Trigonometric Functions MCQs for Entry Test -Exercise 11.2

Introduction

This document contains 20 multiple-choice questions based on Exercise 11.2 of the trigonometry chapter, designed for entry test preparation. Each question tests concepts such as graphing trigonometric functions $(\sin x, \cos x, \tan x)$, identifying periods, ranges, asymptotes, and solving equations graphically. Solutions with detailed explanations are provided at the end.

Multiple-Choice Questions

1	What	is	the	period	\mathbf{of}	u = -	- sin	r?
Ι.	vvnat	13	order	periou	ΟI	y	SIII	ω

- A) π
- B) 2π
- C) $\frac{\pi}{2}$
- D) 4π

2. What is the range of $y = 2 \cos x$?

- A) [-1, 1]
- B) [-2, 2]
- C) [0, 2]
- D) R

3. What is the period of $y = \tan 2x$?

- A) π
- B) $\frac{\pi}{2}$
- C) 2π
- D) $\frac{\pi}{4}$

4. What is the period of $y = \sin \frac{x}{2}$?

- A) 2π
- B) 4π

is the range of $y = -\sin x$? 5.

- [1, 1]
- 1]
- [2, 2]
- D) R

6. Where are the vertical asymptotes of $y = \tan 2x$?

- A) $x = n\pi, n \in \mathbb{Z}$
- B) $x = (2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$
- C) $x = (2n+1)\frac{\pi}{4}, n \in \mathbb{Z}$
- D) $x = \frac{n\pi}{2}, n \in \mathbb{Z}$

7. What is the period of $y = \cos \frac{x}{2}$?

- A) 2π
- B) π
- C) 4π
- D) $\frac{\pi}{2}$

8. What is the value of $y = 2\cos x$ at $x = 90^{\circ}$?

- A) 2
- B) 0
- C) -2
- D) 1

9. What is the value of $y = -\sin x$ at $x = 270^{\circ}$?

- A) 1
- B) -1
- C) 0
- D) 0.5

10. What is the value of $y = \sin \frac{x}{2}$ at $x = 180^{\circ}$?

- A) 0
- B) 1
- C) 0.5
- D) -1

11. What is the period of $y = \sin 2x$?

- A) π
- B) 2π
- C) $\frac{\pi}{2}$
- D) 4π
- 12. What is the range of $y = \tan x$?
 - A) [-1,1]
 - B) R
 - C) $[0,\infty)$
 - D) $y \ge 1$ or $y \le -1$
- 13. What is the solution to $\sin x = \cos x$ in $[0, \pi]$?
 - A) x = 0
 - B) $x = \frac{\pi}{2}$
 - C) $x = \frac{\pi}{4}$
 - D) $x = \pi$
- 14. What is the solution to $\sin x = x$ in $[0, \pi]$?
 - A) $x = \frac{\pi}{4}$
 - B) x = 0
 - C) $x = \frac{\pi}{2}$
 - D) $x = \pi$
- 15. What is the value of $y = \cos \frac{x}{2}$ at $x = 60^{\circ}$?
 - A) 1
 - B) 0.8
 - C) 0.5
 - D) 0
- 16. What is the period of $3\sin\frac{x}{3}$?
 - A) 2π
 - B) 6π
 - C) π
 - D) $\frac{2\pi}{3}$
- 17. Where are the vertical asymptotes of $y = \tan x$?
 - A) $x = n\pi, n \in \mathbb{Z}$
 - B) $x = (2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$
 - C) $x = \frac{n\pi}{2}, n \in \mathbb{Z}$

- D) $x = (2n+1)\pi, n \in Z$
- 18. What is the range of $y = 3\cos x$?
 - A) [-1,1]
 - B) [-3,3]
 - C) [0,3]
 - D) R
- 19. What is the value of $y = \tan 2x$ at $x = 30^{\circ}$?
 - A) 0
 - B) 1.7
 - C) ∞
 - D) -1.7
- 20. What is the period of $2\cos 3x$?
 - A) $\frac{2\pi}{3}$
 - B) π
 - C) 2π
 - D) $\frac{\pi}{3}$

Solutions and Explanations

1. Solution to Question 1:

Period of $\sin x = 2\pi$. Negation does not affect period, so period of $-\sin x = 2\pi$.

