Sistemi Elettronici, Tecnologie e Misure Appello del 4/9/2018

Nome:	
Cognome:	
Matricola:	

ATTENZIONE

- 1. Compilare subito questa pagina con nome, cognome e numero di matricola
- 2. Per i quesiti a risposta multipla, la risposta errata determina la sottrazione di un punteggio pari a metà del valore della risposta esatta
- 3. Riportare le **risposte esatte** dei quesiti a risposta multipla nella tabella posta all'inizio della relativa sezione
- 4. Le risposte ai vari quesiti vanno riportate **esclusivamente** nello spazio reso disponibile immediatamente dopo il quesito stesso
- 5. Si può fare uso di fogli di brutta bianchi resi disponibili a cura dello studente. La brutta non deve essere consegnata
- 6. Non si possono utilizzare libri, appunti o formulari

Domande a risposta multipla

	1	2	3	4	5	6
a						
b						
c						
d						

- 1. Un amplificatore operazionale con amplificazione differenziale a bassa frequenza pari a 80dB, prodotto bandaguadagno pari a 1MHz, resistenze d'ingresso e uscita trascurabili (cioè $R_{\rm in,d} \to \infty, R_{\rm in,cm} \to \infty, R_{\rm out} = 0$), è utilizzato in un amplificatore di tensione non invertente con amplificazione di tensione in banda di 20dB. La banda dell'amplificatore di tensione non invertente è pari a:
 - (a) 100Hz
 - (b) 10MHz
 - (c) 100kHz
 - (d) 10kHz
- 2. In un amplificatore invertente basato su operazionale ideale, il resistore che collega la sorgente di segnale $v_{\rm in}$ all'ingresso invertente è sostituito da un diodo, con anodo collegato alla sorgente e catodo collegato all'ingresso invertente. Per $v_{\rm in}>0$ il circuito che si ottiene si comporta come
 - (a) amplificatore esponenziale invertente
 - (b) amplificatore esponenziale non invertente
 - (c) amplificatore logaritmico invertente
 - (d) amplificatore logaritmico non invertente
- 3. La conduttanza d'uscita di piccolo segnale g_o di un transistore MOS nel punto di lavoro Q è definita come:

(a)
$$g_{\rm o} = \left. \frac{\partial i_{\rm D}}{\partial v_{\rm GS}} \right|_Q$$
 (b) $g_{\rm o} = \left. \frac{\partial i_{\rm D}}{\partial v_{\rm DS}} \right|_Q$ (c) $g_{\rm o} = \left. \frac{\partial i_{\rm G}}{\partial v_{\rm GS}} \right|_Q$ (d) $g_{\rm o} = \left. \frac{\partial v_{\rm DS}}{\partial i_{\rm D}} \right|_Q$

- 4. Un amplificatore di tensione è descritto dai parametri A_v , R_{in} , R_{out} , tutti finiti e non nulli. Se la porta d'uscita è lasciata a vuoto e la porta d'ingresso è chiusa su un bipolo incognito che presenta tensione a vuoto v_s :
 - (a) $v_{\text{out}} = A_{\text{v}}v_{\text{s}}$ indipendentemente dal bipolo in ingresso e da R_{out}
 - (b) se il bipolo in ingresso è un generatore ideale di tensione, $v_{\text{out}} = A_{\text{v}}v_{\text{s}}$ per qualsiasi valore di R_{in} ed R_{out}
 - (c) se $R_{\rm out}=0$, allora $v_{\rm out}=A_{\rm v}v_{\rm s}$ indipendentemente dal bipolo in ingresso
 - (d) non è possibile determinare v_{out} dal momento che la porta d'uscita è a vuoto
- 5. In uno stadio amplificatore MOS drain comune, descritto dai parametri $A_{\rm v}$, $R_{\rm in}$ e $R_{\rm out}$:
 - (a) è sempre $A_{\rm v} < 0$ (stadio invertente)
 - (b) è sempre $|A_{\rm v}| > 1$
 - (c) R_{out} è indipendente dalla transconduttanza g_m del transistore MOS
 - (d) l'ingresso è applicato al terminale di gate e l'uscita è prevelata al terminale di source del transistore
- 6. Per ricavare il circuito equivalente per il piccolo segnale di un amplificatore:
 - (a) è necessario conoscere il punto di funzionamento a riposo dei dispositivi non lineari
 - (b) i generatori di corrente costanti nel tempo possono essere sostituiti con corto circuiti
 - (c) i condensatori possono essere sempre sostituiti da circuiti aperti
 - (d) è necessario assumere che i segnali applicati siano in banda

Esercizio 1.

Con riferimento al circuito in figura, in cui sono date le tensioni continue ai nodi A, B e C:

- 1. verificare la regione di funzionamento di MN e determinarne i parametri del modello per il piccolo segnale;
- 2. valutare l'amplificazione di tensione $A_v = \frac{v_{\rm out}}{v_{\rm in}}$, la resistenza d'ingresso $R_{\rm in}$ e la resistenza d'uscita $R_{\rm out}$ in condizioni di piccolo segnale e nell'ipotesi che il condensatore $C_{\rm s}$ si comporti come un corto circuito ed il condensatore $C_{\rm p}$ si comporti come un circuito aperto [sono richiesti: il circuito equivalente per il piccolo segnale, le espressioni simboliche (passaggi essenziali) ed i valori numerici];
- 3. determinare l'espressione della funzione di trasferimento $A_v(s) = \frac{V_{\rm out}(s)}{V_{\rm in}(s)}$ assumendo $C_{\rm s} = \frac{5}{2\pi} \mu {\rm F}$ e $C_{\rm p} = \frac{500}{2\pi} {\rm pF}$ e tracciarne i diagrammi di Bode di modulo e fase [sono richiesti: l'espressione simbolica della funzione di trasferimento, i valori numerici della costante moltiplicativa e delle frequenze centrali di poli/zeri ed i diagrammi di Bode di modulo e fase, da tracciarsi sugli assi quotati forniti].

Esercizio 2.

Con riferimento al circuito di figura, si assumano i seguenti valori: $R_1=R_2=\cdots=R_{12}=1 \mathrm{k}\Omega, V_0=3 \mathrm{V}, V_1=1 \mathrm{V}, I_0=10 \mathrm{mA}.$ Si supponga inoltre che gli amplificatori operazionali siano ideali e che lavorino sempre nella zona ad alto guadagno. Calcolare le tensioni di uscita degli operazionali $V_1^{\mathrm{out}}, V_2^{\mathrm{out}}, V_3^{\mathrm{out}}$ e V_4^{out} .