Chapter 7: Computations lifted to a functor context II Semimonads and monads

Sergei Winitzki

Academy by the Bay

2018-02-10

Computations within a functor context: Semimonads

Intuitions behind adding more "left arrows"

Example:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} f(i, j, k)$$

Using Scala's for/yield syntax ("functor block")

- map replaces the last left arrow, flatMap replaces other left arrows
- Container must have both map (i.e. be a functor) and flatMap
 - ▶ When the functor is *also* filterable, we can use "if" as well
- Standard library defines flatMap() as equivalent of map() flatten
 - ▶ (1 to n).flatMap(j \Rightarrow ...) is (1 to n).map(j \Rightarrow ...).flatten
- flatten: F[F[A]]⇒F[A] can be expressed through flatMap as well:
- ► (xss: Seq[Seq[A]]).flatten = xss.flatMap { (xs: Seq[A]) ⇒ xs }
- Functors having flatMap/flatten are "squashable" or semimonads

What is flatMap doing with the data in a collection?

Consider this schematic code using Seq as the container:

```
val result = for {
   i \leftarrow 1 \text{ to m}
   j \leftarrow 1 \text{ to n}
   x = f(i, j)
   k \leftarrow 1 \text{ to p}
   y = g(i,j,k)
\} yield h(x,y)
```

Computations are repeated for all i, for all j, etc.

- The computation processes all elements from each collection
 - ▶ The number of resulting data items is m * n * p
 - ★ All the resulting data items must fit within the same container type!
 - ★ The set of *container capacity counts* is closed under multiplication
 - What container types have this property?
 - ▶ Seq, NonEmptyList can hold any number of elements > min. count
 - ▶ Option, Either, Try, Future can hold 0 or 1 elements
 - ▶ "Tree-like" containers, e.g. binary tree (holds 1, 2, 4, 8, 16, ... elements)
 - "Non-standard" containers: $F^A \equiv \text{String} \Rightarrow A$; $F^A \equiv (A \Rightarrow \text{Int}) \Rightarrow \text{Int}$

3 / 25

Working with "list-like" semimonads

Seq, NonEmptyList, Iterator, Stream

Typical tasks solved with "list-like" semimonads:

- Create a list of all combinations or all permutations of a sequence
- Traverse a "solution tree" with DFS and filter out incorrect solutions

Examples: see code

- 4 All permutations of Seq("a", "b", "c")
- 2 All subsets of Set("a", "b", "c")
- All subsequences of length 3 out of the sequence (1 to m)
- 4 All solutions of the "8 queens" problem
- **5** Generalize examples 1-3 to support arbitrary length n instead of 3
- Generalize example 4 to solve n-queens problem
- Transform Boolean formulas between CNF and DNF

Intuitions for "single-value" semimonads

Option, Either, Try, Future

- The container can hold n = 1 or n = 0 values of type A
- Computations may yield a result (n = 1), or may fail (n = 0)
- The functor block chains several such computations
- Once any computation fails, the entire functor block fails (0 * n = 0)
- Only if all computations succeed, the functor block returns one value
- Filtering can also make the entire expression fail

A schematic example of a functor block program using the Try functor:

```
val result: Try[A] = for { // computations in the Try functor
  x ← Try(...) // first computation; may fail
  y = f(x) // no possibility of failure in this line
  if p(y) // the entire expression will fail if this is false
  z ← Try(g(x, y)) // may fail here
  r ← Try(...) // may fail here as well
} yield r // r is of type A, so result is of type Try[A]
```

- This "flat" code replaces a long chain of nested if/else or match/case
 - ► Computations are sequential (also when using the Future functor!)

Examples of filterable functors II: Checking the laws

- Properties 1 4 are expressed as laws for filter $(p\Rightarrow Boolean)\Rightarrow F^A\Rightarrow F^A$:

 - 2 filter $p_1^{A\Rightarrow \text{Boolean}} \circ \text{filter } p_2^{A\Rightarrow \text{Boolean}} = \text{filter } (x \Rightarrow p_1(x) \land p_2(x))$

 - filter $p \circ \text{fmap } f^{A \Rightarrow B} = \text{filter } p \circ \text{fmap } (f_{|p}) \text{ where } f_{|p} \text{ is the partial function defined as } \{ \text{ case } x \text{ if } p(x) \Rightarrow f(x) \} \text{only works if } p(x) \text{ holds}$
- Can define a type class Filterable, method withFilter
- Check the laws for the Orders functor (see example code)
 - ▶ Laws hold for the Orders functor with / without business rule (a)
 - ▶ Another filterable functor: $F^A \equiv 1 + A \times A$ ("collapsible product")
- Examples of functors that are *not* filterable:
 - "Orders" with additional business rule (b) breaks law 2 for some $p_{1,2}$
 - ▶ F^A defining filter in a special way e.g. for A = Int breaks law 1
 - ► $F^A \equiv 1 + A$ defining filter $(p)(x) \equiv 1 + 0$ breaks law 3
 - ► $F^A \equiv A$ must define filter $(p^{A \Rightarrow Boolean})(x^A) = x$, breaking law 4
 - ▶ $F^A \equiv A \times (1+A)$ unable to remove the first A, breaking law 4

The equational laws 1-4 specify rigorously what it means to "filter data"!

