Rules for the differentials $^{\!1}$

Let α , a, A be constants and ϕ , ψ , u, v, x, f, U, V, F be functions.

$$d\alpha = 0 \qquad da = 0_n \qquad dA = 0_{mn} \qquad (1)$$

$$d(\alpha\phi) = \alpha \, d\phi \qquad d(\alpha u) = \alpha \, du \qquad d(\alpha U) = \alpha \, dU \qquad (2)$$

$$\mathsf{d}(\phi + \psi) = \mathsf{d}\phi + \mathsf{d}\psi \qquad \qquad \mathsf{d}(u + v) = \mathsf{d}u + \mathsf{d}v \qquad \qquad \mathsf{d}(U + V) = \mathsf{d}U + \mathsf{d}V \qquad \qquad (3)$$

$$\mathsf{d}(\phi\,\psi) = (\mathsf{d}\phi)\psi + \phi\,\mathsf{d}\psi \qquad \qquad \mathsf{d}(u^\mathsf{T}v) = (\mathsf{d}u)^\mathsf{T}v + u^\mathsf{T}\mathsf{d}v \qquad \qquad \mathsf{d}(UV) = (\mathsf{d}U)V + U\mathsf{d}V \qquad (4)$$

$$d(\phi/\psi) = ((d\phi)\psi - \phi d\psi)/\psi^2 \qquad \qquad d(u^{\mathsf{T}}) = (du)^{\mathsf{T}} \qquad \qquad d(U^{\mathsf{T}}) = (dU)^{\mathsf{T}} \qquad (5)$$

$$d \operatorname{vec} U = \operatorname{vec} dU \qquad \qquad d \operatorname{tr} U = \operatorname{tr} dU \qquad \qquad (6)$$

$$d(U \otimes V) = (dU) \otimes V + U \otimes dV \qquad \qquad d(U \odot V) = (dU) \odot V + U \odot dV \qquad (7)$$

$$d(\phi^{\alpha}) = \alpha \phi^{\alpha - 1} d\phi \qquad \qquad d(U^{-1}) = -U^{-1}(dU) U^{-1}$$
(8)

$$d \det U = \det(U) \operatorname{tr}(U^{-1} dU) \qquad \qquad d \log(\det U) = \operatorname{tr}(U^{-1} dU)$$
(9)

$$d\exp\phi = \exp(\phi) d\phi \qquad \qquad \operatorname{tr}(d\exp U) = \operatorname{tr}(\exp(U) dU) \tag{10}$$

Identification table

Note that the differential has always the same shape as the function.

	function	differential	derivative	shape of derivati	ve
$\phi(\xi)$	$\mathbb{R} o \mathbb{R}$	$d\phi = \alpha(\xi)d\xi$	$D\phi(\xi) = \alpha(\xi)$	1×1	(11)
$\phi(x)$	$\mathbb{R}^n o \mathbb{R}$	$d\phi = a(x)^T d x$	$D\phi(x) = a(x)^T$	$1 \times n$	(12)
$\phi(X)$	$\mathbb{R}^{n\times q}\to\mathbb{R}$	$d\phi = \operatorname{tr} A(X)^{T} dX$	$D\phi(X) = (\operatorname{vec} A(X))^T$	$1 \times nq$	(13)
$f(\xi)$	$\mathbb{R} \to \mathbb{R}^m$	$\mathrm{d}f=a(\xi)\mathrm{d}\xi$	$D f(\xi) = a(\xi)$	$m \times 1$	(14)
f(x)	$\mathbb{R}^n \to \mathbb{R}^m$	$\mathrm{d}f = A(x)\mathrm{d}x$	Df(x) = A(x)	$m \times n$	(15)
f(X)	$\mathbb{R}^{n\times q}\to\mathbb{R}^m$	$\mathrm{d} f = A(X) \; \mathrm{d} \mathrm{vec} X$	D f(X) = A(X)	$m \times nq$	(16)
$F(\xi)$	$\mathbb{R} \to \mathbb{R}^{m \times p}$	$\mathrm{d}F = A(\xi)\mathrm{d}\xi$	$DF(\xi) = \operatorname{vec} A(\xi)$	$mp \times 1$	(17)
F(x)	$\mathbb{R}^n \to \mathbb{R}^{m \times p}$	$\operatorname{dvec} F = A(x)\operatorname{d}\!x$	DF(x) = A(x)	$mp \times n$	(18)
F(X)	$\mathbb{R}^{n\times q}\to\mathbb{R}^{m\times p}$	$\operatorname{dvec} F = A(X)\operatorname{dvec} X$	DF(X) = A(X)	$mp \times nq$	(19)

