Estadística Multivariada

Haydeé Peruyero

Contents

1	Est	adística Multivariada	5
	1.1	Temario	5
	1.2	Evaluación	6
	1.3	Proyecto final	6
	1.4	Referencias	7
	1.5	Material interesante	7
	1.6	DataCamp	7
2	Reg	gresión múltiple	9
	2.1	¿Por qué estadística multivariada?	9
	2.2	Regresión múltiple	13
	2.3	Estimación de parámetros	17
	2.4	Pruebas de Hipótesis	23
	2.5	Intervalos de confianza	27
	2.6	Ejercicios Regresión Lineal Multiple	31
	2.7	Validación de Supuestos	36
	2.8	Análisis de Varianza	49
	2.9	Selección del modelo	60
3	Ana	álisis de Componentes Principales	79
4	Ana	álisis Factorial	81
5	Ana	álisis de Conglomerados	83

4 CONTENTS

6 Análisis de Discriminante			
7	Apé	éndices	87
	7.1	Introducción a R $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	87
	7.2	$\operatorname{Git} + \operatorname{Github} \ \ldots \ \ldots$	87
	7.3	Gráficas Multivariadas	87
	7.4	Escalas de Medición	87
	7.5	Valores Faltantes	87

Chapter 1

Estadística Multivariada

1.1 Temario

- 1. Regresión múltiple
- 1.1 Mínimos cuadrados.
- 1.2 Medidas de bondad de ajuste.
- 1.3 Determinación del número de variables predictorias.
 - 2. Análisis de componentes principales
- 2.1 Descripción de la metodología.
- 2.2 Técnicas de extracción de componentes principales.
- 2.3 Determinación del número de componentes principales.
 - 3. Análisis factorial
- 3.1 Descripción de la metodología del análisis factorial.
- 3.2 Descripción del modelo básico.
- 3.3 Método de cálculo.
- 3.4 Comparación con la técnica del análisis de componentes principales.
- 3.5 Usos de software (R, Minitab, SciPy, entre otros).
 - 4. Análisis de conglomerados

- 4.1Descripción de la metodología de análisis de conglomerados.
- 4.2 Técnicas de jerarquización y de particionamiento.
- 4.3 Implementación computacional.
- 4.4 Usos de los dendogramas.
- 4.5 Usos de software (R, Minitab, SciPy, entre otros).
 - 5. Análisis discriminante
- 5.1 Descripción de la metodología del análisis discriminante.
- 5.2 Discriminación entre dos grupos.
- 5.3 Contribución por variable.
- 5.4 Discriminación logística.
- 5.5 Discriminación múltiple.
- 5.6 Usos de software (R, Minitab, SciPy, entre otros).
- A1. R
- A2. Git + Github
- A3. Gráficas Multivariadas
- A4. Escalas de Medición
- A5. Valores Faltantes

1.2 Evaluación

- Examenes 50%
- Tareas 25%
- Proyecto 20%
- DataCamp 5%

1.3 Proyecto final

- Buscar una base de datos "real"
- Aplicar 3 métodos de estadística multivariada
- Entregar documento con:
 - Descripción de los datos
 - Planteamiento del problema
 - Métodos usados

- Interpretación de resultados
- Código usado
- Repositorio con código reproducible
- Exposición de resultados

1.4 Referencias

[1]

1.5 Material interesante

- Bookdown.
- Software Carpentry.
- Git
- Why Git
- R Markdown Cookbook
- STHDA
- YaRrr! The Pirate's Guide to R
- Learn ggplot2 Using Shiny App
- Ggplot2: Elegant Graphics for Data Analysis
 - Versión online
- Use R! Colección Springer
- Lattice: Multivariate Data Visualization with R
- R Graphics cookbook
- Cuenta pro de Github

1.6 DataCamp

Figure 1.1: DataCamp

Chapter 2

Regresión múltiple

2.1 ¿Por qué estadística multivariada?

El proceso de modelado consiste en construir expresiones matemáticas que permitan representar el comportamiento de una variable que queremos estudiar. Cuando contamos con varias variables, suele interesarnos analizar cómo unas influyen sobre otras, determinando si existe una relación, su intensidad y su forma. En muchos casos, estas relaciones pueden ser complejas y difíciles de describir directamente; por ello, se busca aproximarlas mediante funciones matemáticas sencillas como polinomios, que conserven los elementos esenciales para explicar el fenómeno de interés.

Cuando estudiamos fenómenos deterministas, es común vincular una variable dependiente con una o más variables independientes. Por ejemplo, en la ecuación de la velocidad (v=d/t), la distancia depende de la velocidad y del tiempo. En la práctica, cuando realizamos distintos experimentos, las fórmulas deterministas podrían no capturar por completo el comportamiento observado. Esto puede deberse a factores no controlados, a la presencia de variabilidad natural o a efectos aleatorios. Por esta razón, además de la parte determinista del modelo, se incorpora un término que represente la discrepancia aleatoria entre lo que se predice y lo que efectivamente se observa. De forma general, esta idea se resume como:

Observacin = Modelo + Error

Cuando se supone que la relación entre las variables puede representarse mediante una ecuación lineal, hablamos de análisis de regresión lineal. Si intervienen únicamente dos variables, una dependiente y y independiente x, se trata de **regresión lineal simple**. En cambio, cuando la variable de interés y depende

de dos o más variables independientes $x_1, x_2, ...$ hablamos de **regresión lineal múltiple**.

Supongamos que queremos predecir el rendimiento académico de un estudiante, ¿solo necesitamos las horas que estudia?

En este caso se tiene que el puntaje o rendimiento lo podemos representar con y y las horas de estudio con x. Entonces esta propuesta de modelo, la podríamos representar como:

$$y = \beta_0 + \beta_1 x$$

Donde β_0 es la ordenada al origen y β_1 la pendiente. Esta recta podría no ajustarse al modelo por diferentes razones, entonces lo que se hace es considerar un error aleatorio ϵ . El modelo que ya considera este error se representa como:

$$y = \beta_0 + \beta_1 x + \epsilon.$$

A este modelo se le conoce como modelo de regresión lineal simple y a β_0, β_1 se les conoce como coeficientes de regresión.

En problemas reales, casi nunca una sola variable explica el fenómeno. Las decisiones y predicciones mejoran cuando integramos múltiples fuentes de información.

Ejemplos: - Salud: riesgo de una enfermedad según edad, IMC, actividad física, dieta y antecedentes. - Ingeniería: vida útil de una pieza según temperatura, vibración, material y carga. - Biología: crecimiento de una planta por agua, luz, fertilizante, temperatura.

Ejemplo: Si queremos predecir el rendimiento académico de un estudiante, ¿solo necesitamos las horas que estudia? ¿qué otras variables podrían influir en el puntaje de un examen?

Rendimiento escolar

```
set.seed(123)
n <- 10
data_intro <- tibble(
    estudiante = paste0("E", 1:n),
    horas_estudio = c(2,3,4,5,1,3,2,4,5,6),
    horas_sueno = c(7,8,6,7,5,8,7,6,9,7),
    asistencia = c(0.9,0.95,0.8,0.85,0.7,0.9,0.8,0.9,1,0.95),
    puntaje = c(65,70,68,80,60,75,65,78,88,85)
)
data_intro</pre>
```

##	# 1	A tibble: 10	0 x 5			
##		${\tt estudiante}$	$horas_estudio$	horas_sueno	${\tt asistencia}$	puntaje
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	E1	2	7	0.9	65
##	2	E2	3	8	0.95	70
##	3	E3	4	6	0.8	68
##	4	E4	5	7	0.85	80
##	5	E5	1	5	0.7	60
##	6	E6	3	8	0.9	75
##	7	E7	2	7	0.8	65
##	8	E8	4	6	0.9	78
##	9	E9	5	9	1	88
##	10	E10	6	7	0.95	85

¿Qué pasa si solo graficamos horas de estudio vs puntaje?

Plot hotas de estudio vs puntaje sugerida

```
library(ggplot2)
ggplot(data_intro, aes(horas_estudio, puntaje)) +
  geom_point(size=3) +
  geom_smooth(method="lm", se=FALSE) +
  labs(title="¿Solo horas de estudio explican el puntaje?")
```

$geom_smooth()$ using formula = 'y ~ x'

¿Solo horas de estudio explican el puntaje?

¿Se ajusta un modelo lineal? ¿Porqué?

2.1.1 ¿Qué es "multivariado" y por qué lo necesitamos?

Idea central: cuando varias x influyen sobre y, estudiar cada x por separado puede engañarnos. El análisis multivariado permite:

- Aislar efectos: estimar el efecto de x_1 manteniendo constantes $x_2, x_3, ...$
- Mejorar predicción: reducir error al añadir información relevante.
- Controlar confusores: variables que cambian la relación aparente entre $y \neq x$.

Ejemplo: Si ajustamos ahora un modelo con varias variables, ¿vamos a observar un cambio? ¿se ajustará mejor?

Código (modelos + comparaciones)

```
# Modelo simple
m1 <- lm(puntaje ~ horas_estudio, data = data_intro)

# Modelo múltiple
m2 <- lm(puntaje ~ horas_estudio + horas_sueno + asistencia, data = data_intro)

# Medidas clave
R2_m1 <- glance(m1)$r.squared
R2_m2 <- glance(m2)$r.squared
print(paste("El R2 del modelo simple:", R2_m1))

## [1] "El R2 del modelo simple: 0.824317362184441"

print(paste("El R2 del modelo multiple:", R2_m2))

## [1] "El R2 del modelo multiple: 0.895428180549875"

#R2adj_m1 <- glance(m1)$adj.r.squared
#R2adj_m2 <- glance(m2)$adj.r.squared
#R2adj_m2 <- glance(m2)$adj.r.squared</pre>
```

- ¿Aumentó R^2 al incluir más variables? ¿Por qué tiende a subir?
- ¿Qué cambia en la interpretación de horas_estudio al controlar por horas_sueno y asistencia?
- ¿Puede un predictor ser importante en bivariado y no en multivariado (o viceversa)?

2.2 Regresión múltiple

2.2.1 Modelo y estimación

Los modelos en regresión lineal múltiple están dados por la siguiente forma, donde y depende de p variables predictoras:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_p x_{ip} + \epsilon_i. \label{eq:second_equation}$$

Se suele asumir que los errores ϵ_i son i.i.d. con distribución normal de media 0 y varianza σ^2 desconocida. Los coeficientes β_i son constantes desconocidas y son los parámetros del modelo. Cada β_j representa el cambio esperado en la respuesta y por el cambio unitario en x_i cuando todas las demás variables independientes $x_i (i \neq j)$ se mantienen constantes.

```
# Forma general
ajuste <- lm(y ~ x1 + x2 + ... + xp, data = datos)
# summary(ajuste)</pre>
```

Los coeficientes los podemos interpretar como sigue:

- Intercepto (β_0) : valor esperado de y cuando todas las x=0.
- Pendiente β_j : efecto parcial de x_j sobre y manteniendo las demás constantes.

En los modelos de regreción lineal, solemos usar las siguientes medidas de bondad de ajuste:

- R^2 : proporción de varianza de y explicada.
- R² ajustado: penaliza por número de predictores (mejor para comparar modelos con distinto número de x).
- RMSE (σ): error típico de predicción en unidades de y.

```
comp <- dplyr::bind_rows(
  glance(m1) %>% mutate(modelo="simple"),
  glance(m2) %>% mutate(modelo="multiple")
) %>% select(modelo, r.squared, adj.r.squared)
comp
```

Para este modelo algunos de los supuestos se siguen del modelo de regresión lineal simple y se agregan algunos que tienen que ver con la relación que pudiera existir entre las variables regresoras.

