Practical Issues in Deep Learning

Vineeth N Balasubramanian
Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

CS5480: Deep Learning

29th Jan 2018

Challenges in GD: How to address?

Algorithmic Approaches

- Batch GD, SGD, Mini-batch SGD
- Momentum, Nesterov Momentum
- Adagrad, Adadelta, RMSProp, Adam
- Advanced Optimization Methods

Practical Tricks

- Regularization Methods (including DropOut)
- Data Manipulation Methods
- Parameter Choices/Initialization Methods (Activation Functions, Loss Functions, Weights)

Now

Last session

Outline

- Regularization Methods
- 2 Data Manipulation Methods
- 3 Parameter Choices/Initialization Methods
- Takeaways and Readings

Difference between Machine Learning and Optimization

• Thoughts?

4 / 35

Difference between Machine Learning and Optimization

- Thoughts? Generalization!
- In mainstream optimization, minimizing J is itself the goal; whereas
 in deep learning, minimizing J so as to minimize a generalizable
 out-of-sample performance measure is the goal
- Empirical Risk Minimization (ERM):

$$\mathbb{E}_{\mathbf{x},y \approx \hat{\rho}_{data}(\mathbf{x},y)}(J(\theta;\mathbf{x},y)) = \frac{1}{m} \sum_{i=1}^{m} J(\theta;\mathbf{x}_{i},y_{i})$$

• However, ERM can lead to overfitting. Avoiding overfitting is regularization.

Learning and Generalization

What's my rule?

- 1 2 3 ⇒ satisfies rule
- 4 5 6 \Longrightarrow satisfies rule
- 7 8 9 \Longrightarrow satisfies rule
- 9 2 31 \implies does not satisfy rule

Learning and Generalization

What's my rule?

- 1 2 3 ⇒ satisfies rule
- 4 5 6 \Longrightarrow satisfies rule
- 7 8 9 \Longrightarrow satisfies rule
- 9 2 31 ⇒ does not satisfy rule

Plausible rules

- 3 consecutive single digits
- 3 consecutive integers
- 3 numbers in ascending order
- 3 numbers whose sum is less than 25
- 3 numbers < 10
- 1, 4, or 6 in first column
- "yes" to first 3 sequences, "no" to all others

Overfitting

- simple model
- constrained
- small capacity may prevent it from representing all structure in data

- complex model
- unconstrained
- large capacity may allow it to memorize data and fail to capture regularities

Early Stopping

 Simple idea to keep monitoring the cost function, and not let it become too consistently low; stop at an earlier iteration

Early Stopping

When to stop?

- ullet Train n epochs; lower learning rate; train m epochs ullet Bad idea: can't assume one-size-fits-all approach
- Error-change criterion:
 - Stop when error isn't dropping over a window of, say, 10 epochs
 - Train for a fixed number of epochs after criterion is reached (possibly with lower learning rate)
- Weight-change criterion:
 - Compare weights at epochs t-10 and t and test: $t = t^{-10} + t^{-10} + t^{-10} = t^{-10}$
 - $\max_{i} \| w_i^t w_i^{t-10} \| < \rho$
 - Don't base on length of overall weight change vector
 - Possibly express as a percentage of the weight

Weight Decay

 We have already seen a regularization method: weight decay in gradient descent

$$J(\theta) = \left[\frac{1}{m}\sum_{i=1}^{m} \left(\frac{1}{2}\left\|h_{\theta}(x^{(i)}) - y^{(i)}\right\|^{2}\right)\right] +$$

$$J(\theta) = \left[\frac{1}{m}\sum_{i=1}^{m}\left(\frac{1}{2}\left\|h_{\theta}(x^{(i)}) - y^{(i)}\right\|^{2}\right)\right] +$$

L2-Weight Decay Term

$$\frac{\lambda}{2} \sum_{l=1}^{n_l-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} \left(W_{ji}^{(l)} \right)^2$$

L1-Weight Decay Term

$$\lambda \sum_{l=1}^{n_l-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} |W_{ji}^{(l)}|$$

- Another standard approach to regularization in ML: Model Averaging
- \bullet DropOut \to a very interesting way to perform model averaging in deep learning

- Another standard approach to regularization in ML: Model Averaging
- ullet DropOut ullet a very interesting way to perform model averaging in deep learning
- Training Phase: For each hidden layer, for each training sample, for each iteration, ignore (zero out) a random fraction, p, of nodes (and corresponding activations)
- Test Phase: Use all activations, but reduce them by a factor p (to account for the missing activations during training)

(a) Standard Neural Net

(b) After applying dropout.