Notation

	Notation	
$\alpha, \beta, \phi, \xi, \dots$	lower case Greek letters are scalars	(20)
a, b, c, f, x, \dots	lower case Latin letters are (column) vectors	(21)
A, B, C, F, X, \dots	capital Latin letters are matrices	(22)
$d\phi$	differential of ϕ	(23)
$D\phi(x)$	derivative of ϕ at x	(24)
$0_n, 0_{mn}$	n vector of zeros, $m \times n$ matrix of zeros	(25)
$1_n, 1_{mn}$	n vector of ones, $m \times n$ matrix of ones	(26)
I_n, I_{mn}	$n \times n$ identity matrix, $m \times n$ identity matrix	(27)
A^{T} , $\operatorname{tr} A$, $\det A$	transpose of A , trace of A , determinant of A	(28)
$\operatorname{vec} A$	vector containing the stacked columns of A	(29)
$\operatorname{diag} A$	vector containing the diagonal of A	(30)
$\operatorname{Diag} a$	diagonal matrix with a along the diagonal	(31)
$\exp \alpha$	scalar exponential function	(32)
$\exp A$	matrix exponential function, $det(exp(A)) = exp(tr(A))$	(33)
$A\odot B$	Hadamard product (component-wise product)	(34)
$A \oslash B$	component-wise division	(35)
$A\otimes B$	Kronecker product, vec $ab^{T} = b \otimes a$	(36)

¹Most of the material of this document is from [2], available at at the author's webpage http://www.janmagnus.nl/misc/mdc2007-3rdedition.pdf. Another good resource for matrix wisdom is [1].

More rules

$$\operatorname{tr}(AB) = \operatorname{tr}(BA) \qquad \operatorname{tr} A = 1_{m}^{\mathsf{T}}(A \odot I_{mn}) \, 1_{n} = 1^{\mathsf{T}} \operatorname{diag}(A) = \operatorname{tr} A^{\mathsf{T}}$$
(37)
$$\operatorname{diag}(UV^{\mathsf{T}}) = (U \odot V) 1_{n} \qquad \operatorname{tr}(U^{\mathsf{T}}(V \odot C)) = \operatorname{tr}((U^{\mathsf{T}} \odot V^{\mathsf{T}})C)$$
(38)
$$A \otimes 1_{l} = (I_{m} \otimes 1_{l})A \qquad 1_{l} \otimes A = (1_{l} \otimes I_{m})A$$
(39)
$$\operatorname{Diag} a = a 1_{n}^{\mathsf{T}} \odot I_{n} \qquad \operatorname{diag} A = \operatorname{vec}(A \odot I_{n}) = (A \odot I_{n}) 1_{n}$$
(40)
$$\operatorname{Diag}(\operatorname{diag} A) = I_{n} \odot A \qquad \|U\|_{\operatorname{Fro}}^{2} = \operatorname{tr}(U^{\mathsf{T}}U) = \operatorname{vec}(U)^{\mathsf{T}} \operatorname{vec}(U)$$
(41)
$$\operatorname{vec}(a) = \operatorname{vec}(a^{\mathsf{T}}) = a \qquad \operatorname{vec}(ABC) = (C^{\mathsf{T}} \otimes A) \operatorname{vec}(B)$$
(42)
$$\operatorname{tr}(u^{\mathsf{T}}v) = \operatorname{tr}(v^{\mathsf{T}}u) = v^{\mathsf{T}}u \qquad ABc = (c^{\mathsf{T}} \otimes A) \operatorname{vec}B = (A \otimes c^{\mathsf{T}}) \operatorname{vec}B^{\mathsf{T}} = \operatorname{vec}(c^{\mathsf{T}}B^{\mathsf{T}}A^{\mathsf{T}})$$
(43)

Interlude: finite differencing

You should always check your derivatives with finite differencing which is an alternative way to calculate a derivative! Here is some matlab code:

```
function df = finitediff(fun, x, d, varargin)
%FINITEDIFF estimates a gradient by finite-differencing method.
% (c) Stefan Harmeling, 2012-07-10.
sx = size(x);
nx = numel(x);
df = zeros(sx);
dx = zeros(sx);
for i = 1:nx
    dx(i) = d;
    df(i) = (fun(x+dx, varargin{:})-fun(x-dx, varargin{:}))/(2*d);
    dx(i) = 0;
end
```

