

Odziv linearnih vremenski stalnih diskretnih sustava

Labo

Signali i sustavi

Profesor Branko Jeren

21. ožujka 2007.

Signali i sustavi školska godina 2006/2007 Predavanje 10

Profesor Branko Jeren

Odziv linearnih vremensk stalnih diskretnih

Odziv pobuđenog sustava

Određivan impulsnog odziva

Jeka

Odziv pobuđenog sustava

 kako je kazano totalni odziv je zbroj odziva nepobuđenog sustava i odziva mirnog sustava, dakle,¹

$$y(n) = \sum_{j=1}^{N} c_i q_i^n + odziv mirnog sustava$$

- odziv mirnog sustava na bilo koju pobudu možemo odrediti
 - klasičnim rješavanjem jednadžbe diferencija
 - korištenjem konvolucijske sumacije

¹ovdje je, radi jednostavnosti u prikazu odziva nepobuđenog sustava, pretpostavljen sustav s jednostrukim i realnim karakterističnim frekvencijama

sustavi školska godina 2006/2007 Predavanje 10

Profesor Branko Jeren

linearnih vremensl stalnih diskretni sustava

Odziv pobuđenog sustava Određivanje impulsnog odziva

Jeka

Odziv mirnog sustava rješenjem jednadžbe diferencija

- za sustav opisan nehomogenom jednadžbom diferencija potrebno je odrediti i partikularno rješenje
- određivanje partikularnog rješenja
 - Lagrange-ova metoda varijacije parametara
 - rješenje se dobiva u eksplicitnom obliku
 - primjena rezultira složenim sumacijama
 - Metoda neodređenog koeficijenta
 - ograničena na pobude oblika polinoma i eksponencijalnih nizova
 - veliki se broj pobuda može aproksimirati gore navedenim nizovima
 - češće se upotrebljava u analizi sustava

Predavanie 10 Profesor

Branko Jeren

Odziv pobuđenog

Odziv mirnog sustava rješenjem jednadžbe diferencija

• za pobudu polinomom oblika

$$u(n) = A_0 + A_1 n + \ldots + A_M n^M$$

• partikularno je rješenje u obliku polinoma *M*-tog stupnja

$$y_p(n) = K_0 + K_1 n + \ldots + K_M n^M$$

 rješenje se uvijek pretpostavlja u obliku kompletnog polinoma tj. sa svim potencijama, bez obzira da li polinom pobude ima sve članove

Odziv linearnih vremensk stalnih diskretnih

Odziv pobuđenog sustava

Određivar impulsnog odziva

Jeka

Odziv mirnog sustava rješenjem jednadžbe diferencija

• slično vrijedi i za nizove

pobuda $u(n)$	partikularno rješenje $y_p(n)$
A (konstanta)	K
Ar^n $r \neq q_i (i = 1, 2,, N)$	Kr ⁿ
Ar^n $r=q_i$	Knr ⁿ
An^{M}	$K_0 + K_1 n + \ldots + K_M n^M$
$r^n n^M$	$r^n(K_0+K_1n+\ldots+K_Mn^M)$
$Acos(\omega_0 n)$	$K_1 cos(\omega_0 n) + K_2 sin(\omega_0 n)$
$Asin(\omega_0 n)$	$K_1 cos(\omega_0 n) + K_2 sin(\omega_0 n)$

Odziv linearnih vremensk stalnih diskretnih

Odziv pobuđenog sustava

Određivan impulsnog odziva

Jeka

Odziv mirnog sustava rješenjem jednadžbe diferencija

odredimo odziv sustava

$$y(n) - 0.8\sqrt{2}y(n-1) + 0.64y(n-2) = u(n)$$

- na pobudu $u(n)=-0.2cos(\frac{\pi}{8}n)\cdot \mu(n)$ te uz početne uvjete y(-1)=-2 i y(-2)=-1.5
- prije je određen odziv nepobuđenog sustava

$$y_0(n) = 1.6183 \cdot 0.8^n \cos(\frac{\pi}{4}n - 2.5065)$$

preostaje odrediti odziv mirnog sustava

$$y_m(n) = c_1 0.8^n e^{j\frac{\pi}{4}n} + c_2 0.8^n e^{-j\frac{\pi}{4}n} + y_p(n)$$

dakle, treba odrediti partikularno rješenje $y_p(n)$ te c_1 i c_2 za y(-1)=0 i y(-2)=0

