

Kubernetes集群渗透

攻击者视角中的Kubernetes

Zhaoyan Xu

资深研究工程师

Palo Alto Networks

Tongbo Luo

首席AI安全科学家

JD.com

2019年5月29日

<u>背景</u>

Kubernetes的安全特性

攻击方式

横向运动实践

答疑

背景

Kubernetes在全球范围内广受欢迎

- ➤ 所有主流云提供商都提供K8S集群服务,如AKS / EKS / GKE等
- ▶ 根据iDatalabs^{□1}的报告,大约有3,804家公司使用K8进行Web应用程序部署
- ▶ 年度用户增长率超过150%

►K8的安全性如何?

- ➤ K8S是否容易受到传统攻击?
- ➤ 什么是K8S群集的新攻击方式?
- ➤ 如何在K8S集群上进行渗透测试?

容器化微服务要点

Service Mesh 层

Istio Linkerd

Orchestrator 层

K8S Openshift

容器应用层

Docker Kata Container Rkt

K8S要点

服务端组件:

api-server: central server

Controller-manger

Scheduler

Authentication/Authorization/Admission Control

etcd: kv store

客户端组件:

kubelet: 在每个主机/虚拟主机上安装

kubeproxy:流量管理/重定向

K8S世界的术语

Pod: 服务计划的最小单位,包含一个或多个容器。

Deployment-部署:捆绑一个Web应用程序,例如将db, frontend和backend服务器组合在一起。

Service-服务:用于公开Web应用程序的界面。

Service Account-服务帐户: K8S中的用户帐户。

角色/角色绑定 Role/ Rolebinding: K8S中基于角色的访问控制。

背景

Kubernetes安全特性

攻击方式

横向运动实践

答疑

K8S安全功能概述 (v1.12.7)

隔离

Pod级隔离 名称空间隔离的网络安全策略

认证

所有流量的HTTP 令牌,客户端证书,第三方身份验证

授权

基于角色的访问控制

准入控制 (用于pod, 部署等)

预制的管理控制 Pod安全政策

```
apiversion: policy/vlbeta
kind: podsecuritypolicy
metadata:
                                   kind: ClusterRole
      name: privileged
                                   apiVersion: rbac.authorization.k8s.io/vl
Spec:
                                          name: Administrator
      privileged: true
             fsGroup:
                                   rules:
             rule: RunAsAny
                                          - apiGroups: ['policy']
                                            resources: ['podsecuritypolicies']
      seLinux:
                                            verbs: ['use']
             rule: RunAsAny
                                            resourceNames:
                                                  - privileged
   Define a Pod Security Policy
                                            Use a Pod Security Policy
```

Pod 安全策略

继续

K8S内置安全功能图示: 创建Pod

背景

Kubernetes安全特性

<u>攻击方式</u>

横向运动实践

答疑

隔离躲避

网络扫描

问题: 网络隔离通常是通过容器网络接口 (CNI) 强制执行的第三方插件。但是,大多数第三

方插件都存在漏洞,有些插件无法实施网络安全策略。

CNI 插件	网络模型	支持网络策略	通讯加密
Calico	Layer 3	支持	加密
Canal	Layer2, vxlan	支持	非加密
Flannel	Layer2, vxlan	不支持	非加密
Kopeio	Layer2, vxlan	不支持	非加密
Kube-router	Layer2, vxlan	支持	非加密

隔离躲避(续)

网络扫描

问题: K8S在命名空间kube-system中有默认服务pod, 默认情况下, 群集中的任何pod都可以访问这些服务。

• CVE示例: kube-dns pod, <u>CVE-2017-14491</u>

问题:api-server可以通过端口6443上的任何pod访问。如果api-server允许匿名访问,它会泄漏您的群集信息。

• CVE示例: <u>CVE-2018-1002105</u>

RBAC 躲避

认证绕过

问题:某些CNI插件不会加密流量,因此如果api-server不使用HTTP,则令牌可能被盗。

问题:如果撤消角色,则不会自动终止关联的窗格。所以它仍然具有被撤销角色的特权。

认证滥用

问题: 隐式访问流程

有多种方法可以访问相同的资源。

示例

kubectl create clusterrole secretadmin --verb=get --verb=list -verb=create --verb=update --resource=secret

如果你没有密码管理权限,你就无法运行 kubectl get secret,以获取secret。但是,如果您有权创建pod:

可能的修复措施:定义 PodSecruityPolicy,并定义不允许嵌入密码。

通过一个新的 Pod 嵌入密码

RBAC 躲避 (续)

隐性权限提升

问题: Pod可以通过关联其他服务帐户来升级其权限。

用户与服务帐户sa1相关联,

但是,他可以使用另一个服务帐户sa2创建一个pod

特权提升

问题: K8S允许pod映射主机路径,例如/tmp/, /var/log

特别是,如果使用子路径装入卷,它会将原始主机文件映射到pod的命名空间。

漏洞: CVE-2017-1002101


```
apiVersion: v1
kind: pod
medtadata:
    - name: vuln-container3
spec:
    containers:
         - name: vuln-container3
           image: alpine
           volumeMounts:
              - mountPath: /vol
                name: host-volume3
         - volumes:
              name: host-volume3
              hostPath:
                   path: (/tmp/test/sym
                                          # symbolic lnk
```


背景

Kubernetes安全特性

攻击方式

横向运动实践

答疑

K8S的渗透攻击

问:从攻击者的角度来看,如何针对K8S群集发起横向移动?

