Токмаков Александр, группа БПМИ165

Домашнее задание 7

№1(c)

Пусть Боб загадал число n, тогда вероятность получить пару $(n, n \pm 1 \mod 5)$ равна $\frac{1}{5} \cdot \frac{1}{2} = \frac{1}{10}$ (загадывание числа Бобом и подбрасывание монеты Алисой независимы). Для всех остальных пар вероятность равна нулю (они не могут получиться указанным способом). Составим таблицу с вероятностями исходов (строка - число, загаданное Бобом, столбец - Алисой):

μ	0	1	2	3	4
0	0	$\frac{1}{10}$	0	0	$\frac{1}{10}$
1	$\frac{1}{10}$	0	$\frac{1}{10}$	0	0
2	0	$\frac{1}{10}$	0	$\frac{1}{10}$	0
3	0	0	$\frac{1}{10}$	0	$\frac{1}{10}$
4	$\frac{1}{10}$	0	0	$\frac{1}{10}$	0

По вероятностной мере можно найти функцию распределения, просто просуммировав вероятности:

F	0	1	2	3	4
0	0	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{2}{10}$
1	$\frac{1}{10}$	$ \begin{array}{c} \frac{1}{10} \\ \frac{2}{10} \\ \frac{3}{10} \\ \frac{3}{10} \\ \frac{4}{10} \end{array} $	$ \begin{array}{r} \frac{3}{10} \\ \frac{4}{10} \\ \hline \frac{5}{10} \\ \hline \frac{6}{10} \end{array} $	$\frac{3}{10}$	$\frac{4}{10}$
2	$\frac{1}{10}$	$\frac{3}{10}$	$\frac{4}{10}$	$\frac{5}{10}$	$\frac{6}{10}$
3	$ \begin{array}{r} \frac{1}{10} \\ \frac{1}{10} \\ \frac{2}{10} \end{array} $	$\frac{3}{10}$	$\frac{5}{10}$	$ \begin{array}{r} \frac{5}{10} \\ \frac{6}{10} \\ \frac{8}{10} \end{array} $	$ \begin{array}{r} \frac{4}{10} \\ \hline \frac{6}{10} \\ \hline \frac{8}{10} \\ \hline \frac{10}{10} \end{array} $
4	$\frac{2}{10}$	$\frac{4}{10}$	$\frac{6}{10}$	$\frac{8}{10}$	$\frac{10}{10}$

Распределения каждой из случайных величин соответствуют последним строке/столбцу т.к.

$$F_{\xi}(a) = P(\xi \le a) = P(\xi \le a, \eta \le 4) = F(a, 4),$$
 аналогично $F_{\eta}(b) = F(4, b).$

№4

Существуют. Пусть $X=\frac{1}{\sqrt{2}}$ или $X=-\frac{1}{\sqrt{2}}$ с вероятностью $\frac{1}{2}$ (значение X определяется подбрасыванием монетки), аналогично для Y (подбрасывания монеток для X и для Y независимы). Очевидно, что каждая из случайных величин не является константой и всегда выполняется тождество $X^2+Y^2\equiv \left(\pm\frac{1}{\sqrt{2}}\right)^2+\left(\pm\frac{1}{\sqrt{2}}\right)^2\equiv \frac{1}{2}+\frac{1}{2}\equiv 1.$

№6

При
$$x<0$$
 $F_\xi(x)=0,$ $\rho_\xi(x)=0,$ при $1< x$ $F_\xi=1,$ $\rho_\xi(x)=0,$ при $0\le x\le 1$:
$$F_\xi(x\le a)=\int\limits_0^a\rho_\xi(x)dx=\int\limits_0^a2(1-x)dx=2a-a^2=a(2-a)$$

Распределение и плотность случайной величины η будут такими же в силу симметрии.

Покажем, что случайные величины не независимы:

При
$$0 \le x, 0 \le y, x + y \le 1$$
 $F_{\xi\eta}(a,b) = 2xy$
 Но $F_{\xi}(\frac{1}{2}) \cdot F_{\eta}(\frac{1}{2}) = \frac{1}{2}(1 - \frac{1}{2}) \cdot \frac{1}{2}(1 - \frac{1}{2}) = \frac{3}{4} \cdot \frac{3}{4} = \frac{9}{16} \ne \frac{1}{2} = 2 \cdot \frac{1}{2} \cdot \frac{1}{2} = F_{\xi\eta}(\frac{1}{2}, \frac{1}{2})$