Универзитет у Београду Математички факултет

Мастер рад

Игра ним

Аутор:

Марија Мијаиловић

Др Миодраг Живковић

Катедра за рачунарство и информатику

Београд, мај 2020

Наслов мастер рада: Игра ним

Резиме: Ним је игра за два играча са неколико гомила жетона. Број жетона и гомила је произвољан, тачније одређују их сами играчи. Постоје многе варијанте нима, које се од оригиналне верзије углавном разликују по томе што садрже бар једно додатно правило за игру. Овај рад описује једну варијанту ове игре, под називом Витхофова игра. Приказана је подела на добијене и изгубљене позиције, као и три начина да се дође до изгубљених позиција, односно до оптималног начина играња Витхофове игре. Програмски су реализовани описани алгоритми за одређивање изгубљених позиција и процењена њихова сложеност.

Кључне речи: ним, Витхофова игра, изгубљене позиције, добијене позиције, сто, жетони, стратегија

Садржај

1	Увод	1
2	Варијанта нима са више гомила жетона	2
3	Оптимална стратегија за Витхофову игру	5
4	Три еквивалентне формулације стратегије за Витхофову игру	9
	4.1 Рекурзивна стратегија	9
	4.2 Алгебарска стратегија	
	4.3 Аритметичка стратегија	12
5	Имплементација и евалуација	20
	5.1 Рекурзивна стратегија	23
	5.2 Алгебарска стратегија	
	5.3 Аритметичка стратегија	
	5.4 Сумиран приказ времена извршавања свих стратегија	
	5.5 Препознавање природе тренутне позиције	
6	Закључак	31
Л	Іитература	32

1 Увод

Игра ним је игра са неколико гомила жетона за два играча. Број жетона и гомила је произвољан, тачније одређују их сами играчи. Играч који је на потезу може узети произвољан број жетона са једне гомиле, при чему мора узети бар један жетон и не сме узимати жетоне са више гомила. Играчи наизменично играју потезе. Постоје две варијанте игре: нормални и мизерни ним. У нормалном ниму побеђује играч који узме последњи жетон, док у мизерном губи играч који узме последњи жетон.

Пример 1. На почетку партије на столу су три гомиле, са три, четири и пет жетона респективно. Партију играју два играча А и Б, А игра први.

Могући ток игре нормалног нима је приказан на слици 1.

Слика 1: Ток игре ним

Уколико се на столу налазе две гомиле, у зависности од броја жетона могући су следећи исходи нормалног нима:

- На столу су две гомиле са по једним жетоном. Први играч мора да узме бар један жетон, чиме оставља другом играчу да узме последњи жетон и победи. У овој ситуацији очигледно је да **први играч гарантовано губи**.
- На столу су две гомиле, на првој један жетон, на другој два жетона. **Први играч има победничку стратегију**: уколико узме један жетон са гомиле где су два жетона (на слици 1 узима 1 плави жетон), оставља следећем играчу две гомиле са по једним жетоном, што је за њега изгубљена позиција.
- На столу су две гомиле са по два жетона. Прва могућност јесте да први играч узме све са једне гомиле, чиме други играч истим тим потезом, узимајући све жетоне са друге гомиле побеђује. Друга могућност је да први играч узме један жетон, тако да је следеће стање игре заправо стање из претходног примера, у коме играч који је на потезу може да победи. У овој ситуацији први играч губи уколико други играч зна како да игра ним.

Сада би требало да је јасно да у овој игри нема неизвесности, односно да је свака позиција победничка или изгубљена за играча који је на потезу.

Постоје многе варијанте нима [3], које се од оригиналне верзије углавном разликују по томе што садрже бар једно додатно правило за игру. Неке од варијанти су:

- Индекс k игра (енг. *Index-k nim*) у којој је дозвољено да играч у једном потезу узме жетоне са више гомила.
- Грандијева игра (енг. *Grundy's game*) се игра са једном гомилом жетона, где је једини дозвољен потез дељење текуће гомиле на две гомиле са различитим бројем жетона. Игра се завршава када остану гомиле са два или мање жетона.
- Похлепни ним (енг. *Greedy nim*) у којој је дозвољено узимање жетона само са најбројније гомиле, а уколико је више таквих гомила онда је дозвољено узимање са произвољне најбројније гомиле.
- Градитељски ним (енг. *Building nim*) која се игра у две фазе. У првој фази играчи наизменично на *n* гомила распоређују *p* жетона, прво на гомиле без елемената, ова фаза се завршава када се распореде сви жетони. У другој фази се игра нормални ним.
- Витховофа игра (енг. Wythoff's game) се игра са две гомиле жетона; играчи наизменично узимају жетоне са једне или обе гомиле. Приликом узимања жетона са обе гомиле, рецимо k(>0) са једне и l(>0) са друге, мора да буде испуњен услов |k-l| < a, где је a задати позитиван број који се одређује пре почетка партије и не мења се у току саме партије. Игра се завршава када број жетона на столу буде нула, а онај играч који је уклонио последњи жетон или жетоне је победник. Сваки играч када је на потезу мора да уклони бар један жетон. У класичној Витхоф игри a је 1, што значи да ако играч узима жетоне са обе гомиле, број узетих жетона мора бити једнак. У случају класичне Витхоф игре, игра се еквивалентно може описати и као игра са краљицом на шаховској табли [4]: негде на шаховској табли је краљица, играч који је на потезу може да помери краљицу произвољан број корака у правцу југа, запада, или југозапада. Победник је играч који први помери краљицу у доњи леви угао табле. Забележено је да се ова игра играла у Кини под именом "捡石子 јіа́п shízǐ", односно енг. picking stones [6]. Холандски математичар В. А. Витхоф (W. A. Wythoff) је 1907. године објавио математичку анализу ове игре [5].

У наставку рада, у поглављу 2 дат је приказ стратегије за нормални и мизерни ним у случају више гомила. У поглављу 3 дата је основна класификација позиција на добијене и изгубљене, као и примери изгубљених позиција за Витхофову игру која је главна тема овог рада. Након чега је у поглављу 4 дат приказ три стратегије за победу у Витхофовој игри. На крају, у поглављу 5 дат је приказ алгоритама написаниих у програмском језику Ц++, као и резултати њиховог извршавања.

2 Варијанта нима са више гомила жетона

Амерички математичар Чарлс Бутон (*Charles Bouton*) је извршио комплетну математичку анализу ним игре 1902. године, односно одредио је све добијене и изгубљене позиције [1]. Испоставља се да оцена позиције зависи од ексклузивне дисјункције (XOR) бинарно записаних бројева жетона на гомилама и да се затим израчуна њихова ексклузивна дисјункција (XOR) бит по бит, тј бинарна сума без преноса.

Пример 2. Нека су на столу дате две гомиле са три и четири жетона, тада је њихова бинарна сума без преноса:

Теорема 1. У нормалном ниму, позиција је изгубљена ако си само ако је бинарна сума бројева жетона јенака нули.

Доказ. Нека играч A игра први, играч B други. На столу је n гомила са редом x_1, x_2, \ldots, x_n жетона, и нека је s ексклузивна дисјункција:

$$s = x_1 \oplus x_2 \oplus x_3 \dots \oplus x_n$$
.

Након што играч A одигра свој потез, нека је t је ексклузивна дисјункција жетона:

$$t = y_1 \oplus y_2 \oplus y_3 \ldots \oplus y_n.$$

Уколико је s=0, како се жетони могу узети само са једне гомиле, онда је за неко k: $x_k \neq y_k$ и за $i \neq k$: $x_i = y_i$, тако да је:

$$t = 0 \oplus t$$

$$= s \oplus s \oplus t$$

$$= s \oplus (x_1 \oplus x_2 \oplus x_3 \dots \oplus x_n) \oplus (y_1 \oplus y_2 \oplus y_3 \dots \oplus y_n)$$

$$= s \oplus (x_1 \oplus y_1) \oplus (x_2 \oplus y_2) \oplus \dots \oplus (x_n + y_n)$$

$$= s \oplus (x_k \oplus y_k).$$

Дакле, уколико је s=0, онда због $x_k \neq y_k$ важи $x_k \oplus y_k$ никад неће бити нула. Овим је доказано да уколико је тренутна бинарна сума без преноса нула, шта год противник одиграо сума постаје различита од 0.

Уколико је $s \neq 0$, нека је d позиција бита највеће тежине у s и нека је x_k гомила у којој је бит највеће тежине такође на позицији d. Овакав бит увек постоји, јер бит највеће тежине из s долази од бита највеће тежине неких од бројева x_1, x_2, \ldots, x_n жетона. Ако се са гомиле x_k скине $x_k - y_k$ жетона, где је $y_k = s \oplus x_k$, бинарна сума без преноса постаје:

$$t = s \oplus x_k \oplus y_k$$

$$= s \oplus x_k \oplus s \oplus x_k$$

$$= s \oplus s \oplus x_k \oplus x_k$$

$$= 0.$$

Овим је доказано да уколико тренутна бинарна сума без преноса није нула, увек је могуће направити потез тако да бинарна сума без преноса постане нула. \Box

Пример 3. Нека су на столу дате три гомиле са седам, пет, дванаест жетона. Играч А игра први, играч Б игра други.

У бинарном запису 1110 бит највеће тежине је на позицији три, тако да играч A узима са треће гомиле $1100-(1100\oplus 1110)=12-2=10$ жетона.

111	7
101	5
10	+2
000	14

Б може да узме на пример два жетона са друге гомиле.

7	111
3	11
+2	10
12	110

 $Tada\ A\ mpe ba\ da\ yзмe\ 111-(110\oplus 111)=7-1=6\ жетона\ ca\ npвe\ гомиле.$

1	1
3	11
+2	10
6	00

Б може да узме један жетон са треће гомиле.

1	1
11	3
1	+1
11	5

А треба да узме $11 - (11 \oplus 11) = 3 - 0 = 3$ жетона са друге гомиле.

На столу је паран број гомила са по једним жетоном, па Б мора да узме један жетон са на пример прве гомиле.

А треба да узме последњи жетон и побеђује.

Уколико је на столу паран број гомила са по једним жетоном, тада је бинарна сума без преноса нула. Играч који је на потезу може узети један жетон са било које гомиле, чиме на столу остаје непаран број гомила са по једним жетоном чиме бинарна сума без преноса различита од нула, што на основу теорме 1 противнику осигурава победу.

