DATA STRUCTURES AND ALGORITHMS

Dr Samabia Tehsin Bs (ai)

Merge Sort

We will look at this table later ...

Algorithm	Time	Notes
selection-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)
insertion-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)
heap-sort	$O(n \log n)$	 fast in-place for large data sets (1K — 1M)
merge-sort	$O(n \log n)$	fastsequential data accessfor huge data sets (> 1M)

New things that we will learn from this part

Divide-and-Conquer rationale

Complexity analysis based on recurrence relation

Execution Example

Partition

Recursive call, partition

Recursive call, partition

Recursive call, base case

Recursive call, base case

Merge

Recursive call, ..., base case, merge

Merge

Recursive call, ..., merge, merge

Merge

Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data S in two disjoint subsets S_1 and S_2
 - Recur: solve the subproblems associated with S_1 and S_2
 - Conquer: combine the solutions for S_1 and S_2 into a solution for S
- The base case for the recursion are subproblems of size 0 or 1

Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm

Merge-Sort

- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S_1 and S_2 of about n/2 elements each
 - lacktriangle Recur: recursively sort S_1 and S_2
 - Conquer: merge S_1 and S_2 into a unique sorted sequence

Algorithm mergeSort(S, C)

Input sequence S with n elements, comparator COutput sequence S sorted according to Cif S.size() > 1 $(S_1, S_2) \leftarrow partition(S, n/2)$

 $(S_1, S_2) \leftarrow partition(S, n/2)$ $mergeSort(S_1, C)$ $mergeSort(S_2, C)$ $S \leftarrow merge(S_1, S_2)$

Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences *A* and *B* into a sorted sequence *S* containing the union of the elements of *A* and *B*
- Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes O(n) time

```
Algorithm merge(A, B)
   Input sequences A and B with n/2 elements each
   Output sorted sequence of A \cup B
   S \leftarrow empty sequence
   while \neg A.empty() \land \neg B.empty()
       if A.front() < B.front()
           S.addBack(A.front()); A.eraseFront();
       else
           S.addBack(B.front()); B.eraseFront();
   while \neg A.empty()
       S.addBack(A.front()); A.eraseFront();
   while \neg B.empty()
       S.addBack(B.front()); B.eraseFront();
   return S
```

Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree
 - each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
 - the root is the initial call
 - the leaves are calls on subsequences of size 0 or 1

Analysis of Merge-Sort

- lacktriangle The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,
- lacktriangle The overall amount or work done at the nodes of depth i is O(n)
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make 2^{i+1} recursive calls
- \bullet Thus, the total running time of merge-sort is $O(n \log n)$

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)
insertion-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)
heap-sort	$O(n \log n)$	 fast in-place for large data sets (1K — 1M)
merge-sort	$O(n \log n)$	fastsequential data accessfor huge data sets (> 1M)