Applications of Color Coding in Randomised Algorithms (for CS 602-Applied Algorithms)

Presentation · March 2019		
CITATIONS		READS
0		10
3 authors, including:		
	Meet Taraviya	
	Indian Institute of Technology Bombay	
	5 PUBLICATIONS 1 CITATION	
	SEE PROFILE	
Some of the authors of this publication are also working on these related projects:		
Project	Inference in Probabilistic Programming Languages View project	

Color Coding CS 602 - Applied Algorithms

K. Mittal, M. Pareek and M. Taraviya

Department of Computer Science Indian Institute of Technology, Bombay

March 22, 2019

Outline

- Problem Definitions
- Random Orientations
- Random Colorings
- 4 Derandomization
- Related results

Problem Definitions

k-PATH and k-CYCLE

Given a graph G = (V, E) we are interested in the following problems (in both the directed and undirected case):

- Does the graph contain a path of length k?
- Does the graph contain a cycle of length k?

Problem Definitions

k-PATH and k-CYCLE

Given a graph G = (V, E) we are interested in the following problems (in both the directed and undirected case):

- Does the graph contain a path of length k?
- Does the graph contain a cycle of length k?

We'll present ideas from a paper by Alon, Yuster and Zwick [AYZ95].

Problem Definitions

k-PATH and k-CYCLE

It is easy to see that both of these problems are NP-complete.

- (k-CYCLE) A cycle of length n is the same as a Hamiltonian cycle.
- \bullet (k-PATH) A path of length n-1 is the same as a Hamiltonian path.

Theorem

A path of length k, if present, can be found in expected time $O((k+1)! \cdot E)$ in a directed graph and $O((k+2)! \cdot V)$ in an undirected graph. ^a

|E|, |V| are denoted by E, V for convenience.

Theorem

A path of length k, if present, can be found in expected time $O((k+1)! \cdot E)$ in a directed graph and $O((k+2)! \cdot V)$ in an undirected graph.

Proof.

Consider the directed case first.

• Choose random permutation π on V.

Theorem

A path of length k, if present, can be found in expected time $O((k+1)! \cdot E)$ in a directed graph and $O((k+2)! \cdot V)$ in an undirected graph.

Color Coding

Proof.

Consider the **directed** case first.

- Choose random permutation π on V.
- Consider only edges (u, v) where $\pi(u) < \pi(v)$.

Theorem

A path of length k, if present, can be found in expected time $O((k+1)! \cdot E)$ in a directed graph and $O((k+2)! \cdot V)$ in an undirected graph.

Proof.

Consider the directed case first.

- Choose random permutation π on V.
- Consider only edges (u, v) where $\pi(u) < \pi(v)$.
- Check if longest path is of length $\geq k$ in this DAG.

Theorem

A path of length k, if present, can be found in expected time $O((k+1)! \cdot E)$ in a directed graph and $O((k+2)! \cdot V)$ in an undirected graph.

Proof.

Consider the directed case first.

- Choose random permutation π on V.
- Consider only edges (u, v) where $\pi(u) < \pi(v)$.
- Check if longest path is of length $\geq k$ in this DAG.

If there is a path of length k, it is found with probability $\geq \frac{1}{(k+1)!}$, giving the required expected runtime.

Theorem

A path of length k, if present, can be found in expected time $O((k+1)! \cdot E)$ in a directed graph and $O((k+2)! \cdot V)$ in an undirected graph.

Proof.

Now consider the undirected case.

• Choose random permutation π on V.

Theorem

A path of length k, if present, can be found in expected time $O((k+1)! \cdot E)$ in a directed graph and $O((k+2)! \cdot V)$ in an undirected graph.

Proof.

Now consider the **undirected** case.

- Choose random permutation π on V.
- For all edges $\{u, v\}$, direct them from u to v where $\pi(u) < \pi(v)$.

Theorem

A path of length k, if present, can be found in expected time $O((k+1)! \cdot E)$ in a directed graph and $O((k+2)! \cdot V)$ in an undirected graph.

Proof.

Now consider the **undirected** case.

- Choose random permutation π on V.
- For all edges $\{u, v\}$, direct them from u to v where $\pi(u) < \pi(v)$.
- Check if longest path is of length $\geq k$ in this DAG.

Theorem

A path of length k, if present, can be found in expected time $O((k+1)! \cdot E)$ in a directed graph and $O((k+2)! \cdot V)$ in an undirected graph.

Proof.