За мизерни ним се може пратити иста стратегија као у теореми 1 све док не остану само гомиле са по једним жетоном. Тада је победа гарантована ако играч који је на потезу остави непаран број гомила са по једним жетоном.

Пример 4. Као и у претходном примеру, нека су на столу дате три гомиле са седам, пет, дванаест жетона. Играч А игра први, играч Б игра други.

111	7
101	5
1100	+12
1110	24

У бинарном запису 1110 бит највеће тежине је на позицији три, тако да играч A узима са треће гомиле $1100 - (1100 \oplus 1110) = 12 - 2 = 10$ жетона.

111	7
101	5
10	+2
000	14

Б може да узме на пример два жетона са друге гомиле.

111	7
11	3
10	+2
110	12

Тада А треба да узме шест жетона са прве гомиле.

1	1
3	11
+2	10
6	00

Б може да узме један жетон са треће гомиле.

1	1
3	11
+1	1
5	11

Овде је преокрет стратегије за мизерни ним, у односу на претходни пример. А треба да узме два жетона са друге гомиле, како би оставио непаран број гомила са по једним жетоном и победио.

1	1
1	1
+1	1
3	1

Б може да узме један жетон са на пример прве гомиле.

1	1
1	1
2	0

А може да узме један жетон са друге гомиле.

Б треба да узме последњи жетон и губи.

3 Оптимална стратегија за Витхофову игру

Било која позиција се може представити паром бројева (x,y), где је $x \leq y$. Овде x и y представљају бројеве жетона на две гомиле или у случају класичне Витхоф игре (a=1) координате позиције краљице (при чему су координате доњег левог угла (0,0)). Све могуће позиције могу се разврстати у две категорије, добијене и изгубљене.

Дефиниција 1. У изгубљеној позицији, играч који је на потезу губи, док наредни играч може да победи шта год одиграо противник. У добијеној позицији, играч који је на потезу може да победи без обзира како игра противник.

Пема 1. Класификација позиција на добијене и изгубљене се дефинише рекурзивно на следећи начин:

- 1. (0,0) је по дефиницији изгубљена позиција, јер играч који је на потезу не може да одигра ниједан валидан потез, па је његов противник победник.
- 2. Било која позиција из које је у једном потезу достижна изгубљена позиција је добијена позиција.
- 3. Ако сваки потез води ка некој добијеној позицији, онда је то изгубљена позиција.

 \mathcal{A} оказ. Позиција (0,0) је изгубљена позиција за противника, јер нема више жетона на столу и не постоји ниједан валидан потез који противник може направити. Јасно је да су позиције (x,x) и (0,x) добијене за свако x>0, јер се из њих једним потезом може прећи у позицију (0,0), која је изгљубљена позиција за противника.

Да би се Витхофова игра ирала на најбољи могући начин, потребно је знати две ствари:

- Препознати природу тренутне позиције, да ли је добијена или изгубљена.
- Уколико је тренутна позиција добијена, треба одредити следећи потез тако да се противник нађе у изгубљеној позицији.

Класификација позиција на добијене и изгубљене је важна, јер ако је тренутна позиција добијена, постоји потез који води ка изгубљеној позицији, а тај потез се може одредити. Са друге стране, ако је тренутна позиција изгубљена, не може се урадити ништа, само одиграти произвољан валидан потез и надати се да ће противник одиграти погрешан потез, с обзиром на то да се у једном потезу из изгубљене позиције стиже у добијену позицију, из које противник може да победи ако зна да одреди изгубљену позицију.

Пример 5. $3a\ a = 1$, $a\kappa o\ je$:

• n = 1 позиција (1,2) је изгубљена позиција, јер ако играч узима жетоне само са једне гомиле у једном потезу достижне су само позиције:

док ако играч узима жетоне са обе гомиле, рецимо k(>0) са једне и l(>0) са друге, мора да буде испуњен услов |k-l|<1, тако да играч може узети k=1 и l=1 жетона, па се у једном потезу може доћи у позицију:

Следећи играч, из позиција (0,1) и (0,2), узимањем свих жетона са гомиле где је број жетона већи од 0 може доћи само у позицију (0,0), а из позиције (1,1) узимањем по једног жетона са обе гомиле достижна је само позиција (0,0).

Дакле, пошто је из позиција (0,1), (0,2) и (1,1) у једном потезу достижна изгубљена позиција (0,0) оне су добијене позиције.

• n=2 позиција (3,5) изгубљена, јер ако играч узима жетоне само са једне гомиле достижне су позиције:

док ако узима жетоне са обе гомиле, у једном потезу достижне су позиције:

Из позиција (3,4), (3,3), (2,5), (1,5), (0,5), (2,4) (1,3) u (0,2) y једном потезу достижне су позиције (0,0) или (1,2) па су оне добијене.

Табела 1: Приказ првих 11 изгубљених (A,B) позиција за a=1

\mathbf{n}	\mathbf{A}	$ \mathbf{B} $
0	0	0
1	1	2
2	3	5
3	4	7
4	6	10
5	8	13
6	9	15
7	11	18
8	12	20
9	14	23
10	16	26
11	17	28

Може се приметити да је за i-ту позицију разлика бојева у пару једнака i, и да је унија низа првих и низа других компоненти парова једнака скупу n природних бројева. Такође се може приметити да су парови бројева изгубљених позиција (сем (0,0)) дисјунктни, ово тврђење је показано касније у секцији 4, терома 2.

Још неке изгубљене позиције приказане су у табели 1 и на слици 2 (црвена поља).

Слика 2: Визуелни приказ изгубљених позиција за a=1

Пример 6. За a = 2, изгубљене позиције приказане су у табели 2 и на слици 3 (црвена поља).

Табела 2: Приказ првих 9 изгубљених (A, B) позиција за a = 2

\mathbf{n}	\mathbf{A}	В
0	0	0
1	1	3
2	2	6
3	4	10
4	5	13
5	7	17
6	8	20
7	9	23
8	11	27
9	12	30
10	14	34

Слика 3: Визуелни приказ изгубљених позиција за a=2

Пример 7. У варијанти a=1 игра се може еквивалентно описати као игра са краљицом на шаховској табли. Дозвољено је краљицу померати за произвољан број поља ка југу, југозападу и западу у односу на текућу позицију. На столу је табела 10×10 , на позицији (0,0) је циљ. Игру играју два играча A и B, померајући наизменично краљицу од почетне позиције (x,y). Победник је играч који први доведе краљицу до циља. На табли су све позиције (x,y), а не само $x\leq y$.

Играч А игра први, Б други. На слици 4 је дат приказ изгубљених позиција (зелена поља) и како се до њих може доћи (плаве и црвене стрелице). Слика 4 је аналогна претхондим дијаграмима (табела 1 и 2). Уколико је краљица на позицији (0,y),(x,0) или (x,x), при чему је x>0,y>0,

играч A, уколико игра како треба, у једном потезу може довести краљицу до циља и победити. Позиција (1,2) је изгубљена позиција, јер ако играч A краљицу доведе у ову позицију, играч B из позиције (1,2) краљицу може да помери само у једну од позиција: (1,1), (1,0), (0,2) или (0,1). Следећа оваква позиција је (3,5). Уопште, уколико је краљица на позицији, из које се плавом или ирвеном стрелицом може прећи у зелено поље, играч A може краљицу једним потезом довести до изгубљене позиције, са које су достижне само добијене позиције и са којих играч A може директно довести краљицу до циља или је померити на неку од преосталих изгубљених позиција ближих циљу. Уколико из тренутне позиције ниједан валидан потез не води до зеленог поља, онда је та позиција изгубљена.

Слика 4: Приказ изгубљених позиција на табли 10x10 за a=1

Свака позиција је добијена или изгубљена; лако се види како се, корак по корак, за сваку позицију може установити тип. У наставку следи приказ три начина да се одреде типови свих позиција: рекурзивна, алгебарска или аритметичка стратегија.

4 Три еквивалентне формулације стратегије за Витхофову игру

Израелски математичар Авиезри Сиегмунд Фраенкел (Aviezri Siegmund Fraenkel) је 1982. године у свом раду [2] дао приказ три математичке стратегије за победу у Витхофовој игри. У овом поглављу следи опис прво рекурзивне, потом алгебарске и на крају аритметичке стратегије.

4.1 Рекурзивна стратегија

Рекурзивни поступак за одређивање изгубљених позиција заснива се на оператору тех.

Дефиниција 2. $\max(A)$ означава најмањи природни број који није у скупу A, mj. $\max(\emptyset) = 0$ и $\max(A) = \min\{i | i \notin A\}$.

Описани начин добијања изгубљених позиција (A_n, B_n) , може се поједноставити, што показује следећа теорема.

Теорема 2 (Рекурзивна карактеризација изгубљених позиција). Нека је

$$A_n = \max\{A_i, B_i : i < n\} \tag{1}$$

$$B_n = A_n + an \tag{2}$$

Тада је скуп свих изгубљених позиција $P = \bigcup_{i=0}^{\infty} \{(A_i, B_i)\}.$

 \mathcal{A} оказ. Из израза за A_n и B_n у формулацији теореми следи да ако је $A=\cup_{n=1}^{\infty}\{A_n\}$ и $B=\cup_{n=1}^{\infty}\{B_n\}$ онда су A_n и B_n комплементарни скупови, тј. $A\cup B=Z^+$ скуп целих позитивних бројева и $A\cap B=\emptyset$. Тврђење $A\cup B=Z^+$ важи јер из израза за A_n следи да ниједан број не може бити испуштен, а $A\cap B=\emptyset$ јер у случају да је $A_n=B_m$, и n>m, следи да је A_n тех скупа који садржи $B_m=A_n$ што је у супротности са изразом за A_n из формулације теореме. Случај када је $n\leq m$ је немогућ јер је тада $B_m=A_m+am\geq A_n+an>A_n$.

Да би се доказала теорема остаје да се докаже:

- да се из произвољне позиције (A_n, B_n) не може доћи у неку претходну позицију $(A_i, B_i), i < n$
- да се из позиције $(x,y) \notin P, x < y$, може се прећи само у неку изгубљену позицију (A_n, B_n) .

