CS 189 Introduction to Spring 2013 Machine Learning

Midterm

- You have 1 hour 20 minutes for the exam.
- The exam is closed book, closed notes except your one-page crib sheet.
- Please use non-programmable calculators only.
- Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. All short answer sections can be successfully answered in a few sentences AT MOST.
- For true/false questions, fill in the True/False bubble.
- For multiple-choice questions, fill in the bubbles for **ALL** CORRECT CHOICES (in some cases, there may be more than one). For a question with p points and k choices, every false positive wil incur a penalty of p/(k-1) points.

First name		
Last name		
SID		

For staff use only:

Q1.	True/False	/14
Q2.	Multiple Choice Questions	/21
Q3.	Short Answers	/15
	Total	/50

Q1. [14 pts] True/False

(a)	[1 pt] In Support Vector Machines, we maximize $\frac{\ w\ ^2}{2}$ subject to the margin constraints. \bigcirc True \bigcirc False
(b)	[1 pt] In kernelized SVMs, the kernel matrix ${\bf K}$ has to be positive definite. \bigcirc True \bigcirc False
(c)	[1 pt] If two random variables are independent, then they have to be uncorrelated. \bigcirc True \bigcirc False
(d)	[1 pt] Isocontours of Gaussian distributions have axes whose lengths are proportional to the eigenvalues of the covariance matrix. O True O False
(e)	[1 pt] The RBF kernel $(K(x_i, x_j) = exp(-\gamma x_i - x_j ^2))$ corresponds to an infinite dimensional mapping of the feature vectors. O True O False
(f)	[1 pt] If (X, Y) are jointly Gaussian, then X and Y are also Gaussian distributed. \bigcirc True \bigcirc False
(g)	[1 pt] A function $f(x, y, z)$ is convex if the Hessian of f is positive semi-definite. \bigcirc True \bigcirc False
(h)	[1 pt] In a least-squares linear regression problem, adding an L_2 regularization penalty cannot decrease the L_2 error of the solution w on the training data. \bigcirc True \bigcirc False
(i)	[1 pt] In linear SVMs, the optimal weight vector w is a linear combination of training data points. \bigcirc True \bigcirc False
(j)	[1 pt] In stochastic gradient descent, we take steps in the exact direction of the gradient vector. ○ True ○ False
(k)	[1 pt] In a two class problem when the class conditionals $P(x y=0)$ and $P(x y=1)$ are modelled as Gaussians with different covariance matrices, the posterior probabilities turn out to be logistic functions. \bigcirc True \bigcirc False
(1)	[1 pt] The perceptron training procedure is guaranteed to converge if the two classes are linearly separable. ○ True ○ False
(m)	[1 pt] The maximum likelihood estimate for the variance of a univariate Gaussian is unbiased. O True O False
(n)	[1 pt] In linear regression, using an L_1 regularization penalty term results in sparser solutions than using an L_2 regularization penalty term. \bigcirc True \bigcirc False

Q2. [21 pts] Multiple Choice Questions

(a) [2 pts] If $X \sim \mathcal{N}(\mu, \sigma^2)$ and Y = aX + b, then the variance of Y is:

