a quantidade de produtos fabricados. Sabe-se que a produção de **50** aparelhos não dá lucro nem prejuízo e que o lucro máximo obtido pela fábrica é de \mathbf{R} \$ **22.500,00**.

Assinale a opção cujo gráfico melhor representa a variação de lucro da fábrica em relação à quantidade de aparelhos produzidos:

 $\underline{OUEST\~AO~12}$ – No plano cartesiano abaixo, estão representadas as retas \mathbf{r} , \mathbf{s} , \mathbf{u} e \mathbf{v} , com $\mathbf{r}//\mathbf{s}$ e $\mathbf{u}//\mathbf{v}$.

A reta s corta o eixo das abscissas no ponto (2, 0), assim como a reta v em (a, 0) e a reta u em (x, 0), em que 2 < a < x. P é o ponto de interseção entre as retas s e v e Q, entre as retas r e u. A reta \overrightarrow{PQ} passa pela origem do plano cartesiano. O valor de x é:

- \bigcirc a^2
- $\mathbb{B} \frac{a^2}{2}$
- $\bigcirc a^2 + a$
- D 2a + 1
- $\frac{a}{2} + 1$

PÁGINA 7

CONFERIDO POR:

<u>QUESTÃO 13</u> – Nos atuais cinemas digitais, os filmes são exibidos através de uma pequena câmera que projeta a imagem na tela, como mostra a figura. A frente da câmera assim como a tela de cinema tem formato retangular. Em uma determinada sala, a proporção entre a tela de exibição e a frente da câmera de projeção é de **200:3**. Se a área da tela é igual a **352 m²** e a diferença entre suas dimensões é de **6 m**, as dimensões da frente da câmera são:

- (A) 15 cm x 12 cm
- (B) 20 cm x 15 cm
- © 22 cm x 16 cm
- ① 30 cm x 21 cm
- **E** 33 cm x 24 cm

<u>QUESTÃO 14</u> – Uma tenda será levantada a partir do solo através de cabos de aço totalmente esticados na frente e atrás. Os cabos de aço da frente serão fixados com extremos em P e em A, B, C, D, E e F, respectivamente. P se encontra no ponto médio de \overline{AF} . A mesma fixação será montada na parte de trás, sendo que barras de ferro unirão as duas estruturas, assim como o seu contorno.

Assinale a opção que aponte, corretamente, a quantidade, em metros, de cabo de aço necessária para levantar esta estrutura:

(considere $\sqrt{5} = 2,2$)

- **▲** 157,2 m
- 314,4 m
- © 78,6 m
- D 239,2 m
- **E** 478,4 m

PÁGINA 8

CONFERIDO POR:

<u>QUESTÃO 15</u> – Um carro de controle remoto foi acionado por um homem que estava parado a uma certa distância do ponto de largada. A ideia inicial era que o carro realizasse um percurso em linha reta, do ponto de largada até o ponto de chegada, o que de fato ocorreu. Ao chegar a um determinado ponto (Parada), o carro ficou imóvel por **três** minutos. O homem, então, verificou que a sua distância, em relação ao ponto de largada, era a mesma distância percorrida pelo carro, até este momento. Depois da breve parada, o carro prosseguiu sua trajetória por mais **126 m** até atingir o ponto de chegada. A distância, neste momento, do homem até o carro, era igual a **306 m**. A figura abaixo ilustra a situação descrita.

Sendo assim, a distância entre o homem e o carro, quando este parou por três minutos, era igual a:

QUESTÃO 16 – Os ângulos α e β são complementares, com sen α = 0,8.

O valor de
$$y = \sqrt{\frac{\text{sen}\alpha.\cos\beta - \frac{\text{tg}\beta}{5}}{\text{tg}^2\alpha - 3.\text{sen}\beta + 5\cos^2\alpha}}$$
 para $0^\circ < \alpha < 90^\circ$ é:

- (A) 0,254
- **B** 0,342
- © 0,435
- ① 0,525
- (E) 0,618

PÁGINA 9

CONFERIDO POR:

<u>QUESTÃO 17</u> – Dois holofotes foram instalados sobre uma quadra, em alturas distintas, para iluminar, juntos e simultaneamente, o espaço por ela ocupado, conforme ilustrado na figura abaixo. O ângulo de alcance do holofote mais baixo, colocado a **4 metros** acima da quadra, é de **60**°. O holofote mais alto se encontrava a uma altura de **12 metros**. O ângulo de alcance do holofote mais alto, desprezando o tamanho do holofote, é:

<u>QUESTÃO 18</u> – A tabela a seguir mostra o resultado da Pesquisa de Orçamento Familiar (POF), realizada pelo Instituto Brasileiro de Geografia e Estatística (IBGE) no ano de **2003**.