Worked examples I: Programming with filterables

- John can have up to 3 coupons, and Jill up to 2. All of John's coupons must be valid on purchase day, while each of Jill's coupons is checked independently. Implement the filterable functor describing this setup.
- A server received a sequence of requests. Each request must be authenticated. Once a non-authenticated request is found, no further requests are accepted. Is this setup described by a filterable functor?

For each of these functors, determine whether they are filterable, and if so, implement withFilter via a type class:

- final case class P[T](first: Option[T], second: Option[(T, T)])
- **5** $F^A = \text{NonEmptyList}^A$ defined recursively as $F^A \equiv A + A \times F^A$
- $F^{Z,A} \equiv Z + \operatorname{Int} \times Z \times A \times A$ (with respect to the type parameter A)
- $F^{Z,A} \equiv 1 + Z + \text{Int} \times A \times \text{List}^A$ (w.r.t. the type parameter A)
- * Show that $C^{Z,A} = A \Rightarrow 1 + Z$ is a filterable contrafunctor w.r.t. A (implement withFilter with the same type signature; no law checking)

Exercises I

- Confucius gave wisdom on each of the 7 days of a week. Sometimes the wise proverbs were hard to remember. If Confucius forgets what he said on a given day, he also forgets what he said on all the previous days of the week. Is this setup described by a filterable functor?
- Define evenFilter(p) on an IndexedSeg[T] such that a value x: T is retained if p(x)=true and only if the sequence has an even number of elements y for which p(y)=false. Does this define a filterable functor?

Implement filter for these functors if possible (law checking optional):

- 3 $F^A \equiv Int + String \times A \times A \times A$
- final case class Q[A, Z](id: Long, user1: Option[(A, Z)], user2: Option[(A, Z)]) – with respect to the type parameter A
- **5** $F^A = \text{MyTree}^A$ defined recursively as $F^A \equiv 1 + A \times F^A \times F^A$
- final case class R[A](x: Int, y: Int, z: A, data: List[A]), where the standard functor List already has withFilter defined
- Show that $C^A \equiv A + A \times A \Rightarrow 1 + Z$ is a filterable contrafunctor

Filterable functors: The laws in depth I

Is there a shorter formulation of the laws that is easier to remember?

- Intuition: When p(x) = false, replace x: A by 1: Unit in F[A]
 - ▶ (1) How to replace x by 1 in F[A] without breaking the types?
 - ▶ (2) How to transform the resulting type back to F[A]?
- We could do (1) if instead of F^A we had F^{1+A} i.e. F[Option[A]]
 - Now use filter to replace A by 1 in each item of type 1 + A
 - ▶ Get F^{1+A} from F^A using inflate : $F^A \Rightarrow F^{1+A} = \text{fmap} \left(\text{Some}^{A \Rightarrow 1+A} \right)$
 - ► Filter $F^{1+A} \Rightarrow F^{1+A}$ using fmap $(x^{1+A} \Rightarrow \text{filter}_{\mathsf{Opt}}(p^{A \Rightarrow \mathsf{Boolean}})(x))$

$$\mathsf{filter}\, p: \ F^A \xrightarrow{\mathsf{inflate}} F^{1+A} \xrightarrow{\mathsf{fmap}\left(\mathsf{filter}_{\mathsf{Opt}} p\right)} F^{1+A} \xrightarrow{\mathsf{deflate}} F^A$$

- Doing (2) means defining a function deflate: F[Option[A]] ⇒ F[A]
 - ightharpoonup standard library already has flatten[T]: Seq[Option[T]] \Rightarrow Seq[T]
- Simplify fmap(Some^{$A\Rightarrow 1+A$}) \circ fmap(filter_{Opt}p) = fmap(bop(p)) where we defined bop(p): $(A \Rightarrow 1 + A) \equiv x \Rightarrow Some(x).filter(p)$
- In this way, express filter through deflate (see example code)
 - filter $p = \text{fmap}(\text{bop } p) \circ \text{deflate.}$ Notation: bop p is bop (p), like $\cos x$

filter
$$p: F^A \xrightarrow{\text{fmap}(\text{bop } p)} F^{1+A} \xrightarrow{\text{deflate}} F^A$$

