Содержание

1	Основная теорема об интеграле Лебега от ограниченных функций	2
2	Линейность и монотонность интеграла Лебега	2
3	Интеграл Лебега как предел последовательности интегралов от срезок	4
4	σ -аддитивность интеграла Лебега	5
5	Абсолютная непрерывность интеграла Лебега	6
6	Теорема Лебега о предельном переходе под знаком интеграла	6
7	Теорема Леви	7
8	Теорема Фату	7
9	Корректность определения интеграла Лебега по множеству бесконечной меры	7
10	Вычисление меры с помощью кратных интегралов	8
11	Мера подграфика. Теорема Фубини	9
12	Замена переменных в одномерном интеграле Лебега	10
13	Теорема о разложении	11
14	Замена переменных в кратном интеграле Лебега (локальная версия)	11
15	Критерий интегрируемости по Риману	13
16	Лемма Витали	13

1 Основная теорема об интеграле Лебега от ограниченных функций

Определение 1.1. Пусть f — ограниченная измеримая функция, определённая на измеримом по Лебегу множестве E. Будем обозначать $m = \inf_{x \in E} f(x), M = \sup_{x \in E} f(x)$. Также Q — разбиение области значений функции f

Определение 1.2.

$$S(Q, f, \{t_i\}) := \sum_{i=1}^{N} f(t_i) \cdot \mu(E_i)$$

, где $E_i = \{x \in E : f(x) \in [y_{i-1}, y_i)\}$

Теорема 1.1. Если f – ограниченная измеримая на измеримом по Лебегу множестве $E \subset \mathbb{R}^n$ функция, то она интегрируема по Лебегу (суммируема) на E, причём

$$\int_{E} f d\mu(x) = \lim_{\Delta(Q) \to 0} S(Q, f, \{t_i\})$$

Это значит

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall Q \,\Delta(Q) < \delta \,\forall \{t_i\}, t_i \in E_i : \left| S(Q, f, \{t_i\}) - \int_E f d\mu(x) \right| < \varepsilon$$

Доказательство. Если $P: E = \bigsqcup_{i=1}^N E_i$, то $L(P,f) \leqslant S(Q,f,\{t_i\}) \leqslant U(P,f)$ – очевидно из определения интегральных сумм.

Кроме того,
$$U(P,f)-L(P,f)=\sum\limits_{i=1}^{N}(M_{i}-m_{i})\mu(E_{i})\leqslant\sum\limits_{i=1}^{N}(y_{i}-y_{i-1})\mu(E_{i})\leqslant\Delta(Q)\sum\limits_{i=1}^{N}\mu(E_{i})=\Delta(Q)\mu(E)$$
 Значит, $\delta:=\frac{\varepsilon}{\mu(E)}$

2 Линейность и монотонность интеграла Лебега

Лемма 2.1. Признак суммируемости:

Если f(x) суммируема на измеримом по Лебегу множестве $E \subset \mathbb{R}^n$ конечной меры, а F измерима на E и $\forall x \in E : |F(x)| \leq f(x)$, то F суммируема на E

Доказательство.

$$\begin{split} \forall P: \ E = \bigsqcup_{i=0}^{\infty}; \ \ U(P,|F|) \leqslant U(P,f) \\ \forall \varepsilon > 0 \ \exists P \ \ U(P,|F|) \leqslant U(P,f) \leqslant \int_{E} f d\mu(x) + \varepsilon < +\infty \\ U(P,|F|) < +\infty \Rightarrow \int_{E} |F| d\mu(x) = \inf_{P} U(P,|F|) < \infty \end{split}$$

Значит |F| суммируема, но мы знаем, что |F| суммируема $\Leftrightarrow F$ суммируема, так как $F = F^+ - F^-$; $|F| = F^+ + F^-$, и мы можем применить предыдущее рассуждение к функциям F^\pm , которые тоже окажутся суммируемы.

- **Теорема 2.1.** 1. Если f_1, f_2 суммируемы на измеримом множестве $E \subset \mathbb{R}^n$ конечной меры, то $\forall c_1, c_2 \in \mathbb{R}: c_1 f_1 + c_2 f_2$ суммируема на E, причём $\int_E (c_1 f_1 + c_2 f_2) d\mu(x) = c_1 \int_E f_1 d\mu(x) + c_2 \int_E f_2 d\mu(x)$
 - 2. Если f_1, f_2 суммируемы на измеримом множестве $E \subset \mathbb{R}^n$ конечной меры $u \ \forall x \in E: f_1(x) \leqslant f_2(x), \ mo \int_E f_1 d\mu(x) \leqslant \int_E f_2 d\mu(x)$

Доказательство. 1. Пусть f_1, f_2 – ограниченные измеримые функции, тогда

$$\forall P: E = \bigsqcup_{i=1}^{N} E_i: L(P, f_1) + L(P, f_2) \leqslant L(P, f_1 + f_2) \leqslant U(P, f_1 + f_2) \leqslant U(P, f_1) + U(P, f_2)$$

$$\forall \varepsilon > 0 \ \exists P_1, P_2 \ U(P_i, f_i) - L(P_i, f_i) < \varepsilon; \ i = 1, 2$$

Пусть
$$P = P_1 \sqcup P_2$$
, тогда $U(P, f_1) + U(P, f_2) - L(P, f_1) - L(P, f_2) < 2\varepsilon$

Получим, что $\forall \varepsilon > 0$: $\left| \int_E (f_1 + f_2) d\mu(x) - \left(\int_E f_1 d\mu(x) + \int_E f_2 d\mu(x) \right) \right| < 2\varepsilon$, так как эти интегралы будут зажаты между соответствующими верхними и нижними суммами Дарбу.

Предыдущее неравенство верно $\forall \varepsilon>0$, а значит $\int_E (f_1+f_2)d\mu(x)=\int_E f_1d\mu(x)+\int_E f_2d\mu(x)$

2. Пусть f_1, f_2 – неотрицательные суммируемые

Фактически, всё остаётся тем же самым, только $\forall P: E = \coprod_{i=0}^{\infty} E_i$, причём $E_0^{(i)} := \{x \in E: f_i(x) = +\infty\}, i = 1, 2$. Тогда, очевидно, $f_1(x) + f_2(x) = +\infty \Leftrightarrow x \in E_0^{(1)} \cup E_0^{(2)} =: E_0$ Каждая из функций суммируема, значит $\mu(E_0^i) = 0, i = 1, 2$. Тогда $\mu(E_0) \leqslant \mu(E_0^{(1)}) + \mu(E_0^{(2)}) = 0$, значит $\mu(E_0) = 0$ и у нас всё получилось.

3. Рассмотрим случай умножения на константу

$$\forall c > 0: \ U(P,cf) = cU(P,f); \ L(P,cf) = cL(P,f) \Rightarrow \int_E cf d\mu(x) = c \int_E f d\mu(x)$$

$$\forall c < 0: \ U(P,cf) = cL(P,f); \ L(P,cf) = cU(P,f) \Rightarrow \int_E cf d\mu(x) = c \int_E f d\mu(x)$$

4. Пусть f_1, f_2 – произвольные суммируемые функции.