Из изгубљене позиције, једним потезом може се прећи само у добијену позицију. Из позиције (A_n,B_n) узимањем жетона само са једне гомиле прелази се у другу позицију, при чему нова позиција не може бити облика (A_i,B_i) . Ово следи из чињенице да су A_n и B_n комплементарни скупови. Уколико се жетони узимају са обе гомиле, такође се прелази у позицију која није облика (A_i,B_i) . У противном би за нову позицију (A_i,B_i) морало да важи $|(B_n-B_i)-(A_n-A_i)|< a$. Међутим из једнакости $B_n-A_n=an$ следи |(n-i)a|< a, тј. i=n, што је контрадикција.

Из добијене позиције једним потезом може се прећи само у изгубљену позицију. За позицију $(x,y), x \leq y$, која није облика $(A_i,B_i), i \geq 0$ и како су A_n и B_n комплементарни скупови, може се сматрати да је $x=B_n$, или је $x=A_n$, за неко $n\geq 0$. Тако су позиције у које се може прећи из (x,y):

- Случај 1: Ако је $x = B_n$ онда се из позиције $(x = B_n, y)$ може једним потезом (скидањем жетона са гомиле на којој је y жетона) прећи у изгубљену позицију (A_n, B_n)
- Случај 2: Ако је $x=A_n$ и $y>B_n$, онда се смањивањем y може доћи у позицију (A_n,B_n) . У противном, ако је $A_n \leq y < B_n$ онда се смањивањем x и y може прећи у позицију (A_m,B_m) , где је $m=\lfloor \frac{d}{a} \rfloor$ и d=y-x. Заиста, из $d=y-A_n < B_n-A_n=an$, следи да је $m=\lfloor \frac{d}{a} \rfloor \leq \frac{d}{a} < n$. Поред тога важи неједнакост $y=A_n+d\geq A_m+am=B_m$. Из позиције (x,y) смањивањем обе компоненте прелази се у позицију (A_m,B_m) , при чему за смањење компоненти важи неједнакост $|(y-B_m)-(x-A_m)|=d-am< a$.

Пример 8. Уколико је a=2 и тренунтна позиција (x,y) није изгубљена позиција, следе примери одређивања наредног потеза коришћењем списка изгубљених позиција из табеле 2:

- Нека је тренунтна позиција (x,y) = (17,29). Како је $B_5 = 17$, то се из позиције (17,29) једним потезом уклањајући 22 жетона са друге гомиле прелази у позицију $(A_5,B_5) = (7,17)$.
- Нека је тренунтна позиција (x,y) = (11,29). Како је $A_8 = 11$ и $29 > B_8 = 27$, то се из позиције (11,29) једним потезом уклањајући 2 жетона са друге гомиле прелази у позицију $(A_8,B_8) = (11,27)$.
- Нека је тренунтна позиција (x,y)=(11,25). Како је $A_8=11$ и $25 < B_8=27$, то се из позиције (11,25) једним потезом уклањајући 2 жетона са прве гомиле и 2 са друге гомиле прелази у позицију $(A_7,B_7)=(9,23)$.

Уколико је тренунтна позиција (x,y), $0 \le x \le y$, прво је потребно формирати табелу са најмање n изгубљених позиција, тако да је $A_n = x$ или $B_n = x$. Пошто за елементе из скупа A важи $A_n \le 2n$, то је за ово рачунање потребно највише O(x) поређења, и O(x) меморијског простора. Бинарном претрагом се у табели проналазе A_n или B_n тако да је $A_n = x$ или $B_n = x$. Према томе, укупно време је O(x).

4.2 Алгебарска стратегија

Испоставља се да се све изгубљене позиције (A_n, B_n) могу експлицитно изразити на следећи начин $A_n = |\alpha n|, B_n = |\beta n|$, где је:

$$\alpha = \frac{2 - a + \sqrt{a^2 + 4}}{2} \tag{3}$$

$$\beta = \alpha + a. \tag{4}$$

Овде су α и β ирационални за свако a>0, и α је позитиван корен једначине $\alpha^{-1}+\beta^{-1}=1$. Из ове једнакости следи неједнакост $1<\alpha<2$, јер због $\beta^{-1}=(\alpha+a)^{-1}<\frac{1}{2}$ мора да буде $\alpha^{-1}>\frac{1}{2}$.

Ако је α произвољан ирационални број, онда се целобројни растућии низ $\lfloor \alpha 0 \rfloor, \lfloor \alpha 1 \rfloor, \ldots \lfloor \alpha n \rfloor$ зове Бетијев низ (Beatty), за $0 \ldots n$.

Најпре следи доказ општег тврђења о Бетијевим низовима.

Пема 2. Нека су α и β позитивни ирационални бројеви који задовољавају услов $\alpha^{-1} + \beta^{-1} = 1$ и нека је

$$A' = \lfloor \alpha n \rfloor$$

$$B' = \lfloor \beta n \rfloor$$

$$A' = \bigcup_{n=1}^{\infty} \{A'\}$$

$$B' = \bigcup_{n=1}^{\infty} \{B'\}$$

 $Ta \partial a \ cy \ A^{'} \ u \ B^{'} \ комплементарни.$

 \mathcal{A} оказ. Довољно је показати да се тачно један елемент уније $A^{'} \cup B^{'}$ налази у интервалу [N,N+1), за сваки позитиван број N, тј. довољно је да одредимо колико има бројева из скупа $A^{'} \cup B^{'}$ који су мањи од N, ако је N>1. Бројева из $A^{'}$ мањих од N има $\left\lfloor \frac{N}{\alpha} \right\rfloor$. Бројева из $B^{'}$ мањих од N има $\left\lfloor \frac{N}{\beta} \right\rfloor$. Сабирањем двоструких неједнакости:

$$\frac{N}{\alpha} - 1 < \left\lfloor \frac{N}{\alpha} \right\rfloor < \frac{N}{\alpha}$$

$$\frac{N}{\beta} - 1 < \left\lfloor \frac{N}{\beta} \right\rfloor < \frac{N}{\beta}$$

добија се:

$$N - 2 < \left\lfloor \frac{N}{\alpha} \right\rfloor + \left\lfloor \frac{N}{\beta} \right\rfloor < N$$

Одавде следи да је $\left\lfloor \frac{N}{\alpha} \right\rfloor + \left\lfloor \frac{N}{\beta} \right\rfloor = N-1$, тј. N-1 бројева из уније $A^{'} \cup B^{'}$ је мање од N. Слично важи и да је N бројева из $A^{'} \cup B^{'}$ мање од N+1. Према томе, тачно N-(N-1)=1 елемент те уније припада интервалу [N,N+1).

Лема 3. Aro je $\lfloor \frac{n}{\alpha} \rfloor = x$, онда je:

$$n = \left\lfloor \frac{x+1}{\alpha} \right\rfloor$$

 \mathcal{A} оказ. Ово следи из двоструке неједнакости $\frac{x}{\alpha} < n < \frac{x+1}{\alpha}$ јер је неједнакост $\frac{x+1}{\alpha} - \frac{x}{\alpha} < 1$, а интервал дужине мање од 1 може да садржи највише један цели број.

Лема 4 (Алгебарска карактеризација изгубљених позиција). *Нека су* α и β *дефинисани једнакостима* (3), (4). *Тада је скуп свих изгубљених позиција* $P = \bigcup_{n=0}^{\infty} \{(\lfloor \alpha n \rfloor, \lfloor \beta n \rfloor)\}.$

 \mathcal{Q} оказ. Уочимо да је $A_0^{'}=0$, $B_0^{'}=0$ и $B_n^{'}-A_n^{'}=an$. Такође како су $A_n^{'}$ и $B_n^{'}$ растући и комплементарни, важи још и да је $A_n^{'}=\max\{A_i^{'},B_i^{'}:i< n\}$. Из ове чињенице индукцијом следи да је $A_n^{'}=A_n$ и $B_n^{'}=B_n$ за $n\geq 0$.

Нека је $(x,y), x \leq y$ тренутна позиција. Тада је $x = \lfloor n\alpha \rfloor = A_n$, где је $n = \lfloor \frac{(x+1)}{\alpha} \rfloor$ или је $x = \lfloor n\beta \rfloor = B_n$, где је $n = \lfloor \frac{(x+1)}{\beta} \rfloor$, видети доказ теореме 2 и леме 3. На пример, ако је $x = \lfloor n\alpha \rfloor = A_n$, и $\lfloor n\alpha \rfloor < y < \lfloor n\beta \rfloor$ онда се смањивањем x и y може прећи у позицију ($\lfloor m\alpha \rfloor, \lfloor m\beta \rfloor$), где је $m = \lfloor \frac{d}{a} \rfloor$ и d = y - x, при чему за смањење компоненти важи неједнакост $|(y - \lfloor m\beta \rfloor) - (x - \lfloor m\alpha \rfloor)| = d - am < a$.

Пример 9. У специјалном случају за a=1 важи $\alpha=\frac{1+\sqrt{5}}{2}$, што је златни пресек. Низ $\lfloor \alpha n \rfloor$ се назива доњи Витхофов низ (A_n) : 1,3,4,6,8,9,11,12,14,16... Низ $\lfloor (\alpha+1)n \rfloor$ се назива горњи Витхофов низ (B_n) : 2,5,7,10,13,15,18,20,23,26...

4.3 Аритметичка стратегија

Нека је α ирационалан број, који задовољава услов $1<\alpha<2$. Број α се може једнозначно представити бесконачним верижним разломком облика:

$$\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2 + \dots}}}.$$

Чланови низа a_n добијају се поступком сличним Еуклидовом алгоритму, тј. број α одређује низ a_n . Обрнуто сваки бесконачни верижни развој једнозначно одређује ирационални број. При томе, ако је n>1, онда је $a_n>1$. Рационални бројеви $C_0=[a_0]=a_0,\ C_1=[a_0,a_1]=a_0+\frac{1}{a_1},\ C_2=[a_0,a_1,a_2]=a_0+\frac{1}{a_1+\frac{1}{a_2}},\ C_3=[a_0,a_1,a_2,a_3]=a_0+\frac{1}{a_1+\frac{1}{a_2+\frac{1}{a_3}}},\dots$ где је $a_i>0$ и i>0 су конвергенти

броја α . Испоставља се да конвергенати броја α конвергирају броју α :

$$\alpha = \lim_{n \to \infty} C_n = \lim_{n \to \infty} [a_0, a_1, a_2, a_3, \dots, a_n].$$

Другим речима, бесконачни верижни разломак $[a_0, a_1, a_2, a_3, \ldots]$ једнак је броју α . Доказ ове чињенице следи у наставку.

