DTP2_PROJ_2

Audio Codec Settings

WM8731 auf dem DE2-115 Board

Clocking Concept, Audio Data Rates

Register settings to select application scenarios

Codec Control Interface

I2C Master Block

Control-IF Driver

WM8731 Audio Codec

Sampling Frequency: 8kHz – 96kHz

ADC SNR: 90dB ('A' weighted)

DAC SNR: 100dB ('A' weighted)

Headphone Amplifier: 2 x 50 mW

Preis: SFr. 1.61 (1000 Stück)

Datenblatt: OLAT SW3

Audio Codec WM8731

Block Diagram

WM8731 on the DE2-115 Board

WM8731 in the DE2-115 Board

Clocking Concept

FPGA-System-Clock

Alle Blöcke in FPGA (ausser Taktteiler) werden mit dem clk_12M5 getriggert (synchrones Design mit «single clock-domain»).

MCLK:

Der Master Clock für den Audio Codec (MCLK) ist gleichzeitig auch der FPGA System Clock (clk_12M)

Bmk:

Die I2S Schnittstelle des WM8731 wird in Slave Mode betrieben.

Das BCLK Signal der I2S Schnittstelle wird ebenfalls im FPGA erzeugt (von clk_12M abgeleitet).

Audio Abtastrate

Verschiedene Abtastraten möglich, unteres Beispiel «Normal Mode 48kHz» (für andere Abtastraten siehe WM8731 Datenblatt Abschnitt Audio Data Sampling Rates, Ausschnitt unten)

SAMPLING RATE		MCLK FREQUENCY		DIGITAL FILTER				
ADC	DAC			TYPE				
kHz	kHz	MHz	BOSR	SR3	SR2	SR1	SR0	
48	48	12.288	0 (256fs)	0	0	0	0	1

Table 18 Normal Mode Sample Rate Look-up Table

Zh School of Engineering

Register Map

R0 : Left Line In [8] LRINBOTH; [7] LINMUTE; [4:0] LINVOL

• R1: Right Line In [8] RLINBOTH; [7] RINMUTE; [4:0] RINVOL

• R2: Left Headphone Out ...(siehe Tabelle)

• R3: Right Headphone Out

R4: Analog Audio Control Path

R5: Digital Audio Path Control

R6: Power Down Control

R7: Digital Audio Interface Format

• **R8**: Sampling Control (sample rate)

• R9: Active Control (activate digital audio interface)

R10 - 14 : Reserved_A ; _B; _C; _D; _E

• **R15**: Reset

Register Map

➤ There are 11 registers with 16 bits per register (7 bit address + 9 bits of data).

REGISTER	В	В	В	В	В	В	В	B8	B7	В6	B5	B4	B3	B2	B1	B0											
	15	14	13	12	11	10	9																				
R0 (00h)	0	0	0	0	0	0	0	LRIN	LIN	0	0			LINVOL													
No (oon)	U	U	U	U	U	U	U	BOTH	MUTE	U	U			LINVOL													
R1 (02h)	0	0	0	0	0	0	1	RLIN	RIN	0	0			RINVOL													
111 (0211)	Ü	Ů	Ü	Ů	_		•	BOTH	MUTE	0				KINVOL													
R2 (02h)	0	0	0	0	0	1	0	LRHP	LZCEN		LHPVOL																
142 (0211)						·		вотн	ZOL!				Bill VOE	9													
R3 (06h)	0	0	0	0	0	1	1	RLHP	RZCEN				RHPVOL														
						·	·	BOTH	TEOLIT				1411 702	•													
R4 (08h)	0	0	0	0	1	0	0	0	SIDE	ATT	SIDETONE	DAC SEL	BY PASS	INSEL	MUTEMIC	MIC BOOST											
R5 (0Ah)	0	0	0	0	1	0	1	0	0	0	0	HPOR	DAC MU	DEE	MPH	ADC HPD											
R6 (0Ch)	0	0	0	0	0	0	0	0	1	1	0	0	PWR	CLK	OSCPD	OUTPD	DACPD	ADCPD	MICPD	LINEINPD							
110 (0011)		Ŭ	Ů	Ů		•	,		OFF	OUTPD	00010	COTT	DAOLD	ADOLD	WIIOI D	LINCHALD											
R7 (0Eh)	0	0	0	0	1	1	1	0	BCLK	MS	LRSWAP	LRP	M	Л	FOF	RMAT											
(02)	Ŭ				Ü	Ü	Ü		Ů	Ü	J	J	U	Ü	U	U		'		U	INV	INS LICEVAP			VL 10		1
R8 (10h)	0	0	0	1	0	0	0	0	CLKO	CLKI		S	R		BOSR	USB/NORM											
1.0 (1011)				•					DIV2	DIV2						OCE ITO I											
R9 (12h)	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	ACTIVE											
R15(1Eh)	0	0	0	1	1	1	1					RESET															
	ADDRESS						DATA																				