2006/2007

Odziv linearnih vremensk stalnih diskretnih sustava

Odziv pobuđenog sustava

Određivan impulsnog odziva

Jeka

Određivanje partikularnog rješenja – primjer

• kako je pobuda $u(n) = -0.2cos(\frac{\pi}{8}n) \cdot \mu(n)$ partikularno rješenje je oblika

$$y_p(n) = K_1 cos(\frac{\pi}{8}n) + K_2 sin(\frac{\pi}{8}n)$$

- koeficijente K₁ i K₁ određujemo metodom neodređenog koeficijenta
- uvrštenjem $y_p(n)$ u polaznu jednadžbu slijedi

$$y_p(n) - 0.8\sqrt{2}y_p(n-1) + 0.64y_p(n-2) = -0.2cos(\frac{\pi}{8}n);$$

$$K_1 cos(\frac{\pi}{8}n) + K_2 sin(\frac{\pi}{8}n) - 0.8\sqrt{2}K_1 cos[\frac{\pi}{8}(n-1)] - 0.8\sqrt{2}K_2 sin[\frac{\pi}{8}(n-1)] + 0.64K_1 cos[\frac{\pi}{8}(n-2)] + 0.64K_2 sin[\frac{\pi}{8}(n-2)] = -0.2 cos(\frac{\pi}{8}n)$$

školska godina 2006/2007

Predavanje 10
Profesor

Profesor Branko Jeren

linearnih vremensl stalnih diskretni sustava

Odziv pobuđenog

Određivan impulsnog odziva

Jeka

Određivanje partikularnog rješenja – primjer

primjenom trigonometrijskih transformacija slijedi

$$\begin{split} &K_{1}cos(\frac{\pi}{8}n) + K_{2}sin(\frac{\pi}{8}n) - \\ &- 0.8\sqrt{2}K_{1}[cos(\frac{\pi}{8}n)cos(\frac{\pi}{8}) + sin(\frac{\pi}{8}n)sin(\frac{\pi}{8})] - \\ &- 0.8\sqrt{2}K_{2}[sin(\frac{\pi}{8}n)cos(\frac{\pi}{8}) - cos(\frac{\pi}{8}n)sin(\frac{\pi}{8})] + \\ &+ 0.64K_{1}[cos(\frac{\pi}{8}n)cos(\frac{\pi}{4}) + sin(\frac{\pi}{8}n)sin(\frac{\pi}{4})] + \\ &+ 0.64K_{2}[sin(\frac{\pi}{8}n)cos(\frac{\pi}{4}) - cos(\frac{\pi}{8}n)sin(\frac{\pi}{4})] = -0.2cos(\frac{\pi}{8}n) \end{split}$$

razvrstavanjem slijedi

$$\begin{split} \{ & [1 - 0.8\sqrt{2}cos(\frac{\pi}{8}) + 0.64cos(\frac{\pi}{4})]K_1 + \\ & + [0.8\sqrt{2}sin(\frac{\pi}{8}) - 0.64sin(\frac{\pi}{4})]K_2 \} cos(\frac{\pi}{8}n) + \\ \{ - & [0.8\sqrt{2}sin(\frac{\pi}{8}) - 0.64sin(\frac{\pi}{4})]K_1 + \\ & + [1 - 0.8\sqrt{2}cos(\frac{\pi}{8}) + 0.64cos(\frac{\pi}{4})]K_2 \} sin(\frac{\pi}{8}n) = -0.2cos(\frac{\pi}{8}n) \end{split}$$

2006/2007

Odziv linearnih vremenski stalnih diskretnih sustava

Odziv pobuđenog sustava

Određivanj impulsnog odziva

Jeka

Određivanje partikularnog rješenja – primjer

usporedbom lijeve i desne strane pišemo

$$\begin{split} [1 - 0.8\sqrt{2}cos(\frac{\pi}{8}) + 0.64cos(\frac{\pi}{4})]K_1 + \\ + [0.8\sqrt{2}sin(\frac{\pi}{8}) - 0.64sin(\frac{\pi}{4})]K_2 = -0.2 \\ - [0.8\sqrt{2}sin(\frac{\pi}{8}) - 0.64sin(\frac{\pi}{4})]K_1 + \\ + [1 - 0.8\sqrt{2}cos(\frac{\pi}{8}) + 0.64cos(\frac{\pi}{4})]K_2 = 0 \end{split}$$

