

Fatima Jinnah Women University

Department Of Software Engineering

PROJECT

Course Title Operating System (105)

Submitted ToDr. Mehreen Sirshar

Submitted By

Mariam Fatima

Registration No: 2021-BSE-020

Date of Submission January 04, 2022

Contents

first receives the

movie ticket first

TICKET COUNTER SCHEDULING SYSTEM	3
FIRST COME FIRST SERVE (FCFS)	3
WHY USED FCFS?	3
FCFS IN TICKET COUNTER SCHEDULING SYSTEM	3
ADVANTAGES OF FCFS	3
DISADVANTAGES OF FCFS	3
FLOW CHART	4
ALGORITHM	5
GANTT CHART	5
FINAL GANTT CHART	8
WAITING TIME	8
AVERAGE WAITING TIME	8
TURN AROUND TIME	8
AVERAGE TURN AROUND TIME	8
CALCULATION OF AVERAGE WAITING AND TURN AROUND TIME	9
REFERENCES	11

last will receive

the ticket last

TICKET COUNTER SCHEDULING SYSTEM

- Ticket Counter Scheduling System is the real-life example of First Come First Serve Algorithm.
- In this example, the process of **buying a movie ticket at the ticket counter** and **the allocation of seat in the cinema** are scheduled.

FIRST COME FIRST SERVE (FCFS)

- **First Come First Serve (FCFS)** is a scheduling algorithm that **executes queued** requests/processes in order of their arrival.
- In this scheduling algorithm, requests/processes are served according to the queue manner.

WHY USED FCFS?

• We have used FCFS and not SJF because we **do not know the time each person will take buying** a ticket at the ticket counter.

FCFS IN TICKET COUNTER SCHEDULING SYSTEM

• In this scheduling algorithm, the person who arrives first in the queue **first buys theticket** and **first gets the seat** and then the next one. This will continue until the last person in the queue purchases the ticket and gets the seat.

ADVANTAGES OF FCFS

- Simple
- User-Friendly
- Easy to understand
- Easy to implement

DISADVANTAGES OF FCFS

- Non-preemptive nature (processes wait until the current program completes).
- Convoy Effect (Short processes behind long processes).
- Long waiting time.
- Incompatible with time-sharing systems.

Figure - The Convey Effect, Visualized

FLOW CHART

ALGORITHM

- Start
- First person standing in the queue will get ticket first.
- If first person served completely
- Seat in the cinema allotted.
- Else in case of any issue (person having not enough money to buy a ticket and wants to go to ATM first)
- Person will again have to stand in the queue.
- End

GANTT CHART

• Five processes (people) arriving at different times at the ticket counter. Each process (person) has a different burst time.

Processes	Arrival Time	Burst Time	Completion Time
P1	2	6	17
P2	5	2	23
P3	1	8	11
P4	0	3	3
P5	4	4	21

- Using the FCFS scheduling algorithm, these processes (people) are handled as follows.
- 1. The process begins with P4 which has arrival time 0.

P4

2. At time=1, P3 arrives. P4 is still executing. Hence, P3 is kept in a queue.

1

P3

P4

					2			
3	P1							
	P4							
4.	At time=3	3. P4 pro	cess com	pletes its	execution.			
		•	•		3			
23	P1							
	P4	1					1	
	Г4							
5.	At time=4	1, P3, wł	nich is firs	et in the o	queue, starts exc	ecution.		
		4, P3, wh	nich is firs	et in the c	queue, starts exe	ecution.		
	At time=4	4, P3, wh	nich is firs	et in the c		ecution.		
	P5	4, P3, wh		et in the c		ecution.	1	
		4, P3, wh	P3	et in the c		ecution.		
21	P5		P3		4	ecution.		
P1	P5		P3			ecution.		
21	P5		P3		4	ecution.		
6.	P5		P3		ot in a queue.	ecution.		
21	P5 P4 At time =	5, P2 arı	P3		ot in a queue.	ecution.		

	Tit tillie 11	, P3 comple	etes its execu	ition.	_			
				13	L			
P1	P5	P2						
<u>-</u>								
	P4	P	3					
8.	At time=11 interval 17		execution. It	_	est time of 6.	It comple	tes execut	tion at time
DE	D2			<u> </u>				
P5	P2							
	P4		P3		P1			
				21				
P2								
2								
·2	P4		P3		P1		P5	
				has a bur	est time of 2.	It comple		tion at time
P2). At time=21			_	est time of 2.	It comple		tion at time

FINAL GANTT CHART

	P4	Р3	P1	P5	P2
0	3	11	1	.7 2	1 23

WAITING TIME

(Start Time – Arrival Time)

Processes (People)	Waiting Time
P1	11 - 2 = 9
P2	21 - 5 = 16
Р3	3 - 1 = 2
P4	0 - 0 = 0
P5	17 - 4 = 13

AVERAGE WAITING TIME

(Total Waiting Time / No. of Waiting Time)

$$= 0 + 2 + 9 + 13 + 16 / 5$$
$$= 40 / 5$$
$$= 8$$

TURN AROUND TIME

(Completion Time - Arrival Time)

Processes (People)	Turn Around Time
P1	17 - 2 = 15
P2	23 - 5 = 18
P3	11 - 1 = 10
P4	3 - 0 = 3
P5	21 - 4 = 17

AVERAGE TURN AROUND TIME

(Total Turn Around Time / No. of Turn Around Time)

$$= 15 + 18 + 10 + 3 + 17 / 5$$

CALCULATION OF AVERAGE WAITING AND TURN AROUND TIME

```
#include"stdafx.h"
#include<iostream>
using namespace std;
void Waiting_Time(int processes[], int n, int bt[], int wt[])
wt[0] = 0;
for (int i = 1; i < n; i++)
wt[i] = bt[i-1] + wt[i-1];
void TurnAround_Time( int processes[], int n, int bt[], int wt[], int tat[])
{
for (int i = 0; i < n; i++)
tat[i] = bt[i] + wt[i];
}
void Average_Time( int processes[], int n, int bt[])
int wt[n], tat[n], total_wt = 0, total_tat = 0;
Waiting_Time(processes, n, bt, wt);
TurnAround_Time(processes, n, bt, wt, tat);
cout << "P"<< " B-time " << " W-time " << " TA-time" << endl;
for (int i=0; i< n; i++)
total_wt = total_wt + wt[i];
```

```
total_tat = total_tat + tat
cout << " " << i+1 << "\t" << bt[i] << "\t " << wt[i] << "\t\t" " << tat[i] << endl;
}
cout << "Average waiting time = " << (float)total_wt / (float)n << endl;
cout << "Average turn around time = " << (float)total_tat / (float)n << endl;
}
int main()
{
int processes[] = { 1, 2, 3, 4, 5};
int n = sizeof processes / sizeof processes[0];
int burst_time[] = {6, 2, 8, 3, 4};
Average_Time(processes, n, burst_time);
system("pause");
return 0;
}</pre>
```

Output:

```
■ C:\Users\ALAM-PC\documents\visual studio 2010\Projects\Lab\Debug\Lab.exe
Process B-time W-time TA-time
        6
                           15
         2
                  16
                           18
                  2
                           10
         3
                  0
                           3
                  13
                           17
Average waiting time = 8
Average turn around time = 12
Press any key to continue . . .
```

•	www.geeksforgeeks.org www.ecomputernotes.com	REFERENCES