挑战: 如何实现持久性?

很难,为什么?

- Pod的瞬态生命周期
- Pod的有限特权

如何?

- 注入内核,如:特权容器。
- 注入主机,如:特权提升。
- 注入持久存储。
- •

攻击者的军火库

潜在方法	难度	持续性	前置条件	问题
入侵一个Pod (完全控制)	中等	取决于实 际情况	Pod将其服务暴露给外部Pod的映像存在漏洞	• Pod的瞬态生命周期 • Pod的有限特权
从受损的pod中入侵 api-server	困难	是	Pod可以访问api-serverApi-server存在漏洞	 Pod只对api-server的有限 权限 很难在api-server中找到 漏洞
扫描网络	简单	否	• Flat 网络	
集群侦察	简单	否	Flat network or能访问到api-server	
来自被入侵的pod的 DDoS攻击	简单	否	Pod可以访问网络Pod已创建pod权限	• 容易被检测到

攻击者的军火库(继续)

潜在方法	难度	持久性	前置条件
绕过RBAC	简单	取决于实 际情况	• 被控制的Pod具有创建pod权 • 需要了解高特权服务帐户限
进入内核	简单	是	• 被控制的Pod是一个特权Pod
	困难	是	• 利用容器运行时漏洞
替换主机可执行文件	中等	是	• Hostpath Mount 权限
映射 docker.sock	中等	是	• Hostpath Mount 权限
将恶意软件下载到持久 性存储	简单	是	• Pod可以访问持久性存储 • 难以执行恶意软件 (需要创建pod权限)

一个横向运动的例子

第一步:利用具有远程执行漏洞的Web Portal Pod

第二步: 下载kubectl并查询api-server

嗅探结果: (1) 被利用的pod已经与服务帐户SA1创建了pod权限

(2) 还有另一个db pod已经安装了"/ tmp /"主机路径

(3) db pod服务帐号为SA2

第三步:创建一个新的pod

• 该pod具有易受攻击的Web门户图像

• 该pod使用服务帐户SA2和mount / tmp /文件夹

第四步: 利用新的pod

- (1) 创建/tmp/sym
- (2) 将/tmp/sym指向/var/run/docker.sock, 它是docker主及

一个横向运动的例子

第五步: 创建另一个新Pod

- (1) 使用服务帐户SA2
- (2) 挂载子路径/tmp/sym, /tmp/sym指向主机/var/run/docker.run

第六步:将创建特权容器的命令发送到/tmp/sym

(1) 新容器具有特权并且可以访问内核

备注:

- 1) 谷歌部分修复了子路径漏洞,目前的解决方案是使子路径文件只读。
- 但是,如果攻击者将文件指向密码文件,我们仍然认为它会导致信息泄漏等问题。
- 2) 攻击成功有两个根本原因:
 - a. Pod容易受到攻击
 - b. 关联的服务帐户具有创建 pod 权限

背景

Kubernetes安全特性

攻击方式

横向运动实践

<u>总结</u>

Kubernetes 安全防护总结

我们回顾了Kubernetes的安全功能,其中包括:

网络隔离

■ 使用支持隔离的CNI插件

认证

■ 禁用匿名访问并使用第三方身份验证服务进行外部访问

授权和访问控制:基于角色的访问控制

- 启用RBAC
- 小心地将创建Pod/执行权限授予服务帐户

权限控制 - Pod安全政策

- 对每个Pod应用最小特权原则
- 了解特权Pod的潜在影响

横向移动总结

了解攻击者如何在云原生环境中执行横向移动:

- 防止群集中的外部可访问和高权限Pod
- 授予服务帐户和Pod的最小权限
- 阻止/检测群集中的扫描流量并为每个Pod设置适当的资源限制
- 使用网络安全策略和Pod安全策略来管理K8S群集
- 升级/修补Kubernetes的漏洞

推荐的防护工具

映像漏洞扫描工具

https://github.com/coreos/clair

https://github.com/aquasecurity/kube-hunter

Kubernetes 安全性/合规性 检查工具

https://www.cisecurity.org/benchmark/kubernetes/

https://www.cisecurity.org/benchmark/docker/

Pod 安全审计工具

https://github.com/sysdiglabs/kube-psp-advisor

Run time Kubernetes Monitoring

https://github.com/falcosecurity/falco

