

A **Short Overview** of Neural Networks

Jens Lehmann, Gaurav Maheshwari, Priyansh Trivedi, Mohnish Dubey, Denis Lukovnikov,

Non linearity

Can be stacked (composite functions) to increase expressivity.

Their gradients are smoother (derivatives of linear transformations are constant, regardless of the input.)

In any case, nonlinear functions are a generalization of linear functions.

Parameterized Sigmoid Function

-0.2

Neuron

Vector Inputs to Neuron

Stacking (Composite Functions)

Feed Forward Network

Parameters

Needles in a Haystack

```
Can we set them manually?
# Weights (above):
No 👼
```

Recommended?

Kill a kitten till it works

Needles in a Haystack

```
Can we set them manually?
# Weights (above):
No 👼
```

Recommended?

Kill a kitten till it works

Backpropagate

Do you even backpropagate?

Idea

Find the effect of every parameter on model's performance.

For that we first need a way to calculate model performance: Loss Function (Error Function)

Loss Function

Difference between *model output* and *given label* for a data point. $\hat{Y} = f_w(X)$

$$E = L(\hat{Y}, Y)$$

Many ways to calculate loss. Eg. Mean Squared Error

$$L(\hat{Y}, Y) = \frac{1}{2n} \sum_{i=1}^{n} (\hat{y} - y)^2$$

Gradient Descent

Gradients of Error w.r.t. model parameters: change the parameter in that direction to *increase* the error.

Update
$$w_n = w_n - \eta \frac{dL}{dw_n}$$

- input data: x

 \overline{y}

- input data: x
- input data label: y

- input data: x
- input data label: y
- model: $f_W(x)$

- input data: x
- input data label: y
- model: $f_W(x)$
- model output: $\hat{y} = f_W(x)$

\hat{y} $f_W(x)$

- input data: x
- input data label: y
- model: $f_W(x)$
- model output: $\hat{y} = f_W(x)$
- loss: $L(\hat{y},y)$

- input data: x
- input data label: y
- model: $f_W(x)$
- model output: $\hat{y} = f_W(x)$
- loss: $L(\hat{y},y)$

- input data: x
- input data label: y
- model: $f_W(x)$
- model output: $\hat{y} = f_W(x)$
- loss: $L(\hat{y},y)$
- gradients: $\frac{dL}{dW_{1:n}}$

- input data: x
- input data label: y
- model: $f_W(x)$
- model output: $\hat{y} = f_W(x)$
- loss: $L(\hat{y}, y)$

- gradients:
$$\frac{dL}{dW_{1:n}}$$

 $dW_{1:n}$ - parameter update: $w_n = w_n - \eta \frac{dL}{dW_{1:n}}$

Forward Propagation

Backward Propagation