Table 29 Mapping of Program Registers

Example: W8731_ADC_DAC_M12DB_48K

Register	Address Bits B[15:9]	Data Bits B[8:0]	Beschreibung
R0 LEFT_LINE_IN	"0000000" = 0x00	"000001111" = 0x00F	No mute, no both, volume -12 dB
R1 RIGHT_LINE_IN	"0000001" = 0x01	"000001111" = 0x00F	No mute, no both, volume -12 dB
R2 LEFT_HP_OUT	"0000010" = 0x02	"001101101" = 0x06D	No zero-cross, no both, volume -12dB
R3 RIGHT_HP_OUT	"0000011" = 0x03	"001101101" = 0x06D	No zero-cross, no both, volume -12dB
R4 ANALOG_AP	"0000100" = 0x04	"000010010" = 0x012	Mute microphone, select DAC, disable bypass, disable sidetone,
R5 DIGITAL_AP	"0000101" = 0x05	"000000000" = 0x000	Disable DAC mute, disable de-emphasis,
R6 POWER_DOWN	$"0000110" = 0 \times 06$	"000000000" = 0x000	No power down mode selected
R7 DIGITAL_AI	"0000111" = 0x07	"000000000" = 0x000	Audio-IF I2S Mode, audio data 16 bits wide,
R8 SAMPLING	"0001000" = 0x08	"000000000" = 0x000	Normal mode, MCLK 12,28MHz, sample rate 48kHz (both ADC and DAC), SR=[0011],
R9 DIGITAL_ACTIVATE	"0000111" = 0x09	"000000001" = 0x001	Activate Audio Digital Interface
R10 – R14 RESERVED A-E	0x0A - 0x0E	"000000000" = 0x000	No need to write
R15 RESET	"0001111" = 0x0F	"000000000" = 0x000	Only write if SW-reset required 8

I2C Bus, Two-Wire Serial Interface: I2C_SDAT (data), I2C_SCLK (clock)

WM8731 - Datenblatt Auszug

2-WIRE SERIAL CONTROL MODE

The WM8731/L supports a 2-wire MPU serial interface. The device operates as a slave device only. The WM8731/L has one of two slave addresses that are selected by setting the state of pin 15, (CSB).

B[15:9] are Control Address Bits

B[8:0] are Control Data Bits

I2C Master Block

Block wird zu Verfügung gestellt: i2c_master.vhd

Aufpassen:

- SDA is an <u>INOUT</u> Port;
- Write_data contains
 7-bits register-address
 9-bits register-value

Für Integration im Top-Level Block:

- Component Declaration
- Signale für Verbindungen
- Instantiation

Example event_ctrl_i (via button or switches):

init_codec_default, set_analog_bypass, set_volume_0dB, ... 13

Finite State Machine (Automaten) of codec_ctrl block

Obs.: Table of Register Values wird im Lab3-Material gegeben (als Package)

Timing between codec_ctrl and i2c_master blocks

Top Level Testbench für Codec Control Interface

Quiz: Which bits change for analog bypass mode?

