0.1 La conjetura del levantamiento modular semiestable

En esta sección formulamos la conjetura del levantamiento modular semiestable (CLMS) y vemos cómo dos casos de la CLMS implican la conjetura de STW semiestable.

Teorema 1. Sea p un primo impar y E una curva elíptica semiestable definida sobre \mathbb{Q} tal que cumple las siguientes dos propiedades:

- i) $\bar{\rho}_{E,p}$ es irreducible
- ii) Existe una eigenforma $f \in S_2(\Gamma_0(N))$ y un ideal primo $\mathfrak{P} \subset \mathcal{O}_f$ tal que, para casi todo número primo q, se tiene

$$a_a(f) \equiv q + 1 - \#E(\mathbb{F}_q) \pmod{\mathfrak{P}}.$$

Entonces E es modular.

A la proposición lógica que postula el teorema 1, aplicado a un primo impar p, la llamaremos $\mathrm{CLMS}(p)$.

Teorema 2. Sea E una curva elíptica semiestable definida sobre \mathbb{Q} , entonces

$$CLMS(3)$$
 y $CLMS(5)$ \Longrightarrow STW semiestable

Este teorema claramente se sigue de los siguientes dos resultados importantes:

Proposición 1. Sea E una curva elíptica semiestable, entonces:

$$CMLS(3)$$
 y $\bar{\rho}_{E,3}$ irreducible \Longrightarrow E es modular.

Proof. Por el teorema ??, tenemos que la hipótesis sobre la irreducibilidad de $\bar{\rho}_{E,3}$, es suficiente para garantizar la existencia de una eigenforma $f \in S_2(\Gamma_0(N))$ y un ideal primo $\mathfrak{P} \subset \mathcal{O}_f$ que cumplen la condición ii) de la CLMS(3). Como estamos asumiendo por hipótesis que la CLMS(3) es cierta, podemos concluir que E es modular.

 $Proposición~2.~{
m Sea}~E~{
m una}~{
m curva}$ elíptica semiestable, entonces:

$${\rm CMLS}(3), \ {\rm CMLS}(5) \ \ {\rm y} \ \ {\bar \rho}_{E,3} \ \ {\rm reducible} \quad \Longrightarrow \quad E \ \ {\rm es \ modular}.$$