# 應用線性統計模型 期末報告

應數三 409120627 周家鴻

# 大綱

| <b>-</b> \ | 簡介        | 2 |
|------------|-----------|---|
|            | 初步資料調查    |   |
| 三、         | 拆分資料      | 5 |
| 四、         | 模型訓練      | 5 |
| 五、         | 模型驗證      | 7 |
| 一<br>六、    | 模型結果      | 8 |
| ハ<br>七、    | <b>结論</b> | 9 |

## 一、 簡介

網頁設計公司想了解甚麼因素與專案成交量(Websites delivered)有關,想要尋找對專案成交量影響最顯著的因素。考慮以下這些變數:Backlog of order(季末訂單數量)、Team number(開發小組編號)、Team experience(開發經驗)、Process change(製程更新)、Year、Quarter。

其中,Team number(開發小組編號)、Year、Quarter 為類別資料。首先 Year 與 Quarter 皆代表時間,筆者將其合併為一項資料: (2001,Q1),(2001,Q2),....,(2002,Q3),(2002,Q4)等總共八個類別,然後為簡化流程,將 13 個開發小組重新分組,1~5 為一組,6~10 為一組,11~13 為一組,總共三組。

模型欲預測之 response 為專案成交量(Websites delivered)。

## 二、 初步資料調查

資料散佈圖:



其中 X1~X7 代表 year 與 quarter 合併之類別資料, G1~G3 代表組別之類別資料。因為指標變數不具有實際的意義,所以我們更關心左上角的部分:



此為專案成交量(Websites delivered)、Backlog of order(季末訂單數量)、及 Team experience(開發經驗)之散佈圖。看起來有些凌亂,不過在 Team experience(開發經驗)與 Backlog of order(季末訂單數量)之間似乎存在線性相關性。

#### 相關係數:

| А           | В           | С           | D           | Е           | F           | G           |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Webs_num    | Backlog     | Team_exp    | Proc_chg    | X1          | X2          | X3          |
| 1           | 0.36516646  | 0.44571815  | 0.68692593  | -0.31933766 | -0.14444544 | -0.22022249 |
| 0.36516646  | 1           | 0.76343932  | 0.43562865  | -0.43316905 | 0.34591995  | -0.27444813 |
| 0.44571815  | 0.76343932  | 1           | 0.63533973  | -0.47103528 | 0.09731159  | -0.34145648 |
| 0.68692593  | 0.43562865  | 0.63533973  | 1           | -0.24222268 | -0.32988567 | -0.26093123 |
| -0.31933766 | -0.43316905 | -0.47103528 | -0.24222268 | 1           | -0.14444508 | -0.11425241 |
| -0.14444544 | 0.34591995  | 0.09731159  | -0.32988567 | -0.14444508 | 1           | -0.15560159 |
| -0.22022249 | -0.27444813 | -0.34145648 | -0.26093123 | -0.11425241 | -0.15560159 | 1           |
| 0.33828714  | 0.40823396  | 0.27347848  | 0.62583278  | -0.15159089 | -0.20645327 | -0.16329932 |
| -0.0791864  | -0.13358935 | -0.19737983 | -0.27891316 | -0.12212605 | -0.16632479 | -0.1315587  |
| 0.52151439  | 0.13702742  | 0.52175438  | 0.62583278  | -0.15159089 | -0.20645327 | -0.16329932 |
| -0.24195495 | -0.22256132 | -0.08402858 | -0.31328402 | -0.13717582 | -0.18682122 | -0.14777086 |
| -0.23557092 | 0.10465256  | 0.19634322  | -0.14119232 | 0.15308563  | -0.05574184 | 0.10220954  |
| 0.21930161  | -0.0121695  | -0.10213927 | 0.04418985  | -0.14506743 | 0.05603827  | -0.07777758 |
| 0.03418614  | -0.12534165 | -0.13268943 | 0.13322306  | -0.01891543 | 0.00273224  | -0.03727955 |

