Matemática Computacional :: Quadratura maria irene falcão

Mestrado em Matemática e Computação

3. Quadratura Numérica

3.1 Quadratura: background

3.1.1 Regras de Newton-Cotes

Consideremos o problema de estimar o valor de um certo integral

$$I = \int_{a}^{b} f(x)dx,$$

o qual supomos existir, e suponhamos que tal é feito usando uma regra de quadratura da forma

$$I \approx Q_n(f) = \sum_{i=1}^n w_i f(x_i). \tag{3.1}$$

Os pontos x_i são chamados **abcissas** (ou **pontos de quadratura**) da regra de quadratura e os coeficientes w_i são chamados **pesos** dessa regra. Ao erro resultante da substituição do integral pelo valor dado pela regra, chamamos **erro de quadratura** da regra em questão. 1

Diz-se que uma regra de quadratura tem **precisão** m (ou é de grau m) se for exata para todos os polinómios de grau não superior a m e existir, pelo menos, um polinómio de grau m+1 que não é integrado exatamente por essa fórmula.

As regras de quadratura de Newton-Cotes (fechadas) são regras do tipo (3.1), nas quais:

• se consideram para abcissas os n pontos igualmente espaçados no intervalo [a,b],

$$x_i = a + (i-1)h; \ i = 1, \dots, n; \ h = \frac{b-a}{n-1};$$
 (3.2)

• os pesos w_i são determinados substituindo a função integranda f pelo polinómio P_{n-1} de grau não superior a n-1 que interpola f nas n abcissas x_i .

Exercício 3.1 Mostre que os pesos w_i da regra de Newton-Cotes com n abcissas x_1, \ldots, x_n são dados por

$$w_i = \int_a^b L_i(x)dx; i = 1, \dots, n,$$

onde $L_i(x)$ são os polinómios de Lagrange relativos às abcissas x_1, \ldots, x_n .

¹Referimo-nos, aqui, ao erro de truncatura, não considerando os eventuais erros de arredondamento cometidos ao efetuar os cálculos.

Exercício 3.2 Mostre que a precisão de uma regra de quadratura de Newton-Cotes com n abcissas x_1, \ldots, x_n é, no máximo, 2n-1.

Exercício 3.3 Mostre que a regra de quadratura de Newton-Cotes para n=2 é dada por

$$Q_2[f] = \frac{h}{2} \Big[f(x_1) + f(x_2) \Big].$$

Esta regra é conhecida pelo nome do **regra do trapézio**. Interprete geometricamente esta regra e apresente uma justificação para esta designação.

Apresentamos, de seguida, uma tabela com os pesos e a expressão do erro de quadratura 2 das fórmulas de Newton-Cotes fechadas para $n=2,\ldots,9$. Para simplificar a tabela, consideramos as fórmulas escritas na forma

$$Q_n(f) = \mathbf{C}_n h [w_1 f_1 + \ldots + w_n f_n]$$

e indicamos, em cada caso, o valor de C_n e dos coeficientes w_i ; $i=1,\ldots,\lfloor (n+1)/2\rfloor$; os restantes coeficientes w_i podem ser obtidos por simetria, isto é, $w_{n+1-i}=w_i$. Indicamos também o nome por que são conhecidas algumas dessas regras.

n	\mathbf{C}_n	w_1	w_2	w_3	w_4	w_5	$E_n(f)$	Nome
2	$\frac{1}{2}$	1					$-\frac{h^3}{12}f^{(2)}(\eta)$	Trapézio
3	$\frac{1}{3}$	1	4				$-\frac{h^5}{90}f^{(4)}(\eta)$	Simpson
4	38	1	3				$-\frac{3h^5}{180}f^{(4)}(\eta)$	Três oitavos
5	2 45	7	32	12			$-\frac{8h^7}{945}f^{(6)}(\eta)$	Milne
6	<u>5</u> 288	19	75	50			$-\frac{275h^7}{12096}f^{(6)}(\eta)$	_
7	$\frac{1}{140}$	41	216	27	272		$-\frac{9h^9}{180}f^{(8)}(\eta)$	Weddle
8	7 17 280	751	3577	1323	2989		$-\frac{8183h^9}{518400}f^{(8)}(\eta)$	_
9	$\frac{4}{14175}$	989	5888	-928	10496	-4540	$-\frac{2368h^{11}}{467775}f^{(10)}(\eta)$	_

Fórmulas de Newton-Cotes

3.1.2 Regras compostas

As regras de Newton-Cotes para valores de n elevado têm pesos negativos e positivos, sendo sujeitas a problemas de instabilidade, pelo que são raramente utilizadas. Em vez disso, poderá recorrer-se ao uso de regras compostas. A ideia das regras compostas é subdividir o intervalo de integração [a,b] num certo número de subintervalos e aplicar as regras simples em subintervalos. Temos, em particular os seguintes resultados.

Teorema 3.1 (Regra do Trapézio Composta)

²Supondo que a função integranda é suficientemente diferenciável em [a, b].

