IN THE CLAIMS

Please amend the claims as follows:

- (original) A method for the temporal synchronization of clocks
 (15) which are assigned to nodes (10) that communicate via a
 communication medium (5), characterized by the following steps:
- at least for the nodes (10) that are to be synchronized: acquiring (110) state values which are dependent on a time base of the nodes (10);
- for all acquired state values: filing (120) the acquired state value at a corresponding position in a first list (L) comprising (k+1) positions, if the acquired state value is smaller than the (k+1) smallest element or is smaller than or equal to the (k+1) smallest element of the list (L) and where k is a predefinable error tolerance;
- for all acquired state values: filing (130) the acquired state value at a corresponding position in a second list (H) comprising (k+1) positions, if the acquired state value is greater than the (k+1) greatest element or is greater than or equal to the (k+1) greatest element of the list (H);
- forming (160) a mean value (M) from the (k+1) smallest element of the first list (L) and the (k+1) greatest element of the

second list (H), if $n \ge (2k+2)$, where n is the number of acquired state values;

- determining (170) a correction value (K) as a function of the mean value (M); and
- correcting (180) the clocks (15) that are to be synchronized such that a current state value of this clock (15) takes the correction value into account.
- 2. (original) A method as claimed in claim 1, characterized in that the filing (120, 130) of the determined state values in the first list (L) and/or in the second list (H) is carried out sequentially.
- 3. (currently amended) A method as claimed in claim 1—or 2, characterized in that the first list (L) is formed by corresponding registers (L0, L1, ..., Lk) and/or the second list (H) is formed by corresponding registers (H0, H1, ..., Hk).
- 4. (currently amended) A method as claimed in any of the preceding claims claim 1, characterized in that
- the first list (L) is initialized with values which are greater than the greatest state value that is to be expected; and/or

- the second list (H) is initialized with values which are smaller than the smallest state value that is to be expected.
- 5. (currently amended) A method as claimed in any of the preceding claims claim 1, characterized in that
- during filing (120) of an acquired state value in the first list (L) a sorting in terms of the size of the stored state values is retained so that value(L0) ≥ value(L1) ≥ ... ≥ value(Lk) is always true, where L0, L1, ..., Lk denote the (k+1) positions of the list (L) and value(Li) is the value at a position (Li); and
- during filing (130) of an acquired state value in the second list (H) a sorting in terms of the size of the stored state values is retained so that value(H0) \leq value(H1) \leq ... \leq value(Hk) is always true, where H0, H1, ..., Hk denote the (k+1) positions of the list (H) and value(Hi) is the value at a position (Hi).
- 6. (currently amended) A method as claimed in any of the preceding claims 1, characterized in that a state value (Z) is stored at a position (Li) of the first list (L) as a function of the following steps:
- the positions (L0, L1, ..., Lk) are searched for a position (Li) of the first list (L), so that the following is true:

- value(L0) \geq value(L1) \geq ... \geq value(Li) \geq Z \geq value(L(i+1)) \geq ... \geq value(Lk);
- if no such position (Li) is found, then the state value (Z) is rejected;
- if such a position (Li) is found, then for all positions $\{(Lj \mid 0 \leq j < i\} \text{ the value value(Lj) stored at the position (Lj)}$ is replaced by the value value(L(j+1)) stored at the position L(j+1) and the state value (Z) is stored at the position (Li) of the list (L).
- 7. (currently amended) A method as claimed in any of the preceding claims 1, characterized in that a state value (Z) is stored at a position (Hi) of the second list (H) as a function of the following steps:
- the positions (H0, H1, ..., Hk) are searched for a position (Hi) of the second list (H), so that the following is true:
- value(H0) \leq value(H1) \leq ... \leq value(Hi) \leq Z \leq value(H(i+1)) \leq ... \leq value(Hk);
- if no such position (Hi) is found, then the state value (Z) is rejected;
- if such a position (Hi) is found, then for all positions $\{ (Hj \mid 0 \le j < i) \} \text{ the value value (Hj) stored at the position Hj is }$

replaced by the value (H(j+1)) stored at the position H(j+1) and the state value (Z) is stored at the position (Hi) of the list (H).

