Healthcare Data Analysis using hive

1. Import client data to the distributed filesystem into warehouse

- The data is available as a SQL file. So first, create a healthcare database.
- Dump the SQL file into the database.
 sudo mysql -u root -p -h localhost -D healthcare < healthcare.sql
- Using sqoop import all the tables into hive.

```
sqoop import-all-tables
```

- --connect jdbc:mysql://localhost/healthcare
- --username root
- --password cloudera
- --hive-import
- --m 1
- All the tables will be imported under /user/warehouse
- And we can see them under the default database using the beeline/hive command line interface.

beeline --silent=true -u jdbc:hive2://localhost:10000 root cloudera Use default; Show tables;

```
database_name |
default
 futurense
hive_class_b1
miniprojects
rows selected (0.83 seconds)
: jdbc:hive2://> use default;
 rows affected (0.058 seconds)
 jdbc:hive2://> show tables;
     tab name
address
claim
contain
disease
 insurancecompany
 nsuranceplan
keep
medicine
 patient
 patient details
  erson
 pharmacy
 rescription
 reatment
```

2. Implement data analysis with hive queries on internal tables

- Create external tables to store the results of hive queries performed.
- Run the analytical queries and insert the obtained result into the above external table.

Problem statement -1:

Jimmy, from the healthcare department, wants to know which disease is infecting people of which gender more often.

Assist Jimmy with this purpose by generating a report that shows for each disease the male-to-female ratio. Sort the data in a way that is helpful for Jimmy

External table for query-1

```
create external table query_1
(
diseaseName string,
male int,
female int,
ratio double
);
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LINES TERMINATED BY '\n';
```

Loading output into the external table query-1

```
insert into table query_1
select *, round((male/female),2) as m_f_ratio from
(
select d.diseaseName,
sum(case when gender = 'male' then 1 else 0 end ) as male,
sum(case when gender = 'female' then 1 else 0 end ) as female
from person p inner join treatment t
on p.personid = t.patientid
inner join disease d
on t.diseaseID = d.diseaseID
group by d.diseaseName
) a;
```

query_1.diseasename	query_1.male	query_1.female	
Alzheimer's dis	173	95	1.82
Amyotrophic lat	165	106	1.56
Anorexia nervos	177	96	1.84
Anxiety disorde	153	126	1.21
Asthma	144	101	1.43
Atherosclerosis	174	112	1.55
Attention defic	158	125	1.26
Autism	156	94	1.66
Autoimmune dise	165	102	1.62
Bipolar disorde	166	114	1.46
Cancer	191	103	1.85
Chronic fatigue	158	107	1.48
Chronic obstruc	152	97	1.57
Coronary heart	149	97	1.54
Crohn's disease	182	102	1.78
Dementia	162	90	1.8
Depression	170	82	2.07
Diabetes mellit	174	93	1.87
Diabetes mellit	178	99	1.8
Dilated cardiom	191	110	1.74
Epilepsy	153	96	1.59
Guillain?Barré	169	124	1.36
Irritable bowel	184	104	1.77
Low back pain	159	111	1.43
Lupus	158	88	1.8
Metabolic syndr	161	127	1.27
Multiple sclero	173	88	1.97
Myocardial infa	190 157	107 123	1.78 1.28
Obesity Obsessive?compu	157	123	1.28 1.59
Obsessive/compu Panic disorder	158	110	1.59 1.44
Panic disorder	138	110	1.44
Parkinson's dis	145	94 93	1.69
PSOTIASIS Rheumatoid arth	156	113	1.38
Kneumatoid arth	170	113	1.77
Schizophrenia	190	117	1.62
Stroke	183	117	1.63
Thromboangiitis	175	96	1.82
Tourette syndro	153	125	1.02
Vasculitis	175	121	1.45
+			

Problem statement -2:

Jacob, from insurance management, has noticed that insurance claims are not made for all the treatments.

He also wants to figure out if the gender of the patient has any impact on the insurance claim.

Assist Jacob in this situation by generating a report that finds for each gender the number of treatments, number of claims, and treatment-to-claim ratio.

And notice if there is a significant difference between the treatment-to-claim ratio of male and female patients.