Classes de rendimento mensal familiar (reais)	Avaliação da quantidade de alimento consumido pela família				
	Normalmente insuficiente	Às vezes insuficiente	Sempre suficiente		
Até R\$ 600,00	7,1 %	13,18 %	10,09 %		
Mais de R\$ 600,00 até R\$ 1.200,00	3,92 %	10,53 %	13,85 %		
Mais de R\$ 1.200,00 até R\$ 3.000,00	2,27 %	7,15 %	17,3 %		
Mais de R\$ 3.000,00	0,54 %	1,94 %	12,12 %		
Total	13,83 %	32,8 %	53,36 %		

(Fonte: IBGE - POF 2003)

Segundo as classes de rendimento mensal familiar, os dados, em porcentagem, mostram a distribuição das famílias por avaliação da quantidade de alimento consumido. Das famílias com renda maior que **R\$ 600,00** e menor ou igual a **R\$ 1.200,00**, assinale a opção cujo gráfico representa este intervalo de renda:

PÁGINA 10 **CONFERIDO POR:**

<u>QUESTÃO 19</u> – A tabela a seguir apresenta a distribuição da despesa média mensal (em salários mínimos) por grupos de despesa (alimentação, habitação e vestuário), nas áreas da pesquisa, realizada em 1978 e em 1996.

	Despesa Média Mensal Familiar (em Salários Mínimos)							
Áreas da Pesquisa		Desembolso Global		Grupos de Pesquisa				
	Glo			Alimentação		Habitação		Vestuário
	1996	1987	1996	1987	1996	1987	1996	1987
Belém	10,09	13,26	2,23	2,87	2,08	1,87	0,62	1,41
Fortaleza	8,21	10,64	1,89	2,41	1,56	1,50	0,46	0,99
Recife	8,24	9,28	1,88	2,19	1,74	1,38	0,47	0,93
Salvador	8,83	12,32	1,99	2,65	1,76	1,78	0,52	1,39
Belo Horizonte	13,62	12,49	2,13	2,44	2,48	1,87	0,69	1,26
Rio de Janeiro	10,28	11,22	1,79	2,34	2,33	1,80	0,41	1,01
São Paulo	14,91	15,70	2,30	2,79	3,09	2,60	0,64	1,41
Curitiba	14,56	14,17	2,16	2,18	2,79	2,10	0,81	1,54
Porto Alegre	12,98	12,14	2,07	2,17	2,30	1,71	0,73	1,41
Brasília-DF	16,37	18,44	2,44	2,59	3,42	2,74	0,79	1,80
Goiânia	11,42	16,55	1,45	2,17	2,22	2,40	0,57	1,60

(Fonte: IBGE (disponível em

https://www.ibge.gov.br/home/estatistica/populacao/condicaodevida/ pof/tab1.shtm. Acesso em 02/08/2018 - Adaptado)

Considere a razão entre a despesa média mensal familiar do grupo de pesquisa "vestuário" em **1987** e em **1996**, nessa ordem, em cada área de pesquisa. As duas áreas de pesquisa que apresentam os valores dessas razões mais próximas são:

- (A) Curitiba e Porto Alegre.
- B Goiânia e Salvador.
- © Fortaleza e Recife.
- Belo Horizonte e São Paulo.
- E Belém e Brasília.

PÁGINA 11 **CONFERIDO POR:**

<u>QUESTÃO 20</u> – O gráfico a seguir apresenta o número de bolsas de cursos de Mestrado e Doutorado que foram concedidas pelas agências federais CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) e CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) no período de **1997** a **2004**.

NÚMERO DE BOLSAS DE MESTRADO E DOUTORADO CONCEDIDAS NO PAÍS POR AGÊNCIAS FEDERAIS – PERÍODO 1997 A 2004

(Fonte: MEC/CAPES e MCT/CNPq, 2006)

De acordo com o gráfico, considerando-se os anos que apresentaram aumento do número de bolsas, em relação ao ano anterior e em cada um dos cursos/agência federal, assinale a opção que contenha a maior diferença registrada no período:

 ⚠ 697
 Mestrado Capes

 ⑤ 423
 Doutorado Capes

 ⑤ 396
 Mestrado CNPq

 Ē 362
 Doutorado CNPq

FIM DE PROVA

#