

# BPP10450(1) 三相全桥驱动模块

李先生:18279005901 微信同号

### 特性

- 內置6个500V Rds(on)=2.2Ω(Max)快恢 复 MOSFET
- ▶ 内置高压栅极驱动(HVIC),单电源供 电,包含欠压保护(UVLO)以及 HVIC 温度感测功能(BPP10450)
- ▶ 内置自举二极管 (Bootstrap Diode), 简 化系统设计
- ▶ 高电平有效, 3.3/5V 施密特触发器输入
- ▶ 优化并采用了低电磁干扰设计
- ➤ 绝缘级别 1500V<sub>rms</sub>/min

### 功能简介

BPP10450(1)作为新一代的三相电机驱动模块,主要为小功率电机驱动应用提供高效可靠的逆变器解决方案。该模块内置的栅极驱动(HVIC)基于智能驱动技术,采用优化的栅级电阻选项提升 EMI 性能和改善功耗,同时提供欠压保护(UVLO)和温度感测(TS)功能(BPP10450)。内置6个快恢复MOSFET和3个自举二极管(BSD)简化了PCB设计。每一相独立的负直流端子,支持各种保护机制和控制算法。

### 应用范围

风扇类等小功率三相电机驱动





### 订购信息

| 器件            | 封装形式   | 包装 | 数量 |
|---------------|--------|----|----|
| BPP10450(1)D  | DIP-23 | 料管 | 15 |
| BPP10450(1)DS | SOP-23 | 料管 | 15 |







## 目录

| 特性     | 1  |
|--------|----|
| 应用范围   | 1  |
| 订购信息   | 1  |
| 功能简介   | 1  |
| 系统框图   | 4  |
| 管脚说明   |    |
| 最大额定值  |    |
| 推荐工作条件 |    |
| 电气特性   | 7  |
| 功能描述   | 8  |
| 典型应用   | 12 |
| 封装外形   | 13 |







| 图 1 管脚定义和系统框图             | 4  |
|---------------------------|----|
| 图 1 管脚定义和系统框图             | 4  |
| 图 3 开关特性及 RBSOA 测试电路(低侧)  | g  |
| 图 4 开关时间定义                | g  |
| 图 5 欠压保护时序图(低侧)           |    |
| 图 6 欠压保护时序图(高侧)           |    |
| 图 7 壳温 Tc 检测点             | 11 |
| 图 8V <sub>TS</sub> 的温度曲线图 | 11 |
| 图 8V <sub>TS</sub> 的温度曲线图 | 12 |
|                           |    |
| 表 1 管脚说明                  | 5  |
| 表 2 最大额定值                 | 6  |
| 表 3 推荐工作范围                | 7  |
| 表 4 电气特性                  |    |
| 丰 5 丁                     |    |



## 系统框图



图 1 管脚定义和系统框图



BPP10450(1) \_CN\_DS\_Rev.1.1

## Green Power Module



## 管脚说明

#### 表1管脚说明

| 管脚 | 名称      | 功能                    |
|----|---------|-----------------------|
| 1  | COM     | IC 公共地                |
| 2  | VBU     | U相位高侧驱动供电电源           |
| 3  | VCCU    | U相位低侧驱动供电电源           |
| 4  | INUH    | U相位高侧信号输入             |
| 5  | INUL    | U相位低侧信号输入             |
| 6  | N.C     | 无连接                   |
| 7  | VBV     | V相位高侧驱动供电电源           |
| 8  | VCCV    | V相位低侧驱动供电电源           |
| 9  | INVH    | V相位高侧信号输入             |
| 10 | INVL    | V相位低侧信号输入             |
| 11 | VTS     | HVIC 温度检测输出(BPP10450) |
| 12 | VBW     | W相位高侧驱动供电电源           |
| 13 | VCCW    | W相位低侧驱动供电电源           |
| 14 | INWH    | W相位高侧信号输入             |
| 15 | INWL    | W相位低侧信号输入             |
| 16 | N.C     | 无连接                   |
| 17 | P       | 直流正端输入                |
| 18 | U,VSU 🗸 | U相位输出及U相位高侧驱动浮动地      |
| 19 | NU      | U相位直流负端               |
| 20 | NV      | V相位直流负端               |
| 21 | V,VSV   | V相位输出及V相位高侧驱动浮动地      |
| 22 | NW      | W相位直流负端               |
| 23 | W,VSW   | W相位输出及W相位高侧驱动浮动地      |



