automobile 23.85(3) 23.97(4) 21.33(1) 25.76(5) 26.00(6) 27.21(7) 23.04(2) fertility 112.60(5) 100.38(1) 117.25(7) 110.46(4) 116.35(6) 106.84(2) 108.23(3) flow 90.16(5) 98.01(7) 74.38(3) 89.06(4) 67.93(2) 97.01(6) 61.32(1) forest 101.94(7) 98.68(1) 101.40(6) 99.82(4) 99.58(3) 99.42(2) 100.65(5) servo 50.35(7) 43.11(2) 37.48(1) 46.21(4) 46.98(5) 44.49(3) 48.55(6) slump 95.58(4) 105.58(7) 103.49(5) 94.28(3) 91.99(2) 104.05(6) 89.64(1) traffic 35.28(4) 32.48(1) 42.40(7) 34.31(2) 34.54(3) 35.98(5) 38.16(6) wine_red 84.81(7) 77.98(4) 62.57(1) 84.52(6) 79.17(3) 80.84(5) 65.19(2) wine_white 84.91(7) 77.94(3) 65.13(1) 84.67(6) 84.11(5) 80.04(4) 65.74(2) 47.84
Flow 90.16(5) 98.01(7) 74.38(3) 89.06(4) 67.93(2) 97.01(6) 61.32(1) forest 101.94(7) 98.68(1) 101.40(6) 99.82(4) 99.58(3) 99.42(2) 100.65(5) servo 50.35(7) 43.11(2) 37.48(1) 46.21(4) 46.98(5) 44.49(3) 48.55(6) slump 95.58(4) 105.58(7) 103.49(5) 94.28(3) 91.99(2) 104.05(6) 89.64(1) traffic 35.28(4) 32.48(1) 42.40(7) 34.31(2) 34.54(3) 35.98(5) 38.16(6) wine.red 84.81(7) 79.89(4) 62.57(1) 84.52(6) 79.17(3) 80.84(5) 65.19(2) wine.white 84.91(7) 77.94(3) 65.13(1) 84.67(6) 84.11(5) 80.04(4) 65.74(2) Avg. Rank (5.44) (3.33) (3.56) (4.22) (3.89) (4.44) (3.11) Ridge Best LS LSf RSW RSWF RSWH RSWHF automobile 19.51(3) 2.72E+12(7) 9.53E+11(6) 19.57(4) 19.62(5) 18.64(1) 18.77(2) fertility 102.34(2) 1.91E+03(6) 7.38E+03(7) 102.95(3) 106.90(4) 97.05(1) 106.99(5) servo 65.66(5) 6.86E+08(7) 2.49E+07(6) 65.25(3) 65.31(4) 64.61(2) 63.24(1) forest 99.01(4) 2.33E+03(7) 766.84(6) 97.88(1) 98.14(2) 98.26(3) 99.69(5) servo 62.32(1) 9.30E+06(7) 5.11E+04(6) 62.68(3) 62.38(2) 63.54(5) 63.05(4) slump 86.55(5) 71.4E+09(7) 2.00E+07(6) 85.69(4) 81.37(2) 85.59(3) 78.64(1) traffic 39.51(4) 4.95E+10(7) 3.04E+09(6) 39.47(3) 39.65(5) 36.84(2) 36.01(1) wine.red 64.91(3) 1.80E+08(7) 1.27E+04(6) 64.91(2) 64.90(1) 64.90(6) 64.90(5) wine.white 72.66(3) 7.49E+05(7) 3.47E+04(6) 72.66(4) 72.65(2) 72.64(1) 72.66(5) Avg. Rank (3.33) (6.89) (6.11) (3.00) (3.00) (2.44) (3.22) (3.22) (3.24) (3.22) (3.24) (3.22) (3.24) (3.2
Forest 101.94(7) 98.68(1) 101.40(6) 99.82(4) 99.58(3) 99.42(2) 100.65(5) servo 50.35(7) 43.11(2) 37.48(1) 46.21(4) 46.98(5) 44.49(3) 48.55(6) slump 95.58(4) 105.58(7) 103.49(5) 94.28(3) 91.99(2) 104.05(6) 89.64(1) traffic 35.28(4) 32.48(1) 42.40(7) 34.31(2) 34.54(3) 35.98(5) 38.16(6) wine.red 84.81(7) 79.89(4) 62.57(1) 84.52(6) 79.17(3) 80.84(5) 65.19(2) wine.white 84.91(7) 77.94(3) 65.13(1) 84.67(6) 84.11(5) 80.04(4) 65.74(2) Avg. Rank (5.44) (3.33) (3.56) (4.22) (3.89) (4.44) (3.31) (3.56) (4.22) (3.89) (4.44) (3.31) (3.56) (4.22) (3.89) (4.44) (3.31) (3.56) (4.22) (3.89) (4.44) (3.31) (3.56) (4.22) (3.89) (4.44) (3.31) (3.56) (4.22) (3.89) (4.44) (3.51) (4
servo 50.35(7) 43.11(2) 37.48(1) 46.21(4) 46.98(5) 44.49(3) 48.55(6) slump 95.58(4) 105.58(7) 103.49(5) 94.28(3) 91.99(2) 104.05(6) 89.64(1) traffic 35.28(4) 32.48(1) 42.40(7) 34.31(2) 34.54(3) 35.98(5) 38.16(6) wine.white 84.81(7) 79.89(4) 62.57(1) 84.52(6) 79.17(3) 80.84(5) 65.19(2) wine.white 84.91(7) 77.94(3) 65.13(1) 84.67(6) 84.11(5) 80.04(4) 65.74(2) Avg. Rank (5.44) (3.33) (3.56) (4.22) (3.89) (4.44) (3.11) Ridge Best LS LSf RSW RSWf RSWH RSWHf automobile 19.51(3) 2.72E±12(7) 9.53E±11(6) 19.57(4) 19.62(5) 18.64(1) 18.77(2) fertility 102.34(2) 1.91E+03(6) 7.38E+03(7) 102.95(3) 106.09(4) 97.05(1) 106.99(5) flow
slump 95.58(4) 105.58(7) 103.49(5) 94.28(3) 91.99(2) 104.05(6) 89.64(1) traffic 35.28(4) 32.48(1) 42.40(7) 34.31(2) 34.54(3) 35.98(5) 38.16(6) winemite 84.81(7) 79.89(4) 62.57(1) 84.52(6) 79.17(3) 80.84(5) 65.19(2) winemite 84.91(7) 77.94(3) 65.13(1) 84.67(6) 84.11(5) 80.04(4) 65.74(2) Avg. Rank (5.44) (3.33) (3.56) (4.22) 3.89 (4.44) (3.11) Ridge Best LS LSf RSW RSWf RSWH RSWHf automobile 19.51(3) 2.72E±12(7) 9.53E±11(6) 19.57(4) 19.62(5) 18.64(1) 18.77(2) fertility 102.34(2) 1.91E±03(6) 7.38E±03(7) 102.95(3) 106.90(4) 97.05(1) 106.99(5) flow 65.56(5) 6.86E+08(7) 2.49E±0+0(6) 65.25(3) 65.31(4) 64.61(2) 63.24(1) sl
traffic 35.28(4) 32.48(1) 42.40(7) 34.31(2) 34.54(3) 35.98(5) 38.16(6) wine.red 84.81(7) 79.89(4) 62.57(1) 84.52(6) 79.17(3) 80.84(5) 65.19(2) wine.white 84.91(7) 77.94(3) 65.13(1) 84.67(6) 84.11(5) 80.04(4) 65.74(2) Avg. Rank (5.44) (3.33) (3.56) (4.22) (3.89) (4.44) (3.11) Ridge Best LS LSf RSW RSWf RSWH RSWH automobile 19.51(3) 2.72E+12(7) 9.53E+11(6) 19.57(4) 19.62(5) 18.64(1) 18.77(2) fertility 102.34(2) 1.91E+03(6) 7.38E+03(7) 102.95(3) 106.90(4) 97.05(1) 106.99(5) servol 65.65(6) 6.86E+08(7) 2.49E+07(6) 65.25(3) 65.31(4) 64.61(2) 63.24(1) forest 99.01(4) 2.33E+03(7) 766.84(6) 97.88(1) 98.14(2) 98.26(3) 99.69(5) servo <t< td=""></t<>
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Avg. Rank (4.33) (5.56) (5.44) (3.67) (3.33) (2.78) (2.89)
SVR Best LS LSf RSW RSWf RSWH RSWHf
automobile 20.98(5) 1.54E+11(6) 4.06E+11(7) 20.94(4) 20.86(2) 20.94(3) 20.31 (1)
fertility 97.80(4) 635.89(6) 2.67E+03(7) 96.30(2) 95.76 (1) 96.80(3) 105.35(5)
flow $72.96(5) 4.38E+09(7) 2.69E+09(6) 68.69(3) 67.77(2) 72.86(4) 63.65(1)$
forest $100.85(1)$ $2536.09(6)$ $5.81E+03(7)$ $103.60(5)$ $101.86(4)$ $101.20(3)$ $101.00(2)$
servo 22.64(5) 697.48(6) 8.24E+04(7) 19.14(2) 19.57(3) 19.13 (1) 20.16(4)
slump 71.52 (1) 1.14E+12(6) 1.40E+12(7) 83.34(3) 82.85(2) 164.42(5) 89.02(4)
traffic $36.96(3) \ 1.65E + 07(7) \ 2.96E + 06(6) \ \textbf{36.01}(1) \ 36.37(2) \ 38.02(4) \ 45.25(5)$
wine_red 65.92(6) 64.41(3) 85.72(7) 65.83(4) 65.85(5) 57.33(2) 57.16 (1)
wine_white 72.60(7) 55.12(2) 54.97 (1) 72.28(5) 72.45(6) 57.68(4) 57.42(3)
Avg. Rank (4.11) (5.44) (6.11) (3.22) (3.00) (3.22) (2.89)

Table 1: The 3-fold cross validation relative mean squared error and Friedman ranks for all datasets when the best hyperparameter configuration trial (Best), linear regression via least squared with the option of adding instance description (LSf) or not (LS) to the ensemble, non-hyperparametric stacking stepwise regression over residuals adding instance description (RSWf) or not (RSW) to the ensemble and non-hyperparametric stacking stepwise regression over residual with the heuristic to provide zero weights to some models adding instance description to the ensemble (RSWHf) or not (RSWH), all taking into account several baseline systems (kNNR, Ridge, Lasso and SVR) and the GS sampling strategy.

