Inteligência artificial

Busca Informada

Adaptação dos slides de **Stuart Russel** e **Peter Norvig**, disponíveis em **aima.cs.berkeley.edu**.

Apresentação

- Estratégias de Busca Informada
- Função Heurística

Busca Best First

- Abordagem Geral de Busca Informada:
 - "Informada" = Baseada em conhecimento de domínio.
 - Busca Best-First: nodo é selecionado para expansão baseado em uma função de avaliação f(n)
- Idéia: Estimar a distância até a meta.
 - \blacksquare Escolhe o nodo que *aparenta* ser o melhor segundo f(n).
- Casos especiais
 - Busca Gulosa
 - □ Busca A*

Função Heurística

- □ h(n) = custo estimado do caminho mais curto do nodo n até o nodo meta.
- \square Condição Básica: Se n é a meta então h(n) = 0.

Exemplo: Mapa da Romênia

traight-line distance	
Bucharest	
\rad	366
Bucharest	0
raiova	160
)obreta	242
forie	161
agaras	176
Jiu rgiu	77
lirsova	151
asi	226
ugoj	244
[ehadia	241
leam t	234
)radea	380
itesti	400
Rimnicu V ilcea	100 193
ibiu	253
'imisoara	329
Jrziceni	80
/ashui	199
Zerind	374

- Função de avaliação f(n) = h(n) (heurística) = estimativa do custo de n até o objetivo
- Ex., $h_{DLR}(n)$ = Distância em linha reta de n até Bucharest
- Expande o nó que "parece" ser o mais próximo ao objetivo

- Meta Alcançada
 - Porém não ótima (veja Arad, Sibiu, Rimnicu Vilcea,
 Pitesti).

Propriedades da Busca Gulosa (Problema de ir de Iasi a Fagaras)

Completa? Não – pode ficar preso em *loops*. Por exempo, Iasi → Neamt → Iasi → Neamt →

Propriedades da Busca Gulosa

- Complexidade (tempo)? O(b^m), mas uma boa heurística pode reduzir muito a quantidade de nós gerados
- Complexidade(espaço)? $O(b^m)$ mantém todos os nós na memória
- Ótima? Não

- Ideia: considerar também o custo de alcançar cada nodo candidato n a partir do nodo (estado) inicial.
- Função de Avaliação f(n) = g(n) + h(n)
 - \square g(n) Custo (já conhecido) de alcançar o nodo n.
 - □ *h(n)* Custo estimado do nodo *n* até o nodo meta.
 - □ *f(n)* Custo estimado total do caminho através de *n* até a meta.
- OBS.
 - \square g(n) = 0 Busca Gulosa
 - h(n) = 0 Busca Não Informada de Custo Uniforme

- Busca A* utiliza uma heurística admissível
 - □ Uma heurística é admissível se *nunca superestima* o custo para alcançar a meta.
 - Ou seja, heurísticas admissíveis são otimistas.
- Formalmente:
 - □ 1. $h(n) \le h^*(n)$ em que $h^*(n)$ é o custo verdadeiro de n até a meta.
 - □ 2. Dado que $h(n) \ge 0$, tem-se h(G) = 0 para qualquer meta G.
- Ex. $h_{DLR}(n)$ nunca superestima a distância real via estrada.

- Encontrar Bucareste partindo de Arad:
 - \blacksquare f(Arad) = 0 + h(Arad) = 0 + 366 = 366

- Expandindo Arad e determinando f(n) para cada nodo:
 - \Box f(Sibiu) = c(Arad, Sibiu) + h(Sibiu) = 140 + 253 = 393.
 - \Box f(Timisoara) = c(Arad, Timisoara) + h(Timisoara) = 118 + 329 = 447.
- Melhor escolha é Sibiu.

