Pra-PSPM SP015 Set 1

NO.	ANSWER SCHEME	MARK
1.	$v^2 = u + 2as$	
	$[v^2] = (L T^{-1})^2 = L^2 T^{-2}$	
	$[u] = L T^{-1}$	
	$[2as] = 1 (LT^{-2})(L) = L^2T^{-2}$	J1
	Since $[v^2] = [2as] \neq [u] \Rightarrow$ This equation is not homogenous.	J1
	TOTAL	2
2. (a)(i)	Given $u = 345 \text{ m s}^{-1}$, $v = 260 \text{ m s}^{-1}$, $s = 5.5 \text{ cm}$	
	$v^2 = u^2 + 2as$	
	$260^2 = 345^2 + 2a\left(5.5 \times 10^{-2}\right)$	G1
	$a = -4.68 \times 10^5 \text{ m s}^{-2}$	
	Deceleration through the box is 4.68×10^5 m s ⁻² .	JU1
2. (a)(ii)	Using equation: $v = u + at$	
	Time taken to get through the box,	
	$t = \frac{v - u}{a}$	
	$t = \frac{260 - 345}{-4.68 \times 10^5}$	G1
	-4.68×10^{3} $t = 1.82 \times 10^{-4} \text{ s}$	JU1
2. (b)(i)	Projectile Motion	
	$v_y^2 = u_y^2 - 2gs_y$	
	$0^2 = (25 \sin 53^\circ)^2 + 2(9.81) H$	G1
	$H = 20.32 \mathrm{m}$	
	So, the maximum height from the ground = $20.32 + 60 = 80.32$ m	JU1

NO.	ANSWER SCHEME	MARK
2. (b) (ii)	Horizontal velocity,	
	$v_x = u_x$ $v_x = 25 \cos 53^\circ$ $v_x = 15.05 \text{ m s}^{-1}$	G1
	Vertical velocity,	
	$v_y = u_y - gt$ $v_y = 25\sin 53^\circ - 9.81 (6.08)$	
	$v_y = -39.7 \mathrm{m s^{-1}}$	G1
	Or use $v_y^2 = u_y^2 - 2gs_y$ where $s_y = -60 \text{ m}$	
	Speed, $v = \sqrt{v_x^2 + v_y^2}$	
	$v = \sqrt{15.05^2 + 39.7^2}$	G1
	$v = 42.46 \mathrm{m s^{-1}}$	JU1
	TOTAL	10
3. (a)	Impulse, $J = mv - mu = F\Delta t$	
	Average force, $F = \frac{mv - mu}{\Delta t}$	
	$F = \frac{50 \times 10^{-3} (50 - 0)}{0.7 \times 10^{-3}}$	G1
	$F = 3.57 \times 10^3 \text{ N}$	JU1
3. (b)(i)	Time duration, $t = 40 - 30$ t = 10 ms at maximum force 6 N	JU1
3. (b)(ii)	Impulse, $J = \text{area under } F - t \text{ graph}$ $J = 4 (5 \times 10^{-3}) + \frac{1}{2} (4 + 6) (10 \times 10^{-3}) + 6 (10 \times 10^{-3})$ $J = 0.13 \text{ kg m s}^{-1}$	K1 G1 JU1

NO.	ANSWER SCHEME	MARK
3. (c)(i)	Given $m_1 = 10 \text{ kg}, m_2 = 5 \text{ kg}$	
	Identify the forces:	
	$\begin{array}{c c} & 10 \text{ kg} \\ & W_1 \end{array}$	
	Free body diagram	
	10 kg	
	$a \downarrow \qquad \stackrel{T}{\longleftarrow} \qquad W_1$	D2
	1 mark for each correct force and direction.	
	5 kg T W_2 3 correct forces and directions, 2 marks.	D2
	1 mistake, deduct 1 mark.	