 $^{^1\}mathrm{Srivastava},$ Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting", JMLR 2014

- With H hidden units, each of which can be dropped, we have 2^H possible models
- ullet Each of the 2^{H-1} models that include hidden unit h must share the same weights for the unit
 - serves as a form of regularization
 - makes the models cooperate
- Including all hidden units at test with a scaling of 0.5 is equivalent to computing the geometric mean of all 2^H models ^{2 3}

 $^{^2\}mbox{Hinton}$ et al, Improving neural networks by preventing co-adaptation of feature detectors, 2012

³Warde-Farley et al, An empirical analysis of dropout in piecewise linear networks, 2014

DropConnect: An Extension

No-Drop Network

a = activation function; m = dropping rate; M = binary mask matrix

DropOut Network

13 / 35

DropConnect Network

⁴Wan, Li, et al. "Regularization of neural networks using dropconnect." ICML 2013

Noise in Data, Label and Gradient

Using noise is another form of regularization; has shown some impressive results recently. Could be:

- Data Noise
 - Has been there for a while: add noise to data while training
 - Minimization of sum-of-squares error with zero-mean gaussian noise(added to training data) is equivalent to minimization of sum-of-squares error without noise with an added regularized term ⁵
 - Very similar to data augmentation that we will see later
- Label Noise
- Gradient Noise

14 / 35

⁵Bishop. Training with noise is equivalent to Tikhonov regularization. Neural Computation, 1995.

Regularization through Label Noise⁶

- Disturb each training sample with the probability α .
- For each disturbed sample, label is randomly drawn from a uniform distribution over $\{1, 2, \dots, C\}$, regardless of the true label.

Algorithm 1 DisturbLabel

- 1: **Input:** $\mathcal{D} = \{(\mathbf{x}_n, \mathbf{y}_n)\}_{n=1}^N$, noise rate α .
- 2: **Initialization:** a network model M: $\mathbf{f}(\mathbf{x}; \boldsymbol{\theta}_0) \in \mathbb{R}^C$;
- 3: **for** each mini-batch $\mathcal{D}_t = \{(\mathbf{x}_m, \mathbf{y}_m)\}_{m=1}^M$ **do**
- for each sample $(\mathbf{x}_m, \mathbf{y}_m)$ do
- Generate a disturbed label $\widetilde{\mathbf{y}}_m$ with Eqn (2);
- 6: end for
- 7: Update the parameters θ_t with Eqn (1);
- 8: end for
- 9: **Output:** the trained model \mathbb{M}' : $\mathbf{f}(\mathbf{x}; \boldsymbol{\theta}_T) \in \mathbb{R}^C$.

$$\begin{cases}
\widetilde{c} \sim \mathcal{P}(\alpha), \\
\widetilde{y}_{\widetilde{c}} = 1, \\
\widetilde{v}_{\widetilde{c}} = 0, \quad \forall i \neq \widetilde{c}.
\end{cases}$$
(2)

Regularization through Gradient Noise⁷

• Simple idea: add noise to gradient

$$g_t \leftarrow g_t + N(0, \sigma_t^2)$$

Annealed Gaussian noise by decaying the variance

$$\sigma_t^2 = \frac{\eta}{(1+t)^{\gamma}}$$

Showed significant improvement in performance

16 / 35

⁷Neelakantan, Arvind, et al. "Adding gradient noise improves learning for very deep networks." arXiv preprint arXiv:1511.06807 (2015).

Outline

- Regularization Methods
- Data Manipulation Methods
- 3 Parameter Choices/Initialization Methods
- Takeaways and Readings

- Normalize/standardize the inputs
 - Convergence is faster if average input over the training set is close to zero. Why?

Scaled to have the same covariance - speeds learning

- \//hv?
- Ideally, value of covariance should be matched with output of activation function (e.g., sigmoid)
- Is this always necessary?

18 / 35

⁸Le Cun et al, Efficient Backprop, 1998

- Normalize/standardize the inputs
 - \bullet Convergence is faster if average input over the training set is close to zero. Why? 8
- Scaled to have the same covariance speeds learning
 - Why?
 - Ideally, value of covariance should be matched with output of activation function (e.g. sigmoid)
 - Is this always necessary?