Now consider the **undirected** case.

- Choose random permutation π on V.
- For all edges $\{u, v\}$, direct them from u to v where $\pi(u) < \pi(v)$.
- Check if longest path is of length $\geq k$ in this DAG.

If there is a path of length k, it is found with probability $\geq \frac{2}{(k+1)!}$.

Theorem,

A path of length k, if present, can be found in expected time $O((k+1)! \cdot E)$ in a directed graph and $O((k+2)! \cdot V)$ in an undirected graph.

Proof.

This gives expected runtime $O((k+1)! \cdot E)$.

Theorem

A path of length k, if present, can be found in expected time $O((k+1)! \cdot E)$ in a directed graph and $O((k+2)! \cdot V)$ in an undirected graph.

Proof.

This gives expected runtime $O((k+1)! \cdot E)$.

This can be made more efficient.

Theorem

A path of length k, if present, can be found in expected time $O((k+1)! \cdot E)$ in a directed graph and $O((k+2)! \cdot V)$ in an undirected graph.

Proof.

This gives expected runtime $O((k+1)! \cdot E)$.

This can be made more efficient.

First do a DFS from an arbitrary vertex. If no path of length k is found, then use the previous algorithm. In such a case, it must be true that $|E| \le k|V|$.

Other results

Deterministic Algorithms

By combining techniques of Monien [Mon85] and Bodlaender [Bod93], one can also get deterministic algorithms achieving runtime of $O(k! \cdot V)$ and $O(k! \cdot E)$ for undirected and directed graphs respectively.

Theorem

A cycle of length, if present, k can be found in expected time $O((k-1)! \log k \cdot V^{\omega})$ in a directed or an undirected graph, where ω is the matrix multiplication exponent.

Theorem

A cycle of length, if present, k can be found in expected time $O((k-1)! \log k \cdot V^{\omega})$ in a directed or an undirected graph, where ω is the matrix multiplication exponent.

Proof.

• Form the DAG G' as in the PATH problem with adjacency matrix A.

Theorem

A cycle of length, if present, k can be found in expected time $O((k-1)! \log k \cdot V^{\omega})$ in a directed or an undirected graph, where ω is the matrix multiplication exponent.

- ullet Form the DAG G' as in the PATH problem with adjacency matrix A.
- Consider A^{k-1} , which represents all paths of length k-1.

Theorem

A cycle of length, if present, k can be found in expected time $O((k-1)! \log k \cdot V^{\omega})$ in a directed or an undirected graph, where ω is the matrix multiplication exponent.

- ullet Form the DAG G' as in the PATH problem with adjacency matrix A.
- Consider A^{k-1} , which represents all paths of length k-1.
- ullet For each such path, check if there is an edge in G between endpoints.

Theorem

A cycle of length, if present, k can be found in expected time $O((k-1)! \log k \cdot V^{\omega})$ in a directed or an undirected graph, where ω is the matrix multiplication exponent.

Proof.

- Form the DAG G' as in the PATH problem with adjacency matrix A.
- Consider A^{k-1} , which represents all paths of length k-1.
- For each such path, check if there is an edge in G between endpoints.

If there is a cycle of length k, it is found with probability $\geq \frac{1}{(k-1)!}$.

Random Colorings

Random colorings

• Choose a random coloring $c: V \rightarrow [k]$.

Random Colorings

Random colorings

- Choose a random coloring $c: V \to [k]$.
- A path is said to be colorful if each vertex on it is colored by a distinct color.

Random Colorings

Random colorings

- Choose a random coloring $c: V \to [k]$.
- A path is said to be colorful if each vertex on it is colored by a distinct color.
- Each simple path of length k-1 has a chance of $\frac{k!}{k^k} > e^{-k}$ to become colorful.

Lemma

Given a graph G and a coloring $c: V \to [k]$, a colorful path of length k-1, if it exists, can be found in $2^{O(k)} \cdot E$ time.

Lemma

Given a graph G and a coloring $c: V \to [k]$, a colorful path of length k-1, if it exists, can be found in $2^{O(k)} \cdot E$ time.

Proof.

 Add a new vertex s and connect it to all vertices. Now we find a colorful path of length k starting at s.

Lemma

Given a graph G and a coloring $c: V \to [k]$, a colorful path of length k-1, if it exists, can be found in $2^{O(k)} \cdot E$ time.

