10

SIMULTANEOUS LOCALIZATION AND MAPPING

10.1 INTRODUCTION

This and the following chapters address one of the most fundamental problems in robotics, the *simultaneous localization and mapping problem*. This problem is commonly abbreviated as SLAM, and is also known as $Concurrent\ Mapping\ and\ Localization$, or CML. SLAM problems arise when the robot does not have access to a map of the environment; nor does it have access to its own poses. Instead, all it is given are measurements $z_{1:t}$ and controls $u_{1:t}$. The term "simultaneous localization and mapping" describes the resulting problem: In SLAM, the robot acquires a map of its environment while simultaneously localizing itself relative to this map. SLAM is significantly more difficult than all robotics problems discussed thus far: It is more difficult than localization in that the map is unknown and has to be estimated along the way. It is more difficult than mapping with known poses, since the poses are unknown and have to be estimated along the way.

From a probabilistic perspective, there are two main forms of the SLAM problem, which are both of equal practical importance. One is known as the *online SLAM problem*: It involves estimating the posterior over the momentary pose along with the map:

$$p(x_t, m \mid z_{1:t}, u_{1:t}) \tag{10.1}$$

Here x_t is the pose at time t, m is the map, and $z_{1:t}$ and $u_{1:t}$ are the measurements and controls, respectively. This problem is called the online SLAM problem since it only involves the estimation of variables that persist at time t. Many algorithms for the

online SLAM problem are incremental: they discard past measurements and controls once they have been processed.

The second SLAM problem is called the *full SLAM problem*. In full SLAM, we seek to calculate a posterior over the entire path $x_{1:t}$ along with the map, instead of just the current pose x_t :

$$p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) \tag{10.2}$$

This subtle difference in the formulation of the SLAM problem between online and full SLAM has ramifications in the type algorithms that can be brought to bear. In particular, the online SLAM problem is the result of integrating out past poses from the full SLAM problem:

$$p(x_{t}, m \mid z_{1:t}, u_{1:t}) = \int \int \cdots \int p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) dx_{1} dx_{2} \dots dx_{t-1}$$
(10.3)

In online SLAM, these integrations are typically performed one-at-a-time, and they cause interesting changes of the dependency structures in SLAM that we will fully explore in the next chapter.

A second key characteristic of the SLAM problem has to do with the nature of the estimation problem. SLAM problems possess a continuous and a discrete component. The continuous estimation problem pertains to the location of the objects in the map and the robot's own pose variables. Objects may be landmarks in feature-based representation, or they might be object patches detected by range finders. The discrete nature has to do with correspondence: When an object is detected, a SLAM algorithm must reason about the relation of this object to previously detected objects. This reasoning is typically discrete: Either the object is the same as a previously detected one, or it is not.

We already encountered similar continuous-discrete estimation problems in previous chapters. For example, EKF localization 7.5 estimates the robot pose, which is continuous, but to do so it also estimates the correspondences of measurements and landmarks in the map, which are discrete. In this and the subsequent chapters, we will discuss a number of different techniques to deal with the continuous and the discrete aspects of the SLAM problem.

At times, it will be useful to make the correspondence variables explicit, as we did in Chapter 7 on localization. The online SLAM posterior is then given by

$$p(x_t, m, c_t \mid z_{1:t}, u_{1:t}) \tag{10.4}$$

and the full SLAM posterior by

$$p(x_{1:t}, m, c_{1:t} \mid z_{1:t}, u_{1:t}) \tag{10.5}$$

The online posterior is obtained from the full posterior by integrating out past robot poses and summing over all past correspondences:

$$p(x_{t}, m, c_{t} \mid z_{1:t}, u_{1:t})$$

$$= \int \int \cdots \int \sum_{c_{1}} \sum_{c_{2}} \cdots \sum_{c_{t-1}} p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) dx_{1} dx_{2} \dots dx_{t-1}$$

$$(10.6)$$

In both versions of the SLAM problems—online and full—estimating the full posterior (10.4) or (10.5) is the gold standard of SLAM. The full posterior captures all there is to be known about the map and the pose or the path. In practice, calculating a full posterior is usually infeasible. Problems arise from two sources: (1) the high dimensionality of the continuous parameter space, and (2) the large number of discrete correspondence variables. Many state-of-the-art SLAM algorithm construct maps with tens of thousands of features, or more. Even under known correspondence, the posterior over those maps alone involves probability distributions over spaces with 10^5 or more dimensions. This is in stark contrast to localization problems, in which posteriors were estimated over three-dimensional continuous spaces. Further, in most applications the correspondences are unknown. The number of possible assignment to the vector of all correspondence variables, $c_{1:t}$ grows exponentially in the time t. Thus, practical SLAM algorithms that can cope with the correspondence problem must rely on approximations.

