1. Exercise 1.8 in LFD

binomial distribution tells us

$$p_x = \binom{n}{x} p^x q^{n-x}$$

$$n = 10$$

$$x = 0 \text{ and } x = 1$$

$$p = 0.9$$

$$q = 1 - p = 0.1$$

$$p_0 = \binom{10}{0} 0.9^0 0.1^{10} = 0.1^{10} = 1 \times 10^{-10}$$

$$p_1 = \binom{10}{1} 0.9^1 0.1^9 = 10 \times 0.9 \times 0.1^9 = 9 \times 10^{-9}$$

$$p = p_0 + p_1 = 9.1 \times 10^{-9}$$

2. Exercise 1.9 in LFD

Using $P[|\nu - \mu| \ge \epsilon] \le 2e^{-2\epsilon^2 N}$, we can find the following bounds: Using $\epsilon = 0.8$ and N = 10, we can derive $2e^{-2\epsilon^2 N} = 2e^{2(0.8)^2 \times 10}$, which equals 5.52×10^{-6} . Since this is a bound, it is reasonable for it to be greater than our answer in exercise 1.8

1

3. Exercise 1.10 in LFD

- (a) $\mu = 0.5$
- (b) FINISH HERE

- (c) FINISH HERE
- (d) c_1 and c_{rand} obey the Hoeffding bound, c_{min} does not because c_1 and c_{rand} were selected without looking at the data, while c_{min} looks at the data before selecting. c_{min} represents the "unlucky" choice
- (e) FINISH HERE
- 4. Exercise 1.11 in LFD
 - (a) FINISH HERE
 - (b) **FINISH HERE**
 - (c) FINISH HERE
 - (d) FINISH HERE
- 5. Exercise 1.12 in LFD
 - (a) FINISH HERE