CS450 Computer Networks

The slides used in class are derived from the slides available on our text book companion website:

© 2012 Maharishi University of Management

All additional course materials are copyright protected by international copyright laws and remain the property of the Maharishi University of Management. The materials are accessible only for the personal use of students enrolled in this course and only for the duration of the course. Any copying and distributing are not allowed and subject to legal action.

CS450 Computer Networks
Lesson 17 Data Link Layer
Ethernet, Switches, VLANs,
Data Center Networking

<u>Do Less – accomplish more</u>

Lesson 17: The Data Link Layer – Ethernet, switches, and VLANs

Our goals:

- Understand the implementation of the link layer services in Ethernet:
 - error detection, correction
 - sharing a broadcast channel: multiple access
 - link layer addressing
 - reliable data transfer, flow control
- Understand the uses of hubs, switches, and Virtual LANs

Ethernet

- "dominant" wired LAN technology:
- Cheap \$20 for NIC
- first widely used LAN technology
- simpler, cheaper than token LANs and ATM
- ❖ kept up with speed race: 10 Mbps 10 Gbps

Metcalfe's Ethernet sketch

Ethernet: physical topology

- bus: popular through mid 90s
 - all nodes in same collision domain (can collide with each other)
- star: prevails today
 - active switch in center
 - each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)

Ethernet frame structure

sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame type

preamble	dest. address	source address		data (payload)	CRC
----------	------------------	-------------------	--	-------------------	-----

preamble:

- 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
- used to synchronize receiver, sender clock rates

Ethernet frame structure (more)

- addresses: 6 byte source, destination MAC addresses
 - if adapter receives frame with matching destination address, or with broadcast address (e.g. ARP packet), it passes data in frame to network layer protocol
 - otherwise, adapter discards frame
- * type: indicates higher layer protocol (mostly IP but others possible, e.g., Novell IPX, AppleTalk)
- * CRC: cyclic redundancy check at receiver
 - error detected: frame is dropped

Ethernet: unreliable, connectionless

- connectionless: no handshaking between sending and receiving NICs
- unreliable: receiving NIC doesnt send acks or nacks to sending NIC
 - data in dropped frames recovered only if initial sender uses higher layer rdt (e.g., TCP), otherwise dropped data lost
- Ethernet's MAC protocol: unslotted CSMA/CD wth binary backoff

802.3 Ethernet standards: link & physical layers

- many different Ethernet standards
 - common MAC protocol and frame format
 - different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10G bps
 - different physical layer media: fiber, cable

Ethernet switch

- link-layer device: takes an active role
 - store, forward Ethernet frames
 - examine incoming frame's MAC address, selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment
- transparent
 - hosts are unaware of presence of switches
- plug-and-play, self-learning
 - switches do not need to be configured

Switch: multiple simultaneous transmissions

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on each incoming link, but no collisions; full duplex
 - each link is its own collision domain
- switching: A-to-A' and B-to-B' can transmit simultaneously, without collisions

switch with six interfaces (1,2,3,4,5,6)

Switch forwarding table

Q: how does switch know A' reachable via interface 4, B' reachable via interface 5?

- A: each switch has a switch table, each entry:
 - (MAC address of host, interface to reach host, time stamp)
 - looks like a routing table!

Q: how are entries created, maintained in switch table?

something like a routing protocol?

switch with six interfaces (1,2,3,4,5,6)

Switch: self-learning

- switch learns which hosts can be reached through which interfaces
 - when frame received, switch "learns" location of sender: incoming LAN segment
 - records sender/location pair in switch table

MAC addr	interface	TTL
Α	1	60

Switch table (initially empty)

Source: A

Switch: frame filtering/forwarding

when frame received at switch:

- record incoming link, MAC address of sending host
 index switch table using MAC destination address
- 3. if entry found for destination then {
 if destination on segment from which frame arrived then drop frame
 else forward frame on interface indicated by entry
 }
 else flood /* forward on all interfaces except arriving interface */

Self-learning, forwarding: example

Source: A Dest: A'

- frame destination, A', locaton unknown: flood
- destination A location known: selectively send on just one link

MAC addr	interface	TTL
Α	1	60
A'	4	60

switch table (initially empty)

Interconnecting switches

switches can be connected together

Q: sending from A to G - how does S_1 know to forward frame destined to F via S_4 and S_3 ?

A: self learning! (works exactly the same as in single-switch case!)

Self-learning multi-switch example

Suppose C sends frame to I, I responds to C

* Q: show switch tables and packet forwarding in S_1 , S_2 , S_3 , S_4

Institutional network

Switches vs. routers

both are store-and-forward:

- routers: network-layer devices (examine networklayer headers)
- switches: link-layer devices (examine link-layer headers)

both have forwarding tables:

- routers: compute tables using routing algorithms, IP addresses
- switches: learn forwarding table using flooding, learning, MAC addresses

VLANs: motivation

consider:

- CS user moves office to EE, but wants connect to CS switch?
- single broadcast domain:
 - all layer-2 broadcast traffic (ARP, DHCP, unknown location of destination MAC address) must cross entire LAN
 - security/privacy, efficiency issues

VLANs

Virtual Local Area Network

switch(es) supporting VLAN capabilities can be configured to define multiple *virtual* LANS over single physical LAN infrastructure.

port-based VLAN: switch ports grouped (by switch management software) so that single physical switch

... operates as multiple virtual switches

Electrical Engineering (VLAN ports 1-8)

Computer Science (VLAN ports 9-16)

Port-based VLAN

- traffic isolation: frames to/from ports I-8 can only reach ports I-8
 - can also define VLAN based on MAC addresses of endpoints, rather than switch port
- dynamic membership: ports can be dynamically assigned among VLANs

- forwarding between VLANS: done via routing (just as with separate switches)
 - in practice vendors sell combined switches plus routers

VLANS spanning multiple switches

- trunk port: carries frames between VLANS defined over multiple physical switches
 - frames forwarded within VLAN between switches can't be vanilla 802. I frames (must carry VLAN ID info)
 - 802. I q protocol adds/removed additional header fields for frames forwarded between trunk ports

802. I Q VLAN frame format

Data center networks

- 10's to 100's of thousands of hosts, often closely coupled, in close proximity:
 - e-business (e.g. Amazon)
 - content-servers (e.g., YouTube, Akamai, Apple, Microsoft)
 - search engines, data mining (e.g., Google)

challenges:

- multiple applications, each serving massive numbers of clients
- managing/balancing load, avoiding processing, networking, data bottlenecks

Inside a 40-ft Microsoft container, Chicago data center

Data center networks

Data center networks

- rich interconnection among switches, racks:
 - increased throughput between racks (multiple routing paths possible)
 - increased reliability via redundancy

Lesson 17: The Data Link Layer – Summary

- Ethernet is the dominant LAN technology. It has evolved very effectively (over 30 years!) to meet the needs of growing networks.
- Generally, you will find switches and routers deployed using Ethernet that eliminate collisions between hosts.
- VLANs are a good example of common networks used in the industry to minimize administration and hardware costs.
- Data Center Networks a new area for network throughput and reliability optimization