Topic 15: Modular sequential logic: registers

Thursday, January 31, 2019 4:45 PM

I. Registers

1. **Definition:** a synchronous sequential circuit that will store and move n-bit data, either serially or in parallel, in n flip-flops

e.g. 4-bit D flip-flop with clear, load and clock inputs

II. Shift registers

1. SRGn: n-bit shift register. e.g. SRG4 indicates a 4-bit shift register

2. Type of shift register:

- a. Serial shifting: movement of data from one end of a shift register to the other at a rate of one bit per clock pulse
- b. Parallel shifting: movement of data into all flip-flops of a shift register at the same
- c. Rotation: in serial shift register, the output of the last FF is connected back to the synchronous input of the first FF. This results in continuous circulation of the same data
- d. Right shift, left shift, bidirectional shift register
- e. Parallel-load shift register: a shift register that can be preset to any value by directly loading a binary number into its internal flip-flops
- f. Universal shift register: a shift register that can operate with any combination of serial and parallel inputs and outputs

e.g. serial in/serial out, serial in/parallel out, parallel in/serial out, parallel in/parallel out, and bidirectional operation

3. Serial in/serial out shift register

o Symbol of a serial in/serial out SRG8

Commercial product: SN7491A -- 8-bit serial-in, serial-out shift register

o Diagram of a 4-bit serial in/serial out shift register:

Q1: Given the Clock and data waveforms, draw the output waveforms of each flip-flop $(\mbox{Q0}$ - $\mbox{Q3})$

Now thinking we have a series of data (1010) to store: start from the LSB

TABLE 8-1

Shifting a 4-bit code into the shift register in Figure 8–3. Data bits are indicated by a beige screen.

CLK	FF0 (Q_0)	FF1 (Q_1)	FF2 (Q_2)	FF3 (Q ₃)
Initial	0 -	0-	0 ~	0
1	0	->0	→0~	30 3
2	1	0	>0	- > 0
3	0	<u></u>	~ 0~	⇒ 0 ==
4	1	~~ 0	<u>~</u> 1	-> 0

To read the data out, another 4 clock pulse is needed

TABLE 8-2

Shifting a 4-bit code out of the shift register in Figure 8–3. Data bits are indicated by a beige screen.

CLK	FF0 (Q_0)	FF1 (Q_1)	$FF2(Q_2)$	FF3 (Q ₃)	211
Initial	1	0	1	0	Kenton

Data bits are indicated by a beige screen.

CLK	FF0 (Q_0)	FF1 (Q ₁)	FF2 (Q_2)	FF3 (Q ₃)
Initial	1	0	1 _	0_
5	0	31	20	31
6	0	0	→ 1 <u> </u>	-20
7	0	0	0	31
8	0	0	0	0

Q2: in the following 5-bit serial in/serial out shift register (SGR5), a series of data (01011) is going to be stored (the rightmost bit goes in first).

- a. What data is stored in the output of each flip-flop (from Q_0 to Q_4) after 4 clock cycles?
- b. If the data input is fixed to logic 1 after the 5-bit data all go into the register, what data is stored in the output of each flip-flop (from Q_0 to Q_4) after 7 clock cycle?

4. Serial in/parallel out shift register

FIGURE 8-6 A serial in/parallel out shift register.

The store process is the same as serial in/serial out shift register

Commercial product: SN74164 -- 8-bit serial-in, serial/parallel -out shift register; SN796 -- 5-bit serial-in, serial-parallel - out shift register with asynchronous common clear and preset

5. Parallel in/serial out shift register

Q3: If SHIFT/ $\overline{LOAD}=0$, what are the outputs of the AND gates Y1~Y7? What are the outputs of the OR gates Z1~Z3? When a clock rising edge is coming, what are the outputs of the flip-flops Q0~Q3? Do you think the registers are doing loading or shifting function?

Q4: If SHIFT/ $\overline{LOAD}=1$, what are the outputs of the AND gates Y1~Y7? What are the outputs of the OR gates Z1~Z3? When a clock rising edge is coming, what are the outputs of the flip-flops Q0~Q3? Do you think the registers are doing loading or shifting function?

6. Parallel in/parallel out shift register

The 74HC195 4-bit parallel access shift register.

7. Bidirectional shift register

Q5: Determine the state of the bidirectional shift register after each clock pulse for the given control input waveform. Assume that Q0=1, Q1=1, Q2=0, Q3=1 and the serial data input is LOW.

Commercial product: SN74164 -- 4-bit bidirectional serial-in, parallel-out shift register

8. Universal register -- 74HC194 4-bit universal shift register

Q6: Design a 4-bit SRG with control input SH (Shift) and L (Load) using D flip-flops. If both SH and L are 0, the stored data in the SRG will not change; if L is 1, the SRG will do parallel loading from data input 13~10; if SH is 1 and L is 0, the SRG should shift to the right.

a. Complete the state table

L	SH	Q3*	Q2*	Q1*	Q0*
0	0	Ø٤	Q	Q ₁	Q ₀
1	X	I2	I_2	I_1	I.
0	1	Ó	Qz	Q,	Q,

D3 D2 D1 D0.

(23) 02 &1 &0

I3 I2 L1 L0

0 &3 &2 &1.

- 12 Y-5 B.+5 P.

b. Generate the Boolean function for D3~D0

(Input circuit for FFs).

)= 2'sH'D+2I+2'SHD.

Fts. 20-lit RC. 20 state

III. Shift register counter

• Counter: a sequential circuit that has a number of binary outputs whose states progress through a fixed sequence, either ascending or descending or even nonlinear. A counter goes back to its initial state after counting the last state.

• Type I: Ring counter

Definition: a shift register with the serial output connected back to the serial input to produce special sequence

e.g. 10-bit ring counter

TABLE 8-5

Ten-bit ring counter sequence. Q_9

Q7: If a 10 bit ring counter has an initial state $Q0:Q9 = 1\,010\,000\,000$ determine, the count sequence for the Q outputs for the 1st 10 clock cycles. mittal state.

Q8: What is the initial state of the 10-bit ring counter if the output Q9 show the following waveform

• Type II: Johnson counter

The complement of the output of the last FF is connected back to the D input of the first FF.

A n-bit (n-FFs) Johnson counter can realize modulus-2n counter

e.g. 4-bit Johnson counter

7

Q9: How many flip-flops are required to implement a:

- a) Modulus-6 Ring Counter
- b) Modulus-10 Johnson Counter 5 FF 5-
- c) Modulus-14 Ring Counter
- d) Modulus-16 Johnson Counter
- e) Modulus-6 Binary Counter