The SLAM problem will be discussed in a number of subsequent chapter. The remainder of this chapter develops an EKF algorithm for the online SLAM problem. Much of this material builds on Chapter 3.3, where the EKF was introduced, and Chapter 7.5, where we applied the EKF to the mobile robot localization problem. We will derive a progression of EKF algorithms that first apply EKFs to SLAM with known correspondences, and then progress to the more general case with unknown correspondences.

10.2 SLAM WITH EXTENDED KALMAN FILTERS

10.2.1 Setup and Assumptions

Historically the earliest, and perhaps the most influential SLAM algorithm is based on the extended Kalman filter, or EKF. In a nutshell, the EKF SLAM algorithm applies the EKF to online SLAM using maximum likelihood data association. In doing so, EKF SLAM is subject to a number of approximations and limiting assumptions:

- **Feature-based maps.** Maps, in the EKF, are composed of point landmarks. For computational reasons, the number of point landmarks is usually small (e.g., smaller than 1,000). Further, the EKF approach tends to work well the less ambiguous the landmarks are. For this reason, EKF SLAM requires significant engineering of feature detectors, sometimes using artificial beacons or landmarks as features.
- **Gaussian noise.** As any EKF algorithm, EKF SLAM makes a Gaussian noise assumption for the robot motion and the perception. The amount of uncertainty in the posterior must be relatively small, since otherwise the linearization in EKFs tend to introduce intolerable errors.
- Positive measurements. The EKF SLAM algorithm, just like the EKF localizer discussed in Chapter 7.5, can only process positive sightings of landmarks. It cannot process negative information that arises from the absence of landmarks in a sensor measurements. This is a direct consequence of the Gaussian belief representation and was already discussed in Chapter 7.5.

10.2.2 SLAM with Known Correspondence

The SLAM algorithm for the case with known correspondence addresses the continuous portion of the SLAM problem only. Its development is in many ways parallel to the derivation of the EKF localization algorithm in Chapter 7.5, but with one key difference: In addition to estimating the robot pose x_t , the EKF SLAM algorithm also estimates the coordinates of all landmarks encountered along the way. This makes it necessary to include the landmark coordinates into the state vector.

Table 10.1 The extended Kalman fi lter (EKF) algorithm for the simultaneous localization and mapping problem, formulated here for a feature-based map and a robot equipped with sensors for measuring range and bearing. This version assumes knowledge of the exact correspondences.

For convenience, let us call the state vector comprising robot pose and the map the *combined state vector*, and denote this vector y_t . The combined vector is given by

$$y_{t} = \begin{pmatrix} x_{t} \\ m \end{pmatrix}$$

$$= (x y \theta m_{1,x} m_{1,y} s_{1} m_{2,x} m_{2,y} s_{2} \dots m_{N,x} m_{N,y} s_{N})^{T}$$
(10.7)

Here x, y, and θ denote the robot's coordinates at time t, $m_{i,x}, m_{i,y}$ are the coordinates of the i-th landmark, for $i=1,\ldots,N$, and s_i is its signature. The dimension of this state vector is 3N+3, where N denotes the number of landmarks in the map. Clearly, for any reasonable number of N, this vector is significantly larger than the pose vector that is being estimated in Chapter 7.5, which introduced the EKF localization algorithm. EKF SLAM calculates the online posterior

$$p(y_t \mid z_{1:t}, u_{1:t}) \tag{10.8}$$

The EKF SLAM algorithm is depicted in Table 10.1—notice the similarity to the EKF localization algorithm in Table 7.2. Lines 2 through 5 apply the motion update, whereas Lines 6 through 20 incorporate the measurement vector. In particular, Lines 3 and 5 manipulate the mean and covariance of the belief in accordance to the motion model. This manipulation only affects those elements of the belief distribution concerned with the robot pose. It leaves all mean and covariance variables for the map unchanged, along with the pose-map covariances. Lines 7 through 18 iterate through all measurements. The test in Line 9 returns true only for landmarks for which we have no initial location estimate. For those, Line 10 initializes the location of such a landmark by the projected location obtained from the corresponding range and bearing measurement. As we shall discuss below, this step is important for the linearization in EKFs; it would not be needed in linear Kalman filters. For each measurement, an "expected" measurement is computed in Line 14, and the corresponding Kalman gain is computed in Line 17. Notice that the Kalman gain is a matrix of size 3 by 3N + 3. This matrix is usually non-sparse, that is, information is propagated through the entire state estimate. The final filter update then occurs in Lines 19 and 20, where the innovation is folded back into the robot's belief.