Filterable functors: Using deflate

- So far we have expressed filter through deflate
- We can also express deflate through filter (assuming law 4 holds):

```
deflate: F^{1+A} \xrightarrow{\text{filter(.nonEmpty)}} F^{1+A} \xrightarrow{\text{fmap(.get)}} F^A
def deflate[F[_],A](foa: F[Option[A]]): F[A] =
foa.filter(_.nonEmpty).map(_.get) // _.get is 0 + x^A \Rightarrow x^A
// for F = Seq, this would be foa.collect { case Some(x) \Rightarrow x }
// for arbitrary functor F we need to use the partial function, _.get
```

- This means deflate and filter are computationally equivalent
 - ► We could specify filterable functors by implementing deflate
 - ★ The implementation of filter would then be derived by library
- Use deflate to verify that some functors are certainly not filterable:
 - $F^A = A + A \times A$. Write $F^{1+A} = 1 + A + (1+A) \times (1+A)$
 - **★** cannot map $F^{1+A} \Rightarrow F^A$ because we do not have $1 \to A$
 - ▶ $F^A = \text{Int} \Rightarrow A$. Write $F^{1+A} = \text{Int} \Rightarrow 1 + A$
 - * type signature of deflate would be (Int $\Rightarrow 1 + A$) \Rightarrow Int $\Rightarrow A$
 - **★** cannot map $F^{1+A} \Rightarrow F^A$ because we do not have $1 + A \rightarrow A$
- deflate is easier to implement and to reason about

* Filterable functors: The laws in depth II

- We were able to define deflate only by assuming that law 4 holds
- Now, law 4 is satisfied automatically if filter is defined via deflate!
 - ▶ Denote $\psi_p^{F^A \Rightarrow F^{1+A}} \equiv \text{fmap (bop } p)$ for brevity, then filter $p = \psi_p \circ \text{deflate}$
 - ▶ Law 4 then becomes: $\psi_p \circ \text{deflate} \circ \text{fmap } f^{A \Rightarrow B} = \psi_p \circ \text{deflate} \circ \text{fmap } f_{|p}$

- We would like to interchange deflate and fmap in both sides
 - ► We need a *naturality* law; let's express law 1 through deflate:

$$\mathsf{fmap}\, f^{A\Rightarrow B} \circ \psi_p \circ \mathsf{deflate}^{F,B} = \psi_{f\circ p} \circ \mathsf{deflate}^{F,A} \circ \mathsf{fmap}\, f^{A\Rightarrow B}$$

Can we simplify fmap $f \circ \psi_p = \text{fmap } f \circ \text{fmap (bop } p) = \text{fmap } (f \circ \text{bop } p)$?

* Filterable functors: The laws in depth III

• Have property: $f^{A\Rightarrow B} \circ \text{bop}(p^{B\Rightarrow \text{Boolean}}) = \text{bop}(f \circ p) \circ \text{fmap}^{\text{Opt}} f$ (see code)

$$A \xrightarrow{f^{A \Rightarrow B}} B \xrightarrow{\text{bop } p} 1 + B$$

$$1 + A \xrightarrow{\text{fmap}^{Opt}_f} B$$

We can now rewrite Law 1 as

 $fmap(bop(f \circ p)) \circ fmap(fmap^{Opt}f) \circ deflate = fmap(bop(f \circ p)) \circ deflate \circ fmapf$

Remove common prefix fmap $(bop (f \circ p)) \circ ...$ from both sides:

 $fmap(fmap^{Opt}f^{A\Rightarrow B}) \circ deflate^{F,B} = deflate^{F,A} \circ fmap f^{A\Rightarrow B} - law 1 for deflate$

- deflate: $F^{1+A} \Rightarrow F^A$ is a natural transformation (has naturality law)
 - Example: $F^A = 1 + A \times A$
 - $F^{1+A} = 1 + (1+A) \times (1+A) = 1 + 1 \times 1 + A \times 1 + 1 \times A + A \times A$
- natural transformations map containers $G^A \Rightarrow H^A$ by rearranging data in them

* Filterable functors: The laws in depth IV

The naturality law for deflate:

$$\mathsf{fmap}\,(\mathsf{fmap}^{\mathsf{Opt}}f^{A\Rightarrow B})\circ\mathsf{deflate}^{F,B}=\mathsf{deflate}^{F,A}\circ\mathsf{fmap}\,f^{A\Rightarrow B}$$
 Law 4 expressed via $\mathsf{deflate}$:

$$\psi_p \circ \mathsf{deflate}^{F,A} \circ \mathsf{fmap} \ f^{A \Rightarrow B} = \psi_p \circ \mathsf{deflate}^{F,A} \circ \mathsf{fmap} \ f_{|p}$$

