

Inicio de Ciclo: 17/03/2025

Fin de Ciclo: 19/07/2025

INTELIGENCIA ARTIFICIAL

I: SUMILLA

Asignatura de naturaleza teórica, práctica y aplicada, tiene como objetivo ofrecer una visión de sus técnicas en la solución de problemas complejos. Presenta una perspectiva general de los apartados más significativos de las bases, mostrando las herramientas teóricas y las aplicaciones prácticas de esta rama de las tecnologías de la información. Se contemplan los siguientes temas: Introducción a la Inteligencia Artificial. Clasificación de problemas, Visión Artificial, Fundamentos de IA. Sistemas Inteligentes. Heurísticas, Reconocimiento de Patrones, los Sistemas Expertos, las Redes neuronales, Robótica, Lógica difusa y los Agentes Inteligentes en general.

II: DATOS GENERALES

CÓDIGO	TIPO	CRÉDITOS	НТ	HP	REQUISITOS
200204	0	4	2	4	INTELIGENCIA DE NEGOCIOS Y ANALISIS DE DATOS LENGUAJE Y COMPILADORES TALLER DE IMPLEMENTACION DE SISTEMAS DE INFORMACION TALLER DE IMPLEMENTACION DE SOLUCIONES EMPRESARIALES

Docentes Responsables:

LOPEZ DEL MAR, JOEL BENIGNO	RAMIREZ ROMERO, BRANDON VICENTE FERNANDEZ CARRION, NIXON OMAR
-----------------------------	--

III: SISTEMA DE COMPETENCIAS

3.1 : Competencias Genéricas

- 1.- Aplica un conocimiento de matemáticas, ciencias, ingeniería y tecnología a los problemas de ingeniería que requieren una aplicación limitada de principios pero un amplio conocimiento práctico.
- 2.- Comprende la necesidad y se compromete a autodirigir un desarrollo profesional continuo.
- 3.- Aplica los conocimientos, técnicas, habilidades y herramientas modernas de la ingeniería en actividades tecnología estrechamente definidas.

3.2 Competencias Específicas

- **1. 1.-** Aplicar los diferentes algoritmos del aprendizaje automático para la solución de situaciones reales asumiendo una actitud innovadora y siendo asertivo al trabajar en equipo.
- 2. 1.- Aplicar las diferentes técnicas de redes neuronales en problemas de clasificación y agrupación de datos, asumiendo una actitud innovadora y siendo asertivo al trabajar en equipo.

1.- Aplicar las diferentes técnicas y estrategias de búsquedas para la resolución de problemas, asumiendo una actitud innovadora y siendo asertivo al trabajar en equipo.

3.3 Logro del curso.

- 3.3.1 Comprende y aplica el procesamiento con imágenes utilizando el software Matlab y Weka 3.3.2 Determinar estructuras de interconexión de redes neuronales artificiales, Conocer el procedimiento de implementación de sistemas de aprendizaje supervisado y no–supervisado para redes neuronales artificiales.
- 3.3.3 Comprende los estudios relacionados a la teoría de lógica Nebulosa (Fuzzy)
- 3.3.4 Comprende analiza problemas y plantea agentes que se comporten y piensen racionalmente, fundamentando sus trabajos en conceptos del campo de estudio de la IA, diferenciándolo de otros tipos de sistemas inteligentes, caracterizando y contrastando las arqui 3.3.5 Comprende y aplica el procesamiento con imágenes utilizando el software Matlab.

IV. PROGRAMACIÓN DE CONTENIDOS

UNIDAD 1 : CONDUCTA INTELIGENTE, RECONOCIMIENTO DE PATRONES, EXTRACCIÓN DE CARACTERÍSTICAS DE LOGRO DE LA UNIDAD: Comprende y aplica el procesamiento con imágenes utilizando el software Matlab y Weka

SEM	CONTENIDOS CONCEPTUALES	APRENDIZAJE ESPERADO	ACTIVIDAD DE EVALUACIÓN
1	Conducta Inteligente Historia, evolución de la IA Técnicas de la IA. Aplicaciones	Comprende y aplica los conceptos y técnicas de IA.	Evaluación de Entrada Tarea: Elabore Usted un resumen del video visto en clase. Control de lectura: Procesamiento de imágenes
2	Introducción al reconocimiento de patrones. Histogramas, Aplicaciones. Operaciones Lógicas y Aritméticas Aplicaciones	Entender el propósito de reconocimiento de Patrones	Tarea: Operaciones con imágenes, reconocimiento de patrones y extracción de características de imágenes digitales. Evaluación Continua 01
3	Filtros Detección de bordes Detección de esquinas, líneas y curvas: Aplicaciones	Comprende y aplica la extracción de características de imágenes digitales	Elabora aplicaciones con el software Matlab para el procesamiento de extracción de imágenes digitales.
4	Análisis de componentes principales PCA, ICA	Capta y analiza y aplica el Pre Procesamiento de Datos	Utiliza y aplica el software WEKA para la clasificación de datos. Evaluación Parcial 01

UNIDAD 2: EL PERCEPTRON, BACKPROPAGATION, HOPFIELD, KAMEAS

LOGRO DE LA UNIDAD: Determinar estructuras de interconexión de redes neuronales artificiales, Conocer el procedimiento de implementación de sistemas de aprendizaje supervisado y no–supervisado para redes neuronales artificiales.

