Points et parties de Fermat-Torricelli-Steiner

Soit une famille $\mathcal{M} = \{M_1, \dots, M_m\}$ de m points distincts de \mathbb{R}^d , $\| \|$ une norme sur \mathbb{R}^d et $F_{\mathcal{M}}$ la fonction numérique définie sur \mathbb{R}^d suivant

$$F_{\mathcal{M}}(M) = \sum_{i=1}^{m} \|\overrightarrow{M_i M}\|, \quad M \in \mathbb{R}^d.$$

Ce TP a pour but d'analyser l'ensemble des minima de la fonction $F_{\mathcal{M}}$, dits points FTS. P. de Fermat $(1601\text{-}1665)^1$ a soumis ce problème de minimisation dans le plan avec m=3 points à son correspondant E. Torricelli (1608-1647) qui l'a résolu. Le problème a resurgi dans le placement optimal étudié par J. Steiner (1796-1863) et dont les généralisations (somme de distances pondérées, arbres dont les feuilles sont les points donnés) sont d'une grande actualité en recherche opérationnelle.

- (1)(a) Montrer que la fonction $F_{\mathcal{M}}$ est convexe, coercive et admet au moins un point de minimum.
 - (b) Montrer que tout minimum de $F_{\mathcal{M}}$ est dans la boule centrée à l'origine O et de rayon $2 \max_i \|\overrightarrow{OM_i}\|$.
 - (c) Montrer que $F_{\mathcal{M}}$ n'est pas strictement convexe si les points M_1, \ldots, M_m sont alignés. Étudier le cas de 3, puis 4 points alignés et faire le lien avec la médiane d'une variable aléatoire sur un espace fini.
 - (d) Supposons que P, hors de \mathcal{M} , est un minimum de la fonction $F_{\mathcal{M}}$. Montrer que P est aussi un minimum de la fonction $F_{\mathcal{M} \cup \{P\}}$.

On suppose désormais que les points M_i , i = 1, ..., m ne sont pas alignés

- (2) Dans cette question, la fonction $F_{\mathcal{M}}$ est définie avec la norme euclidienne standard sur \mathbb{R}^d .
 - (a) Montrer que la fonction $F_{\mathcal{M}}$ est localement strictement convexe et en déduire que le minimum de $F_{\mathcal{L}}$ est unique.

Dans la suite, $P_{\mathcal{M}}$ désignera l'unique point de minimum de $F_{\mathcal{M}}$.

(b) Montrer que $F_{\mathcal{M}}$ est différentiable sur $\mathbb{R}^d \setminus \mathcal{M}$ avec gradient

$$\nabla F_{\mathcal{M}}(M) = \sum_{i=1}^{m} \frac{\overrightarrow{M_i M}}{\|\overrightarrow{M_i M}\|}, \quad M \in \mathbb{R}^d \setminus \mathcal{M}$$

et que l'annulation du gradient en $P_{\mathcal{M}} \notin \mathcal{M}$ est équivalente à l'équation au point fixe $P_{\mathcal{M}} = T_{\mathcal{M}}(P_{\mathcal{M}})$ où $T_{\mathcal{M}}$ est définie par

$$T_{\mathcal{M}}(M) = \frac{\sum_{i=1}^{m} \|\overrightarrow{M_i M}\|^{-1} M_i}{\sum_{i=1}^{m} \|\overrightarrow{M_i M}\|^{-1}}, \quad M \in \mathbb{R}^d \setminus \mathcal{M}.$$

Montrer que la transformation $T_{\mathcal{M}}$ est une transformation de descente dans la direction du gradient avec pas variable.

(c) Vérifier par des calculs numériques que $F_{\mathcal{M}}(T_{\mathcal{M}}(M)) < F_{\mathcal{M}}(M)$ pour M quelconque en dehors de \mathcal{M} . Étudier la convergence de suites $(P_k)_{k\geq 0}$ vérifiant $P_{k+1} = T_{\mathcal{M}}(P_k)$ pour $k \geq 0$. Tracer en échelle logarithmique la vitesse de convergence de $(\|\overrightarrow{P_{\infty}P_k}\|)_{k\geq 0}$ où $P_k \to P_{\infty}$.

