

## MISSION STATEMENT

## olist



Olist is a Brazilian online e-commerce platform that wishes to carry out a segmentation of its customers. Objective is to create clusters, and subsequently propose a maintenance plan based on clustering temporal stability.

## TABLE OF CONTENTS

O1 Overview and targets O3 Clustering

O2 Data merging and analysis O4 Conclusion

# 01

# OVERVIEW & TARGETS



### **OVERVIEW & TARGETS**

Olist proposes an anonymized database that contains orders information and history, ordered products, satisfaction, and location of clients from 2017.

#### Objective:

Use unsupervised methods to regroup customers that have similar profiles.

#### Key information:

- Data available from October 2016 to October 2018
- 9 Dataframes for a total of 99k customers id
  - Customer, Seller, Geolocation
  - Order data, order payment, order review, order items
  - Product, product translation

## **OVERVIEW & TARGETS**

#### Datasets overview

#### GEOLOCATION

geolocation\_lat
geolocation\_lng
geolocation\_zip\_code\_prefix
geolocation\_city
geolocation\_state

#### CUSTOMER

customer\_id
customer\_unique\_id
customer\_zip\_code\_prefix
customer\_city
customer state

#### ORDER DATA

order\_id
customer\_id
order\_status
order\_purchase\_timestamp
order\_approved\_at
order\_delivered\_carrier\_date
order\_delivered\_customer\_date
order estimated delivery date

#### **ORDER ITEMS**

order\_id order\_item\_id product\_id seller\_id shipping\_limit\_date price freight\_value

#### **ORDER REVIEW**

review\_id
order\_id
review\_score
review\_comment\_title
review\_comment\_message
review\_creation\_date
review\_answer\_timestamp

#### ORDER PAYMENT

order\_id payment\_sequential payment\_type payment\_installments payment value

#### SELLER

seller\_id
seller\_zip\_code\_prefix
seller\_city
seller\_state

#### PRODUCT

product\_id
product\_category\_name
product\_name\_lenght
product\_description\_lenght
product\_photos\_qty
product\_weight\_g
product\_length\_cm
product\_height\_cm
product\_width\_cm

#### PRODUCT TRANSLATION

product\_category\_name
product\_category\_name\_english

## **OVERVIEW & TARGETS**



02



## DATA MERGING & ANALYSIS

#### Between products, and their translation

- Missing categories added under a translation dictionary
- Inner merge between products, and category translation, on the 'product category name' feature.
- Dropped portuguese version
- Regroupped categories into 9 large sets
  - hygiene, electronics, furniture, leisure, fashion, groceries, office, diy, misc
- Added missing dimensions and weight by category average
- Calculated volume from dimensions
- Removed:
  - name length, description, photos, length, height, width

#### PRODUCT

product id

#### product category name

product name lenght product description lenght product photos gty

product weight g product length cm product height cm product width cm

product volume cm3

#### PRODUCT TRANSLATION

product category name

product category name english

#### Between sellers, and their location

- Dropped dplicates of ZIP code
- Removed geographical outliers based on brazil coordinates
  - -35 < latitude < 5</li>
  - -75 < longitude < -35</li>
- Added sellers location by Left join on seller dataset, on zip code
- State average coordinate to fill missing coordinates
- Drop: 'state', 'city', 'zip codes'

#### GEOLOCATION

seller\_lat
seller\_long
geolocation\_zip\_code\_prefix
geolocation\_city
geolocation\_state

#### SELLER

seller\_id
seller\_zip\_code\_prefix
seller\_city
seller\_state



#### Order items with products and sellers

- Left join on order items from products, based on 'product\_id' feature
- As there are multiple items per order, these items are aggregated for each order.
- Left join on order items from sellers, on 'seller id'

