嚴格競爭遊戲 Strictly Competitive Game

- ·兩人嚴格競爭遊戲是一種兩人 遊戲,對於每兩個策略配置 (strategy profiles)
- $u_1(s) > u_1(s')$ if and only if $u_2(s) < u_2(s')$.

Strictly Competitive Game

- $u_1(A,X) = 3$, $u_1(A,Y) = 0$,
- $u_1(B,X) = 6$, $u_1(B,Y) = 1$
- $u_1(B,X) > u_1(A,X) > u_1(B,Y) > u_1(A,Y)$
- $u_2(A,X) = 2$, $u_2(A,Y) = 4$,
- $u_2(B,X) = 1$, $u_2(B,Y) = 3$
- $u_2(B,X) < u_2(A,X) < u_2(B,Y) < u_2(A,Y)$
- The rankings are exactly reversed between the two players
- 因此,這是嚴格競爭遊戲

嚴格競爭遊戲 Strictly Competitive Game

- · 匹配硬幣(Matching pennies)是嚴格競爭遊 戲的特例。 它實際上是一個零和遊戲(並 非所有嚴格競爭的遊戲都是零和遊戲)。
- ·如果玩家更喜歡獲勝(winning)而不是平局 (tying),更喜歡平局而不是失敗(losing)
- · 體育遊戲(網球、足球、棒球等)和休閒遊戲(跳棋、國際象棋等)都是嚴格競技遊戲。

安全策略 Security strategy

·安全策略為玩家1提供了 最壞情況中最好的情況:

 $max_{s_1} w_1(s_1) = max_{s_1} min_{s_2} u_1(s_1, s_2)$

•解決此最大化問題的策略稱為安全 策略,或 Max-min 策略。

這個博弈有唯一的unique的納許均衡:(B,Y)

		Player 2	
		X	Y
Player 1	A	(3, 2)	(0,4*)
	В	(6*,1)	(1*,3*)

安全策略 Security strategy

- $\bullet \ max_{s_1} \ w_1(s_1) = \ max_{s_1} \ \ min_{s_2} \ u_1(s_1,s_2)$
- max_{s1} w₁(s₁)通常被稱為安全收益水平 (Security-payoff level.)。
- 我最大化我的收益,因為我知道我的對手 會最小化它(因為他想最大化自己的收益 ,因為
- $u_2(s_1, s_2) = -u_1(s_1, s_2)$

Security or Max-min strategy

- •如果一個兩人博弈是嚴格競爭的並且有一個納許均衡 $s^*=(s_1^*,s_2^*)$
- s₁*, 是玩家 1 的安全策略
 s₂*是 玩家 2 的安全策略

鞍點 "saddlepoint"

- 兩人恆和博弈中 (in a two-person constant-sum game)的 "鞍點" ("saddlepoint")是理性玩家選擇的 結果
- · 鞍點名字的來源於是矩陣中一行 的最小值,也是一列的最大值(對 應於馬鞍的形狀)

Minimax strategy

- Minimax strategy
- = $arg(min_{s_2}max_{s_1} u_1(s_1, s_2))$

兩人恆和博弈中

(a two-person constant-sum game)

- 兩個政黨,A和B,必須各自決定 如何處理某次選舉中的一個有爭議 的問題。
- 每一方都可以支持這個問題,反對它,或者通過模棱兩可來逃避它 (either support the issue, oppose it, or evade it by being ambiguous.)

Min-Max定理

- ·該定理歸因於約翰·馮·諾伊曼(John Von Neumann)和奧斯卡·摩 根斯坦(Oscar Morgenstern)。
- 在零和遊戲中,一個玩家應該嘗 試最小化對手的最大收益。
- •最大收益的最小值等於最小收益 的最大值。

Nash Equilibrium Payoff Matrix with saddlepoint

В	Support	Oppose	Evade
A			
support	(60%,40%)	(20%,80%*)	(80%*,20%)
oppose	(80%*,20%)	(25%,75%*)	(75%,25%)
Evade	(35%,65%)	(30%*,70%*)	(40%,60%)

Security (Max-min) Strategy -Tennis Game

· 本博弈存在純 策略納許均衡 (Evade, Oppose)

Security (Max-min) Strategy by Player B with B's Payoff

g and a second second	,	2	
В	Support	Oppose	Evade
A			
support	40%	80%	20%
oppose	20%	75%	25%
Evade	65%	70%	60%
			

The Maxmin solution by player B is oppose

安全策略 Maxmin

B's minimizing A's payoff = {20%,25%,30%} A's maximizing {20%,25%,30%}=30% The Maxmin solution by player 1 is Evade

Both players play security strategy

- The Maxmin solution by player A is Evade
- The Maxmin solution by player B is Oppose
- The solution of security strategy by both players is (Evade, Oppose)