 $|f_1(x) + f_2(x)| \le |f_1(x)| + |f_2(x)| \Rightarrow$ По предыдущей лемме $|f_1(x) + f_2(x)|$ суммируема

Тогда $f_1 = f_1^+ - f_1^-, f_2 = f_2^+ - f_2^- \Rightarrow f_1 + f_2 = (f_1 + f_2)^+ - (f_1 + f_2)^-$. Сложим части, перегруппируем и приравняем:

$$f_1^+ + f_2^+ + (f_1 + f_2)^- = f_1^- + f_2^- + (f_1 + f_2)^+$$

удовлетворяет пункту про неотрицательные суммируемые, значит

$$\int_{E} f_{1}^{+} d\mu(x) + \int_{E} f_{2}^{+} d\mu(x) + \int_{E} (f_{1} + f_{2})^{-} d\mu(x) = \int_{E} f_{1}^{-} d\mu(x) + \int_{E} f_{2}^{-} d\mu(x) + \int_{E} (f_{1} + f_{2})^{+} d\mu(x)$$

Перетасуем слагаемые и получим требуемое равенство.

5. Монотонность доказывается очевидно: рассмотрим неотрицательную функцию $f_2 - f_1$.

3 Интеграл Лебега как предел последовательности интегралов от срезок

Определение 3.1. Назовём срезкой

$$N \in \mathbb{N}: \ f_{[N]}(x) = \begin{cases} f(x), f(x) \leqslant N \\ N, f(x) > N \end{cases}$$

Теорема 3.1. Если $\forall x \in E \subset \mathbb{R}^n$: $f(x) \geqslant 0$ – измеримая функция, определённая на измеримом множестве конечной меры, то $\lim_{N \to \infty} \int_E f_{[N]} d\mu(x) = \int_E f d\mu(x)$

Доказательство.

$$\int_{E} f_{[N]} d\mu(x) \leqslant \int_{E} f_{[N+1]} d\mu(x)$$

$$\forall N \in \mathbb{N} : f_{[N]}(x) \leqslant f(x) \Rightarrow \int_{E} f_{[N]} d\mu(x) \leqslant \int_{E} f d\mu(x)$$

$$i := \lim_{N \to \infty} \int_{E} f_{[N]} d\mu(x); \quad i \leqslant \int_{E} f d\mu(x)$$

От противного: пусть

$$i < \int_E f d\mu(x) = \sup_P L(P, f) \Rightarrow \exists P_0 : i < L(P_0, f)$$

Рассмотрим $L(P_0, f) = \sum_{i=0}^{\infty} m_i \mu(E_i)$.

Пусть $\mu(E_0) > 0 \Rightarrow \forall x \in E_0$: $f_{[N]}(x) = N$. Тогда $\int_E f_{[N]} d\mu(x) \geqslant \int_{E_0} f d\mu(x) = N \mu(E_0)$ – неравенство выполнено по свойству конечной аддитивности, а интеграл раскрыли, так как это интеграл от константы.

Устремляя $N \to \infty$ получим, что $i=+\infty$, что противоречит с предположением, что $i<\int_E f d\mu(x)$. Значит $\mu(E_0)=0$.

Вернёмся к
$$L(P_0, f) = \sum_{i=0}^{\infty} m_i \mu(E_i) = \sum_{i=1}^{\infty} m_i \mu(E_i)$$
.

$$i < \sum_{i=1}^{\infty} m_i \mu(E_i) \Rightarrow \exists K : i < \sum_{i=1}^{K} m_i \mu(E_i)$$

$$N := \max(m_1, \dots, m_K) + 1; \ m_i = \inf_{x \in E_i} f(x) \Rightarrow m_i^{[N]} = \inf_{x \in E_i} f_{[N]}(x) = m_i$$

Тогда

$$\int_{E} f_{[N]} d\mu(x) \geqslant \sum_{i=1}^{K} \int_{E_{i}} f_{[N]} d\mu(x) \geqslant \sum_{i=1}^{K} m_{i}^{[N]} \mu(E_{i}) = \sum_{i=1}^{K} m_{i} \mu(E_{i})$$

Значит $i\geqslant \sum_{i=1}^K m_i\mu(E_i)$ – противоречие.

4 σ -аддитивность интеграла Лебега

Теорема 4.1. Если f суммируема на измеримом множестве $E \subset \mathbb{R}^n$ конечной мери $u \ E = \bigsqcup_{k=1}^{\infty} E_k$, E_k – измеримы, то f суммируема на всех E_k , причём $\int_E f d\mu(x) = \sum_{k=1}^{\infty} \int_{E_k} f d\mu(x)$. Обратно, если f суммируема на всех E_k и $\sum_{k=1}^{\infty} \int_{E_k} |f| d\mu(x)$ сходится, то f суммируема на $E = \bigsqcup_{i=1}^{\infty} E_k$, причём $\int_E f d\mu(x) = \sum_{k=1}^{\infty} \int_{E_k} f d\mu(x)$

Доказательство. Пусть f – ограниченная и измеримая, $E = E^1 \sqcup E^2$

$$\inf_{x \in E} f(x) = m = y_0 < y_1 < \ldots < y_N = M = \sup_{x \in E} f(x); \ Q = \{y_0, y_1, \ldots, y_N\}$$

$$\int_E f d\mu(x) = \lim_{\Delta(Q) \to 0} S(Q, f, \{t_i\}) = \lim_{\Delta(Q) \to 0} L(P, f) = \lim_{\Delta(Q) \to 0} U(P, f)$$

$$\int_E f d\mu(x) - \varepsilon < S(Q, f, \{t_i\}) = \sum_{i=1}^N f(t_i)\mu(E_i) < \int_E f d\mu(x) + \varepsilon$$

$$U(P, f) = \sum_{i=1}^N M_i \mu(E_i) = \sum_{i=1}^K M_i (\mu(E_i \cap E^1) + \mu(E_i \cap E^2)) \geqslant U(E^1)(P, f) + U(E^2)(P, f)$$
 где $U(E^j)(P, f) := \sum_{i=1}^N \sup_{x \in E_i \cap E^j} f(x)\mu(E_i \cap E^j)$
$$\int_E f d\mu(x) - \varepsilon \leqslant L(E^1)(P, f) + L(E^2)(P, f) \leqslant U(E^1)(P, f) + U(E^2)(P, f) \leqslant \int_E f d\mu(x) + \varepsilon$$

$$\int_E f d\mu(x) - \varepsilon \leqslant L(E^i)(P, f) \leqslant U(E^i)(P, f) \leqslant \int_E f d\mu(x) + \varepsilon$$

Зажав сумму интегралов и интеграл объединения, получим конечную аддитивность для ограниченной и измеримой f.

Пусть f — неотрицательная измеримая.

