Praca domowa z DUW I, część druga – dynamika

Zadania do wykonania

- 1. Zbudować w *ADAMS*-ie model, umożliwiający przeprowadzenie analizy dynamicznej mechanizmu przedstawionego na rysunku.
- 2. Napisać w *MATLAB*-ie program, pozwalający na wykonanie analizy dynamicznej tego samego mechanizmu.

Informacje dodatkowe

- Wymiary mechanizmu są takie jak w pierwszej części pracy domowej.
- W pokazanej na rysunku chwili początkowej mechanizm nie porusza się.
- Na człony mechanizmu działaja:
 - o siły grawitacji (skierowane w dół),
 - o siły w elementach sprężysto-tłumiących (umieszczonych w siłownikach),
 - o stała siła przyłożona do członu roboczego mechanizmu.
- Nie występują wymuszenia kinematyczne (więzy kierujące).

Wymagania szczegółowe

- Należy napisać program, który na żądanie obliczy przebiegi położeń, prędkości i przyspieszeń liniowych dowolnego punktu mechanizmu, a także prędkości i przyspieszenia kątowe dowolnego członu.
- Obliczenia wykonać dla czasu od 0 do 5 s, używając następujących ustawień programu ADAMS/Solver:
 - o Integrator: GSTIFF,
 - o Formulation: I3.
 - o Error: 1.0E-6.
- Samodzielnie dobrać ustawienia procedury całkującej w MATLAB-ie.
- W programie należy umieścić komentarze informujące o sposobie jego obsługi i wyjaśniające wykonywane operacje.
- Dokładność spełnienia więzów powinna być kontrolowana podczas obliczeń.
- Program w *MATLAB*-ie można napisać w wersji umożliwiającej symulację tylko jednego mechanizmu lub w wersji pozwalającej na dokonanie analizy dynamicznej dowolnego mechanizmu płaskiego (ta opcja będzie wyżej oceniana).

Tryb zaliczenia

- Obie prace domowe wykonuje zespół w tym samym składzie.
- Termin zaliczenia drugiej pracy domowej upływa w ostatnim dniu semestru. Niedotrzymanie terminu skutkuje wystawieniem przedmiotu DUW I oceny *N* lub 2.
- Wykonane modele i programy oceniają osoby prowadzące zajęcia laboratoryjne.
- Przy zaliczeniu konieczna jest obecność wszystkich członków grupy.
- Każdy z członków grupy musi wykazać się znajomością modelu w *ADAMS*-ie i programu w *MATLAB*-ie.

Wskazówki

- Można wykorzystać model i program z pracy domowej poświęconej kinematyce.
- Warto zacząć od zbudowania modelu w *ADAMS*-ie, a następnie wykorzystać go do weryfikacji poprawności programu w *MATLAB*-ie.
- Istotą zadania domowego jest napisanie procedur wykonujących obliczenia i tylko te procedury będą podlegać ocenie. W przypadku pisania programu do analizy dowolnych mechanizmów wystarczy, jeśli dane dotyczące mechanizmu i zadania będą wczytywane z przygotowanego przez użytkownika pliku lub pobierane w inny, równie prosty sposób. Dodatkowe "atrakcje" w postaci okien dialogowych, interfejsu graficznego itp. są mile widziane, lecz nie wpłyną na podwyższenie oceny.

Rysunek 1. Schemat kinematyczny mechanizmu

Tabela 1. Współrzędne charakterystycznych punktów mechanizmu (w układzie globalnym)

		- 			, - 1,:	<i>y</i> • · · · • •				(···/
	O	P	N	H	F	G	M	\boldsymbol{C}	\boldsymbol{E}	D	B	\boldsymbol{A}	K
<i>x</i> [m]	0.0	-0.2	0.0	0.1	-0.3	0.3	0.8	0.5	0.5	0.8	1.3	1.5	1.9
y [m]	0.0	0.1	-0.4	-0.7	0.3	0.3	-0.2	0.4	0.2	0.0	0.0	-0.6	-0.5

Tabela 2. Współrzędne środków mas członów (w układzie globalnym)

		7			- (,	,		
	c_1	c_2	c_3	c_4	<i>C</i> ₅	c_6	c_7	c_8	<i>C</i> 9	c_{10}
<i>x</i> [m]	0.70	0.00	0.20	1.55	0.90	0.20	0.60	0.15	0.25	0.7
y [m]	-0.20	0.20	0.30	-0.35	0.20	-0.35	-0.25	-0.45	0.05	0.0

Na rysunku pokazano konfigurację początkową mechanizmu. Dane umieszczone w tabelach 1 i 2 odpowiadają tej właśnie konfiguracji. Prędkości początkowe są zerowe.

Tabela 3. Masy i momenty bezwładności członów

i abola o. iv		,,,,o,,,,	021111441	.000. 02.0	J. 10 11					
Człon	1	2	3	4	5	6	7	8	9	10
<i>m</i> [kg]	36.0	14.5	14.0	18.0	2.7	0.3	0.3	0.6	0.6	7.0
$J [\text{kg m}^2]$	8.0	0.5	0.9	1.0	0.2	0.1	0.1	0.1	0.1	0.2

Tabela 4. Elementy sprężysto-tłumiące

	Punkty m	ocowania	Sztywność [N/m]	Tłumienie [Ns/m]	
Element 1	c_6	c_7	3.10^{5}	3.10^{3}	
Element 2	c_8	<i>C</i> 9	1.10^{5}	1.10^{3}	

W chwili początkowej sprężyny nie są ugięte (mają długość swobodną).

Siła przyłożona w punkcie K ma stałą wartość $P = 500 \,\mathrm{N}$ i niezmienny kierunek (jest odchylona o kąt 315° od osi x_0 układu globalnego).