Modern Sampling Methods

Class 1: Introduction

January 10, 2022

Introduction: Instructors

Keisuke Hirano Department of Economics, Penn State University kuh237@psu.edu

Jack Porter Department of Economics, University of Wisconsin jrporter@ssc.wisc.edu

This course is about the interaction between:

- data design creating and collecting data; and
- data analysis estimation of effects, hypothesis testing, and analysis of welfare properties.

Some key themes:

- designs for identification;
- designs for efficiency/precision;
- designs for intervention/welfare maximization;
- things that can go wrong!

Course Plan

- 1. Introduction
- 2. Randomized Experiments
- 3. Publication Bias and Preanalysis Plans
- 4. Treatment and Policy Choice
- 5. Multi-Wave Experiments
- 6. Covariate-Adaptive Randomization
- 7. Bandit Algorithms
- 8. Applications of Bandits
- 9. Statistical Inference with Adaptively Generated Data
- 10. Window Choice in Time Series

- Class sessions will generally match topic list, but we may adjust if some sections take more or less time.
- ➤ Syllabus and slides will be posted to: https://github.com/keihirano/modern-sampling
- Syllabus contains many additional references and readings for those interested in exploring a topic in greater depth.
- You are invited to post questions to Zoom chat; we will pause occasionally to respond.
- You are also welcome to email us after the class with followup questions.

Remainder of This Session

- ▶ Preview some topics/application areas
- ▶ Review the i.i.d. assumption and some standard results
- Identification concepts

Randomized Controlled Trials in Economics

Randomized controlled trials (RCTs) have become widely used in economics, including field experiments and lab experiments. Some issues we will discuss:

- Understanding the potential benefits of RCT designs for identification;
- Design choices in RCTs: randomization schemes, sample sizes;
- Inference issues that arise from designed RCTs;
- Even with RCTs, bias can arise through reporting and publication decisions.

A Pre-Analysis Plan

Casey, Glennerster, and Miguel, 2012, "Reshaping Institutions: Evidence on Aid Impacts Using a Preanalysis Plan," *Quarterly Journal of Economics*.

Large scale randomized experiment designed to study the effect of a community development program in Sierra Leone.

- Provides findings based on pre-analysis plan.
- Provides findings without the constraints of the pre-analysis plan.

Reveals the scope for cherry-picking, hindsight bias, etc.

Treatment Assignment

Dehejia, 2005, "Program Evaluation as a Decision Problem," *Journal of Econometrics*.

Uses the GAIN experiment data to propose individualized treatment assignment rules (profiling).

- Embeds the problem in a decision theoretic framework.
- ▶ Shows how results can depend on welfare objective function.

Draws a distinction between the treatment assignment problem and statistical analysis of the average treatment effect.

A Multi-Wave RCT

Karlan and Wood (2017)

Experiment to study different ways to solicit donations to a charitable organization in a direct-mail compaign.

- Control: standard appeal (story about a program recipient).
- ► Treatment: added information about rigorous evaluation studies.

Study was conducted in two waves, with the second wave adjusted based on data from first wave.

Bandits in E-Commerce

Online platforms make it possible to rapidly adjust prices, advertising strategies, etc. in response to accumulating evidence.

Example: Schwartz, Bradlow, & Fader (2017):

- adaptive online advertising algorithm;
- large decision space (over 500 possible choices);
- ▶ field experiment to compare with uniform randomization;
- ▶ adaptive rule increased customer acquisition rate by 8%.

We will discuss these "bandit" problems, general heuristics and some properties, and some recent applications.

Adaptive Randomized experiments

Adaptive economic field experiments, e.g. Caria, Gordon, Kasy, Quinn, Shami, & Teytelboym (2021).

Choice of algorithm depends on goal: in-sample optimization vs. inference about effects (for future policy choice).

Statistical inference for treatment effects using data adaptive experiments is more complicated than with classic RCT designs.

Window Selection

When analyzing economic times series, common to limit the window of observations (e.g. post-Great Recession, pre-Covid, etc.).

Related issues with cross-sectional data analysis: restriction to certain subpopulations, etc.

There is a rich literature on testing for structural breaks, etc., but what happens to post-test analysis of data?

Issues:

- Robustness to changing parameters/environment;
- ▶ Bias/Variance tradeoff in estimation and prediction.

Background: the i.i.d. Assumption

Most textbook (cross-sectional) econometrics starts with the assumption that data are i.i.d.

This is a mathematical abstraction of a simple survey, where:

- there is a well-defined population;
- individuals are chosen completely randomly and with replacement
- (or the population is infinitely large);
- with no weighting/targeting of specific subpopulations;
- and perfect response.

In reality data collection is more complicated and the design has strong implications for identification, estimation, and inference.

- Many surveys have some degree of stratification with associated survey weights;
- Many surveys and experiments have nonresponse.
- Experimental treatment assignment protocols may break the i.i.d. condition, even in simple one-shot experiments.