Для $f_{[N]}$ выполнено $\int_E f_{[N]} d\mu(x) = \int_{E_1} f_{[N]} d\mu(x) + \int_{E_2} f_{[N]} d\mu(x)$. Предположение о суммируемости функции f приводит к тому, что предел в левой части конечен, а значит предел в правой части также существует.

Пусть f – измеримая произвольного знака. Доказывается через $f = f^+ - f^-$.

Переходим к σ -аддитивности $E=\bigsqcup_{i=1}^{\infty}E_{i}$

Пусть f – ограничена и измерима на E и $|f| \leqslant M$.

$$\mu(E) = \sum_{i=1}^{\infty} \mu(E_i) \Rightarrow \exists K : \sum_{i=K+1}^{\infty} \mu(E_i) < \frac{\varepsilon}{2M}; \quad R_K := \bigsqcup_{i=K+1}^{\infty} E_i \Rightarrow \mu(R_k) < \frac{\varepsilon}{2M}, E = (\bigsqcup_{i=1}^K E_i) \sqcup R_K$$

$$\int_E f d\mu(x) = \sum_{i=1}^K \int_{E_i} f d\mu(x) + \int_{R_K} f d\mu(x); \quad \left| \int_{R_K} f d\mu(x) \right| \leqslant \int_{R_K} |f| d\mu(x) \leqslant M\mu(R_K) < \frac{\varepsilon}{2}$$
 Значит
$$\int_E f d\mu(x) = \lim_{K \to \infty} \sum_{i=1}^K \int_{E_i} f d\mu(x).$$

Пусть f – неотрицательная и суммируемая.

$$\int_E f d\mu(x) = \lim_{N \to \infty} f_{[N]} d\mu(x) \Rightarrow \exists N: \int_E f d\mu(x) - \varepsilon < \int_E f_{[N]} d\mu(x) = \sum_{i=1}^\infty \int_{E_i} f_{[N]} d\mu(x) < \int_E f d\mu(x) + \varepsilon$$

$$\exists K: \int_E f d\mu(x) - \varepsilon < \sum_{i=1}^K \int_{E_i} f_{[N]} d\mu(x) \leqslant \int_E f d\mu(x)$$

Устремляя $N \to \infty$ получим:

$$\exists K: \int_{E} f d\mu(x) - \varepsilon < \sum_{i=1}^{K} \int_{E_{i}} f d\mu(x) \leqslant \int_{E} f d\mu(x)$$

Пусть f – неотрицательная измеримая, тогда в обоих частях неравенства будет стремление к бесконечности.

Пусть f – произвольная суммируемая. Докажем через $f=f^+-f^-$

5 Абсолютная непрерывность интеграла Лебега

Теорема 5.1. Если f суммируема на измеримом $E \subset \mathbb{R}^n$ конечной меры, то $\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall$ измеримого $e \subset E, \mu(e) < \delta : \, \left| \int_{\mathbb{R}} f d\mu(x) \right| < \varepsilon$

Доказательство. Пусть f – ограниченная и измеримая и $|f| \leqslant M$

Тогда $\left|\int_e f d\mu(x)\right| \leqslant \int_e |f| d\mu(x) \leqslant M\mu(e)$. Значит $\delta:=\frac{\varepsilon}{M}$

Пусть f — неотрицательная и измеримая $\forall \varepsilon > 0 \ \exists N \ 0 \leqslant \int_E f d\mu(x) - \int_E f_{[N]} d\mu < \frac{\varepsilon}{2}$. Из предыдущего пункта $\exists e, \mu(e) < \delta$: $\int_e f d\mu(x) < \frac{\varepsilon}{2}$. Тогда $\int_e f d\mu(x) = \int_e (f - f_{[N]}) d\mu(x) + \int_e f_{[N]} d\mu(x) < \varepsilon$

Пусть f – произвольная измеримая. Найдём δ_1, δ_2 для f^+, f^- и для f возьмём $\min(\delta_1, \delta_2)$.

6 Теорема Лебега о предельном переходе под знаком интеграла

Теорема 6.1. Если f_m измеримые на множестве $E \subset \mathbb{R}^n$ конечной меры, $\lim_{m \to \infty} f_m = f$ почти всюду на E, $u \mid f_m(x) \mid \leqslant F(x)$ при почти всех $x \in E$ при всех $m \in \mathbb{N}$, где F суммируема на E, то f суммируема на E, причём $\int_E f d\mu(x) = \lim_{m \to \infty} \int_E f_m d\mu(x)$

Доказательство. Если $f_m \to f$ почти всюду, то $f_m \Rightarrow f$. Значит $\forall \varepsilon > 0$: $\lim_{m \to \infty} \mu(\{x \in E : \|f_m(x) - f(x)\| \geqslant \varepsilon\} := E_m) = 0$. Значит $\forall \delta > 0 \ \exists M \in \mathbb{N} \ \forall m > M : \ \mu(E_m) < \delta$

Из условия вытекает, что $|f(x)| \le F(x)$ при почти всех $x \in E$. Значит f - суммируемая на E.

$$\left| \int_{E} (f - f_m) d\mu(x) \right| \leqslant \int_{E_m} |f_m - f| d\mu(x) + \int_{E \backslash E_m} |f_m - f| d\mu(x) \leqslant 2 \int_{E_m} F d\mu(x) + \varepsilon \mu(E \backslash E_m) < \varepsilon(\mu(E) + 2)$$

7 Теорема Леви

Теорема 7.1. Если последовательность неотрицательных измеримых на измеримом множестве $E \subset \mathbb{R}$ неубывающая при почти всех $x \in E$, то $\lim_{m \to \infty} \int_E f_m d\mu(x) = \int_E \lim_{m \to \infty} f_m d\mu(x)$

Доказательство. Если $f:=\lim_{m\to\infty} f_m$ — суммируема на E, то $0\leqslant f_m(x)\leqslant f(x)$ и мы ссылаемся на теорему Лебега.

Пусть

$$\int_E f d\mu(x) = +\infty \Rightarrow \lim_{N \to \infty} \int_E f_{[N]} d\mu(x) = +\infty \Rightarrow \forall K \ \exists N_0 \ \forall N \geqslant N_0 : \ \int_E f_{[N]} d\mu(x) > K$$

$$f_{m,[N_0]}(x) \to_{m \to \infty} f_{[N_0]}(x) \Rightarrow \lim_{m \to \infty} \int_E f_{m,[N_0]} d\mu(x) = \int_E f_{[N_0]} d\mu(x)$$

$$\exists m_0 \ \forall m > m_0 : \int_E f_{m,[N_0]} d\mu(x) > K \Rightarrow \int_E f_m d\mu(x) \geqslant \int_E f_{m,[N_0]} d\mu(x) > K$$
 Устремляя $K \to \infty$ получим, что $\int_E f_m d\mu(x) \to_{m \to \infty} \infty$

8 Теорема Фату

Теорема 8.1. Если $f_m(x) \geqslant 0$ при почти всех $x \in E \subset \mathbb{R}^n$ конечной меры, $\forall m \in \mathbb{N}$ f_m – измеримые на E, $\lim_{m \to \infty} f_m(x) = f(x)$ почти всюду на E, то $\int_E f d\mu(x) \leqslant \lim_{m \to \infty} \int_E f_m d\mu(x)$

Доказательство. Пусть $g_m(x) := \inf_{k \geqslant m} f_k(x)$. Тогда $\int_E \lim_{m \to \infty} g_m d\mu(x) = \lim_{m \to \infty} \int_E g_m d\mu(x)$. Но $\lim_{m \to \infty} g_m(x) = \lim_{m \to \infty} \inf_{k \geqslant m} f_k(x) = \lim_{m \to \infty} f_m(x) = f(x)$.

