Project Discussions

Dijkstra's Algorithm: Parallel Formulation

- Two parallelization strategies
 - execute each of the *n* shortest path problems on a different processor (source partitioned),
 - use a parallel formulation of the shortest path problem to increase parallelism (source parallel).

Dijkstra's Algorithm: Source Partitioned Formulation

- Use n processors, each processor P_i finds the shortest paths from vertex v_i to all other vertices by executing Dijkstra's sequential single-source shortest paths algorithm.
- It requires no interprocess communication (provided that the adjacency matrix is replicated at all processes).
- The parallel run time of this formulation is: $\Theta(n^2)$.
- It can only use *n* processors

Recall: Floyd Warshall Algorithm

- All Pair Shortest Path algorithm
 - Defines the shortest distance *d* in terms of "smaller" problems?
- Note: a path exists between two vertices v_i , v_j , if
 - there is an edge from v_i to v_i ; or
 - there is a path from v_i to v_j going through intermediate vertices from set $\{v_1\}$; or
 - there is a path from v_i to v_j going through intermediate vertices drawn from set $\{v_1, v_2\}$; or
 - ...
 - there is a path from v_i to v_j going through intermediate vertices drawn from set $\{v_1, v_2, \dots v_k\}$;

Floyd's Algorithm

From our observations, the following recurrence relation follows:

$$d_{i,j}^{(k)} = \left\{ egin{array}{ll} w(v_i,v_j) & ext{if } k=0 \ \min\left\{d_{i,j}^{(k-1)},d_{i,k}^{(k-1)}+d_{k,j}^{(k-1)}
ight\} & ext{if } k\geq 1 \end{array}
ight.$$

This equation must be computed for each pair of nodes and for k = 1, n. The serial complexity is $O(n^3)$.

Floyd's Algorithm

```
1. procedure FLOYD_ALL_PAIRS_SP(A)
2. begin
3. D^{(0)} = A;
4. for k := 1 to n do
5. for i := 1 to n do
6. for j := 1 to n do
7. d_{i,j}^{(k)} := \min\left(d_{i,j}^{(k-1)}, d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)}\right);
8. end FLOYD_ALL_PAIRS_SP
```

Floyd's all-pairs shortest paths algorithm. This program computes the all-pairs shortest paths of the graph G = (V,E) with adjacency matrix A.

(KD) min (d(i,i)), d(i,k)+d(ki)

min (d(i,i), d(i,k)+d(ki)

- Each processor updates its part of the matrix during each iteration.
- To compute $d_{l,k}^{(k-1)}$ processor $P_{i,j}$ must get $d_{l,k}^{(k-1)}$ and $d_{k,r}^{(k-1)}$.
- In general, during the k^{th} iteration, each of the \sqrt{p} processes containing part of the k^{th} row send it to the $\sqrt{p}-1$ processes in the same column.
- Similarly, each of the Vp processes containing part of the k^{th} column sends it to the Vp 1 processes in the same row.

(a) Matrix $D^{(k)}$ distributed by 2-D block mapping into $\forall p \ x \ \forall p$ subblocks, and (b) the subblock of $D^{(k)}$ assigned to process $P_{i,j}$.

(a) Communication patterns used in the 2-D block mapping. When computing $d_{i,j}^{(k)}$, information must be sent to the highlighted process from two other processes along the same row and column. (b) The row and column of Vp processes that contain the k^{th} row and column send them along process columns and rows.

```
1. procedure FLOYD_2DBLOCK(D^{(0)})
2. begin
3. for k := 1 to n do
4. begin
5. each process P_{i,j} that has a segment of the k^{th} row of D^{(k-1)}; broadcasts it to the P_{*,j} processes;
6. each process P_{i,j} that has a segment of the k^{th} column of D^{(k-1)}; broadcasts it to the P_{i,*} processes;
7. each process waits to receive the needed segments;
8. each process P_{i,j} computes its part of the D^{(k)} matrix;
9. end
10. end FLOYD_2DBLOCK
```

Floyd's parallel formulation using the 2-D block mapping. $P_{*,j}$ denotes all the processes in the j^{th} column, and $P_{i,*}$ denotes all the processes in the i^{th} row. The matrix $D^{(0)}$ is the adjacency matrix.

- During each iteration of the algorithm, the k^{th} row and k^{th} column of processors perform a one-to-all broadcast along their rows/columns.
- The size of this broadcast is n/\sqrt{p} elements, taking $\Theta((n \log p)/\sqrt{p})$ steps
- The synchronization step takes $\Theta(\log p)$.
- The computation time is $\Theta(n^2/p)$.

Dijkstra's Algorithm: Source Parallel Formulation

- In this case, each of the shortest path problems is further executed in parallel. We can therefore use up to n^2 processors.
- Given p processors (p > n), each single source shortest path problem is executed by p/n processors.
- Using previous results, this takes time:

$$T_P = \Theta\left(rac{n^3}{p}
ight) + \Theta(n\log p).$$

• For cost optimality, we have $p = O(n^2/\log n)$ and the isoefficiency is $\Theta((p \log p)^{1.5})$.