Модуль 14.1. Вариационно-проекционные методы решения краевых задач (примеры применения методов)

Сведение краевых задач к задачам с однородными граничными условиями

Вариационно-проекционные численные методы, рассмотренные в этом модуле, предназначены для решения широкого класса линейных дифференциальных уравнений с линейными однородными граничными условиями.

Указанные методы используются также для решения **нелинейных дифференциальных уравнений**, существенно, чтобы **граничные условия были линейными и однородными**.

Основные принципы вариационно-проекционных методов обычно рассматривают на примере краевых задач для линейных обыкновенных дифференциальных уравнений 2-го порядка.

Поэтому именно на таком примере покажем, как дифференциальное уравнение с **линейными неоднородными граничными условиями** свести к дифференциальному уравнению с **линейными однородными граничными условиями**.

Пусть w(x) при $x \in [0;1]$ – искомое решение линейного дифференциального уравнения 2-го порядка с линейными неоднородными граничными условиями:

$$\begin{cases} w'' + x w' + w = -5x^2 \\ w(0) = 1, w(1) = 0 \end{cases}$$
 (14.1)

Решение задачи (14.1) ищем в виде

$$w(x) = u(x) + \eta(x).$$

Функцию $\eta(x)$ подбираем так, чтобы для нее выполнялись условия, указанные в (14.1):

$$\eta(0) = 1, \ \eta(1) = 0.$$

В качестве такой функции можно выбрать, например, $\eta(x) = 1 - x^2$.

Тогда решение задачи (14.1), то есть функцию w(x), запишем в виде

$$w(x) = u(x) + 1 - x^{2}. (14.2)$$

Подставим (14.2) в (14.1):

$$\begin{cases} u'' + (1 - x^2)'' + x \cdot u' + x \cdot (1 - x^2)' + u + (1 - x^2) = -5x^2 \\ u(0) + 1 = 1, \ u(1) + 0 = 0 \end{cases}$$

Перепишем задачу:

$$\begin{cases} u'' + x \cdot u' + u + \{-2 - 2x^2 + 1 - x^2\} = -5x^2 \\ u(0) = 0, \ u(1) = 0 \end{cases}$$

Для неизвестной функции u(x), $x \in [0;1]$, получим линейное дифференциальное уравнение 2-го порядка с линейными однородными граничными условиями:

$$\begin{cases} u'' + x u' + u = 1 - 2x^2 \\ u(0) = 0, u(1) = 0 \end{cases}$$
 (14.3)

После того, как решение (14.3) будет получено, решение (14.1) запишем в виде $w(x) = u(x) + 1 - x^2$

Таким образом, за счет выбора функции, удовлетворяющей неоднородным граничным условиям, дифференциальную задачу с линейными неоднородными граничными условиями сводим к задаче с линейными однородными граничными условиями.

Метод Бубнова-Галеркина

Пусть H и K – гильбертовы пространства, такие, что $K \subset H$.

Пусть L – линейный дифференциальный оператор,

который действует из пространства K в пространство H .

Рассмотрим линейное дифференциальное уравнение общего вида

$$Lu = f ag{14.4}$$

Правая часть уравнения задана и является элементом пространства $H:\ f\in H$.

Решение уравнения ищем в пространстве $K: u \in K \subset H$.

Дополним задачу линейными однородными граничными условиями,

которые в общем случае запишем как

$$lu = 0. (14.5)$$

Через l обозначен линейный (в общем случае дифференциальный) оператор, «отвечающий» за граничные условия.

Далее рассмотрим краевую задачу: линейное дифференциальное уравнение (14.4) с линейными однородными граничными условиями (14.5):

$$\begin{cases}
Lu = f \\
lu = 0
\end{cases}$$
(14.6)

Метод приближенного решения задач класса (14.6), предложенный Бубновым и Галёркиным, состоит в следующем.

В бесконечномерном гильбертовом пространстве K выбирают конечное число линейно независимых функций $\varphi_i \in K, i=1,...n$, каждая из которых соответствует линейным однородным граничным условиям задачи:

$$l\varphi_i = 0, i = 1,...n$$
 (14.7)

Эти функции используются как базис для построения конечномерного подпространства K_n (оно имеет размерность n):

$$K_n = \{ \sum_{i=1}^n \alpha_i \varphi_i \mid \alpha_i \in R, \varphi_i \in K, l \varphi_i = 0, i = 1, ... n \}$$
 (14.8)

Такое подпространство вложено и в пространство $\,K\,$, и в пространство $\,H\,$:

$$K_n \subset K \subset H$$

Запись (14.8) означает, что каждый элемент подпространства K_n может быть представлен линейной комбинацией базисных функций:

если $\varphi \in K_n$, то существует такой набор коэффициентов α_i , i=1,...n , что

$$\varphi = \alpha_1 \varphi_1 + \alpha_2 \varphi_2 + \dots + \alpha_n \varphi_n.$$

Утверждение 1. Все элементы подпространства K_n соответствуют граничным условиям задачи (14.6): если $\varphi \in K_n$,

$$l\varphi = 0 \tag{14.9}$$

Свойство (14.9) вытекает из того, что граничные условия линейны и однородны:

$$l\varphi = l \ [\alpha_1 \varphi_1 + \alpha_2 \varphi_2 + ... + \alpha_n \varphi_n] = \alpha_1 \ [l\varphi_1] + \alpha_2 \ [l\varphi_2] + ... + \alpha_n \ [l\varphi_n] = 0$$
 получили линейную комбинацию результатов применения оператора к каждому из элементов

Приближенное решение задачи (14.6) будет найдено как элемент $\,K_n\,.$

Обозначим его через v и запишем в виде

$$v = \alpha_1 \varphi_1 + \alpha_2 \varphi_2 + \dots + \alpha_n \varphi_n \tag{14.10}$$

Очевидно, что ν соответствует граничным условиям (14.6):

$$lv = \alpha_1 \left[l\varphi_1 \right] + \alpha_2 \left[l\varphi_2 \right] + \dots + \alpha_n \left[l\varphi_n \right] = 0 \tag{14.11}$$

Определение 1. Невязкой дифференциального уравнения (14.4) на приближенном решении ν называется выражение

$$Lv - f \tag{14.12}$$

Принцип Бубнова-Галеркина состоит в следующем:

Определение 2. Приближенное решение v задачи (14.6), найденное в классе K_n методом Бубнова-Галеркина, должно обеспечить **ортогональность невязки всем** базисным функциям.

$$(Lv - f, \varphi_i)_H = 0, i = 1,...n$$
 (14.13)

Здесь символом $(*\cdot,*)_H$ обозначено скалярное произведение в гильбертовом пространстве H .