- El modelo es lineal en los parámetros. Chequeo: residuales vs ajustados sin patrón claro.
- El modelo está especificado correctamente.
- Covarianza cero entre variables regresoras y el error.
- Esperanza del error igual a cero.
- Homocedasticidad.
- No autocorrelación entre los errores.
- Los errores siguen una distribución normal.
- Mas observaciones que parámetros a estimar.
- Variación entre los valores de las variables regresoras.
- No colinealidad (multicolinealidad) entre las variables regresoras, es decir, no existe una relación lineal entre x_i y x_j (es decir, las variables son linealmente independientes).

Supuestos

```
# Modelo m2
par(mfrow=c(1,2))
plot(m2, which=1) # Residuales vs ajustados
plot(m2, which=2) # QQ-plot
```


Ejercicio: Supongamos que tenemos los siguientes datos: precio de vivienda según metros, habitaciones y distancia al centro.

Dataset

```
set.seed(42)
n <- 14
casas <- tibble::tibble(
   precio = c(200,220,250,275,300,180,210,260,280,320,190,240,230,305),
   metros = c(80,90,100,110,120,70,85,105,115,130,75,95,92,125),
   habitaciones = c(2,3,3,4,4,2,3,3,4,5,2,3,3,4),
   distancia_centro = c(5,4,6,3,2,8,6,3,2,1,7,5,4,2)
)
casas</pre>
```

```
## # A tibble: 14 x 4
##
      precio metros habitaciones distancia_centro
##
       <dbl>
               <dbl>
                             <dbl>
                                               <dbl>
##
   1
         200
                  80
                                 2
                                                    5
##
    2
         220
                  90
                                 3
                                                    4
                                                    6
##
    3
         250
                                 3
                 100
##
    4
         275
                                 4
                                                    3
                 110
                                                    2
##
    5
         300
                 120
                                 4
##
    6
         180
                  70
                                 2
                                                    8
                                                    6
##
    7
         210
                  85
                                 3
##
    8
                                 3
                                                    3
         260
                 105
                                                    2
##
   9
         280
                                 4
                 115
                                 5
## 10
         320
                 130
                                                    1
## 11
         190
                  75
                                 2
                                                    7
## 12
         240
                  95
                                 3
                                                    5
                                 3
## 13
         230
                  92
                                                    4
## 14
         305
                 125
                                 4
                                                    2
```

- 1) Ajusta precio ~ metros (simple) y precio ~ metros + habitaciones + distancia_centro (múltiple).
- 2) Compara R^2 , R^2 ajustado y (RMSE).
- 3) Interpreta el coeficiente de distancia_centro.
- 4) Revisa QQ-plot y residuales vs ajustados. ¿Algún patrón?

Solución

```
m_s <- lm(precio ~ metros, data=casas)</pre>
m_m <- lm(precio ~ metros + habitaciones + distancia_centro, data=casas)</pre>
broom::glance(m_s)[,c("r.squared","adj.r.squared")]
## # A tibble: 1 x 2
## r.squared adj.r.squared
##
         <dbl>
                <dbl>
## 1
         0.996
                      0.996
broom::glance(m_m)[,c("r.squared","adj.r.squared")]
## # A tibble: 1 x 2
## r.squared adj.r.squared
                    <dbl>
##
         <dbl>
## 1
         0.997
                       0.996
broom::tidy(m_m)
## # A tibble: 4 x 5
## term estimate std.error statistic p.value
## <chr>
                       <dbl> <dbl> <dbl>
                                                           <dbl>
## 1 (Intercept) -8.67 14.9 -0.583 0.573
## 2 metros 2.53 0.162 15.6 0.0000000236
## 3 habitaciones -0.505 2.80 -0.180 0.861
## 4 distancia_centro 1.38 0.974
                                            1.42 0.187
par(mfrow=c(1,2))
plot(m_m, which=1)
plot(m_m, which=2)
```


2.3 Estimación de parámetros

Ejemplo (Montgomery, 2002): : Un embotellador de bebidas gaseosas analiza las rutas de servicio de las máquinas expendedoras en su sistema de distribución. Le interesa predecir el tiempo necesario para que el representante de ruta atienda las máquinas expendedoras en una tienda.

Esta actividad de servicio consiste en abastecer la máquina con productos embotellados, y algo de mantenimiento o limpieza. El ingeniero industrial responsable del estudio ha sugerido que las dos variables más importantes que afectan el tiempo de entrega y son la cantidad de cajas de producto abastecido, x_1 , y la distancia caminada por el representante, x_2 .

El ingeniero ha reunido 25 observaciones de tiempo de entrega que se ven en la tabla siguiente. Se ajustará el modelo de regresión lineal multiple siguiente:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

Archivo: refrescos.csv.

Base de datos

Veamos un gráfico de dispersión de los datos. ¿Qué observamos?

1) Estimar β

Primero, vamos a crear la matriz X y el vector y.

Matrices

```
# Columna de 1 para el intercepto
idv <- rep(1, nrow(datos))
# Creamos matriz X
X <- matrix(c(idv,datos$x1,datos$x2),nrow=25,ncol=3)
# Creamos el vector y
y <- matrix(datos$y, nrow = 25, ncol = 1)</pre>
```

Ya sabemos que nuestro estimador está dado por

$$\hat{\beta} = (X'X)^{-1}X'y$$

Entonces podemos encontrar el estimador.

Estimador beta

```
beta <- solve(t(X) %*% X) %*% t(X) %*% y
beta
```

```
## [,1]
## [1,] 2.34123115
## [2,] 1.61590721
## [3,] 0.01438483
```

Entonces el ajuste por el método de mínimos cuadrados, con los coeficientes de regresión que encontramos está dado por:

```
\hat{y} = 2.3412311 \, + \, 1.6159072 \,\, x_1 \, + \, 1.6159072 \,\, x_2
```

Esto lo podemos hacer más rápido usando la función de lm. Construimos el modelo.

Modelo en R

```
M1 <- lm(y ~ x1 + x2, datos)
M1
```

¿Cómo accedemos a los valores del modelo?

Coeficientes

```
beta_0 <- M1$coefficients[1]
beta_1 <- M1$coefficients[2]
beta_2 <- M1$coefficients[3]</pre>
```

Los valores son $\beta_0 = 2.3412311,\, \beta_1 = 1.6159072$ y $\beta_2 = 0.0143848.$

2) Estimación de la varianza del error σ^2

Ya tenemos que la suma de los cuadrados de los errores está dada por

$$SSE = y'y - \hat{\beta}X'y$$

Sustituimos los valores que tenemos y obtemos el SSE.

SSE

```
SSE <- t(y)%*% y - t(beta) %*% t(X) %*% y
SSE
## [,1]
## [1,] 233.7317</pre>
```

Y de está forma, podemos encontrar el estimador de σ^2 .

Estimador

```
varest <- SSE / (nrow(y) - nrow(beta))
varest

## [,1]
## [1,] 10.62417</pre>
```

Directo con las funciones de R, podemos acceder a los parámetros que se guardaron en el modelo que ya calculamos.

Resumen del modelo

```
summary(M1)
```

```
##
## Call:
## lm(formula = y \sim x1 + x2, data = datos)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -5.7880 -0.6629 0.4364 1.1566 7.4197
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.341231
                         1.096730 2.135 0.044170 *
## x1
                         0.170735 9.464 3.25e-09 ***
              1.615907
## x2
              0.014385
                         0.003613 3.981 0.000631 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.259 on 22 degrees of freedom
## Multiple R-squared: 0.9596, Adjusted R-squared: 0.9559
## F-statistic: 261.2 on 2 and 22 DF, p-value: 4.687e-16
```

Algunos de los parámetros almacenados en el modelo nos permiten obtener también el resultado previo.

Estimador

```
sum(residuals(M1)^2) / df.residual(M1)
```

2.3.1 Ejercicios

[1] 10.62417

Ejercicio 1: Un analista hace un estudio químico y espera que el rendimiento de cierta sustancia se vea afectado por dos factores. Se realizan 17 experimentos cuyos datos se registran en el cuadro siguiente. Por experimentos similares, se sabe que los factores x_1 y x_2 no están relacionados; por ello, el analista decide utilizar un modelo de regresión lineal múltiple. Calcule el modelo de regresión y grafíquelo sobre las observaciones.

 $Archivo: \ est_quimico.csv$

Datos Ejercicio 1

```
datos2 <- data.frame(
    Experimento = 1:17,
    x1 = c(41.9, 43.4, 43.9, 44.5, 47.3, 47.5, 47.9, 50.2, 52.8, 53.2, 56.7, 57.0, 63.5,
    x2 = c(29.1, 29.3, 29.5, 29.7, 29.9, 30.3, 30.5, 30.7, 30.8, 30.9, 31.5, 31.7, 31.9,
    y = c(251.3, 251.3, 248.3, 267.5, 273.0, 276.5, 270.3, 274.9, 285.0, 290.0, 297.0, 30.2)

datos2</pre>
```

```
##
      Experimento
                          x2
                     x1
## 1
                 1 41.9 29.1 251.3
## 2
                 2 43.4 29.3 251.3
## 3
                 3 43.9 29.5 248.3
## 4
                 4 44.5 29.7 267.5
## 5
                5 47.3 29.9 273.0
## 6
                6 47.5 30.3 276.5
## 7
                7 47.9 30.5 270.3
## 8
                8 50.2 30.7 274.9
## 9
                9 52.8 30.8 285.0
## 10
               10 53.2 30.9 290.0
## 11
               11 56.7 31.5 297.0
## 12
               12 57.0 31.7 302.5
## 13
               13 63.5 31.9 304.5
```

Ejercicio 2: Repetir el ejemplo con los datos datasets::trees de R que proporciona mediciones del diámetro, altura y volumen de madera en 31 cerezos negros talados.

Ejercicio 3: Subir a Github los dos ejercicios previos tanto con solución en R como en Python. Comparar las funciones. Ventajas y desventajas de ambas.

2.4 Pruebas de Hipótesis

Cuando revisamos el summary del modelo, nos arroja si son significativas o no y a que nivel de significancia las variables que estamos considerando. Veamos el siguiente ejemplo.

2.4.1 Prueba de la significancia de la regresión

Ejemplo: Con los datos del embotellador de bebidas gaseosas, se probará la significancia de la regresión.

Sumas de Cuadrados

```
SCT <- t(y) %*% y - sum(y)**2 / nrow(datos)

## [,1]

## [1,] 5784.543

SCE <- t(beta) %*% t(X) %*% y - sum(y)**2 / nrow(datos)

SCE

## [,1]

## [1,] 5550.811

SSE <- SCT - SCE

SSE

## [,1]

## [1,] 233.7317
```

Para probar

$$H_0:\beta_1=\beta_2=0$$

se calcula el estadístico:

Estadístico F

```
F0 <- (SCE / (ncol(X) - 1)) / (SSE / (nrow(X) - (ncol(X) - 1) - 1))
F0
```

```
## [,1]
## [1,] 261.2351
```

Como el valor de F_0 es mayor que el valor tabulado de $F_{\alpha;p,n-p-1}=F_{0.05;2;22}=3.44$, se rechaza H_0 . Lo cual implica que el tiempo de entrega depende del volumen de entrega y/o de la distancia.

