

~~10/501671~~

DT04 Rec'd PCT/PTO 16 JUL 2004

Sequence Listing

<110> Asahi Kasei Kabushiki Kaisha

<120> High-concentration preparation of soluble thrombomodulin

<130> ASAHI-33

<150> JP2002-009951

<151> 2002-01-18

<160> 9

<210> 1

<211> 516

<212> PRT

<213> Artificial sequence

<220>

<223> Partial amino acid sequence of human-originated soluble thrombomodulin

<400> 1

Met Leu Gly Val Leu Val Leu Gly Ala Leu Ala Leu Ala Gly Leu Gly

1

5

10

15

Phe Pro Ala Pro Ala Glu Pro Gln Pro Gly Gly Ser Gln Cys Val Glu

20

25

30

His Asp Cys Phe Ala Leu Tyr Pro Gly Pro Ala Thr Phe Leu Asn Ala

35

40

45

Ser Gln Ile Cys Asp Gly Leu Arg Gly His Leu Met Thr Val Arg Ser

50	55	60
Ser Val Ala Ala Asp Val Ile Ser Leu Leu Leu Asn Gly Asp Gly Gly		
65	70	75
Val Gly Arg Arg Arg Leu Trp Ile Gly Leu Gln Leu Pro Pro Gly Cys		
85	90	95
Gly Asp Pro Lys Arg Leu Gly Pro Leu Arg Gly Phe Gln Trp Val Thr		
100	105	110
Gly Asp Asn Asn Thr Ser Tyr Ser Arg Trp Ala Arg Leu Asp Leu Asn		
115	120	125
Gly Ala Pro Leu Cys Gly Pro Leu Cys Val Ala Val Ser Ala Ala Glu		
130	135	140
Ala Thr Val Pro Ser Glu Pro Ile Trp Glu Glu Gln Gln Cys Glu Val		
145	150	155
Lys Ala Asp Gly Phe Leu Cys Glu Phe His Phe Pro Ala Thr Cys Arg		
165	170	175
Pro Leu Ala Val Glu Pro Gly Ala Ala Ala Ala Val Ser Ile Thr		
180	185	190
Tyr Gly Thr Pro Phe Ala Ala Arg Gly Ala Asp Phe Gln Ala Leu Pro		
195	200	205
Val Gly Ser Ser Ala Ala Val Ala Pro Leu Gly Leu Gln Leu Met Cys		
210	215	220
Thr Ala Pro Pro Gly Ala Val Gln Gly His Trp Ala Arg Glu Ala Pro		
225	230	235
Gly Ala Trp Asp Cys Ser Val Glu Asn Gly Gly Cys Glu His Ala Cys		
245	250	255
Asn Ala Ile Pro Gly Ala Pro Arg Cys Gln Cys Pro Ala Gly Ala Ala		
260	265	270
Leu Gln Ala Asp Gly Arg Ser Cys Thr Ala Ser Ala Thr Gln Ser Cys		
275	280	285

Asn Asp Leu Cys Glu His Phe Cys Val Pro Asn Pro Gln Pro Gly
290 295 300
Ser Tyr Ser Cys Met Cys Glu Thr Gly Tyr Arg Leu Ala Ala Asp Gln
305 310 315 320
His Arg Cys Glu Asp Val Asp Asp Cys Ile Leu Glu Pro Ser Pro Cys
325 330 335
Pro Gln Arg Cys Val Asn Thr Gln Gly Gly Phe Glu Cys His Cys Tyr
340 345 350
Pro Asn Tyr Asp Leu Val Asp Gly Glu Cys Val Glu Pro Val Asp Pro
355 360 365
Cys Phe Arg Ala Asn Cys Glu Tyr Gln Cys Gln Pro Leu Asn Gln Thr
370 375 380
Ser Tyr Leu Cys Val Cys Ala Glu Gly Phe Ala Pro Ile Pro His Glu
385 390 395 400
Pro His Arg Cys Gln Met Phe Cys Asn Gln Thr Ala Cys Pro Ala Asp
405 410 415
Cys Asp Pro Asn Thr Gln Ala Ser Cys Glu Cys Pro Glu Gly Tyr Ile
420 425 430
Leu Asp Asp Gly Phe Ile Cys Thr Asp Ile Asp Glu Cys Glu Asn Gly
435 440 445
Gly Phe Cys Ser Gly Val Cys His Asn Leu Pro Gly Thr Phe Glu Cys
450 455 460
Ile Cys Gly Pro Asp Ser Ala Leu Val Arg His Ile Gly Thr Asp Cys
465 470 475 480
Asp Ser Gly Lys Val Asp Gly Gly Asp Ser Gly Ser Gly Glu Pro Pro
485 490 495
Pro Ser Pro Thr Pro Gly Ser Thr Leu Thr Pro Pro Ala Val Gly Leu
500 505 510
Val His Ser Gly

