

Personal networks: when?

- Access mostly to "transported devices"
- No dominant need for Information Technologies
- No physical access to cabled networks
- No need for large communication rates
- Very low cost system required
- Consumer electronics integration is mandatory

4

Personal Area Networks

- Target deployment environment: communication of personal devices working together
 - Short-range
 - Low Power
 - Low Cost
 - Small numbers of devices
 - Sometimes have more "bus-like" characteristics
- PAN Standards
 - Bluetooth Industry consortia
 - IEEE 802.15.1 "Bluetooth" based
 - IEEE 802.15.2 Interoperability and coexistence
 - IEEE 802.15.3 High data rate WPAN (UWB)
 - IEEE 802.15.4 Low data rate WPAN (Zigbee,...)
 - IEEE 802.15.5 Mesh Networks
 - IEEE 802.15.6 Body Area Network

5

Bluetooth

- Originally for "USB", not "Ethernet"
 - Cable replacement technology
 - Later also used as Internet connection, phone, or headset
- Created by Ericsson
- PAN Personal Area Network
 - Up to 1 Mbps connections
 - 1600 hops per second FHSS
 - Includes synchronous, asynchronous, voice connections
 - Piconet routing

Small, low-power, short-range, cheap, versatile radios Master/slave configuration and scheduling

- » Harald Blaatand "Bluetooth" II, Danish King 940-981
- » Conquer of Norway, brought Christianity to Norway Rune Stone, Jelling

5

History

1998 - Bluetooth technology is officially introduced and the BLUETOOTH SIG is formed. 1999 - Bluetooth 1.0 Specification is introduced.

2003 - The BLUETOOTH SIG overhauls the Bluetooth Core Specification with the announcement of Version 2.1.

2004 - Bluetooth Version 2.0 + EDR (Enhanced Data Rate) is introduced.

2005 - Devices using Version 2.0 + EDR begin to hit the market in late 2005.

2007 - Bluetooth Core Specification Version 2.1 + EDR is adopted by the BLUETOOTH SIG.

2009 - Bluetooth Core Specification Version 3.0 + HS (High Speed) is adopted by the BLUETOOTH SIG.

2010 - Bluetooth Core Specification Version 4.0 is adopted by the BLUETOOTH SIG.

7

8

Bluetooth higher speeds (in BT classic)

- Enhanced Data Rate (EDR)
 - Introduced in Bluetooth v2.0 to support faster data transfer
 - Supports a data rate up to 3 Mbps
 - Using reduced duty cycle control, EDR can provide lower power consumption
- High Speed (HS)
 - BT HS released in April 2009 (in Bluetooth version 3.0+HS)
 - Bluetooth 3.0+HS provides data transfer speeds of up to 24 Mbps, though not over the Bluetooth link itself
 - BT link is used for negotiation and establishment, and the high data rate traffic is carried over a collocated 802.11 link
 - HS part of the specification is not mandatory in BT 3.0
 - Only devices that display the "+HS" logo actually support Bluetooth over 802.11 high-speed data transfer

9

Bluetooth	Spec	Evolution	(BT classic)

Specifications	1.1	1.2	2.0 + EDR	2.1 + EDR	3.0 +HS	4.0
Adopted	2002	2005	2004	2007	2009	2010
Transmission Rate	723.1 kbps	723.1 kbps	2.1 Mbps	3 Mbps	24 Mbps	25 Mbps
Standard PAN Range	10 m	10 m	10 m	10 m	10 m	50 m
Improved Pairing (without a PIN)				Yes	Yes	Yes
Improved Security		Yes	Yes	Yes	Yes	Yes
NFC Support			Yes	Yes	Yes	Yes
Voice Dialing	Yes	Yes	Yes	Yes	Yes	Yes
Call Mute	Yes	Yes	Yes	Yes	Yes	Yes
Last-Number Redial	Yes	Yes	Yes	Yes	Yes	Yes
Fast Transmission Speeds			Yes	Yes	Yes	Yes
Lower Power Consumption			Yes	Yes	Yes	Yes
Bluetooth Low Energy						Yes