The fact that the Kalman gain is fully populated for all state variables—and not just the observed landmark and the robot pose—is important. In SLAM, observing a landmark does not just improve the position estimate of this very landmark, but that of other landmarks as well. This effect is mediated by the robot pose: Observing a landmark improves the robot pose estimate, and as a result it eliminates some of the uncertainty

Figure 10.1 EKF applied to the online SLAM problem. The robot's path is a dotted line, and its estimations of its own position are shaded ellipses. Eight distinguishable landmarks of unknown location are shown as small dots, and their location estimations are shown as white ellipses. In (a)–(c) the robot's positional uncertainty is increasing, as is its uncertainty about the landmarks it encounters. In (d) the robot senses the first landmark again, and the uncertainty of *all* landmarks decreases, as does the uncertainty of its current pose.

of landmarks previously seen by the same robot. The amazing effect here is that we do not have to model past poses explicitly—which would put us into the realm of the full SLAM problem and make the EKF a non-realtime algorithm. Instead, this dependence is captured in the Gaussian posterior, more specifically, in the off-diagonal covariance elements of the matrix Σ_t .

Figure 10.1 illustrates the EKF SLAM algorithm for an artificial example. The robot navigates from a start pose which serves as the origin of its coordinate system. As it moves, its own pose uncertainty increases, as indicated by uncertainty ellipses of growing diameter. It also senses nearby landmarks and maps them with an uncertainty that combines the fixed measurement uncertainty with the increasing pose uncertainty. As a result, the uncertainty in the landmark locations grows over time. In fact, it parallels that of the pose uncertainty at the time a landmark is observed. The interesting transition happens in Figure 10.1d: Here the robot observes the landmark it saw in the very beginning of mapping, and whose location is relatively well known. Through this observation, the robot's pose error is reduced, as indicated in Figure 10.1d—notice the very small error ellipse for the final robot pose! Further, this observation also reduces the uncertainty for other landmarks in the map! This phenomenon arises from a correlation that is expressed in the covariance matrix of the Gaussian posterior. Since most of the uncertainty in earlier landmarks is causes by the robot pose, and this very uncertainty persists over time, the location estimates of those landmarks are correlated. When gaining information on the robot's pose, this information spreads to previously observed landmarks. This effect is probably the most important characteristic of the SLAM posterior: Information that helps localize the robot is propagated through map, and as a result improves the localization of other landmarks in the map.

10.2.3 Mathematical Derivation

The derivation of the EKF SLAM algorithm for the case with known correspondences largely parallels that of the EKF localizer in Chapter 7.5. The key difference is the augmented state vector, which now includes the locations of all landmarks in addition to the robot pose.

In SLAM, the initial pose is taken to be to origin of the coordinate system. This definition is somewhat arbitrary, in that it can be replaced by any coordinate. None of the landmark locations are known initially. The following initial mean and covariance express this belief:

$$\Sigma_0 = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \infty & \dots & \infty \\ 0 & 0 & 0 & \infty & \dots & \infty \\ 0 & 0 & 0 & \infty & \dots & \infty \\ \infty & \infty & \infty & \infty & \dots & \infty \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \infty & \infty & \infty & \infty & \dots & \infty \end{pmatrix}$$
(10.9)

The covariance matrix is of size $(3N+3) \times (3N+3)$. It is composed of a small 3×3 matrix of zeros for the robot pose variables. All other covariance values are infinite.

As the robot moves, the state vector changes according to the standard noise-free velocity model (see Equations (5.13) and (7.4)). In SLAM, this motion model is extended to the augmented state vector:

$$y_{t} = y_{t-1} + \begin{pmatrix} -\frac{v_{t}}{\omega_{t}} \sin \theta + \frac{v_{t}}{\omega_{t}} \sin(\theta + \omega_{t} \Delta t) \\ \frac{v_{t}}{\omega_{t}} \cos \theta - \frac{v_{t}}{\omega_{t}} \cos(\theta + \omega_{t} \Delta t) \\ \omega_{t} \Delta t + \gamma_{t} \Delta t \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
(10.11)

The variables x, y, and θ denote the robot pose in y_{t-1} . Because the motion only affects the robot's pose and all landmarks remain where they are, only the first three elements in the update are non-zero. This enables us to write the same equation more compactly:

$$y_{t} = y_{t-1} + F_{x} \begin{pmatrix} -\frac{v_{t}}{\omega_{t}} \sin \theta + \frac{v_{t}}{\omega_{t}} \sin(\theta + \omega_{t} \Delta t) \\ \frac{v_{t}}{\omega_{t}} \cos \theta - \frac{v_{t}}{\omega_{t}} \cos(\theta + \omega_{t} \Delta t) \\ \omega_{t} \Delta t + \gamma_{t} \Delta t \end{pmatrix}$$
(10.12)

Here F_x is a matrix that maps the 3-dimensional state vector into a vector of dimension 3N+3.

$$F_x = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \underbrace{0 & \cdots & 0}_{3N \text{ columns}} \end{pmatrix}$$
 (10.13)

The full motion model with noise is then as follows

$$y_{t} = \underbrace{y_{t-1} + F_{x}^{T} \left(\begin{array}{c} -\frac{v_{t}}{\omega_{t}} \sin \theta + \frac{v_{t}}{\omega_{t}} \sin(\theta + \omega_{t} \Delta t) \\ \frac{v_{t}}{\omega_{t}} \cos \theta - \frac{v_{t}}{\omega_{t}} \cos(\theta + \omega_{t} \Delta t) \\ \omega \Delta t \end{array} \right)}_{g(u_{t}, y_{t-1})} + \mathcal{N}(0, F_{x}^{T} R_{t} F_{x})$$

$$(10.14)$$

where $F_x^T R_t F_x$ extends the covariance matrix to the dimension of the full state vector squared.