kNNR	Best	LS	LSf	RSW	RSWf	RSWH	RSWHf
automobile	24.00(3)	26.18(7)	22.32(1)	25.12(4)	25.19(5)	26.03(6)	22.85(2)
fertility	98.29(3)	102.88(4)	117.05(7)	97.87(2)	104.65(6)	97.70 (1)	104.19(5)
flow	87.64(5)	90.45(6)	64.75(2)	87.28(4)	67.93(3)	94.66(7)	59.72 (1)
forest	103.34(7)	99.63(3)	101.05(6)	100.69(5)	98.39(1)	99.33(2)	99.70(4)
servo	48.98(7)	44.49(4)	40.00(1)	45.63(5)	46.86(6)	43.95(2)	44.21(3)
slump	95.02(4)	104.81(7)	98.99(5)	94.74(3)		100.93(6)	89.88(1)
traffic	34.54(5)	33.30 (1)	41.86(7)	34.30(4)	34.28(3)	34.11(2)	34.97(6)
wine_red	84.85(7)	82.87(4)	64.18(1)	84.70(6)	79.17(3)	83.13(5)	66.28(2)
wine_white	86.12(7)	81.34(3)	66.83 (1)	86.00(6)	85.10(5)	81.62(4)	67.08(2)
Avg. Rank	(5.33)	(4.33)	(3.44)	(4.33)	(3.78)	(3.89)	(2.89)
Ridge	Best	LS	LSf	RSW	RSWf	RSWH	RSWHf
automobile	19.79(3)	88.54(6)	154.36(7)	19.86(4)	19.91(5)	18.80 (1)	19.40(2)
fertility	102.37(2)	2.46E+13(7)	1.06E + 04(6)		106.90(4)	97.77(1)	106.99(5)
flow	65.66(5)	2.00E + 08(7)	1.32E + 07(6)	65.25(3)	65.31(4)	64.64(2)	63.24(1)
forest	99.01(4)	9.54E+10(7)	4.14E+07(6)	97.88(1)	98.13(2)	98.26(3)	99.69(5)
servo	62.34(1)	4.52E + 09(6)	8.55E+09(7)	62.68(3)	62.40(2)	63.39(5)	63.08(4)
slump	86.55(5)	5.19E + 08(7)	6.30E + 07(6)	85.69(4)	84.37(2)	85.69(3)	78.64(1)
traffic	39.81(3)	7.17E + 12(7)	1.02E + 08(6)	40.19(5)	39.96(4)	37.21(2)	36.40 (1)
wine_red	64.85(3)	3.17E + 04(7)	1.52E + 04(6)	64.85(2)	64.81 (1)	64.89(4)	64.94(5)
wine_white	72.96(2)	1.84E+05(7)	1.60E+05(6)	72.96(3)	72.96(4)	72.96(5)	72.89(1)
Avg. Rank	(3.11)	(6.78)	(6.22)	(3.11)	(3.11)	(2.89)	(2.78)
Lasso	Best	LS	LSf	RSW	RSWf	RSWH	RSWHf
automobile	18.55(4)	8.68E+05(7)	1.43E+05(6)	18.40(2)	18.40(3)	18.29(1)	19.42(5)
fertility	92.95(1)	93.20(4)	118.85(7)	93.09(3)	97.43(5)	93.04(2)	103.44(6)
flow	65.12(5)	87.70(6)	292.57(7)	64.77(4)	64.62(3)	64.18(2)	62.61 (1)
forest	99.50(4)	124.95(7)	103.11(6)	98.06(1)	98.11(2)	98.25(3)	99.65(5)
servo	64.85(5)	67.55(7)	64.17(4)	63.98(3)	63.87(2)	63.67 (1)	65.35(6)
slump	85.84(5)	1.44E+04(6)	1.57E + 04(7)	85.26(3)	83.99(2)	85.55(4)	80.71(1)
traffic	33.98(1)	36.27(5)	43.16(6)	34.38(2)	34.53(3)	34.68(4)	49.65(7)
wine_red	74.83(6)	75.33(7)	65.06 (1)	74.81(5)	74.00(3)	74.53(4)	65.75(2)
wine_white	78.77(6)	78.50(4)	72.74(1)	78.77(7)	77.65(3)	78.54(5)	74.22(2)
Avg. Rank	(4.11)	(5.89)	(5.00)	(3.33)	(2.89)	(2.89)	(3.89)
SVR	Best	LŚ	LSf	RSW	RSWf	RSWH	RSWHf
automobile	19.78(5)	6.15E+12(6)	9.87E+12(7)	19.59(3)	19.60(4)	19.15(2)	18.33(1)
fertility	97.73(4)	689.85(6)	4.76E+03(7)	95.39 (1)	96.22(2)	96.52(3)	102.74(5)
flow		4.16E+09(6)		69.66(2)	71.36(3)	72.02(4)	63.16 (1)
forest	98.09(1)	171.15(6)	781.11(7)	99.11(4)	98.24(2)	98.60(3)	100.18(5)
servo		3.63E+15(7)		19.62(4)	18.98(3)	18.52(1)	18.75(2)
slump	(/	3.61E+10(6)	/	85.55(3)	83.96(2)	77.52(1)	87.43(4)
traffic	48.05(2)	4.62E+04(6)	3.50E+05(7)	48.98(4)	48.36(3)	43.16 (1)	49.83(5)
wine_red	66.14(6)	65.91(5)	167.07(7)	65.69(3)	65.70(4)	57.32 (1)	57.74(2)
wine_white	73.11(7)	59.29(3)	63.53(4)	72.88(5)	72.88(5)	57.93(2)	57.93 (1)
Avg. Rank	(4.44)	(5.67)	(6.56)	(3.28)	(3.17)	(2.00)	(2.89)
	\ /	()	(/	(-/	/	,	

Table 2: The 3-fold cross validation relative mean squared error and Friedman ranks for all datasets when the best hyperparameter configuration trial (Best), linear regression via least squared with the option of adding instance description (LSf) or not (LS) to the ensemble, non-hyperparametric stacking stepwise regression over residuals adding instance description (RSWf) or not (RSW) to the ensemble and non-hyperparametric stacking stepwise regression over residual with the heuristic to provide zero weights to some models adding instance description to the ensemble (RSWHf) or not (RSWH), all taking into account several baseline systems (kNNR, Ridge, Lasso and SVR) and the RS sampling strategy.

kNNR	Best	LS	LSf	RSW	RSWf	RSWH	RSWHf
automobile	25.92(7)	23.95(2)	20.09(1)	25.35(4)	25.57(5)	24.41(3)	25.73(6)
fertility	94.03(3)	93.25(1)	105.91(7)	94.04(4)	93.49(2)	96.23(5)	102.26(6)
flow	84.84(5)	91.92(7)	67.85(3)	82.97(4)	67.64(2)	89.79(6)	59.19 (1)
forest	102.95(7)	99.74(5)	101.76(6)	98.77(3)	98.40(1)	98.48(2)	99.47(4)
servo	52.69(7)	44.25(2)	39.87(1)	48.38(5)	49.84(6)	45.19(3)	45.36(4)
slump	92.59(5)	99.48(7)	86.98(3)	90.97(4)	81.00(1)	93.50(6)	85.03(2)
traffic	33.44(2)	33.89(3)	45.37(7)	33.92(4)	34.03(5)	32.14 (1)	34.71(6)
wine_red	85.29(7)	79.13(3)	61.83(1)	85.04(6)	82.04(5)	80.14(4)	64.04(2)
wine_white	85.24(7)	78.64(3)	65.55 (1)	85.03(6)	85.01(5)	79.88(4)	65.69(2)
Avg. Rank	(5.56)	(3.67)	(3.33)	(4.44)	(3.56)	(3.78)	(3.67)
Ridge	Best	LS	LSf	RSW	RSWf	RSWH	RSWHf
automobile	18.35(3)	2.85E+04(7)	1.04E+04(6)	18.52(4)	18.72(5)	18.20(2)	16.23 (1)
fertility	102.35(2)	5.18E + 08(7)	3.87E + 08(6)	102.46(3)	103.96(4)	95.11 (1)	103.98(5)
flow	65.31(4)	1.55E + 03(7)	78.00(6)	65.22(3)	66.37(5)	64.67(2)	57.16 (1)
forest	99.34(5)	5.09E + 08(7)	1.34E+08(6)	98.15(2)	98.02(1)	98.18(3)	99.20(4)
servo	62.42(5)	1.82E+11(6)	2.23E+12(7)	61.46(4)	60.85 (1)	61.05(2)	61.10(3)
slump	87.34(5)	4.63E+12(7)	7.15E + 08(6)	86.67(4)	85.35(2)	85.62(3)	78.98 (1)
traffic	39.51(5)	2.67E+10(6)	1.68E+11(7)	38.95(3)	39.32(4)	37.97(2)	37.97 (1)
wine_red	64.85(4)	1.27E + 03(7)	1.11E+03(6)	64.81(3)	65.08(5)	64.81(2)	64.77 (1)
wine_white	72.82(2)	1.58E+03(6)	1.16E + 05(7)	72.90(4)	73.00(5)	72.82(3)	72.75(1)
Avg. Rank	(3.89)	(6.67)	(6.33)	(3.33)	(3.56)	(2.22)	(2.00)
Lasso	Best	LS	LSf	RSW	RSWf	RSWH	RSWHf
automobile	18.53(3)	19.27(4)	18.27(2)	19.60(7)	19.60(6)	19.37(5)	16.44(1)
fertility	92.95(3)	95.16(5)	116.79(7)	92.95(1)	92.95(1)	94.34(4)	102.93(6)
flow	64.84(4)	191.60(6)	238.46(7)	64.74(3)	66.02(5)	64.63(2)	57.34(1)
forest	99.55(5)	102.38(6)	196.51(7)	98.20(2)	98.02(1)	98.31(3)	99.33(4)
servo	62.81(4)	62.43(3)	66.16(6)	61.92(2)	61.80(1)	63.72(5)	66.21(7)
slump	85.77(5)	90.98(6)	92.67(7)	85.22(4)	84.61(2)	84.82(3)	79.15(1)
traffic	38.22(4)	6.56E + 06(6)	2.18E + 08(7)	37.83(3)	37.83(2)	36.09(1)	38.72(5)
wine_red	66.69(7)	66.50(4)	64.92 (1)	66.65(6)	66.53(5)	66.49(3)	66.13(2)
wine_white	74.80(5)	74.67(4)	72.99 (1)	74.92(6)	75.03(7)	74.67(3)	73.08(2)
Avg. Rank	(4.44)	(4.89)	(5.00)	(3.83)	(3.39)	(3.22)	(3.22)
SVR	Best	LS	LSf	RSW	RSWf	RSWH	RSWHf
automobile		3.18E+10(6)		99.46(3)	44.41(2)	99.68(4)	16.77 (1)
fertility	92.71(1)	2.64E+11(7)	1.20E+11(6)	92.95(2)	92.95(2)	103.79(4)	108.64(5)
flow	78.58(3)	4.85E+15(7)	3.01E+11(6)	78.65(4)	80.61(5)	78.27(2)	59.11 (1)
forest	97.99(1)	4.42E+06(6)	7.40E+06(7)	98.25(3)	98.05(2)	98.35(4)	99.70(5)
servo	21.31(4)	4.13E+04(6)	1.05E+15(7)	20.54(1)	20.55(2)	20.75(3)	22.48(5)
slump	78.83(4)	1.22E+14(7)	6.48E+13(6)	77.02(2)	82.95(5)	72.75(1)	77.71(3)
traffic	31.31(1)	398.84(7)	279.16(6)	31.46(2)	31.47(3)	33.54(4)	39.86(5)
wine_red	65.68(5)	92.29(6)	5.16E+13(7)	65.53(4)	65.27(3)	56.87(1)	56.88(2)
wine_white	73.27(6)	55.78(2)	55.37 (1)	73.16(5)	73.32(7)	58.40(3)	58.40(4)
Avg. Rank	(3.33)	(6.00)	(5.89)	(2.94)	(3.50)	(2.89)	(3.44)