- Add a new vertex s and connect it to all vertices. Now we find a colorful path of length k starting at s.
- Use dynamic programming. A state consists of the following:

Lemma

Given a graph G and a coloring $c: V \to [k]$, a colorful path of length k-1, if it exists, can be found in $2^{O(k)} \cdot E$ time.

- Add a new vertex s and connect it to all vertices. Now we find a colorful path of length k starting at s.
- Use dynamic programming. A state consists of the following:
 - A vertex v and a length i $(1 \le i \le k)$.
 - A set $S \subseteq {[k] \choose i}$ of all possible color sets on some colorful path of length i from s to v.

Lemma

Given a graph G and a coloring $c: V \to [k]$, a colorful path of length k-1, if it exists, can be found in $2^{O(k)} \cdot E$ time.

- Add a new vertex s and connect it to all vertices. Now we find a colorful path of length k starting at s.
- Use dynamic programming. A state consists of the following:
 - A vertex v and a length i $(1 \le i \le k)$.
 - A set $S \subseteq {[k] \choose i}$ of all possible color sets on some colorful path of length i from s to v.
- Perform updates by iterating over i, and over E within each iteration.

Lemma

Given a graph G and a coloring $c: V \to [k]$, a colorful path of length k-1, if it exists, can be found in $2^{O(k)} \cdot E$ time.

Proof.

- Add a new vertex s and connect it to all vertices. Now we find a colorful path of length k starting at s.
- Use dynamic programming. A state consists of the following:
 - A vertex v and a length i $(1 \le i \le k)$.
 - A set $S \subseteq {[k] \choose i}$ of all possible color sets on some colorful path of length i from s to v.
- ullet Perform updates by iterating over i, and over E within each iteration.

The total number of states is $\left(\sum_{i=0}^{k} i \cdot {k \choose i}\right) \cdot V = 2^{O(k)} \cdot V$ and the runtime is $2^{O(k)} \cdot E$.

k-CYCLE using Random Colorings

Lemma

Given a graph G and a coloring $c:V\to [k]$, all pairs of vertices connected by colorful paths of length k-1 can be found in $2^{O(k)}\cdot VE$ or $2^{O(k)}\cdot V^\omega$ time.

k-CYCLE using Random Colorings

Lemma

Given a graph G and a coloring $c:V\to [k]$, all pairs of vertices connected by colorful paths of length k-1 can be found in $2^{O(k)}\cdot VE$ or $2^{O(k)}\cdot V^{\omega}$ time.

Proof.

The $2^{O(k)} \cdot VE$ algorithm is obtained by simply running the previous algorithm |V| times.

k-CYCLE using Random Colorings

Lemma

Given a graph G and a coloring $c:V\to [k]$, all pairs of vertices connected by colorful paths of length k-1 can be found in $2^{O(k)}\cdot VE$ or $2^{O(k)}\cdot V^{\omega}$ time.

Proof.

• Consider a partition $\{C_1, C_2\}$ of [k], each of size k/2.

Lemma

Given a graph G and a coloring $c:V\to [k]$, all pairs of vertices connected by colorful paths of length k-1 can be found in $2^{O(k)}\cdot VE$ or $2^{O(k)}\cdot V^{\omega}$ time.

- Consider a partition $\{C_1, C_2\}$ of [k], each of size k/2.
- Let G_1 be a graph having vertices with colors in C_1 and similarly G_2 .

Lemma

Given a graph G and a coloring $c:V\to [k]$, all pairs of vertices connected by colorful paths of length k-1 can be found in $2^{O(k)}\cdot VE$ or $2^{O(k)}\cdot V^{\omega}$ time.

- Consider a partition $\{C_1, C_2\}$ of [k], each of size k/2.
- Let G_1 be a graph having vertices with colors in C_1 and similarly G_2 .
- Recursively, find pairs of vertices connected by colorful paths of length k/2-1 in G_1 and G_2 , as boolean matrices A_1 and A_2 .

Lemma

Given a graph G and a coloring $c:V\to [k]$, all pairs of vertices connected by colorful paths of length k-1 can be found in $2^{O(k)}\cdot VE$ or $2^{O(k)}\cdot V^{\omega}$ time.

- Consider a partition $\{C_1, C_2\}$ of [k], each of size k/2.
- Let G_1 be a graph having vertices with colors in C_1 and similarly G_2 .
- Recursively, find pairs of vertices connected by colorful paths of length k/2-1 in G_1 and G_2 , as boolean matrices A_1 and A_2 .
- Let B be the adjacency matrix of the edges in G from G_1 to G_2 .