Остаётся заметить, что $\int_E g_m \overline{d\mu(x)} \leqslant \int_E f_k d\mu(x)$. В итоге получаем:

$$\int_E f d\mu(x) \int_E \lim_{m \to \infty} g_m d\mu(x) = \lim_{m \to \infty} \int_E g_m d\mu(x) \leqslant \lim_{m \to \infty} \inf_{k \geqslant m} \int_E f_k d\mu(x) = \lim_{\underline{m} \to \infty} \int_E f_m d\mu(x)$$

9 Корректность определения интеграла Лебега по множеству бесконечной меры

Определение 9.1. Интегралом Лебега неотрицательной измеримой на $E \subset \mathbb{R}^n$, $\mu(E) = +\infty$, функции f(x) называется $\lim_{m\to\infty} \int_{E_m} f d\mu(x)$, где $E_1 \subset E_2 \subset \ldots$ – последовательность измеримых множеств конечной меры, такой что $\lim_{m\to\infty} E_m = E$

Теорема 9.1. Корректность определения интеграла Лебега по множеству бесконечной меры:

Eсли $f(x) \geqslant 0$, измеримая на $E \subset \mathbb{R}^n$, $\mu(E) = +\infty$, то \forall последовательностей неубывающих измеримых множеств $\{E_m\}, \{E'_m\}$ конечной меры $\lim_{m \to \infty} E_m = \lim_{m \to \infty} E'_m = E$ выполняется: $\lim_{m \to \infty} \int_{E_m} f d\mu(x) = \lim_{m \to \infty} \int_{E'_m} f d\mu(x)$

Доказательство. От противного. Пусть $a:=\lim_{m\to\infty}\int_{E_m}fd\mu(x)>\lim_{m\to\infty}\int_{E_m'}fd\mu(x)=:b.$ Пусть $a<+\infty.$

$$\exists c: \ b < c < a; \ \exists m: \ \int_{E_m} f d\mu(x) > c$$

Очевидно

$$E_1' \cap E_m \subset E_2' \cap E_m \subset \ldots \Rightarrow \lim_{k \to \infty} (E_k' \cap E_m) = E \cap E_m = E_m \Rightarrow \lim_{k \to \infty} \mu(E_k' \cap E_m) = \mu(E_m)$$

$$\int_{E_m} f d\mu(x) = \int_{E_k' \cap E_m} f d\mu(x) + \int_{E_m \setminus (E_k' \cap E_m)} f d\mu(x) \Rightarrow \exists k_0 \forall k > k_0 : \int_{E_k'} f d\mu(x) > \int_{E_k' \cap E_m} f d\mu(x) > c$$

Пришли к противоречию с тем, что $\lim_{m \to \infty} \int_{E'_m} f d\mu(x) < c$

Пусть теперь
$$a = +\infty$$
, $+\infty > c > b \Rightarrow \exists m : \int_{E_m} f d\mu(x) > c + 1 \Rightarrow \exists N : \int_{E_m} f_{[N]} d\mu(x) > c \Rightarrow \exists k_0 \, \forall k > k_0 : \int_{E_k'} f d\mu(x) > c \Rightarrow \int_{E_k'} f d$

10 Вычисление меры с помощью кратных интегралов

Если $A \subset \mathbb{R}^n$ – измеримо, то

- 1. Для μ_X почти всех $x \in X$ сечения $A_Y(x)$ μ_Y -измеримы, причём $\mu(A) = \int_X \mu_Y(A_Y(x)) d\mu_X(x)$
- 2. Для μ_Y почти всех $y \in Y$ сечения $A_X(y)$ μ_X -измеримы, причём $\mu(A) = \int_Y \mu_X(A_X(y)) d\mu_Y(y)$

Доказательство. Этап 1.
$$A$$
 – брус, то есть $A = \prod\limits_{j=1}^n \langle a_j, b_j \rangle$. Тогда $A_y(x) = \begin{cases} \varnothing, x \not\in \prod\limits_{j=1}^m \langle a_j, b_j \rangle \\ \prod\limits_{j=m+1}^n \langle a_j, b_j \rangle, x \in \prod\limits_{j=1}^m \langle a_j, b_j \rangle \end{cases}$

Очевидно,
$$\mu_Y(A_y(x)) = \begin{cases} 0, x \not\in \prod\limits_{j=1}^m \langle a_j, b_j \rangle \\ \prod\limits_{j=m+1}^n (b_j - a_j), x \in \prod\limits_{j=1}^m \langle a_j, b_j \rangle \end{cases}$$

Тогда
$$\int_X \mu_Y(A_Y(x)) d\mu_X(x) = \prod_{j=m+1}^n (b_j - a_j) \mu_X(\prod_{j=1}^m \langle a_j, b_j \rangle) = \mu(A)$$

Этап 2. A – элементарное множество, то есть $A = \bigcup_{j=1}^{N} A_{j}$, причём внутренности брусьев A_{j} не пересекаются.

Пусть
$$A = \bigcup_{j=1}^{M} P_j \times Q_j$$
, где $P_j = \prod_{i=1}^{m} [a_i^{(j)}, b_i^{(j)}]$, а Q_j – элементарные множества, это

каноническое представление элементарного множества A. Тогда $\mu(A) = \sum_{j=1}^{M} \mu(P_j \times Q_j) =$

$$\sum_{i=1}^{M} \int_{X} \mu_{Y}((P_{j} \times Q_{j})_{Y}(x)) d\mu_{X}(x) = \int_{X} \mu_{Y}(A_{Y}(x)) d\mu_{X}(x).$$

Этап 3. A – измеримое, конечной меры. Значит $A = \bigcap_{j=1}^{\infty} \bigcup_{j=1}^{\infty} A_{ij} \setminus A_0$, где $A_{i,1} \subset A_{i,2} \subset \ldots$ – открытые элементарные множества, $\mu(A_0) = 0$, $B_i = \bigcup_{j=1}^{\infty} A_{ij}$.