Seja $f\in C^2[a,b]$ e sejam $x_i=a+(i-1)h$; $i=1,\ldots,N+1$, com $h=rac{b-a}{N}$. Então, tem-se

$$\int_{a}^{b} f(x)dx = T_{N}(f) + E_{T_{N}}(f), \tag{3.3}$$

onde

$$T_N(f) := \frac{h}{2} \left[f_1 + 2 \left(f_2 + \dots + f_N \right) + f_{N+1} \right] \quad \text{e} \quad E_{T_N}(f) = -\frac{(b-a)h^2}{12} f^{(2)}(\eta). \tag{3.4}$$

Teorema 3.2 (Regra de Simpson composta)

Seja $f \in C^4[a,b]$ e sejam $x_i = a + (i-1)h$; i = 1, ..., 2m+1, com h = (b-a)/2m. Então,

$$\int_{a}^{b} f(x)dx = S_{2m}(f) + E_{S_{2m}}(f), \tag{3.5}$$

onde

$$S_{2m}(f) := \frac{h}{3} \left[f_1 + 4 \left(f_2 + \dots + f_{2m} \right) + 2 \left(f_3 + \dots + f_{2m-1} \right) + f_{2m+1} \right]$$
 (3.6)

е

$$E_{S_{2m}}(f) = -\frac{(b-a)h^4}{180}f^{(4)}(\eta). \tag{3.7}$$

3.1.3 Exercícios

Exercício 3.4

a) Deduza a chamada Regra do Ponto Médio,

$$\int_{a}^{b} f(x) dx = h f(\frac{a+b}{2}) + \frac{h^{3}}{24} f''(\xi), \quad \xi \in (a,b),$$
 (3.8)

onde h = b - a e se supõe $f \in C^2[a, b]$.

- b) Interprete geometricamente a regra anterior.
- c) A partir da regra (3.8), deduza a Regra do Ponto Médio Composta

$$\int_{a}^{b} f(x)dx = h \sum_{i=1}^{N} f_{i+\frac{1}{2}} + \frac{h^{2}}{24}(b-a)f''(\eta),$$

onde $x_{i+\frac{1}{2}}=a+(2i-1)\frac{h}{2}, i=1,\ldots,N, h=\frac{b-a}{N}, f_{i+\frac{1}{2}}:=f(x_{i+\frac{1}{2}})$ e $\eta\in(a,b)$.

d) Use a regra definida na alínea anterior, com N=10, para estimar o valor de $I=\int_0^1 \left(1+e^{-x}\sin 4x\right)\,dx$..

Exercício 3.5 Considere o integral

$$I = \int_1^6 \left(2 + \operatorname{sen}(2\sqrt{x})\right) \, dx.$$

- a) Obtenha aproximações para I, usando a regra do trapézio composta com N subintervalos, T_N , para os seguintes valores sucessivos de N: 10, 20, 40, 80 e 160.
- b) Sabendo que o valor do integral (com 10 c.d.) é I=8.1834792077, calcule $|E_{T_N}|$ para os sucessivos valores de N e diga se os resultados confirmam a ordem de aproximação $\mathcal{O}(h^2)$ (h=(b-a)/N) da regra do trapézio composta.

Exercício 3.6

a) Estabeleça a seguinte estimativa³ para o erro da regra do trapézio com N subintervalos (N par):

$$|E_{T_N}(f)| \approx \left| \frac{T_N(f) - T_{N/2}(f)}{3} \right|.$$
 (3.9)

b) Considere o integral

$$I = \int_{-0.1}^{0.1} \cos x dx.$$

Estime o valor de I usando T_4 e T_8 e obtenha, então, uma estimativa para $|E_{T_8}|$. Compare essa estimativa com o erro efetivamente cometido.

Exercício 3.7 Seja S_N um valor aproximado para o integral $I=\int_a^b f(x)dx$ obtido usando a regra de Simpson composta com N subintervalos (N múltiplo de 4) e seja $E_{S_N}(f)$ o respetivo erro de truncatura. Estabeleça a seguinte estimativa⁴ para o erro:

$$|E_{S_N}(f)| \approx \left| \frac{S_N(f) - S_{N/2}(f)}{15} \right|.$$
 (3.10)

Exercício 3.8 Obtenha informação sobre a função integral do Matlab e utilize-a para estimar os integrais cujo cálculo é requerido nas alíneas seguintes.

a) A função erro, erf, é definida por

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt \,.$$

Determine uma estimativa para erf(0.5).

Use a função pré-definida erf para estimar novamente o valor $\operatorname{erf}(0.5)$, comparando com o valor obtido por integração.

b) Tendo em conta que a área do círculo unitário é $A=\pi$, deduza que

$$\frac{\pi}{4} = \int_0^1 \sqrt{1 - x^2} dx \,.$$

Obtenha uma estimativa para π , usando o integral anterior.

 $^{^3 \}text{Assuma que } f \in C^{(2)}[a,b]$ e que $f^{(2)}$ não varia muito no intervalo [a,b].

⁴Assuma que $f \in C^{(4)}[a,b]$ e que $f^{(4)}$ não varia muito no intervalo [a,b].

3.2 Quadratura Gaussiana

As regras de quadratura de Newton-Cotes são da forma

$$I(f) = \int_a^b f(x)dx \approx \sum_{i=0}^n A_i f(x_i)$$
(3.11)

onde as abcissas x_i são igualmente espaçadas em [a,b] e onde os pesos A_i são dadas por $\int_a^b L_i(x)dx$ (cf Exercício 3.1). Tais fórmulas são, como vimos, exatas para polinómios de grau $\leq n$ (ou, sendo n par, exatas para polinómios de grau $\leq n+1$). É, no entanto, possível, obter regras do tipo (3.11) exatas para polinómios de grau 2n+1, escolhendo as abcissas **apropriadamente**. Esta é a ideia básica das regras de quadratura Gaussiana.