Утверждение 2. В соответствии с методом Бубнова-Галеркина коэффициенты α_i , i=1,...n, определяющие приближенное решение v как элемент конечномерного подпространства K_n по формуле (14.10), следует искать как решение СЛАУ

$$\begin{bmatrix} (L\varphi_{1},\varphi_{1})_{H} & (L\varphi_{2},\varphi_{1})_{H} & \dots & (L\varphi_{n},\varphi_{1})_{H} \\ (L\varphi_{1},\varphi_{2})_{H} & (L\varphi_{2},\varphi_{2})_{H} & \dots & (L\varphi_{n},\varphi_{2})_{H} \\ \dots & \dots & \dots & \dots \\ (L\varphi_{1},\varphi_{n})_{H} & (L\varphi_{2},\varphi_{n})_{H} & \dots & (L\varphi_{n},\varphi_{n})_{H} \end{bmatrix} \cdot \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \dots \\ \alpha_{n} \end{bmatrix} = \begin{bmatrix} (f,\varphi_{1})_{H} \\ (f,\varphi_{2})_{H} \\ \dots \\ (f,\varphi_{n})_{H} \end{bmatrix}$$

$$(14.14)$$

Доказательство

Запишем невязку дифференциального уравнения (14.4) на приближенном решении v по определению, подставим решение v в виде (14.10) и воспользуемся свойством линейности дифференциального оператора L:

$$Lv - f = L\left[\sum_{i=1}^{n} \alpha_i \varphi_i\right] - f = \sum_{i=1}^{n} \alpha_i \left[L\varphi_i\right] - f$$
(14.15)

линейный оператор применили к линейной комбинации элементов и получили линейную комбинацию результатов применения оператора к каждому из элементов

Таким образом, невязка на приближенном решении v записана через коэффициенты α_i , i=1,...n .

Подставим (14.15) в формулы (14.13) – условия ортогональности невязки всем базисным функциям:

$$(Lv - f, \varphi_i)_H = (\sum_{j=1}^n \alpha_j [L\varphi_j] - f, \varphi_i)_H = 0, \quad i = 1,...n$$
 (14.16)

Уравнения (14.16) можно записывать как разности двух скалярных произведений, и каждая разность должна быть равна нулю:

$$(\sum_{j=1}^{n} \alpha_{j} [L \varphi_{j}], \varphi_{i})_{H} - (f, \varphi_{i})_{H} = 0, \quad i = 1,...n$$
(14.17)

В каждом из уравнений (14.17) приравниваем скалярные произведения:

$$(\sum_{j=1}^{n} \alpha_{j} [L \varphi_{j}], \varphi_{i})_{H} = (f, \varphi_{i})_{H}, \quad i = 1,...n$$
(14.18)

Далее используем их линейные свойства.

Сначала из-под знака скалярного произведения выносим знак суммирования:

$$\sum_{j=1}^{n} (\alpha_{j} [L\varphi_{j}], \varphi_{i})_{H} = (f, \varphi_{i})_{H}, \quad i = 1, ... n$$
(14.19)

Затем из-под знаков скалярных произведений выносим коэффициенты $lpha_i$, i=1,...n :

$$\sum_{j=1}^{n} \alpha_{j} (L \varphi_{j}, \varphi_{i})_{H} = (f, \varphi_{i})_{H}, i = 1, ... n$$
(14.20)

Система уравнений (14.20) представляет собой СЛАУ с **неизвестными** α_i , i=1,...n. Если СЛАУ записать в векторном виде, получим (14.14).

Комментарии

Идея метода такова: в гильбертовых пространствах H и K есть бесконечномерные базисы. **Функция «тождественный ноль» ортогональна** всем базисным функциям.

Если бы удалось найти u – точное решение задачи (14.6), то невязка на данном решении, то есть Lu-f , была бы «тождественный ноль».

Невязка на точном решении, то есть Lu-f , ортогональна всем элементам бесконечномерного базиса:

$$(Lu-f,\hat{\varphi}_i)_H=0, i=1,2,...,$$
 где $\hat{\varphi}_i, i=1,2,...,$ – базис в H .

Так как нет универсального способа решить систему уравнений бесконечной размерности, выбираем конечномерное подпространство $K_n \subset K \subset H$ с конечным базисом.

Требуем, чтобы невязка на приближенном решении, то есть Lv-f, где $v\in K_n$ — приближенное решение, была ортогональна всем элементам конечномерного базиса в K_n :

$$(Lv-f$$
 , $\varphi_i)_H=0$, $i=1,...n$, где $\,\varphi_i$, $i=1,...n\,$ – базис в $\,K_n$.

Чтобы повысить точность решения, нужно увеличить размерность подпространства K_n или изменить набор базисных функций.

В тот период, когда метод разрабатывался (первая половина XX столетия), в качестве базисных функций использовались **тригонометрические функции** и **полиномы**.

Современные проекционные методы – в частности, метод конечных элементов (МКЭ), развивают предложенный подход.

В определенном смысле МКЭ — это метод Бубнова-Галеркина, в котором в качестве базиса конечномерного подпространства используются сеточные функции с компактным носителем. Такие функции отличны от нуля в небольшом числе узлов сетки и равны нулю в большинстве узлов сетки.

Чем гуще сетка, тем больше базисных функций и больше неизвестных коэффициентов. Поэтому для отыскания коэффициентов α_i , i=1,...n нужно решить СЛАУ большой размерности.

