Федеральное государственное автономное образовательное учреждение высшего образования

Университет ИТМО

Факультет программной инженерии и компьютерной техники

Дисциплина:

Основы профессиональной деятельности

Лабораторная работа №4

"Выполнение комплекса программ"

Вариант: 1213

Выполнил:

Кузнецов Максим Александрович

Группа: Р3111

Преподаватель:

Блохина Елена Николаевна

Санкт-Петербург

2021

Задание:

Цель работы - изучение способов связи между программными модулями, команды обращения к подпрограмме и исследование порядка функционирования БЭВМ при выполнении комплекса взаимосвязанных программ.

Задание. По выданному преподавателем варианту восстановить текст заданного варианта программы и подпрограммы (программного комплекса), определить их предназначение и составить описание, определить область представления и область допустимых значений для исходных данных и возвращаемых значений подпрограммы, выполнить трассировку программного комплекса.

Подготовка к выполнению работ ы. 9 Получить у преподавателя номер варианта и исходные данные к лабораторной работе. Изучить способы связи между программными модулями и команды обращения к подпрограмме в базовой ЭВМ (приложение В, п. 1.8). Восстановить текст заданного варианта программного комплекса, составить его описание, нарисовать график функции, которая вычисляется в подпрограмме.

Порядок выполнения работы. Получить допуск к лабораторной работе, предъявив преподавателю подготовленные материалы. Занести в память базовой ЭВМ заданный вариант программного комплекса и заполнить таблицу трассировки, выполняя этот комплекс по командам.

1BE: -	0200	1	1CC:	6E0C	ı			1	6FE:	0A00
1BF:	EE19	1	1CD:	EE0B	Ì	6F1:	AC01	1	6FF:	FA2F
1C0:	AE17	1	1CE:	AE07	1	6F2:	F309	1	700:	0091
1C1:	0C00	-	1CF:	0700	1	6F3:	6E0B	1		
1C2:	D6F1	1	1D0:	0C00	1	6F4:	F207	1		
1C3:	0800	1	1D1:	D6F1	1	6F5:	F006	1		
1C4:	0740	1	1D2:	0800	1	6F6:	4E08	-		
1C5:	4E13	1	1D3:	4E05	1	6F7:	4C01	1		
106:	EE12	1	1D4:	EE04	1	6F8:	4C01	1		
1C7:	AE0F	1	1D5:	0100	1	6F9:	4C01	-		
108:	0700	1	1D6:	7777	1	6FA:	4E05	1		
1C9:	0C00	1	1D7:	YYYY	1	6FB:	CE01	1		
1CA:	D6F1	-	1D8:	XXXX	1	6FC:	AE02	-		
1CB:	0800	1	1D9:	FA30	1	6FD:	EC01	-1		

Адрес	Код команды	Мнемоника	Комментарии
1BE	0200	CLA	Очистка аккумулятора
1BF	EE19	ST IP+25	(IP+25+1) Сохранение АС → (1D9) Обнуление R
1C0	AE17	LD IP+23	(IP+23+1) Загрузка в АС значения из (1D8) Загрузка X
1C1	0C00	PUSH	AC -> -(SP) Загрузка содержимого аккумулятора в стек
1C2	D6F1	CALL 6F1	SP — 1 -> SP, IP -> (SP), 6F1 -> IP Вызов подпрограммы, начало которой находится в ячейке 6F1
1C3	0800	POP	(SP) + -> AC Загрузка в аккумулятор значения из стека Загрузка изменившегося Х
1C4	0740	DEC	Декремент аккумулятора
1C5	4E13	ADD IP+19	(IP+19+1) Сложение АС и значения из ячейки (1D9) Сложение X с результатом
1C6	EE12	ST IP+18	(IP+18+1) Сохранение АС → (1D9) Запись изменившегося X в R
1C7	AEOF	LD IP+15	(IP+15+1) Загрузка в АС значения из (1D7) Загрузка Y
1C8	0700	INC	Инкремент аккумулятора
1C9	0C00	PUSH	AC -> -(SP) Загрузка содержимого аккумулятора в стек
1CA	D6F1	CALL 6F1	SP — 1 -> SP, IP -> (SP), 6F1 -> IP Вызов подпрограммы, начало которой находится в ячейке 6F1
1CB	0800	POP	(SP) + -> AC Загрузка в аккумулятор значения из стека Загрузка изменившегося Y
1CC	6E0C	SUB IP+12	Вычитание из АС значения из ячейки (IP+12+1=1D9)
1CD	EEOB	ST IP+11	(IP+11+1) Сохранение АС → (1D9) Запись изменившегося Y в R
1CE	AE07	LD IP+7	(IP+7+1) Загрузка в АС значения из (1D6) Загрузка Z
1CF	0700	INC	Инкремент аккумулятора
1D0	0C00	PUSH	AC -> -(SP) Загрузка содержимого аккумулятора в стек
1D1	D6F1	CALL 6F1	SP — 1 -> SP, IP -> (SP), 6F1 -> IP Вызов подпрограммы, начало которой находится в ячейке 6F1
1D2	0800	POP	(SP) + -> AC Загрузка в аккумулятор значения из стека Загрузка изменившегося Z
1D3	4E05	ADD IP+5	(IP+5+1) Сложение АС и значения из ячейки (1D9) Сложение Z с результатом
1D4	EE04	ST IP+4	(IP+4+1) Сохранение АС → (1D9) Запись изменившегося Z в R