	$\bigcirc a\sigma^2 + b$	$\bigcirc \ a^2\sigma^2 + b$	$\bigcirc a\sigma^2$	$\bigcirc a^2 \sigma^2$		
(b) [2 pts] In soft margin SVMs, the slack variables ξ_i defined in the constraints $y_i(w^Tx_i + b) \geq$						
	○ < 0	$\bigcirc \leq 0$	$\bigcirc > 0$	$\bigcirc \geq 0$		
(c)	(c) [4 pts] Which of the following transformations when applied on $X \sim \mathcal{N}(\mu, \Sigma)$ transforms it into an Gaussian? ($\Sigma = UDU^T$ is the spectral decomposition of Σ)					
	$\bigcirc \ U^{-1}(X-\mu)$	\bigcirc $(UD)^{\circ}$	$^{-1}(X-\mu) $	$\bigcup UD(X-\mu)$		
	$\bigcirc (UD^{1/2})^{-1}(X-\mu)$	$\bigcirc U(X -$	$-\mu$) ($\sum^{-1}(X-\mu)$		
(d)	[2 pts] Consider the sigmoi	d function $f(x) = 1/(1 +$	e^{-x}). The derivative $f'(x)$ is	5		
	$\bigcirc f(x) \ln f(x) + (1 - \frac{1}{2})^{-1}$	$-f(x))\ln(1-f(x))$	$\bigcirc f(x)(1-f(x))$			
	$\bigcirc f(x)\ln(1-f(x))$		$\bigcap f(x)(1+f(x))$			
(e)	[2 pts] In regression, using	an L_2 regularizer is equiv	alent to using a	_ prior.		
	\bigcirc Laplace, $2\beta \exp(-$	x /eta)	\bigcirc Exponential, $\beta \epsilon$	$\exp(-x/\beta)$, for $x > 0$		
	\bigcirc Gaussian with Σ	$=cI,c\in R$	\bigcirc Gaussian with c $(\Sigma \neq cI, c \in R)$	liagonal covariance		
(f)	f) [2 pts] Consider a two class classification problem with the loss matrix given as $\begin{pmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{pmatrix}$. Note that λ_{ij} is the loss for classifying an instance from class j as class i . At the decision boundary, the ratio $\frac{P(\omega_2 x)}{P(\omega_1 x)}$ is equal to					
	$\bigcirc \frac{\lambda_{11} - \lambda_{22}}{\lambda_{21} - \lambda_{12}}$	$\bigcirc \frac{\lambda_{11} - \lambda_{21}}{\lambda_{22} - \lambda_{12}}$	$\bigcirc \frac{\lambda_{11} + \lambda_{22}}{\lambda_{21} + \lambda_{12}}$	$\bigcirc \frac{\lambda_{11} - \lambda_{12}}{\lambda_{22} - \lambda_{21}}$		
(g)) [2 pts] Consider the L_2 regularized loss function for linear regression $L(w) = \frac{1}{2} Y - Xw ^2 + \lambda w ^2$, where is the regularization parameter. The Hessian matrix $\nabla_w^2 L(w)$ is					
	$\bigcirc X^T X$	$\bigcirc \ 2\lambda X^TX$	$\bigcirc \ X^TX + 2\lambda I$	$\bigcirc (X^T X)^{-1}$		
(h)	[2 pts] The geometric marg	gin in a hard margin Supp	oort Vector Machine is			
	$\bigcirc \frac{\ w\ ^2}{2}$	$\bigcirc \frac{1}{\ w\ ^2}$	$\bigcirc \frac{2}{\ w\ }$	$\bigcirc \frac{2}{\ w\ ^2}$		
(i)	[3 pts] Which of the follow	ing functions are convex?				
	$\bigcirc \sin(x)$	$\bigcirc x $	\bigcirc min $(f_1(x), f_2(x))$ where f_1 and f_2 are convex			

Q3. [15 pts] Short Answers

(a) [4 pts] For a hard margin SVM, give an expression to calculate b given the solutions for w and the Lagrange multipliers $\{\alpha_i\}_{i=1}^N$.

- (b) Consider a Bernoulli random variable X with parameter p(P(X=1)=p). We observe the following samples of X: (1, 1, 0, 1).
 - (i) [2 pts] Give an expression for the likelihood as a function of p.
 - (ii) [2 pts] Give an expression for the derivative of the negative log likelihood.
 - (iii) [1 pt] What is the maximum likelihood estimate of p?
- (c) [6 pts] Consider the weighted least squares problem in which you are given a dataset $\{\tilde{x}_i, y_i, w_i\}_{i=1}^N$, where w_i is an importance weight attached to the i^{th} data point. The loss is defined as $L(\beta) = \sum_{i=1}^N w_i (y_i \beta^T x_i)^2$. Give an expression to calculate the coefficients $\tilde{\beta}$ in closed form.

Hint: You might need to use a matrix W such that $diag(W) = [w_1 w_2 \dots w_N]^T$

SCRATCH PAPER

SCRATCH PAPER