As usual in EKFs, the motion function g is approximated using a first degree Taylor expansion

$$g(u_t, y_{t-1}) \approx g(u_t, \mu_{t-1}) + G_t (y_{t-1} - \mu_{t-1})$$
 (10.15)

where the Jacobian $G_t = g'(u_t, \mu_{t-1})$ is the derivative of g at u_t , as in Equation (7.8). Obviously, the additive form in (10.14) enables us to decompose this Jacobian into an identity matrix of dimension $(3N+3)\times(3N+3)$ (the derivative of y_{t-1}) plus a low-dimensional Jacobian g_t that characterizes the change of the robot pose:

$$G_t = I + F_x^T g_t F_x (10.16)$$

with

$$g_{t} = \begin{pmatrix} 0 & 0 & \frac{v_{t}}{\omega_{t}} \cos \mu_{t-1,\theta} - \frac{v_{t}}{\omega_{t}} \cos(\mu_{t-1,\theta} + \omega_{t} \Delta t) \\ 0 & 0 & \frac{v_{t}}{\omega_{t}} \sin \mu_{t-1,\theta} - \frac{v_{t}}{\omega_{t}} \sin(\mu_{t-1,\theta} + \omega_{t} \Delta t) \\ 0 & 0 & 0 \end{pmatrix}$$
(10.17)

Plugging these approximations into the standard EKF algorithm gives us Lines 2 through 5 of Table 10.1. Obviously, several of the matrices multiplied in line 5 are sparse, which should be exploited when implementing this algorithm. The result of this update are the mean $\bar{\mu}_t$ and the covariance $\bar{\Sigma}_t$ of the estimate at time t after updating the filter with the control u_t , but before integrating the measurement z_t .

The derivation of the measurement update is similar to the one in Section 7.5. In particular, we are given the following measurement model

$$z_{t}^{i} = \underbrace{\begin{pmatrix} \sqrt{(m_{j,x} - x)^{2} + (m_{j,y} - y)^{2}} \\ \operatorname{atan2}(m_{j,y} - y, m_{j,x} - x) - \theta \\ m_{j,s} \end{pmatrix}}_{h(y_{t},j)} + \mathcal{N}(0, \underbrace{\begin{pmatrix} \sigma_{r} & 0 & 0 \\ 0 & \sigma_{\phi} & 0 \\ 0 & 0 & \sigma_{s} \end{pmatrix}}_{Q_{t}} 0.18)$$

where x, y, and θ denotes the pose of the robot, i is the index of an individual landmark observation in z_t , and $j = c_t^i$ is the index of the observed landmark at time t. This

expression is approximated by the linear function

$$h(y_t, j) \approx h(\bar{\mu}_t, j) + H_t^i(y_t - \bar{\mu}_t)$$
 (10.19)

Here H_t^i is the derivative of h with respect to the full state vector y_t . Since h depends only on two elements of that state vector, the robot pose x_t and the location of the j-th landmark m_j , the derivative factors into a low-dimensional Jacobian h_t^i and a matrix $F_{x,j}$, which maps h_t^i into a matrix of the dimension of the full state vector:

$$H_t^i = h_t^i F_{x,j} (10.20)$$

Here h_t^i is the Jacobian of the function $h(y_t, j)$ at $\bar{\mu}_t$, calculated with respect to the state variables x_t and m_i :

$$h_{t}^{i} = \begin{pmatrix} \frac{m_{j,x} - \bar{\mu}_{t,x}}{\sqrt{q_{t}}} & \frac{y_{t} - \bar{\mu}_{t,y}}{\sqrt{q_{t}}} & 0 & \frac{\bar{\mu}_{t,x} - m_{j,x}}{\sqrt{q_{t}}} & \frac{\bar{\mu}_{t,y} - y_{t}}{\sqrt{q_{t}}} & 0\\ \frac{\bar{\mu}_{t,y} - y_{t}}{q_{t}} & \frac{m_{j,x} - \bar{\mu}_{t,x}}{q_{t}} & -1 & \frac{y_{t} - \bar{\mu}_{t,y}}{q_{t}} & \frac{\bar{\mu}_{t,x} - m_{j,x}}{q_{t}} & 0\\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$(10.21)$$