ullet rješenjem ovih jednadžbi izračunavamo K_1 i K_2

$$K_1 = -0.4899, \qquad K_2 = 0.0236$$

pa je partikularno rješenje

$$y_p(n) = -0.4899\cos(\frac{\pi}{8}n) + 0.0236\sin(\frac{\pi}{8}n) =$$

= $-0.4905\cos(\frac{\pi}{8}n + 0.0481)$

Profesor Branko Jeren

linearnih vremenski stalnih diskretnih

Odziv pobuđenog sustava

Određivanj impulsnog odziva

Jeka

Odziv mirnog sustava rješenjem jednadžbe diferencija

• izračunavanje y(0) i y(1) potrebnih u izračunavanju c_1 i c_2 a uz y(-1)=0 i y(-2)=0

$$n = 0 \quad y(0) = 0.8\sqrt{2}y(-1) - 0.64y(-2) - 0.2\cos(\frac{\pi}{8}0) = -0.2$$

$$n = 1 \quad y(1) = 0.8\sqrt{2}y(0) - 0.64y(-1) - 0.2\cos(\frac{\pi}{8}1) = -0.4111$$

• iz rješenja za odziv mirnog sustava

$$y_{m}(n) = c_{1}0.8^{n}e^{j\frac{\pi}{4}n} + c_{2}0.8^{n}e^{-j\frac{\pi}{4}n} - 0.4899\cos(\frac{\pi}{8}n) + 0.0236\sin(\frac{\pi}{8}n)$$

$$n = 0$$

$$y(0) = c_{1} + c_{2} - 0.4899 = -0.2$$

$$n = 1$$

$$y(1) = c_{1}0.8e^{j\frac{\pi}{4}} + c_{2}0.8e^{-j\frac{\pi}{4}} - 0.4899\cos(\frac{\pi}{8}) + 0.0236\sin(\frac{\pi}{8}) = -0.4111$$

pa su konstante c_1 i c_2

$$c_1 = 1.4450 + j0.1162 = 0.1858e^{j0.6759}$$

 $c_2 = 1.4450 - j0.1162 = 0.1858e^{-j0.6759}$

2006/2007

Odziv linearnih vremensk stalnih diskretnih sustava

Odziv pobuđenog sustava

Određivan impulsnog odziva

Jeka

Odziv mirnog sustava rješenjem jednadžbe diferencija

odziv mirnog sustava je

$$y_m(n) = c_1 0.8^n e^{j\frac{\pi}{4}n} + c_2 0.8^n e^{-j\frac{\pi}{4}n} - 0.4905 cos(\frac{\pi}{8}n + 0.0481)$$
$$y_m(n) = 0.1858 e^{j0.6759} 0.8^n e^{j\frac{\pi}{4}n} + 0.1858 e^{-j0.6759} 0.8^n e^{-j\frac{\pi}{4}n} +$$

$$y_m(n) = 0.1858e^{J0.6759}0.8^n e^{J\frac{\pi}{4}n} + 0.1858e^{-J0.6759}0.8^n e^{-J\frac{\pi}{4}n} + 0.4905\cos(\frac{\pi}{8}n + 0.0481)$$

i konačno

$$y_m(n) = 0.3716(0.8)^n cos(\frac{\pi}{4}n + 0.6759) - 0.4905 cos(\frac{\pi}{8}n + 0.0481)$$

Signali i sustavi školska godina 2006/2007 Predavanje 10

Profesor Branko Jeren

Odziv linearnih vremensk stalnih diskretnih sustava

Odziv pobuđenog sustava

Određivanj impulsnog odziva

Jeka

Totalni odziv sustava rješenjem jednadžbe diferencija

• totalni odziv sustava je

$$y(n) = y_0(n) + y_m(n)$$

$$y(n) = \underbrace{1.6183 \cdot 0.8^n \cos(\frac{\pi}{4}n - 2.5065)}_{\text{odziv nepobudenog sustava}} + \underbrace{0.3716(0.8)^n \cos(\frac{\pi}{4}n + 0.6759) - 0.4905 \cos(\frac{\pi}{8}n + 0.0481)}_{\text{odziv mirnog sustava}}$$

$$y(n) = \underbrace{-0.4905 \cos(\frac{\pi}{8}n + 0.0481)}_{\text{prisilni odziv}} + 1.6183 \cdot 0.8^n \cos(\frac{\pi}{4}n - 2.5065) + 0.3716(0.8)^n \cos(\frac{\pi}{4}n + 0.6759)$$