Мы знаем, что $\mu(A_{ij}) = \int_X \mu_Y(A_{ij}(x)) d\mu_X(x)$, $\lim_{j \to \infty} \mu(A_{ij}) = \mu(B_i)$. Также

$$A_{ij} \subset A_{i(j+1)} \Rightarrow \mu(A_{ij}) \leqslant \mu(A_{i(j+1)}) \Rightarrow (A_{ij})_Y(x) \subset (A_{i(j+1)})_Y(x) \Rightarrow \mu_Y((A_{ij})_Y(x)) \leqslant \mu_Y((A_{i(j+1)})_Y(x))$$

Применяя теорему Леви, получим

$$\mu(B_i) = \int_X \mu_Y((B_i)_Y(x)) d\mu(x) = \int_X \lim_{j \to \infty} \mu_Y((A_{ij})_Y(x)) d\mu_X(x) = \lim_{j \to \infty} \int_X \mu_Y((A_{ij})_Y(x)) d\mu_X(x)$$

Аналогично рассмотрим возрастающую последовательность $B_1 \setminus B_1 \subset B_1 \setminus B_2 \subset \dots$ Получили требуемое для пересечения объединений открытых элементарных множеств.

Рассмотрим A_0 , для него существует пересечение объединений (B_0) по доказанному ранее в этой теореме, причём $\mu(B_0) = 0$ и для него почти всюду верно

$$0 = \mu(B_0) = \int_X \mu_Y((B_0)_Y(x)) d\mu_X(x) = \int_X \mu_Y((A_0)_Y(x)) d\mu_X(x) = \mu(A_0) = 0$$

Для произвольного измеримого A рассмотрим возрастающую последовательность множеств конечной меры $A^{(1)} \subset A^{(2)} \subset \dots$, у которой $\bigcup A^{(i)} = A$.

Для них доказано $\mu(A^{(i)}) = \int_X \mu_Y(A_Y^{(i)}(x)) d\mu_X(x)$, перейдём к пределу в левой части благодаря непрерывности меры, а в правой части благодаря теореме Леви. То есть мы всё доказали.

11 Мера подграфика. Теорема Фубини

Определение 11.1. Подграфиком неотрицательной функции f(x), определённой на множестве $E \subset \mathbb{R}^n$ называется множество $D_{f,E} = \{(x,y): x \in E, y \in [0,f(x)]\}$

Лемма 11.1. О мере подграфика:

Если f – неотрицательная, суммируемая на измеримом множестве $E \subset \mathbb{R}^n$, функция, то её подграфик измерим, причём $\mu(D_{f,E}) = \int_E f d\mu(x) = \int_{[0,+\infty]} \mu_X(\{x: f(x) \geqslant y\}) d\mu_Y(y)$, где $X = \mathbb{R}^n$, $y = \mathbb{R}$

Доказательство. После доказательства измеримость $D_{f,E}$ лемма становится очевидной (показать на рисунке, что является X и Y сечениями подграфика).

Докажем измеримость подграфика. Этап 1: Пусть $f(x) = \chi_{E_1}(x)$. Тогда $D_{f,E} = \{(x,0) : x \in E \setminus E_1\} \cup \{E_1 \times [0,1]\}$. Левое слагаемое имеет меру 0, то есть измеримо, а для правого справедливо рассуждение: $\forall \varepsilon > 0 \; \exists M : \; \mu(M \triangle E_1) < \varepsilon \Rightarrow$

$$\Rightarrow \mu^*((M \times [0,1]) \triangle (E_1 \times [0,1])) = \mu^*((M \triangle E_1) \times [0,1]) \leqslant \mu_X^*(M \triangle E_1) < \varepsilon$$

Докажем для ступенчатых функций $f(x) = \sum_{i=1}^k c_i \chi_{E_i}(x)$. Их подграфик $D_{f,E} = \bigcup_{k=1}^N D_{c_k \chi_{E_k}, E}$ измерим, как объединение измеримых множеств.

Для неотрицательной суммируемой функции: представим её, как предел неубывающей последовательности измеримых функций, значит её подграфик будет пределом подграфиков этих ступенчатых функций. \Box

Теорема 11.1. Теорема Фубини:

Если f суммируема на измеримом множестве $E \subset \mathbb{R}^n, X = \mathbb{R}^m, Y = \mathbb{R}^k, m+k=n$ (доопределим f(x,y) нулём во всех точках $(x,y) \notin E$), то

- 1. Для μ_X -почти всех x функция f(x,y) μ_Y -суммируема на своей области определения
- 2. $\int_{Y} f(x,y) d\mu_{Y}(y) \mu_{X}$ -суммируема
- 3. $\int_E f(x,y)d\mu(x,y) = \int_X \int_Y f(x,y)d\mu_Y(y)d\mu_X(x)$

Доказательство. Пусть $f(x,y) \geqslant 0$. Тогда $D_{f,E} = \{(x,y,z) : (x,y) \in E, z \in [0,f(x,y)]\}$. Возьмём $\mathbb{R}^{n+1} = X \times (Y \times \mathbb{R})$, по предыдущей лемме $\mu(D_{f,E}) = \int_X \mu_{Y \times \mathbb{R}}(E_{Y \times \mathbb{R}(x)}) d\mu_X(x)$.

 $(D_{f,E})_{Y \times \mathbb{R}}(x) = \{(y,z): y \in E_Y(x), z \in [0,f(x,y)]\}$, снова применяем предыдущую лемму $\mu_{Y \times \mathbb{R}}((D_{f,E})_{Y \times \mathbb{R}}(x)) = \int_Y f(x,y) d\mu_Y(y)$. Левая часть конечна при почти всех x, значит правая часть также почти всегда конечна, то есть первый пункт доказан.

Интеграл по X от $\int_Y f(x,y) d\mu_Y(y)$ конечен, так как f суммируема, доказали второй пункт.

Для доказательства третьего пункта вместо $X \times (Y \times \mathbb{R})$ возьмём $(X \times Y) \times \mathbb{R}$ и снова применим предыдущую лемму.

12 Замена переменных в одномерном интеграле Лебега

Теорема 12.1. Пусть f суммируема на отрезке $U \subset \mathbb{R}$, φ – диффеоморфизм отрезка V на U. Тогда $\int_U f(u) d\mu(u) = \int_V f(\varphi(v)) |\varphi'(v)| d\mu(v)$.

В частности, для любого измеримого множества
$$A\subset U$$
: $\mu(A)=\int\limits_{\varphi^{-1}(A)}|\varphi'(v)|d\mu(v)$

Доказательство. В начале докажем вторую формулу:

Когда A – отрезок, то ссылаемся к замене переменной в интеграле Римана.

Когда A – промежуток, то это отрезок без точек, которые никак не повлияют на интеграл Лебега.

Когда A – брус, то считаем интеграл из аддитивности промежутков.