Some pros and cons of matrix differential calculus

- + clean notation
- + vectorized function leads to vectorized derivative (good for coding)
- + powerful: [2] shows how to take the derivative of eigenvalues and eigenvectors
- complicated formulas
- requires tricks and practice

General recipe and examples

- (i) write the letter d in front of the expression
- (ii) identity the constants and variables
- (ii) transform the expression
- (iv) read off the derivative using the identification table
- 1. Find the derivative of $\phi(\xi) = \xi^2$.

$$d\phi = d\xi^2 = 2\xi d\xi \text{ thus } D\phi(\xi) = 2\xi \tag{44}$$

2. Find the derivative of $\phi(x) = x^{\mathsf{T}} A x$.

$$d\phi = (dx)^{\mathsf{T}} A x + x^{\mathsf{T}} A dx = x^{\mathsf{T}} A^{\mathsf{T}} dx + x^{\mathsf{T}} A dx = x^{\mathsf{T}} (A + A^{\mathsf{T}}) dx \text{ thus } \mathsf{D}\phi(x) = x^{\mathsf{T}} (A + A^{\mathsf{T}}) \tag{45}$$

3. Find the derivative of $\phi(X) = \operatorname{tr}(X^{\mathsf{T}}X)$.

$$d\phi = d\operatorname{tr}(X^{\mathsf{T}}X) = \operatorname{tr}((dX)^{\mathsf{T}}X + X^{\mathsf{T}}dX) = \operatorname{tr}(2X^{\mathsf{T}}dX) \text{ thus } \mathsf{D}\phi(X) = 2(\operatorname{vec}X)^{\mathsf{T}}$$
(46)

4. Find the derivative of $\phi(x) = (y - Ax)^2$.

$$d\phi = d((y - Ax)^{\mathsf{T}}(y - Ax)) = -2(y - Ax)^{\mathsf{T}} A dx \text{ thus } \mathsf{D}\phi(x) = -2A^{\mathsf{T}}(y - Ax) \tag{47}$$

5. Find the derivative of $f(X) = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$. We write $A = (X^{\mathsf{T}}X)^{-1}$.

$$\mathsf{d}f = \mathsf{d}(X^\mathsf{T}X)^{-1}X^\mathsf{T}y\tag{48}$$

$$= -A((\mathsf{d}X)^T X + X^\mathsf{T}(\mathsf{d}X)) A X^\mathsf{T} y \tag{49}$$

$$= -A(\mathsf{d}X)^T X A X^\mathsf{T} y - A X^\mathsf{T} (\mathsf{d}X) A X^\mathsf{T} y - A (\mathsf{d}X)^\mathsf{T} y \tag{50}$$

$$= -(A \otimes (XAX^{\mathsf{T}}y)^{\mathsf{T}}) \operatorname{dvec} X - ((XAX^{\mathsf{T}}y)^{\mathsf{T}} \otimes A) \operatorname{dvec} X - (A \otimes y^{\mathsf{T}}) \operatorname{dvec} X$$
(51)

$$= \underbrace{-(A \otimes (XAX^{\mathsf{T}}y)^{\mathsf{T}} + (XAX^{\mathsf{T}}y)^{\mathsf{T}} \otimes A + A \otimes y^{\mathsf{T}})}_{\mathsf{D}f(X)} \mathsf{d}vec X \tag{52}$$

6. Often it is easier to find the differential of a scalar function $\phi(X) = c^{\mathsf{T}}(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$.

$$d\phi = -c^{\mathsf{T}} A (\mathsf{d}X)^{\mathsf{T}} X A X^{\mathsf{T}} y - c^{\mathsf{T}} A X^{\mathsf{T}} (\mathsf{d}X) A X^{\mathsf{T}} y - c^{\mathsf{T}} A (\mathsf{d}X)^{\mathsf{T}} y \tag{53}$$

$$= -\operatorname{tr}(c^{\mathsf{T}} A (\mathsf{d}X)^{\mathsf{T}} X A X^{\mathsf{T}} y) - \operatorname{tr}(c^{\mathsf{T}} A X^{\mathsf{T}} (\mathsf{d}X) A X^{\mathsf{T}} y) - \operatorname{tr}(c^{\mathsf{T}} A (\mathsf{d}X)^{\mathsf{T}} y) \tag{54}$$

$$= -\operatorname{tr}(yXA^{\mathsf{T}}X^{\mathsf{T}}(\mathsf{d}X)A^{\mathsf{T}}c) - \operatorname{tr}(c^{\mathsf{T}}AX^{\mathsf{T}}(\mathsf{d}X)AX^{\mathsf{T}}y) - \operatorname{tr}(y^{\mathsf{T}}(\mathsf{d}X)A^{\mathsf{T}}c) \tag{55}$$

