Capítulo 8

TEOREMA DE GREEN

8.1 Introdução

Nesta seção apresentaremos uma versão simplificada de um dos teoremas clássicos da Análise Vetorial, o teorema de Green.

Lembremos de alguns conceitos apresentados no Capítulo 1.

Seja $A \subset \mathbb{R}^n$:

- 1. Um ponto $\mathbf{x} \in \mathbb{R}^n$ é dito **ponto da fronteira ou do bordo de** A se, para todo disco aberto centrado em \mathbf{x} intersecta A e $\mathbb{R}^n A$.
- 2. Denotamos o conjunto dos pontos da fronteira do conjunto A por ∂A .
- 3. Um conjunto A é aberto se $A \cap \partial A = \phi$.
- 4. Um conjunto A é fechado se $\partial A \subset A$.

Figura 8.1: Bordo de Aem azul

Observação 8.1. Utilizaremos alguns argumentos intuitivos aceitavéis, que formulados rigorosamente fogem dos objetivos destas notas.

Definição 8.1. Uma região fechada e limitada $D \subset \mathbb{R}^2$ é dita **simples** se $\partial D = C$ é uma curva fechada simples.

Figura 8.2: A região à esquerda não é simples; a da direita é simples

Notamos que, em geral, uma região simples pode ser bastante "complicada". A seguir daremos a idéia intuitiva (imprecisa) de como orientar a curva ∂D

Definição 8.2. A curva $C = \partial D$ está **orientada positivamente** se é percorrida no sentido anti-horário. (D fica à esquerda, ao se percorrer $\partial D = C$).

Figura 8.3: $C = \partial D$ orientada positivamente

 $C=\partial D$ está **orientada negativamente** se é percorrida no sentido horário. (D fica à direita, ao se percorrer $\partial D=C$)

223

Figura 8.4: $C = \partial D$ orientada negativamente

8.2 Teorema de Green

Sejam $A\subset \mathbb{R}^2$ um conjunto aberto, D uma região simples, a curva $C=\partial D$, tal que $D\subset A$.

Teorema 8.1. (Green) Seja $F:A\longrightarrow \mathbb{R}^2$ um campo de vetores de classe C^1 , com funções coordenadas (F_1,F_2) . Se $C=\partial D$ tem uma parametrização de classe C^1 por partes e está orientada positivamente em relação a D, então:

$$\oint_{\partial D} F = \iint_{D} \left[\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right] dx \, dy$$

Prova: Veja o apêndice.

Observação 8.2. Nós provaremos no apêndice o teorema de Green, numa versão particular, para regiões chamadas elementares.

Corolário 8.1. Nas hipóteses do teorema de Green, se F é um campo conservativo em \mathbb{R}^2 , então

$$\oint_{\partial D} F = 0$$

Prova: A prova segue diretamente do teorema de Green.

Observação 8.3. Lembrando que a área da região D é:

$$A(D) = \iint dx \, dy.$$

Corolário 8.2. Nas hipóteses do teorema de Green, a área da região D é dada por:

$$A(D) = \oint_{\partial D} x \, dy$$

ou

$$A(D) = -\oint_{\partial D} y \, dx$$

ou

$$A(D) = \frac{1}{2} \oint_{\partial D} x \, dy - y \, dx$$

Prova: Basta considerar o campo F(x,y)=(-y,x) e aplicar o teorema de Green para obter:

$$A(D) = \frac{1}{2} \oint_{\partial D} x \, dy - y \, dx.$$

Exemplo 8.1.

[1] Utilizando o teorema de Green, calcule as seguintes integrais de linha:

- 1. $\oint_{\gamma} \sqrt{y} \, dx + \sqrt{x} \, dy$, onde γ é a curva formada pelas retas x = 1, y = 0 e a parábola $y = x^2$, orientadas no sentido positivo (anti-horário).
- 2. $\oint_{\gamma} y \, dx + x^2 \, dy$, onde γ é a curva formada pelas retas x=2, y=0 e 2y-x=0, no sentido anti-horário.

Solução:

225

1. A curva γ é formada por 3 arcos de curvas de classe C^1 , logo γ é uma curva de classe C^1 por partes, que orientada no sentido positivo (anti-horário).

Figura 8.5: A curva.