Для любого измеримого A воспользуемся критерием измеримости: $\forall \varepsilon>0\ \exists M_\varepsilon\subset U: \mu(A\triangle M_\varepsilon)<\varepsilon$

Используя теорему о диффеоморфном образе измеримого множества: $\mu(\varphi^{-1}(A\triangle M_{\varepsilon})) \leqslant 2\max_{u\in U}|(\varphi^{-1})'(u)|\mu(A\triangle M_{\varepsilon}) = \frac{2\mu(A\triangle M_{\varepsilon})}{\min\limits_{v\in V}|\varphi'(v)|}$

$$\left| \mu(A) - \int_{\varphi^{-1}(A)} |\varphi'(v)| d\mu(v) \right| \leq |\mu(A) - \mu(M_{\varepsilon})| + \left| \mu(M_{\varepsilon}) - \int_{\varphi^{-1}(M_{\varepsilon})} |\varphi'(v)| d\mu(v) \right| +$$

$$+ \left| \int_{\varphi^{-1}(M_{\varepsilon})} |\varphi'(v)| d\mu(v) - \int_{\varphi^{-1}(A)} |\varphi'(v)| d\mu(v) \right| < \varepsilon + 0 + \int_{\varphi^{-1}(M_{\varepsilon}) \triangle \varphi^{-1}(A)} |\varphi'(v)| d\mu(v) \leq$$

$$\varepsilon + \max_{v \in V} |\varphi'(v)| \mu(\varphi^{-1}(M_{\varepsilon}) \triangle \varphi^{-1}(A)) \leq \varepsilon + \frac{2 \max_{v \in V} |\varphi'(v)| \varepsilon}{\min_{v \in V} |\varphi'(v)|}$$

Таким образом, мы доказали вторую формулу для произвольного измеримого множества A, переходим к доказательству первой формулы.

Пусть f неотрицательная измеримая, тогда из второй формулы мы можем получить первую формулу для ступенчатых функций.

Ну а произвольная неотрицательная функция представляется, как предел неубывающей последовательности неотрицательных ступенчатых функций. Используя теорему Леви, получим искомое. □

13 Теорема о разложении

Определение 13.1. Простым отображением окрестности нуля в \mathbb{R}^n назовём отображение $g: U \to \mathbb{R}^n$, такое, что $\exists j, 1 \leqslant j \leqslant n, g_i(x) = x_i, i \neq j$, и g – диффеоморфизм

Теорема 13.1. Если $\varphi: V \to \mathbb{R}^n$ — диффеоморфизм окрестности нуля V в \mathbb{R}^n , то в некоторой окрестности нуля $\widetilde{V} \subset V$ $\varphi = g^{[n]} \circ B_n \circ \ldots \circ g^{[1]} \circ B_1$, где $g^{[i]}$ — простые отображения, меняющие только i-ую координату, B_i — линейные преобразования \mathbb{R}^n , переставляющие пару координат (возможно, тождественные).

Замечание.
$$\varphi(0) = 0, \forall i : \varphi^{[i]}(0) = 0$$

Доказательство. Построим $f^{[m]}$ – диффеоморфизм окрестности нуля, не меняющий первые m-1 координат.

 $f^{[1]} := \varphi$. Предположим, что $f^{[1]}, \ldots, f^{[m]}$ построены. Строим $f^{[m+1]}$. det $f^{[m]'}(0) \neq 0$. Найдём преобразование B_m , такое что $B_m f^{[m]'}(0)$ имеет главный минор m-го порядка $\neq 0$. То есть $\frac{\partial f_m^{[m]}(B_m x)}{\partial x} \neq 0$.

То есть $\frac{\partial f_m^{[m]}(B_m x)}{\partial x_m} \neq 0$. Пусть $g_i^{[m]}(x) = x_i, i \neq m, g_m^{[m]}(x) := f_m^{[m]}(B_m x)$. Тогда по теореме об обратном отображении $y = g^{[m]}(x) \Leftrightarrow x = (g^{[m]})^{-1}(y)$.

Теперь можем построить $f^{[m+1]}(y) := f^{[m]}(B_m(g^{[m]})^{-1}(y))$. Проверим, что всё хорошо: для координат $i=1,\ldots,m-1$: $f_i^{[m+1]}=f^{[m]}(B_m(g^{[m]})^{-1}(y))=(B_m(g^{[m]})^{-1}(y))_i=((g^{[m]})^{-1}(y))_i=y_i$. Для m-ой координаты: $f_m^{[m+1]}=f_m^{[m]}(B_m(g^{[m]})^{-1}(y))=g_m^{[m]}((g^{[m]})^{-1}(y))=y_m$

Перепишем формулу $f^{[m+1]}(y):=f^{[m]}(B_m(g^{[m]})^{-1}(y))$. Получим, что $f^{[m]}=f^{[m+1]}\circ g^{[m]}\circ B_m$. Значит

$$f = f^{[1]} = f^{[2]} \circ g^{[1]} \circ B_1 = f^{[3]} \circ g^{[2]} \circ B_2 \circ g^{[1]} \circ B_1 = \ldots = g^{[m]} \circ B_m \circ \ldots \circ g^{[1]} \circ B_1$$

14 Замена переменных в кратном интеграле Лебега (локальная версия)

Теорема 14.1. Пусть f суммируема на ограниченном измеримом множестве $U \subset \mathbb{R}^n$, $\varphi - \partial u \phi \phi$ еоморфизм на области $\Omega \supset$ замыкание $V, \varphi(V) = U$. Тогда $\int_U f(u) d\mu(u) = \int_V f(\varphi(v)) |\det \varphi'(v)| d\mu(v)$.

B частности, для любого измеримого множества $A\subset U$: $\mu(A)=\int\limits_{\varphi^{-1}(A)}|\det \varphi'(v)|d\mu(v)$

Доказательство. Если первая формула доказана для $\varphi:\Omega\supset\operatorname{cl} V,\psi:\widetilde{\Omega}\supset\operatorname{cl} W,\psi(W)=V$, то первая формула верна для $\varphi\circ\psi:\widetilde{\Omega},\varphi\circ\psi(W)=U$.

$$\int_{U} f(u)d\mu(u) = \int_{V} f(\varphi(v))|\varphi'(v)|d\mu(v) = \int_{W} f(\varphi(\psi(w)))|\varphi'(\psi(w))||\psi'(w)|d\mu(w)$$

Утверждение становится очевидным, если мы вспомним, что $(\varphi \circ \psi)'(w) = \varphi'(\psi(w)) \cdot \psi'(w)$. **Локальная версия.** Пусть U лежит в окрестности точки $a \in \mathbb{R}^n$, причём $\varphi(v) - \varphi(0) = g^{[n]} \circ B_n \circ \ldots \circ g^{[1]} \circ B_1(v-a)$ по теореме о разложении.

Докажем вторую формулу для простых $g^{[i]}$ и сдвигов B_i : пусть $g:=g^{[1]}$ Если представим $\mathbb{R}^n=\mathbb{R}\times\mathbb{R}^{n-1}=Y\times X$, то по теореме Фубини получим:

$$\mu(A) = \int_{\mathbb{R}} \mu_X(A_X(y)) d\mu(y) = \int_{\mathbb{R}} \mu_X(A_X(\tau(\widetilde{y}))) |\tau_X'(\widetilde{y})| d\mu(\widetilde{y})$$

Где $g((y,x))=(\tau_X(\widetilde{y}),x)$. Теперь рассмотрим $|\det g'(v)|=\left|\frac{\partial g_1}{\partial x_1}\right|=|\tau_X'(\widetilde{y})|$

$$\mu(A) = \int_{g^{-1}(A)} |\det g'(v)| d\mu(v) = \int_{g^{-1}(A)} |\tau_X'(\widetilde{y})| d\mu(v) = \int_{\mathbb{R}} \mu_X((g^{-1}(A))_X(\widetilde{y})) |\tau_X'(\widetilde{y})| d\mu(\widetilde{y})$$

Последний штрих – заметить, что $(g^{-1}(A))_X = g^{-1}(A_X) = A_X$.

