Superfícies Quádricas (Resumo)

Seja a equação de 2º grau a três variáveis

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0,$$

onde A, B, C, D, E, F, G, H, I e J são constantes reais tais que A, B, C, D, E, ou F é diferente de zero, e x, y, z são variáveis reais.

As superfícies quádricas (ou simplesmente quádricas) são superfícies dadas pelas equações de 2º grau a três variáveis acima, onde cada quádrica tem sua equação padrão dada pela tabela seguinte:

Superficie		Equação Padrão
Esfera		$x^2 + y^2 + z^2 = r^2$
Elipsóide		$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
Hiperbolóide de uma folha		$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$
Hiperbolóide de duas folhas		$\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$
Parabolóide elíptico		$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \pm z$
Parabolóide Hiperbólico		$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$
Cone		$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2$
Cilindro Reto	Base circular	Equação do círculo
	Base elíptica	Equação da elipse
	Base Parabólica	Equação da Parábola
	Base Hiperbólica	Equação da Hipérbole

Obs: A equação $x^2 + y^2 = 1$ em \mathbb{R}^2 , por exemplo, representa uma circunferência centrada na origem de raio unitário. Entretanto, esta mesma equação em \mathbb{R}^3 representa um cilindro circular reto de base na circunferência cuja equação em \mathbb{R}^2 é $x^2 + y^2 = 1$ (Ver figura abaixo). Desse modo, o cilindro cuja base é uma elipse será chamado de cilindro elíptico.

Elipsóide: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	Hiperbolóide de Uma Folha: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$
$ \begin{array}{c} Z \\ c \\ a \end{array} $ $ X \downarrow X \downarrow$	$Z \wedge \\ b \rightarrow Y$
Hiperbolóide de Duas folhas: $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	Parabolóide Elíptico: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \pm z$
$Z \wedge Z \wedge$	$Z \wedge Z \wedge$
Parabolóide Hiperbólico: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$	Cone: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2$
X	$X \leftarrow X \leftarrow X$
Cilindro de Base Parabólica	Cilindro de Base Hiperbólica
2	