Дефиниција 3. Нека су p_n и q_n узајамно прости бројеви такви да је:

$$\frac{p_n}{q_n} = [a_0, a_1, a_2, a_3, \dots, a_n].$$

Лема 5. Нека је $[a_0, a_1, a_2, \ldots]$ верижни развој броја α . Нека су низови р и q рекурзивно дефинисани на следећи начин:

$$p_{-1} = 1, \ p_0 = a_0, \ p_n = a_n p_{n-1} + p_{n-2}, \ (n \ge 1)$$
 (5)

$$q_{-1} = 0, \ q_0 = 1, \ q_n = a_n q_{n-1} + q_{n-2}, \ (n \ge 1).$$
 (6)

 $Tada\ cy\ конвергенти\ броја\ lpha\ дати\ изразом:$

$$C_n = \frac{p_n}{q_n} = \frac{a_n p_{n-1} + p_{n-2}}{a_n q_{n-1} + q_{n-2}}. (7)$$

Доказ. Индукцијом се показује да се бројиоци и имениоци конвергената могу одредити полазећи од $p_0=a_0,\ q_0=1$ и $p_1=a_1a_0+1,\ q_1=a_1$ на основу рекурентних релација $p_i=a_ip_{i-1}+p_{i-2},\ q_i=a_iq_{i-1}+q_{i-2},\ i=1,2,\ldots$

Прелаз у доказу индукцијом заснива се на замени a_i у верижном разломку $\frac{p_i}{q_i}$, са $a_i+\frac{1}{a_i+1}$ у $\frac{p_{i+1}}{q_{i+1}}$. По индуктивној хипотези је $p_i=a_ip_{i-1}+p_{i-2}, q_i=a_iq_{i-1}+q_{i-2}$ и $\frac{p_i}{q_i}=[a_0,a_1,a_2,a_3,\ldots,a_i]$. Због тога је:

$$\begin{array}{ll} \frac{p_{i+1}}{q_{i+1}} & = & [a_0,a_1,,a_2,,a_3,\ldots,a_i,a_{i+1}] \\ & = & [a_0,a_1,,a_2,,a_3,\ldots,a_i,a_i+\frac{1}{a_{i+1}}] \\ & = & \frac{(a_i+\frac{1}{a_{i+1}})p_{i-1}+p_{i-2}}{(a_i+\frac{1}{a_{i+1}})q_{i-1}+q_{i-2}} \\ & = & \frac{a_{i+1}a_ip_{i-1}+p_{i-1}+a_{i+1}p_{i-2}}{a_{i+1}a_iq_{i-1}+q_{i-1}+a_{i+1}q_{i-1}} \\ & = & \frac{a_{i+1}(a_ip_{i-1}+p_{i-2})+p_{i-1}}{a_{i+1}(a_iq_{i-1}+q_{i-2})+q_{i-1}} \\ & = & \frac{a_{i+1}p_i+p_{i-1}}{a_{i+1}q_i+q_{i-1}}. \end{array}$$

Лема 6. Бројеви p_n и q_n задовољавају услов:

$$p_n q_{n-1} - p_{n-1} q_n = (-1)^n. (8)$$

Доказ.

$$\begin{aligned} p_n q_{n-1} - p_{n-1} q_n &= (a_n p_{n-1} + p_{n-2}) q_{n-1} - p_{n-1} (a_n q_{n-1} + q_{n-2}) \\ &= a_n p_{n-1} q_{n-1} + p_{n-2} q_{n-1} - p_{n-1} a_n q_{n-1} - p_{n-1} q_{n-2} \\ &= p_{n-2} q_{n-1} - p_{n-1} q_{n-2} \\ &= -(p_{n-1} q_{n-2} - p_{n-2} q_{n-1}) \\ &= -((a_{n-1} p_{n-2} + p_{n-3}) q_{n-2} - p_{n-2} (a_{n-1} q_{n-2} + q_{n-3})) \\ &= -(-(p_{n-2} q_{n-3} - p_{n-3} q_{n-2})) \\ &= p_{n-2} q_{n-3} - p_{n-3} q_{n-2} \\ &= \dots \\ &= (-1)^n (p_1 q_0 - p_0 q_1) \\ &= (-1)^n (a_1 a_0 + 1 - a_0 a_1) \\ &= (-1)^n \end{aligned}$$

Лема 7. Бројеви p_n и q_n задовољавају услов:

$$p_n q_{n-2} - p_{n-2} q_n = (-1)^{n-1} a_n. (9)$$

Доказ.

$$\begin{array}{lcl} p_nq_{n-2}-p_{n-2}q_n & = & (a_np_{n-1}+p_{n-2})q_{n-2}-p_{n-2}(a_nq_{n-1}+q_{n-2})\\ & = & a_np_{n-1}q_{n-2}+p_{n-2}q_{n-2}-p_{n-2}a_nq_{n-1}-p_{n-2}q_{n-2}\\ & = & a_np_{n-1}q_{n-2}-p_{n-2}a_nq_{n-1}\\ & = & a_n(p_{n-1}q_{n-2}-p_{n-2}q_{n-1})\\ & = & (-1)^{n-1}a_n \end{array}$$

Лема 8. Парни конвергенти C_{2n} бесконачног верижног разломка су строго опадајући низ у односу на n, mj. $C_0 > C_2 > C_4 > \ldots > C_{2n}$. Са друге стране, непарни конвергенти C_{2n+1} су строго растући низ у односу на n, mj. $C_{-1} < C_1 < C_3 < \ldots < C_{2n+1}$. Додатно, сваки непарни конвергент је мањи од сваког парног конвергента.

Доказ. На основу леме 7 добија се:

$$C_{2n} - C_{2n-2} = \frac{p_{2n}}{q_{2n}} - \frac{p_{2n-2}}{q_{2n-2}}$$

$$= \frac{p_{2n}q_{2n-2} - p_{2n-2}q_{2n}}{q_{2n}q_{2n-2}}$$

$$= \frac{(-1)^{2n-1}a_{2n}}{q_{2n}q_{2n-2}}$$

$$= \frac{-a_{2n}}{q_{2n}q_{2n-2}}$$

$$< 0.$$

Тиме је показано да је $C_0 > C_2 > C_4 > \ldots > C_{2n}$.

На сличан начин за узастопне непарне чланове низа важи:

$$C_{2n+1} - C_{2n-1} = \frac{p_{2n+1}}{q_{2n+1}} - \frac{p_{2n-1}}{q_{2n-1}}$$

$$= \frac{p_{2n+1}q_{2n-1} - p_{2n-1}q_{2n+1}}{q_{2n+1}q_{2n-1}}$$

$$= \frac{(-1)^{2n}a_{2n+1}}{q_{2n+1}q_{2n-1}}$$

$$= \frac{a_{2n+1}}{q_{2n+1}q_{2n-1}}$$

$$> 0.$$

Тиме је показано да је $C_{-1} < C_1 < C_3 < \ldots < C_{2n+1}$. На крају, разлика

$$C_{2n} - C_{2n-1} = \frac{p_{2n}}{q_{2n}} - \frac{p_{2n-1}}{q_{2n-1}}$$

$$= \frac{p_{2n}q_{2n-1} - p_{2n-1}q_{2n}}{q_{2n}q_{2n-1}}$$

$$= \frac{(-1)^{2n}}{q_{2n}q_{2n-1}}$$

$$= \frac{1}{q_{2n+1}q_{2n-1}}$$

$$> 0$$

је позитивна.

Комбинујући ове неједнакости долази се до:

$$-1 < C_1 < C_3 < \cdots < 0 < \cdots < C_4 < C_2 < C_0 = \alpha$$

Лема 9. Нека је $D_i = \alpha q_i - p_i$. Тада за $j \ge -1$ важи:

$$D_j + \sum_{i=1}^m a_{j+2i} D_{j+2i-1} = D_{j+2m}.$$

Доказ. За i=1 сума са леве стране једнака је:

$$\begin{array}{lcl} D_j + a_{j+2}D_{j+1} & = & \alpha q_j - p_j + a_{j+2}(\alpha q_{j+1} - p_{j+1}) \\ & = & \alpha (a_{j+2}q_{j+1} + q_j) - (a_{j+2}p_{j+1} + p_j) \\ & = & \alpha q_{j+2} - p_{j+2} \\ & = & D_{j+2}. \end{array}$$

Онда, уколико се израз напише за $i = 1 \dots m$ добија се:

$$D_{j} + a_{j+2}D_{j+1} = D_{j+2}$$

$$D_{j+2} + a_{j+4}D_{j+3} = D_{j+4}$$

$$D_{j+4} + a_{j+6}D_{j+5} = D_{j+6}$$

$$\cdots$$

$$D_{j+2m-2} + a_{j+2m}D_{j+2m-1} = D_{j+2m}.$$

Након сабирања ових једнакости, добија се управо $D_j + \sum_{i=1}^m a_{j+2i} D_{j+2i-1} = D_{j+2}$.

Лема 10. Нека је $H_{i+1} = a_{i+1}p_i + a_{i-1}p_{i-2} + \ldots + a_{k+1}p_k$, где је k = 0 ако је i паран, k = 1 ако је i непаран. Тада је:

$$H_{i+1} = p_{i+1} - 1.$$

Доказ.

$$\begin{array}{lll} H_{i+1} & = & a_{i+1}p_i + a_{i-1}p_{i-2} + \ldots + a_{k+1}p_k \\ \\ & = & (a_{i+1}p_i + p_{i-1}) - p_{i-1} + (a_{i-1}p_{i-2} + p_{i-3}) - p_{i-3} + \ldots \begin{cases} + & (a_1p_0 + p_{-1}) - p_{-1} & (i \text{ парно}) \\ + & (a_2p_1 + p_0) - p_0) & (i \text{ непарно}) \end{cases} \\ \\ & = & (p_{i+1} - p_{i-1}) + (p_{i-1} - p_{i-3}) + \ldots \begin{cases} + & (p_1 - 1) & (i \text{ парно}) \\ + & (p_2 - p_0) & (i \text{ непарнo}) \end{cases} \end{array}$$

Како је $p_0=a_0$, у случају да је $_0=1$, у оба случаја се добија да је $H_{i+1}=p_{i+1}-1$.