В силу того, каждая базисная функция отлична от нуля на небольшом участке сетки, матрица СЛАУ для МКЭ является разреженной.

Поэтому такие СЛАУ решают итерационными методами линейной алгебры.

Метод коллокации

Данный метод отличается от предыдущего метода принципом подбора приближенного решения ν в подпространстве K_n .

Как и в предыдущем случае, приближенное решение задачи (14.6) будет найдено в виде линейной комбинации базисных функций:

$$v = \alpha_1 \varphi_1 + \alpha_2 \varphi_2 + \dots + \alpha_n \varphi_n \tag{14.21}$$

Соответствие базисных функций граничным условиям (14.6): $l\varphi_i=0, i=1,...n$, обеспечивает точное соответствие приближенного решения v граничным условиям данной задачи: $lv=\alpha_1\left[l\varphi_1\right]+\alpha_2\left[l\varphi_2\right]+...+\alpha_n\left[l\varphi_n\right]=0$.

Чтобы найти v, в области определения искомого решения выбирают систему точек коллокации. Количество таких точек должно совпадать с размерностью подпространства K_n . Обозначим их через x_j , j=1,...n .

Определение 3. Метод коллокации состоит в следующем: приближенное решение v, найденное в классе K_n , должно обеспечить нулевую невязку дифференциального уравнения на системе точек коллокации:

$$Lv - f = 0$$
 для всех x_j , $j = 1,...n$ (14.22)

Утверждение 3. В соответствии с методом коллокации коэффициенты α_i , i=1,...n , определяющие приближенное решение v как элемент конечномерного подпространства K_n по формуле (14.21), следует искать как решение СЛАУ

$$\begin{bmatrix} L\phi_{1}|_{x=x_{1}} & L\phi_{2}|_{x=x_{1}} & \dots & L\phi_{n}|_{x=x_{1}} \\ L\phi_{1}|_{x=x_{2}} & L\phi_{2}|_{x=x_{2}} & \dots & L\phi_{n}|_{x=x_{2}} \\ \dots & \dots & \dots & \dots \\ L\phi_{1}|_{x=x_{n}} & L\phi_{2}|_{x=x_{n}} & \dots & L\phi_{n}|_{x=x_{n}} \end{bmatrix} \cdot \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \dots \\ \alpha_{n} \end{bmatrix} = \begin{bmatrix} f|_{x=x_{1}} \\ f|_{x=x_{2}} \\ \dots \\ f|_{x=x_{n}} \end{bmatrix}$$
(14.23)

Доказательство

Подставим приближенное решение ν в виде (14.21) в уравнения (4.22):

$$L\left[\sum_{i=1}^{n} \alpha_{i} \varphi_{i}\right] - f = 0$$
 для всех x_{j} , $j = 1,...n$ (14.24)

Выносим знак суммирования из-под знака линейного оператора:

$$\sum_{i=1}^{n} L\left[\alpha_{i} \ \varphi_{i}\right] - f = 0 \text{ для всех } x_{j}, j = 1,...n \tag{14.25}$$

Затем из-под знака линейного оператора выносим коэффициенты α_i , i=1,...n :

$$\sum_{i=1}^{n}\alpha_{i}\left[L\varphi_{i}\right]-f=0\text{ для всех }x_{j}\text{ , }j=1,...n$$
 (14.26)

Система уравнений (14.26) представляет собой СЛАУ с **неизвестными** α_i , i=1,...n. Если СЛАУ записать в векторном виде, получим (14.23).

Метод наименьших квадратов (для решения дифференциальных уравнений)

Рассмотрим еще один метод выбора приближенного решения v в подпространстве K_n . Этот метод наименьших квадратов (МНК).

В связи с тем, что МНК используется не только для приближенного решения дифференциальных уравнений, но также для приближения функций и обработки экспериментальных данных, в названии раздела (в скобках) уточнено назначение метода.

Как и в предыдущих случаях, приближенное решение v будет найдено в подпространстве K_n в виде линейной комбинации базисных функций:

$$v = \alpha_1 \varphi_1 + \alpha_2 \varphi_2 + \dots + \alpha_n \varphi_n \tag{14.27}$$

За счет соответствия базисных функций граничным условиям задачи (14.6) гарантировано точное соответствие v граничным условиям данной задачи.

Определение 4. Метод наименьших квадратов (для решения дифференциальных уравнений) состоит в следующем: приближенное решение v, найденное в подпространстве K_n , должно обеспечить минимально возможную невязку дифференциального уравнения (14.6) в норме гильбертова пространства H в подпространстве K_n :

$$\|Lv - f\|_{H} \underset{v \in K_n}{\longrightarrow} \min \tag{14.28}$$

Минимизация функционала осуществляется по всем элементам v, принадлежащим конечномерному подпространству K_n .

Утверждение 4. Пусть базисные функции $\varphi_i \in K, i=1,...n$ подпространства K_n , выбраны так, что элементы $L\varphi_i \in H, i=1,...n$, линейно независимы. Тогда приближенное решение задачи (14.6), обеспечивающее в классе K_n минимальную

невязку (14.28), существует и единственно, а коэффициенты $\alpha_i, i=1,...n$ разложения v по базисным функциям $\phi_i \in K, i=1,...n$ являются решением СЛАУ

$$\begin{bmatrix} (L\varphi_{1}, L\varphi_{1})_{H} & (L\varphi_{1}, L\varphi_{2})_{H} & \dots & (L\varphi_{1}, L\varphi_{n})_{H} \\ (L\varphi_{2}, L\varphi_{1})_{H} & (L\varphi_{2}, L\varphi_{2})_{H} & \dots & (L\varphi_{2}, L\varphi_{n})_{H} \\ \dots & \dots & \dots & \dots \\ (L\varphi_{n}, L\varphi_{1})_{H} & (L\varphi_{n}, L\varphi_{2})_{H} & \dots & (L\varphi_{n}, L\varphi_{n})_{H} \end{bmatrix} \cdot \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \dots \\ \alpha_{n} \end{bmatrix} = \begin{bmatrix} (L\varphi_{1}, f)_{H} \\ (L\varphi_{2}, f)_{H} \\ \dots \\ (L\varphi_{n}, f)_{H} \end{bmatrix}$$
(14.29)

СЛАУ (14.29) называют нормальной системой уравнений.