18 / 35

- Normalize/standardize the inputs
 - Convergence is faster if average input over the training set is close to zero. Why?
- Scaled to have the same covariance speeds learning
 - Why?
 - Ideally, value of covariance should be matched with output of activation function (e.g. sigmoid)
 - Is this always necessary?

- Decorrelate the inputs
 - Why? Imagine one input is always twice the other, i.e. $z_2 = 2z_1$. Output y will be constant on lines $w_2 + \frac{1}{2}w_1 = \text{const.}$ No use making weight changes on these lines.
 - How? PCA!

Batch Normalization

Covariate Shift

- Change in distributions of data inputs is a problem because the model needs to continuously adapt to the new distribution → called covariate shift
- This is typically handled using domain adaptation

Batch normalization⁹

 What if this happens in a subnetwork in DL? → called internal covariate shift. How to handle?

⁹loffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv preprint 2015

Batch normalization⁹

- What if this happens in a subnetwork in DL? → called internal covariate shift. How to handle?
- Whiten every layer's inputs → helps obtain a fixed distribution of inputs into each layer

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_n^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

⁹loffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv preprint 2015

Batch normalization

 BN layer usually inserted before non-linearity layer (after FC or convolutional layer)

22 / 35

- Allows higher learning rates
- Reduces the strong dependence on initialization
- Acts as a form of regularization too

How do we handle test time? Evaluate a mini-batch at a time?

- Choose examples with maximum information content
 - Shuffle the training set so that successive training examples never (rarely) belong to the same class.
- Present input examples that produce a large error more frequently than examples that produce a small error. Why?

 $^{^{10}}$ LeCun, Yann A., et al. "Efficient backprop." Neural networks: Tricks of the Trade. Springer Berlin Heidelberg. 2012. 9-48.

- Choose examples with maximum information content
 - Shuffle the training set so that successive training examples never (rarely) belong to the same class.
- Present input examples that produce a large error more frequently than examples that produce a small error. Why? Helps take large steps in the gradient descent
- Do you see any problems?

 $^{^{10}}$ LeCun, Yann A., et al. "Efficient backprop." Neural networks: Tricks of the Trade. Springer Berlin Heidelberg. 2012. 9-48.

- Choose examples with maximum information content
 - Shuffle the training set so that successive training examples never (rarely) belong to the same class.
- Present input examples that produce a large error more frequently than examples that produce a small error. Why? Helps take large steps in the gradient descent
- Do you see any problems? What if the data sample is an outlier?

¹⁰LeCun, Yann A., et al. "Efficient backprop." Neural networks: Tricks of the Trade. Springer Berlin Heidelberg, 2012. 9-48.

- Choose examples with maximum information content
 - Shuffle the training set so that successive training examples never (rarely) belong to the same class.
- Present input examples that produce a large error more frequently than examples that produce a small error. Why? Helps take large steps in the gradient descent
- Do you see any problems? What if the data sample is an outlier?
- Is this relevant for Batch GD?

29th Jan 2018

¹⁰LeCun, Yann A., et al. "Efficient backprop." Neural networks: Tricks of the Trade. Springer Berlin Heidelberg, 2012. 9-48.

Curriculum Learning¹¹

- Old idea, proposed by Elman in 1993
- Humans and animals learn much better when examples are not randomly presented but organized in a meaningful order which illustrates gradually more concepts, and gradually more complex ones.
- Start small, learn easier aspects of the task or easier sub-tasks, and then gradually increase the difficulty level
- By choosing examples and their order, one can guide training and remarkably increase learning speed
- Introduces the concept of a teacher who:
 - has prior knowledge about the training data to decide on a sequence of concepts that can more easily be learned when presented in that order
 - monitoring 'learner's progress to decide when to move on to new material from the curriculum

¹¹Bengio, Yoshua, et al. "Curriculum learning." ICML 2009.

Curriculum Learning¹¹

- Old idea, proposed by Elman in 1993
- Humans and animals learn much better when examples are not randomly presented but organized in a meaningful order which illustrates gradually more concepts, and gradually more complex ones.
- Start small, learn easier aspects of the task or easier sub-tasks, and then gradually increase the difficulty level
- By choosing examples and their order, one can guide training and remarkably increase learning speed
- Introduces the concept of a teacher who:
 - has prior knowledge about the training data to decide on a sequence of concepts that can more easily be learned when presented in that order
 - monitoring 'learner's progress to decide when to move on to new material from the curriculum

¹¹Bengio, Yoshua, et al. "Curriculum learning." ICML 2009.