Table 3: The 3-fold cross validation relative mean squared error and Friedman ranks for all datasets when the best hyperparameter configuration trial (Best), linear regression via least squared with the option of adding instance description (LSf) or not (LS) to the ensemble, non-hyperparametric stacking stepwise regression over residuals adding instance description (RSWf) or not (RSW) to the ensemble and non-hyperparametric stacking stepwise regression over residual with the heuristic to provide zero weights to some models adding instance description to the ensemble (RSWHf) or not (RSWH), all taking into account several baseline systems (kNNR, Ridge, Lasso and SVR) and the BO sampling strategy.

kNNR	Best	LS	LSf	RSW	RSWf	RSWH	RSWHf
automobile	27.27(7)	23.16(3)	18.40(1)	24.14(5)	24.23(6)	23.90(4)	19.88(2)
fertility	109.07(6)	103.95(5)	111.83(7)	97.51(2)	96.98(1)	99.78(3)	102.26(4)
flow	102.86(7)	84.04(5)	71.73(3)	83.36(4)	67.93(2)	87.29(6)	59.15 (1)
forest	141.64(7)	99.27(4)	101.36(6)	98.75(3)	98.24(1)	98.52(2)	99.68(5)
servo	55.11(7)	52.14(6)	45.64 (1)	51.70(4)	51.96(5)	51.09(3)	50.50(2)
slump	111.84(7)	94.65(6)	92.49(5)	89.61(4)	81.98(1)	86.77(3)	82.35(2)
traffic	39.66(5)	34.83(3)	44.06(7)	34.86(4)	34.83(2)	32.15 (1)	39.83(6)
wine_red	110.39(7)	81.47(4)	62.97 (1)	85.90(6)	82.04(5)	81.38(3)	65.27(2)
wine_white	96.76(7)	80.25(4)	66.07 (1)	85.96(6)	85.88(5)	80.07(3)	66.40(2)
Avg. Rank	(6.67)	(4.44)	(3.56)	(4.22)	(3.11)	(3.11)	(2.89)
Ridge	Best	LS	LSf	RSW	RSWf	RSWH	RSWHf
automobile	20.00(5)	2.25E+07(7)	1.14E+07(6)	18.62(3)	18.78(4)	18.22(2)	16.23 (1)
fertility	104.17(5)	1.30E+13(6)	2.38E+13(7)	102.59(2)	103.98(4)	95.22 (1)	103.98(3)
flow	66.89(5)	6.00E + 04(7)	302.43(6)	66.00(3)	66.69(4)	65.42(2)	57.15 (1)
forest	99.44(5)	2.11E+09(7)	3.72E + 08(6)	98.24(2)	98.02(1)	98.36(3)	99.20(4)
servo	62.27(5)	493.06(6)	699.74(7)	61.44(4)	60.84(1)	61.05(2)	61.10(3)
slump	87.71(5)	4.03E + 06(7)	8.06E+04(6)	86.33(4)	85.19(2)	85.62(3)	79.15(1)
traffic	41.28(5)	5.17E+13(6)	1.06E+16(7)	39.06(4)	38.38(3)	38.31(2)	36.18 (1)
wine_red	69.12(5)	4.17E+06(7)	1.34E + 04(6)	64.81(1)	65.07(4)	64.82(2)	64.90(3)
wine_white	78.12(5)	8.17E+09(6)	1.00E + 10(7)	73.00(3)	73.10(4)	72.93(2)	72.83(1)
Avg. Rank	(5.00)	(6.56)	(6.44)	(2.89)	(3.00)	(2.11)	(2.00)
Lasso	Best	LS		RSW	RSWf	RSWH	RSWHf
automobile	18.45(2)	23.65(7)	19.02(3)	19.62(6)	19.62(5)	19.39(4)	16.44 (1)
fertility	92.95(3)	93.13(5)	110.25(7)	92.95(1)	92.95(1)	93.07(4)	96.93(6)
flow	66.66(5)	285.32(7)	117.76(6)	65.12(3)	66.16(4)	64.99(2)	57.16 (1)
forest	99.65(6)	99.58(5)	101.48(7)	98.13(2)	98.02(1)	98.27(3)	99.33(4)
servo	102.02(7)	69.73(6)	65.18(5)	60.84(4)	60.61(3)	59.63(2)	56.87 (1)
slump	86.85(5)	411.18(7)	137.06(6)	85.19(4)	84.63(2)	84.90(3)	79.17 (1)
traffic	40.24(4)	2.06E+09(7)	4.45E+08(6)	35.20(3)	35.15(2)	34.86 (1)	43.84(5)
wine_red	96.71(5)	134.17(6)	626.27(7)	78.49(4)	75.95(3)	75.67(2)	65.63 (1)
wine_white	95.58(7)	78.45(3)	72.98(1)	82.90(5)	83.23(6)	81.56(4)	73.74(2)
Avg. Rank	(4.89)	(5.89)	(5.33)	(3.61)	(3.06)	(2.78)	(2.44)
SVR	Best	LS	LSf	RSW	RSWf	RSWH	RSWHf
automobile	114.30(5)	3.68E+14(7)	7.76E+13(6)	76.07(3)	39.50(2)	76.54(4)	16.10 (1)
fertility		1.03E+03(6)		95.79(1)		101.98(4)	101.94(3)
flow		1.04E+13(7)		93.44(4)	66.55(2)	91.07(3)	58.82 (1)
forest	101.04(5)	3.97E+11(7)	2.01E+08(6)	98.38(3)	98.05(1)	98.38(2)	99.69(4)
servo	117.03(5)	326.15(6)	924.38(7)	26.90(3)	28.44(4)	23.37(1)	24.23(2)
slump	(/	4.38E+14(7)	()	97.90(4)	81.68(2)	95.55(3)	78.91(1)
traffic	89.38(5)	1.02E+04(7)	4.28E+03(6)	55.34(3)	55.82(4)	50.80(2)	41.93 (1)
wine_red	123.91(7)	71.51(4)	59.53 (1)	76.59(6)	75.36(5)	71.02(3)	60.34(2)
wine_white	99.63(7)	73.36(6)	59.24 (1)	72.85(4)	73.04(5)	70.17(3)	61.62(2)
Avg. Rank	(5.44)	(6.33)	(5.11)	(3.50)	(2.94)	(2.78)	(1.89)
	\ /	()	, ,	\ -/	_ ` /	\ -/	

Table 4: The 3-fold cross validation relative mean squared error and Friedman ranks for all datasets when the best hyperparameter configuration trial (Best), linear regression via least squared with the option of adding instance description (LSf) or not (LS) to the ensemble, non-hyperparametric stacking stepwise regression over residuals adding instance description (RSWf) or not (RSW) to the ensemble and non-hyperparametric stacking stepwise regression over residual with the heuristic to provide zero weights to some models adding instance description to the ensemble (RSWHf) or not (RSWH), all taking into account several baseline systems (kNNR, Ridge, Lasso and SVR) and the PSO sampling strategy.

kNNR	Best	LS	LSf	RSW	RSWf	RSWH	RSWHf
automobile	26.96(4)	24.02(1)	36.73(7)	25.76(2)	26.00(3)	27.26(5)	30.57(6)
fertility	100.08(1)	100.23(2)	(/		108.76(5)		
flow	84.49(1)	98.01(5)	107.90(7)	89.06(3)	88.33(2)		102.39(6)
forest	102.02(6)	98.68(1)	102.05(7)	99.82(3)	99.96(4)		101.45(5)
servo	46.06(4)	44.33(1)	46.39(5)	46.48(7)	46.42(6)	44.86(2)	45.83(3)
slump	92.55(1)	105.58(5)	110.62(7)		\ /	104.05(4)	()
traffic	37.30(4)	36.22(3)	46.04(7)	35.29 (1)	35.47(2)	37.60(5)	44.99(6)
wine_red	85.30(7)	79.89(3)	77.78(1)	84.52(6)	84.51(5)	80.84(4)	79.36(2)
wine_white	84.91(7)	77.94 (1)	77.96(2)	84.67(5)	84.74(6)	80.04(3)	80.53(4)
Avg. Rank	(3.89)	(2.44)	(5.44)	(4.00)	(4.33)	(3.67)	(4.22)
Ridge	Best	LS	LSf	RSW	RSWf	RSWH	RSWHf
automobile	20.05(4)	3.16E+07(6)	8.84E+07(7)	19.57(3)	19.55(2)	18.57(1)	22.09(5)
fertility	102.36(3)	2.05E+03(7)	1.19E + 03(6)	102.96(4)	118.86(5)	97.07(1)	102.18(2)
flow	66.07(5)	1.30E+07(6)	1.52E+08(7)	65.25(4)	63.56(2)	64.71(3)	61.61 (1)
forest	99.01(3)	683.72(6)	1.02E + 03(7)	97.88(1)	99.58(5)	98.25(2)	99.27(4)
servo	62.34 (1)	201.26(6)	206.49(7)	62.68(2)	62.83(3)	63.52(4)	64.34(5)
slump	86.55(5)	2.97E+08(6)	4.80E + 08(7)	85.70(4)	85.41(2)	85.61(3)	76.88 (1)
traffic	39.51(2)	3.08E+07(6)	3.51E+09(7)	39.53(3)	39.94(4)	36.86 (1)	47.18(5)
wine_red	64.89(1)	1.79E+07(6)	2.05E+07(7)	64.91(2)	65.04(4)	64.96(3)	65.67(5)
wine_white	72.66(5)	6.95E+03(7)	763.03(6)	72.42(3)	72.42(2)	72.40(1)	72.47(4)
Avg. Rank	(3.22)	(6.22)	(6.78)	(2.89)	(3.22)	(2.11)	(3.56)
Lasso	Best	LŚ	LSf	RSW	RSWf	RSWH	RSWHf
automobile	18.45(4)	31.43(6)	58.25(7)	18.31(3)	18.31(2)	18.19(1)	20.63(5)
fertility	95.55(1)	206.10(6)	270.66(7)	96.09(2)	96.29(3)	96.66(4)	102.64(5)
flow	66.82(5)	199.26(6)	200.90(7)	66.50(4)	64.56(2)	65.61(3)	61.68 (1)
forest	100.14(5)	105.79(6)	106.76(7)	98.79(2)	99.57(3)	98.34(1)	99.61(4)
servo	63.17(3)	51.57(2)	51.35 (1)	63.23(4)	63.88(6)	63.77(5)	64.69(7)
slump	87.59(5)	96.34(7)	88.76(6)	86.74(4)	86.12(3)	86.06(2)	77.06 (1)
traffic	38.64(2)	1.09E+07(6)	1.12E+09(7)	39.13(4)	39.03(3)	37.39 (1)	52.42(5)
wine_red	69.24(4)	105.45(6)	107.94(7)	69.23(3)	69.34(5)	68.94(2)	68.34 (1)
wine_white	78.40(5)	78.21(2)	78.73(6)	78.33(4)	78.20(1)	78.31(3)	78.87(7)
Avg. Rank	(3.78)	(5.22)	(6.11)	(3.33)	(3.11)	(2.44)	(4.00)
SVR	Best	LS	LSf	RSW	RSWf	RSWH	RSWHf
automobile	20.60(1)	273375.72(7)	95129.58(6)	21.48(2)	21.59(3)	21.89(4)	27.68(5)
fertility	98.43(4)	181.23(6)	227.20(7)	96.19(1)	96.83(2)	97.97(3)	100.75(5)
flow		3.69E+06(6)	9.66E+06(7)	65.44(2)	63.31 (1)	72.94(4)	76.29(5)
forest	98.14(1)	122.45(6)	128.73(7)	101.39(3)	101.70(4)	100.46(2)	102.05(5)
servo	21.53(5)	74.73(6)	119.47(7)	20.16(2)	20.42(3)	19.53(1)	20.53(4)
slump		8.55E+14(7)		79.01(1)	79.30(2)	134.35(5)	123.76(4)
traffic	41.89(1)	425.97(7)	323.31(6)	48.86(4)	51.73(5)	43.97(2)	45.43(3)
wine_red	66.87(5)	58.91(2)	59.78(4)	68.81(6)	69.00(7)	58.78(1)	59.35(3)
wine_white	78.04(5)	289.12(6)	337.95(7)	70.84(4)	70.80(3)	56.87 (1)	56.91(2)
Avg. Rank	(3.11)	(5.89)	(6.33)	(2.78)	(3.33)	(2.56)	(4.00)