10

Bluetooth features

- Radio network, on the 2.4 GHz, world-wide!
- · Airplane friendly!
- FH (Frequency Hopping) spread spectrum: 79 (23 .jp .es .fr) channels (de 2.402GHz 2.480
- Defines a master that syncrhonizes everyone to his hoppattern.
- Defines two types of networks:
 - piconets
 - scaternets
- Maximum 8 devices per piconet (1 master + 7 slaves)
- Transmission rate: 720 Kb/s (max), assymetrical variable

11

12

	uetooth classi	ic vs. cable
Topology	Max. 7 simultaneous lines	1 line = 1 cable
Flexibility	Crosses walls, bodies, etc.	Line-of-sight, physical path
Transmission rate	1 MSPS, 720 Kbps	115Kbps - 400Mbps
Power	0.1 watts active power	0.05 watts or more
Dimensions	25 mm x 13 mm x 2 mm, several grams	Typical 1-2 metros. Weight varies wi size
Cost	ci. 5 €/access	~ €4-€100/meter
Range	~ 10 meters	Typical 1-2 metros. Size = range.
Geographic coverage	~similar everywhere.	Cables and connections vary along the world.
Security	Link layer, SS radio. Very safe.	Ideal.
	1	1

17

19

21

23

25

Low-Power Operation in BT classic

• 3 modes:

- Hold: node sleeps for specified interval.
 - Master can put slaves in hold while searching for new members, attending another piconet, etc.
 - No ACL packets.
- Sniff: slave low-duty cycle mode.
 - Slave wakes up periodically to talk to master.
 - Fixed "sniff" intervals.
- Park:
 - Very low power state.
 - Used to admit more than 7 slaves in piconet.
 - Slave gives up its active member address.
 - Receives "parked" member address.
 - Wakes up periodically listening for broadcasts which can be used to "unpark" node.

32

32

34

36

38

40

42

44

Inquiry scanning: summary

- Inquiry scanning has a common address
 - and a common frequency pattern (from 32 frequencies)
- All devices can page this address (and become masters)
- All machines hearing an inquiry will answer the inquiry request
- There is a detector (*correlator hit*) in the slaves, that detects inquiries, before answering with a FHS providing:

Device ID e Clock

- A machine in low power waits a random time before answering again to a scan
- If there is a collision on answering to a scan, they also wait a random period before answering again.

45

46

48

50

52

54

Bluetooth Protocol

- Radio layer
 - Defines requirements for a Bluetooth radio transceiver
 - Handles conformity to 2.4GHz band
 - Establishes specifications for using Spread-Spectrum Frequency Hopping
 - Classifies device into one of three power classes:
 - long range; (Class 1 100mW, 100m)
 - normal/standard range; (Class 2 2.5mW, 10m)
 - short range; (Class 3 1 mW, 1m)

56

minershight its owing

Radio Layer

- Rádio: FH SS
 - 79/23 channels of 1 Mb/s
 - Hoping: per slot
 - Packets have 1, 3, or 5 slots of 625 µs.
 - Hoping (nominal) 1600 times per second
 - Frame includes two packets
 - Transmission followed by reception
 - Radio designed to low cost and universal usage
 - (noise, synchronous action technologyS 2.4GHz, etc...)

58

60

- Circuit switching
- Point to point, symmetric and synchronous services
- Slot reservation at fixed time intervals.
- Master can control 3 SCO channels
- Slave can receive 3 SCO to same master, 2 SCO to different masters
- Packets are never retransmitted
- Usually for 64Kb/s connections (voice)

ASYNCHRONOUS CONNECTION-LESS (ACL) LINK

- Packet switching
- Asymmetric and asynchronous services
- Polling
- Only one link allower

61

62

64

Packet typ	es			Transmi	ssion rate (K	bps)	
Segments	Type	SCO line	ACL line	Type	symetric	assymetr	ic
	0000	NULL	NULL	DM1	108.8	108.8	108.
1	0001 0010	POLL FHS	POLL FHS	DH1	172.8	172.8	172.
	0011	DM1	DM1	DM3	256.0	384.0	54.4
	0100 0101	HV1	DH1	DH3	384.0	576.0	86.4
2	0110 0111	HV2 HV3		DM5	286.7	477.8	36.3
	1000 1001	DV	AUX1	DH5	432.6	721.0	57.6
	1010 1011		DM3 DH3				
3	1100		DIIS				
	1101						