^{1.} Le problème est plutôt présenté de manière équivalente comme la minimisation de la fonction $\sum_i MM_i$, somme des distances d'un point à n points : Fermat considérait naturellement la distance euclidienne, on examine en troisième partie le cas de distances induites par des normes non euclidiennes, dites souvent de Minkowski.

- (d) Étudier le cas particulier où \mathcal{M} est l'ensemble des sommets d'un triangle avec un angle d'au moins $2\pi/3$.
- (e) Tester la méthode de Newton.
- (f) Tester une méthode de sous-gradients.
- (3) On étudie le cas de la norme infinie $||x||_{\infty} = \max_i |x_i|$ si $x = (x_i)$.
 - (a) La fonction $F_{\mathcal{M}}$ est-elle strictement convexe?
 - (b) Par un mode de recherche aléatoire, déterminer des points de minima approchés de $F_{\mathcal{M}}$. Illustrer le calcul en dimension 2 en traçant tous les segments PQ où P,Q sont des minima estimés de $F_{\mathcal{M}}$. On pourra étudier des familles M_i de faible cardinal aléatoirement choisies ou des familles particulières : $\mathcal{M}_1 = \{(1,0),(-1,0)\}, \mathcal{M}_2 = \{(1,0),(-1,0),(0,1),(0,-1)\}, \mathcal{M}_3 = \{(1,1),(1,-1),(-1,1),(-1,-1)\}.$
 - (c) On dit que σ est une symétrie de $F_{\mathcal{M}}$ si σ est une transformation affine bijective laissant globalement invariante et la famille \mathcal{M} et la norme $\| \|_{\infty}$. Montrer que si P est un point de minimum pour $F_{\mathcal{M}}$, il en est de même pour σP si σ est une symétrie de $F_{\mathcal{M}}$. Reprendre les tracés précédents pour \mathcal{M}_i , i=1,2,3 en complétant les points de minima avec l'aide de symétries bien choisies (on considérera des symétries par rapport à une droite ou des rotations qui laissent invariante la norme infinie).
- (4) On considère le plan \mathbb{R}^2 avec la norme $\| \|_h$ associée à l'hexagone régulier (plein) H centré en (0,0) et avec (1,0) parmi ses sommets :

$$||v||_h = \inf_{\substack{\lambda > 0 \\ \lambda v \in H}} \lambda^{-1}, \quad v \neq 0.$$

Montrer numériquement que le triangle (plein) de sommets $\mathcal{T} = \{(0,0), (1,0), (1/2, \sqrt{3}/2)\}$ est l'ensemble des minima FTS pour la famille \mathcal{T} .

(5) Soit $\alpha > 0$ et la fonction $F_{\mathcal{M},\alpha}$ définie par

$$F_{\mathcal{M},\alpha}(M) = \sum_{i=1}^{m} \|\overrightarrow{M_i M}\|^{\alpha}, \quad M \in \mathbb{R}^d.$$

On considère à nouveau le cas de la norme euclidienne.

- (a) Montrer que $F_{\mathcal{M},\alpha}$ admet un point de minimum.
- (b) Montrer qu'un point de minimumm peut être vu comme point fixe d'une transformation $(T_{\mathcal{M},\alpha}^k(x_0))$ analogue à celle introduite dans la fonction 2.b.
- (c) Étudier la convergence de l'itération de la suite $T_{\mathcal{M},\alpha}$ dans le cas m=2 et d=1 pour $\alpha=2,2.5,3,3.5,4$.

Références bibliographiques :

Zvi Drezner, On the convergence of the generalized Weiszfeld algorithm, Ann. Oper. Res. 167 (2009), 327-336.

Harold W. Kuhn, A note on Fermat's problem, Math. Programming 4 (1973), 98-107.

Horst Martini, Konrad J. Swanepoel, Gunter Weiß, *The Fermat-Torricelli problem in normed planes and spaces*, J. Optim. Theory Appl. **115**#2 (2002), 283–314.

Annexe

Soit la fonction $u:((x,y),(\alpha,\beta))\in\mathbb{R}^2\times[-1/2,1/2]^2\mapsto 3y^2+\beta y+xy+x^2+\alpha x$ avec loi uniforme sur $[-1/2,1/2]^2$. Étudier le problème $\inf_{(x,y)}\mathbb{E}_{(\alpha,\beta)}[u(x,y,\alpha,\beta)]$ avec le gradient stochastique.