# seller\_id seller\_zip\_code\_prefix seller\_city seller\_state seller\_lat seller\_long

# ORDER ITEMS order\_id order\_item\_id product\_id seller\_id shipping\_limit\_date price

freight value



agg dict = {'order item id': np.max,

'seller\_id': np.max,
'price': np.sum,

'freight value': np.sum,

'product\_weight\_g': np.mean,
'product volume': np.mean,

'product category name english': mode

#### Regrouping all orders data

- Order payments rows with same order id are grouped
- Only orders that are already delivered are considered, the others are discarded
- Left join of order\_dataset with order\_item, on 'order id'
- Left join of orders with order\_reiew, on 'order\_id'
- Left join of orders with oder payments, on 'order id'
- Missing review scores are replaced by the median grade
   3

#### ORDER DATA

# order\_id customer\_id order\_status order\_purchase\_timestamp order\_approved\_at order\_delivered\_carrier\_date order\_delivered\_customer\_date order estimated delivery date

#### ORDER ITEMS

```
order_id
order_item_id
product_id
seller_id
shipping_limit_date
price
freight_value
seller_city
seller_state
seller_lat
seller_long
product_category_name_english
product_weight_g
product_volume cm3
```

#### ORDER REVIEW

# order\_id review\_score review\_comment\_title review\_comment\_message review\_creation\_date review answer timestamp

review id

#### ORDER PAYMENT

## order\_id payment\_sequential perc credit

payment\_installments
payment value

#### Regrouping all customer data

- Left join of customers with orders, on 'customer id'
- 2972 customers have no order, these rows are dropped
- Left join of customer with geolocation, on zip code
- Filling missing customer coordinates by using states

#### CUSTOMER

#### customer id

customer unique id

#### customer zip code prefix

customer\_city customer state

#### GEOLOCATION

geolocation\_lat
geolocation lng

#### geolocation zip code prefix

geolocation\_city
geolocation state

#### ORDER DATA

#### customer id

order purchase timestamp order delivered customer date order item id price freight value seller city seller state seller lat seller long product category name english product weight g product volume cm3 review score perc credit payment installments payment value

#### **Duplicates**

- Customer\_id, and order\_id show 529 duplicates. They are removed.
- 'customer\_id' feature is removed, as it is unique to order\_id, and its name is misleading

#### Location

- Customer\_city contains hundreds of cities, which don't include significant part of the population. This feature is removed.
- States are grouped in 5 regions. 2 regions have more than 95% orders.

#### **Payment**

• 'Price' feature can be removed as as payment value already gives the total.

#### **Dates**

- Purchase and delivery dates are converted with pd.to\_datetime
- 'delivery\_time' is created, it's the difference between date of delivery and date of purchase.

#### **Customers aggregation**

Aggregation is carried out while grouping by customer\_unique\_id

```
agg_dict = {
    'nb_of_orders': np.max,
    'customer_state': mode,
    'freight_value': np.sum,
    'perc_credit': np.mean,
    'payment_installments': np.mean,
    'payment_value': np.sum,
    'category': mode,
    'product_weight_g': np.mean,
    'product_volume': np.mean,
    'nb_of_items': np.mean,
    'review_score': np.mean,
    'date_purchase': np.max,
    'delivery_time': np.mean,
}
```

- Recency is calculated from date of purchase
- Frequency is directly given by nb of orders
- Monetary is directly taken from payment\_value

