Assignment 4

Submitted by: Weerdhawal Chowgule

Goal:

In this assignment we have to match faces from the given data set on the basis of Eigen-Face approach. The training data set provided contains 33 different persons and each individual data set has a set of images of the person with different orientations, distortions etc. We also have to find how many images match, also we have to use different colorspaces and different K values.

Explanation of Algorithm and Program Flow:

- 1. The first step is the training phase in which we import all the images and then train them in which colorspace we require and make a vector Im of all the images.
- 2. In the second step we calculate the mean value (Mue) of all the IM images.
- 3. In this step we subtract the Mue value from the Im values and assign the new Im vector value to a matrix A.
- 4. Next perform Eigen decomposition on A and calculate matrix X and lambda.
- 5. From this X matrix select the largest K values, to do this in matlab use the values form last as in matlab they are stored in ascending order hence we can get better precision.
- 6. Next we multiply the selected largest K values stored in X matrix with A.
- 7. Next we calculate the alpha Matrix.
- 8. From here the testing phase begins:
 - a. First we take the images from the testing folder and convert it into a vector IMtest.
 - b. Next we subtract the Mue value from the IMtext Matrix and perform alpha test.
 - c. Next here we use different Norms as specified in the problem definition(Norm 1 and Norm 2)
- 9. Final step we calculate the Accuracy, and display the most closest images.

Results

SI No	К	HSV	RGB	RGB HSV	YCbCr	HSVYCbCr	single	Grayscale
1	10	22.07	20.77	20.77	23.37	20.77	10.82	21.21
2	20	29.43	24.24	20.77	23.37	23.37	10.82	22.51
3	22	30.73	24.24	24.24	23.37	23.37	10.82	22.07
4	23	31.6	24.24	24.24	23.37	23.37	10.82	22.07
5	35	29.87	24.67	24.67	23.8	23.8	10.38	22.94
6	70	30.73	24.67	24.67	24.67	24.67	12.12	23.8
7	100	30.73	24.67	24.67	24.67	24.67	12.12	23.8

Final Images:

TestImage

ClosestMatchingImage

TestImage

ClosestMatchingImage

TestImage

ClosestMatchingImage

TestImage

ClosestMatchingImage

TestImage

ClosestMatchingImage

TestImage

ClosestMatchingImage

Observations:

As the value of K changes the accuracy varies, at certain time it goes to a peak value then again minimizes sometime and later it almost becomes a constant value (i.e it saturates). The maximum value of k can go up to the total number of training images.

Note:

- 1. Change the k Values in the code for different accuracies
- 2. For Norm 1 and Norm 2 there is just a slight difference in the code so read comment in the testing phase and then use the required norm.