1D5	0100	HLT	Переход в пультовый режим						
	Подпрограмма								
6F1	AC01	LD &1	(SP+1) -> AC						
			Загрузить предпоследнее значение из стека в аккумулятор						
6F2	F309	BPL IP+9	(IP+9+1) Переход на (6FC) если число >= 0						
6F3	6E0B	SUB IP+11	(IP+11+1) Вычитание из АС значения из ячейки (6FF)						
6F4	F207	BMI IP+7	(IP+7+1) Переход на (6FC) если число < 0						
6F5	F006	BEQ IP+6	(IP+6+1) Переход на (6FC) если = 0						
6F6	4E08	ADD IP+8	(IP+8+1) Сложение АС и значения из ячейки (6FF)						
6F7	4C01	ADD &1	AC + (SP+1) -> AC						
6F8	4C01	ADD &1	AC + (SP+1) -> AC						
6F9	4C01	ADD &1	AC + (SP+1) -> AC						
6FA	4E05	ADD IP+5	(IP+5+1) Сложение АС и значения из ячейки (700)						
6FB	CE01	JUMP IP+1	(IP+1+1) Безусловный переход на 6FD						
6FC	AE02	LD IP+2	(IP+2+1) Загрузка в АС значения из ячейки (6FF)						
6FD	EC01	ST &1	Загрузка содержимого АС в стек						
6FE	0A00	RET	Возврат						

Назначение программы и реализуемые ею функции (формулы)

Назначение: Вычисление значения по заданной формуле.

Введем некоторые обозначения, так, пусть:

Пусть сама подпрограмма — это некая функция F, тогда: R = F(Z+1) + F(Y+1) - (F(X)-1)

$$F(T) = \begin{cases} -1489, T \le -1489 \\ 4T + 145, -1489 < T < 0 \\ -1489, T \ge 0 \end{cases}$$

Где T – любая из переменных X, Y или Z.

Для примера для переменных X, Y и Z можно взять значения X=-1, Y=0, Z=1:

$$R=F(1+1)+F(0+1)-(F(-1)-1)=-1489+(-1489)-(4*(-1)+145-1)=-2978-140=-3119$$

Область представления

X, Y, Z, (6FF), (700) и R – это знаковые числа в 16-раздрядном двоичном формате

Область допустимых значений

Рассмотрим 3 случая(интервала) функции:

1) Если X, (Y+1), (Z+1)
$$\in \left[\frac{-2^{15}-125}{4};-1489\right]$$

$$F(Y+1) = -1489$$

$$F(X) = -1489$$

$$F(Z+1) = -1489$$

 $R = -1489 - 1489 + 1490 = -1488 = > R \in \{-1488\}$

2) Если X, (Y+1), (Z+1) € (-1489;0)

$$F(Y+1) = 4*(Y+1) + 145$$

$$F(X) = 4*X+145$$

$$F(Z+1) = 4*(Z+1)+145$$

 $R = 4Z+4+145+4Y+4+145-(4X+145-1)=4(Z+Y-X)+145+9 => R \in [-11754;6102]$

3) Если X, (Y+1), (Z+1)
$$\in [0; \frac{(2^{15}-1)-125}{4}]$$

$$F(Y+1) = -1489$$

$$F(X) = -1489$$

$$F(Z+1) = -1489$$

$$R = -1489 - 1489 + 1490 = -1488 = > R \in \{-1488\}$$

Как итог:

$$\begin{aligned} &\text{X} \in \big[\frac{-2^{15}-125}{4}; \frac{(2^{15}-1)-125}{4}\big] \\ &\text{Y, Z} \in \big[\frac{-2^{15}-125}{4}-1; \frac{(2^{15}-1)-125}{4}-1\big] \end{aligned}$$

Расположение в памяти ЭВМ программы, исходных данных и результатов

Расположение программы 1BE-1D5 Расположение подпрограммы 6F1-6FE Исходные данные основной программы 1D6-1D8 Результат 1D9 Исходные данные подпрограммы 6FF-700