The scalar $q_t=(m_{j,x}-\bar{\mu}_{t,x})^2+(m_{j,y}-\bar{\mu}_{t,y})^2$, and as before, $j=c_t^i$ is the landmark that corresponds to the measurement z_t^i . The matrix $F_{x,j}$ is of dimension $(3N+3)\times 5$. It maps the low-dimensional matrix h_t^i into a matrix of dimension $(3N+3)\times 3$:

$$F_{x,j} = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots 0 & 0 & 0 & 0 & 0 \cdots 0 \\ 0 & 1 & 0 & 0 \cdots 0 & 0 & 0 & 0 & 0 \cdots 0 \\ 0 & 0 & 1 & 0 \cdots 0 & 0 & 0 & 0 & \cdots 0 \\ 0 & 0 & 0 & 0 \cdots 0 & 1 & 0 & 0 & \cdots 0 \\ 0 & 0 & 0 & 0 \cdots 0 & 0 & 1 & 0 & 0 \cdots 0 \\ 0 & 0 & 0 & \underbrace{0 \cdots 0}_{2j-2} & 0 & 0 & 1 & \underbrace{0 \cdots 0}_{2N-2j} \end{pmatrix}$$

$$(10.22)$$

These expressions make up for the gist of the Kalman gain calculation in Lines 8 through 17 in our EKF SLAM algorithm in Table 10.1, with one important extension.

When a landmark is observed for the first time, its initial pose estimate in Equation (10.9) leads to a poor linearization. This is because with the default initialization in (10.9), the point about which h is being linearized is $(\hat{\mu}_{j,x} \ \hat{\mu}_{j,y} \ \hat{\mu}_{j,s})^T = (0\ 0\ 0)^T$, which is a poor estimator of the actual landmark location. A better landmark estimator is given in Line 10 Table 10.1. Here we initialize the landmark estimate $(\hat{\mu}_{j,x} \ \hat{\mu}_{j,y} \ \hat{\mu}_{j,s})^T$ with the expected position. This expected position is derived from the expected robot pose and the measurement variables for this landmark

$$\begin{pmatrix} \bar{\mu}_{j,x} \\ \bar{\mu}_{j,y} \\ \bar{\mu}_{j,s} \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{t,x} \\ \bar{\mu}_{t,y} \\ s_t^i \end{pmatrix} + r_t^i \begin{pmatrix} \cos(\phi_t^i + \bar{\mu}_{t,\theta}) \\ \sin(\phi_t^i + \bar{\mu}_{t,\theta}) \\ 0 \end{pmatrix}$$
(10.23)

We note that this initialization is only possible because the measurement function h is bijective. Measurements are two-dimensional, as are landmark locations. In cases where a measurement is of lower dimensionality than the coordinates of a landmark, h is a true projection and it is impossible to calculate a meaningful expectation for $(\bar{\mu}_{j,x} \ \bar{\mu}_{j,y} \ \bar{\mu}_{j,s})^T$ from a single measurement only. This is, for example, the case in computer vision implementations of SLAM, since cameras often calculate the angle to a landmark but not the range. SLAM is then usually performed by integrating multiple sightings to and apply triangulation to determine an appropriate initial location estimate.

Finally, we note that the EKF algorithm requires memory that is quadratic in N, the number of landmarks in the map. Its update time is also quadratic in N. The quadratic update complexity stems from the matrix multiplications that take place at various locations in the EKF.

10.3 EKF SLAM WITH UNKNOWN CORRESPONDENCES

10.3.1 The General EKF SLAM Algorithm

The EKF SLAM algorithm with known correspondences is now extended into the general EKF SLAM algorithm, which uses an incremental maximum likelihood (ML) estimator to determine correspondences. Table 10.2 depicts the algorithm. The input to this algorithm now lacks a correspondence variable c_t . Instead, it includes the momentary size of the map, N_{t-1} .

```
1:
                         Algorithm EKF_SLAM(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, N_{t-1}):
2:
                                    N_t = N_{t-1}
                                 F_x = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots 0 \\ 0 & 1 & 0 & 0 \cdots 0 \\ 0 & 0 & 1 & 0 \cdots 0 \end{pmatrix}
3:
                                \bar{\mu}_t = \mu_{t-1} + F_x^T \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix}
G_t = I + F_x^T \begin{pmatrix} 0 & 0 & \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & \frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix} F_x
4:
5:
                                 6:
7:
8:
9:
10:
                                                        \begin{split} \delta_k &= \left( \begin{array}{c} \delta_{k,x} \\ \delta_{k,y} \end{array} \right) = \left( \begin{array}{c} \bar{\mu}_{k,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{k,y} - \bar{\mu}_{t,y} \end{array} \right) \\ q_k &= \delta_k^T \delta_k \end{split}
11:
                                                    12:
13:
14:
15:
                                                         \begin{split} \Psi_k &= H_t^k \; \dot{\bar{\Sigma}}_t \; [H_t^k]^T + Q_t \\ \pi_k &= (z_t^i - \hat{z}_t^k)^T \; \Psi_k^{-1} \; (z_t^i - \hat{z}_t^k) \end{split}
16:
17:
18:
                                              endfor
19:
                                              \pi_{N_t+1} = \alpha
20:
                                              j(i) = \operatorname{argmin} \ \pi_k
                                              N_{t} = \max_{k} \{N_{t}, j(i)\}
K_{t}^{i} = \bar{\Sigma}_{t} [H_{t}^{j(i)}]^{T} \Psi_{j(i)}^{-1}
21:
22:
23:
                                  \begin{array}{l} \mu_t = \bar{\mu}_t + \sum_i K_t^i \left( z_t^i - \hat{z}_t^{j(i)} \right) \\ \Sigma_t = \left( I - \sum_i K_t^i \; H_t^{j(i)} \right) \bar{\Sigma}_t \\ \text{return } \mu_t, \Sigma_t \end{array}
24:
25:
26:
```