Table 5: The 3-fold cross validation relative mean squared error and Friedman ranks for all datasets when the best hyperparameter configuration trial (Best), linear regression via least squared with the option of adding instance description (LSf) or not (LS) to the ensemble, non-hyperparametric stacking stepwise regression over residuals adding instance description (RSWf) or not (RSW) to the ensemble and non-hyperparametric stacking stepwise regression over residual with the heuristic to provide zero weights to some models adding instance description to the ensemble (RSWHf) or not (RSWH), all taking into account several baseline systems (kNNR, Ridge, Lasso and SVR) and the HB sampling strategy.

kNNR	Best	BEM	IEW	Caruana	RSWH	RSWHf	WCH	SCH
automobile	23.85(5)	21.95 (1)	21.96(2)	22.02(3)	27.21(6)	23.04(4)	21.28	10.26
fertility	112.60(6)	96.14(1)	96.41(2)	98.38(3)	106.84(4)	108.23(5)	93.40	59.15
flow	90.16(4)	87.19(3)	86.81(2)	90.28(5)	97.01(6)	61.32 (1)	80.93	40.73
forest	101.94(3)	106.33(6)	105.25(5)	104.83(4)	99.42(1)	100.65(2)	101.94	90.47
servo	50.35(6)	46.85(3)	46.89(4)	45.14(2)	44.49 (1)	48.55(5)	42.76	19.39
slump	95.58(4)	91.94(3)	91.88(2)	96.24(5)	104.05(6)	89.64(1)	86.73	47.26
traffic	35.28(4)	32.84(2)	32.77 (1)	33.92(3)	35.98(5)	38.16(6)	31.25	15.21
wine_red	84.81(6)	79.03(2)	79.22(3)	81.97(5)	80.84(4)	65.19(1)	84.64	37.56
wine_white	84.91(6)	78.33(2)	78.48(3)	80.27(5)	80.04(4)	65.74(1)	83.47	36.56
Avg. Rank	(4.89)	(2.56)	(2.67)	(3.89)	(4.11)	(2.89)	-	_
Ridge	Best	BEM	IEW	Caruana	RSWH	RSWHf	WCH	SCH
automobile	19.51(6)	16.92(1)	16.95(2)	17.20(3)	18.64(4)	18.77(5)	17.03	9.05
fertility	102.34(2)	103.72(5)	103.70(4)	102.50(3)	97.05(1)	106.99(6)	102.34	96.86
flow	65.66(3)	66.45(6)	66.45(5)	65.73(4)	64.61(2)	63.24(1)	65.30	63.78
forest	99.01(2)	99.46(5)	99.46(4)	99.06(3)	98.26(1)	99.69(6)	98.98	97.74
servo	62.32(1)	62.51(3)	62.51(4)	62.36(2)	63.54(6)	63.05(5)	61.83	61.36
$_{\mathrm{slump}}$	86.55(3)	87.12(6)	87.11(5)	86.61(4)	85.59(2)	78.64(1)	86.18	83.92
traffic	39.51(3)	41.04(6)	40.95(5)	39.90(4)	36.84(2)	36.01(1)	39.47	38.01
$wine_red$	64.91(2)	65.82(6)	65.74(5)	64.91(1)	64.96(3)	64.99(4)	64.84	51.31
wine_white	72.66(3)	73.79(6)	73.71(5)	72.43(1)	72.64(2)	72.66(4)	72.02	60.11
Avg. Rank	(2.78)	(4.89)	(4.33)	(2.78)	(2.56)	(3.67)	-	_
Lasso	Best	BEM	IEW	Caruana	RSWH	RSWHf	WCH	SCH
automobile	18.45(5)	18.45(3)	18.45(2)	18.45(4)	18.19 (1)	19.45(6)	18.45	18.45
fertility	95.85(4)	94.17(1)	94.17(2)	94.83(3)	96.66(5)	103.80(6)	92.74	90.36
flow	66.81(3)	66.82(6)	66.82(5)	66.82(4)	65.59(2)	62.85(1)	66.81	66.79
forest	100.09(3)	100.13(6)	100.13(5)	100.12(4)	98.34(1)	99.47(2)	100.09	100.08
servo	63.62(5)	63.38(1)	63.38(2)	63.43(3)	63.77(6)	63.52(4)	62.67	62.15
$_{\mathrm{slump}}$	87.59(3)	87.61(6)	87.61(5)	87.60(4)	86.05(2)	81.32(1)	87.59	87.55
traffic	38.64(3)	39.03(6)	39.02(5)	38.96(4)	37.39(1)	37.58(2)	38.60	38.16
wine_red	69.24(3)	70.68(6)	70.67(5)	70.06(4)	68.94(2)	65.74(1)	69.24	66.52
wine_white	78.33(3)	78.39(6)	78.39(5)	78.36(4)	78.31(2)	73.63(1)	78.33	77.45
Avg. Rank	(3.56)	(4.56)	(4.00)	(3.78)	(2.44)	(2.67)	-	_
SVR	Best	BEM	IEW	Caruana	RSWH	RSWHf	WCH	SCH
automobile	20.98(4)	84.06(6)	45.64(5)	20.30 (1)	20.94(3)	20.31(2)	19.66	9.78
fertility	97.80(5)	92.72(1)	92.98(2)	96.93(4)	96.80(3)	105.35(6)	89.96	49.63
flow	72.96(4)	79.59(5)	83.35(6)	66.26(2)	72.86(3)	63.65(1)	59.75	25.32
forest	100.85(4)	99.22 (1)	99.56(3)	99.38(2)	101.20(6)	101.00(5)	97.20	82.09
servo	22.64(4)	67.92(6)	46.02(5)	22.05(3)	19.13(1)	20.16(2)	15.31	10.60
slump	71.52(2)	92.52(5)	90.71(4)	71.08(1)	164.42(6)	89.02(3)	71.26	17.17
traffic	36.96(2)	45.02(5)	38.79(4)	36.33 (1)	38.02(3)	45.25(6)	25.45	6.12
wine_red	65.92(4)	67.67(6)	66.52(5)	59.62(3)	57.33(2)	57.16 (1)	64.48	13.30
wine_white	72.60(6)	70.13(5)	68.61(4)	61.14(3)	57.68(2)	57.42 (1)	70.81	12.93
Avg. Rank	(3.89)	(4.44)	(4.22)	(2.22)	(3.22)	(3.00)	-	

Table 6: The 3-fold cross validation relative mean squared error and Friedman ranks for all datasets when the best hyperparameter configuration trial (Best), simple average (BEM), the inverse of the error (IEW), Caruana method (Caruana) and non-hyperparametric stacking stepwise regression over residual with the heuristic to provide zero weights to some models adding instance description to the ensemble (RSWHf) or not (RSWH), all taking into account several baseline systems (kNNR, Ridge, Lasso and SVR) and the GS sampling strategy. The scores for the cheating approaches WCH and SCH are also shown, but they were not included in the computation of the Friedman ranks.