prirodni odziv

Odziv

pobuđenog sustava

Totalni odziv sustava rješenjem jednadžbe diferencija

Slika 1: Totalni odziv sustava na pobudu $-0.2cos(\frac{\pi}{8}n)$

Odziv

pobuđenog sustava

Totalni odziv sustava rješenjem jednadžbe diferencija

Slika 2: Totalni odziv sustava na pobudu $-0.2cos(\frac{\pi}{8}n)$

školska godina 2006/2007

Predavanje 10

Profesor
Branko Jeren

Odziv linearnih vremensk stalnih diskretnil sustava

Odziv pobuđenog sustava

Određivan impulsnog odziva

Jeka

Totalni odziv sustava rješenjem jednadžbe diferencija – primjer

odredimo odziv sustava

$$y(n) - 0.8\sqrt{2}y(n-1) + 0.64y(n-2) = u(n)$$

- na pobudu $u(n)=-0.2cos(\frac{\pi}{8}n)$ te uz početne uvjete y(-1)=-2 i y(-2)=-1.5
- prije je određeno rješenje homogene jednadžbe ovog sustava

$$y_h(n) = c_1 0.8^n e^{j\frac{\pi}{4}n} + c_2 0.8^n e^{-j\frac{\pi}{4}n}$$

• pa je totalno rješenje

$$y(n) = c_1 0.8^n e^{j\frac{\pi}{4}n} + c_2 0.8^n e^{-j\frac{\pi}{4}n} + y_p(n)$$

• treba odrediti partikularno rješenje $y_p(n)$, te c_1 i c_2 za y(-1) = -2 i y(-2) = -1.5

Odziv linearnih vremenski stalnih diskretnih

Odziv pobuđenog sustava

Određivanj impulsnog odziva

Jeka

Totalni odziv sustava rješenjem jednadžbe diferencija – primjer

• kako je pobuda $u(n) = -0.2cos(\frac{\pi}{8}n)$ partikularno rješenje je oblika

$$y_p(n) = K_1 cos(\frac{\pi}{8}n) + K_2 sin(\frac{\pi}{8}n)$$

partikularno rješenje je određeno prije

$$y_p(n) = -0.4905\cos(\frac{\pi}{8}n + 0.0481)$$

sustavi školska godina 2006/2007 Predavanje 10

Profesor Branko Jeren

linearnih vremensk stalnih diskretni sustava

Odziv pobuđenog sustava

Određivan impulsnog odziva

Јека

Totalni odziv sustava rješenjem jednadžbe diferencija – primjer

• izračunavanje y(0) i y(1) potrebnih u izračunavanju c_1 i c_2 a uz y(-1)=-2 i y(-2)=-1.5

$$n = 0 \quad y(0) = 0.8\sqrt{2}y(-1) - 0.64y(-2) - 0.2\cos(\frac{\pi}{8}0) = -1.5027$$

$$n = 1 \quad y(1) = 0.8\sqrt{2}y(0) - 0.64y(-1) - 0.2\cos(\frac{\pi}{8}1) = -0.6049$$

iz totalnog rješenja

$$y(n) = c_1 0.8^n e^{j\frac{\pi}{4}n} + c_2 0.8^n e^{-j\frac{\pi}{4}n} - 0.4899 cos(\frac{\pi}{8}n) + 0.0236 sin(\frac{\pi}{8}n)$$

$$n = 0$$

$$y(0) = c_1 + c_2 - 0.4899 = -1.5027$$

$$n = 1$$

$$y(1) = c_1 0.8 e^{j\frac{\pi}{4}} + c_2 0.8 e^{-j\frac{\pi}{4}} - 0.4899 cos(\frac{\pi}{8}) + 0.0236 sin(\frac{\pi}{8}) = -0.6049$$

pa su konstante c_1 i c_2

$$c_1 = -0.5064 - j0.3638 = 0.6235e^{-j2.5186}$$

 $c_2 = -0.5064 + j0.3638 = 0.6235e^{j2.5186}$

2006/2007 Predavanje 10 Profesor

Profesor Branko Jeren

Odziv linearnih vremensk stalnih diskretnih sustava

Odziv pobuđenog sustava

Određivan impulsnog odziva

Jeka

Totalni odziv sustava rješenjem jednadžbe diferencija – primjer

totalni odziv je

$$y(n) = c_1 0.8^n e^{j\frac{\pi}{4}n} + c_2 0.8^n e^{-j\frac{\pi}{4}n} - 0.4905 cos(\frac{\pi}{8}n + 0.0481)$$

$$y(n) = 0.6235e^{-j2.5186}0.8^{n}e^{j\frac{\pi}{4}n} + 0.6235e^{j2.5186}0.8^{n}e^{-j\frac{\pi}{4}n} + 0.4905cos(\frac{\pi}{8}n + 0.0481)$$

i konačno

$$y(n) = 1.2471(0.8)^n \cos(\frac{\pi}{4}n - 2.5186) - 0.4905\cos(\frac{\pi}{8}n + 0.0481)$$