Table 10.2 The EKF SLAM algorithm with ML correspondences, shown here with outlier rejection.

The motion update in Lines 3 through 6 is equivalent to the one in **EKF_SLAM_known_correspondences** in Table 10.1. The measurement update loop, however, is different. Starting in Line 8, it first creates the hypothesis of a new landmark with index $N_t + 1$; this index is one larger than the landmarks in the map at this point in time. The new landmark's location is initialized in Line 9, by calculating its expected location given the estimate of the robot pose and the range and bearing in the measurement. Line 9 also assigns the observed signature value to this new landmark. Next, various update quantities are then computed in Lines 10 through 18 for all N_t+1 possible landmarks, including the "new" landmark. Line 19 sets the threshold for the creation of a new landmark: A new landmark is created if the Mahalanobis distance to all existing landmarks in the map exceeds the value α . The ML correspondence is then selected in Line 20. If the measurement is associated with a previously unseen landmark, the landmark counter is incremented in Line 21, and various vectors and matrices are enlarged accordingly—this somewhat tedious step is not made explicit in Table 10.2. The update of the EKF finally takes place in Lines 24 and 25. The algorithm **EKF_SLAM** returns the new number of landmarks N_t along with the mean μ_t and the covariance Σ_t .

The derivation of this EKF SLAM follows directly from previous derivations. In particular, the initialization in Line 9 is identical to the one in Line 10 in **EKF_SLAM_known_correspondences**, Table 10.1. Lines 10 through 18 parallel Lines 12 through 17 in **EKF_SLAM_known_correspondences**, with the added variable π_k needed for calculating the ML correspondence. The selection of the ML correspondence in Line 20, and the definition of the Mahalanobis distance in line 17, is analogous to the ML correspondence discussed in Chapter 7.6; in particular, the algorithm **EKF_localization** in Table 7.3 on page 175 used an analogous equation do determine the most likely landmark. (Line 14). The measurement updates in Lines 24 and 25 of Table 10.2 are also analogous to those in the EKF algorithm with known correspondences, assuming that the participating vectors and matrices are of the appropriate dimension in case the map has just been extended.

Our example implementation of **EKF_SLAM** can be made more efficient by restricting the landmarks considered in Lines 10 through 18 to those that are near the robot. Further, many of the values and matrices calculated in this inner loop can safely be cached away when looping through more than one feature measurement vector z_t^i . in practice, a good management of features in the map and a tight optimization of this loop can greatly reduce the running speed.

Figure 10.2 EKF SLAM with known data association in a simulated environment. The map is shown on the left, with the gray-level corresponding to the uncertainty of each landmark. The matrix on the right is the correlation matrix, which is the normalized covariance matrix of the posterior estimate. After some time, all x- and all y-coordinate estimates become fully correlated.

Figure 10.3 Example of Kalman fi lter estimation of the map and the vehicle pose. Image courtesy of Stefan Williams and Hugh Durrant-Whyte from the Australian Centre for Field Robotics, University of Sydney, Australia.

10.3.2 Examples

Figure 10.2 shows the EKF SLAM algorithm—here with known correspondence—applied in simulation. The left panel of each of the three diagrams plots the posterior distributions, marginalized for the individual landmarks and the robot pose. The right side depicts the correlation matrix for the augmented state vector y_t ; the correlation is the normalized covariance. As is easily seen from the result in Figure 10.2c, over time all x- and y-coordinate estimates become fully correlated. This means the map becomes known in relative terms, up to an uncertain global location that cannot be reconciled. This highlights an important characteristic of the SLAM problem: The absolute coordinates of a map relative to the coordinate system defined by the initial robot pose can only be determined in approximation, whereas the relative coordinates can be determined asymptotically with certainty.