Lemma

Given a graph G and a coloring $c:V\to [k]$, all pairs of vertices connected by colorful paths of length k-1 can be found in $2^{O(k)}\cdot VE$ or $2^{O(k)}\cdot V^{\omega}$ time.

Proof.

- Consider a partition $\{C_1, C_2\}$ of [k], each of size k/2.
- Let G_1 be a graph having vertices with colors in C_1 and similarly G_2 .
- Recursively, find pairs of vertices connected by colorful paths of length k/2-1 in G_1 and G_2 , as boolean matrices A_1 and A_2 .
- Let B be the adjacency matrix of the edges in G from G_1 to G_2 .
- Take OR of the matrices A_1BA_2 over all partitions $\{C_1, C_2\}$.

The number of matrix multiplications is given by $N(k) = (2 \cdot N(k/2) + 2) \times \binom{k}{k/2} = 2^{O(k)}$.

Random Colorings

Theorem

In a graph G, a path of length k-1, if it exists, can be found in $2^{O(k)} \cdot V$ expected time in the undirected case and in $2^{O(k)} \cdot E$ expected time in the directed case.

Random Colorings

Theorem

In a graph G, a path of length k-1, if it exists, can be found in $2^{O(k)} \cdot V$ expected time in the undirected case and in $2^{O(k)} \cdot E$ expected time in the directed case.

Theorem

In a graph G, a cycle of length k, if it exists, can be found in expected time $2^{O(k)} \cdot VE$ or $2^{O(k)} \cdot V^{\omega}$.

Derandomizing Random Colorings

k-Perfect Family of Hash Functions

A family of hash functions from $[n] \to [k]$ is called k-perfect if for all $S \subseteq [n]$, |S| = k, there is a function in the family that is one to one on S.

March 22, 2019

Derandomizing Random Colorings

k-Perfect Family of Hash Functions

A family of hash functions from $[n] \to [k]$ is called k-perfect if for all $S \subseteq [n]$, |S| = k, there is a function in the family that is one to one on S.

Using ideas from Schmidt and Siegal [SS90] and Moni Naor, the existence of such families of size $2^{O(k)}log(n)$ can be shown.

Derandomizing Random Colorings

k-Perfect Family of Hash Functions

A family of hash functions from $[n] \to [k]$ is called k-perfect if for all $S \subseteq [n]$, |S| = k, there is a function in the family that is one to one on S.

Using ideas from Schmidt and Siegal [SS90] and Moni Naor, the existence of such families of size $2^{O(k)}log(n)$ can be shown.

Derandomization

We can use the above family to get colorings in which for each k subset V' of V, there is a coloring that assigns each vertex in V' a distinct color. This incurs an extra log(|V|) multiplicative factor in the runtime.

Related results

- k-PATH problem is in P for $k \leq log(|V|)$ (this is the LOG PATH problem).
- The derandomization of color-coding method can be easily parallelized, yielding efficient NC algorithms.
- Cycles of length k for $k \le 7$ can be found in time $O(V^{\omega})$. [AYZ97]

k-Perfect Family of Balanced Hash Functions

A family of hash functions from $[n] \to [k]$ is called k-perfect balanced if for some T > 0, we have that for all $S \subseteq [n]$, |S| = k, the number of functions in the family such that f(S) = [k] is exactly T.

k-Perfect Family of Balanced Hash Functions

A family of hash functions from $[n] \to [k]$ is called k-perfect balanced if for some T > 0, we have that for all $S \subseteq [n]$, |S| = k, the number of functions in the family such that f(S) = [k] is exactly T.

Do we have a small k-perfect balanced family of functions?

k-Perfect Family of Balanced Hash Functions

A family of hash functions from $[n] \to [k]$ is called k-perfect balanced if for some T > 0, we have that for all $S \subseteq [n]$, |S| = k, the number of functions in the family such that f(S) = [k] is exactly T.

Do we have a small k-perfect balanced family of functions? **No** (Proof later).

k-Perfect Family of Balanced Hash Functions

A family of hash functions from $[n] \to [k]$ is called k-perfect balanced if for some T > 0, we have that for all $S \subseteq [n]$, |S| = k, the number of functions in the family such that f(S) = [k] is exactly T.

Do we have a small k-perfect balanced family of functions? **No** (Proof later).

But we can approximate!