Ahora, usando los modelos que ya calculamos.

Sumas de cuadrados

```
SCT.m<-sum((datos$y-mean(datos$y))^2)
SCT.m
```

```
## [1] 5784.543
```

```
SCE.m <-sum((M1$fitted-mean(datos$y))^2)
SCE.m</pre>
```

[1] 5550.811

```
SSE.m <-sum(M1$residuals^2)
SSE.m
```

[1] 233.7317

Grados de libertad

```
n<-nrow(y)
n</pre>
```

[1] 25

```
GLT<- n-1
GLT
## [1] 24
GLRes<- df.residual(M1)</pre>
GLRes
## [1] 22
GLR<- GLT-GLRes
GLR
## [1] 2
{\it Cuadrados\ medios}
CMR <- SCE /GLR
CMR
## [,1]
## [1,] 2775.405
CMRes <- SSE / GLRes
CMRes
## [,1]
## [1,] 10.62417
Estadístico F\_0
FO <- CMR/CMRes
F0
## [,1]
## [1,] 261.2351
p-valor
```

2.4.2 Pruebas sobre coeficientes individuales de regresión

Ejemplo: Usando los datos del embotellador de bebidas gaseosas, se desea evaluar la importancia de la variable regresora distancia (x_2) dado que el regresor cajas (x_1) está en el modelo.

Estadístico t_0

```
C22 <- solve(t(X) %*% X)[3,3]
C22

## [1] 1.228745e-06

t0 <- beta_2 / sqrt(varest * C22)
t0

## [,1]
## [1,] 3.981313

## t tabulado con confianza 95% y 22 grados de libertad
tt <- qt(p = 0.95 + 0.05/2, df = 22, lower.tail = TRUE)
tt
```

Usando el modelo que ya tenemos calculado M1 podemos obtener estos mismos resultados de la siguiente forma.

Prueba sobre coeficientes

[1] 2.073873

```
summary(M1)
##
## Call:
## lm(formula = y \sim x1 + x2, data = datos)
##
## Residuals:
##
      Min
              1Q Median
                             3Q
                                    Max
## -5.7880 -0.6629 0.4364 1.1566 7.4197
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 2.341231   1.096730   2.135   0.044170 *
## x1
             1.615907
                       0.170735 9.464 3.25e-09 ***
             ## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.259 on 22 degrees of freedom
## Multiple R-squared: 0.9596, Adjusted R-squared: 0.9559
## F-statistic: 261.2 on 2 and 22 DF, p-value: 4.687e-16
```

2.5 Intervalos de confianza

2.5.1 Intervalos de confianza en los coeficientes de regresión

Ejemplo: Usando los datos del embotellador de bebidas gaseosas, queremos calcular el intervalo de confianza del 95% para β_1 . Recordemos que el estimador puntual de β_1 es 1.6159072.

Intervalo de confianza

```
C11 <- solve(t(X) %*% X)[2,2]
izq <- beta_1 - tt * sqrt(varest*C11)
izq</pre>
```

```
## [,1]
## [1,] 1.261825
```

```
der <- beta_1 + tt * sqrt(varest*C11)
der

## [,1]
## [1,] 1.96999</pre>
```

2.5.2 Intervalo de confianza de la respuesta media

Ejemplo: El embotellador de bebidas gaseosas quiere establecer un intervalo de confianza del 95% para el tiempo medio de entrega para una tienda donde se requieren $x_1=8$ cajas y la distancia es de $x_2=275$ pies.

Nuestro vector X_0 está dado por:

X0

```
X0 <- matrix(c(1, 8, 275), nrow = 3)
X0</pre>
```

```
## [,1]
## [1,] 1
## [2,] 8
## [3,] 275
```

El valor ajustado en ese punto es:

Valor ajustado

```
y0 <- t(X0) %*% beta
y0
```

```
## [,1]
## [1,] 19.22432
```

La varianza de $\hat{y_0}$

Varianza

```
var_y0 <- varest * t(X0) %*% solve(t(X) %*% X) %*% X0
var_y0</pre>
```

```
## [,1]
## [1,] 0.5734134
```

Entonces el intervalo de confianza en este punto es:

Intervalo de confianza

```
l_izq <- y0 - tt * sqrt(var_y0)
l_izq

##     [,1]
## [1,] 17.6539

l_der <- y0 + tt * sqrt(var_y0)
l_der

##     [,1]
## [1,] 20.79474</pre>
```

Ejemplo: Usaremos el conjunto de datos data("marketing") que contiene 200 observaciones de un experimento publicitario que evalúa el impacto de tres medios de anuncio en las ventas. Para cada observación se registran los presupuestos de publicidad (en miles de dólares) y las ventas obtenidas. Variables:

- youtube: presupuesto invertido en anuncios de YouTube (miles de USD).
- facebook: presupuesto invertido en Facebook (miles de USD).
- newspaper: presupuesto invertido en prensa escrita (miles de USD).
- sales: ventas registradas (variable respuesta).

Cargamos los datos:

```
library(datarium)
data("marketing")
```

Exploramos rápidamente la base para ver qué variables contiene y la dimensión:

```
str(marketing)
```

```
## 'data.frame': 200 obs. of 4 variables:
## $ youtube : num 276.1 53.4 20.6 181.8 217 ...
## $ facebook : num 45.4 47.2 55.1 49.6 13 ...
## $ newspaper: num 83 54.1 83.2 70.2 70.1 ...
## $ sales : num 26.5 12.5 11.2 22.2 15.5 ...
```

```
#?marketing
Ajustamos un modelo lineal que incluya todas las variables, es decir,
sales = \beta_0 + \beta_1 youtube + \beta_2 facebook + \beta_3 new spaper + \epsilon
Modelo marketing
modelo1<-lm(sales~youtube+facebook+newspaper,data=marketing)
summary(modelo1)
##
## Call:
## lm(formula = sales ~ youtube + facebook + newspaper, data = marketing)
## Residuals:
##
        Min
                                      3Q
                                              Max
                   1Q
                        Median
## -10.5932 -1.0690
                        0.2902
                                  1.4272
                                           3.3951
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.526667 0.374290
                                        9.422
                                              <2e-16 ***
## youtube
                0.045765 0.001395 32.809
                                              <2e-16 ***
## facebook
                 0.188530
                            0.008611
                                       21.893
                                                <2e-16 ***
## newspaper
                -0.001037
                            0.005871 - 0.177
                                                  0.86
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.023 on 196 degrees of freedom
## Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956
## F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16
¿Qué se puede decir sobre la significancia de la variable newspaper?
Veamos qué ocurre con el modelo al eliminar la variable newspaper
Modelo marketing 2
modelo2<-lm(sales~facebook+youtube,data=marketing)
summary(modelo2)
##
## Call:
## lm(formula = sales ~ facebook + youtube, data = marketing)
##
```

```
## Residuals:
##
       Min
                  1Q
                       Median
                                    3Q
                                            Max
## -10.5572 -1.0502
                       0.2906
                                1.4049
                                         3.3994
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                                     9.919
                                             <2e-16 ***
## (Intercept) 3.50532
                          0.35339
## facebook
                0.18799
                           0.00804
                                    23.382
                                             <2e-16 ***
                                    32.909
## youtube
                0.04575
                           0.00139
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.018 on 197 degrees of freedom
## Multiple R-squared: 0.8972, Adjusted R-squared: 0.8962
## F-statistic: 859.6 on 2 and 197 DF, p-value: < 2.2e-16
```

Lo que sigue, es hacer pruebas de hipótesis tanto en las variables como en los coeficientes de regresión.

2.5.3 Ejercicios

Ejercicio 1: Realizar las pruebas de hipótesis sobre la significancia de la regresión y sobre los coeficientes. Encontrar los intervalos de confianza respectivos del 95%. Para una tienda con presupuestos: youtube = 150, facebook = 30, newspaper = 20 (en miles de USD): (a) Calcula el intervalo de confianza del 95% para la media de ventas $\mathbb{E}(sales|X_0)$. (b) Calcula el intervalo de predicción del 95% para una nueva observación de ventas. (c) Comenta la diferencia entre ambos intervalos. Subir respuesta y explicación de sus resultados a github.

2.6 Ejercicios Regresión Lineal Multiple

Realiza los siguientes ejercicios. En cada inciso:

- explica y comenta la solución,
- incluye el código utilizado, y
- añade las gráficas (plots) correspondientes con su interpretación.

Asegúrate de que el código sea reproducible y que las figuras tengan títulos, ejes y leyendas.

Ejercicio 1: Para los datos de la Liga Nacional de Fútbol. Realizar tanto con las funciones de R y Python como con las fórmulas que usan matrices.

- a) Ajustar un modelo de regresión lineal múltiple que relacione la cantidad de juegos ganados con las yardas por aire del equipo (x_2) , el porcentaje de jugadas por tierra (x_7) y las yardas por tierra del contrario (x_8) .
- b) Formar la tabla de análisis de varianza y probar la significancia de la regresión.
- c) Calcular el estadístico t para probar las hipótesis $H_0:\beta_2=0,\,H_0:\beta_7=0$ y $H_0:\beta_8=0.$ ¿Qué conclusiones se pueden sacar acerca del papel de las variables $x_2,\,x_7$ y x_8 en el modelo?
- d) Calcular R^2 y R_{adj}^2 para este modelo.
- e) Trazar una gráfica de probabilidad normal de los residuales. ¿Parece haber algún problema con la hipótesis de normalidad?
- f) Trazar e interpretar una gráfica de los residuales en función de la respuesta predicha.
- g) Trazar las gráficas de los residuales en función de cada una de las variables regresoras. ¿Implican esas gráficas que se especificó en forma correcta el regresor?
- h) Calcular un intervalo de confianza de 95% para β_7 y un intervalo de confianza de 95% para la cantidad media de juegos ganados por un equipo cuando $x_2=2300,\,x_7=56$ y $x_8=2100.$
- i) Ajustar un modelo a esos datos, usando solo x_7 y x_8 como regresores y probar la significancia de la regresión.
- j) Calcular \mathbb{R}^2 y \mathbb{R}^2_{adj} . Compararlos con los resultados del modelo anterior.
- k) Calcular un intervalo de confianza de 95% para β_7 . También, un intervalo de confianza de 95% para la cantidad media de juegos ganados por un equipo cuando $x_7=56$ y $x_8=2100$. Comparar las longitudes de esos intervalos de confianza con las longitudes de los correspondientes al modelo anterior.
- l) ¿Qué conclusiones se pueden sacar de este problema, acerca de las consecuencias de omitir un regresor importante de un modelo?