Низ бројилаца p_n може се искористити као низ тежина за специјални бројни систем, за који кажемо да је p-систем. Слично, низ именилаца q_n може се искористити као низ тежина за други бројни систем, за који кажемо да је q-систем.

Теорема 3. У p-систему се сваки позитиван природни број N јединствено може записати на следећи начин:

$$N = \sum_{i=0}^{m} s_i p_i, \quad 0 \le s_i \le a_{i+1}, \tag{10}$$

при чему, ако је $s_{i+1} = a_{i+2}$, онда је $s_i = 0$ за свако $i \ge 0$. Слично важи и за q-систем:

$$N = \sum_{i=0}^{n} t_i q_i, \quad 0 \le t_0 < a_1, \ 0 \le t_i \le a_{i+1}, \tag{11}$$

при чему, ако је $t_i = a_{i+1}$, онда је $t_{i-1} = 0$ за свако $i \ge 1$. Овде су s_i , односно t_i , цифре броја N у p-систему, односно q-систему.

 \mathcal{A} оказ. Нека је за дати број N највеће i такво да је $p_i \leq N$ једнако m. Тада се N може разложити помоћу низа дељења са остатком на следећи начин:

$$\begin{split} N &= s_m p_m + r_m, 0 \leq r_m < p_m \\ r_m &= s_{m-1} p_{m-1} + r_{m-1}, 0 \leq r_{m-1} < p_{m-1} \\ & \cdots \\ r_{i+1} &= s_i p_i + r_i, 0 \leq r_i < p_i \\ & \cdots \\ r_2 &= s_1 p_1 + r_1, 0 \leq r_1 < p_1 \\ r_1 &= s_0 p_0. \end{split}$$

Другим речима, долази се до разлагања броја N у p-систему

$$N = \sum_{i=0}^{m} s_i p_i \tag{12}$$

Приметимо да разлагање (12) важи независно од тога какав је низ $1 = p_0 < p_1 < p_2 < \dots$ Специјално, ако је $p_i = b^i, b > 1$, број N се може представити:

$$N = \sum_{i=0}^{m} s_i b^i, \quad 0 \le s_i \le b, \ i \ge 0,$$

што је уобичајена представа броја N у систему са основом b. Цифре s_i у разлагању (12) задовољавају следеће услове:

$$s_i = \frac{r_{i+1} - r_i}{p_i} < \frac{r_{i+1}}{p_i} < \frac{p_{i+1}}{p_i} = \frac{a_{i+1}p_i + p_{i-1}}{p_i} = a_{i+1} + \frac{p_{i-1}}{p_i} \le a_{i+1} + 1,$$

тако да је $0 \le s_i \le a_{i+1}$ за свако $i \ge 0$.

Аналогне неједнакости $0 \le t_i \le a_{i+1}$ важе за i>0. Међутим, за i=0 због $q_{-1}=0$ добија се:

$$t_0 = \frac{r_1 - r_0}{q_0} \le \frac{r_1}{q_0} < \frac{q_1}{q_0} = \frac{a_1 q_0 + q_{-1}}{q_0} = a_1,$$

тј. важи строга неједнакост.

Претпоставимо да је $s_i = a_{i+1}$ и $s_{i-1} \ge 1$, онда је:

$$r_i = s_{i-1}p_{i-1} + r_{i-1} \ge p_{i-1} + r_{i-1} \ge p_{i-1},$$

и даље:

$$r_{i+1} = s_i p_i + r_i = a_{i+1} p_i + r_i \ge a_{i+1} p_i + p_{i-1} = p_{i+1}$$

што је контрадикција. Према томе, ако је $s_i = a_{i+1}$ онда је $s_{i-1} = 0$ за свако $i \ge 1$ и важи:

$$s_i p_i + s_{i-i} p_{i-1} + \ldots + s_0 p_0 \le p_{i+1} \tag{13}$$

Потребно је доказати још јединственост овакве репрезентације. Нека је:

$$N = \sum_{i=0}^{m} s_i p_i = \sum_{i=0}^{m} u_i p_i,$$

где s_i и u_i задовољавају услове дате у (10).

Нека је j највећи број за који важи $s_j \neq u_j$ и нека је на пример $s_j > u_j$. Након одузимања две репрезентације броја N:

$$N = s_0 p_0 + s_1 p_1 + \ldots + s_{j-1} p_{j-1} + s_j p_j + \ldots + s_m p_m$$

$$N = u_0 p_0 + u_1 p_1 + \ldots + u_{j-1} p_{j-1} + u_j p_j + \ldots + u_m p_m$$

добија се:

$$\sum_{i=0}^{j-1} s_i p_i - \sum_{i=0}^{j-1} u_i p_i + (s_j p_j - u_j p_j) = 0,$$

односно:

$$(s_j - u_j)p_j = \sum_{i=0}^{j-1} u_i p_i - \sum_{i=0}^{j-1} s_i p_i.$$

Даље се добија следећа неједнакост:

$$p_j \leq (s_j - u_j)p_j$$

$$= \sum_{i=0}^{j-1} (u_i - s_i)p_i$$

$$\leq \sum_{i=0}^{j-1} u_i p_i.$$

Ова сума се разбија на парове сабирака $u_i p_i + u_{i-1} p_{i-1}$, ако је $u_i = a_{i+1}$, онда је $u_{i-1} = 0$, па је $u_i p_i + u_{i-1} p_{i-1} = a_{i+1} p_i$. У противном, ако је $u_i \le a_{i+1} - 1$, онда је $u_{i-1} = 0$, па је $u_i p_i + u_{i-1} p_{i-1} \le a_{i+1} - 1$ $(a_{i+1}-1)p_i + a_i p_{i-1} = a_{i+1}p_i - p_i + a_i p_{i-1} = a_{i+1}p_i - p_{i-2} < a_{i+1}p_i.$

Дакле, у оба слуаја важи неједнакост $u_i p_i + u_{i-1} p_{i-1} \le a_{i+1} p_i$. Примењујући изведену неједнакост на парове сабирака у суми $\sum_{i=0}^{j-1} u_i p_i$, добија се неједнакост:

$$\sum_{i=0}^{j-1} u_i p_i \le a_j p_{j-1} + a_{j-2} p_{j-3} + \ldots + a_2 p_1$$

На основу леме 10 добијена је неједнакост $p_j \leq p_j - 1$, што је контрадикција.

Лема 11. Верижни развој броја α дефинисаног једнакошћу (3) је:

$$\alpha = [1, a, a, a, a, \dots] = \frac{2 - a + \sqrt{a^2 + 4}}{2}.$$

Доказ. Полазећи од a=1 важи:

$$\alpha = \frac{1+\sqrt{5}}{2} = 1 + \frac{\sqrt{5}-1}{2}$$

$$= 1 + \frac{1}{\frac{2}{\sqrt{5}-1}}$$

$$= 1 + \frac{1}{\frac{2(\sqrt{5}+1)}{4}}$$

$$= 1 + \frac{1}{\frac{1+\sqrt{5}}{2}}$$

$$= 1 + \frac{1}{\alpha}$$

$$= 1 + \frac{1}{1+\frac{1}{1+\dots}}$$

$$= [1, 1, 1, 1, \dots].$$

16

Овиме је показано да теорема важи за a = 1.

Претпоставиља се да тврђење важи за све вредности $a=k, k \leq n, n \geq 1.$

$$\alpha = \frac{2 - k + \sqrt{k^2 + 4}}{2} == 1 + \frac{1}{k - 1 + \alpha} + [1, k, k, k, \ldots].$$

Показује се да тврђење важи за a = k + 1, нека је k = a - 1:

$$\alpha = \frac{2 - (k+1) + \sqrt{(k+1)^2 + 4}}{2} = \frac{2 - (a-1+1) + \sqrt{(a-1+1)^2 + 4}}{2}$$
$$= \frac{2 - a + \sqrt{a^2 + 4}}{2}$$

Па је на основу индуктивне хипотезе:

$$\alpha = \frac{2 - k + \sqrt{k^2 + 4}}{2} = 1 + \frac{1}{k - 1 + \alpha} + [1, k, k, k, \ldots].$$

Тиме је показано да теорема важи за a = k + 1.

Принципом математичке индукције показано је да теорема важи за свако $k \in N$

Приказ првих неколико бројева записаних у p и q систему, за $a_i = 2$, $i \ge 1$ дат је у табели 3.

Табела 3: Приказ првих неколико бројева записаних у p и q систему, за $a_i=2,\,i\geq 1.$

$\mathbf{q_3}$	$\mathbf{q_2}$	$\mathbf{q_1}$	$\mathbf{q_0}$	p_3	$\mathbf{p_2}$	$\mathbf{p_1}$	$\mathbf{p_0}$	
12	5	2	1	17	7	3	1	\mathbf{n}
			1				1	1
		1	0				2	2
		1	1			1	0	3
		2	0			1	1	4
	1	0	0			1	2	5
	1	0	1			2	0	6
	1	1	0		1	0	0	7
	1	1	1		1	0	1	8
	1	2	0		1	0	2	9
	2	0	0		1	1	0	10
	2	0	1		1	1	1	11
1	0	0	0		1	1	2	12
1	0	0	1		1	2	0	13
1	0	1	0		2	0	0	14
1	0	1	1		2	0	1	15
1	0	2	0		2	0	2	16
1	1	0	0	1	0	0	0	17

Дефиниција 4. Репрезентација R је (m+1)-торка за коју важи:

$$R = (d_m, d_{m-1}, \dots, d_1, \quad d_0), \ 0 \le d_i \le a_{i+1}, \tag{14}$$

при чему за свако $i \geq 0$ важи: ако је $d_{i+1} = a_{i+2}$ онда је $d_i = 0$. Нека је

$$I_p = \sum_{i=0}^m d_i p_i$$

p-интерпретација репрезентације R. Aко је $d_0 < a_1$, нека је

$$I_q = \sum_{i=0}^m d_i q_i$$

q-интерпретација репрезентације R.

У супротном кажемо да не постоји q-интерпретација R.

Дефиниција 5. За сваки позитиван број $k = \sum_{i=0}^{m} d_i p_i$ важи да је:

$$R_p(k) = (d_m, d_{m-1}, \dots, d_1, d_0)$$

p-репрезентација R_p броја k.

