WEST

End of Result Set

Generate Collection Print

L1: Entry 2 of 2

File: DWPI

Jun 3, 2003

DERWENT-ACC-NO: 1998-138949

DERWENT-WEEK: 200343

COPYRIGHT 2003 DERWENT INFORMATION LTD

TITLE: Exhaust gas desulphurisation system using limestone for boiler - has ammonium sulphate reclaiming tower to remove ammonium sulphate smoke and dust from combustion gas

PATENT-ASSIGNEE:

ASSIGNEE CODE MITSUBISHI JUKOGYO KK MITO

PRIORITY-DATA: 1996JP-0173467 (July 3, 1996)

PATENT-FAMILY:

 PUB-NO
 PUB-DATE
 LANGUAGE
 PAGES
 MAIN-IPC

 JP 3411755 B2
 June 3, 2003
 007
 B01D053/50

 JP 10015344 A
 January 20, 1998
 008
 B01D053/50

APPLICATION-DATA:

PUB-NO APPL-DATE APPL-NO DESCRIPTOR

JP 3411755B2 July 3, 1996 1996JP-0173467

JP 3411755B2 JP 10015344 Previous Publ.

JP 10015344A July 3, 1996 1996JP-0173467

INT-CL (IPC): <u>B01</u> <u>D</u> <u>53/34</u>; <u>B01</u> <u>D</u> <u>53/50</u>; <u>B01</u> <u>D</u> <u>53/58</u>; <u>B01</u> <u>D</u> <u>53/77</u>

ABSTRACTED-PUB-NO: JP 10015344A

BASIC-ABSTRACT:

The system has an air heater (2) to which the exhaust gas from a boiler is supplied. Ammonia is added to the exhaust gas from an ammonia tank (4). The exhaust gas is subsequently supplied to an ammonium sulphate reclaiming tower (3) where smoke, dust and ammonium sulphate are removed. The exhaust gas from the ammonium sulphate reclaiming tower is supplied to an absorption tower (5) where silicon dioxide is removed.

ADVANTAGE - The system uses ammonia effectively, improves absorption capacity of tower and provides desired plaster purity.

CHOSEN-DRAWING: Dwg.1/8

TITLE-TERMS: EXHAUST GAS DESULPHURISE SYSTEM LIMESTONE BOILER AMMONIUM SULPHATE RECLAIM TOWER REMOVE AMMONIUM SULPHATE SMOKE DUST COMBUST GAS

DERWENT-CLASS: E36 J01

CPI-CODES: E11-Q02; E31-F01A; E32-A02; E34-D03; J01-E02G;

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10015344 A

(43) Date of publication of application: 20.01.98

(51) Int. CI

B01D 53/50

B01D 53/77

B01D 53/34

B01D 53/58

(21) Application number: 08173467

(22) Date of filing: 03.07.96

(71) Applicant:

MITSUBISHI HEAVY IND LTD

(72) Inventor:

TAKASHINA TORU UGAWA NAOHIKO ONIZUKA MASAKAZU OKAZOE KIYOSHI IWASHITA KOICHIRO

(54) FLUE GAS DESULFURIZATION DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a flue gas desulfurization device constituted in such a manner that ammonium sulfate generated when desulfurization is performed by injecting ammonium into a flue gas, can be economically recovered.

SOLUTION: Ammonia is injected from an ammonia tank 4 into a combustion flue gas passing through an air preheater 2 originating from a boiler 1, and is guided to an ammonium sulfate recovery tower 3. Most if soot and dust and ammonium sulfate are removed in the ammonium sulfate recovery tower 3, and the flue gas is guided to a absorption tower 5 for a lime/gypsum process desulfurization device to remove SO₂.