## 最大额定值

### 表 2 最大额定值

|       | 符号                   | 参数               | 条件                     | 范围           | 単位   |
|-------|----------------------|------------------|------------------------|--------------|------|
|       | $V_{ m DSS}$         | 单个 MOSFET 的漏源电压  |                        | 500          | V    |
| 逆     | $^{[1]}I_{D25}$      | 单个 MOSFET 漏极连续电流 | Tc=25 °C               | 1.6          | Α    |
| 逆变器模块 | $^{[1]}I_{D80}$      | 单个 MOSFET 漏极连续电流 | Tc=80 °C               | 1.2          | A    |
| 块     | [1]I <sub>DP</sub>   | 单个 MOSFET 漏极峰值电流 | Tc=25 °C, PW<100μs     | 4.2          | A    |
|       | [1] <b>P</b> D       | 最大功率耗散           | Tc=25 °C,单 MOSFET      | 14           | W    |
| 栅     | Vcc                  | 控制电源电压           | VCC 和 COM 之间           | 20           | V    |
| 极驱    | V <sub>BS</sub>      | 高侧电源电压           | VB 和 VS 之间             | 20           | V    |
| 动     | VIN                  | 输入信号电平           | VIN 和 COM 之间           | -0.3~VCC+0.3 | V    |
| 自     | V <sub>RRMB</sub>    | 最大反向连续电压         |                        | 600          | V    |
| 自举二极管 | $^{[1]}I_{FB}$       | 正向导通电流           | Tc=25 °C               | 0.5          | A    |
| 管     | [1] <sub>IFPB</sub>  | 正向导通电流 (峰值)      | Tc=25 °C, PW=1ms       | 1.5          | A    |
|       | $^{[2]}R_{	heta JC}$ | 结壳热阻             | 单个 MOSFET 处于工<br>作条件下  | 8.6          | °C/W |
| 系统    | TJ                   | 工作结温范围           |                        | -40~150      | °C   |
| 统     | Tstg                 | 储存温度             |                        | -40~125      | °C   |
| 4     | Viso                 | 绝缘电压             | 60Hz,正弦,交流1分钟,引脚与散热片之间 | 1500         | Vrms |

备注1:表征计算值或者设计值。

备注 2: 壳温 Tc的测试点,请参考图 7。



## 推荐工作条件

#### 表 3 推荐工作范围

| 符号                   | 参数       | 条件                                   | 最小     | 典型   | 最大   | 单   |
|----------------------|----------|--------------------------------------|--------|------|------|-----|
|                      |          |                                      | 值      | 值    | 值    | 位   |
| $V_{PN}$             | 供电电压     | 端口P和N之间                              | ı      | 300  | 400  | V   |
| $V_{CC}$             | 控制电源电压   | 端口 VCC 和 COM 之间                      | 13.5   | 15.0 | 16.5 | V   |
| $V_{BS}$             | 高侧电源电压   | 端口 VB 和 VS 之间                        | 13.5   | 15.0 | 16.5 | V   |
| V <sub>IN(ON)</sub>  | 输入开启电压   | 端口 V <sub>IN</sub> 和 COM 之间          | 3.0    | -    | VCC  | V   |
| V <sub>IN(OFF)</sub> | 输入关闭电压   | 場口 VIN 作 COM 之同                      | 0      |      | 0.6  | V   |
| t                    | 防止桥臂直通的  | VCC 和 VBS=13.5~16.5V, T <sub>J</sub> | 1.     |      |      | 110 |
| $t_{dead}$           | 死区时间     | ≦150 °C                              |        |      | -    | μs  |
| $f_{PWM}$            | PWM 开关频率 | $T_J \leq 150  ^{\circ}C$            | ( - 1) | 15   | -    | kHz |