- Expandindo Sibiu e determinando *f(n)* para cada nodo:
 - \Box f(Arad) = g(Arad) + h(Arad) = 280 + 366 = 646.
 - (Fagaras) = g(Fagaras) + h(Fagaras) = 239 + 176 = 415.
 - \Box f(Oradea) = g(Oradea) + h(Oradea) = 291 + 380 = 671.
 - □ f(Rimnicu Vilcea) = g(Rimnicu Vilcea) + h(Rimnicu Vilcea) = 220 + 193 = 413.
- Melhor escolha é Rimnicu Vilcea.

- Expandindo Rimnicu Vilcea:
 - (Craiova) = g(Craiova) + h(Craiova) = 366+160 = 526.
 - \Box f(Pitesti) = g(Pitesti) + h(Pitesti) = 317 + 100 = 417.
 - \Box f(Sibiu) = g(Sibiu) + h(Sibiu) = 300 + 253 = 553.
- Melhor escolha parece ser Fagaras.

- Expandindo Fagaras:
 - \Box f(Sibiu) = g(Sibiu) + h(Sibiu) = 338 + 253 = 591.
 - f(Bucareste) = g(Bucareste) + h(Bucareste) = 450 + 0 = 450.
- Melhor escolha é Pitesti.

- Expandindo Pitesti:
 - $\Box f(Bucareste) = g(Bucareste) + h(Bucareste) = 418 + 0 = 418.$
 - Melhor escolha é Bucareste.
- Solução ótima (dado que h(n) é admissível).

Prova que A* é ótimo (para busca em árvore)

- Suponha um nó objetivo não ótimo G_2 apareça na borda e seja C^* o custo da solução ótima.
- Como G_2 não é ótimo e $h(G_2)=0$, então $f(G_2)=g(G_2)+h(G_2)>C^*$

Prova que A* é ótimo (para busca em árvore)

- Considere um nó na borda n que está no caminho da solução ótima.
- Se h(n) for admissível, então, $f(n) = g(n) + h(n) \le C^*$
- Desse modo, $f(n) \le C^* < f(G_2)$, e assim G_2 não será expandido e A^* retorna uma solução ótima

Propriedades da Busca A*

- Completa? Sim (a menos que haja um número infinito de nós com $f \le f(G)$)
- <u>Complexidade(tempo)?</u> exponencial
- Complexidade(espaço)? Guarda todos os nós na memória
- Ótima? Sim

Heurísticas Admissíveis

Ex., para o 8-puzzle:

- $h_1(n)$ = número de blocos deslocados
- $h_2(n) = \text{distância total Manhattan}$

Start State

Goal State

- $h_1(S) = ?$
- $\underline{h}_2(S) = ?$

Heurísticas Admissíveis

Ex., para o 8-puzzle:

- $h_1(n)$ = número de blocos em posições erradas
- $h_2(n)$ = distância total Manhattan

Goal State

- $\underline{h}_1(S) = 8$
- $\underline{h}_2(S) = 3+1+2+2+2+3+3+2 = 18$

Dominância

- Se $h_2(n) \ge h_1(n)$ para todo n (ambos admissíveis) então h_2 domina h_1
- h₂ é melhor para a busca
- Custo de busca típicos (número médio de nós expandidos):

$$d=12$$
 IDS = 3,644,035 nós
 $A^*(h_1) = 227$ nós
 $A^*(h_2) = 73$ nós
 $d=24$ IDS = um número muito grande
 $A^*(h_1) = 39,135$ nós
 $A^*(h_2) = 1,641$ nós

Problema relaxado

- Um problema com poucas restrições sobre as ações é chamado problema relaxado
- O custo de uma solução ótima para um problema relaxado é uma heurística admissível para o problema original
- Se as regras do 8-puzzle são relaxadas de tal modo que um bloco pode se mover para qualquer lugar, então $h_1(n)$ dá a solução mais curta
- Se as regras são relaxadas de modo que um bloco pode se mover para qualquer quadro adjacente, então $h_2(n)$ dá a solução mais curta

Referências

Stuart Russel e Peter Norvig, Inteligência Artificial, 2ª edição, Editora Campus, 2004.