| X4          | X5          | X6          | X7          | G1          | G2          | G3          |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 0.33828714  | -0.0791864  | 0.52151439  | -0.24195495 | -0.23557092 | 0.21930161  | 0.03418614  |
| 0.40823396  | -0.13358935 | 0.13702742  | -0.22256132 | 0.10465256  | -0.0121695  | -0.12534165 |
| 0.27347848  | -0.19737983 | 0.52175438  | -0.08402858 | 0.19634322  | -0.10213927 | -0.13268943 |
| 0.62583278  | -0.27891316 | 0.62583278  | -0.31328402 | -0.14119232 | 0.04418985  | 0.13322306  |
| -0.15159089 | -0.12212605 | -0.15159089 | -0.13717582 | 0.15308563  | -0.14506743 | -0.01891543 |
| -0.20645327 | -0.16632479 | -0.20645327 | -0.18682122 | -0.05574184 | 0.05603827  | 0.00273224  |
| -0.16329932 | -0.1315587  | -0.16329932 | -0.14777086 | 0.10220954  | -0.07777758 | -0.03727955 |
| 1           | -0.174553   | -0.21666667 | -0.19606341 | -0.08836278 | 0.02765546  | 0.08337536  |
| -0.174553   | 1           | -0.174553   | -0.15795441 | 0.05712589  | -0.01787905 | -0.05390155 |
| -0.21666667 | -0.174553   | 1           | -0.19606341 | -0.08836278 | 0.02765546  | 0.08337536  |
| -0.19606341 | -0.15795441 | -0.19606341 | 1           | -0.02099965 | 0.0865365   | -0.08350342 |
| -0.08836278 | 0.05712589  | -0.08836278 | -0.02099965 | 1           | -0.71380563 | -0.42566499 |
| 0.02765546  | -0.01787905 | 0.02765546  | 0.0865365   | -0.71380563 | 1           | -0.32988567 |
| 0.08337536  | -0.05390155 | 0.08337536  | -0.08350342 | -0.42566499 | -0.32988567 | 1           |

從相關係數中,我們可以看到專案成交量(Websites delivered)與 Process change(製程更新)有較強的線性關係,且 Backlog of order(季末訂單數量)與 Team experience(開發經驗)也有較高的線性關係

接著,考慮所有變數形成的一階線性模型。首先是該模型之殘差圖與 QQplot:



殘差圖中,並沒有看到明顯的曲線關係,因此考慮一階線性模型即可。這裡考慮了兩個 response,Y與 In(Y)。首先在以Y為 response 的殘差圖中,Y愈大,殘差的變異數似乎有愈大的傾向。在以 InY為 response 的殘差圖中,並沒有在殘差中發現明顯的規律,似乎更能夠支持 constant variance的假設。另外在 QQ plot 中,In(Y)似乎更加理想。所以我們應當考慮以 In(Y)作為 response,才更符合常態假設。

另外,因為 Backlog of order(季末訂單數量)與 Team experience(開發經驗)之間似乎存在線性關係,於是加入交互項; Backlog of order(季末訂單數量)與 Team number(開發小組編號) 之間可能存在關係,因此加入交互項。

#### 三、 拆分資料

因為資料量太少,所以應該用 k-fold cross validation 方法來找出適合的模型。(但由於篇幅有限,這裡只做了一次的訓練及驗證)。利用 scikit-learn 將資料隨機的分為測試集與訓練集,其中測試集佔了全部資料的 20%,約 15 筆資料。

## 四、 模型訓練

因為 predictor 數量相對少,這裡使用 best subset 方法找出最適合的模型。



| Number_of_Predictors | SSEp        | Rsq         | Adjusted_Rsq | Ср          | SBC          | PRESS_P     |
|----------------------|-------------|-------------|--------------|-------------|--------------|-------------|
| 1                    | 21.93762695 | 0.293090888 | 0.280467511  | 15.20758315 | -11.99659818 | 1860.578164 |
| 2                    | 19.23619752 | 0.380140644 | 0.357600304  | 8.685266586 | -15.55790595 | 1866.422145 |
| 3                    | 18.35856229 | 0.408421203 | 0.375555714  | 7.916552644 | -14.2059305  | 1906.105673 |
| 4                    | 17.55116237 | 0.434438527 | 0.391754643  | 7.369413102 | -12.75408944 | 1872.644801 |
| 5                    | 17.10026463 | 0.448968072 | 0.395984232  | 7.946946449 | -10.2031684  | 1871.488491 |
| 6                    | 16.44833712 | 0.469975517 | 0.407619695  | 7.890282471 | -8.397159486 | 1872.40497  |
| 7                    | 16.02910378 | 0.48348472  | 0.411172581  | 8.567708875 | -5.834179554 | 1965.688009 |
| 8                    | 15.40458451 | 0.503608974 | 0.422565541  | 8.597510849 | -4.078708487 | 1978.808373 |
| 9                    | 14.8920684  | 0.520124083 | 0.430147349  | 8.980654034 | -1.980777361 | 1958.669749 |
| 10                   | 14.20509571 | 0.54226081  | 0.444869493  | 8.813431508 | -0.659558104 | 2082.399605 |
| 11                   | 14.08281885 | 0.546201009 | 0.437683859  | 10.42767938 | 2.89946213   | 2190.767933 |
| 12                   | 13.94915207 | 0.550508233 | 0.430643762  | 12.00599498 | 6.406770137  | 2269.474681 |
| 13                   | 13.94725176 | 0.550569468 | 0.417783174  | 14          | 10.45931121  | 2449.85782  |

