

Ayudantía 6 - Relaciones

Héctor Núñez, Paula Grune, Manuel Irarrázaval

Resumen

Relación Binaria

Una relación binaria es un conjunto de pares ordenados que establece una conexión o asociación entre elementos de dos conjuntos distintos.

R es una relación binaria entre A y B si $R \subseteq A \times B$.

Propiedades de una Relación Binaria

Refleja

Una relación R es refleja si para todo elemento x en el conjunto, el par (x,x) está en R.

$$\forall x \in A, (x, x) \in R$$

Irrefleja

Una relación R es irrefleja si ningún par (x,x) está en R para cualquier x en el conjunto.

$$\forall x \in A, (x, x) \notin R$$

Simétrica

Una relación R es simétrica si para cada par (x, y) en R, también está presente el par (y, x).

$$\forall x, y \in A, (x, y) \in R \rightarrow (y, x) \in R$$

Antisimétrica

Una relación R es antisimétrica si para cualquier par (x,y) en R, si $x \neq y$, entonces el par (y,x) no está en R.

$$\forall x, y \in A, (x, y) \in R \land x \neq y \rightarrow (y, x) \notin R$$

Transitiva

Una relación R es transitiva si para cada par (x, y) y (y, z) en R, el par (x, z) también está en R.

$$\forall x, y, z \in A, (x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R$$

Conexidad

Una relación R es conexa si para cada par de elementos x,y podemos encontar a (x, y) en R, o a (y, x) en R.

$$\forall x, y \in A, (x, y) \in R \lor (y, x) \in R$$

Relación de Equivalencia

Una relación de equivalencia es una relación binaria que cumple **reflexividad**, **simetría** y **transitividad**.

A la relación se le denota como $x \sim y$.

Clase de equivalencia

Dado $x \in A$, la clase de equivalencia de x bajo \sim es el conjunto

$$[x]_{\sim} = \{ y \in A \mid x \sim y \}$$

Conjunto cuociente

Sea \sim una relación de equivalencia sobre un conjunto A. El conjunto cuociente de A con respecto a \sim es el conjunto de todas las clases de equivalencia de \sim :

$$A/\!\!\sim \ = \{[x] \mid x \in A\}$$

Pregunta 1 (Ross, 9.1, p49)

Dado un conjunto de n elementos, indique cuantas relaciones posibles existen de los siguientes tipos:

- 1. simetricas
- 2. antisimetricas
- 3. asimetricas
- 4. irreflejas
- 5. reflejas y simetricas
- 6. ni relejas ni irreflejas

Propuesto: transitivas, con n = 1, 2 y 3.

Pregunta 2

Sea $\{0,1\}^* = \{\epsilon,0,1,00,01,10,11,000,\ldots\}$ el conjunto de todas las palabras (strings) binarias y sea $u \cdot v$ la concatenación de dos palabras $u,v \in \{0,1\}^*$ (ej. $00 \cdot 101 = 00101$). Se define la relación $R \subseteq \{0,1\}^* \times \{0,1\}^*$:

 $(w_1,w_2) \in R$ si, y solo si, existen palabras u y vtal que $w_1 = u \cdot v$ y $w_2 = v \cdot u.$

- 1. Demuestre que R es una relación de equivalencia sobre $\{0,1\}^*$.
- 2. Interprete en palabras a qué corresponden las clases de equivalencia de R.

Pregunta 3

Sea A un conjunto y \sim una relación de equivalencia.

- 1. Demuestre que \sim^{-1} es una relación de equivalencia.
- 2. Considere la relación identidad I_A definida como $I_A = \{(x,x) \mid x \in A\}$. Demuestre las siguientes afirmaciones. (1 pto.) $I_A \subseteq \sim$ (2 ptos.) Si $I_A \subsetneq \sim$ y \sim es finito, entonces $|\sim |I_A| \ge 2$