Useful Results for i.i.d. Data

Suppose

$$Y_1,\ldots,Y_n\stackrel{iid}{\sim}F,$$

where F is some distribution.

Law of Large Numbers: if $\mu = E[Y_i]$ exists, then

$$\overline{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i \xrightarrow{p} \mu.$$

<u>Central Limit Theorem</u>: if $\mu = E[Y_i]$ and $\sigma^2 = V[Y_i]$ exists, then

$$\sqrt{n}(\overline{Y}_n - \mu) \stackrel{d}{\longrightarrow} N(0, \sigma^2).$$

In fact, we can estimate the entire distribution (CDF) of Y_i : for any y, let

$$F(y) = \Pr(Y_i \leq y).$$

Then the empirical CDF

$$\hat{F}_n(y) = \frac{1}{n} \sum_{i=1}^n 1(Y_i \le y) \stackrel{p}{\longrightarrow} F(y).$$

Similar results hold for vectors (X_i, Y_i) , etc.

The upshot is that under i.i.d. sampling we can "learn" (estimate) the joint distributions of <u>observable</u> variables.

We can also estimate objects like conditional expectations

$$m(x) = E[Y_i|X_i = x].$$

- ▶ If we specify linear conditional mean $E[Y_i|X_i=x]=x'\beta$, then we have a classic linear regression problem.
- ► Can estimate m(x) flexibly, using series, or kernel regression methods.
- → "Machine learning" methods can be useful when X_i is high-dimensional.
- ▶ Other objects like conditional quantiles can also be estimated.

Identification Concepts

Models in economics often involve latent variables, e.g.

- Individual preferences/valuations in demand and auction models
- ▶ Potential outcomes in causal inference models

Marschak (1953): want to evaluate some possible *interventions*; a "structural" model is invariant to those interventions.

Let S denote full set of (latent) model variables, and let G denote their distribution:

$$S \sim G$$
, $G \in \mathcal{G}$.

We are interested in some parameter (e.g. treatment effect) $\theta(G)$.

There is some mapping from the latent variables to observable variables: $S \mapsto Z$, inducing a distribution

$$Z \sim F$$
, $F = Obs(G)$.

However, some information may be lost in the transition from G to F.

The identification problem: assume we "know" (can estimate) F. Can we recover G or $\theta(G)$?

For any (feasible) F, let the set of possible G that generated F be:

$$\tilde{\mathcal{G}}(F) = \{G \in \mathcal{G} : F = \mathsf{Obs}(G)\}.$$

and let

$$\Theta(F) = \{\theta(G) : G \in \tilde{\mathcal{G}}(F)\}.$$

If $\Theta(F)$ is a singleton, we say that θ is (point-) identified at F. In principle, since we can estimate F, we should be able to estimate θ .

More generally, if $\Theta(F)$ is a (strict) subset of Θ , the parameter is partially identified and we may be able to estimate the identified set.

Example: Recovering Bidder Valuations

There are multiple auctions $j=1,\ldots,J$ with bidders $m=1,\ldots,M$ in each.

Suppose individuals have independent private values $V_i \stackrel{iid}{\sim} G$ (same across auctions).

In a second-price sealed-bid auction, dominant strategy is to bid your valuation:

$$B_i = V_i \quad \Rightarrow \quad F = G.$$

If we observe bids, then we can estimate

$$\hat{F}_n(v) = \frac{1}{n} \sum_{i=1}^n 1(B_i \leq v) \stackrel{p}{\longrightarrow} F(v) = G(v).$$

In a first-price sealed-bid auction, equilibrium strategy is to shade your bid:

$$B_i \leq V_i \quad \Rightarrow \quad F \neq G.$$

However, there is a one-to-one mapping between F and G (that depends on M); see e.g. Athey & Haile (2002).

We can still consistently estimate F, and then use the mapping to obtain the implied G.

Example: Nonresponse in Surveys

Suppose $Z_i \stackrel{iid}{\sim} G$ and we are interested in G or

$$\theta(G) = E[Z_i] = \int z dG(z).$$

We sample individuals but not all respond:

- $ightharpoonup T_i = 1$ if individual responds
- ▶ Observe T_i and $T_i \cdot Z_i$.

Then we can learn $F = \text{distribution of } (T_i, T_i \cdot Z_i)$.

Whether we can recover G from F depends on the nature of T_i . For example, if T_i is independent of Z_i , then

$$E[Z_i \mid T_i = 1] = E[Z_i] = \theta,$$

and θ is identified provided $Pr(T_i = 1) > 0$.

Similarly we can learn the entire distribution G through the distribution of $Z_i \mid T_i = 1$.

However, if T_i is dependent with Z_i , what we can learn may be more limited, and depends on the restrictions we place on the nonresponse model (and the model for Z). See e.g. Manski (1995).