Tentamen (del 2) (4 högskolepoäng) i Programkonstruktion och datastrukturer (1DL201)

Pierre Flener

Onsdag 14 mars 2012, kl. 14:00 – 17:00, i Bergsbrunnagatan 15, sal 1

Hjälpmedel: Inga. Inte heller elektronisk utrustning.

Hjälp: En av huvudlärarna kommer normalt att besöka skrivsalen c:a klockan 15:00.

Anvisningar: Markera i tabellen nedan *inte mer än ett* svar per fråga genom att *kryssa över* bokstaven för det svarsalternativ som du väljer. *Lämna bara in denna sida.* Det är inte meningen att du skall lämna kommentarer till dina svar. Om du tycker att någon fråga är oklar eller felaktig, markera fråganumret med en * på *den här* sidan, och förklara *på baksidan av detta blad* vad du menar att problemet är och vilka antaganden du gjort för att kunna svara på frågan.

	Fråga	Svar				Fråga	Svar					
n	1	A	В	С	D	Е	2	A	В	С	D	Е
3	3	Α	В	С	D	Е	4	A	В	С	D	Е
yg	5	A	В	С	D	Е	6	Α	В	С	D	Е
betyg	7	A	В	С	D	Ε	8	A	В	С	D	Е
·	9	A	В	С	D	Е	10	A	В	С	D	Е
s 4	11	A	В	С	D	Е	12	A	В	С	D	Е
betyg	13	Α	В	С	D	Е	14	A	В	С	D	Е
βq	15	A	В	С	D	Е						
<i>7</i> 0							16	A	В	С	D	Е
betyg	17	A	В	С	D	Е	18	A	В	С	D	Е
pe	19	A	В	С	D	Ε	20	A	В	С	D	Е

Identitet: Din tentakod (eller namn och personnummer om du saknar kod):

Frågor för betyg 3

Om du ger rätt svar på 7 av de 10 frågorna i detta avsnitt så blir du godkänd med minst betyg $\bf 3$, annars blir du underkänd ($\bf U$). Du kan inte kompensera ett dåligt resultat i detta avsnitt med poäng från frågorna för betyg $\bf 4$ eller $\bf 5$.

1. Här följer ett fragment av en abstrakt datatyp för tabeller (implementerade som listor som vi talat om i kursen) och några funktioner som använder tabellerna. Programraderna är numrerade.

```
abstype 'a table = Table of (string*'a) list
 1
 2
    with
 3
      val empty = ...;
 4
      fun toList(Table T) = T;
 5
      fun insert(Table [], key, value) = Table [(key,value)]
 6
        | insert(Table ((key',value')::rest), key, value) =
 7
            if key = key' then
 8
              Table((key,value)::rest)
9
            else
              Table((key',value')::toList(insert(Table rest,key,value)));
10
      fun exists(...) = ...;
11
12
      fun search (...) = ...;
13
      fun delete (...) = ...
14
    end;
15
    fun countup(T,k) =
16
      if exists(T,k) then
17
        insert(T,k,search(T,k)+1)
18
      else
19
        Table ((k,1)::toList T);
20
    fun countdown(T,k) =
21
      case search(T,k) of
22
        1 => delete(T,k)
      \mid n \Rightarrow insert(T,k,n-1);
23
```

En av raderna i programmet är felaktig (i den meningen att programmet inte går att köra) genom att använda datastrukturen på ett felaktigt sätt. Vilken? (Tips: Programlogiken som sådan är korrekt. Du behöver alltså inte förstå vad programmet gör eller hur det fungerar.)

(A) 4 (B) 10 (C) 17 (D) 19 (E) 23

2.	Titta på denna funktionsdefinition:								
	<pre>fun klingsor(kundry,[amfortas])=amfortas</pre>								
	Vad är värde (A) 2	t av uttrycket kli (B) 0		1,2,3])? (D) ~	4 (E) ~ 6				
3.	Man matar i	tur och ordning in	följande deklar	cationer & uttry	rck till ett ML-system:				
	<pre>val x = r fun bump(x := 11; bump(x); !x;</pre>	ref 7; (x) = (x := !x-1	.);						
	Vad blir värd (A) 5	let av det sista utt (B) 6	crycket !x? (C) 7	(D) 1	0 (E) 11				
4.	. What is a tight asymptotic bound on the runtime of the function \mathtt{h} below? Let n be the number of elements of its list argument. Assume that the infix function $\#$ always takes time linear in the number of elements of its \pmb{right} argument. Assume that the input and output of function \mathtt{h} always have the same length.								
]) = [] :]) = [x] :::x2::xs) = [x1	.,x2] # h(xs)						
	(A) $\Theta(n)$	(B) $\Theta(n \cdot \lg n)$	(C) $\Theta(n^2)$	(D) $\Theta(n^3)$	(E) Another bound				
5.	initially emp		using the algor	ithm seen in th	n that order, into the ne course, what is the				
	$(A) \le 1$	(B) 2	(C) 3	(D)	$(E) \ge 5$				
6.	initially emp	ty binomial max - of the binomial tre	heap using the	e algorithm see	n that order, into the n in the course, what key 4 in the resulting				
	(A) 0	(B) 1	(C) 2	(D) 3	$(E) \ge 4$				
7.	Which of the	following stateme	ents on hashing	under <i>chainii</i>	$ng ext{ are } false?$				
	(a) The max	ximum chain lengt	h grows $on~ave$	e <i>rage</i> in propor	tion to the load factor.				