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-15344

(43)公開日 平成10年(1998) 1月20日

(51) Int.Cl. ⁸	識別記号	庁内整理番号	FΙ	技術表示箇所	
B01D 53/5			B 0 1 D 53/	3/34 1 2 5 E	
53/77				ZAB	
53/34	ZAB			1 3 1	
53/58					
			審査請求	未請求 請求項の数6 OL (全 8 頁)	
(21)出願番号	特願平8-173467		(71)出願人	000006208	
				三菱重工業株式会社	
(22)出願日	平成8年(1996)7月3日			東京都千代田区丸の内二丁目5番1号	
			(72)発明者	高品 徹	
				広島市西区観音新町四丁目6番22号 三菱	
				重工業株式会社広島研究所内	
		•	(72)発明者	鵜川 直彦	
				広島市西区観音新町四丁目6番22号 三菱	
				重工業株式会社広島研究所内	
			(72)発明者	鬼塚雅和	
				広島市西区観音新町四丁目6番22号 三菱	
				重工業株式会社広島研究所内	
			(74)代理人	弁理士 石川 新	
				最終頁に続く	

(54) 【発明の名称】 排煙脱硫装置

(57)【要約】

【課題】 排ガス中にアンモニアを注入して脱硫する場合に生成する硫酸アンモニウムを経済的に回収可能に構成した排煙脱硫装置を提供する。

【解決手段】 ボイラ1を出て空気予熱器2を通った燃焼排ガス中にはNH3 タンク4からNH3 が注入され、硫酸アンモニウム回収塔3に導かれる。硫酸アンモニウム回収塔3ではばいじんと硫酸アンモニウムが大部分除去される。そのあと排ガスは石灰石膏法脱硫装置の吸収塔5に導かれ、SO2 が除去される。

【特許請求の範囲】

アンモニアを注入された排ガスを吸収塔 【請求項1】 で脱硫処理する湿式石灰石膏法排煙脱硫装置において、 前記吸収塔前流に気液接触型の硫酸アンモニウム回収塔 を備えたことを特徴とする排煙脱硫装置。

【請求項2】 前記硫酸アンモニウム回収塔の上部に簡 易電気集じん器を備え、同簡易電気集じん器で捕捉され たばいじんを前記硫酸アンモニウム回収塔循環液に回収 するよう構成したことを特徴とする請求項1記載の排煙 脱硫装置。

【請求項3】 前記硫酸アンモニウム回収塔の抜き出し 液にアルカリを添加し、気体のアンモニアを回収する装 置を備えたことを特徴とする請求項1または請求項2記 載の排煙脱硫装置。

【請求項4】 前記硫酸アンモニウム回収塔の抜き出し 液を前記吸収塔に送液するよう構成したことを特徴とす る請求項1または請求項2記載の排煙脱硫装置。

【請求項5】 前記硫酸アンモニウム回収塔の抜き出し 液を固液分離処理し、前記吸収塔に送液するよう構成し たことを特徴とする請求項1または請求項2記載の排煙 20 脱硫装置。

【請求項6】 前記吸収塔の抜き出し液を固液分離処理 し、アルカリを添加し、気体のアンモニアを回収する装 置を備えたことを特徴とする請求項4または請求項5記 載の排煙脱硫装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は石灰あるいは石灰石 を用いて排ガス中の亜硫酸ガス(以下SО2 と称す)を 除去する石灰石膏法排煙脱硫装置に関する。

[0002]

【従来の技術】石灰あるいは石灰石を用いて排ガス中の SО2 を除去する石灰石膏法排煙脱硫装置を組込んだ従 来の排ガス処理設備の系統図を図8に示す。ボイラ21 から出たSО2 、三酸化硫黄 (以下SО3 と称す)、ば いじん等を含んだ排ガスは空気予熱器22で熱回収さ れ、ばいじん除去のため電気集じん器23に導かれる。

【0003】電気集じん器23に導入されるガスには、 SO3 が含まれるためこれを中和する目的でSO3 のモ ル量の2倍以上のアンモニア(以下NH3 と称す)24 が注入される。2倍以上とする理由は次式で示される硫 酸アンモニウムを生成させるためである。

[0004]

 $2 \text{ NH}_3 + \text{SO}_3 + \text{H}_2 \text{ O} \rightarrow (\text{NH}_4)_2 \text{ SO}_4$ 仮にNH3 が2倍以下であったり、反応が十分に進行し ないと融点の低い重硫酸アンモニウム(NH4 HS O4) が生成し、付着等の不具合が生じる。生成した硫 酸アンモニウムは前記電気集じん器23でばいじんとと もに除去される。硫酸アンモニウムの生成量は明らかに

の排ガスよりも重油等の石油系燃料焚き排ガスに多い。

【0005】ばいじんと硫酸アンモニウムの大部分が除 去された排ガスは脱硫装置25に導かれ、吸収剤である 石灰石26を含むスラリーと脱硫装置25の吸収塔で気 液接触して、排ガスからSО2 が取り除かれる。取り除 かれたSO2 は排ガスあるいは脱硫装置25に吹き込ま れる酸素により、吸収液の中で酸化され、最終的には石 膏を生成する。

【0006】生成された石膏は固液分離器27によって 10 ろ液と石膏28に分離され、石膏が回収される。ろ液は 一部排水29として系外へ排出されるが、多くは石灰石 スラリー調整用として、循環使用される。

【0007】以上の脱硫装置での反応は以下のようにま とめられる。

[0008]

 $SO_2 + CaCO_3 + 1/2 O_2 \rightarrow CaSO_4 + CO_2$ 一方、脱硫装置25で脱硫処理された排ガスは必要あれ ば、加熱器30で加熱され、煙突31より大気へ放出さ れる。

[0009]

【発明が解決しようとする課題】前述の如く、従来の技 術では排ガス中で生成した硫酸アンモニウムは大部分電 気集じん器23で除去され、ばいじんと混合された形で 回収される。石油系燃料の排ガスの場合、ばいじんは未 燃焼のカーボンが主体であるため、カーボンと硫酸アン モニウムを主成分とする混合物となる。

【0010】この混合物はこれ自体では有効利用するこ とは現実的には難しく、仮に硫酸アンモニウムのみを回 収しようとすれば混合物を液体に再溶解させ、分離する 30 などの新たな装置が必要となり、経済的な方法とは言え

【0011】本発明は、排ガス中にNH3 を注入して脱 硫する場合に生成する硫酸アンモニウムを経済的に回収 可能に構成した排煙脱硫装置を提供することを課題とし ている。

【0012】また本発明は、上記に加え、回収した硫酸 アンモニウムから脱硫用に再利用可能な気体状のNH3 を回収可能な排煙脱硫装置を提供することを課題として

【0013】更に、本発明は脱硫装置の吸収塔における SO2 吸収能力を高め、また、純度の高い石膏を生成可 能な排煙脱硫装置を提供することもその課題としてい る。

[0014]

【課題を解決するための手段】本発明は、アンモニアを 注入された排ガスを吸収塔で脱硫処理する湿式石灰石膏 法排煙脱硫装置における前記課題を解決するため、脱硫 装置の吸収塔前流に気液接触型の硫酸アンモニウム回収 塔を設けたもので、これによって従来型のように電気集 SOaの畳によってきまるが、一般に石炭焚きのボイラ 50 じん器を設けずに、排ガス中のばいじんおよび硫酸アン

-2-

40

モニウムを回収できるようにしたものである。

【0015】このように構成した本発明の排煙脱硫装置 - において、気液接触型の硫酸アンモニウム回収塔のばい じん除去率がばいじんの性状によって満足できない場合 には、硫酸アンモニウム回収塔の上部に簡易電気集じん 器を設置し、簡易電気集じん器で捕捉されたばいじんを 硫酸アンモニウム回収塔循環液に回収し、ばいじん除去 率を高めるのが効果的である。

【0016】なお、本発明による排煙脱硫装置の構成は 従来型の電気集じん器が設置されている場合にも電気集 じん器前流に注入された過剰のNH3 (一般的には、硫 酸アンモニウムの生成を十分行わせるため反応当量以上 のNH3 が注入される)をこの硫酸アンモニウム回収塔 で回収することもできる。

【0017】硫酸アンモニウム回収塔の循環液中には当 然硫酸アンモニウムが大量に溶解しているため、この液 を抜き出し、水酸化カルシウムあるいは水酸化ナトリウ ム等のアルカリを添加し、加熱および/または減圧する ことによって、気体状のNH3を回収することも可能で ある。この回収したNH3 は排ガス中に注入するNH3 として利用可能であり、NH3 の有効利用も図れる。

【0018】本発明による排煙脱硫装置において、硫酸 アンモニウム回収塔の循環液には大量の硫酸アンモニウ ムが溶解していることは前述の通りである。詳細は実施 形態において後述するが、本発明者らの研究によって、 前記脱硫装置吸収塔の吸収液の吸収能力が硫酸アンモニ ウムからもたらされるアンモニウム塩の添加によって、 飛躍的に向上することが見出された。本発明者らはこの 現象に着目し、硫酸アンモニウム回収塔の抜き出し液を 吸収塔に送液し、吸収塔の性能向上を実現した。

【0019】硫酸アンモニウム回収塔からの抜き出し液 には硫酸アンモニウムとともにばいじんが含まれる。一 方、前記脱硫装置吸収塔の吸収液からは直接石膏が回収 される。したがって、硫酸アンモニウム回収塔で除去さ れるばいじん量が多い場合、直接、硫酸アンモニウム回 収塔抜き出し液を吸収塔に送液すると、吸収液に大量の ばいじんが混入し、所望の石膏の純度が得られないこと

がある。

【0020】その場合、硫酸アンモニウム回収塔からの 抜き出し液から固液分離操作によりばいじんを除去し、 吸収塔へ送液するように構成すると石膏純度を向上させ るのに有効である。硫酸アンモニウムは溶解しているの でこの操作による損失は少ない。

【0021】吸収塔に送液された抜き出し液に含まれる 硫酸アンモニウムは前記したように脱硫装置の吸収塔に おいて、吸収液の性能向上効果を発現するが、一部は排 10 水として、系外へ排出する必要がある。

【0022】これを排水処理し、放流することも可能で あるが、前述したと同様に、この液に水酸化カルシウム あるいは水酸化ナトリウム等のアルカリを添加し、加熱 および/または減圧することによって、気体状のNH3 を回収することも可能である。この回収したNH3 は排 ガス中に注入するNH3 として利用可能であり、NH3 の有効利用も図れる。

[0023]

【発明の実施の形態】以下、本発明による排煙脱硫装置 20 について図1~図6に示した実施の形態に基づいて具体 的に説明する。

【0024】 (第1実施形態) 図1に本発明の第1実施 形態による排煙脱硫装置の系統図を示す。本第1実施形 態は重油焚き排ガスの処理に係わるものである。ボイラ 1からの燃焼排ガスは空気予熱器2を経て、硫酸アンモ ニウム回収塔3に導かれる。空気予熱器2と硫酸アンモ ニウム回収塔3の間には、NH3 タンク4から供給され るNH3 が注入されている。

【0025】硫酸アンモニウム回収塔3でばいじんと硫 30 酸アンモニウムが大部分除去された排ガスは、石灰石膏 法に基づいた脱硫装置の吸収塔5に導かれ、ここで大部 分のSO2 が除去される。ばいじん、硫酸アンモニウ ム、SO2 が取り除かれた排ガスは煙突6を介して、大 気へ放出される。表1及び表2に本装置のテスト条件を 示す。

[0026]

【表1】

排ガス条件

*
重油燃烧排ガス
2 0 0 Nm ³ /h
1 4 5 ℃
1 4 5 0 ppm(乾)
8 5 ppm(乾)
450mg/m³N (乾)
2 1 0 ppm(乾)

[0027]【表2】

脱硫装置条件

硫酸アンモニウム回収塔液ガス比4 1 / m³N硫酸アンモニウム回収塔ガス流速1 2 m / s吸収塔液ガス比1 4 1 / m³N吸収塔ガス流速4.5 m / s吸収塔吸収剤炭酸カルシウム

5

【0028】表1、表2の条件のもとで運転した結果、硫酸アンモニウム回収塔3出口において、ばいじん濃度はばいじん成分と硫酸アンモニウム成分あわせて210 mg/m³Nとなり、ばいじん成分、硫酸アンモニウム成分ともに、80%程度が硫酸アンモニウム回収塔3で除去できた。

【0029】その結果、硫酸アンモニウム回収塔3の抜き出し液からは75g/hの硫酸アンモニウムが回収できた。また、この抜き出し液のなかにはガス状の NH_3 も一部回収され、 NH_3 の回収率としてはさらに向上した。

【0030】(第2実施形態)第2実施形態による排煙 20 脱硫装置の系統図を図2に示す。本第2実施形態は第1 実施形態による装置における硫酸アンモニウム回収塔3 のばいじん除去率を高めることを目的にしたものであり、硫酸アンモニウム回収塔3の上部に簡易電気集じん器7を設置し、簡易電気集じん器7で捕捉されたばいじんを硫酸アンモニウム回収塔3の循環液に回収するように構成したものである。

【0031】簡易電気集じん器7は15cm角、高さ1mであり、37kVの電圧を与え、3mAの電流を通じるようにした。なお、簡易電気集じん器7の電極上に捕捉 30されたばいじんは定期的なハンマリングにより、硫酸アンモニウム回収塔3へ落下させた。

【0032】この結果、硫酸アンモニウム回収塔3の出口においてばいじん濃度はばいじん成分と硫酸アンモニウム成分あわせて110mg/m³Nとなり、ばいじん成分、硫酸アンモニウム成分ともに、90%程度が硫酸アンモニウム回収塔3で除去でき、硫酸アンモニウム回収塔3のばいじん除去率が改善された。

【0033】(第3実施形態)第3実施形態による排煙脱硫装置の系統図を図3に示す。本第3実施形態は第1 実施形態における硫酸アンモニウム回収塔3の抜き出し液から気体のNH3の回収を行った試験である。硫酸アンモニウム回収塔3の循環液の一部を抜き出し、pH調整槽14へ導く。

【0034】pH調整槽14で水酸化カルシウムを添加してpHを11に調整後、加熱器8へ送液する。加熱器8で放散したNH3は蒸留器9へ送られ、NH3が濃縮される。

【0035】本実施形態では20重量%のアンモニア水 去率の向上効果 溶液が回収できた。この回収されたアンモニア水は返送 50 可能となった。

ライン10を介して、NH3 タンク4へ送られ、NH3 注入用としてリサイクルできた。

【0036】(第4実施形態)第4実施形態による排煙 脱硫装置の系統図を図4に示す。本第4実施形態は第1 実施形態における硫酸アンモニウム回収塔3の抜き出し 液を脱硫装置の吸収塔5へ送液を行った試験である。

【0037】硫酸アンモニウム回収塔3の液の一部を抜き出し、送液ライン11を介して、吸収塔5へ送液し に0028】表1、表2の条件のもとで運転した結果、 硫酸アンモニウム回収塔3出口において、ばいじん濃度 はばいじん成分と硫酸アンモニウム成分あわせて210

> 【0038】(第5実施形態)第5実施形態による排煙 脱硫装置の系統図を図5に示す。本第5実施形態は第1 実施形態における硫酸アンモニウム回収塔3の抜き出し 液を固液分離処理し、抜き出し液中のばいじん成分を除 去し、脱硫装置の吸収塔へ送液を行った試験である。

> 【0039】すなわち、硫酸アンモニウム回収塔3の液の一部を抜き出し、送液ライン11を介して、固液分離器12に導く。固液分離器12では固形分のばいじん成分が除去されるが、硫酸アンモニウムは可溶成分であるため、固液分離器12を通過し吸収塔5へ送られる。

【0040】この結果、吸収塔5でのSO2除去率の向上効果を維持した上で、ばいじん成分が除去できたため、吸収塔5で回収される石膏の純度が向上した。固液分離器12を設置しない場合の第4実施形態の場合と比較し、石膏純度は以下の通りであった。第4実施形態における石膏純度:94%、第5実施形態における石膏純度:97%。

【0041】(第6実施形態)第6実施形態による排煙 脱硫装置の系統図を図6に示す。本第6実施形態は第4 実施形態あるいは第5実施形態における吸収塔抜き出し 液を固液分離後アルカリを添加して、気体のNH3を回 収した試験である。

【0042】すなわち、吸収塔抜き出しライン13を介して、脱硫装置の吸収塔5を循環する液を一部抜き出し、固液分離器12へ送液し、吸収液中の石膏を主体とする固形分を除去する。固液分離処理した液をpH調整槽14に送り、水酸化カルシウムを添加してpHを11に調整後、加熱器15へ送液する。

【0043】加熱器15で放散したNH3は蒸留器16 へ送られ、NH3が濃縮される。本実施形態では20重量%のアンモニア水溶液が回収できた。この回収されたアンモニア水はNH3返送ライン17を介して、NH3 タンク4へ送られる。

【0044】一方、蒸留器16の底部より排出されるろ液はろ液返送ライン18を介して石灰石調整槽19へ送られ、SO2吸収剤である石灰石を添加し、再び吸収塔5へリサイクルする。この結果、吸収塔5でのSO2除去率の向上効果を維持した上で、NH3のリサイクルも可能となった。

-4-

6

[0045]

【発明の効果】以上、実施形態でも詳細に説明したように、本発明による排煙脱硫装置では、脱硫装置の吸収塔前流に気液接触型の硫酸アンモニウム回収塔を設け、要すれば硫酸アンモニウム回収塔の上部に簡易電気集じん器を備え、簡易電気集じん器で捕捉されたばいじんを硫酸アンモニウム回収塔循環液に回収し、ばいじん除去率を高める手段を用い、従来型の電気集じん器を設けずに、排ガス中の硫酸アンモニウムを回収できる。

【0046】また、本発明による排煙脱硫装置では、前 10 記した構成に加え、硫酸アンモニウム回収塔の液を抜き出し、それに水酸化カルシウムあるいは水酸化ナトリウム等のアルカリを添加し、加熱および/または減圧することによって、気体状のNH3を回収することも可能となった。この回収したNH3は排ガス中に注入するNH3として利用可能であり、NH3の有効利用も図れた。

【0047】また、吸収液のSO2 吸収能力が硫酸アンモニウムの添加によって、飛躍的に向上することが見出されたため、本発明による排煙脱硫装置では、硫酸アンモニウム回収塔の抜き出し液を吸収塔に送液し、吸収塔 20の性能向上を実現できた。

【0048】また、所望の石膏純度が得られない場合には、抜き出し液から固液分離操作によりばいじんを除去するように構成して石膏純度を向上させることも可能となった。

【0049】吸収塔に送液された抜き出し液に含まれる 硫酸アンモニウムは吸収塔の吸収液に溶解しているが、この液に水酸化カルシウムあるいは水酸化ナトリウム等 のアルカリを添加するように構成した本発明の装置においては、アルカリ添加後の液を加熱および/または減圧 30 することによって、気体状のNH3 を回収することも可能となった。

【図面の簡単な説明】

【図1】本発明の第1実施形態による排煙脱硫装置を示

す系統図。

【図2】本発明の第2実施形態による排煙脱硫装置を示す系統図。

【図3】本発明の第3実施形態による排煙脱硫装置を示す系統図。

【図4】本発明の第4実施形態による排煙脱硫装置を示す系統図。

【図 5 】本発明の第 5 実施形態による排煙脱硫装置を示す系統図。

【図6】本発明の第6実施形態による排煙脱硫装置を示す系統図。

【図7】アンモニウム塩のSO2 性能向上効果を示す図。

【図8】従来技術による排煙脱硫装置を示す系統図。 【符号の説明】

- 1 ボイラ
- 2 空気予熱器
- 3 硫酸アンモニウム回収塔
- 4 NH3 タンク
- 5 吸収塔
 - 7 簡易電気集じん器
 - 8 加熱器
 - 9 蒸留器
 - 10 返送ライン
 - 11 送液ライン
 - 12 固液分離器
 - 13 吸収塔抜き出しライン
 - 14 pH調整槽
 - 15 加熱器
- 30 16 蒸留器
 - 17 NH3 返送ライン
 - 18 ろ液返送ライン
 - 19 石灰石調整槽

【図4】

【図2】

【図5】

【図3】

【図6】

【図8】

フロントページの続き

(72)発明者 岡添 清

東京都千代田区丸の内二丁目 5 番 1 号 三 菱重工業株式会社内

(72)発明者 岩下 浩一郎

東京都千代田区丸の内二丁目 5 番 1 号 三 菱重工業株式会社内