Exemplo 3.1 Suponhamos, sem perda de generalidade, que $[a,b]=[-1,1]^{5}$ e que pretendemos encontrar uma regra de quadratura do tipo

$$I(f) = \int_{-1}^{1} f(x)dx \approx A_0 f(x_0) + A_1 f(x_1)$$
(3.12)

que seja exata para polinómios de grau ≤ 3 . Como a integração é um processo linear, a fórmula (3.12) será exata para polinómios de grau ≤ 3 se e só se integrar exatamente os polinómios $1, x, x^2$ e x^3 . Ter-se-á, então

$$\int_{-1}^{1} 1 dx = A_0 + A_1; \quad \int_{-1}^{1} x dx = A_0 x_0 + A_1 x_1; \quad \int_{-1}^{1} x^2 dx = A_0 x_0^2 + A_1 x_1^2; \quad \int_{-1}^{1} x^3 dx = A_0 x_0^3 + A_1 x_1^3,$$

donde se obtêm as seguintes equações

$$\begin{cases} A_0 + A_1 = 2 \\ A_0 x_0 + A_1 x_1 = 0 \\ A_0 x_0^2 + A_1 x_1^2 = \frac{2}{3} \\ A_0 x_0^3 + A_1 x_1^3 = 0 \end{cases}$$

Facilmente se verifica que $A_0=A_1=1$ e $x_0=-\frac{\sqrt{3}}{3}$, $x_1=\frac{\sqrt{3}}{3}$ é solução deste sistema não linear. Temos, então, que a seguinte regra de quadratura

$$\int_{-1}^{1} f(x)dx \approx f(-\frac{\sqrt{3}}{3}) + f(\frac{\sqrt{3}}{3})$$

é exata para polinómios de grau \leq 3.

O processo descrito para obter a regra anterior pode generalizar-se: para obter um regra de quadratura da forma

$$I = \int_{-1}^{1} f(x)dx \approx A_0 f(x_0) + \ldots + A_n f(x_n)$$

⁵Ver Exercício 3.2.

que seja exata para polinómios de grau $\leq 2n+1$, deveremos resolver as seguintes 2n+2 equações não lineares

$$\sum_{i=0}^{n} A_{j} x_{j}^{k} = \alpha_{k}; k = 0, \dots, 2n + 1,$$

onde

$$\alpha_k = \int_{-1}^1 x^k dx = \begin{cases} \frac{2}{k+1} & \text{se } k \text{ par} \\ 0 & \text{se } k \text{ impar} \end{cases}$$

Se tais equações tiverem solução (real) e se encontrarmos a sua solução, obteremos os pesos A_i e as abcissas x_i que procuramos. Esta abordagem algébrica de obter estas regras de quadratura não é, no entanto, a mais adequada. Vamos, assim, procurar deduzi-las por um processo analítico, o qual terá ainda a vantagem de determinar uma fórmula para o erro de quadratura associado a cada uma das regras.

Recordemos a fórmula de interpolação de Hermite (simples) nos pontos x_0, \ldots, x_n :

$$f(x) = \sum_{i=0}^{n} h_i(x)f(x_i) + \sum_{i=0}^{n} \tilde{h}_i(x)f'(x_i) + e_{2n+1}(x)$$
(3.13)

onde

$$h_i(x) = (1 - 2L_i'(x_i)(x - x_i)) L_i^2(x); \qquad \tilde{h}_i(x) = (x - x_i) L_i^2(x),$$

$$e_{2n+1}(x) = \frac{f^{(2n+2)}(\xi_x)}{(2n+2)!} \prod_{i=0}^n (x - x_i)^2.$$

Teremos, então, integrando (3.13) entre -1 e 1:

$$\int_{-1}^{1} f(x)dx = \sum_{i=0}^{n} A_i f(x_i) + \sum_{i=0}^{n} B_i f'(x_i) + \mathcal{E}_{2n+1}(f)$$
(3.14)

onde

$$A_i = \int_{-1}^{1} h_i(x) dx, \qquad B_i = \int_{-1}^{1} \tilde{h}_i(x) dx,$$

$$\mathcal{E}_{2n+1}(f) = \frac{f^{(2n+2)}(\eta)}{(2n+2)!} \int_{-1}^{1} \prod_{i=0}^{n} (x-x_i)^2 dx$$

(Nota: Na determinação da expressão do erro, usámos o Teorema do valor médio para integrais.)

Analisando a expressão de $\mathcal{E}_{2n+1}(f)$, é imediato concluir que a fórmula (3.14) será exata para polinómios de grau $\leq 2n+1$, para qualquer escolha das abcissas x_i . Se for possível escolher as abcissas por forma que os pesos B_i (associados aos valores das derivadas de f) se anulem, então o nosso problema estará resolvido. Mas,

$$B_i = \int_{-1}^{1} (x - x_i) L_i^2(x) dx = \frac{1}{K_i} \int_{-1}^{1} \Pi_{n+1}(x) L_i(x) dx$$

onde

$$\Pi_{n+1}(x) = (x - x_0) \dots (x - x_n)$$
 e $K_i = \prod_{\substack{j=0 \ j \neq i}}^n (x_i - x_j).$

Como $L_i(x)$ é um polinómio de grau n, segue-se de imediato que uma condição **suficiente** para que $B_i=0;\ i=0,\ldots,n,$ é que o polinómio $\Pi_{n+1}(x)$ satisfaça

$$\int_{-1}^{1} \Pi_{n+1}(x) q_n(x) dx = 0$$
 (3.15)

para todo o polinómio q_n de grau $\leq n$.

