Durchführung: 25.11.2019 1. Abgabe: XX.XX.2019

Praktikumsprotokoll V46

FARADAY-EFFEKT

 $\begin{array}{c} \text{Anneke Reinold}^1, \\ \text{Paul-Simon Blomenkamp}^2 \end{array}$

 $^{^1}$ anneke.reinold@tu-dortmund.de

 $^{^2} paul\text{-}simon.blomenkamp@tu\text{-}dortmund.de$

1 Einleitung

Das Ziel dieses Versuchs ist die Bestimmung der effektiven Massen von Kristallelektronen in GaAs durch ausnutzen des Faraday-Effekts. Hierzu wird der Winkel Θ um den die Polarisationsebene von linearpolarisierten Licht beim Faraday-Effekt gedreht wird bestimmt.

2 Theorie

2.1 Von Bändern und Massen

Die physikalische Beschreibung von E Lektronen in einem Kristall lässt sich am besten durch die Betrachtung der unteren Bandkante des Leitungsbandes annähern. Es lässt sich dann die Elektronenenergie $\epsilon(\vec{k})$, wobei \vec{k} der Wellenzahlvektor ist, in einer Taylorreihe zu:

$$\epsilon(\vec{k}) = \epsilon(0) + \frac{1}{2} \sum_{i=1}^{3} \left(\frac{\partial \epsilon^2}{\partial k_i^2} \right)_{k=0} k_i^2 + \dots, \tag{1}$$

entwickeln.

- 3 Durchführung
- 4 Auswertung
- 5 Diskussion