По аналогии докажем, что при сдвигах B_i ничего не меняется, представив $\mathbb{R}^n = \mathbb{R}^2 \times \mathbb{R}^{n-2}$.

Теперь очевидно, что мы можем доказать первую формулу по аналогии с одномерным случаем.

Глобальный вариант. Рассмотрим cl U – компактное множество. $\forall u \in \operatorname{cl} U \exists U(u, \varepsilon_U)$:

$$\bigcup_{u \in \operatorname{cl} U} U(u, \varepsilon_u) \supset \operatorname{cl} U \Rightarrow \exists \{u_1, \ldots, u_N\} : \bigcup_{i=1}^k U(u_i, \varepsilon_{u_i}) \supset \operatorname{cl} U.$$

Теперь строим разбиение единицы, подчинённое покрытию $\bigcup_{i=1}^k U(u_i, \varepsilon_{u_i})$ – это набор функций $\{\zeta_i(u)\}_{i=1}^N$ таких, что

- 1. $\zeta_i(u) > 0, u \in U(u_i, \varepsilon_{u_i})$
- 2. $\zeta_i(u) = 0, u \notin U(u_i, \varepsilon_{u_i})$
- 3. $\forall u \in \text{cl } U : \sum_{i=1}^{N} \zeta_i(u) = 1$
- 4. Все функции бесконечно дифференцируемые.

Рассмотрим функции $\eta_i(u) := \exp\left(\frac{-1}{(\varepsilon_{u_i}^2 - |u - u_i|^2)^2}\right)$, если $|u - u_i| < \varepsilon_{u_i}$ и $\eta_i(u) := 0, u \not\in U(u_i, \varepsilon_{u_i})$

 $\sum_{i=1}^{N} \eta_i(u) > 0, u \in \text{cl } U \Rightarrow \exists \min_{u \in U} \sum_{i=1}^{N} \eta_i(u) > 0.$ Кроме того, $\sum_{i=1}^{N} \eta_i(u)$ – также бесконечно дифференцируемая.

Таким образом, $\zeta_i(u) := \frac{\eta_i(u)}{\sum\limits_{i=1}^N \eta_i(u)}$.

Теперь

$$\int_{V} f(v)d\mu(v) = \int_{V} f(v) \sum_{i=1}^{N} \eta_{i}(\varphi^{-1}(v))d\mu(v) = \sum_{i=1}^{N} \int_{V} f(v)\zeta_{i}(\varphi^{-1}(v))d\mu(v) = \sum_{i=1}^{N} \int_{\varphi^{-1}(V)} f(\varphi(u))\zeta_{i}(u) |\det \varphi'(u)|d\mu(u) = \int_{\varphi^{-1}(V)} f(\varphi(u)) |\det \varphi'(u)|d\mu(u)$$

15 Критерий интегрируемости по Риману

Теорема 15.1. Ограниченная функция f(x) интегрируема по Риману на [a,b] тогда и только тогда когда f непрерывна почти всюду на [a,b].

Доказательство. Вспомним теорему об интеграле, как пределе интегральных сумм

$$f \in R[a,b] \Leftrightarrow \exists \lim_{\Delta(P) \to 0} S(P,f,t_i) \Leftrightarrow \forall \{P_k\}_{k=1}^{\infty}, \Delta(P_k) \to_{k \to \infty} 0 : \exists \lim_{k \to \infty} U(P_k,f) = \lim_{k \to \infty} L(P_k,f)$$

Но мы можем поменять $\forall \{P_k\}_{k=1}^{\infty}, \Delta(P_k) \to_{k\to\infty} 0$ на $\exists \{P_k\}_{k=1}^{\infty}, \Delta(P_k) \to_{k\to\infty} 0, P_{k+1} \subset P_k$, опираясь на критерий интегрируемости.

Построим функции $U_k(x):=\sup_{t\in[x_{i-1}^{(k)},x_i^{(k)})}f(t),\ L_k(x):=\inf_{t\in[x_{i-1}^{(k)},x_i^{(k)})}f(t).$ Заметим, что

 $\int_a^b U_k(x) dx = U(P_k, f), \int_a^b L_k(x) dx = L(P_k, f).$ Получили $L_{k+1} \geqslant L_k, U_{k+1} \leqslant U_k$. Значит $\lim_{k \to \infty} L_k(x) = L(x), \lim_{k \to \infty} U_k(x) = U(x).$

$$L_1(x) \leqslant L_2(x) \leqslant \ldots \leqslant L(x) \leqslant f(x) \leqslant U(x) \leqslant \ldots \leqslant U_2(x) \leqslant U_1(x)$$

По теореме Леви

$$\lim_{k \to \infty} L(P_k, f) = \lim_{k \to \infty} \int_a^b L_k(x) d\mu(x) = \int_a^b L(x) d\mu(x) \le$$

$$\le \lim_{k \to \infty} \int_a^b U_k(x) d\mu(x) = \int_a^b U(x) d\mu(x) = \lim_{k \to \infty} U(P_k, f)$$

Получили новый критерий интерируемости по Риману:

$$f \in R[a,b] \Leftrightarrow \int_a^b L(x)d\mu(x) = \int_a^b U(x)d\mu(x) \Leftrightarrow L(x) \stackrel{\text{\tiny II.B.}}{=} U(x), x \in [a,b]$$

Доказательство теоремы будет завершено, когда мы докажем утверждение:

Утверждение 15.1. Если x – не точка какого-то разбиения, то $L(x) = U(x) \Leftrightarrow f \in C[x]$

Доказательство.
$$\Rightarrow x \in (x_{j-1}^{(k)}, x_k^{(k)}), L(x) = U(x) \Rightarrow \forall \varepsilon > 0 \; \exists k: \; U_k(x) - L_k(x) < \varepsilon$$
 Возьмём $\delta := \min(x - x_{j-1}^{(k)}, x_j^{(k)} - x) > 0$. Значит

$$\forall \widetilde{x}, |x - \widetilde{x}| < \delta : |f(\widetilde{x}) - f(x)| \le U_k(x) - L_k(x) < \varepsilon$$

Обратно доказывается точно так же.

16 Лемма Витали

Определение 16.1. Говорят, что система промежутков \mathcal{T} покрыввает множество $E \subset \mathbb{R}$ в смысле Витали, если $\forall \varepsilon > 0 \ \forall x \in E \ \exists I \in \mathcal{T}: \ x \in E, |I| < \varepsilon$

Лемма 16.1. Если ограниченное множество E покрыто системой промежутков \mathcal{T} в смысле Витали, то $\forall \varepsilon > 0 \ \exists \{I_1, \ldots, I_n\} \subset \mathcal{T} : \mu^*(E \setminus \bigsqcup_{i=1}^N I_i) < \varepsilon$

Доказательство. $\mu^*(E) < +\infty \Rightarrow \exists G$ - открытое, $G \supset E, \mu^*(G) < +\infty$. Будем считать, что \mathcal{T} – система отрезков, содержащаяся в G.