Здесь символом $(*\cdot,*)_H$ обозначено скалярное произведение в гильбертовом пространстве H .

Доказательство

Заменим задачу (14.28) о минимизации нормы невязки на эквивалентную задачу минимизации квадрата нормы невязки:

$$||Lv - f||_H^2 = (Lv - f, Lv - f)_H \to \min$$
 (14.30)

Так как минимизация проводится по элементам из K_n и все элементы K_n записываются в виде (14.27), функционал задачи следует рассматривать как зависящий от параметров α_i , i=1,...n .

Функционал (14.30) обозначим $S(\alpha_1,\alpha_2,...\alpha_n)$. Тогда (14.30) записывается в виде

$$S(\alpha_1, \alpha_2, ... \alpha_n) \underset{\alpha \in \mathbb{R}^n}{\longrightarrow} \min.$$
 (14.31)

Точки, подозрительные на экстремум, находим из условий

$$\frac{\partial S}{\partial \alpha_i} = 0, i = 1, \dots n \tag{14.32}$$

Систему уравнений (14.32) называют нормальной системой уравнений.

Этапы доказательства Утверждения 4 состоят в следующем:

- 1) линейная независимость элементов $L\varphi_i\in H, i=1,...n$ обеспечивает существование и единственность решения нормальной системы уравнений (14.32)
- 2) в силу линейной независимости элементов $L \varphi_i \in H, i=1,...n$, единственное решение системы (14.32) является точкой локального минимума
- 3) в силу свойств функционала $S(\alpha_1,\alpha_2,...\alpha_n)$. локальный минимум является глобальным.

Пройдем перечисленные этапы.

Шаг I

Выясним, как выглядит $S(\alpha_1,\alpha_2,...\alpha_n)$. Для этого в функционал задачи (14.30) подставим формулу (14.27):

$$S(\alpha_1, \alpha_2, ...\alpha_n) = (Lv - f, Lv - f)_H =$$

$$= (L \left[\sum_{i=1}^n \alpha_i \varphi_i\right] - f, L \left[\sum_{j=1}^n \alpha_j \varphi_j\right] - f)_H$$
(14.33)

Затем используем **линейные свойства дифференциального оператора**: вынесем знак суммирования из-под знака оператора и вынесем из-под знака оператора коэффициенты α_i , i=1,...n

$$(L\left[\sum_{i=1}^{n} \alpha_{i} \varphi_{i}\right] - f, \quad L\left[\sum_{j=1}^{n} \alpha_{j} \varphi_{j}\right] - f)_{H} =$$

$$= (\sum_{i=1}^{n} \alpha_{i} [L\varphi_{i}] - f, \sum_{i=1}^{n} \alpha_{j} [L\varphi_{j}] - f)_{H}$$

Раскрывая скалярное произведение, получим

$$(f,f)_{H} + (\sum_{i=1}^{n} \alpha_{i} [L\varphi_{i}], \sum_{j=1}^{n} \alpha_{j} [L\varphi_{j}])_{H} - 2(\sum_{i=1}^{n} \alpha_{i} [L\varphi_{i}], f)_{H}$$

Далее используем линейные свойства скалярного произведения: сначала изпод знаков скалярных произведений выносим знаки суммирования

$$(f,f)_{H} - 2\sum_{i=1}^{n} (\alpha_{i}[L\varphi_{i}], f)_{H} + \sum_{i=1}^{n} \sum_{j=1}^{n} (\alpha_{i}[L\varphi_{i}], \alpha_{j}[L\varphi_{j}])_{H}$$

Затем за скобками скалярных произведений должны оказаться числовые коэффициенты α_i , i=1,...n

$$(f,f)_{H} - 2\sum_{i=1}^{n} \alpha_{i}(L\varphi_{i},f)_{H} + \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j}(L\varphi_{i},L\varphi_{j})_{H}$$

Таким образом, показано, что функционал $S(\alpha_1,\alpha_2,...\alpha_n)$ является квадратичной функцией относительно своих аргументов α_i , i=1,...n :

$$S(\alpha_{1}, \alpha_{2}, ...\alpha_{n}) =$$

$$= (f, f)_{H} - 2\sum_{i=1}^{n} \alpha_{i}(L\varphi_{i}, f)_{H} + \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j}(L\varphi_{i}, L\varphi_{j})_{H}$$
(14.34)

Шаг II

Исследуем нормальную систему уравнений (14.32):

$$\frac{\partial S}{\partial \alpha_i} = 0, i = 1, \dots n$$

Ее решения являются точками, подозрительными на экстремум.

Используя формулу (14.34), запишем частные производные функционала $S(\alpha_1,\alpha_2,...\alpha_n)$:

$$\begin{cases} \frac{\partial S}{\partial \alpha_1} = -2(L\varphi_1, f)_H + 2\alpha_1(L\varphi_1, L\varphi_1)_H + 2\sum_{j=2}^n \alpha_j(L\varphi_1, L\varphi_j)_H \\ \frac{\partial S}{\partial \alpha_2} = -2(L\varphi_2, f)_H + 2\alpha_2(L\varphi_2, L\varphi_2)_H + 2\sum_{j=1}^n \alpha_j(L\varphi_2, L\varphi_j)_H \\ \dots \\ \frac{\partial S}{\partial \alpha_n} = -2(L\varphi_n, f)_H + 2\alpha_n(L\varphi_n, L\varphi_n)_H + 2\sum_{j=1}^{n-1} \alpha_j(L\varphi_n, L\varphi_j)_H \end{cases}$$