<210> 2
<211> 1548
<212> DNA
<213> Artificial sequence

<220>
<223> Partial base sequence of human-originated soluble
thrombomodulin gene

<400> 2

atgcttgggg tcctggtcct tggcgcgctg gccctggccg gcctgggtt cccgcaccc 60
gcagagccgc agccgggtgg cagccagtgc gtcgagcacf actgcttcgc gctctacccg 120
ggccccgcga ctttcctcaa tgccagtcag atctgcgacg gactgcgggg ccacctaattg 180
acagtgcgct cctcgggtggc tgccgatgtc atttccttgc tactgaacgg cgacggccgc 240
gttggccgcc ggcgcctctg gatcggcctg cagctgccac ccggctgcgg cgaccccaag 300
cgccctcgccc ccctgcgcgg cttccagtgg gttacgggag acaacaacac cagctatacg 360
agggtggcac ggctcgaccc caatggggct cccctctgcg gcccgttgtg cgtcgctgtc 420
tccgctgctg aggccactgt gcccagcgcg ccgatctggg aggagcagca gtgcgaagtg 480
aaggccgatg gcttcctctg cgagttccac ttcccagcca cctgcaggcc actggctgtg 540
gagccccggcg ccgcggctgc cgccgtctcg atcacctacg gcaccccggtt cgccggccgc 600
ggagcggact tccaggcgct gccgggtggc agctccgcgg cggtggctcc cctcggctta 660
cagctaattgt gcaccgcgcg gcccggagcg gtccaggggc actggccag ggaggcgccg 720
ggcgcttggg actgcagcgt ggagaacggc ggctgcgagc acgcgtgcaa tgcgatccct 780
ggggctcccc gctgccagtg cccagccggc gcccgcctgc aggcagacgg gcgctcctgc 840
accgcatccg cgacgcagtc ctgcaacgc acgtgcgagc acttctgcgt tcccaacccc 900
gaccagccgg gctcctactc gtgcattgtgc gagaccggct accggctggc ggccgaccaa 960
caccgggtgcg aggacgtgga tgactgcata ctggagccca gtccgtgtcc gcagcgctgt 1020

gtcaacacac agggtggctt cgagtgccac tgctacccta actacgacct ggtggacggc 1080
gagtgtgtgg agcccgtgga cccgtgcttc agagccaact gcgagtagcca gtgccagccc 1140
ctgaaccaaa ctagctaccc ctgcgtctgc gccgagggtc tcgcgcctat tccccacgag 1200
ccgcacaggt gccagatgtt ttgcaaccag actgcctgtc cagccgactg cgaccccaac 1260
acccaggcta gctgtgagtg ccctgaaggc tacatcctgg acgacggttt catctgcacg 1320
gacatcgacg agtgcgaaaa cggcggttc tgctccgggg tgtgccacaa cctccccgt 1380
accttcgagt gcatctgcgg gcccgactcg gcccttgc gcccacattgg caccgac. t 1440
gactccggca aggtggacgg tggcgacagc ggctctggcg agccccggc cagccccgacg 1500
cccggttcca ctttgactcc tccggccgtg gggctcgtgc attcgggc 1548