$$= -\operatorname{tr}(A^{\mathsf{T}} c y X A^{\mathsf{T}} X^{\mathsf{T}} \mathsf{d} X) - \operatorname{tr}(A X^{\mathsf{T}} y c^{\mathsf{T}} A X^{\mathsf{T}} \mathsf{d} X) - \operatorname{tr}(A^{\mathsf{T}} c y^{\mathsf{T}} \mathsf{d} X)$$

$$\tag{56}$$

$$= -\operatorname{tr}((A^{\mathsf{T}}c\,yXA^{\mathsf{T}}X^{\mathsf{T}} + AX^{\mathsf{T}}yc^{\mathsf{T}}AX^{\mathsf{T}} + A^{\mathsf{T}}cy^{\mathsf{T}})\mathsf{d}X) \tag{57}$$

7. Sometimes it is good to rewrite with indices:

$$\operatorname{\mathsf{d}}\operatorname{tr}(A\operatorname{Diag} v) = \operatorname{\mathsf{d}}\operatorname{tr}(A(I_n \odot v1_n^\mathsf{T})) = \operatorname{\mathsf{d}}\operatorname{tr}((A \otimes I)v1_n^\mathsf{T} = \operatorname{\mathsf{d}}1_n^\mathsf{T}\operatorname{Diag}(A)v = \operatorname{\mathsf{d}}\operatorname{diag}(A)^\mathsf{T}v = \operatorname{diag}(A)^\mathsf{T}\operatorname{\mathsf{d}}v \quad (58)$$

$$d\operatorname{tr}(A\operatorname{Diag} v) = d\sum_{i} A_{ii}v_{i} = d\operatorname{tr}\operatorname{diag}(A)^{\mathsf{T}}v = \operatorname{tr}\operatorname{diag}(A)^{\mathsf{T}}dv$$
(59)

8. Find the derivative of Rayleigh coefficient $\phi(x) = x^{\mathsf{T}} A x / (x^{\mathsf{T}} x)$ for symmetric A.

$$d\phi = \frac{2x^{\mathsf{T}}A(\mathsf{d}x)(x^{\mathsf{T}}x) - 2x^{\mathsf{T}}Axx^{\mathsf{T}}\mathsf{d}x}{(x^{\mathsf{T}}x)^2} \tag{60}$$

$$= \frac{2(x^{\mathsf{T}}x)x^{\mathsf{T}}A(\mathsf{d}x) - 2x^{\mathsf{T}}Axx^{\mathsf{T}}\mathsf{d}x}{(x^{\mathsf{T}}x)^2} \tag{61}$$

$$= \frac{2(x^{\mathsf{T}}x)x^{\mathsf{T}}A - 2x^{\mathsf{T}}Axx^{\mathsf{T}}}{(x^{\mathsf{T}}x)^2} \mathsf{d}x \tag{62}$$

$$= \frac{2}{(x^{\mathsf{T}}x)^2} x^{\mathsf{T}} (xx^{\mathsf{T}}A - Axx^{\mathsf{T}}) dx \tag{63}$$

(64)

Thus the derivative is:

$$\mathsf{D}\phi(x) = \frac{2}{(x^{\mathsf{T}}x)^2} (Axx^{\mathsf{T}} - xx^{\mathsf{T}}A)x \tag{65}$$

$$=2\frac{Ax}{x^{T}x} - 2\frac{x^{T}Ax}{(x^{T}x)^{2}}x\tag{66}$$

More difficult examples

9. Consider a steepest descent algorithm for minimizing the previous function:

$$x^{(k+1)} = x^{(k)} - \xi A^{\mathsf{T}} (y - Ax^{(k)}) \tag{67}$$

(a) Find the derivative of $x^{(1)}(x^{(0)})$ and of $x^{(k+1)}(x^{(k)})$.

$$dx^{(1)} = dx^{(0)} + \xi A^{\mathsf{T}} A dx^{(0)} = (I_n + \xi A^{\mathsf{T}} A) dx^{(0)}$$
(68)

$$dx^{(k+1)} = (I_n + \xi A^{\mathsf{T}} A) dx^{(k)}$$
(69)

(b) Find the derivative of $x^{(2)}(x^{(0)})$.

$$dx^{(2)} = (I_n + \xi A^{\mathsf{T}} A) dx^{(1)} = (I_n + \xi A^{\mathsf{T}} A) (I_n + \xi A^{\mathsf{T}} A) dx^{(0)}$$
(70)