Descripción de las variables:

- y: Juegos ganados (por temporada de 14 juegos)
- x_1 : Yardas por tierra (temporada)
- x_2 : Yardas por aire (temporada)
- x_3 : Promedio de pateo (yardas/patada)
- x_4 : Porcentaje de goles de campo (GC hechos/GC intentados, temporada)

- x_5 : Diferencia de pérdidas de balón (pérdidas ganadas/pérdidas perdidas)
- x_6 : Yardas de castigo (temporada)
- x_7 : Porcentaje de carreras (jugadas por tierra/jugadas totales)
- x_8 : Yardas por tierra del contrario (temporada)
- x_9 : Yardas por aire del contrario (temporada)

 $\bf Ejericio$ 2: Véase los datos de rendimiento de gasolina. Realizar el ejercicio en R

- a) Ajustar un modelo de regresión lineal múltiple que relacione el rendimiento de la gasolina y, en millas por galón, la cilindrada del motor (x_1) y la cantidad de gargantas del carburador (x_6) .
- b) Formar la tabla de análisis de varianza y probar la significancia de la regresión.
- c) Calcular R^2 y R^2_{adj} para este modelo. Compararlas con las R^2 y R^2_{adj} Ajustado para el modelo de regresión lineal simple, que relaciona las millas con la cilindrada.
- d) Determinar un intervalo de confianza para β_1 .
- e) Determinar un intervalo de confianza de 95% para el rendimiento promedio de la gasolina, cuando $x_1=225pulg^3$ y $x_6=2$ gargantas.
- f) Determinar un intervalo de predicción de 95% para una nueva observación de rendimiento de gasolina, cuando $x_1=225pulg^3$ y $x_6=2$ gargantas.
- g) Considerar el modelo de regresión lineal simple, que relaciona las millas con la cilindrada. Construir un intervalo de confianza de 95% para el rendimiento promedio de la gasolina y un intervalo de predicción para el rendimiento, cuando $x_1=225pulg^3$. Comparar las longitudes de estos intervalos con los intervalos obtenidos en los dos incisos anteriores. ¿Tiene ventajas agregar x_6 al modelo?
- h) Trazar una gráfica de probabilidad normal de los residuales. ¿Parece haber algún problema con la hipótesis de normalidad?
- i) Trazar e interpretar una gráfica de los residuales en función de la respuesta predicha.
- j) Trazar las gráficas de los residuales en función de cada una de las variables regresoras. ¿Implican esas gráficas que se especificó en forma correcta el regresor?

Descripción de variables: Variables (Fuente: Motor Trend, 1975)

y: Millas/galón

 x_1 : Cilindrada (pulgadas cúbicas)

 x_2 : Potencia (Hp)

 x_3 : Par de torsión (pies-lb)

 x_4 : Relación de compresión

 x_5 : Relación de eje trasero

 x_6 : Carburador (gargantas)

 x_7 : Número de velocidades en la transmisión

 x_8 : Longitud total (pulgadas)

 x_9 : Ancho (pulgadas)

 x_{10} : Peso (lb)

 x_{11} : Tipo de transmisión (1 = automática, 0 = manual)

Ejercicio 3: Véase los datos sobre precios de viviendas. Realizar el ejercicio en Python.

- a) Ajustar un modelo de regresión lineal múltiple que relacione el precio de venta con los nueve regresores.
- b) Probar la significancia de la regresión. ¿Qué conclusiones se pueden sacar?
- c) Usar pruebas t para evaluar la contribución de cada regresor al modelo.
- d) Calcular R^2 y R^2_{adj} para este modelo.
- e) ¿Cuál es la contribución del tamaño del lote y el espacio vital para el modelo, dado que se incluyeron todos los demás regresores?.
- f) En este modelo, ¿la colinealidad es un problema potencial?
- g) Trazar una gráfica de probabilidad normal de los residuales. ¿Parece haber algún problema con la hipótesis de normalidad?
- h) Trazar e interpretar una gráfica de los residuales en función de la respuesta predicha.
- i) Trazar las gráficas de los residuales en función de cada una de las variables regresoras. ¿Implican esas gráficas que se especificó en forma correcta el regresor?.

Descripción de las variables:

- y: Precio de venta de la casa / 1000
- x_1 : Impuestos (locales, escuela, municipal) / 1000
- x_2 : Cantidad de baños
- x_3 : Tamaño del terreno (pies cuadrados \times 1000)
- x_4 : Superficie construida (pies cuadrados × 1000)
- x_5 : Cantidad de cajones en cochera
- x_6 : Cantidad de habitaciones
- x_7 : Cantidad de recámaras
- x_8 : Edad de la casa (años)
- x_9 : Cantidad de chimeneas

Ejercicio 4: Explica lo siguiente.

- a) ¿Qué supuestos del modelo de regresión lineal múltiple deben verificarse?
- b) ¿Cómo se interpretan los intervalos de confianza? Si construimos un intervalo de confianza del 95% para un coeficiente β_j , ¿cuál sería la lectura correcta o interpretación correcta sobre este intervalo?
- c) Describe los métodos de selección de variables y sus ventajas y desventajas:
- d) Selección hacia adelante (forward)
- ii) Selección hacia atrás (backward)
- iii) selección por pasos (stepwise) y/o mejor subconjunto (best subset)

Explica cómo se utilizan para elegir el modelo final.

Ejercicio 5: Para los datos del ejercicio 1 de la liga de Futbol. Realizar el ejercicio en R y Python.

- a) Usar el algoritmo de selección hacia adelante para seleccionar un modelo de regresión.
- b) Usar el algoritmo de selección hacia atrás para seleccionar un modelo de regresión.
- c) Usar el algoritmo de regresión por pasos para seleccionar un modelo de regresión.
- d) Comenta los modelos finales en cada uno de los casos anteriores. ¿Cuál tiene más sentido? ¿Cuál modelo usarían?

Table 2.1: Factores que influye	n en el tiempo d	le coccion segun	diferentes niveles
de ancho del horno y diferente	s temperaturas		

yp	x1	x2
6.40	1.32	1.15
15.05	2.69	3.40
18.75	3.56	4.10
30.25	4.41	8.75
44.85	5.35	14.82
48.85	6.20	15.15
51.55	7.12	15.32
61.50	8.87	18.18
100.44	9.80	35.19
111.42	10.65	40.40

2.7 Validación de Supuestos

Ejemplo: Se llevó a cabo un conjunto de ensayos experimentales con un horno para determinar una forma de predecir el tiempo de cocción, y, a diferentes niveles de ancho del horno, x_1 , y a diferentes temperaturas, x_2 . Se registraron los siguientes datos:

```
yp < -c(6.40, 15.05, 18.75, 30.25, 44.85, 48.85, 51.55, 61.50, 100.44, 111.42)
x1 < -c(1.32, 2.69, 3.56, 4.41, 5.35, 6.20, 7.12, 8.87, 9.80, 10.65)
x2 < -c(1.15, 3.40, 4.10, 8.75, 14.82, 15.15, 15.32, 18.18, 35.19, 40.40)
datos < -data.frame(yp, x1, x2)
kable(datos, caption = "Factores que influyen en el tiempo de coccion segun diferentes)
```

- Variable dependiente y= tiempo de cocción
- Variable independiente x_1 = ancho del horno
- Variable independiente $x_2 =$ diferentes temperaturas

Vamos a visualizar los datos:

Plot

```
g1 <- ggplot(data = datos, mapping = aes(x = x1, y = yp)) +
geom_point(color = "forestgreen", size = 2) +
labs(title = 'yp ~ x1', x = 'x1') +
geom_smooth(method = "lm", se = FALSE, color = "black") +
theme_bw() +</pre>
```

```
theme(plot.title = element_text(hjust = 0.5))

g2 <- ggplot(data = datos, mapping = aes(x = x2, y = yp)) +
    geom_point(color = "orange", size = 2) +
    labs(title = 'yp ~ x2', x = 'x2') +
    geom_smooth(method = "lm", se = FALSE, color = "black") +
    theme_bw() +
    theme(plot.title = element_text(hjust = 0.5))</pre>
```

```
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
```


Ahora, vamos a analizar algunos de los supuestos.

2.7.1 Multicolinealidad

Multicolinealidad

```
variables <- data.frame(x1,x2)
m_cor <- cor(variables,method = "pearson")
m_cor</pre>
```

```
## x1 1.0000000 0.9375592
## x2 0.9375592 1.0000000
```

Plot

```
library(corrplot)
```

corrplot 0.95 loaded

Hay una fuerte correlación entre las variables, lo cual es un problema dado que las variables deberían ser independientes.

Vamos a construir dos modelos.

Modelos

```
modelo1 \leftarrow lm(formula = yp \sim x1 + x2, data = datos)
summary(modelo1)
##
## Call:
## lm(formula = yp ~ x1 + x2, data = datos)
##
## Residuals:
               1Q Median
##
       \mathtt{Min}
                                 3Q
                                        Max
## -0.8475 -0.3438  0.0043  0.2554  1.1578
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.57723 0.59865 0.964
                                               0.367
               2.70957
                           0.19935 13.592 2.75e-06 ***
## x2
                2.05033
                           0.04743 43.227 9.26e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6481 on 7 degrees of freedom
## Multiple R-squared: 0.9997, Adjusted R-squared: 0.9997
## F-statistic: 1.304e+04 on 2 and 7 DF, p-value: 3.166e-13
El intercepto parece no ser significativo. Vamos a construir un segundo modelo
usando solo x_2 que parece ser más significativa.
{\it Modelo}~2
modelo2 <- lm(formula = yp ~ x2, data = datos)</pre>
summary(modelo2)
##
## Call:
## lm(formula = yp ~ x2, data = datos)
##
## Residuals:
      \mathtt{Min}
                1Q Median
                                 3Q
                                        Max
## -4.0226 -1.7338 -0.3497 1.0695 5.8668
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.36967 1.61355 4.567 0.00183 **
```

```
## x2    2.65476    0.08077    32.869    8.01e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.173 on 8 degrees of freedom
## Multiple R-squared: 0.9926, Adjusted R-squared: 0.9917
## F-statistic: 1080 on 1 and 8 DF, p-value: 8.005e-10
```

El ANOVA nos puede ayudar a ver cual modelo es más significativo. Se usan las hipótesis siguientes:

 H_0 : Las variables que eliminamos no tienen significancia.

 ${\cal H}_1:$ Las variables son significativas.

Si el nuevo modelo es una mejora del modelo original, entonces no podemos rechazar H_0 . Si ese no es el caso, significa que esas variables fueron significativas; por lo tanto rechazamos H_0 .