In practice, EKF SLAM has been applied successfully to a large range of navigation problems, involving airborne, underwater, indoor, and various other vehicles. Fig-

Figure 10.4 Underwater vehicle Oberon, developed at the University of Sydney. Image courtesy of Stefan Williams and Hugh Durrant-Whyte from the Australian Centre for Field Robotics, University of Sydney, Australia.

ure 10.3 shows an example result obtained using the underwater robot Oberon, developed at the University of Sydney, Australia, and shown in Figure 10.4. This vehicle is equipped with a pencil sonar, a sonar that can scan at very high resolutions an detect obstacles up to 50 meters away. To facilitate the mapping problem, researchers have deposited long, small vertical objects in the water, which can be extracted from the sonar scans with relative ease. In this specific experiment, there is a row of such objects, spaced approximately 10 meters apart. In addition, a more distant cliff offers additional point features that can be detected using the pencil sonar. In the experiment shown in Figure 10.3, the robot moves by these landmarks, then turns around and moves back. While doing so, it measures and integrates detected landmarks into its map, using the Kalman filter approach described in this chapter.

The map shown in Figure 10.3 shows the robot's path, marked by the triangles connected by a line. Around each triangle one can see an ellipse, which corresponds to the covariance matrix of the Kalman filter estimate projected into the robot's x-y position. The ellipse shows the variance; the larger it is, the less certain the robot is about its current pose. Various small dots in Figure 10.3 show landmark sightings, obtained by searching the sonar scan for small and highly reflective objects. The majority of these sightings is rejected, using a mechanism described further below, in the section that follows. However, some are believed to correspond to a landmark and added to the map. At the end of the run, the robot has classified 14 such objects as landmarks, each of which is plotted with the projected uncertainty ellipse in Figure 10.3. These

landmarks include the artificial landmarks put out by the researchers, but they also include various other terrain features in the vicinity of the robot. The residual pose uncertainty is small. In this example, the robot successfully finds and maps all of the artificial landmarks in this highly noisy domain.

10.3.3 Feature Selection and Map Management

Making EKF SLAM robust in practice often requires additional techniques for managing maps. Many of them pertain to the fact that the Gaussian noise assumption is unrealistic, and many spurious measurements occur in the far tail end of the noise distribution. Such spurious measurements can cause the creation of fake landmarks in the map which, in turn, negatively affect the localization of the robot.

Many state-of-the-art techniques possess mechanisms to deal with outliers in the measurement space. Such outliers are defined as spurious landmark sightings outside the uncertainty range of any landmark in the map. The most simple technique to compensate such outliers is to maintain a *provisional landmark list*. Instead of augmenting the map by a new landmark once a measurement indicates the existence of a new landmark, such a new landmark is first added to a provisional list of landmarks. This list is just like the map, but landmarks on this list are *not* used to adjust the robot pose (the corresponding gradients in the measurement equations are set to zero). Once a landmark has consistently been observed and its uncertainty ellipse has shrunk, it is transitioned into the regular map.

In practical implementations, this mechanism tends to reduce the number of landmarks in the map by a significant factor, while still retaining all physical landmarks with high probability. A further step, also commonly found in state-of-the-art implementations, is to maintain a posterior likelihood of the existence of a landmark. Such a probability may implemented as log-odds ratio and be denoted o_j for the j-th landmark in the map. Whenever the j-th landmark is m_j observed, o_j is incremented by a fixed value. Not observing m_j when it would be in the perceptual range of the robot's sensors leads to a decrement of o_j . Since it can never be known with certainty whether a landmark is within a robot's perceptual range, the decrement may factor in the probability of such an event. Landmarks are removed from the map when the value o_j drops below a threshold. Such techniques lead to much leaner maps in the face of non-Gaussian measurement noise.

As noted previously, the maximum likelihood approach to data association has a clear limitation. This limitation arises from the fact that the maximum likelihood approach

deviates from the idea of full posterior estimation in probabilistic robotic. Instead of maintaining a joint posterior over augmented states and data associations, it reduces the data association problem to a deterministic determination, which is treated as if the maximum likelihood association was always correct. This limitation makes EKF brittle with regards to landmark confusion, which in turn can lead to wrong results. In practice, researchers often remedy the problem by choosing one of the following two methods, both of which reduce the chances of confusing landmarks:

- **Spatial arrangement.** The further apart landmarks are, the smaller the chance to accidentally confuse them. It is therefore common practice to choose landmarks that are sufficiently far away from each other to that the probability of confusing one with another is negligible. This introduces an interesting trade-off: a large number of landmarks increases the danger of confusing them. Too few landmarks makes it more difficult to localize the robot, which in turn also increases the chances of confusing landmarks. Little is currently known about the optimal density of landmarks, and researchers often use intuition when selecting specific landmarks.
- **Signatures.** When selecting appropriate landmarks, it is essential to to maximize the perceptual distinctiveness of landmarks. For example, doors might possess different colors, or corridors might have different widths. The resulting signatures are essential for successful SLAM.