Приравниваем каждую из частных производных к нулю, полученные выражения делим на 2:

$$\begin{cases} \frac{1}{2} \cdot \frac{\partial S}{\partial \alpha_{1}} = -(L\varphi_{1}, f)_{H} + \alpha_{1}(L\varphi_{1}, L\varphi_{1})_{H} + \sum_{j=2}^{n} \alpha_{j}(L\varphi_{1}, L\varphi_{j})_{H} = 0 \\ \frac{1}{2} \cdot \frac{\partial S}{\partial \alpha_{2}} = -(L\varphi_{2}, f)_{H} + \alpha_{2}(L\varphi_{2}, L\varphi_{2})_{H} + \sum_{j=1 \neq 2}^{n} \alpha_{j}(L\varphi_{2}, L\varphi_{j})_{H} = 0 \\ \dots \\ \frac{1}{2} \cdot \frac{\partial S}{\partial \alpha_{n}} = -(L\varphi_{n}, f)_{H} + \alpha_{n}(L\varphi_{n}, L\varphi_{n})_{H} + \sum_{j=1}^{n-1} \alpha_{j}(L\varphi_{n}, L\varphi_{j})_{H} = 0 \end{cases}$$

Слагаемые, не зависящие от коэффициентов α_i , i=1,...n , переносим в правую часть каждого уравнения:

$$\begin{cases} \alpha_1(L\varphi_1, L\varphi_1)_H + \sum\limits_{j=2}^n \alpha_j(L\varphi_1, L\varphi_j)_H = (L\varphi_1, f)_H \\ \alpha_2(L\varphi_2, L\varphi_2)_H + \sum\limits_{j=1}^n \alpha_j(L\varphi_2, L\varphi_j)_H = (L\varphi_2, f)_H \\ \cdots \\ \alpha_n(L\varphi_n, L\varphi_n)_H + \sum\limits_{j=1}^{n-1} \alpha_j(L\varphi_n, L\varphi_j)_H = (L\varphi_n, f)_H \end{cases}$$

Получена СЛАУ с неизвестными α_i , i=1,...n . Если записать ее в векторном виде, получим (14.29):

$$\begin{bmatrix} (L\varphi_1, L\varphi_1)_H & (L\varphi_1, L\varphi_2)_H & \dots & (L\varphi_1, L\varphi_n)_H \\ (L\varphi_2, L\varphi_1)_H & (L\varphi_2, L\varphi_2)_H & \dots & (L\varphi_2, L\varphi_n)_H \\ \dots & \dots & \dots & \dots \\ (L\varphi_n, L\varphi_1)_H & (L\varphi_n, L\varphi_2)_H & \dots & (L\varphi_n, L\varphi_n)_H \end{bmatrix} \cdot \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} (L\varphi_1, f)_H \\ (L\varphi_2, f)_H \\ \dots \\ (L\varphi_n, f)_H \end{bmatrix}$$

Матрица СЛАУ является матрицей Грама линейно независимых элементов $L \varphi_i \in H, i=1,...n$.

$$Gr\left(L\varphi_{1},L\varphi_{2}...L\varphi_{n}\right) = \begin{bmatrix} (L\varphi_{1},L\varphi_{1})_{H} & (L\varphi_{1},L\varphi_{2})_{H} & ... & (L\varphi_{1},L\varphi_{n})_{H} \\ (L\varphi_{2},L\varphi_{1})_{H} & (L\varphi_{2},L\varphi_{2})_{H} & ... & (L\varphi_{2},L\varphi_{n})_{H} \\ & ... & ... & ... & ... \\ (L\varphi_{n},L\varphi_{1})_{H} & (L\varphi_{n},L\varphi_{2})_{H} & ... & (L\varphi_{n},L\varphi_{n})_{H} \end{bmatrix}$$

Поэтому указанная матрица не вырождена и положительно определена:

$$\det Gr(L\varphi_1, L\varphi_2...L\varphi_n) \neq 0$$

$$Gr(L\varphi_1, L\varphi_2...L\varphi_n) > 0$$

Отсюда следует, что решение СЛАУ (14.29) при любой правой части дифференциального уравнения (14.6) существует и единственно.

Функционал $S(\alpha_1,\alpha_2,...\alpha_n)$ имеет единственную точку, подозрительную на экстремум.

Шаг III

Исследуем критическую точку с помощью матрицы вторых частных производных.

$$S''(\alpha_1, \alpha_2 ... \alpha_n) = \begin{bmatrix} \frac{\partial^2 S}{\partial \alpha_1^2} & \dots & \frac{\partial^2 S}{\partial \alpha_1 \partial \alpha_n} \\ & \dots & & \\ \dots & & \dots & \dots \\ \frac{\partial^2 S}{\partial \alpha_n \partial \alpha_1} & \dots & \frac{\partial^2 S}{\partial \alpha_n^2} \end{bmatrix}$$

Вычисляя производные, убеждаемся в том, что для функционала $S(\alpha_1,\alpha_2,...\alpha_n)$ матрица $S''(\alpha_1,\alpha_2...\alpha_n)$ с точностью до множителя 2 совпадаем с матрицей Грама линейно независимых элементов $L\varphi_i\in H, i=1,...n$:

$$S''(\alpha_1, \alpha_2...\alpha_n) = 2 \cdot Gr(L\varphi_1, L\varphi_2...L\varphi_n)$$
(14.35)

Приведем примеры совпадения их элементов:

$$\begin{cases} \frac{\partial^2 S}{\partial \alpha_1^2} = 2 (L\varphi_1, L\varphi_1)_H \\ \frac{\partial^2 S}{\partial \alpha_1 \partial \alpha_2} = 2 (L\varphi_1, L\varphi_2)_H \\ \dots \\ \frac{\partial^2 S}{\partial \alpha_1 \partial \alpha_n} = 2 (L\varphi_1, L\varphi_n)_H \\ \dots \\ \frac{\partial^2 S}{\partial \alpha_n^2} = 2 (L\varphi_n, L\varphi_n)_H \end{cases}$$

Из (14.35) следует, что матрица $S''(\alpha_1,\alpha_2...\alpha_n)$, во-первых, не зависит от коэффициентов $\alpha_i, i=1,...n$; во-вторых, положительно определена:

$$S''(\alpha_1, \alpha_2, ... \alpha_n) = S'' > 0$$
 (14.36)

Таким образом, точка, подозрительная на экстремум, является точкой локального минимума.