ANOVA

```
anova(modelo1, modelo2)
```

```
## Analysis of Variance Table
##
## Model 1: yp ~ x1 + x2
## Model 2: yp ~ x2
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 7 2.940
## 2 8 80.532 -1 -77.592 184.74 2.745e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Como el p-valor es muy pequeño, menor al valor de significancia 0.05, entonces rechazamos la hipótesis nula, lo que nos dice que el segundo modelo no es una mejora del primero.

Como desde el inicio vimos que el coeficiente correspondiente a β_0 no era significativo, vamos a eliminarlo.

Modelo 3

```
modelo3 <- lm(formula = yp ~ x1 + x2 -1, data = datos)
summary(modelo3)</pre>
```

```
## Call:
## lm(formula = yp ~ x1 + x2 - 1, data = datos)
##
## Residuals:
##
               1Q Median
      Min
                            3Q
                                     Max
## -0.8103 -0.3698 0.1963 0.3955 1.1807
## Coefficients:
     Estimate Std. Error t value Pr(>|t|)
##
## x1 2.87003 0.10927 26.27 4.74e-09 ***
## x2 2.02140 0.03657 55.28 1.27e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6452 on 8 degrees of freedom
## Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999
## F-statistic: 4.188e+04 on 2 and 8 DF, p-value: < 2.2e-16
```

2.7.2 Normalidad en los residuales

Recordemos que los residuos se calculan como la diferencia entre el valor observado (y) y el valor predicho (\hat{y}) para cada punto de datos, es decir:

```
e = y - \hat{y}
```

Vamos a hacer un plot de los residuales.

QQ-plot

```
residuales = modelo3$residuals

## Q-Q plot
qqnorm(residuales)
qqline(residuales)
```


Otra forma de obtener este plot es la siguiente.

Plots supuestos

plot(modelo3)

El test de Shapiro-Wilks plantea la hipótesis nula que una muestra proviene de una distribución normal. Eligimos un nivel de significanza, por ejemplo 0.05, y tenemos una hipótesis alternativa que sostiene que la distribución no es normal. Tenemos entonces lo siguiente:

 H_0 : La distribución es normal.

 H_1 : La distribución no es normal.

Test Shapiro-Wilks

```
shapiro.test(residuales)
```

```
##
## Shapiro-Wilk normality test
##
## data: residuales
## W = 0.95058, p-value = 0.6754
```

Como el p-valor es más grande que el valor de significancia, no podemos rechazar la hipótesis nula, por lo tanto los residuales siguen una distribución normal.

2.7.3 Homocedasticidad

Homocedasticidad = varianza constante

• Correcto: Si los residuales están dispersos uniformemente a lo largo de todos los valores predichos.

• Problema: Si vemos un patrón de embudo (residuales pequeños para predichos bajos y grandes para predichos altos, o viceversa). Esto indica heterocedasticidad.

Linealidad y errores independientes: Si se notan curvas, arcos o patrones sistemáticos, podría indicar que:

- La relación no es estrictamente lineal.
- Falta alguna variable importante en el modelo.
- O hay correlación entre errores.

Una forma de verlo es con el plot de residuales vs valores predichos.

Plots

En R, existe la función bptest(), que es el test de Breusch-Pagan para la heterocedasticidad. Esta función toma como entrada un modelo de regresión y devuelve el resultado de la prueba de hipótesis para la homocedasticidad de los residuos.

 H_0 : los residuos tienen varianza constante (homocedasticidad)

 H_1 : hay heterocedasticidad en los residuos

El resultado incluye el valor del estadístico de prueba (el valor de la prueba de Breusch-Pagan), el p-valor y el número de grados de libertad. Si el p-valor es menor que el nivel de significancia elegido, se rechaza la hipótesis nula de homocedasticidad y se concluye que hay heterocedasticidad en los residuos.

Breusch-Pagan

```
library(lmtest)

## Cargando paquete requerido: zoo

## ## Adjuntando el paquete: 'zoo'

## The following objects are masked from 'package:base':

## as.Date, as.Date.numeric

bptest(modelo3)

## ## studentized Breusch-Pagan test

## ## data: modelo3

## BP = 5.7517, df = 1, p-value = 0.01647
```

Entonces como el p-valor es menor al valor de significancia 0.05, rechazamos la hipótesis nula y podemos decir que existe heterocedasticidad en los residuales.

La heterocedasticidad es un problema porque la regresión de mínimos cuadrados ordinarios asume que todos los residuales se extraen de una población que tiene una varianza constante (homocedasticidad).

Una forma de corregirlo es haciendo una transformación de los datos. Vamos a transformar la variable x_1 . *Nota:* Estas transformaciones deben de justificarse y explicar el porque.

Modelo 4

```
modelo4 <- lm(formula = yp ~ log(x1) + x2 -1, data = datos)
summary(modelo4)
##
## Call:</pre>
```

```
## lm(formula = yp \sim log(x1) + x2 - 1, data = datos)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -2.4546 -0.7961 -0.3458 0.9207
                                   2.5270
##
## Coefficients:
##
          Estimate Std. Error t value Pr(>|t|)
                      0.72213 10.42 6.22e-06 ***
## log(x1) 7.52724
## x2
           2.34013
                      0.06306
                                37.11 3.05e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.578 on 8 degrees of freedom
## Multiple R-squared: 0.9994, Adjusted R-squared: 0.9993
## F-statistic: 6997 on 2 and 8 DF, p-value: 1.065e-13
```

Si realizamos la prueba de la homocedasticidad.

Test

```
bptest(modelo4)
```

```
##
## studentized Breusch-Pagan test
##
## data: modelo4
## BP = 0.13878, df = 1, p-value = 0.7095
```

Vemos que ahora el p-valor es más grande que el valor de significancia, lo cual nos indica que no podemos rechazar H_0 , es decir ahora si podemos asumir que hay homocedasticidad.

En el modelo final, tendríamos $\beta_0=0,\,\beta_1*=7.5272361$ y $\beta_2=2.3401283.$

Plots finales

```
par(mfrow = c(2, 2))
plot(modelo4)
```


Otras dos pruebas que se pueden usar son fligner.test y leveneTest.

2.7.4 No autocorrelación

Una forma de revisar este supuesto es con el test de Durbin-Watson. Las hipótesis que se tienen son:

 H_0 : No hay autocorrelación en los errores (los residuales son independientes).

 ${\cal H}_1$: Hay autocorrelación en los errores (generalmente, autocorrelación positiva de primer orden).

El estadístico DW toma valores entre 0 y 4:

- DW aproximadamente 2, entonces no hay autocorrelación (se cumple el supuesto).
- DW < 2, entonces indica autocorrelación positiva (los errores tienden a repetirse).
- DW > 2, entonces indica autocorrelación negativa (los errores tienden a alternar signo).

 ${\rm Test~D\text{-}W}$

dwtest(modelo4)

```
##
## Durbin-Watson test
##
## data: modelo4
## DW = 1.036, p-value = 0.02046
## alternative hypothesis: true autocorrelation is greater than 0
```

2.7.5 Predicciones

Vamos a predecir por último un valor. Para 2.10 de ancho del horno y una temperatura de 3.10, ¿cuánto seria el tiempo de cocción?

Predicciónes

```
nuevo.dato <- data.frame(x1 = 2.10, x2 = 3.10)
prediccion <- predict(modelo4, newdata = nuevo.dato)
paste("La cantidad estimada de tiempo de coccion es:", round(prediccion, 2))</pre>
```

[1] "La cantidad estimada de tiempo de coccion es: 12.84"

2.7.6 Ejercicios

Ejercicio 1: Para los datos de Datarium marketing, analiza los supuestos. Explica tus resultados y sube tus respuestas a github.

2.8 Análisis de Varianza

Ejemplo 1: Supongamos que un cierto tipo de motor de cohete se fabrica uniendo un propulsor tipo A y un propulsor tipo B. La fuerza del enlace entre los dos propulsores es una característica de importancia y se sospecha que está relacionada con la edad (en semanas) del lote del propulsor tipo B. Se tiene una muestra de tamaño 20 de la fuerza del enlace y la edad del lote del propulsor tipo B que fue utilizado.

```
datos <- data.frame(
  Fuerza_enlace = c(
    2158.70, 1678.15, 2316.00, 2061.30, 2207.50,
    1708.30, 1784.70, 2575.00, 2357.90, 2256.70,
    2165.20, 2399.55, 1779.80, 2336.75, 1765.30,
    2053.50, 2414.40, 2200.50, 2654.20, 1753.70</pre>
```

```
),
Edad_lote = c(
    15.50, 23.75, 8.00, 17.00, 5.50,
    19.00, 24.00, 2.50, 7.50, 11.00,
    13.00, 3.75, 25.00, 9.75, 22.00,
    18.00, 6.00, 12.50, 2.00, 21.50
)
datos
```

```
##
      Fuerza_enlace Edad_lote
## 1
            2158.70
                         15.50
## 2
            1678.15
                         23.75
## 3
            2316.00
                          8.00
## 4
            2061.30
                         17.00
## 5
            2207.50
                          5.50
## 6
            1708.30
                         19.00
## 7
            1784.70
                         24.00
## 8
            2575.00
                          2.50
## 9
            2357.90
                          7.50
## 10
            2256.70
                         11.00
## 11
            2165.20
                         13.00
## 12
            2399.55
                          3.75
## 13
                         25.00
            1779.80
## 14
            2336.75
                         9.75
## 15
            1765.30
                         22.00
## 16
            2053.50
                         18.00
## 17
            2414.40
                          6.00
## 18
            2200.50
                         12.50
## 19
            2654.20
                          2.00
## 20
            1753.70
                         21.50
```

Un modelo completo sería $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, el cual se ve como:

```
modelo_completo <- lm(Fuerza_enlace ~ Edad_lote, data = datos)

plot(datos$Edad_lote, datos$Fuerza_enlace,
    main = "Modelo completo",
    xlab = "Edad del lote (semanas)",
    ylab = "Fuerza del enlace (psi)",
    pch = 19, col = "blue")

# Agregar la recta de regresión
abline(modelo_completo, col = "red", lwd = 2)</pre>
```

Modelo completo


```
ggplot(datos, aes(x = Edad_lote, y = Fuerza_enlace)) +
  geom_point(color = "blue", size = 3) +
  geom_smooth(method = "lm", se = TRUE, color = "red") +
  labs(
    title = "Modelo completo",
    x = "Edad del lote (semanas)",
    y = "Fuerza del enlace (psi)"
  ) +
  theme_minimal()
```


Queremos ver si un modelo reducido explica mejor o no a los datos. En este caso el modelo con menos parámetros o modelo reducido es el modelo que describirá la hipótesis nula H_0 . En regresión lineal simple, es común plantear $H_0: \beta_1=0$, de manera que el modelo reducido es $y_i=\beta_0+\epsilon_i$, es decir, cada valor y_i es función de una constante (la media) y un error, este modelo se vería como:

```
modelo_reducido <- lm(Fuerza_enlace ~ 1, data = datos)

plot(datos$Edad_lote, datos$Fuerza_enlace,
    main = "Modelo reducido",
    xlab = "Edad del lote (semanas)",
    ylab = "Fuerza del enlace (psi)",
    pch = 19, col = "blue")

# Agregar la recta de regresión
abline(modelo_reducido, col = "red", lwd = 2)</pre>
```

Modelo reducido

¿Cuál modelo es mejor? Debemos obtener los estimadores para cada modelo y la suma de cuadrados de los errores.

- La suma de los cuadrados de los errores $SSE(C) = \sum (y_i \hat{y}_i)^2$, la cual tiene n-2 grados de libertad para el modelo completo.
- La suma de los cuadrados de los errores del modelo reducido $SSE(R) = \sum (y_i \bar{y}_i)^2$, la cual tiene n-1 grados de libertad para el modelo reducido.

Hay que tener en cuenta que SSE(R) siempre es mayor a SSE(C), por lo tanto si la diferencia es miu pequeña, entonces tiene sentido utilizar el modelo reducido, pero si la diferencia es muy grande, entonces el parámetro adicional agrega información importante al modelo.

Se usa la prueba F general:

$$F_0 = \frac{\left(\frac{SSE(R) - SSE(C)}{(n-1) - (n-2)}\right)}{\frac{SSE(C)}{n-2}} = \frac{SCE(C)}{\frac{SSE(C)}{n-2}}$$

La cantidad SSE(R) - SSE(C) representa la suma de cuadrados explicada por la variable x, a esta cantidad la vamos a denotar por SCE.

Entonces, rechazar la hipótesis nula H_0 implica rechazar el modelo reducido y no rechazar H_0 implica rechazar el modelo completo.