2006/2007

Odziv linearnih vremensl stalnih

stalnih diskretr sustava

Odziv pobuđenog sustava

Određivan impulsnog odziva

Labor

Totalni odziv sustava rješenjem jednadžbe diferencija – primjer

Slika 3: Totalni odziv sustava na pobudu $-0.2cos(\frac{\pi}{8}n)$

linearnih vremensk stalnih diskretnil sustava

pobuđenog sustava Određivanje impulsnog odziva

Jeka

Određivanje impulsnog odziva

 pokazano je da odziv pobuđenog mirnog sustava možemo odrediti konvolucijskom sumacijom

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)u(n-k) = \sum_{m=-\infty}^{\infty} h(n-m)u(m)$$

• potrebno je odrediti impulsni odziv sustava, dakle totalni odziv sustava na pobudu $u(n) = \delta(n)$ uz početne uvjete jednake nuli

2006/2007

Odziv linearnih vremensi stalnih diskretni sustava

Odziv pobuđenog sustava Određivanje

Određivan impulsnog odziva

Jeka

Određivanje impulsnog odziva

- za prije razmatrani sustav odredimo impulsni odziv h(n)
- sustav je bio zadan jednadžbom diferencija

$$y(n) - 0.8\sqrt{2}y(n-1) + 0.64y(n-2) = u(n)$$

• impulsni odziv određujemo za miran sustav y(-1)=h(-1)=0 i y(-2)=h(-2)=0 i pobudu $u(n)=\delta(n)$ pa pišemo

$$h(n) - 0.8\sqrt{2}h(n-1) + 0.64h(n-2) = \delta(n)$$

• očigledno je da gornja jednadžba prelazi u homogenu jednadžbu za n>0 i da se određivanje impulsnog odziva svodi na određivanje rješenja homogene jednadžbe za n>0

linearnih vremensk stalnih diskretnil sustava

Odziv pobuđeno sustava

Određivanje impulsnog odziva

leka

Određivanje impulsnog odziva

 rješenje homogene jednadžbe ovog sustava, prije određeno, je

$$h(n) = c_1 0.8^n e^{j\frac{\pi}{4}n} + c_2 0.8^n e^{-j\frac{\pi}{4}n}$$
 (1)

- vrijednost impulsnog odziva u n=0 predstavlja jedan od rubnih uvjeta za određivanje konstanti c_1 i c_2
- dakle, za n = 0, iz

$$h(0) - 0.8\sqrt{2}h(-1) + 0.64h(-2) = \delta(0) \Rightarrow h(0) = 1$$

• konstante c_1 i c_2 određujemo iz (1) za n=-1 i n=0

$$n = -1$$
, $h(-1) = 0 = c_1 0.8^{-1} e^{j\frac{-\pi}{4}} + c_2 0.8^{-1} e^{j\frac{\pi}{4}}$
 $n = 0$, $h(0) = 1 = c_1 + c_2$

$$\Rightarrow c_1 = 0.7071e^{-j0.7854}, \quad c_2 = 0.7071e^{j0.7854}$$

Odziv linearnih vremensk stalnih diskretnih

Odziv pobuđenog sustava

Određivanje impulsnog odziva

leka

Određivanje impulsnog odziva

pa je impulsni odziv

$$h(n) = 0.7071e^{-j0.7854}0.8^{n}e^{j\frac{\pi}{4}n} + 0.7071e^{j0.7854}0.8^{n}e^{-j\frac{\pi}{4}n}$$

odnosno

$$h(n) = 1.4142(0.8)^n \cos\left(\frac{\pi}{4}n - 0.7854\right), \quad n \ge 0$$

Signali i sustavi školska godina 2006/2007 Predavanje 10

Profesor Branko Jeren

Odziv linearnih vremensk stalnih

diskretr sustava

Odziv pobuđeno sustava

Određivanje impulsnog odziva

Jeka

Primjeri određivanja impulsnog odziva diskretnog sustava

$$h(0) = 1.0000$$

$$h(1) = 1.1314$$

$$h(2) = 0.6400$$

$$h(3) = 0.0000$$

$$h(4) = -0.4096$$

$$h(5) = -0.4634$$

$$h(6) = -0.2621$$

$$h(7) = 0.0000$$

$$h(8) = 0.1678$$

$$h(9) = 0.1898$$

$$h(10) = 0.1074$$

$$h(11) = 0.0000$$

$$h(12) = -0.0687$$

$$h(13) = -0.0777$$

$$h(14) = -0.0440$$

$$h(15) = 0.0000$$

2006/2007 Predavanje 10 Profesor

školska godina

Profesor Branko Jeren

Odziv linearnih vremensk stalnih diskretnih sustava Odziv

određivanje impulsnog odziva

Jeka

Primjeri određivanja impulsnog odziva diskretnog sustava

 razmatraju se još dva primjera određivanja impulsnog odziva mirnih sustava opisanih jednadžbama diferencija