Data Augmentation

Methods

- Data jittering (E.g. Distortion and blurring of images)
- Rotations
- Color changes
- Noise injection
- Mirroring
- Helps increase data; is useful when training data provided is less (CNNs lead large amounts of training data to work!)
- Also acts as a regularizer (by avoiding overfitting to provided data)

Data Augmentation: Example ¹²

¹²Wu, Ren, et al. "Deep image: Scaling up image recognition." arXiv 2015

Outline

- Regularization Methods
- 2 Data Manipulation Methods
- 3 Parameter Choices/Initialization Methods
- Takeaways and Readings

27 / 35

Parameter Choices

- Activation Functions: We discussed this earlier
- Loss Functions: We discussed this earlier
- Learning Rates: We discussed this earlier
 - All of them decrease it when weight vector "oscillates", and increase it when the weight vector follows a relatively steady direction
 - Worthwhile picking a different learning rate for each weight (e.g. based on curvature)

Choosing Target Values

 Assuming a binary classification problem, what do you choose the target labels to be? +1 and -1?

Choosing Target Values

- Assuming a binary classification problem, what do you choose the target labels to be? +1 and -1?
- What if these are the sigmoid's asymptotes?
 - Weights will be increased continuously to very high values to match the target
 - Weights multiplied by small sigmoid derivative → small weight updates
 → Stuck!

Choosing Target Values

- Assuming a binary classification problem, what do you choose the target labels to be? +1 and -1?
- What if these are the sigmoid's asymptotes?
 - Weights will be increased continuously to very high values to match the target
 - $\hbox{ Weights multiplied by small sigmoid derivative} \rightarrow \hbox{small weight updates} \\ \rightarrow \hbox{Stuck!}$
- Choose target values at the point of the maximum second derivative on the sigmoid so as to avoid saturating the output units.

• What do you think? What if we started weights with zeroes?

• What do you think? What if we started weights with zeroes?

- To be chosen randomly, but in such a way that the activation function is in its linear region
 - Both large and small weights can cause very low gradients (in case of sigmoid activation)

• What do you think? What if we started weights with zeroes?

- To be chosen randomly, but in such a way that the activation function is in its linear region
 - Both large and small weights can cause very low gradients (in case of sigmoid activation)
- Assuming inputs to a unit are uncorrelated with variance 1, standard deviation of units weighted sum is: $\sigma_{y_i} = (\Sigma_j w_{ii}^2)^{\frac{1}{2}}$
- Then weights should be randomly drawn from a distribution with mean zero and a standard deviation given by: $\sigma_w = m^{-\frac{1}{2}}$, where m is the node's fan-in.

Most recommended today (removed the need for unsupervised pre-training):

- Xavier's initialization¹³: $uniform(-\frac{\sqrt{6}}{\sqrt{fan_{in}+fan_{out}}},\frac{\sqrt{6}}{\sqrt{fan_{in}+fan_{out}}})$
- Caffe implements a simpler version of Xavier's initialization as: $uniform(-\frac{2}{fan_{in}+fan_{out}},\frac{2}{fan_{in}+fan_{out}})$
- He's initialization¹⁴: uniform $\left(-\frac{4}{fan_{in}+fan_{out}}, \frac{4}{fan_{in}+fan_{out}}\right)$

¹³Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." AISTATS 2010

¹⁴He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." CVPR 2015

Still an active area of research...

- Understanding the difficulty o training deep feedforward neural networks by Glorot and Bengio, 2010
- Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013
- Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014
- Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015
- Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015
- All you need is a good init, Mishkin and Matas, 2015

32 / 35

Outline

- Regularization Methods
- Data Manipulation Methods
- 3 Parameter Choices/Initialization Methods
- Takeaways and Readings

Takeaways

- Some standard choices for training deep networks: SGD + Nesterov momentum, SGD with Adagrad/RMSProp/Adam
- ReLUs, Leaky ReLUs and MaxOut are the best bets for activation functions
- Batch Normalization layers are here to stay (at least, for now)
- DropOut is an excellent regularizer
- Data Augmentation is a must in vision applications
- Weight Initialization is very important while training a new network

Readings

- Deep Learning book, Sections 7.1-7.5, 7.8, 7.12: http://www.deeplearningbook.org/contents/regularization.html
- Efficient Backprop by Yann Le Cun, 1998: http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf