Weighted Product

Pengertian

Metode Weighted Product adalah salah satu analisis keputusan multikriteria (MCDA) yang sangat terkenal atau metode pengambilan keputusan multi-kriteria (MCDM).

Algoritma

Perbaikan Weight (Normalisasi)

$$W_J = \frac{w_j}{\Sigma w_i}$$

 W_I : Weight yang sudah diperbaiki

 w_i : Weight yang belum diperbaiki

 Σw_i : Jumlah weight yang belum diperbaiki

Vektor S

$$S_i = \prod_{J=1}^n X_{iJ} w_j$$

 S_i : Hasil pangkat dan kali masing-masing kriteria dengan bobot yang sudah diperbaiki

Jenis Kriteria berpengaruh pada penghitungan. Kriteria benefit merupakan pangkat plus, sedangkan Kriteria cost merupakan pangkat minus.

Hitung Preferensi

$$V_{i} = \frac{\prod_{j=1}^{n} X_{ij} w_{j}}{\prod_{j=1}^{n} (X_{j*}) w_{j}}$$

Formula Sederhana:

$$V_i = \frac{S_i}{\Sigma S}$$

 V_i : Preferensi, semakin besar maka semakin bagus

Contoh Kasus

KRITERIA	SIFAT	вовот
C1: Kesesuaian proposal yang diajukan terhadap persyaratan PNPM	Benefit	5
C2: Kegiatan yang diajukan mendesak untuk dilakukan	Benefit	4
C3: Pendapatan per tahun masyarakat	Cost	4
C4: Lokasi desa dilihat dari jarak dengan pusat pemerintahan	Benefit	3
C5: Tingkat kemajuan desa	Benefit	5

ALTERNATIF	KRITERIA					
	C1	C2	C3(Rp)	C4(km)	C5	
Sumber	5	5	1.000.000,-	20	5	
Sariharjo	5	5	800.000,-	22	5	
Sinduharjo	5	3	850.000,-	25	5	
Windusari	3	5	900.000,-	23	5	
Mranggen	5	3	1.050.000,-	24	5	

Normalisasi Bobot

$$W_1 = 5 / (5 + 4 + 4 + 3 + 5) = 5 / 21 = 0.238095238$$

 $W_2 = 4 / (5 + 4 + 4 + 3 + 5) = 4 / 21 = 0.19047619$
 $W_3 = 4 / (5 + 4 + 4 + 3 + 5) = 4 / 21 = 0.19047619$
 $W_4 = 3 / (5 + 4 + 4 + 3 + 5) = 3 / 21 = 0.142857143$
 $W_5 = 5 / (5 + 4 + 4 + 3 + 5) = 5 / 21 = 0.238095238$

Menghitung Vektor S

$$S_i = C_1^{w1} \times C_2^{w2} \times C_3^{-w3} \times C_4^{w4} \times C_5^{w5}$$

$$S_1$$
= (1.466970666) (1.358742449) (0.071968567) (1.534127405) (1.466970666) = 0.322837732
 S_2 = (1.466970666) (1.358742449) (0.075093424) (1.555158537) (1.466970666) = 0.341473164
 S_3 = (1.466970666) (1.232764839) (0.074231267) (1.583819609) (1.466970666) = 0.311900223
 S_4 = (1.298973522) (1.358742449) (0.073427471) (1.565065608) (1.466970666) = 0.297543173
 S_5 = (1.466970666) (1.232764839) (0.071302835) (1.574610106) (1.466970666) = 0.297853654

• Menentukan V_i

$$V_i = S_i / \Sigma S$$

 $V_1 = 0.322837732/1.571607946 = 0.205418745$

 $V_2 = 0.341473164/1.571607946=0.217276303$

 $V_3 = 0.311900223/1.571607946 = 0.198459306$

 $V_4 = 0.297543173/1.571607946 = 0.189324044$

 $V_5 = 0.297853654/1.571607946=0.189521601$

Urutan:

1. V_2

2. V_1

3. V_3

4. V_5

5. V_4