Observe que $F(x,y)=(\sqrt{y},\sqrt{x})$ é um campo de classe C^1 , para todo (x,y) tal que $x,y\geq 0$, $F_1(x,y)=\sqrt{y}$ e $F_2(x,y)=\sqrt{x}$, são as componentes do campo; logo:

$$\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = \frac{1}{2} \left[\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{y}} \right], \quad \forall x, y > 0;$$

então, estamos nas hipóteses do teorema de Green:

$$\oint_{\gamma} \sqrt{y} \, dx + \sqrt{x} \, dy = \frac{1}{2} \iint_{D} \left[\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{y}} \right] dx \, dy,$$

onde D é a região:

$$D = \{(x, y) \in \mathbb{R}^2 / 0 < x < 1, 0 < y < x^2\}.$$

Figura 8.6: Exemplo [1]

$$\frac{1}{2} \iiint_D \left[\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{y}} \right] dx \, dy = \frac{1}{2} \int_0^1 \left[\int_0^{x^2} \left[\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{y}} \right] dy \right] dx$$

$$= \frac{1}{2} \int_0^1 \left[\frac{y}{\sqrt{x}} - 2\sqrt{y} \right]_0^{x^2} dx$$

$$= \frac{1}{2} \int_0^1 \left[x^{\frac{3}{2}} - 2x \right] dx = -\frac{3}{10}.$$

Logo:

$$\oint_{\gamma} \sqrt{y} \, dx + \sqrt{x} \, dy = \frac{1}{2} \iint_{D} \left[\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{y}} \right] dx \, dy = -\frac{3}{10}$$

2. A curva γ é formada por 3 arcos de curvas de classe C^1 , logo γ é uma curva de classe C^1 por partes, que orientada no sentido positivo (anti-horário).

227

Figura 8.7: A curva

Observe que $F(x,y)=(y,x^2)$ é um campo de classe C^1 , para todo $(x,y)\in\mathbb{R}^2$, $F_1(x,y)=y$ e $F_2(x,y)=x^2$, são as componentes do campo; logo:

$$\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = 2x - 1 \quad \forall (x, y);$$

então, estamos nas hipóteses do teorema de Green:

$$\oint_{\gamma} y \, dx + x^2 \, dy = \iint_{D} (2 \, x - 1) \, dx \, dy,$$

onde D é a região:

$$D = \{(x, y) \in \mathbb{R}^2 / 0 \le x \le 2, \ 0 \le y \le \frac{x}{2} \}.$$

Figura 8.8:

Logo,

$$\oint_{\gamma} y \, dx + x^2 \, dy = \iint_{D} [2 \, x - 1] \, dx \, dy$$

$$= \int_{0}^{2} \left[\int_{0}^{\frac{x}{2}} [2 \, x - 1] \, dy \right] dx = \int_{0}^{2} \left[x^2 - \frac{x}{2} \right] dx = \frac{5}{3}.$$

[2] Calcule a área da região limitada por:

1.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, $a, b \neq 0$.

2.
$$\gamma(t)=(a\cos^3(t),a\sin^3(t))$$
 tal que $a\neq 0$ e $0\leq t\leq 2\,\pi.$

Solução:

1. A curva $\partial D=C$ é uma elipse, parametrizemos a elipse de modo que esteja orientada positivamente:

229

Figura 8.9: A elipse orientada

$$\begin{cases} x = a\cos(t) \\ y = b\operatorname{sen}(t), & t \in [0, 2\pi] \end{cases} \implies \begin{cases} dx = -a\operatorname{sen}(t)\,dt \\ dy = b\cos(t)\,dt. \end{cases}$$

Utilizando o corolário do teorema de Green:

$$A(D) = -\oint_{\partial D} y \, dx = a b \int_0^{2\pi} sen^2(t) \, dt$$
$$= \frac{a b}{2} \int_0^{2\pi} [1 - sen(2t)] \, dt$$
$$= a b \pi \ u.a.$$

2. A curva $\partial D=C$ é parametrizanda de modo que esteja orientada positivamente por:

$$\begin{cases} x = a\cos^3(t) \\ y = a\sin^2(t), \quad t \in [0, 2\,\pi] \end{cases} \implies \begin{cases} dx = -3\,a\sin(t)\cos^2(t)\,dt \\ dy = 3\,a\cos(t)\sin^2(t)\,dt. \end{cases}$$

Figura 8.10: Curva do exemplo 2

Utilizando o corolário do teorema de Green:

$$A(D) = \oint_{\partial D} x \, dy = 3 a^2 \int_0^{2\pi} \cos^4(t) \sin^2(t) \, dt$$
$$= \frac{3 a^2}{8} \int_0^{2\pi} [1 + \cos(2t)] \sin^2(2t) \, dt$$
$$= \frac{3 a^2}{8} u.a.$$

[3] Calcule:

$$\int_{\gamma} e^x \operatorname{sen}(y) \, dx + \left(e^x \cos(y) + x \right) dy,$$

onde γ é o semi-círculo de raio 1 centrado na origem, no primeiro e segundo quadrantes.