Register	Address Bits B[15:9]	Data Bits B[8:0]	Beschreibung
R0 LEFT_LINE_IN	"0000000" = 0x00		
R1 RIGHT_LINE_IN	"0000001" = 0x01		
R2 LEFT_HP_OUT	"0000010" = 0x02		
R3 RIGHT_HP_OUT	"0000011" = 0x03		
R4 ANALOG_AP	"0000100" = 0x04		
R5 DIGITAL_AP	"0000101" = 0x05		_
R6 POWER_DOWN	$"0000110" = 0 \times 06$		
R7 DIGITAL_AI	"0000111" = 0x07		
R8 SAMPLING	"0001000" = 0x08		
R9 DIGITAL_ACTIVATE	"0000111" = 0x09		
R10 – R14 RESERVED A-E	0x0A - 0x0E	"000000000" = 0x000	No need to write
R15 RESET	"0001111" = 0x0F	"000000000" = 0x000	Only write if SW-reset required

Example: W8731_BYPASS_M12DB_8K

Register	Address Bits B[15:9]	Data Bits B[8:0]	Beschreibung
R0 LEFT_LINE_IN	"0000000" = 0x00	"000001111" = 0x00F	No mute, no both, volume -12 dB
R1 RIGHT_LINE_IN	"0000001" = 0x01	"000001111" = 0x00F	No mute, no both, volume -12 dB
R2 LEFT_HP_OUT	"0000010" = 0x02	"001101101" = 0x06D	No zero-cross, no both, volume -12dB
R3 RIGHT_HP_OUT	"0000011" = 0x03	"001101101" = 0x06D	No zero-cross, no both, volume -12dB
R4 ANALOG_AP	"0000100" = 0x04	"000001010" = 0x00A	Mute microphone, disable DAC, enable bypass, disable sidetone,
R5 DIGITAL_AP	"0000101" = 0x05	"000001000" = 0x008	Enable DAC mute, disable de-emphasis,
R6 POWER_DOWN	"0000110" = 0x06	"000000000" = 0x000	No power down mode selected
R7 DIGITAL_AI	"0000111" = 0x07	"000000000" = 0x002	Audio-IF I2S Mode, audio data 16 bits wide,
R8 SAMPLING	"0001000" = 0x08	"000000000" = 0x00C	Normal mode, MCLK 12,28MHz, sample rate 48kHz (both ADC and DAC), SR=[0011],
R9 DIGITAL_ACTIVATE	"0000111" = 0x09	"000000001" = 0x001	Activate Audio Digital Interface
R10 – R14 RESERVED A-E	0x0A - 0x0E	"000000000" = 0x000	No need to write
R15 RESET	"0001111" = 0x0F	"000000000" = 0x000	Only write if SW-reset required 18

Arrays in VHDL

Typendefinierung eines Arrays


```
"01010001"
"11000011"
"11000011"
"01010001"
"11000011"
"01010001"
"11000011"

std_logic_vector(7 downt 0)
```

```
Beispiel für Typendefinierung eines Arrays:
```

type codec_array is array(0 to 7) of std_logic_vector(7 downto 0);

Typen Deklaration erfolgt in Architektur zwischen Architecture und Begin oder im Package

Array mit Konstanten füllen


```
Constant: C_W8731_ANALOG_BYPASS: codec_array :=
(
0 => "011001101"
1 => "111001101",
2 => "111001101",
3 => "111001101",
4 => "011001101",
5 => "011001101",
6 => "011001101",
7 => "011001101"
8 => "011001101"
9 => "011001101"
);
```

Achtung: Dateninhalt nur Beispiel

Auslesen eines Arrays


```
In Entity:
  output_data : out std_logic_vector(7 downto 0);
In Architektur:
  output_data <= C_W8731_ANALOG_BYPASS(array_pointer);</pre>
```


Packages

VHDL Package

Definition:

```
package reg_table_pkg is
.
.
type codec_array is array(0 to 9) of std_logic_vector(8 downto 0);
.
end package;
```

Benutzung in Entity Architektur Datei:

```
use work.reg_table_pkg.all;
```