

2

Ejercicio 1

Datos de entrada

- n: entero, tipos de café
- m: entero, variedades de café
- c_i: entero, cantidad (en kg) disponible de café de tipo j, j en [0,n)
- b_i: double, beneficio de venta de la variedad i, i en [0,m)
- p_{ij}: double en [0..1], porcentaje de café de tipo j que se requiere para obtener un kg de la variedad i, i en [0,m), j en [0,n)

3

Ejercicio 1

- ¿Solución por PLE y AG?
 - x_i: variable entera, indica cuántos kilogramos de la variedad i serán fabricados, i en [0,m)
- Función objetivo
 - Maximizar el beneficio
- Restricciones:
 - Las cantidades de cada tipo de café que se utilicen para elaborar las distintas variedades no puede exceder la cantidad total de kg disponibles de cada tipo de café

3

4

Ejercicio 2

Datos de entrada

- n: entero, número de cursos
- m: entero, número de temáticas
- nc: entero, número de centros
- maxCentros: entero, número máximo de centros diferentes
- t_{ii}: binaria, en el curso i se trata la temática j, i en [0,n), j en [0,m)
- p_i: real, precio de inscripción del curso i, i en [0,n)
- c_{ik} : binaria, el curso i se imparte en el centro k, i en [0,n), k en [0,nc)

Ejercicio 2

- ¿Solución por PLE?
 - x_i: variable binaria, indica si el curso i se selecciona, i en [0,n)
 - y_k: variable binaria, indica si se selecciona algún curso del centro k, k en [0,nc)
- Función objetivo
 - Minimizar el precio total de inscripción
- Restricciones:
 - Entre todos los cursos seleccionados se deben cubrir todas las temáticas
 - No se pueden elegir cursos de más de un número determinado de centros diferentes
 - Relacionar variables x_i e y_k

5

6

Ejercicio 2

- ¿Solución por AG?
 - x_i: variable binaria, indica si el curso i se selecciona, i en [0,n)
- Función objetivo
 - Minimizar el precio total de inscripción
- Restricciones:
 - Entre todos los cursos seleccionados se deben cubrir todas las temáticas
 - No se pueden elegir cursos de más de un número determinado de centros diferentes

6

Ejercicio 3

Datos de entrada

- n: entero, número de investigadores
- e: entero, número de especialidades
- m: entero, número de trabajos
- e_{ik} : binaria, trabajador i tiene especialidad tipo k, i en [0,n), k en [0,e)
- dd_i: entero, días disponibles del trabajador i, i en [0,n)
- dn_{jk} : entero, días necesarios para el trabajo j de investigador con especialidad k, j en [0,m), k en [0,e)
- c_i: entero, calidad trabajo j, j en [0,m)

Ejercicio 3

- ¿Solución por PLE?
 - x_{ij} : variable entera, días que el investigador i dedica al trabajo j, i en [0,n), j en [0,m)
 - y_i: variable binaria, indica si el trabajo j se realiza, j en [0,m)
- Función objetivo
 - Maximizar la suma total de las calidades de los trabajos llevados a cabo.
- Restricciones:
 - Para cada trabajador, no se puede superar su cantidad de días disponibles
 - Relacionar variables x_{ij} e y_j

8

7

9

Ejercicio 3

- ¿Solución por AG?
 - x_{ij}: variable entera, días que el investigador i dedica al trabajo j, i en [0,n), j en [0,m)
- Función objetivo
 - Maximizar la suma total de las calidades de los trabajos llevados a cabo.
- Restricciones:
 - Para cada trabajador, no se pueden superar su cantidad de días disponibles

Ejercicio 4

Datos de entrada

- n: entero, número de vértices
- E: aristas del grafo
- a: vértice origen, a en [0,n)
- w_{ij}: double, peso de la arista (i,j), i y j en [0,n)
 b_i: double, beneficio del cliente ubicado en el vértice i, i en [0,n)

9

10

Ejercicio 4

¿Solución por AG?

x_i: variable entera cuyo valor será el índice del vértice que ocupa la posición i+1 en el camino

Fitness:

- Función objetivo
 - Maximizar beneficio
- Restricciones:
 - Para cada arista del camino, comprobar si existe en el grafo. Si no existe, hay que penalizar. No olvidar la arista que sale del almacén, ni la que vuelve a él