In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sb
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
dv=pd.read_csv(r"C:\Users\kunam\Downloads\drug200.csv")
dv
```

Out[1]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [2]:

```
1 dv.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Age	200 non-null	int64
1	Sex	200 non-null	object
2	BP	200 non-null	object
3	Cholesterol	200 non-null	object
4	Na_to_K	200 non-null	float64
5	Drug	200 non-null	object
1.0	C7 1 C 4 / 4	\	1 / 4 \

dtypes: float64(1), int64(1), object(4)

memory usage: 9.5+ KB

```
In [3]:
 1 dv.columns
Out[3]:
Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='ob
ject')
In [4]:
 1 dv['Sex'].value_counts()
Out[4]:
Sex
     104
Μ
F
      96
Name: count, dtype: int64
In [5]:
 1 dv['BP'].value_counts()
Out[5]:
BP
          77
```

HIGH LOW 64 NORMAL 59

Name: count, dtype: int64

In [6]:

```
convert={'Sex':{'M':1,'F':0},'BP':{'LOW':1,'NORMAL':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':1,'Mormal':1,'Mormal':1,'Mormal':1,'Mormal':1,'Mormal':1,'Mormal':1,'Mormal':1,'Mormal':1,'Mormal':1,'Mormal':1,'Mormal':1,'Mormal':1,'Mormal':1,'Mormal':1,'Mormal':1,'Mormal':1,'Mormal
```

Out[6]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	0	3	3	25.355	drugY
1	47	1	1	3	13.093	drugC
2	47	1	1	3	10.114	drugC
3	28	0	2	3	7.798	drugX
4	61	0	1	3	18.043	drugY
195	56	0	1	3	11.567	drugC
196	16	1	1	3	12.006	drugC
197	52	1	2	3	9.894	drugX
198	23	1	2	2	14.020	drugX
199	40	0	1	2	11.349	drugX

200 rows × 6 columns

In [7]:

```
1 x=['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K']
2 y=['drugX','drugY','drugC']
3 all_inputs=dv[x]
4 all_classes=dv['Drug']
```

In [8]:

```
1 x_train,x_test,y_train,y_test=train_test_split(all_inputs,all_classes,train_size=0)
2 clf1=DecisionTreeClassifier(random_state=0)
3 clf1.fit(x_train,y_train)
```

Out[8]:

DecisionTreeClassifier(random_state=0)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In	[9]:

<pre>score=clf1.score(x_test,y_test) print(score)</pre>

1.0

_	
Tn	
TII	

1

In []:

1