# ALGORITMOS Y LÓGICA DE PROGRAMACIÓN

## TEMA: BÚSQUEDA LINEAL



#### **INTEGRANTES:**

- Ariel Alejandro Calderón
- Jacson Antonio Narváez





#### **Búsqueda lineal**

La búsqueda lineal, también conocida como búsqueda secuencial, es un algoritmo simple para encontrar un elemento dentro de una lista o arreglo.

Funciona recorriendo cada elemento de la lista, uno por uno, hasta encontrar el elemento deseado o hasta haber examinado todos los elementos sin encontrar el objetivo.

#### Aplicación del algoritmo de búsqueda lineal

La búsqueda lineal normalmente es muy sencilla de implementar, y es práctico cuándo la lista posee solo unos cuantos elementos, o cuando realiza una sola búsqueda en una lista desordenada. Cuando muchos valores tienen que ser buscados en la misma lista, a menudo se procesa la lista para utilizar un método más rápido. Por ejemplo, uno se puede ordenar la lista y utilizar búsqueda binaria, o construir una estructura de datos.

#### Ventajas

- Es un método sumamente simple que resulta útil cuando se tiene un conjunto de datos pequeños.
- Si los datos buscados no están en orden es el único método que puede emplearse para hacer dichas búsquedas.

#### Desventajas

- Este método tiende hacer muy lento.
- Se requiere buscar en todo el arreglo, lo que hace el proceso muy largo.

## Diagrama de flujo



#### Codificación

```
. .
#include <stdio.h>
int main() {
    int arr[10] = {2, 5, 7, 12, 15, 18, 23, 35, 40, 45};
    int objetivo;
    int izquierda = 0;
    int encontrado = 0;
    printf("Arreglo inicial:\n");
    for (int i = 0; i < 10; i++) {
        printf("%d ", arr[i]);
    printf("\n\n");
    printf("Ingrese el elemento que desea buscar: ");
    scanf("%d", &objetivo);
    while (izquierda <= derecha) {</pre>
        int medio = izquierda + (derecha - izquierda) / 2;
        if (arr[medio] == objetivo) {
            printf("El elemento %d se encuentra en la posición %d.\n", objetivo, medio);
            encontrado = 1;
            break;
        } else if (arr[medio] < objetivo) {</pre>
            izquierda = medio + 1;
        } else {
            derecha = medio - 1;
    if (!encontrado) {
        printf("El elemento %d no se encuentra en el arreglo.\n", objetivo);
    return 0;
```

#### Prueba de escritorio

| Iteración | left | right | mid | arr[mid] | target | Comparación | Nuevo left | Nuevo right | Encontrado |
|-----------|------|-------|-----|----------|--------|-------------|------------|-------------|------------|
| 1         | 0    | 9     | 4   | 15       | 23     | 15 < 23     | 5          | 9           | No         |
| 2         | 5    | 9     | 7   | 35       | 23     | 35 > 23     | 5          | 6           | No         |
| 3         | 5    | 6     | 5   | 18       | 23     | 18 < 23     | 6          | 6           | No         |
| 4         | 6    | 6     | 6   | 23       | 23     | 23 == 23    | -          | -           | Sí         |

## **Ejecución**



# **Bibliografía** https://es.wikipedia.org/wiki/B%C3%BAsqueda lineal https://www.inf.utfsm.cl/~noell/IWI-131-p1/Tema8b.pdf https://ed.team/comunidad/ventajas-y-desventajas-de-la-busqueda-lineal http://artemisa.unicauca.edu.co/~nediaz/EDDI/cap02.htm https://pier.guillen.com.mx/algorithms/03-ordenacion/03.6busqueda lineal.htm