```
anova(modelo_completo)
```

Como el p-valor es muy pequeño, se rechaza H_0 por lo que se concluye que hay pruebas suficientes sobre la existencia de asociación lineal de la edad de lote y la fuerza del enlace.

Todo esto, se puede llevar al caso de regresión lineal múltiple.

Ejemplo: Considere los siguientes datos en los que se tienen mediciones del tamaño de infarto, área de la región en riesgo y dos variables que identifican el tipo de tratamiento utilizado en 32 pacientes. Se busca describir el tamaño del infarto a través de las otras 3-variables. Para este caso, vamos a ajustar un modelo de regresión lineal múltiple completo y después vamos a hacer pruebas sobre quitar algunas variables.

```
datos <- data.frame(</pre>
  Paciente = 1:32,
  Infarc = c(
    0.119, 0.190, 0.395, 0.469, 0.130, 0.311, 0.418, 0.480,
    0.687, 0.847, 0.062, 0.122, 0.033, 0.102, 0.206, 0.249,
    0.220, 0.299, 0.350, 0.350, 0.588, 0.379, 0.149, 0.316,
    0.390, 0.429, 0.477, 0.439, 0.446, 0.538, 0.625, 0.974
  ),
  Area = c(
   0.34, 0.64, 0.76, 0.83, 0.73, 0.82, 0.95, 1.06,
   1.20, 1.47, 0.44, 0.77, 0.90, 1.07, 1.01, 1.03,
   1.16, 1.21, 1.20, 1.22, 0.99, 0.77, 1.05, 1.06,
   1.02, 0.99, 0.97, 1.12, 1.23, 1.19, 1.22, 1.40
 ),
  X2 = c(
    0,0,0,0,0,0,0,0,
   0,0,1,1,1,1,1,1,
   1,1,1,1,1,0,0,0,
    0,0,0,0,0,0,0
  ),
  X3 = c(
```

```
##
     Paciente Infarc Area X2 X3
## 1
            1 0.119 0.34
                           0
## 2
            2 0.190 0.64
            3 0.395 0.76
## 3
## 4
            4 0.469 0.83
## 5
            5 0.130 0.73
                           0
## 6
            6 0.311 0.82
## 7
            7 0.418 0.95
                           0
                              0
## 8
            8
               0.480 1.06
                           0
## 9
            9 0.687 1.20
                           0
## 10
           10 0.847 1.47
## 11
           11 0.062 0.44
## 12
           12
               0.122 0.77
## 13
           13 0.033 0.90
## 14
           14 0.102 1.07
## 15
           15 0.206 1.01
## 16
           16 0.249 1.03
## 17
           17
               0.220 1.16
           18 0.299 1.21
## 18
               0.350 1.20
## 19
           19
## 20
           20
               0.350 1.22
## 21
               0.588 0.99
           21
## 22
           22 0.379 0.77
## 23
           23 0.149 1.05
                           0
## 24
           24 0.316 1.06
                           0
## 25
           25 0.390 1.02
## 26
           26 0.429 0.99
                           0
## 27
           27
               0.477 0.97
## 28
           28 0.439 1.12
                           0
## 29
           29 0.446 1.23
## 30
           30 0.538 1.19
                           0
## 31
           31 0.625 1.22
                           0
## 32
           32 0.974 1.40
                           0 1
```

El modelo completo sería $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + \epsilon_i$.

```
modelo_c <- lm(Infarc~ Area + X2 + X3, data = datos)</pre>
summary(modelo_c)
##
## Call:
## lm(formula = Infarc ~ Area + X2 + X3, data = datos)
##
## Residuals:
##
       Min
                  1Q
                      Median
                                    3Q
                                            Max
## -0.28175 -0.06704 -0.01658 0.06294 0.35970
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -0.14927
                          0.10377 -1.439 0.161376
               0.63395
                          0.10927
                                   5.802 3.12e-06 ***
## Area
## X2
              -0.25005
                          0.06053 -4.131 0.000295 ***
## X3
                          0.06641 -1.289 0.207831
               -0.08563
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.138 on 28 degrees of freedom
## Multiple R-squared: 0.6456, Adjusted R-squared: 0.6076
## F-statistic:
                  17 on 3 and 28 DF, p-value: 1.748e-06
Con este modelo se obtiene la siguiente tabla de ANOVA.
anov <- anova(modelo_c)</pre>
anov
## Analysis of Variance Table
## Response: Infarc
##
            Df Sum Sq Mean Sq F value
                                           Pr(>F)
## Area
            1 0.62492 0.62492 32.8245 3.801e-06 ***
## X2
             1 0.31453 0.31453 16.5210 0.0003533 ***
## X3
             1 0.03165 0.03165 1.6624 0.2078307
## Residuals 28 0.53307 0.01904
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## los p-valores en la última columna se pueden obtener con:
\#pf(F_0, df1, df2, lower.tail = FALSE)
```

1) Pruebas sobre uno de los parámetros: $H_0: \beta_1 = 0$, modelo reducido $y_i = \beta_0 + \beta_2 x_{2i} + \beta_3 x_{3i} + \epsilon_i$. Vamos a denotar a la suma de los cuadrados de los

errores asociada a este modelo $SSE(x_1)$, la cual tiene n-3 grados de libertad asociados (tenemos 3 parámetros a estimar β_0,β_2,β_3). Como el p-valor es muy pequeño, se rechaza a H_0 y se concluye que hay suficiente evidencia para decir que el tamaño del infarto está significativamente relacionado con el tamaño del área de riesgo.

```
SCE_X1 <- anov$`Sum Sq`[1]
SSE_C <- anov$`Sum Sq`[4]
df2 <- anov$Df[4]
df1 <- nrow(datos) - 3 - df2
F_g <- (SCE_X1/df1) / (SSE_C/df2)
F_g</pre>
```

[1] 32.82447

2) Pruebas sobre todos los parámetros: En este caso tenemos $H_0: \beta_1 = \beta_2 = \beta_3 = 0$ vs $H_1: \beta_j \neq 0$ p.a. j. Es decir, el modelo reducido sería $y_i = \beta_0 + \epsilon_i$. La prueba F general es la misma, pero ahora la suma de cuadrados asociada al modelo reducido $SSE(x_1, x_2, x_3)$ tiene n-1 grados de libertad ya que solo debemos estimar β_0 .

```
SCE_X1X2X3 <- sum(anov$`Sum Sq`[1:3])
df1 <- nrow(datos) -1 - df2

F_all <- (SCE_X1X2X3 / df1) / (SSE_C / df2)
F_all</pre>
```

[1] 17.00263

El cual tiene un p—valor asociado a una distribución F con 3 y 28 grados de libertad.

```
pf(F_all, df1 = 3, df2 = 28, lower.tail = FALSE)
```

[1] 1.747583e-06

Por lo tanto rechazamos la hipótesis nula. Notemos que este valor coincide con el que nos da el **summary** del modelo.

```
summary(modelo_c)
```

```
##
## Call:
## lm(formula = Infarc ~ Area + X2 + X3, data = datos)
## Residuals:
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -0.28175 -0.06704 -0.01658 0.06294 0.35970
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.14927
                         0.10377 -1.439 0.161376
## Area
              0.63395
                          0.10927
                                   5.802 3.12e-06 ***
## X2
              -0.25005
                          0.06053 -4.131 0.000295 ***
## X3
              -0.08563
                          0.06641 -1.289 0.207831
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.138 on 28 degrees of freedom
## Multiple R-squared: 0.6456, Adjusted R-squared: 0.6076
                  17 on 3 and 28 DF, p-value: 1.748e-06
## F-statistic:
```

3) Pruebas sobre un subconjunto de los parámetros: Supongamos ahora que $H_0: \beta_2 = \beta_3 = 0$. Es decir, el modelo reducido sería $y_i = \beta_0 + \beta_1 x_{1i} + \epsilon_i$. La prueba es similar pero solo usamos x_2 y x_3 .

```
SCE_X2X3 <- sum(anov$`Sum Sq`[2:3])
df1 <- nrow(datos) - 2 - df2

F_dos <- (SCE_X2X3 / df1) / (SSE_C / df2)
F_dos</pre>
```

```
## [1] 9.091716
```

El p-valor asociado a la prueba F con 2 y 28 grados de libertad es:

```
pf(F_dos, df1 = 2, df2 = 28, lower.tail = FALSE)
```

```
## [1] 0.0009065789
```

Por lo que se rechaza de nuevo la hipótesis nula.

2.8.1 Ejercicios

Ejercicio 1(R): Para el datasets datasets::trees, realice las pruebas de hipótesis para determinar si: 1) El modelo solo con la variable Girth es mejor que el modelo completo. 2) El modelo sin Girth y Height es mejor que el completo. Usar la tabla de ANOVA para calcular el estadístico F_0 y encontrar el p-valor asociado usando pf(F_0, df1, df2, lower.tail = FALSE). Justifique su respuesta y suba su código en R a github.

Ejercicio 2(Python): Para el dataset de marketing, realice las pruebas de hipótesis utilizando la tabla de ANOVA sobre: 1) Uno de los parámetros, justificar cual. 2) Todos los parámetros. 3)Un subconjunto de parámetros, justificar cual. Usar la tabla de ANOVA para calcular el estadístico F_0 y encontrar el pvalor asociado usando pf(F_0 , df1, df2, lower.tail = FALSE). Justifique su respuesta y suba su código en Python a github.

2.9 Selección del modelo

Suponga que se busca una ecuación de regresión lineal entre la variable respuesta y y las variables predictoras $x_1,...,x_p$. Suponga que se tiene el conjunto de todas las posibles variables a incluir en el modelo $z_1,...z_k$ que son funciones de las x's. Se busca entonces un modelo que incluya la mayor cantidad de variables z posible para que el error sea pequeño. Pero, considerando la varianza y el costo de obtener más datos, también se busca incluir el menor número de posibles variables z en el modelo.

No existe un solo método de selección de modelos y no todos conducen a la misma solución. Vamos a analizar tres métodos:

- 1) Todos los modelos posibles y el mejor subconjunto de modelos.
- 2) Selección paso a paso.
- 3) Eliminación hacia atrás.

2.9.1 Todos los modelos posibles

Si el número de variables z es grande, esto puede ser un problema. Supongamos que tenemos k variables, donde cada variable puede o no estar en el modelo, entonces tenemos un total de 2^k posibles modelos de los cuales se debe elegir el mejor a partir de criterios como R^2 , R^2_{adj} , etc. Vamos a ver algunos de estos criterios.

Estadística C_p de Mallows

Supongamos que tenemos k+1 variables regresoras incluyendo el intercepto, de las cuales vamos a elegir p. Denotemos por SSE_p la suma de cuadrados de

la regresión respectiva de tomar p variables, la estadística ${\cal C}_p$ de Mallows está dada por

$$C_p = \frac{SSE_p}{\hat{\sigma}^2} - (n-2p)$$

donde $\hat{\sigma}^2$ corresponde al modelo con todas las variables y se supone que es un estimador insesgado para la varianza σ^2 . Si el modelo ajusta bien, esperaríamos que $\mathbb{E}(SSE_p) = (n-p)\sigma^2$, de manera que:

$$\mathbb{E}(C_p) \approx p,$$

en consecuencia, si graficamos C_p en función de p, los modelos adecuados arrojarán puntos cerca de la recta $C_p=p.$

Criterio de información de Akaike (CIA)

Se define como

$$CIA = e^{\frac{2p}{n}} \frac{SSE}{n},$$

donde p es el número de variables regresoras incluyendo el intercepto. Esta función incluye una penalización por imponer regresoras. Al comparar modelos, se busca el que tenga menor CIA. Muchas veces esta estadística se define como log(CIA), es decir:

$$\frac{2p}{n} + \log(\frac{SSE}{n})$$

con el cual las conclusiones son las mismas.

Criterio de información de Schwars (CIS)

Similar al CIA, el CIS se define como

$$CIS = n^{\frac{p}{n}} \frac{SSE}{n},$$

cuyo logaritmo es

$$\frac{p}{n}\log n + \log \frac{SSE}{n}.$$

Este criterio impone mayor penalización por agregar variables. Al comparar modelos, se busca el que tenga menor CIS.

2.9.1.1 Mejor subconjunto

Una alternativa a la comparación de todos los modelos posibles es la búsqueda del mejor subconjunto de modelos que se pueden hacer en distintos programas y compararlos. En R, existe la función regsubsets, la cual incluye los criterios de comparación R^2 , C_p , BIC (Bayesian Information Criterion). Esta función utiliza los métodos forward and backward stepwise.

2.9.2 Selección paso a paso

Las técnicas de selección paso a paso consisten en elaborar un modelo inicial a partir del cual se agrega o se elimina una variable para comparar hasta encontrar el mejor modelo.

2.9.2.1 Selección paso a paso hacia adelante

Conocido como forward regression, consiste en comenzar con el modelo en el que la única variable regresora es la que mejor describe el comportamiento de y y a partir de ahí ir agregando variables regresoras una por una.

El orden en el que se agregan puede variar y se pueden usar diferentes estadísticas o criterios para decidir cual agregar. Se calculan las estadísticas del modelo actual al agregar variable y elegir el modelo con la mejor estadística, siempre que sea un mejor modelo.

2.9.2.2 Selección paso a paso hacia atrás

Conocido como backward regression, consiste en comenzar con el modelo que incluye todas las variables e ir eliminando una a una de acuerdo a algún criterio.

Ambas técnicas se pueden mezclar, de manera que en cada paso se evalúa la estadística correspondiente al quitar o agregar alguna de las variables y se elige la mejor opción.

2.9.3 Ejemplos

2.9.3.1 Todos los modelos posibles

En este ejemplo veremos cómo aplicar el método de seleccion de modelos que implica el análisis de todos los modelos posibles. Primero, necesitaremos varios paquetes.