### 电气特性

### 表 4 电气特性

(除非特别说明, 否则 T<sub>a</sub>=25°C, V<sub>CC</sub>=V<sub>BS</sub>=15V。)

|                               | 特性               | 符号                  | 测试                                                                                                                                                                                  | 条件                                      | 最小值 | 典<br>型<br>值 | 最大值 | 单位 |
|-------------------------------|------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----|-------------|-----|----|
|                               | 漏极-源极击穿电<br>压    | BV <sub>DSS</sub>   | $V_{IN}=0V,I_D=1mA^{[3]}$                                                                                                                                                           |                                         | 500 | -           | 1   | V  |
|                               | 零栅压下漏极漏电<br>流    | $I_{ m DSS}$        | $V_{IN} = 0V, V_{DS} = 500$                                                                                                                                                         | )V                                      | -   | -           | 1   | mA |
| 逆变部分                          | 静态导通电阻           | R <sub>DS(ON)</sub> | $V_{IN} = 5V$ , $I_D = 1.0A$                                                                                                                                                        | A                                       | -   | 1.6         | 2.2 | Ω  |
| (除非特<br>别说明,特                 | 漏源二极管的正向<br>导通电压 | $ m V_{SD}$         | $V_{IN}$ =0V, $I_D$ =-1.0.                                                                                                                                                          | A                                       | -   | -           | 1.4 | V  |
| 指单个                           |                  | ton                 | · V <sub>PN</sub> =300V,V <sub>CC</sub> =V <sub>BS</sub> =15V,I <sub>D</sub> =1.0A,<br>· V <sub>IN</sub> =0~5V,电感负载L=3mH <sup>[4]</sup>                                             |                                         | -   | 1050        | -   | ns |
| MOSFET)                       |                  | toff                |                                                                                                                                                                                     |                                         | -   | 450         | -   | ns |
|                               | 开关时间             | $t_{rr}$            |                                                                                                                                                                                     |                                         | -   | 250         | -   | ns |
|                               |                  | Eon                 | · iii · iii · ii · ii · ii · ii · ii ·                                                                                                                                              | (-I/\L 0 IIII I                         | -   | 50          | -   | μJ |
|                               | <i>y</i>         | E <sub>OFF</sub>    |                                                                                                                                                                                     |                                         |     | 15          | -   | μJ |
|                               | 反向偏置安全工作<br>区    | RBSOA               | $ \begin{array}{c} V_{PN}\!\!=\!\!400V, \!V_{CC}\!\!=\!\!V_{BS}\!\!=\!\!15V, \!I_{D}\!\!=\!\!I_{DP}, \\ V_{DS}\!\!=\!\!BV_{DSS}, \!T_{J}\!\!=\!\!150\ ^{\circ}C^{[5]} \end{array} $ |                                         |     | 全直          | 直角  |    |
| 控制部分                          |                  | $I_{QCC}$           | $V_{IN}=0V$                                                                                                                                                                         | V <sub>CC</sub> 和COM之                   | -   | 350         | -   | μΑ |
| (除非特<br>别说明,特<br>指单个<br>HVIC) | VCC电流            | I <sub>PCC</sub>    | V <sub>IN</sub> =20Khz<br>pulse, 50%duty                                                                                                                                            | 间                                       | -   | 800         | -   | μΑ |
|                               |                  | $I_{QBS}$           | $V_{IN}=0V$                                                                                                                                                                         | V <sub>BU</sub> -U, V <sub>BV</sub> -V, | -   | 100         | -   | μΑ |
|                               | VBS电流            | $I_{PBS}$           | V <sub>IN</sub> =20Khz<br>pulse, 50%duty                                                                                                                                            | V <sub>BW</sub> -W 之间                   | 1   | 600         | _   | μΑ |