kNNR	Best	BEM	IEW	Caruana	RSWH	RSWHf	WCH SCH
automobile	24.00(5)	23.36(3)	23.28(2)	23.96(4)	26.03(6)	22.85 (1)	21.17 12.49
fertility	98.29(2)	99.48(5)	99.28(4)	98.42(3)	97.70 (1)	104.19(6)	96.30 74.70
flow	87.64(5)	85.73(3)	85.73(4)	85.60(2)	94.66(6)	59.72 (1)	80.43 54.25
forest	103.34(3)	107.01(6)	106.75(5)	104.30(4)	99.33 (1)	99.70(2)	103.24 93.16
servo	48.98(3)	51.81(5)	51.18(4)	52.48(6)	43.95(1)	44.21(2)	41.53 33.22
slump	95.02(5)	91.41(4)	91.33(3)	90.48(2)	100.93(6)	89.88(1)	85.60 58.69
traffic	34.54(5)	34.29(4)	34.22(2)	34.24(3)	34.11 (1)	34.97(6)	32.99 22.68
wine_red	84.85(6)	82.28(2)	82.33(3)	83.20(5)	83.13(4)	66.28 (1)	84.31 53.25
$wine_white$	86.12(6)	81.75(3)	81.79(4)	82.51(5)	81.62(2)	67.08 (1)	83.17 51.17
Avg. Rank	(4.44)	(3.89)	(3.44)	(3.78)	(3.11)	(2.33)	
Ridge	Best	BEM	IEW	Caruana	RSWH	RSWHf	WCH SCH
automobile	19.79(6)	17.76(2)	17.79(3)	17.62 (1)	18.80(4)	19.40(5)	17.78 9.71
fertility	102.37(2)	102.89(5)		102.40(3)	97.77(1)	106.99(6)	102.33 97.20
flow	65.66(3)	66.46(6)	66.46(5)	65.93(4)	64.64(2)	63.24(1)	65.30 63.78
forest	99.01(2)	99.45(5)	99.45(4)	99.22(3)	98.26(1)	99.69(6)	98.98 97.74
servo	62.34(1)	62.43(3)	62.43(4)	62.34(2)	63.39(6)	63.08(5)	61.87 61.44
slump	86.55(3)	86.96(6)	86.96(5)	86.81(4)	85.69(2)	78.64(1)	86.18 83.92
traffic	39.81(4)	40.35(6)	40.31(5)	39.73(3)	37.21(2)	36.40(1)	39.50 38.17
$wine_red$	64.85(1)	65.81(6)	65.77(5)	64.87(2)	64.89(3)	64.94(4)	64.83 51.75
wine_white	72.96(3)	74.63(6)	74.56(5)	72.95(2)	72.96(4)	72.89(1)	72.95 62.54
Avg. Rank	(2.78)	(5.00)	(4.44)	(2.67)	(2.78)	(3.33)	
Lasso	Best	BEM	IEW	Caruana	RSWH	RSWHf	WCH SCH
automobile	18.55(5)	18.50(3)	18.50(2)	18.53(4)	18.29 (1)	19.42(6)	18.40 18.22
fertility	92.95(3)	92.92(1)	92.92(2)	92.95(3)	93.04(5)	103.44(6)	92.80 92.56
flow	65.12(3)	66.00(6)	66.00(5)	65.46(4)	64.18(2)	62.61 (1)	65.12 63.98
forest	99.50(2)	99.60(4)	99.60(5)	99.55(3)	98.25 (1)	99.65(6)	99.47 99.03
servo	64.85(2)	74.33(6)	72.62(5)	72.25(4)	63.67 (1)	65.35(3)	63.28 48.76
slump	85.84(3)	86.57(6)	86.57(5)	86.08(4)	85.55(2)	80.71(1)	85.84 83.56
traffic	33.98(1)	34.70(4)	34.68(3)	34.83(5)	34.68(2)	49.65(6)	33.92 29.30
wine_red	74.83(3)	84.81(6)	83.94(5)	83.60(4)	74.53(2)	65.75 (1)	74.83 60.26
wine_white	78.77(3)	85.76(6)	85.24(5)	84.62(4)	78.54(2)	74.22 (1)	78.77 64.46
Avg. Rank	(2.83)	(4.67)	(4.11)	(3.94)	(2.00)	(3.44)	
SVR	Best	BEM	IEW	Caruana	RSWH	RSWHf	WCH SCH
automobile	19.78(3)	40.09(6)	23.65(5)	20.43(4)	19.15(2)	18.33 (1)	19.14 5.42
fertility	97.73(4)	93.79(1)	93.88(2)	99.25(5)	96.52(3)	102.74(6)	91.14 57.22
flow	72.44(4)	73.47(6)	70.75(2)	72.71(5)	72.02(3)	63.16 (1)	61.57 15.26
forest	98.09(2)	99.11(4)	99.42(5)	98.00 (1)	98.60(3)	100.18(6)	97.05 85.46
servo	20.81(3)	61.09(6)	45.90(5)	23.17(4)	18.52 (1)	18.75(2)	19.67 10.12
slump	93.90(5)	132.65(6)	91.06(4)	85.82(2)	77.52 (1)	87.43(3)	85.16 18.96
traffic	48.05(5)	37.85(3)	35.86(2)	34.84 (1)	43.16(4)	49.83(6)	32.95 9.81
$wine_red$	66.14(6)	62.47(5)	62.19(4)	60.35(3)	57.32 (1)	57.74(2)	65.30 17.22
$wine_white$	73.11(6)	72.57(5)	67.11(4)	62.84(3)	57.93(2)	57.93 (1)	70.96 10.15
Avg. Rank	(4.22)	(4.67)	(3.67)	(3.11)	(2.22)	(3.11)	

Table 7: The 3-fold cross validation relative mean squared error and Friedman ranks for all datasets when the best hyperparameter configuration trial (Best), simple average (BEM), the inverse of the error (IEW), Caruana method (Caruana) and non-hyperparametric stacking stepwise regression over residual with the heuristic to provide zero weights to some models adding instance description to the ensemble (RSWHf) or not (RSWH), all taking into account several baseline systems (kNNR, Ridge, Lasso and SVR) and the RS sampling strategy. The scores for the cheating approaches WCH and SCH are also shown, but they were not included in the computation of the Friedman ranks.

kNNR	Best	BEM	IEW	Caruana	RSWH	RSWHf	WCH	SCH
automobile	25.92(6)	24.60(2)	25.40(3)	25.42(4)	24.41 (1)	25.73(5)	23.20	12.16
fertility	94.03(2)	93.94(1)	94.43(4)	94.34(3)	96.23(5)	102.26(6)	92.71	60.65
flow	84.84(4)	83.55(2)	83.68(3)	85.23(5)	89.79(6)	59.19 (1)	84.55	52.12
forest	102.95(3)		105.26(5)	104.40(4)	98.48(1)	99.47(2)	102.09	90.55
servo	52.69(6)	50.02(3)	50.90(5)	50.38(4)	45.19 (1)	45.36(2)	50.50	21.41
slump	92.59(5)	87.82(2)	88.34(3)	91.03(4)	93.50(6)	85.03 (1)	86.94	52.05
traffic	33.44(5)	32.64(3)	32.69(4)	32.00(1)	32.14(2)	34.71(6)	31.33	17.12
$wine_red$	85.29(6)	79.72(2)	80.62(5)	79.94(3)	80.14(4)	64.04 (1)	84.64	40.13
$wine_white$	85.24(6)	79.34(3)	80.13(5)	79.20(2)	79.88(4)	65.69(1)	84.02	40.09
Avg. Rank	(4.78)	(2.67)	(4.11)	(3.33)	(3.33)	(2.78)	-	_
Ridge	Best	BEM	IEW	Caruana	RSWH	RSWHf	WCH	SCH
automobile	18.35(6)	17.39(3)	17.44(4)	16.73(2)	18.20(5)	16.23 (1)	17.78	10.14
fertility	102.35(2)	102.49(5)	102.49(4)		95.11(1)	103.98(6)	102.31	96.99
flow	65.31(3)	66.19(6)	66.18(5)	65.50(4)	64.67(2)	57.16(1)	65.31	64.36
forest	99.34(4)	99.42(6)	99.42(5)	99.33(3)	98.18(1)	99.20(2)	99.31	98.51
servo	62.42(5)	62.29(4)	62.29(3)	62.43(6)	61.05(1)	61.10(2)	61.87	61.44
slump	87.34(3)	87.48(6)	87.48(5)	87.34(4)	85.62(2)	78.98(1)	87.34	86.64
traffic	39.51(3)	40.09(6)	40.06(5)	39.57(4)	37.97(2)	37.97(1)	39.47	38.01
wine_red	64.85(3)	64.93(6)	64.93(5)	64.86(4)	64.81(2)	64.77(1)	64.83	54.36
wine_white	72.82(2)	72.97(6)	72.96(5)	72.83(4)	72.82(3)	72.75(1)	72.82	68.32
Avg. Rank	(3.44)	(5.33)	(4.56)	(3.78)	(2.11)	(1.78)	-	_
Lasso	Best	BEM	IEW	Caruana	RSWH	RSWHf	WCH	SCH
automobile	18.53(5)	18.52(2)	18.52(3)	18.53(4)	19.37(6)	16.44 (1)	18.41	18.29
fertility	92.95(1)	93.16(3)	93.10(2)	93.81(4)	94.34(5)	102.93(6)	90.99	82.61
flow	64.84(3)	65.51(6)	65.51(5)	65.03(4)	64.63(2)	57.34(1)	64.84	63.43
forest	99.55(3)	99.57(5)	99.57(6)	99.56(4)	98.31(1)	99.33(2)	99.53	99.12
servo	62.81(1)	67.57(5)	65.30(3)	69.50(6)	63.72(2)	66.21(4)	61.45	43.57
slump	85.77(3)	86.38(6)	86.37(5)	86.28(4)	84.82(2)	79.15(1)	85.74	83.13
traffic	38.22(5)	36.43(3)	36.70(4)	36.29(2)	36.09(1)	38.72(6)	37.30	30.84
wine_red	66.69(3)	75.31(5)	72.81(4)	76.88(6)	66.49(2)	66.13(1)	66.69	51.14
wine_white	74.80(3)	77.74(5)	77.04(4)	78.78(6)	74.67(2)	73.08(1)	74.80	60.50
Avg. Rank	(3.00)	(4.44)	(4.00)	(4.44)	(2.56)	(2.56)	-	-
SVR	Best	BEM	IEW	Caruana	RSWH	RSWHf	WCH	SCH
automobile	114.69(6)	114.69(3)	114.69(4)	114.69(5)	99.68(2)	16.77 (1)	114.41	114.27
fertility	92.71(3)	92.47(1)	92.58(2)	92.93(4)	103.79(5)	108.64(6)	91.66	76.04
flow	78.58(3)	93.63(6)	92.93(5)	85.87(4)	78.27(2)	59.11 (1)	71.55	55.09
forest	97.99(1)	98.98(5)	98.96(4)	98.24(2)	98.35(3)	99.70(6)	97.81	95.75
servo	21.31(2)	58.40(6)	49.45(5)	26.35(4)	20.75(1)	22.48(3)	20.52	13.15
$_{\mathrm{slump}}$	78.83(4)	90.51(6)	89.05(5)	75.38(2)	72.75(1)	77.71(3)	77.61	45.24
traffic	31.31(1)	41.43(6)	37.58(4)	32.83(2)	33.54(3)	39.86(5)	28.53	9.65
$wine_red$	65.68(6)	64.46(5)	64.19(4)	60.79(3)	56.87(1)	56.88(2)	64.19	19.50
$wine_white$	73.27(6)	70.70(5)	69.56(4)	61.29(3)	58.40(1)	58.40(2)	71.05	17.90
Avg. Rank	(3.56)	(4.78)	(4.11)	(3.22)	(2.11)	(3.22)	-	

Table 8: The 3-fold cross validation relative mean squared error and Friedman ranks for all datasets when the best hyperparameter configuration trial (Best), simple average (BEM), the inverse of the error (IEW), Caruana method (Caruana) and non-hyperparametric stacking stepwise regression over residual with the heuristic to provide zero weights to some models adding instance description to the ensemble (RSWHf) or not (RSWH), all taking into account several baseline systems (kNNR, Ridge, Lasso and SVR) and the BO sampling strategy. The scores for the cheating approaches WCH and SCH are also shown, but they were not included in the computation of the Friedman ranks.