- 8. (currently amended) A method as claimed in any of the preceding claims 1, characterized in that the following steps are carried out:
- as a function of an error tolerance (k), a set (B) of predefinable end values $(\{B0, B1, ..., B(k-1)\})$ is predefined such that
 - B0 = 0; Bi \leq B(i+1), for all i \in {0, 1, ..., (k-1)}; and
 - 2j < B(j), for all $j \in \{1, ..., (k)\};$
- if Bk > n, a value i for i \in {0, 1, ..., (k-1)} is selected as a function of the number n of acquired state values such that the condition Bi \leq n < B(i+1) is true;
 - if $Bk \le n$, i = k is selected; and
- the mean value (M) is formed from the values value(L(k-j)) and value(H(k-j)) stored at the positions L(k-i) and H(k-i).
- 9. (currently amended) A method as claimed in any of the preceding claims 1, characterized in that the following values are predefined:

- error tolerance k = 2;
- end value B1 = 3; and
- end value B2 = 8.
- 10. (original) A node (10) which communicates with other nodes (10) by means of a communication medium, characterized in that the node (10)
 - has a clock (15);
- has means for acquiring state values, the state values being dependent on a time base of the node (10) and/or on a time base of the other nodes;
- has a first list (L) comprising (k+1) positions and a second list (H) comprising (k+1) positions;
- has means for filing (120) an acquired state value at a corresponding position of the first list (L);
- has means for filing (130) an acquired state value at a corresponding position of the second list (H);
- has means for forming (160) a mean value (M) from an element of the first list (L) and an element of the second list (H);
 - has means for forming a correction value (K); and
 - has means for correcting the clock (15).

- (currently amended) A node (10) as claimed in claim 10which 11. communicates with other nodes (10) by means of a communication medium, characterized in that the node (10) - has a clock (15); - has means for acquiring state values, the state values being dependent on a time base of the node (10) and/or on a time base of the other nodes; - has a first list (L) comprising (k+1) positions and a second list (H) comprising (k+1) positions; - has means for filing (120) an acquired state value at a corresponding position of the first list (L); - has means for filing (130) an acquired state value at a corresponding position of the second list (H); - has means for forming (160) a mean value (M) from an element of the first list (L) and an element of the second list (H); - has means for forming a correction value (K); and - has means for correcting the clock (15), characterized in that a method as claimed in any of claims 1 to 9 claim 1 is carried out in the node (10).
- 12. (original) A communication system (1) which has a number of nodes (10) that communicate via a communication medium (5), characterized in that at least one node (10)

- has a clock (15);
- has means for acquiring state values;
- has a first list (L) comprising (k+1) positions and a second list (H) comprising (k+1) positions;
- has means for filing (120) an acquired state value at a corresponding position of the first list (L);
- has means for filing (130) an acquired state value at a corresponding position of the second list (H);
- has means for forming (160) a mean value (M) from an element of the first list (L) and an element of the second list (H);
 - has means for forming a correction value (K); and
 - has means for correcting the clock (15).
- 13. (currently amended) A communication system (1) as claimed in claim 12which has a number of nodes (10) that communicate via a communication medium (5), characterized in that at least one node (10)
 - has a clock (15);
 - has means for acquiring state values;
- has a first list (L) comprising (k+1) positions and a second list (H) comprising (k+1) positions;
- has means for filing (120) an acquired state value at a corresponding position of the first list (L);

- has means for filing (130) an acquired state value at a corresponding position of the second list (H);
- has means for forming (160) a mean value (M) from an element of the first list (L) and an element of the second list (H);
- has means for forming a correction value (K); and
- has means for correcting the clock (15), characterized in that a method as claimed in any of claims 1 to 9claim 1 is carried out in at least one node (10).
- 14. (currently amended) A computer program which can be run on a computer, in particular on a microprocessor, characterized in that the computer program is programmed to carry out a method as claimed in any of claims 1 to 9claim 1 when it is run on the computer.
- 15. (original) A computer program as claimed in claim 14, characterized in that the computer program is stored in a memory element, in particular in a Random Access Memory (RAM), a Read Only Memory (ROM) or a Flash memory.