Variáveis aleatórias Sequência de variáveis aleatórias Compressão de dados Transmissão de Dados Exercícios

Modelação e Física Estatística Conceitos de probabilidade e teoria da informação¹

António Luís Ferreira

February 18, 2019

4) Q (4)

 $^{^1}$ slides baseados no Cap. 1 de Information, Physics and Computation, Oxford University press, 2009

Temas

- Variáveis aleatórias
- Sequência de variáveis aleatórias
- Compressão de dados
- Transmissão de Dados
- 5 Exercícios

variáveis aleatórias

- X variável aleatória discreta
- \mathscr{X} conjunto de valores tomado pela variável, $p_X(x) = prob(X = x) \ge 0$
- Valor médio $\overline{X} = \sum_{x \in \mathscr{X}} x \, p_X(x)$.
- Variancia $Var X = (X \overline{X})^2 = \overline{X^2} \overline{X}^2 = \sum_{x \in \mathscr{X}} (x \overline{X})^2 p_X(x)$
- Acontecimento $\mathscr{A} \subseteq \mathscr{X}$ (contido em \mathscr{X}) tem probabilidade $prob(\mathscr{A}) = \sum_{x \in \mathscr{A}} p(x)$
- Normalização $\sum_{x \in \mathscr{X}} p_X(x) = 1$

exemplos

- Variáveis contínuas $p_X(x) = \int_{x \in \mathscr{A}} p_X(x) dx = \int_{\mathscr{X}} I(x \in \mathscr{A}) p_X(x) dx$, onde I(s) é a função indicadora igual a 1 se a *afirmação* s é verdadeira e 0 se é falsa; $p_X(x)$ é a densidade de probabilidade.
- Normalização $\int_{x \in \mathscr{X}} p_X(x) dx = 1$
- Bernoulli $\mathscr{X} = \{0,1\}$, $p_X(1) = p$, $p_X(0) = 1 p$; $\overline{X} = p$; Var X = p(1-p)
- Distribuição discreta uniforme: $\mathscr{X} = \{1, 2, ..., M\}$, $p_X(x) = 1/M$
- Variável Gaussiana $p_X(x) = \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right); \ \overline{X} = \mu;$ $Var X = \sigma^2$

entropia

• Entropia de uma variável aleatória com ditribuição de probabilidade $p_X(x)$

$$S_X = S(p_X(x)) = -\sum_{x \in \mathscr{X}} p_X(x) \log_2 p_X(x) = \log_2 \frac{1}{p_X(X)}$$

com $0 \log_2 0 = 0$.

- Propriedades:
 - $S_X \ge 0$
 - S_X toma um valor máximo para a distribuição uniforme.
- Bernoulli variable, X: $S_X = p \log_2(p) (1-p) \log_2(1-p)$ tem máximo para p = 1/2,

desigualdade de Jensen

• $f(\alpha x + (1-\alpha)y) \le \alpha f(x) + (1-\alpha)f(y) \operatorname{com} \alpha \in [0,1];$ equivalente a $\frac{d^2f}{dx^2} > 0$, para qualquer ponto no intervalo [x,y]

Figure: Função convexa, f(x). A reta secante que passa pelos pontos (x,f(x)) e (y,f(y)) está sempre acima da função entre esses pontos

Eq. da reta secante

$$z(\alpha) = f(x) + \frac{f(y) - f(x)}{y - x} (\alpha x + (1 - \alpha)y - x)$$

$$= \alpha f(x) + (1 - \alpha)f(y) = \alpha f(x) = \alpha f(x) + \alpha f(y) = \alpha f(x) = \alpha f(x)$$

desigualdade de Jensen

- Se f(x) é uma função convexa então, $\overline{f(X)} \geq f(\overline{X})$
- Demonstração
 - Se $\mathscr{X} = \{x_1, x_2\}$ então $\overline{f(X)} = p_1 f(x_1) + p_2 f(x_2)$ com $p_1 + p_2 = 1$ e $\overline{f(X)} \ge f(p_1 x_1 + p_2 x_2)$ ou seja $\overline{f(X)} \ge f(\overline{X})$
 - Se $\mathscr{X} = \{x_1, x_2, x_3\}$ então $f(\overline{X}) = p_1 f(x_1) + p_2 f(x_2) + p_3 f(x_3)$ com $p_1 + p_2 + p_3 = 1$
 - $\overline{f(X)} = (p_1 + p_2) \left[\frac{p_1}{p_1 + p_2} f(x_1) + \frac{p_2}{p_1 + p_2} f(x_2) \right] + p_3 f(x_3)$
 - $\overline{f(X)} \ge (p_1 + p_2)f(\frac{p_1}{p_1 + p_2}x_1 + \frac{p_2}{p_1 + p_2}x_2) + p_3f(x_3)$
 - $\overline{f(X)} \ge f(p_1x_1 + p_2x_2 + p_3x_3) = f(\overline{X})$

divergência de Kulback-Leibler

- Divergência de Kulback-Leibler entre duas distribuições de probabilidade
 - $D(q_X||p_X) = \sum_{x \in \mathscr{X}} q_X(x) \log \frac{q_X(x)}{p_X(x)}$
- Propriedades
 - $D(q_X||p_X) = 0$ se $q_X(x) = p_X(x)$;
 - $D(q_X||p_X) \ge 0$.
 - Como $-\log(x)$ é uma função convexa

$$D(q_X||p_X) = -\log \frac{p_X(x)}{q_X(x)} \ge -\log \frac{p_X(x)}{q_X(x)} = 0$$

várias variáveis

probabilidade condicional (Formula de Bayes)

•
$$\operatorname{prob}(\mathscr{X}|\mathscr{Y}) = \frac{\operatorname{prob}(\mathscr{X}\cap\mathscr{Y})}{\operatorname{prob}(\mathscr{Y})}$$
 ou $p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$.

•
$$p_Y(y) = \sum_{x \in \mathscr{X}} p_{X,Y}(x,y)$$
 e portanto $\sum_{x \in \mathscr{X}} p_{X|Y}(x|y) = 1$

variáveis independentes

•
$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$
 ou seja $p_{X|Y}(X = x|Y = y) = p_X(x);$

•
$$Var(X + Y) = Var(X) + Var(Y)$$

• independentes e idênticamente distribuídas - $p_N(x_1, x_2, \dots x_N) = \prod_{i=1,N} p(x_i);$

• Acontecimentos mutuamente exclusivos, $\mathscr{A}_1 \cap \mathscr{A}_2 \equiv \emptyset$ temos $prob(A_1 \cup \mathscr{A}_2) = prob(\mathscr{A}_1) + prob(\mathscr{A}_2)$