$$y(n) - 0.8\sqrt{2}y(n-1) + 0.64y(n-2) = u(n) + 2u(n-1)$$

$$y(n) - 0.8\sqrt{2}y(n-1) + 0.64y(n-2) = u(n-4) + 2u(n-5)$$

- impulsni se odziv ovih sustava određuje na isti način kao u prethodnom primjeru (lijeva strana, pa zato i karakteristična jednadžba, su iste)
- u prvom slučaju impulsni se odziv nalazi kao rješenje homogene jednadžbe za n>1, pa će nam tada h(0) i h(1) predstavljati rubne uvjete za određivanje konstanti rješenja
- u drugom slučaju jednadžba postaje homogena za n > 5 i rubni su uvjeti u određivanju konstanti h(4) i h(5)

Odziv linearnih vremensk stalnih diskretni sustava

pobuđenog sustava Određivanje impulsnog odziva

Jeka

Primjeri određivanja impulsnog odziva diskretnog sustava

iz

$$y(n) - 0.8\sqrt{2}y(n-1) + 0.64y(n-2) = u(n) + 2u(n-1)$$

za,
$$y(-1) = h(-1) = y(-2) = h(-2) = 0$$
 i $u(n) = \delta(n)$,

$$n = 0$$
, $h(0) = 0.8\sqrt{2}h(-1) - 0.64h(-2) + \delta(0) + 2\delta(-1) = 1$
 $n = 1$, $h(1) = 0.8\sqrt{2}h(0) - 0.64h(-1) + \delta(1) + 2\delta(0) = 3.1314$

• za $h(n)=c_10.8^ne^{j\frac{\pi}{4}n}+c_20.8^ne^{-j\frac{\pi}{4}n}$ izračunavamo c_1 i c_2

$$n = 0, \quad h(0) = 1 = c_1 + c_2$$

 $n = 1, \quad h(1) = 3.1314 = c_1 0.8e^{j\frac{\pi}{4}} + c_2 0.8e^{-j\frac{\pi}{4}}$

 $\Rightarrow c_1 = 2.3223e^{-j1.3538}, c_2 = 2.3223e^{j1.3538}$

pa je impulsni odziv drugog sustava

$$h(n) = 2.3223e^{-j1.3538}0.8^n e^{j\frac{\pi}{4}n} + 2.3223e^{j1.3538}0.8^n e^{-j\frac{\pi}{4}n}$$

Profesor Branko Jeren

Odziv linearnih vremensk stalnih diskretnih

Odziv pobuđenog sustava

Određivanje impulsnog odziva

leka

Primjeri određivanja impulsnog odziva diskretnog sustava

izračunati impulsni odziv

$$h(n) = 2.3223e^{-j1.3538}0.8^n e^{j\frac{\pi}{4}n} + 2.3223e^{j1.3538}0.8^n e^{-j\frac{\pi}{4}n}$$

transformiramo u konačni oblik

$$h(n) = 4.6446(0.8)^n \cos\left(\frac{\pi}{4}n - 1.3538\right), \quad n \ge 0$$

Signali i sustavi školska godina 2006/2007 Predavanie 10

Profesor Branko Jeren

Odziv linearnih vremensk stalnih

diskretn sustava

Odziv pobuđeno sustava

Određivanje impulsnog odziva

Jeka

Primjeri određivanja impulsnog odziva diskretnog sustava

$$h(0) = 1.0000$$

$$h(1) = 3.1314$$

$$h(2) = 2.9028$$

$$h(3) = 1.2801$$

$$h(4) = -0.4096$$

$$h(5) = -1.2826$$

$$h(6) = -1.1890$$

$$h(7) = -0.5243$$

$$h(8) = 0.1678$$

$$h(9) = 0.5254$$

$$h(10) = 0.4870$$

$$h(11) = 0.2148$$

$$h(12) = -0.0687$$

$$h(13) = -0.2152$$

$$h(14) = -0.1995$$

-0.0880

Signali i sustavi školska godina 2006/2007 Predavanie 10

Profesor Branko Jeren

linearnih vremens stalnih diskretni sustava

Odziv pobuđenog sustava

Određivanje impulsnog odziva

Jeka

Primjeri određivanja impulsnog odziva diskretnog sustava

iz

$$y(n)-0.8\sqrt{2}y(n-1)+0.64y(n-2)=u(n-4)+2u(n-5),\ n\geq 4$$

za, $y(-1)=h(-1)=y(-2)=h(-2)=0$ i $u(n)=\delta(n),$ izračunavamo $h(0)=h(1)=h(2)=h(3)=0$