O teorema de Green não pode ser aplicado, pois a curva não é fronteira de uma região fechada.

231

Figura 8.11: A curva γ

Para poder aplicar o teorema de Green, consideramos a curva $\beta = \gamma \cup \gamma_1$, onde γ_1 é o segmento de reta ligando (-1,0) a (1,0).

A curva β é diferenciável por partes e fechada, orientando β no sentido anti-hórario, como no seguinte desenho:

Figura 8.12: A curva β

1. Seja a região D é tal que $\partial D=\beta$. Aplicamos o teorema de Green, a região D tal que $\beta=\partial D$. O campo:

$$F(x,y) = (e^x \operatorname{sen}(y), e^x \cos(y) + x),$$

é de classe C^1 , $F_1(x,y)=e^x sen(y)$ e $F_2(x,y)=e^x cos(y)+x$, são as componentes do campo; logo:

$$\frac{\partial F_2}{\partial x}(x,y) - \frac{\partial F_1}{\partial y}(x,y) = 1, \quad \forall \ (x,y) \in D;$$

então, pelo teorema de Green:

$$\oint_{\beta} e^{x} \operatorname{sen}(y) \, dx + (e^{x} \cos(y) + x) \, dy = \iint_{D} dx \, dy = A(D) = \frac{\pi}{2},$$

pois $A(D)=\frac{\pi}{2}$ é a área do semi-círculo de raio 1.

2. Por outro lado:

$$\oint_{\beta} F = \int_{\gamma} F + \int_{\gamma_1} F;$$

logo,

$$\int_{\gamma} F = \int_{\beta} F - \int_{\gamma_1} F = \frac{\pi}{2} - \int_{\gamma_1} F.$$

3. Só falta calcular:

$$\int_{\gamma_1} F = \int_{\gamma_1} e^x \operatorname{sen}(y) \, dx + (e^x \cos(y) + x) \, dy,$$

onde γ_1 é o segmento de reta entre os pontos (-1,0) e (1,0). Uma parametrização de γ_1 é:

$$\begin{cases} x = 2t - 1 \\ y = 0, \quad t \in [0, 1] \end{cases} \implies \begin{cases} dx = 2 dt \\ dy = 0 dt. \end{cases}$$

$$\int_{\gamma_1} e^x \operatorname{sen}(y) \, dx + (e^x \cos(y) + x) \, dy = \int_0^1 0 \, dt = 0.$$

8.2. TEOREMA DE GREEN

233

Então:

$$\int_{\gamma} e^x \operatorname{sen}(y) \, dx + (e^x \cos(y) + x) \, dy = \frac{\pi}{2}.$$

[4] Calcule:

$$\int_C [y e^{xy} + 2 x y \cos(x^2 y)] dx + [x e^{xy} + x^2 \cos(x^2 y)] dy,$$

onde C é a curva formada pelos arcos das seguintes curvas $y=x^3-x$ e $y=x-x^3$, $-1 \le x \le 1$.

Figura 8.13: Exemplo [3]

- 1. $C = C_1 \cup C_2$ tal que $C_1 \cap C_2 = \{(0,0)\}$. As curvas C_1 e C_2 são fechada de classe C^1 , por partes. Aplicaremos o Teorema de Green a cada curva.
- 2. F é um campo de classe C^1 em \mathbb{R}^2 , $F_1 = y e^{xy} + 2 x y \cos(x^2 y)$ e $F_2 = x e^{xy} + x^2 \cos(x^2 y)$, então:

$$\frac{\partial F_1}{\partial y}(x,y) = e^{xy}\left[x\,y+1\right] + 2\,x\left[\cos(x^2\,y) - x^2\, sen(x^2\,y)\right] = \frac{\partial F_2}{\partial x}(x,y), \quad \forall \ (x,y) \in \mathbb{R}^2.$$

3. Logo, F é um campo conservativo; logo pelo teorema de Green:

$$\oint_C F = \oint_{C_1} F = \oint_{C_2} F = 0.$$

[5] Determine a área da região limitada pelas curvas $4x^2 + y^2 = 4$ e $\frac{x^2}{9} + \frac{y^2}{4} = 1$.

Figura 8.14: Exemplo [4]

Pela simetria da região, calculamos a área da região no primeiro quadrante e multiplicamos o resultado por 4.