66

pt)	68	acke	ts:	Synchronous Connection-oriented
© Rui L. Aguiar (ruilaa@det.ua.pt		HV1	1	Carries 10 information bytes. Typically used for voice transmission. 1/3 FEC encoded.
niar (ruila		HV2	1	Carries 20 information bytes. Typically used for voice transmission. 2/3 FEC encoded.
Rui L. Agu	SCO	HV3	1	Carries 30 information bytes. Typically used for voice transmission. Not FEC encoded.
©		DV	1	Combined data-voice packet. Voice field not protected by FEC. Data field 2/3 FEC encoded. Voice field is never retransmitted but data field can be.

68

70

72

Middleware

Service Discovery Protocol (SDP)

- Provides a way for application to detect which services are available and their characteristics
- Protocol question <> answer
 - (search and browsing of services)
- Defines a format for service registry
 - Information provided by the service *atributes*, a name (ID) + value
 - IDs can be universal (UUID)

Protocol reusage

- BT aims to reuse older protocols (e.g. WAP, OBEX-IrDA)
 - Interaction with applications and phones, as commonly done before

73

4

Middleware

RFCOMM

- Based on GSM TS07.10
- Emulates a serial port, supporting all traditional applications that were able to use a serial port.
- Supports multiple ports over a single physical channel between two devices.

Telephony Control Protocol Spec (TCS)

- Handles call control (setup, release)
- Group management for gateways, serving multiple devices
 - Audioconference, e.g.

74

76

78

(headset profile)					
Specifications	Bluetooth 1.1	Bluetooth 1.2	Bluetooth 2.0	Bluetooth 2.1 plus EDR (Enhanced Data Rate)	
Voice dialing	Yes	Yes	Yes	Yes	
Call mute	Yes	Yes	Yes	Yes	
Last-number redial	Yes	Yes	Yes	Yes	
Improved resistance to radio frequency interference	-	Yes	Yes	Yes	
10-meter range	Yes	Yes	Yes	Yes	
100-meter range	-	-	Yes	Yes	
Fast transmission speeds	-	-	Yes	Yes	
Lower power consumption	-	-	Yes	Yes	
Improved pairing (without a PIN)	-	-	-	Yes	
Greater security	-	Yes	Yes	Yes	

82

Outline

- Bluetooth networks
- Piconet operation
 - Inquiry
 - Paging
- Bluetooth stack
- Profiles and security
- 802.15.x

90

IEEE 802.15.1

- Adopted the Bluetooth MAC and PHY specifications
 - IEEE 802.15.1 and Bluetooth are almost identical regarding physical layer, baseband, link manager, logical link control and adaption protocol, and host control interface
- Range of up to 10 meters, uses FH-SS
- Data transfer rates of up to 1 Mbps
 - And higher for newer versions
- Not designed to carry heavy traffic loads
- Defines:
 - PAN Profile
 - PAN Testing profile
 - New stack layer

Bluetooth Network Encapsulation Protocol (BNEP)

91

95

Bluetootl	n Sp	ec E	volu	utio	n _{(BT c}	lassic)
Specifications	1.1	1.2	2.0 + EDR	2.1 + EDR	3.0 +HS	4.0
Adopted	2002	2005	2004	2007	2009	2010
Transmission Rate	723.1 kbps	723.1 kbps	2.1 Mbps	3 Mbps	24 Mbps	25 Mbps
Standard PAN Range	10 m	10 m	10 m	10 m	10 m	50 m
Improved Pairing (without a				Yes	Yes	Yes
PIN)						
Improved Security		Yes	Yes	Yes	Yes	Yes
NFC Support			Yes	Yes	Yes	Yes
Voice Dialing	Yes	Yes	Yes	Yes	Yes	Yes
Call Mute	Yes	Yes	Yes	Yes	Yes	Yes
Last-Number Redial	Yes	Yes	Yes	Yes	Yes	Yes
Fast Transmission Speeds			Yes	Yes	Yes	Yes
Lower Power Consumption			Yes	Yes	Yes	Yes
Bluetooth Low Energy						Yes

104

What are the USE CASES for BT 4.0?