<210> 3

<211> 132

<212> PRT

<213> Artificial sequence

<220>

<223> Partial amino acid sequence of human-originated soluble
thrombomodulin

<400> 8

Met Leu Gly Val Leu Val Leu Gly Ala Leu Ala Leu Ala Gly Leu Gly

1 5 10 15

Phe Pro Asp Pro Cys Phe Arg Ala Asn Cys Glu Tyr Gln Cys Gln Pro

20 25 30

Leu Asn Gln Thr Ser Tyr Leu Cys Val Cys Ala Glu Gly Phe Ala Pro

35 40 45

Ile Pro His Glu Pro His Arg Cys Gln Met Phe Cys Asn Gln Thr Ala

50 55 60

Cys Pro Ala Asp Cys Asp Pro Asn Thr Gln Ala Ser Cys Glu Cys Pro

65 70 75 80
Glu Gly Tyr Ile Leu Asp Asp Gly Phe Ile Cys Thr Asp Ile Asp Glu
85 90 95
Cys Glu Asn Gly Gly Phe Cys Ser Gly Val Cys His Asn Leu Pro Gly
100 105 110
Thr Phe Glu Cys Ile Cys Gly Pro Asp Ser Ala Leu Val Arg His Ile
115 120 125
Gly Thr Asp Cys
130

<210> 4

<211> 396

<212> DNA

<213> Artificial sequence

<220>

<223> Partial base sequence of human-originated soluble
thrombomodulin gene

<400> 4

atgcttgggg tcctggtcct tggcgcgctg gccctggccg gcctgggtt ccccgacccg 60
tgcttcagag ccaactgcga gtaccagtgc cagcccctga accaaactag ctacacctgc 120
gtctgcgccg agggcttcgc gcccattccc cacgagccgc acaggtgcc aatgtttgc 180
aaccagactg cctgtccagc cgactgcgac cccaacaccc aggcttagctg tgagtgcct 240
gaaggctaca tcctggacga cggttcatc tgcacggaca tcgacgagtg cgaaaacggc 300
ggcttctgct ccgggggtgtg ccacaacctc cccggtacct tcgagtgcat ctgcggggcc 360
gactcggccc ttgtccgcca cattggcacc gactgt 396

