Fachgebiet Maschinelles Lernen
Institut für Softwaretechnik und theoretische Informatik
Fakultät IV, Technische Universität Berlin
Prof. Dr. Klaus-Robert Müller
Email: klaus-robert.mueller@tu-berlin.de

Exercise Sheet 2

Exercise 1: Maximum-Likelihood Estimation (5+5+5+5)

We consider the problem of estimating using the maximum-likelihood approach the parameters $\lambda, \eta > 0$ of the probability distribution:

$$p(x,y) = \lambda \eta e^{-\lambda x - \eta y}$$

supported on \mathbb{R}^2_+ . We consider a dataset $\mathcal{D} = ((x_1, y_1), \dots, (x_N, y_N))$ composed of N independent draws from this distribution.

- (a) Show that x and y are independent.
- (b) Derive a maximum likelihood estimator of the parameter λ based on \mathcal{D} .
- (c) Derive a maximum likelihood estimator of the parameter λ based on \mathcal{D} under the constraint $\eta = 1/\lambda$.
- (d) Derive a maximum likelihood estimator of the parameter λ based on \mathcal{D} under the constraint $\eta = 1 \lambda$.

Exercise 2: Maximum Likelihood vs. Bayes (5+10+15 P)

An unfair coin is tossed seven times and the event (head or tail) is recorded at each iteration. The observed sequence of events is

$$\mathcal{D} = (x_1, x_2, \dots, x_7) = (\text{head}, \text{head}, \text{tail}, \text{tail}, \text{head}, \text{head}, \text{head}).$$

We assume that all tosses x_1, x_2, \ldots have been generated independently following the Bernoulli probability distribution

$$P(x \mid \theta) = \begin{cases} \theta & \text{if } x = \text{head} \\ 1 - \theta & \text{if } x = \text{tail,} \end{cases}$$

where $\theta \in [0, 1]$ is an unknown parameter.

- (a) State the likelihood function $P(\mathcal{D} \mid \theta)$, that depends on the parameter θ .
- (b) Compute the maximum likelihood solution $\hat{\theta}$, and evaluate for this parameter the probability that the next two tosses are "head", that is, evaluate $P(x_8 = \text{head} \mid \hat{\theta})$.
- (c) We now adopt a Bayesian view on this problem, where we assume a prior distribution for the parameter θ defined as:

$$p(\theta) = \begin{cases} 1 & \text{if } 0 \le \theta \le 1 \\ 0 & \text{else.} \end{cases}$$

Compute the posterior distribution $p(\theta \mid \mathcal{D})$, and evaluate the probability that the next two tosses are head, that is,

$$\int P(x_8 = \text{head}, x_9 = \text{head} \mid \theta) p(\theta \mid \mathcal{D}) d\theta.$$

Exercise 3: Convergence of Bayes Parameter Estimation (5+5 P)

We consider Section 3.4.1 of Duda et al., where the data is generated according to the univariate probability density $p(x \mid \mu) \sim \mathcal{N}(\mu, \sigma^2)$, where σ^2 is known and where μ is unknown with prior distribution $p(\mu) \sim \mathcal{N}(\mu_0, \sigma_0^2)$. Having sampled a dataset \mathcal{D} from the data-generating distribution, the posterior probability distribution over the unknown parameter μ becomes $p(\mu \mid \mathcal{D}) \sim \mathcal{N}(\mu_n, \sigma_n^2)$, where

$$\frac{1}{\sigma_n^2} = \frac{n}{\sigma^2} + \frac{1}{\sigma_0^2} \qquad \frac{\mu_n}{\sigma_n^2} = \frac{n}{\sigma^2} \hat{\mu}_n + \frac{\mu_0}{\sigma_0^2} \qquad \hat{\mu}_n = \frac{1}{n} \sum_{k=1}^n x_k.$$

- (a) Show that the variance of the posterior can be upper-bounded as $\sigma_n^2 \leq \min(\sigma^2/n, \sigma_0^2)$, that is, the variance of the posterior is contained both by the uncertainty of the data mean and of the prior.
- (b) Show that the mean of the posterior can be lower- and upper-bounded as $\min(\hat{\mu}_n, \mu_0) \leq \mu_n \leq \max(\hat{\mu}_n, \mu_0)$, that is, the mean of the posterior distribution lies somewhere on the segment between the mean of the prior distribution and the sample mean.

Exercise 4: Programming (40 P)

Download the programming files on ISIS and follow the instructions.