Иными словами, решение нормальной системы уравнений (14.29) является точкой локального минимума функционала $S(\alpha_1,\alpha_2,...\alpha_n)$.

Шаг IV

Покажем, что локальный минимум функционала $S(\alpha_1,\alpha_2,...\alpha_n)$ является решением задачи (14.32), то есть **глобальным минимумом** $S(\alpha_1,\alpha_2,...\alpha_n)$.

Доказательство использует свойства **квадратичной** функции и **положительную определенность** матрицы S'' .

Для удобства будем записывать функционал $S(\alpha_1,\alpha_2,...\alpha_n)$, у которого n скалярных аргументов, как функционал $S(\alpha)$ с одним векторным аргументом $\alpha=(\alpha_1,\alpha_2,...\alpha_n)\in R^n$. Рассмотрим аргументы $\alpha\in R^n$ и $\alpha+h$, где $h\in R^n$. По формуле Тейлора для $\forall\,\alpha\in R^n$, $\forall\,h\in R^n$ верно

$$S(\alpha + h) = S(\alpha) + (S'(\alpha), h) + \frac{1}{2} \cdot (S''(\alpha)h, h)$$

$$(14.37)$$

потому что зависимость $S(\alpha_1,\alpha_2,...\alpha_n)$ от скалярных аргументов α_i , i=1,...n является квадратичной.

Здесь $S'(\alpha)$ – градиент, вычисленный в точке $\alpha \in R^n$, $S''(\alpha)$ – матрица вторых частных производных, вычисленная в точке $\alpha \in R^n$.

В силу квадратичного характера зависимости S(lpha) никаких других слагаемых в формуле Тейлора нет.

Выше было отмечено, что элементы матрицы вторых частных производных не зависят от α_i , i=1,...n. Поэтому запишем матрицу без аргумента:

$$S''(\alpha) = S''$$
.

В качестве $\alpha \in R^n$ рассмотрим найденную выше точку локального минимума, а любую другую точку пространства R^n будем записывать в виде $\alpha + h$, где $h \in R^n$.

Так как в точке локального минимума градиент обращается в ноль, запишем $S'(\alpha) = 0$

Так как S'' положительно определена, для $\forall h \neq 0, h \in R^n$ верно

Поэтому справедливо неравенство

$$S(\alpha + h) = S(\alpha) + \frac{1}{2} \cdot (S''h, h) > S(\alpha)$$
(14.38)

Таким образом, в любой точке из пространства R^n , не совпадающей с точкой локального минимума lpha , значение функционала **больше**, чем в точке локального минимума.

Следовательно, локальный минимум функционала $S(\alpha_1, \alpha_2, ... \alpha_n)$ является глобальным минимумом, и задача оптимизации (14.32) решена.

Конечномерный метод наименьших квадратов (для решения дифференциальных уравнений)

Разберем еще одну модификацию метода наименьших квадратов. В данном случае невязка на приближенном решении оценивается на некоторой конечной заранее выбранной системе точек. Метод называют конечномерным МНК.

Приближенное решение v задачи (14.6) ищем в виде

$$v = \alpha_1 \varphi_1 + \alpha_2 \varphi_2 + \dots + \alpha_n \varphi_n \tag{14.40}$$

Чтобы оценить невязку, выбираем точки x_j , $j=1,...m,\ m>n$.

На системе точек $x_j, j=1,...m,\ m>n$ определим невязку Lv-f как элемент пространства R^m :

$$Lv - f = \begin{bmatrix} (Lv - f)|_{x = x_1} \\ (Lv - f)|_{x = x_2} \\ \dots \\ (Lv - f)|_{x = x_m} \end{bmatrix} \in \mathbb{R}^m$$
(14.41)

Компонентой с номером j является значение невязки при $x=x_j$. Значения невязки при других значениях аргумента x не рассматриваем.

Определение 5. Конечномерный метод наименьших квадратов (для решения дифференциальных уравнений) состоит в следующем:

приближенное решение v, найденное в подпространстве K_n , должно обеспечить в указанном подпространстве минимально возможную невязку дифференциального уравнения на выбранной системе точек x_j , $j=1,...m,\ m>n$ в норме пространства R^m .

$$\|Lv - f\|_{R^m} \to \min \tag{14.42}$$

Минимизация функционала (14.42) осуществляется по всем элементам ν , принадлежащим конечномерному подпространству K_n .

Чтобы сформулировать утверждение о свойствах метода, используем точки $x_j, j=1,...m,\ m>n$ и определим элементы $f\in R^m$ и $L_i\in R^m$, i=1,...n :

$$f = \begin{bmatrix} f \mid_{x=x_1} \\ f \mid_{x=x_2} \\ \dots \\ f \mid_{x=x_m} \end{bmatrix} \in \mathbb{R}^m, \ L_1 = \begin{bmatrix} L\varphi_1 \mid_{x=x_1} \\ L\varphi_1 \mid_{x=x_2} \\ \dots \\ L\varphi_1 \mid_{x=x_m} \end{bmatrix} \in \mathbb{R}^m, \ \dots L_n = \begin{bmatrix} L\varphi_n \mid_{x=x_1} \\ L\varphi_n \mid_{x=x_2} \\ \dots \\ L\varphi_n \mid_{x=x_m} \end{bmatrix} \in \mathbb{R}^m \ (14.43)$$

Элемент $f \in \mathbb{R}^m$ представляет собой вектор значений функции f – правой части дифференциального уравнения (14.6), на выбранной системе точек. Так как выбрано m точек, размерность вектора составила m .

Элемент $L_i \in R^m$ представляет собой вектор значений оператора L, примененного к базисной функции φ_i . Значения функционала $L\varphi_i$ рассматриваются только при x_j , $j=1,...m,\ m>n$. Так как выбрано m точек, размерность L_i составила m

Утверждение 5. Пусть базисные функции $\varphi_i \in K, i=1,...n$ подпространства K_n , и точки x_j , j=1,...m, m>n выбраны так, что элементы $L_i \in R^m$, i=1,...n, линейно независимы.