Figura 8.15: Exemplo [4]

A nova região é uma região fechada simples D tal que:

$$\partial D = \gamma_1 \cup \gamma_2 \cup \gamma_3,$$

onde γ_1 é o arco da elipse $4x^2+y^2=4$, γ_2 é o segmento de reta que liga os pontos (1,0) e (3,0) e γ_3 é o arco da elipse $\frac{x^2}{9}+\frac{y^2}{4}=1$.

$$A(D) = \oint_{\partial D} x \, dy = \int_{\gamma_1} x \, dy + \int_{\gamma_2} x \, dy + \int_{\gamma_3} x \, dy.$$

8.2. TEOREMA DE GREEN

235

Parametrizações:

1.
$$4x^2 + y^2 = 4$$
 é parametrizada por $\gamma_1^-(t) = (\cos(t), 2\sin(t)), t \in [0, \frac{\pi}{2}].$

2. O segmento de reta que liga os pontos (1,0) e (3,0) é parametrizado por $\gamma_2(t)=(t,0), t\in [1,3].$

3.
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
 é parametrizada por $\gamma_3^-(t) = (3\cos(\frac{\pi}{2} - t), 2\sin(\frac{\pi}{2} - t)), t \in [0, \frac{\pi}{2}].$

Então:

1.
$$\int_{\gamma_1} x \, dy = \int_{\gamma_1^-} x \, dy = -\int_0^{\frac{\pi}{2}} 2 \cos^2(t) \, dt = -\int_0^{\frac{\pi}{2}} (\cos(2t) + 1) \, dt = -\frac{\pi}{2}$$

$$2. \int_{\gamma_2} x \, dy = 0.$$

3.
$$\int_{\gamma_3} x \, dy = -\int_0^{\frac{\pi}{2}} -6 \, sen^2(t) \, dt = \int_0^{\frac{\pi}{2}} (3 - 3 \cos(2t)) \, dt = \frac{3\pi}{2}.$$

4. Logo, a área total é

$$A(D) = 4 \pi u.a.$$

[6] Se C é um círculo centrado na origem e de raio 1, calcule

$$\oint_C -\frac{x}{x^2 + y^2} \, dx + \frac{y}{x^2 + y^2} \, dy.$$

Sejam $F_1=-\frac{x}{x^2+y^2}$ e $F_2=\frac{y}{x^2+y^2}$ as componentes do campo, então:

$$\frac{\partial F_1}{\partial y}(x,y) = \frac{\partial F_2}{\partial x}(x,y).$$

Então, pelo teorema de Green:

$$\oint_C -\frac{x}{x^2 + y^2} \, dx + \frac{y}{x^2 + y^2} \, dy = 0.$$

Por outro lado, parametrizando o círculo por x=cos(t), y=sen(t), $t\in[0,2\,\pi]$, temos que:

$$\oint_C -\frac{x}{x^2 + y^2} \, dx + \frac{y}{x^2 + y^2} \, dy = \int_0^{2\pi} dt = 2\pi.$$

O Teorema de Green está errado?

Não, a região D tal que $C=\partial D$ do exemplo, contém ao origem e o campo de vetores não é de classe C^1 na origem. Logo, o teorema de Green não pode ser aplicado no exemplo, logo:

$$\oint_C -\frac{x}{x^2 + y^2} dx + \frac{y}{x^2 + y^2} dy = \int_0^{2\pi} dt = 2\pi.$$

8.3 Extensão do Teorema de Green

O teorema de Green ainda é válido para regiões mais gerais de que as estudadas no parágrafo anterior.

Teorema 8.2. Seja *D* uma região fechada e limitada no plano tal que:

$$\partial D = C_1 \cup C_2 \cup \dots \cup C_n.$$

Cada curva da fronteira de D é orientada de forma que D tenha orientação positiva. Sejam $U \subset \mathbb{R}^2$ um conjunto aberto tal que $D \subset U$ e $F: U \longrightarrow \mathbb{R}^2$ um campo de vetores de classe C^1 , com funções coordenadas (F_1, F_2) . Então:

$$\sum_{i=1}^{n} \int_{C_{i}^{+}} F = \iint_{D} \left[\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y} \right] dx \, dy.$$

Observação 8.4.

1. Isto é:

$$\int_{C_1^+} F + \int_{C_2^+} F + \ldots + \int_{C_n^+} F = \iint_D \left[\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right] dx dy.$$

2. Por exemplo, a seguinte região D é tal que $\partial D^+ = C_1^+ \cup C_2^- \cup C_3^- \cup C_4^-$

Figura 8.16:

Consideremos a seguinte região D:

Figura 8.17:

 $\partial D^+ = C_1^+ \cup C_2^-.$ Subdividamos a região D em 4 subregiões $D = D_1 \cup D_2 \cup D_3 \cup D_4$:

Figura 8.18: O espaço H

- i) Seja D_1 tal que $\partial D_1^+ = C_{11}^+ \cup L_4^+ \cup C_{21}^- \cup L_1^+$; onde C_{i1} é o arco da curva C_i , $(1 \le i \le 2)$ na região D_1 .
- ii) Seja D_2 tal que $\partial D_2^+ = C_{12}^+ \cup L_2^+ \cup C_{22}^- \cup L_1^-$; onde C_{i1} é o arco da curva C_i , $(1 \le i \le 2)$ na região D_2 .
- iii) Seja D_3 tal que $\partial D_3^+ = C_{13}^+ \cup L_2^- \cup C_{23}^- \cup L_3^+$; onde C_{i1} é o arco da curva C_i , $(1 \le i \le 2)$ na região D_3 .
- iv) Seja D_4 tal que $\partial D_4^+ = C_{14}^+ \cup L_3^- \cup C_{24}^- \cup L_4^-$; onde C_{i1} é o arco da curva C_i , $(1 \le i \le 2)$ na região D_4 .

Figura 8.19:

i) Aplicando o teorema de Green em D_1 :

$$\iint_{D_1} \left[\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right] dx \, dy = \oint_{\partial D_1^+} F = \int_{C_{11}^+} F + \int_{L_4^+} F + \int_{C_{21}^-} F + \int_{L_1^+} F.$$

ii) Aplicando o teorema de Green em D_2 :

$$\iint_{D_2} \left[\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right] dx \, dy = \oint_{\partial D_2^+} F = \int_{C_{12}^+} F + \int_{L_2^+} F + \int_{C_{22}^-} F + \int_{L_1^-} F.$$

iii) Aplicando o teorema de Green em D_3 :

$$\iint_{D_3} \left[\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right] dx \, dy = \oint_{\partial D_3^+} F = \int_{C_{13}^+} F + \int_{L_2^-} F + \int_{C_{23}^-} F + \int_{L_3^+} F.$$

iv) Aplicando o teorema de Green em D_4 :

$$\iint_{D_4} \left[\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right] dx \, dy = \oint_{\partial D_4^+} F = \int_{C_{14}^+} F + \int_{L_3^-} F + \int_{C_{24}^-} F + \int_{L_4^-} F.$$

Então, de i), ii), iii) e iv):

$$\sum_{i=1}^{4} \iint_{D_i} \left[\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right] dx \, dy = \int_{C_1^+} F + \int_{C_2^-} F.$$

Exemplo 8.2.

[1] Seja D a região limitada pela curva $x^2+y^2=9$ externa ao retângulo de vértices (1,-1), (2,-1), (2,1) e (1,1), orientada positivamente. Calcule:

$$\int_{\partial D^{+}} [2 x - y^{3}] dx - x y dy.$$

Figura 8.20: Exemplo [1]

 $\partial D^+ = C_1^+ \cup C_2^-$; então:

$$\int_{\partial D^+} [2x - y^3] \, dx - xy \, dy = \int_{C_1^+} [2x - y^3] \, dx - xy \, dy - \int_{C_2^+} [2x - y^3] \, dx - xy \, dy.$$

Seja $F_1(x,y)=2\,x-y^3$ e $F_2(x,y)=-x\,y$ as componentes do campo, então:

$$\frac{\partial F_2}{\partial x}(x,y) - \frac{\partial F_1}{\partial y}(x,y) = 3y^2 - y.$$

1. Seja D_1 a região limitada pela curva $x^2+y^2=9$, logo $\partial D_1^+=C_1^+$. Aplicando o teorema de Green a D_1 , utilizando coordenadas polares:

$$\begin{cases} x = r \cos(t) \\ y = r \sin(t) \end{cases} \implies \begin{cases} 0 \le r \le 3 \\ 0 \le t \le 2\pi. \end{cases}$$

Então:

$$\int_{C_1^+} [2x - y^3] dx - xy dy = \iint_{D_1} [3y^2 - y] dx dy$$

$$= \int_0^{2\pi} \left[\int_0^3 [3r^2 sen^2(t) - r sen(t)] r dr \right] dt$$

$$= \int_0^{2\pi} \left[\frac{243}{4} sen^2(t) - 9 sen(t) \right] dt = \frac{243 \pi}{4}.$$

2. Seja D_2 a região limitada pelo retângulo, logo $\partial D_2^+ = C_2^+$. Aplicando o teorema de Green a D_2 :

$$\int_{C_2^+} [2x - y^3] dx - xy dy = \iint_{D_2} [3y^2 - y] dx dy$$
$$= \int_{-1}^1 \left[\int_1^2 [3y^2 - y] dx \right] dy = 2.$$

De 1. e 2. temos que:

$$\int_{\partial D^{+}} [2x - y^{3}] dx - xy dy = \frac{243\pi}{4} - 2.$$

[2] Calcule $\oint_C F$, onde

$$F(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} + 2x\right)$$

e C é a curva $\frac{x^2}{4} + \frac{y^2}{9} = 1$ no sentido anti-hórario.