За сваки позитиван број $k=\sum_{i=0}^m d_iq_i$ ако је $d_0 < a_1$ онда је:

$$R_q(k) = (d_m, d_{m-1}, \dots, d_1, d_0)$$

q-репрезентација $R_q(k)$. У наставку се разматрају p-интерпретације I_p и q-репрезентације R_q је:

$$I_p(R_q(k)) = I_p(d_m, d_{m-1}, \dots, d_1).$$

Дефиниција 6. Уколико се у R свака цифра d_i помери у лево за једно место добија се леви померај репрезентације R, репрезентацију $R' = (d_m, d_{m-1}, \ldots, d_1, d_0, 0)$, а уколико је R репрезентација са $d_0 = 0$, онда када се свака цифра d_i помери за једно место у десно добија се десни померај репрезентације R, репрезентацију $R'' = (d_m, d_{m-1}, \ldots, d_1)$.

Пример 10. За a=2 је $R_p(5)=12$. Тада је леви померај репрезентације R, репрезентација $R_p'(13)=120$. Док ако је $R_p(10)=110$, тада је десни померај репрезентације R, репрезентација $R_p''(4)=11$.

Пример 11. За a=2 је $R_q(12)=1000$. Дакле, $I_p(1000)=17$ (видети табелу 3).

Описани p и q бројни системи могу се искористити за још један начин одређивања изгубљених позиција, користећи следећа својства.

Својство 1. Нека је п позитиван број, $\alpha = [1, a_1, a_2, \ldots]$ ирационалан са конвергентима $\frac{p_i}{q_i}$. Уколико се репрезентација $R_q(n) = (d_m, d_{m-1}, \ldots, d_{2k}, 0, \ldots, 0), d_{2k} \neq 0$ завршава парним бројем нула, односно ако је $n = \sum_{i=2k}^m d_i q_i$ онда је:

$$I_p(R_q(n)) = \lfloor n\alpha \rfloor,$$

 $ma\partial a \ je \ \lfloor n\alpha \rfloor = \sum_{i=2k}^m d_i p_i.$

Уколико се репрезентација $R_q(n)=(d_m,d_{m-1},\ldots,d_{2k},0,\ldots,0),\ d_{2k}\neq 0$ завршава непарним бројем нула онда је, односно ако је $n=\sum_{i=2k+1}^m d_iq_i$ онда је:

$$I_p(R_q(n)) = \lfloor n\alpha \rfloor + 1,$$

 $ma\partial a \ je \ \lfloor n\alpha \rfloor = -1 + \sum_{i=2k+1}^{m} d_i p_i.$

 \mathcal{A} оказ. У случају када се $R_q(n)$ завршава парним бројем нула довољно је показати:

$$\sum_{i=2k}^{m} d_i p_i < n\alpha < \sum_{i=2k}^{m} d_i p_i + 1,$$

$$0 < n\alpha - \sum_{i=2k}^{m} d_i p_i < 1,$$

$$0 < \alpha \sum_{i=2k}^{m} d_i q_i - \sum_{i=2k}^{m} d_i p_i < 1,$$

$$0 < \sum_{i=2k}^{m} d_i (\alpha q_i - p_i) < 1,$$

$$0 < \sum_{i=2k}^{m} d_i D_i < 1.$$

На основу леме 9 је:

$$\sum_{i=2k}^{m} d_i D_i \geq D_{2k} + \sum_{i=1}^{m} a_{2k+2i} D_{2k+2i-1}$$

$$= D_{2k+2m}$$

$$> 0,$$

$$\sum_{i=2k}^{m} d_i D_i \leq \sum_{i=1}^{m} a_{2k+2i-1} D_{2k+2i-2}$$

$$= D_{2k+2m-1} - D_{2k-1}$$

$$\leq D_{2k+2m-1} + 1$$

$$< 1$$

У случају када се $R_q(n)$ завршава непарним бројем нула довољно је показати:

$$-1 < \sum_{i=2k+1}^{m} d_i D_i < 0$$

На основу леме 9 је:

$$\begin{split} \sum_{i=2k+1}^{m} d_i D_i & \geq & \sum_{i=1}^{m} a_{2k+2i} D_{2k+2i-1} \\ & = & D_{2k+2m} - D_{2k} \\ & \geq & -D_{2k} \\ & \geq & -D_0 \\ & \geq & 1-\alpha \\ & > & -1. \end{split}$$

$$\sum_{i=2k+1}^{m} d_i D_i \leq D_{2k+1} + \sum_{i=1}^{m} a_{2k+2i+1} D_{2k+2i}$$

$$= D_{2k+2m+1}$$

$$< 0.$$

Према томе, важе неједнакости $0 < n\alpha - \sum_{i=2k}^m d_i p_i < 1$

Пример 12. Посматрајући табеле 2 и 3, запажамо да се:

- $R_q(10) = 200$ се завршава са две нуле (паран број), па је $I_p(200) = 14$, $A_{10} = 14$.
- $R_a(7) = 110$ се завршава са једном нулом (непаран број), па је $I_p(110) = 10$, $A_7 + 1 = 9 + 1 + 10$.

Својство 2. Нека је $\alpha = [1, \overline{a}], \ \beta = \alpha + a, \ \textit{где је а позитиван број. Тада за свако <math>n \geq 1, \ p$ репрезентација броја $\lfloor n\beta \rfloor$ одговара левом померају p репрезентације R_p броја $\lfloor n\alpha \rfloor$

$$R_{p}(\lfloor n\beta \rfloor) = R_{p}^{'}(\lfloor n\alpha \rfloor)$$

Доказ. Полазећи од n=1, важи:

$$\lfloor \alpha \rfloor = 1 = p_0$$

$$\lfloor \beta \rfloor = 1 + a = p_1$$

$$R_p(p_1) = R'_p(p_0)$$

Овиме је показано да тврђење важи за n=1.

Претпоставимо да тврђење важи за све вредности k < n.

$$R_{p} = (\lfloor k\beta \rfloor) = R_{p}^{'} = (\lfloor k\alpha \rfloor)$$

Према (1) се $R_p(\lfloor n\alpha \rfloor)$ заврша парним бројем нула. Нека је $R^{'}$ леви померај $R_p(\lfloor n\alpha \rfloor)$ који се завршава непарним бројем нула. Према индуктивној хипотези $I_p(R^{'})$ различито је од свих бројва $\lfloor k\beta \rfloor$, k < n. (Јер су репрезентације свих тих бројева леви помераји репрезентација $\lfloor k\alpha \rfloor$). Прецизније, $I_p(R^{'})$ је најмањи број чија се репрезентација завршава непарним бројем нула, а који још није добијен. Ако би било $I_p(R^{'}) \neq \lfloor k\beta \rfloor$, онда би број $\lfloor k\beta \rfloor$ био прескочен, тј. не га било могуће добити за k > n, јер је низ $\lfloor k\beta \rfloor$ растући (супротно закључку о комплементарности из леме 2). \square

Пример 13. Нека је n = 3 тада је $A_3 = 4$ и $B_3 = 10$.

$$R_p(B_3) = R_p(10) = 110,$$

 $R_p(A_3) = R_p(4) = 11,$
 $R'_p(A_3) = 110,$

видетеи табеле 2 и 3.

Својство 3. Нека је n позитиван број. Уколико се репрезентација $R_p(n)$ завршава парним бројем нула онда је $n \in \{A_k | k > 0\}$, а ако се репрезентација $R_p(n)$ завршава непарним бројем нула онда је $n \in \{B_k | k > 0\}$.

Доказ. $R_p([n\alpha])$ се за свако n завршава парним бројем нула. $R_p([n\beta])$ се за свако n завршава непарним бројем нула. Својство 3 следи из комплементарности ова два низа.

Пример 14. Посматрајући табеле 2 и 3, запажамо да се:

- $R_p(3) = 10$ се завршава са једном нулом (непаран број), па је 3 у низу $B, B_1 = 3$.
- $R_p(7) = 100$ се завршава са две нуле (паран број), па је 7 у низу $A, A_5 = 7$.
- $R_p(9) = 102$ се завршава са нула нула (паран број), па је 9 у низу $A, A_7 = 9$.

На основу својстава $1,\ 2$ и 3 може се извршити карактеризација текуће позиције и одредити следећи потез.

Претпоставимо да је текућа позиција $(x,y), 0 < x \le y$. Најпре је потребно ирачунати $R_p(x)$ и проверити да ли се завршава са парним или непарним бројем нула.

- 1. Уколико се $R_p(x)$ завршава непарним бројем нула, онда је $x=B_n$, тако да је победнички потез $(x,y) \to (I_p(R_p''(x)),x)$.
- 2. Уколико се $R_p(x)$ завршава парним бројем нула, онда је $x=A_n$. Ако је $y>I_p(R'_p(x))$ победнички потез је $(x,y)\to (x,I_p(R'_p(x)))$. У противном, ако је $y<I_p(R'_p(x))$, рачунамо $d=y-x, m=\lfloor \frac{d}{a}\rfloor$. Уколико се $R_q(m)$ завршава са парним бројем нула, онда је $A_m=I_p(R_q(m))$; у противном се завршава непарним бројем нула и $A_m=I_p(R_q(m))-1$. У оба случаја победнички потез је $(x,y)\to (A_m,A_m+ma)$.

