Brooklyn Total Waste

Daniel L.

5/2/2022

Brooklyn Total Waste Collected 01/2005 – 12/2020

The majority of the tonnage values are bounded b/w (65000,90000).

KPSS Test for 'total_waste'

 H_0 : The time series is trend stationary vs H_a : The time series is not trend stationary

If the p-value of the test is less than some significance level (e.g. $\alpha = .05$) then we reject the null hypothesis and conclude that the time series is not trend stationary.

```
#total waste values
bk_ts %>% features(total_waste, unitroot_kpss)
## # A tibble: 1 x 2
     kpss_stat kpss_pvalue
         <dbl>
##
                     <dbl>
## 1
         0.397
                    0.0786
#differenced values
bk_ts %>% features(diff1, unitroot_kpss)
## # A tibble: 1 x 2
     kpss_stat kpss_pvalue
##
         <dbl>
                     <dbl>
## 1
        0.0278
                       0.1
```

Oddly enough, the kpss test on the total waste values has us failing to reject H_0 . The total waste values are trend stationary. The differenced values are also trend stationary, according the results of the kpss test.

Begin by looking at ACF and PACF of the total_waste and differenced values

```
bk_ts3 %>%
  ACF(total_waste, lag_max = 36) %>%
  autoplot()
```



```
#acf of the differenced values
bk_ts3 %>%
   ACF(diff1, lag_max = 36) %>%
   autoplot()
```



```
bk_ts3 %>%
  ggplot(mapping = aes(x = month, y = diff1)) + geom_line() +
  labs(x = "Year", y = "Total Waste", title = "Differenced Values: Brooklyn Total Waste Collected")
```

Warning: Removed 1 row(s) containing missing values (geom_path).

Differenced Values: Brooklyn Total Waste Collected

Creating models with zoo() and the arima package from stats()

```
DSNY_BK_zoo_ts <- ts(DSNY_third_brooklyn[,2],
    start = as.yearmon(DSNY_third_brooklyn$month)[1],
    frequency = 12)
autoplot(as.zoo(DSNY_BK_zoo_ts))</pre>
```


ARIMA(0,0,0) with constant

ARIMA(0,0,0)

```
bk_arima000_fit_cons <- bk_ts3 %>%
  model(arima000_constant = ARIMA(total_waste ~ 1 + pdq(0,0,0)))

zoo_arima000_fit <- arima(DSNY_BK_zoo_ts, order = 1 + c(0,0,0))
res_arima000 <- zoo_arima000_fit$residuals
acf(res_arima000, lag.max = 36)</pre>
```


pacf(res_arima000, lag.max = 36)

accuracy(bk_arima000_fit_cons)[4]

```
## # A tibble: 1 x 1
## RMSE
## <dbl>
## 1 6036.
```

We begin with an RMSE = 6036.26. In the ACF plot, the lags that stand out, are positive and significant are lags = (12,24,36). In the PACF plot, the first significant lag is lag = 4, which is negative. Oddly enough, lag = 12 is only seasonal lag that is positive and significant.

Before working with the differenced values, I will like to try different p,d,q arguments. Off the back, I would like to try adding a q=4. But I will first try working with the seasonal parameters, at an attempt to see if the RMSE decreases

ARIMA(0,0,0)(1,0,0) with constant and seasonal parameter

ARIMA(0,0,0)(1,0,0)

Series res_arima000_seasonal


```
pacf(res_arima000_seasonal, lag.max = 36)
```

Series res_arima000_seasonal

accuracy(bk_arima000_fit_seasonal_cons)[4]

```
## # A tibble: 1 x 1
## RMSE
## <dbl>
## 1 4589.
```

RMSE = 4589.42. The majority of the lags in the ACF plot are contained within bounds. Along with the lags of the PACF plot. Only lag = 11 is significant and positive. The values are bounded b/w (-0.15,0.15).

ARIMA(0,0,4) with constant

ARIMA(0,0,4)

pacf(res_arima004, lag.max = 36)

accuracy(bk_arima004_fit_cons)[4]

```
## # A tibble: 1 x 1
## RMSE
## <dbl>
## 1 5325.
```

RMSE = 5325.188. We do see a decrease in the RMSE when compared to the first ARIMA(0,0,0). In both the ACF and PACF plots, the seasonal lags are significant.

Lets work with this model and add a seasonal argument.

ARIMA(0,0,4)(1,0,0) with constant and seasonal

 $ARIMA(0,0,4)(1,0,0)_{12}$

```
seasonal = list(order = c(1, 0L, 0L), period = 12))
#names(zoo_arima000_fit)
res_arima004_100 <- zoo_arima004_100_seasonalfit$residuals
acf(res_arima004_100, lag.max = 36)</pre>
```

Series res_arima004_100


```
pacf(res_arima004_100, lag.max = 36)
```

Series res_arima004_100

accuracy(bk_arima004_100_seasonal_fit_cons)[4]

```
## # A tibble: 1 x 1
## RMSE
## <dbl>
## 1 4445.
```

RMSE = 4444.908. Most of the lagged values are not-significant. They look good and appear to be bounded. Since we can also work with the differenced values, we will create some models with them

ARIMA(0,1,0) with constant

ARIMA(0,1,0)

```
bk_arima010_fit_cons <- bk_ts3 %>%
  model(arima010_constant = ARIMA(total_waste ~ 1 + pdq(0,1,0)))

zoo_arima010_fit <- arima(DSNY_BK_zoo_ts, order = 1 + c(0,1,0))
res_arima010 <- zoo_arima010_fit$residuals
acf(res_arima010, lag.max = 36)</pre>
```


pacf(res_arima010, lag.max = 36)

accuracy(bk_arima010_fit_cons)[4]

```
## # A tibble: 1 x 1 ## RMSE ## <dbl>
## 1 6629. RMSE = 6628.688. Try q = 2 or q = 4 ARIMA(0,1,2) with constant ARIMA(0,1,2)
```

```
bk_arima012_fit_cons<- bk_ts3 %>%
  model(arima012_constant = ARIMA(total_waste ~ 1 + pdq(0,1,2)))

zoo_arima012_fit <- arima(DSNY_BK_zoo_ts, order = 1 + c(0,1,2))
res_arima012 <- zoo_arima012_fit$residuals
acf(res_arima012, lag.max = 36)</pre>
```


pacf(res_arima012, lag.max = 36)

accuracy(bk_arima012_fit_cons)[4]

```
## # A tibble: 1 x 1
## RMSE
## <dbl>
## 1 5529.
```

RMSE = 5528.971. Lag 4 in the PACF is still significant, along with the seasonal lag.

ARIMA(0,1,2)(1,0,0) with constant

 $ARIMA(0,1,2)(1,0,0)_{12}$

Series res_arima012_100_seasonal

pacf(res_arima012_100_seasonal, lag.max = 36)

Series res_arima012_100_seasonal

accuracy(bk_arima012_100_fit_seasonal_cons)[4]

```
## # A tibble: 1 x 1
## RMSE
## <dbl>
## 1 4427.

RMSE = 4427.169
```

ARIMA(0,1,4) with constant

ARIMA(0,1,4)

```
bk_arima014_fit_cons<- bk_ts3 %>%
  model(arima014_constant = ARIMA(total_waste ~ 1 + pdq(0,1,4)))

zoo_arima014_fit <- arima(DSNY_BK_zoo_ts, order = 1 + c(0,1,4))
res_arima014 <- zoo_arima014_fit$residuals
acf(res_arima014, lag.max = 36)</pre>
```


pacf(res_arima014, lag.max = 36)

accuracy(bk_arima014_fit_cons)[4]

```
## # A tibble: 1 x 1
## RMSE
## <dbl>
## 1 5410.
```

 $\mathrm{RMSE} = 5410.265$

ARIMA(0,1,4)(1,0,0) with constant

 $ARIMA(0,1,4)(1,0,0)_{12}$

Series res_arima014_100_seasonal

pacf(res_arima014_100_seasonal, lag.max = 36)

Series res_arima014_100_seasonal


```
accuracy(bk_arima014_100_fit_seasonal_cons)[4]
```

```
## # A tibble: 1 x 1

## RMSE

## <dbl>

## 1 4393.

RMSE = 4392.534
```

Auto-arima

For our final models, we will look and compare the results of an auto-arima model from the feasts package.

```
bk_auto_arima_fit_cons %>% select(.model = stepwise) %>% report()
## Series: total_waste
## Model: ARIMA(2,0,3) w/ mean
## Coefficients:
##
           ar1
                    ar2
                            ma1
                                    ma2
                                            ma3
                                                  constant
##
        0.4450 - 0.5832 - 0.0805 0.7556 0.2529 93085.8012
## s.e. 0.3268 0.1768
                        0.3578 0.0771 0.1785
                                                  729.6156
##
## sigma^2 estimated as 28523169: log likelihood=-1917.85
## AIC=3849.7 AICc=3850.31
                             BIC=3872.5
print("----")
## [1] "----"
bk_auto_arima_fit_cons %>% select(.model = search) %>% report()
## Series: total_waste
## Model: ARIMA(3,0,3) w/ mean
##
## Coefficients:
##
           ar1
                    ar2
                            ar3
                                    ma1
                                            ma2
                                                   ma3
                                                           constant
        0.0420 -0.2942 -0.3053 0.3209 0.5731 0.6015 127365.4131
## s.e. 0.1799
                 0.1428
                        0.1524 0.1594 0.0962 0.1200
                                                           938.3475
## sigma^2 estimated as 28276150: log likelihood=-1916.54
## AIC=3849.08 AICc=3849.87 BIC=3875.14
Summary of models
ARIMA(0,0,4)(1,0,0)_{12} has RMSE = 4444.908
ARIMA(0,1,2)(1,0,0)_{12} has RMSE = 4427.169
```

 $ARIMA(0,1,4)(1,0,0)_{12}$ has RMSE = 4392.534

ARIMA(3,0,3) has RMSE = 5219.698