Allow the number to be between $(1 - \epsilon)T$ and $(1 + \epsilon)T$.

k-Perfect Family of Balanced Hash Functions

A family of hash functions from $[n] \to [k]$ is called k-perfect balanced if for some T > 0, we have that for all $S \subseteq [n]$, |S| = k, the number of functions in the family such that f(S) = [k] is exactly T.

Do we have a small k-perfect balanced family of functions? **No** (Proof later).

But we can approximate!

Allow the number to be between $(1 - \epsilon)T$ and $(1 + \epsilon)T$.

Theorem

There is an explicit construction of an ϵ -balanced family of functions from [n] to [k] consisting of $e^{(1+o(1))k}\log n$ functions. Such a family can be constructed in time $e^{(1+o(1))k}n\log n$.

Theorem

If F is a k-perfect balanced family of functions $\{f : [n] \to [k]\}$, $|F| \ge c(k)n^{k/2}$.

Theorem

If F is a k-perfect balanced family of functions $\{f : [n] \to [k]\}$, $|F| \ge c(k)n^{k/2}$.

- For each $R \subseteq [n]$, |R| = k/2 consider vectors u_R and w_R of length $\binom{k}{k/2} \cdot |F|$, where
 - $u_R(f, S) = 1$ if f(R) = S (0 otherwise)
 - $w_R(f, S) = 1$ if $f(R) = [k] \setminus S$ (0 otherwise)

Theorem

If F is a k-perfect balanced family of functions $\{f : [n] \to [k]\}$, $|F| \ge c(k)n^{k/2}$.

- For each $R \subseteq [n]$, |R| = k/2 consider vectors u_R and w_R of length $\binom{k}{k/2} \cdot |F|$, where
 - $u_R(f,S) = 1$ if f(R) = S (0 otherwise)
 - $w_R(f, S) = 1$ if $f(R) = [k] \setminus S$ (0 otherwise)
- $\langle u_R, w_Q \rangle = 0$ if $R \cap Q \neq \phi$ and $\langle u_R, w_Q \rangle = T$ otherwise.

Theorem

If F is a k-perfect balanced family of functions $\{f : [n] \to [k]\}$, $|F| \ge c(k)n^{k/2}$.

- For each $R\subseteq [n]$, |R|=k/2 consider vectors u_R and w_R of length $\binom{k}{k/2}\cdot |F|$, where
 - $u_R(f, S) = 1$ if f(R) = S (0 otherwise)
 - $w_R(f,S) = 1$ if $f(R) = [k] \setminus S$ (0 otherwise)
- $\langle u_R, w_Q \rangle = 0$ if $R \cap Q \neq \phi$ and $\langle u_R, w_Q \rangle = T$ otherwise.
- Let M_u be matrix with u_R as rows.
- Let M_w be matrix with w_Q as columns.

Theorem

If F is a k-perfect balanced family of functions $\{f : [n] \to [k]\}$, $|F| \ge c(k)n^{k/2}$.

- For each $R \subseteq [n]$, |R| = k/2 consider vectors u_R and w_R of length $\binom{k}{k/2} \cdot |F|$, where
 - $u_R(f,S) = 1$ if f(R) = S (0 otherwise)
 - $w_R(f, S) = 1$ if $f(R) = [k] \setminus S$ (0 otherwise)
- $\langle u_R, w_Q \rangle = 0$ if $R \cap Q \neq \phi$ and $\langle u_R, w_Q \rangle = T$ otherwise.
- Let M_u be matrix with u_R as rows.
- Let M_w be matrix with w_Q as columns.
- $M_u M_w$ has full rank $\Longrightarrow \binom{k}{k/2} \cdot |F| \ge \binom{n}{k/2} \Longrightarrow |F| \ge c(k) n^{k/2}$.

Thank You!

References I

Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding.

J. ACM, 42(4):844-856, 1995.

Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles. *Algorithmica*, 17(3):209–223, 1997.

Hans L. Bodlaender.

On linear time minor tests with depth-first search.

J. Algorithms, 14(1):1-23, 1993.

B. Monien.

How to find long paths efficiently.

In G. Ausiello and M. Lucertini, editors, *Analysis and Design of Algorithms for Combinatorial Problems*, volume 109 of *North-Holland Mathematics Studies*, pages 239 – 254. North-Holland, 1985.

References II

Jeanette P. Schmidt and Alan Siegel.

The spatial complexity of oblivious k-probe hash functions.

SIAM J. Comput., 19(5):775-786, 1990.