5 Имплементација и евалуација

За сваку стратегију у табели 4 су приказани резултати рачунања изгубљених позиција у милисекундама зависно од n, при фиксном a=2. За мерење је коришћена хроно библиотека (енг. *chrono library*). Сва мерења су извршена на раучунару са следећом конфигурацијом:

CPU: Intel(R) Core(TM) i7-4510U CPU @ 2.00GHz

RAM: Kingston 8GB 1600MHz DDR3 OS: Debian GNU/Linux 9 (stretch)

Compiler: gcc 6.3.0

Табела 4: Формирање табеле изгубљених позиција у милисекундама

n	recursive	algebraic	arithmetic
10	0.021726	0.019151	0.105902
20	0.023354	0.00874	0.174602
40	0.038193	0.013756	0.397292
80	0.06912	0.017511	0.801198
160	0.10989	0.03337	1.71846
320	0.212473	0.04544	3.70203
640	0.398057	0.085465	7.22427
1280	0.763766	0.153913	13.4911
2560	1.55891	0.31334	18.1119
5120	2.9688	0.575391	31.1896
10240	5.44571	1.22256	63.0703
20480	11.5327	2.32471	130.527
40960	19.0074	4.73338	274.89
81920	29.5489	6.89798	577.927
163840	38.508	11.9083	1212.63
327680	77.3596	23.2272	2531.22

n	recursive	algebraic	arithmetic
655360	154.61	46.6433	5276.95
1310720	310.208	92.3603	11054.6
2621440	619.201	188.162	23401.9
5242880	1242.34	369.427	49698.1
10485760	2498.78	753.91	103282
20971520	5021.82	1524.98	213003
41943040	10052.7	3065.81	587616

У табели 5 приказани су за a=2 парови A_n,B_n за неке n до $10^{31}.$

Табела 5: Списак дела изгубљених позиција за a=2

n	A	В
10	14	34
20	28	68
40	56	136
80	113	273
160	226	546
320	452	1092
640	905	2185
1280	1810	4370
2560	3620	8740
5120	7240	17480
10240	14481	34961
20480	28963	69923
40960	57926	139846
81920	115852	279692
163840	231704	559384
327680	463409	1118769
655360	926819	2237539
1310720	1853638	4475078
2621440	3707276	8950156
5242880	7414552	17900312
10485760	14829104	35800624
20971520	29658208	71601248
41943040	59316416	143202496
83886080	118632832	286404992
167772160	237265664	572809984
335544320	474531328	1145619968
671088640	949062656	2291239936
1342177280	1898125312	4582479872
2684354560	3796250624	9164959744
5368709120	7592501249	18329919489
10737418240	15185002499	36659838979
21474836480	30370004999	73319677959
42949672960	60740009999	146639355919
85899345920	121480019999	293278711839
171798691840	242960039998	586557423678
343597383680	485920079996	1173114847356
687194767360	971840159992	2346229694712
1374389534720	1943680319984	4692459389424
2748779069440	3887360639969	9384918778849
5497558138880	7774721279938	18769837557698
10995116277760	15549442559877	37539675115397
21990232555520	31098885119754	75079350230794
43980465111040	62197770239509	150158700461589
87960930222080	124395540479019	300317400923179

n	A	В
175921860444160	248791080958038	600634801846358
351843720888320	497582161916076	1201269603692716
703687441776640	995164323832152	2402539207385432
1407374883553280	1990328647664304	4805078414770864
2814749767106560	3980657295328608	9610156829541728
5629499534213120	7961314590657216	19220313659083456
11258999068426240	15922629181314432	38440627318166912
22517998136852480	31845258362628865	76881254636333825
45035996273704960	63690516725257730	153762509272667650
90071992547409920	127381033450515460	307525018545335300
180143985094819840	254762066901030920	615050037090670600
360287970189639680	509524133802061840	1230100074181341200
720575940379279360	1019048267604123680	2460200148362682400
1441151880758558720	2038096535208247360	4920400296725364800
2882303761517117440	4076193070416494720	9840800593450729600
5764607523034234880	8152386140832989440	19681601186901459200
11529215046068469760	16304772281665978880	39363202373802918400
23058430092136939520	32609544563331957760	78726404747605836800
46116860184273879040	65219089126663915520	157452809495211673600
92233720368547758080	130438178253327831040	314905618990423347200
184467440737095516160	260876356506655662080	629811237980846694400
368934881474191032320	521752713013311324160	1259622475961693388800
737869762948382064640	1043505426026622648320	2519244951923386777600
1475739525896764129280	2087010852053245296640	5038489903846773555200
2951479051793528258560	4174021704106490593280	10076979807693547110400
5902958103587056517120	8348043408212981186560	20153959615387094220800
11805916207174113034240	16696086816425962373120	40307919230774188441600
23611832414348226068480	33392173632851924746240	80615838461548376883200
47223664828696452136960	66784347265703849492480	161231676923096753766400
94447329657392904273920	133568694531407698984960	322463353846193507532800
188894659314785808547840	267137389062815397969920	644926707692387015065600
377789318629571617095680	534274778125630795939840	1289853415384774030131200
755578637259143234191360	1068549556251261591879680	2579706830769548060262400
1511157274518286468382720	2137099112502523183759360	5159413661539096120524800
3022314549036572936765440	4274198225005046367518720	10318827323078192241049600
6044629098073145873530880	8548396450010092735037440	20637654646156384482099200
12089258196146291747061760	17096792900020185470074880	41275309292312768964198400
24178516392292583494123520	34193585800040370940149760	82550618584625537928396800
48357032784585166988247040	68387171600080741880299520	165101237169251075856793600
96714065569170333976494080	136774343200161483760599040	330202474338502151713587200
193428131138340667952988160	273548686400322967521198080	660404948677004303427174400
386856262276681335905976320	547097372800645935042396160	1320809897354008606854348800
773712524553362671811952640	1094194745601291870084792320	2641619794708017213708697600
1547425049106725343623905280	2188389491202583740169584640	5283239589416034427417395200
3094850098213450687247810560	4376778982405167480339169280	10566479178832068854834790400
6189700196426901374495621120	8753557964810334960678338560	21132958357664137709669580800
12379400392853802748991242240	17507115929620669921356677120	42265916715328275419339161600
24758800785707605497982484480	35014231859241339842713354240	84531833430656550838678323200
49517601571415210995964968960	70028463718482679685426708480	169063666861313101677356646400
99035203142830421991929937920	140056927436965359370853416960	338127333722626203354713292800
198070406285660843983859875840	280113854873930718741706833920	676254667445252406709426585600
396140812571321687967719751680	560227709747861437483413667840	1352509334890504813418853171200
792281625142643375935439503360	1120455419495722874966827335680	2705018669781009626837706342400
1584563250285286751870879006720	2240910838991445749933654671360	5410037339562019253675412684800
3169126500570573503741758013440	4481821677982891499867309342720	10820074679124038507350825369600
6338253001141147007483516026880	8963643355965782999734618685440	21640149358248077014701650739200

5.1 Рекурзивна стратегија

За раучунање табеле изгубљених позиција рекурзивном стратегијом прво је потребно да израчунамо A_i , тачније потребно је наћи mex (дефиниција (2)). У коду 1 (функција $get_min_positive(int\ last_mex_index))$ за тражење mex-а је коришћен помоћни низ $_C$ иницијализиван нулама, димензије 2*n, с обзиром да за елементе низа A важи a <= 2*n. Тражење mex-а своди се на проналажење индекса прве нуле. Приликом наредног тражења mex-а може се поћи од индекса где је завршено претходно тражење. У свакој итерацији елементи низа $_$ и $_B$ се рачунају према дефиницији 2. Додатно се ажурира низ $_C$, тако што се на позицију mex и b упишу вредности mex и b. Дакле, сложеност формирања табеле изгубљених позиција O(n).

Код 1: Рекурзивна стратегија рачунања табеле изгубљених позиција

```
void Recursive::p positions()
2
    {
      _A. push_back(0);
3
      _B. push _ back (0);
 4
5
6
      vector < int >:: size _ type c _ size = vector < int >:: size _ type (2*_n+1);
       C. resize (c size,0);
 7
      int last mex index = 1;
 8
      for (int i=1; i <= n; i++)
9
10
         int mex = get_min_positive(last_mex_index);
11
         last mex index = mex;
12
         A. push back (mex);
13
         int b = A.at(vector < int > :: size type(i)) + a*i;
14
         B. push back(b);
15
         C. at (\text{vector} < \text{int} > :: \text{size} \text{ type} (\text{mex})) = \text{mex};
16
         if (b \le 2* n) {
           _C. at (vector < int > :: size type (b)) = b;
17
18
19
20
    }
21
    int Recursive:: get min positive (int last mex index)
22
23
      auto it = find( C.begin()+last mex index, C.end(),0);
24
25
      return static cast <int > (distance ( C. begin (), it ));
26
```

Графички приказ зависности времена у милисекундама од n дат је на слици 5, за a=2.

Слика 5: График рекурзивне стратегије за конструкцију табеле изгубљених позиција

5.2 Алгебарска стратегија

За разлику од рекурзиивне стратегије која користи имплицитну рекурзију, алгебарска стратегија користи експлицитну рекурзију, рачунајући alpha и beta према дефиницијама (3), (4) (Код 2). Због тога је укупна временска сложеност конструкције П табеле O(n).

Код 2: Алгебарска стратегија рачунања табеле изгубљених позиција

```
void Algebraic::p positions()
1
2
      double alpha, beta;
3
4
      alpha = (2-_a+sqrt(_a*_a+4))/2;
5
      beta = alpha + a;
6
8
      _A. push _ back (0);
9
      B. push back (0);
10
      for (int i=1; i \le n; i++)
11
        _A.push_back(static_cast<int>(floor(alpha*i)));
12
13
        _B.push_back(static_cast<int>(floor(beta*i)));
14
15
```

Графички приказ зависности времена у милисекундама од n дат је на слици 6, за = 2.

Слика 6: График алгебарске стратегије за конструкцију П табеле

5.3 Аритметичка стратегија

За раучунање табеле изгубљених позиција аритметичком стратегијом користи се коначан верижни разломак [1, a, a,, a], што захтева време O(n) (Фунцкција $alpha_continued_fractions()$) у коду 3).

Потом се формирају низови p и q према леми 5, њихова димензија је највише log(n). Стога је време O(log(n)) (Фунцкција $p_q_numerations()$ у коду 3).

Преостаје још само да n бројева представимо у p и q систему, за њихово представљање у свакој итерацији бинарном претрагом низова p и q одређује се са колико цифара треба представити број i, што је у најгорем случају једнако величини низова p и q, тачније log(n). Тако да је сложеност бинарне претраге O(log(log(n))). Репрезентација броја k у p или q систему се добија тако што рачунамо количник и остатак дељења броја k са одговарајућом вредности низа p или q. Уколико имамо остатак потребно је и њега представити у p или q систему, његова p или q репрезентација је позната тако да је потребно само да је прекопирамо на крај текуће p или q репрезентације броја k, не мењајући притом унапред дефинисан број цифара. Сложеност операције копирања једнака је броју елемената који се копира, што је у најгорем случају log(k)-1 цифара. Како имамо n итерација укупна сложеност представљања првих n бројева у p и q систему захтева O(n(log(log(n))+log(n)-1)) времена (Фунцкцијом $p_system_calculation()$ у коду p представља се p бројева у p систему, аналогно фунцкцијом $p_system_calculation()$ у коду p представља се p бројева у p систему.