Тогда приближенное решение задачи (14.6), обеспечивающее в классе K_n на системе точек x_j , j=1,...m, m>n минимальную невязку (14.42), существует и единственно, а коэффициенты α_i , i=1,...n разложения v по базисным функциям $\varphi_i \in K$, i=1,...n являются решением СЛАУ

$$\begin{bmatrix} (L_{1}, L_{1})_{R^{m}} & (L_{1}, L_{2})_{R^{m}} & \dots & (L_{1}, L_{n})_{R^{m}} \\ (L_{2}, L_{1})_{R^{m}} & (L_{2}, L_{2})_{R^{m}} & \dots & (L_{2}, L_{n})_{R^{m}} \\ \dots & \dots & \dots & \dots \\ (L_{n}, L_{1})_{R^{m}} & (L_{n}, L_{2})_{R^{m}} & \dots & (L_{n}, L_{n})_{R^{m}} \end{bmatrix} \cdot \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \dots \\ \alpha_{n} \end{bmatrix} = \begin{bmatrix} (L_{1}, f)_{R^{m}} \\ (L_{2}, f)_{R^{m}} \\ \dots \\ (L_{n}, f)_{R^{m}} \end{bmatrix}$$

$$(14.44)$$

СЛАУ (14.44) называют нормальной системой уравнений.

Здесь символом $(*\cdot,*)_{R^m}$ обозначено скалярное произведение в пространстве R^m .

Доказательство (схема)

Заменим задачу (14.42) о минимизации нормы невязки на эквивалентную задачу минимизации квадрата нормы невязки:

$$||Lv - f||_{R^m}^2 = (Lv - f, Lv - f)_{R^m} \to \min$$
 (14.45)

Так как минимизация проводится по элементам из K_n и все элементы K_n записываются в виде (14.40), функционал задачи следует рассматривать как зависящий от параметров α_i , i=1,...n.

Функционал задачи (14.45) обозначим $S(\alpha_1,\alpha_2,...\alpha_n)$. Тогда (14.45) записывается в виде

$$S(\alpha_1, \alpha_2, ... \alpha_n) \underset{\alpha \in \mathbb{R}^n}{\longrightarrow} \min.$$
 (14.46)

Точки, подозрительные на экстремум, находим из условий

$$\frac{\partial S}{\partial \alpha_i} = 0, i = 1, \dots n \tag{14.47}$$

Систему уравнений (14.47) называют нормальной системой уравнений.

Этапы доказательства Утверждения 5 состоят в следующем:

- 1) линейная независимость элементов $L_i \in R^m$, i = 1,...n обеспечивает существование и единственность решения нормальной системы уравнений (14.47);
- 2) в силу линейной независимости элементов $L_i \in R^m$, i=1,...n единственное решение системы (14.47) является точкой локального минимума;
- 3) в силу свойств функционала $S(\alpha_1,\alpha_2,...\alpha_n)$ локальный минимум является глобальным.

Кратко пройдем эти этапы.

Шаг I

Выясним, как выглядит невязка Lv-f как элемент пространства R^m .

Для этого запишем невязку на приближенном решении v по определению, подставим решение v в виде (14.40) и воспользуемся свойством линейности дифференциального оператора L :

$$Lv - f = L\left[\sum_{i=1}^{n} \alpha_i \varphi_i\right] - f = \sum_{i=1}^{n} \alpha_i \left[L\varphi_i\right] - f \tag{14.48}$$

линейный оператор применили к линейной комбинации элементов и получили линейную комбинацию результатов применения оператора к каждому из элементов

Таким образом, невязка на приближенном решении v записана через коэффициенты $lpha_i$, i=1,...n .

Далее в соответствии с определением (14.41) запишем невязку на системе точек x_j , j=1,...m , то есть как элемент конечномерного пространства R^m .

Для этого компоненту невязки с номером $j,\ j=1,...m$ записываем как значение (14.48), вычисленное в точке x_j , j=1,...m :

$$Lv - f = \begin{bmatrix} \{\sum_{i=1}^{n} \alpha_{i} [L\varphi_{i}] - f\} |_{x=x_{1}} \\ \{\sum_{i=1}^{n} \alpha_{i} [L\varphi_{i}] - f\} |_{x=x_{2}} \\ \dots \\ \{\sum_{i=1}^{n} \alpha_{i} [L\varphi_{i}] - f\} |_{x=x_{m}} \end{bmatrix}$$

Вектор невязки Lv-f может быть представлен в виде разности двух векторов:

$$Lv - f = \begin{bmatrix} \sum_{i=1}^{n} \alpha_i [L\varphi_i]|_{x=x_1} \\ \sum_{i=1}^{n} \alpha_i [L\varphi_i]|_{x=x_2} \\ \dots \\ \sum_{i=1}^{n} \alpha_i [L\varphi_i]|_{x=x_m} \end{bmatrix} - \begin{bmatrix} f|_{x=x_1} \\ f|_{x=x_2} \\ \dots \\ f|_{x=x_m} \end{bmatrix}$$

Для первого вектора компонента с номером j представляет собой линейную комбинацию значений оператора, примененного к различным базисным функциям $\varphi_i \in K, i=1,...n$, но вычисленных в одной и той же точке x_j .