• Use naturality to interchange deflate and fmap in both sides of law 4:

```
\begin{split} \psi_{p} \circ \mathsf{fmap} \left( \mathsf{fmap}^{\mathsf{Opt}} f \right) \circ \mathsf{deflate}^{F,B} &= \psi_{p} \circ \mathsf{fmap} \left( \mathsf{fmap}^{\mathsf{Opt}} f_{|p} \right) \circ \mathsf{deflate}^{F,B} \\ & \left[ \mathsf{omit} \ \mathsf{deflate}^{F,B} \ \mathsf{from} \ \mathsf{both} \ \mathsf{sides}; \ \mathsf{expand} \ \psi_{p} \right] \\ & \mathsf{bop} \, p \circ \mathsf{fmap}^{\mathsf{Opt}} f = \mathsf{bop} \, p \circ \mathsf{fmap}^{\mathsf{Opt}} f_{|p} \quad - \ \mathsf{check} \ \mathsf{this} \ \mathsf{by} \ \mathsf{hand} : \end{split}
```

```
x \Rightarrow Some(x).filter(p).map(f)

x \Rightarrow Some(x).filter(p).map { x if p(x) \Rightarrow f(x) }
```

• These functions are equivalent because law 4 holds for Option

Filterable functors: The laws in depth V

Maybe $\psi_p \circ \text{deflate}$ is easier to handle than deflate? Let us define

$$\begin{array}{c} \mathsf{fmapOpt}^{F,A,B}(f^{A\Rightarrow 1+B}): F^A \Rightarrow F^B = \mathsf{fmap}\ f \circ \mathsf{deflate}^{F,B} \\ \\ f^{\mathsf{fmap}\ f^{A\Rightarrow 1+B}} F^{1+B} & \overset{\mathsf{deflate}^{F,B}}{\longrightarrow} F^B \end{array}$$

- fmapOpt and deflate are equivalent: deflate $^{F,A} = \text{fmapOpt}^{F,1+A,A}(\text{id}^{1+A\Rightarrow 1+A})$
- Express laws 1 3 in terms of fmapOpt: do they get simpler?
 - ► Express filter through fmapOpt: filter $p = \text{fmapOpt}^{F,A,A}$ (bop p)
 - ▶ Consider the expression needed for law 2: $x \Rightarrow p_1(x) \land p_2(x)$
 - ▶ bop $(x \Rightarrow p_1(x) \land p_2(x)) = x^A \Rightarrow (bop p_1)(x)$.flatMap $(bop p_2)$ see code
 - ★ Denote this computation by ⋄_{Opt} and write

$$q_1^{A\Rightarrow 1+B}\diamond_{\mathsf{Opt}}q_2^{B\Rightarrow 1+C}\equiv x^A\Rightarrow q_1(x).\mathsf{flatMap}\left(q_2
ight)$$

- ▶ Similar to composition of functions, except the types are $A \Rightarrow 1 + B$
 - ★ This is a particular case of **Kleisli composition**; the general case: $\diamond_M: (A \Rightarrow M^B) \Rightarrow (B \Rightarrow M^C) \Rightarrow (A \Rightarrow M^C)$; we set $M^A \equiv 1 + A$
 - **★** The **Kleisli identity** function: $id_{\diamond_{\mathbf{Ont}}}^{A\Rightarrow 1+A} \equiv x^{A} \Rightarrow \mathsf{Some}(x)$
 - ★ Kleisli composition ⋄_{Opt} is associative and respects the Kleisli identity!
 - * fmapOpt lifts a Kleisliopt function $f^{A\Rightarrow 1+B}$ into the functor F

Filterable functors: The laws in depth VI

Simplifying down to two laws

- Only two laws are necessary for fmapOpt!
- Identity law (covers old law 3):

$$\mathsf{fmapOpt}\left(\mathsf{id}_{\diamond_{\mathbf{Opt}}}^{A\Rightarrow 1+A}\right) = \mathsf{id}^{F^A\Rightarrow F^A}$$

Composition law (covers old laws 1 and 2):

$$\mathsf{fmapOpt}\,(f^{A\Rightarrow 1+B}) \circ \mathsf{fmapOpt}\,(g^{B\Rightarrow 1+\mathcal{C}}) = \mathsf{fmapOpt}\,(f \diamond_{\mathsf{Opt}} g)$$

- The two laws for fmapOpt are very similar to the two functor laws
 - ▶ Both of them use more complicated types than the old laws
 - ▶ Conceptually, the new laws are simpler (lift $f^{A\Rightarrow 1+B}$ into $F^A\Rightarrow F^B$)

