Examen Álgebra I – Enero 2020

- Ejercicio 1. Sea $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ definida por $f(x, y) = 3^x 5^y$.
 - a) Determina si la aplicación es inyectiva o sobreyectiva.
 - b) Calcula $f^*(\{15,20,25\})$.
 - c) Determina si Im(f) es un monoide con la operación producto.
- Ejercicio 2. Sea (G, \cdot) un grupo, y sea H un subgrupo de G con cardinal h.
 - a) Dado un elemento $a \in H$, demuestra que $a^h = 1$.
 - *b*) Prueba que el orden de *a* divide a *h*.
 - c) Calcula el resto de dividir 1111²⁶⁶⁶ entre 91.
- Ejercicio 3. Sea $R = \mathbb{Z}[i]/(9-12i)$.
 - a) Encuentra los ideales de R.
 - b) Determina cuáles son maximales.
 - c) Sea \mathfrak{m} uno de esos ideales maximales. Calcula R/\mathfrak{m} .
- Ejercicio 4. *a*) Sea $\pi_p : \mathbb{Z} \to \mathbb{Z}_p$ la proyección de \mathbb{Z} en \mathbb{Z}_p (a cada entero lo mandamos a su clase módulo p), y sea $\Pi_p : \mathbb{Z}[x] \to \mathbb{Z}_p[x]$ la extensión de π_p . Encuentra un polinomio primitivo f(x) de grado cuatro en $\mathbb{Z}[x]$ de forma que

$$\Pi_2(f(x)) = (x^3 + x + 1)(x + 1), \quad \Pi_3(f(x)) = (x^2 + 1)(x^2 + x + 2).$$

¿Es dicho polinomio irreducible?

b) Factoriza $x^5 - x^4 - 12x^3 + 15x^2 - 2x - 1$ en $\mathbb{Q}(x)$.

Ejercicio 5. Determina si la ecuación

$$(x^{2} + 1)X(x) + (x^{4} + x - 1)Y(x) = 6x$$

tiene solución en $\mathbb{Q}[x]$, y en caso de tenerla, calcula todas las soluciones.