Não podemos aplicar o teorema de Green, pois F não é definido na origem. Seja D a região limitada pela curva $\frac{x^2}{4} + \frac{y^2}{9} = 1$, externa ao círculo de raio 1, centrado na origem:

Figura 8.21: Exemplo [2]

$$\partial D^+ = C_1^+ \cup C_2^-.$$

Sejam $F_1(x,y)=\frac{-y}{x^2+y^2}$ e $F_2(x,y)=\frac{x}{x^2+y^2}+2\,x$ os componentes do campo; então, aplicando o teorema anterior:

$$\int_{C_1^+} F + \int_{C_2^-} F = \iint_D \left[\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right] dx \, dy = \iint_D 2 \, dx \, dy = 2 \, A(D) = 10 \, \pi.$$

Logo:

$$\int_{C_1^+} F = 10 \,\pi - \int_{C_2^-} F = 10 \,\pi + \int_{C_2^+} F.$$

Usando a parametrização usual do círculo:

$$\int_{C_{+}^{+}} F = \int_{0}^{2\pi} \left[sen^{2}(t) + 3\cos^{2}(t) \right] dt = \int_{0}^{2\pi} \left[1 + 2\cos^{2}(t) \right] dt = 4\pi;$$

então:

$$\int_{C_1^+} F = (10+4) \,\pi = 14 \,\pi.$$

8.4 Caracterização dos Campos Conservativos no Plano

Neste parágrafo apresentamos a caracterização completa dos campos conservativos no plano.

Definição 8.3. Seja $A \subset \mathbb{R}^2$ um conjunto aberto.

- 1. A é dito um **domínio poligonal** se para todo x, $y \in A$ existe uma poligonal ligando x e y em A.
- 2. A é dito **simplesmente conexa** se, para toda curva fechada $C \subset A$, a região limitada por C está contida em A.

Intuitivamente, A é simplesmente conexo quando não tem "buracos". A seguinte região D tal que $\partial D = C_1 \cup C_2$, não é simplesmente conexa.

Figura 8.22:

Teorema 8.3. Seja F um campo de vetores de classe C^1 , definido num domínio poligonal, simplesmente conexo, aberto A. São equivalentes as seguintes afirmações:

- 1. $\oint_C F = 0$, onde $C \subset A$ é uma curva fechada de classe C^1 por partes, arbitrária.
- 2. A integral de linha de F do ponto P_1 até o ponto P_2 , denotada por: $\int_{P_1}^{P_2} F$, é independente das curvas de classe C^1 por partes que ligam P_1 e P_2 .

3. *F* é conservativo.

4.
$$\frac{\partial F_2}{\partial x}(x,y) = \frac{\partial F_1}{\partial y}(x,y)$$
, para todo $(x,y) \in A$.

Prova: (1) \Rightarrow (2). Sejam C_1 e C_2 duas curvas ligando P_1 e P_2 em A.

Figura 8.23:

Seja C tal que $C^+ = C_1^- \cup C_2^+$; então:

$$0 = \oint_C F = \int_{C_2^-} F + \int_{C_2^+} F;$$

logo, $\int_{C_1^+} F = \int_{C_2^+} F$, quaisquer que sejam as curvas C_1 e C_2 ligando P_1 e P_2 em A.

(2) \Rightarrow (3). Sejam (x_0, y_0) e $(x, y) \in A$. Definamos a função f em A, do seguinte modo: Consideremos o caminho poligonal ligando (x_0, y_0) e (x, y):

Figura 8.24:

Parametrizando estos caminhos: $\gamma_1(t)=(x_0,t)$, $y_0 \le t \le y$ e $\gamma_2(t)=(t,y_0)$, $x_0 \le t \le x$; definamos f por:

$$f(x,y) = \int_{x_0}^x F_1(t,y) dt + \int_{y_0}^y F_2(x,t) dt.$$

Esta função é bem definida, pois independe da curva que liga os pontos (x_0, y_0) e $(x, y) \in A$. E segue diretamente da definição que:

$$\frac{\partial f}{\partial x}(x,y) = F_1(x,y)$$
 e $\frac{\partial f}{\partial y}(x,y) = F_2(x,y)$.

(3) \Rightarrow (4). Como $\nabla f(x,y) = F(x,y)$, segue que:

$$\frac{\partial F_2}{\partial x}(x,y) = \frac{\partial F_1}{\partial y}(x,y),$$

para todo $(x, y) \in A$.