automobile 27.27(6) 21.45(4) 21.30(3) 21.21(2) 23.90(5) 19.88(1) 22.74 10.55 fertility 109.70(6) 101.31(4) 100.51(3) 99.24(1) 99.78(2) 102.26(5) 96.75 64.73 flow 102.86(6) 84.46(2) 84.47(3) 85.59(4) 87.29(5) 59.15(1) 80.76 62.41 forest 141.64(6) 106.44(5) 106.20(4) 104.40(3) 98.52(1) 99.68(2) 102.86 93.19 servo 55.11(6) 55.02(5) 54.85(4) 53.48(3) 51.09(2) 50.50(1) 45.65 82.88 slump 111.84(6) 89.82(5) 89.62(4) 88.58(3) 86.7(2) 82.35(1) 85.79 61.18 traffic 39.66(5) 33.76(4) 33.64(3) 33.31(2) 32.15(1) 39.83(6) 31.26 22.37 wine.red 110.39(6) 81.05(2) 81.30(3) 82.15(2) 66.40(1) 83.744.14 Avg. Rank (5.89) (3.89) 13.33 3.11 (2.67) (2.11) 7.75(6)	kNNR	Best	BEM	IEW	Caruana	RSWH	RSWHf	WCH SCH
Flow	automobile	27.27(6)	21.45(4)	21.30(3)	21.21(2)	23.90(5)	19.88 (1)	22.74 10.55
forest 141.64(6) 106.44(5) 106.20(4) 104.40(3) 98.52(1) 99.68(2) 102.86 3.19 servo 55.11(6) 55.02(5) 54.85(4) 53.48(3) 51.09(2) 50.50(1) 45.65 38.28 slump 111.84(6) 89.82(5) 89.62(4) 88.58(3) 86.77(2) 82.35(1) 85.79 61.18 traffic 39.66(5) 33.76(4) 33.64(3) 33.31(2) 32.15(1) 39.83(6) 31.26 22.37 wine.white 96.76(6) 80.21(4) 80.10(3) 81.06(5) 80.07(2) 66.40(1) 83.37 41.10 Avg. Rank (5.89) (3.89) (3.33) (3.11) (2.67) (2.11) Ridge Best BEM IEW Caruana RSWH RSWH WCH SCH automobile 20.00(6) 17.91(4) 17.84(3) 16.92(2) 18.22(5) 16.23(1) 17.86 9.73 fertility 10.417(6) 10.31(4) 103.17(3) 102.62(5) 66.41(2) 30.22	fertility	109.07(6)	101.31(4)	100.51(3)	99.24(1)	99.78(2)	102.26(5)	96.75 64.73
servo 55.11(6) 55.02(5) 54.85(4) 53.48(3) 51.09(2) 50.50(1) 45.65 38.28 slump 111.84(6) 89.82(5) 89.62(4) 88.58(3) 86.77(2) 82.35(1) 85.79 61.18 traffic 39.66(5) 33.76(4) 33.64(3) 33.31(2) 32.15(1) 39.83(6) 31.26 22.37 wine_red 110.39(6) 81.05(2) 81.30(3) 82.56(5) 81.38(4) 65.27(1) 84.53 48.46 wine_white 96.76(6) 80.21(4) 80.10(3) 81.00(5) 80.07(2) 66.40(1) 83.37 44.14 Avg Rak C.899 (3.89) (3.33) (3.11) (2.67) (2.11)	flow	102.86(6)	84.46(2)	84.47(3)	85.59(4)	87.29(5)	59.15 (1)	80.75 62.41
slump 111.84(6) 89.82(5) 89.62(4) 88.58(3) 86.77(2) 82.35(1) 85.79 61.18 traffic 39.66(5) 33.76(4) 33.64(3) 33.31(2) 32.15(1) 39.83(6) 31.26 22.37 wine_mel 96.76(6) 80.21(4) 80.10(3) 81.06(5) 80.07(2) 66.40(1) 83.37 44.14 Avg. Rank (5.89) (3.89) (3.33) 3(3.11) (2.67) (2.11) - Ridge Best BEM IEW Caruana RSWH RSWHf WCH SCH automobile 20.00(6) 17.91(4) 17.84(3) 16.92(2) 18.22(5) 16.23(1) 17.86 9.73 fertility 104.17(6) 103.18(4) 103.17(3) 102.67(2) 95.22(1) 103.98(5) 102.43 97.38 fewritility 104.17(6) 103.18(4) 103.17(3) 102.67(2) 95.22(5) 16.23(1) 17.86 9.73 fertility 99.44(4) 99.57(5) 99.57(6) 99.38(3) 98.36(1)	forest	141.64(6)	106.44(5)	106.20(4)	104.40(3)	98.52 (1)		102.86 93.19
traffic 39.66(5) 33.76(4) 33.64(3) 33.31(2) 32.15(1) 39.83(6) 31.26 22.37 wine_white 96.76(6) 80.21(4) 80.10(3) 82.56(5) 81.38(4) 65.27(1) 84.53 48.46 wine_white 96.76(6) 80.21(4) 80.10(3) 81.00(5) 80.07(2) 66.40(1) 83.37 44.14 Avg. Rank (5.89) (3.89) (3.33) (3.11) (2.67) (2.11)	servo	55.11(6)	55.02(5)	54.85(4)	53.48(3)	51.09(2)	50.50 (1)	45.65 38.28
traffic 39.66(5) 33.76(4) 33.64(3) 33.31(2) 32.15(1) 39.83(6) 31.26 22.37 wine_white 96.76(6) 80.21(4) 80.10(3) 82.56(5) 81.38(4) 65.27(1) 84.53 48.46 wine_white 96.76(6) 80.21(4) 80.10(3) 81.00(5) 80.07(2) 66.40(1) 83.37 44.14 Avg. Rank (5.89) (3.89) (3.33) (3.11) (2.67) (2.11)	slump	111.84(6)	89.82(5)	89.62(4)	88.58(3)	86.77(2)	82.35 (1)	85.79 61.18
wine_white 96.76(6) 80.21(4) 80.10(3) 81.00(5) 80.07(2) 66.40(1) 83.37 44.14 Avg. Rank (5.89) (3.89) (3.33) (3.11) (2.67) (2.11) ————————————————————————————————————	traffic		33.76(4)	33.64(3)	33.31(2)	32.15 (1)	39.83(6)	31.26 22.37
Avg. Rank (5.89) (3.89) (3.33) (3.11) (2.67) (2.11)	wine_red	110.39(6)	81.05(2)	81.30(3)	82.56(5)	81.38(4)	65.27 (1)	84.53 48.46
Ridge Best BEM IEW Caruana RSWH RSWHf WCH SCH automobile 20.00(6) 17.91(4) 17.84(3) 16.92(2) 18.22(5) 16.23(1) 17.86 9.73 fertility 104.17(6) 103.18(4) 103.17(3) 102.67(2) 95.22(1) 103.98(5) 102.43 97.38 flow 66.89(6) 66.62(5) 66.61(4) 66.07(3) 65.42(2) 57.15(1) 65.71 64.60 flows 99.44(4) 99.57(5) 99.57(6) 99.38(3) 98.36(1) 99.20(2) 99.31 98.02 servo 62.27(3) 62.34(5) 62.34(4) 62.44(6) 61.05(1) 61.10(2) 61.90 61.50 slump 87.71(6) 87.23(5) 87.23(4) 86.97(3) 85.62(2) 79.15(1) 86.28 84.09 traffic 41.28(6) 40.65(5) 40.63(4) 39.81(3) 38.31(2) 36.18(1) 39.61 38.40 wine_white 78.12(6) 73.82(5) 73	$wine_white$	96.76(6)	80.21(4)	80.10(3)	81.00(5)	80.07(2)	66.40 (1)	83.37 44.14
automobile 20.00(6) 17.91(4) 17.84(3) 16.92(2) 18.22(5) 16.23(1) 17.86 9.73 fertility 104.17(6) 103.18(4) 103.17(3) 102.67(2) 95.22(1) 103.98(5) 102.43 97.38 flow 66.89(6) 66.62(5) 66.61(4) 66.07(3) 65.42(2) 57.15(1) 65.71 64.60 forest 99.44(4) 99.57(5) 99.58(3) 98.36(1) 99.20(2) 99.31 98.02 servo 62.27(3) 62.34(5) 62.34(4) 62.44(6) 61.05(1) 61.10(2) 61.90 61.50 slump 87.71(6) 87.23(5) 87.23(4) 86.97(3) 85.62(2) 79.15(1) 86.28 84.09 traffic 41.28(6) 40.65(5) 40.63(4) 39.81(3) 38.31(2) 36.18(1) 39.61 38.42 wine_red 69.12(6) 65.55(5) 65.52(4) 64.87(2) 64.82(1) 64.90(3) 64.83 5.33 wine_red 58.12(6) 73.82(5) 7	Avg. Rank	(5.89)	(3.89)	(3.33)	(3.11)	(2.67)	(2.11)	
fertility 104.17(6) 103.18(4) 103.17(3) 102.67(2) 95.22(1) 103.98(5) 102.43 97.38 flow 66.89(6) 66.62(5) 66.61(4) 66.07(3) 65.42(2) 57.15(1) 65.71 64.60 forest 99.44(4) 99.57(5) 99.38(3) 98.36(1) 99.20(2) 99.31 98.02 servo 62.27(3) 62.34(5) 62.34(4) 62.44(6) 61.05(1) 61.10(2) 61.90 61.50 slump 87.71(6) 87.23(5) 87.23(4) 86.97(3) 85.62(2) 79.15(1) 86.28 84.00 slump_red 69.12(6) 65.55(5) 65.52(4) 64.87(2) 64.82(1) 64.90(3) 64.83 54.53 wine_white 78.12(6) 73.82(5) 73.77(4) 72.98(3) 72.93(2) 72.83(1) 72.92 62.92 Avg. Rank (5.44) (4.78) (4.00) (3.00) (1.89) (1.89) - - Lasso Best BEM IEW Caruana	Ridge	Best	BEM	IEW	Caruana	RSWH	RSWHf	WCH SCH
flow 66.89(6) 66.62(5) 66.61(4) 66.07(3) 65.42(2) 57.15(1) 65.71 64.60 forest 99.44(4) 99.57(5) 99.57(6) 99.38(3) 98.36(1) 99.20(2) 99.31 98.02 servo 62.27(3) 62.34(5) 62.34(4) 62.44(6) 61.05(1) 61.10(2) 61.90 61.50 slump 87.71(6) 87.23(5) 87.23(4) 86.97(3) 85.62(2) 79.15(1) 86.28 84.09 traffic 41.28(6) 40.65(5) 40.63(4) 39.81(3) 38.31(2) 36.18(1) 39.61 38.42 wine_red 69.12(6) 65.55(5) 65.52(4) 64.87(2) 64.82(1) 64.90(3) 64.83 54.53 wine_white 78.12(6) 73.82(5) 73.77(4) 72.98(3) 72.93(2) 72.83(1) 72.92 62.92 Avg. Rank (5.44) (4.78) (4.00) (3.00) (1.89) (1.89) - - Lasso Best BEM IEW Caruana	automobile	20.00(6)	17.91(4)	17.84(3)	16.92(2)	18.22(5)	16.23 (1)	17.86 9.73
forest 99.44(4) 99.57(5) 99.57(6) 99.38(3) 98.36(1) 99.20(2) 99.31 98.02 servo 62.27(3) 62.34(5) 62.34(4) 62.44(6) 61.05(1) 61.10(2) 61.90 61.50 slump 87.71(6) 87.23(5) 87.23(4) 86.97(3) 85.62(2) 79.15(1) 86.28 84.09 traffic 41.28(6) 40.65(5) 40.63(4) 39.81(3) 38.31(2) 36.18(1) 39.61 38,42 wine_white 78.12(6) 73.82(5) 73.77(4) 72.98(3) 72.93(2) 72.83(1) 72.92 62.92 Avg. Rank (5.44) (4.78) (4.00) (3.00) (1.89) (1.89) - Lasso Best BEM IEW Caruana RSWH RSWHf WCH SCH automobile 18.45(2) 18.49(3) 18.49(4) 18.54(5) 19.39(6) 16.44(1) 18.40 18.24 fertility 92.95(3) 92.77(1) 92.78(2) 92.95(3)	fertility	104.17(6)	103.18(4)	103.17(3)	102.67(2)	95.22(1)	103.98(5)	102.43 97.38
servo 62.27(3) 62.34(5) 62.34(4) 62.44(6) 61.05(1) 61.10(2) 61.90 61.50 slump 87.71(6) 87.23(5) 87.23(4) 86.97(3) 85.62(2) 79.15(1) 86.28 84.09 traffic 41.28(6) 40.65(5) 40.63(4) 39.81(3) 38.31(2) 36.18(1) 39.61 38.42 wine_white 78.12(6) 73.82(5) 73.77(4) 72.98(3) 72.93(2) 72.83(1) 72.92 62.92 Avg. Rank (5.44) (4.78) (4.00) (3.00) (1.89) (1.89) - - Lasso Best BEM IEW Caruana RSWH RSWHf WCH SCH automobile 18.45(2) 18.49(3) 18.49(4) 18.54(5) 19.39(6) 16.44(1) 18.40 18.24 fertility 92.95(3) 92.77(1) 92.78(2) 92.95(3) 93.07(5) 96.93(6) 92.48 90.07 flow 66.66(6) 65.99(5) 65.99(4) <	flow	66.89(6)	66.62(5)	66.61(4)	66.07(3)	65.42(2)	57.15 (1)	65.71 64.60