Prova-se que a condição anterior será satisfeita se considerarmos para x_0, \ldots, x_n os zeros de um determinado polinómio: o chamado **polinómio ortogonal de Legendre de grau** n+1, cuja expressão explícita é

$$P_n(x) = \frac{1}{2^n} \sum_{m=0}^{\lfloor n/2 \rfloor} (-1)^m \binom{n}{m} \binom{2n-2m}{n} x^{n-2m}.$$

Nota 3.1 Os polinómios ortogonais de Legendre formam uma sequência $\{P_n\}$ de polinómios com as seguintes características:

- (i) cada polinómio P_n é de grau exatamente igual a n;
- (ii) polinómios distintos são "ortogonais", no seguinte sentido $\int_{-1}^{1} P_n(x) P_m(x) dx = 0$, $(m \neq n)$.

Pode provar-se facilmente que o polinómio de Legendre de grau n+1 é ortogonal a todos os polinómios de grau não superior a n; além disso, é também possível mostrar que os n+1 zeros de P_{n+1} são reais, distintos e pertencentes ao intervalo [-1,1].

Conclusão: a fórmula de quadratura

$$I(f) = \int_{-1}^{1} f(x)dx \approx \sum_{i=0}^{n} A_{i}f(x_{i})$$
(3.16)

em que as abcissas x_i são os n+1 zeros do polinómio ortogonal de Legendre de grau n+1 e em que os pesos A_i são dados por

$$A_i = \int_{-1}^1 h_i(x)dx = \int_{-1}^1 \left(1 - 2L_i'(x_i)(x - x_i)\right) L_i^2(x)dx \tag{3.17}$$

é exata para polinómios de grau $\leq 2n+1$. ⁶

Nota 3.2 Note-se que, sendo as abcissas x_i os zeros do polinómio de Legendre de grau n+1, então a expressão dos pesos dada por (3.17) simplifica-se, uma vez que se tem

$$A_{i} = \int_{-1}^{1} (1 - 2L'_{i}(x_{i})(x - x_{i})) L_{i}^{2}(x) dx$$

$$= \int_{-1}^{1} L_{i}^{2}(x) dx - 2L'_{i}(x_{i}) \int_{-1}^{1} \Pi_{n+1}(x) L_{i}(x) dx = \int_{-1}^{1} L_{i}^{2}(x) dx.$$
(3.18)

⁶Pode provar-se que esta escolha das abcissas e pesos é a única para a qual um fórmula do tipo (3.16) é exata para quaisquer polinómios de grau $\leq 2n+1$.

A fórmula (3.16) em que as abcissas são os n+1 zeros do polinómio de Legendre de grau n+1 e em que os pesos são dados por (3.18) é chamada **Fórmula de Gauss-Legendre** com n+1 pontos. Os pesos e abcissas das fórmulas de Gauss-Legendre para n com interesse prático encontram-se tabelados⁷. Segue-se uma tabela para os quatro primeiros valores de n.

Abcissas e pesos das fórmulas de Gauss-Legendre (n+1 pontos)

\overline{n}	x_i	A_i	
1	±0.5773503	1.00000000	
2	0.0000000	0.8888889	
	± 0.7745967	0.5555556	
3	±0.3399810	0.6521452	
	± 0.8611363	0.3478548	
4	0.0000000	0.5688889	
	± 0.5384693	0.4786287	
	± 0.9061798	0.2369269	

Exemplo 3.2

a) Mostre que, através de uma mudança de variável, definida por $t=\frac{a+b}{2}+\frac{b-a}{2}x$, se obtém

$$\int_{a}^{b} f(t)dt = \frac{b-a}{2} \int_{-1}^{1} f\left(\frac{a+b}{2} + \frac{b-a}{2}x\right) dx.$$

b) Deduza a seguinte regra de quadratura para estimar o valor do integral

$$\int_{a}^{b} f(t)dt \approx \frac{b-a}{2} \sum_{i=0}^{n} A_{i} f\left(\frac{a+b}{2} + \frac{b-a}{2} x_{i}\right),$$

onde A_i e x_i são, respetivamente, os pesos e as abcissas da fórmula de quadratura de Gauss-Legendre com n+1 pontos.

c) Utilize a fórmula de Gauss-Legendre com três pontos para estimar o valor do integral

$$I = \int_{1}^{5} t^{5} dt.$$

Compare a estimativa obtida com o valor exato do integral e comente.

⁷Veja, e.g. Stroud, A.H. e Secrest, D., *Gaussian Quadrature Formulae*, Prentice-Hall (1966).

3.3 Quadratura Adaptativa

As regras de quadratura adaptativas têm como base o uso de regras compostas, mas neste caso, as amplitudes dos subintervalos são "adaptadas" de acordo com o comportamento local da função integranda.

Dada uma função f e uma tolerância ε para o erro, o objetivo das regras adaptativas é calcular uma aproximação \tilde{I} para $I=\int_a^b f(x)\ dx$ tal que

$$|\tilde{I} - I| < \varepsilon$$
.

