Tang Lin March 13, 2019

Problem: Please classify all groups which consists of 18 elements. Solve:

$$18 = 2 \cdot 3^2$$

From The Third Theorem of Syllow, we have:

$$N_2 \equiv 1 \pmod{2}$$
 $N_2|9 \Rightarrow N_2 = 1, 3, 9$

$$N_3 \equiv 1 \pmod{3}$$
 $N_3|2 \Rightarrow N_3 = 1$

So we have 2 cases:

1. $N_2=1, N_3=1$ In this situation,there is only one 2-Syllow subgroup and one 3-Syllow subgroup, so $G\cong S_2\oplus S_3$, where $|S_2|=2, |S_3|=9$. There will be 2 situations:

(a)
$$G \cong \mathbb{Z}_2 \oplus \mathbb{Z}_9 \cong \mathbb{Z}_{18}$$

(b)
$$G \cong \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \cong \mathbb{Z}_3 \oplus \mathbb{Z}_6$$

2.
$$N_2 \neq 1, N_3 = 1$$

 $S_3 \triangleleft G$
So $G \cong S_3 \setminus K$, where $|K| = 2$.

(a) $S_3 \cong \mathbb{Z}_9$ We can get automorphism of $S_3 \cong \mathbb{Z}_9$: Aut $(\mathbb{Z}_9) = H \cong \operatorname{Aut}(S_3)$, where |H| = 6.

So We can make a table of automorphism, we assume $S_3 = \langle a \rangle$:

Where ε , σ_1 , σ_2 , σ_3 , σ_4 , σ_5 are elements of Aut(S_3).

Without difficut we can get rank of each map of isomorphism:

$$O(\sigma_1) = 6, O(\sigma_2) = 3, O(\sigma_3) = 6, O(\sigma_4) = 3, O(\sigma_5) = 2$$

There is map with rank 6, so $\operatorname{Aut}(S_3) \cong \mathbb{Z}_6$. Now we assume $K = \langle b \rangle, |K| = 2$, if we can find a homormorphism $\varphi : K \to \operatorname{Aut}(S_3)$, then we can establish a group. The subgroup K, there are only elemnts with rank 2 and zero. So we can construct a map:

$$\varphi: K \to \operatorname{Aut}(S_3)$$

$$e \longmapsto \varepsilon$$

$$b \longmapsto \sigma_5$$

So we can get a group with form:

$$G \cong \langle a, b | a^9 = b^2 = e, bab = a^{-1} \rangle \cong D_9$$

(b) $S_3 \cong \mathbb{Z}_3 \oplus \mathbb{Z}_3$ $\therefore |S_3| = 9 = 3^2, \therefore S_3$ is Abelian group. We can write S_3 in form

$$S_3 = \langle a, b | a^3 = b^3 = 1 \rangle$$

 $\therefore S_3 \triangleleft G, \therefore cS_3c = S_3$, where $c \in K = \langle c \rangle, |K| = 2$. So $\exists i_1, j_1, i_2, j_2 \in \{0, 1, 2\}$, and

$$cac = a^{i_1}b^{j_1}$$

$$cbc = a^{i_2}b^{j_2}$$

Therefore

$$cac = a^{i_1}b^{j_1}$$

$$ccacc = ca^{i_1}b^{j_1}c$$

$$a = ca^{i_1}ccb^{j_1}c$$

$$a = (cac)^{i_1}(cbc)^{j_1}, \text{ becasue } ca^nc = (cac)(cac)\cdots(cac) = (cac)^n$$

$$a = (a^{i_1}b^{j_1})^{i_1}(a^{i_2}b^{j_2})^{j_1}$$

 $\therefore S_3$ is Abelian group, so

$$a = a^{i_1^2 + i_2 j_1} b^{i_1 j_1 + j_2 j_1}$$

Analogously, we can get

$$cbc = a^{i_2}b^{j_2}$$

$$ccbcc = ca^{i_2}b^{j_2}c$$

$$b = ca^{i_2}ccb^{j_2}c$$

$$b = (cac)^{i_2}(cbc)^{j_2}$$

$$b = (a^{i_1}b^{j_1})^{i_2}(a^{i_2}b^{j_2})^{j_2}$$

$$b = a^{i_1i_2+i_2j_2}b^{i_2j_1+j_2^2}$$

Becase in S_3 , $\langle a \rangle \cup \langle b \rangle = \emptyset$, so we can get a congruence equation:

$$\begin{cases} i_1^2 + i_2 j_1 \equiv 1 \pmod{3} \\ i_1 j_1 + j_2 j_1 \equiv 0 \pmod{3} \\ i_1 i_2 + i_2 j_2 \equiv 0 \pmod{3} \\ i_2 j_1 + j_2^2 \equiv 1 \pmod{3} \end{cases}$$