* Filterable functors: The laws in depth VII

Showing that old laws 1-3 follow from the identity and composition laws for fmapOpt

• Old law 3 is *equivalent* to the identity law for fmapOpt:

$$\mathsf{filter}\,(x^A\Rightarrow\mathsf{true})=\mathsf{fmap}\,(x^A\Rightarrow0+x)\circ\mathsf{deflate}=\mathsf{fmapOpt}\,(\mathsf{id}_{\diamond\mathbf{Opt}})=\mathsf{id}^{F^A\Rightarrow F^A}$$

- Derive old law 2: need to work with $q_{1,2} \equiv bop(p_{1,2}) : A \Rightarrow 1 + A$
 - ▶ The Boolean conjunction $x \Rightarrow p_1(x) \land p_2(x)$ corresponds to $q_1 \diamond_{\mathsf{Opt}} q_2$
 - ▶ Apply the composition law to Kleisli functions of types $A \Rightarrow 1 + A$:

$$\begin{split} & \text{filter } p_1 \circ \text{filter } p_2 = \text{fmapOpt } q_1 \circ \text{fmapOpt } q_2 \\ & = \text{fmapOpt } (q_1 \diamond_{\mathsf{Opt}} q_2) = \text{fmapOpt } (\mathsf{bop} \, (x \Rightarrow p_1(x) \land p_2(x))) \end{split}$$

- Derive old law 1:
 - ▶ express filter through fmapOpt; old law 1 becomes fmap $f \circ \text{fmapOpt} (\text{bop } p) = \text{fmapOpt} (\text{bop} (f \circ p)) \circ \text{fmap } f \text{eq. (*)}$
 - ▶ lift $f^{A\Rightarrow B}$ to Kleisli_{Opt} by defining $k_f^{A\Rightarrow 1+B} = f \circ \mathrm{id}_{\diamond_{\mathrm{Opt}}}$; then we have fmapOpt (k_f) = fmap $k_f \circ \mathrm{deflate} = \mathrm{fmap} f \circ \mathrm{fmap} \, \mathrm{id}_{\diamond_{\mathrm{Opt}}} \circ \mathrm{deflate} = \mathrm{fmap} f$
 - rewrite eq. (*) as fmapOpt $(k_f \diamond_{\mathsf{Opt}} \mathsf{bop}\, p) = \mathsf{fmapOpt}\, (\mathsf{bop}\, (f \circ p) \diamond_{\mathsf{Opt}} k_f)$
 - ▶ it remains to show that $k_f \diamond_{\mathsf{Opt}} \mathsf{bop} \, p = \mathsf{bop} \, (f \circ p) \diamond_{\mathsf{Opt}} k_f$
 - ▶ use the properties $k_f \diamond_{\mathsf{Opt}} q = f \circ q$ and $q \diamond_{\mathsf{Opt}} k_f = q \circ \mathsf{fmap}^{\mathsf{Opt}} f$, and $f \circ \mathsf{bop} p = \mathsf{bop} (f \circ p) \circ \mathsf{fmap}^{\mathsf{Opt}} f$ (property from slide 11)

Summary: The methods and the laws

Filterable functors can be defined via filter, deflate, or fmapOpt

- All three methods are equivalent but have different roles:
 - ► The easiest to use in program code is filter / withFilter
 - ▶ The easiest type signature to implement and reason about is deflate
 - Conceptually, the laws are easiest to remember with fmapOpt
- * The 2 laws for fmapOpt are the 2 functor laws with a Kleisli "twist"
- * Category theory accommodates this via a generalized definition of functors as liftings between "twisted" types. Compare:
 - fmap : $(A \Rightarrow B) \Rightarrow F^A \Rightarrow F^B$ ordinary container ("endofunctor")
 - ▶ contrafmap : $(B \Rightarrow A) \Rightarrow F^A \Rightarrow F^B$ lifting from reversed functions
 - ▶ fmapOpt : $(A \Rightarrow 1 + B) \Rightarrow F^A \Rightarrow F^B$ lifting from Kleisli_{Opt}-functions
- CT gives us some *intuitions* about how to derive better laws:
 - look for type signatures that resemble a generalized sort of "lifting"
 - look for natural transformations and use the naturality law
- However, CT does not directly provide any derivations for the laws
 - you will not find the laws for filter or deflate in any CT book
 - CT is abstract, only gives hints about possible further directions
 - ★ investigate functors having "liftings" with different type signatures
 - ★ replace Option in the Kleisli_{Opt} construction by another functor

Structure of filterable functors

How to recognize a filterable functor by its type?