Построим последовательность непересекающихся отрезков $\{I_i\}$ в \mathcal{T} . I_1 – произвольный. Если I_1,\ldots,I_n построили, то положим $k_n:=\sup\{|I|:\ I\cap I_i=\varnothing,i=1,\ldots,n\}\Rightarrow |I_{n+1}|>$ $\frac{k_n}{2}, I_{n+1} \cap I_i, i = 1, \dots, n.$

$$\sum_{i=1}^{\infty} |I_i| = \mu(\bigsqcup_{i=1}^{\infty} I_i) \leqslant \mu(G) < +\infty \Rightarrow \exists N \sum_{i=N+1}^{\infty} |I_i| < \frac{\varepsilon}{5}$$

Пусть $R := E \setminus \bigsqcup_{i=1}^{N}$. Если $x \in R \Rightarrow \exists I \in \mathcal{T} : x \in I, I \cap \bigsqcup_{i=1}^{N} I_{i} = \emptyset$.

Ряд $\sum_{i=1}^{\infty} |I_i|$ сходится, значит $I_i \to_{i \to \infty} 0 \Rightarrow k_n \to_{n \to \infty} 0$. Обозначим через m – такое, что $I \cap I_j = \emptyset, j = 1, \dots, m-1$, но $I \cap I_m \neq \emptyset$.

Тогда расстояние от x до центра $I_m \leqslant \frac{|I_m|}{2} + |I| \leqslant \frac{|I_m|}{2} + k_{m-1} < \frac{5|I_m|}{2}$. Пусть J_m – отрезок с центром I_m , $|J_m| = 5|I_m|$. Тогда $x \in J_m$.

Значит

$$R \subset \bigsqcup_{m=N+1}^{\infty} J_m \Rightarrow \mu^*(R) \leqslant \mu^*(\bigsqcup_{i=N+1}^{\infty} J_i) = \sum_{i=N+1}^{\infty} |J_i| = 5 \sum_{i=N+1}^{\infty} |I_i| < \varepsilon$$

Суммируемость произвольной монотонной функции

Теорема 16.1. Если f – неубывающая на [a,b], то она дифференцируема почти всюду на [a,b], f' суммируема на $[a,b], \int_{[a,b]} f'(x) d\mu(x) \leq f(b) - f(a).$

Доказательство. Докажем, что $\overline{f'_+}(x) = f'_-(x)$ почти всюду на [a,b]. Обозначим $E = \{x \in$ $[a,b]: \overline{f'_{+}}(x) > \underline{f'_{-}}(x)\} = \bigcup_{u>v, u, v \in \mathbb{Q}} \left(\{x \in [a,b]: \overline{f'_{+}}(x) > u > v > \underline{f'_{-}}(x) \} =: E_{u,v} \right)$

Пусть $\mu^*(E_{u,v}) = s \Rightarrow \forall \varepsilon > 0 \;\exists G$ - открытое $E_{u,v} \subset G: \; \mu(G) < s + \varepsilon.$ $f'_{-} = \lim_{\delta \to +0} \inf_{0 < h < \delta} \frac{f(x) - f(x - h)}{h}. \;\exists$ начит $x \in E_{u,v} \Rightarrow \forall \widetilde{h} > 0 \;\exists h, 0 < h < \widetilde{h}: \; \frac{f(x) - f(x - h)}{h} < v, [x - h, x] \subset G.$

Тогда $\bigcup_{x \in E_{u,v}, h} [x - h, x] \supset E_{u,v}$. По лемме Витали $\exists \{I_1, \dots, I_N\} : \mu^*(E_{u,v} \setminus \bigsqcup_{i=1}^N I_i) < \varepsilon$.

Пусть $A := E_{u,v} \cap \bigsqcup_{i=1}^N I_i$ Значит $s = \mu^*(E_{u,v}) \leqslant \mu^*(E_{u,v} \setminus \bigsqcup_{i=1}^N I_i) + \mu^*(A) \Rightarrow \mu^*(A) > s - \varepsilon$.

Рассмотрим $y \in A, \overline{f'_+}(y) = \lim_{\delta \to +0} \sup_{0 < h < \delta} \frac{f(y+h)-f(y)}{h}. \ y \in A \Rightarrow \forall \widetilde{k} > 0 \ \exists k, 0 < k < \widetilde{k} :$ $\frac{f(y+k)-f(y)}{h} > u, [y,y+k] \subset \text{int } I_i.$

Вновь имеем $\bigcup_{y \in A, k} [y, y + k] \supset A$. Применяя лемму Витали, $\exists \{J_1, \dots, J_M\} : \mu^*(A \setminus \bigcup_{i=1}^M J_i) < \emptyset$ ε . Значит $\mu^*(A \cap \bigsqcup_{i=1}^M J_i) > s - 2\varepsilon$.

$$I_i = [x_i - h_i, x_i] : \sum_{i=1}^{N} f(x_i) - f(x_i - h_i) < v \sum_{i=1}^{N} h_i < v\mu(G) < v(s + \varepsilon)$$

$$J_i = [y_i, y_i + k_i] : \sum_{i=1}^{M} (f(y_i + k_i) - f(y_i)) > u \sum_{i=1}^{M} k_i \ge u\mu(A \cap \bigsqcup J_i) \ge u(s - 2\varepsilon)$$

$$\sum_{j: J_j \subset I_i} f(y_j + k_j) - f(y_j) \leqslant f(x_i) - f(x_i - h_i) \Rightarrow \sum_{j=1}^M f(y_j + k_j) - f(y_j) \leqslant \sum_{i=1}^N f(x_i) - f(x_i - h_i)$$

$$\forall \varepsilon > 0 : u(s - 2\varepsilon) < v(s + \varepsilon) \Rightarrow u \leqslant v \Rightarrow \forall u, v : \mu(E_{u,v}) = 0$$

Значит $\exists f'$ почти всюду на [a,b]. Пусть $f'(x) = \lim_{n \to \infty} (n(f(x+\frac{1}{n})-f(x))=:f_n(x))$. По теореме Фату

$$\int_{[a,b]} f'(x)d\mu(x) \leqslant \lim_{\underline{n}\to\infty} \int_{[a,b]} f_n(x)d\mu(x) = \lim_{\underline{n}\to\infty} \left(n \int_{[a,b]} f\left(x + \frac{1}{n}\right) d\mu(x) - n \int_{[a,b]} f(x)d\mu(x)\right) =$$

$$= \lim_{\underline{n}\to\infty} \left(n \int_{b}^{b+\frac{1}{n}} f\left(x + \frac{1}{n}\right) dx - n \int_{a}^{a+\frac{1}{n}} f(x)dx\right) \leqslant f(b) - f(a)$$