 \tilde{I} é obtido aplicando uma regra composta ao intervalo [a,b], dividido em N subintervalos "adaptados" $[x_i,x_{i+1}]$, de forma que o erro ε_i em cada aproximação de

$$\int_{x_i}^{x_{i+1}} f(x) \ dx$$

é tal que

$$\varepsilon_i < \frac{x_{i+1} - x_i}{b - a} \varepsilon.$$

(de modo que $\sum_{i=0}^{N-1} \varepsilon_i < \varepsilon$).

3.3.1 Regra de Simpson Adaptativa

Dada uma função f e uma tolerância arepsilon, pretende obter-se uma aproximação \tilde{I} para

$$I = \int_{a}^{b} f(x) \ dx,$$

baseada na regra de Simpson composta e tal que

$$|\tilde{I} - I| < \varepsilon$$
.

Consideremos que o intervalo [a, b] foi inicialmente dividido em N subintervalos (de igual amplitude),

$$[x_i, x_{i+1}]; i = 0, \dots, N-1; x_0 = a, x_N = b.$$

A regra de Simpson adaptativa consiste em aplicar a cada um dos subintervalos a regra de Simpson e verificar se o erro ε_i satisfaz

$$\varepsilon_i < \frac{x_{i+1} - x_i}{b - a} \varepsilon.$$

Em caso negativo, deve dividir-se cada subintervalo tantas vezes quantas as necessárias para o critério ser satisfeito.

 $^{^8{}m O}$ caso mais simples de considerar é N=1

Algoritmo: Aplicar a cada um dos subintervalos iniciais

$$[x_i, x_{i+1}]; i = 0, \dots, N-1; x_0 = a, x_N = b,$$

o seguinte procedimento:

① Dividir o intervalo em dois subintervalos de igual amplitude $[y_1, y_2]$ e $[y_2, y_3]$ e para cada um deles obter uma aproximação para

$$\int_{u_i}^{y_{i+1}} f(x) \ dx, \ i = 1, 2,$$

usando S(h) e $S(\frac{h}{2})$, sendo $h = y_{i+1} - y_i$.

2 Usar, para cada um dos dois subintervalos obtidos em ①, a estimativa

$$\left|E_S(\frac{h}{2})\right| \approx \frac{1}{15} \left|S(\frac{h}{2}) - S(h)\right| =: \mathcal{E}.$$

3 Se
$$\mathcal{E} > \frac{h}{b-a} \varepsilon$$
, voltar a 1.

4 Se $\mathcal{E} < \frac{h}{b-a} \varepsilon$, aceitar o valor $S(\frac{h}{2})$ como aproximação para o valor do integral no subintervalo considerado.

 \bullet A aproximação para I obtém-se somando todas as aproximações obtidas em \bullet .

Exemplo 3.3 Usar a regra de Simpson adaptativa para obter uma aproximação, com erro inferior a $\varepsilon=0.0005$, para o valor do integral 9

$I = \int_0^1 \sqrt{x} \ dx.$						
Intervalo	S(h)	$S(\frac{h}{2})$	\mathcal{E}	$\frac{h}{b-a}\varepsilon$		
$[0, \frac{1}{2}]$	0.22559223	0.23211709	4.35E - 4	2.50E - 4		
$\boxed{\left[\frac{1}{2},1\right]}$	0.43093403	0.43096219	1.88E - 6	2.50E - 4		
$[0,\frac{1}{4}]$	0.07975890	0.08206578	1.54E - 4	1.25E - 4		
$\left[\left[\frac{1}{4},\frac{1}{2}\right]\right]$	0.15235819	0.15236814	6.64E - 7	1.25E - 4		
$\left[0,\frac{1}{8}\right]$	0.02819903	0.15236814	5.44 <i>E</i> – 5	6.25 <i>E</i> – 5		
$\left[\frac{1}{8},\frac{1}{4}\right]$	0.05386675	0.05387027	2.35 <i>E</i> – 7	6.25E - 5		

 $^{^{9}}$ Note que $I = \frac{2}{3} = 0.6666666 \cdots$

$$ilde{I} = 0.66621524$$
 $|I - ilde{I}| < 4.52E - 4$

3.4 Integrais impróprios

A aplicação das regras de quadratura que acabámos de estudar não é imediata quando a função integranda tem singularidades ou quando o intervalo de integração é infinito. Além disso, as fórmulas do erro não são válidas se a função integranda não tiver a suavidade exigida. Vejamos alguma técnicas que nos permitem lidar com alguns desses casos.

3.4.1 Integranda com singularidades

Se a função f tem singularidades nos pontos $\alpha_1, \ldots, \alpha_m$, então podermos sempre começar por partir o intervalo de integração na forma

$$I = \int_{a}^{b} f(x)dx = \int_{a}^{\alpha_{1}} f(x)dx + \sum_{i=1}^{m-1} \int_{\alpha_{i}}^{\alpha_{i+1}} f(x)dx + \int_{\alpha_{m}}^{b} f(x)dx,$$

de modo a que as singularidades se situem sempre em extremos de intervalos de integração.

Singularidades removíveis

Se $\alpha_1, \ldots, \alpha_m$ são singularidades removíveis, então a cada um dos integrais do segundo membro poderá aplicar-se uma das regras de quadratura referidas, sendo os valores da função nos extremos α_i substituídos pelo limite lateral adequado.