#### Cleaned features overview

Customer information

ID

customer state

Order information

frequency

product\_weight\_g product volume cm3

category

mean nb of items

Time

mean delivery time

date purchase

recency

Payment

perc credit

mean installments

monetary

freight value

Review

mean\_review score

#### Numerical features

#### Quantitative variables distribution



#### Numerical variables



#### Numerical variables

Log distribution of quantitative features



#### Categorical features



#### Categorical features





#### Multivariate analysis

#### Correlation heatmap



#### Multivariate analysis

#### **Principal Component Analysis**





## Projection of points on F1 and F2



#### Multivariate analysis

ANOVA

$$\eta^2 = \frac{ESS}{TSS}$$

| 15. | Numerical_features | customer_state | category |
|-----|--------------------|----------------|----------|
|     |                    | customer_state | category |
| 0   | freight_value      | 0.112305       | 0.026310 |
| 1   | monetary           | 0.013882       | 0.022516 |
| 2   | product_weight_g   | 0.000097       | 0.183267 |
| 3   | product_volume_cm3 | 0.000592       | 0.235835 |
| 4   | frequency          | 0.000124       | 0.004269 |
| 5   | recency            | 0.001761       | 0.011464 |
| 6   | mean_nb_of_items   | 0.000380       | 0.011825 |
| 7   | mean_review_score  | 0.002563       | 0.002841 |
| 8   | mean_delivery_time | 0.142176       | 0.006026 |
| 9   | mean_installments  | 0.005778       | 0.023064 |
| 10  | perc_credit        | 0.001153       | 0.002137 |

# 03

## CLUSTERING



#### **RFM Segmentation**

- Recency, Frequency, Monetary features are selected
- There are normalized through StandardScaler
- Segmentation is carried out based on tiers:
  - 4 tiers for recency and monetary
  - Only 2 tiers for frequency due to limited nb of customers that come more than once
- Names are attributed based on scores:
  - 1-1-1 Best customers
  - 1-2-1 and 1-2-2: High-spending new customers
  - 1-1-3 and 1-1-4: Lowest-spending active loyal customers
  - 4-1-1, 4-1-2, 4-2-1 and 4-2-2: Churned best customers

#### **RFM Segmentation**

 Low number of customers coming more than once limit the relevance of this type of study.





#### **RFM Segmentation**

- Recency, Frequency, Monetary features are selected
- There are normalized through StandardScaler
- Segmentation is carried out based on tiers:
  - 4 tiers for recency and monetary
  - Only 2 tiers for frequency due to limited nb of customers that come more than once
- Names are attributed based on scores:
  - 1-1-1 Best customers
  - 1-2-1 and 1-2-2: High-spending new customers
  - 1-1-3 and 1-1-4: Lowest-spending active loyal customers
  - 4-1-1, 4-1-2, 4-2-1 and 4-2-2: Churned best customers

#### Selection of more features as an alternative to RFM

- A random sample of 10000 is considered, to reduce convergency time.
- Follow features are selected:
  - Monetary
  - Frequency
  - Recency
  - Percentage of credit
  - Mean review score
  - Mean number of items
  - Mean product weight
- Features are normalized with StandardScaler

#### Selection of more features as an alternative to RFM

#### K-means clustering

Elbow method based on distortion gives a elbow at k = 7 clusters



#### Selection of more features as an alternative to RFM

#### K-means clustering

Metrics also confirm 7 clusters is an interesting choice



#### Selection of more features as an alternative to RFM

#### K-means clustering





#### Selection of more features as an alternative to RFM

#### Hierarchical clustering

Elbow method based on distortion gives a elbow at k = 6 clusters



#### Selection of more features as an alternative to RFM

#### Hierarchical clustering

Metrics also confirm 6 clusters is an interesting choice, mostly for stability



#### Selection of more features as an alternative to RFM

#### Hierarchical clustering





#### Selection of more features as an alternative to RFM

#### Hierarchical clustering



#### Selection of more features as an alternative to RFM

#### **DBScan clustering**



#### Selection of more features as an alternative to RFM

#### **DBScan clustering**

Metrics confirm eps = 4 gives best results for silhouette



#### Selection of more features as an alternative to RFM

#### **DBScan clustering**



### CLUSTERING Selection of more features as an alternative to RFM

#### Best model and radar plot

 K-means has the best stability according to ARI score, it is kept with 7 clusters



## MAINTENANCE

#### K-means clustering with 7 clusters

- ARI score as a function of time
- There seems to be a drop after 45 days



04



CONCLUSION

#### CONCLUSION

- Data available from October 2016 to October 2018
- 9 Dataframes for a total of 99k customers id
  - Customer, Seller, Geolocation
  - Order data, order payment, order review, order items
  - Product, product translation
- Objective: cluster customers with unsupervised learning
- Only 3% of customers buy more than once, RFM is therefore limited
- Best clustering model: K-means, with 7 clusters
- Maintenance proposed: every 45 days, based on stability





## THANK YOU

Victor Benard