當 p=4,5,10,11 時看起來較適合。模型使用的變數如下:

| (intercept) | Backfog_ | Tear Backlog_G1 | Backlog_G2 | Backlog | Team_exp | Proc_chg | XI    | X2     | X3    | 3/4   | X5    | 61    | G2     |
|-------------|----------|-----------------|------------|---------|----------|----------|-------|--------|-------|-------|-------|-------|--------|
| TRUE        | FALSE    | FALSE           | FALSE      | FALSE   | FALSE    | TRUE     | FALSE | FALSE. | FALSE | FALSE | FALSE | FALSE | FALSE  |
| TRUE        | FALSE    | FALSE           | FALSE      | FALSE   | FALSE    | TRUE     | TRUE  | FALSE  | FALSE | FALSE | FALSE | FALSE | FALSE  |
| THUE        | FALSE    | FALSE           | FALSE      | FALSE   | FALSE    | THE      | TRUE  | FALSE  | THUSE | FALSE | FALSE | FALSE | FALSE  |
| THUE        | FALSE    | FALSE           | FALSE      | FALSE   | FALSE    | THUE     | TRUE  | THUE   | FALSE | FALSE | THUE  | TAUSE | FAUSE  |
| TRUE        | FALSE    | FALSE           | FALSE      | FALSE   | FALSE    | TRUE     | TRUE  | TRUE   | FALSE | FALSE | TRUE  | FALSE | TRUE   |
| TRUE        | FALSE    | FALSE           | FALSE      | FALSE   | EALSE    | TRUE     | TRUE  | TRUE   | FALSE | FALSE | TRUE  | TRUE  | TRUE   |
| TRUE        | FALSE    | FALSE           | FALSE      | FALSE   | FALSE    | TRUE     | TRUE  | TRUE   | FALSE | TRUE  | TRUE  | TRUE  | TRUE   |
| TRUE        | FALSE    | FALSE           | TRUE       | FALSE   | FALSE    | TRUE     | TRUE  | TRUE   | FALSE | TRUE  | TRUE  | TRUE  | TRUE   |
| THUE        | FALSE    | THUR            | THUE       | THUE    | EALSE    | THUE     | THUE  | THUE   | FALSE | FALSE | TRUE  | THUS  | 710,00 |
| THIAE       | FALSE    | TRUE            | TRUE       | TILLE   | FALSE    | THIAT    | THUE  | TOME   | FALSE | THUE  | TRUE  | TRUE  | THUE   |
| TRUE        | TRUE     | TRUE            | TRUE       | TRUE    | FALSE    | TRUE     | TRUE  | TRUE   | FALSE | TRUE  | TRUE  | TRUE  | TRUE   |
| TRUE        | TRUE     | TRUE            | TRUE       | TRUE    | FALSE    | TRUE     | TRUE  | TRUE   | TRUE  | TRUE  | TRUE  | TRUE  | TRUE   |
| TRUE        | TRUE     | TRUE            | TRUE       | TRUE    | TRUE     | TRUE     | TRUE  | TRUE   | TRUE  | TRUE  | TRUE  | TRUE  | TRUE   |

