Projet P7

Implémentation d'un modèle de scoring

Introduction

• DataScientist pour Prêt à dépenser -> propose des crédits à la consommation pour des personnes ayant peu ou pas du tout d'historique de prêt

• Objectifs:

- Développement d'un outil de "scoring crédit" pour calculer la probabilité qu'un client rembourse son crédit
- Développer un algorithme de classification
- Développer un dashboard interactif
- - Déployer sur le web le dashboard et l'API de prédiction

Données

9 fichiers:

- 307 511 clients pour 122 Indicateurs
- Client : informations générales + informations sur les prêts précédents
- Fort déséquilibre entre les personnes solvables et les personnes non solvables.

Sommaire

- 1. Pré-Traitement & Analyse de données
- 2. Recherche d'un modèle optimale
- 3. API
- 4. Dashboard
- 5. Conclusion

Pré-Processing

- Utilisation du kernel lightgbm_with_simple_features.py récupérer sur kaggle
 - Taille dataset: 307488 lignes x 797 colonnes
- Vérification des valeurs manquantes
 - On supprime les lignes avec + 30% de valeurs manquantes
 - On supprime les colonnes avec + 57% de valeurs manquantes
 - Taille dataset : 290970 lignes x 577 colonnes
- Split le jeux de donnée
- Imputation
- Normalisation

- Comparaison de modèles :
 - KNN Classifier
 - Random Forest
 - Light-GBM (LGBM Classifier)
- Développement d'une métrique bancaire
- Gérer le déséquilibre de classes
- Recherche Hyperparamètres

Développement d'une métrique bancaire

Reality

	Confusion matrix	Negative : 0	Positive : 1
ediction	Negative : 0	True Negative : TN	False Negative : FN
Predi	Positive : 1	False Positive : FP	True Positive : TP

TN: client capable de rembourse = négatif au refus (classe 0)
TP: client incapable de rembourser = positif au refus (classe 1)

Développement d'une métrique bancaire

Reality

	Confusion matrix	Negative : 0	Positive : 1			
Prediction	Negative : 0	True Negative : TN	False Negative : FN			
	Positive : 1	False Positive : FP	True Positive : TP			

FN : Accorder un crédit à un client incapable de rembourser = PERTE

TN: Accorder un crédit à un client capable de payer = GAIN

TP: Pas accorder de prêt à un client incapable de rembourser = NUL

FP: Pas accorder de prêt à un client capable de rembourser = PERTE

Développement d'une métrique bancaire

Notre intérêt est de gagner de l'argent

Donc on va attribuer des coefficient a nos différent paramètres :

- Coefficient Négatif : FN et FP
- Coefficient Positif: TN

Attribuer un credit à une personne incapable = impact plus fort sur le score

- Coeff FN = -100
- Coeff FP = -1
- Coeff_TN = 10
- Coeff_TP = 0

Scoring =
$$10 \times TN + 0 \times TP + (-100) \times FN + (-1) \times FP$$

Scoring normalise =
$$\frac{Scoring - \min_{gain}}{\max_{gain} - \min_{gain}}$$

Autres Métriques pour tester l'efficacité

Recall_1 =
$$\frac{TP}{TP+FN}$$
; Precision_1 = $\frac{TP}{TP+FP}$; Flscore_1 = $\frac{2 \times precision_1 \times recall_1}{precision_1 + recall_1}$

Recall_0 =
$$\frac{TN}{TN+FP}$$
; Precision_0 = $\frac{TN}{TN+FN}$; F1score_0 = $\frac{2 \times precision_0 \times recall_0}{precision_0 + recall_0}$

Scoring_normalisé

On cherche à maximiser toutes ces métriques

Test des modèles

Recherche hyperparamètres avant de régler le problème de classe car problèmes de performance de l'ordinateur

Tableau comparatifs des différents modèles :

	TN	FP	FN	TP	precision_1	recall_1	f1-score_1	precision_0	recall_0	f1-score_0	scoring
LGBM & without Sampling	87769	248	7739	265	0.516569	0.033108	0.062228	0.918970	0.997182	0.956480	0.560877
KNN & without Sampling	88010	7	7998	6	0.461538	0.000750	0.001497	0.916694	0.999920	0.956500	0.547731
Random Forest & Without Sampling	88017	0	8004	0	0.000000	0.000000	0.000000	0.916643	1.000000	0.956509	0.547435

LGBM nous donne des performance légérement meilleurs aux autres modèles

Mais le déséquilibres n'est pas géré

Déséquilibre de Classe

- Over-sampling : dupliquer aléatoirement des données existantes de la classe sous-représentée
- SMOTE : créer de nouvelles données à partir des données déjà existantes pour la classe sous-représentée
- Under-sampling : sélectionner des données de la classe sur-représentée

Ces méthodes sont ensuite utilisé pour entrainés nos modèles

Test des modèles

	TN	FP	FN	TP	precision_1	recall_1	f1-score_1	precision_0	recall_0	f1-score_0	scoring
LGBM Classifier & Over Sampling	65186	22831	2610	5394	0.191107	0.673913	0.297773	0.961502	0.740607	0.836721	0.710424
LGBM Classifier & Under Sampling	62085	25932	2336	5668	0.179367	0.708146	0.286234	0.963739	0.705375	0.814561	0.706629
Random forest Classifier & Over Sampling	52106	35911	2810	5194	0.126359	0.648926	0.211529	0.948831	0.591999	0.729097	0.617762
Random forest Classifier & Under Sampling	51349	36668	2775	5229	0.124806	0.653298	0.209575	0.948729	0.583399	0.722508	0.615033
KNN Classifier & Under Sampling	58168	29849	3595	4409	0.128700	0.550850	0.208651	0.941794	0.660872	0.776713	0.611080
Random forest Classifier & SMOTE	64908	23109	4791	3213	0.122065	0.401424	0.187205	0.931262	0.737448	0.823100	0.585376
KNN Classifier & Over Sampling	55211	32806	4000	4004	0.108775	0.500250	0.178694	0.932445	0.627277	0.750007	0.569789
LGBM Classifier & SMOTE	87801	216	7793	211	0.494145	0.026362	0.050053	0.918478	0.997546	0.956381	0.558022
KNN Classifier & SMOTE	21153	66864	1017	6987	0.094609	0.872939	0.170717	0.954127	0.240329	0.383947	0.526625

LGBM avec un OVERSAMPLING nous donne les meilleurs performances

On refait une recherche d'hyperparamètres uniquement pour LGBM & OVERSAMPLING

Features Importance

ext_SOURCE : sources normalisées créées à partir de sources de données externes

Api

Lien: https://aginth02-p7-opc-api-api-lwnypu.streamlit.app/

Lien github: https://github.com/Aginth02/P7 OPC API

Dashboard

Lien: https://aginth02-p7-openclassroom-3-dashborddashbord-0vlj0k.streamlit.app/ Lien github: https://github.com/Aginth02/P7 OPENCLASSROOM

Conclusion

- Définir les coefficients optimaux pour notre métrique
- Rendre le modèle plus éthique :
 - Enlevés les variables discriminantes
 - Comparaison modèles avec et sans ces variables
 - Perte de rentabilité pour la banque ?
- Créer de nouvelles variables
- Adaptation du Dashboard aux souhaits de la banque

MERCI DE VOTRE ATTENTION