With these additions, the EKF SLAM algorithm has indeed been applied successfully to a wide range of practical mapping problems, involving robotic vehicles in the air, on the ground, in the deep see, and in abandoned mines.

A key limitation of EKF SLAM lies in the necessity to select appropriate landmarks. By doing so, most of the sensor data is usually discarded. Further, the quadratic update time of the EKF limits this algorithm to relatively scarce maps with less than 1,000 features. In practice, one often seeks maps with 10^6 features or more, in which case the EKF ceases to be applicable.

The relatively low dimensionality of the map tends to create a harder data association problem. This is easily verified: When you open your eyes and look at the full room you are in, you probably have no difficulty to recognize where you are! however, if you are only told the location of a small number of landmarks—e.g., the location of all light sources—the decision is much harder. As a result, data association in EKF SLAM is more difficult than in some of the SLAM algorithms discussed in subsequent chapter, and capable of handling orders of magnitude more features. This culminates into the principal dilemma of the EKF SLAM algorithm: While incremental maxi-

mum likelihood data association might work well with dense maps with hundreds of millions of features, it tends to be brittle with scarce maps. However, EKFs require sparse maps because of the quadratic update complexity. In subsequent chapters, we will discuss SLAM algorithms that are more efficient and can handle much large maps. We will also discuss more robust data association techniques. For its many limitation, the value of the EKF SLAM algorithm presented in this chapter is mostly historical.

10.4 SUMMARY

This chapter described the general SLAM problem, and introduced the EKF approach.

- The SLAM problem is defined as a concurrent localization and mapping problem, in which a robot seeks to acquire a map of the environment while simultaneously seeking to localize itself relative to this map.
- The SLAM problem comes in two versions: online and global. Both problems involve the estimation of the map. The online problem seeks to estimate the momentary robot pose, whereas the global problem seeks to determine all poses. Both problem are of equal importance in practice, and have found equal coverage in the literature.
- The EKF SLAM algorithm is arguably the earliest SLAM algorithm. It applies the extended Kalman filter to the online SLAM problem. With known correspondences, the resulting algorithm is incremental. Updates require time quadratic in the number of landmarks in the map.
- When correspondences are unknown, the EKF SLAM algorithm applies an incremental maximum likelihood estimator to the correspondence problem. The resulting algorithm works well when landmarks are sufficiently distinct.
- Additional techniques were discussed for managing maps. Two common strategies for identifying outliers include provisional list for landmarks that are not yet observed sufficiently often, and a landmark evidence counter that calculates the posterior evidence of the existence of a landmark.
- EKF SLAM has been applied with considerable success in a number of robotic mapping problems. Its main drawbacks are the need for sufficiently distinct landmarks, and the computational complexity required for updating the filter.

In practice, EKF SLAM has been applied with some success. When landmarks are sufficiently distinct, the approach approximates the posterior well. The advantage of

calculating a full posterior are manifold: It captures all residual uncertainty and enables the robot to reason about its control taking its true uncertainty into account. However, the EKF SLAM algorithm suffers from its enormous update complexity, and the limitation to sparse maps. This, in turn, makes the data association problem a difficult one, and EKF SLAM tends to work poorly in situations where landmarks are highly ambiguous. Further brittleness is due to the fact that the EKF SLAM algorithm relies on an incremental maximum likelihood data association technique. This technique makes is impossible to revise part data associations, and can induce failure when the ML data association is incorrect.

The EKF SLAM algorithm applies to the online SLAM problem; it is inapplicable to the full SLAM problem. In the full SLAM problem, the addition of a new pose to the state vector at each time step would make both the state vector and the covariance grow without bounds. Updating the covariance would therefore require an ever-increasing amount of time, and the approach would quickly run out of computational time no matter how fast the processor.

10.5 BIBLIOGRAPHICAL REMARKS

Place them here!

10.6 PROJECTS

- Develop an incremental algorithm for posterior estimation of poses and maps (with known data association) that does not rely on linearizing the motion model and the perceptual model. Our suggestion: Replace the Kalman filter by particle filters.
- 2. The basic Kalman filter approach is unable to cope with the data association problem in a sound statistical way. Develop an algorithm (and a statistical framework) for posterior estimation with unknown data association, and characterize its advantages and disadvantages. We suggest to use a mixture of Gaussians representation.
- 3. Based on the previous problem, develop an approximate method for posterior estimation with unknown data association, where the time needed for each incremental update step does not grow over time (assuming a fixed number of landmarks).

4. Develop a Kalman filter algorithm which uses local occupancy grid maps as its basic components, instead of landmarks. Among other things, problems that have to be solved are how to relate local grids to each other, and how to deal with the ever-growing number of local grids.

5. Develop and algorithm that learns its own features for Kalman filter mapping. There could be two different variants: One which chooses features so as to minimize the uncertainty (entropy) in the posterior, another which is given access to the correct map and seeks to maximize the probability of the correct map under the posterior.