Адреса первой и последней выполняемых команд программы

Адрес первой команды: 1ВЕ

Адрес последней команды: 1D5

Трассировка программы

	,			•	•						
Адр	Знач	IP	CR	AR	DR	SP	BR	AC	NZVC	Адр	Знач
1BE	0200	1BE	0000	000	0000	000	0000	0000	0100		
1BE	0200	1BF	0200	1BE	0200	000	01BE	0000	0100		
1BF	EE19	1C0	EE19	1D9	0000	000	0019	0000	0100	1D9	0000
1C0	AE17	1C1	AE17	1D8	0FF5	000	0017	0FF5	0000		
1C1	0C00	1C2	0C00	7FF	0FF5	7FF	01C1	0FF5	0000	7FF	0FF5
1C2	D6F1	6F1	D6F1	7FE	01C3	7FE	D6F1	0FF5	0000	7FE	01C3
6F1	AC01	6F2	AC01	7FF	0FF5	7FE	0001	0FF5	0000		
6F2	F309	6FC	F309	6F2	F309	7FE	0009	0FF5	0000		
6FC	AE02	6FD	AE02	6FF	FA2F	7FE	0002	FA2F	1000		
6FD	EC01	6FE	EC01	7FF	FA2F	7FE	0001	FA2F	1000	7FF	FA2F
6FE	0A00	1C3	0A00	7FE	01C3	7FF	06FE	FA2F	1000		
1C3	0800	1C4	0800	7FF	FA2F	000	01C3	FA2F	1000		
1C4	0740	1C5	0740	1C4	0740	000	01C4	FA2E	1001		
1C5	4E13	1C6	4E13	1D9	0000	000	0013	FA2E	1000		
1C6	EE12	1C7	EE12	1D9	FA2E	000	0012	FA2E	1000	1D9	FA2E
1C7	AE0F	1C8	AE0F	1D7	EC78	000	000F	EC78	1000		
1C8	0700	1C9	0700	1C8	0700	000	01C8	EC79	1000		
1C9	0C00	1CA	0C00	7FF	EC79	7FF	01C9	EC79	1000	7FF	EC79
1CA	D6F1	6F1	D6F1	7FE	01CB	7FE	D6F1	EC79	1000	7FE	01CB
6F1	AC01	6F2	AC01	7FF	EC79	7FE	0001	EC79	1000		
6F2	F309	6F3	F309	6F2	F309	7FE	06F2	EC79	1000		
6F3	6E0B	6F4	6E0B	6FF	FA2F	7FE	000B	F24A	1000		
6F4	F207	6FC	F207	6F4	F207	7FE	0007	F24A	1000		
6FC	AE02	6FD	AE02	6FF	FA2F	7FE	0002	FA2F	1000		
6FD	EC01	6FE	EC01	7FF	FA2F	7FE	0001	FA2F	1000	7FF	FA2F
6FE	0A00	1CB	0A00	7FE	01CB	7FF	06FE	FA2F	1000		

1CB	0800	1CC	0800	7FF	FA2F	000	01CB	FA2F	1000		
1CC	6E0C	1CD	6E0C	1D9	FA2E	000	000C	0001	0001		
1CD	EEOB	1CE	EEOB	1D9	0001	000	000B	0001	0001	1D9	0001
1CE	AE07	1CF	AE07	1D6	FA38	000	0007	FA38	1001		
1CF	0700	1D0	0700	1CF	0700	000	01CF	FA39	1000		
1D0	0C00	1D1	0C00	7FF	FA39	7FF	01D0	FA39	1000	7FF	FA39
1D1	D6F1	6F1	D6F1	7FE	01D2	7FE	D6F1	FA39	1000	7FE	01D2
6F1	AC01	6F2	AC01	7FF	FA39	7FE	0001	FA39	1000		
6F2	F309	6F3	F309	6F2	F309	7FE	06F2	FA39	1000		
6F3	6E0B	6F4	6E0B	6FF	FA2F	7FE	000B	000A	0001		
6F4	F207	6F5	F207	6F4	F207	7FE	06F4	000A	0001		
6F5	F006	6F6	F006	6F5	F006	7FE	06F5	000A	0001		
6F6	4E08	6F7	4E08	6FF	FA2F	7FE	8000	FA39	1000		
6F7	4C01	6F8	4C01	7FF	FA39	7FE	0001	F472	1001		
6F8	4C01	6F9	4C01	7FF	FA39	7FE	0001	EEAB	1001		
6F9	4C01	6FA	4C01	7FF	FA39	7FE	0001	E8E4	1001		
6FA	4E05	6FB	4E05	700	0091	7FE	0005	E975	1000		
6FB	CE01	6FD	CE01	6FB	06FD	7FE	0001	E975	1000		
6FD	EC01	6FE	EC01	7FF	E975	7FE	0001	E975	1000	7FF	E975
6FE	0A00	1D2	0A00	7FE	01D2	7FF	06FE	E975	1000		
1D2	0800	1D3	0800	7FF	E975	000	01D2	E975	1000		
1D3	4E05	1D4	4E05	1D9	0001	000	0005	E976	1000		
1D4	EE04	1D5	EE04	1D9	E976	000	0004	E976	1000	1D9	E976
1D5	0100	1D6	0100	1D5	0100	000	01D5	E976	1000		

Вывод:

- научился работать с подпрограммами
- узнал о работе стека