Create an external table for query-2

create external table query_2(gender string, total_treatments int, total_claims int, ratio double)

```
ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' LINES TERMINATED BY '\n';
```

Load output into the external table query-1

```
insert into table query_2
select *, round(total_treatments/ total_claims, 2) as ratio from
(
select p.gender, count(t.treatmentID) as total_treatments,
count(c.claimID) as total_claims from
person p inner join treatment t
on p.personID = t.patientID
left join claim c
on t.claimID = c.claimID
group by p.gender
)a;
```

+	+	<u>+</u>	.+
query_2.gender	query_2.total_treatments	query_2.total_claims	query_2.ratio
 female male	4206 6679	2676 4287	1.57 1.56
0	1	+	+

3. Implement partitions and bucketing

4. Implement external tables for results to take into client db

• To perform dynamic partitioning first we need to set some configurations to true.

```
set hive.exec.dynamic.partition=true; set hive.exec.dynamic.partition.mode=nonstrict;
```

Partitioning on the address table:

• Create a new table address_part by partitioning the address table using the "state" column.

```
create table if not exists address_part (
addressid int,
address1 string,
city string,
zip int
)
partitioned by (state string)
row format delimited
fields terminated by ','
```

stored as textfile:

Insert into address_part table :

```
insert into address_part partition(state) select addressid,address1, city, zip, state from address;
```

Partitioning and bucketing on the treatment table:

- Create a new table treatment_part_bkt by partitioning the treatment table by year.
- Create 3 buckets using treatmentid.

```
create table if not exists treatment_part_bkt (

treatmentid int,
date string,
patientid int,
diseaseid int,
claimid int
)
partitioned by (year string)
clustered by (treatmentid) into 3 buckets
row format delimited
fields terminated by ','
stored as textfile
```

Insert into treatment part bkt table :

```
insert into treatment_part_bkt
partition(year)
select treatmentid, date, patientid, diseaseid, claimid,
year(date) as year from treatment;
```

Problem statement - 3:

The State of Alabama (AL) is trying to manage its healthcare resources more efficiently. For each city in their state, they need to identify the disease for which the maximum number of patients have gone for treatment. Assist the state for this purpose.

Note: The state of Alabama is represented as AL in Address Table.

Create an external table for query-3

```
create external table query_3 (
city string,
```

```
diseasename string,
pat count int
row format delimited
fields terminated by ','
stored as textfile;
Insert into query_3 table
with cte as
select city,d.diseaseName, count(patientID) as pat count
from (select * from address part where state='AL') ad inner join person p
on ad.addressID = p.addressID
inner join treatment t
on personID = t.patientID
inner join disease as d
on t.diseaseID = d.diseaseID
group by city, disease Name
),
cte2 as
select city,diseaseName,pat count, dense rank() over(partition by city order by
pat count desc) as dn from cte
insert into query 3 select city, diseaseName, pat count from cte2 where dn = 1;
```

city	+ diseasename	+ pat_count
Indian Springs Village Montevallo Montgomery Montgomery	+	+

Problem statement - 4:

Sarah, from the healthcare department, is trying to understand if some diseases are spreading in a particular region. Assist Sarah by creating a report which shows each state the number of the most and least treated diseases by the patients of that state in

the year 2022. It would be helpful for Sarah if the aggregation for the different combinations is found as well. Assist Sarah to create this report.

External table for query_4

```
create external table query 4
       state string,
       diseaseid int,
       treatCount int
       row format delimited
       fields terminated by ','
       stored as textfile;
Insert into query_4
       with cte as
       select ad.state,t.diseaseID, count(t.treatmentID) as treat_count
       from address part ad inner join person p
       on ad.addressID = p.addressID
       inner join (select * from treatment part bkt where year = 2022) t
       on p.personID = t.patientID
       group by ad.state,t.diseaseID
       ),
       cte 2 as
       select *, dense rank() over(partition by state order by treat count desc) as dn desc,
       dense rank() over(partition by state order by treat count ) as dn asc from cte
       insert into query 4
       select state, diseaseID, treat count from cte 2 where dn desc = 1
       select state, diseaseID, treat count from cte 2 where dn asc = 1
       order by state;
```


Problem statement - 5:

Brooke is trying to figure out if patients with a particular disease are preferring some pharmacies over others or not,

For this purpose, she has requested a detailed pharmacy report that shows each pharmacy name, and how many prescriptions they have prescribed for each disease in 2021 and 2022,

She expects the number of prescriptions prescribed in 2021 and 2022 be displayed in two separate columns.