 $(4) \Rightarrow (1)$. Segue do teorema de Green. De fato, podemos aplicar o teorema de Green pois se A é simplesmente conexo, a região D limitada por qualquer curva fechada C está contida em A.

Exemplo 8.3.

[1] Calcule
$$\oint_C F$$
, onde $F(x,y) = \left(-\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2}\right)$ se:

- $1.\ C$ é qualquer curva fechada simples, bordo de uma região que não contem a origem.
- 2. ${\cal C}$ é qualquer curva fechada simples, bordo de uma região que contem a origem. Solução:
 - 1. Seja C^+ como no desenho:

Figura 8.25:

F é um campo conservativo em D tal que $\partial D=C$. Pelo Teorema de Green:

$$\oint_{C^+} F = 0.$$

2. Seja D uma região que contem a origem tal que $\partial D = C$ e C_1 um círculo ao redor da origem (de raio suficientemente pequeno), como no desenho:

Figura 8.26:

Denotemos por D_1 a região obtida de D tal que $\partial D_1 = C_1^- \cup C^+$. Pelo Teorema de Green:

$$\oint_{\partial D_1^+} F = 0.$$

Denotemos por D_2 a região obtida de D tal que $\partial D_2 = C_1^+$; calculando diretamente,

$$\oint_{\partial D_2^+} F = \oint_{C_1^+} F = 2 \,\pi.$$

Como $D = D_1 \cup D_2$, temos:

$$\oint_C F = 2\pi.$$

[2] Calcule $\int_C F$, onde:

$$F(x,y) = (3x^2y + 2y^2, x^3 + 4xy + 1)$$

e a curva C é parametrizada por $\gamma(t)=(cos^3(t),sen^3(t))$, $t\in[0,\frac{\pi}{2}].$

Figura 8.27:

Note que:

$$\frac{\partial F_2}{\partial x} = \frac{\partial F_1}{\partial y} = 3x^2 + 4y, \quad \forall (x, y) \in \mathbb{R}^2.$$

Logo, F é conservativo com potencial:

$$f(x,y) = x^3 y + 2 y^2 x + y;$$

então, a integral depende apenas dos pontos inicial e final da curva: $\gamma(0)=(1,0)$ e $\gamma\left(\frac{\pi}{2}\right)=(0,1)$

$$\int_C F = f(0,1) - f(1,0) = 1 - 0 = 1.$$

[3] Seja $F = (F_1, F_2)$ um campo de vetores no plano tal que:

$$\frac{\partial F_2}{\partial x}(x,y) = \frac{\partial F_1}{\partial y}(x,y), \quad (x,y) \in \mathbb{R}^2.$$

Considere a região dada pelo seguinte desenho, de modo que F não seja definido nas regiões A e B. Se:

$$\int_{C_1} F = 12 \quad \text{ e} \quad \int_{C_2} F = 15,$$

calcule $\int_{C_3} F$.

Figura 8.28: Região do exemplo [3]

Separemos a região delimitada pelas curvas do seguinte modo:

Figura 8.29:

1. Seja D_1 tal que $\partial D_1^+ = C_{31}^+ \cup C_1^-$, então:

$$\int_{\partial D_1^+} F = \int_{C_{31}^+} F - \int_{C_1^+} F.$$

Aplicando o teorema de Green:

$$\int_{\partial D_1^+} F = \iint_{D_1} \left[\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right] dx \, dy = 0,$$

logo:

$$\int_{C_{31}^+} F = \int_{C_1}^+ F = 12.$$

2. Seja D_2 tal que $\partial D_2^+ = C_{32}^+ \cup C_2^-$, então:

$$\int_{\partial D_2^+} F = \int_{C_{32}^+} F - \int_{C_2^+} F.$$

Aplicando o teorema de Green:

$$\int_{\partial D_2^+} F = \iint_{D_2} \left[\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right] dx \, dy = 0,$$

logo:

$$\int_{C_{32}^+} F = \int_{C_2^+} F = 15.$$

3. Como $C_3^+ = C_{31}^+ \cup C_{32}^-$, temos:

$$\int_{C_3^+} F = \int_{C_{31}^+} F - \int_{C_{32}^+} F = 12 - 15 = -3.$$

8.5. EXERCÍCIOS 251

8.5 Exercícios

1. Calcule $\oint_C 4y \, dx + 7x \, dy$, onde C é o triângulo de vértices (0,0), (4,0) e (2,2), no sentido anti-horário:

