Application of Neural Networks in Computer Vision

Sunghwan Kim

Index

- 1. 강화학습이란 무엇인가?
- 2. OpenAl Gym
- 3. Q-Learning

Lab 01: Application of Neural Networks in Computer Vision

What is Machine Learning?
 △ About Learning

Machine Learning

Definition

한 컴퓨터 프로그램이 어떤 과제류(class of tasks) T에 속하는 과제들을 수행하며 그 수행의 성과를 측정한 정도를 P라고 할 때, 만약 어떤 경험 E때문에 T의 어떤 과제에 대한 성과 P가 개선되었다면, 그 컴퓨터 프로그램은 경험 E로부터 학습한다고 말할 수 있다.

머신러닝은 위 정의의 '학습'을 진행하는 알고리즘.

→ 경험 E와 과제 T, 그리고 성과 측도 P는 해결하려는 과제마다 다르다.

Machine Learning

머신러닝의 **과제** *T* | 분류(Classification)

Cats Dogs

Sample of cats & dogs images from Kaggle Dataset

Machine Learning

머신러닝의 **과제** *T* | 회귀(Regression)

Machine Learning

머신러닝의 **과제** *T* | 전사(Transcription)

Machine Learning

머신러닝의 **과제** T \mid 번역(Translation)

Machine Learning

머신러닝의 **과제** $T \mid \text{합성(Synthesis)}$

Machine Learning

머신러닝의 **과제** $T \mid$ 잡음 제거(Denoising)

Original

Noisy image

Denoised image

└ What is Machine Learning?

☐ Machine Learning Performance Measure

Machine Learning

머신러닝의 **성과** P | 정확도 (Accuracy)

└ What is Machine Learning?

☐ Machine Learning Experience

Machine Learning

머신러닝의 **경험** E | Dataset

Transaction	Time stamp	$^{\mathrm{ID}}$	$\mathbf{A}\mathbf{g}\mathbf{e}$ group	Fresh fruit	Seafood
1	April	1	Senior	Orange	Tuna
2	April	2	Teenager	Banana	Tuna
3	April	4	Teenager	Banana	Tuna
4	June	1	Senior	Orange	Anchovy
5	June	3	Adult	Banana	Tuna
6	July	1	Senior	Orange	Anchovy
7	July	2	Teenager	Banana	Tuna
8	July	2	Teenager	Orange	Tuna
9	July	4	Teenager	Banana	Tuna
10	December	2	Teenager	Banana	Tuna
11	December	3	Adult	Orange	Anchovy
12	December	1	Senior	Orange	Anchovy

└ What is Machine Learning?

☐ Supervised Learning vs Unsupervised Learning

Machine Learning

^L Linear Regression

└ What is Linear Regression?

Linear Regression

Lab 01: Application of Neural Networks in Computer Vision

└ Linear Regression

└ What is Linear Regression?

Linear Regression

Neural Networks

인간의 뇌를 구성하는 신경세포에서 영감을 받아 만든 수학적 모델

[∟] Neural Networks

□ Activation Function

Neural Networks

생물학적 뉴런의 활성화

└ Neural Networks

└ Activation Function

Neural Networks

수학적 뉴런의 활성화

Lab 01: Application of Neural Networks in Computer Vision

└ Neural Networks└ Linearity

Neural Networks

선형성(Linearity)

Definition

함수 f에 대해, 가산성(Additivity: f(x + y) = f(x) + f(y))와, 동차성(Homogeneity: $f(\alpha x) = \alpha f(x)$)가 항상 성립할 때 함수 f는 '선형'이라고 한다.

Linear Regression에서는 선형인 모델을 학습하기 위해 회귀를 진행했다.

Neural Network에서 역시 각각의 뉴런 자체들은 하나의 선형인 모델을 학습하는 것과 마찬가지이다.

└ Neural Networks └ Linearity

└ Neural Networks └ Linearity

$$out1 = W_1x$$
 $out2 = W_2out1$

└ Neural Networks
└ Linearity

$$out = W_2(W_1x)$$

└ Neural Networks └ Linearity

$$out = Wx$$

$$out1 = f(W_1x) \qquad out2 = f(W_2out1)$$

└ Neural Networks └ Linearity

$$out = f(W_2(f(W_1x)))$$

└ Neural Networks └ Linearity

Lab 01: Application of Neural Networks in Computer Vision

└ Linear Regression

└ What is Linear Regression?

Linear Regression