Write a query for Brooke's requirement.

External table for query_5

```
create external table if not exists query_5 (
pharmacyid int,
diseaseid int,
year_2021 int,
year_2022 int
)
```

```
row format delimited
fields terminated by ','
stored as textfile;
```

Insert into query_5

```
select ph.pharmacyName,t.diseaseID,
sum(case when year(t.date) = 2021 then 1 else 0 end) as '2021',
sum(case when year(t.date) = 2022 then 1 else 0 end) as '2022'
from pharmacy ph
inner join prescription pr on ph.pharmacyID = pr.pharmacyID
inner join (select * from treatment_part_bkt where year in (2021,2022)) t on
pr.treatmentID = t.treatmentID
group by ph.pharmacyName,t.diseaseID;
```

query_5.pharmacyname	query_5.diseaseid	query_5.year_2021	_ query_5.year_2022	
Absolute Care	3	0	1	İ
Absolute Care	j 5	j 1	j 1	i
Absolute Care	j 6	j 1	j o	i
Absolute Care	j 7	j 1	į o	i
Absolute Care	j 9	j 0	j 2	i
Absolute Care	13	1	j 0	İ
Absolute Care	14	1	į o	İ
Absolute Care	16	1	j 0	İ
Absolute Care	17	j 0	1	İ
Absolute Care	18	į o	1	i

5. Export external table to SQL or NoSQL using sqoop

• To export tables from hive to MySQL, make sure that the tables with the same schema should be available in the MySQL DB.

Create tables in MySQL

Table - 1

```
create table if not exists query_1
(
diseaseName varchar(200),
male int,
female int,
ratio double
);

Table - 2
create table if not exists query_2
(
```

```
gender varchar(10),
total treatments int,
total claims int,
ratio double
);
Table - 3
create table if not exists query 3
city varchar(100),
diseasename varchar(200),
pat_count int
);
Table - 4
create table if not exists query 4
state varchar(20),
diseaseid int,
treatCount int
);
Table - 5
create table if not exists query 5
pharmacyname varchar(100),
diseaseid int,
year 2021 int,
year_2022 int
);
```

Sqoop Commands to export hive tables in MySQL

Export table query_1 :

sqoop export --connect jdbc:mysql://localhost:3306/healthcare --username root --password cloudera --table query_1 --export-dir /user/hive/warehouse/query_1 --input-fields-terminated-by ','

Export table query_2:

sqoop export --connect jdbc:mysql://localhost:3306/healthcare --username root --password cloudera --table query_2 --export-dir /user/hive/warehouse/query_2 --input-fields-terminated-by ','

Export table query_3

sqoop export --connect jdbc:mysql://localhost:3306/healthcare --username root --password cloudera --table query_3 --export-dir /user/hive/warehouse/query_3 --input-fields-terminated-by ','

Export table query_4

sqoop export --connect jdbc:mysql://localhost:3306/healthcare --username root --password cloudera --table query_4 --export-dir /user/hive/warehouse/query_4 --input-fields-terminated-by ','

Export table query_5

sqoop export --connect jdbc:mysql://localhost:3306/healthcare --username root --password cloudera --table query_5 --export-dir /user/hive/warehouse/query_5 --input-fields-terminated-by '.'

mysql> select * from	+	+			
pharmacyname	diseaseid	year_2021	year_2022		
Priority Pharmacy	31	1	0		
Priority Pharmacy	34	1	οi		
Priority Pharmacy	35	0	1		
Priority Pharmacy	36	1	0 j		
Priority Pharmacy	37	2	0 j		
Priority Pharmacy	39	0	1		
Priority Pharmacy	40	0	1		
Protowell	1	0	1		
Protowell	2	1	1		
Protowell	4	2	0		
+	++	+	+		
10 rows in set (0.00	sec)				
mysql>					

