Extend Commitment Protocols with Temporal Regulations: Why and How

Elisa Marengo

Advisor: Matteo Baldoni

Co-advisor: Cristina Baroglio

Università degli Studi di Torino. {emarengo, baldoni, baroglio}@di.unito.it

RuleML-DC 2011 - Barcelona, July 19th, 2011

What I will talk about

We want to find a *coordination* mechanism for

- autonomous agents

in the context of

- open
- heterogeneous

systems

Figure: Coordination schema by M. Huns & L. Stephens [Weiss, 1999]

Interaction protocols' point of view do not make assumptions on the agents' beha

What I will talk about

We want to find a *coordination* mechanism for

- autonomous agents

in the context of

- open
- heterogeneous

systems

Figure: Coordination schema by M. Huns & L. Stephens [Weiss, 1999]

Interaction protocols' point of view

do not make assumptions on the agents' behaviour

The context

To solve the coordination task we have to be aware that

- protocols: they need to be verifiable
- autonomy: no introspection
 - No mentalistic approaches for coordination
 - Only observable behaviour can be judged
- autonomy: we cannot tell agents what to do
 - No procedural approaches
 - ▶ No methods invocation: they are not objects
 - It is not planning
- heterogeneity: no assumptions on their implementation
 - They belongs to different owners
 - We know the roles, not the players

Commitment Protocols?

Commitment protocols [Singh, 2000, Yolum and Singh, 2001a]: C(debtor, creditor, antecedent, consequent)

- Social state: contains commitments and other literals that are relevant to their interaction;
- Social actions: defined in terms of operations onto the social state;
- Regulative nature: debtors should act in accordance with the commitments they have taken.

They meet the requirements

- do not impose actions to the agents (respecting autonomy)
- social and observational semantics of the communication
 - no introspection (respecting autonomy and heterogeneity)
 - ▶ they are verifiable (according to protocol requirement)
- coordination is realized by means of *social expectations* (respecting autonomy and heterogeneity)

Commitment Protocols?

Commitment protocols [Singh, 2000, Yolum and Singh, 2001a]:

 $\mathsf{C}(\mathit{debtor}, \mathit{creditor}, \mathit{antecedent}, \mathit{consequent})$

- Social state: contains commitments and other literals that are relevant to their interaction;
- Social actions: defined in terms of operations onto the social state;
- Regulative nature: debtors should act in accordance with the commitments they have taken.

They meet the requirements

- do not impose actions to the agents (respecting autonomy)
- social and observational semantics of the communication
 - no introspection (respecting autonomy and heterogeneity)
 - they are verifiable (according to protocol requirement)
- coordination is realized by means of social expectations (respecting autonomy and heterogeneity)

What is missing?

Commitment protocols

- realize coordination through what condition is to be achieved [Winikoff et al., 2005]
- disregard coordination through how conditions should be achieved: temporal ordering [Baldoni et al., 2010]

Temporal regulations

To rule the evolution of the social state distinguishing

- legal evolutions
- undesired evolutions

Temporal regulations define patterns of interaction that

- represent conventions, norms, preferences, habits, rules and suchlike
- allow for prevision: agents can have expectations on each others' behaviour

How to specify patterns of interaction?

In a way that:

- does not compromise the flexibility of agents behaviour
- does not compromise the agents' autonomy
- fosters openness (agents can easily enter/leave a system)
- introduces modularity:
 - easier re-use of protocols in different contexts
 - easier customization of protocols
 - easier composition of protocols

Constitutive and Regulative Specifications

To meet these requirements

enhanced commitment-based protocol formal framework [Baldoni et al., 2011]:

- explicit distinction between a constitutive and a regulative specification [Searle, 1969] of the protocol
- constitutive specification: how actions affect the social state
- regulative specification: rules the evolution of the social state

Constitutive specification

```
A 
ightarrow (Action \, {
m means} \, {
m Operation} \, {
m if} \, {
m Cond})^+
Action 
ightarrow protocolAction
Operation 
ightarrow Op(commitment) \mid fact \mid
Operation \land Operation
Op 
ightarrow {
m CREATE} \mid {
m DELETE} \mid {
m RELEASE} \mid {
m DELEGATE} \mid
{
m ASSIGN} \mid ...
{
m Cond} 
ightarrow {
m Iteral} \mid {
m Cond} \ \land \ {
m Cond} \mid {
m Cond} \ \lor \ {
m Cond} \mid
{
m Cond} \ {
m
```