## 五、 模型驗證

首先先以測試集的資料用 best subset algo 所決定出來的 predictor 再 fit 一 次模型,並與訓練集資料的模型進行比較。

|                | 1              | 1,01,701/     |               |
|----------------|----------------|---------------|---------------|
| Estimate(train | Pr(> t )(train | Estimate(test | Pr(> t )(test |
| p=4            | p=4            | p=4           | p=4           |
| 1.923487204    | 1.68518E-23    | 1.464237711   | 3.03944E-06   |
| 0.671556852    | 0.00038735     | 1.481407659   | 3. 01416E-05  |
| -0.87198813    | 0.003330427    | -0.771090531  | 0.04026746    |
| -0.377106634   | 0.11395278     | NAN           | NAN           |
|                |                |               |               |
| p=5            | p=5            | p=5           | p=5           |
| 1.612144957    | 4. 2899E-16    | 1.791759469   | 5. 24711E-06  |
| 0.9828991      | 5.56093E-06    | 1.153885901   | 0.000500279   |
| -0.560645882   | 0.060894366    | -1.098612289  | 0.003485391   |
| 0.417324963    | 0.074453132    | -0.895879735  | 0.011273181   |
| 0.463359496    | 0.065883502    | 0.15415068    | 0.672548591   |
|                |                |               |               |
|                |                |               |               |
| p=10           | p=10           | p=10          | p=10          |
| 0.384084922    | 0.464402432    | 0.58477431    | 0.801650023   |
| -0.050747657   | 0.08671358     | -0.075054745  | 0.41357639    |
| -0.057078856   | 0.032634483    | -0.228630578  | 0.542186264   |
| 0.029758198    | 0.115012549    | 0.031920284   | 0.712066914   |
| 1.27641373     | 5.04649E-05    | 1.494513464   | 0.006163317   |
| -0.49101975    | 0.108843231    | -1.551524127  | 0.004823019   |
| 0.695417304    | 0.031347036    | -0.550804048  | 0.116725817   |
| 0.51570196     | 0.038283333    | 0.240419601   | 0.455510356   |
| 1.702713252    | 0.049607739    | 2.328481139   | 0.361784339   |
| 1.925827812    | 0.010947865    | 6.367384386   | 0.522903974   |
|                |                |               |               |
| p=11           | p=11           | p=11          | p=11          |
| 0.300553614    | 0.563782169    | 0.572294774   | 0.82396203    |
| -0.052973918   | 0.071026853    | -0.064571934  | 0.533735517   |
| -0.063223841   | 0.01858016     | -0.228630578  | 0.581588144   |
| 0.029556035    | 0.112952505    | 0.031920284   | 0.738477924   |
| 1.075462114    | 0.001234211    | 1.506993      | 0.013903133   |
| -0.490789901   | 0.10467971     | -1.44145462   | 0.028732929   |
| 0.75906344     | 0.018972385    | -0.63466653   | 0.161298323   |
| 0.421236889    | 0.138340507    | -0.207409887  | 0.68139566    |
| 0.524996731    | 0.033007275    | 0.219453981   | 0.540163525   |
| 1.851874686    | 0.032450747    | 2.068407611   | 0.471026876   |
| 2.150552074    | 0.005182259    | 6.367384386   | 0.563555167   |

當 P=10 及 11 時,許多參數都不顯著。當 P=4 時,雖然因不明原因出現 NAN,但係數大致上是比較接近的。

#### 再來比較 MSPR 與 MSE

|      | p=4     | p=5     | p=10     | p=11    |
|------|---------|---------|----------|---------|
| MSPR | 179.441 | 179.677 | 178. 975 | 182.34  |
| MSE  | 0.33997 | 0.33115 | 0.31025  | 0.30224 |

如 MSPR 與 MSE 相近,則模型效果愈好。推測是因為資料量偏小,以及多為類別資料,所以 MSPR 與 MSE 相去甚遠。

於是採用 P=4 當作最佳的模型。

### 六、 模型結果

最終採用 Process change(製程更新), X1(是否為 2001Q1), X3(是否為 2001Q3)為 predictor, In(Y)為 response。

Ln(y)=1.85173+0.85119(Process change)-0.902(X1)-0.305(X3),其中 X3 之係數 不顯著。R squared=0.50, adjusted R squared = 0.49

#### 最後模型的殘差圖為:





#### 七、結論

最後的模型中可以觀察到,專案成交量(Websites delivered)與 Process change(製程更新)具有較大的關聯性,正如開頭的相關係數矩陣所表示的一樣。所以對於專案成交量(Websites delivered)來說,Backlog of order(季末訂單數量)與 Team experience(開發經驗)都不是最重要的,反而優化生產過程會顯得更重要一些。另外,也許線性回歸不是了解此問題的最好方式,也許考慮去做分群會更適合一些。

Actual Values