Коэффициенты всех линейных комбинаций одинаковы, поэтому в соответствии с определением (14.43) первый из векторов может быть переписан в виде

$$Lv - f = \sum_{i=1}^{n} \alpha_{i} \cdot \begin{bmatrix} \begin{bmatrix} L\varphi_{i} \end{bmatrix} \Big|_{x=x_{1}} \\ \begin{bmatrix} L\varphi_{i} \end{bmatrix} \Big|_{x=x_{2}} \\ \dots \\ \begin{bmatrix} L\varphi_{i} \end{bmatrix} \Big|_{x=x_{m}} \end{bmatrix} - \begin{bmatrix} f \Big|_{x=x_{1}} \\ f \Big|_{x=x_{2}} \\ \dots \\ f \Big|_{x=x_{m}} \end{bmatrix} = \sum_{i=1}^{n} \alpha_{i} L_{i} - f$$

Таким образом, для элемента v из K_n , представленного в виде линейной комбинации базисных функций $\varphi_i \in K$, i=1,...n по формуле

$$v = \alpha_1 \varphi_1 + \alpha_2 \varphi_2 + \dots + \alpha_n \varphi_n$$

невязка Lv-f на системе точек x_j , j=1,...m как элемент R^m есть линейная комбинация векторов $L_i \in R^m$, i=1,...n

с теми же коэффициентами:

$$Lv - f = \sum_{i=1}^{n} \alpha_i L_i - f$$
 (14.49)

Шаг II

Используем (14.49) и выясним, как выглядит $S(\alpha_1, \alpha_2, ... \alpha_n)$.

$$S(\alpha_{1}, \alpha_{2}, ... \alpha_{n}) = (Lv - f, Lv - f)_{R^{m}} =$$

$$= (\sum_{i=1}^{n} \alpha_{i} L_{i} - f, \sum_{j=1}^{n} \alpha_{j} L_{j} - f)_{R^{m}} =$$

$$= (f, f)_{R^{m}} + (\sum_{i=1}^{n} \alpha_{i} L_{i}, \sum_{j=1}^{n} \alpha_{j} L_{j})_{R^{m}} - 2\sum_{i=1}^{n} \alpha_{i} (L_{i}, f)_{R^{m}}$$

Оказалось, что $S(\alpha_1,\alpha_2,...\alpha_n)$ является квадратичной функцией относительно коэффициентов $\alpha_i,i=1,...n$:

$$S(\alpha_{1}, \alpha_{2}, ... \alpha_{n}) =$$

$$= (f, f)_{R^{m}} - 2\sum_{i=1}^{n} \alpha_{i} (L_{i}, f)_{R^{m}} + \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} (L_{i}, L_{j})_{R^{m}}$$
(14.50)

Функционал $S(\alpha_1,\alpha_2,...\alpha_n)$ устроен так же, как и функционал (14.34). Только вместо скалярных произведений в бесконечномерном гильбертовом пространстве H задействованы скалярные произведения в конечномерном пространстве R^m .

Шаг III и далее

Точки, подозрительные на экстремум, находим из условия

$$\frac{\partial S}{\partial \alpha_i} = 0, i = 1, \dots n$$

Нормальная система уравнений принимает вид

$$\begin{cases} \frac{\partial S}{\partial \alpha_{1}} = -2(L_{1}, f)_{R^{m}} + 2\alpha_{1}(L_{1}, L_{1})_{R^{m}} + 2\sum_{j=2}^{n} \alpha_{j}(L_{1}, L_{j})_{R^{m}} = 0 \\ \frac{\partial S}{\partial \alpha_{2}} = -2(L_{2}, f)_{R^{m}} + 2\alpha_{2}(L_{2}, L_{2})_{R^{m}} + 2\sum_{j=1}^{n} \alpha_{j}(L_{2}, L_{j})_{R^{m}} = 0 \\ \dots \\ \frac{\partial S}{\partial \alpha_{n}} = -2(L_{n}, f)_{R^{m}} + 2\alpha_{n}(L_{n}, L_{n})_{R^{m}} + 2\sum_{j=1}^{n-1} \alpha_{j}(L_{n}, L_{j})_{R^{m}} = 0 \end{cases}$$

Это СЛАУ с неизвестными α_i , i=1,...n . Если ее записать в векторном виде, получим (14.44):

$$\begin{bmatrix} (L_{1}, L_{1})_{R^{m}} & (L_{1}, L_{2})_{R^{m}} & \dots & (L_{1}, L_{n})_{R^{m}} \\ (L_{2}, L_{1})_{R^{m}} & (L_{2}, L_{2})_{R^{m}} & \dots & (L_{2}, L_{n})_{R^{m}} \\ \dots & \dots & \dots & \dots \\ (L_{n}, L_{1})_{R^{m}} & (L_{n}, L_{2})_{R^{m}} & \dots & (L_{n}, L_{n})_{R^{m}} \end{bmatrix} \cdot \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \dots \\ \alpha_{n} \end{bmatrix} = \begin{bmatrix} (L_{1}, f)_{R^{m}} \\ (L_{2}, f)_{R^{m}} \\ \dots \\ (L_{n}, f)_{R^{m}} \end{bmatrix}$$

Матрица СЛАУ (14.44) является матрицей Грама линейно независимых векторов $L_i \in R^m, i=1,...n$:

$$Gr(L_{1}, L_{2}...L_{n}) = \begin{bmatrix} (L_{1}, L_{1})_{R^{m}} & (L_{1}, L_{2})_{R^{m}} & \dots & (L_{1}, L_{n})_{R^{m}} \\ (L_{2}, L_{1})_{R^{m}} & (L_{2}, L_{2})_{R^{m}} & \dots & (L_{2}, L_{n})_{R^{m}} \\ \dots & \dots & \dots & \dots \\ (L_{n}, L_{1})_{R^{m}} & (L_{n}, L_{2})_{R^{m}} & \dots & (L_{n}, L_{n})_{R^{m}} \end{bmatrix}$$

Поэтому указанная матрица не вырождена и положительно определена:

$$\det Gr(L_1, L_2...L_n) \neq 0$$

$$Gr(L_1, L_2...L_n) > 0$$

Отсюда следует, что решение СЛАУ (14.44) при любой правой части дифференциального уравнения (14.6) существует и единственно.

Функционал $S(\alpha_1,\alpha_2,...\alpha_n)$ имеет единственную точку, подозрительную на экстремум.

Аналогично Утверждению 4 доказывается:

Точка, подозрительная на экстремум, является точкой локального минимума функционала $S(\alpha_1,\alpha_2,...\alpha_n)$.

Решение нормальной системы уравнений (14.44), являясь точкой локального минимума функционала $S(\alpha_1,\alpha_2,...\alpha_n)$, является решением задачи минимизации (14.42), то есть глобальным минимумом $S(\alpha_1,\alpha_2,...\alpha_n)$.

Считаем, что Утверждение 5 доказано.