Exemplo 3.4 Consideremos o integral $I = \int_0^1 f(x) dx$, onde

$$f(x) = \frac{1}{e^{\frac{1}{x}} + e^{-\frac{1}{x}}} dx.$$

Então, f não está definida em x=0, é contínua em (0,1] e $\lim_{x\to 0^+} f(x)=0$. Poderemos, assim aplicar uma regra de quadratura no intervalo [0,1], usando $f(0):=\lim_{x\to 0^+} f(x)=0$.

Singularidades essenciais

Naturalmente, temos apenas de estudar o caso do cálculo de um integral da forma $\int_a^b f(x)dx$ quando f tem uma singularidade essencial em a ou em b.¹⁰

Integração por partes

Vamos supor que a singularidade está em a e que o integral a calcular está reescrito na forma

$$I = \int_{a}^{b} w(x)g(x)dx,$$

com w uma função com uma singularidade essencial em a, sendo g regular; por exemplo, suponhamos que pretendemos calcular

$$I = \int_0^1 x^{-\frac{1}{2}} \cos x dx$$

Por vezes, como acontece neste exemplo, o problema pode ser resolvido usando integração por partes. No caso deste exemplo, viria

$$I = \left[2x^{\frac{1}{2}}\cos x\right]_0^1 + 2\int_0^1 x^{\frac{1}{2}}\sin x dx = 2\cos 1 + 2\int_0^1 x^{\frac{1}{2}}\sin x dx$$

e o problema, estaria, em princípio, resolvido. No entanto, deve notar-se que a função $f(x)=x^{\frac{1}{2}}\sin x$ pertence a $C^1(0,1]$, tendo a sua segunda derivada uma descontinuidade essencial em x=0. (Isto significa, em particular, que não poderemos recorrer às fórmulas do erro, as quais pressupõem uma maior suavidade da função integranda.) Poderíamos, se desejássemos, recorrer novamente a uma integração por partes

$$I = 2\cos 1 + \left[\frac{4}{3}x^{\frac{3}{2}}\sin x\right]_0^1 - \frac{4}{3}\int_0^1 x^{\frac{3}{2}}\cos x dx = 2\cos 1 + \frac{4}{3}\sin 1 - \frac{4}{3}\int_0^1 x^{\frac{3}{2}}\cos x dx$$

e assim sucessivamente, tantas vezes quantas as necessárias.

 $^{^{10}}$ Se α_i e α_{i+1} forem ambos singularidades essenciais, poder-se-á sempre considerar a possibilidade de partir $\int_{\alpha_i}^{\alpha_{i+1}} f(x) dx = \int_{\alpha_i}^{\alpha} f(x) dx + \int_{\alpha}^{\alpha_{i+1}} f(x) dx, \text{ para um qualquer ponto } \alpha \in (\alpha_i, \alpha_{i+1}), \text{ tendo-se apenas integrais com singularidades num dos extremos.}$

Mudança de variável

Por vezes, uma mudança de variável permite eliminar a singularidade. Isto pode ser feito, por exemplo, quando $f(x) \sim c(x-a)^{\gamma}$, $\gamma > -1$. Nesse caso, pode usar-se a mudança de variável definida por

$$x = a + t^{\beta}$$
, $\cos \beta = \frac{2}{\gamma + 1}$.

Exemplo 3.5 Suponhamos que pretendemos calcular

$$I = \int_0^1 \frac{e^x}{\sqrt[3]{x}} dx.$$

Usando a expansão de $\exp(x)$ em série de Taylor, vemos que

$$\frac{e^x}{\sqrt[3]{x}} = \frac{1 + x + x^2/2 + \dots}{\sqrt[3]{x}} = x^{-1/3} + x^{2/3} + \dots$$

pelo que $f(x)\sim x^{-1/3}$. Assim, $\gamma=-1/3$ e $\beta=3$. Fazendo a mudança de variável definida por $x=t^3$, vem

$$I = \int_0^1 \frac{e^x}{\sqrt[3]{x}} dx = \int_0^1 3 t e^{t^3} dt,$$

cujo cálculo não oferece dificuldade.

Exercício 3.9 Aplique esta técnica ao cálculo do exemplo anterior.

Exemplo 3.6 Outro exemplo em que poderá usar-se uma mudança de variável é o caso em que se pretende determinar um integral da forma

$$I = \int_0^1 \ln x f(x) dx,$$

com f regular. Neste caso, pode efetuar-se uma mudança de variável definida por $x=t^2$, vindo

$$I = 4 \int_0^1 t \ln t f(t^2) dt$$

Como $\lim_{t\to 0^+} t \ln t = 0$, caímos no caso em que a função integranda tem apenas uma singularidade removível.

3.4.2 Intervalos Infinitos

Mudança de variável

Uma forma possível de transformar um intervalo de integração infinito num intervalo finito será através de uma mudança de variável. Por exemplo, se $I=\int_0^\infty f(x)dx$ com f regular,a mudança de variável definida por $x=-\ln t$ conduzirá ao integral

$$I = \int_0^1 f(-\ln(t)) \frac{1}{t} dt.$$

Se a função $\frac{f(-\ln t)}{t}$ for regular, o problema estará resolvido.

¹¹Note-se que, se $f(x) \sim (x-a)^{\gamma}$, com $\gamma \leq -1$, então o integral não existe.