Intuition from deflate: reshuffle data in F^A after replacing some A's by 1

- "reshuffling" usually means reusing different parts of a disjunction Some constructions of exponential-polynomial filterable functors
 - $F^A = Z$ (constant functor) for a fixed type Z (define fmapOpt f = id)
 - Note: $F^A = A$ (identity functor) is *not* filterable
 - ② $F^A \equiv G^A \times H^A$ for any filterable functors G^A and H^A

 - $F^A \equiv G^{H^A}$ for any functor G^A and filterable functor H^A
 - $F^A \equiv 1 + A \times G^A$ for a filterable functor G^A
 - Note: pointed types P are isomorphic to 1 + Z for some type Z
 - **★** Example of non-trivial pointed type: $A \Rightarrow A$
 - ***** Example of non-pointed type: $A \Rightarrow B$ when A is different from B
 - So $F^A \equiv P + A \times G^A$ where P is a pointed type and G^A is filterable
 - ▶ Also have $F^A \equiv P + A \times A \times ... \times A \times G^A$ similarly
 - **6** $F^A \equiv G^A + A \times F^A$ (recursive) for a filterable functor G^A
 - $F^A \equiv G^A \Rightarrow H^A$ if contrafunctor G^A and functor H^A both filterable
 - ▶ Note: the functor $F^A \equiv G^A \Rightarrow A$ is not filterable

* Worked examples II: Constructions of filterable functors I

- (2) The fmapOpt laws hold for $F^A \times G^A$ if they hold for F^A and G^A
 - For $f^{A\Rightarrow 1+B}$, get fmapOpt_F(f): $F^A\Rightarrow F^B$ and fmapOpt_G(f): $G^A\Rightarrow G^B$
 - Define $fmapOpt_{F \times G} f \equiv p^{F^A} \times q^{G^A} \Rightarrow fmapOpt_F(f)(p) \times fmapOpt_G(f)(q)$
 - Identity law: $f = id_{\Diamond_{\mathsf{Opt}}}$, so $\mathsf{fmapOpt}_F f = \mathsf{id}$ and $\mathsf{fmapOpt}_G f = \mathsf{id}$
 - ▶ Hence we get fmapOpt_{F+G} $(f)(p \times q) = id(p) \times id(q) = p \times q$
 - Composition law:

```
\begin{split} &(\mathsf{fmapOpt}_{F \times G} \, f_1 \circ \mathsf{fmapOpt}_{F + G} \, f_2)(p \times q) \\ &= \mathsf{fmapOpt}_{F \times G}(f_2) \, (\mathsf{fmapOpt}_F(f_1)(p) \times \mathsf{fmapOpt}_G(f_1)(q)) \\ &= (\mathsf{fmapOpt}_F \, f_1 \circ \mathsf{fmapOpt}_F \, f_2)(p) \times (\mathsf{fmapOpt}_G \, f_1 \circ \mathsf{fmapOpt}_G \, f_2) \, (q) \\ &= \mathsf{fmapOpt}_F(f_1 \diamond_{\mathsf{Opt}} \, f_2)(p) \times \mathsf{fmapOpt}_G(f_1 \diamond f_2)(q) \\ &= \mathsf{fmapOpt}_{F \times G}(f_1 \diamond_{\mathsf{Opt}} \, f_2)(p \times q) \end{split}
```

- ullet Exactly the same proof as that for functor property for $F^A imes G^A$
 - ▶ this is because fmapOpt corresponds to a generalized functor
- New proofs are necessary only when using non-filterable functors
 - ▶ these are used in constructions 4 6

* Worked examples II: Constructions of filterable functors II

- (5) The fmapOpt laws hold for $F^A \equiv 1 + A \times G^A$ if they hold for G^A
 - For $f^{A\Rightarrow 1+B}$, get fmapOpt_G $(f): G^A \Rightarrow G^B$
 - Define fmapOpt_F(f)(1 + $a^A \times q^{G^A}$) by returning 0 + $b \times$ fmapOpt_G(f)(q) if the argument is 0 + $a \times q$ and f(a) = 0 + b, and returning 1 + 0 otherwise
 - Identity law: $f = id_{\diamond_{Ont}}$, so f(a) = 0 + a and fmapOpt_Gf = id
 - ▶ Hence we get fmapOpt_F(id_{Opt}) $(1 + a \times q) = 1 + a \times q$
 - Composition law: need only to check for arguments $0 + a \times q$, and only when $f_1(a) = 0 + b$ and $f_2(b) = 0 + c$, in which case $(f_1 \diamond_{\mathsf{Opt}} f_2)(a) = 0 + c$; then

$$\begin{split} &(\mathsf{fmapOpt}_F \ f_1 \circ \mathsf{fmapOpt}_F \ f_2)(0 + a \times q) \\ &= \mathsf{fmapOpt}_F(f_2) \left(\mathsf{fmapOpt}_F(f_1)(0 + a \times q) \right) \\ &= \mathsf{fmapOpt}_F(f_2) \left(0 + b \times \mathsf{fmapOpt}_G(f_1)(q) \right) \\ &= 0 + c \times \left(\mathsf{fmapOpt}_G \ f_1 \circ \mathsf{fmapOpt}_G \ f_2 \right) (q) \\ &= 0 + c \times \mathsf{fmapOpt}_G(f_1 \diamond_{\mathsf{Opt}} f_2)(q) \\ &= \mathsf{fmapOpt}_F(f_1 \diamond_{\mathsf{Opt}} f_2)(0 + a \times q) \end{split}$$