- Proximity
- Time
- Emergency
- Network availability
- Personal User Interface
- Simple remote control
- Browse over Bluetooth
- Temperature Sensor
- Humidity Sensor

- HVAC
- Generic I/O (automation)
- Battery status
- Heart rate monitor
- Physical activity monitor
- Blood glucose monitor
- Cycling sensors
- Pulse Oximeter
- Body thermometer

105

Short range wireless application areas							
	Voice	Data	Audio	Video	State		
Bluetooth ACL/HS	х	Υ	Υ	Х	х		
Bluetooth SCO/eSCO	Υ	х	х	х	х		
Bluetooth low energy (BLE)	х	x	х	х	Υ		
Wi-Fi	(VoIP)	Υ	Υ	Υ	х		
Wi-Fi Direct	Υ	Υ	Υ	х	х		
ZigBee	х	х	х	х	Y		
State = low bandwidth, average/low latency data Low Power							

106

How much energy does traditional Bluetooth use?

- Traditional Bluetooth is *connection oriented*. When a device is connected, a link is maintained, even if there is no data flowing.
- Sniff modes allow devices to sleep, reducing power consumption to give months of battery life
- Peak transmit current is typically around 25mA
- Even though it has been independently shown to be lower power than other radio standards, it is still not low enough power for coin cells and energy harvesting applications

107

What is Bluetooth Low Energy?

- Bluetooth low energy is a open, short range radio technology
 - Blank sheet of paper design
 - Different to Bluetooth classic (BR/EDR)
 - Optimized for ultra low power
 - Enable coin cell battery use cases
 - < 20mA peak current
 - < 5 uA average current

108

Basic Concepts of Bluetooth 4.0

- Everything is optimized for lowest power consumption
 - Short packets reduce TX peak current
 - Short packets reduce RX time
 - Less RF channels to improve discovery and connection time
 - Simple state machine
 - Single protocol
 - Etc.

109

Bluetooth low energy factsheet

Range:	~ 150 meters open field
Output Power:	~ 10 mW (10dBm)
Max Current:	~ 15 mA
Latency:	3 ms
Topology:	Star
Connections:	> 2 billion
Modulation:	GFSK @ 2.4 GHz
Robustness:	Adaptive Frequency Hopping, 24 bit CRC
Security:	128bit AES CCM
Sleep current:	~ 1µA
Modes:	Broadcast, Connection, Event Data Models, Reads, Writes

110

113

115

120

How low can the energy get?

- From the previous slide, calculate energy per transaction
 - Assume an upper bound of 3ms per minimal transaction
 - Estimated TX power is 15mW (mostly TX power amp for 65nm chips)
 - For 1.5v battery, this is 10mA. 0.015W * 0.003 sec = 45 micro Joule
- How long could a sensor last on a battery?
 - An example battery: Lenmar WC357, 1.55v, 180mAh, \$2-5
 - 180mAh/10mA = 18Hr = 64,800 seconds = 21.6M transactions
 - Suppose this sensor sends a report every minute = 1440/day
 - For just the BT LE transactions, this is 15,000 days, or > 40 years
 - This far exceeds the life of the battery and/or the product
- This means that battery will cost more than the electronics
 - This sensor could run on scavenged power, e.g. ambient light

121

BLE and GAP

- Generic Access Profile (GAP)
 - GAP defines a base profile which all Bluetooth devices implement, which ties all the various layers together to form the basic requirements for a Bluetooth device
 - GAP also defines generic procedures for connection-related services:
 - Device Discovery
 - Link Establishment
 - Link Management
 - Link Termination
 - Initiation of security features

122

BLE and GAP

- The GAP layer works in one of four profile roles:
 - Broadcaster: an advertiser that is non-connectable
 - Observer: scans for advertisements, but cannot initiate connections
 - Peripheral: an advertiser that is connectable and can operate as a slave in a single link layer connection
 - Central: scans for advertisements and initiates connections; operates as a master in a single or multiple link layer connections

123

124

BLE and GAP – Discoverable Modes

- GAP supports three different discoverable modes:
 - Non-discoverable Mode: No advertisements
 - Limited Discoverable Mode: Device advertises for a limited amount of time before returning to the standby state
 - General Discoverable Mode: Devices advertises continuously
- GAP manages the data that is sent out in advertisement and scan response packets

125