NO.	ANSWER SCHEME	MARK
3. (c)(ii)	Apply Newton's second law,	
	$\Sigma \vec{F}_{\mathcal{V}} = \vec{F}_{\mathrm{net}}$	
	$m_1g - T = m_1a$	
	10g - T = 10a	K1
	T = 10g - 10a (1)	
	$\Sigma ec{F}_{_{_{ m Y}}} = ec{F}_{_{ m net}}$	
	$T - m_2 g \sin 40^\circ = m_2 a$	K1
	$T - 5g \sin 40^\circ = 5a$	11.1
	$T = 5g \sin 40^{\circ} + 5a \dots (2)$	
	Acceleration of the crates, $a = 4.44 \text{ m s}^{-2}$.	JU1
	TOTAL	13
4. (a)	$\nabla F = \nabla F$	
τ. (α)	$\Sigma E_{i} = \Sigma E_{f}$ $U = K$	
	$mgh = \frac{1}{2}mv^2$	K1
	2	
	$gh = \frac{1}{2}v^2$	
	$g = \frac{v^2}{2h}$	
	$g = \frac{12^2}{2(60)}$	
	$g = 1.2 \mathrm{m s^{-2}}$	GJU1
		G 301
	Acceleration of gravity, g on this planet is 1.2 m s ⁻² .	
4. (b)(i)	Work done by the pushing force, $W_F = Fs \cos \theta$	
1. (0)(1)	Work done by the pushing force, $W_F = Fs \cos \theta$ $W_F = 50 (12) \cos 40^{\circ}$	G1
	$W_F = 459.63 \mathrm{J}$	JU1
	,, F = 137.030	
4. (b)(ii)	$W_F = \Delta K$	
	$W_F = \frac{1}{2} m v^2 - \frac{1}{2} m u^2$	
	$459.63 = \frac{1}{2}(10)v^2 - \frac{1}{2}(10)(0)^2$	G1
	$v = 9.59 \mathrm{m s^{-1}}$	JU1
	-	

NO.	ANSWER SCHEME	MARK
4. (b)(iii)	Given $t = 15 \text{ min} = 15 \times 60 \text{ s} = 900 \text{ s}$	
	W_{F}	
	Power supplied by the force, $P = \frac{W_F}{t}$	
	$P = \frac{459.63}{15 \times 60}$	G1
	15×60 $P = 0.51 \mathrm{W}$	JU1
	1 0.31 \	301
	TOTAL	8
5. (a)	Given $d = 25 \text{ m} \implies r = 12.5 \text{ m}$	
	$a_{\rm c} = r\omega^2$	
	$10 = 12.5\omega^2$	K1
	10	
	$\omega = \sqrt{\frac{10}{12.5}}$	G1
	$\omega = 0.89 \mathrm{rad}\mathrm{s}^{-1}$	JU1
5. (b)	$F_{c} = ma_{c}$	
	$F_{\rm c} = 50 (10)$	G1
	$F_{\rm c} = 500 {\rm N}$	JU1
	TOTAL	5
6. (a)	Given displacement, $y = 5 \sin 2\pi t$	
(i)	Velocity, $v = A\omega \cos \omega t$	
	$v = 5(2\pi)\cos 2\pi t$	
	$v = 5 (2\pi) \cos \left[2\pi (4) \right]$	G1
	$v = 10\pi$	JU1
	$v = 31.42 \mathrm{cm}\mathrm{s}^{-1}$ or $0.314 \mathrm{m}\mathrm{s}^{-1}$	301
	Acceleration, $a = -A\omega^2 \sin \omega t$	G1
	$a = -5\left(2\pi\right)^2 \sin 2\pi t$	
	$a = -5(2\pi)^2 \sin[2\pi(4)]$	J1
	$a = 0 \mathrm{cm}\mathrm{s}^{-2}$	JI

NO.	ANSWER SCHEME	MARK
6. (a)(ii)	Maximum speed, $v = A\omega$ $v = 5 (2\pi)$ $v = 10\pi$ $v = 31.42 \text{ cm s}^{-1}$ or 0.314 m s^{-1}	GJU1
	Maximum acceleration, $a = A\omega^2$	
	$a = 5 (2\pi)^2$ $a = 197.39 \text{ cm s}^{-2} \text{ or } 1.97 \text{ m s}^{-2}$	GJU1
6. (a)(iii)	Total energy of the system, $E = \frac{1}{2}m\omega^2 A^2$ $E = \frac{1}{2}(0.2)(2\pi)^2(5 \times 10^{-2})^2$ $E = 9.87 \times 10^{-3} \text{ J}$	G1 JU1
6. (b)(i)	Frequency, $f = \frac{1}{T}$	
	$f = \frac{1}{1.6}$ $f = 0.625 \text{ Hz}$	G1 JU1
		JU1
6. (b)(ii)	Speed of wave, $v = f\lambda$ v = 0.625 (0.75) $v = 0.47 \text{ m s}^{-1}$	G1 JU1
6. (c)(i)	Angular frequency, $\omega = 2\pi f$ $\omega = 2\pi (8)$ $\omega = 16\pi \text{ rad s}^{-1} \text{or} \omega = 50.27 \text{ rad s}^{-1}$ Wave number, $k = \frac{2\pi}{\lambda}$ $k = \frac{2\pi}{0.40}$	G1 JU1 G1
	$k = 5\pi \text{ rad m}^{-1}$ or $k = 15.71 \text{ rad m}^{-1}$	JU1
6. (c)(ii)	$y = A \sin (\omega t - kx)$ $y = 0.15 \sin (16\pi t - 5\pi x)$	K1
	where y and x in m and t in second.	JU1