servo 62.27(3) 62.34(5) 62.34(4) 62.44(6) 61.05(1) 61.10(2) 61.90 61.50 slump 87.71(6) 87.23(5) 87.23(4) 86.97(3) 85.62(2) 79.15(1) 86.28 84.09 traffic 41.28(6) 40.65(5) 40.63(4) 39.81(3) 38.31(2) 36.18(1) 39.61 38.42 wine_white 78.12(6) 73.82(5) 73.77(4) 72.98(3) 72.93(2) 72.83(1) 72.92 62.92 Avg. Rank (5.44) (4.78) (4.00) (3.00) (1.89) (1.89) - - Lasso Best BEM IEW Caruana RSWH RSWHf WCH SCH automobile 18.45(2) 18.49(3) 18.49(4) 18.54(5) 19.39(6) 16.44(1) 18.40 18.24 fertility 92.95(3) 92.77(1) 92.78(2) 92.95(3) 93.07(5) 96.93(6) 92.48 90.07 flow 66.66(6) 65.99(5) 65.99(4) <	forest	99.44(4)	99.57(5)	99.57(6)	99.38(3)	98.36 (1)	99.20(2)	99.31 98.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	servo	62.27(3)	62.34(5)	62.34(4)		61.05(1)	61.10(2)	61.90 61.50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	slump	87.71(6)	87.23(5)	87.23(4)	86.97(3)	85.62(2)	79.15 (1)	86.28 84.09
wine_white 78.12(6) 73.82(5) 73.77(4) 72.98(3) 72.93(2) 72.83(1) 72.92 62.92 Avg. Rank (5.44) (4.78) (4.00) (3.00) (1.89) (1.89) - - Lasso Best BEM IEW Caruana RSWH RSWHf WCH SCH automobile 18.45(2) 18.49(3) 18.49(4) 18.54(5) 19.39(6) 16.44(1) 18.40 18.24 fertility 92.95(3) 92.77(1) 92.78(2) 92.95(3) 93.07(5) 96.93(6) 92.48 90.07 flow 66.66(6) 65.99(5) 65.99(4) 65.66(3) 64.99(2) 57.16(1) 65.21 64.12 forest 99.65(6) 99.58(4) 99.58(5) 99.54(3) 98.27(1) 99.33(2) 99.45 99.03 servo 102.02(6) 75.89(5) 73.02(4) 64.29(3) 59.63(2) 56.87(1) 60.14 52.33 slump 86.85(6) 86.43(5) 86.43(4) 86.02(3)	traffic	41.28(6)	40.65(5)	40.63(4)	39.81(3)	38.31(2)	36.18 (1)	39.61 38,42
Avg. Rank (5.44) (4.78) (4.00) (3.00) (1.89) (1.89) - - Lasso Best BEM IEW Caruana RSWH RSWHf WCH SCH automobile 18.45(2) 18.49(3) 18.49(4) 18.54(5) 19.39(6) 16.44(1) 18.40 18.24 fertility 92.95(3) 92.77(1) 92.78(2) 92.95(3) 93.07(5) 96.93(6) 92.48 90.07 flow 66.66(6) 65.99(5) 65.99(4) 65.66(3) 64.99(2) 57.16(1) 65.21 64.12 forest 99.65(6) 99.58(4) 99.58(5) 99.54(3) 98.27(1) 99.33(2) 99.45 99.0 servo 102.02(6) 75.89(5) 73.02(4) 64.29(3) 59.63(2) 56.87(1) 60.14 52.34 slump 86.85(6) 86.43(5) 86.43(4) 86.02(3) 84.90(2) 79.17(1) 85.75 83.52 traffic 40.24(5) 36.86(4) 36.80(3) 3	wine_red	69.12(6)	65.55(5)	65.52(4)	64.87(2)	64.82 (1)	64.90(3)	64.83 54.53
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	wine_white	78.12(6)	73.82(5)	73.77(4)	72.98(3)	72.93(2)	72.83 (1)	72.92 62.92
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Avg. Rank	(5.44)	(4.78)	(4.00)	(3.00)	(1.89)	(1.89)	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Lasso	Best	BEM	IEW	Caruana	RSWH	RSWHf	WCH SCH
$\begin{array}{llllllllllllllllllllllllllllllllllll$	automobile	18.45(2)	18.49(3)	18.49(4)	18.54(5)	19.39(6)	16.44 (1)	18.40 18.24
$\begin{array}{llllllllllllllllllllllllllllllllllll$	fertility	92.95(3)	92.77(1)	92.78(2)	92.95(3)	93.07(5)	96.93(6)	92.48 90.07
$\begin{array}{c} {\rm servo} & 102.02(6) & 75.89(5) & 73.02(4) & 64.29(3) & 59.63(2) & {\bf 56.87}(1) & 60.14 & 52.34 \\ {\rm slump} & 86.85(6) & 86.43(5) & 86.43(4) & 86.02(3) & 84.90(2) & {\bf 79.17}(1) & 85.75 & 83.52 \\ {\rm traffic} & 40.24(5) & 36.86(4) & 36.80(3) & 35.72(2) & {\bf 34.86}(1) & 43.84(6) & 35.05 & 31.64 \\ {\rm wine_red} & 96.71(6) & 89.09(5) & 88.21(4) & 83.54(3) & 75.67(2) & {\bf 65.63}(1) & 78.50 & 68.64 \\ {\rm wine_white} & 95.58(6) & 88.34(5) & 87.83(4) & 84.48(3) & 81.56(2) & {\bf 73.74}(1) & 82.62 & 72.14 \\ {\rm Avg. \ Rank} & (5.17) & (4.11) & (3.78) & (3.17) & (2.56) & (2.22) & \\ {\rm SVR} & {\rm Best} & {\rm BEM} & {\rm IEW} & {\rm Caruana} & {\rm RSWH} & {\rm RSWH} & {\rm WCH} & {\rm SCH} \\ {\rm automobile} & 114.30(6) & 112.36(5) & 107.23(4) & 91.12(3) & 76.54(2) & {\bf 16.10}(1) & 83.74 & 82.48 \\ {\rm fertility} & 184.62(6) & 110.73(5) & 104.17(4) & {\bf 94.79}(1) & 101.98(3) & 101.94(2) & 88.94 & 52.49 \\ {\rm flow} & 106.54(6) & 103.90(5) & 103.80(4) & 97.96(3) & 91.07(2) & {\bf 58.82}(1) & 92.25 & 75.72 \\ {\rm forest} & 101.04(6) & 99.98(5) & 99.95(4) & {\bf 98.07}(1) & 98.38(2) & 99.69(3) & 97.60 & 95.49 \\ {\rm servo} & 117.03(6) & 72.74(5) & 57.21(4) & 25.58(3) & {\bf 23.37}(1) & 24.23(2) & 21.51 & 16.47 \\ {\rm slump} & 116.65(6) & 110.74(5) & 110.34(4) & 100.51(3) & 95.55(2) & 78.91(1) & 98.18 & 75.27 \\ {\rm traffic} & 89.38(6) & 70.80(5) & 66.98(4) & 51.34(3) & 50.80(2) & 41.93(1) & 47.88 & 24.81 \\ {\rm wine_red} & 123.91(6) & 81.37(5) & 79.89(4) & 71.25(3) & 71.02(2) & 60.34(1) & 73.97 & 32.04 \\ {\rm wine_white} & 99.63(6) & 75.29(5) & 74.84(4) & 69.32(2) & 70.17(3) & 61.62(1) & 71.50 & 38.45 \\ \hline \end{array}$	flow	66.66(6)	65.99(5)	65.99(4)	65.66(3)	64.99(2)	57.16(1)	65.21 64.12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	forest	99.65(6)	99.58(4)	99.58(5)	99.54(3)	98.27(1)	99.33(2)	99.45 99.09
$\begin{array}{llllllllllllllllllllllllllllllllllll$	servo	102.02(6)	75.89(5)	73.02(4)	64.29(3)	59.63(2)	56.87(1)	60.14 52.34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	slump	86.85(6)	86.43(5)	86.43(4)	86.02(3)	84.90(2)	79.17(1)	85.75 83.52
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	traffic	40.24(5)	36.86(4)	36.80(3)	35.72(2)	34.86(1)	43.84(6)	35.05 31.64
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	wine_red	96.71(6)	89.09(5)	88.21(4)	83.54(3)	75.67(2)	65.63(1)	78.50 68.64
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	wine_white	95.58(6)	88.34(5)	87.83(4)	84.48(3)	81.56(2)	73.74(1)	82.62 72.14
automobile $114.30(6)$ $112.36(5)$ $107.23(4)$ $91.12(3)$ $76.54(2)$ $16.10(1)$ 83.74 82.48 fertility $184.62(6)$ $110.73(5)$ $104.17(4)$ $94.79(1)$ $101.98(3)$ $101.94(2)$ 88.94 52.49 flow $106.54(6)$ $103.90(5)$ $103.80(4)$ $97.96(3)$ $91.07(2)$ $58.82(1)$ 92.25 75.72 forest $101.04(6)$ $99.98(5)$ $99.95(4)$ $98.07(1)$ $98.38(2)$ $99.69(3)$ 97.60 95.49 servo $117.03(6)$ $72.74(5)$ $57.21(4)$ $25.58(3)$ $23.37(1)$ $24.23(2)$ 21.51 16.47 slump $116.65(6)$ $110.74(5)$ $110.34(4)$ $100.51(3)$ $95.55(2)$ $78.91(1)$ 98.18 75.27 traffic $89.38(6)$ $70.80(5)$ $66.98(4)$ $51.34(3)$ $50.80(2)$ $41.93(1)$ 47.88 24.81 wine_red $123.91(6)$ $81.37(5)$ $79.89(4)$ $71.25(3)$ $71.02(2)$ $60.34(1)$ 73.97 32.04 wine_white $99.63(6)$ $75.29(5)$ $74.84(4)$ $69.32(2)$ $70.17(3)$ $61.62(1)$ 71.50 38.45	Avg. Rank	(5.17)	(4.11)	(3.78)	(3.17)	(2.56)	(2.22)	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	SVR	Best	BEM	IEW	Caruana	RSWH	RSWHf	WCH SCH
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	automobile	114.30(6)	112.36(5)	107.23(4)	91.12(3)	76.54(2)	16.10 (1)	83.74 82.48
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	fertility	184.62(6)	110.73(5)	104.17(4)	94.79 (1)	101.98(3)	101.94(2)	88.94 52.49
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	flow	106.54(6)	103.90(5)	103.80(4)	97.96(3)	91.07(2)	58.82 (1)	92.25 75.72
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	forest	101.04(6)	99.98(5)	99.95(4)	98.07 (1)	98.38(2)	99.69(3)	97.60 95.49
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	servo	117.03(6)	72.74(5)	57.21(4)	25.58(3)	23.37(1)	24.23(2)	21.51 16.47
$\begin{array}{llllllllllllllllllllllllllllllllllll$	slump	116.65(6)	110.74(5)	110.34(4)	100.51(3)	95.55(2)	78.91(1)	98.18 75.27
wine_white 99.63(6) 75.29(5) 74.84(4) 69.32(2) 70.17(3) 61.62 (1) 71,50 38.45	traffic	89.38(6)	70.80(5)	66.98(4)	51.34(3)	50.80(2)	41.93(1)	47.88 24.81
	wine_red	123.91(6)	81.37(5)	79.89(4)	71.25(3)	71.02(2)	60.34 (1)	73.97 32,04
	$wine_white$	99.63(6)	75.29(5)	74.84(4)	69.32(2)	70.17(3)	61.62(1)	71,50 38.45
Avg. Rank (6.00) (5.00) (4.00) (2.44) (2.11) (1.44)	Avg. Rank	(6.00)	(5.00)	(4.00)	(2.44)	(2.11)	(1.44)	