(c) Find the derivative of $x^{(k)}(x^{(0)})$.

$$dx^{(k)} = (I_n + \xi A^{\mathsf{T}} A)^k dx^{(0)}$$
(71)

(d) Find the derivative of $x^{(1)}(\xi)$.

$$dx^{(1)} = -A^{\mathsf{T}}(y - Ax^{(0)}) \,d\xi \tag{72}$$

(e) Find the derivative of $x^{(2)}(\xi)$.

$$dx^{(2)} = d(-\xi A^{\mathsf{T}}(y - Ax^{(1)}) + x^{(1)}) \tag{73}$$

$$= -A^{\mathsf{T}}(y - Ax^{(1)}) \,\mathrm{d}\xi + \xi A^{\mathsf{T}} A \,\mathrm{d}x^{(1)} + \mathrm{d}x^{(1)} \tag{74}$$

$$= -A^{\mathsf{T}}(y - Ax^{(1)}) \,\mathrm{d}\xi + (\xi A^{\mathsf{T}}A + I_n) \,\mathrm{d}x^{(1)} \tag{75}$$

$$= (-A^{\mathsf{T}}(y - Ax^{(1)}) - (\xi A^{\mathsf{T}}A + I_n)A^{\mathsf{T}}(y - Ax^{(0)}))\,\mathsf{d}\xi\tag{76}$$

(77)

(f) Find the derivative of $x^{(3)}(\xi)$.

$$dx^{(3)} = d(-\xi A^{\mathsf{T}}(y - Ax^{(2)}) + x^{(2)}) \tag{78}$$

$$= -A^{\mathsf{T}}(y - Ax^{(2)}) \, \mathsf{d}\xi + (\xi A^{\mathsf{T}}A + I_n) \, \mathsf{d}x^{(2)} \tag{79}$$

$$= -A^{\mathsf{T}}(y - Ax^{(2)}) \,\mathsf{d}\xi - (\xi A^{\mathsf{T}}A + I_n)A^{\mathsf{T}}(y - Ax^{(1)}) - (\xi A^{\mathsf{T}}A + I_n)^2 A^{\mathsf{T}}(y - Ax^{(0)}) \,\mathsf{d}\xi \tag{80}$$

$$= -\left(\sum_{i=0}^{2} (\xi A^{\mathsf{T}} A + I_n)^i A^{\mathsf{T}} (y - A x^{(2-i)})\right) \, \mathsf{d}\xi \tag{81}$$

(g) Find the derivative of $x^{(k+1)}(\xi)$.

$$dx^{(k+1)} = -\left(\sum_{i=0}^{k} (\xi A^{\mathsf{T}} A + I_n)^i A^{\mathsf{T}} (y - Ax^{(k-i)})\right) d\xi$$
 (82)

(h) Find the derivative of $x^{(1)}(A)$.

$$dx^{(1)} = d(x^{(0)} - \xi A^{\mathsf{T}}(y - Ax^{(0)})) \tag{83}$$

$$= -\xi(\mathsf{d}A)^{\mathsf{T}}(y - Ax^{(0)}) + \xi A^{\mathsf{T}}(\mathsf{d}A)x^{(0)}$$
(84)

$$= -\xi (I_n \otimes (y - Ax^{(0)})^\mathsf{T}) \operatorname{dvec} A + \xi ((x^{(0)})^\mathsf{T} \otimes A^\mathsf{T}) \operatorname{dvec} A \tag{85}$$

$$= -\xi (I_n \otimes (y - Ax^{(0)})^\mathsf{T} + (x^{(0)})^\mathsf{T} \otimes A^\mathsf{T}) \operatorname{dvec} A \tag{86}$$

10. Consider the norm $\phi = r^2 = r^{\mathsf{T}} r$ of the residual r = y - Ax. Plug into ϕ the minimizer $x = (A^T A)^{-1} A^{\mathsf{T}} y$, we obtain

$$\phi = (y - A(A^T A)^{-1} A^\mathsf{T} y)^2 = ((I_n - A(A^T A)^{-1} A^\mathsf{T}) y)^2$$
(87)

Additionally we have an expression for A:

$$A = C^{\mathsf{T}} \operatorname{Diag}(Za) B \tag{88}$$

So we can view ϕ as a function of a. Find the derivative of $\phi(a)$. Left as an exercise;

References

- [1] H. Lütkepohl. Handbook of matrices. Wiley, 1996.
- [2] J.R. Magnus and H. Neudecker. *Matrix Differential Calculus with Applications in Statistics and Econometrics*. John Wiley, Chichester, 1999.