To solve this equation, we can respectively let $i_1 = 0, 1, 2$, and discuss them, but it is little complex. There will be a better method by using computer program. This is Python code.

```
DM = []
for i in range(0,3):
    for j in range(0,3):
        for k in range(0,3):
            for 1 in range(0,3):
                DM.append((i,j,k,l))
        i1^2 + i2*j1 = 1 \pmod{3}
        i1*j1 + j2*j1 = 0 \pmod{3}
        i1*i2 + i2*j2 = 0 \pmod{3}
        i2*j1 + j2^2 = 1 \pmod{3}
    There I use representations: i[0] ~i1; i[1]~j1; i[2]~i2; i[3]~j2
Ans = []
for i in DM:
    if (i[0]**2 + i[2]*i[1]) % 3 == 1 and 
    (i[0]*i[1] + i[3]*i[1]) \% 3 == 0 and
    (i[0]*i[2] + i[2]*i[3]) % 3 == 0 and
    (i[2]*i[1] + i[3]**2) % 3 == 1:
        Ans.append(i)
```

print(Ans)

Then we will get answers: $(i_1, j_1, i_2, j_2) \in \{(0, 1, 1, 0), (0, 2, 2, 0), (1, 0, 0, 1), (1, 0, 0, 2), (1, 0, 1, 2), (1, 0, 2, 2), (1, 1, 0, 2), (1, 2, 0, 2), (2, 0, 0, 1), (2, 0, 0, 2), (2, 0, 1, 1), (2, 0, 2, 1), (2, 1, 0, 1), (2, 2, 0, 1)\}$

For these solutions, we can construct conjugation relationship:

1)
$$cac = b$$
 $cbc = a$

 2) $cac = b^2$
 $cbc = a^2$

 3) $cac = a$
 $cbc = b$

 4) $cac = a$
 $cbc = b^2$

 5) $cac = a$
 $cbc = ab^2$

 6) $cac = a$
 $cbc = a^2b^2$

 7) $cac = ab$
 $cbc = b^2$

 8) $cac = ab^2$
 $cbc = b^2$

 9) $cac = a^2$
 $cbc = b^2$

 10) $cac = a^2$
 $cbc = b^2$

 11) $cac = a^2$
 $cbc = ab$

 12) $cac = a^2$
 $cbc = a^2b$

 13) $cac = a^2b$
 $cbc = b$

 14) $cac = a^2b^2$
 $cbc = b$

But when we compare pairs [4), [4), [5), [5), [6), [4), [7), [7), [7), [7), and [8), [8), we will discover that if we exchange status of a and b, and they are the same. So, in fact we could just explore cases [6], [6], [7], [8],

Now we will consider them:

i.
$$cac = b, cbc = a$$

$$G_1 = \langle a, b, c | a^3 = b^3 = c^2 = e, ab = ba, cac = b, cbc = a \rangle$$

ii.
$$cac = b^2, cbc = a^2$$

$$cac = b^2, cbc = a^2 \Rightarrow cac = b^2, cb^2c = (a^2)^2 = a$$

 \therefore We can construct a map from G_2 onto G_1

$$\varphi: G_2 \to G_1$$

$$c \longmapsto c$$

$$a \longmapsto a$$

$$b^2 \longmapsto b$$

We can certify that c, a and b^2 all are generators, and we can use a and b^2 to generate group S_3 , so this map will be isomorphism. The only difference between G_2 and G_1 is that we exchanged the symols of b and b^2 . So $G_2 \cong G_1$.

iii. cac = a, cbc = b

In this situation, we will get

$$ca = ac, cb = bc, ab = ba$$

So G_3 will be an Abelian group, because $\forall a^{r_i}b^{s_i}c^{t_i} \in G_3, i = 1, 2,$

$$a^{r_1}b^{w_1}c^{t_1} \cdot a^{r_2}b^{s_2}c^{t_2} = a^{r_1+r_2}b^{s_1+s_2}c^{t_1+t_2}$$
$$= a^{r_2}b^{s_2}c^{t_2} \cdot a^{r_1}b^{s_1}c^{t_1}$$

But $N_2 \neq 1$, so G_3 is impossible Abelian group, therefore it leads to contradiction. And G_3 does not exist.

iv.
$$cac = a, cbc = b^2$$

$$cac = a, cbc = b^2 \Rightarrow cabc = caccbc = ab^2, cab^2c = ab$$

And now construct map from G_4 onto G_1 :

$$\varphi: G_4 \to G_1$$

$$c \longmapsto c$$

$$ab \longmapsto a$$

$$ab^2 \longmapsto b$$

In this situation, we can proof that $\langle ab, ab^2 \rangle = \langle a, b \rangle = S_3$, because of $abab^2 = a^2$, $(a^2)^2 = a$, $(ab)^2ab^2 = b$. So ab and ab^2 are generators and they can generate S_3 , and φ is isomorphism. We can change symols a to ab and b to ab^2 , then we will get G_4 from G_1 . So $G_4 \cong G_1$.

v.
$$cac = a, cbc = ab^2$$

$$cbc = ab^2 \Rightarrow cbc = ab^2, cab^2c = b$$

For map:

$$\varphi: G_5 \to G_1$$

$$c \longmapsto c$$

$$ab^2 \longmapsto a$$

$$b \longmapsto b$$

Analogously,we can certify that $\langle ab^2, a \rangle = S_3$; $ab^2b = a$. Therefore, φ is isomorphism, and $G_5 \cong G_1$.