- (a) diretamante.
- (b) utilizando o teorema de Green.
- 2. Calcule as seguintes integrais utilizando o teorema de Green:
 - (a) $\oint_C \frac{e^y}{x} dx + (e^y \ln(x) + 2x) dy$, onde C é a fronteira da região limitada por $x = y^4 + 1$ e x = 2.
 - (b) $\oint_C (\cos(x) 5y) dx + (4x y^{-1}) dy$, onde C é a fronteira da região limitada por $y + x^2 9 = 0$ e y 5 = 0.
 - (c) $\oint_C (x-y) dx x^2 dy$, onde C é a fronteira da região $[0,2] \times [0,2]$.
 - (d) $\oint_C (e^x 3y) dx + (e^y + 6x) dy$, onde C é a elipse $x^2 + 4y^2 = 4$.
 - (e) $\oint_C (x+y) dx + (y-x) dy$, onde C é o círculo $x^2 + y^2 2 a x = 0$.
 - (f) $\oint_C (x+y) dx + (y+x^2) dy$, onde C é a fronteira da região limitada por $x^2 + y^2 = 1$ e $x^2 + y^2 = 4$.
 - (g) $\oint_C arctg(x) dx + 3x dy$, onde C é a fronteira da região limitada pelo retângulo de vértices (1,0), (2,3), (0,1) e (3,2).
 - (h) $\oint_C x y dx + (y + x) dy$, onde C é a fronteira da região limitada por $x^2 + y^2 = 1$.

- (i) $\oint_C (y + \ln(\sqrt{x} + x^2)) dx + (x^2 + tg(y^3)) dy$, onde C é o quadrado de vértices (0,0), (1,0), (1,1) e (0,1).
- 3. Utilizando os corolários do teorema de Green, calcule a área da região limitada pelas seguintes curvas:

(a)
$$y = x^2 e y^2 = x$$

(b)
$$y = 4x^2$$
 e $y = 16x$

(c)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, $(a, b > 0)$

(d)
$$y^2 = x^3 e y = x$$

4. Seja $D \subset \mathbb{R}^2$ uma região nas hipóteses do teorema de Green. Utilizando o teorema, verifique que as coordenadas do centróide de D são dadas por:

$$\overline{x} = \frac{1}{2A} \oint_C x^2 dy \qquad \overline{y} = -\frac{1}{2A} \oint_C y^2 dx,$$

onde
$$A = A(D)$$
.

- (a) Ache o centróide do triângulo de vértices (0,0), (1,0) e (0,1).
- (b) Ache o centróide da região definida por $x^2 + y^2 \le 1$ tal que $y \ge 0$.
- 5. Calcule $\oint_C \frac{x \, dy y \, dx}{x^2 + y^2}$, nos seguintes casos:
 - (a) A origem das coordenadas está fora da curva fechada C.
 - (b) A curva fechada ${\cal C}$ encerra a origem das coordenadas.

8.5. EXERCÍCIOS 253

6. Seja $I = \int_C x^3 \, dy - y^3 \, dx$, onde C é formada pelos lados do triângulo de vértices $(-2,0), (4,\sqrt{3})$ e $(1,\sqrt{3})$ e seja $J = \iint_R \left(x^2 + y^2\right) \, dx \, dy$, onde R é a região limitada por C. Verifique que I = 3 J.

7. Calcule m de modo que:

$$\int_C \frac{x \, r^m}{y} \, dx - \frac{x^2 \, r^m}{y^2} \, dy$$

com $x^2+y^2=r^2$, independa da curva C, fronteira de uma região simplesmente conexa. Escolha uma curva C nas condições do problema e calcule a integral ao longo de C.

- 8. Verifique que $\oint_C y^2 dx + (2xy 3) dy = 0$, sendo C a elipse $x^2 + 4y^2 = 4$. Calcule a integral ao longo do arco dessa elipse, situado no primeiro quadrante.
- 9. Calcule $\int_C \left(x^2 y \cos(x) 2 x y \sin(x) y^2 e^x\right) dx + \left(x^2 \sin(x) 2 y e^x\right) dy, \text{ onde } C \text{ \'e}$ a hipociclóide $\sqrt[3]{x^2} + \sqrt[3]{y^2} = \sqrt[3]{a^2}$.
- Ache a área da região limitada pela hipociclóide do item anterior, utilizando o teorema de Green.
- 11. Seja C uma curva simples e fechada que limita uma região de área A. Verifique que se $a_1, a_2, a_3, b_1, b_2, b_3 \in \mathbb{R}$, então:

$$\oint_C (a_1 x + a_2 y + a_3) dx + (b_1 x + b_2 y + b_3) dy = (b_1 - a_2) A.$$

12. Sob que condições, no item anterior, a integral ao longo de \mathcal{C} é zero?