Constitutive specification

- the means construct amounts to a counts-as relation [Searle, 1995]
- similar to [Chopra, 2009, Singh, 1999, Yolum and Singh, 2001b]

Regulative specification

2CL: Constraints among Commitment Language

allows declarative, constraint-based representation of patterns of interaction

- we defined a set of operators and their negations [Baldoni et al., 2010]
- grounded on LTL
- allows for the specification of constraints among literals and commitments
- constraints have a *regulative nature*:
 - intuitively: restrict the set of legal execution paths
 - do not specify which actions should bring conditions about
 - ▶ any evolution, of the social state, that respects the constraints respects the protocol

Relation	Type F	Positive	LTL meaning	Negative LTL meaning
Correlation	base A	4 •− <i>B</i>	$\Diamond A \supset \Diamond B$	$ A \bullet \!\!\!\!/ B $
	persistence A	4 ← B	$\Box(A\supset (A\land B))$	$A \hookrightarrow B \Box(A \supset \neg(A \land B))$
Co-existence	base A	A • → B	$A \bullet \!\!\!\!- B \wedge B \bullet \!\!\!\!- A$	$A \bullet \not - B A \bullet \not - B \wedge B \bullet \not - A$
	persistence A	4 ← B	$A \longleftarrow B \wedge B \longleftarrow A$	$ A \rightleftharpoons B A \rightleftharpoons B \land B \rightleftharpoons A$
Response	base A	1 •→ B	$\Box(A\supset\Diamond B)$	$A \bullet \not \rightarrow B \mid \Box (A \supset \neg \Diamond B)$
	persistence A	A • → B	$\Box(A\supset(\Diamond B\wedge(A\cup B)))$	$A \hookrightarrow B \mid \Box(A \supset \neg(A \land B))$
Before	base A	A → B	$\neg B \cup A$	$A \not \Rightarrow B \mid \Box(\Diamond B \supset \neg A)$
	persistence A	A ⇒ B	$\neg B \cup (A \cup B)$	$A \not\Rightarrow B \mid \Box(\Diamond B \supset \neg A)$
Cause !	base A	A •⊸≫ B	$A \bullet \multimap B \wedge A \multimap B$	$A \bullet \nearrow \bullet B \mid A \bullet \nearrow \bullet B \land A \nearrow \bullet \bullet B$
	persistence A	4 • → B	$A \Longrightarrow B \wedge A \Longrightarrow B$	$A \rightleftharpoons B A \rightleftharpoons B \land A \rightleftharpoons B$
Premise	base A	A ÞÞ— B	$\Box(\bigcirc B\supset A)$	$ A\bowtie \vdash B \Box(\bigcirc B \supset \neg A)$
Immediate after	base A	A →≫ B	$\Box(A\supset\bigcirc B)$	$ A \rightarrow \triangleright B \Box (A \supset \bigcirc \neg B)$

Table: 2CL constraint relations and their semantics in LTL.

A commitment machine for our protocols

Legal executions

- a legal execution of a commitment-based protocols enriched with 2CL regulative specification:
 - is accepted by the commitment machine built upon the constitutive specification [Winikoff et al., 2005]
 - satisfies the LTL formulas corresponding to the regulative specification

We implemented an extension of Winikoff et al.'s enhanced commitment machine [Winikoff et al., 2005]

- the output is an annotated and colored graph of the possible interactions
 - paths represent the possible interactions given the constitutive specification
 - annotations highlights violations and unsatisfied constraints
- by working on facts and events, and by considering a subset of LTL: verification can be performed on states, rather than on paths

Modularity for Business Protocols

In the context of regulations that change along time

- business protocols must be *compliant to regulations*
- modularity simplifies the task of adapting them to the new regulations
- new regulations usually impose the execution of new activities to be interleaved with the previous existing one
- modularity is needed to simplify the grafting of the new regulations onto existing business protocols

