COL352 Lecture 10

Contents

1	Recap	1
2	Definitions	1
3	Content	1

1 Recap

Game playing version of pumping lemma.

2 Definitions

Definition 1

 $D_1=(Q_1,\Sigma,\delta_1,q_1,A_1)$ is isomorphic to $D_2=(Q_2,\Sigma,\delta,q_2,A_2)$ if \exists a bijection $h:Q_1\to Q_2$ such that:

1.
$$h(q_1) = q_2$$

$$2. q \in A \iff h(q) \in A_2$$

3.
$$h(\delta_1(q, a)) = \delta_2(h(q), a)$$

Observe that if D_1, D_2 are isomorphic, then $\mathcal{L}(D_1) = \mathcal{L}(D_2)$.

Definition 2

Let $D = (Q, \sigma, \delta, q_0, A)$ be a DFA. Define the relation \sim_D (read "equivalent" wrt D) on Σ^* as

$$x \sim_D y \iff \hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$$

Definition 3

Let $L \subseteq \Sigma^*$ be any language. Define the relation $=_L$ (read "equivalent" wrt L) on Σ^* as: $x =_L y \iff \forall \overline{z} \in \Sigma^*$, either L contains both xz, yz or L doesn't contain any of xz, yz.

3 Content

Consider the language L from the last lecture.

Claim 0.1

L is not regular.

Proof. If L is regular, then $L' = L \cap \mathcal{L}(ab^*c^*)$ is regular. $L' = \{ab^nc^n \mid n \in \mathbb{N} \cup \{0\}\}$ - this is not regular by the pumping lemma.

Question 1

If L is regular, what is your opponent's strategy?

Answer. $L = \mathcal{L}(D)$ for some DFA $D = (Q, \Sigma, \delta, q_0, A)$. Choose p = |Q|. Run D on s which is given in step 2. Find the earliest revisit to some state say q. The first revisit guarantees $|xy| \leq p$, the fact that there is a revisit implies |y| > 0, and DFA gives that the resulting string is in L.

Now we show a way to characterize the class of regular languages (necessary and sufficient conditions). As a benefit, if L is regular, it gives a systematic way to construct a DFA D for it, and it also gives us the minimum possible number of states among all DFAs that recognize L.

All DFAs that recognize L and have no more states than D are actually isomorphic to D.

Claim 0.2

If $x \sim_D y$ then $\forall z \in \Sigma^*$, we have $xz \sim_D yz$.

Proof. $\hat{\delta}(q_0, xz) = \hat{\delta}(\hat{\delta}(q_0, x), z) = \hat{\delta}(\hat{\delta}(q_0, y), z) = \hat{\delta}(q_0, yz).$

Claim 0.3

If $x \sim_D y$ then for all $z \in \Sigma^*$, D either accepts both xz, yz or D rejects xz, yz.

Proof. Follows from the claim above and the fact that the state is either accepting or rejecting. \Box

Claim 0.4

 \sim_D is an equivalence relation.

Proof. Exercise. \Box

Claim 0.5

 \sim_L is an equivalence relation.

Proof. Recall COL202. $\hfill\Box$

Claim 0.6

If $x =_L y$, then $\forall z \in \Sigma^*, xz =_L yz$.

Proof. Induction on |z|.

Example 1

Let $\Sigma = \{0, 1\}$, $L = \{x \mid x \text{ is the binary representation of a multiple of } 7\}$

Question 2

How does $=_L$ look like? When is $x =_L y$?

Answer. $x =_L y \iff x \equiv y \pmod{7}$.

Proof. Suppose $x\equiv y\pmod 7$. Then $xz=x\cdot 2^{|z|}+z\equiv y\cdot 2^{|z|}+z\equiv yz\pmod 7$. Now suppose $x=_Ly$. Suppose $x\not\equiv y\pmod 7$. Then $x\times 2^3\not\equiv y\times 2^3\pmod 7$. So $\exists z,|z|\leq 3$ such that $x\times 2^3+z$ is divisible by 7 but $y\times 2^3+z$ is not divisible by 7. Considering $x0^{3-|z|}z$ is in L but $y0^{3-|z|}z$ is not in L. So $x\not\equiv_L y$. \Box

Theorem 1

Let $L \subseteq \Sigma^*$ be a regular language and D be a DFA for L . Then $\forall x, y \in \Sigma^*$, $x \sim_D y \implies x = \text{words}$, \sim_D refines $=_L$.	L y. In other		
<i>Proof.</i> Follows from the previous claim and definition of $=_L$.			
Theorem 2 Myhill-Nerode Theorem (John Myhill, Anil Nerode, 1958)			
Proof.			