ARCHITETTURA DEGLI ELABORATORI

A.A. 2020-2021

Università di Napoli Federico II Corso di Laurea in Informatica

Docenti

Proff. Luigi Sauro gruppo 1 (A-G)

Silvia Rossi gruppo 2 (H-Z)

Progettare una FSM

- 1. Identificare gli input e output
- 2. Abbozzare uno state transition diagram
- 3. Scrivere la state transition table
- 4. Selezionare un encoding degli stati
- 5. Macchina di Moore/Mealy:
 - a. Riscrivere la state transition table con l'encoding degli stati
 - b. Scrivere la output table
- 6. Scrivere le equazioni booleane relative alla logica di prossimo stato e alla logica di output
- 6. Minimizzare le equazioni
- 7. Fare uno schema del circuito

Esempio

- Progettare una Mealy FSM F con due input (A e B) e un output Q.
 - Q=1 sse A e B assumono rispettivamente il valore precedente
 - es:

Α	0	0	1	0	0	0	1	1	0
В	1	1	1	1	1	0	1	1	1
Q	0	1	0	0	1	0	0	1	0

Esercizi

- Esercizi 3.23, 3.31
- Il seguente diagramma di transizione per una macchina di Mealy ha due input A e B e due output X e Y. Indicare le formule SOP minime relative alla variabile di stato (S) e alle due variabili di output.

A = 0/X = 0, Y = 1B = 1/X = 1, Y = 0 S1 1 Formule minime SOP: A = 1/X = 1, Y = 0

Codifica dello stato:

stato	s
So	0
S1	1

- B = 0/X = 0, Y = 1 X:

current state		inputs		next state		output
51	2 O	а	b	51	5'0	q
0	0	0	X	0	0	0
0	0	1	X	0	1	0
0	1	X	0	0	0	0
0	1	X	1	1	0	0
1	0	1	1	1	0	1
1	0	0	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	0	0	0

state	encoding S1:0
S0	00
S1	01
S2	10

$$S_1 = \overline{S_1} S_0 B + S_1 A B$$

$$S_0 = \overline{S_1} \overline{S_0} A$$

$$Q' = S_1AB$$

curren	t state	input	next state	
51	2 0	x	5 1	2,0
0	0	0	0	1
0	0	1	1	1
0	1	0	0	0
0	1	1	1	0
1	X	X	0	1

TABLE 3.7 State transition table with binary encodings for Exercise 3.31

curren	output		
s ₁	s o	q	
0	0	0	
0	1	1	
1	X	1	

TABLE 3.8 Output table for Exercise 3.31