```
library(ggplot2)
library(olsrr)

##
## Adjuntando el paquete: 'olsrr'

## The following object is masked from 'package:datasets':
##
## rivers

library(leaps)
library(GGally)
```

Ejemplo 1: Cargamos los datos de cemento.txt y hacemos un rápido análisis con el diagrama de dispersión:

 $\label{lem:commutation} cemento < -read. table ("D:/Users/hayde/Documents/R_sites/MultivariateStatisticalAnalysis/data/cementoggpairs (cemento)$

A continuación ajustamos el modelo con TODAS las variables independientes y calculamos la estadística C_p . Para facilitar la interpretación graficamos la C_p para cada modelo:

```
modelo.full<-lm(y~., cemento, x=T, y=T)
## calcula el AIC, CIS, etc sobre todos los subconjuntos posibles
outs<-leaps(modelo.full$x, cemento$y, int=FALSE)
plot(outs$size,outs$Cp, log="y",cex=0.3)
lines(outs$size,outs$size)
text(outs$size, outs$Cp, labels=row(outs$which), cex=0.5, pos=4)</pre>
```



```
#Mejor modelo por la regla Cp p (p = número de predictores)

idx_best_rule <- which.min(abs(outs$Cp - outs$size))

#Variables que entran en cada mejor modelo
noms_x <- colnames(modelo.full$x)  # nombres de los predictores
vars_rule <- noms_x[ outs$which[idx_best_rule, ] ]

vars_rule

## [1] "(Intercept)" "x1"  "x2"  "x3"  "x4"</pre>
```

Recordemos que nos interesan los modelos en los que $C_p = p$.

Ejemplo 2: Vamos a usar la base de datos mtcars. Otra manera de analizar todos los modelos posibles:

```
library(olsrr)
modelo.full.cars<-lm(mpg~., mtcars)
ejemplo<-ols_step_all_possible(modelo.full.cars)
plot(ejemplo)</pre>
```


Observe que en los triángulos rojos aparecen los mejores modelos para cada p en función de la estadística correspondiente.

Ejemplo 3: R tiene una función que nos muestra el mejor modelo para cada número de variables. Vamos a regresar al conjunto de datos cemento.

```
mejor<-regsubsets(y~., cemento)</pre>
summary(mejor)
## Subset selection object
## Call: regsubsets.formula(y ~ ., cemento)
## 4 Variables (and intercept)
##
      Forced in Forced out
## x1
          FALSE
                      FALSE
## x2
          FALSE
                      FALSE
## x3
          FALSE
                      FALSE
## x4
          FALSE
                      FALSE
## 1 subsets of each size up to 4
## Selection Algorithm: exhaustive
##
```

plot(mejor,scale="Cp")

La gráfica muestra los cuatro modelos y su C_p , por ejemplo, el modelo que incluye al intercepto, a x_1 y a x_2 tiene una C_p cercana a 2.7.

2.9.4 Selección paso a paso

Ejemplo 1: Para analizar el método de selección paso a paso usaremos los datos swiss del paquete MASS. Para ello, el primer paso es ajustar el modelo con TODAS las variables independientes

```
library(MASS)
## Adjuntando el paquete: 'MASS'
## The following object is masked from 'package:olsrr':
##
##
       cement
## The following object is masked from 'package:patchwork':
##
##
       area
## The following object is masked from 'package:dplyr':
##
##
       select
modelo_completo<-lm(Fertility~., swiss)</pre>
Podemos usar la función step en las tres direcciones (forward, backward o both)
paso_a_paso<-stepAIC(modelo_completo, direction="both", trace=T)</pre>
## Start: AIC=190.69
## Fertility ~ Agriculture + Examination + Education + Catholic +
##
       Infant.Mortality
##
##
                       Df Sum of Sq
                                       RSS
                                               AIC
## - Examination
                              53.03 2158.1 189.86
## <none>
                                    2105.0 190.69
                             307.72 2412.8 195.10
## - Agriculture
                       1
## - Infant.Mortality 1
                             408.75 2513.8 197.03
## - Catholic
                        1
                             447.71 2552.8 197.75
## - Education
                        1
                            1162.56 3267.6 209.36
##
## Step: AIC=189.86
## Fertility ~ Agriculture + Education + Catholic + Infant.Mortality
```

Candidate Terms:

##

```
##
##
                     Df Sum of Sq
                                    RSS
                                           AIC
## <none>
                                 2158.1 189.86
## + Examination
                     1
                          53.03 2105.0 190.69
                      1 264.18 2422.2 193.29
## - Agriculture
## - Infant.Mortality 1 409.81 2567.9 196.03
## - Catholic
                      1 956.57 3114.6 205.10
## - Education
                     1 2249.97 4408.0 221.43
summary(paso_a_paso)
##
## Call:
## lm(formula = Fertility ~ Agriculture + Education + Catholic +
      Infant.Mortality, data = swiss)
##
## Residuals:
       {	t Min}
                 1Q Median
                                  3Q
                                          Max
## -14.6765 -6.0522 0.7514 3.1664 16.1422
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  62.10131 9.60489 6.466 8.49e-08 ***
## Agriculture
                  -0.15462
                              0.06819 -2.267 0.02857 *
## Education
                   -0.98026
                              0.14814 -6.617 5.14e-08 ***
## Catholic
                   0.12467
                              0.02889
                                       4.315 9.50e-05 ***
## Infant.Mortality 1.07844
                              0.38187
                                      2.824 0.00722 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.168 on 42 degrees of freedom
## Multiple R-squared: 0.6993, Adjusted R-squared: 0.6707
## F-statistic: 24.42 on 4 and 42 DF, p-value: 1.717e-10
Ejemplo 2: O podemos usar el paquete olsrr. Base de datos surgical.
modelo_completo_sur<-lm(y~., surgical)</pre>
ols_step_forward_aic(modelo_completo_sur, details = T)
## Forward Selection Method
## -----
##
```

```
## 1. bcs
## 2. pindex
## 3. enzyme_test
## 4. liver_test
## 5. age
## 6. gender
## 7. alc_mod
## 8. alc_heavy
##
##
## Step
         => 0
## Model => y ~ 1
## AIC => 802.606
##
## Initiating stepwise selection...
##
                       Table: Adding New Variables
## -----
                                        SBIC R2 Adj. R2
## Predictor
              DF AIC
                              SBC
## -----
## liver_test 1 771.875 777.842 616.009 0.45454 0.44405
## enzyme_test 1 782.629 788.596 626.220 0.33435 0.32154
## pindex 1 794.100 800.067 637.196 0.17680 0.16097
## alc_heavy 1 794.301 800.268 637.389 0.17373 0.15784
## bcs 1 797.697 803.664 640.655 0.12010 0.10318
             1 802.828 808.795 645.601 0.03239 0.01378
## alc_mod
               1 802.956 808.923 645.725 0.03009
## gender
                                                            0.01143
              1 803.834 809.801 646.572 0.01420
## age
                                                            -0.00476
## -----
##
## Step
          => 1
## Added
          => liver_test
## Model => y ~ liver_test
## AIC
       => 771.8753
##
                     Table: Adding New Variables
## Predictor DF AIC SBC SBIC R2 Adj. R2
## -----
              1 761.439 769.395 605.506 0.56674
## alc_heavy
                                                          0.54975
## enzyme_test
               1 762.077 770.033 606.090 0.56159 0.54440
## pindex 1 770.387 778.343 613.737 0.48866 0.46861 ## alc_mod 1 771.141 779.097 614.435 0.48147 0.46113 ## gender 1 773.802 781.758 616.901 0.45528 0.43391 ## age 1 773.831 781.787 616.928 0.45498 0.43361
            1 773.867 781.823 616.961 0.45462 0.43323
## bcs
```

```
## -----
##
        => 2
## Step
## Added => alc_heavy
## Model => y ~ liver_test + alc_heavy
## AIC => 761.4394
##
                 Table: Adding New Variables
## -----
## Predictor DF AIC
                              SBC
                                       SBIC
                                                 R2 Adj. R2
## -----
## enzyme_test 1 750.509 760.454 595.297 0.65900 0.63854
## pindex 1 756.125 766.070 600.225 0.62163 0.59892
## bcs 1 763.063 773.008 606.379 0.56975 0.54394
## age
              1 763.110 773.055 606.421 0.56938 0.54354
          1 763.428 773.373 606.704 0.56683 0.54084
1 763.433 773.378 606.709 0.56679 0.54080
## alc_mod
## gender
## -----
##
## Step
        => 3
## Added => enzyme_test
## Model => y ~ liver_test + alc_heavy + enzyme_test
## AIC => 750.5089
##
##
                    Table: Adding New Variables
## -----
                   AIC
## Predictor DF
                            SBC
                                     SBIC
                                               R2
                                                       Adj. R2
## -----
## pindex 1 735.715 747.649 582.943 0.75015 0.72975
## bcs 1 750.782 762.716 595.377 0.66973 0.64277
## alc_mod 1 752.403 764.337 596.743 0.65967 0.63189
## age 1 752.416 764.350 596.755 0.65959 0.63180
## gender 1 752.509 764.443 596.833 0.65900 0.63116
## -----
##
## Step
         => 4
## Added => pindex
## Model => y ~ liver_test + alc_heavy + enzyme_test + pindex
## AIC => 735.7146
##
##
                    Table: Adding New Variables
## Predictor DF
                   AIC
                            SBC
                                      SBIC
                                                R2
                                                        Adj. R2
## -----
          1 730.620 744.543 579.638 0.78091 0.75808
1 737.680 751.603 585.012 0.75030 0.72429
## bcs
## age
```

