Mathematical Frameworks for Integrative Analysis of Multi-omics Biological Data

This manuscript (permalink) was automatically generated from BIRSBiointegration/whitePaper@daeff04 on June 26, 2020.

Authors

Kim-Anh Lê Cao

D 0000-0003-3923-1116 · ☐ mixOmicsTeam · ➤ mixOmicsTeam

Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Australia · Funded by Grant National Health and Medical Research Council Career Development fellowship (GNT1159458)

Aedin C Culhane

D 0000-0002-1395-9734 · ○ aedin · У AedinCulhane

Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA; Biostatsitics, Harvard TH Chan School of Public Health, Boston, MA, USA · Funded by Chan Zuckerberg Initative, NIH, DoD (need to get grant IDs)

Elana Fertig

Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA · Funded by National Institute of Health, National Cancer Institute; National Institute of Health, National Institute of Dental and Craniofacial Research; Lustgarten Foundation; Emerson Foundation; Allegheny Health Network

Jane Roe

© XXXX-XXXX-XXXX · ♥ janeroe (PLEASE COPY/PASTE DO NOT EDIT THIS ONE) · ♥ XXX

Department of Something, University of Whatever; Department of Whatever, University of Something · Funded by XX

Abstract

Introduction to single cell and imaging multi-omics

Current multi-omic technologies

Challenges for interpretation

Interpretation requires a good understanding of the methods (no black boxes, a common language)

Communicating within the field: what approaches are we talking about?

Interpretation of the output from the analyses of the data is facilitated by the incorporation of contiguous information.

Redundant biological knowledge and incorporation of information from databases are important in the process. Biological Interpretations: bridges to data bases such as KEGG, Gene Ontology, HCA. Validation through complementary data.

Visualization tools for interpretation and communication

Examples: Brushing UMAP.

Explaining results to biologists through generative models and simulations (ex: Factor Analysis).

Issues of over-discretization, over-simplification

Example 1: The notion of cell-type is insufficient (Communication challenge with biologists about tradeoffs between focusing on rare cell types vs. more "continuous" view on cell types).

Problem with loss of information in the desire to simplify.

Counterexamples

Case studies

scNMT-seq as a case-study for epigenetic regulation

Overview and biological question

Computational challenges

Identification of multi-omics signatures that characterize lineage, stage or both.

- · Handling missing values
- Do epigenetic changes in some genomic contexts affect cell fate decision more than others? If so, how?

Methods for stats/math analyses and results summary

scRNA-seq + FISH as a case study for spatial transcriptomics

Overview and biological question

Computational challenges

- Can scRNA-seq data be overlaid onto seqFISH for resolution enhancement
- What is the minimal number of genes needed for data integration?
- Are there signatures of cellular co-localization or spatial coordinates in the non-spatial scRNA-seq data?

Methods for stats/math analyses and results summary

Spatial proteomics and cross-study analysis

Overview and biological question

Computational challenges

- Integrating partially-overlapping proteomic data collected on different patients with similar phenotypes
- Integration of spatial x-y coordinate co-location and co-expression
- Integration with other 'omics datasets (e.g., scRNA-seq) to support the results of these proteomic analyses
- Can we predict the spatial expression patterns of proteins measured on mass-tag but not measured in the MIBI-TOF data?
- What additional information can we learn about the different macrophage and immune populations in breast cancer by conducting integrated analyses of these datasets?

Methods for stats/math analyses and results summary

Overview of common analytical methods spanning technologies / case studies

- matrix factorization
- neural network / autoencoders

Software strategies to enable analyses of multimodal single cell experiments

Key questions

- How should multimodal single cell data be managed for interactive and batch analyses?
- What methods will help software developers create scalable solutions for multimodal single cell analysis?

• How can we ensure that visualization methods that are central to multimodal single cell analysis are usable by researchers with visual impairments?

Data management strategies

- Abstract data type: "multiassay experiment". This reflects the idea that each mode will be
 characterized by a different collection of features on possibly non-overlapping collections of
 samples. The metadata on features should be clearly and conventionally defined. For example,
 genes and transcripts are enumerated using Ensembl catalog identifiers; regions of accessibility are
 defined using genomic coordinates in a clearly specified reference build. Metadata on samples
 must include all relevant information on experimental conditions such as treatment, protocol, and
 date of technical processing.
- · Serializations and data access methods for
 - spatial transcriptomics
 - o scNMT-seq ...

Scalability strategies

Reducing barriers to interpretable visualizations

An overview of the issues with impaired color perception

US Government tools for accessibility

Details of working components

Туре	Brief name	Description	URL	Author email
R data class	MultiAssayExperiment	unify multiple experiments	bioco nduct or.org	many
R package	Giotto	Spatial transcriptomics		
python library	PyTorch	deep learning		

Techniques and challenges for benchmarking methods

Outline:

- We must first define what we are benchmarking
 - recovery of cell types / clusters
 - discovery of relationships between data modalities, e.g. gene regulatory relationships observed between chromatin accessibility and gene expression
 - 0
- Strategies for benchmarking
 - simulation (and we can discuss the difficulties with simulating covariance structure across features and data modalities)
 - benchmarking datasets
 - cross-validation within study (and we can discuss issues in matching dimensions of latent space across folds). For this Mike has a lot of literature in Google Doc to include on papers that have performed either permutation or cross-validation to assess model performance.

• cross-study validation (are relationships discovered in one dataset present in other datasets, potentially looking across single cell and bulk)

Discussion

Emerging analytical methods and technologies

Community needs for data structures, analysis methods, etc

Glossary

Consensus term	Synonyms	Description
Network	Graph	A set of <i>nodes</i> , representing objects of interest, linked by <i>edges</i> , representing specific relationships between nodes.
Node	Vertex	Element of interest in a network and linked to other nodes. For example: people, cells, proteins or genes. Nodes can have several properties called <i>attributes</i> like cell type or position.
Edge	Link	The relationship between 2 nodes in a network. For example: friendship in social networks, cells in contact in a spatial network, or gene-gene interactions in a gene regulatory network.

References