$$n = 4$$
, $h(4) = 0.8\sqrt{2}h(3) - 0.64h(2) + \delta(0) + 2\delta(-1) = 1$
 $n = 5$, $h(5) = 0.8\sqrt{2}h(4) - 0.64h(3) + \delta(1) + 2\delta(0) = 3.1314$

• za
$$h(n)=c_10.8^ne^{jrac{\pi}{4}n}+c_20.8^ne^{-jrac{\pi}{4}n}$$
 izračunavamo c_1 i c_2

$$n = 4$$
, $h(4) = 1$ $= c_1 0.8^4 e^{j\frac{\pi}{4}4} + c_2 0.8^4 e^{-j\frac{\pi}{4}4}$
 $n = 5$, $h(5) = 3.1314$ $= c_1 0.8^5 e^{j\frac{\pi}{5}n} + c_2 0.8^5 e^{-j\frac{\pi}{4}5}$

$$\Rightarrow c_1 = 5.6695e^{j1.7878}, \quad c_2 = 5.6695e^{-j1.7878}$$

Profesor Branko Jeren

linearnih vremensk stalnih diskretnih sustava

Odziv pobuđenog sustava

Određivanje impulsnog odziva

Jeka

Primjeri određivanja impulsnog odziva diskretnog sustava

pa je impulsni odziv trećeg sustava

$$h(n) = 5.6695e^{j1.7878}0.8^n e^{j\frac{\pi}{4}n} + 5.6695e^{-j1.7878}0.8^n e^{-j\frac{\pi}{4}n}$$

izračunati impulsni odziv transformiramo u konačni oblik

$$h(n) = 11.3389(0.8)^n \cos\left(\frac{\pi}{4}n + 1.7878\right), \quad n \ge 4$$

Signali i sustavi školska godina 2006/2007 Predavanje 10

Profesor Branko Jeren

Branko Jere

linearnih vremensk stalnih diskretnil

Odziv pobuđeno

Određivanje impulsnog odziva

Jeka

Primjeri određivanja impulsnog odziva diskretnog sustava

$$h(0) = 0.0000$$

$$h(1) = 0.0000$$

$$h(2) = 0.0000$$

$$h(3) = 0.0000$$

$$h(4) = 1.0000$$

$$h(5) = 3.1314$$

$$h(6) = 2.9028$$

$$h(7) = 1.2801$$

$$h(8) = -0.4096$$

$$h(9) = -1.2826$$

$$h(10) = -1.1890$$

$$h(11) = -0.5243$$

$$h(12) = 0.1678$$

$$h(13) = 0.5254$$

$$h(14) = 0.4870$$

$$h(15) = 0.2148$$

školska godina 2006/2007 Predavanje 10

Profesor Branko Jeren

Odziv linearnih vremensk stalnih diskretnih sustava

Jeka

Odziv sustava za generiranje jeke

treba naći odziv diskretnog sustava opisanog jednadžbom

$$y(n) - 0.6y(n-4) = u(n), \qquad n \in Cjelobrojni$$

na pobudu

$$u(n) = \begin{cases} 0 & \text{za } n < 0 \\ 1 & \text{za } n = 0, 1 \\ 0 & \text{za } n > 1 \end{cases}$$

• neka je sustav miran dakle

$$y(-1) = y(-2) = y(-3) = y(-4) = 0$$

• za n > 1, u(n) = 0 i gornja jednadžba postaje homogena

Odziv linearnih vremenski stalnih diskretnih sustava

Jeka

Odziv sustava za generiranje jeke

• dakle, problem rješavanja polazne jednadžbe

$$y(n) - 0.6y(n-4) = u(n)$$

svodimo na problem rješavanja homogene jednadžbe

$$y(n) - 0.6y(n-4) = 0$$
 za $n > 1$

čiji su rubni uvjeti tada

$$y_h(1) = y(1), \ y_h(0) = y(0), \ y_h(-1) = y(-1) \ i \ y_h(-2) = y(-2)$$

• y(1) i y(0) određujemo iterativnim postupkom iz polazne jednadžbe uz primjenu zadane pobude, a y(-1) i y(-2) su zadani početni uvjeti

