Tecnológico Nacional de México campus Huixquilucan Ingeniería Mecatrónica - Métodos Numéricos AEC-1046 Semestre septiembre 2024 - febrero 2025

Resolver el siguiente ejercicio contestando únicamente en las hojas. Enviar un sólo archivo en formato PDF a través de la plataforma MS Teams. Valor de la actividad: 100 puntos.

Nombre del estudiante	
Fecha de la actividad	
Calificación	

Evaluación del desempeño

Pregunta:	1	2	3	4	5	6	7	8	9	Total
Puntos:	10	10	10	10	10	10	10	10	10	90
Calificación:										

Ejercicio 8: Método de bisección

Para una función dada f(x) el algoritmo del método de bisección funciona como:

- 1. Dos valores a y b son escogidos para que f(a) > 0 y f(b) < 0 (o al revés)
- 2. Un punto intermedio c es calculado como un promedio aritmético entre a y b, es decir

$$c = \frac{a+b}{2}$$

- 3. La función f es evaluada para el valor de c.
- 4. Si f(c) = 0 o muy cerca de cero, significa que se encontro la raíz de la función, que es c.
- 5. Si $f(c) \neq 0$ se checa el signo de f(c):
 - Si f(c) tiene el mismo signo que f(a), se reemplaza a con c, y se mantiene el mismo valor para b.
 - Si f(c) tiene el mismo signo que f(b), se reemplaza b con c, y se mantiene el mismo valor para a.
- 6. Se regresa al paso 2, y se recalcula c con el nuevo valor de a o b.

El algoritmo termina cuando el valor de f(c) es menor que una tolerancia definida (por ejemplo, 0.001). En este caso decimos que c es muy cercano a la raíz de la función, para el que $f(c) \approx 0$. Para evitar muchas iteraciones, podemos fijar un número máximo de iteraciones (por ejemplo, 1000) y si estamos por arriba de la tolerancia definida, mantenemos el último valor de c como raíz de la función. Para calcular la raíz aproximada de una función con tolerancia c, el número de iteraciones c que se tiene que hacer es:

$$n \ge \frac{\log\left(\frac{b-a}{\varepsilon}\right)}{\log(2)}$$

Use el método de bisección para aproximar la raíz de las siguientes funciones.

1. (10 puntos) $f(x) = 10 - x^2$ con una tolerancia ε de 0.01 y un máximo de 10 iteraciones (n = 10). Al inicio (i = 0) utilice a = -2 y b = 5

i	a	b	c	f(a)	f(b)	f(c)
0	-2	5	1.5	6	-15	7.75
1						
2						
3						
4						
5						
6						
7						
8						
9						

2. (10 puntos) $f(x) = x^3 - 2x - 5$ con una tolerancia ε de 0.01 y un máximo de 4 iteraciones (n = 4). Al inicio (i = 0) utilice a = 2 y b = 3

i	a	b	c	f(a)	f(b)	f(c)
0						
1	2	2.5	2.25	-1	5.625	1.890625
2						
3						
4						

3. (10 puntos) $f(x) = x^3 - 4x - 9$ con una tolerancia ε de 0.01 y un máximo de 8 iteraciones (n = 8). Al inicio (i = 0) utilice a = 2 y b = 3

i	a	b	c	f(a)	f(b)	f(c)
0						
1						
2						
3						
4						
5						
6						
7						

- 4. (10 puntos) $f(x) = x^3 4$ con una tolerancia ε de 0.1. Calcule usted mismo los valores iniciales de a y b.
- 5. (10 puntos) $f(x) = x^3 3$ con una tolerancia ε de 0.1. Calcule usted mismo los valores iniciales de a y b.
- 6. (10 puntos) $f(x) = 2x^3 2x 5$ con una tolerancia ε de 0.1. Calcule usted mismo los valores iniciales de $a \vee b$.
- 7. (10 puntos) $f(x) = x^3 x 1$ con una tolerancia ε de 0.1. Calcule usted mismo los valores iniciales de a y b.

i	a	b	c	f(a)	f(b)	f(c)
0						
1						
2						
3						
4						

i	a	b	c	f(a)	f(b)	f(c)
0						
1						
2						
3						
4						
5						
6						
7						

- 8. (10 puntos) $f(x) = x^2 3$ con una tolerancia ε de 0.1. calcule usted mismo los valores iniciales de a y b.
- 9. (10 puntos) $f(x) = 3x^2 5x 2$ con una tolerancia ε de 0.1. calcule usted mismo los valores iniciales de a y b.

i	a	b	c	f(a)	f(b)	f(c)
0						
1						
2						
3						
4						
5						
6						
7						
8						
9						

i	a	b	c	f(a)	f(b)	f(c)
0						
1						
2						
3						
4						
5						
6						
7						
8						
9						

i	a	b	c	f(a)	f(b)	f(c)
0						
1						
2						
3						
4						
5						
6						
7						
8						
9						

i	a	b	c	f(a)	f(b)	f(c)
0						
1						
$\frac{2}{3}$						
3						
4						
5						
6						
7						
8						
9						