By separating constitutive and regulative specification

- new activities are added to the constitutive specification of the protocols
- new temporal regulation declaratively specify when, how, where the added activities are to be used: grafting points

Modularity for Business Protocols

In the context of regulations that change along time

- business protocols must be compliant to regulations
- modularity simplifies the task of adapting them to the new regulations
- new regulations usually impose the execution of new activities to be interleaved with the previous existing one
- modularity is needed to simplify the grafting of the new regulations onto existing business protocols

By separating constitutive and regulative specification

- new activities are added to the constitutive specification of the protocols
- new temporal regulation declaratively specify when, how, where the added activities are to be used: grafting points

A Real-world Case Study: OECD Guidelines

Guidelines on the Protection of Privacy and Transborder Flows of Personal Data:

- protecting data owners from the violation of their fundamental rights
- encouraging the flow of data by increasing trust between countries

Pre-guidelines Data Flow Protocol

- (a) ask_data **means** asked_data **if** ¬asked_data.
- (b) send_data means sent_data if asked_data ∧ ¬sent_data ∧ ¬refuse_data.
- (c) refuse_data means refuse_data, CANCEL(C(dc,asker,sent_data)) if asked_data ∧ ¬ sent_data ∧ ¬ refuse_data.

Grafting of OECD Guidelines

New activities

- (d) periodically_verify_accuracy means accuracy_verified
 - if ¬asked_data ∧ ¬accuracy_verified.
- (e) check_accuracy means accuracy_verified if asked_data ∧ ¬ accuracy_verified.
- (f) verify_purpose means purpose_verified if asked_data ∧ ¬purpose_verified.
- (g) notify_owner means owner_notified if sent data ∧ ¬owner notified

New regulations

- (c1) purpose_verified → sent_data
- (c2) accuracy_verified → sent_data
- (c3) sent_data •→ owner_notified
- (c4) purpose_verified → refuse_data
- (c5) accuracy_verified → refuse_data

Figure: Reachability graph for the Data Flow protocol extended with OECD Guidelines.

A tool for the analysis

This tool can be used by the analysts in order to:

- identify the risk of violations the interaction can encounter
- helping the decision on when to apply regimentation or enforcement [Jones and Sergot, 1994]

A Real-world Case Study: MiFID

- MiFID: Markets in Financial Instruments Directive
- protection of the clients of financial service agencies
- introduces new regulations that financial services must follow

Constitutive specification

- (a) propose_solution means proposed_RiskL if ...
- (b) reject_proposal means rejected_proposal, RELEASE(C(fp, inv, invested)) if . . .
- (c) sign_order means CREATE(C(inv, bank, contract_ended)), accepted_proposal, order_signed if . . .
- (d) countersign_contract means contract_countersigned, CREATE(C(bank, inv, executed_order)), invested if ...
- (e) send_contract means contract_sent if ...
- (f) notify means notified if ...
- (g) end means executed_order, contract_ended if ...

Regulative specification

- (c1) notified → contract_ended
- (c2) contract_sent ← notified

MiFID regulation

- MiFID dictates how the interaction with the client should be carried
- violation of some constraint does not affect the sale directly, but creates a risk of sanction and a risk of exposure for the intermediary

New activities

- (h) interview means investor_identified, document_supplied if . . .
- (i) profile means CREATE(C(fp, inv, evaluation)), investor_classified if ¬investor_classified ∧ investor_identified ∧ ¬contract_ended ∧ ¬contract_abort ∧ ¬rejected_proposal ∧ ¬fi_discarded.
- (j) classify means classified if . . .
- (k) fi_evaluation means CREATE(C(fp, inv, proposed_RiskL)), evaluation if ...
- fi_discard means fi_discarded, CANCEL(C(fp, inv, invested)), CANCEL(C(fp, inv, proposed_RiskL)) if . . .
- CANCEL(C(fp, inv, proposed_RiskL)) if .

 (m) order_verification means order_verified.
 - CREATE(C(bank, inv, executed_order)) if ...
- (n) withdraw means contract_abort, RELEASE(C(bank, inv, ex_order)), CANCEL(C(inv, bank, contract_ended)) if ...

