

American International University-Bangladesh Faculty Science & Technology Mid Term Assignment

COURSE INSTRACTOR: DR. M M MANJURUL ISLAM

NAME	TAMIMUL ALAM
STUDENT ID	20-42215-1
SUBJECT	ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEM
SECTION	A
DEPARTMENT	BSc CSE

SUBMISSION DATE:10/28/2021

Summarized report

Breadth first search: BFS is a graph traversal algorithm that requires you to start at a specific node (source or starting node) and traverse the graph layer by layer, thus examining the neighbor nodes (nodes which are directly connected to source node). Then proceed to the neighbor nodes on the following level.

Path Cost report:

Possible Paths:

['Arad', 'Sibiu', 'Fagaras', 'Bucharest'] 140

['Arad', 'Sibiu', 'Rimnicu Vilcea', 'Pitesti', 'Bucharest'] 140

['Arad', 'Sibiu', 'Rimnicu Vilcea', 'Pitesti', 'Bucharest'] 239

['Arad', 'Sibiu', 'Rimnicu Vilcea', 'Pitesti', 'Bucharest'] 450

Shortest Path:

['Arad', 'Sibiu', 'Fagaras', 'Bucharest'] 140

Name & Tamimul Alam ID & 20-42215-1

BFS:

shortest path : Arad -> sibiu -> Fagaram->
Buchanest

(Porth exist 140)

Depth first search: The depth-first search (DFS) algorithm is used to traverse or explore data structures such as trees and graphs. The algorithm starts at the root node (in the case of a graph, any random node can be used as the root node) and examines each branch as far as feasible before retracing.

Path Cost report:

Possible paths:

['Arad', 'Timisoara', 'Lugoj', 'Mehadia', 'Drobeta', 'Craiova', 'Pitesti', 'Bucharest']

['Arad', 'Timisoara', 'Lugoj', 'Mehadia', 'Drobeta', 'Craiova', 'Pitesti', 'Rimnicu Vilcea', 'Sibiu', 'Fagaras', 'Bucharest'] 118

['Arad', 'Timisoara', 'Lugoj', 'Mehadia', 'Drobeta', 'Craiova', 'Pitesti', 'Rimnicu Vilcea', 'Sibiu', 'Fagaras', 'Bucharest'] 229

['Arad', 'Timisoara', 'Lugoj', 'Mehadia', 'Drobeta', 'Craiova', 'Pitesti', 'Rimnicu Vilcea', 'Sibiu', 'Fagaras', 'Bucharest'] 299

['Arad', 'Timisoara', 'Lugoj', 'Mehadia', 'Drobeta', 'Craiova', 'Pitesti', 'Rimnicu Vilcea', 'Sibiu', 'Fagaras', 'Bucharest'] 374

['Arad', 'Timisoara', 'Lugoj', 'Mehadia', 'Drobeta', 'Craiova', 'Pitesti', 'Rimnicu Vilcea', 'Sibiu', 'Fagaras', 'Bucharest'] 494

['Arad', 'Timisoara', 'Lugoj', 'Mehadia', 'Drobeta', 'Craiova', 'Pitesti', 'Rimnicu Vilcea', 'Sibiu', 'Fagaras', 'Bucharest'] 632

['Arad', 'Timisoara', 'Lugoj', 'Mehadia', 'Drobeta', 'Craiova', 'Pitesti', 'Rimnicu Vilcea', 'Sibiu', 'Fagaras', 'Bucharest'] 733

Shortest path:

['Arad', 'Timisoara', 'Lugoj', 'Mehadia', 'Drobeta', 'Craiova', 'Pitesti', 'Bucharest']

Greedy best first search: Expand the parent's first successor using a greedy method. Following the creation of a successor

- i) If the successor's heuristic outperforms the parent's, the successor is moved to the front of the queue (with the parent reinserted exactly behind it) and the loop is restarted.
- ii) If not, the successor is added to the queue (in a location determined by its heuristic value). The method will assess the parent's remaining successors if any.

Greedy best first search

Groal is Buchanest >

Start node is Arad

Step 1: Aread hold = 366

Expand with minimum hold

Step 4 8

Output Screenshot

BFS

DFS

GBFS