(b) The average chain length grows on average in proportion to the load factor.

(C) (a) & (b) only

(D) (b) only

(E) all

(c) A hash table of m cells can store strictly more than m elements.

(B) (a) only

(A) none

8. Consider the hash table below of m=7 cells, where \perp denotes the element at a cell that was never used and Δ denotes a deleted element:

0	1	2	3	4	5	6
	11	Δ	1		25	上

Consider the ordinary hash function hash'(key) = "the rightmost digit of key" under $open\ addressing$ with the linear probing function f(i) = i. Perform $no\ rehashing$. Assume that duplicate keys are not allowed. What is the number of probes made (that is, the number of values of i tried) when inserting 42?

- (A) < 1
- (B) 2
- (C) 3
- (D) 4
- $(E) \geq 5$

9. Alfons needs to be careful when getting dressed in the mornings. Each edge from node u to node v in the acyclic directed graph below means that clothing item u must be put on before clothing item v:

Assume the graph is represented as an array of adjacency lists. Assume the array is indexed by *decreasing* alphabetic order on the node names. Assume each adjacency list is sorted by *decreasing* alphabetic order on the node names. What is the topological sorting order of the nodes, using the algorithm based on *depth*-first search (DFS) seen in the course?

- (A) shirt, socks, tie, undershorts, pants, belt, jacket, shoes
- (B) shirt, socks, tie, undershorts, pants, shoes, belt, jacket
- (C) socks, undershorts, pants, shoes, shirt, belt, tie, jacket
- (D) undershorts, socks, shirt, tie, pants, shoes, belt, jacket
- (E) Another order
- 10. Reconsider the graph and its representation assumptions of Question 9. What is the **breadth**-first search (BFS) order of this graph when starting from the undershorts and not making any restarts, using the algorithm seen in the course?
 - (A) undershorts, pants, belt, jacket, shoes
 - (B) undershorts, pants, belt, shoes, jacket
 - (C) undershorts, pants, shoes, belt, jacket
 - (D) undershorts, pants, shoes, belt, shoes, jacket
 - (E) undershorts, shoes, pants, belt, jacket

Frågor för betyg 4

Om du fått minst betyg **3** genom dina svar på de föregående frågorna och dessutom svarar rätt på minst 3 av de 5 frågorna i detta avsnitt så blir du godkänd med minst betyget **4**. Du kan inte kompensera ett dåligt resultat i detta avsnitt med poäng från frågorna för betyg **3** eller **5**.

- 11. Vilket av dessa påståenden stämmer i princip *inte* in på abstrakta datatyper?
 - (A) Dataabstraktion innebär att man döljer datarepresentationen.
 - (B) För att förstå hur man använder en abstrakt datatyp räcker det med att förstå hur dess gränssnitt fungerar.
 - (C) Om man ändrar datarepresentationen i en abstrakt datatyp så måste man i allmänhet också göra ändringar i övriga delar av programmet.
 - (D) En abstrakt datatyp förhindrar direkt åtkomst till en datastruktur.
 - (E) Abstrakta datatyper är i första hand ett sätt att organisera program och man skulle kunna programmera på samma sätt även om deklarationen abstype inte fanns i ML.
- 12. Funktionen find nedan (med numrerade rader) är tänkt att beräkna numret på den första rad i en fil som är lika med en viss sträng. find har följande specifikation: find(filename,s)

TYPE: string*string->int

PRE: filename är namet på en fil som går att läsa.