SEM	CONTENIDOS CONCEPTUALES	APRENDIZAJE ESPERADO	ACTIVIDAD DE EVALUACIÓN
5	Clasificación de datos Árboles de decisión Algoritmo ID3, J48 Aplicaciones	Comprender y clasificar el aprendizaje supervisado	Diseñar Arboles de decisión, Redes neuronales, clasificador bayesiano, a partir de datos de entrenamiento Evaluación Continua 02
6	El perceptrón Algoritmo de aprendizaje Aplicaciones	Dominio de las Redes Neuronales Artificiales	Elaborar algoritmos de aprendizaje – el Perceptrón
7	Algoritmo backpropagation Aplicaciones	Comprender el Perceptrón Multicapa	Elaborar algoritmos de aprendizaje – perceptrón multicapa Evaluación Continua 03
8	Clasificación de datos	Entender el Aprendizaj e Automático	Desarrollar programas de aprendizaje automático Evaluación Parcial 02
9	La red neuronal de Hopfield. La memoria bidireccional asociativa (BAM) Aplicaciones	Dominio de las Redes Neuronales Recurrentes	Desarrollar programas de red neuronal mono capa
10	Técnicas de agrupamiento Algoritmo Kameas Métodos Jerárquicos: Aplicaciones	Comprender y Agrupar objetos similares entre sí que sean distintos a los objetos de otros agrupamientos [clusters].	Elaborar algoritmos de aprendizaje no supervisado
11	Mapas de Kohonen Algoritmo de entrenamiento. Aplicaciones	Comprender las Redes Neuronales Autorganizativas	Elaborar algoritmos de aprendizaje no supervisado Evaluación Continua 04
12	Modelo ART Algoritmo de aprendizaje	Dominio de las Redes Neuronales No Supervisadas	Evaluación Parcial 03

UNIDAD 3: LOGICA DIFUSA

LOGRO DE LA UNIDAD: Comprende los estudios relacionados a la teoría de lógica Nebulosa (Fuzzy)

SEM	CONTENIDOS CONCEPTUALES	APRENDIZAJE ESPERADO	ACTIVIDAD DE EVALUACIÓN
13	Conjuntos Difusos Operaciones Difusas Variables Lingüísticas Sistemas de control difuso	Entender lo relativo de lo observado como posición diferencial	Medir a través de algoritmos la forma de representación de las incertidumbres

UNIDAD 4: SISTEMAS EXPERTOS

LOGRO DE LA UNIDAD: Comprende analiza problemas y plantea agentes que se comporten y piensen racionalmente,

fundamentando sus trabajos en conceptos del campo de estudio de la IA, diferenciándolo de

otros tipos de sistemas inteligentes, caracterizando y contrastando las arqui

SEM	CONTENIDOS CONCEPTUALES	APRENDIZAJE ESPERADO	ACTIVIDAD DE EVALUACIÓN
14	Fuzzificación Defuzzificación Inferencia difusa	Engloba y crea reglas y hechos para la generación de conocimiento de un sistema experto	Desarrolla Procesos cognitivos de realidades abstractas para el desarrollo de aplicaciones expertas.
15	Introducción al razonamiento inexacto Concepto de incertidumbre Teorema de bayes Algoritmo naive bayes	Comprender los sistemas expertos basados en modelos probabilísticos diseñar y desarrollar sistemas expertos probabilísticos	Desarrolla agentes inteligentes como parte de un proyecto aplicativo Evaluación Continua 05

UNIDAD 5: COMPUTACION EVOLUTIVA

LOGRO DE LA UNIDAD: Comprende y aplica el procesamiento con imágenes utilizando el software Matlab.