Answer: B) 2π

2. Solution to Question 2:

Range of $\cos x = [-1, 1]$. For $2\cos x$, range is [-2, 2].

Answer: B) [-2, 2]

3. Solution to Question 3:

Period of $\tan x = \pi$. For $\tan 2x$, period $= \frac{\pi}{2}$.

Answer: B) $\frac{\pi}{2}$

4. Solution to Question 4:

Period of $\sin x = 2\pi$. For $\sin \frac{x}{2}$, period $= \frac{2\pi}{\frac{1}{2}} = 4\pi$.

Answer: B) 4π

5. Solution to Question 5:

Range of $\sin x = [-1, 1]$. For $-\sin x$, range remains [-1, 1].

Answer: A) [-1,1]

6. Solution to Question 6:

 $\tan 2x$ is undefined when $2x = (2n+1)\frac{\pi}{2} \implies x = (2n+1)\frac{\pi}{4}, n \in \mathbb{Z}.$

Answer: C) $x = (2n+1)\frac{\pi}{4}, n \in Z$

7. Solution to Question 7:

Period of $\cos x = 2\pi$. For $\cos \frac{x}{2}$, period $= \frac{2\pi}{\frac{1}{2}} = 4\pi$.

Answer: C) 4π

8. Solution to Question 8:

 $\cos 90^{\circ} = 0 \implies 2\cos 90^{\circ} = 2 \cdot 0 = 0.$

Answer: B) 0

9. Solution to Question 9:

stion 9: $\sin 270^{\circ} = -1 \implies -\sin 270^{\circ} = -(-1) = 1.$

Answer: A) 1

- 10. Solution to Question 10:

$$x = 180^{\circ} \implies \frac{x}{2} = 90^{\circ} \cdot \sin 90^{\circ} = 1 \implies \sin \frac{180^{\circ}}{2} = 1.$$

Answer: B) 1

11. Solution to Question 11:

Period of $\sin x = 2\pi$. For $\sin 2x$, period $= \frac{2\pi}{2} = \pi$.

Answer: A) π

12. Solution to Question 12:

 $\tan x$ has range R due to vertical asymptotes at $x = (2n+1)\frac{\pi}{2}$.

Answer: B) R

13. Solution to Question 13:

 $\sin x = \cos x \implies \tan x = 1 \implies x = \frac{\pi}{4}$ in $[0, \pi]$. Graphically, intersection at $x = 45^{\circ} = \frac{\pi}{4}$.

Answer: C) $\frac{\pi}{4}$

14. Solution to Question 14:

 $\sin x = x$ intersects at x = 0 in $[0, \pi]$. For x > 0, $\sin x < x$ (since $\sin x \le 1$ and x grows faster in Answer: B) 0

15. Solution to Question 15:

$$x = 60^{\circ} \implies \frac{x}{2} = 30^{\circ} \cdot \cos 30^{\circ} = \frac{\sqrt{3}}{2} \approx 0.866 \approx 0.8.$$

Answer: B) 0.8

16. Solution to Question 16:

Period of $\sin x = 2\pi$. For $\sin \frac{x}{3}$, period $= \frac{2\pi}{\frac{1}{3}} = 6\pi$. Coefficient 3 does not affect period.

Answer: B) 6π

17. Solution to Question 17:

 $\tan x$ is undefined at $x = (2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$.

Answer: B) $x = (2n + 1)\frac{\pi}{2}, n \in Z$

18. Solution to Question 18:

Range of $\cos x = [-1, 1]$. For $3\cos x$, range = [-3, 3].

Answer: B) [-3, 3]

19. Solution to Question 19:

$$x = 30^{\circ} \implies 2x = 60^{\circ} \cdot \tan 60^{\circ} = \sqrt{3} \approx 1.7.$$

Answer: B) 1.7

20. Solution to Question 20:

Period of $\cos x = 2\pi$. For $\cos 3x$, period $= \frac{2\pi}{3}$. Coefficient 2 does not affect period.

Answer: A) $\frac{2\pi}{3}$