POST: Numret på den första rad i **filename** som är lika med **s**, och 0 om ingen sådan rad finns.

```
1 \text{ fun find(f,s)} =
 2
 3
       fun find'(f',s,n) =
 4
          if TextIO.endOfStream f' then
 5
            (TextIO.closeIn f'; 0)
 6
          else
            if valOf(TextIO.inputLine f') = s^"\n" then
 7
 8
 9
            else
              find'(f',s,n)
10
11
     in
12
       find'(TextIO.openIn f, s,1)
13
     end
```

Det finns felaktigheter eller något som saknas på en eller flera rader. Vilken/vilka? (A) 5 & 8 (B) 5 & 10 (C) 8 & 10 (D) 8 & 10 & 12 (E) 12

- 13. Which of the following statements on walks of a right-rotatable **balanced** binary **search** tree T of at least two elements, any two of them being **distinct**, are **true**?
 - (a) The inorder walk of T takes time exponential in the height of T.
 - (b) The inorder walk of T lists the elements of T by strictly increasing keys.
 - (c) The inorder walk of T is unchanged after a right rotation at the root of T.
 - (A) all
- (B) (a) & (b)
- (C) (b) only
- (D) (b) & (c)
- (E) (c) only
- 14. What is the total number of multiplications made when evaluating p(n) using the definition of p below? Assume that a pre-condition for p(n) is that n is a positive integer power of 2.

fun
$$p(2) = 1$$

| $p(n) = let val d = 4 * p(n div 2) in d * d end$

- (A) $\log_2 n$ (B) $4 \cdot \log_2 n 1$ (C) $\frac{1}{6} \cdot n^2 \frac{2}{3}$ (D) $\frac{1}{12} \cdot n^2 \frac{1}{3}$ (E) Another answer
- 15. What is a tight asymptotic bound on the runtime of the function t below? Assume that a pre-condition for t(m, n) is that n is a non-negative integer.

fun t(m,0) = 2
| t(m,n) = t(m+3,n-1) + t(m+4,n-1)
(A)
$$\Theta(n)$$
 (B) $\Theta(n \cdot \lg n)$ (C) $\Theta(m \cdot n)$ (D) $\Theta(n^2)$ (E) $\Theta(2^n)$

Frågor för betyg 5

Om du fått minst betyg **4** genom dina svar på de föregående frågorna och dessutom svarar rätt på minst 3 av de 5 frågorna i detta avsnitt så blir du godkänd med betyg **5**. Du kan inte kompensera ett dåligt resultat i detta avsnitt med poäng från frågorna för betyg **3** eller **4**.

16. Titta igen på funktionen från uppgift 2:

Vilken typ har klingsor?

- (A) ('a * 'a -> 'a) * 'a list -> 'a
- (B) ('a * 'b -> 'b) * 'a list -> 'b
- (C) ('a * 'b -> 'c) * 'a list -> 'c
- (D) (int * int -> int) * int list -> int
- (E) int * int list -> int

- 17. Vilket av följande påståenden om referenser i ML är *felaktigt*?
 - (A) Varje referens måste tilldelas ett bestämt värde när den skapas.
 - (B) Att ändra en datastruktur genom att ändra en referens som finns i den kan medföra att andra datastrukturer också ändras.
 - (C) Användning av referenser är ett naturligt inslag i funktionell programmering.
 - (D) Man kan ha en referens som hänvisar till en annan referens.
 - (E) Även om !x = !y så kan x och y vara olika.
- 18. Consider the hash table below of m=7 cells, where Δ denotes a deleted element:

0	1	2	3	4	5	6
Δ	11	22	33	Δ	55	Δ

Consider the ordinary hash function hash'(key) = "the *leftmost* digit of *key*" under open addressing. Perform no rehashing. Assume that duplicate keys are allowed. What is the difference in the numbers of probes made (that is, the number of values of i tried) when trying to insert the key 14 under quadratic probing (with the probing function $f(i) = i^2$) compared to linear probing (with f(i) = i)?

(A) 0

(B) 1

(C) 2

(D) 3

(E) > 4

- 19. Which of the following statements on trees are *false*?
 - (a) A non-empty binary tree where all nodes have 0 or 2 children has one more leaf node than non-leaf nodes.
 - (b) Every binomial tree is also a search tree, under some suitable generalisation of binary search trees to k-ary search trees, where $k \geq 2$ is a constant.
 - (c) Every binomial tree is also a balanced tree, under some suitable generalisation of the red-black balancing invariants to k-ary trees, where $k \geq 2$ is a constant.
 - (A) None
- (B) (c) only
- (C) (b) and (c)
- (D) All
- (E) Another answer
- 20. What is a tight asymptotic bound on the runtime of the function k below? Let n be the number of elements of its list argument. Assume that d(L) returns four sub-lists of list L, each of about **half** the length |L| of L, **always** in $\Theta(|L|)$ time. In order to determine the runtime of the three calls to Q, note that you must first determine the length of k(X) in terms of the length of X.

fun
$$k([]) = []$$

| $k(x::xs) = let val (P,Q,R,S) = d(xs) in k(P) @ k(Q) @ x::k(R) @ k(S) end$

- (A) $\Theta(n)$

- (B) $\Theta(n \cdot \lg n)$ (C) $\Theta(n^2)$ (D) $\Theta(n^2 \cdot \lg n)$ (E) Another bound