

FR Hack 2024 Challenge #3

Securing the route of Olympic flame in terms of radio coverage

<u>Team</u>: Chao Zhao, Luis Daniel, Rishika Gupta, Zineddine Tighidet <u>Code</u>: <u>https://github.com/risq99/FRHack2024</u>

Table of Contents

Problem Statement

Securing the route of the Olympic Flame in terms of radio coverage

Objectives

- → Identify rural, peri-urban, urban areas
- → Use **elementary surfaces** to divide these areas
- → Obtain average power in each elementary surface 4G/5G
- Determine the optimal route for the Olympics flame
- Automate the prototype for reproducibility

Challenges Tackled

Objective 1: Identify rural, peri-urban, urban areas

- Understand 3 departments: Blois (41), Orléans (45) & Auxerre (89)
- Obtain different areas:
 - Rural
 - Peri-urban (Suburban)
 - Urban

Objective 2: Use elementary surfaces to divide these areas

- Choose **tiles** to split the areas
- Consider the density of population in each department

Objective 3: Obtain average power in each elementary surface - 4G/5G

- Calculate the average power for each
 - o 4G
 - o 5G

Objective 4: Determine optimal route for the Olympics flame

- Best route passing through Blois (41), Orléans (45) & Auxerre (89)
 - Prefer 5G network over 4G
 - Optimise the cost (average power) minimum as possible
- Determine the route for each operator like OP1, OP2, OP3 & OP4

Objective 5: Automate the prototype for reproducibility

- Sample code for Blois (41), Orléans (45) & Auxerre (89)
- Automate for different departments for reproducibility

Data Exploration

- No empty rows/columns (data is clean)
- Zones: 3 in total Urbaine (19 points), Suburbaine (133 points) & Rurale (863 points)
- **Techno:** 2 in total 4G (8372 points) & 5G (3364 points)
- Operateur: 4 in total OP1, OP2, OP3, OP4 (all around 2900 points)

Objective 1: Identify rural, peri-urban, urban areas

Objective 2: Use elementary surfaces to divide these areas

- Tile type used: Square
- Correlate density of population to the size of square tiles
 - Rural (very big squares)
 - Peri-urban (medium squares)
 - Urban (very small squares)
- Handle irregular boundaries conditionally

- Use idea of percentage covered in each area
- E.g.: Boundary between rural and peri-urban
 - Check percentage of area covered:
 - More than / Equal to 50% peri-urban
 - Less than 50% rural
- Dynamic percentage allowed (automated with a slider in the dashboard)

Our Solution

Objective 3: Obtain average power in each elementary surface - 4G/5G

- Calculate the average power for each
 - o 4G
 - o 5G
- For each square tile: Average of all powers of the points inside it
- Results displayed in the dashboard (at the end)

Objective 4: Determine the optimal route for each operator for the flame

- Algorithm used for best route: Dijkstra Shortest Path
- Best route passing through Blois (41), Orléans (45) & Auxerre (89)
 - Do not penalise 4G over 5G
 - Prefer 5G network over 4G
 - Always penalise 4G over 5G
 - Optimise the cost (average power) minimum as possible

Objective 5: Automate the prototype for reproducibility

- Provide input files as:
 - Communes D1_D2_D3_pour info.xlsx
 - Mesures sur D1 D2 D3.csv
 - o .cpg, .dbf, .prj, .shp, .shx files for:
 - Zones RURALES D1 D2 D3
 - Zones PERI URBAINES D1 D2 D3
 - Zones URBAINES D1 D2 D3
 - Shape Depts D1 D2 D3
 - Shape D1 D2 D3

- 2. Structure the directory
- 3. Run the remaining code

Let's dive into the dashboard for a quick demo!

Thank you!

Appendix

Weighted Dijkstra's Algorithm Shortest Path

- Source Node: from city Blois
- <u>Destination Node</u>: to city Auxerre
- Objective: Lowest cost (= average power)
- Start from source to destination
 - Repeatedly select nodes with lowest cost
 - Variant1: Penalise 4G over 5G
 - Variant2: Choose either 4G or 5G
 - Update if newly found path is better