This is a "greedy filter": if f(a) is empty, will delete all data in G^A

* Worked examples II: Constructions of filterable functors III

- (6) The fmapOpt laws hold for $F^A \equiv G^A + A \times F^A$ if they hold for G^A
 - For $f^{A\Rightarrow 1+B}$, we have fmapOpt_G(f): $G^A\Rightarrow G^B$ and fmapOpt'_F(f): $F^A\Rightarrow F^B$ (for use in recursive arguments as the inductive assumption)
 - Define fmapOpt_F(f)($q^{G^A} + a^A \times p^{F^A}$) by returning $0 + \text{fmapOpt}'_F(f)(p)$ if f(a) = 1 + 0, and fmapOpt_G(f)(q) + $b \times \text{fmapOpt}'_F(f)(p)$ otherwise
 - Identity law: $id_{\diamond_{\mathbf{Opt}}}(x) \neq 1 + 0$, so $fmapOpt_F(id_{\diamond_{\mathbf{Opt}}})(q + a \times p) = q + a \times p$
 - Composition law:
 - $(\mathsf{fmapOpt}_F(\mathit{f}_1) \circ \mathsf{fmapOpt}_F(\mathit{f}_2))(q + \mathsf{a} \times \mathsf{p}) = \mathsf{fmapOpt}_F(\mathit{f}_1 \diamond_{\mathsf{Opt}} \mathit{f}_2)(q + \mathsf{a} \times \mathsf{p})$
 - For arguments q+0, the laws for G^A hold; so assume arguments $0+a\times p$. When $f_1(a)=0+b$ and $f_2(b)=0+c$, the proof of the previous example will go through. So we need to consider the two cases $f_1(a)=1+0$ and $f_1(a)=0+b$, $f_2(b)=1+0$
 - If $f_1(a) = 1 + 0$ then $(f_1 \diamond_{\mathsf{Opt}} f_2)(a) = 1 + 0$; to show $\mathsf{fmapOpt}_F'(f_2)(\mathsf{fmapOpt}_F'(f_1)(p)) = \mathsf{fmapOpt}_F'(f_1 \diamond_{\mathsf{Opt}} f_2)(p)$, use the inductive assumption about $\mathsf{fmapOpt}_F'$ on p
 - If $f_1(a) = 0 + b$ and $f_2(b) = 1 + 0$ then $(f_1 \diamond_{\mathsf{Opt}} f_2)(a) = 1 + 0$; to show $\mathsf{fmapOpt}_F(f_2)(0 + b \times \mathsf{fmapOpt}_F'(f_1)(p)) = \mathsf{fmapOpt}_F'(f_1 \diamond_{\mathsf{Opt}} f_2)(p)$, rewrite $\mathsf{fmapOpt}_F(f_2)(0 + b \times \mathsf{fmapOpt}_F'(f_1)(p)) = \mathsf{fmapOpt}_F'(f_2)(\mathsf{fmapOpt}_F'(f_1)(p))$ and again use the inductive assumption about $\mathsf{fmapOpt}_F'$ on p

This is a "list-like filter": if f(a) is empty, will recurse into nested F^A data

Worked examples II: Constructions of filterable functors IV

Use known filterable constructions to show that

$$F^A \equiv (Int \times String) \Rightarrow (1 + Int \times A + A \times (1 + A) + (Int \Rightarrow 1 + A + A \times A \times String))$$
 is a filterable functor

- Instead of implementing Filterable and verifying laws by hand, we analyze the structure of this data type and use known constructions
- Define some auxiliary functors that are parts of the structure of F^A ,
 - ▶ $R_1^A = (Int \times String) \Rightarrow A \text{ and } R_2^A = Int \Rightarrow A$
 - $G^A = 1 + \operatorname{Int} \times A + A \times (1 + A)$ and $H^A = 1 + A + A \times A \times \operatorname{String}$
- Now we can rewrite $F^A = R_1 \left[G^A + R_2 \left[H^A \right] \right]$
 - ▶ G^A is filterable by construction 5 because it is of the form $G^A = 1 + A \times K^A$ with filterable functor $K^A = 1 + \text{Int} + A$
 - ▶ K^A is of the form 1 + A + X with constant type X, so it is filterable by constructions 1 and 3 with the Option functor 1 + A
 - ▶ H^A is filterable by construction 5 with $H^A = 1 + A \times (1 + A \times \text{String})$, while $1 + A \times \text{String}$ is filterable by constructions 5 and 1
- Constructions 3 and 4 show that $R_1 \left[G^A + R_2 \left[H^A \right] \right]$ is filterable Note that there are more than one way of implementing Filterable here