Exemplo 3.7 No caso do integral

$$I = \int_0^\infty \frac{e^{-x}}{1 + e^{-x}} dx,$$

fazendo $x = -\ln t$, vem

$$I = \int_0^1 \frac{1}{1+t} \, dt.$$

Truncatura do intervalo

Outra técnica simples para calcular $I=\int_a^\infty f(x)dx$ consiste em escrever

$$I = \int_{a}^{c} f(x)dx + \int_{c}^{\infty} f(x)dx$$

e, com escolha apropriada de c que garanta que $|\int_c^\infty f(x)dx|$ seja "suficientemente pequeno", aproximar I por $\int_a^c f(x)dx$.

Exemplo 3.8 Seja

$$I = \int_0^\infty \frac{1}{e^x + x^2} dx$$

Note-se que $\lim_{x \to \infty} \frac{1}{e^x + x^2} = 0$ e que $\frac{1}{e^x + x^2} < \frac{1}{e^x}$. Então, tem-se

$$I = \int_0^c \frac{1}{e^x + x^2} + \int_c^\infty \frac{1}{e^x + x^2} dx$$

е

$$\int_{a}^{\infty} \frac{1}{e^x + x^2} dx < \int_{a}^{\infty} \frac{1}{e^x} dx = e^{-c}.$$

Para c=15 (p.ex.) tem-se $e^{-c} \approx 3.06 \times 10^{-7}.$ Escrevemos, então

$$I = \int_0^\infty \frac{1}{e^x + x^2} dx \approx \int_0^{15} \frac{1}{e^x + x^2} dx$$

(cometendo-se um erro que será aproximadamente igual a 3.06×10^{-7}).

Exercício 3.10 Calcule, efetuando a mudança de variável definida por $\frac{1}{x}=t$, o valor do integral

$$\int_{1}^{\infty} \frac{1}{x^2} \cos(\frac{1}{x^2}) dx$$

e estime o erro.

Exercício 3.11 Calcule

$$I = \int_0^\infty \frac{x}{e^{2x} + 1} dx$$

com um erro inferior a 10^{-3} .

3.5 Trabalhos

Trabalho 1. [Regra do Trapézio Corrigida]

Pode estabelecer-se a seguinte regra de quadratura, conhecida por Regra do Trapézio Corrigida

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \left(f(a) + f(b) \right) + \frac{h^2}{12} \left(f'(a) - f'(b) \right) + \frac{h^5}{720} f^{(4)}(\xi), \tag{3.19}$$

onde h=b-a, $\xi\in(a,b)$ e, naturalmente, se supõe que $f\in C^4[a,b]$.

a) Deduza, a partir da regra (3.19), a chamada Regra do Trapézio Corrigida Composta:

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \left[f_1 + 2 \left(f_2 + \dots + f_N \right) + f_{N+1} \right] + \frac{h^2}{12} \left(f'(a) - f'(b) \right) + \frac{(b-a)h^4}{720} f^{(4)}(\eta), \tag{3.20}$$

onde $x_i = a + (i-1)h$; i = 1, ..., N+1; $h = \frac{b-a}{N}$, $f_i := f(x_i)$ e $\eta \in (a,b)$.

b) Mostre que, se f é periódica de período b-a e $f\in C^4[a,b]$, então

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \left[f_1 + 2 \left(f_2 + \ldots + f_N \right) + f_{N+1} \right] + \frac{(b-a)h^4}{720} f^{(4)}(\eta)$$

e deduza que a regra do trapézio composta é especialmente adaptada à integração, entre a e b, deste tipo de funções.

c) Se $TC_N(f)$ designa o valor dado pela regra do trapézio corrigida composta, com N subintervalos (N par), e $E_{TC_N}(f)$ o respetivo erro, estabeleça a seguinte estimativa

$$|E_{TC_N}(f)| \approx \left| \frac{TC_N(f) - TC_{N/2}(f)}{15} \right|.$$
 (3.21)

- d) Escreva uma função $[integral, erro] = \mathbf{regTrapezioCorr}(f, a, b, N)$ para calcular uma aproximação para o valor de um integral $I = \int_a^b f(x) dx$, usando a regra do trapézio corrigida composta com N subintervalos (N par) e estimar o respetivo erro pelo uso da fórmula (3.21).
- e) Considere o integral $I = \int_0^1 e^{-x} dx$. Calcule

$$\log_2 \frac{|E_{TC_N}(f)|}{|E_{TC_{N/2}}(f)|}$$

para N=10,20,40,80 e diga se os resultados confirmam a ordem de convergência da regra do trapézio composta corrigida.