```
## gender 1 737.712 751.635 585.036 0.75016 0.72413 ## alc_mod 1 737.713 751.636 585.037 0.75015 0.72413
##
            => 5
## Step
## Added
           => bcs
## Model => y ~ liver_test + alc_heavy + enzyme_test + pindex + bcs
## AIC => 730.6204
##
##
                       Table: Adding New Variables
## -----
## Predictor DF
                       AIC
                                  SBC
                                             SBIC R2
                                                                  Adj. R2
## -----
## age 1 732.494 748.406 581.938 0.78142 0.75351
## gender 1 732.551 748.463 581.978 0.78119 0.75325
## alc_mod 1 732.614 748.526 582.023 0.78093 0.75297
## ------
##
##
## No more variables to be added.
## Variables Selected:
## => liver_test
## => alc_heavy
## => enzyme_test
## => pindex
## => bcs
##
##
                                 Stepwise Summary
## -----
                           AIC SBC
## Step
                                                 SBIC
                                                            R2
           Variable
                                                                      Adj. R2
## 0 Base Model 802.606 806.584 646.794 0.00000 0.00000
## 1 liver_test 771.875 777.842 616.009 0.45454 0.44405
## 2 alc_heavy 761.439 769.395 605.506 0.56674 0.54975
## 3 enzyme_test 750.509 760.454 595.297 0.65900 0.63854
## 4 pindex 735.715 747.649 582.943 0.75015 0.72975
## 5 bcs 730.630 744.543 579.638 0.78091 0.75808
## 5
                         730.620 744.543 579.638 0.78091 0.75808
         bcs
## Final Model Output
## -----
##
```

##	# Model Summary #										
##	: R).884	RMSE			184.276 33957.712				
##			0.781								
		ed (27				
	Pred R-Square				IC		730	.620			
##	MAE	137	7.656				744				
##											
##	# RMSE: Root Mean Square Error										
##											
##	MAE: Mean Al	bsolute Error									
##	AIC: Akaike Information Criteria										
##	SBC: Schwarz Bayesian Criteria										
##											
##	ANOVA										
##		Sum of									
##		Squares		DF	Mean Squa	re	F	Sig.			
##	Regression	6535804.090		5	1307160.8	18	34.217	0.0000			
		1833716.447			38202.4	26					
##	Total	8369520.537		53							
##				_							
##					arameter						
##		 Beta									
##											
##	(Intercept)	-1178.330	20	8.682			-5.647	0.000	-1597.914		
##	liver_test	58.064	4	0.144	0.	156	1.446	0.155	-22.652		
##	alc_heavy	-1178.330 58.064 317.848	7	1.634	0.	314	4.437	0.000	173.818		
##	enzyme_test	9.748		1.656	0.	521	5.887	0.000	6.419		
##	pindex	8.924		1.808	0.	380	4.935	0.000	5.288		
##	bcs	59.864	2	3.060	0.	241	2.596	0.012	13.498		
##											

ols_step_backward_aic(modelo_completo_sur)

##													
##													
##	Stepwise Summary												
##													
## Step	Variable	AIC	SBC	SBIC	R2	Adj. R2							
##													
## 0	Full Model	736.390	756.280	586.665	0.78184	0.74305							

	1 alc			583.884					
		der 732.							
##	3 age	730.	620 744.5	543 578.844	0.78091	0.75808			
##	Timel Model	0							
	Final Model	-							
##									
##			Model Summa						
## ##				RMSE	 184.				
	R-Squared			MSE					
	Adj. R-Squar			Coef. Var					
	-	red			730.				
	MAE R Bquar		37.656		744.				
##	RMSE: Root	Mean Square Er	ror						
		Square Error							
##		Absolute Error							
##	AIC: Akaik	e Information C	Criteria						
##	SBC: Schwar	rz Bayesian Cri	teria.						
##									
##			ANOVA						
##		Sum of		_					
##		Squares							
		6535804.090							
##	Residual	1833716.447	48	38202.426					
##	Total	8369520.537	53						
##				D Bat					
##	# Parameter Estimates #								
##	model	Beta	Std. Error	Std. Beta	t	Sig	lower	uppe	
		 -1178.330			 -5 647		 -1597.914		
##	(Intercept)		208.682 23.060		-5.647 2.596	0.000		-758.74 106.23	
##	pindex	59.864 8.924	1.808			0.012	13.498 5.288	12.5	
##	=	9.748				0.000	6.419	13.0	
##	enzyme_test	58.064	1.656			0.000		138.7	
##	liver_test alc_heavy		40.144 71.634			0.155	-22.652 173.818	461.8	
##	arc neavy	011.040	11.007	T 0.017	4.401	0.000	110.010	401.0	
##									

ols_step_forward_aic(modelo_completo_sur)

##									
##									
	Step Var	iable	AIC	SBC		SBIC	R2		Adj. R2
## ##		e Model	802.606		. 584	646.794			0.00000
##		er_test	771.875			616.009			0.44405
##		_heavy	761.439		.395	605.506	0.566		0.54975
##		yme_test	750.509			595.297			0.63854
##	=	dex	735.715			582.943			0.72975
##	5 bcs		730.620	744	.543	579.638	0.780	91	0.75808
##									
##	E41 M-4-1	0							
	Final Model	Output							
##									
##			Modol	Cumme					
##			Model		11 y				_
##									
			0.781				33957.712		
	-		0.758				27.839		
	J 1		0.700	AIC			730.620		
	MAE	204	137.656	SBC			744.543		
									_
##	RMSE: Root	Mean Square	e Error						
##		Square Erroi							
##		Absolute Eri							
##	AIC: Akaik	e Informatio	on Criteri	a					
##	SBC: Schwar	rz Bayesian	Criteria						
##									
##				ANOVA	A				
##									
##		Sum	of						
##		Squai	ces	DF	Mean	Square	F	5	Sig.
##									
	Regression						34.217	0.0	0000
	Residual			48	382	202.426			
	Total	8369520.5		53					
##					_				
##					Parame	eter Esti	mates		
##									

##	model	Beta	Std. Error	Std. Beta	t	Sig	lower	uppe
##								
##	(Intercept)	-1178.330	208.682		-5.647	0.000	-1597.914	-758.74
##	liver_test	58.064	40.144	0.156	1.446	0.155	-22.652	138.77
##	alc_heavy	317.848	71.634	0.314	4.437	0.000	173.818	461.87
##	enzyme_test	9.748	1.656	0.521	5.887	0.000	6.419	13.07
##	pindex	8.924	1.808	0.380	4.935	0.000	5.288	12.55
##	bcs	59.864	23.060	0.241	2.596	0.012	13.498	106.23
##								

Ojo: el parámetro details=T nos dará en detalle el proceso con el que se llegó al modelo correspondiente. También hay que tener en cuenta que podríamos llegar a modelos diferentes si usamos métodos diferentes.

Si podemos llegar a resultados diferentes, ¿cómo sabemos cuál es el mejor modelo?.

Recordemos que estos métodos se basan en UNA SOLA estadística para ir mejorando el modelo, de manera que, aunque tengamos el modelo con el AIC menor, este podría no ser el mejor en términos del cumplimiento de los supuestos.

Ejemplo 3 Veamos con mas detalle el modelo de cement.txt.

#Modelo elegido por el algoritmo modelo.bueno<-lm(y~.-x3, cemento)

```
summary(modelo.bueno)
##
## Call:
## lm(formula = y ~ . - x3, data = cemento)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
## -3.0919 -1.8016 0.2562 1.2818 3.8982
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 71.6483
                         14.1424
                                   5.066 0.000675 ***
## x1
                1.4519
                           0.1170 12.410 5.78e-07 ***
## x2
                                    2.242 0.051687 .
                0.4161
                           0.1856
## x4
               -0.2365
                           0.1733 -1.365 0.205395
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.309 on 9 degrees of freedom
## Multiple R-squared: 0.9823, Adjusted R-squared: 0.9764
```

F-statistic: 166.8 on 3 and 9 DF, p-value: 3.323e-08

```
#Modelo sin x3 y x4
modelo.12 < -lm(y \sim x1 + x2, cemento)
summary(modelo.12)
##
## Call:
## lm(formula = y ~ x1 + x2, data = cemento)
## Residuals:
    Min
             1Q Median
                           3Q
                                 Max
## -2.893 -1.574 -1.302 1.363 4.048
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                                   23.00 5.46e-10 ***
## (Intercept) 52.57735 2.28617
## x1
              1.46831
                          0.12130 12.11 2.69e-07 ***
## x2
               0.66225
                          0.04585 14.44 5.03e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.406 on 10 degrees of freedom
## Multiple R-squared: 0.9787, Adjusted R-squared: 0.9744
## F-statistic: 229.5 on 2 and 10 DF, p-value: 4.407e-09
\#Modelo\ sin\ x3\ y\ x2
modelo.14 < -lm(y \sim x1 + x4, cemento)
summary(modelo.14)
##
## Call:
## lm(formula = y ~ x1 + x4, data = cemento)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                     Max
## -5.0234 -1.4737 0.1371 1.7305 3.7701
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 103.09738 2.12398 48.54 3.32e-13 ***
## x1
               1.43996
                           ## x4
               -0.61395
                        0.04864 -12.62 1.81e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 2.734 on 10 degrees of freedom
## Multiple R-squared: 0.9725, Adjusted R-squared: 0.967
## F-statistic: 176.6 on 2 and 10 DF, p-value: 1.581e-08
```

Observamos que en el modelo que elige el algoritmo, la variable X4 no es significativa, y por el diagrama de disperisón vemos que está correlacionada con X2, por ello decidimos analizar el modelo eliminando X2 y X4. En ambos modelos las variables son significativas y \mathbb{R}^2 es alta.

Comparemos su AIC

```
AIC(modelo.bueno, modelo.12, modelo.14)

## df AIC
```

modelo.bueno 5 63.86629 ## modelo.12 4 64.31239 ## modelo.14 4 67.63411

Entre los tres, preferimos al modelo.12 ya que es el segundo en R^2 , todas las variables son significativas y, aunque no tiene el mínimo AIC, sí es muy parecido y es menor que el AIC del modelo.14. Es decir, en conjunto es el modelo.12 es el que mejor cumple los supuestos y tiene buenas estadísticas.

2.9.4.1 Ejercicios

Ejercicio 1: Para los datos de rendimiento de gasolina. Aplica los tres métodos vistos de selección de modelos. Compara los resultados y especifica cual sería el mejor modelo con cuales estadísticas.

Análisis de Componentes Principales

Análisis Factorial

Análisis de Conglomerados

Análisis de Discriminante

Apéndices

7.1 Introducción a R

- Tutorial de RMarkdown: Link
- Tutorial Manejo de Proyectos: Link

7.2 Git + Github

- Conectar R con Git y Github: Link
- 7.3 Gráficas Multivariadas
- 7.4 Escalas de Medición
- 7.5 Valores Faltantes