SEM	CONTENIDOS CONCEPTUALES	APRENDIZAJE ESPERADO	ACTIVIDAD DE EVALUACIÓN
16	Estructura general de un algoritmo genético. Implementación de un AG. Análisis de los parámetros de evaluación por simulación	Entender problemas de optimización combinatoria	Elaborar algoritmos genéticos de variación genética Evaluación Continua 06

17	•	Repaso	Examen Final

CONTENIDO PROCEDIMENTAL:

- ·Comprende y aplica los conceptos y técnicas de IA
- ·Analiza el propósito de Reconocimiento de Patrones Histogramas, y Aplicaciones Operaciones Lógicas y aritméticas.
- ·Aplica con el software Matlab el procesamiento de extracción de imágenes digitales.
- ·Aplica el software WEKA para la clasificación de datos .
- ·Diseñar Arboles de decisión, Redes neuronales, clasificador bayesiano, a partir de datos de entrenamiento.
- Determina algoritmos de aprendizaje el Perceptrón.
- ·Aplica algoritmos de aprendizaje Perceptrón multicapa
- ·Desarrolla programas de aprendizaje automático
- ·Aplica programas de red neuronal mono capa
- ·Determina algoritmos de aprendizaje no supervisado
- ·Aplica a través de algoritmos la forma de representación de las incertidumbres.
- Determina los procesos cognitivos de realidades abstractas para el desarrollo de aplicaciones expertas.
- ·Resuelve algoritmos genéticos de variación genética

CONTENIDO ACTITUDINAL:

- ·Valora la importancia y necesidad del aprendizaje permanente y es capaz de encararlo en el más amplio contexto de los cambios tecnológicos.
- ·Valora los conocimientos de matemáticas, ciencias e ingeniería en la solución de problemas complejos de Ingeniería.
- ·Valora la necesidad del aprendizaje permanente

V. ESTRATEGIAS METODOLÓGICAS

Se presentan los temas en clase con la participación de los estudiantes, los cuales deben haber leído previamente el material complementario que se encuentra en la página web del curso. Las consultas que el estudiante necesite realizar al profesor del curso las puede hacer durante la clase (si el tema corresponde), fuera de ella (en los horarios de asesoría que el profesor proporciona) o por correo electrónico.

La metodología es expositiva en aula, el enfoque del curso es teórico-práctico.

- ·Metodología activa participativa.
- ·Exposición, participación y diálogo conjunto de estudiantes y el docente ·Desarrollo de casos y tareas a elaborar.
- ·Dinámicas grupales

VI. RECURSOS DIDÁCTICOS

- ·Documentos impresos y manuscritos: Libros, folletos, revistas, separatas, guías de ejercicios, guías de laboratorio.
- ·Material audiovisual e informático: Software de simulación y diseño electrónico, dispositivos electrónicos, Instrumentos de medición, videos, CD, memorias portátiles, fotografías.
- ·Otros materiales: Pizarra, mota, plumones.
- ·Equipos: Proyector multimedia, DVD, ecran, computadores.
- ·Aula virtual

VII. SISTEMA DE EVALUACIÓN

Conforme a los lineamientos de evaluación descritos en el Reglamento UCSS, la evaluación es permanente y contemplará los criterios de: asistencia, participación activa en clase, desarrollo de prácticas, entrega puntual de las tareas académicas.

Los exámenes son de naturaleza acumulativa, es decir, la evaluación parcial no es cancelatoria. La evaluación final incluye todos los contenidos del sílabo. El promedio final del curso es producto de una media ponderada y considera los siguientes pesos:

	EVALUACIONES	PORCENTAJES
CÓDIGO		
EP1	Evaluación parcial 1	10%
EP2	Evaluación parcial 2	20%
EP3	Evaluación parcial 3	20%
EF	Evaluación final	30%
EC	Evaluaciones continuas.	20%

Finalmente, el promedio final (PF) del curso se obtendrá de la siguiente manera:

VIII. REFERENCIAS

8.1 REFERENCIAS BÁSICAS:

- ·S. Russell, P. Norving, "Artificial Intelligence: A Modern Approach" 2 nd Ed. Prentice Hall. 2003 ISBN: 0-13790395-2.
- ·Jose Palma Mendez y Roque Marin Morales, "Inteligencia Artificial, t{técnicas métodos y aplicaciones" 1ª Ed, McGrawHill. 2008 ISBN: 9788448156183.
- ·Bonifacio Martín-del-Brío y Alfredo Sanz-Molina, "Redes Neuronales y Sistemas Borrosos" Editorial RA-MA, Madrid (España), 2001. ISBN 84-7897-466-0.
 - ·Hilera y Martínez, "Redes Neuronales Artificiales" Alfaomega, México, 2000.
- ·Isasi Viñuela, Pedro y Galván, Inés M., "Redes de Neuronas Artificiales: Un Enfoque Práctico" Editorial: Pearson Educacion 2004.
 - ·H. Brighton, H. Selina, "Introducing Artificial Intelligence", Tótem Books 2004, ISBN 1840464631.
- · S. Haykin, "Neural Networks and Learning Machines", 3 rd Ed. Prentice Hall, 2008, ISBN-13: 9780131471399.
- ·Z. Michalewicz, "Genetic Algorithms + Data Structures = Evolution Programs", 3 rd Ed., 1996, Springer, ISBN 978-3-540-60676-5

8.2 REFERENCIAS COMPLEMENTARIAS: