

COMP3204/COMP6223: Computer Vision

Machine learning for pattern recognition

Jonathon Hare jsh2@ecs.soton.ac.uk

RETURN TO D-STATION.

- * Recognising patterns is a large part of computer vision
 - * i.e. recognising text, people, objects, ...
- * Obviously there's a lot of overlap with intelligent algorithms, machine learning and AI.
- * This lecture will cover (recap?) some of the fundamentals of machine learning and introduce how you connect arrays of pixels to machine learning algorithms.

Feature spaces

Key terminology

- * featurevector: a mathematical vector
 - * just a list of (usually Real) numbers
 - * has a fixed number of elements in it
 - * The number of elements is the dimensionality of the vector
 - * represents a **point** in a **featurespace** or equally a **direction** in the featurespace
 - * the dimensionality of a featurespace is the dimensionality of every vector within it
 - vectors of differing dimensionality can't exist in the same featurespace

Demo: a really simple feature extractor

Distance and similarity

Distances in featurespace

- * Feature extractors are often defined so that they produce vectors that are *close* together for *similar* inputs
 - * Closeness of two vectors can be computed in the feature space by measuring a distance between the vectors.

Euclidean distance (L2 distance)

- * L2 distance is the most intuitive distance...
 - * The straight-line distance between two points
 - * Computed via an extension of Pythagoras theorem to *n* dimensions:

$$D_2(p,q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2} = ||p - q|| = \sqrt{(p - q) \cdot (p - q)}$$

L1 distance (aka Taxicab/Manhattan)

* L1 distance is computed along paths parallel to the axes of the space:

$$D_1(p,q) = \sum_{i=1}^{n} |p_i - q_i| = ||p - q||_1$$

Cosine Similarity

- Cosine similarity measures the cosine of the angle between two vectors
 - * It is not a distance!

$$cos(\theta) = \frac{p.q}{\|p\| \|q\|} = \frac{\sum_{i=1}^{n} p_i q_i}{\sqrt{\sum_{i=1}^{n} p_i^2} \sqrt{\sum_{i=1}^{n} q_i^2}}$$

* Useful if you don't care about the relative length of the vectors

Choosing good featurevector representations for machine-learning

- * Choose features which allow to distinguish objects or classes of interest
 - Similar within classes
 - Different between classes
- Keep number of features small
 - * Machine-learning can get more difficult as dimensionality of featurespace gets large

Supervised Machine Learning: Classification

- * Classification is the process of assigning a class label to an object (typically represented by a vector in a feature space).
- * A supervised machinelearning algorithm uses a set of pre-labelled *training data* to learn how to assign class labels to vectors (and the corresponding objects).
 - * A binary classifier only has two classes
 - * A multiclass classifier has many classes.

Cat or Dog?

Linear classifiers

Linear classifiers

Linear classifiers

Demo: perceptron linear classifier

Linear
classifiers
work best
when the data
is linearly
separable...

No hope for a linear classifier!

Non-linear binary classifiers, such as Kernel Support Vector **Machines** learn nonlinear decision boundaries

Have to be careful... you might loose generality by overfitting

Multiclass classifiers: KNN

Demo: KNN Classification

KNN Problems

- * Computationally expensive if there are:
 - Lots of training examples
 - * Many dimensions

Multiclass linear classifiers

- * A linear classifier is by definition binary
 - * So, how can we solve multiclass problems with linear classifiers?
 - * One versus All (OvA)/One versus Rest (OvR)
 - * one classifier per class
 - * One versus One (OvO)
 - * K(K-1) / 2 classifiers

Unsupervised Machine Learning: Clustering

- * Clustering aims to group data without any prior knowledge of what the groups should look like or contain.
- * In terms of featurevectors, items with similar vectors should be grouped together by a clustering operation.
- * Some clustering operations create overlapping groups; for now we're only interested in disjoint clustering methods that assign an item to a single group.

K-Means Clustering

- * K-Means is a classic featurespace clustering algorithm for grouping data into *K* groups with each group represented by a *centroid*:
 - * The value of K is chosen
 - * K initial cluster centres are chosen
 - Then the following process is performed iteratively until the centroids don't move between iterations:
 - Each point is assigned to its closest centroid
 - * The centroid is recomputed as the mean of all the points assigned to it. If the centroid has no points assigned it is randomly re-initialised to a new point.
 - * The final clusters are created by assigning all points to their nearest centroid.

Demo: K-Means Clustering

Summary

- * Extracting features is key part of computer vision
 - * Typically, these are numerical vectors that can be used with machine-learning techniques.
 - * Featurevectors can be compared by measuring distance
- Classification learns what class to assign a feature to.
- Clustering groups similar features.