Према томе укупна временска сложеност конструкције табеле изгубљених позиција је O(nlog(n))

Код 3: Аритметичка стратегија рачунања табеле изгубљених позиција

```
void Arithmetic::arithmetic characterization of P Position()
1
2
     alpha continued fractions();
3
4
     p q numerations();
5
     p_system_calculation();
6
     q system calculation();
7
8
9
   void Arithmetic::alpha continued fractions()
10
   {
       alpha.push back(1);
11
     fill n(back inserter(alpha), n, a);
12
13
14
15
   void Arithmetic::p_q_numerations()
16
17
    int p = 1;
```

```
int _q = 0;
18
19
     _p. push _ back (1);
      _p.push_back(_alpha.at(1)*_p.at(0)+__p);
20
21
      q. push back(1);
22
      q.push back( alpha.at(1) * q.at(0) + q);
23
      vector < int > :: size type index = 2;
      int memoize = _alpha.at(2)*_p.at(1)+_p.at(0);
24
25
      while (memoize \le n) {
26
        memoize = \_alpha. at (index)*\_p. at (index-1)+\_p. at (index-2);
27
        p. push back (memoize);
28
        q.push back( alpha.at(index)* q.at(index-1)+ q.at(index-2));
29
        index++;
30
      }
31
   }
32
33
   void Arithmetic::p system calculation()
34
   {
      vector < int > :: size_type size = 0;
35
36
      int index;
      for (int i = 1; i <= n; i++){
37
        int quotient = 0;
38
39
        int remainder = 0;
        //if the i is in the p, then initialize the vecor r with size zeors
40
41
        // example: i = 1, 1 is in p[0], r = \{0\}
42
                   i = 3, 3 \text{ is in } p[1], r = \{0, 0\}
43
        if (binary search ( p. begin (), p. end (), i)) {
44
          size++;
45
          index = i;
46
        vector < int > r(size, 0);
47
48
        quotient = i/index;
49
        remainder = i%index;
50
        r.at(0) = quotient;
        if (remainder != 0) {
51
          copy_backward(_p_system[remainder].begin(), _p_system[remainder].end
              (), r.end());
53
54
         p system.insert(pair<int, vector<int>>(i, r));
55
56
   }
57
   void Arithmetic::q system calculation()
59
60
      vector < int > :: size_type size = 0;
61
      int index;
      for (int i = 1; i <= n; i++)
62
        int quotient = 0;
63
64
        int remainder = 0;
        //if the i is in the q, then initialize the vecor r with size zeors
65
66
        // \text{example}: i = 1, 1 \text{ is in } q[0], r = \{0\}
                   i = 3, 3 \text{ is in } q[1], r = \{0, 0\}
67
        if (binary search ( q. begin (), q. end (), i)) {
68
69
          size++;
70
          index = i;
71
72
        vector < int > r(size, 0);
73
        quotient = i/index;
74
        remainder = i%index;
```

Графички приказ зависности времена у милисекундама од n дат је на слици 7, за a=2.

Слика 7: График аритметичке стратегије за конструкцију табеле изгубљених позиција

5.4 Сумиран приказ времена извршавања свих стратегија

Из претходне анализе, иако је формирање табеле изгбљених позиција алгебарском и рекурзивном стратегијом линеарно, како алгебарска стратегија користи експлицитну рекурзију, може закључити да је формирање табеле изгубљених позиција овом стратегијом нешто брже, што се може видети и на обједињеним графицима 8 и 9.

Слика 8: Сумиран приказ извршавања свих стратегија за конструкцију табеле изгубљених позиција

Слика 9: Сумиран приказ извршавања рекурзивне и алгебарске стратегије за конструкцију табеле изгубљених позиција

5.5 Препознавање природе тренутне позиције

Када имамо израчунате изгубљене позиције, можемо да анализирамо природу тренутне позиције и да одредимо следећу позицију игре.

У коду 4 је за рекурзивну и алгебарску стратегију приказана провера да ли је текућа позиција изгубљена, и ако није функција $reach_P_position(vector < int > & piles)$, која као аргумент прима тренутни број жетона на столу, рачуна следећи пар жетона тако да се достигне изгубљена позиција. За раунање такве позиције користе се случај 1 и случај 2 из доказа теорме 2.

За аритметичку стратегију, у коду 5 се најпре ирачунава са колико нула се завршава репрезентација $R_p(x)$. (Функција $number_of_zeros_from_end(_R_p)$). Уколико се $R_p(x)$ завршава непарним бројем нула, функција $odd_number_of_zeros(vector<int>& piles, vector<int>&R)$ рачуна достижну изгубљену позицију, према 1. У противном, $R_p(x)$ се завршава парним бројем нула, функција $even_number_of_zeros(vector<int>& piles, vector<int>&R)$ рачуна достижну изгубљену позицију, према 2.

Код 4: Достизање изгубљене позиције рекурзивном и алгебарском стратегијом

```
void Recursive and Algebraic::reach P position(vector<int>& piles)
1
2
    {
       //two case:
3
       //I : if piles (0) is B_n, save n, then x = piles (0) and y = A n,
4
       //II: if piles (0) is A n, save n, if y > B n then y = B n
5
                                                    if y < B n, d = y - x, m = floor(d/a)
6
           then x = A m, y = B m, m < n
       if \, (\, find \, (\_B.\, begin \, () \,\, , \,\, \_B.\, end \, () \,\, , \,\, pile \, s \, . \, at \, (0) \, ) \,\, \, != \,\, end \, (\_B) \, ) \,\, \, \{
7
         auto it = find( B.begin(), B.end(), piles.at(0));
8
9
         vector<int>::size type index = static cast<vector<int>::size type>(
              distance (B. begin (), it));
10
          piles.at(1) = piles.at(0);
          piles.at(0) = A.at(index);
11
12
       else if (find (_A. begin (), _A. end (), piles.at (0)) != end (_A)) {
13
         auto it = find(_A.begin(),_A.end(), piles.at(0));
14
15
         vector<int>::size type index = static cast<vector<int>::size type>(
              distance(_A.begin(), it));
         \begin{array}{l} \mbox{if (piles.at (1)} > \_B.\,at\,(\mbox{index}\,)\,\, \{ \\ \mbox{piles.at (1)} = \_B.\,at\,(\mbox{index}\,)\,; \end{array}
16
17
18
19
         else if (piles. at (1) < B. at (index)) {
```

```
int d = abs(piles.at(1) - piles.at(0));
20
21
           vector < int > :: size\_type m = static\_cast < vector < int > :: size\_type > (floor (
               d/_a));
22
           piles.at(0) = \underline{A}.at(m);
23
           piles.at(1) = B.at(m);
24
        }
25
         else {
26
           Game Helper::computer move(piles, a);
27
28
      }
29
```

Код 5: Достизање изгубљене позиције аритметичком стратегијом

```
void Arithmetic::arithmetic strategy(vector<int>& piles)
2
   {
     3
4
     int number_of_zeros_p = number_of_zeros_from_end(_Rp);
5
     if (fmod(number_of_zeros_p,2) != 0) {
6
7
       odd number of zeros(piles, Rp);
8
9
10
       even_number_of_zeros(piles,_Rp);
11
     }
   }
12
13
   int Arithmetic::number of zeros from end(vector<int>& R)
14
15
   {
16
     vector<int>::reverse iterator index = find if(R.rbegin(), R.rend(), [] (
         int i) {
17
       return (i != 0);
18
     });
19
20
     int result = static cast < int > (distance(R.rbegin(), index));
21
22
     return result;
23
24
25
   void Arithmetic::odd_number_of_zeros(vector<int>& piles, vector<int>& R)
26
     piles.at(1) = piles.at(0);
27
28
     R. pop back();
29
     int _Ip = p_interpretation(R);
30
      piles.at(0) = Ip;
31
   }
32
33
   void Arithmetic::even number of zeros(vector<int>& piles, vector<int>& R)
34
35
     R. push back (0);
36
     int _Ip = p_interpretation(R);
     if (piles.at(1) > _Ip) {
   piles.at(1) = _Ip;
37
38
39
     else if (piles.at(1) < _Ip) {
40
41
       int d = abs(piles.at(1) - piles.at(0));
       int m = static cast < int > (floor(d/a));
42
        vector < int > Rq = q_system. find (m) -> second;
43
       int number_of_zeros_q = number_of_zeros_from_end(_Rq);
44
```

```
_Ip = p_interpretation(_Rq);
if(fmod(number_of_zeros_q, 2) != 0){
    piles.at(0) = _Ip - 1;
    piles.at(1) = _Ip - 1 + m*_a;
45
46
47
48
              }
49
              else {
   piles.at(0) = _Ip;
   piles.at(1) = _Ip + m*_a;
50
51
52
53
54
          else {
55
              Game_Helper::computer_move(piles,_a);
56
57
58
```

6 Закључак

У овој тези кроз примере, поткрепљене математичким доказима описана су три начин рачунања изгубљених позиција, са циљем да се прикаже оптималан начин играња Витхофове игре. Као главни допринос тезе, приказана је статистика извршавања и имплементирана су сва три начина за рачунање табеле изгубљених позиција. Захваљујући којима ће рачунар победити, уколико његов противник не зна како оптимално играти Витхофову игру.

Литература

- [1] Charles L. Bouton. Nim, a game with a complete mathematical theory. Annals of Mathematics, 3(1/4):35-39, 1901.
- [2] Aviezri S. Fraenkel. How to beat your wythoff games' opponent on three fronts. *The American Mathematical Monthly*, 89(6):353–361, 1982.
- [3] N.B. Ho. Combinatorial Aspects of Variants of the Game of Nim. La Trobe University, 2011.
- [4] Urban Larsson. Restrictions of m-wythoff nim and p-complementary beatty sequences. *Games of no Chance*, 4:137–160, 2010.
- [5] Willem A Wythoff. A modification of the game of nim. Nieuw Arch. Wisk, 7(2):199-202, 1907.
- [6] A. M. Yaglom and I. M. Yaglom. Challenging Mathematical Problems with Elementary Solutions. Holden-Day, USA, 1967.