<210> 5

<211> 516

<212> PRT

<213> Artificial sequence

<220>

<223> Partial amino acid sequence of human-originated soluble
thrombomodulin

<400> 5

Met Leu Gly Val Leu Val Leu Gly Ala Leu Ala Leu Ala Gly Leu Gly

1 5 10 15

Phe Pro Ala Pro Ala Glu Pro Gln Pro Gly Gly Ser Gln Cys Val Glu

20 25 30

His Asp Cys Phe Ala Leu Tyr Pro Gly Pro Ala Thr Phe Leu Asn Ala

35 40 45

Ser Gln Ile Cys Asp Gly Leu Arg Gly His Leu Met Thr Val Arg Ser

50 55 60

Ser Val Ala Ala Asp Val Ile Ser Leu Leu Leu Asn Gly Asp Gly Gly

65 70 75 80

Val Gly Arg Arg Arg Leu Trp Ile Gly Leu Gln Leu Pro Pro Gly Cys

85 90 95

Gly Asp Pro Lys Arg Leu Gly Pro Leu Arg Gly Phe Gln Trp Val Thr

100 105 110

Gly Asp Asn Asn Thr Ser Tyr Ser Arg Trp Ala Arg Leu Asp Leu Asn

115 120 125

Gly Ala Pro Leu Cys Gly Pro Leu Cys Val Ala Val Ser Ala Ala Glu

130 135 140

Ala Thr Val Pro Ser Glu Pro Ile Trp Glu Glu Gln Gln Cys Glu Val

145 150 155 160

Lys Ala Asp Gly Phe Leu Cys Glu Phe His Pro Ala Thr Cys Arg
 165 170 175
 Pro Leu Ala Val Glu Pro Gly Ala Ala Ala Ala Val Ser Ile Thr
 180 185 190
 Tyr Gly Thr Pro Phe Ala Ala Arg Gly Ala Asp Phe Gln Ala Leu Pro
 195 200 205
 Val Gly Ser Ser Ala Ala Val Ala Pro Leu Gly Leu Gln Leu Met Cys
 210 215 220
 Thr Ala Pro Pro Gly Ala Val Gln Gly His Trp Ala Arg Glu Ala Pro
 225 230 235 240
 Gly Ala Trp Asp Cys Ser Val Glu Asn Gly Gly Cys Glu His Ala Cys
 245 250 255
 Asn Ala Ile Pro Gly Ala Pro Arg Cys Gln Cys Pro Ala Gly Ala Ala
 260 265 270
 Leu Gln Ala Asp Gly Arg Ser Cys Thr Ala Ser Ala Thr Gln Ser Cys
 275 280 285
 Asn Asp Leu Cys Glu His Phe Cys Val Pro Asn Pro Asp Gln Pro Gly
 290 295 300
 Ser Tyr Ser Cys Met Cys Glu Thr Gly Tyr Arg Leu Ala Ala Asp Gln
 305 310 315 320
 His Arg Cys Glu Asp Val Asp Asp Cys Ile Leu Glu Pro Ser Pro Cys
 325 330 335
 Pro Gln Arg Cys Val Asn Thr Gln Gly Gly Phe Glu Cys His Cys Tyr
 340 345 350
 Pro Asn Tyr Asp Leu Val Asp Gly Glu Cys Val Glu Pro Val Asp Pro
 355 360 365
 Cys Phe Arg Ala Asn Cys Glu Tyr Gln Cys Gln Pro Leu Asn Gln Thr
 370 375 380
 Ser Tyr Leu Cys Val Cys Ala Glu Gly Phe Ala Pro Ile Pro His Glu

385 390 395 400
Pro His Arg Cys Gln Met Phe Cys Asn Gln Thr Ala Cys Pro Ala Asp
405 410 415
Cys Asp Pro Asn Thr Gln Ala Ser Cys Glu Cys Pro Glu Gly Tyr Ile
420 425 430
Leu Asp Asp Gly Phe Ile Cys Thr Asp Ile Asp Glu Cys Glu Asn Gly
435 440 445
Gly Phe Cys Ser Gly Val Cys His Asn Leu Pro Gly Thr Phe Glu Cys
450 455 460
Ile Cys Gly Pro Asp Ser Ala Leu Ala Arg His Ile Gly Thr Asp Cys
465 470 475 480
Asp Ser Gly Lys Val Asp Gly Gly Asp Ser Gly Ser Gly Glu Pro Pro
485 490 495
Pro Ser Pro Thr Pro Gly Ser Thr Leu Thr Pro Pro Ala Val Gly Leu
500 505 510
Val His Ser Gly
515

<210> 6
<211> 1548
<212> DNA
<213> Artificial sequence

<220>
<223> Partial base sequence of human-originated soluble
thrombomodulin gene