Table 9: The 3-fold cross validation relative mean squared error and Friedman ranks for all datasets when the best hyperparameter configuration trial (Best), simple average (BEM), the inverse of the error (IEW), Caruana method (Caruana) and non-hyperparametric stacking stepwise regression over residual with the heuristic to provide zero weights to some models adding instance description to the ensemble (RSWHf) or not (RSWH), all taking into account several baseline systems (kNNR, Ridge, Lasso and SVR) and the PSO sampling strategy. The scores for the cheating approaches WCH and SCH are also shown, but they were not included in the computation of the Friedman ranks.

kNNR	Best	BEM	IEW	Caruana	RSWH	RSWHf	WCH	SCH
automobile	26.96(4)	21.95 (1)	21.95(2)	22.02(3)	27.26(5)	30.57(6)	21.27	10.26
fertility	100.08(4)	95.87 (1)	96.15(2)	97.99(3)	106.72(6)	104.61(5)	93.40	59.15
flow	84.49(1)	87.19(3)	86.81(2)	90.28(4)	97.01(5)	102.39(6)	80.93	40.73
forest	102.02(3)	106.33(6)	105.25(5)	104.83(4)	99.42(1)	101.45(2)	101.94	90.47
servo	46.06(4)	48.89(6)	47.91(5)	44.83 (1)	44.86(2)	45.83(3)	44.53	19.87
slump	92.55(3)	91.94(2)	91.88 (1)	96.24(4)	104.05(6)	100.73(5)	86.73	47.26
traffic	37.30(4)	36.71(3)	35.91 (1)	35.99(2)	37.60(5)	44.99(6)	31.87	19.84
wine_red	85.30(6)	79.03 (1)	79.22(2)	81.97(5)	80.84(4)	79.36(3)	84.64	37.56
$wine_white$	84.91(6)	78.33(1)	78.48(2)	80.27(4)	80.04(3)	80.53(5)	83.47	36.56
Avg. Rank	(3.89)	(2.67)	(2.44)	(3.33)	(4.11)	(4.56)	-	_
Ridge	Best	BEM	IEW	Caruana	RSWH	RSWHf	WCH	SCH
automobile	20.05(5)	17.20 (1)	17.34(3)	17.21(2)	18.57(4)	22.09(6)	17.03	9.06
fertility	102.36(4)	103.68(6)	103.65(5)	102.35(3)	97.07(1)	102.18(2)	102.36	96.91
flow	66.07(4)	66.27(6)	66.27(5)	65.66(3)	64.71(2)		65.30	63.78
forest	99.01(3)	99.34(6)	99.34(5)	99.01(2)	98.25(1)	99.27(4)	98.98	97.74
servo	62.34(2)	62.50(3)	62.50(4)	62.33(1)	63.52(5)	64.34(6)	61.83	61.37
slump	86.55(3)	86.95(6)	86.95(5)	86.55(4)	85.61(2)	76.88(1)	86.18	83.92
traffic	39.51(2)	41.02(5)	40.93(4)	39.56(3)	36.86(1)	47.18(6)	39.48	38.07
$wine_red$	64.89(1)	65.43(5)	65.38(4)	64.91(2)	64.96(3)	65.67(6)	64.84	51.36
wine_white	72.66(4)	73.33(6)	73.27(5)	72.50(3)	72.40(1)	72.47(2)	72.02	60.33
Avg. Rank	(3.11)	(4.89)	(4.44)	(2.56)	(2.22)	(3.78)	-	_
Lasso	Best	BEM	IEW	Caruana	RSWH	RSWHf	WCH	SCH
automobile	18.45(5)	18.45(3)	18.45(2)	18.45(4)	18.19 (1)	20.63(6)	18.45	18.45
fertility	95.55(4)	94.17(1)	94.17(2)	94.83(3)	96.66(5)	102.64(6)	92.74	90.36
flow	66.82(3)	66.83(6)	66.83(5)	66.83(4)	65.61(2)	61.68(1)	66.82	66.80
forest	100.14(6)	100.13(5)	100.13(4)	100.12(3)	98.34(1)	99.61(2)	100.09	100.08
servo	63.17(1)	63.38(2)	63.38(3)	63.43(4)	63.77(5)	64.69(6)	62.67	62.15
slump	87.59(3)	87.61(6)	87.61(5)	87.61(4)	86.06(2)	77.06(1)	87.59	87.55
traffic	38.64(2)	39.03(5)	39.02(4)	38.96(3)	37.39(1)	52.42(6)	38.60	38.16
wine_red	69.24(3)	70.68(6)	70.67(5)	70.06(4)	68.94(2)	68.34(1)	69.24	66.52
wine_white	78.40(5)	78.39(4)	78.39(3)	78.36(2)	78.31(1)	78.87(6)	78.33	77.45
Avg. Rank	(3.56)	(4.22)	(3.67)	(3.44)	(2.22)	(3.89)	-	_
SVR	Best	BEM	IEW	Caruana	RSWH	RSWHf	WCH	SCH
automobile	20.60 (1)	44.64(6)	24.07(4)	20.98(2)	21.89(3)	27.68(5)	19.23	6.98
fertility	98.43(5)	93.77(1)	94.18(2)	97.03(3)	97.97(4)	100.75(6)	91.64	54.86
flow	70.32(2)	78.59(6)	71.31(3)	66.97 (1)	72.94(4)	76.29(5)	59.75	27.47
forest	98.14(1)	104.44(6)	99.62(2)	99.67(3)	100.46(4)	102.05(5)	97.64	84.64
servo	21.53(4)	59.23(6)	39.39(5)	19.25(1)	19.53(2)	20.53(3)	15.31	11.08
slump	80.17(2)	165.58(6)	85.19(3)	68.72(1)	134.35(5)	123.76(4)	71.82	20.48
traffic	41.89(4)	37.77(2)	35.93(1)	38.17(3)	43.97(5)	45.43(6)	29.04	8.47
$wine_red$	66.87(5)	78.14(6)	65.82(4)	60.32(3)	58.78(1)	59.35(2)	64.46	9.22
$wine_white$	78.04(4)	192.42(6)	122.08(5)	61.97(3)	56.87(1)	56.91(2)	72.55	11.26
Avg. Rank	(3.11)	(5.00)	(3.22)	(2.22)	(3.22)	(4.22)	-	_

Table 10: The 3-fold cross validation relative mean squared error and Friedman ranks for all datasets when the best hyperparameter configuration trial (Best), simple average (BEM), the inverse of the error (IEW), Caruana method (Caruana) and non-hyperparametric stacking stepwise regression over residual with the heuristic to provide zero weights to some models adding instance description to the ensemble (RSWHf) or not (RSWH), all taking into account several baseline systems (kNNR, Ridge, Lasso and SVR) and the HB sampling strategy. The scores for the cheating approaches WCH and SCH are also shown, but they were not included in the computation of the Friedman ranks.