2020

MATHEMATICS — **GENERAL**

Paper: DSE-A-2 (Graph Theory) Full Marks: 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

					Da	ay 2						
1.	Cho	ose	the correct alterna	atives	:							1×10
	(a)	(a) A graph consists of										
		(i)	Vertices			(ii)	Edges					
		(iii)	Both vertices an	d Edg	ges	(iv)	None of these	e.				
	(b) Pendant vertex is a vertex with degree											
		(i)	0	(ii) 1		(iii)	2	(iv)	None	of thes	se.	
(c) The number of edges in a complete graph with n vertices is												
		(i)	n	(ii) n	n(n+1)/2	(iii)	n(n-1)/2	(iv)	None	of thes	se.	
	(d) The maximum number of edges in a bipartite graph having 9 vertices is											
		(i)	20	(ii) 1	18	(iii)	14	(iv)	None	of thes	se.	
	(e) Two graphs are isomorphic to one another if there is											
	(i) One-one correspondence between their vertices											
	(ii) One-one correspondence between their edges											
		(iii)	Both (i) and (ii)									
		(iv)	None of these.									
	(f) A graph with all vertices having equal degree is known as a											
		(i)	Multi graph			(ii)	Regular graph					
		(iii)	Simple graph			(iv)	Complete grap	h.				
(g) An adjacency matrix $X = (x_{ij})$ of a graph G with n vertices and no parallel edge									ges is			
		(i)	an n by n symm	etric 1	matrix							
		(ii)	a binary matrix									
	(iii) a matrix where $x_{ij} = 0$ if there is no edge between <i>i</i> th and <i>j</i> th vertex											
		(iv)	iv) a matrix with all of these properties.									
										P	lease Tur	n Over

T(5th Sm.)-Mathematics-G/DSE-A-2/CBCS/Day-2

(h) If the starting and ending vertices of a walk are same then the walk is known as a

(2)

- (i) open walk
- (ii) path
- (iii) closed walk
- (iv) circuit.

- (i) A tree with n vertices has
 - (i) n edges
- (ii) n + 1 edges
- (iii) n-1 edges
- (iv) none of these.

- (j) Every tree has
 - (i) one centre

(ii) two centres

- (iii) one or two centres
- (iv) neither one nor two centres.

2. Answer any three questions:

- (a) (i) Define a 'graph' and 'degree of a vertex' in a graph.
 - (ii) What is a complete graph. Give an example.

(2+1)+(1+1)

- (b) Prove that the number of odd vertices in a simple graph is always even.
- 5

- (c) (i) When are two graphs called isomorphic?
 - (ii) Show that the following graphs are not isomorphic.

2+3

(d) Write the adjacency matrix of the following graph:

5

(e) Define a tree. Prove that a graph is a tree if it is minimally connected.

1+4

3. Answer any four questions:

- (a) (i) Define with an example for each:
 - (I) Simple graph, (II) Multi graph, (III) Weighted graph.
 - (ii) How many nodes are necessary to construct a graph with exactly 6 edges in which each node is of degree 2? (2+2+2)+4

- (b) (i) Find the maximum number of edges in a simple graph with n vertices.
 - (ii) Write short notes on 'selfloop', 'parallel edges', 'regular graph'. 4+(2+2+2)
- (c) (i) What are 'bipartite graphs' and 'complete bipartite graphs'. Explain with an example for each.
 - (ii) Define Kuratowski's two graphs and draw each of them. Are these graphs bipartite graphs?

 Justify your answer.

 4+6
- (d) (i) Define a planar graph with an example.
 - (ii) State and prove Euler's formula for planar graphs.
 - (iii) Use this formula to check whether the complete graph K_5 is planar or not. 2+5+3
- (e) (i) Write Dijkstra's algorithm for finding the shortest path in weighted graphs.
 - (ii) Using Dijkstra's algorithm, find the shortest path between the vertices s and t in the following graph:

- (f) (i) Define path and circuit. Give an example for each.
 - (ii) What are Eulerian circuits and Hamiltonian circuits?
 - (iii) Draw the graph corresponding to the following adjacency matrix:

 $\begin{pmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{pmatrix}$

- (g) (i) State the travelling salesman problem.
 - (ii) Represent the problem with a suitable graph for 5 cities.
 - (iii) Is the graph a weighted graph? If so, then what do the weights represents?
 - (iv) What condition will make the graph a complete graph?
 - (v) How can the problem be solved from its graph?

2+3+2+1+2

4+3+3