<400> 6
atgcttgggg tcctggtcct tggcgcgctg gccctggccg gcctgggtt ccccgaccc 60

gcagagccgc agccgggtgg cagccagtgc gtcgagcacg actgcttcgc gctctacccg 120
ggccccgcga cttcctcaa tgccagtca gatctgcgacg gactgcgggg ccacctaatt 180
acagtgcgct cctcggtggc tgccgatgtc atttccttgc tactgaacgg cgacggccgc 240
gttggccgcc ggccgcctctg gatcggcctg cagctgccac ccggctgcgg cgaccccaag 300
cgccctcgccc ccctgcgcgg cttccagtgg gttacgggag acaacaacac cagctatacg 360
aggtgtggcac ggctcgacct caatggggct cccctctgcg gcccgttgcg cgtcgctgtc 420
tccgctgctg aggccactgt gcccagcgag ccgatctggg aggagcagca gtgcgaagt 480
aaggccgatg gcttcctctg cgagttccac ttcccagcca cctgcaggcc actggctgtc 540
gagcccggcg ccgcggctgc cgccgtctcg atcacctacg gcaccccggtt cgccggccgc 600
ggagcggact tccaggcgct gccgggtggc agctccgccc cggtggtcc cctcggctta 660
cagctaattgt gcaccgcgcgccc gcccggagcg gtccaggggc actggccag ggaggcgccg 720
ggcgcttggg actgcagcggt ggagaacggc ggctgcgagc acgcgtgcaa tgcgatccct 780
ggggctcccc gctgccagtg cccagccggc gccgccttcg aggccagacgg gcgctcctgc 840
accgcattccg cgacgcagtc ctgcaacgc acctgcgagc acttctgcgt tcccaacccc 900
gaccagccgg gctcctactc gtgcattgtc gagaccggct accggctggc ggccgaccaa 960
caccggtgcg aggacgtgga tgactgcata ctggagccca gtccgtgtcc gcagcgctgt 1020
gtcaacacac agggtgtggctt cgagtgccac tgctacccta actacgaccc ggtggacggc 1080
gagtgtgtgg agcccggtgg cccgtcttc agagccaaact gcgagttacca gtgccagccc 1140
ctgaaccaaa ctagctaccc ctgcgtctgc gccgagggt tcgcgcctt tccccacgag 1200
ccgcacaggt gccagatgtt ttgcaaccag actgcctgtc cagccgactg cgacccaaac 1260
acccaggcta gctgtgagtg ccctgaaggc tacatcctgg acgacggttt catctgcacg 1320
gacatcgacg agtgcgaaaa cggccggcttc tgctccgggg tgtgccacaa cctcccccgt 1380
accttcgagt gcatctgcgg gcccgactcg gcccttgccc gccacattgg caccgactgt 1440
gactccggca aggtggacgg tggcgacagc ggctctggcg agccccggcc cagccccgacg 1500
cccggttcca ctttgactcc tccggccgtg gggctcgtgc attcgggc 1548

<210> 7

<211> 132

<212> PRT

<213> Artificial sequence

<220>

<223> Partial amino acid sequence of human-originated soluble thrombomodulin

<400> 7

Met Leu Gly Val Leu Val Leu Gly Ala Leu Ala Leu Ala Gly Leu Gly

1 5 10 15

Phe Pro Asp Pro Cys Phe Arg Ala Asn Cys Glu Tyr Gln Cys Gln Pro

20 25 30

Leu Asn Gln Thr Ser Tyr Leu Cys Val Cys Ala Glu Gly Phe Ala Pro

35 40 45

Ile Pro His Glu Pro His Arg Cys Gln Met Phe Cys Asn Gln Thr Ala

50 55 60

Cys Pro Ala Asp Cys Asp Pro Asn Thr Gln Ala Ser Cys Glu Cys Pro

65 70 75 80

Glu Gly Tyr Ile Leu Asp Asp Gly Phe Ile Cys Thr Asp Ile Asp Glu

85 90 95

Cys Glu Asn Gly Gly Phe Cys Ser Gly Val Cys His Asn Leu Pro Gly

100 105 110

Thr Phe Glu Cys Ile Cys Gly Pro Asp Ser Ala Leu Ala Arg His Ile

115 120 125

Gly Thr Asp Cys

130

<210> 8

<211> 396

<212> DNA

<213> Artificial sequence

<220>

<223> Partial base sequence of human-originated soluble
thrombomodulin gene

<400> 8

atgcttgggg tcctggtcct tggcgcgctg gccctggccg gcctgggtt ccccgacccg 60
tgcttcagag ccaactgcga gtaccagtgc cagccctga accaaactag ctacctctgc 120
gtctgcgccg agggcttcgc gcccattccc cacgagccgc acaggtgcca gatgtttgc 180
aaccagactg cctgtccagc cgactgcgac cccaaacaccc aggctagctg tgagtgcct 240
gaaggctaca tcctggacga cggttcatc tgcacggaca tcgacgagtg cgaaaacggc 300
ggcttctgct ccggggtgtg ccacaacctc cccggtacct tcgagtgcac ctgcggggcc 360
gactcggccc ttgcccccca cattggcacc gactgt 396

<210> 9

<211> 21

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic DNA for mutation

<400> 9

aatgtggcgg gcaaggggccg a

21