|                       | 特性                                 | 符号                | 测试条件                                                     |                        | 最小值 | 典<br>型<br>值 | 最大值  | 单位 |
|-----------------------|------------------------------------|-------------------|----------------------------------------------------------|------------------------|-----|-------------|------|----|
|                       | 低侧欠压保护(图                           | $UV_{CCD}$        |                                                          |                        | 7.4 | 7.9         | 9.4  | V  |
|                       | 5)                                 | $UV_{CCR}$        |                                                          |                        | 8.0 | 8.7         | 9.8  | V  |
| 控制部分                  | 控制部分 高侧欠压保护(图                      |                   |                                                          |                        | 7.4 | 7.9         | 9.4  | V  |
| (除非特                  | 6)                                 | $UV_{BSR}$        |                                                          |                        | 8.0 | 8.7         | 9.8  | V  |
| 别说明,特<br>指单个<br>HVIC) | HVIC温度检测电<br>压输出(图8)<br>(BPP10450) | $V_{TS}$          | V <sub>CC</sub> =15V,T <sub>HVIC</sub> =2                | 25°C <sup>[6]</sup>    | 600 | 800         | 1050 | mV |
|                       | 导通阈值电压                             | $V_{\mathrm{IH}}$ | 逻辑高电平                                                    | V <sub>IN</sub> 和COM之间 | 2.9 | -/          | -    | V  |
|                       | 关断阈值电压                             | $V_{\rm IL}$      | 逻辑低电平                                                    | V <sub>IN</sub> 和COM之间 | -   |             | 0.8  | V  |
| 自举二极                  | 正向导通电压                             | $V_{\mathrm{FB}}$ | I <sub>F</sub> =0.1A,T <sub>C</sub> =25°C <sup>[7]</sup> |                        | -   | 3.9         | -    | V  |
| 管部分                   | 反向恢复时间                             | t <sub>rrB</sub>  | I <sub>F</sub> =0.1A,T <sub>C</sub> =25°C                |                        | >-  | 100         | -    | ns |

备注 3:  $BV_{DSS}$  是指加在每个功率 MOSFET 漏源之间的极限最高电压。在实际应用中,考虑到杂散电感的影响, $V_{PN}$  必须足够小于  $BV_{DSS}$ ,以保证在任何时候 MOSFET 两端的 VDS 都不会超过  $BV_{DSS}$ 。

备注 4: ton 和 toff 包括内部 HVIC 的传输延迟时间。列出的值是在实验室环境的测试条件,会随着现场不同的 PCB 板和导线而不同。请参考图 4 的开关时间定义和图 3 的开关测试电路图。

备注 5: 在开关动作时,每个 MOSFET 的尖峰电流和电压都必须包含在安全工作区(SOA)内,RBSOA 的测试电路如图 3 所示。

备注 6: VTS 仅仅只检测模块的温度,不能自动关断 MOSFET。

备注 7: 自举二极管的电阻特性(20欧姆左右)请参考图 2。

### 功能描述

#### 表 5 工作真值表

| HIN  | LIN  | Output | Note           |
|------|------|--------|----------------|
| 0    | 0    | Z      | 高低侧 MOSFET 都关闭 |
| 0    | 1    | 0      | 低侧 MOSFET 导通   |
| 1    | 0    | VDC    | 高侧 MOSFET 导通   |
| 1    | 1    | 禁止     | 高低侧 MOSFET 直通  |
| Open | Open | Z      | 高低侧 MOSFET 都关闭 |





图 3 开关特性及 RBSOA 测试电路(低侧)



图 4 开关时间定义





图 6 欠压保护时序图(高侧)





图 7 壳温 Tc 检测点



图 8 V<sub>TS</sub> 的温度曲线图



### 典型应用



图 9 典型应用示意图(BPP10450)

#### 备注:

- 1) 在 BPP 和 MCU 的输入端增加 RC 滤波电路 (R1 和 C1, R2 和 C2 等)来预防由浪涌噪声引起的不正确的信号输入。
- 2) 低侧 MOSFET 源端和 COM 之间的电阻 R3 阻值会影响低侧开关特性和自举电路。所以该电阻两端压降在稳态时要小于 1V。
- 3) 所有外置的滤波电容(C3, C4, C5, C6等)都应该尽可能靠近 BPP 的管脚。
- 4) 低侧和高侧电源上尽可能放置 Zener 二极管,确保浪涌条件下电源电压不超过正常工作电压。
- 5) 为了防止浪涌损坏,PN 之间除了滤波电容(C7)以外,建议增加一个高频非感性平缓电容(0.1~0.22uF)。 且尽可能靠近模块引脚。



## 封装外形

### DIP-23













#### SOP-23