New regulations

- (c3) C(fp, inv, invested) •→ investor_identified ∧
 document_supplied
- (c4) $investor_classified \rightarrow C(fp, inv, propose_riskL)$
- (c5) evaluation ∧ ¬fi_discarded → proposed_RiskL
- (c6) order_verified → contract_countersigned

Current and Future work

- operational semantics for our commitment machine
- how to:
 - reify regulations into business relationships?
 - bring normative force to the specification?

First step: REGULA , committing to regulations [Marengo et al., 2011]

```
C(debtor, creditor, ant_1 \cdot ant_2 \dots, cons_1 \cdot cons_2 \dots)
```

- temporal regulations can be expressed inside commitments
- '·' (before [Singh, 2003]) is a temporal operator on events: both events must occur and in the specified order

About REGULA

Control

It is the problem to establish whether an agent can bring about an event or complex action so as to detach or discharge a given commitment

- innate control
- social control

Safety

A commitment is safe for its debtor when the coordination necessary to fulfill the regulation is *supported* by commitments by the other agents involved, i.e. when:

- the debtor *controls* the negation of the antecedent (avoiding the commitment become active)
- or, whenever the antecedent holds, the debtor *controls* the residuation of the consequent (there is a way to satisfy the commitment)

Acknowledgments

I would like to thank the *reviewers* for the helpful suggestions, the mentors, my advisor *Prof. Matteo Baldoni*, and co-advisor *Prof. Cristina Baroglio* and Dr. Vivana Patti.

- Baldoni, M., Baroglio, C., and Marengo, E. (2010).
 Behavior-Oriented Commitment-Based Protocols.
 In *Proc. of the European Conf. on Art. Int. (ECAI)*, pages 137–142.
 - Baldoni, M., Baroglio, C., Marengo, E., and Patti, V. (2011). Constitutive and Regulative Specifications of Commitment Protocols: a Decoupled Approach.

ACM Transactions on Intelligent Systems and Technology, Special Issue on Agent Communication.

- Chopra, A. (2009).
 - Commitment Alignment: Semantics, Patterns, and Decision Procedures for Distributed Computing.
 - PhD thesis, North Carolina State University, Raleigh, NC.
- Conte, R., Castelfranchi, C., and Dignum, F. (1998). Autonomous Norm Acceptance.
 - In Müller, J. P., Singh, M. P., and Rao, A. S., editors, *ATAL*, volume 1555 of *Lecture Notes in Computer Science*, pages 99–112. Springer.

Normative Multi-agent Programs and Their Logics.

In Meyer, J.-J. C. and Broersen, J., editors, *KRAMAS*, volume 5605 of *Lecture Notes in Computer Science*, pages 16–31. Springer.

Jones, A. J. I. and Sergot, M. (1994).

On the characterization of law and computer systems: the normative systems perspective, pages 275–307.

John Wiley & Sons, Inc.

Marengo, E., Baldoni, M., Baroglio, C., Chopra, A. K., Patti, V., and Singh, M. P. (2011).

Commitments with Regulations: Reasoning about Safety and Control in REGULA.

In Proc. of AAMAS, pages 843-850. IFAAMAS.

Searle, J. (1969).

Speech Acts.

Cambridge University Press.

Searle, J. (1995).

The construction of social reality.

Free Press, New York.

🔋 Singh, M. P. (1999).

An ontology for commitments in multiagent systems.

Artif. Intell. Law, 7(1):97-113.

Singh, M. P. (2000).

A Social Semantics for Agent Communication Languages.

In Dignum, F. and Greaves, M., editors, *Issues in Agent Communication*, volume 1916 of *LNCS*, pages 31–45. Springer.

Singh, M. P. (2003).

Distributed enactment of multiagent workflows: temporal logic for web service composition.

In AAMAS, pages 907–914. ACM.

Weiss, G., editor (1999).

Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence.

The MIT Press.

Winikoff, M., Liu, W., and Harland, J. (2005). Enhancing commitment machines.

In DALT 2004, volume 3476 of LNCS, pages 198-220. Springer.

Yolum, P. and Singh, M. P. (2001a).

Commitment Machines.

In Proc. of ATAL, volume 2333 of LNCS, pages 235-247. Springer.

Yolum, P. and Singh, M. P. (2001b).

Designing and executing protocols using the event calculus.

In Agents, pages 27–28.