NO.	ANSWER SCHEME	MARK
6. (d)(i)	Mass per unit length, $\mu = \frac{m}{L}$ $\mu = \frac{1 \times 10^{-3}}{0.5}$ $\mu = 2 \times 10^{-3} \text{ kg m}^{-1}$	G1
	Speed of transverse wave on the string, $v = \sqrt{\frac{T}{\mu}}$ $v = \sqrt{\frac{100}{2 \times 10^{-3}}}$ $v = 223.61 \text{m s}^{-1}$	G1 JU1
6. (d)(ii)	$f_n = \frac{nv}{2L}$ Fundamental frequency, $f_1 = \frac{1(223.61)}{2(0.5)}$	G1
	$f_1 = 223.61 \mathrm{Hz}$	JU1
	TOTAL	23
7. (a)(ii)	Stress, $\sigma = \frac{F}{A}$	
	Force, $F = \sigma A$	
	$F = 1.2 \times 10^{8} (2.0 \times 10^{-6})$ $F = 240 \text{ N}$	G1 JU1
7. (b)(i)	$L = L_{o}(1 + \alpha \Delta T)$	
	$4.004 = 4.000[1 + 2.5 \times 10^{-5})(T - T_0)]$ $1.001 = (1 + 2.5 \times 10^{-5})(T - 20)$	G1
	T - 20 = 40	JU1
	Temperature of the disc, $T = 60 ^{\circ}\text{C}$	

NO.	ANSWER SCHEME	MARK
7. (b)(ii)	eta=2lpha	
	$\beta = 2(2.5 \times 10^{-5})$	CH11
	$\beta = 5.0 \times 10^{-5} ^{\circ}\text{C}^{-1}$	GJU1
7. (b)(iii)	Coefficient of linear expansion, $\alpha = 2.5 \times 10^{-5} ^{\circ}\text{C}^{-1}$	
	Coefficient of area expansion, $\beta = 5.0 \times 10^{-5} ^{\circ}\text{C}^{-1}$	
	$\frac{\alpha}{\beta} = \frac{2.5 \times 10^{-5}}{5.0 \times 10^{-5}}$	
	,	
	$\frac{\alpha}{\beta} = \frac{1}{2}$	
	Ratio between the coefficient of linear and area expansion = 1:2	GJ1
	TOTAL	8
8. (a)(i)	Total kinetic energy, $K = \frac{f}{2}nRT$	
	$K = \frac{3}{2}(2)(8.31)(20 + 273)$	G1
	$K = 7.31 \times 10^3 \text{ J}$	JU1
	K = 7.51×10 J	
8. (a)(ii)	Average kinetic energy, $K_{av} = \frac{f}{2}kT$	
	$K_{\rm av} = \frac{3}{2} (1.38 \times 10^{-23})(20 + 273)$	G1
	$K_{\rm av} = 6.07 \times 10^{-21} \mathrm{J}$	JU1
	$R_{\rm av} = 0.07 \times 10^{-3}$	
8. (b)	Internal energy, $U = \frac{f}{2} nRT$	
	$U = \frac{3}{2}(0.98)(8.31)(300)$	G1
	$U = 3.66 \times 10^3 \text{ J}$	JU1
	U − 3.00×10 J	001
8. (c)(i)	Total work done, $W = $ area under $P - V$ graph from A to C	
	$W = 1(1.013 \times 10^5)(4-8) \times 10^{-3}$	G1
	$W = -405.2 \mathrm{J}$	JU1

NO.	ANSWER SCHEME	MARK
8. (c)(ii)	$\mathbf{A} \to \mathbf{B} \implies \text{isobaric} \implies P_{\mathbf{A}} = P_{\mathbf{B}} = 1 \text{ atm}$	
	Charles' law, $V \propto T$	
	$\frac{V_{A}}{T_{A}} = \frac{V_{B}}{T_{B}}$ $\frac{8}{T_{A}} = \frac{4}{T_{B}}$ $T_{A} = 2T_{B}$ $\mathbf{B} \to \mathbf{C} \implies \text{isochoric} \implies V_{B} = V_{C}$	G1
	Gay – Lussac law, $P \propto T$	
	$\frac{P_{\rm C}}{T_{\rm C}} = \frac{P_{\rm B}}{T_{\rm B}} \text{where} T_{\rm C} = T_{\rm A} = 2T_{\rm B}$	
	$\frac{P_{\rm f}}{2T_{\rm B}} = \frac{1}{T_{\rm B}}$	G1
	$P_{\rm f}=2{\rm atm}$	JU1
	TOTAL	11
	GRAND TOTAL	80