Bucketing Table

- Create bucketed table -
 - create table cases_bucket(Case_Id int, Hospital_Code int, Patient_Id int,
 Ward_Type char(1), Ward_Facility_Code char(1), Bed_Grade int,
 Type_of_Admission string, Visitors_with_Patient int, Age_Group string,
 Admission_Deposit float, Stay string)
 partitioned by (Department string, Severity_of_Illness string)
 clustered by (patient_id) into 10 buckets
 row format delimited
 fields terminated by '\$'
 TBLPROPERTIES ("serialization.null.format"="");
 - We are creating 10 buckets based on the patient_id within each partition.
- Put file to HDFS -
 - hdfs dfs -put /home/itv180149/Hive/Partitions/Hospital_Data/case.txt
 /user/itv180149
- Load data into Hive table -
 - load data inpath "/user/itv180149/case.txt" into table cases_bucket;
 - Notice that since we are bucketing the data into 10 buckets, Hive is using
 10 reducers to accomplish this job.
- Let's check the table description -
 - describe formatted cases_bucket;
 - Notice the partitions and buckets here.

- We have 10 buckets or files within each partition -
 - hdfs dfs -ls
 /user/itv180149/warehouse/patient_db.db/cases_bucket/department=an
 esthesia/severity_of_illness=Extreme
- So if we run queries on the partitioned and bucketed columns, then those queries will run much faster.
 - Check the records where the patient id is 306180 and department is gynecology and severity of illness is Minor -
 - select hospital_code, department, severity_of_illness from cases_bucket where patient_id=306180 and department='gynecology' and severity_of_illness='Minor';

