MAC 2313 Lecture Notes

Mark Williams

Contents

Chapter 1	Pretace	Page 2
1.1	Examples	2
Chapter 2	Unit 3	Page 4
2.1	Lecture 1 Double Integrals Intro — 4 • Polar Coordinates — 5	4

Chapter 1

Preface

1.1 Examples

Theorem 1.1 Theorem Hello World!

Definition 1.1: Definition Test

Definition Example

Lenma 1.1 Lenma Test

Lenma Example

Proof 1.1 test

hello world

Exercise 1.1 Exercise Test

Ex Example

Example 1.1 (Example Test)

Hello World Example!

Definition 1.2: Limit Test

 $\lim_{x\to\infty}\frac{1}{x}$

Chapter 2

Unit 3

2.1 Lecture 1

2.1.1 Double Integrals Intro

Definition 2.1: Double Integrals

The double summation of multivariable integrals is defined as:

$$\sum_{i=1}^{\infty} \sum_{i=1}^{\infty} \Delta x \Delta y f(x_i, y_i) = \iint_{R} f(x, y) DA$$

Where R is the independent x and y ranges or Δx and Δy and A is the area defined by those ranges. R does not have to be rectangular and can be defined by the area of functions.

Double Integrals can be easily defined as twice iterated integrals.

Lenma 2.1 Simple dA definition under the x and y coordinate system

$$dA = dxdy$$
 OR $dA = dydx$

Definition 2.2: Volume of a box with height c

$$\iint_R cDA = c \iint_r DA = cA(R)$$

Theorem 2.1 Fubini's Theorem

Let $a \le x \le b$ and $g_1(x) \le y \le g_2(x)$

Let $c \le x \le d$ and $h_1(y) \le x \le h_2(y)$

Then for a continuous function f(x, y) or R

$$\iint_{R} f(x,y)dA = \int_{a}^{b} \left[\int_{g_{1}(x)}^{g_{2}(x)} f(x,y)dy \right] dx$$
$$= \int_{c}^{d} \left[\int_{h_{1}(y)}^{h_{2}(y)} f(x,y)dy \right] dx$$

Alike partial derivatives, we can compare this to a partial integral.

Example 2.1 (Example with figure given)

$$\iint_{R} f(x,y)dA = \int_{0}^{1} \left[\int_{x^{2}}^{x} f(x,y)dy \right] dx$$

$$= \int_{0}^{1} \left[\int_{y}^{\sqrt{y}} f(x,y)dy \right] dx$$
(2.1)

Definition 2.3: Average Area

Average Area
$$=\frac{1}{A(R)}\iint_R f(x,y)\,dA$$

2.1.2 Polar Coordinates

Definition 2.1: Polar Coordinates

$$x = r \cos \theta$$
 $x^2 + y^2 = r^2$
 $y = r \sin \theta$ $\frac{y}{x} = \tan \theta$