Trabalho 2. [Tabela de Romberg]

Seja $T_N:=T_N(f)$ a aproximação para $I=\int_a^b f(x)dx$ obtida usando a regra do trapézio composta com N subintervalos e seja h=(b-a)/N. Pode provar-se que, se $f\in C^{2M+2}[a,b]$, então

$$I - T_N = c_1 h^2 + c_2 h^4 + \ldots + c_M h^{2M} + \mathcal{O}(h^{2M+2}), \tag{3.22}$$

com as constantes c_i independentes de h. Tem-se, então, se usarmos 2N subintervalos:

$$I - T_{2N} = \frac{1}{4}c_1h^2 + \frac{1}{16}c_2h^4 + \ldots + \frac{1}{4^M}c_Mh^{2M} + \mathcal{O}(h^{2M+2}). \tag{3.23}$$

Multiplicando (3.23) por 4 e subtraindo de (3.22), vem

$$I - \frac{4T_{2N} - T_N}{3} = d_2h^4 + d_3h^6 + \ldots + d_Mh^{2M} + \mathcal{O}(h^{2M+2}). \tag{3.24}$$

Denotando por T_{2N}^1 o valor

$$T_{2N}^1 := \frac{4T_{2N} - T_N}{3}$$

temos

$$I - T_{2N}^1 = d_2 h^4 + d_3 h^6 + \ldots + d_M h^{2M} + \mathcal{O}(h^{2M+2}). \tag{3.25}$$

Virá, então, usando 4N intervalos,

$$I - T_{4N}^{1} = \frac{1}{16}d_{2}h^{4} + \frac{1}{128}d_{3}h^{6} + \dots + \frac{1}{4^{M}}d_{M}h^{2N} + \mathcal{O}(h^{2M+2}). \tag{3.26}$$

Multiplicando esta equação por 16 e subtraindo de (3.25), vem

$$I - T_{4N}^2 = e_3 h^6 + \ldots + e_M h^{2M} + \mathcal{O}(h^{2M+2}), \tag{3.27}$$

onde usámos a notação

$$T_{4N}^2 := \frac{16T_{4N}^1 - T_{2N}^1}{15}.$$

Este processo pode, naturalmente, continuar, dependendo apenas da suavidade de f. Introduzindo a notação $T_N^0:=T_N(f)$ obter-se-ão, então, aproximações para I, dadas por

$$T_{2^kN}^j := \frac{4^j T_{2^kN}^{j-1} - T_{2^{k-1}N}^{j-1}}{4^j - 1}; j = 1, 2, \dots, M; k = j, j+1, \dots, M.$$

Tem-se

$$|I-T_{2^kN}^j|=\mathcal{O}\left(\left(rac{b-a}{2^kN}
ight)^{2j+2}
ight)$$
 ; $j=1,2,\ldots M$; $k=j,j+1,\ldots,M$.

É costume visualizar estas aproximações para I como entradas numa tabela triangular, chamada Tabela de Romberg:

$$T_{N}^{0} \equiv T_{N}$$
 $T_{2N}^{0} \equiv T_{2N}$ T_{2N}^{1}
 $T_{4N}^{0} \equiv T_{4N}$ T_{4N}^{1} T_{4N}^{2}
 \vdots \vdots \vdots
 $T_{2MN}^{0} \equiv T_{2MN}$ T_{2MN}^{1} T_{2MN}^{2} \cdots T_{2MN}^{M}

- a) Escreva uma função $TR = \mathbf{tabRomberg}(f, a, b, N, M)$ destinada a construir uma tabela de Romberg relativa ao cálculo de aproximações para $I = \int_a^b f(x) dx$. O valor de N é o número de intervalos inicial da regra do trapézio composta e M+1 é o número de colunas da tabela. A tabela será armazenada numa matriz TR, triangular inferior.
- b) Seja $I=\int_0^1 e^{2x}dx$. Determine a tabela de Romberg para o cálculo de I, considerando N=1 e M=5.
- c) Obtenha uma tabela com os erros em cada uma das aproximações para I e efetue os cálculos necessários para verificar (numericamente) se estão de acordo com as ordens teoricamente previstas.

Trabalho 3. [Regra de Simpson adaptativa]

- a) Escreva uma função $integral = \mathbf{regSimpsonAdapt}(f,a,b,tol)$ para calcular uma aproximação para $I = \int_a^b f(x) dx$ com tolerância tol, usando a regra de Simpson adaptativa. A sua função deverá ser usada recursivamente (isto é, deverá invocar-se a ela própria) e deve fazer uso da função $\mathbf{erroSimpson}$ para calcular (em cada intervalo) os dois integrais necessários à obtenção da estimativa para o erro.
- b) Considere o cálculo de $I = \int_{-1}^{1} \frac{1}{1+25x^2} dx$. Usando a função $\mathbf{regSimpsonAdapt}$, determine uma estimativa para I com precisão de 4 casas decimais.
- c) Esboce o gráfico de $f(x)=\frac{1}{1+25x^2}$ no intervalo [-1,1] e marque sobre ele os pontos usados na obtenção da estimativa da alínea anterior, isto é, obtenha um gráfico semelhante ao apresentado na figura seguinte.

Nota: Para poder armazenar os pontos usados, poderá ter de definir uma variável global.

d) Para obter uma aproximação para I, seria razoável usar uma regra de quadratura de Newton-Cotes fechada com n grande? Porquê?

Trabalho 4. [Visualização das regra de Newton-Cotes]

Crie uma aplicação que utilize diferentes regras de quadratura de Newton-Cotes para ilustrar geometricamente as aproximações obtidas para o integral de uma função contínua f(x) num intervalo [a,b]. Esta aplicação deve:

- 1. calcular e desenhar as aproximações do integral utilizando cada uma das regras de quadratura;
- 2. mostrar o gráfico da função f(x) e destacar as áreas aproximadas pelas figuras geométricas correspondentes (trapézios, parábolas, etc.);
- 3. permitir o ajuste do número de subintervalos n para analisar o impacto da subdivisão na precisão da aproximação.