Signali i sustavi školska godina 2006/2007 Predavanie 10

Profesor Branko Jeren

Odziv linearnih vremensk stalnih diskretnih sustava

Jeka

Odziv sustava za generiranje jeke

• za pretpostavljeno rješenje homogene jednadžbe $y_h(n) = cq^n$ iz

$$y(n) - 0.6y(n-4) = 0,$$

slijedi

$$cq^{n} - 0.6cq^{n-4} = 0$$
$$cq^{n-4}(q^{4} - 0.6) = 0$$

• pa je karakteristična jednadžba i karakteristične frekvencije

$$q^{4} - 0.6 = 0 \quad \Rightarrow \quad \begin{cases} q_{1} = -0.8801 \\ q_{2} = j0.8801 = 0.8801e^{j\frac{\pi}{2}} \\ q_{3} = -j0.8801 = 0.8801e^{-j\frac{\pi}{2}} \\ q_{4} = 0.8801 \end{cases}$$

2006/2007

linearnih vremenski stalnih diskretnih sustava

Jeka

Odziv sustava za generiranje jeke

rješenje homogene jednadžbe je

$$y_h(n) = c_1(-0.8801)^n + c_2(j0.8801)^n + c_3(-j0.8801)^n + c_4(0.8801)^n$$

- rješenje vrijedi za n>1 pa su rubni uvjeti, potrebni u postupku određivanja c_1, c_2, c_3, c_4 , vrijednosti $y_h(1), y_h(0), y_h(-1)$ i $y_h(-2)$
- $y_h(-1)=y(-1)$ i $y_h(-2)=y(-2)$ su zadani početni uvjeti, a $y_h(0)=y(0)$ i $y_h(1)=y(1)$ izračunavamo iterativnim postupkom iz nehomogene jednadžbe dakle za zadanu pobudu

Signali i sustavi školska godina 2006/2007 Predavanje 10

Profesor Branko Jeren

Odziv linearnih vremenski stalnih diskretnih sustava

Jeka

Odziv sustava za generiranje jeke

- zadane su početne vrijednosti pa, je $y_h(-1) = y(-1) = 0$ i $y_h(-2) = y(-2) = 0$
- iz polazne jednadžbe slijedi za:

$$n = 0$$
 $y(0) = u(0) + 0.6y(-4) = 1$ $\Rightarrow y_h(0) = y(0) = 1$
 $n = 1$ $y(1) = u(1) + 0.6y(-3) = 1$ $\Rightarrow y_h(1) = y(1) = 1$

pa iz

$$y_h(n) = c_1(-0.8801)^n + c_2(j0.8801)^n + c_3(-j0.8801)^n + c_4(0.8801)^n$$

slijedi

$$y_h(1) = c_1(-0.8801)^1 + c_2(j0.8801)^1 + c_3(-j0.8801)^1 + c_4(0.8801)^1$$

$$y_h(0) = c_1(-0.8801)^0 + c_2(j0.8801)^0 + c_3(-j0.8801)^0 + c_4(0.8801)^0$$

$$y_h(-1) = c_1(-0.8801)^{-1} + c_2(j0.8801)^{-1} + c_3(-j0.8801)^{-1} + c_4(0.8801)^{-1}$$

$$y_h(-2) = c_1(-0.8801)^{-2} + c_2(j0.8801)^{-2} + c_3(-j0.8801)^{-2} + c_4(0.8801)^{-2}$$

Odziv linearnih vremensk stalnih diskretnih sustava

leka

Odziv sustava za generiranje jeke

izračunati su koeficijenti

$$c_1 = -0.0341$$

 $c_2 = 0.2500 - j0.2841 = 0.3784e^{-j0.8491}$
 $c_3 = 0.2500 + j0.2841 = 0.3784e^{j0.8491}$
 $c_4 = 0.5341$

pa je rješenje homogene jednadžbe

$$y_h(n) = -0.0341(-0.8801)^n + 0.3784e^{-j0.8491}0.8801^n e^{j\frac{\pi}{2}n} + 0.3784e^{j0.8491}0.8801^n e^{-j\frac{\pi}{2}n} + 0.5341(0.8801)^n$$

odnosno

$$y_h(n) = -0.0341(-0.8801)^n + 0.5341(0.8801)^n + 0.7568 \cdot 0.8801^n \cos(\frac{\pi}{2}n - 0.8491),$$

sustavi školska godina 2006/2007 Predavanje 10

Profesor Branko Jeren

Odziv linearnih vremenski stalnih diskretnih sustava

Jeka

Odziv sustava za generiranje jeke

Slika 4: Odziv sustava za generiranje jeke