* Exercises II

- Implement a Filterable instance for type F[T] = G[H[T]] assuming that the functor H[T] already has a Filterable instance (construction 4). Verify the laws rigorously (i.e. by calculations, not tests).
- ② For type F[T] = Option[Int ⇒ Option[(T, T)]], implement a Filterable instance. Show that the filterable laws hold by using known filterable constructions (avoiding explicit proofs or tests).
- Implement a Filterable instance for $F^A \equiv G^A + \operatorname{Int} \times A \times A \times F^A$ (recursive) for a filterable functor G^A . Verify the laws rigorously.
- **3** Show that $F^A = 1 + A \times G^A$ is in general *not* filterable if G^A is an arbitrary (non-filterable) functor; it is enough to give an example.
- Show that $F^A = 1 + G^A + H^A$ is filterable if $1 + G^A$ and $1 + H^A$ are filterable (even when G^A and H^A are by themselves not filterable).
- **o** Show that the functor $F^A = A + (Int \Rightarrow A)$ is not filterable.
- **②** Show that one can define deflate: $C^{1+A} \Rightarrow C^A$ for any contrafunctor C^A (not necessarily filterable), similarly to how one can define inflate: $F^A \Rightarrow F^{1+A}$ for any functor F^A (not necessarily filterable).

* Bonus slide I: Definition of filterable contrafunctors

When is a contrafunctor filterable?

When a contrafunctor C^A with contrafmap : $(B \Rightarrow A) \Rightarrow C^A \Rightarrow C^B$ has also

- filter/withFilter: $(A \Rightarrow Boolean) \Rightarrow C^A \Rightarrow C^A same$ as for functors
- inflate: $C^A \Rightarrow C^{1+A}$ and contrafmapOpt: $(B \Rightarrow 1+A) \Rightarrow C^A \Rightarrow C^B$
- All three functions are computationally equivalent...
 - filter $(p^{A \Rightarrow Boolean}) = inflate^{C^A \Rightarrow C^{1+A}} \circ contrafmap(bop p)$
 - ▶ inflate $C^{A} \Rightarrow C^{1+A} = \text{contrafmap} (0 + x^{A} \Rightarrow x) \circ \text{filter} (_ \Rightarrow \text{true})$
 - ► contrafmapOpt $f^{B\Rightarrow 1+A}$ = inflate \circ contrafmap f
 - ▶ inflate = contrafmapOpt (id^{1+A⇒1+A})
- but have different laws
 - ▶ 4 laws (naturality, conjunction, identity, partial function) for filter
 - ▶ 3 laws (naturality, conjunction, identity) for inflate
 - ▶ 2 laws (identity, contracomposition) for contrafmapOpt
 - ★ as before, contrafmapOpt is a "twisted" version of contrafmap

Chapter 7: Functor-lifted computations II

- Examples of filterable contrafunctors
 - $C^A \equiv A \Rightarrow 1 + Z$ where Z is a fixed type
 - $C^A = 1 + A \Rightarrow Z$
- Examples of non-filterable contrafunctors
 - $ightharpoonup C^A \equiv A \times F^A \Rightarrow Z$ cannot implement inflate

24 / 25

* Bonus slide II: Structure of filterable contrafunctors

How to build up a filterable contrafunctor from parts?

- Filterable contrafunctors "can consume fewer data items"
- The easiest function to consider first is inflate

Some constructions of filterable contrafunctors:

- $C^A = Z$ (constant contrafunctor) Functor constructions (no need to check laws for these):
- ② $F^A \equiv G^A \times H^A$ for any filterable contrafunctor G^A and H^A
- **3** $F^A \equiv G^A + H^A$ for any filterable contrafunctor G^A and H^A
- $F^A \equiv G^{H^A}$ for H^A a filterable (contra)functor and G^A any (contra)functor various combinations possible here
- $F^A \equiv G^A \Rightarrow H^A$ if functor G^A and contrafunctor H^A both filterable Special constructions:
- **6** $F^A \equiv 1 + A \times G^A \Rightarrow H^A$ where G^A and H^A are filterable
- $F^A \equiv A \times G^A \Rightarrow 1 + H^A$ if G^A and H^A are filterable