Security (Max-min) Strategy - Tennis Game by Player A with A's Payoff

A B	Support	Oppose	Evade
support	60%	20%	80%
oppose	80%	25%	75%
Evade	35% (30%	40%

The Maxmin solution by player A is Evade

Use Minimax

Minimax by Player B with A's Payoff

A B	Support	Oppose	Evade
support	60%	20%	80%*
oppose	80%	25%	75%
Evade	35%	30%	40%

The Minimax solution by player B is oppose

Minimax by Player A with B's Payoff

- A's maximum payoff = {80%,75%,70%} B's minimum of {80%,75%,70%} =
- The Minimax solution by player A is Evade

Minimax by Player B with A's Payoff

- A's maximum payoff = {80%,30%,80%} B's minimum of {80%,30%,80%}=30%
- The Minimax solution by player B is oppose

Both players play Minimax

- The Maxmin solution by player A is Evade
- The Maxmin solution by player B is Oppose
- The solution of security strategy by both players is (Evade, Oppose)

Minimax by Player A with B's Payoff

-			
В	Support	Oppose	Evade
Α			
support	40%	80%	20%
oppose	20%	75%	25%
Evade	65%	70%	60%
	'		

The Maxmin solution by player A is Evade

The minimax theorem

· 馮諾依曼在 1928 年 證明的極大極小定理指 出,每個有限的兩人恆 和博弈都有純策略或混 合策略的解決方案。

Max-min strategy

- •納許均衡 $s^*=(s_1^*, s_2^*) = Security$ strategy = Max-min strategy
- Security strategy = Max-min strategy
- $max_{s_1} w_1(s_1) = max_{s_1} min_{s_2}$ $u_1(s_1, s_2)$

Tennis Game

		Player 2	
		Right	Left
Player1	Right	20,80	70,30
	Left	90,10	30,70

The minimax theorem

- Minimax strategy
- = $arg(min_{s_2}max_{s_1} u_1(s_1, s_2))$
- = Max-min strategy
- =arg($max_{s_1} min_{s_2} u_1(s_1, s_2)$)

Security (Max-min) Strategy -Tennis Game

- · 這是一個恆和博弈,因為對於所 有可能的策略組合(all possible strategy profiles),由於玩家的收益 總和等於常數 (100)
- · 這不是零和遊戲,因為對於所有 策略組合,玩家收益的總和不等於 零

恆和博弈 constant-sum game

• 在零和博弈:

 $u_1(s_1, s_2) + u_2(s_1, s_2) = 0$, 在零和博弈:

 $u_1(s_1, s_2) + u_2(s_1, s_2) = Constant$

• 在零和博弈,常數正好等於零

Security (Max-min) Strategy -Tennis Game

- · 本博弈不存在純策略 納許均衡
- 存在混合策略均衡, 兩個玩家隨機選擇策略

Use Maxmin

The mxmin solution is (left, left)

Security (Max-min) Strategy -Tennis Game by Player 2

		Player 2	
		Right	Left
Player1	Right	80	30
	Left	10	70

Player 2 choose left

Security (Max-min) Strategy -Tennis Game by Player 1

		Player 2	
		Right	Left
Player1	Right	20	70
	Left	90	30

Player 1 choose left

Security (Max-min) Strategy -Tennis Game by Player 2

- Player 2 will choose the strategy that maximizes their minimum payoff:
- The minimum payoffs are 10 (if Player 2 chooses Right) and 30 (if Player 2 chooses Left).
- So, Player 2 will choose **Left**, since 30 is larger than 10.

Security (Max-min) Strategy by Player 1

- Player 1 will choose the strategy that maximizes their minimum payoff:
- The minimum payoffs are 20 (if Player 1 chooses Right) and 30 (if Player 1 chooses Left)
- So, Player 1 will choose Left, since 30 is larger than 20.

Both players play security strategy

- The Maxmin solution by player 1 is Left
- The Maxmin solution by player 2 is **Left**
- The solution of security strategy by both players is (Left, Left)

Use Minimax

The Minimax solution is (left, left)

Tennis Game by Player 2

		Player 2	
		Right	Left
Player1	Right	20	70
	Left	90	30

Player 1 choose left

Minimax Tennis Game by Player 1

		Player 2	
		Right	Left
Player1	Right	80	30
	Left	10	70

Player 2 choose left

Minimax by Player 2

- Player 2 will choose the strategy that minimizes Player 1's maximum payoff
- The maximum payoffs for Player 1 are 90 (if Player 2 chooses Right) and 70 (if Player 2 chooses Left).
- Player 2 will choose Left, since it minimizes Player 1's maximum payoff (70 instead of 90).

Minimax by Player 1

- Player 1 will choose the strategy that minimizes Player 2's maximum payoff:
- The maximum payoffs for Player 2 are 80 (if Player 1 chooses Right) and 70 (if Player 1 chooses Left).
- Player 1 will choose Left, since it minimizes Player 2's maximum payoff (70 instead of 80).